Pós-Graduação

Visão Global da Tecnologia da Informação

Aula 3

Prof. Jones Egydio
jones.egydio@maua.br

Objetivos

- Introdução aos modelos de regressão;
- Aplicações com dados de exemplo;
- Trabalhar com modelos de *Machine Learning* no Python;
- Aplicações utilizando dados externos;
- Análise dos resultados;
- Atividade para entrega.

Fonte: PEREIRA, W., Notas de Aula – Machine Learning.

Inteligência artificial

Técnicas que permitem aos computadores imitar comportamentos humanos.

Machine Learning

Conjunto de técnicas da IA que capacitam máquinas a aprender com dados de entrada, sem uma programação explícita.

Deep Learning

Conjunto de técnicas de ML que usam redes neurais multinível para gerar soluções altamente especializadas.

Fonte: PEREIRA, W., Notas de Aula – Machine Learning.

Algumas aplicações:

Saúde: diagnósticos médicos;

Finanças: análise de crédito, detecção de fraudes; [n²+n-

Varejo: previsão de vendas e gestão de estoque;

Governo: cidades inteligentes;

Redes de comunicação: detecção de invasões;

Comércio eletrônico: sistemas de recomendação.

Fonte: PEREIRA, W., Notas de Aula – Machine Learning.

A **análise inferencial** pertence ao ramo da Estatística responsável por gerar <u>modelos</u> de comportamentos populacionais a partir de resultados amostrais:

- Estimação de grandezas populacionais
- Treinamento e validação de modelos

Fonte: PEREIRA, W., Notas de Aula – Machine Learning.

- Em geral, não se estudam populações. Motivos:
 - Falta de tempo e recursos (humanos/financeiros) para coletar os dados de interesse;
 - Evitar o eventual desperdício de produtos (exemplo: testes de durabilidade);
 - Questões éticas (ex.: ensaios clínicos de medicamentos);
 - Possibilidade de se obter resultados com graus controlados de confiabilidade a partir de amostras.

Em alguns casos, no entanto, amostras não bastam (ex.: censo populacional).

- Modelos: representações
 <u>simplificadas</u> do comportamento
 de sistemas.
- Permitem <u>entender</u> as relações entre as variáveis envolvidas e <u>prever</u> as respostas para novas entradas.

• Tipos de variáveis:

Variáveis determinísticas	Variáveis aleatórias
y=25+0,5x	X = idade de uma criança
Custo de R\$ 25,00 acrescido de 0,5 para cada unidade de x .	y = tamanho do vocabulário da criança

- Serão abordados <u>modelos de regressão</u>, que são expressões matemáticas que tentam explicar como os valores de uma <u>variável resposta</u> (ou <u>dependente</u>) são afetados pelos valores de uma ou mais <u>variáveis explicativas</u> (ou <u>independentes</u>).
- Só faz sentido criar um modelo de regressão entre variáveis se existir alguma <u>associação</u> entre elas. A investigação inicial é feita, geralmente, de forma gráfica.
- Testes estatísticos podem ser usados para comprovar a significância das relações.

- Os primeiros modelos de regressão a serem discutidos envolverão apenas variáveis <u>quantitativas</u>. A investigação gráfica das possíveis associações serão feitas por meio de diagramas de dispersão.
- A associação mais simples entre variáveis é a associação <u>linear</u>, em que o aumento de uma das variáveis é acompanhado por um aumento ou diminuição da outra e vice-versa, com taxa fixa de crescimento ou decrescimento. Note que esta análise não depende da <u>relação de causa e</u> <u>efeito</u> entre as variáveis.

