ECO862 - International Trade Lecture 8b: Trade policy uncertainty and inventory dynamics

Taking Stock of Trade Policy Uncdertainty

Evidence from China's WTO Accession

George Alessandria, Shafaat Yar Khan and Armen Khederlarian

Journal of International Economics 2024

US-China Trade Policy Uncertainty Pre-2001

- ► Same U.S.-China uncertainty, but take advantage of the within-year dynamics
 - ▶ Before 1980: Non Normal Trade Relation (NNTR, column 2) rates to non-market countries
 - ▶ 1980: U.S. grants China normal trade relations (NTR/MFN), big tariff cut
 - ▶ 1980-1989: NTR needs to be renewed by President
 - ▶ 1990-2001: NTR needs to also be renewed by Congress
 - Uncertainty between July and September.
 - ▶ 2001: China joins WTO, gains permanent NTR status
 - ▶ Chinese imports to U.S. grow after 2001, even though tariffs **do not** change
- ▶ How do imports change in the months before, during after?
 - ▶ Consider a model with storable goods and costs of ordering
 - Firms hold inventories to minimize ordering costs
 - ► Uncertainty can lead to stockpiling of goods

Empirical Strategy

- ▶ Uncertainty during 1990s was within-year by nature
- ➤ Zoom in to see within year trade flows
- ▶ More DiD...

$$\log(v_{m-2:m}^{ijzt}/v_{m-7:m-5}^{ijzt}) = \sum_{m'} \beta_{m'}^{TPU} I_{i=US,j=CHN} I_{m=m'} X_{zt}$$

$$+ \sum_{m'} \beta_{m'} I_{m=m'} X_{zt}$$

$$+ \gamma_{itm} + \gamma_{itm} + \gamma_{sm} + \epsilon_{iiztm}$$

- ▶ The growth rate looks at 3-month groups to smooth noise
- $ightharpoonup eta_{m'}^{TPU}$ measures the response to uncertainty (X_{zt} is NTR gap)
- ▶ Fixed effects to control for product, importer, and exporter seasonality

Seasonal in NTR gap

The Seasonal and Storability

▶ This should matter more for goods that are easier to store

Magnitude: Certain vs Uncertain Changes

- ▶ Median uncertain tariff increase, 31% relative to monthly average
 - ▶ Before uncertainty resolution, imports rise 9.6% (anticipatory elasticity = 0.31)
 - ► After resolution imports fall 9.6% (resolution elasticity = -0.31)
- ▶ Median certain tariff cut of 3% from NAFTA's phase-outs (Khan and Khederlarian, 2021)
 - ► Before resolution, imports fall 18% (anticipatory elasticity = 6)
 - ► After resolution imports rise 22.5% (resolution elasticity = 7.5)
- ▶ Back of the envelope:
 - ▶ uncertain case (0.31) has a probability multiplier in it
 - ▶ separate the multiplier by dividing uncertain w/ certain anticipatory elasticity
 - \rightarrow $\pi \approx 0.31/6 \approx 5\%$

Quantification

- Need a framework to translate anticipation to expectations
- Remember the inventory model?
 - ▶ Storable good
 - ▶ Fixed cost of ordering
 - ▶ Firm faces a potential increase in tariffs, with varying probability
- The higher the probability of losing NTR, the more incentive to stock up
- Find the probability that gets the change in imports in the model closest to the data

Model: Trade Policy Shocks

Importer decides between Importing or not importing

$$V_t(s,\nu,\tau) = \max[V_t^a(s,\nu,\tau),V_t^n(s,\nu;\tau)]$$
 Order:
$$V_t^a(s,\nu,\tau) = \max_{p,i>0} q(p,s,\nu)p - \tau i - f + \beta E V_{t'}(s',\nu',\tau')$$
 No order:
$$V_t^n(s,\nu,\tau) = \max_{p>0} q(p,s,\nu)p + \beta E V_{t'}(s',\nu',\tau')$$
 subject to
$$q(p,s,\nu) = \min(e^{\nu}p^{-\sigma},s)$$

$$s' = \begin{cases} (1-\delta)[s-q(p,s,\nu)+m] & \text{if import} \\ (1-\delta)[s-q(p,s,\nu)] & \text{o/w} \end{cases}$$

