Lead case study

Problem Statement

An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.

The company markets its courses on several websites and search engines like Google. Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos. When these people fill up a form providing their email address or phone number, they are classified to be a lead. Moreover, the company also gets leads through past referrals.

Once these leads are acquired, employees from the sales team start making calls, writing emails, etc. Through this process, some of the leads get converted while most do not. The typical lead conversion rate at X education is around 30%.

Now, although X Education gets a lot of leads, its lead conversion rate is very poor. For example, if, say, they acquire 100 leads in a day, only about 30 of them are converted. To make this process more efficient, the company wishes to identify the most potential leads, also known as 'Hot Leads'.

If they successfully identify this set of leads, the lead conversion rate should go up as the sales team will now be focusing more on communicating with the potential leads rather than making calls to everyone. A typical lead conversion process can be represented using the following funnel:

In [1]:

```
import warnings
warnings.filterwarnings('ignore')

# Importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# visulaisation
from matplotlib.pyplot import xticks
%matplotlib inline

# Data display coustomization
pd.set_option('display.max_rows', 100)
pd.set_option('display.max_columns', 100)
```

Data Preparation

```
In [2]:
```

```
data = pd.DataFrame(pd.read_csv('E:\dsfw\Leads.csv'))
data.head(5)
```

Out[2]:

Prospect ID	Lead Number	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Last Activity	Country	Specialization
7927b2df- 8bba-4d29- b9a2- b6e0beafe620	660737	API	Olark Chat	No	No	0	0.0	0	0.0	Page Visited on Website	NaN	Sele
2a272436- 5132-4136- 86fa- dcc88c88f482	660728	API	Organic Search	No	No	0	5.0	674	2.5	Email Opened	India	Sele
8cc8c611- a219-4f35-	000707	Landing	Direct	NI.	h 1 -	4	2.2	1500	0.0	Email	1 - 41 -	Busine

2	ad23- fdfd2656bd8a	660727	Page Submission	Traffic	No Do	No Do	1	2.0	Total Time	2.0 Page	Opened	India	Administrati
3	0c Pzesper&dD 4e39-9de9- 19797f9b38cc	Lead Number 660719	Lead Landing Page Submission	Lead Sறூக்கு Traffic	Not Email	Not C屆比	Converted 0	TotalVisits 1.0	Spent 306 Website	Views Per Visit	Last Activity Unreachable	Country India	Specialization Media a Advertisi
4	3256f628- e534-4826- 9d63- 4a8b88782852	660681	Landing Page Submission	Google	No	No	1	2.0	1428	1.0	Converted to Lead	India	Sele
4				1									Þ

In [3]:

```
#checking duplicates
sum(data.duplicated(subset = 'Prospect ID')) == 0
# No duplicate values
```

Out[3]:

True

In [4]:

```
data.shape
```

Out[4]:

(9240, 37)

<class 'pandas.core.frame.DataFrame'>

35 A free conv of Masterina The Interview

In [5]:

```
data.info()
```

RangeIndex: 9240 entries, 0 to 9239 Data columns (total 37 columns): # Column Non-Null Count Dtype ___ _____ -----Prospect ID 9240 non-null object 0 Lead Number 9240 non-null int64 9240 non-null object Lead Origin Lead Source 9204 non-null object 4 Do Not Email 9240 non-null object Do Not Call 9240 non-null object 6 Converted 9240 non-null int64 TotalVisits 9103 non-null float64 9240 non-null int64 8 Total Time Spent on Website 9 Page Views Per Visit 9103 non-null float64 10 Last Activity 9137 non-null object 11 Country 6779 non-null object 7802 non-null Specialization object 7033 non-null 13 How did you hear about X Education object 14 What is your current occupation 6550 non-null object 15 What matters most to you in choosing a course 6531 non-null object 9240 non-null object 16 Search 9240 non-null 17 Magazine object 18 Newspaper Article 9240 non-null object 19 X Education Forums 9240 non-null object 20 Newspaper 9240 non-null object 21 Digital Advertisement 9240 non-null object 22 Through Recommendations 9240 non-null object 23 Receive More Updates About Our Courses 9240 non-null object 24 Tags 5887 non-null object 25 Lead Quality 4473 non-null object. 26 Update me on Supply Chain Content 9240 non-null object 9240 non-null object 27 Get updates on DM Content 28 Lead Profile 6531 non-null object 29 City 7820 non-null object 30 Asymmetrique Activity Index 5022 non-null object 31 Asymmetrique Profile Index 5022 non-null object 32 Asymmetrique Activity Score 5022 non-null float64 33 Asymmetrique Profile Score 5022 non-null float64 I agree to pay the amount through cheque 9240 non-null

9240 non-niill

```
36 Last Notable Activity 9240 non-null object dtypes: float64(4), int64(3), object(30)
```

In [36]:

memory usage: 1.6+ MB

```
data.describe()
```

Out[36]:

	Lead Number	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Asymmetrique Activity Score	Asymmetrique Profile Score
count	9240.000000	9240.000000	9103.000000	9240.000000	9103.000000	5022.000000	5022.000000
mean	617188.435606	0.385390	3.445238	487.698268	2.362820	14.306252	16.344883
std	23405.995698	0.486714	4.854853	548.021466	2.161418	1.386694	1.811395
min	579533.000000	0.000000	0.000000	0.000000	0.000000	7.000000	11.000000
25%	596484.500000	0.000000	1.000000	12.000000	1.000000	14.000000	15.000000
50%	615479.000000	0.000000	3.000000	248.000000	2.000000	14.000000	16.000000
75%	637387.250000	1.000000	5.000000	936.000000	3.000000	15.000000	18.000000
max	660737.000000	1.000000	251.000000	2272.000000	55.000000	18.000000	20.000000

Data Cleaning

In [6]:

```
# As we can observe that there are select values for many column.
#This is because customer did not select any option from the list, hence it shows select.
# Select values are as good as NULL.
# Converting 'Select' values to NaN.
data = data.replace('Select', np.nan)
```

In [7]:

```
data.isnull().sum()
```

Out[7]:

```
Prospect ID
                                                    0
Lead Number
                                                    0
Lead Origin
                                                    0
Lead Source
                                                   36
Do Not Email
                                                    Ω
Do Not Call
                                                    0
Converted
                                                    0
                                                  137
TotalVisits
Total Time Spent on Website
                                                   0
Page Views Per Visit
                                                  137
Last Activity
                                                  103
Country
                                                  2461
Specialization
                                                 3380
How did you hear about X Education
                                                 7250
What is your current occupation
                                                 2690
                                                 2709
What matters most to you in choosing a course
Search
Magazine
                                                    0
Newspaper Article
                                                    0
X Education Forums
Newspaper
                                                    0
Digital Advertisement
                                                    0
Through Recommendations
                                                    0
Receive More Updates About Our Courses
                                                    0
                                                 3353
Lead Quality
                                                  4767
Update me on Supply Chain Content
                                                   Ο
                                                    0
Get updates on DM Content
```

```
Lead Profile
                                                  6855
City
                                                  3669
                                                  4218
Asymmetrique Activity Index
Asymmetrique Profile Index
                                                  4218
Asymmetrique Activity Score
                                                 4218
Asymmetrique Profile Score
                                                  4218
I agree to pay the amount through cheque
                                                    0
A free copy of Mastering The Interview
                                                    0
Last Notable Activity
                                                    0
dtype: int64
```

In [28]:

```
round(100*(data.isnull().sum()/len(data.index)), 2)
```

Out[28]:

Prospect ID Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
Last Notable Activity_Resubscribed to emails	0.00
Last Notable Activity SMS Sent	0.00
Last Notable Activity Unreachable	0.00
Last Notable Activity Unsubscribed	0.00
Last Notable Activity_View in browser link Clicked	0.00
Length: 126, dtype: float64	

In [8]:

```
# we will drop the columns having more than 70% NA values.
data = data.drop(data.loc[:,list(round(100*(data.isnull().sum()/len(data.index)), 2)>70)].columns,
1)
```

In [9]:

```
data['Lead Quality'].describe()
```

Out[9]:

count 4473
unique 5
top Might be
freq 1560

Name: Lead Quality, dtype: object

In [10]:

```
sns.countplot(data['Lead Quality'])
```

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x123e1868>

In [41]:

```
# As Lead quality is based on the intution of employee, so if left blank we can impute 'Not Sure' in NaN safely.
data['Lead Quality'] = data['Lead Quality'].replace(np.nan, 'Not Sure')
```

In [20]:

```
sns.countplot(data['Lead Quality'])
```

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x16a9a48>

In [11]:

An index and score assigned to each customer based on their activity and their profile

In [12]:

```
fig, axs = plt.subplots(2,2, figsize = (10,7.5))
plt1 = sns.countplot(data['Asymmetrique Activity Index'], ax = axs[0,0])
plt2 = sns.boxplot(data['Asymmetrique Activity Score'], ax = axs[0,1])
plt3 = sns.countplot(data['Asymmetrique Profile Index'], ax = axs[1,0])
plt4 = sns.boxplot(data['Asymmetrique Profile Score'], ax = axs[1,1])
plt.tight_layout()
```


In [13]:

There is too much variation in thes parameters so its not reliable to impute any value in it. # 45% null values means we need to drop these columns.

