Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

‹ ‹	подпись >>>	2021г.
		А.М. Горцев
док	гор техн. 1	наук, профессор
Рук	оводитель	ООП
ДОІ	ПУСТИТЬ	ь К ЗАЩИТЕ В ГЭК

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА ИССЛЕДОВАНИЕ МНОГОЛИНЕЙНОЙ СИСТЕМЫ С ОБРАТНОЙ СВЯЗЬЮ И ГИПЕРЭКСПОНЕНЦИАЛЬНЫМ ОБСЛУЖИВАНИЕМ

по направлению подготовки 01.03.02 Прикладная математика и информатика, направленность(профиль) «Прикладная математика и информатика»

Рыжикова Валерия Валентиновна

Рук	оводитель	ВКР
док	тор техн. 1	наук, профессор
		Назаров А.А.
Aß	подпись гор работь	J
студ	дентка гру	ппы №931720
		Рыжикова В.В.
«	подпись	2021r.

Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук Кафедра теории вероятностей и математической статистики

«»	2020 г.
	_ A. M. Горцев
д-р техн. наук, пр	офессор
Руководитель ОО	Π
УТВЕРЖДАЮ	

ЗАДАНИЕ

по подготовке ВКР бакалавра

студентке Ряжиковой Валерии Валентиновне группы №931828.
1. Тема ВКР: «Исследование многолинейной системы с обратной связью и гиперэкспоненциальным рапределением»
2. Срок сдачи студентом выполненной ВКР:
а) на кафедре
б) в ГЭК
3. Исходные данные к работе.
Целью настоящей работы является асимптотически-диффузионный анализ RQ-системида $M H_2 2,M H_2 N$ с обратной связью.
В соответствии с целью были поставлены и решены следующие задачи:
- изучение литературы по исследованию RQ-систем с обратной связью;

- построение математических моделей RQ-систем вида $M|H_2|2,\,M|H_2|N$ с обратной связью;

- построене системы дифференциальных уравнений Колмогорова для систем $M|H_2|2$, $M|H_2|N$ с обратной связью;

- построение аппроксимаций для распределения вероятностей числа приборов, находящихся на первой и второй фазе в системах вида $M|H_2|2, M|H_2|N$ с обратной связью методом асимптотического анализа и в предельном условиии большой задержки заявок на орбите;

- построение аппроксимаций распределения вероятностей количества заявок на орбите в RQ-системах вида $M|H_2|2,\ M|H_2|N$ с обратной связью методом асимптотически-диффузионного анализа;

Объектом исследования выступают RQ-системы вида $M|H_2|2, M|H_2|N$ с обратной связью.

Методами исследования являются методы теории вероятностей, теории случайных процессов, теории массового обслуживания, теории дифференциальных уравнений, а также методы асимптотического и асимптотически диффузионного анализа.

4. Краткое содержание работы. Основные разделы:

- I. Исследование RQ-системы $M|H_2|2$ с обратной связью методами асимптотического анализа и асимптотически диффузионого анализа, численный пример.
- II. Исследование RQ-системы $M|H_2|N$ с обратной связью методами асимптотического анализа и асимптотически диффузионого анализа, численный пример.
- 5. Указать предприятие, организацию, по заданию которого выполняется работа: кафедра теории вероятностей и математической статистики Национального исследовательского Томского государственного университета (НИ ТГУ).

6. Дата выдачи задания «		2020 г.	
Научный руководитель ВКР д-р техн. наук, профессор,			
заведующий каф. ТВиМС			А. А. Назаров
Задание принял к исполнению	«	 2020 г.	

ОГЛАВЛЕНИЕ

Введение	4
1. Иследование системы $M H_2 2$ с орбитой	4
1.1 Математическая модель и постановка задач	4
1.2 Уравнения Колмогорова	,
1.3 Первый этап асимптотического анализа	13
1.4 Второй этап асимптотического анализа	15
1.5 Метод асимптотически диффузионного анализа	18
1.6 Численные эксперементы	2]
2. Иследование системы $M H_2 N$ с орбитой	22
2.1 Математическая модель и постановка задачи	22
2.2 Уравнения Колмогорова	24
2.3 Первый этап асимптотического анализа	29
2.4 Второй этап асимптотического анализа	34
2.5 Метод асимптотически диффузионного анализа	43
2.6 Численные эксперементы	47
Список использованной литературы	48

ВВЕДЕНИЕ

Передача данных это большая проблема, особенно сейчас, когда передача данных очень часто используется для предоставления интернет или телекоммуникационных услуг. При исследовании данных проблем часто используются системы массового обслуживания [4, 5, 7, 11], в том числе двухфазные системы [3, 14, 15], а также когда имеется большое количество абонентов, системы с орбитой, также называемы RQ-системами [1, 10, 12, 13]. Данная работа же отличается совмещения двух этих особенностей с тем фактом, что система N-линейна, или говоря другими словами имеет N приборов.

Цель дипломной работы: исследовать N-линейную систему $M|H_2|N$ с обратной связью.

Задачи:

- 1. Построить математическую модель N-линейной системы $M|H_2|M$ с обратной связью.
- 2. Составить систему дифференциальных уравнений Колмогорова.
- 3.С помощью метода асимптотического анализа найти коэффициенты переноса и диффузии дифференциального уравнения N-линейной системы $M|H_2|N$ с обратной связью.
- 4.С помощью метода асимптотически диффузионного анализа вычислить плотность распределения вероятностей произвольного числа заявок на орбите и получить дискретное распределение вероятностей.

1. ИСЛЕДОВАНИЕ СИСТЕМЫ М $|H_2|$ 2 С ОРБИТОЙ

1.1 Математическая модель и постановка задач

Рассмотрим систему массового обслуживания $M|H_2|2$ с обратной связью (Рисунок 1).

Рис. 1: Система массового обслуживания $M|H_2|2$ с обратной связью

Система имеет два обслуживающих прибора. Заявки поступают в систему согласно простейщиму потоку с параметром λ . Каждая заявка занимеет один из свободных приборов на время, распределенное по гиперэкспоненциальному закону. Это означает, что заявка на приборе с вероятностью q поступает на первую фазу, с экспоненциальным распределением с параметром μ_1 , и с вероятность 1-q на вторую, с параметром μ_2 .

После завершения обслуживания заявка с вероятностью r_0 покидает систему, с вероятностью r_1 мгновенно поступает на повторное обслуживание и с вероятностью r_2 уходит на орбиту. Также, если на момент поступления заявки из потока оба прибора заняты, то заявка уходит на орбиту. Через время, продолжительность которого распределена по экспоненциальному закону с пареметром σ , заявка вновь обращается с орбиты к приборам.

Пусть i(t) – число заявок на орбите в момент времени t, $n_1(t)$ – число приборов занятых на первой фазе в момент времени t, $n_2(t)$ – число приборов занятых на второй фазе в момент времени t.

Рассмотрим трехмерный процесс $\{n_1(t), n_2(t), i(t)\}$. Под состоянием системы будем понимать состояние процесса $\{n_1(t), n_2(t), i(t)\}$ в момент времени t.

Обозначим вероятности следующим образом:

 $P(n_1=0,n_2=0,i(t)=i)=P_0(i,t)$ – вероятность того, что ни один прибор не занят.

 $P(n_1=0,n_2=1,i(t)=i)=P_1(i,t)$ – вероятность того, что один прибор занят на второй фазе.

 $P(n_1=1,n_2=0,i(t)=i)=P_2(i,t)$ – вероятность того, что один прибор занят на первой фазе.

 $P(n_1=0,n_2=2,i(t)=i)=P_3(i,t)$ – вероятность того, что два прибора заняты на второй фазе.

 $P(n_1 = 1, n_2 = 1, i(t) = i) = P_4(i, t)$ – вероятность того, что один прибор занят на первой фазе, а другой на второй.

 $P(n_1=2,n_2=0,i(t)=i)=P_5(i,t)$ – вероятность того, что два прибора заняты на первой фазе.

В каждой вероятности на орбите находятся i заявок в момент времени t.

Для решения будем применять методы асимптотического анализа [1, 7, 9, 11] и асимптотически диффузионного анализа [1].

1.2 Уравнения Колмогорова

Для введенных вероятностей составим систему уравнений в конечных разностях [4, 5, 6].

$$\begin{split} P_0(i,t+\Delta t) = & (1-\Delta t(\lambda+i\sigma))P_0(i,t) + \Delta t\mu_2 r_0 P_1(i,t) + \Delta t\mu_2 r_2 P_1(i-1,t) + \\ & + \Delta t\mu_1 r_0 P_2(i,t) + \Delta t\mu_1 r_2 P_2(i-1,t) + o(\Delta t), \\ P_1(i,t+\Delta t) = & (1-\Delta t(\lambda+i\sigma+\mu_2))P_1(i,t) + \Delta t\lambda(1-q)P_0(i,t) + \\ & + \Delta t\sigma(i+1)(1-q)P_0(i+1,t) + 2\Delta t\mu_2 r_0 P_3(i,t) + \mu_2 r_1(1-q)P_1(i,t) + \\ & + 2\mu_2 r_2 P_3(i-1,t) + \Delta t\mu_1 r_0 P_4(i,t) + \Delta t\mu_1 r_2 P_4(i-1,t) + \\ & + 2\mu_2 r_2 P_3(i-1,t) + o(\Delta t), \\ P_2(i,t+\Delta t) = & (1-\Delta t(\lambda+i\sigma+\mu_1))P_2(i,t) + \Delta tq\lambda P_0(i,t) + \\ & \Delta t\sigma(i+1)qP_0(i+1,t) + \Delta t\mu_2 r_1 qP_1(i,t) + \\ & + \Delta t\mu_1 r_1 qP_2(i,t) + \Delta t\mu_2 r_0 P_4(i,t) + \Delta t\mu_2 r_2 P_4(i-1,t) + \\ & + 2\Delta t\mu_1 r_2 P_5(i-1,t) + 2\Delta t\mu_1 r_0 P_5(i,t) + o(\Delta t), \\ P_3(i,t+\Delta t) = & (1-\Delta t(\lambda+i\sigma+2\mu_2))P_3(i,t) + \\ & + \Delta t\lambda(1-q)P_1(i,t) + \Delta t\sigma(i+1)(1-q)P_1(i+1,t) + \\ & + 2\Delta t\mu_2 r_1(1-q)P_3(i,t) + \Delta t\mu_1 r_1(1-q)P_4(i,t) + \Delta t\lambda P_3(i-1,t) + o(\Delta t), \\ P_4(i,t+\Delta t) = & (1-\Delta t(\lambda+i\sigma+\mu_1+\mu_2))P_4(i,t) + \Delta t\lambda qP_1(i,t) + \Delta t\sigma(i+1)qP_1(i+1,t) + \\ & + 2\Delta t\mu_2 r_1 qP_3(i,t) + \Delta t\lambda(1-q)P_2(i,t) + \Delta t\sigma(i+1)(1-q)P_2(i+1,t) + \\ & + \Delta t\mu_2 r_1(1-q)P_4(i,t) + \Delta t\mu_1 r_1 qP_4(i,t) + \\ & + \Delta t\mu_2 r_1(1-q)P_5(i,t) + \Delta t\lambda P_4(i-1,t) + o(\Delta t), \\ P_5(i,t+\Delta t) = & (1-\Delta t(\lambda+i\sigma+2\mu_1))P_5(i,t) + \Delta t\sigma(i+1)qP_2(i+1,t) + \Delta t\lambda qP_2(i,t) + \\ & + \Delta t\mu_2 r_1 qP_4(i,t) + 2\Delta t\mu_1 r_1 qP_5(i,t) + \Delta t\lambda P_5(i-1,t) + o(\Delta t). \end{split}$$

Расскроем скобки, разделим на каждое уравнение на Δt , получим

$$\begin{split} \frac{P_0(i,t+\Delta t)-P_0(i,t)}{\Delta t} &= -\left(\lambda+i\sigma\right)P_0(i,t) + \mu_2 r_0 P_1(i,t) + \mu_2 r_2 P_1(i-1,t) + \mu_1 r_0 P_2(i,t) + \\ &+ \mu_1 r_2 P_2(i-1,t), \\ \frac{P_1(i,t+\Delta t)-P_1(i,t)}{\Delta t} &= -\left(\lambda+i\sigma+\mu_2\right)P_1(i,t) + \lambda(1-q)P_0(i,t) + \sigma(i+1)(1-q)P_0(i+1,t) + \\ &+ 2\mu_2 r_0 P_3(i,t) + \mu_2 r_1(1-q)P_1(i,t) + 2\mu_2 r_2 P_3(i-1,t) + \mu_1 r_0 P_4(i,t) + \\ &+ \mu_1 r_2 P_4(i-1,t) + \mu_1 r_1(1-q)P_2(i,t), \end{split}$$

$$\begin{split} \frac{P_2(i,t+\Delta t)-P_2(i,t)}{\Delta t} &= -(\lambda+i\sigma+\mu_1)P_2(i,t)+q\lambda P_0(i,t) \\ &+\sigma(i+1)qP_0(i+1,t)+\mu_2r_1qP_1(i,t)+ \\ &+\mu_1r_1qP_2(i,t)+\mu_2r_0P_4(i,t)+\mu_2r_2P_4(i-1,t)+ \\ &+2\mu_1r_2P_5(i-1,t)+2\mu_1r_0P_5(i,t), \\ \frac{P_3(i,t+\Delta t)-P_3(i,t)}{\Delta t} &= -(\lambda+i\sigma+2\mu_2)P_3(i,t)+\lambda(1-q)P_1(i,t)+ \\ &+\sigma(i+1)(1-q)P_1(i+1,t)+2\mu_2r_1(1-q)P_3(i,t)+ \\ &+\mu_1r_1(1-q)P_4(i,t)\lambda P_3(i-1,t), \\ \frac{P_4(i,t+\Delta t)-P_4(i,t)}{\Delta t} &= -(\lambda+i\sigma+\mu_1+\mu_2)P_4(i,t)+\lambda qP_1(i,t)+\sigma(i+1)qP_1(i+1,t)+ \\ &+2\mu_2r_1qP_3(i,t)+\lambda(1-q)P_2(i,t)+\sigma(i+1)(1-q)P_2(i+1,t)+ \\ &+\mu_2r_1(1-q)P_4(i,t)+\mu_1r_1qP_4(i,t)+2\mu_1r_1(1-q)P_5(i,t)+ \\ &+\lambda P_4(i-1,t), \\ \frac{P_5(i,t+\Delta t)-P_5(i,t)}{\Delta t} &= -(\lambda+i\sigma+2\mu_1)P_5(i,t)+\sigma(i+1)qP_2(i+1,t)+\lambda qP_2(i,t)+ \\ &+\mu_2r_1qP_4(i,t)+2\mu_1r_1qP_5(i,t)+\lambda P_5(i-1,t). \end{split}$$

