- 1. (currently amended): A stabilized composition comprising
- a body care product, household product, textile or fabric,
- (b) an effective stabilizing amount of at least one compound selected from the group consisting of
- ective stabilizing amount and $G_1 \rightarrow G_2 Z_1$ hindered nitroxyl compounds of formula (I) IO-N , IO-N(i)
 - hindered hydroxylamine compounds of formula (II) HO-N
 - (iii) hindered hydroxylamine salt compounds of formula (III)

wherein

G₁ and G₂ are independently alkyl of 1 to 4 carbon atoms or are together pentamethylene,

- Z₁ and Z₂ are each methyl, or Z₁ and Z₂ together form a linking moiety which may additionally be substituted by an ester, ether, hydroxy, oxo, cyanohydrin, amide, amino, carboxy or urethane group,
- is an inorganic or organic anion, selected from the group consisting of such as phosphate, X phosphonate, carbonate, bicarbonate, nitrate, chloride, bromide, bisulfite, sulfite, bisulfate, sulfate, borate, formate, acetate, benzoate, citrate, oxalate, tartrate, acrylate, polyacrylate, fumarate, maleate, itaconate, glycolate, gluconate, malate, mandelate, tiglate, ascorbate, polymethacrylate, a carboxylate of nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, ethylenediaminetetraacetic acid or of diethylenetriaminepentaacetic acid, a diethylenetriaminepentamethylenephosphonate, an alkylsulfonate or an arylsulfonate, and where the total charge of cations h is equal to the total charge of anions j; and

(c) an organic UV filter selected from

- dibenzoylmethane derivatives; (C_1)
- cinnamic acid esters; (c_2)
- camphor derivatives; and (C_3)

- (c₄) trianilino-s-triazine derivatives.
- 2. (cancelled).
- 3. (currently amended): A composition according to claim 1 in which the compounds of component (b) are <u>selected from compounds</u> of formulae A to EE and A* to EE*

$$(A) \begin{bmatrix} H_3C & CH_2R \\ E-N & CH_2R \end{bmatrix} \cap R_1; (A^*) \begin{bmatrix} H_3C & CH_2R \\ H-N & H_3C & CH_2R \end{bmatrix} \cap R_1$$

$$(A) \begin{bmatrix} H_3C & CH_2R \\ H-N & H_3C & CH_2R \end{bmatrix} \cap R_1$$

$$(A^*) \begin{bmatrix} H_3C & CH_2R \\ H-N & H_3C & CH_2R \end{bmatrix} \cap R_1$$

$$(A^*) \begin{bmatrix} H_3C & CH_2R \\ H-N & H_3C & CH_2R \end{bmatrix} \cap R_1$$

$$(A^*) \begin{bmatrix} H_3C & CH_2R \\ H-N & H_3C & CH_2R \end{bmatrix} \cap R_1$$

$$(A^*) \begin{bmatrix} H_3C & CH_2R \\ H-N & H_3C & CH_2R \end{bmatrix} \cap R_1$$

(B)
$$\begin{bmatrix} H_3C & CH_2R \\ E-N & OCO \\ H_3C & CH_2R \end{bmatrix} = \begin{pmatrix} CH_2R & CH_2R \\ H-N & HO \\ H_3C & CH_2R \end{pmatrix} = \begin{bmatrix} XI_j^*; \\ HO & HO \\ H_3C & CH_2R \end{bmatrix}$$

(C)
$$\begin{bmatrix} H_3C & CH_2R & \\ & & \\$$

(D)
$$\begin{bmatrix} H_3C & CH_2R & \\ & & \\$$

(E)
$$\stackrel{H_3C}{=}^{CH_2R} \stackrel{CH_2R}{=}^{CH_2R} \stackrel{O}{\longrightarrow}^{R_{20}} ; (E^*)$$
 $\stackrel{H_3C}{=}^{CH_2R} \stackrel{CH_2R}{\longrightarrow}^{CH_2R} \stackrel{O}{\longrightarrow}^{R_{21}} ; (E^*)$

$$(F) \begin{bmatrix} H_3C & CH_2R & R_{30} \\ E-N & N-D \\ H_3C & CH_2R & O \end{bmatrix} ; (F^*) \begin{bmatrix} H_3C & CH_2R & R_{30} \\ H-N & N-D \\ HO & H_3C & CH_2R & O \end{bmatrix}_g R_{31}$$

$$(G) = H_{3}C \xrightarrow{CH_{2}R} Q_{1} - E_{1} - CO \cdot NH - CH_{2} - OR_{40}; (G^{*})$$

$$H_{3}C \xrightarrow{CH_{2}R} Q_{1} - E_{1} - CO \cdot NH - CH_{2} - OR_{40}; (G^{*})$$

$$H_{3}C \xrightarrow{CH_{2}R} Q_{1} - E_{1} - CO \cdot NH - CH_{2} - OR_{40}$$

$$H_{3}C \xrightarrow{CH_{2}R} Q_{1} - E_{1} - CO \cdot NH - CH_{2} - OR_{40}$$

(H)
$$\begin{bmatrix} H_3C & CH_2R \\ M & M \\ H_3C & CH_2R \end{bmatrix}_p$$

$$T_4; (H^*)$$

$$\begin{bmatrix} H_3C & CH_2R \\ H & M \\ H & M \\ HO & CH_2R \end{bmatrix}_p$$

$$T_4 = \begin{bmatrix} H_3C & CH_2R \\ H & M \\ HO & CH_2R \end{bmatrix}_p$$

$$(I) \quad E \longrightarrow N \qquad Q_{1} \longrightarrow CO \longrightarrow (T_{1})q; \quad (I^{*}) \qquad H_{3}C \qquad CH_{2}R \qquad H_{3} \longrightarrow Q_{1} \longrightarrow CO \longrightarrow (T_{1})q \qquad [X]_{j}; \quad H_{3}C \qquad CH_{2}R \qquad H_{3}C \qquad CH_{2$$

