

Users's Manual

Version 0.99a

Sergio García-Marín Wilson González-Vanegas Carlos E. Murillo-Sánchez

October 2, 2019

 $\ \, \bigcirc \,$ Define final affiliation (ask C.Murillo) $\mbox{All Rights Reserved}$

Contents

1		oducti														1
	1.1	Backg	round	 			•		•		•	•	•	•		1
2	Get	ting st	arted													3
3	For	mulati	on													5
	3.1	Objec	tive function .	 												9
	3.2	Const	raints	 												9
		3.2.1	Gas network .	 												9
		3.2.2	Power network													11
4	Exa	mples														13
B	iblios	graphy														15

List of Figures

List of Tables

Introduction

1.1 Background

MPNG is a package of Matlab [1,2] for solving optimal power and natural gas flow problems. MPNG uses the general user nonlinear constraints capability of Matlaburgham to model the gas network taking into account: gas-fired power generators, storage units, wells, power-and-gas-driven compressors, and nodes with stratified demand (different market segments get different priorities). The MPNG source code can be found at:

https://github.com/MATPOWER/mpng.git

MPNG was developed by Sergio García-Marín ¹ and Wilson González-Vanegas ² under the direction of Carlos E. Murillo-Sánchez ¹. The initial need for a MATPOWER-based power and natural gas optimal flow package was born out of a project aimed to analyze the integrated operation of the Colombian power and natural gas systems.³

 $^{^{1}}$ Universidad Nacional de Colombia - sede Manizales

 $^{^2\}mathrm{Universidad}$ Tecnológica de Pereira

 $^{^3\}mathrm{Project}$ number 1110-745-58696, funded by Colciencias, Colombia.

Getting started

Here the getting started section goes...

Formulation

Nomenclature

Indexes

i, j Gas nodes.

m, n Electric nodes (buses).

o Gas pipeline.

c Compressor.

l Transmission line.

w Gas well.

e Power generator.

ref Reference bus.

r Spinning reserve.

 σ Type of gas load.

Parameters

 $\alpha^i_{\pi_+}, \alpha^i_{\pi_-}$ Penalties for over-pressure and under-pressure at node i.

 α_{γ} Penalties for non-supplied gas.

 α_{ϵ} Penalties for non-supplied electricity.

 C_G^w Gas cost at the well w.

 C_O^{oij} Transport cost of pipeline o, from node i to node j.

 C_C^{cij} Compression cost of compressor c, from node i to node j.

 C_S^i Storage cost at node i.

 $C_{S_{+}}^{i}$ Storage outflow price at node i.

 $C_{S_{-}}^{i}$ Storage inflow price at node i.

 C_E^e Power cost generation (excluding gas cost).

 η_e^q Thermal efficiency at generator q [MMSCF/MW].

 $D_q^{i\sigma}$ Gas demand of type σ at node i.

 D_e^{tm} Electricity demand in the bus m at time t.

 \bar{g}^w, g^w Gas production limits.

 $\overline{\pi}^i, \, \underline{\pi}^i$ Quadratic pressure limits at node i.

 S_0^i Initial stored gas at node *i*.

 \overline{S}^i , \underline{S}^i Storage limits at node i.

 κ^{oij} Weymouth constant of pipeline o.

 δ^{oij} Width for gas flow capacities.

 β^{cij} Compression ratio of compressor c.

 Z^c Ratio parameter of compressor c.

 B^c Compressor design parameter of compressor c.

 $x,\,y,\,z$ Gas consumption parameters of gas-fired compressors.

 \overline{f}_g^{oij} Gas transport capacity of pipeline o, from node i to node j.

 \overline{f}_g^{cij} Gas flow capacity of compressor c, from node i to node j.

 \overline{f}_s^i, f_s^i Storage outflow capacities at node *i*.

 $\overline{p}_g^e,\,\underline{\underline{p}}_g^e\quad \text{ Active power generation limits of generator }e.$

 $\overline{q}_{g}^{e}, \, \underline{q}_{q}^{e}$ Reactive power generation limits of generator e.

 $\overline{V}^{tm}\underline{V}^{tm}$ Voltage limits for every bus m at time t.

