

# Brain Imaging Data Structure Specification

v1.4.1

# Contents

| The Brain Imaging Data Structure                       | 6    |
|--------------------------------------------------------|------|
| Introduction                                           | 6    |
| Motivation                                             | . 6  |
| Extensions                                             | . 7  |
| Citing BIDS                                            | . 7  |
| Original publication                                   | . 7  |
| Datatype specific publications                         | . 7  |
| Research Resource Identifier (RRID)                    | . 8  |
| Common principles                                      | 8    |
| Definitions                                            | . 8  |
| Compulsory, optional, and additional data and metadata |      |
| File name structure                                    |      |
| Source vs. raw vs. derived data                        | . 10 |
| Storage of derived datasets                            |      |
| Non-compliant derivatives                              |      |
| The Inheritance Principle                              |      |
| Good practice recommendations                          |      |
| File Formation specification                           |      |
| Imaging files                                          |      |
| Tabular files                                          | . 14 |
| Key/value files (dictionaries)                         | . 16 |
| Participant names and other labels                     | . 16 |
| Uniform Resource Indicator                             | . 17 |
| Units                                                  | . 17 |
| Directory structure                                    | . 18 |
| Single session example                                 | . 18 |
| Unspecified data                                       | . 19 |
| Modality agnostic files                                | 19   |
| Dataset description                                    | . 19 |
| dataset_description.json                               |      |
| README                                                 |      |
| CHANGES                                                | . 23 |
| LICENSE                                                |      |
| Participants file                                      |      |
| Phenotypic and assessment data                         |      |
| Scans file                                             | 27   |

| Code                                                            | <br>27 |
|-----------------------------------------------------------------|--------|
| Magnetic Resonance Imaging                                      | 27     |
| Common metadata fields                                          | <br>27 |
| Scanner Hardware                                                | <br>27 |
| Sequence Specifics                                              | <br>30 |
| In-Plane Spatial Encoding                                       | <br>31 |
| Timing Parameters                                               | <br>34 |
| RF & Contrast                                                   | <br>37 |
| Slice Acceleration                                              |        |
| Anatomical landmarks                                            |        |
| Institution information                                         | <br>38 |
| Anatomy imaging data                                            | <br>36 |
| Task (including resting state) imaging data                     |        |
| Required fields                                                 |        |
| Other RECOMMENDED metadata                                      |        |
| Diffusion imaging data                                          |        |
| Fieldmap data                                                   |        |
| Case 1: Phase difference image and at least one magnitude image |        |
| Case 2: Two phase images and two magnitude images               |        |
| Case 3: A real fieldmap image                                   |        |
| Case 4: Multiple phase encoded directions ("pepolar")           | <br>50 |
| Magnetoencephalography                                          | 50     |
| MEG recording data                                              |        |
| Recording EEG simultaneously with MEG                           |        |
| Sidecar JSON (*_meg.json)                                       |        |
| Channels description (*_channels.tsv)                           |        |
| Coordinate System JSON (*_coordsystem.json)                     |        |
| Landmark photos (*_photo.jpg)                                   |        |
| Head shape and electrode description (*_headshape. <ext>)</ext> |        |
| Empty-room MEG recordings                                       |        |
| Empty from Mile recordings                                      | <br>Ü. |
| Electroencephalography                                          | 68     |
| EEG recording data                                              |        |
| Sidecar JSON (*_eeg.json)                                       | <br>66 |
| Channels description (*_channels.tsv)                           |        |
| Electrodes description (*_electrodes.tsv)                       |        |
| Coordinate System JSON (*_coordsystem.json)                     |        |
| Landmark photos (*_photo.jpg)                                   | <br>82 |

| Intracranial Electroencephalography                 | 83    |
|-----------------------------------------------------|-------|
| iEEG recording data                                 | . 83  |
| Terminology: Electrodes vs. Channels                | . 84  |
| Sidecar JSON (*_ieeg.json)                          | . 85  |
| Channels description (*_channels.tsv)               | . 91  |
| Electrode description (*_electrodes.tsv)            | . 94  |
| Coordinate System JSON (*_coordsystem.json)         | . 96  |
| Recommended 3D coordinate systems                   |       |
| Allowed 2D coordinate systems                       |       |
| Multiple coordinate systems                         |       |
| Photos of the electrode positions (*_photo.jpg)     |       |
| Electrical stimulation                              | . 101 |
| Task events                                         | 102   |
| Stimuli databases                                   | . 104 |
| Stimulus presentation details                       | . 105 |
| Physiological and other continuous recordings       | 107   |
| Recommendations for specific use cases              | . 109 |
| Behavioral experiments (with no neural recordings)  | 109   |
| Genetic Descriptor                                  | 110   |
| Dataset Description                                 |       |
| Subject naming and Participants file                |       |
| Genetic Information                                 | . 111 |
| BIDS Derivatives                                    | 113   |
| Metadata conventions                                | . 113 |
| File naming conventions                             | . 113 |
| Common data types and metadata                      | 114   |
| Common file level metadata fields                   |       |
| Examples                                            |       |
| Spatial references                                  |       |
| SpatialReference key allowed values                 |       |
| Examples                                            |       |
| Preprocessed or cleaned data                        |       |
| Imaging data types                                  | 118   |
| Preprocessed, coregistered and/or resampled volumes | . 118 |
| Masks                                               | . 120 |

| Segmentations                                         |     |
|-------------------------------------------------------|-----|
| Discrete Segmentations                                |     |
| Probabilistic Segmentations                           |     |
| Discrete surface segmentations                        |     |
| Common image-derived labels                           | 124 |
| Longitudinal and multi-site studies                   | 126 |
| Sessions file                                         | 127 |
| Multi-site or multi-center studies                    | 128 |
| Treat each site/center as a separate dataset          | 128 |
| Option 2: Combining sites/centers into one dataset    | 128 |
| BIDS Extension Proposals                              | 128 |
| Appendix I: Contributors                              | 128 |
| Appendix II: Licenses                                 | 133 |
| Appendix III: Hierarchical Event Descriptors          | 133 |
| Annotating each event                                 | 133 |
| Annotating events by categories                       | 134 |
| Annotating events by value type                       | 135 |
| Best practices                                        | 136 |
| HED schema and HED versions                           | 136 |
| Appendix IV: Entity table                             | 137 |
| Magnetic Resonance Imaging                            | 137 |
| Encephalography (EEG, iEEG, and MEG)                  | 138 |
| Behavioral Data                                       | 139 |
| Appendix V: Units                                     | 139 |
| Unit table                                            | 140 |
| Prefixes                                              | 141 |
| Multiples                                             |     |
| Submultiples                                          |     |
| Appendix VI: MEG file formats                         | 141 |
| CTF                                                   | 142 |
| Neuromag/Elekta/MEGIN                                 |     |
| Cross-talk and fine-calibration files                 |     |
| Sharing FIFF data after signal-space separation (SSS) |     |
| Split files                                           |     |

| Recording dates in .fif files                                                                                            |     |
|--------------------------------------------------------------------------------------------------------------------------|-----|
| BTi/4D neuroimaging                                                                                                      |     |
| KIT/Yokogawa/Ricoh                                                                                                       |     |
| KRISS                                                                                                                    |     |
| ITAB                                                                                                                     |     |
| Aalto MEG-MRI                                                                                                            | 147 |
| Appendix VII: MEG systems                                                                                                | 148 |
| Appendix VIII: Coordinate systems                                                                                        | 148 |
| Introduction                                                                                                             | 149 |
| Coordinate Systems applicable to MEG, EEG, and iEEG                                                                      | 149 |
| MEG Specific Coordinate Systems                                                                                          | 150 |
| EEG Specific Coordinate Systems                                                                                          | 150 |
| iEEG Specific Coordinate Systems                                                                                         | 150 |
| Image-based Coordinate Systems                                                                                           | 151 |
| Standard template identifiers                                                                                            | 151 |
| Nonstandard coordinate system identifiers                                                                                |     |
| Non-template coordinate system identifiers                                                                               |     |
| Appendix IX: Entities                                                                                                    | 154 |
| sub                                                                                                                      | 154 |
| Ses                                                                                                                      |     |
| task                                                                                                                     |     |
| acq                                                                                                                      |     |
| ce                                                                                                                       |     |
| rec                                                                                                                      |     |
| dir                                                                                                                      |     |
| run                                                                                                                      |     |
| $\mod \dots \dots$ |     |
| echo                                                                                                                     |     |
| recording                                                                                                                |     |
| proc                                                                                                                     |     |
| space                                                                                                                    |     |
| split                                                                                                                    |     |
| spn:                                                                                                                     | 101 |
| Changelog                                                                                                                | 157 |
| v1.4.1 (2020-10-13)                                                                                                      | 158 |
| v1.4.0 (2020-06-11)                                                                                                      | 159 |
| v1.3.0 (2020-04-14)                                                                                                      | 160 |
| v1 2 2 (2020-02-12)                                                                                                      |     |

| v1.2.1 (2019-08-14)                                                                                                                                         | 161 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| v1.2.0 (2019-03-04)                                                                                                                                         | 162 |
| v1.1.2 (2019-01-10)                                                                                                                                         | 163 |
| $1.1.1 \ (2018-06-06) \ldots \ldots$ | 164 |
| $1.1.0 \ (2018-04-19) \ldots \ldots$ | 164 |
| 1.0.2(2017-07-18)                                                                                                                                           | 165 |
| $1.0.1 \ (2017-03-13) \ldots \ldots$ | 165 |
| 1.0.1-rc1                                                                                                                                                   | 165 |
| $1.0.0  (2016-06-23) \dots \dots$                     | 166 |
| 1.0.0-rc4                                                                                                                                                   | 166 |
| 1.0.0-rc3                                                                                                                                                   | 166 |
| 1.0.0-rc2                                                                                                                                                   | 166 |
| 1.0.0-rc1                                                                                                                                                   | 167 |
| $1.1.1 \ (2018-06-06) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$                                                                | 167 |
| 1.1.0 (2018-04-19)                                                                                                                                          | 167 |
| 1.0.2 (2017-07-18)                                                                                                                                          | 167 |
| 1.0.1 (2017-03-13)                                                                                                                                          | 167 |
| 1.0.1-rc1                                                                                                                                                   | 168 |
| $1.0.0 \ (2016-06-23) \ldots \ldots$ | 168 |
| 1.0.0-rc4                                                                                                                                                   | 168 |
| 1.0.0-rc3                                                                                                                                                   | 168 |
| 1.0.0-rc2                                                                                                                                                   | 169 |
| 1.0.0-rc1                                                                                                                                                   | 169 |

# The Brain Imaging Data Structure

This resource defines the Brain Imaging Data Structure (BIDS) specification, including the core specification as well as many modality-specific extensions.

To get started, check out the introduction. If you'd like more information on how to adapt your own datasets to match the BIDS specification, we recommend exploring the bids-specification starter kit.

For an overview of the BIDS ecosystem, visit the BIDS homepage. The entire specification can also be downloaded as PDF.

# Introduction

### Motivation

Neuroimaging experiments result in complicated data that can be arranged in many different ways. So far there is no consensus how to organize and share data obtained in neuroimaging experiments. Even two researchers working in the same lab can opt to arrange their data in a different way. Lack of consensus (or a standard) leads to

misunderstandings and time wasted on rearranging data or rewriting scripts expecting certain structure. Here we describe a simple and easy-to-adopt way of organising neuroimaging and behavioral data. By using this standard you will benefit in the following ways:

- It will be easy for another researcher to work on your data. To understand the organisation of the files and their format you will only need to refer them to this document. This is especially important if you are running your own lab and anticipate more than one person working on the same data over time. By using BIDS you will save time trying to understand and reuse data acquired by a graduate student or postdoc that has already left the lab.
- There are a growing number of data analysis software packages that can understand data organised according to BIDS (see the up to date list).
- Databases such as OpenNeuro.org accept datasets organised according to BIDS. If you ever plan to share your data publicly (nowadays some journals require this) you can minimize the additional time and energy spent on publication, and speed up the curation process by using BIDS to structure and describe your data right after acquisition.
- Validation tools such as the BIDS Validator can check your dataset integrity and help you easily spot missing values.

BIDS was heavily inspired by the format used internally by the OpenfMRI repository that is now known as OpenNeuro.org, and has been supported by the International Neuroinformatics Coordinating Facility (INCF) and the INCF Neuroimaging Data Sharing (NIDASH) Task Force. While working on BIDS we consulted many neuroscientists to make sure it covers most common experiments, but at the same time is intuitive and easy to adopt. The specification is intentionally based on simple file formats and folder structures to reflect current lab practices and make it accessible to a wide range of scientists coming from different backgrounds.

#### Extensions

The BIDS specification can be extended in a backwards compatible way and will evolve over time. This is accomplished through community-driven BIDS Extension Proposals (BEPs). For more information about the BEP process, see Extending the BIDS specification.

### Citing BIDS

When referring to BIDS in context of academic literature, please cite one or more of the publications listed below. We RECOMMEND that you cite the original publication on BIDS and additionally the publication regarding the datatype you were using (for example, EEG, MEG, iEEG, if available).

#### For example:

The data used in the study were organized using the Brain Imaging Data Structure (Gorgolewski, K., Auer, T., Calhoun, V. et al., 2016) with the extension for EEG data (Pernet, C.R., Appelhoff, S., Gorgolewski, K.J. et al., 2019).

# Original publication

• Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P., Flandin, G., Ghosh, S.S., Glatard, T., Halchenko, Y.O., Handwerker, D.A., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C., Nichols, B.N., Nichols, T.E., Pellman, J., Poline, J.-B., Rokem, A., Schaefer, G., Sochat, V., Triplett, W., Turner, J.A., Varoquaux, G., Poldrack, R.A. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3 (160044). doi:10.1038/sdata.2016.44

#### Datatype specific publications

EEG

• Pernet, C. R., Appelhoff, S., Gorgolewski, K.J., Flandin, G., Phillips, C., Delorme, A., Oostenveld, R. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific data, 6 (103). doi:10.1038/s41597-019-0104-8

#### iEEG

• Holdgraf, C., Appelhoff, S., Bickel, S., Bouchard, K., D'Ambrosio, S., David, O., Devinsky, O., Dichter, B., Flinker, A., Foster, B. L., Gorgolewski, K. J., Groen, I., Groppe, D., Gunduz, A., Hamilton, L., Honey, C. J., Jas, M., Knight, R., Lauchaux, J.-P., Lau, J. C., Lee-Messer, C., Lundstrom, B. N., Miller, K. J., Ojemann, J. G., Oostenveld, R., Petridou, N., Piantoni, G., Pigorini, A., Pouratian, N., Ramsey, N. F., Stolk, A., Swann, N. C., Tadel, F., Voytek, B., Wandell, B. A., Winawer, J., Whitaker, K., Zehl, L., Hermes, D. (2019). iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Scientific data, 6 (102). doi:10.1038/s41597-019-0105-7

#### MEG

• Niso Galan, J.G., Gorgolewski, K.J., Bock, E., Brooks, T.L., Flandin, G., Gramfort, A., Henson, R.N., Jas, M., Litvak, V., Moreau, J., Oostenveld, R., Schoffelen, J.-M., Tadel, F., Wexler, J., Baillet, S. (2018). MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 5 (180110). doi:10.1038/sdata.2018.110

#### Genetics

• Clara Moreau, Martineau Jean-Louis, Ross Blair, Christopher Markiewicz, Jessica Turner, Vince Calhoun, Thomas Nichols, Cyril Pernet (2020). The genetics-BIDS extension: Easing the search for genetic data associated with human brain imaging. GigaScience (in press)

Research Resource Identifier (RRID)

BIDS has also a Research Resource Identifier (RRID), which you can also include in your citations in addition to relevant publications (see above):

• RRID:SCR\_016124

# Common principles

### Definitions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Throughout this specification we use a list of terms and abbreviations. To avoid misunderstanding we clarify them here.

- 1. Dataset a set of neuroimaging and behavioral data acquired for a purpose of a particular study. A dataset consists of data acquired from one or more subjects, possibly from multiple sessions.
- 2. Subject a person or animal participating in the study. Used interchangeably with term Participant.

- 3. Session a logical grouping of neuroimaging and behavioral data consistent across subjects. Session can (but doesn't have to) be synonymous to a visit in a longitudinal study. In general, subjects will stay in the scanner during one session. However, for example, if a subject has to leave the scanner room and then be re-positioned on the scanner bed, the set of MRI acquisitions will still be considered as a session and match sessions acquired in other subjects. Similarly, in situations where different data types are obtained over several visits (for example fMRI on one day followed by DWI the day after) those can be grouped in one session. Defining multiple sessions is appropriate when several identical or similar data acquisitions are planned and performed on all -or most- subjects, often in the case of some intervention between sessions (for example, training).
- 4. Data acquisition a continuous uninterrupted block of time during which a brain scanning instrument was acquiring data according to particular scanning sequence/protocol.
- 5. Data type a functional group of different types of data. BIDS defines eight data types: func (task based and resting state functional MRI), dwi (diffusion weighted imaging), fmap (field inhomogeneity mapping data such as field maps), anat (structural imaging such as T1, T2, PD, and so on), meg (magnetoencephalography), eeg (electroencephalography), ieeg (intracranial electroencephalography), beh (behavioral). Data files are contained in a directory named for the data type. In raw datasets, the data type directory is nested inside subject and (optionally) session directories.
- 6. Task a set of structured activities performed by the participant. Tasks are usually accompanied by stimuli and responses, and can greatly vary in complexity. For the purpose of this specification we consider the so-called "resting state" a task. In the context of brain scanning, a task is always tied to one data acquisition. Therefore, even if during one acquisition the subject performed multiple conceptually different behaviors (with different sets of instructions) they will be considered one (combined) task.
- 7. Event something that happens or may be perceived by a test subject as happening at a particular instant during the recording. Events are most commonly associated with on- or offset of stimulus presentations, or with the distinct marker of on- or offset of a subject's response or motor action. Other events may include unplanned incidents (for example, sudden onset of noise and vibrations due to construction work, laboratory device malfunction), changes in task instructions (for example, switching the response hand), or experiment control parameters (for example, changing the stimulus presentation rate over experimental blocks), and noted data feature occurrences (for example, a recording electrode producing noise). In BIDS, each event has an onset time and duration. Note that not all tasks will have recorded events (for example, "resting state").
- 8. Run an uninterrupted repetition of data acquisition that has the same acquisition parameters and task (however events can change from run to run due to different subject response or randomized nature of the stimuli). Run is a synonym of a data acquisition.
- 9. Modality the category of brain data recorded by a file. For MRI data, different pulse sequences are considered distinct modalities, such as T1w, bold or dwi. For passive recording techniques, such as EEG, MEG or iEEG, the technique is sufficiently uniform to define the modalities eeg, meg and ieeg. When applicable, the modality is indicated in the suffix. The modality may overlap with, but should not be confused with the data type.
- 10. <index> a nonnegative integer, possibly prefixed with arbitrary number of 0s for consistent indentation, for example, it is 01 in run-01 following run-<index> specification.
- 11. <label> an alphanumeric value, possibly prefixed with arbitrary number of 0s for consistent indentation, for example, it is rest in task-rest following task-< label> specification.
- 12. suffix an alphanumeric value, located after the key-value\_pairs (thus after the final \_), right before the File extension, for example, it is eeg in sub-05\_task-matchingpennies\_eeg.vhdr.
- 13. File extension a portion of the the file name after the left-most period (.) preceded by any other alphanumeric. For example, .gitignore does not have a file extension, but the file extension of test.nii.gz is .nii.gz. Note that the left-most period is included in the file extension.

14. DEPRECATED - A "deprecated" entity or metadata field SHOULD NOT be used in the generation of new datasets. It remains in the standard in order to preserve the interpretability of existing datasets. Validating software SHOULD warn when deprecated practices are detected and provide a suggestion for updating the dataset to preserve the curator's intent.

### Compulsory, optional, and additional data and metadata

The following standard describes a way of arranging data and writing down metadata for a subset of neuroimaging experiments. Some aspects of the standard are compulsory. For example a particular file name format is required when storing structural scans. Some aspects are regulated but optional. For example a T2 volume does not need to be included, but when it is available it should be saved under a particular file name specified in the standard. This standard aspires to describe a majority of datasets, but acknowledges that there will be cases that do not fit. In such cases one can include additional files and subfolders to the existing folder structure following common sense. For example one may want to include eye tracking data in a vendor specific format that is not covered by this standard. The most sensible place to put it is next to the continuous recording file with the same naming scheme but different extensions. The solutions will change from case to case and publicly available datasets will be reviewed to include common data types in the future releases of the BIDS specification.

#### File name structure

A file name consists of a chain of entities, or key-value pairs, a suffix and an extension. Two prominent examples of entities are subject and session.

For a data file that was collected in a given session from a given subject, the file name MUST begin with the string sub-<label>\_ses-<label>. If the session level is omitted in the folder structure, the file name MUST begin with the string sub-<label>, without ses-<label>.

Note that sub-<label> corresponds to the subject entity because it has the sub- "key" and<label> "value", where <label> would in a real data file correspond to a unique identifier of that subject, such as 01. The same holds for the session entity with its ses- key and its <label> value.

A chain of entities, followed by a suffix, connected by underscores (\_) produces a human readable file name, such as sub-01\_task-rest\_eeg.edf. It is evident from the file name alone that the file contains resting state data from subject 01. The suffix eeg and the extension .edf depend on the imaging modality and the data format and indicate further details of the file's contents.

A summary of all entities in BIDS and the order in which they MUST be specified is available in the entity table in the appendix.

#### Source vs. raw vs. derived data

BIDS was originally designed to describe and apply consistent naming conventions to raw (unprocessed or minimally processed due to file format conversion) data. During analysis such data will be transformed and partial as well as final results will be saved. Derivatives of the raw data (other than products of DICOM to NIfTI conversion) MUST be kept separate from the raw data. This way one can protect the raw data from accidental changes by file permissions. In addition it is easy to distinguish partial results from the raw data and share the latter. See Storage of derived datasets for more on organizing derivatives.

Similar rules apply to source data, which is defined as data before harmonization, reconstruction, and/or file format conversion (for example, E-Prime event logs or DICOM files). Storing actual source files with the data is preferred over links to external source repositories to maximize long term preservation, which would suffer if an external repository would not be available anymore. This specification currently does not go into the details of recommending a particular naming scheme for including different types of source data (such as the raw event logs or parameter files, before conversion to BIDS). However, in the case that these data are to be included:

1. These data MUST be kept in separate sourcedata folder with a similar folder structure as presented below for the BIDS-managed data. For example: sourcedata/sub-01/ses-pre/func/sub-01\_ses-pre\_task-rest\_bold.dicom.tgz or sourcedata/sub-01/ses-pre/func/MyEvent.sce.

2. A README file SHOULD be found at the root of the sourcedata folder or the derivatives folder, or both. This file should describe the nature of the raw data or the derived data. We RECOMMEND including the PDF print-out with the actual sequence parameters generated by the scanner in the sourcedata folder.

Alternatively one can organize their data in the following way

```
1 my dataset/
    sourcedata/
    rawdata/
       dataset_description.json
 5
       participants.tsv
 6
       sub-01/
 7
       sub-02/
 8
 9
10
     derivatives/
       pipeline_1/
11
       pipeline_2/
12
13
```

In this example, where sourcedata and derivatives are not nested inside rawdata, only the rawdata subfolder needs to be a BIDS-compliant dataset. The subfolders of derivatives MAY be BIDS-compliant derivatives datasets (see Non-compliant derivatives for further discussion). This specification does not prescribe anything about the contents of sourcedata folders in the above example - nor does it prescribe the sourcedata, derivatives, or rawdata folder names. The above example is just a convention that can be useful for organizing raw, source, and derived data while maintaining BIDS compliancy of the raw data folder. When using this convention it is RECOMMENDED to set the SourceDatasets field in dataset\_description.json of each subfolder of derivatives to:

```
1 {
2    "SourceDatasets": [ {"URL": "file://../rawdata/"} ]
3 }
```

Storage of derived datasets

Derivatives can be stored/distributed in two ways:

1. Under a derivatives/ subfolder in the root of the source BIDS dataset folder to make a clear distinction between raw data and results of data processing. A data processing pipeline will typically have a dedicated directory under which it stores all of its outputs. Different components of a pipeline can, however, also be stored under different subfolders. There are few restrictions on the directory names; it is RECOMMENDED to use the format pipeline>-<variant> in cases where it is anticipated that the same pipeline will output more than one variant (for example, AFNI-blurring and AFNI-noblurring). For the sake of consistency, the subfolder name SHOULD be the GeneratedBy.Name field in data\_description.json, optionally followed by a hyphen and a suffix (see Derived dataset and pipeline description).

Example of derivatives with one directory per pipeline:

1 <dataset>/derivatives/fmriprep-v1.4.1/sub-0001

2 <dataset>/derivatives/spm/sub-0001 3 <dataset>/derivatives/vbm/sub-0001

Example of a pipeline with split derivative directories:

1 <dataset>/derivatives/spm-preproc/sub-0001
2 <dataset>/derivatives/spm-stats/sub-0001

Example of a pipeline with nested derivative directories:

- 1 <dataset>/derivatives/spm-preproc/sub-0001
- 2 <dataset>/derivatives/spm-preproc/derivatives/spm-stats/sub-0001
- 2. As a standalone dataset independent of the source (raw or derived) BIDS dataset. This way of specifying derivatives is particularly useful when the source dataset is provided with read-only access, for publishing derivatives as independent bodies of work, or for describing derivatives that were created from more than one source dataset. The sourcedata/ subdirectory MAY be used to include the source dataset(s) that were used to generate the derivatives. Likewise, any code used to generate the derivatives from the source data MAY be included in the code/ subdirectory.

Example of a derivative dataset including the raw dataset as source:

```
1 my_processed_data/
    code/
3
      processing_pipeline-1.0.0.img
      hpc submitter.sh
4
5
6
    sourcedata/
       dataset description.json
      participants.tsv
      sub-01/
9
      sub-02/
10
11
12
    dataset description.json
    sub-01/
13
    sub-02/
14
15
```

Throughout this specification, if a section applies particularly to derivatives, then Case 1 will be assumed for clarity in templates and examples, but removing /derivatives /<pipeline> from the template name will provide the equivalent for Case 2. In both cases, every derivatives dataset is considered a BIDS dataset and must include a dataset\_description.json file at the root level (see Dataset description. Consequently, files should be organized to comply with BIDS to the full extent possible (that is, unless explicitly contradicted for derivatives). Any subject-specific derivatives should be housed within each subject's directory; if session-specific derivatives are generated, they should be deposited under a session subdirectory within the corresponding subject directory; and so on.

#### Non-compliant derivatives

Nothing in this specification should be interpreted to disallow the storage/distribution of non-compliant derivatives of BIDS datasets. In particular, if a BIDS dataset contains a derivatives/sub-directory, the contents of that directory may be a heterogeneous mix of BIDS Derivatives datasets and non-compliant derivatives.

### The Inheritance Principle

Any metadata file (such as .json, .bvec or .tsv) may be defined at any directory level, but no more than one applicable file may be defined at a given level (Example 1). The values from the top level are inherited by all lower levels unless they are overridden by a file at the lower level. For example, sub-\*\_task-rest\_bold.json may be specified at the participant level, setting TR to a specific value. If one of the runs has a different TR than the one specified in that file, another sub-\*\_task-rest\_bold.json file can be placed within that specific series directory specifying the TR for that specific run. There is no notion of "unsetting" a key/value pair. Once a key/value pair is set in a given level in the dataset, lower down in the hierarchy that key/value pair will always have some assigned value. Files for a particular participant can exist only at participant level directory, that is, /dataset/sub-\*[/ses-\*]/sub-\*\_T1w.json. Similarly, any file that is not specific to a participant is to be declared only at top level of dataset for example: task-sist\_bold.json must be placed under /dataset/task-sist\_bold.json

Example 1: Two JSON files that are erroneously at the same level

```
1 sub-01/
2
     ses-test/
3
         sub-01_ses-test_task-overtverbgeneration_bold.json
         sub-01_ses-test_task-overtverbgeneration_run-2_bold.json
4
         anat/
5
6
             sub-01_ses-test_T1w.nii.gz
         func/
7
             sub-01 ses-test task-overtverbgeneration run-1 bold.nii.gz
8
             sub-01 ses-test task-overtverbgeneration run-2 bold.nii.gz
```

In the above example, two JSON files are listed under sub-01/ses-test/, which are each applicable to sub-01\_ses-test\_task-overtverbgeneration\_run-2\_bold.nii.gz, violating the constraint that no more than one file may be defined at a given level of the directory structure. Instead sub-01\_ses-test\_task-overtverbgeneration\_run-2\_bold.json should have been under sub-01/ses-test/func/.

Example 2: Multiple runs and recs with same acquisition (acq) parameters

```
1 sub-01/
2    anat/
3    func/
4     sub-01_task-xyz_acq-test1_run-1_bold.nii.gz
5     sub-01_task-xyz_acq-test1_run-2_bold.nii.gz
6     sub-01_task-xyz_acq-test1_rec-recon1_bold.nii.gz
7     sub-01_task-xyz_acq-test1_rec-recon2_bold.nii.gz
8     sub-01_task-xyz_acq-test1_bold.json
```

For the above example, all NIfTI files are acquired with same scanning parameters (acq-test1). Hence a JSON file describing the acq parameters will apply to different runs and rec files. Also if the JSON file (task-xyz\_acq-test1\_bold.json) is defined at dataset top level directory, it will be applicable to all task runs with test1 acquisition parameter.

Example 3: Multiple JSON files at different levels for same task and acquisition parameters

```
1 task-xyz_acq-test1_bold.json
2 sub-01/
3 anat/
4 func/
5 sub-01_task-xyz_acq-test1_run-1_bold.nii.gz
6 sub-01_task-xyz_acq-test1_rec-recon1_bold.nii.gz
7 sub-01_task-xyz_acq-test1_rec-recon2_bold.nii.gz
8 sub-01_task-xyz_acq-test1_bold.json
```

In the above example, the fields from the task-xyz\_acq-test1\_bold.json file at the top directory will apply to all bold runs. However, if there is a key with different value in the sub-01/func/sub-01\_task-xyz\_acq-test1\_bold.json file defined at a deeper level, that value will be applicable for that particular run/task NIfTI file/s. In other words, the .json file at the deeper level overrides values that are potentially also defined in the .json at a more shallow level. If the .json file at the more shallow level contains key-value-pairs that are not present in the .json file at the deeper level, these key-value-pairs are inherited by the .json file at the deeper level (but NOT vice versa!).

#### Good practice recommendations

Try to avoid excessive amount of overrides. Do not specify a field value in the upper levels if lower levels have more or less even distribution of multiple possible values. For example, if a field X has one value for all ses-01/ and another for all ses-02/ it better not to be defined at all in the .json at the upper level.

# File Formation specification

#### Imaging files

All imaging data MUST be stored using the NIfTI file format. We RECOMMEND using compressed NIfTI files (.nii.gz), either version 1.0 or 2.0. Imaging data SHOULD be converted to the NIfTI format using a tool that provides as much of the NIfTI header information (such as orientation and slice timing information) as possible. Since the NIfTI standard offers limited support for the various image acquisition parameters available in DICOM files, we RECOMMEND that users provide additional meta information extracted from DICOM files in a sidecar JSON file (with the same filename as the .nii[.gz] file, but with a .json extension). Extraction of BIDS compatible metadata can be performed using dcm2niix and dicm2nii DICOM to NIfTI converters. The BIDS-validator will check for conflicts between the JSON file and the data recorded in the NIfTI header.

#### Tabular files

Tabular data MUST be saved as tab delimited values (.tsv) files, that is, CSV files where commas are replaced by tabs. Tabs MUST be true tab characters and MUST NOT be a series of space characters. Each TSV file MUST start with a header line listing the names of all columns (with the exception of physiological and other continuous recordings). Names MUST be separated with tabs. It is RECOMMENDED that the column names in the header of the TSV file are written in snake\_case with the first letter in lower case (for example, variable\_name, not Variable\_name). String values containing tabs MUST be escaped using double quotes. Missing and non-applicable

values MUST be coded as n/a. Numerical values MUST employ the dot (.) as decimal separator and MAY be specified in scientific notation, using e or E to separate the significand from the exponent. TSV files MUST be in UTF-8 encoding.

#### Example:

```
1 onset duration response_time correct stop_trial go_trial 2 200 200 0 n/a n/a
```

Tabular files MAY be optionally accompanied by a simple data dictionary in the form of a JSON object within a JSON file. The JSON files containing the data dictionaries MUST have the same name as their corresponding tabular files but with .json extensions. If a data dictionary is provided, it MAY contain one or more fields describing the columns found in the TSV file (in addition to any other metadata one wishes to include that describe the file as a whole). Note that if a field name included in the data dictionary matches a column name in the TSV file, then that field MUST contain a description of the corresponding column, using an object containing the following fields:

| Key name    | Requirement level | Data type         | Description                              |
|-------------|-------------------|-------------------|------------------------------------------|
| LongName    | OPTIONAL          | string            | Long (unabbreviated) name of the column. |
| Description | RECOMMENDED       | string            | Description of the column.               |
| Levels      | RECOMMENDED       | object of strings | For categorical variables: An object     |
|             |                   |                   | of possible values (keys) and their      |
|             |                   |                   | descriptions (values).                   |
| Units       | RECOMMENDED       | string            | Measurement units. SI units in           |
|             |                   |                   | CMIXF formatting are                     |
|             |                   |                   | RECOMMENDED (see Units).                 |
| TermURL     | RECOMMENDED       | string            | URL pointing to a formal definition      |
|             |                   |                   | of this type of data in an ontology      |
|             |                   |                   | available on the web.                    |

Please note that while both Units and Levels are RECOMMENDED, typically only one of these two fields would be specified for describing a single TSV file column. Example:

```
1 {
2  "test": {
3   "LongName": "Education level",
4   "Description": "Education level, self-rated by participant",
5   "Levels": {
6    "1": "Finished primary school",
7    "2": "Finished secondary school",
8    "3": "Student at university",
9   "4": "Has degree from university"
```

```
10     }
11     },
12     "bmi": {
13          "LongName": "Body mass index",
14          "Units": "kg/m^2",
15          "TermURL": "http://purl.bioontology.org/ontology/SNOMEDCT/60621009"
16     }
17 }
```

#### Key/value files (dictionaries)

JavaScript Object Notation (JSON) files MUST be used for storing key/value pairs. JSON files MUST be in UTF-8 encoding. Extensive documentation of the format can be found here: http://json.org/. Several editors have built-in support for JSON syntax highlighting that aids manual creation of such files. An online editor for JSON with built-in validation is available at: http://jsoneditoronline.org. It is RECOMMENDED that keys in a JSON file are written in CamelCase with the first letter in upper case (for example, SamplingFrequency, not samplingFrequency). Note however, when a JSON file is used as an accompanying sidecar file for a TSV file, the keys linking a TSV column with their description in the JSON file need to follow the exact formatting as in the TSV file.

Example of a hypothetical \*\_bold.json file, accompanying a \*\_bold.nii file:

```
1 {
2    "RepetitionTime": 3,
3    "Instruction": "Lie still and keep your eyes open"
4 }
```

Example of a hypothetical \*\_events.json file, accompanying an \*\_events.tsv file. Note that the JSON file contains a key describing an arbitrary column stim presentation side in the TSV file it accompanies. See task events section for more information.

```
1 {
2    "stim_presentation_side": {
3      "Levels": {
4          "1": "stimulus presented on LEFT side",
5          "2": "stimulus presented on RIGHT side"
6      }
7     }
8 }
```

#### Participant names and other labels

BIDS allows for custom user-defined <label>s and <index>es for example, for naming of participants, sessions, acquisition schemes. Note that they MUST consist only of allowed characters as described in Definitions above. In <index>es we RECOMMEND using zero padding (for example, 01 instead of 1 if you have more than nine subjects) to make alphabetical sorting more intuitive. Note that zero padding SHOULD NOT be used to merely maintain uniqueness of <index>es.

Please note that a given label or index is distinct from the "prefix" it refers to. For example sub-01 refers to the sub entity (a subject) with the label 01. The sub- prefix is not part of the subject label, but must be included in file names (similarly to other key names).

#### Uniform Resource Indicator

A Uniform Resource Indicator (URI) is a string referring to a resource and SHOULD have the form <scheme>: [//<authority>] <path>[?<query>] [#<fragment>], as specified in RFC 3986. This applies to URLs and other common URIs, including Digital Object Identifiers (DOIs), which may be fully specified as doi:<path>, for example, doi:10.5281/zenodo.3686061. A given resource may have multiple URIs. When selecting URIs to add to dataset metadata, it is important to consider specificity and persistence.

Several fields are designated for DOIs, for example, DatasetDOI in dataset\_description.json. DOI values SHOULD be fully specified URIs such as doi:10.18112/openneuro.ds000001.v1.0.0. Bare DOIs such as 10.18112/openneuro.ds000001.v1.0.0 are DEPRECATED.

#### Units

All units SHOULD be specified as per International System of Units (abbreviated as SI, from the French Système international (d'unités)) and can be SI units or SI derived units. In case there are valid reasons to deviate from SI units or SI derived units, the units MUST be specified in the sidecar JSON file. In case data is expressed in SI units or SI derived units, the units MAY be specified in the sidecar JSON file. In case non-standard prefixes are added to SI or non-SI units, these non-standard prefixed units MUST be specified in the JSON file. See Appendix V for a list of standard units and prefixes. Note also that for the formatting of SI units, the CMIXF-12 convention for encoding units is RECOMMENDED. CMIXF provides a consistent system for all units and prefix symbols with only basic characters, avoiding symbols that can cause text encoding problems; for example the CMIXF formatting for "micro volts" is uV, "degrees Celsius" is oC and "Ohm." See Appendix V for more information.

#### For additional rules, see below:

- Elapsed time SHOULD be expressed in seconds. Please note that some DICOM parameters have been traditionally expressed in milliseconds. Those need to be converted to seconds.
- Frequency SHOULD be expressed in Hertz.
- Arbitrary units SHOULD be indicated with the string "arbitrary".

