Übungsklausur Ferienkurs Quantenmechanik

David Franke und Michael Drews

September 7, 2012

1 Projektoralgebra (8 P)

Der Projektionsoperator ist definiert durch

$$\hat{P}_{\alpha} = |\alpha\rangle\langle\alpha|$$

Er nimmt die Komponente jedes beliebigen anderen Vektors $|\beta\rangle$, die entlang $|\alpha\rangle$ liegt, und projiziert sie in Richtung $|\alpha\rangle$:

$$\hat{P}_{\alpha}|\beta\rangle = \langle \alpha|\beta\rangle|\alpha\rangle$$

(a) Sei $|\alpha\rangle$ ein normierter Zustandsvektor. Zeigen Sie, dass

$$(\hat{P}_{\alpha})^m = \hat{P}$$

Bestimme die Eigenwerte von \hat{P}_{α} und beschreibe seine Eigenvektoren. (3 P)

(b) Sie $|e_j\rangle$ eine orthonormale Basis eines n-dimensionalen Hilbertraums \mathcal{H} . Zeige, dass

$$\sum_{j=1}^{n} |e_j\rangle\langle e_j| = \mathbb{1}$$

(2 P)

(c) Sei \hat{Q} ein Operator mit einem vollständigen Set orthonormaler Eigenvektoren.

$$\hat{Q}|e_j\rangle = \lambda_j|e_j\rangle$$

Zeige, dass \hat{Q} mithilfe seiner spektralen Dekomposition als

$$\hat{Q} = \sum_{j=1}^{n} \lambda_j |e_j\rangle\langle e_j|$$

geschrieben werden kann. (3 P)

2 Eindimensionale Schrödingergleichung (18 P) - A. Buras SS2003

Ein Teilchen mit Masse m
 un Energie $-V_0 < E < 0$ (gebundener Zustand) befinde sich in folgendem Potential:

$$V(x) = \begin{cases} \infty & \text{für } x \le 0 \\ -V_0 & \text{für } 0 < x < x_0 \\ 0 & \text{für } x_0 \le x \end{cases}$$

- (a) Geben Sie die Lösungen der stationären Schrödingergleichung in den Bereichen (I), (II) und (III) and. (5 P)
- (b) Welche Bedingungen mußdie Lösung bei $x=0, x=x_0$ und $x\to\infty$ erfüllen? Leiten Sie mit Hilfe der Anschlusßbedingungen eine Bedingung für die Energie her. (6 P)
- (c) Normieren Sie die Wellenfunktion. (3 P)
- (d) Ermitteln Sie graphisch die Anzahl der möglichen gebundenen Zustände, falls das Produkt aus Potentialbreite und -tiefe gegeben ist durch $V_0 x_0^2 = \frac{\hbar^2}{2m} \pi^2 \left(n + \frac{3}{4}\right)^2$. (4 P)

3 Larmor-Präzession (10 P)

Gegeben sei ein ruhendes Elektron, welches sich im normierten Eigenzustand des Operators $\hat{S}_y = \frac{\hbar}{2}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ mit Eigenwert $+\frac{\hbar}{2}$ befindet. Die Quantisierungsachse ist die z-Achse, zu welcher die zugehörigen Eigenzustände $|+\rangle$ und $|-\rangle$ lauten.

- (a) Drücken Sie den Zustand, in dem sich das Elektron anfangs befindet, durch $|+\rangle$ und $|-\rangle$ aus. (3 P)
- (b) Betrachten Sie nun den Fall, dass zur Zeit t=0 ein konstantes magnetischen Feld B angelegt wird, welches in z-Richtung zeigt, d.h. der zugehörige Hamilton-Operator hat die Form

$$\hat{H} = -\mu_B B \hat{S}_z$$

mit $\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Berechnen sie den Zustand $|\Psi_t\rangle$ des Teilchen zur Zeit t. Nach welcher Zeit befindet sich das Elektron wieder im Ausgangszustand? (3 P)

(c) Berechnen Sie den Erwartungswert des Spinoperators \vec{S} in allen drei Raumrichtungen abhängig von der Zeit t.

