IAMOOC: exercises

Luc Jaulin

Exercise .0. Hello intervals

1) After having installed PyIbex and Vibes (see https://www.ensta-bretagne.fr/jaulin/pyibex_doc.pdf), write the PYTHON program below. You do not have to understand it. It is only to check that everything is properly installed.

```
from pyibex import *
from vibes import *
f = Function('x', 'y', 'x*cos(x-y)+y')
sep = SepFwdBwd(f, CmpOp.LEQ)
X0 = IntervalVector(2, [-10, 10] )
vibes.beginDrawing()
pySIVIA(X0, sep, 0.1)
vibes.saveImage('helloIntervals.jpg')
vibes.endDrawing()
```

Save the script into exo0.py.

2) Run the program in order to generate the image helloIntervals.jpg.

Exercise .1. Interval arithmetic

1) Recall that if $\diamond \in \{+, -, \cdot, /, \max, \min\}$, and if [x] and [y] are two intervals of $\mathbb R$ we have

$$[x] \diamond [y] \triangleq [\{x \diamond y \mid x \in [x], y \in [y]\}]$$

where $[\mathbb{A}]$ denotes the smallest interval which contains the set $\mathbb{A} \subset \mathbb{R}$. If [x] = [-1, 3] and [y] = [2, 5], compute $[x] \diamond [y]$ for $\diamond \in \{+, -, \cdot, /, \max, \min\}$.

2) Compute

$$[-2,4] \cdot [1,3]$$

$$[-2,4] \sqcup [6,7]$$

$$\max ([2,7],[1,9])$$

$$\max (\emptyset,[1,2])$$

$$[-1,3]/[0,\infty]$$

$$([1,2] \cdot [-1,3]) + \max ([1,3] \cap [6,7],[1,2])$$

where \sqcup is the hull union, i.e., $[x] \sqcup [y] = [[x] \cup [y]]$.

3) If $f \in \{\text{sqr, sqrt, log, exp, } \dots\}$, is a function from \mathbb{R} to \mathbb{R} , we define the interval extension as

$$f([x]) \triangleq [\{f(x) \mid x \in [x]\}].$$

Compute sqr([-1,3]), sqrt([-10,4]), log([-2,-1]).

4) Compute

$$([1,2] + [-3,4]) \cdot [-1,5].$$

 $\exp([1,2]/[0,\infty]).$

Exercise .2. Intervals with PYTHON

- 1) Under the Python environment, implement the class Interval with basic elementary operations $+,-,\cdot,/$ and the functions \exp , \log , sqr , \min , \max . The resulting interval library will be called myinterval.py.
- 2) Check your library on the interval calculus of Exercise 1.
- 3) Consider the function

$$f(x) = x^2 + 2x - \exp x.$$

Using myinterval.py, compute a range for f([x]) where [x] = [-2, 2].

Exercise .3. Minimization of a scalar valued function

- 1) Using VIBES, and using your own interval library myinterval.py, draw an interval enclosure for the function $f(x) = x^2 + 2x \exp x$ where $x \in [-2, 2]$. For this purpose, you will have to build a PYTHON program, named myminimizer.py, which generates intervals enclosing f([x](k)) where $[x](k) = -2 + \delta \cdot [k, k+1]$ for different values of δ . For instance, we may take $\delta \in \{0.5, 0.05, 0.005, 0.0005\}$.
- 2) From the previous question, give an interval containing the global minimum for f over [-2,2]. Give also an interval containing the global minimizer.
- 3) Modify your program in order to compute automatically an interval containing the global minimum.

Exercise .4. Parameter estimation

Consider the bounded-error parameter estimation problem defined by

$$p_1 \cdot e^{p_2 \cdot t} \in [y](t)$$

where $\mathbf{p} = (p_1, p_2)$ is the parameter vector, t is the time, [y](t) is the output interval that is returned by a sensor. Assume that for $t \in \mathbb{T} = \{0.2, 1, 2, 4\}$ we collected the following interval measurements:

$$[y] (0.2) = [1.5, 2]$$

$$[y] (1) = [0.7, 0.8]$$

$$[y] (2) = [0.1, 0.3]$$

$$[y] (4) = [-0.1, 0.03] .$$

Define the set of all feasible parameter vectors as

$$\mathbb{P} = \left\{ \mathbf{p} \in \left[-3, 3 \right]^2 \mid \forall t \in \mathbb{T}, \, p_1 \cdot e^{p_2 \cdot t} \in \left[y \right] (t) \right\}.$$

where $[-3,3]^2$ corresponds a prior box which is known to enclose **p**.

- 1) Show that \mathbb{P} corresponds to a set inversion problem.
- 2) Implement a library mybox.py with the class Box that is useful to the SIVIA algorithm.
- 3) Using Python, Vibes and your own libraries myinterval.py and mybox.py compute and draw an inner and an outer approximation for P. The corresponding Python will be named myestimator.py.
- 4) Modify your program to draw in the (y,t) space an enclosure of the set of all feasible outputs defined by

$$\mathbb{Y} = \{(t, y) \mid \exists \mathbf{p} \in \mathbb{P}, y = p_1 \cdot e^{p_2 \cdot t} \}.$$

5) Modify your program in order to characterize the set of all parameters $\mathbb{P}^{\{q\}}$ that are consistent with all data except q of them, where $q \in \{0, \dots, 3\}$.

