Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

Introduzione al big data computing ed una sua applicazione

Tesi di laurea triennale

Relatore	
Prof.Tullio Vardanega	

 ${\it Laure ando}$ Stefano Panozzo

Anno Accademico 2017-2018

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage del laureando Stefano Panozzo presso l'azienda IT Euro Consulting di Padova. Lo stage è stato svolto alla conclusione del percorso di studi della Laurea Triennale ed è durato in totale 320 ore. Gli obiettivi da raggiungere erano molteplici.

La prima richiesta dell'azienda era analizzare la struttura del cluster in cui risiedevano i dati da utilizzare in seguito. Successivamente l'azienda richiedeva l'analisi e la trasformazione del dataset di interesse per estrarre ed ottenere nuove informazioni utili per creare un modello che prevedesse il target desiderato. Infine, la progettazione e lo sviluppo di una web app per la rappresentazione dei risultati ottenuti in precedenza. I primi due capitoli del presente documento hanno lo scopo di presentare il contesto aziendale in cui è stato sostenuto lo stage e di spiegare come il progetto di stage si renda utile all'interno della strategia aziendale. Il terzo capitolo documenta lo svolgimento dello stage descrivendo le attività che sono state portate a termine, i punti salienti del progetto stesso e le principali scelte progettuali. Il quarto ed ultimo capitolo presenta infine una valutazione dello svolgimento dello stage rispetto agli obiettivi aziendali e alle conoscenze acquisite dallo studente.

Indice

1	Il co	ontesto aziendale	1
	1.1	Il profilo aziendale	1
	1.2	Tecnologie utilizzate	2
		1.2.1 Sviluppo software	3
		1.2.2 Big Data	3
	1.3	Processi aziendali	4
		1.3.1 Metodologia di sviluppo	4
		1.3.2 Controllo di versione	5
		1.3.3 Ambiente di sviluppo	7
	1.4	Propensione dell'azienda per l'innovazione	7
	1.1	Tropensione den azienda per rinnovazione	•
2	Los	stage nella strategia aziendale	9
	2.1	Aspettative personali	9
	2.2	Aspettative aziendali	10
	2.3	Presentazione del progetto	12
		2.3.1 Analisi ed elaborazione del dataset e dei dati di interesse	12
		2.3.2 Realizzazione di una web app per la presentazione dei risultati	14
	2.4	Vincoli	14
		2.4.1 Vincoli metodologici	14
		2.4.2 Vincoli temporali	14
		2.4.3 Vincoli tecnologici	15
	2.5	Aspettative personali sul progetto di stage	16
3	Res	oconto dello stage	17
	3.1	Descrizione del progetto	17
		3.1.1 Il problema	17
	3.2	Studio di Hadoop e dei suoi tools	18
	J	3.2.1 Apache Hadoop	18
		3.2.2 Apache Hive, Apache Spark e Cloudera Impala	22
	3.3	Analisi del dataset di interesse	22
	3.4	Progettazione e sviluppo della web app	22
	9.4	1 rogerrazione e synuppo dena web app	22
\mathbf{G}	lossa	rio	23

Elenco delle figure

1.1	DevOps lifecycle (Fonte: https://goo.gl/rh31h6)	2	
1.2	Esempio di tool Hadoop (Fonte: Cloudera - Data Analyst Training) .	4	
1.3	Framework to build an MVP: Minimum Viable Product (Fonte: https://goo.	gl/s8LmEH)	5
1.4	Funzionamento ed operazioni in Git (Fonte: https://goo.gl/m1PVZy)	6	
1.5	Attività dell'azienda in ambito big data (Fonte: https://goo.gl/tyLXjo)	7	
2.1	RESTful Web Service (Fonte: https://goo.gl/zvrBJz)	12	
2.2	Semplice rappresentazione di un cluster Hadoop (Fonte: https://goo.gl/DgY	J4J) 13	
2.3	Interfaccia di Cloudera Manager	13	
2.4	Diagramma di Gantt dello stage	15	
3.1	Illustrazione del problema proposto (Fonte: https://goo.gl/AW22at) .	18	
3.2	Attori principali del sistema Hadoop (Fonte: Cloudera - Developer		
	Training for Spark and Hadoop)	19	
3.3	Divisione di un file in blocchi su HDFS (Fonte: Cloudera - Administrator		
	Training for Apache Hadoop)	19	
3.4	Caricamento dei blocchi nei nodi (Fonte: Cloudera - Administrator		
	Training for Apache Hadoop)	20	
3.5	Rappresentazione dei nodi in Hadoop (Fonte: Cloudera - Administrator		
	Training for Apache Hadoop)	20	
3.6	Esempio di scrittura di un file in HDFS (Fonte: Cloudera - Administrator		
	Training for Apache Hadoop)	21	
3.7	Esempio di scrittura di un file in HDFS (Fonte: Cloudera - Administrator		
	Training for Apache Hadoop)	21	

Elenco delle tabelle

2.1	Objettivi dello stage		1

Capitolo 1

Il contesto aziendale

1.1 Il profilo aziendale

IT Euro Consulting¹ è un'azienda di medie dimensioni con sede legale a Padova, nata nel 2007 e facente parte del gruppo SCAI, presente su tutto il territorio italiano. Dalla sua nascita si è sempre occupata prevalentemente di consulenza, System Integration ed Application Management, in ambito ICT, operando in tutti i principali settori di mercato: bancario ed assicurativo, industria, pubblica amministrazione e servizi. Nel corso degli anni l'azienda ha consolidato le proprie conoscenze, offrendo svariati servizi, soprattutto nei seguenti ambiti:

- * Big Data: supporto alle aziende nel loro processo di crescita e cambiamento, tramite moderne soluzioni di Business Intelligence e la possibilità di prevedere scenari ed eventi futuri e prendere le più opportune decisioni operative o di business grazie all'analisi della gran mole di dati che ogni giorno vengono creati. Vengono quindi offerti servizi di big data engineer, big data scientist, big data architect e big data administrator;
- * Internet of Things: soluzioni end-to-end, basate su tecnologie leader di mercato che consentono di indirizzare in modo efficace la realizzazione di sistemi IoT accelerando la realizzazione di componenti web e mobile per la raccolta, la visualizzazione e l'analisi dei dati;
- * Reference Architecture: intesa come best practice e struttura di base per un insieme di domini applicativi all'interno di un'organizzazione, la quale agevola il continuo allineamento dei processi e delle strategie con le giuste soluzioni tecnologiche. Vengono quindi offerti servizi di assessment, design e consulenza;
- * DevOps: automazione delle attività manuali nelle diverse fasi del Software Development Lifecycle. Il modello DevOps non si concentra esclusivamente sull'introduzione di nuovi tool, ma è inteso come una combinazione di cultura e processi unita agli strumenti di automazione. Vengono quindi offerti servizi di assessment e consulenza;

¹https://www.itecons.it.

