

METRIC1: Accuracy

METRIC2: F1-score

$$F_1$$
-score = 2 × $\frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} = \frac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}$

- The F1-score is the harmonic mean between precision and recall
- Evaluation classification result
- Account class imbalance

PyMethylProcess: Accelerating DNA Methylation Data Preprocessing

- preprocess DNA methylation array data
- access traditional differential methylation analyses and machine learning libraries
- Uses both Python and R libraries
- pip-installable command line interface.

can be used through docker.

Data

The paper used 7 datasets(6 GEO and 1 TCGA).

One of mainly focused dataset is:

GSE87571:

- Measured using Illumina HumanMethylation450 BeadChip
- Bisulphite converted DNA from 732 samples 476,366 sites throughout the genome of white blood cells.
- from a population cohort aged 14 to 94 years

From paper: Johansson,A. et al. (2013) Continuous aging of the human DNA methylome throughout the human lifespan.

PyMethylProcess: Basic Framework

Installation and Usage

pip install pymethylprocess && pymethyl-install_r_dependencies # python 3.6, R(3.5.1)

Preprocessing

1. **Downloading** the data example: pymethyl-preprocess download_geo -g **GEOID** -o **geo_idats**/

2. Formatting the Sample Sheet

3. **Running** the Preprocessing Pipeline

4. Accessing, Reading and Writing MethylationArray Data

Python notebook

5. Visualization: UMAP Embed

6. **Supervised models** (Feature extraction)

^{*}yellow lined boxes: we were able to use it, black box: we couldnt yet. Tried Docker.

Results

PyMethylProcess Pipeline Benchmarks												
DataSets	Brief Description	Sample Size	Preprocessing Pipeline	# CpGs After Normalization	Principal Components	# Outlier Samples	# CPUs	Memory (Gb)	Runtime (Minutes)	# Sites Removed	Percentage Imputed (%)	Imputation Method
GSE87571	Johannson Aging	732	Minfi: Noob Normalization	482669	NA	13	1	NA	150.0	11233	0.706	K-NN: 15 neighbors
GSE81961	Crohn's Disease	40	Meffil: Functional Normalization	480329	4.0	0	35	10	4.1	11587	0.096	K-NN: 5 neighbors
GSE69138	Stroke	185	Meffil: Functional Normalization	474021	13.0	2	35	NA	11.5	11305	0.166	K-NN: 5 neighbors
GSE42861	Smoking and Arthritis	689	Meffil: Functional Normalization	477482	13.0	8	30 ¹	110²	38.5 ³	11448	0.190	K-NN: 5 neighbors
GSE112179	Schizophrenia and Bipolar	100	Meffil: Functional Normalization	853772	10.0	2	30	NA	40.0	19278	0.240	K-NN: 10 neighbors
GSE109381	Brain Cancer Subclasses	3897	Meffil: Functional Normalization⁴	320023	10.45	135	30	60	135.0	6791	0.054	Mean
TCGA Pancancer	33 Pan- Cancer subtypes	8891	Meffil: Functional Normalization⁴	378588	14.6 ⁵	515	30	60	255.0	7869	0.112	Mean

¹ Quality control used 30 CPUs, Normalization Used 14 CPUs ² Only for normalization step ³ 13.5 Minutes for QC, 25 minutes for Normalization

⁴ Subclasses Processed in Parallel ⁵ Averaged Across Disease Subtypes

TOOL2: DeepPerVar

- Functional interpretation of genetic variants of personal genome by leveraging paired WGS data and epigenetic functional assays in a population study.
- Quantitatively predict epigenetic signals (e.g. histone modification and DNA methylation)
- Multimodal deep neural network
- Ideas for feature importance extraction:
 - Using feature extraction API from pytorch

Training data

- Genetic data
 - WGS data in the format of genomic VCF files are generated by GATK
- Epigenetic data
 - 439 datasets, which are across 83 cell lines/tissues, 18 tissue classes and 7 core histone marks including
 H3K4me1, H3K9ac
 - Criteria to pick CHIP-seq peak:
 - ChIP counts are smaller than matched input control counts
 - *P*-value is <0.05 derived from the Poisson test
 - Merge overlapped peaks across all individuals and calculate the normalized read counts for each merged peak by adjusting sequence depth and matched input control. -> 141 807 merged peaks and normalized ChIP counts in each peak
- DNA methylation data
 - o 104 DNA methylation datasets generated from three different sequencing technologies
 - o adjusted for age, sex and experimental batch, which ends up with methylation ratio at 418 972 CpGs

General method

Installation & Usage

DeepPerVar is implemented by Python3.

- Python 3.8
- numpy >= 1.18.5
- pytorch ==1.7.1
- biopython=1.19.2

Download Reference Genome (hg19), and put them in the DeepPerVar root directory. Download DeepPerVar Models, and put model files in models directory.

```
unzip Models.zip Reference.zip
```

Download DeepPerVar:

```
git clone https://github.com/alfredyewang/DeepPerVar
```

Install requirements.

```
pip3 install -r requirements --user
```

Install Samtools 1.15.1 follow the (instruction)[http://www.htslib.org/download/] .

Input File Format

DeepPerVar takes UCSC Genome Browser BED file. Each line has 5 tab separated fields. The BED fields are:

- . The first column: Chromosome name (hg19).
- . The second column: Position of SNPs (hg19).
- · The third column: The strand information.
- · The fourth column: reference allele.
- · The fifth column: alternative allele.

H3K9 Example

```
python3 src/DeepPerVar.py --prediction --epigenomics H3K9 --bed data/snps.bed --res_dir res --model_
```

Results will be save into res/Results histone.csv

```
strand ref
                               H3K9AC_REF_Pred H3K9AC_ALT_Pred DELTA_H3K9AC
1265154 -
               Т
                               18,415241
                                              18.509096
                                                              0.093854904
1265460 -
               T
                               17.707266
                                              17.64615
                                                              -0.061115265
2957600 -
               T
                               10.322433
                                              10.464524
                                                              0.1420908
3691528 -
                               16.85876
                                              16,950903
                                                              0.092142105
8021919 -
                               82.27526
                                              82,20313
                                                              -0.072128296
8939842 -
                               42.205887
                                              42.33795
                                                              0.13206482
10457540
                                       13.674403
                                                      13.556186
                                                                      -0.11821747
11072117
                                       57.86567
                                                      56.590023
                                                                      -1.2756462
11072691
                                       37.507782
                                                      37.999027
                                                                      0.49124527
11083408
                       G
                                       16.937225
                                                      15.624798
                                                                      -1.3124275
```

Paper's result

GEO dataset (GSE97362)

- About Neurodevelopmental syndromes (CHARGE and Kabuki syndrome)
- Infinium HumanMethylation 450K + EPIC
- Gene-specific DNA methylation signatures
- 285 cases across 14 syndromes, 650 controls

Samples

	GSM2562699 ÷	GSM2562700 [‡]	GSM2562701 [‡]
cg0000002	9 0.519920000	0.59989020	0.565073500
cg0000010	0.944431600	0.93048600	0.920178500
cg0000010	9 0.848503500	0.87495590	0.849404200
cg0000016	0.201246000	0.22542840	0.277427300

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97362