TD: Les filtres de Laws

François Lepan

6 février 2013

1 Filtres de LAWS

1.1 calculer les 5 images résultant du filtrage d'une image ligne contenant que des pixels blanc ou noire

Pour un pixel x de l'image et le filtre L5 (1, 4, 6, 4, 1) on a : Res(x) = 1 * val(x - 2) + 4 * val(x - 1) + 6 * val(x) + 4 * val(x + 1) + 1 * val(x + 2)

Si la somme des coefficient est nulle alors le résultat sera null. Ici on ne considère pas les bords

Filtre L5: 1, 4, 6, 4, 1

Image noire : -1,-1,-1,-1,-1 \rightarrow res = -16 Image blanche : +1,+1,+1,+1,+1 \rightarrow res = 16

Filtre E5: -1, -2, 0, 2, 1

Image noire : -1,-1,-1,-1,-1 \rightarrow res = 0 Image blanche : +1,+1,+1,+1,+1 \rightarrow res = 0

Filtre S5: -1, 0, 2, 0, -1

Image noire : -1,-1,-1,-1,-1 \to res = 0 Image blanche : +1,+1,+1,+1,+1 \to res = 0

Filtre W5: -1, 2, 0, -2, 1

Image noire : -1,-1,-1,-1,-1 \to res = 0 Image blanche : +1,+1,+1,+1,+1 \to res = 0

Filtre R5:1, -4, 6, -4, 1

Image noire : -1,-1,-1,-1,-1 \to res = 0 Image blanche : +1,+1,+1,+1,+1 \to res = 0

1.2 calculer les 5 images résultant du filtrage d'une image ligne contenant une alternance de pixels blanc et noire

Filtre L5: 1, 4, 6, 4, 1

Image depart : -1, +1, -1, +1, -1 \rightarrow res = 0 Image depart +1, -1, +1, -1, +1 \rightarrow res = 0

Filtre E5: -1, -2, 0, 2, 1

Image depart : -1, +1, -1, +1, -1 \rightarrow res = 0 Image depart +1, -1, +1, -1, +1 \rightarrow res = 0

Filtre S5: -1, 0, 2, 0, -1

Image depart : -1, +1, -1, +1, -1 \rightarrow res = 0 Image depart +1, -1, +1, -1, +1 \rightarrow res = 0

Filtre W5: -1, 2, 0, -2, 1

Image depart : -1, +1, -1, +1, -1 \rightarrow res = 0 Image depart +1, -1, +1, -1, +1 \rightarrow res = 0

Filtre R5:1, -4, 6, -4, 1

Image depart : -1, +1, -1, +1, -1 \rightarrow res = -16 Image depart +1, -1, +1, -1, +1 \rightarrow res = 16

1.3 combien d'alternances +/- trouve-t-on dans la série de coéfficients définissant chaque filtre?

Filtre L5: 0 Filtre E5: 1 Filtre S5: 2 Filtre W5: 3 Filtre R5: 4

1.4 Pour chaque filtre de Laws, peut-on trouver une texture, c'est-àdire un arrangement périodique de valeurs binaires, pour lequel la valeur absolue de la réponse est le plus souvent maximale?

Filtre L5: 1, 4, 6, 4, 1

Valeur maximale = 1, 1, 1, 1, 1, 1, 1, 1 Valeur maximale res = 16, 16, 16, 16, 16, 16, 16, ... Changement de signe pour une périodicité de 8:0

Filtre E5: -1, -2, 0, 2, 1

											resultat (doit toujours etre max)
texture	-1	-1	-1	1	1	1	1	-1	-1	-1	(valeurs rajoutées pr avoir une val max)
arrangement	1	2	0	2	1						6
arrangement		1	2	0	2	1					6
arrangement			1	-2	0	2	1				2
arrangement				-1	-2	0	2	-1			-2
arrangement					-1	-2	0	-2	-1		-6
arrangement						-1	-2	0	-2	-1	-6

Valeur maximale = -1, -1, -1, 1, 1, 1, 1, -1

Valeur maximale res = 6, 2, -2, -6, -6, -2, 2, 6 Changement de signe pour une périodicité de 8:2

Filtre S5: -1, 0, 2, 0, -1

Valeur maximale = 1,1,-1,-1

Valeur maximale res = 4,4,-4,-4 Changement de signe pour une périodicité de 8 : 4

Filtre W5: -1, 2, 0, -2, 1

Valeur maximale = -1, -1, 1, -1, 1, 1, -1, 1

Valeur maximale res =6, 2, 2, 6, 6, 2, 2, 6 (les signes sont faux) Changement de signe pour une périodicité de 8:6

Filtre R5: 1, -4, 6, -4, 1

Valeur maximale = -1, 1

Valeur maximale res = 16, -16, 16, -16, Changement de signe pour une périodicité de 8 : 8

1.5 Indices de texture

1.6 Calculer le coefficient de pondération qui permet de garantir que l'indice de texture prend toujours une valeur comprise entre 0 et 1

Filtre L5: 1, 4, 6, 4, 1

pour 4 pixel : En prenant la somme des valeurs absolu on peut avoir une valeur $\max = 64$ Valeur maximale res = 16, 16, 16, 16, 16, 16 res = 1/64

Filtre E5: -1, -2, 0, 2, 1
$$res = 1/16$$

/

res = 1/16

Filtre S5:
$$-1$$
, 0, 2, 0, -1

res = 1/16

Filtre W5:
$$-1, 2, 0, -2, 1$$

res = 1/64

1.7 Calculer les indices de texture obtenus pour la ligne de pixels de la figure 2 pour le filtre L5 normalisé et R5 normalisé