Grafuri. Noțiuni fundamentale. Grafuri euleriene și grafuri hamiltoniene

decembrie 2015

D.p.d.v. matematic, un graf este o structură G = (V, E) formată din o mulțime de noduri V și o mulțime de muchii E.

- *G* este finit dacă *V* și *E* sunt mulțimi finite. În acest curs vom considera doar grafuri finite.
- Ordinul unui graf este |V|, numărul de noduri.
- Mărimea unui graf este |E|, numărul de muchii.
- Fie x, y ∈ V. Spunem că x este vecinul lui y dacă E conține o muchie de la x la y:
 - ▶ dacă *G* este orientat, *y* este destinația unui arc cu sursa *x*.
- Vecinătatea lui $x \in V$ este $N(x) := \{y \mid y \text{ este vecin al lui } x\}$
- Vecinătatea închisă a lui x este $N[x] := N(x) \cup \{x\}$
- Gradul deg(x) lui x este numărul de vecini ai lui x Gradul minim al lui G este $\delta(G) = \min\{\deg(x) \mid x \in V\}$ Gradul maxim al lui G este $\Delta(G) = \max\{\deg(x) \mid x \in V\}$

Noțiuni fundamentale Exemplu

$$\begin{split} G &= (V, E) \text{ unde } V = \{a, b, c, d, e, f\}, \ E = \{\{a, d\}, \{a, e\}, \{b, c\}, \{b, e\}, \{b, g\}, \{c, f\}, \{d, f\}, \{d, g\}, \{g, h\}\} \end{split}$$

- $N(d) = \{a, f, g\}, \ N[d] = \{a, d, f, g\},$
- $\delta(G) = \deg(h) = 1$,

Teorema 1 a Teoriei Grafurilor

Teorema 1

Într-un graf neorientat G, suma gradelor nodurilor sale este **dublul** numărului de muchii. O consecință este faptul că numărul nodurilor cu grad impar este par.

DEMONSTRAȚIE COMBINATORIALĂ.

Fie $S = \sum_{v \in V} \deg(v)$. Se observă că, deoarece orice muchie are două capete, S este dublul numărului de muchii:

$$\sum_{v \in V} \deg(v) = 2 \cdot |E|$$

Deasemenea
$$S = \sum_{\substack{v \in V \\ deg(v) \text{ par}}} deg(v) + \sum_{\substack{v \in V \\ deg(v) \text{ impar}}} deg(v)$$

și S este par \Rightarrow a doua sumă trebuie să fie pară. Deci, numărul de noduri cu grad impar trebuie să fie par.

Alte noțiuni fundamentale

- O muchie $e \in E$ este incidentă la un nod x dacă x este un capăt al lui e.
- O cale de la v₁ la v_n este o secvență d = (v₁, v₂,..., v_n) de noduri astfel încât v_{i+1} este vecinul lui v_i pentru orice 1 ≤ i < n.
 - ▶ Lungimea lui d este n-1.
 - ▶ d este o cale simplă dacă nodurile v_1, \ldots, v_n sunt distincte.
 - ▶ d este un ciclu dacă este o cale cu lungime ≥ 3 ale cărui capete coincid: $v_1 = v_n$, iar v_1, \ldots, v_{n-1} sunt distincte.
 - d este un drum elementar dacă muchiile dintre nodurile succesive sunt distincte.
 - ▶ d este un circuit dacă este drum elementar cu lungimea ≥ 3 și $v_1 = v_n$.

Exemplu ilustrat

- (f) este o cale cu lungimea 0.
- (a, c, f, c, b, d) este o cale cu lungimea 5.
- (b, a, c, b, d) este o cale cu lungimea 4 care nu este simplă, dar este drum elementar.
- (d, g, b, a, c, f, e) este drum elementar cu lungimea 6.
- (g, d, b, c, a, b, g) este un circuit.
- (e, d, b, a, c, f, e) și (d, b, g, d, e, f, d) sunt circuite.

Rețineți că un drum poate avea lungimea 0, dar lungimea minimă a unui ciclu sau circuit este 3.

Teorema 2 a Teoriei Grafurilor

Teorema 2

Într-un graf G cu nodurile $u \neq v$, fiecare cale de la un nod u la v conține o cale simplă de la u la v.

