APPENDIX C

Statistical Tables

- Table C.1. Standard Normal Cumulative Probabilities $\Phi(z)$
- Table C.2. Critical Values $t_{\nu,\alpha}$ for Student's t-Distribution
- Table C.3. Critical Values $\chi^2_{\nu,\alpha}$ for the Chi-Square Distribution
- Table C.4. Critical Values $f_{\nu_1,\nu_2,\alpha}$ for the F-Distribution
- Table C.5. Critical Values $q_{k,\nu,\alpha}$ for the Studentized Range Distribution
- Table C.6. One-Sided Multivariate t Critical Values $t_{k,\nu,\rho,\alpha}$ for Common Correlation $\rho = 0.5$
- Table C.7. Two-Sided Multivariate t Critical Values $|t|_{k,\nu,\rho,\alpha}$ for Common Correlation $\rho = 0.5$
- Table C.8. Studentized Maximum Critical Values $M_{k,\nu,\alpha}$ (One-sided Multivariate t Critical Values $t_{k,\nu,\rho,\alpha}$ for $\rho=0$)
- Table C.9. Studentized Maximum Modulus Critical Values $|M|_{k,\nu,\alpha}$ (Two-sided Multivariate t Critical Values $|t|_{k,\nu,\rho,\alpha}$ for $\rho=0$)
- Table C.10. Critical Constants $c_{\alpha}(m-1, a-1, N-a)$ for Wilks' Λ Statistic for the Test of No Treatment \times Time Interaction

Table C.1 Standard Normal c.d.f. $\Phi(z) = P(Z \le z)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0017	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0352	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0394	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0,0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0722	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
$\frac{-0.0}{}$	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Table C.1 Standard Normal c.d.f. $\Phi(z) = P(Z \le z)$ (Continued)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0,4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Reprinted with permission of Pearson Education, Inc.

Table C.2 Critical Values $t_{\nu,\alpha}$ for the t-Distribution

				α			
ν	.10	.05	.025	.01	.005	.001	.0005
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
∞	1.282	1.645	1.960	2.326	2.576	3.090	3.291

Source: Reprinted with permission of Pearson Education, Inc.

Table C.3 Critical Values $\chi^2_{\nu,\alpha}$ for Chi-Square Distribution

	-005					χ	0.5	004		
ν	.995	.99	.975	.95	.90	.10	.05	.025	.01	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.033	8.897	10.283	11.591	13.240	29.615	32.670	35.478	38.930	41.399
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796
23	9.260	10.195	11.688	13.090	14.848	32.007	35.172	38.075	41.637	44.179
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558
25	10.519	11.523	13.120	14.611	16.473	34.381	37.652	40.646	44.313	46.925
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.807	12.878	14.573	16.151	18.114	36.741	40.113	43.194	46.962	49.642
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.120	14.256	16.147	17.708	19.768	39.087	42.557	45.772	49.586	52.333
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
31	14.457	15.655	17.538	19.280	21.433	41.422	44.985	48.231	52.190	55.000
32	15.134	16.362	18.291	20.072	22.271	42.585	46.194	49.480	53.486	56.328
33	15.814	17.073	19.046	20.866	23.110	43.745	47.400	50.724	54.774	57.646
34	16.501	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964
35	17.191	18.508	20.569	22.465	24.796	46.059	49.802	53.203	57.340	60.272
36	17.887	19.233	21.336	23.269	25.643	47.212	50.998	54.437	58.619	61.581
37	18.584	19.960	22.105	24.075	26.492	48.363	52.192	55.667	59.891	62.880
38	19.289	20.691	22.878	24.884	27.343	49.513	53.384	56.896	61.162	64.181
39	19.994	21.425	23.654	25.695	28.196	50.660	54.572	58.119	62.420	65.473
40^a	20.706	22.164	24.433	26.509	29.050	51.805	55.758	59.342	63.691	66.766

 $a = \sqrt{1 - \frac{2}{9v}} + z_{\alpha} \sqrt{\frac{2}{9v}}$

Source: Reprinted with permission of Pearson Education, Inc.

