MA427 Lecture 10 Gradient descent

Giacomo Zambelli

POLITICAL SCIENCE

18 March, 2019

Today's lecture

- ► The gradient descent method
- Conditioning the function
- Convergence analysis of gradient descent
- Constrained convex optimisation

Descent methods

Unconstrained optimisation problem:

Convex function $f: \mathbb{R}^n \to \mathbb{R}$:

$$\min_{x \in \mathsf{dom}\, f} f(x).$$

Descent method:

- ▶ Start from *initial point* $x^{(0)} \in \text{dom } f$.
- Construct a series of points $x^{(1)}, x^{(2)}, \ldots$ with $f(x^{(k)}) > f(x^{(k+1)})$.
- ► Update:

$$x^{(k+1)} = x^{(k)} + t_k \Delta x^{(k)}.$$

- ► Search direction: $\Delta x^{(k)}$.
- \triangleright Step size: t_k .

Gradient descent

- ▶ Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable
- \blacktriangleright x^* is a global minimum point if and only if $\nabla f(x^*) = 0$.
- ► Taylor expansion:

$$f(x + t\Delta x) \approx f(x) + t\nabla f(x)^{\top} \Delta x$$

▶ Natural descent direction: $\Delta x^{(k)} = -\nabla f(x^{(k)})$.

Determining the step size

Exact line search

$$t_k := \operatorname{argmin}_{t>0} f(x^{(k)} - t \nabla f(x^{(k)}))$$

- Minimise the univariate convex function $g(t) = f(x^{(k)} t\nabla f(x^{(k)}))$ over $t \ge 0$.
- Best possible in this direction, but may be time-consuming to compute.

Determining the step size

Exact line search

$$t_k := \operatorname{argmin}_{t>0} f(x^{(k)} - t \nabla f(x^{(k)}))$$

- Minimise the univariate convex function $g(t) = f(x^{(k)} t\nabla f(x^{(k)}))$ over $t \ge 0$.
- Best possible in this direction, but may be time-consuming to compute.
- ► Constant step size: fix $t_k = \mu$ throughout.
- Can be difficult to guess the right value.

Backtracking line search

- ▶ Two parameters: $0 < \alpha < \frac{1}{2}$, and $0 < \beta < 1$.
- ▶ Want to find t > 0 with

$$f(x^{(k)} - t\nabla f(x^{(k)})) \le f(x^{(k)}) - \alpha t \|\nabla f(x)\|^2$$

Backtracking line search

- ▶ Two parameters: $0 < \alpha < \frac{1}{2}$, and $0 < \beta < 1$.
- ightharpoonup Want to find t > 0 with

$$f(x^{(k)} - t\nabla f(x^{(k)})) \le f(x^{(k)}) - \alpha t \|\nabla f(x)\|^2$$

Backtracking line search:

- 1. Set t := 1.
- 2. While $f(x^{(k)} t\nabla f(x^{(k)})) > f(x^{(k)}) \alpha t \|\nabla f(x)\|^2$, update $t := \beta t$.

- ► Minimise $f(x_1, x_2) = 4x_1^2 4x_1x_2 + 2x_2^2 + 2x_1$ over \mathbb{R}^2 .
- ▶ Optimum $x^* = (-\frac{1}{2}, -\frac{1}{2})$ with value -0.5
- Initial point: $x^{(0)} = (0,0)$, with value 0, gradient $\nabla f(x^{(0)}) = {2 \choose 0}$.

- ► Minimise $f(x_1, x_2) = 4x_1^2 4x_1x_2 + 2x_2^2 + 2x_1$ over \mathbb{R}^2 .
- ▶ Optimum $x^* = (-\frac{1}{2}, -\frac{1}{2})$ with value -0.5
- Initial point: $x^{(0)} = (0,0)$, with value 0, gradient $\nabla f(x^{(0)}) = \binom{2}{0}$.
- ► Exact line search: $t = \frac{1}{8}$, updates to $x^{(1)} = (-\frac{1}{4}, 0)$ with $f(x^{(1)}) = -0.25$.