In [14]:

data = data.drop(['Asymmetrique Activity Index','Asymmetrique Activity Score','Asymmetrique Profil e Index','Asymmetrique Profile Score'],1)

In [15]:

round(100*(data.isnull().sum()/len(data.index)), 2)

Out[15]:

Prospect ID	0.00
Lead Number	0.00
Lead Origin	0.00
Lead Source	0.39
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
Total Time Spent on Website	0.00
Page Views Per Visit	1.48
Last Activity	1.11
Country	26.63
Specialization	36.58
What is your current occupation	29.11
What matters most to you in choosing a course	29.32
Search	0.00
Magazine	0.00
Newspaper Article	0.00
X Education Forums	0.00
Newspaper	0.00
Digital Advertisement	0.00
Through Recommendations	0.00
Receive More Updates About Our Courses	0.00
Tags	36.29
Lead Quality	51.59
Update me on Supply Chain Content	0.00
Get updates on DM Content	0.00
City	39.71
I agree to pay the amount through cheque	0.00
A free copy of Mastering The Interview	0.00
Last Notable Activity	0.00
dtype: float64	
dtype: float64	

In [16]:

City

In [17]:

data.City.describe()

Out[17]:

5571 count unique 6 top Mumbai 3222 freq

Name: City, dtype: object

F 1 O 1

Tu [T8]:

```
sns.countplot(data.City)
xticks(rotation = 90)
```

Out[18]:

(array([0, 1, 2, 3, 4, 5]), <a list of 6 Text major ticklabel objects>)

In [19]:

 $\mbox{\#}$ Around 60% of the data is Mumbai so we can impute Mumbai in the missing values.

In [20]:

```
data['City'] = data['City'].replace(np.nan, 'Mumbai')
```

In [21]:

data.Specialization.describe()

Out[21]:

count 5860 unique 18 top Finance Management freq 976

Name: Specialization, dtype: object

In [22]:

```
sns.countplot(data.Specialization)
xticks(rotation = 90)
```

Out[22]:

In [23]:

```
# It maybe the case that lead has not entered any specialization if his/her option is not availabe
on the list,
# may not have any specialization or is a student.
# Hence we can make a category "Others" for missing values.
```

In [24]:

```
data['Specialization'] = data['Specialization'].replace(np.nan, 'Others')
```

In [25]:

```
round(100*(data.isnull().sum()/len(data.index)), 2)
```

Out[25]:

Dragon at ID	0.00
Prospect ID Lead Number	0.00
	0.00
Lead Origin	
Lead Source	0.39
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
Total Time Spent on Website	0.00
Page Views Per Visit	1.48
Last Activity	1.11
Country	26.63
Specialization	0.00
What is your current occupation	29.11
What matters most to you in choosing a course	29.32
Search	0.00
Magazine	0.00
Newspaper Article	0.00
X Education Forums	0.00
Newspaper	0.00
Digital Advertisement	0.00
Through Recommendations	0.00
Receive More Updates About Our Courses	0.00
Tags	36.29
Lead Quality	51.59
Update me on Supply Chain Content	0.00
Get updates on DM Content	0.00
City	0.00
I agree to pay the amount through cheque	0.00
A free copy of Mastering The Interview	0.00
Last Notable Activity	0.00
dtype: float64	

In [26]:

In [27]:

```
data.Tags.describe()
```

Out[27]:

count 5887
unique 26
top Will revert after reading the email
freq 2072
Name: Tags, dtype: object

In [28]:

```
fig, axs = plt.subplots(figsize = (15,7.5))
sns.countplot(data.Tags)
xticks(rotation = 90)
```

Out[28]:

In [29]:

Blanks in the tag column may be imputed by 'Will revert after reading the email

In [30]:

```
data['Tags'] = data['Tags'].replace(np.nan, 'Will revert after reading the email')
```

```
In [31]:
data['What matters most to you in choosing a course'].describe()
Out[31]:
                             6531
count
unique
         Better Career Prospects
top
Name: What matters most to you in choosing a course, dtype: object
In [32]:
# Blanks in the this column may be imputed by 'Better Career Prospects
In [33]:
data['What matters most to you in choosing a course'] = data['What matters most to you in choosing
a course'].replace(np.nan, 'Better Career Prospects')
Occupation
In [34]:
data['What is your current occupation'].describe()
Out[34]:
                6550
count
unique
                6
         Unemployed
top
                5600
freq
Name: What is your current occupation, dtype: object
In [50]:
\# 86% entries are of Unemployed so we can impute "Unemployed" in it
In [35]:
data['What is your current occupation'] = data['What is your current occupation'].replace(np.nan,
'Unemployed')
Country
In [36]:
# Country is India for most values so let's impute the same in missing values.
data['Country'] = data['Country'].replace(np.nan, 'India')
In [37]:
round(100*(data.isnull().sum()/len(data.index)), 2)
Out[37]:
Prospect ID
                                                  0.00
Lead Number
                                                  0.00
Lead Origin
                                                  0.00
Lead Source
                                                  0.39
                                                  0.00
Do Not Email
Do Not Call
                                                  0.00
Converted
                                                  0.00
TotalVisits
                                                  1.48
Total Time Spent on Website
                                                  0.00
```

Page Views Per Visit	1.48
Last Activity	1.11
Country	0.00
Specialization	0.00
What is your current occupation	0.00
What matters most to you in choosing a course	0.00
Search	0.00
Magazine	0.00
Newspaper Article	0.00
X Education Forums	0.00
Newspaper	0.00
Digital Advertisement	0.00
Through Recommendations	0.00
Receive More Updates About Our Courses	0.00
Tags	0.00
Lead Quality	51.59
Update me on Supply Chain Content	0.00
Get updates on DM Content	0.00
City	0.00
I agree to pay the amount through cheque	0.00
A free copy of Mastering The Interview	0.00
Last Notable Activity dtype: float64	0.00

In [38]:

```
# Rest missing values are under 2% so we can drop these rows.
data.dropna(inplace = True)
```

0.0

In [39]:

```
round(100*(data.isnull().sum()/len(data.index)), 2)
```

Out[39]:

Prospect ID

```
Lead Number
                                                 0.0
                                                 0.0
Lead Origin
Lead Source
                                                 0.0
                                                 0.0
Do Not Email
Do Not Call
                                                0.0
Converted
                                                0.0
TotalVisits
                                                0.0
Total Time Spent on Website
                                                 0.0
Page Views Per Visit
                                                 0.0
Last Activity
                                                0.0
                                                0.0
Country
Specialization
                                                0.0
What is your current occupation
                                                0.0
What matters most to you in choosing a course
                                                0.0
Search
                                                 0.0
Magazine
                                                0.0
Newspaper Article
                                                 0.0
                                                 0.0
X Education Forums
Newspaper
                                                 0.0
Digital Advertisement
                                                 0.0
Through Recommendations
                                                0.0
                                                0.0
Receive More Updates About Our Courses
                                                0.0
                                                0.0
Lead Quality
Update me on Supply Chain Content
                                                 0.0
Get updates on DM Content
                                                0.0
                                                0.0
I agree to pay the amount through cheque
                                               0.0
A free copy of Mastering The Interview
                                                0.0
                                                0.0
Last Notable Activity
dtype: float64
```

In [40]:

```
data.to_csv('Leads_cleaned')
```

```
\#\# Now Data is clean and we can start with the analysis part
```

Exploratory Data Analytics

In [41]:

```
\# Converted is the target variable, Indicates whether a lead has been successfully converted (1) o r not (0).
```

In [42]:

```
Converted = (sum(data['Converted'])/len(data['Converted'].index))*100
Converted
```

Out[42]:

56.06338998621957

In [43]:

```
sns.countplot(x = "Lead Origin", hue = "Converted", data = data)
xticks(rotation = 90)
```

Out[43]:

```
(array([0, 1, 2, 3]), <a list of 4 Text major ticklabel objects>)
```


API and Landing Page Submission have 30-35% conversion rate but count of lead originated from them are considerable. Lead Add Form has more than 90% conversion rate but count of lead are not very high. Lead Import are very less in count. To improve overall lead conversion rate, we need to focus more on improving lead converion of API and Landing Page Submission origin and generate more leads from Lead Add Form.

In [44]:

```
fig, axs = plt.subplots(figsize = (15,7.5))
sns.countplot(x = "Lead Source", hue = "Converted", data = data)
xticks(rotation = 90)
```

Out[44]:

```
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), <a list of 14 Text major ticklabel objects>)
```


In [45]:

```
data['Lead Source'] = data['Lead Source'].replace(['google'], 'Google')
data['Lead Source'] = data['Lead Source'].replace(['Click2call', 'Live Chat', 'NC_EDM', 'Pay per
Click Ads', 'Press_Release',
    'Social Media', 'WeLearn', 'bing', 'blog', 'testone', 'welearnblog_Home', 'youtubechannel'], 'Oth
ers')
```

In [46]:

```
sns.countplot(x = "Lead Source", hue = "Converted", data = data)
xticks(rotation = 90)
```

Out[46]:

```
(array([0, 1, 2, 3, 4, 5, 6, 7, 8]),
  <a list of 9 Text major ticklabel objects>)
```


Google and Direct traffic generates maximum number of leads. Conversion Rate of reference leads and leads through welingak website is high. To improve overall lead conversion rate, focus should be on improving lead conversion of olark chat, organic search, direct traffic, and google leads and generate more leads from reference and welingak website.