Table C.4 Critical Values $f_{\nu_1,\nu_2,\alpha}$ for F-Distribution

		8		6366.0	99.50	26.13	13.46	9.02	88.9	5.65	4.86	4.31	3.91	3.60	3.36	3.17	3.00	2.87	2.75	2.65	2.57	2.49
		120		6339.0 63	99.49	26.22		9.11	6.97	5.74	4.95	4.40	4.00	3.69	3.45	3.25	3.09	2.96	2.84	2.75	2.66	2.58
		99		6311.0 63.	99.48	26.32		9.20	7.06	5.82	5.03	4.48	4.08	3.78	3.54	3.34	3.18	3.05	2.93	2.83	2.75	2.67
		40		6287.0 631		26.41		9.29	7.14	5.91	5.12	4.57	4.17	3.86	3.62	3.43	3.27	3.13	3.02	2.92	2.84	2.76
					99.47	26.50 2		9.38	.23	5.99	5.20	4.65	4.25	3.94	3.70	3.51	3.35		3.10	_		
		30		6261.0		_									3	_		_			_	
		24		6235.0	99.46	26.00	13.93	9.47	7.31	6.07	5.28	4.73	4.33	4.02	3.78	3.59	3.43	3.29	3.18	3.08	3.00	2.92
		20		6209.0	99.45	26.69	14.02	9.55	7.40	6.16	5.36	4.81	4.41	4.10	3.86	3.66	3.51	3.37	3.26	3.16	3.08	3.00
tion	9α = α	15		6157.0	99.43	26.87	14.20	9.72	7.56	6.31	5.52	4.96	4.56	4.25	4.01	3.82	3.66	3.52	3.41	3.31	3.23	3.15
ity func	Shaded area = α	ator (v ₁)		6106.0	99.42	27.05	14.37	68.6	7.72	6.47	5.67	5.11	4.71	4.40	4.16	3.96	3.80	3.67	3.55	3.46	3.37	3.30
F _{v1, v2} Density function	Sha	or numer 10		6056.0 6	99.40	27.23	14.55	10.05	7.87	6.62	5.81	5.26	4.85	4.54	4.30	4.10	3.94	3.80	3.69	3.59	3.51	3.43
, z	7.2	Degrees of freedom for numerator (v_1) 8 9 10 12		6022.0	99.39	27.35	14.66	10.16	7.98	6.72	5.91	5.35	4.94	4.63	4.39	4.19	4.03	3.89	3.78	3.68	3.60	3.52
		rees of fi		5982.0 60	99.37	27.49	14.80	10.29	8.10	6.84	6.03	5.47	5.06	4.74	4.50	4.30	4.14	4.00	3.89	3.79	3.71	3.63
		Deg 7		5928.0 59	99.36	27.67	14.98	10.46	8.26	66.9	6.18	5.61	5.20	4.89	4.64	4.4	4.28	4.14	4.03	3.93	3.84	3.77
		9		5859.0 59	99.33	27.91	15.21	10.67	8.47	7.19	6.37	5.80	5.39	5.07	4.82	4.62	4.46	4.32	4.20	4.10	4.01	3.94
		5		5764.0 5	99.30	28.24	15.52	10.97	8.75	7.46	6.63	90.9	5.64	5.32	90.9	4.96	4.69	4.36	4.	4.34	4.25	4.17
		4		5625.0 5	99.25	28.71	15.98	11.39	9.15	7.85	7.01	6.42	5.99	2.67	5.41	5.21	5.04	4.89	4.77	4.67	1.58	4.50
		3		5403.0 5	99.17	29.46	16.69	12.06	87.6	9.45	7.59	6.99	6.55	6.22	5.95	5.74	5.56	5.42	5.29	5.18	5.09	5.01
		2			99.00	30.82	18.00	13.27	10.92	9.55	8.65	9.05	7.56	7.21	6.93	6.70	6.51	98.9	6.23	6.11	6.01	5.93
				1052.0 4	98.50 99.00	34.12	21.20	16.26	13.75	12.25	11.26	10.56	10.04	9.65	9.33	6.07	8.86	8.68	8.53	8.40	8.29	8.18
				-	2								10									
			$\alpha = 0.01$										ıoì									

٠.						_	_				_	_		_
2.42	2.36	2.31	2.26	2.21	2.17	2.13	2.10	2.06	2.03	2.01	1.80	1.60	1.38	1.00
2.52	2.46	2.40	2.35	2.31	2.27	2.23	2.20	2.17	2.14	2.11	1.92	1.73	1.53	1.32
2.61	2.55	2.50	2.45	2.40	2.36	2.33	2.29	2.26	2.23	2.21	2.02	1.84	1.66	1.47
5.69	2.64	2.58	2.54	2.49	2.45	2.42	2.38	2.35	2.33	2.30	2.11	1.94	1.76	1.51
2.78	2.72	2.67	2.62	2.58	2.54	2.50	2.47	2.44	2.41	2.39	2.20	2.03	1.86	1.70
2.86	2.80	2.75	2.70	5.66	2.62	2.58	2.55	2.52	2.49	2.47	2.29	2.12	1.95	1.79
2.94	2.88	2.83	2.78	2.74	2.70	5.66	2.63	2.60	2.57	2.55	2.37	2.20	2.03	1.88
3.09	3.03	2.98	2.93	2.89	2.85	2.81	2.78	2.75	2.73	2.70	2.52	2.35	2.19	2.04
3.23	3.17	3.12	3.07	3.03	2.99	2.96	2.93	2.90	2.87	2.84	2.66	2.50	2.34	2.18
3.37	3.31	3.26	3.21	3.17	. 3.13	3.09	3.06	3.03	3.00	2.98	2.80	2.63	2.47	2.32
3.46	3.40	3.35	3.30	3.26	3.22	3.18	3.15	3.12	3.09	3.07	2.89	2.72	2.56	2.41
3.56	3.51	3.45	3.41	3.36	3.32	3.29	3.26	3.23	3.20	3.17	2.99	2.82	2.66	2.51
3.70	3.64	3.59	3.54	3.50	3.46	3.42	3.39	3.36	3.33	3.30	3.12	2.95	2.79	2.64
3.87	3.81	3.76	3.71	3.67	3.63	3.59	3.56	3.53	3.50	3.47	3.29	3.12	2.96	2.80
4.10	4.04	3.99	3.94	3.90	3.85	3.82	3.78	3.75	3.73	3.70	3.51	3.34	3.17	3.02
4.43	4.37	4.31	4.26	4.22	4.18	4.14	4.11	4.07	4.04	4.02	3.83	3.65	3.48	3.32
4.94	4.87	4.81	4.76	4.72	4.68	4.64	4.60	4.57	4.54	4.51	4.31	4.13	3.95	3.78
5.85	5.78	5.72	99.5	5.61	5.57	5.53	5.49	5.45	5.42	5.39	5.18	4.98	4.79	4.61
8.10	8.02	7.95	7.88	7.82	7.77	7.72	7.68	7.64	7.60	7.56	7.31	7.08	6.85	6.63
20	21	22	23	24	25	56	27	28	29	30	40	99	120	8

