

Lecture 5 **Gradient Descent Learning**

The Supervised Learning Problem

Input patterns
$$\overline{x}^k \in \mathbf{X} \subset \mathfrak{R}^{n+1}$$
 $k = 1, ..., M$

$$\overline{\mathbf{x}}^{k} = \left[\begin{array}{cccc} \mathbf{x}_{0}^{k} & \mathbf{x}_{1}^{k} & \mathbf{x}_{2}^{k} & \dots & \mathbf{x}_{n}^{k} \end{array} \right]^{T}$$

Output patterns $\overline{y}^k \in \mathbf{Y} \subset \mathfrak{R}^{l+1}$ k = 1, ..., M

$$\overline{y}^k = \left[y_1^k \ y_2^k \ \dots y_l^k \right]^T$$

Training Set

Fit a model:

$$\hat{\overline{y}} = f(\overline{x}; \overline{w})$$

$$\overline{w} = \begin{bmatrix} w_1 & w_2 & \cdots & w_N \end{bmatrix}$$
 are the parameters of the model

to minimize the loss function

$$J(\overline{w}) = \sum_{k} J^{k}(\overline{w}) = \sum_{k} e(\hat{\overline{y}}^{k}, \overline{y}^{k}; \overline{w})$$

 $e(\hat{\overline{y}}, \overline{y}; w)$ is an error function

by adapting the parameters \overline{w}

Loss Functions

The three most commonly used loss functions are:

Absolute Error:

$$J_{1}(\overline{w}) = \sum_{k=1}^{M} \sum_{i=1}^{l} |y_{i}^{k} - \hat{y}_{i}^{k}| \qquad e_{i}^{k} \equiv y_{i}^{k} - \hat{y}_{i}^{k} \qquad J^{k} \equiv \sum_{i} |e_{i}^{k}| = \sum_{i} |y_{i}^{k} - \hat{y}_{i}^{k}|$$

Mean-Squared Error (MSE):

$$J_{2}(\overline{w}) = \sum_{k=1}^{M} \sum_{i=1}^{l} (y_{i}^{k} - \hat{y}_{i}^{k})^{2} \qquad e_{i}^{k} \equiv y_{i}^{k} - \hat{y}_{i}^{k} \qquad J^{k} \equiv \sum_{i} (e_{i}^{k})^{2} = \sum_{i} (y_{i}^{k} - \hat{y}_{i}^{k})^{2}$$

Cross-Entropy Loss:

Used for binary (0/1) desired outputs and sigmoid actual outputs

$$J_{CE}(\overline{w}) = -\sum_{k=1}^{M} \sum_{i=1}^{l} (y_i^k \log \hat{y}_i^k + (1 - y_i^k) \log(1 - \hat{y}_i^k))$$

Ali A. Minai 2020 EECS Department, University of Cincinnati Intelligent Systems

The Error Surface

 $J(\overline{w})$ defines a surface on the *N*-dimensional space of parameters \overline{w} \rightarrow **error surface**

Optimization \leftrightarrow Finding the lowest point on this error surface \rightarrow **global minimum**.

For most non-trivial problems, the error surface is very complicated and has many local minima.

Iterative Optimization

- 1. Present data points from the training set one at a time to the model.
- 2. Calculate the loss for each data point.
- 3. Modify the parameters:
 - a) After each step (on-line mode)

or

b) after going through all the data points (batch mode)

such that:

$$J(\overline{w}(T+1)) < J(\overline{w}(T))$$
 where T is the learning time step

Training Epoch:

Usually, one pass through all the training data. In some cases, only a subset of the data may be seen in any given epoch.

