

Measurements of Unsteady Pressure and Structural Response for an Elastic Supercritical Wing

Clinton V. Eckstrom, David A. Seidel, and Maynard C. Sandford Langley Research Center • Hampton, Virginia

National Aeronautics and Space Administration Langley Research Center • Hampton, Virginia 23681-0001

This publication is available from the following sources:

NASA Center for AeroSpace Information 800 Elkridge Landing Road Linthicum Heights, MD 21090-2934 (301) 621-0390 National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, VA 22161-2171 (703) 487-4650

Abstract

Results are presented which define unsteady flow conditions associated with the high-dynamic structural response of a high-aspect-ratio, elastic, supercritical wing at transonic speeds. The wing was tested in the Langley Transonic Dynamics Tunnel with a heavy gas test medium. The supercritical wing, designed for a cruise lift coefficient of 0.53 at a Mach number M=0.80, experienced the high-dynamic structural response from M=0.90 to 0.94 with the maximum response occurring at $M\approx0.92$. At the maximum response condition of the wing, the forcing function appears to be the oscillatory chordwise movement of strong shocks located on the upper and lower surfaces of the wing in conjunction with flow separation on the lower surface of the wing in the trailing-edge cove region.

Introduction

The elastic, supercritical wing discussed in this report was the full-scale right semispan of the second aeroelastic research wing (ARW-2) from the Drones for Aerodynamic and Structural Testing (DAST) program (ref. 1). This research wing was designed to be flight tested to investigate the use of active control systems for maneuver load alleviation, gust load alleviation, and flutter suppression. The structural design of the wing was based on an iterative procedure, which took into account the load and the stiffness reduction benefits provided by the active control systems. This integrated design process resulted in a wing with increased flexibility. A delay in the planned flight-test program provided an opportunity to use the instrumented right semispan of the wing as a flexible model for tests in the Langley Transonic Dynamics Tunnel (TDT). The purpose of the test, which was performed in a heavy gas (R-12), was to verify systems operation, to measure surface-pressure variations on the wing because of forced oscillations of the outboard aileron control surface, and to verify that no unexpected behavior would occur within the planned flight envelope. This test is part of a series of tests to measure unsteady transonic aerodynamic flow characteristics on various wing planforms and airfoil shapes (ref. 2). The test reported herein is the first in the series with a flexible wing as the test article.

In preparation for flight tests of this flexible wing, there were wind tunnel tests of a structurally stiff 0.237-scale model of the flight wing and drone fuselage (refs. 3 and 4). These scale-model tests showed that the drag-divergence Mach number M for this supercritical wing configuration occurs from M=0.81 to M=0.83. Drag divergence is an indicator that strong shock waves are beginning to form

on the airfoil. The flight envelope for the vehicle was placarded at M=0.86 because of unstable pitching-moment characteristics measured on the scale model at M>0.86.

During the first wind tunnel test of this elastic wing (ref. 5), a region of high-dynamic structural response characterized by wing first-bending motion was unexpectedly encountered near M = 0.90. Consequently, further tests for measurement of steady surface-pressure, static wing deflections (refs. 6 and 7), and unsteady surface pressure associated with control surface oscillation (ref. 8) were limited to M = 0.88 or less to prevent possible damage to the wing, which was still considered to be a flight article. Although a change in flow characteristics at Mach numbers greater than drag divergence was expected, the large-amplitude response motion of the wing was not anticipated. Prior to the first wind tunnel test of the flexible wing, flutter predictions by linear analysis methods indicated that flutter would occur at dynamic pressures greater than 600 psf, whereas tests were limited to dynamic pressures less than 400 psf. Because linear analysis methods were used, the flutter predictions did not extend into the transonic speed range.

After the first wind tunnel test was completed, the planned flight-test program was canceled. As a result, a second wind tunnel test was performed to explore the region of large-amplitude response of the wing and to define the unsteady flow conditions forcing this response (refs. 9 and 10). The second test showed that the response of the wing occurred in a narrow Mach number region centered near M=0.92 and that the response increased in magnitude as the test dynamic pressure q was increased.

The purpose of this paper is to present measurements of motions of the wing and surface pressures

for selected test conditions from the second wind tunnel test. Wingtip accelerometer and wing-root strain gage bridge time-history measurement data are presented with corresponding standard deviation calculations to show the region and the magnitude of the structural response of the wing. Detailed wing surface-pressure coefficient time-history plots are presented to show frequency, magnitude, nonsinusoidal character, and spanwise variation of the flow over the surface of the wing. More conventional chordwise pressure distributions as a function of test dynamic pressure q and test angle of attack α are also presented. An extensive frequency domain analysis effort was performed to further define the characteristics of the surface-pressure measurements of the wing and to relate them to the measured response of the wing. Because the results of this effort were inconclusive, wing surface-pressure power spectral density (PSD) results have not been included in this report. Although the oscillation of the wing is shown to be associated with the development of separated flow, the oscillation mechanism has not been explained. However, the oscillating flow characteristics are described in detail to provide a database for further evaluation.

This report presents results from only a portion of the completed tests. The results presented are intended to define the unsteady flow conditions that existed over the range of Mach numbers where highdynamic structural response of the wing was observed. Additional test activities not reported herein attempted to reduce the dynamic response of the wing. In one test, the outboard control surface was deflected to either 6° or -6° (ref. 9). In a second test, a spanwise fence was installed on the lower surface of the wing (ref. 9). References 11 and 12 report the use of the outboard control surface with a feedback control system in an attempt to actively control the motion of the wing.

Symbols and Abbreviations

ARW-2	aeroelastic research wing
C_p	pressure coefficient
C_p^*	critical pressure coefficient, two-dimensional value
Cp_{rms}	pressure coefficient variance or standard deviation value
c	local chord
c_l	section lift coefficient
DAST	Drones for Aerodynamic and Structural Testing program

ESP	electronically scanned pressure
g	acceleration due to gravity, 32.2 ft/sec^2
M, M_{∞}	free-stream Mach number
PSD	power spectral density
q	free-stream dynamic pressure, psf
Re	Reynolds number based on mean aerodynamic chord length of 1.96 ft
rms	root mean square
TDT	Langley Transonic Dynamics Tunnel
t/c	airfoil thickness ratio
X	streamwise distance from wing leading edge at centerline of fuselage, in.
x/c	streamwise fraction of local chord
Y	spanwise distance from centerline of fuselage, in.
z/c	vertical fraction of local chord
α	angle of attack, deg
η	fraction of semispan
2-D	two dimensional
3-D	three dimensional
The follow	ving symbols are used in the computer

The following symbols are used in the computergenerated tables and figures:

pressure coefficient

CP

ETA	fraction of semispan
G	acceleration due to gravity, $32.2~\mathrm{ft/sec^2}$
MAX	maximum value of measurements
MEAN	average value of measurements
MIN	minimum value of measurements
MV	millivolts
RANGE	maximum value to minimum value
SGB	output of strain gage bridge, mV
SIGMA	standard deviation, positive square root of variance, root-mean-square (rms) quantity
X	streamwise distance from wing leading edge at centerline of fuselage, in.
X/C	fraction of local chord
Y	spanwise distance from centerline of

fuselage, in.

Test Item and Procedures

Research Wing

The right semispan of the full-scale wing and a half-body fuselage were used as the test model. They are shown mounted on the TDT test section sidewall in figure 1. Wing planform and dimensional data are presented in figure 2. Excluding the inboard trailing-edge extension, the model had a full span aspect ratio of 10.3 and a taper ratio of 0.40. The supercritical wing model had a semispan length of 9.5 ft and a leading-edge sweep angle of 28.8°. The half-body fuselage had a 25-in-diameter cylindrical cross section with ogive nose and tail sections.

This ARW-2 wing design originated from an early supercritical wing model developed for energy efficient flight. It was designed for a cruise lift coefficient of 0.53 at M=0.80. The angle of attack for cruise flight was approximately 1.35°. For a vehicle weight of 2350 lb, the cruise altitude was 46 800 ft at a flight dynamic pressure of 126.4 psf.

The desired shape of the wing for cruise flight incorporated three airfoil shapes. The first airfoil shape defined the inboard wing and fuselage juncture at $\eta=0.106$ where the airfoil thickness ratio (t/c) was 0.144. The second airfoil shape defined the midspan where the inboard trailing-edge extension ends at $\eta=0.426$ with t/c=0.120. The third airfoil shape defined the wingtip at $\eta=1.000$ with t/c=0.106. Straight-line interpolation along a constant percent chord defined the airfoil shape at locations between the three specified airfoils. Coordinates for the three cruise shape airfoils are presented in table 1.

With a flexible wing, it is necessary to use a multistep process to define a fabrication or jig shape that will result in the desired shape of the wing for cruise flight conditions. For the ARW-2 flexible wing, the scale-model surface-pressure measurements of the wing were used to predict the full-scale aerodynamic loads (ref. 4). These aerodynamic loads and a 1q constant were then applied to a structural analysis model of the wing that included structural stiffness and mass characteristics of the wing and mass information for nonstructural components. The calculated deformation of the wing for the cruise condition was then subtracted from the cruise shape to define the jig shape for the wing. Jig shape airfoil coordinates as calculated and as measured after fabrication are listed in reference 13 for 10 semispan stations.

The frequency response characteristics measured in still air for the wing structure are shown in figure 3. The four nodal frequencies in figure 3 are listed in order of increasing frequency; these include the wing first-bending mode, the wing second-bending mode, the fore and aft in-plane mode, and the wing first-torsion mode. The four frequencies are 8.1, 29.7, 39.9, and 62.6 Hz, respectively. Additional information on the wing structure, the wing mode shapes, and the frequencies is presented in reference 13.

Numerical calculations for comparison of pressure distributions with data presented herein should be based on the fabricated airfoil shapes and must address static deformation of the wing under loading (ref. 13). Time accurate calculations should also include mass and frequency effects.

Instrumentation

Locations of the surface-pressure measurement orifices and the accelerometers are presented in the wing planform shown in figure 2. The surface pressures of the wing were measured with a separate electronically scanned pressure (ESP) transducer module measurement system for each orifice row (ref. 14). Each ESP module contained 32 pressure transducers, all of which had a common reference pressure port. For this test setup, the reference pressure was the tunnel static pressure. The surface orifices of the wing (0.040-in. diameter) were connected to the pressure transducers by matched metal and plastic tubes with inner diameters of 0.040 in. The total length of each metal and plastic tube was 18 in. The surface pressure was measured with 16 orifices on both the upper and lower surface of the wing at the inboard orifice row and 15 orifices each on both the upper and lower surfaces of the wing at the other five orifice rows for a total of 182 surface-pressure measurements. An additional eight in situ pressure transducers were located next to some of the orifices at $\eta = 0.871$ for calibration, as noted in reference 13. For this report, only surface-pressure measurement data from the outboard three orifice rows ($\eta = 0.707$, 0.871, and 0.972) were used.

Vertical response motion of the wing was measured by 10 accelerometers located along the front and rear spars of the wing; the distribution is shown in figure 2. The locations are listed in table 2. Only data from accelerometers 9 and 10 were used for this report. The wing was also equipped with several calibrated strain gage bridges to measure shear, bending-moment, and torsion loads (ref. 15). For the wind tunnel tests, four strain gage bridges were used. Strain gage bridges 1 and 2 were on the front spar, and strain gage bridges 3 and 4 were on the rear spar. All bridges were near the wing root, and their locations are listed in table 2. Only data from strain gage bridge 4 were used for this report. Strain gage

Ξ

bridge 4 had individual gages located on the upper and lower spar caps (two each); therefore, the bridge was primarily sensitive to bending-moment loads.

Data Acquisition

For flight-test purposes, the wing was equipped with a digital 10-bit pulse code modulation (PCM) encoder system for telemetric transmission of data from the wing to a receiving station on the ground. This encoder system was used to acquire most of the wing instrumentation data for the wind tunnel test. The sampling sequence of the encoder consisted of a major data frame divided into eight minor frames. Pressure measurements from the three outboard orifice rows were sampled in each minor frame, which resulted in 250 samples per sec. Pressure measurements from the three inboard orifice rows were sampled only once in each major frame for 31.25 samples per sec. For this report, only data recorded at 250 samples per sec were used. The encoder system sampled the measurements sequentially rather than all at the same instant. The sequential sampling arrangement had a small effect on the phase relationship between measurements. At 250 samples per sec, the first measurement within one frame of data was recorded as much as 0.004 sec before the last measurement within the same frame. This sequential sampling system resulted in phase errors from 0.01° per Hz to 1.4° per Hz; the phase error depended on the location of the signals in the sampling lineup. For the data presented herein, no corrections were made for the sequential sampling delays between measurements. Also, corrections were not made for magnitude and phase errors that might result from the short length of the tubes used to connect the surface orifices of the wing to the pressure transducers.

Data from the six outboard accelerometers and the four strain gage bridges were taken at 250 samples per sec. Structural response measurements of the wing presented herein are from the two wingtip accelerometers (9 and 10) and the wing-root bendingmoment strain gage bridge (SGB 4). Surface-pressure measurements of the unsteady flow over the wing presented herein were obtained at 250 samples per sec from the three outboard orifice rows. The strain gage bridge signals and accelerometer 9 and 10 signals were filtered with a cutoff frequency of 25 Hz before being encoded and transmitted on the PCM system.

Wind Tunnel

The model was tested in the Langley Transonic Dynamics Tunnel (TDT), which is a closed-circuit continuous-flow tunnel with a 16-ft-square test section with cropped corners and slots in all four walls (ref. 16). Mach number and dynamic pressure can be varied simultaneously or independently; either air or a heavy gas (R-12) can be used as the test medium. The heavy gas R-12 was used for the tests reported herein.

Tests

The Mach number range for the tests reported herein begins at the design cruise speed of M=0.80and increases to M = 0.96. The semirigid scalemodel tests of this supercritical wing configuration indicated a drag divergence at M=0.81 to 0.83Drag divergence is an indicator of the development of strong shock waves on the surface of the wing. These same semirigid scale-model tests indicated a severe pitch-up problem beginning at M = 0.86; therefore, the maximum speed for flight tests was placarded to that Mach number. high-dynamic response of the wing was observed at M = 0.90 to M = 0.94, which was well above the normal operating speed for this aircraft configuration; however, most aircraft are required to show that they are free from flutter to speeds 1.2 times the design dive speed. For these tests, M = 0.96 represents 1.2 times the design cruise speed, and the highdynamic response of the wing did occur within this speed range. Although the high-dynamic response observed for this research wing is not considered to be conventional flutter (bending and torsion interaction), the response was sufficiently large to warrant further investigation.

The supercritical wing was tested at three different tunnel stagnation pressure levels. At each stagnation pressure level, the speed of the tunnel was increased until the desired Mach number was reached. As a result, the test dynamic pressure q increased slightly during each run as a function of Mach number, as shown in figure 4. Although the dynamic pressure was not constant, the runs at the three different tunnel stagnation pressure levels are referred to as the low q, medium q, and high q conditions. At M=0.92 the low q was 78.4 psf, medium qwas 153.3 psf, and high q was 317.8 psf. Figure 4 also shows the region where the high-dynamic response of the wing was observed and measured and the predicted linear theory flutter boundary, which is located at a much higher dynamic pressure level.

A list of conditions for the low q, medium q, and high q tests reported herein are presented in table 3. For the low q condition, data acquired at $\alpha=0^\circ$ are presented for five Mach numbers. For the medium q and high q conditions, data are presented for seven

Mach numbers. For the medium q conditions, the angle of attack was varied from $\alpha = -2^{\circ}$ to 2° in increments of 1° . For the high q conditions, the primary angle of attack was $\alpha = 0^{\circ}$, although a few test points were obtained at $\alpha = -1^{\circ}$ and 1° , as listed in table 3.

Wing Response Measurements

Accelerometers

Statistical data (mean, maximum, minimum, and standard deviation) for wingtip accelerometers 9 and 10 for a 10-sec measurement interval are shown in tables 4, 5, and 6 for the low q, medium q, and high q tests, respectively, for all conditions listed in table 3. Examples of measurement time histories for accelerometers 9 and 10 are shown in figure 5 for a 4-sec time interval for all Mach numbers for the medium q and high q conditions with the model at $\alpha = 0^{\circ}$. Signals from accelerometers 9 and 10 were subjected to low pass filtering with a cutoff frequency of 25 Hz. Plots of the standard deviation from tables 4, 5, and 6 for accelerometers 9 and 10 are presented in figure 6 for $\alpha = 0^{\circ}$. A PSD analysis for each test condition with $\alpha = 0^{\circ}$ was also performed using a 10.24-sec record of wingtip leading-edge data from accelerometer 9. For each test condition, the maximum accelerometer PSD value in the 8-Hz to 10-Hz range was established. These peak PSD values, normalized to a maximum of 1.0, are presented in figure 7 as a function of Mach number for each of the three dynamic pressure test levels. The results presented in figure 7 are consistent with those shown in figure 6; both sets of results indicate that the largest wingtip accelerations shifted from M = 0.94 for the low q condition to M = 0.90 to 0.92 for the high q condition when the model was at $\alpha = 0^{\circ}$.

The dynamic response measured by the wingtip accelerometers was greater for $\alpha=-1^{\circ}$ and 1° than for $\alpha=0^{\circ}$ (tables 5 and 6). The largest dynamic response of the wing occurred for the high q condition at M=0.92 at $\alpha=-1^{\circ}$ (table 6 tab point 311). A corresponding measurement for $\alpha=1^{\circ}$ was not attempted because of concern for model structural safety.

Results from a peak-hold, frequency response analysis of the wingtip leading-edge accelerometer signal (accelerometer 9) for the high q condition are presented in figure 8. These results illustrate the frequency range, the rapid growth, and the equally rapid decay of the response of the wing as Mach number was increased from M=0.80 to 0.96. The results presented in figure 8 were taken in real time during tests with intervals of several minutes for each data

set. The time interval is longer than the 10-sec data intervals used for results in figures 6 and 7.

The accelerometer standard deviations (fig. 6) and the frequency response analysis results (fig. 7) indicate the following: no significant wingtip motion occurred at M = 0.80 and M = 0.85; for the high dynamic pressure test condition, the maximum wingtip response occurred from M = 0.90 to 0.92with a significant decrease at M = 0.94; for the low q and medium q conditions, the maximum response of the wingtip occurred from M = 0.92 to 0.94; and at M = 0.96, the motion of the wingtip had essentially subsided for all three dynamic pressure test conditions. The accelerometer peak-hold frequency analyses (fig. 8) show that the frequencies for the large response motions of the wingtip were in the 8-Hz to 10-Hz range, which indicates that the motions of the wing were predominately composed of wing first-bending mode motion.

Strain Gage Bridges

Statistical data for 10-sec measurement intervals for the rear spar bending-moment strain gage bridge (SGB 4) are presented in tables 7, 8, and 9 for the low q, medium q, and high q conditions, respectively, for all test conditions listed in table 3. Examples of SGB 4 measurement time histories for the medium q condition at $\alpha = 0^{\circ}$ for a 4-sec interval show oscillation amplitude and frequency characteristics (fig. 9). For the M = 0.80, 0.85, and 0.88 measurements, the bending-moment load measured by SGB 4 increases with Mach number (fig. 9). At M = 0.90, the bending-moment load has dropped slightly, and higher amplitude response oscillations are seen. At M = 0.92 and M = 0.94, the loading level has dropped significantly, and it can be observed that 0.5- to 1.0-sec bursts of low frequency wing bending-moment motions are occurring. At M = 0.96, the bending-moment loading is very low, and the amplitude of oscillations has decreased significantly.

The mean, maximum, and minimum values from SGB 4 measurements listed in tables 7, 8, and 9 for $\alpha=0^{\circ}$ are presented in figure 10 as a function of test Mach number. The SGB 4 mean value data indicates the total loading on the wing. The difference between the maximum value and the minimum value measured over the 10-sec time interval indicates the measurement range that occurs because of loading oscillations. The SGB 4 standard deviation values presented in figure 11 indicate the dynamic-structural response of the wing was similar to that indicated by the wingtip accelerometer measurements, as shown in figure 6.

Flow Visualization

Wool tufts were placed on the upper and lower surfaces of the wing for several tests to visualize the flow patterns on the wing. These tests were separate from those used to obtain surface-pressure measurements. The tufts were placed on eight span stations located at $\eta=0.517,\ 0.558,\ 0.635,\ 0.671,\ 0.761,\ 0.816,\ 0.905,\ and\ 0.938$ (fig. 12). The tufts were glued to the wing surface, with each having a free-moving section 1 in. long. On the six inboard span stations the tufts were located every 10 percent of the local chord starting at 10 percent of the chord. On the two outboard span stations, the tufts were located between 10 percent and 90 percent chord at every 20 percent of the local chord location.

Figure 13 lists the regions of separated flow on the wing, as indicated by the tuft data for M=0.85 to 0.96 at $\alpha=0^{\circ}$ for medium q conditions. Figure 13 also shows sketches of the separated flow regions defined by the tufts. Flow separation on the upper surface is first indicated at M=0.88. The region of separated flow then expands upstream and outboard as the Mach number increases to M=0.94 and then remains constant to M=0.96. Flow separation on the lower surface is initially indicated at M=0.90. The region of separated flow expands upstream and outboard as Mach number increases to M=0.94. At M=0.96, the region of separated flow on the lower surface decreases and moves downstream and inboard.

Unsteady Pressure Measurements

Surface-pressure measurements were recorded for each of the test conditions of table 3. These unsteady pressure measurements are shown as follows: (1) pressure measurement statistical data are presented in tables 10, 11, and 12 for all the test conditions listed in table 3, (2) pressure measurement time-history plots are presented in figures 14, 15, and 16 for all test conditions at $\alpha = 0^{\circ}$ in table 3, and (3) chordwise pressure distributions of mean values with measurement ranges are presented in figures 17, 18, and 19 for test conditions at $\alpha = 0^{\circ}$ in table 3. The data presented in tables 10, 11, and 12 are the computed measurement mean value, the maximum value, the minimum value, and the standard deviation for each of the pressure coefficients for the 10-sec analysis interval. The surface-pressure measurement time-history plots in figures 14, 15, and 16 are presented for a 0.5-sec interval for each orifice location. The mean value chordwise pressure distributions and the measurement ranges in figures 17, 18, and 19 are a portion of the statistical data from tables 10, 11, and 12.