### Describing dates and timestamps:

- Date time information MUST be expressed in the following format YYYY-MM-DDThh:mm:ss[.000000][Z] (year, month, day, hour (24h), minute, second, optional fractional seconds, and optional UTC time indicator). This is almost equivalent to the RFC3339 "date-time" format, with the exception that UTC indicator Z is optional and non-zero UTC offsets are not indicated. If Z is not indicated, time zone is always assumed to be the local time of the dataset viewer. No specific precision is required for fractional seconds, but the precision SHOULD be consistent across the dataset. For example 2009-06-15T13:45:30.
- Time stamp information MUST be expressed in the following format: hh:mm:ss[.000000] For example 13:45:30.
- Note that, depending on local ethics board policy, date time information may not need to be fully detailed. For example, it is permissible to set the time to 00:00:00 if reporting the exact recording time is undesirable. However, for privacy protection reasons, it is RECOMMENDED to shift dates, as described below, without completely removing time information, as time information can be useful for research purposes.

- Dates can be shifted by a random number of days for privacy protection reasons. To distinguish real dates from shifted dates, always use year 1925 or earlier when including shifted years. For longitudinal studies dates MUST be shifted by the same number of days within each subject to maintain the interval information. For example: 1867-06-15T13:45:30
- WARNING: The Neuromag/Elekta/MEGIN file format for MEG(.fif) does not support recording dates earlier than 1902 roughly. Some analysis software packages (for example, MNE-Python) handle their data as .fif internally and will break if recording dates are specified prior to 1902, even if the original data format is not .fif. See MEG-file-formats for more information.
- Age SHOULD be given as the number of years since birth at the time of scanning (or first scan in case of multi session datasets). Using higher accuracy (weeks) should in general be avoided due to privacy protection, unless when appropriate given the study goals, for example, when scanning babies.

#### Directory structure

Single session example

This is an example of the folder and file structure. Because there is only one session, the session level is not required by the format. For details on individual files see descriptions in the next section:

```
1 sub-control01/
      anat/
 2
           sub-control01 T1w.nii.gz
 3
           sub-control01 T1w.json
 4
           sub-control01 T2w.nii.gz
 5
           sub-control01 T2w.json
 6
 7
      func/
           sub-control01 task-nback bold.nii.gz
 8
           sub-control01 task-nback bold.json
 9
           sub-control01_task-nback_events.tsv
10
           sub-control01_task-nback_physio.tsv.gz
11
          sub-control01_task-nback_physio.json
12
           sub-control01 task-nback sbref.nii.gz
13
14
      dwi/
15
           sub-control01_dwi.nii.gz
           sub-control01_dwi.bval
16
           sub-control01_dwi.bvec
17
18
      fmap/
19
           sub-control01_phasediff.nii.gz
           sub-control01 phasediff.json
20
21
           sub-control01 magnitude1.nii.gz
           sub-control01_scans.tsv
22
23 code/
      deface.py
25 derivatives/
```

- 26 README
- 27 participants.tsv
- 28 dataset\_description.json
- 29 CHANGES

### Unspecified data

Additional files and folders containing raw data MAY be added as needed for special cases. All non-standard file entities SHOULD conform to BIDS-style naming conventions, including alphabetic entities and suffixes and alphanumeric labels/indices. Non-standard suffixes SHOULD reflect the nature of the data, and existing entities SHOULD be used when appropriate. For example, an ASSET calibration scan might be named sub-01\_acq-ASSET\_calibration.nii.gz.

Non-standard files and directories should be named with care. Future BIDS efforts may standardize new entities and suffixes, changing the meaning of file names and setting requirements on their contents or metadata. Validation and parsing tools MAY treat the presence of non-standard files and directories as an error, so consult the details of these tools for mechanisms to suppress warnings or provide interpretations of your file names.

# Modality agnostic files

### Dataset description

### Templates:

- dataset\_description.json
- README
- CHANGES
- LICENSE

#### dataset description.json

The file dataset\_description.json is a JSON file describing the dataset. Every dataset MUST include this file with the following fields:

| Key name    | Requirement level | Data type | Description                                                                                    |
|-------------|-------------------|-----------|------------------------------------------------------------------------------------------------|
| Name        | REQUIRED          | string    | Name of the dataset.                                                                           |
| BIDSVersion | REQUIRED          | string    | The version of the BIDS standard that was used.                                                |
| HEDVersion  | RECOMMENDED       | string    | If HED tags are used: The version of<br>the HED schema used to validate<br>HED tags for study. |

| Key name           | Requirement level | Data type        | Description                                                                                                                                                                                                                 |
|--------------------|-------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DatasetType        | RECOMMENDED       | string           | The interpretation of the dataset.  MUST be one of "raw" or  "derivative". For backwards  compatibility, the default value is  "raw".                                                                                       |
| License            | RECOMMENDED       | string           | The license for the dataset. The use of license name abbreviations is RECOMMENDED for specifying a license (see Appendix II). The corresponding full license text MAY be specified in an additional LICENSE file.           |
| Authors            | OPTIONAL          | array of strings | List of individuals who contributed to the creation/curation of the dataset.                                                                                                                                                |
| Acknowledgements   | OPTIONAL          | string           | Text acknowledging contributions of individuals or institutions beyond those listed in Authors or Funding.                                                                                                                  |
| HowToAcknowledge   | OPTIONAL          | string           | Text containing instructions on how researchers using this dataset should acknowledge the original authors.  This field can also be used to define a publication that should be cited in publications that use the dataset. |
| Funding            | OPTIONAL          | array of strings | List of sources of funding (grant numbers).                                                                                                                                                                                 |
| EthicsApprovals    | OPTIONAL          | array of strings | List of ethics committee approvals of<br>the research protocols and/or<br>protocol identifiers.                                                                                                                             |
| ReferencesAndLinks | OPTIONAL          | array of strings | List of references to publications that contain information on the dataset.  A reference may be textual or a URI.                                                                                                           |
| DatasetDOI         | OPTIONAL          | string           | The Digital Object Identifier of the dataset (not the corresponding paper). DOIs SHOULD be expressed as a valid URI; bare DOIs such as 10.0.2.3/dfjj.10 are DEPRECATED.                                                     |

### Example:

```
1 {
     "Name": "The mother of all experiments",
     "BIDSVersion": "1.4.0",
     "DatasetType": "raw",
    "License": "CCO",
     "Authors": [
       "Paul Broca".
      "Carl Wernicke"
 8
 9
    ],
    "Acknowledgements": "Special thanks to Korbinian Brodmann for help in formatting this dataset in BIDS. We thank Alan Lloyd Hodgkin and Andrew
        Huxley for helpful comments and discussions about the experiment and manuscript; Hermann Ludwig Helmholtz for administrative support; and
        Claudius Galenus for providing data for the medial-to-lateral index analysis.",
     "HowToAcknowledge": "Please cite this paper: https://www.ncbi.nlm.nih.gov/pubmed/001012092119281",
11
     "Funding": [
12
       "National Institute of Neuroscience Grant F378236MFH1",
13
       "National Institute of Neuroscience Grant 5RMZ0023106"
14
15
    ],
    "EthicsApprovals": [
16
       "Army Human Research Protections Office (Protocol ARL-20098-10051, ARL 12-040, and ARL 12-041)"
17
18
    ],
19
    "ReferencesAndLinks": [
       "https://www.ncbi.nlm.nih.gov/pubmed/001012092119281",
20
      "Alzheimer A., & Kraepelin, E. (2015). Neural correlates of presentile dementia in humans. Journal of Neuroscientific Data, 2, 234001. doi
21
           :1920.8/jndata.2015.7"
22
    ],
    "DatasetDOI": "doi:10.0.2.3/dfjj.10",
    "HEDVersion": "7.1.1"
24
25 }
```

Derived dataset and pipeline description As for any BIDS dataset, a dataset\_description.json file MUST be found at the top level of the a derived dataset: <dataset >/derivatives/<pipeline\_name>/dataset\_description.json

 $In addition \ to \ the \ keys \ for \ raw \ BIDS \ datasets, derived \ BIDS \ datasets \ include \ the \ following \ REQUIRED \ and \ RECOMMENDED \ dataset\_description. \ json \ keys:$ 

| Key name    | Requirement level | Data type        | Description                                                                                     |
|-------------|-------------------|------------------|-------------------------------------------------------------------------------------------------|
| GeneratedBy | REQUIRED          | array of objects | Used to specify provenance of the derived dataset. See table below for contents of each object. |

| Key name       | Requirement level | Data type        | Description                                                                                                                                                         |
|----------------|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SourceDatasets | RECOMMENDED       | array of objects | Used to specify the locations and relevant attributes of all source datasets. Valid keys in each object include URL, DOI (see URI), and Version with string values. |

# Each object in the GeneratedBy list includes the following REQUIRED, RECOMMENDED and OPTIONAL keys:

| Key name    | Requirement level | Data type | Description                                                                                                                                                                                      |
|-------------|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name        | REQUIRED          | string    | Name of the pipeline or process that generated the outputs. Use "Manual" to indicate the derivatives were generated by hand, or adjusted manually after an initial run of an automated pipeline. |
| Version     | RECOMMENDED       | string    | Version of the pipeline.                                                                                                                                                                         |
| Description | OPTIONAL          | string    | Plain-text description of the pipeline or process that generated the outputs. RECOMMENDED if Name is "Manual".                                                                                   |
| CodeURL     | OPTIONAL          | string    | URL where the code used to generate the derivatives may be found.                                                                                                                                |
| Container   | OPTIONAL          | object    | Used to specify the location and relevant attributes of software container image used to produce the derivative. Valid keys in this object include Type, Tag and URI with string values.         |

# Example:

```
1 {
2    "Name": "FMRIPREP Outputs",
3    "BIDSVersion": "1.4.0",
4    "DatasetType": "derivative",
5    "GeneratedBy": [
6    {
```

```
"Name": "fmriprep",
         "Version": "1.4.1",
 8
         "Container": {
 9
           "Type": "docker",
10
           "Tag": "poldracklab/fmriprep:1.4.1"
11
12
13
      },
14
         "Name": "Manual",
15
         "Description": "Re-added RepetitionTime metadata to bold.json files"
16
      }
17
18
    ],
     "SourceDatasets": [
19
20
         "DOI": "doi:10.18112/openneuro.ds000114.v1.0.1",
21
         "URL": "https://openneuro.org/datasets/ds000114/versions/1.0.1",
22
         "Version": "1.0.1"
23
      }
24
25
26 }
```

If a derived dataset is stored as a subfolder of the raw dataset, then the Name field of the first GeneratedBy object MUST be a substring of the derived dataset folder name. That is, in a directory <a href="mailto:dataset">dataset</a>/derivatives/<pipeline>[-<variant>]/, the first GeneratedBy object should have a Name of <pipeline>.

#### README

In addition a free form text file (README) describing the dataset in more details SHOULD be provided. The README file MUST be either in ASCII or UTF-8 encoding.

#### CHANGES

Version history of the dataset (describing changes, updates and corrections) MAY be provided in the form of a CHANGES text file. This file MUST follow the CPAN Changelog convention. The CHANGES file MUST be either in ASCII or UTF-8 encoding.

Example:

```
1 1.0.1 2015-08-27
2 - Fixed slice timing information.
3
4 1.0.0 2015-08-17
5 - Initial release.
```

#### LICENSE

A LICENSE file MAY be provided in addition to the short specification of the used license in the dataset\_description.json "License" field. The "License" field and LICENSE file MUST correspond. The LICENSE file MUST be either in ASCII or UTF-8 encoding.

### Participants file

Template:

- 1 participants.tsv
- 2 participants.json

The purpose of this RECOMMENDED file is to describe properties of participants such as age, sex, handedness. In case of single-session studies, this file has one compulsory column participant\_id that consists of sub-<label>, followed by a list of optional columns describing participants. Each participant MUST be described by one and only one row.

Commonly used optional columns in participant.tsv files are age, sex, and handedness. We RECOMMEND to make use of these columns, and in case that you do use them, we RECOMMEND to use the following values for them:

- age: numeric value in years (float or integer value)
- sex: string value indicating phenotypical sex, one of "male", "female", "other"
  - for "male", use one of these values: male, m, M, MALE, Male
  - for "female", use one of these values: female, f, F, FEMALE, Female
  - for "other", use one of these values: other, o, O, OTHER, Other
- handedness: string value indicating one of "left", "right", "ambidextrous"
  - for "left", use one of these values: left, l, L, LEFT, Left
  - for "right", use one of these values: right, r, R, RIGHT, Right
  - for "ambidextrous", use one of these values: ambidextrous, a, A, AMBIDEXTROUS, Ambidextrous

Throughout BIDS you can indicate missing values with n/a (for "not available").

participants.tsv example:

- ${\tt 1} \ {\tt participant\_id} \ {\tt age} \ {\tt sex} \ {\tt handedness} \ {\tt group}$
- 2 sub-01 34 M right read
- 3 sub-02 12 F right write
- 4 sub-03 33 F n/a read

It is RECOMMENDED to accompany each participants.tsv file with a sidecar participants.json file to describe the TSV column names and properties of their values (see also the section on tabular files). Such sidecar files are needed to interpret the data, especially so when optional columns are defined beyond age, sex, and handedness,

such as group in this example, or when a different age unit is needed (for example, gestational weeks). If no units is provided for age, it will be assumed to be in years relative to date of birth.

participants.json example:

```
1 {
       "age": {
 2
          "Description": "age of the participant",
 3
          "Units": "years"
 4
 5
      },
      "sex": {
 6
7
           "Description": "sex of the participant as reported by the participant",
          "Levels": {
 8
              "M": "male",
 9
              "F": "female"
10
          }
11
12
      },
      "handedness": {
13
           "Description": "handedness of the participant as reported by the participant",
14
          "Levels": {
15
16
              "left": "left",
               "right": "right"
17
          }
18
19
      },
      "group": {
20
21
          "Description": "experimental group the participant belonged to",
          "Levels": {
22
               "read": "participants who read an inspirational text before the experiment",
23
              "write": "participants who wrote an inspirational text before the experiment"
24
          }
25
      }
26
27 }
```

Phenotypic and assessment data

Template:

```
1 phenotype/<measurement_tool_name>.tsv
2 phenotype/<measurement_tool_name>.json
```

Optional: Yes

If the dataset includes multiple sets of participant level measurements (for example responses from multiple questionnaires) they can be split into individual files separate from participants.tsv.

Each of the measurement files MUST be kept in a /phenotype directory placed at the root of the BIDS dataset and MUST end with the .tsv extension. File names SHOULD be chosen to reflect the contents of the file. For example, the "Adult ADHD Clinical Diagnostic Scale" could be saved in a file called /phenotype/acds\_adult.tsv.

The files can include an arbitrary set of columns, but one of them MUST be participant\_id and the entries of that column MUST correspond to the subjects in the BIDS dataset and participants.tsv file.

As with all other tabular data, the additional phenotypic information files MAY be accompanied by a JSON file describing the columns in detail (see Tabular files). In addition to the column description, a section describing the measurement tool (as a whole) MAY be added under the name MeasurementToolMetadata. This section consists of two keys:

- Description: A free text description of the measurement tool
- Termurl: A URL to an entity in an ontology corresponding to this tool.

As an example, consider the contents of a file called phenotype/acds\_adult.json:

```
1 {
     "MeasurementToolMetadata": {
 2
       "Description": "Adult ADHD Clinical Diagnostic Scale V1.2",
 3
       "TermURL": "http://www.cognitiveatlas.org/task/id/trm_5586ff878155d"
 4
 5
    },
     "adhd b": {
 6
       "Description": "B. CHILDHOOD ONSET OF ADHD (PRIOR TO AGE 7)",
 7
       "Levels": {
 8
         "1": "YES",
 9
10
         "2": "NO"
11
      }
12
    },
     "adhd c dx": {
13
       "Description": "As child met A, B, C, D, E and F diagnostic criteria",
14
15
       "Levels": {
         "1": "YES",
16
         "2": "NO"
17
18
19
20
```

Please note that in this example MeasurementToolMetadata includes information about the questionnaire and adhd\_b and adhd\_c\_dx correspond to individual columns.

In addition to the keys available to describe columns in all tabular files (LongName, Description, Levels, Units, and TermURL) the participants.json file as well as phenotypic files can also include column descriptions with a Derivative field that, when set to true, indicates that values in the corresponding column is a transformation of values from other columns (for example a summary score based on a subset of items in a questionnaire).

### Scans file

Template:

```
1 sub-<label>/[ses-<label>/]
2 sub-<label>[_ses-<label>]_scans.tsv
3 sub-<label>[_ses-<label>]_scans.json
```

Optional: Yes

The purpose of this file is to describe timing and other properties of each imaging acquisition sequence (each run file) within one session. Each neural recording file should be described by at most one row. Relative paths to files should be used under a compulsory filename header. If acquisition time is included it should be under acq\_time header. Acquisition time refers to when the first data point in each run was acquired. Datetime should be expressed as described in Units. For anonymization purposes all dates within one subject should be shifted by a randomly chosen (but consistent across all recordings) number of days. This way relative timing would be preserved, but chances of identifying a person based on the date and time of their scan would be decreased. Dates that are shifted for anonymization purposes SHOULD be set to the year 1925 or earlier to clearly distinguish them from unmodified data. Shifting dates is RECOMMENDED, but not required.

Additional fields can include external behavioral measures relevant to the scan. For example vigilance questionnaire score administered after a resting state scan. All such included additional fields SHOULD be documented in an accompanying \_scans.json file that describes these fields in detail (see Tabular files).

Example \_scans.tsv:

```
filename acq_time
func/sub-control01_task-nback_bold.nii.gz 1877-06-15T13:45:30
func/sub-control01_task-motor_bold.nii.gz 1877-06-15T13:55:33
```

#### Code

Template: code/\*

Source code of scripts that were used to prepare the dataset MAY be stored here. Examples include anonymization or defacing of the data, or the conversion from the format of the source data to the BIDS format (see source vs. raw vs. derived data). Extra care should be taken to avoid including original IDs or any identifiable information with the source code. There are no limitations or recommendations on the language and/or code organization of these scripts at the moment.

# Magnetic Resonance Imaging

### Common metadata fields

MR Data described in the following sections share the following RECOMMENDED metadata fields (stored in sidecar JSON files). MRI acquisition parameters are divided into several categories based on "A checklist for fMRI acquisition methods reporting in the literature" by Ben Inglis:

Scanner Hardware

| Key name                          | Requirement level | Data type | Description                                                                                                                                                                                                                                                             |
|-----------------------------------|-------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer                      | RECOMMENDED       | string    | Manufacturer of the equipment that produced the composite instances.  Corresponds to DICOM Tag 0008,  0070 Manufacturer                                                                                                                                                 |
| ManufacturersModelName            | RECOMMENDED       | string    | Manufacturer's model name of the equipment that produced the composite instances. Corresponds to DICOM Tag 0008, 1090  Manufacturers Model Name                                                                                                                         |
| DeviceSerialNumber                | RECOMMENDED       | string    | The serial number of the equipment that produced the composite instances. Corresponds to DICOM Tag 0018, 1000 DeviceSerialNumber. A pseudonym can also be used to prevent the equipment from being identifiable, so long as each pseudonym is unique within the dataset |
| StationName                       | RECOMMENDED       | string    | Institution defined name of the machine that produced the composite instances. Corresponds to DICOM Tag 0008, 1010 Station Name                                                                                                                                         |
| SoftwareVersions                  | RECOMMENDED       | string    | Manufacturer's designation of software version of the equipment that produced the composite instances. Corresponds to DICOM Tag 0018, 1020 Software Versions                                                                                                            |
| Hard copy Device Software Version | DEPRECATED        | string    | Manufacturer's designation of the software of the device that created this Hardcopy Image (the printer). Corresponds to DICOM Tag 0018, 101A Hardcopy Device Software                                                                                                   |
| MagneticFieldStrength             | RECOMMENDED       | number    | Version Nominal field strength of MR magnet in Tesla. Corresponds to DICOM Tag 0018,0087 Magnetic Field Strength                                                                                                                                                        |

| Key name                  | Requirement level | Data type | Description                                                                                                                                                                                                                                                  |
|---------------------------|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ReceiveCoilName           | RECOMMENDED       | string    | Information describing the receiver coil. Corresponds to DICOM Tag 0018, 1250 Receive Coil Name, although not all vendors populate that DICOM Tag, in which case this field can be derived from an appropriate private DICOM field                           |
| ReceiveCoilActiveElements | RECOMMENDED       | string    | Information describing the active/selected elements of the receiver coil. This doesn't correspond to a tag in the DICOM ontology. The vendor-defined terminology for active coil elements can go in this field. See an example below the table.              |
| GradientSetType           | RECOMMENDED       | string    | It should be possible to infer the gradient coil from the scanner model. If not, for example because of a custom upgrade or use of a gradient insert set, then the specifications of the actual gradient coil should be reported independently               |
| MRTransmitCoilSequence    | RECOMMENDED       | string    | This is a relevant field if a non-standard transmit coil is used. Corresponds to DICOM Tag 0018, 9049 MR Transmit Coil Sequence                                                                                                                              |
| MatrixCoilMode            | RECOMMENDED       | string    | (If used) A method for reducing the number of independent channels by combining in analog the signals from multiple coil elements. There are typically different default modes when using un-accelerated or accelerated (for example, GRAPPA, SENSE) imaging |

| Key name              | Requirement level | Data type | Description                                                                                                                                                                                                                                                               |
|-----------------------|-------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CoilCombinationMethod | RECOMMENDED       | string    | Almost all fMRI studies using phased-array coils use root-sum-of-squares (rSOS) combination, but other methods exist. The image reconstruction is changed by the coil combination method (as for the matrix coil mode above), so anything non-standard should be reported |

#### Example for ReceiveCoilActiveElements:

For Siemens, coil channels are typically not activated/selected individually, but rather in pre-defined selectable "groups" of individual channels, and the list of the "groups" of elements that are active/selected in any given scan populates the Coil String entry in Siemens' private DICOM fields (for example, HEA; HEP for the Siemens standard 32 ch coil when both the anterior and posterior groups are activated). This is a flexible field that can be used as most appropriate for a given vendor and coil to define the "active" coil elements. Since individual scans can sometimes not have the intended coil elements selected, it is preferable for this field to be populated directly from the DICOM for each individual scan, so that it can be used as a mechanism for checking that a given scan was collected with the intended coil elements selected

## Sequence Specifics

| Key name          | Requirement level | Data type                  | Description                                                                                                                                                     |
|-------------------|-------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PulseSequenceType | RECOMMENDED       | string                     | A general description of the pulse<br>sequence used for the scan (for<br>example, MPRAGE, Gradient Echo<br>EPI, Spin Echo EPI, Multiband<br>gradient echo EPI). |
| ScanningSequence  | RECOMMENDED       | string or array of strings | Description of the type of data acquired. Corresponds to DICOM Tag 0018, 0020 Scanning Sequence.                                                                |
| SequenceVariant   | RECOMMENDED       | string or array of strings | Variant of the ScanningSequence.<br>Corresponds to DICOM Tag 0018,<br>0021 Sequence Variant.                                                                    |
| ScanOptions       | RECOMMENDED       | string or array of strings | Parameters of ScanningSequence.<br>Corresponds to DICOM Tag 0018,<br>0022 Scan Options.                                                                         |

| Key name                    | Requirement level | Data type | Description                                                                                                                                                                                                                                                               |
|-----------------------------|-------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SequenceName                | RECOMMENDED       | string    | Manufacturer's designation of the sequence name. Corresponds to DICOM Tag 0018, 0024 Sequence Name.                                                                                                                                                                       |
| PulseSequenceDetails        | RECOMMENDED       | string    | Information beyond pulse sequence type that identifies the specific pulse sequence used (for example, "Standard Siemens Sequence distributed with the VB17 software," "Siemens WIP ### version #.##," or "Sequence written by X using a version compiled on MM/DD/YYYY"). |
| NonlinearGradientCorrection | RECOMMENDED       | boolean   | Boolean stating if the image saved<br>has been corrected for gradient<br>nonlinearities by the scanner<br>sequence.                                                                                                                                                       |

# In-Plane Spatial Encoding

| Key name                       | Requirement level | Data type | Description                                                                                                                                                                                                                                |
|--------------------------------|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NumberShots                    | RECOMMENDED       | number    | The number of RF excitations need to reconstruct a slice or volume.  Please mind that this is not the same as Echo Train Length which denotes the number of lines of k-space collected after an excitation.                                |
| ParallelReductionFactorInPlane | RECOMMENDED       | number    | The parallel imaging (e.g, GRAPPA) factor. Use the denominator of the fraction of k-space encoded for each slice. For example, 2 means half of k-space is encoded. Corresponds to DICOM Tag 0018, 9069 Parallel Reduction Factor In-plane. |

| Key name                     | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------|-------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ParallelAcquisitionTechnique | RECOMMENDED       | string    | The type of parallel imaging used (for example GRAPPA, SENSE). Corresponds to DICOM Tag 0018, 9078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PartialFourier               | RECOMMENDED       | number    | Parallel Acquisition Technique. The fraction of partial Fourier information collected. Corresponds to DICOM Tag 0018, 9081 Partial Fourier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PartialFourierDirection      | RECOMMENDED       | string    | The direction where only partial Fourier information was collected. Corresponds to DICOM Tag 0018, 9036 Partial Fourier Direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PhaseEncodingDirection       | RECOMMENDED       | string    | Possible values: i, j, k, i-, j-, k The letters i, j, k correspond to the first, second and third axis of the data in the NIFTI file. The polarity of the phase encoding is assumed to go from zero index to maximum index unless - sign is present (then the order is reversed - starting from the highest index instead of zero).  PhaseEncodingDirection is defined as the direction along which phase is was modulated which may result in visible distortions. Note that this is not the same as the DICOM term InPlanePhaseEncodingDirection which can have ROW or COL values. This parameter is REQUIRED if corresponding fieldmap data is present or when using multiple runs with different phase encoding directions (which can be later used for field inhomogeneity correction). |

| Key name             | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|-------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EffectiveEchoSpacing | RECOMMENDED       | number    | The "effective" sampling interval, specified in seconds, between lines in the phase-encoding direction, defined based on the size of the reconstructed image in the phase direction. It is frequently, but incorrectly, referred to as "dwell time" (see DwellTime parameter below for actual dwell time). It is required for unwarping distortions using field maps. Note that beyond just in-plane acceleration, a variety of other manipulations to the phase encoding need to be accounted for properly, including partial fourier, phase oversampling, phase resolution, phase field-of-view and interpolation.2 This parameter is REQUIRED if corresponding fieldmap data is present. |
| TotalReadoutTime     | RECOMMENDED       | number    | This is actually the "effective" total readout time, defined as the readout duration, specified in seconds, that would have generated data with the given level of distortion. It is NOT the actual, physical duration of the readout train. If EffectiveEchoSpacing has been properly computed, it is just EffectiveEchoSpacing * ( ReconMatrixPE - 1).3. This parameter is REQUIRED if corresponding "field/distortion" maps acquired with opposing phase encoding directions are present (see 8.9.4).                                                                                                                                                                                    |

2Conveniently, for Siemens data, this value is easily obtained as 1 / (BWPPPE \* ReconMatrixPE), where BWPPPE is the "BandwidthPerPixelPhaseEncode" in DICOM tag (0019,1028) and ReconMatrixPE is the size of the actual reconstructed data in the phase direction (which is NOT reflected in a single DICOM tag for all possible aforementioned scan manipulations). See here and here

3We use the time between the center of the first "effective" echo and the center of the last "effective" echo, sometimes called the "FSL definition".

### **Timing Parameters**

| Key name      | Requirement level                                                                                                | Data type | Description                                                                                                                                                                                                                                                                                                                                  |
|---------------|------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EchoTime      | RECOMMENDED, but REQUIRED if corresponding fieldmap data is present or the data comes from a multi echo sequence | number    | The echo time (TE) for the acquisition, specified in seconds. Corresponds to DICOM Tag 0018, 0081 Echo Time (please note that the DICOM term is in milliseconds not seconds).                                                                                                                                                                |
| InversionTime | RECOMMENDED                                                                                                      | number    | The inversion time (TI) for the acquisition, specified in seconds. Inversion time is the time after the middle of inverting RF pulse to middle of excitation pulse to detect the amount of longitudinal magnetization. Corresponds to DICOM Tag 0018, 0082  Inversion Time (please note that the DICOM term is in milliseconds not seconds). |

| Key name    | Requirement level                                                                       | Data type        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|-----------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SliceTiming | RECOMMENDED, but REQUIRED for sparse sequences that do not have the DelayTime field set | array of numbers | The time at which each slice was acquired within each volume (frame) of the acquisition. Slice timing is not slice order — rather, it is a list of times containing the time (in seconds) of each slice acquisition in relation to the beginning of volume acquisition. The list goes through the slices along the slice axis in the slice encoding dimension (see below). Note that to ensure the proper interpretation of the SliceTiming field, it is important to check if the OPTIONAL SliceEncodingDirection exists. In particular, if SliceEncodingDirection is negative, the entries in SliceTiming are defined in reverse order with respect to the slice axis, such that the final entry in the SliceTiming list is the time of acquisition of slice 0. Without this parameter slice time correction will not be possible. |

| Key name               | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|-------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SliceEncodingDirection | RECOMMENDED       | string    | Possible values: i, j, k, i-, j-, k- (the axis of the NIfTI data along which slices were acquired, and the direction in which SliceTiming is defined with respect to). i, j, k identifiers correspond to the first, second and third axis of the data in the NIfTI file. A - sign indicates that the contents of SliceTiming are defined in reverse order - that is, the first entry corresponds to the slice with the largest index, and the final entry corresponds to slice index zero. When present, the axis defined by SliceEncodingDirection needs to be consistent with the 'slice_dim' field in the NIfTI header. When absent, the entries in SliceTiming must be in the order of increasing slice index as defined by the NIfTI header. |

| Key name  | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DwellTime | RECOMMENDED       | number    | Actual dwell time (in seconds) of the receiver per point in the readout direction, including any oversampling. For Siemens, this corresponds to DICOM field (0019,1018) (in ns). This value is necessary for the optional readout distortion correction of anatomicals in the HCP Pipelines. It also usefully provides a handle on the readout bandwidth, which isn't captured in the other metadata tags. Not to be confused with EffectiveEchoSpacing, and the frequent mislabeling of echo spacing (which is spacing in the phase encoding direction) as "dwell time" (which is spacing in the readout direction). |

### RF & Contrast

| Key name         | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                      |
|------------------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FlipAngle        | RECOMMENDED       | number    | Flip angle for the acquisition, specified in degrees. Corresponds to: DICOM Tag 0018, 1314 Flip Angle.                                                                                                                                                                                                           |
| NegativeContrast | OPTIONAL          | boolean   | true or false value specifying whether increasing voxel intensity (within sample voxels) denotes a decreased value with respect to the contrast suffix. This is commonly the case when Cerebral Blood Volume is estimated via usage of a contrast agent in conjunction with a T2* weighted acquisition protocol. |

Slice Acceleration

| Key name                    | Requirement level | Data type | Description                                       |
|-----------------------------|-------------------|-----------|---------------------------------------------------|
| MultibandAccelerationFactor | RECOMMENDED       | number    | The multiband factor, for multiband acquisitions. |

### Anatomical landmarks

Useful for multimodal co-registration with MEG, (S)EEG, TMS, and so on.

| Key name                      | Requirement level | Data type        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AnatomicalLandmarkCoordinates | RECOMMENDED       | object of arrays | Key:value pairs of any number of additional anatomical landmarks and their coordinates in voxel units (where first voxel has index 0,0,0) relative to the associated anatomical MRI (for example, {"AC": [127,119,149], "PC": [128,93,141], "IH": [131,114,206]}, or {"NAS": [127,213,139], "LPA": [52,113,96], "RPA": [202,113,91]}). Each array MUST contain three numeric values corresponding to x, y, and z axis of the coordinate system in that exact order. |

### Institution information

| Key name        | Requirement level | Data type | Description                                                                                                                                          |
|-----------------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| InstitutionName | RECOMMENDED       | string    | The name of the institution in charge of the equipment that produced the composite instances.  Corresponds to DICOM Tag 0008,  0080 InstitutionName. |

| Key name                       | Requirement level | Data type | Description                                                                                                                                                            |
|--------------------------------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InstitutionAddress             | RECOMMENDED       | string    | The address of the institution in charge of the equipment that produced the composite instances. Corresponds to DICOM Tag 0008, 0081 InstitutionAddress.               |
| In stitutional Department Name | RECOMMENDED       | string    | The department in the institution in charge of the equipment that produced the composite instances. Corresponds to DICOM Tag 0008, 1040 Institutional Department Name. |

When adding additional metadata please use the CamelCase version of DICOM ontology terms whenever possible. See also recommendations on JSON files.

### Anatomy imaging data

#### Template:

```
sub-<label>/[ses-<label>/]
anat/
sub-<label>[_ses-<label>] [_acq-<label>] [_rec-<label>] [_run-<index>] _<modality_label>.nii[.gz]
sub-<label>[_ses-<label>] [_acq-<label>] [_rec-<label>] [_run-<index>] [_mod-<label>] _defacemask.nii[.gz]
```

Anatomical (structural) data acquired for that participant. Currently supported modalities include:

| Name           | modality_label         | Description                                    |
|----------------|------------------------|------------------------------------------------|
| T1 weighted    | T1w                    |                                                |
| T2 weighted    | T2w                    |                                                |
| T1 Rho map     | T1rho                  | Quantitative T1rho brain imaging               |
| -              |                        | https://www.ncbi.nlm.nih.gov/pubmed/24474423   |
|                |                        | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4 |
|                |                        | 346383/                                        |
| T1 map         | T1map                  | quantitative T1 map                            |
| T2 map         | T2map                  | quantitative T2 map                            |
| $T2^*$         | T2star                 | High resolution T2* image                      |
| FLAIR          | $\operatorname{FLAIR}$ |                                                |
| FLASH          | FLASH                  |                                                |
| Proton density | PD                     |                                                |

| Name                                 | modality_label | Description                                                    |
|--------------------------------------|----------------|----------------------------------------------------------------|
| Proton density map<br>Combined PD/T2 | PDmap<br>PDT2  |                                                                |
| Inplane T1                           | inplaneT1      | T1-weighted anatomical image matched to functional acquisition |
| Inplane T2                           | inplaneT2      | T2-weighted anatomical image matched to functional acquisition |
| Angiography                          | angio          | -                                                              |

If the structural images included in the dataset were defaced (to protect identity of participants) one MAY provide the binary mask that was used to remove facial features in the form of \_defacemask files. In such cases, the OPTIONAL mod-<label> key/value pair corresponds to modality suffix, such as T1w or inplaneT1, referenced by the defacemask image. For example, sub-01 mod-T1w defacemask.nii.gz.

If several scans of the same modality are acquired they MUST be indexed with the run-<index> key-value pair: \_run-1, \_run-2, \_run-3, and so on (only nonnegative integers are allowed as run labels). When there is only one scan of a given type the run key MAY be omitted. Please note that diffusion imaging data is stored elsewhere (see below).

The OPTIONAL acq-<label> key/value pair corresponds to a custom label the user MAY use to distinguish a different set of parameters used for acquiring the same modality. For example this should be used when a study includes two T1w images - one full brain low resolution and and one restricted field of view but high resolution. In such case two files could have the following names: sub-01\_acq-highres\_T1w.nii.gz and sub-01\_acq-lowres\_T1w.nii.gz, however the user is free to choose any other label than highres and lowres as long as they are consistent across subjects and sessions. In case different sequences are used to record the same modality (for example, RARE and FLASH for T1w) this field can also be used to make that distinction. At what level of detail to make the distinction (for example, just between RARE and FLASH, or between RARE, FLASH, and FLASHsubsampled) remains at the discretion of the researcher.

Similarly the OPTIONAL ce-<label> key/value can be used to distinguish sequences using different contrast enhanced images. The label is the name of the contrast agent. The key ContrastBolusIngredient MAY be also be added in the JSON file, with the same label.

Some meta information about the acquisition MAY be provided in an additional JSON file. See Common metadata fields for a list of terms and their definitions. There are also some OPTIONAL JSON fields specific to anatomical scans:

| Key name                | Requirement level | Data type | Description                                                                                                                              |
|-------------------------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| ContrastBolusIngredient | OPTIONAL          | string    | Active ingredient of agent. Values MUST be one of: IODINE, GADOLINIUM, CARBON DIOXIDE, BARIUM, XENON Corresponds to DICOM Tag 0018,1048. |

Similarly, the OPTIONAL rec-<label> key/value can be used to distinguish different reconstruction algorithms (for example ones using motion correction).

### Task (including resting state) imaging data

Currently supported image contrasts include:

| Name  | contrast_label | Description                                                                                 |
|-------|----------------|---------------------------------------------------------------------------------------------|
| BOLD  | bold           | Blood-Oxygen-Level Dependent contrast (specialized T2* weighting)                           |
| CBV   | cbv            | Cerebral Blood Volume contrast (specialized T2* weighting or difference between T1 weighted |
| Phase | phase          | images) Phase information associated with magnitude information stored in BOLD contrast     |

#### Template:

```
1 sub-<label>/[ses-<label>/]
2 func/
3 sub-<label>[_ses-<label>]_task-<label>[_acq-<label>][_ce-<label>][_dir-<label>][_rec-<label>][_run-<index>][_echo-<index>]_<contrast_label > .nii[.gz]
4 sub-<label>[_ses-<label>]_task-<label>[_acq-<label>][_ce-<label>][_dir-<label>][_rec-<label>][_run-<index>][_echo-<index>]_sbref.nii[.gz]
```

Functional imaging consists of techniques that support rapid temporal repetition. This includes but is not limited to task based fMRI as well as resting state fMRI, which is treated like any other task. For task based fMRI a corresponding task events file (see below) MUST be provided (please note that this file is not necessary for resting state scans). For multiband acquisitions, one MAY also save the single-band reference image as type sbref (for example, sub-control01\_task-nback\_sbref.nii.gz).

Each task has a unique label that MUST only consist of letters and/or numbers (other characters, including spaces and underscores, are not allowed) with the task-<label> key/value pair. Those labels MUST be consistent across subjects and sessions.

If more than one run of the same task has been acquired the run-<index> key/value pair MUST be used: \_run-1, \_run-2, \_run-3, and so on. If only one run was acquired the run-<index> can be omitted. In the context of functional imaging a run is defined as the same task, but in some cases it can mean different set of stimuli (for example randomized order) and participant responses.

The OPTIONAL acq-<label> key/value pair corresponds to a custom label one may use to distinguish different set of parameters used for acquiring the same task. For example this should be used when a study includes two resting state images - one single band and one multiband. In such case two files could have the following names: sub-01\_task-rest\_acq-singleband\_bold.nii.gz and sub-01\_task-rest\_acq-multiband\_bold.nii.gz, however the user is MAY choose any other label than singleband and multiband as long as they are consistent across subjects and sessions and consist only of the legal label characters.

