Optimal Transport in Reproducing Kernel Hilbert Space: Theory and Applications

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (JULY 2020)

Zhen Zhang, Mianzhi Wang, and Arye Nehorai Reporter: Fengjiao Gong

June 9, 2022

Outline

- **1.** Optimal Transport in \mathbb{R}^n
 - 1.1 Monge's Formulation
 - 1.2 Kantorovich's Formulation
 - 1.3 OT between Gaussian Measures
- 2. Optimal Transport in RKHS
 - 2.1 Reproducing Kernel Hilbert Space(RKHS)
 - 2.2 Kantorovich'S OT in RKHS
 - 2.3 OT between Gaussian Measures in RKHS
 - 2.4 Applications
 - 2.4.1 Image Classification
 - 2.4.2 Domain Adaptation
 - 2.5 Experiments

Monge's Formulation

Find a **transport map** $T: \mathbb{R}^n \to \mathbb{R}^n$ that pushes μ to ν (denoted as $T_{\#}\mu = v$) to minimize the total transport cost

$$\inf_{T_{\#}\mu=\nu} \int_{\mathbb{R}^n} \|\vec{x} - T(\vec{x})\|_2^2 d\mu(\vec{x}) \tag{1}$$

where μ , $\nu \in \Pr(\mathbb{R}^n)$ are two probability measures, and $\Pr(\mathbb{R}^n)$ is the set of Borel probability measures on \mathbb{R}^n .

Figure 1: Illustration of the optimal transport problem.

Monge's Formulation

Find a **transport map** $T: \mathbb{R}^n \to \mathbb{R}^n$ that pushes μ to ν (denoted as $T_{\#}\mu = v$) to minimize the total transport cost

$$\inf_{T_{\#}\mu=\nu} \int_{\mathbb{R}^n} \|\vec{x} - T(\vec{x})\|_2^2 d\mu(\vec{x}) \tag{1}$$

where

- ▶ $Pr(\mathbb{R}^n)$ set of Borel probability measures on \mathbb{R}^n
- $ightharpoonup \mu, \nu \in \Pr(\mathbb{R}^n)$ two probability measures

ISSUE: Existence of *T* cannot be guaranteed!

Kantorovich relaxation

Kantorovich's Formulation

Minimized over all transport plans instead of transport map

$$\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^n \times \mathbb{R}^n} \|\vec{x} - \vec{y}\|_2^2 d\pi(\vec{x}, \vec{y}), \tag{2}$$

- ► Transport plan $\pi(\vec{x}, \vec{y})$: joint probability measure describing the amount of mass transported from location \vec{x} to location \vec{y}
- $ightharpoonup \Pi(\mu,\nu)$: set of joint probability measures on $\mathbb{R}^n \times \mathbb{R}^n$, with marginals μ,ν
- ► Splitting mass at one location can be divided and transported to multiple destinations

Kantorovich's Formulation

Minimized over all transport plans instead of transport map

$$\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{D}^n \times \mathbb{D}^n} \|\vec{x} - \vec{y}\|_2^2 d\pi(\vec{x}, \vec{y}), \tag{2}$$

Wasserstein distance — metric on $Pr(\mathbb{R}^n)$

$$d_{\mathrm{W}}(\mu,\nu) \triangleq \inf_{\pi \in \Pi(\mu,\nu)} \left[\int_{\mathbb{R}^n \times \mathbb{R}^n} \|\vec{x} - \vec{y}\|_2^2 d\pi(\vec{x}, \vec{y}) \right]^{\frac{1}{2}} \tag{3}$$

[reference] Cedric Villani, Topics in Optimal Transportation. Providence, RI, USA: American Mathematical Society, 2003, vol. 58.

Remark 1. $(\cdot)^{\frac{1}{2}}$ denotes the principle matrix square root, i.e., for any positive semi-definite (PSD) matrix Σ , then $\Sigma^{\frac{1}{2}} = (U\Lambda U^T)^{\frac{1}{2}} = U\Lambda^{\frac{1}{2}}U^T$.

