Cadeias de Markov

Espaço de estados enumerável não-finito

Classificação de estados

Recorrência nula

Quadro completo

Exemplo 5: Passeio aleatório simples em ZZ

Compare com o Exercício 05 - Lista 01

Considere um processo que descreve o passeio de um bêbado em \mathbb{Z} , através de uma sequência de v.a. aleatórias independentes e identicamente distribuídas (i.i.d.) $\{X_n\}_n$ que representa se um andante, no instante n, dá um passo para frente $(X_n=+1)$ ou para trás $(X_n=-1)$ com probabilidade p e 1-p respectivamente. Começando na posição S_0 , a posição do indivíduo após n passos é dado por $S_n=S_0+X_1+\cdots+X_n$. O processo descrito por $\{S_n\}_n$ é chamado de passeio aleatório simples em \mathbb{Z} .

Determine a matriz de probabilidades de transição, faça o diagrama de transição e classifique os estados. A cadeia é irredutível?

Resolução na lousa (matriz e diagrama)

Espaço de estados enumerável não-finito

Em espaço de estados não-finito (exemplo do passeio aleatório), classificar um estado em recorrente ou transitório pode ser difícil.

Para espaço de estados enumerável e/ou situações mais complexas precisamos de um <u>critério técnico</u> para classificar.

Naturalmente, esse critério é baseado nos conceitos de recorrência e transiência.

Recorrência e transiência - definição

Para $i \in S$, denote por f_{ii} a probabilidade que, dado que iniciou no estado i, o processo eventualmente (em algum momento) retornará ao estado i, isto é

$$\begin{array}{ll} f_{ii} & \stackrel{\mathsf{notação}}{=} & P\Big(\{X_n = i\} \text{ para algum } n \geq 1 \mid X_0 = i\Big) \\ & = & P\left(\bigcup_{n=1}^{\infty} \{X_n = i\} \mid X_0 = i\right) \end{array}$$

Definição

- (a) o estado i é dito ser **recorrente** se $f_{ii} = 1$;
- (b) o estado i é dito ser **transiente/transitório** se $f_{ii} < 1$. Isto é, saindo de i, existe uma probabilidade positiva $(1 f_{ii})$ do processo nunca mais retornar ao estado i.
- \longrightarrow Como calcular f_{ii} ?

Recorrência e transiência

- Se o estado i é recorrente, então o processo iniciando em i retornará, em algum momento, ao estado i (com probabilidade 1).
- Considere esse instante de retorno como um novo início (por homogeneidade no tempo), e então o processo novamente retornará ao estado i, e assim sucessivamente.
- Portanto, a cadeia retornará infinitas vezes a um estado recorrente i.

Recorrência e transiência

- Se o estado i é transitório, cada vez que o processo inicia em i, existe uma probabilidade positiva $(=1-f_{ii})$ do processo jamais retornar ao estado i.
- Então, estando em i, o tempo que o processo leva para sair de i tem distribuição geométrica com parâmetro $1-f_{ii}$, cuja média é $(1-f_{ii})^{-1}<\infty$.
- Portanto, se o processo inicia em um estado transitório i, ele retorna (ou fica) em i, em média, um número finito de vezes.

Recorrência

O estado $i, i \in S$ é recorrente, se e só se, começando em i, o número esperado de visitas (retornos) ao estado i pelo processo for infinito.

Recorrência e transiência - critério usando probabilidades de transição

Proposição

Seja $\{X_n\}$ uma cadeia de Markov com espaço de estados S e matriz de probabilidades de transição \mathbf{P} , e considere o estado $i, i \in S$.

- O estado i é recorrente se $\sum_{n=1}^{\infty} p_{ii}^{(n)} = +\infty$.
- O estado i é transitório se $\sum_{n=1}^{\infty} p_{ii}^{(n)} < +\infty$.

Isto é, o estado i é recorrente se e só se $\sum_{n=1}^{\infty} p_{ii}^{(n)} = +\infty$.

Demonstração na lousa

Teorema

Uma consequência da proposição anterior é dada pelo teorema a seguir

Recorrência e transiência como propriedade de classe

Numa cadeia de Markov, sejam i e $j \in S$ que se comunicam, isto é, $i \longleftrightarrow j$, então

- (1) i é recorrente \iff j é recorrente.
- (2) i é transitório \iff j é transitório.
- (3) i e j têm mesmo período.

Isto é, recorrência, transiência e periodicidade são propriedades que a **classe** herda dos estados.

Prova de (1) e (2) na lousa

Exemplo: Passeio Aleatório - continuação

Mostre (usando a proposição) que o passeio aleatório $\operatorname{\textbf{simples}}$ em $\operatorname{\mathbb{Z}}$ é:

- recorrente se p = 1/2
- transitório se $p \neq 1/2$.