Similarly the OPTIONAL ce-<label> key/value can be used to distinguish sequences using different contrast enhanced images. The label is the name of the contrast agent. The key ContrastBolusIngredient MAY be also be added in the JSON file, with the same label.

Similarly the OPTIONAL rec-<label> key/value can be used to distinguish different reconstruction algorithms (for example ones using motion correction).

Similarly the OPTIONAL dir-<label> and rec-<label> key/values can be used to distinguish different phase-encoding directions and reconstruction algorithms (for example ones using motion correction). See fmap Case 4 for more information on dir field specification.

Multi-echo data MUST be split into one file per echo using the echo-<index> key-value pair. For example:

```
sub-01/
func/
sub-01_task-cuedSGT_run-1_echo-1_bold.nii.gz
sub-01_task-cuedSGT_run-1_echo-1_bold.json
sub-01_task-cuedSGT_run-1_echo-2_bold.nii.gz
sub-01_task-cuedSGT_run-1_echo-2_bold.json
sub-01_task-cuedSGT_run-1_echo-3_bold.nii.gz
sub-01_task-cuedSGT_run-1_echo-3_bold.nii.gz
sub-01_task-cuedSGT_run-1_echo-3_bold.json
```

Please note that the <index> denotes the number/index (in the form of a nonnegative integer) of the echo not the echo time value which needs to be stored in the field EchoTime of the separate JSON file.

Some meta information about the acquisition MUST be provided in an additional JSON file.

#### Required fields

| Key name       | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RepetitionTime | REQUIRED          | number    | The time in seconds between the beginning of an acquisition of one volume and the beginning of acquisition of the volume following it (TR). Please note that this definition includes time between scans (when no data has been acquired) in case of sparse acquisition schemes. This value needs to be consistent with the pixdim[4] field (after accounting for units stored in xyzt_units field) in the NIfTI header. This field is mutually exclusive with VolumeTiming and is derived from DICOM Tag 0018, 0080 and converted to seconds. |

| Key name     | Requirement level | Data type        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VolumeTiming | REQUIRED          | array of numbers | The time at which each volume was acquired during the acquisition. It is described using a list of times referring to the onset of each volume in the BOLD series. The list must have the same length as the BOLD series, and the values must be non-negative and monotonically increasing. This field is mutually exclusive with RepetitionTime and DelayTime. If defined, this requires acquisition time (TA) be defined via either SliceTiming or |
| TaskName     | REQUIRED          | string           | AcquisitionDuration be defined. Name of the task. No two tasks should have the same name. The task label included in the file name is derived from this TaskName field by removing all non-alphanumeric ([a-zA-Z0-9]) characters. For example TaskName faces n-back will correspond to task label facesnback. A RECOMMENDED convention is to name resting state task using labels beginning with rest.                                               |

For the fields described above and in the following section, the term "Volume" refers to a reconstruction of the object being imaged (for example, brain or part of a brain). In case of multiple channels in a coil, the term "Volume" refers to a combined image rather than an image from each coil.

Other RECOMMENDED metadata

Timing Parameters

| Key name                                          | Requirement level    | Data type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------|----------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NumberOf Volumes Discarded By Scanner RECOMMENDED |                      | integer   | Number of volumes ("dummy scans") discarded by the scanner (as opposed to those discarded by the user post hoc) before saving the imaging file. For example, a sequence that automatically discards the first 4 volumes before saving would have this field as 4. A sequence that doesn't discard dummy scans would have this set to 0. Please note that the onsets recorded in the _event.tsv file should always refer to the beginning of the acquisition of the first volume in the corresponding imaging file - independent of the value of NumberOfVolumesDiscardedByScanner |
| NumberOfVolumesDiscarde                           | edByUser RECOMMENDED | integer   | field.  Number of volumes ("dummy scans") discarded by the user before including the file in the dataset. If possible, including all of the volumes is strongly recommended. Please note that the onsets recorded in the _event.tsv file should always refer to the beginning of the acquisition of the first volume in the corresponding imaging file - independent of the value of  NumberOfVolumesDiscardedByUser field.                                                                                                                                                       |

| Key name            | Requirement level                                                                                                                                                                             | Data type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DelayTime           | RECOMMENDED                                                                                                                                                                                   | number    | User specified time (in seconds) to delay the acquisition of data for the following volume. If the field is not present it is assumed to be set to zero. Corresponds to Siemens CSA header field IDelayTimeInTR. This field is REQUIRED for sparse sequences using the RepetitionTime field that do not have the SliceTiming field set to allowed for accurate calculation of "acquisition time". This field is mutually exclusive with VolumeTiming. |
| AcquisitionDuration | RECOMMENDED, but REQUIRED for sequences that are described with the VolumeTiming field and that do not have the SliceTiming field set to allow for accurate calculation of "acquisition time" | number    | Duration (in seconds) of volume acquisition. Corresponds to DICOM Tag 0018,9073  Acquisition Duration. This field is mutually exclusive with RepetitionTime.                                                                                                                                                                                                                                                                                          |
| DelayAfterTrigger   | RECOMMENDED                                                                                                                                                                                   | number    | Duration (in seconds) from trigger delivery to scan onset. This delay is commonly caused by adjustments and loading times. This specification is entirely independent of NumberOfVolumesDiscardedByScanner or NumberOfVolumesDiscardedByUser, as the delay precedes the acquisition.                                                                                                                                                                  |

The following table recapitulates the different ways that specific fields have to be populated for functional sequences. Note that all these options can be used for non sparse sequences but that only options B, D and E are valid for sparse sequences.

|          | RepetitionTime | SliceTiming | AcquisitionDuration | DelayTime | VolumeTiming |
|----------|----------------|-------------|---------------------|-----------|--------------|
| option A | [ X ]          |             | []                  |           | []           |
| option B | []             | [ X ]       |                     | []        | [ X ]        |
| option C | []             |             | [ X ]               | []        | [ X ]        |
| option D | [ X ]          | [ X ]       | []                  |           | []           |

|          | RepetitionTime | SliceTiming | AcquisitionDuration | DelayTime | VolumeTiming |
|----------|----------------|-------------|---------------------|-----------|--------------|
| option E | [ X ]          |             | []                  | [ X ]     | []           |

#### Legend

- $[X] \longrightarrow has to be filled$
- $\square$  --> has to be left empty
- empty cell --> can be specified but not required

#### fMRI task information

| Key name        | Requirement level | Data type | Description                                                                                                                                                                                   |
|-----------------|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instructions    | RECOMMENDED       | string    | Text of the instructions given to participants before the scan. This is especially important in context of resting state fMRI and distinguishing between eyes open and eyes closed paradigms. |
| TaskDescription | RECOMMENDED       | string    | Longer description of the task.                                                                                                                                                               |
| CogAtlasID      | RECOMMENDED       | string    | URI of the corresponding Cognitive<br>Atlas Task term.                                                                                                                                        |
| CogPOID         | RECOMMENDED       | string    | URI of the corresponding CogPO term.                                                                                                                                                          |

See Common metadata fields for a list of additional terms and their definitions.

#### Example:

```
sub-control01/
func/
sub-control01_task-nback_bold.json

{
    "TaskName": "N Back",
    "RepetitionTime": 0.8,
    "EchoTime": 0.03,
    "FlipAngle": 78,
    "SliceTiming": [0.0, 0.2, 0.4, 0.6, 0.0, 0.2, 0.4, 0.6, 0.0, 0.2, 0.4, 0.6],
    "MultibandAccelerationFactor": 4,
```

```
"ParallelReductionFactorInPlane": 2,
"PhaseEncodingDirection": "j",
"InstitutionName": "Stanford University",
"InstitutionAddress": "450 Serra Mall, Stanford, CA 94305-2004, USA",
"DeviceSerialNumber": "11035"
"DeviceSerialNumber": "11035"
```

If this information is the same for all participants, sessions and runs it can be provided in task-<label>\_bold.json (in the root directory of the dataset). However, if the information differs between subjects/runs it can be specified in the sub-<label>\_task-<label>\_[acq-<label>] [\_run-<index>]\_bold.json file. If both files are specified fields from the file corresponding to a particular participant, task and run takes precedence.

### Diffusion imaging data

Template:

```
sub-<label>/[ses-<label>/]
dwi/
sub-<label>[_ses-<label>] [_acq-<label>] [_dir-<label>] [_run-<index>]_dwi.nii[.gz]
sub-<label>[_ses-<label>] [_acq-<label>] [_dir-<label>] [_run-<index>]_dwi.bval
sub-<label>[_ses-<label>] [_acq-<label>] [_dir-<label>] [_run-<index>]_dwi.bvec
sub-<label>[_ses-<label>] [_acq-<label>] [_dir-<label>] [_run-<index>]_dwi.json
sub-<label>[_ses-<label>] [_acq-<label>] [_dir-<label>] [_run-<index>]_sbref.nii[.gz]
sub-<label>[_ses-<label>] [_acq-<label>] [_dir-<label>] [_run-<index>]_sbref.json
```

Diffusion-weighted imaging data acquired for that participant. The OPTIONAL acq-<label> key/value pair corresponds to a custom label the user may use to distinguish different set of parameters. For example this should be used when a study includes two diffusion images - one single band and one multiband. In such case two files could have the following names: sub-01\_acq-singleband\_dwi.nii.gz and sub-01\_acq-multiband\_dwi.nii.gz, however the user is free to choose any other label than singleband and multiband as long as they are consistent across subjects and sessions. For multiband acquisitions, one can also save the single-band reference image as type sbref (for example, dwi/sub-control01\_sbref.nii[.gz]) The bvec and bval files are in the FSL format: The bvec files contain 3 rows with n space-delimited floating-point numbers (corresponding to the n volumes in the relevant NIfTI file). The first row contains the x elements, the second row contains the y elements and third row contains the z elements of a unit vector in the direction of the applied diffusion gradient, where the i-th elements in each row correspond together to the i-th volume with [0,0,0] for non-diffusion-weighted volumes. Inherent to the FSL format for bvec specification is the fact that the coordinate system of the bvecs is with respect to the participant, defined by the axes of the corresponding dwi.nii file, and not the magnet's coordinate system. Thus, any rotations applied to dwi.nii also need to be applied to the corresponding bvec file.

bvec example:

```
1 0 0 0.021828 -0.015425 -0.70918 -0.2465
2 0 0 0.80242 0.22098 -0.00063106 0.1043
3 0 0 -0.59636 0.97516 -0.70503 -0.96351
```

The bval file contains the b-values (in s/mm2) corresponding to the volumes in the relevant NIfTI file), with 0 designating non-diffusion-weighted volumes, space-delimited.

bval example:

```
1 0 0 2000 2000 1000 1000
```

.bval and .bvec files can be saved on any level of the directory structure and thus define those values for all sessions and/or subjects in one place (see Inheritance principle). See Common metadata fields for a list of additional terms that can be included in the corresponding JSON file.

JSON example:

```
1 {
2    "PhaseEncodingDirection": "j-",
3    "TotalReadoutTime": 0.095
4 }
```

### Fieldmap data

Data acquired to correct for B0 inhomogeneities can come in different forms. The current version of this standard considers four different scenarios. Please note that in all cases fieldmap data can be linked to a specific scan(s) it was acquired for by filling the IntendedFor field in the corresponding JSON file. For example:

```
1 {
2    "IntendedFor": "func/sub-01_task-motor_bold.nii.gz"
3 }
```

The IntendedFor field may contain one or more filenames with paths relative to the subject subfolder. The path needs to use forward slashes instead of backward slashes. Here's an example with multiple target scans:

The IntendedFor field is OPTIONAL and in case the fieldmaps do not correspond to any particular scans it does not have to be filled.

Multiple fieldmaps can be stored. In such case the run-<index> key/value pair should be used. The OPTIONAL acq-<label> key/value pair corresponds to a custom label the user may use to distinguish different set of parameters.

Case 1: Phase difference image and at least one magnitude image

Template:

```
1 sub-<label>/[ses-<label>/]
2 fmap/
3 sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>]_phasediff.nii[.gz]
4 sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>]_phasediff.json
5 sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>]_magnitude1.nii[.gz]
```

#### OPTIONAL

```
1 sub-<label>/[ses-<label>/]
2 fmap/
3 sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>]_magnitude2.nii[.gz]
```

This is a common output for build in fieldmap sequence on Siemens scanners. In this particular case the sidecar JSON file has to define the Echo Times of the two phase images used to create the difference image. EchoTime1 corresponds to the shorter echo time and EchoTime2 to the longer echo time. Similarly \_magnitude1 image corresponds to the shorter echo time and the OPTIONAL \_magnitude2 image to the longer echo time. For example:

```
1 {
2     "EchoTime1": 0.00600,
3     "EchoTime2": 0.00746,
4     "IntendedFor": "func/sub-01_task-motor_bold.nii.gz"
5 }
```

Case 2: Two phase images and two magnitude images

Template:

```
sub-<label>/[ses-<label>/]
fmap/
sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>] _phase1.nii[.gz]
sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>] _phase1.json
sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>] _phase2.nii[.gz]
sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>] _phase2.json
sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>] _magnitude1.nii[.gz]
sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>] _magnitude2.nii[.gz]
```

Similar to the case above, but instead of a precomputed phase difference map two separate phase images are presented. The two sidecar JSON files need to specify corresponding EchoTime values. For example:

```
1 {
2    "EchoTime": 0.00746,
3    "IntendedFor": "func/sub-01_task-motor_bold.nii.gz"
4 }
```

Case 3: A real fieldmap image

Template:

```
1 sub-<label>/[ses-<label>/]
2 fmap/
```

```
sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>] magnitude.nii[.gz]
sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>] _fieldmap.nii[.gz]
sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>] _fieldmap.json
```

In some cases (for example GE) the scanner software will output a precomputed fieldmap denoting the B0 inhomogeneities along with a magnitude image used for coregistration. In this case the sidecar JSON file needs to include the units of the fieldmap. The possible options are: Hertz (Hz), Radians per second (rad/s), or Tesla (T). For example:

```
1 {
2  "Units": "rad/s",
3  "IntendedFor": "func/sub-01_task-motor_bold.nii.gz"
4 }
```

Case 4: Multiple phase encoded directions ("pepolar")

Template:

```
1 sub-<label>/[ses-<label>/]
2     fmap/
3     sub-<label>[_ses-<label>] [_acq-<label>] [_ce-<label>]_dir-<label>[_run-<index>]_epi.nii[.gz]
4     sub-<label>[_ses-<label>] [_acq-<label>] [_ce-<label>]_dir-<label>[_run-<index>]_epi.json
```

The phase-encoding polarity (PEpolar) technique combines two or more Spin Echo EPI scans with different phase encoding directions to estimate the underlying inhomogeneity/deformation map. Examples of tools using this kind of images are FSL TOPUP, AFNI 3dqwarp and SPM. In such a case, the phase encoding direction is specified in the corresponding JSON file as one of: i, j, k, i-, j-, k-. For these differentially phase encoded sequences, one also needs to specify the Total Readout Time defined as the time (in seconds) from the center of the first echo to the center of the last echo (aka "FSL definition" - see here and here how to calculate it). For example

```
1 {
2     "PhaseEncodingDirection": "j-",
3     "TotalReadoutTime": 0.095,
4     "IntendedFor": "func/sub-01_task-motor_bold.nii.gz"
5 }
```

The label value of the dir-<label> key/value pair can be set to arbitrary alphanumeric label ([a-zA-Z0-9]+ for example LR or AP) that can help users to distinguish between different files, but should not be used to infer any scanning parameters (such as phase encoding directions) of the corresponding sequence. Please rely only on the JSON file to obtain scanning parameters. \_epi files can be a 3D or 4D - in the latter case all timepoints share the same scanning parameters. To indicate which run is intended to be used with which functional or diffusion scan the IntendedFor field in the JSON file should be used.

## Magnetoencephalography

Support for Magnetoencephalography (MEG) was developed as a BIDS Extension Proposal. Please see Citing BIDS on how to appropriately credit this extension when referring to it in the context of the academic literature.

### MEG recording data

Template:

```
1 sub-<label>/
2    [ses-<label>]/
3    meg/
4    sub-<label>[_ses-<label>]_task-<label>[_run-<index>] [_proc-<label>]_meg.<manufacturer_specific_extension>
5    [sub-<label>[_ses-<label>]_task-<label>[_run-<index>] [_proc-<label>]_meg.json]
```

Unprocessed MEG data MUST be stored in the native file format of the MEG instrument with which the data was collected. With the MEG specification of BIDS, we wish to promote the adoption of good practices in the management of scientific data. Hence, the emphasis is not to impose a new, generic data format for the modality, but rather to standardize the way data is stored in repositories. Further, there is currently no widely accepted standard file format for MEG, but major software applications, including free and open-source solutions for MEG data analysis, provide readers of such raw files.

Some software readers may skip important metadata that is specific to MEG system manufacturers. It is therefore RECOMMENDED that users provide additional meta information extracted from the manufacturer raw data files in a sidecar JSON file. This allows for easy searching and indexing of key metadata elements without the need to parse files in proprietary data format. Other relevant files MAY be included alongside the MEG data; examples are provided below.

This template is for MEG data of any kind, including but not limited to task-based, resting-state, and noise recordings. If multiple Tasks were performed within a single Run, the task description can be set to task-multitask. The \_meg.json SHOULD contain details on the Tasks.

Some manufacturers' data storage conventions use folders which contain data files of various nature: for example, CTF's .ds format, or BTi/4D. Yet other manufacturers split their files once they exceed a certain size limit. For example Neuromag/Elekta/Megin, which can produce several files for a single recording. Both some\_file.fif and some\_file-1.fif would belong to a single recording. In BIDS, the split entity is RECOMMENDED to deal with split files. Please refer to Appendix VI for general information on how to deal with such manufacturer specifics and to see more examples.

The proc-<label> entity is analogous to rec-<label> for MR and denotes a variant of a file that was a result of particular processing performed on the device. This is useful for files produced in particular by Elekta's MaxFilter (for example, sss, tsss, trans, quat, mc), which some installations impose to be run on raw data because of active shielding software corrections before the MEG data can actually be exploited.

Recording EEG simultaneously with MEG

Note that if EEG is recorded with a separate amplifier, it SHOULD be stored separately under a new /eeg data type (see the EEG specification).

If however EEG is recorded simultaneously with the same MEG system, it MAY be stored under the /meg data type. In that case, it SHOULD have the same sampling frequency as MEG (see SamplingFrequency field below). Furthermore, the EEG sensor coordinates SHOULD be specified using MEG-specific coordinate systems (see coordinates section).

Sidecar JSON (\*\_meg.json)

Generic fields MUST be present:

| Key name | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                            |
|----------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TaskName | REQUIRED          | string    | Name of the task. No two tasks should have the same name. The task label included in the file name is derived from this TaskName field by removing all non-alphanumeric ([a-zA-Z0-9]) characters. For example TaskName faces n-back will correspond to task label facesnback. A RECOMMENDED convention is to name resting state task using labels beginning with rest. |

SHOULD be present: For consistency between studies and institutions, we encourage users to extract the values of these fields from the actual raw data. Whenever possible, please avoid using ad-hoc wording.

| Key name               | Requirement level | Data type | Description                                                                                                                             |
|------------------------|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| InstitutionName        | RECOMMENDED       | string    | The name of the institution in charge of the equipment that produced the composite instances.                                           |
| InstitutionAddress     | RECOMMENDED       | string    | The address of the institution in charge of the equipment that produced the composite instances.                                        |
| Manufacturer           | RECOMMENDED       | string    | Manufacturer of the MEG system (CTF, Elekta/Neuromag, BTi/4D, KIT/Yokogawa, ITAB, KRISS, Other). See Appendix VII with preferred names. |
| ManufacturersModelName | RECOMMENDED       | string    | Manufacturer's designation of the MEG scanner model (for example, CTF-275). See Appendix VII with preferred names.                      |
| SoftwareVersions       | RECOMMENDED       | string    | Manufacturer's designation of the acquisition software.                                                                                 |
| TaskDescription        | RECOMMENDED       | string    | Description of the task.                                                                                                                |

| Key name           | Requirement level | Data type | Description                                                                                                                                                                                                                       |
|--------------------|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instructions       | RECOMMENDED       | string    | Text of the instructions given to participants before the scan. This is not only important for behavioral or cognitive tasks but also in resting state paradigms (for example, to distinguish between eyes open and eyes closed). |
| CogAtlasID         | RECOMMENDED       | string    | URI of the corresponding Cognitive Atlas term that describes the task (for example, Resting State with eyes closed "http://www.cognitiveatlas.org/task/id/trm 54e69c642d89b").                                                    |
| CogPOID            | RECOMMENDED       | string    | URI of the corresponding CogPO term that describes the task (for example, Rest "http://wiki.cogpo.org/index.php?title=Rest").                                                                                                     |
| DeviceSerialNumber | RECOMMENDED       | string    | The serial number of the equipment that produced the composite instances. A pseudonym can also be used to prevent the equipment from being identifiable, as long as each pseudonym is unique within the dataset.                  |

# Specific MEG fields MUST be present:

| Key name           | Requirement level | Data type       | Description                                                                                                     |
|--------------------|-------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
| SamplingFrequency  | REQUIRED          | number          | Sampling frequency (in Hz) of all the data in the recording, regardless of their type (for example, 2400).      |
| PowerLineFrequency | REQUIRED          | number or "n/a" | Frequency (in Hz) of the power grid at the geographical location of the MEG instrument (for example, 50 or 60). |

| Key name            | Requirement level | Data type                  | Description                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|-------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DewarPosition       | REQUIRED          | string                     | Position of the dewar during the MEG scan: upright, supine or degrees of angle from vertical: for example on CTF systems, upright=15°, supine=90°.                                                                                                                                                                                                                |
| SoftwareFilters     | REQUIRED          | object of objects or "n/a" | Object of temporal software filters applied, or "n/a" if the data is not available. Each key:value pair in the JSON object is a name of the filter and an object in which its parameters are defined as key:value pairs (for example, {"SSS": {"frame": "head", "badlimit": 7}, "SpatialCompensation": {"GradientOrder": "Order of the gradient compensation"}}). |
| DigitizedLandmarks  | REQUIRED          | boolean                    | true or false value indicating whether anatomical landmark points (fiducials) are contained within this recording.                                                                                                                                                                                                                                                |
| DigitizedHeadPoints | REQUIRED          | boolean                    | true or false value indicating whether head points outlining the scalp/face surface are contained within this recording.                                                                                                                                                                                                                                          |

# SHOULD be present:

| Key name           | Requirement level | Data type | Description                                                                                                                                                       |
|--------------------|-------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MEGChannelCount    | RECOMMENDED       | integer   | Number of MEG channels (for example, 275).                                                                                                                        |
| MEGREFChannelCount | RECOMMENDED       | integer   | Number of MEG reference channels (for example, 23). For systems without such channels (for example, Neuromag Vectorview),  MEGREFChannelCount should be set to 0. |
| EEGChannelCount    | RECOMMENDED       | integer   | Number of EEG channels recorded simultaneously (for example, 21).                                                                                                 |

| Key name                   | Requirement level | Data type                  | Description                           |
|----------------------------|-------------------|----------------------------|---------------------------------------|
| ECOGChannelCount           | RECOMMENDED       | integer                    | Number of ECoG channels.              |
| SEEGChannelCount           | RECOMMENDED       | integer                    | Number of SEEG channels.              |
| EOGChannelCount            | RECOMMENDED       | integer                    | Number of EOG channels.               |
| ECGChannelCount            | RECOMMENDED       | integer                    | Number of ECG channels.               |
| EMGChannelCount            | RECOMMENDED       | integer                    | Number of EMG channels.               |
| MiscChannelCount           | RECOMMENDED       | integer                    | Number of miscellaneous analog        |
|                            |                   |                            | channels for auxiliary signals.       |
| TriggerChannelCount        | RECOMMENDED       | integer                    | Number of channels for digital (TTL   |
|                            |                   |                            | bit level) triggers.                  |
| RecordingDuration          | RECOMMENDED       | number                     | Length of the recording in seconds    |
|                            |                   |                            | (for example, 3600).                  |
| RecordingType              | RECOMMENDED       | string                     | Defines whether the recording is      |
|                            |                   |                            | "continuous", "discontinuous" or      |
|                            |                   |                            | "epoched", where "epoched" is         |
|                            |                   |                            | limited to time windows about         |
|                            |                   |                            | events of interest (for example,      |
|                            |                   |                            | stimulus presentations or subject     |
|                            |                   |                            | responses).                           |
| EpochLength                | RECOMMENDED       | number                     | Duration of individual epochs in      |
|                            |                   |                            | seconds (for example, 1) in case of   |
|                            |                   |                            | epoched data.                         |
| ContinuousHeadLocalization | RECOMMENDED       | boolean                    | true or false value indicating        |
|                            |                   |                            | whether continuous head               |
|                            |                   |                            | localisation was performed.           |
| HeadCoilFrequency          | RECOMMENDED       | number or array of numbers | List of frequencies (in Hz) used by   |
|                            |                   |                            | the head localisation coils ('HLC' in |
|                            |                   |                            | CTF systems, 'HPI' in Elekta, 'COH'   |
|                            |                   |                            | in BTi/4D) that track the subject's   |
|                            |                   |                            | head position in the MEG helmet (for  |
|                            |                   |                            | example, [293, 307, 314, 321]).       |
| MaxMovement                | RECOMMENDED       | number                     | Maximum head movement (in mm)         |
|                            |                   |                            | detected during the recording, as     |
|                            |                   |                            | measured by the head localisation     |
|                            |                   |                            | coils (for example, $4.8$ ).          |
|                            |                   |                            |                                       |

| Key name                   | Requirement level | Data type                  | Description                                                                                                                                                                                                                                                                                                                      |
|----------------------------|-------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SubjectArtefactDescription | RECOMMENDED       | string                     | Freeform description of the observed subject artefact and its possible cause (for example, "Vagus Nerve Stimulator", "non-removable implant"). If this field is set to n/a, it will be interpreted as absence of major source of artifacts except cardiac and blinks.                                                            |
| Associated Empty Room      | RECOMMENDED       | string                     | Relative path in BIDS folder structure to empty-room file associated with the subject's MEG recording. The path needs to use forward slashes instead of backward slashes (for example, sub-emptyroom/ses-/meg/sub-emptyroom_sestask-noise_runmeg.ds).                                                                            |
| HardwareFilters            | RECOMMENDED       | object of objects or "n/a" | Object of temporal hardware filters applied, or "n/a" if the data is not available. Each key:value pair in the JSON object is a name of the filter and an object in which its parameters are defined as key:value pairs (for example, {"Highpass RC filter": {"Half amplitude cutoff (Hz)": 0.0159, "Roll-off": "6dB/Octave"}}). |

Specific EEG fields (if recorded with MEG, see Recording EEG simultaneously with MEG SHOULD be present:

| Key name           | Requirement level | Data type | Description                                                                                                                                                                          |
|--------------------|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEGPlacementScheme | OPTIONAL          | string    | Placement scheme of EEG electrodes. Either the name of a standardised placement system (for example, "10-20") or a list of standardised electrode names (for example, ["Cz", "Pz"]). |
| CapManufacturer    | OPTIONAL          | string    | Manufacturer of the EEG cap (for example, EasyCap).                                                                                                                                  |

| Key name                  | Requirement level | Data type | Description                                                                                                         |
|---------------------------|-------------------|-----------|---------------------------------------------------------------------------------------------------------------------|
| CapManufacturersModelName | OPTIONAL          | string    | Manufacturer's designation of the EEG cap model (for example, M10).                                                 |
| EEGReference              | OPTIONAL          | string    | Description of the type of EEG reference used (for example, M1 for left mastoid, average, or longitudinal bipolar). |

### Example:

```
1 {
     "InstitutionName": "Stanford University",
 3
     "InstitutionAddress": "450 Serra Mall, Stanford, CA 94305-2004, USA",
     "Manufacturer": "CTF",
 4
     "ManufacturersModelName": "CTF-275",
     "DeviceSerialNumber": "11035",
 6
     "SoftwareVersions": "Acq 5.4.2-linux-20070507",
 8
     "PowerLineFrequency": 60,
     "SamplingFrequency": 2400,
9
     "MEGChannelCount": 270,
10
     "MEGREFChannelCount": 26,
11
     "EEGChannelCount": 0,
12
     "EOGChannelCount": 2,
13
     "ECGChannelCount": 1,
14
     "EMGChannelCount": 0,
15
       "DewarPosition": "upright",
16
     "SoftwareFilters": {
17
       "SpatialCompensation": {"GradientOrder": "3rd"}
18
19
     "RecordingDuration": 600,
20
     "RecordingType": "continuous",
     "EpochLength": 0,
22
     "TaskName": "rest",
23
     "ContinuousHeadLocalization": true,
24
     "HeadCoilFrequency": [1470,1530,1590],
25
     "DigitizedLandmarks": true,
26
     "DigitizedHeadPoints": true
27
28 }
```

Note that the date and time information SHOULD be stored in the Study key file (scans.tsv), see Scans file. Date time information MUST be expressed as indicated in Units

## Channels description (\*\_channels.tsv)

Template:

```
1 sub-<label>/
2    [ses-<label>]/
3    meg/
4    [sub-<label>[_ses-<label>]_task-<label>[_run-<index>] [_proc-<label>]_channels.tsv]
```

This file is RECOMMENDED as it provides easily searchable information across BIDS datasets for for example, general curation, response to queries or batch analysis. To avoid confusion, the channels SHOULD be listed in the order they appear in the MEG data file. Missing values MUST be indicated with n/a.

The columns of the Channels description table stored in \*\_channels.tsv are:

#### MUST be present:

| Column name  | Requirement level    | Description                                                                                                                                       |
|--------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| name<br>type | REQUIRED<br>REQUIRED | Channel name (for example, MRT012, MEG023). Type of channel; MUST use the channel types listed below. Note that the type MUST be in               |
| units        | REQUIRED             | upper-case. Physical unit of the value represented in this channel, for example, V for Volt, or fT/cm for femto Tesla per centimeter (see Units). |

#### SHOULD be present:

| Column name        | Requirement level | Description                                                                                                            |
|--------------------|-------------------|------------------------------------------------------------------------------------------------------------------------|
| description        | OPTIONAL          | Brief free-text description of the channel, or other information of interest. See examples below.                      |
| sampling_frequency | OPTIONAL          | Sampling rate of the channel in Hz.                                                                                    |
| low_cutoff         | OPTIONAL          | Frequencies used for the high-pass filter applied to<br>the channel in Hz. If no high-pass filter applied,<br>use n/a. |

| Column name        | Requirement level | Description                                                                                                                                                                                                                                                       |
|--------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| high_cutoff        | OPTIONAL          | Frequencies used for the low-pass filter applied to the channel in Hz. If no low-pass filter applied, use n/a. Note that hardware anti-aliasing in A/D conversion of all MEG/EEG electronics applies a low-pass filter; specify its frequency here if applicable. |
| notch              | OPTIONAL          | Frequencies used for the notch filter applied to the channel, in Hz. If no notch filter applied, use n/a.                                                                                                                                                         |
| software_filters   | OPTIONAL          | List of temporal and/or spatial software filters applied (for example, "SSS", "SpatialCompensation"). Note that parameters should be defined in the general MEG sidecar .json file. Indicate n/a in the absence of software filters applied.                      |
| status             | OPTIONAL          | Data quality observed on the channel (good/bad). A channel is considered bad if its data quality is compromised by excessive noise. Description of noise type SHOULD be provided in [status_description].                                                         |
| status_description | OPTIONAL          | Freeform text description of noise or artifact affecting data quality on the channel. It is meant to explain why the channel was declared bad in [status].                                                                                                        |

### Example:

- 1 name type units description sampling\_frequency low\_cutoff high\_cutoff notch software\_filters status 2 UDIO001 TRIG V analogue trigger 1200 0.1 300 0 n/a good 3 MLC11 MEGGRADAXIAL T sensor 1st-order grad 1200 0 n/a 50 SSS bad

Restricted keyword list for field type. Note that upper-case is REQUIRED:

| Keyword                                                                 | Description                                                                                                             |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| MEGMAG<br>MEGGRADAXIAL<br>MEGGRADPLANAR<br>MEGREFMAG<br>MEGREFGRADAXIAL | MEG magnetometer MEG axial gradiometer MEG planargradiometer MEG reference magnetometer MEG reference axial gradiometer |

| Keyword          | Description                                          |  |
|------------------|------------------------------------------------------|--|
| MEGREFGRADPLANAR | MEG reference planar gradiometer                     |  |
| MEGOTHER         | Any other type of MEG sensor                         |  |
| EEG              | Electrode channel                                    |  |
| ECOG             | Electrode channel                                    |  |
| SEEG             | Electrode channel                                    |  |
| DBS              | Electrode channel                                    |  |
| VEOG             | Vertical EOG (electrooculogram)                      |  |
| HEOG             | Horizontal EOG                                       |  |
| EOG              | Generic EOG channel                                  |  |
| ECG              | ElectroCardioGram (heart)                            |  |
| EMG              | ElectroMyoGram (muscle)                              |  |
| TRIG             | System Triggers                                      |  |
| AUDIO            | Audio signal                                         |  |
| PD               | Photodiode                                           |  |
| EYEGAZE          | Eye Tracker gaze                                     |  |
| PUPIL            | Eye Tracker pupil diameter                           |  |
| MISC             | Miscellaneous                                        |  |
| SYSCLOCK         | System time showing elapsed time since trial started |  |
| ADC              | Analog to Digital input                              |  |
| DAC              | Digital to Analog output                             |  |
| HLU              | Measured position of head and head coils             |  |
| FITERR           | Fit error signal from each head localization coil    |  |
| OTHER            | Any other type of channel                            |  |

## Example of free text for field description:

 $\bullet \ \ stimulus, response, vertical EOG, horizontal EOG, skin conductance, sats, intracranial, eyetracker$ 

### Example:

- 1 name type units description
- 2 VEOG VEOG V vertical EOG
- 3 FDI EMG V left first dorsal interosseous
- 4 UDIO001 TRIG V analog trigger signal
- 5 UADCOO1 AUDIO V envelope of audio signal presented to participant

# Coordinate System JSON (\*\_coordsystem.json)

Template:

```
1 sub-<label>/
2    [ses-<label>]/
3    meg/
4    [sub-<label>[_ses-<label>] [_acq-<label>]_coordsystem.json]
```

 $OPTIONAL.\ A\ JSON\ document\ specifying\ the\ coordinate\ system(s)\ used\ for\ the\ MEG,\ EEG,\ head\ localization\ coils,\ and\ an atomical\ landmarks.$ 

### MEG and EEG sensors:

| Key name                                 | Requirement level                                      | Data type | Description                                                                                                                                                                                                             |
|------------------------------------------|--------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MEGCoordinateSystem                      | REQUIRED                                               | string    | Defines the coordinate system for the MEG sensors. See Appendix VIII for a list of restricted keywords for coordinate systems. If Other, provide definition of the coordinate system in MEGCoordinateSystemDescription. |
| MEGCoordinateUnits                       | REQUIRED                                               | string    | Units of the coordinates of MEGCoordinateSystem. MUST be m, cm, or mm.                                                                                                                                                  |
| ${\bf MEGCoordinate System Description}$ | OPTIONAL, but REQUIRED if MEGCoordinateSystem is Other | string    | Free-form text description of the coordinate system. May also include a link to a documentation page or paper describing the system in greater detail.                                                                  |
| EEGCoordinateSystem                      | OPTIONAL                                               | string    | See Recording EEG simultaneously with MEG for a list of restricted keywords for coordinate systems. If Other, provide definition of the coordinate system in                                                            |
| EEGCoordinateUnits                       | OPTIONAL                                               | string    | EEGCoordinateSystemDescription. Units of the coordinates of EEGCoordinateSystem. MUST be m, cm, or mm.                                                                                                                  |

| Key name                       | Requirement level                                      | Data type | Description                                                                                                                                                                                       |
|--------------------------------|--------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEGCoordinateSystemDescription | OPTIONAL, but REQUIRED if EEGCoordinateSystem is Other | string    | See Recording EEG simultaneously with MEG. Free-form text description of the coordinate system. May also include a link to a documentation page or paper describing the system in greater detail. |

## Head localization coils:

| Key name            | Requirement level | Data type        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|-------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HeadCoilCoordinates | OPTIONAL          | object of arrays | Key:value pairs describing head localization coil labels and their coordinates, interpreted following the HeadCoilCoordinateSystem (for example, {"NAS": [12.7,21.3,13.9], "LPA": [5.2,11.3,9.6], "RPA": [20.2,11.3,9.1]}). Note that coils are not always placed at locations that have a known anatomical nam (for example, for Elekta, Yokogawa systems); in that case generic labels can be used (for example, {"coil1": [12.2,21.3,12.3], "coil2": [6.7,12.3,8.6], "coil3": [21.9,11.0,8.1]}). Each array MUST contain three numeric values corresponding to x, y, and z axis of the coordinate system in that exact order. |

| Key name                                 | Requirement level                                                 | Data type | Description                                                                                                                                                                                                              |
|------------------------------------------|-------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HeadCoilCoordinateSystem                 | OPTIONAL                                                          | string    | Defines the coordinate system for the head coils. See Appendix VIII for a list of restricted keywords for coordinate systems. If Other, provide definition of the coordinate system in HeadCoilCoordinateSystemDescripti |
| He ad Coil Coordinate Units              | OPTIONAL                                                          | string    | Units of the coordinates of HeadCoilCoordinateSystem. MUST be m, cm, or mm.                                                                                                                                              |
| He ad Coil Coordinate System Description | OPTIONAL, but REQUIRED if<br>HeadCoilCoordinateSystem is<br>Other | string    | Free-form text description of the coordinate system. May also include a link to a documentation page or paper describing the system in greater detail.                                                                   |

# Digitized head points:

| Key name                     | Requirement level | Data type | Description                                                                                                                                                                                                                                                                        |
|------------------------------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DigitizedHeadPoints          | OPTIONAL          | string    | Relative path to the file containing the locations of digitized head points collected during the session (for example, sub-01_headshape.pos).  RECOMMENDED for all MEG systems, especially for CTF and BTi/4D. For Elekta/Neuromag the head points will be stored in the fif file. |
| DigitizedHeadPointsCoordinat | teSystem OPTIONAL | string    | Defines the coordinate system for the digitized head points. See Appendix VIII for a list of restricted keywords for coordinate systems. If Other, provide definition of the coordinate system in DigitizedHeadPointsCoordinateSystemDescription.                                  |

63

| Key name                                                          | Requirement level                                                             | Data type       | Description                                                                                                                                            |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| DigitizedHeadPointsCoordinateUnits                                | OPTIONAL                                                                      | string          | Units of the coordinates of DigitizedHeadPointsCoordinateSystem . MUST be m, cm, or mm.                                                                |
| $\label{lem:decordinate} Digitized Head Points Coordinate System$ | nDORFIGUNAL, but REQUIRED if<br>DigitizedHeadPointsCoordinateS<br>is<br>Other | string<br>ystem | Free-form text description of the coordinate system. May also include a link to a documentation page or paper describing the system in greater detail. |

## Anatomical MRI:

| Key name    | Requirement level | Data type                  | Description                                                                                                                                                                                                                                                                                     |
|-------------|-------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IntendedFor | OPTIONAL          | string or array of strings | Path or list of path relative to the subject subfolder pointing to the structural MRI, possibly of different types if a list is specified, to be used with the MEG recording. The path(s need(s) to use forward slashes instead of backward slashes (for example, ses-/anat/sub-01_T1w.nii.gz). |

Anatomical landmarks:

| Key name Re                                                               | quirement level                        | Data type        | Description                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------|----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AnatomicalLandmarkCoordinates OP                                          | TIONAL                                 | object of arrays | Key:value pairs of the labels and 3-D digitized locations of anatomical landmarks, interpreted following the AnatomicalLandmarkCoordinateSystem (for example, {"NAS": [12.7,21.3,13.9], "LPA": [5.2,11.3,9.6], "RPA": [20.2,11.3,9.1]}. Each array MUST contain three numeric values corresponding to x, y, and z axis of the coordinate system in that exact order. |
| $egin{aligned} & A natomical Landmark Coordinate System OP \end{aligned}$ | TIONAL                                 | string           | Defines the coordinate system for the anatomical landmarks. See Appendix VIII for a list of restricted keywords for coordinate systems. If Other, provide definition of the coordinate system in AnatomicalLandmarkCoordinateSystemDescrip                                                                                                                           |
| ${\it Anatomical Landmark Coordinate Units\ OP}$                          | TIONAL                                 | string           | Units of the coordinates of AnatomicalLandmarkCoordinateSystem . MUST be m, cm, or mm.                                                                                                                                                                                                                                                                               |
| AnatomicalLandmarkCoordinateSysten <b>OR</b><br>Ana<br>is<br>Oth          | ${f atomical Landmark Coordinate Sys}$ | string<br>stem   | Free-form text description of the coordinate system. May also include a link to a documentation page or paper describing the system in greater detail.                                                                                                                                                                                                               |

It is also RECOMMENDED that the MRI voxel coordinates of the actual anatomical landmarks for co-registration of MEG with structural MRI are stored in the AnatomicalLandmarkCoordinates field in the JSON sidecar of the corresponding T1w MRI anatomical data of the subject seen in the MEG session (see here ) - for example: sub-01/ses-mri/anat/sub-01\_ses-mri\_acq-mprage\_T1w.json

In principle, these locations are those of absolute anatomical markers. However, the marking of NAS, LPA and RPA is more ambiguous than that of for example, AC and PC. This may result in some variability in their 3-D digitization from session to session, even for the same participant. The solution would be to use only one T1w file and populate the AnatomicalLandmarkCoordinates field with session-specific labels for example, "NAS-session1": [127,213,139], "NAS-session2": [123,220,142].

