Classification and Regression Trees (CART) and Causal Trees

Susan Athey, Stanford University Machine Learning and Causal Inference

What is the goal of prediction?

- Machine learning answer:
 - Smallest mean-squared error in a test set

▶ Formally:

- Let S^{te} be a test set.
 - Think of this as a random draw of individuals from a population
- Let $\hat{\mu}(x_i)$ be a candidate (estimated) predictor
- MSE on test set is:

$$\frac{1}{|S^{te}|} \sum_{i \in S^{te}} (Y_i - \hat{\mu}(X_i))^2$$

Regression Trees

- Simple method for prediction
 - Partition data into subsets by covariates
 - Predict using average within each subset
- Why are regression trees popular?
 - Easy to understand and explain
 - Businesses often need "segments"
 - Software assigns different algorithms to different segments
- Can completely describe the algorithm and interpretation

Example: Who survived the Titantic?

Regression Trees for Prediction

Data

- Outcomes Y_i , attributes X_i .
- Support of X_i is \mathcal{X} .
- Have training sample with independent obs.
- Want to predict on new sample

Build a "tree":

- Partition of ${\mathcal X}$ into "leaves" ${\mathcal X}_j$
- Predict Y conditional on realization of X in each region \mathcal{X}_j using the sample mean in that region
- Go through variables and leaves and decide whether and where to split leaves (creating a finer partition) using in-sample goodness of fit criterion
- Select tree complexity using crossvalidation based on prediction quality

Regression Trees for Prediction

Outcome: Binary (Y in {0,1})

Two covariates

Goal: Predict Y as a function of X

"Classify" units as a function of X according to whether they are more likely to have Y=0 or Y=1

Regression Trees for Prediction

- (1) Tree-building: Use algorithm to partition data according to covariates (adaptive: do this based on the difference in mean outcomes in different potential leaves.)
 - (II) Estimation/prediction: calculate mean outcomes in each leaf (III) Use cross-validation to select tree complexity penalty

Tree Building Details

- Impossible to search over all possible partitions, so use a greedy algorithm
- Do until all leaves have less than 2*minsize obs:
 - ▶ For each leaf:
 - For each observed value x_i of each covariate x_i :
 - \square Consider splitting the leaf into two children according to whether $x_i \leq x_i$
 - ☐ Make new predictions in each candidate child according to sample mean
 - ☐ Calculate the improvement in "fit" (MSE)
 - Select the covariate j and the cutoff value that lead to the greatest improvement in MSE; split the leaf into two child leaves
- Observations
 - In-sample MSE always improves with additional splits
 - What is MSE when each leaf has one observation?

Problem: Tree has been "over-fitted"

- ▶ Suppose we fit a tree and pick a particular leaf ℓ .
 - Do we expect that if we drew a new sample, we would get the same answer?

More formally:

- Let S^{tr} be training dataset and S^{te} be an independent test set
- Let $\widehat{\mu}(x_i) = \frac{1}{N_{\ell(x_i)}} \sum_{i \in \ell(x_i), S^{tr}} Y_i$
- $\blacktriangleright \text{ Is } E_{i \in S^{te}}[Y_i | X_i \in \ell(x_i)] = \hat{\mu}(x_i)?$

What are tradeoffs in tree depth?

- First: note that in-sample MSE doesn't guide you
 - It always increases with depth
- Tradeoff as you grow tree deeper
 - More personalized predictions
 - More biased estimates

Regression Trees for Prediction: Components

Model and Estimation

- A. Model type: Tree structure
- B. Estimator $\hat{\mu}(X_i)$: sample mean of Y_i within leaf $\ell(X_i)$
- C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. Criterion function (for fixed tuning parameter λ)

A. In-sample Goodness-of-fit function:

Qis = -MSE (Mean Squared Error)=
$$-\frac{1}{N}\sum_{i=1}^{N}(\hat{\mu}(X_i)-Y_i)^2$$

- A. Structure and use of criterion
 - i. Criterion: $Q^{crit} = Q^{is} \lambda \times \#$ leaves
 - ii. Select member of set of candidate estimators that maximizes Q^{crit} , given λ

3. Cross-validation approach

- A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Qos.
- B. Out-of-sample Goodness-of-fit function: $Q^{os} = -MSE$

How Does Cross Validation Work?

Tuning Set = 1/5 of Training Set

Cross-Validation Mechanics

- Loop over cross-validation samples
 - Train a deep tree on CV-training subset
- **Loop** over penalty parameters λ
 - Loop over cross-validation samples
 - Prune the tree according to penalty
 - Calculate new MSE of tree
 - Average (over c-v samples) the MSE for this penalty
- Choose the penalty λ^* that gives the best average MSE