Surface-Pressure Measurement Time Histories

Examples of time-history plots of 0.5-sec interval pressure coefficients are presented in figures 14, 15, and 16 for the low q, medium q, and high q conditions, respectively. The columns of time-history measurements in each figure are for the three outboard orifice rows, where high sample rate measurements were obtained. The measurements show that, at some test conditions, there are significant spanwise variations in unsteady pressures as well as chordwise variations. As indicated in the figures, the upper 15 pressure measurements in each column are from the wing upper surface and the lower 15 from the wing lower surface.

In figures 14, 15, and 16 at the left edge of each of the inboard station ($\eta=0.707$) pressure coefficient time-history records, the zero pressure coefficient location is given as well as a diagonal line from the zero pressure coefficient level to the value for the first data point in the time-history record. Similarly, at the right edge of each pressure coefficient time record (all three semispan stations), the diagonal line goes from the last measurement value in the record to the zero level and is followed by the x/c position.

No pressure measurements are given for the first three orifice locations on the lower surface at spanwise station $\eta=0.707$ because they were found to be invalid. To show the relationship between local pressure oscillations and the oscillatory motion of the wing as measured by the bending-moment strain gage bridge on the rear spar, the output of SGB 4 is included in figures 14, 15, and 16. For the wing first-bending mode, wing-root bending moment is expected to be proportional to wing deflection. Increased SGB 4 output indicates increased upward bending-moment load.

Chordwise Pressure Distributions

Chordwise pressure distributions for the upperand lower-surface mean values of the three outboard orifice stations and the ranges for the upperand lower-surface measurements are presented in figures 17, 18, and 19 for the low q, medium q, and high q conditions, respectively. The mean values and the range of minimum and maximum values for a 10-sec interval for each test condition are listed in tables 10, 11, and 12. The range of values was selected as the method to show the pressure variations because of the nonperiodic form of the pressure variations at several locations. The upperand lower-surface-pressure measurement ranges are shown separately to prevent overlapping of data.

Flow Separation

The mean value chordwise pressure distributions and measurement ranges of figures 17, 18, and 19 can also give information on the occurrence of flow separation. The typical practice is to infer the state of the flow from the mean pressure measurements at a few key locations. For this supercritical airfoil, the upper-surface pressure coefficient curve should cross from above (negative value) to below the zero line (positive value) near x/c = 0.95 for attached flow conditions. Good examples of pressure distributions are shown in figure 18(a), where the upper-surface trailing-edge measurements for all three semispan stations are well below the zero line. Trailing-edge separated flow conditions are definitely indicated if the upper-surface trailing-edge pressure measurement at x/c = 0.99 approaches or crosses to the upper side of the zero line. An example of the mean value upper-surface trailing-edge pressure measurement approaching the zero line is shown in figure 18(d) for M = 0.90 at $\eta = 0.707$. Note that the range indicates that the measurement has crossed to the upper side of the zero line on at least one occasion. Figure 18(g) shows an example of upper-surface flow separation along the trailing edge at all three semispan stations.

For the wing lower surface, attached flow in the trailing-edge cove region of the supercritical airfoil from x/c = 0.60 to 0.975 produces a positive pressure coefficient profile below the zero line, as shown in figures 17, 18, and 19 for M = 0.80, 0.85, and 0.88. When the flow on the lower surface separates, the pressure coefficients for the cove region move up toward, or across and above the zero line. Localized flow separation in the front portion of the lowersurface cove region often occurs prior to flow separation over the entire cove region. An example is shown in figure 18(e) for measurements at $\eta = 0.707$. For attached flow, the lower-surface measurement at x/c = 0.66 should be below the zero line, and the measurement at x/c = 0.74 should be farther below the zero line. These lower-surface measurements at x/c = 0.66 and 0.74 indicate a localized flow separation bubble at the leading edge of the cove region with attached flow farther toward the trailing edge, particularly at the last two measurement locations. A schematic of flow with a separation bubble is given in figure 20. Figures 14, 15, and 16, which present pressure coefficient time histories, can also be evaluated for flow separation with the techniques described above.

Discussion of Results

Chordwise pressure distribution plots showing mean value (time-averaged) data are the most common way of presenting measured surface-pressure data of the wing. If the measurement range is included with the mean value data, it can alert the observer to unsteady flow and its location in the pressure distribution. Corresponding time-history plots of measured surface-pressure coefficients of the wing provide an indication of the cyclic nature, the magnitude, and the frequency variation of individual measurements. The following paragraphs discuss correlating results from the pressure measurements (the time-history plots and the chordwise pressure distributions) and the dynamic response of the wing as observed visually and as measured by a wingtip accelerometer and a wing-root strain gage bridge for each of the test Mach numbers.

Mach 0.80

Data were recorded at M = 0.80, which is the wing design Mach number, for the medium q and high q conditions. At this Mach number, the wing exhibited little or no significant dynamic response. However, the pressure coefficient time-history measurements (figs. 15(a) and 16(a)) did show that there is a large region of high-frequency unsteady flow on the upper surface of the wing (from x/c = 0.29to 0.74 at $\eta = 0.707$ and from x/c = 0.30 to 0.57 at $\eta = 0.871$). No coherent low-frequency content is noticeable in the pressure measurements, and no significant motion of the wing is indicated by the SGB 4 trace (fig. 9) or by the accelerometer trace (fig. 5), nor was any observed visually. The corresponding chordwise pressure distribution mean value data are presented in figure 18(a) for the medium q condition and in figure 19(a) for the high q condition. The largest measurement ranges occur at the inboard station ($\eta = 0.707$) with ranges of lesser magnitude at the outboard station ($\eta = 0.972$). The data shown in figures 15(a), 16(a), 18(a), and 19(a) are for $\alpha = 0^{\circ}$, whereas the design cruise angle of attack for the wing was about 1.5°. A comparison of the inboard uppersurface-pressure coefficient standard deviation data for $\alpha = 0^{\circ}$, 1.0°, and 2.0° for the medium q condition (tables 11(o), 11(v), and 11(cc)) indicates that the amount of upper-surface flow unsteadiness was similar, but the magnitude increased as the angle of attack was increased. Because M=0.80 was the design cruise Mach number for this supercritical wing. this region of flow unsteadiness was not expected.

although it did not seem to cause any significant response motion of the wing.

Mach 0.85

The dynamic response of the wing increased little at M = 0.85 over that experienced at M = 0.80(figs. 5 through 11). However, there is evidence from the pressure measurements of the development of a strong shock on the upper surface of the wing for all span stations at all three test conditions (low q, medium q, and high q). The time-history measurements of pressure coefficients for M=0.85(figs. 14(a), 15(b), and 16(b)) show a large vertical separation between measurement traces (e.g., fig. 14(a) from x/c = 0.74 to 0.82 at $\eta = 0.707$) which is characteristic of the steep pressure gradient associated with a strong shock. The shock location moves progressively forward for the middle ($\eta = 0.871$) and outboard ($\eta = 0.972$) orifice rows. As the test dynamic pressure is increased, the shock location at each spanwise station moves forward, the pressure change across the shock decreases, and the flow unsteadiness increases. (Compare figs. 14(a), 15(b), and 16(b).) These changes with increased dynamic pressure are believed to result from a decrease in local angle of attack for the supercritical wing. The decreased angle of attack occurs with bending and twist deformation as test dynamic pressure, and therefore wing loading, increases. The levels of loading of the wing for each test condition, as measured by the wing-root bending-moment strain gage bridge, are shown in figure 10.

The chordwise pressure distribution and measurement range data for low q, medium q, and high q conditions at M=0.85 show shock locations on the upper surface and regions of large flow unsteadiness on both the upper and lower surfaces (figs. 17(a), 18(b), and 19(b)). The measurement ranges are particularly large for the upper-surface shock locations at all three span stations. At M=0.85, there was no indication of flow separation. Also, there was no large wing response motion measured (figs. 6 and 11) or observed visually.

Mach 0.88

At M=0.88, data were recorded only for the medium q and high q conditions. The pressure coefficient time histories for M=0.88 show that large-amplitude pressure variations occurred at several orifice locations at each spanwise location (figs. 15(c) and 16(c)). The strong shock locations on the upper surface are readily observable. The large vertical spikes in the pressure traces for x/c=0.74 at $\eta=0.707$, x/c=0.68 at $\eta=0.871$, and x/c=0.43

at $\eta = 0.972$ occur when the shock periodically moves across these locations. The frequency of the shock oscillation (fig. 15(c)) appears to be about 15 Hz, whereas the wing bending-moment frequency is about 9 to 10 Hz. The bending-moment frequency can be seen better in figure 9, which gives a longer time interval record for SGB 4 than what appears in figure 15(c). (At M = 0.94, larger motion of the wing is experienced; the shock frequency decreases and is more clearly associated with the oscillatory motion of the wing (fig. 15(f)). At M = 0.88, a large pressure gradient on the lower surface of the wing at the outboard orifice row ($\eta = 0.972$) between x/c = 0.29 and 0.36 indicates the existence of a strong shock. A strong shock on the lower surface at the two more inboard stations ($\eta = 0.707$ and 0.871) is not as obvious, although large pressure oscillations exist across several orifice locations (x/c = 0.30to 0.57 for $\eta = 0.871$). For the medium q condition (fig. 15(c)), there are many orifice locations where large-amplitude pressure oscillations occur, but the increase in motion of the wing from M = 0.85 to 0.88 was moderate, as shown by the wing response motion data (figs. 6 and 11). For the high q condition, the unsteady pressure oscillations on the lower surface of the wing were much larger, and a correspondingly greater increase in measured response motion of the wing from M = 0.85 to 0.88 occurred, as shown in figures 6 and 11.

The chordwise pressure distribution data for M = 0.88 also show that the upper-surface measurement ranges are largest at and near the shock location (figs. 18(c) and 19(c)). For the lower surface of the wing, the range of measured pressure variations is quite large in the midchord region (x/c = 0.30)to 0.51), which may represent shock movement over a large fraction of the chord. Both the trailingedge pressure coefficient measurements and the observation of the wool tufts at medium q condition indicated that the flow remained attached in the outboard region of the wing for this Mach number. Although the pressure measurement ranges are very large at M = 0.88, the wing experienced only a moderate increase in response motion as mentioned earlier.

Mach 0.90

At M=0.90, the response of the wing increased significantly for all test conditions, and it was at or near the maximum response for the high q condition. The pressure coefficient time histories for M=0.90 show the continued existence of a strong shock on the upper surface of the wing and the development of a strong shock on the lower surface of

the wing at the inboard ($\eta = 0.707$) and outboard $(\eta = 0.972)$ stations (figs. 14(b), 15(d), and 16(d)). On the lower surface at the middle spanwise station $\eta = 0.871$ for the low q condition, there appears to be an oscillating weak shock (fig. 14(b)). Also at $\eta = 0.871$, a strong shock appears to be developing for the medium q condition (fig. 15(d)), and at the high q condition, a strong shock has developed, although it is oscillating across the x/c = 0.51 orifice location (fig. 16(d)). The trailing-edge upper- and lower-surface pressures at M = 0.90 are relatively stable for all spanwise stations at all dynamic pressure test conditions; however, the high q condition at the inboard station $\eta = 0.707$ lower-surface measurements from x/c = 0.52 to 0.97 show large-amplitude pressure variations (fig. 16(d)). These lower-surfacepressure fluctuations are believed to result from the development of a flow separation bubble that extends roughly from x/c = 0.66 to x/c = 0.82 in the trailing-edge cove region.

The time-history pressure measurements at the medium q conditions that indicate attached flow (fig. 15(d)) are different from the tuft measurement results shown in figure 13. These tuft measurement results indicate flow separation on the upper-surface trailing edge for all three pressure measurement span stations and on the lower surface at the inboard station, $\eta=0.707$. The surface-pressure measurements and the tuft measurements were taken on separate test runs to assure that the tufts did not interfere with the pressure measurements. It is possible that the tufts may cause flow separation to occur slightly earlier than it would occur for the clean wing because the tufts are surface mounted and will cause some flow disturbance.

The mean value pressure distributions for M = 0.90 show noticeable differences in profile for the low q, medium q, and high q conditions (figs. 17(b), 18(d), and 19(d)). At the low q condition, the uppersurface-pressure coefficients are higher than those of the lower surface over the entire chord (fig. 17(b)). At the medium q condition, the upper- and lower-surface mean value pressure coefficients are about equal over the first 40 percent of the chord (fig. 18(d)). For the high q condition, the lower-surface-pressure coefficients are higher in magnitude than those of the upper surface over the forward portion of the chord (fig. 19(d)). This difference in pressure coefficients is a strong indication that the flexible wing has experienced increased upward bending deflection with increased test dynamic pressure, which for this aft swept wing, effectively results in nose-down twist. Additional nose-down twist occurs because of the aft

chord loading, which is typical of the supercritical airfoil.

For M=0.90, the pressure measurement ranges show large amplitudes at the strong shock locations for both upper and lower surfaces. For the high q condition, at the inboard orifice row $\eta=0.707$, the upward shift of the pressure coefficients in the lower-surface cusp region from x/c=0.66 to x/c=0.82 indicate the existence of a flow separation bubble in this region (fig. 19(d)).

The motion of the wing at M=0.90, as indicted by the SGB 4 time-history traces in figures 14(b), 15(d), and 16(d), the accelerometer data in figures 6 and 7, and the SGB 4 data in figure 11, shows a significant increase for the high q condition when compared with the low q and medium q conditions. This increase in motion of the wing is consistent with the beginning of flow separation on the lower surface of the wing in the aft cusp region. For the high q condition, the wingtip motion was visually observed to be very large, which was consistent with the instrument measurements.

Mach 0.92

At M=0.92, the observed wingtip motions were at or near maximum for each of the dynamic pressure test conditions (figs. 6, 7, and 11). For the high q condition, the wingtip motions were large enough to cause concern for the structural safety of the wing. The time-history measurements of pressure coefficients at M=0.92 show large-amplitude pressure oscillations associated with strong shocks on both the upper and lower surfaces of the wing at all three semispan stations (figs. 14(c), 15(e), and 16(e)).

The mean pressure coefficient distributions at M = 0.92 show the strong shock locations and the associated large measurement ranges on both the upper and lower surfaces of the wing (figs. 17(c), 18(e), and 19(e)). These mean pressure distributions also indicate the existence of some flow separation at the upper-surface trailing edge, the development of a lower-surface flow separation bubble at the inboard station for the low q and medium q conditions, and the increase in size of the flow separation region for the high q condition. At the inboard station $\eta = 0.707$, the flow appears to be separated at the upper-surface trailing edge for all three test conditions. For the midwing station $\eta = 0.871$, the upper-surface trailing-edge flow appears to be separated for the low q condition, but it is attached for the medium q and high q conditions. On the lower surface of the wing, a separation bubble exists in the aft cusp region at the inboard and midwing stations

į :

 $(\eta = 0.707 \text{ and } \eta = 0.871)$ for all three test conditions. However, the size of the separation region increases from a single orifice location (x/c = 0.66) at $\eta = 0.707 \text{ and } x/c = 0.68 \text{ at } \eta = 0.871) \text{ for the low } q$ condition to a much larger area (x/c = 0.66 to 0.90 at $\eta = 0.707$ and x/c = 0.68 to 0.91 at $\eta = 0.871$) for the high q condition. The variations in flow separation at the inboard and midwing span stations for the low q, medium q, and high q conditions are consistent with a decrease in local angle of attack because of twist for the flexible wing as test dynamic pressure is increased. At the farthest outboard semispan station $\eta = 0.972$, the flow appears to remain attached for all three dynamic pressure test conditions, although large-amplitude pressure variations existed on the lower surface for the high q condition.

The SGB 4 time histories for M=0.92 show a significant increase in oscillation amplitude for the low q and medium q conditions over that experienced at M=0.90 (figs. 14(c) and 15(e)). For the high q condition, the oscillation in the SGB 4 measurement remained at approximately the same high level as for the M=0.90 case (fig. 16(e)). These SGB 4 measurement relationships are also shown in figure 11.

Mach 0.94

College and alternative property of the college of

The wing motion decreased significantly from M=0.92 to M=0.94 for the high q condition, whereas for the medium q or low q conditions, the wing motions remained at about the same level (figs. 6, 7, and 11). The pressure coefficient timehistory measurements at M = 0.94 for the low q and medium q conditions show that a separation bubble exists on the lower surface, continuously or intermittently, for all three spanwise stations (figs. 14(d) and 15(f)). For the high q condition (fig. 16(f)), the flow has completely separated in the lower-surface cusp region for the two inboard spanwise stations ($\eta = 0.707$ and $\eta = 0.871$); at the outboard station $(\eta = 0.972)$, the size of the separation bubble has increased significantly (x/c = 0.70 to x/c = 0.90). The associated pressure oscillations in this region are greatly reduced for the high q condition from those of the low q and medium q conditions where the flow is separated at the beginning of the cove region but reattaches near the trailing edge. For the low q condition, the steep pressure gradient associated with a strong shock is not observable for the outboard orifice row ($\eta = 0.972$) for either the upper or lower surface, although the largest pressure oscillations are at the outboard station (fig. 14(d)).

The mean pressure coefficient distributions for M=0.94 show that significant continuous flow sep-

aration exists on both the upper and lower surfaces (figs. 17(d), 18(f), and 19(f)). At the low q condition, the mean value chordwise pressure distribution for the outboard span station ($\eta = 0.972$) does not show the steep pressure gradient associated with a strong shock in the aft chord region, but rather it shows a region where the measurement range is quite large (fig. 17(d)). Data for the medium q condition show large measurement ranges associated with shock locations as well as indications of separated flow on the upper surface and in the lower-surface cove region at all semispan stations (fig. 18(f)). At the high q condition, the data show that flow separation exists on the upper and lower surfaces at all semispan stations with small measurement ranges for the inboard and midwing stations, except at shock locations (fig. 19(f)). At M = 0.94, the motion of the wing as observed and measured by SGB 4 and accelerometer 9 was significantly decreased for the high q condition, but it remained comparable to that at M = 0.92 for the low q and medium q conditions.

Mach 0.96

At M = 0.96, the motion of the wing as measured by the wingtip accelerometer and the wingroot strain gage bridge and as observed visually had substantially decreased for all dynamic pressure test conditions; therefore, it was no longer a concern with regard to safety of the wing. The time-history measurements of pressure coefficients for M=0.96 show that trailing-edge flow separation has occurred on both the upper and lower surfaces of the wing for all span stations and all dynamic pressure test conditions (figs. 14(e), 15(g), and 16(g)). The SGB 4 measurement traces show very little oscillation, and as previously described, motion of the wing had almost completely subsided. The mean pressure coefficient chordwise distributions at M = 0.96 show separated flow conditions on the upper-surface trailing edge and all through the cove region on the lower surface (figs. 17(e), 18(g), and 19(g)). There was very minimal response motion of the wing at this Mach number for all three dynamic pressure test conditions.

Summary

The buildup in dynamic response of the wing for each dynamic pressure test condition is associated with the development of strong shocks, first on the upper surface of the wing and then on the lower surface of the wing. The maximum dynamic response of the wing appears to be associated with the development of a flow separation bubble on the lower surface of the wing in the trailing-edge cove region (x/c=0.60 to 0.80). The flow separation bubble appears first at the more inboard semispan

station ($\eta=0.707$) and moves outboard with increasing Mach number. The motion of the wing decreases significantly as soon as the flow separation on the lower surface extends all the way to the trailing edge at the more inboard span stations. This generally correlates with flow separation at the upper-surface trailing edge. Because of changes in wing shape (bending and twist) with loading, the dynamic response buildup and decay occurred at slightly lower Mach numbers for the high q condition than for the low q and medium q conditions.

Effects of Wing Loading and Flexibility

The chordwise pressure distributions in figures 17, 18, and 19 showed the most significant unsteady flow conditions occurred on the outboard portion of the wing. It was mentioned in the discussion for the M = 0.85 test conditions that changes of local angle of attack occurred as a function of test dynamic pressure because of wing bending and twist deformation caused by aerodynamic loading. A comparison of mean value chordwise pressure distributions for the low q, medium q, and high q conditions for the model at $\alpha = 0^{\circ}$ are presented in figure 21(a) for the upper surface of the wing and in figure 21(b) for the lower surface of the wing for each Mach number test condition. The figures show differences that are believed to occur primarily because of the deformation of the wing with loading. It is acknowledged that as the test dynamic pressure is increased for any given Mach number, the test Reynolds number also increases, as shown in table 3.

For the upper surface of the wing, the largest changes in chordwise mean pressure distributions for the three test dynamic pressures are at M = 0.85 for the forward portion of the chord and M = 0.92 to M = 0.96 for the shock location on the aft portion of the chord (fig. 21(a)). At M = 0.92, the large shift forward in shock location at $\eta = 0.707$ occurs at the high q condition. For span station $\eta = 0.871$, the shock location for the medium q condition is farther aft than for the low q and high q conditions. This is true at span station $\eta = 0.871$ for M = 0.88through M = 0.96, whereas for the inboard station $(\eta = 0.707)$ and outboard station $(\eta = 0.972)$, the medium q upper-surface data fall on or between the high q and low q data. Note that for M = 0.80 and M = 0.88, no low q data are available.

For the lower surface of the wing, the most significant changes occur in the aft cove region where flow becomes separated as Mach number and test dynamic pressure are increased (fig. 21(b)). Flow separation is indicated first at the inboard station $\eta = 0.707$ for the high q condition at M = 0.90. At

M=0.92, flow separation in the cove region is indicated at both $\eta=0.707$ and $\eta=0.871$. At M=0.96, the mean pressure distributions indicate that the flow is separated in the cove region for all three test dynamic pressures.

Effects of Angle-of-Attack Changes

The effects of changes in angle of attack on the chordwise distribution of pressure coefficient mean values for the three spanwise station orifice rows at each Mach number are presented in figure 22(a) for the upper surface of the wing and in figure 22(b) for the lower surface of the wing. All data presented in figure 21 are for the medium dynamic pressure test condition with a range from $\alpha = -2^{\circ}$ to 2° in increments of 1° . Because the wing is flexible, changes in loading of the wing with changes in the angle of attack of the model will also result in changes in wing bending and twist deformation.

