

Properties of Structural Steel Sections

The structural designer has choice of a variety of sections, which are available in the market. This appendix provides properties of structural steel sections often used in practice. For more complete details of I-sections, channels, equal and unequal angles, and T-sections refer to IS: 808-1989. Note that IS: 808 does not give values of the plastic section modulus. Hence these values for I-sections and channels have been provided based on IS: 800. Note that there are some small differences in the values given by IS: 808 and IS: 800. Only the values given by IS: 808 have been used in this book. However, these differences in values will not affect the design much. Also included in this appendix are the wide flange sections, which have been introduced recently (more information on these sections may be obtained from M/s. Jindal Vijayanagar Steel Limited). Properties of some castellated beams (I-section and channels) have also been included. Properties of circular tubes (IS: 1161-1998), square and rectangular hollow sections (IS: 4923-1997 and Tata steel catalog), and cold-formed lipped channel and zed sections (IS: 811-1987) are also included in this appendix. More details about these sections may be found in the respective Indian Standard.

Indian Standard Rolled Steel Plates

Steel plates are available in the following widths and thicknesses.

Widths: 160, 180, 200, 220, 250, 280, 320, 355, 400, 450, 500, 560, 630,

710, 800, 900, 1000, 1100, 1250, 1400, 1600, 1800, 2000, 2200,

and 2500

Thickness: 5.0, 5.5, 6.0, 7.0, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36,

40, 45, 50, 56, 63, 71, and 80

		Sectional dimensions							Sectional properties								
Designation	Mass N/m	Area (mm²)	h (mm)	R (mm)	b _f (mm)	t _w (mm)	t _f (mm)	$I_z (cm^4)$	$I_y (cm^4)$	r _z (mm)	r _y (mm)	Z_z (cm^3)	$Z_y (cm^3)$	Plastic modulus $Z_{pz}(cm^3)$	Shape factor		
MB 100	89	1140	100	9	50	4.7	7	183	12.9	40	10.5	36.6	5.16	41.24	1.1268		
MB 125	133	1700	125	9	70	5	8	445	38.5	51.6	15.1	71.2	11	81.85	1.1399		
MB 150	150	1910	150	9	75	8	8	718	46.8	61.3	15.7	95.7	12.5	110.48	1.1401		
MB 175	196	2500	175	10	85	5.8	9	1260	76.7	71.3	17.6	144	18	166.08	1.1422		
MB 200	242	3080	200	11	100	5.7	10	2120	137	82.9	21.1	212	27.4	253.86	1.1358		
MB 225	311	3970	225	12	110	6.5	11.8	3440	218	93.1	23.4	306	39.7	348.27	1.1385		
MB 250	373	4750	250	13	125	6.9	12.5	5130	335	104	26.5	410	53.5	465.71	1.1345		
MB 300	460	5860	300	14	140	7.7	13.1	8990	486	124	28.6	599	69.5	651.74	1.1362		
MB 350	524	6670	350	14	140	8.1	14.2	13600	538	143	28.4	779	76.8	889.57	1.1421		
MB 400	615	7840	400	14	140	8.9	16	20500	622	162	28.2	1020	88.9	1176.18	1.1498		
MB 450	724	9220	450	15	150	9.4	17.4	30400	834	182	30.1	1350	111	1533.36	1.15		
MB 500	869	11100	500	17	180	10.2	17.2	45200	1370	202	35.2	1810	152	2074.67	1.1471		
MB 550	1040	13200	550	18	190	11.2	19.3	64900	1830	222	37.3	2360	193	2711.98	1.1492		
MB 600	1230	15600	600	20	210	12	20.3	91800	2650	242	41.2	3060	252	3510.63	1.1471		

Table A.2 Sectional properties of columns and heavy weight beams

			Sec	tional din	nensions			Sectional properties							
Designation	Mass (N/m)	Area (mm²)	h (mm)	R (mm)	b _f (mm)	t _w (mm)	t _f (mm)	I_z (cm^4)	I_y (cm^4)	r _z (mm)	r _y (mm)	Z_z (cm^3)	Z_y (cm^3)	Plastic modulus, Z_{pz} (cm ³)	Shape factor
Column secti	ions														
SC 100	200	2550	100	12	100	6	10	436	136	41.3	23.1	87.2	27.2	99.60	1.1422
SC 120	262	3340	120	12	120	6.5	11	842	255	50.2	27.6	140	42.6	159.49	1.1392
SC 140	333	4240	140	12	140	7	12	1470	438	58.9	32.1	211	62.5	238.59	1.1307
SC 150	371	4740	152	11.7	152	7.9	11.9	1970	700	64.5	38.4	259	91.9	285.87	1.1038
SC 160	419	5340	160	15	160	8	13	2420	695	67.4	36.1	303	86.8	341.67	1.1276
SC 180	505	6440	180	15	180	8.5	14	3740	1060	76.2	40.5	415	117	467.42	1.1263
SC 200	603	7680	200	18	200	9	15	5530	1530	84.8	44.6	553	153	620.03	1.1212
SC 220	704	8980	220	18	220	9.5	16	7880	2160	93.5	49	716	196	802.02	1.1201
SC 250	856	10900	250	23	250	10	17	12500	3260	107	54.6	997	260	1106.89	1.1102

1.1024

1.0923

1.0907

1.0896

1.0940

1.1036

1.1064

1.1103

е	A.	2	(C	91

rabie	A.2 (cc	onta
Heavy	weight	bea

HB 200

HB 225

HB 250

HB 300

HB 350

HB 400

HB 450

Heavy	weight	beams	s/columns
HB 150)	271	3450

Table	A.2 (cc	mia)
Heavy	weight	bean

5.4

6.1

6.5

6.9

7.6

8.3

9.1

9.8

9.1

9.7

10.6

11.6

12.7

13.7

87.1

35.4

45.1

49.6

54.9

54.1

53.4

52.6

51.8

57.6

96.7

213.87

394.31

511.55

674.46

914.60

1202.97

1548.92

1931.87

Table A.3 Sectional properties of channel sections

		Sectional dimensions									Sec					
Designation	Mass (N/m)	Area (mm²)	h (mm)	R (mm)	b _f (mm)	t _w (mm)	t _f (mm)	C _y (mm)	I_z (cm^4)	I_y (cm^4)	r _z (mm)	r _y (mm)	Z_z (cm^3)	Z_y (cm ³)	Plastic modulus, Z_{pz} (cm ³)	Shape factor
MC 75	71.4	910	75	8.5	40	4.8	7.5	13.2	78.5	12.9	29.4	11.9	20.9	4.81	24.57	1.1756
MC 100	95.6	1220	100	9	50	5	7.7	15.4	192	26.7	39.7	14.8	37.3	7.71	44.48	1.1584
MC 125	131	1670	125	9.5	65	5.3	8.2	19.5	425	61.1	50.5	19.1	68.1	13.4	77.88	1.1436
MC 150	168	2130	150	10	75	5.7	9	22	788	103	60.8	22	105	19.5	120.00	1.1429
MC 175	196	2490	175	10.5	75	6	10.2	21.9	1240	122	70.4	22.1	141	23	161.92	1.1484
MC 200	223	2850	200	11	75	6.2	11.4	22	1830	141	80.2	22.2	181	26.4	209.92	1.1598
MC 225	261	3330	225	12	80	6.5	12.4	23.1	2710	188	90.2	23.7	241	33	276.03	1.1453
MC 250	306	3900	250	12	80	7.2	14.1	23	3880	211	99.2	23.7	307	38.5	354.65	1.1552
MC 300	363	4630	300	13	90	7.8	13.6	23.5	6420	313	118	26	428	47.1	495.67	1.1581
MC 350	427	5440	350	14	100	8.3	13.5	24.4	10000	434	136	28.2	576	57.3	670.76	1.1645
MC 400	501	6380	400	15	100	8.8	15.3	24.2	15200	508	154	28.2	760	67	888.79	1.1695

Table A.4 Sectional properties of equal leg angles

			Secti	onal dimer	isions			Sect	ional prope	erties			
Designation	Mass (N/m)	Area (mm²)	C_z (mm)	<i>C_y</i> (<i>mm</i>)	$I_z (cm^4)$	$I_y (cm^4)$	r _z (mm)	r _y (mm)	r _{u(max)} (mm)	r _{v(min)} (mm)	$Z_z (cm^3)$	$Z_y (cm^3)$	Z_{pz} (cm^3)
L20 20 × 3	9	112	5.9	5.9	0.4	0.4	5.8	5.8	7.3	3.7	0.3	0.3	0.52
$\times 4$	11	145	6.3	6.3	0.5	0.5	5.8	5.8	7.2	3.7	0.4	0.4	0.67
L25 25 \times 3	11	141	7.1	7.1	0.8	0.8	7.3	7.3	9.3	4.7	0.4	0.4	0.84
$\times 4$	14	184	7.5	7.5	1	1	7.3	7.3	9.1	4.7	0.6	0.6	1.08
× 5	18	225	7.9	7.9	1.2	1.2	7.2	7.2	9.1	4.7	0.7	0.7	1.31
L30 30 \times 3	14	173	8.3	8.3	1.4	1.4	8.9	8.9	11.3	5.7	0.6	0.6	1.23
$\times 4$	18	226	8.7	8.7	1.8	1.8	8.9	8.9	11.2	5.7	0.8	0.8	1.59
×5	22	277	9.2	9.2	2.1	2.1	8.8	8.8	11.1	5.7	1.0	1.0	1.93
L35 35 \times 3	16	203	9.5	9.5	2.3	2.3	10.5	10.5	13.3	6.7	0.9	0.9	1.69
$\times 4$	21	266	10.0	10.0	2.9	2.9	10.5	10.5	13.2	6.7	1.2	1.2	2.20
× 5	26	327	10.4	10.4	3.5	3.5	10.4	10.4	13.1	6.7	1.4	1.4	2.68
×6	30	386	10.8	10.8	4.1	4.1	10.3	10.3	12.9	6.7	1.7	1.7	3.14

abic A. T (coma	,												
L40 40 × 3	18	234	10.8	10.8	3.4	3.4	12.1	12.1	15.4	7.7	1.2	1.2	2.23
$\times 4$	24	307	11.2	11.2	4.5	4.5	12.1	12.1	15.3	7.7	1.6	1.6	2.91
×5	30	378	11.6	11.6	5.4	5.4	12.0	12.0	15.1	7.7	1.9	1.9	3.56
×6	35	447	12.0	12.0	6.3	6.3	11.9	11.9	15.0	7.7	2.3	2.3	4.18
L45 45×3	21	264	12.0	12.0	5	5	13.8	13.8	17.4	8.7	1.5	1.5	2.85
$\times 4$	27	347	12.5	12.5	6.5	6.5	13.7	13.7	17.3	8.7	2	2	3.72
×5	34	428	12.9	12.9	7.9	7.9	13.6	13.6	17.2	8.7	2.5	2.5	4.56
×6	40	507	13.3	13.3	9.2	9.2	13.5	13.5	17.0	8.7	2.9	2.9	5.37
L50 50×3	23	295	13.2	13.2	6.9	6.9	15.3	15.3	19.4	9.7	1.9	1.9	3.54
$\times 4$	30	388	13.7	13.7	9.1	9.1	15.3	15.3	19.3	9.7	2.5	2.5	4.63
×5	38	479	14.1	14.1	11	11	15.2	15.2	19.2	9.7	3.1	3.1	5.68
×6	45	568	14.5	14.5	12.9	12.9	15.1	15.1	19.0	9.6	3.6	3.6	6.70
L55 55 \times 5	41	527	15.3	15.3	14.7	14.7	16.7	16.7	21.1	10.6	3.7	3.7	6.93
×6	49	626	15.7	15.7	17.3	17.3	16.6	16.6	21.0	10.6	4.4	4.4	8.19
×8	64	818	16.5	16.5	22	22	16.4	16.4	20.7	10.6	5.7	5.7	10.58
×10	79	1000	17.2	17.2	26.3	26.3	16.2	16.2	20.3	10.6	7	7	12.83
$L60~60\times5$	45	575	16.5	16.5	19.2	19.2	18.2	18.2	23.1	11.6	4.4	4.4	8.31
×6	54	684	16.9	16.9	22.6	22.6	18.2	18.2	22.9	11.5	5.2	5.2	9.82
$\times 8$	70	896	17.7	17.7	29	29	18.0	18.0	22.7	11.5	6.8	6.8	12.72
×10	86	1100	18.5	18.5	34.8	34.8	17.8	17.8	22.3	11.5	8.4	8.4	15.46
L65 65×5	49	625	17.7	17.7	24.7	24.7	19.9	19.9	25.1	12.6	5.2	5.2	9.81
×6	58	744	18.1	18.1	29.1	29.1	19.8	19.8	25.0	12.6	6.2	6.2	11.61
$\times 8$	77	976	18.9	18.9	37.4	37.4	19.6	19.6	24.7	12.5	8.1	8.1	15.06
×10	94	1200	19.7	19.7	45	45	19.4	19.4	24.4	12.5	9.9	9.9	18.34

