

Lecture 1: Probabilistic Model

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

MONTH DAY, 2021

Outline

- Probabilistic Model
- Sample Space, Event, Probability Law
- Probability Axioms

What Do We Want?

Modeling: Approximate reality with a simple (mathematical) model

- Experiment
- Observation: a random outcome
- All outcomes

- Flip two coins
- \circ for example, (H, H)
- $\circ \{(H,H),(H,T),(T,H),(T,T)\}$
- Our goal: Build up a probabilistic model for an experiment with random outcomes
- Probabilistic model?
 - Assign a number to each outcome or a set of outcomes
 - Mathematical description of an uncertain situation
- Which model is good or bad?

Probabilistic Model

Goal: Build up a probabilistic model. Hmm... How?

The first thing: What are the *elements* of a probabilistic model?

Elements of Probabilistic Model

- 1. All outcomes of my interest: Sample Space Ω
- 2. Assigned numbers to each outcome of Ω : Probability Law $\mathbb{P}(\cdot)$

Question: What are the conditions of Ω and $\mathbb{P}(\cdot)$ under which their induced probability model becomes "legitimate"?

1. Sample Space Ω

The set of all outcomes of

my interest

- 1. Mutually exclusive
- 2. Collectively exhaustive
- 3. At the right granularity (not too concrete, not too abstract)

- 1. Toss a coin. What about this? $\Omega = \{H, T, HT\}$
- 2. Toss a coin. What about this? $\Omega = \{H\}$
- 3. (a) Just figuring out prob. of H or T. $\Longrightarrow \Omega = \{H, T\}$
 - (b) The impact of the weather (rain or no rain) on the coin's behavior.

$$\Longrightarrow \Omega = \{(H, R), (T, R), (H, NR), (T, NR)t\},\$$

where R(Rain), NR(No Rain).

Examples: Sample Space Ω

Discrete case: Two rolls of a tetrahedral die

$$-\Omega = \{(1,1), (1,2), \dots, (4,4)\}$$

Continuous case: Dropping a needle in a plain

$$-\Omega = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x, y \le 1\}$$

2. Probability Law

- Assign numbers to what? Each outcome?
- What is the probability of dropping a needle at (0.5, 0.5) over the 1×1 plane?
- A subset of Ω : an event
- $\mathbb{P}(A)$: Probability of an event A.
 - This is where probability meets set theory.
- Roll a dice. What is the probability of odd numbers?

$$\mathbb{P}(\{1,3,5\})$$
, where $\{1,3,5\}\subset\Omega$ is an event.

How should we construct $\mathbb{P}(\cdot)$?

- Need to construct $\mathbb{P}(\cdot)$ that naturally satisfies the intention of a probability theory designer just like you. What about the followings as starting points?
 - $\circ \ \mathbb{P}(A) \geq 0$ for any event $A \subset \Omega$

$$\quad \circ \ \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

$$\circ \mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$$

- For two disjoint events A and B, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$
- $\circ \ \mathbb{P}(\Omega) = 1 \ (\mathsf{Why not} \ \mathbb{P}(\Omega) = 10?)$
- $\circ \mathbb{P}(\emptyset) = 0$
- \circ If $A \subset B$, $\mathbb{P}(A) \leq \mathbb{P}(B)$
- many others

Probability Axioms

• Surprisingly, we need just the following three rules (called axioms):

Probability Axioms: Version 1

A1. Nonnegativity: $\mathbb{P}(A) \geq 0$ for any event $A \subset \Omega$

A2. Normalization: $\mathbb{P}(\Omega) = 1$

A3. (Finite) additivity: For two disjoint events A and B, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

- No other things are necessary, and we can prove all other things from the above axioms.
- Note that coming up with the above axioms is far from trivial.

Examples

Prove the following properties using the axioms:

1. For any event A, $\mathbb{P}(A) \leq 1$

$$1\stackrel{\mathsf{A2}}{=}\mathbb{P}(\Omega)=\mathbb{P}(A\cup A^c)\stackrel{\mathsf{A3}}{=}\mathbb{P}(A)+\mathbb{P}(A^c)\Longrightarrow \mathbb{P}(A)=1-\mathbb{P}(A^c)\stackrel{\mathsf{A1}}{\leq}1$$

2. $\mathbb{P}(\emptyset) = 0$

$$\mathbb{P}(\Omega \cup \emptyset) \stackrel{\mathsf{A3}}{=} \mathbb{P}(\Omega) + \mathbb{P}(\emptyset) \stackrel{\mathsf{A2}}{=} 1 + \mathbb{P}(\emptyset) \stackrel{\mathsf{from}}{\Longrightarrow}^{1.} \mathbb{P}(\emptyset) = 0$$

3. If $A \subset B$, $\mathbb{P}(A) \leq \mathbb{P}(B)$

$$\mathbb{P}(B) \stackrel{\mathsf{A3}}{=} \mathbb{P}(A) + \mathbb{P}(B \setminus A) \stackrel{\mathsf{A1}}{\geq} \mathbb{P}(A)$$

Probability Calculation Steps

- 1. Specify the sample space
- 2. Specify a probability law- from my earlier belief, from data, from expert's opinion
- 3. Identify an event of interest
- 4. Calculate

Toss a (biased) coin

1.
$$\Omega = \{H, T\}$$

2.
$$\mathbb{P}(\{H\}) = 1/4$$
, $\mathbb{P}(\{T\}) = 3/4$,

- 3. probability of head or tail
- **4**. 1/4, 3/4

Discrete but infinite sample space

•
$$\Omega = \{1, 2, 3, \ldots\}, \mathbb{P}(\{n\}) = \frac{1}{2^n}, n = 1, 2, \ldots$$

• **P**(even)?

$$\mathbb{P}(\text{even}) = \mathbb{P}(\{2, 4, 6, \ldots\})$$

$$= \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = 1/3$$

• Is the above right? If not, why?

Probability Axioms Version 1 2

Probability Axioms: Version 1 2

- A1. Nonnegativity: $\mathbb{P}(A) \geq 0$ for any event $A \subset \Omega$
- A2. Normalization: $\mathbb{P}(\Omega) = 1$
- A3. (Finite) additivity: For two disjoint events A and B, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$
- A4. Countable additivity: If $A_1, A_2, A_3, ...$ is an infite sequence of disjoint events, then $\mathbb{P}(A_1 \cup A_2 \cup \cdots) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \cdots$.

Interpretation of Probability Theory

- A narrow view: A branch of math
 - axioms \rightarrow theorems

• Frequencies: $\mathbb{P}(H) = 1/2$

- Beliefs: $\mathbb{P}(\text{He is reelected}) = 0.7$
 - Subjective, but providing numerical guidance

Questions?

Congratulations! You build up the very basics of a probabilistic model.

What else do we need to build up?

Review Questions

- 1) Please explain what a probabilistic model is and why we need it.
- 2) What is the mathematical definition of event?
- 3) What are the key elements of the probabilistic model?
- 4) Please list up the probability axioms and explain them.
- 5) Why do we need countable additivity in the probability axiom?