Sobolev Orthogonal Polynomials on the Sierpinski Gasket

Tian Lan, Shashank Sule, Sreeram Venkat

Advisors: Kasso Okoudjou and Robert Strichartz

Cornell SPUR 2019: Analysis on Fractals

January 25, 2021

Contents

1 Analysis on the Sierpinski Gasket

2 Sobolev Orthogonal Polynomials

3 Applications and Further questions

Figure: The Sierpinski Gasket

Let
$$V_0 = \{q_0, q_1, q_2\} \in \mathbb{R}^2$$
 and $F_i(x) = \frac{1}{2}(x + q_i)$ for $i = 0, 1, 2$. Then

$$SG = \bigcup_{i=0}^{2} F_i(SG)$$

Figure: V_0

Figure: V₁

Figure: V_2

Figure: V_3

Figure: V_4

■ Let $u: SG \mapsto \mathbb{R}$. Then the **Laplacian** Δ_{μ} is defined as

$$\Delta_{\mu}u(x)=\frac{3}{2}\lim_{m\to\infty}5^m\Delta_mu(x)$$
 where $\Delta_mu(x)=\sum_{y\sim x}(u(x)-u(y))$

■ Let $u: SG \mapsto \mathbb{R}$. Then the **Laplacian** Δ_{μ} is defined as

$$\Delta_{\mu}u(x)=\frac{3}{2}\lim_{m\to\infty}5^{m}\Delta_{m}u(x)$$

where
$$\Delta_m u(x) = \sum_{y \sim x} (u(x) - u(y))$$

• $G: SG \times SG \mapsto \mathbb{R}$ is called **Green's Function** where

$$-\Delta u = f, u|_{V_0} = 0 \iff u(x) = \int_{SG} G(x, y) f(y) d\mu$$

■ Let $u: SG \mapsto \mathbb{R}$. Then the **Laplacian** Δ_{μ} is defined as

$$\Delta_{\mu}u(x)=\frac{3}{2}\lim_{m\to\infty}5^{m}\Delta_{m}u(x)$$

where
$$\Delta_m u(x) = \sum_{y \sim x} (u(x) - u(y))$$

• $G: SG \times SG \mapsto \mathbb{R}$ is called **Green's Function** where

$$-\Delta u = f, u|_{V_0} = 0 \iff u(x) = \int_{SG} G(x, y) f(y) d\mu$$

■ $\partial_n u(q_i)$ is the **normal derivative** of u at q_i where

$$\partial_n u(q_i) = \lim_{m \to \infty} \left(\frac{5}{3}\right)^m (2u(q_i) - u(F_{i+1}^m q_i) - u(F_{i-1}^m q_i))$$

■ Let $u: SG \mapsto \mathbb{R}$. Then the **Laplacian** Δ_{μ} is defined as

$$\Delta_{\mu}u(x)=\frac{3}{2}\lim_{m\to\infty}5^{m}\Delta_{m}u(x)$$

where $\Delta_m u(x) = \sum_{y \sim x} (u(x) - u(y))$

■ $G: SG \times SG \mapsto \mathbb{R}$ is called **Green's Function** where

$$-\Delta u = f, u|_{V_0} = 0 \iff u(x) = \int_{SG} G(x, y) f(y) d\mu$$

■ $\partial_n u(q_i)$ is the **normal derivative** of u at q_i where

$$\partial_n u(q_i) = \lim_{m \to \infty} \left(\frac{5}{3}\right)^m (2u(q_i) - u(F_{i+1}^m q_i) - u(F_{i-1}^m q_i))$$

■ $\partial_T u(q_i)$ is the **tangential derivative** of u at q_i where

$$\partial_T u(q_i) = \lim_{m \to \infty} 5^m (u(F_{i+1}^m q_i) - u(F_{i-1}^m q_i))$$

Polynomials on SG

■ Let $f: SG \mapsto \mathbb{R}$. Then f is a j-degree polynomial if and only if $\Delta^{j+1}f = 0$ and $\Delta^jf \neq 0$, i.e f is j-harmonic but not (j-1)-harmonic.

Polynomials on SG

- Let $f: SG \mapsto \mathbb{R}$. Then f is a j-degree polynomial if and only if $\Delta^{j+1}f = 0$ and $\Delta^jf \neq 0$, i.e f is j-harmonic but not (j-1)-harmonic.
- The space of polynomials with degree $\leq j$ is denoted \mathcal{H}_j . $\mathsf{Dim}(\mathcal{H}_j) = 3j + 3$

Polynomials on SG

- Let $f: SG \mapsto \mathbb{R}$. Then f is a j-degree polynomial if and only if $\Delta^{j+1}f = 0$ and $\Delta^jf \neq 0$, i.e f is j-harmonic but not (j-1)-harmonic.
- The space of polynomials with degree $\leq j$ is denoted \mathcal{H}_j . $\mathsf{Dim}(\mathcal{H}_j) = 3j + 3$
- We introduce the following basis $\{P_{jk}\}$ where

$$\Delta^{n} P_{jk}(q_{0}) = \delta_{nj} \delta_{k1}$$
$$\Delta^{n} \partial_{n} P_{jk}(q_{0}) = \delta_{nj} \delta_{k2}$$
$$\Delta^{n} \partial_{\tau} P_{jk}(q_{0}) = \delta_{nj} \delta_{k3}$$

This is known as the monomial basis

Figure: P_{31}

Figure: P_{02}

Figure: P₈₂

Figure: P_{53}

The Sobolev inner product

■ We adopt the following inner product on \mathcal{H}_j :

$$\langle f, g \rangle_{H_1} = \int_{SG} (fg + \lambda \Delta f \Delta g) d\mu$$

■ This is termed the H^1 , or the **Sobolev inner product**.

