Optimization in Machine Learning

Univariate optimization: Brent's method

Learning goals

- Quadratic interpolation
- Brent's procedure

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

QUADRATIC INTERPOLATION COMMENTS

- Quadratic interpolation not robust. The following may happen:
 - Algorithm suggests the same x^{new} in each step,
 - x^{new} outside of search interval,
 - Parabola degenerates to line and no real minimum exists
- Algorithm must then abort, finding a global minimum is not guaranteed.

BRENT'S METHOD

- Brent proposed an algorithm (1973) that alternates between golden ratio search and quadratic interpolation as follows:
 - Quadratic interpolation step acceptable if: (i) x^{new} falls within [x^{left}, x^{right}] (ii) x^{new} sufficiently far away from x^{best} (Heuristic: Less than half of movement of step before last)
 - Otherwise: Proposal via golden ratio
- Benefit: Fast convergence (quadratic interpolation), unstable steps (e.g. parabola degenerated) stabilized by golden ratio search
- Convergence guaranteed if the function f has a local minimum
- Used in R-function optimize()

EXAMPLE: ML CAUCHY

- Density Poisson: $f(k \mid \lambda) := \mathbb{P}(x = k) = \frac{\lambda^k \cdot \exp(-\lambda)}{k!}$
- Negative log-Likelihood for n observations:

$$-\ell(\lambda, \mathcal{D}) = -\log L(\lambda, \mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \frac{\lambda^{x^{(i)}} \cdot \exp(-\lambda)}{x^{(i)}!}$$

GR and Brent converge to global opt at $x^* = 0.75$. But GR needs \approx 93 iters, Brent needs \approx 18 for same level of precision.