- ► Minimise $f(x_1, x_2) = 4x_1^2 4x_1x_2 + 2x_2^2 + 2x_1$ over \mathbb{R}^2 .
- ▶ Optimum $x^* = \left(-\frac{1}{2}, -\frac{1}{2}\right)$ with value -0.5
- Initial point: $x^{(0)} = (0,0)$, with value 0, gradient $\nabla f(x^{(0)}) = \binom{2}{0}$.
- ► Exact line search: $t = \frac{1}{8}$, updates to $x^{(1)} = (-\frac{1}{4}, 0)$ with $f(x^{(1)}) = -0.25$.
- ▶ Backtracking line search for $\alpha = 0.3$, $\beta = 0.4$.

$$\begin{array}{c|c|c|c} t & f(-2t,0) & -0.4t \\ \hline 1 & 12 & -0.4 \\ 0.4 & 0.96 & -0.16 \\ 0.16 & -0.23 & -0.064 \\ \hline \end{array}$$

 $x^{(1)} = (-0.32, 0), f(x^{(1)}) \approx -0.23.$

[Boyd & Vandenberghe, Sec 9.3]

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

Backtracking line search, $\alpha = 0.1$, $\beta = 0.7$

Exact line search

Stopping criterion

- Optimal solution $p^* = f(x^*)$. Cannot compute the exact value in most cases!
- **Error tolerance**: $\varepsilon > 0$.
- ▶ $x \in \text{dom } f$ is a ε -approximate solution, if

$$f(x) \geq p^* - \varepsilon$$
.

Stopping criterion

- Poptimal solution $p^* = f(x^*)$. Cannot compute the exact value in most cases!
- **Error tolerance**: $\varepsilon > 0$.
- ▶ $x \in \text{dom } f$ is a ε -approximate solution, if

$$f(x) \geq p^* - \varepsilon$$
.

Problem: how to decide whether $x^{(k)}$ is already ε -approximate?

Stopping criterion

- Optimal solution $p^* = f(x^*)$. Cannot compute the exact value in most cases!
- **Error tolerance**: $\varepsilon > 0$.
- ▶ $x \in \text{dom } f$ is a ε -approximate solution, if

$$f(x) \geq p^* - \varepsilon$$
.

- Problem: how to decide whether $x^{(k)}$ is already ε -approximate?
- ► Stopping criterion: $\|\nabla f(x^{(k)})\| < \delta$ for some threshold $\delta > 0$.
- ► Can we get a bound $\delta = \delta(\varepsilon)$ such that $\|\nabla f(x^{(k)})\| < \delta$ implies that $x^{(k)}$ is ε -approximate?

Conditioning the function

Notation

Sublevel set of the function

lnitial point $x^{(0)}$:

$$S = \{x \in \text{dom } f : f(x) \le f(x^{(0)})\}.$$

▶ We must have $x^* \in S$, and all iterates $x^{(1)}, x^{(2)}, \ldots \in S$.

Notation

Sublevel set of the function

lnitial point $x^{(0)}$:

$$S = \{x \in \text{dom } f : f(x) \le f(x^{(0)})\}.$$

▶ We must have $x^* \in S$, and all iterates $x^{(1)}, x^{(2)}, \ldots \in S$.

Ordering positive semidefinite matrices

- $ightharpoonup P, Q \in \mathbb{R}^{n \times n}$ positive semidefinite (PSD) matrices.
- ▶ $P \leq Q$: P is PSD-smaller than Q, if Q P is also PSD matrix.
- ▶ Equivalently: for any vector $v \in \mathbb{R}^n$,

$$v^{\top} P v \leq v^{\top} Q v$$
.

• f is strongly convex on S with parameter m > 0, if

$$\nabla^2 f(x) \succeq mI_n$$
 for every $x \in S$.

Equivalently,

$$v^{\top} \nabla^2 f(x) v \ge m \|v\|^2$$
 for every $x \in S, v \in \mathbb{R}^n$.

▶ Also equivalently, all eigenvalues of $\nabla^2 f(x)$ are $\geq m$.

• f is strongly convex on S with parameter m > 0, if

$$\nabla^2 f(x) \succeq m I_n$$
 for every $x \in S$.

