Chapter 03 IP 주소

1. IP 주소의 개요

- TCP/IP라는 프로토콜을 만들 때 이 프로토콜을 사용하는 모든 장비들을 구분해 주기 위해서 만들어낸 것이 바로 IP 주소이다.
- 서로 간의 통신을 위해서는 이들을 구분할 주소가 필요했다.
- 원래 IP 주소를 만들 당시에는 이렇게 인터넷이 많이 보편화될 거란 생각을 하지 않았던 것 같다.
- 요즘은 공인 IP 주소를 따내기가 그리 쉽지 않은데, 그것은 공인 IP 주소의 한계 때문이다.
- IP 주소는 이진수 32자리로 되어 있다.

1. IP 주소의 개요

- 따라서 지정 기능한 전체 IP 주소의 개수는 약 2의 32승개(2³²) 정도 대충은 42 억 9,000개가 나온다.
- 그런데 이 IP 주소가 이제 거의 다 나눠줘서 더 이상 나눠줄 게 별로 남지 않았다고 한다.
- 약 6% 정도가 남았다고 한다.

- 라우터가 물론 IP의 라우팅만을 담당하는 건 아니다.
- 예를 들어 IPX(노벨 파일 서버), AppleTalk(매킨토시) 등 많은 프로토콜들의 라우 팅을 할 수 있는데 요즘은 IP를 제외한 나머지 프로토콜들은 거의 사용하고 있지 않다.
- 일단 우리가 조그만 네트워크를 꾸민다고 가정해 보자.
- 약 50대 정도의 PC, 그리고 그 PC들이 전용선을 통해 인터넷을 쓴다고 가정하자.

- 시스코 2501의 경우 이더넷 인터페이스는 1개이고, 인터넷과 접속하기 위한 시 리얼 인터페이스는 2개이다.
- 그리고 시리얼 인터페이스는 DSU 또는 CSU라는 전용선 모뎀에 연결된다.
- 위와 같은 가정에서 우리가 라우터에 부여해야 하는 IP 주소는 두 개가 된다.
- 하나는 이더넷(Ethernet) 인터페이스에 부여할 주소이고, 또 하나는 시리얼 (Serial) 인터페이스에 부여할 IP 주소이다.
- 이더넷용 IP 주소는 우리가 내부에서 사용하기 위해 부여받은 IP 주소 중 하나를 배정해야 한다.
- 라우터의 이더넷쪽은 앞에서 말씀드린 대로 내부 네트워크에 접속되기 때문이다.
- 예를 들어 우리가 내부 PC용으로 부여받은 주소가 203.120.150.1 ~
 203.120.150. 255까지라면 라우터의 주소는 그 중 하나, 이럴 때는 보통 맨 앞의 번호를 쓴다.
- 그래서 라우터의 이더넷 주소는 203.120.150.1이 부여된다.

- 그럼 시리얼 (Serial) 에는 어떤 주소를 부여해야 할까?
- 그건 우리 마음대로 부여할 수 있는 게 아니다.
- 라우터가 접속하는 상대편 (ISP 업체) 라우터의 시리얼 인터페이스와 IP 주소를 서로 맞추어야 하기 때문이다.
- 일단은 우리 내부용 IP 주소와는 다른 네트워크가 된다.
- 라우터에서 인터페이스가 달라지면 그건 네트워크가 달라진다는 것을 의미한다.
- 상대편 라우터의 시리얼과는 같은 네트워크가 되어야 한다.
- 예를 들어, 상대편 라우터의 시리얼이 203.150.150.5에 서브넷 마스크가
 255.255.255.252라면 우리 라우터의 Serial은 203.150.150.6에 서브넷 마스크는
 255.255.255.252가 된다.