(J)
$$\begin{bmatrix} H_3C & CH_2R \\ E-N & COO \end{bmatrix}$$
 T_7 ; (J*) $\begin{bmatrix} H_3C & CH_2R \\ E-N & COO \end{bmatrix}$ T_7 ;

$$(T) = \begin{bmatrix} H_{3}C & CH_{2}R & R_{51} \\ E-N & CH_{2}R & O & R_{52} \\ H_{3}C & CH_{2}R & O & R_{52} \\ H_{3}C & CH_{2}R & O & R_{50} \end{bmatrix} ; (T*) = \begin{bmatrix} H_{3}C & CH_{2}R & R_{52} \\ H-N & HO & N & R_{50} \\ H_{3}C & CH_{2}R & O & N & R_{50} \end{bmatrix} ; (X)_{j}^{-1};$$

(U)
$$R_{54}$$
 R_{56} ; (U*) R_{54} R_{55} R_{55}

(V)
$$R_{58}$$
 R_{59} R_{59}

$$(W) = \begin{bmatrix} R_{65} & M & \\ R_{62} & R_{63} & \\ R_{61} & R_{63} & \\ R_{63} & R_{63} & \\ R_{61} & R_{63} & \\ R_{62} & R_{63} & \\ R_{61} & R_{63} & \\ R_{63} & R_{63} & \\ R_{61} & R_{63} & \\ R_{62} & R_{63} & \\ R_{63} & R_{63} & \\ R_{63} & R_{63} & \\ R_{64} & R_{65} & \\ R_{65} & R_{65} & \\ R_{61} & R_{63} & \\ R_{62} & R_{63} & \\ R_{63} & R_{63} & \\ R_{63} & R_{63} & \\ R_{64} & R_{65} & \\ R_{65} & R_{65} & \\ R$$

$$(X) \qquad \begin{array}{c} CH_{3} & CH_{2}R \\ HO-N & R \\ CH_{3} & CH_{2}R \end{array} \qquad \begin{array}{c} + \\ [X]_{j}^{-}; (X^{*}) & \begin{array}{c} CH_{3} & CH_{2}R \\ H-NH & R \\ HO & CH_{2}R \end{array} \qquad \begin{array}{c} [X]_{j}^{-}; \end{array}$$

$$(Z^{\star}) \qquad \begin{pmatrix} OH & & & \\ OCH_{2}\text{-}CH - CH_{2} - N^{+} & & \\ OCH_{2}\text{-}CH - CH_{2} - N^{+} & \\ CH_{3} & & \\$$

$$(AA^{\star}) \qquad (AA^{\star}) \qquad (AA^{\star}) \qquad (BB) \qquad CH_{3} \qquad CH_{3}$$

(BB*)
$$CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{$$

$$(DD^{*}) \qquad \begin{array}{c|c} \cdot & OH \\ OCH_{2}-CH-CH_{2}-O \\ CH_{3} & CH_{2}R \\ CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \\ CH_{3} & CH_{2}R \\ \end{array}; \\ (EE) \qquad (EE) \qquad CH_{3} & CH_{2}R \\ CH_{3} & CH_{2}R \\ \end{array};$$

(EE*)
$$\begin{bmatrix} CH_3 & CH_2R \\ E-N & CH_2R \end{bmatrix} + \begin{bmatrix} X]_j^T \\ CH_3 & CH_2R \end{bmatrix}$$

wherein

E is oxyl or hydroxyl,

R is hydrogen or methyl,

in formula A and A*,

n is 1 or 2,

when n is 1,

- R₁ is hydrogen, alkyl of 1 to 18 carbon atoms, alkenyl of 2-18 carbon atoms, propargyl, glycidyl, alkyl of 2 to 50 carbon atoms interrupted by one to twenty oxygen atoms, said alkyl substituted by one to ten-hydroxyl groups or both interrupted by said oxygen atoms and substituted by said hydroxyl groups, or
- R₁ is alkyl of 1 to 4 carbon atoms substituted by a carboxy group or by -COOZ where Z is hydrogen, alkyl of 1 to 4 carbon atoms or phenyl, or where Z is said alkyl substituted by -(COO')_n Mⁿ⁺ where n is 1-3 and M is a metal ion from the 1st, 2nd or 3rd group of the periodic table or is Zn, Cu, Ni or Co, or M is a group Nⁿ⁺(R₂)₄ where R₂ is alkyl of 1 to 8 carbon atoms or benzyl,

