電路學期末考

- 1. For the circuit shown in Fig. 1, find v_x as a function of v_s . (10%).
- 2. For the circuit shown in Fig. 2, find v_1 , v_2 and i_a . (15%)
- 3. The switch in Fig. 3 is closed at $t = t_0$, when there is no stored energy.
 - (a) Find the value of the stored energy and v_I at $t >> t_0$, when the circuit is in the dc steady state. (16%)
 - (b) Assume that the dc voltage source is replaced by an ac voltage source $50\cos 100t$. $t \ge t_0$, find $i_1(t)$ in the ac steady state. (9%) (Note: Exact numerical results are not required. Use symbols such as $\sqrt{}$ and \tan^{-1} when appropriate.)
- 4. Assume a value for V_2 in Fig. 4 to calculate $\frac{I_2}{\underline{I}}$ and $\frac{V_1}{\underline{I}}$ in polar form when R=5 Ω and $V_x = 2V_2$. (14%)
- 5. An ac motor having impedance $Z_M = 3.6 + j4.8 \Omega$ is supplied from a 240V(rms), 60Hz source.
 - (a) Calculate power factor, <u>I</u>. P, Q. (16%)
 - (b) The power factor will be corrected to unity by connecting a capacitor in parallel with the motor. Find C and the power P and current <u>I</u> supplied by the source. (15%)
 - (c) Calculate the voltage V_{M} across the motor. (5%)

