Session 13: Stochastic gradient descent

Optimization and Computational Linear Algebra for Data Science

Final exam

- Scope: everything except today's lecture and this week's video.
- Of course, it will be a bit more focused on what we did after the midterm (PCA, linear regression, convex functions, optimization...)
- Same format as for the midterm
- "24 hours window" on Thursday December 17th.
- 1 hour 40 minutes to work + 20 minutes to scan + upload on Gradescope.
- In case you have any issue when uploading: **email me your** work.

Contents

- 1. Introduction: supervised learning
- 2. Stochastic gradient descent
- 3. Convergence analysis, comparison with gradient descent

Introduction

Introduction

3/14

Supervised learning

Assume we have a pair of random variables (X, Y) thate is distributed according to some distribution Po

Example: X = MR'i image of a brain Y = 5 + 1 if there is a concer of otherwise.

Goal: Predict Y from X. using a model

Po Hope: Po(X) ~ Y

models parameter.

Introduction

Supervised learning

Find 8 that minimizes the risk: expectation $\frac{\mathcal{R}(\omega)}{\mathcal{R}} = \mathbb{E}\left[\left(\mathcal{L}(\mathcal{L}(X), Y)\right) \mid \omega \cap \mathcal{L}(X, Y) \sim \mathcal{L}(X, Y) \right]$ loss function, for instance $\ell(a,b) = (a-b)$ ISSUE: we can not compute R(v) because we do not know Po. However, we may have access to samples $(X_1, Y_1), --- (X_N, Y_N)$ iid Po dataset" minimize the empirical risk: $R_N(0) = \frac{1}{N} \sum_{i=1}^{N} P(f(X_i), Y_i)$

ntroduction

Supervised learning

$$R_{N}(\emptyset) = \frac{1}{N} \sum_{i=1}^{\infty} l(P_{\emptyset}(X_{i}), Y_{i})$$

$$Example: \text{ dinon regulation}$$

$$l(a,b) = (a-b)^{2}$$

$$P_{\emptyset}(X) = (0, X)$$

$$P_{\emptyset}(X) = \frac{1}{N} \sum_{i=1}^{N} (\langle \emptyset, X_{i} \rangle - Y_{i})^{2}$$

$$= \frac{1}{N} || X \otimes - Y ||^{2} \Rightarrow X = (-X_{1} - X_{2} - X_{1} - X_{2} - X_{$$

Introduction

Why not using gradient descent?

$$\mathcal{R}_{N}(\theta) = f(\theta) = \frac{1}{N} \sum_{i=1}^{N} f_{i}(\theta).$$

Gradient descent iterations:

$$\theta_{t+1} = \theta_t - \alpha_t \nabla f(\theta_t)$$

$$= \theta_t - \frac{\alpha_t}{N} \sum_{i=1}^{N} \nabla f_i(\theta_t).$$

$$= \theta_t - \frac{\alpha_t}{N} \sum_{i=1}^N \nabla f_i(\theta_t).$$
 Computing $|\nabla f_i(\theta_t)|$ takes $\underline{\sim}$ n operations. $|\nabla f(\theta_t)|$ takes $\underline{\sim}$ N. n operations.

a lot of data.

Introduction

Stochastic gradient descent

Stochastic gradient descent

$$f(\theta) = \frac{1}{N} \sum_{i=1}^{N} f_i(\theta).$$

Starting at some $\theta_0 \in \mathbb{R}^n$, perform the updates:

Pick
$$i$$
 uniformly at random in $\{1,\ldots,N\},$ Update $\theta_{t+1}=\theta_t-\alpha_t \nabla f_i(\theta_t),$

- tales only a computations per iterations.
- $\nabla f_i(\theta_b)$ can be seen as a noisy version of $\nabla f(\theta_b)$

Tradeoffs in SGD

$$0 \quad x_t = (0,9)^t \longrightarrow 0$$

$$\sum_{k=0}^{+\infty} \alpha_k = 1 - 0,9$$
 finite

$$d_{t} = \underbrace{1}_{t} \xrightarrow{t} \underbrace{0}_{0} \underbrace{0}_{0}$$

$$= +\infty$$

$$= +\infty$$

=

SGD in practice

Mini-batch stochastic gradient descent:

Pick a mini-batch (i_1, \ldots, i_k) in $\{1, \ldots, N\}$,

Update
$$heta_{t+1} = heta_t - rac{lpha_t}{k} \sum_{m=1}^k
abla f_{i_m}(heta_t),$$

- Decrease the step size after a fixed number of epochs. loop own
- Use momentum + "adaptive gradient": Adagrad, RMSprop, the data Adedelta, Adam, Adamax, Nadam...

Excellent reference:

https://arxiv.org/pdf/1609.04747.pdf

Convergence analysis

Convergence rates

- if the f_i are convex and L-smooth: SGD with $\alpha_t = 1/\sqrt{t}$ achieves an error $\leq C/\sqrt{t}$.
- if the f_i are μ -strongly convex and L-smooth: SGD with $\alpha_t = 1/(\mu t)$ achieves an error $\leq C/t$.

Convergence analysis

GD vs SGD

Gradient descent

- Nb. of param.

 Nb. of param.

 Nb. of samples
 - Error after t steps

(strongly convex case)

Log-error after
$$\tau$$
 units of

time

Stochastic gradient descent

Error after t steps

$$\left\langle \begin{array}{c} \frac{C}{t} \end{array} \right|$$

Log-error after au units of time

GD vs SGD

GD vs SGD: who wins?

- If one is looking for a very small optimization error $f(\theta_t) \min f$, then gradient descent wins.
- If one has a limited time budget and does not need a very small $f(\theta_t) \min f$, then stochastic gradient descent wins.

Convergence analysis 14/14

(u_t):
$$(u_{t+2}) = u_{t+1} - 2u_{t}$$

 $u_0 = 1$ \times 1
Solve: $\chi^2 = \chi - 2$
 $\chi^2 - \chi + 2 = 0$ \therefore $\Delta = 1 - 8 = -7$
Solutions: $\chi = \frac{1 + i\sqrt{7}}{2}$

Then
$$u_t = a(x_t)^t + b(x_t)^t$$

constants that needs to be determined lesing the initial conditions.

$$|u_t| \leq C \cdot (|x_t|^t + |x_t|^t) \leq C \cdot \sqrt{2}t$$

$$|x_t| = |1 + 2\sqrt{7}| = \sqrt{4 + 7/4} = \sqrt{2}t$$

$$|x_t| = \sqrt{2}t + \frac{7}{4} = \sqrt{2}t$$

$$|x_t| = \sqrt{2}t + \frac{7}{4} = \sqrt{2}t$$

$$|x_t| = \sqrt{2}t + \frac{7}{4} = \sqrt{2}t$$

$$\begin{pmatrix} u_{t+2} \\ u_{t+1} \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} u_{t+1} \\ u_{t} \end{pmatrix}$$

$$u_{t+2} = u_{t+1} - 2u_{t}$$

$$0 = \det \begin{pmatrix} M - \lambda \operatorname{Id} \end{pmatrix} = \det \begin{pmatrix} 1 - \lambda & -2 \\ 1 & -\lambda \end{pmatrix}$$

$$= -\lambda (1-\lambda) + 2 = [\lambda^{2} - \lambda + 2] = 0$$

$$|u_{t+2}| \le |u_{t+2}| + |u_{t+1}| \le 2C \cdot (\lambda_{1}^{t+2} + \lambda_{2}^{t+2})$$

$$\ge 0$$