Fiducials information:

| Key name             | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FiducialsDescription | OPTIONAL          | string    | A freeform text field documenting the anatomical landmarks that were used and how the head localization coils were placed relative to these.  This field can describe, for instance, whether the true anatomical locations of the left and right pre-auricular points were used and digitized, or rather whether they were defined as the intersection between the tragus and the helix (the entry of the ear canal), or any other anatomical description of selected points in the vicinity of the ears. |

For more information on the definition of anatomical landmarks, please visit: http://www.fieldtriptoolbox.org/faq/how\_are\_the\_lpa\_and\_rpa\_points\_defined

 $For more information on typical coordinate systems for MEG-MRI coregistration: http://www.fieldtriptoolbox.org/faq/how_are_the_different_head_and_mri_coordinate e_systems_defined, or: http://neuroimage.usc.edu/brainstorm/CoordinateSystems$ 

## Landmark photos (\*\_photo.jpg)

Photos of the anatomical landmarks and/or head localization coils (\*\_photo.jpg)

Template:

```
1 sub-<label>/
2    [ses-<label>]/
3    meg/
4    [sub-<label>[_ses-<label>] [_acq-<label>]_photo.jpg]
```

Photos of the anatomical landmarks and/or head localization coils on the subject's head are RECOMMENDED. If the coils are not placed at the location of actual anatomical landmarks, these latter may be marked with a piece of felt-tip taped to the skin. Please note that the photos may need to be cropped or blurred to conceal identifying features prior to sharing, depending on the terms of the consent given by the participant.

The acq-<label> entity can be used to indicate acquisition of different photos of the same face (or other body part in different angles to show, for example, the location of the nasion (NAS) as opposed to the right periauricular point (RPA)).

Example of the NAS fiducial placed between the eyebrows, rather than at the actual anatomical nasion: sub-0001\_ses-001\_acq-NAS\_photo.jpg



Head shape and electrode description (\*\_headshape.<ext>)

### Template:

```
1 sub-<label>/
2    [ses-<label>]/
3    meg/
4    [sub-<label>[_ses-<label>] [_acq-<label>]_headshape.<manufacturer_specific_extension>]
```

#### This file is RECOMMENDED.

The 3-D locations of points that describe the head shape and/or EEG electrode locations can be digitized and stored in separate files. The acq-<label> entity can be used when more than one type of digitization in done for a session, for example when the head points are in a separate file from the EEG locations. These files are stored in the specific format of the 3-D digitizer's manufacturer (see Appendix VI).

#### Example:

```
1 sub-control01
2    ses-01
3    sub-control01_ses-01_acq-HEAD_headshape.pos
4    sub-control01_ses-01_acq-ECG_headshape.pos
```

Note that the \*\_headshape file(s) is shared by all the runs and tasks in a session. If the subject needs to be taken out of the scanner and the head-shape has to be updated, then for MEG it could be considered to be a new session.

### Empty-room MEG recordings

Empty-room MEG recordings capture the environmental and recording system's noise. In the context of BIDS it is RECOMMENDED to perform an empty-room recording for each experimental session. It is RECOMMENDED to store the empty-room recording inside a subject folder named sub-emptyroom. The label for the task-<label> entity in the empty-room recording SHOULD be set to noise. If a session-<label> entity is present, its label SHOULD be the date of the empty-room recording in the format YYYYMMDD, that is ses-YYYYMMDD. The scans.tsv file containing the date and time of the acquisition SHOULD also be included. The rationale is that this naming scheme will allow users to easily retrieve the empty-room recording that best matches a particular experimental session, based on date and time of the recording. It should be possible to query empty-room recordings just like usual subject recordings, hence all metadata sidecar files (such as the channels.tsv) file SHOULD be present as well.

#### Example:

```
1 sub-control01/
2 sub-control02/
3 sub-emptyroom/
4 ses-20170801/
5 sub-emptyroom_ses-20170801_scans.tsv
6 meg/
7 sub-emptyroom_ses-20170801_task-noise_meg.ds
8 sub-emptyroom_ses-20170801_task-noise_meg.json
9 sub-emptyroom_ses-20170801_task-noise_channels.tsv
```

# Electroencephalography

Support for Electroencephalography (EEG) was developed as a BIDS Extension Proposal. Please see Citing BIDS on how to appropriately credit this extension when referring to it in the context of the academic literature.

The following example EEG datasets have been formatted using this specification and can be used for practical guidance when curating a new dataset.

- Single session per subject: eeg\_matchingpennies
- Multiple sessions per subject: eeg\_rishikesh
- Combined with fMRI: eeg\_rest\_fmri

Further datasets are available from the BIDS examples repository.

## EEG recording data

Template:

```
1 sub-<label>/
2    [ses-<label>]/
3    eeg/
4    sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_eeg.<manufacturer_specific_extension>
5    sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_eeg.json
```

The EEG community uses a variety of formats for storing raw data, and there is no single standard that all researchers agree on. For BIDS, EEG data MUST be stored in one of the following formats:

- European data format (Each recording consisting of a .edf file)
- Brain Vision Core Data Format (Each recording consisting of a .vhdr, .vmrk, .eeg file triplet)
- The format used by the MATLAB toolbox EEGLAB (Each recording consisting of a .set file with an optional .fdt file)
- Biosemi data format (Each recording consisting of a .bdf file)

It is RECOMMENDED to use the European data format, or the BrainVision data format. It is furthermore discouraged to use the other accepted formats over these RECOMMENDED formats, particularly because there are conversion scripts available in most commonly used programming languages to convert data into the RECOMMENDED formats. The data in their original format, if different from the supported formats, can be stored in the /sourcedata directory.

The original data format is especially valuable in case conversion elicits the loss of crucial metadata specific to manufacturers and specific EEG systems. We also encourage users to provide additional meta information extracted from the manufacturer specific data files in the sidecar JSON file. Other relevant files MAY be included alongside the original EEG data in /sourcedata.

Note the RecordingType, which depends on whether the data stream on disk is interrupted or not. Continuous data is by definition 1 segment without interruption. Epoched data consists of multiple segments that all have the same length (for example, corresponding to trials) and that have gaps in between. Discontinuous data consists of multiple segments of different length, for example due to a pause in the acquisition.

Note that for proper documentation of EEG recording metadata it is important to understand the difference between electrode and channel: An EEG electrode is attached to the skin, whereas a channel is the combination of the analog differential amplifier and analog-to-digital converter that result in a potential (voltage) difference that is stored in the EEG dataset. We employ the following short definitions:

- Electrode = A single point of contact between the acquisition system and the recording site (for example, scalp, neural tissue, ...). Multiple electrodes can be organized as caps (for EEG), arrays, grids, leads, strips, probes, shafts, and so on.
- Channel = A single analog-to-digital converter in the recording system that regularly samples the value of a transducer, which results in the signal being represented as a time series in the digitized data. This can be connected to two electrodes (to measure the potential difference between them), a magnetic field or magnetic gradient sensor, temperature sensor, accelerometer, and so on.

Although the reference and ground electrodes are often referred to as channels, they are in most common EEG systems not recorded by themselves. Therefore they are not represented as channels in the data. The type of referencing for all channels and optionally the location of the reference electrode and the location of the ground electrode MAY be specified.

Sidecar JSON (\*\_eeg.json)

Generic fields MUST be present:

| Key name | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                            |
|----------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TaskName | REQUIRED          | string    | Name of the task. No two tasks should have the same name. The task label included in the file name is derived from this TaskName field by removing all non-alphanumeric ([a-zA-ZO-9]) characters. For example TaskName faces n-back will correspond to task label facesnback. A RECOMMENDED convention is to name resting state task using labels beginning with rest. |

SHOULD be present: For consistency between studies and institutions, we encourage users to extract the values of these fields from the actual raw data. Whenever possible, please avoid using ad hoc wording.

| Key name               | Requirement level | Data type | Description                                                                                      |
|------------------------|-------------------|-----------|--------------------------------------------------------------------------------------------------|
| InstitutionName        | RECOMMENDED       | string    | The name of the institution in charge of the equipment that produced the composite instances.    |
| InstitutionAddress     | RECOMMENDED       | string    | The address of the institution in charge of the equipment that produced the composite instances. |
| Manufacturer           | RECOMMENDED       | string    | Manufacturer of the EEG system (for example, Biosemi, Brain Products, Neuroscan).                |
| ManufacturersModelName | RECOMMENDED       | string    | Manufacturer's designation of the EEG system model (for example, BrainAmp DC).                   |
| SoftwareVersions       | RECOMMENDED       | string    | Manufacturer's designation of the acquisition software.                                          |
| TaskDescription        | RECOMMENDED       | string    | Description of the task.                                                                         |

| Key name           | Requirement level | Data type | Description                                                                                                                                                                                                                       |
|--------------------|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instructions       | RECOMMENDED       | string    | Text of the instructions given to participants before the scan. This is not only important for behavioral or cognitive tasks but also in resting state paradigms (for example, to distinguish between eyes open and eyes closed). |
| CogAtlasID         | RECOMMENDED       | string    | URI of the corresponding Cognitive Atlas term that describes the task (for example, Resting State with eyes closed "http://www.cognitiveatlas.org/task/id/trm 54e69c642d89b").                                                    |
| CogPOID            | RECOMMENDED       | string    | URI of the corresponding CogPO term that describes the task (for example, Rest "http://wiki.cogpo.org/index.php?title=Rest").                                                                                                     |
| DeviceSerialNumber | RECOMMENDED       | string    | The serial number of the equipment that produced the composite instances. A pseudonym can also be used to prevent the equipment from being identifiable, as long as each pseudonym is unique within the dataset.                  |

# Specific EEG fields MUST be present:

| Key name     | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                   |
|--------------|-------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEGReference | REQUIRED          | string    | General description of the reference scheme used and (when applicable) of location of the reference electrode in the raw recordings (for example, "left mastoid", "Cz", "CMS"). If different channels have a different reference, this field should have a general description and the channel specific reference should be defined in the channels.tsv file. |

| Key name           | Requirement level | Data type                  | Description                                                                                                                                                                                                                                                                                                                    |
|--------------------|-------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SamplingFrequency  | REQUIRED          | number                     | Sampling frequency (in Hz) of all the data in the recording, regardless of their type (for example, 2400).                                                                                                                                                                                                                     |
| PowerLineFrequency | REQUIRED          | number or "n/a"            | Frequency (in Hz) of the power grid at the geographical location of the EEG instrument (for example, 50 or 60).                                                                                                                                                                                                                |
| SoftwareFilters    | REQUIRED          | object of objects or "n/a" | Object of temporal software filters applied, or "n/a" if the data is not available. Each key:value pair in the JSON object is a name of the filter and an object in which its parameters are defined as key:value pairs. For example, {"Anti-aliasing filter": {"half-amplitude cutoff (Hz)": 500, "Roll-off": "6dB/Octave"}}. |

| Key name                  | Requirement level | Data type | Description                                                                                |
|---------------------------|-------------------|-----------|--------------------------------------------------------------------------------------------|
| CapManufacturer           | RECOMMENDED       | string    | Name of the cap manufacturer (for example, "EasyCap").                                     |
| CapManufacturersModelName | RECOMMENDED       | string    | Manufacturer's designation of the EEG cap model (for example, "actiCAP 64 Ch Standard-2"). |
| EEGChannelCount           | RECOMMENDED       | integer   | Number of EEG channels included in the recording (for example, 128).                       |
| ECGChannelCount           | RECOMMENDED       | integer   | Number of ECG channels.                                                                    |
| EMGChannelCount           | RECOMMENDED       | integer   | Number of EMG channels.                                                                    |
| EOGChannelCount           | RECOMMENDED       | integer   | Number of EOG channels.                                                                    |
| MiscChannelCount          | RECOMMENDED       | integer   | Number of miscellaneous analog channels for auxiliary signals.                             |
| TriggerChannelCount       | RECOMMENDED       | integer   | Number of channels for digital (TTL bit level) trigger.                                    |
| RecordingDuration         | RECOMMENDED       | number    | Length of the recording in seconds (for example, 3600).                                    |

| Key name           | Requirement level | Data type                  | Description                                                                                                                                                                                                                                                                                                                    |
|--------------------|-------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RecordingType      | RECOMMENDED       | string                     | Defines whether the recording is "continuous", "discontinuous" or "epoched", where "epoched" is limited to time windows about events of interest (for example, stimulus presentations, subject responses).                                                                                                                     |
| EpochLength        | RECOMMENDED       | number                     | Duration of individual epochs in seconds (for example, 1) in case of epoched data.                                                                                                                                                                                                                                             |
| EEGGround          | RECOMMENDED       | string                     | Description of the location of the ground electrode (for example, "placed on right mastoid (M2)").                                                                                                                                                                                                                             |
| HeadCircumference  | RECOMMENDED       | number                     | Circumference of the participants head, expressed in cm (for example, 58).                                                                                                                                                                                                                                                     |
| EEGPlacementScheme | RECOMMENDED       | string                     | Placement scheme of EEG electrodes. Either the name of a standardized placement system (for example, "10-20") or a list of standardized electrode names (for example, ["Cz", "Pz"]).                                                                                                                                           |
| HardwareFilters    | RECOMMENDED       | object of objects or "n/a" | Object of temporal hardware filters applied, or "n/a" if the data is not available. Each key:value pair in the JSON object is a name of the filter and an object in which its parameters are defined as key:value pairs. For example, {"Highpass RC filter": {"Half amplitude cutoff (Hz)": 0.0159, "Roll-off": "6dB/Octave"}} |

| Key name                   | Requirement level | Data type | Description                                                                                                                                                                                                                                                            |
|----------------------------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SubjectArtefactDescription | RECOMMENDED       | string    | Free-form description of the observed subject artifact and its possible cause (for example, "Vagus Nerve Stimulator", "non-removable implant"). If this field is set to n/a, it will be interpreted as absence of major source of artifacts except cardiac and blinks. |

### Example:

```
1 {
    "TaskName": "Seeing stuff",
    "TaskDescription": "Subjects see various images for which phase, amplitude spectrum, and color vary continuously",
    "Instructions": "Your task is to detect images when they appear for the 2nd time, only then press the response button with your right/left hand (
        counterbalanced across subjects)",
    "InstitutionName": "The world best university, 10 Beachfront Avenue, Papeete",
     "SamplingFrequency":2400,
    "Manufacturer": "Brain Products",
    "ManufacturersModelName": "BrainAmp DC",
    "CapManufacturer": "EasyCap",
    "CapManufacturersModelName": "M1-ext",
     "EEGChannelCount":87,
     "EOGChannelCount":2,
     "ECGChannelCount":1,
    "EMGChannelCount":0,
     "MiscChannelCount":0,
    "TriggerChannelCount":1,
16
17
     "PowerLineFrequency":50,
    "EEGPlacementScheme": "10 percent system",
18
    "EEGReference": "single electrode placed on FCz",
    "EEGGround": "placed on AFz",
20
    "SoftwareFilters":{
21
      "Anti-aliasing filter":{
22
        "half-amplitude cutoff (Hz)": 500,
23
         "Roll-off": "6dB/Octave"
24
      }
25
26
    },
    "HardwareFilters":{
```

```
"ADC's decimation filter (hardware bandwidth limit)":{
"-3dB cutoff point (Hz)":480,
"Filter order sinc response":5
}

"RecordingDuration":600,
"RecordingType":"continuous"
}
```

Note that the date and time information SHOULD be stored in the Study key file (scans.tsv). Date time information MUST be expressed as indicated in Units

Channels description (\*\_channels.tsv)

Template:

```
1 sub-<label>/
2    [ses-<label>]/
3    eeg/
4    [sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_channels.tsv]
```

This file is RECOMMENDED as it provides easily searchable information across BIDS datasets for for example, general curation, response to queries or batch analysis. The required columns are channel name, type and units in this specific order. To avoid confusion, the channels SHOULD be listed in the order they appear in the EEG data file. Any number of additional columns may be added to provide additional information about the channels. Note that electrode positions SHOULD NOT be added to this file, but to \*\_electrodes.tsv.

The columns of the Channels description table stored in \*\_channels.tsv are:

MUST be present:

| Column name  | Requirement level    | Description                                                                                                                                       |
|--------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| name<br>type | REQUIRED<br>REQUIRED | Channel name (for example, FC1, Cz) Type of channel; MUST use the channel types listed below. Note that the type MUST be in                       |
| units        | REQUIRED             | upper-case. Physical unit of the value represented in this channel, for example, V for Volt, or fT/cm for femto Tesla per centimeter (see Units). |

SHOULD be present:

| Column name        | Requirement level | Description                                                                                                                                                                                                                                                   |
|--------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| description        | OPTIONAL          | Free-form text description of the channel, or other information of interest. See examples below.                                                                                                                                                              |
| sampling_frequency | OPTIONAL          | Sampling rate of the channel in Hz.                                                                                                                                                                                                                           |
| reference          | OPTIONAL          | Name of the reference electrode(s) (not needed when it is common to all channels, in that case it can be specified in *_eeg.json as EEGReference).                                                                                                            |
| low_cutoff         | OPTIONAL          | Frequencies used for the high-pass filter applied to the channel in Hz. If no high-pass filter applied, use n/a.                                                                                                                                              |
| high_cutoff        | OPTIONAL          | Frequencies used for the low-pass filter applied to the channel in Hz. If no low-pass filter applied, use n/a. Note that hardware anti-aliasing in A/D conversion of all EEG electronics applies a low-pass filter; specify its frequency here if applicable. |
| notch              | OPTIONAL          | Frequencies used for the notch filter applied to the channel, in Hz. If no notch filter applied, use n/a.                                                                                                                                                     |
| status             | OPTIONAL          | Data quality observed on the channel (good, bad). A channel is considered bad if its data quality is compromised by excessive noise. Description of noise type SHOULD be provided in status_description.                                                      |
| status_description | OPTIONAL          | Free-form text description of noise or artifact affecting data quality on the channel. It is meant to explain why the channel was declared bad in status.                                                                                                     |

Restricted keyword list for field type in alphabetic order (shared with the MEG and iEEG modality; however, only the types that are common in EEG data are listed here). Note that upper-case is REQUIRED:

| Keyword | Description                                                  |
|---------|--------------------------------------------------------------|
| AUDIO   | Audio signal                                                 |
| EEG     | Electroencephalogram channel                                 |
| EOG     | Generic electrooculogram (eye), different from HEOG and VEOG |
| ECG     | Electrocardiogram (heart)                                    |
| EMG     | Electromyogram (muscle)                                      |
| EYEGAZE | Eye tracker gaze                                             |
| GSR     | Galvanic skin response                                       |

| Keyword              | Description                                          |
|----------------------|------------------------------------------------------|
| HEOG                 | Horizontal EOG (eye)                                 |
| MISC                 | Miscellaneous                                        |
| PPG                  | Photoplethysmography                                 |
| PUPIL                | Eye tracker pupil diameter                           |
| $\operatorname{REF}$ | Reference channel                                    |
| RESP                 | Respiration                                          |
| SYSCLOCK             | System time showing elapsed time since trial started |
| TEMP                 | Temperature                                          |
| TRIG                 | System triggers                                      |
| VEOG                 | Vertical EOG (eye)                                   |

Example of free-form text for field description

• n/a, stimulus, response, skin conductance, battery status

### Example:

| 1 name    | type | units | description                    | status | status_description   |
|-----------|------|-------|--------------------------------|--------|----------------------|
| 2 VEOG    | VEOG | uV    | n/a                            | good   | n/a                  |
| 3 FDI     | EMG  | uV    | left first dorsal interosseous | good   | n/a                  |
| 4 Cz      | EEG  | uV    | n/a                            | bad    | high frequency noise |
| 5 UADC001 | MISC | n/a   | envelope of audio signal       | good   | n/a                  |

# Electrodes description (\*\_electrodes.tsv)

Template:

```
1 sub-<label>/
2     [ses-<label>]/
3     eeg/
4     [sub-<label>[_ses-<label>] [_acq-<label>] [_run-<index>]_electrodes.tsv]
```

File that gives the location of EEG electrodes. Note that coordinates are expected in cartesian coordinates according to the EEGCoordinateSystem and EEGCoordinateUnits fields in \*\_coordsystem.json. If an \*\_electrodes.tsv file is specified, a \*\_coordsystem.json file MUST be specified as well. The order of the required columns in the \* electrodes.tsv file MUST be as listed below.

MUST be present:

| Column name | Requirement level | Description                         |
|-------------|-------------------|-------------------------------------|
| name        | REQUIRED          | Name of the electrode.              |
| X           | REQUIRED          | Recorded position along the x-axis. |
| У           | REQUIRED          | Recorded position along the y-axis. |
| Z           | REQUIRED          | Recorded position along the z-axis. |

### SHOULD be present:

| Column name | Requirement level | Description                                                            |
|-------------|-------------------|------------------------------------------------------------------------|
| type        | RECOMMENDED       | Type of the electrode (for example, cup, ring, clip-on, wire, needle). |
| material    | RECOMMENDED       | Material of the electrode (for example, Tin, Ag/AgCl, Gold).           |
| impedance   | RECOMMENDED       | Impedance of the electrode, units MUST be in k0hm.                     |

### Example:

```
1 name
                                    type
                                              material
                          Z
                                              Ag/AgCl
2 A1
       -0.0707
                 0.0000
                          -0.0707
                                    clip-on
                                              Ag/AgCl
3 F3
       -0.0567
                 0.0677
                          0.0469
                                    cup
                                              Ag/AgCl
4 Fz
       0.0000
                 0.0714
                          0.0699
                                    cup
5 REF
       -0.0742
                 -0.0200 -0.0100
                                              Ag/AgCl
                                    cup
                 -0.0200 -0.0100
                                              Ag/AgCl
6 GND
       0.0742
                                    cup
```

The acq-<label> key/value pair can be used to indicate acquisition of the same data. For example, this could be the recording of electrode positions with a different electrode position recording device, or repeated digitization before and after the recording.

# Coordinate System JSON (\*\_coordsystem.json)

## Template:

A \*\_coordsystem.json file is used to specify the fiducials, the location of anatomical landmarks, and the coordinate system and units in which the position of electrodes and landmarks is expressed. The \*\_coordsystem.json is REQUIRED if the optional \*\_electrodes.tsv is specified. If a corresponding anatomical MRI is available, the locations of landmarks and fiducials according to that scan should also be stored in the \*\_T1w.json file which goes alongside the MRI data.

For disambiguation, we employ the following definitions for fiducials and anatomical landmarks respectively:

- Fiducials are objects with a well defined location used to facilitate the localization of electrodes and co-registration with other geometric data such as the participant's own T1 weighted magnetic resonance head image, a T1 weighted template head image, or a spherical head model. Commonly used fiducials are vitamin-E pills, which show clearly in an MRI, or reflective spheres that are localized with an infrared optical tracking system.
- Anatomical landmarks are locations on a research subject such as the nasion, which is the intersection of the frontal bone and two nasal bones of the human skull.

Fiducials are typically used in conjunction with anatomical landmarks. An example would be the placement of vitamin-E pills on top of anatomical landmarks, or the placement of LEDs on the nasion and preauricular points to triangulate the position of other LED-lit electrodes on a research subject's head.

- For more information on the definition of anatomical landmarks, please visit: http://www.fieldtriptoolbox.org/faq/how\_are\_the\_lpa\_and\_rpa\_points\_defined
- For more information on coordinate systems for coregistration, please visit: http://www.fieldtriptoolbox.org/faq/how\_are\_the\_different\_head\_and\_mri\_coordinate systems defined

#### General fields:

| Key name    | Requirement level | Data type | Description                                                                      |
|-------------|-------------------|-----------|----------------------------------------------------------------------------------|
| IntendedFor | OPTIONAL          | string    | Relative path to associate the electrodes, landmarks and fiducials to an MRI/CT. |

### Fields relating to the EEG electrode positions:

| Key name            | Requirement level | Data type | Description                                                                                                                                                                             |
|---------------------|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEGCoordinateSystem | REQUIRED          | string    | Defines the coordinate system for the EEG sensors. See Appendix VIII for a list of restricted keywords for coordinate systems. If Other, provide definition of the coordinate system in |
| EEGCoordinateUnits  | REQUIRED          | string    | EEGCoordinateSystemDescription. Units in which the coordinates that are listed in the field EEGCoordinateSystem are represented. MUST be m, cm, or mm.                                  |

| Key name                       | Requirement level                                         | Data type | Description                                                                                                                                            |
|--------------------------------|-----------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEGCoordinateSystemDescription | RECOMMENDED, but REQUIRED if EEGCoordinateSystem is Other | string    | Free-form text description of the coordinate system. May also include a link to a documentation page or paper describing the system in greater detail. |

Fields relating to the position of fiducials measured during an EEG session/run:

| Key name                                  | Requirement level     | Data type                  | Description                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------|-----------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FiducialsDescription FiducialsCoordinates | OPTIONAL  RECOMMENDED | string<br>object of arrays | Free-form text description of how the fiducials such as vitamin-E capsules were placed relative to anatomical landmarks, and how the position of the fiducials were measured (for example, both with Polhemus and with T1w MRI).  Key:value pairs of the labels and 3-D                                               |
|                                           |                       |                            | digitized position of anatomical landmarks, interpreted following the FiducialsCoordinateSystem (for example, {"NAS": [12.7,21.3,13.9], "LPA": [5.2,11.3,9.6], "RPA": [20.2,11.3,9.1]}). Each array MUST contain three numeric values corresponding to x, y, and z axis of the coordinate system in that exact order. |
| FiducialsCoordinateSystem                 | RECOMMENDED           | string                     | Defines the coordinate system for the fiducials. Preferably the same as the EEGCoordinateSystem. See Appendix VIII for a list of restricted keywords for coordinate systems. If Other, provide definition of the coordinate system in FiducialsCoordinateSystemDescript.                                              |

| Key name                                | Requirement level                     | Data type | Description                                                                                                                   |
|-----------------------------------------|---------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------|
| FiducialsCoordinateUnits                | RECOMMENDED                           | string    | Units in which the coordinates that are listed in the field                                                                   |
|                                         |                                       |           | AnatomicalLandmarkCoordinateSyste are represented. MUST be m, cm, or                                                          |
| FiducialsCoordinateSystemDescription    | RECOMMENDED but REQUIRED              | string    | mm. Free-form text description of the                                                                                         |
| 1 Iduciaiseoordina eesy stembeseripiion | if FiducialsCoordinateSystem is Other | Sumg      | coordinate system. May also include<br>a link to a documentation page or<br>paper describing the system in<br>greater detail. |

Fields relating to the position of anatomical landmark measured during an EEG session/run:

| Key name                                  | Requirement level | Data type        | Description                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------|-------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AnatomicalLandmarkCoordinates             | RECOMMENDED       | object of arrays | Key:value pairs of the labels and 3-D digitized position of anatomical landmarks, interpreted following the AnatomicalLandmarkCoordinateSystem (for example, {"NAS": [12.7,21.3,13.9], "LPA": [5.2,11.3,9.6], "RPA": [20.2,11.3,9.1]}). Each array MUST contain three numeric values corresponding to x, y, and z axis of the coordinate system in that exact order. |
| ${f Anatomical Landmark Coordinate Syst}$ | temRECOMMENDED    | string           | Defines the coordinate system for the anatomical landmarks. Preferably the same as the EEGCoordinateSystem. See Appendix VIII for a list of restricted keywords for coordinate systems. If Other, provide definition of the coordinate system in AnatomicalLandmarkCoordinateSystemDesc:                                                                             |

81

| Key name                               | Requirement level                                                                   | Data type | Description                                                                                                                                                |
|----------------------------------------|-------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AnatomicalLandmarkCoordinateUnits      | s RECOMMENDED                                                                       | string    | Units in which the coordinates that are listed in the field AnatomicalLandmarkCoordinateSyste are represented. MUST be m, cm, or                           |
| A natomical Landmark Coordinate System | en <b>RIESOIMMOE</b> NDED, but REQUIRED if AnatomicalLandmarkCoordinateSystis Other | string    | mm. Free-form text description of the coordinate system. May also include a link to a documentation page or paper describing the system in greater detail. |

If the position of anatomical landmarks is measured using the same system or device used to measure electrode positions, and if thereby the anatomical landmarks are expressed in the same coordinates, the coordinates of the anatomical landmarks can be specified in electrodes.tsv. The same applies to the coordinates of the fiducials.

Anatomical landmarks or fiducials measured on an anatomical MRI that match the landmarks or fiducials during an EEG session/run, must be stored separately in the corresponding \*\_T1w.json or \*\_T2w.json file and should be expressed in voxels (starting from [0, 0, 0]).

#### Example:

```
"IntendedFor":"/sub-01/ses-01/anat/sub-01_T1w.nii",
"EEGCoordinateSystem":"0ther",
"EEGCoordinateUnits":"mm",
"EEGCoordinateSystemDescription":"RAS orientation: Origin halfway between LPA and RPA, positive x-axis towards RPA, positive y-axis orthogonal to x-axis through Nasion, z-axis orthogonal to xy-plane, pointing in superior direction.",
"FiducialsDescription":"Electrodes and fiducials were digitized with Polhemus, fiducials were recorded as the centre of vitamin E capsules sticked on the left/right pre-auricular and on the nasion, these are also visible on the T1w MRI"
```

## Landmark photos (\*\_photo.jpg)

Photos of the anatomical landmarks and/or fiducials.

### Template:

Photos of the anatomical landmarks and/or fiducials are OPTIONAL. Please note that the photos may need to be cropped or blurred to conceal identifying features prior to sharing, depending on the terms of the consent given by the participant.

The acq-<label> key/value pair can be used to indicate acquisition of different photos of the same face (or other body part in different angles to show, for example, the location of the nasion (NAS) as opposed to the right periauricular point (RPA).

#### Example:

Picture of a NAS fiducial placed between the eyebrows, rather than at the actual anatomical nasion: sub-0001\_ses-001\_acq-NAS\_photo.jpg



# Intracranial Electroencephalography

Support Intracranial Electroencephalography (iEEG) was developed as a BIDS Extension Proposal. Please see Citing BIDS on how to appropriately credit this extension when referring to it in the context of the academic literature.

# iEEG recording data

### Template:

```
1 sub-<label>/
2  [ses-<label>]/
3  ieeg/
4  sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_ieeg.<manufacturer_specific_extension>
5  sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_ieeg.json
```

The iEEG community uses a variety of formats for storing raw data, and there is no single standard that all researchers agree on. For BIDS, iEEG data MUST be stored in one of the following formats:

- European Data Format (Each recording consisting of a .edf file)
- BrainVision Core Data Format (Each recording consisting of a .vhdr, .vmrk, .eeg file triplet)
- The format used by the MATLAB toolbox EEGLAB (Each recording consisting of a .set file with an optional .fdt file)
- Neurodata Without Borders (Each recording consisting of a .nwb file)
- MEF3 (Each recording consisting of a .mefd directory)

It is RECOMMENDED to use the European data format, or the BrainVision data format. It is furthermore discouraged to use the other accepted formats over these RECOMMENDED formats, particularly because there are conversion scripts available in most commonly used programming languages to convert data into the RECOMMENDED formats.

Future versions of BIDS may extend this list of supported file formats. File formats for future consideration MUST have open access documentation, MUST have open source implementation for both reading and writing in at least two programming languages and SHOULD be widely supported in multiple software packages. Other formats that may be considered in the future should have a clear added advantage over the existing formats and should have wide adoption in the BIDS community.

The data format in which the data was originally stored is especially valuable in case conversion elicits the loss of crucial metadata specific to manufacturers and specific iEEG systems. We also encourage users to provide additional meta information extracted from the manufacturer-specific data files in the sidecar JSON file. Other relevant files MAY be included alongside the original iEEG data in the /sourcedata directory.

Note the RecordingType, which depends on whether the data stream on disk is interrupted or not. Continuous data is by definition 1 segment without interruption. Epoched data consists of multiple segments that all have the same length (for example, corresponding to trials) and that have gaps in between. Discontinuous data consists of multiple segments of different length, for example due to a pause in the acquisition.

Terminology: Electrodes vs. Channels

For proper documentation of iEEG recording metadata it is important to understand the difference between electrode and channel: an iEEG electrode is placed on or in the brain, whereas a channel is the combination of the analog differential amplifier and analog-to-digital converter that result in a potential (voltage) difference that is stored in the iEEG dataset. We employ the following short definitions:

- Electrode = A single point of contact between the acquisition system and the recording site (for example, scalp, neural tissue, ...). Multiple electrodes can be organized as arrays, grids, leads, strips, probes, shafts, caps (for EEG), and so forth.
- Channel = A single analog-to-digital converter in the recording system that regularly samples the value of a transducer, which results in the signal being represented as a time series in the digitized data. This can be connected to two electrodes (to measure the potential difference between them), a magnetic field or magnetic gradient sensor, temperature sensor, accelerometer, and so forth.

Although the reference and ground electrodes are often referred to as channels, they are in most common iEEG systems not recorded by themselves. Therefore they are not represented as channels in the data. The type of referencing for all channels and optionally the location of the reference electrode and the location of the ground electrode MAY be specified.

### Sidecar JSON (\*\_ieeg.json)

For consistency between studies and institutions, we encourage users to extract the values of metadata fields from the actual raw data. Whenever possible, please avoid using ad hoc wording.

Generic fields MUST be present:

| Key name | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                             |
|----------|-------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TaskName | REQUIRED          | string    | Name of the task. No two tasks should have the same name. The task label included in the file name is derived from this TaskName field by removing all non-alphanumeric ([a-zA-Z0-9]) characters. For example, TaskName faces n-back will correspond to task label facesnback. A RECOMMENDED convention is to name resting state task using labels beginning with rest. |

Note that the TaskName field does not have to be a "behavioral task" that subjects perform, but can reflect some information about the conditions present when the data was acquired (for example, "rest", "sleep", or "seizure").

