Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US05/006711

International filing date: 02 March 2005 (02.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US Number: 60/589.772

Filing date: 21 July 2004 (21.07.2004)

Date of receipt at the International Bureau: 25 April 2005 (25.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

THE DESIGNATION STATUS OF ANTERIOR

TO ALL TO WIOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

April 18, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/589,772 FILING DATE: July 21, 2004 RELATED PCT APPLICATION NUMBER: PCT/US05/06711

Certified by

Lyn W. Dudas

Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office

"EXPRESS MAIL CERTIFICATE"

"Express Mail" Mailing Label Number EL964434137US

Date Of Deposit: July 21, 2004

I Hereby Certify That This Paper Or Fee Is Being Deposited With The United States Postal Service "Express Mail Post Office To Addressee" Service Under 37 CFR 1.10 On The Date Indicated Above And Is Addressed To: COMMISSIONER FOR PATENTS, MAIL STOP, PROVISIONAL A PEPLICATION, P.O. BOX 1459, ALEXANDRIA, VA 22313-1450

Name Of Person Mailing Paper Or Fee

(Type Or Print) helly A. MAgee Signature Illing b. negu

PROVISIONAL APPLICATION COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION for PATENT under 37 CFR 1.53(c).

		Dock	et No.	PU60768P2				
INVENTOR(s) / APPLICANT(s)								
Last Name	First Name	Middle	Residence (City and Either State or Foreign Country)					
		Initial						
YAMASHITA	Dennis	S.	College	ville, Pennsylvan	ia			
LIN	Hong		College	ville, Pennsylvan	ia			

TITLE OF THE INVENTION (280 characters max) INHIBITORS OF AKT ACTIVITY							
Correspondence Address: GLAXOSMITHKLINE Corporate Intellectual Property - UW2220 Telephone No. 610-270-5023 709 Swedeland Road Facsimile No. 610-270-5090							
King of Prussia				С	Country United States of America		

ENCLOSED APPLICATION PARTS (check all that apply)							
■ Specification	Number of Pages	92	Total Number of Pages = 93				
■ Abstract	Number of Pages	1	1				
☐ Drawings	Number of Sheets		Other (specify)				
METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT							
■ The Commissioner	is hereby authorized to cha	PROVISIONAL FILING	\$160.00				

Respectfully submitted, Signature:

fees and credit Deposit Account No. 19-2570

Warnef Dutter Date

Date: July de 200

FEE AMOUNT (\$)

☐ Additional inventors are being named on separately numbered sheets attached hereto.

PROVISIONAL APPLICATION FILING ONLY

SEND TO: Commissioner for Patents, P.O. Box 1450, Mail Stop: Provisional Application, Alexandria, VA 22313-1450.

20462

CUSTOMER NUMBER

10

15

20

25

30

35

INHIBITORS OF AKT ACTIVITY

FIELD OF THE INVENTION

This invention relates to novel pyridine compounds, the use of such compounds as inhibitors of protein kinase B (PKB or Akt as used herein) kinase activity and in the treatment of cancer and arthritis.

BACKGROUND OF THE INVENTION

The present invention relates to pyridine containing compounds that are inhibitors of the activity of one or more of the isoforms of the serine/threonine kinase, Akt (also known as PKB). The present invention also relates to pharmaceutical compositions comprising such compounds and methods of using the instant compounds in the treatment of cancer and arthritis.

Apoptosis (programmed cell death) plays essential roles in embryonic development and pathogenesis of various diseases, such as degenerative neuronal diseases, cardiovascular diseases and cancer. Recent work has led to the identification of various pro- and anti-apoptotic gene products that are involved in the regulation or execution of programmed cell death. Expression of anti-apoptotic genes, such as Bcl2 or Bcl-x_L, inhibits apoptotic cell death induced by various stimuli. On the other hand, expression of pro-apoptotic genes, such as Bax or Bad, leads to programmed cell death (Adams et al. Science, 281:1322-1326 (1998)). The execution of programmed cell death is mediated by caspase -1 related proteinases, including caspase-3, caspase-7, caspase-8 and caspase-9 etc (Thornberry et al. Science, 281:1312-1316 (1998)).

The phosphatidylinositol 3'-OH kinase (PI3K)/Akt/PKB pathway appears important for regulating cell survival/cell death (Kulik et al. Mol.Cell.Biol. 17:1595-1606 (1997); Franke et al, Cell, 88:435-437 (1997); Kauffmann-Zeh et al. Nature 385:544-548 (1997) Hemmings Science, 275:628-630 (1997); Dudek et al., Science, 275:661-665 (1997)). Survival factors, such as platelet derived growth factor (PDGF), nerve growth factor (NGF) and insulin-like growth factor-1 (IGF-I), promote cell survival under various conditions by inducing the activity of PI3K (Kulik et al. 1997, Hemmings 1997). Activated PI3K leads to the production of phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P3), which in turn binds to, and promotes the activation of, the serine/ threonine kinase Akt, which contains a pleckstrin homology (PH)-domain (Franke et al. Cell, 81:727-736 (1995); Hemmings Science, 277:534 (1997); Downward, Curr. Opin. Cell Biol. 10:262-267 (1998), Alessi et al., EMBO J. 15: 6541-6551 (1996)). Specific inhibitors of PI3K or

10

15

20

25

30

35

dominant negative Akt/PKB mutants abolish survival-promoting activities of these growth factors or cytokines. It has been previously disclosed that inhibitors of PI3K (LY294002 or wortmannin) blocked the activation of Akt/PKB by upstream kinases. In addition, introduction of constitutively active PI3K or Akt/PKB mutants promotes cell survival under conditions in which cells normally undergo apoptotic cell death (Kulik et al. 1997, Dudek et al. 1997).

Analysis of Akt levels in human tumors showed that Akt2 is overexpressed in a significant number of ovarian (J. Q. Cheung et al. Proc. Natl. Acad. Sci. U.S.A. 89:9267-9271(1992)) and pancreatic cancers (J. Q. Cheung et al. Proc. Natl. Acad. Sci. U.S.A. 89:9267-9271(1992)) and pancreatic cancers (J. Q. Cheung et al. Proc. Natl. Acad. Sci. U.S.A. 93:3636-3641 (1996)). Similarly, Akt3 was found to be overexpressed in breast and prostate cancer cell lines (Nakatani et al. J. Biol. Chem. 274:21528-21532 (1999). It was demonstrated that AKT2 was over-expressed in 12% of ovarian carcinomas and that amplification of AKT was especially frequent in 50% of undifferentiated tumors, suggestion that AKT may also be associated with tumor aggressiveness (Bellacosa, et al., Int. J. Cancer, 64, pp. 280-285, 1995). It has also been reported that increased levels of Akt1 activity were detected in primary carcinomas from prostate, breast, and ovary (Sun et al Am. J. Path. 2001, 159 (2), 431-437.

The tumor suppressor PTEN, a protein and lipid phosphatase that specifically removes the 3' phosphate of PtdIns(3,4,5)-P3, is a negative regulator of the Pl3K/Akt pathway (Li et al. *Science* 275:1943-1947 (1997), Stambolic et al. *Cell* 95:29-39 (1998), Sun et al. *Proc. Nati. Acad. Sci. U.S.A.* 96:6199-6204 (1999)). Germline mutations of PTEN are responsible for human cancer syndromes such as Cowden disease (Liaw et al. *Nature Genetics* 16:64-67 (1997)). PTEN is deleted in a large percentage of human tumors and tumor cell lines without functional PTEN show elevated levels of activated Akt (Li et al. supra, Guldberg et al. *Cancer Research* 57:3660-3663 (1997), Risinger et al. *Cancer Research* 57:4736-4738 (1997)).

These observations demonstrate that the PI3K/Akt pathway plays important roles for regulating cell survival or apoptosis in tumorigenesis.

Three members of the Akt/PKB subfamily of second-messenger regulated serine/threonine protein kinases have been identified and termed Akt1/PKBa, Akt2/PKBβ, and Akt3/PKBy respectively. The isoforms are homologous, particularly in regions encoding the catalytic domains. Akt/PKBs are activated by phosphorylation events occurring in response to PI3K signaling. PI3K phosphorylates membrane inositol phospholipids, generating the second messengers phosphatidyl- inositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-

10

15

20

25

30

35

bisphosphate, which have been shown to bind to the PH domain of Akt/PKB. The current model of Akt/PKB activation proposes recruitment of the enzyme to the membrane by 3'-phosphorylated phosphoinositides, where phosphorylation of the regulatory sites of Akt/PKB by the upstream kinases occurs (B.A. Hemmings, Science 275:628-630 (1997); B.A. Hemmings, Science 276:534 (1997); J. Downward. Science 279:673-674 (1998)).

Phosphorylation of Akt1/PKBα occurs on two regulatory sites, Thr³⁰⁸ in the catalytic domain activation loop and on Ser⁴⁷³ near the carboxy terminus (D. R. Alessi *et al. EMBO J.* 15:6541-6551 (1996) and R. Meier *et al. J. Biol. Chem.* 272:30491-30497 (1997)). Equivalent regulatory phosphorylation sites occur in Akt2/PKBβ and Akt3/PKBγ. The upstream kinase, which phosphorylates Akt/PKB at the activation loop site has been cloned and termed 3 '-phosphoinositide dependent protein kinase 1 (PDK1). PDK1 phosphorylates not only Akt/PKB, but also p70 ribosomal S6 kinase, p90RSK, serum and glucocorticoid-regulated kinase (SGK), and protein kinase C. The upstream kinase phosphorylating the regulatory site of Akt/PKB near the carboxy terminus has not been identified yet, but recent reports imply a role for the integrin-linked kinase (ILK-1), a serine/threonine protein kinase, or autophosphorylation.

Inhibition of Akt activation and activity can be achieved by inhibiting PI3K with inhibitors such as LY294002 and wortmannin. However, PI3K inhibition has the potential to indiscriminately affect not just all three Akt isozymes but also other PH domain-containing signaling molecules that are dependent on PdtIns(3,4,5)-P3, such as the Tec family of tyrosine kinases. Furthermore, it has been disclosed that Akt can be activated by growth signals that are independent of PI3K.

Alternatively, Akt activity can be inhibited by blocking the activity of the upstream kinase PDK1. The compound UCN-01 is a reported inhibitor of PDK1. Biochem. J. 375(2):255 (2003). Again, inhibition of PDK1 would result in inhibition of multiple protein kinases whose activities depend on PDK1, such as atypical PKC isoforms, SGK, and S6 kinases (Williams et al. Curr. Biol. 10:439-448 (2000).

Small molecule inhibitors of AKT are useful in the treatment of tumors with activated AKT (e.g. PTEN null tumors and tumors with ras mutations). PTEN is a critical negative regulator of AKT and its function is lost in many cancers, including breast and prostate carcinomas, glioblastomas, and several cancer syndromes including Bannayan-Zonana syndrome (Maehama, Tomohiko; Taylor, Gregory S.; Dixon, Jack E. Annual Review of Biochemistry 2001, 70, 247-279), Cowden disease (Parsons, Ramon; Simpson, Laura. Methods in Molecular Biology (Totowa, NJ, United States) 2003, 222(Tumor Suppressor Genes, Volume 1), 147-166), and

Lhermitte-Duclos disease(Backman, Stephanie A.; Stambolic, Vuk; Mak, Tak W. Current Opinion in Neurobiology 2002, 12(5), 516-522). AKT3 is up-regulated in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer cell lines and AKT2 is over-expressed in pancreatic and ovarian carcinomas. Therefore a small molecule AKT inhibitor is expected to be useful for the treatment of these types of cancer as well as other types of cancer. Small molecule AKT inhibitors are also useful in combination with existing chemotherapeutic agents.

10 It is an object of the instant invention to provide novel compounds that are inhibitors of Akt/PKB.

It is also an object of the present invention to provide pharmaceutical compositions that comprise a pharmaceutical carrier and compounds useful in the methods of the invention.

It is also an object of the present invention to provide a method for treating cancer that comprises administering such inhibitors of Akt/PKB activity.

It is also an object of the present invention to provide a method for treating arthritis that comprises administering such inhibitors of Akt/PKB activity.

20

15

5

SUMMARY OF THE INVENTION

This invention relates to compounds of Formula (I):

(I)

25

wherein:

 L^1 is selected from the group consisting of a bond, -O-, -N(R^5)-, -S-, -S(O)-, -S(O_2)-, alkyl, and -N(R^5)C(O)-;

30

 L^2 is selected from the group consisting of a bond, -O-, -N(R⁵)-, -N(R⁵)C(O)-, -S-, -S(O)-, -S(O₂)-, and -C(O)N(R⁵)-;

10

15

20

25

30

35

L³ is alkyl, wherein the alkyl is substituted with one or two substituents independently selected from the group consisting of amino, oxo, and hydroxy;

 L^6 is selected from the group consisting of a bond, -O-, -N(R⁵)-, -S-, -S(O)-, -S(O₂)-, alkyl, and -N(R⁵)C(O)-;

R¹ is selected from the group consisting of aryl, substituted aryl, heterocycle and substituted heterocycle;

R² is selected from alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocycle, substituted heterocycle, and a cyclic or polycyclic aromatic ring containing from 3 to 16 carbon atoms and optionally containing one or more heteroatoms, provided that when the number of carbon atoms is 3 the aromatic ring contains at least two heteroatoms and when the number of carbon atoms is 4 the aromatic ring contains at least one heteroatom, and optionally substituted with one or more substituents selected from the group consisting of: alkyl, substituted alkyl, aryl, substituted cycloalkyl, substituted aryl, aryloxy, oxo, hydroxy, alkoxy, cycloalkyl, acyloxy, amino, N-acylamino, nitro, cyano, halogen, -C(O)OR⁷, -C(O)NR⁸R⁹, and -S(O)_NR⁷, and -S(O)_NR⁸R⁹, and -S(O)_NR⁸R⁹, and -S(O)_NR⁸R⁹.

where n is 0-2,

 $\rm R^7$ is hydrogen, alkyl, cycloalkyl, $\rm C_{1-}C_{12}$ aryl, substituted alkyl, substituted cycloalkyl and substituted $\rm C_{1-}C_{12}$ aryl, and $\rm R^8$ and $\rm R^9$ are independently hydrogen, cycloalkyl, $\rm C_{1-}C_{12}$ aryl, substituted cycloalkyl, substituted $\rm C_{1-}C_{12}$ aryl, alkyl or alkyl substituted with one or more substituents selected from the group consisting of: alkoxy, acyloxy, aryloxy, amino, N-acylamino, oxo, hydroxy, -C(O)OR^{10}, -S(O)_nR^{10}, -C(O)NR^{10}R^{11}, -S(O)_2NR^{10}R^{11}, nitro, cyano, cycloalkyl, substituted cycloalkyl, halogen, aryl, and substituted aryl, or R^8 and R^9 taken together with the nitrogen to which they are attached represent a 5 to 6 member saturated ring containing up to one other heteroatom selected from oxygen and nitrogen, where the ring is optionally subtituted with one or more substituents selected from amino, methylamino and dimethylamino,

where R^{10} and R^{11} are independently hydrogen, alkyl, cycloalkyl, C_{1} . C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_{1} . C_{12} aryl, and n is 0-2;

R³ and R⁶ are independently selected from the group consisting of hydrogen, aryl, substituted aryl, and arylalkoxy; provided that when L¹ and L² are bonds, at least one of R³ and R⁶ is other than hydrogen;

R4 is selected from the group consisting of hydrogen and halo; and

R5 is selected from the group consisting of hydrogen and alkyl;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

This invention relates to a method of treating cancer, which comprises administering to a subject in need thereof an effective amount of an Akt/PKB inhibiting compound of Formula (I).

15 This invention relates to a method of treating arthritis, which comprises administering to a subject in need thereof an effective amount of an Akt/PKB inhibiting compound of Formula (I).

The present invention also relates to the discovery that the compounds of Formula (I) are active as inhibitors of Akt/PKB.

In a further aspect of the invention there is provided novel processes and novel intermediates useful in preparing the presently invented Akt/PKB inhibiting compounds.

25

20

5

10

Included in the present invention are pharmaceutical compositions that comprise a pharmaceutical carrier and compounds useful in the methods of the invention

30

Also included in the present invention are methods of co-administering the presently invented Akt/PKB inhibiting compounds with further active ingredients.

DETAILED DESCRIPTION OF THE INVENTION

This invention relates to compounds of Formula (I) as described above.

35

Included among the presently invented compounds of Formula (I) are those having Formula (I):

wherein

 L^1 is selected from the group consisting of a bond, -O-, -N(R⁵)-, -S-, -S(O)-, -S(O₂)-, alkyl, and -N(R⁵)C(O)-:

5

30

- $L^2 \ is \ selected \ from \ the \ group \ consisting \ of \ a \ bond, \ -O-, \ -N(R^5)-, \ -N(R^5)C(O)-, \ -S-, \ -S(O)-, \ -S(O_2)-, \ and \ -C(O)N(R^5)-;$
- L³ is alkyl, wherein the alkyl is substituted with one or two substituents
 independently selected from the group consisting of amino, oxo, and hydroxy;
 - L⁶ is a bond;
- R¹ is selected from the group consisting of aryl, substituted aryl,
 heterocycle and substituted heterocycle;
 - R2 is selected from, cycloalkyl and substituted cycloalkyl;
- R³ and R⁶ are independently selected from the group consisting of hydrogen, aryl, substituted aryl, and arylalkoxy; provided that when L¹ and L² are bonds, at least one of R³ and R⁶ is other than hydrogen;
 - R4 is selected from the group consisting of hydrogen and halo; and
- 25 R⁵ is selected from the group consisting of hydrogen and alkyl;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

The presently invented compounds of Formula (I) inhibit Akt/PKB activity. In particular, the compounds disclosed selectively inhibit one, two or the three Akt/PKB isoforms.

Included among the presently invented compounds of Formula (I) are those having Formula (II):

wherein:

L⁴ is selected from the group consisting of a bond, and -O-;

5

L⁵ is alkyl, wherein the alkyl is substituted with one or two substituents independently selected from the group consisting of amino, oxo, and hydroxy;

 $$\rm R^{14}$ is selected from the group consisting of C1-C12aryl, and substituted $$\rm 10~C_{1-}C_{12}aryl;$$

R¹⁵ is selected from alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocycle, substituted heterocycle, C₁.C₁2aryl and C₁.C₁2aryl substituted with one or more substituents selected from the group consisting of: alkyl, substituted alkyl, aryloxy, hydroxy, alkoxy, acyloxy, amino, N-acylamino, nitro, cyano and halogen;

 $\rm R^{16}$ and $\rm R^{17}$ are independently selected from the group consisting of hydrogen, C₁-C₁₂aryl and substituted C₁-C₁₂aryl; and

20

15

pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

Included among the presently invented compounds of Formula (II) are those in which:

25

L4 is selected from the group consisting of a bond, and -O-;

L⁵ is alkyl, wherein the alkyl is substituted with one or two substituents independently selected from the group consisting of amino, oxo, and hydroxy;

R14 is selected from phenyl, pyridine, indazole, 7-azaindole, quinoline, isoquinoline, substituted phenyl, substituted pyridine, substituted indazole, substituted 7-azaindole, substituted quinoline and substituted isoquinoline;

R¹⁵ is selected from cycloalkyl, substituted cycloalkyl, phenyl, pyridine, thiophene, furan, pyrrole, indazole, quinoline, isoquinoline, 7-azaindole, substituted phenyl, substituted pyridine, substituted thiophene, substituted furan, substituted indazole, substituted quinoline, substituted 7-azaindole and substituted isoquinoline: and

10

5

R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, phenyl, pyridine, thiophene, furan, pyrrole, substituted phenyl, substituted pyridine, substituted thiophene, substituted furan, and substituted pyrrole; and

15

pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

Included among the presently invented compounds of Formula (II) are those having Formula (II):

20 wherein

L4 is selected from the group consisting of a bond, and -O-;

L⁵ is alkyl, wherein the alkyl is substituted with one or two substituents independently selected from the group consisting of amino, oxo, and hydroxy;

 $\rm R^{14}$ is selected from the group consisting of C1-C12aryl, and substituted C1-C12aryl;

30 R¹⁵ is selected from cycloalkyl and substituted cycloalkyl; and

R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, C₁-C₁₂aryl and substituted C₁-C₁₂aryl; and

35 pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

Included among the compounds useful in the present invention are:

- (S)-1-Benzyl-2-[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethylamine;
- (S)-1-Benzyl-2-[6-furan-2-yl-5-(3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-5 ethylamine:
 - (S)-1-Benzyl-2-[5,6-bis-(3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine;
- (S)-1-Benzyl-2-[6-thiophen-2yl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]10 ethylamine;
 - (S)-1-Benzyl-2-[6-(4-chlorophenyl)-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine;
- 15 (S)-1-Benzyl-2-[6-(3-chlorophenyl)-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]ethylamine;
 - (S)-1-Benzyl-2-[6-benzyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine;
- 20 (S)-1-Benzyl-2-[6-cyclopent-1-enyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]ethylamine;
 - (S)-1-Benzyl-2-[6-cyclopentyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine;
 - (S)-1-Benzyl-2-[6-cyclohex-1-enyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine;
- (S)-1-Benzyl-2-[6-cyclohexyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-30 ethylamine;
 - 3-Methyl-5-[2-phenyl-5-(piperidin-4-ylmethoxy)-pyridin-3-yl]-1H-indazole;
 - 3-[5-(3-Methyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-propylamine;
- (S)-1-Benzyl-2-[5- (3-methyl-1H-indazol-5-yl) -6-(5-methyl-thiophen-2-yl)-pyridin-3yloxy]-ethylamine;

- (S)-1-Benzyl-2-[5- (3-methyl-1H-indazol-5-yl) -6-(5-methyl-furan-2-yl)-pyridin-3-vloxvl-ethylamine:
- 5 3-Methyl-5-[2-phenyl-5-(4-pyridin-3-ylmethyl-piperazin-1-yl)-pyridin-3-yl]-1Hindazole:
 - 3-Methyl-5-[2-phenyl-5-(4-pyridin-4-ylmethyl-piperazin-1-yl)-pyridin-3-yl]-1H-indazole:
 - [(1S)-2-{[6-(3-furanyl)-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- [(1*S*)-2-{[5-(3-methyl-1*H*-indazol-5-yl)-6-(5-chloro-2-thienyl)-3-pyridinyl]oxy}-1-15 (phenylmethyl)ethyllamine:
 - [(1S)-2-{[6-(3-aminophenyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- 20 (S)-1-Benzyl-2-[5-(1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethylamine;
 - (S)-1-Benzyl-2-(6-[3-(3-fluoro-benzyloxy)phenyl]-5- (3-methyl-1H-indazol-5-yl) pyridin-3-yloxy)-ethylamine;
- 25 (S)-1-Benzyl-2-[5-(3-phenyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxyl-ethylamine;
 - [(1*S*)-2-{[5-(3-methyl-1*H*-indazol-5-yl)-6-(1*H*-pyrrol-2-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- 30 N-{3-[5-[((2S)-2-amino-3-phenylpropyl]oxy)-3-(3-methyl-1H-indazol-5-yl)-2pyridinyl]phenyl}benzamide;
 - N-{3-[5-[[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl]phenyl}-2,6-difluorobenzamide;
- 35 N-[3-[5-[[(2S)-2-amino-3-phenylpropyl]oxy]-3-(3-methyl-1 H-indazol-5-yl)-2-pyridinyl]phenyl}cyclohexanecarboxamide;

