Poster ID: 218

Paper ID: 8629

Oral: Friday 3:45pm

Improving Interpretability via Explicit Word Interaction Graph Layer

Arshdeep Sekhon, Hanjie Chen, Aman Shrivastava, Zhe Wang, Yangfeng Ji, **Yanjun Qi** University of Virginia, Charlottesville, USA

Goal: Improving Interpretability of NLP Models

2/10/23

Basic Intuition: Word Interactions are Ubiquitous

entertaining satisfactory well engaging

fails

Basic Intuition: Word Interactions are Ubiquitous

Not entertaining
Satisfactory, but
Not well
Not engaging

Basic Intuition: Word Interactions are Ubiquitous

```
"take care of my cat" offers a refreshingly different slice of asian cinema
```

'different' highly relates to the word 'refreshingly', it will likely contribute substantially to the model's sentiment prediction

Basic Idea: Word Interaction Graph Layer (WIGRAPH)

Input
Sentence of
length L

A regular NLP Pipeline

Basic Idea: Word Interaction Graph Layer(WIGRAPH)

Input
Sentence of
length L

A regular NLP Pipeline

Basic Idea: Word Interaction Graph Layer(WIGRAPH)

Input Sentence of length L A regular NLP Pipeline

Basic Idea: Word Interaction Graph Layer (WIGRAPH)

• A layer enhances a BASE model's decision-making process by providing explicit guidance on what words are more important using the information on those words they interact with.

an interaction graph (mask):

Basic Idea: Word Interaction Graph Layer (WIGRAPH)

- A layer enhances a target model's decision-making process by providing explicit guidance on what words are more important using the information on those words they interact with.
- These task-level important word interactions need to be learnt

an interaction graph (mask): not all pairwise relations are informative

How to Model: Word Interaction Graph A Through a Learnt Matrix Parameter

Word Interaction Graph A

$^{\mathsf{How \ to \ Model:}}$ Word Interaction Graph A Through a Learnable Matrix Parameter

To learn A is to learn its Matrix Parameter γ

WIGRAPH derived Embeddings: Local Interactions

WIGRAPH derived Embeddings: Interaction Based Embeddings

Input
Sentence of
length L

Updated Embeddings based on Interactions

WIGRAPH derived Embeddings: Graph Convolution Message Passing

WIGRAPH Embeddings: An Interaction Mask

- an interaction mask: not all interactions are informative
- A needs to be learnt

WIGRAPH Variation: Masking Words also

GCN

Word Mask: not all words are informative for a specific task

 $\mathbf{z}_i = \mathbf{R}_{\mathbf{x}_i} \mathbf{e}_i'$

WIGRAPH Layer: Plug-and-Play and NLP Model Agnostic

How to Train:

How to Learn WIGRAPH: Variational Information Bottleneck Loss

$$max_{\mathbf{A},\mathbf{R},\{\mathbf{W}\}}\{I(\mathbf{Z};\mathbf{Y}) - \beta I(\mathbf{Z};\mathbf{X})\}$$

Maximize Information between Z and Y: Z maximally predictive of Y

Minimize Information between Z and X: Remove non-relevant features

How to Train:

WIGRAPH: Variational Information Bottleneck Loss for Word Interaction

$$max_{\mathbf{A},\mathbf{R},\{\mathbf{W}\}}\{I(\mathbf{Z};\mathbf{Y}) - \beta I(\mathbf{Z};\mathbf{X})\}$$

Maximize Information between Z and Y: Z maximally predictive of Y

Minimize Information between Z and X: Remove non-informative interactions and words

20

$$max_{\mathbf{A},\mathbf{R},\{\mathbf{W}\}}\{\mathbb{E}_{q(\mathbf{Z}|\mathbf{x}^m)}log(p(\mathbf{y}^m|\mathbf{x}^m;\mathbf{A},\mathbf{R},\{\mathbf{W}\}))\\ -\beta_i KL(q(\mathbf{R}|\mathbf{x}^m)||p_{r0}(\mathbf{R}))\\ -\beta_g KL(q(\mathbf{A}|\mathbf{x}^m)||p_{a0}(\mathbf{A}))\}$$
Ber(0.5)

How to Train:

WIGRAPH: Variational Information Bottleneck Loss for Word Interaction

$$max_{\mathbf{A},\mathbf{R},\{\mathbf{W}\}}\{I(\mathbf{Z};\mathbf{Y}) - \beta I(\mathbf{Z};\mathbf{X})\}$$

Maximize Information between Z and Y: Z maximally predictive of Y

Minimize Information between Z and X: Remove non-relevant features

$$-(\mathbb{E}_{\mathbf{x}}p(\mathbf{y}|\mathbf{x}^m;\mathbf{A},\mathbf{R},\{\mathbf{W}\}) + \beta_i H_q(\mathbf{R}_{\mathbf{x}}|\mathbf{x}^m) + \beta_g H_q(\mathbf{A}_{\mathbf{x}}|\mathbf{x}^m)) + \beta_{sparse}||\mathbf{A}_{\mathbf{x}}||_1$$

Gumbel softmax to sample discrete A, while keeping the training differentiable end to end.

