# Data simulation and calculation of betas

```
library(knitr)
library(kableExtra)
library(cowplot)
library(ggforce)
## Loading required package: ggplot2
library(latex2exp)
library(reshape2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
       group_rows
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
knitr::opts_chunk$set(cache = FALSE, warning = FALSE, message = FALSE, cache.lazy = FALSE)
```

### Simulation data

```
K <- 10 # Nombre de groupe
nK <- 50 # Nombre d'observations par groupe
N <- K * nK # Nombre total d'observation
G <- factor(rep(1:K, each = nK))
intercept <- 2
fixefEffect <- .5
aleaEffect <- rnorm(K, sd = .5)
bias <- rnorm(N, sd = .25)
X <- rbinom(N, size=1, prob = .5)
# X_gauss <- rnorm(N, 1, 2)</pre>
```

```
Y_{withoutAlea} \leftarrow intercept + fixefEffect * X + bias
\# Y\_G \leftarrow intercept + fixefEffect * X\_gauss + aleaEffect[G] + bias
Y <- intercept + fixefEffect * X + aleaEffect[G] + bias
dfWith <- data.frame(X, Y, G)</pre>
dfWithout <- data.frame(X, Y=Y_withoutAlea, G)</pre>
HO <- formula(Y ~ X)
H1 \leftarrow formula(Y \sim X + (1|G))
dataPlot = cbind.data.frame(X=rep(factor(X),2), Y = c(Y, Y_withoutAlea),
                              G = factor(c(G,X), levels = 0:10),
                              Effect = factor(rep(c("gamma != 1", "gamma == 0"),
                                                   each=length(X))))
ggplot(dataPlot) +
  geom_boxplot(aes(x=X, y=Y, fill = G)) +
  scale_x_discrete(expand = c(0, 0.5)) +
  theme_bw()+
  ggforce::facet_row(vars(Effect), scales = 'free', space = 'free',
                      labeller = "label_parsed")
```



### Linear model with lm function

```
options(warn=-1)
X_prime <- cbind(1, X)</pre>
```

```
# With Random Effect
lmModel <- lm(HO, data = dfWith)</pre>
Sigm <- sqrt(((summary(lmModel)$sigma)**2)*solve(t(X) %*% X))</pre>
betaLm <- lmModel$coefficients</pre>
SE <- (betaLm[-1] - confint(lmModel)[-1,][1])/1.96</pre>
A <- ggplot(dfWith, aes(x = X, y = Y, color = G) ) +
     geom point() +
     geom_smooth(formula = as.formula(y ~ x), method = "lm", se=.3,aes(fill = G))+
  theme_bw()+theme(legend.position="none")+
  annotate(geom='text', label=TeX("$\\gamma \\neq 0$"), y=3.7, x=.5)
# Without Random Effect
lmModel <- lm(HO, data = dfWithout)</pre>
Sigm.1 <- sqrt(((summary(lmModel)$sigma)**2)*solve(t(X) %*% X))</pre>
betaLm.1 <- lmModel$coefficients</pre>
SE.1 \leftarrow (betaLm.1[-1] - confint(lmModel)[-1,][1])/1.96
B \leftarrow ggplot(dfWithout, aes(x = X, y = Y, color = G)) +
     geom_point() +
     geom_smooth(formula = as.formula(y ~ x), method = "lm", se = .3, aes(fill = G))+
  theme_bw()+theme(axis.title.y = element_blank())+
  annotate(geom='text', label=TeX("$\\gamma=0$"), y=3, x=.5)
cowplot::plot_grid(A, B, labels = c('',''))
```



Table 1: Linear regression estimates with lm()

|                 | $\hat{eta}$ | $SE(\hat{\beta})$ | $\sigma(\hat{eta})$ |
|-----------------|-------------|-------------------|---------------------|
| $\gamma \neq 0$ | 0.5111      | 0.0479            | 0.0349              |
| $\gamma = 0$    | 0.4628      | 0.0216            | 0.0157              |