Do Not Email & Do Not Call

In [47]:

```
fig, axs = plt.subplots(1,2,figsize = (15,7.5))
sns.countplot(x = "Do Not Email", hue = "Converted", data = data, ax = axs[0])
sns.countplot(x = "Do Not Call", hue = "Converted", data = data, ax = axs[1])
```

Out[47]:

<matplotlib.axes._subplots.AxesSubplot at 0x58cc490>

Total Visits

In [48]:

```
data['TotalVisits'].describe(percentiles=[0.05,.25, .5, .75, .90, .95, .99])
```

Out[48]:

count	4354.000000	
mean	3.808682	
std	5.294923	
min	0.00000	
5%	0.00000	
25%	2.00000	
50%	3.00000	
75%	5.000000	
90%	8.000000	
95%	10.000000	
99%	18.000000	
max	251.000000	
Momo	m - 4 - 1 177 - 3 4 - 3	£1 + C/

Name: TotalVisits, dtype: float64

In [49]:

```
sns.boxplot(data['TotalVisits'])
```

Out[49]:

<matplotlib.axes._subplots.AxesSubplot at 0x5918550>

In [50]:

```
# As we can see there are a number of outliers in the data.
# We will cap the outliers to 95% value for analysis.
```

In [51]:

```
percentiles = data['TotalVisits'].quantile([0.05,0.95]).values
data['TotalVisits'][data['TotalVisits'] <= percentiles[0]] = percentiles[0]
data['TotalVisits'][data['TotalVisits'] >= percentiles[1]] = percentiles[1]
```

In [52]:

```
sns.boxplot(data['TotalVisits'])
```

Out[52]:

<matplotlib.axes._subplots.AxesSubplot at 0x12751730>

In [53]:

```
sns.boxplot(y = 'TotalVisits', x = 'Converted', data = data)
```

Out[53]:

<matplotlib.axes._subplots.AxesSubplot at 0x1244a4d8>

0 1 Converted

Inference

Median for converted and not converted leads are the same. Nothing conclusive can be said on the basis of Total Visits.

Total time spent on website

In [54]:

```
data['Total Time Spent on Website'].describe()
Out[54]:
```

 count
 4354.000000

 mean
 594.821314

 std
 579.054824

 min
 0.000000

 25%
 66.000000

 50%
 351.000000

 75%
 1102.750000

 max
 2272.000000

Name: Total Time Spent on Website, dtype: float64

In [55]:

```
sns.boxplot(data['Total Time Spent on Website'])
```

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x589baa8>

In [56]:

```
sns.boxplot(y = 'Total Time Spent on Website', x = 'Converted', data = data)
```

Out[56]:

<matplotlib.axes._subplots.AxesSubplot at 0x13ca0f10>

Inference

Leads spending more time on the weblise are more likely to be converted. Website should be made more engaging to make leads spend more time.

Page views per visit

```
In [57]:
```

```
data['Page Views Per Visit'].describe()
Out[57]:
         4354.000000
count
mean
            2.610923
            2.079434
std
            0.000000
            1.330000
2.5%
            2.000000
75%
            4.000000
           16.000000
max
Name: Page Views Per Visit, dtype: float64
```

In [58]:

```
sns.boxplot(data['Page Views Per Visit'])
```

Out[58]:

<matplotlib.axes._subplots.AxesSubplot at 0x13cdfe68>

In [59]:

```
# As we can see there are a number of outliers in the data.
# We will cap the outliers to 95% value for analysis.
```

In [60]:

```
percentiles = data['Page Views Per Visit'].quantile([0.05,0.95]).values
data['Page Views Per Visit'][data['Page Views Per Visit'] <= percentiles[0]] = percentiles[0]
data['Page Views Per Visit'][data['Page Views Per Visit'] >= percentiles[1]] = percentiles[1]
```

In [61]:

```
sns.boxplot(data['Page Views Per Visit'])
```

Out[61]:

<matplotlib.axes._subplots.AxesSubplot at 0x13d14838>

In [62]:

```
sns.boxplot(y = 'Page Views Per Visit', x = 'Converted', data = data)
```

Out[62]:

<matplotlib.axes._subplots.AxesSubplot at 0x59187d8>

Last Activity

In [63]:

```
data['Last Activity'].describe()
```

Out[63]:

```
count 4354
unique 16
top SMS Sent
freq 1704
```

Name: Last Activity, dtype: object

In [64]:

```
fig, axs = plt.subplots(figsize = (15,5))
sns.countplot(x = "Last Activity", hue = "Converted", data = data)
xticks(rotation = 90)
```

Out[64]:

```
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]), <a list of 16 Text major ticklabel objects>)
```


In [65]:

In [66]:

```
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "Last Activity", hue = "Converted", data = data)
xticks(rotation = 90)
```

Out[66]:

```
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), <a list of 11 Text major ticklabel objects>)
```


Most of the lead have their Email opened as their last activity. Conversion rate for leads with last activity as SMS Sent is almost 60% b

country

```
In [67]:
```

```
data.Country.describe()

Out[67]:

count    4354
unique    28
top    India
freq    4213
Name: Country, dtype: object
```

Specialization

```
In [68]:
data.Specialization.describe()
Out[68]:
            4354
count
             19
unique
          Others
             823
freq
Name: Specialization, dtype: object
In [69]:
data['Specialization'] = data['Specialization'].replace(['Others'], 'Other Specialization')
In [70]:
fig, axs = plt.subplots(figsize = (15,5))
sns.countplot(x = "Specialization", hue = "Converted", data = data)
xticks(rotation = 90)
Out[70]:
(array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
```


Specialization

Focus should be more on the Specialization with high conversion rate.

Occupation

```
In [71]:
```

```
data['What is your current occupation'].describe()
Out[71]:
                4354
count
unique
          Unemployed
top
freq
                3483
Name: What is your current occupation, dtype: object
In [72]:
data['What is your current occupation'] = data['What is your current occupation'].replace(['Other'
], 'Other_Occupation')
```

In [73]:

```
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "What is your current occupation", hue = "Converted", data = data)
xticks(rotation = 90)
```

Out[73]:

```
(array([0, 1, 2, 3, 4, 5]), <a list of 6 Text major ticklabel objects>)
```


What matters most to you in choosing a course

Most entries are 'Better Career Prospects'. No Inference can be drawn with this parameter.

Search

```
In [75]:

data.Search.describe()

Out[75]:

count    4354
unique    2
top     No
freq    4347
Name: Search, dtype: object
```

Most entries are 'No'. No Inference can be drawn with this parameter.

X Education Forums

```
In [76]:
```

```
data['X Education Forums'].describe()

Out[76]:
count    4354
unique    1
top     No
freq    4354
Name: X Education Forums, dtype: object
```

Most entries are 'No'. No Inference can be drawn with this parameter.

Newspaper

```
In [77]:

data['Newspaper'].describe()

Out[77]:

count    4354
    unique     2
    top      No
    freq    4353
Name: Newspaper, dtype: object
```

Digital Advertisement

```
In [78]:

data['Digital Advertisement'].describe()
```

```
Out[78]:

count 4354
unique 2
top No
freq 4352
Name: Digital Advertisement, dtype: object
```

Through Recommendations

```
In [79]:

data['Through Recommendations'].describe()

Out[79]:

count    4354
unique    2
top     No
freq    4348
Name: Through Recommendations, dtype: object
```

Receive More Updates About Our Courses

```
In [80]:

data['Receive More Updates About Our Courses'].describe()

Out[80]:

count    4354
unique    1
top     No
freq    4354
Name: Receive More Updates About Our Courses, dtype: object
```

Tags

```
In [81]:
data.Tags.describe()
Out[81]:
                                 4354
count
top
       Will revert after reading the email
Name: Tags, dtype: object
In [82]:
fig, axs = plt.subplots(figsize = (15,5))
sns.countplot(x = "Tags", hue = "Converted", data = data)
xticks(rotation = 90)
Out[82]:
<a list of 25 Text major ticklabel objects>)
  2000
```

Converted 0

In [83]:

In [84]:

```
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "Tags", hue = "Converted", data = data)
xticks(rotation = 90)
```

Out[84]:

```
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), <a list of 13 Text major ticklabel objects>)
```


Lead Quality

```
In [85]:
```

```
data['Lead Quality'].describe()

Out[85]:
count     4354
unique     5
top     Might be
freq     1519
Name: Lead Quality, dtype: object
```

In [86]:

```
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "Lead Quality", hue = "Converted", data = data)
xticks(rotation = 90)
```

Out[86]:

```
(array([0, 1, 2, 3, 4]), <a list of 5 Text major ticklabel objects>)
```


Update me on Supply Chain Content

```
In [87]:
```

```
data['Update me on Supply Chain Content'].describe()

Out[87]:
count     4354
unique     1
top      No
freq     4354
Name: Update me on Supply Chain Content, dtype: object
```

