

БУТСТРЭП

Дана выборка X. Решаем задачу регрессии.

- **Бутстрэп:** равномерно возьмем из выборки X l объектов возвращением (т.е. в новой выборке будут повторяющиеся объекты). Получим выборку X_1 .
- ullet Повторяем процедуру N раз, получаем выборки $X_1,\dots,X_N.$

БЭГГИНГ (BOOTSTRAP AGGREGATION)

С помощью бутстрэпа мы получили выборки X_1, \dots, X_N .

- Обучим по каждой из них линейную модель регрессии $\stackrel{\smile}{-}$ получим базовые алгоритмы $b_1(x), ..., b_N(x)$.
- Построим новую функцию регрессии:

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

БЭГГИНГ (BOOTSTRAP AGGREGATION)

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

БЭГГИНГ (BOOTSTRAP AGGREGATION)

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

Утверждение. Если алгоритмы $b_1(x), ..., b_N(x)$ некоррелированы, то среднеквадратичная ошибка алгоритма a(x), полученного при помощи бэггинга, в N раз меньше среднеквадратичной ошибки исходных алгоритмов $b_i(x)$.

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

- Модель переобучена?
- Модель плохо предсказывает целевую переменную?
- В самих данных много неточностей (шумов)

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Bias(a(x)) - средняя ошибка по всем возможным наборам данных — смещение.

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Bias(a(x)) - средняя ошибка по всем возможным наборам данных — смещение.

Смещение показывает, насколько в среднем модель эхорошо предсказывает целевую переменную:

- √ маленькое смещение хорошее предсказание
- Убольшое смещение плохое предсказание

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Var(a(x)) - дисперсия ошибки, т.е. как сильно различается ошибка при обучении на различных наборах данных — разброс.

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Var(a(x)) - дисперсия ошибки, т.е. как сильно различается ошибка при обучении на различных наборах данных — разброс.

Большой разброс означает, что ошибка очень чувствительна к изменению обучающей выборки, т.е.:

√большой разброс – сильно переобученная модель

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

- Bias(a(x)) средняя ошибка по всем возможным наборам данных смещение.
- Var(a(x)) дисперсия ошибки, т.е. как сильно
 различается ошибка при обучении на различных наборах данных разброс.
- σ^2 неустранимая ошибка шум.

СМЕЩЕНИЕ И РАЗБРОС

BIAS-VARIANCE TRADE OFF

- У простой модели (например, линейная регрессия) обычно большое смещение и маленький разброс
- Чем сложнее модель (чем больше у неё настраиваемых параметров), тем меньше у неё смещение и тем больше разброс

BIAS-VARIANCE TRADE OFF

- У простой модели (например, линейная регрессия) обычно большое смещение и маленький разброс
- Чем сложнее модель (чем больше у неё настраиваемых параметров), тем меньше у неё смещение и тем больше разброс

BIAS-VARIANCE TRADE OFF

- У простой модели (например, линейная регрессия) обычно большое смещение и маленький разброс
- Чем сложнее модель (чем больше у неё настраиваемых параметров), тем меньше у неё смещение и тем больше

ъ СМЕЩЕНИЕ И РАЗБРОС У БЭГГИНГА

Утверждение.

- 1) **Бэггинг не ухудшает смещенность модели**, т.е. смещение $a_N(x)$ равно смещению одного базового алгоритма.
- 2) Если базовые алгоритмы некоррелированы, то **дисперсия бэггинга** $a_N(x)$ в N раз меньше дисперсии отдельных базовых алгоритмов.

© СЛУЧАЙНЫЙ ЛЕС (RANDOM FOREST)

- Возьмем в качестве базовых алгоритмов для бэггинга **решающие деревья**, т.е. каждое случайное дерево $b_i(x)$ построено по своей подвыборке X_i .
- В каждой вершине дерева будем искать *разбиение не по* всем признакам, а по подмножеству признаков.
- Дерево строится до тех пор, пока в листе не окажется n_{min} объектов.

БУСТИНГ

<u>Идея</u>: строим набор алгоритмов, каждый из которых исправляет ошибку предыдущих.

