

Cálculo EC

Licenciatura em Ciências da Computação

Universidade do Minho Escola de Ciências

Departamento de Matemática e Aplicações

Teste 2 :: 9 de janeiro de 2019

Nom	ne Número		
	As respostas aos grupos I a III são dadas na folha do enunciado. o Grupo I cada resposta certa vale 0,75 valores e cada resposta errada -0,25 No Grupo II cada resposta certa vale 1 valor e cada resposta errada -0,25 va		s.
	1		
3 va	lores] Em cada uma das questões seguintes, indique se a afirmação é verdadeira o	ou falsa V	і. Г
a)	Se $f:[0,1]\longrightarrow \mathbb{R}$ é uma função derivável então a sua derivada é uma função contínua.	\circ	\circ
<i>b)</i>	Se $F:[0,1]\longrightarrow \mathbb{R}$ é uma primitiva da função $f:[0,1]\longrightarrow \mathbb{R}$ então F é uma função contínua.	\circ	\circ
c)	Seja $f:[0,1]\longrightarrow \mathbb{R}$ uma função é integrável.		
	Se $\int_0^{\frac{1}{2}} f(x) dx = 1$ e $\int_{\frac{1}{2}}^1 f(x) dx = -1$ então f tem pelo menos um zero.	0	\circ
d)	Se $f:[0,1]\longrightarrow \mathbb{R}$ é uma função primitivável então é uma função contínua.	\bigcirc	\circ
	11		

[2 valores] Em cada uma das alíneas seguintes, identifique a afirmação verdadeira.

- a) O integral $\int \frac{8}{x(x^2-4)\,dx}$ é igual a: $\bigcirc \int \frac{8}{x}\,dx \int \frac{1}{x^2-4}\,dx; \qquad \bigcirc \int \frac{1}{x+2}\,dx + \int \frac{1}{x-2}\,dx + \int \frac{1}{x}\,dx;$ $\bigcirc \int \frac{1}{x+2}\,dx + \int \frac{1}{x-2}\,dx \int \frac{2}{x}\,dx; \qquad \bigcirc \quad \text{nenhuma das anteriores.}$
- b) Considere o integral $\int_1^4 \frac{1}{x+\sqrt{x}}\,dx$. A mudança de variável $x=t^2$ permite escrever o integral como:

$$\bigcirc \int_{1}^{2} \frac{2}{t+1} dt; \qquad \qquad \bigcirc \int_{1}^{4} \frac{2}{t+1} dt;$$

$$\bigcirc \int_{1}^{4} \frac{1}{t^{2}+t} dt; \qquad \qquad \bigcirc \int_{1}^{2} \frac{1}{t^{2}+t} dt.$$

[5 valores] Considere a função $f:[-1,5] \longrightarrow \mathbb{R}$ cujo gráfico se apresenta na figura anexa e seja $F:[-1,5] \longrightarrow \mathbb{R}$ tal que $F(x)=\int_{-1}^x f(t)\,dt.$

b) Determine, caso exista,
$$f'(\pi)$$
.

c) Determine
$$F(3)$$
, i.e., $\int_{-1}^{3} f(t) dt$.

d) Determine
$$a \in]-1,5]$$
 tal que $F(a)=0$.

e) Apresente, caso exista, uma primitiva da função f.

IV

Questão 1. [2 valores] Calcule
$$\lim_{x \to 2} \frac{2 - x + \ln(x - 1)}{x^3 - 3x^2 + 4}$$
.

Questão 2. [2 valores] Considere uma função bijetiva e derivável $f:\mathbb{R}\longrightarrow\mathbb{R}$ tal que f(1)=0 e f'(1)=1. Seja $g:\mathbb{R}\longrightarrow\mathbb{R}$ a função tal que $g(x)=\mathrm{sh}\,f(x)$.

- a) Calcule g(1) e g'(1).
- b) Calcule $(g^{-1})'(0)$.

Questão 3. [3 valores] Calcule:

a)
$$\int \frac{1}{2+e^{1-x}} dx$$
;

b)
$$\int_0^{\pi} (x^2 + 1) \cos x \, dx$$
.

Questão 4. [3 valores] Considere a região do plano

$$R = \{(x, y) \in \mathbb{R}^2 : x \ge -1 \land 0 \le y \le 1 - x \land y \le e^x\}.$$

- a) Apresente um esboço gráfico da região R.
- b) Calcule o valor da área da região R.