From the Chain Rule to *u*-Substitution to Change of Variables

A careful, step-by-step exposition with intuition and generalization

0) Core idea in one line

Differentiation: $\frac{d}{dx}F(g(x)) = F'(g(x))g'(x)$.

Integration in reverse: $\int F'(g(x)) g'(x) dx = F(g(x)) + C.$

Rename u = g(x): $\int \phi(g(x)) g'(x) dx = \int \phi(u) du$.

With limits and bijections: push bounds via u = g(x); in \mathbb{R}^n , use a diffeomorphism and the Jacobian determinant.

1) Chain rule \Rightarrow reverse chain rule

Let F satisfy $F' = \phi$. Then

$$\frac{d}{dx}F(g(x)) = \phi(g(x))g'(x) \implies \int \phi(g(x))g'(x) dx = F(g(x)) + C.$$

This is the algebraic heart of u-substitution.

2) u-substitution (indefinite integrals)

Definition 1 (Indefinite u-substitution). Choose u = g(x) with g differentiable. Then du = g'(x) dx, so

$$\int \phi(g(x)) \, g'(x) \, dx = \int \phi(u) \, du = F(u) + C = F(g(x)) + C.$$

Intuition. Relabel the inner expression g(x) as u. The differential rescales by the chain rule: dx = du/g'(x).

Pattern recognition. Seek g(x) whose derivative g'(x) multiplies the remaining factor up to a constant.

Example 1 (Indefinite). $\int \frac{5x-2}{\sqrt{7+(5x-2)^2}} dx$. Set $u = 7+(5x-2)^2 \Rightarrow du = 10(5x-2) dx$. Then

$$\int \frac{5x-2}{\sqrt{7+(5x-2)^2}} \, dx = \frac{1}{10} \int u^{-1/2} \, du = \frac{1}{5} \sqrt{u} + C = \frac{1}{5} \sqrt{7+(5x-2)^2} + C.$$

3) u-substitution with limits

Theorem 1 (1D change of variable). Let $g:[A,B] \to \mathbb{R}$ be C^1 and strictly monotone, and let ϕ be integrable. Then

$$\int_{A}^{B} \phi(g(x)) g'(x) dx = \int_{g(A)}^{g(B)} \phi(u) du, \quad \text{with } u = g(x).$$

Intuition. The map u = g(x) reparametrizes the horizontal axis. The factor g'(x) compensates local stretching so that area is preserved.

Example 2 (Definite).

$$\int_0^1 \frac{5x - 2}{\sqrt{7 + (5x - 2)^2}} dx = \frac{1}{10} \int_{u = 7 + (-2)^2}^{u = 7 + (3)^2} u^{-1/2} du = \frac{1}{5} \left(\sqrt{16} - \sqrt{11} \right) = \frac{1}{5} \left(4 - \sqrt{11} \right).$$

Note: transform bounds through u = g(x); do not back-substitute x after evaluation.

Remark 1 (Non-monotone g). If g is not monotone on [A, B], split into subintervals where it is monotone and apply the theorem piecewise.

4) Algebraic alignment when the match is imperfect

If the numerator is not exactly g'(x), decompose it so part matches g'(x) and the remainder is integrable by a known primitive.

Example 3 (A composite definite integral with a split).

$$I = \int_0^2 \frac{6x - 5}{\sqrt{10 + (3x - 2)^2}} \, dx.$$

Write 6x - 5 = 2(3x - 2) - 1. Let y = 3x - 2 so dy = 3 dx and bounds y(0) = -2, y(2) = 4. Then

$$I = \frac{1}{3} \int_{-2}^{4} \frac{2y}{\sqrt{10 + y^2}} dy - \frac{1}{3} \int_{-2}^{4} \frac{1}{\sqrt{10 + y^2}} dy.$$

First term: $u = 10 + y^2$, $du = 2y \, dy \Rightarrow \frac{2}{3} (\sqrt{26} - \sqrt{14})$.