The primary changes in the mean value pressure distributions on the wing upper surface occur on the forward portion of the chord with increasing negative pressure as angle of attack is increased, as would be expected (fig. 22(a)). At M=0.80, evidence of a strong shock on the upper surface occurs only at the highest angle of attack ($\alpha=2^{\circ}$). At M=0.85, a strong shock on the upper surface is evident at $\alpha=1^{\circ}$ and $\alpha=2^{\circ}$.

For the lower surface of the wing the changes in leading-edge pressures are inversely proportional to angle of attack, as expected (fig. 22(b)). Strong shocks occur on the lower surface at M=0.88 for $\alpha=-2^{\circ}$ and -1° . At M=0.92, strong shocks occur on the lower surface for all angles of attack tested, and flow separation is indicated in the lower-surface cove region (x/c>0.6) for the inboard stations for the more negative angles of attack.

Comparison With Rigid Two-Dimensional Model Test Data

Measurements similar to measurements presented herein were made for surface-pressure fluctuations measured on a two-dimensional (2-D), rigid, conventional NACA 0012 airfoil section and on an early supercritical airfoil section (DSMA 523), and they are reported in reference 17. Figures 23 and 24, which are reproduced from reference 17, show carpet plots of pressure coefficient fluctuation (rms) values for these models as a function of chord position and Mach number. A similar presentation for the ARW-2 flexible three-dimensional (3-D) model is shown in figure 25 for data measured on the upper surface of the wing at semispan station $\eta=0.871$ for the

:=

medium q conditions and $\alpha=2^\circ$ to give the closest correlation in lift coefficients between the different sets of data. The ARW-2 data are standard deviation (rms) values from tables 11(cc) and 11(ii). A more direct comparison between data for 2-D models and 3-D swept wing models would result if the Mach number for the swept wing model was multiplied by the cosine of the wing sweep angle. For the ARW-2 model, this comparison was more difficult because the model was tapered, which makes the local sweep angle different at each chord position. For example, the leading-edge sweep angle is 28.8°, but the midchord sweep angle is 25.0°.

The data for the 2-D rigid NACA 0012 airfoil indicate that the maximum pressure fluctuations occur at the shock region, which moves slightly aft as Mach number is increased (fig. 23). Also, the data for the NACA 0012 airfoil show an increase in pressure fluctuation behind the shock for the higher Mach number conditions, which indicates separated flow for those test conditions. The data for the 2-D rigid DSMA 523 supercritical airfoil also indicate that the maximum pressure fluctuations are at the shock region (fig. 24). The shock location moved much farther aft with increased Mach number for the DSMA 523 airfoil than for the NACA 0012 airfoil. The data for the DSMA 523 airfoil also show an increase in pressure fluctuations, which indicates separated flow behind the shock at higher Mach number conditions. The data for the 3-D flexible ARW-2 supercritical wing section also show the largest pressure fluctuations in the shock region (fig. 25). The shock region for the ARW-2 section is far forward at M = 0.80, but it moved back significantly at M=0.85 and then moved back in smaller increments as Mach number is increased farther. For the ARW-2 section, the pressure fluctuations are largest at M=0.88 and M=0.90 for $\alpha=2^{\circ}$. The increase in pressure fluctuations behind the shock, which indicates separated flow, is present for M=0.90 and higher, as shown in figure 25. A comparison of the pressure fluctuations of all the models shows that the magnitude of pressure fluctuation at the shock region is similar for the rigid 2-D airfoils and the 3-D flexible ARW-2 model.

Concluding Remarks

A high-aspect-ratio, flexible, supercritical wing was tested in the Langley Transonic Dynamics Tunnel to investigate a region of high-dynamic response of the wing that occurred in the transonic speed range. Accelerometer measurements indicated that significant wingtip motions occurred between test Mach numbers M=0.90 and M=0.94 with peak

response occurring at about M=0.92. Tests at different test dynamic pressure levels q revealed that the Mach number region at which wing high-dynamic response was experienced remained nearly the same, but that the magnitude of wingtip motion increased as the test dynamic pressure was increased.

Surface-pressure measurements were obtained as part of the effort to define the unsteady flow conditions forcing the wing motion. These data are presented as tables of statistical data, pressure measurement time histories, and plots of chordwise pressure coefficients. The pressure measurement time histories show the magnitude and the frequency of the unsteady pressure oscillations, whereas flow separation was more easily determined from the chordwise pressure distributions.

The time-history measurements revealed that some high-frequency unsteady flow existed at the wing design cruise Mach number M = 0.80, although no significant wing motion occurred. As the Mach number was increased to M = 0.88, the upper surface of the wing developed steady supersonic flow over the forward portion of the chord. This flow was followed by a strong shock whose location oscillated across at least one pressure measurement orifice location. Although the measured pressure variations were large at M = 0.88, the wing experienced only moderate response motion. As the Mach number was increased to M = 0.92, the wing developed supersonic flow over the forward portion of the chord that was followed by strong shocks on both the upper and lower surfaces. The pressure variations with the largest amplitude occurred at the strong shock locations with smaller variations primarily aft of the shock in the trailingedge region, particularly on the lower surface of the wing. At the high dynamic pressure test condition for M = 0.92, the wing motion was of sufficient magnitude to cause concern for the structural safety of the wing. When the test Mach number was increased to M = 0.96, the pressure measurements exhibited very small dynamic variations, and the motion of the wing essentially disappeared.

The maximum dynamic response of the wing appears to be associated with the development of a flow separation bubble on the lower surface of the wing in the trailing-edge cove region. The flow separation bubble appears first at the more inboard fraction of the semispan ($\eta=0.707$) and increases in length and also moves outboard with increasing Mach number. For the high q condition, the separation bubble appears first at M=0.90, whereas for the low q and medium q conditions, it appears first at M=0.92. This difference is attributed to increased loading of the wing for the high q condition and therefore a

difference in wing shape (twist). At M=0.96, with wing motion subsided, flow separation had occurred at the upper-surface trailing edge. On the lower surface, the flow had changed from a flow separation bubble to a complete separation from the forward edge of the cove region to the trailing edge of the wing.

NASA Langley Research Center Hampton, VA 23681-0001 August 11, 1994

References

- Murrow, H. N.; and Eckstrom, C. V.: Drones for Aerodynamic and Structural Testing (DAST)—A Status Report. J. Aircr., vol. 16, no. 8, Aug. 1979, pp. 521–526.
- Sandford, M. C.; Ricketts, R. H.; and Hess, R. W.: Recent Transonic Unsteady Pressure Measurements at the NASA Langley Research Center. NASA TM-86408, 1985.
- Byrdsong, Thomas A.; and Brooks, Cuyler W., Jr.: Wind Tunnel Investigation of Longitudinal and Lateral-Directional Stability and Control Characteristics of a 0.237-Scale Model of a Remotely Piloted Research Vehicle With a Thick, High-Aspect-Ratio Supercritical Wing. NASA TM-81790, 1980.
- Byrdsong, Thomas A.; and Brooks, Cuyler W., Jr.: Wind-Tunnel Investigation of Aerodynamic Loading on a 0.237-Scale Model of a Remotely Piloted Research Vehicle With a Thick, High-Aspect-Ratio Supercritical Wing. NASA TM-84614, 1983.
- 5. Seidel, David A.; Sandford, Maynard C.; and Eckstrom, Clinton V.: Measured Unsteady Transonic Aerodynamic Characteristics of an Elastic Supercritical Wing. *J. Aircr.*, vol. 24, no. 4, Apr. 1987, pp. 225–230.
- Sandford, Maynard C.; Seidel, David A.; and Eckstrom, Clinton V.: Steady Pressure Measurements on an Aeroelastic Research Wing (ARW-2). NASA TM-109046, Feb. 1994.
- Byrdsong, Thomas A.; Adams, Richard R.; and Sandford, Maynard C.: Close-Range Photogrammetry Measurement of Static Deflections for an Aeroelastic Supercritical Wing. NASA TM-4194, 1990.

- Seidel, David A.; Sandford, Maynard C.; and Eckstrom, Clinton V.: Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing. NASA TM-4278, 1991.
- Seidel, David A.; Eckstrom, Clinton V.; and Sandford, Maynard C.: Transonic Region of High Dynamic Response Encountered on an Elastic Supercritical Wing. J. Aircr., vol. 26, no. 9, Sept. 1989, pp. 870-875.
- Eckstrom, Clinton V.; Seidel, David A.; and Sandford, Maynard C.: Unsteady Pressure and Structural Response Measurements on an Elastic Supercritical Wing. J. Aircr., vol. 27, no. 1, Jan. 1990, pp. 75–80.
- Adams, William M., Jr.; Tiffany, Sherwood H.; and Bardusch, Richard E.: Active Suppression of an "Apparent Shock Induced Instability." A Collection of Technical Papers, Part 2A AIAA/ASME 28th Structures, Structural Dynamics and Materials Conference, Apr. 1987, pp. 491-505. (Available as AIAA-87-0881.)
- 12. Seidel, David A.; Adams, William M., Jr.; Eckstrom, Clinton V.; and Sandford, Maynard C.: Investigation and Suppression of High Dynamic Response Encountered on an Elastic Supercritical Wing. Transonic Unsteady Aerodynamics and Aeroelasticity 1987. NASA CP-3022, Part 2, 1989, pp. 427-448.
- Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.; and Spain, Charles V.: Geometrical and Structural Properties of an Aeroelastic Research Wing. NASA TM-4110, 1989.
- Chapin, William G.: Dynamic-Pressure Measurements Using an Electronically Scanned Pressure Module. NASA TM-84650, 1983.
- Eckstrom, C. V.: Loads Calibrations of Strain Gage Bridges on the DAST Project Aeroelastic Research Wing (ARW-2). NASA TM-87677, 1986.
- Reed, Wilmer H., III: Aeroelasticity Matters: Some Reflections on Two Decades of Testing in the NASA Langley Transonic Dynamics Tunnel. NASA TM-83210, 1981.
- Roos, Frederick W.: Shock Oscillation and Pressure Fluctuation Measurements on Supercritical and Conventional Airfoils. Advanced Technology Airfoil Research, Volume 2, NASA CP-2046, 1978, pp. 201-219.

Table 1. Design Streamwise Airfoil Coordinates for Cruise Mach Number of 0.80

	z,	/c		z,	/c
x/c	Upper surface	Lower surface	x/c	Upper surface	Lower surface
	uselage junction at	n = 0.106	0.47000	0.04688	-0.08386
0.00000	$\frac{\text{dischage Julietion at }}{-0.00166}$	-0.00166	.48000	.04585	08316
.00200	.00960	01321	.49000	.04480	08246
•	.01579	01923	.50000	.04377	08154
.00500	.02257	02612	.51000	.04263	08064
.01000	.03129	03453	.52000	.04149	07964
.02000	.03642	04011	.53000	.04035	07853
.03000	.04046	04011 04457	.54000	.03911	07743
.04000	.04358	04843	.55000	.03787	07613
.05000	.04619	04843 05178	.56000	.03663	07482
.06000	.04839	05483	.57000	.03529	07342
.07000	.05029	05768	.58000	.03395	07202
.08000		06033	.59000	.03261	07052
.09000	.05200		.60000	.03127	06902
.10000	.05339	$06278 \\06502$.61000	.02983	06753
.11000	.05457	06502 06716	.62000	.02839	06593
.12000	.05556	1	.63000	.02695	06434
.13000	.05645	06910	.64000	.02551	06275
.14000	.05723	07094	.65000	.02398	06116
.15000	.05791	07267	.66000	.02264	05957
.16000	.05849	07420	.67000	.02090	05799
.17000	.05897	07563	.68000	.01926	05649
.18000	.05945	07693	.69000	.01762	05503
.19000	.05972	07818	.70000	.01599	05366
.20000	.05990	07930	.71000	.01436	05228
.21000	.05997	08032	.72000	.01262	05091
.22000	.06004	08124	.73000	.01202	04965
.23000	.06001	08205	.74000	.00915	04848
.24000	.05998	08276	.75000	.00732	04732
.25000	.05985	08337	.76000	.00549	04616
.26000	.05971	08398	.77000	.00366	04509
.27000	.05948	08449	.78000	.00183	04414
.28000	.05925	08489	.79000	00009	04327
.29000	.05892	08530	.80000	00202	04241
.30000	.05859	08561	11	00202	04165
.31000	.05826	08591	.81000 .82000	00597	04098
.32000	.05782	08622	.83000	00799	04042
.33000	.05739	08642	.84000	01001	03995
.34000	.05686	08663	.85000	01203	03958
.35000	.05632	08674	.86000	01404	03931
.36000	.05568	08684	11	01404 01584	03913
.37000	.05505	08685	.87000	01364 01806	03913 03904
.38000	.05442	08685	.88000 .89000	01000 02006	03904 03914
.39000	.05368	08676	11:	02006 02206	03914 03917
.40000	.05294	08666	.90000	02206 02406	03917 03947
.41000	.05221	08647	.91000	02400 02605	03947 03987
.42000	.05137	08616	.92000	02804	04036
.43000	.05053	08586	.93000	02804 03002	04104
.44000	.04970	08546	.94000	03002 03200	04104 04182
.45000	.04876	08496	.95000	03200 03398	04182
.46000	.04782	08446	.96000	05398	04209

Table 1. Continued

	z	/c		z	/c
x/c	Upper surface	Lower surface	x/c	Upper surface	Lower surface
Wing and f	uselage junction a	$t \eta = 0.106$	0.43000	0.05939	-0.05952
0.97000	-0.03596	-0.04375	.44000	.05937	-0.05932 05913
.98000	03792	04501	.45000	.05935	05913 05865
.99000	03987	04647	.46000	.05924	05816
1.00000	04182	04811	.47000	.05913	1
Planf	orm break at $\eta = 0$	0.426	.48000	.05913	05758
0.00000	-0.00436	-0.00436	.49000	.05880	05690
.00200	.00499	01319	.50000	.05859	05621
.00500	.00990	01822	.51000	.05837	05543
.01000	.01483	02312	.52000	.05816	05454
.02000	.02111	02925	.53000	.05784	05366
.03000	.02559	03359	.54000	.05753	05267
.04000	.02896	03682	.55000	.05753	05159
.05000	.03165	03935	.56000	1	05050
.06000	.03403	04156	.57000	.05680	04922
.07000	.03611	04348	.58000	.05639	04793
.08000	.03800	04520	.59000	.05597	04655
.09000	.03968	04672	FI	.05546	04506
.10000	.04126	04813	.60000	.05494	04357
.11000	.04265	04935	.61000 .62000	.05433	04198
.12000	.04393	05056	1.1	.05371	04040
.13000	.04522	05168	.63000	.05310	03871
.14000	.04640	05269	.64000	.05238	03702
.15000	.04749	05269 05361	.65000	.05167	03523
.16000	.04847	05443	.66000	.05085	03344
.17000	.04946	05443 05524	.67000	.05004	03155
.18000	.05034	05524 05595	.68000	.04913	02966
.19000	.05113	05667	.69000	.04821	02777
.20000	.05191	05007 05728	.70000	.04730	02588
.21000	.05260	05728 05790	.71000	.04629	02399
.22000	.05329	05790 05841	.72000	.04527	02210
.23000	.05323	05841 05883	.73000	.04416	02021
.24000	.05456	05924	.74000	.04304	01832
.25000	.05514	05924 05966	.75000	.04183	01643
.26000	.05563		.76000	.04062	01454
.27000	.05612	05997 06028	.77000	.03940	01265
.28000	.05660	06028	.78000	.03809	01086
.29000	.05698	06050 06072	.79000	.03678	00917
.30000	.05737	06072 06093	.80000	.03537	00758
.31000	.05765	06105	.81000	.03395	00599
.32000	.05794	06105 06106	.82000	.03244	00450
.33000	.05823	06108	.83000	.03093	00311
.34000	.05851	06108 06109	.84000	.02942	00183
.36000	.05888		.85000	.02781	00064
.37000	.05907	06102 06093	.86000	.02620	.00035
.38000	.05915		.87000	.02449	.00114
.39000	.05915	06085	.88000	.02277	.00172
.40000	.05933	06066	.89000	.02096	.00221
.41000	.05941	06047	.90000	.01915	.00249
.42000	.05941	06019	.91000	.01724	.00258
. 12000	.00940	05991	.92000	.01533	.00236

Table 1. Continued

	z/	c		z/c	
x/c	Upper surface	Lower surface	x/c	Upper surface	Lower surface
	form break at $\eta = 0$	1426	0.38000	0.04988	-0.05608
	$\frac{0.01332}{0.01332}$	0.00195	.39000	.05014	05572
0.93000	.01131	.00133	.40000	.05041	05535
.94000	.00921	.00042	.41000	.05068	05495
.95000	.00710	00079	.42000	.05091	05449
.96000	.00489	00220	.43000	.05108	05399
.97000	.00258	00220 00392	.44000	.05125	05349
.98000	.00258	00592 00593	.45000	.05142	05290
.99000	00234	00813	.46000	.05155	05230
1.00000			.47000	.05162	05162
	Vingtip at $\eta = 1.00$	$-0.01\overline{350}$.48000	.05168	05088
0.00000	-0.01350	-0.01330	.49000	.05173	05009
.00200	00506	02531	.50000	.05176	04926
.00500	00074	02946	.51000	.05179	04834
.01000	.00356	02946	.52000	.05176	04741
.02000	.00925	1	.53000	.05170	04639
.03000	.01327	03823	.54000	.05164	04533
.04000	.01640	04088	.55000	.05156	04420
.05000	.01899	04295	.56000	.05141	04295
.06000	.02127	04472	.57000	.05125	04163
.07000	.02332	04625	.58000	.05108	04020
.08000	.02518	04758	.59000	.05088	03874
.09000	.02690	04878	.60000	.05062	03721
.10000	.02845	04981	.61000	.05033	03564
.11000	.02989	05077	.62000	.05004	03401
.12000	.03128	05167	.63000	.04974	03235
.13000	.03261	05247	.64000	.04935	03068
.14000	.03384	05317	.65000	.04895	02892
.15000	.03503	05383	.66000	.04846	02715
.16000	.03612	05440	.67000	.04796	02529
.17000	.03715	05490	l I	.04744	02342
.18000	.03814	05536	.68000	.04685	02156
.19000	.03904	05576	.70000	.04625	01962
.20000	.03993	05612	11	.04563	01768
.21000	.04073	05648	.71000	.04494	01574
.22000	.04162	05675	.72000	.04421	01380
.23000	.04232	05698	.73000	.04342	01186
.24000	.04302	05715	.74000	.04342	00992
.25000	.04372	05731	.75000	.04239	00799
.26000	.04438	05744	.76000	.04080	00605
.27000	.04498	05751	.77000	.03982	00421
.28000	.04558	05754	.78000	.03982	00240
.29000	.04614	05757	.79000	.03780	00062
.30000	.04664	05755	} I	.03671	.00101
.31000	.04711	05748	.81000	.03559	.00255
.32000	.04758	05738	.82000	.03339	.00398
.33000	.04804	05722	.83000	.03321	.00532
.34000	.04844	05705	.84000	.03321	.00655
.35000	.04881	05688	.85000	.03193	.00765
.36000	.04918	05662	.86000	1	.00705
.37000	.04955	05635	.87000	.02925	.00000

Table 1. Concluded

	z/c				/c
x/c	Upper surface	Lower surface	x/c	Upper surface	Lower surface
	Wingtip at $\eta = 1.00$	0	0.94000	0.01856	0.00972
0.88000	0.02786	0.00931	.95000	.01685	.00899
.89000	.02644	.00991	.96000	.01506	.00803
.90000	.02496	.01030	.97000	.01318	.00687
.91000	.02344	.01050	.98000	.01120	.00541
.92000	.02186	.01046	.99000	.00905	.00366
.93000	.02024	.01023	1.00000	.00680	.00164

Table 2. Location of Accelerometers and Strain Gage Bridges

Instrument	X, in.	Y, in.
Accelerometer 1	19.17	22.78
Accelerometer 2	30.06	22.78
Accelerometer 3	38.85	61.52
Accelerometer 4	47.35	61.52
Accelerometer 5	49.25	82.00
Accelerometer 6	57.43	84.10
Accelerometer 7	54.19	91.72
Accelerometer 8	60.96	92.00
Accelerometer 9	61.95	107.00
Accelerometer 10	67.65	107.00
Strain gage bridge 1	19.76	23.36
Strain gage bridge 2	19.76	23.36
Strain gage bridge 3	28.31	19.54
Strain gage bridge 4	28.31	19.54

Table 3. Test Conditions

Tab point	Mach number	q, psf	Re	α , deg
	Low dynamic p	ressure test	conditions	
43	0.85	69.4	1.33×10^{-6}	0.0
47	.90	75.7	1.38	0
51	.92	78.5	1.40	Ö
52	.94	81.1	1.41	ő
53	.96	83.5	1.43 ↓	0
	Medium dynamic	pressure te	st conditions	
123	0.80	123.6	2.43×10^{-6}	-2.0
124	.85	135.2	2.52	-2.0
125	.88	142.3	2.56	-2.0
126	.90	147.0	2.59	-2.0
128	.92	151.4	2.62	-2.0
130	.94	156.1	2.64	-2.0
132	.96	160.3	2.66	-2.0
240	.80	123.8	2.47	-1.0
245	.85	136.3	2.55	-1.0
248	.88	144.5	2.60	-1.0
251	.90	148.5	2.61	-1.0
254	.92	153.3	2.64	-1.0
257	.94	158.6	2.67	-1.0
260	.96	163.4	2.70	-1.0
91	.80	123.6	2.41	0
92	.85	135.3	2.49	0
94	.88	143.0	2.53	0
96	.90	148.0	2.55	0
98	.92	152.5	2.58	0
100	.94	157.0	2.60	0
101	.96	161.7	2.63	0
239	.80	122.6	2.46	1.0
243	.85	134.6	2.54	1.0
247	.88	142.2	2.54	1.0
250	.90	147.4	2.61	1.0
253	.92	153.1	2.64	1.0
256	.94	158.2	2.67	1.0
259	.96	162.9	2.70	1.0
105	.80	125.9	2.41	2.0
106	.85	137.9	2.50	2.0
107	.88	145.7	2.54	2.0
109	.90	150.7	2.57	2.0
111	.92	154.8	2.60	2.0
113	.94	154.8	2.62	l .
114	.96	163.3	2.64	$\begin{array}{c c} 2.0 \\ 2.0 \end{array}$

