Lab Worksheet 4

Part 1: The dplyr pipe

The following questions in Part 1 are from Lab Worksheet 3. Answer these questions again, but this time use the dplyr pipe (%>%) in your answer.

Problem 1: In an in-class exercise, we made the following plot of the Sitka dataset:

```
# download the sitka data set:
sitka <- read.csv("http://wilkelab.org/classes/SDS348/data_sets/sitka.csv")
head(sitka)</pre>
```

```
ggplot(sitka, aes(x = Time, y = size, group = tree)) +
  geom_line() +
  facet_wrap(~treat)
```


Now modify the plot so that the line for each tree is colored according to the maximum size of the tree.

```
sitka_new <-
  sitka %>%
  group_by(tree) %>%
  mutate(max_size = max(size))

ggplot(sitka_new, aes(x = Time, y = size, group = tree, color = max_size)) +
  geom_line() +
  facet_wrap(~treat)
```


Problem 2: The package nycflights13 contains information about all flights departing from one of the NY City airports in 2013. In particular, the data table flights lists on-time departure and arrival information for 336,776 individual flights:

```
library(nycflights13)
flights
```

```
## # A tibble: 336,776 x 19
##
       year month
                     day dep time sched dep time dep delay arr time
##
      <int> <int> <int>
                             <int>
                                              <int>
                                                         <dbl>
                                                                  <int>
       2013
                 1
                        1
                                517
                                                515
                                                             2
                                                                    830
##
    1
    2
       2013
                 1
                        1
                               533
                                                529
                                                             4
                                                                    850
##
##
    3
       2013
                 1
                        1
                               542
                                                540
                                                             2
                                                                    923
       2013
##
    4
                 1
                        1
                               544
                                                545
                                                            - 1
                                                                    1004
    5
       2013
                        1
##
                 1
                               554
                                                600
                                                            -6
                                                                    812
##
    6
       2013
                 1
                        1
                               554
                                                558
                                                            - 4
                                                                    740
##
    7
       2013
                 1
                        1
                                                600
                                                            - 5
                                                                    913
                               555
##
    8
       2013
                 1
                        1
                               557
                                                600
                                                            -3
                                                                    709
    9
       2013
                 1
                        1
                               557
                                                600
                                                            -3
                                                                    838
##
## 10
       2013
                 1
                        1
                               558
                                                600
                                                            - 2
                                                                    753
## # ... with 336,766 more rows, and 12 more variables: sched arr time <int>,
       arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
## #
       origin <chr>, dest <chr>, air time <dbl>, distance <dbl>, hour <dbl>,
## #
       minute <dbl>, time hour <dttm>
```

We would like to collect some information about arrival delays of United Airlines (UA) flights. Do the following: pick all UA departures with non-zero arrival delay and calculate the mean arrival delay for each of the corresponding flight numbers. Which flight had the longest mean arrival delay and how long was that delay?

```
flights %>%
  filter(carrier == "UA" & arr_delay != 0) %>%
  group_by(flight) %>%
  summarize(mean_delay = mean(arr_delay)) %>%
  filter(mean_delay == max(mean_delay))
```

```
## # A tibble: 1 x 2
## flight mean_delay
## <int> <dbl>
## 1 1510 283
```

Flight 1510 had the longest delay, with an average arrival delay of 283 minutes.

###Part 2: Combining data-frames with dplyr

Problem 1: Invent two simple data sets that allow you explain the difference between the dplyr functions left_join() and inner_join(). Explain which features of your data sets affect the behavior of these two functions.

```
# data set 1
d1 <- read.table(text = "</pre>
label number1
A 1
B 2
C 4", head = T)
# data set 2
d2 <- read.table(text = "</pre>
label number2
A 2
C 4
D 6
", head = T)
d1
   label number1
##
```

```
## label number1
## 1 A 1
## 2 B 2
## 3 C 4
```

d2

```
## label number2
## 1 A 2
## 2 C 4
## 3 D 6
```

```
left_join(d1, d2)
```

```
## Joining, by = "label"
```

Warning: Column `label` joining factors with different levels, coercing to
character vector

```
inner_join(d1, d2)
```

```
## Joining, by = "label"
```

Warning: Column `label` joining factors with different levels, coercing to
character vector

```
## label number1 number2
## 1 A 1 2
## 2 C 4 4
```

We join the two data sets by label. left_join() finds all rows in the second data set that match to rows in the first data set. Therefore, we don't get a value for number2 corresponding to label B. By contrast, inner_join() only keeps the matching rows that exist in both data sets. Therefore, the resulting table has only two rows, one for label A and one for label C.

Problem 2: I have split the sitka data set into two data-frames. First, look up the documentation for the bind_rows function. What does bind_rows do? Next, use bind_rows to combine sitka1 and sitka2 back into a single data-frame.