Table C.4 Critical Values $f_{\nu_1,\nu_2,\alpha}$ for F-Distribution (Continued)

	2 3 4 5 6 7	199 5 2157 224 6 230.2 234.0 2	19.00 19.16 19.25 19.30 19.33	9.55 9.28 9.12 9.01 8.94	6.61 5.79 5.41 5.19 5.05 4.95 4.88	5.14 4.76 4.53 4.39 4.28	4.74 4.35 4.12 3.97 3.87	4.46 4.07 3.84 3.69 3.58	4.26 3.86 3.63 3.48 3.37	4.10 3.71 3.48 3.33 3.22	3.98 3.59 3.36 3.20 3.09	3.89 3.49 3.26 3.11 3.00	3.81 3.41 3.18 3.03 2.92	3.74 3.34 3.11 2.96 2.85	3.68 3.29 3.06 2.90 2.79	3.63 3.24 3.01 2.85 2.74	3.59 3.20 2.96 2.81 2.69	3.55 3.16 2.93 2.77 2.66	3.52 3.13 2.90 2.74 2.63
	Degrees of freedom for numerator (v ₁) 8 9 10 12	238.9	19.37	8.85	6.04 4.82	4.15	3.73	3.44	3.23	3.07	2.95	2.85	2.77	2.70	2.64	2.59	2.55	2.51	2.48
F _{V1, v2} Density function Shaded area =	edom for nu	()			6.00 5.96 4.77 4.74														
Shaded area = α	merator (v	, ,			6 5.91 4 4.68														
α	1)	, ,			5.80 4.62														
	20	248.0	19.45	8.66	5.80 4.56	3.87	3.44	3.15	2.94	2.77	2.65	2.54	2.46	2.39	2.33	2.28	2.23	2.19	2.16
	24	, ,,		8.64	5.77 4.53	3.84	3.41	3.12	2.90	2.74	2.61	2.51	2.42	2.35	2.29	2.24	2.19	2.15	2.11
	30	20.1 2			5.75 4.50														
	40 60	51.1 252.2	7		5.72 5.09 4.46 4.43														
	120	"	20		3 4.40		_		_		_		_		_		_		
	8	254.3	19.5	8.5	5.63 4.36	3.6	3.2	2.9	2.7	2.5	2.4	2.3	2.2	2.1	2.0	2.0	1.9	1.9	1.8

1.84	1.81	1.78	1.76	1.73	1.71	1.69	1.67	1.65	<u>4</u> 6.	1.62	1.51	1.39	1.25	1.00
1.90	1.87	1.84	1.81	1.79	1.77	1.75	1.73	1.71	1.70	1.68	1.59	1.47	1.35	1.22
1.95	1.92	1.89	1.86	1.84	1.82	1.80	1.79	1.77	1.75	1.74	<u>4</u>	1.53	1.43	1.32
1.99	1.96	1.94	1.91	1.89	1.87	1.81	1.84	1.82	1.91	1.79	1.69	1.59	1.55	1.39
2.04	2.01	1.98	1.96	1.94	1.92	1.90	1.88	1.87	1.85	1.84	1.74	1.65	1.55	1.46
2.08	2.05	2.03	2.01	1.98	1.96	1.95	1.93	1.91	1.90	1.89	1.79	1.70	1.61	1.52
2.12	2.10	2.07	2.05	2.03	2.01	1.99	1.97	1.96	1.94	1.93	1.84	1.75	1.66	1.57
2.20	2.18	2.15	2.13	2.11	5.09	2.07	5.06	5.04	2.03	2.01	1.92	1.84	1.75	1.67
2.28	2.25	2.23	2.20	2.18	2.16	2.15	2.13	2.12	2.10	5.09	2.00	1.92	1.81	1.75
2.35	2.32	2.30	2.27	2.25	2.24	2.22	2.20	2.19	2.18	2.16	2.08	1.99	1.91	1.83
2.39	2.37	2.34	2.32	2.30	2.28	2.27	2.25	2.24	2.22	2.21	2.12	2.04	1.96	1.88
2.45	2.42	2.40	2.37	2.36	2.34	2.32	2.31	2.29	2.28	2.27	2.18	2.10	2.02	1.94
2.51	2.49	2.46	2.44	2.42	2.40	2.39	2.37	2.36	2.35	2.33	2.25	2.17	5.09	2.01
2.60	2.57	2.55	2.53	2.51	2.49	2.47	2.46	2.45	2.43	2.42	2.34	2.25	2.17	2.10
2.71	2.68	2.66	2.64	2.62	2.60	2.59	2.57	2.56	2.55	2.53	2.45	2.37	2.29	2.21
2.87	2.84	2.82	2.80	2.78	2.76	2.74	2.73	2.71	2.70	5.69	2.61	2.53	2.45	2.37
3.10	3.07	3.05	3.03	3.01	2.99	2.98	2.96	2.95	2.93	2.92	2.84	2.76	2.68	2.60
3.49	3.47	3.4	3.42	3.40	3.39	3.37	3.35	3.34	3.33	3.32	3.23	3.15	3.07	3.00
4.35	4.32	4.30	4.28	4.26	4.24	4.23	4.21	4.20	4.18	4.17	4.09	4.00	3.92	3.84
20	21	22	23	24	25	56	27	28	56	30	40	09	120	8

Table C.4 Critical Values $f_{\nu_1,\nu_2,\alpha}$ for F-Distribution (Continued)

