

Functional model:

$$\Delta h_{100,A} = H_A - H_{100}$$
 $\Delta h_{A,200} = H_{200} - H_A$
 $\Delta h_{200,C} = H_C - H_{200}$
 $\Delta h_{C,100} = H_{100} - H_C$
 $\Delta h_{A,B} = H_B - H_A$
 $\Delta h_{200,B} = H_B - H_{200}$
 $\Delta h_{B,C} = H_C - H_B$

We insert the fixed values for H_{100} and H_{200} and bring them to the left-hand side of the equations ...

... Functional model

$$\varphi_1: \Delta h_{100,A} + 100.000 = H_A$$
 $\varphi_2: \Delta h_{A,200} - 107.500 = -H_A$
 $\varphi_3: \Delta h_{200,C} + 107.500 = H_C$
 $\varphi_4: \Delta h_{C,100} - 100.000 = -H_C$
 $\varphi_5: \Delta h_{A,B} = H_B - H_A$
 $\varphi_6: \Delta h_{200,B} + 107.500 = H_B$

$$\varphi_7$$
: $\Delta h_{B,C} = H_C - H_B$

observation vector \mathbf{L}'

Linear or nonlinear? → Linear!

Observation equations:

$$\Delta h_{100,A} + 100.000 + v_1 = \widehat{H}_A$$

$$\Delta h_{A,200} - 107.500 + v_2 = -\widehat{H}_A$$

$$\Delta h_{200,C} + 107.500 + v_3 = \widehat{H}_C$$

$$\Delta h_{C,100} - 100.000 + v_4 = -\widehat{H}_C$$

$$\Delta h_{A,B} + v_5 = \widehat{H}_B - \widehat{H}_A$$

$$\Delta h_{200,B} + 107.500 + v_6 = \widehat{H}_B$$

$$\Delta h_{B,C} + v_7 = \widehat{H}_C - \widehat{H}_B$$

Observation vector:

$$\mathbf{L}' = \begin{bmatrix} \Delta h_{100,A} + 100.000 \\ \Delta h_{A,200} - 107.500 \\ \Delta h_{200,C} + 107.500 \\ \Delta h_{C,100} - 100.000 \\ \Delta h_{A,B} \\ \Delta h_{200,B} + 107.500 \\ \Delta h_{B,C} \end{bmatrix}$$

Vector of residuals:

$$\mathbf{v} = egin{bmatrix} v_1 \ v_2 \ v_3 \ v_4 \ v_5 \ v_6 \ v_7 \end{bmatrix}$$

Stochastic Model of the observations:

$$p_1 = 1, p_2 = 1, ..., p_7 = 1 \rightarrow \mathbf{P} = \mathbf{I}$$

Vector of unknowns:

$$\widehat{\mathbf{X}} = \begin{bmatrix} \widehat{H}_A \\ \widehat{H}_B \\ \widehat{H}_C \end{bmatrix}$$

Design Matrix (Matrix with coefficients of the linear functional model):

$$\mathbf{A} = \begin{bmatrix} \varphi_1 & H_A & H_B & H_C \\ \varphi_2 & 1 & 0 & 0 \\ \varphi_2 & -1 & 0 & 0 \\ \varphi_3 & 0 & 0 & 1 \\ \varphi_4 & \varphi_5 & 0 & -1 \\ \varphi_5 & \varphi_6 & 0 & 1 & 0 \\ \varphi_7 & 0 & -1 & 1 \end{bmatrix}$$

Normal equations:

$$\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{A}\widehat{\mathbf{X}} = \mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{L}'$$

$$\widehat{\mathbf{X}} = (\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{L}'$$

with

with

$$P = I$$

$$\left(\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{A}\right)^{-1}=\mathbf{Q}_{\hat{X}\hat{X}}$$

