Headline

大家好:

这是2018年度第3篇Arxiv Weekly。

本文是 网络压缩 方向的文章。

Highlight

通过channel wise的网络软剪枝保留更多网络描述能力,从而在同样的pruning rate下取得更高的 performance!

Information

Title

Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks

Link

https://www.ijcai.org/proceedings/2018/0309.pdf

Codes

https://github.com/he-y/soft-filter-pruning

Accepted by

2018年度人工智能国际联合大会(International Joint Conference on Artificial Intelligence,IJCAI 2018)[为人工智能方向A类会]

Source

- 南方科技大学(Southern University of Science and Technology)
- 悉尼科技大学(University of Technology Sydney)
- 复旦大学(Fudan University)

Introduction

本文提出了一种通过pruning加速inference的方法:卷积核软剪枝(soft filter pruning ,SFP),并且在pruning 后网络还能进一步训练。也就是说,**pruning**的过程是伴随着训练进行的。

SFP有两个主要的优势:

1. 保留更多模型性能。由于pruning后还能够训练,SFP能够保留更多模型性能,学习到更好的特征。

2. 对pre-trained model的依赖性更低。SFP能够同时完成training和pruning,而不是像之前的pruning一样需要在well pre-trained model上进行。

Keys

1.问题描述

传统的filter pruning技术有两个"流派",分别存在一些问题。

- 细粒度剪枝(Fine-grained pruning),指元素级的pruning,将值较小的或者经过测试不重要的elements置零。
- 粗粒度/结构化剪枝(Coarse-grained / structured pruning),指成块地整体剪枝。最常见的就是 channel-wise pruning,也即一次剪掉一个channel。另外也有一次减掉一行、一列、一个小块这样的形式。

显然细粒度剪枝的可操作性更大,因此通常能够实现同样performance下更高的压缩率。

然而由于计算架构的优化现状,粗粒度剪枝(尤其是channel-wise pruning)相比细粒度剪枝而言计算效率更高。[例如Han、Guo等人提出的element-wise pruning会把模型弄得"千疮百孔",导致需要稀疏编码和解码,并且针对完整filter的通用优化计算全会失效。]

而本文提出的SFP属于粗粒度剪枝中的channel-wise pruning的最新工作。相比于前序工作,主要解决了如下两个问题:

• model capacity reduction 传统的channel-wise pruning实质上是hard pruning,也即设定压缩率把完整的模型打残,让残废的模型自己往终点爬。[也即模型的描述能力受到了断崖式损伤] 而SFP则是把模型实时打残实时上药,而且看不行了就扶一下。[在训练过程中保留模型的全部描述能力,只不过限制描述的效果] 因此虽然大家最后都是残废了,但是SFP的方式打残的模型能跑得更远。[如下图]

• dependence on pre-trained models。一般的hard pruning需要对完整模型的充分训练结果作为输入。而 SFP由于是一边训练一边pruning,对pre-trained model没有需求,也自然不会被pre-trained model的性能影响。

2.SFP思路和算法

SFP的关键思路可以总结如下:

- 1. 整个网络设置一个压缩率\$P%\$,目标是把每个layer的filter数都压到原本的(1-P%)倍。
- 2. 于是在正常的训练每个epoch的训练后,都对每层各个filter中\$I_2\$范数最小的\$P%\$个强行置零。但是仍然允许它们参与下一轮的训练和参数更新(称为Reconstruction)。这样一来,其中有一些在后续迭代中较为重要的filter还有机会"重出江湖"。[如下图]

SFP的算法伪代码如下图所示

```
Algorithm 1 Algorithm Description of SFP  \begin{tabular}{l} \textbf{Input:} & training data: \ \textbf{X}, pruning rate: $P_i$ \\ the model with parameters $\textbf{W} = \{\textbf{W}^{(i)}, 0 \leq i \leq L\}$. \\ Initialize the model parameter $\textbf{W}$ \\ \textbf{for } epoch = 1; epoch \leq epoch_{max}; epoch + + \textbf{do} \\ Update the model parameter $\textbf{W}$ based on $\textbf{X}$ \\ \textbf{for } i = 1; i \leq L; i + + \textbf{do} \\ Calculate the $\ell_2$-norm for each filter $\|\mathcal{F}_{i,j}\|_2, 1 \leq j \leq N_{i+1}$ \\ Zeroize $N_{i+1}P_i$ filters by $\ell_2$-norm filter selection end for end for Obtain the compact model with parameters $\textbf{W}^*$ from $\textbf{W}$ \\ \textbf{Output:} The compact model and its parameters $\textbf{W}^*$ }
```