[reference] D. Dowson and B. Landau, "The Fréchet distance between multivariate normal distributions," J. Multivariate Anal., vol. 12, no. 3, pp. 450–455, 1982.

Theorem 1. Let μ and ν be two probability measures on \mathbb{R}^n with finite first and second order moments. Let \vec{m}_{μ} and \vec{m}_{ν} , and Σ_{μ} and Σ_{v} be the corresponding expectations and covariance matrices, respectively. Write

$$d_{\text{GaW}}(\mu, \nu) = \left[\|\vec{m}_{\mu} - \vec{m}_{\nu}\|_{2}^{2} + \text{tr}\left(\Sigma_{\mu} + \Sigma_{\nu} - 2\Sigma_{\mu\nu}\right) \right]^{\frac{1}{2}}$$
(4)

where
$$m{\Sigma}_{\mu
u}=\left(m{\Sigma}_{\mu}^{rac{1}{2}}m{\Sigma}_{
u}m{\Sigma}_{\mu}^{rac{1}{2}}
ight)^{rac{1}{2}}$$
 . Then,

- 1) $d_{\mathrm{GaW}}(\mu, \nu) \leq d_{\mathrm{W}}(\mu, \nu)$, and
- 2) The equality will be valid if both μ and ν are Gaussian.

Theorem 1. Let μ and ν be two probability measures on \mathbb{R}^n with finite first and second order moments. Let \vec{m}_{μ} and \vec{m}_{ν} , and Σ_{μ} and Σ_{v} be the corresponding expectations and covariance matrices, respectively. Write

$$d_{\text{GaW}}(\mu, \nu) = \left[\|\vec{m}_{\mu} - \vec{m}_{\nu}\|_{2}^{2} + \text{tr}\left(\Sigma_{\mu} + \Sigma_{\nu} - 2\Sigma_{\mu\nu}\right) \right]^{\frac{1}{2}}$$
 (5)

- $ightharpoonup d_{GaW}(\mu, \nu)$: metric on set of all Gaussian measures both Gaussian
- $d_{\text{GaW}}(\mu, \mu)$: metric on covariance matrices same expectations

Bures metric

Corollary 1. Let $\mathrm{Sym}^+(n)$ be the set of all positive semi-definite matrices of size $n \times n$. Then,

$$d_{\mathrm{B}}\left(\boldsymbol{\Sigma}_{1},\boldsymbol{\Sigma}_{2}\right)=\left[\mathrm{tr}\left(\boldsymbol{\Sigma}_{1}+\boldsymbol{\Sigma}_{2}-2\boldsymbol{\Sigma}_{12}\right)\right]^{\frac{1}{2}}\tag{6}$$

defines a metric on $Sym^+(n)$.

[reference] R. Bhatia, T. Jain, and Y. Lim, "On the Bures Wasserstein distance between positive definite matrices," Expositiones Mathematicae, 2018.

OT between Gaussian Measures Optimal transport map

Theorem 2. Let μ and ν be two Gaussian measures on \mathbb{R}^n whose covariance matrices are of full rank. Let \vec{m}_{μ} and \vec{m}_{v} , and Σ_{μ} and Σ_{v} , denote the respective expectations and covariance matrices. Then the optimal transport map $T_{\rm G}$ between μ and ν exists, and can be written as

$$T_{\rm G}(\overrightarrow{\boldsymbol{x}}) = \boldsymbol{\Sigma}_{\mu}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{\mu\nu} \boldsymbol{\Sigma}_{\mu}^{-\frac{1}{2}} \left(\overrightarrow{\boldsymbol{x}} - \vec{m}_{\mu} \right) + \vec{m}_{v}$$
 (7)

Covariance matrices are *full-rank*.

[reference] R. Bhatia, T. Jain, and Y. Lim, "On the Bures Wasserstein distance between positive definite matrices," Expositiones Mathematicae, 2018.

