

- I. Constrained supervised learning
 - Constrained learning theory
 - Constrained learning algorithms
 - · Resilient constrained learning

Break (10 min)

- II. Constrained reinforcement learning
 - Constrained RL duality
 - Constrained RL algorithms

Q&A and discussions

Why learning under requirements?

Why learning under requirements? Learning Requirements

What is a requirements?

- Requirements are "shall" statements: describe necessary features subject to verification

What is a requirements?

- Goals are "should" statements: express recommendations (once "shall" statements are satisfied)
 - Objective space: things the system achieves

What is a requirements?

- Requirements are "shall" statements: describe necessary features subject to verification
- Goals are "should" statements: express recommendations (once "shall" statements are satisfied)
 - Objective space: things the system achieves

What is (un)constrained learning?

$$P_{\mathsf{U}}^{\star} = \min_{\boldsymbol{\theta}} \quad \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathfrak{D}} \Big[\ell \Big(f_{\boldsymbol{\theta}}(\boldsymbol{x}), y \Big) \Big]$$

- ℓ, g are bounded, Lip
- f_{θ} is a (possibly nonlinear) parametrization [e.g., logistic classifier, (G)(C)NN]

What is (un)constrained learning?

$$\begin{split} P^* &= \min_{\pmb{\theta}} \quad \mathbb{E}_{(\pmb{x},y) \sim \mathcal{D}} \left[\ell \left(f_{\pmb{\theta}}(\pmb{x}), y \right) \right] \\ \text{subject to} \quad \mathbb{E}_{(\pmb{x},y) \sim \mathcal{X}} \left[g \left(f_{\pmb{\theta}}(\pmb{x}), y \right) \right] \leq c \\ &\quad h \left(f_{\pmb{\theta}}(\pmb{x}), y \right) \leq u, \quad \mathfrak{P}\text{-a.e.} \end{split}$$

- f_{θ} is a (possibly nonlinear) parametrization [e.g., logistic classifier, (G)(C)NN]

What about penalties?

- \otimes There may not exist (λ, μ) such that the penalized solution is optimal and feasible
- $oldsymbol{\circ}$ Even if such (λ,μ) exist, they are not easy to find (hyperparameter search, cross-validation...)

Applications

(e.g., [Goh et al., NeurIPS'16; Kearns et al., ICML'18; Cotter et al., JMLR'19; Chamon et al., IEEE TIT'23])

Federated learning

e.g., [Shen et al., ICLR'22; Hounie et al., NeurIPS'231)

Adversarially robust learning (e.g., [Chamon et al., NeurlPS'20; Robey et al., NeurlPS'21; Chamon et al., IEEE TIT'23])

Safe learning

(e.g., [Paternain et al., IEEE TAC'23])

Wireless resource allocation

(e.g., [Eisen et al., IEEE TSP'19; NaderiAlizadeh et al., IEEE TSP'22; Chowdhury et al., Asilomar'23])

Fairness

Problem

Predict whether an individual will recidivate

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

min Prediction error

 ${\rm subject\ to}\quad {\rm Prediction\ rate\ disparity\ (Race)} \leq c,$

for Race $\in \{$ African-American, Caucasian, Hispanic, Other $\}$

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \big)$$

subject to Prediction rate disparity (Race) $\leq c$.

for Race ∈ {African-American, Caucasian, Hispanic, Other}

*We say "Race" to follow the terminology used during the data collection of the COMPAS dataset. [Goh et al., NeurlPS'16; Kearns et al., ICML'18; Cotter et al., JMLR'19; Chamon et al., IEEE TIT'23]

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

$$\begin{split} & \min_{\boldsymbol{\theta}} & & \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \big) \\ & \text{bject to} & & \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \big[f_{\boldsymbol{\theta}}(\boldsymbol{x}_n) = 1 \mid \mathsf{Race} \big] \leq \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \big[f_{\boldsymbol{\theta}}(\boldsymbol{x}_n) = 1 \big] + \end{split}$$

*We say "Race" to follow the terminology used during the data collection of the COMPAS dataset. [Goh et al., NeurlPS'16; Kearns et al., ICML'18; Cotter et al., JMLR'19; Chamon et al., IEEE TIT'23]

Applications

Federated learning

(e.g., [Shen et al., ICLR'22; Hounie et al., NeurIPS'23])

Federated learning

Problem

Learn a common model using data from K clients

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{K} \sum_{k=1}^{K} \mathsf{Loss}_k(f_{\boldsymbol{\theta}})$$

• k-th client loss: $\mathsf{Loss}_k(f_\theta) = \frac{1}{N_k} \sum_{i=1}^{N_k} \mathsf{Loss} \left(f_\theta(x_{n_k}), y_{n_k} \right)$

Heterogeneous federated learning

Problem

Learn a common model using data from K clients

 $\frac{1}{N_k}\sum_{k} \text{Loss}(f_{\theta}(\boldsymbol{x}_{n_k}), y_{n_k})$

Heterogeneous federated learning

Clients

- $k\text{-th client loss: } \mathsf{Loss}_k(f_\theta) = \frac{1}{N_k} \sum_{r=-1}^{N_k} \mathsf{Loss} \big(f_\theta(\boldsymbol{x}_{n_k}), y_{n_k}\big)$

Applications

Adversarially robust learning

(e.g., [Chamon et al., NeurIPS'20; Robey et al., NeurIPS'21; Chamon et al., IEEE TIT'23])

Robustness

Robustness

Problem

Learn an accurate classifier that is robust to input perturbations

min Nominal loss $\text{subject to} \quad \mathsf{Robustness\ loss} \leq c$

Robustness

Problem

Learn an accurate classifier that is robust to input perturbations

Robustness

Problem

Learn an accurate classifier that is robust to input perturbations

Invariance

Applications

- Safe learning
- (e.g., [Paternain et al., IEEE TAC'23])

Safety

Problem
Find a control policy that navigates the environment effectively and safely

Safety

Problem
Find a control policy that navigates the environment effectively and safely

subject to $\mathbb{P}[Colliding with \mathcal{O}_i] \leq \delta$, for $i = 1, 2, \dots$

Safety

Problem Find a control policy that navigates the environment effectively and safely

nain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23]

Safety

Problem Find a control policy that navigates the environment effectively and safely

[Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23]

Applications

Wireless resource allocation

Wireless resource allocation

.

Wireless resource allocation

Wireless resource allocation

Wireless resource allocation

Wireless resource allocation

Allocate the least transmit power to m devices to achieve a communication rate

Wireless resource allocation

Problem Allocate the least transmit power to $\it m$ devices to achieve a communication rate

[Eisen, Zhang, Chamon, Lee, and Ribeiro, IEEE TSP'19]

Wireless resource allocation

[Eisen, Zhang, Chamon, Lee, and Ribeiro, IEEE TSP'19]

Wireless resource allocation

Allocate the least transmit power to m devices to achieve a communication rate

[Eisen, Zhang, Chamon, Lee, and Ribeiro, IEEE TSP'19]

Wireless resource allocation

•

Allocate power without depleting the battery of m devices to achieve a communication rate

Wireless resource allocation

Problem Allocate power without depleting the battery of m devices to achieve a communication rate

And many more...

- · Precision, recall, churn (e.g., [Cotter et al., JMLR'19])
- · Scientific priors (e.g., [Lu et al., SIAM J. Sci. Comp.'21; Moro and Chamon, ICLR'25])
- Continual learning (e.g., [Peng et al., ICML'23])
- Active learning (e.g., [Elenter et al., NeurlPS'22])
- Semi-supervised learning (e.g., [Cerviño et al., ICML'23])

What is (un)constrained learning?

$$\begin{split} \hat{P}^{\star} &= \min_{\theta} &\quad \frac{1}{N} \sum_{n=1}^{N} \ell \Big(f_{\theta}(\boldsymbol{x}_{n}), y_{n} \Big) \\ \text{subject to} &\quad \frac{1}{N} \sum_{m=1}^{N} g \Big(f_{\theta}(\boldsymbol{x}_{m}), y_{m} \Big) \leq c \\ &\quad h \Big(f_{\theta}(\boldsymbol{x}_{r}), y_{r} \Big) \leq u, \quad r = 1, \dots, N \end{split}$$

- f_{θ} is a (possibly nonlinear) parametrization [e.g., logistic classifier, (G)(C)NN]
- $({m x}_n,y_n)\sim \mathfrak{D},\, ({m x}_m,y_m)\sim \mathfrak{A},\, ({m x}_r,y_r)\sim \mathfrak{P}$ (i.i.d.)

Constrained learning challenges

Challenges

Constrained learning challenges

Challenges

- 2) Computational: can we solve the constrained empirical problem?

Constrained learning challenges

Challenges

- 1) Statistical: does the solution of the constrained empirical problem generalize?
- 2) Computational: can we solve the constrained empirical problem?

Constrained learning challenges

Agenda

Constrained learning theory

What classical learning theory says?

extstyle ext

What's in a solution?

Definition (PAC learnability)

 f_{θ} is a probably approximately correct (PAC) learnable if for every ϵ, δ and every distributions $\mathfrak{D}, \mathfrak{A}$, we can obtain f_{θ} + from $N_f(\epsilon, \delta)$ samples such that, with prob. $1-\delta$,

near-optimal

$$P^{\star} - \mathbb{E}_{(x,y) \sim \mathfrak{D}} \left[\ell \left(f_{\theta^{\dagger}}(x), y \right) \right] \le \epsilon$$

[Chamon and Ribeiro, NeurlPS'20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

What's in a solution?

Definition (PACC learnability)

 f_{θ} is a probably approximately correct constrained (PACC) learnable if for every ϵ, δ and ever distributions $\mathfrak{D}, \mathfrak{A}$, we can obtain $f_{\theta 1}$ from $N_f(\epsilon, \delta)$ samples such that, with prob. $1 - \delta$,

· near-optimal

$$P^{\star} - \mathbb{E}_{(x,y) \sim \mathfrak{D}} \left[\ell \left(f_{\theta^{\dagger}}(x), y \right) \right] \leq \epsilon$$

approximately feasible

$$\mathbb{E}_{(\boldsymbol{x},y)\sim\mathfrak{A}}\Big[gig(f_{\boldsymbol{ heta}^\dagger}(\boldsymbol{x}),yig)\Big]\leq c+\epsilon$$

amon and Ribeiro, NeurIPS'20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

When is constrained learning possible?