SHOULD be present: For consistency between studies and institutions, we encourage users to extract the values of these fields from the actual raw data. Whenever possible, please avoid using ad hoc wording.

| Key name               | Requirement level | Data type | Description                                                                                      |
|------------------------|-------------------|-----------|--------------------------------------------------------------------------------------------------|
| InstitutionName        | RECOMMENDED       | string    | The name of the institution in charge of the equipment that produced the composite instances.    |
| InstitutionAddress     | RECOMMENDED       | string    | The address of the institution in charge of the equipment that produced the composite instances. |
| Manufacturer           | RECOMMENDED       | string    | Manufacturer of the amplifier system (for example, "TDT, Blackrock").                            |
| ManufacturersModelName | RECOMMENDED       | string    | Manufacturer's designation of the iEEG amplifier model.                                          |

| Key name           | Requirement level | Data type               | Description                                                                                                                                                                                                      |
|--------------------|-------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SoftwareVersions   | RECOMMENDED       | string                  | Manufacturer's designation of the acquisition software.                                                                                                                                                          |
| TaskDescription    | RECOMMENDED       | string                  | Longer description of the task.                                                                                                                                                                                  |
| Instructions       | RECOMMENDED       | $\operatorname{string}$ | Text of the instructions given to participants before the recording.  This is especially important in context of resting state and distinguishing between eyes open and eyes closed paradigms.                   |
| CogAtlasID         | RECOMMENDED       | string                  | URI of the corresponding Cognitive<br>Atlas Task term.                                                                                                                                                           |
| CogPOID            | RECOMMENDED       | string                  | URI of the corresponding CogPO term.                                                                                                                                                                             |
| DeviceSerialNumber | RECOMMENDED       | string                  | The serial number of the equipment that produced the composite instances. A pseudonym can also be used to prevent the equipment from being identifiable, as long as each pseudonym is unique within the dataset. |

Specific iEEG fields MUST be present:

| Key name           | Requirement level | Data type                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|-------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iEEGReference      | REQUIRED          | string                     | General description of the reference scheme used and (when applicable) of location of the reference electrode in the raw recordings (for example, "left mastoid", "bipolar", "T01" for electrode with name T01, "intracranial electrode on top of a grid, not included with data", "upside down electrode"). If different channels have a different reference, this field should have a general description and the channel specific reference should be defined in the channels.tsv file. |
| SamplingFrequency  | REQUIRED          | number                     | Sampling frequency (in Hz) of all the iEEG channels in the recording (for example, 2400). All other channels should have frequency specified as well in the channels.tsv file.                                                                                                                                                                                                                                                                                                             |
| PowerLineFrequency | REQUIRED          | number or "n/a"            | Frequency (in Hz) of the power grid where the iEEG recording was done (for example, 50 or 60).                                                                                                                                                                                                                                                                                                                                                                                             |
| SoftwareFilters    | REQUIRED          | object of objects or "n/a" | Temporal software filters applied, or "n/a" if the data is not available.  Each key:value pair in the JSON object is a name of the filter and an object in which its parameters are defined as key:value pairs. For example, {"HighPass": {"HalfAmplitudeCutOffHz": 1, "RollOff": "6dB/Octave"}}                                                                                                                                                                                           |

Specific iEEG fields SHOULD be present:

| Key name                                                                  | Requirement level                                        | Data type                                | Description                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DCOffsetCorrection                                                        | RECOMMENDED                                              | string                                   | A description of the method (if any) used to correct for a DC offset. If the method used was subtracting the mean value for each channel, use "mean".                                                                                                                                                                          |
| HardwareFilters                                                           | RECOMMENDED                                              | object of objects or "n/a"               | Object of temporal hardware filters applied, or "n/a" if the data is not available. Each key:value pair in the JSON object is a name of the filter and an object in which its parameters are defined as key:value pairs. For example, {"Highpass RC filter": {"Half amplitude cutoff (Hz)": 0.0159, "Roll-off": "6dB/Octave"}} |
| ElectrodeManufacturer                                                     | RECOMMENDED                                              | string                                   | Can be used if all electrodes are of<br>the same manufacturer (for example,<br>AD-TECH, DIXI). If electrodes of<br>different manufacturers are used,<br>please use the corresponding table in<br>the electrodes.tsv file.                                                                                                      |
| ${\bf Electrode Manufacturers Model Name}$                                | RECOMMENDED                                              | string                                   | If different electrode types are used, please use the corresponding table in the electrodes.tsv file.                                                                                                                                                                                                                          |
| ECOGChannelCount                                                          | RECOMMENDED                                              | integer                                  | Number of iEEG surface channels included in the recording (for example, 120).                                                                                                                                                                                                                                                  |
| SEEGChannelCount                                                          | RECOMMENDED                                              | integer                                  | Number of iEEG depth channels included in the recording (for example, 8).                                                                                                                                                                                                                                                      |
| EEGChannelCount                                                           | RECOMMENDED                                              | integer                                  | Number of scalp EEG channels recorded simultaneously (for example, 21).                                                                                                                                                                                                                                                        |
| EOGChannelCount<br>ECGChannelCount<br>EMGChannelCount<br>MiscChannelCount | RECOMMENDED<br>RECOMMENDED<br>RECOMMENDED<br>RECOMMENDED | integer<br>integer<br>integer<br>integer | Number of EOG channels. Number of ECG channels. Number of EMG channels. Number of miscellaneous analog channels for auxiliary signals.                                                                                                                                                                                         |

| Key name            | Requirement level | Data type               | Description                                                                                                                                                                                                                                                                        |
|---------------------|-------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TriggerChannelCount | RECOMMENDED       | integer                 | Number of channels for digital (TTL bit level) triggers.                                                                                                                                                                                                                           |
| RecordingDuration   | RECOMMENDED       | number                  | Length of the recording in seconds (for example, 3600).                                                                                                                                                                                                                            |
| RecordingType       | RECOMMENDED       | $\operatorname{string}$ | Defines whether the recording is "continuous", "discontinuous" or "epoched", where "epoched" is limited to time windows about events of interest (for example, stimulus presentations or subject responses)                                                                        |
| EpochLength         | RECOMMENDED       | number                  | Duration of individual epochs in seconds (for example, 1) in case of epoched data. If recording was continuous or discontinuous, leave out the field.                                                                                                                              |
| iEEGGround          | RECOMMENDED       | string                  | Description of the location of the ground electrode ("placed on right mastoid (M2)").                                                                                                                                                                                              |
| iEEGPlacementScheme | RECOMMENDED       | string                  | Freeform description of the placement of the iEEG electrodes. Left/right/bilateral/depth/surface (for example, "left frontal grid and bilateral hippocampal depth" or "surface strip and STN depth" or "clinical indication bitemporal, bilateral temporal strips and left grid"). |
| iEEGElectrodeGroups | RECOMMENDED       | string                  | Field to describe the way electrodes are grouped into strips, grids or depth probes for example, {'grid1': "10x8 grid on left temporal pole", 'strip2': "1x8 electrode strip on xxx"}.                                                                                             |

| Key name                   | Requirement level | Data type | Description                                                                                                                                                                                                                                   |
|----------------------------|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SubjectArtefactDescription | RECOMMENDED       | string    | Freeform description of the observed subject artefact and its possible cause (for example, "door open", "nurse walked into room at 2 min", "seizure at 10 min"). If this field is left empty, it will be interpreted as absence of artifacts. |

## Specific iEEG fields MAY be present:

| Key name                        | Requirement level | Data type | Description                                                                                                                                                                                                             |
|---------------------------------|-------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ElectricalStimulation           | OPTIONAL          | boolean   | Boolean field to specify if electrical stimulation was done during the recording (options are "true" or "false"). Parameters for event-like stimulation should be specified in the events.tsy file (see example below). |
| ElectricalStimulationParameters | OPTIONAL          | string    | Free form description of stimulation parameters, such as frequency or shape. Specific onsets can be specified in the events.tsv file.  Specific shapes can be described here in freeform text.                          |

## Example:

```
"TaskName":"visual",
"InstitutionName":"Stanford Hospital and Clinics",
"InstitutionAddress":"300 Pasteur Dr, Stanford, CA 94305",
"Manufacturer":"Tucker Davis Technologies",
"ManufacturersModelName":"n/a",
"TaskDescription":"visual gratings and noise patterns",
"Instructions":"look at the dot in the center of the screen and press the button when it changes color",
"EEGReference":"left mastoid",
"SamplingFrequency":1000,
"PowerLineFrequency":60,
```

```
"SoftwareFilters": "n/a",
     "DCOffsetCorrection":0,
13
     "HardwareFilters": {"Highpass RC filter": {"Half amplitude cutoff (Hz)": 0.0159, "Roll-off": "6dBOctave"}},
     "ElectrodeManufacturer": "AdTech",
15
     "ECOGChannelCount":120,
16
     "SEEGChannelCount":0,
17
     "EEGChannelCount":0.
18
     "EOGChannelCount":0,
     "ECGChannelCount":0.
     "EMGChannelCount":0,
21
     "MiscChannelCount":0,
     "TriggerChannelCount":0,
     "RecordingDuration":233.639,
24
     "RecordingType": "continuous",
     "iEEGGround": "placed on the right mastoid",
26
     "iEEGPlacementScheme": "right occipital temporal surface",
27
     "ElectricalStimulation":false
28
29 }
```

Note that the date and time information SHOULD be stored in the Study key file (scans.tsv). Date time information MUST be expressed as indicated in Units

Channels description (\*\_channels.tsv)

Template:

```
1 sub-<label>/
2    [ses-<label>]/
3    ieeg/
4    [sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_channels.tsv]
```

A channel represents one time series recorded with the recording system (for example, there can be a bipolar channel, recorded from two electrodes or contact points on the tissue). Although this information can often be extracted from the iEEG recording, listing it in a simple .tsv document makes it easy to browse or search (for example, searching for recordings with a sampling frequency of >=1000 Hz). Hence, the channels.tsv is RECOMMENDED. The two required columns are channel name and type. Channels SHOULD appear in the table in the same order they do in the iEEG data file. Any number of additional columns may be provided to provide additional information about the channels. Note that electrode positions SHOULD NOT be added to this file but to \*\_electrodes.tsv.

The columns of the Channels description table stored in \*\_channels.tsv are:

MUST be present:

| Column name | Requirement level | Description                                                                                                                                                                                               |
|-------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| name        | REQUIRED          | Label of the channel. The label must correspond to _electrodes.tsv name and all ieeg type channels are required to have a position. The reference channel name MAY be provided in the reference column.   |
| type        | REQUIRED          | Type of channel, see below for adequate keywords in this field. Note that the type MUST be in upper                                                                                                       |
| units       | REQUIRED          | case. Physical unit of the value represented in this channel, for example, V for Volt, or fT/cm for femto Tesla per centimeter (see Units).                                                               |
| low_cutoff  | REQUIRED          | Frequencies used for the low pass filter applied to the channel in Hz. If no low pass filter was applied, use n/a. Note that anti-alias is a low pass filter, specify its frequencies here if applicable. |
| high_cutoff | REQUIRED          | Frequencies used for the high pass filter applied to the channel in Hz. If no high pass filter applied, use n/a.                                                                                          |

# SHOULD be present:

| Column name        | Requirement level | Description                                                                                                                                                                                                                                                              |
|--------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reference          | OPTIONAL          | Specification of the reference (for example, 'mastoid', 'ElectrodeName01', 'intracranial', 'CAR', 'other', 'n/a'). If the channel is not an electrode channel (for example, a microphone channel) use n/a.                                                               |
| group              | OPTIONAL          | Which group of channels (grid/strip/seeg/depth) this channel belongs to. This is relevant because one group has one cable-bundle and noise can be shared. This can be a name or number. Note that any groups specified in _electrodes.tsv must match those present here. |
| sampling_frequency | OPTIONAL          | Sampling rate of the channel in Hz.                                                                                                                                                                                                                                      |
| description        | OPTIONAL          | Brief free-text description of the channel, or other information of interest (for example, position (for example, "left lateral temporal surface")).                                                                                                                     |
| notch              | OPTIONAL          | Frequencies used for the notch filter applied to the channel, in Hz. If no notch filter applied, use n/a.                                                                                                                                                                |

| Column name        | Requirement level | Description                                                                                                                                                                                               |
|--------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| status             | OPTIONAL          | Data quality observed on the channel (good/bad). A channel is considered bad if its data quality is compromised by excessive noise. Description of noise type SHOULD be provided in [status_description]. |
| status_description | OPTIONAL          | Freeform text description of noise or artifact affecting data quality on the channel. It is meant to explain why the channel was declared bad in [status].                                                |

# Example sub-01\_channels.tsv:

| 1 name | type | units | low_cutoff | high_cutoff | status | status_description |
|--------|------|-------|------------|-------------|--------|--------------------|
| 2 LT01 | ECOG | uV    | 300        | 0.11        | good   | n/a                |
| 3 LT02 | ECOG | uV    | 300        | 0.11        | bad    | broken             |
| 4 HO1  | SEEG | uV    | 300        | 0.11        | bad    | line_noise         |
| 5 ECG1 | ECG  | uV    | n/a        | 0.11        | good   | n/a                |
| 6 TR1  | TRIG | n/a   | n/a        | n/a         | good   | n/a                |

Restricted keyword list for field type in alphabetic order (shared with the MEG and EEG modality; however, only types that are common in iEEG data are listed here). Note that upper-case is REQUIRED:

| Keyword | Description                                                            |  |
|---------|------------------------------------------------------------------------|--|
| EEG     | Electrode channel from electroencephalogram                            |  |
| ECOG    | Electrode channel from electrocorticogram (intracranial)               |  |
| SEEG    | Electrode channel from stereo-electroencephalogram (intracranial)      |  |
| DBS     | Electrode channel from deep brain stimulation electrode (intracranial) |  |
| VEOG    | Vertical EOG (electrooculogram)                                        |  |
| HEOG    | Horizontal EOG                                                         |  |
| EOG     | Generic EOG channel if HEOG or VEOG information not available          |  |
| ECG     | ElectroCardioGram (heart)                                              |  |
| EMG     | ElectroMyoGram (muscle)                                                |  |
| ΓRIG    | System Triggers                                                        |  |
| AUDIO   | Audio signal                                                           |  |
| PD      | Photodiode                                                             |  |
| EYEGAZE | Eye Tracker gaze                                                       |  |
| PUPIL   | Eye Tracker pupil diameter                                             |  |
| MISC    | Miscellaneous                                                          |  |

| Keyword  | Description                                          |  |
|----------|------------------------------------------------------|--|
| SYSCLOCK | System time showing elapsed time since trial started |  |
| ADC      | Analog to Digital input                              |  |
| DAC      | Digital to Analog output                             |  |
| REF      | Reference channel                                    |  |
| OTHER    | Any other type of channel                            |  |

Example of free-form text for field description:

• intracranial, stimulus, response, vertical EOG, skin conductance

Electrode description (\*\_electrodes.tsv)

Template:

```
1 sub-<label>/
2         [ses-<label>]/
3         ieeg/
4         sub-<label>[_ses-<label>] [_space-<label>]_electrodes.tsv
```

File that gives the location, size and other properties of iEEG electrodes. Note that coordinates are expected in cartesian coordinates according to the iEEGCoordinateSystem and iEEGCoordinateUnits fields in \*\_coordsystem.json. If an \*\_electrodes.tsv file is specified, a \*\_coordsystem.json file MUST be specified as well.

The optional space-<label> entity (\*[\_space-<label>]\_electrodes.tsv) can be used to indicate the way in which electrode positions are interpreted. The space label needs to be taken from the list in Appendix VIII

For examples:

- \_space-MNI152Lin (electrodes are coregistred and scaled to a specific MNI template)
- \_space-Talairach (electrodes are coregistred and scaled to Talairach space)

When referring to the \*\_electrodes.tsv file in a certain space as defined above, the space-<label> of the accompanying \*\_coordsystem.json MUST correspond.

For example:

- sub-01\_space-Talairach\_electrodes.tsv
- $\bullet \verb| sub-01_space-Talairach_coordsystem.json|\\$

The order of the required columns in the \*\_electrodes.tsv file MUST be as listed below.

MUST be present:

| Column name | Requirement level | Description                                                                                                                             |
|-------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| name        | REQUIRED          | Name of the electrode contact point.                                                                                                    |
| X           | REQUIRED          | X position. The positions of the center of each electrode in xyz space. Units are specified in space- <label>_coordsystem.json.</label> |
| У           | REQUIRED          | Y position.                                                                                                                             |
| Z           | REQUIRED          | Z position. If electrodes are in 2D space this should<br>be a column of n/a values.                                                     |
| size        | REQUIRED          | Surface area of the electrode, units MUST be in mm^2.                                                                                   |

# SHOULD be present:

| Column name  | Requirement level | Description                                                                         |
|--------------|-------------------|-------------------------------------------------------------------------------------|
| material     | RECOMMENDED       | Material of the electrodes.                                                         |
| manufacturer | RECOMMENDED       | The manufacturer for each electrode. Can be used                                    |
|              |                   | if electrodes were manufactured by more than one                                    |
|              |                   | company.                                                                            |
| group        | RECOMMENDED       | The group that the electrode is a part of. Note that                                |
|              |                   | any group specified here should match a group                                       |
|              |                   | specified in _channels.tsv.                                                         |
| hemisphere   | RECOMMENDED       | The hemisphere in which the electrode is placed, one of ['L' or 'R'] (use capital). |

# MAY be present:

| Column name | Requirement level | Description                                                                                                                                        |
|-------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| type        | OPTIONAL          | Optional type of the electrode, for example, cup, ring, clip-on, wire, needle,                                                                     |
| impedance   | OPTIONAL          | Impedance of the electrode, units MUST be in k0hm.                                                                                                 |
| dimension   | OPTIONAL          | Size of the group (grid/strip/probe) that this electrode belongs to. Must be of form [AxB] with the smallest dimension first (for example, [1x8]). |

# Example:

```
1 name x y z size manufacturer
2 LT01 19 -39 -16 2.3 Integra
3 LT02 23 -40 -19 2.3 Integra
4 HO1 27 -42 -21 5 AdTech
```

Coordinate System JSON (\*\_coordsystem.json)

Template:

```
1 sub-<label>/
2    [ses-<label>]/
3    ieeg/
4    sub-<label>[_ses-<label>] _coordsystem.json
```

This \_coordsystem.json file contains the coordinate system in which electrode positions are expressed. The associated MRI, CT, X-Ray, or operative photo can also be specified.

General fields:

| Key name    | Requirement level | Data type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IntendedFor | RECOMMENDED       | string    | This can be an MRI/CT or a file containing the operative photo, x-ray or drawing with path relative to the project folder. If only a surface reconstruction is available, this should point to the surface reconstruction file. Note that this file should have the same coordinate system specified in iEEGCoordinateSystem. For example, T1: sub- <label>/ses-&lt; label&gt;/anat/sub-01_T1w.nii.gz Surface: /derivatives/surfaces/sub-<label>/ses-<label>/anat/sub-01_T1w.nii.gz Surface: /derivatives/surfaces/sub-01_T1w_pial.R.surf.gii Operative photo: /sub-<label>/ses-<label>/ses-<label>/ses-<label>/ses-Clabel&gt;/ses-Clabel&gt;/ses-Clabel&gt;/ieeg/sub-0001_ses-01_acq-photo1_photo.jpg Talairach: /derivatives/surfaces/sub-Talairach/ses-01/anat/sub-Talairach_T1w_pial.R.surf.gii</label></label></label></label></label></label></label> |

Fields relating to the iEEG electrode positions:

| Key name                                | Requirement level                                          | Data type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iEEGCoordinateSystem                    | REQUIRED                                                   | string    | Defines the coordinate system for the iEEG sensors. See Appendix VIII for a list of restricted keywords for coordinate systems. If Other, provide definition of the coordinate system in iEEGCoordinateSystemDescription. If positions correspond to pixel indices in a 2D image (of either a volume-rendering, surface-rendering, operative photo, or operative drawing), this must be "Pixels". For more information, see the section on 2D coordinate systems |
| $i \\ EEG Coordinate \\ Units$          | REQUIRED                                                   | string    | Units of the _electrodes.tsv, MUST be "m", "mm", "cm" or "pixels".                                                                                                                                                                                                                                                                                                                                                                                               |
| i EEG Coordinate System Description     | RECOMMENDED, but REQUIRED if iEEGCoordinateSystem is Other | string    | Free-form text description of the coordinate system. May also include a link to a documentation page or paper describing the system in greater detail.                                                                                                                                                                                                                                                                                                           |
| i EEG Coordinate Processing Description | RECOMMENDED                                                | string    | Has any post-processing (such as projection) been done on the electrode positions (for example, "surface_projection", "none").                                                                                                                                                                                                                                                                                                                                   |
| i EEG Coordinate Processing Reference   | RECOMMENDED                                                | string    | A reference to a paper that defines in more detail the method used to localize the electrodes and to post-process the electrode positions                                                                                                                                                                                                                                                                                                                        |

### Recommended 3D coordinate systems

It is preferred that electrodes are localized in a 3D coordinate system (with respect to a pre- and/or post-operative anatomical MRI or CT scans or in a standard space as specified in BIDS Appendix VIII about preferred names of coordinate systems, such as ACPC).

## Allowed 2D coordinate systems

If electrodes are localized in 2D space (only x and y are specified and z is n/a), then the positions in this file must correspond to the locations expressed in pixels on the photo/drawing/rendering of the electrodes on the brain. In this case, coordinates must be (row,column) pairs, with (0,0) corresponding to the upper left pixel and (N,0)

corresponding to the lower left pixel.

## Multiple coordinate systems

If electrode positions are known in multiple coordinate systems (for example, MRI, CT and MNI), these spaces can be distinguished by the optional space-<label> field, see the \*\_electrodes.tsv-section for more information. Note that the space-<label> fields must correspond between \*\_electrodes.tsv and \*\_coordsystem.json if they refer to the same data.

#### Example:

```
"IntendedFor": "/sub-01/ses-01/anat/sub-01_T1w.nii.gz",

"iEEGCoordinateSystem": "ACPC",

"iEEGCoordinateUnits": "mm",

"iEEGCoordinateSystemDescription": "Coordinate system with the origin at anterior commissure (AC), negative y-axis going through the posterior commissure (PC), z-axis going to a mid-hemisperic point which lies superior to the AC-PC line, x-axis going to the right",

"iEEGCoordinateProcessingDescription": "surface_projection",

"iEEGCoordinateProcessingReference": "Hermes et al., 2010 JNeuroMeth"
```

Photos of the electrode positions (\*\_photo.jpg)

Template:

```
1 sub-<label>/
2     [ses-<label>]/
3     ieeg/
4     sub-<label>[_ses-<label>] [_acq-<label]_photo.json</pre>
```

These can include photos of the electrodes on the brain surface, photos of anatomical features or landmarks (such as sulcal structure), and fiducials. Photos can also include an X-ray picture, a flatbed scan of a schematic drawing made during surgery, or screenshots of a brain rendering with electrode positions. The photos may need to be cropped and/or blurred to conceal identifying features or entirely omitted prior to sharing, depending on obtained consent.

If there are photos of the electrodes, the acq-<label> entity should be specified with:

- $\bullet~*\_{\tt photo}\,.\,{\tt jpg}$  in case of an operative photo
- \*\_acq-xray#\_photo.jpg in case of an x-ray picture
- $\bullet$  \*\_acq-drawing#\_photo.jpg in case of a drawing or sketch of electrode placements
- \*\_acq-render#\_photo.jpg in case of a rendering

The ses-<label> entity may be used to specify when the photo was taken.

Example of the operative photo of ECoG electrodes (here is an annotated example in which electrodes and vasculature are marked, taken from Hermes et al., JNeuroMeth 2010).

```
sub-0001_ses-01_acq-photo1_photo.jpg
sub-0001_ses-01_acq-photo2_photo.jpg
```





Below is an example of a volume rendering of the cortical surface with a superimposed subdural electrode implantation. This map is often provided by the EEG technician and provided to the epileptologists (for example, see Burneo JG et al.

1. doi:10.1016/j.clineuro.2014.03.020).

sub-0002\_ses-01\_acq-render\_photo.jpg



### Electrical stimulation

In case of electrical stimulation of brain tissue by passing current through the iEEG electrodes, and the electrical stimulation has an event structure (on-off, onset, duration), the \_events.tsv file can contain the electrical stimulation parameters in addition to other events. Note that these can be intermixed with other task events. Electrical stimulation parameters can be described in columns called electrical\_stimulation\_<label>, with labels chosen by the researcher and optionally defined in more detail in an accompanying \_events.json file (as per the main BIDS spec). Functions for complex stimulation patterns can, similar as when a video is presented, be stored in a folder in the /stimuli/ folder. For example: /stimuli/electrical\_stimulation\_functions/biphasic.tsv

Example:

1 onset duration trial type

 ${\tt electrical\_stimulation\_type\ electrical\_stimulation\_site\ electrical\_stimulation\_current}$ 

| 2 1.2  | 0.001 | electrical_stimulation biphasic | LT01-LT02 | 0.005 |
|--------|-------|---------------------------------|-----------|-------|
| 3 1.3  | 0.001 | electrical_stimulation biphasic | LT01-LT02 | 0.005 |
| 4 2.2  | 0.001 | electrical_stimulation biphasic | LT02-LT03 | 0.005 |
| 5 4.2  | 1     | electrical_stimulation complex  | LT02-LT03 | n/a   |
| 6 15.2 | 3     | auditory_stimulus n/a           | n/a       | n/a   |

## Task events

### Template:

```
1 sub-<label>/[ses-<label>]
2 func/
3 <matches>_events.tsv
4 <matches>_events.json
```

Where <matches> corresponds to task file name. For example: sub-control01\_task-nback. It is also possible to have a single \_events.tsv file describing events for all participants and runs (see Inheritance Principle). As with all other tabular data, \_events.tsv files MAY be accompanied by a JSON file describing the columns in detail (see Tabular Files).

The purpose of this file is to describe timing and other properties of events recorded during the scan. Events MAY be either stimuli presented to the participant or participant responses. A single event file MAY include any combination of stimuli and response events. Events MAY overlap in time. Please mind that this does not imply that only so called "event related" study designs are supported (in contrast to "block" designs) - each "block of events" can be represented by an individual row in the events.tsv file (with a long duration). Each task events file REQUIRES a corresponding task imaging data file (but a single events file MAY be shared by multiple imaging data files - see Inheritance Principle). The tabular files consists of one row per event and a set of REQUIRED and OPTIONAL columns:

| Column name | Requirement level | Description                                                                                                                                                                                                                                                                                                                                             |
|-------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| onset       | REQUIRED          | Onset (in seconds) of the event measured from the beginning of the acquisition of the first volume in the corresponding task imaging data file. If any acquired scans have been discarded before forming the imaging data file, ensure that a time of 0 corresponds to the first image stored. In other words negative numbers in "onset" are allowed5. |
| duration    | REQUIRED          | Duration of the event (measured from onset) in seconds. Must always be either zero or positive. A "duration" value of zero implies that the delta function or event is so short as to be effectively modeled as an impulse.                                                                                                                             |

| Column name   | Requirement level | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sample        | OPTIONAL          | Onset of the event according to the sampling scheme of the recorded modality (that is, referring to the raw data file that the events.tsv file accompanies).                                                                                                                                                                                                                                                                                                                         |
| trial_type    | OPTIONAL          | Primary categorisation of each trial to identify them as instances of the experimental conditions. For example: for a response inhibition task, it could take on values "go" and "no-go" to refer to response initiation and response inhibition experimental conditions.                                                                                                                                                                                                            |
| response_time | OPTIONAL          | Response time measured in seconds. A negative response time can be used to represent preemptive responses and "n/a" denotes a missed response.                                                                                                                                                                                                                                                                                                                                       |
| stim_file     | OPTIONAL          | Represents the location of the stimulus file (such as an image, video, or audio file) presented at the given onset time. There are no restrictions on the file formats of the stimuli files, but they should be stored in the /stimuli folder (under the root folder of the dataset; with optional subfolders). The values under the stim_file column correspond to a path relative to "/stimuli". For example "images/cat03.jpg" will be translated to "/stimuli/images/cat03.jpg". |
| value         | OPTIONAL          | Marker value associated with the event (for example, the value of a TTL trigger that was recorded at the onset of the event).                                                                                                                                                                                                                                                                                                                                                        |
| HED           | OPTIONAL          | Hierarchical Event Descriptor (HED) Tag. See<br>Appendix III for details.                                                                                                                                                                                                                                                                                                                                                                                                            |

5 For example in case there is an in scanner training phase that begins before the scanning sequence has started events from this sequence should have negative onset time counting down to the beginning of the acquisition of the first volume.

An arbitrary number of additional columns can be added. Those allow describing other properties of events that could be later referred in modelling and hypothesis extensions of BIDS. Note that the trial\_type and any additional columns in a TSV file SHOULD be documented in an accompanying JSON sidecar file.

## Example:

```
1 sub-control01/
2 func/
3 sub-control01_task-stopsignal_events.tsv
```

```
4 sub-control01_task-stopsignal_events.json
```

Example of the content of the TSV file:

```
1 onset duration trial_type response_time stim_file
2 1.2 0.6 go 1.435 images/red_square.jpg
3 5.6 0.6 stop 1.739 images/blue_square.jpg
```

In the accompanying JSON sidecar, the trial\_type column might look as follows:

```
1 {
       "trial type": {
 2
 3
           "LongName": "Event category",
          "Description": "Indicator of type of action that is expected",
 4
          "Levels": {
 5
               "go": "A red square is displayed to indicate starting",
 6
              "stop": "A blue square is displayed to indicate stopping",
 7
          }
 8
      }
 9
10
```

Note that all other columns SHOULD also be described but are omitted for the sake of brevity.

For multi-echo files, the  $*\_events.tsv$  file is applicable to all echos of a particular run:

```
sub-01_task-cuedSGT_run-1_events.tsv
sub-01_task-cuedSGT_run-1_echo-1_bold.nii.gz
sub-01_task-cuedSGT_run-1_echo-2_bold.nii.gz
sub-01_task-cuedSGT_run-1_echo-3_bold.nii.gz
```

### Stimuli databases

References to existing databases can also be encoded using additional columns. The following example includes references to the Karolinska Directed Emotional Faces (KDEF) database.

Example:

```
1 sub-control01/
2 func/
3 sub-control01_task-emoface_events.tsv
4 sub-control01_task-emoface_events.json
```

Example of the content of the TSV file:

```
onset duration trial_type identifier database response_time
1.2 0.6 afraid AF01AFAF kdef 1.435
3 5.6 0.6 angry AM01AFAN kdef 1.739
4 5.6 0.6 sad AF01ANSA kdef 1.739
```

The trial\_type and identifier columns from the \*\_events.tsv files might be described in the accompanying JSON sidecar as follows:

```
1 {
      "trial_type": {
 2
          "LongName": "Emotion image type",
 3
          "Descripton": "Type of emotional face from Karolinska database that is displayed",
 4
           "Levels": {
 5
              "afraid": "A face showing fear is displayed",
 6
              "angry": "A face showing anger is displayed",
              "sad": "A face showing sadness is displayed"
 8
          }
 9
      },
10
      "identifier": {
11
12
           "LongName": "Karolinska (KDEF) database identifier",
          "Description": "ID from KDEF database used to identify the displayed image"
13
      }
14
15 }
```

Note that all other columns SHOULD also be described but are omitted for the sake of brevity.

# Stimulus presentation details

It is RECOMMENDED to include details of the stimulus presentation software, when applicable:

| Key name             | Requirement level | Data type         | Description                                                                                                                                                                                                                             |
|----------------------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| StimulusPresentation | RECOMMENDED       | object of strings | Object containing key value pairs related to the software used to present the stimuli during the experiment, specifically: OperatingSystem, SoftwareName, SoftwareRRID, SoftwareVersion and Code. See table below for more information. |

The object supplied for StimulusPresentation SHOULD include the following key-value pairs:

| Key name        | Requirement level | Data type | Description                                                                                                                                                                                              |
|-----------------|-------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OperatingSystem | RECOMMENDED       | string    | Operating system used to run the stimuli presentation software (for formatting recommendations, see examples below this table).                                                                          |
| SoftwareName    | RECOMMENDED       | string    | Name of the software that was used to present the stimuli.                                                                                                                                               |
| SoftwareRRID    | RECOMMENDED       | string    | Research Resource Identifier of the software that was used to present the stimuli. Examples: The RRID for Psychtoolbox is 'SCR_002881', and that of PsychoPy is 'SCR_006571'.                            |
| SoftwareVersion | RECOMMENDED       | string    | Version of the software that was used to present the stimuli.                                                                                                                                            |
| Code            | RECOMMENDED       | string    | URI of the code used to present the stimuli. Persistent identifiers such as DOIs are preferred. If multiple versions of code may be hosted at the same location, revision-specific URIs are recommended. |

The operating system description SHOULD include the following attributes:

- type (for example, Windows, macOS, Linux)
- distribution (if applicable, for example, Ubuntu, Debian, CentOS)
- the version number (for example, 18.04.5)

## Examples:

- Windows 10, Version 2004
- macOS 10.15.6
- Linux Ubuntu 18.04.5

 $The amount of information supplied for the {\tt OperatingSystem} \ SHOULD \ be sufficient to \ re-run \ the \ code \ under \ maximally \ similar \ conditions.$ 

The information related to stimulus presentation might be described in the accompanying JSON sidecar as follows (based on the example of the previous section):

```
1 {
2    "trial_type": {
3         "LongName": "Emotion image type",
4         "Descripton": "Type of emotional face from Karolinska database that is displayed",
5         "Levels": {
```

```
"afraid": "A face showing fear is displayed",
               "angry": "A face showing anger is displayed",
               "sad":
                         "A face showing sadness is displayed"
 8
          }
 9
10
      },
      "identifier": {
11
12
           "LongName": "Unique identifier from Karolinska (KDEF) database",
           "Description": "ID from KDEF database used to identify the displayed image"
13
      },
14
       "StimulusPresentation": {
15
          "OperatingSystem": "Linux Ubuntu 18.04.5",
16
           "SoftwareName": "Psychtoolbox",
17
          "SoftwareRRID": "SCR_002881",
18
          "SoftwareVersion": "3.0.14",
19
           "Code": "doi:10.5281/zenodo.3361717"
20
      }
21
22 }
```

Note: Events can also be documented in machine-actionable form using HED (Hierarchical Event Descriptor) tags. This type of documentation is particularly useful for datasets likely to be used in event-related analyses. See Hierarchical Event Descriptors for additional information and examples.

# Physiological and other continuous recordings

#### Template:

```
sub-<label>/[ses-<label>/]

datatype>/

matches>[_recording-<label>]_physio.tsv.gz

matches>[_recording-<label>]_physio.json

matches>[_recording-<label>]_stim.tsv.gz

matches>[_recording-<label>]_stim.tsv.gz
```

Optional: Yes

For the template directory name, <datatype> can correspond to any data recording modality, for example func, anat, dwi, meg, eeg, ieeg, or beh.

In the template file names, the <matches> part corresponds to task file name before the suffix. For example for the file sub-control01\_task-nback\_run-1\_bold.nii.gz, <matches> would correspond to sub-control01\_task-nback\_run-1.

The recording-<label> entity can be used to distinguish between several recording files. For example sub-01\_task-bart\_recording-eyetracking\_physio.tsv.gz to contain the eyetracking data in a certain sampling frequency, and sub-01\_task-bart\_recording-breathing\_physio.tsv.gz to contain respiratory measurements in a different sampling frequency.

Physiological recordings (including eyetracking) SHOULD use the \_physio suffix, and signals related to the stimulus SHOULD use \_stim suffix.

Physiological recordings such as cardiac and respiratory signals and other continuous measures (such as parameters of a film or audio stimuli) can be specified using two files: a gzip compressed TSV file with data (without header line) and a JSON for storing the following metadata fields:

Note that when supplying a \*\_<physio|stim>.tsv.gz file, an accompanying \*\_<physio|stim>.json MUST be supplied as well.

| Key name          | Requirement level | Data type        | Description                                                                                                                                                           |
|-------------------|-------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SamplingFrequency | REQUIRED          | number           | Sampling frequency in Hz of all columns in the file.                                                                                                                  |
| StartTime         | REQUIRED          | number           | Start time in seconds in relation to<br>the start of acquisition of the first<br>data sample in the corresponding<br>neural dataset (negative values are<br>allowed). |
| Columns           | REQUIRED          | array of strings | Names of columns in file.                                                                                                                                             |

Additional metadata may be included as in any TSV file to specify, for example, the units of the recorded time series. Please note that, in contrast to other TSV files in BIDS, the TSV files specified for phsyiological and other continuous recordings do not include a header line. Instead the name of columns are specified in the JSON file. This is to improve compatibility with existing software (for example, FSL, PNM) as well as to make support for other file formats possible in the future.

```
Example *_physio.tsv.gz:
```

```
1 sub-control01/
     func/
3
          sub-control01 task-nback physio.tsv.gz
 (after decompression)
        110
1 34
2 44
       112
       100
3 23
 Example *_physio.json:
1 sub-control01/
2
     func/
         sub-control01_task-nback_physio.json
3
1 {
2
    "SamplingFrequency": 100.0,
    "StartTime": -22.345.
3
```

```
4  "Columns": ["cardiac", "respiratory", "trigger"],
5  "cardiac": {
6    "Units": "mV"
7  }
8 }
```

## Recommendations for specific use cases

To store pulse or breathing measurements, or the scanner trigger signal, the following naming conventions SHOULD be used for the column names:

| Column name | Description                                          |
|-------------|------------------------------------------------------|
| cardiac     | continuous pulse measurement                         |
| respiratory | continuous breathing measurement                     |
| trigger     | continuous measurement of the scanner trigger signal |

For any other data to be specified in columns, the column names can be chosen as deemed appropriate by the researcher.

Recordings with different sampling frequencies and/or starting times should be stored in separate files.

If the same continuous recording has been used for all subjects (for example in the case where they all watched the same movie), one file MAY be used and placed in the root directory. For example, task-movie\_stim.tsv.gz

For motion parameters acquired from MRI scanner side motion correction, the \_physio suffix SHOULD be used.

For multi-echo data, a given physio.tsv file is applicable to all echos of a particular run. For example:

```
sub-01_task-cuedSGT_run-1_physio.tsv.gz
sub-01_task-cuedSGT_run-1_echo-1_bold.nii.gz
sub-01_task-cuedSGT_run-1_echo-2_bold.nii.gz
sub-01_task-cuedSGT_run-1_echo-3_bold.nii.gz
```

# Behavioral experiments (with no neural recordings)

Template:

```
1 sub-<label>/[ses-<label>/]
2 beh/
3 sub-<label>[_ses-<label>]_task-<label>[_acq-<label>][_run-<index>]_events.tsv
4 sub-<label>[_ses-<label>]_task-<label>[_acq-<label>][_run-<index>]_events.json
5 sub-<label>[_ses-<label>]_task-<label>[_acq-<label>][_run-<index>]_beh.tsv
```

```
sub-<label>[_ses-<label>]_task-<label>[_acq-<label>] [_run-<index>]_beh.json

sub-<label>[_ses-<label>]_task-<label>[_acq-<label>] [_run-<index>] [_recording-<label>]_physio.tsv.gz

sub-<label>[_ses-<label>]_task-<label>[_acq-<label>] [_run-<index>] [_recording-<label>]_physio.json

sub-<label>[_ses-<label>]_task-<label>[_acq-<label>] [_run-<index>] [_recording-<label>]_stim.tsv.gz

sub-<label>[_ses-<label>]_task-<label>[_acq-<label>] [_run-<index>] [_recording-<label>]_stim.json
```

In addition to logs from behavioral experiments performed alongside imaging data acquisitions, one can also include data from experiments performed with no neural recordings. The results of those experiments can be stored in the beh folder using the same formats for event timing (\_events.tsv), metadata (\_events.json), physiological (\_physio.tsv.gz, \_physio.json) and other continuous recordings (\_stim.tsv.gz, \_stim.json) as for tasks performed during MRI, electrophysiological or other neural recordings. Additionally, events files that do not include the mandatory onset and duration columns can still be included, but should be labeled \_beh.tsv rather than \_events.tsv.