OT between Gaussian Measures Optimal transport map

Remark 2. "†" denotes the Moore-Penrose inverse. $\operatorname{Im}(\Sigma)$ denotes the image of the linear transform Σ , i.e., $\operatorname{Im}(\Sigma) = \{\Sigma \vec{x}, \vec{x} \in \mathbb{R}^n\}$.

[reference] https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

M. Gelbrich, "On a formula for the L2 Wasserstein metric between measures on Euclidean and hilbert spaces," Mathematische Nachrichten, vol. 147, no. 1, pp. 185–203, 1990.

OT between Gaussian Measures Optimal transport map

Theorem 3. Let μ and ν be two Gaussian measures defined on \mathbb{R}^n . Let $\bar{\mu}$ and $\bar{\nu}$ be the corresponding centered Gaussian measures which are derived from μ and ν , respectively, by translation. Let \boldsymbol{P}_{μ} be the projection matrix onto Im $(\boldsymbol{\Sigma}_{\mu})$. Then the optimal transport map T_G from $\bar{\mu}$ to $P_{\mu\#\bar{\nu}}$ is linear and self-adjoint, and can be written as

$$T_{G}(\overrightarrow{\boldsymbol{x}}) = \left(\boldsymbol{\Sigma}_{\mu}^{\frac{1}{2}}\right)^{\dagger} \boldsymbol{\Sigma}_{\mu\nu} \left(\boldsymbol{\Sigma}_{\mu}^{\frac{1}{2}}\right)^{\dagger} \overrightarrow{\boldsymbol{x}}$$
 (8)

Covariance matrix is rank-deficient ($\bar{\mu} \Rightarrow P_{\mu \#} \bar{\nu}$).

Optimal Transport in Reproducing Kernel Hilbert Space

- 1. Reproducing Kernel Hilbert Space(RKHS)
- 2. Kantorovich'S OT in RKHS
- 3. OT between Gaussian Measures in RKHS
- 4. Applications
 - **4.1** Image Classification
 - 4.2 Domain Adaptation
- 5. Experiments

Reproducing Kernel Hilbert Space(RKHS)

RKHS

Function $k : \mathcal{X} \times \mathcal{X}$ is called a reproducing kernel of \mathcal{H} , and \mathcal{H} is a reproducing kernel Hilbert space, if k satisfies:

- 1) $\forall x \in \mathcal{X}, k(\cdot, x) \in \mathcal{H}$,
- 2) $\forall x \in \mathcal{X}, f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$.

where \mathcal{H} is a Hilbert space of \mathbb{R} -valued functions defined on nonempty set \mathcal{X} .

▶ Feature map

Implicit feature map $\phi: \mathcal{X} \to \mathcal{H}$

$$\phi(x) = k(\cdot, x)$$

Then

$$\langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = k(x, y), \forall x, y \in \mathcal{X}$$

Kantorovich'S OT in RKHS OT Formulation

Given $\mu, \nu \in \Pr(\mathcal{X})$, the Kantorovich optimal transport between pushforward measures $\phi_{\#}\mu$ and $\phi_{\#}\nu$ on $\mathcal{H}_{\mathcal{K}}$ is written as

$$d_{\mathrm{W}}\left(\phi_{\#}\mu,\phi_{\#}v\right) = \left[\inf_{\pi_{\mathcal{K}} \in \Pi\left(\phi_{\#}\mu,\phi_{\#}v\right)} \int_{\mathcal{H}_{\mathcal{K}} \times \mathcal{H}_{\mathcal{K}}} \|u-v\|_{\mathcal{H}_{\mathcal{K}}}^{2} d\pi_{\mathcal{K}}(u,v)\right]^{\frac{1}{2}} \tag{9}$$

where

- ▶ $\Pi(\phi_{\#}\mu, \phi_{\#}\nu)$: set of joint probability measures on $\mathcal{H}_{\mathcal{K}} \times \mathcal{H}_{\mathcal{K}}$ with marginals $\phi_{\#}\mu, \phi_{\#}\nu$
- \blacktriangleright *k*: positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- \blacktriangleright ($\mathcal{H}_{\mathcal{K}}, \mathcal{B}_{\mathcal{H}_{\mathcal{K}}}$): reproducing kernel Hilbert space generated by k