Choosing the penalty parameter

Some example code

```
## Regression tree:
## rpart(formula = linear, data = processed.scaled.train, method = "anova",
      y = TRUE, control = rpart.control(cp = 1e-04, minsplit = 30))
##
## Variables actually used in tree construction:
## [1] bach orhigher
                              city.
## [3] employ 20to64
                            g2000
## [5] q2002
                             hh sise
## [7] highschool
                           median age
## [9] median income
                             noise1
## [11] noise10
                             noise11
                           noise12
## [13] noise12
## [15] noise2
                     noise2
## [17] noise4
                     noise5
## [19] noise6
                           noise7
## [21] noise8
                            noise9
## [23] p2000
                             p2002
                           percent 62 years and over
## [25] p2004
## [27] percent black
                           percent hispanicorlatino
## [29] percent male
                          percent white
## [31] sex
                              totalpopulation estimate
## [33] W
                              yolo.
丑丑
```

```
## Root node error: 3866.8/18000 = 0.21482
##
## n= 18000
##
##
              CP nsplit rel error xerror
                                              xstd
## 1
      0.01831622
                          1.00000 1.00020 0.0060337
## 2
      0.01200939
                        0.98168 0.98201 0.0061607
## 3
                          0.96967 0.97013 0.0061355
      0.00903665
## 4
      0.00555973
                          0.96064 0.96125 0.0062722
## 5
      0.00296112
                          0.95508 0.95571 0.0061583
## 6
      0.00274262
                          0.95212 0.95495 0.0062149
## 7
      0.00267924
                          0.94937 0.95394 0.0062370
## 8
      0.00190289
                          0.94670 0.95150 0.0062622
## 9
                          0.94479 0.95162 0.0063299
      0.00183424
## 10
      0.00181651
                          0.94296 0.95154 0.0063322
      0.00066122
                      64
                           0.89338 0.98640 0.0074692
## 45 0.00064984
                      67
                          0.89135 0.99433 0.0076063
## 46 0.00064533
                      68
                          0.89070 0.99997 0.0077120
## 47 0.00063905
                      71
                          0.88876 1.00373 0.0077753
## 48 0.00063765
                      72
                          0.88813 1.00493 0.0078130
## 49 0.00063654
                      78
                           0.88429 1.00529 0.0078222
## 50 0.00063212
                      85
                          0.87957 1.00727 0.0078509
## 51 0.00063205
                      86
                          0.87893 1.00815 0.0078690
## 52 0.00062566
                           0.87385 1.00952 0.0078949
                      94
                      96
## 53
      0.00062404
                           0.87260 1.01128 0.0079362
## 54 0.00062352
                      99
                           0.87073 1.01200 0.0079494
## 55 0.00061992
                     102
                          0.86886 1.01396 0.0079794
## 56 0.00061970
                     103
                          0.86824 1.01481 0.0079986
## 57 0.00061887
                     105
                           0.86700 1.01494 0.0080002
## 58 0.00061518
                     112
                          0.86228 1.01661 0.0080294
```

Pruning Code

```
op.index <- which.min(linear.singletree$cptable[, "xerror"])
cp.vals <- linear.singletree$cptable[, "CP"]
treepruned.linearsingle <- prune(linear.singletree, cp = cp.vals[op.index])</pre>
```


A Basic Policy Problem

- Every transfer program in the world must determine...
 - Who is eligible for the transfer
- Typical goal of redistributive programs
 - Transfer to neediest
- But identifying the neediest is easier said than done

Thanks to Sendhil Mullainathan for providing this worked out example....

Typical Poverty Scorecard

1 / 101	cai i ovcitv	ocorccara		
Indicator		Value	Points	Sco
How many members does the household have?		A. Five or more	0	
		B. Four	6	
		C. Three	11	
		D. Two	17	
		E. One	20	
2. Do any household members ages 5 to 18 go to private school or private pre-school?		A. No	0	
		B. Yes	5	
		C. No members ages 5 to 18	7	
3. How many years of schooling has the female head/spouse completed?		A. Three or less	0	
		B. Four to eleven	2	
		C. Twelve or more	8	
		D. No female head/spouse	8	
4. How many household members work as employees with a		A. None	0	
written contra	ct, as civil servants for the government, or	B. One	4	
in the military?		C. Two or more	13	
5. In their main occupation, how many household members are managers, A. None			0	
administrators, professionals in the arts and sciences, mid technicians, or clerks?		B. One or more	8	
6. How many rooms does the residence have?		A. One to four	0	
		B. Five	2	
		C. Six	5	
		D. Seven	7	
		E. Eight or more	11	
7. How does the	A. Ditch, other, or no bathroom		0	
household	B. Simple hole, or directly into river, la	ke, or ocean	2	
dispose of	C. Septic tank not connected to public s	sewage/rainwater system	3	
sewage?	D. Septic tank connected to public sewa	age/rainwater system	4	
	E. Direct connection to public sewage/rainwater system		5	
8. Does the household have a refrigerator?		A. No	0	
		B. Yes, with one door	5	
		C. Yes, with two doors	10	
9. Does the household have a washing machine?		A. No	0	
		B. Yes	7	
10. Does the household have a cellular or land-line telephone?		A. None	0	
10. Does are nousellor	o mile a contain of mile into incomplete:	B. Cellular but not land-line	5	
		C. Land-line but not cellular	6	
		D. Both	11	
		D. DUIII	11	

\$2.50/Da	y/2005 PPP Poverty L	ine
-----------	----------------------	-----

	\$2.50/Day/2005 F	PPP POVERTY LINE
PPI Score	Total Below the \$2.50/Day/2005 PPP Line	Total Above the \$2.50/Day/2005 PPP Line
0-4	81.8%	18.2%
5-9	77.8%	22.2%
10-14	66.1%	33.9%
15-19	49.0%	51.0%
20-24	37.2%	62.8%
25-29	23.9%	76.1%
30-34	15.4%	84.6%
35-39	8.6%	91.4%
40-44	5.2%	94.8%
45-49	3.2%	96.8%
50-54	2.1%	97.9%
55-59	1.2%	98.8%
60-64	1.2%	98.8%
65-69	0.4%	99.6%
70-74	0.6%	99.4%
75-79	0.0%	100.0%
80-84	0.0%	100.0%
85-89	0.0%	100.0%
90-94	0.0%	100.0%
95-100	0.0%	100.0%

Can we do better?