Figura 1.1: DevOps lifecycle (Fonte: https://goo.gl/rh31h6)

- * System Integration: servizi di consulenza o interventi progettuali per aiutare le aziende a gestire al meglio le proprie strutture tecnologiche complesse e soluzioni applicative per semplificare la coesione fra i vari sottosistemi che compongono la struttura;
- * Application Management: servizi di manutenzione correttiva, adattativa ed evolutiva di soluzioni applicative durante il loro intero ciclo di vita;
- * Customer Relationship Management: con l'obiettivo di ottenere una visione completa per perseguire uno scenario di Single Customer View, abilitante al dialogo *one-to-one* tra l'organizzazione ed il proprio cliente indipendentemente dalle canalità attraverso le quali avviene l'interazione;
- * System & Data Administration: servizio consultivo svolto avvalendosi di un insieme di strategie, processi e regole che consentono di gestire i sistemi e trattare i dati fondamentali per lo sviluppo aziendale. Vengono quindi offerti servizi di database administration, database security, data governance, data analysis e scheduling management.

I clienti principali di IT Euro Consulting sono aziende nazionali ed internazionali che lavorano nei seguenti settori:

- * Banking
- * Insurance
- * Telecommunications
- * Media & Technology
- * Public Administration
- st Utilities & Energy
- * Manufacturing

1.2 Tecnologie utilizzate

Le tecnologie utilizzate dall'azienda per la realizzazione dei propri prodotti si possono raggruppare in due macro-sezioni, ovvero riguardanti lo sviluppo software e le attività inerenti ai big data. Per quanto concerne la prima, si può suddividere ulteriormente in due aree: back-end e front-end.

1.2.1Sviluppo software

Back-end: buona parte del back-end dei prodotti dell'azienda è scritta in linguaggio Java, in particolare utilizzando le specifiche fornite dalla versione Enterprise Edition². Questa scelta è dovuta al grande supporto offerto da questo linguaggio in fatto di controllo degli accessi e sicurezza di applicativi delicati come quelli in ambito bancario e assicurativo:

Front-end: per quanto riguarda il front-end, è utilizzato prevalentemente il framework TypeScript Angular³, in quanto offre una grande elasticità d'impiego e buone prestazioni.

Big Data 1.2.2

Hadoop⁴: framework utilizzato per la gestione del cluster e supporta applicazioni distribuite con elevato accesso ai dati, strutturati tramite il filesystem chiamato HDFS. Permette alle applicazioni di lavorare con migliaia di nodi e petabyte di dati;

Hive⁵: utilizzato per effettuare le query e l'analisi preliminare dei dati in dataset di grandi dimensioni;

Impala⁶: simile ad Hive, ma fornisce prestazioni leggermente migliori a discapito di una minor affidabilità e peggior gestione degli errori;

Spark⁷: framework per il calcolo distribuito di dati strutturati in un cluster. Supporta applicazioni scritte in molteplici linguaggi, quelli utilizzati in azienda sono principalmente Scala e Python;

 ${f R}^8$: linguaggio di programmazione e ambiente di sviluppo specifico per l'analisi statistica dei dati, utilizzato per la stima di modelli predittivi partendo dai dati ricavati utilizzando i precedenti strumenti;

Python⁹: grazie alla sua elasticità ed ai suoi svariati utilizzi, Python è utilizzato anche per scopi analoghi al precedente strumento. Essendo la sintassi di questo linguaggio molto semplice, è ultimamente preferito a R.

²https://www.oracle.com/technetwork/java/javaee.

³https://angular.io/.
⁴https://hadoop.apache.org/.

⁵https://hive.apache.org/.

⁶https://impala.apache.org/.

⁷https://spark.apache.org/.

⁸https://www.r-project.org/.

⁹https://www.python.org/.

Figura 1.2: Esempio di tool Hadoop (Fonte: Cloudera - Data Analyst Training)

1.3 Processi aziendali

L'azienda svolge il suo operato in base alla tipologia di lavoro da effettuare. Oltre ad eseguire progetti per un possibile cliente, sono attivi progetti per lo sviluppo di nuovo prodotto, dopo aver effettuato le ricerche di mercato d'interesse, da consegnare poi al reparto marketing per trovare compratori interessati; spesso, inoltre, vengono attivati dei progetti in seguito all'interesse relativo ad alcune gare d'appalto, principalmente per il settore privato ma in passato anche per quello pubblico.