Kantorovich'S OT in RKHS OT Formulation

Theorem 4. Let $(\mathcal{X}, \mathcal{B}_{\mathcal{X}})$ be a Borel space, and let the reproducing kernel k be measurable. Given $\mu, \nu \in \Pr(\mathcal{X})$, we write

$$d_{\mathrm{W}}^{\mathcal{H}}(\mu, v) = \left[\inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{X}} d^2(x, y) d\pi(x, y)\right]^{\frac{1}{2}}$$
 (10)

where $d^2(x,y) = \|\phi(x) - \phi(y)\|_{\mathcal{H}_K}^2 = k(x,x) + k(y,y) - 2k(x,y)$. Then,

- 1) $d_{W}^{\mathcal{H}}(\mu, \nu) = d_{W}(\phi_{\#}\mu, \phi_{\#}v)$, and
- 2) If π^* is a minimizer of (10) , then $(\phi,\phi)_{\#}\pi^*$ is a minimizer of (9), where

$$(\phi,\phi)(x,y)=(\phi(x),\phi(y))$$

and $(\phi, \phi): \mathcal{X} \times \mathcal{X} \to \mathcal{H}_{\mathcal{K}} \times \mathcal{H}_{\mathcal{K}}$

Kantorovich'S OT in RKHS

Discrete OT

Discrete version of (10) can be written as

$$\min_{P \in U_{nm}} \operatorname{tr}\left(P^T oldsymbol{D}
ight)$$

where

▶ U_{nm} — set of $n \times m$ non-negative matrices representing probabilistic couplings with marginals $\hat{\mu}, \hat{v}$,

$$U_{nm} = \left\{ oldsymbol{P} \in \mathbb{R}_{+}^{n imes m} \mid oldsymbol{P} \overrightarrow{oldsymbol{1}}_{m} = \hat{\overrightarrow{oldsymbol{\mu}}}, oldsymbol{P}^T \overrightarrow{oldsymbol{1}}_{n} = \hat{\overrightarrow{oldsymbol{v}}}
ight\}$$

D cost matrix

$$\mathbf{D}_{i,i} = k(x_i, x_i) + k(y_i, y_i) - 2k(x_i, y_i)$$

► Empirical histograms:

$$\hat{\mu} = \sum_{i=1}^{n} \hat{\mu}_i \delta_{x_i}, \quad \hat{v} = \sum_{j=1}^{m} \hat{v}_j \delta_{y_j}$$

(11)

Let μ be a Borel probability measure on \mathcal{X} , and

- $Mean: m_{\mu} = E_{X \sim \mu}(\phi(X))$
- Covariance operator: $R_{\mu} = E_{X \sim \mu} \left((\phi(X) m_{\mu}) \otimes (\phi(X) m_{\mu}) \right)^2$

exist and be bounded with respect to the Hilbert norm and HilbertSchmidt norm, respectively.

Tensor product of \mathcal{H} :

$$(u \otimes v)w = \langle v, w \rangle_{\mathcal{H}}u, \quad \forall u, v, w \in \mathcal{H}$$

[reference] A. Gretton, O. Bousquet, A. Smola, and B. Scho€lkopf, "Measuring statistical dependence with hilbert-schmidt norms," in Proc. 16th Int. Conf. Algorithmic Learn. Theory, 2005, pp. 63–77.

Remark 3.

- (1) The square root of an nonnegative, self-adjoint, and compact operator G is defined as $G^{\frac{1}{2}} = \sum_{i=1} \sqrt{\lambda_i(G)} \varphi_i(G) \otimes \varphi_i(G)$, where $\lambda_i(G)$ and $\varphi_i(G)$ are eigenvalues and eigenfunctions of G.
- (2) The trace of an trace-class operator G on a separable Hilbert space \mathcal{H} is defined as $\operatorname{tr}(G) = \sum_{i=1}^{\dim(\mathcal{H})} \langle Ge_i, e_i \rangle$, where $\{e_i\}_{i=1}^{\dim(\mathcal{H})}$ is an orthonormal system of \mathcal{H} .