# Mixed model with lmer function

```
options(warn=-1)
# With Random Effect
lmerModel <- lme4::lmer(H1, data=dfWith)</pre>
betaLmer <- lme4::fixef(lmerModel)</pre>
SE <- sqrt(diag(as.matrix(vcov(lmerModel))))[-1]</pre>
Sigm <- sqrt(stats::var(as.vector(betaLmer %*% t(X))))</pre>
A <- ggplot(dfWith, aes(x=X, y=Y, colour=G)) +
    geom_point(size=1.5) +
    geom_line(aes(y=predict(lmerModel), group=G), size=1.3) +
      theme_bw()+theme(legend.position="none")+
  annotate(geom='text', label=TeX("$\\gamma \\neq 0$"), y=3.7, x=.5)
# Without Random Effect
lmerModel.1 <- lme4::lmer(H1, data=dfWithout)</pre>
betaLmer.1 <- lme4::fixef(lmerModel.1)</pre>
SE.1 <- sqrt(diag(as.matrix(vcov(lmerModel.1))))[-1]</pre>
Sigm.1 <- sqrt(stats::var(as.vector(betaLmer.1 %*% t(X))))</pre>
B <- ggplot(dfWithout, aes(x=X, y=Y, colour=G)) +
    geom_point(size=1.5) +
    geom_line(aes(y=predict(lmerModel.1), group=G), size=1.3) +
  theme_bw()+theme(axis.title.y = element_blank())+
  annotate(geom='text', label=TeX("$\\gamma=0$"), y=3, x=.5)
cowplot::plot_grid(A, B, labels = c('',''))
```



Table 2: Mixed Model estimates with lmer()

|                 | $\hat{eta}$ | $SE(\hat{\beta})$ | $\sigma(\hat{eta})$ |
|-----------------|-------------|-------------------|---------------------|
| $\gamma \neq 0$ | 0.4585      | 0.0219            | 0.73                |
| $\gamma = 0$    | 0.4628      | 0.0215            | 0.8186              |

## OLS

```
OLS <- function(Y, X){
  modelmat <- model.matrix(~.,cbind.data.frame(X=X))
  indexes_X <- which(substring(colnames(modelmat), 1, 1) == "X")
  modX_OLS <- modelmat[, c(1, indexes_X), drop = FALSE]
  Y <- as.numeric(Y)
  betaOLS <- solve(crossprod(modX_OLS))%*%(t(modX_OLS)%*%Y)
  k <- ncol(modX_OLS)
  n <- nrow(modX_OLS)

residuals <- as.matrix(Y - (betaOLS[1, , drop=FALSE]) - X * betaOLS[indexes_X, , drop=FALSE])
  RSS <- as.numeric(t(residuals)%*%residuals)
  Sigma2 <- as.numeric(RSS/(n-k))</pre>
```

```
Vb <- Sigma2*solve(t(X)%*% X)
Sigm <- sqrt(Vb)
OLSCOV <- 1/(n-k) * as.numeric(t(residuals)%*%residuals) * solve(t(modX_OLS)%*%modX_OLS)
SE <- sqrt(diag(OLSCOV))[-1]
return(list('betaOLS'=betaOLS[indexes_X, ,drop=FALSE], 'SE'=SE, 'Sigm'=Sigm))
}
options(warn=-1)
# With Random Effect
res <- OLS(dfWith$Y,X)
# Without Random Effect
res.1 <- OLS(dfWithout$Y,X)</pre>
```

Table 3: OLS estimates

|                 | $\hat{eta}$ | $SE(\hat{\beta})$ | $\sigma(\hat{eta})$ |
|-----------------|-------------|-------------------|---------------------|
| $\gamma \neq 0$ | 0.5111      | 0.0477            | 0.73                |
| $\gamma = 0$    | 0.4628      | 0.0215            | 0.8186              |

#### Monte Carlo

#### Simulating data

The following represents a simulate a random intercepts model obtenaid 500 Monte-Carlo replicates. The method follows the following simulation framework from gaussian distributions with or without the presence of random effects:

$$Y = \beta_0 + \beta X + \gamma G + \epsilon \tag{1}$$

with  $\beta_0 = 2$ ,  $\beta \in \{0.5, 2, 5, 10\}$  the fixed effect of  $X \sim \mathcal{B}\binom{n}{0.5}$  with n = 500 the number total of samples,  $\epsilon \sim \mathcal{N}(0, 0.25)$  the bias associated, the random effect of group  $\gamma \sim \mathcal{N}(0, \sigma_{\gamma})$  if simulated with random effect with  $\sigma_{\gamma} \in \{0.5, 5, 10, 20\}$ ) and  $\gamma = 0$  if not random effect and the group  $G \in \{1, \ldots, K\}$  with K = 10.