• Exemplos de tipos de associação entre variáveis:

• O grau de relacionamento linear entre duas variáveis é tipicamente medido pelo coeficiente de correlação de Pearson, denotado por *r*. O valor deste coeficiente varia entre -1 e 1, sendo que, quanto mais próximo de 1 ou -1, maior a força da correlação positiva ou negativa, respectivamente. Critério proposto:

Correlação fraca	$ r \leq 0,40$
Correlação moderada	$0,40\leq r \leq 0,70$
Correlação forte	$ r \geq 0.70$

• Assim, um modelo de <u>regressão linear simples</u> de uma variável quantitativa *y* (dependente) em função de uma variável (independente) *x*, da forma

$$\hat{y} = \theta_0 + \theta_1 x + \varepsilon$$

pode ser obtido computacionalmente para estimar a verdadeira relação

$$\hat{y} = b_0 + b_1 x + \varepsilon$$

sendo ε uma componente aleatória, ou desvio aleatório, ou termo do erro aleatório. Possui uma distribuição normal com $E(\varepsilon)=0$ e $V(\varepsilon)=\sigma^2$.

$$\hat{y} = b_0 + b_1 x + \varepsilon$$

- Os valores θ_0 e θ_1 são estimativas da relação (supostamente) linear entre as variáveis x e y. De forma geral:
- θ_1 = <u>coeficiente angular</u>: representa a variação estimada no valor de y para uma variação unitária no valor de x.
- θ_0 = coeficiente linear: valor estimado de y para x = 0.

- O processo de cálculo dos coeficientes θ_0 e θ_1 (e outras informações que serão discutidas futuramente) é chamado de treinamento do modelo e os dados usados no processo são chamados de dados de treino.
- O resultado do treinamento de um modelo depende diretamente do algoritmo de treinamento e dos dados de treino utilizados.

	\boldsymbol{x}	y
res	x_1	y_1
n valores	x_2	y_2
í		
	x_n	y_n

• Os coeficientes dos modelos de regressão linear geralmente são calculados por um algoritmo que minimiza a <u>soma dos quadrados dos resíduos de ajuste</u> (r_i) , dados pelas diferenças entre os valores observados (y_i) e os valores previstos pelo modelo $(\widehat{y_i})$.

$$\hat{y} = \theta_0 + \theta_1 x$$

n = tamanho da amostra de dados

• No Python, é rotineiramente utilizado para esses modelos:

Biblioteca contendo definições e métodos de cálculo para *arrays* e matrizes multidimensionais.

Biblioteca para criação de gráficos e visualizações de dados, feita para a linguagem Python e sua extensão de matemática, **NumPy**.

Biblioteca criada para a linguagem Python para manipulação e análise de dados em tabelas numéricas e séries temporais.

Biblioteca de algoritmos de aprendizado de máquina para a linguagem Python mais adotada atualmente.

Exemplo 1

Objetivo

• Trabalhar com um modelo de regressão linear simples no Python.

Modelo esperado:

$$\hat{y} = -1696,192 + 9349,40x$$

Para x = 0.5:

$$\hat{y} = -1696,192 + 9349,40(0,5) = 2978,51$$

x	у
15,5	2.158,7
23,75	1.678,15
8	2.316
17	2.061,3
5	2.207,5
21,5	1.753,7

Imagem ilustrativa

Exemplo 2

Objetivo

• Trabalhar com um modelo de regressão linear múltipla no Python.

Modelo esperado:

$$\hat{y} = -8,188 + 0,8347x_1 + 0,041x_2$$

Para
$$x_1 = 30$$
 e $x_2 = 4.5$:
 $\hat{y} = -8.188 + 0.8347(30) + 0.041(4.5) = 17.040$

x_1	x_2	у
2	50	9,95
8	110	24,45
11	120	31,75
10	550	35
8	295	25,02
5	400	21,15

Imagem ilustrativa

- Reforçando o que foi discutido anteriormente: só faz sentido criar um modelo de regressão linear entre variáveis que apresentem um relacionamento linear. A avaliação pode ser feita graficamente ou por <u>testes estatísticos</u> sobre o coeficiente de correlação linear.
- No entanto, mesmo quando a relação entre as variáveis não for linear, em muitos casos é possível torná-la linear por meio de uma transformação conveniente. Os modelos que admitem este tipo de transformação são chamados de intrinsecamente lineares.

- Após a transformação, os dados <u>alterados</u> são ajustados por um modelo de regressão linear. Se o modelo for significativo e tiver boa qualidade de ajuste, calculam-se os parâmetros do modelo (<u>não linear</u>) original.
- A <u>função não linear</u> a ser estimada (e, consequentemente, a transformação a ser aplicada) pode ser escolhida por observação <u>gráfica</u> ou por conhecimento do <u>modelo teórico</u> do fenômeno em questão.
- A seguir será mostrado um exemplo de transformação e, na sequência, outras formas usadas na prática.