Residuals:

$$\mathbf{v} = \mathbf{A}\widehat{\mathbf{X}} - \mathbf{L}'$$

Adjusted observations:

$$\hat{\mathbf{L}}' = \mathbf{L}' + \mathbf{v}$$

Final check:

$$\hat{\mathbf{L}}' - \mathbf{\Phi}(\widehat{\mathbf{X}}) \stackrel{!}{=} \mathbf{0}$$

 $\hat{\mathbf{L}}' - \Phi(\widehat{\mathbf{X}}) \stackrel{!}{=} \mathbf{0}$ \Rightarrow zero within computing precision

Computer: $\hat{\mathbf{L}}' - \Phi(\hat{\mathbf{X}}) \le \delta$ \rightarrow e.g. 10^{-12}

Empirical reference standard deviation:

$$s_0 = \sqrt{\frac{\mathbf{v}^{\mathrm{T}} \mathbf{P} \mathbf{v}}{n - u}}$$

VCM of adjusted unknowns:

$$\mathbf{\Sigma}_{\hat{X}\hat{X}} = \mathbf{s}_0^2 \cdot \mathbf{Q}_{\hat{X}\hat{X}}$$

Weights in Differential Levelling

d: Length of sight distance

 e_i : Length of the course between surveyed points, here points A and B

- Standard deviation in rod reading is usually expressed as ratio of the estimated standard error in rod reading per unit sight distance length
 - → Standard deviation for rod reading

$$\sigma_{l_i} = d_i \cdot \sigma_{l/d}$$
$$\Delta h_1 = l_1 - l_2$$

 d_i : length of sight distance

with equal length of sight distance

$$\sigma_{l_1} = \sigma_{l_2} = d \cdot \sigma_{l/d}$$

$$\to \sigma_{\Delta h_1}^2 = (d \cdot \sigma_{l/d})^2 + (d \cdot \sigma_{l/d})^2$$

$$= 2 \cdot d^2 \cdot \sigma_{l/d}^2$$

 \blacktriangleright Height difference Δh :

$$\Delta h = \Delta h_1 + \Delta h_2 + \dots + \Delta h_n$$

$$\to \sigma_{\Delta h}^2 = 2 \cdot n \cdot d^2 \cdot \sigma_{l/d}^2$$

ightharpoonup n as a function of length of sight distance d and length of the course e_i

$$n = \frac{e_i}{2d}$$

Example: $e_i = 200 \text{ m}, d = 25 \text{ m} \rightarrow n = \frac{200 \text{ m}}{2.25 \text{ m}} = 4$

$$\rightarrow \sigma_{\Delta h}^2 = 2 \cdot \frac{e_i}{2d} \cdot d^2 \cdot \sigma_{l/d}^2 = e_i \cdot d \cdot \sigma_{l/d}^2$$

with d, $\sigma_{l/d}$ constant values, we introduce $k = d \cdot \sigma_{l/d}^2$

$$\sigma_{\Delta h}^2 = e_i \cdot k$$

► We know: Weights are the inverse values of the variances

$$p_i = \frac{1}{e_i \cdot k}$$

Since k is a constant and weights are relative, equation can be simplified to

$$p_i = \frac{1}{e_i}$$

Weights of different levelling lines are inversely proportional to their length. And since any course length is proportional to its number of instrument setups, weights are also inversely proportional to the number of instrument setups.

Example 1:

Line	Length <i>e</i> [km]	Weight p	Rel. weights p
1	4	0.25	3
2	3	0. 3	4
3	2	0.5	6
4	3	:	:
5	2		
6	2		
7	2		

Remember: Weights are relative

→ We can introduce relative weights

Example 2:

Given: Observed elevation differences and their standard deviations

From	То	Δ <i>h</i> [m]	σ [m]
A	В	10.509	0.006
В	С	5.360	0.004
С	D	-8.235	0.005
D	\boldsymbol{A}	-7.348	0.003
В	D	-3.167	0.004
A	С	15.881	0.012

Determine the adjusted observations and their standard deviation

Problem: No height(s) of benchmark point(s) given \rightarrow Solution?