 \mathbb{S}^l Transmission capacity of power line l.

 R^{tr} Spinning reserve in the r-th spinning reserve zone at time t.

M Generators assignment matrix.

L Compressors assignment matrix.

 u^{te} Unit commitment state for generator q at time t.

 τ^t Energy weight related to period of time t.

 E^e Available energy for hydroelectric generator e, during the total analysis window.

Sets

 \mathcal{N} Gas nodes, $|\mathcal{N}| = n_{\mathcal{N}}$.

 $\mathcal{N}_{\mathcal{S}}$ Gas nodes with storage, $\mathcal{N}_{\mathcal{S}} \subset \mathcal{N}$, $|\mathcal{N}_{\mathcal{S}}| = n_{\mathcal{S}}$.

 \mathcal{O} Gas pipelines, $|\mathcal{O}| = n_{\mathcal{O}}$

C Compressors, $|C| = n_C$

 C_G Compressors based on natural gas, $C_G \subseteq C$, $|C_G| = n_{C_G}$

 \mathcal{C}_E Compressors based on electric power, $\mathcal{C}_E \subseteq \mathcal{C}$, $|\mathcal{C}_E| = n_{\mathcal{C}_P}$

 \mathcal{W} Gas wells, $|\mathcal{W}| = n_{\mathcal{W}}$.

 \mathcal{W}^i Gas wells at node $i, \mathcal{W}^i \subset \mathcal{W}, |\mathcal{W}^i| = n_{\mathcal{W}^i}$.

 \mathcal{B} Power buses, $|\mathcal{B}| = n_{\mathcal{B}}$.

 \mathcal{L} Power lines, $|\mathcal{L}| = n_{\mathcal{L}}$.

 \mathcal{E} Power unit generators, $|\mathcal{E}| = n_{\mathcal{E}}$.

 \mathcal{E}_H Hydroelectric power units, $\mathcal{E}_H \subseteq \mathcal{E}$, $|\mathcal{E}_H| = n_{\mathcal{E}_H}$.

 \mathcal{E}_G^i Gas-fired power units connected to gas node i, $\mathcal{E}_G^i \subseteq \mathcal{E}$, $|\mathcal{E}_G^i| = n_{\mathcal{E}_G}$.

 \mathcal{Z}_r Spinning reserve zones.

 \mathcal{F}_G^i , \mathcal{T}_G^i Connected pipelines to node *i* at side *From* or *To*.

 \mathcal{F}_C^i , \mathcal{T}_C^i Connected compressors to node *i* at side *From* or *To*.

 \mathcal{F}_{E}^{m} , \mathcal{T}_{E}^{m} Connected power lines to bus m at side From or To.

 \mathcal{T} Total periods of analysis.

 Σ Different types of gas loads.

Variables

 f_g^{oij} Gas flow in pipeline o, from node i to node j.

 $f_{g_+}^{oij}$ $f_{g_-}^{oij}$ Positive and negative gas flow in pipeline o.

 f_g^{cij} Gas flow in compressor c, from node i to node j.

 ψ^c Power consumed by compressor c.

 ϕ^c Gas consumed by compressor c, connected to node i at side From.

 $\gamma^{i\sigma}$ Non-served gas of type σ at node i.

 π^i Quadratic pressure.

 π_+^i , π_-^i Over/Under quadratic pressures at node *i*.

 g^w Gas production at well w.

 f_s^i Storage outflow difference.

 $f_{s_{+}}^{i}, f_{s_{-}}^{i}$ Storage outflow and inflow.

 p_g^{te} Active power production at generator q at time t.

 q_q^{te} Reactive power production at generator q at time t.

 V^{tm} Voltage magnitude at bus m at time t.

 θ^{tm} Voltage angle at bus m at time t.

 e^{tm} Non-served active power at bus m at time t.

We made a toolbox and we want to explain how it works.

