

Complexity of Algorithms and Asymptotic Notations (20CP209T)

Presented by:

Dr. Shivangi K. Surati

Assistant Professor,
Department of Computer Science and Engineering,
School of Technology,
Pandit Deendayal Energy University

Outline

- Complexity of an Algorithm
- □ Order of growth (O, Ω , θ notations)
- Rules of growth functions
- Properties of growth functions
- Little Oh notation
- Little Omega notation
- Stable sort
- In-place algorithm
- Linear Search- analysis
- Binary Search algorithm and analysis

Complexity of an Algorithm

- A measure of the amount of time and/or space required by an algorithm for an input of a given size (n)
- Measures number of times "the principle activity" of that algorithm is performed

Best Case

The minimum number of steps taken on any instance of size 'n'

Average Case

- The average number of steps taken on any instance of size 'n'
- the most useful measure

Worst Case

The maximum number of steps taken on any instance of size 'n'

They are functions: Time vs. Size!

Complexity of an Algorithm- Example

Bubble/Insertion Sort

- Best case:
 - When input is already sorted
- Average case:
 - When input is randomly distributed
- Worst case:
 - When input is reverse sorted

Complexity of an Algorithm...

- Best, worst, and average are difficult to deal
 - Precisely when the details are very complicated

Prepared by: Dr. Shivangi Surati

Asymptotic Complexity

- Running time of an algorithm as a function of input size n
- Describe behavior of the function in limit
- The rate at which the function grows- asymptotic growth
- Written using asymptotic notation
 - Notations describe different rate-of-growth relations between the defining function and the defined set of functions

Story of Rice and Chessboard

Image source:

https://www.heartoftheart.org/?p=1230

The bottom view shows in detail the lower-left portion of the top view.

Image source: https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/GrowthRate.html

Big-Oh notation (O-notation)

- is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity- upper bound
- f(n) = O(g(n)) means there are positive constants c>0 and $n_0 \ge 1$, such that
 - $0 \le f(n) \le cg(n)$, for all $n \ge n_0$
- The values of c and n₀ must be fixed for the function f and must not depend on n.
- "f of n is big oh of g of n"

Big-Oh notation (O-notation)

The restriction that the equation only holds for $n \ge n_0$ models the fact that we don't care about the behavior of the functions on small input values.

Image source: https://www.devopsschool.com/blog/complete-tutorial-on-big-o-big-oh-notation/ Prepared by: Dr. Shivangi Surati To show that a big-O relationship holds, we need to produce suitable values for c and n_0 . For any particular big-O relationship, there are a wide range of possible choices. First, how you pick the multiplier c affects where the functions will cross each other and, therefore, what your lower bound n_0 can be. Second, there is no need to minimize c and n_0 . Since you are just demonstrating existence of suitable c and n_0 , it's entirely appropriate to use overkill values.

To satisfy our formal definition, we also need to make sure that both functions produce non-negative values for all inputs $\geq n_0$. If this isn't already the case, increase n_0 .

Prepared by: Dr. Shivangi Surati

Big-Oh notation (O-notation)- Example

$$3n^2 - 100n + 6 = O(n^2)$$

n	3n ²	3n ² – 100n + 6
1	3	-91
2	12	-182
5	75	-419
10	300	-694
100	30000	20006
1000	3000000	2900006

Prepared by: Dr. Shivangi Surati

- Big-Oh notation (O-notation)- Example
 - $_{\text{o}}$ 3n² 100n + 6 = O(n³) True or False? Justify
 - $_{\circ}$ 3n² 100n + 6 = O(n) True or False? Justify

Question

- Find big Oh of following functions. Justify with appropriate values of c, n_0 and g(n).
- (1) f(n) = 5047
- (2) f(n) = 1,00,543

Pitfalls of Big O notation

- Not useful for small input sizes
 - Because the constants and smaller terms will matter.
 - Omission of the constants can be misleading
 - For example, 2N log Nand 1000 N
- Assumes an infinite amount of memory
 - Not trivial when using large data sets.
- Accurate analysis relies on clever observations to optimize the algorithm.

