UNIVERSAL LIBRARY
OU\_148792

AWAGIN
TYPESHALL

AWAGIN
TYPESHALL

LIBRARY

LIBRARY

AWAGIN
TYPESHALL

A

### OSMANIA UNIVERSITY LIBRARY

| Call No. | 311.26/M46 T<br>Maverick, L.M. | Accession No. | 31661 |
|----------|--------------------------------|---------------|-------|
| Author   | Maverick, L.M.                 |               | •     |
|          | Time stages                    |               |       |

This book should be returned on or before the date last marked below.

#### TIME SERIES ANALYSIS

#### **SMOOTHING BY STAGES**

#### Lewis A. Maverick

Published by Paul Anderson Company
San Antonio, Texas, 1945

#### PREFACE

THIS book is concerned with trends or smoothing lines, and with cycles. In difficulty it is designed for the student or statistical clerk who has had but little training in statistics. He should have fitted straight line trends by least squares, and have talculated seasonal indexes and the normal line; he should be familiar with the use of the normal line as a base of reference in studying business cycles; he should have plotted time series, trends, and moving averages on quadrille paper and on semi-logarithmic paper; and he should be ready to form conclusions as to the relative advantages, as trends, of the straight line and sundry curves.

BUT in this Proface the work must be defended; consequently appeal is made here to more highly qualified readers.

THE process of time series analysis through "smoothing by stages" owes much to Ragnar Frisch, whose ideas underlie the whole. A minor difference from Frisch is in the emphasis upon moving averages rather than upon points of inflection (see the first reference, below, to Econometrica; in that article, the writer followed Frisch closely, even to the extent of relying upon points of inflection). Other important predecessors are Simon S. Kuznets and C. A. R. Wardwell.

THE method of smoothing by stages has been described or used by the writer in several oublications: "Time Series, their Analysis by Successive Smoothings", Econometrice, I, 2, July 1933, pp. 238-246. "Cycles in Real Estate Activity", Journal of Lend and Public Utility Economics, VIII, 2, May 1932, pp. 191-199. "Cycles in Real Estate Activity, Los Angeles County", ibid., IX,.1, Feb. 1933, pp. 52-56. "Real Estate Activity in California", ibid., X, 3, Aug. 1934, pp. 291-295. Economic and Social Statistics, University of California Press, 1941.

THE method was used and commended by Elizabeth Waterman Gilboy in Time Series and the Derivation of Demand and Supply Curves: A Study of Coffee and Tea 1850-1930", Quarterly Journal of Economics, XLVIII, August 1934, pp. 667-685.

THE procedure has been improved and reduced to routine, so that now it seems appropriate to present a full report, with illustrations, in the hope that statisticians may find it useful.

A JUNIOR statistician who follows this method of analyzing time series can arrive at serviceable smoothing lines, of which that of the highest order will approximate the underlying or secular trend. The method gives him tools to accomplish a cycle analysis which formerly lay wholly beyond his powers. The smoothing lines and cycles give him material for a rich description of each time series, so that comparison between series can be made similarly extensive. This information enables him to make a good mechanical forecast; to be sure, a mechanical forecast is inadequate, and a really adequate forecast must always lie beyond the powers of anyone not master both of the technical processes of statistics and of the field studied; but the mechanical forecast is at least an excellent beginning, upon which someone more expert may make modifications to allow for expected forces and tendencies.

THE method of smoothing by stages, when employed by an accomplished statistician, saves no time in determining the trend line, for there is an unavoidable amount of detail in the process. But the highest order smoothing line probably furnishes a closer fitting trend than he can secure by a total algebraic process. And he may rest assured that for him too, as well as for the novice, the method gives new powers in the fields of cycle analysis, the comparison of time series, and forecasting.

MANY have undertaken cycle analysis, using other methods of segregating the cyclical movements from the non-recurrent components of the series. A leader among such statisticians is Simon S. Kuznets; extensive reference is made to one of his books in Chapter V herein, and to an article in this Preface. See also in Wesley C. Mitchell, Business Cycles, the chapter on Statistics. Analyses by these men and by others have shown the significance of this phase of time series study. It is hoped that statisticians may find that the method of smoothing by stages improves the tools for the study.

CONSIDER now a classification of types of trends, and place among the categories the smoothing lines secured under the method of "smoothing by stages". The chief reference will be to the searching theoretical article by Simon S. Kuznets, "On the Analysis of Time Series". (1)

TRENDS fall into two broad classes: empirical, and mathematically fitted by some total process. An empirical trend grows out of the data in its own vicinity in time, by an inductive process. It fits close to the plotted points representing the data. It has no preconceived form, and when it has been located, it usually defies description by a mathematical equation. Examples of empirical trends are moving averages and lines drawn free-hand. As will be seen, the smoothing lines secured through the method of "smoothing by stages" combine the properties of these two sub-classes. Most critics have granted that the moving average is satisfactorily objective (the subjective element lying principally in the choice of the length or period of the average), but some contend that the free-hand trend has been so subjective as to call for complete rejection. In the process of smoothing by stages, there is some departure from the moving average in the direction of a free-hand curve, but the process is protected by several objective criteria.

KUZNETS, in the article just referred to, "On the Analysis of Time Series," questions whether an empirical trend can contain enough internal evidence of the persistence of form through successive periods, to warrant a forecast. In response, it may be pointed out that the moving average—shows the actual local central tendency of the variable through each cycle, with a faithfulness to current conditions that cannot be approached by a trend line fitted by a total mathematical procedure. Consequently, any persistence of form in the moving average furnishes a much better basis—for a forecast than does a similar apparent persistence of form in a total mathematical curve. To be sure, persistence of form can be shown more reliably by another mathematical procedure: if the period be broken into parts and a trend fitted separately to each short part, the series of trends so secured will give a satisfactory basis to judge persistence of trend form; but this procedure is quite different from fitting one trend to the totality of the data.

THE second general class of trends comprises those that are mathematically fitted - usually by a total process; some description of this second type of trend has already been offered, for contrast, in discussing the first type. One and sometimes two decisions involving subjective judgment are

required: (a) what type of curve to fit; and sometimes, (b) a critical date or other parameter, such as the date of the point of inflection of a logistic curve. Trends that have been mathematically fitted are sufficiently objective to satisfy the requirements of economic statistics.

THE commoner types of curves employed in the mathematical process are: (1) the straight line, (2) the parabola or second degree polynomial, (3) the cubic or third degree polynomial, sometimes called a third degree parabola, (4) the simple exponential curve, which appears as a straight line on semi-logarithmic paper, and (5) the logistic and Gompertz curves, which are characterized by an S-shape. Other forms have been considered: higher degree polynomials are not practical; the arc-tangent might be added in class 5; and recurring trigonometric functions like the sine and cosine might form a sixth class; they have been of interest to statisticians who think of the long tidal movements.

ONE may distinguish - though it is of theoretical interest only - between two types of mathematically fitted curves: on the one hand, curves that really essay an explanation of the changes in the variable under study ---with parameters that correspond to real phenomena. Such curves have not been discovered for economic time series. On the other hand, there are curves which serve as smoothing devices. These differ in the amount of explanation they seem to offer of the phenomena under study, and in the "reasonableness" of their shape. Kuznets, in the book to be examined in Chapter V, offers the S-shaped logistic curve as the "proper" trend form for industrial growth, etc., although he is unable to give physical meaning to the parameters in the equation.

BUT no one has yet come forward with a general type of curve to fit price series. In a period of stable money (or if correction were made for the changing general value of money), a straight line or a logistic might fit. This problem will be referred to again, below.

AN important theoretical issue between empirical trends and those fitted by a total mathematical process, is with respect to the assumption of homogeneity of the forces affecting the value of the variable. "If . . we have forecasting done from a single line of trend, from a description that is . . . historically limited, the assumption is that the forces that have been determining such movement in the past will continue to do so in the future - will repeat themselves. The basis of expectation here is not at all the statistical analysis, but information from a different source, which enables the forecaster to assert that the period for which the trend line was fitted was homogeneous, that is, under a preponderant influence of one and the same known set of forces, which is expected to repeat its influence in the future". (1)

To illustrate how radical and unrealistic is the assumption of underlying homogeneity of the affecting forces, even through the observed period - without extrapolating into the future - - let us consider several time series. Suppose one were studying the method of lighting in American homes since 1800 (or the financial outlay upon that lighting, or the total candle power). Heterogeneity is striking, for the homes have been lighted by oil lamps, candles, kerosene, gas, and several types of electric lamps.

IF a price series were under examination, not only would there be involved problems of supply (discoveries, exhaustion of resources, etc.) and demand in the single industry (in which homogeneity might not be impossible), but also in the supplying industries, the rival industries, and the industries which use the product of this one as their raw material. An invention, or

a change in import or excise taxes, in any of these fields, would change the underlying forces. And, most fickle of all, the changing purchasing power of money makes for heterogeneity over time, in any price series.

IT would be unwise to fit a smooth mathematical curve to the number of votes cast in American presidential elections. There have been changes from property qualification to universal white manhood suffrage, to the freeing of the slaves, and to woman suffrage; territorial growth from thirteen states to forty-eight; the Civil War as an affecting episode; changes in the flow of immigration and of the westward movement of population; and the subjects voted upon have also changed, as for example in the matter of the direct election of senators.

FOR the business of the Port of San Francisco, homogeneity cannot be predicated, for the record runs through Spanish, Mexican, and American sovereignty, the gold strike of 1848, the Civil War, the completion of the transcontinental railroad in 1869, and of other lines, the Spanish-American War and the resulting development of far eastern trade, the earthquake and fire of 1906, the first World War, the opening of the Panama Canal in 1915, and the Second World War - with the emergence of air traffic.

QUITE naturally, the assumption of homogeneity of the affecting forces often strikes the operator himself as untenable; see, in Chapter V, how Kuznets has broken into two fragments the trend that he fitted to the series on Eric Canal freights. And, even when the fit of a mathematical curve is not so bad as to demand such fragmentation, it may, nevertheless, be worse than the fit of a well-adapted empirical curve of the same gentleness (long radius) of curvature.

EVEN in the case of fitting an empirical trend or smoothing line, it may sometimes prove advisable to regard some of the data as so completely different from the rest that the empirical line should be made discontinuous. An excellent recent example of such treatment is to be found in Norman J. Silberling, Dynamics of Business, (1) page 154. Silberling, in dealing with price series, regards the inflationary episodes of wartime as belonging in another "statistical universe" from prices during peacetime. Consequently, he discontinues his smoothing line through those inflationary periods.

THE present writer faced another problem in studying the various business series of San Francisco as they were affected by the earthquake and fire of 1906. I had plotted monthly data. In the first smoothing line, SL A, I allowed a saltatory displacement to stand, at the time of the catastrophe. In the second smoothing line, SL B, which cut through the short business cycle, I again permitted a saltatory displacement, though along a somewhat sloped line, rather than abruptly vertical. As for the third smoothing line, SL M, which cut through the major cycle, I felt it advisable to draw the curve in a continuous manner rather than to permit again a saltatory displacement. But I recognized the subjective nature of the decision; possibly another saltatory decline should have been admitted, and the continuous line reserved for the next stage of smoothing, designed to remove the long wave.

AN important publication in the field of the present book is Macaulay: The Smoothing of Time Series. Macaulay provides a number of weighted formulas for moving averages, designed for series in which the length or period of the cycle is reasonably uniform. Some of Macaulay's formulas have the advantage of giving greater weight to the middle values and less to

the ends. This brings the moving average to the full desirable departure in the convex direction (departure from the less satisfactory position which an unweighted average would occupy), in periods when there is marked curvature in the moving average. But that same purpose is accomplished herein by the reiteration of the moving average (see correction for curvature, Chapter II), with an advantage over Macaulay's formulas, of adaptation to changing lengths of the cycles.

C. A. R. WARDWELL devised the "moving cyclical average", which makes possible an objective check upon the smoothing process for series with changing cycle lengths. His moving cyclical average is here accepted as the principal objective check in the smoothing process. Some ingenious statistician may find a way to combine Wardwell's contribution of the variable length moving average with Macaulay's heavy weighting of the central values, and so make unnecessary a separate calculation to correct for curvature. But that separate calculation is not laborious, and gives excellent results.

THE method of smoothing by stages is <u>systematic</u>; each stage of smoothing is similar to the next. The only difference among the stages is in one detail. In smoothing out a daily, weekly, or annual cycle, a simple moving average with <u>fixed and uniform</u> length is employed, because each successive cycle has the same length. But in smoothing out the short business cycle, the major cycle, or the "long wave" - - and also in smoothing out the monthly cycle (the months consisting of 31 days, 28, 31, 30, etc.) - - Wardwell's moving cyclical average of changing length is used. But this minor adaptation of method does not impair the truly unified and systematic nature of the procedure.

### TABLE OF CONTENTS

| PREFACE     |                                                                                                                      | 111 |
|-------------|----------------------------------------------------------------------------------------------------------------------|-----|
| CHAPTER I.  | INTRODUCTION                                                                                                         | 1   |
|             | Sketch a, Smoothing lines and cycle.                                                                                 | 2   |
|             | Table A, San Francisco real estate activity 1920 to 1929. The annual cycle.                                          | #   |
|             | Chart 1, San Francisco real estate activity 1920 to 1929. Application of moving average and trend; the annual cycle. | 7   |
|             | The plan of procedure.                                                                                               | 8   |
|             | A simplified freehand procedure with no object-<br>ive checks.                                                       | 8   |
| CHAPTER II. | THE SMOOTHING LINES                                                                                                  | 10  |
| Section 1:  | Locating Smoothing Line A                                                                                            | 10  |
| Section 2:  | Devices to Aid the Smoothing Process                                                                                 | 11  |
|             | Moving Averages                                                                                                      | 11  |
|             | Sketch b, Dotted ends of moving average line.                                                                        | 12  |
|             | The moving cyclical average.                                                                                         | 13  |
|             | Sketch c, Correct and incorrect lengths for moving average.                                                          | 14  |
|             | Sketch d, Tentative smoothing line and phase points.                                                                 | 14  |
|             | Sketch d2, same, with extended time scale.                                                                           | 14  |
|             | Tentative Smoothing line and phase points.                                                                           | 15  |
| Section 3:  | Locating Smoothing Line B                                                                                            | 16  |
|             | Table B, A suggested arrangement of the calculations for locating the smoothing lines.                               | 18  |
| •           | The moving geometric mean.                                                                                           | 19  |
| Section 4:  | Locating Smoothing Line M                                                                                            | 19  |
|             | Sketch e, Correcting for curvature.                                                                                  | 20  |
|             | Curvature: A systematic error in moving averages; its correction by reiteration of the moving average.               | 21  |
|             | Use of Smoothing Line M as a guide to a mathematically fitted trend.                                                 | 22  |

|              | •                                                                                                                          | ix   |
|--------------|----------------------------------------------------------------------------------------------------------------------------|------|
| Section 5:   | Illustration: San Francisco real estate activity, 1867 to 1940; two stages of smoothing.                                   | 22   |
|              | Table Ca, Locating SL B.                                                                                                   | 25   |
|              | Table Cb, Locating SL M; first part of calculation.                                                                        | 28   |
|              | Table Cc, Locating SL M, continued, correction for curvature.                                                              | 31   |
|              | Chart 2, San Francisco real estate activity, 1867 to 1940; first stage of smoothing.                                       | 32   |
|              | Chart 3, San Francisco real estate activity, second stage of smoothing.                                                    | 33   |
| CHAPTER III. | THE CYCLES                                                                                                                 | 34   |
| Section 1:   | Characteristics of the cycles                                                                                              | 34   |
|              | Measures of the annual cycle.                                                                                              | 34   |
|              | Measures of the short business cycle.                                                                                      | 35   |
|              | Measures of the major cycle.                                                                                               | 35   |
|              | Table D; Arrangement for the calculation of the measures of the several orders of cycles.                                  | 36   |
|              | Da, The seasonal or annual cycle.                                                                                          | , 36 |
|              | Db, The short business cycle.                                                                                              | 37   |
|              | Dc, The major cycle.                                                                                                       | 38   |
|              | Explanation of a use of straight lines.                                                                                    | 39   |
| Section 2:   | fllustration: San Francisco real estate activity; Calculation of the measures of the cycles, from the record 1867 to 1940. | 39   |
|              | Table Ea, Measures of the short business cycle.                                                                            | 40   |
|              | Table Eb, Measures of the major cycle.                                                                                     | 45   |
|              | Chart 4, Cycles based on the record 1867 to 1940.                                                                          | 44   |
|              | Chart 5, Standard or typical cycles based on the record 1867 to 1940.                                                      | 45   |
| CHAPTER IV.  | APPLICATION TO CORRELATION AND FORECASTING                                                                                 | 46   |
| Section 1:   | Comparison of time series; correlation                                                                                     | 46   |
| Section 2:   | Forecasting                                                                                                                | 46   |
|              | San Francisco real estate activity based on the record 1867 to 1940.                                                       | 47   |
|              | Chent 6 A forecast                                                                                                         | 50   |

| CHAPTER V. | Analysis of seven series   | 51  |
|------------|----------------------------|-----|
| Section 1: | Wheat prices               | 52  |
|            | Table F                    |     |
|            | Charts 7, 8, 9, 10         |     |
|            | Table G                    |     |
| Section 2: | Wheat production           | 66  |
|            | Table H                    |     |
|            | Charts 11, 12, 13, 14, 15  |     |
|            | Table J                    |     |
| Section 3: | Cotton production          | 83  |
|            | Table K                    |     |
|            | Charts 16, 17, 18, 19      |     |
|            | Table L                    |     |
| Section 4: | . Crude petroleum output   | 97  |
|            | Table M                    |     |
|            | Charts 20, 21, 22, 23      |     |
| Section 5: | Pig iron production        | 111 |
|            | Table P                    | •   |
|            | Charts 24, 25, 26, 27      |     |
|            | Table Q                    |     |
| Section 6: | Portland cement production | 127 |
|            | Table R                    |     |
|            | Charts 28, 29, 30          |     |
| Section 7: | Erie Canal freight         | 138 |
|            | Table T                    |     |
|            | Charts 31, 32, 33, 34      |     |
|            | Table U                    |     |

. . . "the analysis became necessary since recurrent changes had to be separated from the non-recurrent ones, and . . . the recurrences of different amplitude and duration had to be distinguished from one another." Kuznets (1)

#### CHAPTER I.

#### INTRODUCTION

THE method of analyzing time series which we shall call "smoothing by stages", is primarily graphical. One arranges the data in two forms, as numerical values in a table, and as a time polygon upon a chart.

HE draws a "first smoothing line", which cuts through and "removes" the cycle of shortest period (the word "removes" means that the smoothing line is made completely free from that short-period cycle). Then through the fluctuations remaining in the first smoothing line, he draws a second smoothing line, which removes the cycle or fluctuation of next shortest period; etc., until in the final smoothing line there remain no recurrent movements. If the values of the time series have been given at monthly or quarterly intervals, his first task is to remove the seasonal fluctuation - which in its full historical record may be called the annual cycle - by the application of Smoothing Line A (so-called because it removes the annual cycle; abbreviated as SL A). Then SL A, in its turn, is smoothed by a second order smoothing line, SL B, which cuts through and thereby "eliminates" the short business cycle, and which derives its name from the initial letter of that cycle. But if the data are in annual form (instead of monthly or quarterly), the first task is to cut through the fluctuations of the short business cycle by drawing SL B. In this book, except for the brief illustration in this Introduction, all the examples have annual data, so that SL B is the first smoothing line obtained. SL B, in turn, is smoothed by the application of SL M, which eliminates the major cycle, a fluctuation ten to thirty years in length. The highest order smoothing line obtained (usually it is SL M) serves as an approximation to the underlying "secular" trend, the trend through the centuries.

<sup>(1)</sup> Simon S. Kuznets, "On the Analysis of Time Series", Journal of the American Statistical Association, XXIII, 1928, page 399.

## SKETCH a, SMOOTHING LINES AND CYCLE



5







IN the relationship between any pair of successive smoothing found the history of one order of cyclical movement. The relationship between the original monthly or quarterly data and SL A gives the cyclical and irregular movements of the shortest order, termed the seasonal movement or the annual cycle. The relationship of the first order smoothing line, SL A, to the second order line, SL B, gives the history of the cyclical-irregular movement commonly called the short business cycle. case the original figures are annual, instead of monthly or quarterly, the short business cycle is revealed in the relationship between the annual data and SL B. The relationship of SL B to SL M gives the major cycle, as in Sketch a; it is this movement that is marked by the great booms and deep depressions. In series longer than about 80 years, there may be found another such cyclical relationship, the "long waves" that have been studied by Kondratieff and others. In the study of some one order of fluctuation, the full history of the ratio of the lower order line to the higher is of interest. But it is of equal, and possibly greater importance, that from this extended history, by inductive steps, there may be derived a typical pattern, somewhat uniform and constant; and that certain standard measures of that typical cycle may be calculated. When the standard measures have been calculated for each order of fluctuation separately, excellent material becomes available for a forecast - for a more thorough forecast than has yet lain within the power of statisti-This forecast makes use of the standard measures of the several cians. orders of fluctuation; it is realistic, extensive, and helpful; It is hoped that it may be generally accepted as a decided improvement on the customary forward extension of the normal line.

TABLE A and Chart 1 will show that there already exist ways of segregating or isolating the annual or seasonal fluctuation from the other movements in a time series. This table and chart do not illustrate technically the method of "smoothing by stages" but merely serve as an introduction to it.

IN Table A and on Chart 1, a twelve month moving average is fitted; in the case of this particular series, the curve connecting the average points is found to be smooth; consequently it will serve, without modification, as an acceptable approximation to SL A, and as a good base of reference for the study of the annual cycle. Under the method of smoothing by stages, the moving average curve might be more carefully smoothed; but, practically speaking, that further refinement is not often necessary unless the twelve month moving average curve is quite irregular. In Chapter II, the recommendation will be made that monthly data be consolidated into quarterly figures before undertaking the smoothing process. That consolidation makes it even more unlikely that irregularities will disturb the smooth flow of the four quarter or "annual" moving average.

Table A. SAN FRANCISCO REAL ESTATE ACTIVITY, 1920 TO 1929

The annual cycle, as shown in the ratio of actual value to moving average.

| č                             |
|-------------------------------|
| 5                             |
| ource:                        |
| ource: San                    |
| LIMIKISC                      |
| 200                           |
| ESTATE                        |
| Near Estate Circular, I nomas |
| •                             |
| Mager and John                |
| 2                             |
| 3013                          |
|                               |

| June | Иву      | Apr      | Mar           | Peb           | Jan              | Dec  | Nov  | 0ct  | Sept   | Aug  | July     | June        | Иау         | Apr         | Mar         | ₽eb        | 1920<br>Jan          | . <b>×</b> | Month                                                          |
|------|----------|----------|---------------|---------------|------------------|------|------|------|--------|------|----------|-------------|-------------|-------------|-------------|------------|----------------------|------------|----------------------------------------------------------------|
| 803  | 883      | 873      | 928           | 702           | 764              | 702  | 768  | 791  | 766    | 645  | 706      | 676         | 812         | 771         | 969         | 759        | 838                  | ч          | Number<br>of<br>Deeds                                          |
| Ş    | g y      | 3 3      | 780           | 703           | 780              | 778  | 76.7 | 763  | 75. 75 | 756  | 76       | 767         |             |             |             |            |                      | 718.<br>12 | Moving Ave<br>12 months<br>not recent- e<br>ered               |
| 807  | 796      | 790      | 791           | 791           | 78 <b>4</b>      | 772  | 765  | 758  | 754    | 758  | 764      |             |             |             |             |            |                      | me 12r     | Moving Average, 12 months length not recent- recent- ered sred |
| 100  | 110      | 110      | 117           | 89            | 97               | 91   | 100  | 104  | 101    | 85   | 92       |             |             |             |             |            |                      | 12r        | Percentage<br>Ratio, Actual<br>to Moving<br>Average            |
| 1049 | 1048     | 1047     | 1046          | 1046          | 1045             | 1044 | 1043 | 1042 | 1041   | 1040 | 1040     | 1039        | 1038        | 1037        | 1036        | 1035       | 1034                 | н          | Trend (fitted by least squares)                                |
|      |          |          |               |               |                  |      |      |      |        |      |          |             |             |             |             |            |                      |            |                                                                |
| Dec  | Nov      | Oct      | Sept          | Aug           | Jul <b>y</b>     | June | Мау  | Apr  | Mar    | Peb  | Jan      | Dec         | Nov         | Oct         | Sept        | Aug        | 1921<br>Jul <b>y</b> | ×          | Month                                                          |
|      | Мот 1135 | 0ot 1218 |               |               | Jul <b>y</b> 947 |      |      |      |        |      |          |             |             | 0ct 901     |             | Aug 685    |                      | ч<br>×     | Month Deeds                                                    |
| 919  | 1135     |          | 986           | 977           |                  | 952  | 1006 | 1195 | 1215   |      | 1030     |             | 824         | 901         | 720         | 685        |                      | X Y mal2   | Deeds not rec                                                  |
| 919  | 1135     | 1218     | 986           | 971 1082      | 2050             | 952  | 1006 | 1195 | 1215   | 945  | 1030     | 805         | 824<br>915  | 901         | 720 878     | 685<br>854 | 848                  | н          | Deeds                                                          |
| 919  | 1135     | 1218     | 986 1101 1092 | 971 1082 1070 | 2050             | 952  | 1006 | 1195 | 1215   | 945  | 1030 932 | 805 927 921 | 824 915 910 | 901 904 891 | 720 978 866 | 448 689    | 848<br>811           | ZI ms12    | Deeds Moving Average I recent- recent- ered ered               |

Table A (continued) San Francisco Real Estate Activity

| Trend                                  | E                        | 1083        | 1084 | 1085 | 1086 | 1086 | 1087 | 1088  | 1089  | 1090  | 1001    | 1092 | 1092 | 1093        | 1094 | 1095           | 1096        | 1097  | 1098 | 1098          | 1099 | 1100 |
|----------------------------------------|--------------------------|-------------|------|------|------|------|------|-------|-------|-------|---------|------|------|-------------|------|----------------|-------------|-------|------|---------------|------|------|
| Ratio                                  | 100 Y                    | 105         | 89   | 85   | 95   | 105  | 113  | 124   | 103   | 91    | 101     | 89   | 95   | 911         | 66   | 93             | 98          | 06    | 113  | 128           | 105  | 8    |
| verage<br>recent-<br>ered              | ms <sub>12r</sub>        | 1318        | 1326 | 1335 | 1356 | 1381 | 0141 | 145#1 | 1484  | 1507  | 1533    | 1539 | 1540 | 1548        | 1552 | 1550           | 1547        | 1530  | 1500 | 1477          | 1448 | 1416 |
| Moving Average<br>not recert-<br>ered  | m412                     | 1313        | 1328 | 1340 | 1342 | 1371 | 1391 | 1429  | 14 (o | 144 F | 4 7 C E | 24CT | 1530 | 1543        | 1550 | 2001<br>2013 c | 1401        | 1547  | 1513 | 1488          | 1466 | 1429 |
| Deeds                                  | ×                        | 1379        | 1182 | 1141 | 1301 | 1453 | 1608 | 1801  | 1529  | 1366  | 1552    | 1383 | 1941 | 1841        | 1541 | 9441           | 1529        | 1381  | 1690 | 1908          | 1526 | 1275 |
| Month                                  | ×                        | 1924<br>0ct | Nov  | Dec  | Jen  | Feb  | Mar  | Apr   | Мау   | June  | July    | Aug. | Sept | Oct         | Nov  | Dec            | 1920<br>Jen | Feb   | Mar  | Apr           | Мау  | June |
| Trend                                  | Ħ                        | 1065        | 1066 | 1901 | 1068 | 1068 | 1069 | 1070  | 101   | 1072  | 1073    | 1074 | 1074 | 1075        | 1076 | 1077           | 1078        | 1079  | 1080 | 1080          | 1081 | 1082 |
| Ratic                                  | 100 Y                    | 102         | ₹6   | 127  | 125  | 112  | 8    | 93    | 89    | 82    | 110     | 76   | 78   | 101         | 111  | 110            | 128         | 113   | 93   | 93            | 80   | 83   |
| Moving Average<br>ot recent-<br>ecent- | m8 12r                   | 1192        | 1199 | 1208 | 1219 | 1232 | 1242 | 1249  | 1266  | 1278  | 1282    | 1292 | 1298 | 1304        | 1298 | 1296           | 1301        | 1297  | 1299 | 1303          | 1304 | 1310 |
| Moving A<br>not<br>recent-             | ered<br>ma <sub>12</sub> | 1911        | 1192 | 1206 | 1211 | 1227 | 1238 | 1245  | 1253  | 1278  | 1277    | 1288 | 1295 | 1302        | 1306 | 1290           | 1302        | 1300  | 1294 | 1304          | 1302 | 1306 |
| Deeds                                  | ¥                        | 1217        | וצוו | 1544 | 1527 | 1388 | 1119 | 1911  | 1135  | 1047  | 1412    | 1251 | 1018 | 1321        | 1416 | 1521           | 1666        | 1468  | 1210 | 1207          | 1046 | 1093 |
| Konth                                  | н                        | 1923<br>Jan | Feb  | Mar  | Apr  | May  | June | July  | Aug   | Sept  | Oot     | Mov  | Dec  | 1924<br>Jan | Feb  | Kar            | Apr         | , May | June | July<br>Aluly | Aug  | Sept |

Table A. (concluded) San Francisco Real Estate Activity

| Feb<br>Mar                                                                              | Jan<br>Jan | Doc  | Nov            | 0ct  | Sept | Aug  | July | June | Иау  | Apr  | Mar               | ₽eb  | Jan  | Dec<br>1907  | Nov                      | 0ct          | Sept | Aug  | 1926<br>Jul <b>y</b> | Ħ                 | Month                                  |
|-----------------------------------------------------------------------------------------|------------|------|----------------|------|------|------|------|------|------|------|-------------------|------|------|--------------|--------------------------|--------------|------|------|----------------------|-------------------|----------------------------------------|
| 955<br>1050                                                                             | 918        | 900  | 864            | 947  | 936  | 1074 | 1023 | 1009 | 1117 | 1448 | 1394              | 1084 | 1164 | 1170         | 1217                     | 1388         | 1204 | 1083 | 1172                 | Ħ                 | Deeds                                  |
| 940                                                                                     | 959        | , y  | 0.000<br>FOR 0 | 1020 | 1049 | 1050 | 1080 | 1102 | 1139 | 1169 | 1101              | 1192 | 1904 | 1226         | 1960                     | 1200         | 1323 | 1348 | 1402                 | ered<br>mal2      | Moving<br>not<br>recent-               |
| 950<br>93 <sup>‡</sup>                                                                  | 968        | 979  | 1001           | 1034 | 1054 | 1070 | 1091 | 1117 | 1150 | 1180 | 1192              | 1198 | 1215 | 1243         | 1275                     | 1306         | 1336 | 1355 | 1382                 | 12r               | Moving Average<br>recent-<br>ent- ered |
| 112                                                                                     | 94         | 92   | 86             | %    | 89   | 100  | \$   | 8    | 97   | 113  | 117               | 8    | 95   | Æ            | 95                       | 106          | 99   | 88   | 85                   | 100 Y             | Ratio                                  |
| 1117                                                                                    | 1116       | 1116 | 1115           | 1114 | 1113 | 1112 | 1111 | 1110 | 1110 | 1109 | 1108              | 1107 | 1106 | 1105         | 1104                     | 1104         | 1103 | 1102 | 1101                 | н                 | Trend                                  |
| Nov<br>Dec                                                                              | 0ct        | Sept | Aug            | July | June | Иву  | Apr  | Mar  | ₽eb  | Jan  | Dec.              | Nov  | Oct  | Sept         | Aug                      | Jul <b>y</b> | June | Мау  | 1928<br>Apr          | ×                 | Month                                  |
| 707<br>624                                                                              | 812        | 675  | 751            | 776  | 148  | 827  | 880  | 905  | 819  | 799  | 752               | 858  | 952  | 790          | 8 <del>4</del> 3         | 913          | 908  | 1050 | 991                  | ч                 | Deeds                                  |
| 927<br>927<br>927<br>915<br>905<br>882<br>872<br>848<br>837<br>829<br>829<br>808<br>795 |            |      |                |      |      |      |      |      |      |      |                   |      |      | ma12<br>ered | Moving<br>not<br>recent- |              |      |      |                      |                   |                                        |
|                                                                                         |            |      |                |      | 790  | 802  | 814  | 824  | 833  | 842  | 851               | 877  | 888  | 894          | 900                      | 910          | 916  | 927  | 927                  | ша <sub>12г</sub> | Moving Average<br>recent-              |
|                                                                                         |            |      |                |      | 107  | 103  | 108  | 109  | 98   | 95   | 88                | 97   | 100  | 88           | <b>9</b>                 | 100          | 98   | 113  | 106                  | TOO Y             | Ret1o                                  |
| 1135<br>1136                                                                            | 1134       | 1133 | 1133           | 1132 | 1131 | 1130 | 1129 | 1128 | 1128 | 1127 | <sub>.</sub> 1126 | 1125 | 1124 | 1123         | 1122                     | 1122         | 1121 | 1120 | 1119                 | н                 | Trend                                  |

# CHART I. SAN FRANCISCO REAL ESTATE ACTIVITY, 1920 TO 1929

#### (a) APPLICATION OF MOVING AVERAGE AND TREND



#### (b) THE ANNUAL CYCLE



#### PLAN OF PROCEDURE, SUMMARIZED.

THE study of time series by the method here presented, "smoothing by stages", falls into three phases;

- Locate the set of smoothing lines (Tables A, B, and C; Charts la, 2, and 3).
- 2. Plot the several orders of cycles and determine their standard measures (Tables A, D, and E; Charts 1b, 4, and 5). This phase concludes the analysis proper.
- 3. Use the smoothing lines and standard measures obtained in phases 1 and 2 in correlation and in forecasting (Chart 6).

CHAPTER II is devoted to the first phase, the location of the smoothing lines; Chapter III to the second phase, the study of the cycles; Chapter IV briefly treats the third phase, the use of the smoothing lines and the standard measures of the cycles; and Chapter V applies the first two phases to a group of seven time series.

#### A SIMPLIFIED FREEHAND PROCEDURE, WITH NO OBJECTIVE CHECKS.

FOR quick exposition, a simplified sketch of the process will now be given, a <u>purely graphical</u> procedure, without the objective check that is afforded by moving averages. Assume forty or fifty years' record of quarterly data.

PLOT the quarterly data on a time chart similar to Chart la, either on quadrille paper (charting paper with ordinary rectangular ruling)or semilog paper. Connect the plotted points by straight lines, to form a time polygon.

THE first stage of smoothing is from the time polygon to Smoothing Line A, a line to be freed from <u>all</u> seasonal movements, both of a recurring form (the standard seasonal pattern), and episodes or short-length non-recurring movements; but this SL A still to exhibit in full the movements of the short business cycle, the longer cycles, and the trend. The following criteria should be observed in sketching the smoothing line:

- (a) It should be made a smooth-flowing curve without sharp angles or short-radius turns.
- (b) It should intercept from the time polygon connecting the plotted quarterly values, a series of plus and minus areas which show an approximate running belance or equality, above and below.
- (c) It should seldom leave to one side (whether above or below) more than two consecutive quarterly points, and probably never more than three.

HAVING drawn Smoothing Line A, one undertakes the second stage of smoothing; he works from that line as his base of reference, to locate Smoothing Line B, a line designed to cut through and therefore to be freed from the short business cycle, yet to retain in full the movements of the major cycle and the trend. Through the short cycles exhibited in SL A, draw SL B, which by comparison will be a simpler or flatter curve, containing no residual movements of the short cycle (and of course no seasonal movements). Again observe the principle of a running equality of areas intercepted above and below. Try to keep the length of the intercepted cycles reasonably uniform (it is suggested that they may prove to be from two to six years in length).

IN like manner, proceed to the third stage of smoothing, drawing SL M to eliminate the major cycle, the 10 to 30 year fluctuation exhibited in SL B It may be possible to proceed to a fourth stage of smoothing, if the record of data is sufficiently long.

THE values at assigned dates, of each of the successive smoothing lines, may be read from the charts (as from Charts 2 and 3), and transcribed to working tables (as Table Cb).

THE full historical record of the relationship between the monthly or quarterly data and SL A, constitutes the annual cycle or the seasonal movement; this relationship will appear as a series of values of the quarterly or monthly ratio. (1) This ratio actual is ordinarily multiplied by 100 to convert it to a percentage ratio. Its successive values may be listed in a table (as Table A, Column 5), and depicted graphically (as on Chart 1b). From the record of this ratio, one can calculate the typical seasonal pattern.

SIMILARLY, the relationship between SL A and SL B, as indicated in the history of the ratio 100  $\frac{SL}{SL}$  B gives the short business cycle. The values

of this ratio may be entered in a table (as in Table Db, Column 2, and in Table Ea, Column 2), and may be shown graphically (as on Chart 4). The problem of calculating the standard or typical pattern of the short business cycle is more difficult than for the annual cycle (from which one calculates the seasonal pattern), for here there is a variable length or period. However, a reasonably satisfactory standard pattern can be calculated, as will be discussed in Chapter III below, and as is shown on Chart 5.

THE major cycle is found in the relationship between SL B and SL M. This may be studied in the same fashion as has been suggested for the short cycle.

THE subjects of correlation and forecasting will be postponed to Chapter IV.

THIS concludes the preliminary exposition, in which the smoothing has been freehand, without benefit of the objective check of moving averages. For a good many applications, this freehand method is sufficiently accurate; its major defect is that it is not objective -- that two statisticians would not get precisely the same smoothing lines, and consequently the reader could not wholly trust the results. In order to make the process objective, and therefore acceptable in accordance with good statistical practice, it is necessary to check the graphical procedure; for this check, moving averages have been found useful.

#### THE SMOOTHING LINES

GIVEN a time series made up of data at regular intervals, (1) which is to be analyzed by the method of "smoothing by stages": the first task in the analysis, the one which is to occupy this chapter, is to locate the successive smoothing lines, each of which will in turn cut through or eliminate an order of fluctuation. The first such line, will eliminate the first or shortest order of fluctuation from the time polygon of the original data, the second will eliminate the shortest fluctuation still discernible in the first smoothing line (this is the second order of fluctuation in the time polygon of the original data), the third will eliminate another fluctuation from the second smoothing line, etc.

#### Section 1. LOCATING SMOOTHING LINE A.

ASSUME that quarterly data are supplied. The first line to be located will then be Smoothing Line A; it will cut through and thereby "eliminate" the seasonal or annual cycle. (It is not recommended that monthly data be plotted on the chart; the elaboration is great, and no value derives from it. For the purpose of the present chapter, which is merely to locate the smoothing lines, it would be better to consolidate monthly data into quarterly form before plotting and smoothing. Subsequently, when the several smoothing lines have been located, and the attention turns to the study of the annual cycle, the operator may choose to make that study on a monthly basis. He has only to read from the chart the values of SL A at monthly instead of quarterly intervals, and to compare those readings with the original monthly data.)

PLOT the quarterly data either on quadrille paper or on semi-log paper. (2) Connect the quarterly points by straight lines, forming a time polygon.

BEGIN Table B (see also Table C); 24 columns will be indicated, as that one table serves all three stages of smoothing. In column 1, enter the dates of the quarterly figures; and in column 2, their values. Calculate a four quarter moving average. The sole purpose of this moving average will be graphical, to serve as a guide to the desired SL A. Note that the arithmetic type of moving average may be used in this stage of the analysis, even though the chart be on semi-log paper. See statement below in this chapter (Section 2), on the use of a moving geometric mean in the later stages of smoothing. if the chart is on semi-log paper.

ENTER the moving average values in column 3, at levels to show that they fall between the dates of column 1; plot them on the same chart with the time polygon of the data. It is not necessary to recenter these averages, as would be the case if they were to be used directly in the calculation of seasonal ratios. Since they are to be used only graphically, as aids in the locating of SL A, it is actually an advantage to have them fall on the chart halfway between the dates corresponding to columns 1 and 2. The

- (1) Should the data be at irregular intervals, the method of smoothing by stages is still applicable, as in the early years of the Erie Canal freight series in Chapter V. but the first stage of smoothing may then need to be principally freehand.
- (2) The decision as to the type of ruling to be favored will not be discussed. See the seven series in Chapter V.

line connecting these moving average points will be found to be almost entirely freed from seasonal movement, but still to contain the short business cycle, the major cycle, and the trend. This line will give a close and dependable guide to the desired SL A (see Chart 1). However, there may still be found some residual seasonal irregularities; hence it may be necessary for SL A to depart from the moving average (ma) points slightly, in order that SL A may be completely freed from even the irregular movements of approximately the length of the more regular seasonal cycle.

DRAW SL A, a flowing curve, following the moving average points fairly closely, but pursuing an intermediate course between any irregular high and low values. The principle should be observed of a running equality of areas above and below this smoothing line. Smoothing Line A should follow the quarterly moving average points so closely that, save at peaks and troughs (peaks and troughs require special attention; see discussion of curvature, below, in this chapter), one will seldom find more than two consecutive moving average points lying on the same side (either above or below). Six or eight successive points may occasionally be allowed to lie on one side, if the data and averages occur at monthly intervals.

SL A is designed to remove completely both the regular seasonal pattern and any short length irregular movements, but it should not do more than this, for it is not desired at this stage to smooth out any portion of the short business cycle, nor any portion of the major cycle. The reason for this caution will become clear in the study of cycles, Chapter III.

IN carrying SL A nearer to either end of the series than six months, employ a dotted line, which will indicate the tentative or provisional character of the line near the end of the distribution (see discussion of moving averages, below).

READ the values of SL A from the chart at quarterly intervals, at the same dates as are entered in columns 1 and 2, and enter these values in column 4. The reason for reading these values at the same dates as those in column 2, is that the seasonal movement (the annual cycle) will be studied by examining the ratios of the data to SL A, and for that purpose it is necessary to have the two sets of figures at simultaneous dates.

(IN the numerical examples which follow, the data will be supplied in annual form; consequently the first smoothing line to be secured will be SL B).

#### Section 2. DEVICES TO AID THE SMOOTHING PROCESS.

#### MOVING AVERAGES.

THE method of smoothing here employed is in part based upon a moving average procedure, similar to that shown in Table A and on Chart 1. We shall be concerned with two types of moving averages, those of uniform length, and those of varying length. In smoothing quarterly data to eliminate the annual cycle, the length or period of the cycle is a constant, four quarters, and therefore the moving average to eliminate the annual cycle is taken of that same constant length. The four quarter moving average removes the seasonal or annual cycle from the curve of the data, without disturbing or removing the short business cycle, the major cycle, or the trend; in other words, the short business cycle exhibited by the curve of the moving average points is precisely the same as the short business cycle exhibited by the original data - and so are the major cycle and the trend identical.

AS is commonly known, moving averages cannot be brought abreast of the current date. Smoothing lines retain this shortcoming of the moving averages upon which they are built -- that they cannot with confidence be brought to the present date. Consequently, when it is found necessary to estimate the current value (the current "ordinate") of one of the smoothing lines -- and the caution applies still more when effort is made to forecast a future value -- one needs to treat that current or future value as approximate and tentative. The precise value of Smoothing Line A for February, 1954, will not be reasonably assured until that date has slipped six months into the past; because the four-quarter moving average, and Smoothing Line A, are built upon data a full year in length, extending six months in both directions in time. For SL B, about two years must pass before the ordinate may be considered well established; and for SL M, ten or twelve years.

## SKETCH b, TO SHOW DOTTED ENDS OF MOVING AVERAGE LINE

VALUE OF THE VARIABLE



#### THE MOVING CYCLICAL AVERAGE.

THE short business cycle and the major cycle are characterized by variable length; sometimes the short cycle is scarcely more than a year, but at other times it may prove to be eight or nine years long: sometimes the major cycle is but twelve years long, while at other times as many as thirty years may pass between major depressions. A modified form of the moving average, the "moving cyclical average", permits varying the length or period of the average, from cycle to cycle, so that at each application precisely one cycle will be averaged, and so smoothed out. This type of moving average was devised by C. A. R. Wardwell of Northwestern University The important feature of the moving cyclical average is that the length of each successive average is precisely one cycle.

IN working from a tabulated and charted Smoothing Line A, in the attempt to locate Smoothing Line B, it would be a mistake to use as the length of the average, a period of time that did not correspond precisely to one cycle as exhibited in the relation of SL A to SL B; that error would result in a calculated value (the ordinate) of the average, which would in general fail to attain the intermediate position or average value which should characterize SL B. If for example (a, in Sketch c), two peak periods in SL A should be included in the period taken for the moving average, and only one period of depression or inactivity, the average based on that badly chosen interval would be improperly weighted, and its value would be found too high to afford a useful guide to the desired Smoothing Line B.

# SKETCH c, CORRECT AND INCORRECT LENGTHS FOR MOVING AVERAGE

VALUE OF THE VARIABLE



# SKETCH d, TENTATIVE SMOOTHING LINE AND PHASE POINTS

VALUE OF THE VARIABLE TENTATIVE SMOOTHING LINE MID-POINTS OF CYCLES ⊈-PHASE POINTS LOWER ORDER r3,4 P2.4

Sketch c, Correct and Incorrect Lengths for Moving Average.

SKETCH d2, SAME AS SKETCH d, WITH EXTENDED TIME SCALE



too low.

ing line.

interval of time.

#### TENTATIVE SMOOTHING LINE AND PHASE POINTS

IT is advisable to make use of a moving average composed of a succession of averages each based upon a period precisely one cycle in length, as observed in those particular years. (1) In order to accomplish this result, use may be made of two related devices: a tentative smoothing line and a number of phase points.

IN each cycle, there are four points easy to identify: the peak, the trough, and the two points approximately half-way between those two extremes; these four may be called phase points. The quarter cycles between successive phase points may be called the four phases of the cycle. These terms have been borrowed from the study of wave movements in physics.

START with a tabulated and charted "lower order" curve, to which a smoothing line is to be fitted. Through the fluctuations in the lower order curve, draw a tentative smoothing line (T SL) to cut through the shortperiod fluctuations; employ a wholly graphical procedure resting upon a running equality of areas intercepted, and gentle flowing curvature, as described in the Introduction (Chapter I). To locate the phase points, inspect the manner in which the lower order curve fluctuates about the tentative smoothing line as a central tendency. Locate those points in the lower order curve at which the ordinate above T SL is a maximum; call these points peaks, and give them the designating letter p (the successive peaks may be numbered p<sub>1</sub>, p<sub>2</sub>, p<sub>3</sub>, etc.). Locate the points farthest below the T SL; and call these points troughs, t. Call the intersections of the lower order curve with the T SL, r or f, according as the lower order curve is rising from a previous trough, or falling from a previous peak, at the intersection.