#### Running the Models

```
resOLS.1 <- resOLS.2 <- resMM <- matrix(0, sims, 3)
      y0lsWith <- y0lsWithout <- matrix(0, 500, sims)</pre>
      for(i in 1:sims){
        options(warn=-1)
        bias \leftarrow rnorm(n, sd = .25)
        Y_with <- intercept + fixefEffect * X + aleaEffect[G] + bias
        Y_without <- intercept + fixefEffect * X + bias</pre>
        modOLS.1 <- OLS(Y with, X)</pre>
        modOLS.2 <- OLS(Y_without,X)</pre>
        resOLS.1[i,] <- c(modOLS.1$betaOLS, modOLS.1$SE, modOLS.1$Sigm)
        resOLS.2[i,] <- c(modOLS.2$betaOLS, modOLS.2$SE, modOLS.2$Sigm)
        lmerModel.1 <- try({ lme4::lmer(Y_with ~ X + (1|G), REML = TRUE)}, silent = T)</pre>
        beta <- lme4::fixef(lmerModel.1)[-1]</pre>
        SE_b <- sqrt(diag(as.matrix(vcov(lmerModel.1))))[-1]</pre>
        Sigm <- sqrt(stats::var(as.vector(beta %*% t(X))))</pre>
        resMM[i,] <- c(beta, SE_b,Sigm)</pre>
        estimateAll[k,] <- c(fixefEffect, modOLS.1$betaOLS,modOLS.2$betaOLS,beta,</pre>
                           modOLS.1$SE,modOLS.2$SE,SE_b,
                           modOLS.1$Sigm,modOLS.2$Sigm,Sigm,sdUnit,i)
        yOlsWith[,i] <- Y_with; yOlsWithout[,i] <- Y_without</pre>
        k <- k+1
      yWithSimMean[,kk] <- rowMeans(yOlsWith)</pre>
      yWithoutSimMean[,kk] <- rowMeans(yOlsWithout)</pre>
      kk <- kk + 1
      M <- apply(resOLS.1, 2, mean)</pre>
      S <- apply(resOLS.1, 2, sd)
      H_{ols.1} \leftarrow matrix(c(M[1], S[1], M[2], S[2], M[3], S[3]), ncol = 2, byrow = TRUE)
      M <- apply(resOLS.2, 2, mean)</pre>
      S <- apply(resOLS.2, 2, sd)
      H_{ols.2} \leftarrow matrix(c(M[1], S[1], M[2], S[2], M[3], S[3]), ncol = 2, byrow = TRUE)
      M <- apply(resMM, 2, mean)</pre>
      S <- apply(resMM, 2, sd)
      H_m < -matrix(c(M[1], S[1], M[2], S[2], M[3], S[3]), ncol = 2, byrow = TRUE)
      dimnames(H_ols.1) <- dimnames(H_mm) <-</pre>
        dimnames(H_ols.2) <- list( c('Beta', 'Standard Error', 'Sigm'), c('mean', 'se'))
      resAllOLS.1[[as.character(paste0(fixefEffect,"_",sdUnit))]] <- H_ols.1
      resAllOLS.2[[as.character(pasteO(fixefEffect, " ",sdUnit))]] <- H ols.2</pre>
      resAllMM.1[[as.character(pasteO(fixefEffect,"_",sdUnit))]] <- H_mm
  }
}
estimateAll <- as.data.frame(estimateAll)</pre>
yWithSimMean <- as.data.frame(yWithSimMean)</pre>
yWithoutSimMean <- as.data.frame(yWithoutSimMean)</pre>
yWithSimMean <- cbind.data.frame(X,G,yWithSimMean)</pre>
yWithoutSimMean <- cbind.data.frame(X,G,yWithoutSimMean)</pre>
colnames(estimateAll) = c('fixefEffect','betaOLS.1','betaOLS.2','betaMM',
                            'seOLS.1', 'seOLS.2', 'seMM', 'sigmOLS.1',
```

