2 – O Método Simplex

- O método simplex é um algoritmo que procura pela solução ótima de um PPL, realizando duas operações elementares sobre as linhas do problema:
 - Multiplicar todos os coeficientes de uma linha por uma constante não-nula.
 - Substituir uma linha por outra, obtida a partir de uma combinação linear de duas linhas do problema.
- Estas operações elementares, quando são feitas sobre equações, não alteram o conjunto de soluções factíveis do problema (ou seja, não altera a solução do problema).
- Exemplo:

(a):
$$3x_1 - 7x_2 = -21$$

(b): $x_1 + x_2 = 2$
 $x_1 = 2 - x_2$
 $3(2 - x_2) - 7x_2 = -21$
 $-10x_2 = -27$
 $x_2 = 27/10$
 $x_1 = 2 - 27/10 = -7/10$

2(b) + (a):
$$5x_1 - 5x_2 = -17$$

4(b): $4x_1 + 4x_2 = 8$
 $x_1 = (8 - 4x_2)/4 = 2 - x_2$
 $5(2 - x_2) - 5x_2 = -17$
 $-10x_2 = -27$
 $x_2 = 27/10$
 $x_1 = 2 - 27/10 = -7/10$

 Mas, em geral, um PPL é um conjunto de inequações e, neste caso, estas duas operações elementares, normalmente, alteram o conjunto de soluções viáveis.

Exemplo:

 Portanto, para que as operações elementares possam ser feitas é importante transformar o PPL em um sistema de equações.

Transformação do PPL para a Forma Padrão

■ PPL na forma padrão: min $\{ cx \mid Ax = b, x \ge 0 \}$. Portanto, além de transformar as inequações em equações, a forma padrão de um PPL exige transformações para as seguintes situações:

Restrição de limite inferior

 $x \ge L$ (L = constante) pode ser substituída por: y + L, $y \ge 0$. Portanto, todas as variáveis do problema podem ter limites inferiores iguais a zero.

Inequações

- $a_1x_1 \le b_1$ pode ser substituída por: $a_1x_1 + y_1 = b_1$, onde $y_1 \ge 0$.
- $a_2x_2 \ge b_2$ pode ser substituída por: $a_2x_2 y_2 = b_2$, onde $y_2 \ge 0$.

Variáveis irrestritas em sinal

A forma padrão exige que $x \ge 0$. Se um problema (com n variáveis e m restrições) contém variáveis irrestritas em sinal, pode-se transformar o problema de duas maneiras. Seja x_1 a variável irrestrita em sinal.

- Substituir x_1 por $p_1 q_1$, com $p_1 \ge 0$ e $q_1 \ge 0$. Neste caso, o problema passa a ter (n+1) variáveis (fica mais difícil).
- Como x₁ é uma variável do problema, o coeficiente de x₁ em pelo menos uma restrição deve ser não-nulo (pois, do contrário, a variável x₁ poderia ser eliminada do problema).

Vamos supor que isto ocorre na i-ésima restrição:

$$a_{i1}x_1 + a_{12}x_2 + ... + a_{in}x_n = b_i$$
 onde $a_{i1} \neq 0$.

Logo, podemos escrever:

$$x_1 = (b_i - a_{i2}x_2 - ... - a_{in}x_n)/a_{i1}$$

e, portanto, x_1 pode ser eliminada do problema (substituída pelo lado direito da equação). Isto é interessante porque reduz o problema para (n-1) variáveis e (m-1) restrições (a i-ésima restrição será eliminada). Se o lado direito da equação acima for negativo $(x_1 < 0)$, pode-se transformar o problema substituindo x_1 por $-y_1$, $y_1 > 0$.

Restrições com lados direitos negativos

Se existir restrição tal que b_i < 0, multiplicar toda a restrição por -1.

Função-objetivo

O primeiro passo é eliminar termos constantes da função-objetivo. Isto não altera o conjunto de soluções ótimas do problema. Em seguida, expressar a função-objetivo na forma de minimização:

$$max \{ cx \} \text{ \'e equivalente a } min \{ -cx \}$$

 Com tais transformações, um PPL na forma padrão pode ser escrito como:

Min
$$z = \sum_{j=1}^{n} c_j x_j$$
 $(\sum_{j=1}^{n} c_j x_j - z = 0)$
s.a
$$\sum_{j=1}^{n} a_{ij} x_j = b_i$$
 $(i = 1, \dots, m)$

Portanto, podemos representar um PPL padrão como uma tabela:

Forma Canônica de um PPL

- Estando o PPL na forma padrão, as operações elementares sobre as linhas da tabela transformam o sistema de equações em um sistema equivalente (ou seja, com mesmo conjunto de soluções viáveis).
- A tabela da forma padrão está na forma canônica se existir uma matriz identidade de ordem m, como submatriz da matriz de restrições. Quando isto ocorre, é fácil obter uma solução viável para o problema, que é conhecida como solução viável básica (SVB).
- Estratégia do método simplex: a cada iteração, realizar as operações elementares sobre as linhas da tabela de modo a passar de uma SVB para outra SVB que diminua o valor da função-objetivo, até que isto não seja mais possível. Neste ponto, tem-se a solução ótima.
- Ao estabelecer uma SVB, as variáveis do problema são particionadas em dois conjuntos:
 - as variáveis básicas (ou variáveis dependentes)
 - as variáveis não-básicas (ou variáveis independentes)

- Numa SVB:
 - valores das variáveis não-básicas = zero
 - vetores-coluna das variáveis básicas: matriz identidade
- Exemplo:

max
$$x_1 + x_2$$

s.a $x_1 + 2x_2 \le 6$
 $2x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

forma padrão:

min
$$-x_1 - x_2$$

s.a $x_1 + 2x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

x 1	x2	x 3	x4	-Z	b
1	2	1	0	0	6
2	1	0	1	0	6
-1	-1	0	0	1	0

Portanto, uma SVB é: $x_1 = 0$, $x_2 = 0$, $x_3 = 6$, $x_4 = 6$

variáveis não- básicas

variáveis básicas

O valor da FO, neste caso, é: z = -x1 - x2 = 0

valor de –z (negativo do valor da FO) Neste caso, é fácil obter a região viável graficamente:

Observe que o ponto $(x_1, x_2) = (0, 0)$ é um vértice da região viável. Toda SVB corresponde a um ponto extremo (vértice) do conjunto de soluções viáveis.

