Peter Komar

December 26, 2018

Contents

1	Fou	Foundations 2					
	1.1	Definitions, identities	2				
	1.2	Bayesian inference	3				
	1.3	Model comparison	4				
	1.4	Prediction	5				
2	Exa	Exact inference and Maximum Likelihood Estimate					
	2.1	Maximum likelihood estimate	6				
	2.2	Exact inference examples	8				
3	Pric	Priors, Regularization, AIC, BIC, LRT					
	3.1	Improper and proper priors	12				
	3.2	Regularization	12				
	3.3	Linear regression	12				
	3.4	Model comparison with asymptotic metrics	13				
	3.5	Example: Linear regression	14				
4	Graphical models						
	4.1	Elements	18				
	4.2	Real-life examples	19				
	4.3	Plate notation	19				
	4.4	Hierarchical models	20				
	4.5	Example: Beta-Binomial	23				
5	Hidden variables, EM, Mixture models						
	5.1	Definitions	25				
	5.2	Expectation Maximization	25				
	5.3	Mixture models	26				
	5.4	Gaussian Mixture Model	27				
6	Curse of Dimensionality, Laplace approximation 36						
	6.1	High-dimensional example	30				
	6.2	Laplace approximation	30				
	6.3	Example: (x, y) linear regression	31				

1 Foundations

1.1 Definitions, identities

Notation

- Upper-case letters (A, B, C, X, Y): random variables
- Lower-case letters (a, b, c, x, y): real numbers
- $\bullet \ P(X=x) \ =: \ P(x)$
- P(X = x and Y = y) =: P(x, y)
- $P(A = a, \text{ given } B = b) =: P(a \mid b)$
- $\int_{\infty}^{+\infty} [\ldots] da =: \sum_{a \in \mathbb{R}} [\ldots] =: \sum_{a} [\ldots]$

Conditional probability

- $\bullet \ P(a \mid b) = \frac{P(a,b)}{P(b)}$
- $\bullet \ P(a,b) = P(a \mid b) \ P(b)$
- $\bullet \ P(a,b \mid c) = P(a \mid b,c) \ P(b \mid c)$
- $\sum_a P(a \mid b) = 1$, but $\sum_b P(a \mid b) \neq 1$, in general
- $\sum_{b} P(a \mid b) P(b) = \sum_{b} P(a, b) = P(a)$

Marginal

•
$$P(a) = \sum_b P(a \mid b) P(b)$$

Bayes theorem

$$\bullet \ P(b \mid x) = \frac{1}{P(x)} P(x \mid b) \ P(b)$$

1.2 Bayesian inference

Prior, likelihood, posterior

- Data: $D = \{x_1, x_2, \dots x_n\}$, independent measurements.
- Model: M with θ : parameter(s) to estimate
- Prior: $P(\theta)$
- Likelihood: $P(D \mid \theta) = P(x_1 \mid \theta) P(x_2 \mid \theta) \dots P(x_n \mid \theta) = \prod_{i=1}^n P(x_i \mid \theta)$
- Unnormalized posterior: $P^*(\theta \mid D) = P(D \mid \theta) P(\theta)$
- Normalization: $Z = \sum_{\theta} P^*(\theta \mid D)$
- Posterior: $P(\theta \mid D) = \frac{1}{Z}P^*(\theta \mid D)$

Example

"Three light bulbs of the same make lasted 1, 2 and 5 months of continuous use. Let us estimate the lifetime of this kind of light bulb."

- $D = \{t_1, t_2, t_3\} = \{1, 2, 5\}$
- \bullet M: Light bulbs have average lifetime of T months.
- $P(T) = \frac{1}{1000}$, uniform on [0,1000].
- $P(t \mid T) = \frac{1}{T} \exp\left(-\frac{t}{T}\right)$
- $P(D \mid T) = \prod_{i} P(t_i \mid T) = \prod_{i=1}^{3} \frac{1}{T} \exp\left(-\frac{t_i}{T}\right) = \frac{1}{T^3} \exp\left(-\frac{1+2+5}{T}\right)$
- $P^*(T \mid D) = \frac{1}{T^3} \exp\left(-\frac{8}{T}\right)$
- Z and $P(T \mid D)$ can be determined numerically:

```
1 import numpy as np
2
3 T_arr = np.linspace(0.1, 1000, 10_000)
4 Pstar_arr = 1.0/T_arr**3 * np.exp(-8/T_arr)
5 Z = np.sum(Pstar_arr)
6 P_arr = Pstar_arr / Z
```

yielding Z = 0.1562

- $\mathbb{E}(T \mid D) = \sum_{T} T P(T \mid D)$
- $\operatorname{std}(T \mid D) = \sqrt{\sum_{T} (T \mathbb{E}(T))^2 P(T \mid D)}$

```
1 T_ev = np.sum(T_arr * P_arr)
2 T_std = np.sqrt(np.sum((T_arr - T_ev)**2 * P_arr))
```

yielding $\mathbb{E}(T \mid D) = 7.937$, $std(T \mid D) = 14.48$.

1.3 Model comparison

New definition: Evidence

- \bullet Data: D
- Model 1: M_1 with parameter θ_1 and prior $P(\theta_1 \mid M_1)$, and likelihood $P(D \mid \theta_1, M_1)$
- Model 2: M_2 with parameter θ_2 and prior $P(\theta_2 \mid M_2)$, and likelihood $P(D \mid \theta_2, M_2)$
- Prior on models: $P(M_1) = 0.5$, $P(M_2) = 0.5$.
- Evidence for each model: $P(D \mid M_i) = \sum_{\theta} P(D \mid \theta_i, M_i) P(\theta_i \mid M_i)$
- Unnormalized posterior: $P^*(M_1 \mid D) = P(D \mid M_1) P(M_1)$, and $P^*(M_2 \mid D) = P(D \mid M_2) P(M_2)$
- Normalization: $Z = P^*(M_1 \mid D) + P^*(M_2 \mid D)$.

Example

"Waiting for my baggage at the airport carousel, there are two possibilities: 1) It could miss the plane, and will never come, or 2) It was on the plane and it had a 1/20 chance of arriving within any of the 1-minute intervals between 0 and 20 minutes. Now, given what is the posterior probability of model 2 given that 14 minutes has passed and the bag has not arrived?"

- $D = \{ \text{Bag has not arrived after } t_{\text{wait}} = 14 \text{ minutes} \}$
- M_1 : It never arrives, $P(D \mid M_1) = 1$
- M_2 : It shows up some time between 0 and 20 minutes, $P(t_{\text{bag}} \mid M_2) = 1/20$ for $t_{\text{bag}} \in [0, 20]$, and the likelihood is $P(D \mid t_{\text{bag}}, M_2) = 1$, if $t_{\text{bag}} > t_{\text{wait}}$, and 0 otherwise.
- $P(M_1) = 0.1$, $P(M_2) = 0.9$
- $P(D \mid M_1) = 1$
- $P(D \mid M_2) = \sum_{t_{\text{bag}}} P(D \mid t_{\text{bag}}, M_2) \ P(t_{\text{bag}} \mid M_2) = \sum_{t_{\text{bag}}} [t_{\text{bag}} > 14] \times \frac{1}{20} = \frac{20 14}{20}$
- $P^*(M_1 \mid D) = 1 \times 0.1$, $P^*(M_2 \mid D) = \frac{20-14}{20} \times 0.9$
- $Z = 0.1 + \frac{3}{10} \times 0.9 = 0.37$
- $P(M_2 \mid D) = P^*(M_2 \mid D)/Z = 0.7297$

We can also plot $P(M_2 \mid t_{\text{wait}})$ for all waiting times between 0 and 20 minutes.

1.4 Prediction

New definition: Predictive distribution

- Data: $D = \{x_1, x_2, \dots x_n\}$
- Model: M with parameter θ , prior $P(\theta)$ and likelihood $P(x \mid \theta)$
- Posterior: $P(\theta \mid D) = P^*(\theta \mid D)/Z = \dots$ (see previous sections)
- Predictive distribution: $P(X_{n+1} = x \mid D) = \sum_{\theta} P(x \mid \theta) P(\theta \mid D)$
- Customized prediction: $P(f(\theta) \mid D) = \sum_{\theta} f(\theta) P(\theta \mid D)$

Example

"Two player, A and B are playing a game of luck, where at the beginning of the game a ball is rolled on a pool table to divide the table in two un-equal halves: A's side and B's side. In each subsequent round, a ball is rolled. A point is given to the player on whose side the ball stops. A and B are playing this game until one of them reaches 6 points. The current score is 5 to 3 in favor of A. What is the chance that A will win this game?"