Table 3. Concluded

Tab point	Mach number	q, psf	Re	α , deg				
	High dynamic pressure test conditions							
303	0.85	290.0	5.27×10^{-6}	-1.0				
304	.88	303.7	5.35	-1.0				
310	.90	318.4	5.39	-1.0				
311	.92	325.6	5.42	-1.0				
195	.80	260.2	4.96	0				
196	.85	283.4	5.11	0				
197	.88	297.9	5.19	0				
199	.90	308.6	5.25	0				
202	.92	317.8	5.28	0				
204	.94	328.3	5.33	0				
205	.96	336.7	5.37	0				
302	.85	287.7	5.23	1.0				
306	.88	301.6	5.31	1.0				
307	.90	316.3	5.40 ↓	1.0				

Table 4. Accelerometer Statistical Data for Low Dynamic Pressure Test Conditions

Tab point	M	$q, \ ext{psf}$	$lpha, \ \deg$	Accelerometer	$egin{array}{c} ext{Mean,} \ ext{g unit} \end{array}$	$egin{aligned} & & & & \\ & & & & \\ & & & & \\ & & & & $	$egin{array}{c} ext{Minimum,} \ ext{g unit} \end{array}$	$\begin{array}{c} \text{Standard} \\ \text{deviation,} \\ g \text{ unit} \end{array}$
43	0.85	69.4	0	9	-0.045	4.839	-4.483	1.537
				10	.010	4.327	-5.103	1.480
47	.90	75.7	0	9	038	5.708	-6.932	2.194
		:		10	.021	6.787	-6.825	2.256
51	.92	78.4	0	9	058	8.236	-7.169	2.322
				10	006	8.181	-7.481	2.445
52	.94	81.1	0	9	026	6.735	-7.248	2.526
			i	10	.026	7.033	-7.481	2.622
53	.96	83.4	0	9	032	3.496	-3.614	1.214
				10	.013	3.425	-2.889	.998

Table 5. Accelerometer Statistical Data for Medium Dynamic Pressure Test Conditions

	$q, \qquad \alpha,$,		1		Standard
point M p			Mean,	Maximum,	Minimum,	deviation,
	osf deg	Accelerometer	g unit	$g ext{ unit}$	$oldsymbol{g}$ unit	g unit
123 0.80 12	-2.0	9	-0.043	4.523	-5.036	1.534
		10	.019	4.409	-4.939	1.479
124 .85 13	-2.0	9	045	4.918	-5.668	1.703
		10	.019	4.491	-4.939	1.613
125 .88 14	-2.0	9	035	6.893	-8.117	2.092
		10	.019	6.623	-8.547	2.137
126 .90 14	7.0 -2.0	9	046	11.238	-11.988	3.746
		10	.045	11.297	-11.581	4.058
128 .92 15	61.4 -2.0	9	003	11.791	-13.094	4.066
100 01 1		10	.094	11.543 12.031	$ \begin{array}{c c} -12.647 \\ -10.010 \end{array} $	4.110 3.944
130 .94 15	66.1 -2.0	10	.064	11.876	-10.010 -13.052	3.988
132 .96 16	-2.0	9	030	6.577	-8.828	2.383
132 .90 10	0.5 -2.0	10	.049	6.623	-6.333	2.242
240 80 12	-1.0	9	014	4.839	-5.826	1.748
240 .50 12	1.0	10	031	5.475	-4.775	1.679
245 .85 13	6.3 -1.0	9	026	5.392	-5.115	1.922
		10	038	6.459	-6.087	1.921
248 .88 14	4.5 -1.0	9	034	5.629	-6.774	1.966
		10	059	6.459	-6.989	2.143
251 .90 14	-1.0	9	008	10.211	-10.092	3.685
		10	008	11.461	-11.417	3.954
254 .92 15	33.3 -1.0	9	064	14.556	-16.491	5.608
	•	10	054	14.659	-16.665	6.015
257 .94 15	58.6 -1.0	9	009	8.239	-8.275	2.646
		10	044	6.951	-6.989	2.380
260 .96 16	63.4 -1.0	9	055	5.869 8.017	-5.668 -6.169	1.968 2.141
01 00 16	23.6 0	10 9	056 .020	5.076	-0.109 -4.878	1.684
91 .80 12	23.6 0	10	.048	4.819	-4.857	1.651
92 .85 13	35.3 0	9	003	4.523	-5.352	1.697
92 .85	0.3	10	.044	5.721	-5.267	1.822
94 .88 14	13.0 0	9	025	6.340	-7.248	2.267
		10	.064	6.623	-7.235	2.462
96 .90 14	18.0 0	9	.033	8.868	-8.117	2.788
		10	.089	8.837	-8.137	3.026
98 .92 15	52.5 0	9	.020	10.132	-10.961	3.721
	1	10	.038	13.839	-12.319	4.137
100 .94 15	57.0 0	9	008	10.843	-11.277	3.636
		10	.042	12.527	-10.679	3.907
101 .96 16	61.7 0	9	.008	7.209	-7.011 7.707	2.347
	20.0	10	.089	6.869	-7.727 5.826	2.463 1.735
239 .80 12	22.6 1.0		.007	5.155 5.475	-5.826 -5.267	1.755
049 05 11	10	10	$\begin{array}{c c} .049 \\036 \end{array}$	5.945	-5.207 -5.905	1.732
243 .85 13	34.6 1.0	9 10	030 047	5.639	-6.907	1.965
247 .88 14	12.2		047 019	7.130	-5.905	2.076
247 88 14	1.0	10	015 035	6.295	-7.809	2.185
250 .90 14	47.4 1.0	I	016	9.105	-8.986	3.413
200 .00	1.0	10	.119	11.051	-9.859	3.762

Table 5. Concluded

Tab point	M	$q, \\ \mathrm{psf}$	α, \deg	Accelerometer	Mean, g unit	$\begin{bmatrix} \text{Maximum,} \\ g \text{ unit} \end{bmatrix}$	$\begin{array}{c} \text{Minimum,} \\ g \text{ unit} \end{array}$	Standard deviation, g unit
253	0.92	153.1	1.0	9	-0.007	12.821	-14.358	5.326
				10	012	13.757	-16.501	5.815
256	.94	158.2	1.0	9	034	9.661	-9.302	3.244
				10	060	11.707	-10.187	3.108
259	.96	162.9	1.0	9	058	6.814	-5.747	1.838
				10	035	5.311	-4.939	1.787
105	.80	125.9	2.0	9	.018	4.760	-6.221	1.760
				10	.063	6.541	-5.595	1.634
106	.85	137.9	2.0	9	.047	6.656	-5.589	1.810
			1	10	.071	7.115	-6.497	1.878
107	.88	145.7	2.0	9	.019	8.394	-10.171	2.330
				10	.068	10.067	-9.613	2.529
109	.90	150.7	2.0	9	.019	10.448	-9.144	3.520
				10	.075	11.461	-11.417	3.858
111	.92	154.8	2.0	9	.022	9.263	-9.539	3.054
				10	.089	10.477	-9.449	3.338
113	.94	159.7	2.0	9	.013	9.342	-9.460	2.990
				10	.086	9.493	-10.433	3.222
114	.96	163.3	2.0	9	.013	5.234	-4.641	1.544
				10	.068	5.311	-5.185	1.636

Table 6. Accelerometer Statistical Data for High Dynamic Pressure Test Conditions

					3.5	N. 6	Minimum,	Standard deviation,
Tab		q,	α ,	. 1	Mean,	Maximum,		1 ' 1
point	M	psf	deg	Accelerometer	g unit	g unit	$g ext{ unit}$	g unit
303	0.85	290.0	-1.0	9	-0.154	8.710	-10.487	2.837
				10	098	11.707	-12.073	3.236
304	.88	303.7	-1.0	9	126	11.317	-11.751	3.920
				10	072	13.019	-12.237	4.419
310	.90	318.4	-1.0	9	092	21.824	-19.177	6.099
				10	046	21.793	-16.747	6.727
311	.92	325.6	-1.0	9	089	32.015	-32.133	11.343
				10	065	33.765	-38.559	12.476
195	.80	260.2	0	9	067	7.683	-7.648	2.659
				10	.038	8.427	-8.875	2.790
196	.85	283.4	0	9	059	8.631	-8.512	2.790
		ı		10	.040	9.083	-9.531	2.912
197	.88	297.9	0	9	064	12.344	-11.356	3.750
1				10	.035	12.199	-13.139	4.219
199	.90	308.6	0	9	053	17.716	-16.017	5.331
				10	.027	16.053	-16.419	5.848
202	.92	317.8	0	9	082	15.662	-16.175	5.333
				10	.005	17.693	-17.567	5.852
204	.94	328.3	0	9	085	10.448	-10.250	2.921
				10	.005	10.559	-12.237	3.248
205	.96	336.7	0	9	080	7.051	-6.458	2.200
				10	.019	7.607	-7.399	2.359
302	.85	287.7	1.0	9	125	9.579	-11.672	3.330
				10	.050	12.035	-12.073	3.637
306	.88	301.6	1.0	9	119	15.978	-13.331	4.631
				10	046	16.463	13.713	5.236
307	.90	316.3	1.0	9	104	19.217	-20.678	6.961
				10	.043_	18.267	-20.929	7.598

Table 7. Strain Gage Bridge 4 Statistical Data for Low Dynamic Pressure Test Conditions

Tab point	M	$q, \ ext{psf}$	$lpha, \deg$	Mean, mV	Maximum, mV	Minimum, mV	Standard deviation, mV
43	0.85	69.4	0	5.528	5.830	5.195	0.117
47	.90	75.7	0	4.771	5.407	4.180	.208
51	.92	78.4	0	3.580	4.265	2.953	.247
52	.94	81.1	l 0	2.201	2.827	1.515	.255
53	.96	83.4	0	1.200	1.388	1.050	.054

Table 8. Strain Gage Bridge 4 Statistical Data for Medium Dynamic Pressure Test Conditions

Tab		q,	α ,	Mean,	Maximum,	Minimum,	Standard deviation,
point	M	psf	\deg	mV	mV	mV	mV
123	0.80	123.6	-2.0	3.041	3.207	2.869	0.063
124	.85	135.2	-2.0	3.035	3.292	2.742	.099
125	.88	142.3	-2.0	2.667	3.038	2.234	.135
126	.90	147.0	-2.0	2.020	2.700	1.304	.281
128	.92	151.4	-2.0	.281	1.304	600	.357
130	.94	156.1	-2.0	577	.119	-1.403	.292
132	.96	160.3	-2.0	-2.260	-1.869	-2.630	.156
240	.80	123.8	-1.0	5.342	5.534	5.153	.076
245	.85	136.3	-1.0	5.927	6.253	5.618	.109
248	.88	144.5	-1.0	5.622	6.126	5.153	.162
251	.90	148.5	-1.0	7.041	8.029	6.084	.356
254	.92	153.3	-1.0	3.384	4.688	2.065	.529
257	.94	158.6	-1.0	1.375	1.854	.838	.179
260	.96	163.4	-1.0	089	.204	473	.117
91	.80	123.6	0	7.576	7.860	7.310	.086
92	.85	135.3	0	8.501	8.875	8.241	.106
94	.88	143.0	0	8.980	9.425	8.537	.170
96	.90	148.0	0	8.064	8.706	7.480	.247
98	.92	152.5	0	6.267	7.141	5.322	.333
100	.94	157.0	0	4.225	5.068	3.419	.335
101	.96	161.7	0	2.386	2.953	1.896	.102
239	.80	122.6	1.0	9.635	9.891	9.298	.091
243	.85	134.6	1.0	11.774	12.048	11.498	.112
247	.88	142.2	1.0	12.118	12.513	11.752	.157
250	.90	147.4	1.0	11.145	12.048	10.314	.321
253	.92	153.1	1.0	8.743	10.018	7.395	.483
256	.94	158.2	1.0	5.736	6.337	5.153	.224
259	.96	162.9	1.0	4.399	4.645	4.138	.081
105	.80	125.9	2.0	12.173	12.471	11.921	.098
106	.85	137.9	2.0	15.098	15.432	14.797	.110
107	.88	145.7	2.0	14.823	15.432	14.205	.180
109	.90	150.7	2.0	13.870	14.882	12.809	.363
111	.92	154.8	2.0	11.943	12.682	11.075	.283
113	.94	159.7	2.0	9.218	9.891	8.368	.252
114	.96	163.3	2.0	7.439	7.776	7.141	.109

Table 9. Strain Gage Bridge 4 Statistical Data for High Dynamic Pressure Test Conditions

Tab point	M	$q, \ \mathrm{psf}$	$lpha, \ ext{deg}$	Mean, mV	Maximum, mV	Minimum, mV	Standard deviation, mV
303	0.85	290.0	-1.0	7.225	7.564	6.718	0.141
304	.88	303.7	-1.0	6.394	7.183	5.618	.263
310	.90	318.4	-1.0	4.237	5.491	2.784	.497
311	.92	325.6	-1.0	1.950	4.645	938	1.143
195	.80	260.2	0	12.000	12.344	11.583	.117
196	.85	283.4	0	12.610	12.979	12.175	.127
197	.88	297.9	0	11.938	12.767	11.033	.284
199	.90	308.6	0	9.409	10.694	8.241	.451
202	.92	317.8	0	6.381	7.649	5.322	.482
204	.94	328.3	0	3.661	4.265	3.080	.223
205	.96	336.7	0	2.606	2.911	2.234	.103
302	.85	287.7	1.0	17.444	18.012	16.828	.176
306	.88	301.6	1.0	17.143	18.097	15.813	.351
307	.90	316.3	1.0	11.866	13.402	10.525	.573

Table 10. Pressure Coefficient Statistical Data for Low Dynamic Pressure Test Conditions (a) Tab point 43, $M=0.85,\,q=69.4$ psf, $\alpha=0^\circ$

						- '			
ETA =	:.707	-,-,-,- Cl	P UPPER	~~~~	EŢA=	=.707 MEAN		CP LOWE:	R
X/C	MEAN	MAX	MIN	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	578	664	512	.020					
.087	652	725	601	.022					
.148	728	818	646	.021					
.209	692	744	575	.013	.209	302	412	234	.022
.294	664	754	605	.019	.294	364	476	282	.032
.350	731	820	670	.018	.350	348	462	259	.029
.407	756	850	699	.020	.407	415	601	304	.036
.463	798	934	731	.015	.463	418	536	314	.030
.519	800	889	740	.019	.519	269	362	165	.031
.579	858	974	798	.021	.579	175	285	050	.024
.659	865	962	762	.022	.659	.083	.012	.140	.022
.739	757	915	261	.084	.739	.264	.143	.322	.016
.819	161	361	057	.032	.819	.374	.265	.441	.019
.899	038	131	.020	.024	.899	.463			
.990	.109	001	.172	.024			.367	.515	.012
.990	.109	001	.112	.022	.974	.351	.227	.428	.020
ETA —	871	CI	o Hidded		ETA	071		D I OUID	n
ETA = X/C	MEAN	MAX	P UPPER MIN	SIGMA	ETA=	MEAN	MAX	P LOWE!	SIGMA
.025	518	617	466	.013	.025	145	261	104	.021
.084	765	860	712	.014	.084	279	411	229	.018
.143	751	864	718	.017	.143	349	423	$223 \\292$.023
.202	745	796	692	.027	.202	321	425 398	$262 \\269$	
.301	747	852	693	.016	.301	321			.023
.354	766	832	693	.017				247	.030
.407	726	832	688	.023	.354	327		237	.028
.460	$720 \\779$.407	335	432	252	.029
.513		879	708	.019	.460	335	445	246	.027
	851	945	766	.022	.513	291	395	202	.024
.566	888	-1.002	715	.030	.566	236	354	104	.032
.680	540	820	164	.131	.680	.053	019	.103	.017
.742	229	504	100	.061	.742	.146	.047	.206	.016
.830	074	202	.005	.021	.830	.372	.281	.426	.019
.910	028	141	.014	.033	.910	.416	.333	.462	.020
.990	.148	.047	.201	.012	.975	.258	.159	.305	.013
T/T/A	0.00	~=							
$\frac{ETA}{X/C}$.972 MEAN	MAX CF	OPPER MIN	SIGMA	ETA=	.972 MEAN	777 C	P LOWEI MIN	
	766	843	10111N	O16	005	MEAN	WAA	MIIN	SIGMA
.092	787	843 871			.025		371		.026
.126	834	900	744	.013	.092	251	386	186	.043
			776	.014	.126	353	475	250	.025
.227	842	938	716	.024	.227	425	543	340	.031
.294	780	855	702	.018	.294	375	514	263	.028
.362	696	819	145	.086	.362	269	431	124	.042
.430	278	744	120	.096	.430	229	396	137	.031
.497	185	297	071	.029	.497	201	330	125	.027
.565	208	360	136	.028	.565	117	221	065	.020
.632	225	345	138	.028	.632	.032	056	.124	.023
.700	217	303	148	.024	.700	.141	.080	.227	.022
.767	170	251	080	.022	.767	.282	.213	.339	.018
.835	118	241	061	.020	.835	.361	.267	.421	.022
.902	034	127	.023	.018	.902	.360	.267	.421	.023
.990	.099	005	.168	.026	.973	.213	.140	.264	.017
					-		- -		· •

Table 10. Continued (b) Tab point 47, $M=0.90,\,q=75.7$ psf, $\alpha=0^\circ$

ETA=.	707	CI	· UPPER -		EŢĄ=	.707 MEAN	CI	P LOWER MIN	CTCL.
X/C	MEAN	MAX	MIN :	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	429	515	376	.017					
.087	533	596	505	.012					
.148	623	705	570	.017					
.209	583	660	527	.016	.209	436	518	378	.017
.294	606	691	577	.014	.294	557		503	.020
.350	656	729	591	.017	.350	586	679	516	.022
.407	689	779	617	.017	.407	742	845	619	.024
.463		856	716	.014	.463	709	899	333	.096
.519		837	701	.016	.519	311	581	151	.074
.579		892	755	.017	.579	163	304	046	.033
.659		905	744	.023	.659	.057	036	.129	.019
.739	691		354	.080	.739	.224	.131	.272	.018
.819		447	145	.034	.819	.345	.266	.404	.018
.899	124		051	.022	.899	.436	.359	.494	.015
	.005	114	.090	.023	.974	.292	.231	.346	.016
.990	.000	114	.030	.020	.0.1	0_			
ETA =	871	Cl	PUPPER		ETA=	.871	C	P LOWER MIN	{
$_{ m X/C}^{ m ETA}=$	MEAN	MAX	P UPPER MIN	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	350	427	289	.018	.025	266	359	167	.016
.084	607	698	563	.010	.084	423	519	376	.016
.143	644	680	591	.020	.143	468	531	435	.017
.202	625	705	586	.017	.202	449	530	388	.016
.301	682	760	635	.014	.301	508	593	373	.022
.354	715	800	683	.012	.354	560	700	378	.048
.407	664	768	630	.021	.407	525	654	325	.061
.460	705	783	648	.015	.460	495	636	294	.051
.513	783	866	749	.018	.513	435	671	163	.080
.566	828	918	786	.015	.566	236	530	073	.078
.680	637	821	428	.067	.680	.026	040	.094	.021
.742	349	623	207	.052	.742	.131	.018	.213	.017
.830	147	257	043	.030	.830	.351	.280	.412	.019
.910	089	200	.013	.043	.910	.389	.305	.447	.018
.990	.058		.138	.028	.975	.213	.123	.257	.022
.550	.000	1001	.100	.020	.0.0				
ETA =	.972	C	P UPPER	-	EŢA=	=.972 MEAN	C	P LOWEI MIN	?
X/C	.972 MEAN	MAX	MIN	SIGMA					
.025	571	659	523	.019		388		315	
.092	620	705	542	.022	.092	348	469	262	.021
.126	695	779	642	.014	.126	459	527	390	.023
.227	749	837	701	.012	.227	544	637	474	.020
.294	781	876	736	.013	.294	639	747	540	.024
.362	747	842	659	.026	.362	526	653	372	.040
.430	708	819	636	.019	.430	471	670	008	.139
.497	666	780	434	.048	.497	079	396	.026	.053
.565	332	694	034	.138	.565	058	179	.059	.036
.632	099	316	007	.033	.632	.057	051	.137	.026
.700	100	183	017	.033	.700	.167	.095	.230	.022
.767	072	163	.017	.027	.767	.303	.218	.333	.016
.835	048	127	.039	.022	.835	.362	.268	.409	.016
.902	.020	070	.090	.024	.902	.361	.268	.409	.021
.902	.118	.018	.176	.022	.973	.232	.151	.288	.013
.330	.110	.010	.110	.022			. = -		

Table 10. Continued $\label{eq:continued} \mbox{(c) Tab point 51, $M=0.92$, $q=78.5$ psf, $\alpha=0^\circ$}$