The OPTIONAL acq-<label> key/value pair corresponds to a custom label to distinguish different conditions present during multiple runs of the same task. For example, if a study includes runs of an n-back task, with deep brain stimulation turned on or off, the data files may be labelled sub-01\_task-nback\_acq-dbson\_beh.tsv and sub-01\_task-nback\_acq-dbsoff\_beh.tsv.

# Genetic Descriptor

Support genetic descriptors was developed as a BIDS Extension Proposal. Please see Citing BIDS on how to appropriately credit this extension when referring to it in the context of the academic literature.

Genetic data are typically stored in dedicated repositories, separate from imaging data. A genetic descriptor links a BIDS dataset to associated genetic data, potentially in a separate repository, with details of where to find the genetic data and the type of data available.

### Dataset Description

 $Genetic \ descriptors \ are \ encoded \ as \ an \ additional, OPTIONAL \ entry \ in \ the \ {\tt dataset\_description.json} \ file.$ 

Datasets linked to a genetic database entry include the following REQUIRED or OPTIONAL dataset\_description.json keys (a dot in the key name denotes a key in a sub-object, see the example further below):

| Key name                              | Requirement level    | Data type                  | Description                                                                                               |
|---------------------------------------|----------------------|----------------------------|-----------------------------------------------------------------------------------------------------------|
| Genetics.Dataset<br>Genetics.Database | REQUIRED<br>OPTIONAL | string<br>string           | URI where data can be retrieved. URI of database where the dataset is hosted.                             |
| Genetics.Descriptors                  | OPTIONAL             | string or array of strings | List of relevant descriptors (for example, journal articles) for dataset using a valid URI when possible. |

Example:

```
1 {
     "Name": "Human Connectome Project",
    "BIDSVersion": "1.3.0",
    "License": "CCO",
    "Authors": ["1st author", "2nd author"],
    "Funding": ["P41 EB015894/EB/NIBIB NIH HHS/United States"],
    "Genetics": {
       "Dataset": "https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001364.v1.p1",
 8
9
       "Database": "https://www.ncbi.nlm.nih.gov/gap/",
       "Descriptors": ["doi:10.1016/j.neuroimage.2013.05.041"]
10
       }
11
12 }
```

### Subject naming and Participants file

If the same participants have different identifiers in the genetic and imaging datasets, the column genetic\_id SHOULD be added to the participants.tsv file to associate the BIDS participant with a subject in the Genetics.Dataset referred to in the dataset\_description.json file.

Information about the presence/absence of specific genetic markers MAY be duplicated in the participants.tsv file by adding optional columns (like idh\_mutation in the example below). Note that optional columns MUST be further described in an accompanying participants.json file as described in Tabular files.

participants.tsv example:

```
1 participant_id age sex group genetic_id idh_mutation
2 sub-control01 34 M control 124587 yes
3 sub-control02 12 F control 548936 yes
4 sub-patient01 33 F patient 489634 no
```

#### Genetic Information

Template:

```
1 genetic_info.json
```

The genetic\_info.json file describes the genetic information available in the participants.tsv file and/or the genetic database described in dataset\_description.json. Datasets containing the Genetics field in dataset\_description.json or the genetic\_id column in participants.tsv MUST include this file with the following fields:

| Key name           | Requirement level | Data type                  | Description                                                                                                                                                                                                                   |
|--------------------|-------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GeneticLevel       | REQUIRED          | string or array of strings | Describes the level of analysis. Values MUST be one of Genetic, Genomic, Epigenomic, Transcriptomic, Metabolomic, or Proteomic.                                                                                               |
| AnalyticalApproach | OPTIONAL          | string or array of strings | Methodology or methodologies used to analyse the GeneticLevel. Values MUST be taken from the database of Genotypes and Phenotypes (dbGaP) under /Study/Molecular Data Type (for example, SNP Genotypes (Array) or             |
| SampleOrigin       | REQUIRED          | string                     | Methylation (CpG).  Describes from which tissue the genetic information was extracted.  Values MUST be one of blood, saliva, brain, csf, breast milk, bile, amniotic fluid, other biospecimen.                                |
| TissueOrigin       | OPTIONAL          | string                     | Describes the type of tissue analyzed for SampleOrigin brain. Values MUST be one of gray matter, white matter, csf, meninges, macrovascular or microvascular.                                                                 |
| BrainLocation      | OPTIONAL          | string                     | Refers to the location in space of the TissueOrigin. Values may be an MNI coordinate, a label taken from the Allen Brain Atlas, or layer to refer to layer-specific gene expression, which can also tie up with laminar fMRI. |
| CellType           | OPTIONAL          | string                     | Describes the type of cell analyzed. Values SHOULD come from the cell ontology.                                                                                                                                               |

To ensure dataset description consistency, we recommend following Multi-omics approaches to disease by Hasin et al. 2017 to determine the GeneticLevel:

- Genetic: data report on a single genetic location (typically directly in the participants.tsv file)
  Genomic: data link to participants' genome (multiple genetic locations)

- Epigenomic: data link to participants' characterization of reversible modifications of DNA
- Transcriptomic: data link to participants RNA levels
- Metabolomic: data link to participants' products of cellular metabolic functions
- Proteomic: data link to participants peptides and proteins quantification

genetic\_info.json example:

```
1 {
2    "GeneticLevel": "Genomic",
3    "AnalyticalApproach": ["Whole Genome Sequencing", "SNP/CNV Genotypes"],
4    "SampleOrigin": "brain",
5    "TissueOrigin": "gray matter",
6    "CellType": "neuron",
7    "BrainLocation": "[-30 -15 10]"
8 }
```

#### BIDS Derivatives

Derivatives are outputs of common processing pipelines, capturing data and meta-data sufficient for a researcher to understand and (critically) reuse those outputs in subsequent processing. Standardizing derivatives is motivated by use cases where formalized machine-readable access to processed data enables higher level processing.

The following sections cover additions to and divergences from "raw" BIDS. Placement and naming conventions for derived datasets are addressed in Storage of derived datasets, and dataset-level metadata is included in Derived dataset and pipeline description.

#### Metadata conventions

- Unless specified otherwise, individual sidecar JSON files and all metadata fields within are OPTIONAL. However, the appropriate use of these files and pertinent fields is very valuable and thus encouraged. Moreover, for some types of files, there may be one or more required metadata fields, in which case at least one metadata file containing that field must be located somewhere within the file's hierarchy (per the Inheritance Principle).
- When chaining derivative pipelines, any JSON fields that were specified as mandatory in the input files SHOULD be propagated forward in the output file's JSON provided they remain valid. Non-required JSON fields MAY be propagated, and are highly useful, but it is the pipeline's responsibility to ensure that the values are still relevant and appropriate to the type of output data.

### File naming conventions

- Filenames that are permissible for a raw BIDS data type have a privileged status. Any modification of raw files must use a modified filename that does not conflict with the raw filename. Further, any files created as part of a derivative dataset must not match a permissible filename of a valid raw dataset. Stated equivalently, if any filename in a derivative dataset has a name permissible for a raw BIDS data, then that file must be an identical copy of that raw file.
- Each Derivatives filename MUST be of the form: <source\_entities>[\_keyword-<value>]\_<suffix>.<ext> (where <value> could either be an <index> or a < label> depending on the keyword; see Definitions)

- When the derivatives chain involves outputs derived from a single raw input, source\_entities MUST be the entire source filename, with the omission of the source suffix and extension. One exception to this rule is filename entities that are no longer relevant. Depending on the nature of the derivative file, the suffix can either be the same as the source file if that suffix is still appropriate, or a new appropriate value selected from the controlled list.
- There is no prohibition against identical filenames in different derived datasets, although users should be aware of the potential ambiguity this can create and use the sidecar JSON files to detail the specifics of individual files.
- When necessary to distinguish two files that do not otherwise have a distinguishing entity, the \_desc-<label> keyword-value SHOULD be used. This includes the cases of needing to distinguish both differing inputs and differing outputs (for example, \_desc-T1w and \_desc-T2w to distinguish brain mask files derived from T1w and T2w images; or \_desc-sm4 and \_desc-sm8 to distinguish between outputs generated with two different levels of smoothing).
- When naming files that are not yet standardized, it is RECOMMENDED to use names consistent with BIDS conventions where those conventions apply. For example, if a summary statistic is derived from a given task, the file name SHOULD contain \_task-<label>.

# Common data types and metadata

### Common file level metadata fields

Each derivative data file SHOULD be described by a JSON file provided as a sidecar or higher up in the hierarchy of the derived dataset (according to the Inheritance Principle) unless a particular derivative includes REQUIRED metadata fields, in which case a JSON file is also REQUIRED. Each derivative type defines their own set of fields, but all of them share the following (non-required) ones:

| Key name    | Requirement level | Data type        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|-------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description | RECOMMENDED       | string           | Free-form natural language description of the nature of the file.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sources     | OPTIONAL          | array of strings | A list of files with the paths specified relative to dataset root; these files were directly used in the creation of this derivative data file. For example, if a derivative A is used in the creation of another derivative B, which is in turn used to generate C in a chain of A->B->C, C should only list B in Sources, and B should only list A in Sources. However, in case both X and Y are directly used in the creation of Z, then Z should list X and Y in Sources, regardless of whether X was used to generate Y. |

| Key name   | Requirement level | Data type        | Description                                                                                                                  |
|------------|-------------------|------------------|------------------------------------------------------------------------------------------------------------------------------|
| RawSources | OPTIONAL          | array of strings | A list of paths relative to dataset root pointing to the BIDS-Raw file(s) that were used in the creation of this derivative. |

#### Examples

Preprocessed bold NIfTI file in the original coordinate space of the original run. The location of the file in the original datasets is encoded in the RawSources metadata, and desc-<label> is used to prevent clashing with the original file name.

```
1 sub-01/func/sub-01 task-rest desc-preproc bold.nii.gz
2 sub-01/func/sub-01_task-rest_desc-preproc_bold.json
1 {
      "RawSources": ["sub-01/func/sub-01 task-rest bold.nii.gz"]
2
3 }
 If this file was generated with prior knowledge from additional sources, such as the same subject's T1w, then both files MAY be included in RawSources.
1 {
2
      "RawSources": [
          "sub-01/func/sub-01_task-rest_bold.nii.gz",
3
          "sub-01/anat/sub-01 T1w.nii.gz"
4
5
      ]
```

On the other hand, if a preprocessed version of the T1w image was used, and it also occurs in the derivatives, Sources and RawSources can both be specified.

# Spatial references

Derivatives are often aligned to a common spatial reference to allow for the comparison of acquired data across runs, sessions, subjects or datasets. A file may indicate the spatial reference to which it has been aligned using the space entity and/or the SpatialReference metadata.

6 }

The space entity may take any value in Image-Based Coordinate Systems.

If the space entity is omitted, or the space is not in the Standard template identifiers table, then the SpatialReference metadata is REQUIRED.

| Key name         | Requirement level                                                                                                            | Data type        | Description                                                                                                                                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SpatialReference | RECOMMENDED if the derivative is aligned to a standard template listed in Standard template identifiers. REQUIRED otherwise. | string or object | For images with a single reference, the value MUST be a single string. For images with multiple references, such as surface and volume references, a JSON object MUST be used. See examples below. |

### SpatialReference key allowed values

| Value            | Description                                                                                                                                                                                                                                    |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| orig URI or path | A (potentially unique) per-image space. Useful for describing the source of transforms from an input image to a target space.  This can be used to point to a specific file. Paths are written relative to the root of the derivative dataset. |

In the case of images with multiple references, an object must link the relevant structures to reference files. If a single volumetric reference is used for multiple structures, the VolumeReference key MAY be used to reduce duplication. For CIFTI-2 images, the relevant structures are BrainStructure values defined in the BrainModel elements found in the CIFTI-2 header.

### Examples

Preprocessed bold NIfTI file in individual coordinate space. Please mind that in this case SpatialReference key is REQUIRED.

```
1 sub-01/func/sub-01_task-rest_space-individual_bold.nii.gz
2 sub-01/func/sub-01_task-rest_space-individual_bold.json

1 {
2     "SpatialReference": "sub-01/anat/sub-01_desc-combined_T1w.nii.gz"
3 }
```

Preprocessed bold CIFTI-2 files that have been sampled to the fsLR surface meshes defined in the Conte69 atlas along with the MNI152NLin6Asym template. In this example, because all volumetric structures are sampled to the same reference, the VolumeReference key is used as a default, and only the surface references need to be specified by BrainStructure names.

Preprocessed or cleaned data

Template:

Data is considered to be preprocessed or cleaned if the data type of the input, as expressed by the BIDS suffix, is unchanged. By contrast, processing steps that change the number of dimensions are likely to disrupt the propagation of the input's suffix and generally, the outcomes of such transformation cannot be considered preprocessed or cleaned data.

Examples of preprocessing:

- Motion-corrected, temporally denoised, and transformed to MNI space BOLD series
- Inhomogeneity corrected and skull stripped T1w files
- Motion-corrected DWI files
- Time-domain filtered EEG data
- MaxFilter (for example, SSS) cleaned MEG data

The space keyword is recomended to distinguish files with different underlying coordinate systems or registered to different reference maps. See Spatial references for details. The desc (description) keyword is a general purpose field with freeform values, which SHOULD be used to distinguish between multiple different versions of processing for the same input data.

Examples of preprocessed data:

```
1 pipeline1/
2 sub-001/
3 anat/
```

```
sub-001_space-MNI305_T1w.nii.gz
             sub-001_space-MNI305_T1w.json
5
         func/
6
             sub-001 task-rest run-1 space-MNI305 desc-preproc bold.nii.gz
             sub-001 task-rest run-1 space-MNI305 desc-preproc bold.json
1 pipeline2/
     sub-001/
3
         eeg/
4
             sub-001 task-listening run-1 desc-autoannotation events.tsv
             sub-001 task-listening run-1 desc-autoannotation events.json
5
             sub-001_task-listening_run-1_desc-filtered_eeg.edf
             sub-001_task-listening_run-1_desc-filtered_eeg.json
```

All REQUIRED metadata fields coming from a derivative file's source file(s) MUST be propagated to the JSON description of the derivative unless the processing makes them invalid (for example, if a source 4D image is averaged to create a single static volume, a RepetitionTime property would no longer be relevant).

# Imaging data types

This section pertains to imaging data, which characteristically have spatial extent and resolution.

Preprocessed, coregistered and/or resampled volumes

Template:

Volumetric preprocessing does not modify the number of dimensions, and so the specifications in Preprocessed or cleaned data apply. The use of surface meshes and volumetric measures sampled to those meshes is sufficiently similar in practice to treat them equivalently.

When two or more instances of a given derivative are provided with resolution or surface sampling density being the only difference between them, then the res (for resolution of regularly sampled N-D data) and/or den (for density of non-parametric surfaces) SHOULD be used to avoid name conflicts. Note that only files combining both regularly sampled (for example, gridded) and surface sampled data (and their downstream derivatives) are allowed to present both res and den entities simultaneously.

Examples:

```
1 pipeline1/
2 sub-001/
3 func/
```

```
sub-001_task-rest_run-1_space-MNI305_res-lo_bold.nii.gz
sub-001_task-rest_run-1_space-MNI305_res-hi_bold.nii.gz
sub-001_task-rest_run-1_space-MNI305_bold.json
```

The following metadata JSON fields are defined for preprocessed images:

| Key name      | Requirement level           | Data type                                  | Description                                                                  |
|---------------|-----------------------------|--------------------------------------------|------------------------------------------------------------------------------|
| SkullStripped | REQUIRED                    | boolean                                    | Whether the volume was skull stripped (non-brain voxels set to zero) or not. |
| Resolution    | REQUIRED if res is present. | string or object mapping labels to strings | Specifies the interpretation of the resolution keyword.                      |
| Density       | REQUIRED if den is present. | string or object mapping labels to strings | Specifies the interpretation of the density keyword.                         |

Example JSON file corresponding to pipeline1/sub-001/func/sub-001\_task-rest\_run-1\_space-MNI305\_bold.json above:

```
1 {
2    "SkullStripped": true,
3    "Resolution": {
4         "hi": "Matched with high-resolution T1w (0.7mm, isotropic)",
5         "lo": "Matched with original BOLD resolution (2x2x3 mm^3)"
6    }
7 }
```

This would be equivalent to having two JSON metadata files, one corresponding to res-lo (pipeline1/sub-001/func/sub-001\_task-rest\_run-1\_space-MNI305\_res-lo\_bold.json):

```
1 {
2  "SkullStripped": true,
3  "Resolution": "Matched with original BOLD resolution (2x2x3 mm^3)"
4 }
```

And one corresponding to res-hi (pipeline1/sub-001/func/sub-001\_task-rest\_run-1\_space-MNI305\_res-hi\_bold.json):

```
1 {
2  "SkullStripped": true,
3  "Resolution": "Matched with high-resolution T1w (0.7mm, isotropic)"
4 }
```

Example of CIFTI-2 files (a format that combines regularly sampled data and non-parametric surfaces) having both res and den entities:

```
pipeline1/
sub-001/
func/
sub-001_task-rest_run-1_space-fsLR_res-1_den-10k_bold.dtseries.nii
sub-001_task-rest_run-1_space-fsLR_res-1_den-41k_bold.dtseries.nii
sub-001_task-rest_run-1_space-fsLR_res-2_den-10k_bold.dtseries.nii
sub-001_task-rest_run-1_space-fsLR_res-2_den-41k_bold.dtseries.nii
sub-001_task-rest_run-1_space-fsLR_res-2_den-41k_bold.dtseries.nii
sub-001_task-rest_run-1_space-fsLR_pold.json
```

And the corresponding sub-001\_task-rest\_run-1\_space-fsLR\_bold.json file:

```
1 {
 2
      "SkullStripped": true,
 3
       "Resolution": {
          "1": "Matched with MNI152NLin6Asym 1.6mm isotropic",
 4
          "2": "Matched with MNI152NLin6Asym 2.0mm isotropic"
 5
      },
 6
      "Density": {
 7
          "10k": "10242 vertices per hemisphere (5th order icosahedron)",
 8
          "41k": "40962 vertices per hemisphere (6th order icosahedron)"
 9
10
11 }
```

Masks

Template:

A binary (1 - inside, 0 - outside) mask in the space defined by <space>. If no transformation has taken place, the value of space SHOULD be set to orig. If the mask is an ROI mask derived from an atlas, then the label entity SHOULD be used to specify the masked structure (see Common image-derived labels), and the Atlas metadata SHOULD be defined.

JSON metadata fields:

| Key name   | Requirement level                      | Data type                                  | Description                                                                                                                |
|------------|----------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| RawSources | REQUIRED                               | array of strings                           | Same as defined in Common data types, but elevated from OPTIONAL to REQUIRED.                                              |
| Туре       | RECOMMENDED                            | string                                     | Short identifier of the mask.  Reserved values: Brain - brain mask, Lesion - lesion mask, Face - face mask, ROI - ROI mask |
| Atlas      | RECOMMENDED if label entity is defined | string                                     | Which atlas (if any) was used to generate the mask.                                                                        |
| Resolution | REQUIRED if res is present             | string or object mapping labels to strings | Specifies the interpretation of the resolution keyword.                                                                    |
| Density    | REQUIRED if den is present             | string or object mapping labels to strings | Specifies the interpretation of the density keyword.                                                                       |

#### Examples:

```
1 func_loc/
2     sub-001/
3     func/
4     sub-001_task-rest_run-1_space-MNI305_desc-PFC_mask.nii.gz
5     sub-001_task-rest_run-1_space-MNI305_desc-PFC_mask.json

1 manual_masks/
2     sub-001/
3     anat/
4     sub-001_desc-tumor_mask.nii.gz
5     sub-001_desc-tumor_mask.json
```

# Segmentations

A segmentation is a labeling of regions of an image such that each location (for example, a voxel or a surface vertex) is identified with a label or a combination of labels. Labeled regions may include anatomical structures (such as tissue class, Brodmann area or white matter tract), discontiguous, functionally-defined networks, tumors or lesions.

A discrete segmentation represents each region with a unique integer label. A probabilistic segmentation represents each region as values between 0 and 1 (inclusive) at each location in the image, and one volume/frame per structure may be concatenated in a single file.

Segmentations may be defined in a volume (labeled voxels), a surface (labeled vertices) or a combined volume/surface space.

The following section describes discrete and probabilistic segmentations of volumes, followed by discrete segmentations of surface/combined spaces. Probabilistic segmentations of surfaces are currently unspecified.

The following metadata fields apply to all segmentation files:

| Key name   | Requirement level          | Data type                                  | Description                                                                       |
|------------|----------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|
| Manual     | OPTIONAL                   | boolean                                    | Indicates if the segmentation was performed manually or via an automated process. |
| Atlas      | OPTIONAL                   | string                                     | Which atlas (if any) was used to derive the segmentation.                         |
| Resolution | REQUIRED if res is present | string or object mapping labels to strings | Specifies the interpretation of the resolution keyword.                           |
| Density    | REQUIRED if den is present | string or object mapping labels to strings | Specifies the interpretation of the density keyword.                              |

#### Discrete Segmentations

Discrete segmentations of brain tissue represent multiple anatomical structures (such as tissue class or Brodmann area) with a unique integer label in a 3D volume. See Common image-derived labels for a description of how integer values map to anatomical structures.

### Template:

#### Example:

```
1 pipeline/
2    sub-001/
3    anat/
4    sub-001_space-orig_dseg.nii.gz
5    sub-001_space-orig_dseg.json
```

A segmentation can be used to generate a binary mask that functions as a discrete "label" for a single structure. In this case, the mask suffix MUST be used, the label entity SHOULD be used to specify the masked structure (see Common image-derived labels), and the Atlas metadata SHOULD be defined. For example:

```
1 pipeline/
2    sub-001/
3    anat/
4    sub-001_space-orig_label-GM_mask.nii.gz
```

### Probabilistic Segmentations

Probabilistic segmentations of brain tissue represent a single anatomical structure with values ranging from 0 to 1 in individual 3D volumes or across multiple frames. If a single structure is included, the label entity SHOULD be used to specify the structure.

Template:

Example:

```
pipeline/
sub-001/
anat/
sub-001_space-orig_label-BG_probseg.nii.gz
sub-001_space-orig_label-WM_probseg.nii.gz
```

See Common image-derived labels for reserved key values for label.

A 4D probabilistic segmentation, in which each frame corresponds to a different tissue class, must provide a label mapping in its JSON sidecar. For example:

```
pipeline/
sub-001/
anat/
sub-001_space-orig_probseg.nii.gz
sub-001_space-orig_probseg.json
```

The JSON sidecar MUST include the label-map key that specifies a tissue label for each volume:

Values of label SHOULD correspond to abbreviations defined in Common image-derived labels.

### Discrete surface segmentations

Discrete surface segmentations (sometimes called parcellations) of cortical structures MUST be stored as GIFTI label files, with the extension .label.gii. For combined volume/surface spaces, discrete segmentations MUST be stored as CIFTI-2 dense label files, with the extension .dlabel.nii.

Template:

The hemi tag is REQUIRED for GIFTI files storing information about a structure that is restricted to a hemibrain. For example:

```
pipeline/
sub-001/
sub-001_hemi-L_dseg.label.gii
sub-001_hemi-R_dseg.label.gii
```

The REQUIRED extension for CIFTI parcellations is .dlabel.nii. For example:

```
1 pipeline/
2    sub-001/
3    anat/
4    sub-001_dseg.dlabel.nii
5    sub-001_dseg.dlabel.nii
```

### Common image-derived labels

BIDS supplies a standard, generic label-index mapping, defined in the table below, that contains common image-derived segmentations and can be used to map segmentations (and parcellations) between lookup tables.

| Integer value | Description         | Abbreviation (label) |
|---------------|---------------------|----------------------|
| 0             | Background          | BG                   |
| 1             | Gray Matter         | GM                   |
| 2             | White Matter        | WM                   |
| 3             | Cerebrospinal Fluid | CSF                  |
| 4             | Bone                | В                    |
| 5             | Soft Tissue         | $\operatorname{ST}$  |
| 6             | Non-brain           | NB                   |
| 7             | Lesion              | ${f L}$              |

| Integer value | Description             | Abbreviation (label) |
|---------------|-------------------------|----------------------|
| 8             | Cortical Gray Matter    | CGM                  |
| 9             | Subcortical Gray Matter | SGM                  |
| 10            | Brainstem               | BS                   |
| 11            | Cerebellum              | CBM                  |

These definitions can be overridden (or added to) by providing custom labels in a sidecar  $\verb|\matches||$  in which  $\verb|\matches||$  corresponds to segmentation filename.

### Example:

```
pipeline/
sub-001/
anat/
sub-001_space-orig_dseg.nii.gz
sub-001_space-orig_dseg.tsv
```

Definitions can also be specified with a top-level dseg.tsv, which propagates to segmentations in relative subdirectories.

### Example:

```
1 pipeline/
2    dseg.tsv
3    sub-001/
4    anat/
5    sub-001_space-orig_dseg.nii.gz
```

These TSV lookup tables contain the following columns:

| Column name  | Description                                                             |
|--------------|-------------------------------------------------------------------------|
| index        | REQUIRED. The label integer index                                       |
| name         | REQUIRED. The unique label name                                         |
| abbreviation | OPTIONAL. The unique label abbreviation                                 |
| color        | OPTIONAL. Hexadecimal. Label color for visualization                    |
| mapping      | OPTIONAL. Corresponding integer label in the standard BIDS label lookup |

An example, custom dseg.tsv that defines three labels:

| 1 index | name         | abbreviation | color   | mapping |
|---------|--------------|--------------|---------|---------|
| 2 100   | Gray Matter  | GM           | #ff53bb | 1       |
| 3 101   | White Matter | WM           | #2f8bbe | 2       |

```
4 102 Brainstem BS #36de72 11
```

The following example dseg.tsv defines regions that are not part of the standard BIDS labels:

```
1 indexnameabbreviation2 137pars opercularisIFGop3 138pars triangularisIFGtr4 139pars orbitalisIFGor
```

# Longitudinal and multi-site studies

Multiple sessions (visits) are encoded by adding an extra layer of directories and file names in the form of ses-<label>. Session label can consist only of alphanumeric characters [a-zA-Z0-9] and should be consistent across subjects. If numbers are used in session labels we recommend using zero padding (for example ses-01, ses-11 instead of ses-1, ses-11). This makes results of alphabetical sorting more intuitive. Acquisition time of session can be defined in the sessions file (see below for details).

The extra session layer (at least one /ses-<label> subfolder) should be added for all subjects if at least one subject in the dataset has more than one session. Skipping the session layer for only some subjects in the dataset is not allowed. If a /ses-<label> subfolder is included as part of the directory hierarchy, then the same ses-<label> tag must also be included as part of the file names themselves.

```
1 sub-control01/
 2
      ses-predrug/
 3
          anat/
 4
              sub-control01 ses-predrug T1w.nii.gz
 5
              sub-control01 ses-predrug T1w.json
              sub-control01 ses-predrug T2w.nii.gz
 6
              sub-control01 ses-predrug T2w.json
 8
          func/
              sub-control01_ses-predrug_task-nback_bold.nii.gz
 9
              sub-control01_ses-predrug_task-nback_bold.json
10
11
              sub-control01 ses-predrug task-nback events.tsv
12
              sub-control01_ses-predrug_task-nback_cont-physio.tsv.gz
               sub-control01_ses-predrug_task-nback_cont-physio.json
13
              sub-control01_ses-predrug_task-nback_sbref.nii.gz
14
          dwi/
15
16
              sub-control01 ses-predrug dwi.nii.gz
17
               sub-control01_ses-predrug_dwi.bval
              sub-control01_ses-predrug_dwi.bvec
18
19
          fmap/
              sub-control01 ses-predrug phasediff.nii.gz
20
               sub-control01 ses-predrug phasediff.json
21
22
              sub-control01 ses-predrug magnitude1.nii.gz
```

```
sub-control01_ses-predrug_scans.tsv
23
24
      ses-postdrug/
          func/
25
              sub-control01 ses-postdrug task-nback bold.nii.gz
26
              sub-control01 ses-postdrug task-nback bold.json
27
              sub-control01 ses-postdrug task-nback events.tsv
28
              sub-control01 ses-postdrug task-nback cont-physio.tsv.gz
29
              sub-control01_ses-postdrug_task-nback_cont-physio.json
30
              sub-control01_ses-postdrug_task-nback_sbref.nii.gz
31
32
          fmap/
              sub-control01 ses-postdrug phasediff.nii.gz
33
              sub-control01_ses-postdrug_phasediff.json
34
              sub-control01_ses-postdrug_magnitude1.nii.gz
35
36
          sub-control01_ses-postdrug_scans.tsv
37
      sub-control01_sessions.tsv
38 participants.tsv
39 dataset_description.json
40 README
41 CHANGES
```

Sessions file

Template:

```
1 sub-<label>/
2 sub-<label>_sessions.tsv
```

Optional: Yes

In case of multiple sessions there is an option of adding additional participant key files describing variables changing between sessions. In such case one file per participant should be added. These files need to include compulsory session\_id column and describe each session by one and only one row. Column names in per participant key files have to be different from group level participant key column names.

\_sessions.tsv example:

```
1 session_id acq_time systolic_blood_pressure
2 ses-predrug 2009-06-15T13:45:30 120
3 ses-postdrug 2009-06-16T13:45:30 100
4 ses-followup 2009-06-17T13:45:30 110
```

#### Multi-site or multi-center studies

This version of the BIDS specification does not explicitly cover studies with data coming from multiple sites or multiple centers (such extension is planned in BIDS 2.0. There are however ways to model your data without any loss in terms of metadata.

Treat each site/center as a separate dataset

The simplest way of dealing with multiple sites is to treat data from each site as a separate and independent BIDS dataset with a separate participants.tsv and other metadata files. This way you can feed each dataset individually to BIDS Apps and everything should just work.

#### Option 2: Combining sites/centers into one dataset

Alternatively you can combine data from all sites into one dataset. To identify which site each subjects comes from you can add a site column in the participants.tsv file indicating the source site. This solution allows you to analyze all of the subjects together in one dataset. One caveat is that subjects from all sites will have to have unique labels. To enforce that and improve readability you can use a subject label prefix identifying the site. For example sub-NUY001, sub-MIT002, sub-MPG002 and so on. Remember that hyphens and underscores are not allowed in subject labels.

# **BIDS Extension Proposals**

The BIDS specification can be extended in a backwards compatible way and will evolve over time. This is accomplished with BIDS Extension Proposals (BEPs), which are community-driven processes (see BEP guidelines Google Doc).

On the BIDS homepage you can find a list of extension proposals that are currently being worked on.

All changes that are not backwards compatible with the current BIDS specification will be implemented in BIDS 2.0. See the corresponding GitHub repository.

# Appendix I: Contributors

Legend (source: https://allcontributors.org/docs/en/emoji-key)

| Emoji           | Represents                                                                        |
|-----------------|-----------------------------------------------------------------------------------|
|                 | Answering Questions (on the mailing list, NeuroStars, GitHub, or in person, etc.) |
|                 | Bug reports                                                                       |
|                 | Blogposts                                                                         |
| 星.              | Code                                                                              |
| B               | Content (separate from Blogposts, for example Website news)                       |
|                 | Documentation and specification                                                   |
| <b>〒♪</b><br>◎% | Data (example datasets)                                                           |
| <b>6.5</b>      | Design                                                                            |
| :Q:             | Examples (for example datasets, use Data)                                         |
| Ô               | Event Organizers                                                                  |

| Emoji        | Represents                                  |
|--------------|---------------------------------------------|
| (\$)         | Financial Support                           |
| Q,           | Funding/Grant Finders                       |
| 9            | Ideas & Planning                            |
|              | Infrastructure (hosting, build-tools, etc.) |
|              | Maintenance of the BIDS standard            |
| ₩            | Mentoring new contributors                  |
| พ            | Plugin/utility libraries                    |
| 12           | Project management                          |
| 00           | Reviewed Pull Requests                      |
| *            | Tools                                       |
|              | Translation                                 |
| $\triangle$  | Tests                                       |
| $\checkmark$ | Tutorials                                   |
|              | Talks                                       |
|              | User testing (of new features, tools, etc.) |
| -<br>1       | Videos                                      |

The following individuals have contributed to the Brain Imaging Data Structure ecosystem (in alphabetical order). If you contributed to the BIDS ecosystem and your name is not listed, please add it.

- Fidel Alfaro Almagro 學題冷切
- Stefan Appelhoff 國學會為學是的企業學上的人類學
- Tibor Auer ♥■♡\♥
- Sylvain Baillet
- Arshitha Basavaraj
- Stephan Bickel 🕮
- Elizabeth Bock ☆
- Kristofer Bouchard 🗐
- Eric Bridgeford 🕮 🥆
- Suyash Bhogawar 風冷人
- Vince D. Calhoun
- Alexander L. Cohen 🐙 🖳 🗐
- R. Cameron Craddock
- Sasha D'Ambrosio
- Samir Das 🕮
- Olivier David 🕮
- Orrin Devinsky 🕮
- Alejandro de la Vega 🎉 🖳 🛆

- Arnaud Delorme
- Benjamin Dichter
- Erin W. Dickie
- Eugene P. Duff
- Elizabeth DuPre 頭行Q@買
- Eric A. Earl 🔊
- Anders Eklund
- Oscar Esteban ∰\ூ♥呈
- Franklin W. Feingold TRAPO CONTROL
- Guillaume Flandin 🕮 🖳
- Adeen Flinker 🗐
- Brett L. Foster 🕮
- Remi Gau 🕮 🖳
- Satrajit S. Ghosh 🕮 🖳
- Tristan Glatard 🗏 🖳
- Mathias Goncalves 🖳 🥆 📢
- Krzysztof J. Gorgolewski 圖里專家Q內民心則
- Alexandre Gramfort
- Jeffrey S. Grethe
- Iris Groen 🕮
- David Groppe 🕮
- Aysegul Gunduz 🕮
- Yaroslav O. Halchenko
- Liberty Hamilton
- Daniel A. Handwerker
- Michael Hanke
- Michael P. Harms 🍱 🔨
- Richard N. Henson 🕮
- Peer Herholz Per 100 V
- Dora Hermes ■모✔♀◎
- Katja Heuer 🔨
- Richard Höchenberger 🕮
- Chris Holdgraf
- Christopher J. Honey 🗐
- Jean-Christophe Houde 📃
- International Neuroinformatics Coordinating Facility 🕲 📋
- Andrew Janke 🕮 🖳
- Mainak Jas ⊑
- Alexander Jones 🖳 🥒
- David Keator 🕮

- Robert Knight 🕮
- Jean-Philippe Lachaux 🗐
- Marc Lalancette
- Pamela LaMontagne
- Kevin Larcher 🗐
- Jonathan C. Lau 🕮
- Laura and John Arnold Foundation
- Christopher Lee-Messer
- Jon Haitz Legarreta 🖳
- Adam Li 🕮 🖳
- Xiangrui Li 🕮 🖳
- Vladimir Litvak 🕮
- Brian N. Lundstrom 🕮
- Dan Lurie @ 圖入切里. 專
- Camille Maumet 🕮
- Christopher J. Markiewicz 學學呈題為分類的人類
- Kai J. Miller 🕮
- Jeremy Moreau 🕮 🍞
- Zachary Michael 🕮
- Ezequiel Mikulan 🕮 🖳
- Michael P. Milham 🎖 🔍
- Henk Mutsaerts
- National Institute of Mental Health (5)
- Mikael Naveau 🥒
- B. Nolan Nichols 🕮
- Thomas E. Nichols
- Dylan Nielson 🕮 🖳 🥆
- Guiomar Niso
- Michael P. Notter
- Jeffrey G. Ojemann 🕮
- Robert Oostenveld 

   ★★★

   The content of the content
- Dimitri Papadopoulos Orfanos 興冷愛學
- Patrick Park 頭冷學
- Dianne Patterson 🗐
- John Pellman 🕮
- Cyril Pernet
- Franco Pestilli 圖里為不可含
- Natalia Petridou 🗐

- Dmitry Petrov <u>■</u><u>□</u>
- Christophe Phillips 💹
- Gio Piantoni 🕮
- Andrea Pigorini 🕮
- Russell A. Poldrack
- Jean-Baptiste Poline
- Wouter V. Potters
- Nader Pouratian 🗐
- Pradeep Reddy Raamana 🖳 🥆
- Vasudev Raguram 🖳 😂 🖺 🥆
- Nick F. Ramsey
- Kay Robbins 🖳 🌉 🧳
- Alex Rockhill
- Ariel Rokem 💹
- Matt Sanderson
- Gunnar Schaefer 💹
- Jan-Mathijs Schoffelen 🗐
- Robert E. Smith 🖳 💹
- Vanessa Sochat 🕮
- Arjen Stolk 🕮
- Nicole C. Swann 🕮
- François Tadel 🎟 🖙
- Roberto Toro 🔧
- Sébastien Tourbier © 00 🗱 🖳
- William Triplett
- Jessica A. Turner 🕮
- Max A. van den Boom 🖳 👀 🕮
- Bradley Voytek 🕮
- Brian A. Wandell 🕮
- Joseph Wexler
- Kirstie Whitaker
- Jonathan Winawer 🗐
- Gaël Varoquaux 🕮
- Lyuba Zehl 🕮
- Melanie Ganz-Benjaminsen 興場呈受力Q內
- Martin Noergaard ■場里 ☞ ♥

# Appendix II: Licenses

This section lists a number of common licenses for datasets and defines suggested abbreviations for use in the dataset metadata specifications.

Please note that this list only serves to provide some examples for possible licenses. The terms of any license should be consistent with the informed consent obtained from participants and any institutional limitations on distribution.

| Identifier | License name                                           | Description                                                                                                                                                             |
|------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PD         | Public Domain                                          | No license required for any purpose; the work is not subject to copyright in any jurisdiction.                                                                          |
| PDDL       | Open Data Commons Public Domain Dedication and License | License to assign public domain like permissions without giving up the copyright: http://opendatacommons.org/licenses/pddl/                                             |
| CC0        | Creative Commons Zero 1.0 Universal.                   | Use this if you are a holder of copyright or database rights, and you wish to waive all your interests in your work worldwide: http://opendatacommons.org/licenses/cc0/ |

# Appendix III: Hierarchical Event Descriptors

Hierarchical Event Descriptors (HED) are a controlled vocabulary of terms describing events in a machine-actionable form so that algorithms can use the information without manual recoding. HED was originally developed with EEG in mind, but is applicable to all behavioral experiments.