			8		3.33	9.49	5.13	3.76	3.10	2.72	2.47	2.29	5.16	5.06	1.97	06.1	1.85	08.1	1.76	1.72	60'1	99.1	1.63
					v																		
			120		63.0	9.6	5.1	3.78	3.1	2.7	2.4	2.3	2.1	5.0	5.0	5:	3:	3:	1.7	[]	1.7	1.6	1.6
			09		62.79	9.47	5.15	3.79	3.14	2.76	2.51	2.34	2.21	2.11	2.03	1.96	1.90	1.86	1.92	1.78	1.75	1.72	1.70
			40		62.53	9.47	5.16	3.80	3.16	2.78	2.54	2.36	2.23	2.13	2.05	1.99	1.93	1.89	1.85	1.81	1.78	1.75	1.73
			30		62.26	9.46	5.17	3.82	3.17	2.80	2.56	2.38	2.25	2.16	2.08	2.01	1.96	1.91	1.87	1.84	1.81	1.78	1.76
			24		62.00	9.45	5.18	3.83	3.19	2.82	2.58	2.40	2.28	2.18	2.10	2.04	1.98	1.94	1.90	1.86	1.84	1.81	1.79
			50		61.74	9.44	5.18	3.84	3.21	2.84	2.59	2.42	2.30	2.20	2.12	5.06	2.01	1.96	1.92	1.89	1.86	1.84	1.81
tion	α Β		15		61.22	9.42	5.20	3.87	3.24	2.87	2.63	2.46	2.34	2.24	2.17	2.10	2.05	2.01	1.97	1.94	1.91	1.89	1.86
$F_{\nu 1, \ u 2}$ Density function	Shaded area = α	erator (v)	12		11.09	9.41	5.22	3.90	3.27	2.90	2.67	2.50	2.38	2.28	2.21	2.15	2.10	2.05	2.02	1.99	1.96	1.93	16.1
2 Dens	Sha(1, ν2, α	the num	01		60.19	9.39	5.23	3.92	3.30	2.94	2.70	2.54	2.42	2.32	2.25	2.19	2.14	2.10	5.06	2.03	2.00	1.98	1.96
) F _{V1, v}	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	dom for	6		98.69	9.38	5.24	3.94	3.32	2.96	2.72	2.56	2.4	2.35	2.27	2.21	2.16	2.12	5.09	2.06	2.03	2.00	1.98
		Degrees of freedom for the numerator (v ₁)	∞		59.44	9.37	5.25	3.95	3.34	2.98	2.75	2.59	2.47	2.38	2.30	2.24	2.20	2.15	2.12	2.09	5.06	5.04	2.02
		Degre	7		58.91	9.35	5.27	3.98	3.37	3.01	2.78	2.62	2.51	2.41	2.34	2.28	2.23	2.19	2.16	2.13	2.10	2.08	5.06
			9		58.20	9.33	5.28	4.01	3.40	3.05	2.83	2.67	2.55	2.46	2.39	2.33	2.28	2.24	2.21	2.18	2.15	2.13	2.11
			S		57.24	9.29	5.31	4.05	3.45	3.11	2.88	2.73	2.61	2.52	2.45	2.39	2.35	2.31	2.27	2.24	2.22	2.20	2.18
			4		55.83	9.24	5.34	4.11	3.52	3.18	2.96	2.81	2.69	2.61	2.54	2.48	2.43	2.39	2.36	2.33	2.31	2.29	2.27
			3		53.59	9.16	5.39	4.19	3.62	3.29	3.07	2.92	2.81	2.73	2.66	2.61	2.56	2.52	2.49	2.46	2.44	2.42	2.40
			2		49.50	9.00	5.46	4.32	3.78	3.46	3.26	3.11	3.01	2.92	2.86	2.81	2.76	2.73	2.70	2.67	2.64	2.62	2.61
			_		39.86	8.53	5.54	4.54	4.06	3.78	3.59	3.46	3.36	3.29	3.23	3.18	3.14	3.10	3.07	3.05	3.03	3.01	2.99
					-	7	3	4	2	9	7	∞	6	10	Ξ	12	13	14	15	16	11	18	61
			'	$\alpha = 0.10$				(Za)) 10	oten	iimi	oua	or d	ојι	not)))	ıj j	o s	nouî	gэQ	I		