If data distributions in RKHS (the corresponding pushforward measures) are Gaussian, the conclusions in RKHS are similar to the ones in Euclidean spaces.

OT between Gaussian Measures in RKHS KGW distance

Proposition 1. Assume that the hypotheses in Theorem 4 hold. Let $\mu, \nu \in \Pr(\mathcal{X})$. Let m_{μ} and m_{ν} , and R_{μ} and R_{ν} , be the corresponding means and covariance operators, respectively. Write

$$d_{\text{GW}}^{\mathcal{H}}(\mu, v) = \left[\| m_{\mu} - m_{v} \|_{\mathcal{H}_{\mathcal{K}}}^{2} + \text{tr} \left(R_{\mu} + R_{v} - 2R_{\mu\nu} \right) \right]^{\frac{1}{2}}$$
 (12)

where
$$R_{\mu
u} = \left(R_{\mu}^{rac{1}{2}} R_{
u} R_{\mu}^{rac{1}{2}}
ight)^{rac{1}{2}}.$$
 Then,

- (1) $d_{\mathrm{GW}}^{\mathcal{H}}(\mu, v) \leq d_{\mathrm{W}}^{\mathcal{H}}(\mu, v)$, and
- (2) The equality will be valid if both $\phi_{\#}\mu$ and $\phi_{\#}\nu$ are Gaussian.

Corollary 2. Let Sym⁺ $(\mathcal{H}_{\mathcal{K}}) \subseteq \mathcal{H}_{\mathcal{K}} \otimes \mathcal{H}_{\mathcal{K}}$ be the set of nonnegative, self-adjoint, and trace-class operators in $\mathcal{H}_{\mathcal{K}}$. Then

$$d_{\mathbf{B}}^{\mathcal{H}}(R_1, R_2) = \left[\text{tr} \left(R_1 + R_2 - 2R_{12} \right) \right]^{\frac{1}{2}} \tag{13}$$

defines a metric on Sym⁺ ($\mathcal{H}_{\mathcal{K}}$).

 $d_B^{\mathcal{H}}$ quantifies the difference between the dispersions of data in RKHS. $d_B^{\mathcal{H}}$ quantifies the discrepancy between distributions

Definition 1. Let $\mu \in \Pr(\mathcal{X})$. If there exist disjoint subsets Ω_1 , Ω_2 , and Ω_3 , satisfying $\mathcal{X} = \Omega_1 \cup \Omega_2 \cup \Omega_3$, and $\mu(\Omega_1)$, $\mu(\Omega_2)$, $\mu(\Omega_3) > 0$, then we say μ satisfies the 3-splitting property.

Here $Pr^s(\mathcal{X})$ is the set of Borel measures satisfying the 3-splitting property.

Theorem 5. Let the measurable space $(\mathcal{X}, \mathcal{B}_{\mathcal{X}})$ be locally compact and Hausdorff. Let k be a c_0 -universal reproducing kernel. Then, the embedding $\mu \to R_{\mu}, \forall \mu \in \Pr^s(\mathcal{X})$ is injective.

 $d_{\mathrm{B}}^{\mathcal{H}}$ (KB) induces a metric on $\mathrm{Pr}^{s}(\mathcal{X})$.

```
[reference]
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Hausdorff_space
```

B. K. Sriperumbudur, K. Fukumizu, and G. R. Lanckriet, "Universality, characteristic kernels and RKHS embedding of measures," J. Mach. Learn. Res., vol. 12, pp. 2389–2410, Jul. 2011.

