Prowadzący:

Metody Obliczeniowe Optymalizacji

2010/2011 czwartek, 14:15

Data oddania:	Ocena:

Michał Janiszewski 169485 Leszek Wach

Zadanie 4: Programowanie liniowe*

1. Cel zadania

Celem zadania było napisanie programu implementującego rozwiązywanie zagadnienia programowania liniowego za pomocą dwufazowej metody sympleksu. Program powinien wykrywać sytuacje patologiczne (brak rozwiązań, nieskończenie wiele rozwiązań).

2. Opis problemu

Programowanie liniowe jest metodą optymalizacji problemów, które da się przedstawić jako funkcję celu oraz szereg ograniczeń, z których wszystkie posiadają postać liniową.

Funkcja celu może zatem zostać zapisana w postaci

$$f(x_1, x_2, ..., x_n) = c_1 x_1 + c_2 x_2 + ... + c_n x_n \sum_{j=1}^{n} c_j x_j$$
 (1)

gdzie $c_i, i = \{1, 2, \dots, n\}$ to współczynniki przy kolejnych zmiennych równania.

Na funkcję nakładane są ograniczenia postaci:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \tag{2}$$

^{*} SVN: https://serce.ics.p.lodz.pl/svn/labs/moo/lcjp_cz1415/

lub

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \tag{3}$$

gdzie $a_{ij}, i=1,2,\ldots,m$ to ograniczenia nakładane na poszczególne zmienne problemu.

Dodatkowo istnieje też założenie, że każda zmienna x_i jest nieujemna:

$$x_j \ge 0, j = \{1, 2, \dots, n\}$$
 (4)

W interpretacji geometrycznej simpleks jest fragmentem n-wymiarowej przestrzeni, ograniczanej przez n-wymiarowe półprzestrzenie określone równaniami 2 i 3. Ze względu na liniową postać wszystkich ograniczeń, łatwo zauważyć, że simpleks zawsze będzie wypukły. Z wypukłości simpleksu wynika, że rozwiązaniem tak postawionego problemu liniowego będzie zawsze (o ile rozwiązanie istnieje) wierzchołek tego simpleksu. W przypadku gdyby miał to być punkt nie będący wierzchołkiem, to można znaleźć inny punkt należący do simpleksu, dla którego wartość funkcji celu jest optymalniejsza. W przypadku gdy punkt rozwiązania optymalnego leży na odcinku łączącym dwa wierzchołki lub płasczyźnie wyznaczonej przez wierzchołki łatwo zauważyć, że albo uda się odnaleźć punkt o lepszej wartości funkcji celu, albo punkt ten posiada taką samą wartość funkcji celu, jak wierzchołek, przez co można rozumieć, że punkt taki leży pomiędzy wierzchołkami posiadającymi optymalne wartości funkcji celu, a zatem są one rozwiązaniem optymalizacji.

Aby zapewnić jednolity opis problemu, należy przekształcić problem do tzw. postaci uzupełnieniowej, w której wszystkie nakładane ograniczenia (z pewnymi wyjątkami) mają postać równości. Można to osiągnąć wykorzystując poniższy wzór:

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \Leftrightarrow \sum_{j=1}^{n} a_{ij} x_j + x_{n+i} = b_i$$
 (5)

Powyższe ograniczenia oraz funkcję celu można zapisać w macierzy następującej postaci:

$$TS = \left[\begin{array}{c|c} C & 0 \\ \hline A & B \end{array} \right] \tag{6}$$

gdzie poszczególne zmienne to:

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n+m} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n+m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n+m} \end{pmatrix}$$
 (7)

$$B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \tag{8}$$

$$C = [c_1, c_2, \dots, c_{n+m}] \tag{9}$$

Wśród zmiennych z macierzy A możemy wyróżnić zmienne bazowe, tzn. takie, które w elementach odpowiadającej im kolumny posiadają tylko jedną jedynka, a pozostałe elementy wynoszą zero. Pozostałe zmienne nazywamy zmiennymi niebazowymi. Może istnieć sytuacja, w której podane ograniczenia nie wyznaczają wszystkich zmiennych bazowych, w takim przypadku należy dostawić macierz jednostkową I tak aby dla każdego ograniczenia istniała zmienna bazowa.

Tablica simpleksowa opisuje pewien punkt