- $D = \{n_A = 5, n_B = 3\}$
- M, first ball: P(b) = 1 in [0, 1]
- P(A scores | b) = b
- $P(D \mid b) = \text{Binomial}(5 \mid 5 + 3, b)$
- $P^*(b_0 \mid D) = \text{Binomial}(5 \mid 8, b) \times 1$
- $Z = \sum_b \text{Binomial}(5 \mid 8, b)$ can be calculated numerically

```
1 import numpy as np
2 from scipy.stats import binom
3
4 b_arr = np.linspace(0, 1, 1000)
5 Pstar_arr = binom.pmf(5, 8, b_arr)
6 Z = np.sum(Pstar_arr)
```

- $P(A \text{ wins } | b, D) = 1 P(B \text{ wins } | b, D) = 1 (1 b)^3 = f(b)$
- $P(A \text{ wins } | D) = \sum_b f(b) P^*(b | D)/Z$

```
1 P_arr = Pstar_arr / Z
2 P_Awins = np.sum((1 - (1 - b_arr)**3) * P_arr)
```

yielding P(A wins | D) = 0.909

2 Exact inference and Maximum Likelihood Estimate

2.1 Maximum likelihood estimate

MLE-method

• Data: $D = \{x_1, x_2, \dots x_N\}$

• Parameter: θ

• Likelihood: $P(x_i \mid \theta)$

• Total log likelihood: $L(\theta) = \log P(D \mid \theta) = \sum_{i=1}^{N} \log P(x_i \mid \theta)$

• Maximum likelihood estimate $\theta_{\text{MLE}} = \operatorname{argmax}_{\theta} \log P(D \mid \theta)$, Numerically: with gradient descent or EM methods, Analytically: equating first derivatives to 0, and solving the system of equations.

Example 1: Normal model

• Data: $D = \{x_i\}_{i=1}^N$

• Parameters: $\mu \in \mathbb{R}$, $\sigma^2 > 0$

• Likelihood: $P(x_i \mid \mu, \sigma^2) = \text{Normal}(x_i \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x_i - \mu)^2}{2\sigma^2}\right]$

• Total log likelihood:

$$L(\mu, \sigma^2) = \sum_{i=1}^{N} \log \text{Normal}(x_i \mid \mu, \sigma^2) = -\frac{N}{2} \log(\sigma^2) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} + \text{const.}$$

• Analytical solution:

$$0 = \left[\frac{\partial L}{\partial \mu}\right]_{\text{MLE}} = \left[\sum_{i=1}^{N} \frac{\mu - x_i}{\sigma^2}\right]_{\text{MLE}} \Rightarrow \mu_{\text{MLE}} = \frac{1}{N} \sum_{i=1}^{N} x_i.$$

$$0 = \left[\frac{\partial L}{\partial (\sigma^2)}\right]_{\text{MLE}} = \left[-\frac{N}{2\sigma^2} + \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2(\sigma^2)^2}\right]_{\text{MLE}} \Rightarrow (\sigma^2)_{\text{MLE}} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_{\text{MLE}})^2$$

Example 2: Cauchy distribution

- Data: $D = \{-10, 1, 2, 5, 20\}$
- Parameters: $m \in \mathbb{R}$, s > 0.
- Likelihood: $P(x_i \mid m, s) = \text{Cauchy}(x_i \mid m, s) = \frac{1}{s\pi} \frac{1}{1 + [(x_i m)/s]^2}$
- Total log likelihood:

$$L(m,s) = \sum_{i=1}^{N} \log \operatorname{Cauchy}(x_i \mid m,s) = -N \log(s) - \sum_{i=1}^{N} \log \left(1 + \left[\frac{x_i - m}{s} \right]^2 \right)$$

• Numerical maximization (starting from $m_0 = 0$, $s_0 = 10$):

```
import numpy as np
2 from scipy.optimize import minimize
   def cauchy_total_log_likelihood(X, m, s):
5
        X = np.array(X)
6
        L = 0
        L += -len(X)/2 * np.log(s**2)
        L += -np.sum(np.log(1 + (X - m)**2 / s**2))
9
10
11
        return L
12
\begin{bmatrix} 13 & X = [-10, 1, 2, 5, 20] \end{bmatrix}
14 def func to minimize (theta):
        m = theta[0]
15
16
         s = theta[1]
17
        return - cauchy_total_log_likelihood(X, m, s)
|19 \text{ m0} = 0|
|21 \text{ result} = \min \text{minimize} (\text{func\_to\_minimize}, [m0, s0])
|22 \text{ m\_MLE}, \text{ s\_MLE} = \text{result.x}|
```

yielding $m_{\rm MLE} = 2.251$, $s_{\rm MLE} = 3.090$, the resulting MLE fit is shown below.

2.2 Exact inference examples

Binomial model

- Data: $D = \{(k_1, n_1), (k_2, n_2), \dots, (k_N, n_N)\}$, where k_i (successes), n_i (attempts) $\in \mathbb{N}$ and $k_i \leq n_i$
- Parameter: p (probability of success) $\in [0,1]$, flat prior: P(p) = 1, on [0,1]
- Likelihood: $P(k_i \mid n_i, p) = \text{Binomial}(k_i \mid n_i, p) = \binom{n_i}{k_i} p^{k_i} (1-p)^{n_i-k_i}$
- Posterior:

$$P(p \mid D) = \frac{1}{Z} \prod_{i=1}^{N} \left[p^{k_i} (1-p)^{n_i - k_i} \right] = \frac{1}{Z} p^{k_{\text{tot}}} (1-p)^{n_{\text{tot}} - k_{\text{tot}}}$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1-p)^{\beta - 1} = \text{Beta}(p \mid \alpha = k_{\text{tot}} + 1, \beta = n_{\text{tot}} - k_{\text{tot}} + 1),$$

where $k_{\text{tot}} = \sum_{i} k_{i}$ and $n_{\text{tot}} = \sum_{i} n_{i}$. Mean, mode and standard deviation are

$$\mathbb{E}(p) = \frac{\alpha}{\alpha + \beta} = \frac{k_{\text{tot}} + 1}{n_{\text{tot}} + 2}, \quad \text{mode}(p) = \frac{\alpha - 1}{\alpha + \beta - 2} = \frac{k_{\text{tot}}}{n_{\text{tot}}},$$

$$\text{std}(p) = \frac{\sqrt{\alpha\beta}}{(\alpha + \beta)\sqrt{\alpha + \beta + 1}} = \frac{\sqrt{(k_{\text{tot}} + 1)(n_{\text{tot}} - k_{\text{tot}} + 1)}}{(n_{\text{tot}} + 2)\sqrt{n_{\text{tot}} + 3}}$$

Poisson model

- Data: $D = \{k_1, k_2, \dots k_N\}$, where k_i (number of events) $\in \mathbb{N}$
- Parameters: λ (expected number of events) > 0, flat prior: $P(\lambda) = \text{const.}$
- Likelihood: $P(k_i \mid \lambda) = \text{Poisson}(k \mid \lambda) = e^{-\lambda} \frac{\lambda^{k_i}}{k_i!}$
- Posterior:

$$P(\lambda \mid D) = \frac{1}{Z} \prod_{i=1}^{N} \left[e^{-\lambda} \lambda^{k_i} \right] = \frac{1}{Z} e^{-N\lambda} \lambda^{k_{\text{tot}}} = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda} = \text{Gamma}(\lambda \mid \alpha = k_{\text{tot}} + 1, \beta = N),$$

where $k_{\text{tot}} = \sum_{i} k_{i}$. Mean, mode and standard deviation are

$$\mathbb{E}(\lambda) = \frac{\alpha}{\beta} = \frac{k_{\text{tot}} + 1}{N}, \quad \text{mode}(\lambda) = \frac{\alpha - 1}{\beta} = \frac{k_{\text{tot}}}{N}, \quad \text{std}(\lambda) = \frac{\sqrt{\alpha}}{\beta} = \frac{\sqrt{k_{\text{tot}} + 1}}{N}$$

Multinomial model

• Data: $D = \{(k_{1,1}, k_{1,2}, \dots k_{1,M}), (k_{2,1}, k_{2,2}, \dots k_{2,M}), \dots (k_{N,1}, k_{N,2}, \dots k_{N,M})\}$, where $k_{i,j}$ (counts of outcome j) $\in \mathbb{N}$, and $\sum_{i} k_{i,j} = 1$, $\forall i$.