- IP 주소가 보기에는 그냥 점 3개로 나누어진 4자리 숫자 같지만, 사실 IP 주소 자체는 네트워크 부분과 호스트 부분으로 나누어져 있다.
- 여기서 말하는 네트워크는 하나의 브로드캐스트 영역 (Broadcast Domain)이라고 생각하면 된다.
- 즉, 하나의 PC가 데이터를 뿌렸을 때 그 데이터를 라우터를 거치지 않고도 바로 받을 수 있는 영역이란 뜻이다.
- 그럼 호스트란 말은 무엇일까?
- 말뜻 그대로 주인이란 의미가 아니고 그냥 각각의 PC 또는 장비라고 생각하면 된다.
- 따라서 어떤 네트워크에서든지 '하나의 네트워크'에서는 네트워크 부분은 모두 같아야 되고 호스트 부분은 모두 달라야 정상적인 통신이 일어난다.

- IT COOKBOOK
- 예를 들어보면 한 PC방에서 쓰는 IP 주소가 203.240.100.1에서 203.240.100.255까지라면 이 중에서 203.240.100 부분은 네트워크 부분이다.
- 따라서 이 PC방에서 쓰는 모든 IP 주소중 이 부분은 모두 동일해야 한다.
- 그렇지 않으면 통신이 불가능해진다.
- 또 하나 호스트 부분은 맨 마지막 자리(마지막 옥텟)가 된다.
- 따라서 1에서 255가 바로 호스트 부분이 된다.
- 호스트 부분 1에서 255까지는 모든 PC가 서로 달라야 한다.

■ IP 주소의 네트워크 부분과 호스트 부분

IT COOKBOOK

- 203.240.100.1이란 IP 주소에서 네트워크 부분은 어디까지 일까?
- 또 호스트 부분은 어디까지가 될까?
- 여기서 네트워크 부분은 203.240.100까지이다.
- 그리고 마지막 자리, 즉 1이 호스트 부분이다.
- 이렇게 IP 주소를 보고 네트워크 부분과 호스트 부분을 나누는 방법은 서로 간의 약속이다.
- 그런 약속을 해놓은 것이 바로 IP 주소의 Class이다.
- IP 주소는 5개의 Class로 구분된다.
- 하지만 우선 3개만 알면 됩니다.
- 나머지 두 개 중 하나는 멀티캐스트용, 하나는 연구용으로 사용된다.

IT CONKBOOK

- IP 주소의 클래스(Class)는 A부터 B, C, D, E로 구분된다.
- 이렇게 클래스에 따라서 어디까지가 네트워크 부분이고, 어디까지가 호스트 부분 인지가 나뉜다.
- 클래스 A는 하나의 네트워크가 가질 수 있는 호스트 수가 가장 많은 클래스이다.
- 그래서 클래스 A는 32개의 이진수 중에서 맨 앞쪽 하나가 항상 0으로 시작되는 것들이다.
- 일단 위의 조건을 만족하는 가장 작은 수는 무엇일까?
- 당연히 x 부분이 전부 0일 때이다.
- 즉 0000.0000.0000.0000.0000.0000.0000 십진수로는 0.0.0.0이 된다.

- 그렇다면 이번에는 위의 조건을 만족하면서 가장 큰 숫자는 무엇일까?
- 그건 바로 x 부분이 이진수에서 가장 큰 수인 1로 채워지는 것이다.
- 맨 앞의 0은 꼭 써야 되니까 그 다음부터 1을 썼다.
- 자, 그럼 이 숫자를 십진수로 만들면 어떻게 될까?
- 이건 십진수로는 127.255.255.255 이다.
- 여기서 또 한 가지 클래스 A의 중요한 규칙이 나온다.
- 클래스 A의 경우는 앞의 8비트가 네트워크 부분을 나타내고, 나머지 24 비트가 호스트 부분을 나타낸다는 약속이 있다.
- 그래서 클래스 A는 가장 작은 네트워크 1.0.0.0(0.0.0.0은 제외된다.)에서 가장 큰 네트워크 126.0.0.0(127은 제외된다. 이건 약속이다. 또 네트워크를 나타낼 때는 호스트 부분은 모두 0으로 쓴다.)까지로 규정된다.