БУСТИНГ

<u>Идея</u>: строим набор алгоритмов, каждый из которых исправляет ошибку предыдущих.

Решаем задачу регрессии с минимизацией квадратичной ошибки:

$$\frac{1}{2} \sum_{i=1}^{l} (a(x_i) - y_i)^2 \to \min_{a}$$

Ищем алгоритм a(x) в виде суммы N базовых алгоритмов:

$$a(x) = \sum_{n=1}^{N} b_n(x),$$

где базовые алгоритмы $b_n(x)$ принадлежат некоторому семейству A.

<u>Шаг 1:</u> Ищем алгоритм $b_1(x)$, минимизирующий ошибку:

$$b_1(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

Ошибка на объекте х:

$$s = y - b_1(x)$$

<u>Шаг 1:</u> Ищем алгоритм $b_1(x)$, минимизирующий ошибку:

$$b_1(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

Ошибка на объекте х:

$$s = y - b_1(x)$$

Следующий алгоритм должен настраиваться на эту ошибку, т.е. целевая переменная для следующего алгоритма — это вектор ошибок s (а не исходный вектор y)

<u>Шаг 1:</u> Ищем алгоритм $b_1(x)$, минимизирующий ошибку:

$$b_1(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

<u>Шаг 2:</u> Ищем алгоритм $b_2(x)$, настраивающийся на ошибки s первого алгоритма:

$$b_2(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - s_i^{(1)})^2$$

<u>Шаг 1:</u> Ищем алгоритм $b_1(x)$, минимизирующий ошибку:

$$b_1(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

<u>Шаг 2:</u> Ищем алгоритм $b_2(x)$, настраивающийся на ошибки s первого алгоритма:

$$b_2(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - s_i^{(1)})^2$$

Следующий алгоритм $b_3(x)$ будем выбирать так, чтобы он минимизировал ошибку предыдущей композиции (т.е. $b_1(x) + b_2(x)$) и т.д.

БУСТИНГ: ВЫБОР БАЗОВЫХ АЛГОРИТМОВ

- Если базовые алгоритмы очень простые, то они плохо приближают антиградиент функции потерь, т.е. градиентный бустинг может свестись к случайному блужданию.
- Если базовые алгоритмы сложные, то за несколько шагов бустинг подгонится под обучающую выборку, и получим переобученный алгоритм.

БУСТИНГ: ВЫБОР БАЗОВЫХ АЛГОРИТМОВ

- Если базовые алгоритмы очень простые, то они плохо приближают антиградиент функции потерь, т.е. градиентный бустинг может свестись к случайному блужданию.
- Если базовые алгоритмы сложные, то за несколько шагов бустинг подгонится под обучающую выборку, и получим переобученный алгоритм.

Чаще всего в качестве базовых алгоритмов используют *решающие деревья*.

БУСТИНГ: ВЫБОР БАЗОВЫХ АЛГОРИТМОВ

- Если базовые алгоритмы очень простые, то они плохо приближают антиградиент функции потерь, т.е. градиентный бустинг может свестись к случайному блужданию.
- Если базовые алгоритмы сложные, то за несколько шагов бустинг подгонится под обучающую выборку, и получим переобученный алгоритм.

Чаще всего в качестве базовых алгоритмов используют *решающие деревья*.

В таком случае *решающие деревья не должны быть очень маленькими, а также очень глубокими.*Оптимальная глубина — от 3 до 6 (зависит от задачи).

КОЛИЧЕСТВО ИТЕРАЦИЙ БУСТИНГА

Так как на каждом шаге бустинга целенаправленно уменьшается ошибка на тренировочной выборке, то если процесс не остановить, то мы достигнем нулевой ошибки, а значит, переобучимся!

СМЕЩЕНИЕ И РАЗБРОС БУСТИНГА

- Бустинг целенаправленно уменьшает ошибку, т.е. смещение у него маленькое.
- Алгоритм получается сложным, поэтому разброс большой.

Значит, чтобы не переобучиться, в качестве базовых алгоритмов надо брать неглубокие деревья (глубины 3-6).