DEMONSTRAȚIE. Fie d o cale de la u la v în G. Teorema se demonstrează prin inducție după lungimea lui d.

- Dacă d are lungimea 2 atunci d = (u, v) este o cale simplă.
- Pentru cazul inductiv, presupunem că teorema are loc pentru toate căile cu lungime < k, și fie d o cale cu lungimea k, $d = (u = w_0, w_1, \ldots, w_{k-1}, w_k = v)$. Dacă toate nodurile sunt distincte, atunci d este o cale simplă de la u la v. În caz contrar, fie j cel mai mic indice a.î. $w_j = w_r$ pentru un r > j. Fie d_1 calea $(u = w_0, \ldots, w_j, w_{r+1}, \ldots, w_k = v)$. Lungimea lui d_1 este < k, deci d_1 conține o cale simplă de la u la v, conform ipotezei inductive. Această cale este, evident, conținută și în calea d.

Operații pe grafuri

PRESUPUNEM CĂ G = (V, E) este un graf simplu, $v \in V$, $S \subseteq V$, $e \in E$, $T \subseteq E$

- Ştergere de noduri:
 - G v este graful care se obține eliminând din G nodul v și toate arcele incidente la v.
 - G S este graful care se obține eliminând din G nodurile din S și toate arcele incidente la un nod din S.
- Ştergere de muchii
 - G e este graful care se obține eliminând din G muchia e.
 Capetele lui e nu se elimină.
 - G T este graful care se obţine eliminând din G toate muchiile din T.
- G este conex dacă există o cale între orice două noduri. În caz contrar, G nu este conex. O componentă a lui G este o parte maximală a lui G care este conexă.
- v este nod de tăiere dacă G v are mai multe componente decât G. e este o punte dacă G e are mai multe componente decât G.

Operații pe grafuri

Example (Ştergere)

d este nod de tăiere în G. (a, b) este punte în G.

Example (Grafuri conexe și neconexe)

Mulțime de noduri de tăiere, conectivitate. Grafuri complete

Presupunem că G = (V, E) este un graf conex neorientat.

- $\emptyset \neq S \subsetneq V$ este o mulțime de noduri de tăiere pentru G dacă G S este neconectat.
- G este complet dacă orice două noduri sunt învecinate. K_n se referă la graful complet cu n noduri.
 - Grafurile K_n nu au mulțimi de tăiere deoarece $K_n S$ rămâne conex indiferent de submulțimea $S \subsetneq V$.
- Conectivitatea κ(G) a lui G este numărul de elemente al unei mulțimi minimale de noduri de tăiere pentru G.
 Deasemenea, considerăm următoarele cazuri speciale:
 - Dacă G nu este conex, presupunem că $\kappa(G) = 0$.
 - Dacă $G = K_n$ presupunem că $\kappa(G) = n 1$.
- Pentru orice $0 < k \le \kappa(G)$, spunem că G este k-conex.

Subgraf indus al unui graf

PRESUPUNEM CĂ G = (V, E) este un graf și $S \subsetneq V$. Subgraful indus de S în G este graful (S, E') unde E' este mulțimea de muchii din E care au ambele capete în S.

Tipuri speciale de grafuri

• Grafurile complete K_n

• Grafurile cale P_n constau din o cale simplă de n noduri

- Grafurile vide E_n au n noduri, și nu au nici o muchie.
- Grafurile ciclice C_n constau din cicluri de lungime n

- Grafuri bipartite G = (V, E): Grafuri simple neorientate, a.î.
 - $V = X \cup Y$ unde $\emptyset \neq X \neq V$ și $Y = V \setminus X$
 - Toate muchiile au un capăt în X și celălalt în Y.

Grafuri bipartite

Primele 2 grafuri din figura de mai jos sunt bipartite, dar al treilea nu este bipartit.

Un graf bipartit complet $K_{m,n}$ este un graf bipartit între X și Y cu |X|=m, |Y|=n, astfel încât există o muchie între orice pereche de noduri $(x,y) \in X \times Y$.

Exemple de grafuri bipartite complete

Un graf cu cel puțin 2 noduri este bipartit dacă și numai dacă nu conține cicluri de lungime impară.

Demonstrație.