- This component of targeting is a pure prediction problem
- We fundamentally care about getting best predictive accuracy
- Let's use this example to illustrate the mechanics of prediction

Brazilian Data

- ▶ The data:
 - ▶ 44,787 data points
 - ▶ 53 variables
 - Not very wide?
- Median
 - Annual consumption (in dollars): 3918
 - > 348.85 monthly income
- ▶ 6 percent below 1.90 poverty line
- ▶ 14 percent below the 3.10 poverty line

Two Variable Tree

28,573 data points to Fit with

8061 8061 8061 8061 Set of Trees

Fit trees on 4/5 of the data Fit a tree for every level of split size

28,573 data points to Fit with

REPEAT leaving each fold out

Tuning Parameter Choice

Minimum?

- One standard error "rule" (rule of thumb)
 - Which direction?

Output

- Which of these many trees do we output?
- Even after choosing lambda we have as many trees as folds...

- Estimate one tree on full data using chosen cut size
- Key point: Cross validation is just for choosing tuning parameter
 - Just for deciding how complex a model to choose

What does the tree look like?

What else can we look at to get a sense of what the predictions are?

Variable Importance

Empirical loss by noising up x minus Empirical loss

How to describe model

- Large discussion of "interpretability"
 - Will return to this
 - Should produce the mean attributes of observations in each leaf, rather than interpret tree structure
- But one implication is that the prediction function itself becomes a new outcome variable to analyze.
- Is any of this stable? What would a confidence interval look like?

Questions and Observations

- How do we choose holdout set size?
- How to choose the # of folds?
- What to tune on? (regularizer)
- Which tuning parameter to choose from crossvalidation?

What is stable/robust about the estimated function?

Measuring Performance

		Predicted condition			
	Total population	Predicted Condition positive	Predicted Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
True condition	condition positive	True positive	False Negative (Type II error)	True positive rate (TPR), Sensitivity, Recall $= \frac{\sum \text{True positive}}{\sum \text{Condition positive}}$	False negative rate (FNR), Miss rate $= \frac{\sum False\ negative}{\sum\ Condition\ positive}$
	condition negative	False Positive (Type I error)	True negative	False positive rate (FPR), Fall-out $= \frac{\sum False positive}{\sum Condition negative}$	True negative rate (TNR), Specificity (SPC) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$
	Accuracy (ACC) = Σ True positive + Σ True negative	Positive predictive value (PPV), $\frac{\text{Precision}}{\sum \text{True positive}}$ $= \frac{\sum \text{Tost outcome positive}}{\sum \text{Test outcome positive}}$	$\begin{aligned} & \text{False omission rate (FOR)} \\ &= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}} \end{aligned}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
	Σ Total population	False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$	$\begin{aligned} & \text{Negative predictive value (NPV)} \\ &= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}} \end{aligned}$	$\begin{array}{l} \text{Negative likelihood ratio (LR-)} \\ = \frac{FNR}{TNR} \end{array}$	

SPC = TN/N = TN/(TN + FP)

Measuring Performance

Area Under Curve: Typical measure of performance

Does this measure capture the right economic question?

Measuring Performance

- AUC: Typical measure of performance
- What do you think of this measure?
- Getting the domain specific meaningful performance measure
 - Magnitudes
 - Need point of comparison

Theoretical Guidance?

- How do we choose holdout set size?
- How to choose the # of folds?
- What to tune on? (regularizer)
- Which tuning parameter to choose from crossvalidation?

- What is stable/robust about the estimated function?
- How do we form standard errors on performance?

Summary

- Regression trees easy to understand and interpret
 - DON'T MISINTERPRET
 - Just because tree doesn't split (LASSO doesn't select), does not mean that a variable is not important
 - Consider the characteristics of the subgroup
- Tradeoff between personalized versus inaccurate predictions
- Cross-validation is a tool to figure out the best balance in a particular dataset
 - E.g if truth is complex, may want to go deeper
- CART is ad hoc, but works well in practice
 - Loses to OLS/logit if true model is linear
 - Good at finding lots of complex interactions

Causal Trees: Recursive Partitioning for Heterogeneous Causal Effects

Motivation I: Experiments and Data-Mining

- Concerns about ex-post "data-mining"
 - In medicine, scholars required to pre-specify analysis plan
 - In economic field experiments, calls for similar protocols
- But how is researcher to predict all forms of heterogeneity in an environment with many covariates?
- ▶ Goal:
 - Allow researcher to specify set of potential covariates
 - Data-driven search for heterogeneity in causal effects with valid standard errors

Motivation II: Treatment Effect Heterogeneity for Policy

- Estimate of treatment effect heterogeneity needed for optimal decision-making
- This paper focuses on estimating treatment effect as function of attributes directly, not optimized for choosing optimal policy in a given setting
- This "structural" function can be used in future decisionmaking by policy-makers without the need for customized analysis

Preview

- Distinguish between causal effects and attributes
- Estimate treatment effect heterogeneity:
 - Introduce estimation approaches that combine ML prediction
 & causal inference tools
- Introduce and analyze new cross-validation approaches for causal inference
- Inference on estimated treatment effects in subpopulations
 - Enabling post-experiment data-mining
- NOTE: estimation versus prediction objective

"Moving the Goalpost": What is Question?