Basic idea of trilateration:

Determination of 2D coordinates of points in a plane Cartesian coordinate system from distance observations

Cartesian coordinates in 2D

- Gauss-Krueger coordinates
- UTM coordinates
- → Projected coordinates into a plane

Distance measurement between point 100 and 1

Question: What does our distance measurement between point 100 and point 1 have to do with distance between points in Gauss-Krueger coordinates?

Answer: Nothing!

Measurement with EDM: S Atmospheric correction: s_a Correction for calibration parameters (zero correction, scale factor): $S_{\mathcal{C}}$ Reduction into the local horizontal plane: S_h

Height reduction (projection onto the surface of the reference ellipsoid):

 S_{ell}

Projection into the GK- or

UTM-plane (by formulas): s_{GK}

 \rightarrow Finally s_{GK} corresponds with the given Gauss-Krueger coordinates

Attention: Pre-processing of distance measurements <u>must</u> be performed

In practice:

- s_{GK} or s_{UTM} is regarded as observation with corresponding precision/weight or
- s_h is regarded as observation and reduction and projection is performed within the application of the adjustment software
 - → Check the pre-settings!

For an adjustment within the Gauss-Markov Model (parametric adjustment)

$$L = \Phi(X)$$

we have to introduce appropriate unknowns to express our observations as functions of the unknowns

→ We introduce 2D coordinates as unknowns

Functional model:

Measured from "i" to "k"

$$s_{ik} = \sqrt{(x_k - x_i)^2 + (y_k - y_i)^2}$$

Sih Pk

Observation equations:

$$s_{ik} + v_{s_{ik}} = \sqrt{(\hat{x}_k - \hat{x}_i)^2 + (\hat{y}_k - \hat{y}_i)^2}$$

Nonlinear functional model

- → for least squares adjustment we need a linearised functional model
- → Jacobian matrix with partial derivatives

Partial derivatives:

$$\frac{\partial s_{ik}}{\partial x_k} = \frac{1}{2\sqrt{}} \cdot 2(x_k - x_i) = \frac{x_k - x_i}{s_{ik}} = \frac{\Delta x_{ik}}{s_{ik}}$$

$$\frac{\partial s_{ik}}{\partial x_i} = \frac{1}{2\sqrt{}} \cdot 2(x_k - x_i) \cdot (-1) = \frac{-\Delta x_{ik}}{s_{ik}}$$

$$\frac{\partial s_{ik}}{\partial y_k} = \frac{\Delta y_{ik}}{s_{ik}}$$

$$\frac{\partial s_{ik}}{\partial y_i} = \frac{-\Delta y_{ik}}{s_{ik}}$$

→ See handout (Partial derivatives of geodetic observation equations)

Partial derivatives of geodetic observation equations

Given: Observation Equations

Searched: Partial derivatives with respect to the unknowns for the linearization of the observation equations

1. Distances
$$s_{ik} = \sqrt{(x_k - x_i)^2 + (y_k - y_i)^2}$$

Notation information:

Index *i*: Station Index *k*: Target

measured from i to k

Partial derivatives can be further simplified by using the equations for the grid bearing t_{ik} and distance s_{ik} .

Partial Derivatives:

$$\frac{\partial s_{ik}}{\partial x_k} = \frac{x_k - x_i}{s_{ik}} = \frac{\Delta x_{ik}}{s_{ik}} = \cos t_{ik}$$

$$\frac{\partial s_{ik}}{\partial x_i} = -\frac{x_k - x_i}{s_{ik}} = \frac{-\Delta x}{s_{ik}} = -\cos t_{ik}$$

$$\frac{\partial s_{ik}}{\partial y_k} = \frac{y_k - y_i}{s_{ik}} = \frac{\Delta y_{ik}}{s_{ik}} = \sin t_{ik}$$

$$\frac{\partial s_{ik}}{\partial y_i} = -\frac{y_k - y_i}{s_{ik}} = -\frac{\Delta y_{ik}}{s_{ik}} = -\sin t_{ik}$$