- [(1S)-2-({5-[3-(2-furanyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyllamine:
- 5 {(1S)-2-phenyl-1-[((6-phenyl-5-[3-(2-thienyl)-1H-indazol-5-yl]-3-pyridinyl)oxy)methyl]ethyl)amine;
 - [(1S)-2-({5-[3-(3-furanyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyllamine:
 - [(1S)-2-((5-[3-(3-thienyl)-1/H-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-(phenylmethyl)ethyllamine:
- $3-[5-{[[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1H-indazol-5-yl)-2-15 pyridinyl]phenol;$
 - [(1*S*)-2-{[5-(2,3-dimethyl-2*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- 20 [(1 S)-2-({5-[3-(2-furanyl)-1 H-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
 - {(1*S*)-2-phenyl-1-[({6-phenyl-5-[3-(2-thienyl)-1*H*-indazol-5-yl]-3-pyridinyl}oxy)methyl]ethyl}amine;
- 25 [(1S)-2-({5-[3-(3-furanyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine;
- [(1 S)-2-({5-[3-(3-thienyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-30 (phenylmethyl)ethyl]amine;
 - $3-[5-[[(2S)-2-amino-3-phenylpropyl]oxy]-3-(3-methyl-1 \emph{H-} indazol-5-yl)-2-pyridinyl] phenol; \\$
- 35 [(1*S*)-2-{[5-(2,3-dimethyl-2*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;

- [(1S)-2-{[5-(3-methyl-1*H*-indazol-5-yl)-6-(1-methyl-1*H*-pyrazol-4-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- [(1*S*)-2-{[6-{1-[(3-fluorophenyl)methyl]-1*H*-pyrazol-4-yl]-5-(3-methyl-1*H*-indazol-5-5 yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
 - ((1S)-2-phenyl-1-[[(6-phenyl-5-{3-[5-(1-piperazinylmethyl)-2-furanyl]-1*H*-indazol-5-yl)-3-pyridinyl)oxylmethyl}ethyl)amine;
- [(1S)-2-((6-(3-furanyl)-5-[3-(2-furanyl)-1 H-indazol-5-yl]-3-pyridinyl)oxy)-1-.
 (phenylmethyl)ethyl]amine;
 - [(1S)-2-({5-(3-methyl-1*H*-indazol-5-yl)-6-[3-(phenyloxy)phenyl]-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
- 3-[({5-[5-(5-{[(25)-2-amino-3-phenylpropyl]oxy}-2-phenyl-3-pyridinyl)-1H-indazol-3-yl]-2-furanyl]methyl]amino]propanenitrile;
- [(1*S*)-2-({6-(2-furanyl)-5-[3-(2-furanyl)-1*H*-indazol-5-yl]-3-pyridinyl}oxy)-1-20 (phenylmethyl)ethyl]amine;
 - $\label{eq:continuous} $$\{5-[5-[(2S)-2-amino-3-pheny|propyl]oxy]-3-(3-methyl-1$$H$-indazol-5-yl)-2-pyridinyl]-2-thienyl\mbox{methanol};$
- 25 {(1S)-2-phenyl-1-[({6-phenyl-5-[3-(phenylmethyl)-1H-indazol-5-yl]-3-pyridinyl}oxy)methyl]ethyl]amine;
 - $[(1S)-2-\{[5-(3-methyl-1H-indazol-5-yl)-6-(1-methyl-1H-pyrrol-2-yl)-3-pyridinyl]oxy\}-1-(phenylmethyl)ethyl]amine;$
- 5-(5-{[(2S)-2-amino-3-phenylpropyl]oxy}-2-phenyl-3-pyridinyl)-1 H-indazol-3-amine;
 - [(1S)-2-{{5-[3-(1-methylethenyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
- 35
 [(1S)-2-{[5-(3-methyl-1*H*-indazol-5-yl)-6-(1*H*-pyrazol-4-yl)-3-pyridinyl]oxy}-1(phenylmethyl)ethyllamine:

- (2S)-N,N-dimethyl-1-{[5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-3-phenyl-2-propanamine;
- 5 [(1S)-2-{[3-(3-methyl-1H-indazol-5-yl)-2,4'-bipyridin-5-yl]oxy}-1-(phenylmethyl)ethyl]amine;
 - [(1S)-2-{[3-(3-methyl-1*H*-indazol-5-yl)-2,3'-bipyridin-5-yl]oxy}-1-(phenylmethyl)ethyl]amine;
- [(1S)-2-{[5-(3-iodo-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyllamine;
- [(1*S*)-2-[(5-(3-methyl-1*H*-indazol-5-yl)-6-{3-[(trifluoromethyl)oxy]phenyl}-3pyridinyl)oxy]-1-(phenylmethyl)ethyl]amine;
 - [(1S)-2-{[6-(3,5-dimethyl-4-isoxazolyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- 4-[5-{[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl]phenol;
 - 2-[5-[(2S)-2-amino-3-phenylpropyl]oxy]-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl]phenol;
- 25 [(1S)-2-[[6-[3-(ethyloxy)phenyl]-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy]-1-(phenylmethyl)ethyl]amine;
- [(1*S*)-2-({5-(3-methyl-1*H*-indazol-5-yl)-6-[3-(methyloxy)phenyl]-3-pyridinyl}oxy)-1-30 (phenylmethyl)ethyllamine:
 - {3-[5-{[(2*S*)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1*H*-indazol-5-yl)-2-pyridinyl]phenyl)(phenyl)methanone;
- 35 [(1S)-2-{[6-{3-[(1-methylethyl)oxy]phenyl}-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;

- [(1*S*)-2-{[5-[3-(2-furanyl)-1*H*-indazol-5-yl]-6-(1*H*-pyrrol-2-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- [(1*S*)-2-([6-(2-([(3-fluorophenyl)methyl]oxy)phenyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-5 pyridinyl]oxy)-1-(phenylmethyl)ethyl]amine;
 - [(1*S*)-2-{[6-(4-{[((3-fluorophenyl)methyl]oxy}phenyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- [10] [(1S)-2-({5-[3-(5-chloro-2-thienyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
 - [(1*S*)-2-({5-[3-(4-methyl-2-thienyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyllamine:
 - [(1.5)-2-((5-[3-(5-methyl-2-furanyl)-1.H-indazol-5-yl]-6-phenyl-3-pyridinyl]oxy)-1-(phenylmethyl)ethyllamine:
- [(1*S*)-2-({5-[3-(5-methyl-2-thienyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-20 (phenylmethyl)ethyl]amine;
 - [(1S)-2-{[6-ethenyl-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- 25 {(1S)-2-phenyl-1-[((6-phenyl-5-[3-(1H-pyrrol-2-yl)-1H-indazol-5-yl]-3-pyridinyl}oxy)methyl]ethyl}amine;
 - [(1*S*)-2-(1*H*-indol-3-yl)-1-({[5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}methyl)ethyl]amine;
- 5-(3-methyl-1H-indazol-5-yl)-6-phenyl-N-(3-phenylpropyl)-3-pyridinamine;
 - 5-(3-methyl-1H-indazol-5-yl)-6-phenyl-N-(3-phenylbutyl)-3-pyridinamine;
- 35 [(2S)-2-amino-3-phenylpropyl][5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]amine;

- [(2S)-2-amino-3-phenylpropyl][6-(3-furanyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]amine;
- ((1*S*)-2-[[6-(3-furanyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-5 {[(phenylmethyl)oxy]methyl}ethyl)amine;
 - N-[(2S)-2-amino-3-phenylpropyl]-N-[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]methanesulfonamide;
- 5-(3-methyl-1*H*-indazol-5-yl)-*N*-[2-methyl-2-(phenylthio)propyl]-6-phenyl-3-pyridinamine;
 - [(1*S*)-2-{[6-(3-furanyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(1*H*-indol-3-ylmethyl)ethyl]amine;
 - ((1S)-2-{[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-{[(phenylmethyl)oxy]methyl}ethyl)amine;
- (2S)-2-amino-3-[[5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-propanol;
- 5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-*N*-[(2*S*)-2-pyrrolidinylmethyl]-3-pyridinamine;
 - ((25)-2-amino-3-[4-[(phenylmethyl)oxy]phenyl)propyl)[5-(3-methyl-1*H-*indazol-5-yl)-6-phenyl-3-pyridinyl]amine;
- [(2S)-2-amino-3-phenylpropyl][5-(1H-indazol-5-yl)-6-phenyl-3-pyridinyl]amine;
- [(2S)-2-amino-3-phenylpropyl][6-(3-furanyl)-5-(1H-indazol-5-yl)-3-pyridinyl]amine;
- $30 \qquad [(2S)-2-amino-3-phenylpropyl][5-(1H-indazol-5-yl)-6-(3-thienyl)-3-pyridinyl]amine;$
 - 2-[5-{[(2S)-2-amino-3-phenylpropyl]amino}-3-(1H-indazol-5-yl)-2-pyridinyl]phenol;
- 2-[5-{[(2*S*)-2-amino-3-phenylpropyl]amino}-3-(3-methyl-1*H*-indazol-5-yl)-2-35 pyridinyl]phenol:

- [(2S)-2-amino-3-phenylpropyl][5-(3-methyl-1*H*-indazol-5-yl)-6-(1*H*-pyrrol-2-yl)-3-pyridinyllamine:
- [(2S)-2-amino-3-phenylpropyl][5-(3-methyl-1*H*-indazol-5-yl)-6-(5-methyl-2-thienyl)-5 3-pyridinyllamine:
 - [(2R)-2-amino-3-phenylpropyl][5-(1H-indazol-5-yl)-6-(3-thienyl)-3-pyridinyl]amine;
- 2-[5-{[(2S)-2-amino-3-(1*H*-indol-3-yl)propyl]oxy}-3-(3-methyl-1*H*-indazol-5-yl)-2-10 pyridinyl]phenol;
 - [(1S)-2-(1H-indol-3-yl)-1-([[5-(3-methyl-1H-indazol-5-yl)-6-(1H-pyrrol-2-yl)-3-pyridinyl]oxy}methyl)ethyl]amine;
- 15 [(1S)-2-(1H-indol-3-yl)-1-({[5-(3-methyl-1H-indazol-5-yl)-6-(5-methyl-2-thienyl)-3-pyridinyl]oxy}methyl)ethyl]amine;
 - [(1S)-2-{[6-ethyl-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- 20 [(1S)-2-{[6-(3-furanyl)-5-(1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- [(1*S*)-2-{[5-(3-ethenyl-1*H*-indazol-5-yl)-6-(3-furanyl)-3-pyridinyl]oxy}-1-25 (phenylmethyl)ethyllamine:
 - $[(1\,S)-2-\{[5-(3-ethyl-1\mbox{H-indazol-5-yl})-6-(3-furanyl)-3-pyridinyl]oxy\}-1-(phenylmethyl)ethyl]amine;$
- 30 [(1S)-2-((6-(3-furanyl)-5-[3-(3-pyridinyl)-1H-indazol-5-yl]-3-pyridinyl)oxy)-1-(phenylmethyl)ethyllamine:
 - [(1S)-2-{[6-methyl-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- 35 [(15)-2-({5-(3-methyl-1*H*-indazol-5-yl)-6-[2-(methyloxy)phenyl]-3-pyridinyl]oxy)-1-(phenylmethyl)ethyl]amine;

20

25

30

35

- [(1S)-2-{[6-[2-(ethyloxy)phenyl]-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyllamine:
- 5 [(1S)-2-[[6-[5-chloro-2-(methyloxy)phenyl]-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
 - [(1S)-2-{[6-[5-fluoro-2-(propyloxy)phenyl]-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
 - [(1S)-2-((5-[3-(1-methylethyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine; and
- [(1*S*)-2-{[5-(6-fluoro-3-methyl-1*H*-indazol-5-yl)-6-(3-furanyl)-3-pyridinyl]oxy}-1-15 (phenylmethyl)ethyl]amine;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

Compounds of Formula (I) are included in the pharmaceutical compositions of the invention and used in the methods of the invention.

By the term "aryl" as used herein, unless otherwise defined, is meant a cyclic or polycyclic aromatic ring containing from 1 to 14 carbon atoms and optionally containing from one to five heteroatoms, provided that when the number of carbon atoms is 1 the aromatic ring contains at least four heteroatoms, when the number of carbon atoms is 2 the aromatic ring contains at least three heteroatoms, when the number of carbons is 3 the aromatic ring contains at least two heteroatoms and when the number of carbon atoms is 4 the aromatic ring contains at least one heteroatom.

By the term "C₁-C₁₂aryl" as used herein, unless otherwise defined, is meant phenyl, naphthalene, 3,4-methylenedioxyphenyl, pyridine, biphenyl, indazole, quinoline, isoquinoline, 7-azaindole, pyrimidine, quinazoline, thiophene, furan, pyrrole, pyrazole, imidazole, benzothiophene and tetrazole.

The term "substituted" as used herein, unless otherwise defined, is meant that the subject chemical moiety has one or more substituents selected from the group consisting of: -CO₂R²O, aryl, -C(O)NHS(O)₂R²O, -NHS(O)₂R²O, hydroxyalkyl, alkoxy, -C(O)NR²1R²P, acyloxy, alkyl, amino, methylamino, dimethylamino, N-acylamino, hydroxy, -(CH₂),C(O)OR²3, -S(O),R²3

-O(CH₂) $_{q}$ R³¹, -O(CH₂) $_{y}$ CH(R³¹)(CH₂) $_{z}$ (CH₃), nitro, tetrazole, cyano, oxo, halogen, and trifluoromethyl; where

n is 0-2, q is 0-6, q is 1-6, v is 0-6, z is 0-6,

R³¹ is C₁-C₁₂aryl optionally substituted with from 1 to 4 substituents selected from: halogen, alkyl, hydroxyalkyl, alkoxy, acyloxy, amino, methylamino, direthylamino, N-acylamino, hydroxy, nitro, tetrazole, cyano, oxo and trifluoromethyl

R²³ is hydrogen or alkyl.

15

20

25

30

35

10 R²⁰ is selected form hydrogen, C₁-C₄alkyl, aryl and trifluoromethyl, and R²¹ and R²² are independently selected form hydrogen, C₁-C₄alkyl, aryl and trifluoromethyl.

By the term "alkoxy" as used herein is meant -Oalkyl where alkyl is as described herein including -OCH₃ and -OC(CH₃)₂CH₃.

The term "cycloalkyl" as used herein unless otherwise defined, is meant a nonaromatic, unsaturated or saturated, cyclic or polycyclic C₃-C₁₂.

Examples of cycloalkyl and substituted cycloalkyl substituents as used herein include: cyclohexyl, 4-hydroxy-cyclohexyl, 2-ethylcyclohexyl, propyl 4methoxycyclohexyl, 4-methoxycyclohexyl, 4-carboxycyclohexyl, cyclopropyl and cyclopentyl.

The term "heterocycle," as used herein, unless otherwise defined, is meant a cyclic or polycyclic, non-aromatic, three-, four-, five-, six-, or seven-membered ring containing at least one atom, selected from the group consisting of oxygen, nitrogen, and sulfur. The five-membered rings have zero or one double bond and the six- and seven-membered rings have zero, one, or two double bonds.

Examples of heterocyclic groups as used herein include: dihydroisoindolyl, dihydroisoquinolinyl, dihydroindolyl, dihydropyridinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-dioxanyl, soindolinyl, morpholinyl, piperazinyl, pyrrolidinyl, tetrahydropyridinyl, piperidinyl, thiomorpholinyl.

By the term "acyloxy" as used herein is meant -OC(O)alkyl where alkyl is as described herein. Examples of acyloxy substituents as used herein include: -OC(O)CH₃, -OC(O)CH(CH₃)₂ and -OC(O)(CH₂)₃CH₃.

By the term "N-acylamino" as used herein is meant a substituent selected from: -N(H)C(O)atkyl, -N(H)C(O)cycloalkyl and -N(H)C(O)aryl; where alkyl and cycloalkyl are as described herein and aryl is C1-C12aryl as described herein.

15

20

25

30

35

Examples of N-acylamino substituents as used herein include: -N(H)C(O)CH₃, -N(H)C(O)CH(CH₂)₂ and -N(H)C(O)(CH₂)₃CH₃.

By the term "aryloxy" as used herein is meant -Oaryl where aryl is phenyl, naphthyl, 3,4-methylenedioxyphenyl, pyridyl or biphenyl optionally substituted with one or more substituents selected from the group consisting of: alkyl, hydroxyalkyl, alkoxy, trifuloromethyl, acyloxy, amino, N-acylamino, hydroxy, -(CH₂)_gC(O)OR²⁵, -S(O)_nR²⁵, nitro, cyano, halogen and protected -OH, where g is 0-6, R²⁵ is hydrogen or alkyl, and n is 0-2. Examples of aryloxy substituents as used herein include: phenoxy, 4-fluorophenyloxy and biphenyloxy.

By the term "heteroatom" as used herein is meant oxygen, nitrogen or sulfur.

By the term "halogen" as used herein is meant a substituent selected from bromide, iodide, chloride and fluoride.

By the term "alkyl" and derivatives thereof and in all carbon chains as used herein is meant a linear or branched, saturated or unsaturated hydrocarbon chain, and unless otherwise defined, the carbon chain will contain from 1 to 6 carbon atoms. Examples of alkyl substituents as used herein include: -CH₃, -CH₂-CH₃, -C

By the term "treating" and derivatives thereof as used herein, is meant prophylatic and therapeutic therapy.

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as though fully set forth.

Compounds of Formula (I) are included in the pharmaceutical compositions of the invention and used in the methods of the invention. Where a -COOH or -OH group is present, pharmaceutically acceptable esters can be employed, for example methyl, ethyl, pivaloyloxymethyl, and the like for -COOH, and acetate maleate and the like for -OH, and those esters known in the art for modifying solubility or hydrolysis characteristics, for use as sustained release or prodrug formulations.

The novel compounds of Formulas I and II are prepared as shown in Schemes 1 through 7 below, or by analogous methods, wherein the 'L' and 'R' substituents are as defined in Formulas I and II respectively and provided that the 'L' and 'R' substituents do not include any such substituents that render inoperative the processes of Schemes 1 through 7. All of the starting materials are

10

15

20

25

30

35

commercially available or are readily made from commercially available starting materials by those of skill in the art.

Ethers such as 1(b) can be prepared by Mitsunobu coupling with hydroxypyridines such as 2-chloro-3-bromo-5-hydroxy-pyridine and alcohols such as N-Boc-(2S)-2-amino-3-phenyl-1-propanol (Scheme 1) or Boc-(2S)-2-amino-3-(3indole)-1-propanol (Scheme 10). An arvl moiety such as a 6-(3-methyl-indazole) can be selectively introduced by stoichiometric use of the Suzuki reaction (Pdmediated cross coupling between anyl boronic acids or anyl boronic esters and anyl halides or triflates) or a Stille reaction (Pd-mediated cross coupling between aryltrialkylstannanes and aryl halides or triflates) to produce intermediates such as 1(d) (Scheme 1). A second anyl moiety such as a phenyl group can be introduced at the adjacent position on the pyridine by a second Suzuki or Stille reaction forming trisubstituted pyridines such as 1(e) (Scheme 1). Alternatively, an alkyl or substituted alkyl group such as a benzyl mojety can be introduced by Pd-mediated coupling with an organometallic reagent such as benzyl zinc bromide (Scheme 2) to produce intermediates such as 7(a). Alternatively, the Pd-mediated cross coupling steps may precede the etherification or Mitsunobu reaction steps as shown in Scheme 3. Another variant on the synthesis is to introduce alternative linker groups such as amines in place of ethers as exemplified in Scheme 4. For example, ipso-addition of an amine such as 1-(3-pyridinylmethyl)piperazine to a pyridine trifluoromethylsulfonate (triflate or TfO) intermediate such as 16(a) and elimination under microwave conditions in a solvent such as N-methyl2-pyrollidone (NMP) produces amine analogs such as 16(b). In addition, the aryl groups on the substituted pyridine may be further functionalized by further reactions such as acylation of a intermediate amines such as 25(b) to form amides such 25(c) as shown in Scheme 5. Final deprotection steps such removal of t-butyloxycarbonyl (Boc) groups with trifluoroacetic acid (TFA) or a solution of hydrochloric acid (HCI) or removal of a carbobenzyloxy (Cbz) by hydrogenolysis with heterogeneous metals such as Pd on carbon or with a solution of hydrogen bromide (HBr) produces the desired final products such as 1(f) (Scheme 1), 7(b) (Scheme 2), 12(d) (Scheme 3), or 25(d) (Scheme 5). 3-substituted indazole analogs can be prepared by selective iodination of the parent indazole and Pd-mediated cross coupling steps (Scheme 6). Also, N-alkylated analogs of the indazole such as 33(d) can be prepared by treating intermediate indazoles such as 16(a) with electrophilic reagents such as Meerwein's reagent followed by a Mitsunobu reaction as described above (Scheme 7). Indazoles may be further substituted by iodinating the 3-position using an iodinating reagent such as iodine and a base

such as potassium hydroxide followed by a Pd-mediated cross coupling step such as Suzuki, Stille, Buchwald, or Negishi reactions (Schemes 8 and 9), followed by deprotection steps.

Amines such as 75(b) can be prepared by reductive amination using aldehydes such as 3-phenyl-propanal and a reducing agent such as triacetoxyborohydride (Scheme 11). The amine may be further functionalized with sulfonylating agents such as methylsulfonyl chloride (Scheme 12).

Amines such as 87(c) may also be prepared by reductive amination between amines such as 2-chloro-3-bromo-5-amino-pyridine and aldehydes such as 1,1-dimethylethyl [(15)-1-formyl-2-(1/H-indol-3-yl)ethyl]carbamate with reducing agents such as sodium triacetoxyborohydride or sodium borohydride, followed by Pd-mediated cross coupling reactions using the methods of Suzuki, Stille, Buchwald, or Negishi, and final deprotection steps such as Boc removal with trifluoroacetic acid or HCl (Scheme 13).

SCHEME 1

20

5

10

- 22 -

SCHEME 2

10

SCHEME 3

5

10

SCHEME 5

5

10

SCHEME 7

5

SCHEME 12

10

15

20

By the term "co-administering" and derivatives thereof as used herein is meant either simultaneous administration or any manner of separate sequential administration of an AKT inhibiting compound, as described herein, and a further active ingredient or ingredients, known to be useful in the treatment of cancer, including chemotherapy and radiation treatment, or to be useful in the treatment of arthritis. The term further active ingredient or ingredients, as used herein, includes any compound or therapeutic agent known to or that demonstrates advantageous properties when administered to a patient in need of treatment for cancer or arthritis. Preferably, if the administration is not simultaneous, the compounds are administered in a close time proximity to each other. Furthermore, it does not matter if the compounds are administered in the same dosage form, e.g. one compound may be administered topically and another compound may be administered or ally.

Examples of a further active ingredient or ingredients for use in combination with the presently invented AKT inhibiting compounds are chemotherapeutic agents.

Because the pharmaceutically active compounds of the present invention are active as AKT inhibitors they exhibit therapeutic utility in treating cancer and arthritis.

Suitably, the present invention relates to a method for treating or lessening the severity of a cancer.

Suitably, the present invention relates to a method for treating or lessening the severity of a cancer selected from brain (gliomas), glioblastomas, Bannayan-Zonana syndrome, Cowden disease, Lhermitte-Duclos disease, breast, colon, head and neck, kidney, lung, liver, melanoma, ovarian, pancreatic, prostate, sarcoma and thyroid.

Suitably, the present invention relates to a method for treating or lessening the severity of a cancer selected from ovarian, pancreatic and prostate.

