Remember, $\int_1^\infty \frac{1}{x^p}$ converges for p > 1 and diverges for $p \le 1$.

So what can we conclude for series?

Suppose $a_n = f(n)$ with f positive, continuous, and decreasing.

Let $S_n = \sum_{i=1}^n a_i$ converge to S^* . We ask:

How fast is the convergence?

Define
$$R_n := S^* - S_n =$$

We call R_n the **remainder**.

Remainder estimate for the integral test

Example: Let $S = \sum_{n=1}^{\infty} \frac{1}{n^3}$. How many terms are necessary to approximate S within 0.01 using partial sums?

Example: Which is approximately the upper bound for the difference be-

tween
$$\sum_{n=2}^{\infty} \frac{\ln(n)}{n^3}$$
 and $\sum_{n=2}^{9} \frac{\ln(n)}{n^3}$?

4.3 The Comparison Tests (Chapter 11.4)

We focus on series now with non-negative terms, i.e., $S = \sum_{n=1}^{\infty} a_n$ with $a_n \ge 0$.

$$\Rightarrow$$
 S_{n+1} S_n

Thus, if S_n is _____, then $\{S_n\}$ converges, i.e., $\sum_{n=1}^{\infty} a_n$ _____

Comparison Test:

Consider series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ with $0 \le a_n \le b_n$ for all $n = 1, 2, 3, \ldots$

$$\sum_{n=1}^{\infty} a_n \qquad \Longrightarrow \quad \sum_{n=1}^{\infty} b_n$$

and

$$\sum_{n=1}^{\infty} b_n \qquad \Longrightarrow \quad \sum_{n=1}^{\infty} a_n$$

Relaxing of conditions are possible:

Example:

$$A) \qquad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^5 + n + 1}}$$

$$B) \qquad \sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$