STAT 111

Recitation 9

Mo Huang

Email: mohuang@wharton.upenn.edu

Office Hours: Wednesdays 3:00 - 4:00 pm, JMHH F96

Slides (adapted from Gemma Moran): github.com/mohuangx/STAT111-Fall2018

November 9, 2018

Hypothesis Tests for the Mean

- Same process as before but we need to be careful about our test-statistic.
- Let X_1, \ldots, X_n be i.i.d random variables with (unknown) mean μ and (unknown) variance σ^2 .
- ▶ Set H_0 : $\mu = \mu_0$ and H_1 for some number μ_0 and choose α .
- Determine test-statistic...
 - We know under the null, $\overline{X} \sim N(\mu_0, \frac{\sigma^2}{n})$ for large n.
 - ▶ But we don't know σ^2 ! Calculate s^2 (the sample variance).
 - Standardize:

$$T = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$$

▶ It turns out T is not normally distributed so can not use z-chart! It is t-distributed with n-1 "degrees of freedom".

The *t*-distribution

- Similar to the normal distribution, but with heavier tails.
- ▶ This is to account for the uncertainty in not knowing σ^2 .
- As n gets bigger, the estimate s^2 is better and the t-distribution gets closer to the normal distribution. When $n = \infty$, the t-distribution becomes the normal distribution.
- ▶ This is why we need the "degrees of freedom".

Figure: Credit: Wikipedia. ν is degrees of freedom.

▶ A chocolate block is advertised as being 8 oz. Suppose we are concerned that the chocolate manufacturers are giving us less than 8 oz of chocolate in a block. We collect 15 blocks of chocolate and calculate:

$$\bar{x} = 7.88, \quad s^2 = 0.06.$$

Step 1
$$H_0: \mu = 8$$
 vs. $H_1: \mu < 8$.

▶ A chocolate block is advertised as being 8 oz. Suppose we are concerned that the chocolate manufacturers are giving us less than 8 oz of chocolate in a block. We collect 15 blocks of chocolate and calculate:

$$\bar{x} = 7.88, \quad s^2 = 0.06.$$

Step 1 $H_0: \mu = 8$ vs. $H_1: \mu < 8$.

Step 2 Choose $\alpha = 0.05$.

▶ A chocolate block is advertised as being 8 oz. Suppose we are concerned that the chocolate manufacturers are giving us less than 8 oz of chocolate in a block. We collect 15 blocks of chocolate and calculate:

$$\bar{x} = 7.88, \quad s^2 = 0.06.$$

- Step 1 $H_0: \mu = 8$ vs. $H_1: \mu < 8$.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{7.88 - 8}{\sqrt{0.06/15}} = -1.90$$

▶ A chocolate block is advertised as being 8 oz. Suppose we are concerned that the chocolate manufacturers are giving us less than 8 oz of chocolate in a block. We collect 15 blocks of chocolate and calculate:

$$\bar{x} = 7.88, \quad s^2 = 0.06.$$

- Step 1 $H_0: \mu = 8$ vs. $H_1: \mu < 8$.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{7.88 - 8}{\sqrt{0.06/15}} = -1.90$$

Step 4 Find the critical region.

The numbers in the chart below give the critical values (= critical points) for a one-sided up t test. These values depend on the degrees of freedom (left-hand column) and the chosen value α (numerical value of the Type I Error). For example, if there are 24 degrees of freedom and α = 0.05, the critical value is 1.711.

Some manipulation is needed for one-sided down and two-sided tests.

Degrees of	$\alpha = 0.10$	$\alpha = 0.050$	$\alpha = 0.025$	$\alpha = 0.010$	$\alpha = 0.005$	$\alpha = 0001$	$\alpha = 0.00005$
Freedom 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.078 3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.356 1.350 1.345 1.341 1.337	6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.753 1.761	12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120	31.821 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.718 2.681 2.650 2.624 2.622 2.583 2.563	63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 3.106 3.055 3.012 2.977 2.947 2.921 2.898	318.31 22.326 10.213 7.173 5.893 5.208 4.785 4.501 4.297 4.144 4.025 3.852 3.787 3.733 3.686 3.646	636.62 31.598 12.924 8.610 6.869 5.959 5.408 5.041 4.781 4.587 4.318 4.221 4.140 4.073 4.013 3.965

The numbers in the chart below give the critical values (= critical points) for a one-sided up t test. These values depend on the degrees of freedom (left-hand column) and the chosen value α (numerical value of the Type I Error). For example, if there are 24 degrees of freedom and α = 0.05, the critical value is 1.711.