1.3.1 Metodologia di sviluppo

Sviluppo su commissione

Per quanto riguarda i progetti relativi allo sviluppo di un nuovo prodotto a seguito di una richiesta da parte del cliente, sotto la supervisione di un *project manager* per coordinare i lavori ed interfacciarsi con il *management* dell'azienda, vengono svolte le seguenti attività:

- 1. Analisi: svolta in contemporanea dagli analisti e dal reparto marketing per il contatto con il cliente. Solitamente si cerca di partire da prodotti già sviluppati in azienda per poi personalizzarli in base alle richieste del cliente, così da poter offrire soluzioni già di base consolidate e testate in molteplici situazioni. Questo è preferibile soprattutto se le applicazioni sottostanti hanno bisogno di una maggior sicurezza, com'è il caso in ambito finanziario, anche per poter effettuare una manutenzione rapida in caso di malfunzionamenti.
 - Il reparto marketing mantiene la maggior parte delle relazioni con il cliente finale all'inizio del rapporto, anche se un colloquio diretto di tecnici specializzati è ovviamente necessario dopo le prime interazioni per poter adottare soluzioni più specifiche e tecnicamente più complesse in base alle necessità del cliente;
- 2. Implementazione: dopo aver identificato i requisiti assieme al cliente, il team incaricato si occupa dell'implementazione del prodotto concordato. Solitamente, per ogni progetto, sono assegnate un certo numero di persone e risorse per occuparsi del back-end e del front-end in base alla complessità ed alle tempistiche del progetto; in base alla tipologia ed alla necessità, questi saranno affiancati anche dal team che si occupa di big data all'inizio dei lavori per le analisi sui

dati necessari. Ogni team è supervisionato da un team leader che mantiene il controllo sull'andamento dei lavori e le relazioni con gli altri team di sviluppo ed il project manager;

- 3. **Rilascio**: dopo un'attenta attività di *testing* interna all'azienda e di collaudo con il cliente, viene rilasciata una versione stabile del prodotto;
- 4. Manutenzione: con il passare del tempo, il prodotto viene mantenuto e aggiornato secondo nuove specifiche del cliente o in seguito a problemi riscontrati, sia sul singolo prodotto sia in caso di problemi in prodotti che condividono la stessa base di partenza e quindi passibili degli stessi errori che potrebbero compromettere la stabilità e la sicurezza.

Sviluppo nuovo prodotto

Nel caso il prodotto non sia precedentemente commissionato da un cliente, le attività che vengono seguite sono leggermente differenti. Il reparto di ricerca e sviluppo, il team big data ed il reparto marketing collaborano alla ricerca di un prodotto appetibile per un eventuale cliente a cui verrà in genere presentato solamente un Minimum Viable Product: in questo modo è possibile presentare all'interessato un prototipo del prodotto con alcune funzionalità essenziali e significative, senza perdite inutili di tempo e risorse per l'azienda. Le attività di implementazione, rilascio e manutenzione che sono eseguite in seguito all'ottenimento di un cliente interessato sono invece pari a quelle dello sviluppo su commissione.

Figura 1.3: Framework to build an MVP: Minimum Viable Product (Fonte: https://goo.gl/s8LmEH)

1.3.2 Controllo di versione

Come strumento di versionamento del codice, l'azienda utilizza ${\rm Git}^{10}$ ed in particolare, per poter gestire tutto il codice derivante dai vari progetti, viene utilizzata la versione

¹⁰https://git-scm.com/.

enterprise di GitLab¹¹, disponibile gratuitamente sotto licenza open source. Alcuni dei vantaggi che ha spinto l'azienda ad utilizzare Git sono:

- * Ridondanza: ogni sviluppatore possiede una copia dell'intera repository. Il rischio di perdita dei sorgenti del progetto è quindi inversamente proporzionale al numero di sviluppatori che ne possiedono in locale l'ultima versione; in caso di perdita del progetto di uno sviluppatore quindi si andrà incontro solamente alla perdita delle ultime modifiche personali fatte;
- * Disponibilità: anche in assenza di connessione alla repository principale, è possibile continuare ad effettuare commit ed a salvare le modifiche fatte nel tempo. Una volta ripristinata la connessione, la repository locale può essere sincronizzata con quella remota rendendo le modifiche disponibili a tutti;
- * Branch e Merge: permette con molta facilità la creazione di branch, consentendo di creare quindi delle ramificazioni in cui sviluppare funzionalità non stabili, evitando di intaccare il ramo principale dove di norma risiede una versione stabile e testata del prodotto. Nel momento in cui si vogliono salvare le modifiche anche nel ramo principale, Git permette di effettuare l'operazione di merge del nuovo ramo testato con il ramo principale e considerare quindi le ultime modifiche come stabili:
- * Fork e Pull request: queste due operazioni permettono di clonare una repository (tramite fork) e, successivamente, proporre l'inclusione delle modifiche apportate all'interno del clone nella repository originale.

Figura 1.4: Funzionamento ed operazioni in Git (Fonte: https://goo.gl/m1PVZy)

¹¹https://about.gitlab.com/.

1.3.3 Ambiente di sviluppo

Gli strumenti utilizzati per lo sviluppo, divisi in categorie, sono i seguenti:

- * IntelliJ IDEA¹²: è l'IDE utilizzato in prevalenza dagli sviluppatori in quanto supporta vari linguaggi di programmazione e vari tool utili;
- * Visual Studio Code¹³: come il precedente, supporta vari linguaggi di programmazione e molteplici estensioni volte a migliorare lo sviluppo. A differenza del precedente, però, non supporta nativamente Java ed è quindi meno utilizzato;
- * Bash: per effettuare l'analisi dei dati preliminari da parte del team big data viene utilizzata la shell di Linux per eseguire i tool interessati (ad esempio Hive, Impala, Spark o per visualizzare il filesystem HDFS).

1.4 Propensione dell'azienda per l'innovazione

L'azienda è alla continua ricerca di nuove tecnologie e prodotti innovativi che possano soddisfare sempre più le esigenze del cliente. Nel primo caso l'azienda cerca di cogliere il meglio delle nuove tecnologie per poterne trarre il maggior beneficio possibile attraverso progetti sperimentali e, per la prima volta quest'anno, stage universitari. Essendo l'innovazione un importante fattore di crescita, IT Euro Consulting coltiva questo aspetto cercando personale che abbia attitudine al cambiamento e contemporaneamente esprima le proprie soluzioni ai problemi incontrati dando libero sfogo alla propria creatività. Nel secondo caso, invece, l'azienda si prefigge l'obiettivo di creare nuovi prodotti al passo con le esigenze di potenziali clienti, utilizzando le ultime tecnologie disponibili.

Un'ulteriore prova della propensione all'innovazione dell'azienda è la presenza di un team specifico ed in continua espansione per il segmento big data, cosa usuale all'estero ma ben più rara in Italia in aziende di medie dimensioni, nelle quali l'importanza dei dati e della potenzialità che essi possiedono non è ancora entrata pienamente nell'ideale di business delle aziende.