#### Results

Plot estimation of  $\beta$ 

```
dataPLOT$Bias = rep(resSim$estimateAll[[1]],3)-dataPLOT$betaEs
dataPLOT$betas \leftarrow gsub(0.5, "beta == 0.5",
                                   gsub(2, "beta == 2",
                                    gsub(10, "beta == 10",dataPLOT$betas)))
dataPLOT[dataPLOT$betas==5,'betas']="beta == 5"
dataPLOT$betas = factor(dataPLOT$betas, levels = c("beta == 0.5", "beta == 2",
                                                                                                                                                                    "beta == 5", "beta == 10"))
dataPLOT$Sigm <- gsub(0.5, "Sigma == 0.5",</pre>
                                   gsub(10, "Sigma == 10",
                                    gsub(20, "Sigma == 20", dataPLOT$Sigm)))
dataPLOT[dataPLOT$Sigm==5,'Sigm']="Sigma == 5"
dataPLOT$Sigm = factor(dataPLOT$Sigm, levels = c("Sigma == 0.5", "Sigma == 5",
                                                                                                                                                             "Sigma == 10", "Sigma == 20"))
ggplot(dataPLOT, aes(Method,betaEs))+
geom boxplot(position="dodge",aes(fill=Sigm))+
facet_wrap(~betas, scales = "free_y",labeller = label_parsed,ncol = 4)+
      ylab(TeX("$\\hat{\\beta}$"))+
      scale_x_discrete(labels=c(TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0},TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX
                                                                                           TeX("$mm_{\langle \gamma \neq 0}$"))+
      theme(strip.text.x = element text(size=12, face="bold"),
                          strip.text.y = element_text(size=12, face="bold",)) +
      scale_fill_discrete(name=TeX("$values\\ of\\ \\Sigma$"),
                                                                                 labels=c(TeX("$\\Sigma=.5$"),TeX("$\\Sigma=5$"),
                                                                                           TeX("$\\Sigma=10$"),TeX("$\\Sigma=20$")))
```



