**Profesor: Miguel Jiménez** 

Material de los cursos:

https://migueljimenezg.github.io/cursos/

Las anualidades son una serie de flujo de efectivo uniforme (valores iguales), cada uno con un monto A, que ocurre al final de cada uno de los N periodos que capitalizan con una tasa de interés de i por periodo.

Son el sistema de pagos para los créditos.

A: montos uniformes

A A A A A

O 1 2 N-1 N

Períodos



P: (valor presente) ocurre un periodo de interés antes de la primera A (cantidad uniforme).

F: (valor futuro) ocurre al mismo tiempo que la última A.

N: periodos después que se presta o invierte P.

A: (valor anual equivalente) sucede al final de los periodos 1 a N, inclusive.

(Sullivan, 2004)

### Valor Futuro (F) dado una Anualidad (A):

A: \$100.

N: 4.

i: 1% por período.



| Período | Anualidad | Tiempo<br>restante | Valor Futuro |
|---------|-----------|--------------------|--------------|
| 1       | \$ 100    | 3                  | \$ 103,03    |
| 2       | \$ 100    | 2                  | \$ 102,01    |
| 3       | \$ 100    | 1                  | \$ 101       |
| 4       | \$ 100    | 0                  | \$ 100       |
|         |           | TOTAL              | \$ 406,04    |

Es el sistema más usado para hacer un ahorro programado.

El Valor Futuro hallado de la Anualidad será lo que se tendrá ahorrado después de hacer los mismo pagos y que cada pago genere el mismo rendimiento.

#### Valor Futuro (F) dado una Anualidad (A):

El valor de F se obtiene al sumar los valores de cada flujo uniforme (A) llevados a valor futuro (F).

$$F = A[(1+i)^{N-1} + (1+i)^{N-2} + (1+i)^{N-3} + \dots + (1+i)^1 + (1+i)^0]$$

Los términos entre corchetes constituyen una secuencia geométrica que tiene una razón común igual a  $(1 + i)^{-1}$ .

La suma de los primeros N términos de una secuencia geométrica es:

$$S_N = \frac{a_1 - ba_n}{1 - b} \ (b \neq 1)$$

 $a_1$ es el primer término de la secuencia,  $a_n$  es el último, y b es la razón común.

$$F = A \left[ \frac{(1+i)^{N-1} - \frac{1}{(1+i)}}{1 - \frac{1}{(1+i)}} \right]$$

Al despejar F,

$$F = A \left[ \frac{(1+i)^N - 1}{i} \right] \quad (F/A, i, N)$$

#### **Valor Presente (P) dado una Anualidad (A):**

A: \$100.

N: 4.

i: 1% por período.

| Período | Anualidad | Tiempo<br>restante | Valor<br>Presente |
|---------|-----------|--------------------|-------------------|
| 1       | \$ 100    | 1                  | \$ 99,01          |
| 2       | \$ 100    | 2                  | \$ 98,03          |
| 3       | \$ 100    | 3                  | \$ 97,06          |
| 4       | \$ 100    | 4                  | \$ 96,10          |
|         | _         | TOTAL              | \$ 390,20         |



Este sistema es útil para determinar el Valor Presente que se empezará a diferir en Anualidades ya especificadas. El remanente entre el Valor Presente y lo pagado en Anualidades rentará la misma tasa en cada período.

Valor Futuro (F):

$$F = P(1+i)^N$$

Valor Futuro (F) dado una Anualidad (A):

$$F = A \left[ \frac{(1+i)^N - 1}{i} \right]$$

Al reemplazar,

$$P(1+i)^N = A \left[ \frac{(1+i)^N - 1}{i} \right]$$

Al despejar P,

$$P = A \left[ \frac{(1+i)^N - 1}{i(1+i)^N} \right]$$
 (P/A, i, N)

#### **Anualidad (A) dado un Valor Futuro (F):**



Valor Futuro (F) dado una Anualidad (A):

$$F = A \left[ \frac{(1+i)^N - 1}{i} \right]$$
 Al despejar A,

$$A = F\left[\frac{i}{(1+i)^N - 1}\right] \quad (A/F, i, N)$$

Este sistema es útil para determinar el monto de la Anualidad con el cual podemos obtener el Valor Futuro en el período N.

#### **Anualidad (A) dado un Valor Presente (P):**



Valor Presente (P) dado una Anualidad (A):

$$P = A \left[ \frac{(1+i)^N - 1}{i(1+i)^N} \right]$$
 Al despejar A,  $A = P \left[ \frac{i(1+i)^N}{(1+i)^N - 1} \right]$  (A/P, i, N)

Con este sistema se halla la Anualidad con la cual se puede diferir el Valor Presente ya especificado.

Es el sistema más común en los crédito. Cuota constante.

### **Anualidad (A) dado un Valor Presente (P):**



# Resumen

| Para encontrar                        | Dado: | Factor multiplicador         | Símbolo<br>funcional | Fórmula de Excel           |  |  |  |
|---------------------------------------|-------|------------------------------|----------------------|----------------------------|--|--|--|
| Para flujos de efectivo únicos:       |       |                              |                      |                            |  |  |  |
| F                                     | Р     | $(1+i)^{N}$                  | (F/P, i, N)          | =VF(tasa; nper; ; [-va])   |  |  |  |
| Р                                     | F     | $\frac{1}{(1+i)^N}$          | (P/F, i, N)          | =VA(tasa; nper; ; [-vf])   |  |  |  |
| Para una serie uniforme (anualidades) |       |                              |                      |                            |  |  |  |
| F                                     | Α     | $\frac{(1+i)^N-1}{i}$        | (F/A, i, N)          | =VF(tasa; nper; -pago)     |  |  |  |
| Р                                     | Α     | $\frac{(1+i)^N-1}{i(1+i)^N}$ | (P/A, i, N)          | =VA(tasa; nper; -pago)     |  |  |  |
| Α                                     | F     | $\frac{i}{(1+i)^N-1}$        | (A/F, i, N)          | =PAGO(tasa; nper; ; [-vf]) |  |  |  |
| Α                                     | Р     | $\frac{i(1+i)^N}{(1+i)^N-1}$ | (A/P, i, N)          | =PAGO(tasa; nper; -va)     |  |  |  |