WHEN you locate a phase point, let your attention be fixed on the abscissa, not the ordinate -- on the date, the instant of time, rather than on the value of the variable. Consequently, although it may be convenient first to mark the phase points directly on the curve, it will be well to show them also by short vertical marks along a horizontal line.

THE elapsed time between two successive phase points gives a phase (roughly a quarter) of a cycle:  $r_1p_1$ ,  $p_1f_1$ ,  $f_1t_1$ ,  $t_1r_2$ ,  $r_2p_2$ , etc. The elapsed time between any particular phase point and the similarly named (homologous) phase point in the next cycle (from one peak, as  $p_2$ , to the next,  $p_3$ ; from one trough,  $p_3$ ; to the next,  $p_3$ ; from one trough,  $p_3$ ; to the next,  $p_3$ ; from one trough,  $p_3$ ; to the next,  $p_3$ ; from one  $p_3$ ; from one  $p_4$ ; from one  $p_4$ ; from one  $p_5$ ; from one  $p_5$ ; from one  $p_6$ ; from one  $p_6$ ; from one  $p_7$ ; from one  $p_8$ ; from one

<sup>(1)</sup> If the reader wishes to pursue this subject further, he is respectfully referred to the writer's article in Econometrica, July 1933, and to the book by C. A. R. Wardwell, An Investigation of Economic Data for Major Cycles, Northwestern University.

#### Section 3. LOCATING SMOOTHING LINE B.

(Tables B and C, and Charts 2 and 3).

INSPECT the chart on which SL A has been located. If there are so many construction lines as to cause confusion in the further construction, transcribe SL A to a new and clean chart. Often in this transcribing, it will be found helpful to condense the time scale, in order to make the business cycle stand out; there is no longer need for close detail, for there is in SL A no residue of the seasonal variation. (See the contrast between the condensed time scale on Sketch d, and the extended scale on Sketch d2.)

TENTATIVE SL B should be drawn through the fluctuations in SL A, in free-hand fashion: it should cut through and eliminate the short business cycle. Take care to secure a running equality of areas intercepted above and below, and make Tentative SL B follow a gentle curvature, avoiding short-radius turns and sharp angles. Tentative SL B should exhibit in its own movements the trend and the major business cycle, for it represents an attempt to remove the short business cycle only.

LOCATE the phase points of the short business cycle, which will be used to determine the lengths of the successive cycles and of the moving cyclical everages. Mark the phase points on the chart (this is precise), and list them in Table B, column 5, at the proper vertical positions to indicate their dates (this is usually only approximate).

MARK the mid-dates of the cycles on the chart.

TREAT columns 6 to 11 as a block, in so far as the line of entry is concerned. Look first at the mid-date of the particular cycle; suppose it should fall in the third quarter of 1882. Write 1882 Q3 in column 8 (opposite the third quarter of 1882 as listed in column 1). On the same horizontal line in Table B (i. e., opposite 1882, quarter 3) fill in the other figures descriptive of this particular cycle; its name, in column 6, as p<sub>1,2</sub>; the first quarterly date included in the cycle, in column 7; the last quarterly date included, in column 9; the number of quarterly readings included in the cycle, in column 10; and finally the moving cyclical average (whether of the arithmetic or the geometric type), in column 11.

THE above paragraph has been predicated on an assumption of quarterly data. The vertical arrangement in Table B will require double spacing, first, to allow proper placing of the four-quarter moving averages between the dates of column 1; and second, because occasionally two phase points in the annual cycle will fall in the same quarter, and this too requires double spacing.

FOR working from <u>ennual</u> data, see Table C. There, too, double spacing is necessary, for the falling of two phase points in the business cycle in the same <u>year</u> occurs frequently, as does the <u>similar</u> collision of middates of cycles.

SHOULD the chart be on semi-log paper, the moving cyclical average (mca) at this stage (working toward SL B) may be made either arithmetic or geometric in type; a little better check with the graphical criteria will be secured from the geometric mean, but it is doubtful whether the slight improvement in accuracy is always worth the extra trouble. See the discussion of the geometric mean below.

PLOT the moving cyclical average (mca) values, each precisely at the middate of its cycle, as determined by close measurement on the chart. Connect the mca points in pencil, by sloping straight lines, to form a time polygon. The mca points (and the polygon connecting them) are to serve as guides to the final location of SLB. They will normally lie fairly close to the Tentative SLB, but will furnish a reason for lifting that line in some regions and depressing it in others.

To draw SL B in an improved location, follow the principles that have already been observed in drawing Tentative SL B, namely, a running equality of areas intercepted above and below SL B, and gentle curvature; and now add the criterion that the line should follow reasonably closely the mca points that have been plotted. The line need not touch each of these mca points; it need merely pass through the area defined by them. following an intermediate path without sacrificing much from the criterion of smoothness, i.e., long radius curvature.

ORDINARILY, this improved location of SL B may stand as final. But two cautions may still be observed:

- 1) It is necessary to guard against an error that may arise in regions of marked curvature of SL B. This subject will be more thoroughly discussed in locating SL M; only an informal check is suggested here, namely that the operator be sure to go high enough at the peaks in SL B and low enough at the troughs in SL B. He should not smooth too much. The formal check for curvature is more necessary in the next stage, in passing to SL M.
- 2) It will later become possible to make one more check on the running equality of areas intercepted above and below SL B. In discussion of cycles. The short Chapter III will be found a business cycle is revealed in the record of the ratio of SL A to SL B ( Table E and Chart 4). Examination of that cycle gives an opportunity to check once more by the criterion of a running equality of positive and negative areas intercepted. If it found on the cycle chart that two or three consecutive troughs run too deep (SL A below SL B) to permit the intervening peaks (SL A above SL B) to accomplish the desired running balance of the areas, such a finding would warrant the operator to return to the first or smoothing chart - as Chart 2 - on which the location of SL B had been worked out, and to lower SL B, through the time interval in question. After this correction, when the new values of SL B have been entered in the table, and the new percentage ratios of SL A to SL B have been calculated and plotted on Chart 4, the troughs (SL A below SL B) will be found not so deep, relative to SL B, and the peaks will be found to be higher, relatively, so that the desired running balance of areas will at last have been achieved.

a

WHEN the final line has been determined, read the values of SL B at quarterly intervals, and list them in column 12. So far as the needs of the next stage of smoothing are concerned - in the locating of SL M -- semi-annual values would suffice; but the values are also to be used in determining the standard measures of the short business cycle, by an examination of the quarterly ratios of SL A to SL B; so it is best to take the readings quarterly, at the same dates as those entered in column 1.

Date: Year and Quarter -

Values in column 3 will be a half-quarter out of phase with columns 1, 2, 4, and 12.

The Quarterly Value N

At same dates as in column 1.

Four Quarter Moving Average

Smoothing Line A =

Each phase point to be listed at a level which indicates its date.

p<sub>1,2</sub>, r<sub>7,8</sub>, etc.

Phase Point (in fluctuation of SL A or about Tentative SL B)

Cycle Name on

(for columns 6 ţ

mid-date of the cycle is entered in column 8, at a level to correspond with its date. Then the other figures for that cycle are entered on the same level, in columns 6 to 11. The terminal dates of that cycle, columns 7 and 9, show the limiting values of SL A which are to be included in the moving average.

Quarters Included in the Contiduction the smoothing lines. (See Table C, and those in Chapter V;

A suggested arrangement for the calculations, from quarterly data, to locate

Table B.

there the data are annual rather than quarterly.)

Number of Quarters -Comprised in the Cycle O

Moving Cyclical Average ⊢ (arithmetic or geometric) ⊢

At same dates as in column 1.

Smoothing Line Bo

(The dates of column 1 may be repeated here)

Should still another stage of smoothing be undertaken, another block of twelve columns would be needed, as 13 to 24 because of the need again for correcting for curvature. That correction will require a separate work sheet, as described above for the preceding stage.

Columns 13 to 24 may be added, as in Table Cb, repeating the order of columns 5 to 12, but directed to the locating of SL M. See text on the use of a geometric mean if chart is on semi-log paper. In column 20, enter the values of the Second Approximation to SL M (still subject to correction for curvature). Use a separate work table, as Table Cc, for reiterating the moving average; plot the values of the adjusted moving average; draw final SL M to pass closely through them; read its value at regular intervals and enter in column 24.

#### THE MOVING GEOMETRIC MEAN

IF the chart is on semi-log paper, a moving geometric mean will furnish a "better" guide to the locating of the smoothing line than will a moving average of the arithmetic type. The geometric averages, when plotted as points on the chart, will give a guide that will conform to the other criterion that has been relied upon - the running equality of areas intercepted above and below the smoothing line; this, unfortunately, is not true of arithmetic averages when plotted on semi-log paper. The discrepancy between the two types of average, and consequently the degree of the advantage of the geometric over the arithmetic average, becomes greater when very small and very large items are included within the span of the average. In the cases before us, this is when either: (a) there is a wide scatter in the plotted points, or a wide amplitude in the lower order curve being smoothed; or (b) there is a decided slope in the smoothing line. Should both these circumstances be lacking, the operator may decide to save labor and calculate the arithmetic type of average, despite some slight error that must necessarily result. He may do this with particular confidence in passing from the plotted points to SLA; occasionally in passing from SL A (or from plotted annual values) to SL B; probably never in locating SL M.

THE geometric mean, GM, it will be remembered, is the nth root of the product of n factors,  $\sqrt{A \times B \times C \times ... \times N}$ ; it may be calculated as the antilog of the sum of the logs n

#### Section 4. LOCATING SMOOTHING LINE M.

FROM SL B, possibly transcribed to a new chart with a condensed time scale, proceed to locate SL M, utilizing a Tentative SL M, phase points, and moving cyclical average (mca). In Table B (continued), columns 13 to 24, enter the calculations; in this stage apply a formal check for curvature; finally enter the values of SL M in column 24 at semi-annual or annual intervals. The calculations for the seven series in Chapter V were arranged in the work table as has just been suggested. But for the presentation or display tables to be printed in this book, some of the columns were compressed into smaller compass.

IF SL M has been well drawn, it will cut through and thereby eliminate the major cycle. There may still be a few "long waves" in SL M, that can be smoothed out in another stage, but if the series is not over sixty years in length, SL M itself should give a very helpful approximation to the secular trend.

THE smoothing line, SL M, in the half-cycle (of SL B about SL M) nearest each end of the chart, should be dotted, so that the reader will appreciate that its location is in some doubt. For a short series, less than about 40 years, it may happen that no mca points will fall in the first eight or ten years, nor in the last ten. This permits the mca check for only a few points in the middle years, and leaves the shape of the dotted ends of SL M to be determined by the criterion of equal areas, and by the trained judgment of the operator.

#### SKETCH e

#### VALUE OF THE VARIABLE



TIME

This correction is required because in periods of marked curvature in the smoothing line, the moving average departs from its "proper" position (which would cut through the middle of the lower order fluctuations), and takes instead an unsuitable position, displaced in the direction of the concavity (i.e. away from the convexity) of the smoothing line.

The sketch omits the lower order line from which the moving averages were calculated; that curve would be more sinuous than those here shown. It also omits the freehand tentative smoothing line, which was used in determining the various cycle lengths in the lower order line; that freehand line was the first approximation to the desired smoothing line. The sketch begins with the moving average values which are labeled "l"; a dashed line connects them; it is the second approximation to the desired smoothing line. Actually, because of its displacement in the direction of concavity, the second approximation may be rather badly out of place; yet it will aid in locating the final, satisfactory line.

Read the values of the dashed line (at the same dates as those of the lower order line, previously used in calculating the moving average points marked "1") and enter them in a work table, not here shown. Using these values of the dashed line, calculate a new set of moving average values; it is this process which is called reiterating the moving average. The "R" points have been plotted on this chart, though they would never be plotted on a working chart, as they are not wanted in themselves - only their differences from the points marked "1". That difference or discrepancy is the desired error due to curvature. Project that difference in the opposite direction from point "1"; it will be found that the projection is in the direction of convexity in the smoothing curves. Thereby secure point "2", the desired final guide to the smoothing line, which has been corrected for the curvature in the smoothing line itself. The line through the points marked "2" is here made a solid line. It will properly cut through the middle of the lower order fluctuations.

# CURVATURE: A SYSTEMATIC ERROR IN MOVING AVERAGES: ITS CORRECTION

# BY REITERATION OF THE MOVING AVERAGE.

MOVING averages exhibit a systematic error when fitted to a curve with sharp curvature. This is true whether they are of the ordinary form with constant period, or moving cyclical averages with changing lengths. As soon as the nature of this error is once understood, its correction may be undertaken.

SUPPOSE that SL B has been established, and that one is working toward the location of SL M, to eliminate the major cycle. He has drawn tentative SL M, as on Chart 26, and observes a peak in it in the vicinity of the year 1925. Because of the curvature at this peak, moving average values (labelled #1) in the vicinity of 1925 will be "too small"; that is, when plotted on the chart they will stand too low to accomplish their intended purpose, which is to cut through the middle of the major cycle fluctuations in SL B. A smoothing line standing so low would not achieve the complete segregation of the several orders of cycles; it would go beyond its intended function, which is solely to smooth out the major cycle, and it would contribute something undesired toward smoothing the "long wave" as well. This overly-smooth line would make an unsuitable base of reference for the study of the major cycle, (Chapter III) and would also be unsuitable for the study of "long waves", should that stage of cycle analysis be undertaken.

To begin the process of correcting for the error of over-smoothing, draw a second approximation to SL M to touch these dubious (#1) moving average points. This second approximation line is designed to serve as a base (1)to find by how much the moving averages near 1925 are too low, and consequently to correct for the error. Read values from the second approximation line at regular intervals, at the same dates as the SL B values that were used in the mca process previously undertaken (which gave the mca points through which this second approximation to SL M has been drawn), and enter them in column 20 of Table B. These regularly spaced readings from the second approximation to SL M are to be used to calculate new or "reiterated" moving cyclical average values; use precisely the same cycle lengths for the calculation of the reiterated moving cyclical averages as were used for the first set.

BECAUSE of the curvature in SL M (as shown both in Tentative SL M and in the second approximation through the #1 mca points), these second or reiterated moving averages will be still further too small, that is, if they were plotted, they would lie below the second approximation line. But now we can compare the second approximation line with the reiterated values. For each reiterated mca, determine the difference between its value and the value of the second approximation line at the same date. This difference may be called the error in the moving average caused by curvature; to correct, the first mca may be increased by this amount, to secure the desired guide point.

FOR example, in Tables Cb and Cc, one of the original mca points ( $t_{3,4}$ , column 19) fell in 1925, and its value was 10,800 deeds per year; the reiteration of the moving average showed a new mca (column 21) of 10344, which shows a departure (column 22) from the second approximation to SL M of 456 deeds per year. 456 is the error due to curvature, and should be

<sup>(1)</sup> In Chapter V. Table F, two bases of reference are combined, in a rather free compromise; the second approximation line here called for, and also the first set of mca values. (The other tables in Section VII refer only to one base of reference.)

taken as the correction; 10800 plus 456 gives 11,256, the adjusted mca value for 1925. The value 11,256 should be taken as the graphical guide to the final SL M.

THE amount of error in the value of the moving average, due to curvature, is greater where the curvature in the smoothing line is sharper, and where the particular cycle in the lower order curve about that smoothing line is longer; the error and the amount of the correction, consequently, will be found to vary from one mca point to the next.

THE above discussion has related to 1925, a peak. At a trough, as that of 1895 on Chart 8, the error due to curvature causes the first set of moving averages to be too high; the reiteration gives a value still higher; the correction arrived at by subtracting the second approximation line from the reiterated mca should be subtracted from the value of the first mca, to obtain the adjusted mca, the desired graphical guide to the final SL M.

IT has been the practice of the writer to make only an informal correction for curvature in the short business cycle - in locating SL B. He usually makes a formal correction only in the next stage, and then, principally, through the years in which distinct curvature is evident on the chart. See the smoothing in Table C, parts a, b, and c, and Charts 2 and 3.

# USE OF SMOOTHING LINE M AS A GUIDE TO A MATHEMATICALLY

### FITTED TREND.

FROM an inspection of SL M, the operator may conclude that it resembles some particular mathematical curve (such as a straight line, a second degree parabola, a compound interest curve, or a logistic curve). He may then choose to go back to the original data and by mathematical or total process, to fit a curve of the type selected. Such procedure might be thought to be a rejection of the SL M, and therefore of the method of successive smoothings. But even in this case, the method of successive smoothings, which has been relatively easily applied, will at least have given a basis for determining which type of trend to fit; moreover, it will probably have furnished, fairly closely, the parameters of the equation. (See in Chapter V how a group of logistic curves previously fitted by Kuznets are tested by the method of successive smoothings.) Also, as will be developed in Chapter III, the method of successive smoothings will furnish an excellent analysis of the cyclical components of the time series.

# Section 5. SAN FRANCISCO REAL ESTATE ACTIVITY, 1867 TO 1940

Application of Two Stages of Smoothing to Annual Data

(a discussion of Table C and Charts 2 and 3)

THIS illustration begins with annual data, and consequently there is no SL A to be drawn, and no seasonal analysis to be made. Yet, for simplicity in cross-reference, the columns have been numbered as in Table B. Table C and Charts 2 and 3 were prepared together, as will be described.

FROM the tabulated values of the annual figures, in Table Ca, column 2, a time polygon was drawn on Chart 2. Tentative Smoothing Line B was drawn in pencil, to cut through that time polygon (the reader will find parts

of this tentative line dashed, but other parts merge with the solid line which marks the final location of SL B). The fluctuations of the time polygon about Tentative Smoothing Line B, were observed, and the phase points were marked on the chart and entered in the table (column 5).

THE figures in the next six columns find their vertical position determined by the date of the middle of the cycle (entered in column 8); these mid-points were marked on the chart and entered in the table. Columns 6, 7, 9, 10, and 11 were then filled in. (Note that in column 5 the phase points are entered in the vertical position which corresponds to the year in which they fall; and that in columns 6 to 11 the names and measures of the cycles are entered in the vertical position which corresponds to the mid-date of the respective cycle, entered in column 8). The tabulated length of the cycle in years (column 10) is not intended as a precise measure of the elapsed time, or it would be necessary to include fractions of years; rather, it is an enumeration or count of the number of annual figures to be included in the calculation of the moving cyclical average. The precise mid-date of the cycle is not available in the table, as the writer does not consider it to be of value for any purpose other than the graphical application; if another operator wishes, he may, of course, make this information precise in the table.

AN average calculated for a cycle containing but one or two annual values, is not very representative, and is but a poor guide to the desired smoothing line. No formal step was taken here to secure a more representative figure, which might afford a better guide, but in half of these cases such a step would be feasible. For a cycle between two "r" points, or a cycle between two "f" points, one added annual value could be included at each end, and the new mca could be plotted, along with the first mca; both could be used as guides. But this procedure is not suitable for a cycle bounded by two "p" points or by two "t" points; in the one case, two large values would be added, and the resulting average would be tco great to serve as a good guide; in the second case, the two small values added would warp the average downward.

when all the mca points had been plotted, Tentative SL. Loa points were inspected, and the final SLB was drawn. At this surp, the various criteria were reviewed: a running equality of areas into pted, smoothness, etc.; and in addition the new criterion of nearness to the mca points was considered. Care was exercised to go high enough at the peaks in SLB and low enough at the troughs - that is to say, at points of noticeable curvature the final SLB was caused to stay well out in the convex direction from the center of curvature. The chart and table were kept in pencil for another final check, which became available when Chart 4 had been drawn. There, a new view could be obtained of the desired running equality of areas intercepted between the time polygon and the final SLB. Finally, the accepted location of SLB was inked in as a solid line with dotted ends. Annual values of SLB were read from the chart and entered in the table (column 12).

ATTENTION has been called to the fact that the terminal portions of the "final" SL B are dotted, because of uncertainty as to direction and curvature. When forecasting is undertaken, and a definite attitude toward the future is assumed by the operator, that attitude will be reflected in reforming the dotted end of SL B. See, on Chart 6, how the dotted end comes in for substantial modification.

THE next stage of smoothing was then begun, in Table Cb and on Chart 3. Through the fluctuations in SL B, tentative SL M was drawn, with care to the criteria of a running equality of areas, and smoothness. The phase points were marked on a horizontal line near the bottom of the chart, the mid-points of the cycles on the next line below. The dates of the phase points and of the mid-points of the cycles were read from the chart and

their names were entered in the table, each at the proper level to indicate its date. Moving cyclical averages were calculated, and plotted at the mid-dates of the cycles. The second approximation to SL M was drawn through the mca points.

IN Table Cc, this second approximation to SL M was submitted to a correction for curvature, involving a reiteration of the mca calculation. The necessary data were taken from Table Cb, and given the same column numbers; the correction for curvature was determined; and the original mca values were adjusted. Final SL M was then drawn on Chart 3, and its values entered in the last column of Table Cb, which column has been numbered 24 to indicate that it follows Table Cc.

Table Ca. SAN FRANCISCO REAL ESTATE ACTIVITY 1867 TO 1940

The First Stage of Smoothing: Locating SL B

(columns numbered to correspond with Table B)

|      | 2(or 4)<br>Number<br>of Deeds | 5<br>Phase<br>Point |                  |      | 8<br>lý Figures<br><u>d in the (</u><br>Middle |      | in  | ll<br>Moving<br>Cyclical<br>Average | 12<br>Smooth-<br>ing<br>Line B |
|------|-------------------------------|---------------------|------------------|------|------------------------------------------------|------|-----|-------------------------------------|--------------------------------|
| 1867 | 5556                          | $\mathbf{r}_1$      |                  |      |                                                |      |     |                                     | (6000)                         |
| 68   | 6724                          |                     |                  |      |                                                |      |     |                                     | (5600)                         |
| 69   | 6908                          | $p_1$               |                  |      |                                                |      |     |                                     | (5250)                         |
| 1870 | 4677                          | $\mathbf{f_1}$      |                  |      |                                                |      |     |                                     | 4950                           |
| 71   | 4016                          |                     | r <sub>1,2</sub> | 1868 | 1871                                           | 1874 | , 7 | 4710                                | 4600                           |
| 72   | 3657                          |                     | p <sub>1,2</sub> | 1869 | 1872                                           | 1875 | 7   | 4394                                | 4250                           |
| 73   | 3143                          | $t_1$               | f <sub>1,2</sub> | 1870 | 1873                                           | 1876 | 7   | 3957                                | 3900                           |
| 74   | 3854                          | r <sub>2</sub>      | -                |      |                                                |      |     |                                     | 3650                           |
| 75   | 4512                          | p <sub>2</sub>      |                  |      |                                                |      |     |                                     | 3350                           |
| 76   | 3840                          |                     |                  |      |                                                |      |     |                                     | 3150                           |
|      |                               |                     | t <sub>1,2</sub> | 1873 | 1876-77                                        | 1880 | 8   | 3198                                |                                |
| 77   | 3085                          | $\mathbf{f}_2$      | -                |      |                                                |      |     |                                     | 2950                           |
| 78   | 2610                          |                     |                  |      |                                                |      |     |                                     | 2850                           |
| 79   | 2217                          |                     | r <sub>2,3</sub> | 1875 | 1879                                           | 1883 | 9   | 2883                                | 2750                           |
| 1880 | 2331                          | <sup>t</sup> 2      | p <sub>2,3</sub> | 1876 | 1880                                           | 1884 | 9   | 2812                                | 2700                           |
| 81   | 2277                          |                     | f <sub>2,3</sub> | 1877 | 1881                                           | 1885 | 9   | 2789                                | 2750                           |
| 82   | 2385                          |                     |                  |      |                                                |      |     |                                     | 2850                           |
| 83   | 2687                          | $\mathbf{r}_3$      | <sup>t</sup> 2,3 | 1881 | 1883                                           | 1886 | 6   | 2993                                | 2950                           |
| 84   | 3874                          | $p_3$               |                  |      |                                                |      |     |                                     | 3100                           |
| 85   | 3533                          | $\mathbf{f}_3$      | r <sub>3,4</sub> | 1884 | 1885                                           | 1886 | 3   | 3536                                | 3450                           |
| 86   | 3101                          | <sup>t</sup> 3      | P3,4             | 1885 | 1886                                           | 1887 | 3   | 3911                                | 3950                           |
|      |                               | $\mathbf{r}_{4}$    | f <sub>3,4</sub> | 1886 | 1886                                           | 1887 | 2   | 4050                                |                                |
| 87   | 4998                          | $\mathbf{p}_{4}$    | <sup>t</sup> 3,4 | 1886 | 1887                                           | 1888 |     | 4488                                | 4700                           |
|      |                               | fц                  | °4,5             | 1887 | 1888                                           | 1888 |     | 5182                                |                                |
| 88   | 5366                          | $t_{4}$             | P4,5             | 1888 | 1888                                           | 1889 |     | 6051                                | 5650                           |
|      |                               | $\mathbf{r}_{5}$    | f <sub>4,5</sub> | 1888 | 1888-89                                        | 1889 |     | 6051                                |                                |
| 89   | 6736                          | P5                  | <sup>t</sup> 4,5 | 1889 | 1889                                           | 1890 |     | 6708                                | 6550                           |
|      |                               | <b>f</b> 5          | °5,6             | 1889 | 1889-90                                        | 1890 |     | 6708                                |                                |
| 1890 | 6680                          | <sup>t</sup> 5      | <sup>p</sup> 5,6 | 1890 | 1890                                           | 1890 | ) 1 | 6680                                | 6900                           |

(Table Ca is continued on next page)

Table Ca (continued) San Francisco Real Estate Activity

# First Stage of Smoothing.

| l<br>Year | 2(or 4)<br>Number<br>of Deeds | 5<br>Phase<br>Point | 6<br>Cycle         |        | 8 ly Figure d in the 6 Middle | 9<br>S<br>Cycle<br>End | 10<br>Length | ll<br>mca | SL B      |
|-----------|-------------------------------|---------------------|--------------------|--------|-------------------------------|------------------------|--------------|-----------|-----------|
| 1891      | 6757                          | r <sub>6</sub> .    | f <sub>5,6</sub>   | 1890   | 1890-91                       | 1891                   | 2            | 6718      | 6250      |
| 92        | 4958                          | <b>r</b> 6          | <sup>t</sup> 5,6   | 1890   | 1892                          | 1893                   | 4            | 5628      | 5250      |
|           |                               |                     | °6,7               | 1891   | 1892                          | 1894                   | 4            | 4809      |           |
| 93        | 4117                          | <sup>t</sup> 6      | P <sub>6,7</sub>   | 1892   | 1893                          | 1895                   | 4            | 3998      | 4250      |
| 94        | 3404                          | <b>r</b> 7          | f <sub>6,7</sub>   | 1892   | 1894                          | 1896                   | 5            | 3852      | 3500      |
| 95        | 3515                          |                     | t <sub>6,7</sub>   | 1894   | 1895                          | 1897                   | 4            | 3100      | 3050      |
| 96        | 3267                          | p <sub>7</sub>      | °7,8               | 1895   | 1896                          | 1898                   | 4            | 2910      | 2800      |
| 97        | 2215                          | <b>f</b> 7          | P <sub>7</sub> ,8  | 1896   | 1897                          | 1898                   | 3            | 2709      | 2650      |
|           |                               | <sup>t</sup> 7      |                    |        |                               |                        |              |           |           |
| 98        | 2645                          | r <sub>8</sub>      | f <sub>7,8</sub>   | 1897   | 1898                          | 1899                   | 3            | 2834      | 2700      |
| 99        | 3053                          | <b>P8</b>           | t <sub>7,8</sub>   | 1898   | 1899                          | 1900                   | 3            | 2986°     | 2950      |
|           |                               | $\mathbf{f}_8$      |                    |        |                               |                        |              |           |           |
| 1900      | 3259                          | <sup>t</sup> 8      | <sup>r</sup> 8,9   | 1899   | 1900                          | 1901                   | 3            | 3524      | 3550      |
|           |                               |                     | p <sub>8,9</sub>   | 1899   | 1900-01                       | 1902                   | 14           | 4098      |           |
| 01        | 4261                          | <b>r</b> 9          | f <sub>8,9</sub>   | 1900   | 1901                          | 1902                   | 3            | 4444      | 4400      |
| 02        | 5813                          | $p_9$               | <sup>t</sup> 8,9   | 1901   | 1902                          | 1903                   | 3            | 5480      | 5500      |
| 03        | 6365                          | <b>f</b> 9          | °9,10              | 1905   | 1903                          | 1904                   | 3            | 6417      | 6800      |
| 04        | 7073                          | <sup>t</sup> 9      | <sup>p</sup> 9,10  | 1903   | 1904                          | 1905                   | 3            | 7670      | 7900      |
|           |                               | <b>r</b> 10         |                    |        |                               |                        |              |           |           |
| 05        | 9572                          | P <sub>10</sub>     | f <sub>9,10</sub>  | 1903   | 1905                          | 1907                   | 5            | 8032      | 8300      |
| 06        | 8947                          |                     | <sup>t</sup> 9,10  | 1904   | 1906                          | 1908                   | 5            | 8243      | 8450      |
| 07        | 8204                          | $\mathbf{f}_{10}$   | r <sub>10,11</sub> | 1905   | 1907                          | 1909                   | 5            | 8423      | 8400      |
| 08        | 7418                          | t <sub>10</sub>     | p <sub>10,11</sub> | 1906   | 1908                          | 1910                   | 5            | 8214      | 8300      |
| 09        | 7972                          | $r_{11}$            |                    |        |                               |                        |              |           | 8150      |
| 1910      | 8528                          |                     | f <sub>10,11</sub> | 1908   | 1910                          | 1912                   |              | 7996      | 8000      |
| 11        | 8162                          | $p_{11}$            | t <sub>10,11</sub> | 1909   | 1911                          | 1914                   | 6            | 7572      | 7650      |
| 12        | 7900                          |                     | r <sub>11,12</sub> | 1909   | 1912                          | 1915                   | 7            | 7281      | 7300      |
| 13        | 6702                          | $\mathbf{r}_{11}$   | ,                  |        |                               |                        |              |           | 6900<br>· |
|           |                               |                     | p<br>11,12         | 1911   | 1913-14                       | 1916                   | 6            | 6846      |           |
| 14        | 6171                          |                     |                    |        | ,                             |                        |              |           | 6500      |
| 1915      | 5533                          | t <sub>11</sub>     | f<br>11,12         |        |                               | 1917                   |              | 6194      | 6100      |
|           |                               | (Tab                | le Ca is           | conclu | ded on nea                    | xt pag                 | e)           |           |           |

Table Ca (concluded) San Francisco Real Estate Activity

First Stage of Smoothing.

| 1    | 2(or 4)         | 5               | 6                  | 7     | ô         | 9    | 10     | 11    | 12      |
|------|-----------------|-----------------|--------------------|-------|-----------|------|--------|-------|---------|
| Year | Number of Deeds | Phase<br>Point  |                    | Year  | ly Figure | 98   | Length | mca   |         |
|      | 01 <b>2000</b>  |                 |                    | Begin | Middle    | End  |        |       |         |
| 1916 | 6610            | r <sub>12</sub> | t <sub>11,12</sub> | 1915  | 1916      | 1917 | 3      | 6032  | 5850    |
| 17   | 5952            | f <sub>12</sub> | r <sub>12,13</sub> | 1916  | 1917      | 1919 | 4      | 6130  | 5850    |
| 18   | 4818            | t <sub>12</sub> | p <sub>12,13</sub> | 1917  | 1918      | 1920 | 4      | 6778  | 6200    |
| 19   | 7138            | r <sub>13</sub> | f <sub>12,13</sub> | 1918  | 1919      | 1920 | 3      | 7053  | 7300    |
|      |                 |                 | t <sub>12,13</sub> | 1918  | 1919-20   | 1921 | 4      | 7724  |         |
| 1920 | 9203            | p <sub>13</sub> |                    |       |           |      |        |       | 8800    |
|      |                 | f <sub>13</sub> | r <sub>13,14</sub> | 1920  | 1920-21   | 1922 | 3      | 10486 |         |
| 21   | 9736            | <sup>t</sup> 13 |                    |       |           |      |        |       | 10500   |
|      |                 |                 | p <sub>13,14</sub> | 1920  | 1922      | 1923 | 4      | 11600 |         |
| 22   | 12519           | r <sub>14</sub> | f <sub>13,14</sub> | 1921  | 1922      | 1923 | 3      | 12365 | 12700   |
|      |                 |                 | t <sub>13,14</sub> | 1922  | 1922-23   | 1923 | 2      | 13730 |         |
| 23   | 14940           | P <sub>14</sub> | r <sub>14,15</sub> | 1922  | 1923      | 1924 | 3      | 14370 | 14600   |
|      |                 | f <sub>14</sub> |                    |       |           |      |        |       |         |
| 24   | 15650           | t <sub>14</sub> | P <sub>14,15</sub> | 1923  | 1924      | 1925 | 3      | 16291 | 16300   |
|      |                 | r <sub>15</sub> |                    |       |           |      |        |       |         |
| 25   | 18282           | p <sub>15</sub> | f <sub>14,15</sub> | 1924  | 1925      | 1926 | 3      | 16825 | 16850   |
| 26   | 16543           |                 |                    |       |           |      |        |       | 15600   |
|      |                 |                 | t <sub>14,15</sub> | 1924  | 1926-27   | 1928 | 5      | 14883 | •       |
| 27   | 12960           | f <sub>15</sub> | <b>r</b> 15,16     | 1925  | 1927      | 1930 | 6      | 12785 | 13500   |
| 28   | 10980           |                 | p <sub>15,16</sub> | 1926  | 1928      | 1931 | 7      | 11162 | 11600   |
| 29   | 9416            | <sup>t</sup> 15 |                    |       |           |      |        |       | 10000   |
|      |                 | ,               | f <sub>15,16</sub> | 1928  | 1929-30   | 1932 | 5      | 8922  |         |
| 1930 | 8528            | <b>r</b> 16     |                    |       |           |      |        |       | 8850    |
| 31   | 8548            | p <sub>16</sub> | <sup>t</sup> 15,16 | 1929  | 1931      | 1934 | 6      | 7193  | 7600    |
| 32   | 7139            | <b>f</b> 16     |                    |       |           |      |        |       | 6500    |
| 33   | 5158            |                 | <sup>r</sup> 16,17 | 1931  | 1933      | 1935 | 5      | 6210  | 5900    |
| 34   | 4368            | <sup>t</sup> 16 | p <sub>16,17</sub> | 1932  | 1934      | 1936 | 5      | 6091  | 5900    |
| 35   | 5839            |                 | f<br>16,17         | 1933  | 1935      | 1937 | 5      | 6403  | 6300    |
| 36   | 7949            | r <sub>17</sub> | <sup>t</sup> 16,17 | 1934  | 1936      | 1938 | 5      | 7009  | 7150    |
| 37   | 8701            | p <sub>17</sub> |                    |       |           |      |        |       | 8000    |
| 38   | 8190            | f <sub>17</sub> | r <sub>17,18</sub> | 1936  | 1938      | 1939 | 4      | 8425  | (8800)  |
|      |                 | <sup>t</sup> 17 |                    |       |           |      |        |       |         |
| 39   | 8859            |                 |                    |       |           |      |        |       | (9500)  |
| 1940 | 70658           | <b>r</b> 18     |                    |       |           |      |        |       | (10350) |
|      |                 |                 |                    |       |           |      |        |       |         |

# Table Cb. SAN FRANCISCO REAL ESTATE ACTIVITY

# 1867 TO 1940

The Second Stage of Smoothing: Locating SL M

(columns numbered to correspond with Table B)

(See the Tables in Chapter V, for a more condensed arrangement)

| l<br>Year | 12<br>SL B     | 13<br>Phase    | 14<br>Cycle      | 15<br>Year       | 16<br>rly Figure | 17<br>s      | 18<br>ø            | 19   | 20<br>Second    | 24<br>l Final |
|-----------|----------------|----------------|------------------|------------------|------------------|--------------|--------------------|------|-----------------|---------------|
| <i>:</i>  |                | Point          |                  | Include<br>Begin | ed in the Middle | Cycle<br>End | Length<br>in Years | mca  | Approx<br>to SL | c. ŞL M       |
|           |                |                |                  |                  |                  |              | Leng               |      |                 | Table<br>Cc)  |
| 1867      | (6000)         | )              |                  |                  |                  |              | • • •              |      | (4000)          | (400ó)        |
| 68        | <b>(</b> 5600) |                |                  |                  |                  | •            |                    |      | (4000)          | (4000)        |
| 69        | (5250)         | )              | •                |                  |                  |              |                    |      | (4000)          | (4000)        |
| 1870      | 4950           |                |                  |                  |                  |              |                    |      | (4000)          | (4000)        |
| 71        | 4600           |                |                  |                  |                  |              |                    |      | (4000)          | (4000)        |
| 72        | 4250           | fl             |                  |                  |                  |              |                    |      | (4000)          | (4000)        |
| 73        | 3900           |                |                  |                  |                  |              |                    |      | (4000)          | (4000)        |
| 74        | 3650           |                |                  |                  |                  |              |                    |      | (4000)          | (4000)        |
| 75        | 3350           |                |                  |                  |                  |              |                    |      | (4000)          | (4000)        |
| 76        | 3150           |                |                  |                  |                  |              |                    |      | (4000)          | (4000)        |
| 77        | 2950           |                |                  |                  |                  |              |                    |      | (4000)          | (4000)        |
| 78        | 2850           |                |                  |                  | ,                |              |                    |      | (4000)          | (4000)        |
| 79        | 2750           |                |                  |                  |                  |              |                    |      | (4050)          | (4000)        |
| 1880      | 2700           |                |                  |                  |                  |              |                    |      | <b>(</b> 4050)  | (4000)        |
| 81        | 2750           | t <sub>1</sub> |                  |                  |                  |              |                    |      | (4050)          | (4000)        |
| 82        | 2850           | _              | f <sub>1,2</sub> | 1872             | 1882             | 1892         | 21                 | 4093 | (4100)          | 4000          |
| 83        | 3000           |                | 1,2              |                  |                  |              |                    |      | 4100            | 4010          |
| 84        | 3100           |                |                  |                  |                  |              |                    |      | 4150            | 4020          |
| 85        | 3450           |                |                  |                  |                  |              |                    |      | 4150            | 4030          |
| 86        | 3950           |                |                  |                  |                  |              |                    |      | 4200            | 4040          |
| 87        | 4700           | r <sub>1</sub> |                  |                  |                  |              |                    |      | 4200            | 4060          |
| 88        | 5650           | _              |                  |                  |                  |              |                    |      | 4200            | 4075          |
| 89        | 6550           |                | t                | 1881             | 1889             | 1898         | 18                 | 4186 | 4250            | 4100          |
| 1890      | 6900           | p <sub>1</sub> | <sup>t</sup> 1,2 |                  | -                | •            |                    |      | 4250            | 4130          |
| •         |                | - Т            | /m-> >           | <b>~</b>         |                  | _            |                    |      |                 |               |

(Table Cb is continued on next page)

# Table Cb (continued) San Francisco Real Estate Activity

Second Stage of Smoothing

| l<br>Year  | 12<br>SL B | 13<br>Phase<br>Point | 14<br>Cycle      | 15<br>Year<br>Included<br>Begin | 16<br>ly Figure<br>d in the<br>Middle | 17<br>s<br>Cycle<br>End | Length & | 19<br>mca | 20<br>Second<br>Approx.<br>to SL M | 24<br>Final<br>SL M |
|------------|------------|----------------------|------------------|---------------------------------|---------------------------------------|-------------------------|----------|-----------|------------------------------------|---------------------|
| 1891       | 6250       |                      |                  |                                 |                                       |                         | Å        |           | 4300                               | 4160                |
| 92         | 5250       | A                    |                  |                                 |                                       |                         |          |           | 4350                               | 4200                |
| 93         | 4250       | f <sub>2</sub>       |                  |                                 |                                       |                         |          |           | 4400                               | 4250                |
| 94         | 3500       |                      |                  |                                 |                                       |                         |          |           | 4500                               | 4320                |
|            |            |                      | r <sub>1,2</sub> | 1889                            | 1894-95                               | 1902                    | 14       | 4414      | (4550)                             |                     |
| 95         | 3050       |                      | -,-              |                                 |                                       |                         |          |           | 4600                               | 4410                |
| <b>9</b> 6 | 2800       |                      |                  |                                 |                                       |                         |          |           | 4700                               | 4510                |
| 97         | 2650       |                      |                  |                                 |                                       |                         |          |           | 4800                               | 4630                |
|            |            |                      | p <sub>1,2</sub> | 1890                            | 1897-98                               | 1905                    | 16       | 4797      | (4875)                             |                     |
| 98         | 2700       | <sup>t</sup> 2       |                  |                                 |                                       |                         |          |           | 4950                               | 4760                |
| 99         | 2950       |                      |                  |                                 |                                       |                         |          |           | 5050 <sup>′</sup>                  | 4900                |
| 1900       | 3550       |                      |                  |                                 |                                       |                         |          |           | 5200                               | 5050                |
| 01         | 4400       |                      |                  |                                 |                                       |                         |          |           | 5350                               | 5210                |
| 02         | 5500       | r <sub>2</sub>       | f <sub>2,3</sub> | 1893                            | 1902                                  | 1911                    | 19       | 5647      | 5500                               | 5400                |
| 03         | 6800       |                      | ,3               |                                 |                                       |                         |          |           | 5650                               | 5590                |
| 04         | 7900       |                      |                  |                                 |                                       |                         |          |           | 5850                               | 5690                |
| 05         | 8300       | $p_2$                |                  |                                 |                                       |                         |          |           | 6050                               | 6000                |
| 06         | 8450       |                      |                  |                                 |                                       |                         |          |           | 6250                               | 6200                |
| 07         | 8400       |                      | ·                |                                 |                                       |                         |          |           | 6500                               | 6460                |
| 80         | 8300       |                      | <sup>t</sup> 2,3 | 1898                            | 1908                                  | 1917                    | 20       | 6475      | 6700                               | 6700                |
| 09         | 8150       |                      | ,0               |                                 |                                       |                         |          |           | 6950                               | 6980                |
| 1910       | 8000       |                      |                  |                                 |                                       |                         |          |           | 7250                               | 7250                |
| 11         | 7650       |                      |                  |                                 |                                       |                         |          |           | 7600                               | 7580                |
|            |            | $\mathbf{f}_3$       | °2,3             | 1903                            | 1911-12                               | 1920                    | 18       | 7375      | (7750)                             |                     |
| 12         | 7300       |                      |                  |                                 |                                       |                         |          |           | 7900                               | 7900                |
| 13         | 6900       |                      |                  |                                 |                                       |                         |          |           | 8200                               | 8200                |
| 14         | 6500       |                      |                  |                                 |                                       |                         |          |           | 8500                               | 8500                |
| 1915       | 6100       |                      | p <sub>2,3</sub> | 1906                            | 1915                                  | 1925                    | 20       | 9035      | 8850                               | 8900                |
|            |            |                      |                  | e Cb is                         | concluded                             | l on ne                 | xt p     | age)      |                                    |                     |

# Table Cb (concluded) San Francisco Real Estate Activity

# Second Stage of Smoothing

| 1    | 12     | 13               | 14               | 15                       | 16                                   | 17          | 18                | 19    | 20                          | 24            |
|------|--------|------------------|------------------|--------------------------|--------------------------------------|-------------|-------------------|-------|-----------------------------|---------------|
| Year | SL B   | Phase<br>Point   | Cycle            | Year<br>Include<br>Begin | ely Figures<br>od in the C<br>Middle | ycle<br>End | $\mathtt{Length}$ | mca   | Second<br>Approx<br>to SL M | Final<br>SL M |
| 1916 | 5850   |                  |                  |                          |                                      |             | H                 |       | 9100                        | 9230          |
| 17   | 5850   | · <sub>t3</sub>  |                  |                          | 1                                    |             |                   |       | 9350                        | 9520          |
| 18   | 6200   |                  |                  |                          |                                      |             |                   |       | 9600                        | 9840          |
| 19   | 7300   |                  |                  |                          |                                      |             |                   |       | 9900                        | 10150         |
| 1920 | 8800   |                  | f <sub>3,4</sub> | 1912                     | 1920                                 | 1928        | 17                | 10144 | 10100                       | 10400         |
| 21   | 10500  | $r_3$            | 3,               |                          |                                      |             |                   |       | 10250                       | 10670         |
| 22   | 12700  |                  |                  |                          |                                      |             |                   |       | 10450                       | 10900         |
| 23   | 14600  |                  |                  |                          |                                      |             |                   |       | 10550                       | 11070         |
| 24   | 16300  |                  |                  |                          |                                      |             |                   |       | 1,0650                      | 11200         |
| 25   | 16800  | <sub>p</sub> 3   | <sup>t</sup> 3,4 | 1918                     | 1925                                 | 1933        | 16                | 10800 | 10800                       | 11210         |
| 26   | 15600  |                  | 3,               |                          |                                      |             |                   |       | 10750                       | 11160         |
| 27   | 13500  |                  |                  |                          |                                      |             |                   |       | 10700                       | 11030         |
| 28   | 11600  |                  |                  |                          |                                      |             |                   |       | 10600                       | 10880         |
| 29   | 11000  | f <sub>4</sub>   |                  |                          |                                      |             |                   |       | 10500                       | 10710         |
|      |        |                  | r <sub>3,4</sub> | 1921                     | 1929-30                              | 1938        | 18                | 10369 | (10425)                     |               |
| 1930 | 8850   |                  | ,                |                          |                                      |             | •                 |       | 10350                       | 10520         |
| 31   | 7600   |                  |                  |                          |                                      |             |                   |       | 10250                       | 10330         |
| 32   | 6500   |                  |                  |                          |                                      |             | •                 | ,     | (10100)                     | (10170)       |
| 33   | 5900   | t <sub>4</sub>   |                  |                          |                                      |             |                   |       | (9950)                      | (9990)        |
| 34   | 5900   |                  |                  |                          |                                      |             |                   |       | (9800)                      | (9810)        |
| 35   | 6300   |                  |                  |                          |                                      |             |                   |       | (9600)                      | (9600)        |
| 36   | 7150   |                  |                  |                          |                                      |             |                   |       | (9450)                      | (9450)        |
| 37   | 8000   |                  |                  |                          |                                      |             |                   |       | (9250)                      | (9250)        |
| 38   | (8800  | ) r <sub>4</sub> |                  |                          |                                      |             |                   | ,     | (9100)                      | (9100)        |
| 39   | (9500  |                  |                  |                          |                                      |             |                   |       | (8900)                      | (8900)        |
| 1940 | (10350 | )                |                  |                          | ,.                                   |             |                   |       | (8700)                      | (8700)        |

# Table Cc. SAN FRANCISCO REAL ESTATE ACTIVITY, 1867 TO 1940

The second stage of smoothing, continued: Correction for curvature.