Table A.4 (com	u)												
L70 70 × 5	53	677	18.9	18.9	31.1	31.1	21.5	21.5	27.1	13.6	6.1	6.1	11.44
×6	63	806	19.4	19.4	36.8	36.8	21.4	21.4	27.0	13.6	7.3	7.3	13.54
×8	83	1060	20.2	20.2	47.4	47.4	21.2	21.2	26.7	13.5	9.5	9.5	17.60
×10	102	1300	21.0	21.0	57.2	57.2	21.0	21.0	26.4	13.5	11.7	11.7	21.46
L75 75 \times 5	57	727	20.2	20.2	38.7	38.7	23.1	23.1	29.2	14.6	7.1	7.1	13.19
×6	68	866	20.6	20.6	45.7	45.7	23.0	23.0	29.1	14.6	8.4	8.4	15.63
$\times 8$	89	1140	21.4	21.4	59	59	22.8	22.8	28.8	14.5	11	11	20.34
×10	110	1400	22.2	22.2	71.4	71.4	22.6	22.6	28.4	14.5	13.5	13.5	24.84
L80 80×6	73	929	21.8	21.8	56	56	24.6	24.6	31.1	15.6	9.6	9.6	17.86
×8	96	1220	22.7	22.7	72.5	72.5	24.4	24.4	30.8	15.5	12.6	12.6	23.28
$\times 10$	118	1500	23.4	23.4	87.7	87.7	24.1	24.1	30.4	15.5	15.5	15.5	28.47
×12	140	1780	24.2	24.2	102	102	23.9	23.9	30.1	15.4	18.3	18.3	33.44
$L90~90\times6$	82	1050	24.2	24.2	80.1	80.1	27.7	27.7	35.0	17.5	12.2	12.2	22.78
$\times 8$	108	1380	25.1	25.1	104	104	27.5	27.5	34.7	17.5	16	16	29.76
$\times 10$	134	1700	25.9	25.9	127	127	27.3	27.3	34.4	17.4	19.8	19.8	36.47
×12	158	2020	26.6	26.6	148	148	27.1	27.1	34.1	17.4	23.3	23.3	42.93
L100 100 × 6	92	1170	26.7	26.7	111	111	30.9	30.9	39.1	19.5	15.2	15.2	28.30
$\times 8$	121	1540	27.6	27.6	145	145	30.7	30.7	38.8	19.5	20	20	37.05
×10	149	1900	28.4	28.4	177	177	30.5	30.5	38.5	19.4	24.7	24.7	45.48
× 12	177	2260	29.2	29.2	207	207	30.3	30.3	38.2	19.4	29.2	29.2	53.61
L110 110 × 8	134	1710	30.0	30.0	197	197	34.0	34.0	42.8	21.8	24.6	24.6	45.13
×10	166	2110	30.9	30.9	240	240	33.7	33.7	42.5	21.6	30.4	30.4	55.48
×12	197	2510	31.7	31.7	281	281	33.5	33.5	42.2	21.5	35.9	35.9	65.50
×16	257	3280	33.2	33.2	357	357	33.0	33.0	41.5	21.4	46.5	46.5	84.62

7
2
ř
5
1163
2
717
nc
ııı
u
חופכו
roperites of our actural piece pections
CJ

L130 130 \times 8	159	2030	35.0	35.0	331	331	40.4	40.4	51.0	25.9	34.9	34.9	63.69
$\times 10$	197	2510	35.9	35.9	405	405	40.2	40.2	50.7	25.7	43.1	43.1	78.48
×12	235	2990	36.7	36.7	476	476	39.9	39.9	50.3	25.6	51	51	92.86
×16	307	3920	38.2	38.2	609	609	39.4	39.4	49.7	25.4	66.3	66.3	120.48
L150 150 \times 10	229	2920	40.8	40.8	634	634	46.6	46.6	58.7	29.8	58	58	105.48
× 12	273	3480	41.6	41.6	746	746	46.3	46.3	58.4	29.7	68.8	68.8	125.03
×16	358	4560	43.1	43.1	959	959	45.8	45.8	57.7	29.4	89.7	89.7	162.74
$\times 20$	441	5620	44.6	44.6	1160	1160	45.3	45.3	57.1	29.3	110	110	198.73
$L200\ 200 \times 12$	369	4690	53.9	53.9	1830	1830	62.4	62.4	78.7	39.9	125	125	226.44
×16	485	6180	55.6	55.6	2370	2370	61.9	61.9	78.0	39.6	164	164	296.37
$\times 20$	600	7640	57.1	57.1	2880	2880	61.4	61.4	77.3	39.3	201	201	363.80
× 25	739	9410	59.0	59.0	3470	3470	60.7	60.7	76.1	39.1	246	246	444.82

Table A.5 Sectional properties of unequal leg angles

			Secti	onal dimer	isions			Sect	ional prope	erties			
Designation	Mass (N/m)	Area (mm²)	C _z (mm)	C _y (mm)	I_z (cm^4)	I_y (cm^4)	r _z (mm)	r _y (mm)	r _{u(max)} (mm)	r _{v(min)} (mm)	$Z_z (cm^3)$	Z_y (cm^3)	Z_{pz} (cm^3)
L30 20 × 3	11	141	9.8	4.9	1.2	0.4	9.2	5.4	9.9	4.1	0.6	0.3	1.15
$\times 4$	14	184	10.2	5.3	1.5	0.5	9.2	5.4	9.8	4.1	8	0.4	1.48
×5	18	225	10.6	5.7	1.9	0.6	9.1	5.3	9.7	4.1	1	0.4	1.78
L40 25 \times 3	15	188	13	5.7	3	0.9	12.5	6.8	13.3	5.2	1.1	0.5	2.06
$\times 4$	19	246	13.5	6.2	3.8	1.1	12.5	6.8	13.2	5.2	1.4	0.6	2.67
× 5	24	302	13.9	6.6	4.6	1.4	12.4	6.7	13.1	5.2	1.8	0.7	3.25
×6	28	356	14.3	6.9	5.4	1.6	12.3	6.6	12.9	5.2	2.1	0.9	3.80
L45 30×3	17	218	14.2	6.9	4.4	1.5	14.2	8.4	15.2	6.3	1.4	0.7	2.67
$\times 4$	22	286	14.7	7.3	5.7	2	14.1	8.4	15.1	6.3	1.9	0.9	3.48
× 5	28	352	15.1	7.7	6.9	2.4	14	8.3	15	6.3	2.3	1.1	4.25
×6	33	416	15.5	8.1	8	2.8	13.9	8.2	14.9	6.3	2.7	1.3	4.98
L50 30×3	18	234	16.3	6.6	5.9	1.6	15.9	8.3	16.7	6.5	1.7	0.7	3.23
$\times 4$	24	307	16.8	7	7.7	2.1	15.8	8.2	16.6	6.3	2.3	0.9	4.22

 Table A.5 (contd)

abic A.o (com	u)												
× 5	30	378	17.2	7.4	9.3	2.5	15.7	8.1	16.5	6.3	2.8	1.1	5.16
×6	35	447	17.6	7.8	10.9	2.9	15.6	8	16.4	6.3	3.4	1.3	6.05
$L60 40 \times 5$	37	476	19.5	9.6	16.9	6	18.9	11.2	20.2	8.5	4.2	2	7.78
×6	44	565	19.9	10	19.9	7	18.8	11.1	20.1	8.5	5	2.3	9.17
×8	58	737	20.7	10.8	25.4	8.8	18.6	11	19.8	8.4	6.5	3	11.81
$L65 45 \times 5$	41	526	20.7	10.8	22.1	8.6	20.5	12.8	22.2	9.6	5	2.5	9.28
×6	49	625	21.1	11.2	26	10.1	20.4	12.7	22.1	9.5	5.9	3	10.96
×8	64	817	21.9	12	33.2	12.8	20.2	12.5	21.8	9.5	7.7	3.9	14.15
$L70.45 \times 5$	43	552	22.7	10.4	27.2	8.8	22.2	12.6	23.6	9.6	5.7	2.5	10.63
×6	52	656	23.2	10.9	32	10.3	22.1	12.5	23.5	9.6	6.8	3	12.56
×8	67	858	24	11.6	41	13.1	21.9	12.4	23.2	9.5	8.9	3.9	16.24
$\times 10$	83	1050	24.8	12.4	49.3	15.6	21.6	12.2	22.9	9.5	10.9	4.8	19.69
L75 50×5	47	602	23.9	11.6	34.1	12.2	23.8	14.2	25.6	10.7	6.7	3.2	12.38
× 6	56	716	24.4	12	40.3	14.3	23.7	14.1	25.5	10.7	8	3.8	14.64
× 8	74	938	25.2	12.8	51.8	18.3	28.5	14	25.2	10.6	10.4	4.9	18.98
$\times 10$	90	1150	26	13.6	62.2	21.8	23.3	13.8	24.9	10.6	12.7	6	23.06
L80 50×5	49	627	26	11.2	40.6	12.3	25.5	14	27	10.7	7.5	3.2	13.91
×6	59	746	26.4	11.6	48	14.4	25.4	13.9	26.9	10.7	9	3.8	16.46
$\times 8$	77	978	27.3	12.4	61.9	18.5	25.2	13.7	26.6	10.6	11.7	4.9	21.37
$\times 10$	94	1200	28.1	13.2	74.7	22.1	24.9	13.6	26.3	10.6	14.4	6	26.00
L90 60 × 6	68	865	28.7	13.9	70.6	25.2	28.6	17.1	30.7	12.8	11.5	5.5	21.38
$\times 8$	89	1140	29.6	14.8	91.5	32.4	28.4	16.9	30.4	12.8	15.1	7.2	27.85
$\times 10$	110	1400	30.4	15.5	111	39.1	28.1	16.7	30.1	12.7	18.6	8.8	34.00
× 12	130	1660	31.2	16.3	129	45.2	27.9	16.5	29.8	12.7	22	10.3	39.85
L100 65 \times 6	75	955	31.9	14.7	96.7	32.4	31.8	18.4	34	13.9	14.2	6.4	26.42
$\times 8$	99	1260	32.8	15.5	126	41.9	31.6	18.3	33.8	13.9	18.7	8.5	34.48
× 10	122	1550	33.7	16.3	153	50.7	31.4	18.1	33.5	13.8	23.1	10.4	42.19

Table A.5 (contd)

L100 75 \times 6	80	1010	30.1	17.8	101	48.7	31.5	21.9	35	15.9	14.4	8.5	27.32
×8	105	1340	31	18.7	132	63.3	31.4	21.8	34.8	15.9	19.1	11.2	35.68
$\times 10$	130	1650	31.9	19.5	160	76.9	31.2	21.6	34.5	15.8	23.6	13	43.69
× 12	154	1950	32.7	20.3	188	89.5	31	21.4	34.2	15.8	27.9	16.3	51.36
L125 75 \times 6	92	1170	40.5	15.9	188	51.6	40.1	21	42.3	16.2	22.2	8.7	40.93
$\times 8$	121	1540	41.5	16.8	246	67.2	40	20.9	42.1	16.1	29.4	11.5	53.63
$\times 10$	149	1900	42.4	17.6	300	81.6	39.7	20.7	41.8	16.1	36.5	14.2	65.88
L125 95 \times 6	101	1290	37.2	22.4	205	103	39.9	28.3	44.3	20.7	23.4	14.3	43.33
$\times 8$	134	1700	38	23.2	268	135	39.7	28.1	44.1	20.5	30.9	18.8	56.83
×10	165	2110	38.9	24	328	164	39.5	27.9	43.8	20.4	38.1	23.1	69.88
× 12	197	2500	39.7	24.8	385	192	39.2	27.7	43.5	20.3	45.1	27.3	82.48
L150 75 \times 8	137	1750	52.4	15.4	410	71.1	48.8	20.2	49.9	16.2	42	11.9	74.08
×10	170	2160	53.3	16.2	502	86.3	48.2	20	49.6	16.1	51.9	14.7	91.19
× 12	202	2570	54.2	17	590	100	47.9	19.8	49.3	16	61.6	17.3	107.76
L150 115 \times 8	163	2070	44.8	27.6	474	244	47.8	34.3	53.3	25	45.1	28	82.88
$\times 10$	201	2570	45.7	28.4	582	299	47.6	34.1	53.1	24.8	55.8	34.5	102.19
× 12	240	3050	46.5	29.2	685	351	47.4	33.9	52.8	24.7	66.2	40.8	120.96
×16	314	4000	48.1	30.7	878	447	46.9	33.4	52.1	24.4	86.2	53	177.24
$L200\ 100 \times 10$	229	2920	69.8	20.3	1230	215	64.8	27.1	66.8	21.7	94.3	26.9	165.25
×12	273	3480	70.7	21.1	1450	251	64.6	26.9	66.5	21.6	112	31.9	196.03
×16	358	4570	72.3	22.7	1870	320	64	26.6	65.9	21.3	147	41.3	255.42
L200 150 × 10	269	3430	60.2	35.5	1410	689	64.1	44.8	71	32.8	101	60.2	184.00

Designation	Weight (N/m)	Sectional area	Depth of section		Thickness of flange	Thickness of web	Centre of gravity		oment vertia	Radii of gyra		Mod of sec	
		(mm^2)	h (mm)	b (mm)	$t_f(mm)$	t_w (mm)	C_z (mm)	I_z (cm ⁴)	I_y (cm ⁴)	r _z (mm)	r _y (mm)	Z_z (cm ³)	Z_y (cm ³)
ISNT 20	9	113	20	20	3	3	6	0.4	0.2	5.9	3.9	0.3	0.2
ISNT 30	14	175	30	30	3	3	8.3	1.4	0.6	8.9	5.7	0.6	0.4
ISNT 40	35	448	40	40	6	6	12	6.3	3	11.8	8.2	2.2	1.5
ISNT 50	45	570	50	50	6	6	14.4	12.7	5.9	15	10.2	3.6	2.4
ISNT 60	54	690	60	60	6	6	16.7	22.5	10.1	18.1	12.1	5.2	3.4
ISNT 80	96	1225	80	80	8	8	22.3	71.2	32.3	24.1	16.2	12.3	8.1
ISNT 100	150	1910	100	100	10	10	27.9	173.8	79.9	30.2	20.5	24.1	16
ISNT 150	228	2908	150	150	10	10	39.5	608.8	257.5	45.6	30.3	54.6	35.7
ISHT 75	153	1949	75	150	9	8.4	16.2	96.2	230.2	22.2	34.4	16.4	30.1
ISHT 100	200	2547	100	200	9	7.8	19.1	193.8	497.3	27.6	44.2	24	49.3