Proposition

 f_{θ} is PAC learnable $\Rightarrow f_{\theta}$ is PACC learnable

[Chamon and Ribeiro, NeurlPS'20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

ECRM is not a PACC learner

Counter-example

$$\begin{split} P^* &= \min_{\theta \in \Theta} \quad J(\theta) \\ \text{subject to} \quad \theta_2 \, \mathbb{E}_{\tau}[\tau] \leq \theta_1 - 1 \\ &- \theta_1 \, \mathbb{E}_{\tau}[\tau] \leq \theta_2 - 1 \end{split}$$

$$J(\boldsymbol{\theta}) = \begin{cases} 1/16, & \boldsymbol{\theta} = [1/2, 1/2] \\ 1/8, & \boldsymbol{\theta} = [1, 1] \\ 1/4, & \boldsymbol{\theta} = [1, 0] \end{cases}$$

• $\tau \sim \text{Uniform}(-1/2, 1/2)$

ECRM is not a PACC learner

Counter-example

$$P^* = \min_{\theta \in \Theta} \quad J(\theta) = \frac{1}{8}$$
subject to
$$\theta_2 \mathbb{E}_{\tau}[\tau] \le \theta_1 - 1 \Rightarrow \theta_1 \ge 1$$

$$-\theta_1 \mathbb{E}_{\tau}[\tau] \le \theta_2 - 1 \Rightarrow \theta_2 \le 1$$

$$J(\boldsymbol{\theta}) = \begin{cases} 1/16, & \boldsymbol{\theta} = [1/2, 1/2] \\ 1/8, & \boldsymbol{\theta} = [1, 1] \\ 1/4, & \boldsymbol{\theta} = [1, 0] \end{cases}$$

• $\tau \sim \text{Uniform} \left(-1/2, 1/2\right)$

ECRM is not a PACC learner

Counter-example

$$\begin{split} P^{\star} &= \min_{\theta \in \Theta} \quad J(\theta) = \frac{1}{8} \\ \text{subject to} \quad \theta_2 \, \mathbb{E}_{\tau}[\tau] \leq \theta_1 - 1 \Rightarrow \theta_1 \geq 1 \\ \quad - \theta_1 \, \mathbb{E}_{\tau}[\tau] \leq \theta_2 - 1 \Rightarrow \theta_2 \leq 1 \end{split}$$

$$J(\boldsymbol{\theta}) = \begin{cases} 1/16, & \boldsymbol{\theta} = [1/2, 1/2] \\ 1/8, & \boldsymbol{\theta} = [1, 1] \\ 1/4, & \boldsymbol{\theta} = [1, 0] \end{cases}$$

$$\hat{P}^{\star} = \min_{\theta \in \Theta} J(\theta)$$

$$\mathbb{P}\left[|\hat{P}^{\star} - P^{\star}| \le 1/32\right] = \mathbb{P}\left[\bar{\tau}_N = 0\right] = 0$$

subject to
$$\theta_2 \bar{\tau}_N \le \theta_1 - 1$$

 $-\theta_1 \bar{\tau}_N \le 1 - \theta_2$

•
$$au\sim \mathrm{Uniform} \left(-1/2,1/2\right) \to \bar{ au}_N = \frac{1}{N} \sum_{n=1}^N au_n$$

ECRM is not a PACC learner

Counter-example

$$P^{\star} = \min_{\theta \in \Theta} \quad J(\theta) = \frac{1}{8}$$
subject to
$$\theta_2 \mathbb{E}_{\tau}[\tau] \le \theta_1 - 1 \Rightarrow \theta_1 \ge 1$$

$$-\theta_1 \mathbb{E}_{\tau}[\tau] \le \theta_2 - 1 \Rightarrow \theta_2 \le 1$$

$$J(\boldsymbol{\theta}) = \begin{cases} 1/16, & \boldsymbol{\theta} = [1/2, 1/2] \\ 1/8, & \boldsymbol{\theta} = [1, 1] \\ 1/4, & \boldsymbol{\theta} = [1, 0] \end{cases}$$

$$\hat{P}_r^{\star} = \min_{\theta \in \Theta} \quad J(\theta)$$

subject to $\theta_2 \bar{\tau}_N \leq \theta_1 - 1 + r_1$
 $-\theta_1 \bar{\tau}_N \leq 1 - \theta_2 + r_2$

$$\begin{split} \mathbb{P}\left[|\hat{P}_{\mathbf{r}}^{\star} - P^{\star}| \leq 1/32\right] \leq 4e^{-0.001N}, \\ \text{unless } \bar{\tau}_N \leq \frac{r_1}{2} < \frac{\bar{\tau}_N + 1}{2} \text{ and } r_2 \geq \bar{\tau}_N \end{split}$$

•
$$au \sim \mathrm{Uniform} \left(-1/2, 1/2 \right) \ \rightarrow \bar{ au}_N = \frac{1}{N} \sum_{n=1}^N au_n$$

Constrained learning challenges

$$\hat{P}^* = \min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{n=1}^{N} \ell \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \right) \qquad P^* = \min_{\boldsymbol{\theta}} \quad \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathfrak{D}} \left[\ell \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{y} \right) \right]$$
subject to
$$\frac{1}{N} \sum_{m=1}^{N} g \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m \right) \leq c$$

$$h \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m, y_m) \leq y_m \right)$$

$$h \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m, y_m) \leq y_m \right) \leq c$$

$$h \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m \right) \leq c$$

Challenges

- 1) Statistical: does the solution of the constrained empirical problem generalize?
- 2) Computational: can we solve the constrained empirical problem

Constrained learning challenges

$$\begin{split} \hat{P}^{\star} &= \min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{n=1}^{N} \ell \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{n}), y_{n} \big) \\ &\text{subject to} \quad \frac{1}{N} \sum_{m=1}^{N} g \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{m}), y_{m} \big) \leq c \end{split} \qquad \begin{aligned} &P^{\star} &= \min_{\boldsymbol{\theta}} \quad \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}} \left[\ell \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{y} \right) \right] \\ &\text{subject to} \quad \frac{1}{N} \sum_{m=1}^{N} g \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{m}), y_{m} \big) \leq c \end{aligned} \qquad \text{subject to} \quad \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{M}} \left[g \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{y} \right) \right] \leq c \end{split}$$

Challenges

- 1) Statistical: does the solution of the constrained empirical problem generalize?
- 2) Computational: can we solve the constrained empirical problem?

Duality

Duality

Duality

$$\begin{split} \hat{P}^* &= \min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^N \ell \Big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \Big) \text{ subject to } \frac{1}{N} \sum_{m=1}^N g \Big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m \Big) \leq c \\ & \qquad \qquad \downarrow \\ \hat{D}^* &= \max_{\lambda \geq 0} \ \min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^N \ell \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \right) + \lambda \left[\frac{1}{N} \sum_{m=1}^N g \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m \right) - c \right] \end{split}$$

Duality

$$\begin{split} \hat{P}^{\star} &= \min_{\pmb{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \ell \Big(f_{\pmb{\theta}}(\pmb{x}_n), y_n \Big) \text{ subject to } \frac{1}{N} \sum_{m=1}^{N} g \Big(f_{\pmb{\theta}}(\pmb{x}_m), y_m \Big) \leq c \\ & \qquad \qquad \downarrow \\ \hat{D}^{\star} &= \max_{\lambda \geq 0} \ \min_{\pmb{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \ell \left(f_{\pmb{\theta}}(\pmb{x}_n), y_n \right) + \lambda \Bigg[\frac{1}{N} \sum_{m=1}^{N} g \left(f_{\pmb{\theta}}(\pmb{x}_m), y_m \right) - c \Bigg] \end{split}$$

- In general $\hat{D}^* < \hat{P}^*$
- But in some cases, $\hat{D}^{\star} = \hat{P}^{\star}$ (strong duality) [e.g., convex optimization]

Duality

$$\begin{split} \hat{P}^{\star} &= \min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \ell \Big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \Big) \text{ subject to } \frac{1}{N} \sum_{m=1}^{N} g \Big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m \Big) \leq c \\ \hat{D}^{\star} &= \max_{\lambda \geq 0} \ \min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \ell \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \right) + \lambda \Bigg[\frac{1}{N} \sum_{m=1}^{N} g \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m \right) - c \Bigg] \end{split}$$

- In general, $\hat{D}^\star \leq \hat{P}^\star$
- But in some cases, $\hat{D}^* = \hat{P}^*$ (strong duality) [e.g., convex optimization

An alternative path

An alternative path

Non-convex variational duality

Convex optimization: Primal ←→ Dua

Non-convex, finite dimensional optimization: Primal +--> Du

Non-convex variational duality

Chaman Eldar Dibaira IEEE TSD'30: Chaman Batarnaia Calus Eullana Dibaira IEEE TIT'33

Sparse logistic regression

$$\begin{aligned} & \min_{\boldsymbol{\theta} \in \mathbb{R}^p} - \sum_{n=1}^{N} \log \left[1 + \exp \left(y_n \cdot \boldsymbol{\theta}^T \boldsymbol{x}_n \right) \right] \\ & \text{s. to } \|\boldsymbol{\theta}\|_0 = \sum_{t=1}^{p} \mathbb{I} \left[\boldsymbol{\theta}_t \neq 0 \right] \leq k \end{aligned}$$

