

Sentence-BERT

Idriss Mortadi, Elisa Faure, Marianne Brugidou, Saad Taharraoui, Abdellah Oumida

OUTLINES

- 1. INTRODUCTON
- 2. S-BERT ARCHITECTURE & TRAINING
- 3. EVALUATION
- 4. EXPERIMENTAL RESULTS
- 5. KEY INNOVATION & BENEFITS
- 6. CONCLUSION

How to search for documents?

How to search for documents?

- Keywords?
- TF-IDF embeddings ?
- Word2Vec? Doc2Vec?
- ...

The Problem: Traditional Retrieval Challenges

- Inefficient Search: Traditional methods struggle with understanding the semantic meaning of queries and documents.
- Limited Context: Keyword-based searches often miss the nuanced context and meaning.
- High Computational Cost: Processing each query-document pair is resource-intensive.

What is Retrieval?

- Process of finding and ranking relevant information/documents based on a user's query.
- Goal: Return the most relevant results to satisfy the user's information need.

How it should work

List of documents that answer the query

Document 2 [0.13, 0.02, -0.90, ...]

Output top k most

similar documents

Limitation of BERT

Example of limitation

- Finding the most similar pair in 10,000 sentences:
- BERT: ~50 million computations (65 hours)

Why This Matters:

- Many real-world applications need fast sentence similarity:
 - Semantic search
 - Clustering
 - Information retrieval
 - Smart duplicate detection

Problem Statement

- Objective: Effectively retrieve semantically similar sentences from a large corpus.
- <u>Challenge</u>: Traditional BERT models are not optimized for sentence-level retrieval tasks. BERT produces <u>contextualized word</u> <u>embeddings</u>, which are not directly comparable for <u>sentence-level semantic similarity</u>.
- <u>Issue</u>: Comparing sentence semantics using BERT embeddings is inefficient and ineffective for tasks like clustering, semantic search, and paraphrase identification.

Goal

- Modify BERT to produce semantically meaningful sentence embeddings.
- Be able to fine-tune the model on sentence-level tasks.
- Enable efficient comparison of sentence embeddings using cosine similarity.

How S-BERT Proposes to Enhance Retrieval:

Sentence Embeddings

• Captures the semantic meaning of entire sentences, improving search accuracy.

Semantic Similarity

• Measures how similar sentences are, aiding in tasks like Textual Semantic Similarity (STS).

Information Extraction

• Facilitates semantic search, making it easier to find relevant information.

Use of optimized index structures*

- 10,000 sentence embeddings takes ~5 seconds, with S-BERT and computing cosine-similarity ~0.01 seconds.
 - Finding the most similar question can be reduced from 50 hours to a few milliseconds

ARCHITECTURE & TRAINING

S-BERT

ARCHITECTURE

Solution:

- SBERT: Sentence-BERT with siamese network structure.
- Fine-tuned on tasks like Natural Language Inference (NLI) and paraphrase identification.
- Produces sentence embeddings that capture semantic meaning and are easily comparable.

How it Works

- Let S1 and S2 be two sentences.
- SBERT produces sentence embeddings **u** and **v** for **S1** and **S2**, respectively.
- The similarity between **S1** and **S2** is measured for example using cosine similarity:

$$\left(ext{similarity}(S_1, S_2) = rac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}
ight)$$

- Where:
 - **u** · **v** is the dot product of the embeddings.
 - ||u|| and ||v|| are the magnitudes (norms) of the embeddings.

ARCHITECTURE

Two identical BERT networks with shared weights

Pooling strategies (of individual token embeddings) to get fixed-size embeddings per sentence:

- MEAN pooling (default)
- MAX pooling
- CLS token

Each network processes one sentence independently

Sentence A Sentence B Shared Weights BERT Pooling Pooling

Embedding u

Embedding v

ARCHITECTURE

Siamese?

- Siamese Network Structure:
 - A siamese network consists of two identical sub-networks that share weights.
- In SBERT, two identical BERT networks process two sentences simultaneously.
 - The shared weights ensure that the embeddings are in the same semantic space, making them directly comparable.

TRAINING DETAILS

THREE TRAINING OBJECTIVES

Classification (NLI datasets)

Figure 1: SBERT architecture with classification objective function, e.g., for fine-tuning on SNLI dataset. The two BERT networks have tied weights (siamese network structure).

Regression (STS data)

Figure 2: SBERT architecture at inference, for example, to compute similarity scores. This architecture is also used with the regression objective function.