(Columns 14 to 20 repeated, in condensed form, from Table Cb)

| 23<br>Adjusted<br>m. c. s.<br>19422       | •                         | 6204 | 4089   | 4235         | 4703             | 5471         | 6337         | 7330                   | 9112        | 10464  | 11256                | 10622       |
|-------------------------------------------|---------------------------|------|--------|--------------|------------------|--------------|--------------|------------------------|-------------|--------|----------------------|-------------|
| 22<br>Curvature<br>Correction<br>20-21    |                           | -14  | -97    | -179         | <del>1</del> 6 - | -176         | -138         | 54 -                   | + 77        | +350   | 1456                 | +253        |
| 21<br>Reiterated<br>m. c. a.,<br>based on | Second Approx.<br>to SL M | 4114 | 7484   | 4.729        | 4969             | 2676         | 6838         | 7795                   | 8773        | . 9780 | 10344                | 10172       |
| 20<br>Second<br>Approx.tu<br>SL M         |                           | 4100 | 4250   | 4550         | 4875             | 5500         | 0029         | 7750                   | 8850        | 10100  | 10800                | 10425       |
| 19<br>m.c.a.<br>Based on                  | )<br>[                    | 1093 | 4186   | <b>t</b> [tt | 162ti            | 2647         | 6475         | 7375                   | 9035        | 10144  | 10800                | 10369       |
| 18<br>Length<br>1n years                  |                           | 21   | 18     | 17           | 16               | 19           | 50           | 18                     | 20          | 17     | 16                   | 18          |
| 17                                        | End                       | 1892 | 1898   | 1902         | 1905             | . 1911       | 1917         | 1920                   | 1925        | 1928   | 1933                 | 1938        |
| 16<br>Yearly Figures<br>in the Cycle      | Middle                    | 1882 | 1889   | 1894-95      | 1897-98          | 1902         | 1908         | 1911-12                | 1915        | 1920   | 1925                 | 1929-30.    |
| 15                                        | Begin                     | 1872 | 1881   | 1889         | 1890             | 1893         | 1898         | 1903                   | 1906        | 1912   | 1918                 | 1921        |
| 14                                        | Cycle                     | و ا  | t, 2,6 | 7 T L        | λ, 1<br>Ω, 2     | ۲ را<br>د را | ל, א<br>ל, א | رة<br>د ر <del>ا</del> | 6,5<br>Pr 2 | f, ,   | <del>ر</del> را<br>ي | 3,4<br>F3,4 |

The final column, number  $2\mu$ , is in Table Cb.





# THE CYCLES

# Section 1. CHARACTERISTICS OF THE CYCLES.

IT will be recalled that to locate the smoothing lines is but the first of three major tasks in studying time series by the method of smoothing by stages. The second objective is to organize the information concerning the several orders of cycles. Prior to this organizing, one can examine the historical record of each order of cycle; this is of course an essential and valuable step. But it is important to go beyond this mere viewing of the cycle; the method of smoothing by stages makes it possible to calculate standard measures of each order of cycle. Armed with these measures, one can furnish an extensive and meaningful description of the time series, can compare the particular series with others, and can make a systematic forecast. (Comparison and correlation of series, and forecasting, will be treated briefly in Chapter IV.)

# MEASURES OF THE ANNUAL CYCLE.

THE relationship of actual monthly or quarterly data to SL A, constitutes the annual cycle. The record of this ratio is completely freed from all elements of the short business cycle, the major cycle, and the trend. The standard pattern of this order of fluctuation is commonly called the seasonal pattern, or the four quarterly (or twelve monthly) indexes. The seasonal pattern may be calculated from the record of the ratios of actual to SL A, in the same way that it is usually calculated from the ratios to the moving average. Subsequently, as in that method, after the standard seasonal pattern for the entire record has been determined, the record may be broken into parts, and separate calculations made for the early years and for the late years, in order to discover changes in the seasonal pattern.

ONE may calculate the typical date in the year at which the seasonal peak occurs, the typical date of the trough, the typical "r" date, and the typical "f" date.

THE typical percentage deviation of actual from SL A at the peak is another useful measure; and the typical percentage deviation of actual from SL A at the trough.

FINALLY, the amplitude of the annual cycle may be calculated, that is, the standard deviation (sd) of the actual values from SL A, measured in per cent.

WITH these measures, one can draw the annual cycle as it would appear in the typical or usual year, and can compare it with similar typical annual cycles calculated for other series. (No such analysis of the annual cycle is offered among the illustrations in this book.)

# MEASURES OF THE SHORT BUSINESS CYCLE.

THE relationship of actual annual data (or of SL A) to SL B, will give the movement which is called the short business cycle. By the smoothing process by which SL A was located, the ratio of SL A to SL B has been completely freed from shorter period impulses, which have been taken into the annual cycle. It is also freed from the major cycle and all longer movements, for these are deferred to later stages of the analysis; these long movements are present both in the actual annual data and SL B (or in SL A and in SL B), and they consequently do not appear in the relationship between those two lines (they cancel out in the numerator and denominator of the ratio annual data or SL A).

THE amplitude or standard deviation (sd) may be calculated.

SEVERAL time-lengths will aid one to construct the typical cycle of this order; the four typical phase lengths, pf, ft, tr, and rp; and also their sum, the typical over-all length of the short business cycle. Table Db will show an arrangement for this calculation; it may be seen also in Table E and on Charts 4 and 5.

THE typical percentage ratio of  $\frac{SL\ A}{SL\ B}$  (or  $\frac{snual\ data}{SL\ B}$ ) at the peak, and the typical percentage ratio at the trough may be found by simple averaging.

WITH these standard measures of the short business cycle, one can draw that cycle (Chart 5), and can make a forecast (Chart 6).

# MEASURES OF THE MAJOR CYCLE.

THE relationship of SL B to SL M will give the history of the major cycle. From that history, standard measures of the major cycle may be determined: the amplitude or standard deviation (sd), the typical ratios of SL B to SL M at the peak and at the trough, the typical length of the cycle as a whole, and the typical length of each of the four phases. The calculation is arranged in Table Dc.

AGAIN, as in the annual cycle and the short business cycle, this information enables the operator to draw and to describe the major cycle, and to use its shape in a forecast.

# FURTHER lines of study may be suggested:

- a) The study of the history of each order of cycle may be carried forward by differences, instead of by ratios. The method of differences is recommended if some of the values approach zero, and it is required if they pass into negative values as would be the case in a study of gold movements into a country, and of other incremental variables.
- b) In analyzing each order of cycle, the student may be interested not merely to determine the typical value of each measure, but to examine the full range or distribution of the values of that measure. He may be concerned to discover systematic changes in that measure with the passage of time or during particular phases of a longer movement than this particular cycle. (See W. C. Mitchell, Business Cycles, chapter 3, on the contribution of statistics.) For example he

# Table Da. Arrangement for the Calculation of the Standard Measures of the Seasonal or Annual Cycle

| 1<br>Date<br>(quarter<br>or month) | Percentage ratio 100 x datum SL A (in %) | 3 Deviation of ratio from 100% (in %) | 4<br>Deviation<br>squared |
|------------------------------------|------------------------------------------|---------------------------------------|---------------------------|
|                                    | (in %)                                   |                                       |                           |

- 5. From the sum of the figures in column 4, calculate sd, the amplitude of the fluctuation:  $sd = \sqrt{\frac{\sum (d^2)}{n}}$
- 6. From column 2, calculate the seasonal indexes:

|               | Ratio, $Q_1$ | datum to<br>Q <sub>2</sub> | SL A      | $Q_{4}$ |
|---------------|--------------|----------------------------|-----------|---------|
| 1920          | %            | %                          | %         | %       |
| 1921          |              |                            | • • • • • |         |
| 1922          | • • • • •    | • • • • •                  |           | • • • • |
| etc.          | • • • • •    | • • • • •                  | • • • •   | • • • • |
| -             |              |                            |           |         |
| Average ratio | %            | %                          | %         | %       |

Adjust to bring the total of these four average ratios to 400%, and so get the seasonal indexes.

7. Calculate the typical date in the year for each phase point. Take information from a chart like Chart 2. Possibly smooth monthly data first, by a 3-month moving average.

Time, measured from January 1

| •                  | р         | f         | r         | t.        |
|--------------------|-----------|-----------|-----------|-----------|
| 1920               | • • • • • |           |           | • • • • • |
| 1921               | • • • •   | • • • • • |           | • • • • • |
| 1922               | • • • • • |           |           | • • • • • |
| etc.               |           |           |           | • • • • • |
| Typical or average |           |           |           |           |
| date in the year   | • • • • • |           | • • • • • | • • • • • |

8. Calculate the typical percentage deviation of actual from SL A, at peak and at trough.

|                              | Deviation of actua<br>at peak | al from <b>SL</b> A<br>at trough |
|------------------------------|-------------------------------|----------------------------------|
| 1920                         | %                             | %                                |
| 1921                         | • • • • •                     | • • • • •                        |
| 1922                         |                               | • • • • •                        |
| etc.                         | • • • • •                     | • • • • •                        |
| Typical or average deviation | %<br>at peak                  | %<br>at trough                   |

# Table Db. Arrangement for the Calculation of the Standard Measures of the Short Business Cycle

5.

7.

8.

| Date Percentage (Year or Quarter) 100 x date SL 100 x SL  (correspond column 25 the cycle in Chapter From the sum of the fig. | Em, or  B A B nds to in tables r V) | colum<br>in Ch          | tio 100% %) esponds to n 26 apter V) |                                |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------|--------------------------------------|--------------------------------|
| of the fluctuation:                                                                                                           | sd=\ \ \(\frac{\xi}{n}\)            | (d <sup>2</sup> )       |                                      |                                |
| (Here a step must be om first order analysis.)                                                                                | itted, that                         | appeared                | as No. 6 in                          | n Table Da, the                |
| Calculate the typical 1 business cycle. (corre Chapter V)                                                                     | ength of eac<br>sponds to st        | ch phase o<br>cep 28 in | r quarter of<br>the cycle            | of the short<br>tables in      |
|                                                                                                                               | Length o                            | of phase i              | n years and                          | d fractions                    |
| Phase or Quarter                                                                                                              | pf                                  | ft                      | tr                                   | rp                             |
| First cycle                                                                                                                   | yrs                                 | yrs.                    | yrs.                                 | yrs.                           |
| Second cycle                                                                                                                  | • • • •                             |                         |                                      | • • • •                        |
| Third cycle                                                                                                                   |                                     | • • • •                 |                                      | • • • •                        |
| etc.                                                                                                                          |                                     |                         |                                      | · · ·                          |
| Typical or average length                                                                                                     | yrs.                                | yrs.                    | yrs.                                 | yrs.                           |
| The sum of these four t<br>the typical short busin                                                                            | ypical phase<br>less cycle.         | e lengths               | is the ove                           | r-all length of                |
| Calculate the typical peak and at the trough. in Chapter V)                                                                   | ercentage de<br>(correspo           | eviation on ands to ste | of <b>S</b> L A fro<br>ep 29 in th   | m SL B, at the e cycle tables, |
|                                                                                                                               |                                     | Deviati<br>at peak      |                                      | Deviation<br>at trough         |
| First cycle                                                                                                                   |                                     |                         | .%                                   | %                              |
| Second cycle                                                                                                                  |                                     |                         | •                                    |                                |
| Third cycle                                                                                                                   |                                     | • • • • •               | •                                    |                                |
| etc.<br>Typical or<br>average deviati                                                                                         | lon                                 |                         | <br>.%                               | <del>%</del>                   |

# Table Dc. Arrangement for the Calculation of the Standard Measures of the Major Cycle

(Note that the details here are almost the same as those in Table Db, save that here the attention is on the ratio of SL B to SL M, and the values are presumed to be listed at annual intervals.)

| l<br>Year | Percentage Ratio 100 x SL B SL M                            | 3 Deviation of Ratio from 100% (in %)         | 4<br>Deviation<br>squared                     |  |
|-----------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|
|           | (corresponds to column 30 in the cycle tables in Chapter V) | (corresponds<br>to column 31<br>in Chapter V) | (corresponds<br>to column 32<br>in Chapter V) |  |

5. From the sum of the figures in column 4, calculate sd, the amplitude

of the fluctuation:  $sd=\sqrt{\frac{\xi(d^2)}{n}}$  (Here, as in Table Db, a step must be omitted)

7. Calculate the typical length of each phase or quarter of the major cycle. (corresponds to step 33 in the cycle tables in Chapter V)

# Length of phase in years and fractions

| Phase or Quarter          | pf       | ft      | tr                           | rp       |
|---------------------------|----------|---------|------------------------------|----------|
| First cycle               | ····yrs. | yrs     | yrs.                         | yrs.     |
| Second cycle              | ••••     | • • • • | ••••                         | • • • •  |
| Third cycle               | • • • •  | • • • • | ••••                         | • • • •  |
| etc.                      |          |         | <del>412/2-reportation</del> |          |
| Typical or average length | yrs.     | yrs     | yrs.                         | ····yrs. |

The sum of these four typical phase lengths is the over-all length of the typical major cycle.

8. Calculate the typical percentage deviation of SL B from SL M at the peak and at the trough. (corresponds to step 34 in the cycle tables in Chapter V)

|                              | Deviation<br>at peak | Deviation at trough |
|------------------------------|----------------------|---------------------|
| First cycle                  | %                    | %                   |
| Second cycle                 | •••••                | • • • • •           |
| Third cycle                  | • • • • • • .        | • • • • •           |
| etc.                         | -                    |                     |
| Typical or average deviation | %                    | %                   |

may study the seasonal pattern during major booms, or the short business cycles during major depressions.

### EXPLANATION OF A USE OF STRAIGHT LINES.

ON Chart 2, the actual annual data were plotted; those values are discrete (not continuous). They were then connected by straight lines to form a time polygon; but those straight lines have no important theoretical meaning; they serve merely as connecting links. On Chart 4, the ratios actual

of SLB have been plotted for every year. To be mathematically consistent with the straight lines connecting the data on Chart 2, these points on Chart 4 should be connected by segments of curves, whereas they too have been connected by straight lines. But these annual ratios are discrete also, and the straight lines connecting them to form the time polygon have no important theoretical meaning. Moreover, the curvature (if drawn) in the short segmentary lines would not be sharp---on the whole they would be nearly indistinguishable from straight lines, and the work would be laborious.

# Section 2. SAN FRANCISCO REAL ESTATE ACTIVITY, 1867 TO 1940

Analysis of Two Orders of Cycles

(a discussion of Table E and Chart 4)

THE percentage ratio of the actual number of deeds in each year to the  $\frac{100 \text{ x data}}{\text{SL B}}$ , is entered in Table Ea and plotted on Chart 4. These ratios show the history of the short business cycle. Similarly, in Table Eb, and on Chart 4, there will be seen the history of the major cycle as shown by the ratio  $\frac{100 \text{ x SL B}}{\text{SL M}}$  (the multiplier 100 is introduced to transform the simple ratio to a percentage ratio).

IT will be seen that in each stage, the terminal half-cycle has been omitted from this part of the study. This is because the smoothing line in the terminal half-cycle has not a firmly established value, hence those uncertain ratios may not properly be used in determining the standard measures of the cycle.

THE calculation of sd, the amplitude of the cycle, needs no description.

THE time lengths of the successive phases were read from Chart 2, for the calculations in Table Ea; and from Chart 3, for the calculations in Table Eb. They are averaged in simple fashion.

THE percentage deviations at peak and at trough were taken from the listings in Tables Ea and Eb respectively.

SURPRISINGLY, in this particular series, the average or typical deviation from SL B at the peak (and that at the trough) of the short cycle, is less than the standard deviation of all the data about SL B. This is due to a difference in the two methods of calculation. The sd is calculated by squaring all the deviations before striking an average; the few extreme deviations exert a great influence on the result. On the other hand, the typical peak (and trough) are calculated by averaging the first powers of the deviations at the several peaks (or troughs); the few extreme cycles here exert less influence.

| Table Ea. |
|-----------|
| SAN       |
| FRANCISCO |
| REAL      |
| ESTATE    |
| ACTIVITY  |

Calculation of Standard Measures of the Short Business Cycle, from the Record 1867 to 1940:

the amplitude or standard deviation;

|               | оп в            |             |             | 1905   | 115        | <b>+</b> 15                | 225  |                                                                                                          |
|---------------|-----------------|-------------|-------------|--------|------------|----------------------------|------|----------------------------------------------------------------------------------------------------------|
| 1871          | 87              | -13         | 169         | 06     | 106        | <b>+</b> 6                 | 36   |                                                                                                          |
| 72            | 86              | -14         | 196         | 07     | 98         | - 2                        | 4    |                                                                                                          |
| 73            | 80              | -20         | 400         | 08     | 89         | -11                        | 121  |                                                                                                          |
| 74            | 106             | + 6         | 36          | 09     | 98         | - 2                        | . 4  |                                                                                                          |
| 75            | 136             | + 36        | 1296        | · 1910 | 107        | + 7                        | 49   |                                                                                                          |
| 76            | 122             | + 22        | 484         | 11     | 107        | <b>←</b> 7                 | 49   |                                                                                                          |
| 77            | 105             | <b>+</b> 5  | 25          | 12     | 108        | <b>+</b> 8                 | 64   |                                                                                                          |
| 78            | 92              | - 8         | 64          | 13     | 97         | - 3                        | 9    |                                                                                                          |
| 79            | 81              | -19         | 361         | 14     | 95         | · <b>-</b> 5               | 25   |                                                                                                          |
| 1880          | 86              | -14         | 196         | 15     | 91         | - 9                        | 81   |                                                                                                          |
| 81            | 83              | -17         | 289         | 16     | 113        | +13                        | 169  | the typical lengths of the phases or quarters of the cycle; the typical ordinates at peak and at trough. |
| 82            | 84              | -16         | 256         | 17     | 102        | + 2                        | 4    | pial                                                                                                     |
| 83            | 90              | -10         | 100         | 18     | 78         | -22                        | 484  | leng<br>ordi                                                                                             |
| 84            | 125             | . +25       | 625         | 19     | 98         | - 2                        | 4    |                                                                                                          |
| 85            | 105             | + 5         | 25          | 1920   | 105        | + 5                        | 25   | f the                                                                                                    |
| 86            | 79              | -21         | 441         | 21     | 93         | - 7                        | 49   | phas<br>cak a                                                                                            |
| 87            | 106             | + 6         | 36          | 22     | 99         | - 1                        | 1    | 보 2<br>도 3                                                                                               |
| 88            | 95              | - 5         | 25          | 23     | 102        | + 2                        | 4    | qua                                                                                                      |
| 89            | 103             | + 3         | 9           | 24     | 96         | - 4                        | 16   | S IS                                                                                                     |
| 18 <b>9</b> 0 | 97              | - 3         | 9           | 25     | 108        | + 8                        | 64   | ₽<br>%                                                                                                   |
| 91            | 108             | + 8         | 64          | 26     | 106        | + 6                        | 36   | t cycl                                                                                                   |
| 92            | 94              | - 6         | 36          | 27     | <b>9</b> 6 | - 4                        | 16   | <u>;;</u>                                                                                                |
| 93            | 97 <sup>.</sup> | - 3         | 9           | 28     | 95         | - 5                        | 25   |                                                                                                          |
| 94            | 97              | - 3         | 9           | 29     | 94         | <b>-</b> 6                 | 36   |                                                                                                          |
| 95            | 115             | <b>+</b> 15 | 225         | 1930   | 96         | - 4                        | 16   |                                                                                                          |
| 96            | 117             | +17         | 289         | 31     | 112        | +12                        | 144  |                                                                                                          |
| 97            | 84              | -16         | <b>2</b> 56 | 32     | 110        | +10                        | 100  |                                                                                                          |
| 98            | 98              | - 2         | 4           | 33     | 87         | -13                        | 169  |                                                                                                          |
| 99            | 103             | + 3         | 9           | 34     | 74         | <del>-</del> 26            | 676  |                                                                                                          |
| 1900          | 92              | - 8         | 64          | 35     | 93         | - 7                        | 49   |                                                                                                          |
| 01            | 97              | - 3         | 9           | 36     | 111        | +11                        | 121  |                                                                                                          |
| 02            | 106             | + 6         | 36          | 1937   | 109        | +9<br>Σ(d <sup>2</sup> ) = | 81   |                                                                                                          |
| 03            | 94              | - 6         | 36          | .a_‴1  | 9001       |                            | 0724 |                                                                                                          |
| 1904          | 90              | <b>-</b> 10 | 100         | sd=7   | 67         | = 11.5%                    |      |                                                                                                          |
|               |                 | m_1-1       | Tile        |        |            |                            |      |                                                                                                          |

Year Percentage Deviation Deviation Ratio % Squared

100.actual SL B

Year Percentage Deviation  $d^2$  Ratio

Table Ea is concluded on next page

# Table Ea (concluded) San Francisco Real Estate Activity

Time Lengths of the Phases or Quarters of the Cycle of Actual Annual Figures about SL B - the Short Business Cycle. Read from Chart 2.

| Cycle                                                                               |                                                                                       |                                                                                             | in Years                                        |                                                                               |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|
| Number                                                                              | rp                                                                                    | pf                                                                                          | ft                                              | tr                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 1.4 yr<br>0.99<br>0.4<br>0.4<br>0.4<br>0.99<br>0.1<br>0.9<br>0.1<br>0.9<br>0.1<br>0.9 | 0.8 yr<br>1.7<br>0.9<br>0.53<br>0.7<br>0.56<br>0.1<br>0.556<br>2.1<br>0.556<br>0.560<br>2.1 | 3.0 yrs 3.5 0.9 0.6 0.7 1.2 1.8 0.4 0.4 2.2 1.7 | 1.5 yr<br>2.9<br>0.7<br>0.55<br>1.1<br>0.4<br>0.8<br>1.0<br>0.1<br>1.3<br>1.7 |
| 17<br>Average                                                                       | 1.1                                                                                   | 0.9                                                                                         | 0.7                                             | 1.5                                                                           |
| Lengths                                                                             | 0.9 yr                                                                                | 0.9 yr                                                                                      | 1.3 yr                                          | 1.1 yr                                                                        |

Total length of a typical cycle 4.2 yrs.

Percentage Deviations of Actual from SL B at Peaks and Troughs

| At Peal                                                                                                       |                                               |                                                                                                    | At Trough                                                           |        |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------|
| Year                                                                                                          | Deviation                                     | Year                                                                                               | Deviation                                                           |        |
| 1875<br>84<br>87<br>89<br>91<br>96<br>99<br>1902<br>05<br>11<br>16<br>20<br>23<br>25<br>31<br>1937<br>Average | 36%<br>25<br>6 38<br>17 36 57<br>13 52 8 12 9 | 1873<br>80<br>86<br>88<br>90<br>93<br>97<br>1900<br>04<br>08<br>15<br>18<br>21<br>24<br>29<br>1934 | 20%<br>14<br>21<br>5<br>366<br>8<br>11<br>9<br>22<br>7<br>466<br>26 |        |
| Deviation                                                                                                     | 10.9% at                                      | peak                                                                                               | 10.9% at                                                            | trough |

| Year     | Percenta,<br>Ratio | ge Deviation     | Deviation<br>Squared |
|----------|--------------------|------------------|----------------------|
|          | 100.5L B           | ,                | -                    |
| 1883     | 75≸                | -25              | 625                  |
| 84       | 77                 | -23              | 529                  |
| 85       | 86                 | -14              | 196                  |
| 86       | 98                 | - 2              | 4                    |
| 87       | 116                | +16              | 256                  |
| 88       | 139                | +39              | 1521                 |
| 89       | 160                | <b>+</b> 60      | 3600                 |
| 1890     | 167                | +67              | 4489                 |
| 91       | 150                | +50              | 2500<br>625          |
| 92<br>93 | . 125<br>100       | <b>+2</b> 5<br>0 | 0 ^                  |
| 94       | 81                 | -19              | 361                  |
| 95       | 69                 | -31              | 961                  |
| 96       | 62                 | -38              | 1444                 |
| 97       | 57                 | -43              | 1849                 |
| 98       | 57                 | -43              | 1849                 |
| 99       | 60                 | -40              | 1600                 |
| 1900     | 70                 | -30              | 900                  |
| 01       | 84                 | -16              | 256                  |
| 02       | 102                | + 2              | 4                    |
| 03       | 122                | +22              | 484                  |
| 04       | 139                | +39              | 1521                 |
| 05       | 138                | +38              | 1444                 |
| 06       | 136                | +36              | 1296                 |
| 07       | 130                | +30              | 900                  |
| 08       | 124                | +24              | 576                  |
| 09       | 117                | +17              | 289                  |
| 1910     | 110                | +10              | 100                  |
| 11       | 101                | + 1              | 1                    |
| 12       | 92                 | - 8              | 64                   |
| 13       | 84                 | -16              | 256                  |
| 14       | , 76               | -24              | 576                  |
| 15       | 6 <b>8</b>         | -32              | 1024                 |
| 16       | 63                 | -37              | 1369                 |
| 17       | 62                 | -38              | 1444                 |
| 18       | 63                 | -37              | 1369                 |
| 19       |                    | -28              | 784                  |
| 1920     | 85                 | -15              | 225                  |
| 21       | 98                 | - 2              | 4                    |
| 52       |                    | +16              | 256                  |
| 23       |                    | +31              | 961                  |
| 24       |                    | +46              | 2116                 |
| 25       |                    | +50              | 2500                 |
| 26       |                    | +40              | 1600                 |
| 27       |                    | +22              | 484                  |
| 28       |                    | + 7              | 49                   |
| 29       |                    | - 7<br>-16       | 49<br>256            |
| 1930     |                    | -16<br>E(d²      | 256<br>2) = 45566    |
| sd=      | 45500              | <b>=</b> 30.8%   |                      |

Table Eb. SAN FRANCISCO REAL ESTATE ACTIVITY

Calculation of Standard Measures of the Major Cycle, from the Record 1867 to 1940; the amplitude or standard deviation; the typical lengths of the phases or quarters of the cycle;

the typical ordinates at peak and at trough.

Time Lengths of the Phases or Quarters of the Major Cycle - the cycle of SL B about SL M. Read from Chart 3.

| Cycle<br>Number    | ft       | Lengths in       | Years<br>rp | pf       |
|--------------------|----------|------------------|-------------|----------|
| 1                  | 8.9 yrs. | 6.0 <b>yrs</b> . | 3.2 yrs     | 2.5 yrs. |
| 5                  | 5.3      | 4.2              | 3.2         | 6.2      |
| 3                  | 5.8      | 3.4              | 4.3         | 4.0      |
| 4                  | 4.1      | 5.2              |             |          |
| Average<br>Lengths | 6.0 yrs. | 4.7 yrs.         | 3.6 yrs.    | 4.2 yrs. |

Total length of a typical cycle, 18.5 yrs.

Percentage Deviations of SL B from SL M at Peaks and Troughs

| At Pea               |                  | At Tr   | ough                                    |
|----------------------|------------------|---------|-----------------------------------------|
| Year                 | Deviation        | Year    | Deviation                               |
| 1890                 | 67 <b>%</b>      | 1897-98 | 43 <b>%</b>                             |
| 1904                 | 39               | 1917    | 38                                      |
| 1925                 | 50               |         | *************************************** |
| Average<br>Deviation | 51.7%<br>at peak |         | 40.5%<br>at trough                      |

In Table E(a), the standard measures of the short business cycle are calculated; they give a reasonably complete picture of the typical cycle of that order. To illustrate their use, that typical cycle is constructed, through several recurrences, on Chart 4; they are employed in more realistic fashion on Chart 5, to project the short business cycle into the future as a fluctuation about the curving projected line of SL B.

IN Table E(b), the standard measures of the major cycle are calculated. They are used similarly on Charts 4 and 5, to describe this element in the time series, and to forecast.

# SAN FRANCISCO REAL ESTATE ACTIVITY

Comparison of the Two Orders of Fluctuation (Table E, parts a and b, and Chart 4)

It will be noted that for this real estate series the amplitude of the short business cycle is slight, as the standard deviation (sd) is only 11.5%, whereas the amplitude of the major cycle is three times as great. This presents a very significant finding to men engaged in the real estate business. The short business cycle has little effect upon their activity and their earnings, but in the major cycle, after these men have flourished during several years of boom activity, and the down-turn has come, it will likely be at least ten years before activity is resumed in real estate. During those years, their inactivity may be disastrous.



# CHART 5. SAN FRANCISCO REAL ESTATE ACTIVITY

Standard or Typical Cycles, Constructed from the Standard Measures of the two Orders of Cycles, as Calculated from the Record 1867 to 1940.





(from the date of the first "r" phase point)

Legend: In the left margin, the two marks above and below the 100% line, labeled sdm, show the amplitude of the major cycle, 30.8%. The marks labeled sdb show the amplitude of the short business cycle, 11.5%.

# APPLICATION TO CORRELATION AND FORECASTING

# Section 1. THE COMPARISON OF TIME SERIES: CORRELATION

FOR time series that have been broken into their elements by fitting a mathematical trend, calculating normal, and then measuring deviations, the procedure of comparing two or more series has been standardized. One calculates the ratios of actual to normal, and from these ratios the Pearsonian coefficient of correlation of the cyclical movements. This procedure has been challenged by critics who contend that time series do not afford the underlying independence of observations and random distribution of forces which are necessary conditions to the Pearsonian calculation of correlation. Whether or not one rejects the correlation calculation, it would seem reasonable to insist that the operator supply an extensive verbal comparison of the characteristics of the two series.

THIS verbal comparison can be expanded richly under the method of smoothing by stages. The comparison may now be organized to include the shape of the trend, the standard measures of each order of cycle, and all significant dates in the several smoothing lines.

IN addition to the verbal comparison, a numerical coefficient of correlation may be separately calculated for each order of cycle - for whatever these coefficients are worth. The significant novelty should be noted, that more than one coefficient can be secured. (Because of the fixed period, it would not be suitable to calculate the third correlation, that for the annual cycle, the seasonal movement).

THE short business cycles of the two series may be submitted to the Pearsonian calculation, to secure the coefficient of correlation, and lag. This relationship between the short business cycle movements should also be studied in a theoretical (not merely statistical) fashion. It may be concluded, for example, that, in the short movement, the size of the wheat crop has a causal relation to the price of wheat.

THE major cycle may be studied separately, the coefficient of correlation calculated, lag determined, and economic theory again enlisted. It may be concluded, for this long movement, that the price of wheat over a period of years has a causal relation to the acreage planted, and consequently to the size of the wheat crop, reversing the causal relationship in the short cycle.

# Section 2. FORECASTING.

THE analysis of time series by smoothing by stages gives an organized set of measurements which make possible an improvement in the procedure of forecasting, from the accustomed forward projection of the normal line.

ASSUME that SL m is the final smoothing line you have been able to draw -- the nearest approach to the underlying secular trend. Proceed by these steps: (1) Continue the trend, SL M, forward, in its recent slope and curvature, as on Chart 6. (2) About that projected trend as a base,

carry forward the typical shape of the major cycle, joining this sinuous forecasting line to SL B. Probably one full cycle is as far as one should presume to carry this portion of the forecast -- because values that lie many years in the future are highly uncertain and indeterminate. (3) About this second forecasting line, the projection of SL B, carry forward the typical shape of the next shorter cycle, the short business cycle, joining this third, and even more sinuous forecasting line to SL A, again proceeding no more than one full cycle -- likely about three or four years. (4) Superpose upon the forecasting line SL A, last drawn, the standard seasonal pattern, connecting this fourth and final forecasting line with the time polygon of the actual quarterly data. In utilizing the standard measures of this seasonal cycle, because of the constant period and the moderate uniformity in shape, one may dare to project several cycles into the future -- say the full distance to the end of forecasting line SL A. (This fourth step, the seasonal elaboration, is omitted on Chart 6).

EACH of the forecasting lines may be regarded as clearly defined at near dates, but as growing less distinct in vertical position or ordinate as it proceeds farther into the future. As one considers more and more distant future dates, he should give less attention to the more sinuous forecasting lines, those containing the seasonal and short-cycle movements, and more to the basic lines -- and finally, after 12 or 15 years, to the "trend," SL M, alone.

ON comparing forecasting by the method of successive smoothings, with the method of extending the normal line, it will be seen that in both methods one mechanically carries forward regular movements that have been discovered in the past record of the variable. But, as has been pointed out in the Preface, no mechanical procedure can give a complete and adequate forecast, for it cannot make allowance for an expectation of change from the old pattern. The mechanical projection of a curve or a set of curves into the future, should, therefore, be improved by making allowances for such expectation of change; the mechanically determined curves should be altered or bent to conform to a reasonable expectation of change. (This subject, the consideration of a departure from the mechanical forward projecting of a set of standard patterns, is discussed again below, in connection with Chart 6).

# SAN FRANCISCO REAL ESTATE ACTIVITY; A FORECAST

Based on the record 1867 to 1940. (a discussion to accompany Chart 6)

THE record of San Francisco real estate activity from 1867 to 1940, has been studied from annual data, without a seasonal analysis. The forecast, below, has been prepared with the same omission of monthly detail; this is in order to save elaboration. But in any practical case, where business or government decision rests on the findings, it is likely that the more elaborate calculation will be made, and the seasonal element included in the forecast.

GIVEN the original time series; given the two smoothing lines SL B and SL M, from Table c and Charts 2 and 3; given the standard measures of the two orders of cycles, from Table E and Chart 5. Chart 6 is constructed as will be described (though without here presenting the full figures - the reader may care to fill in the work table that must accompany and direct this construction).

THE last thirty years of Charts 2 and 3 (1910 to 1940) were copied to Chart 6, that is, the original data, the final location of SL B, including the dotted end portion, and the final location of SL M.

SL M was projected into the future, with consideration to its recent slope and curvature, and yet with what seemed a reasonable forecast of real estate activity in the community. When this had been done, it was found that the steeply declining dotted end of SL M that had been copied from Chart 3, did not offer a suitable joining with the new forecasting line; consequently, the dotted portion of the line was rejected; it had been only tentative in the first instance.

THE following steps were taken in order to apply the typical form of the major cycle as a fluctuation about the extension of SL M, thereby to secure a forecasting extension of SL B: tentatively, the date of the intersection of the dotted end of SL B with the relocated extension of SL M was accepted as a date from which to draw the major cycle. This point was  $^{ extsf{t}}$ aken as an approximation to  $\mathbf{r}_{eta}$  in the major cycle. The standard phase lengths of the major cycle are: rp 3.6 years, pf 4.2 years, ft 6.0 years, and tr 4.7 years; total length of the typical cycle 18.5 years. These distances were laid out from  $r_h$ . At the f and r dates, the values of SL M were taken to be the same as those of SL B, for these are points where the two curves are expected to intersect. At peak dates, the value of SL M was multiplied by 1.517, to determine the expected value of SL B; and at troughs, the value of SL M was multiplied by 0.595 (for the average deviation of SL B from SL M at the peak had been determined to be + 51.7%, and at the trough - 40.5%). But when tentative SL B had been sketched, from the approximation to rh, through these phase points, it was found that the dotted end of SL B did not make a good joining with it. So the joining of the sinuous forecasting line with the solid portion of SL B was made to conform to the criterion of gentle curvature; this caused the rejection of the dotted end, which of course had been but tentative anyhow; and this gave the final location of the intersection  $r_{\downarrow}$ . From this new base point in time, the necessary corrections were made in laying out the time lengths to the future phase points; the values of SL M at these phase points were used to recalculate the values of SL B (equal values at points r and f; multiplied by the factors above indicated, at points p and t).

To review what has been done so far, this forecasting extension of SLB is based upon:

- (1) A somewnat subjective projection of SL M, which conforms to the general instruction that the forecasting trend line should project the trend into the future "at the recent slope and curvature".
- (2) The formal application of the typical shape of the major cycle, as a fluctuation about the projection of SL M. Even the second guide, the standard form of the major cycle, might have been subjected to modification, on the basis of well-informed critical judgment -- again an introduction of the subjective element. The operator is under no necessity to accept without change the "typical" ordinates at p and at t. He may choose to question the representativeness, in the original time series, of the boom period of the 1920's. It followed the opening of the Panama Canal, the victorious end of the First World War, and a great westward migration; and it preceded the building of the two great San Francisco bridges, to Oakland and to Marin County, which in the future may move real estate activity away from San Francisco, the urban center proper. Probably, future booms will not be so extreme as that of the 1920's, within the present limits of San Francisco. But no such subjective modification of the major cycle was made on Chart 6; the "typical" form of the major cycle was used.

(3) The final step in the forecast was to draw the typical fluctuation of the annual data about the forecasting extention of SL B. For this purpose, the date of f<sub>17</sub> was accepted from Chart 2 and Table C as the base from which to measure, and the cycles and phases of the future short business cycles were measured from that base. The standard phase lengths of the short business cycle are: rp, 0.9 year; pf, 0.9; ft, 1.3; tr, 1.1, total length of the typical cycle, 4.2 years. The typical ratio of actual to to SL B at the peak is 110.9 per cent; at the trough,89.1 per cent.

THE "expected" annual count of deeds for the trough in 1939 was not plotted; nor was  $r_{18}$ , in 1940, made use of on the chart. Instead, the latest available actual count, that for 1940, was connected to the next projected or forecasting phase point,  $p_{18}$ , in 1941, and the forecasting line was carried forward to the succeeding forecasting phase points. A curved line was used instead of straight lines for connecting the future phase points (straight lines would not be helpful, as the phase points do not fall precisely at mid-year dates, which would represent calendar years). This curved line may be thought of as a forecasting extension of SL A, because it substitutes a curve for the time polygon which would connect discrete annual figures.

THE forecasting system of lines is not complete, because the seasonal elaboration has been omitted. For such application or completion, the values of the forecasting extension of SL A would be read from Chart 6 at monthly or quarterly intervals, and would be multiplied by the seasonal indexes.

THE whole forecasting system, the set of forecasting lines, is largely mechanical, though the discussion has showed that personal judgment has been used in drawing SL M, and might well have been used again in altering the "typical" form of the major cycle (in drawing SL B to fluctuate about SL M). Personal judgment might even lead one to modify the standard measures of the short business cycle (in drawing SL A).

THE whole forecast in the case of this real estate series or of any other variable must be in some doubt, because of the probable lack of homogeneity of forces acting in the future with those acting in the past. One cannot expect the future to be like the past in such matters as war and peace, as the zoning of city lands, tax rates, the loan policies of federal and other agencies, such matters as the new (and financially irresponsible?) class of home owners that have been tempted into the field by recent federal policies of low interest rates and small down payments, and such as foreign trade practices, which are so important to this port city.

# CHART 6. SAN FRANCISCO REAL ESTATE ACTIVITY

A FORECAST TO 1960, BASED ON THE RECORD 1867 TO 1940



### CHAPTER V.

# ANALYSIS OF SEVEN SERIES

TO demonstrate the method of smoothing by stages, seven series will now be examined; full tables of calculations and work charts will be presented. These series have been selected from a number examined by Simon S. Kuznets in Secular Movements in Production and Prices. (1)

IN each of the seven analyses, SL B and SL M are located, with correction for curvature; and the standard measures of the two orders of cycles are calculated. Then, to facilitate direct comparison with Kuznets, one of my standard measures, the amplitude or standard deviation, is recalculated for the same limited period as his figures cover. This comparison cannot be made perfect, however, for in the method of smoothing by stages it is the practice to omit the first and last half-cycle from the calculation of the amplitude, whereas Kuznets' figures for the full period are used.

KUZNETS began his analysis of each series by fitting a trend - a logistic curve for each of the six quantity series, and a parabola for the price series; the values of the trend he entered in the second column of the table in his book. The ratio of actual to trend, he entered in column III: this we shall call the composite cycle. He smoothed it by moving averages salted with subjective judgment, thus gaining a representation of the major cycle; he entered the value in column IV. In column V, he entered the ratio of column III to column IV; this is his short business cycle. The present writer divided column I (actual annual values) by column V, to secure what he takes the liberty of calling "Kuznets' intermediate trend," an equivalent of Smoothing Line B.

KUZNETS' figures are not here reproduced. The five columns may be found in the tables in his book, and the sixth set of figures may be recalculated in a few moments by simple division. But the results are here presented in charts, the equations of the trend lines are reported, and the amplitudes of the two orders of cycles (as calculated from Kuznets' figures by the present writer). Some textual comparisons and notes will also be found.

IT will be seen that in the present study, the seven series have been brought to a more recent date than 1925, which is the last year reported by Kuznets. It is hoped that no unjust comparison has been made with Kuznets' results merely on this basis of later information.

IN general, the method of smoothing by stages gives a smaller value for the standard deviation or amplitude of each order of cycle than does Kuznets' method; this statement is particularly true for the major cycle. But it is not clear how much credit should be claimed for the new method merely because it excels in the closeness of the fit of the trend line. The superiority in closeness of fit is to be expected from an empirical method which from the beginning sets out to follow the data. However, the fact of the smaller value of the standard deviation is of sufficient interest to warrant reporting.

FOR each series, not only may the trends be seen on the charts, but also the shape of the trend secured by Kuznets is verbally compared with the shape of SL M secured by the method of smoothing by stages. The reader may care to refer back to the Preface, to the discussion of the underlying forces affecting time series, and of the appropriate shapes and types of trends.

KUZNETS was testing his hypothesis that industrial production and agricultural output can best be fitted by an S-shaped curve of the logistic type. The present study, in which trend lines are fitted by a wholly empirical method, substantiates Kuznets' thesis; for the smoothing lines so secured agree remarkably closely with his logistic trend lines. The agreement does not extend to the price series, however.

THE reader will observe that there is not complete uniformity, under the method of smoothing by stages, in handling certain small matters of procedure. In one instance, the location of SL B seems so obvious that it is drawn without the objective check of moving averages. The correction for curvature is handled slightly differently in several cases. Some of the series are checked by an arithmetic type of moving average, and others by a geometric. These are offered as permissible variations within the system.

# Section 1. WHEAT PRICES.

A comparison of Kuznets' results with those obtained by the method of smoothing by stages:

Kuznets' trend, a parabola, has the equation:

y = 105.60 - 10.214 x + 0.809 x<sup>2</sup>. The origin is taken in the year 1863, and x is measured in units of five years. The equation gives the values, calculated by Kuznets, entered in the table below. Opposite each of these values is given also the value of Smoothing Line M as calculated by the method of smoothing by stages.

|              | Kuznets' Trend  | SL M    |
|--------------|-----------------|---------|
| 1868         | <b>\$ .</b> 962 | \$1.022 |
| 1873<br>1878 | .884            | 1.000   |
| 1878         | .822            | .953    |
| 1883         | .777            | .855    |
| 1883<br>1888 | .748            | .745    |
| 1893         | .734            | .690    |
| 1893<br>1898 | .748            | .693    |
| 1903         | .767            | .745    |
| 1903<br>1908 | .802            | .840    |
| 1913         | .854            | 1.115   |
| 1915         | .876            | 1.300   |

SMOOTHING Line M fits closely to the data, as is evidenced by the low standard deviation in the major cycle for the period 1866 to 1915. This price series places Kuznets at more of a disadvantage than do the volume series which follow. A parabola makes a most unsatisfactory trend line. It cannot safely be extended at either end, and must be regarded as no more than a smoothing device. No logical explanation of the changes in the value of the variable can be based upon a parabola. If one must fit a trend to a curve with a sharp dip in it, he might better use a skewed distribution curve, or one of the periodic curves, for example a modified sine curve.

AS has been contended in the Preface, 'any "total" mathematical trend fitted to a price series rests upon a false assumption of homogeneity of the

underlying forces My Smoothing Line M cannot be considered the ultimate trend line, the so-called secular trend. But neither can Kuznets' parabola. Suppose the data covered several hundred years and included a number of periods of war-inflation. Under such circumstances, Kuznets' present parabola would take infinite values; SL M would rise and fall with each such inflationary movement; it would itself exhibit a number of cycles. Through those cycles, or long waves, in SL M, another smoothing line could be drawn which would be one step nearer to the "secular" trend, the trend through the centuries.

THE major cycles secured by the two methods look reasonably similar prior to 1905, but after that date the resemblance ceases, as Smoothing Line M moves into a definitely higher level than does Kuznets' trend.

A question may be raised as to the limitation by Kuznets of the data in this series to the year 1915, although his other series were carried on to 1925. Was this done to secure a homogeneous period, free from the inflationary effects upon prices during the first World War? The period ending in 1915 succeeds in escaping war-time inflation of prices. The contrast which the standard deviation (below) for that short period, offers to the standard deviation for the full record, shows the effect of the inflation, as this measure of amplitude is practically doubled in the longer period. In fact, the great violence of price movements during an inflation-deflation episode raises the question whether they belong in the same "statistical universe" with price movements during the economic stability of peace-time. Possibly Kuznets was right in stopping with 1915. (See reference to Silberling in the Preface.)