when n is 2,

R₁ is alkylene of 1 to 12 carbon atoms, alkenylene of 4 to 12 carbon atoms, xylylene or alkylene of 1 to 50 carbon atoms interrupted by one to twenty oxygen atoms, substituted by one to ten hydroxyl groups or both interrupted by said oxygen atoms and substituted by said hydroxyl groups,

in formula B and B*,

m is 1 to 4,

when m is 1,

- R₂ is alkyl of 1 to 18 carbon atoms, alkyl of 3 to 18 carbon atoms interrupted by -COO-, or R₂ is CH₂(OCH₂CH₂)_nOCH₃ where n is 1 to 12, or
- R₂ is cycloalkyl of 5 to 12 carbon atoms, aryl of 6 to 12 carbon atoms, or said aryl substituted by one to four alkyl groups of 1 to 4 carbon atoms, or
- R₂ is -NHR₃ where R₃ is alkyl of 1 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, aryl of 6 to 12 carbon atoms, or said aryl substituted by one to four alkyl of 1 to 4 carbon atoms, or
- R_2 is $-N(R_3)_2$ where R_3 is as defined above,

when m is 2,

- R₂ is alkylene of 1 to 12 carbon atoms, alkenylene of 4 to 12 carbon atoms, xylylene, alkylene of 2 to 12 carbon atoms interrupted by -COO-, or R₂ is -CH₂(OCH₂CH₂)_nOCH₂- where n is 1 to 12, or
- R₂ is cycloalkylene of 5 to 12 carbon atoms, aralkylene of 7 to 15 carbon atoms or arylene of 6 to 12 carbon atoms, or
- R₂ is -NHR₄NH- where R₄ is alkylene of 2 to 18 carbon atoms, cycloalkylene of 5 to 12 carbon atoms, aralkylene of 8 to 15 carbon atoms or arylene of 6 to 12 carbon atoms, or
- R_2 is $-N(R_3)R_4N(R_3)$ where R_3 and R_4 are as defined above, or
- R₂ is -CO- or -NH-CO-NH-,

when m is 3,

 R_2 is alkanetriyl of 3 to 8 carbon atoms or benzenetriyl, or when m is 4,

 R_2 is alkanetetrayl of 5 to 8 carbon atoms or benzenetetrayl, in formula C and C*,

R₁₀·is hydrogen, alkyl of 1 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, aralkyl of 7 to 15 carbon atoms, alkanoyl of 2 to 18 carbon atoms, alkenoyl of 3 to 5 carbon atoms or benzoyl, x is 1 or 2,

when x is 1,

R₁₁ is hydrogen, alkyl of 1 to 18 carbon atoms, alkenyl of 2 to 18 carbon atoms, propargyl, glycidyl, alkyl of 2 to 50 carbon atoms interrupted by one to twenty oxygen atoms, said alkyl substituted by one to ten hydroxyl groups or both interrupted by said oxygen atoms and substituted by said hydroxyl groups, or

R₁₁ is alkyl of 1 to 4 carbon atoms substituted by a carboxy group or by -COOZ where Z is hydrogen, alkyl of 1 to 4 carbon atoms or phenyl, or where Z is said alkyl substituted by -(COO⁻)_n Mⁿ⁺ where n is 1-3 and M is a metal ion from the 1st, 2nd or 3rd group of the periodic table or is Zn, Cu, Ni or Co, or M is a group Nⁿ⁺(R₂)₄ where R₂ is hydrogen, alkyl of 1 to 8 carbon atoms or benzyl, or when x is 2,

R₁₁ is alkylene of 1 to 12 carbon atoms, alkenylene of 4 to 12 carbon atoms, xylylene or alkylene of 1 to 50 carbon atoms interrupted by one to twenty oxygen atoms, substituted by one to ten hydroxyl groups or both interrupted by said oxygen atoms and substituted by said hydroxyl groups,

in formula D and D*,

 R_{10} is as defined above,

y is 1 to 4, and

R₁₂ is defined as R₂ above

in formula E and E*,

k is 1 or 2,

when k is 1,

 R_{20} and R_{21} are independently alkyl of 1 to 12 carbon atoms, alkenyl of 2 to 12 carbon atoms or aralkyl of 7 to 15 carbon atoms, or R_{20} is also hydrogen, or

R₂₀ and R₂₁ together are alkylene of 2 to 8 carbon atoms or said alkylene substituted by hydroxyl, or are acyloxy-alkylene of 4 to 22 carbon atoms, or

when k is 2,

 R_{20} and R_{21} are together $(-CH_2)_2C(CH_2-)_2$,

in formula F and F*,

 R_{30} is hydrogen, alkyl of 1 to 18 carbon atoms, benzyl, glycidyl, or alkoxyalkyl of 2 to 6 carbon atoms, g is 1 or 2,

when g is 1, R₃₁ is defined as R₁ above when n is 1,

when g is 2, R₃₁ is defined as R₁ above when n is 2,

in formula G and G*,

Q₁ is -NR₄₁- or -O-,

E₁ is alkylene of 1 to 3 carbon atoms, or E₁ is $-CH_2-CH(R_{42})-O$ - where R_{42} is hydrogen, methyl or phenyl, or E₁ is $-(CH_2)_3-NH$ - or E₁ is a direct bond,