Some manipulation is needed for one-sided down and two-sided tests.

Degrees of Freedom	$\alpha = 0.10$	$\alpha = 0.050$	$\alpha = 0.025$	$\alpha = 0.010$	$\alpha = 0.005$	$\alpha = 0001$	α = 0.00005
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.356 1.350 1.345 1.341	6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753 1.746	12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131	31.821 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.764 2.718 2.650 2.624 2.602 2.583 2.563	63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 3.106 3.055 3.012 2.977 2.947 2.921 2.898	318.31 22.326 10.213 7.173 5.893 5.208 4.785 4.501 4.297 4.144 4.025 3.930 3.852 3.787 3.733 3.686 3.686	636.62 31.598 12.924 8.610 6.869 5.959 5.408 5.041 4.781 4.587 4.437 4.318 4.221 4.140 4.073 4.015 3.965

Here, the degrees of freedom is n-1=14. $P(t_{14}>1.761)=0.05$ so $P(t_{14}<-1.761)=0.05$ is the critical region.

▶ A chocolate block is advertised as being 8 oz. Suppose we are concerned that the chocolate manufacturers are giving us less than 8 oz of chocolate in a block. We collect 15 blocks of chocolate and calculate:

$$\bar{x} = 7.88, \quad s^2 = 0.06.$$

- Step 1 H_0 : $\mu = 8$ vs. H_1 : $\mu < 8$.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{7.88 - 8}{\sqrt{0.06/15}} = -1.90$$

Step 4 Find the critical region $\Rightarrow t_{14} < -1.761$

▶ A chocolate block is advertised as being 8 oz. Suppose we are concerned that the chocolate manufacturers are giving us less than 8 oz of chocolate in a block. We collect 15 blocks of chocolate and calculate:

$$\bar{x} = 7.88, \quad s^2 = 0.06.$$

- Step 1 H_0 : $\mu = 8$ vs. H_1 : $\mu < 8$.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{7.88 - 8}{\sqrt{0.06/15}} = -1.90$$

- Step 4 Find the critical region $\Rightarrow t_{14} < -1.761$
- Step 5 Since t = -1.90 is in the critical region, we reject H_0 .

The numbers in the chart below give the critical values (= critical points) for a one-sided up t test. These values depend on the degrees of freedom (left-hand column) and the chosen value α (numerical value of the Type I Error). For example, if there are 24 degrees of freedom and α = 0.05, the critical value is 1.711.

Some manipulation is needed for one-sided down and two-sided tests.

. 0	Fα				7		
Degrees of Freedom	a = 0.10	$\alpha = 0.050$	$\alpha = 0.025$	α = 0.010	α = 0.005	α = 0001	α = 0.00005
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.356 1.350 1.341 1.341	6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.771 1.761 1.763 1.746	12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131	31.821 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.764 2.718 2.650 2.624 2.602 2.583 2.563	63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 3.055 3.012 2.977 2.947 2.921 2.888	318.31 22.326 10.213 7.173 5.893 5.208 4.785 4.501 4.297 4.144 4.025 3.930 3.852 3.787 3.733 3.686 3.686	636.62 31.598 12.924 8.610 6.869 5.959 5.408 5.041 4.781 4.587 4.437 4.318 4.221 4.140 4.073 4.015 3.965

- ▶ For one-sided tests the critical region is: $t < -t_{n-1,\alpha}$ or $t > t_{n-1,\alpha}$ depending on the direction.
- ▶ For two-sided tests, the critical region is: $t < -t_{n-1,\alpha/2}$ and $t > t_{n-1,\alpha/2}$.