- 만약 InterNIC(공인 IP 주소를 분배 관리하는 곳)으로부터 클래스 A 주소로 13.0.0.0 네트워크를 받았다고 가정해 보자.
- 클래스 A는 말한 대로 맨 앞에 하나의 옥텟만 네트워크 부분이고 나머지 3개의 옥텟은 호스트 부분이기 때문에 IP 주소를 분배하는 InterNIC에서는 이처럼 앞자리 13만 주게 된다.
- 뒤에 3개의 옥텟, 즉 호스트 부분은 마음대로 정할 수 있다는 것이다.
- 따라서 13.0.0.0 네트워크 하나를 받았을 때 사용할 수 있는 호스트는 몇 대인가를 계산해보려면 13.0.0.0 ~ 13.255.255.255까지 몇 개의 수가 들어가는가를 알아보면 된다.

Bits 1 7 24 클래스 A; 0 Network# Host#

- 네트워크 번호가 1-126으로 시작합니다.
- 한 네트워크 안에 들어갈 수 있는 호스트 수 : 16,777,214

- 클래스 B는 맨 앞이 반드시 10(이진수)으로 시작된다.
- 뒤에는 어떤 숫자가 와도 상관 없다.
- 즉 10xx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.
- 따라서 맨 앞에는 10이 반드시 나와야 하고 나머지 30개의 이진수는 0과 1 중에서 어떤 수가 와도 된다.
- 10을 앞에 두고 모두 0을 집어넣으면 클래스 B에서 가장 작은 숫자를 찾을 수 있다.
- 즉 1000.0000.0000.0000.0000.0000.0000이고 십진수로는 128.0.0.0이다.
- 그럼 가장 큰 숫지는 역시 10을 앞에 두고 나머지 부분을 이진수에서 가장 큰 숫자인 1로 모두 채워넣으면 된다.
- 즉 1011 1111.1111 1111.1111 1111.1111 1111이고, 십진수로는 191.255.255.255가 된다.

- 클래스 B의 경우는 앞의 16비트가 네트워크 부분을 나타내고, 나머지 16비트가 호스트 부분을 나타낸다는 약속이 있다.
- 그래서 클래스 B는 가장 작은 네트워크 128.0.0.0에서 가장 큰 네트워크 191.255.0.0(네트워크를 나타낼 때는 호스트 부분은 모두 0으로 쓴다)까지가 포함된다.

- 네트워크 번호가 128.1-191.255로 시작합니다.
- 한 네트워크 안에 들어갈 수 있는 호스트 수: 65,534

- 클래스 C의 경우는 맨 앞이 110(이진수)으로 시작된다.
- 뒤에는 어떤 숫자가 와도 상관 없다.
- 즉 110x xxxx.xxxx xxxx.xxxx xxxx xxxx 이다.
- 따라서 맨 앞에는 110이 반드시 나와야 하고 나머지 29개의 이진수는 0과 1 중에서 어떤 수가 와도 된다.
- 110을 앞에 두고 모두 0을 집어넣으면 클래스 C에서 가장 작은 숫자를 찾을 수 있다.
- 즉 1100 0000.0000 0000.0000 0000.0000 0000이고 십진수로는 192.0.0.0 이다.
- 그럼 가장 큰 숫자는 역시 110을 앞에 두고 나머지 부분을 이진수에서 가장 큰 숫자인 1로 모두 채워 넣으면 된다.
- 즉 1101 1111.1111 1111.1111 1111.1111 1111이고 십진수로는 223.255.255.255가 된다.

- IT COOKBOOK
- 클래스 C의 경우 앞의 24 비트가 네트워크 부분을 나타내고 나머지 8비트가 호 스트 부분을 나타낸다는 약속이 있다.
- 그래서 클래스 C는 가장 작은 네트워크 192.0.0.0에서 가장 큰 네트워크 223.255.255.0까지가 포함된다.

- 네트워크 번호가 192.0.0-223.255.255로 시작합니다.
- 한 네트워크 안에 들어갈 수 있는 호스트 수: 254

IT COOKBOOK

■ IP 주소를 클래스별로 정리하면 다음과 같다.