R₄₀ is hydrogen or alkyl of 1 to 18 carbon atoms,

R₄₁ is hydrogen, alkyl of 1 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, aralkyl of 7 to 15 carbon atoms, aryl of 6 to 10 carbon atoms, or R₄₁ is -CH₂-CH(R₄₂)-OH where R₄₂ is as defined above,

in formula H and H*,

p is 1 or 2,

 T_4 is as defined for R_{11} when x is 1 or 2,

M and Y are independently methylene or carbonyl, for instance M is methylene and Y is carbonyl, in formula I and I*,

this formula denotes a recurring structural unit of a polymer where T₁ is ethylene or 1,2-propylene or is the repeating structural unit derived from an alpha-olefin copolymer with an alkyl acrylate or methacrylate, and where

q is 2 to 100,

 Q_1 is $-N(R_{41})$ - or -O- where R_{41} is as defined above,

in formula J and J*,

r is 1 or 2,

 T_7 is as defined for R_1 when n is 1 or 2 in formula A,

for example T₂ is octamethylene when r is 2,

in formula L and L*,

u is 1 or 2,

 T_{13} is as defined for R_1 when n is 1 or 2 in formula A, with the proviso that T_{13} is not hydrogen when u is 1,

in formula M and M*,

 E_1 and E_2 , being different, each are -CO- or -N(E_5)- where E_5 is hydrogen, alkyl of 1 to 12 carbon atoms or alkoxycarbonylalkyl of 4 to 22 carbon atoms, for instance E_1 is -CO- and E_2 is -N(E_5)-,

E₃ is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, naphthyl, said phenyl or said naphthyl substituted by chlorine or by alkyl of 1 to 4 carbon atoms, or phenylalkyl of 7 to 12 carbon atoms, or said phenylalkyl substituted by alkyl of 1 to 4 carbon atoms,

E₄ is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, naphthyl or phenylalkyl of 7 to 12 carbon atoms, or

E₃ and E₄ together are polymethylene of 4 to 17 carbon atoms, or said polymethylene substituted by one to four alkyl of 1 to 4 carbon atoms, for example methyl,

in formula N,

R₁ is as defined for R₁ in formula A when n is 1,

 G_3 is a direct bond, alkylene of 1 to 12 carbon atoms, phenylene or -NH- G_1 -NH- where G_1 is alkylene of 1 to 12 carbon atoms,

in formula O and O*,

 R_{10} is as defined for R_{10} in formula C,

in formula P and P*,

E₆ is an <u>aliphatic aliphtic</u> or aromatic tetravalent radical, for example neopentanetetrayl or benzenetetrayl,

in formula T and T*,

R₅₁ is hydrogen, alkyl of 1 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, or aryl of 6 to 10 carbon atoms,

R₅₂ is hydrogen or alkyl of 1 to 18 carbon atoms, or

R₅₁ and R₅₂ together of alkylene of 4 to 8 carbon atoms,

f is 1 or 2,

when f is 1,

R₅₀ is as defined for R₁₁ in formula C when x is 1, or R₅₀ is -(CH₂)_zCOOR₅₄ where z is 1 to 4 and R₅₄ is hydrogen or alkyl of 1 to 18 carbon atoms, or R₅₄ is a metal ion from the 1st, 2nd or 3rd group of the periodic table or a group -N(R₅₅)₄ where R₅₅ is hydrogen, alkyl of 1 to 12 carbon atoms or benzyl,

when f is 2, R₅₀ is as defined for R₁₁ in formula C when x is 2,

in formula U and U*,

 R_{53} , R_{54} , R_{55} and R_{56} are independently alkyl of 1 to 4 carbon atoms or are together pentamethylene. in formula V and V*,

 R_{57} , R_{58} , R_{59} and R_{60} are independently alkyl of 1 to 4 carbon atoms or are together pentamethylene. in formula W and W*,

 R_{61} , R_{62} , R_{63} and R_{64} are independently alkyl of 1 to 4 carbon atoms or are together pentamethylene, R_{65} is alkyl of 1 to 5 carbon atoms,

M is hydrogen or oxygen,

wherein in formulas X to CC and X* to CC*

n is 2 to 3,

G₁ is hydrogen, methyl, ethyl, butyl or benzyl,

m · is 1 to 4,

x is 1 to 4,

when x is 1,

R₁ and R₂ are independently alkyl of 1 to 18 carbon atoms, said alkyl interrupted by one to five oxygen atoms, said alkyl substituted by 1 to 5 hydroxyl groups or said alkyl both interrupted by said oxygen atoms and substituted by said hydroxyl groups; cycloalkyl of 5 to 12 carbon atoms, aralkyl of 7 to 15 carbon atoms, aryl of 6 to 10 carbon atoms or said aryl substituted by one to three alkyl of 1 to 8 carbon atoms, or R₁ is also hydrogen,

or R_1 and R_2 are together tetramethylene, pentamethylene, hexamethylene or 3-oxapentamethylene, when x is 2,

R₁ is hydrogen, alkyl of 1 to 8 carbon atoms, said alkyl interrupted by one or two oxygen atoms, said alkyl substituted by a hydroxyl group, or said alkyl both interrupted by one or two oxygen atoms and substituted by a hydroxyl group,