Plot bias of etimates  $\beta$ 



Table 4: OLS and Mixed Model estimates with 500 Monte-Carlo replicates

|               |       |                 |                                          | $\Sigma$ =      | $\Sigma=0.5$       |                  | $\Sigma=5$         |                  | $\Sigma=10$        |                  | $\Sigma=20$        |  |
|---------------|-------|-----------------|------------------------------------------|-----------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|--|
| $\beta$       | Model | $\gamma$        | Estimate                                 | μ               | SE                 | $\mu$            | SE                 | $\mu$            | SE                 | $\mu$            | SE                 |  |
| $\beta=0.5$   | OLS   | $\gamma \neq 0$ | $\hat{eta}$                              | 0.5239          | 0.0225             | 0.198            | 0.0224             | 0.1422           | 0.0222             | 0.6252           | 0.0225             |  |
| $\beta = 0.0$ | OLD   | 170             | $SE(\hat{eta})$                          | 0.0463          | 0.001              | 0.4502           | 0.001              | 0.9211           | 0.001              | 1.9281           | 0.001              |  |
|               |       |                 | $\sigma(\hat{eta})$                      | 0.0334          | $7 \times 10^{-4}$ | 0.3247           | $7 \times 10^{-4}$ | 0.6642           | $7 \times 10^{-4}$ | 1.3903           | $7 \times 10^{-4}$ |  |
|               |       |                 | •                                        |                 |                    |                  |                    |                  |                    |                  |                    |  |
|               |       | $\gamma = 0$    | $\hat{\beta}$                            | 0.4998          | 0.0225             | 0.4999           | 0.0224             | 0.5007           | 0.0222             | 0.5025           | 0.0225             |  |
|               |       |                 | $SE(\hat{\beta})$                        | 0.0224          | $7 \times 10^{-4}$ | 0.0223           | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\hat{eta})$                      | 0.0161          | $5 \times 10^{-4}$ | 0.0161           | $5 \times 10^{-4}$ | 0.0161           | $5 \times 10^{-4}$ | 0.0161           | $5 \times 10^{-4}$ |  |
|               | MM    | $\gamma \neq 0$ | $\hat{oldsymbol{eta}}$                   | 0.5001          | 0.0225             | 0.4999           | 0.0223             | 0.5007           | 0.0224             | 0.5025           | 0.0227             |  |
|               |       |                 | $SE(\hat{eta})$                          | 0.0224          | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0225           | $7 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\hat{eta})$                      | 0.2501          | 0.0113             | 0.25             | 0.0111             | 0.2504           | 0.0112             | 0.2513           | 0.0113             |  |
| $\beta = 2$   | OLS   | $\gamma \neq 0$ | $\hat{eta}$                              | 2.0273          | 0.0228             | 2.1144           | 0.0216             | 2.351            | 0.0229             | 1.9903           | 0.0227             |  |
| $\rho$ – 2    | OLS   | 7 7 0           | $\stackrel{ ho}{SE(\hat{eta})}$          | 0.0318          | $8 \times 10^{-4}$ | 0.3584           | 0.0210             | 0.9513           | 0.0229             | 1.1313           | $9 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\hat{eta})$                      | 0.0318          | $6 \times 10^{-4}$ | 0.3584 $0.2585$  | $8 \times 10^{-4}$ | 0.686            | $7 \times 10^{-4}$ | 0.8158           | $7 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\beta)$                          | 0.0223          | 0 × 10             | 0.2000           | 0 × 10             | 0.000            | 7 × 10             | 0.0100           | 7 × 10             |  |
|               |       | $\gamma = 0$    | $\hat{oldsymbol{eta}}$                   | 2.0006          | 0.0228             | 2.0005           | 0.0216             | 2.0001           | 0.0229             | 1.9996           | 0.0227             |  |
|               |       |                 | $SE(\hat{eta})$                          | 0.0225          | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\hat{eta})$                      | 0.0162          | $5 \times 10^{-4}$ | 0.0161           | $5 \times 10^{-4}$ | 0.0161           | $5 \times 10^{-4}$ | 0.0161           | $5 \times 10^{-4}$ |  |
|               | MM    | $\gamma \neq 0$ | $\hat{oldsymbol{eta}}$                   | 2.001           | 0.0228             | 2.0004           | 0.0216             | 1.9999           | 0.0228             | 1.9996           | 0.0227             |  |
|               |       | , , -           | $SE(\hat{eta})$                          | 0.0225          | $7 \times 10^{-4}$ | 0.0225           | $7 \times 10^{-4}$ | 0.0225           | $7 \times 10^{-4}$ | 0.0225           | $7 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\hat{\hat{eta}})^{'}$            | 1.0007          | 0.0114             | 1.0004           | 0.0108             | 1.0001           | 0.0114             | 1                | 0.0114             |  |
|               | 0.7.0 |                 |                                          |                 |                    |                  |                    |                  |                    |                  |                    |  |
| eta=5         | OLS   | $\gamma \neq 0$ | $\hat{\beta}$                            | 5.0209          | 0.0228             | 4.4006           | 0.0209             | 3.776            | 0.0225             | 4.24             | 0.022              |  |
|               |       |                 | $SE(\hat{\beta})$                        | 0.0644          | $9 \times 10^{-4}$ | 0.7705           | 0.001              | 1.2872           | 0.001              | 1.8525           | 0.0011             |  |
|               |       |                 | $\sigma(eta)$                            | 0.0465          | $7 \times 10^{-4}$ | 0.5556           | $7 \times 10^{-4}$ | 0.9282           | $7 \times 10^{-4}$ | 1.3358           | $8 \times 10^{-4}$ |  |
|               |       | $\gamma = 0$    | $\hat{oldsymbol{eta}}$                   | 5.0003          | 0.0228             | 5.0005           | 0.0209             | 5.002            | 0.0225             | 4.9995           | 0.022              |  |
|               |       |                 | $SE(\hat{eta})$                          | 0.0224          | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0223           | $7 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\hat{eta})$                      | 0.0161          | $5 \times 10^{-4}$ | 0.0162           | $5 \times 10^{-4}$ | 0.0161           | $5 \times 10^{-4}$ | 0.0161           | $5 \times 10^{-4}$ |  |
|               | MM    | $\gamma \neq 0$ | $\hat{eta}$                              | 5.0003          | 0.0229             | 5.0003           | 0.0209             | 5.0019           | 0.0225             | 4.9994           | 0.0221             |  |
|               |       | 1 / "           | $SE(\hat{eta})$                          | 0.0225          | $7 \times 10^{-4}$ | 0.0225           | $8 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\overset{\circ}{\hat{eta}})^{'}$ | 2.5006          | 0.0114             | 2.5006           | 0.0105             | 2.5015           | 0.0113             | 2.5002           | 0.011              |  |
| 0 10          | OLG   | / 0             | $\hat{oldsymbol{eta}}$                   | 0.062           | 0.0217             | 10.0600          | 0.0025             | 10.2496          | 0.0219             | 11.1312          | 0.0225             |  |
| $\beta = 10$  | OLS   | $\gamma \neq 0$ | $\stackrel{ ho}{SE(\hat{eta})}$          | 9.963 $0.0453$  | $9 \times 10^{-4}$ | 10.0608 $0.4076$ | 0.0235 $0.001$     | 10.3486 $0.5963$ | 0.0219             | 11.1312 $1.9602$ | 0.0225 $0.0011$    |  |
|               |       |                 | $\sigma(\hat{eta})$                      | 0.0433 $0.0327$ | $7 \times 10^{-4}$ | 0.4070           | $7 \times 10^{-4}$ | 0.3903           | $7 \times 10^{-4}$ | 1.4136           | $8 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\rho)$                           | 0.0321          | 7 × 10             | 0.2939           | 7 × 10             | 0.40             | 7 × 10             | 1.4150           | 6 × 10             |  |
|               |       | $\gamma = 0$    | $\hat{oldsymbol{eta}}$ .                 | 10.0006         | 0.0217             | 9.9998           | 0.0235             | 9.9996           | 0.0219             | 10.0013          | 0.0225             |  |
|               |       |                 | $SE(\hat{eta})$                          | 0.0224          | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\hat{eta})$                      | 0.0161          | $5 \times 10^{-4}$ | 0.0161           | $5 \times 10^{-4}$ | 0.0161           | $5 \times 10^{-4}$ | 0.0162           | $5 \times 10^{-4}$ |  |
|               | MM    | $\gamma \neq 0$ | $\hat{eta}$                              | 10.0002         | 0.0218             | 9.9998           | 0.0235             | 9.9996           | 0.022              | 10.0012          | 0.0225             |  |
|               |       | , , ~           | $SE(\hat{eta})$                          | 0.0224          | $7 \times 10^{-4}$ | 0.0225           | $7 \times 10^{-4}$ | 0.0224           | $7 \times 10^{-4}$ | 0.0225           | $7 \times 10^{-4}$ |  |
|               |       |                 | $\sigma(\hat{\hat{eta}})$                | 5.0011          | 0.0109             | 5.0009           | 0.0118             | 5.0008           | 0.011              | 5.0016           | 0.0113             |  |
|               |       |                 | V /                                      |                 |                    |                  |                    |                  |                    |                  |                    |  |

