Resolvendo tabuleiros de Sudoku com um agente inteligente desenvolvido em Python

Fabrício da Silva Selotto; Geísa Laiane Cardim.

Introdução:

Sudoku é um antigo quebra-cabeça de origem japonesa. A ideia do jogo é bastante simples: preencher uma grade de 9 quadrados na horizontal por 9 quadrados na vertical de modo que, em cada linha, em cada coluna e em cada quadrado maior, haja números de 1 a 9 sem repetir nenhum deles.

O algoritmo funciona por busca bruta, buscando resultados possíveis e abandonando os que não foram satisfatórios, caracterizando assim um algoritmo backtracking, que é utilizado também em problemas como o Caixeiro Viajante, N-Rainhas, Passeio do Cavalo, problemas de labirintos, entre outros.

Objetivo:

O objetivo foi resolver jogos de Sudoku, retornando o tabuleiro resolvido.

Descrição do Agente:

Foi criada uma função que gera aleatoriamente um tabuleiro de Sudoku incompleto, checa se é um tabuleiro possível, e o retorna em formato de matriz de 9x9.

O algoritmo foi feito com base em backtraking, busca por força bruta, como uma árvore de possibilidades, buscando um caminho e caso não seja válido, exclui aquela possibilidade e parte para o próximo galho.

Como ambiente ele usa tabuleiros de sudoku, em formato de matriz de 9x9, sendo 0 as posições vazias. Foi usada a função que gera o gráfico aleatoriamente e também foram definidos alguns tabuleiros manualmente.

Como sensor uma função que localiza as posições vazias do tabuleiro.

O agente possui 2 funções para achar a solução, sendo estas os atuadores, que inserem no tabuleiro os números faltantes, conferindo primeiramente pelo sensor quais são vazias, tenta inserir números de 1 à 9, fazendo uma validação, se este número já existe na linha, coluna ou bloco, é setado o valor 0, fazendo uma nova tentativa com o próximo número de 1 à 9.

As verificações são percorridas por várias vezes, até preencher o tabuleiro por completo, retornando a solução, novamente em formato de matriz, sendo esta totalmente preenchida.

Como adendo, foi feita uma função que não interfere no funcionamento do agente, que tem como utilidade representar de melhor maneira a matriz, colocando-a em uma espécie de 'tabuleiro' de mesmo formato que no jogo.

Descrição do ambiente de desenvolvimento:

Para desenvolvimento foi utilizaddo a linguagem de programação Python versão 3.8.3. Usamos a biblioteca *random* para a função de geração aleatória do tabuleiro e *numpy* para melhor visualização da matriz. Utilizamos Visual Studio Code IDE e Jupyter Notebook.

Resultados:

O algoritmo consegui solucionar os tabuleiros gerados aleatoriamente (Figura 1) e também os tabuleiros que foram escritos manualmente (Figuras 2 e 3), o agente resolve qualquer tabuleiro válido de Sudoku. Fizemos o código pelo Jupyter Notebook, e disponibilizamos também um código em Python, ambos estão disponíveis pelo repositório GitHub, o link está anexo neste arquivo.

Figura 1 – Tabuleiro gerado aleatoriamente e a resolução

Figura 2 – Tabuleiro de dificuldade Normal inserido manualmente e a resolução

	==== <i>Dif</i> id(Tab_d		e: normal	========
5 1 2 8 3 4		0 4	0 3 4	i
6 0 0 3 0 0	8 0	0 6	0 1 0 0 4 7 0 0 0	' j
0 9 7 0 0 0	3 4	0 0	0 7 8 5 6 0 0 0 0	ij
	= resolu id(norma		oku(Tab_de	ef)
5 1 2 8 3 4		3 4	2 3 4 7 5 6 8 9 1	i
6 7 1 3 9 5	8 5	2 6	3 1 5 9 4 7 6 8 2	' j
4 9 7 2 8 6	3 4	8 1	1 7 8 5 6 9 4 2 3	· į
1				1

Figura 3 – Tabuleiro de dificuldade Expert inserido manualmente e a resolução

# === Print	gri					<i>dade:</i> rt)	ex	kper	t ======
									I
i o	0	0	l 1	0	0	1 0	7	0	
0	3	0	0	0	0	0	6	0	İ
0	0	2	0	6	4	5	0	0	
0	0	0	0	0	0	+ 0	4	0	
0	5	0	0	0	0	0	0	0	
0	0	0	2	0	6	8	9	1	
0	0	0	9	0	0	0	0	7	
8	6	5	ĺ	2	ō	0	ō	ó	
0	0	1	j 0	0	3	0	0	0	
									'
exper Print						oku(T	ab_	_def_	_expert)
Print)	oku(T		_def	_expert)
Print 5	gri 8	.d(e:	xpert 1	[1] 3) 2	4	 7	9	_expert)
Print 5 4	gri 8 3	.d(e:	xpert 1 5	[1] 3 9) 2 8	4 1	 7 6	9	_expert)
Print 5	gri 8	.d(e:	xpert 1	[1] 3) 2	4	 7	9	_expert)
Print 5 4	gri 8 3	.d(e:	xpert 1 5	[1] 3 9) 2 8	4 1	 7 6	9	_expert)
Print 5 4 9 6 1	gri 8 3 1 2 5	6 7 2 9	xpert 1 5 7 + 8 3	3 9 6 7) 2 8 4 1 9	4 1 5 3 7	7 6 3 4 2	9 2 8 5 6	_expert)
Print 5 4 9 	8 3 1	.d(e:	xpert 1 5 7 +	3 9 6	2 8 4	4 1 5 	7 6 3	9 2 8	_expert)
Print 5 4 9 6 1 3	8 3 1 2 5 7	d(e 7 2 9 8 4	xpert	3 9 6 7 4 5) 2 8 4 1 9 6	4 1 5 3 7 8	7 6 3 4 2 9	9 2 8 5 6	_expert)
Print 5 4 9 6 1	gri 8 3 1 2 5	6 7 2 9	xpert 1 5 7 + 8 3	3 9 6 7) 2 8 4 1 9	4 1 5 3 7 8 6	7 6 3 4 2	9 2 8 5 6	_expert)
Print 5 4 9 6 1 3	gri 8 3 1 2 5 7	d(e 6 7 2 9 8 4	xpert 1 5 7 + 8 3 2 + 9	3 9 6 7 4 5) 2 8 4 1 9 6	4 1 5 3 7 8	7 6 3 4 2 9	9 2 8 5 6 1	_expert)
Print 5 4 9 6 1 3 2	gri 8 3 1 2 5 7	6 7 2 9 8 4	xpert 1 5 7 + 8 3 2 + 9 4	3 9 6 7 4 5 1 2) 2 8 4 1 9 6	4 1 5 3 7 8 6	7 6 3 4 2 9	9 2 8 5 6 1	_expert)

Links:

Github do projeto: https://github.com/geisalaiane/Sudoku