Related Work

- Post-Hoc Explanation Methods:
 - LIME, SampleShapley: post hoc word level importance scores
 - Can't improve models' intrinsic interpretability
- Inherently interpretable model
 - (Alvarez-Melis and Jaakkola 2018a; Rudin 2019)
 - Intensive engineering efforts
- User-specified priors as domain knowledge to guide model
 - (Cam-buru et al. 2018; Du et al. 2019; Chen and Ji 2019; Erion et al. 2019; Molnar, Casalicchio, and Bischl 2019)
 - Information priors not be available in many tasks.
- Special layer to improve models:
 - VMASK (Chen and Ji 2020): a special case of our method

Evaluation: Improves Prediction Performance

Dataset	Train/Dev/Test	С	V	L
sst1	8544/1101/2210	5	17838	50
sst2	6920/872/1821	2	16190	50
imdb	20K/5K/25K	2	29571	250
AG News	114K/6K/7.6K	4	21838	50
TREC	5000/452/500	6	8026	15
Subj	8000/1000/1000	2	9965	25

Models: LSTM, BERT, RoBERTa, distilBERT

Evaluation: Local Interpretability

- Local Interpretability Faithfulness: Area Over Perturbed Curve(AOPC)
 - > average change of prediction probability on the predicted class over a test dataset by deleting top k words in explanations ((Nguyen 2018; Samek et al. 2016))

$$AOPC = \frac{1}{K+1} \sum_{k=1}^{K} \langle f(\mathbf{x}) - f(\mathbf{x}_{1,...,k}) \rangle_{p(\mathbf{x})}$$

Generate local explanations using LIME/SampleShapley and compare AOPC.

Improves Local Interpretability

Improves Local Interpretability (better word attribution)

Model	Explanation
BASE	still, this thing feels flimsy and ephemeral
WIGRAPH	still, this thing feels flimsy and ephemeral
BASE	so young, so smart, such talent, such a wise
WIGRAPH	so young, so smart, such talent, such a wise
BASE	it is risky, intelligent, romantic and rapturous from start to finish
WiGraph	it is risky, intelligent, romantic and rapturous from start to finish
BASE	take care of my cat offers a refreshingly dif- ferent slice of asian cinema
WiGraph	take care of my cat offers a refreshingly dif- ferent slice of asian cinema

Evaluation: Interaction Interpretability

- Interaction Occlusion Score(IoS)
 - \succ sort entries of A and filter out the top K global interaction scores, denoted by $m{A}_{ij}^k$
 - > calculate the average accuracy of the model after only using these top k interactions

loS measures the interaction interpretability faithfulness of a target model on its learnt interactions.

Evaluation: Interaction Interpretability

Methods	Models	IMDB	SST-1	SST-2	AG News	TREC	Subj
LSTM	WIGRAPH-NOA	88.53	45.70	83.96	91.07	91.00	90.30
	WIGRAPH-topA	88.84	45.82	84.48	90.91	91.27	90.58
BERT	WIGRAPH-NOA	85.62	51.31	89.18	90.79	96.40	95.90
	WIGRAPH-topA	85.67	51.52	89.02	90.47	97.04	95.97
RoBERTa	WIGRAPH-NOA	89.02	52.10	91.52	90.13	95.2	95.50
	WIGRAPH-topA	90.02	53.84	92.51	91.50	96.00	96.20
distilBERT	WIGRAPH-NOA	85.08	47.10	86.82	90.08	95.00	95.20
	WIGRAPH-topA	86.32	47.25	87.00	90.10	96.40	96.00

Average Post Hoc Interaction Occlusion Score when using top K scoring interactions for prediction

Extending WIGRAPH to Concept Interaction in Vision Tasks

- Concepts describe high level attributes of an image.
- Interactions between concepts can affect prediction.
- Concept interactions are unknown.

Extending WIGRAPH to Concept Interaction in Vision Tasks

- Concepts describe high level attributes of an image.
- Interactions between concepts can affect prediction.
- Concept interactions are unknown.

WIGRAPH Summary

a special layer in the form of discovering global word-word interactions

- Improve model's intrinsic interpretability
- Plug-and-Play Layer
- Model agnostic
- No loss of prediction performance

Thank You

Poster ID: 218

Possible Future Work

- 1. Higher-order interactions (not only pairwise)
- 2. More efficient parametrization in a scalable way
- 3. Extend to other tasks, like NLI, QA, Multi-modal, ...