Isolation and Purification of His-tagged AKT1 (aa 136-480)

15

20

25

30

35

10

5

Insect cells expressing His-tagged AKT1 (aa 136-480) were lysed in 25 mM HEPES, 100 mM NaCl, 20 mM imidazole; pH 7.5 using a polytron (5 mLs lysis. buffer/g cells). Cell debris was removed by centrifuging at 28,000 x g for 30 minutes. The supernatant was filtered through a 4.5-micron filter then loaded onto a nickel-chelating column pre-equilibrated with lysis buffer. The column was washed with 5 column volumes (CV) of lysis buffer then with 5 CV of 20% buffer B. where buffer B is 25 mM HEPES, 100 mM NaCl, 300 mM imidazole; pH 7.5. Histagged AKT1 (aa 136-480) was eluted with a 20-100% linear gradient of buffer B over 10 CV. His-tagged AKT1 (136-480) eluting fractions were pooled and diluted 3-fold with buffer C, where buffer C is 25 mM HEPES, pH 7.5. The sample was then chromatographed over a Q-Sepharose HP column pre-equilibrated with buffer C. The column was washed with 5 CV of buffer C then step eluted with 5 CV 10%D, 5 CV 20% D, 5 CV 30% D, 5 CV 50% D and 5 CV of 100% D; where buffer D is 25 mM HEPES, 1000 mM NaCl; pH 7.5. His-tagged AKT1 (aa 136-480) containing fractions were pooled and concentrated in a 10-kDa molecular weight cutoff concentrator. His-tagged AKT1 (aa 136-480) was chromatographed over a Superdex 75 gel filtration column pre-equilibrated with 25 mM HEPES, 200 mM NaCl, 1 mM DTT; pH 7.5. His-tagged AKT1 (aa 136-480) fractions were examined using SDS-PAGE and mass spec. The protein was pooled, concentrated and frozen at -80C.

- 31 -

His-tagged AKT2 (aa 138-481) and His-tagged AKT3 (aa 135-479) were isolated and purified in a similar fashion.

AKT Enzyme Assay

5

10

15

20

25

Compounds of the present invention were tested for AKT 1, 2, and 3 protein serine kinase inhibitory activity in substrate phosphorylation assays. This assay examines the ability of small molecule organic compounds to inhibit the serine phosphorylation of a peptide substrate. The substrate phosphorylation assays use the catalytic domains of AKT 1, 2, or 3. The method measures the ability of the isolated enzyme to catalyze the transfer of the gamma-phosphate from ATP onto the serine residue of a biotinylated synthetic peptide (Biotin-ahx-ARKRERAYSFGHHA-amide). Substrate phosphorylation was detected by the following procedure:

Assays were performed in 384well U-bottom white plates. 10 nM activated AKT enzyme was incubated for 40 minutes at room temperature in an assay volume of 20ul containing 50mM MOPS, pH 7.5, 20mM MgCl₂, 4uM ATP, 8uM peptide, 0.04 uCi [g-³³P] ATP/well, 1 mM CHAPS, 2 mM DTT, and 1ul of test compound in 100% DMSO. The reaction was stopped by the addition of 50 ul SPA bead mix (Dulbecco's PBS without Mg²⁺ and Ca²⁺, 0.1% Triton X-100, 5mM EDTA, 50uM ATP, 2.5mg/ml Streptavidin-coated SPA beads.) The plate was sealed, the beads were allowed to settle overnight, and then the plate was counted in a Packard Topcount Microplate Scintillation Counter (Packard Instrument Co., Meriden, CT).

The data for dose responses were plotted as % Control calculated with the data reduction formula $100^{\circ}(U1\text{-C2})/(C1\text{-C2})$ versus concentration of compound where U is the unknown value, C1 is the average control value obtained for DMSO, and C2 is the average control value obtained for 0.1M EDTA. Data are fitted to the curve described by: $y = ((Vmax^*x)/(K+x))$ where Vmax is the upper asymptote and K is the ICSO.

30

35

The pharmaceutically active compounds within the scope of this invention are useful as AKT inhibitors in mammals, particularly humans, in need thereof.

The present invention therefore provides a method of treating cancer, arthritis and other conditions requiring AKT inhibition, which comprises administering an effective compound of Formula (I) or a pharmaceutically

10

15

20

25

30

3.5

acceptable salt, hydrate, solvate or ester thereof. The compounds of Formula (I) also provide for a method of treating the above indicated disease states because of their demonstrated ability to act as Akt inhibitors. The drug may be administered to a patient in need thereof by any conventional route of administration, including, but not limited to, intravenous, intramuscular, oral, subcutaneous, intradermal, and parenteral.

The pharmaceutically active compounds of the present invention are incorporated into convenient dosage forms such as capsules, tablets, or injectable preparations. Solid or liquid pharmaceutical carriers are employed. Solid carriers include, starch, lactose, calcium sulfate dihydrate, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, and stearic acid: Liquid carriers include syrup, peanut oil, olive oil, saline, and water. Similarly, the carrier or diluent may include any prolonged release material, such as glyceryl monostearate or glyceryl distearate, alone or with a wax. The amount of solid carrier varies widely but, preferably, will be from about 25 mg to about 1 g per dosage unit. When a liquid carrier is used, the preparation will be in the form of a syrup, elixir, emulsion, soft gelatin capsule, sterile injectable liquid such as an ampoule, or an aqueous or nonaqueous liquid suspension.

The pharmaceutical preparations are made following conventional techniques of a pharmaceutical chemist involving mixing, granulating, and compressing, when necessary, for tablet forms, or mixing, filling and dissolving the ingredients, as appropriate, to give the desired oral or parenteral products.

Doses of the presently invented pharmaceutically active compounds in a pharmaceutical dosage unit as described above will be an efficacious, nontoxic quantity preferably selected from the range of 0.001 - 100 mg/kg of active compound, preferably 0.001 - 50 mg/kg. When treating a human patient in need of an Akt inhibitor, the selected dose is administered preferably from 1-6 times daily, orally or parenterally. Preferred forms of parenteral administration include topically, rectally, transdermally, by injection and continuously by infusion. Oral dosage units for human administration preferably contain from 0.05 to 3500 mg of active compound. Oral administration, which uses lower dosages is preferred. Parenteral administration, at high dosages, however, also can be used when safe and convenient for the patient.

Optimal dosages to be administered may be readily determined by those skilled in the art, and will vary with the particular Akt inhibitor in use, the strength of the preparation, the mode of administration, and the advancement of the disease condition. Additional factors depending on the particular patient being treated will

10

15

20

result in a need to adjust dosages, including patient age, weight, diet, and time of administration

The method of this invention of inducing Akt inhibitory activity in mammals, including humans, comprises administering to a subject in need of such activity an effective Akt inhibiting amount of a pharmaceutically active compound of the present invention.

The invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use as an Akt inhibitor.

The invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use in therapy.

The invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use in treating cancer.

The invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use in treating arthritis.

The invention also provides for a pharmaceutical composition for use as an Akt inhibitor which comprises a compound of Formula (I) and a pharmaceutically acceptable carrier.

The invention also provides for a pharmaceutical composition for use in the treatment of cancer which comprises a compound of Formula (I) and a pharmaceutically acceptable carrier.

The invention also provides for a pharmaceutical composition for use in treating arthritis which comprises a compound of Formula (I) and a pharmaceutically acceptable carrier.

No unacceptable toxicological effects are expected when compounds of the invention are administered in accordance with the present invention.

In addition, the pharmaceutically active compounds of the present invention can be co-administered with further active ingredients, such as other compounds known to treat cancer or arthritis, or compounds known to have utility when used in combination with an Akt inhibitor.

30

25

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative and not a limitation of the scope of the present invention in any way.

15

20

25

30

35

Experimental Details

Example 1

- 5 Preparation of (S)-1-Benzyl-2-[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxyl-ethylamine
 - a) ((S)-1-Hydroxymethyl-2-phenyl-ethyl)-carbamic acid *tert*-butyl ester Saturated NaHCO₃ aqueous solution (3 mL) was added to a solution of (-)-phenylalaninol (1.007 g, 6.66 mmol) and di-*t*-butyl dicarbonate (2.18 g, 9.99 mmol) in CH₂Cl₂ and the resulting mixture was stirred at room temperature for 3 h. The reaction was complete indicated by TLC. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 times). The combined the organic layers were dried (Na₂SO₄), concentrated, and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to give a white solid (1.64 g, 98%).
 - b) 3-Bromo-2-chloro-5-((S)-2-methyl-3-phenyl-propoxy)-pyridine

 DEAD (0.30 mL, 1.87 mmol) was added to a solution of 4-bromo-5-chloro-3-hydroxypyridine (243 mg, 1.17 mmol, Koch, V. Schnatterer, S. Synthesis, 1990, 499-501), compound of Example 1 (a) (440 mg, 1.80 mmol) and Ph₃P (460 mg, 1.80 mmol) in THF (10 mL) at 0 °C. The resulting mixture was warmed up to room temperature and stirred for 1 h. The reaction was complete indicated by TLC. The reaction mixture was concentrated and the residue was purified by flash column chromatography (hexane/EiOAc 9:1) to give a white solid (450 mg, 87%).
 - c) 3-Methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester
 - A mixture of N-Boc-3-methyl-5-bromoindazole (1.11 g, 3.58 mmol), bis(pinacola)diboron (1.0 g, 3.94 mmol), KOAc (527 mg, 5.37mmol), Pd_2dba_3 (49 mg, 0.054 mmol) and PCy_3 (72 mg, 0.26 mmol) in dioxane (21.5 mL) was purged with N_2 and heated at 80 °C under N_2 for 24 h. The reaction mixture was filtered through celite, which was rinsed with EtOAc. The combined filtrates were concentrated and the residue was purified by flash column chromatography (hexane/EtOAc 9:1) to give a light yellow solid (1.046 g, 74%).
 - d) 5-[5-((S)-2- tert -Butoxycarbonylamino-3-phenyl-propoxy)-2-chloro-pyridin-3-yl]-3-methyl-indazole-1- carboxylic acid tert-butyl ester

15

20

25

35

A mixture of the compound of Example 1(b) (550 mg, 1.24 mmol), compound of Example 1(c) (550 mg, 1.53 mmol), (Ph₃P)₄Pd (143 mg, 0.12 mmol), 2N Na₂CO₃ aqueous solution (0.84 mL) and 1,4-dioxane (10 mL) was degassed and heated at 100 °C under N₂ overnight. The reaction mixture was filtered through celite, which was rinsed with EtOAc. The combined filtrates were concentrated and the residue was purified by flash column chromatography (hexane/EtOAc 3:1 to 1:1) to give a light yellow solid (585 mg, 80%).

 e) {(S)-1-Benzyl-2-[5-(3-methyl-1 H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethyl}carbamic acid tert -butyl ester

A mixture of the compound of Example 1(d) (196 mg, 0.33 mmol), phenylboronic acid (80.6 mg, 0.66 mmol), (Ph₃P)₄Pd (19 mg, 0.016 mmol), 2N Na₂CO₃ aqueous solution (0.73 mL) and 1.4-dioxane (3 mL) was degassed and irradiated under microwave at 160 °C for 20 min. The reaction mixture was filtered through celite, which was rinsed with EtOAc. The combined the filtrates were concentrated and the residue was purified by flash column chromatography (hexane/EtOAc 3:1 to 1:1) to give a light yellow solid (101 mg, 57%).

f) (S)-1-Benzyl-2-[5-(3-methyl-1 H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethylamine

A solution of the compound of Example 1(e) and 0.5 mL of TFA in CH_2Cl_2 (1.5ml) was stirred at room temperature for 30 min, diluted with toluene and concentrated. The residue was taken up into DMSO and purified on reversed phase HPLC (MeCN, H_2O , 0.1% TFA) to give a white solid (78mg,78%). 1 H NMR (CD_3OD, 400 MHz) δ 8.49 (d, J = 2.8 Hz, 1H), 7.92 (d, J = 2.8 Hz, 1H), 7.66 (d, J = 0.7 Hz, 1H), 7.40-7.32 (m, 11H), 7.11 (dd, J = 8.7, 1.6 Hz), 4.46 (dd, J = 10.6, 3.0 Hz, 1H), 4.31 (dd, J = 10.6, 5.6 Hz, 1H), 4.03-3.95 (m, 1H), 3.19 (d, J = 7.4 Hz, 2H), 2.50 (s, 3H); MS (M+H): 435.2

30 Example 2

<u>Preparation of (S)-1-Benzyl-2-[6-furan-2-yl-5-(3-methyl-1H-indazol-5-yl) -pyridin-3-yloxyl-ethylamine</u>

Following the procedure of Example 1(a)-1(f), except substituting 2-furanboronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.40 (d, J = 2.8 Hz, 1H), 7.72 (dd, J = 1.4, 0.9 Hz, 1H), 7.61 (d, J = 2.8 Hz, 1H), 7.56-7.54 (m, 2H), 7.41-7.31 (m, 7H), 7.28 (dd, J = 8.6

1.6 Hz, 1H), 6.36 (dd, J = 3.5, 1.8 Hz, 1H), 5.91 (dd, J = 3.5, 0.6 Hz, 1H), 4.48 (dd, J = 10.6, 3.0 Hz, 1H), 4.23 (dd, J = 10.6, 5.6 Hz, 1H), 4.00-3.90 (m, 1H), 3.16 (d, J = 7.6 Hz, 2H), 2.58 (s, 3H); MS (M+H); 425.2

Example 3

<u>Preparation of (S)-1-Benzyl-2-[5,6-bis-(3-methyl-1H-indazol-5-yl) -pyridin-3-yloxyl-ethylamine</u>

Following the procedure of Example 1(a)-1(f), except substituting the compound of Example 1(c) for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.46 (s, 1H), 7.81-7.78 (m, 2H), 7.71 (s, 1H), 7.40-7.27 (m, 13H), 7.19 (dd, J = 8.7, 1.5 Hz, 1H), 7.07 (d, J = 8.6 Hz, 1H), 4.45-4.42 (m, 1H), 4.30-4.25 (m, 1H), 4.01-3.92 (m, 1H), 3.19 (d, J = 6.7Hz, 2H), 2.50 (s, 3H), 2.45 (s, 3H) MS (M+H): 489.2

15

Example 4

<u>Preparation of (S)-1-Benzyl-2-[6-thiophen-2yl-5- (3-methyl-1H-indazol-5-yl) - pyridin-3-vloxyl-ethylamine</u>

Following the procedure of Example 1(a)-1(f), except substituting 2-thiopheneboronic acid for phenylboronic acid, the title compound was prepared.

¹H NMR (CD₃OD, 400 MHz) δ 8.47 (d, 1H), 7.90 (s, 1H), 7.68 (d, 1H), 7.48-7.30 (m, 8H), 7.17 (d, 1H), 6.88 (dd, 1H), 4.45 (dd, 1H), 4.32 (dd, 1H), 4.00 (m, 1H), 3.19 (d, 2H), 2.54 (s, 3H), MS (M+H): 441.2

25

35

20

5

10

Example 5

30 Preparation of (S)-1-Benzyl-2-[6-(4-chlorophenyl)-5- (3-methyl-1H-indazol-5-yl) pyridin-3-yloxyl-ethylamine

Following the procedure of Example 1(a)-1(f), except substituting 4-chlorophenylboronic acid for phenylboronic acid, the title compound was prepared.

1H NMR (CD₃OD, 400 MHz) δ 8.46 (d, 1H), 7.68 (dd, 2H), 7.40-7.29 (m, 6H), 7.22 (m, 4H), 7.06 (m, 1H), 4.40 (dd, 1H), 4.25 (dd, 1H), 3.99-3.95 (m, 1H), 3.19 (d, 2H), 2.53 (s, 3H). MS (M+H): 469.2

Example 6

Preparation of (S)-1-Benzyl-2-[6-(3-chlorophenyl)-5- (3-methyl-1H-indazol-5-yl) - pyridin-3-yloxyl-ethylamine

Following the procedure of Example 1(a)-1(f), except substituting 3-chlorophenylboronic acid for phenylboronic acid, the title compound was prepared.

1H NMR (CD₃OD, 400 MHz) δ 8.42 (d, 1H), 7.65 (s, 1H), 7.60 (s, 1H), 7.42-7.28 (m, 8H), 7.19 (t, 1H), 7.08 (m, 2H), 4.39 (dd, 1H), 4.26 (dd, 1H), 3.97 (m, 1H), 3.18 (d, 2H), 2.50 (s, 3H). MS (M+H): 469.2

10

15

20

5

Example 7

<u>Preparation of (S)-1-Benzyl-2-[6-benzyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxyl-ethylamine</u>

 a) {(S)-1-Benzyl-2-[6-benzyl-5-(3-methyl-1H-indazol-5-yl)-pyridin-3-yloxy]-ethyl}carbamic acid benzyl ester

A mixture of 1(d) (35 mg, 0.059 mmol), BrZnPh (0.59 mL, 0.5 M in THF), and Pd(Ph₃P)₄ (6.8 mg, 0.0059 mmol) was purged with N₂, stirred at 75 °C overnight and cooled to room temperature. Saturated NH₄Cl aqueous solution was added and the aqueous layer was extracted with EtOAc. The combined organic layers were dried (Na₂SO₄), concentrated and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to give a mixture of 7(a) and {(s)-1-Benzyl-2-[6-chloro-5-(3-methyl-1H-indazol-5-yl)-pyridin-3-yloxy]-ethyl]-carbamic acid benzyl ester (18mg).

25

30

35

b) (S)-1-Benzyl-2-[6-benzyl-5-(3-methyl-1H-indazol-5-yl)-pyridin-3-yloxyl-ethylamine

A mixture of 7(a) and {(s)-1-Benzyl-2-[6-chloro-5-{3-methyl-1H-indazol-5-yl)-pyridin-3-yloxy]-ethyl}-carbamic acid benzyl ester (18 mg), 10% Pd/C (5 mg) and 0.5 mL of MeOH was stirred under a balloon pressure of H $_2$ overnight. The reaction mixture was filtered through celite, which was rinsed with MeOH. The combined filtrates were concentrated and the residue was purified by reversed phase HPLC (MeCN, H $_2$ O, 0.1% TFA) to give 2.3 mg of the title compound. 1 H NMR (CD $_3$ OD, 400 MHz) δ 8.40 (d, 1H), 7.62 (dd, 1H), 7.53 (d, 1H), 7.46 (s, 1H), 7.40-7.27 (m, 6H), 7.18 (m, 3H), 6.88 (m, 2H), 4.35 (dd, 1H), 4.20 (m, 3H), 3.82 (m,

1H), 3.13 (d. 2H), 2.49 (s. 3H), MS (M+H); 449.2

10

15

20

25

30

35

Example 8

Preparation of (S)-1-Benzyl-2-[6-cyclopent-1-enyl-5- (3-methyl-1H-indazol-5-yl) - pyridin-3-yloxyl-ethylamine

Following the procedure of Example 1(a)-1(f), except substituting cyclopent-1-enylboronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.46 (d, 1H), 8.14 (d, 1H), 7.86 (s, 1H), 7.60 (d, 1H), 7.53-7.38(m, 6H), 6.30 (s, 1H), 4.49 (dd, 1H), 4.34 (dd, 1H), 4.00 (m, 1H), 3.17 (d, 2H), 2.60 (s, 3H), 2.52 (m, 2H), 2.24 (m, 2H), 1.90 (m, 2H), MS (M+H): 425.4

Example 9

<u>Preparation of (S)-1-Benzyl-2-[6-cyclopentyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxyl-ethylamine</u>

To the solution of Example 8 (7.8 mg, 0.012 mol) in MeOH (0.5 ml) was added 5 mg of 10% Pd/C. The mixture was stirred under a balloon pressure of H_2 for 1 hr. The reaction mixture was filtered through celite, which was rinsed with MeOH. The combined filtrates were concentrated and the residue was purified by reversed phase HPLC (MeCN, H_2 O, 0.1% TFA) to give 6 mg (77%) of the title compound. 1 H NMR (CD₃OD, 400 MHz) 3 8.46 (d, 1H), 8.05 (d, 1H), 7.80 (s, 1H), 7.65 (dd, 1H)7.55-7.29 (m, 6H), 4.44-4.40 (dd, 1H), 4.30-4.26 (dd, 1H), 3.97 (m, 1H), 3.54-3.45 (m, 1H), 3.15 (d, 2H), 2.61 (s, 3H), 2.10-1.59 (m, 8H), MS (M+H): 427.4

Example 10

<u>Preparation of (S)-1-Benzyl-2-[6-cyclohex-1-enyl-5- (3-methyl-1H-indazol-5-yl) - pyridin-3-yloxyl-ethylamine</u>

Following the procedure of Example 1(a)-1(f), except substituting cyclohex-1-enylboronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD $_3$ OD, 400 MHz) δ 8.44 (d, 1H), 8.25 (d, 1H), 7.90 (s, 1H), 7.62 (d, 1H), 7.53 (d, 1H), 7.42-7.30 (m, 5H), 6.27 (t, 1H), 4.49 (m, 1H), 4.35 (m, 1H), 4.00 (m, 1H), 3.17 (d, 2H), 2.61 (s, 3H), 2.26 (m, 2H), 1.83 (m, 2H), 1.61 (m, 2H), 1.53 (m, 2H). MS (M+H): 439.2

Example 11

Preparation of (S)-1-Benzyl-2-[6-cyclohexyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine

Following the procedure of Example 9, except substituting Example 8 with Example 10, the title compound was prepared. ¹H NMR (CD₂OD, 400 MHz) δ 8.41 (d. 1H), 7.83 (d. 1H), 7.74 (s. 1H), 7.63 (d. 1H), 7.40-7.29 (m. 6H), 4.41 (dd. 1H), 4.24 (dd. 1H), 3.96 (m, 1H), 3.14 (d, 2H), 2.98 (m, 1H), 1.90-1.62 (m, 7H), 1.48-1.11 (m, 3H). MS (M+H): 441.2

10

5

Example 12

Preparation of 3-Methyl-5-[2-phenyl-5-(piperidin-4-ylmethoxy)-pyridin-3-yl]-1Hindazole

15

20

a) 6-chloro-5-(3-methyl-1H-indazol-5-yl)-3-pyridinol

A mixture of 5-bromo-6-chloro-3-pyridinol (1.40 g, 6.70 mmol), 3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indazole (2.08 g, 8.04 mmol), (Ph₃P)₄Pd (385 mg, 0.34 mmol), 2N Na₂CO₃ aqueous solution (7.7 mL) and DME (20 mL) was degassed and heated at 80 °C under No overnight. The reaction mixture was filtered through celite, which was rinsed with EtOAc. The combined filtrates were concentrated and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to give a light yellow foamy solid (1.23 g. 71%).

25

30

b) 5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinol

A mixture of compound of Example 12(a) (1.03 g. 4.75 mmol). phenylboronic acid (695 mg, 5.70 mmol), (Ph₃P)₄Pd (274 mg, 0.24 mmol), 2N Na₂CO₃ aqueous solution (8.5 mL) and 1,4-dioxane (20 mL) was degassed and heated at 100 °C overnight. The reaction mixture was filtered through celite, which was rinsed with EtOAc. The combined the filtrates were concentrated and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to give a light yellow solid (846 mg, 70%).