ISHT 125	274	3485	125	250	9.7	8.8	23.7	415.4	1005.8	34.5	53.7	41	79.9
ISHT 150	294	3742	150	250	10.6	7.6	26.6	573.7	1096.8	39.2	54.1	46.5	87.7
ISST 100	81	1037	100	50	10	5.8	30.3	99	9.6	30.9	9.6	14.2	3.8
ISST 150	157	1996	150	75	11.6	8	37.5	450.2	37	47.5	13.6	43.9	9.9
ISST 200	284	3622	200	165	12.5	8	47.8	1267.8	358.2	59.2	31.5	83.3	43.4
ISST 250	375	4775	250	180	12.1	9.2	64	2774.4	532	76.2	33.4	149.2	59.1
ISLT 50	40	511	50	50	6.4	4	11.9	9.9	6.4	13.9	11.2	2.6	2.5
ISLT 75	71	904	75	80	6.8	4.8	17.2	41.9	27.6	21.5	17.5	7.2	6.9
ISLT 100	127	1616	100	100	10.8	5.7	21.3	116.6	75	26.9	21.5	14.8	15
ISJT 75	35	450	75	50	4.6	3	20	24.8	4.6	23.5	10.1	4.5	1.8
ISJT 87.5	40	514	87.5	50	4.8	3.2	25	39	4.8	27.5	9.7	6.2	1.9
ISJT 100	50	632	100	60	5	3.4	28.1	63.5	8.6	31.7	11.7	8.8	2.9
ISJT 112.5	64	814	112.5	80	5	3.7	30.1	101.6	20.2	35.3	15.8	12.3	5.1

Table A.6 (contd)

Table A.7 Sectional properties of parallel flange beams and columns

IPE - European I-beams H – Depth

11 Depth

HE - European wide flange beams

B - Flange width

W - American wide flange beams

 t_w - Web thickness

UC - British universal columns

 t_f - Flange thickness

HD - Wide flange columns

R - Fillet radius

Designation	Mass (N/m)	Sectional area		Ma	in dimens (mm)	sions			ent of a (cm ⁴)	Radiu gyration	3	Modul section	2
		(mm^2)	\overline{H}	В	t _w	t_f	R	I_z	I_y	r_z	r_y	Z_z	Z_y
(1) Nominal size 200 mm													
IPE 200	224	2848	200	100	5.6	8.5	12	1943	142.4	82.6	22.4	194.3	28.47
HE 200 A	423	5383	190	200	6.5	10	18	3692	1336	82.8	49.8	388.6	133.6
HE 200 B	613	7808	200	200	9	15	18	5696	2003	85.4	50.7	569.6	200.3
HE 200 M	1030	13130	220	206	15	25	18	10640	3651	90.0	52.7	967.4	354.5
W $200 \times 135 \times 26.6$	266	3400	207	133	5.8	8.4	10	2587	329.8	87.2	31.1	250	49.6
W $200 \times 135 \times 31.3$	313	3992	210	134	6.4	10.2	10	3139	409.6	88.7	32	298.9	61.13
W $200 \times 165 \times 35.9$	359	4575	201	165	6.2	10.2	10	3438	764.3	86.7	40.9	342.1	92.64
W $200 \times 165 \times 41.7$	417	5317	205	166	7.2	11.8	10	4088	900.5	87.7	41.2	398.8	108.5
IPE 220	262	3337	220	110	5.9	9.2	12	2772	204.9	91.1	24.8	252	37.25
HE 220 A	505	6434	210	220	7	11	18	5410	1955	91.7	55.1	515.2	177.7
HE 220 B	715	9104	220	220	9.5	16	18	8091	2843	94.3	55.9	735.5	258.5
HE 220 M	1170	14940	240	226	15.5	26	18	14600	5012	98.9	57.9	1217	443.5

Table A.7 (contd)

Column Sections													
UC $200 \times 203 \times 46$	461	5873	203.2	203.6	7.2	11	10.2	4568	1548	88.2	51.3	449.6	152.1
UC $200 \times 203 \times 52$	520	6628	206.2	204.3	7.9	12.5	10.2	5259	1778	89.1	51.8	510.1	174
UC $200 \times 203 \times 60$	600	7637	209.6	205.8	9.4	14.2	10.2	6125	2065	89.6	52	584.4	200.6
UC $200 \times 203 \times 71$	710	9043	215.8	206.4	10	17.3	10.2	7618	2537	91.8	53	706	245.9
UC $200 \times 203 \times 86$	860	10960	222.2	209.1	12.7	20.5	10.2	9449	3127	92.8	53.4	850.5	299.1
UC $200 \times 200 \times 100$	1000	12670	229	210	14.5	27.3	10	11000	3660	93.2	53.7	961	349
(2) Nominal size 250 mm													
IPE 240	307	3912	240	120	6.2	9.8	15	3892	283.6	99.7	26.9	324.3	47.27
HE 240 A	603	7684	230	240	7.5	12	21	7763	2769	100.5	60	675.1	230.7
HE 240 B	832	10600	240	240	10	17	21	11260	3923	103.1	60.8	938.3	326.9
HE 240 M	1570	19960	270	248	18	32	21	24290	8153	110.3	63.9	1799	657.5
W $250 \times 145 \times 32.7$	327	4175	258	146	6.1	9.1	13	4895	472.6	108.3	33.6	379.4	64.74
W $250 \times 145 \times 38.5$	385	4929	262	147	6.6	11.2	13	6014	593.7	110.5	34.7	459.1	80.77
W $250 \times 145 \times 44.8$	448	5732	266	148	7.6	13	13	7118	703.5	111.4	35	535.2	95.06
$W250 \times 200 \times 49.1$	491	6254	247	202	7.4	11	13	7070	1510	106	49	572	150
$W250 \times 200 \times 58$	580	7426	252	203	8	13.5	13	8740	1880	108	50.3	694	185
$W250 \times 200 \times 67$	670	8559	257	204	8.9	15.7	13	10400	2220	110	50.9	809	218
$HD~260\times68.2$	682	8682	250	260	7.5	12.5	24	68.2	28.76	9198	4302	10450	3668
HD 260×93	930	11840	260	260	10	17.5	24	93	37.59	12830	6022	14920	5135
HD 260×114	1140	14570	268	262	12.5	21.5	24	114	46.08	16000	7525	18910	6456
$HD\ 260\times142$	1420	18030	278	265	15.5	26.5	24	142	56.65	20150	9505	24330	8236
HD 260×172	1720	21960	290	268	18	32.5	24	172	66.89	25240	11920	31310	10450
HE 280 A	764	9726	270	280	8	13	24	13670	4763	118.6	70	1013	340.2

Table A.7 (contd)													
HE 280 B	1030	13140	280	280	10.5	18	24	19270	6595	121.1	70.9	1376	471
HE 280 M	1890	24020	310	288	18.5	33	24	39550	13160	128.3	74	2551	914.1
Column Sections													
W $250 \times 250 \times 73$	730	9299	253	254	8.6	14.2	13	11290	3880	110.2	64.6	892.1	305.5
$W~250\times250\times80$	800	10210	256	255	9.4	15.6	13	12570	4314	111	65	982.4	338.3
W $250 \times 250 \times 89$	890	11410	260	256	10.7	17.3	13	14260	4841	111.8	65.1	1097	378.2
W $250 \times 250 \times 101$	1010	12900	264	257	11.9	19.6	13	16380	5549	112.7	65.6	1241	431.9
W $250 \times 250 \times 115$	1150	14620	269	259	13.5	22.1	13	18940	6405	113.8	66.2	1408	494.6
$W~250\times250\times131$	1310	16700	275	261	15.4	25.1	13	22150	7446	115.2	66.8	1611	570.6
$W~250\times250\times149$	1490	18970	282	263	17.3	28.4	13	25940	8622	116.9	67.4	1840	655.7
W $250 \times 250 \times 167$	1670	21320	289	265	19.2	31.8	13	30020	9879	118.7	68.1	2078	745.6
(3) Nominal size 300 mm													
IPE 300	422	5381	300	150	7.1	10.7	15	8356	603.8	124.6	33.5	557.1	80.5
HE 300 A	880	11250	290	300	8.5	14	27	18260	6310	127.4	74.9	1260	420.6
HE 300 B	1170	14910	300	300	11	19	27	25170	8563	129.9	75.8	1678	570.9
HE 300 M	2380	30310	340	310	21	39	27	59200	19400	139.8	80	3482	1252
W $310 \times 100 \times 23.8$	238	3038	305	101	5.6	6.7	8	4280	115.6	118.7	19.5	280.7	22.89
$W~310\times100\times28.3$	283	3609	309	102	6	8.9	8	5431	158.1	122.7	20.9	351.5	30.99
$W~310\times100\times32.7$	327	4181	313	102	6.6	10.8	8	6507	191.9	124.7	21.4	415.8	37.62
W $310 \times 165 \times 38.7$	387	4953	310	165	5.8	9.7	8	8527	726.8	131.2	38.3	550.1	88.1
W $310 \times 165 \times 44.5$	445	5691	313	166	6.6	11.2	8	9934	854.7	132.1	38.8	634.8	103
W $310 \times 165 \times 52$	520	6678	317	167	7.6	13.2	8	11851	1026	133.2	39.2	747.7	122.9
W $310 \times 200 \times 60$	600	7588	303	203	7.5	13.1	15	12900	1830	130	49.1	851	180
$W~310\times200\times67$	670	8503	306	204	8.5	14.6	15	14500	2070	131	49.3	948	203

(*******)													
$\overline{\text{W }310 \times 200 \times 74}$	740	9484	310	205	9.4	16.3	15	16500	2340	132	49.7	1060	228
$W~310\times250\times79$	790	10046	306	254	8.8	14.6	15	17700	3990	133	63	1160	314
$W~310\times250\times86$	860	10998	310	254	9.1	16.3	15	19800	4450	134	63.6	1280	350
Column Sections													
$W~310\times310\times97$	970	12330	308	305	9.9	15.4	15	22240	7286	134.3	76.9	1444	477.8
$W~310\times310\times107$	1070	13620	311	306	10.9	17	15	24790	8123	134.9	77.2	1594	530.9
$W~310\times310\times117$	1170	14970	314	307	11.9	18.7	15	27510	9024	135.6	77.6	1753	587.9
$W~310\times310\times129$	1290	16510	318	308	13.1	20.6	15	30770	10040	136.5	78	1935	651.9
$W~310\times310\times143$	1430	18230	323	309	14	22.9	15	34760	11270	138.1	78.6	2153	729.4
$W~310\times310\times158$	1580	20050	327	310	15.5	25.1	15	38630	12470	138.8	78.9	2363	804.8
$W~310\times310\times179$	1790	22770	333	313	18	28.1	15	44530	14380	139.9	79.5	2675	918.7
$W~310\times310\times202$	2020	25800	341	315	20.1	31.8	15	51982	16588	141.9	80.2	3049	1053
$W~310\times310\times226$	2260	28880	348	317	22.1	35.6	15	59560	18930	143.6	81	3423	1194
HE 320 A	976	12440	310	300	9	15.5	27	22930	6985	135.8	74.9	1479	465.7
HE 320 B	1270	16130	320	300	11.5	20.5	27	30820	9239	138.2	75.7	1926	615.9
HE 320 M	2450	31200	359	309	21	40	27	68130	19710	147.8	79.5	3796	1276
(4) Nominal size 350 mm													
HE 340 A	1050	13350	330	300	9.5	16.5	27	27690	7436	144	74.6	1678	495.7
HE 340 B	1340	17090	340	300	12	21.5	27	36660	9690	146.5	75.3	2156	646
HE 340 M	2480	31580	377	309	21	40	27	76370	19710	155.5	79	4052	1276
IPE 360	571	7273	360	170	8	12.7	18	16270	1043	149.5	37.9	903.6	122.8
HE 360 A	1120	14280	350	300	10	17.5	27	33090	7887	152.2	74.3	1891	525.8
HE 360 B	1420	18060	360	300	12.5	22.5	27	43190	10140	154.6	74.9	2400	676.1
HE 360 M	2500	31880	395	308	21	40	27	84870	19520	163.2	78.3	4297	1268

Table A.7 (contd)

 Table A.7 (contd)