Sugestão: aplique a fórmula de Stirling:

$$n! \approx n^{n + \frac{1}{2}} e^{-n} \sqrt{2\pi}$$

Resolução na lousa

A recorrência do passeio aleatório simples **simétrico** é diferente da recorrência vista nos exemplos anteriores, como veremos a seguir.

Tempo da primeira visita a um estado

Tempo da primeira visita

Para $i \in S$, denote por T_i o tempo ou instante da primeira visita ao estado i, após o instante n = 0, isto é,

$$T_i = \left\{ egin{array}{l} \min\{n>0: X_n=i\} \\ +\infty, \quad \mbox{se o estado i nunca for visitado} \end{array}
ight.$$

Exemplo:
$$\{T_i = 10\} = \{X_1 \neq i, X_2 \neq i, \dots, X_9 \neq i, X_{10} = i, \}$$

Se a cadeia inicia em i $(X_0=i)$, então $\{T_i \mid X_0=i\}$ representa o primeiro retorno ao estado i, também denominado de tempo de recorrência do estado i.

Beti Kira (IME-USP) MAE0312 25.março.2022

Primeira visita e primeiro retorno

Introduzimos as seguintes notações.

Primeira visita

A probabilidade de que a 1a.visita ao estado j, a partir do estado i, ocorra no instante m é dada por

$$f_{ij}^{(m)} = P(X_m = j, X_\ell \neq j, 1 \leq \ell \leq m - 1 \mid X_0 = i)$$

= $P(T_j = m \mid X_0 = i)$

Primeiro retorno

A probabilidade de que que o 1o.
retorno ao estado i ocorra no instante m é dada por

$$f_{ii}^{(m)} = P(X_m = i, X_\ell \neq i, 1 \leq \ell \leq m - 1 \mid X_0 = i)$$

= $P(T_i = m \mid X_0 = i)$

Recorrência e transiência - outro critério

Note que a probabilidade de um eventual retorno a i é dado por

$$f_{ii} = \sum_{n=1}^{\infty} f_{ii}^{(n)} = P(T_i < \infty \mid X_0 = i)$$

e, pela definição (slide 04 desse arquivo):

Recorrência e transiência - critério

- O estado i é **recorrente** se $P(T_i < \infty \mid X_0 = i) = 1$.
- O estado i é **transitório** se $P(T_i < \infty \mid X_0 = i) < 1$.

Note que, se i é transitório então, com probabilidade positiva a cadeia nunca mais retorna ao estado i, ou seja,

$$P(T_i = \infty \mid X_0 = i) > 0 \implies E(T_i \mid X_0 = i) = +\infty$$

i.e., tempo **médio** do primeiro retorno a um estado transitório é infinito.

tempo médio de recorrência e recorrência/transiência

Tempo médio de recorrência

O tempo médio μ_i de retorno a um estado i ou o tempo médio de recorrência do estado i, $i \in S$, é definido por

$$\mu_i = E(T_i \mid X_0 = i) = \sum_{n \ge 1} n \cdot f_{ii}^{(n)}$$

O argumento do slide anterior estabelece que

se i é um estado transitório então $\mu_i = +\infty$

Entretanto, μ_i ainda pode ser infinito para um estado i recorrente.

 \longrightarrow exemplo na lousa

Se i é um estado <u>recorrente</u>, dependendo de μ_i ser finito ou infinito, há uma classificação adicional (dada a seguir).

Recorrência nula e positiva

Definição: recorrência nula e prositiva

Seja $i \in S$ um estado recorrente. Dizemos que

- i é recorrente nulo se $\mu_i = +\infty$ $(\iff \mu_i^{-1} = 0)$;
- i é recorrente positivo se $\mu_i < +\infty$ ($\iff \mu_i^{-1} > 0$).

Exemplo: Passeio aleatório simples simétrico

Mostrar que o passeio aleatório simples simétrico (p=1/2) em \mathbb{Z} é recorrente **nulo**.

Resolução na lousa

 \longrightarrow calcular $f_{\scriptscriptstyle 00}^{(2n)}$ pelo princípio da reflexão e aplicar a fórmula de Stirling

Recorrência em cadeia FINITA

Recorrência em cadeia finita

Se a cadeia é finita, isto é, o espaço de estados S é finito, então pelo menos 1 (um) estado é recorrente, e todos os estados recorrentes são recorrentes positivos.

Recorrência nula pode ocorrer apenas em espaço de estados enumerável não-finito.

Demonstração na lousa

Classificação de estado

$$\mathsf{ESTADO}\left\{\begin{array}{l}\mathsf{Transit\acute{o}rio}\\\\\mathsf{Recorrente}\end{array}\right\} \left\{\begin{array}{l}\mathsf{peri\acute{o}dico}\\\\\mathsf{aperi\acute{o}dico}\end{array}\right.$$

Definição: Ergodicidade

- (a) Um estado recorrente positivo e aperiódico é denominado ergódico.
- (b) Uma cadeia irredutível, recorrente positiva e aperiódica é denominado ergódica.