大数据典型应用调研报告

——在电力行业中的应用

211870287 丁旭

September 2023

摘要

将大数据技术引入电力系统可以弥补传统数据分析方法的不足,使其更好地服务电力行业。本次作业将阐述电力行业发展中大数据技术的重要作用,分析电力行业大数据技术的特征,研究大数据技术在电力行业中的具体应用。

关键词: 大数据技术; 电力行业; 特征; 应用;

正文

1. 所属行业——电力行业

近几年,电力行业在不断进行改革和创新,对智能化要求越来越高,而且引进了物联网、云计算等技术,电力系统的数据量逐渐加大,呈现井喷式增长趋势。电力企业为了提高工作效率,为客户提供更加优质的服务,要积极采用大数据技术,以此来提高自身的运营能力,在激烈的市场竞争中稳定发展。

2. 解决的特定问题

按照特质分类,电力行业主要包括发电、输电以及用电三大领域。在 这些领域合理应用大数据技术可以有效提高工作效率,进而推动整个 行业的良好发展。具体而言,大数据拔术的能够解决的特定问题表现 为以下几方面:

(a) 从发电领域来看,消耗量最大的是发电侧,通过应用大数据技术可以准确预测出用电负荷,从而合理安排用电计划,提高电力调度质量,为客户提供更好的服务。

- (b) 从输电领域来看,在传输电能的过程中也会造成消耗,通过应用 大数据技术可以第一时间分析线路上设备的电能损耗情况,从而 快速找到出现线损的原因,进而制定合理的措施来降低消耗量。
- (c) 从用电领域来看,通过应用大数据技术可以在向客户销售电能的 过程中获取客户电能消耗方面的数据,科学分析数据信息,为电 力营销方案的设计提供数据参考。

3. 使用的数据类型

(a) 体量很大、对处理速度要求严格的的电力生产指标数据

大数据技术最明显的特征表现为数据体量大。随着电力行业的不断改革,企业正在逐步建设智能化和信息化的电力系统。这样一来,会加大电力数据的增长速度。电力系统中涉及非常多的内容,从电力生产方面来看,对温度、频率、锅炉压力等指标要求不断提高,这就需要采集和处理大量的数据。同时,采集频率相较以往会不断增加,使数据体量越来越大。

大数据技术在采集、处理以及分析数据方面具有一定的优势,速度非常快。在电力行业中对处理时间的要求非常严格,大数据对系统运行状态的反惯时延需要控制在1 s 以内,在实际工作中要合理使用流处理技术。

(b) 电力系统中的能量数据

对于电力行业而言,能量就是指数据,是大数据技术在电力系统中价值的表现方式。在电力系统中应用大数据技术,可以对不断增多的数据进行细化处理,进而使客户的权益得到进一步保护。另外,将大数据技术合理运用到电力系统各环节中,能够减少能量的消耗量,增加客户的可用能量。同时,在生产电能环节虽然大数据技术无法直接参与,但合理应用这项技术可以减少其他环节的电能损耗,间接加大电能的最终可利用量。此外,应用大数据技术也是收集不必要损耗能量的过程,具有一定的环保性,可以促进电力行业的可持续发展。

4. BDA 如何有助于解决问题-具体案例

(a) 传输和存储电力大数据

随着我国智能电网的快速发展、电力系统所有环节的数据都 会被记录下来,这就需要有更强大的数据传输和存储功能。同时, 随着电力系统的不断运转,会产生越来越多的数据,使系统承受 较大的负担,如果不及时采取有效措施,会限制智能化的良好发 展。通过合理应用大数据技术可以很好地解决这类问题,满足电 力系统大数据的需求。目前,分布式文件系统在电力企业中的应 用比较广泛, 便于储存更多的数据。另外, 大数据技术能够随时采 集电力系统的运行数据,可以满足电力系统对实时性的要求,并 且利用流式传输还可以及时分析数据, 让工作人员能够掌握相关 信息。还可按照电力系统的性能与数据特征分别进行储存,利用 数据库系统还能够及时处理具有高标准要求的数据。利用数据仓 库能够处理一般数据。工作人员在处理历史数据和非结构性数据 时,可以采用分布式文件系统。此外,电力行业中存在许多复杂 的数据,合理利用大数据技术能够将其转换成方便分析和储存的 数据。这样一来, 可以为工作人员提供有效的参考数据, 大大提 高工作效率。同时,可以通过数据仓库进行管理,并逐步建立信 息化管理系统, 实现数据共享, 充分发挥出电力数据的巨大作用, 还能增加企业的核心竞争力。

(b) 评估电力设备状态

为了确保电力系统稳定运转,一定要重点关注相关设备,使 其能够正常运行。在实际工作中要考核评估电力设备的状态,根 据结果了解设备的情况,从而及时发现并解决问题,提高各生产 运营环节的稳定性。在电力行业发展中电力设备状态检修非常重 要。目前,电力设备状态评估通常涉及评估方法、故障诊断专家 系统、设备状态评价等。在开展设备状态评估工作时要合理应用 时序挖掘、聚类算法、分类算法等大数据技术,通过深入分析设 备的历史数据,找出不同状态参数间的关系,结合采集的设备运行 数据,关联分析电力设备,从而做出准确的评价,为后续工作的开 展提供指导作用。