#### Running models on the average of the simulations

```
options(warn=-1)
colnames(resSim$yWithSimMean) <- colnames(resSim$yWithoutSimMean)<-c('X','G',</pre>
                                                                           names(resSim$resAllOLS))
resMeanSim <- matrix(0, nrow = length(colnames(resSim$yWithSimMean[,-c(1:2)])),9)
X <- resSim$yWithSimMean$X</pre>
G <- resSim$yWithSimMean$G</pre>
k=1
for (i in colnames(resSim$yWithSimMean[,-c(1:2)])) {
  lmerModel <- try({ lme4::lmer(H1,</pre>
                                  data = cbind.data.frame(Y=resSim$yWithSimMean[,i],
                                                             X=X,
                                                             G=G),
                                  REML = TRUE)}, silent = T)
  beta <- lme4::fixef(lmerModel)[-1]</pre>
  SE <- sqrt(diag(as.matrix(vcov(lmerModel))))[-1]</pre>
  Sigm <- sqrt(stats::var(as.vector(beta %*% t(X))))</pre>
  resMeanSim[k,] <- c(unlist(OLS(resSim$yWithSimMean[,i], X)),</pre>
                        unlist(OLS(resSim$yWithoutSimMean[,i], X)),
                        beta, SE, Sigm)
  k <- k+1
}
resMeanSim <- as.data.frame(resMeanSim)</pre>
```