- Estimate $\tau(x) = E[\tau_i | X_i = x]$ as well as possible
 - Why? Want to hold some covariates fixed and look at the effect of others.
- Estimate $BLP[\tau_i|X_i=x]$
 - Why? "Interpretable"? The best linear predictor is a bit hard to interpret without the whole variance-covariance matrix of nonlinear functions and interactions; you have omitted variable bias on the coefficients you are explaining, relative to $\tau(x)$. My view is that simple models can be more "misinterpretable" than interpretable.
- Causal Tree: Find partition of covariate space and estimate $E[\tau_i|X_i\in S]$ for each element of partition
 - Why? Easier to interpret than BLP, but still important to report mean, median, percentiles of all covariates for each leaf to understand how leaves are different, when covariates are correlated.
- Which units have highest or lowest treatment effects?
 - Why? Helps understand who could be treated. Can be estimated directly or can draw inferences based on output of causal tree or non-parametric estimates of $\tau(x)$
 - Common practice to display differences between covariates; see Chernozhukov and Duflo (2018)
- What is the best policy mapping from X to treatments W?
 - Why? Sometimes this is the direct object of interest.
 - Fully nonparametric? See e.g. Hirano and Porter (2009)
 - With limited complexity or other constraints? See e.g. Kitagawa and Tetenov (2015), Athey and Wager (2017).
- What is the full set of covariates for which there is statistically significant heterogeneity?
 - List, Shaikh, and Xu (2016) (multiple testing)
- Tradeoffs: More personalization, reliable confidence intervals, role of assumptions, interpretability

Using Trees to Estimate Causal Effects

Model:

$$Y_i = Y_i(W_i) = \begin{cases} Y_i(1) & if W_i = 1, \\ Y_i(0) & otherwise. \end{cases}$$

- \triangleright Suppose random assignment of W_i
- ▶ Want to predict individual i's treatment effect
 - $\tau_i = Y_i(1) Y_i(0)$
 - This is not observed for any individual
 - Not clear how to apply standard machine learning tools
- Let

$$\mu(w, x) = \mathbb{E}[Y_i | W_i = w, X_i = x]$$

$$\tau(x) = \mu(1, x) - \mu(0, x)$$

Using Trees to Estimate Causal Effects

$$\mu(w,x) = \mathbb{E}[Y_i|W_i = w, X_i = x]$$

$$\tau(x) = \mu(1,x) - \mu(0,x)$$

- Approach I:Analyze two groups separately
 - Estimate $\hat{\mu}(1, x)$ using dataset where $W_i = 1$
 - Estimate $\hat{\mu}(0, x)$ using dataset where $W_i = 0$
 - Use propensity score weighting (PSW) if needed
 - Do within-group cross-validation to choose tuning parameters
 - Construct prediction using

$$\hat{\mu}(1,x) - \hat{\mu}(0,x)$$

- Approach 2: Estimate $\mu(w, x)$ using tree including both covariates
 - Include PS as attribute if needed
 - Choose tuning parameters as usual
 - Construct prediction using

$$\hat{\mu}(1,x) - \hat{\mu}(0,x)$$

Estimate is zero for x where tree does not split on w

Observations

- Estimation and cross-validation not optimized for goal
- Lots of segments in Approach 1: combining two distinct ways to partition the data

Problems with these approaches

- Approaches not tailored to the goal of estimating treatment effects
- 2. How do you evaluate goodness of fit for tree splitting and cross-validation?
 - $\tau_i = Y_i(1) Y_i(0)$ is not observed and thus you don't have ground truth for any unit

Literature

Approaches in the spirit of single tree and two trees

- Beygelzimer and Langford (2009)
 - Analogous to "two trees" approach with multiple treatments; construct optimal policy
- Dudick, Langford, and Li (2011)
 - Combine inverse propensity score method with "direct methods" (analogous to single tree approach) to estimate optimal policy
- Foster, Tailor, Ruberg, Statistics and Medicine (2011)
 - Estimate $\mu(w, x)$ using random forests, define $\hat{\tau}_i = \hat{\mu}(1, X_i) \hat{\mu}(0, X_i)$, and do trees on $\hat{\tau}_i$.
- Imai and Ratkovic (2013)
 - In context of randomized experiment, estimate $\mu(w,x)$ using lasso type methods, and then $\hat{\tau}(x) = \hat{\mu}(1,x) \hat{\mu}(0,x)$.

Estimating treatment effects directly at leaves of trees

- Su, Tsai, Wang, Nickerson, Li (2009)
 - Do regular tree, but split if the t-stat for the treatment effect difference is large, rather than when the change in prediction error is large.
- Zeileis, Hothorn, and Hornick (2005)
 - "Model-based recursive partitioning": estimate a model at the leaves of a tree. In-sample splits based on prediction error, do not focus on out of sample cross-validation for tuning.

Transformed outcomes or covariates for regressions

- ▶ Tibshirani et al (2014)
- Weisberg and Pontes (2015)

Another Approach: Transform the Outcome

Suppose we have 50-50 randomization of treatment/control

Let
$$Y_i^* = \begin{cases} 2Y_i & \text{if } W_i = 1 \\ -2Y_i & \text{if } W_i = 0 \end{cases}$$

► Then
$$E[Y_i^*] = 2 \cdot (\frac{1}{2}E[Y_i(1)] - \frac{1}{2}E[Y_i(0)]) = E[\tau_i]$$

Suppose treatment with probability p_i

Let
$$Y_i^* = \frac{W_i - p}{p(1 - p)} Y_i = \begin{cases} \frac{1}{p} Y_i & \text{if } W_i = 1 \\ -\frac{1}{1 - p} Y_i & \text{if } W_i = 0 \end{cases}$$