- Parameters: $p = (p_1, p_2, \dots p_M)$, where p_j (probability of outcome j) > 0 and $\sum_j p_j = 1$; flat prior: P(p) = const.
- Likelihood: $P(\{k_{i,j}\}_{j=1}^{M} \mid p) = \text{Multinomial}(\{k_{i,j}\}_{j=1}^{M} \mid p) = k_{i,\text{tot}}! \prod_{j} \frac{p_{j}^{k_{i,j}}}{k_{i,j}!}$
- Posterior:

$$P(p \mid D) = \frac{1}{Z} \prod_{i=1}^{N} \prod_{j=1}^{M} (p_j)^{k_{i,j}} = \frac{1}{Z} \prod_{j=1}^{M} (p_j)^{k_{\text{tot},j}} = \Gamma(\alpha_{\text{tot}}) \prod_{j=1}^{M} \frac{(p_j)^{\alpha_j - 1}}{\Gamma(\alpha_j)} = \text{Dirichlet}(p \mid \alpha_j = k_{\text{tot},j} + 1),$$

where $k_{i,\text{tot}} = \sum_{j} k_{i,j}$, $k_{\text{tot},j} = \sum_{i} k_{i,j}$, and $\alpha_{\text{tot}} = \sum_{j} \alpha_{j} = k_{\text{tot},\text{tot}} + M$. Mean, mode and marginal standard deviation are

$$\mathbb{E}(p_j) = \frac{\alpha_j}{\alpha_{\text{tot}}} = \frac{k_{\text{tot},j} + 1}{k_{\text{tot},\text{tot}} + M}, \quad \text{mode}(p) : p_j = \frac{\alpha_j - 1}{\alpha_{\text{tot}} - M} = \frac{k_{\text{tot},j}}{k_{\text{tot},\text{tot}}}$$
$$\text{std}(p_j) = \frac{\sqrt{\alpha_j(\alpha_{\text{tot}} - \alpha_j)}}{\alpha_{\text{tot}}\sqrt{\alpha_{\text{tot}} + 1}} = \frac{\sqrt{(k_{\text{tot},j} + 1)(k_{\text{tot},\text{tot}} - k_{\text{tot},j} + M - 1)}}{(k_{\text{tot},\text{tot}} + M)\sqrt{k_{\text{tot},\text{tot}} + M + 1}}$$

Exponential model

- Data: $D = \{t_1, t_2, \dots t_N\}$, where t_i (waiting times) > 0
- Parameter: γ (rate) > 0, flat prior: $P(\gamma) = \text{const.}$
- Likelihood: $P(t_i \mid \gamma) = \text{Exponential}(t_i \mid \gamma) = \gamma e^{-\gamma t_i}$
- Posterior:

$$P(\gamma \mid D) = \frac{1}{Z} \prod_{i=1}^{N} \left[\gamma e^{-\gamma t_i} \right] = \frac{1}{Z} \gamma^N e^{-\gamma t_{\text{tot}}} = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \gamma^{\alpha - 1} e^{-\beta \gamma} = \text{Gamma}(\gamma \mid \alpha = N + 1, \beta = t_{\text{tot}}),$$

where $t_{\text{tot}} = \sum_{i} t_{i}$. Mean, mode, standard deviation are

$$\mathbb{E}(\gamma) = \frac{\alpha}{\beta} = \frac{N+1}{t_{\text{tot}}}, \quad \text{mode}(\gamma) = \frac{\alpha-1}{\beta} = \frac{N}{t_{\text{tot}}}, \quad \text{std}(\gamma) = \frac{\sqrt{\alpha}}{\beta} = \frac{\sqrt{N+1}}{t_{\text{tot}}}$$

Normal

• Data: $D = \{x_1, x_2, \dots x_N\}$, where x (value) $\in \mathbb{R}$

• Parameters: μ (expected value) $\in \mathbb{R}$, σ^2 (variance) > 0, uninformative prior: $P(\mu, \sigma^2) = \text{const.}$

• Likelihood:
$$P(x_i \mid \mu, \sigma^2) = \text{Normal}(x_i \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x_i - \mu)^2}{2\sigma^2}\right]$$

• Posterior:

$$\begin{split} P(\mu,\sigma^2\mid D) &= \frac{1}{Z}\prod_{i=1}^N\left\{\frac{1}{\sqrt{\sigma^2}}\exp\left[-\frac{(x_i-\mu)^2}{2\sigma^2}\right]\right\} = \frac{1}{Z}\left(\frac{1}{\sigma^2}\right)^{N/2}\exp\left[-\frac{Ns^2+N(\mu-m)^2}{2\sigma^2}\right] \\ &= \frac{\sqrt{\lambda}}{\sqrt{2\pi\sigma^2}}\frac{\beta^\alpha}{\Gamma(\alpha)}\left(\frac{1}{\sigma^2}\right)^{\alpha+1}\exp\left[-\frac{2\beta+\lambda(\mu-\mu_c)^2}{2\sigma^2}\right] \\ &= \text{Normal-Inverse-Gamma}\Big(\mu,\sigma^2\mid \alpha=\frac{N-3}{2},\;\beta=\frac{Ns^2}{2},\;\mu_c=m,\;\lambda=N\Big), \end{split}$$

where $m = \frac{1}{N} \sum_i x_i$ is the empirical mean, $s^2 = \frac{1}{N} \sum_i (x_i - m)^2$ is the empirical variance. The mode is identical to the MLE result

$$mode(\mu, \sigma^2) = (m, s^2).$$

The marginal, and mean, mode and standard deviation of μ is

$$\begin{split} P(\mu \mid D) &= \sum_{\sigma^2} P(\mu, \sigma^2 \mid D) = \frac{\Gamma\left(\frac{N-2}{2}\right)}{\Gamma\left(\frac{N-3}{2}\right)} \frac{1}{\sqrt{\pi s^2}} \left[1 + \frac{(\mu - m)^2}{s^2} \right]^{-(N-2)/2} \\ &= \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\pi \nu}} \left[1 + \frac{1}{\nu} \left(\frac{\mu - \log}{\text{scale}}\right)^2 \right]^{-(\nu+1)/2} \frac{1}{\text{scale}} \\ &= \text{t-distr} \Big(\mu \mid \log = m, \text{ scale} = \frac{s}{\sqrt{N-3}}, \ \nu = N-3 \Big), \end{split}$$

$$\mathbb{E}(\mu) = m, \quad \text{mode}(\mu) = m, \quad \text{std}(\mu) = \frac{s}{\sqrt{N-3}} \sqrt{\frac{\nu}{\nu-2}} = \frac{s}{\sqrt{N-5}},$$

where ν is the "degrees of freedom" of the Student's t-distribution. The marginal, and mean, mode and standard deviation of σ^2 is

$$P(\sigma^{2} \mid D) = \sum_{\mu} P(\mu, \sigma^{2} \mid D) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} \exp\left(-\frac{\beta}{\sigma^{2}}\right)$$
$$= \text{Inverse-Gamma}\left(\sigma^{2} \mid \alpha = \frac{N-3}{2}, \ \beta = \frac{Ns^{2}}{2}\right)$$

$$\mathbb{E}(\sigma^2) = \frac{\beta}{\alpha - 1} = s^2 \frac{N}{N - 5}, \quad \operatorname{mode}(\sigma^2) = \frac{\beta}{\alpha + 1} = s^2 \frac{N}{N - 1}, \quad \operatorname{std}(\sigma^2) = \frac{\beta}{(\alpha - 1)\sqrt{\alpha - 2}} = s^2 \frac{\sqrt{2}N}{(N - 5)\sqrt{N - 7}}$$

Ŋ	Model	Posterior	
Binomial	0 1 2 3 4 5 6 7 8 9 10 11 12	Beta	0.0 0.2 0.4 0.6 0.8 1.0
Poisson	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Gamma	
Multinomial	12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12	Dirichlet	1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.5 0.8 1.0
Exponential	0 2 4 6 8	Gamma	
Normal	-4 -2 0 2 4	Normal- Inverse-Gamma	Inverse-Gamma Student's t

3 Priors, Regularization, AIC, BIC, LRT

3.1 Improper and proper priors

Improper priors are not normalizable, i.e. $\sum_{\theta} P(\theta) = \infty$

- Flat prior: $P(\theta) = \text{const.}$ over any infinite domain.
- Uninformative priors (from transformation invariance or max-entropy principles)
 - Location parameter: P(m) = const., on $m \in (-\infty, +\infty)$,
 - Scale parameter: $P(s) = \frac{\text{const.}}{s}$, on $s \in (0, \infty)$,
 - Probability parameter: $P(p) = \frac{\text{const.}}{p(1-p)}$, on $p \in (0,1)$.

