W12 - Examples

Parametric curves

Parametric circles

The standard equation of a circle of radius R centered at the point (h, k):

$$(x-h)^2 + (y-k)^2 = R^2$$

This equation says that the *distance* from a point (x, y) on the circle to the center point (h, k) equals R. This fact defines the circle.

Parametric coordinates for the circle:

$$x = h + R\cos t,$$
 $y = k + R\sin t,$ $t \in [0, 2\pi)$

For example, the unit circle $x^2 + y^2 = 1$ is parametrized by $x = \cos t$ and $y = \sin t$.

Parametric lines

A line is the set of points satisfying:

$$y = mx + b$$
 some a, b

Vertical lines cannot be described in this way, we must use equations like x = a.

Parametric coordinates for a line:

$$x=a+rt, \qquad y=b+st, \qquad t\in (-\infty,+\infty)$$

By choosing a, b, c, d appropriately, any line may be described.

For example, a vertical line x = a is given by setting a = a and b, r, s = 0.

A non-vertical line y = mx + b is given by setting b = b, s = m and a = 0, r = 1.

For another example, the line y - a = m(x - b) which passes through P = (a, b) with slope m is given by:

$$(x,y) = (a+t,b+mt)$$

Parametric ellipses

The general equation of an ellipse centered at (h, k) with half-axes a and b is:

$$\left(rac{x-h}{a}
ight)^2+\left(rac{y-k}{b}
ight)^2=1$$

This equation represents a *stretched unit circle*:

- by *a* in the *x*-axis
- by *b* in the *y*-axis

Parametric coordinate functions for the general ellipse:

$$x = h + a\cos t$$
, $y = k + b\sin t$, $t \in [0, 2\pi)$

Parametric cycloids

The cycloid is the curve traced by a pen attached to the rim of a wheel as it rolls.

It is easy to describe the cycloid parametrically. Consider the geometry of the situation:

The center C of the wheel is moving rightwards at a constant speed of 1, so its position is (t,1). The angle is revolving at the same constant rate of 1 (in *radians*) because the *radius* is 1.

The triangle shown has base $\sin t$, so the x coordinate is $t - \sin t$. The y coordinate is $1 - \cos t$.

So the coordinates of the point P = (x, y) are given parametrically by:

$$x = t - \sin t$$
, $y = 1 - \cos t$, $t > 0$

If the circle has another radius, say R, then the parametric formulas change to:

$$x = Rt - R\sin t$$
, $y = R - R\cos t$, $t > 0$

Calculus with parametric curves

Find the equation of the tangent line to the cycloid $(4t-4\sin t,\, 4-4\cos t)$ when $t=\frac{\pi}{4}$.

Solution

Compute $x'(\pi/4) = 4 - 2\sqrt{2}$.

• Derivative of x(t):

$$x'(t) = 4 - 4\cos t$$

• Plug in $t = \pi/4$:

$$x'(\pi/4) = 4 - 4\cos(\pi/4)$$
$$= 4 - 2\sqrt{2}$$

Compute $y'(\pi/4) = 4\sin t = 2\sqrt{2}$.

• Derivative of y(t):

$$y'(t) = 4\sin t$$

• Plug in $t = \pi/4$:

$$y'(\pi/4) = 4\sin(\pi/4)$$
$$= 2\sqrt{2}$$

Apply formula $\frac{dy}{dx} = \frac{y'}{x'}$.

• Calculate $\frac{dy}{dx}$ at $t = \pi/4$:

$$\frac{dy}{dx}(\pi/4) = \frac{y'(\pi/4)}{x'(\pi/4)} \qquad \gg \gg \qquad \frac{2\sqrt{2}}{4 - 2\sqrt{2}}$$

$$\gg \gg \qquad \frac{2\sqrt{2}}{4 - 2\sqrt{2}} \cdot \frac{4 + 2\sqrt{2}}{4 + 2\sqrt{2}}$$

$$\gg \gg \qquad \frac{8\sqrt{2} + 8}{16 - 8} \qquad \gg \gg \qquad \sqrt{2} + 1$$

• Slope of tangent line is $m = \sqrt{2} + 1$

A point on the tangent line: $\left(\pi-2\sqrt{2},4-2\sqrt{2}\right)$ at $t=\pi/4$.

• Plug $t = \pi/4$ into $(x(t), y(t)) = (4t - 4\sin t, 4 - 4\cos t)$:

$$\left(4\frac{\pi}{4} - 4\sin(\pi/4), 4 - 4\cos(\pi/4)\right)$$
 $\gg \gg$ $\left(\pi - 2\sqrt{2}, 4 - 2\sqrt{2}\right)$

Equation of tangent line: y = mx + b.