Then
$$E[Y_i^*] = \left(p_{\overline{p}}^1 E[Y_i(1)] - (1-p)_{\overline{1-p}}^1 E[Y_i(0)]\right) = E[\tau_i]$$

Observational study w/ unconfoundedness or stratified experiment

Let
$$Y_i^* = \frac{W_i - p(X_i)}{p(X_i)(1 - p(X_i))} Y_i$$

- Estimate $\hat{p}(x)$ using traditional methods
- Can also residualize the outcome first, but this introduces add'l dependence on the model for the conditional mean

Causal Trees: (Conventional Tree, Transformed Outcome)

Model and Estimation

- A. Model type: Tree structure
- B. Estimator $\hat{\tau}_i^*$: sample mean of Y_i^* within leaf
- C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. Criterion function (for fixed tuning parameter λ)

A. In-sample Goodness-of-fit function:

Qis = -MSE (Mean Squared Error) =
$$-\frac{1}{N}\sum_{i=1}^{N}(\hat{\tau}_i^* - Y_i^*)^2$$

- A. Structure and use of criterion
 - i. Criterion: $Q^{crit} = Q^{is} \lambda \times \#$ leaves
 - Select member of set of candidate estimators that maximizes Q^{crit} , given λ

3. Cross-validation approach

- A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Qos.
- B. Out-of-sample Goodness-of-fit function: $Q^{os} = -MSE$

Critique of Approach: Transform the Outcome

$$Y_i^* = \frac{W_i - p}{p(1 - p)} Y_i = \begin{cases} \frac{1}{p} Y_i & \text{if } W_i = 1\\ -\frac{1}{1 - p} Y_i & \text{if } W_i = 0 \end{cases}$$

- Within a leaf, sample average of Y_i^* is not most efficient estimator of treatment effect
 - The proportion of treated units within the leaf is not the same as the overall sample proportion
- This motivates preferred approach: use sample average treatment effect in the leaf

Causal Trees: (Causal Tree, TOT loss function)

Model and Estimation

- A. Model type: Tree structure
- B. Estimator $\hat{\tau}_i^{CT}$: sample average treatment effect within leaf (w/ PSW)
- C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. Criterion function (for fixed tuning parameter λ)

A. In-sample Goodness-of-fit function:

Qis = -MSE (Mean Squared Error) =
$$-\frac{1}{N}\sum_{i=1}^{N}(\hat{\tau}_{i}^{CT}-Y_{i}^{*})^{2}$$

- A. Structure and use of criterion
 - i. Criterion: $Q^{crit} = Q^{is} \lambda \times \#$ leaves
 - ii. Select member of set of candidate estimators that maximizes $Q^{ ext{crit}}$, given λ

3. Cross-validation approach

- A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Qos.
- B. Out-of-sample Goodness-of-fit function: Qos = -MSE

Causal Trees

- What are you estimating? Within a leaf estimate treatment effect rather than a mean
 - Difference in average outcomes for treated and control group
 - Weight by normalized inverse propensity score in observational studies
- What is your goal? MSE of treatment effects: $-E_{S^T} [\sum_{i \in S^T} (\tau_i \hat{\tau}(X_i))^2]$
- Problem: this is infeasible (true treatment effect unobserved)
 - We show we can estimate the criteria
- We also modify existing methods to be "honest." We decouple model selection from model estimation.
 - Split sample, one sample to build tree, second to estimate effects.
 - ▶ This changes criterion:

$$-E_{S^T,S^E}\left[\sum_{i\in S^T}(\tau_i-\hat{\tau}(X_i;S^E))^2\right]$$

- Tradeoff:
 - COST: sample splitting means build shallower tree, less personalized predictions, and lower MSE of treatment effects.
 - BENEFIT: Valid confidence intervals with coverage rates that do not deteriorate as data generating process gets more complex or more covariates are added.

Honest Causal Trees

Honest estimation changes expected criterion

- Criterion anticipates that we will re-estimate effects in the leaves.
 - The bias due to "dishonest" selection of tree structure will be eliminated.
 - Eliminating the bias was the main purpose of cross-validation in standard method.
- We face uncertainty in what honest sample will estimate
 - Small leaves will create noise.
 - Splitting on variables that don't affect treatment effect can reduce variance

Criterion for splitting and cross-validation changes

- Given set of leaves, MSE on test set taking into account re-estimation.
- Uncertainty over estimation set and test set at time of evaluation.

Standard Prediction Trees

$$MSE_{\mu}(\mathcal{S}^{\text{te}}, \mathcal{S}^{\text{est}}, \Pi) \equiv \frac{1}{\#(\mathcal{S}^{\text{te}})} \sum_{i \in \mathcal{S}^{\text{te}}} \left\{ \left(Y_i - \hat{\mu}(X_i; \mathcal{S}^{\text{est}}, \Pi) \right)^2 - Y_i^2 \right\}$$
$$EMSE_{\mu}(\Pi) \equiv \mathbb{E}_{\mathcal{S}^{\text{te}}, \mathcal{S}^{\text{est}}} \left[MSE_{\mu}(\mathcal{S}^{\text{te}}, \mathcal{S}^{\text{est}}, \Pi) \right]$$