■ 클래스 A: 1 ~ 126 (127은 예비번호)

■ 클래스 B: 128 ~ 191

■ 클래스 C: 192 ~ 223

■ 클래스 D: 224 ~ 239(멀티캐스트용 주소)

■ 클래스 E: 240 ~ 255(연구용 주소)

IP 주소	클래스	네트워크 부분	호스트 부분
10.3.4.3			
132.12.11.4			
203.10.1.1		DOMESTIC 1 1 1 1 1 1 1	
192.12.100.2			
130.11.4.1			
261.12.4.1			

4. IP 주소의 활용

- 네트워크가 서로 다른 두 장비 간의 통신은 라우터를 통해서만 가능하다.
- TCP/IP 통신할 경우 라우터의 각 인터페이스 역시 IP 주소를 부여해 주는 것이 좋다.
- 라우터의 인터페이스에 IP 주소를 부여할 때는 그 인터페이스가 속한 네트워크의 주소를 부여해야 한다.
- IP 주소를 배정할 때는 그 네트워크에 몇 개의 호스트가 접속이 기능한지를 먼저확인한 후에 배정하는 주소가 이 호스트를 모두 포함할 수 있는지를 확인해야 한다.
- 즉 예를 들어 300개의 호스트가 있는 네트워크에 클래스 C 하나를 배정하면 안된다.
- 클래스 C는 최대 가능 호스트 수가 254개이기 때문이다.

4. IP 주소의 활용

- IT CONKBOOK
- 자, 네트워크 전문가가 되어서 어떤 사이트에 컨설팅을 하러 나왔다고 가정해보자.
- 이 사이트의 구성은 그림과 같다.

- 먼저 이 사이트를 파악해보니 사용자 수, 즉 PC의 수가 약 90대, 그리고 스위치가 2대, 라우터가 한 대이다.
- 하지만 이 사이트는 앞으로 계속 확장되어 3 년 이내에 PC가 약 200대로 늘어날 예정이라고 한다.

문제 ① 이 사이트에는 어떤 클래스의 IP를 배정하는 것이 좋을까?

- 당연히 클래스 C이다.
- 왜냐하면 클래스 C에 배정할 수 있는 호스트 수가 254개이기 때문에 현재 상황에 가장 맞는다.
- 클래스 B나 클래스 A가 안 되는 것은 아니지만, 호스트 주소가 너무 많기 때문에 IP 주소를 낭비하는 일일뿐만 아니라 이렇게 큰 주소는 배정해 주지도 않는다.

문제 ② 배정받은 IP 주소가 203.240.100.0 네트워크이다. 그렇다면 그림에 있는 번호 중에서 이 네트워크(203. 240. 100.0)에 속하지 않는 곳은 어디인가?

- 답은 1번이다.
- 1번은 시리얼 인터페이스인데, 라우터를 사이에 두고 1번과 2, 3, 4, 5, 6번이 나누어져 있는 걸 알 수 있다.
- 전에 말한 대로 라우터를 넘어서게 되면 네트워크는 바뀌게 된다.
- 따라서 2, 3, 4, 5, 6번은 하나의 네트워크 즉 하나의 브로드캐스트 도메인이어서 라우터가 없이도 통신이 가능하지만, 1번과의 통신은 반드시 라우터를 거쳐야만 가능하다.

문제 ③ 이번에는 객관식이다. 다음 중 1 번의 IP 주소로 적당한 것은 무엇인가? 참고로 인터넷쪽에서 이 라우터와 연결된 상대편 라우터의 IP 주소는 210.11.2.1 이다. 적당한 IP 주소를 모두 고르시오.

② 210.11.2.1 ④ 210.11.2.2 ⑤ 210.100.1.1 ⑥ 150.10.1.1 ⑥ 210.11.2.125 ⑥ 210.11.100.2 ⑥ 123.11.2.1 ⑥ 210.11.2.255 ⑥ 210.11.2.0

- 정답은 ⑷, ⑩ 이렇게 두 개가 된다.
- 먼저 ②는 상대편 시리얼 주소와 같은 주소라서 이 주소를 선택하게 되면 IP 주소의 충돌이 발생한다.
- IP 주소는 서로 같아서는 통신이 안 된다.
- ᠍ ⊕는 서로 다른 네트워크이다.
- 그러나 양쪽 라우터의 서로 연결된 인터페이스는 같은 네트워크에 속해야만 한다.
- 따라서 인터넷쪽의 라우터가 210.11.2.1이라면 우리쪽 라우터의 시리얼 인터페이스쪽도 201.11.2.1과 같은 네트워크에 있는 IP 주소를 사용해야 한다.