- Método simplex: caminha pelos pontos extremos para encontrar a solução ótima do problema.
- O problema na forma canônica também pode ser representado por uma tabela (conhecida como tabela canônica):

		B	X_1	X_2	X_3	X ₄	-Z	b
variáveis básicas	x	(3	1	2	1	0	0	6
variaveis basicas	X	(4	2	1	0	1	0	6
	-:	z	-1	-1	0	0	1	0

mais à frente, esta coluna ficará subentendida.

Solução atual: $SVB_1 = (0, 0, 6, 6)^T$. FO: $z = -x_1 - x_2 = 0$. Como diminuir o valor de z? Aumentar o valor das variáveis não-básicas que possuem custos negativos na FO.

VB	X_1	X_2	X_3	X ₄	-Z	b
X ₃	1	2	1	0	0	6
X ₄	2	1	0	1	0	6
-Z	-1	-1	0	0	1	0

• Vamos aumentar o valor de x_1 , mantendo $x_2 = 0$. Seja $x_1 = \lambda \ge 0$. Então:

$$x_3 = 6 - \lambda$$
 $(x_3 \ge 0)$
 $x_4 = 6 - 2\lambda$ $(x_4 \ge 0)$ $\lambda = 3$

Qual é o maior valor de λ que atende às restrições de sinal?

Então:
$$x_1 = 3$$
, $x_2 = 0$, $x_3 = 3$, $x_4 = 0$.

Portanto, temos uma nova SVB, onde x_1 e x_3 são as variáveis básicas e x_2 e x_4 são as variáveis não-básicas.

Note que $(x_1, x_2) = (3, 0)$ é outro vértice da região viável.

Neste ponto, o valor da FO passa para $z = -x_1 - x_2 = -3$.

Esta nova SVB pode ser obtida modificando-se a tabela da SVB₁ de modo que os vetores-coluna da variáveis x_3 e x_1 formem uma matriz identidade, ou seja, de forma que (x_3, x_1) forme uma nova base.

SVB₁:

_		x_1			X ₄	-Z	b
	X ₃	1	2	1	0	0	6
	X ₄	2	1	0	1	0	6
Ī	-Z	-1	-1	0	0	1	0

Base atual: (x_3, x_4)

Nova base: (x_3, x_1)

Sai da base: variável x₄

Entra na base: variável x₁

Pivô: interseção da linha da variável que sai da base com a coluna da variável que entra na base.

Como obter a nova SVB?

VB	X_1	X_2	X_3	X_4	-Z	b	
X ₃	0	3/2	1	-1/2	0	3	
X_1	1	1/2	0	1/2	0	3	
-Z	0	-1/2	0	1/2	1	3 -	_

Notar que -z = 3, ou seja, z = -3

- Dá para diminuir ainda mais o valor da FO?
- Existe nesta SVB uma variável não-básica com custo negativo?
- Variável que entra na base: x₂
- Vamos admitir que x_3 sai da base. Por que esta escolha?

Temos:

VB	X_1	X_2	X_3	X ₄	-Z	b
X ₃	0	3/2	1	-1/2	0	3
X_1		1/2		1/2	0	3
-Z	0	-1/2	0	1/2	1	3

Devemos, então:

- dividir a 1^a linha pelo valor do pivô = 3/2
- substituir a 2^a linha por: (2^a linha) (1/2)*(nova 1^a linha)
- substituir a 3^a linha por: (3^a linha) (-1/2)*(nova 1^a linha)

 \blacksquare SVB₃:

VB	X_1	X_2	X_3	X ₄	-Z	b
x_2	0	1	2/3	-1/3	0	2
x_1	1	0	-1/3	2/3	0	2
-Z	0	0	1/3	1/3	1	4

Note que: z = -4

- Dá para diminuir ainda mais o valor da FO?
- Então, a solução atual é ótima. Qual é esta solução?
- SVB₃ = $(2, 2, 0, 0)^T$ e $z^* = -x_1 x_2 = -4$. Logo:

$$SVB_1 = (0, 0, 6, 6)^T$$

$$SVB_2 = (3, 0, 3, 0)^T$$

$$SVB_3 = (2, 2, 0, 0)^T$$

O método simplex encontra a solução ótima do problema percorrendo os **vértices** da região viável.

- Algumas questões:
 - Por que, na 1^a iteração, foi escolhida a variável não-básica x_1 ? Poderia ter sido escolhida a variável não-básica x_2 , pois seu custo também era negativo.
 - Por que a variável x_1 substituiu a variável x_4 e não a variável x_3 na base?
 - Por que, na 2ª iteração, a variável não-básica x₂ (a única escolha possível) substituiu a variável x₃ e não a variável x₁ na base?
- Estas questões podem ser resumidas como:

Como escolher a variável (básica) que **sai da base** e como escolher a variável (não-básica) que **entra na base**?

Na forma canônica, os custos referentes às variáveis básicas devem ser iguais a zero. Os demais valores da linha de custos são denominados coeficientes de custo relativo. O termo "relativo" é usado porque os valores desses coeficientes dependem do vetorbase escolhido. Os valores desses coeficientes correspondem a quanto é possível alterar o valor da FO, para cada alteração unitária na variável não-básica correspondente, mantida a viabilidade.

Solução Ótima

Como vimos, o critério de otimalidade do algoritmo simplex é:

A SVB atual é **ótima** se todos os coeficientes de **custo relativo** são **não-negativos**.

Observe, pela última linha da tabela, que:

Como todos os $x_j \ge 0$, se $c'_j \ge 0$, então $FO \ge z'$. Logo, como o problema é de minimização, z' é o valor da solução ótima.