# WHEAT PRICES.

The values of the standard deviation, by the several calculations, may be shown in tabular form:

|                                            | From Kuznets'<br>figures, based<br>on period<br>1866 to 1915 | Figures secured of smoothing based on period 1866 to 1915 |              |
|--------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|--------------|
| The short business cycle                   | 14.1%                                                        | 12.2%                                                     | 11.9%        |
| Years included (omit terminal half-cycles) | full                                                         | 1871 to 1914                                              | 1871 to 1935 |
| The major cycle                            | 10.2%                                                        | 8.6%                                                      | 15.3%        |
| Years included (omit terminal half-cycles) | full                                                         | 1883 to 1910                                              | 1883 to 1930 |

Table F. UNITED STATES DECEMBER FARM PRICES OF WHEAT, 1866 TO 1938

Two stages of smoothing. Columns numbered as in Tables B and C. Source: Yearbooks of the United States Department of Agriculture.

| art           |
|---------------|
| 2             |
|               |
| -             |
|               |
| $\overline{}$ |
| _             |
| our           |
| -             |
| _             |
|               |
|               |
| _             |
|               |
| Pay           |
| -             |
| ~~            |
| UQ.           |
| _             |
| 1,0           |
| ges           |
|               |
| _             |
|               |
|               |

| 78<br>79<br>1880<br>81                                           | 77           | 76               | 75       | 74      | 73               | 72                 | 71      | 1870             | 69      | 68      | 67      | 1866   | 1<br>Year                                      |
|------------------------------------------------------------------|--------------|------------------|----------|---------|------------------|--------------------|---------|------------------|---------|---------|---------|--------|------------------------------------------------|
| 76.5<br>110.6<br>95.1<br>119.2                                   | 100.9        | 86.9             | 77.9     | 77.6    | 94.0             | 99.1               | 102.5   | 82.1             | 57.5    | 77.1    | 105.1   | 108.4  | 2 (or 4) Wheat Frice (cents per bushel)        |
| <i>ಹಿಪ್</i> ಟ್ ಇತ್ತಿತ್ತ                                          | <b>7</b> 87  | , H              | స        | ;† \.   | *                | <b>h</b>           | d -     | ia<br>ia         | ţ,      |         | r,      |        | 5 Phase Point (short cycle)                    |
| <i>VIJJJJJ</i> J<br>vaaaaan                                      | <b>1</b> 2,3 | พี่พี่<br>ผู้ผู้ | •        | s,<br>L | r <sub>1,2</sub> | 2, <sub>ل</sub> ئا |         | £1,2             |         |         |         |        | 6<br>Cycle                                     |
| 1877<br>1878<br>1878<br>1879<br>1879<br>1880                     | 1876         | 1875             | 101      | 1872    | 1871             | 1869               |         | 1868             |         |         |         |        | 7<br>Include<br>Begin                          |
| 1878<br>1878-79<br>1879-80<br>1879-80<br>1880<br>1880-81<br>1881 | 1877         | 1875-76          |          | 1874    | 1873             | 1872               |         | 1870             |         |         |         |        | 8 Yearly Figuded in the Middle                 |
| 1879<br>1879<br>1880<br>1880<br>1881<br>1881<br>1882             | 1878         | 1877             | i        | 1877    | 1876             | 1874               |         | 1873             |         |         |         |        | 9<br>the Cycle<br>le End                       |
| ພ                                                                | ω            | 44               | -        | 6       | 6                | 6                  |         | 6                |         |         |         |        | 10<br>Length<br>in<br>Years                    |
| 20202E2                                                          | 2            | ալա              | <u>.</u> | Ņ       | Ņ                | 5                  |         | G                |         |         |         |        |                                                |
| 280.0<br>187.1<br>282.2<br>205.7<br>324.9<br>214.3               | 54.3         | 343.3            | )        | 36.4    | 538.0            | 512.8              |         | 512.9            |         |         |         |        | lla<br>Moving<br>Total                         |
| 96.0<br>93.6<br>94.0<br>102.8<br>108.3<br>107.2                  | 88.1         | 85.6             |          | 89.4    | 89.6             | 85.4               |         | 85. <sub>4</sub> |         |         |         |        | llb<br>Moving<br>Cyclical<br>Average<br>\$/bu. |
| 94.0<br>99.0<br>106.5                                            | 91.5         | 90.0             | 89.0     | 88.0    | 87.5             | 87.0               | 87.0    | (86.5)           | (86.0)  | (86.5)  | (86.5)  | (87.0) | 12 Smoothing Line B \$/bu.                     |
| ל<br>בני                                                         |              |                  |          |         |                  |                    |         |                  |         |         |         |        | 13<br>Phase<br>Point<br>(major<br>cycle)       |
| 95.3<br>93.8<br>92.0<br>90.0                                     |              |                  |          |         |                  |                    |         |                  |         |         |         | */ 04. | 20 Second Approx.to Smoothing Line M           |
| (97.7)<br>(96.0)<br>(94.4)<br>(92.5)                             | (98.9)       | (100.0)          | (101.0)  | (101.9) | (102.7)          | (103.3)            | (104.0) | (104.8)          | (105.1) | (105.5) | (105.9) |        |                                                |
| 78<br>79<br>1880<br>81                                           | 77           | 76               | 75       | 74      | 73               | 72                 | 71      | 1870             | 69      | 68      | 67      | 1866   | 1<br>Year                                      |

Table F, Part a (continued) United States December Farm Prices of Wheat

| l<br>Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1882            | .83                  | ₽               | 85    | 88                     | 87                                                                 | <b>&amp;</b> | 89                         | 1890   | 91       | 95             | 93   | ま            | 95               | 8     | 26            | 98       | 66                 | 1900            | 01              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|-----------------|-------|------------------------|--------------------------------------------------------------------|--------------|----------------------------|--------|----------|----------------|------|--------------|------------------|-------|---------------|----------|--------------------|-----------------|-----------------|--|
| 24<br>Final<br>SL M<br>¢/bu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (80.3)          | 4.78                 | 8.48            | 81.5  | 78.2                   | 75.7                                                               | 73.0         | 71.0                       | 69.3   | 68.0     | 67.2           | 66.5 | 66.2         | 66.2             | 9.99  | 66.8          | 67.2     | 6.79               | 0.69            | 70.0            |  |
| 20<br>2nd Approx<br>to SL M<br>\$/bu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.0            | 85.0                 | 83.3            | 81.0  | 78.8                   | 76.5                                                               | 74.5         | 72.5                       | 71.0   | 70.0     | 9.69           | 0.69 | 68.89        | 68.3             | 68.5  | 0.69          | 69.3     | 70.0               | 71.0            | 72.0            |  |
| 13<br>Phase<br>Point<br>(major                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cycle)          | 4                    |                 | ţ     |                        | 42                                                                 |              | P2                         |        | ,        | fs<br>c        |      |              |                  | ta    |               |          |                    |                 |                 |  |
| Smoothing line B l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98.0            | 82.5                 | 74.5            | 70.0  | 71.5                   | 75.0                                                               | 77.5         | 79.0                       | 77.5   | 73.0     | 66.5           | 62.0 | 61.0         | 61.0             | 61.5  | 62.5          | 63.5     | 0.49               | 65.0            | 66.5            |  |
| 11b<br>Moving<br>Cyclical<br>Average \$\delta\$u.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 8.60<br>8.00<br>8.00 | 77.8            | 70.1  | 067.<br>0.1.7<br>0.6.6 | 76.4                                                               | 7.97         | 81.0<br>81.8               | 9.47   |          | 66.8<br>63.6   |      | 61.6         | 8.09             | 62.0  |               | 4.79     | 6.4.9              | 60.4<br>61.6    | 64.2            |  |
| lle<br>Moving<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 207.6           |                      |                 | 210.3 | 213.9                  | 306.5                                                              | 230.2        | 162.1<br>245.4             | 298.4  |          | 400.8<br>381.6 |      | 370.0        | 425.7            | 310.0 |               | 296.4    | 259.7              | 241.4<br>246.2  | 257.1           |  |
| 10<br>Length<br>1n<br>Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ณ ๓             | a m                  | เฉต             | ო     | <b>4</b> 0             | 4 W                                                                | ĸ            | o (v. m                    | ) না   |          | φψ             | •    | v            |                  | · v   | ı             | #        | <b>a</b> t         | <b>4</b> 4      | at at           |  |
| 9<br>e Cycle<br>End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                      | 1884<br>1885    | 1886  | 1887<br>1887           | 1888<br>1888                                                       | 1889         | 1889<br>1889               | 1892   | <u> </u> | 1894           | 1    | 1806         | 1898             | 1898  | }             | 1899     | 1900               | 1901            | 7               |  |
| 7 Yearly Figures icluded in the Creater in the Crea | 1881-82<br>1882 | 1882-83<br>1883      | 1883-84<br>1884 | 1885  | 1885<br>1885<br>1886   | 1886-87<br>1887                                                    | 888          | 11888<br>888<br>888<br>888 | 1800   |          | 1891-92        | 1036 | יומן מו      | 1805             | 1896  | }             | 1897-98  | 1898-99            | 1899-00<br>1900 | 1901            |  |
| 7<br>Yearly<br>Included<br>Begin Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1881            | 1882                 | 1883            | 1884  | 1884<br>1885           | 1885<br>1886                                                       | 1887         | 1886                       | 288    |          | 1889           | 2621 | נסמר         | 1892             | 1894  | }             | 1896     | 1897               | 1898            |                 |  |
| Gycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                      | บับ<br>อักอัก   |       |                        | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 8,7+         | γ γ<br>γ γ<br>σ σ σ        | 8,7    | 6,8      | t8,9           | £8,9 | 1            | ος .<br>Θ        | 6,10  | <b>.9,</b> 10 | r9.10    | 0,00               | f,9,10          | 1,01.<br>11,01. |  |
| Phase<br>Point<br>(short                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cycle)          | ប់រីប់ពី             | Tto t           | o i i | ا م                    | ) +                                                                | . H          | - 1-00<br>Ci bu i          | ည်ဆိုင | •        | ğ, 4           | 49   | 4            | ئ <sub>ى</sub> ئ | £3    | ſ             | <b>б</b> | 11.<br>01.         | in a            | fu              |  |
| 2 (or 4)<br>Wheat Price<br>(cents per<br>bushei)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4<br>8          | 3 8                  | 71.1            |       | 1 69                   |                                                                    | : 9          | 7. A. C.                   | C. 60  |          | 63.4           | 02.5 | 73.5<br>C. 6 | 4<br>0<br>0<br>0 | 2 5   | 11:1          | 80.9     | 58. s              | 58.6<br>6.0     | 62.6            |  |
| l<br>Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 600             | 7007                 | n ä             | 5 &   | S &                    | 3 &                                                                | <u> </u>     | 8 8                        |        |          |                | 6.2  |              |                  |       |               |          | 8<br>1 <b>D</b> 1D | 8 8             | 4               |  |

(Table F, part a, 1s continued on next page)

Table F, Part a (continued) Wheat Prices, two stages of smoothing

| 1918       | 17             | 16             | 15     | 14              | 13     | 12                 | H                       | 1910            | 9              | 08                 | 07                 | 8               | 05             | 04                 | 03                 | 1902   | 1<br>Year                                                   |
|------------|----------------|----------------|--------|-----------------|--------|--------------------|-------------------------|-----------------|----------------|--------------------|--------------------|-----------------|----------------|--------------------|--------------------|--------|-------------------------------------------------------------|
| 204.2      | 200.8          | 160.3          | 91.9   | 98.6            | 79.9   | 76.0               | 87.4                    | 88.3            | 98.4           | 92.2               | 86.5               | 66.2            | 74.6           | 92.4               | 69.5               | 63.0   | 2 (or 4) Wheat Price (cents per bushel)                     |
| 913<br>913 | P15            | <b>1</b> 15    | 75     | 12              | r14    | #T+                | ָלְבֶּילָ<br>הַלְבָּילָ | # 4 t           | S. T.          |                    | <b>F</b> 12        | 51 <sub>2</sub> | <b>f</b> 12    | $p_{11}$           | <b>F</b> 11        | tra .  | 5<br>Phase<br>Point                                         |
| P15,16     | 15,16<br>15,16 | £15,16         | P14,15 | t14,15          | 114,15 | 713,14<br>P13,14   | t13,14                  | P12,13          | <b>r</b> 12,13 | <sup>t</sup> 12,13 | f <sub>12,13</sub> | P11,12          | <b>r</b> 11,12 | t <sub>11,12</sub> | f <sub>11,12</sub> | P10,11 | 6<br>Cycle                                                  |
| 1917       | 1916           | 1915           | 1914   | #161<br>2161    | 1912   | 1911               | 1910                    | 1910            | 1907           | 1906               | 1905               | 1904            | 1903           | 1902               | 1901               | 1900   | 7<br>Yea<br>Includ<br>Begin                                 |
| 1918       | 1917           | 1916           | 1915   | 1914-15<br>1914 | 1913   | 1912-13            | 1911                    | 1910-11<br>1910 | 1909           | 1908               | 1907               | 1906            | 1905           | 1904               | 1903               | 1902   | 7 8 9 Yearly Figures Included in the Cycle Begin Middle End |
| 1919       | 1918           | 1917           | 1916   | 1915            | 1914   | 1913<br>1914       | 1912                    | 1911            | 1910           | 1910               | 1909               | 1909            | 1907           | 1906               | 1905               | 1904   | es<br>Cycle<br>End                                          |
| ω          | ω.             | <del>r</del> ω | w      | N #             | · w    | <b>+</b> ω         | ω                       | Nω              | #=             | ٠                  | ٠                  | 6               | <del>ن</del>   | 5                  | 5                  | Vī     | 10<br>Length<br>in<br>Years                                 |
| 621.2      | 565.2          | 452.9<br>657.1 | 350.7  | 190.4           | 2)4.4  | 343.2              | 261.7                   | 274.1<br>175.7  | 365.4          | 431.6              | 417.9              | 510.3           | 389.2          | 365.7              | 362.1              | 349.5  | lla<br>Moving<br>Total                                      |
| 207.0      | 188.4          | 151.0          | 118.9  | 95.0            | ) · ·  | 0 # C              | 87.2                    | 91.4<br>87.6    | 91.4           | 86.3               | 83.6               | 85.0            | 77.8           | 73.1               | 72.4               | 69.9   | llb<br>mca<br>¢/bu.                                         |
| 206.5      | 189.0          | 148.0          | 0.601  | , yo            | 3 4    | g 03.0             | 3 . S                   | 91.0            | 92.0           | 89.5               | 86.0               | 82.5            | 79.0           | 75.5               | 72.5               | 69.0   | 12<br><b>31 B</b><br>¢/bu.                                  |
|            |                |                | H<br>H |                 | ယ်     |                    |                         |                 | ٠ .            |                    |                    |                 |                | ωï                 |                    |        | 13<br>Phase<br>Point                                        |
| 147.5      | 143.0          | 137.0          | 130.0  | 130.0           | 121.   | הור ביים<br>ארביים | 98.0                    | 92.0            | 8 6            | 0 #.<br>0 C        | 81.5               | 79.0            | 77.5           | 76.0               | 74.5               | 73.0   | 20<br>e 2nd apprex.<br>t to SL M<br>t/bu.                   |
| 156.0      | 150.0          | 1#3.0          | י בוני | 120 5           | 0 00   | 112.0              | מ יוסר                  | O7 .*           | o o            | 9 ¥                | ρ α<br>            | 78.5            | 76.6           | 75.0               | 73.1               | 71.3   | 24 Final SL M \$/bu.                                        |
| 1918       | 17             | <u> </u>       | ٠<br>١ | ا<br>ا          | 1      | 13 1               | i ;                     | ונ              | 1010           | 8 6                | 20 -               | 3 6             | 05             | 2 4                | . 03               | 1902   | l<br>Year                                                   |

Table F, Part a (concluded) Wheat Prices, two stages of smoothing

| Year                                                             | 1919                 | 1920           | 21                 | 22                 | 23          | 54                | 25                                       | 56              | 27                  | 58                                                           | 53                | 1930             | 31               | 35                 | 33                 | 34                 | 35         | 36         | 37     | 1938        |
|------------------------------------------------------------------|----------------------|----------------|--------------------|--------------------|-------------|-------------------|------------------------------------------|-----------------|---------------------|--------------------------------------------------------------|-------------------|------------------|------------------|--------------------|--------------------|--------------------|------------|------------|--------|-------------|
| 24<br>Finel<br>Si M<br>\$/bu.                                    | 158.0                | 156.5          | 149.0              | 135.5              | 124.0       | 114.0             | 9.901                                    | 101.0           | 96.3                | 92.3                                                         | 88.5              | 85.4             | (82.1)           | (4.62)             | (49.9)             | (74.2)             | (72.0)     | (8.69)     | (67.5) | (65.6)      |
| 20<br>2nd approx.<br>to SL M<br>\$/bu.                           | 149.5                | 147.0          | 142.0              | 135.0              | 127.0       | 118.0             | 110.0                                    | 0.401           | 0.66                | 93.5                                                         | 89.0              | 85.0             | 82.5             | 79.0               | 76.5               | 0.47               | 71.5       | 9.69       |        |             |
| 13<br>Phase<br>Point                                             | Ψ                    |                | 4                  | ţ                  |             | 15                | <b>'</b>                                 | ž,              |                     |                                                              | f.                |                  | +                | 'n                 |                    | <b>1</b> ,6        |            | <b>P</b> 6 |        |             |
| 12<br>31 B<br>\$/bu.                                             | 205.5                | 163.0          | 107.0              | 95.5               | 102.0       | 123.0             | 130.0                                    | 126.5           | 114.0               | 104.0                                                        | 91.0              | 72.0             | 53.0             | 52.0               | 65.0               | 81.0               | 91.0       | (み・5)      | (91.0) | (82.5)      |
| 11b<br>mca<br>\$/bu.                                             | 201.0                | 176.5          | 149.6<br>99.8      | 4.76               | 104.6       | 120.3             | 130.0                                    | 128.1           | 120.3<br>113.4      | 109.4                                                        | 0.06              | 77.2             | 62.2<br>54.7     | 6.09               | 4.07               | 81.2               | 8.06       | 94.6       |        |             |
| lla<br>Moving<br>Total                                           | 603.0                | 706.1<br>501.9 | 598.5<br>199.6     | 292.2              | 313.9       | 457.6<br>361.0    | 482.7<br>390.1                           | 384.3           | 240.6<br>340.4      | 218.7<br>322.1                                               | 270.1             | 309.1            | 249.0<br>219.7   | 304.5              | 281.7              | 243.8              | 272.3      | 283.8      |        |             |
| 10<br>Length<br>In<br>Years                                      | m-                   | + W=           | <b>+</b> (V)       | m                  | m=          | + M=              | <del>,</del> w                           | ന               | N M                 | n m                                                          | m                 | at a             | <b>+</b> ->      | 7                  | <b>#</b>           | m                  | m          | m          |        |             |
| s<br>Vcle<br>End                                                 | 1920                 | 1921           | 1922<br>1922       | 1923               | 1924        | 1985<br>285       | 1926                                     | 1927            | 1929<br>1928<br>293 | 1928<br>1929                                                 | 1930              | 1931             | 1932<br>1933     | 1934               | 1935               | 1935               | 1936       | 1937       |        |             |
| 7 8<br>Yearly Figures<br>Included in the Cycl<br>Begin Middle Er | 1919                 | 1919-20        | 1920-21<br>1921-22 | 1922               | 1923        | 1923-24           | 1924-25<br>1925                          | 1926            | 1927<br>1927        | 1927-28<br>1928                                              | 1929              | 1930             | 1930-31<br>1931  | 1932               | 1933               | 1934               | 1935       | 1936       |        |             |
| 7<br>Year<br>Included<br>Begin                                   | 1918                 | 1918<br>1919   | 1919<br>1921       | 1921               | 1922        | 1922              | 1923<br>1924                             | 1925            | 1926<br>1926        | 1927<br>1927                                                 | 1928              | 1928             | 1929<br>1930     | 1930               | 1932               | 1933               | 1934       | 1935       |        |             |
| 6<br>Cycle                                                       | 4,6,17               | 116,917        | 17,18              | <sup>‡</sup> 17,18 | F.17.18     | 17.<br>18.<br>18. | 1,81,191,191,191,191,191,191,191,191,191 | סר ארש          | 11.<br>18.          | 1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00 | f20.21            | to 2             | 720,21<br>120,21 | f <sub>21,22</sub> | t <sub>21.22</sub> | r <sub>21.22</sub> | P21.22     | f.20 23    | (26)27 |             |
| 5<br>Phase<br>Point                                              | 7.<br>7.<br>7.<br>7. | 3              | #<br>111<br>112    |                    | 111<br>2000 | . מנ              | P18                                      | 110<br>110<br>0 | #19<br>100<br>100   | 1000<br>0000                                                 | 888<br>888<br>888 | f <sub>o</sub> ] | <b>d</b> .       | t21                | raı                | P21                | f22<br>t22 | r22        | P22    | <b>£</b> 23 |
| 2 (or 4)<br>Wheat Price<br>4/bu.                                 | 216.3                | 182.6          | 103.0              | 9.96               | 95.6        | 124.7             | 143.7                                    | 121.7           | 119.0               | 99.8                                                         | 103.4             | 67.0             | 39.0             | 37.9               | 74.1               | 8.<br>48.          | 83.2       | 102.6      | 96.3   | 56.1        |
| l<br>Year                                                        | 1919                 | 1920           | 23                 | 22                 | . 53        | <b>₹</b> 2        | 25                                       | 56              | 27                  | 58                                                           | 29                | 1930             | 31               | 35                 | 33                 | 34                 | 35         | 36         | 37.    | 1938        |

Table F. WHEAT PRICES

Part b part of the calculations for the second stage of smoothing, including correction for curvature.

Columns numbered as in Tables B and C.

|                                                                                                                                            | ₽5,6  | ¥5,6           | t ,5   | £4,5   | 5, 4 <sup>و</sup> | r4,5          | t <sub>3,4</sub> | f3,4    | P3,4    | T3,4   | <sup>د</sup> ء,3 | f <sub>2,3</sub> | P2,3   | F2,3   | <sup>t</sup> 1,2 | f <sub>1,2</sub> | P1,2    | r1,2       | 14<br>Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|--------|--------|-------------------|---------------|------------------|---------|---------|--------|------------------|------------------|--------|--------|------------------|------------------|---------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                            | 1926  | 1925           | 1922   | 1921   | 1919              | 1916          | 1913             | 1910    | 1909    | 1904   | 1896             | 1892             | 1890   | 1888   | 1886             | 1883             | 1881    | 1878       | 15<br><u>Begii</u><br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                            | 1931  | 1929           | 1927   | 1925   | 1922              | 1919-20       | 1917-18          | 1915-16 | 1913-14 | 1909   | 1904-05          | 1901             | 1899   | 1896   | 1890-91          | 1887             | 1885    | 1882-83    | 15 16<br>Yearly Figu<br>Included in the<br>Begin Middle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Note.                                                                                                                                      | 1936  | 1934           | 1931   | 1929   | 1925              | 1924          | 1922             | 1920    | 1918    | 1915   | 1913             | 1910             | 1908   | 1904   | 1896             | 1891             | 1889    | 1887       | 16 17 Ty Figures d in the Cycle Middle End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                            | 11    | 10             | 10     | v      | 7                 | ø             | 10               | Ħ       | 10      | 12     | 18               | 19               | 19     | 17     | 11               | 9                | 9       | 10         | 18<br>Length<br>in<br>Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| On the worksheet, the cycles did not follow, as here, on consecutive lines; each was entered in the vertical position corresponding to its | 944.5 | 888.5          | 1011.0 | 993.0  | 926.0             | 1339.5        | 1394.5           | 1451.5  | 1175.0  | 1044.0 | 1373.0           | 1370.5           | 1338.0 | 1157.5 | 765.5            | 680.5            | 734.0   | 877.5      | 19a<br>Moving<br>Total<br>of SL B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| e cycles d<br>red in the                                                                                                                   | 85.9  | 88.8           | 101.1  | 110.3  | 132.2             | 148.8         | 139.5            | 132.0   | 117.5   | 87.0   | 76.3             | 72.1             | 70.5   | 68.1   | 69.6             | 75.6             | 81.6    | 87.7       | Moving Cyclical Average (first by application, \$\phi/\text{bu.}) \text{of}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| id not                                                                                                                                     |       |                |        |        |                   |               |                  |         |         |        | (                | to '             | Tabl   | le F   | a.) S            | 3ecc             | nd .    | Appr       | Poximation to SL MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| follow, as<br>cal positio                                                                                                                  | 923.6 | 892.5          | 1043.0 | 1017.5 | 928.5             | 1246.0        | 1363.5           | 1380.5  | 1172.0  | 1142.5 | 1458.8           | 1421.0           | 1382.0 | 1207.0 | 787.5            | 693.i            | 730.i   | 864.2      | Moving Total<br>(of values of Naccond descond desproximation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| here, on o                                                                                                                                 | 84.0  | 89.2           | 104.3  | 113.1  | 132.6             | 138.4         | 136.4            | 125.5   | 117.2   | 95.2   | 81.0             | 74.8             | 72.7   | 71.0   | 71.6             | 77.0             | 81.1    | 4.98       | Reiterated Names, \$\phi/\text{bu. \$\sigma\$}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| onsecutive                                                                                                                                 | - 1.9 | <b>+</b><br>:≠ | + 3.2  | +2.8   | +                 | -10.4         | - 3.1            | - 6.5   | ·w      | +8.2   | + 4.7            | + 2.7            | + 2.2  | + 2.9  | +2.0             | + 1.4            | ·<br>·5 | - 1.3      | from Recording 122 from first mca to the |
| u .                                                                                                                                        | + 1.5 | + .2           | +5.3 . | + 3.1  | - 2.4             | -10.2         | - 8.8            | - 8.0   | +1.0    | +7.2   | + 4.0            | +2.8             | + 2.7  | +2.5   | +1.1             | + .5             | + :1    | - 1.6      | from first mes literation of from second approx. to SLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                            | 0     | 0              | - 4.2  | - 2.9  | <b>+</b> 1.0      | <b>+</b> 10.3 | + 5.9            | + 7.2   | 0       | - 7.7  | - 4.3            | - 2.7            | - 2.5  | - 2.7  | - 1.6            | - 1.0            | 0       | + 1.4      | Correction to first Nomes #/bu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                            | 85.9  | 88.8           | 96.9   | 107.4  | 133.2             | 159.1         | 145.4            | 139.2   | 117.5   | 79.3   | 72.0             | 69.4             | 68.0   | 4.59   | 68.0             | 74.6             | 81.6    | 89.1       | Adjusted Nomce #/bu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            | 1931  | 1929           | 1927   | 1925   | 1922              | 1919-20       | 1917-18          | 1915-16 | 1913-14 | 1909   | 1904-05          | 1901             | 1899   | 1896   | 1890-91          | 1887             | to 1885 | Ta 1882-83 | le Fa) Final SL M 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

On the worksheet, the cycles did not follow, as here, on consecutive lines; each was entered in the vertical position corresponding to it mid-date, column 16.





UNITED STATES DECEMBER FARM PRICES OF WHEAT. CHART 9.



### UNITED STATES DECEMBER FARM PRICES OF WHEAT, 1866 TO 1915. WITH TRENDS AND CYCLES FROM KUZNETS.

Part a, The annual prices, the intermediate trend (calculated from Kuznets' figures), and the parabolic trend.

Part b, The short business cycle and the major cycle.

Note: a correction has been made for 1881, from the value given by Kuznets in his column V, for the short business cycle.



Calculation of standard measures of the two orders of cycles.

Based on the record 1866 to 1938. Columns numbered as in Tables D and E. Three pages.

| 1<br>Year                                       | ౙౢౢౢఄౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢ                         |
|-------------------------------------------------|----------------------------------------------------------------|
| 32<br>Devlation<br>Squared                      | 23 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                       |
| 31<br>Percentage<br>Deviation                   | The major cycle 1.55 1.15 1.15 1.15 1.15 1.15 1.15 1.1         |
| 30<br>Ratio<br>SL B<br>to SL M                  | \$888485111758888 <b>48</b>                                    |
| 27<br>Deviation<br>Squared                      | 0001 000 000 000 000 000 000 000 000 00                        |
| 26<br>Percentage<br>Deviation                   | The short business cycle  1                                    |
| 25 Ratio Actual to M B                          | H                                                              |
| 24<br>Smoothing<br>Line M                       | 0.000,000,000,000,000,000,000,000,000,0                        |
| 12<br>Smoothing<br>Line B<br>(cents per bushel) | £8888888888888888888888888888888888888                         |
| 2 (or 4)<br>Wheat Price                         |                                                                |
| l<br>Year                                       | 86<br>87<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88 |

|                               | 1938                         | <b>₩₩₩₩₩₩</b>                                                           | 1930<br>287<br>280<br>310                                                                                                | 1920<br>1920<br>223<br>232<br>243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1900<br>01<br>02                                         | 1<br>Year                             |
|-------------------------------|------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|
|                               | 56.1                         | 96.52<br>83.62<br>96.23<br>96.23                                        | 143.7<br>1121.7<br>99.8<br>67.0<br>39.0                                                                                  | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16928777888<br>2692840040                                                                                                                                                            | 388886786<br>4466766                                                                        | 0 0 0 0 6<br>0 0 0 0 6                                   | 2 (or 4)<br>Wheat Price               |
| (Table G is co                | • •                          | 0.00000<br>0.0000000000000000000000000000                               | 130.0<br>124.5<br>114.0<br>104.0<br>91.0<br>72.0<br>53.0                                                                 | 123.05.05.05.05.05.05.05.05.05.05.05.05.05.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                      | 28888777<br>299689<br>2000                                                                  | 1665.<br>165.<br>165.<br>165.                            | 12 Smoothing Line B  cents per bushel |
| is concluded on the next page | (65.6)                       | 6677777<br>792776<br>580005<br>580005                                   | (888888<br>82.5<br>1) +5<br>1) +5<br>1) +5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 1123456.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>11256.00<br>1 | 102.0<br>1122.0<br>1122.0<br>132.5                                                                                                                                                   | 9.88877773<br>9.7.4.1.865.0<br>9.8.5.5.6.0<br>9.8.5.5.6.0                                   | 67.9<br>69.0<br>71.3                                     | 24<br>Smoothing<br>Line M             |
| ct page)                      |                              | 73<br>11#<br>105<br>91                                                  | 111<br>96<br>114<br>93<br>74                                                                                             | 101<br>95<br>102<br>115<br>105<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2888895<br>28888895<br>2888895<br>288895<br>288895<br>28895<br>28895<br>28895<br>28895<br>28895<br>28895<br>28895<br>28895<br>28895<br>28895<br>28895<br>28895<br>28895<br>2895<br>2 | 103<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103                          | 2222                                                     | Retio<br>Actual<br>to SL B            |
|                               | sd = 9220<br>65              | -27<br>+14<br>+ 5<br>- 9<br><b>∑</b> (d <sup>2</sup> )                  | 20-7 + + + + + + + + + + + + + + + + + + +                                                                               | +   +   +   +   +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + <u> </u> +     +                                                                                                                                                                   | +++12062+                                                                                   | ~ O U/U O                                                | 26<br>Percentage<br>Deviation         |
|                               | = 11.9%, in the              | <u>"</u>                                                                | 676<br>1966<br>1667<br>1671<br>1671                                                                                      | 36<br>14<br>16<br>14<br>16<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lend of                                                                                                                                                                              | တ်ဖြင့်သည်<br>the short p<br>lculation of                                                   | eriod                                                    | 27<br>Devistion<br>Squared            |
|                               | the short busin              |                                                                         | 84<br>103<br>113<br>113<br>1125<br>122                                                                                   | 132<br>132<br>104<br>72<br>72<br>72<br>73<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .1<br>0,77,78889<br>4,97,478889                                                                                                                                                      | 106653199                                                                                   | \$400<br>\$400                                           | 30<br>Retio<br>SL B<br>to SL M        |
|                               | business cycle. full period) | sd = \frac{10418}{48} = 14.7<br>fn the major cycle<br>(the full period) | +22<br>+25<br>+13<br>+13<br>+25<br>-16<br>5 (42)                                                                         | # 1.7% # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + N N N N N N N N N N N N N N N N N N N                                                                                                                                              | +++++<br>                                                                                   | 1 1 1 1<br>ധൃദ്ധ വരു | 31<br>Percentage<br>Devistion         |
|                               |                              | 14.7%<br>17cle.<br>1od)                                                 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                          | 46<br>484<br>484<br>91<br>1006<br>420<br>420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>1</b>                                                                                                                                                                             | ກວວກູດເວ<br>end of the :<br>for calculat                                                    | short peri                                               | Devistion<br>Squared                  |
|                               | 1938                         | 100 <del>-</del> 200 0                                                  | 31<br>930<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83                                  | 42<br>23<br>22<br>12<br>025<br>19<br>18<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27<br>27<br>27<br>27<br>27<br>21<br>0161                                                                                                                                             | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                | 20<br>01<br>00<br>50<br>66<br>1                          | Yesr<br>Yesr                          |

Table G (concluded) Wheat Prices, Standard measures of the two orders of cycles

Percentage Deviations at Peaks and Troughs

Time Lengths of the Phases of the Cycles

| •                               | ugh<br>Deviation     | -33<br>119<br>119<br>120<br>120<br>130<br>14<br>14<br>14<br>15<br>16<br>17<br>18<br>17<br>18<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                                                                                                                                               | -14 % 29 29 35 -22 4% at trough                                                                                                                  |
|---------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 9<br>(the short business cycle) | At Trough            | 1869<br>80<br>80<br>80<br>80<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                     | .jor cycle) 1885 1896 1913 1922 1931-32                                                                                                          |
| Ã.                              | At Peak<br>Deviation | at 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                       | from SL M (the major<br>+17 %<br>9 6<br>37<br>20<br>36<br>+20.8%<br>at peek                                                                      |
| Of actual from SL B             | Vean At              | . 1871-72<br>77<br>77<br>79<br>81<br>83<br>83<br>85<br>88<br>91<br>91<br>97<br>1904<br>09<br>11<br>11<br>12<br>22<br>22<br>22<br>22<br>22<br>23<br>1933-34<br>1933-34<br>1933-37<br>Averege deviation<br>in the short<br>business cycle                                                                                                        | Of SL B 1880-81 1889 1908-09 1919 1925-26 1935 Average deviation in the major cycle                                                              |
|                                 | £                    | אָשְׁהְיּהִיתִּיהִיתִּי יִי יִי יִי יִי יִי יִּי יִּי יִּ                                                                                                                                                                                                                                                                                      | 3.38 yrs.                                                                                                                                        |
| iness cycle)                    | 98rs                 | l w                                                                                                                                                                                                                                                                                                                                            | or cycle) 2.2 1.3 2.7 2.70 yrs.                                                                                                                  |
| 28<br>L B (the short business   | Lengths in Years     | 2                                                                                                                                                                                                                                                                                                                                              | Of SL B about SL M (the major 2.7 yrs. 2.7 yrs. 2.5 2.1 4.3 2.0 1.7 3.2 2.0 1.7 2.68 yrs. 2.32 yrs. Total length of typical major cycle 11.08 yr |
| Of actual about SL              |                      | of typical 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                               | Of SL B 62.7 yrs.<br>2.7 yrs.<br>2.0 4.3<br>3.2<br>1.7<br>2.2<br>2.68 yrs.<br>angth of typical                                                   |
| 20                              | Cycle                | Number<br>1<br>2<br>3<br>4<br>4<br>5<br>6<br>6<br>10<br>11<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>28<br>29<br>20<br>20<br>21<br>22<br>23<br>24<br>25<br>27<br>28<br>29<br>20<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>28<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 1<br>2<br>4<br>5<br>6<br>Average Length<br>Total le                                                                                              |

### Section 2. WHEAT PRODUCTION.

COMPARISON of the trend line secured by Kuznets, with the smoothing line, SL M (millions of bushels)

|                                                                                      | Kuznets' Trend                                                                                  | SL M                                                                                 |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1866<br>1870<br>1875<br>1880<br>1885<br>1890<br>1895<br>1900<br>1905<br>1910<br>1915 | 205.5<br>245.0<br>302.1<br>366.3<br>435.7<br>507.9<br>580.0<br>649.2<br>713.1<br>769.9<br>818.9 | (173)<br>(233)<br>329<br>390<br>440<br>494<br>551<br>610<br>663<br>718<br>776<br>838 |
| 1925                                                                                 | 893.6                                                                                           | 855                                                                                  |

Kuznets' equation:

$$y = \frac{1012.8}{(0.49609 - 0.12464x)}$$

x in units of five years; origin at 1870.

THE early values of SL M have been placed in parentheses because they fall in the terminal half-cycle. The last two tabulated values of SL M, those for 1920 and 1925, begin to show the effect of the down-pull resulting from the very much reduced production of wheat in the United States in the late 1920's and the 1930's. Kuznets' figures were based on evidence which stopped with 1924, and he, of course, had not witnessed the down-pull of the late 1920's.

ON the whole, Kuznets' trend line and SL M agree remarkably well despite the slight discrepancy that has been pointed out for 1920 to 1925, and the further fact that SL M is somewhat lower than the trend line during the period 1895 to 1915.

### WHEAT PRODUCTION.

The values of the standard deviation, by the several calculations:

|                                            | From Kuznets' figures, based on period | Figures secured by the method of smoothing by stages |                                 |  |  |  |  |  |
|--------------------------------------------|----------------------------------------|------------------------------------------------------|---------------------------------|--|--|--|--|--|
|                                            | 1866 to 1924                           | based on period<br>1866 to 1924                      | based on period<br>1866 to 1938 |  |  |  |  |  |
| The short business cycle                   | 11.0%                                  | 11.0%                                                | 10.5%                           |  |  |  |  |  |
| Years included (omit terminal half-cycles) | full                                   | 1868 to 1923                                         | 1868 to 1936                    |  |  |  |  |  |
| The major cycle                            | 9.3%                                   | 7.7%                                                 | 7.0%                            |  |  |  |  |  |
| Years included (omit terminal half-cycles) | full                                   | 1873 to 1916                                         | 1873 to 1931                    |  |  |  |  |  |

| l<br>Year | W1      | 2b(or 4b)<br>neat<br>action<br>logarithm | 5<br>Phase<br>Point<br>(short<br>cycle |                                      |      | 8 early Figur led in the Middle | 9<br>Cycle<br>End | 10<br>Length<br>in<br>Years | lla<br>Moving<br>Total<br>of Logs |            |
|-----------|---------|------------------------------------------|----------------------------------------|--------------------------------------|------|---------------------------------|-------------------|-----------------------------|-----------------------------------|------------|
| 1866      | 152.0   | 2.18184                                  |                                        |                                      |      |                                 |                   |                             |                                   |            |
|           |         |                                          | $\mathbf{r}_1$                         |                                      |      |                                 |                   |                             |                                   |            |
| 67        | 212.4   | 2.32715                                  | $p_1$                                  |                                      |      |                                 |                   |                             |                                   |            |
|           | *       |                                          | $\mathbf{f_1}$                         | r <sub>1,2</sub>                     | 1867 | 1867-68                         | 1868              | 2                           | 4.67740                           |            |
| 68        | 224.0   | 2.35025                                  | t <sub>1</sub>                         | p <sub>1,2</sub>                     | 1867 | 1868                            | 1869              | 3                           | 7.09254                           |            |
|           |         |                                          | $\mathbf{r}_2$                         | f <sub>1,2</sub>                     | 1868 | 1868-69                         | 1869              | 2                           | 4.76539                           | Pa         |
| 69        | 260.1   | 2.41514                                  | $p_2$                                  |                                      |      |                                 |                   |                             |                                   | Part a     |
|           |         |                                          |                                        | t <sub>1,2</sub>                     | 1868 | 1869-70                         | 1871              | 4                           | 9.50117                           | (s         |
| 1870      | 235.9   | 2.37273                                  | $\mathbf{f_2}$                         |                                      |      |                                 |                   |                             |                                   | (six pages |
|           |         |                                          |                                        | r <sub>2,3</sub>                     | 1869 | 1870-71                         | 1872              | 4                           | 9.54886                           | pag        |
| 71        | 230.7   | 2.36305                                  | <sup>t</sup> 2                         | Do a                                 | 1869 | 1871-72                         | 1874              | 6                           | 1): 1:06m0                        | S)         |
| 72        | 250.0   | 2.39794                                  |                                        | P2,3<br>f <sub>2,3</sub>             | 1870 | 1872                            | 1874              |                             | 14.48672                          |            |
| ·         |         |                                          | r <sub>3</sub>                         | -2,3                                 | 1010 | ,                               | 10/4              | . 5                         | 12.07158                          |            |
| 73        | 281.3   | 2.44917                                  | -3                                     |                                      |      |                                 |                   |                             |                                   |            |
|           | _       |                                          |                                        | t <sub>2,3</sub>                     | 1871 | 1873-74                         | 1876              | 6                           | 14.62588                          |            |
| 74        | 308.1   | 2.48869                                  | <b>p</b> 3                             | ~2,3                                 | 10/1 | 1013-14                         | 7010              | Ū                           | 14.02300                          |            |
|           |         |                                          | f <sub>3</sub>                         |                                      |      |                                 |                   |                             |                                   |            |
| 75        | 292.1   | 2.46553                                  | -3                                     | r3,4                                 | 1873 | 1875                            | 1877              | 5 ′                         | 12.42623                          |            |
| 76        | 289.4   | 2.46150                                  | t <sub>3</sub>                         | +, د⁻                                | -5,5 | 2015                            | 1011              | ,                           | 12.72025                          |            |
| 77        | 364.2   | 2.56134                                  | -3<br>r4                               | ъ.                                   | 1874 | 1877                            | 1879              | 6                           | 15.29624                          |            |
|           |         |                                          |                                        | <sup>p</sup> 3,4<br><sup>f</sup> 3.4 | 1875 | 1877-78                         | 1880              | 6                           | 15.50530                          |            |
| 78        | 420.1   | 2.62335                                  |                                        | 3,4                                  | ,    |                                 | 2000              | ·                           | 17.70750                          |            |
| 79        | 496.4   | 2.69583                                  |                                        |                                      |      |                                 |                   |                             |                                   |            |
|           |         |                                          | <b>P</b> 4                             | <sup>t</sup> 3,4                     | 1878 | 1879-80                         | 1881              | 6                           | 15.62331                          |            |
| 1880      | 498.6   | 2.67775                                  | fц                                     | 2,4<br>24,5                          | 1878 | 1880                            | 1881              | 4                           | 10.58047                          |            |
| 81        | 383.3   | 2.58354                                  | tų.                                    | P <sub>4,5</sub>                     | 1880 | 1881                            | 1882              | 3                           | 7.98389                           |            |
|           |         |                                          | <b>r</b> 5                             | f <sub>4,5</sub>                     | 1881 | 1881-82                         | 1882              | 2                           | 5.28514                           |            |
| 82        | 504.2   | 2.70260                                  | P5                                     | t <sub>4,5</sub>                     | 1881 | 1882                            | 1883              | 3                           | 7.91053                           |            |
|           |         |                                          | r <sub>5</sub>                         | °5,6                                 | 1882 | 1882-83                         | 1883              | 2                           | 5.32699                           |            |
| 83        | 421.1   | 2.62439                                  | t <sub>5</sub>                         | P <sub>5,6</sub>                     | 1882 | 1883                            | 1884              | 3                           | 8.03694                           |            |
|           |         |                                          | <b>r</b> 6                             | f <sub>5,6</sub>                     | 1883 | 1883-84                         | 1884              | 2                           | 5.33434                           |            |
| 84        | 512.8   | 2.70995                                  | <b>P</b> 6                             | t <sub>5,6</sub>                     | 1883 | 1884                            | 1885              | 3                           | 7.88713                           |            |
|           |         |                                          | <b>f</b> 6                             | r <sub>6,7</sub>                     | 1884 | 1884-85                         | 1885              | 2                           | 5.26274                           |            |
| 85        | 357.1 - | 2.55279                                  | <b>t</b> 6                             | P <sub>6,7</sub>                     | 1884 | 1885                            | 1886              | 3                           | 7.92285                           |            |
| 86        | 457.2   | 2.66011                                  | <b>r</b> 7                             | f <sub>6,7</sub>                     | 1885 | 1886                            | 1887              | 3                           | 7.87215                           |            |
|           |         |                                          | <b>P</b> 7                             | t <sub>6,7</sub>                     | 1885 | 1886-87                         | 1888              | 4                           | 10.49114                          |            |
| 87        | 456.3   | 2.65925                                  |                                        | <b>r</b> 7,8                         | 1886 | 1887                            | 1888              | 3                           | 7.93835                           |            |
|           |         |                                          | <b>f</b> 7                             |                                      |      |                                 |                   |                             |                                   |            |
|           | _       |                                          |                                        |                                      |      |                                 |                   |                             |                                   |            |

1887

P7,8

 $t_7$ 

1888

1889

3

7.91613

1888

415.9

2.61899

Source: Reports of the U. S. Department of Agriculture.

Two stages of smoothing. Columns numbered as in Tables B and C.

Table H, Part 2 (continued) Wheat Production, two stages of smoothing

| llb<br>Moving<br>Cyclical | cal<br>fight<br>sis)                                                          | Line                |           | 13<br>Phase<br>Point | to                  | 20b<br>d Approx.<br>SL M | 24<br>Final<br>SL M          | 1<br>Year |
|---------------------------|-------------------------------------------------------------------------------|---------------------|-----------|----------------------|---------------------|--------------------------|------------------------------|-----------|
| Average<br>of Logs        | Moving Cyclical<br>Geometric Mean of<br>Wheat Production<br>millions bushels) | millions<br>bushels | Logarithm | (major<br>cycle)     | millions<br>bushels | Logarithm                | (million<br>bushe <u>l</u> s |           |
|                           | Movi<br>Geome<br>Whea<br>(milli                                               | (175) <sub>.</sub>  | 2.24304   |                      |                     |                          | 173                          | 1866      |
| 0.00000                   | 010 1                                                                         | (205)               | 2.31175   | r <sub>1</sub>       | 183                 | 2.26245                  | (186)                        | 67        |
| 2.33870                   | 218.1                                                                         | 000                 | 0.06170   | _                    | 3.07                | o colubra                | (001)                        | 60        |
| 2.36418                   | 231.3                                                                         | 230                 | 2.36173   | $\mathfrak{p}_1$     | 197                 | 2.29447                  | (201)                        | 68        |
| 2.38270                   | 241.4                                                                         | o li o              | 0.00007   |                      | 011                 | 0.001:09                 | (017)                        | 60        |
| 0.07500                   |                                                                               | 240                 | 2.38021   |                      | 211                 | 2.32428                  | (217)                        | 69        |
| 2.37529                   | 237.3                                                                         | a.h.a.              | 0.00563   | _                    | 000                 | 0.05004                  | (000)                        | 3.000     |
| 0.00000                   | Oho o                                                                         | 243                 | 2.38561   | $\mathbf{r}_{1}$     | 229                 | 2.35984                  | (233)                        | 1870      |
| 2.38722                   | 243.9                                                                         | - 4.0               |           |                      | -1.6                |                          |                              |           |
| 2.41445                   | 259.7                                                                         | 248                 | 2.39445   |                      | 246                 | 2.39093                  | (251)                        | 71        |
| 2.41431                   | 259.6                                                                         | 255                 | 2.40654   |                      | 265                 | 2.42325                  | (271)                        | 72        |
|                           |                                                                               |                     |           |                      |                     |                          |                              |           |
|                           |                                                                               | 265                 | 2.42325   | t <sub>1</sub>       | 283                 | 2.45179                  | 292                          | 73        |
| 2.43764                   | 273.9                                                                         |                     |           |                      |                     |                          |                              |           |
|                           |                                                                               | 280                 | 2.44716   |                      | 300                 | 2.47712                  | 312                          | 74        |
|                           |                                                                               |                     |           |                      |                     |                          |                              |           |
| 2.48524                   | 305.7                                                                         | 300                 | 2.47712   |                      | 316                 | 2.49969                  | 329                          | 75        |
|                           |                                                                               | 330                 | 2.51851   | $\mathbf{r_2}$       | 333                 | 2.52244                  | 345                          | 76        |
| 2.54937                   | 354.3                                                                         | 367                 | 2.56467   |                      | 347                 | 2.54033                  | 357                          | 77        |
| 2.58421                   | 383.9                                                                         |                     |           |                      |                     |                          |                              |           |
|                           |                                                                               | 400                 | 2.60206   | •                    | 358                 | 2.55388                  | 370                          | 78        |
|                           |                                                                               | 425                 | 2.62839   |                      | 369                 | 2.56703                  | 380                          | 79        |
| 2.60388                   | 401.7                                                                         |                     |           |                      |                     |                          |                              |           |
| 2.64512                   | 441.7                                                                         | 440                 | 2.64345   | <b>P</b> 2           | 380.                | 2.57978                  | 390                          | 1880      |
| 2.66127                   | 458.4                                                                         | 450                 | 2.65321   |                      | 390                 | 2.59106                  | 400                          | 81        |
| 2.64257                   | 439.1                                                                         |                     |           | •                    |                     |                          |                              |           |
| 2.63684                   | 433.4                                                                         | 450                 | 2.65321   |                      | 400                 | 2.60206                  | 410                          | 82        |
| 2.66329                   | 460.6                                                                         |                     | •         |                      |                     |                          | ė.                           |           |
| 2.67898                   | 477.5                                                                         | 445                 | 2.64836   |                      | 412                 | 2.61490                  | 419                          | 83        |
| 2.66717                   | 464.7                                                                         |                     |           |                      |                     |                          |                              |           |
| 2.62904                   | 425.6                                                                         | 440                 | 2.64345   | ,f <sub>2</sub>      | 424                 | 2.62737                  | 429                          | 84        |
| 2.63137                   | 427.9                                                                         |                     |           |                      |                     |                          |                              |           |
| 2.64095                   | 437.5                                                                         | 433                 | 2.63649   |                      | 435                 | 2.63849                  | 440                          | 85        |
| 2.62405                   | 420.8                                                                         | 425                 | 2.62839   |                      | 447                 | 2.65031                  | 450                          | 86        |
| 2.62278                   | 419.5                                                                         |                     |           |                      |                     |                          |                              |           |
| 2.64611                   | 442.7                                                                         | 425                 | 2.62839   |                      | 459                 | 2.66181                  | 462                          | 87        |
|                           |                                                                               |                     |           |                      |                     |                          |                              |           |
| 2.62871                   | 425.3                                                                         | 429                 | 2.63246   |                      | 471                 | 2.67302                  | 472                          | 1888      |

(Table H, Part a, is continued on next page.)