ETA=	.707 MEAN	MAX C	P UPPER MIN	SIGMA	ETA=	.707 MEAN	MAX C	P LOWEF MIN	SIGMA
.025	384	475	340	.021					
.087	507	575	465	.012					
.148	596	658	572	.021					
.209	563	637	508	.015	.209	449	522	410	.015
.294	592	667	557	.016	.294	562	657	528	.019
.350	635	703	570	.017	.350	612	678	566	.016
.407	674	774	596	.016	.407	771	859	728	.015
.463	723	826	691	.019	.463	860	933	802	.014
.519	750	830	699	.015	.519	856	932	779	.020
.579	783	883	728	.016	.579	617	792	335	.065
.659	816	896	762	.018	.659	118	261	.011	.040
.739	712	853	409	.069	.739	.127	009	.217	.031
.819	253	499	162	.058	.819	.276	.145	.346	.026
.899	143	228	071	.025	.899	.382	.282	.433	.026
.990	031	154	.065	.029	.974	.266	.179	.334	.021
ETA=	.871	C		CICALA	ЕТА=	:.871	C	Р <mark>ĻО</mark> ЖЕР	{
X/C	MEAN				X/C	MEAN	MAX	MIN	SIGMA
.025	312	390	256	.017	.025	296	369	254	.015
.084	561	630	499	.018	.084	443	547	409	.015
.143	591	656	527	.020	.143	537	605	489	.016
.202	594	681	543	.019	.202	511	603	398	.021
.301	657	734	613	.014	.301	528	620	478	.014
.354	698	795	682	.012	.354	603	676	543	.018
.407	661	764	631	.023	.407	639	722	586	.016
.460	704	799	626	.015	.460	727		614	.017
.513	766	836	723	.012	.513	656	776	563	.026
.566	807	886	759	.017	.566	571		357	.053
.680	554	770	346	.071	.680	133	298	.026	.063
.742	318	557	200	.041	.742	.061	170	.135	.041
.830	178	248	087	.022	.830		.206	.355	.017
.910	148	239	010	.024	.910	.325	.249	.386	.022
.990	009		.065	.031	.975	.159	.076	.227	.022
ETA = 0	.972 MEAN	C	P UPPER MIN	CICIAA	EŢA=	.972 MEAN	C	P LOWEF MIN	(5
	510	593		.016	.025	428			.028
.092	567	636	523	.019	.092	366	475	320	.019
.126	659	730	620	.014	.126	483	553	420	.019
.227	716	786	677	.013	.227	579	659	525	.017
.294	755	823	711	.013	.294	681	766	632	.020
.362	763	834	724	.012	.362	650	766	540	.022
.430	745	856	680	.033	.430	609	715	532	.019
.497	690	798	642	.014	.497	510	653	043	.069
.565	618	757	296	.074	.565	171	334	.057	.072
.632	256	581	030	.084	.632	.025	163	.155	.057
.700	069	222	.030	.040	.700	.144	.005	.222	.039
.767	020	114	.059	.022	.767	.254	.122	.322	.029
.835	.005	099	.061	.026	.835	.299	.146	.372	.028
.902	.056	046	.153	.023	.902	.316	.213	.395	.025
.990	.113	004	.192	.025	.973	.223	.102	.299	.017

Table 10. Continued $\label{eq:mass} \mbox{(d) Tab point 52, $M=0.94$, $q=81.1$ psf, $\alpha=0^\circ$}$

		,			TO COM	707	CI		,
ETA=	.707 MEAN	MAX	P UPPER -	SIGMA	ETA=	.707 MEAN	MAX	P LOWER MIN	SIGMA
$_{ m .025}$	363	460	308	.018	11,0		112122		
.023	481	536	429	.015					
.148	573	637	553	.021					
.209	573	637	492	.011	.209	414	484	375	.015
.209	578	646	539	.017	.294	523		490	.018
.350	623	681	595	.015	.350	578		547	.014
.330	656	728	620	.014	.407	746		705	.013
.463	700	800	669	.018	.463	820		776	.013
.403 .519	$700 \\724$	782	676	.013	.519	834		797	.015
.579	760	855	705	.014	.579	890	987	807	.023
.659	804	888	760	.015	.659	388	538	275	.039
.039 .739		848	525	.026	.739	260	359	184	.024
.819		527	179	.043	.819	143	247	031	.032
		285		.030	.899	.051	043	.167	.031
.899		263 192	001	.025	.974	.132	.023	.237	.028
.990	072	192	001	.020	.514	.102			
ETA=	871	Cl	P UPPER		ETA=	.871	C	P LOWEF MIN	}
X/C	MEAN	MAX	P UPPER :	SIGMA		.871 MEAN	MAX	MIN	SIGMA
.025	303	377	270	.017	.025	251	335	201	.015
.084	541	610	483	.017	.084	410	485	352	.014
.143	575	635	531	.020	.143	500	585	451	.011
.202	580	659	503	.017	.202	509	584	451	.016
.301	647	710	593	.014	.301	508	600	463	.011
.354	682	770	660	.011	.354	586	654	547	.017
.407	653	739	610	.016	.407	625	699	567	.015
.460	691	773	648	.011	.460	712	786	680	.015
.513	755	831	700	.017	.513	789	854	751	.011
.566	793	878	735	.020	.566	842	944	730	.031
.680	518	724	357	.059	.680	523	687	394	.037
.742	325	496	259	.036	.742	399	506	301	.028
.830	209	306	151	.020	.830	.162	089	.261	.048
.910	189	254	121	.019	.910	.230		.308	.024
.990	055	157	.041	.018	.975	.108	.052	.157	.018
							~	-	
EŢA=	.972	C	P UPPER MIN	CICIAA	ĘŢĄ=	=.972 MEAN	MAY C	P LOWEI MIN	SIGMA
,	MEAN				025	381			
.025	491		447		.023	339	417	288	.016
.092	550	615	507	.018	.126	458	535	407	.016
.126	634	707	600	.015	.227	558	638	508	.013
.227	692	761	655	.013 .012	.294	673	741	612	.018
.294	736	819	688		.362	666	764	632	.014
.362	744 700	808	701	.009	.430	654	781	582	.031
.430	739	850	680	.034		604	720	502	.024
.497	687	794	643	.021	.497		613	234	.056
.565	657	754	478	.043	.565	438 269	613 422	092	.043
.632	397	651	207	.070	.632 .700	269 170	422 352	.005	.050
.700	192	326	038	.044	.760 .767	170 062	332 203	.005	.044
.767	095	215	.015	.043	.707 .8 3 5	062 .017	203 144	.229	.055
.835	041	163	.059	.034		.100	035	.272	.033
.902	.020	109	.149	.033	.902		035	.269	.036
.990	.078	088	.186	.040	.973	.150	.000	.409	JUOU.

Table 10. Concluded $\label{eq:matter} \mbox{(e) Tab point 53, $M=0.96$, $q=83.5$ psf, $\alpha=0^\circ$}$

		`	, -	,		- "			
ETA = .	707	C	P UPPER		ETA =	.707 MEAN	C	P LOWEI MIN	}
X/C	MEAN	MAX		SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	341	404	299	.012					
.087	459	540	396	.015					
.148	539	619	517	.009					
.209	538	598	478	.010	.209	380	448	321	.012
.294	553	627	523	.014	.294	497	577	456	.008
.350	596	661	557	.014	.350	541	616	510	.013
.407	633	706	602	.014	.407	698	787	643	.015
.463	674	777	650	.012	.463	774	836	733	.015
.519	694	759	656	.013	.519	797	876	753	.018
	731	809	684	.013	.579	892	958	841	.014
.579									
.659	792	862	737	.014	.659	918	969	863	.013
.739	763	844	697	.014	.739	619	751	518	.036
.819	636	743	342	.053	.819	344	407	281	.013
.899	325	445	256	.034	.899	210	286	164	.016
.990	199	310	104	.026	.974	067	165	.001	.019
									_
ETA = .	871	C	P UPPER MIN	CICNIA	ETA=X/C	:.871 MEAN	C	P LOWEI MIN	SIGMA
X/C	MEAN								
.025	295	366	262	.015	.025	206	282	152	.017
.084	522	592	469	.015	.084	363	428	320	.016
.143	550	617	515	.015	.143	451	525	416	.013
.202	556	640	510	.018	.202	461	524	417	.011
.301	627	689	595	.012	.301	463	538	427	.016
.354	662	726	640	.008	.354	548	614	510	.011
.407	633	718	593	.014	.407	587	657	551	.014
.460	671	751	629	.009	.460	677	743	639	.010
.513	738	806	700	.017	.513	739	809	709	.014
.566	809	872	753	.012	.566	825	896	771	.015
.680	782	870	661	.017	.680	923	992	890	.013
.742	632	775	419	.060	.742	918	998	866	.013
.830	301	405	233	.039	.830	460	546	426	.015
.910	288	375	225	.019	.910	171	259	109	.023
.990	266 161	238	220	.024	.975	057	112	010	.013
.990	101	236	110	.024	.910	037	112	010	.010
ETA=.	072	C	DIIDDER		ETA -	. 072	C	PLOWEI	·
X/C	MEAN	MAX	P UPPER MIN	SIGMA	\bar{X}/C	:.972 MEAN	MAX	P LOWEI MIN	SIGMA
.025		557		.011	.025	324	396		
.092	539	618	492	.015	.092	298	384	238	.017
.126	614	686	582	.014	.126	415	478	374	.015
.227	667	718	636	.013	.227	523	578	472	.013
.294	717	795	668	.013	.294	632	699	594	.015
								571	.013
.362	724	805	680	.009	.362	628	699		
.430	733	825	660	.023	.430	721	801	672	.014
.497	682	749	645	.022	.497	776	848	614	.021
.565	687	753	588	.020	.565	788	897	638	.040
.632	532	675	373	.049	.632	765	859	538	.041
.700	360	511	231	.045	.700	648	810	443	.064
.767	265	371	148	.040	.767	473	614	343	.043
.835	210	287	115	.026	.835	353	438	225	.029
.902	153	230	043	.031	.902	218	311	140	.028
.990	102	249	.017	.036	.973	076	234	.034	.039
· · · -									

Table 11. Pressure Coefficient Statistical Data for Medium Dynamic Pressure Test Conditions (a) Tab point 123, $M=0.80,\,q=123.6$ psf, $\alpha=-2^\circ$

		()	F	,	/ 1		. ,			
ETA = .	.707	C	P UPPER MIN			ETA =	:.707 MEAN	C	P LOWE! MIN	R
X/C	MEAN					X/C	MEAN	MAX	MIN	SIGMA
.025	154	214	099	.017						
.087	387	461	293	.017						
.148	410	483	318	.022						
.209	301	364	228	.018		.209	456	546	332	.034
.294	367	452	228	.036		.294	468	555	337	.034
.350	386	461	278	.031		.350	482	585	371	.032
.407	438	563	293	.037		.407	504	615	365	.032
.463	443	568	325	.037		.463	472	577	368	.028
.519	409	541	.085	.045		.519	332	410	243	.025
.579	430	570	303	.039		.579	206	279	134	.020
.659	341	442	118	.029		.659	.018	036	.064	.016
.739	356	452	255	.030		.739	.166	.112	.227	.013
		432 317	235 189	.019		.819	.256	.112	.293	.013
.819	249					.899	.335	.280	.376	.015
.899	108	187	060	.016						
.990	.144	.081	.178	.014		.974	.305	.243	.355	.014
TECTIA	071	C	ם בום סבים			ETA -	- 971	C	P I OWE	R
$\frac{\text{ETA}}{\text{X/C}}$	MEAN	MAX	P UPPER MIN	SIGMA		$\bar{\mathbf{x}}/\bar{\mathbf{c}}^-$.871 MEAN	MAX	P LOWE MIN	SIGMA
.025	099	151	052	.013		.025	726	822	646	.019
.084	305	361	264	.007		.084	596	656	554	.014
.143	301	350	255	.015		.143	560	619	516	.017
.202	318	377	275	.016		.202	540	603	038	.023
.301	317	389	236	.023		.301	441	532	337	.032
		424	$230 \\222$.030		.354	411	502	291	.031
.354	334					.407	396	516	291 300	.029
.407	368	488	149	.026					300 069	
.460	398	494	274	.029		.460	393	490		.028
.513	399	505	160	.037		.513	311	386	088	.026
.566	423	538	309	.034		.566	218	299	131	.021
.680	347	435	109	.024		.680	.026	027	.276	.016
.742	297	368	226	.021		.742	.122	.056	.175	.015
.830	166	233	102	.018		.830	.301	.226	.347	.011
.910	087	143	041	.014		.910	.345	.286	.402	.014
.990	.148	.084	.185	.013		.975	.265	.220	.302	.010
TOTAL A	050	~	חבות חודה			TO/TO A	070	C	D I OWE	0
ETA=	.972 MEAN	MAX	P UPPER MIN	SIGMA		X/C	=.972 MEAN	MAX	P LOWE! MIN	SIGMA
.025	305	376	238	.021		.025	850	933	771	.026
.023	367	412	298	.020		.092	465	562	337	.036
.126	417	412 494	312	.026		.126	446	581	300	.039
			312 242	.026		.227	391	455	341	.017
.227	342	423				.294	317	378	252	.019
.294	286	357	171	.023					252 176	.024
.362	291	380	198	.023		.362	248	334		.024 $.022$
.430	286	364	196	.024		.430	262	356	182	
.497	224	243	158	.016		.497	217	277	148	.019
.565	221	304	137	.024		.565	128	230	069	.019
.632	220	273	098	.020		.632	001	069	.061	.017
.700	195	258	112	.021		.700	.134	.084	.180	.015
.767	148	200	076	.019		.767	.248	.185	.298	.012
.835	071	139	008	.016		.835	.291	.245	.346	.014
.902	029	093	.020	.016		.902	.309	.257	.358	.015
.990	.110	.037	.161	.016		.973	.221	.160	.272	.015

Table 11. Continued $\label{eq:mass_eq} \mbox{(b) Tab point 124, } M=0.85, \, q=135.2 \mbox{ psf, } \alpha=-2^{\circ}$

ETA=. X/C .025 .087	707 MEAN 119 391	MAX 169 446	P UPPER MIN 078 357	SIGMA .013 .014	ETA= X/C	.707 MEAN	MAX C	P LOWER MIN	SIGMA
.148 .209 .294 .350	444 318 409 436	491 369 489 498	391 270 336 357	.014 .016 .020 .019	.209 .294 .350	669 431 518	773 756 756	329 234 274	.066 .088 .056
.407 .463 .519 .579	504 551 562 554	579 610 647 765	333 349 278 213	.021 .023 .049 .107	.407 .463 .519 .579	$ \begin{array}{r} 601 \\ 517 \\ 344 \\ 202 \end{array} $	790 755 476 291	372 337 235 098	.071 .059 .036 .026
.659 .739 .819 .899	354 371 249 091	674 646 355 158	172 181 146 015	.069 .061 .032 .019	.659 .739 .819 .899	.030 .175 .266 .353	033 .115 .138 .293	.085 .233 .319 .407	.018 .016 .017 .015
.990 ETA=. X/C	MEAN				.974 ETA= X/C		.260 	.389 P LOWEF MIN	.016 R SIGMA
.025 .084 .143 .202	064 310 314 344	112 368 358 411	022 279 258 304	.014 .013 .017 .015	.025 .084 .143 .202	761 756 708 612	818 839 780 750	711 679 646 498	.013 .023 .025 .042
.301 .354 .407 .460	347 368 412 504	461 467 484 602	227 203 252 275	.030 .032 .029 .050	.301 .354 .407 .460	533 443 453 436	746 729 669 653	322 240 261 269	.079 .066 .055 .058
.513 .566 .680 .742	503 471 360 296	737 773 540 427	212 197 216 194	.105 .095 .054 .035	.513 .566 .680 .742	329 214 $.039$ $.132$	489 299 012 .078	192 107 .089 .174	.043 .027 .016 .014
.830 .910 .990	154 063 .154	226 131 .103	093 011 .196	.022 .014 .013	.830 .910 .975	.294 .344 .272	.231 .288 .226	.342 .394 .314	.015 .016 .013
	972 MEAN 278 370	MAX 344 441	P UPPER MIN 204 298			.972 MEAN 839 714		P LOWER MIN 799 308	
.126 .227 .294 .362	496 458 330 315	566 615 535 476	375 297 156 155	.026 .056 .056 .051	.126 .227 .294 .362	557 479 328 257	774 637 488 384	364 364 217 108	.084 .039 .035 .041
.430 .497 .565	311 231 232	486 364 367	179 170 087	.046 .029 .037	.430 .497 .565	277 226 127	378 306 196	166 122 050	.034 .027 .022 .018
.632 .700 .767 .835	225 195 142 063	329 302 208 127	143 103 070 .006	.027 .026 .023 .017	.632 .700 .767 .835	.008 .146 .255 .297	050 .089 .208 .237	.215 .298 .356	.015 .013 .017
.902 .990	$015 \\ .126$	$085 \\ .046$.044 .185	.018 .018	.902 $.973$.319 $.226$.261 .184	.366 $.286$.012 .015

Table 11. Continued $\label{eq:continued} \mbox{(c) Tab point 125, $M=0.88$, $q=142.3$ psf, $\alpha=-2^\circ$}$

ETA=.	707	Cl	P UPPER	CICMA	ETA=	=.707 MEAN	CP	LOWER	SIGMA
X/C	MEAN	MAX		SIGMA	Λ/C	MEAN	MAA	1011114	SIGMA
.025	110	161	074	.011					
.087	393	448	352	.010					
.148	423	467	371	.010	000	700	705	ene	011
.209	336	375	304	.010	.209	739		698	.011
.294	428	489	368	.016	.294	814	860	766	.013
.350	441	486	388	.012	.350	852	916	768	.016
.407	505	562	452	.015	.407	943	-1.004	353	.030
.463	536	605	481	.016	.463	519	-1.079	175	.210
.519	545	603	494	.017	.519	216	380	103	.036
.579	671	740	617	.014	.579	128	242	025	.031
.659	673	727	396	.027	.659	.046	019	.106	.018
.739	392	834	123	.142	.739	.189	.110	.234	.017
.819	181	350	077	.038	.819	.297	.254	.352	.014
.899	056		.022	.023	.899	.401	.339	.446	.013
.990	.155	.094	.191	.013	.974	.354	.296	.394	.017
ETA = .	871	Cl	P UPPER MIN		ĘŢĄ=	=.871 MEAN	CP	LOWER	CICNA
$\overline{X}/\overline{C}$	MEAN						MAX	MIN	SIGMA
.025	041	095	.004	.009	.025	726	777	688	.011
.084	304	349	265	.008	.084	825	873	798	.010
.143	312	364	269	.011	.143	825	868	792	.011
.202	348	391	315	.010	.202	804	851	763	.012
.301	398	482	338	.024	.301	789	840	592	.019
.354	424	481	306	.021	.354	815	950	179	.139
.407	394	460	338	.020	.407	398	911	136	.179
.460	492	536	441	.012	.460	307		134	.072
.513	636	688	563	.013	.513	268		100	.062
.566	738	805	339	.033	.566	172	321	053	.035
.680	367	759	119	.130	.680	.066	.001	.120	.017
.742	240	516	098	.057	.742	.160	.088	.217	.016
.830	125	227	051	.026	.830	.345		.396	.014
.910	040	099	.015	.019	.910	.378			.013
.990	.165	.111	.211	.014	.975	.295	.239	.334	.012
ETA=.972 X/C MEAN MAX MIN SIGMA					ETA=	=.972 MEAN	CF	LOWER	
$\bar{\mathrm{X}}/\mathrm{C}$	MEAN								
.025	244			.017			823		
.092	342	395	308	.010	.092	809	866	756	.019
.126	481	526	453	.011	.126	816	895	748	.020
.227	557	608	512	.012	.227	812	878	705	.023
.294	596	670	409	.038	.294	582	831	059	.161
.362	539	647	148	.077	.362	070	402	.047	.060
.430	362	669	097	.141	.430	179	384	.006	.056
.497	190	444	088	.042	.497	184	303	078	.035
.565	195	385	046	.048	.565	109	187	022	.026
.632	207	338	072	.035	.632	.021	047	.091	.019
.700	181	274	059	.032	.700	.154	.109	.216	.014
.767	130	198	043	.024	.767	.286	.234	.332	.013
.835	051	120	.006	.018	.835	.348	.288	.413	.014
.902	010	068	.054	.018	.902	.362	.311	.398	.021
.990	.121	.032	.200	.018	.973	.233	.175	.272	.015

Table 11. Continued $\label{eq:mass} \mbox{(d) Tab point 126, $M=0.90$, $q=147.0$ psf, $\alpha=-2^\circ$}$

ETA=	.707	C	P UPPER	GIGMA	ЕТА=	:.707	CP	LOWER	CICMA
X/C	MEAN	MAX	MIN	SIGMA	X/C	MEAN	MAA	MIN	SIGMA
.025	112	167	072	.013					
.087	384		352	.009					
.148	427	475	394	.013	000	7 10	75. 0	0.77	010
.209	345	385	306	.012	.209	712	759	675	.010
.294	463	497	426	.012	.294	800	844	764	.012
.350	469	517	423	.012	.350	841	887	803	.010
.407	525	568	485	.012	.407	956	-1.007	925	.011
.463	568	622	525	.011	.463	-1.027	-1.079	671	.024
.519	579	630	525	.014	.519	324	508	216	.035
.579	661	716	621	.013	.579	223	334	112	.034
.659	677	727	632	.013	.659	106	260	.030	.042
.739	726	831	166	.118	.739	.053	111	.154	.040
.819	176	338	063	.037	.819	.206	.008	.305	.039
.899	026	122	.034	.021	.899	.343	.165	.444	.040
.990	.137	.068	.185	.016	.974	.331	.216	.405	.029
$\frac{\text{ETA}}{\text{X/C}}$.871 MEAN	$\overline{\text{MAX}}^{\text{C}}$	P UPPER MIN	SIGMA	$_{ m X/C}^{ m ETA}=$.871 MEAN	CP MAX	LOWER	SIGMA
.025	044	091	008	.011	.025	668	715	629	.010
.023	316	373	292	.012	.023	781	833	029 747	.010
.143	300	352	272	.010	.143	795	840	766	.010
.202	355	403	329	.010	.202	790	848	750	.012
.301	487	542	435	.014	.301	779	838	749	.013
.354	460	538	393	.020	.354	909	955	848	.015
.407	463	528	398	.017	.407	872	930	821	.015
.460	476	519	426	.015	.460	906	-1.000	248	.098
.513	602	653	207	.015	.513	321	689	108	.067
.566	725	779	666	.015	.566	150	346	028	.049
.680	708	794	187	.069	.680	.080	046	.139	.021
.742	455	821	095	.173	.742	.171	.097	.223	.018
.830	094		.000	.029	.830	.356	.292	.405	.013
.910	001	084	.063	.021	.910	.394	.338	.435	.014
.990	.158	.059	.216	.019	.975	.299	.231	.346	.013
T300 A	070	~	n mnnnn		T300 4	070	(ID	LOUED	
X/C	.972 MEAN	MAX	P UPPER MIN	SIGMA	X/C	.972 MEAN	CP	MIN	SIGMA
.025	247		188			733			
.092	330	346	286	.011	.092	770	826	708	.018
.126	465	540	415	.011	.126	791	854	724	.020
.227	539	589	507	.011	.227	823	874	724 778	.014
.294	620	672	576	.010	.294	863	934	745	.034
.362	$620 \\634$	685	567	.023	.362	709	885	039	.034 $.142$
.302 $.430$.430			059	.105
	651	730	259	.027		132	664		
.497	566	727	133	.121	.497	031	160	.069	.036
.565	180	713	.037	.128	.565	022	119	.077	.033
.632	105	266	.016	.041	.632	.063	009	.149	.023
.700	114	241	.004	.041	.700	.175	.117	.244	.017
.767	091	180	.005	.028	.767	.300	.250	.345	.015
.835	022	092	.054	.022	.835	.354	.303	.412	.015
.902	.006	054	.064	.020	.902	.370	.289	.398	.020
.990	.126	.077	.205	.019	.973	.241	.193	.287	.015

