

Data sheet acquired from Harris Semiconductor SCHS102

## 10-Line to 4-Line BCD Priority Encoder

High-Voltage Types (20-Volt Rating)

tures priority encoding of the inputs to ensure that only the highest-order data line is encoded. Ten data input lines (0-9) are encoded to four-line (8,4,2,1) BCD. The highest priority line is line 9. All four output lines are logic 1 (VSS) when all input lines are logic 0. All inputs and outputs are buffered, and each output can drive one TTL low-power Schottky load. The CD40147B is functionally similar to the TTL 54/74147 if pin 15 is tied low.

The CD40147B types are supplied in 16-lead ceramic dual-in-line packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead ceramic flat packages (K suffix), and in chip form (H suffix).

FUNCTIONAL GATING

# CD40147B Types

#### Features:

- Encodes 10-line to 4-line BCD
- Active low inputs and outputs
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of 'B' ' Series CMOS Devices"
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature

range) =

1 V at  $V_{DD} = 5 \text{ V}$ 

2 V at V<sub>DD</sub> = 10 V

2.5 V at V<sub>DD</sub> = 15 V

### Applications:

- Keyboard encoding
- 10-line to BCD encoding
- Range selection

92CM - 30956



### RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following range:

| CHARACTERISTIC                                                                | LIN  | UNITS |            |
|-------------------------------------------------------------------------------|------|-------|------------|
| - CHANAGE INDITIO                                                             | Min. | Max.  | ONTIS      |
| Supply Voltage Range (For T <sub>A</sub> = Full Package<br>Temperature Range) | 3    | 18    | , <b>V</b> |

### TRUTH TABLE (Negative Logic)

| ı   | 1                 |   |   |       |   |   |   |   |   |         |   |   |   |   |
|-----|-------------------|---|---|-------|---|---|---|---|---|---------|---|---|---|---|
| ı   | INPUTS            |   |   |       |   |   |   |   |   | OUTPUTS |   |   |   |   |
| Į   | 0                 | 1 | 2 | 3     | 4 | 5 | 6 | 7 | 8 | 9       | D | C | В | Α |
|     | 0                 | 0 | 0 | 0     | 0 | 0 | 0 | 0 | 0 | 0       | 1 | 1 | 1 | 1 |
| )B  | 1                 | 0 | 0 | 0     | 0 | 0 | 0 | 0 | 0 | 0       | 0 | 0 | 0 | 0 |
|     | $\mathbf{X}$      | 1 | 0 | 0     | 0 | 0 | 0 | 0 | 0 | 0       | 0 | 0 | 0 | 1 |
|     | Х                 | × | 1 | 0     | 0 | 0 | 0 | 0 | 0 | 0       | 0 | 0 | 1 | 0 |
| )°  | X                 | X | X | 1     | 0 | 0 | 0 | 0 | 0 | 0       | 0 | 0 | 1 | 1 |
|     | X                 | X | Х | [ x · | 1 | 0 | 0 | 0 | 0 | 0       | 0 | 1 | 0 | 0 |
| 90  | X                 | × | Х | Х     | X | 1 | 0 | 0 | 0 | 0       | 0 | 1 | 0 | 1 |
| - 1 | X                 | X | × | X     | X | X | 1 | 0 | 0 | 0       | 0 | 1 | 1 | 0 |
|     | X                 | × | X | X     | х | х | × | 1 | 0 | 0       | 0 | 1 | 1 | 1 |
| -   | $\mathbf{X}^{-1}$ | Х | x | х     | X | х | Х | Х | 1 | 0       | 1 | 0 | 0 | 0 |
|     | X                 | × | Х | х     | х | х | x | x | Х | 1       | 1 | 0 | 0 | 1 |

INPUTS PROTECTED BY COS/MOS PROTECTION NETWORK

Fig. 1 - CD40147B logic diagram.

0 = High Level

1 = Low Level

X = Don't Care



Fig. 2 — Typical output low (sink) current characteristics.



Fig. 3 — Minimum output low (sink) current characteristics.



Fig. 4 — Typical output high (source) current characteristics.