Discrete, non-convex

Sparse logistic regression

Obscrete, non-convex

Continuous, non-convex

Sparse logistic regression

Discrete, non-convex [Chen et al., JMLR'19]: NP-hard

An alternative path

 $\hat{P}^* = \min_{\theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} \ell(f_{\theta}, z_n)$ $\text{s. to } \frac{1}{N} \sum_{n=1}^{N} g(f_{\theta}, z_n) \leq c$ $\hat{P}^* = \max_{\lambda \geq 0} \min_{\theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} \ell(f_{\theta}, z_n) + \lambda \left(\frac{1}{N} \sum_{n=1}^{N} g(f_{\theta}, z_n) - c\right)$ PAC

$$\begin{split} P^{\star} &= \min_{\boldsymbol{\theta} \in \Theta} \ \mathbb{E}_{\boldsymbol{z}} \left[\ell(f_{\boldsymbol{\theta}}, \boldsymbol{z}) \right] \\ &\text{s. to} \ \mathbb{E}_{\boldsymbol{z}} \left[g(f_{\boldsymbol{\theta}}, \boldsymbol{z}) \right] \leq c \end{split}$$

$$\begin{split} \bar{P}^{\star} &= \min_{\phi \in \mathcal{H}} \ \mathbb{E}_{z} \left[\ell(\phi, z) \right] \\ &\text{s.to} \ \mathbb{E}_{z} \left[g(\phi, z) \right] \leq c \end{split} \longrightarrow \bar{D}^{\star} = \max_{\lambda \geq 0} \min_{\phi \in \mathcal{H}} \ \mathbb{E}_{z} \left[\ell(\phi, z) \right] + \lambda \left(\mathbb{E}_{z} \left[g(\phi, z) \right] - c \right) \end{split}$$

[Chamon and Ribeiro, NeurlPS'20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'2:

An alternative path

An alternative path

[Chamon and Ribeiro, NeurlPS'20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Dual (near-)PACC learning

Let f be ν -universal, i.e., for each θ_1 , θ_2 , and $\gamma \in [0,1]$ there exists θ such that

$$\mathbb{E}\Big[|\gamma f_{\theta_1}(\boldsymbol{x}) + (1-\gamma)f_{\theta_2}(\boldsymbol{x}) - f_{\theta}(\boldsymbol{x})|\Big] \leq \nu$$

 $\left[\{f_{\boldsymbol{\theta}}\} \text{ is a good covering of } \overline{\operatorname{conv}}(\{f_{\boldsymbol{\theta}}\})\right]$

Dual (near-)PACC learning

Then \hat{D}^* is a (near-)PACC learner, i.e., with probability $1 - \delta$.

Near-optimal:
$$\left|P^{\star} - \hat{D}^{\star}\right| \leq \widetilde{O}\left(\nu + \frac{1}{\sqrt{N}}\right)$$

Dual (near-)PACC learning

$$\mathbb{E}\left[\left|\gamma f_{\theta_1}(\boldsymbol{x}) + (1-\gamma)f_{\theta_2}(\boldsymbol{x}) - f_{\theta}(\boldsymbol{x})\right|\right] \leq \nu$$

Then \hat{D}^{\star} is a (near-)PACC learner, i.e., for all $(\theta^{\dagger}, \lambda^{\dagger})$ that achieve \hat{D}^{\star} , with probability $1 - \delta$,

Near-optimal:
$$\left|P^{\star} - \hat{D}^{\star}\right| \leq \widetilde{O}\left(\nu + \frac{1}{\sqrt{N}}\right)$$

$$\text{Approximately feasible:} \quad \mathbb{E}\Big[g\Big(f_{\theta^\dagger}(x),y\Big)\Big] \leq c + \widetilde{O}\left(\nu + \frac{1}{\sqrt{N}}\right)$$

$$\left(\ell_0 \text{ strongly convex and } g, h \text{ convex}\right) \qquad h\left(f_{\theta^\dagger}(\boldsymbol{x}), y\right) \leq r, \text{ with } \mathfrak{P}\text{-prob. } 1 - \widetilde{O}\left(\nu + \frac{1}{\sqrt{N}}\right)$$

Dual (near-)PACC learning

 $\label{eq:convex} \begin{array}{l} \textbf{Theorem} \\ \textbf{Let } f \text{ be } \nu\text{-universal with VC dimension } d_{\text{VC}} < \infty, \ell_0 \text{ strongly convex, and } g \text{ convex. Then, } f_{\theta^\dagger} \text{ is a (near-)PACC solution of (P-CSL) for all } (\theta^\dagger, \lambda^\dagger) \text{ that achieve } \hat{D}^*, \text{ i.e., with probability at least } 1 - \delta, \end{cases}$

$$|P^* - \hat{D}^*| \le (1 + \Delta)(\epsilon_0 + \epsilon)$$

$$\mathbb{E}\left[g\big(f_{\boldsymbol{\theta}^{\dagger}}(\boldsymbol{x}),y\big)\right] \leq c + (1+\Delta)^{3/2} \big(M\sqrt{\epsilon_0} + \epsilon\big)$$

$$\epsilon_0 = M \nu \qquad \quad \epsilon = B \sqrt{\frac{1}{N} \left[1 + \log \left(\frac{4m(2N)^{\text{dyc}}}{\delta} \right) \right]} \qquad \quad \Delta = \max \left(\left\| \boldsymbol{\lambda}^* \right\|_1, \left\| \hat{\boldsymbol{\lambda}}^* \right\|_1, \left\| \tilde{\boldsymbol{\lambda}}^* \right\|_1 \right)$$

Sources of error

Dual (near-)PACC learning

Let f be ν -universal with VC dimension $d_{VC} < \infty$, ℓ_0 strongly convex, and g convex. Then, $f_{\theta^{\dagger}}$ is a (near-)PACC solution of (P-CSL) for all $(\theta^{\dagger}, \lambda^{\dagger})$ that achieve \hat{D}^* , i.e., with probability at least $1 - \delta$,

$$\begin{split} \left| P^{\star} - \hat{D}^{\star} \right| &\leq (1 + \Delta) \left(\epsilon_{0} + \epsilon \right) \\ \mathbb{E} \left[g \left(f_{\theta^{\dagger}}(\boldsymbol{x}), \boldsymbol{y} \right) \right] &\leq c + (1 + \Delta)^{3/2} \left(M \sqrt{\epsilon_{0}} + \epsilon \right) \end{split}$$

$$\epsilon = B_{4} \sqrt{\frac{1}{3\sqrt{1 - \left[1 + \log\left(\frac{4m(2N)^{d_{VC}}}{N}\right)\right]}} \qquad \Delta = \max\left(\left\|\lambda^{\star}\right\|_{*}, \left\|\hat{\lambda}^{\star}\right\|_{*}, \left\|\hat{\lambda}^{\star}\right\|_{*}\right)\right]}$$

Sources of error

Dual (near-)PACC learning

Let f be r-universal with VC dimension $d_{VC} < \infty$, ℓ_0 strongly convex, and g convex. Then, $f_{\theta^{\dagger}}$ is a (near-)PACC solution of (P-CSL) for all $(\theta^{\dagger}, \lambda^{\dagger})$ that achieve \hat{D}^* , i.e., with probability at least $1 - \delta$,

$$\begin{split} \left| P^{\star} - \hat{D}^{\star} \right| &\leq (1 + \Delta) \left(\epsilon_{0} + \epsilon \right) \\ \mathbb{E} \left[g \left(f_{\theta^{\dagger}}(\boldsymbol{x}), \boldsymbol{y} \right) \right] &\leq c + (1 + \Delta)^{3/2} \left(M \sqrt{\epsilon_{0}} + \epsilon \right) \end{split}$$

$$\boldsymbol{\epsilon_0} = M \boldsymbol{\nu} \qquad \quad \boldsymbol{\epsilon} = B \sqrt{\frac{1}{N} \left[1 + \log \left(\frac{4m(2N)^{\mathsf{dvc}}}{\delta} \right) \right]} \qquad \quad \Delta = \max \left(\left\| \boldsymbol{\lambda}^* \right\|_1, \left\| \boldsymbol{\hat{\lambda}}^* \right\|_1, \left\| \boldsymbol{\hat{\lambda}}^* \right\|_1 \right)$$

Sources of error

Dual (near-)PACC learning

 $\label{eq:convex} \begin{array}{l} \textbf{Theorem} \\ \textbf{Let } f \text{ be } \nu\text{-universal with VC dimension } d_{\text{VC}} < \infty, \ell_0 \text{ strongly convex, and } g \text{ convex. Then, } f_{\theta^{\dagger}} \text{ is a (near-)PACC solution of (P-CSL) for all } (\theta^{\dagger}, \lambda^{\dagger}) \text{ that achieve } \hat{D}^*, \text{i.e., with probability at least } 1 - \delta, \end{array}$

$$\begin{split} \left| P^{\star} - \hat{D}^{\star} \right| &\leq (1 + \Delta) \left(\mathbf{\epsilon_0} + \epsilon \right) \\ \mathbb{E} \left[g \left(f_{\theta^{\dagger}}(\mathbf{x}), \mathbf{y} \right) \right] &\leq c + (1 + \Delta)^{3/2} \left(M \sqrt{\mathbf{\epsilon_0}} + \epsilon \right) \end{split}$$

$$M \boldsymbol{\nu} \qquad \boldsymbol{\epsilon} = B \sqrt{\frac{1}{N} \left[1 + \log \left(\frac{4m(2N)^{\mathsf{d}_{\mathsf{VC}}}}{\delta} \right) \right]} \qquad \Delta = \max \left(\left\| \boldsymbol{\lambda}^* \right\|_1, \left\| \boldsymbol{\hat{\lambda}}^* \right\|_1, \left\| \boldsymbol{\tilde{\lambda}}^* \right\|_1 \right)$$

Sources of error

parametrization richness (ν)

Sources of error parametrization richness (ν)

Dual (near-)PACC learning

 $|P^* - \hat{D}^*| \le (1 + \Delta)(\epsilon_0 + \epsilon)$

 $\mathbb{E}\left[g\left(f_{\boldsymbol{\theta}^{\dagger}}(\boldsymbol{x}), y\right)\right] \leq c + (1 + \Delta)^{3/2} \left(M\sqrt{\epsilon_0} + \epsilon\right)$

Dual learning trade-offs

 Unconstrained learning parametrization × sample size

Dual learning trade-offs

- Unconstrained learning parametrization × sample size

When is constrained learning possible?

Corollary

 f_{θ} is PAC learnable $pprox^* f_{\theta}$ is PACC learnable

Constrained learning is essentially as hard as unconstrained learning

When is constrained learning possible?