Table 11. Continued $\label{eq:mass} \mbox{(e) Tab point 128, } M=0.92, \, q=151.4 \mbox{ psf, } \alpha=-2\mbox{°}$

		(-)	_		, 1		1 ,			
$\mathbf{E}\mathbf{T}\mathbf{A} = \mathbf{A}$.707	C	P UPPEF MIN	\ \		ЕТА=	=.707 MEAN	MAX CF	LOWER	GTG3.6.4
X/C	MEAN					X/C	MEAN	MAX	MIN	SIGMA
.025	137	186	093	.013						
.087	376	410	342	.009						
.148	456	495	428	.009		000	0.50	= 00	001	000
.209	358	408	319	.010		.209	656	703	621	.009
.294	467	506	437	.009		.294	747	787	720	.007
.350	491	537	456	.009		.350	809	850	780	.009
.407	571	621	540	.011		.407	927	967	899	.010
.463	589	627	545	.014		.463	992	-1.037	958	.009
.519	586	635	555	.011		.519	630	-1.003	300	.153
.579	659	707	626	.010		.579	362	475	260	.029
.659	702	741	660	.009		.659	362	453	265	.025
.739	819	865	681	.011		.739	351	459	108	.034
.819	274	375	212	.022		.819	244	418	.031	.059
.899	171	234	083	.020		.899	007	199	.251	.069
.990	011	139	.089	.034		.974	.181	009	.359	.057
ETA=	971	C	DIIDDEE	•		ETA-	- 871	CF	LOWER	
X/C	MEAN	MAX	P UPPER MIN	SIGMA		ETA=	MEAN	MAX CF	MIN	SIGMA
.025	075	123	031	.013		.025	576	623	539	.012
.084	341	385	306	.008		.084	689	726	655	.011
.143	332	387	264	.016		.143	720	768	685	.009
.202	331	367	296	.009		.202	728	753	705	.009
.301	485	537	464	.011		.301	726	765	704	.009
.354	528	570	488	.011		.354	863	893	836	.009
.407	542	605	490	.011		.407	843	892	810	.009
.460	555	594	493	.015		.460	919	960	891	.009
.513	611	658	576	.012		.513	955	-1.001	924	.009
.566	762	801	724	.012		.566	512	-1.023	347	.113
.680	750	795	714	.011		.680	331	437	224	.037
.742	764	855	451	.054		.742	222	356	039	.046
.830	180	261	095	.020		.830	.179	003	.339	.049
.910	098	188	.014	.029		.910	.381	.281	.458	.022
.990	.067	049	.151	.031		.975	.270	.213	.314	.018
$\mathbf{E}_{\mathbf{Y}}^{\mathbf{T}}\mathbf{A} = \mathbf{A}$.972 MEAN	$\overline{\text{MAX}}^{\text{C}}$	P UPPER MIN	SIGMA		$_{ m X/C}^{ m ETA}=$.972 MEAN	CP MAX	LOWER	SIGMA
				.019		.025	653	690	617	.011
$.025 \\ .092$	$280 \\333$	$341 \\394$	$217 \\289$.019		.023	684	745	619	.011
.126	355 451	495	269 415	.011		.126	709	761	658	.016
.126	431 529	493 572	504	.009		.227	769	814	744	.011
.294	608	641	560	.010		.294	866	908	839	.009
		734	643	.015		.362	821	883	766	.024
.362	680			.013		.430	792	870	562	.039
.430	718	766	663			.430 $.497$	192 335	543	167	.056
.497	748	799	695	.015				343 307	.039	.053
.565	782	829	658	.018		$.565 \\ .632$	$145 \\030$	$307 \\221$.039	.053
.632	261	639	080	.071			030 .076	221 089	.133	.031
.700	097	199	.015	.037		.700 .767	.167	089	.215	.047
.767	018	130	.061	.026		.835	.215	.036	.269	.039 .047
.835	.033	042	.088	.019					.333 .374	.047
.902	.048	018	.108	.019		.902	.249	.092		
.990	.132	.041	.199	.024		.973	.202	.085	.301	.031

Table 11. Continued $\label{eq:matter} \mbox{(f) Tab point 130, $M=0.94$, $q=156.1$ psf, $\alpha=-2^\circ$}$

		` '	-	•		• ,			
ETA =	.707	C	P UPPER MIN	. = = = = .	ETA=	707	CF	LOWER MIN	t
X/C	MEAN				X/C	MEAN	MAX	MIN	SIGMA
.025	144	192	101	.013					
.087	369	420	343	.011					
.148	437	469	404	.008					
.209	350	395	331	.008	.209	607	659	579	.009
.294	447	479	424	.008	.294	709	752	677	.009
.350	474	509	443	.009	.350	761	813	722	.010
.407	553	591	535	.009	.407	876	915	850	.008
.463	586	631	551	.011	.463	945	984	929	.008
.519	584	616	549	.008	.519	957	-1.005	643	.022
.579	650	696	618	.009	.579	441	815	315	.058
.659	681	718	662	.008	.659	399	473	313	.024
.739	798	839	727	.009	.739	398	473 479	314 332	.024
.819	299	386	240	.022	.819				
.899	240	294				385	473	294	.029
			171	.015	.899	248	379	073	.045
.990	142	245	046	.027	.974	053	187	.170	.059
ETA = .	071		מממתנו מ		TEXTS A	071	CIT	TAIIMD	
X/C	MEAN	MAX	P UPPER MIN	SIGMA	\mathbf{x}/\mathbf{c}	.871 MEAN	MAX	LOWER MIN	SIGMA
.025	086	142	.082	.012	.025	515	557	488	.013
.084	335	373	318	.008	.084	631	681	589	.013
.143	336	386	299	.010	.143	671	710	641	
.202	325	368	298	.010	.202				.009
.301	488					678	718	649	.009
		541	440	.016	.301	679	718	647	.007
.354	513	553	484	.007	.354	809	844	777	.010
.407	530	576	498	.008	.407	796	842	762	.010
.460	555	608	521	.012	.460	876	919	842	.008
.513	601	627	570	.011	.513	913	949	885	.008
.566	749	776	712	.008	.566	988	-1.025	725	.016
.680	740	771	703	.009	.680	460	532	380	.027
.742	754	840	549	.040	.742	394	475	310	.030
.830	207	276	161	.015	.830	122	314	.125	.061
.910	159	205	113	.015	.910	.325	.008	.444	.065
.990	033	116	.044	.021	.975	.254	.153	.315	.021
ETA = .	.972 MEAN	C	P UPPER MIN	CTONA	ETA=	.972	CP	LOWER	GIGILA
X/C		MAX		SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	287	342		.017	.025	598	633	563	
.092	328	382	292	.012	.092	621	667	567	.017
.126	445	491	402	.015	.126	649	693	593	.015
.227	504	543	477	.008	.227	719	766	687	.010
.294	586	633	565	.008	.294	824	858	802	.009
.362	663	723	634	.010	.362	833	868	777	.007
.430	704	754	676	.010	.430	793	844	740	.019
.497	738	775	707	.011	.497	593	787	310	.080
.565	782	815	572	.013	.565	313	506	101	.061
.632	345	608	158	.068	.632	200	352	009	.050
.700	190	285	112	.022	.700	093	261	.066	.049
.767	124	234	028	.029	.767	.004	132	.136	.040
.835	053	144	.051	.029	.835	.065	113	.285	.056
.902	013	129	.105	.031	.902	.112	036	.249	.047
.990	.072	102	.193	.034	.973	.127	006	.292	.044
-	-	· -							

Table 11. Continued $\label{eq:mass} \mbox{(g) Tab point 132, $M=0.96$, $q=160.3$ psf, $\alpha=-2^\circ$}$

		(0)	-				CID.	LOWER	
ETA=	.707	CI	PUPPER	ETCIMA	$\frac{\mathbf{E}^{T}\mathbf{A}}{\mathbf{Y}\mathbf{C}} = \mathbf{A}$	707 MEAN	CP	MIN	SIGMA
\overline{X}/C	MEAN	MAX		SIGMA	Λ/C	WEAN	WITE	141114	DIGITII
.025	185	231	143	.010					
.087	384	420	355	.008					
.148	436	468	415	.005	000	5.40	FOR	500	.008
.209	357	395	333	.008	.209	549	586	520	
.294	418	456	402	.008	.294	661	701	638	.006
.350	456	496	420	.010	.350	724	758	692	.009
.407	530	576	510	.006	.407	824	870	806	.007
.463	582	614	548	.008	.463	894	926	872	.008
.519	579	621	557	.007	.519	909	947	894	.007
.579	648	689	624	.007	.579	994	-1.018	977	.006
.659	670	699	645	.007	.659	834	-1.038	572	.103
.739	780	817	763	.008	.739	544	589	500	.013
.819	463	673	343	.053	.819	506	569	460	.015
.899	318	374	276	.013	.899	402	465	337	.019
.990	264	335	217	.017	.974	234	301	138	.024
.000									
ETA =	.871	C	P UPPER MIN		$_{\rm X/C}^{\rm ETA=}$.871	CP	LOWER	SIGMA
X/C	MEAN		MIN	SIGMA		MEAN			000
.025	129	160	106	.009	.025	427	464	396	.008
.084	382	417	363	.010	.084	531	562	506	.007
.143	385	429	355	.011	.143	588	635	567	.008
.202	347	392	302	.013	.202	613	644	588	.008
.301	480	517	458	.006	.301	621	664	595	.009
.354	495	527	472	.006	.354	740	778	713	.007
.407	511	550	485	.007	.407	718	765	698	.008
.460	563	603	539	.007	.460	816	852	798	.007
.513	594	621	566	.008	.513	851	893	830	.005
.566	728	766	704	.008	.566	923	966	901	.008
.680	740	772	718	.008	.680	-1.024	-1.059	953	.008
.742	821	862	797	.007	.742	638	934	497	.074
.830	318	381	247	.019	.830	457	514	399	.015
.910	277	334	234	.015	.910	365	439	249	.022
.990	194	246	146	.014	.975	172	253	.032	.031
ETA=	=.972	C	P UPPER MIN	OTOMA.	ETA=	.972 MEAN	MAX CF	LOWER MIN	SIGMA
	MEAN					527		503	
.025	319	365	290		.025	527	563	444	.015
.092	360	405	317	.016	.126	541	588	513	.012
.126	464	499	435	.009			692	626	.007
.227	500	540	476	.007	.227	652	814	020 737	.008
.294	568	605	539	.006	.294	760		745	.007
.362	645	672	618	.007	.362	758	812	745 788	.005
.430	685	724	659	.008	.430	821	866		.033
.497	723	754	700	.005	.497	819	900	701	
.565	761	783	740	.009	.565	747	876	447	.064
.632	673	817	345	.086	.632	560	755	309	.063
.700	235	333	176	.026	.700	427	583	275	.051
.767	190	292	133	.026	.767	334	454	215	.032
.835	159	230	096	.017	.835	272	377	044	.041
.902	145	212	082	.018	.902	197	291	035	.035
.990	106	313	.028	.049	.973	104	263	.091	.054

Table 11. Continued $\label{eq:mass_mass} \mbox{(h) Tab point 240, } M=0.80, \, q=123.8 \mbox{ psf, } \alpha=-1^{\rm o}$

ETA=. X/C .025	MEAN 328	MAX 406	P UPPER MIN 278	SIGMA .017	ETA= X/C	707 MEAN	$\overline{\text{MAX}}^{\text{C}}$	P LOWEF MIN	SIGMA
.087 .148 .209	517 511 393	589 582 446	422 403 324	.017 .023 .016	.209	402	46 8	297	.025
.294 .350 .407	457 445 539	$546 \\539 \\681$	281 329 370	.039 .033 .046	.294 .350 .407	$421 \\410 \\476$	$505 \\517 \\556$	315 333 376	.028 .026 .030
.463	521	664	378	.051	.463	425	510	344	.023
.519	481	660	313	.060	.519	290	372	219	.023
.579 .659	$480 \\382$	$674 \\525$	$324 \\258$.054 $.043$.579 .659	184 $.016$	$253 \\028$	$122 \\ .072$.019 .015
.039 .739	374	525 487	238 247	.045 .035	.739	.185	028	.255	.013
.819	271	359	247 188	.023	.819	.301	.247	.346	.013
.899	112	175	062	.020	.899	.402	.353	.436	.012
.990	.126	.057	.154	.012	.974	.344	.275	.387	.013
ETA=. X/C	.871 MEAN	C	P UPPER MIN	SIGMA	ETA=	:.871 MEAN	C	P LOWEF MIN	SIGMA
.025	282	346	247	.014	.025	459	527	395	.018
.084	469	505	422	.009	.084	474	515	428	.014
.143	432	496	373	.015	.143	458	515	413	.014
.202	420	475	373	.017	.202	455	524	379	.018
.301	388	466	287	.030	.301	402	494	299	.027
.354	420	516	271	.039	.354	386	482	285	.025
.407	426	529	304	.035	.407	364	466	265	.025
.460	449	573	312	.039	.460	389	471	317	.026
.513	458	613	255	.049	.513	306	422	233	.020
.566	484	650	328	.044	.566	219	296	142	.021
.680	367	460	276	.027	.680	.014	036	.211	.014
.742	307	376	235	.021	.742	.124		.160	.014
.830		238	137	.011	.830	.316		.358	.011
.910		180	079	.013	.910	.348			.020
.990	.128		.179	.017	.975	.244			.011
ETA = X/C	.972 MEAN	MAX C	P UPPER MIN	SIGMA	ETA=	.972 MEAN	\overline{MAX}^{C}	P LOWER MIN	SIGMA
.025	515					614		526	
.092	489	571	429	.029	.092	408	495	326	.026
.126	515	609	414	.029	.126	397	497	301	.027
.227	407	484	263	.028	.227	394	458	358	.015
.294	342	426	240	.028	.294	330	391	264	.020
.362	333	442	233	.027	.362	258	328	156	.025
.430	313	410	228	.026	.430	281	384	196	.020
.497	251	322	195	.015	.497	213	305	162	.020
.565	253	320	139	.024	.565	145	191	089	.022
.632	249	327	182	.023	.632	044	110	.020	.016
.700 .767	$206 \\170$	$269 \\225$	$138 \\115$.021 .022	.700	.112 .237	.065 .190	.147 .274	.013 .012
.835	170	225 173	115 057	.022	.767 .835	.237	.190	.333	.012
.902	060	113	.001	.015	.902	.289	.232	.339	.013
.990	.074	.006	.144	.016	.973	.206	.153	.236	.013

Table 11. Continued (i) Tab point 245, $M=0.85,\,q=136.3$ psf, $\alpha=-1^\circ$

ETA=. X/C	707	5575- CI	P UPPER		ĘŢA=	.707 MEAN	CI	P LOWEF MIN	{
		MAX		SIGMA	X/C	MEAN	MAX	MIIN	SIGMA
.025	252	304	213	.013					
.087	493	535		.009					
.148	504	553	466	.013				202	0.50
.209	403	454	368	.014	.209	452	581	283	.053
.294	518	597	445	.020	.294	495	681	323	.070
.350	477	541	413	.016	.350	472	625	328	.045
.407	592	657	541	.015	.407	543	744	367	.069
.463	622	694	564	.016	.463	453	640	300	.049
.519	631	701	537	.021	.519	299	413	186	.033
.579	701	765	460	.023	.579	173	254	087	.025
.659	549	758	209	.138	.659	.026	039	.092	.018
.739	312	557	135	.065	.739	.194	.140	.244	.019
.819	233	378	119	.037	.819	.293	.224	.340	.014
.899	074	146	005	.021	.899	.390	.333	.445	.012
	.144	.090	.191	.013	.974	.357	.300	.402	.015
			-						
ETA =	.871	C	P UPPER MIN		ETA=	:.871 MEAN	Cl	P LOWEI MIN	{
X/C	MEAN								
.025	226	276	186	.011	.025	547	611	478	.022
.084	485	534	459	.007	.084	592	666	547	.016
.143	442	488	413	.009	.143	547		494	.015
.202	449	498	405	.012	.202			463	.020
.301	491	574	342	.037	.301	512	639	340	.058
.354	503	573	324	.030	.354	440	616	297	.048
.407	489	582	314	.035	.407	420	567	280	.046
.460	540	632	308	.046	.460	443	655	288	.051
.513	588	712	270	.083	.513	339	482	199	.042
.566		858	250	.131	.566	222	320	117	.028
.680		597	199	.062	.680	.023	020	.067	.016
.742	295		175	.038	.742	.132	.078	.186	.015
.830	159		098	.016	.830	.316	.264	.362	.014
	102		045	.015	.910		.293	.372	.010
			.202	.016	.975		.203	.278	.012
.000	.110	.002							
ETA =	.972 MEAN	C	P UPPER MIN		ETA=	=.972 MEAN	Cl	P LOWER MIN	?
•									
	476						786		.030
.092	494	544	415	.016	.092	484	589	360	.029
.126	603	654	528	.015	.126	563	655	426	.030
.227	617	742	402	.055	.227	510	635	416	.031
.294	414	633	179	.092	.294	362	560	227	.043
.362	328	503	160	.053	.362	270	428	141	.040
.430	337	499	182	.051	.430	302	414	178	.036
.497	253	356	203	.030	.497	224	329	147	.027
.565	261	366	126	.038	.565	143	213	054	.024
.632	253	350	165	.030	.632	040	099	.031	.018
.700	202	297	086	.027	.700	.122	.071	.184	.013
.767	164	217	080	.024	.767	.238	.198	.287	.013
.835	089	157	052	.017	.835	.276	.224	.328	.013
.902	050	101	.014	.018	.902	.289	.217	.334	.015
.990	.093	.031	.156	.020	.973	.213	.164	.265	.016
.550	.000	.001	.100	. 5=0					

Table 11. Continued $\label{eq:mass_mass} \mbox{(j) Tab point 248, } M=0.88, \, q=144.5 \mbox{ psf, } \alpha=-1^{\circ}$

ETA=. X/C .025	707 MEAN 188	MAX 250	P UPPER MIN –.153	SIGMA .013	ETA= X/C	.707 MEAN	MAX C	P LOWEF MIN	SIGMA
.087 .148	447 494	$481 \\534$	$422 \\464$.008 .008	900	676	799	646	.012
.209 $.294$	409 533	$440 \\576$	$371 \\504$.012 .011	.209 $.294$	$676 \\742$	$732 \\806$	$646 \\678$.012
.350	509	559	474	.009	.350	732	797	675	.015
.407	616	669	572	.017	.407	870	940	299	.065
.463	618	667	581	.012	.463	457	984	153	.192
.519	643	685	614	.012	.519	226	414	069	.047
.579	711	771	675	.011	.579	137	251	014	.034
.659	729	776	680	.014	.659	.038	024	.099	.019
.739	786	877	212	.077	.739	.205	.145	.255	.017
.819	196	308	088	.037	.819	.308	.260	.345	.016
.899	029	102	.044	.022	.899	.421	.373 $.320$.468	.015
.990	.131	.073	.180	.014	.974	.378		.416	.019
ETA=.	871 MEAN	MAX C	P UPPER MIN	SIGMA	ETA= X/C	=.871 MEAN	MAX C	P LOWEF MIN	SIGMA
.025	147	176	115	.010	.025	604	640	565	.012
.084	433	469	409	.006	.084	696	741	654	.012
.143	391	437	367	.009	.143	727	768	692	.010
.202	412	457	382	.008	.202	737	784	660	.012
.301	542	586	520	.009	.301	700	783	244	.058
.354	570	640	529	.013	.354	617	835	220	.165
.407	561	610	502	.014	.407	422	781	091	.138
.460	589	656	538	.014	.460	435	858	188	.100
.513	658	722	599	.015	.513	343	721	$130 \\074$.079 .036
.566	788	$833 \\843$	$741 \\140$.013 .136	.566 .680	$201 \\ .047$	374 008	074	.036
$.680 \\ .742$	$696 \\320$	759	080	.108	.742	.156	.099	.227	.017
.830	320 115	139 217	030	.024	.830	.334	.272	.388	.015
.910	042		030	.024	.910	.355		.413	.014
.990	.170	.092		.015	.975	.276	.227	.321	.014
$\frac{\text{ETA}}{\text{X/C}}$	972 MEAN	MAX C	P UPPER MIN	SIGMA		.972 MEAN		P LOWEF MIN	
		433				711			
.092	437	490	392	.013	.092	666	773	508	.037
.126	552	582	522	.011	.126	666	763	499	.026
.227	626	677	593	.011	.227	781	832	637	.021
.294	706	744	646	.012	.294	722	902	263	.113 .136
.362	712	787	283	.035	.362 $.430$	$169 \\205$	822 453	0.027 -0.007	.070
.430	$623 \\270$	$747 \\663$	$148 \\095$.112 .106	.430 .497	203 183	433 311	007 040	.040
.497 $.565$		$003 \\358$	036	.100	.565	103 119	189	040 014	.028
.632	$172 \\191$	330 331	056	.048	.632	019	189 082	014 $.067$.020
.700	161	280	030 019	.039	.700	.132	.091	.197	.016
.767	137	205	040	.028	.767	.265	.211	.307	.013
.835	067	136	.013	.018	.835	.302	.249	.359	.020
.902	038	095	.037	.018	.902	.310	.242	.365	.015
.990	.097	.041	.171	.022	.973	.225	.179	.298	.015