Solução Ilimitada

A solução de um problema será ilimitada (ou seja, diverge para -∞) se, na tabela canônica correspondente a uma SVB existir uma coluna s tal que:

$$c'_{s} < 0$$
 e $a'_{is} \le 0$ (i = 1, ..., m)

• Considere que as variáveis do problema foram convenientemente renomeadas de tal forma que o vetor-base atual é $(x_1, ..., x_m)$:

VB	 X_{s}	x_1		\mathbf{x}_{m}	b
x_1	a' _{1s}	1	•••	0	b' ₁
	•••				
\mathbf{x}_{m}	a' _{ms}	0		1	b' _m
-z(x)	 c's				-z'

Portanto, temos:

$$c'_{s} < 0$$
 e $a'_{is} \le 0$ (i = 1, ..., m)

$$x_i = b'_i$$
 (i = 1, ..., m)

todas as demais variáveis (não-básicas), inclusive x_s , são iguais a 0 FO = z'.

Como esta é uma solução viável, $x_i \ge 0$, e portanto, $b'_i \ge 0$. Imagine que, a partir dessa solução, se construa uma outra solução aumentando o valor de x_s para um valor λ qualquer ($\lambda \ge 0$), mantendo todas as demais variáveis não-básicas fixadas em zero. Neste caso, teremos:

V	B	•••	X_{S}	X_1	 \mathbf{X}_{m}	b	$a_{1s}'\lambda + x_1 = b_1'$
X	ζ_1		a'_{1s}	1	 0	b' ₁	:
			•••				•
X	m		a' _{ms}	0	 1	b' _m	$a'_{ms}\lambda + x_m = b'_m$
-F	•O	•••	C's			-z'	$c_S'\lambda - FO = -z'$

• Então:
$$x_1 = b'_1 - a'_{1s}\lambda$$
...
$$x_m = b'_m - a'_{ms}\lambda$$

Como $a'_{is} \le 0$ (i = 1, ..., m) e $\lambda \ge 0$, então $x_i \ge 0$ (i = 1, ..., m), ou seja, esta é uma **solução viável** (não necessariamente um vértice da região viável).

Por outro lado: FO = $z' + c'_s \lambda$ e, portanto, como $c'_s < 0$ e $\lambda \ge 0$, FO $\le z'$. Assim, quanto maior for o λ escolhido, menor será o valor da solução. Portanto, para um λ arbitrariamente grande, teremos uma solução viável e o valor de FO irá divergir para $-\infty$.

Analogamente: um PPL cuja FO deve ser **maximizada** terá solução ilimitada (diverge para $+\infty$) se para uma SVB existir uma coluna s tal que: $c'_s > 0$ e $a'_{is} \le 0$ (i = 1, ..., m).

- Se nem o critério de otimalidade e nem o critério de solução ilimitada são satisfeitos, o algoritmo simplex move-se de uma solução viável x' para uma solução viável x" melhor (z(x") ≤ z(x')) escolhendo uma variável não-básica para entrar na base.
- Toda variável não-básica x_j tal que $c'_j < 0$ é uma candidata a ser selecionada.
- Quando várias escolhas são possíveis, um bom critério é escolher a variável x_k tal que:

$$c'_{k} = minimo \{ c'_{i} \} (j = 1, ..., n)$$

Não existe uma **justificativa teórica** sustentando que esta regra resulte em um esforço computacional menor para resolver o problema (menor número de iterações). Existe apenas uma evidência empírica de que se trata de um bom critério.

 Vamos imaginar que o vetor-base atual é (x₁, ..., x_m) e que a variável não-básica x_r foi escolhida para entrar na base. Neste caso, podemos escrever:

variáveis básicas:
$$x_i = b'_i - a'_{ir}\lambda$$
 $(i = 1, ..., m)$ $x_r = \lambda$ $(\lambda \ge 0)$

demais variáveis (não-básicas): todas iguais a zero

função-objetivo:
$$FO = z' + c'_r \lambda$$

Notar que FO \leq z', pois c'_r < 0 e $\lambda \geq$ 0.

- Assim, quanto maior for o valor de λ , melhor. No entanto, o valor de λ deve ser tal que os valores das atuais variáveis básicas mantenham-se não-negativos. Se a'_{ir} < 0, o valor da variável x_i correspondente continuará sendo não-negativo, qualquer que seja o valor de λ .
- Para $a'_{ir} > 0$, a condição $b'_{i} a'_{ir}\lambda \ge 0$ implica em $\lambda \le (b'_{i}/a'_{ir})$. Portanto, o maior valor possível para x_{r} será:

$$\theta = \text{mínimo } \{ b'_i/a'_{ir} \mid a'_{ir} > 0, i = 1, ..., m \}$$

Observe que deve existir pelo menos um $a'_{ir} > 0$ pois, do contrário, o critério de solução ilimitada estaria satisfeito. Esta operação é conhecida como teste da razão (θ é denominado razão mínima) e identifica a linha correspondente à variável (básica) que deve sair da base (linha do pivô).

- Uma vez escolhidas a variável que entra (x_r) e a variável que sai (x_s) da base deve-se produzir uma nova tabela canônica relativa à nova base. Para isso, devem ser efetuadas as seguintes operações:
 - dividir a linha do pivô (linha s) pelo valor do pivô = a'_{sr}
 - substituir cada uma das demais linhas i ≠ s da tabela por:
 (linha i atual) a'_{ir} * (nova linha do pivô)

Exemplo:

max $x_1 + 2x_2 + 3x_3 - x_4$ s.a $x_1 + 2x_2 + 3x_3 \le 15$ $2x_1 + x_2 + 5x_3 \le 20$ $x_1 + 2x_2 + x_3 + x_4 \le 10$ $x_1, x_2, x_3, x_4 \ge 0$

	forma padrão
min	$-x_1 - 2x_2 - 3x_3 + \overline{x_4}$
s.a	$x_1 + 2x_2 + 3x_3 + x_5 = 15$
	$2x_1 + x_2 + 5x_3 + x_6 = 20$
	$x_1 + 2x_2 + x_3 + x_4 + x_7 = 10$
	$X_i \ge 0 \ (i = 1,, 7)$