- Big-Omega notation (Ω-notation)
 - lower bound
 - □ f(n) = Ω(g(n)) means there are positive constants c>0 and $n_0 \ge 1$, such that
 - $0 \le cg(n) \le f(n)$, for all $n \ge n_0$
 - The values of c and n₀ must be fixed for the function f and must not depend on n.
 - "f of n is big omega of g of n"

Big-Omega notation (Ω -notation)

Image source: https://www.devopsschool.com/blog/complete-tutorial-on-big-o-big-oh-notation/

Prepared by: Dr. Shivangi Surati

$_{\square}$ Big-Omega notation (Ω -notation)- Example

$$3n^2 - 100n + 6 = \Omega(n^2)$$

n	2n ²	3n ² – 100n + 6
1	2	-91
2	8	-182
5	50	-419
10	200	-694
100	20000	20006
1000	2000000	2900006

Prepared by: Dr. Shivangi Surati

- Big-Omega notation (Ω -notation)- Example
 - □ $3n^2 100n + 6 = Ω(n^3) True or False?$ Justify
 - false
 - $_{\text{o}}$ 3n² 100n + 6 = Ω(n) True or False? Justify

Examples

```
- 5n^2 = \Omega(n)

∃ c, n_0 such that: 0 \le cn \le 5n^2 ⇒ cn \le 5n^2 ⇒ c = 1 and n_0 = 1

- 100n + 5 \ne \Omega(n^2)

∃ c, n_0 such that: 0 \le cn^2 \le 100n + 5

100n + 5 \le 100n + 5n (∀ n \ge 1) = 105n

cn^2 \le 105n ⇒ n(cn - 105) \le 0

Since n is positive ⇒ cn - 105 \le 0 ⇒ n \le 105/c

⇒ contradiction: n cannot be smaller than a constant

- n = \Omega(2n), n^3 = \Omega(n^2), n = \Omega(\log n)
```

Image source: https://harmanani.github.io/classes/csc611/Notes/Lecture02.pdf

- Theta notation (θ-notation)

- $\ \square$ Tight bound- more precise than O-notation and Ω -notation
- f(n) = θ(g(n)) means there are positive constants c1>0, c2>0 and $n_0 ≥ 1$, such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), for all $n ≥ n_0$
- The values of c1, c2 and n₀ must be fixed for the function f and must not depend on n.
- $_{\square}$ In other words, follow both O and Ω
- "f of n is theta of g of n"

- Theta (θ -notation)

Image source: https://www.devopsschool.com/blog/complete-tutorial-on-big-o-big-oh-notation/ Prepared by: Dr. Shivangi Surati

□ Theta (θ -notation)- Example

$$3n^2 - 100n + 6 = \theta(n^2)$$

n	2n ²	3n ² – 100n + 6	3n ²
1	2	-91	3
2	8	-182	12
5	50	-419	75
10	200	-694	300
100	20000	20006	30000
1000	2000000	2900006	3000000

Prepared by: Dr. Shivangi Surati

Rules of growth functions

Maximum rule

- O(f(n) + g(n)) = O(max(f(n), g(n)))
- EX: $O(n^2 + n^3 + n \log n) = O(max(n^2, n^3, n \log n))$ = $O(n^3)$

Multiplication by a constant

- O(c.f(n)) = O(f(n))
- Applicable to other notations also

Multiplication by a function

- O(f(n)). O(g(n)) = O(f(n).g(n))
- Applicable to other notations also

Properties of growth functions

Theorem:

- $f(n) = \theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$
- Transitivity: (x=y, y=z, ∴ x=z)
 - f(n) = O(g(n)) and g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))
 - Applied to other notations also
- Reflexivity: (Own self)
 - f(n) = O(f(n))
 - Applied to other notations also

Properties of growth functions

Sum Rule:

If f(n) = O(g(n)) and h(n) = O(g(n)), then f(n) + h(n) = O(g(n))

Product Rule:

If f(n) = O(g(n)) and h(n) = O(k(n)), then f(n) * h(n) = O(g(n) * k(n))

Composition Rule:

If f(n) = O(g(n)) and g(n) = O(h(n)), then f(g(n)) = O(h(n))

Properties of growth functions...

