

الامتحان الوطني الموحد للبكالوريا الدورة الإستدراكية **2010** الموضوع

9	المعامل:	RS24	الرياضيات	المــــادة:
4	مدة الإنجاز:		شعبة العلوم الرياضية (أ) و (ب)	الشعب (ة) أو المسلك:

- مدة إنجاز الموضوع هي أربع ساعات.
- يتكون الموضوع من ثلاثة تمارين و مسألة جميعها مستقلة فيما بينها .
 - يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.
 - التمرين الأول يتعلق بالبنيات الجبرية.
 - التمرين الثاني يتعلق بالأعداد العقدية.
 - التمرين الثالث يتعلق بحساب الإحتمالات.
 - المسألة تتعلق بالتحليل.

لا يسمح باستعمال الآلة الحاسبة القابلة للبرمجة

ال<u>صف</u> 2 RS24

التمرين الأول: (3 نقط)

نذكر أن $(M_3(\mathbb{R}^1),+, imes)$ حلقة واحدية غير تبادلية.

$$E = \left\{ M\left(x\right) = \begin{pmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ x^2 & 2x & 1 \end{pmatrix} \middle/ x \in \mathbb{R}^2 \right\} :$$
i عتبر المجموعة :

- $(M_3(\overline{\mathbb{R}}), \times)$ بين أن E جزء مستقر في (1 0.5
- . (E, \times) نحو $(\mathbb{R}^1, +)$ نحو M(x) نحو فه M(x) نحو الخوي يربط العدد الحقيقي بالمصفوفة المصفوفة وM(x) بالمصفوفة المحدد الحقيقي بالمصفوفة المحدد الحقيقي عبد الحقيقي بالمصفوفة المحدد الحقيقي بالمصفوفة المحدد الحقيقي بالمحدد الحدد الحدد
 - ب- استنتج أن (E,\times) زمرة تبادلية.
 - ج- حدد M(x) مقلوب المصفوفة $M^{-1}(x)$ حيث x عدد حقيقي.
 - $A^5 = \underbrace{A \times A \times \times A}_{5}$ و B = M(12) و A = M(2) حيث $A^5 X = B$ المعادلة : $A = \underbrace{A \times A \times \times A}_{5}$ المعادلة : $A = \underbrace{A \times A \times \times A}_{5}$ المعادلة : $A = \underbrace{A \times A \times \times A}_{5}$
 - . (E, \times) زمرة جزئية للزمرة $F = \left\{ M\left(\ln(x)\right) / x \in \mathbb{R}_+^* \right\}$ زمرة جزئية للزمرة $(3, \times)$

التمرين الثاني: (4 نقط)

0.5

المستوى العقدي منسوب إلى معلم متعامد و ممنظم و مباشر $(O; \vec{u}, \vec{v})$.

- (E) $z^2-4iz-2+2i\sqrt{3}=0$ المعادلة (1 المعادلة نعتبر في المجموعة (1
- (E) أـ تحقق ان العدد العقدي $a=1+i(2-\sqrt{3})$ حل للمعادلة a=0.5
 - (E) ب- استنتج b الحل الثاني للمعادلة 0.5
 - $a^2 = 4(2 \sqrt{3})e^{i\frac{\pi}{6}}$: 1.5 مین آن (2 0.5
 - 0.75 ب- اكتب العدد a على الشكل المثلثي.
- $c=2i+2e^{irac{\pi}{7}}$ و b و a والتي ألحاقها على التوالي a والتي أحد أقطارها a والدائرة التي أحد أقطارها a
 - (Γ) أ حدد ω لحق النقطة Ω مركز الدائرة 0.5
 - (Γ) ب بین أن النقطتین O و O تنتمیان للدائرة O .5
 - ج- بين أن العدد العقدي $\frac{c-a}{c-b}$ تخيلي صرف. 0.75

التمرين الثالث: (3 نقط)

يحتوي صندوق على 10 كرات بيضاء و كرتين حمراوين.

نسحب الكرات من الصندوق الواحدة تلو الأخرى بدون إحلال إلى أن نحصل لأول مرة على كرة بيضاء ثم نوقف التجربة .