Figura 1.5: Attività dell'azienda in ambito big data (Fonte: https://goo.gl/tyLXjo)

¹²https://www.jetbrains.com/idea/.

¹³https://code.visualstudio.com/.

Capitolo 2

Lo stage nella strategia aziendale

2.1 Aspettative personali

La mia esperienza lavorativa si è sempre limitata a piccoli lavori occasionali, un periodo in cui ho svolto un progetto esterno per un'azienda ed in seguito uno stage nella stessa azienda, entrambi durante la scuola secondaria di secondo grado.

Già da queste piccole esperienze, avevo capito quanto la pratica sul campo fosse una valida opportunità per applicare attivamente quanto studiato durante la carriera da studente e, inoltre, apprendere nuove nozioni. Dall'attività di stage, quindi, le mie speranze erano quelle di poter apprendere nuove nozioni e consolidare quelle già in mio possesso tramite un approccio che fosse più pratico di quello che normalmente viene utilizzato all'interno dell'ambiente universitario.

I miei obiettivi iniziali per un progetto di stage erano quindi i seguenti:

- * Entrare in contatto con nuove tecnologie;
- * Vedere e capire il funzionamento di una realtà aziendale in ambito tecnologico ed ICT:
- * Poter lavorare con il supporto di personale qualificato;
- * Vedere in pratica come le nozioni apprese in aula o da studio personale vengono realmente applicate nel mondo lavorativo.

Per far sì che le mie opzioni di scelta fossero quanto più numerose possibili, ho deciso di partecipare all'iniziativa denominata Stage-IT¹ organizzata dall'Università di Padova. Prima di andare all'evento, ho stilato una lista di possibili aziende a cui presentarmi, facendo soprattutto attenzione ai progetti proposti. Durante l'evento ho quindi colto l'occasione per discutere dell'attività di stage con molteplici aziende. Molte di loro operavano in campi che a mio parere non risultavano essere particolarmente interessanti, ma qualche azienda ha colto la mia curiosità e mi ha permesso di avere con loro un colloquio di presentazione reciproca. Alcune di queste erano più interessate a stage per inserimento lavorativo e di durata di circa 6 mesi, che ad uno finalizzato per la tesi, e quindi ho dovuto scartarle a priori nonostante il mio interesse.

¹http://informatica.math.unipd.it/laurea/stageit.html.

Fortunatamente, l'azienda IT Euro Consulting proponeva uno stage adeguato per lo sviluppo della tesi e gli argomenti coinvolti erano pienamente di mio interesse: durante il colloquio conoscitivo comunque non mi è stato subito presentato un progetto di stage, ma piuttosto mi è stata esposta la struttura aziendale, la focalizzazione dello stage nell'ambito big data e la propensione dell'azienda per l'innovazione e l'interesse a conoscere nuovi punti di vista come quello di uno studente universitario. Tutto ciò mi ha attratto fin da subito e quindi, dopo un paio di incontri successivi avvenuti in azienda, si è proceduto alla presentazione del progetto di stage vero e proprio.

Considerando i miei obiettivi e la lista di aziende con le quali ho avuto un contatto a Stage-IT, ho deciso di svolgere il progetto di IT Euro Consulting, in quanto di maggiore interesse rispetto ai progetti offerti da altre aziende.

2.2 Aspettative aziendali

Quest'anno IT Euro Consulting ha deciso, per la prima volta, di attivare un progetto di stage universitario che non avesse come fine ultimo l'assunzione del tirocinante. I motivi di questa scelta sono molteplici e condivisibili.

In primo luogo è necessario distinguere i percorsi che l'azienda ha deciso di far intraprendere ai diversi tirocinanti in base allo scopo dello stage.

Per gli studenti, appena laureati o laureandi, il cui fine è l'assunzione al termine del tirocinio è previsto un periodo in azienda di circa 6 mesi, durante il quale, dopo il primo periodo formativo, si viene inseriti in progetti già avviati e quindi affiancati dal team a cui è assegnato il lavoro. Negli ultimi 3 anni infatti i reparti sviluppo e big data si sono molto ampliati e sono state assunte dall'azienda molteplici persone in seguito ad uno stage o tirocinio. Oggigiorno infatti la maggior parte del personale appartenente ai reparti sviluppo e big data è qualificata con un titolo di laurea in Informatica o Ingegneria.

Nell'altro caso, ovvero lo stage curricolare, come di mio interesse, la durata è di circa 300-350 ore e si distingue in una fase di apprendimento ed in una fase di progetto, sempre affiancati da uno o più tutor interni. Durante il progetto, si concede al tirocinante maggiore libertà sulla scelta delle tecnologie da utilizzare e su decisioni progettuali. Queste poi vengono discusse con il tutor in modo da correggere eventuali scelte errate frutto dell'inesperienza del tirocinante.

I vantaggi di questi due percorsi sono in parte comuni: in primo luogo si ha l'inserimento in organico di nuove risorse provenienti dal mondo universitario. Assumere anche solo provvisoriamente una figura per uno stage proveniente dal mondo universitario giova all'azienda in quanto il personale ha la possibilità di confrontarsi ed aggiornarsi con costui sui nuovi insegnamenti e corsi universitari. Questa vicinanza è però anche utile per lo studente, in quando ha la possibilità di vedere concretamente come quanto appreso in aula sia implementato effettivamente nel mondo reale e di capire come funzioni realmente un'azienda, se non ha già avuto esperienze simili durante la sua carriera. Il secondo motivo è la possibilità per l'azienda di comprendere il livello di preparazione medio degli studenti universitari ed essere attivi nello scrutare quelli più meritevoli che possono portare ad un vantaggio competitivo considerevole. Per quanto riguarda il mio percorso di stage, quello curricolare, si possono riconoscere altri due vantaggi ed entrambi derivano dalla maggior libertà che si concede allo studente per risolvere problemi che solitamente in azienda si risolverebbero tramite soluzioni già consolidate. La possibilità di sfruttare nuove tecnologie senza la necessità di perdita di tempo del personale aziendale, permette di rimanere aggiornati sul continuo rilascio di

librerie e framework che potrebbero portare benefici ai vari team in termini di efficienza, sia sul tempo di sviluppo del software, sia per quanto riguarda le performance del prodotto stesso. La maggiore libertà sulla progettazione e lo sviluppo concessa allo stagista consente anche di valutare vantaggi e svantaggi di soluzioni architetturali che si erano scartate prematuramente o che non erano state considerate a priori.