Table 11. Continued $\label{eq:matter} \mbox{(k) Tab point 251, } M=0.90, \, q=148.5 \mbox{ psf, } \alpha=-1^{\circ}$

ETA=.70°	7	CP	UPPER -	7777	ĘŢĄ=	.707	CF	, romei	R
		MAX		SIGMA	X/C	MEAN	MAX	MIN	SIGMA
	315	362	279	.011					
	507	550	480	.009					
	571	600	543	.010					
.209	525	564	485	.009	.209	565	617	522	.015
.294	565	618	537	.014	.294	666	716	625	.012
.350 -	552	590	520	.012	.350	707	752	669	.011
.407	703	745	674	.010	.407	850	903	106	.017
	723	780	685	.013	.463	924	980	888	.011
	717	771	678	.012	.519	399	807	171	.113
	758	808	727	.010	.579	171	277	069	.031
	793	837	755	.011	.659	076	215	.048	.044
	860	912	453	.048	.739	.063	098	.189	.050
	286	371	204	.021	.819	.198	.030	.312	.045
	164	264	075	.026	.899	.357	.249	.455	.032
	.011	204 103		.028	.974	.323	.229	.393	.024
.990	.011	105	.117	.020	.974	.323	.229	.595	.024
ETA=.87	'1	CP	UPPER .		ETA=	.871	MAX CF	LOWE	3
X/C N	ЙЕАN	MAX CP	MIN	SIGMA	\vec{X}/\vec{C}	MEAN	MAX	MIN	SIGMA
	253	288	218	.014	.025	454	501	403	.012
	543	594	513	.010	.084	590	636	563	.010
	559	619	516	.014	.143	636	674	613	.012
	512	566	469	.017	.202	674	714	642	.011
	524	612	474	.020	.301	639	712	549	.023
	612	658	574	.011	.354	679	766	601	.018
	612	652	582	.010	.407	680	736	616	.017
	670	729	638	.010	.460	818	870	439	.020
			702	.012	.513	684	916	459 161	.196
	745	786							
	868	911	821	.013	.566	211	434	060	.047
	857	914	820	.011	.680	.016	156	.084	.029
	593	903	290	.129	.742	.127	028	.208	.026
	218	308	017	.028	.830	.324	.242	.378	.018
		259	005	.040	.910		.269		.015
.990	.081	079	.186	.035	.975	.233	.141	.289	.021
EC. 4 07	'O	(ID	impen		TOTE A	070	CIT	LOWE	1
ETA=.977 X/C	Z MEAN	MAX CP	MIN	SIGMA	\mathbf{X}/\mathbf{C}	:.972 MEAN	MAX CF	MIN	SIGMA
.025		537				608			
	530	607	476	.017	.092	493	576	436	.020
		683	578	.017	.126	612	649	579	.011
	669	751	612	.027	.227	745	785	702	.012
	717	751 771	688	.012	.294	843	901	772	.012
					.362		884		
	778	824	742	.012		791		441	.031
	782	843	715	.016	.430	539	863	043	.210
	763	834	622	.022	.497	075	207	.021	.035
	615	882	093	.182	.565	042	172	.047	.030
	132	722	.055	.066	.632	.003	152	.089	.022
	038	176	.079	.032	.700	.139	015	.214	.023
	065	165	.030	.026	.767	.245	.041	.299	.025
.835	020	084	.073	.024	.835	.266	.062	.350	.028
.902	018	081	.083	.021	.902	.284	.139	.343	.023
.990	.114	.040	.212	.022	.973	.230	.139	.290	.017

Table 11. Continued (l) Tab point 254, $M=0.92,\,q=153.3$ psf, $\alpha=-1^\circ$

ETA=.	707 MEAN	MAX CI	P UPPER MIN	SIGMA	ETA=	.707 MEAN		P LOWEI MIN	SIGMA
$\overline{ m X/C}$.025	215	282	155	.020	Λ/O	·	1717171	14111	0101111
.025	215 437	498	133 397	.010					
			437	.016					
.148	491	536		.013	.209	630	666	609	.008
.209	410	459	349	.009	.203	752	803	726	.010
.294	499	542	474		.350	732 710	751	682	.011
.350	492	537	458	.010	.407	877	919	852	.009
.407	637	698	584	.012		946	982	915	.003
.463	640	698	582	.015	.463		859	915 244	.106
.519	648	701	589	.013	.519	$418 \\273$	353	244 183	.026
.579	683	737	647	.012	.579		359	173	.028
.659	711	765	663	.011	.659	277		173 $.009$.028
.739	814	860	644	.013	.739	181	303		
.819	262	347	186	.021	.819	028	187	.177	.055
.899	139	222	050	.022	.899	.205	.007	.396	.057
.990	.028	077	.113	.026	.974	.289	.154	.403	.039
ETA=.	071	C	ם זוססגים		FTΔ	. 871	C	P LOWE	8
X/C	MEAN	MAX	P UPPER MIN	SIGMA	$\vec{\mathbf{x}}/\vec{\mathbf{c}}$:.871 MEAN	MAX	MIN	SIGMA
.025	163	234	108	.018	.025	513	567	461	.015
.084	447	486	408	.017	.084	636	698	604	.014
.143	417	500	345	.027	.143	673	711	640	.010
.202	391	466	348	.015	.202	705	750	680	.012
.301	506	551	469	.008	.301	718	774	677	.012
.354	588	637	533	.014	.354	795	832	764	.011
.407	566	609	518	.014	.407	775	829	736	.012
.460	621	662	562	.015	.460	902	943	865	.011
.513	621	738	633	.016	.513	706	952	319	.160
.566	807	871	752	.015	.566	296	431	183	.031
.680	795	839	748	.014	.680	188	328	.026	.050
.742	629	874	281	.128	.742	087	243	.153	.066
.830	023 194	274	099	.027	.830	.171	081	.344	.073
.910	114		.006	.037	.910	.271	.074	.377	.046
.990	.091	018	.203	.034	.975	.216	.136	.302	.024
.990	.091	010	.200	.004	.510	.210	.100	.002	
ETA =	.972	C	P UPPER MIN		ETA=	=.972 MEAN	C	P LOWE: MIN	R
$\overline{X}/\overline{C}$.972 MEAN								
.025	383	464			.025			580	.017
.092	438	507	369	.023	.092	619	705	501	.036
.126	528	593	481	.020	.126	646	741	583	.031
.227	592	637	548	.013	.227	763	806	737	.012
.294	677	724	632	.011	.294	874	929	838	.012
.362	739	787	674	.013	.362	800	867	728	.019
.430	746	805	681	.016	.430	703	847	065	.086
.497	760	807	670	.017	.497	132	304	.020	.052
.565	736	854	101	.119	.565	066	237	.093	.043
.632	198	652	006	.091	.632	051	240	.086	.052
.700	036	147	.053	.033	.700	.054	148	.219	.058
.767	020	115	.062	.023	.767	.148	005	.289	.045
.835	.022	058	.094	.021	.835	.182	067	.327	.059
.902	.021	056	.092	.022	.902	.223	.042	.332	.041
.990	.116	.005	.183	.024	.973	.216	.078	.314	.032
.000		.555	.200		•	_ -			

Table 11. Continued $\label{eq:matching} \mbox{(m) Tab point 257, } M=0.94, \, q=158.6 \mbox{ psf, } \alpha=-1^{\circ}$

ETA=.	707	CI	PUPPER		ETA=	.707 MEAN	CI	P LOWER	\
X/C	MEAN	MAX		SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	231	284	206	.010					
.087	427	460	406	.005					
.148	491	530	455	.008					
.209	448	486	412	.010	.209	579	611	555	.007
.294	484	524	459	.010	.294	697	745	671	.010
.350	473	509	454	.009	.350	670	715	637	.010
.407	617	653	587	.007	.407	833	867	802	.007
.463	651	697	630	.008	.463	886	929	864	.009
.519	644	678	613	.008	.519	895	939	615	.031
.579	679	724	330	.012	.579	370	609	260	.040
	714	724 751	685	.009	.659	365	448	291	.020
.659					.739	322	445	248	.022
.739	804	843	689	.008	.819	322 300	405 390	248 214	.022
.819	342	514	236	.030					
.899	251	325	192	.019	.899	199	272	100	.025
.990	164	248	096	.022	.974	089	180	.039	.027
ETA=.	871	C1	P UPPER MIN		ETA=	871	C	P LOWER	}
X/C	MEAN	MAX	MIN	SIGMA	\bar{X}/C	MEAN	MAX	MIN	SIGMA
.025	194	226	017	.010	.025	425	469	400	.010
.084	467	502	115	.012	.084	560	595	539	.008
.143	486	526	462	.008	.143	603	642	585	.010
.202	459	508	428	.010	.202	648	691	624	.006
.301	479	533	434	.018	.301	664	702	631	.011
.354		594	515	.010	.354	734	772	706	.008
	547		513	.010	.407	724	768	701	.010
.407	546	589			.460	$724 \\852$	891	825	.007
.460	613	640	587	.008				858	.007
.513	686	713	657	.007	.513	887			
.566	798	832	769	.009	.566	745	964	319	.156
.680	794	834	768	.007	.680	379	457	307	.022
.742	841	912	636	.032	.742	352	421	270	.023
.830	281	345	095	.016	.830	303	384	184	.031
.910		300	186	.015	.910	217	347	030	.044
.990	076	164	.050	.030	.975	038	167	.143	.044
TOTAL A	0.00	C.			TO/TO A	070	C	D I AWEI)
ETA=	.972 MEAN	MAX	P UPPER MIN	SIGMA	X/C	:.972 MEAN	MAX	P LOWEI MIN	SIGMA
	401					547			.008
	460	524	424	.014	.092	501	573	441	.019
.092			541	.014	.126	564	597	542	.007
.126	562	607			.227	702	735	680	.009
.227	624	681	573	.014			855	789	.009
.294	655	700	622	.008	.294	817			
.362	708	750	673	.009	.362	793	850	749	.015
.430	739	779	702	.009	.430	762	876	356	.048
.497	744	803	715	.013	.497	290	574	082	.075
.565	794	837	728	.012	.565	209	354	001	.051
.632	760	846	324	.056	.632	248	390	007	.060
.700	288	664	085	.087	.700	201	390	.051	.065
.767	154	347	.038	.047	.767	169	301	.006	.045
.835	049	192	.080	.043	.835	166	357	.125	.074
.902	028	152	.078	.034	.902	098	251	.108	.059
.990	.011	222	.177	.052	.973	.015	163	.271	.071

Table 11. Continued $\label{eq:mass_mass} \mbox{(n) Tab point 260, } M=0.96, \, q=163.4 \mbox{ psf, } \alpha=-1^{\circ}$

TOTO A	707	CI	UPPER			ETA=	707	CP	LOWER	
ETA = X	MEAN	MAX	MIN	SIGMA	-	x/c−	'MEAN	MAX	MIN	SIGMA
.025	222	264	200	.009		,				
.025	412	457	394	.006						
.148	474	514	441	.009						
.209	414 438	471	410	.007		.209	520	560	495	.008
	491	530	410	.006		.294	641	681	620	.009
.294			450 451	.007		.350	627	661	597	.010
.350	467	504		.008		.407	768	810	747	.008
.407	600	634	570			.463	829	869	806	.007
.463	633	687	611	.009			852	890	827	.007
.519	638	679	616	.007		.519		989	921	.006
.579	651	702	628	.011		.579	953		529 533	.109
.659	688	729	675	.006		.659	820	-1.001		.015
.739	783	807	764	.008		.739	506	566	436	
.819	733	886	412	.087		.819	465	528	421	.014
.899	354	412	294	.018		.899	356	420	306	.016
.990	276	377	220	.017		.974	215	282	143	.022
						T300 4	071	CD		
ETA = .	871	Cl	PUPPER	CICMA		ETA= X/C	:.871 MEAN	MAX CP	MIN	SIGMA
X/C	MEAN	MAX		SIGMA		.025	348	388	322	.008
.025	209	251	187	.008		.023	491	522	478	.007
.084	468	508	445	.006				567	512	.007
.143	488	521	469	.008		.143	540		$572 \\572$.009
.202	481	515	459	.007		.202	593	627		
.301	526	556	498	.011		.301	599	635	578	.008
.354	559	598	533	.008		.354	666	706	642	.007
.407	541	593	518	.009		.407	656	691	636	.009
.460	597	621	579	.007		.460	794	832	758	.008
.513	673	703	649	.006		.513	826	852	801	.006
.566	770	797	756	.010		.566	889	924	860	.006
.680	767	788	745	.005		.680	-1.011	-1.035	993	.006
.742	866	895	842	.006		.742	868	995	555	.094
.830	457	510	411	.013		.830	450	485	424	.012
.910	408	444	367	.011		.910	428	479	391	.011
.990	240	300	202	.014		.975	296	349	266	.011
ETA =	.972	C	P UPPER MIN	7070774		ETA=	=.972	CF		SIGMA
X/C	MEAN					X/C		MAX	MIN	.009
.025	404	446		.010		.025	481	522	444	
.092	472	519	433	.008		.092	402	470	375	.012
.126	553	588	536	.010		.126	506	536	472	.008
.227	631	661	598	.008		.227	646	681	627	.007
.294	666	711	647	.009		.294	762	808	744	.009
.362	692	727	674	.008		.362	736	759	727	.006
.430	734	777	713	.009		.430	824	850	795	.007
.497	743	789	715	.010		.497	810	871	502	.042
.565	781	812	749	.009		.565	363	631	255	.041
.632	765	810	744	.008		.632	400	542	291	.030
.700	797	842	600	.022		.700	362	503	243	.035
.767	460	783	253	.112		.767	336	441	239	.027
.835	305	427	197	.043		.835	358	531	172	.046
.902	270	382	148	.032		.902	332	418	233	.030
.902	210	487	048	.069		.973	266	411	074	.050
.550	.211	. 101	.040	.000						

Table 11. Continued $\label{eq:mass_eq} \mbox{(o) Tab point 91, } M=0.80, \, q=123.6 \mbox{ psf, } \alpha=0^{\circ}$

1.055	ETA=.	MEAN	MAX	P UPPER MIN	SIGMA	ETA=X/C	707 MEAN	MAX C	P LOWEI MIN	SIGMA
148	0.025	684	750	622	.017					
290										
1.294 558 673 393 0.44 .294 304 378 215 .022 .350 564 655 430 .037 .350 348 414 271 .022 .463 588 740 410 .061 .463 386 465 313 .021 .519 524 736 346 .075 .519 257 329 204 .020 .579 517 728 348 .062 .579 180 .238 119 .017 .659 416 552 313 .038 .659 .049 .007 .093 .015 .739 .466 566 309 .031 .739 .188 .140 .227 .012 .819 269 331 .217 .020 .819 .308 .250 .363 .013 .899 .111 173 060 .014 .899 .378 .337 .433 .013 .899 .111 .173 060 .014 .899 .378 .337 .433 .013 .899 .111 .173 060 .014 .899 .378 .344 .013 .025 .550 .603 .504 .015 .025 .164 .235 .103 .016 .084 235 .245 .344 .013 .025 .550 .603 .504 .015 .025 .164 .235 .013 .016 .084 235 .033 .231 .011 .143 .581 .650 .526 .018 .143 .315 .366 .279 .012 .304 .025 .539 .593 .491 .015 .202 .314 .331 .371 .020 .314 .331 .270 .015 .301 .472 .594 .325 .037 .301 .307 .336 .220 .202 .539 .598 .344 .014 .407 .323 .398 .220 .020 .407 .479 .598 .344 .041 .407 .323 .398 .220 .020 .407 .479 .598 .344 .041 .407 .323 .398 .220 .020 .460 .480 .617 .315 .044 .460 .313 .378 .239 .200 .513 .484 .660 .287 .055 .513 .256 .319 .0170 .020 .566 .478 .660 .287 .055 .513 .256 .319 .0170 .020 .566 .478 .665 .257 .045 .566 .227 .301 .335 .295 .315 .016 .245 .227 .035 .335 .295 .3170 .020 .566 .484 .660 .287 .055 .513 .256 .319 .3770 .020 .566 .484 .665 .287 .055 .513 .256 .319 .3770 .020 .566 .484 .484 .484 .565 .512 .049 .356 .227 .300 .335 .225 .310 .						200	977	220	202	010
350 -564 -665 -430 0.37 .350 -348 -414 -271 .021 .407 -582 -690 -3.78 .047 .407 -3.39 -4.14 -2.71 .022 .463 -588 -740 -410 .061 .463 -3.86 -465 -3.13 .021 .519 -5.524 -7.736 -3.46 .075 .519 -2.57 -3.29 -204 .020 .579 -517 -7.728 -3.48 .062 .579 -1.80 -238 -119 .017 .659 -4.16 -5.52 -3.13 .038 .659 .049 .007 .093 .015 .739 -4.06 -5.56 -3.09 .031 .739 .188 .140 .227 .012 .819 .308 .250 .363 .013 .899 -1.11 -1.73 -0.60 .014 .899 .378 .337 .433 .010 .999 .111 -1.73 -0.60 .014 .899 .378 .337 .433 .010 .999 .119 .053 .150 .016 .974 .295 .245 .344 .013 .025 .550 .603 .504 .015 .025 .164 -2.35 .344 .013 .025 .550 .663 .504 .015 .025 .164 -2.35 .013 .016 .084 .685 .734 .651 .010 .084 .270 .333 .231 .011 .143 .581 .650 .526 .018 .143 .315 .366 .279 .012 .202 .539 .593 .491 .015 .025 .314 .371 .270 .015 .301 .472 .594 .325 .037 .301 .307 .364 .244 .019 .354 .449 .568 .251 .049 .354 .492 .361 .220 .200 .200 .460 .480 .617 .315 .044 .460 .313 .378 .339 .240 .020 .566 .478 .657 .321 .045 .566 .201 .255 .319 .020 .566 .478 .657 .321 .045 .566 .201 .255 .129 .020 .566 .478 .657 .321 .045 .566 .201 .255 .129 .020 .566 .478 .657 .321 .045 .566 .201 .255 .319 .0170 .020 .566 .478 .657 .321 .045 .566 .221 .255 .319 .0170 .020 .566 .478 .657 .321 .045 .566 .221 .225 .313 .374 .014 .015 .025 .566 .220 .225 .325										
407 -582 -690 -378 047 407 -399 -474 -321 0.02 -463 -588 -740 -410 0.061 463 -386 -465 -313 0.021 -579 -524 -7.736 -346 0.075 5.19 -257 -329 -204 0.020 -579 -517 -728 -348 0.062 5.79 -180 -238 -119 0.017 -589 -416 -552 -313 0.38 659 0.049 0.007 0.093 0.015 -739 -406 -506 -309 0.31 7.739 1.88 1.40 2.27 0.012 -819 -269 -331 -217 0.020 8.19 3.08 2.50 3.63 0.13 -899 -111 -173 -0.060 0.014 8.99 3.78 3.37 4.33 0.010 -990 .119 .053 .150 0.016 9.74 2.95 2.45 3.44 0.13										
A63										
5.19										
1.579										
659										
1.739										
Section Sect										
Sep										
1.19										
ETA=.871										
.025	.000	.110				.011	.250			
.025		871	C	P UPPER		ETA=	.871	C	P LOWER	}
.084 685 734 651 .010 .084 270 333 231 .011 .143 581 650 526 .018 .143 315 366 279 .012 .202 539 593 491 .015 .202 314 371 270 .015 .301 472 594 325 .037 .301 307 364 244 .019 .354 449 568 251 .049 .354 292 361 220 .020 .407 479 598 344 .041 .407 323 398 240 .020 .460 480 617 315 .044 .460 313 378 239 .020 .513 484 660 287 .055 .513 256 319 170 .020 .566 478 657	,		MAX	MIN	SIGMA			MAX	MIN	
1.143										
.202 539 593 491 .015 .202 314 371 270 .015 .301 472 594 325 .037 .301 307 364 244 .019 .354 449 568 251 .049 .354 292 .361 220 .020 .407 479 598 .344 .041 .407 323 398 240 .020 .460 480 617 315 .044 .460 313 378 239 .020 .513 484 660 287 .055 .513 256 319 170 .020 .566 478 657 321 .045 .566 201 255 .129 .022 .680 348 492 293 .025 .680 .042 .129 .056 .175 .012 .830 176										
301										
.354 449 568 251 .049 .354 292 361 220 .020 .407 479 598 344 .041 .407 323 398 240 .020 .460 480 617 315 .044 .460 313 378 239 .020 .513 484 660 287 .055 .513 256 319 170 .020 .566 478 657 321 .045 .566 201 255 129 .022 .680 368 492 293 .025 .680 .042 013 .083 .014 .742 306 382 240 .020 .742 .129 .056 .175 .012 .830 176 245 128 .017 .830 .335 .293 .374 .014 .910 067 117 0										
.407 479 598 344 .041 .407 323 398 240 .020 .460 480 617 315 .044 .460 313 378 239 .020 .513 484 660 287 .055 .513 256 319 170 .020 .566 478 657 321 .045 .566 201 255 129 .022 .680 368 492 293 .025 .680 .042 013 .083 .014 .742 306 382 240 .020 .742 .129 .056 .175 .012 .830 176 245 128 .017 .830 .335 .293 .374 .014 .910 067 117 030 .013 .910 .403 .341 .443 .013 .990 .117 .055 .156 <td></td>										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
.910 067 117 030 .013 .910 .403 .341 .443 .013 .990 .117 .055 .156 .014 .975 .237 .185 .267 .009 ETA=.972										
.990 .117 .055 .156 .014 .975 .237 .185 .267 .009 ETA=.972										
ETA=.972 X/C MEAN MAX MIN SIGMA .025										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.990	.117	.055	.156	.014	.975	.237	.185	.267	.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	БТΛ	079	C	סיים מונו מ		E/T/A	079	CI		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X/C	MEAN	MAX	MIN	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									154	.019
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$.902 030 079 \qquad .020 .014 \qquad \qquad .902 \qquad .360 \qquad .297 \qquad .398 .014$										