Proper priors are normalized, i.e. $\sum_{\theta} P(\theta) = 1$.

3.2 Regularization

Regularized model training

- Data: D,
- Model: M with parameters θ , likelihood $P(D \mid \theta)$
- Cost function = $-\log P(D \mid \theta) = -L(\theta)$, the log likelihood
- Penalty: penalty(θ), which is high for implausible θ values.
- Regularized optimum: $\theta_{\text{reg.opt.}} = \arg\min_{\theta} (-L(\theta) + \text{penalty}(\theta))$

3.3 Linear regression

- Data: $D = \{ (\{x_{i,k}\}_{k=1}^K, y_i) \}_{i=1}^N$, where x_i (feature vector) $\in \mathbb{R}^K$, y_i (predicted variable) $\in \mathbb{R}$.
- Parameters: $\{b_k\}_{k=1}^K$, where b_k (coefficient or weight) $\in \mathbb{R}$.
- Model:

$$\begin{array}{rcl} y_i & = & \displaystyle\sum_{k=1}^K x_{i,k} b_k + \varepsilon_i, & \text{with} & P(\varepsilon_i) = \operatorname{Normal}(\varepsilon_i \mid \mu = 0, \sigma^2 = \sigma^2) \\ y & = & Xb + \varepsilon \\ & & \text{or equivalently} \\ P(y \mid X, b) & = & \displaystyle\prod_{i=1}^N \operatorname{Normal}\left(y_i \mid \mu = (Xb)_i, \ \sigma^2 = \sigma^2\right) \end{array}$$

- Log likelihood: $L(b) = \log P(y \mid X, b) = -\frac{N}{2} \log(\sigma^2) \frac{1}{2\sigma^2} \sum_{i=1}^{N} \left[y_i \sum_k x_{i,k} b_k \right]^2$
- Maximum likelihood estimate: $b_{\text{MLE}} = \arg\max_b L(b) = (X^{\top}X)^{-1}X^{\top}y, \quad (\sigma^2)_{\text{MLE}} = \frac{1}{N}||y Xb||^2$
- Regularization:
 - "L1 regularization": penalty(b) = $\alpha_1 \sum_k |b_k|$ \Leftrightarrow Laplace prior: $P(b_k) = \text{const.} \times e^{-\alpha_1 |b_k|} = \text{Laplace}(b_k \mid \text{loc} = 0, \text{scale} = 1/\alpha_1)$
 - "L2 regularization": penalty(b) = $\frac{\alpha_2}{2} \sum_k (b_k)^2$
 - \Leftrightarrow Normal prior: $P(b_k) = \text{const.} \times e^{-\alpha_2(b_k)^2/2} = \text{Normal}(b_k \mid \mu = 0, \sigma^2 = 1/\alpha_2)$
 - "Elastic net regularization": penalty(b) = $\alpha_1 \sum_k |b_k| + \frac{\alpha_2}{2} \sum_k (b_k)^2$

The "hyperparameters" α_1 and α_2 can be optimized using "Leave-one-out" or "M-fold" cross-validation.

3.4 Model comparison with asymptotic metrics

Maximum likelihood results from two models

- Data $D = \{x_i\}_{i=1}^N$
- Null model: M_0 with parameters θ_0 , and $L_0(\theta_0) = P(D \mid \theta_0, M_0), \; \theta_{0,\text{MLE}} = \operatorname{argmax}_{\theta_0} L_0(\theta_0)$
- Alternate model: M_1 with parameters θ_1 , and $L_1(\theta_1) = P(D \mid \theta_1, M_1), \ \theta_{1,\text{MLE}} = \operatorname{argmax}_{\theta_1} L_1(\theta_1)$

Akaike Information Criterion (AIC)

- AIC $(M_i) = -2 \Big[L_i(\theta_{i,\text{MLE}}) \dim(\theta_i) \Big]$ for both i = 0, 1 models.
- If $AIC(M_1) < AIC(M_0)$, then M_1 is more plausible.

Bayesian Information Criterion (BIC)

- BIC $(M_i) = -2 \left[L_i(\theta_{i,\text{MLE}}) \frac{\ln(N)}{2} \dim(\theta_i) \right]$ for both i = 0, 1 models.
- If $BIC(M_1) < BIC(M_0)$, then M_1 is more plausible.

Likelihood Ratio Test (LRT)

- $\log LR = \log \frac{P(D \mid M_1, \theta_{1,MLE})}{P(D \mid M_0, \theta_{0,MLE})} = L_1(\theta_{1,MLE}) L_0(\theta_{0,MLE})$
- LRT pvalue = $1 \operatorname{cdf} \chi^2 \left(2 \operatorname{logRL} \mid \operatorname{dof} = \operatorname{dim}(\theta_1) \operatorname{dim}(\theta_0) \right)$, where $\operatorname{cdf} \chi^2(\dots \mid \operatorname{dof} = d)$ is the cumulative distribution function of the χ^2 distribution with degrees of freedom d.

Model evidence

- $P(D \mid M_i) = \sum_{\theta_i} P(D \mid \theta_i, M_i) \approx \exp\left(-\frac{1}{2} \text{ IC}\right),$
- where IC can be either AIC or BIC (or WAIC, WBIC)
- Under uniform prior (i.e. $P(M_0) = P(M_1)$), the posterior probability of the alternate model being correct is

$$P(M_1 \mid D) \approx \frac{\exp\left(-\frac{1}{2} \operatorname{IC}_1\right)}{\exp\left(-\frac{1}{2} \operatorname{IC}_0\right) + \exp\left(-\frac{1}{2} \operatorname{IC}_1\right)}$$

3.5 Example: Linear regression

• Data: $D = \{(x_i, y_i)\}_{i=1}^N$ (generated from $y = 1 - 3x - x^2/2 + x^3 + \varepsilon$ with $std(\varepsilon) = 2$).

```
1 import numpy as np
2 from numpy.polynomial.polynomial import polyval
3 from scipy.stats import norm
4
5 c_true = [1, -3, -0.5, 1]
6 sigma_true = 2
7 x_data = np.linspace(-3, 3, 20)
8 y_data = [polyval(x, c_true) + norm.rvs(loc=0, scale=sigma_true)
9 for x in x_data]
```


- Models: M_K : $K = 0, 1, 2, \ldots$ -degree polynomial, parameters: $c = (c_0, c_1, \ldots c_K)$.
- "Linear features": $X_i := (1, x_i, (x_i)^2, (x_i)^3), \dots (x_i)^K$).

