Vector Spaces

COORDINATE SYSTEMS

THE UNIQUE REPRESENTATION THEOREM

• Theorem 7: Let $B = \{b_1, ..., b_n\}$ be a basis for vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars $c_1, ..., c_n$ such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

- **Proof:** Since B spans V, there exist scalars such that (1) holds.
- Suppose x also has the representation

$$x = d_1b_1 + ... + d_nb_n$$

for scalars $d_1, ..., d_n$.

THE UNIQUE REPRESENTATION THEOREM

Then, subtracting, we have

$$0 = x - x = (c_1 - d_1)b_1 + ... + (c_n - d_n)b_n$$
 (2)

- Since B is linearly independent, the weights in (2) must all be zero. That is, $c_j = d_j$ for $1 \le j \le n$.
- **Definition:** Suppose $B = \{b_1, ..., b_n\}$ is a basis for V and \mathbf{x} is in V. The coordinates of \mathbf{x} relative to the basis \mathbf{B} (or the **B-coordinate of \mathbf{x}**) are the weights c_1 , ..., c_n such that $\mathbf{x} = c_1 b_1 + ... + c_n b_n$

THE UNIQUE REPRESENTATION THEOREM

If $c_1, ..., c_n$ are the **B**-coordinates of **x**, then the vector in \mathbb{R}^n

$$[\mathbf{X}]_{\mathsf{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is the coordinate vector of x (relative to B), or the B-coordinatevector of x.

The mapping $x \mapsto [x]_B$ is the coordinate mapping (determined by B).

- When a basis B for \mathbb{R}^n is fixed, the B-coordinate vector of a specified **x** is easily found, as in the example below.
- example below. • Example 1: Let $b_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, and
- B = $\{b_1, b_2\}$ find the coordinate vector $[\mathbf{x}]_B$ of \mathbf{x} relative to B.
- Solution: The B-coordinate c_1 , c_2 of **x** satisfy

$$c_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$b_{1} \qquad b_{2} \qquad \mathbf{x}$$

or $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ (3)

- This equation can be solved by row operations on an augmented matrix or by using the inverse of the matrix on the left.
- In any case, the solution is $c_1 = 3$, $c_2 = 2$.

Thus
$$x = 3b_1 + 2b_2$$
 and
$$\begin{bmatrix} x \end{bmatrix}_B = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

See the following figure.

The \mathcal{B} -coordinate vector of \mathbf{x} is (3, 2).

- The matrix in (3) changes the B-coordinates of a vector **x** into the standard coordinates for **x**.
- An analogous change of coordinates can be carried out in \mathbb{R}^n for a basis $B = \{b_1, ..., b_n\}$.
- Let $P_{\mathsf{B}} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix}$

Then the vector equation

is equivalent to
$$x = c_1 b_1 + c_2 b_2 + \dots + c_n b_n$$
$$x = P_B [x]_B$$

- P_B is called the **change-of-coordinates matrix** from B to the standard basis in \mathbb{R}^n .
- Left-multiplication by P_B transforms the coordinate vector $[\mathbf{x}]_B$ into \mathbf{x} .
- Since the columns of P_B form a basis for \mathbb{R}^n , P_B is invertible (by the Invertible Matrix Theorem).

• Left-multiplication by $P_{\rm B}^{-1}$ converts **x** into its B-coordinate vector:

$$P_{\mathsf{B}}^{-1}\mathbf{x} = [\mathbf{x}]_{\mathsf{B}}$$

- The correspondence $x \mapsto [x]_B$, produced by P_B^{-1} , is the coordinate mapping.
- Since P_B^{-1} is an invertible matrix, the coordinate mapping is a one-to-one linear transformation from \mathbb{R}^n onto \mathbb{R}^n , by the Invertible Matrix Theorem.

■ **Theorem 8:** Let $B = \{b_1, ..., b_n\}$ be a basis for a vector space V. Then the coordinate mapping $X \mapsto [X]_B$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

• **Proof:** Take two typical vectors in V, say,

$$\mathbf{u} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$
$$\mathbf{w} = d_1 \mathbf{b}_1 + \dots + d_n \mathbf{b}_n$$

Then, using vector operations, $\mathbf{u} + \mathbf{v} = (c_1 + d_1)\mathbf{b}_1 + \dots + (c_n + d_n)\mathbf{b}_n$

• It follows that

$$\begin{bmatrix} \mathbf{u} + \mathbf{w} \end{bmatrix}_{\mathsf{B}} = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = \begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathsf{B}} + \begin{bmatrix} \mathbf{w} \end{bmatrix}_{\mathsf{B}}$$

So the coordinate mapping preserves addition.

• If r is any scalar, then $r\mathbf{u} = r(c_1\mathbf{b}_1 + ... + c_n\mathbf{b}_n) = (rc_1)\mathbf{b}_1 + ... + (rc_n)\mathbf{b}_n$

So

$$\begin{bmatrix} r\mathbf{u} \end{bmatrix}_{\mathsf{B}} = \begin{bmatrix} rc_1 \\ \vdots \\ rc_n \end{bmatrix} = r \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = r [\mathbf{u}]_{\mathsf{B}}$$

- Thus the coordinate mapping also preserves scalar multiplication and hence is a linear transformation.
- The linearity of the coordinate mapping extends to linear combinations.
- If $\mathbf{u}_1, ..., \mathbf{u}_p$ are in V and if $c_1, ..., c_p$ are scalars, then $\begin{bmatrix} c_1 \mathbf{u}_1 + ... + c_p \mathbf{u}_p \end{bmatrix}_{\mathsf{R}} = c_1 \begin{bmatrix} \mathbf{u}_1 \end{bmatrix}_{\mathsf{R}} + ... + c_p \begin{bmatrix} \mathbf{u}_p \end{bmatrix}_{\mathsf{R}}$ (5)

- In words, (5) says that the B-coordinate vector of a linear combination of $\mathbf{u}_1, \dots, \mathbf{u}_p$ is the *same* linear combination of their coordinate vectors.
- The coordinate mapping in Theorem 8 is an important example of an *isomorphism* from V onto \mathbb{R}^n .
- In general, a one-to-one linear transformation from a vector space V onto a vector space W is called an isomorphism from V onto W.
- The notation and terminology for *V* and *W* may differ, but the two spaces are indistinguishable as vector spaces.

- Every vector space calculation in V is accurately reproduced in W, and vice versa.
- In particular, any real vector space with a basis of n vectors is indistinguishable from \square^n .

■ Example 7: Let
$$\mathbf{v}_1 = \begin{vmatrix} 3 \\ 6 \\ 2 \end{vmatrix}$$
, $\mathbf{v}_2 = \begin{vmatrix} -1 \\ 0 \\ 1 \end{vmatrix}$, $\mathbf{x} = \begin{vmatrix} 3 \\ 12 \\ 7 \end{vmatrix}$,

and $B = \{v_1, v_2\}$. Then B is a basis for $H = \text{Span}\{v_1, v_2\}$. Determine if **x** is in H, and if it is, find the coordinate vector of **x** relative to B.

• **Solution:** If **x** is in *H*, then the following vector equation is consistent:

$$c_{1} \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} + c_{2} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$$

• The scalars c_1 and c_2 , if they exist, are the B-coordinates of \mathbf{x} .

Using row operations, we obtain

$$\begin{bmatrix} 3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

• Thus
$$c_1 = 2$$
, $c_2 = 3$ and $[\mathbf{x}]_B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

• The coordinate system on *H* determined by B is shown in the following figure.

A coordinate system on a plane H in \mathbb{R}^3 .