문제 ③ 이번에는 객관식이다. 다음 중 1 번의 IP 주소로 적당한 것은 무엇인가? 참고로 인터넷쪽에서 이 라우터와 연결된 상대편 라우터의 IP 주소는 210.11.2.1 이다. 적당한 IP 주소를 모두 고르시오.

② 210.11.2.1 ④ 210.11.2.2 ⑤ 210.100.1.1 ⑥ 150.10.1.1 ⑥ 210.11.2.125 ⑥ 210.11.100.2 ⑥ 123.11.2.1 ⑥ 210.11.2.255 ⑤ 210.11.2.0

- 그런데 210.11.2.1은 클래스 C이기 때문에 같은 네트워크가 되려면 최소한 210.11.2까지가 같아야 한다.
- 클래스 C의 경우 앞쪽 3개의 옥텟이 네트워크 부분이 된다.
- 그런데 ☞는 이것에 해당되지 않는다.
- ② 역시 서로 다른 네트워크라서 불가능하다.
- ④는 클래스 B라서 클래스도 완전히 다른 네트워크 번호이다.
- ❸ 역시 다른 네트워크에 속한 IP 주소이다.
- Ѿ 도 다른 네트워크에 속한 IP 주소이다.

문제 ③ 이번에는 객관식이다. 다음 중 1 번의 IP 주소로 적당한 것은 무엇인가? 참고로 인터넷쪽에서 이 라우터와 연결된 상대편 라우터의 IP 주소는 210.11.2.1 이다. 적당한 IP 주소를 모두 고르시오.

② 210.11.2.1 ④ 210.11.2.2 ⑤ 210.100.1.1 ⑥ 150.10.1.1 ⑥ 210.11.2.125 ⑥ 210.11.100.2 ⑥ 123.11.2.1 ⑥ 210.11.2.255 ⑥ 210.11.2.0

- ⑥ 는 같은 네트워크에 속한 번호이기는 하지만, 호스트에 부여하는 번호가 아니고 브로드캐스트용 번호이다.
- 따라서 라우터의 인터페이스에 부여하는 번호가 아니다.
- 恐는 같은 네트워크에 속한 번호이기는 하지만, 호스트에 부여하는 번호가 아니고 보로드캐스트용 번호이다.
- 따라서 라우터의 인터페이스에 부여하는 번호가 아니다.

- 서브넷 마스크(Subnet Mask) 란, 일단 말뜻 그대로 서브, 즉 메인이 아닌 어떤 가공을 통한 네트워크를 만들기 위해서 씌우는 마스크라고 생각하면 된다.
- 다시 말해서 우리가 일단 어떤 IP 주소를 배정받게 되면 보통은 이 주소를 그대로 사용하지 않는다.
- 왜냐하면 자신의 입맛에 맞추어야 하기 때문이다.
- 예를 들어 클래스 B 주소를 받았다.
- 이것을 그냥 사용할 수 있을까?
- 하나의 네트워크가 65,000여 개의 호스트를 가지는데, 이렇게 큰 네트워크를 구성했다가는 브로드캐스트의 영향이 너무 커서 아마 아무 것도 할 수 없을것이다.
- 따라서 나누어 써야한다.

- 그림처럼 클래스 B를 받아서 서브넷을 만들지 않고 그냥 사용하는 경우는 브로 드캐스트 도메인이 너무 커져서 브로드캐스트가 너무 많이 발생하게 된다.
- 따라서 정상적인 통신이 불가능해지므로 이 네트워크에는 서브네팅이 필요하다.

