

Predicting NBA Salaries

John Makhijani & Juna Iafelice May 5, 2021

NBA Dataset Description

Goal - Predict NBA player salaries based on player statistics

- Data Breakdown
 - Sample Size (n) 413 | Predictors (p) 41 | No missing data
 - Predictors based on 18/19 season, Salary based on 19/20 season
 - Response Variable Salary
 - Predictors Field Goals, Rebounds, Three Pointers, Games, Minutes, Points, Age, PER, VORP, WS, etc.
 - Data Source basketball-reference.com and espn.com
- Adjustments
 - Top 5 salaries removed as outliers from n=418 dataset
 - Natural log taken of Salary data

 R^2_{test} and R^2_{train}

Cross Validation Curves

Residuals

Estimated Coefficient

Model Performance / Accuracy Tradeoff

	90% Test R ² Interval	Time
ELASTIC NET	0.272 - 0.555	0.332 secs
LASSO	0.265 - 0.559	0.272 secs
RIDGE	0.276 - 0.563	0.194 secs
RANDOM FOREST	0.253 - 0.567	1.275 secs

Conclusion

- We see an obvious overfitting issue with the training set R² values of the Random Forest model that is not seen in the 3 other methods
- Ridge has the best performance in terms of R² on the Test set (We are not considering Random Forest because of the overfitting issue)
- For the trade-off between model accuracy and processing time, Ridge gives us the highest R² and the fastest time to run which makes it the best model to fit to predict NBA Salaries