Устремим $\Delta t \rightarrow 0$, получим

$$\begin{split} \frac{dP_0(i,t)}{\partial t} &= -\left(\lambda + i\sigma\right)P_0(i,t) + \mu_2 r_0 P_1(i,t) + \mu_2 r_2 P_1(i-1,t) + \mu_1 r_0 P_2(i,t) + \right. \\ &\quad + \mu_1 r_2 P_2(i-1,t), \\ \frac{dP_1(i,t)}{\partial t} &= -\left(\lambda + i\sigma + \mu_2\right)P_1(i,t) + \lambda(1-q)P_0(i,t) + \sigma(i+1)(1-q)P_0(i+1,t) + \right. \\ &\quad + 2\mu_2 r_0 P_3(i,t) + \mu_2 r_1(1-q)P_1(i,t) + 2\mu_2 r_2 P_3(i-1,t) + \mu_1 r_0 P_4(i,t) + \\ &\quad + \mu_1 r_2 P_4(i-1,t) + \mu_1 r_1(1-q)P_2(i,t), \\ \frac{dP_2(i,t)}{\partial t} &= -\left(\lambda + i\sigma + \mu_1\right)P_2(i,t) + q\lambda P_0(i,t) + \sigma(i+1)qP_0(i+1,t) + \mu_2 r_1 q P_1(i,t) + \\ &\quad + \mu_1 r_1 q P_2(i,t) + \mu_2 r_0 P_4(i,t) + \mu_2 r_2 P_4(i-1,t) + 2\mu_1 r_2 P_5(i-1,t) + \\ &\quad + 2\mu_1 r_0 P_5(i,t), \\ \frac{dP_3(i,t)}{\partial t} &= -\left(\lambda + i\sigma + 2\mu_2\right)P_3(i,t) + \lambda(1-q)P_1(i,t) + \sigma(i+1)(1-q)P_1(i+1,t) + \\ &\quad + 2\mu_2 r_1(1-q)P_3(i,t) + \mu_1 r_1(1-q)P_4(i,t) + \lambda P_3(i-1,t), \\ \frac{dP_4(i,t)}{\partial t} &= -\left(\lambda + i\sigma + \mu_1 + \mu_2\right)P_4(i,t) + \lambda q P_1(i,t) + \sigma(i+1)q P_1(i+1,t) + \\ &\quad + 2\mu_2 r_1 q P_3(i,t) + \lambda(1-q)P_2(i,t) + \sigma(i+1)(1-q)P_2(i+1,t) + \\ &\quad + \mu_2 r_1 q P_4(i,t) + \mu_1 r_1 q P_4(i,t) + 2\mu_1 r_1 r_1(1-q)P_5(i,t) + \lambda P_4(i-1,t), \\ \frac{dP_5(i,t)}{\partial t} &= -\left(\lambda + i\sigma + 2\mu_1\right)P_5(i,t) + \sigma(i+1)q P_2(i+1,t) + \lambda q P_2(i,t) + \\ &\quad + \mu_2 r_1 q P_4(i,t) + 2\mu_1 r_1 q P_5(i,t) + \lambda P_5(i-1,t). \end{split}$$

Введем частичные характерестические функции

$$H_k(u,t) = \sum_{i=0}^{\infty} e^{iuj} P_k(i,t).$$

Тогда система примет вид

$$\begin{split} \frac{dH_0(u,t)}{\partial t} &= -\lambda H_0(u,t) + j\sigma \frac{dH_0(u,t)}{\partial u} + \mu_2 r_0 H_1(u,t) + \mu_2 r_2 e^{ju} H_1(u,t) + \\ &+ \mu_1 r_0 H_2(u,t) + \mu_1 r_1 e^{ju} H_2(u,t), \\ \frac{dH_1(u,t)}{\partial t} &= -(\lambda + \mu_2) H_1(u,t) + j\sigma \frac{dH_1(u,t)}{\partial u} + \lambda (1-q) H_0(u,t) - \\ &- j\sigma e^{-ju} (1-q) \frac{dH_0(u,t)}{\partial u} + 2\mu_2 r_0 H_3(u,t) + \mu_2 r_1 (1-q) H_1(u,t) + \\ &+ 2\mu_2 r_2 e^{ju} H_3(u,t) + \mu_1 r_0 H_4(u,t) + \mu_1 r_2 e^{ju} H_4(u,t) + \\ &+ \mu_1 r_1 (1-q) H_2(u,t), \\ \frac{dH_2(u,t)}{\partial t} &= -(\lambda + \mu_1) H_2(u,t) + j\sigma \frac{dH_2(u,t)}{\partial u} + q\lambda H_2(u,t) - j\sigma e^{-ju} q \frac{dH_0(u,t)}{\partial u} + \\ &+ \mu_2 r_1 q H_1(u,t) + \mu_1 r_1 q H_2(u,t) + \mu_2 r_0 H_4(u,t) + \mu_2 r_2 e^{ju} H_4(u,t) + \\ &+ 2\mu_1 r_2 e^{ju} H_5(u,t) + 2\mu_1 r_0 H_5(u,t), \\ \frac{dH_3(u,t)}{\partial t} &= -(\lambda + 2\mu_2) H_3(u,t) + j\sigma \frac{dH_3(u,t)}{\partial u} + \lambda (1-q) H_1(u,t) - \\ &- j\sigma (1-q) e^{-ju} \frac{dH_0(u,t)}{\partial u} + 2\mu_2 r_1 (1-q) H_3(u,t) + \\ &+ \mu_1 r_1 (1-q) H_4(u,t) + \lambda e^{ju} H_3(u,t), \\ \frac{dH_4(u,t)}{\partial t} &= -(\lambda + \mu_1 + \mu_2) H_4(u,t) + j\sigma \frac{dH_4(u,t)}{\partial u} + \lambda q H_4(u,t) - \\ &- j\sigma q e^{-ju} \frac{dH_1(u,t)}{\partial u} + 2\mu_2 r_1 q H_3(u,t) + \lambda (1-q) H_2(u,t) - \\ &- j\sigma (1-q) e^{-ju} \frac{dH_0(u,t)}{\partial u} + \mu_2 r_1 (1-q) H_4(u,t) + \mu_1 r_1 q H_4(u,t) + \\ &+ 2\mu_1 r_1 (1-q) H_5(u,t) + \lambda e^{ju} H_4(u,t), \\ \frac{dH_5(u,t)}{\partial t} &= -(\lambda + 2\mu_1) H_5(u,t) + j\sigma \frac{dH_5(u,t)}{\partial u} - j\sigma q e^{-ju} \frac{dH_2(u,t)}{\partial u} + \\ &+ \lambda q H_2(u,t) + \mu_2 r_1 q H_4(u,t) + 2\mu_1 r_1 q H_5(u,t) + \lambda e^{ju} H_5(u,t). \end{split}$$

Обозначим вектор-строки

$$\mathbf{H}(u,t) = \{H_0(u,t), H_1(u,t), H_2(u,t), H_3(u,t), H_4(u,t), H_5(u,t)\},
\frac{\partial \mathbf{H}(u,t)}{\partial t} = \{\frac{\partial H_0(u,t)}{\partial t}, \frac{\partial H_1(u,t)}{\partial t}, \frac{\partial H_2(u,t)}{\partial t}, \frac{\partial H_3(u,t)}{\partial t}, \frac{\partial H_4(u,t)}{\partial t}, \frac{\partial H_5(u,t)}{\partial t}\},
\frac{\partial \mathbf{H}(u,t)}{\partial u} = \{\frac{\partial H_0(u,t)}{\partial u}, \frac{\partial H_1(u,t)}{\partial u}, \frac{\partial H_2(u,t)}{\partial u}, \frac{\partial H_3(u,t)}{\partial u}, \frac{\partial H_4(u,t)}{\partial u}, \frac{\partial H_5(u,t)}{\partial u}\}.$$

Запишем систему уравнений в виде матричного уравнения

$$\frac{\partial \boldsymbol{H}(u,t)}{\partial t} = \boldsymbol{H}(u,t)(\boldsymbol{A} + e^{ju}\boldsymbol{B}) + j\sigma \frac{\partial \boldsymbol{H}(u,t)}{\partial u}(\boldsymbol{I_0} - e^{-ju}\boldsymbol{I_1}),$$

где

$$\boldsymbol{A} = \begin{bmatrix} -\lambda & \lambda \left(1 - q \right) & \lambda q & 0 \\ r_0 \mu_2 & -\lambda + r_1 \mu_2 \left(1 - q \right) - \mu_2 & q r_1 \mu_2 & \lambda \left(1 - q \right) \\ r_0 \mu_1 & r_1 \mu_1 \left(1 - q \right) & -\lambda + q r_1 \mu_1 - \mu_1 & 0 \\ 0 & 2 r_0 \mu_2 & 0 & -\lambda + 2 r_1 \mu_2 \left(1 - q \right) - 2 \mu_2 \\ 0 & r_0 \mu_1 & r_0 \mu_2 & r_1 \mu_1 \left(1 - q \right) \\ 0 & 0 & 2 r_0 \mu_1 & 0 \\ & \lambda q & 0 \\ & \lambda q & 0 \\ & \lambda q & 0 \\ & \lambda \left(1 - q \right) & \lambda q \\ & 2 q r_1 \mu_2 & 0 \\ & -\lambda + q r_1 \mu_1 + r_1 \mu_2 \left(1 - q \right) - \mu_1 - \mu_2 & q r_1 \mu_2 \\ & 2 r_1 \mu_1 \left(1 - q \right) & -\lambda + 2 q r_1 \mu_1 - 2 \end{bmatrix},$$

$$\boldsymbol{B} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mu_2 \left(-r_0 - r_1 + 1 \right) & 0 & 0 & 0 & 0 & 0 \\ \mu_1 \left(-r_0 - r_1 + 1 \right) & 0 & 0 & 0 & 0 & 0 \\ 0 & 2\mu_2 \left(-r_0 - r_1 + 1 \right) & 0 & \lambda & 0 & 0 \\ 0 & \mu_1 \left(-r_0 - r_1 + 1 \right) & \mu_2 \left(-r_0 - r_1 + 1 \right) & 0 & \lambda & 0 \\ 0 & 0 & 2\mu_1 \left(-r_0 - r_1 + 1 \right) & 0 & 0 & \lambda \end{bmatrix},$$

Домножим матричное уравнение на единичный вектор-столбец e и, с учетом

$$(\boldsymbol{A} + \boldsymbol{B})\boldsymbol{e} = 0$$

И

$$(\boldsymbol{I_0} - \boldsymbol{I_1})\boldsymbol{e} = 0$$

получим

$$\frac{\partial \boldsymbol{H}(u,t)}{\partial t}\boldsymbol{e} = \boldsymbol{H}(u,t)(e^{ju} - 1)\boldsymbol{B}\boldsymbol{e} + j\sigma e^{-ju}\frac{\partial \boldsymbol{H}(u,t)}{\partial u}(e^{ju} - 1)\boldsymbol{I_0}\boldsymbol{e} =$$

$$= (e^{ju} - 1)\{\boldsymbol{H}(u,t)\boldsymbol{B}\boldsymbol{e} + j\sigma e^{-ju}\frac{\partial \boldsymbol{H}(u,t)}{\partial u}\boldsymbol{I_0}\boldsymbol{e}\}.$$

Таким образом получаем уравнения

$$\frac{\partial \boldsymbol{H}(u,t)}{\partial t} = \boldsymbol{H}(u,t)(\boldsymbol{A} + e^{ju}\boldsymbol{B}) + j\sigma \frac{\partial \boldsymbol{H}(u,t)}{\partial u}(\boldsymbol{I_0} - e^{-ju}\boldsymbol{I_1}),
\frac{\partial \boldsymbol{H}(u,t)}{\partial t}\boldsymbol{e} = (e^{ju} - 1)\{\boldsymbol{H}(u,t)\boldsymbol{B}\boldsymbol{e} + j\sigma e^{-ju}\frac{\partial \boldsymbol{H}(u,t)}{\partial u}\boldsymbol{I_0}\boldsymbol{e}\}.$$
(1)

1.3 Первый этап асимптотического анализа

Будем решать уравнения (1) методом асимптотического анализа. Сделаем замены

$$\sigma = \varepsilon, \tau = t\varepsilon, u = \varepsilon w, \boldsymbol{H}(u, t) = \boldsymbol{F}(w, \tau, \varepsilon).$$
 (2)

Тогда можем переписать уравнения (1)

$$\varepsilon \frac{\partial \mathbf{F}(w, \tau, \varepsilon)}{\partial \tau} = \mathbf{F}(w, \tau, \varepsilon) (\mathbf{A} + e^{j\varepsilon w} \mathbf{B}) + j \frac{\partial \mathbf{F}(w, \tau, \varepsilon)}{\partial w} (\mathbf{I_0} - e^{-j\varepsilon w} \mathbf{I_1}),
\varepsilon \frac{\partial \mathbf{F}(w, \tau, \varepsilon)}{\partial \tau} \mathbf{e} = (e^{j\varepsilon w} - 1) \{ \mathbf{F}(w, \tau, \varepsilon) \mathbf{B} \mathbf{e} + j e^{-j\varepsilon w} \frac{\partial \mathbf{F}(w, \tau, \varepsilon)}{\partial w} \mathbf{I_0} \mathbf{e} \}.$$
(3)

При условии, что $\varepsilon \to 0$, можно доказать следующее утверждение.

Теорема 1.1. Компоненты R_n или вектор-строка R распределения вероятностей числа приборов, занятых на первой и второй фазе имеет вид

$$R_{0} = \frac{2\mu_{1}^{2}\mu_{2}^{2}(r_{1}-1)^{2}}{c},$$

$$R_{1} = \frac{2\mu_{1}^{2}\mu_{2}(1-q)(1-r_{1})(\lambda+x)}{c},$$

$$R_{2} = \frac{2\mu_{1}\mu_{2}^{2}q(1-r_{1})(\lambda+x)}{c},$$

$$R_{3} = \frac{\mu_{1}^{2}(1-q)^{2}(\lambda+x)^{2}}{c},$$

$$R_{4} = \frac{2\mu_{1}\mu_{2}q(1-q)(\lambda+x)^{2}}{c},$$

$$R_{5} = \frac{\mu_{2}^{2}q^{2}(\lambda+x)^{2}}{c},$$

$$c = (\mu_{1}\mu_{2}(1-r_{1}) + (\lambda+x)(\mu_{2}q + \mu_{1}(1-q)))^{2} + \mu_{1}^{2}\mu_{2}^{2}(1-r_{1})^{2},$$

где вектор-строка $\mathbf{R}=\{R_0,R_1,R_2,R_3,R_4,R_5\}$ — распределение вероятностей состояния двулинейного блока обслуживания, $x(\tau)$ является решением уравнения $x=x(\tau):x'(\tau)=a(x)=\mathbf{RBe}-x(\tau)\mathbf{RI_0e}$.

Доказательство. Рассмотрим первое уравнение системы (3) в пределе при $\varepsilon \to 0$, обозначим

$$\lim_{\varepsilon \to 0} \mathbf{F}(w, \tau, \varepsilon) = \mathbf{F}(w, \tau)$$

и получим

$$F(w,\tau)(\mathbf{A}+\mathbf{B}) + j\frac{F(w,\tau)}{\partial w}(\mathbf{I_0} - \mathbf{I_1}) = 0.$$
(5)

Находим решение уравнения (5) в виде ${m F}(w, au)={m R}e^{jwx(au)}$. Получим следующую систему

уравнений

$$R\{(A + B) - x(\tau)(I_0 - I_1)\} = 0,$$

 $Re = 1.$ (6)

Решение системы (6) совпадает (4). Вектор-строка R вычислена с помощью символьного исчисления на языке Python, используя библиотеку SymPy [16].