- Symmetry: (x=y, y=x)
 - $f(n) = \theta(g(n))$ if and only if $g(n) = \theta(f(n))$
- Transpose Symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

HW:

Give examples of each rule and property of growth functions.

Little Oh notation (o notation)

Upper-bound of f(n) that is not asymptotic tight)

```
f(n) = o(g(n)) means there are positive constants c>0 and n_0 \ge 1, such that 0 \le f(n) < cg(n), for all n \ge n_0
```

EX:
$$7n + 8 \in o(n^2)$$

Little Omega notation (ω notation)

Lower-bound of f(n) that is not asymptotic tight)

```
f(n) = ω(g(n)) means there are positive constants c>0 and n_0 ≥ 1, such that 0 ≤ cg(n) < f(n), for all n ≥ n_0
```

EX: $7n + 8 \in \omega(\log n)$

	n			
	10	50	100	1,000
lg n	0.0003 sec	0.0006 sec	0.0007 sec	0.0010 sec
$n^{1/2}$	0.0003 sec	0.0007 sec	0.0010 sec	0.0032 sec
n	0.0010 sec	0.0050 sec	0.0100 sec	0.1000 sec
$n \lg n$	0.0033 sec	0.0282 sec	0.0664 sec	0.9966 sec
n^2	0.0100 sec	0.2500 sec	1.0000 sec	100.00 sec
n^3	0.1000 sec	12.500 sec	100.00 sec	1.1574 day
n^4	1.0000 sec	10.427 min	2.7778 hrs	3.1710 yrs
n ⁶	1.6667 min	18.102 day	3.1710 yrs	3171.0 cen
2 ⁿ	0.1024 sec	35.702 cen	4×10 ¹⁶ cen	1×10 ¹⁶⁶ cen
n!	362.88 sec	1×10 ⁵¹ cen	3×10 ¹⁴⁴ cen	1×10 ²⁵⁵⁴ cen

Image source: https://medium.com/@harr.hughes/orders-of-growth-in-algorithms-1264e82a6435

Sorting Algorithm	Best Case	Average Case	Worst Case
Insertion	O(n)	$O(n^2)$	$O(n^2)$
Selection	$O(n^2)$	$O(n^2)$	$O(n^2)$
Bubble	$O(n^2)$	$O(n^2)$	$O(n^2)$
Heap	O(n log n)	O (n log n)	$O(n \log n)$
Merge	$O(n \log n)$	O (n log n)	$O(n \log n)$
Quick	$O(n \log n)$	O (n log n)	$O(n^2)$

Stable Sort

- One of the distinguishing properties among sorting algorithms
- if two objects with equal keys appear in the same order in sorted output as they appear in the input data set
- EX- Bubble sort, Insertion sort, merge sort, Count sort
- You don't always need a stable sort!

In-place Algorithm

- Space Complexity
- An algorithm that does not need an extra space
- Produces an output in the same memory that contains the data
 - by transforming the input 'in-place'
- However, a small constant extra space used for variables is allowed (usually O(log n))
- EX: Bubble sort, insertion sort, selection sort, quick sort- In-pace sort
- Is count sort algorithm in-place?

Linear Search- Analysis

- Linear Search (for n elements)- Naïve method
 - Best case: O(1)
 - Worst case: O(n)
 - Average case: O(n)

Binary Search- Algorithm

```
Algorithm iterativeBinarySearch(A[], low, high, key):
while low <= high
      middle = low + (high - low)/2
      if (A[middle] == key)
      return middle;
      if (A[middle] < key)
             low = middle + 1
      else
             high= middle - 1
end while
                                             Prepared by: Dr. Shivangi Surati
```

Binary Search- Analysis

Iteration	Length of array
1	n
2	n/2
3	n/2 ²
4	n/2 ³
	•
k	n/2 ^k
	Length of
	array
	becomes 1

$$n/2^{k} = 1$$

$$\Rightarrow$$
 n = 2^k

$$\Rightarrow \log_2 n = \log_2 2^k$$

$$\Rightarrow \log_2 n = k * \log_2 2$$

$$\Rightarrow$$
 k = $\log_2 n$

- Hence, total number
 of iterations in worst
 case: O(k) = O(log₂n)
- Best case: O(1)