TEOREMA DEL PUNTO FIJO DE BOREL

ENZO GIANNOTTA

RESUMEN. En este artículo probaremos el Teorema del punto fijo de Borel, el cual dice que todo grupo algebraico afín y soluble actuando en una variedad algebraica proyectiva admite un punto fijo.

ÍNDICE

1.	Introducción	1
2.	Notación, convenciones y hechos preliminares	2
3.	Teorema del punto fijo de Borel	2
4.	Consecuencias	3
Re	ferencias	5

I feel that what mathematics needs least are pundits who issue prescriptions or guidelines for presumably less enlightened mortals.

Armand Borel

1. Introducción

La verdadera geometría algebraica comienza al considerar ecuaciones polinomiales cúbicas. Todo aquello de grado menor, tales como aplicaciones lineales o formas cuadráticas, puede ser pensado utilizando métodos de álgebra lineal. Una gran cantidad de trabajo, desde los comienzos de la geometría algebraica hasta nuestros días, ha sido dedicado al estudio de ecuaciones cúbicas. Por ejemplo, las hipersuperficies cúbicas de dimensión 1 son llamadas curvas elípticas y ocupan un lugar central en geometría algebraica y aritmética.

El propósito de este artículo es estudiar superficies cúbicas, es decir, superficies $S \subseteq \mathbb{P}^3(k)$ dadas por un polinomio homogéneo $f(x_0, x_1, x_2, x_3)$ de grado 3. Más precisamente, probaremos el siguiente resultado descubierto originalmente por Cayley y Salmon en 1849.

Teorema A. Sea k un cuerpo algebraicamente cerrado. Entonces, toda superficie cúbica suave $S \subseteq \mathbb{P}^3(k)$ posee exactamente 27 rectas.

Recordemos que una variedad algebraica X es racional si posee un abierto de Zariski no-vacío $U \subseteq X$ isomorfo a un abierto no-vacío V del espacio afín $\mathbb{A}^n(k)$. Como aplicación del teorema anterior, probaremos que toda superficie cúbica suave es racional. Más precisamente, probaremos el siguiente resultado.

Teorema B. Sea k un cuerpo algebraicamente cerrado. Entonces, toda superficie cúbica suave $S \subseteq \mathbb{P}^3(k)$ es isomorfa al blow-up del plano proyectivo $\mathbb{P}^2(k)$ en 6 puntos.

Estructura del artículo. La Sección 2 recopila notaciones, convenciones y hechos conocidos que serán usados a lo largo del artículo. También estableceremos algunos hechos preliminares. En particular, discutimos el hecho que el espacio de parámetros de superficies cúbicas en \mathbb{P}^3 es isomorfo a \mathbb{P}^{19} , y que las superficies singulares forman un divisor irreducible (i.e., una hipersuperficie de dimensión 18 dentro de dicho \mathbb{P}^{19}). La Sección 3 está dedicada a probar el Teorema A. Finalmente, en la Sección 4 recordamos el concepto de racionalidad y probamos el Teorema B.

Agradecimientos. Agradezco al profesor Pedro por sugerir este tema para el artículo, y por hacer disponible el material bibliográfico necesario para prepararlo.

2. Notación, convenciones y hechos preliminares

- 2.1. Convención. Durante todo el artículo, todas las variedades y morfismos estarán definidos sobre un cuerpo k algebraicamente cerrado.
- 2.2. Notación. Denotamos por \mathbb{P}^n (resp. \mathbb{A}^n)S al espacio proyectivo $\mathbb{P}^n(k)$ (resp. espacio afín $\mathbb{A}^n(k)$) de dimensión n sobre el cuerpo k.

Dada una variedad X, denotamos por X_{sing} al sub-conjunto de puntos singulares de X. En particular, X es una variedad suave si y sólo si $X_{\text{sing}} = \emptyset$.

2.3. Resumen de variedades completas.

Definición 2.1. Decimos que una variedad algebraica (o simplemente variedad) X es **completa**, si para toda variedad algebraica Y, la proyección a la segunda coordenada

$$\operatorname{pr}_Y: X \times Y \longrightarrow Y$$
$$(x,y) \longmapsto y$$

es una función cerrada.

Proposición 2.2. (a) Una subvariedad cerrada de una variedad completa (respectivamente proyectiva) es completa (respectivamente proyectiva).

- (b) $Si \varphi : X \to Y$ es un morfismo (regular) de variedades algebraicas, y X es completo, entonces la imagen es cerrada en Y, y es completa.
- (c) Las variedades afines completas tienen dimensión 0.
- (d) Las variedades proyectivas son completas; las variedades quasiproyectivas completas son proyectivas.
- (e) La variedad bandera de un espacio vectorial V de dimensión finita es proyectiva, y en particular el ítem (d) dice que es completa.