35

c) 1,1-dimethylethyl 4-({[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3pyridinyl]oxy}methyl)-1-piperidinecarboxylate

15

25

35

DEAD (0.033 mL, 0.2mmol) was added to a solution of the compound of Example 12(b) (40 mg, 0.13 mmol), 1,1-dimethylethyl 4-(hydroxymethyl)-1-piperidinecarboxylate (42.8mg, 0.2mmol) and Ph₃P (52 mg, 0.2 mmol) in THF (1 mL) at 0 °C. The resulting mixture was warmed up to room temperature and stirred for 1 h. The reaction was complete indicated by TLC. The reaction mixture was concentrated and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to give a white solid (45 mg, 69%).

d) 3-methyl-5-{2-phenyl-5-[(4-piperidinylmethyl)oxy]-3-pyridinyl}-1H-indazole

A solution of compound of Example 12(c) and 0.5 mL of TFA in CH_2Cl_2 (1.5ml) was stirred at room temperature for 30 min, diluted with toluene and concentrated. The residue was taken up into DMSO and purified on reversed phase HPLC (MeCN, H_2O , 0.1% TFA) to give a white solid (35 mg, 62%). ¹H NMR (CD₃OD, 400 MHz) δ 8.56 (d, 1H), 8.23 (d, 1H), 7.74 (s, 1H), 7.52-7.35 (m, 6H), 7.13 (d, 1H), 4.27 (d, 2H), 3.50 (d, 2H), 3.12 (m, 2H), 2.51 (s, 3H), 2.30 (m, 1H), 2.17 (d, 2H), 1.73 (m, 2H), MS (M+H); 399.4

Example 13

20 Preparation of 3-[5-(3-Methyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxyl-propylamine

Following the procedure of Example 12, except substituting (2-Hydroxyethyl)-carbamic acid tert-butyl ester for 1,1-dimethylethyl 4-(hydroxymethyl)-1-piperidinecarboxylate the title compound was prepared. ¹H NMR (CD₂OD, 400 MHz) δ 8.57 (d, 1H), 8.25 (d, 1H), 7.74 (s, 1H), 7.50-7.34 (m, 6H), 7.15 (d, 1H), 4.78 (t, 2H), 3.26 (t, 2H), 2.50 (s. 3H), 2.30 (m, 2H), MS (M+H): 359.2

Example 14

30 <u>Preparation of (S)-1-Benzyl-2-[5- (3-methyl-1H-indazol-5-yl) -6-(5-methyl-thiophen-2-yl)-pyridin-3-yloxyl-ethylamine</u>

Following the procedure of Example 1(a)-1(f), except substituting 5-methylthiophen-2-ylboronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.31(d, 1H), 7.70 (s, 1H), 7.51 (d, 1H), 7.49-7.24 (m, 7H), 6.47 (m, 1H), 6.31 (d, 1H), 4.31 (dd, 1H), 4.17 (dd, 1H), 3.95 (m, 1H), 3.15 (d, 2H), 2.57 (s, 3H), 2.39 (s, 3H), MS (M+H): 455.0

Example 15

<u>Preparation of (S)-1-Benzyl-2-[5- (3-methyl-1H-indazol-5-yl) -6-(5-methyl-furan-2-yl)-pyridin-3-yloxy</u>]-ethylamine

Following the procedure of Example 1(a)-1(f), except substituting 5-methylfuran-2-ylboronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MH2) δ 8.37(s, 1H), 7.70 (m, 2H), 7.62 (m, 1H), 7.49-7.30 (m, 5H), 5.97 (m, 1H), 5.80 (s, 1H), 5.73 (s, 1H), 4.37 (dd, 1H), 4.22 (dd, 1H), 3.96 (m, 1H), 3.17 (d, 2H), 2.55 (s, 3H), 2.26 (s, 3H). MS (M+H): 439.2

10

15

20

25

30

35

Example 16

<u>Preparation of 3-Methyl-5-[2-phenyl-5-(4-pyridin-3-yl-methyl-piperazin-1-yl)-pyridin-3-yl-1H-indazole</u>

a) Trifluoro-methanesulfonic acid 5-(3-methyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yl ester

A solution of compound 12(b) (150 mg, 0.50 mmol) and PhNTf $_2$ (213 mg, 1.2 eq.) in CH $_2$ Cl $_2$ (5 mL) was added Et $_3$ N (0.14 mL, 2.0 eq.). The resulting mixture was stirred at rt overnight, washed with water, brine, and dried (Na $_2$ SO $_4$). Removal of the solvent followed by flash column chromatography of the residue on silica gel afforded 198 mg (92%) of the titled compound.

b) 3-Methyl-5-[2-phenyl-5-(4-pyridin-3-ylmethyl-piperazin-1-yl)-pyridin-3-yl]-1H-indazole

A solution of compound Example 16(a) (13.8 mg, 0.032 mmol) and 1-pyridin-3-ylmethyl-piperazine (14 mg, 2.5 eq.) in NMP (0.2 mL) was irradiated with microwave (personal choice synthesizer) at 205 $^{\circ}$ C for 30 min. The reaction mixture was loaded on the reversed phase HPLC column and purified (MeCN, H₂O, 0.1% TFA) to give 17.2 mg of white solid (67%). $^{\circ}$ H NMR (CD₃OD, 400 MHz) 8 9.04 (s, 1H), 8.90 (s, 1H), 8.58 (d, 1H), 8.46 (s, 1H), 8.26 (s, 1H), 8.00 (m, 1H), 7.77 (s, 1H), 7.50-7.34 (m, 6H), 7.15 (d, 1H), 4.59 (s, 2H), 3.88 (t, 4H), 3.51 (t, 4H), 2.51 (s, 3H). MS (M+H); 461.4

Example 17

<u>Preparation of 3-Methyl-5-[2-phenyl-5-(4-pyridin-4-ylmethyl-piperazin-1-yl)-pyridin-3-yl]-1H-indazole</u>

Following the procedure of Example 16, except substituting 1-pyridin-4-ylmethyl-piperazine for 1-pyridin-3-ylmethyl-piperazine the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.88(d, 2H), 8.41 (d, 1H), 8.21 (d, 1H),

8.13 (d, 2H), 7.76 (s, 1H), 7.48-7.34 (m, 6H), 7.12 (d, 1H), 4.31 (s, 2H), 3.78 (t, 4H), 3.15 (t, 4H), 2.51 (s, 3H). MS (M+H): 461.4

Example 18

5

Preparation of [(1*S*)-2-[(*G*-(3-furanyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy]-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f), except substituting 3-furanboronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.39 (d, J = 2.4 Hz, 1H), 7.72 (s, 1H), 7.57 (s, 1H), 7.53(d, J = 8.8 Hz, 1H), 7.41-7.15 (m, 8H), 6.31 (dd, J = 3.5, 1.8 Hz, 1H), 4.36 (d, J = 10.4, 1H), 4.22 (dd, J = 10.6, 5.6 Hz, 1H), 4.00-3.94 (m, 1H), 3.16 (m, 2H), 2.57 (s. 3H); MS (M+H): 425.2.

15

20

10

Example 19

$\label{preparation} $$ Preparation of $$ [(1.S)-2-[5-(3-methyl-1$H-indazol-5-yl)-6-(5-chloro-2-thienyl)-3-pyridinyl]oxy)-1-(phenylmethyl)ethyl]amine$

Following the procedure of Example 1(a)-1(f), except substituting 5-chloro-2-thiopheneboronic acid for phenylboronic acid, the title compound was prepared.
¹H NMR (CD₂OD, 400 MHz) δ 8.33 (d, 1 H), 7.16 (d, 1 H), 7.49 (d, 1 H), 7.41-7.28 (m, 6 H), 7.26 (d, 1 H), 6.92 (d, 1 H), 6.46 (d, 1 H), 4.32 (dd, 1 H), 4.18 (dd, 1 H), 3.95 (m, 1 H), 3.14 (m, 2 H), 2.58 (s, 3 H), 2.01 (s, 3 H), MS (M+H): 475.2/ 477.2.

25

Example 20

<u>Preparation of [(1*S*)-2-{[6-(3-aminophenyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl[oxy}-1-(phenylmethyl)ethyl[amine</u>

Following the procedure of Example 1(a)-1(f), except substituting (3-aminophenyl)boronic acid for phenylboronic acid, the title compound was prepared.

1H NMR (CD₃OD, 400 MHz) δ 8.46 (d, 1 H), 7.65 (m, 2 H), 7.42-7.22 (m, 10 H),

7.11 (d, 1 H), 4.39 (m, 1 H), 4.26 (dd, 1 H), 3.98 (m, 1 H), 3.19 (m, 2 H), 2.52 (s, 3 H); MS (M+H): 449.4.

35

30

10

15

20

25

30

35

Example 21

<u>Preparation of (S)-1-Benzyl-2-[5-(1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethylamine</u>

Following the procedure of Example 1(a)-1(f), except substituting 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester for compound Example 1(C), the title compound was prepared. 1 H NMR (CD $_{3}$ OD, 400 MHz) 2 8 .53 (d, 1 H), 8.06 (s, 1 H), 7.98 (d, 1 H), 7.75 (s, 1 H), 7.46-7.30 (m, 10 H), 7.13 (d, 1 H), 4.49 (dd, 1 H), 4.33(dd, 1 H), 4.01(m, 1 H), 3.19(d, 2 H); MS (M+H): 421.2.

Example 22

<u>Preparation of (\$)-1-Benzyl-2-{6-[3-(3-fluoro-benzyloxy)phenyl]-5- (3-methyl-1H-indazol-5-yl)-pyridin-3-yloxy}-ethylamine</u>

a) 2-[3-(3-fluoro-benzyloxy)phenyl]-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane A mixture of 3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenol (110 mg, 0.50 mmol), 3-fluorobenzyl bromide (0.074 mL, 1.2 eq.), Cs_2CO_3 (179 mg, 1.1 eq) and DMF (3 mL) was stirred at rt for 3 hr, and taken up into EtOAc and water. The organic was separated, dried (Na_2SO_4) and concentrated. The residue was purified by flash column chromatography on silica gel to give 91 mg (55%) of the titled compound.

b) (S)-1-Benzyl-2-{6-{3-(3-fluoro-benzyloxy)phenyl}-5- (3-methyl-1H-indazol-5-yl) - pyridin-3-yloxy}-ethylamine

Following the procedure of Example 1(a)-1(f), except substituting compound of Example 22 (a) for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.46 (s, 1H), 7.80 (s, 1H), 7.65 (s, 1H), 7.40-6.87 (m, 15H), 4.85 (s, 2H), 4.45 (dd, 1H), 4.29 (dd, 1H), 3.99 (m, 1H), 3.18 (d, 2H), 2.52 (s, 3H): MS (M+H): 559.4

Example 23

<u>Preparation of (S)-1-Benzyl-2-[5-(3-phenyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxyl-ethylamine</u>

a) {(S)-1-Benzyl-2-[5-(1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethyl}-carbamic acid tert-butyl ester

10

15

25

30

35

Following the procedure of Example 1(a)-1(e), except substituting 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester for the compound of Example 1(c), the title compound was prepared. b)_((S)-1-Benzyl-2-[5-(3-iodo-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethyl)-carbamic acid tert-butyl ester

lodine (53 mg, 1.5 eq.) and KOH (20 mg, 2.5 eq., grounded) were added to a solution of the compound of Example 23(a) (71 mg, 0.14 mmol) in DMF (1.5 mL). The reaction mixture was stirred at rt for 30 min, and taken up into EtOAc and water. The organic layer was separated, washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by flash column chromatography on silica gel (2:1 hexane/EtOAc) to give a white solid (37 mg, 42%).

c) (S)-1-Benzyl-2-[5-(3-phenyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethylamine Following the procedure of Example 1(e), except substituting compound of Example 23(b) for compound of Example 1(d), the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) & 8.54 (d, 1H), 8.04 (d, 1H), 7.81 (s, 1H), 7.65-7.29 (m, 17H), 4.49 (dd, 1H), 4.36-4.32 (m,1H), 4.03-3.99 (m, 1H), 3.20 (d, 2H); MS (M+H): 497.2.

20 Example 24

<u>Prepatation of [(1*S*)-2-[[5-(3-methyl-1*H*-indazol-5-yl)-6-(1*H*-pyrrol-2-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine</u>

Following the procedure of Example 1(a)-1(f), except substituting (1-{[(1,1-dimethylethyl)oxy]carbonyl}-1H-pyrrol-2-yl)boronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.35 (d, 1 H), 7.71 (s, 1 H), 7.59 (d, 1 H), 7.52 (d, 2 H), 7.40-7.25 (m, 7 H), 6.82 (d, 2 H), 5.98 (m, 1 H), 5.65 (m, 1 H), 4.35 (dd, 1 H), 4.21 (dd, 1 H), 3.95 (m, 1 H), 3.20 (d, 2 H), 2.67 (s, 3 H); MS (M+H): 424.2.

Example 25

Prepatation of *N*-(3-[5-[[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl|phenyl|benzamide

a) $\{(S)-1-Benzyl-2-[5-(3-methyl-1\ H-indazol-5-yl)-6-(3-nitro-phenyl)-pyridin-3-yloxy]-ethyl\}-carbamic acid tert-butyl ester$

10

15

20

25

30

35

Following the procedure of Example 1(a)-1(e), except substituting 3nitrophenylboronic acid for phenylboronic acid, the title compound was prepared.

b) {(S)-1-Benzyl-2-[5-(3-methyl-1 H-indazol-5-yl)-6-(3-amino-phenyl)-pyridin-3-yloxyl-ethyl}-carbamic acid tert -butyl ester

To a solution of the compound of Example 25(a) (260mg, 0.38mmol) in EtOH was added 10% Pd/C (26mg) and the reaction mixture was stirred under a H_2 balloon overnight. The reaction mixture was filtered through celite, which was rinsed with EtOH. The combined filtrates were concentrated to give the titled product (240mg, 97%).

6) N-{3-[5-{[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl|phenyl|benzamide

A solution of the compound of Example 25(b) (90mg, 0.14mmol), benzoyl chloride (30mg, 0.21mmol) and TEA (0.04ml, 0.28mmol) in 3ml CH₂Cl₂ was stirred at rt for 20min. Solvent was removed and the residue was dissolved in EtOAc, which was washed with NaHCO₃, brine and dried. Removal of the solvent followed by flash column chromatography purification of the residue on silica gel afforded the titled compound (78mg, 75%).

d) $N-\{3-[5-\{((2S)-2-amino-3-phenylpropyl]oxy\}-3-(3-methyl-1<math>H$ -indazol-5-yl)-2-pyridinyl[phenyl}benzamide

A solution of the compound of Example 25(c) (78mg, 0.10mmol) in 0.6ml TFA and 2ml CH_2Cl_2 was stirred at rt for 20 min, diluted with toluene, and concentrated. The residue was taken up into DMSO and purified on reversed phase HPLC (MeCN, H_2O , 0.1% TFA) to give a white solid (40mg, 72%). ¹H NMR (CD_3OD , 400 MHz) δ 8.46 (d, 1 H), 7.93 (s, 1 H), 7.86 (m, 2 H), 7.75 (d, 1 H), 7.67 (s, 1 H), 7.62-7.45 (m, 4 H), 7.40-7.30 (m, 6 H), 7.22 (t, 1 H), 7.16 (d, 1 H), 6.98 (d, 1 H), 4.45 (dd, 1 H), 4.29 (dd, 1 H), 4.02 (m, 1 H), 3.18 (d, 2 H), 2.52 (s, 3 H); MS (M+H): 553.2.

Example 26

Prepatation of N-(3-[5-[[(2S)-2-amino-3-phenylpropyl]oxy]-3-(3-methyl-1 H-indazol-5-yl)-2-pyridinylphenyl}-2.6-difluorobenzamide

Following the procedure of Example 25, except substituting 2,6difluorobenzoyl chloride for benzoyl chloride, the title compound was prepared.

10

15

20

25

¹H NMR (CD₃OD, 400 MHz) δ 8.44 (d, 1 H), 7.90 (d, 1 H), 7.72 (d, 2 H), 7.52 (m, 2 H), 7.41-3.33 (m, 6 H), 7.22 (t, 1 H), 7.15-7.11 (m, 3 H), 6.96 (d, 1 H), 4.43 (dd, 1 H), 4.25 (dd, 1 H), 3.99 (m, 1 H), 3.17 (d, 2 H), 2.52 (s, 3 H); MS (M+H); 590.4.

Example 27

Prepatation of N-{3-[5-{[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1H-indazol-5-yl)-2-pyridinylphenyl}cyclohexanecarboxamide

Following the procedure of Example 25, except substituting cyclohexane carbonyl chloride for benzoyl chloride, the title compound was prepared. ^1H NMR (CD₃OD, 400 MHz) δ 8.40 (d, 1 H), 7.70 (s, 1 H), 7.65 (s, 2 H), 7.43-7.36 (m, 7 H), 7.14 (t, 1 H), 7.09 (d, 1 H), 6.90 (d, 1 H), 4.12 (d, 1 H), 4.26 (d, 1 H), 3.98 (m, 1 H), 3.17 (d, 2 H), 2.51 (s, 1 H), 2.29 (m, 1 H), 1.80 (m, 4 H), 1.47-1.28 (m, 6 H); MS (M+H):560.4.

Example 28

<u>Preparation of [(1S)-2-{{5-[3-(2-furanyl)-1*H*-indazol-5-vl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine</u>

Following the procedure of Example 23(a)-23(c), except substituting 2-furanylboronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.47(d, 1 H), 8.03(s, 1 H), 7.80(d, 1 H), 7.66(d, 1 H), 7.45-7.20(m, 11 H), 7.18(dd, 1 H), 6.85(d, 1 H), 6.61(dd, 1 H), 4.43(dd, 1 H), 4.29(dd, 1 H), 3.99-3.07(m, 1 H), 3.18(d, 2 H); MS (M+H): 487.4.

Example 29

Following the procedure of Example 23(a)-23(c), except substituting 2-thienylboronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD₃OD, 400 MHz) δ 8.45(d, 1 H), 7.88(s, 1 H), 7.75(d, 1 H), 7.48-7.15(m, 14 H), 4.44(dd, 1 H), 4.28(dd, 1 H), 3.97-3.90(m, 1 H), 3.18(d, 2 H); MS (M+H): 503.2.

30

Example 30

Preparation of [(1S)-2-((5-[3-(3-furanyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 23(a)-23(c), except substituting 3furanylboronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD₃OD, 400 MHz) δ 8.48(d, 1 H), 7.93(d, 1 H), 7.85(s, 1 H), 7.77(d, 1 H), 7.64(s, 1 H), 7.46(d, 1 H), 7.44-7.25(m, 9 H), 7.22(dd, 1 H), 6.82(d, 1 H), 4.46(dd, 1 H), 4.30(dd, 1 H), 4.28-4.25(m, 1 H), 3.19(d, 2 H); MS (M+H): 487.4.

10

5

Example 31

Preparation of [(1S)-2-({5-[3-(3-thienyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 23(a)-23(c), except substituting 3thienylboronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₂OD, 400 MHz) δ 8.46(d, 1 H), 7.87(d, 1 H), 7.82(s, 1 H), 7.67(d, 1 H), 7.58(s, 1 H), 7.44(d, 1 H), 7.44-7.25(m, 10 H), 7.22(dd, 1 H), 4.45(dd, 1 H), 4.31(dd, 1 H), 4.28-4.25(m, 1 H), 3.18(d, 2 H); MS (M+H): 503.2.

20

15

Example 32

Preparation of 3-[5-{[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1H-indazol-5vl)-2-pyridinyl]phenol

Following the procedure of Example 1(a)-1(f), except substituting 3-(4,4,5,5tetramethyl-1.3.2-dioxaborolan-2-vl)phenol for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.42(d, 1 H), 7.81(s, 1 H), 7.68(d, 1 H), 7.42-7.33(m, 6 H), 7.14-7.11(m, 2 H), 6.78-6.72(m, 3 H), 4.44(dd, 1 H0, 4,29(dd, 1 H), 3,99-3,97(m, 1 H), 3,18(d, 2 H), 2,52(s, 3 H); MS (M+H); 451.2.

30

25

Example 33

Preparation of [(1S)-2-{[5-(2,3-dimethyl-2H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyllamine

35

a) 5-(2,3-dimethyl-2H-indazol-5-yl)-6-phenyl-3-pyridinyl trifluoroacetate

10

15

20

25

30

35

To a solution of the compound of Example 16(a) (33mg, 0.076mmol) in EtOAc was added Me₃OBF₄ (17mg, 0.115mmol) and stirred for 3h at rt. The reaction was completed indicated by LC/MS. Aqueous NaHCO₃ was added. Organic layer was separated and concentrated, and the residue was purified by flash column chromatography (hexane/EtOAc 2:1) to give a white foaming solid (14.7 mg. 43%).

b) 5-(2.3-dimethyl-2H-indazol-5-yl)-6-phenyl-3-pyridinol

To a solution of the compound of the Example 33(a) (14.7mg, 0.033mmol) in 0.5ml MeOH was added 2N NaOH 0.1 mL. The resulting mixture was stirred at rt for 30 min and concentrated. The residue was dissolved in 1 mL of water and neutralized with HOAc. The resulting mixture was extracted by CH₂Cl₂ (5 mL X 3). The organic layers were combined and concentrated, and the residue was purified by flash column chromatography (Hexane/ EtOAc 1:1) to give a white solid (10 mg).

c) 1,1-dimethylethyl [(1*S*)-2-{[5-(2,3-dimethyl-2*H*-indazol-5-yl)-6-phenyl-3-pyridinylloxy}-1-(phenylmethyl)ethyllcarbamate

DEAD (10.4 uL, 0.066 mmol) was added to a solution of the compound of Example 33(b) (10.8 mg, 0.033 mmol), compound of Example 1 (a) (12.4 mg, 0.049 mmol) and Ph₃P (13.0 mg, 0.049 mmol) in THF (2 mL) at rt. The resulting mixture was stirred at rt overnight. Excess of DEAD and Ph₃P were added. The reaction mixture was concentrated and the residue was purified by flash column chromatography (CH₂Cl₂/EtOAc 1:1) to give a white solid (100mg, coeluted with Ph₃P=O).

d) [(1S)-2-{[5-(2,3-dimethyl-2H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

A solution of the compound of Example 33(c) and 0.2 mL of TFA in CH_2Cl_2 (0.8 ml) was stirred at room temperature for 20 min, diluted with toluene and concentrated. The residue was taken up into DMSO and purified on reversed phase HPLC (MeCN, H_2O , 0.1% TFA) to give a white solid (4.5mg, 20% over 3 steps). ¹H NMR (CD_3OD , 400 MHz) δ 8.52 (d, 1H), 7.99 (d, 1H), 7.66 (s, 1H), 7.42-7.31 (m, 11H), 7.01 (d, 1H), 4.48 (dd, 1H), 4.33 (dd,1H), 4.12 (s, 3H), 4.02-3.99 (m, 1H), 3.19 (d, 2H), 2.62 (s, 3H); MS (M+H): 449.2

Example 34

Preparation of [(1*S*)-2-((5-[3-(2-furanyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 23(a)-23(c), except substituting 2-furanylboronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.47(d, 1 H), 8.03(s, 1 H), 7.80(d, 1 H), 7.66(d, 1 H), 7.45-7.20(m, 11 H), 7.18(dd, 1 H), 6.85(d, 1 H), 6.61(dd, 1 H), 4.43(dd, 1 H), 4.29(dd, 1 H), 3.99-3.07(m, 1 H), 3.18(d, 2 H); MS (M+H): 487.4.

10

15

5

Example 35

Preparation of {(1S)-2-phenyl-1-[({6-phenyl-5-[3-(2-thienyl)-1*H*-indazol-5-yl]-3-pyridinyl}oxy)methyl|ethyl|amine

Following the procedure of Example 23(a)-23(c), except substituting 2-thienylboronic acid for phenylboronic acid, the title compound was prepared. ¹H MMR (CD₃OD, 400 MHz) & 8.45(d, 1 H), 7.88(s, 1 H), 7.75(d, 1 H), 7.48-7.15(m, 14 H), 4.44(dd, 1 H), 4.28(dd, 1 H), 3.97-3.90(m, 1 H), 3.18(d, 2 H): MS (M+H); 503.2.

20

25

Example 36

Following the procedure of Example 23(a)-23(c), except substituting 3-furanylboronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.48(d, 1 H), 7.93(d, 1 H), 7.85(s, 1 H), 7.77(d, 1 H), 7.64(s, 1 H), 7.46(d, 1 H), 7.447.25(m, 9 H), 7.22(dd, 1 H), 6.82(d, 1 H), 4.46(dd, 1 H), 4.30(dd, 1 H), 4.28-4.25(m, 1 H), 3.19(d, 2 H); MS (M+H); 487.4

30

35

Example 37

<u>Preparation of [(1S)-2-((5-[3-(3-thienyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine</u>

Following the procedure of Example 23(a)-23(c), except substituting 3-thienylboronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₂OD, 400 MHz) δ 8.46(d, 1 H), 7.87(d, 1 H), 7.82(s, 1 H), 7.67(d, 1 H).