Exercise .5. Electric circuit

Consider the following electric circuit

We collected the following measurements:

$$E \in [23V, 26V], I \in [4A, 8A], U_1 \in [10V, 11V],$$

 $U_2 \in [14V, 17V], P \in [124W, 130W],$

where P is the power delivered by the battery.

- 1) Give the relations that link all these variables together.
- 2) With Python, program a contractor for the three constraints z = x + y, $z = x \cdot y$ and $y = x^2$.
- 3) Propose a contractor-based algorithm (stored into mycircuit.py) which computes two intervals $[R_1]$ and $[R_2]$ enclosing all feasible values for R_1 and R_2 .

Exercise .6. Forward-Backward contractor

Given a point $\mathbf{c} = (c_x, c_y)$ which belongs to the box $[\mathbf{c}] = [1, 3] \times [2, 4] \subset \mathbb{R}^2$ and a real number $r \in [r] = [4, 5]$. Consider the set

$$\mathbb{S} = \{(x, y) \in \mathbb{R}^2 \mid \exists \mathbf{c} \in [\mathbf{c}], \exists r \in [r], (x - c_x)^2 + (y - c_y)^2 = r^2 \}.$$

- 1) With Python, program a contractor $\mathcal{C}_{\mathbb{S}}$ for \mathbb{S} using a forward-backward contraction algorithm.
- 2) Using a paver and the contractor $\mathcal{C}_{\mathbb{S}}$ inside a program that will be called myring.py, provide an outer approximation for \mathbb{S} .

Exercise .7. Separator

Given a set \mathbb{S} , a separator for \mathbb{S} is a pair of two contractors: one for \mathbb{S} and one for its complementary set $\overline{\mathbb{S}}$. More precisely, for a given box $[\mathbf{x}]$, a separator \mathcal{S} for \mathbb{S} will return two subboxes $[\mathbf{a}]$ and $[\mathbf{b}]$ of $[\mathbf{x}]$ such that $[\mathbf{a}] \cap \mathbb{S} = [\mathbf{x}] \cap \mathbb{S}$ and $[\mathbf{b}] \cap \overline{\mathbb{S}} = [\mathbf{x}] \cap \overline{\mathbb{S}}$. In this exercise, you have to return a PYTHON program named myseparator.py.

1) Using a the contractor developed in Exercise 6, program a separator for the set

$$\mathbb{S}_0 = \{(x, y) \in \mathbb{R}^2 \mid (x - c_x)^2 + (y - c_y)^2 \in [r]^2 \}.$$

2) Consider the two rings defined by

$$S_1 = \{(x,y) \in \mathbb{R}^2 \mid (x-1)^2 + (y-2)^2 \in [4,5]^2\}$$

$$S_2 = \{(x,y) \in \mathbb{R}^2 \mid (x-2)^2 + (y-5)^2 \in [5,6]^2\}.$$

Compute a separator for $\mathbb{S}_1 \cap \mathbb{S}_2$ and draw an inner and an outer approximations for this intersection.

3) Compute a separator for $\mathbb{S}_1 \cup \mathbb{S}_2$ and draw an inner and an outer approximations for this union.

Exercise .8. Contractors and Separators with PyIBEX

1) Using a the basic interval operation of PyIBEX build a contractor for the set

$$\mathbb{S}_0 = \left\{ (x, y) \in \mathbb{R}^2 \mid \exists (c_x, c_y) \in [1, 3] \times [2, 4], (x - c_x)^2 + (y - c_y)^2 \in [2, 4]^2 \right\}.$$

Using a paver and VIBES, draw the corresponding paving. The program will be stored in pyibexring.py.

- 2) Repeat the previous question by using the statement CtcFwdBwd of PyIBEX.
- 3) Consider the two rings defined by

$$\mathbb{S}_1 = \{(x,y) \in \mathbb{R}^2 \mid (x-1)^2 + (y-2)^2 \in [4,5]^2\}$$

 $\mathbb{S}_2 = \{(x,y) \in \mathbb{R}^2 \mid (x-2)^2 + (y-5)^2 \in [5,6]^2\}.$

With PyIBEX, compute a separator for $\mathbb{S}_1 \cap \mathbb{S}_2$ and draw an inner and an outer approximations for this intersection.

4) With PyIBEX, compute a separator for $\mathbb{S}_1 \cup \mathbb{S}_2$ and draw the corresponding paving.