" \Rightarrow :" Fie G = (V, E) un graf bipartit între mulțimile X și Y, și fie $C = (v_1, \ldots, v_k, v_1)$ un ciclu în G. Putem presupune că $v_1 \in X$. Atunci $v_i \in X$ pentru toți i pari, și $v_j \in Y$ pentru toți j impari. Deoarece $(v_k, v_1) \in E$, k trebuie să fie par \Rightarrow nu putem avea în G un ciclu de lungime k impar.

" \Leftarrow :" Putem presupune, fără a reduce din generalitate, că G este conex (în caz contrar, putem trata separat componentele conexe ale lui G). Pentru $v \in V$ definim

 $X = \{x \in V \mid \text{cea mai scurtă cale de la } x \text{ la } v \text{ are lungime pară}\}, Y = V \setminus X.$

Se verifică ușor că G este graf bipartit între X și Y.

Observați că grafurile următoare sunt identice:

Primul graf poate fi redesenat încât să arate ca al doilea graf.

Observați că grafurile următoare sunt identice:

Primul graf poate fi redesenat încât să arate ca al doilea graf.

Observați că grafurile următoare sunt identice:

Primul graf poate fi redesenat încât să arate ca al doilea graf. Ideea de izomorfism formalizează acest fenomen.

Observați că grafurile următoare sunt identice:

Primul graf poate fi redesenat încât să arate ca al doilea graf. Ideea de izomorfism formalizează acest fenomen.

Grafuri izomorfe

 $G=(V_1,E_1)$ și $H=(V_2,E_2)$ sunt izomorfe dacă există o funcție bijectivă $f:V_1\to V_2$ astfel încât $(x,y)\in E_1$ dacă și numai dacă $(f(x),f(y))\in E_2$.

- Când 2 grafuri G și H sunt izomorfe, se obișnuiește să se spună că "G = H" sau că "G este H."
- Dacă G şi H sunt izomorfe, atunci au acelaşi ordin şi mărime.
 Reciproca nu este adevărată, după cum se poate vedea în
 Figura 1 de mai jos.

Figure: Două grafuri G și H cu același ordin și mărime, dar neizomorfe.

• Dacă *G* și *H* sunt izomorfe atunci secvențele de grade de noduri ale grefurilor coincid. Reciproca nu este adevărată.

- ▶ Un drum Eulerian într-un graf simplu G = (V, E) este un drum ce conține toate muchiile lui G.
- ▶ Un circuit Eulerian într-un graf simplu G = (V, E) este un circuit ce conține toate muchiile lui G.
- ▶ Un graf Eulerian este un graf simplu ce conține un circuit Eulerian.

- ▶ Un drum Eulerian într-un graf simplu G = (V, E) este un drum ce conține toate muchiile lui G.
- ▶ Un circuit Eulerian într-un graf simplu G = (V, E) este un circuit ce conține toate muchiile lui G.
- ▶ Un graf Eulerian este un graf simplu ce conține un circuit Eulerian.

Se observă că

- ► Ciclurile *C_n* sunt grafuri Euleriene.
- ▶ Căile P_n nu conțin circuite \Rightarrow nici un P_n nu este graf Eulerian.

Întrebări

Care din grafurile următoare este Eulerian?

î: Cum putem recunoaște grafurile Euleriene?

Întrebări

Care din grafurile următoare este Eulerian?

- 1: Cum putem recunoaște grafurile Euleriene?
- R: Se cunosc două caracterizări importante:
 - bazată pe gradurile nodurilor
 - 2 bazată pe existența unei colecții speciale de cicluri.

Teorema de Caracterizare

Pentru un graf conectat G, afirmațiile următoare sunt echivalente:

- **1** *G* este Eulerian.
- 2 Fiecare nod al lui G are grad par.
- Muchiile lui G pot fi partiţionate în cicluri care nu au muchii în comun.