10

15

20

25

30

35

7.58(s, 1 H), 7.44(d, 1 H), 7.44-7.25(m, 10 H), 7.22(dd, 1 H), 4.45(dd, 1 H), 4.31(dd, 1 H), 4.28-4.25(m, 1 H), 3.18(d, 2 H); MS (M+H): 503.2.

Example 38

 $\underline{Preparation\ of\ 3\text{-}[5\text{-}([2S)\text{-}2\text{-}amino\text{-}3\text{-}pheny|propy]]oxy}\}\text{-}3\text{-}(3\text{-}methy|\text{-}1H-indazo|\text{-}5-y|\text{-}2\text{-}pyridiny|pheno|}$

Following the procedure of Example 1(a)-1(f), except substituting 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol for phenylboronic acid, the title compound was prepared. ^{1}H NMR (CD $_{3}$ OD, 400 MHz) 3 8.42(d, 1 H), 7.81(s, 1 H), 7.68(d, 1 H), 7.42-7.33(m, 6 H), 7.14-7.11(m, 2 H), 6.78-6.72(m, 3 H), 4.44(dd, 1 H), 4.29(dd, 1 H), 3.99-3.97(m, 1 H), 3.18(d, 2 H), 2.52(s, 3 H); MS (M+H): 451.2.

Example 39

Preparation of [(1S)-2-{[5-(2,3-dimethyl-2*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

a) 5-(2,3-dimethyl-2*H*-indazol-5-yl)-6-phenyl-3-pyridinyl trifluoroacetate

To a solution of the compound of Example 16(a) (33mg, 0.076mmol) in EtOAc was added Me₃OBF₄ (17mg, 0.115mmol) and stirred for 3h at rt. The reaction was completed indicated by LC/MS. Aqueous NaHCO₃ was added. Organic layer was separated and concentrated, and the residue was purified by flash column chromatography (hexane/EtOAc 2:1) to give a white foaming solid (14.7 mg , 43%).

b) 5-(2,3-dimethyl-2H-indazol-5-yl)-6-phenyl-3-pyridinol

To a solution of the compound of the Example 39(a) (14.7mg, 0.033mmol) in 0.5ml MeOH was added 2N NaOH 0.1 mL. The resulting mixture was stirred at rt for 30 min and concentrated. The residue was dissolved in 1 mL of water and neutralized with HOAc. The resulting mixture was extracted by CH₂Cl₂ (5 mL X 3). The organic layers were combined and concentrated, and the residue was purified by flash column chromatography (Hexane/ EtOAc 1:1) to give a white solid (10 mg).

c) 1,1-dimethylethyl [(1S)-2-{[5-(2,3-dimethyl-2H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]carbamate

10

15

DEAD (10.4 uL, 0.066 mmol) was added to a solution of the compound of Example 39(b) (10.8 mg, 0.033 mmol), compound of Example 1 (a) (12.4 mg, 0.049 mmol) and Ph₃P (13.0 mg, 0.049 mmol) in THF (2 mL) at rt. The resulting mixture was stirred at rt overnight. Excess of DEAD and Ph₃P were added. The reaction mixture was concentrated and the residue was purified by flash column chromatography (CH₂Cl₂/EtOAc 1:1) to give a white solid (100mg, coeluted with Ph₃P=O).

d) [(1S)-2-{[5-(2,3-dimethyl-2*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

A solution of the compound of Example 39(c) and 0.2 mL of TFA in CH_2Cl_2 (0.8 ml) was stirred at room temperature for 20 min, diluted with toluene and concentrated. The residue was taken up into DMSO and purified on reversed phase HPLC (MeCN, H₂O, 0.1% TFA) to give a white solid (4.5mg, 20% over 3 steps). 1 H NMR (CD₃OD, 400 MHz) 8 8.52 (d, 1H), 7.99 (d, 1H), 7.66 (s, 1H), 7.42-7.31 (m, 11H), 7.01 (d, 1H), 4.48 (dd, 1H), 4.33 (dd,1H), 4.12 (s, 3H), 4.02-3.99 (m, 1H), 3.19 (d, 2H), 2.62 (s, 3H); MS (M+H): 44.9.2

Example 40

- 20 [(1.S)-2-([5-(3-methyl-1*H*-indazol-5-yl)-6-(1-methyl-1*H*-pyrazol-4-yl)-3-pyridinyl]oxyl-1-(phenylmethyl)ethyl]amine
 - a) 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazole To a solution of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*pyrazole(0.19g, 1.0 mmol) in 4 ml DMF was added Mel(0.067 ml, 1.1 eq) and Cs₂CO₃(0.39g, 1.2 eq). The reaction mixture was stirred at RT for 3h. The solution was taken up into EtOAc, washed with water, brine, dried over Na₂SO₄ and concentrated. 150mg crude product was obtained(yield 72%).
 - b) [(1*S*)-2-{[5-(3-methyl-1*H*-indazol-5-yl)-6-(1-methyl-1*H*-pyrazol-4-yl)-3-pyridinylloxy}-1-(phenylmethyl)ethyllamine

Following the procedure of Example 1(a)-1(f), except substituting 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazole for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.46 (d, 1H), 7.91 (d, 1H), 7.55-7.41(m, 2 H), 7.38-7.24(m, 7 H), 4.43 (dd, 1H), 4.28 (dd, 1H), 3.99 (m, 1H), 3.80(s, 3 H), 3.19 (d, 2H), 2.59 (s, 3H). MS (M+H): 439.2.

25

30

10

15

25

Example 41

 $\underbrace{[(1.S)-2-[(6-\{1-\frac{1}{2}(3-fluorophenyl))methyl]-1H-pyrazol-4-yl)-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy)-1-(phenylmethyl)ethyl]amine }$

a)1-[(3-fluorophenyl)methyl]-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazole

Following the procedure of Example 40(a), except substituting 1- (bromomethyl)-3-fluorobenzene for methyl iodide, the title compound was prepared. b)[(15)-2-{[6-(1-[(3-fluorophenyl)methyl]-1-H-pyrazol-4-yl}-5-(3-methyl-1-H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f), except substituting 1-[(3-fluorophenyl)methyl]-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazole for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) & 8.47 (d, 1H), 7.92 (d, 1H), 7.73(d, 1H), 7.54(s, 1 H), 7.46(d, 1 H), 7.38-7.20(m, 8 H), 7.02(dd, 1 H), 6.88(d, 1 H), 6.82(d, 1 H), 5.22(s, 2 H), 4.43 (dd, 1H), 4.28 (dd, 1H), 3.99 (m, 1H), 3.18 (d, 2H), 2.54 (s, 3H), MS (M+H); 533.4.

Example 42

((1.S)-2-phenyl-1-[((6-phenyl-5-(3-[5-(1-piperazinylmethyl)-2-furanyl]-1*H*-indazol-5-yl)-3-pyridinyl)oxylmethyl}ethyl)amine

20 a) {5-[(4-{[(1,1-dimethylethyl)oxy]carbonyl}-1-piperazinyl)methyl]-2-furanyl}boronic acid

To a solution of 5-formyl-2-furanyl)boronic acid(0.034g, 0.24 mmol) and 1-Boc-piperazine (0.037 g, 0.20 mmol) in CH₂Cl₂ was added NaBH(OAc)₃(0.064 g, 0.30 mmol). The reaction mixture was stirred at rt for a hour. The solution was concentrated and water was then added. The solution was extracted by CH₂Cl₂, dried over Na₂SO₂ and concentrated to give 0.045 g product(72%).

- b) ((1*S*)-2-phenyl-1-{[(6-phenyl-5-{3-[5-(1-piperazinylmethyl)-2-furanyl]-1*H*-indazol-5-yl}-3-pyridinyl)oxy]methyl}ethyl)amine
- Following the procedure of Example 23(a)-23(c), except the substituting {5-[(4-{[(1,1-dimethylethyl)oxy]carbonyl}-1-piperazinyl)methyl]-2-furanyl}boronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.60 (d, 1H), 8.17 (d, 1H), 8.01(d, 1H), 7.52(d, 1 H), 7.43-7.20(m, 11 H), 6.91(d, 1 H), 6.84(d, 1 H), 4.55(dd, 1 H), 4.43(s, 2 H), 4.28 (dd, 1H), 4.02 (m, 1H), 3.53(br, 4 H), 3.42(br, 4 H), 3.20 (d, 2 H), MS (M+H): 585.4.

15

20

25

30

35

Example 43

[(1S)-2-({6-(3-furanyl)-5-[3-(2-furanyl)-1*H*-indazol-5-yl]-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine

5 a) 1,1-dimethylethyl [(1*S*)-2-[[6-chloro-5-(1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethylicarbamate

Following the procedure of Example 1(a)-1(d), except substituting 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester for the compound of Example 1(c), the title compound was prepared.

b) 1,1-dimethylethyl [(1*S*)-2-[[6-chloro-5-(3-iodo-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]carbamate

Following the procedure of Example 23(a)-23(b), except the substituting compound of Example 43(a) for the compound of Example 23(a), the title compound was prepared.

c) 1,1-dimethylethyl [(1R)-2-((6-chloro-5-[3-(2-furanyl)-1H-indazol-5-yl]-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]carbamate

Following the procedure of Example 23(b)-23(c), except the substituting 2-furanylboronic acid for phenylboronic acid and substituting the compound in Example 43(b) for the compound in Example 23(b), the title compound was prepared.

d)1,1-dimethylethyl acetate - [(1R)-2-((6-(3-furanyl)-5-[3-(2-furanyl)-1H-indazol-5-yl]-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(d)-1(f), except the substituting the compound 43(c) for the compound 1(d) and substituting 3-furanylboronic acid for phenylboronic acid, the title compound was prepared.

 $e)[(1S)-2-(\{6-(3-furanyl)-5-[3-(2-furanyl)-1H-indazol-5-yl]-3-pyridinyl\}oxy)-1-(phenylmethyl)ethyl]amine$

The compound in Example 43(d)(0.100 g) was dissolved in 5 ml CH₂Cl₂, TFA(1 ml) was added. The mixture was stirred at room temperature for 2 h. Solvent was removed and the residue was purified by reverse HPLC to give 0.042 g product. ¹H NMR (CD₂OD, 400 MH₂) δ

8.42(d, 1 H), 8.10(d, 1 H), 7.65(d, 1 H), 7.60(d, 1 H), 7.48(d, 1 H), 7.44 7.32(m, 7 H), 7.20(d, 1 H), 6.96(d, 1 H), 6.63(d, 1 H), 6.31(d, 1 H), 4.37(dd, 1, H), 4.21(dd, 1 H), 3.96(m, 1 H), 3.16(d, 2 H). MS (M+H):

5

20

Example 44

[(1S)-2-({5-(3-methyl-1*H*-indazol-5-yl)-6-[3-(phenyloxy)phenyl]-3-pyridinyl]oxy)-1-(phenylmethyl)ethyl]amine

- 10 a) 3-(phenyloxy)phenyl trifluoroacetate
 - Et₃N (0.48 ml, 1.1 eq.) was added to a solution of m-phenoxyphenol (0.5 mL, 3.11 mmol) and PhNTf₂ (1.22g, 1.1 eq.) in DCM (5 mL). The resulting mixture was stirred at rt for 3 hr, washed with water, brine, and dried (Na₂SO₄). Removal of the solvent followed by flash column chromatographic purification of the
- 15 residue on silica gel (hexane/EtOAc 95:5) afforded the product as a light yellow clear oil (0.98g, 99%).
 - b) 4,4,5,5-tetramethyl-2-[3-(phenyloxy)phenyl]-1,3,2-dioxaborolane
 Following the procedure of Example 1(c), except the substituting substituting 3-(phenyloxy)phenyl trifluoroacetate for N-Boc-3-methyl-5-bromoindazole, the title compound was prepared.
 - c) [(1*S*)-2-({5-(3-methyl-1*H*-indazol-5-yl)-6-[3-(phenyloxy)phenyl]-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine
- Following the procedure of Example 1(d)-1(f), except the substituting substituting 4,4,5,5-tetramethyl-2-[3-(phenyloxy)phenyl]-1,3,2-dioxaborolane for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.47(d, 1 H), 7.87(d, 1 H), 7.60(d, 1 H), 7.44-7.28(m, 8 H), 7.11-7.08(m, 2 H), 6.98-6.95(m, 3 H), 6.60(d, 1 H), 6.52-6.47(m, 2 H), 4.44(dd, 1 H), 4.25(dd, 1 H), 3.96(m, 1 H), 3.17(d, 2 H), 2.51(s, 3 H), MS (M+H): 527.4.

Example 45

35 a) (5-{[(2-cyanoethyl)amino]methyl}-2-furanyl)boronic acid Following the procedure of Example 42(a), except the substituting 3aminopropionitrile for 1-Boc-piperazine, the title compound was prepared.

15

25

30

35

b) 3-{((5-[5-(5-([(2S)-2-amino-3-phenylpropy])oxy}-2-phenyl-3-pyridinyl)-1*H*-indazol-3-yl]-2-furanyl}methyl)amino]propanenitrile Following the procedure of Example 23(a)-23(c), except the substituting (5-{[(2-cyanoethyl)amino]methyl}-2-furanyl)boronic acid for phenylboronic acid, the tittle compound was prepared IH NMR (CD₃OD, 400 MHz) δ 8.54(d, 1 H), 8.00(dd, 2 H), 7.52(d, 1 H), 7.40-7.35(m, 10 H), 7.24(d, 1 H), 6.89(dd, 2 H), 4.51-4.47(m, 3 H), 4.34(dd, 1 H), 4.02(m, 1 H), 3.47(t, 2 H), 3.35(d, 2 H), 3.00(t, 2 H). MS (M+H): 569.4.

10 Example 46

[(1.5)-2-((6-(2-furanyl)-5-[3-(2-furanyl)-1H-indazol-5-yl]-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 43(a)-43(d) except substituting 2-furanylboronic acid for 3-furanylboronic acid. the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.54(d, 1 H), 8.12(d, 1 H), 7.64(d, 1 H), 7.60-7.55(m, 2 H), 7.41(d, 1 H), 7.40-7.30(m, 6 H), 6.97(d, 1 H), 6.63(d, 1 H), 6.37(d, 1 H), 5.99(d, 1 H), 4.40(dd, 1 H), 4.36(dd, 1 H), 3.99(m, 1 H), 3.16(d, 2 H). MS (M+H): 477.0.

Example 47

- 20 \[
 \frac{5-[5-[\(\infty\)-2-amino-3-phenylpropyl\)\)\rangle 2-(3-methyl-1 \(\theta\)-indazol-5-yl\)-2-pyridinyl\\
 2-thienyl\\
 methanol\]
 - a) [5-(hydroxymethyl)-2-thienyl]boronic acid
 - To a solution of (5-formyl-2-thienyl)boronic acid(31 mg,0.20 mmol) in MeOH(1 ml) was added NaBH₄(7.8 mg, 0.20mmol).). The resulting mixture was stirred at rt for 1 hr and filtered through celite. The solution was concentrated and the residue was purified by FCC to give 10 mg product.
 - b){5-[5-{[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl]-2-thienyl}methanol
 - Following the procedure of Example 1(a)-1(f), except substituting [5-(hydroxymethyl)-2-thienyl]boronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) 5 8.37(d, 1 H), 7.73(d, 1 H), 7.49-7.25(m, 8 H), 6.70(d, 1 H), 6.50(d, 1 H), 4.64(d, 2 H), 4.34(dd, 1 H), 4.19(dd, 1 H), 3.95(m, 1 H), 3.19(d, 2 H), 2.57(s, 3 H). MS (M+H): 471.2.

10

20

25

24mg product(30%).

Example 48

{(1*S*)-2-phenyl-1-[((6-phenyl-5-[3-(phenylmethyl)-1*H*-indazol-5-yl]-3-pyridinyl}oxy)methyl}ethyl}amine

BnZnBr (0.6 mL, 3.0 eq., 0.5 M in THF) was added to a suspension of the compound in Example23(b) (75 mg, 0.10 mmol) and Pd(Ph₃P)₄ (11.6 mg, 10 mol%) at 0 C. The resulting mixture was heated at 50 C for 48 hr, cooled down to rt, and neutralized with saturated NH₄Cl aqueous solution, which was extracted with DCM. The combined organic layers were dried (Na₂SO₄), concentrated and the residue was purified by FCC to give the mono-boc prod as a white foamy solid (14 mg, 23%) and the amine (23 mg, 45%). ¹H NMR (CD₃OD, 400 MHz) δ 8.46(d, 1 H), 7.74(d, 1 H), 7.43-7.15(m, 18 H), 4.40(dd, 1 H), 4.27(dd, 1 H), 4.24(s, 2 H), 3.98(m, 1 H), 3.17(d, 2 H). MS (M+H): 511.4.

Example 49

15 [(1S)-2-{(5-(3-methyl-1H-indazol-5-vl)-6-(1-methyl-1H-pyrrol-2-yl)-3-pyridinyl]oxy]-1-(phenylmethyl)ethyl]amine

A mixture of the compound in Example 1(d) (60 mg, 0.1 mmol), the stannane reagent (41 mg, 1.1 eq.), CsF (33 mg, 2.2 eq.), Pd(tBu₃P)₂ (2.6 mg, 5 mol%) and 1,4-dioxane was degassed, sealed and heated at 100 C overnight. The resulting mixture was filtered through celite, which was rinsed with EtOAc. The combined organic layers were dried (Na₂SO₄), concentrated and the residue was purified by FCC to give the product as a light brown oil (40 mg, 63%). 1 H NMR (CD₃OD, 400 MHz) δ 8.53(d, 1 H), 8.32(d, 1 H), 7.61(d, 1 H), 7.48(d, 1 H), 7.40-7.28(m, 6 H), 6.80(dd, 1 H), 6.55(dd, 1 H), 6.30(dd, 1 H), 4.56(dd, 1 H), 4.40(dd, 1 H), 4.06(m, 1 H), 3.20(d, 2 H), 2.95(s, 3 H), 2.50(s, 3 H). MS (M+H): 438.2.

Example 50

5-(5-[[(2S)-2-amino-3-phenylpropyl]oxy]-2-phenyl-3-pyridinyl)-1*H*-indazol-3-amine
a) 1,1-dimethylethyl 5-(5-{[(2S)-2-([[(1,1-dimethylethyl)oxy]carbonyl]amino)-3-phenylpropyl]oxy]-2-phenyl-3-pyridinyl)-3-[(diphenylmethylldene)amino]-1*H*-indazole-1-carboxylate

To a solution of 23(b)(76 mg, 0.1mmol), Pd₂dba₃(2%, 1.8mg), Xantphos(6%, 3.5mg) and Cs₂CO₃(45.6mg, 1.4eq) in 0.5 ml dioxane was added 1,1-diphenylmethanimine(0.024ml, 1.4 eq). The reaction mixture was stirred at 100°C for 20 min. The solution was concentrated and purified by FCC to give

- 57 -

10

15

20

25

30

35

- b) 1,1-dimethylethyl 3-amino-5-(5-[[(2S)-2-amino-3-phenylpropyl]oxy]-2-phenyl-3-pyridinyl)-1H-indazole-1-carboxylate
 - To a solution of Example 50(a)(24 mg, 0.030mmol) in 0.3 ml MeOH was added NH₂OHHCl(2.3 mg, 1.1 eq). The resulting mixture was stirred at rt for overnight. Removed solvent and purified by FCC to give 16 mg product(64%).
- 5-(5-{[(2S)-2-amino-3-phenylpropyl]oxy}-2-phenyl-3-pyridinyl)-1H-indazol-3amine

Following the procedure of Example 1(e)-1(f), except substituting the compound in Example 50(b) for the compound in Example 1(d), the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.54(d, 1 H), 7.90(dd, 2 H), 7.41-7.30(m, 12 H), 4.44(dd, 1 H), 4.30(dd, 1 H), 4.00(m, 1 H), 3.32(d, 2 H). MS (M+H): 436.2.

Example 51

[(1S)-2-{{5-[3-(1-methylethenyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine

0.6 MI ZnCl2 solution(0.5 M in THF) was added to the 0.6 mI solution of bromo(1-methylethenyl)magnesium (0.5 M in THF) at 0°C. White precipitate formed in 5 min. The compound in Example 23(b)(0.075mg, 0.1 mmol) and Pd(Ph₃P)₄ were added subsequently. The resulting mixture was heated up to 50 °C for 2.5 h. The mixture was taken up in EtOAc, washed with water, brine and dried over Na2SO4. Removal of the solvent followed by flash column chromatographic purification of the residue on silica gel afforded the product as a light brown solid (0.044g, 78%). 1 H NMR (CD₃OD, 400 MHz) δ 8.46(d, 1 H), 7.84(d, 1 H), 7.78(d, 1 H), 7.46-7.22(m, 12 H), 5.42(d, 1 H), 5.20(d, 1 H), 4.43(dd, 1 H), 4.29(dd, 1 H), 3.99(m, 1 H), 3.19(d, 2 H), 2.24(s, 3 H). MS (M+H): 461.2.

Example 52

[(1S)-2-[(5-(3-methyl-1H-indazol-5-yl)-6-(1H-pyrazol-4-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f), except substituting 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazole for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) 8 8.44(d, 1 H), 7.81(d, 1 H), 7.77(d, 1 H), 7.53(d, 1 H), 7.41-7.24(m, 8 H), 4.40(dd, 1 H), 4.27(dd, 1 H), 3.96(m, 1 H), 3.16(d, 2 H), 2.62(s, 3 H). MS (M+H): 425.2.

10

15

20

30

Example 53

(2S)-N,N-dimethyl-1-{[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-3-phenyl-2-propanamine

To a solution of the compound in Example 1 (40 mg, 1.0eq), in 2 ml MeOH was added formaldehyde(4.0eq) and NaCNBH₃(4.0eq). The reaction mixture was stirred at rt for 2 hours. The solvent was removed and EtOAc was added. The solution was washed with aq. NaHCO₃ and brine and dried over Na₂SO₄. Removal of the solvent followed by flash column chromatographic purification of the residue on silica gel afforded 31mg product/70%).

¹H NMR (CD₃OD, 400 MHz) δ 8.48(d, 1 H), 7.88(d, 1 H), 7.66(d, 1 H), 7.41-7.30(m, 11 H), 7.08(d, 1 H), 4.53(dd, 1 H), 4.41(dd, 1 H), 4.14(m, 1 H), 3.21(d, 2 H), 3.14(s, 6 H), 2.50(s, 3 H). MS (M+H): 463.0.

Example 54

[(1S)-2-{[3-(3-methyl-1*H*-indazol-5-yl)-2,4'-bipyridin-5-yl]oxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f), except substituting 4-pyridinylboronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD₃OD, 400 MHz) δ 8.63-8.61(m, 3 H), 7.91(d, 2 H), 7.72(d, 1 H), 7.61(d, 1 H), 7.35-7.32(m, 5 H), 7.17(d, 1 H), 4.42(dd, 1 H), 4.28(dd, 1 H), 3.98(m, 1 H), 3.17(d, 2 H), 2.55(s, 3 H). MS (M+H): 436.2.