- 네트워크 150.150.0.0(호스트 수 65,534개)
- 브로드캐스트 도메인이 너무 커진다.
- 실제 상황에서는 통신이 불가능하다.

- 서브넷 마스크를 하게 되면 그림과 같은 구성이 가능하다.
- 즉 브로드캐스트 도메인을 더욱 작게 나누었다.

- 클래스 B 네트워크 150,150,0,0을 서브넷해서 사용한다.
- 서브넷 마스크는 255,255,255,0이다.
- 이렇게 해서 나누어진 서브넷 간의 통신은 라우터를 거쳐야만 가능하다.

- 모든 IP 주소에는 서브넷 마스크가 따라다닌다.
- 그래야 그 주소를 나눈 건지, 나누지 않은 건지 알 수 있기 때문이다.
- 210.100.100.1이란 주소가 있다.
- 이 주소는 아시는 것처럼 클래스 C이다.
- 그래서 이 주소를 가지고 254개의 호스트에 IP 주소를 부여했다고 가정해보자.
- 그럼 주어진 클래스 C를 하나도 가공하지 않고, 즉 쪼개지 않고 그대로 사용한 것이다.
- 그렇다고 서브넷 마스크를 쓰지 않느냐?
- 그건 아니다.
- 이처럼 주어진 클래스 C를 나누어 쓰지 않고 몽땅 쓰는 경우에도 서브넷 마스크는 는 따라다니는데 그게 바로 디폴트 서브넷 마스크(Default Subnet Mask), 즉 기본 서브넷 마스크이다.

6. 기본 서브넷 마스크

- 클래스 C의 경우 디폴트 서브넷 마스크는 255.255.255.0 이다.
- 클래스 B의 경우는 255.255.0.0이고 또 클래스 A는 255.0.0.0이다.
- 그러므로 주어진 네트워크를 하나도 나누지 않고 그대로 다 쓰는 경우는 디폴트 서브넷 마스크를 쓰면 된다.
- 하지만 주어진 네트워크를 나누어서, 즉 가공해서 쓰는 경우는 디폴트 서브넷 마 스크를 쓰지 않고 약간 고쳐서 쓴다.
- 그럼 서브넷 마스크를 어떻게 고쳐야 할까?

- 그림은 IP 주소가 서브넷 마스크를 통과해서 네트워크 부분이 어디까지인지를 알 아내는 과정을 보여주고 있다.
- 그림에서 서브넷 마스크를 통과해서 내려 오는 값은 맨 윗줄의 IP 주소와 그 다음 줄의 서브넷 마스크를 이진수로 만든 후 논리적 AND(Logical AND)를 수행한 값이 맨 아랫줄로 나오게 된다.
- 이렇게 나온 값 150.150.0.0이 바로 150.150.100.1의 네트워크 부분이다.

- 그럼 이번에는 150.150.100.1에 디폴트 서브넷 마스크가 아닌 새로운 서브넷 마 스크 255.255.255.0을 씌워 보자.
- 그림에서처럼 서브넷 마스크가 255.255.255.0이 되자 서브넷 마스크를 통과해서 아래로 내려온 네트워크 부분은 3자리의 십진수로 늘어났다.
- 즉 150.150.100.0이 되었다.
- 이렇게 하나의 주소를 서브넷 마스크를 씌워서 작은 네트워크로 만드는 것을 '서 브네팅 '이라고 한다.

- 서브넷 마스크로 만들어진 네트워크, 즉 서브넷은 이제 하나의 네트워크이기 때문에 서로 나뉜 서브넷끼리는 라우터를 통해서만 통신이 가능하다.
- 예를 들어 150.100.0.0 이란 클래스 B 네트워크가 있다고 하자.
- 이때 150.100.100.1과 150.100.200.1은 라우터를 거치지 않고 통신이 가능하다.
- 같은 네트워크에 있기 때문이다.
- 하지만 이 주소를 255.255.255.0이란 서브넷 마스크를 사용해서 서브네팅했다고 가정해 보자.
- 이렇게 되면 네트워크 부분이 바뀌게 된다.
- 기존에는 150.100까지가 네트워크 부분이었는데, 서브넷 마스크가 세 번째 옥텟까지 255이기 때문에 네트워크 부분은 세 자리가 되어서 150.100.100과 150.100. 200으로 바뀌게 된다.
- 이제 150.100.100.1(서브넷 마스크 255.255.255.0)과 150.100.200.1(서브넷 마스크 255.255.255.255.0)은 네트워크 부분이 서로 달라졌다.