ليكن X المتغير العشوائي الذي يساوي عدد الكرات المسحوبة

X أـ حدد مجموعة قيم المتغير العشوائي (1)

$$[X=1]$$
 ب- احسب احتمال الحدث

$$p[X=2] = \frac{5}{33}$$
: ص- بين أن

0.5

0.75

$$[X=3]$$
 د- احسب احتمال الحدث $[0.5]$

$$(X)$$
 هو الأمل الرياضي للمتغير العشوائي $E(X)$ هو الأمل الرياضي للمتغير العشوائي $E(X)$

$$(X)$$
 ب- احسب (X) ثم استنتج قيمة $V(X)$. (حيث $V(X)$ هي مغايرة المتغير العشوائي $E(X^2)$

مسألة: (10 نقط) مسألة العددية f المعرفة على المجال I = [0,1] بما يلي: -

$$\begin{cases} f(x) = \frac{1}{1 - \ln(1 - x)} & ; \quad 0 \le x < 1 \\ f(1) = 0 & \end{cases}$$

و ليكن (C) المنحنى الممثل للدالة f في معلم متعامد ممنظم و ليكن

بين أن الدالة
$$f$$
 متصلة على اليسار في 1 f

ادرس قابلية اشتقاق الدالة
$$f$$
 على اليسار في 1 f على اليسار أي الدالة أي الدرس

الدالة
$$f$$
 على المجال I ثم أعط جدول تغير اتها. f أدرس تغير ات الدالة أعلى المجال I

$$\frac{e-1}{e}$$
 بين أن المنحنى يقبل نقطة انعطاف وحيدة أفصولها $\frac{e-1}{e}$

$$\left(\left\|\vec{i}\right\| = \left\|\vec{j}\right\| = 2cm\right)$$
 . 0 النقطة التي أفصولها . 0 مبرزا نصف مماسه في النقطة التي أفصولها . 0

$$f(\alpha) = \alpha$$
 :من أنه يوجد عدد حقيقي وحيد α من المجال I يحقق (0.5)

.
$$I$$
 نحو الدالة f تقابل من المجال انحو (6 f أ- بين أن الدالة أينا الدال

.
$$I$$
 المجال x من المجال $f^{-1}(x)$ عنصر x من المجال $f^{-1}(x)$

$$I_n = \int_0^1 t^n f(t) dt$$
: n و لكل عدد صحيح طبيعي غير منعدم $I_0 = \int_0^1 f(t) dt$: نضع -III

بين أن المنتالية
$$\left(I_n\right)_{n\geq 0}$$
 تناقصية ثم استنتج أنها متقاربة. $\left(1\right)$

$$(I_n)_{n\geq 0}$$
 بين أن $(\forall n\geq 0)$ $0\leq I_n\leq \frac{1}{n+1}$: نم حدد نهاية المتتالية (2 0.75

: نضع عدد منامجال J=[0,1[و لكل عدد صحيح طبيعي غير منعدم x نضع المجال J=[0,1[

$$S_n(x) = \sum_{k=0}^{k=n} F_k(x)$$
 o $F(x) = \int_0^x \frac{f(t)}{1-t} dt$ o $F_n(x) = \int_0^x t^n f(t) dt$ o $F_0(x) = \int_0^x f(t) dt$

$$(\forall n \in \Box) \quad (\forall x \in J) \quad F(x) - S_n(x) = \int_0^x \frac{t^{n+1} f(t)}{(1-t)} dt$$
 بين أن: (1

فحة	الصا
	4
4`	

RS24

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية عدى – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ)و(ب)

$$J$$
 المجال على المجال $x \to (1-x)(1-\ln(1-x))$: قطعا على المجال $(2 - 1)$

$$J$$
 بالمجال x من المجال $t \to \frac{f(t)}{1-t}$ بنزایدیة قطعا علی المجال $t \to \frac{f(t)}{1-t}$ بالمجال t

$$(\forall n \in \mathbb{N})$$
 $(\forall x \in J)$: $0 \le F(x) - S_n(x) \le \frac{1}{n+2} \left(\frac{1}{1-x}\right)$: نون أن : (3)

$$\lim_{n\to +\infty} S_n(x) = F(x)$$
 : ب- استنتج أنه مهما يكن العدد x من المجال J لدينا J العدد J من العدد J 0.5

$$x \in J$$
 من أجل $F(x)$ من أجل (4 0.5

0.5

1

0.25

$$\lim_{x\to 1^-} F(x)$$
 : ب- حدد النهاية

تصحيح موضوع مادة الرياضيات ، شعبة العلوم الرياضية ، الإمتحان الوطني دورة يوليوز 2010 تقدير العربي الوظيفي