Each level of a hierarchical tag is delimited with a forward slash (/). A HED string contains one or more HED tags separated by commas (,). Parentheses (brackets, ()) group tags and enable specification of multiple items and their attributes in a single HED string (see section 2.4 in HED Tagging Strategy Guide). For more information about HED and tools available to validate and match HED strings, please visit www.hedtags.org. Since dedicated fields already exist for the overall task classification in the sidecar JSON files (CogAtlasID and CogPOID), HED tags from the Paradigm HED subcategory should not be used to annotate events.

### Annotating each event

There are several ways to associate HED annotations with events within the BIDS framework. The most direct way is to use the HED column of the \*\_events.tsv file to annotate events.

Example: An  $*_{events.tsv}$  annotated using HED tags for individual events.

```
1 onset duration HED
2 1.1 n/a Event/Category/Experimental stimulus, Event/Label/CrossFix, Sensory presentation/Visual, Item/Object/2D Shape/Cross
3 1.3 n/a Event/Category/Participant response, Event/Label/ButtonPress, Action/Button press
4 ...
```

The direct approach requires that each line in the events file be annotated. Since there are typically thousands of events in each experiment, this method of annotation is not convenient unless the annotations are automatically generated. Usually annotations that appear in the HED column are specific to each individual event. Information that is common to groups of events can be annotated by category. Numerical values associated with each event can be annotated by value type. Annotating by category and by valuegreatly reduces the effort required to HED tag data and improves the clarity for data users.

### Annotating events by categories

In many experiments, the event instances fall into a much smaller number of categories, and often these categories are labeled with numerical codes or short names. This categorical information usually corresponds to one or more columns in \*\_events.tsv representing categorical values. Instead of tagging this information for each individual event, you can assign HED tags for each distinct categorical value in an accompanying \*\_events.json sidecar and allow the analysis tools to make the association with individual event instances during analysis. The column name in the \*\_events.tsv identifies the type of categorical variable. The following \*\_events.tsv file has one categorical variable called mycodes that takes on three possible values: Fixation, Button, and Target.

Example: An \*\_events.tsv containing the mycodes categorical column.

```
      1 onset duration
      mycodes

      2 1.1 n/a
      Fixation

      3 1.3 n/a
      Button

      4 1.8 n/a
      Target

      5 ...
```

Example: An accompanying \*\_events.json sidecar describing the mycodes categorical variable.

```
1 {
 2
     "mycodes": {
          "LongName": "Local event type names",
 3
          "Description": "Main types of events that comprise a trial",
          "Levels": {
 5
             "Fixation": "Fixation cross is displayed",
 6
             "Target": "Target image appears",
             "Button": "Subject presses a button"
 8
         },
 9
          "HED": {
10
              "Fixation": "Event/Category/Experimental stimulus, Event/Label/CrossFix,
11
                 Event/Description/A cross appears at screen center to serve as a fixation point,
12
                 Sensory presentation/Visual, Item/Object/2D Shape/Cross,
13
                 Attribute/Visual/Fixation point, Attribute/Visual/Rendering type/Screen,
14
                 Attribute/Location/Screen/Center",
15
             "Target": "Event/Label/TargetImage, Event/Category/Experimental stimulus,
16
                 Event/Description/A white airplane as the RSVP target superimposed on a satellite image is displayed.,
17
                 Item/Object/Vehicle/Aircraft/Airplane, Participant/Effect/Cognitive/Target,
18
                 Sensory presentation/Visual/Rendering type/Screen/2D),
19
```

# Annotating events by value type

Each column of \*\_events.tsv containing non-categorical values usually represents a particular type of data, for example the speed of a stimulus object across the screen or the file name of the stimulus image. These variables could be annotated in the HED column of \*\_events.tsv. However, that approach requires repeating the values appearing in the individual columns in the HED column. A better approach is to annotate the type of value contained in each of these columns in the \*\_events.json sidecar. Value variables are annotated in a manner similar to categorical values, except that the HED string must contain exactly one # specifying a placeholder for the actual column values. Tools are responsible for substituting the actual column values for the # during analysis.

Example: An \*\_events.tsv containing a categorical column (trial\_type) and two value columns (response\_time and stim\_file).

```
onset duration trial_type response_time stim_file
1 1.2 0.6 go 1.435 images/red_square.jpg
3 5.6 0.6 stop 1.739 images/blue_square.jpg
```

Example: An accompanying \*\_events.json sidecar describing both categorical and value columns.

```
1 {
 2
      "trial type": {
 3
          "LongName": "Event category",
          "Description": "Indicator of type of action that is expected",
          "Levels": {
 5
 6
             "go": "A red square is displayed to indicate starting",
             "stop": "A blue square is displayed to indicate stopping",
 7
 8
         },
          "HED": {
 9
             "go": "Event/Category/Experimental stimulus, Event/Label/RedSquare,
10
             Event/Description/A red square is displayed to indicate starting,
11
             Sensory presentation/Visual, Item/Object/2D Shape/Square,
12
            Attribute/Visual/Color/Red, Attribute/Visual/Rendering type/Screen,
13
             Attribute/Location/Screen/Center",
14
             "stop": "Event/Category/Experimental stimulus, Event/Label/BlueSquare,
15
            Event/Description/A blue square is displayed to indicate stopping,
16
             Sensory presentation/Visual, Item/Object/2D Shape/Square,
17
```

```
Attribute/Visual/Color/Blue, Attribute/Visual/Rendering type/Screen,
18
            Attribute/Location/Screen/Center",
19
20
21
     },
     "response time": {
22
          "LongName": "Response time after stimulus",
23
          "Description": "Time from stimulus presentation until subject presses button",
24
          "Units": "ms".
25
          "HED": "Attribute/Response start delay/# ms, Action/Button press"
26
27
     },
     "stim file": {
28
          "LongName": "Stimulus file name",
29
          "Description": "Relative path of the stimulus image file",
30
          "HED": "Attribute/File/#"
31
32
     }
33
```

### Best practices

Most studies will have event categorical variables and value variables that are common across many of the datasets in the study. You should try to annotate these columns in a \*\_events.json sidecar as high in the study hierarchy as possible to avoid duplicate annotations. Annotations that can be placed in sidecars are preferred to those placed directly in the HED column, because they are simpler, more compact, and less prone to inconsistent annotation. Downstream tools should not distinguish between tags specified using the explicit HED column and the categorical specifications, but should form the union before analysis. Further, the inheritance principle applies, so the data dictionaries can appear higher in the BIDS hierarchy.

You should try to annotate in as much detail as possible. The HED path structure makes it easy for analysis tools to extract tags at different levels of detail: For example a user can consider extracting events associated with 2D shapes for stimuli, ignoring the particular color or shape details for the stimuli.

#### HED schema and HED versions

The HED vocabulary is specified by a HED schema, which delineates the allowed HED path strings. By default, BIDS uses the latest HED schema available in the hed-specification repository maintained by the hed-standard group.

You can override the default by providing a specific HED version number in the dataset\_description.json file using the HEDVersion field. The preferred approach is to validate with the latest version (the default), but to use the HEDVersion field to specify which version was used for later reference.

Example: The following dataset\_description.json file specifies that HED7.1.1.xml from the hed-specification repository should be used to validate the study event annotations.

```
1 {
2  "Name": "The mother of all experiments",
3  "BIDSVersion": "1.4.0",
```

```
4 "HEDVersion": "7.1.1" 5 }
```

# Appendix IV: Entity table

This section compiles the entities (key-value pairs) described throughout this specification, and establishes a common order within a filename. For example, if a file has an acquisition and reconstruction label, the acquisition entity must precede the reconstruction entity. REQUIRED and OPTIONAL entities for a given file type are denoted. Entity formats indicate whether the value is alphanumeric (<label>) or numeric (<index>).

A general introduction to entities is given in the section on file name structure, while entity definitions are in Appendix IX.

# Magnetic Resonance Imaging

| Entity                                                                                                 | Subject                          | Session                     | Task             | Acquisition                 | Contrast<br>Enhanc-<br>ing<br>Agent | Reconstruc            | Phase-<br>Encoding<br>ti <b>Di</b> rection | Run                         | Correspond<br>Modality | ling<br>Echo     | Recording                      |
|--------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|------------------|-----------------------------|-------------------------------------|-----------------------|--------------------------------------------|-----------------------------|------------------------|------------------|--------------------------------|
| Format  anat(T1w T2w T1rho T1map T2map T2star FLAIR FLASH PD PDmap PDT2 in- planeT1 in- planeT2 angio) | sub-<<br>label><br>REQUIREI      | ses-<<br>label><br>OPTIONAL | task-<<br>label> | acq-<<br>label><br>OPTIONAL | ce-<<br>label><br>OPTIONAL          | rec-< label> OPTIONAL | dir-<<br>label>                            | run-<<br>index><br>OPTIONAI | mod-<<br>label>        | echo-<<br>index> | recording<br>- <label></label> |
|                                                                                                        | en <b>rek)</b> UIREI<br>REQUIREI | O OPTIONAL<br>O OPTIONAL    |                  | OPTIONAL<br>OPTIONAL        |                                     | OPTIONAL              |                                            | OPTIONAI<br>OPTIONAI        | L OPTIONAI             |                  |                                |

| Entity                                                                                              | Subject             | Session              | Task     | Acquisition | Contrast<br>Enhanc-<br>ing<br>Agent | Reconstruct | Phase-<br>Encoding<br>i <b>Di</b> rection | Run      | Correspond<br>Modality | ing<br>Echo | Recording |
|-----------------------------------------------------------------------------------------------------|---------------------|----------------------|----------|-------------|-------------------------------------|-------------|-------------------------------------------|----------|------------------------|-------------|-----------|
| fmap(phase<br>phase1<br>phase2<br>magni-<br>tude1<br>magni-<br>tude2<br>magni-<br>tude<br>fieldmap) | ed <b>r£</b> QUIRED | OPTIONAL             |          | OPTIONAL    |                                     |             |                                           | OPTIONAL |                        |             |           |
| fmap(epi)<br>func(bold<br>cbv phase<br>sbref<br>events)                                             | •                   | OPTIONAL<br>OPTIONAL | REQUIRED |             | OPTIONAL<br>OPTIONAL                |             | REQUIRED<br>OPTIONAL                      |          |                        | OPTIONAL    |           |
| func(physic<br>stim)                                                                                | REQUIRED            | OPTIONAL             | REQUIRED | OPTIONAL    |                                     | OPTIONAL    |                                           | OPTIONAL |                        |             | OPTIONAL  |

# Encephalography (EEG, iEEG, and MEG) $\,$

| Entity         | Subject              | Session              | Task                                                                                                                                                             | Acquisition          | Run                  | Processed<br>(on device)                                            | Space    | Split    |
|----------------|----------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------------------------------------------------------------------|----------|----------|
| Format         | sub- <label></label> | ses- <label></label> | task- <label< th=""><th>acq-<label></label></th><th>run-<index></index></th><th>proc-<label< th=""><th>space-&lt;</th><th>split-&lt;</th></label<></th></label<> | acq- <label></label> | run- <index></index> | proc- <label< th=""><th>space-&lt;</th><th>split-&lt;</th></label<> | space-<  | split-<  |
|                |                      |                      | >                                                                                                                                                                |                      |                      | >                                                                   | label>   | index>   |
| eeg(eeg)       | REQUIRED             | OPTIONAL             | REQUIRED                                                                                                                                                         | OPTIONAL             | OPTIONAL             |                                                                     |          |          |
| ieeg(ieeg)     | REQUIRED             | OPTIONAL             | REQUIRED                                                                                                                                                         | OPTIONAL             | OPTIONAL             |                                                                     |          |          |
| meg(meg)       | REQUIRED             | OPTIONAL             | REQUIRED                                                                                                                                                         | OPTIONAL             | OPTIONAL             | OPTIONAL                                                            |          | OPTIONAL |
| meg(headshape  | e)REQUIRED           | OPTIONAL             |                                                                                                                                                                  | OPTIONAL             |                      |                                                                     | OPTIONAL |          |
| meg(markers)   | REQUIRED             | OPTIONAL             | OPTIONAL                                                                                                                                                         | OPTIONAL             |                      |                                                                     | OPTIONAL |          |
| channels(meg   | REQUIRED             | OPTIONAL             | REQUIRED                                                                                                                                                         |                      | OPTIONAL             |                                                                     |          |          |
| eeg ieeg)      |                      |                      |                                                                                                                                                                  |                      |                      |                                                                     |          |          |
| electrodes(eeg | REQUIRED             | OPTIONAL             |                                                                                                                                                                  | OPTIONAL             |                      |                                                                     | OPTIONAL |          |
| ieeg)          |                      |                      |                                                                                                                                                                  |                      |                      |                                                                     |          |          |
| events(meg     | REQUIRED             | OPTIONAL             | REQUIRED                                                                                                                                                         |                      | OPTIONAL             |                                                                     |          |          |
| eeg ieeg)      |                      |                      |                                                                                                                                                                  |                      |                      |                                                                     |          |          |

| Entity                 | Subject  | Session  | Task | Acquisition | Run | Processed<br>(on device) | Space | Split |
|------------------------|----------|----------|------|-------------|-----|--------------------------|-------|-------|
| photo(meg<br>eeg ieeg) | REQUIRED | OPTIONAL |      | OPTIONAL    |     |                          |       |       |

#### Behavioral Data

| Entity                              | Subject              | Session              | Task                  | Acquisition          | Run                  | Recording                          |
|-------------------------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|------------------------------------|
| Format                              | sub- <label></label> | ses- <label></label> | task- <label></label> | acq- <label></label> | run- <index></index> | recording- <label< th=""></label<> |
| beh(stim physio)<br>beh(events beh) | REQUIRED<br>REQUIRED | OPTIONAL<br>OPTIONAL | REQUIRED<br>REQUIRED  | OPTIONAL<br>OPTIONAL | OPTIONAL<br>OPTIONAL | OPTIONAL                           |

# Appendix V: Units

As described in the Units, the specification of units SHOULD follow the International System of Units (SI, abbreviated from the French Système international (d'unités)).

The CMIXF-12 convention for encoding units is RECOMMENDED to achieve maximum portability and limited variability of representation. If a CMIXF-12 representation of a unit is not possible, the unit can be declared as custom units and defined in an accompanying JSON file, as described in the units section. Earlier versions of the BIDS standard listed the following Unicode symbols, and these are still included for backwards compatibility:

- 1. U+03BC ( $\mu$ ) or U+00B5 ( $\mu$ )
- 2. U+03A9 ( $\Omega$ ) or U+2126 ( $\Omega$ )
- 3. U+00B0 (°)

Note that for the first two entries in this list, two characters are permissible for each, but the first character in each entry is preferred, per Unicode rules (see the section on "Duplicated Characters" on page 11 in the unicode report).

It is RECOMMENDED that units be CMIXF-12 compliant or among these five Unicode characters. Please note the appropriate upper- or lower- casing when using CMIXF-12.

For cases that are unspecified by this appendix or theunits section, the CMIXF-12 convention applies.

You can use the cmixf Python package to check whether your formatting is compliant.

Examples for CMIXF-12 (including the five unicode symbols mentioned above):

- 1. Different formatting of "micro Volts":
  - (a) RECOMMENDED: uV or  $\mu V$
  - (b) NOT RECOMMENDED: microV, µvolt or 1e-6V
- 2. Combinations of units:

- (a) RECOMMENDED: V/us for the Slew rate
- (b) NOT RECOMMENDED: volts per microsecond

# Unit table

| Unit name      | Unit symbol         | Quantity name                               |
|----------------|---------------------|---------------------------------------------|
| metre          | m                   | length                                      |
| kilogram       | kg                  | mass                                        |
| litre (liter)  | $\mathbf{L}$        | volume                                      |
| second         | S                   | time                                        |
| ampere         | A                   | electric current                            |
| kelvin         | K                   | thermodynamic temperature                   |
| mole           | mol                 | amount of substance                         |
| candela        | $\operatorname{cd}$ | luminous intensity                          |
| radian         | rad                 | angle                                       |
| steradian      | sr                  | solid angle                                 |
| hertz          | ${ m Hz}$           | frequency                                   |
| newton         | N                   | force, weight                               |
| pascal         | Pa                  | pressure, stress                            |
| joule          | J                   | energy, work, heat                          |
| watt           | W                   | power, radiant flux                         |
| coulomb        | $\mathbf{C}$        | electric charge or quantity of electricity  |
| volt           | V                   | voltage (electrical potential), emf         |
| farad          | F                   | capacitance                                 |
| ohm            | Ohm                 | resistance, impedance, reactance            |
| siemens        | S                   | electrical conductance                      |
| weber          | Wb                  | magnetic flux                               |
| tesla          | T                   | magnetic flux density                       |
| henry          | H                   | inductance                                  |
| degree Celsius | oC                  | temperature relative to $273.15~\mathrm{K}$ |
| lumen          | $\operatorname{lm}$ | luminous flux                               |
| lux            | lx                  | illuminance                                 |
| becquerel      | Bq                  | radioactivity (decays per unit time)        |
| gray           | Gy                  | absorbed dose (of ionizing radiation)       |
| sievert        | Sv                  | equivalent dose (of ionizing radiation)     |
| katal          | kat                 | catalytic activity                          |

# Prefixes

Multiples

| Prefix name | Prefix symbol | Factor |
|-------------|---------------|--------|
| deca        | da            | 101    |
| hecto       | h             | 102    |
| kilo        | k             | 103    |
| mega        | ${\bf M}$     | 106    |
| giga        | G             | 109    |
| tera        | T             | 1012   |
| peta        | P             | 1015   |
| exa         | ${ m E}$      | 1018   |
| zetta       | $\mathbf{Z}$  | 1021   |
| yotta       | Y             | 1024   |
|             |               |        |

Submultiples

| Prefix name | Prefix symbol | Factor  |
|-------------|---------------|---------|
| deci        | d             | 10-1    |
| centi       | c             | 10-2    |
| milli       | m             | 10-3    |
| micro       | u             | 10-6    |
| nano        | n             | 10-9    |
| pico        | p             | 10 - 12 |
| femto       | f             | 10 - 15 |
| atto        | a             | 10-18   |
| zepto       | $\mathbf{Z}$  | 10-21   |
| yocto       | У             | 10-24   |
|             |               |         |

# Appendix VI: MEG file formats

Each MEG system brand has specific file organization and data formats. RECOMMENDED values for manufacturer\_specific\_extensions:

| Value | Description                                                      |
|-------|------------------------------------------------------------------|
| ctf   | CTF (folder with .ds extension)                                  |
| fif   | Neuromag / Elekta / MEGIN and BabyMEG (file with extension .fif) |

| Value | Description                                                                 |
|-------|-----------------------------------------------------------------------------|
| 4d    | BTi / 4D Neuroimaging (folder containing multiple files without extensions) |
| kit   | KIT / Yokogawa / Ricoh (file with extension .sqd, .con, .raw, .ave or .mrk) |
| kdf   | KRISS (file with extension .kdf)                                            |
| itab  | Chieti system (file with extension .raw and .mhd)                           |

Below are specifications for each system brand.

#### CTF

Each experimental run with a CTF system yields a folder with a .ds extension, containing several files. The OPTIONAL digitized positions of the head points are usually stored in a separate .pos file, not necessarily within the .ds folder.

```
1 [sub-<label>[_ses-<label>]_headshape.pos]
2 sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_meg.ds>
```

CTF's data storage is therefore via directories containing multiple files. The files contained within a .ds directory are named such that they match the parent directory, but preserve the original file extension (for example, .meg4, .res4). The renaming of CTF datasets SHOULD be done with a specialized software such as the CTF newDs command-line application or MNE-BIDS.

### Example:

```
1 sub-control01/
2    ses-001/
3    sub-control01_ses-001_scans.tsv
4    meg/
5    sub-control01_ses-001_coordsystem.json
6    sub-control01_ses-001_headshape.pos
7    sub-control01_ses-001_task-rest_run-01_meg.ds
8    sub-control01_ses-001_task-rest_run-01_meg.json
9    sub-control01_ses-001_task-rest_run-01_channels.tsv
```

To learn more about CTF's data organization: http://www.fieldtriptoolbox.org/getting\_started/ctf

# Neuromag/Elekta/MEGIN

Neuromag/Elekta/MEGIN and Tristan Technologies BabyMEG data is stored as FIFF files with the extension .fif. The digitized positions of the head points are saved inside the FIFF file along with the MEG data, with typically no \_headshape file.

```
1 sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_meg.fif
```

#### Cross-talk and fine-calibration files

In case internal active shielding (IAS) was used during acquisition, raw FIFF files need to be processed using Maxwell filtering (signal-space separation, SSS) to make the data usable. To this end, two specific files are needed: The cross-talk file, and the fine-calibration file, both of which are produced by the MaxFilter software and the work of the Neuromag/Elekta/MEGIN engineers during maintenance of the MEG acquisition system. Both files are thus specific to the site of recording and may change in the process of regular system maintenance.

In BIDS, the cross-talk and fine-calibration files are shared unmodified, including their original extensions (.fif for cross-talk and .dat for fine-calibration), but with BIDS file naming convention and by using the acq entity.

- cross-talk file template: sub-<label>[\_ses-<label>]\_acq-crosstalk\_meg.fif
- fine-calibration file template: sub-<label>[\_ses-<label>]\_acq-calibration\_meg.dat

Note that cross-talk files MUST be denoted using acq-crosstalk and fine-calibration files MUST be denoted using acq-calibration.

The cross-talk and fine-calibration data MUST be stored in the subject-level meg folder, which may be nested inside a ses-<label> folder, as shown in the following examples.

```
1 sub-01/
 2
       meg/
 3
           sub-01_coordsystem.json
           sub-01_task-rest_meg.fif
           sub-01_task-rest_meg.json
 5
           sub-01_task-rest_channels.tsv
 6
           sub-01 acq-crosstalk meg.fif
 8
           sub-01 acq-calibration meg.dat
 9 sub-02/
10
       meg/
           sub-02 coordsystem.json
11
           sub-02 task-rest meg.fif
12
           sub-02 task-rest meg.json
13
           sub-02 task-rest channels.tsv
14
          sub-02 acq-crosstalk meg.fif
15
           sub-02 acg-calibration meg.dat
16
```

```
1 sub-01/
2 ses-01/
3 sub-01_ses-01_scans.tsv
4 meg/
5 sub-01_ses-01_coordsystem.json
6 sub-01_ses-01_task-rest_run-01_meg.fif
```

```
sub-01_ses-01_task-rest_run-01_meg.json
               sub-01_ses-01_task-rest_run-01_channels.tsv
 8
              sub-01 ses-01 acq-crosstalk meg.fif
 9
              sub-01 ses-01 acq-calibration meg.dat
10
      ses-02/
11
12
          sub-01 ses-02 scans.tsv
13
          meg/
              sub-01 ses-02 coordsystem.json
14
              sub-01_ses-02_task-rest_run-01_meg.fif
15
              sub-01 ses-02 task-rest run-01 meg.json
16
              sub-01 ses-02 task-rest run-01 channels.tsv
17
              sub-01_ses-02_acq-crosstalk_meg.fif
18
              sub-01 ses-02 acg-calibration meg.dat
19
```

Sharing FIFF data after signal-space separation (SSS)

After applying SSS (for example, by using the MaxFilter software), files SHOULD be renamed with the corresponding label (for example, proc-sss) and placed in a derivatives subfolder.

#### Example:

```
1 sub-control01_ses-001_task-rest_run-01_proc-sss_meg.fif
2 sub-control01_ses-001_task-rest_run-01_proc-sss_meg.json
```

Split files

In the case of long data recordings that exceed a file size of 2Gb, the .fif files are conventionally split into multiple parts. For example:

```
1 some_file.fif
2 some_file-1.fif
```

Each of these files has an internal pointer to the next file. This is important when renaming these split recordings to the BIDS convention. Instead of a simple renaming, files should be read in and saved under their new names with dedicated tools like MNE, which will ensure that not only the file names, but also the internal file pointers will be updated.

It is RECOMMENDED that FIFF files with multiple parts use the split-<index> entity to indicate each part.

#### Example:

```
1 sub-control01_ses-001_task-rest_run-01_split-01_meg.fif
2 sub-control01_ses-001_task-rest_run-01_split-02_meg.fif
```

More information can be found under the following links:

- Neuromag/Elekta/MEGIN data organization
- BabyMEG

#### Recording dates in .fif files

It is important to note that recording dates in .fif files are represented as int32 format seconds since (or before) the Epoch (1970-01-01T00:00:00.000000 UTC). Integers in int32 format can encode values from -2,147,483,647 to +2,147,483,647. Due to this representation, the Neuromag/Elekta/MEGIN file format for MEG (.fif) does not support recording dates earlier than 1901-12-13T08:45:53.000000 UTC or later than 2038-01-19T03:14:07.000000 UTC.

## BTi/4D neuroimaging

Each experimental run on a 4D neuroimaging/BTi system results in a folder containing multiple files without extensions.

```
1 [sub-<label>[_ses-<label>]_headshape.pos]
2 sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_meg>
```

One SHOULD rename/create a father run specific directory and keep the original files for each run inside (for example, c,rfhp0.1Hz, config and hs\_file).

#### Example:

```
sub-control01/
ses-001/
sub-control01_ses-001_scans.tsv
meg/
sub-control01_ses-001_coordsystem.json
sub-control01_ses-001_headshape.pos
sub-control01_ses-001_task-rest_run-01_meg
sub-control01_ses-001_task-rest_run-01_meg.json
sub-control01_ses-001_task-rest_run-01_channels.tsv
```

#### Where:

```
1 sub-control01_ses-001_task-rest_run-01_meg/
2     config
3     hs_file
4     e,rfhp1.0Hz.COH
5     c,rfDC
```

More about the 4D neuroimaging/BTi data organization at: http://www.fieldtriptoolbox.org/getting\_started/bti

## KIT/Yokogawa/Ricoh

Each experimental run on a KIT/Yokogawa/Ricoh system yields a raw (.sqd, .con) file with its associated marker coil file(s) (.sqd, .mrk), which contains coil positions in the acquisition system's native space. Head points and marker points in head space are acquired using third-party hardware.

Example:

```
1 sub-control01/
      ses-001/
2
3
          sub-control01 ses-001 scans.tsv
          meg/
4
              sub-control01 ses-001 coordsystem.json
5
              sub-control01 ses-001 headshape.txt
6
              sub-control01_ses-001_task-rest_run-01_meg
8
              sub-control01_ses-001_task-rest_run-01_meg.json
9
              sub-control01_ses-001_task-rest_run-01_channels.tsv
              sub-control01_ses-001_task-rest[_acq-<label>]_run-01_markers.<mrk,sqd>
10
              sub-control01_ses-001_task-rest_run-01_meg.<con,sqd>
```

If there are files with multiple marker coils, the marker files must have the acq-<label> parameter and no more that two marker files may be associated with one raw data file. While the acquisition parameter can take any value, it is RECOMMENDED that if the two marker measurements occur before and after the raw data acquisition, pre and post are used to differentiate the two situations.

More about the KIT/Yokogawa/Ricoh data organization at: http://www.fieldtriptoolbox.org/getting\_started/yokogawa

#### **KRISS**

Each experimental run on the KRISS system produces a file with extension .kdf. Additional files can be available in the same folder: the digitized positions of the head points (\\_digitizer.txt), the position of the center of the MEG coils (.chn) and the event markers (.trg).

```
1 [sub-<label>[_ses-<label>]_headshape.txt]
2 sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_meg.kdf
3 sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_meg.chn
4 sub-<label>[_ses-<label>]_task-<label>[_run-<index>]_meg.trg
5 sub-<label>[_ses-<label>]_task-<label>[_acq-<label>]_digitizer.txt
```

Example:

```
1 sub-control01/
      ses-001/
 2
          sub-control01 ses-001 scans.tsv
 3
          meg/
 4
              sub-control01 ses-001 coordsystem.json
 5
              sub-control01 ses-001 headshape.txt
 6
              sub-control01 ses-001 task-rest run-01 meg
 7
              sub-control01 ses-001 task-rest run-01 meg.json
 8
              sub-control01_ses-001_task-rest_run-01_channels.tsv
 9
              sub-control01_ses-001_task-rest_run-01_meg.chn
10
              sub-control01 ses-001 task-rest run-01 meg.kdf
11
              sub-control01_ses-001_task-rest_run-01_meg.trg
12
13
              sub-control01 ses-001 task-rest digitizer.txt
```

#### ITAB

Each experimental run on a ITAB-ARGOS153 system yields a raw (.raw) data file plus an associated binary header file (.mhd). The raw data file has an ASCII header that contains detailed information about the data acquisition system, followed by binary data. The associated binary header file contains part of the information from the ASCII header, specifically the one needed to process data, plus other information on offline preprocessing performed after data acquisition (for example, sensor position relative to subject's head, head markers, stimulus information).

## Example:

```
1 sub-control01/
2
     ses-001/
         sub-control01_ses-001_coordsystem.json
3
         sub-control01_ses-001_headshape.txt
4
         sub-control01_ses-001_task-rest_run-01_meg
5
         sub-control01 ses-001 task-rest run-01 meg.json
6
7
         sub-control01 ses-001 task-rest run-01 channels.tsv
         sub-control01 ses-001 task-rest run-01 meg.raw
8
         sub-control01 ses-001 task-rest run-01 meg.raw.mhd
9
```

## Aalto MEG-MRI

For stand-alone MEG data, the Aalto hybrid device uses the standard .fif data format and follows the conventions of Elekta/Neuromag as described above. The .fif files may contain unreconstructed MRI data. The inclusion of MRI data and information for accurate reconstruction will be fully standardized at a later stage.

# Appendix VII: MEG systems

Perferred names of MEG systems comprise restricted keywords for Manufacturer field in the \*\_meg.json file:

- CTF
- Neuromag/Elekta/Megin
- BTi/4D
- KIT/Yokogawa/Ricoh
- KRISS
- ITAB
- Aalto/MEG-MRI
- Other

Restricted keywords for ManufacturersModelName field in the \*\_meg.json file:

| System Model Name     | Manufacturer          | Details                                       |
|-----------------------|-----------------------|-----------------------------------------------|
| CTF-64                | CTF                   |                                               |
| CTF-151               | $\operatorname{CTF}$  | https://www.ctf.com/products                  |
| CTF-275               | $\operatorname{CTF}$  | CTF-275: OMEGA 2000                           |
| Neuromag-122          | Neuromag/Elekta/Megin |                                               |
| ElektaVectorview      | Neuromag/Elekta/Megin | 102  magnetometers + 204  planar gradiometers |
| ElektaTRIUX           | Neuromag/Elekta/Megin | https://www.elekta.com/diagnostic-solutions/  |
| 4D-Magnes-WH2500      | BTi/4D                |                                               |
| 4D-Magnes-WH3600      | BTi/4D                |                                               |
| KIT-157               | KIT/Yokogawa          |                                               |
| KIT-160               | KIT/Yokogawa          |                                               |
| KIT-208               | KIT/Yokogawa          |                                               |
| ITAB-ARGOS153         | ITAB                  |                                               |
| Aalto-MEG-MRI-YYYY/MM | Aalto/MEG-MRI         | YYYY-MM (year, month; or major version)       |

# Appendix VIII: Coordinate systems

#### Introduction

To interpret a coordinate (x, y, z), it is required that you know (1) relative to which origin the coordinate is expressed, (2) the interpretation of the three axes, and (3) the units in which the numbers are expressed. This information is sometimes called the coordinate system.

These letters help describe the coordinate system definition:

- A/P means anterior/posterior
- L/R means left/right
- S/I means superior/inferior

For example: RAS means that the first dimension (X) points towards the right hand side of the head, the second dimension (Y) points towards the Anterior aspect of the head, and the third dimension (Z) points towards the top of the head. The directions are considered to be from the subject's perspective. For example, in the RAS coordinate system, a point to the subject's left will have a negative x value.

Besides coordinate systems, defined by their origin and direction of the axes, BIDS defines "spaces" as an artificial frame of reference, created to describe different anatomies in a unifying manner (see for example, doi:10.1016/j.neuroimage.2012.01.024).

The "space" and all coordinates expressed in this space are by design a transformation of the real world geometry, and nearly always different from the individual subject space that it stems from. An example is the Talairach-Tournoux space, which is constructed by piecewise linear scaling of an individual's brain to that of the Talairach-Tournoux 1988 atlas. In the Talairach-Tournoux space, the origin of the coordinate system is at the AC and units are expressed in mm.

The coordinate systems below all relate to neuroscience and therefore to the head or brain coordinates. Please be aware that all data acquisition starts with "device coordinates" (scanner), which does not have to be identical to the initial "file format coordinates" (DICOM), which are again different from the "head" coordinates (for example, NIFTI). Not only do device coordinate vary between hardware manufacturers, but also the head coordinates differ, mostly due to different conventions used in specific software packages developed by different (commercial or academic) groups.

## Coordinate Systems applicable to MEG, EEG, and iEEG

Generally, across the MEG, EEG, and iEEG modalities, the first two pieces of information for a coordinate system (origin and orientation) are specified in <datatype>CoordinateUnits. Here, <datatype> can be one of MEG, EEG, or iEEG, depending on the modality that is being used.

Allowed values for the <datatype>CoordinateSystem field come from a list of restricted keywords, as listed in the sections below. If no value from the list of restricted keywords fits, there is always the option to specify the value as follows:

• Other: Use this for other coordinate systems and specify further details in the <datatype>CoordinateSystemDescription field

If you believe a specific coordinate system should be added to the list of restricted keywords for MEG, EEG, or iEEG, please open a new issue on the bids-standard/bids-specification GitHub repository.

## MEG Specific Coordinate Systems

Restricted keywords for the <datatype>CoordinateSystem field in the coordinateSystem.json file for MEG datasets:

- CTF: ALS orientation and the origin between the ears
- ElektaNeuromag: RAS orientation and the origin between the ears
- 4DBti: ALS orientation and the origin between the ears
- KitYokogawa: ALS orientation and the origin between the ears
- ChietiItab: RAS orientation and the origin between the ears

Note that the short descriptions above do not capture all details, There are detailed extensive descriptions of these EEG coordinate systems on the FieldTrip toolbox web page

## **EEG Specific Coordinate Systems**

Restricted keywords for the <datatype>CoordinateSystem field in the coordsystem.json file for EEG datasets:

• CapTrak: RAS orientation and the origin between the ears

Note that the short descriptions above do not capture all details, There are detailed extensive descriptions of these EEG coordinate systems on the FieldTrip toolbox web page.

## iEEG Specific Coordinate Systems

 $Restricted \ keywords \ for \ the \ \verb|\datatype| > CoordinateSystem \ field \ in \ the \ coordsystem. \ json \ file \ for \ iEEG \ datasets:$ 

• Pixels: If electrodes are localized in 2D space (only x and y are specified and z is n/a), then the positions in this file must correspond to the locations expressed in pixels on the photo/drawing/rendering of the electrodes on the brain. In this case, coordinates must be (row,column) pairs, with (0,0) corresponding to the upper left pixel and (N,0) corresponding to the lower left pixel.

• ACPC: The origin of the coordinate system is at the Anterior Commissure and the negative y-axis is passing through the Posterior Commissure. The positive z-axis is passing through a mid-hemispheric point in the superior direction. The anatomical landmarks are determined in the individual's anatomical scan and no scaling or deformations have been applied to the individual's anatomical scan. For more information, see the ACPC site on the FieldTrip toolbox wiki.

## Image-based Coordinate Systems

The transformation of the real world geometry to an artificial frame of reference is described in <datatype>CoordinateSystem. Unless otherwise specified below, the origin is at the AC and the orientation of the axes is RAS. Unless specified explicitly in the sidecar file in the <datatype>CoordinateUnits field, the units are assumed to be mm.

