Decision Trees and Random Forests

Cameron Chong 2019-03-27

```
library(tree)
library(MASS)
library(randomForest)

## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.

admissionsData <- read.csv("Admission_Predict_Ver1.1.csv", header = TRUE)
admissionsData <- admissionsData[,-1]

#head(admissionsData)

dim(admissionsData)

## [1] 500 8

trainindex <- sample(1:nrow(admissionsData), 350)
admissionsTrain <- admissionsData[trainindex,]
admissionsTest <- admissionsData[-trainindex,]</pre>
```

Chance of Admittance

I am going to do a 70/30 split of training and testing data. There are 500 observations, so we will have 350 training observations and 150 testing points.

```
set.seed(110101010)
admissionTree <- tree(Chance.of.Admit~., data = admissionsTrain)
plot(admissionTree)
text(admissionTree, pretty=0)</pre>
```



```
admissionTreeCV <- cv.tree(admissionTree, FUN = prune.tree, K = 10)
plot(admissionTreeCV, type = "b")</pre>
```


admissionTreeCV

```
## $size
## [1] 7 6 5 4 3 2 1
##
## $dev
   [1] 1.834740 1.943470 2.046524 2.143788 2.751490 3.253592 7.002862
##
##
## $k
             -Inf 0.08540037 0.10771131 0.18420149 0.66899699 0.81811334
##
  [1]
## [7] 3.61885317
##
## $method
   [1] "deviance"
##
##
## attr(,"class")
## [1] "prune"
                        "tree.sequence"
admissionTreeCV$dev
```

[1] 1.834740 1.943470 2.046524 2.143788 2.751490 3.253592 7.002862

admissionTreeCV\$size

[1] 7 6 5 4 3 2 1

which.min(admissionTreeCV\$dev)

[1] 1

Cross validation suggest 6 nodes would be best, so we will prune the tree using 6 terminal nodes.

```
pruneAdmissionTreeCV <- prune.tree(admissionTree, best=6)
plot(pruneAdmissionTreeCV)
text(pruneAdmissionTreeCV, pretty = 0)</pre>
```

```
CGPA < 8.61

CGPA < 8.035

CGPA < 9.065

CGPA < 9.065

0.4905 0.5877 0.6743 0.7630 0.8441 0.9220
```

summary(pruneAdmissionTreeCV)

```
##
## Regression tree:
## snip.tree(tree = admissionTree, nodes = 5L)
## Variables actually used in tree construction:
## [1] "CGPA"
## Number of terminal nodes: 6
## Residual mean deviance: 0.004598 = 1.582 / 344
## Distribution of residuals:
##
        Min.
              1st Qu.
                                              3rd Qu.
                          Median
                                      Mean
                                                           Max.
## -0.247700 -0.032990 0.006437 0.000000 0.045730
set.seed(1000101010)
admission.rf <- randomForest(Chance.of.Admit~., data = admissionsTrain, importance = TRUE)
admission.rf
##
## Call:
##
   randomForest(formula = Chance.of.Admit ~ ., data = admissionsTrain,
                                                                              importance = TRUE)
                  Type of random forest: regression
##
##
                        Number of trees: 500
##
  No. of variables tried at each split: 2
##
##
             Mean of squared residuals: 0.00415925
##
                       % Var explained: 79.14
```

Since Random Forest uses out-of-bag which is similar to cross validation so no cross validation was performed. We can look at the importance of the variables.

admission.rf

As seen from the Importance Plot the most important variables are CGPA, GRE Score and TOEFL scores when using chance of admission as a response variable.

Research

```
set.seed(1388582293)
researchTree <- tree(Research~., data = admissionsTrain)
plot(researchTree)
text(researchTree, pretty=0)</pre>
```


which.min(researchTreeCV\$dev)

[1] 8

researchTreeCV\$dev

[1] 71.96252 71.47878 70.55073 70.17400 70.97002 68.03508 67.02237

[8] 64.68752 64.80862 87.43248

researchTreeCV\$dev

[1] 71.96252 71.47878 70.55073 70.17400 70.97002 68.03508 67.02237

size

```
## [8] 64.68752 64.80862 87.43248
researchTreeCV$size
## [1] 17 13 12 10 9 5 4 3 2 1
which.min(researchTreeCV$dev)
## [1] 8
Cross Validation Suggests 3 terminal nodes would be best.
pruneResearchTreeCV <- prune.tree(researchTree, best=3)</pre>
plot(pruneResearchTreeCV)
text(pruneResearchTreeCV, pretty = 0)
                  GRE.Score < 317.5
                                         Chance.of.Admit < 0.715
0.3000
                                  0.5217
                                                                   0.8978
summary(pruneResearchTreeCV)
##
## Regression tree:
## snip.tree(tree = researchTree, nodes = c(6L, 2L))
## Variables actually used in tree construction:
## [1] "GRE.Score"
                         "Chance.of.Admit"
## Number of terminal nodes: 3
## Residual mean deviance: 0.1677 = 58.21 / 347
## Distribution of residuals:
     Min. 1st Qu. Median
                              Mean 3rd Qu.
## -0.8978 -0.3000 0.1022 0.0000 0.1022 0.7000
set.seed(1413755523)
research.rf <- randomForest(Research~., data = admissionsTrain, importance = TRUE)
## Warning in randomForest.default(m, y, \dots): The response has five or fewer
## unique values. Are you sure you want to do regression?
research.rf
##
## Call:
  randomForest(formula = Research ~ ., data = admissionsTrain,
                                                                      importance = TRUE)
```

Type of random forest: regression

```
## Number of trees: 500
## No. of variables tried at each split: 2
##
## Mean of squared residuals: 0.168409
## % Var explained: 31.99
varImpPlot(research.rf)
```

research.rf