• Likelihood: $y = \sum_{k=0}^K X_{i,k} c_k + \varepsilon$, with $P(\varepsilon) = \text{Normal}(\varepsilon \mid 0, \sigma^2)$

```
1 def log_likelihood(X, y, c, sigma2):
2     N = len(y_data)
3     log_like = 0
4     log_like += - N/2.0 * np.log(sigma2)
5     log_like += - 1.0/(2 * sigma2) * vector_norm(y - X.dot(c))**2
6     return log_like
```

• MLE solution: $c_{\text{MLE}} = (X^{\top}X)^{-1}X^{\top}y$, $(\sigma^2)_{\text{MLE}} = \frac{1}{N}||y - Xc_{\text{MLE}}||^2$

• $AIC_k = -2[L_k - (k+2)]$

```
1 def AIC(X, y, c, sigma2):
2          dim = len(c) + 1
3          loglike = log_likelihood(X, y, c, sigma2)
4          return -2 * (loglike - dim)
```

• BIC_k = $-2[L_k - \frac{\log N}{2}(k+2)]$

```
1 def BIC(X, y, c, sigma2):
2          N = len(y)
3          dim = len(c) + 1
4          loglike = log_likelihood(X, y, c, sigma2)
5          return -2 * (loglike - np.log(N)/2.0 * dim)
```

• LRT pvalue_k = 1 - cdf $\chi^2(2(L_k - L_{k-1}) \mid \text{dof} = 1)$ (calculated against the model with one less degree)

```
1 from scipy.stats import chi2
2
3 pvalues = [np.nan]
4 for deg in degrees [1:]:
5     L1 = loglikes [deg]
6     L0 = loglikes [deg-1]
7     logLR = L1 - L0
8     dof = 1
9     pvalue = chi2.sf(2*logLR, dof)
10     pvalues.append(pvalue)
```


• BIC weights, $P(D \mid M_k) \approx e^{-\mathrm{BIC}_k/2} / \sum_{k'=0}^K e^{-\mathrm{BIC}_{k'}/2}$

```
1 def BIC_weigths(BICs):
2 BICs = np.array(BICs)
3 w = BICs - np.min(BICs) # for numerical stability
4 w = np.exp(-0.5*(w))
5 w /= np.sum(w)
6 return w
```


4 Graphical models

4.1 Elements

• $P(x,y) = P(y \mid x)P(x)$ is represented by

$$x \longrightarrow y$$

• $P(x, y, z) = P(y \mid z, x)P(z \mid x)P(x)$. If $P(y \mid z, x) = P(y \mid z)$, then it is represented by a **chain**

$$x \longrightarrow z \longrightarrow y$$

Note: $y \perp \!\!\! \perp x \mid z$, but $y \not \perp \!\!\! \perp x \mid \emptyset$.

• $P(x, y_1, y_2) = P(y_1, y_2 \mid x)P(x)$. If $P(y_1, y_2 \mid x) = P(y_1 \mid x)P(y_2 \mid x)$, then it is represented by a **fork**

Note: $y_1 \perp \!\!\!\perp y_2 \mid x$, but $y_1 \not\perp \!\!\!\perp y_2 \mid \emptyset$.

• $P(x_1, x_2, y) = P(y \mid x_1, x_2)P(x_1, x_2)$. If $P(x_1, x_2) = P(x_1)P(x_2)$, then it is represented by a **collider**

Note: $x_1 \perp \!\!\! \perp x_2 \mid \emptyset$, but $x_1 \not \perp \!\!\! \perp x_2 \mid y$ (!).

Examples

• $P(a,b,c,d,e) = P(a)P(d)P(b \mid a,d)P(c \mid b)P(e \mid c)P(f \mid c)$ is represented by

• $P(a,b,c,d,e,f) = P(a)P(c \mid a)P(b \mid a)P(f \mid c)P(d \mid b,c)P(e \mid d)$ is represented by

4.2 Real-life examples

• Fire causes Smoke, Smoke causes Alarm to set off, but given Smoke, there's no correlation between Fire and Alarm, i.e. Fire ⊥ Alarm | Smoke. This is represented by a chain

• Both rain and the Sprinkler can cause the formation of a Puddle, they are however independent (until we observe the Puddle), i.e. Rain \bot Sprinkler $|\emptyset\rangle$. This is represented by a collider

• Heat causes both Ice Cream sales and Crime to increase, but once we know there was a heatwave, they become independent, i.e. Crime ⊥ Ice Cream | Heat. This is represented by a fork

• Education affects Political View, which affects both Party membership and Voting behavior. This can be represented as

• Education and Experience both affect Salary, but Education also affects Experience. This can be represented as

4.3 Plate notation

4.4 Hierarchical models

Beta-Binomial model

- Data: $D = \{(k_i, n_i)\}_{i=1}^N$, where $k_i(\text{successes}) \in \{0, 1, \dots, n_i\}$, and $n_i(\text{attempts}) \in \mathbb{N}$
- Model:
 - level 1: the parameters, $p = \{p_i\}_{i=1}^N$, where $p_i \in [0,1]$, define $P(k_i \mid n_i, p_i) = \text{Binomial}(k_i \mid n_i, p_i)$
 - level 2: the parameters, α, β (both > 0), define $P(p_i \mid \alpha, \beta) = \text{Beta}(p_i \mid \alpha, \beta)$.

This hierarchy can be represented as

• Joint likelihood:

$$P(D, p \mid \alpha, \beta) = \prod_{i=1}^{N} \left[\text{Binom}(k_i \mid n_i, p_i) \text{ Beta}(p_i \mid \alpha, \beta) \right]$$

• Marginal likelihood:

$$P(D \mid \alpha, \beta) = \prod_{i=1}^{N} \left[\int dp_i \operatorname{Binom}(k_i \mid n_i, p_i) \operatorname{Beta}(p_i \mid \alpha, \beta) \right] = \prod_{i=1}^{N} \left[\operatorname{Beta-Binom}(k_i \mid n_i, \alpha, \beta) \right]$$
where
$$\operatorname{Beta-Binom}(k \mid n, \alpha, \beta) = \frac{\Gamma(n+1)\Gamma(\alpha+\beta)}{\Gamma(n+\alpha+\beta)} \frac{\Gamma(k+\alpha)}{\Gamma(k+1)\Gamma(\alpha)} \frac{\Gamma(n-k+\beta)}{\Gamma(n-k+1)\Gamma(\beta)}$$

Gamma-Poisson model (aka. Negative Binomial model)

- Data: $D = \{k_i\}_{i=1}^N$, where $k_i(\text{events}) \in \mathbb{N}$.
- Model:
 - level 1: the parameters $\lambda = \{\lambda_i\}_{i=1}^N$, where $\lambda_i > 0$, define $P(k_i \mid \lambda) = \text{Poisson}(k_i \mid \lambda_i)$
 - level 2: the parameters α, β (both > 0), define $P(\lambda_i \mid \alpha, \beta) = \text{Gamma}(\lambda_i \mid \alpha, \beta)$.

This hierarchy can be represented as

• Joint likelihood:

$$P(D, \lambda \mid \alpha, \beta) = \prod_{i=1}^{N} \left[\text{Poisson}(k_i \mid \lambda_i) \text{ Gamma}(\lambda_i \mid \alpha, \beta) \right]$$

• Marginal likelihood:

$$P(D \mid \alpha, \beta) = \prod_{i=1}^{N} \left[\int d\lambda_{i} \operatorname{Poisson}(k_{i} \mid \lambda_{i}) \operatorname{Gamma}(\lambda_{i} \mid \alpha, \beta) \right] = \prod_{i=1}^{N} \left[\operatorname{Gamma-Poisson}(k_{i} \mid \alpha, \beta) \right]$$
where
$$\operatorname{Gamma-Poisson}(k \mid \alpha, \beta) = \frac{\Gamma(k + \alpha)}{\Gamma(k + 1)\Gamma(\alpha)} \left(\frac{1}{\beta + 1} \right)^{k} \left(\frac{\beta}{\beta + 1} \right)^{\alpha} =$$

$$= \operatorname{NegativeBinom}(k \mid r, p) = \binom{k + r - 1}{k} p^{k} (1 - p)^{r}, \quad \text{with } r = \alpha, \ p = \frac{1}{\beta + 1}$$

Dirichlet-Multinomial model

- Data: $D = \{k_i \in \mathbb{N}^M\}_{i=1}^N = \{(k_{i,1}, k_{i,2}, \dots k_{i,M})\}_{i=1}^N$, where $k_{i,j}$ (number of outcome j) $\in \mathbb{N}$
- Model:
 - level 1: the parameters $p = \{p_i \in \mathbb{R}^M\}_{i=1}^N = \{(p_{i,1}, p_{i,2}, \dots p_{i,M})\}_{i=1}^N$, where $p_{i,j}$ (probability of outcome j in sample i) > 0, and $\sum_{j=1}^M p_{i,j} = 1$, $\forall i$, define $P(k_i \mid p_i) = \text{Multinomial}(k_i \mid k_{i,\text{tot}}, p_i)$, where $k_{i,\text{tot}} = \sum_{j=1}^M k_{i,j}$
 - level 2: the parameters $\alpha = (\alpha_1, \alpha_2, \dots \alpha_M)$, where each $\alpha_j > 0$, define $P(p_i \mid \alpha) = \text{Dirichlet}(p_i \mid \alpha)$