Column Sections													
$W~360\times370\times134$	1340	17060	356	369	11.2	18	20	41510	15080	156	94	2332	817.3
$W~360\times370\times147$	1470	18790	360	370	12.3	19.8	20	46290	16720	157	94.3	2572	903.9
$W~360\times370\times162$	1620	20630	364	371	13.3	21.8	20	51540	18560	158.1	94.9	2832	1001
$W~360 \times 370 \times 179$	1790	22830	368	373	15	23.9	20	57440	20680	158.6	95.2	3122	1109
$W~360 \times 370 \times 196$	1960	25030	372	374	16.4	26.2	20	63630	22860	159.4	95.6	3421	1222
$W~360 \times 410 \times 216$	2160	27550	375	394	17.3	27.7	20	71140	28250	160.7	101.3	3794	1434
$W~360 \times 410 \times 237$	2370	30090	380	395	18.9	30.2	20	78780	31040	161.8	101.6	4146	1572
$W~360 \times 410 \times 262$	2620	33460	387	398	21.1	33.3	20	89410	35020	163.5	102.3	4620	1760
$W~360 \times 410 \times 287$	2870	36630	393	399	22.6	36.6	20	99710	38780	165	102.9	5074	1944
$W~360 \times 410 \times 314$	3140	39920	399	401	24.9	39.6	20	110200	42600	166.2	103.3	5525	2125
$W~360 \times 410 \times 347$	3470	44200	407	404	27.2	43.7	20	124900	48090	168.1	104.3	6140	2380
(5) Nominal size 400 mm													
IPE 400	663	8446	400	180	8.6	13.5	21	23130	1318	165.5	39.5	1156	146.4
HE 400 A	1250	15900	390	300	11	19	27	45070	8564	168.4	73.4	2311	570.9
HE 400 B	1550	19780	400	300	13.5	24	27	57680	10820	170.8	74	2884	721.3
HE 400 M	2560	32580	432	307	21	40	27	104100	19340	178.8	77	4820	1260
$W~410\times140\times38.8$	388	4970	399	140	6.4	8.8	11	12620	403.5	159.3	28.5	632.6	57.65
$W~410\times140\times46.1$	461	5880	403	140	7	11.2	11	15550	513.6	162.6	29.5	771.9	73.37
$W~410\times180\times53$	530	6800	403	177	7.5	10.9	11	18600	1009	165.4	38.5	922.9	114
$W~410\times180\times60$	600	7580	407	178	7.7	12.8	11	21570	1205	168.7	39.9	1060	135.4
$W~410\times180\times67$	670	8580	410	179	8.8	14.4	11	24530	1379	169.1	40.1	1196	154.1
W $410 \times 180 \times 75$	750	9520	413	180	9.7	16	11	27460	1559	169.8	40.5	1330	173.2
$W~410\times180\times85$	850	10830	417	181	10.9	18.2	11	31530	1803	170.6	40.8	1512	199.3
													(contd)

Table A.7 (contd)													
W 410 × 260 × 100	1000	12700	415	260	10	16.9	11	39800	4950	177	62.4	1920	381
$W 410 \times 260 \times 114$	1140	14600	420	261	11.6	19.3	11	46200	5720	178	62.6	2200	438
$W 410 \times 260 \times 132$	1320	16840	425	263	13.3	22.2	11	53900	6740	179	63.3	2540	513
$W 410 \times 260 \times 149$	1490	19030	431	265	14.9	25	11	61900	7770	180	63.9	2870	586
6) Nominal size 450 mm													
PE 450	776	9882	450	190	9.4	14.6	21	33740	1676	184.8	41.2	1500	176.4
HE 450 A	1400	17800	440	300	11.5	21	27	63720	9465	189.2	72.9	2896	631
HE 450 B	1710	21800	450	300	14	26	27	79890	11720	191.4	73.3	3551	781.4
HE 450 M	2630	33540	478	307	21	40	27	131500	19340	198	75.9	5501	1260
$W~460 \times 150 \times 52$	520	6620	450	152	7.6	10.8	11	21200	634	178.9	30.9	942	83.43
$W\ 460 \times 150 \times 60$	600	7580	455	153	8	13.3	10	25480	796.1	183.3	32.4	1120	104.1
$W 460 \times 150 \times 68$	680	8730	459	154	9.1	15.4	10	29680	940.5	184.4	32.8	1293	122.1
$W 460 \times 190 \times 74$	740	9460	457	190	9	14.5	10	33260	1661	187.5	41.9	1456	174.8
$W 460 \times 190 \times 82$	820	10440	460	191	9.9	16	10	37000	1862	188.3	42.2	1608	195
$W 460 \times 190 \times 89$	890	11390	463	192	10.5	17.7	10	40960	2093	189.6	42.9	1769	218
$W 460 \times 190 \times 97$	970	12350	466	193	11.4	19	10	44680	2282	190.2	43.1	1917	237.8
$W 460 \times 190 \times 106$	1060	13460	469	194	12.6	20.6	10	48790	2515	190.4	43.2	2081	259.2
Column Sections													
$W 460 \times 280 \times 113$	1130	14400	463	280	10.8	17.3	18	55600	6335	196.5	66.3	2402	452.5
$W 460 \times 280 \times 128$	1280	16360	467	282	12.2	19.6	18	63690	7333	197.3	67	2728	520.1
$W 460 \times 280 \times 144$	1440	18410	472	283	13.6	22.1	18	72600	8358	198.6	67.4	3076	590.7
$W 460 \times 280 \times 158$	1580	20080	476	284	15	23.9	18	79620	9137	199.1	67.5	3346	643.5
$W~460 \times 280 \times 177$	1770	22600	482	286	16.6	26.9	18	91040	10510	200.7	68.2	3777	734.7
$W 460 \times 280 \times 193$	1930	24820	489	283	17	30.5	18	103000	11500	204	68.1	4210	813

A.A.21

W $460 \times 280 \times 213$ 18.5 33.5 $W 460 \times 280 \times 235$ 20.6 36.6 69.4 (7) Nominal size 500 mm IPE 500 10.2 204.3 43.1 214.2 HE 500 A 209.8 72.4 691.1 HE 500 B 14.5 211.9 72.7 841.6 HE 500 M 216.9 74.6 W $530 \times 210 \times 92$ 10.2 15.6 216.7 227.7 W $530 \times 210 \times 101$ 10.9 17.4 218.5 45.6 256.4 W $530 \times 210 \times 109$ 11.6 18.8 219.3 46.1 279.7 W $530 \times 210 \times 123$ 13.1 21.2 220.2 46.4 318.6 W $530 \times 210 \times 138$ 14.7 23.6 46.8 361.7 W $530 \times 310 \times 150$ 12.7 20.3 73.2 W $530 \times 310 \times 165$ 22.2 73.5 W $530 \times 310 \times 182$ 15.2 24.4 W $530 \times 310 \times 196$ 16.5 26.3 74.5 W $530 \times 310 \times 213$ 18.3 29.2 W $530 \times 310 \times 248$ 34.5 75.7 (8) Nominal size 550 mm IPE 550 11.1 17.2 223.5 44.5 254.1 HE 550 A 12.5 229.9 71.5 721.3 HE 550 B 71.7 871.8 HE 550 M 236.4 73.5

Table A.7 (contd)

(9) Nominal size 600 mm													
IPE 600	1220	15600	600	220	12	19	24	92080	3387	243	46.6	3069	307.9
HE 600 A	1780	22650	590	300	13	25	27	141200	11270	249.7	70.5	4787	751.4
HE 600 B	2120	27000	600	300	15.5	30	27	171000	13530	251.7	70.8	5701	902
HE 600 M	2850	36370	620	305	21	40	27	237400	18980	255.5	72.2	7660	1244
$W 610 \times 230 \times 101$	1010	12980	603	228	10.5	14.9	14	76470	2950	242.7	47.7	2536	258.8
$W 610 \times 230 \times 113$	1130	14440	608	228	11.2	17.3	14	87570	3425	246.2	48.7	2881	300.5
$W 610 \times 230 \times 125$	1250	15960	612	229	11.9	19.6	14	98650	3932	248.6	49.6	3224	343.4
$W 610 \times 230 \times 140$	1400	17850	617	230	13.1	22.2	14	111990	4514	250.5	50.3	3630	392.5
$W 610 \times 325 \times 155$	1550	19730	611	324	12.7	19	14	129000	10780	255.7	73.9	4222	666
$W 610 \times 325 \times 174$	1740	22200	616	325	14	21.6	14	147200	12370	257.4	74.6	4778	761
$W 610 \times 325 \times 195$	1950	24930	622	327	15.4	24.4	14	167900	14240	259.5	75.6	5398	871
$W 610 \times 325 \times 217$	2170	27760	628	328	16.5	27.7	14	190800	16310	262.1	76.7	6076	995
$W 610 \times 325 \times 241$	2410	30340	635	329	17.1	31	14	214200	18430	265.7	77.9	6746	1120
$W 610 \times 325 \times 262$	2620	33270	641	327	19	34	14	235990	19850	266.3	77.2	7363	1214
$W 610 \times 325 \times 285$	2850	36360	647	329	20.6	37.1	14	260700	22060	267.8	77.9	8059	1341
$W 610 \times 325 \times 341$	3410	43370	661	333	24.4	43.9	14	318300	27090	270.9	79	9630	1627
W $610 \times 320 \times 372$	3720	47630	669	335	26.4	48	20	355000	30200	273	79.6	10600	1800

HE 650 A

HE 650 B

HE 650 M

HE 700 A

HE 700 B

HE 700 M

(11) Nominal size 700mm

1900

2250

2930

2040

2410

3010

24160

28630

37370

26050

30640

38300

640

650

668

690

700

716

$610 \times 230 \times 140$	1400	1/830	01/	230	13.1	22.2	14	111990	4314	230.3	30.3	3030	392.3	2
$610 \times 325 \times 155$	1550	19730	611	324	12.7	19	14	129000	10780	255.7	73.9	4222	666	es.
$610 \times 325 \times 174$	1740	22200	616	325	14	21.6	14	147200	12370	257.4	74.6	4778	761	
$610 \times 325 \times 195$	1950	24930	622	327	15.4	24.4	14	167900	14240	259.5	75.6	5398	871	
$610 \times 325 \times 217$	2170	27760	628	328	16.5	27.7	14	190800	16310	262.1	76.7	6076	995	
$610 \times 325 \times 241$	2410	30340	635	329	17.1	31	14	214200	18430	265.7	77.9	6746	1120	

26

31

40

27

32

40

27

27

27

175200

210600

281700

215300

256900

329300

11720

13980

18980

12180

14440

18800

269.3

271.2

274.5

287.5

289.6

293.2

69.7

69.9

71.3

68.4

68.7

70.1

5474

6480

8433

6241

7340

9198

781.6

932.3

1245

811.9

962.7

1237

13.5

16

21

14.5

17

21

300

300

305

300

300

304

ISMB-500

ISMB-550

ISMB-600

NCB-500

NCB-550

NCB-600

 750×180

 825×190

 900×210

869

1040

1230

508

558

609

420

462

504

547

601

656

106483

152750

216098

31.7

33.5

37.1

2824.49

3685.16

4778.29

Table A.9 Sectional properties of castellated channels

				Size	of castellated	holes			
Original	Castellated	Overall size (mm)	Weight (N/m)	Depth (mm)	Width (mm)	Spacing (mm)	Net moment of inertia $I_Z(cm^4)$	Design radius of gyration r_y (mm)	Net elastic modulus Z_z (cm ³)
ISMC-75	NCC-75	113 × 40	71.4	76	63	82	186	11.8	32.89
ISMC-100	NCC-100	150×50	95.6	102	84	109	451	14.4	59.75
ISMC-125	NCC-125	188×65	131	127	105	137	998	18.7	105.93
ISMC-150	NCC-150	225×75	168	152	126	164	1863	21.5	164.69
ISMC-175	NCC-175	263×75	196	178	147	192	2919	21.5	221.23
ISMC-200	NCC-200	300×75	223	203	168	219	4337	21.4	287.61
ISMC-225	NCC-225	338×80	261	229	189	246	6417	22.9	378.25
ISMC-250	NCC-250	375×80	306	254	210	274	9095	22.8	482.52
ISMC-300	NCC-300	450×90	363	305	252	328	15084	24.5	666.85
ISMC-350	NCC-350	525×100	427	356	294	383	23663	26.4	896.65
ISMC-400	NCC-400	600×100	501	406	336	438	35660	26.4	1182.35

Table A.10 Sectional properties of circular tubes

Normal bore (mm)	Outside diameter (mm)	Class (mm)	Thickness (mm)	Weight (N/m)	Area of cross section (mm²)	Surf External (cm²/m)	ace Internal	Moment of inertia (cm ⁴)	Modulus of section (cm³)	Radius of gyration (mm)	Plastic section modulus (cm³)
15	21.3	Light	2.00	9.62	121	669	543	0.57	0.54	6.9	0.75
		Medium	2.65	12.2	155		503	0.69	0.65	6.7	0.93
		Heavy	3.25	14.5	184		465	0.77	0.73	6.5	1.07
20	26.9	Light	2.35	14.2	181	845	697	1.38	1.02	8.7	1.42
		Medium	2.65	15.8	202		679	1.5	1.12	8.6	1.57
		Heavy	3.25	19.0	241		641	1.72	1.28	8.4	1.83
25	33.7	Light	2.65	20.4	258	1059	892	3.14	1.86	11.0	2.56
		Medium	3.25	24.6	311		855	3.65	2.16	10.8	3.03
		Heavy	4.05	29.9	377		804	4.22	2.51	10.6	3.58
32	42.4	Light	2.65	26.1	331	1332	1166	6.57	3.1	14.1	4.20
		Medium	3.25	31.5	400		1128	7.71	3.64	13.9	5.00
		Heavy	4.05	38.6	488		1078	9.07	4.28	13.6	5.98

 Table A.10 (contd)