Найдем $x=x(\tau)$. Рассмотрим второе уравнение системы (3) в пределе $\varepsilon \to 0$

$$\frac{\partial \boldsymbol{F}(w,\tau)}{\partial \tau}e = jw \bigg\{ \boldsymbol{F}(w,\tau) \boldsymbol{B} \boldsymbol{e} + j \frac{\partial \boldsymbol{F}(w,\tau)}{\partial w} \boldsymbol{I_0} \boldsymbol{e} \bigg\},$$

подставим решение уравнения (5), тогда

$$x'(\tau) = a(x) = \mathbf{RBe} - x(\tau)\mathbf{RI_0e}.$$
 (7)

Теорема доказана.

1.4 Второй этап асимптотического анализа

В системе (1) сделаем замену

$$\boldsymbol{H}(u,t) = e^{j\frac{u}{\sigma}x(\sigma t)}\boldsymbol{H}^{(1)}(u,t),$$

получим систему

$$\frac{\partial \boldsymbol{H}^{(1)}(u,t)}{\partial t} + jux'(\sigma t)\boldsymbol{H}^{(1)}(u,t) = \boldsymbol{H}^{(1)}(u,t)(\boldsymbol{A} + e^{ju}\boldsymbol{B}) +
+ j\sigma \left[\frac{j}{\sigma}x(\sigma t)\boldsymbol{H}^{(1)}(u,t) + \frac{\partial \boldsymbol{H}^{(1)}(u,t)}{\partial u}\right](\boldsymbol{I_0} - e^{-ju}\boldsymbol{I_1}),
\left[\frac{\partial \boldsymbol{H}^{(1)}(u,t)}{\partial t} + jux'(\sigma t)\boldsymbol{H}^{(1)}(u,t)\right]\boldsymbol{e} = (e^{ju} - 1)\left\{\boldsymbol{H}^{(1)}(u,t)\boldsymbol{B}\boldsymbol{e} +
+ j\sigma e^{-ju}\left[\frac{j}{\sigma}x(\sigma t)\boldsymbol{H}^{(1)}(u,t) + \frac{\partial \boldsymbol{H}^{(1)}(u,t)}{\partial u}\right]\boldsymbol{I_0}\boldsymbol{e}\right\}.$$
(8)

С учетом (7) перепишем систему (8)

$$\frac{\partial \boldsymbol{H}^{(1)}(u,t)}{\partial t} + jua(x)\boldsymbol{H}^{(1)}(u,t) = \boldsymbol{H}^{(1)}(u,t)(\boldsymbol{A} + e^{ju}\boldsymbol{B} - x(\boldsymbol{I_0} - e^{-ju}\boldsymbol{I_1})) + j\sigma\frac{\partial \boldsymbol{H}^{(1)}(u,t)}{\partial u}(\boldsymbol{I_0} - e^{-ju}\boldsymbol{I_1}),
\frac{\partial \boldsymbol{H}^{(1)}(u,t)}{\partial t}\boldsymbol{e} + jua(x)\boldsymbol{H}^{(1)}(u,t)\boldsymbol{e} = (e^{ju} - 1)(\boldsymbol{H}^{(1)}(u,t)[\boldsymbol{B} - e^{-ju}x\boldsymbol{I_0}] + e^{-ju}j\sigma\frac{\partial \boldsymbol{H}^{(1)}(u,t)}{\partial u}\boldsymbol{I_0})\boldsymbol{e}.$$
(9)

Обозначим $\sigma = \varepsilon^2$ и сделаем следующие замены в (9)

$$\tau = t\varepsilon^2, u = \varepsilon w, \boldsymbol{H}^{(1)}(u, t) = \boldsymbol{F}^{(1)}(w, \tau, \varepsilon).$$
 (10)

Можем написать

$$\varepsilon^{2} \frac{\partial \boldsymbol{F}^{(1)}(w,\tau,\varepsilon)}{\partial \tau} + j\varepsilon wa \boldsymbol{F}^{(1)}(w,\tau,\varepsilon) = \boldsymbol{F}^{(1)}(w,\tau,\varepsilon)(\boldsymbol{A} + e^{j\varepsilon w}\boldsymbol{B} - x(\boldsymbol{I_{0}} - e^{-j\varepsilon w}\boldsymbol{I_{1}})) + \\
+ j\varepsilon \frac{\partial \boldsymbol{F}^{(1)}(w,\tau,\varepsilon)}{\partial w}(\boldsymbol{I_{0}} - e^{-j\varepsilon w}\boldsymbol{I_{1}}), \\
\varepsilon^{2} \frac{\partial \boldsymbol{F}^{(1)}(w,\tau,\varepsilon)}{\partial \tau} \boldsymbol{e} + j\varepsilon wa \boldsymbol{F}^{(1)}(w,\tau,\varepsilon)\boldsymbol{e} = \\
= (e^{j\varepsilon w} - 1)(\boldsymbol{F}^{(1)}(w,\tau,\varepsilon)[\boldsymbol{B} - e^{-j\varepsilon w}x\boldsymbol{I_{0}}] + e^{-j\varepsilon w}j\varepsilon \frac{\partial \boldsymbol{F}^{(1)}(w,\tau,\varepsilon)}{\partial w}\boldsymbol{I_{0}})\boldsymbol{e}.$$
(11)

Перепишем первое уранение (11) с учетом разложения

$$e^{j\varepsilon w} = 1 + (j\varepsilon w) + O(\varepsilon^2),$$
 (12)

$$j\varepsilon w a \mathbf{F}^{(1)}(w,\tau,\varepsilon) = \mathbf{F}^{(1)}(w,\tau,\varepsilon)(\mathbf{A} + \mathbf{B} + j\varepsilon w \mathbf{B} - x(\mathbf{I_0} - \mathbf{I_1} + j\varepsilon w \mathbf{I_1})) + + j\varepsilon \frac{\mathbf{F}^{(1)}(w,\tau,\varepsilon)}{dw}(\mathbf{I_0} - \mathbf{I_1}) + O(\varepsilon^2).$$
(13)

Решение задачи (13) можно записать в виде разложения

$$\mathbf{F}^{(1)}(w,\tau,\varepsilon) = \Phi(w,\tau)\{\mathbf{R} + j\varepsilon w\mathbf{f}\} + O(\varepsilon^2),\tag{14}$$

где $\Phi(w,\tau)$ – скалярная функция, форма которой определена ниже. Получим

$$j\varepsilon w a\Phi(w,\tau)\{\mathbf{R}+j\varepsilon w\mathbf{f}\} = \Phi(w,\tau)\{\mathbf{R}+j\varepsilon w\mathbf{f}\}(\mathbf{A}+\mathbf{B}+j\varepsilon w\mathbf{B}-x(\mathbf{I_0}-\mathbf{I_1}+j\varepsilon w\mathbf{I_1})) + \\ +j\varepsilon \frac{\Phi(w,\tau)}{dw}\{\mathbf{R}+j\varepsilon w\mathbf{f}\} + \Phi(w,\tau)j\varepsilon \mathbf{f}(\mathbf{I_0}-\mathbf{I_1}) + O(\varepsilon^2).$$

Тогда

$$j\varepsilon w a\Phi(w,\tau)\mathbf{R} = \Phi(w,\tau)\{\mathbf{R}(\mathbf{A} + \mathbf{B} - x(\mathbf{I_0} - \mathbf{I_1})) + j\varepsilon w[\mathbf{f}(\mathbf{A} + \mathbf{B} - x(\mathbf{I_0} - \mathbf{I_1})) + \mathbf{R}(\mathbf{B} - x\mathbf{I_1})]\} + j\varepsilon \frac{\partial \Phi(w,\tau)}{\partial w}\mathbf{R}(\mathbf{I_0} - \mathbf{I_1}) + O(\varepsilon^2).$$

С учетом (7) разделим последнее уравнение на $\Phi(w,\tau) j \varepsilon w$ и положим $\varepsilon \to 0$

$$a\mathbf{R} = \mathbf{f}(\mathbf{A} + \mathbf{B} - x(\mathbf{I_0} - \mathbf{I_1})) + \mathbf{R}(\mathbf{B} - x\mathbf{I_1}) + \frac{\partial \Phi(w, \tau)/\partial w}{w\Phi(w, \tau)} \mathbf{R}(\mathbf{I_0} - \mathbf{I_1}).$$

Перепишем последнее уравнение

$$f(A + B + x(I_1 - I_0)) = aR - R(B - xI_1) - \frac{\partial \Phi(w, \tau)/\partial w}{w\Phi(w, \tau)}R(I_0 - I_1).$$
 (15)

Решение f задачи (15) можно записать в виде

$$f = CR + g - \varphi \frac{\partial \Phi(w, \tau) / \partial w}{\partial w \Phi(w, \tau)}, \tag{16}$$

которое мы подставляем в (15) и получаем

$$\varphi(A + B - x(I_0 - I_1)) = R(I_0 - I_1)$$
(17)

$$g(A + B - x(I_0 - I_1)) = aR + R(xI_1 - B).$$
 (18)

Рассмотрим первое уравнение системы (8), дифференцируем его по x, получим уравнение

$$\frac{\partial \mathbf{R}}{\partial x} \{ \mathbf{A} + \mathbf{B} - x(\mathbf{I_0} - \mathbf{I_0}) \} - \mathbf{R}(\mathbf{I_0} - \mathbf{I_1}) = 0.$$

Учитывая (17) и последнее уравнение для φ , запишем равенство

$$\varphi = \frac{\partial \mathbf{R}}{\partial x},\tag{19}$$

где $\varphi e=0$. В силу (18) вектор g является частным решением системы (18). Следовательно, она удовлетворяет условию

$$ge = 0. (20)$$

Тогда решение g системы (18), удовлетворяющее условию (20), определяется однозначно.

Теперь рассмотрим второе уравнение системы (12), в которую подставляем разложение (14)

$$\varepsilon^{2} \frac{\partial \Phi(w,\tau)}{\partial \tau} + ja\varepsilon w \Phi(w,\tau) \{1 + j\varepsilon w \mathbf{f} \mathbf{e}\} = (j\varepsilon w + \frac{(j\varepsilon w)^{2}}{2})$$
$$(\Phi(w,\tau) \{\mathbf{R} + j\varepsilon w \mathbf{f}\} [\mathbf{B} - x \mathbf{I}_{0} + j\varepsilon w x \mathbf{I}_{0}] + j\varepsilon \frac{\partial \Phi(w,\tau)}{\partial w} \mathbf{R} \mathbf{I}_{0}) \mathbf{e} + o(\varepsilon^{3}).$$

Тогда с помощью уравнения (8)

$$\varepsilon^{2} \frac{\partial \Phi(w, \tau)}{\partial \tau} = \Phi(w, \tau) ((j\varepsilon w)^{2} \{ f(\boldsymbol{B} - x\boldsymbol{I}_{0}) + x\boldsymbol{R}\boldsymbol{I}_{0} - a\boldsymbol{f} \} \boldsymbol{e} + \frac{(j\varepsilon w)^{2}}{2} \boldsymbol{R}(\boldsymbol{B} - x\boldsymbol{I}_{0}) \boldsymbol{e}) + (j\varepsilon)^{2} w \frac{\partial \Phi(w, \tau)}{\partial w} \boldsymbol{R}\boldsymbol{I}_{0} \boldsymbol{e},$$

получаем следующее уравнение

$$\frac{\partial \Phi(w,\tau)/\partial w}{\Phi(w,\tau)} = \frac{(jw)^2}{2} \{ 2(\boldsymbol{f}[\boldsymbol{B} - x\boldsymbol{I_0}] + \boldsymbol{R}x\boldsymbol{I_0} - a\boldsymbol{f})\boldsymbol{e} + a \} - w \frac{\partial \Phi(w,\tau)/\partial w}{\Phi(w,\tau)} \boldsymbol{R}\boldsymbol{I_0}\boldsymbol{e},$$

в которое мы подставляем (16)

$$\frac{\partial \Phi(w,\tau)/\partial \tau}{\Phi(w,\tau)} = \frac{(jw)^2}{2} \{ 2\mathbf{g} [\mathbf{B} - x\mathbf{I_0}] \mathbf{e} + 2\mathbf{R}x\mathbf{I_0} \mathbf{e} + a \} +
+ w \frac{\partial \Phi(w,\tau)/\partial w}{\Phi(w,\tau)} \{ \boldsymbol{\varphi} [\mathbf{B} - x\mathbf{I_0}] \mathbf{e} - \mathbf{R}\mathbf{I_0} \mathbf{e} \}.$$
(21)

Результатом второго этапа асимптотического анализа является b(x) определенная следующим образом

$$b(x) = a(x) + 2g[B - xI_0]e + 2RxI_0.$$
 (22)

1.5 Метод асимптотически диффузионного анализа

Построим аппроксимацию распределения вероятностей числа заявок на орбите методом асимптотически диффузионного анализа. Сформулируем и докажем следующую теорему.

Теорема 1.2. Ряд распределения вероятностей нормированного числа заявок на орбите можно аппроксимировать следующей функцией плотности вероятностей

$$\pi(z) = \frac{C}{b(z)} exp\left\{\frac{2}{\sigma} \int_{0}^{z} \frac{a(x)}{b(x)} dx\right\},\tag{23}$$

где C — нормировчная константа,

$$a(x) = \mathbf{R}\mathbf{B}\mathbf{e} - x\mathbf{R}\mathbf{I_0}\mathbf{e},$$

$$b(x) = a(x) + 2\mathbf{g}[\mathbf{B} - x\mathbf{I_0}]\mathbf{e} + 2\mathbf{R}x\mathbf{I_0},$$
(24)

здесь вектор-строка g определяется системой уравнений

$$g(a + B + x(I_1 - I_0)) = aR + R(xI_1 - B),$$

$$qe = 0.$$
(25)

Доказательство. Подставим b(x) в (20)

$$\frac{\partial \Phi(w,\tau)}{\partial \tau} = w \frac{\partial \Phi(w,\tau)}{\partial \tau} \left\{ \varphi[\boldsymbol{B} - x\boldsymbol{I_0}]\boldsymbol{e} - \boldsymbol{R}\boldsymbol{I_0}\boldsymbol{e} \right\} + \frac{(jw)^2}{2} b(x)\Phi(w,\tau). \tag{26}$$

Рассмотрим

$$\varphi[B - xI_0]e - RI_0e$$
.