On-Line Mode:

- a. Initialize $\overline{w} = \overline{w}(0)$
- b. For t = 1 to L_{train} (some large integer)
 - Present $\overline{x}(t) = \overline{x}^k \in X$ (thus k is the index of $\overline{x}(t)$ in X)
 - Obtain $\hat{\overline{y}}(t) = f(\overline{x}(t); \overline{w})$
 - Calculate error $J(t) = J^k$
 - Calculate parameter change $\Delta \overline{w}(t)$ based on J(t)
 - Modify \overline{w} : $\overline{w}(t+1) = \overline{w}(t) + \Delta \overline{w}(t)$
- c. Evaluate error. If ok, end else, repeat from b.

An alternative is to use a <u>repeat...until</u> instead of <u>for</u> so that the # of learning steps depends on the performance rather than a preset value.

Batch Mode:

a. Initialize:
$$\overline{w} = \overline{w}(0)$$
 $T = 0$

$$t = \text{fast dynamics (data points)}$$

$$T = \text{slow dynamics (epoch)}$$

b.
$$\overline{\Delta}_{acc} = \overline{0}$$
 (same dimension as \overline{w})

c. For
$$t = 1$$
 to L_{epoch} (number of data points in the epoch)

- Present $\overline{x}(t) = \overline{x}^k \in X$ (thus k is the index of $\overline{x}(t)$ in X)
- Obtain $\hat{\overline{y}}(t) = f(\overline{x}(t); \overline{w})$
- Calculate error $J(t) = J^k$
- Calculate parameter change $\Delta \overline{w}(t)$ based on J(t)

$$\bullet \quad \overline{\Delta}_{acc} = \quad \overline{\Delta}_{acc} + \Delta \overline{w}(t)$$

d. Modify
$$\overline{w}$$
: $\overline{w}' = \overline{w}(T) + \overline{\Delta}_{acc}$

e.
$$T = T + 1$$
 , $\overline{w}(T + 1) = \overline{w}'$

f. Repeat from b. until done (or exhausted)

Gradient Descent Optimization

The main question in iterative optimization is: How to determine $\Delta \overline{w}$?

Assume that $J(\overline{w})$ is differentiable

Gradient of $J(\overline{w})$ is

$$\nabla J(\overline{w}) = \left[\frac{\partial J}{\partial w_1} \quad \frac{\partial J}{\partial w_2} \quad . \quad . \quad . \quad \frac{\partial J}{\partial w_N} \right]^T$$

where N = total # of parameters = dimension of parameter space

Optimum:
$$J(\overline{w}^*) \leq J(\overline{w}) \quad \forall \ \overline{w} \quad \Rightarrow \quad \nabla J(\overline{w}^*) = 0$$

Gradient Descent Rule: Change \overline{w} in the direction of the negative gradient.

$$\overline{w}(T+1) = \overline{w}(T) + \Delta \overline{w}(T) = \overline{w}(T) - \eta \nabla J(\overline{w}(T))$$
 η = learning rate

$$\Delta w_i(t) = -\eta \frac{\partial J}{\partial w_i}$$

To see why this works, expand $J(\overline{w}(T+1))$ in a Taylor series.

$$J(\overline{w}(T+1)) \approx J(\overline{w}(T)) + [\nabla J(\overline{w}(T))]^T \Delta \overline{w}(T) + \text{higher order term s.}$$

To lower LHS.
$$(\nabla J)^T \Delta \overline{w} < 0$$

Since
$$(\nabla J)^T \Delta \overline{w} = \|\nabla J\| \|\Delta \overline{w}\| \cos \theta$$
 is the angle between ∇J and $\Delta \overline{w}$

Loss is reduced most when $\cos = -1 \implies \Delta \overline{w} \propto - \nabla J$

Intuitive Explanation:

- If you are trying to get to the bottom of a valley, the fastest way down is to go down the steepest slope at every step.
- The gradient vector points up the steepest slope at every point.
- Thus, going in the opposite direction of the gradient is the steepest way down.