Example 55

25 [(1.5)-2-{[3-(3-methyl-1H-indazol-5-yl)-2,3'-bipyridin-5-yl]oxy}-1-(phenylmethyl)ethyllamine

1 H), 3.19(d, 2 H), 2.54(s, 3 H), MS (M+H): 436.2.

Following the procedure of Example 1(a)-1(f), except substituting 3-pyridinylboronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD_3OD, 400 MHz) δ 8.63-8.56(m, 3 H), 8.21(d, 1 H), 7.74-7.68(m, 2 H), 7.62(d, 1 H), 7.46-7.32(m, 6 H), 7.15(d, 1 H), 4.41(dd, 1 H), 4.25(dd, 1 H), 4.01(m,

Example 56

[(1S)-2-{[5-(3-iodo-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-

35 (phenylmethyl)ethyl]amine

The title compound was prepared by following the procedure of Example 23(a)-23(b). ¹H NMR (CD₃OD, 400 MHz) δ8.44(d, 1 H), 7.65(d, 1 H), 7.40-7.27(m,

15

20

25

30

35

12 H), 7.15(d, 1 H), 4.40(dd, 1 H), 4.25(dd, 1 H), 3.98(m, 1 H), 3.17(d, 2 H). MS (M+H); 547.2.

Example 57

[(1S)-2-[(5-(3-methyl-1H-indazol-5-yl)-6-(3-[(trifluoromethyl)oxy]phenyl)-3-pyridinyl)oxy]-1-(phenylmethyl)ethyl]amine (GSK560487A)

Following the procedure of Example 1(a)-1(f), except substituting {3-([(trifluoromethyl)oxy]phenyl]boronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.45(d, 1 H), 7.63-7.60(m, 2 H), 7.42-7.34(m, 8 H), 7.19-7.10(m, 3 H), 4.40(dd, 1 H), 4.24(dd, 1 H), 3.97(m, 1 H), 3.19(d, 2 H), 2.50(s, 3 H). MS (M+H): 519.2.

Example 58

[(1.S)-2-[(6-(3,5-dimethyl-4-isoxazolyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f), except substituting (3,5-dimethyl-4-isoxazolyl)boronic acid for phenylboronic acid, the title compound was prepared. ^{1}H NMR (CD₃OD, 400 MHz) δ 8.47(d, 1 H), 7.70(dd, 2 H), 7.44(d, 1 H), 7.39-7.32(m, 5 H), 7.17(d, 1 H), 4.43(dd, 1 H), 4.25(dd, 1 H), 3.98(m, 1 H), 3.20(d, 2 H), 2.55(s, 3 H), 2.00(s, 3 H), 1.92(s, 3 H), MS (M+H): 454.2.

Example 59

4-[5-{[(2S)-2-amino-3-phenvlpropyl]oxy}-3-(3-methyl-1*H*-indazol-5-yl)-2-pyridinyl]phenol

Following the procedure of Example 1(a)-1(f), except substituting 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol for phenyliboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) & 8.48(d, 1 H), 8.09(d, 1 H), 7.73(d, 1 H), 7.42-7.32(m, 6 H), 7.18-7.11(m, 3 H), 6.75(d, 2 H), 4.48(dd, 1 H), 4.36(dd, 1 H), 4.02(m, 1 H), 3.19(d, 2 H), 2.54(s, 3 H). MS (M+H): 451.4.

Example 60

2-[5-[[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl]phenol

Following the procedure of Example 1(a)-1(f), except substituting 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol for phenylboronic acid, the title compound was prepared. 1 H NMR (CD $_{3}$ OD, 400 MHz) δ 8.56(d, 1 H), 8.24(d, 1 H), 7.68(s, 1 H), 7.43-7.29(m, 7 H), 7.24(d, 1 H), 7.08(d, 1 H), 6.90(d, 1 H), 6.79(dd, 1

20

30

35

H), 4.52(dd, 1 H), 4.50(dd, 1 H), 4.02(m, 1 H), 3.19(d, 2 H), 2.48(s, 3 H). MS (M+H): 451.2.

Example 61

5 [(1S)-2-([6-[3-(ethyloxy)phenyl]-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f), except substituting [3-(ethyloxy)pheny|]boronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.42(d, 1 H), 7.72(d, 1 H), 7.65(d, 1 H), 7.42-7.36(m, 6 H), 7.19(dd, 1 H), 7.17(d, 1 H), 6.87-6.82(m, 3 H), 4.41(dd, 1 H), 4.26(dd, 1 H), 4.00(m, 1 H), 3.83(q, 2 H), 3.16(d, 2 H), 2.52(s, 3 H), 1.22(t, 3 H). MS (M+H): 479.2.

Example 62

15 [(1.S)-2-((5-(3-methyl-1H-indazol-5-yl)-6-[3-(methyloxy)phenyl]-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f), except substituting [3-(methoxy)pheny|lboronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD $_3$ OD, 400 MHz) δ 8.46(d, 1 H), 7.82(d, 1 H), 7.68(d, 1 H), 7.41-7.30(m, 6 H), 7.19(dd, 1 H), 7.11(d, 1 H), 6.92-6.85(m, 3 H), 4.45(dd, 1 H), 4.30(dd, 1 H), 4.02(m, 1 H), 3.62(s, 3 H), 3.19(d, 2 H), 2.53(s, 3 H). MS (M+H): 465.4.

Example 63

- 25 [3-[5-[((2S)-2-amino-3-phenylpropyl]oxy]-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl]phenyl}(phenyl)methanone
 - a) Phenyl[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methanone Following the procedure of Example 44(a)-44(b), except the substituting substituting (3-hydroxyphenyl)(phenyl)methanone for m-phenoxyphenol, the title compound was prepared.
 - b) (3-[5-[((25)-2-amino-3-phenylpropyl]oxy]-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl]phenyl/(phenyl)methanone Following the procedure of Example 1(a)-1(f), except substituting phenyl[3-(4.4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methanone for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 40
 - phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) 8 8.44(d, 1 H), 7.80(d, 2 H), 7.58-7.40(m, 3 H), 7.46-7.24(m, 10 H), 7.12-7.04(m, 3 H), 4.40(dd, 1 H), 7.24(dd, 1 H), 3.92(m, 1 H), 3.18(d, 2 H), 2.54(s, 3 H). MS (M+H): 539.4.

10

15

20

35

Example 64

[(1.S)-2-{[6-(3-[(1-methylethyl)oxy]phenyl}-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinylloxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f), except substituting [3-(methylethyl)oxy)phenyl]boronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD $_3$ OD, 400 MHz) δ 8.44(d, 1 H), 7.76(m, 1 H), 7.65(d, 1 H), 7.40-7.33(m, 6 H), 7.22(dd, 1 H), 7.14(dd, 1 H), 6.94(d, 1 H), 6.83(d, 1 H), 6.74(s, 1 H), 4.41(dd, 1 H), 4.29-4.23(m, 2 H), 3.98(m, 1 H), 3.19(d, 2 H), 2.51(s, 3 H). 1.04(d, 6 H) MS (M+H): 493.2.

Example 65

[(1S)-2-{[5-(3-(2-furanyl)-1*H*-indazol-5-yl]-6-(1*H*-pyrrol-2-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f), except substituting (1- {[(1,1-dimethylethyl)oxy]carbonyl}-1H-pyrrol-2-yl)boronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.45(d, 1 H), 8.12(d, 1 H), 7.60-7.52(m, 3 H), 7.40-7.28(m, 6 H), 6.96(d, 1 H), 6.81(d, 1 H), 6.62(d, 1 H), 5.97(d, 1 H), 5.61(d, 1 H), 4.37(dd, 1 H), 4.18(dd, 1 H), 4.00(m, 1 H), 3.19(d, 2 H). MS (M+H): 476.2.

Example 66

- [(1.5)-2-{[6-(2-[[(3-fluorophenyl)methyl]oxy}phenyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine
- a)2-(2-[[(3-fluorophenyl)methyl]oxy)phenyl)-4,4,5-5-tetramethyl-1,3,2-dioxaborolane 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol(0.14 g, 0.64 mmol) and Cs₂CO₃(0.26 g, 0.80 mmol) were added to a solution of 1-(bromomethyl)-3fluorobenzene(.010 g, 0.53 mmol) in DMF(5 ml). The reaction mixture was stirred at rt for 1 h. Removed DMF. The residue was diluted with EtOAc, washed with aq NaHCO₃ and brine. Purification by flash column chromatography gave 0.12 g product(vield 71%).
 - b) [(1 S)-2-{[6-(2-{[(3-fluorophenyl)methyl]oxy}phenyl)-5-(3-methyl-1 H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine
 - Following the procedure of Example 1(a)-1(f), except substituting 2-(2-([(3-fluorophenyl)methyl]oxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dloxaborolane for phenylboronic acid, the title compound was prepared. 1H NMR (CD₃OD, 400 MHz) 8 8.52(d, 1 H), 7.99(d, 1 H), 7.45-7.15(m, 10 H), 7.07-6.95(m, 4 H), 6.77-6.70(m, 2

H), 4.76(s, 2 H), 4.45(dd, 1 H), 4.28(dd, 1 h), 3.99(m, 1 H), 3.18(d, 2 H), 2.37(s, 3 H). MS (M+H): 559.2.

Example 67

- 5 [(1.S)-2-{[6-(4-{[(3-fluorophenyl)methyl]oxy}phenyl)-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine
 - a) 2-(4-{[(3-fluorophenyl)methyl]oxy}phenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane
 - Following the procedure of Example 66(a), except substituting 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol for 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol, the-title compound was prepared.
 - b) [(1S)-2-{[6-(4-[((3-fluorophenyl)methyl]oxy}phenyl)-5-(3-methyl-1H-indazol-5-yl)-3-pyridinylloxy}-1-(phenylmethyl)ethyllamine
 - Following the procedure of Example 1(a)-1(f), except substituting 2-(4-[[(3-fluorophenyl)methyl]oxy]phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane for phenylboronic acid, the title compound was prepared. ^{1}H NMR (CD₂OD, 400 MHz) δ 8.40(d, 1 H), 7.65(dd, 2 H), 7.44-7.05(m, 13 H), 6.90(d, 2 H), 5.09(s, 2 H), 4.38(dd, 1 H), 4.24(dd, 1 H), 3.96(m, 1 H), 3.18(d, 2 H), 2.52(s, 3 H). MS (M+H): 559.2.

20

25

10

15

Example 68

Following the procedure of Example 23(a)-23(c), except substituting (5-chloro-2-thienyl)boronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD $_3$ OD, 400 MHz) δ 8.45(d, 1 H), 7.83(d, 1 H), 7.75(d, 1 H), 7.49-7.23(m, 13 H), 7.03(d, 1 H), 4.43(dd, 1 H), 4.26(dd, 1 H), 4.00(m, 1 H), 3.23(d, 2 H), MS (M+H); 537.2.

30

35

Example 69

Following the procedure of Example 23(a)-23(c), except substituting (4-methyl-2-thienyl)boronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.43(d, 1 H), 7.81(d, 1 H), 7.69(d, 1 H),

15

20

25

30

35

7.47(d, 1 H), 7.44-7.26(m, 11 H), 7.14(s, 1 H), 7.02(s, 1 H), 4.40(dd, 1 H), 4.24(dd, 1 H), 3.97(m, 1 H), 3.20(d, 2 H), 2.33(s, 3 H). MS (M+H): 517.2.

Example 70

5 [[(1.S)-2-{(5-[3-(5-methyl-2-furanyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 23(a)-23(c), except substituting (5-methyl-2-furanyl)boronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) 88.45(d, 1 H), 7.93(d, 1 H), 7.73(d, 1 H), 7.45-7.29(m, 12 H), 6.71(d, 1 H), 6.19(d, 1 H), 4.40(dd, 1 H), 4.25(dd, 1 H), 3.98(m, 1 H), 3.23(d, 2 H), 2.40(s, 3 H), MS (M+H): 501.4.

Example 71

[(1S)-2-((5-[3-(5-methyl-2-thienyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-(phenylmethyl)ethyllamine

Following the procedure of Example 23(a)-23(c), except substituting (5-methyl-2-thienyl)boronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD $_3$ OD, 400 MHz) δ 8.43(d, 1 H), 7.84(s, 1 H), 7.69(d, 1 H), 7.40-7.18(m, 13 H), 6.83(dd, 1 H), 4.41(dd, 1 H), 4.25(dd, 1 H), 3.96(m, 1 H), 3.19(d, 2 H), 2.54(s, 3 H). MS (M+H): 517.2.

Example 72

[(1S)-2-([6-ethenyl-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f), except substituting triethenylboroxin for phenylboronic acid, the title compound was prepared. 1H NMR (CD_3OD, 400 MHz) δ 8.44(d, 1 H), 7.78(dd, 2 H), 7.63(d, 1 H), 7.42-7.37(m, 6 H), 6.78(dd, 1 H), 6.23(dd, 1 H), 5.61(dd, 1 H), 4.42(dd, 1 H), 4.27(dd, 1 H), 3.96(m, 1 H), 3.15(d, 2 H), 2.61(s, 3 H). MS (M+H): 385.2.

Example 73

{(1S)-2-phenyl-1-[((6-phenyl-5-[3-(1*H*-pyrrol-2-yl)-1*H*-indazol-5-yl]-3-pyridinyl}oxy)methyl]ethyl}amine

Following the procedure of Example 23(a)-23(c), except substituting (1-{[[(1,1-dimethylethyl)oxy]carbonyl}-1H-pyrrol-2-yl)boronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD₃OD, 400 MHz) δ 8.47(d, 1 H), 7.87(dd, 2 H), 7.41-7.29(m, 11 H), 7.15(dd, 1 H), 6.90(d, 1 H), 6.48(d, 1 H), 6.23(d, 1 H), 4.46(dd, 1 H), 4.31(dd, 1 H), 3.99(m, 1 h), 3.19(d, 2 H). MS (M+H): 586.4.

15

20

25

30

35

Example 74

[(1S)-2-(1H-indol-3-yl)-1-([[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinylloxy)methyl)ethyllamine

 a) 1,1-dimethylethyl [(1S)-2-[(5-bromo-6-chloro-3-pyridinyl)oxy]-1-(1H-indol-3vimethyl)ethyl)carbamate

Following the procedure of Example 1(a)-1(b), except substituting 1,1dimethylethyl [(15)-2-hydroxy-1-(1/H-indol-3-ylmethyl)ethyl]carbamate for ((S)-1-Hydroxymethyl-2-phenyl-ethyl)-carbamic acid *tert*-butyl ester, the title compound was prepared.

b)1,1-dimethylethyl [(1*S*)-2-(1*H*-indol-3-yl)-1-([[5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}methyl)ethyl]carbamate

A solution of the compound of Example 74(a)(100 mg, 1.0 eq), 3-Methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester(1c)(105 mg, 1.1 eq), Pd(PPh₃)₄(0.05 eq) and 0.5 ml 5% aqueous NaHCO₃ in dioxane was heated at 150°C for 10min in microwave. To the reaction mixture was added another 0.2 ml 5% aqueous NaHCO₃, 0.05 eq of Pd(PPh₃)₄ and phenylboronic acid(135 mg, 1.2 eq). The reaction mixture was heated at 150 °C for 10 min in microwave. The reaction mixture was concentrated and purified by flash column chromatography (30%-50%-60%hexane/EtOAc) to give 86 mg product (yield 72%).

c) [(1*S*)-2-(1*H*-indol-3-yl)-1-({[5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-3-pyridinylloxy\methyl)ethyllamine

The solution of 74(b) in 5 ml $\rm CH_2Cl_2$ was added 1 ml TFA . The reaction mixture was stirred at room temperature for 1 h. The solution was concentrated and crude product was purified by reverse phase HPLC. ¹H NMR (CD₃OD, 400 MHz) δ 8.45(d, 1 H), 7.83(d, 1 H), 7.63-7.61(m, 2 H), 7.41-7.27(m, 9 H), 7.16(dd, 1 H), 7.13-7.03(m, 2 H), 4.50(dd, 1 H), 4.38(dd, 1 H), 4.04(m, 1 H), 3.36(d, 2 H), 2.50(s, 3 H). MS (M+H): 474.4.

Example 75

5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-*N*-(3-phenylpropyl)-3-pyridinamine a)5-bromo-6-chloro-*N*-(3-phenylpropyl)-3-pyridinamine

To the solution of 5-bromo-6-chloro-3-pyridinamine(0.200g, 0.97 mmol) in 5 ml CH_2Cl_2 was added 3-phenylpropanal(0.195 g, 1.45mmol) followed by $Na(OAc)_3BH(0.411g, 1.94 mmol)$. The reaction mixture was stirred at room

15

25

30

35

temperature for 1h. The solution was quenched with water(5 ml) and product was extracted with CH₂Cl₂(5 mlx3). The organic layer was dried over Na₂SO₄, concentrated. The compound was purified by flash column chromatography to give 0.138g product(vield 50%).

5 b)5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-*N*-(3-phenylpropyl)-3-pyridinamine

Following the procedure of Example 74(a)-74(c), except substituting the compound in Example 75(a) for the compound in Example 74(a), the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.54(s, 1 H), 7.56(d, 1 H), 7.38-7.06(m, 12 H), 7.04(d, 1 H), 3.29(t, 2 H), 2.80(t, 2 H), 2.58(s, 3 H), 2.07(m, 2 H), MS (M+H); 419.2.

Example 76

5-(3-methyl-1 H-indazol-5-yl)-6-phenyl-N-(3-phenylbutyl)-3-pyridinamine

Following the procedure of Example 75 except substituting 3-phenylbutanal for 3-phenylpropanal, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) 3 8.46(s, 1 H), 7.53(s, 1 H), 7.38-7.16(m, 12 H), 7.02(d, 1 H), 3.15(dt, 2 H), 2.89(m, 1 H), 2.58(s, 3 H), 2.02(m, 2 H), 1.33(d, 3 H). MS (M+H): 433.4.

Example 77

- 20 [(2S)-2-amino-3-phenylpropyl][5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinyllamine
 - a) 1,1-dimethylethyl [(1 S)-2-[(5-bromo-6-chloro-3-pyridinyl)amino]-1-(phenylmethyl)ethyl]carbamate
 - Following the procedure of Example 75(a) except for substituting N-Boc-(25)-2-amino-3-phenylpropanal for 3-phenylpropanal, the title compound was prepared.
 - b)1,1-dimethylethyl [(1*S*)-2-{[5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]amino}-1-(phenylmethyl)ethyl]carbamate
 - Following the procedure of Example 75(b) except for substituting the compound in Example 77(a) for the compound in Example 75(a), the title compound was prepared.
 - c)[(2*S*)-2-amino-3-phenylpropyl][5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-3-pyridinyllamine
 - To a solution of compound in Example 77(b)(0.102 g) in 5 ml CH₂Cl₂ was added 1 ml TFA. The reaction mixture was stirred at room temperature for 1h. The solution was concentrated under vacumm and crude product was purified by reverse phase HPLC. 0.080g product was obtained (yield 46%, 2 steps). ¹H NMR

15

20

25

30

35

(CD₃OD, 400 MHz) δ 8.04(d, 1 H), 7.64(d, 2 H), 7.45-7.08(m, 11 H), 7.06(d, 1 H), 3.06(m, 1 H), 3.60(m, 2 H), 3.11(m, 2 H), 2.51(s, 3 H). MS (M+H): 434.2.

Example 78

5 [(25)-2-amino-3-phenylpropyl][6-(3-furanyl)-5-(3-methyl-1H-indazol-5-yl)-3pyridinyllamine

Following the procedure of Example 77 except for substituting 3furanboronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) & 7.98(d, 1 H), 7.73(s, 1 H), 7.557-5.50(m, 4 H), 7.33-7.12(6 h), 6.26(d, 1 H), 3.79(m, 2 H), 3.08(m, 2 H), 2.59(s, 3 H), MS (M+H): 424.2.

Example 79

((1.5)-2-[[6-(3-furanyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-[[(phenylmethyl)oxy]methyl)ethyl)amine

Following the procedure of Example 75(a)-75(b), except substituting phenoxy acetaldehyde for 3-phenylpropanal and substituting 3-furanboronic acid for phenylboronic acid, the title compound was prepared. ^1H NMR (CD₃OD, 400 MHz) δ 8.41(d, 1 H), 7.74(d, 1 H), 7.70(d, 1 H), 7.54(d, 1 H), 7.41-7.26(8 H), 6.31(dd, 1 H), 4.65(s, 2 H), 4.47(m, 1 H), 4.40(m, 1 H), 3.90-3.81(m, 3 H), 2.58(s, 3 H), MS (M+H): 455.0.

Example 80

N-[(2S)-2-amino-3-phenylpropyl]-N-[5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]methanesulfonamide

a)1,1-dimethylethyl [(1S)-2-[(5-bromo-6-chloro-3-pyridinyl)(phenylsulfonyl)amino]-1-(phenylmethyl)ethyl]carbamate

To a solution of the compound in Example 77(a)(0.150g, 0.34mmol) in 3 ml $\mathrm{CH_2Cl_2}$ was added 0.1 ml $\mathrm{Et_3N}(0.70\mathrm{mmol})$ followed by 0.052 ml benzosulfonic acid(0.41 mmol). The reaction mixture was stirred at room temperature for 1 h, and taken up into $\mathrm{CH_2Cl_2}$ and water. The organic layer was separated, washed with brine, dried over $\mathrm{Na_2SO_4}$ and concentrated. The residue was purified by flash column chromatography on silica gel to give 0.160 g product(yield 81%). b) N-[(2S)-2-amino-3-phenylpropyl]-N-[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]methanesulfonamide

Following the procedure of Example 77(b)-77(c) except for substituting the compound in Example 80(a) for the compound in Example 77(a), the title compound was prepared. 1H NMR (CD₃OD, 400 MHz) δ 8.73(d, 1 H), 7.92(d, 1 H),

20

25

30

35

7.50(s, 1 H), 7.36-7.01(m, 11 H), 6.99(d, 1 H). 4.07(d, 2 H), 3.71(m, 1 H), 3.11-2.95(m, 4 H), 2.92(m, 1 H), 2.51(s, 3 H). MS (M+H): 512.4.

Example 81

5 5-(3-methyl-1*H*-indazol-5-yl)-*N*-[2-methyl-2-(phenylthio)propyl]-6-phenyl-3pyridinamine

Following the procedure of Example 75(a)-75(b), except substituting 2-methyl-2-(phenylthio)propanal for 3-phenylpropanal, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.52(d, 1 H), 7.59-7.26(m, 13 H), 7.03(dd, 1 H), 3.10(s, 2 H), 2.55(s, 3 H), 1.38(s, 6 H), MS (M+H): 465.2.

Example 82

[(1S)-2-{[6-(3-furanyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(1*H*-indol-3-ylmethyl)ethyl]amine

Following the procedure of Example 74(a)-74(c), except substituting 3-furanboronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD₃OD, 400 MHz) δ 8.38(d, 1 H), 7.68(d, 1 H), 7.59-7.57(m, 2 H), 7.52(d, 1 H), 7.40-7.35(m, 2 H), 7.25-7.22(m, 3 H), 7.14(dd, 1 H), 7.04(dd, 1 H), 6.30(dd, 1 H), 4.41(dd, 1 H), 4.28(dd, 1 H), 4.00(m, 1 H), 3.37(d, 2 H), 2.57(s, 3 H). MS (M+H): 464.4.

Example 83

((1S)-2-{[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-{[(phenylmethyl)oxy]methyl}ethyl)amine

Following the procedure of Example 1(a)-1(f), except substituting 1,1-dimethylethyl ((15)-2-hydroxy-1-{([phenylmethyl)oxy]methyl)ethyl)carbamate for 1,1-dimethylethyl ([1H)-2-hydroxy-1-(phenylmethyl)ethyl)[carbamate, the title compound was prepared. ^{1}H NMR (CD $_{3}$ OD, 400 MHz) δ 8.45(d, 1 H), 7.80(d, 1 H), 7.66(d, 1 H), 7.43-7.29(m, 11 H), 7.12(dd, 1 H), 4.66(s, 2 H), 4.54-4.43(m, 2 H), 3.94-3.93(m, 1 H), 3.90-3.82(m, 2 H), 2.50(s, 3 H). MS (M+H): 465.4.