Alla fine dello stage, l'azienda si aspettava di avere una web app che esponesse i dati precedentemente recuperati dal cluster, esaminati ed elaborati in modo da facilitare il successivo sviluppo del modello per stimare il target desiderato.

Tutto ciò mi ha portato prima dell'inizio dell'attività di stage, a concordare insieme al tutor aziendale i requisiti del progetto, che durante lo stage sono rimasti fedeli al Piano di Lavoro, senza dover effettuare cambiamenti imprevisti. Per poter gestire al meglio lo stage ed avere una buona elasticità sugli obiettivi da raggiungere, questi sono stati divisi in tre categorie: obiettivi obbligatori, obiettivi desiderabili e obiettivi facoltativi.

Tabella 2.1: Obiettivi dello stage

Obiettivi obbligatori

Caricare, estrarre e compiere semplici operazioni su file presenti nel cluster

Svolgere semplici operazioni con Hive/Impala su tabelle già esistenti, con creazione di nuove tabelle contenenti statistiche riassuntive e porzioni di dati

Svolgimento di una semplice analisi dati con Spark, dall'ingestion all'esame del dataset, salvando i risultati in formato tabellare CSV

Sviluppo di un Web Service RESTful in grado di presentare in formato JSON i risultati CSV

Obiettivi desiderabili

Creazione di nuove tabelle tramite l'utilizzo di query SQL innestate e con operazioni complesse

Sviluppo di una semplice applicazione capace di interfacciarsi con i dati prodotti da Spark e riassumere graficamente i risultati

Sviluppo di un'applicazione Java EE 3-tier, composta da un'interfaccia grafica HTML5/Angular in grado di visualizzare i dati dei risultati in modalità grafica e un Web Service RESTful per la presentazione dei dati in formato JSON recuperati con Hive/Impala

Obiettivi opzionali

Definizione di un modello statistico che prevedesse il target richiesto

Figura 2.1: RESTful Web Service (Fonte: https://goo.gl/zvrBJz)

2.3 Presentazione del progetto

Il progetto di stage oggetto di questa relazione è stato di natura esplorativa. Lo scopo dello stage è diviso in due parti:

- * Analisi ed elaborazione del dataset e dei dati di interesse;
- * Realizzazione di una web app per la presentazione dei risultati ottenuti.

La prima attività era già stata compiuta dal team big data circa 3 anni fa in occasione di un concorso a cui l'azienda aveva partecipato. Grazie a questo stage, è stato dunque possibile per l'azienda esplorare l'utilizzo di metodi differenti per l'elaborazione e l'analisi dei dati rispetto a quelli utilizzati in precedenza. Inoltre la web app sviluppata può essere riutilizzata come semplice interfaccia per dati e risultati finali di successivi progetti.

2.3.1 Analisi ed elaborazione del dataset e dei dati di interesse

Nella prima parte dello stage gli obiettivi erano molteplici.

In primo luogo l'azienda richiedeva allo stagista uno studio teorico sull'architettura del cluster, sul funzionamento di Hadoop e la struttura di HDFS, così da comprendere in pieno il funzionamento del sistema sottostante e di YARN, il tool che gestisce le risorse ed effettua lo *scheduling* dei processi.

Figura 2.2: Semplice rappresentazione di un cluster Hadoop (Fonte: https://goo.gl/DgYJ4J)

Il secondo obiettivo era lo studio dei tool principali che il team *big data* utilizza per l'analisi ed il *processing* dei dati, ovvero Hive, Impala, Spark. Oltre a questi tool di cui si è già dato un breve commento, l'azienda richiedeva lo studio di:

- * **Hue**²: un'applicazione che offre un'interfaccia e semplifica alcune operazioni, come le *query* su Hadoop, di cui è utile la conoscenza di base ma scarsamente utilizzato in quanto risulta relativamente complesso per utilizzi semplici;
- * Cloudera Manager³: una web app per la gestione dei servizi e dei tool di Hadoop. Permette di tenere sotto controllo il cluster, quindi le risorse disponibili e gli utenti collegati, e permette di gestire e visualizzare le attività dei tool attualmente in esecuzione e passati. È utilizzato principalmente dai system administrators ma si rivela utile anche per il team big data per un'analisi veloce del funzionamento real time del sistema.

Figura 2.3: Interfaccia di Cloudera Manager

²http://gethue.com/.

³https://www.cloudera.com/products/product-components/cloudera-manager.html.

Al termine dello studio di questi tool, l'azienda richiedeva la comprensione e la successiva analisi del *dataset* oggetto del progetto, che verrà trattata in dettaglio nel capitolo successivo.

2.3.2 Realizzazione di una web app per la presentazione dei risultati

Dopo aver ottenuto tutti i dati di interesse, l'azienda richiedeva lo sviluppo di una web app per la presentazione dei risultati in maniera più comprensibile ed appetibile rispetto a tabelle CSV grezze. Grazie all'utilizzo di grafici, anche semplici, è infatti possibile notare alcune caratteristiche del *dataset* che potrebbero rivelarsi utili ad una successiva analisi per la creazione del modello statistico.