R₂ is alkylene of 2 to 18 carbon atoms, said alkylene interrupted by one to five oxygen atoms, said alkylene substituted by 1 to 5 hydroxyl groups or said alkylene both interrupted by said oxygen atoms and substituted by said hydroxyl groups; o-, m- or p-phenylene or said phenylene substituted by one or two alkyl of 1 to 4 carbon atoms, or

 R_2 is $-(CH_2)_kO[(CH_2)_kO]_h(CH_2)_k$ - where k is 2 to 4 and h is 1 to 40, or

 R_1 and R_2 together with the two N atoms to which they are attached are piperazin-1,4-diyl, when x is 3,

R₁ is hydrogen

R₂ is alkylene of 4 to 8 carbon atoms interrupted by one nitrogen atom,

when x is 4,

R₁ is hydrogen,

R₂ is alkylene of 6 to 12 carbon atoms interrupted by two nitrogen atoms,

R₃ is hydrogen, alkyl of 1 to 8 carbon atoms, said alkyl interrupted by one or two oxygen atoms, said alkyl substituted by a hydroxyl group, or both interrupted by one or two oxygen atoms and substituted by a hydroxyl group,

P is 2 or 3, and

Q is an alkali metal salt, ammonium or N⁺(G₁)₄,

in formula DD and DD*

m is 2 or 3,

when m is 2,

G is -(CH₂CHR-O)_rCH₂CHR-, where r is 0 to 3, and R is hydrogen or methyl, and when m is 3,

G is glyceryl,

in formula EE and EE*

- G₂ is -CN, -CONH₂ or -COOG₃ where G₃ is hydrogen, alkyl of 1 to 18 carbon atoms or phenyl,
- X is an inorganic or organic anion, selected from the group consisting of such as phosphate, phosphonate, carbonate, bicarbonate, nitrate, chloride, bromide, bisulfite, sulfite, bisulfate, sulfate, borate, formate, acetate, benzoate, citrate, oxalate, tartrate, acrylate, polyacrylate, fumarate, maleate, itaconate, glycolate, gluconate, malate, mandelate, tiglate, ascorbate, polymethacrylate, a carboxylate of nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, ethylenediaminetetraacetic acid or of diethylenetriaminepentaacetic acid, a diethylenetriaminepentamethylenephosphonate, an alkylsulfonate or an arylsulfonate, and where the total charge of cations h is equal to the total charge of anions j.
- 4. (cancelled).
- 5. (currently amended): A composition according to any of claims 1 to 3 claim 3 wherein the compounds of component (b) are of formulae A, A*, B, B*, C, C*, D, D*, Q, Q*, R, R*, S, S*, X, X*, Y, Y*, Z and Z*,

wherein

R is hydrogen,

in formula A and A*

n is 1 or 2,

when n is 1,

- R₁ is hydrogen, alkyl of 1 to 6 carbon atoms, alkenyl of 2 to 6 carbon atoms, propargyl, glycidyl, alkyl of 2 to 20 carbon atoms interrupted by one to ten oxygen atoms, said alkyl substituted by one to five hydroxyl groups or both interrupted by said oxygen atoms and substituted by said hydroxyl groups, or
- R₁ is alkyl of 1 to 4 carbon atoms substituted by a carboxy group or by -COOZ where Z is hydrogen or alkyl of 1 to 4 carbon atoms,

when n is 2,

R₁ is alkylene of 1 to 8 carbon atoms, alkenylene of 4 to 8 carbon atoms, alkylene of 1 to 20 carbon atoms interrupted by one to ten oxygen atoms, substituted by one to five hydroxyl groups or both interrupted by said oxygen atoms and substituted by said hydroxyl groups

in formula B and B*

m is 1 or 2

when m is 1,

R₂ is alkyl of 1 to 4 carbon atoms or R₂ is CH₂(OCH₂CH₂)_nOCH₃ where n is 1 to 12, or

R₂ is phenyl, or said phenyl substituted by one to three methyl groups,

R₂ is -NHR₃ where R₃ is alkyl of 1 to 4 carbon atoms or phenyl, or said phenyl substituted by one or two methyl groups,

when m is 2,

R₂ is alkylene of 1 to 8 carbon atoms, alkenylene of 4 to 8 carbon atoms, or R₂ is -CH₂(OCH₂CH₂)_nOCH₂- where n is 1 to 12,

R₂ is NHR₄NH where R₄ is of 2 to 6 carbon atoms, aralkylene of 8 to 15 carbon atoms or arylene of 6 to 12 carbon atoms,

R₂ is -CO- or -NHCONH

in formula C and C*,

R₁₀ is hydrogen or, alkanoyl of 1 to 3 carbon atoms,

x is 1 or 2,

when x is 1,

R₁₁ is hydrogen, alkyl of 1 to 6 carbon atoms or glycidyl,

R₁₁ is alkyl of 1 to 4 carbon atoms substituted by a carboxy group or by COOZ where Z is hydrogen or alkyl of 1 to 4 carbon atoms,

when x is 2,

R₁₁ is alkylene of 1 to 6 carbon atoms,

in formula D and D*,

R₁₀ is hydrogen,

y is 1 or 2,

R₁₂ is defined as R₂ above,

in formula Y, Y*, Z and Z*,

x is 1 or 2,

when x is 1,

R₁ and R₂ are independently alkyl of 1 to 4 carbon atoms,

or R₁ and R₂ are together tetramethylene, or pentamethylene,

 R_2 is hydrogen or alkyl of 1 to 4 carbon atoms, said alkyl group substituted by a hydroxyl group, when x is 2,

R₁ 'is hydrogen, alkyl of 1 to 4 carbon atoms, said alkyl substituted by a hydroxyl group,

R₂ is alkylene of 2 to 6 carbon atoms,

R₃ is as defined above.