1.61	1.59	1.57	1.55	1.53	1.52	1.50	1.49	1.48	1.47	1.46	1.38	1.29	1.19	90.
<u>2</u> .	1.62	1.60	1.59	1.57	1.56	1.54	1.53	1.52	1.51	1.50	1.42	1.35	1.26	1.17
1.68	99.1	<u>2</u> .	1.62	1.61	1.59	1.58	1.57	1.56	1.55	1.54	1.47	1.40	1.32	1.24
1.71	1.69	1.67	1.66	2.	1.63	1.61	1.60	1.59	1.58	1.57	1.51	4.	1.37	1.30
1.74	1.72	1.70	1.69	1.67	1.66	1.65	1.64	1.63	1.62	1.61	1.54	1.48	1.41	1.34
1.77	1.75	1.73	1.72	1.70	1.69	1.68	1.67	1.66	1.65	2.	1.57	1.51	1.45	1.38
1.79	1.78	1.76	1.74	1.73	1.72	1.71	1.70	1.69	1.68	1.67	1.61	1.54	1.48	1.42
1.84	1.83	1.81	1.80	1.78	1.77	1.76	1.75	1.74	1.73	1.72	1.66	1.60	1.55	1.49
1.89	1.87	1.86	1.84	1.83	1.82	1.81	1.80	1.79	1.78	1.77	1.71	1.66	1.60	1.55
1.94	1.92	1.90	1.89	1.88	1.87	1.86	1.85	1.84	1.83	1.82	1.76	1.71	1.65	1.60
1.96	1.95	1.93	1.92	1.91	1.89	1.88	1.87	1.87	1.86	1.85	1.79	1.74	89.1	1.63
2.00	1.98	1.97	1.95	1.94	1.93	1.92	1.91	1.90	1.89	1.88	1.83	1.77	1.72	1.67
2.04	2.02	2.01	1.99	1.98	1.97	1.96	1.95	1.94	1.93	1.93	1.87	1.82	1.77	1.72
2.09	2.08	2.06	2.05	2.04	2.02	2.01	2.00	2.00	1.99	1.98	1.93	1.87	1.82	1.77
2.16	2.14	2.13	2.11	2.10	2.09	2.08	2.07	5.06	5.06	2.03	2.00	1.95	1.90	1.85
2.25	2.23	2.22	2.21	2.19	2.18	2.17	2.17	2.16	2.15	2.14	2.09	2.04	1.99	1.94
2.38	2.36	2.35	2.34	2.33	2.32	2.31	2.30	2.29	2.28	2.28	2.23	2.18	2.13	2.08
2.59	2.57	2.56	2.55	2.54	2.53	2.52	2.51	2.50	2.50	2.49	2.44	2.39	2.35	2.30
2.97	2.96	2.95	2.94	2.93	2.92	2.91	2.90	2.89	2.89	2.88	2.84	2.79	2.75	2.71
20	21	22	23	24	25	56	27	28	56	30	40	9	120	8

Source: Reprinted with permission of Pearson Education, Inc.

Table C.5 Studentized Range Critical Values $q_{k,\nu,\alpha}$

					k				
ν	2	3	4	5	6	7	8	9	10
$\alpha = 0$.05								
5	3.635	4.602	5.218	5.673	6.033	6.330	6.582	6.802	6.995
10	3.151	3.877	4.327	4.654	4.912	5.124	5.305	5.461	5.599
15	3.014	3.674	4.076	4.367	4.595	4.782	4.940	5.077	5.198
20	2.950	3.578	3.958	4.232	4.445	4.620	4.768	4.986	5.008
30	2.888	3.486	3.845	4.102	4.302	4.464	4.602	4.720	4.824
40	2.858	3.442	3.791	4.039	4.232	4.389	4.521	4.635	4.735
60	2.829	3.399	3.737	3.977	4.163	4.314	4.441	4.550	4.646
120	2.800	3.356	3.685	3.917	4.096	4.241	4.363	4.468	4.560
∞	2.772	3.314	3.633	3.858	4.030	4.170	4.286	4.387	4.474
$\alpha = 0$.10								
5	2.850	3.717	4.264	4.664	4.979	5.238	5.458	5.648	5.816
10	2.563	3.270	3.704	4.018	4.264	4.465	4.636	4.783	4.913
15	2.479	3.140	3.540	3.828	4.052	4.235	4.390	4.524	4.641
20	2.439	3.078	3.462	3.736	3.950	4.124	4.271	4.398	4.510
30	2.400	3.017	3.386	3.648	3.851	4.016	4.155	4.275	4.381
40	2.381	2.988	3.349	3.605	3.803	3.963	4.099	4.215	4.317
60	2.363	2.959	3.312	3.562	3.755	3.911	4.042	4.155	4.254
120	2.344	2.930	3.276	3.520	3.707	3.859	3.987	4.096	4.191
∞	2.326	2.902	3.240	3.478	3.661	3.808	3.931	4.037	4.129

Source: Excerpted from H. L. Harter (1960), "Table of range and Studentized range," Annals of Mathematical Statistics, 31, 1122-1147.

Table C.6 One-Sided Multivariate t Critical Points $t_{k,v,\alpha}$ for Common Correlation, $\rho=0.5$