- 따라서 150.100.100.1과 150.100.200.1은 이제 서로 다른 네트워크가 되었다.
- 따라서 이 두 녀석은 이제는 라우터를 거쳐야만 통신이 가능하게 된다.
- 즉 서로 다른 브로드캐스트 도메인에 존재하고 있기 때문에 서로 아무리 소리쳐 불러도 상대편이 그 목소리를 들을 수 없다.
- 다만 라우터를 통해서만 서로의 소리를 전달할 수 있다.
- 이와 같이 서브넷 마스크에 의해 나누어진 네트워크, 즉 서브넷은 하나의 독립된 네트워크가 된다.
- 또 하나의 성질은 서브넷 마스크는 이진수로 썼을 때 '1'이 연속적으로 나와야 한다는 것이다.
- 서브넷 마스크를 만들 때 255.255.255.10이란 서브넷 마스크는 사용할 수 없다.

- 255.255.255.15라는 서브넷 마스크는 가능할까?
- 정답은 '가능하지 않다'이다.
- 왜 그런지 다시 한 번 이진수로 바꾸어 보자.
- 255.255.255.15는 이진수로는 1111 1111.1111 1111.1111 1111.0000 1111이다.
- 뒤에 15가 1111이기 때문에 1이 연속으로 나왔지만 중간에 '0'이 들어 있다.
- 255.255.255.252는 어떨까?
- 255.255.255.252는 이진수로 바꾸면 1111 1111.1111 1111.1111 1111.1111 1100 이다.
- '1' 사이에는 '0'이 오지 않았기 때문에 255.255.255.252는 서브넷 마스크로 사용이 가능하다.

7. 서브넷 마스크의 기본 성질

IT.				
		DU	ОК	

IP 주소	서브넷 마스크	클래스	서브넷
201.222.10.60	255.255.255.248		
15.18.192.6	255.255.0.0		
130.15.121.13	255.255.255.0		
153.70.100.2	255.255.255.192		

- 서브넷 마스크에 대해서 첫 번째 알아야 할 것은 서브넷도 하나의 네트워크이기 때문에 일단 나누어진 서브넷은 라우터를 통해서만 통신이 되는 엄연한 하나의 네트워크라는 것이다.
- 두 번째는 서브넷 마스크를 만들 때는 여러 개의 1 사이에 0이 들어가는 마스크, 즉 1이 연속되지 않은 서브넷 마스크는 만들지 않는다는 것이다.
- 그럼 이 성질을 가지고 이번에는 서브넷을 한 번 직접 만들어 보자.

문제 ① 공인 IP 주소를 210.100.1.0(서브넷 마스크 255.255.255.0) 네트워크를 받았다. 그런데 네트워크 관리자인 여러분은 이 공인 주소를 이용해서 PC가 30대인 네트워크를 최소 4개 이상 만든 후 이들 네트워크를 라우터를 이용해서 서로 통신하게 하려고 한다. 이 경우 여러분이 서브넷 마스크를 만든다면 어떻게 해야할까?

- 일단 우리가 받은 네트워크, 즉 210.100.1.0(255.255.255.0)은 클래스 C이다.
- 그리고 뒤에 나온 디폴트 서브넷 마스크를 통해서도 이를 확인할 수 있다.
- 이 주소로 네트워크를 최소 4개 이상 만들려면 지금 주어진 디폴트 서브넷 마스 크를 변경해야 한다.
- 이때 중요하게 봐야 할 것은 한 네트워크가 포함하는 PC의 개수이다.
- 여기서는 30대의 호스트를 가져야 한다고 했다.
- 따라서 호스트 부분이 30 대를 포함할 수 있어야 한다.