6. (currently amended): A composition according to <u>claim 5</u> where the compounds of component (b) are of formulae A, A*, B, B*, C, C*, D, D*, Q, Q*, R and R*,

wherein

R is hydrogen,

in formula A and A*,

h is 1,

R₁ is hydrogen, alkyl of 1 to 4 carbon atoms, glycidyl, alkyl of 2 to 4 carbon atoms interrupted by one or two oxygen atoms, said alkyl substituted by one or two hydroxyl groups or both interrupted by said oxygen atoms and substituted by said hydroxyl groups, or

R₁ is alkyl of 1 to 4 carbon atoms substituted by -COOZ where Z is hydrogen or alkyl of 1 to 4 carbon atoms,

in formula B and B*,

m is 1 or 2,

R₂ is alkyl of 1 to 4 carbon atoms or R₂ is CH₂(OCH₂CH₂)_nOCH₃ where n is 1 to 4,

when m is 2,

R₂ is alkylene of 1 to 8 carbon atoms

in formula C and C*,

R₁₀ is hydrogen or alkanoyl of 1 or 2 carbon atoms,

x is 1 or 2,

when x is 1,

R₁₁ is hydrogen, alkyl of 1 to 4 carbon atoms or glycidyl,

R₁₁ is alkyl of 1 to 4 carbon atoms substituted by COOZ where Z is hydrogen or alkyl of 1 to 4 carbon atoms,

when x is 2,

R₁₁ is alkylene of 1 to 6 carbon atoms

in formula D and D*,

R₁₀ is hydrogen,

y is 1 or 2,

R₁₂ is defined as R₂ above.

7. (currently amended): A composition according to any of claims 1 to 3 claim 1 wherein the compounds of component (b) are selected from the group consisting of bis(1-oxyl-2,2-6-6-tetramethylpiperidin-4-yl) sebacate; bis(1-hydroxy-2,2-6-6-tetramethylpiperidin-4-yl) sebacate; 1-hydroxy-2,2-6-6-tetramethyl-4-acetoxypiperidinium citrate; 1-oxyl-2,2,6,6-tetramethyl-4acetamidopiperidine; 1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidine; 1-hydroxy-2,2,6,6tetramethyl-4-acetamidopiperidinium bisulfate; 1-oxyl-2,2,6,6-tetramethyl-4-oxo-piperidine; 1-hydroxy -2,2,6,6-tetramethyl-4-oxo-piperidine;1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidinium acetate; 1-oxyl-2,2,6,6-tetramethyl-4-methoxy-piperidine; 1-hydroxy-2,2,6,6-tetramethyl-4-methoxy-piperidine; 1-hydroxyl-2,2,6,6-tetramethyl-4-methoxy-piperidinium acetate; 1-oxyl-2,2,6,6-tetramethyl-4acetoxypiperidine; 1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidine; 1-oxyl-2,2,6,6-tetramethyl-4propoxy-piperidine; 1-hydroxy-2,2,6,6-tetramethyl-4-propoxy-piperidinium acetate; 1-hydroxy-2,2,6,6tetramethyl-4-propoxy-piperidine; 1-oxyl-2,2,6,6-tetramethyl-4-(2-hydroxy-4-oxapentoxy)piperidine; 1-hydroxy-2,2,6,6-tetramethyl-4-(2-hydroxy-4-oxapentoxy)piperidinium acetate; 1-oxyl-2,2,6,6tetramethyl-4-hydroxypiperidine; 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidine; 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium chloride; 1-hydroxy-2,2,6,6-tetramethyl-4hydroxypiperidinium acetate; 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium bisulfate; 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium citrate; bis(1-hydroxy-2,2,6,6-tetramethyl-4hydroxypiperidinium) citrate; tris(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) citrate; tetra(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium)ethylenediaminetetraacetate; tetra(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) ethylenediaminetetraacetate; tetra(1-hydroxy-2,2,6,6-tetramethyl-4-oxopiperidinium) ethylenediaminetetraacetate; penta(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) diethylenetriaminepentaacetate; penta(1-hydroxy-2,2,6,6tetramethyl-4-acetamidopiperidinium) diethylenetriaminepentaacetate; penta(1-hydroxy-2,2,6,6tetramethyl-4-oxopiperidinium) diethylenetriaminepentaacetate; tri(1-hydroxy-2,2,6,6-tetramethyl-4hydroxypiperidinium) nitrilotriacetate; tri(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) nitrilotriacetate; tri(1-hydroxy-2,2,6,6-tetramethyl-4-oxopiperidinium) nitrilotriacetate; penta(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) diethylenetriaminepentamethylenephosphonate; penta(1hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) diethylenetriaminepentamethylenephosphonate; and penta(1-hydroxy-2,2,6,6-tetramethyl-4-oxopiperidinium)diethylenetriaminepentamethylenephosphonate.

