

GOALS

- To improve the quality of data
- To adjust data to feed learning algorithms

DATA PREPARATION

Data Transformation

Selection

Integration

Cleansing

Feature Engineering

DATA PREPARATION

ntegration

Goal

to merge the data from multiple sources

Issues

heterogeneity of data sources

entity and redundancy identification

and enrichment

Cleansing

Goal

to improve data quality

to reformat data

Issues

incomplete, noisy, inconsistent

Feature Engineering

Goal

to reduce the complexity of data

to create better variables

Issues

large dimensionality

high complexity

low expressivity

No information

METHODOLOGY

APPLICATION OF ONE PREPARATION TASK

VARIABLE ENCODING

Mining Algorithms

Distance based

Numeric data

Discretization

Frequency based

Symbolic data

SEQUENTIAL VALUES

x-small

small

regular

large

x-large

0

1

2

3

4

CYCLIC VARIABLES

Variables having a cyclic nature

- Seasons
- Months
- Weekdays
- Cardinal points

If
$$x \in [0:x_{max}]$$

 \rightarrow

$$x_{sin} = \sin \frac{2\pi x}{x_{max}}$$

$$x_{cos} = \cos \frac{2\pi x}{x_{max}}$$

HIERARCHICAL VALUES

Data Science by Cláudia Antunes

No order → Dummification

DUMMIFICATION

Color

Dummification

pink yellow purple blue red

Color

pink

red

blue

yellow

purple

blue

pink

pink	yellow	purple	blue	red
1	0	0	0	0
0	0	0	0	1
0	0	0	1	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
1	0	0	0	0

DUMMIFICATION

Data Science by Cláudia Antunes

MISSING VALUES IMPUTATION

Imputation

Ignore records

Fill values

constant

mean/mode value

conditional mean value

most probable value

OUTLIERS IDENTIFICATION

or

 $X < Q1 - 1.5 \times IQR$ or $X > Q3 + 1.5 \times IQR$

20

OUTLIERS IMPUTATION STRATEGIES

Truncate

new max and min

New value

- Outlier identifier
- Mean / Median

Discard

Data Science by Cláudia Antunes

NORMALIZATION

$$v' = \frac{v - min_A}{max_A - min_A} (new_max - new_min) + new_min$$

Normalization

$$v' = \frac{5.9 - 4.3}{7.9 - 4.3}(1 - 0) + 0 = \frac{1.6}{3.6} = 0.44$$

	Sepal Length	Sepal Width	Petal Length	Petal Width
count				150
mean				1.20
std				0.76
min				0.1
Q1				0.3
median				1.3
Q3				1.8
max	7.9	4.4	6.9	2.5

Normalization

STANDARDIZATION

$$z = \frac{x - \mu}{\sigma}$$

STANDARDIZATION

$$z = \frac{5.9 - 5.84}{0.83} = \frac{0.06}{0.83} = 0.07$$

	Sepal Length	Sepal Width	Petal Length	Petal Width
count				150
mean				1.20
std				0.76
min				0.1
Q1				0.3
median				1.3
Q3				1.8
max	7.9	4.4	6.9	2.5

Standardization

30

Data Science by Cláudia Antunes

DATA BALANCING

Balancing

Weighing

Sampling

undersampling

replication / oversampling

SMOTE

UNDERSAMPLING

REPLICATION / OVERSAMPLING

Oversampling

SMOTE

Data Science by Cláudia Antunes

Thank you!