Get updates on DM Content

```
In [88]:
data['Get updates on DM Content'].describe()
Out[88]:
         4354
count
unique
top
           No
        4354
freq
Name: Get updates on DM Content, dtype: object
In [89]:
data['I agree to pay the amount through cheque'].describe()
Out[89]:
         4354
count
unique
top
           No
         4354
freq
Name: I agree to pay the amount through cheque, dtype: object
In [90]:
data['A free copy of Mastering The Interview'].describe()
Out[90]:
         4354
count
unique
           No
top
         2735
freq
Name: A free copy of Mastering The Interview, dtype: object
City
In [91]:
data.City.describe()
Out[91]:
           4354
unique
             6
         Mumbai
top
          2993
Name: City, dtype: object
In [92]:
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "City", hue = "Converted", data = data)
xticks(rotation = 90)
Out[92]:
(array([0, 1, 2, 3, 4, 5]), <a list of 6 Text major ticklabel objects>)
                                                                  Converted
  1600
                                                                   0
                                                                     1
```


Last Notable Activity

```
In [93]:
data['Last Notable Activity'].describe()
Out[93]:
              4354
count
                14
unique
top
          SMS Sent
              1453
freq
Name: Last Notable Activity, dtype: object
In [94]:
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "Last Notable Activity", hue = "Converted", data = data)
xticks(rotation = 90)
Out[94]:
```

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), <a list of 14 Text major ticklabel objects>)

Results

Based on the univariate analysis we have seen that many columns are not adding any information to the model, heance we can drop them for frther analysis

```
In [95]:
```

In [96]:

```
data.shape

Out[96]:
(4354, 16)
```

In [97]:

```
data.head()
```

Out[97]:

		Prospect ID	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Last Activity	Specialization	What i you currer occupatio
	0	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	API	Olark Chat	No	No	0	0.0	0	0.0	Page Visited on Website	Other_Specialization	Unemploye
	2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	Landing Page Submission	Direct Traffic	No	No	1	2.0	1532	2.0	Email Opened	Business Administration	Studer
	3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	Landing Page Submission	Direct Traffic	No	No	0	1.0	305	1.0	Unreachable	Media and Advertising	Unemploye
	4	3256f628- e534-4826- 9d63- 4a8b88782852	Landing Page Submission	Google	No	No	1	2.0	1428	1.0	Converted to Lead	Other_Specialization	Unemploye
	6	9fae7df4- 169d-489b- afe4- 0f3d752542ed	Landing Page Submission	Google	No	No	1	2.0	1640	2.0	Email Opened	Supply Chain Management	Unemploye
4											100000) I

In [98]:

```
# List of variables to map

varlist = ['Do Not Email', 'Do Not Call']

# Defining the map function
def binary_map(x):
    return x.map({'Yes': 1, "No": 0})

# Applying the function to the housing list
data[varlist] = data[varlist].apply(binary_map)
```

In [99]:

Out[99]:

	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	Lead Source_Facebook	Lead Source_Google	Lead Source_Olark Chat	Lead Source_Organic Search	Lead Source_Others	Sourc
0	0	0	0	0	0	1	0	0	
2	1	0	0	0	0	0	0	0	
3	1	0	0	0	0	0	0	0	
4	1	0	0	0	1	0	0	0	
6	1	0	0	0	1	0	0	0	
4)

In [100]:

```
# Adding the results to the master dataframe
data = pd.concat([data, dummy1], axis=1)
data.head()
```

Out[100]:

	Prospect ID	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Last Activity	Specialization	What i you currer occupatio
0	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	API	Olark Chat	0	0	0	0.0	0	0.0	Page Visited on Website	Other_Specialization	Unemploye
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	Landing Page Submission	Direct Traffic	0	0	1	2.0	1532	2.0	Email Opened	Business Administration	Studer
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	Landing Page Submission	Direct Traffic	0	0	0	1.0	305	1.0	Unreachable	Media and Advertising	Unemploye
4	3256f628- e534-4826- 9d63- 4a8b88782852	Landing Page Submission	Google	0	0	1	2.0	1428	1.0	Converted to Lead	Other_Specialization	Unemploye
6	9fae7df4- 169d-489b- afe4- 0f3d752542ed	Landing Page Submission	Google	0	0	1	2.0	1640	2.0	Email Opened	Supply Chain Management	Unemploye
4												Þ

In [101]:

data = data.drop(['Lead Origin', 'Lead Source', 'Last Activity', 'Specialization','What is your
current occupation','Tags','Lead Quality','City','Last Notable Activity'], axis = 1)

In [102]:

data.head()

Out[102]:

	Prospect ID Prospect ID	Do Ngat Ennail Email	Do Not Welt Call		TotalVisits TotalVisits	Titte Spent Spent Website	Page Views Vieit Visit	Lead Origin_Landiag Origin_Landiag Submissigg Submission	Lead Origin_Lead Ortgid_fead Add Form	Lead Origin_Lead Origin <mark>inlead</mark> Import	Lead Source_Facebeak Source_Facebook	
	7927h2df-					Website						
0	8bba-4d29- b9a2- b6e0beafe620	0	0	0	0.0	0	0.0	0	0	0	0	
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	0	0	1	2.0	1532	2.0	1	0	0	0	
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	0	0	0	1.0	305	1.0	1	0	0	0	
4	3256f628- e534-4826- 9d63- 4a8b88782852	0	0	1	2.0	1428	1.0	1	0	0	0	
6	9fae7df4- 169d-489b- afe4- 0f3d752542ed	0	0	1	2.0	1640	2.0	1	0	0	0	
4												Þ

In [103]:

```
from sklearn.model_selection import train_test_split
# Putting feature variable to X
X = data.drop(['Prospect ID','Converted'], axis=1)
```

In [104]:

X.head()

Out[104]:

	Do Not Email	Do Not Call	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	Lead Source_Facebook	Lead Source_Google	Lea Source_Olar Cha
0	0	0	0.0	0	0.0	0	0	0	0	0	
2	0	0	2.0	1532	2.0	1	0	0	0	0	1
3	0	0	1.0	305	1.0	1	0	0	0	0	
4	0	0	2.0	1428	1.0	1	0	0	0	1	
6	0	0	2.0	1640	2.0	1	0	0	0	1	
4		1888									b

In [105]:

```
# Putting response variable to y
y = data['Converted']
y.head()
```

Out[105]:

- 0 0 2 1
- 3 0
- 4 1
- 6 1

Name: Converted, dtype: int64

In [106]:

```
# Splitting the data into train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3,
random_state=100)
```

Feature Scaling

```
In [107]:
```

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']] =
 scaler.fit_transform(X_train[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']]
)

X_train.head()
```

Out[107]:

	Do Not Email	Do Not Call	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	Lead Source_Facebook	Lead Source_Google	Sourc
4584	0	0	0.888005	0.612028	0.290907	1	0	0	0	0	
5617	0	0	-1.272851	1.029308	1.425005	0	0	0	0	0	
1095	0	0	-0.552566	0.101970	0.281063	1	0	0	0	1	
3166	0	0	-0.192423	0.523487	0.290907	1	0	0	0	0	
401	0	0	0.527863	0.866659	1.434849	1	0	0	0	0	
4	18										▶

In [108]:

```
# Checking the Churn Rate
Converted = (sum(data['Converted'])/len(data['Converted'].index))*100
Converted
```

Out[108]:

56.06338998621957

Model Building