2.4 Vincoli

2.4.1 Vincoli metodologici

Insieme con l'azienda, abbiamo deciso che le attività di stage sarebbero dovute essere svolte presso la sede della società. Questo è stato concordato con lo scopo di favorire il dialogo tra me ed il tutor aziendale e di avere la possibilità di confrontarmi direttamente con programmatori ed analisti più esperti in caso di problematiche durante lo svolgimento delle attività di progettazione, analisi e sviluppo software. Oltre a ciò, l'azienda richiedeva che, al termine di ogni settimana lavorativa, venisse compilato un rapporto di quelle che erano state le attività svolte durante tale settimana. Inoltre, nel corso del primo periodo, prettamente di formazione, l'azienda richiedeva un breve resoconto di quanto compreso, cosicchè, in caso di dubbi, questi venissero risolti da personale esperto prima di passare alla progettazione. In seguito ad ogni rapporto, ed in particolare agli avanzamenti ed ai problemi incontrati descritti in esso, sarebbe stato deciso cosa doveva essere svolto la settimana successiva, così da poter adattare al meglio il progetto al periodo di stage rimanente.

Al termine di tutte le attività, l'azienda richiedeva inoltre una breve presentazione di quanto svolto ad alcuni membri del management. Tale presentazione, esposta in forma verbale, sarebbe servita per illustrare ciò che si era concluso tramite il progetto, elencando pro e contro della soluzione trovata.

2.4.2 Vincoli temporali

Lo svolgimento dello stage prevedeva una durata di 320 ore complessive di lavoro. Queste ore sono state distribuite in modo uniforme in otto settimane lavorative da 40 ore ciascuna. L'orario accordato tra me e il tutor aziendale è stato dal Lunedì al Venerdì dalle 09:00 alle 18:00 con un'ora di pausa pranzo. Prima dell'inizio dello stage il tutor ha redatto nel Piano di Lavoro una scansione temporale delle attività su base settimanale. In alcune occasioni, il lavoro assegnato è stato portato al termine in anticipo, per cui si è scelto di effettuare alcuni approfondimenti su argomenti che mi interessavano maggiormente, tramite lo studio autonomo ma con la possibilità di richiedere chiarimenti al personale più esperto che mi seguiva. La suddivisione del lavoro su base settimanale è stata così ripartita:

* Prima settimana:

- consolidamento utilizzo sistema Unix;

2.4. VINCOLI 15

- comprensione mondo big data;
- Apache Hadoop Architecture e HDFS.

* Seconda settimana:

- approfondimenti mondo big data;
- apprendimento comandi HDFS;
- comprensione tools Cloudera.

* Terza settimana:

- approfondimento tools Cloudera;
- studio ed esercitazione di Cloudera Impala ed Apache Hive.

* Quarta settimana:

- studio ed esercitazione di Apache Spark;
- comprensione di Cloudera Manager.

* Quinta e sesta settimana:

- ripasso Java con attenzione all'ambiente Java EE;
- studio del linguaggio scelto per il front-end.

* Settima e ottava settimana:

- applicazione delle principali tecnologie apprese al progetto.

Da questa suddivisione deriva il seguente Diagramma di Gantt.

Figura 2.4: Diagramma di Gantt dello stage

2.4.3 Vincoli tecnologici

L'azienda, ad inizio stage, ha posto un unico vincolo per il progetto finale: utilizzare Java EE per la parte di back-end del prodotto. Per la parte di front-end era invece suggerito l'utilizzo di Angular, in quanto già assiduamente testato ed utilizzato per altri progetti, ma non c'era nessun tipo di vincolo, infatti la scelta finale dipendeva dalle preferenze ed esperienze del tirocinante. Un'alternativa da me proposta è stata l'utilizzo delle librerie React⁴ e Redux⁵ in quanto già in parte conosciute ed utilizzate dal sottoscritto. La scelta finale però è stata, come proposto dall'azienda, Angular, in

⁴https://reactjs.org/.

⁵https://redux.js.org/

quanto mi interessava come tecnologia e, vista la natura esplorativa di nuove tecnologie e strumenti dello stage, è stata considerata la scelta migliore per il mio accrescimento culturale.

Per quanto riguarda la parte di *big data*, mi sono affidato completamente al mio tutor aziendale, in quanto non avevo alcuna esperienza in quel campo e quindi non avrei potuto scegliere cosa fosse la scelta migliore per me. Oltre a ciò, gli strumenti utilizzati assieme ad Hadoop sono ormai consolidati e non c'è una grande varietà, quindi la scelta proposta dal personale aziendale si è rivelata obbligatoria.

Oltre a ciò, mi è stata data la possibilità di utilizzare Git per il versionamento del codice, che ho ben apprezzato ed utilizzato.

2.5 Aspettative personali sul progetto di stage

Successivamente al mio impegno con l'azienda ed alla stesura del Piano di Lavoro, assieme alla definizione degli obiettivi, la mia curiosità verso l'argomento di stage si è intensificata.

Le aspettative che maggiormente sentivo erano:

- * Mettersi in gioco in un'azienda con partner di un certo livello nel mio campo di studi;
- * Instaurare con il personale discussioni su esperienze e punti di vista diversi sulle varie tecnologie;
- * Entrare in contatto con tecnologie nuove e sempre più di largo utilizzo;
- * Conoscere il funzionamento di uno strumento come Hadoop e tutti i tool inerenti;
- * Apprendere come effettuare un'analisi su un insieme di dati distribuiti in un cluster:
- * Imparare come progettare e quali sono le best practies per realizzare una web app utilizzando Java EE.

Capitolo 3

Resoconto dello stage

3.1 Descrizione del progetto

Parte del progetto che l'azienda mi ha proposto era già stato sviluppato dal team big data qualche anno fa. Il dataset da elaborare ed analizzare è infatti parte di un concorso a cui l'azienda aveva partecipato: questa competizione è stata indetta da BNP Paribas Cardif, il polo assicurativo del Gruppo BNP Paribas, e pubblicata su Keggle¹, nota piattaforma in cui è possibile esporre i propri progetti, visualizzare quelli altrui e proporre sfide in ambito data science e machine learning.

3.1.1 Il problema

In particolare, il problema proposto, "BNP Paribas Cardif Claims Management"², consiste nella possibilità di classificare le pratiche assicurative in modo che queste possano essere risolte nel minor tempo possibile. A tal proposito, si chiede di prevedere la categoria di un sinistro sulla base delle caratteristiche disponibili nelle prime fasi del processo assicurativo; le due categorie di richieste di indennizzo, su cui basare la classificazione, corrispondono quindi a:

- * Quelle per le quali l'approvazione poteva essere accelerata, con conseguente maggiore rapidità nel rimborso e minori pratiche da gestire;
- * Quelle per le quali erano richieste informazioni supplementari prima dell'approvazione e del rimborso.