Example 84

(2S)-2-amino-3-{[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-propanol

To a solution of the compound in Example 83(250mg) in 5 ml EtOH was added Pd/C(200mg). The reaction mixture was charged with vac/H₂/vac/H₂/vac/H₂. The reaction mixture eas heated at 50° C overnight. The mixture was then filtered. The resulted organic solution was concentrated in vacuo. Separation by flash

column chromatography provided 188mg product(yield 87%). 1H NMR (CD₃OD, 400 MHz) δ 8.44(d, 1 H), 7.75(d, 1 H), 7.65(s, 1 H), 7.35-7.28(m, 6 H), 7.10(dd, 1 H), 4.52-4.40(m, 2 H), 3.95-3.85(m, 2 H), 3.83(m, 1 H), 2.51(s, 3 H). MS (M+H): 375-4.40(m, 2 H), 3.95-3.85(m, 2 H), 3.83(m, 1 H), 2.51(s, 3 H).

5

Example 85

5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-*N*-[(2*S*)-2-pyrrolidinylmethyl]-3-pyridinamine Following the procedure of Example 77 except for substituting N-Boc-(2*S*)-2-pyrrolidinylacetaldehyde for N-Boc-(2*S*)-2-amino-3-phenylpropanal, the title compound was prepared. HNMR (CD₃OD, 400 MHz) δ 8.16(d, 1 H), 7.75(d, 1 H), 7.68(d,1 H), 7.40-7.28(m, 6 H), 7.12(d, 1 H), 3.98(m, 1 H), 3.67(m, 2 H), 3.39(m, 1 H), 3.32(s, 3 H), 2.46(m, 1 H), 2.17(m, 2 H), 1.88(m, 1 H), 1.32(m, 1 H), MS (M+H):

15

20

30

35

384.2

10

Example 86

((2S)-2-amino-3-(4-f(phenylmethyl)oxylphenyl)propyl)[5-(3-methyl-1 H-indazol-5-yl)-6-phenyl-3-pyridinyllamine

Following the procedure of Example 75(a)-75(b), except substituting Boctyr(b2l)-aldehyde for 3-phenylpropanal, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) 88.03(d, 1 H), 7.67(d, 1 H), 7.63(d, 1 H), 7.44-7.32(m, 13 H), 7.26(dd, 1 H), 6.93(d, 2 H), 4.89(s, 2 H), 4.00(m, 1 H), 3.60(m, 2 H), 3.02(m, 2 H), 2.51(s, 3 H). MS (M+H): 540.6.

Example 87

25 [(2S)-2-amino-3-phenylpropyl][5-(1H-indazol-5-yl)-6-phenyl-3-pyridinyl]amine

a) 1,1-dimethylethyl [(1*S*)-2-[(5-bromo-6-chloro-3-pyridinyl)amino]-1-(phenylmethyl)ethyl|carbamate

Following the procedure of Example 75(a) except for substituting N-Boc-(25)-2-amino-3-phenylpropanal for 3-phenylpropanal, the title compound was prepared.

b)[(2S)-2-amino-3-phenylpropyl][5-(1H-indazol-5-yl)-6-phenyl-3-pyridinyl]amine

A solution of the compound in Example 87(a)(116mg, 1.0 eq), 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester(105 mg, 1.1 eq), Pd(PPh₃)₄(0.05 eq) and 0.5 ml 5% aqueous NaHCO₃ in dioxane was heated at 150°C for 10min in microwave. To the reaction mixture was added another 0.2 ml 5% aqueous NaHCO₃, 0.05 eq of Pd(PPh₃)₄ and phenylboronic

acid(135 mg, 1.2 eq). The reaction mixture was heated at 150 °C for another 10 min in microwave. The solution was concentrated and purified by flash column chromatography give 81 mg product (yield 72%).

c) [(2S)-2-amino-3-phenylpropyl][5-{1.H-indazol-5-yl}-6-phenyl-3-pyridinyl]amine

The solution of 87(b)(81 mg) in 5 ml CH₂Ol₂ was added 1 ml TFA. The
reaction mixture was stirred at room temperature for 1 h. The solution was
concentrated and crude product was purified by reverse phase HPLC to give 30 mg
of the title compound. . ¹H NMR (CD₂OD, 400 MHz) § 8.11(d, 1 H), 8.03(d, 1 H),
7.66(d, 1 H), 7.59(d, 1 H), 7.47-7.29(m, 10H), 7.11(dd, 2 H), 3.84(m, 1 H), 3.54(m,
2 H), 3.13(m, 2 H). MS (M+H): 420.2.

Example 88

[(2S)-2-amino-3-phenylpropyl][6-(3-furanyl)-5-(1H-indazol-5-yl)-3-pyridinyl]amine

Following the procedure of Example 87 except for substituting 3-furanylboronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) 88.16(d, 1 H), 8.00(d, 1 H), 7.79(d, 1 H), 7.63(dd, 1 H), 7.51(m, 3 H), 7.30-7.20(m, 6 H), 6.25(d, 1 H), 4.00(m, 1 H), 3.57-3.54(m, 2 H), 3.13-3.01(m, 2 H), MS (M+H); 410.2.

20

5

10

15

Example 89

[(25)-2-amino-3-phenylpropyll[5-(1*H*-indazol-5-yl)-6-(3-thienyl)-3-pyridinyllamine
Following the procedure of Example 87 except for substituting 3thienylboronic acid, for phenylboronic acid, the title compound was prepared. ¹H
NMR (CD₃OD, 400 MHz) 88.12(d, 1 H), 7.99(d, 1 H), 7.75(d, 1 H), 7.61-7.51(m, 3
H), 7.40-7.15(m, 6 H), 6.79(dd, 1 H), 3.82(m, 1 H), 3.62-3.53(m, 2 H), 3.15-3.02(m, 2 H), MS (M+H);426.2.

30

35

Example 90 2-[5-{|(2S)-2-amino-3-phenylpropy||amino|-3-(1H-indazol-5-yl)-2-pyridinyl||phenol

Following the procedure of Example 87 except for substituting 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) & 8.06(d, 1 H), 7.99(d, 1 H), 7.62(d, 1

7.69(d, 1 H), 7.63(d, 1 H), 7.43(dd, 1 H), 7.37-7.15(m, 6 H), 6.98(dd, 1 H), 6.88(dd, 1 H), 3.624(m, 1 H), 3.63-3.52(m, 2 H), 3.14-3.03(m, 2 H). MS

15

20

25

30

35

Example 91

2-[5-{[(2S)-2-amino-3-phenylpropyl]amino}-3-(3-methyl-1*H*-indazol-5-yl)-2-pyridinylphenol

Following the procedure of Example 87 except for substituting 3-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester(1c) for 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester and substituting 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) 8 7.99(d, 1 H), 7.67(d, 1 H), 7.61(d, 1 H), 7.37-7.20(8 H), 6.99(d, 1 H),

6.89(d, 1 H), 3.85(m, 1 H), 3.60-3.57(m, 2 H), 3.11-3.07(m, 2 H), 2.49(s, 3 H). MS (M+H):450.2.

Example 92

[(2S)-2-amino-3-phenylpropyl][5-(3-methyl-1*H*-indazol-5-yl)-6-(1*H*-pyrrol-2-yl)-3-pyridinyllamine

Following the procedure of Example 87 except for substituting 3-methyl-5- (4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester(1c) for 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester and substituting 1*H*-pyrrol-2-ylboronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD₃OD, 400 MHz) δ 7.88(d, 1 H), 7.69(d, 1 H), 7.55(d, 1 H), 7.47(d, 1 H), 7.30-7.15(m, 6 H), 6.86(dd, 1 H), 6.29(dd, 1 H), 6.20(dd, 1 H), 3.79(m, 1 H), 3.56-3.52(m, 2 H), 3.10-3.05(m, 2 H), 2.57(s, 3 H). MS (M+H):423.0.

Example 93

[(2S)-2-amino-3-phenylpropyl][5-(3-methyl-1 H-indazol-5-yl)-6-(5-methyl-2-thienyl)-3-pyridinyl]amine

Following the procedure of Example 87 except for substituting 3-methyl-5- (4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester(1c) for 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester and substituting (5-methyl-2-thienyl)boronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 7.97(d, 1 H), 7.71(d, 1 H), 7.49(d, 1 H), 7.40-7.18(m, 8 H), 7.03(d, 1 H), 6.73(d, 1 H), 3.78(m, 1 H), 3.55-3.37(m, 2 H), 3.09-3.02(m, 2 H), 2.58(s, 3 H), 2.38(s, 3 H). MS (M+H): 454.0.

15

25

35

Example 94

[(2R)-2-amino-3-phenylpropyl][5-(1H-indazol-5-yl)-6-(3-thienyl)-3-pyridinyl]amine
Following the procedure of Example 87 except for substituting N-Boc-(2R)-2-amino-3-phenylpropanal and substituting 3-thienylboronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) 8 8.12(d, 1 H), 8.00(d, 1 H), 7.75(d, 1 H),

7.61-7.51(m, 3 H), 7.40-7.15(m, 6 H), 6.79(dd, 1 H), 3.80(m, 1 H), 3.62-3.53(m, 2

H), 3.15-3.02(m, 2 H), MS (M+H):426.2.

Example 95

Following the procedure of Example 74 except for substituting 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) 8 8.54(d, 1 H), 8.24(d, 1 H), 7.63(m, 2 H), 7.48-7.05(m, 7 H), 6.90(d, 1 H), 6.78(dd, 1 H), 4.58(dd, 1 H), 4.48(dd, 1 H), 4.05(m, 1 H), 3.32(d, 2 H), 2.48(s, 3 H). MS (M+H):490.2.

Example 96

20 [(1S)-2-(1H-indol-3-yl)-1-([[5-(3-methyl-1H-indazol-5-yl)-6-(1H-pyrrol-2-yl)-3-pyridinylloxy}methyl)ethyllamine

Following the procedure of Example 74 except for substituting 1*H*-pyrrol-2-ylboronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) &8.34(d, 1 H), 7.70(dd, 2 H), 7.62(d, 1 H), 7.50(d, 1 H), 7.38(d, 1 H), 7.23(m, 1 H), 7.17(dd, 1 H), 7.04(dd, 1 H), 6.83(dd, 1 H), 6.08(dd, 1 H), 5.81(dd, 1 H), 4.44(dd, 1 H), 4.32(dd, 1 H), 4.02(m, 1 H), 3.30(d, 2 H), 2.57(s, 3 H). MS (M+H):463.2.

Example 97

30 [(1S)-2-(1H-indol-3-yl)-1-([[5-(3-methyl-1H-indazol-5-yl)-6-(5-methyl-2-thienyl)-3pyridinylloxy}methyl)ethyllamine

Following the procedure of Example 74 except for substituting (5-methyl-2-thienyl)boronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.38(d, 1 H), 7.68(d, 1 H), 7.60(dd, 2 H), 7.45(m, 2 H), 7.32(d, 1 H), 7.25(m, 2 H), 7.12(dd,1 H), 7.05(dd, 1 H), 6.53(dd, 1 H), 6.49(dd, 1 H), 4.38(dd, 1 H), 4.29(dd, 1 H), 4.00(m, 1 H), 3.28(d, 2 H), 2.60(s, 3 H), 2.39(s, 3 H), MS (M+H): 493.2.

10

20

30

35

40

Example 98

[(1S)-2-{[6-ethyl-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-

(phenylmethyl)ethyl]amine

In a solution of the compound in Example 72(100mg) in 10 ml EtOH was added 20 mg 10% Pd/C. The solution was then charged with H_2 under 1atm(ballon) and stirred at room temperature for 5h. The mixture was then filtered by celite. The resulted organic solution was concentrated in vacuo. Separation by flash column chromatography provided 88 mg product. 1 H NMR (CD₃OD, 400 MH₂) δ 8.48(d, 1 H), 7.45(m, 1 H), 7.66(s, 1 H), 7.65(d, 1 H), 7.45-7.31(m, 6 H), 4.42(dd, 1 H), 4.28(m, 1 H), 3.97(m, 1 H), 3.15(d, 2 H), 2.97(m, 2 H), 2.61(s, 3 H), 1.20(t, 3 H). MS (M+H):387.4.

Example 99

15 [(1S)-2-{[6-(3-furanyl)-5-(1H-indazol-5-yl)-3-pyridinyl]oxy}-1-

(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f) except for substituting 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester for the compound in Example 1(c) and substituting 3- furanylboronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD₃OD, 400 MHz) 88.38(d, 1 H), 8.12(s, 1 H), 7.76(s, 1 H), 7.60(d, 1 H), 7.45(d, 1 H), 7.34-7.27(m, 7 H), 7.15(s, 1 H), 6.29(dd, 1 H), 4.33(dd, 1 H), 4.18(dd, 1 H), 3.95(m, 1 H), 3.16(dd, 2 H), MS (M+H): 411.2.

25 <u>Example 100</u>

[(1S)-2-{[5-(3-ethenyl-1*H*-indazol-5-yl)-6-(3-furanyl)-3-pyridinyl]oxy}-1-

(phenylmethyl)ethyllamine

Following the procedure of Example 23(a)-23(c) except for substituting 3-furanylboronic acid for phenylboronic acid in Example 23(a) and substituting triethenylboroxin for phenylboronic acid in Example 23(b)-23(c), the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.41(d, 1 H), 7.95(s, 1 H), 7.62-7.57(m, 2 H), 7.40-7.26(m, 8 H), 7.06(dd, 1 H), 6.29(d, 1 H), 6.05(dd, 1 H), 5.53(d, 1 H), 4.39(dd, 1), 4.22(dd, 1 H), 3.96(m, 1 H), 3.32(d, 2 H). MS (M+H):437.4.

Example 101

[(1S)-2-{[5-(3-ethyl-1*H*-indazol-5-yl)-6-(3-furanyl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 98 except for substituting the compound in Example 100 for the compound in Example 72, the title compound was prepared. ¹H NMR (CD₂OD, 400 MHz) δ 8.41(d, 1 H), 7.74(s, 1 H), 7.69(d, 1

2.0

30

H), 7.54(d, 1 H), 7.42-7.28(m, 8 H), 6.29(dd, 1 H), 4.38(dd, 1 H), 4.23(dd, 1 H), 3.96(m, 1 H), 3.18(d, 2 H), 3.01(q, 2 H), 1.38(t, 1 H). MS (M+H):439.4.

Example 102

5 [(15)-2-((6-(3-furanyl)-5-[3-(3-pyridinyl)-1H-indazol-5-yl]-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 23(a)-23(c) except for substituting 3-furanylboronic acid for phenylboronic acid in Example 23(a) and substituting 3-pyridinylboronic acid for phenylboronic acid in Example 23(b)-23(c), the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) & 9.29(s, 1 H), 8.84(s, 1 H), 8.73(d, 1 H), 8.40(d, 1 H), 8.09(s, 1 H), 7.93(d, 1 H), 7.72(d, 1 H), 7.53(d, 1 H), 7.42-7.28(m, 7 H), 7.20(d, 1 H), 6.33(dd, 1 H), 4.34(dd, 1 H), 4.19(dd, 1 H), 3.94(m, 1 H), 3.16(d, 2 H), MS (M+H):488.2.

15 <u>Example 103</u>

[(1.S)-2-{[6-methyl-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinylloxy}-1-(phenylmethyl)ethyllamine

Following the procedure of Example 1(a)-1(f) except for substituting Methylboronic acid for phenylboronic acid, the title compound was prepared. 1H NMR (CD₃OD, 400 MHz) δ 8.51(d, 1 H), 8.12(d, 1 H), 7.86(d, 1 H), 7.67(d, 1 H), 7.48(d, 1 H), 7.40-7.31(m, 5 H), 4.45(dd, 1 H), 4.92(dd, 1 H), 4.00(m, 1 H), 3.16(d, 2 H), 2.67(s, 3 H), 2.62(s, 3 H). MS (M+H):373.0.

Example 104

25 [(1S)-2-([5-(3-methyl-1H-indazol-5-yl)-6-[2-(methyloxy)phenyl]-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f) except for substituting 2-methoxyphenylboronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) & 8.46(d, 1 H), 7.93(d, 1 H), 7.42(d, 1 H), 7.41-7.28(m, 7 H), 7.36(d, 1 H), 7.20(d, 1 H), 7.01(dd, 1 H), 6.92(d, 1 H), 4.45(dd, 1 H), 4.30(dd, 1 H), 4.00(m, 1 H), 3.50(s, 3 H), 3.20(d, 2 H), 2.45(s, 3 H). MS (M+H): 465.2.

Example 105

35 [(1.S)-2-[[6-[2-(ethyloxy)phenyl]-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy]-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f) except for substituting 2ethyloxyphenylboronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₉OD, 400 MHz) δ 8.49(d, 1 H), 8.01(d, 1 H), 7.57(s, 1 7.42-7.29(m, 8 H), 7.20(d, 1 H), 7.02(dd, 1 H), 6.90(d, 1 H), 4.47(dd, 1 H), 4.33(dd, 1 H), 4.01(m, 1 H), 3.69(q, 2 H), 3.32(d, 2 H), 2.45(s, 3 H), 1.10(t, 3 H). MS (M+H): 479.4.

5

10

Example 106

[(1.S)-2-[[6-[5-chloro-2-(methyloxy)phenyl]-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f) except for substituting 5-chloro-2-(methyloxy)phenylboronic acid for phenylboronic acid, the title compound was prepared. ¹H NMR (CD₃OD, 400 MHz) δ 8.41(d, 1 H), 7.72(d, 1 H), 7.53(d, 1 H), 7.43-7.33(m, 8 H), 7.19(d, 1 H), 6.82(d, 1 H), 4.43(dd, 1 H), 4.25(dd, 1 H), 3.96(m, 1 H), 3.19(d, 2 H), 2.47(s, 3 H). MS (M-H): 499.4.

15

Example 107

[(1.5)-2-[(6-[5-fluoro-2-(propyloxy)phenyl]-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f) except for substituting 5-fluoro-2-(propyloxy)phenylboronic acid for phenylboronic acid, the title compound was prepared. 1 H NMR (CD₉OD, 400 MHz) δ 8.46(d, 1 H), 7.84(d, 1 H), 7.59(d, 1 H), 7.42-7.33(m, 6 H), 7.19(dd, 1 H), 7.09(m, 2 H), 6.87(dd, 1 H), 4.43(dd, 1 H), 4.28(dd, 1 H), 4.00(m, 1 H), 3.53(t, 2 H), 3.18(d, 2 H), 2.48(s, 3 H), 1.51(m, 2 H), 0.78(t, 3 H). MS (M+H): 511.4.

25

30

20

Example 108

[(1.S)-2-({5-[3-(1-methylethyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl]oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 98 except for substituting the compound in Example 51 for the compound in Example 72, the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.47(d, 1 H), 7.88(d, 1 H), 7.60(s, 1 H), 7.45-7.24(m, 12 H), 4.44(dd, 1 H), 4.28(dd, 1 H), 3.99(m, 1 H), 3.28(m, 1 H), 3.18(d, 2 H), 1.31(d, 6 H). MS (M+H): 483.4.

Example 109

35 [(1.S)-2-[[5-(6-fluoro-3-methyl-1*H*-indazol-5-yl)-6-(3-furanyl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine

10

20

25

a)1-(5-bromo-2.4-difluorophenyl)ethanone

To a solution of 1,5-dibromo-2,4-diffuorobenzene(Nucleosides, Nucleotides & nucleic Acid, 201(182), 11-40(2001)) (8.8 g, 32.4 mmol) in diethylether(60 ml), 1.6 M n-BuLi in Hexane(24.3 ml, 1.2 eq) was added at -78°C under N₂ atmosphere. After stirring the reaction mixture at -78°C for 30 min, N-methyl-N- (methyloxy)acetamide (5.0 g, 1.5 eq) was dropped into to quench the reaction. The reaction mixture was stirred at the same temperature for further 30 min. After added acetic acid((5.2 ml), water (78 ml), the reaction mixture was extracted with diethylether. The obtained organic phase was washed by 0.2 N HCl aqueous, water, saturated NaHCO₃ aqueous and saturated NaCl aqueous, and dried with MgSO₄. After removing the solvent under reduced pressure, the residue was purified by Silica gel chromatography (n-Hexane/EtOAc = 49/1). Desired compound was obtained as pale yellow oil (4.94 o. 65%).

15 b)1-(5-bromo-2.4-difluorophenyl)ethanone hydrazone

H₂NNH₂ (0.80 ml, 25.5 mmol) was added to a solution of 1-(5-bromo-2,4-difluorophenyl)ethanone (4.72 g, 20.3 mmol) in EtOH (50 ml). The resulting reaction mixture was stirred at RT overnight and evaporated to give dride light yellow solid, which was recrystalized in MeOH to give 1.8 g white crystaline. Mother liquid was concentrated and purified by flash column chromatography to give a total of 3.85 g solid (76%)

c) 5-bromo-6-fluoro-3-methyl-1H-indazole

A solution of 1-(5-bromo-2,4-difluorophenyl)ethanone hydrazone (2.16 g, 8.7 mmol) in pyridine (87 ml) was heated up in sealed flask at 120°C overnight. The resulting mixture was taken up into ice-cold HCl (6 N), which was extracted with EtOAc. The solution was concentrated and purified by flash column chromatography to give 1.6 g light brown solid (80%).

- 30 d) 6-fluoro-3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1/F-indazole Following the procedure of Example 1(c) except for substituting 5-bromo-6-fluoro-3-methyl-1/F-indazole for N-Boc-3-methyl-5-bromoindazole, the title compound was prepared.
- e) [(15)-2-([5-(6-fluoro-3-methyl-1/H-indazol-5-yl)-6-(3-furanyl)-3-pyridinyl]oxy)-1-(phenylmethyl)ethyl]amine

Following the procedure of Example 1(a)-1(f) except for substituting 6-fluoro-3methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indazole for 3-methyl-5-

PU60768P2

(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-indazole-1-carboxylic acid tert-butyl ester in Example 1(b)-1(c) and substituting 3-furanyllboronic acid for phenylboronic acid in Example 1(d)-1(e), the title compound was prepared. 1 H NMR (CD₃OD, 400 MHz) δ 8.50(d, 1 H), 7.77(d, 2 H), 7.46-7.26(m, 8 H), 6.41(dd, 1 H), 4.42(dd, 1 H), 4.29(m, 1 H), 3.99(m, 1 H), 3.16(d, 2 H), 2.58(s, 3 H). MS (M+H): 443.2.

Example 110 Capsule Composition

An oral dosage form for administering the present invention is produced by filing a standard two piece hard gelatin capsule with the ingredients in the proportions shown in Table I, below.

Table I

15

10

INGREDIENTS	AMOUNTS
(S)-1-Benzyl-2-[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-	25 mg
pyridin-3-yloxy]-ethylamine	
Lactose	55 mg
Talc	16 mg
Magnesium Stearate	4 mg

Example 111 - Injectable Parenteral Composition

An injectable form for administering the present invention is produced by stirring 1.5% by weight of (S)-1-Benzyl-2-[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxyl-ethylamine in 10% by volume propylene glycol in water.

Example 112 - Tablet Composition

25

20

The sucrose, calcium sulfate dihydrate and an Akt inhibitor as shown in Table II below, are mixed and granulated in the proportions shown with a 10% gelatin solution. The wet granules are screened, dried, mixed with the starch, talc and stearic acid;, screened and compressed into a tablet.

Table II

INGREDIENTS	AMOUNTS
(S)-1-Benzyl-2-[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-	20 mg
pyridin-3-yloxy]-ethylamine	
calcium sulfate dihydrate	30 mg
sucrose	4 mg
starch	2 mg
talc	1 mg
stearic acid	0.5 ma

5

While the preferred embodiments of the invention are illustrated by the above, it is to be understood that the invention is not limited to the precise instructions herein disclosed and that the right to all modifications coming within the scope of the following claims is reserved.