The Sobolev inner product

■ We adopt the following inner product on \mathcal{H}_j :

$$\langle f, g \rangle_{H_1} = \int_{SG} (fg + \lambda \Delta f \Delta g) d\mu$$

■ This is termed the H^1 , or the **Sobolev inner product**.

Question: What are the orthogonal polynomials with respect to the Sobolev inner product? What are their properties? Can we replicate the theory of Sobolev orthogonal polynomials on [-1,1]?

Theorem

The monic orthogonal polynomials with respect to k=2,3 families satisfy a 3-term recurrence and a differential equation:

$$S_{n+2} - a_n S_{n+1} - b_n S_n = f_{n+2}$$

$$S_{n+2} - a_n S_{n+1} - b_n S_n = p_{n+2} - \alpha_n p_{n+1} - \beta_n p_n$$

$$S_n(x) - \lambda \Delta^2 S_n(x) = A_n \Delta p_{n+1}(x) + B_n \Delta p_n(x) + C_{n-1} \Delta p_{n-1}(x)$$

Here $f_{n+1} = -\int_{SG} G(x,y) p_n d\mu(y)$ where p_n is the **nth Legendre polynomial**, the monic orthogonal polynomial corresponding to the L_2 inner product.

Theorem

Fix k = 2,3 and let S_n denote the corresponding H^1 orthogonal polynomials. Then we have the following estimates in terms of the L^2 orthogonal polynomials and G:

$$||G||_{L^2}||p_{n-1}||_{L^2} \ge ||S_n||_{L^2} \ge ||p_n||_{L^2}$$
(1)

$$\|G\|_{L^{2}}^{2}\|p_{n-1}\|_{L^{2}}^{2} + \lambda \|p_{n-1}\|_{L^{2}}^{2} \ge \|S_{n}\|_{H}^{2} \ge \|p_{n}\|_{L^{2}}^{2} + \lambda \|p_{n-1}\|_{L^{2}}^{2}$$
 (2)

$$\|\Delta S_n\|_{L^2}^2 \le \lambda^{-1} \|G\|_{L^2}^2 \|p_{n-1}\|_{L^2}^2 + \|p_{n-1}\|_{L^2}^2$$
 (3)

$$||S_n||_{L^{\infty}} \le C(1+\lambda^{-\frac{1}{2}})||p_{n-1}||_{L^2}$$
 (4)

Theorem

 $S_n(x;\lambda)$ converges to f_n uniformly in x as $\lambda \to \infty$. Consequently $\Delta S_n \to p_{n-1}$ uniformly as $\lambda \to \infty$. Also,

$$\lambda(S_n(\lambda) - f_n) \to -\frac{\langle f_n, f_{n-1} \rangle_{L^2}}{\|p_{n-2}\|_{L^2}^2} f_{n-1} - \frac{\|p_{n-1}\|_{L^2}^2}{\|p_{n-3}\|_{L^2}^2} f_{n-2}$$

uniformly in x as $\lambda \to \infty$

[-1,1]	SG
$ \frac{\int_{-1}^{1} fg + \lambda f'g' dx}{S_{n} - S_{n-2} = a_{n}(p_{n} - p_{n-2})} $	$\int_{SG} fg + \lambda \Delta f \Delta g dx$ $S_{n+2} - a_n S_{n+1} - b_n S_n = p_{n+2} - a_n S_{n+1} - a_n S_n = a_n S_{n+2} - a$
$S_n - \lambda S_n'' = A_n P_{n+1}' + B_n P_{n-1}'$	$\alpha_{n}p_{n+1} - \beta_{n}p_{n}$ $S_{n}(x) - \lambda \Delta^{2}S_{n}(x) =$ $A_{n}\Delta p_{n+1}(x) + B_{n}\Delta p_{n}(x) +$
	$C_{n-1}\Delta p_{n-1}(x)$

Table: Sobolev orthogonal polynomials on $\left[-1,1\right]$ vs SG

Figure: Sobolev orthogonal polynomials

An Application to Interpolation and Quadrature on SG

Figure: Edge zeroes of Anti-symmetric Sobolev and Legendre polynomials

An Application to Interpolation and Quadrature on SG

■ For which points x_1, \ldots, x_{3n+3} is the matrix

$$M_{n} = \begin{bmatrix} P_{0,1}(x_{1}) & \dots & P_{n,3}(x_{1}) \\ \vdots & \ddots & \vdots \\ P_{0,1}(x_{3n+3}) & \dots & P_{n,3}(x_{3n+3}) \end{bmatrix}$$

invertible?

■ Clearly not any set of 3n + 3 points since we could take the 3n + 3 zeroes of the polynomials found previously.

An Application to Interpolation and Quadrature on SG

Theorem

Let $I_n \subseteq SG$ where for any subset $N \subseteq I$ such that |N| = 3n + 3, M_n is invertible on N. Then I_n has empty interior for every $n \in \mathbb{N}$.

Theorem

For any
$$n \ge 0$$
, take $x_i = F_0^{(i-1)}(q_1)$ for $1 \le i \le 2n + 2$, and $x_i = F_0^{(i-2n-3)}(q_2)$ for $2n + 3 \le i \le 3n + 3$. Then M_n is invertible.

Theorem

Let I_n^m be any quadrature rule which perfectly integrates n-degree polynomial splines at level m. Then

$$\left|I_n^m(f) - \int_{SC} f\right| \le c_1(n) 5^{-(n+1)m} \|\Delta^{(n+1)} f\|_{\infty}$$

Further Questions

- Characterize those sets for which M_n is non-invertible.
- Fix k = 1. Prove that for every $n \ge 0$, $\partial_n f_n(q_0) \ne 0$.

References