Подставим (19) в последнее выражение, получим

$$\frac{\partial \mathbf{R}}{\partial x} [\mathbf{B} - x \mathbf{I_0}] \mathbf{e} - \mathbf{R} \mathbf{I_0} \mathbf{e}. \tag{27}$$

Рассмотрим функцию a(x), найдем ее производную по , учитывая, что ${\bf \it R}$, как решение зависит от x

$$a'(x) = \frac{\partial \mathbf{R}}{\partial x} \mathbf{B} \mathbf{e} - x \frac{\partial \mathbf{R}}{\partial x} \mathbf{I_0} \mathbf{e} - \mathbf{R} \mathbf{I_0} \mathbf{e} = \frac{\partial \mathbf{R}}{\partial x} [\mathbf{B} - x \mathbf{I_0}] \mathbf{e} - \mathbf{R} \mathbf{I_0} \mathbf{e}.$$

Тогда (25) перепишем в виде

$$\frac{\partial \Phi(w,\tau)}{\partial \tau} = a'(x)w\frac{\partial \Phi(w,\tau)}{\partial w} + \frac{(jw)^2}{2}b(x)\Phi(w,\tau). \tag{28}$$

Уравнение (27) это преобразование Фурье уравнения Фокера-Планка для плотности распре-

деления вероятностей $P(y,\tau)$ значений центрированного и нормированного количества заявок на орбите. Находя обратное преобразование Фурье от (27), получим

$$\frac{\partial P(y,\tau)}{\partial \tau} = -\frac{\partial}{\partial y} \{ a'(x) y P(y,\tau) \} + \frac{1}{2} \frac{\partial^2}{\partial y^2} \{ b(x) P(y,\tau) \}. \tag{29}$$

Следовательно $P(y,\tau)$ плотность распределения вероятностей диффузионного процесса [2], который обозначим $y(\tau)$ с коэффициентом переносом a(x) и коэффициентом диффузии b(x)

$$dy(\tau) = a'(x)yd\tau + \sqrt{b(x)}dw(\tau). \tag{30}$$

Рассмотрим стохастический процесс нормированного числа заявок на орбите

$$z(\tau) = x(\tau) + \varepsilon y(\tau),\tag{31}$$

где $\varepsilon = \sqrt{\sigma}$, исходя из (8), $dx(\tau) = a(x)d\tau$, следует

$$dz(\tau) = d(x(\tau) + \varepsilon y(\tau)) = (a(x) + \varepsilon y a'(x))d\tau + \varepsilon \sqrt{b(x)}dw(\tau). \tag{32}$$

Разложим a(z) в ряд

$$a(z) = a(x + \varepsilon y) = a(x) + \varepsilon y a'(x) + O(\varepsilon^{2}),$$

$$\varepsilon \sqrt{b(z)} = \varepsilon \sqrt{b(x + \varepsilon y)} = \varepsilon \sqrt{b(x) + O(\varepsilon)} = \sqrt{\sigma b(x)} + O(\varepsilon).$$

Перепишем уравнение (31) с точностью до $O(\varepsilon^2)$

$$dz(\tau) = a(z)d\tau + \sqrt{\sigma b(z)}dw(\tau). \tag{33}$$

Обозначим плотность распределения вероятностей для процесса $z(\tau)$

$$\pi(z,\tau) = \frac{\partial P\{z(\tau) < z\}}{\partial z}.$$

Так как $z(\tau)$ – это решение стохастического дифференциального уравнения (32), следовательно, процесс является диффузионным и для его плотности распределения вероятностей можем записать уравнение Фокера-Планка

$$\frac{\partial \pi(z,\tau)}{\partial \tau} = -\frac{\partial}{\partial z} \{ a(z)\pi(z,\tau) \} + \frac{1}{2} \frac{\partial^2}{\partial z^2} \{ \sigma b(z)\pi(z,\tau) \}. \tag{34}$$

Предполагая, что существует стационарный режим, обозначим

$$\pi(z,\tau) = \pi(z),\tag{35}$$

запишем уравнение Фокера-Планка для стационарного распределения вероятностей $\pi(z)$

$$(a(z)\pi(z))' + \frac{\sigma}{2}(b(z)\pi(z))'' = 0,$$

$$-a(z)\pi(z) + \frac{\sigma}{2}(b(z)\pi(z))' = 0.$$

Решая данную систему уравнений получаем плотность распределения вероятностей $\pi(z)$ нормированного числа заявок на орбите

$$\pi(z) = \frac{C}{b(z)} exp \left\{ \frac{2}{\sigma} \int_{0}^{z} \frac{a(x)}{b(x)} dx \right\}.$$
 (36)

Теорема доказана.

Получим дискретное распределение вероятностей

$$P(i) = \pi(\sigma i) / \sum_{i=0}^{\infty} \pi(\sigma i), \tag{37}$$

которое будем называть диффузионной аппроксимацией дискретного распределения вероятностей количества заявок на орбите для изучаемой системы.

Нетрудно показать, что условием существования стационарного режима рассматриваемой системы является неравенство

$$\lambda < 2r_0 \left(\frac{q}{\mu_1} + \frac{1-q}{\mu_2} \right). \tag{38}$$

Введем следующую замену для того, чтобы среднее время обслуживания равнялось единице

$$q = \frac{\mu_1(1 - \mu_2)}{\mu_1 - \mu_2}.$$

В таком случае неравенство (38) имеет вид

$$\lambda < 2r_0$$
.

1.6 Численные эксперементы

На рисунке 2 представлены графики изменения a(x) и b(x), в зависимости от x, на рисунке 3 ряд распределения вероятностей количества заявок на орбите для следующих параметров системы $r_0=0,3, r_1=0,2, r_2=0,5, \lambda=1,1, \mu_1=0,5, \mu_2=1,5, q=0.25, \sigma=0,1.$

фузии b(x)

Рис. 2: Коэффициенты переноса a(x) и диф- Рис. 3: Ряд распределения вероятностей количества заявок на орбите

Данные графики были построены с помощью приложения Mathcad.

2. ИСЛЕДОВАНИЕ СИСТЕМЫ $M|H_2|N$ С ОРБИТОЙ

2.1 Математическая модель и постановка задачи

Рассмотрим систему массового обслуживания $M|H_2|N$ с обратной связью (Рисунок 4).

Рис. 4: Система массового обслуживания $M|H_2|N$ с обратной связью

Система имеет N обслуживающих приборов. Заявки поступают в систему согласно простейщиму потоку с параметром λ . Каждая заявка занимеет один из свободных приборов на время, распределенное по гиперэкспоненциальному закону. Это означает, что заявка на приборе с вероятностью q поступает на первую фазу, с экспоненциальным распределением с параметром μ_1 , и с вероятность 1-q на вторую, с параметром μ_2 .

После завершения обслуживания заявка с вероятностью r_0 покидает систему, с вероятностью r_1 мгновенно поступает на повторное обслуживание и с вероятностью r_2 уходит на орбиту. Также, если на момент поступления заявки из потока все приборы заняты, то заявка уходит на орбиту. Через время, продолжительность которого распределена по экспоненциальному закону с пареметром σ , заявка вновь обращается с орбиты к приборам.

Пусть i(t) – число заявок на орбите в момент времени $t, n_1(t)$ – число приборов занятых на первой фазе в момент времени $t, n_2(t)$ – число приборов занятых на второй фазе в момент времени t.

Рассмотрим трехмерный процесс $\{n_1(t),n_2(t),i(t)\}$. Под состоянием системы будем понимать состояние процесса $\{n_1(t),n_2(t),i(t)\}$ в момент времени t.

Обозначим вероятности следующим образом

$$P(n_1(t) = n_2, n_2(t) = n_2, i(t) = i) = P_{n_1, n_2}(i,t)$$

вероятность того, что n_1 – приборов занято на первой фазе, а n_2 – приборов занято на второй фазе. При этом $P_{n_1,n_2}(i,t)=0$, если $n_1 < 0$, $n_2 < 0$ или $n_1+n_2 > N$.

Для решения будем применять методы асимптотически анализа предложенные в [1, 7, 9, 11] и асимптотически диффузионного анализа предложенные в [1].

2.2 Уравнения Колмогорова

Для данных вероятностей составим систему уравнений в конечных разностях [4, 5, 6]. Для упрощения выражений введем индикатор

$$E_a^b = \begin{cases} 1, & a = b \\ 0, & a \neq b, \end{cases}$$
$$\overline{E}_a^b = 1 - E_a^b.$$

$$\begin{split} P_{n_1,n_2}(i,t+\Delta t) = & (1-\Delta t(\lambda+i\sigma\overline{E}^N_{n_1+n_2}+\mu_1n_1+\mu_2n_2))P_{n_1,n_2}(i,t) + \Delta t\mu_1r_1qn_1P_{n_1,n_2}(i,t) + \\ & + \Delta t\mu_2(1-q)r_1n_2P_{n_1,n_2}(i,t) + \Delta t\lambda E^N_{n_1+n_2}P_{n_1,n_2}(i-1,t) + \\ & + \Delta t\lambda qP_{n_1-1,n_2}(i,t) + \Delta t(i+1)\sigma qP_{n_1-1,n_2}(i+1,t) + \\ & + \Delta t\lambda(1-q)P_{n_1,n_2-1}(i,t) + \Delta t(i+1)\sigma(1-q)P_{n_1,n_2-1}(i+1,t) + \\ & + \Delta t\mu_1r_0(n_1+1)P_{n_1+1,n_2}(i,t) + \Delta t\mu_1r_2(n_1+1)P_{n_1+1,n_2}(i-1,t) + \\ & + \Delta t\mu_2r_0(n_2+1)P_{n_1,n_2+1}(i,t) + \Delta t\mu_2r_2(n_2+1)P_{n_1,n_2+1}(i-1,t) + \\ & + \Delta t\mu_2r_1q(n_2+1)P_{n_1-1,n_2+1}(i,t) + o(\Delta t). \end{split}$$

Расскроем скобки, разделим на каждое уравнение на Δt , получим

$$\begin{split} \frac{P_{n_1,n_2}(i,t+\Delta t)-P_{n_1,n_2}(i,t)}{\Delta t} &= -\left(\lambda+i\sigma\overline{E}_{n_1+n_2}^N+\mu_1n_1+\mu_2n_2\right)P_{n_1,n_2}(i,t) + \\ &+ n_1\mu_1r_1qP_{n_1,n_2}(i,t)+\mu_2r_1(1-q)n_2P_{n_1,n_2}(i,t) + \lambda E_{n_1+} \\ &+ n_2^NP_{n_1,n_2}(i-1,t)+\lambda qP_{n_1-1,n_2}(i,t) + \\ &+ + (i+1)\sigma qP_{n_1-1,n_2}(i+1,t)\lambda(1-q)P_{n_1,n_2-1}(i,t) + \\ &+ (i+1)\sigma(1-q)P_{n_1,n_2-1}(i+1,t)+\mu_1r_0(n_1+1)P_{n_1+1,n_2}(i,t) + \\ &+ \mu_1r_2(n_1+1)P_{n_1+1,n_2}(i-1,t) + \mu_2r_0(n_2+1)P_{n_1,n_2+1}(i,t) \\ &+ + \mu_2r_2(n_2+1)P_{n_1,n_2+1}(i-1,t) + \\ &+ \mu_1r_1(1-q)(n_1+1)P_{n_1+1,n_2-1}(i,t) + \mu_2r_1q(n_2+1)P_{n_1-1,n_2+1}(i,t) \\ &+ o(\Delta t)/\Delta t. \end{split}$$

Устремим $\Delta t \to 0$, получим

$$\frac{dP_{n_1,n_2}(i,t)}{\partial t} = -\left(\lambda + i\sigma \overline{E}_{n_1+n_2}^N + \mu_1 n_1 + \mu_2 n_2\right) P_{n_1,n_2}(i,t) + \mu_1 r_1 q n_1 P_{n_1,n_2}(i,t) + \mu_2 r_1 (1-q) n_2 P_{n_1,n_2}(i,t) + \lambda E_{n_1+n_2}^N P_{n_1,n_2}(i-1,t) + \mu_2 q P_{n_1-1,n_2}(i,t) + (i+1)\sigma q P_{n_1-1,n_2}(i+1,t) + \mu_1 r_0 (n_1+1) P_{n_1,n_2-1}(i,t) + (i+1)\sigma (1-q) P_{n_1,n_2-1}(i+1,t) + \mu_2 r_0 (n_2+1) P_{n_1,n_2+1}(i,t) + \mu_2 r_2 (n_2+1) P_{n_1,n_2+1}(i-1,t) + \mu_2 r_1 q (n_2+1) P_{n_1,n_2+1}(i,t) + \mu_2 r_1 q (n_2+1) P_{n_1-1,n_2+1}(i,t).$$

Введем частичные характеристические функции

$$H_{n_1,n_2}(u,t) = \sum_{i=0}^{\infty} e^{iuj} P_{n_1,n_2}(i,t).$$

Тогда уравнения будут иметь вид

$$\begin{split} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} &= -\left(\lambda + \mu_1 n_1 + \mu_2 n_2\right) H_{n_1,n_2}(u,t) + j\sigma \overline{E}_{n_1+n_2}^N \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ &\quad + \mu_1 r_1 q n_1 H_{n_1,n_2}(u,t) + \mu_2 r_1 (1-q) n_2 H_{n_1,n_2}(u,t) + \lambda e^{ju} E_{n_1+n_2}^N H_{n_1,n_2}(u,t) + \\ &\quad + \lambda q H_{n_1-1,n_2}(u,t) - j\sigma q e^{-ju} \frac{\partial H_{n_1-1,n_2}(u,t)}{\partial u} + \\ &\quad + \lambda (1-q) H_{n_1,n_2-1}(u,t) - j\sigma (1-q) e^{-ju} \frac{\mathrm{d} H_{n_1,n_2-1}(u,t)}{\mathrm{d} u} + \\ &\quad + \mu_1 r_0 (n_1+1) H_{n_1+1,n_2}(u,t) + \mu_1 r_2 e^{ju} (n_1+1) H_{n_1+1,n_2}(u,t) + \\ &\quad + \mu_2 r_0 (n_2+1) H_{n_1,n_2+1}(u,t) + \mu_2 r_2 e^{ju} (n_2+1) H_{n_1,n_2+1}(u,t) + \\ &\quad + \mu_1 r_1 (1-q) (n_1+1) H_{n_1+1,n_2-1}(u,t) + (n_2+1) \mu_2 r_1 q H_{n_1-1,n_2+1}(u,t). \end{split}$$

Просуммируем по n_1 и n_2

$$\begin{split} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} &= -\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} H_{n_1,n_2}(u,t) + j\sigma \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \overline{E}_{n_1+n_2}^{N} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} - \\ &- \mu_1 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) - \mu_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) + \\ &+ \mu_1 r_1 q \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \mu_2 r_1 (1-q) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) + \\ &+ \lambda e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} E_{n_1+n_2}^{N} H_{n_1,n_2}(u,t) + \\ &+ \lambda q \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} H_{n_1-1,n_2}(u,t) - j\sigma q e^{-ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1-1,n_2}(u,t)}{\partial u} + \\ &+ \lambda (1-q) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} H_{n_1,n_2-1}(u,t) u - j\sigma (1-q) e^{-ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2-1}(u,t)}{\partial u} + \\ &+ \mu_1 r_0 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} (n_1+1) H_{n_1+1,n_2}(u,t) + \mu_1 r_2 e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} (n_1+1) H_{n_1+1,n_2}(u,t) + \\ &+ \mu_2 r_0 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} (n_2+1) H_{n_1,n_2+1}(u,t) + \mu_2 r_2 e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} (n_2+1) H_{n_1,n_2+1}(u,t) + \\ &+ \mu_2 r_1 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} (n_2+1) H_{n_1-1,n_2+1}(u,t). \end{split}$$

Преобразуем

$$\begin{split} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} &= -\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} H_{n_1,n_2}(u,t) + +j\sigma \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} - \\ &- \mu_1(r_0+r_2) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) - \mu_2(r_0+r_2) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) + \\ &+ \lambda e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} H_{n_1,n_2}(u,t) + \\ &+ \lambda q \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} H_{n_1,n_2}(u,t) - j\sigma q e^{-ju} \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ &+ \lambda (1-q) \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} H_{n_1,n_2}(u,t) - j\sigma (1-q) e^{-ju} \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ &+ \mu_1 r_0 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \mu_1 r_2 e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \\ &+ \mu_2 r_0 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) + \mu_2 r_2 e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t). \end{split}$$

