Mouvement RT ★

C1-05

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1;
- ▶ $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un vérin électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un moteur électrique positionné entre **1** et **2** permet d'actionner le solide **2**.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g\overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \Re_0 .

Question 3 Mettre en œuvre cette démarche.

Corrigé voir .

Mouvement RR 3D ★★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, $r = 5 \,\mathrm{mm}$, $L = 10 \,\mathrm{mm}$. De plus :

- ► G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = H\overrightarrow{j_1}$, on note m_1 la masse de 1; ► $G_2 = C$ désigne le centre d'inertie de 2, on note m_2 la masse de 2.

Un moteur électrique positionné entre 0 et 1 permet d'actionner le solide 1. Un moteur électrique positionné entre 1 et 2 permet d'actionner le solide 2. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \Re_0 .

Question 3 Mettre en œuvre cette démarche.

Corrigé voir 3.

B DYN

Pas de corrigé pour cet exercice.

Mouvement RT - RSG ★★

C1-05

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R\overrightarrow{j_0}$ et $\overrightarrow{AB} = \ell_2 \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- ▶ G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de 1; ▶ $G_2 = B$ désigne le centre d'inertie de 2, on note m_2 la masse de 2.

Un ressort exerce une action mécanique entre les points A et B.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \Re_0 .

Question 3 Déterminer les lois de mouvement.

Corrigé voir 3.

Mouvement RT - RSG ★★

C1-05

Soit le mécanisme suivant. On a $\overrightarrow{IA}=R\overrightarrow{j_0}$ et $\overrightarrow{AB}=L\overrightarrow{i_2}$. De plus R=15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- ▶ G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de 1; ▶ $G_2 = B$ désigne le centre d'inertie de 2, on note m_2 la masse de 2.

Un moteur exerce un couple entre les pièces 1 et 2.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \Re_0 .

Question 3 Déterminer les lois de mouvement.

Corrigé voir 3.