Stochastic Gradient Descent (Online)

Note that, ideally, gradient descent training of a network requires:

$$\overline{w}(T+1) = \overline{w}(T) - \eta \nabla J(\overline{w}(T))$$

where
$$\nabla J(\overline{w}(T)) = \nabla \sum_{k=1}^{m} J^{k}(\overline{w}(T))$$
 i.e., the gradient must be calculated over **all** data summed together, using weights from epoch T .

This can be problematic for very large data-sets

Solution: Train in on-line mode, selecting data points *randomly* from the data-set at each step, and updating immediately.

- a. Initialize $\overline{w} = \overline{w}(0)$
- b. For t = 1 to M (some large integer)
 - Choose $\bar{x}(t) = x^k \in X$ randomly using some policy
 - Obtain $\hat{\overline{y}}(t) = f(\overline{w}^T \overline{x}(t))$
 - Calculate error e(t) and local gradient $\nabla J^k(\overline{w}(t))$
 - Modify \overline{w} : $\overline{w}(t+1) = \overline{w}(t) \eta \nabla J^{k}(\overline{w}(t))$
- c. Evaluate error. If ok, end else, repeat from b.

Stochastic gradient descent is used widely in applications of supervised learning to
<a href="https://d

Stochastic Gradient Descent (Minibatch)

- Divide up each epoch into several minibatches of data (random or regular).
- Average gradient over each minibatch and adjust weights.
 - a. Initialize $\overline{w} = \overline{w}(0)$
 - b. For T = 1 to N_{epochs}

Set minibatch gradient $\nabla J_{mb} = 0$

For t = 1 to q

- Choose $\overline{x}(t) = x^k \in X$ randomly using some policy
- Obtain $\hat{\overline{y}}(t) = f(\overline{w}^T \overline{x}(t))$
- Calculate error e(t) and local gradient $\nabla J^k(\overline{w}(t))$
- Accumulate minibatch gradient $\nabla J_{mb} = \nabla J_{mb} + \nabla J^{k}(\overline{w}(t))$

Modify
$$\overline{w}$$
: $\overline{w}(t+1) = \overline{w}(t) - \eta \frac{1}{q} \nabla J_{mb}$

Obviously, this can also be run in *repeat* *until* mode instead of a *for* loop with a pre-specified number of epochs.

Active Management of Training Data

- Use examples on which error is greater.
- Use examples that are very different from those already used (to cover new regions of sample space)
- Randomize the order of presentation.
- Weight probability of presentation for different classes.
- Watch out for outliers that can really skew the weights catastrophically.
- Use multiple, overlapping training and testing sets.

Gradient Descent with Momentum

Original gradient descent update:

$$\Delta w_{ij}(t) = -\eta \frac{\partial J}{\partial w_{ij}}$$

Gradient descent with momentum:

$$\Delta w_{ij}(t) = -\eta \frac{\partial J}{\partial w_{ij}} + \alpha \Delta w_{ij}(t-1)$$

$$\leq |\alpha| < 1$$

If $|\alpha| \ge 1$, the equation can become unstable.

What does momentum do?

- if Δw_i has the same sign for several consecutive iterations
- if Δw_i has alternating signs over consecutive iterations

- \Rightarrow stable downhill direction for w_i
- \Rightarrow w_i is not contributing much to descent
- → momentum increases descent rate
- \rightarrow momentum damps movement in w_i

Without momentum, Δw_2 is not contributing to progress. This is indicated by its oscillating sign.

With momentum, Δw_2 is damped and Δw_1 increased to find minimum faster

Momentum magnifies progress in directions of sustained descent and diminishes progress in other directions

College of Engineering & Applied Science Department of
Electrical
Engineering and
Computer Science

The Adam (Adaptive Moment) Algorithm

Kingma & Ba (2015) ADAM: A Method for Stochastic Optimization, Proc. ICLR 2015

Parameters: Learning rate η , Biases β_1 , β_2

Variables: 1st moment $\overline{m}(t)$, $\overline{M}(t)$, 2nd moment $\overline{V}(t)$, $\overline{V}(t)$