## Standard template identifiers

| Coordinate System       | Description                                                                                                                                                                                                                                                                                |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICBM452AirSpace         | Reference space defined by the "average of 452 T1-weighted MRIs of normal young adult brains" with "linear transforms of the subjects into the atlas space using a 12-parameter affine transformation" https://www.loni.usc.edu/research/atlases                                           |
| ICBM452Warp5Space       | Reference space defined by the "average of 452 T1-weighted MRIs of normal young adult brains" "based on a 5th order polynomial transformation into the atlas space" https://www.loni.usc.edu/research/atlases                                                                              |
| IXI549Space             | Reference space defined by the average of the "549 () subjects from the IXI dataset" linearly transformed to ICBM MNI 452.Used by SPM12. http://www.brain-development.org/                                                                                                                 |
| fsaverage [3 4 5 6 sym] | NOT RECOMMENDED, please use fsaverage without modifiers. Images were sampled to the FreeSurfer surface reconstructed from the subject's T1w image, and registered to an fsaverage template                                                                                                 |
| fsaverage               | The fsaverage is a dual template providing both volumetric and surface coordinates references. The volumetric template corresponds to a FreeSurfer variant of MNI305 space. The fsaverage atlas also defines a surface reference system (formerly described as fsaverage[3 4 5 6 sym]).    |
| fsaverageSym            | The fsaverage is a dual template providing both volumetric and surface coordinates references. The volumetric template corresponds to a FreeSurfer variant of MNI305 space. The fsaverageSym atlas also defines a symmetric surface reference system (formerly described as fsaveragesym). |

| Coordinate System             | Description                                                                            |
|-------------------------------|----------------------------------------------------------------------------------------|
| fsLR                          | The fsLR is a dual template providing both volumetric and surface coordinates          |
|                               | references. The volumetric template corresponds to MNI152NLin6Asym. Surface            |
|                               | templates are given at several sampling densities: 164k (used by HCP pipelines         |
|                               | for $3T$ and $7T$ anatomical analysis), $59k$ (used by HCP pipelines for $7T$ MRI      |
|                               | bold and DWI analysis), 32k (used by HCP pipelines for 3T MRI bold and DWI             |
|                               | analysis), or 4k (used by HCP pipelines for MEG analysis) fsaverage_LR                 |
|                               | surface reconstructed from the T1w image.                                              |
| MNIColin27                    | Average of 27 T1 scans of a single subject                                             |
|                               | http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27Highres                            |
| MNI152Lin                     | Also known as ICBM (version with linear coregistration)                                |
|                               | http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152Lin                                |
| MNI152NLin2009[a-c][Sym Asym] | Also known as ICBM (non-linear coregistration with 40 iterations, released in          |
|                               | 2009). It comes in either three different flavours each in symmetric or                |
|                               | asymmetric version.                                                                    |
|                               | http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009                           |
| MNI152NLin6Sym                | Also known as symmetric ICBM 6th generation (non-linear coregistration).               |
|                               | Used by SPM99 - SPM8.                                                                  |
|                               | http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin6                              |
| MNI152NLin6ASym               | A variation of MNI152NLin6Sym built by A. Janke that is released as the MNI            |
|                               | template of FSL. Volumetric templates included with HCP-Pipelines                      |
|                               | correspond to this template too. See doi:10.1016/j.neuroimage.2012.01.024.             |
| MNI305                        | Also known as avg305.                                                                  |
| NIHPD                         | Pediatric templates generated from the NIHPD sample. Available for different           |
|                               | age groups (4.5–18.5 y.o., 4.5–8.5 y.o., 7–11 y.o., 7.5–13.5 y.o., 10–14 y.o., 13–18.5 |
|                               | y.o. This template also comes in either -symmetric or -asymmetric flavor.              |
|                               | http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj1                                |
| OASIS30AntsOASISAnts          | https://figshare.com/articles/ANTs_ANTsR_Brain_Templates/915436                        |
| OASIS30Atropos                | https://mindboggle.info/data.html                                                      |
| Talairach                     | Piecewise linear scaling of the brain is implemented as described in TT88.             |
|                               | http://www.talairach.org/                                                              |
| UNCInfant                     | Infant Brain Atlases from Neonates to 1- and 2-year-olds.                              |
|                               | https://www.nitrc.org/projects/pediatricatlas                                          |
| UNCInfant[0 1 2]V[21 22 23]   | NOT RECOMMENDED, please use UNCInfant without modifiers. Infant Brain                  |
|                               | Atlases from Neonates to 1- and 2-year-olds.                                           |
|                               | https://www.nitrc.org/projects/pediatricatlas                                          |

The following template identifiers are retained for backwards compatibility of BIDS implementations. Their use is NOT RECOMMENDED for new BIDS datasets and tooling, but their presence MUST NOT produce a validation error.

| Coordinate System           | Recommended identifier |
|-----------------------------|------------------------|
| fsaverage[3 4 5 6 sym]      | fsaverage[Sym]         |
| UNCInfant[0 1 2]V[21 22 23] | UNCInfant              |

## Nonstandard coordinate system identifiers

The following template identifiers are RECOMMENDED for individual- and study-specific reference spaces. In order for these spaces to be interpretable, SpatialReference metadata MUST be provided, as described in Common file level metadata fields.

In the case of multiple study templates, additional names may need to be defined.

| Coordinate System | Description                                                                                                                                                                                                                            |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| individual        | Participant specific anatomical space (for example derived from T1w and/or T2w images). This coordinate system requires specifying an additional, participant-specific file to be fully defined. In context of surfaces this space has |
| study             | been referred to as fsnative.<br>Custom space defined using a group/study-specific template. This coordinate<br>system requires specifying an additional file to be fully defined.                                                     |

## Non-template coordinate system identifiers

The scanner coordinate system is implicit and assumed by default if the derivative filename does not define any space-<label>. Please note that space-scanner SHOULD NOT be used, it is mentioned in this specification to make its existence explicit.

| Coordinate System | Description                                                                                                                                                                                              |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| scanner           | The intrinsic coordinate system of the original image (the first entry of RawSources) after reconstruction and conversion to NIfTI or equivalent for the case of surfaces and dual volume/surface files. |

## Appendix IX: Entities

This section compiles the entities (key-value pairs) described throughout this specification, and describes each.

A general introduction to entities is given in the section on file name structure.

The ordering of entities and whether it is allowed, OPTIONAL, or REQUIRED for each is given in the Entity Table.

sub

Full name: Subject

Format: sub-<label>

Definition: A person or animal participating in the study.

ses

Full name: Session

Format: ses-<label>

Definition: A logical grouping of neuroimaging and behavioral data consistent across subjects. Session can (but doesn't have to) be synonymous to a visit in a longitudinal study. In general, subjects will stay in the scanner during one session. However, for example, if a subject has to leave the scanner room and then be re-positioned on the scanner bed, the set of MRI acquisitions will still be considered as a session and match sessions acquired in other subjects. Similarly, in situations where different data types are obtained over several visits (for example fMRI on one day followed by DWI the day after) those can be grouped in one session. Defining multiple sessions is appropriate when several identical or similar data acquisitions are planned and performed on all -or most-subjects, often in the case of some intervention between sessions (for example, training).

task

Full name: Task

Format: task-<label>

Definition: Each task has a unique label that MUST only consist of letters and/or numbers (other characters, including spaces and underscores, are not allowed). Those labels MUST be consistent across subjects and sessions.

acq

Full name: Acquisition
Format: acq-<label>

Definition: The acq-<label> key/value pair corresponds to a custom label the user MAY use to distinguish a different set of parameters used for acquiring the same modality. For example this should be used when a study includes two T1w images - one full brain low resolution and and one restricted field of view but high resolution. In such case two files could have the following names: sub-01\_acq-highres\_T1w.nii.gz and sub-01\_acq-lowres\_T1w.nii.gz, however the user is free to choose any other label than highres and lowres as long as they are consistent across subjects and sessions. In case different sequences are used to record the same modality (for example, RARE and FLASH for T1w) this field can also be used to make that distinction. At what level of detail to make the distinction (for example, just between RARE and FLASH, or between RARE, FLASH, and FLASHsubsampled) remains at the discretion of the researcher.

ce

Full name: Contrast Enhancing Agent

Format: ce-<label>

Definition: The ce-<label> key/value can be used to distinguish sequences using different contrast enhanced images. The label is the name of the contrast agent. The key ContrastBolusIngredient MAY be also be added in the JSON file, with the same label.

rec

Full name: Reconstruction

Format: rec-<label>

Definition: The rec-<label> key/value can be used to distinguish different reconstruction algorithms (for example ones using motion correction).

dir

Full name: Phase-Encoding Direction

Format: dir-<label>

Definition: The dir-<label> key/value can be used to distinguish different phase-encoding directions.

run

Full name: Run

Format: run-<index>

Definition: If several scans of the same modality are acquired they MUST be indexed with a key-value pair: \_run-1, \_run-2, ..., \_run-<index> (only nonnegative integers are allowed for the <index>). When there is only one scan of a given type the run key MAY be omitted.

#### mod

Full name: Corresponding Modality

Format: mod-<label>

Definition: The mod-<label> key/value pair corresponds to modality label for defacing masks, for example, T1w, inplaneT1, referenced by a defacemask image. For example, sub-01\_mod-T1w\_defacemask.nii.gz.

## echo

Full name: Echo

Format: echo-<index>

Definition: Multi-echo data MUST be split into one file per echo. Each file shares the same name with the exception of the \_echo-<index> key/value. Please note that the <index> denotes the number/index (in the form of a nonnegative integer) of the echo not the echo time value which needs to be stored in the field EchoTime of the separate JSON file.

## recording

Full name: Recording

Format: recording-<label>

Definition: More than one continuous recording file can be included (with different sampling frequencies). In such case use different labels. For example: \_recording-contrast, \_recording-saturation.

proc

Full name: Processed (on device)

Format: proc-<label>

Definition: The proc label is analogous to rec for MR and denotes a variant of a file that was a result of particular processing performed on the device. This is useful for files produced in particular by Elekta's MaxFilter (for example, sss, tsss, trans, quat or mc), which some installations impose to be run on raw data because of active shielding software corrections before the MEG data can actually be exploited.

space

Full name: Space

Format: space-<label>

Definition: The space label (\*[\_space-<label>]\_electrodes.tsv) can be used to indicate the way in which electrode positions are interpreted. The space label needs to be taken from the list in Appendix VIII.

split

Full name: Split

Format: split-<index>

Definition: In the case of long data recordings that exceed a file size of 2Gb, the .fif files are conventionally split into multiple parts. Each of these files has an internal pointer to the next file. This is important when renaming these split recordings to the BIDS convention.

Instead of a simple renaming, files should be read in and saved under their new names with dedicated tools like MNE, which will ensure that not only the file names, but also the internal file pointers will be updated. It is RECOMMENDED that .fif files with multiple parts use the split-<index> entity to indicate each part.

## Changelog

#### v1.4.1 (2020-10-13)

- [INFRA] minor robustness enhancements to pdf build shell script #642 (yarikoptic)
- [FIX] consistent CoordinateSystem fields for ephys #641 (sappelhoff)
- [INFRA] set up github action to detect latin phrases #636 (Remi-Gau)
- [ENH] Add a definition for "deprecation" #634 (sappelhoff)
- [MISC] consolidate BIDS citations in introduction #630 (sappelhoff)
- [FIX] URI "definition" and recommendation #629 (Remi-Gau)
- [FIX] change remaining latin expressions (etc and i.e.) #628 (Remi-Gau)
- [FIX] replace "e.g.," by "for example" #626 (Remi-Gau)
- [FIX] arrays of 3D coordinates MUST supply numeric values in x, y, z order #623 (sappelhoff)
- [FIX] Accidentally swapped Neuromag/Elekta/MEGIN cross-talk & fine-calibration filename extensions #621 (hoechenberger)
- [FIX] improve HED documentation #619 (VisLab)
- [INFRA] Move MRI section headings up a level #618 (tsalo)
- [INFRA] SCHEMA: Declare entities by concept names, add entity field for filename components #616 (effigies)
- [FIX] Change wrong text references from \*CoordinateSystemUnits to \*CoordinateUnits #614 (sappelhoff)
- [ENH] Describe arbitrary units in Common Principles #606 (tsalo)
- [FIX] Clarify data types and requirement levels for all JSON files #605 (sappelhoff)
- [INFRA] downgrade github-changelog-generator to 1.14.3 due to issue with 1.15.2 #600 (sappelhoff)
- [FIX] tighter rules for sharing MEG cross-talk and fine-calibration .fif files #598 (sappelhoff)
- [MISC] Add tsalo as a BIDS maintainer #597 (tsalo)
- [FIX] clarify definition of events in common principles #595 (sappelhoff)
- [INFRA] use --release-branch option in github-changelog-generator #594 (sappelhoff)
- [ENH] Define "modality" and clarify "data type" #592 (effigies)
- [FIX] Adjust index definition to be nonnegative integer #590 (nicholst)
- [MISC] fix links, make json object links consistent, fix pandoc rendering #587 (sappelhoff)
- [FIX] Fix link in Common principles #583 (tsalo)
- $\bullet \ [ENH] \ Specify \ how \ to \ share \ cross-talk \ and \ fine-calibration \ for \ Neuromag/Elekta/MEGIN \ data \ \#581 \ (sappelhoff)$
- [ENH] Specify echo and run indices are nonnegative integers in schema #578 (tsalo)
- [ENH] add optional presentation software name, version, OS, and code to events.json #573 (Remi-Gau)
- [ENH] added PPG as an accepted channel type for EEG, MEG and iEEG #570 (robertoostenveld)
- [INFRA] Move entity definitions to a separate page #568 (tsalo)
- [INFRA] enable pandoc emojis for the pdf build #562 (sappelhoff)
- $\bullet$  [INFRA] Auto adjust table fences before PDF conversion #560 (sebastien tourbier)
- [ENH] Support run and acq entities in behavior-only data #556 (tsalo)
- [FIX] Clarify requirement levels for TSV metadata fields #555 (sappelhoff)
- [FIX] Reorganize rec, ce entities, \_defacemask #550 (emdupre)
- [FIX] Clarify Upper-casing of Channels.tsv Channel Type #548 (adam2392)
- [ENH] Extend date time information to include optional UTC syntax, warn about FIF requirements #546 (sappelhoff)
- [FIX] clarify that \<physio|stim>.json is REQUIRED #542 (sappelhoff)
- [FIX] Replace all non-breaking spaces with vanilla spaces #536 (nicholst)

- [FIX] Clarify indices are nonnegative integers. #535 (nicholst)
- [FIX] Clarify use of session entity in file names #532 (Moo-Marc)
- [ENH] Add the ability of users to specify an explicit HED.xml schema for validation. #527 (VisLab)
- [FIX] clarify that scans.json is allowed and recommended #523 (sappelhoff)
- [INFRA] add copyright holder to license. #521 (sappelhoff)
- [FIX] clarify XXXCoord\* in the coordinate systems appendix #520 (sappelhoff)
- [ENH] Update beh/ specification to contrast with any neural recordings #515 (effigies)
- [Fix] 'segmentation' spelling in 05-derivatives/03-imaging.md #514 (rwblair)
- [FIX] restructure and clarify \*\_physio/\*\_stim section #513 (sappelhoff)
- [FIX] clarify file formats in EEG, iEEG #511 (sappelhoff)
- [Fix] Add links and release dates to pre GH changelog, fix formatting #509 (sappelhoff)
- [FIX] Clarify that acq\\_time in scans.json refers to first data point acquired #506 (tsalo)
- [INFRA] make circle artifact link a GH action, point to pdf #505 (sappelhoff)
- [FIX] Typos in DECISION-MAKING file #504 (tsalo)
- [ENH] Add Commenting on a PR to CONTRIBUTING.md #490 (franklin-feingold)
- [FIX] clarify MEG empty-room recording naming conventions #480 (sappelhoff)
- [INFRA] Convert entity table to yaml #475 (tsalo)
- [FIX] Recommend SI units formatting to adhere to CMIXF-12 #411 (sappelhoff)

#### v1.4.0 (2020-06-11)

- $\bullet$  [FIX] Clarify language on unsetting a key/value pair #495 (nicholst)
- $\bullet$  [ENH] optionally allow LICENSE file #483 (sappelhoff)
- $\bullet$  [INFRA] linkchecker ignore github pull and tree URLs #477 (yarikoptic)
- $\bullet$  [ENH] Allow fractional seconds in scans file date times #470 (tsalo)
- [MISC] Maintainers Scope responsibility #467 (franklin-feingold)
- [FIX] Align tables in MRI section #465 (sappelhoff)
- [FIX] Drop \\_part- reference from example, introduce \\_split- entity #460 (sappelhoff)
- [FIX] clarify participants tsv+json with examples and recommendations #459 (sappelhoff)
- [FIX] Remove BESA from list of restricted keywords of EEG coordsystems #457 (sappelhoff)
- [INFRA] add steps for release protocol (PDF upload) #455 (sappelhoff)
- [FIX] Add reference to PDF on front page of specification #452 (nicholst)
- [INFRA] Add conditional for link-checking releases #451 (franklin-feingold)
- [FIX] unordered list formatting in BEP018 #449 (sappelhoff)
- [FIX] fix inconsistencies for task label between sections #446 (Remi-Gau)
- [FIX] update DECISION-MAKING.md document with new governance #441 (sappelhoff)
- [ENH] BEP 003: Common Derivatives #265 (effigies)
- $\bullet$  [ENH] Add Glossary of terms/abbreviations used in the specification #152 (yarikoptic)

#### v1.3.0 (2020-04-14)

- [INFRA] add zenodo badge to README #447 (sappelhoff)
- [MISC] Added contributors from VisLab #444 (VisLab)
- [FIX] Clarify snake case+CamelCase in TSV+JSON #442 (sappelhoff)
- [FIX] Eliminate web/online-specific language #437 (nicholst)
- [INFRA] ensure build docs pdf CircleCI job runs last #436 (sappelhoff)
- [INFRA] Add issue templates for GitHub #434 (sappelhoff)
- [INFRA] Get latest PDF build from CircleCI artifacts #433 (sappelhoff)
- [INFRA] Update release protocol #432 (franklin-feingold)
- [INFRA] add support for building PDF versions of the spec #431 (Arshitha)
- [ENH] Explicitly mention bids-validator and update link #428 (sappelhoff)
- [INFRA] use new bids-maintenance GitHub account to take over automatic work #426 (sappelhoff)
- $\bullet$  [FIX] Unify section titles and table-of-contents entries #422 (nicholst)
- [INFRA] add # before heading in CHANGES #419 (sappelhoff)
- [INFRA] fix heading of auto changelog to be a markdown header #417 (sappelhoff)
- [ENH] Add OPTIONAL EthicsApprovals field to dataset description #412 (effigies)
- [ENH] BEP 018 Genetic Information #395 (effigies)

#### v1.2.2 (2020-02-12)

- [FIX] improve wording on data dictionaries #410 (sappelhoff)
- [MISC] update contributions by CPernet #409 (CPernet)
- [MISC] Add Sébastien Tourbier to contributors #394 (sebastientourbier)
- $\bullet \ [FIX] \ consistent \ units \ description \ between \ EEG/MEG/iEEG. \ Clarify \ (derived) \ SI \ units \ + \ prefixes \ \#391 \ (sappelhoff)$
- $\bullet$  [MISC] moved list of extension proposals to the main BIDS website #389 (robertoostenveld)
- [FIX] Typos and clarifications #386 (apjanke)
- [INFRA] Add watermark to drafts #383 (effigies)
- [MISC] Teon Brooks retiring moderator duties for BEP021 #381 (teonbrooks)
- $\bullet \ [FIX] \ clarify \ that \ string \ is \ expected \ for \ HowToAcknowledge \ field \ in \ dataset\_description. json \ \#380 \ (sappelhoff)$
- $\bullet$  [MISC] Typo and style #378 (TheChymera)
- $\bullet$  [FIX] divide readme into 3 parts #374 (sappelhoff)
- [FIX] Refer to BIDS consistently, instead of "\<Modality>-BIDS" #366 (sappelhoff)
- $\bullet$  [FIX] Change recommended an onymization date from 1900 to 1925 #363 (alexrockhill)
- $\bullet$  [FIX] Minor fixups of inconsistencies while going through a PDF version #362 (yarikoptic)
- [FIX] clarify that filters should be specified as object of objects #348 (sappelhoff)
- [FIX] Clarify channels.tsv is RECOMMENDED consistently across ephys #347 (sappelhoff)
- [FIX] Typo fix (contract -> contrast) in events documentation #346 (snastase)
- [MISC] rm TOC.md seems no longer pertinent/used #341 (yarikoptic)

- [MISC] Move the PR template to a separate folder and improve contents #338 (jhlegarreta)
- [INFRA] Find npm requirements file in Circle #336 (franklin-feingold)
- [ENH] Clarify phenotypic and assessment data in new section #331 (sappelhoff)
- [MISC] add information about continuous integration checks to PR template #330 (sappelhoff)
- [FIX] Fix Common principles Key/value files section level #328 (jhlegarreta)
- [INFRA] Set the maximum heading length lint check to false #325 (jhlegarreta)
- [FIX] Number explicitly all cases in MRI field map section headers #323 (jhlegarreta)
- [FIX] Add SoftwareFilters to EEG sidecar example #322 (Remi-Gau)
- [MISC] Fixing Travis errors with Remark #320 (franklin-feingold)
- [INFRA] Link to doc builds in CI checks #315 (jasmainak)
- [MISC] Add BEP027 BIDS Execution to BEP list #314 (effigies)
- [FIX] Add CBV and phase to Entity table #312 (tsalo)
- [FIX] Normalization of template-generated standard spaces #306 (oesteban)
- [ENH] Release protocol notes #304 (franklin-feingold)
- [INFRA] Adding contributor appendix sentence to PR template #299 (franklin-feingold)
- [ENH] Added discontinuous datatype for EEG and iEEG #286 (wouterpotters)
- [FIX] Clarify paragraph about custom data types #264 (effigies)

#### v1.2.1 (2019-08-14)

- FIX: repair link in anatomical MRI table #297 (sappelhoff)
- $\bullet$  [ENH] Clarify requirements in Release Protocol #294 (franklin-feingold)
- $\bullet \ [\mathrm{INFRA} + \mathrm{FIX}] \ \mathrm{Use} \ \mathrm{linkchecker} \ (\mathrm{from} \ \mathrm{a} \ \mathrm{dedicated} \ \mathrm{docker} \ \mathrm{image}) \ \mathrm{to} \ \mathrm{check} \ \mathrm{all} \ \mathrm{URLs} \ \#293 \ (\mathrm{yarikoptic})$
- [ENH] Adding Contributors and updating contributions #284 (franklin-feingold)
- [MISC] update Code of Conduct contact #281 (franklin-feingold)
- [ENH] Update contributing guide and README to make discussion forums easy to find #279 (emdupre)
- [ENH] Starter Kit dropdown menu #278 (franklin-feingold)
- [ENH] BEP Update #277 (franklin-feingold)
- [INFRA] Update pipenv #274 (sappelhoff)
- ullet [INFRA] Transpose the entity table and link to text anchors describing each entity #272 (sappelhoff)
- [ENH] Add Twitter badge to README and link to website to landing page #268 (franklin-feingold)
- [ENH] adding release guidelines #267 (franklin-feingold)
- [FIX] Common principles: Fix filename in inheritance principle #261 (Lestropie)
- [MISC] update modality references #258 (sappelhoff)
- [INFRA] adding logo to RTD #256 (franklin-feingold)
- [INFRA] add footer, replacing mkdocs/material advert with Github link #250 (sappelhoff)
- $\bullet$  [MISC] rename logo files, add a README of where they come from, fix favicon #249 (sappelhoff)
- $\bullet \ [\mathrm{MISC}] \ \mathrm{updating} \ \mathrm{MEG} \ \mathrm{doc} \ \mathrm{links}, \\ \mathrm{manufacturer} \ \mathrm{names}, \\ \mathrm{and} \ \mathrm{adding} \ \mathrm{a} \ \mathrm{missing} \ \mathrm{MEG} \ \mathrm{example} \ \#248 \ (\mathrm{sappelhoff})$
- [ENH] Add favicon to RTD #246 (franklin-feingold)

- [MISC] Update Authors in BEP025 #241 (josator2)
- [MISC] Document BEPs that are not active anymore, but have not been merged #240 (sappelhoff)
- [FIX] remove ManufacturersAmplifierModelName (again) #236 (robertoostenveld)
- [INFRA] Update release protocol #235 (effigies)
- [INFRA] Enable version panel for quickly finding previous versions #232 (effigies)
- [FIX] Clarify Appendix II: The list of licenses only lists examples #222 (sappelhoff)
- [FIX] Trivial column header fix #220 (nicholst)
- [INFRA] Add clarification on merge methods to DECISION\_MAKING #217 (sappelhoff)
- [INFRA] Enable permalink urls to appear at (sub)section headings #214 (yarikoptic)
- [INFRA] bump up mkdocs-materials version #211 (sappelhoff)
- [MISC] Fix github username for @chrisgorgo #204 (chrisgorgo)
- [FIX] clarify example 3 in common principles (inheritance) #202 (sappelhoff)
- [MISC] Expand entity table for MEG/EEG/iEEG specific files #198 (sappelhoff)
- [FIX] make iEEG ToC more consistent with MEG and EEG #191 (robertoostenveld)
- [FIX] Clarify use of acq and task parameters in EEG, MEG, and iEEG #188 (sappelhoff)
- [FIX] clarify use of tools for CTF data renaming #187 (sappelhoff)
- [MISC] Add bep006 and bep010 to completed beps and fix links #186 (sappelhoff)
- [FIX] change file for definition of electrical stimulation labels from electrodes.json to events.json #185 (ezemikulan)
- [ENH] relax ieeg channel name requirements of letters and numbers only #182 (sappelhoff)
- [FIX] make MEG section headings and ToC consistent to the EEG and iEEG specs #181 (robertoostenveld)
- [FIX] make section headings and ToC consistent between meg and eeg specs #180 (robertoostenveld)
- [MISC] Spelling fixes #179 (DimitriPapadopoulos)
- [ENH] Alternative folder organization for raw, derived, and source data #178 (chrisgorgo)
- $\bullet$  [INFRA] Adding instructions for naming PRs #177 (chrisgorgo)
- $\bullet$  [MISC] Introducing Stefan Appelhoff as the first Maintainer #176 (chrisgorgo)
- $\bullet$  [FIX] Clarify name of "Brain Vision" format #175 (JegouA)
- [FIX] Fixes spelling of continuous #171 (emdupre)
- [FIX] Clarify continuous recording metadata fields #167 (effigies)
- [FIX] changed reference of dcm2nii to dcm2niix #166 (DimitriPapadopoulos)
- [FIX] Removing a leftover file #162 (chrisgorgo)
- [FIX] Specify marker file names for KIT data (MEG) #62 (monkeyman192)
- [FIX] Remove father-level for meg filetypes other than BTi/4D data #19 (teonbrooks)

## v1.2.0 (2019-03-04)

- [MISC] Adding Dimitri Papadopoulos Orfanos to the list of contributors #157 (DimitriPapadopoulos)
- [FIX] use "specification" not "protocol" to refer to BIDS #156 (yarikoptic)
- [FIX] Fix example misalignment #155 (DimitriPapadopoulos)
- [INFRA] Update Pipfile.lock #144 (franklin-feingold)

- [ENH] clarify decimal sep and numerical notation convention #143 (sappelhoff)
- [ENH] clarify encoding of README, CHANGES, TSV, and JSON files #140 (sappelhoff)
- [MISC] Update site\_name and release protocol #137 (franklin-feingold)
- [FIX] Example for IntendedFor was missing session indicator in the filename #129 (yarikoptic)
- [ENH] Add "phase" suffix to func datatype for functional phase data #128 (tsalo)
- [MISC] Update to Release\_Protocol.md #126 (franklin-feingold)
- [MISC] Update tag naming convention #123 (chrisgorgo)
- $\bullet$  [ENH] Merge bep006 and bep010 #108 (sappelhoff)
- [MISC] Adding formal decision-making rules #104 (chrisgorgo)
- [FIX] number of small corrections to the specification #98 (robertoostenveld)

#### v1.1.2 (2019-01-10)

- [MISC] Update 01-contributors.md #120 (oesteban)
- [ENH] Global fields in data dictionaries #117 (chrisgorgo)
- [MISC] Propose BEP026 MER #116 (greydongilmore)
- [FIX] Remove duplicate entries in MEG table #113 (franklin-feingold)
- [MISC] Propose BEP025 MIDS #110 (josator2)
- FIX] repair links #106 (sappelhoff)
- [INFRA] Autogenerate CHANGES.md #103 (franklin-feingold)
- [MISC] Added contributor information #100 (jgrethe)
- [ENH] First(?) good practice recommendation. No excessive overrides in Inheritance principle #99 (yarikoptic)
- [MISC] adding extensions page #97 (choldgraf)
- [FIX] fix some urls (as detected to be broken/inconsistent) #95 (yarikoptic)
- [MISC] Change BEP numbers to include MRS #94 (Hboni)
- [FIX] harmonize and thus shorten templates etc #93 (yarikoptic)
- [MISC] put links and some text into README #91 (sappelhoff)
- [MISC] Add extension proposal in 01-introduction.md #88 (Hboni)
- $\bullet$  [FIX] additional table to recap 'volume acquisition timing' #87 (Remi-Gau)
- $\bullet$  [FIX] Small typo in "scanning sequence" DICOM tag #84 (Remi-Gau)
- [MISC] Update 01-contributors.md #83 (teonbrooks)
- [ENH] Added CBV contrast #82 (TheChymera)
- [MISC] Add CC-BY 4.0 license #81 (KirstieJane)
- [INFRA] Fix Travis break #80 (franklin-feingold)
- [ENH] allow dir for other EPI (func, dwi) sequences #78 (yarikoptic)
- [MISC] Added appendix to mkdocs and added some internal links #77 (franklin-feingold)
- [MISC] added JC Houde as contributor. #76 (jchoude)
- $\bullet$  [MISC] Updated my contributions #75 (nicholst)
- [FIX] update HED appendix #74 (sappelhoff)

- [FIX] unicode: replace greek mu and omega by micro and ohm signs #73 (sappelhoff)
- [MISC] Update 01-contributors.md #72 (francopestilli)
- [ENH] add ce-\<label> for fmri data #70 (dasturge)
- [INFRA] pin pip version #68 (chrisgorgo)
- [MISC] Fix link in index #46 (chrisgorgo)
- [MISC] edit contributing guide #44 (Park-Patrick)
- [INFRA] Mkdocs configuration and RTD setup #42 (choldgraf)
- [MISC] Move definitions, compulsory, and raw/derivatives sections to principles #40 (chrisgorgo)
- [MISC] Remove duplicate section #39 (chrisgorgo)
- [INFRA] mkdocs rendering #36 (chrisgorgo)
- [MISC] Style consistency #35 (chrisgorgo)
- [MISC] Renaming files to conform with style guide #34 (chrisgorgo)
- [INFRA] enable travis cache #32 (chrisgorgo)
- [MISC] corrected link that is shown for CC0 #31 (robertoostenveld)
- [INFRA] added linter integration via travis #30 (chrisgorgo)
- [MISC] Cleanup #29 (chrisgorgo)
- [MISC] split intro, commons, mr, and meg into folder from specification.md #28 (teonbrooks)
- [MISC] Add some bids starter kit contributors #27 (KirstieJane)
- [MISC] Embedded footnotes into text #25 (franklin-feingold)
- [MISC] Making HED Strategy Guide link prettier #24 (fake-filo)
- [MISC] more cleanup #21 (chrisgorgo)
- [MISC] formatted MEG (8.4) #17 (franklin-feingold)
- [MISC] small fixes #16 (chrisgorgo)
- [MISC] Add meg img #14 (sappelhoff)
- $\bullet$  [WIP] Cleaning up the specification #13 (chrisgorgo)
- [MISC] Adding code of conduct #6 (chrisgorgo)
- [INFRA] Renaming the main document #1 (chrisgorgo)

## 1.1.1 (2018-06-06)

- Improved the MEG landmark coordinates description.
- Replaced ManufacturersCapModelName in meg. json with CapManufacturer and CapManufacturersModelName.
- Remove EEGSamplingFrequency and ManufacturersAmplifierModelName from the meg.json.
- Improved the behavioral data description.

## 1.1.0 (2018-04-19)

• Added support for MEG data (merged BEP008)

- Added SequenceName field.
- Added support for describing events with Hierarchical Event Descriptors [4.3 Task events].
- Added VolumeTiming and AcquisitionDuration fields [4.1 Task (including resting state) imaging data].
- Added DwellTime field.

#### 1.0.2 (2017-07-18)

- Added support for high resolution (anatomical) T2star images [4.1 Anatomy imaging data].
- Added support for multiple defacing masks [4.1 Anatomy imaging data].
- Added optional key and metadata field for contrast enhanced structural scans [4.1 Anatomy imaging data]
- Added DelayTime field [4.1 Task (including resting state) imaging data].
- Added support for multi echo BOLD data [4.1 Task (including resting state) imaging data].

## 1.0.1(2017-03-13)

- Added InstitutionName field [4.1 Task (including resting state) imaging data].
- Added InstitutionAddress field [4.1 Task (including resting state) imaging data].
- Added DeviceSerialNumber field [4.1 Task (including resting state) imaging data].
- $\bullet \ \, Added \ \, \text{NumberOfVolumesDiscardedByUser and NumberOfVolumesDiscardedByScanner field [4.1\ Task\ (including\ resting\ state)\ imaging\ data]}.$
- Added TotalReadoutTime to functional images metadata list [4.1 Task (including resting state) imaging data].

#### 1.0.1 - rc1

- Added T1 Rho maps [4.1 Anatomy imaging data].
- Added support for phenotypic information split into multiple files [3.2 Participant key file].
- Added recommendations for multi site datasets
- Added SoftwareVersions
- Added  ${\tt run-<\! run\_index>}$  to the phase encoding maps. Improved the description.
- Added InversionTime metadata key.
- $\bullet\,$  Clarification on the source vs raw language.
- Added trial\_type column to the event files.
- Added missing sub-<participant\_label> in behavioral data file names
- Added ability to store stimuli files.
- Clarified the language describing allowed subject labels.
- $\bullet\,$  Added quantitative proton density maps.

#### 1.0.0 (2016-06-23)

- Added ability to specify fieldmaps acquired with multiple parameter sets.
- Added ability to have multiple runs of the same fieldmap.
- Added FLASH anatomical images.

#### 1.0.0-rc4

- Replaced links to neurolex with explicit DICOM Tags.
- Added sourcedata.
- Added data dictionaries.
- Be more explicit about contents of JSON files for structural (anatomical) scans.

#### 1.0.0-rc3

- Renamed PhaseEncodingDirection values from "x", "y", "z" to "i", "j", "k" to avoid confusion with FSL parameters
- Renamed SliceEncodingDirection values from "x", "y", "z" to "i", "j", "k"

## 1.0.0-rc2

- Removed the requirement that TSV files cannot include more than two consecutive spaces.
- Refactor of the definitions sections (copied from the manuscript)
- Make support for uncompressed .nii files more explicit.
- Added BIDSVersion to dataset.json
- Remove the statement that SliceEncodingDirection is necessary for slice time correction
- Change dicom converter recommendation from dcmstack to dcm2nii and dicm2nii following interactions with the community (see https://github.com/moloney/dcmstack/issues/39 and https://github.com/neurolabusc/dcm2niix/issues/4).
- Added section on behavioral experiments with no accompanying MRI acquisition
- Add \_magnitude.nii[.gz] image for GE type fieldmaps.
- Replaced EchoTimeDifference with EchoTime1 and EchoTime2 (SPM toolbox requires this input).
- Added support for single band reference image for DWI.
- Added DatasetDOI field in the dataset description.
- Added description of more metadata fields relevant to DWI fieldmap correction.
- PhaseEncodingDirection is now expressed in "x", "y" etc. instead of "PA" "RL" for DWI scans (so it's the same as BOLD scans)
- Added rec-<label> flag to BOLD files to distinguish between different reconstruction algorithms (analogous to anatomical scans).
- $\bullet \ \, \text{Added recommendation to use $\tt \_physio$ suffix for continuous recordings of motion parameters obtained by the scanner side reconstruction algorithms.}$

#### 1.0.0-rc1

• Initial release

\* This Change Log was automatically generated by github\_changelog\_generator

## 1.1.1 (2018-06-06)

- Improved the MEG landmark coordinates description.
- Replaced ManufacturersCapModelName in meg. json with CapManufacturer and CapManufacturersModelName.
- Remove EEGSamplingFrequency and ManufacturersAmplifierModelName from the meg. json.
- Improved the behavioral data description.

## 1.1.0 (2018-04-19)

- Added support for MEG data (merged BEP008)
- Added SequenceName field.
- Added support for describing events with Hierarchical Event Descriptors [4.3 Task events].
- Added VolumeTiming and AcquisitionDuration fields [4.1 Task (including resting state) imaging data].
- Added DwellTime field.

## 1.0.2 (2017-07-18)

- Added support for high resolution (anatomical) T2star images [4.1 Anatomy imaging data].
- Added support for multiple defacing masks [4.1 Anatomy imaging data].
- $\bullet \ \ Added \ optional \ key \ and \ metadata \ field \ for \ contrast \ enhanced \ structural \ scans \ [4.1\ Anatomy \ imaging \ data]$
- Added DelayTime field [4.1 Task (including resting state) imaging data].
- Added support for multi echo BOLD data [4.1 Task (including resting state) imaging data].

#### 1.0.1 (2017-03-13)

- Added InstitutionName field [4.1 Task (including resting state) imaging data].
- Added InstitutionAddress field [4.1 Task (including resting state) imaging data].

- Added DeviceSerialNumber field [4.1 Task (including resting state) imaging data].
- Added NumberOfVolumesDiscardedByUser and NumberOfVolumesDiscardedByScanner field [4.1 Task (including resting state) imaging data].
- Added TotalReadoutTime to functional images metadata list [4.1 Task (including resting state) imaging data].

#### 1.0.1 - rc1

- Added T1 Rho maps [4.1 Anatomy imaging data].
- Added support for phenotypic information split into multiple files [3.2 Participant key file].
- Added recommendations for multi-site datasets
- Added SoftwareVersions
- Added run-<run\_index> to the phase encoding maps. Improved the description.
- Added InversionTime metadata key.
- Clarification on the source vs raw language.
- Added trial\_type column to the event files.
- Added missing sub-<participant\_label> in behavioral data file names
- Added ability to store stimuli files.
- Clarified the language describing allowed subject labels.
- Added quantitative proton density maps.

## 1.0.0 (2016-06-23)

- Added ability to specify fieldmaps acquired with multiple parameter sets.
- Added ability to have multiple runs of the same fieldmap.
- Added FLASH anatomical images.

## 1.0.0-rc4

- $\bullet\,$  Replaced links to neurolex with explicit DICOM Tags.
- Added sourcedata.
- Added data dictionaries.
- $\bullet$  Be more explicit about contents of JSON files for structural (anatomical) scans.

#### 1.0.0-rc3

 $\bullet \ \ Renamed \ Phase Encoding Direction \ values \ from \ "x", "y", "z" \ to \ "i", "j", "k" \ to \ avoid \ confusion \ with \ FSL \ parameters$ 

• Renamed SliceEncodingDirection values from "x", "y", "z" to "i", "j", "k"

#### 1.0.0-rc2

- Removed the requirement that TSV files cannot include more than two consecutive spaces.
- Refactor of the definitions sections (copied from the manuscript)
- Make support for uncompressed .nii files more explicit.
- Added BIDSVersion to dataset.json
- Remove the statement that SliceEncodingDirection is necessary for slice time correction
- Change dicom converter recommendation from dcmstack to dcm2nii and dicm2nii following interactions with the community (see https://github.com/moloney/dcm stack/issues/39 and https://github.com/neurolabusc/dcm2niix/issues/4).
- Added section on behavioral experiments with no accompanying MRI acquisition
- Add \_magnitude.nii[.gz] image for GE type fieldmaps.
- Replaced EchoTimeDifference with EchoTime1 and EchoTime2 (SPM toolbox requires this input).
- Added support for single band reference image for DWI.
- Added DatasetDOI field in the dataset description.
- Added description of more metadata fields relevant to DWI fieldmap correction.
- PhaseEncodingDirection is now expressed in "x", "y" etc. instead of "PA" "RL" for DWI scans (so it's the same as BOLD scans)
- Added rec-<label> flag to BOLD files to distinguish between different reconstruction algorithms (analogous to anatomical scans).
- Added recommendation to use \_physio suffix for continuous recordings of motion parameters obtained by the scanner side reconstruction algorithms.

### 1.0.0-rc1

• Initial release