¹https://www.kaggle.com/.

²https://www.kaggle.com/c/bnp-paribas-cardif-claims-management.

Figura 3.1: Illustrazione del problema proposto (Fonte: https://goo.gl/AW22at)

Nella sezione Analisi del dataset di interesse verrà trattata la struttura del dataset più nel dettaglio.

3.2 Studio di Hadoop e dei suoi tools

Prima di cominciare a lavorare sul dataset del progetto, era necessario studiare la teoria, in quanto la prima parte dello stage considerava argomenti a me quasi totalmente sconosciuti. Autonomamente, ma sempre supervisionato dal tutor aziendale, disponibile a risolvere ogni mio dubbio, ho studiato il materiale necessario per poter eseguire poi al meglio la parte pratica. Oltre a ciò, nel corso della giornata lavorativa, il tutor mi sottoponeva delle esercitazioni da svolgere per consolidare i concetti appresi e risolvere tempestivamente miei eventuali dubbi prima di procedere con gli argomenti successivi. Essendo HDFS e molti dei tool Hadoop eseguibili principalmente tramite Bash, come prima cosa mi è stato assegnato lo studio autonomo di alcuni capitoli, selezionati dal tutor, del libro "Learning the bash Shell" per ottenere le basi che mi permettessero di utilizzare i comandi che mi sarebbero serviti in seguito per l'utilizzo dei tool Hadoop. Dopo aver assorbito i concetti, già in parte di mia conoscenza, il tutor mi ha esposto la struttura del cluster Hadoop in cui risiedevano i dati e venivano eseguiti i task.

3.2.1 Apache Hadoop

Ogni giorno si generano petabytes di dati che, se processati ed analizzati a dovere possono offrire informazioni con un alto valore strategico per un'azienda. Hadoop nasce dall'esigenza di dover gestire e processare questi dati in modo veloce, tramite una soluzione che sia il più possibile economica e scalabile orizzontalmente: aggiungendo nuovi nodi al cluster, la capacità e le performance di questo infatti aumentano proporzionalmente. Per aumentare ulteriormente le prestazioni e la scalabilità del sistema, Hadoop cerca di elaborare i dati sullo stesso nodo in cui questi risiedono: questo permette di ridurre al minimo la cross-communication fra i nodi e la necessità di copiare grandi quantità di dati fra questi, eliminando il rischio di bottleneck dovuto dalla velocità di trasmissione dei dati. Per gestire il sistema, Hadoop si basa su:

- * HDFS: per la gestione dei dati persistenti;
- * YARN: per lo scheduling dei processi (jobs) e la gestione delle risorse.

 $^{^3}$ http://shop.oreilly.com/product/9780596009656.do.

Figura 3.2: Attori principali del sistema Hadoop (Fonte: Cloudera - Developer Training for Spark and Hadoop)

HDFS

Hadoop Distributed File System (HDFS) è un file system scritto in Java, basato su Google File System 4 .

Offre performance migliori con un modesto numero di file di grandi dimensioni piuttosto che miliardi di dati frammentati, per questo motivo, anche le operazioni di read, sono ottimizzate per la lettura in streaming piuttosto che quelle casuali. Inoltre, i file sono tutti write-once e quindi non modificabili una volta memorizzati. In scrittura, infatti, i dati sono suddivisi in blocchi di dimensione fissata e distribuiti tra i nodi una volta caricati in modo ridondante per prevenire la perdita di informazioni nel caso un nodo non fosse più disponibile in seguito.

Figura 3.3: Divisione di un file in blocchi su HDFS (Fonte: Cloudera - Administrator Training for Apache Hadoop)

⁴https://ai.google/research/pubs/pub51.

Figura 3.4: Caricamento dei blocchi nei nodi (Fonte: Cloudera - Administrator Training for Apache Hadoop)

Hadoop ha un'architettura di tipo *master-slave*, ovvero in cui il processo *master* ha il controllo su quello *slave*. I nodi, quindi, possono essere di tre tipi:

- * NameNode: costituisce il *master daemon*, quindi gestisce tutti i *metadati*, le informazioni riguardo l'*ownership* e i permessi ad una risorsa, i nomi dei blocchi e la loro locazione. Essendo unico e mantenendo la struttura del *file system*, rappresenta un single point of failure in HDFS;
- * **DataNode**: costituisce gli *slave daemon*, quindi i nodi che contengono i blocchi di dati veri e propri;
- * Secondary NameNode: esegue elaborazioni in supporto al NameNode. Non è un nodo di backup ma la funzione principale è quella di memorizzare una copia del file FsImage e di modificare il file di log. FsImage contiene un'istantanea dei metadati del file system HDFS in un certo momento e EditLog è il log delle transazioni che contiene record per ogni modifica dei metadati del file system. In questo modo, in qualunque momento, è possibile ricostruire il NameNode a partire da FsImage e applicando il record delle transazioni EditLog.

Figura 3.5: Rappresentazione dei nodi in Hadoop (Fonte: Cloudera - Administrator Training for Apache Hadoop)

Nei seguenti esempi sono rappresentati semplici operazioni di lettura e scrittura sui nodi HDFS. La procedura di scrittura di un blocco avviene nel seguente modo:

- 1. Il client si connette al NameNode;
- 2. NameNode registra i *metadati* del file e ritorna il nome del blocco e la lista dei DataNodes al client;

- 3. Il client si connette al primo DataNode e comincia ad inviare i dati;
- 4. A sua volta, il primo DataNode si connette al secondo e invia a sua volta i dati;
- 5. Allo stesso modo, il secondo DataNode si connette al terzo;
- 6. Ad ogni blocco scritto, al client viene ritornato un ack packets dalla pipeline di nodi;
- 7. Una volta ricevuti tutti gli *ack packets*, il client informa il NameNode del completamento della scrittura.

