$$i\in\{1,2\}$$
 עבור $K_i\left(x,x'
ight)=\langle\phi_i\left(x
ight),\phi_i\left(x'
ight)
angle$ נתון שני גרעינים ואלידיים $K_3\left(x,x'
ight)=K_1\left(x,x'
ight)+K_2\left(x,x'
ight)$ 1.1 עבור

$$K_3\left(x,x'
ight)=\left\langle \phi_3\left(x
ight),\phi_3\left(x'
ight)
ight
angle =\left\langle \phi_1\left(x
ight),\phi_1\left(x'
ight)
ight
angle +\left\langle \phi_2\left(x
ight),\phi_2\left(x'
ight)
ight
angle$$
 מתקיים אזי לכל קבוצת נקי $x_1,...,x_m\in R^d$ תוגדר מטריצת גראם

וגם $z^TG^2z\geq 0$ אזי $z^TG^1z\geq 0$ וגם $z^TG^1z\geq 0$ וגם $z^TG^1z\geq 0$ אזי K_3 אזי $z^TG^3z=z^T\left(G^1+G^2\right)z=z^TG^1z+z^TG^2z\geq 0$

1.2 בצורה דומה מתקיים

$$G_{i,j}^4 = K_4\left(x_i, x_j\right) = f\left(x_i\right) f\left(x_j\right) \left\langle \phi_1\left(x_i\right), \phi_1\left(x_j\right) \right\rangle = f\left(x_i\right) f\left(x_j\right) G_{i,j}^1$$
 סימטרית ולכן $G_{i,j}^1 = G_{j,i}^1$ 2.1

$$G = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, v_{1,2} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}, \lambda_{1,2} = \{3, -1\}$$

2.2

$$\mathcal{L}_{SVM}\left(c\cdot v\right) = \lambda\left(c\cdot v\right)^{T}G\left(c\cdot v\right) + \frac{1}{2}\sum_{i\in\left\{1,2\right\}}\max\left\{0,1-y_{i}\left[G\left(c\cdot v\right)\right]_{i}\right\}$$

הרכיב השני תמיד אי שלילי, נבחן את הראשון

$$v=egin{pmatrix} -1\\1 \end{pmatrix}$$
 אזי למשל עבור $\lambda\left(c\cdot v
ight)^TG\left(c\cdot v
ight)=\lambda c^2\cdot v^Tegin{pmatrix} 1&2\\2&1 \end{pmatrix}v$ מתקיים $\lambda\left(c\cdot v
ight)^TG\left(c\cdot v
ight)\underset{c o\infty}{\longrightarrow}-\infty$ ומכאן $v^Tegin{pmatrix} 1&2\\2&1 \end{pmatrix}v=-2$ וסה"כ $\sum_{c o\infty} L_{SVM}\left(c\cdot v
ight)=-\infty$

 $lpha^T G lpha \geq 0 : lpha \in \mathbb{R}^m$ עבור G שהיא מטריצה G מתקיים לכל 2.3.1 0ם מלמטה מלמטה של של הרכיב השני של הרכים שראינו וכמו אינו הרכים ומכיוון ש $.min\mathcal{L}_{SVM}\left(lpha
ight) \geq0$ ובפרט $lpha\in\mathbb{R}^{d}$ אזי לכל

נניח בשלילה $\lambda \geq 0$ נניח בשלילה $\min \mathcal{L}_{SVM}\left(\alpha\right) > 1$ אזי לכל 2.3.2 $\lambda \alpha^T G \alpha + \frac{1}{m} \sum_{i \in [1,m]}^{\alpha} \max\left\{0,1-y_i\left[G\alpha\right]_i\right\} > 1$

$$\lambda \alpha^T G \alpha + \frac{1}{m} \sum_{i \in [1, m]} \max \left\{ 0, 1 - y_i \left[G \alpha \right]_i \right\} > 1$$

עבור $\alpha=0$ מתקיים

 $\lambda \alpha^T G \alpha = 0$ עבור הרכיב הראשון

עבור הרכיב השני, לכל
$$i$$
 מתקיים $1-y_iG\alpha_i=1$ אזי $1-y_iG\alpha_i=1$ מתקיים $\frac{1}{m}\sum_{i\in[1,m]}\max\left\{0,1-y_i\left[G\alpha\right]_i\right\}=1$

 $\min_{lpha}\mathcal{L}_{SVM}\left(lpha
ight)\leq1$ אזי $\min_{lpha}\mathcal{L}_{SVM}\left(lpha
ight)>1$ בסתירה להנחה