3.1 Objective function

$$C(x) = \sum_{w \in \mathcal{W}} C_G^w g^w + \sum_{t \in \mathcal{T}} \tau^t \sum_{e \in \mathcal{E}} C_E^e p_g^{te}$$

$$+ \sum_{i \in \mathcal{N}_S} \left(C_{S_+}^i f_{s_+}^i - C_{S_-}^i f_{s_-}^i \right)$$

$$+ \sum_{i \in \mathcal{N}_S} C_S^i \left(S_0^i - f_s^i \right)$$

$$+ \sum_{o \in \mathcal{O}} C_O^{oij} f_{g_+}^{oij} - \sum_{o \in \mathcal{O}} C_O^{oij} f_{g_-}^{oij}$$

$$+ \sum_{c \in \mathcal{C}} C_C^{cij} f_g^{cij}$$

$$+ \sum_{i \in \mathcal{N}} \alpha_{\pi_+}^i \pi_+^i + \sum_{i \in \mathcal{N}} \alpha_{\pi_-}^i \pi_-^i$$

$$+ \sum_{i \in \mathcal{N}} \sum_{\sigma \in \Sigma} \alpha_{\gamma}^{i\sigma} \gamma^{i\sigma} + \alpha_{\epsilon} \sum_{t \in \mathcal{T}} \tau^t \sum_{m \in \mathcal{B}} \epsilon^{tm}$$

$$(3.1)$$

3.2 Constraints

3.2.1 Gas network

$$\sum_{o \in \mathcal{T}_{G}^{k}} f_{g}^{oij} - \sum_{o \in \mathcal{F}_{G}^{k}} f_{g}^{oij} + \sum_{c \in \mathcal{T}_{C}^{k}} f_{g}^{cij} - \sum_{c \in \mathcal{F}_{C}^{k}} \left(f_{g}^{cij} + \phi^{c} \right) + \sum_{w \in \mathcal{W}^{k}} g^{w} + f_{s}^{k} - \sum_{t \in \mathcal{T}} \tau^{t} \sum_{e \in \mathcal{E}_{G}^{k}} \left(\eta_{e}^{q} \cdot p_{g}^{te} \right) = \sum_{\sigma \in \Sigma} \left(D_{g}^{\sigma k} - \gamma^{\sigma k} \right)$$

$$\forall k \in \mathcal{N}$$

$$(3.2)$$

The non-supply gas demand in every node of the system can only be as most as the total demand at the same node. This constraint is represented as follows:

$$0 \le \gamma^{\sigma k} \le D_g^{\sigma k} \quad \forall \sigma \in \Sigma \quad \forall k \in \mathcal{N}$$
 (3.3)

Storage

$$f_s^k = f_{s_+}^k - f_{s_-}^k \quad \forall k \in \mathcal{N}$$
 (3.4)

$$\underline{f}_{s}^{k} \le f_{s}^{k} \le \overline{f}_{s}^{k} \quad \forall k \in \mathcal{N}$$

$$(3.5)$$

$$0 \le f_{s_+}^i \le S_0^k - \underline{S}^k \quad \forall k \in \mathcal{N}$$
 (3.6)

$$0 \le f_{s_{-}}^{i} \le \overline{S}^{k} - S_{0}^{k} \quad \forall k \in \mathcal{N}$$

$$(3.7)$$

Wells

The constraints related to the gas wells production depends on each well specific characteristics, these constraints are represented by:

$$g^w \le g^w \le \overline{g}^w \quad \forall w \in \mathcal{W} \tag{3.8}$$

Pipelines:

$$f_g^{oij} = \kappa^{oij} sgn\left(\pi^i - \pi^j\right) \sqrt{|\pi^i - \pi^j|} \quad \forall o \in \mathcal{O}$$
 (3.9)

And the gas flow limits for every pipeline:

$$f_g^{oij} = f_{g_+}^{oij} + f_{g_-}^{oij} \quad \forall o \in \mathcal{O}$$

$$(3.10)$$

$$-\overline{f}_g^{oij} \le f_g^{oij} \le \overline{f}_g^{oij} \quad \forall o \in \mathcal{O}$$
 (3.11)

$$0 \le f_{g_+}^{oij} \le \delta^{oij} \cdot \overline{f}_g^{oij} \quad \forall o \in \mathcal{O}$$
 (3.12)

$$-\delta^{oij} \cdot \overline{f}_{a}^{oij} \le f_{a-}^{oij} \le 0 \quad \forall o \in \mathcal{O}$$
 (3.13)