ثانویة ابن تومرت مراکش

لتمرين 1:

ومنه

$(M_3(R), imes)$ ببین أن \mathbf{E} جزء مستقر في ا

لیکن M و N عنصرین من E ،

. N = M(y)و M = M(x) و yو ی عددان حقیقیان x

$$M(x) \times M(y) = \begin{pmatrix} 1 & 1 & 0 \\ x & 1 & 0 \\ x^2 & 2x & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ y & 1 & 0 \\ y^2 & 2y & 1 \end{pmatrix} :$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ x+y & 1 & 0 \\ (x+y)^2 & 2(x+y) & 1 \end{pmatrix}$$

$$= M(x+y)$$

 $M \times N \in E$: E من $M \in M$

 $(M_3(R), \times)$ جزء مستقر في $(M_3(R), \times)$.

(E, imes) نحو (R,+) نحو (E, imes) . أ. نبين أن ϕ

. ليكن x و y من R . لدينا :

$$\varphi(x+y) = M(x+y) = M(x) \times M(y) = \varphi(x) \times \varphi(y)$$

 $\phi(x+y) = \phi(x) \times \phi(y)$ الدینا R الدینا $\phi(x+y) = \phi(x) \times \phi(y)$

. (E,×) نحو (R,+) من φ نحو

M = M(x) عنصر M من M يوجد عدد حققى M حيث M = M(x) وذلك حسب تعريف M

 \cdot ومنه φ تطبیق شمولی من R نحو

ليكن x و y من R ، لدينا

$$\varphi(x) = \varphi(y) \Rightarrow M(x) = M(y)$$

$$\Rightarrow \begin{cases} x = y \\ x^2 = y^2 \\ 2x = 2y \end{cases}$$

x = y ادن لکل $\phi(x) = \phi(y)$ حیث R حیث $\phi(x) = \phi(y)$ ادینا

 \cdot ومنه φ تطبیق تباینی من R نحو

. (E,x) نحو (R,+) نحو وعليه فإن ϕ تشاكل تقابلي من

نعلم أن (R,+)زمرة تبادلية وحيث أن φ تشاكل تقابلي من (R,+) نحو (E,\times) فإن (E,\times) زمرة تبادلية .

${f R}$ من ${f X}$ عن ${f M}(x)$ عن ${f X}$

(-x) هو (R,+) ليكن x عددا حقيقيا . مماثل x في

http://www.vrac-coloriages.net

كغلوم رياضية خالعربي الوظيفيي استحراكية 2010

. arphi(-x) بما أن $\varphi(x)$ في (\mathbf{E}, \mathbf{x}) هو (\mathbf{E}, \mathbf{x}) هو أن $\varphi(x)$ في $\varphi(x)$ هو أن $\varphi(x)$

ومنه

 $\mathbf{M}(-\mathbf{x})$ مقلوب المصفوفة $\mathbf{M}(\mathbf{x})$ هو المصفوفة

${f A}^5={f A} imes{f A} imes{f A} imes{f A} imes{f A}$ و ${f B}={f M}$ و ${f A}^5.{f A}={f B}$: ${f A}^5.{f A}={f A}$

 \mathbf{E} ليكن \mathbf{X} عنصرا من

. R عنصر من $\mathbf{X} = \mathbf{M}(\mathbf{x})$ إذن

 $(\mathbf{R},+)$ بما أن (\mathbf{E},\times) نحو $(\mathbf{E},+)$ نحو $(\mathbf{E},+)$ فإن $(\mathbf{E},+)$ نحو $(\mathbf{E},+)$ نحو أن و بما أن $(\mathbf{E},+)$

: إذن. $\varphi^{-1}(\mathbf{M}(\mathbf{x})) = \mathbf{x} : \mathbf{R}$ ابن الكل χ من

ومنه:

 $S = \{M(2)\}$ مجموعة حلول المعادلة هي

$\mathbf{F} = \{\mathbf{M}(\mathbf{Inx}) / \mathbf{x} \in \mathbf{R}_+^*\}$ زمرة جزئية للزمرة $\mathbf{F} = \{\mathbf{M}(\mathbf{Inx}) / \mathbf{x} \in \mathbf{R}_+^*\}$ بين أن المجموعة

. العنصر المحايد في (R,+) هو العدد الحقيقي 0 .