The bind_rows function adds rows from one data-frame to another as long as both data-frames have the same number of columns and identical column names.

```
sitka1 <- sitka[1:100, ]
sitka2 <- sitka[101:395, ]
head(sitka1)</pre>
```

```
head(sitka2)
```

```
## size Time tree treat
## 101 4.04 152 21 ozone
## 102 4.64 174 21 ozone
## 103 4.86 201 21 ozone
## 104 5.09 227 21 ozone
## 105 5.25 258 21 ozone
## 106 3.53 152 22 ozone
```

```
sitka_combined <- bind_rows(sitka1, sitka2)
sitka_combined</pre>
```

treat ozone ozone ozone ozone ozone ozone
ozone ozone ozone ozone ozone
ozone ozone ozone ozone
ozone ozone ozone
ozone ozone
ozone
UZUNE
07000
ozone
ozone
ozone

## 46	3.84	152	10	ozone
## 47	7 4.17	174	10	ozone
## 48	3 4.67	201	10	ozone
## 49	4.67	227	10	ozone
## 50	4.80	258	10	ozone
## 53	1 4.07	152	11	ozone
## 52	2 4.31	174	11	ozone
## 53	3 4.90	201	11	ozone
## 54	4 5.10	227	11	ozone
## 55	5 5.10	258	11	ozone
## 56	5 4.28	152	12	ozone
## 57	7 4.80	174	12	ozone
## 58	3 5.27	201	12	ozone
## 59	5.55	227	12	ozone
## 60	5.65	258	12	ozone
## 63		152	13	ozone
## 62		174	13	ozone
## 63		201	13	ozone
## 64		227	13	ozone
## 65		258	13	ozone
## 66		152	14	ozone
## 67		174	14	ozone
## 68		201	14	ozone
## 69		227	14	ozone
## 70		258	14	ozone
## 7		152	15	ozone
## 72		174	15	ozone
## 73		201	15	ozone
## 74		227	15	ozone
## 75		258	15	ozone
## 76		152	16	ozone
## 77		174	16	ozone
## 78		201	16	ozone
## 79		227	16	ozone
## 80		258	16	ozone
## 83		152	17	ozone
## 82		174	17	ozone
## 83		201	17	ozone
## 84		227	17	ozone
## 85		258	17	ozone
## 86		152	18	ozone
## 87		174	18	ozone
## 88		201	18	ozone
## 89		227	18	ozone
## 90		258	18	ozone
## 93		152	19	ozone
## 92		174	19	ozone
52	_ 5.55	±, ¬	13	020110

##	93	4.76	201	19	ozone
##	94	4.62	227	19	ozone
##	95	4.64	258	19	ozone
##	96	4.36	152	20	ozone
##	97	4.77	174	20	ozone
##	98	5.02	201	20	ozone
##	99	5.26	227	20	ozone
##	100	5.45	258	20	ozone
##	101	4.04	152	21	ozone
##	102	4.64	174	21	ozone
##	103	4.86	201	21	ozone
##	104	5.09	227	21	ozone
##	105	5.25	258	21	ozone
##	106	3.53	152	22	ozone
##	107	4.25	174	22	ozone
##	108	4.68	201	22	ozone
##	109	4.97	227	22	ozone
##	110	5.18	258	22	ozone
##	111	4.22	152	23	ozone
##	112	4.69	174	23	ozone
##	113	5.07	201	23	ozone
##	114	5.37	227	23	ozone
##	115	5.58	258	23	ozone
##	116	2.79	152	24	ozone
##	117	3.10	174	24	ozone
##	118	3.30	201	24	ozone
##	119	3.38	227	24	ozone
##	120	3.55	258	24	ozone
##	121	3.30	152	25	ozone
##	122	3.90	174	25	ozone
##	123	4.34	201	25	ozone
##	124	4.96	227	25	ozone
##	125	5.40	258	25	ozone
##	126	3.34	152	26	ozone
##	127	3.81	174	26	ozone
##	128	4.21	201	26	ozone
##	129	4.54	227	26	ozone
##	130	4.86	258	26	ozone
##	131	3.76	152	27	ozone
##	132	4.36	174	27	ozone
##	133	4.70	201	27	ozone
##	134	5.44	227	27	ozone
##	135	5.32	258	27	ozone
##	136	4.49	152	28	ozone
##	137	4.76	174	28	ozone
##	138	5.15	201	28	ozone
##	139	5.37	227	28	ozone