OT between Gaussian Measures in RKHS KGOP map

Proposition 2. Given $\mu, \nu \in \Pr(\mathcal{X})$, assume the pushforward measures $\phi_{\#}\mu$ and $\phi_{\#}\nu$ on RKHS are Gaussian. Let $\bar{\mu}_{\phi}$ and $\bar{\nu}_{\phi}$ be the respective centered measures of $\phi_{\#}\mu$ and $\phi_{\#}\nu$. Let P_{μ} be the projection operator on Im (R_{μ}) . Then the kernel Gauss-optimal transport map $T_{G}^{\mathcal{H}}$ between $\bar{\mu}_{\phi}$ and $P_{\mu\#}$ ($\bar{\nu}_{\phi}$) is a linear and self-adjoint operator, and can be written as

$$T_{\mathrm{G}}^{\mathcal{H}}(u) = \left(R_{\mu}^{rac{1}{2}}
ight)^{\dagger} R_{\mu
u} \left(R_{\mu}^{rac{1}{2}}
ight)^{\dagger} u, orall u \in \mathcal{H}_{\mathcal{K}}$$
 (14)

Sample matrices

$$X = [x_1, x_2, \dots, x_n], \quad Y = [y_1, y_2, \dots, y_m]$$

Mapped data matrices

$$\Phi_X = \left[\phi\left(x_1\right), \phi\left(x_2\right), \dots, \phi\left(x_n\right)\right], \quad \Phi_Y = \left[\phi\left(y_1\right), \phi\left(y_2\right), \dots, \phi\left(y_m\right)\right]$$

Kernel matrices

$$(K_{XX})_{ij} = k(x_i, x_j), \quad (K_{XY})_{ij} = k(x_i, y_j), \quad (K_{YY})_{ij} = k(y_i, y_j)$$

Centering matrices

$$\boldsymbol{H}_n = \boldsymbol{I}_{n \times n} - \frac{1}{n} \overrightarrow{\boldsymbol{1}}_n \overrightarrow{\boldsymbol{1}}_n^T$$
, $\boldsymbol{H}_m = \boldsymbol{I}_{m \times m} - \frac{1}{m} \overrightarrow{\boldsymbol{1}}_m \overrightarrow{\boldsymbol{1}}_m^T$

Estimated mean:

$$\hat{m}_{\mu} = rac{1}{n} \Phi_{X} \overrightarrow{1}_{n}, \quad \hat{m}_{v} = rac{1}{m} \Phi_{Y} \overrightarrow{1}_{m}$$

Estimated covariance operators:

$$\hat{R}_{\mu} = rac{1}{n}\Phi_X H_n \Phi_X^T, \quad \hat{R}_v = rac{1}{m}\Phi_Y H_m \Phi_Y^T.$$

Remark 4. $\|\cdot\|_*$ denotes the nuclear norm, i.e., $\|A\|_* = \sum_{i=1}^r \sigma_i(A)$, where $\sigma_i(A)$ are the singular values of matrix A

OT between Gaussian Measures in RKHS KGW Distance Empirical Estimation

Proposition 3. The empirical kernel Gauss-Wasserstein distance is

$$\hat{d}_{GW}^{\mathcal{H}}(\mu,\nu) = \left[\frac{1}{n}\operatorname{tr}\left(\mathbf{K}_{XX}\right) + \frac{1}{m}\operatorname{tr}\left(K_{YY}\right) - \frac{2}{mn}\overrightarrow{1}_{n}^{T}\mathbf{K}_{XY}\overrightarrow{\mathbf{1}}_{m} - \frac{2}{\sqrt{mn}}\left\|\mathbf{H}_{n}\mathbf{K}_{XY}\mathbf{H}_{m}\right\|_{*}\right]^{\frac{1}{2}}$$
(15)