M(0) بما أن ϕ تشاكل تقابلي من $\phi(0)$ نحو $\phi(0)$ فإن العنصر المحايد في $\phi(0)$ هو $\phi(0)$ أي المصفوفة $\phi(0)$ بما أن $\phi(0)$ والعدد 1 عنصر من $\phi(0)$ إذن $\phi(0)$ إذن $\phi(0)$ فإن العدد 1 عنصر من $\phi(0)$ إذن $\phi(0)$ أي المصفوفة $\phi(0)$

. ل في م عنصرين من F . ليكن م عنصرين من

.]0;+ ∞ [و $\mathbf{a} = \mathbf{M}(\mathbf{lnx})$ عنصران من $\mathbf{a} = \mathbf{M}(\mathbf{lnx})$

مقاوب المصفوفة b هو المصفوفة مقاوب المصفوفة معا

 $\mathbf{a} \times \mathbf{b}^{-1} = \mathbf{M}(\mathbf{lnx}) \times \mathbf{M}(-\mathbf{lny}) = \mathbf{M}(\mathbf{lnx} - \mathbf{lny}) = \mathbf{M}(\mathbf{ln} \frac{\mathbf{x}}{\mathbf{y}})$: لدينا

. F عنصر من $[0;+\infty]$ فإن $M\left(\ln\frac{x}{y}\right)$ عنصر من $[0;+\infty]$

وعليه فإن

 $_{
m C,+}$ زمرة جزئية للزمرة $_{
m (E,+)}$.

التمرين 2:

$: \mathbf{z}^2 - 4\mathbf{i}\,\mathbf{z} - 2 + 2\mathbf{i}\,\sqrt{3} = 0$ حل للمعادلة $\mathbf{a} = 1 + \mathbf{i}ig(2 - \sqrt{3}ig)$ المتحقق أن العدد العقدي

تعويض ثم تبيسيط ...

:(E) للمعادلة b بنستنتج الحل الثاني. 1

 $\mathbf{b} = 4\mathbf{i} - \mathbf{a}$: إذن $\mathbf{a} + \mathbf{b} = 4\mathbf{i}$. $\mathbf{a} + \mathbf{b} = 4\mathbf{i}$

ومنه

$$\mathbf{b} = -1 + \mathrm{i}\left(2 + \sqrt{3}\right)$$
 الحل الثاني هو

: $a^2 = 4(2 - \sqrt{3})e^{i\frac{\pi}{6}}$ ا.نبین آن

$$a^2 = (1 + i(2 - \sqrt{3}))^2 = -6 + 4\sqrt{3} + 4i - 2i\sqrt{3} = 4(2 - \sqrt{3})e^{i\frac{\pi}{6}}$$
 : لدينا

$$a^2 = 4(2 - \sqrt{3})e^{i\frac{\pi}{6}}$$

2.ب. انستنتج شكلا مثلثيا للعدد a

.
$$4(2-\sqrt{3})e^{i\frac{\pi}{6}}$$
 لدينا $a^2=4(2-\sqrt{3})e^{i\frac{\pi}{6}}$ لدينا $a^2=4(2-\sqrt{3})e^{i\frac{\pi}{6}}$ لدينا $a^2=4(2-\sqrt{3})e^{i\frac{\pi}{6}}$

$$a = -2\sqrt{2 - \sqrt{3}}e^{i\frac{\pi}{12}}$$
 ومنه $a = 2\sqrt{2 - \sqrt{3}}e^{i\frac{\pi}{12}}$:

 $a=2\sqrt{2-\sqrt{3}}e^{irac{\pi}{12}}$ وحيث أن الجزئين الحقيقي والتخيلي للعدد a

3.ألنحدد لحق مركز الدائرة:

$$\omega=rac{{f a}+{f b}}{2}$$
 هو (Γ) هو أي الدائرة $[AB]$

منه

$$\omega = 2i$$
 هو مركز الدائرة هو

$$\mathbf{R}=rac{\left|\mathbf{b}-\mathbf{a}
ight|}{2}=rac{\left|2-2\mathrm{i}\sqrt{3}
ight|}{2}=2$$
 شعاع الدائرة $\left(\Gamma
ight)$ هو

$$. C \in (\Gamma)$$
 فإن $\Omega C = |c - 2i| = \left| 2e^{i\frac{\pi}{7}} \right| = 2$ بما أن $\Omega = |c - 2i| = \left| 2e^{i\frac{\pi}{7}} \right|$

