Lesson 2.1

Sampling Distributions Based on the Normal Distribution

Introduction

Recall that a random sample of observations is also referred to as an "iid" (independent and identically distributed) sample of observations Y_1, Y_2, \dots, Y_n . That is, these observations are independent and come from the same probability distribution.

Definition

A **statistic**, say T, is a function of the random variables Y_1, Y_2, \dots, Y_n . A statistic can depend om known constants, but it cannot depend on unknown parameters.

To denote the dependence of T on Y_1, Y_2, \dots, Y_n , we may write

$$T = T(Y_1, Y_2, \cdots, Y_n)$$

In addition, while it often be the case that Y_1, Y_2, \cdots, Y_n constitute a random sample, the above definition of T holds in more general setting. In practice, it is common to view Y_1, Y_2, \cdots, Y_n as **data** from an experiment or observational study and T as some summary measure (such as sample mean, sample variance, etc.).

Example 2.1.1

Suppose that Y_1, Y_2, \dots, Y_n is an iid sample from $f_Y(y)$. The following are statistics:

$$\bullet \ T=T(Y_1,Y_2,\cdots,Y_n)=\overline{Y}=\tfrac{1}{n}\sum_{i=1}^n y_i$$

•
$$T = T(Y_1, Y_2, \cdots, Y_n) = \frac{1}{2}[Y_{(n/2)} + Y_{(n/2+1)}]$$

$$\bullet \ T=T(Y_1,Y_2,\cdots,Y_n)=Y_{(1)}$$

•
$$T = T(Y_1, Y_2, \cdots, Y_n) = Y_{(n)} - Y_{(1)}$$

•
$$T = T(Y_1, Y_2, \cdots, Y_n) = S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2$$

It is very important to note that since Y_1, Y_2, \cdots, Y_n are random variables, any statistic $T = T(Y_1, Y_2, \cdots, Y_n)$, being a function of random variables, is also a random variable. Thus, T has its own distribution.

Definition

The probability distribution of a statistic T is called its **sampling distribution**. The sampling distribution of T describes mathematically how the values of T vary in repeated sampling from the population distribution $f_Y(y)$. Sampling distributions play a crucial role in statistics

Sampling Distributions based on the normal distribution

Example 2.1.2

Suppose Y_1, Y_2, \dots, Y_n is an iid sample from $N(\mu.\sigma^2)$ and consider the statistic

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

the sample mean. It can be shown (via MGF technique) that

$$\overline{Y} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Furthermore, the quantity

$$Z = \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Example 2.1.2

In the interest of pollution control, an experimenter records Y, the amount of bacteria per unit volum of water (measured in mg/cm^3). The population distribution for Y is assumed to be normal with mean $\mu=48$ and variance $\sigma^2=100$, that is, $Y\sim N(48,100)$.

- a. What is the probability that the amount of bacteria in single water sample exceeds $50 \, mg/cm^3$?
- b. Suppose the experimenter takes a random sample of n=100 water samples and denote the observations by Y_1, Y_2, \dots, Y_{100} . What is the probability that the sample mean \overline{Y} will exceed $50 \, mg/cm^3$?
- c. How large should the sample size n be so that $P(\overline{Y} > 50) < 0.01$?

SOLUTION: [Left as a classroom exercise!]