Tabela canônica:

VB	x_1	X_2	X ₃	X_4	X ₅	X_6	X ₇	b
X ₅	1 2 1	2	3	0	1	0	0	15
x_6	2	1	5	0	0	1	0	20
X ₇	1	2	1	1	0	0	1	10
	-1							

SVB₁:

	_	VB	X_1	X_2	X ₃	X_4	X ₅	x ₆	X ₇	b
		X ₅	1	2	3	0	1	0	0	15
[x ₆	2	1	5	0	0	1	0	20
		X ₇	1	2	1	1	0	0	1	10
		-FO	-1	-2	-3	1	0	0	0	0

razões

$$15/3 = 5$$

 $20/5 = 4 \iff 6$
 $10/1 = 10$

variável que sai: linha do pivô variável que entra: coluna do pivô

$$piv\hat{o} = 5$$

SVB₂:

	VB	x_1	X_2	X ₃	X_4	X ₅	x_6	X ₇	b	razões
	X ₅	-1/5	7/5	0	0	1	-3/5	0	3	3/(7/5) = 15/7
	X_3	2/5	1/5	1	0	0	1/5	0	4	4/(1/5) = 20
	X ₇	3/5	9/5	0	1	0	-1/5	1	6	6/(9/5) = 30/9
-	-FO	1/5	-7/5	0	1	0	3/5	0	12	

SVB₃:

VB	X_1	X_2	X_3	X_4	X ₅	x ₆	X ₇	b
X ₂	-1/7	1	0	0	5/7	-3/7	0	15/7
X ₃	15/35	0	1	0	-5/35	10/35	0	25/7
X ₇	30/35	0	0	1	-45/35	20/35	1	15/7
-FO	0	0	0	1	1	0	0	15

Portanto, a SVB atual é solução ótima.

SVB* =
$$(0, 15/7, 25/7, 0, 0, 0, 15/7)^T$$

 $z^* = -x_1 - 2x_2 - 3x_3 + x_4 = -2(15/7) - 3(25/7) = -105/7 = -15$

Vamos considerar agora o seguinte problema:

min
$$x_1 + x_2$$

s.a $2x_1 - x_2 \ge 6$
 $-x_1 + 2x_2 \ge 6$
 $x_1, x_2 \ge 0$

min
$$x_1 + x_2$$

s.a $2x_1 - x_2 - x_3 = 6$
 $-x_1 + 2x_2 - x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

	X_1	X_2	X_3	X ₄	b
	2	-1	-1	0	6
	-1	2	0	-1	6
-Z	1	1	0	0	

Neste caso, não existe uma SVB inicial e, portanto, não é possível aplicar o algoritmo simplex.

- O problema de como encontrar uma SVB inicial pode ser formulado como um PPL, introduzindo-se variáveis artificiais que formem uma base.
- Este PPL é conhecido como PPL Artificial (PPLA) ou Problema da Fase 1. A solução ótima do PPLA fornece uma SVB inicial para o problema original (ou então uma prova de que o problema original não possui solução viável).
- Obtida uma SVB para o problema original, que passa então a ser conhecido como PPL Original (PPLO) ou Problema da Fase 2, o método simplex pode ser aplicado.
- Nestes casos, o método de solução é conhecido como Método das Duas Fases, sendo o algoritmo simplex usado em ambas as fases.

Método das Duas Fases

A Base Artificial

Aumentar a tabela com as variáveis artificiais x_{n+1}, ..., x_{n+m}, cujos vetores-coluna formam uma matriz identidade:

VB	X_1	 \mathbf{x}_{n}	X_{n+1}		X _{n+m}	b
X_{n+1}	a ₁₁	 a_{1n}	1	•••	0	b_1
			•••			
X_{n+m}	a_{m1}	 a_{mn}	0		1	b_{m}
-Z	C_1	 C _n	0		0	0

Qualquer solução viável do problema aumentado:

$$(X'_1, ..., X'_n, X'_{n+1}, ..., X'_{n+m})$$

na qual todas as variáveis artificiais x'_{n+1} , ..., x'_{n+m} são iguais a zero fornece uma solução viável para o problema original. Isto pode ser obtido, restringindo as variáveis artificiais a serem não-negativas e resolvendo-se o problema:

min w =
$$x_{n+1} + ... + x_{n+m}$$

Tabela padrão para a Fase 1 do Método das Duas Fases:

VB	X_1	 \mathbf{x}_{n}	X_{n+1}	 X _{n+m}	b
X_{n+1}	a ₁₁	 a_{1n}	1	 0	b_1
X _{n+m}	a _{m1}	 a_{mn}	0	 1	b_{m}
-Z	C ₁	 C_n	0	 0	0
-w	0	 0	1	 1	0

onde a última linha corresponde à função-objetivo da Fase 1.

Realizando operações de pivotamento adequadas (conhecidas como "pricing out"), podemos transformar esta tabela para a seguinte:

VB	X_1	 \mathbf{x}_{n}	X_{n+1}	 X _{n+m}	b
X _{n+1}	a ₁₁	 a_{1n}	1	 0	b_1
X_{n+m}	a_{m1}	 a_{mn}	0	 1	b_{m}
-Z	C_1	 C_n	0	 0	0
-W	d_1	 d_n	0	 0	-W

Tabela canônica para a **Fase 1**

Note que a operação de "pricing out" reduz os custos relativos das variáveis básicas ao valor zero.

- Então: o PPLA é um PPL com uma SVB inicial e, portanto, podemos usar o método simplex para resolvê-lo.
- Se o PPLO tem uma solução viável $(x'_1, ..., x'_n)$, então fazendo $x_{n+1} = ... = x_{n+m} = 0$ teremos uma solução viável para o PPLA. Para esta solução viável: $w = x_{n+1} + ... + x_{n+m} = 0$. Como $w \ge 0$ para o conjunto de soluções viáveis do PPLA (pois $x_{n+i} \ge 0$, i = 1, ..., m), qualquer solução viável que torna w = 0 é uma solução ótima do PPLA. Portanto, se o PPLO tem uma solução viável, o valor mínimo de w no PPLA será zero. O mesmo raciocínio se aplica no sentido contrário, de modo que podemos concluir:

O PPLO tem uma solução viável ⇔ O valor mínimo de w é zero.

