First Charged-Current Muon-Neutrino Inclusive

Cross Section Measurement with the MicroBooNE Detector

Marco Del Tutto¹ and Anne Schukraft² representing the MicroBooNE collaboration

¹University of Oxford marco.deltutto@physics.ox.ac.uk

²Fermilab aschu@fnal.gov

This poster presents MicroBooNE's first full v_{μ} charged-current inclusive measurement using 1.6×10^{20} POT of data (6 months of data).

SIGNAL TOPOLOGY

The presence of a neutrino-induced muon with or without other accompanying particles.

- **MOTIVATIONS** The clear signal definition allows straight-forward comparisons to theory models and other experiments.
 - The heavy target (argon) makes this measurement sensitive to several nuclear effects.
 - Important for MicroBooNE reconstruction and tools development: techniques have been developed for cosmic rejection.
 - The final sample can be used as a pre-selection for more exclusive channels.

MicroBooNE [1] is a Liquid Argon Time Projection Chamber at Fermilab located along the Booster Neutrino Beam Line ($E_v \sim 0.8$ GeV).

SYSTEMATIC UNCERTAINTIES

Preliminary systematic uncertainties that affect the total cross section measurement. Detector systematics show a conservative estimate.

Error Source	Method	Relative Unc.
Beam Flux	multisim variations	11.9%
Cross Section	multisim variations	3.6%
Detector Response	unisim variations	18.8%
POT Counting	Toroids resolution	2%
Cosmics (out-of-time)	MC + Data Overlay	6.9%
Cosmics (in-time)	Off-beam statistics	1.1%
Beam Timing Jitter	On- minus off-beam flashes	4%

MOMENTUM ESTIMATION

- Multiple Coulomb Scattering (MCS) is used to estimate the particle momentum: the scattering angle along the track trajectory depends on the initial momentum [2].
- Can be applied to both contained and exiting tracks: increases the overall acceptance.

EVENT SELECTION

- Light must be detected in time with the beam spill (flash).
- A PMT-by-PMT matching is run between the flash and all reconstructed TPC interactions in order to select the best one (if any).
- Quality cuts ensure the event is well reconstructed.
- The candidate muon track must have a dQ/dx profile compatible with a minimum ionising muon.
- The reconstructed vertex has to be in the fiducial volume.

TOTAL CROSS SECTION

The total CC cross section on argon has been measured:

$$\sigma = \frac{N - B}{\epsilon \cdot N_{target} \cdot \Phi}$$

$$\sigma = 0.756 \pm 0.011 \, (\text{stat}) \pm 0.186 \, (\text{syst}) \times 10^{-38} \, \text{cm}^2$$

The GENIE MC predicted cross section is:

$$\sigma_{\rm MC} = 0.867 \pm 0.004 \, ({\rm stat.}) \times 10^{-38} \, {\rm cm}^2$$

This poster presented the first v_{μ} charged-current inclusive measurement from MicroBooNE with full treatment of systematic uncertainties.

DIFFERENTIAL CROSS SECTION

The differential cross section is measured as a function of reconstructed kinematics. Detector effects have not been deconvolved.

$$\left(\frac{d\sigma}{dp_{\mu}}\right)_{i} = \frac{N_{i} - B_{i}}{\tilde{\epsilon_{i}} \cdot N_{target} \cdot \Phi_{\nu_{\mu}} \cdot (\Delta p_{\mu})_{i}}
\left(\frac{d\sigma}{d\cos\theta_{\mu}}\right)_{i} = \frac{N_{i} - B_{i}}{\tilde{\epsilon_{i}} \cdot N_{target} \cdot \Phi_{\nu_{\mu}} \cdot (\Delta\cos\theta_{\mu})_{i}}$$

The cross section is compared with two sets of models [3

Model Element	GENIE Default + Emp. MEC	GENIE Alternative
Nuclear Model Bodek-Ritchie Fermi Gas [4] Local Fermi Ga		
Quasi-elastic	Llewellyn-Smith [7]	Nieves [5,6]
 MEC	Empirical [8]	Nieves [5,6]
Resonant	Rein-Seghal [9]	Berger-Seghal [10]
 Coherent	Rein-Seghal [9]	Berger-Seghal [10]
 FSI	hA[3]	hA2014 [3]

