

Straight 4

Relatório Intercalar Programação em Lógica 20 de Outubro de 2019

Índice

Descrição	2
Regras	2
Representação interna do estado de jogo	4

Descrição

Straight 4 é um jogo de estratégia abstrata criado em 2019 por Binary Cocoa, feito para ser jogado por dois jogadores. O seu tempo de jogo é entre 5-10 minutos.

O material necessário para o jogo é um tabuleiro quadrado com 5x5 espaços e oito peças (4 de cor branca e 4 de cor preta).

Regras

Inicialmente o tabuleiro está vazio. Cada jogador tem uma cor associada (branca ou preta) e quatro pedras dessa mesma cor. Depois de decidido quem joga primeiro, cada jogador vai colocar, alternadamente, uma peça no tabuleiro.

Figura 1: Tabuleiro do jogo com a peça do jogador inicial colocada (neste caso, o branco).

Figura 2: Tabuleiro do jogo após duas jogadas.

O objetivo do jogo é um jogador conseguir colocar as suas 4 peças numa linha reta (horizontal, vertical ou diagonal).

Figura 3: Exemplo de fim de jogo em que o jogador com as peças brancas ganha.

Se depois de colocadas todas as peças ninguém conseguir vencer, vai-se alterando a posição de uma peça de cada vez tentando colocar quatro peças em linha.

Figura 4: Exemplo com todas as peças colocadas e nenhum jogador ganha.

Vence o primeiro jogador a conseguir colocar 4 peças em linha

Referências: https://www.boardgamegeek.com/boardgame/284636/straight-4

http://www.jbobsmoviereviews.com/wordpress/straight-4-review/

https://binarycocoa.com/portfolio/straight-4/

https://binarycocoa.com/2019/02/23/straight-4-now-available/

Representação interna do estado de jogo

Estado Inicial

table([[0,0,0,0,0],	
[0,0,0,0,0],	
[0,0,0,0,0],	
[0,0,0,0,0],	
[0,0,0,0,0]	
]).	

		Α	B	C	D	E	
1	1	-	-	-	-	-	1
2		-	-	-	-	-	2
3	1	-	-	-	-	-	3
4		-	-	-	-	-	4
5	1	-	-	-	-	-	5
				C			

Figura 5: Situação Inicial

Estado Intermédio

table([[0,0,0,0,0],	
[0,1,1,2,0],	
[0,2,2,1,0],	
[0,0,0,0,0],	
[0,0,0,0,0]	
]).	

	Α	В	C	DΙ	Ε	
1	-	- [- 1	- [- 1	1
2	j - j	•	•	0	- 1	2
	j - j					
	-					
5	-	- [- [- [- 1	5
				D		

Figura 6: Situação Intermédia

Estado Final

	Α	В	C	D	Ε	
1	-					1
	j - j	1	7 1.3			
	•					
	j - j	7	7			
	j - j					
	127	A	Ci			

Figura 7: Situação Final

Visualização do tabuleiro

Segue-se o código utilizado para a impressão do tabuleiro na consola:

```
print table header:-
write(' '),
write('A'), write(' '), write(' '), write(' '), write(' '), write(' '), write(' '),
write('C'), write(' '), write(' '), write(' '), write(' D'), write(' '), write(' '), write(' E'), nl.
print cell(0):- put code(173), !.
print cell(1):- put code(9679), !.
print cell(2):- put code(9675).
print column([]):-!.
print column([H|T]):-
  print cell(H),
  write(' | '),
  print column(T).
print board([], 6):-!.
print board([H|T], N):-
 print format number(N),
 write('| '),
 print column(H),
 print format number(N),
 nl,
 Next is (N + 1),
 print board(T, Next).
print format number(N):-
 !,
 write(N),
 write(' ').
initBoard(Board):-
 table(Board),
 print table header,
 print board(Board, 1),
 print_table_header.
show_player(Player) :-
 Player = '1', nl, write('PLAYER: black'), nl, nl;
 Player = '2', nl, write('PLAYER: white'), nl, nl.
display game(Board, Player):-
```

show_player(Player),
initBoard(Board).

As três últimas figuras representam os outputs na consola produzidos pelo código acima representado.