Exemplo 3. Considere que as variáveis x e y estão relacionadas pela **função potência**: $y = \alpha x^{\beta}$. Neste caso, é possível utilizar a seguinte transformação:

$$ln(y) = ln(\alpha x^{\beta}) \Rightarrow ln(y) = ln(\alpha) + \beta ln(x)$$

Em seguida, efetua-se uma mudança de variáveis:

$$z = ln(y)$$
; $a = ln(\alpha)$; $b = \beta$; $w = ln(x)$

Com isso, obtém-se o modelo linear: z = a + bw.

Transformação e resultados:

Х	У
1,0	3,5
2,0	5,4
3,0	9,0
4,0	14,8
5,0	24,0
6,0	29,3

 $y = \alpha x^{\beta}$

	w = ln(x)	z = (ln(y))
	0	1,25276
	0,69315	1,6864
,	1,09861	2,19722
	1,38629	2,69463
	1,60944	3,17805
	1,79176	3,37759

$$z = a + bw$$

Numpy: função **log**

Regressão linear:

Desfazendo a transformação:

$$\beta = b = 1,2341$$

 $\alpha = e^a = e^{1,0445} = 2,842$

$$y = 2,842x^{1,2341}$$

Dados transformados

Dados originais

Caso polinomial. Suponha que as variáveis x e y se relacionem pelo polinômio: $\hat{y} = b_0 + b_1 x + b_2 x^2$. Neste caso, uma regressão linear <u>múltipla</u> pode ser usada, transformando x e x^2 em duas "novas" variáveis: $x_1 = x$; $x_2 = x^2$.

- Os três coeficientes da regressão linear de y em função de x_1 e x_2 serão, respectivamente, os coeficientes do polinômio de segundo grau.
- Este tipo de transformação tende a gerar modelos de regressão não significativos devido à correlação natural entre as variáveis (afinal, uma é função da outra).

Função hiperbólica: $y = \alpha + \beta/x$

Transformação: w = 1/x

Variáveis: z = y; $a = \alpha$; $b = \beta$; w = 1/x

Modelo linear: z = a + bw

Parâmetros do modelo original = modelo linear

Funções do tipo: $y = 1/(\alpha + \beta x)$

Transformação: z = 1/y

Variáveis: z = 1/y; $a = \alpha$; $b = \beta$; w = x

Modelo linear: z = a + bw

Parâmetros do modelo original = modelo linear

Função exponencial: $y = \alpha e^{\beta x}$

Transformação: $ln(y) = ln(\alpha) + \beta x$

Variáveis: z = ln(y); $a = ln(\alpha)$; $b = \beta$; w = x

Modelo linear: z = a + bw

Parâmetros do modelo original: $\alpha = e^a$; $\beta = b$

Atividade:

- Resolver os dois exercícios descritos no notebook
 [2023_PG_VGTI]_AT_Lec_03.ipynb, disponível para download juntamente com o material da aula na página da disciplina no Open LMS.
- Prazo de entrega: 11/06/2023.

Referências bibliográficas

- BRUCE, P., BRUNCE, A., Estatística Prática para Cientistas de Dados, Alta Books, São Paulo, 2019;
- PEREIRA, W., Notas de Aula Machine Learning Métodos não-probabilísticos, 2022;
- MONTGOMERY, D. C., RUNGER, G. C. Estatística aplicada e probabilidade para engenheiros. 5. ed. Rio de Janeiro, RJ: LTC, 2013. 521 p.;
- DEVORE, J. L. Probabilidade e estatística: para engenharia e ciências. São Paulo: Thomson, 2006. 692
 p.;
- GÉRON, A. Hands-on machine learning with Scikit-Learn & Tensor-Flow: concepts, tolls, and techniques to build intelligent systems. Sebastopol, CA: O'Reilly, c2017. 548 p.
- MARCHESE, R. M., Notas de Aula ADA, São Paulo, 2023. Disponível em: https://github.com/renatapink/DS_Hypera_960/tree/main

Obrigado!