Table H, Part a, (continued) Wheat Production, two stages of smoothing

| 1          | 2a<br>or 4a    | 2b<br>or 4b                             | 5                                                                        | 6                                                                 | 7                            | 8                                  | 9                            | 10                    | lla                                      |
|------------|----------------|-----------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|------------------------------------|------------------------------|-----------------------|------------------------------------------|
| Year       |                | Wheat<br>wheat<br>oduction<br>Logarithm | Phase<br>Point                                                           | Cycle                                                             |                              | ly Figure:<br>d in the (<br>Middle |                              | Length<br>in<br>Years | Moving<br>Total<br>of Logs               |
| 89<br>1890 | 434.4<br>378.1 | 2.63789<br>2.57761                      | r8 p8 8 8 9 9 9 P P P P P P P P P P P P P P                              | f7,8<br>t7,8<br>r8,9<br>p8,9                                      | 1888<br>1888<br>1889<br>1889 | 1888-89<br>1889<br>1889<br>1890    | 1889<br>1890<br>1890<br>1891 | 2<br>3<br>2<br>3      | 5.25688<br>7.83449<br>5.21550<br>7.98228 |
| 91<br>92   | 584.5<br>528.0 | 2.76678<br>2.72263                      |                                                                          | f <sub>8,9</sub><br>t <sub>8,9</sub><br>r <sub>9,10</sub>         | 1890<br>1890<br>1891         | 1891<br>1891-92<br>1892            | 1892<br>1893<br>1894         | 3<br>4<br>4           | 8.06702<br>10.69806<br>10.83352          |
| 93         | 427.6          | 2.63104                                 | f <sub>9</sub><br>t <sub>9</sub>                                         | p <sub>9,10</sub>                                                 | 1891                         | 1893                               | 1895                         | 5                     | 13.58901                                 |
| 94<br>95   | 516.5<br>569.5 | 2.71307<br>2.75549                      | <b>r</b> 10                                                              | f <sub>9,10</sub><br>f <sub>9,10</sub>                            | 1893<br>1893                 | 1894<br>1894-95                    | 1895<br>1896                 | 3<br>4                | 8.09960<br>10.83536                      |
| 96         | 544.2          | 2.73576                                 | ${f f_{10}^{10}}\ {f t_{10}^{10}}$                                       | r <sub>10,11</sub>                                                | 1894                         | 1895-96                            | 1897                         | 4                     | 10.98986                                 |
| 97         | 610.3          | 2.78554                                 | r <sub>11</sub>                                                          | p <sub>10,11</sub>                                                | 1895<br>1896                 | 1896-97<br>1897 <b>-</b> 98        | 1898<br>1898                 | 4                     | 11.16452<br>8.40903                      |
| 98         | 772.2          | 2.88773                                 | $p_{11}$                                                                 | f <sub>10,11</sub><br>t <sub>10,11</sub>                          | 1896                         | 1898                               | 1900                         | 5                     | 13.99266                                 |
| 99         | 636.1          | 2.80353                                 | <b>f</b> <sub>11</sub>                                                   | r <sub>11,12</sub><br>p <sub>11,12</sub>                          | 1898<br>1898                 | 1899<br>1899-00                    | 1900<br>1901                 | 3<br>4                | 8.47136<br>11.36822                      |
| 1900<br>01 | 602.7<br>788.6 | 2.78010<br>2.89686                      | ${f r_{12}^{11}} \\ {f p_{12}^{12}}$                                     | f <sub>11,12</sub>                                                | 1899                         | 1900-01                            | 1902                         | 4                     | 11.34071                                 |
| 02         | 724.8          | 2.86022                                 | f <sub>12</sub>                                                          | t <sub>11,12</sub><br>r <sub>12,13</sub>                          | 1900<br>1901                 | 1902<br>1902-03                    | 1904<br>1904                 | 5<br>4                | 14.13518<br>11.35508                     |
| 03<br>04   | 663.9<br>596.9 | 2.82210<br>2.77590                      |                                                                          | p <sub>12,13</sub>                                                | 1901                         | 1903-04                            | 1906                         | 6                     | 17.09547                                 |
| 05         | 726.8          | 2.86141                                 | <sup>t</sup> 12<br><sup>r</sup> 13                                       | f <sub>12,13</sub>                                                | 1903                         | 1904-05                            | 1906                         | 4                     | 11.33839                                 |
| 06         | 756.8          | 2.87898                                 | p <sub>13</sub>                                                          | <sup>t</sup> 12,13                                                | 1904                         | 1905-06                            | 1907                         | 4                     | 11.32111                                 |
| 07         | 638.0          | 2.80482                                 | f <sub>13</sub>                                                          | <b>r</b> <sub>13,14</sub>                                         | 1905<br>1906                 | 1906-07<br>1907 <b>-</b> 08        | 1908                         | 4                     | 11.35457                                 |
| 08         | 644.7          | 2.80936                                 | <sup>1</sup> 13<br><sup>1</sup> 14                                       | p <sub>13,14</sub><br>f <sub>13,14</sub>                          | 1907                         | 1907-08                            | 1909<br>1909                 | 4<br>3                | 11.33851<br>8.45953                      |
| 09         | 700.4          | 2.84535                                 | p <sub>14</sub><br>r <sub>14</sub>                                       | t <sub>13,14</sub>                                                | 1908                         | 1909                               | 1910                         | 3                     | 8.45755                                  |
| 1910<br>11 | 635.1<br>621.3 | 2.80284<br>2.79330                      | <sup>t</sup> 14                                                          | r <sub>14</sub> ,15<br>p <sub>14</sub> ,15<br>f <sub>14</sub> ,15 | 1908<br>1909<br>1910         | 1910<br>1910-11<br>1911            | 1911<br>1911<br>1912         | 4<br>3<br>3           | 11.25085<br>8.44149<br>8.45964           |
| 12<br>13   | 730.3<br>763.4 | 2.86350<br>2.88275                      | r <sub>15</sub><br>p <sub>15</sub><br>f <sub>15</sub><br>t <sub>15</sub> | t <sub>14,15</sub><br>r <sub>15,16</sub>                          | 1911<br>1912                 | 1912<br>1912-13                    | 1912<br>1913                 | 2                     | 5.65680<br>5.74625                       |

\*

Table H, Part a, (continued) Wheat Production, two stages of smoothing

| llb<br>mca of<br>Logs | mc Geom Mean<br>of Wheat H<br>Production o | 12a<br>SL B<br>millions<br>bushels | 12b<br>Log of<br>SL B | 13<br>Phase<br>Point | Approx | 20b<br>ond<br>imation<br>SL M<br>logarithm | 24<br>Final<br>SL M<br>millions<br>bushels | l<br>Year |
|-----------------------|--------------------------------------------|------------------------------------|-----------------------|----------------------|--------|--------------------------------------------|--------------------------------------------|-----------|
| 2.62844               | 日<br>425.0<br>1                            |                                    |                       |                      |        |                                            |                                            |           |
| 2.61147<br>2.60775    | 408.8<br>405.3                             | 435                                | 2.63849               | $t_2$                | 483    | 2.68395                                    | 483                                        | 1889      |
| 2.66076               | 457.9                                      | 445                                | 2.64836               |                      | 495    | 2.69461                                    | 494                                        | 1890      |
| 2.68900<br>2.67451    | 488.7<br>472.6                             | 460                                | 2.66276               |                      | 507    | 2.70501                                    | 505                                        | 91        |
| 2.70838               | 511.0                                      | 478                                | 2.67943               |                      | 517    | 2.71349 .                                  | 516                                        | 92        |
| 2.71780               | 522.2                                      | 500                                | 2.69897               |                      | 528    | 2.72263                                    | 528                                        | 93        |
| 2.69986<br>2.70884    | 501.0<br>511.5                             | 525                                | 2.72016               |                      | 538    | 2.73078                                    | 539                                        | 94        |
| 2.74746               | 559.1                                      | 555                                | 2.74429               | $\mathbf{r}_3$       | 548    | 2.73878                                    | 551                                        | 95        |
| 2.79113               | 618.2                                      | 590                                | 2.77085               |                      | 560    |                                            | 563                                        | 96        |
| 2.80301               | 635.3                                      | 620                                | 2.79239               |                      | 572    |                                            | 576                                        | 97        |
| 2.79853               | 628.8                                      | 645                                | 2.80956               |                      | 587    |                                            | 588                                        | 98        |
| 2.82378<br>2.84205    | 666.5<br>659.1                             | 665                                | 2.82282               |                      | 600    |                                            | 600                                        | 99        |
| 2.83517               | 684.2                                      | 675                                | 2.82930               | рз                   | 613    |                                            | 610                                        | 1900      |
| 2.03917               | 004.2                                      | 683                                | 2.83442               |                      | 630    |                                            | 621                                        | 01        |
| 2.82703<br>2.83877    | 671.5<br>689.9                             | 690                                | 2.83885               |                      | 645    |                                            | 631                                        | 02        |
| 2.84924               | 706.7                                      | 695                                | 2.84198               |                      | 660    |                                            | 642                                        | 03        |
| 2.83459               | 688.3                                      | 692                                | 2.84011               |                      | 673    |                                            | 653                                        | 04        |
| 2.83027               | 676.5                                      | 688                                | 2.83759               |                      | 681    |                                            | 663                                        | 05        |
| 2.83864               | 689.7                                      | 680                                | 2.83251               | f <sub>3</sub>       | 690    |                                            | 673                                        | 06        |
| 2.83462               | 683.3                                      | 672                                | 2.82737               |                      | 698    |                                            | 684                                        | 07        |
| 2.81984               | 660.4                                      | 667                                | 2.82413               |                      | 705    |                                            | 696                                        | 08        |
| 2.81918               | 659.5                                      | 660                                | 2.81954               |                      | 713    |                                            | 707                                        | 09        |
| 2.81271<br>2.81383    | 649.7                                      | 654                                | 2.81558               | t <sub>3</sub>       | 722    |                                            | 718                                        | 1910      |
| 2.81988               | 651.4<br>660.5                             | 664                                | 2.82217               | -                    | 731    | 2.86392                                    | 730                                        | 11        |
| 2.82840               | 673.6                                      | 710                                | 2.85126               | $\mathbf{r}_{4}$     | 742    | 2.87041                                    | 741                                        | 12        |
| 2.87312               | 746.7                                      | 78Ó                                | 2.89209               | 7                    | 752    | 2.87622                                    | 752                                        | 13        |
|                       |                                            |                                    |                       |                      |        |                                            |                                            | •         |

(Table H, Part a, is continued on next page)

Table H, Part a (concluded) Wheat Production, two stages of smoothing.

| l<br>Year | 2(or 4) a 2b Wheat Production Logarithm |         | 5<br>Phase<br>Point                                                      | 6<br>Cycle                               | 7 8 9 Yearly Figures Included in the Cycle Begin Middle End |                   |              | 10<br>Length<br>in<br>Years | lla<br>Moving<br>total<br>of Logs |
|-----------|-----------------------------------------|---------|--------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|-------------------|--------------|-----------------------------|-----------------------------------|
|           | millions<br>bushels                     |         |                                                                          |                                          |                                                             |                   |              |                             |                                   |
| 1914      | 891.0                                   | 2.94988 | <b>r</b> 16                                                              | P15,16<br>f15,16                         | 1912<br>1913                                                | 1913-14<br>1914   | 1915<br>1915 | 4<br>3                      | 11.70719<br>8.84369               |
| 15        | 1025.8                                  | 3.01106 | p <sub>16</sub><br>f <sub>16</sub>                                       | <sup>t</sup> 15,16<br><sup>r</sup> 16,17 | 1913<br>1914                                                | 1915<br>1915-16   | 1916<br>1917 | 14<br>14                    | 11.64735<br>11.56853              |
| 16        | 636.3                                   | 2.80366 |                                                                          | 10,1                                     |                                                             |                   |              |                             | ,                                 |
| 17        | 636.7                                   | 2.80393 | <sup>t</sup> 16                                                          | P16,17                                   | 1915                                                        | 1917              | 1919         | 5                           | 14.57898                          |
| 18        | 921.4                                   | 2.96445 | <b>r</b> 17                                                              | f <sub>16,17</sub>                       | 1916                                                        | 1918              | 1919         | 4                           | 11.56792                          |
| 19        | 968.0                                   | 2.99588 | p <sub>17</sub>                                                          | t <sub>16,17</sub>                       | 1917<br>1918                                                | 1919<br>1919-20   | 1921<br>1921 | 5                           | 14.59601<br>11.79208              |
| 1920      | 833.0                                   | 2.92065 | f <sub>17</sub>                                                          | 17,10                                    | 1919                                                        | 1920-21           | 1922         | 4                           | 11.76595                          |
| 21        | 814.9                                   | 2.91110 | $\mathbf{r}_{18}^{\mathbf{t}_{17}}$                                      | p <sub>17,18</sub><br>f <sub>17,18</sub> | 1920                                                        | 1921              | 1922         | 3                           | 8.77007                           |
| 55        | 867.6                                   | 2.93832 | P <sub>18</sub><br>f <sub>18</sub>                                       | t <sub>17,18</sub><br>r <sub>18,19</sub> | 1921<br>1922                                                | 1922<br>1922-23   | 1923<br>1923 | 3<br>2                      | 8.75110<br>5.84000                |
| 23        | 797.4                                   | 2.90168 | <sup>t</sup> 18<br><sup>r</sup> 19                                       | p <sub>18,19</sub><br>f <sub>18,19</sub> | 1922<br>1923                                                | 1923<br>1923 - 24 | 1924<br>1924 | 3<br>2                      | 8.77581<br>5.83749                |
| 24        | 862.6                                   | 2.93581 | p <sub>19</sub>                                                          | t <sub>18,19</sub><br>r <sub>19,20</sub> | 1923<br>1924                                                | 1924<br>1924-25   | 1925<br>1925 | 3<br>2                      | 8.66795<br>5.76627                |
| 25        | 676.8                                   | 2.83046 | p <sub>19</sub><br>f <sub>19</sub><br>t <sub>19</sub>                    |                                          | 1924                                                        | 1926              | 1928         | 5                           | 14.58951                          |
| 26        | 833.5                                   | 2.92091 | <sup>r</sup> 20                                                          | <sup>p</sup> 19,20<br>f <sub>19,20</sub> | 1925                                                        | 1926-27           | 1928         | 4                           | 11.65370                          |
| 27        | 874.7                                   | 2.94186 |                                                                          | t <sub>19,20</sub>                       | 1925<br>1926                                                | 1927<br>1927-28   | 1929<br>1929 | 5<br>4                      | 14.56868<br>11.83722              |
| 28        | 913.0                                   | 2.96047 | P <sub>20</sub>                                                          | r <sub>20</sub> ,21                      | 1920                                                        | 1921-20           | 1727         | 7                           | 11.03/22                          |
| 29        | 822.2                                   | 2.91498 | P <sub>20</sub><br>f <sub>20</sub><br>t <sub>20</sub><br>r <sub>21</sub> | n                                        | 1928                                                        | 1929-30           | 1930         | 3                           | 8.82469                           |
| 1930      | 889.7                                   | 2.94924 | -51                                                                      | <sup>p</sup> 20,21                       | 1929                                                        | 1930-31           | 1932         | 4                           | 11.70635                          |
| 31        | 932.2                                   | 2.96951 | p <sub>21</sub>                                                          | f <sub>20,21</sub>                       | 1929                                                        | 1931              | 1933         | 5                           | 14.42981                          |
| 32        | 745.8                                   | 2.87262 | £                                                                        | r <sub>21,22</sub>                       | 1930                                                        | 1932              | 1934         | 5                           | 14.23615                          |
| 33        | 529.0                                   | 2.72346 | t <sub>51</sub>                                                          | p <sub>21,22</sub>                       | 1931                                                        | 1933              | 1935         | 5                           | 14.08369                          |
| 34        | 526.4                                   | 2.72132 | <sup>t</sup> 21                                                          | f <sub>21,22</sub>                       | 1933                                                        | 1934              | 1935         | 3                           | 8.24156                           |
| 35        | 626.3                                   | 2.79678 | r <sub>22</sub>                                                          | t <sub>21,22</sub>                       | 1934                                                        | 1935              | 1936         | 3                           | 8.31523                           |
| 36        | 626.8                                   | 2.79713 | f <sub>22</sub><br>t <sub>22</sub>                                       | r <sub>22,23</sub>                       | 1935                                                        | 1935-36           | 1936         | 2                           | 5.59391                           |
|           |                                         |         | <sup>r</sup> 23                                                          | p <sub>22,23</sub>                       | 1935                                                        | 1936-37           | 1938         | 4                           | 11.50554                          |
| 37        | 875.7                                   | 2.94235 | p <sub>23</sub>                                                          |                                          |                                                             |                   |              |                             |                                   |
| 1938      | 931.7                                   | 2.96928 |                                                                          |                                          |                                                             |                   |              |                             |                                   |

1

Table H, Part a (concluded) Wheat Production, two stages of smoothing.

| 11b<br>mca of<br>Logs | Geom. Pof Whee Producti | 12a<br>SL B<br>1111ons<br>ushels | 12b<br>Log of<br>SL B | 13<br>Phase<br>Point  | Approx | 20b<br>cond<br>dimation<br>SL M<br>logarithm | 24<br>Final<br>SL M<br>millions<br>bushels | l<br>Year |
|-----------------------|-------------------------|----------------------------------|-----------------------|-----------------------|--------|----------------------------------------------|--------------------------------------------|-----------|
| 2.92679               | 일 됩<br>844.9            |                                  |                       |                       |        |                                              |                                            |           |
| 2.94123               | 873,4                   | 805                              | 2.90580               |                       | 765    | 2.88366                                      | 763                                        | 1914      |
| 2.91183<br>2.89213    | 816.3<br>780.1          | 817                              | 2.91381               |                       | 776    | 2.88986                                      | 776                                        | 15        |
|                       |                         | 826                              | 2.91593               | $\mathbf{p}_{4}$      | 788    | 2.89653                                      | 788                                        | 16        |
| 2.91579               | 823.7                   | 835                              | 2.92169               |                       | 798    | 2.90200                                      | 800                                        | 17        |
| 2.89198               | 779.8                   | 842                              | 2.92531               |                       | 808    | 2.90741                                      | 812                                        | 18        |
| 2.91920<br>2.94802    | 830.2<br>887.2          | 848                              | 2.92840               |                       | 819    | 2.91328                                      | 827                                        | 19        |
| 2.94148               | 873.9                   | 850                              | 2.92952               |                       | 829    | 2.91856                                      | 838                                        | 1920      |
| 2.92335               | 838.2                   | 845                              | 2.92686               |                       | 832    | 2.92012                                      | 845                                        | 21        |
| 2.91703<br>2.92000    | 826.1<br>831.8          | 838                              | 2.92324               | r <sub>4</sub>        | 836    | 2.92221                                      | 850                                        | 22        |
| 2.92527<br>2.91874    | 841.9<br>829.4          | 820                              | 2.91381               |                       | 840    | 2.92428                                      | 853                                        | 23        |
| 2.88931<br>2.88314    |                         | 810                              | 2.90849               |                       | 842    | 2.92531                                      | 855                                        | 24        |
| 2.91790               | •                       | 805                              | 2.90580               | t <sub>4</sub>        | 844    | 2.92634                                      | 855                                        | · 25      |
| 2.91343               |                         | 820                              | 2.91381               |                       | 842    | 2.92531                                      | 851                                        | 26        |
| 2.91374               | 819.9                   | 845                              | 2.92686               | <b>r</b> 5            | 836    | 2.92221                                      | 848                                        | 27        |
| 2.93455               | 860.1                   | 870                              | 2.93952               | ,                     | 820    | 2.91381                                      | 832                                        | 28        |
|                       |                         | 880                              | 2.94448               | P <sub>5</sub>        | 803    | 2.90472                                      | 817                                        | 29        |
| 2.94156               | •                       | 870                              | 2.93952               | ,                     | 783    | 2.89376                                      | 797                                        | 1930      |
| 2.93545<br>2.88596    | 861.9<br>796.1          | 815                              | 2.91116               | <b>f</b> <sub>5</sub> | 760    | 2.88081                                      | 777                                        | 31        |
| 2.84723               | 703.4                   | 710                              | 2.85126               |                       | 735    | 2.86629                                      | (758)                                      | 32        |
| 2.81673               | 655.7                   | 575                              | 2.75967               |                       | 707    | 2.84942                                      | (737)                                      | 33        |
| 2.74718               | 558.7                   | 560                              | 2.74819               | t <sub>5</sub>        | 677    | 2.83059                                      | (718)                                      | 34        |
| 2.77174<br>2.79695    |                         | 590                              | 2.77085               |                       | 645    | 2.80956                                      | (697)                                      | 35        |
| 2.87638               | 752.3                   | 670                              | 2.82608               |                       | 618    | 2.79099                                      | (678)                                      | 36        |
|                       |                         | (785)                            | 2.89487               | <b>r</b> 6            | 590    | 2.77085                                      | (659)                                      | 37        |
|                       |                         | (900)                            | 2.95424               |                       |        |                                              | (640)                                      | 1938      |

## Table H. WHEAT PRODUCTION

Part b part of the calculations for the second stage of smoothing, including correction for curvature.

Columns numbered as in Tables B and C.

| 1å<br>Cycle                                                                       | <b>r</b> 1,2 | P1,2     | f <sub>1,2</sub> | t1,2     | <b>F</b> 2,3 | P2,3     | f <sub>2,3</sub> | <sup>د</sup> ري<br>دري     | 13,4     | P3,4     | £3,4     | 3<br>+                | ¥,5              | <b>5</b> ,5    | .5<br>.5 | **<br>5  | <b>1</b> 5,6 |
|-----------------------------------------------------------------------------------|--------------|----------|------------------|----------|--------------|----------|------------------|----------------------------|----------|----------|----------|-----------------------|------------------|----------------|----------|----------|--------------|
| 15<br>Togin<br>Begin                                                              | 1867         | 1868     | 1870             | 1873     | 1877         | 1881     | 1884             | 1890                       | 1896     | 1900     | 1907     | 1911                  | 1913             | 1916           | 1923     | 1925     | 1927         |
| 15 16 17 Yearly Figures Included in the Gyole Segin Middle End                    | 1872         | 1874     | 1877             | 1881     | 1886         | 1890     | 1895             | 1900                       | 1904     | 1908     | 1914     | 1918                  | 1919-20          | 1922-23        | 1926-27  | 1929-30  | 1932         |
| 17<br>Cycle<br>End                                                                | 1876         | 1880 .   | 1884             | 1889     | 1895         | 1900     | 1906             | 1910                       | 1912     | 1916     | 1922     | 1925                  | 1927             | 1929           | 1930     | 1933     | 1937         |
| 18<br>Longth<br>In<br>Years                                                       | 10           | 13       | 15               | 17       | 19           | 20       | 23               | 13                         | 17       | 17       | 16       | 15                    | 15               | t <sup>†</sup> | œ        | 9        | Ħ            |
| Moving<br>Total<br>of Logs<br>of SL B                                             | 24.10633     | 32.23315 | 38.08944         | 44.06706 | 50.35499     | 53.94134 | 63.01202         | 58.49097                   | 48.01043 | 44244.84 | 46.14270 | 43.58418              | 43.75142         | 40.92372       | 23.39229 | 26.09208 | 31.51246     |
| Moving Cyclical G<br>Average of Logs of                                           | 2.41063      | 2.47947  | 2.53930          | 2.59218  | 2.65026      | 2.69707  | 2.73965          | 2.78528                    | 2.82414  | 2.84956  | 2.88392  | 2.90561               | 2.91676          | 2.92312        | 2.92404  | 2.89912  | 2.86477      |
| Moving Cyclical<br>Geometric Mean ⊢<br>(first application %<br>-millions bushels) | 257.4        | 301.6    | 346.2            | 391.0    | 447.0        | 4.794    | 549.1            | 609.9                      | 667.0    | 707.2    | 765.5    | 804-7                 | 825.5            | 837.8          | 839.5    | 792.7    | 732.4        |
| oproximation to SL N o                                                            |              |          |                  | На       | able         | о Т      | (t               |                            |          |          |          |                       |                  |                |          |          |              |
| Moving Total                                                                      |              |          |                  | 43.      | 50.          |          |                  |                            |          |          |          | ¥3.                   | ¥3.              | 40.            | 23.      | 26.      | 31.          |
| of Logs Nof Second by Approximation                                               | 24.00626     | 31.98483 | 37.80147         | 43.93503 | 50.28929     |          | <b>-</b>         | Ħ                          |          |          |          | 43.5 <sup>4</sup> 011 | <b>4</b> 3.65330 | 40.82209       | 23.33574 | 26.08267 | 31.43301     |
| 21b mca of Logs of Second Approx.                                                 | 2.40063      | 2.46037  | 2.52010          | 2.58441  | 2.64680      |          | investure so     | mca's were not reiterated. |          |          |          | 2.90267               | 2.91022          | 2.91586        | 2.91697  | 2.89807  | 2.85755      |
| Difference<br>in Logs N<br>(column 21 b N<br>Minus column 19 b )                  | 01000        | 01910    | 01920            | 00777    | 00346        | ٠        | alight that      | t reiterate                |          |          |          | 00294                 | 00654            | 00726          | 00707    | 00105    | 00722        |
| 23a Adjusted mca of Logs                                                          | 2.42063      | 2.49857  | 2.55850          | 2.59995  | 2.65372      |          | these            | ρ.                         |          |          |          | 2.90855               | 2.92330          | 2.93038        | 2.93111  | 2.90017  | 2.87199      |
| Adjusted Moving Cyclical No Geometric Mean of (millions bushels)                  | 263.4        | 315.2    | 361.8            | 398.1    | 447.0        | 4.764    | 549.1            | 609.9                      | 667.0    | 707.2    | 765.5    | 804.7                 | 838.1            | . 851.9        | 853.3    | 792.7    | 732.4        |
| Table Ha) Final SL M 👺                                                            | (to          |          |                  |          |              |          |                  |                            |          |          |          |                       |                  |                |          |          |              |
| Year<br>16                                                                        | 1872         | 1874     | 1877             | 1881     | 1886         | 1890     | 1895             | 1900                       | 1904     | 1908     | 1914     | 1918                  | 1919-20          | 1922-23        | 1926-27  | 1929-30  | 1932         |

and incorporated with part a. See note on Table F, Fart b. Note: On the work sheet these calculations were extended vertically







CHART 14.
WHEAT PRODUCTION IN THE UNITED STATES
1866 TO 1938.



Legend: The short straight lines connect points which show the short business cycle, the ratio of the annual production to SL B. The curve shows the major cycle, the ratio of SL B to SL M.



Table J. WHEAT PRODUCTION IN THE UNITED STATES

Calculation of standard measures of the two orders of cycles.

Based on the record 1866 to 1938. Columns numbered as in Tables D and E. Three pages.

| 754777784747457747847477777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 152.0                | 2 (or 4)a Wheat Production    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|
| \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (millions of bushels | 12a<br>Smoothing<br>Line B    |
| <b>27/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19)                  | 24<br>Smoothing<br>Line M     |
| 28889152889152888188155588895568899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The sl               | Retio<br>Actual<br>to SL B    |
| 2, 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ 1; 1+ | short business cycle | 26<br>Percentage<br>Deviation |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cycle                | 27<br>Deviation<br>Squared    |
| 286887777777888 <b>4888888888888888888888888</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 30 Retio SL B to SL M         |
| + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The major cycle      | 31<br>Percentage<br>Deviation |
| 81 100 84 4 86 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 32<br>Deviation<br>Squared    |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1866                 | 1<br>Year                     |

l Year

| 32<br>Deviation<br>Squared                          | ond of the short period ad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31 Percentage Deviation The major cycle             | π<br>τρο φ<br>τρο ποωτονουν ττην +++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30 Ratio SL B to SL M                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 27<br>Deviation<br>Squared<br>s cycle               | short business cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26 Percentage Deviation short business              | 10.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25 Ratio Actual to SL B                             | 88:158881182582458118755814885228931588484<br>89:1588831182582458118755814885228314588481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24<br>Smoothing<br>Line M                           | 44448888888888888888894488888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12a<br>Smoothing<br>Line B<br>(millions of bushels) | .  900000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2(or 4)a Wheat Production (mi                       | $\begin{array}{c} 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.$ |
| Year                                                | 8900824888851141141414180818888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table J (concluded) Wheat Production in the United States

Standard measures of the two orders of cycles.

| Total len                                     | Average Length                          | ∪                            | Total leng                                      | erage Len                                     | 50000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cycle<br>Number          | Time<br>of actua                                          |
|-----------------------------------------------|-----------------------------------------|------------------------------|-------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|
| Total length of typical major cycle 15.3 yrs. | 3.7 <b>yrs</b> .                        | 20.4-0<br>0-7-7-0            | Total length of typical short business cycle 33 | 1.0 yr.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T D                      | Time Lengths of the Phases 28 actual about SL B (the shor |
| r cycle 15.3                                  | 4.4 yrs.                                | שססט<br>סיו ייש              | Babout SL M                                     | .7 <b>yr</b> .                                | မှ ကို လို လို လို လို လို လို လို လို လို လ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lengths pf               | the Phases of the Cycles 28 B (the short business cycle)  |
| yrs.                                          | 3.7 yrs.                                | N ≠500                       | te 3.2 yrs.                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in Years                 | )les<br>3 cycle)                                          |
|                                               | 3.3 yrs.                                | בומים לי                     | vc1e)                                           | .8 yr.                                        | 00004040100000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ដ្                       |                                                           |
|                                               | Average Deviation<br>in the major cycle | 1880<br>1900<br>1915<br>1929 | of SL B                                         | Average Deviation in the short business cycle | 1869<br>74<br>1901<br>1901<br>1901<br>1901<br>1901<br>1901<br>1901<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | At Peak<br>Year          | Percentage Devi                                           |
| ,                                             | at peak                                 | 100                          | 34<br>SL B from SL M (the major cycle)          | 11.0 %                                        | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eak<br>Deviation         | B 251                                                     |
|                                               |                                         | 1925<br>1910<br>1925         | major cycle)                                    |                                               | 193398888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Year<br>1868             | ons at Peaks and Troughs 29 (the short business cycle)    |
|                                               | at trough                               |                              | 2                                               | 9.4 %<br>at trough                            | .   0 00 - 10 00 00 11 00 15 00 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 15 00 1 | At Trough Deviation - 3% | oycle)                                                    |

### Section 3. COTTON PRODUCTION.

COMPARISON of the trend line secured by Kuznets with the smoothing line SL M (thousands of bales)

|                                                                                      | Kuznets' Trend                                                                                    | SL M                                                                                           |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 1865<br>1870<br>1875<br>1880<br>1885<br>1890<br>1895<br>1900<br>1905<br>1910<br>1915 | 2299<br>3122<br>4132<br>5301<br>6569<br>7850<br>9054<br>10112<br>10988<br>11678<br>12201<br>12585 | (2630)<br>(3320)<br>(4300)<br>5350<br>6400<br>7500<br>8750<br>10000<br>11200<br>11800<br>12100 |
| 1925                                                                                 | 12862                                                                                             | 12800                                                                                          |

Kuznets' equation:

$$y = \frac{13498}{1 + 10^{(0.52152 - 0.16611 \times)}}$$

x in units of five years; origin at 1870.

IN the analysis of the cotton production series, no correction for curvature was made. The agreement between Kuznets' trend line and SL M is close. The difference is greatest, although not very great, in the period 1865 to 1875 in which, however, the values of SL M are admittedly only tentative. In that early section, SL M is slightly higher than the trend line.

THE major cycles obtained by the two methods are quite unlike. SL B follows the data closely, possibly too closely; for example, the little peak in SL B in 1897 and 1898 might have been reduced, but probably the similar peaks in 1889-90 and 1904-05 should not be smoothed away entirely. Kuznets' smoothing is extreme. It reduces much of the amplitude of movement from the major cycle and increases it in the short business cycle. Probably Kuznets' line which corresponds to SL B does not follow the data closely enough.

### COTTON PRODUCTION.

### The values of the standard deviation, by the several calculations:

|                                            | From Kuznets'<br>figures, based<br>on period | Figures secure of smoothin      | d by the method<br>g by stages  |
|--------------------------------------------|----------------------------------------------|---------------------------------|---------------------------------|
|                                            | 1866 to 1915                                 | based on period<br>1866 to 1924 | based on period<br>1866 to 1939 |
| The short business cycle                   | 15.9%                                        | 10.5%                           | 10.9%                           |
| Years included (omit terminal half-cycles) | full                                         | 1868 to 1922                    | 1868 to 1936                    |
| The major cycle                            | 7.6%                                         | 7.6%                            | 9.2%                            |
| Years included (omit terminal half-cycles) | full                                         | 1880 to 1917                    | 1880 to 1929                    |

# Table K. COTTON PRODUCTION IN THE UNITED STATES, 1866 TO 1939

Two Sages of Smoothing. Columns numbered as in Tables B and C.

Source: Yearhooks of the United States Department of Agriculture.

Part a (four pages)

| н               | Year                                                                 | 1866          | 29      | 89              | 69               | 1870                 | 11                          | 72                    | 73                | 47               | 75       | 92         | 11       | 78              | 62       | 1880     | 81           |
|-----------------|----------------------------------------------------------------------|---------------|---------|-----------------|------------------|----------------------|-----------------------------|-----------------------|-------------------|------------------|----------|------------|----------|-----------------|----------|----------|--------------|
| <del>1</del> 72 | SL M<br>(thousends<br>bales)                                         | (5000)        | (2730)  | (2900)          | (3030)           | (3200)               | (3400)                      | (3600)                | (3810)            | (0004)           | (4200)   | (0044)     | (4650)   | (4880)          | (5150)   | 5350     | 2600         |
| 13              | Phase<br>Point<br>(major<br>cycle)                                   |               |         |                 |                  |                      |                             | r,                    |                   |                  |          |            |          |                 |          |          | Ъľ           |
| 12b             | Smoothing Line B logsrithm see                                       | 3.30103       | 3.34242 | 3.38561         | 3.42651          | 3.46687              | 3.50650                     | 3.54407               | 3.57978           | 3.61066          | 3.64048  | 3.66558    | 3.69020  | 3.71600         | 3.74036  | 3.76343  | 3.78247      |
| 128             | thousands                                                            | (2000)        | (2200)  | 2430            | 2670             | 2930                 | 3210                        | 3500                  | 3800              | 4080             | 4370     | 1630       | 0061     | 5200            | 5500     | 5800     | 0909         |
| 110             | oving Cyclical<br>metric Mean of<br>ton Production<br>susands beles) | toet)<br>Idoj |         | 2359<br>2826    | 3009             | 30808                | 3363                        | 3328<br>3328          | 3535              | 3835<br>3835     | 4475     | 4778       | (<br>(   | 4959<br>5175    | 5294     | 5685     | 6221         |
| 116             | Moving<br>Cyclical<br>Average<br>of Logs                             |               | ,       | 3.4511          | 3.47841          | 3.48856              | 3.52671                     | 3.52218               |                   | 3.58378          | 3.65077  | 3.67921    | 0000     | 3.71393         | 3.73187  | 3.75472  | 3.79389      |
| 118             | Moving<br>Total<br>of Logs                                           |               | -       | 13.80444        | 10.43522         | 13.84227             | 10.58012                    | 10.56654              | 10.63510          | 14.34462         | 10.95232 | 14.71685   | 0        | 18.56966        | 18.65934 | 15.01886 | 11.38158     |
| 10              | Length<br>1n<br>Years                                                |               |         | ณ≄              | m-               | ≄ w                  | m                           | N M                   | m-                | <b>3-</b> €      | m        | <b>.</b> † | ι        | ഹഹ              | ī        | #        | m            |
| δ               | Cycle<br>End                                                         |               |         | 1868<br>1870    | 187              | 1871<br>1871         | 187                         | 1872<br>1873          | 187               | 1875<br>1875     | 1876     | 1878       | ć        | 1879<br>1880    | 1881     | 1881     | 1882         |
| ∞               | Yearly Figures<br>Included in the Cycle<br>Begin Middle End          |               | ,       | 1867-68<br>1868 | 1869             | 1869-70<br>1870      | 1871                        | 1871-72<br>1872       | 1873              | 1873-74<br>1874  | 1875     | 1876       | 1        | 1877-78<br>1878 | 1879     | 1880     | 1881         |
| <b>r</b> -      | Yea<br>Includ<br>Begin                                               |               |         | 1867<br>1867    | 1368             | 1868<br>1869         | 1870                        | 1871<br>1871          | 1872              | 1872<br>1873     | 1874     | 1875       | i        | 1875<br>1876    | 1877     | 1878     | 1880         |
| 9               | Cycle                                                                |               |         | מל בי<br>מל כי  | f <sub>1,2</sub> | ئارة<br>مارة<br>مارة | P 2                         | เลา<br>เล็ก<br>ได้เล็ | , F               | ປີເປັດ<br>ຊ້າສ້າ | t 2,4    | #<br>5. 4  | <u> </u> | ฐ<br>ฐ<br>ณีน์  | th. 5    | 7 4 F    | 7,0<br>P5,6  |
| ٠               | Phase<br>Point<br>(short<br>cycle)                                   |               | ដូជ     | ft.<br>T        | 4.<br>2.         | Po                   | <del>دا ام</del><br>آرما رد | 1 F                   | Er fr<br>Critical | r<br>tug         | . d      | , Å        | بر<br>ال | Н               | 1        | υ<br>η   | et to<br>Jww |
| 25<br>25        | 4a or 4b<br>Cotton<br>Production<br>logarithm                        | 3.24340       | 3.36922 | 3.37658         | 3.47886          | 3.57978              | 3.40705                     | 3.59329               | 3.56620           | 3.59561          | 3.70952  | 3.64719    | 3.64048  | 3.71066         | 3.76044  | 3.80229  | 3.73687      |
| 28              | f senses the select f f f                                            | 1750          | 2340    | 2380            | 3012             | 3800                 | 2553                        | 3920                  | 3683              | 3941             | 5123     | 9644       | 4370     | 5244            | 5755     | 6343     | 2#28         |
| н               | Yеаг                                                                 | 1866          | 29      | 68              | 69               | 1870                 | 7.1                         | 72                    | 73                | 7.7              | 75       | 92         | 77       | 2.8             | 62       | 1880     | 81           |

Year 1890 1900 ထ္ 9 89 88 87 86 85 9 ဌ 0 P 10123 5701 10898 6957 9476 666 9018 8674 7473 1469 9446 7493 7020 thousands Cotton riproduction P logarithm ( bales 3.82373 3.84242 3.87466 3.9551 3.87350 3.84142 3.84634 3.80929 3.81790 4.04879 3.85497 3.97662 3.93822 3.93110 유망 ₽ Point (short cycle) 22227777 35 669 949 989 \$11,12 \$11,12 \$11,12 \$12,13 \$12,13 f10,11 f10,11 r11,12 19,10 P9,10 F9,10 r8,9 ###### 77776 88887 16,7 16,7 P10,11 r10,1: Cycle σ 1893 1887 1888 1889 Yearly Figures
Included in the Cycle
Begin Middle End 1894 1892 1890 1891 1887 Table K (continued) 1895 1892 1889 1889 1890 1881 1885 1885 1886 1886 1886 1891 1888 1883 8 8 5 8 မွ 1889 1893 1887 1887 1887 1887 Length in Years Cotton 10 Production Moving Total of Logs 12.02468 7.97589 11.95407 7.98349 12.01006 15.49948 15.60825 15.59056 11.38169 7.62719 11.47353 7.65563 11.49705 11.35287 15.17077 11.32835 15.80004 11.76269 11.70625 11.67501 15.63012 15.59172 11.56126 in the United States 3.78429 3.79269 3.77612 3.98794 3.98469 3.99174 4.00252 3.78964 3.92090 3.90208 3.89167 3.9075 3.85375 3.9500 3.89793 Moving Cyclical Average of Logs .87487 .90206 .89764 .96805 36966 30896 .82451 .82451 411 Moving Cyclical Geometric Mean of 7981 1919 1919 7141 6222 6510 6676 6727 7497 7981 7900 Cotton Production (thousands bales) 9200 8350 7950 7800 7800 7900 6850 6600 6350 7200 thousands 128 bales Smoothing Line B logarithm 126 3.92169 3.90037 3.89210 3.89210 3.89487 3.88366 3.85733 3.83569 3.81954 4.00000 3.96379 3.80277 3.79239 3.79239 .00432 .89763 Point (major cycle) ü ů 3 3 5 5 2 ž **ر** + 1 SL M (thousands bales) 42 9400 8900 8650 8150 8400 7350 6950 6700 7900 7650 Year 97 8 95 91 ۲ \$ 93 92 89 88 87 88