```
In [109]:
```

```
import statsmodels.api as sm
```

```
In [110]:
```

```
# Logistic regression model
logm1 = sm.GLM(y_train.astype(float),(sm.add_constant(X_train.astype(float))), family = sm.families
.Binomial())
logm1.fit().summary()
```

Out[110]:

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	3047
Model:	GLM	Df Residuals:	2964
Model Family:	Binomial	Df Model:	82
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-384.03

T... 40 Ma...

Date: 1 ue, 1∠ may 2020 **Deviance:** 768.06

Time: 08:57:07 **Pearson chi2**: 2.50e+03

No. Iterations: 23

Covariance Type: nonrobust

Covariance Type:	nonrobust							
		coef	std err	z	P> z	[0.025	0.975]	
	const	17.3425	1.31e+05	0.000	1.000	-2.57e+05	2.57e+05	
	Do Not Email	-0.9541	0.592	-1.613	0.107	-2.114	0.205	
	Do Not Call	2.364e-09	1.24e-05	0.000	1.000	-2.42e-05	2.42e-05	
	TotalVisits	0.4143	0.172	2.411	0.016	0.078	0.751	
	Total Time Spent on Website	0.9865	0.117	8.414	0.000	0.757	1.216	
	Page Views Per Visit	-0.3792	0.181	-2.098	0.036	-0.734	-0.025	
Lead Or	igin_Landing Page Submission	0.5456	0.394	1.386	0.166	-0.226	1.317	
	Lead Origin_Lead Add Form	0.5512	2.541	0.217	0.828	-4.429	5.532	
	Lead Origin_Lead Import	27.0528	1.31e+05	0.000	1.000	-2.57e+05	2.57e+05	
	Lead Source_Facebook	-24.8276	1.31e+05	-0.000	1.000	-2.57e+05	2.57e+05	
	Lead Source_Google	0.4205	0.269	1.560	0.119	-0.108	0.949	
	Lead Source_Olark Chat	1.7029	0.496	3.431	0.001	0.730	2.676	
	Lead Source_Organic Search	0.7154	0.367	1.952	0.051	-0.003	1.434	
	Lead Source_Others	1.6732	2.361	0.709	0.479	-2.955	6.301	
	Lead Source_Reference	1.8855	2.591	0.728	0.467	-3.193	6.964	
	Lead Source_Referral Sites	1.2199	0.819	1.490	0.136	-0.385	2.825	
ı	Lead Source_Welingak Website	21.9482	3.29e+04	0.001	0.999	-6.45e+04	6.46e+04	
	Last Activity_Email Bounced	-1.3003	1.276	-1.019	0.308	-3.802	1.201	
L	ast Activity_Email Link Clicked	-1.4290	1.134	-1.260	0.208	-3.652	0.794	
	Last Activity_Email Opened	-1.6409	0.704	-2.331	0.020	-3.020	-0.261	
Last Activi	ty_Form Submitted on Website	-0.7501	0.923	-0.813	0.416	-2.559	1.059	
Last Ac	ctivity_Olark Chat Conversation	-0.9130	0.760	-1.201	0.230	-2.402	0.576	
	Last Activity_Other_Activity	-2.1750	1.502	-1.448	0.148	-5.119	0.769	
Last A	ctivity_Page Visited on Website	-1.1635	0.793	-1.468	0.142	-2.717	0.390	
	Last Activity_SMS Sent	0.6388	0.662	0.966	0.334	-0.658	1.935	
	Last Activity_Unreachable	-0.9413	1.170	-0.804	0.421	-3.235	1.352	
	Last Activity_Unsubscribed	-0.5394	2.424	-0.222	0.824	-5.291	4.212	
Specializ	ation_Business Administration	0.0857	0.658	0.130	0.897	-1.205	1.376	
	Specialization_E-Business	0.5926	1.377	0.430	0.667	-2.106	3.291	
Con a si	Specialization_E-COMMERCE	1.5357	1.165	1.319	0.187	-0.747	3.818	
	ialization_Finance Management	-0.5637	0.599	-0.941	0.347	-1.738	0.611	
	zation_Healthcare Management	-0.2858 -1.3919	0.987	-0.290 1.576	0.772	-2.219	1.648 0.339	
-	zation_Hospitality Management Human Resource Management	-0.5552	0.883	-1.576 -0.933	0.351	-3.122 -1.722	0.539	
	zation IT Projects Management	0.1641	0.595	0.221	0.825	-1.722	1.617	
	lization_International Business	-0.2296	0.918	-0.250	0.802	-2.029	1.570	
	ization Marketing Management	-0.2624	0.595	-0.230	0.659	-1.428	0.903	
	alization Media and Advertising	-0.8205	0.797	-1.029	0.303	-2.383	0.742	
•	zation_Operations Management	-0.0913	0.662	-0.138	0.890	-1.388	1.206	
	cialization Other Specialization	-0.0430	0.638	-0.130	0.946	-1.294	1.208	
	ecialization Retail Management	-0.6463	0.927	-0.697	0.486	-2.464	1.171	
·	ization Rural and Agribusiness	0.0724	1.270	0.057	0.955	-2.418	2.562	
	cialization Services Excellence	-1.2986	1.748	-0.743	0.458	-4.725	2.128	
	ion_Supply Chain Management	-1.3930	0.658	-2.116	0.034	-2.683	-0.103	
	ecialization_Travel and Tourism	-0.6480	0.837	-0.774	0.439	-2.288	0.992	
Оре		3.5400	0.001	0.77	5.100	2.200	0.002	

: =						
What is your current occupation_Housewife	25.8865	5.62e+04	0.000	1.000	-1.1e+05	1.1e+05
What is your current occupation_Other_Occupation	4.6757	2.644	1.768	0.077	-0.507	9.858
What is your current occupation_Student	4.7339	1.911	2.477	0.013	0.988	8.480
What is your current occupation_Unemployed	4.5980	1.771	2.597	0.009	1.127	8.069
What is your current occupation_Working Professional	5.5161	1.807	3.052	0.002	1.974	9.058
Tags_Busy	3.0588	0.857	3.569	0.000	1.379	4.739
Tags_Closed by Horizzon	8.2977	1.454	5.706	0.000	5.448	11.148
Tags_Interested in full time MBA	0.0043	1.391	0.003	0.998	-2.723	2.731
Tags_Interested in other courses	0.3370	0.897	0.376	0.707	-1.421	2.095
Tags_Lost to EINS	7.9796	1.295	6.160	0.000	5.441	10.519
Tags_Not doing further education	-0.3447	1.350	-0.255	0.798	-2.990	2.300
Tags_Other_Tags	1.4014	0.863	1.623	0.105	-0.291	3.094
Tags_Ringing	-0.7264	0.869	-0.835	0.403	-2.430	0.978
Tags_Will revert after reading the email	5.9035	0.836	7.064	0.000	4.266	7.541
Tags_invalid number	-0.0969	1.341	-0.072	0.942	-2.724	2.530
Tags_switched off	-1.1720	1.024	-1.145	0.252	-3.179	0.835
Tags_wrong number given	-21.9687	2.32e+04	-0.001	0.999	-4.55e+04	4.54e+04
Lead Quality_Low in Relevance	-0.8149	0.506	-1.611	0.107	-1.806	0.176
Lead Quality_Might be	-1.4587	0.472	-3.092	0.002	-2.383	-0.534
Lead Quality_Not Sure	-1.4375	0.494	-2.909	0.004	-2.406	-0.469
Lead Quality_Worst	-3.4535	0.831	-4.155	0.000	-5.083	-1.824
City_Other Cities	-0.0803	0.354	-0.227	0.821	-0.774	0.614
City_Other Cities of Maharashtra	-0.2943	0.433	-0.679	0.497	-1.143	0.555
City_Other Metro Cities	-0.4997	0.498	-1.004	0.315	-1.475	0.476
City_Thane & Outskirts	0.1459	0.358	0.408	0.684	-0.556	0.847
City_Tier II Cities	-0.6671	0.905	-0.737	0.461	-2.441	1.107
Last Notable Activity_Email Bounced	-21.4932	1.31e+05	-0.000	1.000	-2.57e+05	2.57e+05
Last Notable Activity_Email Link Clicked	-23.1114	1.31e+05	-0.000	1.000	-2.57e+05	2.57e+05
Last Notable Activity_Email Marked Spam	-0.4887	1.55e+05	-3.16e-06	1.000	-3.03e+05	3.03e+05
Last Notable Activity_Email Opened	-22.8345	1.31e+05	-0.000	1.000	-2.57e+05	2.57e+05
Last Notable Activity_Email Received	-2.9659	1.85e+05	-1.6e-05	1.000	-3.63e+05	3.63e+05
Last Notable Activity_Had a Phone Conversation	0.3539	1.36e+05	2.6e-06	1.000	-2.67e+05	2.67e+05
Last Notable Activity_Modified	-24.2591	1.31e+05	-0.000	1.000	-2.57e+05	2.57e+05
Last Notable Activity_Olark Chat Conversation	-26.2377	1.31e+05	-0.000	1.000	-2.57e+05	2.57e+05
Last Notable Activity_Page Visited on Website	-22.8236	1.31e+05	-0.000	1.000	-2.57e+05	2.57e+05
Last Notable Activity_SMS Sent	-23.6477	1.31e+05	-0.000	1.000	-2.57e+05	2.57e+05
Last Notable Activity_Unreachable	-0.8911	1.34e+05	-6.65e-06	1.000	-2.63e+05	2.63e+05
Last Notable Activity_Unsubscribed	-23.3892	1.31e+05	-0.000	1.000	-2.57e+05	2.57e+05
Last Notable Activity_View in browser link Clicked	-42.2201	1.85e+05	-0.000	1.000	-3.63e+05	3.63e+05

Feature Selection Using RFE

In [111]:

```
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()