(c) 配用电需求分析

目前,电力行业在不断推进智能电网业务,利用数据融合等 形式来支撑配用电业务,可以大大提高工作效率,更好地完成配 用电数据挖掘工作。电力企业要想提高核心竞争力,就要提高管 理质量,实行精细化管理,并结合电力系统的运行和大数据融合 等,改进和完善各项决策方案。随着大数据技术的不断成熟,许 多行业都逐步引入相关技术手段。电力行业作为社会经济的重要 组成部分, 也在积极学习、引进大数据技术, 尤其是在配用电数据 挖掘分析方面,能起到良好作用。配用电数据挖掘分析工作涉及 多个方面、主要有社会经济、配电网规划、运行以及用电服务管 理等。这项工作在政府决策、供电侧以及用户侧等方面也有广泛 运用,具有一定的指导意义。另外,配电网数据的挖掘对故障检 测、负荷预测以及停电管理等工作也起着关键作用。利用大数据 技术能够全面分析客户的用电情况和服务反馈, 科学管理需求侧, 从而为客户提供更好的服务。还可以结合政府决策,全面分析社 会经济形势,并预测未来的发展趋势,评估能源补贴、电价政策 等,从而合理调整企业未来的发展规划和战略目标。此外,通过 应用大数据分析技术可以对生产运营环节产生的大量数据进行分 析,深入挖掘出数据价值,为政府部门、供电侧以及用户侧等提供 有价值的参考数据。电力企业通过分析配用电需求,能够提高管 理质量,准确把握客户的用电需求,让政府部门对电力行业的发 展形势有更为准确的了解,为后期决策提供一定的信息。

5. BDA 对该行业未来可能的影响

• 正面影响

- 1. 为电网规划和新能源提供支持。无论是对电力的使用控制、电网规划,还是对新能源的支持提供,都有着比以往更高的要求和标准,而对大数据的深入分析,正好能为电网规划和新能源探路带来帮助。在应用中,通常是在数据收集和存储的基础上,深入分析用户的用电习惯,并将数据挖掘的信息传回电网企业的信息中心,作为客户分类的依据,依此对电网规划、电力服务和建设等进行合理的改进。同时,也能依据分析结果将具有间歇性的风能、太阳能等新能源更好的利用起来,通过传统水火电能源和新能源的有效调节,实现新能源的合理供给。
- 2. 加快电网智能化运行。通常我们对于信息网络里的大数据 会进行汇总,建立电力系统大数据库,并采用云计算技术分析数 据间的内在联系,从而得出电网运行方式的优化方案达到经济运

行的目的。这过程中,会实现一体化的系统监控。家居用电智能 化也是电网运行方式优化的其中一种表现,这是跟我们的日常生 活最贴近的。例如利用电力数据库,能将用户家中的各种电力设 备,如照明系统、安防系统、音视频家电、空调设备等连接成用 户用电一体化系统,并获取其各项用电使用数据,对数据进行深 入挖掘后,可准确得出用户用电设备占比、用电时长以及高峰用 电周期规律等数据信息,帮助用户优化用电使用方式,节约用电 费用。

3. 提高需求侧管理的效率。通常而言,庞大的电网大数据不仅记录了居民的用电量、用电时间、分时电价等数据,还记录了工厂用电、公共设施集中用电(如供暖设备、天气预报设备等)等信息,通过对社会电网数据的综合分析,能确定社会最优电力运行方式和负荷控制计划,监视、管理和控制电力集中负荷使用情况,进而制定合理的电价,以引导用户转移负荷时段,逐步实现用电负荷曲线平坦,缓解缺电压力。

• 负面影响

- 1. 数据质量低,缺乏管控。目前,由于人力、基础设施、数据信息系统等现实设备和能力水平的限制,我国电力业部分数据的获取仍无法实现全部自动化采集,还需手动辅助输入,极大影响了数据采集的完整性、及时性和准确度,数据质量低。另外,电力业也尚缺完整的数据管控组织、流程和策略,对数据的管控度较差。虽然电力业目前已建成一体化信息集成平台,但我们需要的是不仅要能满足日常电力业务的处理需求,还要能实现数据存储、共享、处理等功能的升级,以提高数据质量。
- 2. 数据共享不畅,缺乏集成。据即便数据量再大,也难以获取有价值的信息。目前我国电力业缺乏主数据管理和数据模型定义,各单位数据口径不一致,导致出现数据不一致、重复存储的现象,数据共享不畅,集成度不高,对数据价值的挖掘影响较大。
- 3. 安全防御能力不足。电力数据涉及到电力用户隐私,对信息安全度要求甚高。但实际情况是,各电力企业防护体系建设差距太远,有些偏远地区的电力数据系统防护体系甚至还未建立,信息安全性亟待提高。