Приведем подобные слагаемые

$$\begin{split} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} = & \lambda(e^{ju}-1) \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} H_{n_1,n_2}(u,t) - \\ & - j\sigma q(e^{-ju}-1) \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} - \\ & - j\sigma(1-q)(e^{-ju}-1) \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ & + \mu_1 r_2(e^{ju}-1) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \mu_2 r_2(e^{ju}-1) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) + \mu_2 r_2(e^{ju}-1) \sum_{n_1=0}^{N} \sum_{n_1=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) + \mu_2 r_2(e^{ju}-1) \sum_{n_1=0}^{N} n_2 H_{n_1,n$$

$$\sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} = \lambda(e^{ju} - 1) \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} H_{n_1,n_2}(u,t) -$$

$$- j\sigma(e^{-ju} - 1) \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} +$$

$$+ \mu_1 r_2(e^{ju} - 1) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \mu_2 r_2(e^{ju} - 1) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t)$$

Вынесем $(e^{ju}-1)$

$$\begin{split} \sum_{n_1=0}^N \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} = & (e^{ju}-1) \bigg\{ \lambda \sum_{n_1=0}^N \sum_{n_2=N-n_1}^{N-n_1} H_{n_1,n_2}(u,t) + \\ & + j \sigma e^{-ju} \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ & + \mu_1 r_2 \sum_{n_1=0}^N \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \mu_2 r_2 \sum_{n_1=0}^N \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) \bigg\}. \end{split}$$

Получим уравнения

$$\begin{split} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} &= -\left(\lambda + \mu_1 n_1 + \mu_2 n_2\right) H_{n_1,n_2}(u,t) + j\sigma \overline{E}_{n_1+n_2}^N \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ &\quad + \mu_1 r_1 q n_1 H_{n_1,n_2}(u,t) + \mu_2 r_1 (1-q) n_2 H_{n_1,n_2}(u,t) + \\ &\quad + \lambda e^{ju} E_{n_1+n_2}^N H_{n_1,n_2}(u,t) + \\ &\quad + \lambda q H_{n_1-1,n_2}(u,t) - j\sigma q e^{-ju} \frac{\partial H_{n_1-1,n_2}(u,t)}{\partial u} + \\ &\quad + \lambda (1-q) H_{n_1,n_2-1}(u,t) - j\sigma (1-q) e^{-ju} \frac{\mathrm{d} H_{n_1,n_2-1}(u,t)}{\mathrm{d} u} + \\ &\quad + \mu_1 r_0(n_1+1) H_{n_1+1,n_2}(u,t) + \mu_1 r_2 e^{ju} (n_1+1) H_{n_1+1,n_2}(u,t) + \\ &\quad + \mu_2 r_0(n_2+1) H_{n_1,n_2+1}(u,t) + \mu_2 r_2 e^{ju} (n_2+1) H_{n_1,n_2+1}(u,t) + \\ &\quad + \mu_1 r_1 (1-q) (n_1+1) H_{n_1+1,n_2-1}(u,t) + (n_2+1) \mu_2 r_1 q H_{n_1-1,n_2+1}(u,t), \end{split}$$

$$\sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} \frac{\partial H_{n_{1},n_{2}}(u,t)}{\partial t} = (e^{ju} - 1) \left\{ \lambda \sum_{n_{1}=0}^{N} \sum_{n_{2}=N-n_{1}}^{N-n_{1}} H_{n_{1},n_{2}}(u,t) + \frac{1}{2} \int_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-1} \frac{\partial H_{n_{1},n_{2}}(u,t)}{\partial u} + \frac{1}{2} \int_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{1} H_{n_{1},n_{2}}(u,t) + \mu_{2} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{2} H_{n_{1},n_{2}}(u,t) \right\}.$$
(39)

2.3 Первый этап асимптотического анализа

Будем решать уравнения (39) методом асимптотического анализа. Сделаем замены

$$\sigma = \varepsilon, \tau = t\varepsilon, u = \varepsilon w, H_{n_1, n_2}(u, t) = F_{n_1, n_2}(w, \tau, \varepsilon).$$

Тогда мы можем переписать уравнения (39)

$$\varepsilon \frac{\partial F_{n_{1},n_{2}}(w,\tau,\varepsilon)}{\partial \tau} = -\left(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}\right)F_{n_{1},n_{2}}(w,\tau,\varepsilon) + j\overline{E}_{n_{1}+n_{2}}^{N} \frac{\partial F_{n_{1},n_{2}}(w,\tau,\varepsilon)}{\partial w} + \mu_{1}r_{1}qn_{1}F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \mu_{2}r_{1}(1-q)n_{2}F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \lambda e^{j\varepsilon w}E_{n_{1}+n_{2}}^{N}F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \lambda qF_{n_{1}-1,n_{2}}(w,\tau,\varepsilon) - jqe^{-j\varepsilon w} \frac{\partial F_{n_{1}-n_{2}}(w,\tau,\varepsilon)}{\partial w} + \lambda(1-q)F_{n_{1},n_{2}-1}(w,\tau,\varepsilon) - j(1-q)e^{-j\varepsilon w} \frac{\partial F_{n_{1},n_{2}}(w,\tau,\varepsilon)}{\partial w} + \mu_{1}r_{0}(n_{1}+1)F_{n_{1}+1,n_{2}}(w,\tau,\varepsilon) + \mu_{2}r_{2}(n_{2}+1)e^{j\varepsilon w}(n_{1}+1)F_{n_{1}+1,n_{2}}(w,\tau,\varepsilon) + \mu_{2}r_{0}(n_{2}+1)F_{n_{1},n_{2}+1}(w,\tau,\varepsilon) + \mu_{2}r_{2}(n_{2}+1)e^{j\varepsilon w}F_{n_{1},n_{2}+1}(w,\tau,\varepsilon) + \mu_{2}r_{1}q(n_{2}+1)F_{n_{1}-1,n_{2}+1}(w,\tau,\varepsilon),$$

$$\varepsilon \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} \frac{\partial F_{n_{1},n_{2}}(w,\tau,\varepsilon)}{\partial \tau} = (e^{j\varepsilon w}-1) \left\{ \lambda \sum_{n_{1}=0}^{N} \sum_{n_{2}=N-n_{1}}^{N-1} F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \mu_{2}r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{2}F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \mu_{2}r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{1}F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \mu_{2}r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{2}F_{n_{1},n_{2}}(w,\tau,\varepsilon) \right\}.$$

$$(40)$$

При условии, что $\varepsilon \to 0$, можно доказать следующее утверждение.

Теорема 2.1. Компоненты $R_{n_1,n_2}(x)$ распределения вероятностей числа приборов, занятых на первой и второй фазе имеет вид

$$R_{n_1,n_2}(x) = \frac{L_{n_1,n_2}(x)}{c(x)},\tag{41}$$

где

$$L_{n_1,n_2}(x) = (\mu_1 \mu_2 (1 - r_1))^{N - (n_1 + n_2)} \frac{N!}{(n_1 + n_2)!} C_{n_1 + n_2}^{n_2} (\mu_1 (1 - q))^{n_2} (\mu_2 q)^{n_1} (\lambda + x)^{n_1 + n_2},$$

$$c(x) = \sum_{n_1 = 0}^{N} \sum_{n_2 = 0}^{N - n_1} L_{n_1,n_2}.$$

$$x = x(\tau); x'(\tau) = a(x) = \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} R_{n_1,n_2} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} R_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 R_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 R_{n_1,n_2}.$$

Доказательство. Рассмотрим первое уравнение системы (40) в пределе $\varepsilon \to 0$, обозначим

$$\lim_{\varepsilon \to 0} F_{n_1, n_2}(w, \tau, \varepsilon) = F_{n_1, n_2}(w, \tau)$$

и получим

$$-(\lambda + n_{1}\mu_{1} + n_{2}\mu_{2})F_{n_{1},n_{2}}(w,\tau) + j\overline{E}_{n_{1}+n_{2}}^{N} \frac{\partial F_{n_{1},n_{2}}((w,\tau)}{\partial w} + \mu_{1}r_{1}qn_{1}F_{n_{1},n_{2}}(w,\tau) + \mu_{2}r_{1}(1-q)n_{2}F_{n_{1},n_{2}}(w,\tau) + \mu_{2}E_{n_{1}+n_{2}}^{N}F_{n_{1},n_{2}}(w,\tau) + \lambda qF_{n_{1}-1,n_{2}}(w,\tau) - jq\frac{\partial F_{n_{1}-1,n_{2}}(w,\tau)}{\partial w} + \lambda(1-q)F_{n_{1},n_{2}-1}(w,\tau) - j(1-q)\frac{\partial F_{n_{1},n_{2}-1}(u,t)}{\partial w} + \mu_{1}r_{0}(n_{1}+1)F_{n_{1}+1,n_{2}}(w,\tau) + \mu_{2}r_{0}(n_{2}+1)F_{n_{1},n_{2}+1}(w,\tau) + \mu_{2}r_{2}(n_{2}+1)F_{n_{1},n_{2}+1}(w,\tau) + \mu_{2}r_{2}(n_{2}+1)F_{n_{1},n_{2}+1}(w,\tau) + \mu_{2}r_{1}q(n_{2}+1)F_{n_{1}-1,n_{2}+1}(w,\tau) + \mu_{2}r_{1}q(n_{2}+1)F_{n_{1}-1,n_{2}+1}(w,\tau) = 0.$$

$$(42)$$

Находим решение уравнения (42) в виде $F_{n_1,n_2}(w,\tau)=L_{n_1,n_2}e^{jwx(\tau)}.$ Получим следующую систему

$$-(\lambda + \mu_{1}n_{1} + n_{2}\mu_{2})L_{n_{1},n_{2}} - x(\tau)\overline{E}_{n_{1}+n_{2}}^{N}L_{n_{1},n_{2}} +$$

$$+ \mu_{1}r_{1}qn_{1}L_{n_{1},n_{2}} + \mu_{2}r_{1}(1-q)n_{2}L_{n_{1},n_{2}} +$$

$$+ \lambda E_{n_{1}+n_{2}}^{N}L_{n_{1},n_{2}} + \lambda qL_{n_{1}-1,n_{2}} +$$

$$+ x(\tau)qL_{n_{1}-1,n_{2}} + \lambda(1-q)L_{n_{1},n_{2}-1} +$$

$$+ x(\tau)(1-q)L_{n_{1},n_{2}-1} + \mu_{1}r_{0}(n_{1}+1)L_{n_{1}+1,n_{2}} +$$

$$+ \mu_{1}r_{2}(n_{1}+1)L_{n_{1}+1,n_{2}} + \mu_{2}r_{0}(n_{2}+1)L_{n_{1},n_{2}+1} +$$

$$+ \mu_{2}r_{2}(n_{2}+1)L_{n_{1},n_{2}+1} +$$

$$+ \mu_{1}r_{1}(1-q)(n_{1}+1)L_{n_{1}+1,n_{2}-1} +$$

$$+ \mu_{2}r_{1}q(n_{2}+1)L_{n_{1}-1,n_{2}+1} = 0,$$

ИЛИ

$$L_{n_{1},n_{2}}\left\{-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) - x(\tau)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1-q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N}\right\} + L_{n_{1}-1,n_{2}}\left\{\lambda q + x(\tau)q\right\} + L_{n_{1},n_{2}-1}\left\{\lambda (1-q) + x(\tau)(1-q)\right\} + L_{n_{1},n_{2}-1}\left\{\mu_{1}r_{0}(n_{1}+1) + \mu_{1}r_{2}(n_{1}+1)\right\} + L_{n_{1}+1,n_{2}}\left\{\mu_{2}r_{0}(n_{2}+1) + \mu_{2}r_{2}(n_{2}+1)\right\} + L_{n_{1}+1,n_{2}-1}\mu_{1}r_{1}(1-q)(n_{1}+1) + L_{n_{1}-1,n_{2}+1}\mu_{2}r_{1}q(n_{2}+1) = 0.$$

$$(43)$$

Чтобы доказать утверждение (41) воспользуемся символьным исчислением на языке Python, с помощью библиотеки SymPy [15]. Однако, чтобы сделать это, нужно избавится от индикаторов, поэтому рассмотрим частные случаи.

$$n_1 = 0, n_2 = 0$$
:

$$L_{0,0}\{-\lambda - x(\tau)\} + L_{1,0}\{\mu_1 r_0 + \mu_1 r_2\} + L_{0,1}\{\mu_2 r_0 + \mu_2 r_2\} = 0.$$

$$(44)$$

$$n_1 = 0, n_2 > 0, n_1 + n_2 < N$$
:

$$L_{0,n_2} \{ -(\lambda + \mu_2 n_2) - x(\tau) + \mu_2 r_1 (1 - q) n_2 \} +$$

$$+ L_{0,n_2-1} \{ \lambda (1 - q) + x(\tau) (1 - q) \} +$$

$$+ L_{1,n_2} \{ \mu_1 r_0 + \mu_1 r_2 \} +$$

$$+ L_{0,n_2+1} \{ \mu_2 r_0 (n_2 + 1) + \mu_2 r_2 (n_2 + 1) \} +$$

$$+ L_{1,n_2-1} \mu_1 r_1 (1 - q) = 0.$$
(45)

 $n_1 > 0, n_2 = 0, n_1 + n_2 < N$:

$$L_{n_{1},0}\{-(\lambda + \mu_{1}n_{1}) - x(\tau) + \mu_{1}r_{1}qn_{1}\} +$$

$$+ L_{n_{1}-1,0}\{\lambda q + x(\tau)q\} +$$

$$+ L_{n_{1}+1,0}\{\mu_{1}r_{0}(n_{1}+1) + \mu_{1}r_{2}(n_{1}+1)\} +$$

$$+ L_{n_{1},1}\{\mu_{2}r_{0} + \mu_{2}r_{2}(n_{2}+1)\} +$$

$$+ L_{n_{1}-1,n_{2}+1}\mu_{2}r_{1}q(n_{2}+1) = 0.$$
(46)

 $n_1 > 0, n_2 > 0, n_1 + n_2 < N$:

$$L_{n_{1},n_{2}}\left\{-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) - x(\tau) + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1-q)n_{2}\right\} + L_{n_{1}-1,n_{2}}\left\{\lambda q + x(\tau)q\right\} + L_{n_{1},n_{2}-1}\left\{\lambda(1-q) + x(\tau)(1-q)\right\} + L_{n_{1},n_{2}-1}\left\{\mu_{1}r_{0}(n_{1}+1) + \mu_{1}r_{2}(n_{1}+1)\right\} + L_{n_{1},n_{2}+1}\left\{\mu_{2}r_{0}(n_{2}+1) + \mu_{2}r_{2}(n_{2}+1)\right\} + L_{n_{1}+1,n_{2}-1}\mu_{1}r_{1}(1-q)(n_{1}+1) + L_{n_{1}-1,n_{2}+1}\mu_{2}r_{1}q(n_{2}+1) = 0.$$

$$(47)$$

 $n_1 = 0, n_2 = N$:

$$L_{0,N}\{-(\lambda + N\mu_2) + N\mu_2 r_1(1-q) + \lambda\} + L_{0,N-1}\{\lambda(1-q) + x(\tau)(1-q)\} + L_{1,N-1}\mu_1 r_1(1-q) = 0.$$
(48)

 $n_1 = N, n_2 = 0$:

$$L_{N,0}\{-N\mu_1 + N\mu_2 r_1 q\} + L_{N-1,0}\{\lambda q + x(\tau)q\} + L_{N-1,1}\mu_2 r_1 q = 0.$$

$$(49)$$

 $n_1 + n_2 = N, n_1 \neq N, n_2 \neq N$:

$$L_{n_{1},n_{2}}\left\{-(\mu_{1}n_{1} + \mu_{2}n_{2}) + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1-q)n_{2}\right\} + L_{n_{1}-1,n_{2}}\left\{\lambda q + x(\tau)q\right\} + L_{n_{1},n_{2}-1}\left\{\lambda(1-q) + x(\tau)(1-q)\right\} + L_{n_{1},n_{2}-1}(n_{1}+1)\mu_{1}r_{1}(1-q) + L_{n_{1}-1,n_{2}+1}\mu_{2}r_{1}q(n_{2}+1) = 0.$$
(50)

Подставляя (41) в предложенные равенства, получим тождество. Следовательно (41)

является решением. Заметим, что

$$\sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} R_{n_1,n_2} = 1.$$

Для этого разделим полученное решение на сумму всех L_{n_1,n_2}

$$c = \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} L_{n_1,n_2}.$$

Получим

$$R_{n_1,n_2} = \frac{L_{n_1,n_2}}{c}.$$

Найдем $x = x(\tau)$. Рассмотрим второе уравнение системы (53)! в пределе $\varepsilon \to 0$.

$$\begin{split} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial F_{n_1,n_2}(w,\tau)}{\partial \tau} = & jw \bigg\{ \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} F_{n_1,n_2}(w,\tau,\varepsilon) + \\ & + j \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial F_{n_1,n_2}(w,\tau)}{\partial w} + \\ & + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 F_{n_1,n_2}(w,\tau) + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 F_{n_1,n_2}(w,\tau) \bigg\}. \end{split}$$

Выполним замену $F_{n_1,n_2}(w, au) = R_{n_1,n_2}e^{jwx(au)}$, тогда

$$x'(\tau) = \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} R_{n_1,n_2} - x(\tau) \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} R_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 R_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 R_{n_1,n_2}.$$

Обозначим через

$$x'(\tau) = a(x) = \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} R_{n_1,n_2} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} R_{n_1,n_2} +$$

$$+ \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 R_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 R_{n_1,n_2}.$$
(51)

Теорема доказана.

