ML/DL for Everyone with PYTORCH

Lecture 2: Linear Model

Call for Comments

Please feel free to add comments directly on these slides.

Other slides: http://bit.ly/PyTorchZeroAll

ML/DL for Everyone with PYTORCH

Lecture 2: Linear Model

Machine Learning

What would be the grade if I study 4 hours?

Hours (x)	Points (y)	
1	2	
2	4	
3	6	
4	?	

Training dataset

Test dataset

Machine Learning

What would be the grade if I study 4 hours?

Hours (x)	Points (y)	
1	2	
2	4	
3	6	
4	?	

Training dataset Super

Supervised learning

Test dataset

Model design

What would be the best model for the data? Linear?

Hours (x)	Points (y)
1	2
2	4
3	6
4	?

Model design

What would be the best model for the data? Linear?

Hours (x)	Points (y)
1	2
2	4
3	6
4	?

$$\hat{y} = x * w$$

$$\hat{y} = x * w + b$$

$$x \longrightarrow \hat{y}$$
Linear \hat{y}

Linear Regression

$$\hat{y} = x * w$$

* The machine starts with a random guess, w=random value

Hours (x)	Points (y)
1	2
2	4
3	6

Linear Regression error?

$$\hat{y} = x * w$$

* The machine starts with a random guess, w=random value

Hours (x)	Points (y)
1	2
2	4
3	6

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

Hours, x	Points, y	Prediction, y^(w=3)	Loss (w=3)
1	2	3	1
2	4	6	4
3	6	9	9
			mean=14/3

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

Hours, x	Points, y	Prediction, y^(w=4)	Loss (w=4)
1	2	4	4
2	4	8	16
3	6	12	36
			mean=56/3

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

Hours, x	Points, y	Prediction, y^(w=0)	Loss (w=0)
1	2	0	4
2	4	0	16
3	6	0	36
			mean=56/3

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

Hours, x	Points, y	Prediction, y^(w=1)	Loss (w=1)
1	2	1	1
2	4	2	4
3	6	3	9
			mean=14/3

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

Hours, x	Points, y	Prediction, y^(w=2)	Loss (w=2)
1	2	2	0
2	4	4	0
3	6	6	0
			mean=0

Training Loss (error)
$$loss = (\hat{y} - y)^2 = (x * w - y)^2 \quad loss = \frac{1}{N} \sum_{n=1}^{N} (\hat{y_n} - y_n)^2$$

MSE, mean square error

Hours, x	Loss (w=0)	Loss (w=1)	Loss (w=2)	Loss (w=3)	Loss (w=4)
1	4	1	0	1	4
2	16	4	0	4	16
3	36	9	0	9	36
	MSE=56/3=18.7	MSE=14/3=4.7	MSE=0	MSE=14/3=4.7	MSE=56/3=18.7

Loss graph

$$loss = rac{1}{N} \sum_{n=1}^{N} (\hat{y_n} - y_n)^2$$

Loss (w=0)	Loss (w=1)	Loss (w=2)	Loss (w=3)	Loss (w=4)
mean=56/3=18.7	mean=14/3=4.7	mean=0	mean=14/3=4.7	mean=56/3=18.7

Loss graph

$$loss = rac{1}{N} \sum_{n=1}^{N} (\hat{y_n} - y_n)^2$$

Loss (w=0)	Loss (w=1)	Loss (w=2)	Loss (w=3)	Loss (w=4)
mean=56/3=18.7	mean=14/3=4.7	mean=0	mean=14/3=4.7	mean=56/3=18.7

Model & Loss

$$\hat{y} = x * w$$

```
w = 1.0 # a random guess: random value
# our model for the forward pass
def forward(x):
    return x * w
```

```
loss = (\hat{y} - y)^2
```

```
# Loss function
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)
```

Compute loss for w


```
for w in np.arange(0.0, 4.1, 0.1):
   print("w=", w)
   1 \text{ sum} = 0
   for x val, y val in zip(x data, y data):
       y pred val = forward(x val)
       1 = loss(x val, y val)
       1 \text{ sum } += 1
       print("\t", x val, y val, y pred val, 1)
   print("MSE=", 1 sum / 3)
```

```
w = 0.0
     1.0 2.0 0.0 4.0
     2.0 4.0 0.0 16.0
     3.0 6.0 0.0 36.0
NSE= 18.666666667
w = 0.1
     1.0 2.0 0.1 3.61
     2.0 4.0 0.2 14.44
     3.0 6.0 0.3 32.49
NSE= 16.846666667
W = 0.2
     1.0 2.0 0.2 3.24
     2.0 4.0 0.4 12.96
     3.0 6.0 0.6 29.16
NSE= 15.12
w = 0.3
     1.0 2.0 0.3 2.89
     2.0 4.0 0.6 11.56
     3.0 6.0 0.9 26.01
NSE= 13.486666667
w = 0.4
     1.0 2.0 0.4 2.56
     2.0 4.0 0.8 10.24
     3.0 6.0 1.2 23.04
NSF= 11.946666667
w = 0.5
     1.0 2.0 0.5 2.25
     2.0 4.0 1.0 9.0
     3.0 6.0 1.5 20.25
NSE= 10.5
```

Plot graph


```
w list = []
mse list = []
for w in np.arange(0.0, 4.1, 0.1):
   print("w=", w)
   1 \text{ sum} = 0
   for x_val, y_val in zip(x_data, y_data):
       y pred val = forward(x val)
       1 = loss(x val, y val)
       1 \text{ sum } += 1
       print("\t", x_val, y_val, y_pred_val, 1)
   print("MSE=", 1 sum / 3)
   w list.append(w)
   mse_list.append(l_sum / 3)
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
```

plt.show()


```
import numpy as np
import matplotlib.pyplot as plt
x data = [1.0, 2.0, 3.0]
y_{data} = [2.0, 4.0, 6.0]
w = 1.0 # a random quess: random value, 1.0
# our model for the forward pass
def forward(x):
   return x * w
# Loss function
def loss(x, y):
   y pred = forward(x)
   return (y_pred - y) * (y_pred - y)
w list = []
mse list = []
for w in np.arange(0.0, 4.1, 0.1):
   print("w=", w)
   1 sum = 0
   for x val, y_val in zip(x_data, y_data):
       y pred val = forward(x val)
       1 = loss(x_val, y_val)
       1 \text{ sum } += 1
       print("\t", x_val, y_val, y_pred_val, 1)
   print("MSE=", l_sum / 3)
   w_list.append(w)
   mse list.append(1 sum / 3)
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
```


Linear

Exercise 2-1

- Any other interesting linear prediction problems?
- Find some datasets for linear prediction
 - Draw the cost graph for one dataset

Lecture 3: Gradient Descent