Corollary

Fairness

Problem

Predict whether an individual will recidivate

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

$$\begin{split} & \min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \right) \\ & \text{subject to} \quad \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left[f_{\boldsymbol{\theta}}(\boldsymbol{x}_n) = 1 \, \middle| \, \mathsf{Race} \right] \leq \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left[f_{\boldsymbol{\theta}}(\boldsymbol{x}_n) = 1 \right] + c_n \\ & \text{for Race} \in \left\{ \mathsf{African-American, Caucasian, Hispanic, Other} \right\} \end{split}$$

*We say "Race" to follow the terminology used during the data collection of the C [Cotter et al., JMLR'19; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

Predict whether an individual will recidivate at the same rate across races

$$\begin{aligned} & \min_{\boldsymbol{\theta}} & & \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \big) \\ & \text{subject to} & & \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \big[f_{\boldsymbol{\theta}}(\boldsymbol{x}_n) = 1 \, | \, \mathsf{Race} \big] \leq \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \big[f_{\boldsymbol{\theta}}(\boldsymbol{x}_n) = 1 \big] + \epsilon \end{aligned}$$

Fairness: "Equality" of odds

$$\begin{split} & \min_{\theta} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\theta}(\boldsymbol{x}_n), y_n \big) \\ & \text{subject to} \quad \frac{1}{N} \sum_{n=1}^{N} \sigma \Big(f_{\theta}(\boldsymbol{x}_n) - 0.5 \Big) \, \mathbb{I} \big[\boldsymbol{x}_n \in \mathsf{Race} \big] \leq \frac{1}{N} \sum_{n=1}^{N} \sigma \Big(f_{\theta}(\boldsymbol{x}_n) - 0.5 \Big) + c, \end{split}$$

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

*We say "Race" to follow the terminology used during the [Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

*We say "Race" to follow the terminology used during the [Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

*We say "Race" to follow the terminology used during the d [Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

*We say "Race" to follow the terminology used during the data [Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

Agenda

Constrained optimization methods

$$\begin{split} \hat{P}^{\star} &= \min_{\boldsymbol{\theta}} & \quad \frac{1}{N} \sum_{n=1}^{N} \ell \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{n}), y_{n} \right) \\ \text{subject to} & \quad \frac{1}{N} \sum_{m=1}^{N} g \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{m}), y_{m} \right) \leq c \end{split}$$

Constrained optimization methods

$$\begin{split} \hat{P}^* &= \min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{m=1}^{N} \ell \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \right) \\ \text{subject to} \quad \frac{1}{N} \sum_{m=1}^{N} g \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m \right) \leq c \end{split}$$

bject to
$$\frac{1}{N} \sum_{m=1}^{N} g(f_{\theta}(\boldsymbol{x}_m), y_m) \leq 0$$

- Feasible update methods

 e.g., conditional gradients (Frank-Wolfe)
 - Tractability [non-convex constraints]
 - Feasible candidate solution
- Interior point methods

e.g., barriers, projection, polyhedral approx

- 3 Tractability [non-convex constraints]
- Feasible candidate solution

Constrained optimization methods

-
 - e.g., conditional gradients (Frank-Wolfe)
 - Tractability [non-convex constraints
 - Feasible candidate solution
 - Interior point methods
 - e.g., barriers, projection, polyhedral appro
 - Feasible candidate solution
 - Duality
 - e.g., (augmented) Lagrangian
 - Tractability
 - (near-)feasible solution [small duality gap

Dual learning algorithm

$$\hat{D}^{*} = \max_{\lambda \geq 0} \min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \quad \frac{1}{N} \sum_{n=1}^{N} \ell\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{n}), y_{n}\right) + \lambda \left[\frac{1}{N} \sum_{n=1}^{N} g\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{m}), y_{m}\right) - c\right]$$

Dual learning algorithm

Minimize the primal (≡ ERM)

$$\boldsymbol{\theta}^{\dagger} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p}}{\operatorname{argmin}} \ \frac{1}{N} \sum_{n=1}^{N} \left[\ell\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{n}), y_{n}\right) + \lambda g\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{n}), y_{n}\right) \right]$$

$$\hat{D}^{+} = \max_{\lambda \geq 0} \min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \quad \frac{1}{N} \sum_{n=1}^{N} \ell\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{n}), y_{n}\right) + \lambda \left[\frac{1}{N} \sum_{m=1}^{N} g\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{m}), y_{m}\right) - \varepsilon\right]$$

Dual learning algorithm

Minimize the primal (≡ ERM)

$$\theta^{+} \approx \theta - \eta \nabla_{\theta} \left[\ell \left(f_{\theta}(x_n), y_n \right) + \lambda g \left(f_{\theta}(x_n), y_n \right) \right], \quad n = 1, 2, ...$$

(Haaffele et al. CVPR'17' Ge et al. ICLR'18': Mei et al. PASA'18'.

$$\hat{D}^{*} = \max_{\lambda \geq 0} \min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{N} \sum_{n=1}^{N} \ell\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{n}), y_{n}\right) + \lambda \left[\frac{1}{N} \sum_{n=1}^{N} g\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{m}), y_{m}\right) - c\right]$$

Dual learning algorithm

Minimize the primal (≡ ERM)

$$\theta^+ \approx \theta - \eta \nabla_{\theta} \Big[\ell \big(f_{\theta}(x_n), y_n \big) + \lambda g \big(f_{\theta}(x_n), y_n \big) \Big], \quad n = 1, 2, \dots$$

Update the dual

$$\boldsymbol{\lambda}^{+} = \left[\boldsymbol{\lambda} + \eta \Bigg(\frac{1}{N} \sum_{m=1}^{N} g\Big(f_{\boldsymbol{\theta}^{+}}(\boldsymbol{x}_{m}), y_{m}\Big) - c\Bigg)\right]_{+}$$

$$\hat{D}^* = \max_{\pmb{\lambda} \geq \pmb{0}} \min_{\theta \in \mathbb{R}^p} \ \frac{1}{N} \sum_{n=1}^N \ell\left(f_{\theta}(x_n), y_n\right) + \pmb{\lambda} \left[\frac{1}{N} \sum_{n=1}^N g\left(f_{\theta}(x_m), y_n\right) - c\right]$$

A (near-)PACC learner

Theorem

Suppose θ^{\dagger} is a ρ -approximate solution of the regularized ERM:

$$\theta^{\dagger} \approx \underset{\theta \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \left(\ell\left(f_{\theta}(\boldsymbol{x}_n), y_n\right) + \lambda g\left(f_{\theta}(\boldsymbol{x}_n), y_n\right) \right)$$

Then, after $T=\left|\frac{\|\lambda^{\epsilon}\|^2}{2\eta M \nu}\right|+1$ dual iterations with step size $\eta \leq \frac{2\epsilon}{mB^2}$, the iterates $\left(\pmb{\theta}^{(T)},\pmb{\lambda}^{(T)}\right)$ are such that

$$|D^* - I(\rho(T), \chi(T))| \le (0 + \Lambda)(1 + \Lambda) + 1$$

with probability $1-\delta$ over sample sets.

Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

In practice...

• Minimize the primal (\equiv **ERM**)

$$\boldsymbol{\theta}^+ \approx \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \Big[\ell \Big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \Big) + \lambda g \Big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \Big) \Big], \quad n = 1, 2, \dots$$

Update the dual

$$\lambda^{+} = \left[\lambda + \eta \left(\frac{1}{N} \sum_{m=1}^{N} g(f_{\theta^{+}}(\boldsymbol{x}_{m}), y_{m}) - c\right)\right]_{+}$$

$$\hat{D}^{*} = \max_{\lambda \geq 0} \min_{\theta \in \mathbb{R}^{p}} \frac{1}{N} \sum_{n=0}^{N} \ell\left(f_{\theta}(x_{n}), y_{n}\right) + \lambda \left[\frac{1}{N} \sum_{n=0}^{N} g\left(f_{\theta}(x_{m}), y_{n}\right) - c\right]$$

In practice...

Minimize the primal (≡ ERM

$$\theta^+ = \theta - \eta \nabla_{\theta} \left[\ell \left(f_{\theta}(x_n), y_n \right) + \lambda g \left(f_{\theta}(x_n), y_n \right) \right], \quad \mathbf{n} = 1, 2, \dots, N$$

Update the dual

$$\lambda^{+} = \left[\lambda + \eta \left(\frac{1}{N} \sum_{m=1}^{N} g(\mathbf{f}_{\theta^{+}}(\mathbf{x}_{m}), y_{m}) - c\right)\right]_{\perp}$$

$$\hat{D}^* = \max_{\lambda \geq 0} \min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{N} \sum_{n=1}^{N} \ell\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n\right) + \lambda \left[\frac{1}{N} \sum_{m=1}^{N} g\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m\right) - \epsilon\right]$$

In practice...

```
1: Initialize: \boldsymbol{\theta}_0,\,\lambda_0
 2: for t = 1, ..., T
               \beta_1 \leftarrow \theta_{t-1}
                \text{ for } n=1,\dots,N
                                                                                                                                                                                            SGD
                      \boldsymbol{\beta}_{n+1} \leftarrow \boldsymbol{\beta}_n - \eta_{\theta} \nabla_{\boldsymbol{\beta}} \left[ \ell \left( f_{\boldsymbol{\beta}_n}(\boldsymbol{x}_n), y_n \right) + \lambda_{t-1} g \left( f_{\boldsymbol{\beta}_n}(\boldsymbol{x}_n), y_n \right) \right]
                end
               \theta_t \leftarrow \beta_{N+1}
                                \left[\lambda_{t-1} + \eta_{\lambda} \left(\frac{1}{N} \sum_{m=-1}^{N} g(f_{\theta_t}(\boldsymbol{x}_m), y_n) - c\right)\right]
                                                                                                                                                                                            Dual update
 9: end
10: Output: \theta_T, \lambda_T
```

In practice...