Demostración. (a) Se deduce inmediatamente de la definición de subvariedad cerrada.

- (b) Es exactamente la misma demostración que el Corolario 2.7.10. de [Mon23]; notar que usamos que la variedad algebraica Y es separada.
- (c) En efecto, como X es afín, podemos suponer sin pérdida de generalidad que es un cerrado de \mathbb{A}^m para algún $m \geq 1$, luego basta ver que la imagen de cada proyección a la i-ésima coordenada es finita, digamos $f_i: X \to \mathbb{A}^1$, ahora, considerando la incrustación $\mathbb{A}^1 \hookrightarrow \mathbb{P}^1$, $x \mapsto [x, 1]$, tenemos que por el ítem anterior que la composición $X \to \mathbb{A}^1 \hookrightarrow \mathbb{P}^1$ tiene imagen cerrada, y como no es sobreyectiva, debe ser finita, i.e., la imagen de f_i es finita como queríamos probar.
- (d) Que las variedades proyectivas son completas ya lo vimos en [Mon23, Teorema 2.7.9]. Más generalmente, si X es quasi-proyectiva, es decir, isomorfa a un abierto Zariski U de una variedad algebraica proyectiva Y, entonces el morfismo inclusión $U \hookrightarrow Y$ tiene imagen cerrada por el ítem (b), y por lo tanto es una subvariedad cerrada de una variedad proyectiva, y concluimos utilizando el ítem (a).
- (e) Una demostración de que las variedades banderas son proyectivas se puede encontrar en [Gec13, Teorema 3.3.11.].

Además de estos hechos, necesitamos un lema:

Lema 2.3. Supongamos que G actua transitivamente sobre dos variedades algebraicas irreducibles X,Y,y sea $\varphi:X\to Y$ un morfismo regular biyectivo, G-equivariante. Si Y es completo, entonces X también.

3. Teorema del punto fijo de Borel

En esta sección probaremos el teorema principal de este artículo:

Teorema 3.1 (Teorema del punto fijo de Borel). Sea G un grupo algebraico conexo soluble, y sea X una variedad completa (no vacía) donde actúa G. Entonces G tiene un punto fijo en X.

Demostración. Si dim G=0, entonces $G=\{1\}$ y no hay nada que probar. Luego procedemos por inducción en la dimensión de G. Sea H:=[G,G], es conexo (ver [Hum12, (17.2)]), soluble, y de menor dimensión que G (pues G es soluble), con lo cual, por hipótesis inductiva, el conjunto Y de puntos fijos de H en X es no vacío. Y es cerrado (ver [Hum12, Proposición 8.2.]), con lo cual es completo por el ítem (a) de la Proposición 2.2. Como G deja estable a Y, ya que H es normal en G, basta ver que G tiene un punto fijo en Y, así, reemplacemos X por Y.

Estamos entonces en el siguiente caso: $H \subset G_x$ para todo $x \in X$. En particular, todos los grupos de isotropía son normales en G, por lo tanto G/G_x es una variedad afin. Que los grupos de isotropía son normales se deducen de lo siguiente, esto equivale a probar que para todo $g \in G$, $G_x \subset gG_xg^{-1}$, luego sea $z \in G_x$, i.e., $z \cdot x = x$, tenemos que $g^{-1}zgz^{-1} \in H \subset G_{z \cdot x}$, consecuentemente $x = z \cdot x = g^{-1}zgz^{-1}(z \cdot x) = g^{-1}zg \cdot x$, i.e. $g^{-1}zg \in G_x$, o sea, $z \in gG_xg^{-1}$, como z era arbitrario se prueba la inclusión deseada.

Tomemos $x \in X$ cuya órbtia $G \cdot x$ sea cerrada, y por lo tanto nuevamente completo: esto se puede hacer, por [Hum12, Proposición 8.3.]. Ahora el morfismo canónico $G/G_x \to G \cdot X$ es biyectivo, con el lado izquierdo afín y el derecho completo. El Lema 2.3 implica que G/G_x es completo. Pero el ítem (c) de 2.2 implica que G/G_x es un grupo algebraico 0-dimensional, i.e. trivial, es decir, $G_x = G$, y por lo tanto x es un punto fijo.

4. Consecuencias

En esta sección probaremos varias consecuencias el Teorema del punto fijo de Borel. Sea G un grupo conexo arbitrario.

El siguiente teorema es un análogo del Teorema de Lie¹; esto vale en característica arbitraria, sin embargo el teorema para álgebras de Lie no².

Teorema 4.1 (Teorema de Lie-Kolchin). Sea G un subgrupo algebraico conexo soluble de GL(V) para un espacio vectorial de dimensión finita no trivial. Entonces existe una bandera $V = V_0 \supset V_1 \supset \cdots \supset V_n = 0$ de subespacios \mathfrak{g} -invariantes con codim $V_i = i$. En particular, V_{n-1} es 1-dimensional, y por lo tanto contiene un vector v que es autovector simultáneo de cada g para todo $g \in G$.