Conventional CART uses for training and CV, respectively:

$$-\mathrm{MSE}_{\mu}(\mathcal{S}^{\mathrm{tr}}, \mathcal{S}^{\mathrm{tr}}, \Pi) = \frac{1}{N^{\mathrm{tr}}} \sum_{i \in \mathcal{S}^{\mathrm{tr}}} \hat{\mu}^{2}(X_{i}; \mathcal{S}^{\mathrm{tr}}, \Pi)$$

$$-\text{MSE}_{\mu}(\mathcal{S}^{\text{tr,cv}}, \mathcal{S}^{\text{tr,tr}}, \Pi)$$

$$= \frac{1}{N^{tr,cv}} \sum_{i \in \mathcal{S}^{tr,cv}} ((\widehat{\mu}(X_i; \mathcal{S}^{tr,tr}))^2 - 2\widehat{\mu}(X_i; \mathcal{S}^{tr,cv}) \widehat{\mu}(X_i; \mathcal{S}^{tr,tr}))$$

Honest Prediction Trees

$$-\text{EMSE}_{\mu}(\Pi) = -\mathbb{E}_{(Y_i, X_i), \mathcal{S}^{\text{est}}} \left[(Y_i - \mu(X_i; \Pi))^2 - Y_i^2 \right]$$
$$-\mathbb{E}_{X_i, \mathcal{S}^{\text{est}}} \left[\left(\hat{\mu}(X_i; \mathcal{S}^{\text{est}}, \Pi) - \mu(X_i; \Pi) \right)^2 \right] =$$
$$\mathbb{E}_{X_i} \left[\mu^2(X_i; \Pi) \right] - \mathbb{E}_{\mathcal{S}^{\text{est}}, X_i} \left[\mathbb{V}(\hat{\mu}^2(X_i; \mathcal{S}^{\text{est}}, \Pi)) \right],$$

This uses
fact that
estimator
on
independent
sample is
unbiased

$$\widehat{\mathbb{V}}(\widehat{\mu}(x;\mathcal{S}^{\text{est}},\Pi)) \equiv \frac{S_{\mathcal{S}^{\text{tr}}}^{2}(\ell(x;\Pi))}{N^{\text{est}}(\ell(x;\Pi))}$$

$$\widehat{\mathbb{E}}\left[\mathbb{V}(\hat{\mu}^2(X_i; \mathcal{S}^{\text{est}}, \Pi) | i \in \mathcal{S}^{\text{te}}\right] \equiv \frac{1}{N^{\text{est}}} \cdot \sum_{\ell \in \Pi} S_{\mathcal{S}^{\text{tr}}}^2(\ell)$$

$$-\widehat{\mathrm{EMSE}}_{\mu}(\mathcal{S}^{\mathrm{tr}}, N^{\mathrm{est}}, \Pi) \equiv \frac{1}{N^{\mathrm{tr}}} \sum_{i \in \mathcal{S}^{\mathrm{tr}}} \hat{\mu}^{2}(X_{i}; \mathcal{S}^{\mathrm{tr}}, \Pi) - \left(\frac{1}{N^{\mathrm{tr}}} + \frac{1}{N^{\mathrm{est}}}\right) \cdot \sum_{\ell \in \Pi} S_{\mathcal{S}^{\mathrm{tr}}}^{2}(\ell(x; \Pi))$$

Standard Causal Trees

$$MSE_{\tau}(\mathcal{S}^{\text{te}}, \mathcal{S}^{\text{est}}, \Pi) \equiv \frac{1}{\#(\mathcal{S}^{\text{te}})} \sum_{i \in \mathcal{S}^{\text{te}}} \left\{ \left(\tau_i - \hat{\tau}(X_i; \mathcal{S}^{\text{est}}, \Pi) \right)^2 - \tau_i^2 \right\}$$

$$\mathrm{EMSE}_{\tau}(\Pi) \equiv \mathbb{E}_{\mathcal{S}^{\mathrm{te}}, \mathcal{S}^{\mathrm{est}}} \left[\mathrm{MSE}_{\tau}(\mathcal{S}^{\mathrm{te}}, \mathcal{S}^{\mathrm{est}}, \Pi) \right]$$

$$\widehat{\mathrm{MSE}}_{\tau}(\mathcal{S}^{\mathrm{te}}, \mathcal{S}^{\mathrm{tr}}, \Pi) \equiv -\frac{2}{N^{\mathrm{tr}}} \sum_{i \in \mathcal{S}^{\mathrm{te}}} \hat{\tau}(X_i; \mathcal{S}^{\mathrm{te}}, \Pi) \cdot \hat{\tau}(X_i; \mathcal{S}^{\mathrm{tr}}, \Pi)$$

$$+\frac{1}{N^{\mathrm{tr}}}\sum_{i\in\mathcal{S}^{\mathrm{te}}}\hat{\tau}^2(X_i;\mathcal{S}^{\mathrm{tr}},\Pi).$$

For training and CV, respectively:

$$-\widehat{\mathrm{MSE}}_{\tau}(\mathcal{S}^{\mathrm{tr}}, \mathcal{S}^{\mathrm{tr}}, \Pi) = \frac{1}{N^{\mathrm{tr}}} \sum_{i \in \mathcal{S}^{\mathrm{tr}}} \hat{\tau}^{2}(X_{i}; \mathcal{S}^{\mathrm{tr}}, \Pi)$$
$$-\widehat{\mathrm{MSE}}_{\tau}(\mathcal{S}^{\mathrm{tr,cv}}, \mathcal{S}^{\mathrm{tr,tr}}, \Pi)$$