$rac{\mathbf{c} - \mathbf{a}}{\mathbf{c} - \mathbf{b}}$ تخيلي صرف:

 ${f C}$ بما أن ${f C}$ تنتمي إلى الدائرة التي أحد أقطارها ${f [}AB{f]}$ وتخالف النقطتين ${f A}$ و ${f B}$ فإن المثلث ${f A}BC$ قائم الزاوية في ${f C}$ منه قياس للزاوية الموجهة ${f (}\overline{f BC},\overline{f BA}{f BA}{f)}$ هو عمدة لعدد عقدي تخيلي صرف .

. وعليه فإن العدد العقدي $\dfrac{c-a}{c-b}$ تخيلي صرف

التمريسن 3:

.أ.نحدد قيم X:

نسحب عشوائيا الكرات واحدة تلو الأخرى ونقف حالما تظهر أول كرة بيضاء .

ليكن X عدد الكرات المسحوبة قيم X هي: 1، 2 و 3.

الحدث (X=1) هو الحصول على كرة بيضاء في المرة الأولى:

$$p(X=1) = \frac{card(X=1)}{card\Omega} = \frac{A_{10}^1}{A_{12}^1} = \frac{5}{6}$$

$p(X=2)=\frac{5}{33}$ نبين أن

الحدث (X=2) هو الحصول على كرة حمراء في المرة الأولى وكرة بيضاء في المرة الثانية:

$$p(X=2) = \frac{card(X=2)}{card\Omega} = \frac{A_2^1 A_{10}^1}{A_{12}^2} = \frac{5}{33}$$

(X = 3) الحدث احتمال الحدث.

الحدث (X=3) هو الحصول على كرة حمراء في المرة الأولى والثانية وكرة بيضاء في المرة الثالثة:

$$p(X=3) = \frac{\text{card}(X=3)}{\text{card}\Omega} = \frac{A_2^2.A_{10}^1}{A_{12}^3} = \frac{2 \times 10}{12 \times 11 \times 10} = \frac{1}{66}$$

: $E(X) = \frac{13}{11}$ أ.نبين أن 2

قانون احتمال X هو:

x_i	1	2	3
$\mathbf{p}(\mathbf{X} = \mathbf{x}_{i})$	$\frac{5}{6}$	$\frac{5}{22}$	$\frac{1}{\alpha}$
	0	33	00

$$E(X) = 1.\frac{5}{6} + 2.\frac{5}{33} + 3.\frac{1}{66}$$
: هو X هو المثاني للمتغير العشواني العشواني الأمل الرياضي المتغير العشواني العشواني العشواني الأمل الرياضي المتغير العشواني ال

ه منه

$$\mathbf{E}(\mathbf{X}) = \frac{13}{11}$$
: الأمل الرياضي للمتغير العشوائي X هو

$\mathbf{E}(\mathbf{X}^2)$ بنحدد $\mathbf{E}(\mathbf{X}^2)$ ثم نحسب 2.

$$E(X^2) = 1^2 \cdot \frac{5}{6} + 2^2 \cdot \frac{5}{33} + 3^2 \cdot \frac{1}{66} = \frac{52}{33}$$

$$V(X) = E(X^2) - (E(X))^2$$
 نعلم أن

$$V(X) = \frac{52}{33} - \left(\frac{13}{11}\right)^2 = \frac{65}{363}$$
 $|\dot{y}|$

ومنه:

$$V(X) = \frac{65}{363}$$
 $g(X^2) = \frac{52}{11}$

سألــة:

$$egin{cases} f(x)=rac{1}{1-\ln(1-x)} &, & 0\leq x\prec 1 \ f(1)=0 \end{cases}$$
 بما يلي : $I=[0,1]$ بما يلي :

الجزء 1:

1. لنبين أن الدالة f متصلة على اليسار في 1:

$$\lim_{x\to 1^-} (x) = \lim_{x\to 0^+} \frac{1}{1-\ln X}$$
 : $X = 1-x$ لدينا بوضع

$$\lim_{X\to 0^+} \frac{1}{1-\ln X} = 0$$
 ويما أن
$$\lim_{X\to 0^+} \ln X = -\infty$$

$$\lim_{x\to 1^-} f(x) = f(0) :$$
وبالتالي

ومنه f متصلة على اليسار في 1.