Table K, Part a (continued) Cotton Production, two stages of smoothing

| ٦      | Year                                                                                       | 1905                   | 03                                                                   | ð              | 95                    | 8                | 03                   | 88               | 60         | 1910              | Ħ        | 75              | 13                   | 71       | 15              | 16                 | 17             | 1918       |
|--------|--------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------|----------------|-----------------------|------------------|----------------------|------------------|------------|-------------------|----------|-----------------|----------------------|----------|-----------------|--------------------|----------------|------------|
| する     | SL M<br>(thousands<br>bales)                                                               | 10800                  | 11200                                                                | 11300          | 11400                 | 11600            | 11700                | 11750            | 11800      | 11900             | 11950    | 12000           | 12100                | 12150    | 12200           | 12250              | 12300          | 12400      |
| 13     | Phase<br>Point                                                                             |                        | ส์                                                                   |                |                       |                  |                      |                  |            |                   |          | ήď              |                      |          | ć               | <del>†</del>       |                |            |
| 126    | Smoothing<br>Line B<br>logarithm                                                           | 4.00860                | 4.03342                                                              | 4.05308        | 4.06819               | 4.07555          | 4.07918              | 4.07188          | 4.07188    | 4.09691           | 4.14302  | 4.16732         | 4.17026              | 4.15229  | 4.11394         | 4.08636            | 4.06819        | 4.06819    |
| 128    | thousands                                                                                  | 10200                  | 10800                                                                | 11300          | 11700                 | 11900            | 12000                | 11800            | 11800      | 12500             | 13900    | 14700           | 14800                | 14200    | 13000           | 12200              | 11700          | 11700      |
| 110    | Moving Cyclical of mean of the most of the form production of the feel of the sands beload | 10055<br>9986<br>10055 | 11206                                                                | 11187          | 12356                 | 11595            | 12498                | 11374            | 11543      | 12216             | 13566    | 14493           | 146/9                | 13080    |                 | 12299              | 11492          | 11550      |
| 115    | Moving<br>Cyclical<br>Average<br>of Logs                                                   | 4.00238                |                                                                      |                |                       |                  |                      |                  | 4.06232    | 4.08691           | 4.13245  |                 | 4.17256              | 4.11660  |                 | 4.09216<br>4.08936 | 4.06038        | 4.06258    |
| 118    | Moving<br>Total<br>of Logs                                                                 | 8.00475                | 8.02005<br>12.14839                                                  | 8.12182        | 8.15262<br>12.27562   | 12.19287         | 12.29055             | 8.16755          | 12.18697   | 16.36266          | 12.39734 | 12.48347        | 16.69125<br>12.49553 | 16.46641 |                 | 16.36865           | 16.24154       | 16.25033   |
| 10     | Length<br>In<br>Years                                                                      | a m                    |                                                                      |                |                       |                  |                      |                  | m-         | t W               | m        | m-              | + W                  | #        | ٥               | <b>≯</b> l√.       | <del>d</del> . | <b>#</b>   |
| 6      | End                                                                                        | 1902                   | £,500<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 1904           | 1906                  | 1906             | 1908<br>1908<br>2008 | 1909             | 1910       | 1911              | 1912     | 1913            | 1914                 | 9161     | !               | 1918               | 1918           | 1919       |
| 8      | Years Included Middle                                                                      | 1901-02                | 2003<br>2003                                                         | 903-04         | 204-07<br>205-05<br>7 | နှ န             | - c                  | <b>8</b>         | •          | 1909-10           | 1161     | •               | 1912-13              | 1914     |                 | 1915-16            | 7              | 1917-18    |
| 7      | Begin                                                                                      | 1901                   | 1902<br>1902                                                         | 1903<br>1903   | 1904<br>1904          | 1905<br>1905     | 1906                 | 1907<br>1907     | 1908       | 1908<br>1909      | 1910     | 1911            | 1911<br>1912         | 1913     |                 | 1914<br>1914       | 1915           | 1916       |
| 9      | Cycle                                                                                      | f12,13<br>t12,13       | 73,14<br>73,14                                                       | 13,14<br>13,14 | 714.<br>15<br>15      | f14,15<br>t14,15 | 715,16<br>215,16     | f15,16<br>t15,16 | 71,917     | 71,917<br>116,917 | t16,17   | 717,18          | P17,18<br>f17,18     | t17,18   |                 | 718,19<br>718,19   | f18,19         | t18,19     |
| ر<br>ا | Phase<br>Point                                                                             | E E                    | t ti                                                                 |                | ##<br>###             | 7.17<br>7.17     | t<br>T<br>N          | 716<br>916       | f16<br>t16 | 717               | P17      | f <sub>17</sub> | t17<br>r18           | P18      | f <sub>18</sub> | t <sub>18</sub>    | }              | 719<br>719 |
| දැ     | 4a Cotton Cotton Production logarithm                                                      | 4.02657                | 3.99348                                                              | 4.12834        | 4.02428               | 4.12300          | 4.04560              | 4.12195.         | 4.00022    | 4.06480           | 4.19571  | 4.13682         | 4.15094              | 4.20777  | 4.04891         | 4.05881            | 4.05316        | 99080.4    |
|        | g spinesuodi<br>g geled                                                                    | 10631                  | 9851                                                                 | 13438          | 10575                 | 13274            | 70111                | 13242            | 10005      | 11609             | 15693    | 13703           | 14156                | 16135    | 11192           | 11450              | 11302          | 12041      |
| н      | Year                                                                                       | 1902                   |                                                                      | 40             | 05                    | 06               | 07                   | 08               | 60         | 1910              | 11 1     | 12              | 13                   | 14       | 15              |                    |                |            |

| 1939 | (13250)              |         | 4.15836            | (14400)            |                                                                            |                                            |                                |             |      |                            |                      |                         | , 56<br>50      | 4.07251                 | 11817              | 1939     |
|------|----------------------|---------|--------------------|--------------------|----------------------------------------------------------------------------|--------------------------------------------|--------------------------------|-------------|------|----------------------------|----------------------|-------------------------|-----------------|-------------------------|--------------------|----------|
|      | (13300)              |         | 4.12752            | (14200)            |                                                                            |                                            |                                |             |      |                            |                      |                         | r<br>K          | 4.07712                 | 11943              | <u>س</u> |
|      | (13300)              |         | 4.13672            | (13700)            | 1600                                                                       | 04607.4                                    | 20.34(40                       | u           | 7777 | ונייטנע                    | CCKT                 | <b>25,2</b> 6           | P <sub>26</sub> | 4.27752                 | 18946              | 37       |
|      | (13300)              |         | 4.09691            | 12500              | 19867                                                                      | מונסטר וו                                  |                                | n 4         | 1030 |                            | 1025                 | +25,26                  | <b>r</b> 26     | 4.09339                 | 12399              | 36       |
|      | (13300)              | 3,      | 4.04532            | 11100              | 12573                                                                      | 4.09944                                    | 20.49720                       | ⊭Ui         | 1937 | 1935                       | 1933                 | 25,26                   |                 | 4.02686                 | 10638              | 35       |
|      | (13300)              | ᢢ       | 4.04139            | 11000              | 11018                                                                      | 4.04209                                    | 12.12626                       | ωυ          | 1935 | 1934                       | 1933                 | 25,25<br>24,25          | សូសូ            | 3.98390                 | 9636               | <u>4</u> |
|      | (13250)              | ď       | 4.08990            | 12300              | 13024                                                                      | 4.11476                                    | 8.22952                        | N N         | 1933 | 1933                       | 1932                 | 124,25                  | No.             | 4.11551                 | 13047              | 33       |
|      | (13200)              | <b></b> | 4.13672            | 13700              | 14261                                                                      | 4.15414                                    | 12.46241                       |             | 1933 | 1932                       | 1931                 | 52, 12d<br>52, 13d      | 144             | 4.11401                 | 13002              | 32       |
|      | (13200)              |         | <b>4.16732</b>     | 14700              | 14385                                                                      | 4.15792                                    | 12.47375                       | ) W N       | 1932 | 1931                       | 1930                 | 12,23<br>24<br>23,24    | Nº 1            | 4.23290                 | 17096              | 31       |
|      | (13200)              |         | 4.17026            | 14800              | 15029                                                                      | 4.17692<br>4.17057                         | 12.53075                       |             | 1931 | 1930                       | 1929                 | 23,24                   | <b>1</b>        | 4.12685                 | 13392              | 1930     |
|      | 13100                | Ġ       | 4.15229            | 14200              | 14187                                                                      | 4.15188                                    | 12.45853                       | w.          | 1930 |                            | 1926                 | #2, 23<br>22, 23        | N.              | 4.17100                 | 14825              | 29       |
|      | 13050                | ដុ      | 4.15229            | 14200              | 14062                                                                      | 4.14805                                    | 12.44414                       |             | 1929 | 1928                       | 1927                 | £22,23                  | స్టోస్ట         | 4.16068                 | 14477              | 28       |
|      | 12950                |         | 4.16435            | 14600              | 14989                                                                      | 4.17577                                    | 12.52730                       | ω           | 1928 | 1927                       | 1926                 | P22,23                  | 25°             | 4.11247                 | 12956              | 27       |
|      | 12900                |         | 4.17026            | 14800              | 14923                                                                      |                                            | 20.86930                       | υnc         | 1928 | 1926                       | 1924                 | 22,23<br>22,23          | <b>3</b> 55     | 4.25474                 | 17978              | 26       |
|      | 12800                |         | 4.16435            | 14600              | 14243                                                                      | 4.15054                                    | 16.60217                       |             | 1926 | 1925                       | 1923                 | £21,22                  |                 | 4.20696                 | 16105              | 25       |
|      | 12750                | 75      | 4.12057            | 13200              | 12141                                                                      | 4.08424                                    | 16.33697                       | 4           | 1925 | 1924                       | 1922                 | P21,22                  | 22.             | 4.13443                 | 13628              | 24       |
|      | 12700                |         | 4.02938            | 10700              | 9949                                                                       | 3.99779                                    | 7.99559                        | N           | 1923 | 1923                       | 1922                 | <b>1</b> 21,22          | <b>1</b> 2.5    | 4.00604                 | 04,101             | 23       |
|      | 12650                | 4       | 3.97313            | 9400               | 9305                                                                       | 3.96872                                    | 11.89616                       | ωn          | 1923 | 1922                       | 1921                 | 72°03<br>12°03<br>18°03 | No.             | 3.98954                 | 9762               | 22       |
|      | 12600                | r†      | 3.96848            | 9300               | 10143                                                                      | 4.00618                                    | 12.01853                       | ωn          | 2261 |                            | 1920                 | 100 SI                  | , NO.           | 3.90059                 | 7954               | 21       |
|      | 12510                |         | 4.04139            | 11000              | 10330                                                                      | 4.02890                                    | 12.08669                       | ωĸ          | 1361 |                            | 1919                 | 19,20<br>19,20          | <b>\</b>        | 4.12840                 | 13440              | 1920     |
|      | 12450                |         | 4.07188            | 11800              | 12726                                                                      | 4.06918<br>4.06918                         | 8.13836<br>12.26676<br>8 18610 | υw          | 1919 | 1918-19                    | 8161<br>8161<br>8161 | 02,0<br>10,20<br>10,20  | 66<br>447.      | 4.05770                 | 11421              | 19       |
|      | (thousands<br>bales) | Point   | Line B I logarithm | thousands<br>bales | Moving Cyclica<br>Geometric Mean o<br>Cotton Productio<br>(thousands bales | Cyclical<br>Cyclical<br>Average<br>of Logs | ·                              | in<br>Years | End  | Years Included<br>n Middle | Yea.<br>Begin        | <b>3</b>                | Point           | Froduction<br>logarithm | thousands<br>bales | 194      |
|      | 4<br>K               |         |                    |                    | l<br>f ;                                                                   | K                                          |                                |             | 4    | C                          | -                    |                         | <b>d</b>        | or 4b                   | at to              | <b>,</b> |
|      | 24                   | 13      | 120                | 129                | 11e                                                                        | 116                                        | 118                            | 10          | 0    | 00                         | 7                    | 6                       | Jī              | ည္                      | N<br>B             | ш        |
|      |                      |         | 0                  |                    | 0                                                                          | •                                          |                                |             | •    | -                          | ,                    |                         |                 |                         |                    |          |

## Table K. COTTON PRODUCTION

Part b Part of the calculations for the second stage of smoothing.

Columns numbered as in Tables B and C.

| 19c Moving Cyclical Geometric Mean (thousands bales)                   | 5382<br>6571<br>7059<br>7465<br>8324<br>12033<br>12033<br>13118<br>13118                                                                    |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 19b<br>Moving<br>Cyclical<br>Average<br>of Logs                        | 3.73091<br>3.81763<br>3.887763<br>3.92247<br>3.97290<br>4.08032<br>4.11786<br>4.11786                                                       |
| length Moving<br>Length Moving<br>in Total<br>Years of Logs<br>of SL B | 17 63.42553<br>8 30.42553<br>8 30.77388<br>8 31.3975<br>8 31.3975<br>15 60.86640<br>16 65.28573<br>13 53.5352<br>13 53.57531<br>13 53.57531 |
| 17<br>Cycle<br>End                                                     | 1888<br>1889<br>1889<br>1889<br>1991<br>1992<br>1938<br>1938                                                                                |
| 16<br>Yearly Figures<br>Included in the Cy<br>Middle                   | 1880<br>1885<br>1888<br>1889-90<br>1893-94<br>1895-00<br>1907-08<br>1920<br>1920<br>1930                                                    |
| 15<br>Begin                                                            | 1888<br>1888<br>1888<br>1889<br>1899<br>1990<br>1991<br>1992<br>1992                                                                        |
| 14<br>Cycle                                                            |                                                                                                                                             |









Table L. COTTON PRODUCTION IN THE UNITED STATES

Calculation of standard measures of the two orders of cycles.

Based on the record 1866 to 1939. (Three pages)

Columns numbered as in Tables D and E.

| 9110883107638648773110853556887765757575757575833555688335568877575757575757575757575757575757575 |                       | 2 (or 4)a. Cotton Production                   |
|---------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------|
| 2430<br>2670<br>2670<br>3210<br>3500<br>3500<br>3500<br>3500<br>3500<br>3500<br>3500<br>35        | _(thousands of bales) | 12<br>Smoothing<br>Line B                      |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                       | es)                   | 24<br>Smoothing<br>Line M                      |
| 25028658845886884886558844995588655886558865                                                      | The                   | 25 Ratio Actual to SL B                        |
|                                                                                                   | short business        | 26 Percentage Deviation B                      |
| 4884586646646686712168694<br>4884586646646686712168694                                            | cycle                 | n lanes D and E.<br>27<br>Deviation<br>Squared |
| 100000000000000000000000000000000000000                                                           |                       | 30<br>Ratio<br>SL B<br>to SL M                 |
|                                                                                                   | The major cycle_      | 31<br>Percentage<br>Deviation                  |
| 448480094444881881<br>4488188481881                                                               | ,                     | 32<br>Deviation<br><b>Sq</b> uared             |
| 1866<br>677<br>1877<br>1888<br>1888<br>1888<br>1888<br>1888<br>1                                  |                       | Year                                           |

(Table L is concluded on the next page.)

Table L (concluded) Cotton Production in the United States

Standard measures of the two orders of cycles.

| Tota: 1 2 3 4 5 Average Length                                                                                       | 1 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                       | of<br>Cycle<br>Mumber                                                             |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Total length of typical short business cycle  33 of SL B about SL M (the 2.0 1.6 1.9 1.9 9.2 3.3 4.5 4.5 4.5 2.7 3.1 | #                                                                                                               | of Actual about SL B (the short business cycle)  Lengths in Years  rp pf ft       |
| al short business 33 of SL B about SL 1.4 1.9 3.3 4.0 2.7                                                            | a, 200 000 100 100 100 100 100 100 100 100                                                                      | f the Phases o 28 B (the short b Lengths pf                                       |
| Ψ                                                                                                                    |                                                                                                                 | hases of the Cycles short business cycle) Lengths in Years ft                     |
| 2.8 yrs.  major cycle) 2.7 2.0 1.7 2.5 2.5                                                                           | α · σ * σ · σ · σ · σ · σ · σ · σ · σ · σ                                                                       | tr                                                                                |
| 1881<br>1889<br>1897<br>1912<br>1926<br>Average Deviation<br>in the major cycle                                      | 1870 72 75 80 82 82 85 87 91 94 98 1900 02 04 06 08 11 14 18 20 22 26 29 31 1936 Average Deviation in the short | Percentage Deviations 29 of actual from SL B (the 4t Peak Year At Peak            |
| 34<br>of SL B from SL<br>+ 8%<br>21<br>10.8%<br>at peak                                                              | ## 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                       | OI G                                                                              |
| K (the 1885<br>1885<br>1894<br>1901<br>1921                                                                          | ######################################                                                                          | ions at Peaks and Troughs  29 (the short business cycle)  At Treviation Year 1868 |
| asjor cycle) -15 6 4 26 7.45 at trough                                                                               | at trough # 200 111 11 11 11 11 11 11 11 11 11 11 11                                                            | oughs ycle) At Trough Deviation                                                   |

Total length of typical major cycle 12.3 yrs.

COMPARISON of Kuznets' trend line with the smoothing line SL M (thousands of barrels)

| ·            | Kuznets! Trend | SL M           |
|--------------|----------------|----------------|
| 1860         | 2375           | (1400)         |
| 1865         | 3719           | (2750)         |
| 1870<br>1875 | 5821           | (5400)         |
| 1880         | 9111<br>14256  | 10400<br>18600 |
| 1885         | 22293          | 28000          |
| 1890         | 34837          | 40000          |
| 1895         | 54380          | 56000          |
| 1900         | 84718          | 80000          |
| 1905         | 131618         | 120000         |
| 1910         | 203602         | 185000         |
| 1915         | 312870         | 298000         |
| 1920         | 476051         | 450000         |
| 1925         | 713709         | 670000         |

Kuznets' equation:

x in units of 5 years; origin at 1870.

SL M fits rather closely to the data; so closely, in fact, that it still exhibits two cycles. Consequently the amplitude about it should be expected to be less than about the trend line of Kuznets. SL M falls below the trend line in 1860 to 1865, rises above it in 1880 to 1890, and falls below it again after 1900. After 1919, SL M begins to be pulled down by the subsequent decline in production. Kuznets' line is almost straight on the semi-logarithmic chart, almost of the type y = kX. He has arrived at his secondary smoothing line, which separates his two orders of cycles, by using an eleven-year average prior to 1902 and a five-year average This procedure, clearly, is due to the inadequacy of a fixed thereafter. length moving average. The contour of the major cycles gotten by the two methods is quite different. SL M, which was shaped to achieve running equality of areas intercepted, managed thereby to secure a reasonably regular major cycle, but did it at the expense of retaining cycles in SL M itself. Kuznets, on the other hand, made his trend line into practically a straight line on the semi-logarithmic paper, and, as a result, he got a major cycle which is rather a jumble. Possibly this series on the output of crude petroleum best illustrates: the shortcomings of both methods. In defense of the method of smoothing by stages, it may be emphasized that if the operator is unwilling to accept as his secular trend, smoothing line M, containing two cycles in the eighty years, he is at liberty to undertake another stage of smoothing.

### CRUDE PETROLEUM OUTPUT.

The values of the standard deviation, by the several calculations:

|                                           | From Kuznets'<br>figures, based<br>on period<br>1854 to 1924 |              | d by the method<br>g by stages<br>based on period<br>1861 to 1938 |
|-------------------------------------------|--------------------------------------------------------------|--------------|-------------------------------------------------------------------|
| The short business cycle                  | 13.0%                                                        | 9.0%         | 8.4%                                                              |
| Years included (omit terminal half-cycle) | full                                                         | 1864 to 1922 | 1863 to 1936                                                      |
| The major cycle                           | 16.0%                                                        | 12.7%        | 12.9%                                                             |
| Years included (omit terminal half-cycle) | full                                                         | 1875 to 1915 | 1875 to 1925                                                      |

# Table M. CRUDE PETROLEUM OUTPUT IN THE UNITED STATES, 1861 TO 1938

Two stages of smoothing. Columns numbered as in Tables B and C.

Source: Mineral Resources of the United States; and Yearbooks of Commerce.

Part a (four pages)

| I<br>Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1861                         | 82                   | 63       | <b>5</b>    | 65       | 99                 | 29       | 89                                                   | 69       | 1870          | な                                         | 75                                    | 73          | *        | 1875    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|----------|-------------|----------|--------------------|----------|------------------------------------------------------|----------|---------------|-------------------------------------------|---------------------------------------|-------------|----------|---------|
| 24<br>SL M<br>(thousands<br>barrels)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1620)                       | (1850)               | (2100)   | (5400)      | (2750)   | (3150)             | (3600)   | (4100)                                               | (4700)   | (5400)        | (0019)                                    | (1000)                                | (8000)      | (9100)   | 10400   |
| 13<br>Phase<br>Point<br>(major<br>cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | •                    |          | €           | 7        |                    |          |                                                      |          |               |                                           | <b>5</b> 1                            |             |          |         |
| 12b<br>Line B<br>Logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.29003                      | 3.33041              | 3.37107  | 3.41497     | 3.45939  | 3.50106            | 3.54407  | 3.59106                                              | 3.63849  | 3.69020       | 3.75205                                   | 3.82607                               | 3.89763     | 3.95904  | 4.01703 |
| Secotification of the property | (1950)                       | (2140)               | (2350)   | 2600        | 2880     | 3170               | 3500     | 3900                                                 | 4350     | 006≉          | 5650                                      | 6700                                  | 1900        | 9100     | 10400   |
| ng Cyclical into Mean of the Petroleum c (thousends of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lvol<br>demo<br>burc<br>duqd | ino<br>)<br>pep<br>( | 2455     | 2731        | 5669     | 3221               | 3688     | 3960                                                 | 9501     | 4529          | 5565                                      | 97.50                                 | *T ) )      | 8793     |         |
| 11b<br>Moving<br>Cyclical<br>Average<br>of Logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                      | 3.39006  | 3.43624     | 3.42639  | 3.50803            | 3.56683  | 3.59768                                              | 3.60809  | 3.65603       | 3.74545                                   | 3.80793                               | 3.00(2)     | 3.94415  |         |
| lla<br>Moving<br>Total<br>of Logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                      | 16.95032 | 17.18120    | 10.27917 | -14.04013          | 14.26734 | 17.98841                                             | 14.43235 | 14.62411      | 11.23635                                  | 15.23172                              | 15.54915    | 15.77662 |         |
| 10<br>Length<br>1n<br>Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                      | 5        | 72          | æ        | ব                  | <b>4</b> | 75                                                   | æ        | <b>⊒</b>      | ٣                                         | ≉.                                    | đ           | *        |         |
| - 9 cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                      | 1865     | 1866        | 1866     | 1868               | ₹869     | 1870                                                 | 1870     | 1871          | 1872                                      | 1873                                  |             | 74 1875  |         |
| 7<br>Yearly Figures<br>cluded in the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                      | 1863     | 1864        | 1865     | 1866               | 1867     | 1868                                                 | 1869     | 1870          | 1871                                      | 1872                                  | 1872-7      | 1873-74  |         |
| 7<br>Yearly<br>Included<br>Begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                      | 1861     | 1862        | 1864     | 1865               | 1866     | 1866                                                 | 1867     | 1868          | 1870                                      | 1870                                  | 1871        | 1872     |         |
| 6<br>Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                      | ų        | יין קר<br>מ | 1 G      | ַלָּ דְּיֻנְּ<br>ס | 1,0      | 7, 2, 64<br>2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 | , et et  | יי גן<br>מיין | 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ֓֞֞֞֓֓֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | ξη<br>Α     | t3,4     |         |
| 5<br>Phase<br>Point<br>(short<br>cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | น์                           | ี่ คุ                | ં ન      | ٦ ,         | •        | 4 G                | י בּי    | , t                                                  | u r      | , Ę           | ያቲኒ                                       | , Ę                                   | ٠           | đ        | น์      |
| Sa or ta 2b or tb Crude Petroleum Output as logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.32510                      | 3.48530              | 3.41681  | 3.32552     | 3.39759  | 3.55606            | 3.52466  | 3.56182                                              | 3.62480  | 3.72107       | 3.71642                                   | 3.79886                               | 3,00537     | 4.03850  | 3.94389 |
| abnasuod<br>againe<br>alearted<br>a againe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2114<br>2114                 | 3057                 | 2611     | 2116        | 2498     | 3598               | 3347     | 3646                                                 | 4215     | 5261          | 5205                                      | 6293                                  | ogo<br>Togo | 10927    | 8788    |
| Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1861                         | 62                   | . 63     | #9          | 65       | 99                 | 29       | 89                                                   | 9        | 1870          | . 12                                      | . 22                                  | . 5         | 2 4      | 1875    |

| 1897          | <b>%</b>    | <b>%</b>   | <b>\$</b>  | 93       | 28              | 91            | 1890     | 8          | 88       | 87         | 88         | 85              | <b>9</b>                                                           | 83          | 88             | 18       | 1880     | 79      | 78             | 77       | 1876     | Year                                                                                     |
|---------------|-------------|------------|------------|----------|-----------------|---------------|----------|------------|----------|------------|------------|-----------------|--------------------------------------------------------------------|-------------|----------------|----------|----------|---------|----------------|----------|----------|------------------------------------------------------------------------------------------|
| 60476         | 60960       | 52892      | 49345      | 18431    | 50515           | 54293         | 12851    | 35164      | 27612    | 28283      | 28065      | 21859           | 24218                                                              | 23450       | 30350          | 27661    | 26286    | 19914   | 15397          | 13350    | 9133     | thousands of the barrels of the barrels                                                  |
| 1.78158       | 1.78504     | 1.72339    | 1.69324    | 1.68512  | 1.70312         | 4.73474       | 1.66109  | 1.54610    | 1.44110  | 4.45153    | 1.44817    | 4.33963         | 4.38414                                                            | 4.37014     | 4.48216        | 4.44187  | 4.41972  | 1.20178 | 4.18744        | 1.12548  | 3.96061  | 2b or 4b le Fetroleum Output logarithm                                                   |
| ot,           | <b>P</b> 10 | <b>1</b> 0 | ę³         |          | <b>6</b> 3      | <b>9</b>      |          | <b>1</b> 9 | <b>8</b> | <b>8</b> 3 | 900<br>7   | <b>11</b> 11    | 27.                                                                | i<br>o<br>o | <b>187</b> 6   | l. i.    | S.       |         | , <b>5</b> , 1 |          | ŧ        | 5<br>Phage<br>Point<br>(ahort<br>cycle)                                                  |
| <b>t9</b> ,10 |             | f9,10      | 01,64      | <b>?</b> | <b>F9</b> ,10   | 6,8           | f8,9     | 78,9       | *        | 76,8       | 7,8        | P7,8            | 6,7                                                                | 1777<br>660 | 15.00<br>10.00 | 5        | r5,6     |         | , t            | iVi      | 3, F.    | Cycle 6                                                                                  |
| 18 <b>94</b>  |             | 1892       | 1601       | 6        | 1889            | 1888          | 1888     | Too!       | 9        | 18867      | 1885       | 1884            | 685<br>685<br>685<br>685<br>685<br>685<br>685<br>685<br>685<br>685 | 2882        | 1881           | 1880     | 1878     |         | 1876           | 1874     | 1873     | 7<br>Includ<br>Begin                                                                     |
| 1897          |             | 1895       | -K-C60T    |          | 1892            | 1891          | 1890     | F0-000     | 90 00    | 1887       | 1886       | 1885            | 188                                                                | 1883        | 1882           | 1881     | 1880     |         | 1878           | 1877     | 1875     | 7 8 9 Yearly Figures Included in the Cycle Begin Middle End                              |
| 1899          |             | 1897       | Péor       |          | 1895            | 1894          | 1892     | TO YO      | 8        | 1889       | 7887       | 1886            | 1885                                                               | 188         | 1883           | 2887     | 1881     |         | 1880           | 1880     | 1878     | 9<br>Cycle                                                                               |
| 6             |             | 6          | d          | 'n       | 7               | 7             | UT       | •          | •        | **         | rω         | ωĸ              | 3W N                                                               | sw n        | ow n           | ıω       | #        |         | UT C           | ~7       | σ        | Length in Years                                                                          |
| 28.48290      |             | 28.37179   | 50.05.30   | 38 30105 | 32.74710        | 32.46481      | 23.08645 | *0.0390*   | 18 00081 | 17.88690   | 13.23933   | 13.17194        | 13.09391                                                           | 13.23644    | 13.29417       | 13.34375 | 17.25081 |         | 20.89503       | 28.87742 | 24.25139 | 11a<br>Nowing<br>Total<br>of Logs                                                        |
| 4.74715       |             | 4.72863    | . / 4004   |          | <b>1.69</b> 101 | 4.63912       | 4.61929  | 7.56490    |          | 4.47173    | 4.41311    |                 |                                                                    |             | 4.43139        |          | 4.31270  | •       | 4.17901        | _        | 4.04188  | lib<br>Mowing<br>Cyclical<br>Average<br>of Logs                                          |
| 55870         |             | 53530      | 96         | 50500    | 49090           | 43570         | ¥1620    | 37490      | 32 00    | 29630      | 25890      | 24580           | 23150                                                              | 25830       | 27000          | 28050    | 20540    |         | 15100          | 13350    | 11010    | Moving Cyclical<br>Geometric Mean of<br>Crude Petroleum<br>Output (thousands<br>barrels) |
| 57500         | 55000       | 54500      | 54000      | 53000    | 50500           | <b>1</b> 6500 | 41500    | 37000      | 32000    | 28500      | 25800      | 23800           | 23500                                                              | 25500       | 28000          | 28500    | 25500    | 19000   | 15000          | 13200    | 11700    | thousands No barrels                                                                     |
| 4.75967       | 4.74036     | 4.73640    | 4.73239    | 4.72428  | 4.70329         | 4.66745       | 4.61805  | ¥.56820    | 4.50515  | 4.45484    | 4.41162    | <b>4.</b> 37658 | 4.37107                                                            | #.4065#     | 4.44716        | 4.45484  | 4.40654  | 4.27875 | 4.17609        | 4.12057  | 4.06819  | Smoothing<br>Line B<br>logarithm                                                         |
|               |             | <b>f</b> 3 |            |          | ኞ               |               |          | ¥          |          |            |            | ላን              |                                                                    | <i>ې</i>    | ζ,             | đ        |          | Ę       |                |          |          | 13<br>Phase<br>Point<br>(msjor<br>cycle)                                                 |
| 64000         | 60000       | 56000      | 53000      | 50000    | 16000           | 43000         | 40000    | 37500      | 35000    | 33000      | 31000      | 28000           | 26000                                                              | 24000       | 22000          | 20200    | 18600    | 17000   | 15200          | 13300    | 11800    | 24<br>3L M<br>(thousands<br>barrels)                                                     |
| 1897          | %           | 95         | · <u>Q</u> | 93       | 18              | 16            | 1890     | <b>%</b>   | 88       | 87         | <b>8</b> 6 | 89              | œ                                                                  | 83          | 82             | 18       | 1880     | 79      | 78             | 77       | 1876     | 1<br>Year                                                                                |

Table M, Part a. (continued) Crude Petroleum Output, two stages of smoothing

| Your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86       | &       | 1900     | 10      | 02       | 03       | ₹0       | 95      | 90       | 20          | 89             | 60                | 1910            | 11              | 12              | 13       | 1        | 1915               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------|---------|----------|----------|----------|---------|----------|-------------|----------------|-------------------|-----------------|-----------------|-----------------|----------|----------|--------------------|
| 24<br>SL #<br>(thousands<br>barrels)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00069    | 74000   | 80000    | 86000   | 93000    | 102000   | 110000   | 120000  | 130000   | 142000      | 155000         | 168000            | 185000          | 205000          | 225000          | 245000   | 270000   | 298000             |
| 13<br>Flasse<br>Point<br>(major<br>cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | £3      |          |         |          |          | ŗ,       |         |          |             | 1              | ድ                 |                 |                 |                 | น้       |          |                    |
| 12b<br>Smoothing<br>Line B<br>logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.78176  | 16218.4 | 4.85126  | 4.89763 | 4.93952  | 4.99123  | 5.04139  | 5.09691 | 5.11394  | 5.20412     | 5.24304        | 5.27875           | 5.31175         | 5.34242         | 5.36736         | 5.39445  | 5.41996  | 5.44716            |
| sbnasuoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60500    | 65000   | 71000    | 79000   | 87000    | 98000    | 110000   | 125000  | 130000   | 160000      | 175000         | 190000            | 205000          | 220000          | 233000          | 248000   | 263000   | 280000             |
| Moving Cyclical Geometric Most of the Council | 08609    |         | 73810    | 6       | 005.10   | 97670    | 113900   |         | 136300   | 157400      | 173600         | 189900            | 203800          | 224900          |                 | 238700   | 273400   | 281500             |
| 11b<br>Moving<br>Cyclica:<br>Average<br>of Logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.78519  |         | 4.86811  |         | 4.91159  | 4.98974  | 5.05666  |         | 5.13435  | 5.19706     | 5.23965        | 5.27862           | 5.30916         | 5.35200         |                 | 5.37780  | 5.43674  | 5.44953            |
| lla<br>Moving<br>Total<br>of Logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.71116 |         | 38.94486 |         | 39.4847± | 34.92817 | 25.28328 |         | 20.53741 | 15.59119    | 15.71894       | 15.83586          | 15.92747        | 21.40802        |                 | 22115.15 | 32.62046 | 38.14671           |
| 10<br>Length<br>In<br>Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9        |         | æ        | a       | o        | 7        | 72       |         | <b>4</b> | m-          | <b></b> ⊅M     | ٣                 | m.              | <del>t</del> zt |                 | <b>#</b> | 9        | <b>-</b>           |
| 9<br>2he e <del>yele</del><br>le <u>k</u> nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1901     |         | 1904     |         | 5061 20  | 1906     | 1906     |         | 1907     | 1908        | 6061           | 1910              | 1911            | 1913            |                 | 1914     | 1917     | 1918               |
| Xearly Figures luded in the eye in Middle R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1898     |         | 1900     | Ç       | 70-706T  | 1903     | 1904     |         | 1906     | 1907        | 1908           | 1909              | 1910            | 1911            |                 | 1913     | 1914     | 1915               |
| 7<br>Xearl<br>Included<br>Begin W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1896     |         | 1897     |         | 70A0     | 1900     | 1905     |         | 1904     |             | 1909           | 1908              |                 | 1910            |                 | 1911     | 1912     | 1912               |
| 6<br>Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F10,11   |         | Plo, 11  |         | 11,01    | t10,11   | r11,12   |         | P11,12   | f11,12      | 11,12<br>12,13 | P12,13            | £12,13          | 12,13           |                 | P13,14   | f13,14   | t <sub>13,14</sub> |
| 5 Phase Point (short cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | •       | 710      | 1       | T,       |          | נוש      | ,       | ii.      | <b>F</b> 12 | P12            | 115<br>121<br>121 | <sup>F</sup> 13 | dr.             | t <sub>13</sub> | #1#      |          | P14                |
| Crude Petroleum Crude Petroleum Output logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.74323  | 4.75642 | 4.80360  | 4.84129 | 4.94825  | 5.00200  | 5.06849  | 5.12943 | 5.13511  | 5.20438     | 5.25170        | 5-26286           | 5.32130         | 5.34331         | 5.34818         | 5.39523  | 5.42450  | 5.44887            |
| d abnasandt<br>CO Deservated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55364    | 57071   | 63621    | 69389   | 88767    | 100461   | 117081   | 134718  | 126494   | 160095      | 178527         | 183171            | 209557          | 220449          | 222935          | 248446   | 265763   | 281104             |
| Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88       | 66      | 1900     | 07      | 8        | 03       | 8        | 92      | 96       | 20          | 8              | 60                | 1910            | ជ               | टा              | 13       | *1       | 1915               |

Table M, Part a (concluded) Crude Petroleum Output

| 1938      | 37         | 36           | 35                | 34                   | 33                                   | 32                 | 31       | 1930               | 29         | 28         | 27          | 26         | 25       | 24             | 23         | 22          | 21            | 1920     | 19          | 18                                      | 17       | 1916     | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|------------|--------------|-------------------|----------------------|--------------------------------------|--------------------|----------|--------------------|------------|------------|-------------|------------|----------|----------------|------------|-------------|---------------|----------|-------------|-----------------------------------------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1214355   | 1279160    | 1099687      | 996596            | 908065               | 905656                               | 785159             | 851081   | 898011             | 1007323    | 901474     | 901129      | 770874     | 763743   | 713940         | 732407     | 557531      | <b>472183</b> | 442929   | 378372      | 335928                                  | 335316   | 300767   | thousands portion of the control of |
| 6.08435   | 6.10692    | 6.03126      | 5.99852           | 5.95812              | 5.95696                              | 5.89496            | 5.92997  | 5.95328            | 6.00317    | 5.95495    | 5.95479     | 5.88698    | 5.88295  | 5.85366        | 5.86475    | 5.74627     | 5.67411       | 5.64633  | 5.57792     | 5.52625                                 | 5.52545  | 5.47823  | ta 2b or tb<br>rude Petroleum<br>Output<br>logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13,       | אַל<br>אַל | 2000<br>4200 | 1000<br>0000      | 613<br>614           | 6<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ±18                |          | <b>f</b> 18        | 81d<br>81d | 117<br>717 | 777<br>1213 | <b>1</b> 6 | +        | 91.            | 100<br>110 | <b>₽</b> 16 | 155<br>515    | j.       | <b>r</b> 15 | # <sub>L</sub> ,                        | £14      |          | Fhase<br>Point<br>(short<br>cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 12,02      | 1200,21      | 02,611            | 52,00                | 61,813                               | f <sub>18,19</sub> | 200      | t17,18             | f:7,18     | p17,18     | 12          | 16,17      | P16,17   | <b>r</b> 16,17 | t15,16     | 115,16      | 15,16         | 24,15    | 114,15      | 57.4.1.5                                |          | 71, 15   | 6<br>Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | į          | 1935         | 1934              | 1933<br>1933<br>1933 | 1932                                 | 1930               | 1929     | 1928               | 1928       | 1927       | 1926        | 1761       | 1983     | 1922           | 1921       | 1921        | 1000          | 1010     | 1918        | 1310                                    | 3101     | 1913     | 7<br>Year<br>Include<br>Begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | i<br>i     | 1936         | 1935-36           | 1934                 | 1933                                 | 1932               | 1931     |                    | 1929       |            | S<br>D      |            | 1925     | 1924           | 1923       | 1922        | 907-10        | 3        | 1919        | 1761                                    | 1017_18  | 1916     | 7 Tearly Figures Included in the C Begin Middle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | Š          | 1937         | 1936              | 1935                 | 1931                                 | 1933               | 1933     | 1932               | 1929       | 1929       | 1928        | ÷76:       | 1927     | 1926           | 1925       | 1923        | 3267          | 1022     | 1920        | 1360                                    | 1000     | 1919     | res<br>End<br>End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | ı          | NW I         | wωı               | vw n                 | νω                                   | +                  | Ωŧ       | ⊭Ui                | N          | ωr         | νω          | 4          | E'Ui     | ∪ī             | 5          | w           | ir .4         | er 4     | ⊨u)         |                                         | л        | 7        | 10<br>Length<br>in<br>Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | ,          | 18.13670     | 17.98790          | 17.91360             | 17.81004                             | 23.73517           | 29.73834 | 29.73633           | 11.95812   | 17.91291   | 17.79672    | 63.77.030  | 29.44313 | 29.23461       | 29.02174   | 17.28513    | 9371          |          | 16.75050    | r                                       | 27 75L18 | 38.37645 | lla<br>Moving<br>Total<br>of Logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |            | 6.04557      | <b>7</b> 11 171   | n. n. i              | n . n                                | 5.93879            | 5.94767  | וטָח               | 5.97906    | 5.97097    | лул         | Ų          | 5.88863  | 5.84692        | 5.80435    | 5.76171     | 1 8           | п .<br>6 | 5.58350     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | л<br>Г   | 5.48235  | Moving<br>Cyclical<br>Average<br>of Logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 1          | 1111000      | 1035000<br>035000 | 935800               | 86 <del>4</del> 300                  | 868500             | 886500   | 885700             | 952900     | 935300     | 855500      | 101        | 773800   | 702900         | 637300     | 577700      | Eliocoo       | in Room  | 383300      |                                         | 355500   | 303600   | Moving Cyclical<br>Geometric Mean of Petroleum Output o<br>thousands barrels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (1290000) | (1190000)  | 1100000      | 980000            | 910000               | 870000                               | 850000             | 880000   | 920000             | 950000     | 930000     | 865000      | 810000     | 760000   | 710000         | 640000     | 560000      | 495000        | 425000   | 390000      | 355000                                  | 325000   | 300000   | thousands Inga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.11059   | 6.07555    | 6.04139      | 5.99123           | 5.95904              | 5.93952                              | 5.92942            | 5.94448  | 5.96379            | 5.97772    | 5.96848    | 5.93702     | 5.90849    | 5.88081  | 5.85126        | 5.80618    | 5.74819     | 5.69461       | 5.62839  | 5.59106     | 5.55023                                 | 5:51188  | 5.47712  | 12b<br>oothing<br>Line B<br>logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            |              |                   | บ <sup>เร</sup>      |                                      |                    |          | u <mark>H</mark> • |            |            | 4           |            |          |                |            |             | 11            |          |             |                                         | t‡       |          | 13 Phase Point (major cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (1350000) | (1280000)  | (1240000)    | (1180000)         | (1130000)            | (1070000)                            | (1010000)          | (960000) | (900000)           | (850000)   | (810000)   | (760000)    | (720000)   | 670000   | 625000         | 580000     | 530000      | 490000        | 450000   | 420000      | 380000                                  | 350000   | 325000   | 24<br>SL M<br>(thousands<br>barrels)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1938      | 37         | 36           | 35                | 34                   | 33                                   | 32                 | 31       | 1930               | 29         | 28         | . 27        | 26         | 25       | 24             | 23         | 23          | 21            | 1920     | 19          | 18                                      | 17       | 1916     | 1<br>Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Table M. CRUDE PETROLEUM OUTPUT.

Part b part of the calculations for the second stage of smoothing

Columns numbered as in Tables B and C.

| l9c Moving Cyclical Geometric Mean (thousands barrels)  | 9114         | 25782        | 32427            | 36100    | 45530                                                                           | 61000    | 80190    | 11600    | 157400   | 226000   | 386100    | 511300               | 663300    |
|---------------------------------------------------------|--------------|--------------|------------------|----------|---------------------------------------------------------------------------------|----------|----------|----------|----------|----------|-----------|----------------------|-----------|
| 19b<br>Moving<br>Cyclical<br>Average<br>of Logs         | 3.95972      | 4.41131      | 4.51090          | 4.55754  | 4.65831                                                                         | 4.78536  | 4.90412  | 5.04762  | 5.19699  | 5.85411  | 5.58669   | , 5.70871            | 5.82170   |
| iga<br>Moving<br>Total<br>of Logs<br>of SL B            | 75.23477     | 44.11309     | 49.61995         | 50.13292 | 65.21637                                                                        | 76.56579 | 83.37010 | 95.90487 | 98.74280 | 91.01993 | 106.14709 | 102.75680            | 104.79057 |
| 18<br>Length<br>In<br>Years                             | 170          | 10           | 11               | 11       | 14                                                                              | 16       | 27       | 19       | 19       | 17       | 19        | 18                   | 18        |
| ile<br>End                                              | 1883         | 1888         | 1892             | 1894     | 1,899                                                                           | 1904     | 1908     | 1913     | 1917     | 1920     | 1927      | 1930                 | 1934      |
| l6<br>Yearly Figures<br>Included in the Cycle<br>Middle | 1874         | 1884         | 1887             | 1889     | 1892                                                                            | 1896     | 1900     | 1904     | 1908     | 1912     | 1918      | 1922                 | 1925-26   |
| 15<br>Begin                                             | 1865         | 1879         | 1882             | 1884     | 1886                                                                            | 1889     | 1892     | 1895     | 1899     | 1904     | 1909      | 1913                 | 7161      |
| 14<br>Cycle                                             | 1 عرا 1<br>+ | , 1,2<br>1,2 | P <sub>1,2</sub> | f2,3     | ,<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | *2,3     | P2,3     | f3,4     | t3,4     | P3,4     | Р3,4      | <del>وا</del><br>جرع | t , 5     |





7,60% +140 .80 -00% 120 870 CRUDE PETROLEUM OUTPUT IN THE UNITED STATES. CYCLES BASED ON THE RECORD 1861 TO 1938. 18 90 Legend: The short straight lines connect points which show the short business cycle the ratio of the annual output to SL B. The curve shows the major cycle, the ratio of SL B to SL M. CHART



### Table N. CRUDE PETROLEUM OUTPUT IN THE UNITED STATES Calculation of standard measures of the two orders of cycles.

Based on the record 1861 to 1938. Three pages.

| Columns  |
|----------|
| numbered |
| 8        |
| 2.       |
| Tables   |
| D        |
| 5        |
| 'n       |
|          |

| 18<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 1<br>Year                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------|
| 2116<br>2617<br>2617<br>2617<br>2617<br>27618<br>2768<br>2768<br>2768<br>2768<br>2768<br>2768<br>2768<br>276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | 2 (or 4)a<br>Crude Petroleum<br>Output                                               |
| 75550000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (thousands of barreis) | 12<br>Smoothing<br>Line B                                                            |
| 10400<br>113300<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>117000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000 | rreis)                 | 24<br>Smoothing<br>Line M                                                            |
| 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The                    | Ratio<br>Ratio<br>Actual<br>to SL B                                                  |
| t tt + - + - + - +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The short business     | Columns numbered as in Tables D and E.  26 27 Percentage Deviation Deviation Squared |
| 129<br>88<br>88<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cycle                  | Tables D and E.  27  Devlation Squared                                               |
| • 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 30<br>Ratio<br>SL B<br>to SL M                                                       |
| ++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The major cycle        | 31<br>Percentage<br>Deviation                                                        |
| 64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 32<br>Deviation<br>Squared                                                           |
| 1865<br>655<br>655<br>655<br>655<br>655<br>655<br>655<br>655<br>655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | l<br>Year                                                                            |

Table N (continued) Crude Petroleum Output in the United States

| 1<br>Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 198889<br>198899<br>198899<br>19899<br>1989<br>1989<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32<br>Deviation<br>Squared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\mathbf{x}}{(\mathbf{d}^2)} = \frac{\mathbf{g}^2}{\mathbf{g}^2}$ $\frac{\mathbf{x}}{(\mathbf{d}^2)} = \frac{\mathbf{g}^2}{\mathbf{g}^2}$ $\frac{\mathbf{g}^2}{\mathbf{g}^2} = \frac{160}{1000}$                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 31 Percentage Deviation The major cycle-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 30 Surfaction Surface | ness cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27<br>Deviation<br>Squared<br>cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (a <sup>2</sup> ) = 5160<br>(b <sup>2</sup> ) = 5160<br>(b <sup>2</sup> ) = 5160<br>(c) the about portlood 1133<br>(a <sup>2</sup> ) = 5160<br>(b) the short business cycle (the full period) 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26 Percentage Deviation short business                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25<br>Ratio<br>Actual<br>to SL B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 24 Smoothing Line M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12<br>Line B<br>thousands of barrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65000<br>65000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000<br>71000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 (or 4)a<br>Crude Petroleum<br>Output<br>(the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55364<br>69369<br>69369<br>69369<br>69369<br>1004661<br>11708494<br>126494<br>126494<br>126494<br>1270955<br>127083<br>137372<br>127324<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127326<br>127 |
| I<br>Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99998999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## Table N (concluded) Crude Petroleum Output

Standard measures of the two orders of cycles.

Average Length Total length of typical short business cycle 3.8 yrs. 28 of actual about SL B (the short business cycle) Time Lengths of the Phases of the Cycles ğ Lengths in Years Average Deviation in the short business cycle 29 of actual from SL B (the short business cycle) Percentage Deviations at Peak and Trough 12.4% at trough

Average Length

YTS.

3.0 yrs.

3.4 yrs.

4.I yrs.

Average deviation in the major cycle

21.7% at peak

> 12.3% at trough

1881 1892 1908

from SL M (the major cycle)

of SLB

.8 2.0 3.5 .7 4.3 5.0 .5 4.3 3.8

Total length of typical major cycle

14.7 yrs.

### Section 5. PIG IRON PRODUCTION.

COMPARISON of Kuznets' trend with the smoothing line SL M (thousands of long tons)

|                                                                                      | Kuznets' Trend                                                                                          | SL M                                                                                                |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1855<br>1860<br>1865<br>1870<br>1875<br>1880<br>1885<br>1890<br>1895<br>1900<br>1905 | 517<br>769<br>1140<br>1684<br>2475<br>3610<br>5209<br>7404<br>10312<br>13991<br>18381<br>23268<br>28306 | (470)<br>(715)<br>(1080)<br>1660<br>2420<br>3430<br>4850<br>6900<br>9800<br>13600<br>18300<br>23600 |
| 1920                                                                                 | 33104                                                                                                   | 34600                                                                                               |

Kuznets' equation:

x in units of 5 years; origin at 1860.

THE agreement in the trend lines obtained by the two methods is fairly close. SL M, from 1880 to 1900, falls below the value of the trend line. The major cycles obtained by the two methods are similar.

THE amplitude calculated for the method of successive smoothings, based on the period running to 1939, takes in the violent displacements of the recent years, and is consequently quite large.