Demostración. Sea G un subgrupo cerrado conexo soluble de GL(V). Entonces G actúa en la variedad bandera de V, la cual es completa por el ítem (e) de la Proposición 2.2, con lo cual el Teorema 3.1 implica que la acción de G deja fija una bandera

$$V = V_n \supset \cdots V_1 \supset V_0 = 0.$$

Es decir, vale el enunciado del teorema.

4.0.1. Subgrupos de Borel y Toros maximales.

Definición 4.2. Un subgrupo de Borel de G es un subgrupo cerrado conexo soluble que no está incluido propiamente en ningún otro subgrupo cerrado conexo soluble.

Como los subgrupos de Borel de G y G° coinciden, supondremos a partir de lo que sigue que G es conexo. Un subgrupo conexo soluble de dimensión máxima en G es claramente un subgrupo de Borel; pero no es obvio que todo subgrupo de borel tenga la misma dimensión, sin embargo, esto es cierto:

Teorema 4.3. Sea B un subgrupo de borel de G. Entonces G/B es una variedad proyectiva, y todos los otros subgrupos de borel son conjugados a B. En particular, son todos isomorfos entre sí y tienen la misma dimensión.

Demostración. Sea S un subgrupo de Borel de dimensión máxima. Representemos a G en GL(V) con un subespacio 1-dimensional V_1 cuyo estabilizador en G es precisamente S (ver [Hum12, Teorema 11.2]). La acción inducida de S en V/V_1 es trigonalizable por el Teorema 4.1, co lo cual existe una bandera completa $0 \subset V_1 \subset \cdots \subset V$ estabilizada por S, llamemoslá f. De hehco, S es el grupo de isotropía de f en G, por cómo elegimos V_1 . Con lo cual el morfismo inducido de G/S sobre la órbita de f en la variedad bandera de V es biyectiva. Por otro lado, el estabilizador de toda variedad bandera es soluble y por lo tanto tiene dimensión no mayor a dim S. Consecuentemente, la órbita de f tiene la dimensión más chica posible, por lo tanto es cerrado (ver

¹Este teorema dice que sobre un cuerpo algebraicamente cerrado de <u>característica cero</u>, si $\mathfrak{g} \to \mathfrak{gl}(V)$ es una representación de dimensión finita de una álgebra de Lie soluble \mathfrak{g} , entonces existe una bandera $V = V_0 \supset V_1 \supset \cdots \supset V_n = 0$ de subespacios \mathfrak{g} -invariantes con codim $V_i = i$. En particular, V_{n-1} es 1-dimensional, y por lo tanto contiene un vector v que es autovector simultáneo de cada $\pi(g)$ para todo $g \in \mathfrak{g}$.

²En caaracterística p > 0, el Teorema de Lie vale para representaciones de dimensión menor que p, sin embargo, puede fallar en dimensión p: ver [Wik].

[Hum12, (8.3)]). Así, la órbita es completa por los ítems (a) y (e) de la Proposición 2.2. Esto fuerza a que G/S sea completo por el Lema 2.3, o sea, es proyectivo por el ítem (d) de 2.2.

Ahora tomemos un subgrupo de Borel B, este actúa por multiplicación a izquierda en la variedad completa G/S. Luego el Teorema 3.1 implica que deja fijo un punto xS, es decir, BxS = xS, equivalentemente, $x^{-1}Bx \subset S$. Como ambos son subgrupos de Borel, concluimos que $x^{-1}Bx = S$ por maximalidad. Esto concluye ambas afirmaciones del teorema.

Corolario 4.4. Los toros maximales (respectivamente los subgrupos conexos unipotentes maximales) de G son los de los subgrupos de Borel de G, y son todos conjugados. En particular tienen la misma dimensión.

Demostración. Sea T un toro maximal de G, U un subgrupo conexo unipotente maximal. Evidentemente T está inclluido en algún subgrupo de borel B, entonces es un toro maximal de B, y por lo tanto todos los demás toros maximales de B son conjugados a T en B (ver [Hum12, Teorema 19.3]). Similarmente, U yace contenido en algún subgrupo de borel B', con $U = B'_u$ por maximalidad. Como todos los subgrupos de Borel de G son conjugados, el corolario se sigue.

Definición 4.5. A la dimensión de cualquier toro maximal de G se le dice el rango de G.

Ejemplo 4.6. El rango de $SL_n(k)$ es n-1.

Definición 4.7. Decimos que un subgrupo cerrado P de G es **parabólico**, si el espacio homogéneo G/P es proyectivo (equivalentemente completo por el ítem (d) de 2.2).