## 140	5.56	258	28	ozone
## 141	4.88	152	29	ozone
## 142	5.14	174	29	ozone
## 143	5.52	201	29	ozone
## 144	6.08	227	29	ozone
## 145	6.17	258	29	ozone
## 146	4.88	152	30	ozone
## 147	5.32	174	30	ozone
## 148	5.63	201	30	ozone
## 149	5.75	227	30	ozone
## 150	5.94	258	30	ozone
## 151	3.80	152	31	ozone
## 152	4.16	174	31	ozone
## 153	4.45	201	31	ozone
## 154	4.89	227	31	ozone
## 155	5.05	258	31	ozone
## 156	4.46	152	32	ozone
## 157	4.62	174	32	ozone
## 158	5.00	201	32	ozone
## 159	5.40	227	32	ozone
## 160	5.49	258	32	ozone
## 161	4.29	152	33	ozone
## 161 ## 162	4.82	174	33	ozone
## 162 ## 163	5.32	201	33	
## 163 ## 164	5.46		33	ozone
		227 258		ozone
## 165 ## 166	5.50		33	ozone
	4.06	152	34	ozone
## 167	4.58	174	34	ozone
## 168	4.81	201	34	ozone
## 169	5.12	227	34	ozone
## 170	5.27	258	34	ozone
## 171	5.16	152	35	ozone
## 172	5.43	174	35	ozone
## 173	5.71	201	35	ozone
## 174	6.08	227	35	ozone
## 175	6.21	258	35	ozone
## 176	3.81	152	36	ozone
## 177	4.12	174	36	ozone
## 178	4.42	201	36	ozone
## 179	4.62	227	36	ozone
## 180	4.60	258	36	ozone
## 181	5.09	152	37	ozone
## 182	5.62	174	37	ozone
## 183	5.90	201	37	ozone
## 184	6.36	227	37	ozone
## 185	6.49	258	37	ozone
## 186	4.13	152	38	ozone

## 187	4.71	174	38	ozone
## 188	5.27	201	38	ozone
## 189	5.56	227	38	ozone
## 190	5.72	258	38	ozone
## 191	4.85	152	39	ozone
## 192	5.36	174	39	ozone
## 193	5.52	201	39	ozone
## 194	5.96	227	39	ozone
## 195	6.13	258	39	ozone
## 196	4.11	152	40	ozone
## 197	4.62	174	40	ozone
## 198	4.95	201	40	ozone
## 199	5.28	227	40	ozone
## 200	5.43	258	40	ozone
## 201	4.95	152	41	ozone
## 202	5.39	174	41	ozone
## 203	5.82	201	41	ozone
## 204	6.42	227	41	ozone
## 204	6.48	258	41	ozone
## 205	4.36	152	42	ozone
## 200			42	
_	4.65	174		ozone
## 208	5.04	201	42	ozone
## 209	5.38	227	42	ozone
## 210	5.47	258	42	ozone
## 211	4.05	152	43	ozone
## 212	4.65	174	43	ozone
## 213	5.09	201	43	ozone
## 214	5.44	227	43	ozone
## 215	5.60	258	43	ozone
## 216	3.76	152	44	ozone
## 217	4.27	174	44	ozone
## 218	4.59	201	44	ozone
## 219	5.10	227	44	ozone
## 220	5.25	258	44	ozone
## 221	2.84	152	45	ozone
## 222	3.25	174	45	ozone
## 223	3.69	201	45	ozone
## 224	4.16	227	45	ozone
## 225	4.21	258	45	ozone
## 226	4.33	152	46	ozone
## 227	4.80	174	46	ozone
## 228	5.09	201	46	ozone
## 229	5.42	227	46	ozone
## 230	5.61	258	46	ozone
## 231	3.99	152	47	ozone
## 232	4.55	174	47	ozone
## 233	4.91	201	47	ozone

## 234 5.26	227	47	ozone
## 235 5.30	258	47	ozone
## 236 3.50	152	48	ozone
## 237 3.75	174	48	ozone
## 238 3.97	201	48	ozone
## 239 4.71	227	48	ozone
## 240 4.85	258	48	ozone
## 241 3.31	152	49	ozone
## 242 3.45	174	49	ozone
## 243 4.16	201	49	ozone
## 244 4.48	227	49	ozone
## 245 4.54	258	49	ozone
## 246 3.03	152	50	ozone
## 247 3.55	174	50	ozone
## 248 3.97	201	50	ozone
## 249 4.40	227	50	ozone
## 250 4.58	258	50	ozone
## 251 3.27	152	51	ozone
## 252 3.83	174	51	ozone
## 253 4.44	201	51	ozone
## 254 4.80	227	51	ozone
## 255 4.89	258	51	ozone
## 256 3.56	152	52	ozone
## 257 4.18	174	52	ozone
## 258 4.70	201	52	ozone
## 259 5.27	227	52	ozone
## 260 5.28	258	52	ozone
## 261 3.39	152	53	ozone
## 262 3.73	174	53	ozone
## 263 3.92	201	53	ozone
## 264 4.11	227	53	ozone
## 265 4.15	258	53	ozone
## 266 3.72	152	54	ozone
## 267 4.16	174	54	ozone
## 268 4.55	201	54	ozone
## 269 5.03	227	54	ozone
## 270 5.02	258	54	ozone
## 271 4.53	152	55	control
## 272 5.05	174	55	control
## 273 5.18	201	55	control
## 274 5.41	227		control
## 275 5.42	258		control
## 276 4.97	152		control
## 277 5.32	174		control
## 278 5.83	201		control
## 279 6.29	227		control
## 280 6.45	258		control