Point-slope formulation:

$$y-\left(4-2\sqrt{2}
ight)=\left(\sqrt{2}+1
ight)\left(x-\left(\pi-2\sqrt{2}
ight)
ight)$$

• Simplify:

$$\gg\gg \qquad y=\left(\sqrt{2}+1
ight)\left(x-\pi+2\sqrt{2}
ight)+4-2\sqrt{2}$$

$$\gg\gg y=\Big(\sqrt{2}+1\Big)x+8-\Big(\sqrt{2}+1\Big)\pi$$

This is our final answer.

Vertical and horizontal tangents of the circle

Consider the circle parametrized by $x = \cos t$ and $y = \sin t$. Find the points where the tangent lines are vertical or horizontal.

Solution

For the points with vertical tangent line, we find where the moving point has x'(t) = 0 (purely vertical motion):

$$x'(t) = -\sin t,$$

$$x'(t) = 0$$
 $\gg \gg$ $-\sin t = 0$ $\gg \gg$ $t = 0, \pi$

For the points with horizontal tangent line, we find where the moving point has y'(t) = 0 (purely horizontal motion):

$$y'(t) = \cos t$$

$$y'(t)=0$$
 $\gg\gg$ $\cos t=0$ $\gg\gg$ $t=rac{\pi}{2}, \; rac{3\pi}{2}$

Perimeter of a circle

The perimeter of the circle $(R\cos t, R\sin t)$ is easily found. We have $(x', y') = (-R\sin t, R\cos t)$, and therefore:

$$(x')^2 + (y')^2 = (-R\sin t)^2 + (R\cos t)^2$$

 $\gg \gg R^2 \sin^2 t + R^2 \cos^2 t \gg \gg R^2$
 $ds = \sqrt{(x')^2 + (y')^2} dt = R dt$

Integrate around the circle:

$$ext{Perimeter} = \int_0^{2\pi} ds \qquad \gg \gg \qquad \int_0^{2\pi} R \, dt \qquad \gg \gg \qquad Rt \Big|_0^{2\pi} = 2\pi R$$

Perimeter of an asteroid

Find the perimeter length of the 'asteroid' given parametrically by $(x, y) = (a \cos^3 \theta, a \sin^3 \theta)$ for a = 2.

Solution

Notice: Throughout this problem we use the parameter θ instead of t. This does *not* mean we are using polar coordinates!

Compute the derivatives in θ :

$$(x', y') = (3a\cos^2\theta\sin\theta, 3a\sin^2\theta\cos\theta)$$

Compute the infinitesimal arc element:

Compute the sums of squares:

$$(x')^2 + (y')^2 = 9a^2\cos^4\theta\sin^2\theta + 9a^2\sin^4\theta\cos^2\theta$$

 $\gg \gg 9a^2\sin^2\theta\cos^2\theta\left(\cos^2\theta + \sin^2\theta\right)$
 $\gg \gg 9a^2\sin^2\theta\cos^2\theta$

• Plug into the arc element, simplify:

$$ds = \sqrt{(x')^2 + (y')^2} d\theta = \sqrt{9a^2 \sin^2 \theta \cos^2 \theta} d\theta$$
 $\gg \gg ds = 3a |\sin \theta \cos \theta| d\theta$

Determine the bounds: $\int_0^{\pi/2} ds$ for 1/4 of the asteroid perimeter.

- The full asteroid requires $4 \times$ the length of one edge.
- Notice: The term $\sin \theta \cos \theta$ in the ds formula becomes negative after $\pi/2!$
- Instead we integrate $\int_0^{\pi/2} ds$ and multiply by 4.
- On this interval $[0, \pi/2]$ we have $ds = 3a \sin \theta \cos \theta d\theta$.

Integrate the arc element:

$$\int_0^{\pi/2} ds = \int_0^{\pi/2} 3a \sin \theta \cos \theta \, d\theta$$

$$\gg \gg \frac{3a}{2} \int_0^{\pi/2} 2 \sin \theta \cos \theta \, d\theta \qquad \gg \gg \frac{3a}{2} \int_0^{\pi/2} \sin(2\theta) \, d\theta$$

$$\gg \gg -\frac{3a}{4} \cos(2\theta) \Big|_0^{\pi/2} \gg \gg -\frac{3a}{4} \left(\cos(\pi/2) - \cos(0)\right) \gg \gg \frac{3a}{4}$$

Multiply by 4:

$$arclength = L = 3a$$

Speed, distance, displacement

The parametric curve $\left(t, \frac{2}{3}t^{3/2}\right)$ describes the position of a moving particle (t measuring seconds).

