Chapter 14 - Complex Integration

Selected Problem set 14.1

7.
$$z(t) = 2 + 4e^{\pi i t/2}$$
 $(0 \le t \le 2)$

$$e^{\frac{\pi t}{2}} = \cos(\frac{\pi t}{2}t) + \sin(\frac{\pi t}{2}t)$$

$$Z(0) = 2 + 4((+0)) = 6$$

$$z(i) = 2+4(0+i) = 2+4i$$

$$(2)^{2} = (2)^$$

11–20 FIND A PARAMETRIC REPRESENTATION

and sketch the path.

11. Segment from (-1, 1) to (1, 3)

$$M = \frac{3-1}{1-(-1)} = 1$$
(-(+t), 1+t) $0 \le t \le 2$

or
$$2(t) = (4,1) + it(2.2)$$

= $(4+2t) + i(1+2t)$

13. Upper half of
$$|z - 2 + i| = 2$$
 from $(4, -1)$ to $(0, -1)$

$$z(t) = 2 - i + 2e^{it}$$
 0 < t < T

$$Z(t) = (2 + 2 \cos t) + i \left(-1 + 2 \sin t\right)$$

$$0 \le t \le T$$

21-30

Integrate by the first method or state why it does not apply and use the second method. Show the details.

23. $\int e^z dz$, C the shortest path from πi to $2\pi i$

$$\int_{1}^{2} e^{t\pi i} \pi i dt$$

$$= \pi i \int_{1}^{2} [cos(t\pi) + i sin(t\pi)] dt$$

$$= \pi_{i} \left(0 + \frac{2}{\pi} \pi_{i} \right)$$

$$= 2$$

25. $z \exp(z^2) dz$, C from 1 along the axes to i

$$C_1$$
 $Z_1(t)=1-t$ $0 \le t \le 1$
 $Z_1(t)=-1$
 C_2 $Z_1(t)=ti$ $0 \le t \le 1$

Simpling Connected

Which is Simplor in Calculation

- $z_{2}(t)=i$
- $\int_{C} z \exp(z^2) = \int_{C} z \exp(z^2) + \int_{C} z \exp(z^2)$ analytic= Path independent (1-t) e(-t)2 (-1) dt + (ti) $(e^{x}) = 22 \cdot e^{x} = \int_{0}^{1} (t-1) \cdot e^{(1-t)^{2}} - t \cdot e^{-t^{2}} dt = - \sinh 1$ use first evaluation Sizerdz = 2 (-1 et dz = - Shih | -1,1752 very complex numerical approach

Selected Problem set 14.2

14.2 9, 11, 15, 21, 23, 25

9–19 CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details

9.
$$f(z) = \exp(-z^2)$$

10.
$$f(z) = \tan \frac{1}{4}z$$

$$Z = X + iy$$

$$f(z) = e^{-(x^{2} - y^{2} + 2xy)} = e^{y^{2} - x^{2} - 2xy}$$

$$= e^{y^{2} - x^{2}} \cdot e^{-2xy}$$

$$= e^{y^{2} - x^{2}} \cdot \left[(x + 2xy) + i + 5 \cdot x + (-2xy) \right]$$

$$= e^{y^{2} - x^{2}} \cdot \left[(x + 2xy) - i + 5 \cdot x + (-2xy) \right]$$

$$V = e^{y^{2} - x^{2}} \cdot \left[(x + 2xy) - i + 5 \cdot x + (-2xy) \right]$$

$$V = e^{y^{2} - x^{2}} \cdot \left[(x + 2xy) - i + 5 \cdot x + (-2xy) \right]$$

$$V = e^{y^{2} - x^{2}} \cdot \left[(x + 2xy) - i + 5 \cdot x + (-2xy) \right]$$

$$V = e^{y^{2} - x^{2}} \cdot \left[(x + 2xy) - i + 5 \cdot x + (-2xy) \right]$$

or:

$$S(x) = e^{x}$$

 $h(2) = -2^{2}$
are both analytic
=) composition
 $f(2) = g(h(2))$ and $f(2) = g(h(2))$

$$\oint_C f(\bar{x}) dz = 0$$

11. f(z) = 1/(2z - 1)