Demonstrația lui $1 \Rightarrow 2$. Presupunem că

▶ G este Eulerian $\Leftrightarrow \exists$ un circuit care conține toate muchiile lui G

De exemplu, $v_1, v_3, v_4, v_1, v_2, v_6, v_1$ este un circuit al grafului

$$V_2$$
 V_4 $deg(v_2) = deg(v_3) = deg(v_4) = deg(v_6) = 2$
 V_1 V_2 $deg(v_1) = 4$
 $deg(v_5) = 0$

Ori de câte ori circuitul Eulerian intră în un nod v pe o muchie, trebuie să plece din acel nod pe altă muchie. Deoarece nici o muchie nu apare de 2 ori în circuit, nr. de muchii incidente la v este par \Rightarrow deg(v) este par \Rightarrow

Demonstrație a Teoremei de Caracterizare (continuare)

DEMONSTRAȚIE A $2 \Rightarrow 3$. Presupunem că fiecare nod al lui G are grad par. Gândim inductiv după numărul de cicluri disjuncte ale lui G.

G nu are noduri de grad $1\Rightarrow G$ nu este arbore $\Rightarrow G$ are cel puţin un ciclu C_{n_1} .

Fie G' graful produs din G prin eliminarea muchiilor lui $C_{n_1} \Rightarrow$ toate nodurile lui G' au grad par \Rightarrow se deduce recursiv că G' poate fi partiționat în cicluri disjuncte C_{n_2}, \ldots, C_{n_k} .

Rezultă că $C_{n_1}, C_{n_2}, \ldots, C_{n_k}$ este o partiție a lui G în cicluri (cu muchii) disjuncte.

Demonstrație a Teoremei de Caracterizare (continuare)

DEMONSTRAȚIE A $2 \Rightarrow 3$. Presupunem că fiecare nod al lui G are grad par. Gândim inductiv după numărul de cicluri disjuncte ale lui G.

G nu are noduri de grad $1\Rightarrow G$ nu este arbore $\Rightarrow G$ are cel puţin un ciclu C_{n_1} .

Fie G' graful produs din G prin eliminarea muchiilor lui $C_{n_1} \Rightarrow$ toate nodurile lui G' au grad par \Rightarrow se deduce recursiv că G' poate fi partiționat în cicluri disjuncte C_{n_2}, \ldots, C_{n_k} .

Rezultă că $C_{n_1}, C_{n_2}, \ldots, C_{n_k}$ este o partiție a lui G în cicluri (cu muchii) disjuncte.

Demonstrație a Teoremei de Caracterizare (continuare)

DEMONSTRAȚIE A $2 \Rightarrow 3$. Presupunem că fiecare nod al lui G are grad par. Gândim inductiv după numărul de cicluri disjuncte ale lui G.

G nu are noduri de grad $1\Rightarrow G$ nu este arbore $\Rightarrow G$ are cel puţin un ciclu C_{n_1} .

Fie G' graful produs din G prin eliminarea muchiilor lui $C_{n_1} \Rightarrow$ toate nodurile lui G' au grad par \Rightarrow se deduce recursiv că G' poate fi partiționat în cicluri disjuncte C_{n_2}, \ldots, C_{n_k} .

Rezultă că $C_{n_1}, C_{n_2}, \ldots, C_{n_k}$ este o partiție a lui G în cicluri (cu muchii) disjuncte.

Demonstrație a Teoremei de Caracterizare (continuare)

DEMONSTRAȚIE A $2 \Rightarrow 3$. Presupunem că fiecare nod al lui G are grad par. Gândim inductiv după numărul de cicluri disjuncte ale lui G.

G nu are noduri de grad $1\Rightarrow G$ nu este arbore $\Rightarrow G$ are cel puţin un ciclu C_{n_1} .

Fie G' graful produs din G prin eliminarea muchiilor lui $C_{n_1} \Rightarrow$ toate nodurile lui G' au grad par \Rightarrow se deduce recursiv că G' poate fi partiționat în cicluri disjuncte C_{n_2}, \ldots, C_{n_k} .

Rezultă că $C_{n_1}, C_{n_2}, \ldots, C_{n_k}$ este o partiție a lui G în cicluri (cu muchii) disjuncte.

Demonstrație a Teoremei de Caracterizare (continuare)

DEMONSTRAȚIE A $2 \Rightarrow 3$. Presupunem că fiecare nod al lui G are grad par. Gândim inductiv după numărul de cicluri disjuncte ale lui G.

G nu are noduri de grad $1\Rightarrow G$ nu este arbore $\Rightarrow G$ are cel puţin un ciclu C_{n_1} .

Fie G' graful produs din G prin eliminarea muchiilor lui $C_{n_1} \Rightarrow$ toate nodurile lui G' au grad par \Rightarrow se deduce recursiv că G' poate fi partiționat în cicluri disjuncte C_{n_2}, \ldots, C_{n_k} .