What is claimed is:

A compound of Formula (I):

wherein:

5

 L^1 is selected from the group consisting of a bond, -O-, -N(R⁵)-, -S-, -S(O)-, $S(O_2)$ -, alkyl, and -N(R⁵)C(O)-;

 L^2 is selected from the group consisting of a bond, -O-, -N(R⁵)-, -N(R⁵)C(O)-, -S-, -S(O)-, -S(O₂)-, and -C(O)N(R⁵)-;

L³ is alkyl, wherein the alkyl is substituted with one or two substituents independently selected from the group consisting of amino, oxo, and hydroxy;

 L^6 is selected from the group consisting of a bond, -O-, -N(R^5)-, -S-, -S(O)-, -S(O_2)-, alkyl, and -N(R^5)C(O)-;

20

25

30

15

R¹ is selected from the group consisting of aryl, substituted aryl, heterocycle and substituted heterocycle;

R² is selected from alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocycle, substituted heterocycle, and a cyclic or polycyclic aromatic ring containing from 3 to 16 carbon atoms and optionally containing one or more heteroatoms, provided that when the number of carbon atoms is 3 the aromatic ring contains at least two heteroatoms and when the number of carbon atoms is 4 the aromatic ring contains at least one heteroatom, and optionally substituted with one or more substituents selected from the group consisting of: alkyl, substituted alkyl, aryl, substituted cycloalkyl, substituted aryl, aryloxy, oxo, hydroxy, alkoxy, cycloalkyl, acyloxy, amino, N-acylamino, nitro, cyano, halogen, -C(O)OR⁷, -C(O)NR⁸R⁹, -S(O)-NR⁸R⁹, and -S(O)-R⁷.

10

15

25

35

where n is 0-2.

 ${\sf R}^7$ is hydrogen, alkyl, cycloalkyl, ${\sf C}_1{\sf -}{\sf C}_12$ aryl, substituted alkyl, substituted cycloalkyl and substituted ${\sf C}_1{\sf -}{\sf C}_12$ aryl, and

R8 and R9 are independently hydrogen, cycloalkyl, C₁-C₁₂aryl, substituted cycloalkyl, substituted C₁-C₁₂aryl, alkyl or alkyl substituted with one or more substituents selected from the group consisting of: alkoxy, acyloxy, aryloxy, amino, N-acylamino, oxo, hydroxy, -C(O)OR¹⁰, -S(O)_nR¹⁰, -C(O)NR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹, nitro, cyano, cycloalkyl, substituted cycloalkyl, halogen, aryl, and substituted aryl, or R8 and R9 taken together with the nitrogen to which they are attached represent a 5 to 6 member saturated ring containing up to one other heteroatom selected from oxygen and nitrogen, where the ring is optionally subtituted with one or more substituents selected from amino, methylamino, and dimethylamino.

where R^{10} and R^{11} are independently hydrogen, alkyl, cycloalkyl, $\mathsf{C}_1.\mathsf{C}_{12}$ aryl, substituted alkyl, substituted cycloalkyl and substituted $\mathsf{C}_1.\mathsf{C}_{12}$ aryl, and n is 0-2;

R³ and R⁶ are independently selected from the group consisting of 20 hydrogen, aryl, substituted aryl, and arylalkoxy; provided that when L¹ and L² are bonds, at least one of R³ and R⁶ is other than hydrogen;

 ${\sf R}^4$ is selected from the group consisting of hydrogen and halo; and

R⁵ is selected from the group consisting of hydrogen and alkyl.

- 2. A pharmaceutically acceptable salt, hydrate, solvate or ester of a compound of Formula (I), as described in claim 1.
- The compound of Formula (I), as claimed in claim 1, wherein

 $\label{eq:L1} L^1 \mbox{ is selected from the group consisting of a bond, -O-, -N(R^5)-, -S-, -S(O)-, -S(O_2)-, alkyl, and -N(R^5)C(O)-;$

 $L^2 \ \ is \ selected from \ the group \ consisting \ of \ a \ bond, \ -O-, \ -N(R^5)-, \ -N(R^5)C(O)-, \ -S-, \ -S(O)-, \ -S(O_2)-, \ and \ -C(O)N(R^5)-;$

L³ is alkyl, wherein the alkyl is substituted with one or two substituents independently selected from the group consisting of amino, oxo, and hydroxy;

5 L⁶ is a bond:

R¹ is selected from the group consisting of aryl, substituted aryl, heterocycle and substituted heterocycle;

R² is selected from, cycloalkyl and substituted cycloalkyl;

R³ and R⁶ are independently selected from the group consisting of hydrogen, aryl, substituted aryl, and arylalkoxy; provided that when L¹ and L² are bonds, at least one of R³ and R⁶ is other than hydrogen;

R4 is selected from the group consisting of hydrogen and halo; and

R⁵ is selected from the group consisting of hydrogen and alkyl.

- A pharmaceutically acceptable salt, hydrate, solvate or ester of a compound of Formula (I), as described in claim 3.
 - 5. A compound of Claim 1 represented by the following Formula

(11):

10

15

20

25

30

(II) (II)

wherein:

L4 is selected from the group consisting of a bond, and -O-;

 L^5 is alkyl, wherein the alkyl is substituted with one or two substituents independently selected from the group consisting of amino, oxo, and hydroxy;

20

 $\rm R^{14}$ is selected from the group consisting of C1-C12aryl, and substituted C1-C12aryl;

- R^{15} is selected from alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocycle, substituted heterocycle, $C_1.C_{12}$ aryl and $C_1.C_{12}$ aryl substituted with one or more substituents selected from the group consisting of: alkyl, substituted alkyl, aryloxy, hydroxy, alkoxy, acyloxy, amino, N-acylamino, nitro, cyano and halogen; and
- 10 R16 and R17 are independently selected from the group consisting of hydrogen, C₁-C₁₂aryl and substituted C₁-C₁₂aryl.
 - 6. A pharmaceutically acceptable salt, hydrate, solvate or ester of a compound of Formula (II), as described in claim 5.
 - 7. A compound of Formula (II), as described in claim 5: wherein
 - L^4 is selected from the group consisting of a bond, and -O-;
 - L^5 is alkyl, wherein the alkyl is substituted with one or two substituents independently selected from the group consisting of amino, oxo, and hydroxy;
- $$\rm R^{14}$ is selected from the group consisting of C1-C12aryl, and substituted 25 C1-C12aryl;
 - R¹⁵ is selected from cycloalkyl and substituted cycloalkyl; and
- R¹⁶ and R¹⁷ are independently selected from the group consisting of 30 hydrogen, C₁-C₁₂aryl and substituted C₁-C₁₂aryl.
 - 8. A pharmaceutically acceptable salt, hydrate, solvate or ester of a compound of Formula (II), as described in claim 7.
- 35 9. A method of treating or lessening the severity of a disease or condition selected from cancer and arthritis, wherein said method comprises the

administration of an effective amount of a compound of Formula I, as described in claim 1.

- 10. A method of treating or lessening the severity of a disease or condition selected from cancer and arthritis, wherein said method comprises the administration of an effective amount of a compound of Formula I, as described in claim 2.
- The method according to claim 9 wherein said cancer is
 selected from brain (gliomas), glioblastomas, Bannayan-Zonana syndrome,
 Cowden disease, Lhermitte-Duclos disease, breast, colon, head and neck, kidney,
 lung, liver, melanoma, ovarian, pancreatic, prostate, sarcoma and thyroid.
 - 12. The method according to claim 10 wherein said cancer is selected from brain (gliomas), glioblastomas, Bannayan-Zonana syndrome, Cowden disease, Lhermitte-Duclos disease, breast, colon, head and neck, kidney, lung, liver, melanoma, ovarian, pancreatic, prostate, sarcoma and thyroid.

13. A compound selected from:

20

15

5

- $(S) \hbox{-} 1- Benzyl-2- [5-(3-methyl-1 H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethylamine; \\$
- (S)-1-Benzyl-2-[6-furan-2-yl-5-(3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine;

25

- (S)-1-Benzyl-2-[5.6-bis-(3-methyl-1H-indazol-5-yl) -pyridin-3-yloxyl-ethylamine:
- (S)-1-Benzyl-2-[6-thiophen-2yl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine;

- (S)-1-Benzyl-2-[6-(4-chlorophenyl)-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine;
- (S)-1-Benzyl-2-[6-(3-chlorophenyl)-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-35 ethylamine;
 - (S)-1-Benzyl-2-[6-benzyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine;

- (S)-1-Benzyl-2-[6-cyclopent-1-enyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine:
- 5 (S)-1-Benzyl-2-[6-cyclopentyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]ethylamine:
 - (S)-1-Benzyl-2-[6-cyclohex-1-enyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine:
 - (S)-1-Benzyl-2-[6-cyclohexyl-5- (3-methyl-1H-indazol-5-yl) -pyridin-3-yloxy]-ethylamine:
 - 3-Methyl-5-[2-phenyl-5-(piperidin-4-ylmethoxy)-pyridin-3-yl]-1H-indazole;
- 15
 3-[5-(3-Methyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-propylamine;
 - (S)-1-Benzyl-2-[5- (3-methyl-1H-indazol-5-yl) -6-(5-methyl-thiophen-2-yl)-pyridin-3-yloxy]-ethylamine;
 - (S)-1-Benzyl-2-[5- (3-methyl-1H-indazol-5-yl) -6-(5-methyl-furan-2-yl)-pyridin-3yloxy]-ethylamine;
- 3-Methyl-5-[2-phenyl-5-(4-pyridin-3-ylmethyl-piperazin-1-yl)-pyridin-3-yl]-1H-25 indazole;
 - 3-Methyl-5-[2-phenyl-5-(4-pyridin-4-ylmethyl-piperazin-1-yl)-pyridin-3-yl]-1H-indazole;
- 30 [(1S)-2-[[6-(3-furanyl)-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
 - [(1.5)-2-{[5-(3-methyl-1*H*-indazol-5-yl)-6-(5-chloro-2-thienyl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- 35 [(1S)-2-[[6-(3-aminophenyl)-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyllamine;

- (S)-1-Benzyl-2-[5-(1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethylamine;
- (S)-1-Benzyl-2-(6-[3-(3-fluoro-benzyloxy)phenyl]-5- (3-methyl-1H-indazol-5-yl) pyridin-3-yloxyl-ethylamine;
 - (S)-1-Benzyl-2-[5-(3-phenyl-1H-indazol-5-yl)-6-phenyl-pyridin-3-yloxy]-ethylamine;
- $[(1.S)-2-\{[5-(3-methyl-1H-indazol-5-yl)-6-(1H-pyrrol-2-yl)-3-pyridinyl]oxy\}-1-10 \\ (phenylmethyl)ethyl]amine;$
 - $N-(3-[5-[(2S)-2-amino-3-phenylpropyl]oxy)-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl]phenyl}benzamide;$
- 15 N-{3-[5-{[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1 H-indazol-5-yl)-2-pyridinyl]phenyl]-2,6-difluorobenzamide;
 - $$N-3-[5-[((2S)-2-amino-3-phenylpropyl]oxy]-3-(3-methyl-1$H-indazol-5-yl)-2-pyridinyl]phenyl}cyclohexanecarboxamide;$
- [(1 S)-2-([5-[3-(2-furanyl)-1 H-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine;
- {(1*S*)-2-phenyl-1-[((6-phenyl-5-[3-(2-thienyl)-1*H*-indazol-5-yl]-3pyridinyl}oxy)methyllethyl}amine;
 - [(1*S*)-2-((5-[3-(3-furanyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
- 30 [(1S)-2-({5-[3-(3-thienyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
 - $3-[5-{((2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1 H-indazol-5-yl)-2-pyridinyl]phenol;$
 - [(1S)-2-{[5-(2,3-dimethyl-2/H·indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;

- [(1S)-2-({5-[3-(2-furanyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyllamine:
- 5 {(1S)-2-phenyl-1-[((6-phenyl-5-[3-(2-thienyl)-1 H-indazol-5-yl]-3-pyridinyl)oxy)methyl]ethyl]amine;
 - [(1S)-2-((5-[3-(3-furanyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine;
 - [(1S)-2-({5-[3-(3-thienyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
- 3-[5-{[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1H-indazol-5-yl)-2pyridinyl]phenol;
 - [(1*S*)-2-{[5-(2,3-dimethyl-2*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine:
- 20 [(1S)-2-{[5-(3-methyl-1*H*-indazol-5-yl)-6-(1-methyl-1*H*-pyrazol-4-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
 - [(1S)-2-{[6-{1-[(3-fluorophenyl)methyl]-1H-pyrazol-4-yl}-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- ((1S)-2-phenyl-1-[[(6-phenyl-5-{3-[5-(1-piperazinylmethyl)-2-furanyl]-1H-indazol-5yl}-3-pyridinyl)oxylmethyl}ethyl)amine;
- [(1*S*)-2-({6-(3-furanyl)-5-[3-(2-furanyl)-1*H*-indazol-5-yl]-3-pyridinyl}oxy)-1-30 (phenylmethyl)ethyl]amine;
 - [(1S)-2-({5-(3-methyl-1*H*-indazol-5-yl)-6-[3-(phenyloxy)phenyl]-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]arnine;
- 35 3-[((5-[5-(5-([(2S)-2-amino-3-phenylpropyl]oxy)-2-phenyl-3-pyridinyl)-1*H*-indazol-3-vil-2-furanyl)methyl)amino|propanenitrile:

- [(1.S)-2-((6-(2-furanyl)-5-[3-(2-furanyl)-1 H-indazol-5-yl]-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine;
- {5-[5-{[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1*H*-indazol-5-yl)-2-pyridinyl]2-thienyl}methanol;
 - {(1S)-2-phenyl-1-[{(6-phenyl-5-[3-(phenylmethyl)-1*H*-indazol-5-yl]-3-pyridinyl\oxy\methyl\ethyl\amine;
- 10 [(1.S)-2-{[5-(3-methyl-1 H-indazol-5-yl)-6-(1-methyl-1 H-pyrrol-2-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyllamine;
 - 5-(5-{[(2S)-2-amino-3-phenylpropyl]oxy}-2-phenyl-3-pyridinyl)-1 H-indazol-3-amine;
- 15 [(1S)-2-({5-[3-(1-methylethenyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
 - [(1S)-2-([5-(3-methyl-1*H*-indazol-5-yl)-6-(1*H*-pyrazol-4-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- 20 (2S)-N,N-dimethyl-1-{[5-(3-methyl-1 H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-3phenyl-2-propanamine;
- [(1*S*)-2-{[3-(3-methyl-1*H*-indazol-5-yl)-2,4'-bipyridin-5-yl]oxy}-1-25 (phenylmethyl)ethyllamine:
 - [(1S)-2-{[3-(3-methyl-1*H*-indazol-5-yl)-2,3'-bipyridin-5-yl]oxy}-1-(phenylmethyl)ethyl]amine:
- 30 [(1S)-2-([5-(3-iodo-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
 - [(1.5)-2-[(5-(3-methyl-1*H*-indazol-5-yl)-6-[3-[(trifluoromethyl)oxy]phenyl)-3-pyridinyl)oxy]-1-(phenylmethyl)ethyl]amine;
 - [(1.S)-2-([6-(3,5-dimethyl-4-isoxazolyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy)1-(phenylmethyl)ethyl]amine;

- $4-[5-{[(2S)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1 H-indazol-5-yl)-2-pyridinyl]phenol;$
- 5 2-[5-([(2S)-2-amino-3-phenylpropyl]oxy)-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl]phenol;
 - [(1S)-2-{[6-[3-(ethyloxy)phenyl]-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
 - $[(1S)-2-(\{5-(3-methyl-1H-indazol-5-yl)-6-[3-(methyloxy)phenyl]-3-pyridinyl\} oxy)-1-(phenylmethyl)ethyl]amine; \\$
- {3-[5-[((2*S*)-2-amino-3-phenylpropyl]oxy}-3-(3-methyl-1*H*-indazol-5-yl)-2-pyridinylphenyl)(phenyl)methanone:
 - [(1*S*)-2-{[6-{3-[(1-methylethyl)oxy]phenyl}-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- 20 [(1S)-2-[[5-[3-(2-furanyl)-1H-indazol-5-yl]-6-(1H-pyrrol-2-yl)-3-pyridinyl]oxy)-1-(phenylmethyl)ethyl]amine;
 - [(15)-2-{[6-(2-{[(3-fluorophenyl)methyl]oxy}phenyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
 - [(1S)-2-([6-(4-[((3-fluorophenyl)methyl]oxy}phenyl)-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
- [(1*S*)-2-({5-[3-(5-chloro-2-thienyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-30 (phenylmethyl)ethyl]amine;
 - [(1S)-2-({5-[3-(4-methyl-2-thienyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
- 35 [(1S)-2-((5-[3-(5-methyl-2-furanyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-(phenylmethyl)ethyllamine;

- [(1S)-2-({5-[3-(5-methyl-2-thienyl)-1H-indazol-5-yl]-6-phenyl-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
- [(1S)-2-{[6-ethenyl-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-
- 5 (phenylmethyl)ethyllamine;
 - {(1*S*)-2-phenyl-1-[((6-phenyl-5-[3-(1*H*-pyrrol-2-yl)-1*H*-indazol-5-yl]-3-pyridinyl}oxy)methyl]ethyl}amine;
- [(1 S)-2-(1 H-indol-3-yl)-1-([[5-(3-methyl-1 H-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}methyl)ethyl]amine;
 - 5-(3-methyl-1 H-indazol-5-yl)-6-phenyl-N-(3-phenylpropyl)-3-pyridinamine;
- 15 5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-*N*-(3-phenylbutyl)-3-pyridinamine;
 - [(2S)-2-amino-3-phenylpropyl][5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-3-pyridinyllamine:
- 20 [(2S)-2-amino-3-phenylpropyl][6-(3-furanyl)-5-(3-methyl-1 H-indazol-5-yl)-3-pyridinyl]amine;
 - ((1*S*)-2-{[6-(3-furanyl)-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-{[(phenylmethyl)oxy|methyl}ethyl)amine;
- 25 N-[(2S)-2-amino-3-phenylpropyl]-N-[5-(3-methyl-1 H-indazol-5-yl)-6-phenyl-3-pyridinyl]methanesulfonamide;
- 5-(3-methyl-1*H*-indazol-5-yl)-*N*-[2-methyl-2-(phenylthio)propyl]-6-phenyl-3-30 pyridinamine;
 - $[(1S)-2-\{[6-(3-furanyl)-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy\}-1-(1H-indol-3-ylmethyl)ethyl]amine;$
- 35 ((1S)-2-{[5-(3-methyl-1*H*-indazol-5-yl)-6-phenyl-3-pyridinyl]oxy}-1-{[(phenylmethyl)oxy]methyl}ethyl)amine;

- (2S)-2-amino-3-{[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinylloxy}-1-propanol;
- 5-(3-methyl-1 H-indazol-5-yl)-6-phenyl-N-[(2S)-2-pyrrolidinylmethyl]-3-pyridinamine;
- 5 ((2S)-2-amino-3-(4-[(phenylmethyl)oxy]phenyl)propyl)[5-(3-methyl-1H-indazol-5-yl)-6-phenyl-3-pyridinyl]amine;
 - [(2S)-2-amino-3-phenylpropyl][5-(1H-indazol-5-yl)-6-phenyl-3-pyridinyl]amine;
- 10 [(2S)-2-amino-3-phenylpropyl][6-(3-furanyl)-5-(1H-indazol-5-yl)-3-pyridinyl]amine;
 - [(2S)-2-amino-3-phenylpropyl][5-(1H-indazol-5-yl)-6-(3-thienyl)-3-pyridinyl]amine;
 - 2-[5-{[(2S)-2-amino-3-phenylpropyl]amino}-3-(1H-indazol-5-yl)-2-pyridinyl]phenol;
- 15 2-[5-[[(2S)-2-amino-3-phenylpropyl]amino}-3-(3-methyl-1H-indazol-5-yl)-2pyridinyl[phenol;
- [(2S)-2-amino-3-phenylpropyl][5-(3-methyl-1*H*-indazol-5-yl)-6-(1*H*-pyrrol-2-yl)-3-20 pyridinyl]amine;
 - [(2S)-2-amino-3-phenylpropyl][5-(3-methyl-1*H*-indazol-5-yl)-6-(5-methyl-2-thienyl)-3-pyridinyl]amine;
- 25 [(2R)-2-amino-3-phenylpropyl][5-(1H-indazol-5-yl)-6-(3-thienyl)-3-pyridinyl]amine;
 - 2-[5-[(2S)-2-amino-3-(1H-indol-3-yl)propyl]oxy]-3-(3-methyl-1H-indazol-5-yl)-2-pyridinyl]phenol;
- 30 [(1S)-2-(1H-indol-3-yl)-1-({[5-(3-methyl-1H-indazol-5-yl)-6-(1H-pyrrol-2-yl)-3-pyridinyl]oxy}methyl)ethyl]amine;
 - [(1S)-2-(1H-indol-3-yl)-1-({[5-(3-methyl-1H-indazol-5-yl)-6-(5-methyl-2-thienyl)-3-pyridinyl]oxy}methyl)ethyl]amine;
 - [(1S)-2-{[6-ethyl-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;

- [(1 S)-2-{[6-(3-furanyl)-5-(1 H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine:
- 5 [(1S)-2-{[5-(3-ethenyl-1H-indazol-5-yl)-6-(3-furanyl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyllamine:
 - [(1S)-2-{[5-(3-ethyl-1*H*-indazol-5-yl)-6-(3-furanyl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyllamine:
 - [(1S)-2-({6-(3-furanyl)-5-[3-(3-pyridinyl)-1H-indazol-5-yl]-3-pyridinyl}oxy)-1-(phenylmethyl)ethyl]amine;
- [(1*S*)-2-{[6-methyl-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy}-1-15 (phenylmethyl)ethyllamine:
 - [(15)-2-({5-(3-methyl-1*H*-indazol-5-yl)-6-[2-(methyloxy)phenyl]-3-pyridinyl)oxy)-1-(phenylmethyl)ethyl]amine;
- 20 [(1S)-2-[[6-[2-(ethyloxy)phenyl]-5-(3-methyl-1H-indazol-5-yl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine;
 - [(1*S*)-2-{[6-[5-chloro-2-(methyloxy)phenyl]-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy]-1-(phenylmethyl)ethyl]amine;
 - [(1S)-2-[[6-[5-fluoro-2-(propyloxy)phenyl]-5-(3-methyl-1*H*-indazol-5-yl)-3-pyridinyl]oxy]-1-(phenylmethyl)ethyl]amine;
- [(1*S*)-2-((5-[3-(1-methylethyl)-1*H*-indazol-5-yl]-6-phenyl-3-pyridinyl)oxy)-1-30 (phenylmethyl)ethyl]amine; and
 - [(1*S*)-2-{[5-(6-fluoro-3-methyl-1*H*-indazol-5-yl)-6-(3-furanyl)-3-pyridinyl]oxy}-1-(phenylmethyl)ethyl]amine.
- 14. A pharmaceutically acceptable salt, hydrate, solvate or ester of a compound of Formula (II), as described in claim 13.

- 15. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of claim 1.
- 16. A pharmaceutical composition comprising a pharmaceutically
 5 acceptable carrier and a compound of claim 2.
 - 17. A process for preparing a pharmaceutical composition containing a pharmaceutically acceptable carrier or diluent and an effective amount of a compound of Formula (I) as described in claim 1, which process comprises bringing the compound of Formula (I) into association with the pharmaceutically acceptable carrier or diluent.
- 18. A process for preparing a pharmaceutical composition containing a pharmaceutically acceptable carrier or diluent and an effective amount of a compound of Formula (I) as described in claim 2, which process comprises bringing the compound of Formula (I) into association with the pharmaceutically acceptable carrier or diluent.

ABSTRACT OF THE DISCLOSURE

Invented are novel pyridine compounds, the use of such compounds as inhibitors of PKB/AKT kinase activity and in the treatment of cancer and arthritis.