not analytic at z= =

9-19 **CAUCHY'S THEOREM APPLICABLE?**

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$\oint_{C} \frac{\partial X}{x} = 2\pi; \quad \text{per page 648.} \quad \text{for } C \text{ as clast Circle}$$

$$\text{Let } 2z - 1 = X \qquad 2dz = dX \qquad \qquad \text{Or } \int_{C} (z - z) dx$$

$$\oint_{C} \frac{1}{2z+1} dz = \oint_{C} \frac{1}{x} \frac{1}{z} dx$$

$$= \frac{1}{2} \oint_{C} \frac{dx}{x} = \frac{1}{2} 2\pi; = \pi;$$

15. f(z) = Im z

$$D = -\frac{1}{2} \left(\frac{\sqrt{4} - \sqrt{4}}{4} \right) + C$$

$$= -\frac{1}{4} \left(\frac{24}{4} - \frac{1}{2} \right) + C$$

$$= -\frac{1}{4} \left(\frac{21}{4} - \frac{1}{2} \right) + C$$

$$= -\frac{1}{4} \left(\frac{21}{4} - \frac{1}{2} \right) = -\frac{1}{4} \left(\frac{21}{6} - \frac{1}{4} \right)$$

$$= -\frac{1}{2} \left(\frac{21}{6} - \frac{1}{4} \right)$$

Or (2-2) d2=17

- **20.** $\oint \text{Ln}(1-z) dz$, C the boundary of the parallelogram
- 21. $\oint \frac{dz}{z-3i}$, C the circle $|z|=\pi$ counterclockwise.

Complex

C. apply the bown route ->

$$21 + (X) = \frac{1}{2-3i}$$
 not analytic at $2=3i$

$$Z(t) = e^{\pi} (\omega st + i sint) = e^{\pi} e^{it}$$
 $\omega \leq t \leq 2\pi$
 $Z(t) = e^{\pi} i e^{it}$

$$f(2(t)) = \frac{1}{e^{\pi}Gst + (e^{\pi}Sint - 3)i}$$

$$f(z)dz = \int_0^{2\pi} \frac{1}{e^{\pi} \omega st + (e^{\pi} sint - 3)i} e^{\pi t} e^{it} dt$$

$$= \int_{0}^{2\pi} \frac{\left[e^{\pi} \omega st - \left(e^{\pi} S nt - 3\right)\right] \cdot e^{\pi} \cdot v \cdot e^{it}}{e^{\pi} \omega st + \left(e^{\pi} S nt - 3\right)^{2}} dt$$

=
$$\left[n\left|e^{it+i}\right|^{2\pi}\right]$$
 = $\left[n\left|e^{it+i}\right|^{2\pi}\right]$ = $\left[n\left|e^{it+i}\right|^{$

$$2\pi i = \oint \frac{dx}{x}$$
 for D the unit circle

$$\oint_{E} \frac{dz}{z-3i} \quad \text{for } E \quad \text{cost+} i(\text{sint+3})$$

$$\oint_{C} \frac{d^{2}}{z^{-3}} = \oint_{E} \frac{d^{2}}{z^{-3}} = \oint_{D} \frac{d^{2}}{x} = 2\pi i \qquad \oint_{e} = \oint_{e_{1}} + \oint_{e_{2}} = \oint_{C} + \oint_{C_{2}} = \oint_{C}$$

23.
$$\oint_C \frac{2z-1}{z^2-z} dz, \quad C:$$

Use partial fractions.

$$\frac{a}{z} + \frac{b}{z-1} = \frac{az-a+bz}{z(z-1)}$$

$$a+b=2$$

$$\frac{2z-1}{z^2-z} = \frac{z-(+z)}{z(z-1)} = \frac{1}{z} + \frac{1}{z-1}$$

$$\oint_{C} \frac{2Z-1}{Z^{1}-Z} dz - \oint_{Z} \frac{1}{Z} dz + \oint_{Z-1} \frac{1}{Z} dz$$

$$= 2\pi i + 2\pi i = 4\pi i$$

25.
$$\oint_C \frac{e^z}{z} dz$$
, *C* consists of $|z| = 2$ counterclockwise and $|z| = 1$ clockwise.

$$C = \{ |z| = 2 \} - \{ |z| = 1 \}$$

$$= (|z| = 2) - (|z| = 1) - (|z| = 0)$$

$$=$$
 $\frac{1}{2}$ $\frac{1}{2}$

$$\oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz$$

Selected Problem set 14.3

14.3 1.3, 7, 13

1-4 CONTOUR INTEGRATION

Integrate $z^2/(z^2-1)$ by Cauchy's formula counterclockwise around the circle.