- 8. (currently amended): A composition according to-any of claims 1 to 3 claim 1 wherein the compounds of component (b) are selected from the group consisting of 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine; 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidine; 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium acetate; 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium acetate; 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium bisulfate; 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) citrate; tris(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) citrate; tris(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) ethylenediaminetetraacetate; tetra(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) ethylenediaminetetraacetate; tetra(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxy-piperidinium) ethylenediaminetetraacetate; penta(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxy-piperidinium) diethylenetriaminepentaacetate; penta(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) diethylenetriaminepentaacetate; and penta(1-hydroxy-2,2,6,6-tetramethyl-4-oxopiperidinium) diethylenetriaminepentaacetate.
- 9. (currently amended): A composition according to any of claims 1 to 3 claim 1 in which the compounds of component (b) are selected from the group consisting of 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium citrate; bis(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) citrate; tris(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) citrate; 1-hydroxy-2,2,6,6-tetramethyl-4hydroxypiperidinium DTPA; bis(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) DTPA; tris(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) DTPA; tetrakis(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) DTPA; pentakis(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) DTPA; 1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium EDTA; bis(1-hydroxy2,2,6,6-tetramethyl-4-hydroxypiperidinium) 4-hydroxypiperidinium) EDTA; tris(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) EDTA; tetrakis(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) EDTA; 1-hydroxy-2,2,6,6-tetramethyl-4oxo-piperidinium citrate; bis(1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidinium) citrate; tris(1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidinium) citrate; 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidinium DTPA; bis(1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidinium) DTPA; tris(1-hydroxy-2,2,6,6tetramethyl-4-oxo-piperidinium) DTPA; tetrakis(1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidinium) DTPA; pentakis(1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidinium) DTPA; 1-hydroxy-2,2,6,6tetramethyl-4-oxo-piperidinium EDTA; bis(1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidinium) EDTA; tris(1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidinium) EDTA; tetrakis(1-hydroxy-2,2,6,6-tetramethyl-4oxo-piperidinium) EDTA; 1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium citrate; bis(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) citrate; tris(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) citrate; 1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium DTPA;

bis(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) DTPA; tris(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) DTPA; tetrakis(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) DTPA; pentakis(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) DTPA; 1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium EDTA; bis(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) EDTA; tris(1-hydroxy-2,2,6,6-tetramethyl-4-acetamidopiperidinium) EDTA; tetrakis(1-hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidinium) EDTA; 1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium citrate; bis(1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium) citrate; 1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium DTPA; bis(1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium) DTPA; tetrakis(1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium) DTPA; pentakis(1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium) DTPA; pentakis(1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium) DTPA; 1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium EDTA; bis(1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium) EDTA; tris(1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium) EDTA; bis(1-hydroxy-2,2,6,6-tetramethyl-4-acetoxypiperidinium) EDTA.

- 10. (currently amended): A composition according to any of claims 1 to 9 claim 1, wherein
- (c₁) is selected from Butyl Methoxydibenzoylmethane, Ethylhexyl Methoxydibenzoylmethane and Isopropyl Dibenzoylmethane
- 11. cancelled).
- 12. (currently amended): A composition according to claim-11 10, wherein
- (c₁) is 1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)propane-1,3-dione.
- 13. (currently amended): A composition according to-any of claims 1 to 9 claim 1, wherein
- (c₂) is selected from octyl methoxycinnamate (4-methoxycinnamic acid 2-ethylhexyl ester), diethanolamine methoxycinnamate (diethanolamine salt of 4-methoxycinnamic acid), isoamyl p-methoxycinnamate (4-ethoxycinnamic acid 2-isoamyl ester), 2,5-diisopropylmethyl cinnamate and a cinnamic acid amido derivative.
- 14. (currently amended): A composition according to claims 13, wherein
- (c₂) is octyl methoxycinnamate.
- 15. (currently amended): A composition according to any of claims 1 to 9 claim 1, wherein

- (c₃) is selected from 4-methyl-benzylidene camphor (3-(4'-methyl)benzylidene-bornan-2-one), 3-benzylidene camphor (3-benzylidene-bornan-2-one), polyacrylamidomethylbenzylidene 'camphor {N-[2(and 4)-2-oxyborn-3-ylidene-methyl)benzyl]acrylamide polymer}, trimonium-benzylidene camphor sulfate [3-(4'-trimethylammonium)-benzylidene-bornan-2-one methyl sulfate], terephthalydene dicamphorsulfonic acid {3,3'-(1,4-phenylenedimethine)-bis(7,7-dimethyl-2-oxo-bicyclo[2.2.1]heptane-1-methanesulfonic acid } or salts thereof, and benzylidene camphorsulfonic acid [3-(4'-sulfo)benzylidenebornan-2-one] or salts thereof.
- 16. (currently amended): A composition according to_claim 15, wherein (c₃) is 4-methyl-benzylidene camphor.
- 17. (currently amended): A composition according to any of claims 1 to 9 claim 1, wherein (c₄) is selected from diethylhexyl butamido triazone and ethylhexyl triazone.
- 18. (cancelled).
- 19. (currently amended): A composition according to any of claims 1 to 18 claim 1 further comprising
- (d) at least one compound selected from the group consisting of antioxidants, tocopherol, tocopherol acetate, hindered amine light stabilizers, complex formers, optical brighteners, surfactants, and polyorganosiloxanes.
- 20. (currently amended): A composition according to any of claims 1 to 19 claim 1 wherein the compounds of components (b) and (c) are present in the body care or household products in a concentration of about 5 to about 10000 ppm, based on the total formulation.
- 21. (currently amended): A composition according to any of claims 1 to 20 claim 1 wherein the ratio of component (b) to component (c) is from 1:1000 to 1000:1.
- 22. (cancelled).
- 23. (currently amended): A composition according to any of claims 1 to 22 claim 1, wherein the body care product is selected from skin-care products, bath and shower products, liquid soaps, bar soaps, preparations containing fragrances and odoriferous substances, hair-care products, dentifrices,