40	48.3	Light	2.9	32.7	414	1517	1335	10.7	4.43	16.1	5.99
		Medium	3.25	36.1	460		1313	11.73	4.86	16.0	6.61
		Heavy	4.05	44.3	563		1263	13.9	5.75	15.7	7.96
50	60.3	Light1	2.9	41.4	523	1894	1712	21.59	7.16	20.3	9.57
		Light2	3.25	45.7	582		1690	23.77	7.89	20.2	10.59
		Medium	3.65	51.0	650		1605	26.17	8.68	20.1	11.74
		Heavy	4.5	61.7	789		1612	30.9	10.2	19.8	14.05
65	76.1	Light	3.25	58.4	744	2391	2187	49.44	13	25.8	17.27
		Medium	3.65	65.3	831		2161	54.65	14.4	25.6	19.19
		Heavy	4.5	79.2	1010		2108	65.12	17.1	25.4	23.06
80	88.9	Light	3.25	68.6	874	2793	2589	80.31	18.1	30.3	23.85
		Medium	4.05	84.8	1080		2538	97.38	21.9	30.0	28.67
		Heavy	4.85	101.0	1280		2488	113.46	25.5	29.8	34.30
90	101.6	Light	3.65	88.2	1120	3192	2862	134.9	26.6	34.7	34.95
		Medium	4.05	97.5	1240		2937	147.9	29.1	34.5	38.55
		Heavy	4.85	116.0	1470		2887	172.9	34	34.2	45.33
100	114.3	Light	3.65	99.7	1270	3591	3361	194.4	34	39.1	44.77
		Medium	4.5	121	1550		3308	234.3	41	38.9	54.23
		Heavy	5.4	145	1850		3252	274.5	48	38.5	64.21
110	127	Light	4.5	136	1730	3990	3707	325.3	51.2	43.3	67.52
		Medium	4.85	146	1860		3685	347.7	54.8	43.2	72.39
		Heavy	5.4	162	2060		3651	382	60.2	43.0	79.83
125	139.7	Light	4.5	149	1910	4389	4106	437.2	62.6	47.8	82.27
		Medium	4.85	162	2050		4084	467.6	66.6	47.7	88.08
		Heavy	5.4	179	2280		4050	514.5	73.7	47.5	97.57

Table A.10 (contd)

135	152.4	Light	4.5	164	2090	4788	4505	572.2	75.1	52.3	98.47	
		Medium	4.85	177	2250		4483	612.5	80.4	52.2	105.77	
		Heavy	5.4	195	2490		4449	674.5	88.5	52.0	116.62	
150	165.1	Light	4.5	178	2270	5187	4904	732.6	88.7	56.8	116.13	
		Medium	4.85	192	2440		4882	784.5	95	56.7	124.56	
		Heavy	5.4	212	2710		4847	864.7	105	56.5	137.88	
150	168.3	Light	4.5	181	2320	5287	5005	777.2	92.4	57.9	121.05	
		Medium	4.85	196	2490		4982	832.4	98.9	57.8	129.65	
		Heavy1	5.4	217	2760		4948	917.7	109	57.6	143.24	
		Heavy2	6.3	253	3210		4891	1053	125	57.3	165.69	
175	193.7	Light	4.85	226	2870	6085	5780	1284	133	66.8	172.65	
		Medium	5.4	250	3190		5746	1417	146	66.6	191.35	
		Heavy	5.9	273	3480		5715	1536	159	66.4	208.20	
200	219.1	Light	4.85	257	3260	6883	6579	1874	171	75.8	222.48	
		Medium	5.6	294	3760		6531	2142	195	75.5	255.71	
		Heavy	5.9	310	3950		6513	2247	205	75.4	268.27	
225	244.5	Heavy	5.9	342	4420	7681	7311	3149	258	84.4	335.93	

 Table A.11 Sectional properties of square hollow sections

Square hollow	Thickness t (mm)	Unit weight w	Sectional area A	Mon iner	ient of rtia	Radiu gyrat	3	Elastic m	odulus	Plastic modulus 7 (cm³) 7 (cm³)	c modulus	Torsional constant
sections $D \times B$ (mm)		(N/m)	(mm²)	I_z (cm ⁴)	I_y (cm ⁴)	r _z (mm)	r _y (mm)	Z_z (cm ³)	Z_y (cm ³)	Z_{pz} (cm ³)	Z_{py} (cm^3)	J (cm ⁴)
25 × 25	1.6	11.2	143	1.28	1.28	9.4	9.4	1.02	1.02	1.24	1.24	1.96
	2	13.6	174	1.48	1.48	9.2	9.2	1.19	1.19	1.48	1.48	2.29
	2.6	16.9	216	1.72	1.72	8.9	8.9	1.38	1.38	1.76	1.76	2.68
	3.2	19.8	253	1.89	1.89	8.6	8.6	1.51	1.51	2.22	2.22	2.96
32×32	2	18	230	3.36	3.36	12.1	12.1	2.1	2.1	2.21	2.21	5.3
	2.6	22.6	288	4.02	4.02	11.8	11.8	2.51	2.51	3.11	3.11	6.45
	3.2	26.9	342	4.54	4.54	11.5	11.5	2.84	2.84	3.59	3.59	7.41
38×38	2	21.8	278	5.88	5.88	14.6	14.6	3.1	3.1	3.7	3.7	9.31
	2.6	27.5	351	7.14	7.14	14.3	14.3	3.76	3.76	4.57	4.57	11.51
	3.2	32.9	419	8.18	8.18	14	14	4.3	4.3	5.34	5.34	13.45
	4	39.5	503	9.26	9.26	13.6	13.6	4.87	4.87	6.22	6.22	15.67

Table A.11 (contd)

40×40	2.6	29.2	372	8.45	8.45	15.1	15.1	4.22	4.22	5.12	5.12	13.63
	2.9	32.1	409	9.11	9.11	14.9	14.9	4.56	4.56	5.58	5.58	14.85
	3.2	34.9	445	9.72	9.72	14.8	14.8	4.86	4.86	6.01	6.01	16
	4	42	535	11.07	11.07	14.4	14.4	5.54	5.54	7.02	7.02	18.75
49.5×49.5	2.6	36.9	470	16.91	16.91	19	19	6.83	6.83	8.17	8.17	27.19
	2.9	40.7	519	18.37	18.37	18.8	18.8	7.42	7.42	8.93	8.93	29.81
	3.6	49.3	628	21.42	21.42	18.5	18.5	8.66	8.66	12.81	12.81	35.54
	4.5	59.5	758	24.64	24.64	18	18	9.96	9.96	12.47	12.47	72.15
60×60	2.6	45.5	580	31.33	31.33	23.3	23.3	10.44	10.44	12.34	12.34	50.08
	2.9	50.3	641	34.21	34.21	23.1	23.1	11.4	11.4	13.56	13.56	56.12
	3.2	55	701	36.94	36.94	23	23	12.31	12.31	14.73	14.73	60.02
	4	67.1	855	43.55	43.55	22.6	22.6	14.52	14.52	17.64	17.64	72.41
	4.8	78.5	1001	49.22	49.22	22.2	22.2	16.41	16.41	20.27	20.27	83.86
72×72	3.2	67.1	854	66.32	66.32	27.9	27.9	18.42	18.42	21.8	21.8	106.81
	4	82.2	1047	79.03	79.03	27.5	27.5	21.95	21.95	26.32	26.32	129.85
	4.8	96.6	1231	90.31	90.31	27.1	27.1	25.09	25.09	30.49	30.49	151.55
91.5×91.5	3.6	96.7	1232	156.49	156.49	35.6	35.6	34.21	34.21	40.24	40.24	251.17
	4.5	118.8	1514	187.57	187.57	35.2	35.2	41	41	48.8	48.8	306.78
	5.4	140.1	1785	215.68	215.68	34.8	34.8	47.14	47.14	56.77	56.77	359.76
113.5×113.5	4.8	159.2	2028	393.3	393.3	44	44	69.3	69.3	81.81	81.81	637.45
	5.4	177.4	2260	432.58	432.58	43.8	43.8	76.23	76.23	90.55	90.55	708.69
132×132	4.8	187.1	2383	634.39	634.39	51.6	51.6	96.12	96.12	112.69	112.69	1018.3
	5.4	208.8	2659	700.11	700.11	51.3	51.3	106.08	106.08	125.02	125.02	1134.25

180 × 180	4	217.8	2775	1421.74	1421.74	71.6	71.6	157.97	157.97	182.21	182.21	2224.31
	5	269.7	3436	1736.87	1736.87	71.1	71.1	192.99	192.99	224.02	224.02	2747.93
	6	320.5	4083	2036.52	2036.52	70.6	70.6	226.28	226.28	264.35	264.35	3259.23
	7	370.3	4718	2321.04	2321.04	70.1	70.1	257.89	257.89	303.24	303.24	3758.53
220×220	4	266.1	3415	2639.14	2639.14	87.9	87.9	239.92	239.92	275.47	275.47	4099.49
	5	332.5	4236	3238.02	3238.02	87.4	87.4	294.37	294.37	339.73	339.73	5076.22
	6	395.9	5043	3813.36	3813.36	87	87	346.67	346.67	402.18	402.18	6034.53
	7	458.3	5838	4365.55	4365.55	86.5	86.5	396.67	396.67	462.83	462.83	6974.82
250×250	5	379.6	4836	4805.01	4805.01	99.7	99.7	384.4	384.4	442.26	442.26	7494.83
	6	452.4	5763	5672	5672	99.2	99.2	453.76	453.76	524.45	524.45	8920.44
	7	524.2	6678	6508.73	6508.73	98.7	98.7	520.7	520.7	604.58	604.58	10322.7

Table A.11 (*contd*)

Table A.12 Sectional properties of rectangular hollow sections

$ \begin{array}{c c} & \text{(mm)} \\ \hline 50 \times 25 & 2 \\ 2.6 \\ 3.2 \\ 4 \end{array} $	2 21.5 5 27.1	(mm²) 274 346	$I_z (cm^4)$ 8.38 10.16	<i>I_y</i> (<i>cm</i> ⁴) 2.81	r_z (mm)	r _y (mm)	Z_z (cm ³)	Z_v (cm ³)	$\overline{Z_{pz} (cm^3)}$	Z_{pv} (cm ³)	(cm^4)
2.6 3.2	5 27.1			2.81	17.5			y . /	Δp_z (cm)	Σ_{py} (cm)	(cm)
3.2		346	10.16		17.5	10.1	3.35	2.25	4.26	2.62	6.79
	32.4		10.10	3.36	17.1	9.9	4.06	2.69	5.26	3.17	8.27
4		413	11.63	3.8	16.8	9.6	4.65	3.04	6.14	3.73	9.52
	38.8	495	13.13	4.23	16.3	9.2	5.25	3.38	7.13	4.29	10.86
60×40 2.6	37.3	476	22.76	12.09	21.9	15.9	7.59	6.05	9.36	7.07	25.59
2.9	41.2	525	24.74	13.11	21.7	15.8	8.25	6.56	10.25	7.73	28.02
3.6	49.8	635	28.9	15.23	21.3	15.5	9.63	7.62	12.16	9.15	33.3
4.5	60.2	767	33.31	17.44	20.8	15.1	11.1	8.72	14.32	10.75	39.34
66×33 2.6	36.9	470	25.15	8.43	23.1	13.4	7.62	5.11	9.68	5.94	20.75
2.9	40.7	519	27.33	9.12	22.9	13.3	8.28	5.53	10.59	6.49	22.65
3.6	49.3	628	31.87	10.52	22.5	12.9	9.66	6.37	12.56	7.66	26.71
4.5	59.5	758	36.64	11.93	22	12.5	11.1	7.23	14.77	8.94	31.21

80×40	2.6	45.5	580	46.58	15.74	28.4	16.5	11.65	7.87	14.64	9.01	38.5
	2.9	50.3	641	50.87	17.11	28.2	16.3	12.72	8.56	16.08	9.88	42.23
	3.2	55	701	54.94	18.41	28	16.2	13.74	9.21	17.46	10.72	45.83
	4	67.1	855	64.79	21.49	27.5	15.9	16.2	10.74	20.91	12.78	54.77
	4.8	78.5	1001	73.22	24.03	27.1	15.5	18.3	12.02	24.01	14.6	62.81
6×48	3.2	67.1	854	98.61	33.28	34	19.7	20.54	13.87	25.85	15.92	82.13
	4	82.2	1047	117.54	39.32	33.5	19.4	24.49	16.38	31.21	19.14	99.11
	4.8	96.6	1231	134.35	44.55	33	19	27.99	18.56	36.13	22.08	114.8
22×61	3.6	96.7	1232	232.61	78.83	43.4	25.3	38.13	25.84	47.71	29.43	193.91
	4.5	118.8	1514	278.94	93.78	42.9	24.9	45.73	30.75	57.85	35.56	235.39
	5.4	140.1	1785	320.83	107.03	42.4	24.5	52.6	35.09	67.29	41.22	274.29
20×60	3.2	85.1	1085	199.88	67.95	42.9	25	33.31	22.65	41.51	25.63	165.83
45×82	4.8	159.2	2028	555.16	228.5	52.3	33.6	76.57	55.73	94.93	63.93	534.27
	5.4	177.4	2260	610.85	250.59	52	33.3	84.26	61.12	105.07	70.66	592.7