## 281	4.37	152	57	control
## 282	4.81	174	57	control
## 283	5.03	201	57	control
## 284	5.19	227	57	control
## 285	5.40	258	57	control
## 286	4.58	152	58	control
## 287	4.99	174	58	control
## 288	5.37	201	58	control
## 289	5.68	227	58	control
## 290	5.93	258	58	control
## 291	4.00	152	59	control
## 292	4.50	174	59	control
## 293	4.92	201	59	control
## 294	5.44	227	59	control
## 295	5.87	258	59	control
## 296	4.73	152	60	control
## 297	5.05	174	60	control
## 298	5.33	201	60	control
## 299	5.92	227	60	control
## 300	6.01	258	60	control
## 301	5.15	152	61	control
## 302	5.63	174	61	control
## 303	6.11	201	61	control
## 304	6.39	227	61	control
## 305	6.61	258	61	control
## 306	4.10	152	62	control
## 307	4.46	174	62	control
## 308	4.84	201	62	control
## 309	5.29	227	62	control
## 310	5.48	258	62	control
## 311	3.22	152	63	control
## 311	3.85	174	63	control
## 313	4.47	201	63	control
## 313	4.85	227	63	control
## 314	5.11	258	63	control
## 315	2.23	152	64	control
	2.23			control
	3.16	174	64	control
## 318		201	64	
## 319	3.40	227	64	control
## 320	3.52	258	64	control
## 321	3.65	152	65	control
## 322	4.36	174	65	control
## 323	4.76	201	65	control
## 324	5.18	227	65	control
	5.44	258	65	control
	3.40	152	66	control
## 327	3.92	174	66	control

## 328 4.50	201	66 control
## 329 4.97	227	66 control
## 330 5.14	258	66 control
## 331 5.16	152	67 control
## 332 5.49	174	67 control
## 333 5.74	201	67 control
## 334 6.05	227	67 control
## 335 6.21	258	67 control
## 336 4.04	152	68 control
## 337 4.52	174	68 control
## 338 5.15	201	68 control
## 339 5.59	227	68 control
## 340 5.87	258	68 control
## 341 4.52	152	69 control
## 342 4.91	174	69 control
## 343 5.04	201	69 control
## 344 5.71	227	69 control
## 345 5.97	258	69 control
## 346 4.56	152	70 control
## 347 5.12	174	70 control
## 348 5.40	201	70 control
## 349 5.69	227	70 control
## 350 5.89	258	
## 351 4.90	152	71 control
## 352 5.35	174	71 control
## 353 5.71	201	71 control
## 354 6.12	227	71 control
## 355 6.25	258	71 control
## 356 4.83	152	72 control
## 357 5.10	174	72 control
## 358 5.43	201	72 control
## 359 5.59	227	72 control
## 360 6.04	258	72 control
## 361 5.46	152	73 control
## 362 5.79	174	73 control
## 363 6.12	201	73 control
## 364 6.41	227	73 control
## 365 6.63	258	73 control
## 366 4.17	152	74 control
## 367 4.67	174	74 control
## 368 5.16	201	74 control
## 369 5.56	227	74 control
## 370 5.75	258	74 control
## 371 3.35	152	75 control
## 372 4.05	174	75 control
## 373 4.51	201	75 control
## 374 5.22	227	75 control

```
258
                   75 control
## 375 5.44
## 376 3.33
             152
                   76 control
## 377 3.82
             174
                   76 control
## 378 4.38
             201
                   76 control
## 379 4.99
             227
                   76 control
## 380 5.17
             258
                   76 control
## 381 3.41
             152
                   77 control
## 382 3.68
             174
                   77 control
## 383 4.03
             201
                   77 control
## 384 4.28
             227
                   77 control
## 385 4.54
             258
                   77 control
## 386 4.50
             152
                   78 control
## 387 4.80
             174
                   78 control
## 388 5.28
             201
                   78 control
## 389 5.83
             227
                   78 control
## 390 6.16
             258
                   78 control
## 391 2.99
                   79 control
             152
## 392 3.61
             174
                   79 control
## 393 4.48
             201
                   79 control
## 394 4.91
                   79 control
             227
## 395 5.06
            258
                   79 control
```