						k				
ν	α	2	3	4	5	6	7	8	9	10
5	.01	3.900	4.211	4.429	4.597	4.733	4.846	4.944	5.030	5.106
	.05	2.440	2.681	2.848	2.976	3.078	3.163	3.236	3.300	3.356
	.10	1.873	2.094	2.245	2.359	2.451	2.527	2.592	2.649	2.699
10	.01	3.115	3.314	3.453	3.559	3.644	3.715	3.777	3.830	3.878
	.05	2.151	2.338	2.466	2.562	2.640	2.704	2.759	2.807	2.849
	.10	1.713	1.899	2.024	2.119	2.194	2.256	2.309	2.355	2.396
15	.01	2.908	3.080	3.198	3.289	3.362	3.422	3.474	3.520	3.560
	.05	2.067	2.239	2.356	2.444	2.515	2.573	2.623	2.667	2.705
	.10	1.665	1.840	1.959	2.047	2.118	2.716	2.225	2.268	2.306
20	.01	2.813	2.972	3.082	3.166	3.233	3.289	3.337	3.378	3.416
	.05	2.027	2.192	2.304	2.389	2.456	2.512	2.559	2.601	2.637
	.10	1.642	1.813	1.927	2.013	2.081	2.137	2.185	2.227	2.263
25	.01	2.758	2.911	3.016	3.095	3.159	3.212	3.258	3.298	3.333
	.05	2.004	2.165	2.274	2.356	2.422	2.476	2.522	2.562	2.598
	.10	1.629	1.796	1.909	1.993	2.060	2.115	2.162	2.202	2.238
30	.01	2.723	2.871	2.973	3.050	3.111	3.163	3.207	3.245	3.279
	.05	1.989	2.147	2.255	2.335	2.399	2.453	2.498	2.537	2.572
	.10	1.620	1.786	1.897	1.980	2.046	2.100	2.146	2.186	2.222
35	.01	2.698	2.843	2.942	3.018	3.078	3.128	3.171	3.209	3.242
	.05	1.978	2.135	2.241	2.320	2.384	2.436	2.481	2.519	2.554
	.10	1.614	1.778	1.888	1.971	2.036	2.090	2.135	2.175	2.210
40	.01	2.680	2.822	2.920	2.994	3.053	3.103	3.145	3.181	3.214
	.05	1.970	2.125	2.230	2.309	2.372	2.424	2.468	2.506	2.540
	.10	1.609	1.772	1.882	1.964	2.028	2.082	2.127	2.167	2.201
50	.01	2.655	2.794	2.889	2.962	3.019	3.068	3.109	3.145	3.176
	.05	1.959	2.112	2.216	2.294	2.356	2.407	2.450	2.488	2.521
	.10	1.603	1.764	1.873	1.954	2.018	2.071	2.116	2.155	2.189
100	.01	2.0605	2.738	2.829	2.898	2.953	2.999	3.038	3.072	3.102
	.05	1.938	2.087	2.188	2.263	2.324	2.373	2.415	2.452	2.484
	.10	1.590	1.749	1.885	1.935	1.998	2.050	2.094	2.132	2.166
200	.01	2.581	2.711	2.800	2.867	2.921	2.966	3.004	3.037	3.006
	.05	1.927	2.074	2.174	2.249	2.308	2.357	2.398	2.434	2.466
	.10	1.583	1.741	1.847	1.926	1.988	2.039	2.083	2.121	2.154
∞	.01	2.558	2.685	2.772	2.837	2.889	2.933	2.970	3.002	3.031
	.05	1.916	2.062	2.160	2.234	2.292	2.340	2.381	2.417	2.448
	.10	1.577	1.734	1.838	1.916	1.978	2.029	2.072	2.109	2.148

Source: Excerpted from R. E. Bechhofer and C. W. Dunnett (1988), "Percentage points of multivariate t-distribution," Selected Tables in Mathematical Statistics, 11, Providence, RI: American Mathematical Society.

Table C.7 Two-Sided Multivariate t Critical Points $|t|_{k,\nu,\alpha}$ for Common Correlation, $\rho=0.5$

				·		k				
ν	α	2	3	4	5	6	7	8	9	10
5	.01	4.627	4.975	5.219	5.406	5.557	5.683	5.792	5.887	5.971
	.05	3.030	3.293	3.476	3.615	3.727	3.821	3.900	3.970	4.032
	.10	2.433	2.669	2.832	2.956	3.055	3.137	3.207	3.268	3.322
10	.01	3.531	3.739	3.883	3.994	4.084	4.159	4.223	4.279	4.329
	.05	2.568	2.759	2.890	2.990	3.070	3.137	3.194	3.244	3.288
	.10	2.149	2.335	2.463	2.559	2.636	2.700	2.755	2.802	2.844
15	.01	3.253	3.426	3.547	3.639	3.713	3.776	3.829	3.875	3.917
	.05	2.439	2.610	2.727	2.816	2.887	2.946	2.997	3.041	3.080
	.10	2.066	2.238	2.355	2.443	2.514	2.572	2.622	2.665	2.703
20	.01	3.127	3.285	3.395	3.479	3.547	3.603	3.651	3.694	3.731
	.05	2.379	2.540	2.651	2.735	2.802	2.857	2.905	2.946	2.983
	.10	2.027	2.192	2.304	2.388	2.455	2.511	2.559	2.600	2.636
25	.01	3.055	3.205	3.309	3.388	3.452	3.505	3.551	3.591	3.626
	.05	2.344	2.500	2.607	2.688	2.752	2.806	2.852	2.891	2.927
	.10	2.004	2.165	2.274	2.356	2.421	2.476	2.522	2.562	2.597
30	.01	3.009	3.154	3.254	3.330	3.391	3.442	3.486	3.524	3.558
	.05	2.321	2.474	2.578	2.657	2.720	2.772	2.817	2.856	2.890
	.10	1.989	2.147	2.254	2.335	2.399	2.452	2.498	2.537	2.572
35	.01	2.976	3.118	3.215	3.289	3.349	3.398	3.441	3.478	3.511
	.05	2.305	2.455	2.558	2.635	2.697	2.748	2.792	2.830	2.864
	.10	1.978	2.135	2.240	2.320	2.383	2.436	2.480	2.519	2.553
40	.01	2.952	3.091	3.186	3.259	3.317	3.366	3.408	3.444	3.476
	.05	2.293	2.441	2.543	2.619	2.680	2.731	2.774	2.812	2.845
	.10	1.970	2.125	2.230	2.309	2.372	2.424	2.468	2.506	2.540
50	.01	2.920	3.054	3.147	3.218	3.274	3.321	3.362	3.397	3.428
	.05	2.276	2.422	2.522	2.597	2.657	2.707	2.749	2.786	2.819
	.10	1.959	2.112	2.216	2.294	2.355	2.407	2.450	2.488	2.521
100	.01	2.856	2.983	3.071	3.137	3.191	3.235	3.273	3.306	3.335
	.05	2.244	2.385	2.481	2.554	2.611	2.659	2.700	2.735	2.767
	.10	1.938	2.087	2.188	2.263	2.323	2.373	2.415	2.452	2.484
200	.01	2.825	2.949	3.034	3.098	3.150	3.193	3.230	3.262	3.291
	.05	2.228	2.367	2.461	2.532	2.589	2.636	2.676	2.711	2.741
	.10	1.927	2.074	2.174	2.249	2.308	2.357	2.398	2.434	2.466
∞	.01	2.794	2.915	2.998	3.060	3.110	3.152	3.188	3.219	3.246
	.05	2.212	2.349	2.442	2.511	2.567	2.613	2.652	2.686	2.716
	.10	1.916	2.062	2.160	2.234	2.292	2.340	2.381	2.417	2.488

Source: Excerpted from R. E. Bechhofer and C. W. Dunnett (1988), "Percentage points of multivariate t-distribution," Selected Tables in Mathematical Statistics, 11, (Providence, RI: American Mathematical Society.)