• (a) What is the speed function?

Suppose the particle travels for 8 seconds starting at t = 0.

- (b) What is the total distance traveled?
- (c) What is the total displacement?

Solution

(a)

Compute derivatives:

$$\left(x^{\prime},\,y^{\prime}
ight)=\left(1,\,t^{1/2}
ight)$$

Compute the *speed*.

Find sum of squares:

$$(x^\prime)^2 + (y^\prime)^2 = 1 + (t^{1/2})^2 = 1 + t$$

• Get the speed function:

$$v(t) = \sqrt{(x')^2 + (y')^2} = \sqrt{1+t}$$

(b)

Distance traveled by using speed.

Compute total distance traveled function:

$$s(t) = \int_{u=0}^t \sqrt{1+u}\,du$$

Integrate.

- Substitute w = 1 + u and dw = du.
- New bounds are 1 and 1 + t.
- Calculate:

$$\gg \gg \int_{1}^{1+t} \sqrt{w} \, dw \gg \gg \frac{2}{3} w^{3/2} \bigg|_{1}^{1+t} \gg \gg \frac{2}{3} \Big((1+t)^{3/2} - 1 \Big)$$

Insert t = 8 for the answer.

• The distance traveled up to t = 8 is:

$$s(8) = \frac{2}{3} \Big(9^{3/2} - 1 \Big) \quad \gg \gg \quad \frac{2}{3} (27 - 1) \quad \gg \gg \quad \frac{52}{3}$$

• This is our final answer.

(c)

Displacement formula: $d = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$

- Pythagorean formula for distance between given points.

Compute starting and ending points.

- For starting point, insert t = 0:

$$\left.\left(x(t),y(t)\right)\right|_{t=0} \qquad \gg \gg \qquad \left.\left(t,\frac{2}{3}t^{3/2}\right)\right|_{t=0} \qquad \gg \gg \qquad (0,0)$$

- For ending point, insert t = 8:

$$\left.\left(x(t),y(t)
ight)
ight|_{t=8}\quad\gg\gg\quad \left(t,rac{2}{3}t^{3/2}
ight)
ight|_{t=8}\quad\gg\gg\quad \left(8,rac{2}{3}8^{3/2}
ight)\quad\gg\gg\quad \left(8,rac{32\sqrt{2}}{3}
ight)$$

Plug points into distance formula.

• Insert (0,0) and $(8,32\sqrt{2}/3)$:

$$\sqrt{8^2 + \left(rac{32\sqrt{2}}{3}
ight)^2} \qquad \gg \gg \qquad \sqrt{64 + rac{2048}{9}} \qquad \gg \gg \qquad rac{\sqrt{2624}}{3}$$

This is our final answer.

Surface of revolution - parametric circle

By revolving the unit upper semicircle about the x-axis, we can compute the surface area of the unit sphere.

The parametrization of the unit upper semicircle is: $(x, y) = (\cos t, \sin t)$.

The derivative is: $(x', y') = (-\sin t, \cos t)$.

Therefore, the arc element:

$$ds = \sqrt{(x')^2 + (y')^2} dt \gg \gg \sqrt{(-\sin t)^2 + (\cos t)^2} dt \gg \gg dt$$

Now for R we choose $R = y(t) = \sin t$ because we are revolving about the x-axis.

Plugging all this into the integral formula and evaluating gives:

$$A = \int_0^\pi 2\pi \sin t \, dt \quad \gg \gg \quad -2\pi \cos t \Big|_0^\pi \quad \gg \gg \quad 4\pi$$

Notice: This method is a little easier than the method using the graph $y = \sqrt{1 - x^2}$.

Surface of revolution - parametric curve

Set up the integral which computes the surface area of the surface generated by revolving about the *x*-axis the curve $(t^3, t^2 - 1)$ for $0 \le t \le 1$.

Solution

For revolution about the *x*-axis, we set $R = y(t) = t^2 - 1$.

Then compute ds:

$$ds = \sqrt{(x')^2 + (y')^2} \quad \gg \gg \quad \sqrt{(3t^2)^2 + (2t)^2} \quad \gg \gg \quad \sqrt{9t^4 + 4t^2}$$
 $\gg \gg \quad \sqrt{t^2(9t^2 + 4)} \quad \gg \gg \quad t\sqrt{9t^2 + 4}$

Therefore the desired integral is:

$$A = \int_0^1 2\pi R \, ds \quad \gg \gg \quad \int_0^1 2\pi (t^2 - 1) t \sqrt{9t^2 + 4} \, dt$$