1.
$$|z+1|=1$$

2.
$$|z-1-i|=\pi/2$$

3.
$$|z + i| = 1.4$$

4.
$$|z + 5 - 5i| = 7$$

[9(2) not analytic at ±1. -1 in the domain, I is not

$$\oint_{C} \frac{z^{2}}{z^{2}-1} dz = \oint_{C} \frac{1}{(z-1)} \frac{z^{2}}{(z-1)} dz$$

 $=2\pi \left|\frac{2\pi}{2\pi}\right|^{2}\left(\frac{2\pi}{2\pi}\right)\left|\frac{2\pi}{2\pi}\right|^{2}$

 $\frac{1}{2}\int_{c}\frac{z^{2}}{2-c}dz-\frac{1}{2}\int_{c}\frac{z^{2}}{z+d}dz$

 $\underset{C}{\text{APP}} \int_{C} \frac{f(\Lambda)}{\Lambda - \chi_{o}} dX = 2 \pi i f(X_{o})$

=) 0~11=-17

3.
$$g(z) = \frac{z^2}{z^2 + 1}$$
 not analytic at ± 1 .

So g(z) is analytic in domain

So
$$\oint_C \frac{z^2}{z^2 + 1} dz = 0$$

5–8 Integrate the given function around the unit circle.

5.
$$(\cos 3z)/(6z)$$

6.
$$e^{2z}/(\pi z - i)$$

7.
$$z^3/(2z-i)$$

8.
$$(z^2 \sin z)/(4z - 1)$$

7. 9(2) not analytic at $\frac{1}{2}$ which is in the clamain.

$$\begin{cases}
\frac{z^3}{2z-1} dz = \frac{1}{z} \oint_C \frac{z^3}{z-\frac{1}{z}} dz \\
= \frac{1}{2} \cdot 2\pi i \quad z^3 |_{z=\frac{1}{z}}
\end{cases}$$

$$= \pi i \cdot (\frac{1}{z}i)^3 = \pi i$$

11–19 FURTHER CONTOUR INTEGRALS

Integrate counterclockwise or as indicated. Show the details.

13.
$$\oint_C \frac{z+2}{z-2} dz$$
, $C: |z-1| = 2$

9(2) not analytic at 2. which is covered in the domain.

$$\oint_{C} \frac{z+2}{z-2} dz = 2\pi i (z+2) \Big|_{z=2}$$

$$= 2\pi i \quad 4 = 8\pi i$$

Selected Problem set 14.4

CONTOUR INTEGRATION. UNIT

Integrate counterclockwise around the unit circle.

$$1. \oint_C \frac{\sin z}{z^4} dz$$

2.
$$\oint_C \frac{z^6}{(2z-1)^6} dz$$

3.
$$\oint_C \frac{e^z}{z^n} dz$$
, $n = 1, 2, \dots$ 4. $\oint_C \frac{e^z \cos z}{(z - \pi/4)^3} dz$

$$\mathbf{4.} \oint_C \frac{e^z \cos z}{\left(z - \pi/4\right)^3} \, dz$$

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$

$$\int_{C} \frac{f(z)}{(z-z_{0})^{n+1}} dz = \frac{f''(z_{0}) \cdot 2\pi}{n!}$$

$$\int_{C} \frac{e^{z}}{(z-0)^{n}} dz$$

$$= \frac{f(0)}{(n-1)!}$$

$$=\frac{1\cdot 2\pi i}{(N-1)!}$$

Integrate. Show the details. Hint. Begin by sketching the contour. Why?

13.
$$\oint_C \frac{\operatorname{Ln} z}{(z-2)^2} dz$$
, $C: |z-3| = 2$ counterclockwise.

$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

$$f(z) = L_n Z \quad n = 1$$

$$\oint_{C} \frac{\ln z}{(z-2)}, dz = (\ln(2)) \cdot 2\pi i$$

$$= \frac{1}{2} \cdot 2\pi i$$

$$=$$
 $\frac{1}{2}$