Table 5: OLS and Mixed Model estimates with 500 Monte-Carlo replicates

| β             |                | $OLS_{\gamma  eq 0}$ |                 |                     | $OLS_{\gamma=0}$ |                    |                     | $MM_{\gamma  eq 0}$    |                  |                     |
|---------------|----------------|----------------------|-----------------|---------------------|------------------|--------------------|---------------------|------------------------|------------------|---------------------|
|               | $\Sigma$       | $\hat{eta}$          | $SE(\hat{eta})$ | $\sigma(\hat{eta})$ | $\hat{eta}$      | $SE(\hat{eta})$    | $\sigma(\hat{eta})$ | $\hat{oldsymbol{eta}}$ | $SE(\hat{eta})$  | $\sigma(\hat{eta})$ |
| $\beta = 0.5$ | $\Sigma = 0.5$ | 0.5239               | 0.0406          | 0.0293              | 0.4998           | 0.001              | $7 \times 10^{-4}$  | 0.4999                 | 0.001            | 0.25                |
|               | $\Sigma = 5$   | 0.198                | 0.4497          | 0.3243              | 0.4999           | 0.001              | $7\times10^{-4}$    | 0.5                    | 0.001            | 0.25                |
|               | $\Sigma = 10$  | 0.1422               | 0.9208          | 0.664               | 0.5007           | 0.001              | $7\times10^{-4}$    | 0.5007                 | 0.001            | 0.2504              |
|               | $\Sigma = 20$  | 0.6252               | 1.9279          | 1.3902              | 0.5025           | 0.001              | $7\times10^{-4}$    | 0.5025                 | 0.001            | 0.2513              |
| $\beta = 2$   | $\Sigma = 0.5$ | 2.0273               | 0.0225          | 0.0162              | 2.0006           | 0.0011             | $8 \times 10^{-4}$  | 2.0005                 | 0.0011           | 1.0005              |
|               | $\Sigma = 5$   | 2.1144               | 0.3577          | 0.258               | 2.0005           | 0.001              | $7 \times 10^{-4}$  | 2.0004                 | 0.001            | 1.0004              |
|               | $\Sigma = 10$  | 2.351                | 0.9511          | 0.6858              | 2.0001           | $9\times10^{-4}$   | $7\times10^{-4}$    | 1.9999                 | $9\times10^{-4}$ | 1.0001              |
|               | $\Sigma = 20$  | 1.9903               | 1.1311          | 0.8156              | 1.9996           | 0.001              | $7\times10^{-4}$    | 1.9996                 | 0.001            | 1                   |
| $\beta = 5$   | $\Sigma = 0.5$ | 5.0209               | 0.0604          | 0.0436              | 5.0003           | 0.001              | $7\times10^{-4}$    | 5.0002                 | 0.001            | 2.5006              |
|               | $\Sigma = 5$   | 4.4006               | 0.7701          | 0.5553              | 5.0005           | 0.001              | $7 \times 10^{-4}$  | 5.0003                 | 0.001            | 2.5006              |
|               | $\Sigma = 10$  | 3.776                | 1.287           | 0.9281              | 5.002            | 0.001              | $7\times10^{-4}$    | 5.0019                 | 0.001            | 2.5015              |
|               | $\Sigma = 20$  | 4.24                 | 1.8524          | 1.3358              | 4.9995           | $9 \times 10^{-4}$ | $7 \times 10^{-4}$  | 4.9995                 | 0.001            | 2.5002              |
| $\beta = 10$  | $\Sigma = 0.5$ | 9.963                | 0.0394          | 0.0284              | 10.0006          | 0.001              | $7 \times 10^{-4}$  | 10.0004                | 0.001            | 5.0012              |
|               | $\Sigma = 5$   | 10.0608              | 0.407           | 0.2935              | 9.9998           | 0.001              | $7 \times 10^{-4}$  | 9.9998                 | 0.001            | 5.0009              |
|               | $\Sigma = 10$  | 10.3486              | 0.5959          | 0.4297              | 9.9996           | 0.001              | $7 \times 10^{-4}$  | 9.9996                 | 0.001            | 5.0008              |
|               | $\Sigma = 20$  | 11.1312              | 1.9601          | 1.4135              | 10.0013          | 0.001              | $7 \times 10^{-4}$  | 10.0012                | 0.001            | 5.0016              |

