

To detect the faces given a dataset and predict the bounding box of the face and tell which category it belongs to.

- Face –mask –detection from Kaggle was used.
- Total of images: 4072
- Masked: 3232, No mask: 717, Mask incorrectly worn: 123

Sample data

Splitting Data

```
X = []
y = []
IMG_SIZE = (64, 64)
for _data in data:
  img_path = _data['img_path']
  for (xmin, ymin, xmax, ymax, label) in _data['objs']:
    img = cv2.imread(img_path)
    crop_img = img[ymin : ymax, xmin : xmax]
    re_img = cv2.resize(crop_img, IMG_SIZE)
    re_img = re_img/255
    target = to_categorical(label, num_classes=3)
    if label == 2:
      aug_img = augment_data(re_img, aug_model, iterate=10)
      for aug in aug_img:
        x.append(np.array(aug)); y.append(target)
    elif label == 1:
        aug_img = augment_data(re_img, aug_model, iterate=3)
        for aug in aug_img:
            x.append(np.array(aug)); y.append(target)
    else:
        x.append(re_img); y.append(target)
```

```
x_{train}, x_{test}, y_{train}, y_{test} = train_test_split(x, y, test_size=0.2, random_state=7)
```

Train Test Split

```
x_train shape: (5290, 64, 64, 3)
x_test shape: (1323, 64, 64, 3)
y_train shape: (5290, 3)
y_test shape: (1323, 3)
```

Train vs Test: Category count

in train data:

with mask: 48.81 %, without mask: 32.46 %, mask weared incorrect: 18.73 %

in test data:

with mask: 49.13 %, without mask: 32.80 %, mask weared incorrect: 18.07 %

Model

- Simple Sequential Model used.
- Optimizer: Adam, Loss: Categorical crossentropy,
 Metrics: Accuracy
- Layers: Conv2D, Maxpooling2D, Dropout, Flatten and Dense

```
Epoch 1/15
Epoch 2/15
Epoch 3/15
Epoch 4/15
Epoch 5/15
Epoch 6/15
Epoch 7/15
Epoch 8/15
Epoch 9/15
Epoch 10/15
Epoch 11/15
Epoch 12/15
Epoch 13/15
Epoch 14/15
Epoch 15/15
```

Model: "sequential_1"			
Layer (type)	Output	Shape	 Param #
conv2d (Conv2D)	(None,	62, 62, 32)	896
max_pooling2d (MaxPooling2D)	(None,	62, 62, 32)	0
dropout (Dropout)	(None,	62, 62, 32)	0
conv2d_1 (Conv2D)	(None,	60, 60, 64)	18496
max_pooling2d_1 (MaxPooling2	(None,	60, 60, 64)	0
dropout_1 (Dropout)	(None,	60, 60, 64)	0
conv2d_2 (Conv2D)	(None,	58, 58, 128)	73856
max_pooling2d_2 (MaxPooling2	(None,	58, 58, 128)	0
dropout_2 (Dropout)	(None,	58, 58, 128)	0
flatten (Flatten)	(None,	430592)	0
dense (Dense)	(None,	128)	55115904
			

dense_1 (Dense)	(None,	64)	8256	
dropout_3 (Dropout)	(None,	64)	0	
dense_2 (Dense)	(None,	3)	195 =======	
Total params: 55,217,603 Trainable params: 55,217,603 Non-trainable params: 0				

Evaluation on test data

[19]: model.evaluate(x_test, y_test)

[0.043334100395441055, 0.9894179701805115]

Improvising

- Since the detector now predicts and identifies the type of class the person belongs, we can give it an organizational access.
- In other words, get this detector at the entrance of factory/company to check if the employees are coming with correct way, i.e. mask present and covering the mouth and nose.
- It won't allow entry if the person isn't wearing the mask incorrectly.
- Since it takes some time to train the model, we can save this model and use it later on for other purposes.