9: end

10: Output: θ_T , λ_T

$$\begin{array}{ll} \text{1: Initialize: } \theta_0,\,\lambda_0\\ \text{2: } \textbf{for } t=1,\dots,T\\ \text{3:} & \beta_1 \leftarrow \theta_{t-1}\\ \text{4:} & \textbf{for } n=1,\dots,N\\ \text{5:} & \beta_{n+1} \leftarrow \beta_n - \eta_\theta \nabla_{\!\boldsymbol{\beta}} \left[\ell \left(f_{\beta_n}(\boldsymbol{x}_n),y_n \right) + \lambda_{t-1} g \left(f_{\beta_n}(\boldsymbol{x}_n),y_n \right) \right]\\ \text{6:} & \textbf{end}\\ \text{7:} & \theta_t \leftarrow \beta_{N+1}\\ \text{8:} & \lambda_t = \left\lceil \lambda_{t-1} + \eta_\lambda \left(\frac{1}{N} \sum_{n=1}^N g \left(f_{\theta_t}(\boldsymbol{x}_m),y_n \right) - c \right) \right\rceil \end{array} \quad \text{Use} \end{array}$$

Use adaptive method (e.g., ADAM)

O PyTorch

https://github.com/lfochamon/csl

O PyTorch

https://github.com/lfochamon/csl

O PyTorch

https://github.com/lfochamon/csl

In practice...

```
1: Initialize: \pmb{\theta}_0,\,\lambda_0
 2: for t = 1, ..., T
            \beta_1 \leftarrow \theta_{t-1}
             \quad \text{for } n=1,\dots,N
                   \beta_{n+1} \leftarrow \beta_n - \eta_{\theta} \nabla_{\beta} \left[ \ell \left( f_{\beta_n}(\boldsymbol{x}_n), y_n \right) + \lambda_{t-1} g \left( f_{\beta_n}(\boldsymbol{x}_n), y_n \right) \right]
             end
             \theta_t \leftarrow \beta_{N+1}
                                         + \eta_{\lambda} \left( \frac{1}{N} \sum_{m=1}^{N} g(f_{\theta_t}(\boldsymbol{x}_m), y_n) - c \right)
                                                                                                                                                             Use adaptive method (e.g., ADAM)
                                                                                                                                                             Use different time-scales (\eta_{\lambda} = 0.1\eta_{\theta})
  9: end
10: Output: \theta_T, \lambda_T
```

In practice...

- feasibility: $s_k < 0$

- "duality gap": $\lambda_t s_t$

O PyTorch

https://github.com/lfochamon/csl

Penalty-based vs. dual learning

- Parameter: λ (data-dependent)
- Parameter: c (requirement-dependent)

Robust learning

Adversarial training

Problem

Learn an accurate classifier that is robust to input perturbations

$$\min_{\theta} \ \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \left(f_{\theta}(\boldsymbol{x}_{n}), y_{n} \right) \longrightarrow \min_{\theta} \ \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\|\boldsymbol{\delta}\|_{\infty} \leq \epsilon} \mathsf{Loss} \left(f_{\theta}(\boldsymbol{x}_{n} + \boldsymbol{\delta}), y_{n} \right) \right]$$

Adversarial training

Learn an accurate classifier that is robust to input perturbations

Adversarial training (e.g., [Szegedy et al., ICLR'14; Good

Adversarial training

Problem

Learn an accurate classifier that is robust to input perturbations

Adversarial training

Problem

Learn an accurate classifier that is robust to input perturbations

Adversarial training

Problem

Learn an accurate classifier that is robust to input perturbations

Constrained learning for robustness

Problem

Learn an accurate classifier that is robust to input perturbations

$$\begin{split} & & \min_{\theta} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \left(f_{\theta}(x_n), y_n \right) \\ & \text{subject to} \quad \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\|\delta\|_{\infty} \leq \epsilon} \mathsf{Loss} \left(f_{\theta}(x_n + \delta), y_n \right) \right] \leq c \end{split}$$

Constrained learning for robustness

Learn an accurate classifier that is robust to input perturbations

$$\begin{aligned} & \min_{\theta} & & \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \left(f_{\theta}(\boldsymbol{x}_{n}), y_{n} \right) \\ & \text{subject to} & & \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\|\boldsymbol{\delta}\|_{\infty} \leq \epsilon} \mathsf{Loss} \left(f_{\theta}(\boldsymbol{x}_{n} + \boldsymbol{\delta}), y_{n} \right) \right] \leq c \end{aligned}$$

Constrained learning for robustness

Problem
Learn an accurate classifier that is robust to input perturbations

$$\min_{\theta} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{loss} \left(f_{\theta}(\boldsymbol{x}_n), y_n \right)$$
 subject to
$$\frac{1}{N} \sum_{n=1}^{N} u_n \leq c$$

$$\mathsf{lose} \left(f_{\theta}(\boldsymbol{x}_n + \boldsymbol{\delta}_n), u_n \right) \leq u$$
 for all $\|\boldsymbol{\delta}_n\| \leq c$

Constrained learning for robustness

Problem

Learn an accurate classifier that is robust to input perturbations

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \big)$$
 ubject to
$$\frac{1}{N} \sum_{n=1}^{N} u_n \leq c$$

$$\mathbf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}_0), y_n \big) \leq u$$

$$\begin{array}{l} \text{Sampling} \\ \text{Sampling} \\ \text{(e.g., LMC)} \\ \end{array} \begin{array}{l} \text{Loss}\left(f_{\theta}(x_n+\delta_0),y_n\right) \leq u_n \\ \text{Loss}\left(f_{\theta}(x_n+\delta_{\sqrt{2}}),y_n\right) \leq u_n \\ \text{Loss}\left(f_{\theta}(x_n+\delta_{\sqrt{3}}),y_n\right) \leq u_n \\ \text{Loss}\left(f_{\theta}(x_n+\delta_{\sigma}),y_n\right) \leq u_n \end{array}$$

Constrained learning for robustness Problem Learn an accurate classifier that is robust to input perturbations CIFAR-10 1, y 1,

Constrained learning for robustness Problem Learn an accurate classifier that is robust to input perturbations 1. TRADES DALE 1. TRADES DAL

a, Ribeiro, IEEE TIT'23]

Penalty-based vs. dual learning

Penalty-based learning

 $\boldsymbol{\theta}^{\dagger} \in \operatorname{argmin} \ \mathsf{Loss}(\boldsymbol{\theta}) + \lambda \cdot \mathsf{Penalty}(\boldsymbol{\theta})$

- Parameter: λ (data-dependent)
- Generalizes with respect to Loss $+\lambda \text{Penalty}$

Dual learning

 $\boldsymbol{\theta}^{\dagger} \in \operatorname{argmin} \ \mathsf{Loss}(\boldsymbol{\theta}) + \lambda \cdot \mathsf{Penalty}(\boldsymbol{\theta})$

$$\lambda^+ = \left[\lambda + \eta \left(\frac{\mathsf{Penalty}(\boldsymbol{\theta}^\dagger)}{c} - c \right) \right]_+$$

- · Parameter: c (requirement-dependent)

Summary

- · Constrained learning is the a tool to learn under requirements
- · Constrained learning is hard...
- · ...but possible. How?

Summary

- Constrained learning is the a tool to learn under requirements Constrained learning imposes generalizable requirements organically during training, e.g., fairness (ch IPS'20; Chamon et al., IEEE TIT'23], heterogeneity [Sh

Summary

- Constrained learning is the a tool to learn under requirements Constrained learning imposes generalizable requirements organically during training, e.g., fairness (Char eiro, NeurIPS'20; Chamon et al., IEEE TIT'23], heterogeneity [Sh
- · Constrained learning is hard... Constrained, non-convex, statistical optimization problem
- · ...but possible. How?

Summary

- Constrained learning is the a tool to learn under requirements Constrained learning imposes generalizable requirements organically during training, S'20: Chamon et al., IEEE TIT'231, heterogeneity ISH
- Constrained learning is hard... Constrained, non-convex, statistical optimization problem
- · ...but possible. How? We can learn under requirements (essentially) whenever we can learn at all by solving (penalized) ERM problems.

Agenda

Resilient constrained learning

Semi-infinite learning

Probabilistic robustness

Agenda

Resilient constrained learning

Heterogeneous federated learning

Learn a common model using data from K clients that is good for all clients

$$\begin{aligned} & & \min_{\boldsymbol{\theta}} & & \frac{1}{K} \sum_{k=1}^{K} \mathsf{Loss}_k(f_{\boldsymbol{\theta}}) \\ & & \text{subject to} & & & \mathsf{Loss}_k(f_{\boldsymbol{\theta}}) \leq \frac{1}{K} \sum_{k=1}^{K} \mathsf{Loss}_k(f_{\boldsymbol{\theta}}) + c \end{aligned}$$

- k-th client loss: $\mathrm{Loss}_k(\phi) = \frac{1}{N_k} \sum_{n_k=1}^{N_k} \mathrm{Loss} \left(f_{\theta}(x_{n_k}), y_{n_k} \right)$

Heterogeneous federated learning

Learn a common model using data from K clients that is good for all clients

$$\begin{aligned} & \min_{\boldsymbol{\theta}} & & \frac{1}{K} \sum_{k=1}^{K} \mathsf{Loss}_k(f_{\boldsymbol{\theta}}) \\ & \text{subject to} & & \mathsf{Loss}_k(f_{\boldsymbol{\theta}}) \leq \frac{1}{K} \sum_{k=1}^{K} \mathsf{Loss}_k(f_{\boldsymbol{\theta}}) + c_k \\ & & k = 1, \dots, K \end{aligned}$$

- k-th client loss: $\mathrm{Loss}_k(\phi) = \frac{1}{N_k} \sum_{n=1}^{N_k} \mathrm{Loss} ig(f_{\pmb{\theta}}(\pmb{x}_{n_k}), y_{n_k}ig)$

Resilient constrained learning

Definition (Resilience)

(ecology) ability of an ecosystem to adapt its function to accommodate operating conditions

Resilient constrained learning

Definition (Resilience)

(ecology) ability of an ecosystem to adapt its function to accommodate operating conditions (learning) learning system specification data properties

Resilient constrained learning

Definition (Resilience)

(ecology) ability of an ecosystem to adapt its function to accommodate operating conditions learning system

 $P^* = \min_{\mathbf{a}} \mathbb{E}_{(\mathbf{x},y)\sim D} \left[Loss(f_{\theta}(\mathbf{x}), y) \right]$

Resilient constrained learning

Definition (Resilience)

(ecology) ability of an ecosystem to adapt its function to accommodate operating conditions learning system

