

UNISONIC TECHNOLOGIES CO., LTD

CMOS IC

8-CHANNEL ANALOG MULTIPLEXERS/DEMULTIPLEXERS

DESCRIPTION

UTC 4051 is single 8-channel analog multiplexers/demultiplexers for application as digitally-controlled analog switches.

The device has three binary control inputs and an inhibit input. It feature low ON impedance and very low OFF leakage current. Control of analog signals up to the complete supply voltage range can be achieved.

FFATURES

- * Wide Analog Voltage Range: V_{DD}–V_{EE} = 3V~18V. (Note: V_{EE} must be V_{SS})
- * Break-Before-Make Switching Eliminates Channel Overlap.
- * Linearized Transfer Characteristics
- * Implement an SP8T solid state switch effectively.
- * Pin-to-Pin Replacement for CD4051

*Pb-free plating product number: 4051L

ORDERING INFORMATION

Order N	Number	Dackago	Dooking	
Normal	Lead Free Plating	Package	Packing	
4051-S16-R	4051L-S16-R	SOP-16	Tape Reel	
4051-S16-T	4051L-S16-T	SOP-16	Tube	
4051-P16-R	4051L-P16-R	TSSOP-16	Tape Reel	
4051-P16-T	4051L-P16-T	TSSOP-16	Tube	
4051-D16-T	4051L-D16-T	DIP-16	Tube	

■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN No.	SYMBAL	NAME AND FUNCTION			
3	X	Common Input/Output			
6	INH	Inhibit Inputs			
7	V _{EE}	pply Voltage			
8	V_{SS}	round			
11,10,9	A,B,C	Binary Control Inputs			
13,14,15,12,1,5,2,4	X0~X7	Independent Inputs/Outputs			
16	V_{DD}	Positive Supply Voltage			

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
DC Supply Voltage (Referenced to V _{EE} , V _{SS} V _{EE})	V_{DD}	-0.5 ~ +18	V
Input or Output Voltage (DC or Transient) (Referenced to V _{SS} for Control Inputs and V _{EE} for Switch I/O)	V _{IN} , V _{OUT}	-0.5 ~ V _{DD} +0.5	٧
Input Current (DC or Transient), per Control Pin	I _{IN}	±10	mA
Switch Through Current	I _{SW}	±25	mA
Power Dissipation Derating above 65	P _D	500 7	mW mW/
Junction Temperature	T_J	125	
Operating Temperature Range	T_OPR	-40 ~ +125	
Storage Temperature Range	T _{STG}	-40 ~ +150	

- Note: 1.Absolute maximum ratings are those values beyond which the device could be permanently damaged.

 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. The device is guaranteed to meet performance specification within 0 \sim 70 operating temperature range and assured by design from \sim 40 \sim 125 .

■ ELECTRICAL CHARACTERISTICS (Ta=25 , unless otherwise specified.)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY REQUIREMENTS (Voltages Referenced to V _{EE})							
Power Supply Voltage Rang	Power Supply Voltage Range		V _{DD} - 3.0 V _{SS} V _{EE}	3		18	V
0.:	V _{DD} =5V		Control Inputs: V _{IN} = V _{SS} or V _{DD}		0.005	5	
Quiescent Current per	V _{DD} =10V	ΙQ	Switch I/O: V _{EE} V _{I/O} V _{DD} ,		0.010	10	μΑ
Package	V _{DD} =15V		and ΔVsw 500mV(Note 2)		0.015	20	
Total Supply Current	V _{DD} =5V		T _a =25 only (The channel	(0.07 µ	A/kHz) f +	I_Q	
(Dynamic Plus Quiescent,	V _{DD} =10V	$I_{D(AV)}$	component, (V _{IN} -Vout)/Ron, is	(0.20 µ	A/kHz) f +	/kHz) f + I _Q	
Per Package)	V _{DD} =15V		not included.)	(0.36 µ	A/kHz) f +	lq	
SWITCHES IN/OUT AND C	OMMONS	OUT/IN	X, Y, Z (Voltages Referenced to	o V _{EE})			
Recommended Peak-to-Pe	ak	$V_{I/O}$	Channel On or Off	0		V _{DD}	V_{PP}
Voltage Into or Out of the Sv	witch	V I/O	Charmer Off of Off	U		V DD	V PP
Recommended Static or Dy	namic	ΔVsw	Channel On	0		600	mV
Voltage Across the Switch		Avsw Chamilei On		Ů		000	
Output Offset Voltage		$V_{O(OFF)}$	V _{IN} = 0V, No Load		10		μV
	V _{DD} =5V		ΔVsw 500mV		250	1050	
ON Resistance	V _{DD} =10V	R_{ON}	$V_{IN} = V_{IL}$ or V_{IH} (Control), and		120	500	Ω
	V _{DD} =15V		$V_{IN} = 0$ to V_{DD} (Switch)		80	280	
ON Resistance Between	$V_{DD}=5V$				25	70	
Any Two Channels in the	V _{DD} =10V	ΔR_{ON}			10	50	Ω
Same Package	V _{DD} =15V				10	45	
Off–Channel Leakage Current		I _{OFF}	$V_{IN} = V_{IL}$ or V_{IH} (Control) Channel to Channel or Any		±0.05	±100	nA
			One Channel, V _{DD} =15V				
Capacitance, Switch I/O		C _{I/O}	Inhibit = V _{DD}		10		pF
Capacitance, Common O/I		C _{O/I}	Inhibit = V _{DD}		17		pF
Capacitance, Feedthrough		C _{I/O}	Pins Not Adjacent		0.15		pF
(Channel Off)		120	Pins Adjacent		0.47		L.