其中

$$\|\mathcal{F}_{i,j}\|_{p} = \sqrt[p]{\sum_{n=1}^{N_{i}} \sum_{k_{1}=1}^{K} \sum_{k_{2}=1}^{K} |\mathcal{F}_{i,j}(n, k_{1}, k_{2})|^{p}},$$
 (2)

p.s.在整个网络训练结束后,将最后一轮SFP中pruning掉的filter直接干掉就能得到实际的小模型了。这里会存在一个前后对应的问题,而这个问题在ResNet结构的网络中会变得尤其突出,甚至影响到了SFP的实际 pruning rate和效果对比可靠性。

3. SFP的压缩效率理论值

我们设第i个layer输出的feature map size为 C_i \times W_i \times H_i\$,设第i个layer中filter的pruning rate为 \$P_i\$,显然有: 在pruning之前计算第i+1层的feature map的计算量为: \$\$Cal=N_{i+1}\times N_i \times k^2 \times H_{i+1} \times W_{i+1}\$\$ 而经过SPF后的计算量为: \$\$Cal=(1-P_{i+1})N_{i+1}\times (1-P_i)N_i \times k^2 \times H_{i+1} \times W_{i+1}\$\$ 也即这一层的压缩率为: \$\$1-(1-P_i)(1-P_{i+1})\$\$ 如果整体SPF只有一个pruning rate \$P\$,则整体理论压缩率为 \$\$Ratio=1-(1-p)^2=2p-p^2\$\$

Results

在CIFAR上超过了很多传统的pruning算法。

在ImageNet+ResNet的标准benchmark上,基本能稳住Acc掉1个点的时候,prune掉40%左右的flops。 其中最好的一个case是ImageNet+ResNet101,在prune掉42.2%的flops时,反而使得top1/top5 Acc上升了0.14/0.2个点。