from sklearn.feature_selection import RFE

rfe = RFE(logreg, 15)  # running RFE with 15 variables as output

rfe = rfe.fit(X_train.astype(float), y_train.astype(float))
```

```
In [112]:
rfe.support
Out[112]:
array([ True, False, False, True, False, False, True, False, False,
       False, True, False, False, True, False, False, False,
       False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False,
       False, False, False, True, True, False, False, True,
       False, False, True, True, False, True, False, False,
       False, True, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False,
       False, False])
In [113]:
list(zip(X train.columns, rfe.support_, rfe.ranking_))
Out[113]:
[('Do Not Email', True, 1),
 ('Do Not Call', False, 69),
 ('TotalVisits', False, 24),
 ('Total Time Spent on Website', True, 1),
 ('Page Views Per Visit', False, 25),
 ('Lead Origin Landing Page Submission', False, 46),
 ('Lead Origin Lead Add Form', True, 1),
 ('Lead Origin Lead Import', False, 33),
 ('Lead Source Facebook', False, 47),
 ('Lead Source_Google', False, 36),
 ('Lead Source_Olark Chat', True, 1),
 ('Lead Source Organic Search', False, 27),
 ('Lead Source Others', False, 44),
 ('Lead Source Reference', True, 1),
 ('Lead Source Referral Sites', False, 20),
 ('Lead Source_Welingak Website', False, 22),
 ('Last Activity Email Bounced', False, 18),
 ('Last Activity_Email Link Clicked', False, 15),
 ('Last Activity Email Opened', False, 16),
 ('Last Activity_Form Submitted on Website', False, 48),
 ('Last Activity_Olark Chat Conversation', False, 17),
 ('Last Activity_Other_Activity', False, 63),
 ('Last Activity Page Visited on Website', False, 32),
 ('Last Activity SMS Sent', True, 1),
 ('Last Activity Unreachable', False, 56),
 ('Last Activity_Unsubscribed', False, 64),
 ('Specialization_Business Administration', False, 23),
 ('Specialization E-Business', False, 31),
 ('Specialization_E-COMMERCE', False, 13),
 ('Specialization Finance Management', False, 42),
 ('Specialization Healthcare Management', False, 67),
 ('Specialization_Hospitality Management', False, 14),
 ('Specialization_Human Resource Management', False, 43),
 ('Specialization IT Projects Management', False, 30),
 ('Specialization International Business', False, 68),
 ('Specialization Marketing Management', False, 61),
 ('Specialization_Media and Advertising', False, 34),
 ('Specialization_Operations Management', False, 38),
 ('Specialization Other Specialization', False, 55),
 ('Specialization Retail Management', False, 45),
 ('Specialization Rural and Agribusiness', False, 40),
 ('Specialization Services Excellence', False, 41),
 ('Specialization_Supply Chain Management', False, 7),
 ('Specialization Travel and Tourism', False, 26),
 ('What is your current occupation Housewife', False, 39),
 ('What is your current occupation Other Occupation', False, 58),
 ('What is your current occupation Student', False, 53),
 ('What is your current occupation_Unemployed', False, 51),
 ('What is your current occupation_Working Professional', False, 11),
 ('Tags Busy', True, 1),
 ('Tags_Closed by Horizzon', True, 1),
 ('Tags Interested in full time MBA', False, 10),
 ('Tags Interested in other courses', False, 2),
```

```
('Tags Lost to EINS', True, 1),
 ('Tags Not doing further education', False, 3),
 ('Tags Other Tags', False, 62),
 ('Tags Ringing', True, 1),
 ('Tags Will revert after reading the email', True, 1),
 ('Tags invalid number', False, 4),
 ('Tags switched off', True, 1),
 ('Tags wrong number given', True, 1),
 ('Lead Quality Low in Relevance', False, 21),
 ('Lead Quality Might be', False, 9),
 ('Lead Quality Not Sure', False, 8),
 ('Lead Quality_Worst', True, 1),
 ('City_Other Cities', False, 60),
 ('City Other Cities of Maharashtra', False, 37),
 ('City_Other Metro Cities', False, 29),
 ('City Thane & Outskirts', False, 59),
 ('City Tier II Cities', False, 28),
 ('Last Notable Activity_Email Bounced', False, 19),
 ('Last Notable Activity_Email Link Clicked', False, 49),
 ('Last Notable Activity Email Marked Spam', False, 54),
 ('Last Notable Activity_Email Opened', False, 57),
 ('Last Notable Activity Email Received', False, 66),
 ('Last Notable Activity_Had a Phone Conversation', True, 1),
 ('Last Notable Activity_Modified', False, 6),
 ('Last Notable Activity Olark Chat Conversation', False, 5),
 ('Last Notable Activity Page Visited on Website', False, 35),
 ('Last Notable Activity_SMS Sent', False, 50),
 ('Last Notable Activity_Unreachable', False, 12),
 ('Last Notable Activity_Unsubscribed', False, 65),
 ('Last Notable Activity View in browser link Clicked', False, 52)]
In [114]:
col = X train.columns[rfe.support_]
col
Out[114]:
Index(['Do Not Email', 'Total Time Spent on Website',
        'Lead Origin Lead Add Form', 'Lead Source Olark Chat',
        'Lead Source Reference', 'Last Activity SMS Sent', 'Tags Busy',
        'Tags Closed by Horizzon', 'Tags Lost to EINS', 'Tags Ringing',
        'Tags Will revert after reading the email', 'Tags switched off',
       'Tags_wrong number given', 'Lead Quality_Worst',
       'Last Notable Activity Had a Phone Conversation'],
      dtype='object')
In [115]:
X train.columns[~rfe.support ]
Out[115]:
Index(['Do Not Call', 'TotalVisits', 'Page Views Per Visit',
        'Lead Origin Landing Page Submission', 'Lead Origin Lead Import',
        'Lead Source Facebook', 'Lead Source Google',
        'Lead Source_Organic Search', 'Lead Source_Others',
        'Lead Source Referral Sites', 'Lead Source Welingak Website',
       'Last Activity_Email Bounced', 'Last Activity_Email Link Clicked',
'Last Activity_Email Opened', 'Last Activity_Form Submitted on Website',
        'Last Activity_Olark Chat Conversation', 'Last Activity_Other_Activity', 'Last Activity_Page Visited on Website', 'Last Activity_Unreachable',
       'Last Activity_Unsubscribed', 'Specialization_Business Administration', 'Specialization_E-Business', 'Specialization_E-COMMERCE',
        'Specialization_Finance Management',
        'Specialization Healthcare Management',
        'Specialization_Hospitality Management',
        'Specialization Human Resource Management',
        'Specialization IT Projects Management',
        'Specialization_International Business',
        'Specialization_Marketing Management',
        'Specialization Media and Advertising',
        'Specialization Operations Management',
        'Specialization Other Specialization',
```

```
'Specialization Retail Management',
 'Specialization_Rural and Agribusiness',
 'Specialization_Services Excellence',
 'Specialization Supply Chain Management',
 'Specialization_Travel and Tourism',
 'What is your current occupation Housewife',
 'What is your current occupation_Other_Occupation',
 'What is your current occupation_Student',
 'What is your current occupation_Unemployed',
 'What is your current occupation_Working Professional',
 'Tags_Interested in full time MBA', 'Tags_Interested in other courses', 'Tags_Not doing further education', 'Tags_Other_Tags',
 'Tags_invalid number', 'Lead Quality_Low in Relevance',
 'Lead Quality_Might be', 'Lead Quality_Not Sure', 'City_Other Cities',
 'City Other Cities of Maharashtra', 'City Other Metro Cities',
 'City Thane & Outskirts', 'City Tier II Cities',
 'Last Notable Activity Email Bounced',
 'Last Notable Activity Email Link Clicked',
 'Last Notable Activity_Email Marked Spam',
 'Last Notable Activity_Email Opened',
 'Last Notable Activity_Email Received',
 'Last Notable Activity_Modified',
 'Last Notable Activity Olark Chat Conversation',
 'Last Notable Activity_Page Visited on Website',
 'Last Notable Activity_SMS Sent', 'Last Notable Activity_Unreachable',
 'Last Notable Activity_Unsubscribed',
 'Last Notable Activity_View in browser link Clicked'],
dtype='object')
```

In [116]:

```
X_train_sm = sm.add_constant(X_train[col])
logm2 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
```

Out[116]:

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	3047
Model:	GLM	Df Residuals:	3031
Model Family:	Binomial	Df Model:	15
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-430.53
Date:	Tue, 12 May 2020	Deviance:	861.06
Time:	08:58:30	Pearson chi2:	2.87e+03
No. Iterations:	22		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	-2.7965	0.238	-11.774	0.000	-3.262	-2.331
Do Not Email	-0.7766	0.472	-1.645	0.100	-1.702	0.148
Total Time Spent on Website	0.9288	0.107	8.653	0.000	0.718	1.139
Lead Origin_Lead Add Form	2.2755	1.741	1.307	0.191	-1.138	5.689
Lead Source_Olark Chat	1.0894	0.335	3.253	0.001	0.433	1.746
Lead Source_Reference	-0.0206	1.818	-0.011	0.991	-3.584	3.542
Last Activity_SMS Sent	1.3252	0.212	6.252	0.000	0.910	1.741
Tags_Busy	2.2395	0.310	7.229	0.000	1.632	2.847
Tags_Closed by Horizzon	7.3219	1.035	7.077	0.000	5.294	9.350
Tags_Lost to EINS	6.9987	1.102	6.349	0.000	4.838	9.159
Tags_Ringing	-1.3776	0.343	-4.020	0.000	-2.049	-0.706
Tags_Will revert after reading the email	5.2207	0.262	19.957	0.000	4.708	5.733
Tage switched off	1 7061	U 630	2 676	0 007	2 056	0.456

```
        Tags_wrong number given
        -21.1873
        1.5e+04
        -0.001
        0.999
        -2.95e+04
        2.94e+04

        Lead Quality_Worst
        -2.6317
        0.653
        -4.028
        0.000
        -3.912
        -1.351

        Last Notable Activity_Had a Phone Conversation
        24.2845
        2.13e+04
        0.001
        0.999
        -4.17e+04
        4.17e+04
```

In [124]:

```
col1 = col.drop('Lead Source_Reference',1)
```

In [125]:

col1

Out[125]:

In [126]:

```
X_train_sm = sm.add_constant(X_train[col1])
logm2 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
```

Out[126]:

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	3047
Model:	GLM	Df Residuals:	3032
Model Family:	Binomial	Df Model:	14
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-430.53
Date:	Tue, 12 May 2020	Deviance:	861.06
Time:	09:17:30	Pearson chi2:	2.87e+03
No. Iterations:	22		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	-2.7964	0.237	-11.780	0.000	-3.262	-2.331
Do Not Email	-0.7766	0.472	-1.646	0.100	-1.702	0.148
Total Time Spent on Website	0.9288	0.107	8.653	0.000	0.718	1.139
Lead Origin_Lead Add Form	2.2568	0.554	4.071	0.000	1.170	3.343
Lead Source_Olark Chat	1.0893	0.335	3.253	0.001	0.433	1.746
Last Activity_SMS Sent	1.3251	0.212	6.254	0.000	0.910	1.740
Tags_Busy	2.2395	0.310	7.229	0.000	1.632	2.847
Tags_Closed by Horizzon	7.3216	1.034	7.079	0.000	5.294	9.349
Tags_Lost to EINS	6.9986	1.102	6.349	0.000	4.838	9.159
Tags_Ringing	-1.3776	0.343	-4.021	0.000	-2.049	-0.706
Tags_Will revert after reading the email	5.2206	0.262	19.964	0.000	4.708	5.733
Tags_switched off	-1.7061	0.638	-2.676	0.007	-2.956	-0.457
Tags_wrong number given	-21.1874	1.5e+04	-0.001	0.999	-2.95e+04	2.94e+04

```
        Lead Quality_Worst
        -2.6317
        0.653
        -4.028
        0.000
        -3.912
        -1.351

        Last Notable Activity_Had a Phone Conversation
        24.2844
        2.13e+04
        0.001
        0.999
        -4.17e+04
        4.17e+04
```

```
In [127]:
```

```
col2 = col1.drop('Tags_wrong number given',1)
```

In [128]:

col2

Out[128]:

In [129]:

```
X_train_sm = sm.add_constant(X_train[col2])
logm2 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
```

Out[129]:

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	3047
Model:	GLM	Df Residuals:	3033
Model Family:	Binomial	Df Model:	13
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-432.76
Date:	Tue, 12 May 2020	Deviance:	865.51
Time:	09:18:21	Pearson chi2:	2.87e+03
No. Iterations:	21		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	-2.8782	0.237	-12.124	0.000	-3.344	-2.413
Do Not Email	-0.8255	0.463	-1.784	0.074	-1.732	0.081
Total Time Spent on Website	0.9302	0.107	8.682	0.000	0.720	1.140
Lead Origin_Lead Add Form	2.2873	0.560	4.088	0.000	1.191	3.384
Lead Source_Olark Chat	1.1162	0.337	3.316	0.001	0.456	1.776
Last Activity_SMS Sent	1.2980	0.210	6.173	0.000	0.886	1.710
Tags_Busy	2.3374	0.307	7.602	0.000	1.735	2.940
Tags_Closed by Horizzon	7.3990	1.034	7.153	0.000	5.372	9.426
Tags_Lost to EINS	7.0451	1.098	6.414	0.000	4.892	9.198
Tags_Ringing	-1.2764	0.340	-3.758	0.000	-1.942	-0.611
Tags_Will revert after reading the email	5.3072	0.261	20.365	0.000	4.796	5.818
Tags_switched off	-1.6023	0.636	-2.520	0.012	-2.848	-0.356
Lead Quality_Worst	-2.5676	0.655	-3.921	0.000	-3.851	-1.284
Last Notable Activity_Had a Phone Conversation	23.3664	1.29e+04	0.002	0.999	-2.53e+04	2.53e+04

- ----

```
In [130]:
# Getting the predicted values on the train set
y_train_pred = res.predict(X_train_sm)
y_train_pred[:10]
Out[130]:
        0.993880
4584
5617
       0.930065
1095
      0.010197
      0.962314
3166
401
        0.962134
7113
        0.977285
       0.993540
4505
7456
      0.975896
      0.983557
4532
7198
        0.001754
dtype: float64
In [131]:
y_train_pred = y_train_pred.values.reshape(-1)
y_train_pred[:10]
Out[131]:
array([0.99388007, 0.93006544, 0.01019746, 0.96231416, 0.96213386,
       0.97728519, 0.99353982, 0.97589621, 0.98355687, 0.00175408])
In [132]:
y train pred final = pd.DataFrame({'Converted':y train.values, 'Converted prob':y train pred})
y train pred final['Prospect ID'] = y train.index
y_train_pred_final.head()
Out[132]:
   Converted_prob Prospect ID
0
                 0.993880
                               4584
                 0.930065
                              5617
1
          1
2
          0
                 0.010197
                               1095
3
          1
                 0.962314
                              3166
                 0.962134
                               401
In [133]:
y_{train\_pred\_final['predicted']} = y_{train\_pred\_final.Converted\_prob.map(lambda x: 1 if x > 0.5 else y_{train\_pred\_final['predicted']}
# Let's see the head
y_train_pred_final.head()
```

```
Out[133]:
```

	Converted	Converted_prob	Prospect ID	predicted
0	1	0.993880	4584	1
1	1	0.930065	5617	1
2	0	0.010197	1095	0
3	1	0.962314	3166	1
4	1	0.962134	401	1

```
In [134]:
```

from sklearn import metrics

```
# Confusion matrix
print(confusion)
[[1293 75]
[ 64 1615]]
In [135]:
# Let's check the overall accuracy.
print (metrics.accuracy score(y train pred final.Converted, y train pred final.predicted))
0.9543813587134887
In [136]:
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor
In [137]:
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train[col2].columns
vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col2].shape[
```

Out[137]:

vif

	Features	VIF
2	Lead Origin_Lead Add Form	15.99
4	Last Activity_SMS Sent	15.53
10	Tags_switched off	1.98
5	Tags_Busy	1.91
1	Total Time Spent on Website	1.48
3	Lead Source_Olark Chat	1.31
7	Tags_Lost to EINS	1.21
9	Tags_Will revert after reading the email	1.19
0	Do Not Email	1.12
6	Tags_Closed by Horizzon	1.09
11	Lead Quality_Worst	1.06
12	Last Notable Activity_Had a Phone Conversation	1.03
8	Tags_Ringing	1.02

vif['VIF'] = round(vif['VIF'], 2)

vif = vif.sort values(by = "VIF", ascending = False)

Metrics beyond simply accuracy

```
In [138]:
```

```
TP = confusion[1,1] # true positive
TN = confusion[0,0] # true negatives
FP = confusion[0,1] # false positives
FN = confusion[1,0] # false negatives
```

```
# Let's see the sensitivity of our logistic regression model
TP / float(TP+FN)
Out[139]:
0.961882072662299
In [140]:
# Let us calculate specificity
TN / float(TN+FP)
Out[140]:
0.9451754385964912
In [141]:
# Calculate false postive rate - predicting churn when customer does not have churned
print(FP/ float(TN+FP))
0.05482456140350877
In [142]:
# positive predictive value
print (TP / float(TP+FP))
0.9556213017751479
In [143]:
# Negative predictive value
print (TN / float(TN+ FN))
0.952837140751658
```

Plotting the ROC Curve

An ROC curve demonstrates several things:

It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease in specificity). The closer the curve follows the left-hand border and then the top border of the ROC space, the more accurate the test. The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the test.

In [144]:

```
fpr, tpr, thresholds = metrics.roc_curve( y_train_pred_final.Converted, y_train_pred_final.Converte
d_prob, drop_intermediate = False )
```

In [146]:

```
draw_roc(y_train_pred_final.Converted, y_train_pred_final.Converted_prob)
```


Finding Optimal Cutoff Point

Optimal cutoff probability is that prob where we get balanced sensitivity and specificity

In [147]:

```
# Let's create columns with different probability cutoffs
numbers = [float(x)/10 for x in range(10)]
for i in numbers:
    y_train_pred_final[i] = y_train_pred_final.Converted_prob.map(lambda x: 1 if x > i else 0)
y_train_pred_final.head()
```

Out[147]:

	Converted	Converted_prob	Prospect ID	predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
0	1	0.993880	4584	1	1	1	1	1	1	1	1	1	1	1
1	1	0.930065	5617	1	1	1	1	1	1	1	1	1	1	1
2	0	0.010197	1095	0	1	0	0	0	0	0	0	0	0	0
3	1	0.962314	3166	1	1	1	1	1	1	1	1	1	1	1
4	1	0.962134	401	1	1	1	1	1	1	1	1	1	1	1

In [148]:

```
# Now let's calculate accuracy sensitivity and specificity for various probability cutoffs.
cutoff_df = pd.DataFrame( columns = ['prob', 'accuracy', 'sensi', 'speci'])
from sklearn.metrics import confusion_matrix

# TP = confusion[1,1] # true positive
# TN = confusion[0,0] # true negatives
# FP = confusion[0,1] # false positives
# FN = confusion[1,0] # false negatives
num = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
for i in num:
    cml = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final[i] )
    totall=sum(sum(cml))
    accuracy = (cml[0,0]+cml[1,1])/totall

speci = cml[0,0]/(cml[0,0]+cml[0,1])
    sensi = cml[1,1]/(cml[1,0]+cml[1,1])
    cutoff_df.loc[i] = [ i ,accuracy,sensi,speci]
```