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CONTROL INPUTS – INHIBIT A, B, C (Voltages Referenced to V _{SS})							
	$V_{DD}=5V$	- 7			2.25	1.5	V
Low Level Input Voltage	$V_{DD}=10V$		R _{ON} = per spec, I _{OFF} = per spec		4.50	3.0	
	V _{DD} =15V			6.75	4.0		
	$V_{DD}=5V$			3.5	2.75		
High Level Input Voltage	V _{DD} =10V	V _{IH}	R _{ON} = per spec, I _{OFF} = per spec	7	5.5		V
	$V_{DD}=15V$			11	8.25		
Input Leakage Current		I _{LEAK}	V_{IN} = 0 or V_{DD} , V_{DD} =15V		±0.00001	±0.1	μΑ
Input Capacitance		C _{IN}			5.0	7.5	pF

■ DYNAMIC ELECTRICAL CHARACTERISTICS

(C_L = 50pF, T_a =25 , V_{EE} V_{SS} , unless otherwise specified)

(SL SSP: , :a = S , :LL	007						
PARAMETER	SYMBOL	$\begin{array}{c} V_{DD}\!\!-\!\!V_{EE} \\ Vdc \end{array}$	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay Times		5	t_{PLH} , $t_{PHL} = (0.17 \text{ ns/pF})C_L + 26.5 \text{ns}$		35	90	
Switch Input to Switch	$t_{PLH,}$ t_{PHL}	10	t_{PLH} , $t_{PHL} = (0.08 \text{ ns/pF})C_L + 11 \text{ns}$		15	40	ns
Output ($R_L = 10 \text{ k}\Omega$)		15	t_{PLH} , $t_{PHL} = (0.06 \text{ ns/pF})C_L + 9\text{ns}$		12	30	
		5	$(R_L=10k\Omega, V_{EE}=V_{SS})$		350	700	
Inhibit to Output	t _{PHZ} , t _{PLZ}	10	Output "1" or "0" to High Impedance,		170	340	ns
	t _{PZH} , t _{PZL}	15	or High Impedance to "1" or "0" Level		140	280	
		5			360	720	
Control Input to Output	t _{PLH} , t _{PHL}	10	$R_L = 10 \text{ k}\Omega, V_{EE} = V_{SS}$		160	320	ns
		15			120	240	
Total Harmonic Distortion	THD	10	$R_L = 10K\Omega$, $f = 1$ kHz, $Vin = 5$ V_{PP}		0.07		%
Bandwidth	BW	10	$R_L = 1k\Omega$, $V_{IN} = 1/2 (V_{DD}-V_{EE}) p-p$, $C_L = 50pF$, 20 Log (Vout/Vin) = -3dB)		17		MHz
Off Channel Feedthrough Attenuation		10	R_L =1 $K\Omega$, V_{IN} = 1/2 (V_{DD} - V_{EE}) p-p f_{IN} = 4.5 MHz		-50		dB
Channel Separation		10	$R_L = 1k\Omega$, $V_{IN} = 1/2$ (V_{DD} – V_{EE}) p–p $f_{IN} = 3MHz$		-50		dB
Crosstalk, Control Input to Common O/I		10	R_1 = 1kΩ, R_L = 10kΩ Control t_{TLH} = t_{THL} = 20ns, Inhibit = V_{SS}		75		mV

Note 1. Data of "TYP" is intended as an indication of the IC's potential performance.

^{2.} For voltage drops across the switch(ΔVsw)>600mV (>300mV at high temperature), excessive V_{DD} current may be drawn, i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

■ TEST CIRCUIT

Switch Circuit Schematic

■ TRUTH TABLE

Control Inputs				ON Switches
INHIBIT	С	В	Α	ON SWILCHES
0	0	0	0	X0
0	0	0	1	X1
0	0	1	0	X2
0	0	1	1	X3
0	1	0	0	X4
0	1	0	1	X5
0	1	1	0	X6
0	1	1	1	X7
1	х	Х	Х	None

x = Don't Care

UTC 4051 Functional Diagram

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.