يندرس قابلية اشتقاق f على اليسار في 1:

لدينا ٠

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{1}{(x - 1)(1 - \ln(1 - x))}$$

$$= \lim_{X \to 0^{+}} \frac{1}{-X(1 - \ln X)}$$

$$= \lim_{X \to 0^{+}} \frac{1}{-X + X \ln X}$$
(X = 1 - x)

]0,1[من]0,1[وبما أن [X] يؤول إلى]0,1[فيمكن اعتبار

$$\displaystyle\lim_{ ext{X} o 0^+} - ext{X} + ext{X} \ln ext{X} = 0^-$$
 ای $\displaystyle\lim_{ ext{X} o 0^+} - ext{X} + ext{X} \ln ext{X} imes 0$

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = -\infty : \text{ (a)}$$

وبالتالي f غير قابلة للاشتقاق على اليسار في f .

3. ندرس تغيرات f على I:

الدالة f قابلة للاشتقاق على [0,1] و لكل x من [0,1] لدينا:

$$f'(x) = \frac{-(1-\ln(1-x))^1}{(1-\ln(1-x))^2} = \frac{-1}{(1-x)(1-\ln(1-x))^2} < 0$$

ومنه f تناقصية قطعا على [0,1].

وحيث أن f متصلة على اليسار في f فإن f تناقصية قطعا على [0,1] .

جدول تغيرات الدالة f هو:

Х	0		1
f'(x)		+	
f	1		• 0

$rac{e-1}{e}$ انبين أن لمنحنى f نقطة انعطاف وحيدة افصولها f .

$$f''(x) = \frac{-(1-\ln(1-x))^2 + 2(1-x)\cdot(1-\ln(1-x))\cdot\frac{1}{1-x}}{(1-x)^2(1-\ln(1-x))^4} = \frac{(1-\ln(1-x))(1+\ln(1-x))}{(1-x)^2(1-\ln(1-x))^4}$$

 $0 \prec 1 - \ln(1 - x)$: بما ان $1 - x \prec 1$ فان $0 \rightarrow \ln(1 - x) \prec 0$ اومنه

و بالتالي إشارة f''(x) هي اشارة و بالتالي إشارة ولدينا :

$$f''(x) = 0 \Leftrightarrow 1 + \ln(1 - x) = 0$$
$$\Leftrightarrow \ln(1 - x) = -1$$
$$\Leftrightarrow 1 - x = \frac{1}{e}$$
$$\Leftrightarrow x = \frac{e - 1}{e}$$

ولدينا:

$$f''(x) > 0 \Leftrightarrow \ln(1-x) > -1$$

$$\Leftrightarrow 1-x > \frac{1}{e}$$

$$\Leftrightarrow x < \frac{e-1}{e}$$

 $rac{{
m e}-1}{{
m e}}$ عند إشارتها عند ${
m f}$ تنعدم وتغير إشارتها عند

ومنه

$$rac{{
m e}-1}{{
m e}}$$
 منحنی f یقبل نقطة انعطاف وحیدة افصولها

4. ب- إنشاء منحنى f:

Page 6 sur 9

$\mathbf{f}(\mathbf{\alpha}) = \mathbf{\alpha}$ نبین وجود عدد حقیقی وحید α من Iحیث.

 $\phi(\mathbf{x}) = \mathbf{f}(\mathbf{x}) - \mathbf{x}$: بما يلي بالمعرفة على المعرفة على الدالة العددية والمعرفة على المعرفة على الدالة العددية والمعرفة على المعرفة على الم

الدالتان: f و \mathbf{x} تناقصيتان على I اذن ϕ تناقصية قطعا على I (مجموع دالتين لهما نفس الرتابة على مجال)

ولدينا : ϕ متصلة على I (مجموع دالتين متصلتين على مجال)

 $\varphi(0) \times \varphi(1) = -1 < 0$ ولدينا

[0,1] وحيدا α القيم الوسطية المعادلة $\phi(x)=0$ تقبل حلا وحيدا في $\phi(x)=0$ إذن : حسب مبرهنة

ومنه

6.أ.نبين أن f تقابل من I نحو I:

بما أن f متصلة وتناقصية قطعا على المجال I ن مرتبد مستحد من المراكب الدي و المراكب الدي

. [f(1); f(0)] = [0;1] فإن f نحو المجال المجال من المجال المجال من المجال المجال

: I لكل x لكل $f^{-1}(x)$ عن 6.