Compressors:

The power consumed by the compressors depend on its gas flow:

$$\psi^c = B^c f_g^{cij} \cdot \left(\left(\frac{\pi^j}{\pi^i} \right)^{Z^c/2} - 1 \right) \quad \forall c \in \mathcal{C}$$
 (3.14)

$$\phi^c = x + y\psi^c + z\psi^{c2} \quad \forall c \in \mathcal{C}_G$$
 (3.15)

$$0 \le f_g^{cij} \le \overline{f}_g^{cij} \quad \forall c \in \mathcal{C} \tag{3.16}$$

$$\frac{\pi^{i} \leq \pi^{j} \leq \beta^{cij}\pi^{i}}{\beta^{cij} \geq 1} \quad \forall i, j \in \mathcal{N} \quad \forall c \in \mathcal{C}$$
(3.17)

The equations 3.18 and 3.19 are the constraints that characterize the quadratic overpressure and underpressure at every node of the system, respectively.

$$\begin{array}{ll}
\pi^k \le \overline{\pi}^k + \pi_+^k \\
0 \le \pi_+^k
\end{array} \quad \forall k \in \mathcal{N}$$
(3.18)

3.2. CONSTRAINTS

11

$$\frac{\pi^k - \pi_-^k \le \pi^k}{0 < \pi_-^k} \quad \forall k \in \mathcal{N}$$
(3.19)

3.2.2 Power network

Equation 3.20 could be explained in an appendix section.

$$g_{p_m} \left(\theta^{tm}, V^{tm}, p_g^{te}, \epsilon^{te}, \psi^c \right) = 0$$

$$g_{q_m} \left(\theta^{tm}, V^{tm}, q_g^{te} \right) = 0$$
(3.20)

$$\forall m \in \mathcal{B} \quad \forall t \in \mathcal{T} \quad \forall c \in \mathcal{C}_E$$

Variables limits:

$$\theta^{tref} = 0$$

$$\underline{V}^{tm} \le V^{tm} \le \overline{V}^{tm} \quad \forall m \in \mathcal{B} \quad \forall t \in \mathcal{T}$$
(3.21)

$$\underline{p}_{g}^{e} \leq p_{g}^{te} \leq \overline{p}_{g}^{e}
\underline{q}_{g}^{e} \leq q_{g}^{te} \leq \overline{q}_{g}^{e} \quad \forall q \in \mathcal{E} \quad \forall t \in \mathcal{T}$$
(3.22)

Power flow limits:

$$|\mathbb{S}_{fl}(\theta, V) \leq \overline{\mathbb{S}}_{fl} \\ |\mathbb{S}_{tl}(\theta, V)| \leq \overline{\mathbb{S}}_{tl} \quad \forall l \in \mathcal{L}$$
(3.23)

Non-supplied active power limits:

$$0 \le \epsilon^{tm} \le D_e^{tm} \quad \forall m \in \mathcal{B} \quad \forall t \in \mathcal{T}$$
 (3.24)

Reserve constraint:

$$\sum_{e \in \mathcal{Z}_r} u^{te} \left(\overline{p}_g^e - p_g^{te} \right) \ge R^{tr}$$

$$\forall r \in \mathcal{Z}_r \quad \forall t \in \mathcal{T}$$
(3.25)

Hydro-energy constraint:

$$\sum_{t \in \mathcal{T}} \tau^t p_g^{te} \le E^e \quad \forall e \in \mathcal{E}_H \tag{3.26}$$

Examples

Here the examples section goes... $\,$

Bibliography

- [1] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, "MATPOWER: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education," *Power Systems, IEEE Transactions on*, vol. 26, no. 1, pp. 12–19, Feb. 2011. doi: 10.1109/TPWRS.2010.2051168
- [2] R. D. Zimmerman, C. E. Murillo-Sánchez (2019). MATPOWER [Software]. Available: https://matpower.org doi: 10.5281/zenodo.3236535