Corolario 4.8. Un subgrupo cerrado P de G es parabólico si y solo si contiene un subgrupo de Borel. En particular, todo subgrupo conexo H de G es un subgrupo de Borel si y solo si H es soluble y G/H es proyectivo.

Demostración. Si H es un subgrupo cerrado de G tal que G/H es proyectivo, entonces B deja fijo un punto por el Teorema 3.1, y por lo tanto tiene un conjugado en H, esto fuerza a que dim $G/H \le \dim G/B$. Recíprocamente, si H es un subgrupo cerrado incluyendo un subgrupo de Borel B de G, entonces $G/B \to G/H$ es un morfismo sobreyectivo con dominio una variedad comleta, forzando a G/H a ser completo (ítem (b) de la Proposición 2.2). Pero G/H es proyectivo (ítem (d) de la Proposición 2.2), ya que todos los espacios homogéneos son quasi-proyectivos por construcción (ver [Hum12, (11.3)]). Esto prueba el Corolario.

Ejemplo 4.9. Sea $G = \operatorname{GL}_n(k)$ y $B = \operatorname{T}_n(k)$ las matrices triangulares superioes de G. El Teorema de Lie-Kolchin 4.1 dice que B es un subgrupo de Borel de G. En efecto, G/B es justamente la órbita en la variedad bandera de $V = k^n$ de la bandera standard. Calculemos los subgrupos parabólicos de G que contienen a B. Si (e_1, \ldots, e_n) es la base canónica de k^n , entonces para cada bandera parcial $(e_1, \ldots, e_{i(1)}) \subset (e_1, \ldots, e_{i(2)}) \subset \cdots$, el estabilizador de G es evidentemente un subgrupo cerrado incluyendo a B.

Más concretamente, si $G = GL_3(k)$, entonces existen solamente dos subgrupos parabólicos propios distintos de B: los dos grupos de matrices de la siguiente forma

$$\begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}.$$

Corolario 4.10. Sea $\varphi: G \to G'$ un epimorfismo de grupos algebraicos conexos. Sea H un subgrupo de Borel (respectivamente un subgrupo parabolico, un toro maximal, o un subgrupo conexo unipotente maximal) de G. Entonces $\varphi(H)$ es un subgrupo de Borel (respectivamente un subgrupo parabolico, un toro maximal, o un subgrupo conexo unipotente maximal) de G' y todos los subgrupos de este tipo en G' se obtienen de esta manera.

Demostración. Debido a los Corolarios 4.4, 4.8, basta ver que esto vale en el caso H=B subgrupo de borel de G. Claramente $B':=\varphi(B)$ es conexo y soluble. Pero el mapa natural $G\to G'\to G'/B'$ induce un morfismo sobreyectivo $G/B\to G'/B'$, y por lo tanto G'/B' es completo por el ítem (b) de la Proposición 2.2, es decir, B' es un subgrupo parabólico de G'. El Corolario 4.8 implica luego que es un subgrupo de Borel de G'. Como algún subgrupo de Borel de G' tiene que ser de la forma $\varphi(B)$, se sigue del Teorema 4.3 aplicado a G' que son todos conjugados a $\varphi(B)$, consecuentemente, por sobreyectividad de φ , deben ser de esta forma.

4.0.2. Más consecuencias. En esta subsubsección supongamos que G es un grupo algebraico conexo.

Proposición 4.11. Si σ es un automorfismo de G que deja fijo todos los elementos de un subgrupo de Borel B, entonces debe ser la identidad.

Demostración. El morfismo

$$\varphi: G \longrightarrow G$$

 $x \longmapsto \sigma(x)x^{-1},$

envía B en 1, y por lo tanto se factoriza por la proyección a través del cociente $G \to G/B$. Por el Teorema 4.3 y el ítem (b) de la Proposición 2.2, $\varphi(G)$ es cerrado (y por lo tanto afín) y completo. Así, es un grupo algebraico 0-dimensiónal, i.e. $\varphi(G) = \{1\}$.

Corolario 4.12.

 $Z(G)^{\circ} \subset Z(B) \subset C_G(B) = Z(G).$

Demostración.

Referencias

[Gec13] Meinolf Geck, An introduction to algebraic geometry and algebraic groups, Oxford University Press, 2013.

[Hum12] James E Humphreys, Linear algebraic groups, vol. 21, Springer Science & Business Media, 2012.

[Mon23] Pedro Montero, Notas de curvas algebraicas (mat426), http://pmontero.mat.utfsm.cl/mat426_2023_2.html, 2023, Accedido el 6 de noviembre de 2023.

[Wik] Wikipedia contributors, *Lie's Theorem*, https://en.wikipedia.org/wiki/Lie%27s_theorem, Accedido el 6 de noviembre de 2023.