This hierarchy can be represented as

• Joint likelihood:

$$P(D \mid \alpha) = \prod_{i=1}^{N} \left[\text{Multinomial}(k_i \mid k_{i, \text{tot}}, p_i) \text{ Dirichlet}(p_i \mid \alpha) \right]$$

• Marginal likelihood:

$$P(D \mid \alpha) = \prod_{i=1}^{N} \left[\int dp_i \, \text{Multinomial}(k_i \mid k_{i,\text{tot}}, p_i) \, \text{Dirichlet}(p_i \mid \alpha) \right] = \prod_{i=1}^{N} \left[\text{Dirichlet-Multinomial}(k_i \mid k_{i,\text{tot}}, \alpha) \right]$$

$$\text{where} \qquad \text{Dirichlet-Multinomial}(k \mid k_{\text{tot}}, \{\alpha_j\}_{j=1}^{M}) = \frac{\Gamma(k_{\text{tot}} + 1)\Gamma(\alpha_{\text{tot}})}{\Gamma(k_{\text{tot}} + \alpha_{\text{tot}})} \prod_{j=1}^{M} \frac{\Gamma(k_j + \alpha_j)}{\Gamma(k_j + 1)\Gamma(\alpha_j)},$$

$$\text{where} \qquad \alpha_{\text{tot}} = \sum_{i=1}^{M} \alpha_j$$

Random Effect Model

• Data: $D = \{x_g\}_{g=1}^G = \{(x_{g,1}, x_{g,2}, \dots x_{g,N_g})\}_{g=1}^G$, where $x_{g,i} \in \mathbb{R}$ is measurement i in group g, and groups can be of different sizes N_g .

- Model:
 - level 1: The parameters $\mu = \{\mu_g\}_{g=1}^G$ and σ^2 define $P(x_{g,i} \mid \mu_g, \sigma) = \text{Normal}(x_{g,i} \mid \mu_g, \sigma^2)$
 - level 2: The parameter σ_0^2 define $P(\mu_g \mid \mu_0, \sigma_0) = \text{Normal}(\mu_g \mid \mu_0, \sigma_0^2)$

This hierarchy can be represented as

• Joint likelihood:

$$P(D, \mu \mid \mu_0, \sigma_0, \sigma) = \prod_{g=1}^{G} \left[\text{Normal}(\mu_g \mid \mu_0, \sigma_0^2) \times \prod_{i=1}^{N_g} \text{Normal}(x_{g,i} \mid \mu_g, \sigma^2) \right]$$

• Marginal likelihood:

$$\begin{split} P(D \mid \mu_0, \sigma_0, \sigma) &= \prod_{g=1-\infty}^G \int_{-\infty}^{+\infty} d\mu_g \left[\text{Normal}(\mu_g \mid \mu_0, \sigma_0^2) \times \prod_{i=1}^{N_g} \text{Normal}(x_{g,i} \mid \mu_g, \sigma^2) \right] \\ &= (2\pi\sigma_0^2)^{-\frac{G}{2}} \prod_{g=1}^G \left[\frac{1}{\sqrt{\xi + N_g}} (2\pi\sigma^2)^{-\frac{N_g-1}{2}} \exp\left(-\frac{N_g}{2\sigma^2} \left[\frac{\xi}{\xi + N_g} (\mu_g - m_g)^2 + s_g^2 \right] \right) \right] \\ \text{where} &\qquad \xi = \frac{\sigma^2}{\sigma_0^2}, \qquad m_g = \frac{1}{N_g} \sum_{i=1}^{N_g} x_{g,i}, \qquad s_g^2 = \frac{1}{N_g} \sum_{i=1}^{N_g} x_{g,i}^2 - m_g^2 \end{split}$$

4.5 Example: Beta-Binomial

Life-time performance 10 different boxers are collected. Wins (k_i) and losses $(n_i - k_i)$ are tallied, and the observed win rate $p_{i,obs} = k_i/n_i$ is calculated. This is shown below

We would like to determine the win rate of an "typical boxer", i.e. the distribution of the win rate p. While the observed values $p_{\rm obs}$ are good estimates of the individual win rates, 5 boxers played less than 30 matches, while 5 played more than 40, which means the second group provides more information, and their observed win rates need to be taken with more certainty. The Beta-Binomial hierarchical model accounts for this inhomogeneity.

- Data: $\{n_i\} = [24, 23, 30, 21, 25, 53, 41, 52, 64, 57], \{k_i\} = [10, 13, 9, 10, 9, 51, 28, 37, 59, 45], \text{ with } N = 10.$
- Parameters: $\alpha, \beta > 0$
- Model:

$$\log P(D \mid \alpha, \beta) = \sum_{i=1}^{N} \log \left(\text{Beta-Binom}(k_i \mid n_i, \alpha, \beta) \right)$$
 where
$$\log \left(\text{Beta-Binom}(k \mid n, \alpha, \beta) \right) = -f(n, \alpha + \beta) + f(k, \alpha) + f(n - k, \beta),$$
 where
$$f(k, \alpha) = \log \Gamma(k + \alpha) - \log \Gamma(k + 1) - \log \Gamma(\alpha)$$

which can be implemented as

```
from scipy.special import gammaln
   def log three gamma term(k, a):
4
       return gammaln(k+a) - gammaln(k+1) - gammaln(a)
5
6
   def log_beta_binom(k, n, a, b):
7
       target = 0
       target += -log three gamma term(n, a+b)
9
       target += log three gamma term(k, a)
       target += log\_three\_gamma\_term(n-k, b)
10
11
       return target
```

```
12
13 def log_likelihood(k, n, a, b):
14          target = 0
15          for ki, ni in zip(k, n):
16               target += log_beta_binom(ki, ni, a, b)
17          return target
```

• While assuming flat priors for α and β , we can numerically calculate their joint posterior and means.

```
1 import numpy as np
 2 import pandas as pd
 3
 4 \text{ a\_arr}, b\_arr = np.meshgrid(np.linspace(0.1, 20, 100),
                                    np.linspace(0.1, 20, 100))
 5
 6 \text{ a arr} = \text{a arr.flatten}()
 7 \text{ b\_arr} = \text{b\_arr.flatten}()
   loglike = []
 9
   for a, b in zip(a arr, b arr):
        loglike.append(log_likelihood(k, n, a, b))
11
12
13
   df = pd.DataFrame({
14
        'a': a_arr,
         'b': b_arr,
15
16
         'loglike': loglike
17 })
18
|19 \text{ df}[\text{'pstar'}] = \text{np.exp}(\text{df}[\text{'loglike'}] - \text{df}[\text{'loglike'}].\text{max}())
20 \text{ Z} = \text{df}[\text{'pstar'}].\text{sum}()
|21 df['posterior'] = df['pstar'] / Z
22
23 post_a = df.groupby(by='a')['posterior'].sum().reset_index()
24 post_b = df.groupby(by='b')['posterior'].sum().reset_index()
25
26 a_mean = (post_a['posterior'] * post_a['a']).sum()
27 b_mean = (post_b['posterior'] * post_b['b']).sum()
```

giving $\mathbb{E}(\alpha \mid D) = 4.142$, $\mathbb{E}(\beta \mid D) = 2.289$.

Their (marginal) posteriors and the distribution of the win rate (for the mean α and β values) are below.

5 Hidden variables, EM, Mixture models

5.1 Definitions

- Known values:
 - Observations (or data), $D = \{x_i\}_{i=1}^N$
- Unknown values:
 - Parameters: $\theta = \{\theta_k\}_{k=1}^K$
 - Hidden variables (or hidden data): $Z = \{z_i\}_{i=1}^N$ (i.e. Z is as numerous as D)

5.2 Expectation Maximization

Goal

- Given the likelihood $P(D \mid Z, \theta)$, and prior on hidden variables $P(Z \mid \theta)$,
- The joint is $P(D, Z \mid \theta) = P(D \mid Z, \theta) P(Z \mid \theta)$
- The marginal is $P(D \mid \theta) = \sum_{Z} P(D, Z \mid \theta)$
- We wish to find θ that maximizes the marginal, i.e.

$$\theta^{\text{MLE}} = \operatorname*{arg\,max}_{\theta} \left[\log P(D \mid \theta) \right] = \operatorname*{arg\,max}_{\theta} \left[\log \left(\sum_{Z} P(D, Z \mid \theta) \right) \right]$$

• Direct numerical optimization is usually feasible, but the EM method is often faster.