结果大表如下

Depth	Method	Fine-tune?	Baseline Accu. (%)	Accelerated Accu. (%)	Accu. Drop (%)	FLOPs	Pruned FLOPs(%)
20	Dong <i>et al.</i> , 2017a	N	91.53	91.43	0.10	3.20E7	20.3
	Ours(10%)	N	$\textbf{92.20} \pm \textbf{0.18}$	$\textbf{92.24} \pm \textbf{0.33}$	-0.04	3.44E7	15.2
	Ours(20%)	N	$\textbf{92.20} \pm \textbf{0.18}$	91.20 ± 0.30	1.00	2.87E7	29.3
	Ours(30%)	N	$\textbf{92.20} \pm \textbf{0.18}$	90.83 ± 0.31	1.37	2.43E7	42.2
32	Dong <i>et al.</i> , 2017a	N	92.33	90.74	1.59	4.70E7	31.2
	Ours(10%)	N	$\textbf{92.63} \pm \textbf{0.70}$	93.22 ± 0.09	-0.59	5.86E7	14.9
	Ours(20%)	N	$\textbf{92.63} \pm \textbf{0.70}$	90.63 ± 0.37	0.00	4.90E7	28.8
	Ours(30%)	N	92.63 ± 0.70	90.08 ± 0.08	0.55	4.03E7	41.5
56	Li <i>et al</i> ., 2017	N	93.04	91.31	1.75	9.09E7	27.6
	Li <i>et al.</i> , 2017	Y	93.04	93.06	-0.02	9.09E7	27.6
	He <i>et al.</i> , 2017	N	92.80	90.90	1.90	-	50.0
	He et al., 2017	Y	92.80	91.80	1.00	-	50.0
	Ours(10%)	N	$\textbf{93.59} \pm \textbf{0.58}$	$\textbf{93.89} \pm \textbf{0.19}$	-0.30	1.070E8	14.7
	Ours(20%)	N	$\textbf{93.59} \pm \textbf{0.58}$	93.47 ± 0.24	0.12	8.98E7	28.4
	Ours(30%)	N	93.59 ± 0.58	93.10 ± 0.20	0.49	7.40E7	41.1
	Ours(30%)	Y	$\textbf{93.59} \pm \textbf{0.58}$	93.78 ± 0.22	-0.19	7.40E7	41.1
	Ours(40%)	N	$\textbf{93.59} \pm \textbf{0.58}$	92.26 ± 0.31	1.33	5.94E7	52.6
	Ours(40%)	Y	93.59 ± 0.58	93.35 ± 0.31	0.24	5.94E7	52.6
110	Li <i>et al</i> ., 2017	N	93.53	92.94	0.61	1.55E8	38.6
	Li <i>et al.</i> , 2017	Y	93.53	93.30	0.20	1.55E8	38.6
	Dong <i>et al.</i> , 2017a	N	93.63	93.44	0.19	-	34.2
	Ours(10%)	N	$\textbf{93.68} \pm \textbf{0.32}$	93.83 ± 0.19	-0.15	2.16E8	14.6
	Ours(20%)	N	$\textbf{93.68} \pm \textbf{0.32}$	93.93 ± 0.41	-0.25	1.82E8	28.2
	Ours(30%)	N	$\textbf{93.68} \pm \textbf{0.32}$	93.38 ± 0.30	0.30	1.50E8	40.8
	Ours(30%)	Y	$\textbf{93.68} \pm \textbf{0.32}$	93.86 ± 0.21	-0.18	1.50E8	40.8

CIFAR上几种方法对不同深度的ResNet进行pruning的结果对比

Depth	Method	Fine-	Top-1 Accu.	Top-1 Accu.	Top-5 Accu.	Top-5 Accu.	Top-1 Accu.	Top-5 Accu.	Pruned
		tune?	Baseline(%)	Accelerated(%)	Baseline(%)	Accelerated(%)	Drop(%)	Drop(%)	FLOPs(%)
18	Dong <i>et al.</i> , 2017a	N	69.98	66.33	89.24	86.94	3.65	2.30	34.6
	Ours(30%)	N	70.28	67.10	89.63	87.78	3.18	1.85	41.8
34	Dong <i>et al.</i> , 2017a	N	73.42	72.99	91.36	91.19	0.43	0.17	24.8
	Li et al., 2017	Y	73.23	72.17	-	-	1.06	-	24.2
	Ours(30%)	N	73.92	71.83	91.62	90.33	2.09	1.29	41.1
50	He et al., 2017	Y	-	-	92.20	90.80	-	1.40	50.0
	Luo et al., 2017	Y	72.88	72.04	91.14	90.67	0.84	0.47	36.7
	Ours(30%)	N	76.15	74.61	92.87	92.06	1.54	0.81	41.8
	Ours(30%)	Y	76.15	62.14	92.87	84.60	14.01	8.27	41.8
101	Ours(30%)	N	77.37	77.03	93.56	93.46	0.34	0.10	42.2
	Ours(30%)	Y	77.37	77.51	93.56	93.71	-0.14	-0.20	42.2

ImageNet上几种方法对不同深度的ResNet进行pruning的结果对比

我们自己也有相应的复现结果,总体来看是不错的,但是对比上还需要进一步的实验。

Insights

可以看到,这里的"soft" filter pruning,主要"软"在不在最开始就把网络弄小,也不在最终定型了之后一股脑儿压缩,而是一边训练一边约束。

比较有意思的是,在约束了之后,模型的结构和filter真正的层数是没有改变的,被prune掉的filter后面还有"复活"的希望。因此pruning操作对模型的描述能力的损伤显然是比硬pruning小的。

不过这样的pruning方法在ResNet结构上会面临两个支路挑选的channel不能重合的问题,需要进一步计算实际的pruning rate。