Weights: $\overline{w}(t) = [w_{ij}(t)]$

Initialize: $\overline{w}(0)$, $\overline{m}(0) = 0$, $\overline{v}(0) = 0$, t = 0

while \overline{w} not converged **do**

$$t = t + 1$$

$$\overline{g}(t) = \nabla J(\overline{w}(t-1))$$
 current loss gradient

$$\overline{m}(t) = \beta_1 \overline{m}(t-1) + (1-\beta_1)\overline{g}(t)$$
 update biased 1st moment

$$\overline{v}(t) = \beta_2 \overline{v}(t-1) + (1-\beta_2)(\overline{g}(t) \odot \overline{g}(t))$$
 update biased 2nd moment

 $\rightarrow \overline{M}(t) = \overline{m}(t)/(1 - \beta_1^t)$ compute unbiased 1st moment

$$\nabla \overline{V}(t) = \overline{v}(t)/(1 - \beta_2^t)$$
 compute unbiased 2nd moment

$$\Delta \overline{w}(t) = -\eta \overline{M}(t) / (\sqrt{\overline{V}(t)} + \varepsilon) \quad \text{update weights} \quad \checkmark$$

Elementwise ratio

Elementwise

product

end **while** return $\overline{w}(t)$

Recommended choices: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\varepsilon = 10^{-8}$

raised to

power *t*

Simple Neuron Model

Activation Functions

Leaky ReLU $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

Source: https://www.quora.com/

Why use ReLU?

- It is nonlinear and monotonic (both useful/necessary)
- Its gradient does not vanish on the positive side (unlike sigmoids).
- It gives infinite range of output values (0 to $+\infty$)

But

- ReLU gradient vanishes on negative side → Leaky ReLU
- ReLU is non-differentiable at 0 → ELU

The Least Mean Square (LMS) Algorithm

Consider a single layer of neurons

For data point $(\overline{x}^q, \overline{y}^q)$

Define:

$$J^{q} = \frac{1}{2} \sum_{i=1}^{l} (e_{i}^{q})^{2} = \frac{1}{2} \sum_{i=1}^{l} (y_{i}^{q} - \hat{y}_{i}^{q})^{2}$$

$$J = \sum_{q=1}^{M} J^q$$

$$J = \frac{1}{2} \sum_{q=1}^{M} \sum_{i=1}^{l} \left[y_i^q - f \left(\sum_{j=0}^{n} w_{ij} x_j^q \right) \right]^2$$

Input patterns
$$\overline{x}^q \in X \subset \mathfrak{R}^{n+1}$$
 $q = 1, ..., M$

$$\overline{x}^q = \begin{bmatrix} 1 & x_1^q & x_2^q & \dots & x_n^q \end{bmatrix}^T$$

Output patterns $\overline{y}^q \in Y \subset \Re^l$ Note that y_i are not necessarily 0,1

Weight matrix
$$\overline{w} = [\overline{w_1} \ \overline{w_2} \ ... \ \overline{w_l}]^T$$

$$\overline{w_i} = [w_{i0} \ w_{i1} \ w_{i2} \ ... \ w_{in}]^T$$
bias weight
$$\overline{w_i} \in \Re^{n+1}$$

- $\overline{x}(t) \equiv \text{pattern presented at time step } t$ $x(t) \in X$
- $\overline{y}(t) \equiv$ desired response at step t $\overline{y}(t) \in Y$
- $\overline{w}(t) \equiv$ weight matrix at step t
- $\hat{\overline{y}}(t) \equiv \text{actual output at step } t$

$$\hat{\overline{y}}(t) = [\hat{y}_1(t) \quad \hat{y}_2(t) \quad \dots \quad \hat{y}_l(t)]^T$$

$$\hat{y}_i(t) = f(\overline{w}_i^T(t) \ \overline{x}(t))$$

if \overline{x}^q is presented to the network $\Delta \overline{w} = -\eta \nabla J^q$