### CD40147B Types

| MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD)   |
|----------------------------------------------------------------------------|
| Voltages referenced to VSS Terminal)0.5V to +20V                           |
| INPUT VOLTAGE RANGE, ALL INPUTS0.5V to V <sub>DD</sub> +0.5V               |
| DC INPUT CURRENT, ANY ONE INPUT                                            |
| POWER DISSIPATION PER PACKAGE (PD):                                        |
| For T <sub>A</sub> = -55°C to +100°C                                       |
| For T <sub>A</sub> = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW |
| DEVICE DISSIPATION PER OUTPUT TRANSISTOR                                   |
| FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)                |
| OPERATING-TEMPERATURE RANGE (Ta)550C to +1250C                             |
| STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C                             |
| LEAD TEMPERATURE (DURING SOLDERING):                                       |
| At distance 1/16 $\pm$ 1/32 inch (1.59 $\pm$ 0.79mm) from case for 10s max |

# DRAIN-TO-SOURCE VOLTAGE (VDS)-V -IS -IO -S OMMBIENT TEMPERATURE (Ta)-23°C GATE-TO-SOURCE VOLTAGE (VgS)--5 V OD -IOV OD -IOV

Fig. 5 — Minimum output high (source) current characteristics:

### STATIC ELECTRICAL CHARACTERISTICS

| CHARAC-                               | CONDITIONS     |      |                 | LIMITS AT INDICATED TEMPERATURES (°C) |       |       |       |       |                   |      |     |
|---------------------------------------|----------------|------|-----------------|---------------------------------------|-------|-------|-------|-------|-------------------|------|-----|
| TERISTIC                              | V <sub>o</sub> | VIN  | V <sub>DD</sub> |                                       |       |       |       | _     | +25               |      | TS  |
| , ,                                   | (V)            | (V)  | (V)             | -55                                   | -40   | +85   | +125  | Min.  | Тур.              | Max. |     |
| Quiescent                             | _              | 0,5  | 5               | 5                                     | 5     | 150   | 150   |       | 0.04              | 5    |     |
| Device                                | _              | 0,10 | 10              | 10                                    | 10    | 300   | 300   |       | 0.04              | 10   | ] [ |
| Current, IDD                          |                | 0,15 | 15              | 20                                    | 20    | 600   | 600   | -     | 0.04              | 20   | μΑ  |
| Max.                                  |                | 0,20 | 20              | 100                                   | 100   | 3000  | 3000  | _     | 0.08              | 100  | 1 ] |
| Output Low                            | 0.4            | 0,5  | 5               | 0.64                                  | 0.61  | 0.42  | 0.36  | 0.51  | . 1               | T -  |     |
| (Sink)<br>Current                     | 0.5            | 0,10 | 10              | 1.6                                   | 1.5.  | 1.1   | 0.9   | 1.3   | 2.6               | _    | 1   |
| I <sub>OL</sub> Min.                  | 1.5            | 0,15 | 15              | 4.2                                   | 4     | 2.8   | 2.4   | 3.4   | 6.8               | _    | 1   |
| Output                                | 4.6            | 0,5  | 5               | -0.64                                 | -0.61 | -0.42 | -0.36 | -0.51 | -1                | T -  | mA  |
| (Source)                              | 2.5            | 0,5  | - 5             | -2                                    | -1.8  | -1.3  | -1.15 | -1.6  | -3.2              | _    | 1   |
| Current,                              | 9.5            | 0,10 | 10              | -1.6                                  | -1.5  | -1.1  | -0.9  | -1.3  | -2.6              |      | 1   |
| I <sub>он</sub> Min.                  | 13.5           | 0,15 | 15              | -4.2                                  | -4    | -2.8  | -2.4  | -3.4  | -6.8              |      | 1   |
| Output Voltage:                       |                | 0,5  | 5               |                                       | 0.05  |       |       |       | 0                 | 0.05 |     |
| Low-Level,                            |                | 0,10 | 10              |                                       | 0.0   | 05    |       |       | 0                 | 0.05 |     |
| V <sub>o∟</sub> Max.                  | _              | 0,15 | 15              |                                       | 0.0   | 05    |       | _     | 0                 | 0.05 |     |
| Output Voltage:                       |                | 0,5  | 5               |                                       | 4.9   | 95    |       | 4.95  | 5                 |      | V   |
| High-Level,                           |                | 0,10 | 10              | 9.95                                  |       |       |       | 9.95  | 10                | _ ,  | 20  |
| V <sub>он</sub> Min.                  | -              | 0,15 | 15              |                                       | 14.   | 95    |       | 14.95 | 15                | _    |     |
| Input Low                             | 0.5,4.5        | _    | 5               |                                       | 1.    | 5     |       | -     | _                 | 1.5  | 7   |
| Voltage,                              | 1,9            | _    | 10              |                                       | 3     | 3     |       |       |                   | 3    |     |
| V <sub>IL</sub> Max.                  | 1.5,13.5       | _    | 15              |                                       | 4     | ı     |       | _     | _                 | 4    |     |
| Input High                            | 0.5,4.5        | _    | 5               |                                       | 3.    | 5     |       | 3.5   | _                 | _    | , V |
| Voltage,                              | 1,9            | -    | 10              |                                       | 7     | ,     |       | 7     |                   |      |     |
| V <sub>iH</sub> Min.                  | 1.5,13.5       | _    | 15              |                                       | 1     | 1     |       | 11    |                   | _    |     |
| Input Current<br>I <sub>IN</sub> Max. | -              | 0,18 | 18              | ±0.1                                  | ±0.1  | ±1    | ±1    | _     | ±10 <sup>-6</sup> | ±0.1 | μA  |