THREE TRAINING OBJECTIVES

Classification (NLI datasets)

- Input: Sentence pairs (A,B)
- Output: entailment/contradiction/neutral
- Combines: embeddings u,v and |u-v|

Regression (STS data)

- Input: Sentence pairs
- Output: Similarity score
- Uses cosine similarity

Triplet (Online mining)

- Input: (anchor, positive, negative)
- Brings similar sentences closer
- Pushes different sentences apart

$$o = \operatorname{softmax}(W_t(u, v, |u - v|))$$

- u and v being the embeddings of sentences
 A and B respectively.
- o classification output vector

$$ext{similarity}(S_1,S_2) = rac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}$$

$$\mathcal{L}_{ ext{triplet}} = \max(0, \|\mathbf{u}_A - \mathbf{u}_P\|^2 - \|\mathbf{u}_A - \mathbf{u}_N\|^2 + m)$$

 \mathbf{u}_A anchor sentence

 \mathbf{u}_{P} positive sentence

 $\overline{\mathbf{u}_N}$ negative sentence

 $m{m}$ margin hyperparameter

EVALUATION

EVALUATION

Semantic Textual Similarity (STS)

- Unsupervised STS (STS tasks 2012-2016, STSb, SICK) => Regression
 Objective
- Supervised STS (STSb) => Cosine Similarity
- Argument Facet Similarity => Regression Objective
- Wikipedia Section Distinction => Triplet Objective

Quality of embeddings for similarity (clustering, search...)

SentEval

• Use output embeddings to train a logistic regression model on different classification tasks (sentiment prediction, subjectivity prediction, ...)

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS: STS

Model	STS12	STS13	STS14	STS15	STS16	STSb	SICK-R	Avg.
Avg. GloVe embeddings	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
Avg. BERT embeddings	38.78	57.98	57.98	63.15	61.06	46.35	58.40	54.81
BERT CLS-vector	20.16	30.01	20.09	36.88	38.08	16.50	42.63	29.19
InferSent - Glove	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.01
Universal Sentence Encoder	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
SBERT-NLI-base	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
SBERT-NLI-large	72.27	78.46	74.90	80.99	76.25	79.23	73.75	76.55
SRoBERTa-NLI-base	71.54	72.49	70.80	78.74	73.69	77.77	74.46	74.21
SRoBERTa-NLI-large	74.53	77.00	73.18	81.85	76.82	79.10	74.29	76.68

Table 1: Spearman rank correlation ρ between the cosine similarity of sentence representations and the gold labels for various Textual Similarity (STS) tasks. Performance is reported by convention as $\rho \times 100$. STS12-STS16: SemEval 2012-2016, STSb: STSbenchmark, SICK-R: SICK relatedness dataset.

EXPERIMENTAL RESULTS: SentEval

Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	Avg.
Avg. GloVe embeddings	77.25	78.30	91.17	87.85	80.18	83.0	72.87	81.52
Avg. fast-text embeddings	77.96	79.23	91.68	87.81	82.15	83.6	74.49	82.42
Avg. BERT embeddings	78.66	86.25	94.37	88.66	84.40	92.8	69.45	84.94
BERT CLS-vector	78.68	84.85	94.21	88.23	84.13	91.4	71.13	84.66
InferSent - GloVe	81.57	86.54	92.50	90.38	84.18	88.2	75.77	85.59
Universal Sentence Encoder	80.09	85.19	93.98	86.70	86.38	93.2	70.14	85.10
SBERT-NLI-base	83.64	89.43	94.39	89.86	88.96	89.6	76.00	87.41
SBERT-NLI-large	84.88	90.07	94.52	90.33	90.66	87.4	75.94	87.69

Table 5: Evaluation of SBERT sentence embeddings using the SentEval toolkit. SentEval evaluates sentence embeddings on different sentence classification tasks by training a logistic regression classifier using the sentence embeddings as features. Scores are based on a 10-fold cross-validation.

KEY INNOVATIONS

KEY INNOVATIONS & BENEFITS

Smart batching strategy

Grouping sentences of similar lengths together in the same batch to minimize padding effects and reduce computational overhead

Embedding concatenation

Usefulness of concatenating [u, v, |u - v|] (ablation study)

Different training objectives

Adapts to different kinds of tasks

Powerful fine-tuning performance

S-BERT can be tuned in less than 20 minutes, while yielding better results than comparable sentence embedding methods.

CONCLUSION

Conclusion: Sentence-BERT and Beyond

A Milestone in NLP

- Revolutionized how we encode sentences.
- Enabled scalable real-world applications.

Limitations

- Restricted to 512-token sequences.
- Poor performance for large-scale tasks (e.g., code, legal text).
- Requires fine-tuning for domain-specific applications.

Conclusion: Sentence-BERT and Beyond

Looking Ahead with ModernBERT

- Addresses key limitations of traditional models with advanced features:
 - 8192-token support for longer contexts.
 - Optimized speed and memory with innovations like Flash Attention, Rotary Positional Embeddings and GeGLU layers.
 - Modern training data scales (2 trillion tokens) and mixtures (including code ande math data)

THANKS FOR YOUR ATTENTION