Adjustment_Theory_I_Derivatives.pdf

Weights in trilateration networks

• Precision for distances from electronic distance measurement given in

$$\sigma_{s_i} = a_1 + a_2 \cdot d_i$$

 a_1 : constant part of precision

 a_2 : standard error per unit sight distance length

 d_i : length of sight distance

Typical values for the precision of an EDM:

$$3 \text{ mm} + 2 \text{ ppm}$$

→ Standard deviation for a distance of

500 m: 4 mm

1000 m: 5 mm

2000 m: 7 mm

Variance matrix of the observations

$$\mathbf{\Sigma}_{LL} = egin{bmatrix} \sigma_{S_1}^2 & & & 0 \ & \sigma_{S_2}^2 & & \ & & \ddots & \ 0 & & & \sigma_{S_n}^2 \end{bmatrix}$$

- With reference variance σ_0^2
- Cofactor matrix of observations: $\mathbf{Q}_{LL} = \frac{1}{\sigma_0^2} \mathbf{\Sigma}_{LL}$
- Weight matrix of observations: $\mathbf{P} = \mathbf{Q}_{LL}^{-1}$

Example

The measurements of the trilateration network depicted in Figure 1 are listed in Table 2. The points 1, 2 and 3 are control points (error-free) and their Gauss-Krueger coordinates are given in Table 1. Calculate the adjusted Gauss-Krueger coordinates of point 100 using least squares adjustment.

Figure 1: Trilateration network

Table 1: Gauss-Krueger coordinates of control points

Point No.	y [m]	<i>x</i> [m]
1	865.400	4527.150
2	2432.550	2047.250
3	2865.220	27.150

Approximate values for the coordinates of point 100:

$$y_{100}^0:6861.3; x_{100}^0:3727.8$$

(graphical coordinates from a map)

Table 2: Observed reduced distances

From	То	s [m]
100	1	6049.000
100	2	4736.830
100	3	5446.490

- The distance measurements have been performed with a precision of 1 mm + 2 ppm
- The distances are uncorrelated and already reduced into the Gauss-Krueger projection
- Set up an appropriate functional model as well as the observation equations
- Set up the stochastic model
- Choose appropriate values for the break-off conditions arepsilon and justify your decision
- Solve the normal equation system and determine the Gauss-Krueger coordinates of point 100 as well as their standard deviations
- Calculate the residuals and the adjusted observations as well as their standard deviations

General considerations:

- What are our unknowns?
 - \rightarrow Coordinates of point 100
 - \rightarrow We introduce y_{100} , x_{100}
- What are our observations?
 - → Distances
 - $\rightarrow s_{100,1}, s_{100,2}, s_{100,3}$
- Observations reduced into projection?
 - \rightarrow Yes!
- What are our fixed values?

$$\rightarrow y_1, x_1; y_2, x_2; y_3, x_3$$

• Redundancy?
$$\rightarrow r = n - u \rightarrow r = 3 - 2 \rightarrow r = 1$$

Functional model:

$$s_{100,1} = \sqrt{(x_1 - x_{100})^2 + (y_1 - y_{100})^2}$$

$$s_{100,2} = \sqrt{(x_2 - x_{100})^2 + (y_2 - y_{100})^2}$$

$$s_{100,3} = \sqrt{(x_3 - x_{100})^2 + (y_3 - y_{100})^2}$$

Observation equations:

$$s_{100,1} + v_1 = \sqrt{(x_1 - \hat{x}_{100})^2 + (y_1 - \hat{y}_{100})^2}$$

$$s_{100,2} + v_2 = \sqrt{(x_2 - \hat{x}_{100})^2 + (y_2 - \hat{y}_{100})^2}$$

$$s_{100,3} + v_3 = \sqrt{(x_3 - \hat{x}_{100})^2 + (y_3 - \hat{y}_{100})^2}$$

Observation vector:

$$\mathbf{L} = \begin{bmatrix} 6049.000 \\ 4736.830 \\ 5446.490 \end{bmatrix}$$

Stochastic model of the observations:

