Elliptische Kurven

Inhalt

- Beispiele
- PARI/GP Befehle
- **3** Vergleich: \mathbb{Z}_p^* vs ellitpische Kurven

Formeln für Addition

Für Punkte $P = (x_1; y_1)$ und $Q = (x_2; y_2)$ auf der Kurve gilt:

a) Falls $x_1 \neq x_2$:

$$m := \frac{y_2 - y_1}{x_2 - x_1}, \quad x_3 := m^2 - x_1 - x_2, \quad y_3 := -m(x_3 - x_1) - y_1 \text{ und}$$

 $P + Q := (x_3; y_3)$

b) Falls $x_1 = x_2$ und $y_1 = y_2 \neq 0$:

$$m:=\frac{3x_1^2+a}{2y_1}, \quad x_3:=m^2-2x_1, \quad y_3:=-m(x_3-x_1)-y_1 \text{ und}$$

 $P+Q:=(x_3;y_3)$

- c) Falls $x_1 = x_2$ und $y_1 = -y_2$ setzen wir P + Q := O.
- d) P + O = O + P = P.

Bem: 2P = P + P

Beispiele

Notation: $E_{a,b}$ bezeichnet die Elemente der elliptischen Kurve der Form $y^2 = x^3 + ax + b$.

Erinnerung Euler-Kriterium:

 $a \in \mathbb{Z}_p$ hat eine Quadratwurzel $\Leftrightarrow a^{\frac{p-1}{2}} = 1 \pmod{p}$

Aufgaben:

• Wir betrachten die elliptische Kurve $y^2 = x^3 + x + 6$ über GF(11). Bestimme $E_{1,6}$.

Beispiele

Aufgaben (Fortsetzung)

- Wir betrachten wieder die Kurve $y^2 = x^3 + x + 6$ über GF(11). Bestimme
 - (i) (2,4)+(5,9),
 - (ii) (2,4)+(2,7),
 - (iii) (2,4)+(2,4)

PARI/GP Befehle

Recap:

- Allgemeine Form: $y^2 = x^3 + ax + b$ über \mathbb{Z}_p .
- Beispiel: $y^2 = x^3 + x + 6$ über \mathbb{Z}_{11} .

Befehle

ellinit

Aufruf: E = ellinit([a,b],p) im Bsp: E = ellinit([1,6],11)

elladd

Aufruf: elladd(E,[x_1 , y_1], [x_2 , y_2]) z.B.: elladd(E,[2,7],[3,6])

ellpow

Aufruf: ellpow(E,[x, y],n) z.B.: ellpow(E, [2,4], 2)

Vergleich: \mathbb{Z}_p^* vs elliptische Kurve

Muliplikative Gruppe vs Additive Gruppe

	\mathbb{Z}_p^*	ell. Kurve
Potenz	g^{x}	x · P
Ordnung	kleinstes n	kleinstes n
	so dass	so dass
	$g^n = 1$	$n \cdot P = 0$
Logarithmus	$g^{x}=a$	$x \cdot P = a$

Bem: $n \cdot P = P + P + \ldots + P$ (*n* Summanden)