Second term: $\int \frac{dy}{\sqrt{a^2 + y^2}} = \operatorname{arsinh}(y/a)$ with $a = \sqrt{10}$:

$$\frac{1}{3} \left[\operatorname{arsinh} \left(\frac{y}{\sqrt{10}} \right) \right]_{2}^{4} = \frac{1}{3} \left(\operatorname{arsinh} \frac{4}{\sqrt{10}} + \operatorname{arsinh} \frac{2}{\sqrt{10}} \right).$$

Thus

$$I = \frac{2}{3} \left(\sqrt{26} - \sqrt{14} \right) - \frac{1}{3} \left(\operatorname{arsinh} \frac{4}{\sqrt{10}} + \operatorname{arsinh} \frac{2}{\sqrt{10}} \right).$$

5) Full 1D change-of-variables formula

A bijective C^1 map g with $g'(x) \neq 0$ yields

$$\int_{A}^{B} f(x) dx = \int_{u=q(A)}^{u=g(B)} f(g^{-1}(u)) \frac{du}{g'(g^{-1}(u))}.$$

Equivalently, if $f(x) = \phi(g(x)) g'(x)$ then

$$\int_{A}^{B} \phi(g(x)) g'(x) dx = \int_{g(A)}^{g(B)} \phi(u) du.$$

Orientation: if g' < 0, the absolute value appears in the denominator form; in practice one flips the bounds.

6) Multivariable change of variables (Jacobian)

Theorem 2 (Jacobian formula). Let $\Phi: U \subset \mathbb{R}^n \to V \subset \mathbb{R}^n$ be a C^1 bijection with C^1 inverse and det $D\Phi(\mathbf{x}) \neq 0$ on U. For integrable f,

$$\int_{\Phi(\Omega)} f(\mathbf{u}) d\mathbf{u} = \int_{\Omega} f(\Phi(\mathbf{x})) | \det D\Phi(\mathbf{x}) | d\mathbf{x}.$$

Intuition. $|\det D\Phi|$ is the local *n*-D volume scale of the linearization. In 1D this reduces to |g'(x)|.

Example 4 (Polar coordinates). $\Phi(r, \theta) = (r \cos \theta, r \sin \theta)$.

$$D\Phi = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}, \quad |\det D\Phi| = r.$$

Hence

$$\iint_D f(x,y) dx dy = \int_{\Phi^{-1}(D)} f(r\cos\theta, r\sin\theta) r dr d\theta.$$

7) When to use what

Use u-sub if you can isolate g(x) with a multiple of g'(x). If not, try algebraic alignment, integration by parts, completing the square with trig/hyperbolic substitutions, rational substitutions, or partial fractions.

8) Common errors

(i) Not transforming bounds in definite integrals. (ii) Choosing u so du does not appear up to a constant. (iii) Ignoring non-monotonicity. (iv) In \mathbb{R}^n , omitting $|\det D\Phi|$.

9) Worked example connecting all levels (summary of Example 3)

$$I = \int_0^2 \frac{6x - 5}{\sqrt{10 + (3x - 2)^2}} dx = \frac{1}{3} \int_{-2}^4 \frac{2y}{\sqrt{10 + y^2}} dy - \frac{1}{3} \int_{-2}^4 \frac{1}{\sqrt{10 + y^2}} dy$$
$$= \frac{2}{3} \left(\sqrt{26} - \sqrt{14} \right) - \frac{1}{3} \left(\operatorname{arsinh} \frac{4}{\sqrt{10}} + \operatorname{arsinh} \frac{2}{\sqrt{10}} \right).$$

Outer affine change $x \mapsto y$ is the 1D theorem; inner $y \mapsto u$ is pure reverse chain rule.

10) Minimal recipes

Indefinite. Pick u = g(x) so du appears, integrate in u, back-substitute. **Definite.** Replace bounds by g(A), g(B), evaluate in u, no back-substitution. **Multivariable.** Choose Φ simplifying the domain, multiply integrand by $|\det D\Phi|$, transform the region.

11) Two quick generalizations

Trig and hyperbolic substitutions are structured changes of variables that linearize radicals: $x = a \tan \theta \Rightarrow 1 + \tan^2 \theta = \sec^2 \theta$ and $x = a \sinh t \Rightarrow \sqrt{a^2 + x^2} = a \cosh t$.

12) Targeted practice

(a)
$$\int_{-1}^{3} \frac{4x+1}{\sqrt{5+(2x+1)^2}} dx$$
 (b) $\int_{0}^{\pi/4} \frac{\tan \theta}{\sqrt{1+\tan^2 \theta}} d\theta$ (c) $\iint_{x^2+y^2 \le 4} (x^2+y^2) dx dy$.
Hints: (a) $u = 5 + (2x+1)^2$. (b) use $\sqrt{1+\tan^2 \theta} = \sec \theta$ or $u = 1 + \tan^2 \theta$. (c) polar with Jacobian r .