$$\sigma_1 = 1 \text{ mm} + 2 \frac{\text{mm}}{\text{km}} \cdot 6.049 \text{ km}$$

$$\sigma_2 = 1 \text{ mm} + 2 \frac{\text{mm}}{\text{km}} \cdot 4.73683 \text{ km}$$

$$\sigma_3 = 1 \text{ mm} + 2 \frac{\text{mm}}{\text{km}} \cdot 5.44649 \text{ km}$$

$$\mathbf{\Sigma}_{LL} = \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix}$$

$$\mathbf{Q}_{LL} = \frac{1}{\sigma_0^2} \mathbf{\Sigma}_{LL}$$

with

$$\sigma_0^2 = 1$$

$$\mathbf{Q}_{LL} = \mathbf{\Sigma}_{LL}$$

$$ightarrow \mathbf{P} = \mathbf{Q}_{LL}^{-1}$$

Vector of adjusted unknowns:

$$\widehat{\mathbf{X}} = \begin{bmatrix} \widehat{x}_{100} \\ \widehat{y}_{100} \end{bmatrix}$$

Nonlinear functional model

- → Solution from iterative computing with linearised functional model
- \rightarrow Introduction of approximate values x_{100}^0, y_{100}^0

→ Vector of starting values:

$$\mathbf{X}^0 = \begin{bmatrix} x_{100}^0 \\ y_{100}^0 \end{bmatrix}$$

Vector of adjusted reduced unknowns:

$$\hat{\mathbf{x}} = \hat{\mathbf{X}} - \mathbf{X}^0 = \begin{bmatrix} d\hat{x}_{100} \\ d\hat{y}_{100} \end{bmatrix} = \begin{bmatrix} \hat{x}_{100} - x_{100}^0 \\ \hat{y}_{100} - y_{100}^0 \end{bmatrix}$$

Vector of reduced observations:

$$\mathbf{l} = \begin{bmatrix} 6049.000 - \sqrt{(x_1 - x_{100}^0)^2 + (y_1 - y_{100}^0)^2} \\ 4736.830 - \sqrt{(x_2 - x_{100}^0)^2 + (y_2 - y_{100}^0)^2} \\ 5446.490 - \sqrt{(x_3 - x_{100}^0)^2 + (y_3 - y_{100}^0)^2} \end{bmatrix}$$

Jacobian matrix:

$$\mathbf{J} = \begin{bmatrix} x_{100}^{0} & y_{100}^{0} \\ S_{100,1} & \frac{\partial s_{100,1}^{0}}{\partial x_{100}^{0}} & \frac{\partial s_{100,1}^{0}}{\partial y_{100}^{0}} \\ \frac{\partial s_{100,2}^{0}}{\partial x_{100}^{0}} & \frac{\partial s_{100,2}^{0}}{\partial y_{100}^{0}} \\ S_{100,3} & \frac{\partial s_{100,3}^{0}}{\partial x_{100}^{0}} & \frac{\partial s_{100,3}^{0}}{\partial y_{100}^{0}} \end{bmatrix}$$

with

$$\frac{\partial s_{100,1}^0}{\partial x_{100}^0} = \frac{1}{2\sqrt{(x_1 - x_{100}^0)^2 + (y_1 - y_{100}^0)^2}} \cdot 2(x_1 - x_{100}^0) \cdot (-1)$$

$$= \frac{-(x_1 - x_{100}^0)}{s_{100,1}^0}$$

:

$$\frac{\partial s_{100,3}^0}{\partial y_{100}^0} = \frac{1}{2\sqrt{(x_3 - x_{100}^0)^2 + (y_3 - y_{100}^0)^2}} \cdot 2(y_3 - y_{100}^0) \cdot (-1)$$

$$= \frac{-(y_3 - y_{100}^0)}{s_{100,3}^0}$$

Design matrix:

$$A = J$$

Normal equations:

$$\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{A}\hat{\mathbf{x}} = \mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{I}$$

