STA 1013 : Statistics through Examples

Lecture 14: Review for Quiz 2

Hwiyoung Lee

October 2, 2019

Department of Statistics, Florida State University

Quiz 2

- Oct 4 (Fri), 2019
- ullet Topics : Lecture note 7 \sim Lecture note 13
 - Exercises and Examples in the Lecture notes
 - Practice Problems
- You can use your calculator
- Bring one piece of hand written cheat sheet (both side allowed)

Measure of Center

Measure of Center

Mean

• Takes every value into account

$$\mathsf{Mean} = \frac{\mathsf{sum of all values}}{\mathsf{total number of values}} = \frac{\sum_{i=1}^n x_i}{n} = \bar{x}$$

Median

- The middle value of the ordered data
- Half of the observations are larger and half are smaller than the Median

Mode

- The value of the data that occurs with the greatest frequency.
- The mode may not exist
- The mode may not be unique

Example: Annual Income

Bill Gates moves to town

Name	Annual Income
Tom	\$ 32,000
Larry	\$ 36,000
Susan	\$ 39,000
Paul	\$ 41,000
Marcus	\$ 50,000
Randy	\$ 57,000
Sandy	\$ 60,000
Tim	\$ 75,000
Pam	\$ 80,000
Kim	\$ 95,000
Bill Gates	\$ 5,000,000,000

Mean? Mean is very sensitive to the outliers

Example : Median

Example: 5, 11, 1, 13, 6, 9, 8, 3

- Sort : 1, 3, 5, 6, 8, 9, 11, 13
- Median : (8+1)/2 th observation
 - ullet 4.5 th observation : average of 4 th and 5 th observation
- Q: What happens to the median if we change the 1 to -1,000?

- Mean :
- Q: What happens to the mean if we change the 1 to -1,000?

Mode

Mean, Median always exist and are always unique

1. The mode may not exist

• Example: 1, 2, 3, 4, 5, 6, 7, 8, 9

2. The mode may not be unique

• Example: 1, 2, 2, 2, 5, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10

6

Weighted Mean

A weighted mean accounts for variations in the relative importance of data values.

$$\begin{aligned} \text{Weighted mean} &= \frac{\text{Sum of (each data value} \times \text{its weight)}}{\text{sum of all weights}} \\ &= \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i} \end{aligned}$$

- ullet Each data value is assigned a weight (w_i)
- Weighted means are appropriate whenever the data values vary in their degree of importance

Measure of Variation

Measure of Variation

Range

$$\mathsf{Range} = \max - \min$$

IQR

$$\mathsf{IQR} = Q_3 - Q_1$$

Standard Deviation

$$s = \sqrt{\frac{\mathsf{Sum of (Data value - mean)}^2}{\mathsf{The number of observations-1}}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\mathbf{n} - \mathbf{1}}}$$

Measure of Variation

Five number summary

min,
$$Q_1$$
, median, Q_3 , max

Identify Outliers

Calculate the lower and upper fences:

$$LF: Q_1 - 1.5 \times IQR$$

$$\mathsf{UF}:Q_3+1.5\times\mathsf{IQR}$$

Outliers are values that lie outside of the fences

Histogram

Histogram is the generalized version of Stem and Leaf plot, bar chart

- The first step is to bin the data
- Count the frequencies
- Do same steps in a bar chart

Example: Weight data

Draw the histogram of the weight data given below

195.6	200.4	165.6	165.3	191.7	169.3	153.2
						160.3
198.5	163.2	166.3	197.3	201.3	168.2	198.4

Use the following bins :

$$[140, 150), [150, 160), [160, 170), [170, 180), [180, 190), [190, 200), [200, 210)$$

Histogram of the weight data

Binned weight data

Weight	Count		
140 ~ 149.9	1		
$150\sim159.9$	2		
$160\sim169.9$	7		
$170 \sim 179.9$	2		
$180 \sim 189.9$	2		
$190\sim199.9$	5		
$200 \sim 209.9$	2		

Shape of data (Symmetric)

- Bell shape
- Left half is a mirror image of its right half
- Mode = Median = Mean

Shape of data (Left Skewed)

- Values are more spread out on the left side
- Values are concetrated on the right side (large value)
- Mode > Median > Mean

Shape of data (Right Skewed)

- Values are more spread out on the right side
- Values are concetrated on the left side (small value)
- Mode < Median < Mean

Shape of data (Variance)

Box plot

- First find the five-number summary
- Find the lower, upper fence (Detect outliers)
 - ullet No outliers o whiskers : min and max of the data
 - \bullet Outliers exist \to whiskers : min and max values inside the lower, and upper fence

Shape of Box plot (Symmetric)

Box plot of Symmetric data

- Median located on the center of the box
- the left and right tails are equally balanced

Shape of Box plot (Left skewed)

Box plot of the Left Skewed data

- Median closer to the upper quartile (Q_3)
- There are Low outliers (left side)
- Left whisker is longer than the right whisker

Shape of Box plot (Right skewed)

Box plot of the Right Skewed data

- Median closer to the lower quartile (Q_1)
- There are High outliers (right side)
- Right whisker is longer than the left whisker

Shape of Box plot (Variance)

Bank A	4.1	5.2	5.6	6.2	6.7	7.2	7.7	7.7	8.5	9.3	11.0
Bank B	6.6	6.7	6.7	6.9	7.1	7.2	7.3	7.4	7.7	7.8	7.8

Box-plot of the bank data

The Normal Distribution

If we overlay the histogram with a smooth curve, the shape of this smooth distribution has **three** important characteristics:

- 1. Single peaked (Unimodal)
- 2. Symmetric around its single peak
- 3. "Bell-shaped" distribution

The smooth distribution, with these three characteristics, is called a **Normal distribution**.

Empirical Rule (Approximation)

The 68-95-99.7 rule for a Normal Distribution

- About 68% of the data values fall within 1 standard deviation of the mean.
- About 95% of the data values fall within 2 standard deviations of the mean.
- About 99.7% of the data values fall within 3 standard deviations of the mean.

Normal Probability (Exact)

• Find the probability from the given value :

normalcdf(Lower value, Upper value, μ , σ)

• Find the value from the given probability :

invnorm(Left Tail probability, μ , σ)