

HEXFET® Power MOSFET

Applications

- High frequency DC-DC converters
- Lead-Free

V _{DSS}	R _{DS(on)} max	I _D
80V	$73m\Omega@V_{GS} = 10V$	3.6A

Benefits

- Low Gate to Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

Tiboorato ma	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	80	V
V _{GS}	Gate-to-Source Voltage	± 20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	3.6	
I _D @ T _A = 100°C	Continuous Drain Current, V _{GS} @ 10V	2.9	Α
I _{DM}	Pulsed Drain Current ①	29	
P _D @T _A = 25°C	Maximum Power Dissipation	2.0	W
	Linear Derating Factor	0.02	W/°C
dv/dt	Peak Diode Recovery dv/dt ®	2.3	V/ns
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		42	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ®		62.5	

Notes ① through ⑥ are on page 8

Static @ T_J = 25°C (unless otherwise specified)

- man - 10						
	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	80			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.09		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		61	73	mΩ	V _{GS} = 10V, I _D = 2.2A ③
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	٧	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 80V, V_{GS} = 0V$
				250		$V_{DS} = 64V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	4.3			S	$V_{DS} = 25V, I_D = 2.2A$
Q_{q}	Total Gate Charge		15	23		I _D = 2.2A
Q_{gs}	Gate-to-Source Charge		2.9		nC	$V_{DS} = 40V$
Q_{qd}	Gate-to-Drain ("Miller") Charge		4.5			V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		9.0			V _{DD} = 40V
t,	Rise Time		10			$I_D = 2.2A$
t _{d(off)}	Turn-Off Delay Time		41		ns	$R_G = 24\Omega$
t _f	Fall Time		17			V _{GS} = 10V ③
C _{iss}	Input Capacitance		660			$V_{GS} = 0V$
C _{oss}	Output Capacitance		110			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		15		pF	f = 1.0MHz
C _{oss}	Output Capacitance		710			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		72			$V_{GS} = 0V, V_{DS} = 64V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		140			V _{GS} = 0V, V _{DS} = 0V to 64V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ①②		75	mJ
I _{AB}	Avalanche Current ①		2.2	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			3.6	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			29	Α	integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 2.2A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		50		ns	$T_J = 25$ °C, $I_F = 2.2A$, $V_{DD} = 40V$
Q _{rr}	Reverse Recovery Charge		110		nC	di/dt = 100A/µs ③

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

2.5 I_D = 3.6A 2.0 Quantity 2.

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

DIM	INCHES		MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497 .1574		3.80	4.00	
е	.050 B/	ASIC	1.27 BASIC		
e 1	.025 B/	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	. 01 96	0.25	0.50	
L	016 .05		0.40	1.27	
У	0° 8°		O°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- MOLD FROM SIGNS NOT TO EXCEED 0.23 [.010].

 [7] DIRECTION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTITUTE TO THE STREET OF T

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

- NOTES:

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 31mH $R_G=25\Omega,\ I_{AS}=2.2A.$
- ③ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 4 When mounted on 1 inch square copper board.
- ⑤ Coss eff. is a fixed capacitance that gives the same charging time as $C_{oss}\,\mbox{while}\,\,\mbox{V}_{DS}\,\mbox{is}$ rising from 0 to 80% $\mbox{V}_{DSS.}$
- $\textcircled{6} \ \ I_{SD} \leq 2.2A, \ di/dt \leq 220A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, T_J \leq 150^{\circ}C.$

Revision History

Date	Comments
09/16/2013	 Updated the Rthja from 50°C/W to 62.5°C/W, on page 1.
	 Converted the data sheet to IR Corproate Template.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.