Table C.8 Studentized Maximum Critical Values $M_{k,\nu,\alpha}$ (One-sided Multivariate t Critical Values $t_{k,\nu,\rho,\alpha}$ with $\rho=0$)

-		-				k				
ν	α	2	3	4	5	6	7	8	9	10
5	.01	3.997	4.387	4.671	4.896	5.081	5.239	5.376	5.497	5.606
	.05	2.532	2.840	3.062	3.234	2.376	3.495	3.599	3.690	3.772
	.10	1.969	2.256	2.459	2.616	2.744	2.851	2.944	3.026	3.098
10	.01	3.161	3.394	3.560	3.690	3.796	3.886	3.963	4.032	4.094
	.05	2.211	2.439	2.598	2.720	2.820	2.903	2.976	3.039	3.096
	.10	1.787	2.018	2.178	2.300	2.398	2.481	2.552	2.614	2.670
15	.01	2.942	3.138	3.276	3.382	3.469	3.542	3.606	3.662	3.712
	.05	2.120	2.326	2.467	2.576	2.663	2.737	2.800	2.856	2.905
	.10	1.732	1.947	2.095	2.207	2.297	2.372	2.436	2.492	2.542
20	.01	2.842	3.021	3.147	3.243	3.322	3.388	3.444	3.494	3.539
	.05	2.076	2.271	2.405	2.507	2.590	2.659	2.718	2.770	2.816
	.10	1.706	1.914	2.055	2.162	2.248	2.320	2.381	2.434	2.481
25	.01	2.785	2.955	3.073	3.164	3.238	3.299	3.353	3.400	3.441
	.05	2.051	2.239	2.369	2.468	2.547	2.613	2.670	2.720	2.764
	.10	1.691	1.894	2.032	2.136	2.220	2.289	2.348	2.400	2.446
30	.01	2.748	2.912	3.026	3.113	3.184	3.243	3.294	3.338	3.378
	.05	2.034	2.219	2.346	2.442	2.519	2.584	2.639	2.687	2.730
	.10	1.681	1.881	2.017	2.119	2.201	2.269	2.327	2.378	2.422
35	.01	2.722	2.881	2.992	3.077	3.146	3.203	3.253	3.296	3.334
	.05	2.022	2.204	2.329	2.424	2.499	2.563	2.617	2.664	2.706
	.10	1.674	1.872	2.006	2.107	2.188	2.255	2.312	2.362	2.406
40	.01	2.703	2.859	2.968	3.051	3.118	3.174	3.222	3.264	3.302
	.05	2.014	2.194	2.317	2.410	2.485	2.547	2.600	2.647	2.688
	.10	1.668	1.865	1.998	2.098	2.178	2.244	2.301	2.350	2.393
50	.01	2.676	2.829	2.934	3.015	3.080	3.134	3.180	3.221	3.258
	.05	2.001	2.179	2.300	2.391	2.465	2.526	2.578	2.623	2.663
	.10	1.661	1.855	1.987	2.085	2.164	2.229	2.285	2.333	2.376
100	.01	2.625	2.769	2.869	2.944	3.005	3.056	3.100	3.138	3.171
	.05	1.978	2.150	2.267	2.355	2.425	2.483	2.533	2.577	2.615
	.10	1.647	1.837	1.965	2.061	2.137	2.200	2.254	2.301	2.342
200	.01	2.600	2.740	2.837	2.910	2.969	3.018	3.060	3.097	3.130
	.05	1.966	2.135	2.250	2.337	2.405	2.463	2.511	2.554	2.591
	.10	1.639	1.827	1.954	2.049	2.124	2.186	2.239	2.285	2.325
∞	.01	2.575	2.712	2.806	2.877	2.934	2.981	3.022	3.057	3.089
	.05	1.955	2.121	2.234	2.319	2.386	2.442	2.490	2.531	2.568
	.10	1.632	1.818	1.943	2.036	2.111	2.172	2.224	2.269	2.309

Source: Excerpted from R. E. Bechhofer and C. W. Dunnett (1988), "Tables of percentage points of multivariate student t distributions," Selected Tables in Mathematical Statistics, 11, 1–371.