2.4 Второй этап асимптотического анализа

В системе (39) сделаем замену

$$H_{n_1,n_2}(u,t) = e^{j\frac{u}{\sigma}x(\sigma t)}H_{n_1,n_2}^{(1)}(u,t),$$

получим систему

$$\frac{\partial H_{n_{1},n_{2}}^{(1)}(u,t)}{\partial t} + jux'(\sigma t)H_{n_{1},n_{2}}^{(1)}(u,t) = -(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2})H_{n_{1},n_{2}}^{(1)}(u,t) + \\
+ j\sigma \overline{E}_{n_{1}}^{N} \frac{\partial H_{n_{1},n_{2}}^{(1)}(u,t)}{\partial u} - x(\sigma t)\overline{E}_{n_{1}+n_{2}}^{N}H_{n_{1},n_{2}}^{(1)} + \\
+ \mu_{1}r_{1}qn_{1}H_{n_{1},n_{2}}^{(1)}(u,t) + \mu_{2}r_{1}(1-q)n_{2}H_{n_{1},n_{2}}^{(1)}(u,t) + \\
+ \lambda e^{i\nu}E_{n_{1}+n_{2}}^{N}H_{n_{1},n_{2}}^{(1)}(u,t) + \\
+ \lambda qH_{n_{1}-1,n_{2}}^{(1)}(u,t) - j\sigma qe^{-ju}\frac{\partial H_{n_{1}-1,n_{2}}^{(1)}(u,t)}{\partial u} + \\
+ qe^{-ju}x(\sigma t)H_{n_{1}-1,n_{2}}^{(1)}(u,t) + \\
+ \lambda(1-q)H_{n_{1},n_{2}-1}^{(1)}(u,t) - j\sigma(1-q)e^{-ju}\frac{dH_{n_{1},n_{2}-1}^{(1)}}{du} + \\
+ (1-q)e^{-ju}x(\sigma t)H_{n_{1},n_{2}-1}^{(1)}(u,t) + \\
+ \mu_{1}r_{0}(n_{1}+1)H_{n_{1}+1,n_{2}}^{(1)}(u,t) + \\
+ \mu_{1}r_{0}(n_{2}+1)H_{n_{1}+1,n_{2}}(u,t) + \\
+ \mu_{2}r_{2}e^{iu}(n_{1}+1)H_{n_{1}+1,n_{2}-1}^{(1)}(u,t) + \\
+ \mu_{2}r_{2}e^{iu}(n_{2}+1)H_{n_{1},n_{2}+1}(u,t) + \\
+ (n_{2}+1)\mu_{2}r_{1}qH_{n_{1}-1,n_{2}+1}^{(1)}(u,t) + \\
+ (n_{2}+1)\mu_{2}r_{1}qH_{n_{1}-1,n_{2}+1}^{(1)}(u,t) + \\
+ e^{-ju}\sum_{n_{1}=0}^{N}\sum_{n_{2}=0}^{N-n_{1}} \left[j\sigma\frac{\partial H_{n_{1},n_{2}}^{(1)}(u,t)}{\partial u} - \\
- x(\sigma t)H_{n_{1},n_{2}}^{(1)}(u,t) \right] + \\
+ \mu_{1}r_{2}\sum_{n_{1}=0}^{N}\sum_{n_{2}=0}^{N-n_{1}} n_{1}H_{n_{1},n_{2}}^{(1)}(u,t) + \\
+ \mu_{2}r_{2}\sum_{n_{1}=0}^{N-n_{1}} n_{2}H_{n_{1},n_{2}}^{(1)}(u,t) \right\}.$$
(52)

С учетом (51) перепишем систему (52)

$$\frac{\partial H_{n_{1},n_{2}}^{(1)} c(u,t)}{\partial t} + jua(x)H_{n_{1},n_{2}}^{(1)}(u,t) = -\left(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}\right)H_{n_{1},n_{2}}^{(1)}(u,t) + \\
+ j\sigma\overline{E}_{n_{1}+n_{2}}^{N} \frac{\partial H_{n_{1},n_{2}}^{(1)}(u,t)}{\partial u} - x\overline{E}_{n_{1}+n_{2}}^{N}H_{n_{1},n_{2}}^{(1)} + \\
+ \mu_{1}r_{1}q_{n}H_{n_{1},n_{2}}^{(1)}(u,t) + \mu_{2}r_{1}(1-q)n_{2}H_{n_{1},n_{2}}^{(1)}(u,t) + \\
+ \lambda e^{ju}E_{n_{1}+n_{2}}^{N}H_{n_{1},n_{2}}^{(1)}(u,t) + \\
+ \lambda qH_{n_{1}-1,n_{2}}^{(1)}(u,t) - j\sigma qe^{-ju}\frac{\partial H_{n_{1}-1,n_{2}}^{(1)}(u,t)}{\partial u} + \\
+ qe^{-ju}xH_{n_{1}-1,n_{2}}^{(1)}(u,t) + \\
+ \lambda(1-q)H_{n_{1},n_{2}-1}^{(1)}(u,t) - j\sigma(1-q)e^{-ju}\frac{\partial H_{n_{1},n_{2}-1}^{(1)}(u,t)}{\partial u} + \\
+ (1-q)e^{-ju}xH_{n_{1},n_{2}-1}^{(1)}(u,t) + \\
+ \mu_{1}r_{0}(n_{1}+1)H_{n_{1}+1,n_{2}}^{(1)}(u,t) + \\
+ \mu_{1}r_{0}(n_{1}+1)H_{n_{1}+1,n_{2}}^{(1)}(u,t) + \\
+ \mu_{2}r_{0}(n_{2}+1)H_{n_{1},n_{2}+1}(u,t) + \\
+ \mu_{2}r_{2}e^{ju}(n_{1}+1)H_{n_{1},n_{2}+1}^{(1)}(u,t) + \\
+ \mu_{2}r_{2}e^{ju}(n_{2}+1)H_{n_{1},n_{2}+1}(u,t) + \\
+ (n_{2}+1)\mu_{2}r_{1}qH_{n_{1}-1,n_{2}+1}^{(1)}(u,t) + \\
+ (n_{2}+1)\mu_{2}r_{1}qH_{n_{1}-1,n_{2}+1}^{(1)}(u,t) + \\
+ e^{-ju}\sum_{n_{1}=0}^{N}\sum_{n_{2}=0}^{N-n_{1}} \left[\sigma j\frac{\partial H_{n_{1},n_{2}}^{(1)}(u,t)}{\partial u} - xH_{n_{1},n_{2}}^{(1)}(u,t)\right] + \\
+ \mu_{1}r_{2}\sum_{n_{1}=0}^{N}\sum_{n_{2}=0}^{N-n_{1}} n_{1}H_{n_{1},n_{2}}^{(1)}(u,t) + \\
+ \mu_{2}r_{2}\sum_{n_{1}=0}^{N-n_{1}}\sum_{n_{2}=0}^{N-n_{1}} n_{2}H_{n_{1},n_{2}}^{(1)}(u,t) + \\
+ \mu_{2}r_{2}\sum_{n_{1}=0}^{N-n_{1}}\prod$$

Обозначив $\sigma = \varepsilon^2$ и сделав следующие замены в (53)

$$\tau = t \varepsilon^2, u = \varepsilon w, H_{n_1, n_2}^{(1)}(u1, t) = F_{n_1, n_2}^{(1)}(w, \tau, \varepsilon),$$

можем написать

$$\varepsilon^{2} \frac{\partial F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon)}{\partial t} + j\varepsilon wa F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) = -(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2})F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ j\varepsilon \overline{E}_{n_{1}+n_{2}}^{N} \frac{\partial F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon)}{\partial w} - x\overline{E}_{n_{1}+n_{2}}^{N} F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{1}r_{1}qn_{1}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \mu_{2}r_{1}(1-q)n_{2}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \lambda e^{j\varepsilon w} F_{n_{1}-n_{1}}^{N}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \lambda qF_{n_{1}-1,n_{2}}^{(1)}(w,\tau,\varepsilon) - j\varepsilon qe^{-j\varepsilon w} \frac{\partial F_{n_{1}-1,n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ qe^{-jw}xF_{n_{1}-1,n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \lambda(1-q)F_{n_{1},n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\
+ (1-q)e^{-j\varepsilon w}xF_{n_{1},n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{1}r_{0}(n_{1}+1)F_{n_{1}+1,n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{1}r_{2}e^{j\varepsilon w}(n_{1}+1)F_{n_{1}+1,n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{2}r_{0}(n_{2}+1)F_{n_{1},n_{2}+1}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{2}r_{0}(n_{2}+1)F_{n_{1},n_{2}+1}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{1}r_{1}(1-q)(n_{1}+1)F_{n_{1}+1,n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{1}r_{1}(1-q)(n_{1}+1)F_{n_{1}+1,n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\
+ (n_{2}+1)\mu_{2}r_{1}qF_{n_{1}-1,n_{2}+1}^{(1)}(w,\tau,\varepsilon) + \\
+ (n_{2}+1)\mu_{2}r_{1}qF_{n_{1}-1,n_{2}+1}^{(1)}(w,\tau,\varepsilon) + \\
+ e^{-j\varepsilon w}\sum_{n_{1}=0}^{N-1}\sum_{n_{2}=0}^{N-1} \left[j\varepsilon \frac{\partial F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon)}{\partial u} - xF_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) \right] \\
+ \mu_{1}r_{2}\sum_{n_{1}=0}^{N-1}\sum_{n_{2}=0}^{N-1} n_{1}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{2}r_{2}\sum_{n_{1}=0}^{N-1}\sum_{n_{2}=0}^{N-1} n_{1}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{2}r_{2}\sum_{n_{1}=0}^{N-1}\sum_{n_{2}=0}^{N-1} n_{1}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{2}r_{2}\sum_{n_{1}=0}^{N-1}\sum_{n_{2}=0}^{N-1} n_{2}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \mu_{2}r_{2}\sum_{n_{1}=0}^{N-1}\sum_{n_{2}=0}^{N-1}n_{2}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\
+ \lambda$$

Перепишем первое уранение (54) с учетом разложения

$$e^{j\varepsilon w} = 1 + (j\varepsilon w) + O(\varepsilon^2),$$
 (55)

$$j\varepsilon waF_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) = -\left(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}\right)F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + j\varepsilon\overline{E}_{n_{1}+n_{2}}^{N}\frac{\partial F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon)}{\partial w} - x\overline{E}_{n_{1}+n_{2}}^{N}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{1}qn_{1}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \mu_{2}r_{1}(1-q)n_{2}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + \lambda E_{n_{1}+n_{2}}^{N}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + j\varepsilon w\lambda E_{n_{1}+n_{2}}^{N}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + \lambda qF_{n_{1}-n_{2}}^{(1)}(w,\tau,\varepsilon) - \varepsilon q\frac{\partial F_{n_{1}-n_{2}}^{(1)}(w,\tau,\varepsilon)}{\partial w} + \\ + qxF_{n_{1}-n_{2}}^{(1)}(w,\tau,\varepsilon) - j\varepsilon wqxF_{n_{1}-n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + \lambda (1-q)F_{n_{1},n_{2}-1}^{(1)}(w,\tau,\varepsilon) - j\varepsilon (1-q)\frac{dF_{n_{1},n_{2}-1}^{(1)}(w,\tau,\varepsilon)}{dw} + \\ + (1-q)xF_{n_{1},n_{2}-1}^{(1)}(w,\tau,\varepsilon) - j\varepsilon w(1-q)xF_{n_{1},n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{0}(n_{1}+1)F_{n_{1}+n_{2}}^{(1)}(w,\tau,\varepsilon) + j\varepsilon w\mu_{1}r_{2}(n_{1}+1)F_{n_{1}+1,n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{2}r_{0}(n_{2}+1)F_{n_{1},n_{2}+1}^{(1)}(w,\tau,\varepsilon) + j\varepsilon w\mu_{2}r_{2}(n_{2}+1)F_{n_{1},n_{2}+1}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{1}(1-q)(n_{1}+1)F_{n_{1}+n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{1}(1-q)(n_{1}+1)F_{n_{1}+n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{1}(1-q)(n_{1}+1)F_{n_{1}+n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{1}(1-q)(n_{1}+1)F_{n_{1}+n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\ + (n_{2}+1)\mu_{2}r_{1}qF_{n_{1}-1,n_{2}+1}^{(1)}(w,\tau,\varepsilon).$$
 (56)

Решение задачи (56) можно записать в виде разложения

$$F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) = \Phi(w,\tau)\{R_{n_1,n_2} + j\varepsilon w f_{n_1,n_2}\} + O(\varepsilon^2), \tag{57}$$

где $\Phi(w,\tau)$ – скалярная функция, форма которой определена ниже.