Equivalently,

$$v^{\top} \nabla^2 f(x) v \ge m \|v\|^2$$
 for every $x \in S, v \in \mathbb{R}^n$.

- ▶ Also equivalently, all eigenvalues of $\nabla^2 f(x)$ are $\geq m$.
- ▶ Taylor expansion: for any $x, y \in S$, we get

$$f(x) \ge f(y) + \nabla f(y)^{\top} (x - y) + \frac{m}{2} ||x - y||^2.$$

- ► Affine functions are not strongly convex!
- A convex quadratic function $f(x) = x^{\top}Qx + p^{\top}x$ is strongly convex if and only if Q is positive definite.

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + \frac{m}{2} ||y - x||^2.$$

Proposition

If f is strongly convex on S, then there exists a unique global minimum point x^* .

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + \frac{m}{2} ||y - x||^2.$$

Proposition

If f is strongly convex on S, then there exists a unique global minimum point x^* .

Lemma

For $x \in S$, we have

$$f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|^2.$$

In particular, if $\|\nabla f(x)\| \leq (2m\varepsilon)^{1/2}$, then $f(x) - p^* \leq \varepsilon$.

M-smooth functions

▶ f is M-Lipschitz smooth, S for M > 0 if

$$\nabla^2 f(x) \leq M I_n$$
.

- ▶ Equivalently: all eigenvalues of $\nabla^2 f(x)$ are $\leq M$.
- ► From the Taylor-expansion:

$$f(x) \le f(y) + \nabla f(y)^{\top} (x - y) + \frac{M}{2} ||x - y||^2.$$

M-smooth functions

▶ f is M-Lipschitz smooth, S for M > 0 if

$$\nabla^2 f(x) \leq M I_n$$
.

- ▶ Equivalently: all eigenvalues of $\nabla^2 f(x)$ are $\leq M$.
- ► From the Taylor-expansion:

$$f(x) \le f(y) + \nabla f(y)^{\top}(x - y) + \frac{M}{2}||x - y||^2.$$

Lemma

For
$$x \in S$$
,

$$f(x) - p^* \ge \frac{1}{2M} \|\nabla f(x)\|^2.$$

Condition number

▶ Let f be both m-strongly convex and M-smooth on S:

$$mI_n \leq \nabla^2 f(x) \leq MI_n$$
.

- ▶ All eigenvalues of $\nabla^2 f(x)$ are in the interval [m, M].
- Condition number

$$\kappa := \frac{M}{m}$$

▶ Important quantity to bound the convergence of gradient descent.

Convergence analysis of gradient descent

Theorem

Let f be m-strongly convex and M-smooth on S; let $\kappa = M/m$. Then, in the kth iteration of gradient descent with exact line search, we have

$$f(x^{(k)}) - p^* \le \left(1 - \frac{1}{\kappa}\right)^k \cdot \left(f(x^{(0)}) - p^*\right).$$

Therefore, we find a solution $f(x^{(k)}) - p^* \le \varepsilon$ within

$$k \le \frac{\log \frac{f(x^{(0)}) - p^*}{\varepsilon}}{\log \frac{\kappa}{\kappa - 1}}$$

iterations. If κ is large, this is approximately

$$\kappa \log \frac{f(x^{(0)}) - p^*}{\varepsilon}.$$

Analysis for backtracking line search

Lemma

If f is M-smooth, then

$$f(x - t\nabla f(x)) \le f(x) - \alpha t \|\nabla f(x)\|^2$$
.

holds for every $\alpha \leq \frac{1}{2}$ and $0 \leq t \leq \frac{1}{M}$.

Analysis for backtracking line search

Lemma

If f is M-smooth, then

$$f(x - t\nabla f(x)) \le f(x) - \alpha t \|\nabla f(x)\|^2$$
.

holds for every $\alpha \leq \frac{1}{2}$ and $0 \leq t \leq \frac{1}{M}$.