Figura 3.6: Esempio di scrittura di un file in HDFS (Fonte: Cloudera - Administrator Training for Apache Hadoop)

La procedura di lettura di dati avviene nel seguente modo:

- 1. Il client si connette al NameNode;
- 2. NameNode ritorna il nome e la locazione dei blocchi del file;
- 3. Il client si connette ai DataNodes comunicati e legge i blocchi.

Figura 3.7: Esempio di scrittura di un file in HDFS (Fonte: Cloudera - Administrator Training for Apache Hadoop)

YARN

- 3.2.2 Apache Hive, Apache Spark e Cloudera Impala
- 3.3 Analisi del dataset di interesse
- 3.4 Progettazione e sviluppo della web app

Glossario

Bash shell testuale del progetto GNU usata nei sistemi operativi Unix e Unix-like, specialmente in GNU/Linux. Si tratta di un interprete di comandi che permette all'utente di comunicare col sistema operativo attraverso una serie di funzioni predefinite, o di eseguire programmi e script.

Bash è in grado di eseguire i comandi che le vengono passati, utilizzando la redirezione dell'input e dell'output per eseguire più programmi in cascata in una pipeline software, passando l'output del comando precedente come input del comando successivo. Oltre a questo, essa mette a disposizione un semplice linguaggio di scripting nativo che permette di svolgere compiti più complessi, non solo raccogliendo in uno script una serie di comandi, ma anche utilizzando variabili, funzioni e strutture di controllo di flusso. 7, 18

Cluster (indicato anche come computer cluster) insieme di macchine connesse tra loro che lavorano in parallelo. L'utilizzo di questi sistemi permette di distribuire un'elaborazione molto complessa tra le varie macchine, aumentando la potenza di calcolo del sistema e/o garantendo una maggiore disponibilità di servizio, a prezzo di un maggior costo e complessità di gestione dell'infrastruttura: per essere risolto, il problema che richiede molte elaborazioni, viene infatti scomposto in sottoproblemi separati i quali vengono risolti ciascuno in parallelo su tutti i nodi che compongono il cluster. iii, 3, 11, 12, 16, 18

daemon programma eseguito in background, cioè senza che sia sotto il controllo diretto dell'utente, tipicamente fornendo un servizio all'utente. Spesso vengono avviati al boot del sistema per rispondere a richieste di rete, attività hardware o altri programmi eseguendo alcuni task. 20

Diagramma di Gantt strumento di supporto alla gestione dei progetti, così chiamato in ricordo dell'ingegnere statunitense Henry Laurence Gantt (1861-1919), che si occupava di scienze sociali e che lo ideò nel 1917. Tale diagramma è usato principalmente nelle attività di project management, ed è costruito partendo da un asse orizzontale - a rappresentazione dell'arco temporale totale del progetto, suddiviso in fasi incrementali (ad esempio: giorni, settimane, mesi) - e da un asse verticale - a rappresentazione delle mansioni o attività che costituiscono il progetto. 15

Git è un software di controllo versione distribuito utilizzabile da interfaccia a riga di comando, creato da Linus Torvalds nel 2005 con lo scopo di essere un semplice strumento per facilitare lo sviluppo del kernel Linux, e diventato poi uno degli strumenti di controllo versione più diffusi al mondo. 5, 6, 16

GitLab GitLab è un manager di repository Git basato su interfaccia web, che include anche funzioni quali una wiki per ogni progetto e un sistema di tracciamento issue. Esso è stato sviluppato da GitLab Inc. ed è distribuito gratuitamente con licenza open source. 6

- **HDFS** Hadoop Distributed File System è un file system distribuito, portabile e scalabile scritto in Java per il framework Hadoop. Un cluster in Hadoop tipicamente possiede un singolo NameNode (su cui risiedono i metadati dei file) e un insieme di DataNode (su cui risiedono, in blocchi di dimensione fissa, i file dell'HDFS). 3, 7, 12, 15, 18, 20
- IDE (in lingua inglese Integrated Development Environment ovvero IDE, anche integrated design environment o integrated debugging environment, rispettivamente ambiente integrato di progettazione e ambiente integrato di debugging) è un software che, in fase di programmazione, aiuta i programmatori nello sviluppo del codice sorgente di un programma. Spesso l'IDE aiuta lo sviluppatore segnalando errori di sintassi del codice direttamente in fase di scrittura, oltre a tutta una serie di strumenti e funzionalità di supporto alla fase di sviluppo e debugging. 7
- Minimum Viable Product prototipo più semplificato possibile che è possibile presentare ad una cerchia di possibili clienti (early adopter). È il mezzo con cui testare e validare le idee e il prodotto stesso, senza sprecare tempo e soldi a sviluppare il prodotto completo, per poi constatare che quel prodotto non interessa alla clientela. 5
- Software Development Lifecycle processo di divisione del lavoro di sviluppo software in fasi distinte per migliorare la progettazione, la gestione del prodotto e la gestione del progetto. 1
- Single Customer View rappresentazione olistica del cliente che integra tutti i dati e gli eventi del cliente, e consente di arrivare ad un'interpretazione completa e contestuale dei suoi comportamenti indipendentemente dai canali utilizzati. 2
- Single Point Of Failure (SPOF) parte del sistema, hardware o software, il cui malfunzionamento può portare ad anomalie o addirittura alla cessazione del servizio da parte del sistema. Solitamente si cerca di evitare ogni SPOF nel momento della progettazione, soprattutto in sistemi pensati specificatamente per essere attivi costantemente, avvalendosi di componenti ridondanti che ne garantiscono il funzionamento anche in caso di guasto. 20
- Web App sistema di tipo client-server in cui l'interfaccia utente e la logica client-side viene eseguita in un browser web. iii, 11, 12, 14, 16
- Web Service sistema software in grado di mettersi al servizio di un applicazione comunicando su di una medesima rete tramite il protocollo HTTP. Un Web service consente quindi alle applicazioni che vi si collegano di usufruire delle funzioni che mette a disposizione. 11