▶ Now: $\tau \in \{1, 1 + X_g\}$

With a transition matrix Π^{τ} for τ

Model: Trade Policy Uncertainty Shock

- ▶ All firms start with $\tau = 1$
- ▶ Make transition matrix time specific, Π_t^{τ}
- ▶ Firms anticipate a change in τ in period $m_{res} + 1$ when the uncertainty resolves

$$\Pi_t^{ au} = \left\{ egin{array}{ll} I_{|T|} & ext{if } t
eq m_{ ext{res}} \ & ilde{\Pi}^{ au} & ext{if } t = m_{ ext{res}} \end{array}
ight. , \qquad ilde{\Pi}^{ au} = \left[egin{array}{cc} (1-\pi) & \pi \ 0 & 1 \end{array}
ight]$$

Model: Trade Policy Uncertainty Shock

Computation: Modeling Uncertainty

- ▶ We discussed computation when parameter path was deterministic
- ▶ Uncertainty is a real concern with any policy change or other shock
- ▶ As we study the economics of it, let's see how to solve with it
- ▶ In the end it is about adding a few state variables: $V(s, \nu)$ is now $V(s, \nu, \tau)$
- lacktriangle We had a transition matrix for u before, now need one for au

Computation: Tariff Process

- ▶ For simplicity assume tariff can take 3 values i.e. $\tau \in \{\tau^1, \tau^2, \tau^3\} = \mathcal{T}$
- ▶ Let Π^{τ} be the transition matrix for τ
- ▶ Let $F_{\tau}(\tau)$ be the distribution over tariff level
- lacktriangle Model uncertainty shock using a non-stationary stochastic process for au
 - lacktriangleright transition matrix becomes non-stationary: Π_t^{τ}

Computation: Modelling Uncertainty shock

- ▶ All firms start with $\tau = \tau^1$ i.e. $F_{\tau}(\tau^1) = 1$ at t = 0
- Firms anticipate a change in τ in period $t_0 + 1$
- ▶ Make transition matrix time specific, Π_t^{τ} (hidden state variable)
- ▶ Uncertainty resolution period is $t_0 + 1$

$$\Pi_t^{\tau} = \begin{cases} I_{|\mathcal{T}|} & \text{if } t \neq t_0 \\ \tilde{\Pi}^{\tau} & \text{if } t = t_0 \end{cases}$$

Where $I_{|\mathcal{T}|}$ is an identity matrix of size $|\mathcal{T}|$

Computation: Solving the model

- ► Assume convergence in finite periods
- ▶ Solve for policy functions backwards using Π_t^{τ} for expectation over τ_{t+1}
- ▶ In pd t_0 , use $\tilde{\Pi}^{\tau}$ to calculate expected value for pd $t_0 + 1$
- ► After obtaining the policy functions, move forward using initial distribution and transition policy functions
- ▶ Can choose multiple realizations when going forward

Path of Imports by probability - 10pp NNTR gap

Decisions Rule - Ordering Cutoffs

Estimating Likelihood of MFN Reversal

 \blacktriangleright Estimate probability of MFN non-renewal: π

▶ Match stockpiling in data: average and heterogeneous in storability

▶ Characterized 1,812 products by,

1. Tariff risk (X_g) data

2. Fixed ordering cost (f_g) steady state lumpiness

3. Holding cost (δ_g) storability & stockpiling around TPU

Estimation Technique

Specify:
$$1 + \delta_g = \alpha_0(f_g)^{\alpha_1}$$

Proceed in 4 steps:

- **1.** Given π , α_0 , α_1 : set f_g and $\delta(f_g)$ to match ordering frequency (inverse HH index)
- **2.** Randomly sample 300 products, simulate transition for X_g increase w/ prob π
- 3. Run the average and heterogeneous effects regressions, as done in the data
- **4.** Obtain π , α_0 , α_1 that matches data regression coefficients