Table C.9 Studentized Maximum Modulus Critical Values $|M|_{k,\nu,\alpha}$ (Two-Sided Multivariate t Critical Values $|t|_{k,\nu,\rho,\alpha}$ for $\rho=0$)

						k			,	
ν	α	2	3	4	5	6	7	8	9	10
5	.01	4.700	5.106	5.397	5.625	5.812	5.969	6.106	6.226	6.334
	.05	3.091	3.399	3.619	3.789	3.928	4.044	4.145	4.233	4.312
	.10	2.491	2.769	2.965	3.116	3.239	3.341	3.430	3.507	3.576
10	.01	3.567	3.801	3.968	4.098	4.205	4.295	4.373	4.441	4.503
	.05	2.609	2.829	2.983	3.103	3.199	3.281	3.351	3.412	3.467
	.10	2.193	2.410	2.562	2.678	2.771	2.850	2.918	2.977	3.029
15	.01	3.279	3.472	3.608	3.714	3.800	3.872	3.935	3.990	4.040
	.05	2.474	2.669	2.805	2.909	2.994	3.065	3.126	3.180	3.227
	.10	2.107	2.305	2.443	2.548	2.633	2.704	2.765	2.818	2.865
20	.01	3.149	3.323	3.446	3.540	3.617	3.682	3.738	3.787	3.831
	.05	2.411	2.594	2.721	2.819	2.897	2.963	3.020	3.070	3.114
	.10	2.065	2.255	2.386	2.486	2.567	2.634	2.691	2.742	2.786
25	.01	3.075	3.239	3.354	3.442	3.514	3.574	3.626	3.672	3.713
	.05	2.374	2.551	2.673	2.766	2.841	2.904	2.959	3.006	3.048
	.10	2.041	2.226	2.353	2.450	2.528	2.592	2.648	2.697	2.740
30	.01	3.027	3.185	3.295	3.379	3.447	3.505	3.554	3.598	3.637
	.05	2.350	2.522	2.641	2.732	2.805	2.866	2.918	2.964	3.005
	.10	2.025	2.207	2.331	2.426	2.502	2.565	2.620	2.667	2.709
35	.01	2.994	3.147	3.253	3.335	3.401	3.457	3.504	3.546	3.584
	.05	2.333	2.502	2.619	2.708	2.779	2.839	2.890	2.935	2.975
	.10	2.014	2.193	2.316	2.409	2.484	2.546	2.599	2.646	2.687
40	.01	2.969	3.119	3.223	3.303	3.367	3.421	3.468	3.508	3.545
	.05	2.321	2.488	2.602	2.690	2.760	2.819	2.869	2.913	2.952
	.10	2.006	2.183	2.305	2.397	2.470	2.532	2.584	2.630	2.671
50	.01	2.935	3.080	3.181	3.258	3.320	3.372	3.417	3.456	3.491
	.05	2.304	2.467	2.580	2.665	2.734	2.791	2.840	2.883	2.921
	.10	1.994	2.169	2.289	2.379	2.452	2.512	2.564	2.609	2.648
100	.01	2.869	3.006	3.100	3.172	3.229	3.278	3.319	3.356	3.388
	.05	2.270	2.427	2.535	2.616	2.682	2.736	2.783	2.823	2.859
	.10	1.971	2.141	2.257	2.345	2.414	2.473	2.522	2.565	2.604
200	.01	2.838	2.970	3.061	3.130	3.186	3.232	3.272	3.307	3.338
	.05	2.253	2.407	2.513	2.592	2.656	2.709	2.755	2.794	2.829
	.10	1.960	2.128	2.242	2.328	2.396	2.453	2.502	2.544	2.582
∞	.01	2.806	2.934	3.022	3.089	3.143	3.188	3.226	3.260	3.289
	.05	2.236	2.388	2.491	2.569	2.631	2.683	2.727	2.766	2.800
	.10	1.949	2.114	2.226	2.311	2.378	2.434	2.481	2.523	2.560

Source: Excerpted from R. E. Bechhofer and C. W. Dunnett (1988), "Tables of percentage points of multivariate student t distributions," Selected Tables in Mathematical Statistics, 11, 1–371.

Table C.10 Critical Constants $c_{\alpha}(m-1, \alpha-1, N-a)$ for Wilks' A Statistic for the Test of No Treatment-Time Interaction $(\alpha = 0.05)$

(co.o - m)												
		: w	m = 4			m=5	= 5			: ш	0 = m	
)	a			а				,	ı	
N-a	3	4	5	9	3	4	5	9	3	4	5	9
10	0.243	0.164	0.0864	0.117	0.155	0.091	0.057	0.038	0.092	0.046	0.026	0.015
15	0.405	0.306	0.243	0.195	0.314	0.219	0.159	0.119	0.239	0.152	0.102	0.0703
20	0.515	0.419	0.348	0.293	0.431	0.329	0.257	0.205	0.359	0.256	0.188	0.142
25	0.591	0.500	0.430	0.374	0.516	0.415	0.340	0.283	0.449	0.343	0.268	0.213
30	0.648	0.563	0.495	0.439	0.580	0.483	0.409	0.349	0.519	0.415	0.337	0.277
40	0.724	0.651	0.591	0.539	0.668	0.583	0.513	0.455	0.617	0.522	0.446	0.384
99	0.808	0.752	0.704	0.661	0.767	0.700	0.643	0.592	0.729	0.652	0.587	0.531
80	0.853	0.808	0.769	0.733	0.821	0.766	0.718	0.675	0.791	0.727	0.672	0.623
100	0.881	0.844	0.810	0.780	0.854	0.80	0.768	0.730	0.830	0.776	0.728	0.685

For a = 2, use $F = \binom{N-m}{m-1} \binom{1-\Lambda}{\Lambda} \sim F_{m-1,N-m}$. For m = 2, use $F = \binom{N-m}{d-1} \binom{1-\Lambda}{\Lambda} \sim F_{a-1,N-a}$. For m = 3, use $F = \binom{N-a-1}{a-1} \binom{1-\sqrt{\Lambda}}{\Lambda} \sim F_{2(a-1),2(N-a-1)}$. Source: Adapted from Timm (1975), Table IX. Reprinted by permission of Dr. Neil H. Timm.