- Portanto, ao resolver o PPLA, duas situações podem ocorrer:
 - O valor mínimo de w é igual a zero. Então, a partir da solução ótima do PPLA obtém-se uma SVB inicial para o PPLO.
 - O valor mínimo de w é maior do que zero. Isto implica que o problema original não tem uma solução viável. Portanto, as restrições (estruturais e de sinal) são inconsistentes.

Uma observação importante:

- Se a tabela canônica original contém alguns vetores-coluna da matriz identidade, as variáveis correspondentes a estas colunas podem (mas não precisam) ser consideradas como variáveis básicas no vetor-base inicial do PPLA.
- Neste caso, seria necessário aumentar a tabela apenas com as variáveis artificiais para as colunas que ainda não aparecem na matriz identidade. Se isso for feito, o vetor-base inicial irá conter algumas variáveis do problema original e algumas variáveis artificiais.
- No entanto, a função-objetivo da Fase 1 é sempre a soma das variáveis artificiais introduzidas no problema.
- Portanto, o coeficiente de custo na Fase 1 de qualquer variável original é 0 e de qualquer variável artificial é 1.

Exemplo:

min
$$x_1 + x_2$$

s.a $2x_1 - x_2 - x_3 = 6$
 $-x_1 + 2x_2 - x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

VB	X_1	X_2	X_3	X_4	X ₅	x ₆	b
X ₅	2	-1	-1	0	1 0	0	6
x ₆	-1	2	0	-1	0	1	6
-Z	1	1	0	0	0	0	0
-W	0	0	0	0	1	1	0

Efetuando-se o "pricing out", teremos a tabela canônica inicial para a Fase 1:

VB	X_1	\mathbf{x}_2	X_3	X_4	X ₅	X_6	b
X ₅	-1	-1	-1	0	1	0	6
x ₆	-1	2	0	-1	0	1	6
-Z			0				
-W	-1	-1	1	1	0	0	-12

A nova tabela canônica será:

VB	x_1	X_2	X_3	X_4	X ₅	x_6	b
X_1	1	-1/2				0	3
X ₆	0	3/2	-1/2	-1	1/2	1	9
-Z	0	3/2	1/2	0	-1/2	0	-3
-W	0	-3/2	1/2	1	1/2	0	-9

A nova tabela canônica será:

VB	x_1	\mathbf{x}_2	X_3	X ₄	X ₅	x ₆	b	
X_1	1	0	-2/3 -1/3	-1/3	2/3	1/3	6	
X_2	0	1	-1/3	-2/3	1/3	2/3	6	
-Z	0	0	1	1	-1	-1	-12	
-W	0	0	0	0	1	1	0	Valor ótimo de w

- Logo, a SVB atual é solução ótima do PPLA ($x_5 = x_6 = 0$) e pode ser considerada como SVB inicial para a Fase 2.
- Tendo obtido uma solução viável para o problema original ao final da Fase 1, o algoritmo continua de modo que todas as soluções viáveis subsequentes sejam soluções viáveis para o problema original. Isto requer que o valor de w seja mantido em zero em todos os passos subsequentes. Logo, qualquer variável artificial nãobásica neste estágio do algoritmo jamais será considerada como uma candidata a entrar na base. Portanto, todas estas variáveis (e seus vetores-coluna correspondentes) podem ser excluídas da tabela. A rigor, as variáveis artificiais podem ser excluídas da tabela assim que saem da base, durante a Fase 1.

Ao final da Fase 1 teremos:

VB	X_1	 \mathbf{x}_{n}	X_{n+1}	 X _{n+m}	b
-W	d' ₁	 d' _n	e' ₁	 e' _m	0

ou seja:
$$w = \sum_{j=1}^{n} d'_{j} x_{j} + \sum_{i=1}^{m} e'_{i} x_{n+i}$$
 com $d'_{j} \ge 0, e'_{i} \ge 0.$

- Como w deve ser mantido igual a zero em todas as iterações seguintes, qualquer variável artificial que ainda exista na tabela (imaginando-se que as variáveis artificiais foram excluídas da tabela ao saírem da base durante a Fase 1) deve continuar igual a zero.
- Variáveis artificiais básicas podem ser mantidas no vetor-base até que sejam substituídas por alguma variável original do problema durante a Fase 2, mas devem permanecer iguais a zero em todas as SVB subsequentes.

- Além disso: se qualquer variável x_j do problema original é tal que d'_j > 0, então x_j deverá ser mantida igual a zero nas iterações subsequentes, pois w deve permanecer igual a zero. Assim, x_j jamais será candidata a entrar na base durante a Fase 2. Portanto, x_i pode ser fixada em 0 e excluída da tabela.
- Logo, nas iterações seguintes, as variáveis candidatas a entrar na base são as variáveis x_i do problema original tais que $d'_i = 0$.
- Portanto, passar da Fase 1 para a Fase 2 requer os seguintes passos:
 - todas as variáveis artificiais são excluídas da tabela;
 - todas as variáveis x_j do problema original tais que d'_j > 0 são fixadas em 0 e excluídas da tabela;
 - a linha referente à função-objetivo da Fase 1 é excluída da tabela;
 - os valores de todas as variáveis artificiais ainda presentes na tabela são iguais a zero;
 - a linha da função-objetivo da Fase 2 passa a ser usada para a verificação da condição de parada do algoritmo.