Expectation Maximization (EM) algorithm:

- 1. Start with realistic $\theta = \theta^{\text{old}}$
- 2. E-step: Calculate $P(Z \mid D, \theta^{\text{old}}) = \frac{P(D, Z \mid \theta^{\text{old}})}{\sum_{Z'} P(D, Z' \mid \theta^{\text{old}})}$
- 3. M-step: Find the optimal $\theta = \theta^{\text{new}}$ that maximizes $\sum_{Z} P(Z \mid D, \theta^{\text{old}}) \log P(D, Z \mid \theta)$
- 4. Set $\theta^{\text{old}} \leftarrow \theta^{\text{new}}$, check convergence, and return to E-step if needed.
- The one-liner iteration formula is based on the joint $P(D, Z \mid \theta)$:

$$\theta^{\text{new}} = \operatorname*{arg\,max}_{\theta} \left[\sum_{Z} \frac{P(D, Z \mid \theta^{\text{old}})}{\sum_{Z'} P(D, Z' \mid \theta^{\text{old}})} \log P(D, Z \mid \theta) \right]$$

5.3 Mixture models

- Data: $D = \{x_i\}_{i=1}^N$
- Parameters: θ, w
 - Components: $c \in \{1, 2, \dots C\}$
 - Parameters for each component $\theta = \{\theta_c\}_{c=1}^C$
 - Mixing proportions: $w = \{w_c \in [0,1]\}_{c=1}^C$, such that $\sum_c w_c = 1$.
- Hidden variables: labels $L = \{l_i\}_{i=1}^N$, where $l_i \in \{1, 2, \dots C\}$
- Model: mixture of distinct distributions
 - Generative distribution for each component: $P(x_i \mid l_i = c, \theta) = P(x_i \mid \theta_c)$
 - Probability of an observation coming from a component: $P(l_i = c) = w_c$

• Joint

$$P(D, L \mid \theta, w) = P(D \mid L, \theta) \ P(L \mid w) = \prod_{i=1}^{N} P(x_i \mid \theta_{l_i}) \ w_{l_i}$$

• Marginal

$$P(D \mid \theta, w) = \sum_{L} P(D, L \mid \theta, w) = \prod_{i=1}^{N} \left[\sum_{c=1}^{C} w_c P(x_i \mid \theta_c) \right]$$

EM algorithm

- 1. Start with initial values: $\theta^{\text{old}}, w^{\text{old}}$
- 2. In E-step, calculate

$$P(l_i = c \mid x_i, \theta^{\text{old}}) = \frac{w_c^{\text{old}} P(x_i \mid \theta_c^{\text{old}})}{\sum_{c'} w_{c'}^{\text{old}} P(x_i \mid \theta_{c'}^{\text{old}})} =: r_{i,c}$$

3. In M-step, calculate

$$w_c^{\text{new}} = \frac{1}{N} \sum_{i=1}^{N} r_{i,c}$$

$$\theta_c^{\text{new}} = \underset{\theta_c}{\operatorname{arg\,max}} \left[\sum_{i=1}^{N} r_{i,c} \log P(x_i \mid \theta_c) \right]$$

$$= \text{MLE of } \theta \text{ with data weights } \{r_{i,c}\}_{i=1}^{N}$$

5.4 Gaussian Mixture Model

(aka. GMM or "soft K-means clustering")

- Data: $\{x_i\}_{i=1}^N$, where $x_i \in \mathbb{R}^d$ (point in d dimension)
- Parameters:
 - Clusters: $k \in \{1, 2, ... K\}$
 - Mixture proportions: $\{w_k \in [0,1]\}_{k=1}^K$, where $\sum_k w_k = 1$
 - Cluster means: $\mu = \{\mu_k \in \mathbb{R}^d\}_{k=1}^K$
 - Cluster covariances: $\Sigma = \{\Sigma_k \in \mathbb{R}^{d \times d}, \text{positive definite}\}_{k=1}^K$
- Hidden variables: cluster labels, $L = \{l_i\}_{i=1}^N$, where $l_i \in \{1, 2, ..., K\}$
- Model

$$P(l_i = k) = w_k$$

$$P(x_i \mid l_i = k, \mu, \Sigma) = \text{Normal}(x_i \mid \mu_k, \Sigma_k) = \frac{1}{\sqrt{\det(2\pi\Sigma_k)}} \exp\left(-\frac{1}{2}(x_i - \mu_k)^{\top}(\Sigma_k)^{-1}(x_i - \mu_k)\right)$$

• Marginal:

$$P(D \mid \mu, \Sigma, w) = \prod_{i=1}^{N} \left[\sum_{k=1}^{K} w_k \operatorname{Normal}(x_i \mid \mu_k, \Sigma_k) \right]$$

- EM algorithm
 - 1. Choose realistic $w^{\mathrm{old}}, \mu^{\mathrm{old}}, \Sigma^{\mathrm{old}}$ initial values.
 - 2. In E-step, calculate

$$r_{i,k} = \frac{w_k^{\text{old Normal}}(x_i \mid \mu_k^{\text{old}}, \Sigma_k^{\text{old}})}{\sum_{k'} w_{k'}^{\text{old Normal}}(x_i \mid \mu_{k'}^{\text{old}}, \Sigma_{k'}^{\text{old}})}$$

3. In M-step, calculate

$$w_k^{\text{new}} = \frac{1}{N} \sum_{i=1}^N r_{i,k}$$

$$\mu_k^{\text{new}} = \frac{1}{w_k^{\text{new}} N} \sum_{i=1}^N r_{i,k} x_i$$

$$\Sigma_k^{\text{new}} = \frac{1}{w_k^{\text{new}} N} \sum_{i=1}^N r_{i,k} (x_i - \mu_k^{\text{new}}) (x_i - \mu_k^{\text{new}})^{\top}$$

The following python class implements the EM algorithm for fitting GMM.

```
class GmmEm:
2
       def ___init___(self, x):
3
           self.x = np.array(x)
           self.N, self.d = self.x.shape
4
            self.K = None
5
            self.weights = None
6
            self.means = None
7
            self.covs = None
8
9
       def initialize (self, K):
10
           self.K = K
11
12
           m0 = np.mean(x, axis=0)
13
           cov0 = np.cov(x.T)
14
15
           self.weights = [1.0/K] * K
16
           self.means = multivariate_normal.rvs(mean=m0, cov=cov0, size=K)
17
           cov\_values, \_=np.linalg.eig(cov0)
18
            self.covs = np.array([np.eye(self.d) * 0.1 *cov_values.max()
19
                                   for _ in range(K)])
20
21
       def e_step(self):
22
           r = []
23
           for k in range (K):
24
                r.append(self.weights[k] *
25
                          multivariate_normal.pdf(self.x,
                                                    mean=self.means[k],
26
27
                                                    cov = self.covs[k])
28
           r = np.array(r).T
           r sum = np.einsum('ik->i', r)
29
30
           r = np.einsum('ik,i->ik', r, 1.0/r_sum)
31
           return r
32
       def m_step(self, r):
33
34
           weights_new = 1.0/N * np.einsum('ik->k', r)
35
           means_new = 1.0/N * 
36
                         np.einsum('k, _{\sqcup}ik, id->kd',
37
                                    1.0/weights new,
38
                                   r,
39
                                    self.x)
40
           deviations = np.array([self.x - means_new[k] for k in range(self.K)])
           covs\_new = 1.0/N * 
41
                         np.einsum('k,ik,kid,kiD->kdD',
42
43
                                    1.0/weights new,
44
45
                                    deviations,
                                    deviations)
46
47
48
            self.weights = weights new
49
            self.means = means\_new
50
            self.covs = covs\_new
```

Example: GMM in 2D with K=2

Iterating the E- and M-steps a couple of times, we arrive to the final set of r values.

```
1 gmm = GmmEm(x)
2
3 K = 2
4 gmm.initialize(K)
5 for it in range(12):
6     r = gmm.e_step()
7     gmm.m_step(r)
```


6 Curse of Dimensionality, Laplace approximation

6.1 High-dimensional example

- Data: $D = \{k_t\}_{t=1}^T$, where $k_t \in \mathbb{N}$ is the number of influenza cases at small clinic on each day of the year (T = 365).
- Parameters:
 - $-\theta = \{\theta_t\}_{t=1}^T$, with $\theta_t = \log(\lambda_t)$ where $\lambda_t > 0$ is the intensity of influenza on a given day t.
 - $-\sigma > 0$, the typical change $\theta_t \theta_{t-1}$.
- Model:
 - Prior: $P(\theta_t \mid \theta_{t-1}) = \text{Normal}(\theta_t \mid \theta_{t-1}, \sigma^2)$, and $P(\sigma) = \text{const.}$
 - Data generation process: $P(k_t \mid \theta_t) = \text{Poisson}(k_t \mid \lambda = \exp(\theta_t))$
- Posterior:

$$P(\theta \mid D) = \frac{1}{Z} P^*(\theta \mid D) = \frac{1}{Z} \prod_{t=1}^{T} \left[P(\theta_t \mid \theta_{t-1}) P(k_t \mid \theta_t) \right]$$

with the understanding that " $P(\theta_1 \mid \theta_0)$ " = 1. Here Z is the normalization constant.