Rezultă că $C_{n_1}, C_{n_2}, \ldots, C_{n_k}$ este o partiție a lui G în cicluri (cu muchii) disjuncte.

Demonstrație a Teoremei de Caracterizare (continuare)

DEMONSTRAȚIE A $3\Rightarrow 1$. Presupunem că muchiile lui G pot fi partiționate în k cicluri disjuncte C_{n_1},\ldots,C_{n_k} . Deoarece G este conectat, fiecare ciclu este un circuit Eulerian care are un nod comun cu alt ciclu \Rightarrow ciclurile pot fi înlănțuite până se obține un circuit Eulerian care conține toate muchiile lui G.

Example

Cicluri:

$$Q_1 = 3, 6, 7, 8, 2, 4, 9, 3$$

 $Q_2 = 3, 8, 5, 1, 3$
 $Q_3 = 6, 2, 7, 9, 5, 6$
 $Q_4 = 4, 5, 7, 4$

- Primele 2 cicluri au nodul comun $3 \Rightarrow$ circuitul $R_1 = 3, 8, 5, 1, 3, 6, 7, 8, 2, 4, 9, 3$
- R_2 are 6 în comun cu al 3-lea ciclu \Rightarrow circuitul $R_3 = 3, 8, 5, 1, 3, 6, 2, 7, 9, 5, 6, 7, 8, 2, 4, 9, 3$
- Circuitul are 4 în comun cu a 4-lea ciclu \Rightarrow circuitul Eulerian $R_4 = 3, 8, 5, 1, 3, 6, 2, 7, 9, 5, 6, 7, 8, 2, 4, 5, 7, 4, 9, 3$

Detectarea circuitelor Euleriene

Algoritmul lui Hierholzer

Alg. ilustrat de înlănțuite a ciclurilor se numește algoritmul lui Hierholzer. Rezolvă problema

Se dă: un graf Eulerian G

Sa caută un circuit Eulerian al lui G.

- Se identifică un circuit R_1 al lui G și se marchează muchiile lui R_1 . Fie i=1.
- ② Dacă R_i conține toate muchiile lui G, stop: R_i este Eulerian.
- 3 Dacă R_i nu conține toate muchiile lui G, fie v_i un nod al R_i incident la o muchie nemarcată e_i .
- **3** Se construiește un circuit de muchii nemarcate Q_i , pornind de la nodul v_i de-a lungul muchiei e_i . Se marchează muchiile lui Q_i .
- **5** Se crează un circuit nou R_{i+1} înlănțuind Q_i în R_i la nodul v_i .
- **o** Se incrementează i cu 1 și se revine la pasul (2).

Algoritmul lui Hierholzer Exemplu ilustrat

Detectarea drumurilor Euleriene

Întrebare: Cum detectăm dacă un graf conține un drum Eulerian?

Detectarea drumurilor Euleriene

Întrebare: Cum detectăm dacă un graf conține un drum

Eulerian?

Răspuns: Se observă că:

- Un graf Eulerian conţine un drum Eulerian deoarece orice circuit Eulerian este şi drum Eulerian.
- Există grafuri ne-Euleriene ce conțin drumuri Euleriene.

Detectarea drumurilor Euleriene

Întrebare: Cum detectăm dacă un graf conține un drum

Eulerian?

Răspuns: Se observă că:

- Un graf Eulerian conţine un drum Eulerian deoarece orice circuit Eulerian este şi drum Eulerian.
- Există grafuri ne-Euleriene ce conțin drumuri Euleriene.

Corolar

Un graf conectat G conține un drum Eulerian dacă și numai dacă are cel mult 2 noduri cu grad impar.

Algoritmul lui Fleury

Se dă un graf G cu un drum sau circuit Eulerian Se caută un drum sau circuit corespunzător.

Inițial toate muchiile sunt nemarcate.

- **1** Se alege un nod v pe care-l numim nod fruntaş.
- ② Dacă toate muchiile lui G au fost marcate, stop. Altfel, se trece la pasul 2.
- Ointre toate muchiile incidente la nodul fruntaş se alege, dacă se poate, o muchie care nu este punte a muchiilor deja marcate. Dacă o astfel de muchie nu există, se alege una la întâmplare. Se marchează muchia aleasă iar capătul opus nodului fruntaş devine noul nod fruntaş.
- Se revine la pasul (2).