Portanto, podemos iniciar a Fase 2 com a seguinte tabela canônica:

VB	X_1	\mathbf{X}_{2}	X_3	X ₄	b
x_1	1	0	-2/3	-1/3	6
\mathbf{x}_2	0	1	-1/3	-2/3	6
-Z	0	0	1	1	-12

Neste caso, como os coeficientes de custo relativos desta SVB são todos não-negativos, a solução atual é ótima, ou seja:

$$x^* = (6, 6, 0, 0)^T$$
 $z^* = 12$

 Considere agora o seguinte problema:
 Introduzindo as variáveis de folga e as variáveis artificiais, a tabela do problema para a Fase 1 será:

min
$$-x_1 - x_2$$

s.a $x_1 + x_2 \ge 1$
 $x_1 - x_2 \ge 0$
 $x_1, x_2 \ge 0$

VB	X_1	X_2	X ₃	X_4	X ₅	x ₆	b
X ₅	1	1	-1	0	1 0	0	1
X ₆	1	-1	0	-1	0	1	0
-Z	-1	-1	0	0	0	0	0
-W	0	0	0	0	1	1	0

Efetuando o "pricing out" teremos a seguinte tabela canônica:

VB	X_1	\mathbf{X}_{2}	X_3	X ₄	X ₅	x_6	b
X ₅	1	1	-1	0	1	0	1
X_6	1	-1	0	-1	0	1	0
-Z	-1	-1	0	0	0	0	0
-W	-2	0	1	1	0	0	-1

- Neste caso, tem-se a seguinte SVB:
 - variáveis básicas: $x_5 = 1, x_6 = 0$
 - variáveis não-básicas: $x_1 = x_2 = x_3 = x_4 = 0$
- Quando uma SVB contém pelo menos uma variável básica igual a zero, diz-se que esta SVB é uma solução degenerada.
- Para uma SVB não-degenerada (todas as variáveis básicas são positivas), a aplicação do algoritmo simplex garante que o valor da função-objetivo diminui (pois, para uma variável entrar na base, seu coeficiente de custo deve ser negativo). Portanto, a aplicação do algoritmo diminui monotonicamente o valor da FO até alcançar valor ótimo e não haverá repetição de qualquer SVB.

- Quando uma SVB é degenerada, ao executarmos as operações de pivotamento pode ocorrer do vetor-base mudar mas a SVB e o valor da função-objetivo continuarem inalterados.
- O mesmo pode ocorrer no passo seguinte e após uma série de passos como esses, pode ocorrer do algoritmo retornar ao vetorbase que deu origem a esta seqüência de passos degenerados.
- Neste caso, diz-se que houve uma ciclagem no algoritmo simplex devido à degenerescência. Isto é uma situação muito ruim, pois o algoritmo "entra em loop" e não encontra a solução ótima do problema.
- Existem técnicas especiais para evitar que o problema da ciclagem sob degenerescência ocorra (veremos mais à frente).

O Método Big-M

- Existem várias propostas de combinar as duas fases do método simplex em um único problema. O método Big-M é uma delas.
- Seja um PPL na forma padrão: $min \{ cx \mid Ax = b, x \ge 0 \}$
- Vamos supor que um vetor-base artificial foi introduzido no problema e sejam t₁, ..., t_m as variáveis artificiais. O problema aumentado será:

min
$$z(x,t) = \sum_{j=1}^{n} c_j x_j + M(t_1 + \dots + t_m)$$
s.a
$$\sum_{j=1}^{n} a_{ij} x_j + t_i = b_i \quad (i = 1, \dots, m)$$

$$x_j \ge 0 \quad (j = 1, \dots, m)$$

$$t_i \ge 0 \quad (i = 1, \dots, m)$$

onde M é um número positivo arbitrariamente grande.

- Durante a aplicação do método simplex, o coeficiente de custo relativo de x_i será da forma $c'_i = \alpha + M\beta$.
 - se β < 0, c'_j será negativo, qualquer que seja o valor de α , pois M é um número arbitrariamente grande;
 - se $\beta > 0$, c'_i será positivo;
 - se β = 0, c'_j será igual a α .
- Para facilitar os cálculos, vamos manter as partes α e β de c'_j em linhas separadas da tabela canônica (se necessário, o "pricing out" deverá ser efetuado em ambas as linhas).
- Se o algoritmo simplex terminar com uma solução ótima (x*,t*) para o problema aumentado, tal que t* = 0, então x* será uma solução ótima para o PPL original. Se t* ≠ 0, então o PPL original não tem solução viável.

- Se o critério de solução ilimitada for satisfeito então o PPL original terá solução ilimitada, caso seja viável.
- Um passo adicional do algoritmo simplex será necessário para verificar se o PPL original é ilimitado (viável) ou inviável. Esse passo adicional compreende:
 - Para verificar a viabilidade do PPL original, deve-se substituir a função-objetivo original para 0 (zero) e continuar a aplicação do método simplex. Fazer essa mudança na função-objetivo é equivalente a tornar todos os coeficientes na linha α iguais a zero, ou seja, os coeficientes de custo relativo passarão a ser da forma c'_i = Mβ.
 - Deve-se, então, continuar a aplicação do método simplex a partir da base atual. Se o algoritmo terminar com uma solução ótima tal que t* = 0, então o PPL original é ilimitado. Se t* ≠ 0, então o PPL original não tem solução viável.

Exemplo - Seja o PPL na forma padrão:

X ₁	X_2	X ₃	X_4	X ₅	b
1	-1	0	1	-2	1
0	1	0	-2	2	4
0	-1 1 -1	1	2	1	6
3	-12	5	23	-9	0

 Acrescentando as variáveis artificiais (notar que, a rigor, bastaria apenas uma variável artificial, pois x1 e x3 poderiam compor o vetor-base inicial) teremos:

	x_1	\mathbf{X}_{2}	X_3	X_4	X ₅	t_1	t_2	t_3	b
$t_{\scriptscriptstyle 1}$	1	-1	0	1	-2	1	0	0	1
t_2	0	1	0	-2	2	0	1	0	4
t_3	0	-1 1 -1	1	2	1	0	0	1	6
α	3	-12	5	23	-9	0	0	0	0
β	0	0	0	0	0	1	1	1	0

Efetuando o "pricing out":

VB	X_1	X_2	X ₃	X_4	X ₅	t_1	t_2	t_3	b
t_2	0	1	0	-2	-2	0	1	0	4
t_3	0	-1	1	2	1	0	0	1	6
									0 ← X*
β	-1	1	-1	-1	-1	0	0	0	-11 ← t*

Lembrar: os coeficientes de custo relativo são da forma $\alpha + \beta \mathbf{M}$. Por exemplo, $c'_1 = 3 - M$ (negativo, pois M >> 0), $c'_2 = -12 + M$ (positivo), e assim por diante. Portanto: x_1 , x_3 , x_4 e x_5 são candidatas a entrar no vetor-base. Vamos escolher $\mathbf{x_5}$. Esta é uma **boa escolha**? Neste caso, quem é o **pivô**?