$$\nabla J^{q} = \begin{bmatrix} \frac{\partial J^{q}}{\partial w_{10}} \\ \cdot \\ \cdot \\ \frac{\partial J^{q}}{\partial w_{ln}} \end{bmatrix}$$

so
$$\Delta w_{ij} = -\eta \frac{\partial J^q}{\partial w_{ij}}$$

$$\frac{\partial J^{q}}{\partial w_{ij}} = \frac{\partial \frac{1}{2} \sum_{p} (e_{p}^{q})^{2}}{\partial w_{ij}}$$

$$p = \text{index of units.}$$

$$p = 1, \dots, l$$

$$p =$$

$$\frac{\partial J^{k}}{\partial w_{ij}} = \frac{1}{2} \frac{\partial \left(e_{i}^{q}\right)^{2}}{\partial w_{ij}}$$

$$=\frac{1}{2}\frac{\partial \left(e_{i}^{q}\right)^{2}}{\partial e_{i}^{q}}\frac{\partial e_{i}^{q}}{\partial w_{ij}}$$

$$=e_{i}^{q}\frac{\partial e_{i}^{q}}{\partial \hat{y}_{i}^{q}}\frac{\partial \hat{y}_{i}^{q}}{\partial w_{ij}}$$

$$=e_{i}^{q} \cdot \frac{\partial e_{i}^{q}}{\partial \hat{y}_{i}^{q}} \cdot \frac{\partial \hat{y}_{i}^{q}}{\partial s_{i}^{q}} \cdot \frac{\partial s_{i}^{q}}{\partial w_{ij}}$$

$$=e_{i}^{q} \cdot (-1) \cdot f'(s_{i}^{q}) \cdot x_{j}^{q}$$

$$\frac{\partial J^q}{\partial w_{ij}} = -e_i^q f'(s_i^q) x_j^q$$
$$= -(y_i^q - \hat{y}_i^q) f'(s_i^q) x_j^q$$

$$\Delta w_{ij} = \eta (y_i^q - \hat{y}_i^q) f'(s_i^q) x_j^q$$

$$\frac{\partial J^{k}}{\partial w_{ij}} = \frac{1}{2} \frac{\partial \left(e_{i}^{q}\right)^{2}}{\partial w_{ij}}$$

$$=\frac{1}{2}\frac{\partial \left(e_{i}^{q}\right)^{2}}{\partial e_{i}^{q}}\frac{\partial e_{i}^{q}}{\partial w_{ij}}$$

$$=e_{i}^{q}\frac{\partial e_{i}^{q}}{\partial \hat{y}_{i}^{q}}\frac{\partial \hat{y}_{i}^{q}}{\partial w_{ii}}$$

$$= e_{i}^{q} \cdot \frac{\partial e_{i}^{q}}{\partial \hat{y}_{i}^{q}} \cdot \frac{\partial \hat{y}_{i}^{q}}{\partial s_{i}^{q}} \cdot \frac{\partial s_{i}^{q}}{\partial w_{ij}}$$

$$= e_{i}^{q} \cdot (-1) \cdot f'(s_{i}^{q}) \cdot x_{j}^{q}$$

$$\frac{\partial J^q}{\partial w_{ij}} = -e_i^q f'(s_i^q) x_j^q$$
$$= -(y_i^q - \hat{y}_i^q) f'(s_i^q) x_j^q$$

$$\Delta w_{ij} = \eta \left(y_i^q - \hat{y}_i^q \right) f'(s_i^q) x_j^q$$

Note that the error terms are dissociated from others, so we can use any differentiable error metric without changing the algorithm.