deodorizing and antiperspirant preparations, decorative preparations, light protection formulations and preparations containing active ingredients.

- 24. (original): A composition according to claim 23 wherein the skin-care products are selected from body oils, body lotions, body gels, treatment creams, skin protection ointments, shaving preparations and skin powders.
- 25. (original): A composition according to claim 23 wherein the preparations containing fragrances and olfactory substances are selected from scents, perfumes, toilet waters and shaving lotions.
- 26. (original): A composition according to claim 23 wherein the hair-care products are selected from shampoos, hair conditioners, 2 in 1 conditioners, leave in and rinse off conditioners, agents for styling and treating hair, perming agents, relaxants, hair sprays and lacquers, hair dyeing systems, permanent, demi-permanent, semi-permanent and temporary hair dyeing systems, and hair bleaching agents.
- 27. (original): A composition according to claim 23 wherein the decorative preparations are selected from lipsticks, nail varnishes, eye shadows, mascaras, dry and moist make-up, rouge, powders, depilatory agents, sun care and after sun products.
- 28. (original): A composition according to claim 23 wherein the preparations containing active ingredients are selected from hormone preparations, vitamin preparations, vegetable extract preparations and antibacterial preparations.
- 29. (currently amended): A composition according to any of claims 1 to 22 claim 1, wherein the household product is selected from household cleaning and treating agents.
- 30. (currently amended): A composition according to claim—28_29 wherein the household cleaning and treating agents are selected from laundry detergents and fabric softeners, non-detergent based fabric care products, liquid cleansing and scouring agents, glass detergents, neutral cleaners (all-purpose cleaners), acid household cleaners (bath), bathroom cleaners, washing, rinsing and dishwashing agents, kitchen and oven cleaners, clear rinsing agents, dishwasher detergents, shoe polishes, polishing waxes, floor detergents and polishes, metal, glass and ceramic cleaners, textile-care products, rug cleaners and carpet shampoos, agents for removing rust, color and stains (stain

remover salt), furniture and multipurpose polishes and leather and vinyl dressing agents (leather and vinyl sprays) and solid and liquid air fresheners.

- 31. (currently amended): A method of stabilizing a body care product, household product, textile or fabric, which comprises incorporating therein or applying thereto at least one compound of component (b) and at least one compound of component (c) according to as defined in claim 1.
- 32. (currently amended): A method-according to claim 31, wherein of stabilizing a body care product, household product, textile or fabric, which comprises incorporating therein or applying thereto at least one compound of the formulae A to EE and A* to EE* (=component (b)) according to claim 3 and at least one compound of component
 - (c) at least one organic UV filter selected from
 - (c₁) dibenzoylmethane derivatives;
 - (c₂) cinnamic acid esters;
 - (c₃) camphor derivatives; and
 - (C₄) trianilino-s-triazine derivatives.
- 33. (canceled).
- 34. (currently amended): A method according to claim-33_32, wherein 1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)propane-1,3-dione is used as component (c₁).
- 35. (currently amended): A method of stabilizing a body care product, household product, textile or fabric, each of which contain a dye, which comprises incorporating therein or applying thereto at least one compound of the formulae (I), (II) and (III) (ii) or (iii) (=component (b)) and at least one compound of component (c) according to as defined in claim 1.
- 36. (currently amended): A method of stabilizing a body care product, household product, textile or fabric, each of which contain a dye, which comprises incorporating therein or applying thereto at least one compound of the formulae A to EE and A* to EE* and at least one compound of component (c) according to claim 3 and
 - (c) at least one organic UV filter selected from
 - (c₁) dibenzoylmethane derivatives;
 - (c₂) cinnamic acid esters;

- (c₃) camphor derivatives; and
- (C₄) trianilino-s-triazine derivatives.
- 37. (cancelled).
- 38. (currently amended): A method according to claim-37_36, wherein 1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)propane-1,3-dione is used as component (c₁).
- 39. (currently amended): A method for stabilizing an active ingredient selected from vitamins, carotinoids, vegetable extracts, antibacterials, phenols, poylphenols or flavonoids which method comprising applying thereto at least one compound of component (b) and at least one compound of component (c) as defined in claim 1.
- 40. (currently amended): A method for stabilizing a compound according to component (c), which comprises applying to this compound at least one compound of component (b) according to as defined in claim 1.