Práctico 3 – año 2020

Variables aleatorias continuas

Una variable aleatoria continua es una variable aleatoria que toma un conjunto de valores no numerable.

Ejercicio 3.1

Sea X una variable aleatoria con distribución normal, media 0 y desviación típica 1, $X \sim N(0,1)$. Calcular las siguientes probabilidades:

- a) P(X<1.96) b) $P(X \le 1.96)$ c) P(X>1.96)
- d) Calcular P(-0,53<X<1,78)
- e) Hallar x_1 , x_2 , x_3 , x_4 tal que:

$$P(X \le x_1) = 0.75$$
 $P(X \le x_2) = 0.23$ $P(X \ge x_3) = 0.77$ $P(-x_4 \le X \le x_4) = 0.58$

Ejercicio 3.2

Los pesos de 1.000 ovejas se distribuyen normalmente con media de 70kg y desviación típica de 3kg. Calcular cuántos de estos corderos se espera que pesen:

- a) Menos de 65kg.
- b) 71 kg.
- c) Entre 68,5 kg y 71 kg.
- d) A partir de 75 kg.

Ejercicio 3.3

El diámetro de una válvula cardíaca en una especie animal se distribuye normalmente con media de 3,5 mm y una desviación típica de 0,04 mm.

- a) ¿Qué proporción de las válvulas tienen un diámetro mayor de 3,425?
- b) ¿Cuál es la probabilidad de que una válvula tenga un diámetro entre 3,4 y 3,6?
- c) ¿Cuál es el diámetro por debajo del cual se encuentran el 20% de las válvulas?

Ejercicio 3.4

El cuerpo de cierta especie de animales homeotermos tiene mecanismos de regulación que mantienen la temperatura a un valor medio de 36,3 grados Celsius, con una desviación típica de 0,1 cuando el animal está sano. Si llamamos X a la variable que expresa la temperatura corporal en un momento dado, y esta se puede modelar razonablemente como normal o gaussiana, ¿cuál es la probabilidad de que la temperatura corporal se encuentre entre 36,104 y 26,496?

Ejercicio 3.5

La altura de una gran muestra de hombres se encontró que se distribuía de forma aparentemente normal o gaussiana, con una media de 1,65 y una desviación típica de 0,06 m. ¿Cuál es la proporción de varones con una altura menor que 1,5m? ¿Qué altura es rebasada

por el 5% de los varones? ¿De qué tamaño construiría puertas para estos hombres de forma eficiente?

Ejercicio 3.6

Se dispone de 5.422 resultados de un cierto test. Sabiendo que los puntajes se pueden aproximar mediante una distribución normal con media 75 y desviación típica 7, se pide calcular:

- a) La probabilidad de que un test extraído al azar tenga entre 61 y 68 puntos.
- b) El número aproximado de test que obtuvieron entre 61 y 68 puntos.
- c) Entre qué valores queda ubicado el 95% central de la población?

Ejercicio 3.7

El tiempo que tarda una bacteria en dividirse, contando a partir de la división anterior, es una variable aleatoria con una distribución exponencial cuya media es de 5 horas. ¿Cuál es la probabilidad de que al menos 3 de las próximas bacterias que surjan se dividan en menos de 4 horas?

Ejercicio 3.8

En una ciudad se estima que la temperatura máxima en el mes de junio sigue una distribución normal, con media 23° y desviación típica 5°. Calcular el número de días del mes en los que se espera alcanzar máximas entre 21° y 27°.

Ejercicio 3.9

Aplicar el test de D'Agostino para analizar si los datos siguen una distribución gaussiana. Aplicar la prueba con un nivel de significación alfa del 1%. ¿Cambia la decisión tomando alfa 5%?

129,67

112,16

126,2

118,03

120,91

102,2

111,2

98,65

115,83

124,08

121,99

117,61

124,32 134,03

Ejercicio 3.10

Los siguientes datos corresponden a la altura en centímetros de una muestra de 16 hombres.

170,13
163,25
152,70
158,94
165,79
190,13
201,46
193,31
181,22
207,95
182,02
174,59
160,09
165,58
157,99
169,41

- a) Utilizar la función summary del software R para describir los datos.
- b) Realizar la prueba de Shapiro-Wilks para decidir si los datos ajustan a una distribución normal o gaussiana con la ayuda del software R.
- c) Instalar el paquete moments para realizar una prueba de D'agostino.
- d) Utilizar la función hist del software R para construir un histograma con los datos de la muestra. Graficar la función de densidad correspondiente si los datos fuesen gaussianos y superponer con el gráfico anterior.
- e) Construir un gráfico aqplot normal y verificar si los datos son gaussianos.
- f) En base a las partes anteriores, calcular la probabilidad de que un hombre tomado al azar de dicha población mida 185 centímetros o más.