Exercise 1.2

Prove for $\alpha < 3, V_{\alpha+1} = V_{\alpha} \cup \mathcal{P}(V_{\alpha}).$

Proof. We know, by definition, $V_{n+1} = \mathcal{P}(V_n)$, $\forall n \in \mathbb{N}$. So want to show $V_{\alpha} \cup \mathcal{P}(V_{\alpha}) = \mathcal{P}(V_{\alpha})$. We have that $\mathcal{P}(V_{\alpha}) = \{v | v \subseteq V_{\alpha}\}$. Everything is a subset of itself so,

$$V_{\alpha} \subseteq \mathcal{P}(V_{\alpha})$$

Hence

$$V_{\alpha} \cup \mathcal{P}(V_{\alpha}) = \mathcal{P}(V_{\alpha})$$

Exercise 1.4

Let $x, y = \{\{0, 1\}, \{2\}\}, \{\{0, 1, 2\}\}$ respectivly. Then $x \neq y$ but

$$\cup x = \{0, 1, 2\} = \cup y$$

Exercise 1.11

If (A, \prec) is a total ordering and A finite, show it is a well ordering.

Proof. Want to show (i) it is a string total ordering and (ii) $\forall Y \subseteq A, Y \neq \emptyset \Rightarrow Y$ has a \prec -least element.

(i) is true by initial assumption, so wts (ii).

Let $a_0, \ldots, a_k \in A$ be the ordered elements of A. Let $Y \subseteq A, Y \neq \emptyset$. Suppose to the contrary that Y has no \prec -least element, so $a_0 \notin Y$ as it would be a \prec -least element. Let $B = Y^c \subseteq A$ be the set of elements of A not in Y, so $a_0 \in B$. Now suppose $a_0, \ldots, a_n \in B$, for some $n \in \mathbb{N}$, then $a_{n+1} \notin Y$ as $a_0, \ldots, a_n \notin Y$ so a_{n+1} would be a \prec -least element. So $a_{n+1} \in B$. By induction, (as A finite), B = A so $Y = \emptyset$ which is a contradiction.

Hence (i) and (ii) hold and (A, \prec) is a wellordering.