Получим

$$\begin{split} j\varepsilon wa\Phi(w,\tau)\{R_{n_{1},n_{2}}+j\varepsilon wf_{n_{1},n_{2}}\} =& \Phi(w,\tau)\{\{R_{n_{1},n_{2}}+j\varepsilon wf_{n_{1},n_{2}}\}\{-(\lambda+\mu_{1}n_{1}+\mu_{2}n_{2})+\\ &-x\overline{E}_{n_{1}+n_{2}}^{N}+\mu_{1}r_{1}qn_{1}+\mu_{2}r_{1}(1-q)n_{2}+\lambda E_{n_{1}+n_{2}}^{N}+j\varepsilon w\lambda E_{n_{1}+n_{2}}^{N}\}\\ &+\{R_{n_{1}-1,n_{2}}+j\varepsilon wf_{n_{1}-1,n_{2}}\}\{\lambda q+qx-j\varepsilon wqx\}+\\ &+\{R_{n_{1},n_{2}-1}+j\varepsilon wf_{n_{1},n_{2}-1}\}\{\lambda (1-q)+\\ &+(1-q)x-j\varepsilon w(1-q)x\}+\\ &+\{R_{n_{1}+1,n_{2}}+j\varepsilon wf_{n_{1}+1,n_{2}}\}\{\mu_{1}r_{0}(n_{1}+1)+\\ &+\mu_{1}r_{2}(n_{1}+1)+j\varepsilon w\mu_{1}r_{2}(n_{1}+1)\}+\\ &+\{R_{n_{1}+1,n_{2}+1}+j\varepsilon wf_{n_{1},n_{2}+1}\}\{\mu_{2}r_{0}(n_{2}+1)+\\ &+\mu_{2}r_{2}(n_{2}+1)+j\varepsilon w\mu_{2}r_{2}(n_{2}+1)\}+\\ &+\{R_{n_{1}+1,n_{2}+1}+j\varepsilon wf_{n_{1}-1,n_{2}-1}\}\mu_{1}r_{1}(1-q)(n_{1}+1)+\\ &+\{R_{n_{1}-1,n_{2}+1}+j\varepsilon wf_{n_{1}-1,n_{2}+1}\}(n_{2}+1)\mu_{2}r_{1}q\}+\\ &+\frac{\partial\Phi(w,t)}{\partial w}\{j\varepsilon\overline{E}_{n_{1}+n_{2}}^{N}\{R_{n_{1},n_{2}}+j\varepsilon wf_{n_{1},n_{2}}\}-\\ &-j\varepsilon q\{R_{n_{1}-1,n_{2}}+j\varepsilon wf_{n_{1}-1,n_{2}}\}-\\ &-j\varepsilon q\{R_{n_{1}-1,n_{2}}+j\varepsilon wf_{n_{1},n_{2}-1}\}\}. \end{split}$$

Тогда

$$\begin{split} j\varepsilon w a\Phi(w,\tau)R_{n_1,n_2} = &\Phi(w,\tau)\{\{R_{n_1,n_2}+j\varepsilon wf_{n_1,n_2}\}\{-(\lambda+\mu_1n_1+\mu_2n_2)+\\ &-x\overline{E}_{n_1+n_2}^N+\mu_1r_1qn_1+\mu_2r_1(1-q)n_2+\lambda E_{n_1+n_2}^N\}+j\varepsilon w\lambda E_{n_1+n_2}^NR_{n_1,n_2}+\\ &+\{R_{n_1-1,n_2}+j\varepsilon wf_{n_1-1,n_2}\}\{\lambda q+qx\}-j\varepsilon wqxR_{n_1-1,n_2}+\\ &+\{R_{n_1,n_2-1}+j\varepsilon wf_{n_1,n_2-1}\}\{\lambda(1-q)+\\ &+(1-q)x\}-j\varepsilon w(1-q)xR_{n_1,n_2-1}+\\ &+\{R_{n_1+1,n_2}+j\varepsilon wf_{n_1+1,n_2}\}\{\mu_1r_0(n_1+1)+\\ &+\mu_1r_2(n_1+1)\}+j\varepsilon w\mu_1r_2(n_1+1)R_{n_1+1,n_2}+\\ &+\{R_{n_1,n_2+1}+j\varepsilon wf_{n_1,n_2+1}\}\{\mu_2r_0(n_2+1)+\\ &+\mu_2r_2(n_2+1)\}+j\varepsilon w\mu_2r_2(n_2+1)R_{n_1,n_2+1}+\\ &+\{R_{n_1+1,n_2+1}+j\varepsilon wf_{n_1-1,n_2-1}\}\mu_1r_1(1-q)(n_1+1)+\\ &+\{R_{n_1-1,n_2+1}+j\varepsilon wf_{n_1-1,n_2+1}\}(n_2+1)\mu_2r_1q\}+\\ &+\frac{\partial\Phi(w,t)}{\partial w}\{j\varepsilon\overline{E}_{n_1+n_2}^NR_{n_1,n_2}-j\varepsilon qR_{n_1-1,n_2}-j\varepsilon(1-q)R_{n_1,n_2-1}\}. \end{split}$$

С учетом (43) разделим последнее уравнение на $\Phi(w,\tau)j\varepsilon w$ и положим $\varepsilon\to 0$

$$\begin{split} aR_{n_1,n_2} = & f_{n_1,n_2} \{ -(\lambda + \mu_1 n_1 + \mu_2 n_2) + \\ & - x \overline{E}_{n_1+n_2}^N + \mu_1 r_1 q n_1 + \mu_2 r_1 (1-q) n_2 + \lambda E_{n_1+n_2}^N \} + E_{n_1+n_2}^N R_{n_1,n_2} + \\ & + f_{n_1-1,n_2} \{ \lambda q + q x \} - q x R_{n_1-1,n_2} + \\ & + f_{n_1,n_2-1} \{ \lambda (1-q) + \\ & + (1-q) x \} - (1-q) x R_{n_1,n_2-1} + \\ & + f_{n_1+1,n_2} \{ \mu_1 r_0 (n_1+1) + \\ & + \mu_1 r_2 (n_1+1) \} + \mu_1 r_2 (n_1+1) R_{n_1+1,n_2} + \\ & + f_{n_1,n_2+1} \{ \mu_2 r_0 (n_2+1) + \\ & + \mu_2 r_2 (n_2+1) \} + \mu_2 r_2 (n_2+1) R_{n_1,n_2+1} + \\ & + f_{n_1-1,n_2-1} \mu_1 r_1 (1-q) (n_1+1) + \\ & + f_{n_1-1,n_2+1} (n_2+1) \mu_2 r_1 q + \\ & + \frac{\partial \Phi(w,t) / \partial w}{w \Phi(w,t)} \{ \overline{E}_{n_1+n_2}^N R_{n_1,n_2} - q R_{n_1-1,n_2} - (1-q) R_{n_1,n_2-1} \}. \end{split}$$

Перепишем последнее уравнение

$$f_{n_{1},n_{2}}\left\{-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) - x\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1-q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N}\right\} + f_{n_{1}-1,n_{2}}\left\{\lambda q + qx\right\} + f_{n_{1},n_{2}-1}\left\{\lambda (1-q) + (1-q)x\right\} + f_{n_{1},n_{2}-1}\left\{\lambda (1-q) + (1-q)x\right\} + f_{n_{1}+1,n_{2}}\left\{\mu_{1}r_{0}(n_{1}+1) + \mu_{1}r_{2}(n_{1}+1)\right\} + f_{n_{1}-1,n_{2}+1}\left\{\mu_{2}r_{0}(n_{2}+1) + \mu_{2}r_{2}(n_{2}+1)\right\} + f_{n_{1}-1,n_{2}-1}\mu_{1}r_{1}(1-q)(n_{1}+1) + f_{n_{1}-1,n_{2}+1}(n_{2}+1)\mu_{2}r_{1}q = = -aR_{n_{1},n_{2}} + E_{n_{1}+n_{2}}^{N}R_{n_{1},n_{2}} - qxR_{n_{1}-1,n_{2}} - (1-q)xR_{n_{1},n_{2}-1} + \mu_{1}r_{2}(n_{1}+1)R_{n_{1}+1,n_{2}} + \mu_{2}r_{2}(n_{2}+1)R_{n_{1},n_{2}+1} + \frac{\partial\Phi(w,t)/\partial w}{w\Phi(w,t)}\left\{\overline{E}_{n_{1}+n_{2}}^{N}R_{n_{1},n_{2}} - qR_{n_{1}-1,n_{2}} - (1-q)R_{n_{1},n_{2}-1}\right\}.$$
(59)

Решение f_{n_1,n_2} можно записать в виде

$$f_{n_1,n_2} = R_{n_1,n_2} + g - \varphi \frac{\partial \Phi(w,t)/\partial w}{w\Phi(w,t)},\tag{60}$$

которое мы подставляем в (59) и получаем

$$\varphi_{n_{1},n_{2}}(-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1 - q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N} - x\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ \varphi_{n_{1}-n_{2}}(\lambda q\overline{E}_{n_{1}}^{0} + xq\overline{E}_{n_{1}}^{0}) + \varphi_{n_{1},n_{2}-1}(\lambda(1 - q)\overline{E}_{n_{2}}^{0} + x(1 - q)\overline{E}_{n_{2}}^{0}) +$$

$$+ \varphi_{n_{1}+1,n_{2}}(\mu_{1}r_{0}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{2}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ \varphi_{n_{1},n_{2}+1}(\mu_{2}r_{0}(n_{2} + 1)\overline{E}_{n+n_{2}}^{N} + \mu_{2}r_{2}(n_{2} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ \varphi_{n_{1}+1,n_{2}-1}(1 - q)\mu_{1}r_{1}(n_{1} + 1) + \varphi_{n_{1}-1,n_{2}+1}q\mu_{2}r_{1}(n_{2} + 1) =$$

$$= R_{n_{1},n_{2}}x\overline{E}_{n_{1}+n_{2}}^{N} - R_{n_{1}-1,n_{2}}xq\overline{E}_{n_{1}}^{0} - R_{n_{1},n_{2}-1}x(1 - q)\overline{E}_{n_{2}}^{0},$$

$$g_{n_{1},n_{2}}(-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1 - q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N} - x\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ g_{n_{1}-1,n_{2}}(\lambda q\overline{E}_{n_{1}}^{0} + xq\overline{E}_{n_{1}}^{0}) + g_{n_{1},n_{2}-1}(\lambda(1 - q)\overline{E}_{n_{2}}^{0} + x(1 - q)\overline{E}_{n_{2}}^{0}) +$$

$$+ f_{n_{1}+1,n_{2}}(\mu_{1}r_{0}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{2}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ g_{n_{1},n_{2}+1}(\mu_{2}r_{0}(n_{2} + 1)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{2}r_{2}(n_{2} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ g_{n_{1}+1,n_{2}-1}(1 - q)\mu_{1}r_{1}(n_{1} + 1) + g_{n_{1}-1,n_{2}+1}q\mu_{2}r_{1}(n_{2} + 1) =$$

$$= R_{n_{1},n_{2}}a - \lambda R_{n_{1},n_{2}} + xq\overline{E}_{n_{1}}^{0}R_{n_{1}-1,n_{2}} + x(1 - q)\overline{E}_{n_{2}}^{0}R_{n_{1},n_{2}-1}$$

$$- \mu_{1}r_{2}(n_{1} + 1)R_{n_{1}+1,n_{2}}\overline{E}_{n_{1}+n_{2}}^{N} - \mu_{2}r_{2}(n_{2} + 1)R_{n_{1},n_{2}+1}\overline{E}_{n_{1}+n_{2}}^{N}.$$
(61)

Рассмотрим первое уравнение системы (43), дифференцируем его по x, получим уравнение

$$\frac{\partial R_{n_{1},n_{2}}}{\partial x} \left\{ -(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) - x(\tau)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1-q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N} \right\} + \\
+ \frac{\partial R_{n_{1}-1,n_{2}}}{\partial x} \left\{ \lambda q + x(\tau)q \right\} + \\
+ \frac{\partial R_{n_{1},n_{2}-1}}{\partial x} \left\{ \lambda (1-q) + x(\tau)(1-q) \right\} + \\
+ \frac{\partial R_{n_{1}+1,n_{2}}}{\partial x} \left\{ \mu_{1}r_{0}(n_{1}+1) + \mu_{1}r_{2}(n_{1}+1) \right\} + \\
+ \frac{\partial R_{n_{1},n_{2}+1}}{\partial x} \left\{ \mu_{2}r_{0}(n_{2}+1) + \mu_{2}r_{2}(n_{2}+1) \right\} + \\
+ \frac{\partial R_{n_{1}+1,n_{2}-1}}{\partial x} \mu_{1}r_{1}(1-q)(n_{1}+1) + \\
+ \frac{\partial R_{n_{1}-1,n_{2}+1}}{\partial x} \mu_{2}r_{1}q(n_{2}+1) - \\
- R_{n_{1},n_{2}}x\overline{E}_{n_{1}+n_{2}}^{N} + R_{n_{1}-1,n_{2}}xq\overline{E}_{n_{1}}^{0} + R_{n_{1},n_{2}-1}x(1-q)\overline{E}_{n_{2}}^{0} = 0.$$
(62)

Учитывая (62) и последнее уравнение для φ , запишем равенство

$$\varphi_{n_1,n_2} = \frac{\partial R_{n_1,n_2}}{\partial x},\tag{63}$$

где $\sum_{n_1=0}^{N}\sum_{n_2=0}^{N-n_1}\varphi_{n_1,n_2}=0$. В силу (61) g_{n_1,n_2} является частным решением системы (62). Следовательно, она удовлетворяет условию

$$\sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} g_{n_1,n_2} = 0. {(64)}$$

Тогда решение g_{n_1,n_2} системы (62), удовлетворяющее условию (64), определяется однозначно.

Теперь рассмотрим второе уравнение системы (54), в которую подставляем разложение (57)

$$\begin{split} & \varepsilon^{2} \frac{\partial \Phi(w,\tau)}{\partial \tau} + ja\varepsilon w \Phi(w,\tau) \bigg\{ 1 + j\varepsilon w \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} f_{n_{1},n_{2}} \bigg\} = \\ & = (j\varepsilon w + \frac{(j\varepsilon w)^{2}}{2}) \bigg[\lambda \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} \Phi(w,\tau) \{ R_{n_{1},n_{2}} + j\varepsilon w f_{n_{1},n_{2}} \} + \\ & + \mu_{1} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{1} \Phi(w,\tau) \{ R_{n_{1},n_{2}} + j\varepsilon w f_{n_{1},n_{2}} \} + \mu_{2} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{2} \Phi(w,\tau) \{ R_{n_{1},n_{2}} + j\varepsilon w f_{n_{1},n_{2}} \} + \\ & + j\varepsilon \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-n_{1}-1} \frac{\partial \Phi_{n_{1},n_{2}}}{\partial w} - (1 - j\varepsilon w) x \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-n_{1}-1} \Phi(w,\tau) \{ R_{n_{1},n_{2}} + j\varepsilon w f_{n_{1},n_{2}} \} \bigg]. \end{split}$$

Тогда с помощью уравнения (51)

$$\varepsilon^{2} \frac{\partial \Phi(w,\tau)}{\partial \tau} = (jw\varepsilon)^{2} \Phi(w,\tau) \left[\lambda \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} f_{n_{1},n_{2}} + \mu_{1} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{1} f_{n_{1},n_{2}} + \mu_{2} r_{2} \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-n_{1}-1} n_{2} f_{n_{1},n_{2}} - 2 \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} f_{n_{1},n_{2}} + 2 \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-n_{1}-1} R_{n_{1},n_{2}} - 2 \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} f_{n_{1},n_{2}} \right] + \frac{(j\varepsilon w)^{2}}{2} \Phi(w,\tau) \left[\lambda \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} R_{n_{1},n_{2}} + 2 \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} R_{n_{1},n_{2}} - 2 \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} f_{n_{1},n_{2}} \right] + (j\varepsilon)^{2} w \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-n_{1}-1} R_{n_{1},n_{2}} + 2 \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{2} R_{n_{1},n_{2}} - 2 \sum_{n_{1}=0}^{N-n_{1}-1} R_{n_{1},n_{2}} + 2 \sum_{n_{1}=0}^{N-n_{1}-1} R_{n_{1},n_{2}} + 2 \sum_{n_{1}=0}^{N-n_{1}-1} n_{2} R_{n_{1},n_{2}} - 2 \sum_{n_{1}=0}^{N-n_{1}-1} R_{n_{1},n_{2}} + 2 \sum_{n_{1}=0}^{N-n_{1}-1} R_{n_{1},n_{2}} + 2 \sum_{n_{1}=0}^{N-n_{1}-1} n_{2} R_{n_{1},n_$$

получаем следующее уравнение,

$$\frac{\partial \Phi(w,\tau)/\partial \tau}{\Phi(w,\tau)} = \frac{(jw)^2}{2} \Phi(w,\tau) \left[2\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} f_{n_1,n_2} + 2\mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 f_{n_1,n_2} + 2\mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 f_{n_1,n_2} + 2\mu_2 r_2 \sum_{n_1=0}^{N-n_1} n_2 f_{n_1,n_2} + 2\mu_2 r_2 \sum_{$$

в которое мы подставляем (60)

$$\frac{\partial \Phi(w,\tau)/\partial \tau}{\Phi(w,\tau)} = \frac{(jw)^2}{2} \Phi(w,\tau) \left[2\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} g_{n_1,n_2} + 2\mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 g_{n_1,n_2} + 2\mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 g_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} g_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2} + a \right] + w \frac{\partial \Phi(w,\tau)/\partial w}{\Phi(w,\tau)} \left[\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \varphi_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 \varphi_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 \varphi_{n_1,n_2} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} \varphi_{n_1,n_2} - \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2} \right].$$
(65)

Результатом второго этапа асимптотического анализа является b(x), определенная следующим образом

$$b(x) = 2\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} g_{n_1,n_2} + 2\mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 g_{n_1,n_2} + 2\mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 g_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} g_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2} + a.$$

2.5 Метод асимптотически диффузионного анализа

Построим аппроксимацию распределения вероятностей числа заявок на орбите методом асимптотически диффузионного анализа. Сформулируем и докажем следующую теорему.