Solution of normal equations:

$$\hat{\mathbf{x}} = \left(\underbrace{\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{A}}\right)^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{I}$$

Adjusted unknowns:

$$\widehat{\mathbf{X}} = \mathbf{X}^0 + \widehat{\mathbf{x}}$$

Residuals:

$$\mathbf{v} = \mathbf{A}\hat{\mathbf{x}} - \mathbf{l}$$

Adjusted observations:

$$\hat{\mathbf{L}} = \mathbf{L} + \mathbf{v}$$

Empirical reference standard deviation:

$$s_0 = \sqrt{\frac{\mathbf{v}^{\mathrm{T}} \mathbf{P} \mathbf{v}}{n - u}}$$

VCM of adjusted unknowns:

$$\mathbf{\Sigma}_{\hat{X}\hat{X}} = \mathbf{s}_0^2 \cdot \mathbf{Q}_{\hat{X}\hat{X}}$$
 with $\mathbf{Q}_{\hat{X}\hat{X}} = \mathbf{N}^{-1}$

Standard deviation of unknowns:

$$\mathbf{\Sigma}_{\hat{X}\hat{X}} = s_0^2 \cdot \begin{bmatrix} q_{\hat{X}\hat{X}} & q_{\hat{X}\hat{Y}} \\ q_{\hat{Y}\hat{X}} & q_{\hat{Y}\hat{Y}} \end{bmatrix}$$

 $q_{\hat{x}\hat{x}}$: Cofactor of unknown value x_{100}

 $q_{\hat{y}\hat{y}}$: Cofactor of unknown value y_{100}

$$s_{\hat{\chi}_{100}} = s_0 \cdot \sqrt{q_{\hat{\chi}\hat{\chi}}}$$

$$s_{\hat{y}_{100}} = s_0 \cdot \sqrt{q_{\hat{y}\hat{y}}}$$

Basic idea of triangulation:

Determination of 2D coordinates of points in a plane Cartesian coordinate system from observed directions

Cartesian coordinates in 2D

- Gauss-Krueger coordinates
- UTM coordinates
- → Projected coordinates into a plane
- → Conformal mapping

Non-conformal and conformal mapping

$$\alpha' \neq \alpha$$

e.g. Soldner coordinates

Ordinate difference is elongated → elimination of angular distortion

$$\alpha' = \alpha$$

e.g. Gauss-Krueger coordinates, UTM coordinates

- A conformal mapping keeps a differential similarity between the original elliptic situation and the maps image
 - → We can use our measured directions without corrections and reductions and combine them with GK or UTM coordinates
- \blacktriangleright Directions r_{ik} are our observations with corresponding precision / weight
- For an adjustment within the Gauss-Markov Model (parametric adjustment)

$$\mathbf{L} = \mathbf{\Phi}(\mathbf{X})$$

we have to introduce appropriate unknowns to express our observations as functions of the unknowns

→ We introduce 2D coordinates as unknowns

0: zero direction of our instrument (tacheometer, theodolite)

i: instrument station

k: foresight station

 r_{ik} : measured direction from i to k

 t_{ik} : azimuth from i to k

 ω_i : orientation unknown

Functional model:

$$r_{ik} = t_{ik} - \omega_i$$

How to obtain t_{ik} ?

$$tan t_{ik} = \frac{\Delta y}{\Delta x}$$

$$\Rightarrow t_{ik} = \arctan \frac{\Delta y}{\Delta x}$$

$$\Rightarrow t_{ik} = \arctan \frac{y_k - y_i}{x_k - x_i}$$

- ► Attention 1: What happens if $\Delta x = 0$?
 - → Cannot use formula
 - → two cases possible

► Attention 2:

e.g.
$$tan 50 gon = 1$$

 $tan 250 gon = 1$

Problem: Which value is the desired one?

Solution: Analysis of the quadrants, $t_{ik, \text{computed}} = \arctan \frac{\Delta y}{\Delta x}$

Remark: "atan2"

Functional model:

Measured from "i" to "k"

$$r_{ik} = \arctan \frac{y_k - y_i}{x_k - x_i} - \omega_i$$

Attention: Quadrants!