Theorem

Let f be m-strongly convex and M-smooth on S. Then, in the kth iteration of gradient descent with backtracking line search, we have

$$f(x^{(k)}) - p^* \le \left(1 - \frac{1}{\kappa'}\right)^k \cdot \left(f(x^{(0)}) - p^*\right)$$

for

$$\kappa' = \max\left\{\frac{1}{\alpha m}, \frac{M}{\alpha \beta m}\right\}.$$

Analysis for M-smooth functions

- Assume the function is not strongly convex, or we do not have a good bound m > 0.
- ► Constant step size μ , for $\mu \leq 1/M$.

$$f(x^{(k+1)}) \le f(x^{(k)}) - \frac{\mu}{2} ||\nabla f(x^{(k)})||^2.$$

Theorem

If f is M-smooth, then gradient descent with constant step size $\mu \leq 1/M$ finds a solution $x^{(k)}$ with $f(x_k) - p^* \leq \varepsilon$ for

$$k \le \frac{C}{\mu \varepsilon} \|x^{(0)} - x^*\|^2$$

for some constant C > 0.

For $\mu = 1/M$,

$$k \leq \frac{CM}{\varepsilon} ||x^{(0)} - x^*||^2.$$

Constrained optimisation

▶ Convex set $X \subset \operatorname{dom} f$

$$\min f(x)$$

s. t. $x \in X$.

Descent method using feasible points:

$$x^{(k+1)} = x^{(k)} + t_k \Delta x^{(k)}$$

such that $x^{(k+1)} \in X$ and $f(x^{(k+1)}) < f(x^{(k)})$.

▶ Decreasing direction $\Delta x^{(k)}$:

$$\nabla f(x^{(k)})^{\top} \Delta x^{(k)} < 0.$$

► Optimality criterion

$$\nabla f(x^*)^{\top}(x-x^*) \geq 0$$
 for all $x \in X$.

► Direction finding subproblem:

$$\min \nabla f(x^{(k)})^{\top} y$$

s. t. $y \in X$.

► Optimality criterion

$$\nabla f(x^*)^{\top}(x-x^*) \geq 0$$
 for all $x \in X$.

► Direction finding subproblem:

$$\min \nabla f(x^{(k)})^{\top} y$$

s. t. $y \in X$.

- ▶ If the optimum is $x^{(k)}$, we terminate.
- ▶ Otherwise, for optimum $s \in X$, we have

$$\nabla f(x^{(k)})^{\top}(s-x^{(k)})<0.$$

▶ Decreasing direction $\Delta x^{(k)} = s - x^{(k)}$:

$$\nabla f(x^{(k)})^{\top}(s-x^{(k)}) < 0.$$

▶ Update

$$x^{(k+1)} = x^{(k)} + t_k(s - x^{(k)}) = (1 - t_k)x^{(k)} + t_k s$$

▶ $x^{(k+1)} \in X$ by convexity for every $0 \le t_k \le 1$.

▶ Decreasing direction $\Delta x^{(k)} = s - x^{(k)}$:

$$\nabla f(x^{(k)})^{\top}(s-x^{(k)}) < 0.$$

▶ Update

$$x^{(k+1)} = x^{(k)} + t_k(s - x^{(k)}) = (1 - t_k)x^{(k)} + t_k s$$

- $x^{(k+1)} \in X$ by convexity for every $0 \le t_k \le 1$.
- Exact line search:

$$t_k := \operatorname{argmin}_{0 < t < 1} f((1 - t)x^{(k)} + ts).$$

► Common choice: $t_k = 2/(k+1)$.

Lower bound

$$p^* = f(x^*) \ge f(x^{(k)}) + \nabla f(x^{(k)})^{\top} (s - x).$$

Lower bound

$$p^* = f(x^*) \ge f(x^{(k)}) + \nabla f(x^{(k)})^{\top} (s - x).$$

Theorem

If f is M-smooth, then the Frank-Wolfe method with exact line search or with step size $t_k = 2/(k+1)$ finds a solution $x^{(k)}$ with $f(x_k) - p^* \le \varepsilon$ for

$$k \le \frac{CM}{\varepsilon} \|x^{(0)} - x^*\|^2$$

for some constant C > 0.