```
prob accuracy
                      sensi
                               speci
    0.0 0.551034 1.000000 0.000000
0.0
0.1
    0.1 0.923531 0.985110 0.847953
    0.2 0.946177 0.976772 0.908626
0.2
     0.3 0.956351 0.974390 0.934211
0.4 0.955038 0.969029 0.937865
0.3
0.4
     0.5 0.954381 0.961882 0.945175
0.5
     0.6 0.953069 0.953544 0.952485
0.6
0.7
    0.7 0.952084 0.948183 0.956871
     0.8 0.949458 0.942823 0.957602
0.8
     0.9 0.919921 0.873734 0.976608
0.9
```

In [149]:

print(cutoff df)

```
# Let's plot accuracy sensitivity and specificity for various probabilities.
cutoff_df.plot.line(x='prob', y=['accuracy','sensi','speci'])
plt.show()
```


In [150]:

```
#### From the curve above, 0.2 is the optimum point to take it as a cutoff probability.

y_train_pred_final['final_predicted'] = y_train_pred_final.Converted_prob.map( lambda x: 1 if x > 0
.2 else 0)

y_train_pred_final.head()
```

Out[150]:

	Converted	Converted_prob	Prospect ID	predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	final_predicted
0	1	0.993880	4584	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0.930065	5617	1	1	1	1	1	1	1	1	1	1	1	1
2	0	0.010197	1095	0	1	0	0	0	0	0	0	0	0	0	0
3	1	0.962314	3166	1	1	1	1	1	1	1	1	1	1	1	1
4	1	0.962134	401	1	1	1	1	1	1	1	1	1	1	1	1

In [151]:

```
y_train_pred_final['Lead_Score'] = y_train_pred_final.Converted_prob.map( lambda x: round(x*100))
y_train_pred_final.head()
```

Out[151]:

	Converted	Converted_prob	Prospect ID	predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	final_predicted	Lead_Score
0	1	0.993880	4584	1	1	1	1	1	1	1	1	1	1	1	1	99
1	1	0.930065	5617	1	1	1	1	1	1	1	1	1	1	1	1	93
2	0	0.010107	1005	Λ	1	Λ	^	^	Λ	Λ	0	0	Λ	Λ	0	1

```
Converted Converted_prob Prospect ID predicted 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 final_predicted Lead_Score
                 0.962134
                              401
                                        1 1 1 1 1 1 1 1 1 1 1
                                                                                                 96
In [152]:
# Let's check the overall accuracy.
metrics.accuracy score(y train pred final.Converted, y train pred final.final predicted)
confusion2 = metrics.confusion_matrix(y_train_pred_final.Converted,
y train pred final.final predicted )
confusion2
TP = confusion2[1,1] # true positive
TN = confusion2[0,0] # true negatives
FP = confusion2[0,1] # false positives
FN = confusion2[1,0] # false negatives
In [153]:
# Let's see the sensitivity of our logistic regression model
TP / float(TP+FN)
Out[153]:
0.9767718880285885
In [154]:
# Let us calculate specificity
TN / float(TN+FP)
Out[154]:
0.908625730994152
In [155]:
# Calculate false postive rate - predicting churn when customer does not have churned
print(FP/ float(TN+FP))
0.09137426900584796
In [156]:
# Positive predictive value
print (TP / float(TP+FP))
0.9291784702549575
In [157]:
# Negative predictive value
print (TN / float(TN+ FN))
0.9695787831513261
In [158]:
#Looking at the confusion matrix again
confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.predicted )
confusion
```

Out[158]:

751

```
allay([[1233, 73], [64, 1615]], dtype=int64)
In [159]:
##### Precision
TP / TP + FP
confusion[1,1]/(confusion[0,1]+confusion[1,1])
Out[159]:
0.9556213017751479
In [160]:
##### Recall
TP / TP + FN
\verb|confusion[1,1]|/(\verb|confusion[1,0]| + \verb|confusion[1,1]|)|
Out[160]:
0.961882072662299
In [161]:
from sklearn.metrics import precision score, recall score
In [162]:
precision_score(y_train_pred_final.Converted , y_train_pred_final.predicted)
Out[162]:
0.9556213017751479
In [163]:
recall_score(y_train_pred_final.Converted, y_train_pred_final.predicted)
Out[163]:
0.961882072662299
In [164]:
from sklearn.metrics import precision recall curve
In [165]:
y_train_pred_final.Converted, y_train_pred_final.predicted
Out[165]:
        1
(0
1
 3
        1
 3042
 3043
 3044
        1
 3045
 3046
 Name: Converted, Length: 3047, dtype: int64,
```

In [166]:

p, r, thresholds = precision_recall_curve(y_train_pred_final.Converted, y_train_pred_final.Converte
d_prob)

In [167]:

```
plt.plot(thresholds, p[:-1], "g-")
plt.plot(thresholds, r[:-1], "r-")
plt.show()
```


In [168]:

```
X_test[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']] =
scaler.fit_transform(X_test[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']])
X_train.head()
```

Out[168]:

	Do Not Email		TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	Lead Source_Facebook	Lead Source_Google	Sourc
4584	0	0	0.888005	0.612028	0.290907	1	0	0	0	0	
5617	0	0	-1.272851	1.029308	1.425005	0	0	0	0	0	
1095	0	0	-0.552566	0.101970	0.281063	1	0	0	0	1	
3166	0	0	-0.192423	0.523487	0.290907	1	0	0	0	0	
401	0	0	0.527863	0.866659	1.434849	1	0	0	0	0	
4											Þ

In [169]:

```
X_test = X_test[col2]
X_test.head()
```

Out[169]:

Total Tags_Will

	Do Not Email Not Email	Time Speal Time Websalt on	Lead Origin_Lead Add Forifi Origin_Lead Add Form	Lead Source_Olark chad Source_Olark Chat	Last Activity_SMS Sent Sent	Tags_Busy Tags_Busy	Tags_Closed by Horizzon Tags_Closed by Horizzon	Tags_Lost to EINS Tags_Lost to EINS	Tags_Ringing Tags_Ringing	revert	Tags Tags
4123	0	2Mebaite	1	0	0	0	1	0	0	the email	
4216	0	1.022917	1	0	0	0	1	0	0	0	
8905	0	- 1.022917	0	1	0	0	0	0	0	0	
7971	1	0.583616	0	0	1	0	0	0	1	0	
964	0	1.663442	0	0	0	0	0	0	0	1	88 3.1

In [170]:

X_test_sm = sm.add_constant(X_test)

In [171]:

y_test_pred = res.predict(X_test_sm)

In [172]:

y_test_pred[:10]

Out[172]:

4123 0.999848 4216 0.997147 8905 0.005061 0.014415 7971 964 0.981589 0.997897 6842 0.951654 5991 1447 0.986609 0.001475 2456 2629 0.977351 dtype: float64

In [177]:

Converting y_pred to a dataframe which is an array
y_pred_1 = pd.DataFrame(y_test_pred)

In [178]:

Let's see the head
y_pred_1.head()

Out[178]:

0

4123 0.999848

4216 0.997147

8905 0.005061

7971 0.014415

964 0.981589

In [179]:

Converting y_test to dataframe
y_test_df = pd.DataFrame(y_test)

In [180]:

```
# Putting CustID to index
y_test_df['Prospect ID'] = y_test_df.index
In [181]:
# Removing index for both dataframes to append them side by side
y_pred_1.reset_index(drop=True, inplace=True)
y_test_df.reset_index(drop=True, inplace=True)
In [182]:
# Appending y_test_df and y_pred_1
y_pred_final = pd.concat([y_test_df, y_pred_1],axis=1)
In [183]:
y_pred_final.head()
Out[183]:
   Converted Prospect ID
                4123 0.999848
                 4216 0.997147
1
         1
2
                 8905 0.005061
                 7971 0.014415
3
          0
                 964 0.981589
In [184]:
# Renaming the column
y_pred_final= y_pred_final.rename(columns={ 0 : 'Converted_prob'})
In [186]:
# Let's see the head of y pred final
y_pred_final.head()
Out[186]:
   Converted Prospect ID Converted_prob
                 4123
                            0.999848
                 4216
                            0.997147
1
          1
                 8905
                            0.005061
          0
                 7971
                            0.014415
3
                  964
                            0.981589
In [187]:
y pred final['final predicted'] = y pred final.Converted prob.map(lambda x: 1 if x > 0.2 else 0)
In [188]:
y_pred_final.head()
Out[188]:
   Converted Prospect ID Converted_prob final_predicted
                 4123
                           0.999848
                 4216
                           ი 997147
                                              1
```

```
Converted Prospect ID Converted prob final_predicted 0.005061 0.005061
3
        0
               7971
                        0.014415
                                        0
                964
                        0.981589
        1
                                        1
In [189]:
# Let's check the overall accuracy.
metrics.accuracy_score(y_pred_final.Converted, y_pred_final.final_predicted)
Out[189]:
0.9502677888293802
In [190]:
confusion2
Out[190]:
array([[495, 50],
      [ 15, 747]], dtype=int64)
In [191]:
TP = confusion2[1,1] # true positive
TN = confusion2[0,0] # true negatives
FP = confusion2[0,1] # false positives
FN = confusion2[1,0] # false negatives
In [192]:
\# Let's see the sensitivity of our logistic regression model
TP / float(TP+FN)
Out[192]:
0.9803149606299213
In [193]:
# Let us calculate specificity
TN / float(TN+FP)
Out[193]:
0.908256880733945
In [ ]:
```