Student Number, Firstname and Lastname: 202011204 Furkan Çoban
Report: CENG 493 – Homework 2

1. Objective

This assignment's objective is to use machine learning algorithms to categorize news stories as **REAL** or **FAKE**. **Naive Bayes** and **Logistic Regression** were the two classifiers we used. Performance metrics including **accuracy**, **precision**, **recall**, and **F1-score** were examined after the dataset was preprocessed and numerical features were assigned vectorize using the **TF-IDF** representation.

2. Description of the Dataset

This assignment's dataset includes the following:

- **Text**: The news article's body.
- Label: The news article's classification "REAL" or "FAKE."

The "title" and "Unnamed: 0" columns were eliminated because they had no bearing on the classification task.

3. Approach

1. Text Preprocessing:

- All text was lowercased.
- Removed stopwords, non alpha charachters, and punctuation.
- The text was tokenized into words.
- Normalized the text by using lemmatization with NLTK.

2. Feature Extraction:

• The preprocessed text was transformed into numerical vectors using **TF-IDF Vectorizer**, which has a feature count of up to 5000.

3. Data Splitting:

Using stratification to maintain the label distribution, divide the dataset into 80% training data and 20% testing data.

4. Model Implementation:

- Two classifiers were trained:
 - The Naive Bayes Classifier is an effective probabilistic model for text classification.
 - **Logistic Regression**: An effective linear model for issues involving binary categorization.

5. Evaluation Metrics:

- Used the following metrics to assess both models on the test set:
 - **Accuracy**: The percentage of samples that are correctly classified.
 - **Precision**: The percentage of positive observations that were accurately predicted.
 - **Recall**: The model's capacity to recognize every positive sample.
 - **F1-Score**: The precision and recall harmonic mean.

 The model's performance across expected and real labels was visualized using a **confusion matrix**.

4. Results

The following are the outcomes for both classifiers:

 Model
 Accuracy
 Precision
 Recall
 F1-Score

 Naive Bayes
 0.8761
 0.8707
 0.8831
 0.8769

 Logistic Regression
 0.9148
 0.8971
 0.9368
 0.9165

 Confusion Matrices:

• Naive Bayes:

True Positives (FAKE correctly labelled): 559True Negatives (REAL correctly labelled): 551

False Positives: 83False Negatives: 74

• Logistic Regression:

True Positives (FAKE correctly labelled): 593True Negatives (REAL correctly labelled): 566

False Positives: 68False Negatives: 40

5. Conclusion and Analysis

- In every metric, **Logistic Regression** fared better than **Naive Bayes**:
 - Accuracy increased from 87.61% to 91.48%.
 - Logistic Regression showed consistently superior **F1-Score**, **Precision**, and **Recall**.
 - Logistic Regression is the favored method for this challenge since it showed superior capacity to correctly categorize both "REAL" and "FAKE" news articles.
- The confusion matrix for Logistic Regression shows much less False Positives and False Negatives compared to Naive Bayes.

6. Utilized External Libraries

The list of outside resources and tools utilized for this assignment is provided below:

- Pandas: Analyzing and manipulating data.
- **Scikit-learn**: Evaluation metrics and models for machine learning.
- **NLTK**: Text preprocessing (lemmatization, tokenization, stopwords).
- Matplotlib: Confusion matrix visualization.
- **Seaborn**: Confusion matrix heatmap plotting.