

LINEAR ALGEBRA AND ITS APPLICATIONS UE19MA251

VRINDA KAMATH

Department of Science and Humanities

Topics

- 1. Linear Transformations
- 2. Orthogonal vectors and Subspaces
- 3. Cosines and Projections onto lines
- 4. Projections and Least Squares

Linear Transformations

Definition:

Let A be a matrix of order n. When A multiplies a n- dimensional vector x, it transforms x to a n-dimensional vector Ax. This happens at every x in R^n . The whole space R^n is $\underline{transformed\ or\ mapped}$ into itself by the matrix A. The matrix A induces a transformation of R^n .

Linear Transformations

Few Examples.....

$$1. A = \begin{bmatrix} c & \mathbf{0} \\ \mathbf{0} & c \end{bmatrix}$$

If
$$x = (x, y)$$
 then $Ax = (cx, cy)$.

A multiple of the identity matrix A = cl <u>stretches</u> every vector by the scale factor c. The whole space expands or contracts.

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

If
$$x = (x, y)$$
 then $Ax = (-y, x)$.

The matrix A <u>rotates</u> every vector about the origin through a right angle in the counter clockwise direction.

Linear Transformations

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

If
$$x = (x, y)$$
 then $Ax = (y, x)$.

The matrix A <u>reflects</u> every vector on the line y = x. It is also a permutation matrix.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

If
$$x = (x, y)$$
 then $Ax = (x, 0)$.

The matrix A **projects** every vector onto the x axis.

Linear Transformations

Linear Transformations

Note

A transformation can now be understood as a function (or a mapping) f: A → B defined by f(x) = y. In terms of matrices we have the rule

 $A : \mathbb{R}^n \to \mathbb{R}^m$ defined by A x = b.

Linear Transformations

Definition:

A transformation T on Rⁿ is said to be <u>linear</u> if

it satisfies the <u>rule of linearity</u>

$$T(cx + dy) = c(Tx) + d(Ty)$$

for all scalars c, d and vectors x, y.

Note:

- 1. If T is linear then T(0) = 0 i.e T preserves origin. The converse may or may not be true.
- 2. If A is a matrix of order m x n then A induces a transformation from R^n to R^m .

Linear Transformations

Few examples.....

Let
$$v = (v_1, v_2)$$
. Then,

1. T (
$$v$$
) = (v_2 , v_1) is linear

2. T (v) = (
$$v_1$$
, v_1) is not linear

3. T (
$$v$$
) = (0 , v_1) is not linear

4.
$$T(v) = (0, 1)$$
 is not linear

5. T (
$$v$$
) = (v_1 , v_2) is linear

Note:

If a transformation preserves origin it may or may not be linear!!

THANK YOU