Algoritmul lui Fleury

Se dă un graf G cu un drum sau circuit Eulerian Se caută un drum sau circuit corespunzător.

Inițial toate muchiile sunt nemarcate.

- **1** Se alege un nod v pe care-I numim nod fruntaş.
- 2 Dacă toate muchiile lui *G* au fost marcate, stop. Altfel, se trece la pasul 2.
- Ointre toate muchiile incidente la nodul fruntaş se alege, dacă se poate, o muchie care nu este punte a muchiilor deja marcate. Dacă o astfel de muchie nu există, se alege una la întâmplare. Se marchează muchia aleasă iar capătul opus nodului fruntaş devine noul nod fruntas.
- Se revine la pasul (2).

Observații:

Pasul 2 se efectuează de |E| ori, unde |E| = nr. de muchii ale lui G. În gen., detectarea dacă $e \in E$ este punte are complexitatea $O(|E|^2)$

 \Rightarrow alg. lui Fleury are complexitatea $O(|E|^3)$.

Cicluri și căi hamiltoniene

- O cale hamiltoniană *P* a unui graf simplu *G* este o cale simplă care conține toate nodurile lui *G*.
- Un graf traversabil este un graf simplu care conține o cale hamiltoniană.
- Un ciclu hamiltonian al unui graf este un ciclu care conține toate nodurile grafului.
- Un graf hamiltonian este un graf care conține un ciclu hamiltonian.

Observații

- Toate grafurile hamiltoniene sunt traversabile.
- 2 Există grafuri traversable care nu sunt hamiltoniene.

Detectarea grafurilor hamiltoniene Teorema lui Dirac

Teorema lui Dirac

Fie G un graf cu ordinul $n \geq 3$. Dacă $\delta(G) \geq n/2$ atunci G este hamiltonian.

DEMONSTRAȚIE. Presupunem că G satisface condițiile date, însă G nu este hamiltonian. Fie $P=v_1,\ldots,v_p$ o cale simplă în G de lungime maximală \Rightarrow toți vecinii lui v_1 și ai lui v_p sunt pe P. Deasemenea, v_1 și v_p au cel puțin n/2 vecini pe P fiindcă $\delta(G) \geq n/2$.

Demonstrăm că $\exists j \in \{1,\ldots,p-1\}$ astfel încât $v_j \in N(v_p)$ și $v_{j+1} \in N(v_1)$. Dacă n-ar fi așa, atunci pentru fiecare vecin v_i de pe P al lui v_p (reținem că sunt $\geq n/2$ astfel de v_i), v_{i+1} **nu** este vecin al lui v_1 . Ar rezulta că $\deg(v_1) \leq p-1-\frac{n}{2} < n-\frac{n}{2}=\frac{n}{2}$, contradicție cu faptul că $\delta(G) \geq n/2$. Deci, există un astfel de j, pentru care avem situația ilustrată în figura de mai jos:

Teorema lui Dirac (continuare)

Teorema lui Dirac

Fie G un graf cu ordinul $n \ge 3$. Dacă $\delta(G) \ge n/2$ atunci G este hamiltonian.

Demonstrație. (continuare)

Fie C ciclul $v_1, v_2, \ldots, v_j, v_p, v_{p-1}, \ldots, v_{j+1}, v_1$. Presupunând că G nu este hamiltonian, există un nod al lui G care nu este în P. $\delta(G) \geq n/2$ și $n \geq 3$ implică $\delta(G) \geq 2$, deci G este conectat $\Rightarrow G$ are un nod W care nu-i in P și este adiacent la un nod V_i din P. Dar atunci calea care pornește cu W_i și continuă în jurul ciclului C este mai lungă decât P_i , contradicție. În concluzie G trebuie să fie graf hamiltonian.

Alte criterii și noțiuni auxiliare

Teorema lui Dirac generalizată

Fie G un graf cu ordinul $n \ge 3$. Dacă $\deg(x) + \deg(y) \ge n$ pentru toate perechile de noduri neadiacente x, y, atunci G este hamiltonian.