> $P^{\star}(\mathbf{r}) = \min_{\mathbf{a}} \mathbb{E}_{(\mathbf{x},y)\sim \mathfrak{D}} \left[Loss(f_{\theta}(\mathbf{x}), y)) \right]$ subject to $\mathbb{E}_{(\boldsymbol{x},y)\sim\mathfrak{A}_i}\left[g_i\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m),y_m\right)\right] \leq c_i + r_i$

Resilient constrained learning

Definition (Resilience)

(ecology) ability of an ecosystem to adapt its function to accommodate operating conditions learning system

$$\begin{split} P^{\star}(\boldsymbol{r}) &= \min_{\theta} \ \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathfrak{D}} \Big[\mathsf{Loss} \Big(f_{\theta}(\boldsymbol{x}), \boldsymbol{y} \Big) \Big] \\ \text{subject to} \ \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathfrak{A}_{i}} \Big[g_{i} \Big(f_{\theta}(\boldsymbol{x}_{m}), y_{m} \Big) \Big] \leq c_{i} + r_{i} \end{split}$$

Larger relaxations ${m r}$ decrease the objective $P^{\star}({m r})$ (benefit), but increase specification violation $c_i + r_i$ (cost)

Resilient constrained learning

Definition (Resilience)

(ecology) ability of an ecosystem to adapt its function to accommodate operating conditions learning system

$$\begin{split} P^{\star}(\mathbf{r}) &= \min_{\theta} \ \mathbb{E}_{(\mathbf{x}, y) \sim \mathfrak{D}} \left[\mathsf{Loss} \left(f_{\theta}(\mathbf{x}), y \right) \right] \\ &\text{subject to} \ \mathbb{E}_{(\mathbf{x}, y) \sim \mathfrak{A}_i} \left[g_i \left(f_{\theta}(\mathbf{x}_m), y_m \right) \right] \leq c_i + \mathbf{r}_i \end{split}$$

- Larger relaxations r decrease the objective $P^{\star}(r)$ but increase specification violation $c_i + r_i$ (cost) $P^{\star}(\boldsymbol{r})$ (benefit),
- · Resilience is a compromise!

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^* achieves the resilient equilibrium if

$$\nabla h(r^\star) \in -\partial P^\star(r^\star) \leftarrow (\partial: \text{subdifferential})$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

[Hounie, Chamon, Ribeiro, NeurIPS'23

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^* achieves the resilient equilibrium if

$$\nabla h(r^\star) \in -\partial P^\star(r^\star) \leftarrow (\partial: \text{subdifferential})$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

[Hounie, Chamon, Ribeiro, NeurlPS'23]

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^{\star} achieves the resilient equilibrium if

$$\nabla h(r^\star) \in -\frac{\partial P^\star(r^\star)}{\partial r^\star} \leftarrow (\partial : \text{subdifferential})$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

Hounie, Chamon, Ribeiro, NeurlPS'23]

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^{\star} achieves the resilient equilibrium if

$$\nabla h(r^\star) \in -\frac{\partial P^\star(r^\star)}{\partial r^\star} \leftarrow (\partial : \text{subdifferential})$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

[Hounie, Chamon, Ribeiro, NeurlPS'23]

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^* achieves the resilient equilibrium if

$$\nabla h(\boldsymbol{r}^{\star}) \in -\partial P^{\star}(\boldsymbol{r}^{\star}) = \boldsymbol{\lambda}^{\star}(\boldsymbol{r}^{\star})$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

 $lack After relaxing, \lambda^*(r^*)$ is $smaller than \lambda^*(0) \Rightarrow Resilient constrained learning "generalizes better" (lower sample complexity)$

[Hounie, Chamon, Ribeiro, NeurlPS'23]

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^* achieves the resilient equilibrium if

$$\nabla h({m r}^\star) \in -\partial P^\star({m r}^\star) = {m \lambda}^\star({m r}^\star)$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

- lacktriangledown After relaxing, $oldsymbol{\lambda}^{\star}(r^{\star})$ is smaller than $oldsymbol{\lambda}^{\star}(0)$
 - ⇒ Resilient constrained learning "generalizes better" (lower sample complexity)
- ▼ The resilient equilibrium exists and is unique (because h is strictly convex)

[Hounie, Chamon, Ribeiro, NeurIPS'23

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^\star achieves the resilient equilibrium if

$$\begin{split} P^{\star}(\boldsymbol{r}^{\star}) &= \min_{\boldsymbol{\theta}, \boldsymbol{r}} \quad \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathfrak{D}} \left[\mathsf{Loss} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}), y \right) \right] + h(\boldsymbol{r}) \\ \text{subject to} \quad \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathfrak{A}_{1}} \left[g_{i} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{m}), y_{m} \right) \right] \leq c_{i} + r_{i} \end{split}$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

- $lack \$ After relaxing, $\lambda^{ullet}(r^*)$ is smaller than $\lambda^*(0)$ \Rightarrow Resilient constrained learning "generalizes better" (lower sample complexity)

Heterogeneous federated learning

Heterogeneous federated learning

.....

Heterogeneous federated learning

[Hounie, Chamon, Ribeiro, NeurIPS'23]

Agenda

Resilient constrained learning

Semi-infinite learning

Probabilistic robustness

Semi-infinite constrained learning

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\boldsymbol{\delta} \in \Delta} \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}), y_n \big) \; \right]$$

Semi-infinite constrained learning

$$\begin{split} & \min_{\pmb{\theta}} & & \frac{1}{N} \sum_{n=1}^{N} \left[t(x_n, y_n) \right] \\ & \text{ubject to} & & \mathsf{Loss} \left(f_{\pmb{\theta}}(x_n + \textcolor{red}{\pmb{\delta}}), y_n \right) \leq t(x_n, y_n), \\ & \text{for all } (x_n, y_n) \text{ and } \textcolor{red}{\pmb{\delta}} \in \Delta \end{split}$$

Epigraph formulation:

$$\max_{\|\boldsymbol{\delta}\|_{\infty} \leq \epsilon} \mathsf{Loss}\big(f_{\boldsymbol{\theta}}(\boldsymbol{x} + \boldsymbol{\delta}), y\big) \leq t \Longleftrightarrow \mathsf{Loss}\big(f_{\boldsymbol{\theta}}(\boldsymbol{x} + \boldsymbol{\delta}), y\big) \leq t, \text{ for all } \|\boldsymbol{\delta}\|_{\infty} \leq \epsilon$$

Semi-infinite constrained learning

$$\begin{aligned} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

 $\max_{\|\delta\|_{\infty} < \epsilon} \mathsf{Loss}\big(f_{\theta}(x+\delta_1,y) - \mathsf{Loss}\big(f_{\theta}(x+\delta_2,y) -$

- Semi-infinite program $\frac{\mathsf{Loss} \left(f_{\theta}(x_n + \delta_{\sigma^{\theta}}), y_n \right) \leq t(x_n, y_n)}{\mathsf{Loss} \left(f_{\theta}(x_n + \delta_{\sigma^{\theta}}), y_n \right) \leq t(x_n, y_n)}$

Duality

$$\min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\boldsymbol{\delta} \in \Delta} \mathsf{Loss} (f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}), y_n) \right] \\ = \\ \min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \left[t(\boldsymbol{x}_n, y_n) \right] \text{ s. to } \mathsf{Loss} (f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}), y_n) \leq t(\boldsymbol{x}_n, y_n), \forall (\boldsymbol{x}_n, y_n, \boldsymbol{\delta}) \\ = \\ \min_{\boldsymbol{\theta}} \ \sup_{\boldsymbol{\mu} \in \mathcal{P}} \ \frac{1}{N} \sum_{n=1}^{N} \int_{\Delta} \mu_n(\boldsymbol{\delta}) \, \mathsf{Loss} (f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}), y_n) d\boldsymbol{\delta}$$

Duality

$$\begin{split} \min_{\pmb{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\pmb{\delta} \in \Delta} \mathsf{Loss} \left(f_{\pmb{\theta}}(\pmb{x}_n + \pmb{\delta}), y_n \right) \right] \\ & \qquad \qquad \downarrow = \\ \min_{\pmb{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \left[\iota(\pmb{x}_n, y_n) \right] \text{ s. to } \mathsf{Loss} \left(f_{\pmb{\theta}}(\pmb{x}_n + \pmb{\delta}), y_n \right) \leq \iota(\pmb{x}_n, y_n), \forall (\pmb{x}_n, y_n, \pmb{\delta}) \\ & \qquad \qquad \downarrow = \\ \min_{\pmb{\theta}} \ \sup_{\mu \in \mathcal{P}} \ \underbrace{\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\pmb{\delta} \sim \mu \cup \{ | \pmb{x}_n, y_n \}} \left[\mathsf{Loss} \left(f_{\pmb{\theta}}(\pmb{x}_n + \pmb{\delta}), y_n \right) \right]}_{L(\theta, p_n)} \end{split}$$

From optimization to sampling

$$\begin{split} & \min_{\theta} \ \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\theta \in \Delta} \mathsf{Loss} \big(f_{\theta}(\boldsymbol{x}_{n} + \boldsymbol{\delta}), y_{n} \big) \right] \\ & \qquad \qquad \downarrow \approx \\ & \min_{\theta} \ \sup_{\mu \in \mathcal{P}^{2}} \ \underbrace{\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\boldsymbol{\delta} \approx \mu_{\boldsymbol{\gamma}} (\cdot \mid \boldsymbol{x}_{n}, y_{n})} \Big[\mathsf{Loss} \big(f_{\theta}(\boldsymbol{x}_{n} + \boldsymbol{\delta}), y_{n} \big) \Big]}_{L(\theta, \mu)} \end{split}$$

Proposition

For all $\epsilon>0$, there exists $\gamma(x,y)<\max_{\delta\in \Delta} \; \mathrm{Loss}\big(f_{\pmb{\theta}}(x+\delta),y\big) \; \mathrm{s.t.} \; L(\pmb{\theta},\mu_{\gamma})\geq \; \sup_{\alpha\in \Delta} \; L(\pmb{\theta},\mu)-\xi \; \mathrm{for}$

$$\mu_{\gamma}(\boldsymbol{\delta}|\boldsymbol{x}, y) \propto \left[\ell(f_{\theta}(\boldsymbol{x} + \boldsymbol{\delta}), y) - \gamma(\boldsymbol{x}, y)\right]_{+}$$