$$\frac{\partial J^k}{\partial w_{ij}} = \frac{1}{2} \frac{\partial \left(e_i^q\right)^2}{\partial w_{ij}}$$

$$=\frac{1}{2}\frac{\partial (e_i^q)^2}{\partial e_i^q}\frac{\partial e_i^q}{\partial w_{ij}}$$

$$=e_{i}^{q}\frac{\partial e_{i}^{q}}{\partial \hat{y}_{i}^{q}}\frac{\partial \hat{y}_{i}^{q}}{\partial w_{ij}}$$

$$=e_{i}^{q}\cdot\frac{\partial e_{i}^{q}}{\partial\hat{y}_{i}^{q}}\cdot\frac{\partial\hat{y}_{i}^{q}}{\partial s_{i}^{q}}\cdot\frac{\partial s_{i}^{q}}{\partial w_{ij}}$$

$$=e_i^q \cdot (-1) \cdot f'(s_i^q) \cdot x_j^q$$

$$\frac{\partial J^q}{\partial w_{ij}} = -e_i^q f'(s_i^q) x_j^q$$
$$= -(y_i^q - \hat{y}_i^q) f'(s_i^q) x_j^q$$

$$\Delta w_{ij} = \eta (y_i^q - \hat{y}_i^q) f'(s_i^q) x_j^q$$

And any activation function – as long as it is differentiable

$$\frac{\partial J^{k}}{\partial w_{ij}} = \frac{1}{2} \frac{\partial \left(e_{i}^{q}\right)^{2}}{\partial w_{ij}}$$

$$=\frac{1}{2}\frac{\partial \left(e_{i}^{q}\right)^{2}}{\partial e_{i}^{q}}\frac{\partial e_{i}^{q}}{\partial w_{ij}}$$

$$=e_{i}^{q}\frac{\partial e_{i}^{q}}{\partial \hat{y}_{i}^{q}}\frac{\partial \hat{y}_{i}^{q}}{\partial w_{ij}}$$

$$=e_{i}^{q}\cdot\frac{\partial e_{i}^{q}}{\partial \hat{y}_{i}^{q}}\cdot\frac{\partial \hat{y}_{i}^{q}}{\partial s_{i}^{q}}\cdot\frac{\partial s_{i}^{q}}{\partial w_{ij}}$$

$$=e_i^q \cdot (-1) \cdot f'(s_i^q) \cdot x_j^q$$

$$\frac{\partial J^q}{\partial w_{ij}} = -e_i^q f'(s_i^q) x_j^q$$
$$= -(y_i^q - \hat{y}_i^q) f'(s_i^q) x_j^q$$

$$\Delta w_{ij} = \eta \left(y_i^q - \hat{y}_i^q \right) f'(s_i^q) x_j^q$$

$$-\nabla J(\overline{w})$$

Sigmoid *f(u)*

$$f(u) = \frac{1}{1 + e^{-u}}$$

$$\frac{df}{du} = \frac{e^{-u}}{(1+e^{-u})^2} = \frac{e^{-u}}{1+e^{-u}} \cdot \frac{1}{1+e^{-u}}$$

$$=(1-f(u))f(u)$$

$$\frac{\partial J^q}{\partial w_{ij}} = -(y_i^q - \hat{y}_i^q) \hat{y}_i^q (1 - \hat{y}_i^q) x_j^q$$

defining
$$\delta_i^q = \hat{y}_i^q (1 - \hat{y}_i^q) (y_i^q - \hat{y}_i^q)$$

$$\Delta w_{ij} = \eta \delta_i^q x_j^q$$

Linear *f*(*u*)

$$\hat{y}_{i}^{q} = s_{i}^{q} = \sum_{j=0}^{n} w_{ij} x_{j}^{q}$$

$$f'(s_i^q) = 1$$

$$\frac{\partial J^q}{\partial w_{ii}} = -(y_i^q - \hat{y}_i^q) x_j^q$$

 \Rightarrow LMS for linear neurons = perceptron learning

$$\Delta w_{ij} = \eta \left(y_i^q - \hat{y}_i^q \right) x_j^q$$

which is the perceptron learning rule.