Honest Causal Trees

$$-\mathrm{EMSE}_{\tau}(\Pi) = \mathbb{E}_{X_i}[\tau^2(X_i;\Pi)] - \mathbb{E}_{\mathcal{S}^{\mathrm{est}},X_i}\left[\mathbb{V}(\hat{\tau}^2(X_i;\mathcal{S}^{\mathrm{est}},\Pi))\right]$$

This uses fact that estimator on independent sample is unbiased

For training and CV, respectively:

$$-\widehat{\mathrm{EMSE}}_{\tau}(\mathcal{S}^{\mathrm{tr}}, N^{\mathrm{est}}, \Pi) \equiv \frac{1}{N^{\mathrm{tr}}} \sum_{i \in \mathcal{S}^{\mathrm{tr}}} \hat{\tau}^{2}(X_{i}; \mathcal{S}^{\mathrm{tr}}, \Pi)$$

$$-\left(\frac{1}{N^{\text{tr}}} + \frac{1}{N^{\text{est}}}\right) \cdot \sum_{\ell \in \Pi} \left(\frac{S_{\mathcal{S}_{\text{treat}}}^{2}(\ell)}{p} + \frac{S_{\mathcal{S}_{\text{control}}}^{2}(\ell)}{1-p}\right)$$

$$-\widehat{\mathrm{EMSE}}_{\tau}(\mathcal{S}^{\mathrm{tr,cv}}, N^{\mathrm{est}}, \Pi)$$

Inference

Attractive feature of trees:

- Can easily separate tree construction from treatment effect estimation
- Tree constructed on training sample is indep. of sampling variation in test sample
- Holding tree from training sample fixed, can use standard methods to conduct inference within each leaf of the tree on test sample
 - Use any valid method for treatment effect estimation, not just method used in training. Asymptotic theory as usual within a leaf.
- Once you have the partition, just run a regression on second sample interacting leaf dummies with treatment indicator. Everything is as usual.
- We do not require ANY assumptions about sparsity of true data-generating process. Coverage does not deteriorate at all as you increase number of covariates.
 - But we do not attempt to make fully personalized estimates

Comparing Alternative Approaches to Preferred Honest Causal Tree

Dishonest with double the sample

- Does worse if true model is sparse (also the case where bias is less severe)
- Has similar or better MSE in many cases, but poor coverage of confidence intervals

Splitting on statistical criteria of model fit

- Paper shows formally how these methods differ (proposed in a small related literature, one that doesn't consider honesty and cross-validation issues)
- Splitting on T-statistic on treatment effect ignores variance reduction from reducing imbalance on covariates
- Splitting on overall model fit prioritizes level heterogeneity above treatment effects

Application: Treatment Effect Heterogeneity in Estimating Position Effects in Search

Queries highly heterogeneous

- Tens of millions of unique search phrases each month
- Query mix changes month to month for a variety of reasons
- Behavior conditional on query is fairly stable

Desire for segments.

- Want to understand heterogeneity and make decisions based on it
- "Tune" algorithms separately by segment
- Want to predict outcomes if query mix changes
 - For example, bring on new syndication partner with more queries of a certain type

Relevance v. Position

Search Experiment Tree: Effect of Demoting Top Link (Test Sample Effects) Some data

	Но	nest Estima	ates	Adaptive Estimates				
	Treatment	Standard		Treatment	Standard			
	Effect	Error	Proportion	Effect	Error	Proportion		
	-0.124	0.004	0.202	-0.124	0.004	0.202		
Use Test Sample	-0.134	0.010	0.025	-0.135	0.010	0.024		
-	-0.010	0.004	0.013	-0.007	0.004	0.013		
for Segment	-0.215	0.013	0.021	-0.247	0.013	0.022		
Means & Std	-0.145	0.003	0.305	-0.148	0.003	0.304		
	-0.111	0.006	0.063	-0.110	0.006	0.064		
Errors to Avoid	-0.230	0.028	0.004	-0.268	0.028	0.004		
Bias	-0.058	0.010	0.017	-0.032	0.010	0.017		
	-0.087	0.031	0.003	-0.056	0.029	0.003		
	-0.151	0.005	0.119	-0.169	0.005	0.119		
Variance of	-0.174 0.026	0.024 0.127	0.005 0.000	-0.168 0.286	0.024 0.124	0.005 0.000		
estimated	-0.030	0.127	0.000	-0.009	0.124	0.000		
	0.435	0.014	0.011	-0.114	0.015	0.010		
treatment effects	-0.159	0.055	0.001	-0.143	0.053	0.001		
in training	-0.014	0.026	0.001	0.008	0.050	0.000		
sample 2.5 times	-0.081	0.012	0.013	-0.050	0.012	0.013		
_	-0.045	0.023	0.001	-0.045	0.021	0.001		
that in test	-0.169	0.016	0.011	-0.200	0.016	0.011		
sample (adaptive	-0.207	0.030	0.003	-0.279	0.031	0.003		
1 \ 1	-0.096	0.011	0.023	-0.083	0.011	0.022		
estimates	-0.096	0.005	0.069	-0.096	0.005	0.070		
biased)	-0.139	0.013	0.013	-0.159	0.013	0.013		
,	-0.131	0.006	0.078	-0.128	0.006	0.078		

Deviation from ATE: Adaptive v. Honest Estimates

Analyzing Field Experiments: Revisit Karlan and List (AER)

Field experiment on charitable giving

- Solicitations: treatment groups are offered match of various sizes, example gifts, and limits
- Finding: match increases gift amount, but larger sizes do not have incremental effect
- Some exploration of heterogeneity

Apply causal trees:

- Explore heterogeneity more systematically
- Highlight the risks of data mining
- Unlike the search application, it appears there isn't a lot of treatment effect heterogeneity

Effect of All Treatments (Pooled) Training Data

Rattle 2015-Aug-20 23:20:55 athey

Training Sample

: Coefficients: Estimate Std. Error t value Pr(>|t|) : leavesr-1.342 1.9395 0.2768 7.006 2.51e-12 *** 1.6189 0.2845 5.691 1.28e-08 *** : leavesr-1.083 0.9498 0.3696 2.570 0.01018 * : leavesr-0.573 0.1350 2.415 0.01574 * : leavesr0.213 0.3260 0.6566 0.3257 2.016 0.04379 * : leavesr0.321 : leavesr1.171 0.2839 0.3669 0.774 0.43907 : leavesr2.086 1.6176 0.3288 4.921 8.68e-07 *** leavesr-1.342:treatment -1.3417 0.3445 -3.895 9.86e-05 *** leavesr-1.083:treatment -1.0826 0.3475 -3.116 0.00184 ** : leavesr-0.573:treatment -0.5733 0.4593 -1.248 0.21201 leavesr0.213:treatment 0.2131 0.1648 1.294 0.19581 : leavesr0.321:treatment 0.3210 0.4035 0.796 0.42632 leavesr1.171:treatment 1.1707 0.4527 2.586 0.00972 ** 0.3951 5.279 1.31e-07 *** : leavesr2.086:treatment 2.0856

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimation Sample

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
leavesr-1.342	0.62900	0.28579	2.201	0.02775	*
leavesr-1.083	0.51463	0.28810	1.786	0.07407	
leavesr-0.573	0.75687	0.40245	1.881	0.06003	
leavesr0.213	0.34395	0.13808	2.491	0.01275	*
leavesr0.321	1.07704	0.34707	3.103	0.00192	**
leavesr1.171	1.09966	0.36281	3.031	0.00244	**
leavesr2.086	3.39262	0.31770	10.679	< 2e-16	***
leavesr-1.342:treatment	0.37260	0.34983	1.065	0.28685	
leavesr-1.083:treatment	0.29186	0.35475	0.823	0.41067	
leavesr-0.573:treatment	0.10772	0.48868	0.220	0.82553	
leavesr0.213:treatment	0.17869	0.16888	1.058	0.29002	
leavesr0.321:treatment	-0.28147	0.42071	-0.669	0.50347	
leavesr1.171:treatment	-0.08332	0.44850	-0.186	0.85262	
leavesr2.086:treatment	0.89775	0.39055	2.299	0.02153	*

Interpretation: Sample Splitting is Key

- Training set makes it look like there is lots of heterogeneity
- Estimation sample accurately shows most of that is spurious
- You get the right, if disappointing, answer out of the estimation sample

Voter Turnout Example

- Gerber, Green, and Larimer (2008)s paper Social Pressure and Voter Turnout: Evidence from a Large-Scale Field Experiment
 - Look at mailing that tells people that their neighbors will be informed about whether they voted
 - Look for heterogeneous treatment effects using Causal Tree

Note: in this application, trees are not very stable, and improvement over null model is negligible. Might need more aggressive pruning criterion.

Describing Results

- WRONG: The tree didn't split on voting in 2002, so that is not important"
 - The mistake is that there are multiple ways to describe almost identical subgroups. The tree identified subgroups one way, but there could have been many others with equal explanatory power
- ▶ RIGHT: These are the characteristics of the subgroups
 - In practice: Describe the characteristics and test differences between them

Describing Characteristics of Leaves

Testing hypotheses about heterogeneity across leaves

0.038 0.0619 0.0623 0.0702 0.0712 0.0734 0.1181 0.1235 0.1275 0.1294 0.1421 0.1467 0.1551 0.1703 0.2481

0.038														
0.0619	0.637													
0.0623	0.637	0.993												
0.0702	0.402	0.836	0.849											
0.0712	0.512	0.857	0.866	0.979										
0.0734	0.325	0.760	0.777	0.860	0.954									
0.1181	0.066	0.212	0.226	0.118	0.299	0.105								
0.1235	0.044	0.160	0.173	0.065	0.234	0.051	0.879							
0.1275	0.038	0.141	0.153	0.055	0.207	0.043	0.797	0.910						
0.1294	0.037	0.135	0.147	0.055	0.199	0.044	0.762	0.870	0.958					
0.1421	0.010	0.056	0.064	0.005	0.092	0.002	0.470	0.556	0.652	0.703				
0.1467	0.021	0.080	0.088	0.031	0.120	0.026	0.487	0.561	0.636	0.675	0.903			
0.1551	0.003	0.025	0.030	0.001	0.045	0.000	0.260	0.311	0.389	0.435	0.646	0.821		
0.1703	0.004	0.023	0.027	0.004	0.039	0.002	0.196	0.231	0.282	0.312	0.444	0.592	0.678	
0.2481	0.077	0.119	0.121	0.121	0.139	0.126	0.266	0.284	0.301	0.309	0.359	0.390	0.421	0.509

Note: p-values uncorrected for multiple testing

Summary

- Key to approach
 - Distinguish between causal and predictive parts of model

Combining two literatures

- Combining very well established tools from different literatures
- Systematic model selection with many covariates
- Optimized for problem of causal effects
 - In terms of tradeoff between granular prediction and overfitting
- With valid inference
 - While sacrificing fully personalized predictions, but gaining...
- ▶ Easy to communicate method and interpret results
 - Output is a partition of sample, treatment effects and standard errors