	7	524.2	6678	8460.99	4540.76	112.6	82.5	564.06	454.09	677.72	513.93	9465.89
	6	452.4	5736	7370.23	3962.19	113.1	82.9	491.35	396.22	587.83	446.07	8186.02
300×200	5	379.6	4836	6241.05	3360.92	113.6	83.4	416.07	336.09	495.65	376.37	6882.77
	7	458.3	5838	5561.5	3159.5	97.6	73.6	427.81	351.06	514.35	400.12	6490.62
	6	395.9	5043	4855.87	2763.43	98.1	74	373.53	307.05	446.88	347.87	5619.5
	5	332.5	4236	4121.36	2349.53	98.6	74.5	317.03	261.06	377.44	294.02	4730.34
260×180	4	268.1	3415	3357.53	1917.45	99.2	74.9	258.27	213.05	306	238.53	3822.78
	7	370.3	4718	3094.76	1537.22	81	57.1	281.34	219.6	343.55	251.72	3366.29
	6	320.5	4083	2713.97	1351.66	81.5	57.5	246.72	193.09	299.46	219.65	2922.95
	5	269.7	3436	2313.36	1155.23	82.1	58	210.31	165.03	253.73	186.3	2467.63
220×140	4	217.8	2775	1892.55	947.64	82.6	58.4	172.05	135.38	206.35	151.68	2000.01
	5.4	208.8	2659	1012.47	381.74	61.7	37.9	117.73	82.99	146.55	94.86	918.1
172×92	4.8	187.1	2383	917.13	346.91	62	38.2	106.64	75.41	132.08	87.82	826.04
	5.4	177.4	2260	610.85	250.59	52	33.3	84.26	61.12	105.07	70.66	592.7
145×82	4.8	159.2	2028	555.16	228.5	52.3	33.6	76.57	55.73	94.93	63.93	534.27
120×60	3.2	85.1	1085	199.88	67.95	42.9	25	33.31	22.65	41.51	25.63	165.83
	5.4	140.1	1785	320.83	107.03	42.4	24.5	52.6	35.09	67.29	41.22	274.29
	4.5	118.8	1514	278.94	93.78	42.9	24.9	45.73	30.75	57.85	35.56	235.39
122×61	3.6	96.7	1232	232.61	78.83	43.4	25.3	38.13	25.84	47.71	29.43	193.91
	4.8	96.6	1231	134.35	44.55	33	19	27.99	18.56	36.13	22.08	114.8
	4	82.2	1047	117.54	39.32	33.5	19.4	24.49	16.38	31.21	19.14	99.11
96×48	3.2	67.1	854	98.61	33.28	34	19.7	20.54	13.87	25.85	15.92	82.13
		, 0.0	1001	, 5.22	2		10.0	10.0	12.02	=	1	02.01

Table A.13 Sectional properties of cold-formed lipped channel sections

Designation $h \times b \times c \times t$ (mm)	Weight (N/m)	Area A (mm²)	Centre of gravity C_v		ent of rtia	gyration		J		gyration modulus Z_o		Shear centre Z _o (mm)	Torsional constant, J (cm ⁴)	Warping constant C_w
			(mm)	I_z (cm ⁴)	I_{y} (cm ⁴)	r_z (mm)	r _y (mm)	$\overline{Z_z(cm^3)}$	Z_{y} (cm ³)	5		(cm^6)		
$30 \times 15 \times 10 \times 1.25$	6.79	86.6	6.51	1.05	0.292	11	5.81	0.697	0.344	16.6	0.004	1.03		
$30 \times 15 \times 10 \times 1.60$	8.32	106	6.49	1.22	0.337	10.7	5.64	0.815	0.395	16.8	0.009	1.14		
$40 \times 20 \times 10 \times 1.25$	8.76	112	7.9	2.62	0.657	15.3	7.67	1.31	0.543	20	0.006	3.06		
$40 \times 20 \times 10 \times 1.60$	10.8	138	7.87	3.14	0.773	15.1	7.48	1.57	0.637	20.1	0.011	3.47		
$50 \times 25 \times 10 \times 1.25$	10.7	137	9.24	5.23	1.22	19.6	9.46	2.09	0.776	23.3	0.007	7.59		
$50 \times 25 \times 10 \times 1.60$	13.3	170	9.2	6.36	1.46	19.3	9.26	2.54	0.923	23.3	0.014	8.78		

Table A.13 (contd)

$50 \times 25 \times 15 \times 2.00$	17.7	226	10.5	7.79	2.08	18.6	9.6	3.12	1.43	26.7	0.029	17.8
$50\times40\times10\times1.25$	13.7	174	15.8	7.46	3.81	20.7	14.8	2.98	1.57	37.8	0.009	23.5
$50 \times 40 \times 10 \times 1.60$	17.1	218	15.8	9.17	4.62	20.5	14.6	3.67	1.91	38	0.018	28
$50 \times 40 \times 15 \times 2.00$	22.4	286	17.3	11.2	6.45	19.8	15	4.5	2.85	42	0.037	55.1
$50 \times 40 \times 15 \times 3.15$	32.9	419	17.2	15.4	8.63	19.2	14.4	6.16	3.79	42.8	0.133	69.7
$60 \times 30 \times 10 \times 1.60$	15.9	202	10.5	11.2	2.44	23.6	11	3.73	1.25	26.5	0.017	19.4
$60 \times 30 \times 15 \times 2.00$	20.8	266	11.8	13.9	3.48	22.9	11.4	4.64	1.92	30	0.034	36.1
$60 \times 30 \times 20 \times 3.15$	32.9	419	13	19.4	5.34	21.5	11.3	6.46	3.14	33.5	0.133	72.6
$60 \times 30 \times 20 \times 4.00$	39.4	502	12.9	21.9	5.92	20.9	10.9	7.31	3.47	34	0.254	76.4
$60 \times 40 \times 15 \times 2.00$	24	306	16.3	17.3	6.95	23.8	15.1	5.76	2.93	40	0.04	72.2
$60 \times 40 \times 20 \times 3.15$	37.8	482	17.6	24.5	10.8	22.6	15	8.16	4.83	44	0.154	148
$60\times40\times20\times4.00$	45.7	582	17.5	28.2	12.3	22	14.5	9.4	5.46	44.6	0.296	162
$70 \times 25 \times 10 \times 1.60$	15.9	202	7.87	14.2	1.65	26.6	9.03	4.07	0.962	20.5	0.017	16.9
$70 \times 25 \times 15 \times 2.00$	20.8	266	9.04	17.9	2.38	26	9.48	5.12	1.49	23.5	0.034	30
$70 \times 25 \times 20 \times 3.15$	32.9	419	10	25.2	3.65	24.6	9.34	7.21	2.44	26.4	0.133	55.4
$70 \times 30 \times 15 \times 2.00$	22.4	286	11.1	20.2	3.7	26.6	11.4	5.78	1.95	28.4	0.037	46.6
$70 \times 30 \times 20 \times 3.15$	35.3	450	12.2	28.7	5.73	25.3	11.3	8.21	3.21	31.7	0.144	88.3
$70 \times 40 \times 15 \times 2.00$	25.6	326	15.3	24.9	7.39	27.6	15.1	7.1	2.99	38.2	0.043	93.2
$70 \times 40 \times 20 \times 3.15$	40.3	513	16.6	35.8	11.6	26.4	15	10.2	4.95	42	0.164	181
$70 \times 40 \times 25 \times 4.00$	52	662	17.8	42.2	14.9	25.2	15	12.1	6.73	45.5	0.339	303
$80\times40\times10\times1.60$	20.9	266	13.1	27	5.51	31.9	14.4	6.76	2.04	32.8	0.022	70.6
$80 \times 40 \times 20 \times 3.15$	42.8	545	15.7	49.7	12.2	30.2	15	12.4	5.05	40.2	0.175	221
$80 \times 40 \times 25 \times 4.00$	55.1	702	16.9	59.3	15.9	29.1	15	14.8	6.88	43.6	0.36	354
$80\times50\times10\times1.60$	23.4	298	17.2	32	9.59	32.8	17.9	7.99	2.92	42.1	0.025	123
$80 \times 50 \times 15 \times 2.00$	30.3	386	18.8	40.1	13.3	32.3	18.6	10	4.27	46.1	0.05	203
$80 \times 50 \times 20 \times 3.15$	47.7	608	20.1	56	21.1	31.2	18.6	14.7	7.07	50.2	0.196	382

Table A.13 (*contd*)

$80 \times 50 \times 25 \times 4.00$	61.4	782	21.5	70.8	27.4	30.1	18.7	17.7	9.61	54	0.403	616
$90 \times 40 \times 10 \times 1.60$	22.1	282	12.4	35.6	5.74	35.5	14.3	7.9	2.07	31.5	0.024	90.8
$90 \times 40 \times 15 \times 2.00$	28.7	365	13.8	45	8.12	35.1	14.9	9.99	3.09	35	0.048	148
$90 \times 40 \times 20 \times 3.15$	45.2	576	15	66.3	12.8	33.9	14.9	14.72	5.13	38.5	0.185	267
$90 \times 50 \times 10 \times 1.60$	24.6	314	16.4	41.8	10	36.5	17.8	9.29	2.97	40.6	0.026	158
$90 \times 50 \times 15 \times 2.00$	31.8	406	17.9	52.7	13.9	36	18.5	11.7	4.34	44.4	0.053	253
$90 \times 50 \times 20 \times 3.15$	50.2	639	19.2	78.1	22.1	35	18.6	17.4	7.2	48.4	0.206	463
$100 \times 40 \times 10 \times 1.60$	23.4	298	11.8	45.5	5.94	39.1	14.1	9.09	2.1	30.2	0.025	114
$100 \times 40 \times 15 \times 2.00$	30.3	386	13.1	57.7	8.43	38.7	14.8	11.5	3.13	33.6	0.05	182
$100 \times 40 \times 25 \times 3.15$	50.2	639	15.5	88.1	15.1	37.1	15.4	17.6	6.17	39.9	0.206	438
$100 \times 50 \times 15 \times 2.00$	33.4	426	17.1	67.3	14.5	39.8	18.4	13.5	4.4	42.9	0.056	312
$100 \times 50 \times 20 \times 3.15$	52.6	671	18.4	101	23.1	38.7	18.6	20.1	7.3	46.6	0.216	557
$100 \times 50 \times 25 \times 4.00$	67.7	862	19.7	123	30.2	37.7	18.7	24.5	9.95	50.2	0.446	847
$100 \times 25 \times 25 \times 4.00$	52	662	9.33	76.5	5.43	34	9.05	15.3	3.46	24.6	0.339	144
$100 \times 60 \times 15 \times 2.00$	36.6	466	21.3	76.9	22.6	40.6	22	15.4	5.84	52.3	0.061	485
$100 \times 60 \times 20 \times 3.15$	57.6	734	22.7	115	36.1	39.6	22.3	23.1	9.66	56.4	0.237	872
$100 \times 60 \times 25 \times 4.00$	74	942	24.1	141	47.1	38.7	22.4	28.2	13.1	60.3	0.488	1330
$100 \times 60 \times 25 \times 5.00$	89.1	1130	23.9	164	53.9	38	21.8	32.9	15	60.7	0.912	1460
$120 \times 50 \times 15 \times 2.00$	39.9	467	15.7	103	15.4	47	18.2	17.2	4.5	40.4	0.061	453
$120 \times 50 \times 20 \times 3.15$	57.6	734	17	155	24.7	46	18.4	25.9	7.48	43.6	0.237	786
$120 \times 50 \times 25 \times 4.00$	74	942	18.2	192	32.5	45.1	18.6	31.9	10.2	46.9	0.488	1150
$120 \times 50 \times 25 \times 5.00$	89.1	1130	18.1	223	36.8	44.3	18	39.2	11.5	47.1	0.912	1240
$120 \times 60 \times 20 \times 3.15$	62.5	797	21	177	38.6	47.1	22	29.5	9.91	53	0.258	1230
$120 \times 60 \times 25 \times 4.00$	80.2	1020	22.3	216	50.7	46.2	22.3	36.4	13.5	56.7	0.531	1800
$120 \times 60 \times 25 \times 5.00$	96.9	1240	22.2	256	58.2	45.5	21.7	42.7	15.4	57	0.995	1990
$140 \times 60 \times 20 \times 3.15$	67.5	860	19.6	255	40.8	54.4	21.8	36.4	10.1	51	0.279	1670

Table A.13 (*contd*)

` /												
$\overline{140 \times 60 \times 25 \times 4.00}$	86.5	1100	20.9	316	53.8	53.6	22.1	45.2	13.7	53.5	0.574	2390
$140 \times 60 \times 25 \times 5.00$	106	1330	20.7	373	61.8	52.8	21.5	53.2	15.7	53.4	1.08	2640
$150 \times 50 \times 20 \times 3.15$	65	828	15.2	266	26.7	56.6	18	35.4	7.67	39.7	0.268	1240
$150 \times 50 \times 25 \times 4.00$	83.4	1060	16.3	331	35.3	55.8	18.2	44.1	10.5	42.7	0.552	1750
$150 \times 50 \times 25 \times 5.00$	102	1280	16.2	388	40.1	55	17.7	51.8	11.9	42.7	1.04	1900
$180 \times 50 \times 20 \times 3.15$	72.4	923	13.8	413	28.3	66.9	17.5	45.9	7.82	36.6	0.38	1840
$180 \times 50 \times 25 \times 4.00$	92.8	1180	14.9	518	37.5	66.2	17.8	57.6	10.7	33.9	0.616	2540
$180 \times 50 \times 25 \times 5.00$	113	1430	14.8	611	42.6	65.3	17.2	67.9	12.1	39.2	1.16	2790
$180 \times 80 \times 20 \times 3.15$	87.3	1110	24.8	561	90.7	71	28.6	62.4	16.4	62.9	0.362	5790
$180 \times 80 \times 25 \times 4.00$	112	1420	26.1	704	119.4	70.4	28.9	78.2	22.2	66.5	0.744	7990
$180 \times 80 \times 25 \times 5.00$	136	1730	26	841	139.4	69.6	28.4	93.4	25.8	66.6	1.14	9090
$200 \times 50 \times 20 \times 3.15$	77.4	986	13	535	29.2	73.6	17.2	53.5	7.89	34.8	0.321	2320
$200 \times 50 \times 25 \times 4.00$	99.1	1260	14.1	672	38.8	73	17.5	67.2	10.8	37.4	0.659	3190
$200 \times 50 \times 25 \times 5.00$	120	1530	14	795	44.1	72	16.9	79.5	12.2	37.2	1.24	3510
$200 \times 80 \times 20 \times 3.15$	92.2	1170	23.5	718	93.9	78.2	28.3	71.8	16.6	60.4	0.383	7230
$200 \times 80 \times 25 \times 4.00$	118	1500	24.8	903	124	77.5	28.7	90.3	22.4	63.9	0.787	9970
$200 \times 80 \times 25 \times 5.00$	144	1830	24.7	1080	145	76.7	28.1	108	26.1	63.8	1.49	11900
$250 \times 50 \times 20 \times 3.15$	89.7	1140	11.4	927	31	90	16.5	74.1	8.03	31	0.373	3850
$250 \times 50 \times 25 \times 4.00$	115	1460	12.4	1170	41.3	89.5	16.8	93.7	11	33.3	0.766	5230
$250 \times 50 \times 25 \times 5.00$	140	1780	12.4	1390	47	88.4	16.2	112	12	33	1.45	5830
$250 \times 80 \times 20 \times 3.15$	105	1330	20.9	1210	101	95.5	27.5	97.2	17	55.1	0.435	11900
$250 \times 80 \times 25 \times 4.00$	134	1700	22.1	1530	133	94.9	28	123	23	58.2	0.894	16200
$250 \times 80 \times 25 \times 5.00$	164	2080	22	1840	156	94.1	27.3	148	26.8	58	1.7	18600