VB	X_1	X_2	X ₃	X_4	X ₅	$t_{\scriptscriptstyle 1}$	t_2	t_3	b
t_1	(1)	0 1/2 -3/2	0	-1	0	1	1	0	5
X_5	0	1/2	0	-1	1	0	1/2	0	2
t ₃	0	-3/2	1	3	0	0	-1/2	1	4
α	3	-15/2	5	14	0	0	9/2	0	18
β	-1	3/2	-1	-2	0	0	1/2	0	-9

Notar que esta não é uma "boa" escolha, pois escolhendo x₁ ou x₃, muitas operações de pivotamento seriam evitadas.

VB	X_1	X_2	X ₃	X ₄	X ₅	t_1	t_2	t_3	b
x_1	1	0	0	-1	0	1	1	0	5
X_5	0	0 1/2	0	-1	1	0	1/2	0	2
	0	-3/2	1	3	0	0	-1/2	1	4
α	0	-15/2	5	17	0	-3	3/2	0	3
β	0	3/2	-1	-3	0	1	3/2	0	-4

Vamos agora escolher x_3 para entrar na base.

VB	X_1	X_2	X_3	X ₄	X ₅	$t_{\scriptscriptstyle 1}$	t_2	t_3	b
x_1	1	0	0	-1	0	1	1	0	5
X ₅	0	1/2	0	-1	1	0	1/2	0	2
X_3	0	0 1/2 -3/2	1	3	0	0	-1/2	1	4
α	0	0	0	2	0	-3	4	-5	-17
β	0	0	0	0	0	1	1	1	0

Logo, como t* = 0, tem-se uma SVB = $(5, 0, 4, 0, 2, 0, 0, 0)^T$ que é ótima para o PPL original. Notar que:

$$z^* = 3*5 - 12*0 + 5*4 + 23*0 - 9*2 = 17$$

Degenerescência e Ciclagem no Algoritmo Simplex

- Seja o PPL na forma padrão: min $\{ z(x) = cx \mid Ax = b, x \ge 0 \}$. Seja B uma base para este problema.
 - B é uma base não-degenerada se todas as variáveis básicas são diferentes de zero (ou seja, são positivas);
 - Caso contrário, B é uma base degenerada.
- Quando um pivotamento degenerado ocorre, o algoritmo simplex move-se de uma base para outra, ambas representando a mesma solução. No caso geral, pode haver uma seqüência de bases B₁, ..., B_k tal que B_k = B₁, o que leva ao problema de ciclagem.

Exemplo:

VB	x_1	X ₂	X ₃	X_4	X ₅	X ₆	X ₇	b
X_1	1	0	0	1/4	-8	-1	9	0
X_2	0	1	0	1/4 1/2 0	-12	-1/2	3	0
X ₃	0	0	1	0	0	1	0	1
-Z	0	0	0	-3/4	20	-1/2	6	0

A **solução ótima** deste problema é: $x^* = (3/4, 0, 0, 1, 0, 1, 0)^T$ $com z^* = -5/4$

Note que: $SVB_1 = (0, 0, 1, 0, 0, 0, 0)^T$

VB	X_1	X_2	X ₃	X ₄	X ₅	X_6	X ₇	b
X ₄	4	0	0	1	-32	-4	36	0
X_2	-2	1	0	0	4	3/2	-15	0
X_3	0	0	1	0	0	1	0	1
-Z	3	0	0	0	-4	-7/2	33	0

 $SVB_2 = (0, 0, 1, 0, 0, 0, 0)^T$

VB	X_1	X_2	X_3	X_4	X ₅	X_6	X ₇	b
X ₄	-12	8	0	1	0	8	-84 -15/4 0	0
X_5	-1/2	1/4	0	0	1	3/8	-15/4	0
X ₃	0	0	1	0	0	1	0	1
-Z	1	1	0	0	0	-2	18	0

 $SVB_3 = (0, 0, 1, 0, 0, 0, 0)^T$

VB	x_1	X_2	X_3	X_4	X ₅	x ₆	X ₇	b
X_6	-3/2	1	0	1/8	0	1	-21/2	0
X ₅	1/16	-1/8	0	1/8 -3/64 -1/8	1	0	3/16	0
X ₃	3/2	-1	1	-1/8	0	0	21/2	1
	-2	3	0	1/4	0	0	-3	0

 $SVB_4 = (0, 0, 1, 0, 0, 0, 0)^T$

VB	X_1	X_2	X_3	X_4	X ₅	X_6	X ₇	b
X ₆	2 1/3 -2	-6	0	-5/2	56	1	0	0
X ₇	1/3	-2/3	0	-1/4	16/3	0	1	0
X_3	-2	6	1	5/2	-56	0	0	1
-Z	-1	1	0	-1/2	16	0	0	0

 $SVB_5 = (0, 0, 1, 0, 0, 0, 0)^T$

VB	x_1	X_2	X_3	X_4	X ₅	x_6	X ₇	b
X_1	1	-3 1/3 0	0	-5/4	28	1/2	0	0
X ₇	0	1/3	0	1/6	-4	-1/6	1	0
X_3	0	0	1	0	0	1	0	1
-Z		-2						

 $SVB_6 = (0, 0, 1, 0, 0, 0, 0)^T$

VB	X_1	X_2	X_3	X_4	X ₅	X_6	X ₇	b
x_1	1	0	0	1/4	-8	-1 -1/2 1	9	0
X_2	0	1	0	1/2	-12	-1/2	3	0
X_3	0	0	1	0	0	1	0	1
-Z	0	0	0	-3/4	20	-1/2	6	0

 $SVB_7 = (0, 0, 1, 0, 0, 0, 0)^T$

Note que esta tabela é idêntica à primeira o que caracteriza a ciclagem.