Exercise .9. Parameter estimation with PyIBEX

This exercise a similar to Exercise 4, but we will use PyIBEX for the resolution. Consider the bounded-error parameter estimation problem defined by

$$p_1 \cdot e^{p_2 \cdot t} \in [y](t)$$

where $\mathbf{p} = (p_1, p_2)$ is the parameter vector, t is the time, [y](t) is the output interval that is returned by a sensor. Assume that for $t \in \mathbb{T} = \{t_1, t_2, t_3, t_4\} = \{0.2, 1, 2, 4\}$, we collected the following interval measurements:

$$[y] (0.2) = [1.5, 2]$$

$$[y] (1) = [0.7, 0.8]$$

$$[y] (2) = [0.1, 0.3]$$

$$[y] (4) = [-0.1, 0.03].$$

Define the set of all parameter vectors consistent with the ith data interval is defined by

$$\mathbb{P}_{i} = \{\mathbf{p} \in [-3, 3]^{2} \mid p_{1} \cdot e^{p_{2} \cdot t_{i}} \in [y] (t_{i})\}$$

where $[-3,3]^2$ corresponds a prior box which is known to enclose **p**.

- 1) Using PyIBEX and VIBES draw an inner and an outer approximations for each \mathbb{P}_i . The program will be called pyibexestimator.py.
- 2) For $q \in \{0, 1, 2\}$, compute the q-relaxed intersection

$$\mathbb{P}^{\{q\}} = \bigcap_{i}^{\{q\}} \mathbb{P}_{i}.$$

Discuss and compare with your results obtained for Exercise 4.

3) Assume that we may have outliers among the measurements. Provide a method able to identify which data intervals correspond to outliers.

Exercise .10. Localization of a robot using PyIBEX

A robot has to localize inside an environment made of 4 landmarks $\mathbf{m}(i)$, $i \in \{1, ..., 4\}$. It is able to measure its distance d(i) and the azimuth $\alpha(i)$ corresponding to each landmark with some bounded errors. The coordinates of landmarks and the interval measurements are given in the following table

i	$\mathbf{m}\left(i\right)$	[d](i)	$\left[lpha \right] \left(i \right)$
1	(6, 12)	[10, 13]	[0.5, 1]
2	(-2, -5)	[8, 10]	$\left[-3, -\frac{3}{2}\right]$
3	(-3, 10)	[5, 7]	[1, 2]
4	(3,4)	[6, 8]	[2, 3]

The set of all positions $\mathbf{p} \in \mathbb{R}^2$ for the robot that are consistent with the ith measurements is

$$\mathbb{P}_{i}=\left\{ \left(p_{1},p_{2}\right)\in\mathbb{R}^{2}\Vert\ \exists d\in\left[d\right]\left(i\right),\exists\alpha\in\left[\alpha\right]\left(i\right)\ \text{s.t.}\ m_{1}\left(i\right)=p_{1}+d\cos\alpha\ \text{and}\ m_{2}\left(i\right)=p_{2}+d\sin\alpha\right\} .$$

- 1) Using the optimal separator named SepPolarXY of PyIBEX, draw a subpaving approximation for the sets \mathbb{P}_i .
- 2) Give the set of all **p** that are consistent with the largest number of data. The resulting program will be called pyibexlocpie.py.
- 3) Which data corresponds to an outlier.

Exercise .11. Simultaneous Localization and Mapping using PyIBEX

Consider a robot at position (x, y) moving inside an unknown environment. We assume that its motion is described by the discrete time state equations:

$$\begin{cases} x(k+1) = x(k) + 10 \cdot \delta \cdot \cos \theta(k) \\ y(k+1) = y(k) + 10 \cdot \delta \cdot \sin \theta(k) \\ \theta(k+1) = \theta(k) + \delta \cdot (u(k) + n_u(k)) \end{cases}$$

where $k \in \{0, ..., 100\}$ is the discrete time, $\delta = 0.1$ corresponds to the sampling time, θ to the heading, u to the desired rotational speed and n_u to a noise. We assume that at time k = 0, we have x(k) = y(k) = 0 and $\theta(k) = 1$. The desired input u(k) is chosen as

$$u(k) = 3 \cdot \sin^2(k\delta).$$

We assume that the heading is measured (using a compass for instance) with a small error:

$$\theta^{m}(k) = \theta(k) + n_{\theta}(k)$$
.

For all k we assume that $n_u(k)$ and $n_{\theta}(k)$ belong to [-0.03, 0.03].

- 1) Simulate the system using uniform random noise and draw an interval tube enclosing the trajectory.
- 2) In the environment, we assume that we have 4 landmarks, the coordinate of which are given by the following table.

i	0	1	2	3
$\mathbf{m}(i)$	(6, 12)	(-2, -5)	(-3, 20)	(3,4)

We do not know these coordinates. For each k the robot is able to measure the distance to one of these landmarks (taken randomly), with an accuracy of ± 0.03 . By simulation, generate a set of intervals containing these all collected distances with their uncertainties.

3) Using a contractor-based method, improve the accuracy for the enclosure for the robot while simultaneously enclosing all landmarks by boxes. The resulting program will be stored in the file pyibexSLAM.py.