Теорема 2.2. Ряд распределения вероятностей нормированного числа заявок на орбите можно аппроксимировать следующей функцией плотности вероятностей

$$\pi(z) = \frac{C}{b(z)} exp\left\{\frac{2}{\sigma} \int_{0}^{z} \frac{a(x)}{b(x)} dx\right\},\tag{66}$$

где C — нормировочная константа,

$$a(x) = \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} R_{n_1,n_2} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} R_{n_1,n_2} + \dots$$

$$+ \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 R_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 R_{n_1,n_2},$$

$$b(x) = 2\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} g_{n_1,n_2} + 2\mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 g_{n_1,n_2} + 2\mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 g_{n_1,n_2} - \dots$$

$$-2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} g_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} R_{n_1,n_2} + a,$$

 g_{n_1,n_2} определяется системой уравнений

$$g_{n_{1},n_{2}}(-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1 - q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N} - x\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ g_{n_{1}-1,n_{2}}(\lambda q \overline{E}_{n_{1}}^{0} + xq \overline{E}_{n_{1}}^{0}) + g_{n_{1},n_{2}-1}(\lambda (1 - q)\overline{E}_{n_{2}}^{0} + x(1 - q)\overline{E}_{n_{2}}^{0}) +$$

$$+ g_{n_{1}+1,n_{2}}(\mu_{1}r_{0}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{2}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ g_{n_{1},n_{2}+1}(\mu_{2}r_{0}(n_{2} + 1)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{2}r_{2}(n_{2} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ g_{n_{1}+1,n_{2}-1}(1 - q)\mu_{1}r_{1}(n_{1} + 1) + g_{n_{1}-1,n_{2}+1}q\mu_{2}r_{1}(n_{2} + 1) =$$

$$= R_{n_{1},n_{2}}a - \lambda R_{n_{1},n_{2}} + xqE_{n_{1}}^{0}R_{n_{1}-1,n_{2}} + x(1 - q)\overline{E}_{n_{2}}^{0}R_{n_{1},n_{2}-1}$$

$$- \mu_{1}r_{2}(n_{1} + 1)R_{n_{1}+1,n_{2}}\overline{E}_{n_{1}+n_{2}}^{N} - \mu_{2}r_{2}(n_{2} + 1)R_{n_{1},n_{2}+1}\overline{E}_{n_{1}+n_{2}}^{N},$$

$$\sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} g_{n_{1},n_{2}} = 0.$$

Доказательство. Подставим b(x) в (65)

$$\frac{\partial \Phi(w,\tau)/\partial \tau}{\Phi(w,\tau)} = \frac{(jw)^2}{2} \Phi(w,\tau)b(x) - w \frac{\partial \Phi(w,\tau)/\partial w}{\Phi(w,\tau)} \left[\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \varphi_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 \varphi_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 \varphi_{n_1,n_2} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} \varphi_{n_1,n_2} - \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2} \right].$$
(67)

Рассмотрим

$$\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \varphi_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 \varphi_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 \varphi_{n_1,n_2} - \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2}.$$

Подставим (63) в последнее выражение, получим

$$\lambda \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} \frac{\partial R_{n_{1},n_{2}}}{\partial x} + \mu_{1} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{1} \frac{\partial R_{n_{1},n_{2}}}{\partial x} + \mu_{2} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{2} \frac{\partial R_{n_{1},n_{2}}}{\partial x} - \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-n_{1}-1} R_{n_{1},n_{2}}.$$

$$(68)$$

Рассмотрим функцию a(x), найдем ее производную по x, учитывая, что R_{n_1,n_2} , как решение зависит от x

$$a'(x) = \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} \frac{\partial R_{n_1,n_2}}{\partial x} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial R_{n_1,n_2}}{\partial x} - \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} R_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 \frac{\partial R_{n_1,n_2}}{\partial x} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 \frac{\partial R_{n_1,n_2}}{\partial x}.$$

Тогда (25) перепишем в виде

$$\frac{\partial \Phi(w,\tau)}{\partial \tau} = a'(x)w\frac{\partial \Phi(w,\tau)}{\partial w} + \frac{(jw)^2}{2}b(x)\Phi(w,\tau). \tag{69}$$

Уравнение (27) это преобразование Фурье уравнения Фокера-Планка для плотности распределения вероятностей $P(y,\tau)$ значений центрированного и нормированного количества за-

явок на орбите. Находя обратное преобразование Фурье от (27), получим

$$\frac{\partial P(y,\tau)}{\partial \tau} = -\frac{\partial}{\partial y} \{ a'(x)yP(y,\tau) \} + \frac{1}{2} \frac{\partial^2}{\partial y^2} \{ b(x)P(y,\tau) \}. \tag{70}$$

Следовательно $P(y,\tau)$ плотность распределения вероятностей диффузионного процесса [2], который обозначим $y(\tau)$ с коэффициентом переносом a(x) и коэффициентом диффузии b(x)

$$dy(\tau) = a'(x)yd\tau + \sqrt{b(x)}dw(\tau). \tag{71}$$

Рассмотрим стохастический процесс нормированного числа заявок на орбите

$$z(\tau) = x(\tau) + \varepsilon y(\tau), \tag{72}$$

где $\varepsilon = \sqrt{\sigma}$, исходя из (8), $dx(\tau) = a(x)d\tau$, следует

$$dz(\tau) = d(x(\tau) + \varepsilon y(\tau)) = (a(x) + \varepsilon y a'(x))d\tau + \varepsilon \sqrt{b(x)}dw(\tau). \tag{73}$$

Разложим a(z) в ряд

$$a(z) = a(x + \varepsilon y) = a(x) + \varepsilon y a'(x) + O(\varepsilon^{2}),$$

$$\varepsilon \sqrt{b(z)} = \varepsilon \sqrt{b(x + \varepsilon y)} = \varepsilon \sqrt{b(x) + O(\varepsilon)} = \sqrt{\sigma b(x)} + O(\varepsilon).$$

Перепишем уравнение (31) с точностью до $O(\varepsilon^2)$

$$dz(\tau) = a(z)d\tau + \sqrt{\sigma b(z)}dw(\tau). \tag{74}$$

Обозначим плотность распределения вероятностей для процесса z(au)

$$\pi(z,\tau) = \frac{\partial P\{z(\tau) < z\}}{\partial z}.$$

Так как $z(\tau)$ – это решение стохастического дифференциального уравнения (32), следовательно, процесс является диффузионным и для его плотности распределения вероятностей можем записать уравнение Фокера-Планка

$$\frac{\partial \pi(z,\tau)}{\partial \tau} = -\frac{\partial}{\partial z} \{a(z)\pi(z,\tau)\} + \frac{1}{2} \frac{\partial^2}{\partial z^2} \{\sigma b(z)\pi(z,\tau)\}. \tag{75}$$

Предполагая, что существует стационарный режим, обозначим

$$\pi(z,\tau) = \pi(z),\tag{76}$$

запишем уравнение Фокера-Планка для стационарного распределения вероятностей $\pi(z)$

$$(a(z)\pi(z))' + \frac{\sigma}{2}(b(z)\pi(z))'' = 0,$$

$$-a(z)\pi(z) + \frac{\sigma}{2}(b(z)\pi(z))' = 0.$$

Решая данную систему уравнений получаем плотность распределения вероятностей $\pi(z)$ нормированного числа заявок на орбите

$$\pi(z) = \frac{C}{b(z)} exp \left\{ \frac{2}{\sigma} \int_{0}^{z} \frac{a(x)}{b(x)} dx \right\}. \tag{77}$$

Теорема доказана.

Получим дискретное распределение вероятностей

$$P(i) = \pi(\sigma i) / \sum_{i=0}^{\infty} \pi(\sigma i), \tag{78}$$

которое будем называть диффузионной аппроксимацией дискретного распределения вероятностей количества заявок на орбите для изучаемой системы.

Нетрудно показать, что условием существования стационарного режима рассматриваемой системы является неравенство

$$\lambda < Nr_0 \left(\frac{q}{\mu_1} + \frac{1 - q}{\mu_2} \right). \tag{79}$$

Введем следующую замену для того, чтобы среднее время обслуживания равнялось единице

$$q = \frac{\mu_1(1 - \mu_2)}{\mu_1 - \mu_2}.$$

В таком случае неравенство (38) имеет вид

$$\lambda < Nr_0$$
.

2.6 Численные эксперементы

Экспремент 1.

На рисунке 5 представлены графики изменения a(x) и b(x), в зависимости от x, на рисунке 6 ряд распределения вероятностей количества заявок на орбите для следующих параметров системы $N=2, r_0=0, 7, r_1=0, 2, r_2=0, 1, \lambda=0, 8, \mu_1=0, 6, \mu_2=1, 5, q=0, 25.$

фузии b(x)

Рис. 5: Коэффициенты переноса a(x) и диф- Рис. 6: Ряд распределения вероятностей числа заявок на орбите

Экспремент 2.

На рисунке 7 представлены графики изменения a(x) и b(x), в зависимости от x, на рисунке 8 ряд распределения вероятностей количества заявок на орбите для следующих параметров системы $N=10, r_0=0, 7, r_1=0, 2, r_2=0, 1, \lambda=0, 8, \mu_1=0, 6, \mu_2=1, 5, q=0, 25.$

Рис. 7: Коэффициенты переноса a(x) и диф- Рис. 8: Ряд распределения вероятностей чисфузии b(x)

ла заявок на орбите

Данные графики были построены с помощью библиотек NymPy [20] (для a(x) и b(x)) и SimPy [16] языка Python.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Nazarov, A.A. Method of asymptotic diffusuon analysis of queueing sistem M|M|N with feedback / A.A. Nazarov, S.V. Paul, E.A. Pavlova // Lecture Notes in Computer Science. 2020. p. 131–143.
- 2. Назаров, А.А. Теория вероятностей и случайных процессов / А.А. Назаров, А.Ф. Терпугов. Томск : Изд-во научно-технической литературы, 2006. 199 с.
- 3. Krishna C.M. and Lee Y.H. A study of two-phase service // Operations Research Letters. 1990. Vol. 9. P. 91–97.
- 4. Гнеденко, Б.В. Введение в теорию массового обслуживания/ Б.В. Гнеденко, К.И. Николаевич. М.:КомКнига, 2005. 400 с.
- 5. Назаров, А.А. Теория массового обслуживания/ А.А. Назаров, А.Ф. Терпугов. Томск : Изд-во научно-технической литературы, 2010. 228 с.
- 6. Гельфонд, А.О. Исчисление конечных разностей: учебное пособие / Гельфонд А.О. М.: КомКнига, 2006. 376 с.
- 7. Моисеев, А.Н. Бесконечнолинейные системы и сети массового обслуживания / А.Н. Моисеев, Назаров А.А. Томск: Изд-во научно-технической литературы, 2015. 240 с.
- 8. Назаров, А.А. Метод асимптотического анализа в теории массового обслуживания / А.А. Назаров, Моисеева С. П. Томск: Изд-во НТЛ, 2006. 112 с.
- 9. Любина, Т.В. Исследование математических моделей динамических и адаптивных RQсистем с входящим MMPP-потоком: диссертация на соискание ученой степени кандидата физико-математических наук. – Томск., 2013. – 163 с.
- 10. Ивченко, Г.И. Теория массового обслуживания: учебное пособие / Г.И. Ивченко, В.А. Каштанов, И.Н. Коваленко. М. : Высшая школа , 1982 296 с.
- 11. Artalejo, J.R. Retrial Queueing Systems: A Computational Approach / J. R. Artalejo, A. Gomez-Corral. Springer, 2008.–309 p.
- 12. Falin, G.I. Retrial queues / G.I. Falin, J.G.C. Templeton. London: Chapman Hall, 1997.–328
- 13. Назаров А. А. Асимптотический анализ двухфазной RQ-системы M|M|1 в условии большой задержки на орбите / А. А. Назаров, А. А. Анисимова // Марчуковские научные чтения

- 2017, 25 июня 14 июля 2017 года : труды. Новосибирск, 2017. С. 641-647. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000627552
- 14. Назаров А. А. Асимптотический анализ двухфазной RQ-системы M|M|1 в условии большой задержки заявок на орбите / А. А. Назаров, А. А. Анисимова // Материалы V Международной молодежной научной конференции "Математическое и программное обеспечение информационных, технических и экономических систем Томск, 19-20 мая 2017 г. Томск, 2017. С. 81-88 (Труды Томского государственного университета; т. 301: Серия физикоматематическая.

URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000619465

- 15.SymPy 1.6 documentation:Matrices[Электронный ресурс].
- -https://docs.sympy.org/latest/modules/matrices/matrices.html/ (дата обращения 28.10.2020.).
- 16. GitHub:checkPhase2EquationR[Электронный ресурс].
- https://github.com/ValeriyaRyzhikova/checkPhase2EquationR (дата обращения: 01.06.2021).
- 17. GitHub:calculationPi_a_b[Электронный ресурс].
- https://github.com/ValeriyaRyzhikova/calculationPi a b (дата обращения: 01.06.2021).
- 18. GitHub:diplom2Phase[Электронный ресурс].
- https://github.com/ValeriyaRyzhikova/diplom2Phase (дата обращения: 01.06.2021).
- 19. NumPy 1.2 documentation: Linear algebra [Электронный ресурс].
- -https://numpy.org/doc/1.20/reference/routines.linalg.html (дата обращения 10.04.2021.).