### PIG IRON PRODUCTION

The values of the standard deviation, by the several calculations:

|                                           | From Kuznets' figures, based on period | Figures secure of smoothin      | ed by the method<br>ng by stages |
|-------------------------------------------|----------------------------------------|---------------------------------|----------------------------------|
|                                           | 1854 to 1924                           | based on period<br>1854 to 1924 | based on period<br>1854 to 1939  |
| The short business cycle                  | 14.8%                                  | 13.15%                          | 16.6%                            |
| Years included (omit terminal half-cycle) | full                                   | 1857 to 1922                    | 1857 to 1937                     |
| The major cycle                           | 10.0%                                  | 9.0%                            | 11.0%                            |
| Years included (omit terminal half-cycle) | full                                   | 1867 to 1919                    | 1867 to 1929                     |

Table P. PIG IRON PRODUCTION IN THE UNITED STATES, 1854 TO 1939

### Two stages of smoothing.

Sources: Mineral Resources of the United States; Yearbooks of Commerce.

Part a (six pages)

| l<br>Year        | 2a<br>or 4a | 2b<br>or 4b                 | 5                                                                    | 6                                      | 7                          | 8                            | 9                 | 10                    | lla                        |
|------------------|-------------|-----------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------|------------------------------|-------------------|-----------------------|----------------------------|
| 1961             |             | out of<br>Iron<br>Iogarithm | Phase<br>Point<br>(short<br>cycle)                                   | Cycle                                  | Yearl<br>Included<br>Begin | y Figure<br>in the<br>Middle | s<br>Cycle<br>End | Length<br>in<br>Years | Moving<br>Total<br>of Logs |
|                  | H 4         |                             |                                                                      |                                        |                            |                              |                   |                       |                            |
| 1854             | 657         |                             |                                                                      |                                        |                            |                              |                   |                       |                            |
| 55               | 700         | 2.84510                     | <b>r</b> 1                                                           |                                        |                            |                              |                   |                       |                            |
| 56               | 789         | 2.89708                     | $\mathfrak{p}_1$                                                     |                                        |                            |                              |                   |                       |                            |
| 57               | 713         | 2.85309                     | $\mathfrak{r}_1$                                                     | r <sub>1,2</sub>                       | 1855                       | 1857                         | 1858              | 4                     | 11.39461                   |
| 58               | 630         | 2.79934                     | t <sub>1</sub>                                                       | P <sub>1,2</sub>                       | 1856                       | 1858                         | 1860              | 5                     | 14.33949                   |
| 59               | 751         | 2.87564                     | r <sub>2</sub>                                                       | f <sub>1,2</sub>                       | 1857                       | 1859                         | 1860              | 4                     | 11.44241                   |
| 1860             | 821         | 2.91434                     |                                                                      | t <sub>1,2</sub>                       | 1858                       | 1860                         | 1861              | 4                     | 11.40423                   |
| 61               | 653         | 2.81491                     | f <sub>2</sub><br>t <sub>2</sub>                                     | r <sub>2,3</sub>                       | 1859                       | 1861                         | 1863              | 5                     | 14.37922                   |
| 62               | 703         | 2.84696                     |                                                                      | p <sub>2</sub> ,3<br>f <sub>2</sub> ,3 | 1860                       | 1862                         | 1864              | 5                     | 14.50962                   |
| 63               | 846         | 2.92737                     | $\mathbf{r}_3$                                                       | t <sub>2,3</sub>                       | 1861<br>1862               | 1862-63<br>1863              | 1864<br>1865      | 4<br>4                | 11.59528<br>11.70049       |
| 64               | 1014        | 3.00604                     | <b>p</b> 3                                                           | r <sub>3,4</sub>                       | 1863                       | 1864                         | 1865              | 3                     | 8.85353                    |
| 65               | 832         | 2.92012                     | p3<br>f3<br>t3<br>r4                                                 | P3,4                                   | 1864                       | 1865                         | 1866              | 3                     | 9.00751                    |
| 66               | 1206        | 3.08135                     | P4                                                                   | f3,4                                   | 1865<br>1865               | 1866<br>1866-67              | 1867              | 3                     | 9.11708                    |
| 67               | 1305        | 3.11561                     | $\mathbf{f}_{4}$                                                     | f3,4<br>t3,4<br>r4,5                   | 1866                       | 1867                         | 1868<br>1868      | 3<br>4<br>3           | 12.27272<br>9.35260        |
| 68               | 1431        | 3.15564                     | $\mathbf{t_{4}}$                                                     | p <sub>4</sub> ,5                      | 1867<br>1868               | 1868<br>1868-69              | 1869<br>1860      | 3                     | 9.50450                    |
| 69               | 1711        | 3.23325                     | t <sub>4</sub><br>r <sub>5</sub><br>r <sub>5</sub><br>f <sub>5</sub> |                                        | 1869                       | 1869-70                      |                   |                       | 6.38889                    |
| 1870             | 1665        | 3.22141                     | -5                                                                   | <sup>t</sup> 4,5<br><sup>r</sup> 5,6   | 1869                       | 1870                         | 1871              | 2<br>3                | 6.45466<br>9.68689         |
| 71               | 1707        | 3.23223                     | <sup>t</sup> 5<br>r6                                                 | P <sub>5,6</sub>                       | 1869                       | 1871                         | 1872              | 4                     | 13.09326                   |
| 72               | 2549        | 3.40637                     | <sub>p6</sub>                                                        | f <sub>5,6</sub>                       | 1870                       | 1872                         | 1874              | 5                     | 16.64881                   |
| 73               | 2561        | 3.40841                     | - 0                                                                  |                                        |                            |                              |                   |                       |                            |
| 74               | 2401        | 3.38039                     | <b>f</b> 6                                                           | <sup>t</sup> 5,6                       | 1871                       | 1874                         | 1876              | 6                     | 20.00522                   |
| 75<br>           | 2024        | 3.30621                     |                                                                      | <b>r</b> 6,7                           | 1872                       | 1875                         | 1879              | 8                     | 26.88932                   |
| 76               | 1869        | 3 <b>.2</b> 7161            | <sup>t</sup> 6                                                       |                                        |                            |                              |                   |                       |                            |
| 77<br><b>7</b> 9 | 2067        | 3.31534                     | U                                                                    | <sup>p</sup> 6,7                       | 1873                       | 1877                         | 1882              | 10                    | 34.33806                   |
| 78               | 2301        | 3.36192                     |                                                                      |                                        |                            |                              |                   |                       |                            |
| 79<br>1880       | 2742        | 3.43807                     | <b>r</b> 7                                                           | f <sub>6,7</sub>                       | 1875                       | 1879                         | 1883              | 9                     | 31.22164                   |
| 1880             | 3835        | 3.58377                     |                                                                      |                                        |                            |                              |                   |                       |                            |

Table P, Part a (continued) Pig Iron Production, two stages of smoothing

| 11b                           | llc                                                          | 12a                    | 12b                       | 13                       | 20 <b>s</b> .          | 20b                         | 24                        | ı    |
|-------------------------------|--------------------------------------------------------------|------------------------|---------------------------|--------------------------|------------------------|-----------------------------|---------------------------|------|
| Moving<br>Cyclical<br>Average | Cyclical<br>Mean of<br>m Output<br>ong tons)                 |                        | loothing Line B logarithm | Phase<br>Point<br>(major |                        | Second pproximation to SL M | Final<br>SL M<br>(1000's) | Year |
| of Logs                       | Moving Cyc.<br>Geometric Mes<br>Pig Iron On<br>(1000's) long | thousands<br>long tons |                           | cycle)                   | thousands<br>long tons | logarithm                   | long<br>tons)             |      |
|                               |                                                              | (700)                  |                           |                          |                        |                             | (435)                     | 1854 |
|                               |                                                              | (700)                  |                           |                          |                        |                             | etc.                      | 55   |
|                               |                                                              | (700)                  |                           |                          |                        |                             |                           | 56   |
| 2.84865                       | 706                                                          | 700                    |                           |                          |                        |                             |                           | 57   |
| 2.86790                       | 738                                                          | 700                    |                           |                          |                        |                             |                           | 58   |
| 2.86060                       | 725                                                          | 705                    | 2.84819                   | $\mathbf{f}_1$           |                        |                             |                           | 59   |
| 2.85106                       | 710                                                          | 720                    | 2.85733                   |                          | years)                 |                             |                           | 1860 |
| 2.87584                       | 751                                                          | 740                    | 2.86923                   |                          | уев                    |                             | 392)                      | 61   |
| 2.90192<br>2.89882            | 798<br>703                                                   | 770                    | 2.88649                   |                          | these                  |                             | 1 18                      | 62   |
| 2.92512                       | 792<br>842                                                   | 830                    | 2.91908                   |                          |                        |                             | nt1                       | 63   |
| 2.95118                       | 894                                                          | 880                    | 2.94448                   | t <sub>1</sub>           | #                      |                             | n<br>1                    | 64   |
| 3.00250                       | 1006                                                         | 950                    | 2.97772                   |                          | eg ed                  | ·                           | ptec                      | 65   |
| 3.03903<br>3.06818            | 1094<br>1170                                                 | 1080                   | 3.03342                   |                          | (not needed in         |                             | accepted, unt11 1892      | 66   |
| 3.11753                       | 1311                                                         | 1300                   | 3.11394                   | $\mathbf{r}_1$           | (pot                   |                             | 208 8                     | 67   |
| 3.16817<br>3.19445            | 1473<br>1565                                                 | 1500                   | 3.17609                   |                          |                        |                             | д<br>Ж                    | 36   |
| 3.22733                       | 1688                                                         | 1650                   | 3.21748                   |                          |                        |                             | (column                   | 69   |
| 3.22896                       | 1694                                                         | 1800                   | 3.25527                   | p <sub>1</sub>           |                        |                             | စ)                        | 1870 |
| 3.27332                       | 1876                                                         | 1900                   | 3.27875                   | _                        |                        |                             |                           | 71   |
| 3.32976                       | 2137                                                         | 2040                   | 3.30963                   |                          |                        |                             |                           | 72   |
|                               |                                                              | 2120                   | 3.32634                   |                          |                        |                             |                           | 73   |
| 3.33420                       | 2159                                                         | 5550                   | 3.34635                   | e                        |                        |                             |                           | 74   |
| 3.36118                       | 2297                                                         | 2350                   | 3.37107                   | t <sup>5</sup>           |                        |                             |                           | 75   |
|                               |                                                              | 2450                   | 3.38917                   |                          |                        |                             |                           | 76   |
| 3.43381                       | 2715                                                         | 2600                   | 3.41497                   |                          |                        | •                           |                           | 77   |
|                               |                                                              | 2800                   | 3.44716                   |                          |                        |                             |                           | 78   |
| 3.46907                       | 2945                                                         | 3000                   | 3.47712                   | t <sub>2</sub>           |                        | ı                           | etc.                      | 79   |
|                               |                                                              | 3270                   | 3.51455                   | _                        |                        |                             | 3430                      | 1880 |
|                               |                                                              |                        |                           |                          |                        |                             |                           |      |

Table P, Part a (continued) Pig Iron Production, two stages of smoothing

| l<br>Year | Pig                       | ut of<br>Iron | 5<br>Phase<br>Point                          | 6<br>Cycle                               | Include              | 8<br>ly Figure<br>d in the | cycle                | 10<br>Length<br>in | lla<br>Moving<br>Total         |
|-----------|---------------------------|---------------|----------------------------------------------|------------------------------------------|----------------------|----------------------------|----------------------|--------------------|--------------------------------|
|           | thousands of<br>long tons | logarithm     |                                              |                                          | Begin                | Middle                     | End                  | Years              | of Logs                        |
| 1881      | 4144                      | 3.61742       |                                              | <sup>t</sup> 6,7                         | 1877                 | 1881                       | 1884                 | 8                  | 28.25639                       |
| 82        | 4623                      | 3.66492       | p <sub>7</sub>                               | 0,1                                      |                      |                            |                      |                    |                                |
| 83        | 4596                      | 3.66238       | - (                                          | r <sub>7,8</sub>                         | 1880                 | 1992-83                    | 1885                 | 6                  | 21.74798                       |
| 84        | 4098                      | 3.61257       | $\mathbf{r}_7$                               | P <sub>7,8</sub>                         | 1882                 | 1884                       | 1886                 | 5                  | 18.30137                       |
| 85        | 4045                      | 3.60692       | t <sub>7</sub>                               |                                          |                      |                            |                      | _                  | 3,                             |
| 86        | 5683                      | 3.75458       | r <sub>8</sub>                               | f <sub>7,8</sub>                         | 1884                 | 1885-86                    | 1887                 | 4                  | 14.78140                       |
| 87        | 6417                      | 3.80733       |                                              | <sup>t</sup> 7,8                         | 1885                 | 1886-87                    | 1888                 | 4                  | 14.98108                       |
| 88        | 6490                      | 3.81225       | <b>P</b> 8<br><b>f</b> 8<br><b>t</b> 8       | r <sub>8,9</sub>                         | 1886                 | 1887-88                    | 1889                 | 4                  | 15.25520                       |
| 89        | 7604                      | 3.88104       | <b>r</b> 9                                   | P8,9<br>f8,9                             | 1887<br>1888         | 1888 <b>-</b> 89<br>1889   | 1890<br>1890         | 4<br>3             | 15.46455<br>11.65722           |
| 1890      | 9203                      | 3.96393       | P9                                           | t <sub>R o</sub>                         | 1889                 | 1890                       | 1891                 | 3                  | 11.76300                       |
| 91        | 8280                      | 3.91803       | pg<br>fg<br>tg<br>r10                        | r9,10<br>p9,10<br>f9,10                  | 1890<br>1890<br>1891 | 1890-91<br>1891<br>1891-92 | 1891<br>1892<br>1892 | 3<br>2<br>3<br>2   | 7.88196<br>11.84371<br>7.87978 |
| 92        | 9157                      | 3.96175       | P10<br>f10                                   |                                          | 1892                 | 1892-93                    | 1893                 |                    | 7.81454                        |
| 93        | 7125                      | 3.95279       | -10                                          | t9,10<br>r10,11                          | 1892<br>1892         | 1893<br>1893-94            | 1894<br>1895         | 2<br>3<br>4        | 11.63782<br>15.61307           |
| 94        | 6657                      | 3.82328       | $^{\mathrm{t}_{10}}_{\mathrm{r}_{11}}$       | p10,11<br>f <sub>10,11</sub>             | 1893                 | 1894                       | 1895                 | 3                  | 11.65132                       |
| 95        | 9446                      | 3.97525       | p <sub>11</sub><br>f <sub>11</sub>           | t <sub>10,11</sub>                       | 1894                 | 1895                       | 1896                 | 3                  | 11.73419                       |
| 96        | 8623                      | 3.93566       | t <sub>11</sub>                              | r <sub>11,12</sub>                       | 1895                 | 1896                       | 1897                 | 3                  | 11.89557                       |
| 97        | 9653                      | 3.98466       | -11                                          | p <sub>11,12</sub>                       | 1895<br>1896         | 1897<br>1897-98            | 1899<br>1899         | 5<br>4             | 20.10070<br>16.12545           |
| 98        | 11774                     | 4.07092       | r <sub>12</sub>                              | <sup>1</sup> 11,12                       | _                    | 1898-99                    | 1900                 | 4                  | 16.32932                       |
| 99        | 13621                     | 4.13421       | t15<br>b15                                   | t <sub>11,12</sub>                       |                      | 1899-00                    | 1901                 | 4                  | 16.54496                       |
| 1900      | 13789                     | 4.13953       | t <sub>12</sub>                              | r <sub>12,13</sub>                       |                      | 1900-01                    | 1902                 | 4                  | 16.72497                       |
| 01        | 15878                     | 4.20030       | <b>r</b> 13                                  | p <sub>12,13</sub><br>f <sub>12,13</sub> |                      | 1900-01                    | 1902                 | 4                  | 16.84625                       |
| 02        | 17821                     | 4.25093       | p <sub>13</sub>                              | t <sub>12,13</sub><br>r <sub>13,14</sub> | 1901<br>1901         | 1902-03                    | 1903<br>1904         | 3                  | 12.70672<br>16.92365           |
| 03        | 18009                     | 4.25549       | f <sub>13</sub>                              | 13,14                                    | 1901                 | 1902-03                    | 1904                 | <del>ग</del>       | 10.92505                       |
| 04        | 16479                     | 4.21693       | $\overset{\mathbf{t}}{\mathbf{r}}_{14}^{13}$ | _                                        | 1002                 | 1001 05                    | 1006                 | )ı                 | 17 10180                       |
| 05 .      | <b>22992</b> .            | 4.31616       | r <sub>14</sub>                              | p <sub>13,14</sub><br>f <sub>13,14</sub> | 1903<br>1904         | 1904-05<br>1905            | 1906<br>1907         | 4<br>4             | 17.19182<br>17.34765           |
| 06        | 25307                     | 4.40324       | P <sub>1</sub> 4                             | t <sub>13.14</sub>                       | 1904                 | 1906                       | 1908                 | 5<br>4             | 21.55003                       |
| 07        | 25781                     | 4.41132       | $\mathbf{f}_{14}$                            | <b>P</b> 14,15                           | 1905                 | 1906-07                    | 1908                 | 7                  | 17.33310                       |
| 08        | 15936                     | 4.20238       | t <sub>14</sub>                              | P <sub>14,15</sub>                       | 1907                 | 1908                       | 1909                 | 3                  | 13.02524                       |
| 1909      | 25795                     | 4.41154       | r <sub>15</sub>                              | f <sub>14,15</sub>                       | _                    | 1909                       | 1910                 | 3                  | 13.05015                       |

Table P, Part a (continued) Pig Iron Production, two stages of smoothing

| llb<br>Moving<br>Cyclical<br>Average<br>of Logs | Moving Cyclical<br>Geometric Mean of<br>Pig Iron Output H<br>(1000's long tons) a |         | 12b<br>oothing<br>Line B<br>logarithm | 13 Phase Point (major cycle) | Appr  | 20b<br>econd<br>roximation<br>SL M<br>logarithm | 24 Final SL M (1000's long tons) | l<br>Year |
|-------------------------------------------------|-----------------------------------------------------------------------------------|---------|---------------------------------------|------------------------------|-------|-------------------------------------------------|----------------------------------|-----------|
| 3.53205                                         | 3404                                                                              | 3550    | 3.55023                               |                              |       |                                                 | 3690                             | 1881      |
|                                                 | 1 1                                                                               | 3850    | 3.58546                               |                              |       |                                                 | 3950                             | 82        |
| 3.62466                                         | 4214                                                                              | 4200    | 3.62325                               |                              |       |                                                 | 4250                             | 83        |
| 3.66027                                         | 4574                                                                              | 4500    | 3.65321                               |                              |       |                                                 | 4500                             | 84        |
|                                                 | h 0                                                                               | 4900    | 3.69020                               |                              |       |                                                 | 4850                             | 85        |
| 3.69535                                         | 4958                                                                              | 5400    | 3.73239                               |                              |       |                                                 | 5200                             | 86        |
| 3.74527                                         | 5562                                                                              | 6000    | 3.77815                               |                              |       |                                                 | 5600                             | 87        |
| 3.81380                                         | 6513                                                                              | 6900    | 3.83885                               |                              |       |                                                 | 6000                             | 88        |
| 3.86614<br>3.88574                              | 7348<br>7687                                                                      | 7700    | 3.88649                               |                              |       |                                                 | 6450                             | 89        |
| 3.92100                                         | 8337                                                                              | 8400    | 3.92428                               | P <sub>2</sub>               |       |                                                 | 6900                             | 1890      |
| 3.94098<br>3.94790                              | 8729<br>8870                                                                      | 8800    | 3.94448                               | _                            |       |                                                 | 7400                             | 91        |
| 3.93989<br>3.90727                              | 8707                                                                              | 8200    | 3.91381                               | $\mathbf{r}_3$               | 7900  | 3.89763                                         | 7900                             | 92        |
| 3.87927<br>3.90436                              | 8077<br>7573                                                                      | 7500    | 3.87506                               | 3                            | 8450  | 3.92686                                         | 8500                             | 93        |
| 3.88377                                         | 8023<br>7652                                                                      | 7500    | 3.87506                               | t.3                          | 9000  | 3.95424                                         | 9100                             | 94        |
| 3.91140                                         | 8155                                                                              | 8200    | 3.91381                               | 3                            | 9700  | 3.98677                                         | 9800                             | 95        |
| 3.96519                                         | 9230                                                                              | 9200    | 3.96379                               |                              | 10250 | 4.00072                                         | 10500                            | 96        |
| 4.02014<br>4.03136                              | 10475<br>10749                                                                    | 1.0200  | 4.00860                               |                              | 11000 | 4.04139                                         | 11200                            | 97        |
| 4.08233                                         | 12087                                                                             | 11400   | 4.05690                               | <b>r</b> 3                   | 11700 | 4.06819                                         | 12000                            | 98        |
| 4.13624                                         | 13685                                                                             | 12900   | 4.11059                               |                              | 12500 | 4.09691                                         | 12800                            | 99        |
| 4.18124                                         | 15179                                                                             | 14400   | 4.15836                               |                              | 13300 | 4.12385                                         | 13600                            | 1900      |
| 4.21156                                         | 16277                                                                             | 15700   | 4.19590                               |                              | 14100 | 4.14922                                         | 14400                            | 01        |
| 4.23557<br>4.23091                              | 17202<br>17018                                                                    | 16900   | 4.22789                               |                              | 15000 | 4.17609                                         | 15300                            | 02        |
| +123091                                         | 17010                                                                             | 18200   | 4.26007                               |                              | 15800 | 4.19866                                         | 16200                            | 03        |
| 4.29796                                         | 19860                                                                             | 19400   | 4.28780                               |                              | 16700 | 4.22272                                         | 17200                            | 04        |
| 4.33691                                         | 21722                                                                             | 20500   | 4.31175                               |                              | 17500 | 4.24304                                         | 18300 .                          | 05        |
| 4.31001<br>4.33328                              | 20420<br>21541                                                                    | 21100 . | 4.32428                               |                              | 18500 | 4.26717                                         | 19300                            | 06        |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,         | モエンマエ                                                                             | 21700   | 4.33646                               |                              | 19400 | 4.28780                                         | 20400                            | 07        |
| 4.34175                                         | 21966                                                                             | 55100   | 4.34439                               |                              | 20300 | 4.30750                                         | 21500                            | 08        |
| 4.35005                                         | 22390                                                                             | 23200   | 4.36549                               | р <sub>3</sub> .             | 21200 | 4.32634                                         | 22500                            | 1909      |

(Table P, part a, in continued on next page.)

Table P, Part a (continued) Pig Iron Production, two stages of smoothing

| 1<br>Year | Outp<br>Pig               | 2b or 4b<br>ut of<br>Iron<br>logarithm | 5<br>Phase<br>Point                | 6<br>Cycle                               | 7<br>Year<br>Include<br>Begin | 8 Ply Figures ed in the 6 Middle | 9<br>Eycle<br>End | 10<br>Length<br>in<br>Years | lla<br>Moving<br>Total<br>of Logs |
|-----------|---------------------------|----------------------------------------|------------------------------------|------------------------------------------|-------------------------------|----------------------------------|-------------------|-----------------------------|-----------------------------------|
|           | thousands of<br>long tons |                                        |                                    |                                          |                               |                                  |                   |                             |                                   |
| 1910      | 27304                     | 4.43623                                | P <sub>15</sub>                    | <sup>t</sup> 14,15<br><b>r</b> 15,16     | 1908<br>1909                  | 1909 <b>-</b> 10<br>1910         | 1911<br>1911      | 4<br>3                      | 17.42398<br>13.22160              |
| 11        | 23650                     | 4.37383                                | $t_{15}$ $t_{15}$                  | P15,16                                   | 1910                          | 1911                             | 1912              | 3                           | 13.28321                          |
| 12        | 29727                     | 4.473.15                               | <b>r</b> 16                        | f <sub>15</sub> ,16                      | 1911<br>1911                  | 1912<br>1912-13                  | 1913<br>1914      | 3<br>4                      | 13.33786<br>17.70581              |
| 13        | 30966                     | 4.49088                                | P16                                | t <sub>15</sub> , <sub>16</sub>          | 1912                          | 1912-13                          | 1915              | 4                           | 17.80788                          |
| 14        | 23332                     | 4.36795                                | f <sub>16</sub><br>t <sub>16</sub> | <b>r</b> 16,17                           | 1916                          | 1919-14                          | 1915              | 7                           | 17.00700                          |
| 15        | 29916                     | 4.47590                                | <b>r</b> 17                        | P16,17                                   | 1913                          | 1915                             | 1916              | 4                           | 17.93061                          |
| 16        | 39435                     | 4.59588                                |                                    | f16,17                                   | 1914<br>1914                  | 1916<br>1916 <b>-1</b> 7         | 1918<br>1919      | 5<br>6                      | 22.61823<br>27.10980              |
| 17        | 38621                     | 4.58682                                | P17                                | t16,17                                   | 1916                          | 1917-18                          | 1919              | 4                           | 18.26595                          |
| 18        | 39055                     | 4.59168                                | $\mathbf{f}_{17}$                  | r <sub>17</sub> ,18                      | 1917                          | 1918-19                          | 1920              | 4                           | 18.23740                          |
| 19        | 31015                     | 4149157                                | t <sub>17</sub><br>r <sub>18</sub> | P17,18                                   | 1919                          | 1919-20                          | 1920              | 2                           | 9.05890                           |
| 1920      | 36926                     | 4.56733                                | p <sub>18</sub><br>f <sub>18</sub> | f <sub>17,18</sub><br>t <sub>17,18</sub> | 1919                          | 1920                             | 1921              | 3                           | 13.28130                          |
| 21        | 16688                     | 4.22240                                | t <sub>18</sub>                    | r18,19                                   | 1920<br>1920                  | 1921<br>1921 <b>-</b> 22         | 1922<br>1923      | 3<br>4                      | 13.22462<br>17.83058              |
| 22        | 27220                     | 4.43489                                | $r_{19}$                           | P18,19<br>f18,19                         | 1921<br>1921                  | 1922<br>1922-23                  | 1923<br>1924      | 3 .                         | 13.26325<br>17.82793              |
| 23        | 40361                     | 4.60596                                | . p <sub>19</sub>                  | t18,19                                   | 1922                          | 1923-24                          | 1925              | 4                           | 18.10254                          |
| 24        | 31406                     | 4.49701                                | $\mathbf{t_{19}}$                  | r <sub>19,20</sub>                       | 1923                          | 1924 - 25                        | 1926              | 4                           | 18.25949                          |
| 25        | 36701                     | 4.56468                                | r <sub>20</sub>                    | P19,20<br>f19,20                         | 1924<br>1924                  | 1925<br>1925-26                  | 1926<br>1927      | 3                           | 13.65353<br>18.21661              |
| 26        | 39070                     | 4.59184                                | P20<br>f <sub>20</sub>             | t19,20                                   | 1925                          | 1926-27                          | 1928              | 4                           | 18.30116                          |
| 27        | 36566                     | 4.56308                                | t <sub>20</sub>                    | r <sub>20,21</sub>                       | 1926                          | 1927-28                          | 1929              | 4                           | 18.36603                          |
| 28        | 38156                     | 4.58156                                | $r_{21}$                           | P20,21<br>f <sub>20,21</sub>             | 1927                          | 1928-29                          | 1930              | 4                           | 18.27596                          |
| 29        | 42614                     | 4.62955                                | P21                                | t <sub>20,21</sub>                       | 1927                          | 1929-30                          | 1932              | 6                           | 26.48493                          |
| 1930      | 31752                     | 4.50177                                | $\mathbf{f}_{21}$                  | 920,21                                   | 17-1                          | 1)L) 30                          | -55-              | _                           |                                   |
| 31        | 18426                     | 4.26543                                | -51                                | ro. oo                                   | 1928                          | 1931-32                          | 1935              | 8                           | 34.58495                          |
| 32        | 8781                      | 3.94354                                | t <sub>21</sub>                    | r <sub>21,22</sub>                       | 1)20                          | 1) <u>J</u> 1 <u>J</u> 2         | ~///              | J                           | 3.130.75                          |
| 33        | 13346                     | 4.12535                                |                                    | p <sub>21,22</sub><br>f <sub>21,22</sub> | 1929<br>1931                  | 1933<br>1933-34                  | 1936<br>1937      | 8<br>7                      | 34.49516<br>29.93353              |
| 34        | 16139                     | 4.20788                                |                                    | -21,22                                   |                               | ±233 3.                          | -221              | ,                           | -2.7.7.7.2.2                      |
| 35        | 21373                     | 4.32987                                | $r_{22}$                           | t <sub>21,22</sub>                       | 1932                          | 1935                             | 1938              | 7                           | 29.95052                          |
| 36        | 31029                     | 4.49177                                |                                    |                                          |                               |                                  |                   |                             |                                   |
| 37        | 37127                     | 4.56969                                | p <sub>22</sub>                    | r <sub>22,23</sub>                       | 1935                          | 1937                             | 1938              | 4                           | 17.67375                          |
| 38        | 19161                     | 4.28242                                | t <sub>22</sub>                    |                                          |                               |                                  | _                 |                             |                                   |
| 1939      | 35317                     |                                        | r <sub>23</sub>                    |                                          |                               |                                  |                   |                             |                                   |

Table P, Part a (concluded) Pig Iron Production, two stages of smoothing

| llb<br>Moving<br>Cyclical<br>Average<br>of Logs | Moving Cyclical<br>Geometric Mean off<br>Pig Iron Outputo<br>1000's long tons) | thousands long tons tons long tons | 12b<br>ng Line B<br>logarithm | 13<br>Phase<br>Point<br>(major<br>cycle) |       | 20b<br>cond<br>imation<br>L M<br>logarithm | 24 Final SL M (1000's long tons) | 1<br>Year |
|-------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|-------------------------------|------------------------------------------|-------|--------------------------------------------|----------------------------------|-----------|
| 4.35599<br>4.40720                              | 22698<br>25539                                                                 | 24200                              | 4.38382                       |                                          | 22300 | 4.34830                                    | 23600                            | 1910      |
| 4.42140                                         | 26388                                                                          | 25600                              | 4.40824                       |                                          | 23200 | 4.36549                                    | 24700                            | 11        |
| 4.44595<br>4.42645                              | 27922                                                                          | 27000                              | 4.43136                       |                                          | 24200 | 4.38382                                    | 25900                            | 12        |
| 4.45197                                         | 26696<br>28312                                                                 | 28000                              | 4.44716                       |                                          | 25200 | 4.40140                                    | 27000                            | 13        |
| 4.40197                                         | 20312                                                                          | 29700                              | 4.47276                       |                                          | 26200 | 4.41830                                    | 28200                            | 14        |
| 4.48265                                         | 30384                                                                          | 31400                              | 4.49693                       |                                          | 27200 | 4.43457                                    | 29600                            | 15        |
| 4.52365<br>4.51830                              | 33392<br>32984                                                                 | 33000                              | 4.51851                       |                                          | 58500 | 4.45025                                    | 30600                            | 16        |
| 4.56644                                         | 36850                                                                          | 35000                              | 4.54407                       |                                          | 29300 | 4.46687                                    | 31600                            | 17        |
| 4.55935                                         | 36253                                                                          | 36000                              | 4.55630                       |                                          | 30400 | 4.48287                                    | 32500                            | 18        |
| 4.52945                                         | 33842                                                                          | 34500                              | 4.53782                       | $\mathbf{f}_{\mathbf{\mu}}$              | 31300 | 4.49554                                    | 33700                            | 19 •      |
| 4.42710                                         | 26736                                                                          | 28000                              | 4.44716                       | - 4                                      | 32200 | 4.50786                                    | 34600                            | 1920      |
| 4.40821<br>4.45865                              | 25598<br>28751                                                                 | 26500                              | 4.42325                       |                                          | 33000 | 4.51851                                    | 35200                            | 21        |
| 4.42108<br>4.45698                              | 26368<br>28640                                                                 | 27000                              | 4.43136                       | $t_{4}$                                  | 33400 | 4.52375                                    | 35300                            | 22        |
| 4.52564                                         | 33546                                                                          | 30400                              | 4.48287                       | $\mathbf{r}_{4}$                         | 33600 | 4.52634                                    | 34900                            | 23        |
| 4.56487                                         | 36717                                                                          | 34000                              | 4.53148                       |                                          | 33000 | 4.51851                                    | 34300                            | 24        |
| 4.55118<br>4.55415                              | 35578<br>35822                                                                 | 36400                              | 4.56110                       |                                          | 32300 | 4.50920                                    | 33600                            | 25        |
| 4.57529                                         | 37609                                                                          | 37800                              | 4.57749                       |                                          | 31400 | 4.49693                                    | 32800                            | 26        |
| 4.59151                                         | 39040                                                                          | 38000                              | 4.57978                       | Р4                                       | 30400 | 4.48287                                    | 31700                            | 27        |
| 4.57399                                         | 37496                                                                          | 37800                              | 4 • 57749                     |                                          | 29000 | 4.46240                                    | 30200                            | 28        |
| 4.41416                                         | 25951                                                                          | 34000                              | 4.53148                       |                                          | 27700 | 4.44248                                    | 28900                            | 29        |
|                                                 |                                                                                | 27000                              | 4.43136                       | f <sub>5</sub>                           | 26500 | 4.42325                                    | (27300)                          | 1930      |
| 4.32312                                         | 21043                                                                          | 21000                              | 4.32222                       |                                          | 25200 | 4.40140                                    | (25700)                          | 31        |
| 11 273 20                                       | **                                                                             | 18000                              | 4.25527                       |                                          | 24000 | 4.38021                                    | (24300)                          | 32        |
| 4.31189<br>4.27622                              | 20506<br>18889                                                                 | 17400                              | 4.24055                       | <sup>t</sup> 5                           | 55800 | 4.35794                                    | (23000)                          | 33        |
| ), 07950                                        | 10000                                                                          | 18000                              | 4.25527                       |                                          | 21800 | 4.33846                                    | (21900)                          | 34        |
| 4.27850                                         | 18989                                                                          | 19300                              | 4.28556                       |                                          | 21000 | 4.32222                                    | (21000)                          | 35        |
| li liz Obli                                     | 06225                                                                          | 21700                              | 4.33646                       | <b>r</b> <sub>5</sub>                    | 20000 | 4.30103                                    | (20000)                          | 36        |
| 4.41844                                         | 26208                                                                          | 24000                              |                               |                                          |       |                                            | (19200)                          | 37        |
|                                                 |                                                                                | (26500)                            |                               |                                          |       |                                            | (18600)                          | 38        |
|                                                 |                                                                                | (28000)                            |                               |                                          |       |                                            | (18000)                          | 1939      |

Table P. PIG IRON PRODUCTION

Part b part of the calculations for the second stage of smoothing, including correction for curvature.

| Table Fall Timal SL M 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 1867           | 1871     | 1875     | 1880     | 1883-84      | 1886-87  | 1890     | 1 <b>899-0</b> 0 | 1906      | 1908      | 1911      | 1918     | 1925     | 1927     | 1929-30      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|----------|--------------|----------|----------|------------------|-----------|-----------|-----------|----------|----------|----------|--------------|
| Modusted  Moving Cyclical  General Commercial  (10001 s long tons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1216             | 1738     | 5466     | 3488     | 1844         | 5513     | 6941     | 13181            | 20126     | 22096     | 24967     | 32541    | 33870    | 30944    | 26722        |
| Adjusted Moving Cyclical Washage of Loga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |          |          |          |              |          |          |                  | 4.30375   | 4.34432   | 4.39737   | 4.51243  | 4.52981  | 4.49058  | 4.42686      |
| Difference<br>in Logs<br>(Column 19b<br>minus col.21b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |          |          |          |              |          |          |                  | .02919    | .02827    | .02962    | .02838   | .01546   | .01041   | .00055       |
| 21b<br>mes of<br>Logs of<br>Second<br>Approx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |          |          |          |              |          |          |                  | 4.24537   | 4.28778   | 4.33813   | 4.45567  | 4.49889  | 4.46976  | 4.42576      |
| IntoT gnivoM  magod To  magon so  magon so  magon so  moltamixorqqA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |          |          |          |              |          |          |                  | 114.62488 | 115.77015 | 112.79136 | 84.65772 | 44.98885 | 49.16734 | 61.96065     |
| onotamixorqqA broseg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | jo 2             | rog      |          |          |              |          |          |                  |           |           |           |          |          |          |              |
| ⊘ M. JZ of nolfæmfxovqqA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r puo            | 29GC     | (B)      | 1 91     | [de]         | to       | )        |                  |           |           |           |          |          |          |              |
| Moving Cyclical Geometric Mean Concluded the Concluded teatin (1000 group found foun | 1216             | 1738     | 5466     | 3488     | 2844         | 5513     | 6941     | 13181            | 18817     | 20704     | 23321     | 30482    | 32685    | 30211    | 26688        |
| Moving Cyclical C Solical C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.08499          | 3.24012  | 3.39206  | 3.54252  | 3.65194      | 3.74141  | 3.84143  | 4.11994          | 4.27456   | 4.31605   | 4.36775   | 4.48405  | 4.51435  | 4.48017  | 4.42631      |
| 19s Moving Total of Logs of SL B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49.35797         | 48.60184 | 54.27289 | 74.39289 | 65.73484     | 59.86259 | 57.62143 | 82.39877         | 115.41317 | 116.53346 | 113.56149 | 85.19695 | 45.14346 | 49.28190 | 61.96838     |
| 18<br>Length<br>in<br>Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16               | 15       | 16       | 21       | 18           | 16       | 15       | 20               | 27        | 27        | 56        | 19       | 10       | 11       | 1,4          |
| 17<br>es<br>Cycle<br>End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1874             | 1878     | 1883     | 1890     | 1883-84 1892 | 7 1894   | 1897     | 1899-00 1909     | 1919      | 1921      | 1923      | 1927     | 1929     | 1932     | 1929-30 1936 |
| Sources  Yearly Figures  Luded in the Cycle  In Middle End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1867             | 1871     | 1875     | 1880     | 1883-8       | 1886-87  | 1890     | 1899-0           | 1906      | 1908      | 1911      | 1918     | 1925     | 1927     | 1929-3       |
| 15<br>Yearly<br>Included<br>Begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1859             | 1864     | 1868     | 1870     | 1875         | 1879     | 1883     | 1890             | 1893      | 1895      | 1898      | 1909     | 1920     | 1922     | 1923         |
| 14<br>Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f <sub>1.2</sub> | t1,2     | 11,2     | P1.2     | f2,3         | t 2,3    | F2.3     | P2.3             | f3,4      | t 3,4     | 73°#      | D3.4     | f., 5    | t4.5     | 7,47         |









## Table Q. PIG IRON PRODUCTION IN THE UNITED STATES

Calculation of standard measures of the two orders of cycles.

Based on the record 1854 to 1939. (Three pages.)

1 Year

| ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | $\mathbf{Year}^1$                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|
| 9883 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 6583 + 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (thousands       | 2e or 4e<br>Output of P1g Iron     |
| 700<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ls of long tons) | 12s<br>Smoothing<br>Line B         |
| 746000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 24<br>Smoothing<br>Line M          |
| ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The              | 25<br>Ratio<br>Actual<br>to SL B   |
| たった + + + たちは                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | short business   | 26 Percentage Deviation            |
| #30134538888688885628651463044534845404<br>#301345388886888856286545304453044534845404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s cycle.         | 27<br>Deviation<br><b>S</b> quared |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 30<br>Retio<br>SL B<br>to SL M     |
| The major cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 31<br>Percentage<br>Deviation      |
| 10140204<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>10162004<br>101 |                  | 32<br>Deviation<br>Squared         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | _                                  |

Table O (continued) Pig Iron Production in the United States

|                        | l<br>Year                             | 18899999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
|------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                        | <b>d</b>                              | for calculation of ad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
|                        | 32<br>Deviation<br>Squared            | (2) = 11.0%, cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |
|                        | 31<br>Percentage<br>Deviation         | -12<br>-16<br>-16<br>-16<br>-17<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cycle.                                         |
| United States          | 30<br>Ratio<br>SL B<br>to SL M        | 888884816666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.6%, in the short business (the full period) |
| ר the                  | uo.                                   | Lend of the short period for calculation of ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | th<br>the                                      |
| Iron Production in the | 27<br>Devistion<br>Squared            | 2.2.2.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>16.6%</b>                                   |
| Pig Iron Pro           | 26<br>Percentage<br>Devistion         | 1141 14+ 14+ 14+ 144 15 883 144 144 144 144 144 144 144 144 144 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $3d = \frac{22195}{81}$                        |
| continued)             | 25 Ratio Actual to SL B               | 281422534154111811152115231281281288 <b>458147</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
| Table Q (co            | 24<br>Smoothing<br>Line M             | 88<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>80 | the next page)                                 |
|                        | 12a Smoothing Line B s of long tons)_ | 7500<br>8200<br>8200<br>8200<br>8200<br>8200<br>8200<br>8200<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | is concluded on                                |
|                        | 2s or 4s Output of Pig Iron (thousand | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Table Q                                       |
|                        | 1<br>Year                             | 81<br>84 87 87 88 8 9 1 9 8 8 9 9 1 1 9 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |

### Table Q (concluded) Pig Iron Production

Standard measures of the two orders of cycles.

| 33 of SL B about SL M (the major cycle) 1 2.7 2 7.0 2 1.5 3 11.6 3 10.5 3 2.3 3 1.5 4.0 4.0 4.0 2.7 Average length 5.3 yrs.  33 4 (the major cycle) 4.3 4.3 4.3 3.2 1.5 3.2 1.5 4.3 4.3 4.3 4.3 4.3 1.5 4.3 4.3 1.5 4.3 1.5 4.3 4.3 4.3 1.5 4.3 4.3 1.5 4.3 1.5 4.3 4.3 4.3 4.3 1.5 1.5 4.3 4.3 4.3 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 | Cycle   Try   Lengths in Years   At Peak   Mamber   Try   Try | 28 of actual about SL B (the short business cycle) of actual from SL B (the short business cycle) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                 | 192721112222222777651<br>192721112222222777651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | business                                                                                          |

Total length of typical major cycle

17.2 yrs.

### Section 6. PORTLAND CEMENT PRODUCTION.

COMPARISON of Kuznets' trend line with the smoothing line SL M (thousands of barrels)

|                                                                                                                              | Kuznets' Trend                                                                                                                                                            | SL M                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1880<br>1882<br>1885<br>1887<br>1890<br>1892<br>1895<br>1897<br>1900<br>1902<br>1905<br>1907<br>1910<br>1912<br>1915<br>1917 | 36.9<br>62.4<br>136.8<br>231.0<br>506.0<br>852.8<br>1859.2<br>3113.5<br>6667.6<br>10900.8<br>22041.7<br>33775.5<br>58294<br>77498<br>104776<br>119069<br>133461<br>139004 | (35)<br>(52)<br>(103)<br>(168)<br>(365)<br>(660)<br>1630<br>3000<br>7300<br>12000<br>22500<br>32800<br>51000<br>65500<br>89000<br>102000<br>118000<br>127000 |
| 1925                                                                                                                         | 144107                                                                                                                                                                    | 133000                                                                                                                                                       |

Kuznets' equation:

$$y = \frac{148,481}{(3.60421 - 0.56912 \times)}$$

x in units of 5 years; origin at 1880.

IN the period 1910 to 1924 there was sharp curvature on the semi-logarithmic chart. Following the usual correction for curvature, SL M was adjusted to take a position toward the convex side from the first set of moving cyclical average points, but even at that, the values of SL M are almost uniformly smaller than the values of Kuznets' mathematical trend line. Only for the years 1897 to 1907 is there approximate equality between them. After 1924 the great depression lying in the future begins to cause a drop in SL M.

THERE is close similarity in the appearance of the major cycle by the two methods.

IT will be noted that SL B for this series was drawn by inspection without the objective check of a moving average. Since the chart was so free from construction lines, it was possible to proceed on the same sheet to locate SL M. This permits the whole graphical process to be viewed together on the finished chart (as it usually is on worksheets).

### PORTLAND CEMENT PRODUCTION

Values of the standard deviation, by the several calculations:

|                                            | From Kuznets'<br>figures, based<br>on period<br>1880 to 1924 | Figures secured by the method of smoothing by stages |                                 |  |
|--------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|---------------------------------|--|
|                                            |                                                              | based on period<br>1880 to 1925                      | based on period<br>1880 to 1938 |  |
| The short business cycle                   | 8.7%                                                         | 6.5%                                                 | 6.5%                            |  |
| Years included (omit terminal half-cycles) | full                                                         | 1883 to 1923                                         | 1883 to 1936                    |  |
| The Major                                  | 29.4%                                                        | 25 <b>.</b> 5 <b>%</b>                               | 21.6%                           |  |
| Year included (omit terminal half-cycles)  | full                                                         | <b>189</b> 5 to 1917                                 | 1895 <b>to</b> 1930             |  |

### Table R. PORTLAND CEMENT PRODUCTION IN THE UNITED STATES, 1880 TO 1939

### Two stages of smoothing

Sources: Mineral Resources of the United States; Yéarbooks of Commerce.