Dabei ist $\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (4 P)

4 Gestörter harmonischer Oszillator (10 P)

Ein eindimensionaler harmonischer Oszillator mit Masse m und Schwingungsfrequenz ω mit dem Hamiltonoperator

$$\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2$$

erfahre eine kleine Störung durch den anharmonischen Term

$$\hat{H}_1 = \lambda \hat{x}^4$$
.

(a) (3 P) Man führt die Operatoren \hat{a} , \hat{a}^{\dagger} ein:

$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{ip}{m\omega} \right), a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(x - \frac{ip}{m\omega} \right)$$

Zeige, dass für die Vertauschungsrelation gilt $[\hat{a}, \hat{a}^{\dagger}] = 1$. Zeige weiter, dass sich der ungestörte Hamiltonoperator mit diesen Operatoren schreiben lässt als

$$\hat{H_0} = \hbar\omega \left(\hat{a} \dagger \hat{a} + \frac{1}{2} \right).$$

- (b) (3 P) Es existiere ein Zustand $| 0 \rangle$ des ungestörten Oszillators derart, dass $a | 0 \rangle = 0$. Wie lautet die Eigenenergie E_0 von $| 0 \rangle$? Zeige: Durch Anwenden von \hat{a}^{\dagger} auf den Eigenzustand $| n \rangle$ zur Energie E_n wird diese um $\hbar \omega$ erhöht. Wie lautet die allgemeine Form der Energie E_n zum einem Eigenzustand $| n \rangle \propto (\hat{a}^{\dagger})^n | 0 \rangle$.
- (c) (4 P) Berechne die Verschiebung der Grundzustandsenergie durch die anharmonische Störung H_1 in Störungstheorie erster Ordnung.

5 Zweidimensionales Wasserstoffatom (14 P) - Zwerger SS 09

Die Bindung zwischen einem Elektron und einem Loch ('Exziton') in einem Halbleiter 'quantumwell' kann man in guter Näherung durch die Relativbewegung zweier Teilchen mit Ladung $q_{1,2}=\pm e/\sqrt{\epsilon}$ (ϵ ist die statische Dielektrizitätskonstante des Trägermaterials) und üblicher Coulomb-Wechselwirkung $V(r)=q_1q_2/r$ beschreiben, wobei die Bewegung nun aber in der Ebene stattfindet. Die reduzierte Masse μ definiert einen effektiven Bohr-Radius $a_B=\epsilon\hbar^2/\mu e^2$.

(a) (6 P) Wie lautet die stationäre Schrödingergleichung für die Wellenfunktion $\Psi(r,\varphi)$ gebundener Zustände im Potential V(r) mit Energien $E = -E_b = -\hbar^2 \kappa^2/2\mu$?

Hinweis: Verwende a_B und κ als Parameter und die Darstellung

$$\nabla^2 \Psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \varphi^2}$$

des Laplace-Operators in Polarkoordinaten r, φ .

- (b) (2 P) Welche Werte kann die Quantenzahl m im Separationsansatz $\Psi(r,\varphi) = \Psi(r) \cdot \exp(im\varphi)$ annehmen?
- (c) (4 P) Mache für die (nichtnormierte und φ -unabhängige) Wellenfunktion des Grundzustands den Ansatz $\Psi_0(r) = \exp{-r/l}$ und verifiziere, dass dies für ein geeignetes l tatsächlich eine Lösung ist.

Hinweis: Einsetzen in die Schrödingergleichung legt aus der Identität von rechter und linker Seite für alle r sowohl l als auch die Energie fest.

(d) (2 P) Wie groSS ist die Bindungsenergie des Grundzustands in Einheiten der effektiven Rydberg-Energie Ry = $\hbar^2/2\mu a_B^2$?