 $f^{-1}(x) = y$ ليكن x و y عنصرين من x حيث x

f(1) = 0 لأن y = 1 فإن x = 0 لأن .

: لدينا $x \neq 0$ الدينا

$$f^{-1}(x) = y \Leftrightarrow f(y) = x$$

$$\Leftrightarrow \frac{1}{1 - \ln(1 - y)} = x$$

$$\Leftrightarrow \ln(1 - y) = \frac{x - 1}{x}$$

$$\Leftrightarrow y = 1 - e^{\frac{x - 1}{x}}$$

ومنه

$$\begin{cases} f^{-1}(x) = 1 - e^{\frac{x-1}{x}} & ; & x \in]0;1] \\ f^{-1}(0) = 1 & \end{cases}$$

الجزء 2:

 $I_{n+1} - I_n = \int_0^1 t^{n+1} f(t) dt - \int_0^1 t^n f(t) dt = \int_0^1 t^n (t-1) f(t) dt$: ليكن n من n . ليكن

 $\int_0^1 t^n(t-1)f(t)dt \le 0$ وحيث أن $t^n(t-1)f(t)dt \le 0$ و بالتالي $t^n(t-1)f(t)dt \le 0$ إذن $t \in [0;1]$

. N من $I_{n+1} - I_n \leq 0$ ومنه

وعليه فإن المتتالية $\left(I_{n}\right)$ تناقصية .

. N من $I_n = \int_0^1 t^n f(t) dt \ge 0$ الكل [0; 1] لكل [0; 1] لكل الدينا .

ومنه (I_n) مصغورة بالعدد 0.

بما أن (I_n) تناقصية ومصغورة فإنها متقاربة .

\mathbf{N} نبین أن $\mathbf{I}_{\mathrm{n}} \leq \mathbf{I}_{\mathrm{n}} \leq \frac{1}{\mathrm{n}+1}$ نبین أن 2

لیکن n من N ،

[0;1] لكل $f(t) \le 1$ لكل المن

[0;1] لكل $t^n f(t) \le t^n$ الكل المن

$$0 \le \int_0^1 t^n f(t) dt \le \int_0^1 t^n dt : e^{-t} dt$$

$$0 \le I_n \le \frac{1}{n+1}$$
 فإن $0 \le I_n \le \frac{1}{n+1}$ فإن $\int_0^1 t^n dt = \left[\frac{t^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}$ وحيث أن

$\left(I_{n} ight)$ نحدد نهاية المتتالية

بما أن $I_n \leq I_n \leq I_n = 0$ لكل $I_n = 0$ فإن $I_n = 0$ فإن $I_n \leq I_n \leq I_$

الجزء 3:

$$F(x) - S_n(x) = \int_0^x \frac{t^{n+1}f(t)}{1-t}dt$$
 لكل $f(x) - S_n(x) = \int_0^x \frac{t^{n+1}f(t)}{1-t}dt$ لكل البين أن

: ليكن \mathbf{n} من \mathbf{N} و \mathbf{x} من J = [0;1] لدينا

ومنه:

. J لکن
$$\mathbf{N}$$
 من \mathbf{N} لکن $\mathbf{F}(\mathbf{x}) - \mathbf{S}_{\mathbf{n}}(\mathbf{x}) = \int_{0}^{\mathbf{x}} \frac{\mathbf{t}^{\mathbf{n}+1} \mathbf{f}(\mathbf{t})}{1-\mathbf{t}} d\mathbf{t}$

yا. نبين أن الدالة $(1-\ln(1-x))(1-\ln(1-x))$ تناقصية قطعا على المجال.