From optimization to sampling

$$\begin{split} \min_{\theta} \ \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\theta \in \Delta} \mathsf{Loss} \big(f_{\theta}(x_n + \boldsymbol{\delta}), y_n \big) \right] \\ \uparrow &\approx \\ \min_{\theta} \ \sup_{\mu \in \mathcal{P}^2} \ \underbrace{\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\boldsymbol{\delta} \sim \mu_{\theta}(\cdot \| \boldsymbol{x}_n, y_n)} \Big[\mathsf{Los} \big(f_{\theta}(x_n + \boldsymbol{\delta}), y_n \big) \Big]}_{L(\theta, \mu)} \end{split}$$

For any approximation error, $\exists \gamma(x, y)$ such that

$$\mu_{\gamma}(\pmb{\delta}|\pmb{x},y) \propto \left[\mathsf{Loss}ig(f_{\pmb{ heta}}(\pmb{x}+\pmb{\delta}),yig) - \gamma(\pmb{x},y)
ight]$$

From optimization to sampling

Proposition

For any approximation error, $\exists \gamma(x, y)$ such that

$$\frac{\pmb{\mu_{\gamma}}(\pmb{\delta}|\pmb{x},\pmb{y})}{(\pmb{\delta}|\pmb{x},\pmb{y})} \propto \Big[\mathsf{Loss} \Big(f_{\theta}(\pmb{x}+\pmb{\delta}), \pmb{y}\Big) - \gamma(\pmb{x},\pmb{y}) \Big]_{+}$$

From optimization to sampling

Proposition

$$\frac{\mu_{\gamma}(\pmb{\delta}|\pmb{x},y)}{} \propto \left[\mathsf{Loss} \big(f_{\theta}(\pmb{x}+\pmb{\delta}),y \big) - \gamma(\pmb{x},y) \right].$$

From optimization to sampling

For any approximation error, $\exists \; \gamma(\boldsymbol{x},y) \; \text{such that}$

$$\underline{\mu_{\gamma}(\pmb{\delta}|\pmb{x},\pmb{y})} \propto \Big[\mathsf{Loss}\big(f_{\pmb{\theta}}(\pmb{x}+\pmb{\delta}),\pmb{y}\big) - \gamma(\pmb{x},\pmb{y}) \Big] .$$

From optimization to sampling

$$\min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\boldsymbol{\delta} \in \Delta} \mathsf{Loss} (f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}), y_n) \right] \\ \downarrow \approx \\ \lim_{\boldsymbol{\theta}} \sup_{\boldsymbol{\mu} \in \mathcal{P}^2} \ \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\boldsymbol{\delta} \sim \boldsymbol{\mu}_{\boldsymbol{\tau}} (\cdot \mid \boldsymbol{x}_n, y_n)} \left[\mathsf{Loss} (f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}), y_n) \right]$$

For any approximation error, $\exists \; \gamma(\boldsymbol{x},y) \; \text{such that}$

$$\mu_0(\boldsymbol{\delta}|\boldsymbol{x},y) \propto \mathsf{Loss}\big(f_{\boldsymbol{\theta}}(\boldsymbol{x}+\boldsymbol{\delta}),y\big)$$

Constrained learning for robustness

Problem
Learn an image classifier that is robust to input perturbations

$$\max_{\lambda \geq 0} \min_{\pmb{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \Big(f_{\pmb{\theta}}(\pmb{x}_n), y_n \Big) + \lambda \Bigg[\max_{\pmb{\delta} \in \Delta} \mathsf{Loss} \Big(f_{\pmb{\theta}}(\pmb{x}_n + \pmb{\delta}), y_n \Big) \Bigg]$$

- Computing the worst-case perturbations
 - $\text{gradient ascent} \rightarrow \text{non-convex, underparametrized}$

Constrained learning for robustness

Problem
Learn an image classifier that is robust to input perturbations

$$\max_{\lambda \geq 0} \min_{\theta} \ \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \left(f_{\theta}(x_n), y_n \right) + \lambda \left[\underbrace{\sum_{\delta \sim \mu_0 (\cdot \mid x_n, y_n)}^{\mathbb{E}_{\delta \sim \mu_0 (\cdot \mid x_n, y_n)}}}_{\mathsf{Loss} \left(f_{\theta}(x_n + \delta), y_n \right) \right]$$

- Computing the worst-case perturbations
 - gradient ascent \rightarrow non-convex, underparametrized \Rightarrow sampling

Dual Adversarial LEarning

Problem

Learn an image classifier th

0

•

HMC sampling:

SGD

GA

SGD

 $\delta \sim \mu_0(\cdot|\boldsymbol{x}_n, y_n)$

Dual Adversarial LEarning

Problem

Learn an image classifier that is robust to input perturbations

Dual Adversarial LEarning

- 1: **for** n = 1, ..., N:
- $oldsymbol{\delta}_n \sim \mathsf{Random}(\Delta)$
- for $k=1,\ldots,K$: $\pmb{\zeta} \sim \mathsf{Laplace}(0,I)$
- $\boldsymbol{\delta}_n \leftarrow \operatorname*{proj}_{\Delta} \left[\boldsymbol{\delta}_n + \eta \operatorname*{sign} \left[\nabla_{\boldsymbol{\delta}} \log \left(\mathsf{Loss} \big(f_{\boldsymbol{\theta}_t}(\boldsymbol{x}_n + \boldsymbol{\delta}_n), y_n \big) \right) \right] + \sqrt{2\eta T} \boldsymbol{\zeta} \right]$
- $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \eta \nabla_{\boldsymbol{\theta}} \left[\mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \big) + \lambda \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}_n), y_n \big) \right|$

9:
$$\lambda \leftarrow \left[\lambda + \eta \left(\frac{1}{N} \sum_{n=1}^{N} \text{Loss}(f_{\theta}(x_n + \delta_n), y_n) - c\right)\right]_+$$

lobey*, Chamon*, Pappas, Hassani, Ribeiro, NeurlPS'21]

Dual Adversarial LEarning

- 1: **for** n = 1, ..., N:
- $oldsymbol{\delta}_n \sim \mathsf{Random}(\Delta)$

- $\zeta \sim \mathsf{Laplace}(0, I)$
- $\delta_n \leftarrow \operatorname{proj}\left[\delta_n + \eta \operatorname{sign}\left[\nabla_{\boldsymbol{\delta}} \log\left(\operatorname{\mathsf{Loss}}\!\left(f_{\boldsymbol{\theta}_t}(\boldsymbol{x}_n + \delta_n), y_n\right)\right)\right] + \sqrt{2\eta T}\zeta\right]$

$$9: \ \lambda \leftarrow \left[\lambda + \eta \Bigg(\frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss}\Big(f_{\theta}\big(x_n + \delta_n\big), y_n\Big) - c \Bigg)\right]_{+}$$

Dual Adversarial LEarning

- 1: for n = 1....N:

- - $\theta \leftarrow \theta \eta \nabla_{\theta} \left[\mathsf{Loss} \big(f_{\theta}(x_n), y_n \big) + \lambda \mathsf{Loss} \big(f_{\theta}(x_n + \delta_n), y_n \big) \right]$

9:
$$\lambda \leftarrow \left[\lambda + \eta \left(\frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \left(f_{\theta}(\boldsymbol{x}_{n} + \delta_{n}), y_{n}\right) - c\right)\right]$$

Dual Adversarial LEarning

9:
$$\lambda \leftarrow \left[\lambda + \eta \left(\frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \left(f_{\theta}(\boldsymbol{x}_{n} + \boldsymbol{\delta}_{n}), y_{n}\right) - c\right)\right]$$

HMC sampling:

- GΑ

Dual Adversarial LEarning

- 1: for $n=1,\ldots,N$:
- $\pmb{\delta}_n \sim \mathsf{Random}(\Delta)$
- $\zeta \sim \mathsf{Laplace}(0, I)$ $\delta_n \leftarrow \underset{\Delta}{\text{proj}} \left[\delta_n + \eta \operatorname{sign} \left[\nabla_{\delta} \operatorname{log} \left(\operatorname{\mathsf{Loss}} \left(f_{\theta_t}(x_n + \delta_n), y_n \right) \right) \right] + \sqrt{2\eta T} \zeta \right]$
- $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \eta \nabla_{\boldsymbol{\theta}} \left[\mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \big) + \lambda \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}_n), y_n \big) \right]$
- 8: end
- 9: $\lambda \leftarrow \left[\lambda + \eta \left(\frac{1}{N} \sum_{n=1}^{N} \operatorname{Loss} \left(f_{\theta}(\boldsymbol{x}_{n} + \boldsymbol{\delta}_{n}), y_{n}\right) c\right)\right]$

GΑ

Dual Adversarial LEarning

- 1: **for** n = 1, ..., N:
- $\delta_n \sim \mathsf{Random}(\Delta)$

- $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \eta \nabla_{\boldsymbol{\theta}} \left[\mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \big) + \lambda \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}_n), y_n \big) \right]$
- 8: **end**

9:
$$\lambda \leftarrow \left[\lambda + \eta \left(\frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\theta}(x_n + \delta_n), y_n \big) - c \right)\right]$$

GΑ

Gaussian

Patches

SGD

Dual Adversarial LEarning

- 1: **for** n = 1, ..., N:
- $\delta_n \sim \mathsf{Random}(\Delta)$
- for $k = 1, \dots, K$:

5:
$$\delta_n \leftarrow \operatorname{proj}_{\Delta} \left[\delta_n + \eta \operatorname{sign} \left[\nabla_{\delta} \operatorname{log} \left(\operatorname{\mathsf{Loss}} \left(f_{\theta_t}(x_n + \delta_n), y_n \right) \right) \right] + \sqrt{2\eta T \zeta} \right]$$

7:
$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \eta
abla_{oldsymbol{ heta}} \left[\mathsf{Loss}ig(f_{oldsymbol{ heta}}(oldsymbol{x}_n), y_nig) + \lambda \mathsf{Loss}ig(f_{oldsymbol{ heta}}(oldsymbol{x}_n + oldsymbol{\delta}_n), y_nig)
ight]$$

