天线仿真插件手册

- 简介
- 插件安装
- 阻抗/电阻提取
- 天线仿真
 - 。 windows环境
 - <u>openEMS 安装</u>
 - octave 安装
 - 。 <u>linux环境(ubuntu20.04)</u>
 - <u>openEMS 安装</u>
 - octave 安装
 - 。 开始仿真
 - 第一步 设置pcb层叠参数
 - 第二步 将地平面和天线封装添加到插件
 - 第三步 设置激励源
 - 第四步 设置仿真网格参数
 - 第五步 运行仿真

简介

- z_extractor 插件共包含四个子功能
 - 1. 基于mmtl的2d阻抗提取工具,可用于导出传输线的spice模型
 - 2. 基于fasthenry的电阻提取工具,用于计算走线电阻
 - 3. 用于天线仿真的openEMS模型导出工具
 - 4. 用于S参数仿真的openEMS模型导出工具

插件安装

插件下载地址:

阻抗/电阻提取

视频教程 https://www.bilibili.com/video/BV15W4y1Y78T/

天线仿真

天线仿真插件依赖环境 openEMS (https://www.openems.de/) 和 Octave(https://octave.org/) 插件本身不具备仿真功能,它仅提供一套简易的交互界面用于将pcb文件转换为OpenEMS仿真脚本,从

而免去手工编写openems的繁琐步骤。

因此仅仅安装插件并不能完成仿真工作 还需安装 openEMS以及octave

windows环境

openEMS 安装

openEMS安装可以参考官方文档 https://www.openems.de/ 这里仅简单介绍下

下载地址: https://github.com/thliebig/openEMS-Project/releases

将openEMS_x64_v0.0.35-108-gc651cce_msvc.zip 文件解压到C盘(也可以选择其他盘这里以C盘为例)目录结构大致如下

窗 > 本地磁盘 (C:) > openEMS >	
名称	修改日期
include	2023/6/
matlab	2023/6/
python	2023/6/
qt5	2023/6/
■ AppCSXCAD.exe	2023/2/
boost_chrono-vc142-mt-x64-1_72.dll	2023/1/
boost_date_time-vc142-mt-x64-1_72.dll	2023/1/
boost_thread-vc142-mt-x64-1_72.dll	2023/1/
boost_timer-vc142-mt-x64-1_72.dll	2023/1/
	2023/2/
CSXCAD.lib	2023/2/
fparser.dll	2023/2/
msvcp140.dll	2023/1/
nf2ff.dll	2023/3/

octave 安装

下载地址: <u>https://octave.org/download</u>

双击运行 octave-8.3.0-w64-installer.exe 所有选项保持默认即可,默认安装位置为 C:\Program Files\GNU 0ctave\0ctave-8.3.0

安装完毕后启动octave 选择带GUI版本

然后将openEMS 路径添加到Octave环境中

平庁

C:\Program Files\GNU (

最后将octave目录(C:\Program Files\GNU Octave\Octave-8.3.0\mingw64\bin)添加到系统的环境变量PATH中

linux环境(ubuntu20.04)

openEMS 安装

```
sudo apt-get install build-essential cmake git libhdf5-dev libvtk7-dev libboost-all-dev libcgal-dev libtinyxml-dev qtbase5-dev libvtk7-qt-dev octave liboctave-dev
```

```
git clone --recursive https://github.com/thliebig/openEMS-Project.git
cd openEMS-Project
./update_openEMS.sh ~/opt/openEMS
```

将openEMS的matlab接口路径添加到octave环境中

```
echo "addpath('$HOME/opt/openEMS/share/openEMS/matlab')" >> ~/.octaverc
echo "addpath('$HOME/opt/openEMS/share/CSXCAD/matlab')" >> ~/.octaverc
```

octave 安装

sudo apt-get install octave

开始仿真

第一步 设置pcb层叠参数

第二步 将地平面和天线封装添加到插件

打开插件: 工具->外部插件->Antenna

添加

第三步 设置激励源

这里激励放在天线的pad 1上,从天线的Pad 1 到B.Cu层的地平面

第四步 设置仿真网格参数

第五步 运行仿真

先设置好仿真选项 然后点击Generate 生成仿真脚本 再点击Run运行仿真

点击Run按钮后 弹出模型预览窗口 直接关闭即可

然后等待仿真结束

从仿真结果可以看出 示例 pcb 天线性能不达标 s11参数最小值仅-6db 频率为freq:2.23G 阻抗也不达标 远离50欧 2.45g时 阻抗为3.7+31j 显然是不符合要求 此时我们可以通过调整天线地平面或天线结构来改善天线性能参数, 然后再仿真验证直到满足需求

其他图表

