ntroduction to Recommendation System

Beer Recommender System

Jason Yingling

University of Central Arkansas

December 11, 2017

Table of Contents

Beer Recommender System

Jason Yingling

ntroduction to Recommendation System

Introduction to Recommendation System

How Do We Choose?

Beer Recommende System

Jason Yingling

Introduction to Recommendation

Techniques

Beer Recommende Svstem

Jason Yingling

Introduction to Recommendation System

Collaborative Filtering: Method finds a subset of users who have similar preferences to the target user and use this subset to offer recommendations.

Content Filtering: Method attributes characteristics to each item. Similar items are computed by summing up the total number of matching characteristics.

Introduction to
Recommendation
System

- predict how much you may like a product/service
- create a list of N beset items for you
- create a list of N best users for a product/service
- Explain to you why these items are recommended (Robust system)

Single Value Decomposition

Beer Recommende Svstem

Jason Yingling

Introduction to Recommendation

SVD is a matrix factorization technique for producing low-rank approximations. Given mxn matrix A, the SVD defined as:

$$SVD(A) = USV^T$$

.

SVD error is over all entries, but recommender system data is sparse!

Introduction to Recommendation

SVD provides minimum reconstruction error (Sum of Squared Errors):

$$min(U, V, S) \sum_{(i,j) \in A} (A_{ij} - [USV^T]_{ij})^2$$

Where U V are orthogonal matrices and S is a diagonal matrix.

SVD for recommendation data:

$$R = Q \cdot P^T$$

Where
$$Q = U$$
 and $P^T = SV^T$

Introduction to Recommendation

$$\hat{r} = r_{ui} = q_i^T p_u$$

 q_i and p_u can be found such that square error difference between their dot product and known user rating is:

$$minimum(p,q) \sum_{(u,i) \in K} (r_{ui} - q_i^T \cdot p_u)^2$$

To reduce error we introduce bias terms:

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T p_u$$

If user u is unknown, then the bias b_u and the factors p_u are assumed to be zero. The same applies for item i with b_i and q_i

Thus the final equation to minimize is:

$$\sum_{r_{ui} \in R_{train}} (r_{ui} - \hat{r}_{ui})^2 + \lambda \left(b_i^2 + b_u^2 + ||q_i||^2 + ||p_u||^2 \right)$$

The minimization is performed by stochastic gradient descent:

$$b_{u} \leftarrow b_{u} + \gamma(e_{ui} - \lambda b_{u})$$

$$b_{i} \leftarrow b_{i} + \gamma(e_{ui} - \lambda b_{i})$$

$$p_{u} \leftarrow p_{u} + \gamma(e_{ui} \cdot q_{i} - \lambda p_{u})$$

$$q_{i} \leftarrow q_{i} + \gamma(e_{ui} \cdot p_{u} - \lambda q_{i})$$

where $e_{ui} = r_{ui} - \hat{r}_{ui}$.

The learning rate γ and regularization term λ are used to assist training the model.

- D. Goldberg et al., "Using Col- laborative Filtering to Weave an Information Tapestry," Comm. ACM, vol. 35, 1992, pp. 61-70.
- . Koren, "Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model," Proc. 14th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, ACM Press, 2008, pp. 426-434
- Y.F. Hu, Y. Koren, and C. Volinsky, "Collaborative Filtering for Implicit Feedback Datasets," Proc. IEEE Int'l Conf. Data Mining (ICDM 08), IEEE CS Press, 2008, pp. 263-272.
- Y. Koren, "Collaborative Filtering with Temporal Dynamics," Proc. 15th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD 09), ACM Press, 2009, pp. 447-455.