Fig. 6 — Typical transition time as a function of load capacitance.



Fig. 7 — Propagation delay time as a function of load capacitance.



Fig. 8 — Typical dynamic power dissipation as a function of input frequency.

### CD40147B Types

## DYNAMIC ELECTRICAL CHARACTERISTICS at T\_A = 25°C, Input t\_r, t\_f = 20 ns, C\_L = 50 pF, R\_L = 200 k $\Omega$

| CHARACTERISTIC                                       | TEST CONDITIONS  | LIMITS<br>ALL TYPES    |      |      | UNITS |
|------------------------------------------------------|------------------|------------------------|------|------|-------|
|                                                      |                  | V <sub>DD</sub><br>(V) | Тур. | Max. |       |
| Propagation Delay Time,                              | ,                | 5                      | 450  | 900  |       |
| tPLH, tPHL                                           |                  | 10                     | 200  | 400  | ns    |
| In-Phase Output                                      | Any input to any | 15                     | 150  | 300  |       |
|                                                      | output           | 5                      | 425  | 850  |       |
| Out-of-Phase Output                                  |                  | 10                     | 175  | 350  | ns    |
|                                                      |                  | 15                     | 125  | 250  |       |
|                                                      |                  | 5                      | 100  | 200  |       |
| Transition Time, t <sub>THL</sub> , t <sub>TLH</sub> |                  | 10                     | 50   | 100  | ns    |
|                                                      |                  | 15                     | 40   | 80   |       |
| Input Capacitance, C <sub>1</sub>                    | Any Input        |                        | 5    | 7.5  | pF    |



Fig. 9 — Dynamic power dissipation test circuit.



Fig. 10 — Quiescent device current test circuit.



Fig. 11 - Input voltage test circuit.



Fig. 12 - Input current test circuit.



4 - 1 16 - V<sub>DD</sub>
5 - 2 15 - 0
6 - 3 14 - D
7 - 4 13 - 3
8 - 5 12 - 2
C - 6 11 - 1
8 - 7 10 3
6 9 A
TOP VIEW

9203-30957

CD40147B TERMINAL ASSIGNMENT

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils ( $10^{-3}$  inch).

Dimensions and pad layout for CD40147BH

### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

### This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.

## **Texas Instruments**

http://www.ti.com

This file is the datasheet for the following electronic components:

CD4014 - http://www.ti.com/product/cd4014?HQS=TI-null-null-dscatalog-df-pf-null-wwe