Observation equations:

$$r_{ik} + v_{ik} = \arctan \frac{\hat{y}_k - \hat{y}_i}{\hat{x}_k - \hat{x}_i} - \hat{\omega}_i$$

Nonlinear functional model

- → for least squares adjustment we need a linearised functional model
- → Jacobian matrix with partial derivatives

Partial derivatives:

we know $(\arctan x)' = \frac{1}{1+x^2}$

$$\frac{\partial r_{ik}}{\partial y_k} = \frac{\partial \left(\arctan\frac{y_k - y_i}{x_k - x_i} - \omega_i\right)}{\partial y_k} = \frac{1}{1 + \left(\frac{y_k - y_i}{x_k - x_i}\right)^2} \cdot \frac{1}{x_k - x_i}$$

$$= \frac{1}{1 + \frac{(y_k - y_i)^2}{(x_k - x_i)^2}} \cdot \frac{1}{x_k - x_i} = \frac{1}{\frac{(x_k - x_i)^2}{(x_k - x_i)^2} + \frac{(y_k - y_i)^2}{(x_k - x_i)^2}} \cdot \frac{1}{x_k - x_i}$$

$$= \frac{(x_k - x_i)^2}{(x_k - x_i)^2 + (y_k - y_i)^2} \cdot \frac{1}{x_k - x_i} = \frac{x_k - x_i}{s_{ik}^2} = \frac{\Delta x_{ik}}{s_{ik}^2}$$

$$\left\{ \frac{\partial r_{ik}}{\partial y_i}, \frac{\partial r_{ik}}{\partial x_k}, \frac{\partial r_{ik}}{\partial x_i} \right\}$$
 See handout! $\left\{ \frac{\partial r_{ik}}{\partial \omega_i} = -1 \right\}$

2. Directions

$$r_{ik} = \arctan\left(\frac{y_k - y_i}{x_k - x_i}\right) - \omega_i$$

Partial Derivatives:

$$\frac{\partial r_{ik}}{\partial y_k} = \frac{x_k - x_i}{s_{ik}^2} = \frac{\Delta x_{ik}}{s_{ik}^2} = \frac{\cos t_{ik}}{s_{ik}}$$

$$\frac{\partial r_{ik}}{\partial y_i} = -\frac{x_k - x_i}{s_{ik}^2} = -\frac{\Delta x_{ik}}{s_{ik}^2} = -\frac{\cos t_{ik}}{s_{ik}}$$

$$\frac{\partial r_{ik}}{\partial y_i} = -\frac{x_k - x_i}{s_{ik}^2} = -\frac{\Delta x_{ik}}{s_{ik}^2} = -\frac{\cos t_{ik}}{s_{ik}}$$

$$\frac{\partial r_{ik}}{\partial x_i} = -\frac{y_k - y_i}{s_{ik}^2} = \frac{\Delta y_{ik}}{s_{ik}^2} = -\frac{\sin t_{ik}}{s_{ik}}$$

$$\frac{\partial r_{ik}}{\partial x_i} = \frac{y_k - y_i}{s_{ik}^2} = \frac{\Delta y_{ik}}{s_{ik}^2} = \frac{\sin t_{ik}}{s_{ik}}$$

$$\frac{\partial r_{ik}}{\partial x_k} = -\frac{y_k - y_i}{s_{ik}^2} = -\frac{\Delta y_{ik}}{s_{ik}^2} = -\frac{\sin t_{ik}}{s_{ik}} \qquad \qquad \frac{\partial r_{ik}}{\partial x_i} = \frac{y_k - y_i}{s_{ik}^2} = \frac{\Delta y_{ik}}{s_{ik}^2} = \frac{\sin t_{ik}}{s_{ik}} \qquad \qquad \frac{\partial r_{ik}}{\partial \omega_i} = -1$$

Adjustment Theory I Derivatives.pdf