Table A.14 Sectional properties of cold-formed zed sections

Designation Dimensions $h \times b \times c \times t$	Weight (N/m)	Area of section (mm²)	Mome inerti	5	Radius of gyration min-r,	Angle $tan \ heta$		Sectio modul			Torsional constant J	Warping constant C_w
(mm)			I_Z (cm ⁴)	I_v (cm ⁴)	(mm)		Z_z (cm ³)	Z_v (cm ³)	Z_u (cm ³)	Z_v (cm ³)	(cm^4)	(cm^6)
$80 \times 40 \times 20 \times 1.60$	23.4	298	29.1	14.2	12.4	0.627	7.27	3.63	7.31	2.02	0.025	172
$80\times40\times20\times2.00$	28.7	366	35.1	17	12.3	0.623	8.77	4.35	8.89	2.4	0.048	206
$80 \times 40 \times 20 \times 2.30$	32.5	414	39.2	18.8	12.1	0.619	9.81	4.84	10	2.66	0.072	230
$80 \times 40 \times 20 \times 2.55$	35.6	454	42.5	20.2	12	0.616	10.6	5.22	10.9	2.86	0.096	248
$80 \times 40 \times 20 \times 3.15$	42.8	545	49.7	23.2	11.7	0.61	12.4	6.03	12.8	3.28	0.175	288
$85 \times 40 \times 20 \times 1.60$	24	306	33.6	14.2	12.5	0.572	7.9	3.63	7.87	2.08	0.026	195
$85 \times 40 \times 20 \times 2.00$	29.5	376	40.5	17	12.4	0.568	9.54	4.35	9.58	2.48	0.049	234
$85 \times 40 \times 20 \times 2.30$	33.4	426	45.4	18.8	12.2	0.565	10.7	4.84	10.8	2.76	0.074	260

Table A.14 (*contd*)

$85 \times 40 \times 20 \times 2.55$	36.6	467	49.2	20.2	12.1	0.562	11.6	5.22	11.8	2.96	0.099	281
$85 \times 40 \times 20 \times 3.15$	44	560	57.6	23.2	11.8	0.555	13.6	6.03	13.9	3.4	0.18	326
$90 \times 40 \times 20 \times 1.60$	24.6	314	38.5	14.2	12.6	0.526	8.55	3.36	8.47	2.15	0.026	219
$90 \times 40 \times 20 \times 2.00$	30.3	386	46.5	17	12.4	0.521	10.3	4.35	10.3	2.56	0.059	263
$90 \times 40 \times 20 \times 2.30$	34.3	438	52.1	18.8	12.3	0.518	11.6	4.84	11.6	2.84	0.076	293
$90 \times 40 \times 20 \times 2.55$	37.6	480	56.5	20.2	12.2	0.515	12.6	5.22	12.7	3.06	0.102	317
$90 \times 40 \times 20 \times 3.15$	45.2	576	66.3	23.2	11.9	0.509	14.7	6.03	15	3.51	0.185	368
$95 \times 40 \times 20 \times 1.60$	25.3	322	43.7	14.2	12.6	0.485	9.2	3.63	9.08	2.2	0.027	245
$95 \times 40 \times 20 \times 2.00$	31.1	396	52.9	17	12.5	0.481	11.1	4.35	11.1	2.63	0.052	294
$95 \times 40 \times 20 \times 2.30$	35.2	449	59.4	18.8	12.3	0.478	12.5	4.84	12.5	2.92	0.078	328
$95 \times 40 \times 20 \times 2.55$	38.6	492	64.4	20.2	12.2	0.475	13.6	5.22	13.6	3.14	0.104	355
$95 \times 40 \times 20 \times 3.15$	46.5	592	75.6	23.2	11.9	0.468	15.9	6.03	16.1	3.61	0.19	412
$100 \times 40 \times 20 \times 1.60$	25.9	330	49.4	14.2	12.7	0.45	9.88	3.63	9.7	2.26	0.028	272
$100 \times 40 \times 20 \times 2.00$	31.8	406	59.8	17	12.5	0.446	12	4.35	11.9	2.7	0.053	327
$100 \times 40 \times 20 \times 2.30$	36.2	460	67.2	18.8	12.4	0.443	13.4	4.84	13.4	2.99	0.08	365
$100 \times 40 \times 20 \times 2.55$	39.6	505	73	20.2	12.2	0.44	14.6	5.22	14.6	3.22	0.107	395
$100 \times 40 \times 20 \times 3.15$	47.7	608	85.7	23.2	12	0.434	17.1	6.03	17.3	3.71	0.196	459
$105 \times 45 \times 20 \times 1.60$	27.8	354	59.8	19.2	14	0.482	11.4	4.34	11.1	2.67	0.03	393
$105 \times 45 \times 20 \times 2.00$	34.2	436	72.6	23	13.8	0.478	13.8	5.22	13.6	3.2	0.057	474
$105 \times 45 \times 20 \times 2.30$	38.9	495	81.6	25.5	13.6	0.475	15.5	5.82	15.4	3.56	0.086	530
$105 \times 45 \times 20 \times 2.55$	42.6	543	88.8	27.5	13.5	0.472	16.9	6.29	16.8	3.84	0.115	574
$105 \times 45 \times 20 \times 3.15$	51.4	655	105	31.7	13.2	0.466	20	7.31	20	4.44	0.211	671
$110 \times 45 \times 20 \times 1.60$	28.4	362	66.7	19.2	14	0.45	12.1	4.34	11.6	2.73	0.03	433
$110 \times 45 \times 20 \times 2.00$	35	446	81.1	23	13.8	0.446	14.7	5.22	14.5	3.27	0.058	522
$110 \times 45 \times 20 \times 2.30$	39.8	506	91.2	25.5	13.7	0.443	16.6	5.82	16.3	3.64	0.088	585
$110 \times 45 \times 20 \times 2.55$	43.6	556	99.3	27.5	13.6	0.441	18	6.29	17.9	3.93	0.118	634

Table A.14 (contd)

$110 \times 45 \times 20 \times 3.15$	52.6	671	117	31.7	13.3	0.435	21.3	7.31	21.3	4.54	0.216	742
$115 \times 45 \times 20 \times 1.60$	29	370	74.1	19.2	14	0.422	12.9	4.34	12.6	2.78	0.031	476
$115 \times 45 \times 20 \times 2.00$	35.8	456	90.1	23.8	13.8	0.418	15.7	5.22	15.4	3.33	0.06	574
$115 \times 45 \times 20 \times 2.30$	40.7	518	101	25.5	13.7	0.415	17.6	5.82	17.4	3.71	0.09	643
$115 \times 45 \times 20 \times 2.55$	44.6	569	110	27.5	13.6	0.413	19.2	6.3	19	4.01	0.121	697
$115 \times 45 \times 20 \times 3.15$	53.9	686	131	31.7	13.3	0.407	22.7	7.31	22.6	4.63	0.222	816
$120 \times 45 \times 20 \times 1.60$	29.7	378	82	19.2	14	0.397	13.7	4.34	13.3	2.83	0.032	521
$120 \times 45 \times 20 \times 2.00$	36.6	466	99.7	23	13.9	0.393	16.6	5.22	16.3	3.39	0.061	629
$120 \times 45 \times 20 \times 2.30$	41.6	530	112	25.5	13.7	0.39	18.7	5.82	18.4	3.78	0.092	704
$120 \times 45 \times 20 \times 2.55$	45.6	582	122	27.5	13.6	0.388	20.4	6.3	20.1	4.08	0.124	764
$120 \times 45 \times 20 \times 3.15$	55.1	702	145	31.7	13.3	0.382	24.1	7.31	24	4.72	0.227	895
$125 \times 45 \times 20 \times 1.60$	30.3	386	90.3	19.2	14.1	0.374	14.4	4.34	14.1	2.88	0.033	568
$125 \times 45 \times 20 \times 2.00$	37.3	476	110	23	13.9	0.37	17.6	5.22	17.2	3.45	0.062	686
$125 \times 45 \times 20 \times 2.30$	42.5	541	124	25.5	13.7	0.368	19.8	5.82	19.5	3.85	0.094	769
$125 \times 45 \times 20 \times 2.55$	46.6	594	135	27.5	13.6	0.365	21.6	6.3	21.3	4.15	0.126	834
$125 \times 45 \times 20 \times 3.15$	56.4	718	160	31.7	13.3	0.36	25.6	7.31	25.4	4.8	0.232	977
$130 \times 45 \times 20 \times 1.60$	30.9	394	99.1	19.2	14.1	0.353	15.2	4.34	14.9	2.92	0.033	618
$130 \times 45 \times 20 \times 2.00$	38.1	486	121	23	13.9	0.35	18.6	5.22	18.2	3.5	0.064	746
$130 \times 45 \times 20 \times 2.30$	43.4	552	136	25.5	13.7	0.347	20.9	5.82	20.6	3.91	0.096	836
$130 \times 45 \times 20 \times 2.55$	47.6	607	148	27.5	13.6	0.345	22.8	6.3	22.5	4.22	0.129	908
$130 \times 45 \times 20 \times 3.15$	57.6	734	176	31.7	13.3	0.34	27	7.31	26.9	4.88	0.237	1060
$140\times60\times20\times1.60$	36	458	141	40.2	17.9	0.449	20.2	6.74	19.3	4.38	0.039	1400
$140 \times 60 \times 20 \times 2.00$	44.4	566	173	48.5	17.7	0.445	24.7	8.22	23.7	5.28	0.074	1700
$140 \times 60 \times 20 \times 2.30$	50.6	644	195	54.3	17.6	0.443	27.9	9.22	26.9	5.91	0.112	1910
$140\times60\times20\times2.55$	55.7	709	213	58.8	17.4	0.441	30.5	10	29.5	6.41	0.151	2100
$140 \times 60 \times 20 \times 3.15$	67.5	860	255	68.7	17.1	0.435	36.4	11.8	35.4	7.48	0.279	2500

Table A.14 (*contd*)