Estimation Technique

3 Pool estimations together and estimate:

$$\ln(\tilde{v}_{m-2:m}^{g}/\tilde{v}_{m-5:m-7}^{g}) = \sum_{m'} \beta_{1,m'}^{sim} \mathbb{1}_{\{m=m'\}} \tilde{X}_{g} + \epsilon_{g,m}$$
(3.1)

$$\ln(\tilde{v}_{m-2:m}^{g}/\tilde{v}_{m-5:m-7}^{g}) = \sum_{m'} \beta_{2,m'}^{sim} \mathbb{1}_{\{m=m'\}} \tilde{X}_{g}$$

$$+ \sum_{m'} \beta_{m'}^{HH,sim} \mathbb{1}_{\{m=m'\}} \tilde{X}_{g} (1/\widetilde{HH}_{g}) + \epsilon_{g,m}$$
(3.2)

4 Estimate π , α_0 , α_1 to match:

$$max_m\{\hat{\beta}_{1,m'}^{sim}\} - min_m\{\hat{\beta}_{1,m'}^{sim}\} = 0.62$$
 (4.1)

$$max_m\{\hat{\beta}_{2,m'}^{sim}\} - min_m\{\hat{\beta}_{2,m'}^{sim}\} = 1.29$$
 (4.2)

$$max_{m}\{\hat{\beta}_{1,m'}^{HH,sim}\} - min_{m}\{\hat{\beta}_{1,m'}^{HH,sim}\} = -0.26$$
 (4.3)

Likelihood of MFN Reversal

- ▶ Average model-implied expected likelihood of reversal: $\hat{\pi} = 3.2\%$
- ▶ Negative relationship between ordering and holding costs: $(\alpha_0, \alpha_1) = (1, -0.02)$
- ▶ Redo previous exercise year-by-year to construct annual probability
 - ⇒ Between 1990-2001: $\hat{\pi} \in [1\%, 7\%]$
- ► Compare annual probability to news-based measures of non-renewal

Annual Probabilities of Revoked Access to MFN Rates

Annual probability of maintaining NTR

Role of Uncertainty vs. First Moment Shock

- ▶ Not clear if driven by first moment or pure uncertainty around it
- Consider effect on ordering policy

Role of Uncertainty vs. First Moment Shock

Reconsider uncertainty vs. expected tariff Δ : separate 1st & 2nd moment in model.

- **1.** Generate simulations facing tariff hike of $\hat{\pi}X_g$ with probability $\pi = 1$.
- 2. Estimate:

$$\ln(\tilde{v}_{m-2:m}^g/\tilde{v}_{m-5:m-7}^g) = \sum_{m'} \beta_{3,m'}^{sim} \mathbb{1}_{\{m=m'\}} \tilde{X}_g + \epsilon_{g,m}$$

- \Rightarrow Anticipatory response under certainty: $\max_{m} \{\hat{\beta}_{3,m}^{sim}\} \min_{m} \{\hat{\beta}_{3,m}^{sim}\} = 0.79$
- ▶ Uncertainty dampens anticipation "wait and see".
- ► Expected trade costs explain around 3/4 of trade response (0.62/0.79).

What probability is identified

Changing Probability: 15% to 6%

Interesting stuff!

- ▶ We learn a lot from these unique tariff uncertainty episodes
- Are there more examples that can be used?
- ▶ Are their examples like this in other kinds of policy?
 - ▶ Debt ceiling negotiations?
 - Sunset clauses in antidumping duties?
- ▶ With this episode there is always a caveat...
 - ▶ NTR gap is correlated with the original liberalization in 1980
 - ► Explore this in the next class using model of long-run trade dynamics
- ▶ Another approach: Feng et al. (2017) study the changes in the number of Chinese exporters and exiters over time. They find exporters and exiters grow by more in the high gap industries.
 - Develop a static Melitz model with congestion on export fixed costs. The model features no SS churning

References I

Feng, Ling, Zhiyuan Li, and Deborah L. Swenson (2017). "Trade policy uncertainty and exports: Evidence from China's WTO accession." *Journal of International Economics* 106, pp. 20–36.

Khan, Shafaat Y. and Armen Khederlarian (2021). "How Does Trade Respond to Anticipated Tariff Changes: Evidence from NAFTA."