• Numerical solution would require evaluating P^* on a grid of different θ values. Even, at the very extreme, when we consider only 2 values for each θ_t , the number of evaluations becomes

$$2^{365} \approx 10^{109} > 10^{86}$$
 (the number of protons in the observable part of the universe),

which makes it impossible to pursue this strategy.

6.2 Laplace approximation

- Goal: Determine posterior mean and variance of each parameter θ_t
- Challenge: The dimension of $\theta = \{\theta_t\}_{t=1}^T$, i.e. T is too high for direct numerical evaluation.
- Method: Approximate $P^*(\theta \mid D)$ near its maximum with a multi-variate normal distribution.

$$\begin{split} P^*(\theta \mid D) &\approx \operatorname{Normal}(\theta \mid \mu, \Sigma) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left[-\frac{1}{2}(\theta - \mu)^\top \Sigma^{-1}(\theta - \mu)\right] \\ &\text{where} \qquad \mu = \underset{\theta}{\arg\max} \left[\log P^*\right] \qquad \in \mathbb{R}^T \\ &\Sigma = \left[-\frac{d}{d\theta} \frac{d}{d\theta} \log P^*\right]_{\theta = \mu}^{-1} \in \mathbb{R}^{T \times T} \end{split}$$

where μ can be found with direct numerical or analytical minimization or an expectation maximization algorithm, and Σ can be evaluated analytically or approximated numerically.

6.3 Example: (x, y) linear regression

- Data: $D = \{D_x, D_y\},\$
 - where $D_x = \{x_i\}_{i=1}^N = [21, 24, 17, 39, 23, 45, 33, 26, 13, 35],$
 - and $D_y = \{y_i\}_{i=1}^N = [22, 27, 22, 29, 26, 36, 30, 26, 15, 37]$

- Parameters: a (slope), b (intercept), σ^2 (strength of y-noise), using flat priors, i.e. $P(a, b, \sigma^2) = \text{const.}$
- Model:

$$P(D_y \mid D_x, a, b, \sigma^2) = \prod_{i=1}^N \text{Normal}(y_i \mid \mu(x_i), \sigma^2), \quad \text{where } \mu(x_i) = ax_i + b$$

• Unnormalized posterior:

$$\log P^*(a, b, \sigma^2 \mid D) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} \left[y_i - (ax_i + b) \right]^2$$

• MLE estimate:

$$\begin{array}{l} 0 = \frac{\partial}{\partial a} \log P^* = \frac{1}{\sigma^2} \left[\sum_i y_i x_i - a \sum_i x_i^2 - b \sum_i x_i \right] \\ 0 = \frac{\partial}{\partial b} \log P^* = \frac{1}{\sigma^2} \left[\sum_i y_i - a \sum_i x_i - b N \right] \\ 0 = \frac{\partial}{\partial (\sigma^2)} \log P^* = -\frac{N}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_i \left[y_i - (ax_i + b) \right]^2 \end{array} \right\} \Rightarrow \left\{ \begin{array}{l} a_{\mathrm{MLE}} = \left(\overline{yx} - \overline{y}\,\overline{x} \right) / \left(\overline{x^2} - \overline{x}^2 \right) \\ b_{\mathrm{MLE}} = \overline{y} - a_{\mathrm{MLE}}\,\overline{x} \\ (\sigma^2)_{\mathrm{MLE}} = \frac{1}{N} \sum_i \left[y_i - (a_{\mathrm{MLE}}\,x_i + b_{\mathrm{MLE}}) \right]^2 \end{array} \right.$$

where

$$\overline{x} = \frac{1}{N} \sum_{i} x_{i} = 27.6, \qquad \overline{y} = \frac{1}{N} \sum_{i} y_{i} = 27.0, \qquad \overline{x^{2}} = \frac{1}{N} \sum_{i} x_{i}^{2} = 854.0, \qquad \overline{y}\overline{x} = \frac{1}{N} \sum_{i} y_{i}x_{i} = 798.9,$$

```
1 import numpy as np
2
3 def xy_linear_regression_MLE(x, y):
4     N = len(x)
5     ev_x = np.mean(x)
6     ev_y = np.mean(y)
7     ev_xx = np.mean(x * x)
8     ev_yx = np.mean(y * x)
9     ev_yy = np.mean(y * y)
```

giving $\mu = (a_{\text{MLE}}, b_{\text{MLE}}, (\sigma^2)_{\text{MLE}})$, with $a_{\text{MLE}} = 0.5822$, $b_{\text{MLE}} = 10.93$, $(\sigma^2)_{\text{MLE}} = 7.737$.

• Laplace approximation:

First, we calculate all second order derivatives at the MLE point:

$$\frac{\partial}{\partial a} \frac{\partial}{\partial a} \log P^* = -\frac{N}{\sigma^2} \overline{x^2}$$

$$\frac{\partial}{\partial b} \frac{\partial}{\partial a} \log P^* = \frac{\partial}{\partial a} \frac{\partial}{\partial b} \log P^* = -\frac{N}{\sigma^2} \overline{x}$$

$$\frac{\partial}{\partial b} \frac{\partial}{\partial b} \log P^* = -\frac{N}{\sigma^2} \log P^*$$

$$\frac{\partial}{\partial (\sigma^2)} \frac{\partial}{\partial a} \log P^* = \frac{\partial}{\partial a} \frac{\partial}{\partial (\sigma^2)} \log P^* = 0$$

$$\frac{\partial}{\partial (\sigma^2)} \frac{\partial}{\partial b} \log P^* = \frac{\partial}{\partial b} \frac{\partial}{\partial (\sigma^2)} \log P^* = 0$$

$$\frac{\partial}{\partial (\sigma^2)} \frac{\partial}{\partial b} \log P^* = \frac{\partial}{\partial b} \frac{\partial}{\partial (\sigma^2)} \log P^* = 0$$

$$\frac{\partial}{\partial (\sigma^2)} \frac{\partial}{\partial (\sigma^2)} \log P^* = -\frac{N}{2(\sigma^2)^2}$$

from which we construct the second derivative at the MLE point:

$$-\nabla\nabla \log P^*|_{\mathrm{MLE}} = \frac{N}{(\sigma^2)_{\mathrm{MLE}}} \left[\begin{array}{ccc} \overline{x^2} & \overline{x} & 0 \\ \overline{x} & 1 & 0 \\ 0 & 0 & \frac{1}{2(\sigma^2)_{\mathrm{MLE}}} \end{array} \right]$$

giving

$$\Sigma = \begin{bmatrix} -\nabla\nabla\log P^*|_{\text{MLE}} \end{bmatrix}^{-1} = \begin{bmatrix} 0.0839 & -0.2315 & 0.0\\ -0.2315 & 7.1634 & 0.0\\ 0.0 & 0.0 & 11.197 \end{bmatrix}$$

and

$$Var(a \mid D) \approx \Sigma_{1,1} = 0.0839,$$

 $Var(b \mid D) \approx \Sigma_{2,2} = 7.1634,$
 $Var(\sigma^2 \mid D) \approx \Sigma_{3,3} = 11.197$