### Part a (two pages)

| 1          | 2a<br>or 4a                                       | 12a                      | 12b                                  | 5                                                                                      | 13                                 | 20a    | 20ъ                                    | 24                                 |
|------------|---------------------------------------------------|--------------------------|--------------------------------------|----------------------------------------------------------------------------------------|------------------------------------|--------|----------------------------------------|------------------------------------|
| Year       | Portland Cement<br>Production<br>(1000's barrels) | (thousands)<br>barrels)4 | ng Line B<br>nspection)<br>logarithm | Phase<br>Point<br>(short<br>cycle)                                                     | Phase<br>Point<br>(major<br>cycle) | Approx | econd<br>kimation<br>SL M<br>logarithm | Final<br>SL M<br>(1000's<br>bbls.) |
| 1880       | 42                                                | (52)                     |                                      |                                                                                        |                                    | ·      |                                        | (30)                               |
| 81         | 60                                                | (61)                     |                                      | r <sub>1</sub>                                                                         |                                    |        |                                        | (38)                               |
| 82         | 85                                                | (75)                     |                                      | P <sub>1</sub>                                                                         |                                    |        |                                        | (49)                               |
| 83<br>84   | 90                                                | 90<br>108                |                                      | $\mathbf{f}_1$                                                                         | ٠                                  |        |                                        | (64)<br>(81)                       |
| 85         | 100                                               |                          |                                      | t <sub>1</sub><br>r <sub>2</sub><br>r <sub>2</sub><br>r <sub>2</sub><br>r <sub>3</sub> |                                    |        |                                        | (105)                              |
| 86         | 150<br>150                                        | 133<br>170               |                                      | t5<br>55                                                                               |                                    |        |                                        | (135)                              |
| 87         | 250                                               | 211                      |                                      | r3                                                                                     |                                    |        |                                        | (172)                              |
| 88         | 250                                               | 250                      |                                      | <b>P</b> 3                                                                             |                                    |        |                                        | (222)                              |
| 89         | 300                                               | 300                      |                                      | f <sub>3</sub>                                                                         | $\mathbf{f}_1$                     |        |                                        | (290)                              |
| 1890       | 335                                               | 355                      | 2.55023                              | to                                                                                     | -1                                 | 370    | 2.56820                                | (365)                              |
| 91         | 455                                               | 430                      | 2.63347                              | t <sub>3</sub><br>r <sub>4</sub><br>p <sub>4</sub>                                     |                                    | 475    | 2.67669                                | (475)                              |
| 92         | 547                                               | 515                      | 2.71181                              | - 4                                                                                    |                                    | 600    | 2.77815                                | (610)                              |
| 93         | 591                                               | 610                      | 2.78533                              | f <sub>4</sub>                                                                         |                                    | 785    | 2.89487                                | (800)                              |
| 94         | 799                                               | 770                      | 2.88649                              | r5<br>P5                                                                               | t <sub>1</sub>                     | 1030   | 3.01284                                | (1050)                             |
| 95         | 990                                               | 1040                     | 3.01703                              | r5555                                                                                  | 1                                  | 1350   | 3.13033                                | 1450                               |
| <b>9</b> 6 | 1543                                              | 1550                     | 3.19033                              | r <sub>6</sub>                                                                         |                                    | 1800   | 3.25527                                | 2000                               |
| 97         | 2678                                              | 2450                     | 3.38917                              | p <sub>6</sub>                                                                         |                                    | 2380   | 3.37658                                | 2700                               |
| 98         | 3692                                              | 3700                     | 3.56820                              | J                                                                                      | $\mathbf{r}_1$                     | 3150   | 3.49831                                | 3750                               |
| 99         | 565 <b>2</b>                                      | 5700                     | 3.75580                              |                                                                                        | _                                  | 4200   | 3.62325                                | 5100                               |
| 1900       | 8482                                              | 8500                     | 3.92942                              | $\mathbf{f}_6$                                                                         |                                    | 5600   | 3.74819                                | 7000                               |
| 01         | 12711                                             | 12700                    | 4.10380                              |                                                                                        |                                    | 7500   | 3.87506                                | 9200                               |
| 02         | 17231                                             | 17300                    | 4.23805                              |                                                                                        |                                    | 9600   | 3.98227                                | 12500                              |
| 03         | 22343                                             | 22400                    | 4.35025                              |                                                                                        |                                    | 12300  | 4.08990                                | 16000                              |
| 04         | 26506                                             | 28500                    | 4.45484                              | <sup>t</sup> 6                                                                         | •                                  | 15400  | 4.18752                                | 20300                              |
| 05         | 35 <b>2</b> 47                                    | 35300                    | 4.54778                              | $\mathbf{r}_7$                                                                         |                                    | 18800  | 4.27416                                | 25400                              |
| 06         | 46463                                             | 42000                    | 4.62325.                             | $\mathbf{p}_7$                                                                         |                                    | 23000  | 4.36173                                | 31300                              |
| 1907       | 48783                                             | 49000                    | , 4.69020                            | $\mathbf{f}_7$                                                                         |                                    | 28500  | 4.45484                                | 37000                              |

Table R, Part a (concluded) Portland Cement Production in the United States

| 1          | 2a or 4a                                         | 12a                         | 12b     | 5                                           | 13                                 | 20a                               | 20Ъ                         | 24       |
|------------|--------------------------------------------------|-----------------------------|---------|---------------------------------------------|------------------------------------|-----------------------------------|-----------------------------|----------|
| Year       | Portland Cement<br>Production<br>1000's barrels) | thousands)  Verrels)  BT  B | log     | Phase<br>Point                              | Phase<br>Point<br>(major<br>cycle) | thousands das berrels do sperrels | Log of<br>Second<br>Approx. | SL M     |
| 1908       | 51073                                            | 56500                       | 4.75205 | t <sub>7</sub>                              |                                    | 33800                             | 4.52892                     | 45000    |
| 09         | 64991                                            | 65000                       | 4.81291 | rg                                          | $\mathtt{p}_1$                     | 39700                             | 4.59879                     | 53000    |
| 1910       | 76550                                            | 72500                       | 4.86034 | <b>p</b> 8                                  |                                    | 46500                             | 4.66745                     | 61000    |
| 11         | 78529                                            | 80000                       | 4.90309 | <b>f</b> 8                                  |                                    | 52500                             | 4.72016                     | 69000    |
| 12         | 82438                                            | 85000                       | 4.92942 | f<br>t8<br>r9                               |                                    | 59000                             | 4.77085                     | 77500    |
| 13         | 92097                                            | 88000                       | 4.94448 | <b>p</b> 9                                  |                                    | 66500                             | 4.82282                     | 85500    |
| 14         | 88230                                            | 90000                       | 4.95424 | <b>f</b> 9                                  | f <sub>2</sub>                     | 74000                             | 4.86923                     | 93500    |
| 15         | 85915                                            | 90000 .                     | 4.95424 | t <sub>9</sub>                              |                                    | 81000                             | 4.90848                     | 101000   |
| 16         | 91521                                            | 88500                       | 4.49694 | <b>r</b> 10                                 |                                    | 88000                             | 4.94448                     | 108000   |
| 17         | 92814                                            | 84500                       | 4.92686 | <b>p</b> 10                                 |                                    | 95000                             | 4.97772                     | 114000   |
| 18         | 71082                                            | 82000                       | 4.91381 | f.,                                         |                                    | 102000                            | 5.00860                     | 119000   |
| 19         | 80778                                            | 85500                       | 4.93197 | r <sub>10</sub><br>r <sub>11</sub>          | t <sub>2</sub>                     | 107000                            | 5.02938                     | 124000   |
| 1920       | 100023                                           | 93000                       | 4.96848 | $\mathbf{p}_{11}$                           |                                    | 112000                            | 5.04922                     | 127000   |
| 21         | 98842                                            | 105000                      | 5.02119 | $\mathbf{r}_{11}$                           |                                    | 117000                            | 5.06819                     | 130000   |
| 22         | 114790                                           | 121000                      | 5.08278 | t <sub>11</sub>                             |                                    | 122000                            | 5.08636                     | 132000   |
| 23         | 137460                                           | 137000                      | 5.13672 | <b>r</b> 12                                 | $\mathbf{r}_{2}$                   | 125000                            | 5.09691                     | 133000   |
| 24         | 150777                                           | 151000                      | 5.17898 |                                             |                                    | 127000                            | 5.10380                     | 133000   |
| <b>2</b> 5 | 163388                                           | 161000                      | 5.20683 | $\mathbf{f}_{12}^{12}$                      |                                    | 128000                            | 5.10721                     | 133000   |
| <b>2</b> 6 | 166635                                           | 170000                      | 5.23045 | t <sub>12</sub>                             |                                    | 128000                            | 5.10721                     | 132000   |
| 27         | 175330                                           | 175000                      | 5.24304 |                                             | •                                  | 128000                            | 5.10721                     | 131000   |
| 28         | 178509                                           | 178000                      | 5.25042 | .°13                                        | $p_2$                              | 127000                            | 5.10380                     | 130000   |
| 29         | 127856                                           | 173000                      | 5.23805 |                                             |                                    | 125000                            | 5.09691                     | 129000   |
| 1930       | 162989                                           | 156000                      | 5.19312 | p <sub>13</sub>                             |                                    | 124000                            | 5.09342                     | 127000   |
| 31         | 126671                                           | 127000                      | 5.10380 | f <sub>13</sub>                             | $\mathbf{f}_3$                     | 121000                            | 5.08278                     | (124000) |
| 32         | 77198                                            | 82000                       | 4.91381 |                                             |                                    | 117000                            | 5.06819                     | (121000) |
| 33         | 63984                                            | 70000                       | 4.84510 | $^{\mathrm{t}}_{\mathrm{14}}^{\mathrm{13}}$ | <sup>t</sup> 3                     | 114000                            | 5.05690                     | (118000) |
| 34         | 78419                                            | 73000                       | 4.86332 | $\mathbf{p}_{1}$                            |                                    | 111000                            | 5.04532                     | (115000) |
| 35         | 77748                                            | 86000                       | 4.93450 | 1 7 1                                       |                                    | 108000                            | 5.03342                     | (112000) |
| 36         | 114469                                           | 99000                       | 4.99564 | P <sub>15</sub>                             |                                    | 104000                            | 5.01703                     | (109000) |
| 37         | 118075                                           | (10700)                     | 5.02938 |                                             | <b>r</b> 3                         | 101000                            | 5.00432                     | (105000) |
| 38         | 107178                                           | (116000)                    |         | t <sub>15</sub>                             |                                    |                                   |                             | (102000) |
| 1939       | 124698                                           | (122000)                    |         | <b>r</b> 16                                 |                                    |                                   |                             | (99000)  |

### Table R. PORTLAND CEMENT PRODUCTION

Part b part of the calculations for the second stage of smoothing, including correction for curvature.

| 16.<br>Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1902                            | 1906-07                           | 1910-11                         | 1918-19                          | 1923                            | 1926                       | 1930                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|---------------------------------|----------------------------------|---------------------------------|----------------------------|----------------------------|
| 실 M JE Lani¶ (aK eld.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | вТ о                            | <b>(£</b>                         |                                 |                                  |                                 |                            |                            |
| Adjusted Mouluge Cyclical of Mouluge Cyclical of Gandon Gandon (glerraga s'0001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12587                           | 34601                             | 65848                           | 120870                           | 132610                          | 132470                     | 127880                     |
| 23a<br>Adjusted<br>mca<br>of Logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06660.4                         | 4.53908                           | 4.81854                         | 5.08233                          | 5.12256                         | 5.12213                    | 5.10680                    |
| Difference talence for Logs of Lamu 19 b column 19 b column 21 b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .11662                          | .13256                            | .12703                          | 74290.                           | .03270                          | .01915                     | .01592                     |
| 21b<br>mca of<br>Logs of<br>Second<br>Approx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.86666                         | 4.27396                           | 4.56448                         | 4.95739                          | 5.05716                         | 5.08383                    | 5.07496                    |
| LatoT gnivoM  Saol To  Dnosed To  noltamixorqqA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96.66640                        | 102.57494                         | 109.54756                       | 99.14787                         | 85.97168                        | 76.25747                   | 76.12446                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                   |                                 |                                  |                                 |                            |                            |
| g nottemtrorqqA bnose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                                   |                                 |                                  |                                 |                            |                            |
| M LE of nottemixorq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                                   | ਸ <sub>ਰ</sub> ) ਤ              | <b>⊖⊺વ</b> %                     | T 01)                           |                            |                            |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                   | 19149 (BR)                      | 104680<br>sple                   | 122990<br>of                    | 126760                     | 123280                     |
| One of the contract of the con | (đ <b>y</b> 1                   | риозе                             |                                 |                                  |                                 | 5.10298 126760             | 5.09088 123280             |
| Mer of the state o | 9622<br>A A 1                   | 25499<br>9econd                   | 64164                           | 104680                           | 122990                          | 7                          | -                          |
| Leading Cyclical 198  Moving Cyclical 199  Moving Cyclical 199  Isolate Noving Cyclical 199  Moving Cyclical 199  Moving Cyclical 199  Isolate application Cyclication Cyclica | 3.98328 9622 4                  | 4.40652 25499 E                   | 4.69151 49149                   | 5.01986 104680                   | 5.08986 122990                  | 5.10298 1                  | 5.09088 1                  |
| Leading Cyclical 198  Moving Cyclical 199  Moving Cyclical 199  Isolate Noving Cyclical 199  Moving Cyclical 199  Moving Cyclical 199  Isolate application Cyclication Cyclica | 99.58205 3.98328 9622 &         | 105.75658 4.40652 25499 G         | 112.59627 4.69151 49149         | 100.39720 5.01986 104680         | 86.52769 5.08986 122990         | 76.54474 5.10298 1         | 76.36316 5.09088 1         |
| Leading Cyclical 198  Moving Cyclical 199  Moving Cyclical 199  Isolate Noving Cyclical 199  Moving Cyclical 199  Moving Cyclical 199  Isolate application Cyclication Cyclica | 25 99.58205 3.98328 9622 &      | 24 105.75658 4.40652 25499 6<br>6 | 24 112.59627 4.69151 49149      | 20 100.39720 5.01986 104680      | 17 86.52769 5.08986 122990      | 15 76.54474 5.10298 1      | 15 76.36316 5.09088 1      |
| Mer of the state o | 1914 25 99.58205 3.98328 9622 A | 1918 24 105.75658 4.40652 25499 6 | 1922 24 112.59627 4.69151 49149 | 1928 20 100.39720 5.01986 104680 | 1931 17 86.52769 5.08986 122990 | 1933 15 76.54474 5.10298 1 | 1937 15 76.36316 5.09088 1 |



PORTLAND CEMENT PRODUCTION IN THE UNITED STATES.

CYCLES BASED ON THE RECORD 1880 TO 1939. CHART 29.



Legend: The short straight lines connect points which show the short business cycle, the ratio of the annual production to SL B.

The curve shows the major cycle, the ratio of SL B

CHART 30.

PORTLAND CEMENT PRODUCTION IN THE UNITED STATES, 1880 TO 1924. WITH TRENDS AND CYCLES FROM KUZNETS.



Table S. PORTLAND CEMENT PRODUCTION IN THE UNITED STATES

Calculation of standard measures of the two orders of cycles.

Based on the record 1880 to 1939. Three pages.

| 1<br>Year                                            | 88888888888888888888888888888888888888                                                                           |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 32<br>Deviation<br>Squared                           | 784<br>144<br>1296<br>1600<br>1521<br>1156<br>1024                                                               |
| 31 Percentage Deviation                              | The major cycle 28 - 28 - 28 - 29 - 112 + 40 + 40 + 439 + 439 + 434                                              |
| 30 Ratio SL B to SL M                                | 7.5<br>9917<br>13.3<br>13.3<br>13.3<br>13.3<br>13.3<br>13.3<br>13.3<br>13                                        |
| 27<br>Deviation<br>Squared                           | 36 cycle 324 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                |
| 26<br>Percentage<br>Devlation                        | The short business  - 0 - 17 - 122 - 128 - 188 - 4 4 - 4 4 - 7 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 |
| 25 Ratio Actual to ML %                              | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                               |
| Smoothing Line M                                     | 1450<br>2750<br>3750<br>3750<br>7000<br>12300<br>12300<br>25400<br>31300                                         |
| 12a<br>Smoothing<br>Line B<br>(thousends of barrels) | ######################################                                                                           |
| 2s or 4s Production of Portland Cement               | ######################################                                                                           |
| 1<br>Year                                            | 0,000,000,000,000,000,000,000,000,000,                                                                           |

(Table S is concluded on the next page.)

Table S (concluded) Portland Cement Production

Standard measures of the two orders of cycles.

Time Lengths of the Phases of the Cycles 28 of actual about 3L B (the short business cycle)

| Trough              | ı  | cycle)         |
|---------------------|----|----------------|
| at Peak and         |    | business       |
| Ions at             |    | e short        |
| rcentage Deviations | 53 | SL B (th       |
| centage             |    | Ħ              |
| Per                 |    | of actual from |
|                     |    | g              |
|                     |    |                |

|                  | 1      | At Trough | Deviation             | 12   | 9           | m       | ωŧ                  | 70       | m          | برة         | T7  | ه م                 | 40   | 10   |                   | χ<br>α                            | at trough                                |    |                     | <b>\$</b> 02 |         | 1 8            | 8t trough                               |
|------------------|--------|-----------|-----------------------|------|-------------|---------|---------------------|----------|------------|-------------|-----|---------------------|------|------|-------------------|-----------------------------------|------------------------------------------|----|---------------------|--------------|---------|----------------|-----------------------------------------|
|                  | •      |           | Year                  | 98   | 8           | 8       | ور<br><del>در</del> | 60<br>80 | 11-12      | نا د<br>ارن | 9 5 | 77-57<br>76         | 38   | 35   |                   | 1                                 | at peak                                  |    | (the major cycle)   | したったった       | 61-0161 |                |                                         |
|                  |        | At Peak   | Deviation             | 13%  | 196         | ۔ ہ     | <b>⇒</b> C          | ,11      | 9          | سڌ          | Q°  | 0 -                 | 1.7  | ~    | 9                 |                                   |                                          | 34 | SL B from SL M      | ) C 4        | 31,7    | 96             | 39 %<br>at peak                         |
|                  | •      |           | Year                  | 1885 | 87          | 16      | ₹ <b>.</b> 0        | 1906     | 10         | 133<br>51   | ~ C | ر<br>د د            | 300  | #M   | Average devietion | for the short business oweless no |                                          |    | <b>å</b> C          | 000          | 288     |                | Average deviation<br>in the major cycle |
|                  | tr     |           | ઌ૽ૡ૽                  | نىن  | .≂†.        | 1.0     | ထ်ထ                 | . o.     | œ.         | 9.5         | 0.0 | א ני                | 'nů  |      | .83 %.            |                                   | 8 yrs.                                   |    | _                   | ٠ <u>٠</u>   | 3.7     | 3.90 yrs.      |                                         |
| Years            | ft     |           | 1.0                   | 7.1  | ٠.          | <b></b> | w.<br>rv.c          | ۲.       | ٦.٢        | က်ထ         | ٥ų  | ۰ <u>۰</u>          | i.   |      | 1.01 yr.          |                                   | siness cycle 3.8                         |    | M (the major cycle) |              |         | 3.77 yrs.      | ycle 19.9 yrs.                          |
| Lengths in Years | pt     |           | ٠.<br>٥٠٠             | 1.5  | 1.2         | 9.      | w.<br>rv.c          | ÷.       | œ,         | ٠<br>•      | • = | ÷.                  | iń   | 1:1  | 1.03 %.           |                                   | sypical short bu                         | 33 | of SL B about SL M  | i.           | 00.     | 4.25 yrs.      | typical major c                         |
|                  | E.     | •         | æ. r.                 |      | 9.          | 9.      | 0.0                 | 7.5      | 9.         | 1.2         |     | ٠, <i>o</i><br>ن' د | نن   | ٥.   | .95 yr.           |                                   | Total length of typical short business c |    |                     | i c          | 5.3     | 8.00 yrs.      | Total length of typical major cycle 19  |
| Cycle            | Number |           | <b>-</b> 1 ⟨ <b>0</b> | · M  | <del></del> | ī       | 9                   |          | <u>ه</u> ٔ | 01.         | 7 C | 13                  | はなって | , 15 | Average Length    |                                   | 1                                        |    |                     |              |         | Average Length |                                         |

### Section 7. ERIE CANAL FREIGHT MOVED.

### A Comparison of Kuznets' Trend Line with Smoothing Line M

| Period<br>Reported                                                                      | Center Date<br>of Period                                                                                            | Trend by Kuznets' first equation (in thousands of short              | SL M                                                                                         |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1838 - 40<br>1841 - 45<br>1846 - 50<br>1851 - 55<br>1856 - 60<br>1861 - 65<br>1866 - 70 | Dec. 31, 1838<br>June 30, 1843<br>June 30, 1848<br>June 30, 1853<br>June 30, 1858<br>June 30, 1863<br>June 30, 1868 | 764<br>1061<br>1421<br>1828<br>2250<br>2651<br>3000                  | (1950)<br>(2240)<br>(2570)<br>(3020)                                                         |
| Year                                                                                    |                                                                                                                     |                                                                      |                                                                                              |
| 1873<br>1878<br>1880                                                                    |                                                                                                                     | 3284<br>3493<br>3570                                                 | (3300)<br>3570<br>3630                                                                       |
|                                                                                         |                                                                                                                     | Trend<br>by Kuznets'<br>second equation                              |                                                                                              |
| 1881<br>1885<br>1890<br>1895<br>1900<br>1905<br>1910<br>1915<br>1920<br>1925<br>1930    |                                                                                                                     | 3542<br>3411<br>3200<br>2934<br>2630<br>2270<br>1900<br>1537<br>1203 | 3640<br>3570<br>3180<br>2770<br>2400<br>2000<br>1650<br>1400<br>1450<br>1760<br>2300<br>3150 |

Kuznets' equation for the period 1837 to 1880

$$y = \frac{4000}{1+10^{(1.10506-0.73596 \times)}}$$

x in units of 20 years; origin at 1825.

Kuznets' equation for the period 1881 to 1922

x in units of 20 years; origin at 1870.

IN the case of the freight carried by the Erie Canal, Kuznets fitted separate trend lines to periods that seemed to be marked by different directions of change in the value of the variable. This device of breaking a series into parts and fitting trend lines separately to those parts, does a certain violence to the idea of continuity of movement in a trend. The operator, in following such a procedure, seems to have admitted that there is not homogeneity of the underlying forces throughout the period. But when he breaks the period into two parts, and fits a trend to each part by a total process, he assumes homogeneity within each of those two parts.

KUZNETS' first equation, fitted to the period ending in 1880, gives a trend line which depicts growth. The second equation, fitted to the data beginning in 1881, gives a trend line which depicts a decline in the value of the variable. It will be noted that Kuznets' second period ends with 1922. He omitted the data for 1923, 1924 and 1925. Had these been plotted, they would not have gone well with his second trend line. Should he now undertake to fit trend lines to this series, based upon data running to 1940 and later, he might be tempted to break the series into three parts instead of two. His first point of division, 1880-81, need not be challenged, but his second point of division would now probably be set at 1918.

THE process of fitting the smoothing lines, it will be seen, was really begun about 1870. Prior to that time, annual data were not available, so a simple free-hand technique was employed without any kind of objective check. Yet even that early portion of SL M checks rather well with Kuznets' fitted trend.

THROUGH the succeeding 12 years of Kuznets' first equation, the agreement is quite close, with SL M slightly higher. This little difference is probably because SL M moves to a peak, whereas Kuznets' curve flattens off to a plateau.

IN the period of Kuznets' second equation, 1881 to 1922, SL M is higher at the initial dates for the reason just noted, namely that SL M moves from a peak there, but by 1890 the two lines intersect, and from that date to 1915, SL M runs below Kuznets' line. A reason for the 1915 intersection is that SL M has already begun to feel the increase in the amount of traffic on the Canal after 1917. SL M rises to a value in 1920 which departs quite markedly from the continuing decline in Kuznets' trend line.

NO formal step was taken, in determining the location of SL M, to correct the line for curvature. Possibly such correction would have given slightly higher values from 1880 to 1890, and would thereby have increased the discrepancy from Kuznets' lines. Possibly also such correction would have given lower values of SL M from 1910 to 1925, which would have tended to reduce the discrepancy from Kuznets' line. But the changes so effected would probably not have been great.

IN the case of this series, Kuznets does not make his usual analysis into major cycle and short business cycle.

### ERIE CANAL FREIGHT MOVED

Values of the standard deviation, by the several calculations:

|                                            | Kuznets' figures<br>not available | Figures secured of smoothing    |                                 |
|--------------------------------------------|-----------------------------------|---------------------------------|---------------------------------|
|                                            |                                   | based on period<br>1870 to 1922 | based on period<br>1870 to 1938 |
| The short business cycle                   |                                   | 6.4%                            | 6.4%                            |
| Years included (omit terminal half-cycles) |                                   | 1872 to 1920                    | 1872 to 1936                    |
| The major cycle                            |                                   | 10.8%                           | 17.5%                           |
| Years included (omit terminal half-cycles) |                                   | 1878 to 1912                    | 1878 to 1925                    |

# Table T. ERIE CANAL FREIGHT MOVED, 1851 TO 1939

Two stages of smoothing.

Source: Statistical Abstract for the United States.

Part a (four pages)

| Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1837-40<br>1841-45<br>1846-50<br>1851-55<br>1856-60<br>1861-65<br>1866-70 | 17      | 72           | 73       | 1/4        | 22             | 92             | #       | 78                      | 62                           | 1880     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------|--------------|----------|------------|----------------|----------------|---------|-------------------------|------------------------------|----------|
| 24<br>SL M<br>(thousands<br>short tons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3100)                                                                    | (3150)  | (3220)       | (3300)   | (3350)     | (3450)         | (3480)         | (3530)  | 3570                    | 3610                         | 3630     |
| 13<br>Frase<br>Point<br>(major<br>cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |         |              | 솹        |            |                | <b>†</b> 5†    |         | ដ                       |                              | ឥ        |
| Smoothing Line B as logarithm there is a logarithm there is a logarithm there is a logarithm than the same and the same as a logarithm than the same as a logarit | 3.50786                                                                   | 3.54033 | 3.55630      | .3.53403 | 3.48430    | 3.45179        | 3.44871        | 3.48714 | 3.55630                 | 3.60531                      | 3.61278  |
| S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3220)                                                                    | (3470)  | 3600         | 3420     | 3050       | 2830           | 2810           | 3070    | 3600                    | 4030                         | 4100     |
| Moving Cyclical Geometric Mean December Tool Tool Tool Tool Tool Tool Tool Too                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           | i<br>i  | 3591<br>3591 | 3413     | 3059       | 3004           | 2983           |         | 3227<br>3553            | 3792<br>3985                 | 3987     |
| 11b<br>Moving<br>Cyclical<br>Average<br>of Logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |         | 3.55516      | 3.53314  | 3.48560    | 3.47772        | 3.47460        |         | 3.50683                 | 3.57887                      | 3.60062  |
| 11a<br>Moving<br>Total<br>of Logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           | 0       | 10.66548     | 10.59942 | 17.42802   | 17.38862       | 13.89840       | -       | 10.65187                | 14.31548                     | 10.80185 |
| 10<br>Length<br>in<br>Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           | Ó       | νm           | m        | ın.        | 4ΓΛ            | <b>#</b>       |         | <b>≠</b> ₩-             | <b>≠</b> €                   | m        |
| 9<br>Fes<br>E Cycle<br>End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | Ç       | 1873         | 1874     | 1876       | 1877           | 1878           |         | 1879                    | 2889<br>2889<br>2890<br>2890 | 1881     |
| 7<br>Yearly Figures<br>Included in the Cycle<br>Begin Middle End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           | ;<br>;  | 1872         | 1873     | 1874       | 1875           | 1876           |         | 1877-78<br>1878<br>1878 | 1878-79<br>1879              | 1880     |
| 出路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | į       | 1871         | 1872     | 1872       | 1873           | 1875           | •       | 1876                    | 1877<br>1878                 | 1879     |
| 6<br>se Cycle<br>ort<br>le)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |         | יל<br>ממ     | f1,2     | †<br>1,    | r<br>ww<br>w   | f. 5           |         | toru<br>La              | R.C.                         | , tv     |
| p 5<br>Phase<br>Point<br>(short<br>cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           | ጚጚ      | 44           | ra ra    | ,          | 1 <sub>2</sub> | ۍ <sub>۲</sub> | ት<br>ተ  | ي<br>ع                  | יל נ                         | ដ្ឋិដី   |
| 2a or 4a 2b or 4b<br>Freight Moved<br>an logarithm<br>20<br>25<br>25<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yearly<br>averages<br>3.48897                                             | 3.55400 | 3.55182      | 3.55666  | 3.49094    | 3.44514        | 3.38346        | 3.51242 | 3.55739                 | 3.58206                      | 3.66361  |
| ebnaeuond<br>ar znot frons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 272<br>1557<br>1842<br>1842<br>3018<br>3018                               | 3581    | 3563         | 3603     | 3097       | 2787           | 2418           | 3254    | 3609                    | 3820                         | 609†     |
| I<br>Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1837-40<br>1841-45<br>1846-50<br>1856-60<br>1861-65<br>1866-70<br>1866-70 | 17      | 72           | 73       | <b>ħ</b> L | 75             | 92             | 77      | 78                      | 62                           | 1880     |

Table T (continued) Eric Canal Freight Moved.

|                | 01                         | 1900       | 99                                                                      | 98           | 97            | %            | 95       | ş.           | 93       | 92           | 91       | 1890       | 89       | 88          | 87         | <b>8</b> 6   | 85        | <b>8</b>      | 83               | 82          | 1881                | 1<br>Year                                                                   |
|----------------|----------------------------|------------|-------------------------------------------------------------------------|--------------|---------------|--------------|----------|--------------|----------|--------------|----------|------------|----------|-------------|------------|--------------|-----------|---------------|------------------|-------------|---------------------|-----------------------------------------------------------------------------|
|                | 2257                       | 2146       | 2419                                                                    | 2338         | 2585          | 2742         | 2356     | 3144         | 3236     | 2979         | 3098     | 3304       | 3674     | 3322        | 3841       | 3809         | 3208      | 3390          | 3587             | 3694        | 3599                | thousands 70 short tons to                                                  |
|                | 3.35353                    | 3.33163    | 3.38364                                                                 | 3.36884      | 3.41246       | 3.43807      | 3.37218  | 3.49748      | 3.51001  | 3.47407      | 3.49108  | 3.51904    | 3.56514  | 3.52140     | 3.58444    | 3.58081      | 3.50624   | 3.53020       | 3.55473          | 3.56750     | 3.55618             | 2b or 4b<br>; Moved<br>logarithm                                            |
|                | <b>7</b> 11<br><b>9</b> 11 | 013<br>013 | 010                                                                     | 64           | , 9           | <b>1</b> 9   | 8        | άğ           | <b>;</b> | 8            | 4        | f7         | 77.7     | ક્ષ         | <b>?</b> % | 8            | ૡ         | 5             | <del>ا</del> ل ا | ij.         | <b>t</b> Þ          | 5<br>Phase<br>Point<br>(short<br>cycle)                                     |
|                | f10,11<br>t10,11           | P10,1      | 01,63                                                                   | 01, 6d       | 01,61<br>6,83 | f8,9         | P8,9     | <b>r</b> 8,9 | t7,8     | <b>f</b> 7,8 | 7,7      | 6,7        | £6,7     | <b>%,</b> 7 | r6,7       | <b>5</b> ,66 | , J.      | ,0<br>F)      | <b>‡</b> ,5      | <b>1</b> ,5 | 2 <b>,</b> ₽₽       | 6 Cyclu                                                                     |
|                |                            |            | ,<br>1868<br>868<br>868<br>868<br>868<br>868<br>868<br>868<br>868<br>86 |              | 1896          |              | 1894     | 1893         | 1891     | 1890         | 1889     | 1000       | 888      | 1887        | 1886       | 1885         | 100.      | 1882          | 1881             | 1881        | 1880<br>1880        | Φ                                                                           |
| (Ta            | 1901                       | 1900       | 1899-00                                                                 | 1898         | 1897          |              | 1895     | 1894         | 1893     | 1892         | 1891     |            | 1889     | 1888        | 1887       | 1886         |           | 1884          | 1883             | 1882        | 1880-81<br>1881     | 7 8 9 Yearly Figures Included in the Cycle Begin Middle End                 |
| (Table T, ]    | 1902                       | 1901       | 1900                                                                    | 1899         | 1898          | 1897         | 1896     | 1895         | 1895     | 1894         | 1893     | 1800       | 1890     | 1889        | 1888       | 1888         | 1007      | 2885          | 1884             | 1883        | 1881<br>1882        | e Cycle                                                                     |
| part a, is     | ωn                         | သယ္ ၊      | wωr                                                                     | <b>0</b> ₽   | ω.            | ÷ω           | ω        | ω            | 5        | Уī           | Vī‡      | <u>.</u> . | ⊭ω       | ω           | w          | 1-1          | - 4       | 44            | #                | ω           | ωΝ                  | 10<br>Length<br>in<br>Years                                                 |
| continued      | 10.00862                   | 10.06880   | 10.08411                                                                | 13.60301     | 10.21937      | 10.22271     | 10.30773 | 10.37967     | 17.34482 | 17.49168     | 17.55934 | 1) Oliosa  | 10.60558 | 10.67198    | 10.68665   | 14.19289     | יון מסולס | 14.15867      | 14.20861         | 10.67841    | 7.21979<br>10.78829 | lla<br>Moving<br>Total<br>of Logs                                           |
| on next page.) | 3.33621                    | 3.35627    | 3.36127                                                                 | 3.40100      | 3.40646       | 3.40757      | 3.43591  | 3.45989      | 3.46896  | 3.49834      | 3.51187  | 3 51033    | 3.53519  | 3.55733     | 3.56222    | 3.54822      | 3 55010   | 3.53987       | 3.55215          | 3.55947     | 3.60989<br>3.59676  | 11b Moving Cyclical Average of Logs                                         |
| ٞ              | 2169                       | 2271       | 2298<br>2278                                                            | 2518<br>2378 | 2550          | 2556<br>2500 | 2728     | 2883         | 4462     | 3150         | 3250     | 3 (        | 3429     | 3609        | 3649       | 3534         | 3 F. F.   | 3466<br>80466 | 3566             | 3626        | ‡073<br>3951        | Moving Cyclical<br>Geometric Mean H<br>of Freight Moved of<br>(1000's tons) |
|                | 2200                       | 2250       | 2320                                                                    | 2400         | 2500          | 2600         | 2690     | 2820         | 2970     | 3080         | 3200     | 3300       | 3420     | 3530        | 3600       | 3550         | 3450      | 3430          | 3500             | 3600        | 3830                |                                                                             |
|                | 3.34242                    | 3.35218    | 3.36549                                                                 | 3.38021      | 3.39794       | 3.41497      | 3.42975  | 3.45025      | 3.47276  | 3.48855      | 3.50515  | 3.51851    | 3.53275  | 3.54407     | 3.54900    | 3.54777      | 3.54283   | 3.53908       | 3.54407          | 3.55630     | 3.58320             | 12a 12b Smoothing Line B thort thort short                                  |
|                |                            | U          | ŗ                                                                       |              |               |              |          | ú            | 50       |              |          |            | ₽        |             |            | . r          |           |               | 5*               | N           | •                   | 13<br>Phase<br>Point<br>(major<br>cycle)                                    |
|                | 2330                       | 2400       | 2480                                                                    | 2550         | 2620          | 2690         | 2770     | 2850         | 2940     | 3000         | 3100     | 3180       | 3270     | 3350        | 3440       | 3500         | 3570      | 3600          | 3620             | 3630        | 3640                | 24 SI M (thousends short tons)                                              |
|                | ದ                          | 1900       | 98                                                                      | %            | 97            | %            | 95       | <b>9</b>     | 93       | 8            | 91       | 1890       | 89       | 88          | 87         | 88           | 85        | <b>8</b>      | 83               | 82          | 1881                | Year                                                                        |

Table T. is concluded on the next page.

Table T (concluded) Erie Canal Freight Moved

| 38<br>1939                   | 37       | 36                  | 35       | 34         | 33                                      | 32       | 31             | 1930     | 29               | 28               | 27          | 26      | 25                                                                 | 24              | 23             | 22       | 1921           | 1920    | 19                 | Year                                                     |
|------------------------------|----------|---------------------|----------|------------|-----------------------------------------|----------|----------------|----------|------------------|------------------|-------------|---------|--------------------------------------------------------------------|-----------------|----------------|----------|----------------|---------|--------------------|----------------------------------------------------------|
| 3349<br>3644                 | 4174     | <b>\$220</b>        | 3898     | 3645       | 3574                                    | 3186     | 3278           | 3044     | 2422             | 2536             | 2048        | 1935    | 1945                                                               | 1692            | 1626           | 1485     | 994            | 891     | 842                | thousands 7 or tons                                      |
| 3.52491<br>3.56158           | 3.62055  | 3.62531             | 3.59084  | 3.56170    | 3.55316                                 | 3.50325  | 3.51561        | 3.48345  | 3.38418          | 3.40415          | 3.31133     | 3.28668 | 3.28892                                                            | 3.22840         | 3.21112        | 3.17173  | 2.99739        | 2.94988 | 2.92531            | preight Moved brought Moved logarithm                    |
| 2000<br>2000<br>2000<br>2000 | , ,      | 3                   | F23      | £22<br>£22 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 121      | <b>1</b> 21 22 | 13.      | 1 t 2<br>0 0 0 1 | 9 0 0 0<br>0 0 0 | , 19<br>(L, | ÷ 19    | 600<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | t <sub>18</sub> | 81.<br>1.10    | 801<br>1 | t17            | £17     | r17                | 5<br>Phase<br>Point<br>(short<br>cycle)                  |
|                              | r23,24   | t22,23              | P22,23   | F22,23     | t21,22                                  | P21,22   | r20,21         | f20,21   | P20,21           | t19,20           | f19,20      | F19,20  | t18,19                                                             | P18,19          | 17,18<br>18,19 | 17,18    | <b>P</b> 17,18 | r17,18  | t <sub>16,17</sub> | 6<br>Cycle                                               |
|                              | 1935     | 1934                | 1933     | 1933       | 1932                                    | 1931     | 1930           | 1929     | 1928             | 1927             | 1926        | 1925    | 1924                                                               | 1923            | 1922           | 1001     | 1919           | 1919    | 1918               | 7<br>Yes<br>Inclu<br>Begin                               |
|                              | 1937     | 1936                | 1935     | 1934       | 1933                                    | 1932     | 1930-31        | 1930     | 1929             | 1928             | 1927        | 1926    | 1925                                                               | 1921            | 1923           | 1000-00  | 1921           | 1920    | 1919               | 7 Yearly Figures Included in the Cycle Begin Middle End  |
|                              | 1938     | 1938                | 1936     | 1935       | 1934                                    | 1933     | 1932           | 1931     | 1930             |                  | 1928        | 1927    | 1926                                                               | 2965            | 1924           |          | 1922           | 1921    | 1921               | 9<br>Cycle -<br>End                                      |
|                              | #        | <b>∪</b> 1 <b>4</b> | - t-     | ω          | ωĸ                                      | ω        | w.             | ÷ω       | ωΝ               | აω               | ω.          | ≃ω      | ωn                                                                 | ω               | ωı             | ₽.       |                | ω       | +                  | 10<br>Length<br>in<br>Years                              |
|                              | 14.36161 | 17.92331            | 14.33101 | 10.70570   | 10.61811                                | 10.57202 | 10.50231       | 10.38324 | 10.27178         | 10.09966         | 10.00216    | 9.88693 | 9.80400                                                            | 9.72844         | 9.61125        | וא המאהו | 12.04431       | 8.87258 | 11.69671           | lla<br>Moving<br>Total<br>of<br>Logs                     |
|                              | 3.59040  | 3.58468             | 3.58275  | 3.56857    | 3.53937                                 |          | 3.50077        |          | 3.42393          |                  | 3.33405     | 3.29564 | 3.26800                                                            | 3.24281         | 3.20375        |          | 3.01108        | 2.95753 | 2.92418            | Moving<br>Cyclical<br>Average<br>of Logs                 |
|                              | 3894     | 3843                | 3826     | 3703       | 3462                                    | 3342     | 3168           | 2891     | 2654             | 2326<br>2178     | 2158        | 1975    | 1854                                                               | 1749            | 1599           | 0647     | 1026           | 907     | 840                | Moving Cyclical<br>Geom. Mean Freight H<br>(1000's tons) |
| (3620)<br>(3300)             | (3850)   | 3940                | 3880     | 3700       | 3520                                    | 3310     | 3110           | 2900     | 2620             | 2350             | 2160        | 1980    | 1850                                                               | 1740            | 1600           | 1380     | 1130           | 910     | 780                | thousands tons tons                                      |
| 3.55871<br>3.51851           | 3.58546  | 3.59550             | 3.58883  | 3.56820    | 3.54654                                 | 3.51983  | 3.49276        | 3.46240  | 3.41830          | 3.37107          | 3.33445     | 3.29667 | 3.26717                                                            | 3.24055         | 3.20412        | 3.13988  | 3.05308        | 2.95904 | 2.89210            | 128 12b Smoothing Line B togarithm                       |
|                              |          |                     |          |            |                                         |          |                |          |                  |                  |             |         |                                                                    |                 |                |          |                |         |                    | 13 Phase Point (major cycle)                             |
| (3800)<br>(4050)             | (3560)   | (3350)              | (3150)   | (2960)     | (2780)                                  | (2600)   | (2450)         | (2300)   | (2180)           | (2060)           | (1960)      | (1850)  | 1760                                                               | 1680            | 1620           | 1530     | 1490           | 1450    | 1420               | tons<br>1000's                                           |
| 38<br>1939                   | 37       | 36                  | 35       | 34         | 33                                      | 32       | 31             | 1930     | 29               | 28               | 27          | 26      | 25                                                                 | 24              | 23             | 22       | 21             | 1920    | 19                 | 1.<br>Year                                               |

## Table T. ERIE CANAL FREIGHT MOVED

Part b part of the calculation for the second stage of smoothing.

| lψ<br>Cycle      | 15<br>Yearly<br>Included<br>Begin | 16<br>Figure<br>In the<br>Idale | 17<br>53<br>Cycle<br>Cycle<br>End | 18<br>Length<br>1n<br>Years | 19a<br>Moving<br>Total<br>of Logs<br>of SL B | 19b<br>Moving<br>Cyclical<br>Average<br>of Logs | oving Cyclical Cometric Mean (cometric Mean (cometric)) |
|------------------|-----------------------------------|---------------------------------|-----------------------------------|-----------------------------|----------------------------------------------|-------------------------------------------------|---------------------------------------------------------|
| f <sub>1,2</sub> | 1874                              | 1877                            | 1881                              | ω                           | 28.22953                                     | 3.52869                                         | 3378                                                    |
| t <sub>1,2</sub> | 1876                              | 1880                            | 1883                              | ∞                           | 28.39381                                     | 3.54923                                         | 3524                                                    |
| r1,2             | 1878                              | 1882                            | 1885                              | ω                           | 28.53987                                     | 3.56748                                         | 3694                                                    |
| P1,2             | 1880                              | 1884-85                         | 1889                              | 10                          | 35.55185                                     | 3.55519                                         | 3591                                                    |
| f 2,3            | 1882                              | 1887-88                         | 1893                              | 12                          | 42.34084                                     | 3.52840                                         | 3376                                                    |
| t2,3             | 1884                              | 1891-92                         | 1899                              | 16                          | 55.67908                                     | 3.47994                                         | 3020                                                    |
| 12.3             | 1886                              | 1894                            | 1902                              | 17                          | 58.62823                                     | 3.45171                                         | 2830                                                    |
| P2,3             | 1889                              | 1899                            | 1909                              | 21                          | 71.33844                                     | 3.39707                                         | 2495                                                    |
| f3,4             | 1894                              | 1903                            | 1913                              | 20                          | 66.92105                                     | 3.34605                                         | 2218                                                    |
| t3,4             | 1900                              | 1909                            | 1918                              | 19                          | 61.24554                                     | 3.22345                                         | 1673                                                    |
| r3,4             | 1903                              | 1913-14                         | 1924                              | 22                          | 69.79473                                     | 3.17249                                         | 1488                                                    |
| ₽3,¥             | 1910                              | 1921                            | 1933                              | ₹2                          | 77.15287                                     | 3.21554                                         | 1643                                                    |
| f. 4.5           | 1914                              | 1925-26                         | 1937                              | 45                          | 78.39053                                     | 3.26627                                         | 1846                                                    |









### Table U. ERIE CANAL FREIGHT MOVED.

Calculation of standard measures of the two orders of cycles.

Based on the Record 1837 to 1939. Three pages.

| reight Smeething Smoothing Ratic Percentage Deviation Ratio |
|-------------------------------------------------------------|
| 2 <sup>th</sup> 25 26 27                                    |
|                                                             |

| 1877 777 777 777 777 777 777 777 777 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>Year                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2a or 4s<br>Freight<br>Moved                         |
| 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128 Smcothing Sn Line B Li (thousands of short tons) |
| 2480<br>2480<br>2550<br>2650<br>2650<br>2650<br>2650<br>2650<br>2650<br>265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 Smoothing Line M tons)                            |
| 821882687488886646666688866848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25<br>matic<br>Actual<br>to SL B                     |
| 1+1++1++1 +1++1+1 +11++1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26<br>Percentage<br>Deviation                        |
| NH NHONO OF WEET TO WELL TO WELL TO WELL TO WELL TO WEET TO WE | 27<br>Deviation<br>Squared                           |
| \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30<br>Ratio<br>SL B<br>to SL M                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31 Percentage Deviation                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32 Deviation Squared                                 |
| 188 888 888 888 888 888 888 888 888 888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Year                                                 |

d O

Time Lengths of the Phases of the Cycles

28
of actual about SL B (the short business cycle)

| Total                                        | 10<br>65<br>66<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11     | Cycle<br>Number |
|----------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|
| length of typ                                |                                                                                                  | rp              |
| pical short b                                |                                                                                                  | pr<br>pengths   |
| Total length of typical short business cycle |                                                                                                  | in Years        |
| 3.0 yrs.                                     | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | tr              |
|                                              |                                                                                                  |                 |

1 2 3 Average length

Total length of typical major cycle 15.6 yrs.

Average deviation 14.3% in the major cycle at peak

5.0% at trough 1880 1888 1909-10

of SL B from SL M (the major cycle)
13 1884 4
5 1900 6

of SL B about SL M (the major cycle)
1.8 1.9 2.0 2.3
3.3 4.5 6.0 3.3
6.8 3.8 4.7 6.3
7.0 yrs. 3.4 yrs. 4.2 yrs. 4.0 yrs.

Percentage Deviations at Peaks and Troughs

of actual from SL B (the short business cycle)

| Average deviation<br>in the short<br>business cycle | Year<br>1873<br>777<br>80<br>82<br>87<br>87<br>89<br>94<br>99<br>1901<br>03<br>07<br>11<br>13<br>15<br>15<br>28<br>28<br>193 |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| at peak                                             | Peak Deviation 2 12 12 13 10 10 10 10 10 10 10 10 10 10 10 10 10                                                             |
| 9                                                   | At Tro Year 1876 79 79 89 89 99 99 1900 00 1900 1900 1900 190                                                                |
| 6.0%<br>at trough                                   | At Trough Deviation 14 5 5 14 10 10 10 10 10 10 10 10 10 10 10 10 10                                                         |

### SUMMARY OF THE ANALYSES OF THE SEVEN SERIES BY THE TWO METHODS.

KUZNETS' study was not merely an analysis of a group of time series, but a testing of his thesis that the logistic type of curve is almost universally applicable to production and other types of quantity series (not to price series).

THE verdict of the method of smoothing by stages, after testing his thesis, is clearly favorable. Here, with no a priori bias as to the "proper" shape for the trends, a close agreement is found with Kuznets. The few points of difference have been pointed out in the course of Chapter V, and need not be restated.

THERE is no reason that the statistician should not have both arrows in his quiver. Every time series may be analyzed first by the method of smoothing by stages, which will give the unvarnished elements of the series. Then the trend, or the major cycle, the short business cycle, or the seasonal movement may be examined separately, to test any hypothesis, i.e., to see how closely this element of the whole complex movement conforms to a preconceived shape or pattern.