9:
$$\lambda \leftarrow \left[\lambda + \eta \left(\frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \left(f_{\theta}(x_n + \delta_n), y_n\right) - c\right)\right]_+$$

SGD

GA

Invariance

Problem

Learn a classifier that is invariant to transformation $g \in \mathcal{G}$

Invariance

Problem

Learn a classifier that is invariant to transformation $g \in \mathcal{G}$

$$\min_{\theta} \ \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{g \sim \mathbf{m}} \Big[\mathsf{Loss} \big(f_{\theta}(gx_n), y_n \big) \Big]$$

- ShearX(Y), Flip, Rotate, TranslateX(Y), Cutout, Crop
 - AutoContrast, Invert, Equalize, Color, Solarize, Posterize, Contrast, Brightness, Sharpness

e, Chamon, Ribeiro, ICML'23]

Training on a subset of ImageNet-100

•

Invariance

Problem

Learn a classifier that is invariant to transformation $g \in \mathcal{G}$

$$\min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\boldsymbol{g} \sim \mathbf{m}} \bigg[\mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{g} \boldsymbol{x}_n), y_n \big) \bigg]$$

ShearX(Y), Flip, Rotate, TranslateX(Y), Cutout, Crop AutoContrast, Invert, Equalize, Color, Solarize, Posterize, Contrast, Brightness, Sharpness

Invariance

Problem

Learn a classifier that is invariant to transformation $g \in \mathcal{G}$

$$\min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\boldsymbol{g} \in \mathcal{G}} \ \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{g} \boldsymbol{x}_n), y_n \big) \right]$$

- - ShearX(Y), Flip, Rotate, TranslateX(Y), Cutout, Crop
 - AutoContrast, Invert, Equalize, Color, Solarize, Posterize, Contrast, Brightness, Sharpness

Invariance

Problem Learn a classifier that is invariant to transformation $g \in \mathcal{G}$

$$\min_{\theta} \ \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\theta} \frac{\mathbb{E}_{g \sim \mu_{\theta}(\cdot | \boldsymbol{x}_{n}, y_{n})}}{\mathsf{Loss}(f_{\theta}(g\boldsymbol{x}_{n}), y_{n})} \right]$$

- ShearX(Y), Flip, Rotate, TranslateX(Y), Cutout, Crop AutoContrast, Invert, Equalize, Color, Solarize, Posterize, Contrast, Brightness, Sharpness

Invariance

Problem

Learn a classifier that is invariant to transformation $g \in \mathcal{G}$

- ShearX(Y), Flip, Rotate, TranslateX(Y), Cutout, Crop
 - AutoContrast, Invert, Equalize, Color, Solarize, Posterize, Contrast, Brightness, Sharpness

Training on a subset of ImageNet-100

Not all transformations are created equal

Not all transformations are created equal

"Identifying" invariances

		Synthetic Invariance		
Dataset	Dual variable (λ)	Rotation	Translation	Scale
MNIST	Rotation	0.000	2.724	0.012
	Translation	1.218	0.439	0.006
	Scale	2.026	4.029	0.003
F-MNIST	Rotation	0.000	3.301	1.352
	Translation	3.572	0.515	0.441
	Scale	4.144	2.725	0.904

Agenda

0.6 0.4

Probabilistic robustness

Constrained learning for robustness

Problem

Learn an accurate classifier

Constrained learning for robustness

Learn an accurate classifier that is (mostly) robust to input perturbations

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n)$$
subject to
$$\frac{1}{N} \sum_{n=1}^{N} \left[\max_{\|\boldsymbol{\delta}\|_{\infty} \leq \epsilon} \mathsf{Loss}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}), y_n) \right] \leq c$$

"Softer" robustness

$$\min_{\theta} \ \mathbb{E}_{(x,y)} \left[\frac{1}{\tau} \log \left(\mathbb{E}_{\delta \sim \mathfrak{m}} \left[e^{\tau \cdot \mathsf{Loss} \left(f_{\theta}(x + \delta), y \right)} \right] \right) \right]$$

- $\tau \to 0$: classical learning (with
- $\tau \to \infty$: adversarial robustness

$$\min_{\theta} \; \mathbb{E}_{(x,y)} \left[\mathbb{E}_{\pmb{\delta} \sim \mathfrak{m}} \Big[\left| \mathsf{Loss} ig(f_{\pmb{\theta}}(\pmb{x} + \pmb{\delta}), y ig) \right|^{ au} \Big]^{1/ au}
ight]$$

- $\quad \ \ \, \tau=1 \text{: classical learning (with rank)}$
- $\tau \to \infty\text{: adversarial robustness} \; (\text{ess\,sup})$

"Softer" robustness

Softmax or log-sum-exp [Li et al., ICLR'21]

$$\min_{\boldsymbol{\theta}} \ \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y})} \left[\frac{1}{\tau} \log \left(\mathbb{E}_{\boldsymbol{\delta} \sim \mathfrak{m}} \left[e^{\tau \cdot \mathsf{Loss} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x} + \boldsymbol{\delta}), \boldsymbol{y} \right) \right] \right) \right]$$

• L_p norms [Rice et al., NeurlPS'21]

$$\min_{\boldsymbol{\theta}} \; \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})} \bigg[\mathbb{E}_{\boldsymbol{\delta} \sim \mathfrak{m}} \bigg[\; \Big| \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x} + \boldsymbol{\delta}), \boldsymbol{y} \big) \, \Big|^{\tau} \; \bigg]^{1/\tau} \bigg]$$

- $oldsymbol{2}$ Computationally challenging (especially as $au o \infty$, i.e., stronger robustness)
- No guaranteed advantages (lower sample complexity? improved trade-offs?)

Towards probabilistic robustness

$$\begin{aligned} & \min_{\pmb{\theta}} & & \frac{1}{N} \sum_{n=1}^{N} \left[t(x_n, y_n) \right] \\ & \text{subject to} & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta_0}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta_1}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta_{\theta}}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta_{\theta}}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta_{\theta}}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta_{\theta}}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta_{\theta}}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta_{\theta}}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta_{\theta}}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta_{\theta}}), y_n \right) & \leq t(x_n, y_n) \end{aligned}$$

Towards probabilistic robustness

$$\begin{aligned} & \min_{\pmb{\theta}} & & \frac{1}{N} \sum_{n=1}^{N} \left[t(x_n, y_n) \right] \\ & \text{subject to} & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta}_0), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta}_1), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta}_{\sqrt{2}}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta}_{x}), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta}_x), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta}_x), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta}_x), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta}_x), y_n \right) & \leq t(x_n, y_n) \\ & & & \text{Loss} \left(f_{\pmb{\theta}}(x_n + \pmb{\delta}_x), y_n \right) & \leq t(x_n, y_n) \end{aligned}$$

Probabilistic robustness

Probabilistic robustness

$$\min_{m{ heta}} \ \mathbb{E}_{(x,y)} igg[m{ au ext{-esssup}}_{m{m{\delta}} \in \Delta} \mathsf{Loss}ig(f_{m{ heta}}(m{x} + m{m{\delta}}), yig) igg]$$

- $\tau = 1/2$: classical learning (for symmetric m)
- $\bullet \quad \tau = 0 \text{: adversarial robustness } (\text{ess sup})$

Probabilistic robustness

Probabilistic robustness and Risk

· Conditional value at risk:

$$\begin{split} \text{CVaR}_{\rho}(f) &= \mathbb{E}_{z} \left[f(z) \mid f(z) \geq F_{z}^{-1}(\rho) \right] \\ &= \inf_{\alpha \in \mathbb{R}} \, \alpha + \frac{\mathbb{E}_{z} \left[[f(z) - \alpha]_{+} \right]}{1 - \rho} \end{split}$$

- $\text{CVaR}_0(f) = \mathbb{E}_z[f(z)]$
- CVaR₁(f) = ess sup_z f(z)

Proposition

CVaR is the tightest *convex* upper bound of au-esssup, i.e., $\sup_{z} f(z) \le \text{CVaR}_{1-\tau}(f)$ with equality when $\rho = 0$ or $\rho = 1$.

Probabilistically robust learning

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \left[\mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}_T), y_n \big) - \alpha \right]$

 $\mathsf{SGD}\,(\theta)$

Probabilistic robustness

- $\tau = 1/2$: classical learning (for sym
- $\quad = \quad \tau = 0 \text{: adversarial robustness } (\text{ess sup})$

Better performance trade-off

Probabilistically robust learning

Probabilistically robust learning

Robey, Chamon, Pappas, Hassani, ICML'22 (spotlight)]

Summary

- Semi-infinite constrained learning is the a tool to enforce worst-case requirements
- · Semi-infinite constrained learning...
- · ...but possible. How?

Summary

- Semi-infinite constrained learning is the a tool to enforce worst-case requirements
 e.g., robustness [Robey et al., NeurIPS21], invariance [Hourie et al., ICML23], smoothness [Cervino et al., ICML23].
- · Semi-infinite constrained learning...
- · ...but possible. How?

Summary

- Semi-infinite constrained learning is the a tool to enforce worst-case requirements
 e.g., robustness [Pobey et al., NeuriPS21], invariance [Hourie et al., IOML23], smoothness [Cerviño et al., IOML23], ...
- Semi-infinite constrained learning...

 Learning problem with an infinite number of constraints
- · ...but possible. How?

Summary

- Semi-infinite constrained learning is the a tool to enforce worst-case requirements
 e.g., robustness (Pobey et al., NeurIPS21), invariance (Hourie et al., ICML23), smoothness (Cerviño et al., ICML23).
- Semi-infinite constrained learning...

 Learning problem with an infinite number of constraints
 - ...but possible. How?
 Using a hybrid sampling—optimization algorithm or, in the case of probabilistic robustness, a tight convex relaxation (CVaR) (Robey et al., ICML22)

Agenda

- I. Constrained supervised learning
 - Constrained learning theory
 - Constrained learning algorithms
 - Resilient constrained learning

Break (10 min)

- II. Constrained reinforcement learning
 - Constrained RL duality
 - Constrained RL algorithms

Q&A and discussions