The kernel Bures distance between \hat{R}_{μ} and \hat{R}_{ν} is

$$d_{\mathrm{B}}^{\mathcal{H}}\left(\hat{R}_{\mu},\hat{R}_{\nu}\right) = \left[\frac{1}{n}\operatorname{tr}\left(\mathbf{K}_{XX}\mathbf{H}_{n}\right) + \frac{1}{m}\operatorname{tr}\left(\mathbf{K}_{YY}\mathbf{H}_{m}\right) - \frac{2}{\sqrt{mn}}\left\|\mathbf{H}_{n}\mathbf{K}_{XY}\mathbf{H}_{m}\right\|_{*}\right]^{\frac{1}{2}}$$
(16)

OT between Gaussian Measures in RKHS Empirical Estimation of the KGOT Map

Proposition 4. Let X and Y be data matrices sampled from μ and ν , respectively. Then the empirical projection operator on $\operatorname{Im}\left(\hat{R}_{\mu}\right)$ is

$$\hat{P}_{\mu} = \Phi_{X} \boldsymbol{H}_{n} \boldsymbol{C}_{XX}^{\dagger} \boldsymbol{H}_{n} \Phi_{X}^{T} \tag{17}$$

and the empirical Gauss-optimal transport map from $\bar{\mu}_{\phi}$ and $P_{\mu\#}$ $(\bar{\nu}_{\phi})$ is

$$\hat{T}_{G}^{\mathcal{H}} = \sqrt{\frac{n}{m}} \Phi_X H_n C_{XX}^{\dagger} C_{XYYX}^{\frac{1}{2}} C_{XX}^{\dagger} H_n \Phi_X^T$$
 (18)

where

$$C_{XX} = H_n K_{XX} H_n$$

$$C_{XYYX} = H_n K_{XY} H_m K_{YX} H_n$$
(19)

OT between Gaussian Measures in RKHS KGOT Map

Proposition 5.

$$\hat{T}_{\mathrm{G}}^{\mathcal{H}}\hat{R}_{\mu}\hat{T}_{\mathrm{G}}^{\mathcal{H}}=\hat{P}_{\mu}\hat{R}_{\nu}\hat{P}_{\mu} \tag{20}$$

Align covariance operators in RKHS.

Application — Image Classification

- ▶ Represent each image I_i by a collection of feature samples A_i .
- ► Compute the KGW (or the KB) distances between any pair of images.
- ► Apply kernel SVM to conduct classification.

Application – Domain Adaptation

- (a) The labeled dataset, X^s , in the source domain and the unlabeled dataset, Y^t , in the target domain. Dots and stars represent different classes;
- (b) Map X^s and Y^t to the RKHS \mathcal{H}_K , and centralize the mapped data. (The centered source dataset $\Phi_X^s H_{N_s}$ lies in Im (\hat{R}_s));

Application – Domain Adaptation

(c) Project the target dataset $\Phi_Y^t H_{N_t}$ onto $\operatorname{Im}\left(\hat{R}_s\right)$. The projection is $\hat{P}_s\left(\Phi_Y^t H_{N_t}\right)$; (d) Apply the KGOT map to transport the source data to the target domain. The transported data is $\hat{T}_G^{\mathcal{H}}\left(\Phi_X^s H_{N_s}\right)$.

Domain Adaptation

Finally, train a classifier using $\hat{T}_{G}^{\mathcal{H}}\left(\Phi_{X}^{s}H_{N_{s}}\right)$, then apply to $\hat{P}_{s}\left(\Phi_{Y}^{t}H_{N_{t}}\right)$.

Experiments

Figure 2: The estimated KGW and KW distances between Gaussian distributions $N(m\overrightarrow{1},I)$ and $N(-m\overrightarrow{1},I)$.

Clearly, KGW is less than KW.

Experiments

(a) Source dataset X^s , and target dataset Y^t ; (b) Representations of datasets $\hat{T}_G^{\mathcal{H}}\left(\Phi_X^sH_{N_s}\right)$ and $\hat{P}_s\left(\Phi_Y^tH_{N_t}\right)$ under coordinate sysmtem $(l_i)_{i=1}^3$.

Distributions of $\tilde{X^s}$ and $\tilde{Y^t}$ are close to each other.

Thanks!