문제 ① 공인 IP 주소를 210.100.1.0(서브넷 마스크 255.255.255.0) 네트워크를 받았다. 그런데 네트워크 관리자인 여러분은 이 공인 주소를 이용해서 PC가 30대인 네트워크를 최소 4개 이상 만든 후 이들 네트워크를 라우터를 이용해서 서로 통신하게 하려고 한다. 이 경우 여러분이 서브넷 마스크를 만든다면 어떻게 해야할까?

■ 호스트 부분이 모두 '0'이거나 호스트 부분이 모두 '1'인 주소는 못 쓰니까 가능한 호스트 수는 다음과 같다.

- 따라서, 2의 5승은 32이니까 그중에서 앞뒤 두 개 빼고 30개가 사용할 수 있는 호스트가 된다.
- 그래서 호스트 수 30개가 되기 위한 호스트 자릿수는 이진수로 5개가 된다.
- 즉 210.100.1.0 중에서 맨 마지막 부분만을 한 번 이진수로 바꾸어 보면 210.100.1.0000 0000이 된다.

문제 ① 공인 IP 주소를 210.100.1.0(서브넷 마스크 255.255.255.0) 네트워크를 받았다. 그런데 네트워크 관리자인 여러분은 이 공인 주소를 이용해서 PC가 30대인 네트워크를 최소 4개 이상 만든 후 이들 네트워크를 라우터를 이용해서 서로 통신하게 하려고 한다. 이 경우 여러분이 서브넷 마스크를 만든다면 어떻게 해야할까?

- 그 중에서 호스트 30개를 포함하기 위한 호스트의 자릿수는 5개니까 210.100.1.ssshhhhh(여기서 s는 서브넷이 되어야 하는 부분이고 h는 호스트 부분이다.)가 되어야 한다.
- 그렇다면 위의 서브넷을 만들기 위한 서브넷 마스크는 255.255.255.1110 0000이 된다.
- 그렇다면 이것을 다시 십진수로 바꾸면 255.255.255.224가 된다.
- 따라서 210.100.1.0이란 클래스 C 주소를 받아서 최소 30개의 호스트를 가지는
 최소 4개 이상의 서브넷을 만들려면 서브넷 마스크는 255.255.255.224를 사용해야 한다.

- 여러분이 고객시를 방문해서 위와 같은 그림을 넘겨받았다고 가정해보자.
- 그림을 보면 이미 받은 공인 주소는 201.222.5.0(255.255.255.0)이고 고객이 원하는 것은 이 주소를 잘라서 20개 이상의 작은 네트워크를 만드는데 한 네트워크가 최소한 5개의 호스트를 가져야 한다.
- 그럼 우리는 주어진 조건에 맞는 서브넷 마스크를 만들어서 고객의 조건에 만족
 하는 서브넷을 만들어줘야 한다.

- 그림을 보면 서브넷 마스크를 적용해야 하는 부분을 알아낼 수 있다.
- 클래스 C의 경우 맨 마지막 8비트에 서브넷 마스크를 적용해서 서브넷을 만든다.
- 즉 8개 중 몇 개를 호스트 비트로 쓰는가를 정하는 것이다.

```
201.222.5.0 11001001 11011110 00000101 00000000
255.255.255.0 11111111 11111111 11111111 00000000
```

- 20개의 서브넷 필요 = 최소 2⁵(32) 이상 필요 (2⁴이 16이므로 만족 못함)
- 5개의 호스트 필요 = 최소 2³(8) 이상 필요 (2²이 4이므로 만족 못함)

따라서 서브넷 마스크는
 8비트 호스트 부분 5비트를 1로 세팅해야 한다.
 (5비트 서브넷 부분 = 32서브넷, 3비트 호스트 = 6호스트/서브넷)

255.255.255.248 = 11111111 11111111 11111111 11111000

■ 그럼 서브넷 마스크 255.255.255.248을 이용해서 만들어낼 수 있는 서브넷을 직접 한 번 만들어 보자.

Thank You