 Embora a ciclagem seja altamente improvável, existe um interesse teórico em regras que garantem que a ciclagem não vai ocorrer.

Regra Lexicográfica para Selecionar a Variável que Sai da Base

Dada uma base B, seja x_r a variável não-básica escolhida para entrar na base ($c_r < 0$). O índice s da variável que deve sair da base é determinado como:

$$I_0 = \left\{ s \mid \frac{b'_s}{a'_{sr}} = \min \left[\frac{b'_i}{a'_{ir}} \mid a'_{ir} > 0 \right] \right\} \quad \text{(teste da razão)}$$

Se $I_0 = \{ s \}$, ou seja, não há empate, então x_s sai da base. Caso contrário, seja $I_0 = \{ s_1, ..., s_k \}$. Determinar os novos conjuntos de índices I_i da seguinte forma:

$$I_{j} = \left\{ s \mid \frac{a'_{sj}}{a'_{sr}} = \min_{i \in I_{j-1}} \left[\frac{a'_{ij}}{a'_{ir}} \mid a'_{ir} > 0 \right] \right\} \quad j = 1, \dots$$

Note que, para determinar I_j os elementos da coluna j de A', para as linhas onde houve empate, são usados em vez dos coeficientes de b' no teste da razão. Os conjuntos de índice I_j são determinados até que para um j \leq m, I_j contém apenas um índice.

O processo de calcular os conjuntos de índice I_j realmente termina, no máximo, quando j = m. A razão disto é porque, do contrário, haveria ao menos duas linhas proporcionais na base B, o que é impossível, uma vez que as linhas de B são linearmente independentes.

Para uma prova formal, ver a validação das regras para prevenir a ciclagem, na **Seção 4.7** do livro **Linear Programming and Network Flows** (BAZARAA, M.S.; JARVIS, J.J.; SHERALI, H.D.)

Exemplo (mesmo problema considerado anteriormente):

VB	x_1	X_2	X ₃	X ₄	X ₅	X_6	X ₇	b	I_0	I_1
									0/(1/4)=0	
X_2	0	1	0	1/2	-12	-1/2	3	0	0/(1/2)=0	0/(1/2)=0
X ₃	0	0	1	0	0	1	0	1		
-Z	0	0	0	-3/4	20	-1/2	6	0		

Neste caso, $I_0 = \{ 1,2 \}$ e $I_1 = \{ 2 \}$. Logo x_2 deve sair da base (notar que na discussão anterior, x_1 havia sido escolhida para sair da base).

Teremos, então:

VB	X_1	X_2	X ₃	X ₄	X ₅	x_6	X ₇	b
x_1	1	-1/2 2 0	0	0	-2	-3/4	15/2	0
X_4	0	2	0	1	-24	-1	6	0
X ₃	0	0	1	0	0	1	0	1
-Z		3/2						

VB	X_1	\mathbf{X}_{2}	X_3	X ₄	X ₅	\mathbf{x}_6	X ₇	b
x_1	1	-1/2 2 0	3/4	0	-2	0	15/2	3/4
X_4	0	2	1	1	-24	0	6	1
x ₆	0	0	1	0	0	1	0	1
-Z	0	3/2	5/4	0	2	0	21/2	5/4

chegando, portanto, à solução ótima:

$$x^* = (3/4, 0, 0, 1, 0, 1, 0)^T$$

 $z^* = -5/4$

Regra de Bland

- Outra regra proposta para evitar a ciclagem é conhecida como regra de Bland, que restringe a escolha tanto da variável que entra como da variável que sai da base, da seguinte forma:
 - Ordenar as variáveis em uma seqüência qualquer (por exemplo, x₁, x₂, ..., x_n);
 - Dentre as variáveis não-básicas x_j candidatas a entrar na base $(c'_i < 0)$, escolher a que tiver o menor índice na seqüência;
 - Efetuar o teste da razão mínima para determinar a variável que deve sair da base. Em caso de empate, escolher a variável de menor índice na seqüência.
- Exemplo (mesmo problema considerado anteriormente):

Usando a regra de Bland, as 4 primeiras tabelas seriam como aparecem anteriormente. Na 4^a tabela x_1 e x_7 seriam candidatas a entrar na base e a escolha recairia sobre x_1 (menor índice):

VB	x_1	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	b
X_6	-3/2 1/16 3/2	1	0	1/8	0	1	-21/2	0
X ₅	1/16	-1/8	0	-3/64	1	0	3/16	0
X ₃	3/2	-1	1	-1/8	0	0	21/2	1
-Z	-2	3	0	1/4	0	0	-3	0

VB	_	V	V	V	V	V	V	b
	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	D .
x_6	0	-2	0	-1	24	1	-6	0
X_1	1	-2	0	-3/4	16	0	3	0
X ₃	0	2	1	1	-24	0	6	1
-Z	0	-1	0	-5/4	32	0	3	0
,	•							
VB	X_1	\mathbf{X}_{2}	X_3	X_4	X ₅	x_6	X ₇	b
X ₆	0	0	1	0	0	1	0	1
X_1	1	0	1	1/4	-8	0	9	1
X_2	0	1	1/2	1/2	-12	0	3	1/2
-Z	0	0	1/2	-3/4	20	0	6	1/2
'	•							
VB	x_1	\mathbf{x}_2	X_3	X_4	X ₅	X_6	X ₇	b
X ₆	0	0	1	0	0	1	0	1
X_1	1	-1/2	3/4	0	-2	0	15/2	3/4
X ₄	0	2	1	1	-24	0	6	1
-Z	0	3/2	5/4	0	2	0	21/2	5/4

Solução ótima: $x^* = (3/4, 0, 0, 1, 0, 1, 0)^T$ $z^* = -5/4$