Alte criterii și noțiuni auxiliare

Teorema lui Dirac generalizată

Fie G un graf cu ordinul $n \ge 3$. Dacă $\deg(x) + \deg(y) \ge n$ pentru toate perechile de noduri neadiacente x, y, atunci G este hamiltonian.

O mulțime de noduri a unui graf G este independentă dacă nu conține noduri adiacente. Numărul de independență $\alpha(G)$ al unui graf G este mărimea cea mai mare posibilă a unei mulțimi independente a lui G.

Example

Se consideră grafurile

Cea mai mare mulțime independentă a lui G_1 este $\{c,d\}$, deci $\alpha(G_1)=2$. Există 2 mulțimi independente cu mărimea 3 în $G_2:\{a,c,e\}$ și $\{b,d,f\}$, și nici una cu mărimea 4, deci $\alpha(G_2)=3$.

Alte criterii și noțiuni auxiliare

Conectivitatea $\kappa(G)$ unui graf G este este mărimea minimă a unei mulțimi de tăiere a lui G.

Teoremă (Chvátal și Erdös, 1972)

Fie G un graf conectat cu ordinal $n \geq 3$, conectivitatea $\kappa(G)$, și numărul de independență $\alpha(G)$. Dacă $\kappa(G) \geq \alpha(G)$, atunci G este hamiltonian.

Exercițiu (Jocul icosian al lui Hamilton)

Să se arate că graful ilustrat în cercul de mai jos este hamiltonian.

Grafuri hamiltoniene și grafuri traversabile Exerciții

- Să se demonstreze că dacă *G* este hamiltonian atunci *G* este 2-conectat.
- Să se indice conectivitatea şi numărul de independență al grafului Petersen ilustrat mai jos.

- Date fiind două grafuri G şi H, spunem că G este liber de H dacă G nu conține o copie a lui H ca şi graf indus.
- Dacă S este o colecție de grafuri, spunem că G este liber de S dacă G nu conține nici unul din grafurile lui S ca și graf indus.

Theorem (Goodman și Hedetniemi, 1974)

Dacă G este un graf 2-conectat și liber de $\{K_{1,3}, Z_1\}$ atunci G este hamiltonian.

DEMONSTRAȚIE. Fie G un astfel de graf, și fie C un ciclu de lungime maximă în G. Deoarece G este 2-conectat, un astfel de ciclu C există. Demonstrăm că C este ciclu hamiltonian.

Dacă G nu ar fi hamiltonian, ar exista un nod v care nu este în C și care este adiacent la un nod w din C. Fie a și b succesorul și predecesorul imediat al lui w în ciclul C.

- Dacă $\{a,b\} \cap N(v) \neq \emptyset \Rightarrow \exists$ un ciclu mai lung decât $C \Rightarrow \{a,b\} \cap N(v) = \emptyset$.
- Dacă a, b nu sunt adiacente atunci subgraful indus de {w, v, a, b} este K_{1,3}, contradicție cu ipoteza că G este liber de K_{1,3} ⇒ ab trebuie să fie muchie în G. Însă în acest caz subgraful indus de {w, v, a, b} este Z₁, contradicție cu ipoteza că G este liber de Z₁.
- \Rightarrow C este ciclu hamiltonian.

Grafuri hamiltoniene

Alte rezultate

Teoremă (Duffus, Gould și Jacobson, 1981)

Fie G un graf liber de $\{K_{1,3}, N\}$.

- ① Dacă *G* este conectat atunci *G* este traversabil.
- 2 Dacă G este 2-conectat atunci G este hamiltonian.

Teoremă (Duffus, Gould și Jacobson, 1981)

Fie G un graf liber de $\{K_{1,3}, N\}$.

- ① Dacă *G* este conectat atunci *G* este traversabil.
- 2 Dacă G este 2-conectat atunci G este hamiltonian.

Observații.

• Ultimele 2 teoreme interzic ca graful $K_{1,3}$ să apară ca subgraf. De obicei, graful $K_{1,3}$ se numește *gheară*, și este un graf interzis să apară în numeroase teoreme din teoria grafurilor.

Bibliografie

 J. M. Harris, J. L. Hirst, M. J. Mossinghoff. Combinatorics and Graph Theory. Second Edition. Springer 2008.
 Secţiunea 1.4. Trails, Circuits, Paths, and Cycles.