6- Langages reconnaissables par les AF

- Théorèmes
 - Tout langage fini est reconnaissable par un AF
 - Si L est reconnaissable par un AF, X*\L est reconnaissable par un AF
 - NB : X*\L est le complémentaire de L dans X*
 - Si L₁ et L₂ sont reconnaissables par un AF, L₁∪L₂, L₁∩L₂ et L₁•L₂ sont reconnaissables par des AF
 - Si L est reconnaissable par un AF, L* est reconnaissable par un AF
 - Rappel : $L^* = \bigcup_{n \in \mathbb{N}} L^n$

21

6- Langages reconnaissables par les AF

- À partir d'un automate M, comment construire l'automate C_M qui reconnait le langage X*\L(M) complémentaire de L(M) dans X* ?
 - Procédure :
 - 1. Déterminiser M
 - 2. Compléter l'automate déterministe
 - 3. Complémenter les états de l'automate obtenu : les états finaux deviennent non finaux, et les états non finaux deviennent finaux

6- Langages reconnaissables par les AF

- Lemme de l'étoile
 - L est reconnaissable par un AF

 $\exists n \in \mathbb{N} / \forall w \in L \text{ tel que } | w | \geq n,$ $\exists x,y,z \in X^*$, avec $y \neq \lambda$ et w = x,y,z, et $\forall i \in N$ $x,y^i,z \in L$

- Le lemme de l'étoile exprime une condition nécessaire pour qu'un langage soit reconnaissable par un AF
 - On utilise donc le lemme de l'étoile pour montrer qu'un langage n'est pas reconnaissable par un AF

23

7- Grammaires linéaires à droite et AF

- Une grammaire G = <N, X, P, S> est <u>linéaire à droite</u> si toute règle de production (de P) est de la forme
 - $A \rightarrow \lambda$

 $(A \in N)$

• $A \rightarrow x B$ $(A,B \in N, x \in X)$

7- Grammaires linéaires à droite et AF

- Théorème
 - Un langage L est reconnu par un AF ⇔ ∃ une grammaire linéaire à droite G telle que L est engendré par G (L = L(G))
- Preuve : Algorithme de construction de $G_M = \langle N, X, P, S_0 \rangle$ à partir de M=<X,Q,q0,F,t>
 - $\forall q_i \in Q$, à q_i correspond un symbole non terminal S_i dans N
 - L'axiome est le symbole S₀ qui correspond à q₀
 - $\bullet \ \ \forall \ (q_i, x, q_i) \in \ Q \times X \times Q \ tel \ que \ q_i \in \ t(q_i, x), \ \ \{S_i \to x \ S_i\} \subset P$
 - $\forall q_i \in F, \{S_i \rightarrow \lambda\} \subset P$

et inversement (construction M à partir de G_M)

25

7- Grammaires linéaires à droite et AF

Remarque

- M déterministe ⇒ G_M non ambiguë

8- Systèmes d'équations de langages – Opérations sur les automates

- Système d'équations de langages
 - Soit $M = \langle X, Q, F, q0, t \rangle$
 - On note L_i le langage reconnu à partir de l'état q_i, ∀q_i∈ Q
 - L'équation du langage L_i est de la forme suivante :

$$\begin{array}{c|c} \textbf{L}_i = \cup_{x \in X} \ \textbf{X} \bullet (\cup_{q \in t(q_i,x)} \ \textbf{L}_q) \cup \delta(\textbf{L}_i) \\ \\ \text{avec} \ \delta(\textbf{L}_i) = \varnothing & \text{si } q_i \notin \textbf{F} \\ \\ \delta(\textbf{L}_i) = \{\lambda\} & \text{si } q_i \in \textbf{F} \end{array}$$

NB : on note habituellement l'opérateur ∪ par + et on omet les { }

- 8- Systèmes d'équations de langages –
 Opérations sur les automates
 - Opérations sur les automates
 - Déterminisation
 - Union
 - Rappel : $L \cdot (\bigcup_{i \in I} L_i) = \bigcup_{i \in I} (L \cdot L_i)$
 - Intersection
 - Rappel : L•(L₁ \cap L₂) \neq L•L₁ \cap L•L₂ $\underline{\text{mais}} \ \forall x \in X, \ x \bullet (L_1 \cap L_2) = x \bullet L_1 \cap x \bullet L_2$
 - Produit

27