$150 \times 60 \times 20 \times 1.60$	37.2	474	166	40.2	18	0.406	22.1	6.79	21.2	4.5	0.04	1600
$150 \times 60 \times 20 \times 2.00$	46	586	203	48.5	17.8	0.403	27	8.22	26	5.43	0.077	1970
$150 \times 60 \times 20 \times 2.30$	52.4	668	229	54.3	17.6	0.401	30.6	9.22	29.5	6.08	0.116	2220
$150 \times 60 \times 20 \times 2.55$	57.7	734	251	58.8	17.5	0.399	33.5	10	32.4	6.59	0.157	2420
$150 \times 60 \times 20 \times 3.15$	70	891	300	68.7	17.2	0.394	40	11.8	38.9	7.7	0.289	2870
$160\times60\times20\times1.60$	38.5	490	193	40.2	18	0.37	24.1	6.79	23.1	4.6	0.042	1870
$160 \times 60 \times 20 \times 2.00$	47.5	606	236	48.5	17.8	0.367	29.5	8.22	28.4	5.56	0.08	2270
$160 \times 60 \times 20 \times 2.30$	54.2	690	267	54.3	17.7	0.365	33.4	9.22	32.2	6.22	0.12	2560
$160 \times 60 \times 20 \times 2.55$	59.7	760	292	58.8	17.6	0.363	36.5	10	35.4	6.75	0.162	2790
$160 \times 60 \times 20 \times 3.15$	72.4	923	349	68.7	17.2	0.358	43.7	11.8	42.6	7.9	0.3	3310
$170\times60\times20\times1.60$	39.7	506	222	40.2	18.1	0.339	26.1	6.79	25.1	4.7	0.043	2130
$170 \times 60 \times 20 \times 2.00$	49.1	626	272	48.5	17.8	0.337	32	8.22	30.9	5.67	0.082	2600
$170 \times 60 \times 20 \times 2.30$	56	714	308	54.3	17.7	0.334	36.3	9.22	35.1	6.36	0.124	2920
$170 \times 60 \times 20 \times 2.55$	61.7	786	337	58.8	17.5	0.332	39.7	10	38.5	6.9	0.168	3190
$170 \times 60 \times 20 \times 3.15$	74.9	954	404	68.7	17.2	0.328	47.5	11.8	46.3	8.07	0.31	3780
$180 \times 60 \times 20 \times 1.60$	41	522	254	40.2	18	0.313	28.2	6.79	27.2	4.78	0.044	2430
$180 \times 60 \times 20 \times 2.00$	50.7	646	311	48.5	17.8	0.31	34.6	8.22	33.5	5.78	0.085	2940
$180 \times 60 \times 20 \times 2.30$	57.8	736	353	54.3	17.7	0.308	39.2	9.22	38	6.48	0.128	3320
$180 \times 60 \times 20 \times 2.55$	63.7	811	386	58.8	17.6	0.306	42.9	10	41.7	7.03	0.174	3620
$180 \times 60 \times 20 \times 3.15$	77.4	986	463	68.7	17.2	0.302	51.4	11.8	50.3	8.24	0.321	4290
$190 \times 60 \times 20 \times 1.60$	42.2	538	289	40.2	18	0.289	30.4	6.79	29.3	4.84	0.046	2720
$190 \times 60 \times 20 \times 2.00$	52.2	667	354	48.5	17.8	0.287	37.3	8.22	36.1	5.88	0.088	3310
$190 \times 60 \times 20 \times 2.30$	59.6	760	401	55.3	17.6	0.285	42.2	9.22	41	6.59	0.132	3740
$190 \times 60 \times 20 \times 2.55$	65.7	837	439	55.3	17.5	0.283	46.2	10	45	7.15	0.179	4070
$190 \times 60 \times 20 \times 3.15$	79.8	1017	527	68.7	17.2	0.279	55.4	11.8	54.3	8.38	0.331	4840
$200 \times 60 \times 20 \times 1.60$	43.5	554	326	40.2	18	0.269	32.6	6.79	31.5	4.94	0.047	3040

Table A.14 (*contd*)

$200 \times 60 \times 20 \times 2.00$	53.8	686	400	48.5	17.8	0.266	40	8.22	38.8	5.97	0.09	3710
$200 \times 60 \times 20 \times 2.30$	61.4	780	453	55.3	17.6	0.265	45.3	9.22	44.1	6.7	0.136	4180
$200 \times 60 \times 20 \times 2.55$	67.7	862	496	58.8	17.5	0.263	49.6	10	48.5	7.27	0.184	4560
$200 \times 60 \times 20 \times 3.15$	82.3	1049	596	68.7	17.2	0.259	59.6	11.8	58.4	8.52	0.341	5420
$210 \times 60 \times 20 \times 1.60$	44.7	570	366	40.2	17.9	0.251	34.9	6.79	33.8	5.01	0.048	3390
$210 \times 60 \times 20 \times 2.00$	55.4	706	449	48.5	17.7	0.248	42.8	8.22	41.6	6.06	0.093	4130
$210 \times 60 \times 20 \times 2.30$	63.2	805	509	54.3	17.6	0.247	48.5	9.22	47.3	6.79	0.14	4650
$210 \times 60 \times 20 \times 2.55$	69.7	888	558	58.8	17.4	0.245	53.1	10	52	7.37	0.19	5080
$210 \times 60 \times 20 \times 3.15$	88.4	1080	667	68.7	17.1	0.241	63.8	11.8	62.7	8.65	0.352	6030
$220 \times 60 \times 20 \times 1.60$	46	586	409	40.2	17.9	0.235	37.2	6.79	36.1	5.07	0.05	3750
$220 \times 60 \times 20 \times 2.00$	57	726	502	48.5	17.6	0.232	45.6	8.22	44.5	6.13	0.096	4570
$220 \times 60 \times 20 \times 2.30$	65	828	569	55.3	17.5	0.231	51.8	9.22	50.6	6.88	0.145	5160
$220 \times 60 \times 20 \times 2.55$	71.7	913	624	58.8	17.4	0.229	56.7	10	55.6	7.47	0.196	5620
$220 \times 60 \times 20 \times 3.15$	87.3	1110	750	68.8	17	0.226	68.1	11.8	67.1	8.76	0.362	6680
$230 \times 75 \times 20 \times 1.60$	51	650	517	72.1	22	0.29	45	9.72	43.1	7.01	0.055	6990
$230 \times 75 \times 20 \times 2.00$	63.2	806	636	87.5	21.8	0.287	55.3	11.8	53.2	8.52	0.106	8550
$230 \times 75 \times 20 \times 2.30$	72.3	920	723	98.3	21.6	0.285	62.9	13.3	60.5	9.58	0.161	9670
$230 \times 75 \times 20 \times 2.55$	79.7	1020	793	107	21.4	0.284	69	14.5	66.6	10.4	0.218	10600
$230 \times 75 \times 20 \times 3.15$	97.2	1240	956	126	21.1	0.28	83.2	17.2	80.6	12.3	0.404	12600
$240 \times 75 \times 20 \times 1.60$	52.3	666	512	72.1	21.9	0.272	47.6	9.72	45.7	7.1	0.056	7680
$240 \times 75 \times 20 \times 2.00$	64.8	826	703	87.5	21.7	0.27	58.6	11.8	56.5	8.62	0.109	9390
$240 \times 75 \times 20 \times 2.30$	74.1	944	799	98.3	21.6	0.269	66.6	13.3	64.3	9.7	0.165	10600
$240 \times 75 \times 20 \times 2.55$	81.7	1040	878	107	21.4	0.267	73.1	14.5	70.7	10.6	0.223	11600
$240 \times 75 \times 20 \times 3.15$	99.6	1270	1060	126	21.1	0.264	88.2	17.2	85.7	12.5	0.414	13900
$250 \times 75 \times 20 \times 1.60$	53.5	682	629	72.1	21.9	0.257	50.3	9.72	48.5	7.17	0.058	8400
$250 \times 75 \times 20 \times 2.00$	66.4	846	775	87.5	21.7	0.255	62	11.8	59.8	8.71	0.112	10300

$250 \times 75 \times 20 \times 2.30$ 75.9 966 881 98.3 21.5 0.253 70.5 13.3 68.2 9.81 0.169 11600 83.7 75 $250 \times 75 \times 20 \times 2.55$ 1070 967 107 21.4 0.252 77.4 14.5 10.7 0.229 12700 21 $250 \times 75 \times 20 \times 3.15$ 102 1300 1170 126 0.249 93.3 17.2 90.8 12.6 0.428 15200 54.8 72.1 21.8 9.72 51.3 7.24 9160 $260 \times 75 \times 20 \times 1.60$ 698 697 0.234 53.1 0.059 $260 \times 75 \times 20 \times 2.00$ 68 866 850 87.5 21.6 0.241 65.4 11.8 63.3 8.8 0.114 11200 $260 \times 75 \times 20 \times 2.30$ 77.7 990 967 98.3 21.4 0.279 74.4 13.3 72.1 9.91 0.173 12700 $260 \times 75 \times 20 \times 2.55$ 85.7 1090 1060 107 21.3 0.2338 81.7 14.5 79.3 10.8 0.234 13900 21 96.1 12.7 $260 \times 75 \times 20 \times 3.15$ 105 1330 1280 126 0.235 98.6 17.2 0.435 16600 $270 \times 75 \times 20 \times 1.60$ 56 714 755 72.1 21.8 0.23 55.9 9.72 54.1 7.31 0.061 9960 $270 \times 75 \times 20 \times 2.00$ 69.5 886 930 87.5 21.6 0.228 68.9 11.8 66.8 8.89 0.117 12200 $270 \times 75 \times 20 \times 2.30$ 79.5 1010 1060 98.3 21.4 0.227 78.3 13.3 76.1 10 0.177 13800 $270 \times 75 \times 20 \times 2.55$ 87.7 1120 1160 107 21.2 0.225 86.1 14.5 83.7 10.9 0.24 15100 107 20.9 $270 \times 75 \times 20 \times 3.15$ 1360 1400 126 0.222 104 17.2 102 12.9 0.446 18100 57 $280 \times 75 \times 20 \times 1.60$ 57.3 730 823 72.1 21.7 0.219 58.8 9.72 7.38 0.062 10800 $280 \times 75 \times 20 \times 2.00$ 71.1 906 1010 87.5 21.5 0.217 72.5 11.8 70.4 8.97 0.12 13200 $280 \times 75 \times 20 \times 2.30$ 81.3 1040 1150 98.3 21.3 0.215 82.4 13.3 80.2 10.1 0.181 15000 21.2 $280 \times 75 \times 20 \times 2.55$ 89.7 1140 1270 106.9 0.214 90.5 14.5 88.3 11 0.245 16400 20.8 107 13 $280 \times 75 \times 20 \times 3.15$ 110 1400 1530 126 0.211 109 17.2 0.456 19600 $290 \times 75 \times 20 \times 1.60$ 58.6 746 895 72.1 21.6 0.208 61.7 9.72 59.2 7.44 0.063 11700 $290 \times 75 \times 20 \times 2.00$ 72.7 926 1100 87.5 21.4 0.206 76.1 11.8 74 9.04 0.122 14300 $290 \times 75 \times 20 \times 2.30$ 83.7 1060 1250 98.3 21.3 0.205 86.5 13.3 84.4 10.2 0.185 16200 17700 $290 \times 75 \times 20 \times 2.55$ 91.7 1170 1380 107 21.1 0.203 95.1 14.5 92.9 11.1 0.251 $290 \times 75 \times 20 \times 3.15$ 112 1430 1670 126 20.8 0.2 115 17.2 113 13.1 0.466 21200 7.5 $300 \times 75 \times 20 \times 1.60$ 59.8 762 970 72.1 21 0.198 64.7 9.72 62.9 0.065 12600 $300 \times 75 \times 20 \times 2.00$ 74.2 946 1200 87.5 21.4 0.196 79.81 11.6 77.8 9.11 0.125 15400 $300 \times 75 \times 20 \times 2.30$ 84.9 1080 1360 98.3 21.2 0.195 90.8 13.3 88.7 10.3 0.189 17400 21 $300 \times 75 \times 20 \times 2.55$ 93.7 1190 1500 107 0.194 99.7 14.5 97.6 11.2 0.256 19100 $300 \times 75 \times 20 \times 3.15$ 115 1460 1810 126 20.7 0.191 121 17.2 118 13.2 0.477 22800

Table A.14 (contd)

Table A.15 Approximate radius of gyration

$z - \frac{\gamma}{h} r_z = 0.29h$ $r_y = 0.29b$	$ \begin{array}{c c} Y \\ \hline & \uparrow \\ & \uparrow \\ & h \\ \hline & \downarrow \\ & \downarrow $	$\begin{array}{c c} \uparrow & r_z = 0.31h \end{array}$
$r_z = 0.40h$ $r_y = \text{mean } h$	$r_y = \text{same as}$ for 2 L	$ \begin{array}{c c} & \uparrow \\ & h \\ & \downarrow \\$
$- \frac{1}{h} r_z = 0.25h$	$ \begin{array}{c c} & \longrightarrow & \longrightarrow \\ & \longrightarrow & \uparrow \\ & \longrightarrow & \uparrow \\ & \longrightarrow & \uparrow \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow & \uparrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow$	$ \begin{array}{c c} & \xrightarrow{b} & \xrightarrow{h} & r_z = 0.40h \\ & & r_y = 0.21b \end{array} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\uparrow r_z = 0.36h$ $\uparrow r_y = 0.45b$	$ \begin{array}{c c} $
$ \begin{array}{c cccc} & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & \\$	$ \begin{array}{c c} + b + \\ \hline $	$ \begin{array}{c c} & \longrightarrow \\ & \uparrow \\ & h \\ & \downarrow \\ & r_y = 0.435h \\ & \downarrow \\ &$
$r_z = 0.29h$ $r_y = 0.32b$ $r_y = 0.18 \frac{h+b}{2}$	$ \begin{array}{c c} $	$ \begin{array}{c c} & \longrightarrow & \longrightarrow \\ & \uparrow & \\ & h & \\ & \uparrow & \\ $
$ \leftarrow b \rightarrow \downarrow r_z = 0.31h$ $ \leftarrow h r_y = 0.21b$ $ \leftarrow \uparrow = b(0.21 + 0.02s)$	$ \begin{array}{c c} & \downarrow & \downarrow \\ \hline & \downarrow & \downarrow$	$ \begin{array}{cccc} & \uparrow & \\ & \uparrow & \\ & h & \\ & \uparrow & \\ $
$ \begin{array}{c c} & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \\ & s \rightarrow \downarrow & \uparrow & r_z = 0.32h \\ & f_y = 0.21b \\ & = b(0.19 + 0.02s) \end{array} $	$ \begin{array}{c c} \hline \hline $	$ \begin{array}{c c} & \downarrow \\ & h \\ & \downarrow \\ & b \\ & \uparrow \end{array} $ $ \begin{array}{c} & r_z = 0.285h \\ & r_y = 0.37b \end{array} $
$ \begin{array}{c c} & b \longrightarrow \downarrow \\ \hline & h & r_z = 0.29h \\ \hline & s \longrightarrow \downarrow \downarrow \downarrow \longrightarrow \uparrow & r_y = 0.24b \\ & = b(0.23 + 0.02s) \end{array} $		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*}J.A.L. Waddell. Bridge Engineering, Vol. 1. New York: John Wiley & Sons. Inc., 1916, p. 504.