الدالة $(1-x)(1-\ln(1-x))$ قابلة للإشتقاق على مجال على الدوال القابلة للإشتقاق على مجال

 $\varphi'(x) = \ln(1-x)$: ولكل x من J من ن

. J فإن $x \in [0,1]$ وحيث أن $\varphi(x) \le 0$ فإن $x \in [0,1]$

. \mathbf{J} بنستنتج أن الدالمة $\frac{f(t)}{1-t} \xrightarrow[t \to 0]{} rac{f(t)}{1-t}$ حيث \mathbf{X} عنصر من \mathbf{J}

ليكن x عنصرا من J.

[0,x] ولاتنعدم عليه فإن [0,x] ولاتنعدم عليه فإن [0,x] تزايدية قطعا على وحيث أن [0,x]

ومنه:

$$egin{aligned} J & \text{I.i.} & ext{ I.i.} & ext{ I.i.}$$

: J نعن ان $N = 0 \le F(x) - S_n(x) \le \frac{1}{1-x} \frac{1}{n+2}$ اکل N من N = 0

یکن n من N و x من J ،

$$F(x)-S_n(x)=\int_0^x \frac{t^{n+1}f(t)}{1-t}dt$$
: لدينا

$$[0,x]$$
 لكل لمن $[0,x]$ لدينا $\frac{\mathbf{f(t)}}{1-\mathbf{t}} \leq \frac{\mathbf{f(t)}}{1-\mathbf{t}} \leq \frac{\mathbf{f(x)}}{1-\mathbf{t}}$ لكل من $[0,x]$ لدينا $[0,x]$ لأن الدالة

.
$$[0,x]$$
 کن t کن $0 \le \frac{t^{n+1}f(t)}{1-t} \le \frac{t^{n+1}f(x)}{1-x}$

$$0 \le \int_0^x \frac{t^{n+1}f(t)}{1-t}dt \le \int_0^x \frac{t^{n+1}f(x)}{1-x}dt$$
 وبالتالي:

$$f(x) \le 1$$
 $\dot{\psi}$ $0 \le \int_0^x \frac{t^{n+1}f(t)}{1-t}dt \le \frac{1}{1-x} \int_0^x t^{n+1}dt : \dot{\psi}$

$$\int_0^x t^{n+1} dt = \left[\frac{t^{n+2}}{n+2} \right]_0^x = \frac{x^{n+2}}{n+2}$$
 ولدينا

$$0 \le \int_0^x \frac{t^{n+1}f(t)}{1-t}dt \le \frac{1}{1-x} \frac{1}{n+2}$$
 ويما أن $x \in [0,1]$ فإن $x \in [0,1]$ ويما أن

وعليه فإن:

$$J$$
 من x من N لكل n من $0 \le F(x) - S_n(x) \le \frac{1}{1-x} \frac{1}{n+2}$

: $\lim_{x \to \infty} S_n(x) = F(x)$: ان لکل دینا نکل که من الدینا: 3.

لیکن x من J،

$$0 \le F(x) - S_n(x) \le \frac{1}{1 - x} \frac{1}{n + 2}$$
 لكل n من N لدينا

.
$$\lim_{n\to+\infty} S_n(x) = F(x)$$
 فإن $\lim_{n\to+\infty} \frac{1}{1-x} \frac{1}{n+2} = 0$ وحيث أن

ومنه:

.
$$\lim_{n \to \infty} S_n(x) = F(x)$$
 : لكل x من J لدينا

$x \in J$ من أجل $\mathbf{F}(\mathbf{x})$ أ. نحدد

لیکن X من J ، لدینا:

$$F(x) = \int_0^x \frac{f(t)}{1-t} dt = \int_0^x \frac{1}{(1-t)(1-\ln(1-t))} dt = \int_0^x \frac{(1-\ln(1-t))^2}{(1-\ln(1-t))} dt = \left[\ln|1-\ln(1-t)|\right]_0^x = \ln(1-\ln(1-x))$$

ومنه:

: $\lim_{x\to 1^-} F(x)$ ب.نحدد النهاية.

$$t = 1 - x$$
 بوضع $\lim_{x \to 1^{-}} \ln(1 - x) = \lim_{t \to 0^{+}} \ln t = -\infty$ لدينا

ومنه:

$$\lim_{x\to 1^-} \mathbf{F}(\mathbf{x}) = +\infty$$

http://www.vrac-coloriages.net