#### Visualization of the models

```
dataMod <- melt(resSim$yWithSimMean, id.vars=c("X","G"),value.name = "Y")</pre>
dataMod$variable = recode_factor(dataMod$variable,
              "0.5_0.5" = "beta = 0.5 ~ ';' ~ Sigma == 0.5",
              "0.5 5"="beta == 0.5 ~ ';' ~ Sigma == 5","0.5 10"="beta == 0.5 ~ ';' ~ Sigma == 10",
              "0.5_20"="beta == 0.5 ~ ';' ~ Sigma == 20",
              "2_0.5"="beta == 2 ~ ';' ~ Sigma == 0.5", "2_5"="beta == 2 ~ ';' ~ Sigma == 5",
              "2_10"="beta == 2 ~ ';' ~ Sigma == 10",
              "2_20"="beta == 2 ~ ';' ~ Sigma == 20","5_0.5"="beta == 5 ~ ';' ~ Sigma == 0.5",
              "5 5"="beta == 5 ~ ';' ~ Sigma == 5","5 10"="beta == 5 ~ ';' ~ Sigma == 10",
              5_{20} = beta == 5 ~ ; ~ Sigma == 20,
              "10_0.5"="beta == 10 ~ ';' ~ Sigma == 0.5",
              "10_5"="beta == 10 ~ ';' ~ Sigma == 5","10_10"="beta == 10 ~ ';' ~ Sigma == 10",
              "10 20"="beta == 10 ~ ';' ~ Sigma == 20")
ggplot(data = dataMod, aes(x = X, y = Y)) +
   geom_point(aes(X, Y), alpha = 0.3) +
     geom_smooth(formula = as.formula(y~x), aes(x = X, y = Y),
                method = "lm", colour="#FC4E07", fullrange = TRUE, se = TRUE)+
  ggpmisc::stat_poly_eq(formula = as.formula(y~x),
             aes(label=paste(..eq.label.., ..rr.label.., sep = "~~~")),
             parse = TRUE, label.x.npc = "center", size = 3.45)+
 theme(strip.text.x = element_text(size=12, face="bold"),
strip.text.y = element_text(size=12, face="bold",))+theme_bw()+
 facet_wrap(~ variable, ncol=4, scales = "free_y",labeller = label_parsed)
```



```
dataMod <- melt(resSim$yWithoutSimMean, id.vars=c("X","G"),value.name = "Y")</pre>
dataMod$variable = recode factor(dataMod$variable,
              "0.5_0.5"="beta == 0.5 ~ ';' ~ Sigma == 0.5",
              "0.5_5"="beta == 0.5 ~ ';' ~ Sigma == 5","0.5_10"="beta == 0.5 ~ ';' ~ Sigma == 10",
              "0.5_20"="beta == 0.5 ~ ';' ~ Sigma == 20",
              "2_0.5"="beta == 2 ~ ';' ~ Sigma == 0.5", "2_5"="beta == 2 ~ ';' ~ Sigma == 5",
              "2_10"="beta == 2 ~ ';' ~ Sigma == 10",
              "2_20"="beta == 2 ~ ';' ~ Sigma == 20","5_0.5"="beta == 5 ~ ';' ~ Sigma == 0.5",
              "5_5"="beta == 5 ~ ';' ~ Sigma == 5","5_10"="beta == 5 ~ ';' ~ Sigma == 10",
              "5_20"="beta == 5 ~ ';' ~ Sigma == 20",
              "10_0.5" = "beta == 10 ~ ';' ~ Sigma == 0.5",
              "10_5"="beta == 10 ~ ';' ~ Sigma == 5","10_10"="beta == 10 ~ ';' ~ Sigma == 10",
              "10_20"="beta == 10 ~ ';' ~ Sigma == 20")
ggplot(data = dataMod, aes(x = X, y = Y)) +
   geom_point(aes(X, Y), alpha = 0.3)+
     geom_smooth(formula = as.formula(y~x), aes(x = X, y = Y),
                method = "lm", colour="#FC4E07", fullrange = TRUE, se = TRUE)+
  ggpmisc::stat_poly_eq(formula = as.formula(y~x),
             aes(label=paste(..eq.label.., ..rr.label.., sep = "~~~")),
```

```
parse = TRUE, label.x.npc = "center", size = 3.45)+
theme(strip.text.x = element_text(size=12, face="bold"),
strip.text.y = element_text(size=12, face="bold",))+theme_bw()+
facet_wrap(~ variable, ncol=4, scales = "free_y",labeller = label_parsed)
```



```
colnames(resSim$yWithSimMean)[10]="Y"
lmerModel <- lme4::lmer(H1, data=resSim$yWithSimMean)
ab_lines <- coef(lmerModel)[["G"]] %>%
    tibble::rownames_to_column("G") %>%
    rename(intercept = `(Intercept)`)
ab_lines$G <- factor(ab_lines$G, levels=1:K)
ggplot(resSim$yWithSimMean,aes(x = X, y = Y, colour=G)) +
    geom_point() +
    geom_line(aes(y=predict(lmerModel), group=G)) +
    geom_line(colour="red",aes(y=predict(lmerModel,re.form=NA),group=G))+
    theme_bw()+theme(legend.position="none")</pre>
```



# **CCDF** application

