

planetmath.org

Math for the people, by the people.

URM computable

Canonical name URMComputable
Date of creation 2013-03-22 19:03:42
Last modified on 2013-03-22 19:03:42

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 14

Author CWoo (3771)
Entry type Definition
Classification msc 68Q05
Classification msc 03D10

Synonym URM-computable

Let M be an unlimited register machine (URM), and r a finite sequence of non-negative integers. Recall the following notations:

- M(r) denotes the computation of r by the program of M,
- $M(r)\downarrow$ denotes that the computation halts (M converges on r),
- $M(r) \downarrow a$ denotes $M(r) \downarrow$, and a is the content of register 1 in the output,
- $M(r) \uparrow$ denotes that the computation does not halt (M diverges r).

In the case where all but finitely many values of r are 0, say $r = r_1, r_2, \ldots, r_n, 0, 0, \ldots$, we also write $M(r_1, \ldots, r_n)$ to emphasize the fact that $r_i = 0$ for all i > n.

Definition. Let $f: \mathbb{N}^n \to \mathbb{N}$ be an n-ary partial function on natural numbers (including 0 in this discussion). f is said to be URM-computable if there is a URM M such that $M(r_1, \ldots, r_n) \downarrow f(r_1, \ldots, r_n)$ precisely when $(r_1, \ldots, r_n) \in \text{dom}(f)$. When f is URM-computable by M, we also say that M computes f.

In other words, if (r_1, \ldots, r_n) is in the domain of f, then we have a halting computation

If on the other hand (r_1, \ldots, r_n) is not in the domain of f, then the computation of the above input never terminates.

For example, $f(r_1, r_2) = r_1 + r_2$, addition of two non-negative integers, is URM-computable, as is shown in http://planetmath.org/ExamplesOfUnlimitedRegisterMachinentry.

Here are two more basic examples:

• (subtraction by 1): $f(r_1) = r_1 - 1$. Note that f is a partial function that is not total, because f(0) is not defined. A URM that computes f is the following:

$$M = J(1,4,1), S(2), J(1,2,6), S(3), J(1,1,2), T(3,1)$$

First, M compares the r_1 with $r_4 := 0$. If they are the same, it loops indefinitely. Otherwise, M increments r_2 by 1, and then compares r_1 with r_2 . If they are the same, then M transfers $r_3 := 0$ in register 3 to r_1 in register 1. Otherwise, it increments r_3 by 1 and loops back to the second instruction. The computation continues until $r_1 = r_2$, and when this happens, r_1 is set to be r_3 .

• (monus operation): $f(r_1) = r_1 - 1$. This is like the last example, except f(0) := 0. All we have to do is to modify the URM above:

$$M = J(1,4,6), S(2), J(1,2,6), S(3), J(1,1,2), T(3,1)$$

so the first instruction jumps to the last instruction when $r_1 = r_4$, instead of looping.

• (parity checking): $f(r_1) = 1$ if r_1 is odd, and $f(r_1) = 0$ otherwise. In other words, $f(r_1)$ is the remainder of the division of r_1 by 2. A URM that computes f is the following:

$$M = J(1,2,14), T(1,2), S(2), S(3), S(3), J(1,3,9), J(2,3,11), J(1,1,4),$$

$$Z(1), J(1,1,14), Z(1), S(1), J(1,1,14)$$

Basically, with input $r_1 := m$, M first sets $r_2 := m + 1$. Then by incrementing r_3 by 2, M tests whether $r_1 = r_3$ or $r_2 = r_3$. If the former, then M sets $r_1 := 0$, otherwise r_1 is set to 1. The computation stops when the program jumps to the non-existent instruction 14.

Remarks.

• For any URM M and any positive integer n, M computes a unique n-ary (partial) function f. This can be simply done as follows: take the contents r of the first n registers of the tape as input, and run M. Define a partial function $f: \mathbb{N}^n \to \mathbb{N}$ so that $r \in \text{dom}(f)$ iff $M(r) \downarrow$, and when this is the case, set f(r) to be the integer such that $M(r) \downarrow f(r)$.

Examples.

- -T(5,2) computes, for any n>0, the *n*-ary function $f(x_1,\ldots,x_n)=x_1$.
- -T(5,1) computes $f(x_1,...,x_n) = 0$ for any 0 < n < 5, and $g(x_1,...,x_n) = x_5$ for any $n \ge 5$.

- -J(1,1,1) computes the empty function \varnothing for all $n \ge 0$.
- More generally, a partial function $f: \mathbb{N}^n \to \mathbb{N}^m$ is said to be URM-computable iff there is a URM M such that $M(r_1, \ldots, r_n) \downarrow$, and the i-th coordinate of $f(r_1, \ldots, r_n)$ is the content of the i-th register, $i \in \{1, \ldots, m\}$, precisely when $(r_1, \ldots, r_n) \in \text{dom}(f)$.

The function f above can be expressed as (g_1, \ldots, g_m) , where each $g_i : \mathbb{N}^n \to \mathbb{N}$. Then it is not hard to show that f is URM-computable iff each g_i is URM-computable.

• One of the fundamental facts about URM computability is the following: a function is URM computable iff it is Turing computable. By Church's thesis, this means that URM computability is equivalent to effective computability.

References

- [1] J. C. Shepherdson, H. E. Sturgis, *Computability of Recursive Functions*. Journal Assoc. Comput. Mach. 10, 217-255, (1963).
- [2] N. Cutland, Computability: An Introduction to Recursive Function Theory. Cambridge University Press, (1980).