Yuexuan Wu

850-405-2143 | yw17g@my.fsu.edu | wuyx5.github.io

EDUCATION

Ph.D. in Statistics Aug 2019 - July 2022 Florida State University Tallahassee, FL • Advisor: Prof. Anuj Srivastava M.S. in Applied Statistics Aug 2017 - May 2019 Florida State University Tallahassee, FL • GPA: 3.96 **B.E.** in Packaging Engineering Sept 2013 - Jun 2017 Wuhan, China Wuhan University • GPA:3.6 • Double degree: B.Com. in Economics EXPERIENCE Graduate Research Assistant May 2020 – Jan 2022 Florida State University Tallahassee, FL **Graduate Instructor** Jan 2022 – Present Florida State University Tallahassee. FL • Introduction to Applied Statistics (STA 2122) Awards Best Student Poster Award (Top 1%) 2021 SIAM Conference on Computational Science and Engineering (CSE) 2021 • Elastic Shape Analysis of Post-Traumatic Stress Disorder on Subcortical Brain Structures Global Top 20% in Hash Code Competition 2020 Gooale2nd Place in ACM Programming Contest 2018 Florida State University 1st Class Scholarship (Top 1%) 2016 Wuhan University

Projects

Elastic Shape Analysis of Brain Structures for Predictive Modeling of PTSD

Feb 2020 - Present

- In collaboration with Dr. Suprateek Kundu and Dr. Jennifer Stevens from Emory University.
- Developing a comprehensive shape analysis framework to quantify the brain substructures surfaces shape differences using an elastic shape metric; training regression models with shape coefficients and predicting PTSD outcomes; applying the method to data from the Grady Trauma Project and yielding superior predictive performance.

LESA: Longitudinal Elastic Shape Analysis of Brain Subcortical Structures

Sept 2020 - Present

- In collaboration with Dr. Zhengwu Zhang, Di Xiong, and Dr. Hongtu Zhu from UNC Chapel Hill.
- Developing an efficient framework and a unique toolbox for systematically quantifying the development and changes
 of longitudinal subcortical surface shapes by integrating ideas from elastic shape analysis, PCA, and statistical
 modeling of sparse longitudinal data; applying LESA to analyze three longitudinal neuroimaging data sets with
 estimating continuous shape trajectories, building life-span growth patterns, and comparing shape differences
 among different groups.

Solving Optimal Surface Deformation Using Deep Residual Networks

Jan 2021 - Present

• In collaboration with Dr. Boulbaba Ben Amor from Inception Institute of Artificial Intelligence.

• Utilizing deep residual neural networks to solve the optimal shape deformation of surfaces under the square root normal field (SRNF) representation.

Analysis and Generation of Bacteria Cellular Shapes

Mar 2021 - Oct 2021

- In collaboration with Tanjin Taher Toma, Dr. Jie Wang, and Dr. Scott Acton from University of Virginia.
- Analyzing the shape summaries of segmented 3D bacteria cellular surfaces; generating synthetic bacteria cellular surfaces based on the distribution of true surface shapes.

Spatial-Temporal Analysis of 3D Human Body Movements Using Video Data

Nov 2021 - Present

- In collaboration with Dr. Hamid Laga from Murdoch University.
- Developing a framework for reproducing smooth 3D human movement videos based on sparse time samples of movement; analyzing movement differences by conducting spatial-temporal surface registration.

PUBLICATIONS

- T. T. Toma, Y. Wu, J. Wang, A. Srivastava, A. Gahlmann, S. T. Acton. Realistic-Shape Bacterial Biofilm Simulator for Deep Learning-Based 3D Single-Cell Segmentation. Accepted in *IEEE International Symposium on Biomedical Imaging (ISBI)*, 2022
- Z. Zhang, Y. Wu, D. Xiong, A. Srivastava, H. Zhu. LESA: Longitudinal Elastic Shape Analysis of Brain Subcortical Structures. Revision in *Journal of the American Statistical Association*, 2022+
- Y. Wu, S. Kundu, J. S. Stevens, N. Fani, A. Srivastava. Elastic Shape Analysis of Brain Structures for Predictive Modeling of PTSD. Under review, 2022+
- Y. Wu, H. Laga, A. Srivastava. Spatial-Temporal Analysis of 3D Human Body Movements Using Video Data. In preparation, 2022+

Presentations

(03/2021) Elastic Shape Analysis of Post-Traumatic Stress Disorder on Subcortical Brain Structures, SIAM Conference on Computational Science and Engineering (Poster), online

(05/2021) Elastic Shape Analysis of Brain Structures for Predictive Modeling of PTSD, The Statistical Methods in Imaging Conference (Poster), online

Professional Memberships

The American Statistical Association

The Institute of Electrical and Electronics Engineers

Society for Industrial and Applied Mathematics