Table 11. Continued $\label{eq:mass_mass} \mbox{(p) Tab point 92, } M=0.85, \, q=135.3 \mbox{ psf, } \alpha=0^{\rm o}$

ETA=.	.707 MEAN	MAX C	P UPPER MIN	SIGMA	ETA=	.707 MEAN	MAX C	P LOWEI MIN	SIGMA
.025	544	607	503	.012	, -				
.087	626	675	599	.009					
.148	687	- 744	656	.137					
.209	562	615	504	.013	.209	343	420	237	.028
.294	647	703	601	.012	.294	362	457	233	.034
.350	666	726	598	.016	.350	415	508	286	.036
.407	681	759	591	.021	.407	465	598	319	.041
.463	666	767	571	.022	.463	434	539	311	.035
.519	650	735	545	.029	.519	290	376	186	.028
.579	768	831	626	.020	.579	186	253	061	.023
.659	611	852	234	.147	.659	.052	.006	.138	.017
.739	340	591	191	.051	.739	.198	.154	.259	.017
.819	220	341	133	.031	.819	.312	.254	.357	.014
.899	074	145	015	.018	.899	.374	.320	.421	.015
.990	074 $.135$	143 $.074$	015	.013	.974	.301	.237	.339	.013
.990	.133	.014	.110	.010	.314	.501	.201	.000	.010
ETA=.	871	C	P UPPER		ETA=	₌.8 7 1	C	P LOWE	? - -
X/C^{-}	MEAN	MAX	MIN	SIGMA	\vec{X}/\vec{C}	MEAN	MAX	MIN	SIGMA
.025	438	486	048	.013	.025	247	321	187	.018
.084	669	708	632	.009	.084	348	423	304	.014
.143	609	656	556	.014	.143	394	442	348	.015
.202	539	595	501	.010	.202	375	431	312	.019
.301	670	717	624	.012	.301	369	496	236	.032
.354	680	730	598	.018	.354	350	445	201	.033
.407	659	752	366	.040	.407	377		258	.035
.460	610	714	300	.060	.460	372	499	256	.035
.513	602	773	196	.112	.513	292	402	167	.033
.566	520	857	195	.141	.566	216	297	117	.024
.680	335	552	138	.061	.680	.047	.001	.089	.015
.742	280	400	129	.037	.742	.137	.078	.187	.014
.830	162	223	104	.022	.830	.341	.268	.379	.015
.910	052	107	.013	.014	.910	.406	.364	.497	.012
.990	.142	.077	.182	.013	.975	.256	.207	.294	.013
.000								•	
ETA=.	.972	C	P UPPER MIN		EŢA=	=.972 MEAN	C	P LOWEI MIN	3
.025	684	737		.016	.025	393	477		.027
.092	632	727	428	.017	.092	304	384	179	.025
.126	676	732	604	.018	.126	352	453	222	.031
.227	682	764	523	.038	.227	402	468	324	.021
.294	539	704	091	.125	.294	328	408	253	.027
.362	221	526	040	.056	.362	221	331	095	.036
.430	277	462	143	.046	.430	250	364	126	.032
.497	227	338	157	.027	.497	211	292	135	.024
.565	230	354	087	.037	.565	125	210	050	.021
.632	251	353	140	.027	.632	.021	050	.096	.070
.700	216	302	116	.026	.700	.152	.100	.188	.015
.767	157	208	070	.022	.767	.265	.221	.310	.012
.835	087	166	034	.020	.835	.350	.300	.392	.013
.902	021	072	.044	.017	.902	.365	.298	.429	.068
.990	.108	.046	.172	.017	.973	.231	.169	.284	.015

Table 11. Continued $\label{eq:alpha} \mbox{(q) Tab point 94, } M=0.88, \, q=143.0 \mbox{ psf, } \alpha=0^{\circ}$

ETA=.	707	Cl	P UPPER		ЕТА=	.707 MEAN	C	P LOWER MIN	CTCL A
X/C	MEAN	MAX		SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	440	488	414	.013					
.087	572	626	.012	.010					
.148	634	680	597	.009					
.209	564	605	523	.011	.209	414	508	262	.042
.294	589	629	520	.012	.294	419	573	232	.076
.350	628	663	590	.010	.350	438	615	271	.052
.407	702	755	669	.012	.407	581	697	361	.061
.463	708	762	663	.012	.463	468	749	258	.075
.519	701	755	659	.014	.519	301	439	176	.040
.579	775	834	737	.016	.579	186	262	080	.026
.659	802	842	757	.014	659	.050	019	.118	.017
.739	591	925	266	.139	.739	.204	.146	.257	.015
.819	189	286	200	.028	.819	.303	.240	.362	.016
				.028	.899	.373	.315	.422	.015
.899	048	137	.010				.236	.357	.015
.990	.119	.034	.178	.022	.974	.306			
ETA=.	971	C	D HIDDER		ETA-	.871	C	P LOWER MIN	
X/C	MEAN	MAX	P UPPER MIN	SIGMA	\vec{X}/\vec{C}	MEAN	MAX	MIN	SIGMA
.025	329	374	289	.011	.025	339	405	253	.021
.084	593	633	562	.008	.084	454	526	388	.020
.143	572	620	514	.017	.143	464	519	418	.015
.202	494	550	461		.202	428	508	358	.023
.301	618	667	568		.301	447		275	.044
.354	636	678	590	.013	.354	401		239	.061
				.012	.407	401		244	.044
.407	668	723	626			440		244 266	.066
.460	665	699	545	.011	.460				
.513	766	817	718	.012	.513			182	.049
.566	846	903	787	.015	.566	215		123	.028
.680	559	865	155	.174	.680	.054	.001	.096	.015
.742	225	574	073	.063	.742	.145		.190	.015
.830	080	173	010	.024	.830	.348		.393	.013
.910	.006	063	.062	.020	.910	.408		.457	.014
.990	.158	.085	.197	.014	.975	.270	.231	.314	.011
					~~~		CI.	D I OUTE	
ETA=	.972 MEAN	C	P UPPER MIN	SIGMA	ETA=	=.972 MEAN	MAX	P LOWER MIN	SIGMA
					025	490	604	361	
	564					$490 \\372$	448	254	.026
.092	561	614	515	.016	.092		562	254 $356$	.020
.126	644	692	595	.016	.126	460			
.227	659	710	615	.014	.227	530	602	454	.024
.294	709	764	616	.014	.294	539	726	337	.070
.362	729	812	365	.047	.362	199	512	040	.068
.430	515	752	111	.149	.430	240	382	082	.048
.497	155	503	063	.049	.497	206	338	115	.030
.565	147	323	022	.043	.565	114	173	034	.023
.632	201	321	094	.031	.632	.028	047	.103	.018
.700	181	273	072	.029	.700	.165	.106	.225	.014
.767	132	196	042	.024	.767	.276	.233	.330	.013
.835	063	132	007	.019	.835	.345	.296	.408	.014
.902	011	068	.041	.018	.902	.359	.294	.406	.017
.902	.121	056	.199	.019	.973	.245	.184	.305	.016
. 330	.121	.000	.100	.010					

Table 11. Continued  $\label{eq:mass_mass} \mbox{(r) Tab point 96, } M=0.90, \, q=148.0 \mbox{ psf, } \alpha=0^{\circ}$ 

ETA=.	707	C	P UPPER	CICIAA	ETA=	.707 MEAN	C	P LOWER MIN	{
X/C	MEAN	MAX		SIGMA	X/C	WEAN	MAA	IVIIIN	SIGMA
.025	383	436	352	.011					
.087	522	559	478	.008					
.148	586	623	543	.009	200	E10	563	444	.014
.209	548	597	517	.009	.209	510			.014
.294	572	632	538	.012	.294	590	645	520	
.350	592	641	558	.013	.350	661		595	.014
.407	681	730	647	.010	.407	801	859	315	.028
.463	712	761	665	.012	.463	765		168	.171
.519	695	742	649	.012	.519	234	506	100	.051
.579	772	819	725	.011	.579	156	286	033	.033
.659	803	861	755	.012	.659	.042	018	.114	.065
.739		930	328	.132	.739	.195	.141	.249	.015
.819		324	134	.023	.819	.311	.244	.362	.016
.899	102	180	014	.026	.899	.395	.350	.442	.014
.990	.056	037	.137	.025	.974	.303	.252	.357	.016
ETA=.	.871	C	P UPPER MIN		ETA=	.871 MEAN	C	P LOWEF MIN	<u> </u>
$_{ m X/C}^{ m ETA}=$									
.025	261	315	221	.012	.025	423	478	367	.013
.084	535	578	509	.008	.084	535	594	484	.015
.143	549	599	508	.012	.143	606	661	526	.014
.202	507	544	458	.013	.202	523	624	431	.032
.301	574	624	538	.011	.301	536	591	278	.020
.354	585	619	547	.011	.354	607	666	231	.052
.407	588	652	534	.015	.407	579	753	236	.142
.460	623	676	584	.011	.460	469	794	211	.131
.513	782	826	742	.010	.513	348	673	153	.084
.566	867	929	806	.013	.566	211	341	072	.035
.680	836	884	470	.026	.680	.054	.001	.104	.017
.742	417	768	165	.103	.742	.148	.084	.209	.016
.830	132	228	034	.031	.830	.335	.279	.380	.014
.910	006	122	.060	.029	.910	.397	.321	.442	.015
.990	.126	.034	.203	.024	.975	.255	.189	.303	.016
TOTO 4	050	a			DOM	070	C)	DIANTE	
X/C	.972 MEAN	MAX	P UPPER MIN	SIGMA	X/C	:.972 MEAN	MAX	P LOWEF MIN	SIGMA
		534				572		448	
.092	505	570	439	.017	.092	427	492	328	.017
.126	573	657	494	.036	.126	543	614	414	.022
.227	618	664	571	.010	.227	614	701	523	.029
.294	676	727	644	.011	.294	693	773	537	.027
.362	762	821	715	.011	.362	539	735	003	.168
.430	764	832	610	.021	.430	158	599	.018	.083
.497	658	781	108	.092	.497	146	303	015	.048
.565	038 $192$	650	.025	.108	.565	094	179	.004	.028
.632	192 $095$	$030 \\237$	.025	.032	.632	094 $.032$	033	.004	.019
.700	095 $097$	237 $215$	.004	.032	.700	.169	033	.229	.019
.76 <b>7</b>	097 086	215 $155$	.004 $.005$	.030	.767	.282	.237	.319	.014
.835	080 $031$	$155 \\091$	.003	.023 .019	.835	.351	.237 .299	.319 .407	.014
.835 .902	031 .001	091 $054$	.042	.019	.902	.374	.299 .296	.407	.016
.902 .990	.001	054 $.054$	.004	.018	.902 .973	.274 $.255$	.290	.306	.021
.550	.110	.004	.192	.017	.510	.200	.201	.500	.010

Table 11. Continued  $\label{eq:mass_mass} \mbox{(s) Tab point 98, } M=0.92, \, q=152.5 \mbox{ psf, } \alpha=0^{\rm o}$ 

FTA = 707			(-)	r	,	, 1		• /			
1.025	ETA = .	707	CI	P UPPER			ETA =	.707	Cl	P LOWEI	{
1.087   -5.10   -5.54   -4.64   .009	X/C	MEAN	MAX	MIN	SIGMA		X/C	MEAN	MAX	MIN	SIGMA
148	.025	361	400	331	.011						
299   -536   -590   -502   .009   .209   -509   -558   -477   .012	.087	510	554	464	.009						
209   -5.56   -5.90   -5.02   .009   .209   -5.09   -5.58   -4.477   .012   .012   .024   -5.570   -6.63   -5.54   .010   .350   -6.48   -7.16   -6.24   .010   .407   -6.61   -7.08   -6.28   .009   .407   -8.32   -8.79   -8.12   .007   .463   -7.10   -7.50   -6.80   .010   .463   -8.97   -8.93   -8.72   .009   .519   -7.705   -7.54   -6.75   .012   .519   -8.90   -9.41   -4.69   .032   .579   -7.60   -8.86   -7.76   .011   .579   -8.90   -9.41   -4.69   .032   .579   -7.60   -8.86   -7.76   .011   .579   -8.90   -9.41   -4.69   .032   .579   -7.54   -9.25   -3.87   .114   .739   .023   -1.42   .137   .038   .819   -2.64   -3.38   -1.99   .022   .819   .193   .043   .283   .031   .899   -1.60   -2.32   -0.83   .020   .899   .350   .251   .418   .024   .990   .001   -0.93   .088   .027   .974   .293   .210   .358   .021   .358   .021   .024   .034   .025   -4.44   -4.62   .357   .012   .034   .025   .247   .294   -2.14   .014   .025   -4.04   -4.62   .357   .012   .034   .025   .444   .452   .357   .012   .034   .034   .202   .525   .587   .480   .013   .013   .143   -6.05   -6.53   -5.59   .010   .334   .504   .523   .555   .482   .014   .143   .544   .593   .493   .013   .143   -6.05   -6.53   .552   .009   .344   .544   .593   .493   .013   .143   -6.05   -6.53   .552   .009   .344   .524   .544   .593   .493   .013   .143   -6.05   -6.53   .559   .010   .344   .544   .567   .099   .460   -7.77   .839   .726   .019   .344   .566   .656   .519   .021   .354   .565   .656   .559   .010   .354   .565   .019   .354   .565   .567   .523   .017   .301   .622   .696   .550   .019   .354   .565   .362   .019   .354   .565   .362   .019   .354   .565   .362   .365   .362   .009   .366   .366   .373   .266   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366   .366	.148	579	627	538	.013						
294   -570   -624   -534   .010   .294   -585   -626   -549   .010   .350   -589   -633   -554   .010   .350   -648   .716   -624   .010   .407   -861   -708   -680   .009   .407   -832   -879   -812   .007   .463   -710   -750   -680   .010   .463   -897   -399   -872   .009   .519   -770   -754   -675   .012   .519   -890   .941   -469   .032   .579   -760   -866   -726   .011   .579   -301   -385   -161   .030   .659   -791   -836   -756   .009   .659   -140   -263   .006   .041   .739   .754   -925   -387   .114   .739   .023   .142   .137   .038   .819   -264   -338   -199   .022   .819   .193   .043   .283   .031   .899   -160   -232   -083   .020   .899   .350   .251   .418   .024   .990   .001   -093   .088   .027   .974   .293   .210   .358   .021   .274   .294   .214   .014   .025   -404   -452   -357   .012   .084   -517   .561   -494   .009   .084   -523   .565   -482   .014   .143   .544   .553   .493   .013   .202   .606   .653   -552   .019   .301   .605   -653   -557   .480   .013   .202   .606   .653   .559   .010   .301   .605   .657   -523   .017   .301   .622   .606   .550   .019   .354   .636   .564   .636   .567   .523   .017   .301   .622   .606   .550   .019   .354   .636   .594   .544   .567   .009   .460   .777   .789   .776   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .018   .			590	502	.009		.209	509	558	477	
350				534	.010		.294	585	626	549	.010
A07							.350	648	716	624	.010
A63							.407	832	879	812	.007
1.519										872	.009
1.579										469	.032
1.659											
1.739											
Sign   -264   -338   -199   .022   .819   .193   .043   .283   .031   .899   .160   -232   .083   .020   .899   .350   .251   .418   .024   .294   .293   .210   .358   .021   .283   .021   .283   .021   .283   .021   .283   .294   .294   .293   .210   .358   .021   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .221   .283   .223   .285   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284   .284											
Reg											
Section   Sect											
ETA=.871 X/C MEAN MAX MIN SIGMA  025247294214 .014 .025404452357 .012 .084517561494 .009 .084523565482 .014 .143544593493 .013143605653582 .009 .202525587480 .013202606653559 .010 .301605657523017301622696550019 .354564636519021354630692567018 .407575622519015407686731650019 .460591634567009460777839726013 .513755802721010513819873236041 .566856924826012566296661093068 .680827881789012680013177212050 .742546906264137742											
.025        247        294        214         .014         .025        404        452        357         .012           .084        517        561        494         .009         .084        523        565        482         .014           .143        544        593        493         .013         .143        605        653        582         .009           .202        525        587        480         .013         .202        606        653        559         .010           .301        605        657        523         .017         .301        622        696        550         .019           .354        564        636        519         .021         .354        630        692        567         .018           .407        575        622        519         .015         .407        686        731        650         .010           .460        591        634        567         .009         .460        777        839        726         .013           .566        826        924	.990	.001	093	.000	.021		.314	.290			
.025        247        294        214         .014         .025        404        452        357         .012           .084        517        561        494         .009         .084        523        565        482         .014           .143        544        593        493         .013         .143        605        653        582         .009           .202        525        587        480         .013         .202        606        653        559         .010           .301        605        657        523         .017         .301        622        696        550         .019           .354        564        636        519         .021         .354        630        692        567         .018           .407        575        622        519         .015         .407        686        731        650         .010           .460        591        634        567         .009         .460        777        839        726         .013           .566        826        924	ETA —	Q71	C	PUPPER			ETA=	=.8 <b>7</b> 1	C	P LOWEI	3
.025        247        294        214         .014         .025        404        452        357         .012           .084        517        561        494         .009         .084        523        565        482         .014           .143        544        593        493         .013         .143        605        653        582         .009           .202        525        587        480         .013         .202        606        653        559         .010           .301        605        657        523         .017         .301        622        696        550         .019           .354        564        636        519         .021         .354        630        692        567         .018           .407        575        622        519         .015         .407        686        731        650         .010           .460        591        634        567         .009         .460        777        839        726         .013           .566        826        924	X/C	MEAN	MAX	MIN	SIGMA		$\bar{\mathbf{X}}/\bar{\mathbf{C}}$	MEAN	MAX	MIN	SIGMA
.084        517        561        494         .009         .084        523        565        482         .014           .143        544        593        493         .013         .143        605        653        582         .009           .202        525        587        480         .013         .202        606        653        559         .010           .301        605        657        523         .017         .301        622        696        550         .019           .354        564        636        519         .021         .354        630        692        567         .018           .407        575        622        519         .015         .407        686        731        650         .010           .460        591        634        567         .009         .460        771         .839        726         .013           .513        755        802        721         .010         .513         .819         .873         .236         .041           .566        856        924 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>.025</td><td>404</td><td></td><td></td><td>.012</td></td<>							.025	404			.012
143					.009		.084	523	565	482	.014
202   -525   -587   -480   .013   .202   -606   -653   -559   .010   .0301   -605   -657   -523   .017   .301   -622   -696  550   .019   .354   -564   -636   -519   .021   .354   -630   -692   -567   .018   .407   -575   -622   -519   .015   .407   -686   -731   -650   .010   .460   -591   -634   -567   .009   .460   -777   -839   -726   .013   .513   -755   -802   -721   .010   .513   -819   -873   -236   .041   .566   -856   -924   -826   .012   .566   -296   -661   -093   .068   .680   -827   -881   -789   .012   .680   -013   -177   .212   .050   .742   -546   -906   -264   .137   .742   .098   -051   .203   .039   .830   -192   -269   -116   .022   .830   .330   .281   .380   .015   .910   -093   -201   .023   .037   .910   .390   .335   .441   .017   .990   .055   -060   .162   .036   .975   .224   .150   .283   .022   .227   .635   -712   .543   .035   .227   -662   -704   .623   .012   .026   .012   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026							.143	605	653	582	.009
301									653	559	.010
354  564  636  519   .021   .354  630  692  567   .018										550	.019
A07											
A60											
Signature   Sign											
Second   S											
.680        827        881        789         .012         .680        013        177         .212         .050           .742        546        906        264         .137         .742         .098        051         .203         .039           .830        192        269        116         .022         .830         .330         .281         .380         .015           .910        093        201         .023         .037         .910         .390         .335         .441         .017           .990         .055        060         .162         .036         .975         .224         .150         .283         .022           ETA=.972											
T42											
R830   -1.192   -2.669   -1.116   .022   .830   .330   .281   .380   .015   .910   -0.093   -2.201   .023   .037   .910   .390   .335   .441   .017   .990   .055   -0.60   .162   .036   .975   .224   .150   .283   .022   .283   .022   .283   .022   .284   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .283   .28											
10											
1.990         .055        060         .162         .036         .975         .224         .150         .283         .022           ETA = .972											
ETA=.972 X/C MEAN MAX MIN SIGMA  .025											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	.990	.055	060	.162	.030		.975	.224	.190	.200	.022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>БТ</b>	079	C	D HIDDER			ETA=	- 972	C	P LOWE	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X/C	MEAN	MAX	MIN	SIGMA		$\bar{X}/\bar{C}$	MEAN	MAX	MIN	SIGMA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			508	406	.016				567	495	.012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									512	375	.014
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									584	493	.010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											.012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											.017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
.835 .020053 .099 .021 .835 .351 .278 .395 .017 .902 .030052 .107 .019 .902 .366 .276 .393 .020											
$.902  .030 052  .107  .019 \qquad .902  .366  .276  .393  .020$											
.502 .000 .002 .000 .000											
.990 .113 .052 .175 .018 .973 .247 .190 .286 .059											
	.990	.113	.052	.175	.018		.973	.247	.190	.200	.009

Table 11. Continued  $\label{eq:mass_mass} \mbox{(t) Tab point 100, } M=0.94, \, q=157.0 \mbox{ psf, } \alpha=0^{\rm o}$ 

		` ^		·	 		~	^	_
ETA = X/C	.707 MEAN	MAY	P UPPER MIN	SIGMA	ETA=	=.707 MEAN	MAY	P LOWEI MIN	R
.025	355	400	321	.011	$\Lambda/C$	WIEAN	WAA	IVIIIN	SIGMA
.023	504	549	483	.011					
.148	586	620	555	.010	000	400	F00	410	010
.209	532	573	498	.011	.209	469	509	419	.013
.294	577	618	552	.010	.294	560	609	533	.009
.350	~.590	626	560	.009	.350	635	696	584	.015
.407	649	699	621	.008	.407	791	832	767	.008
.463	704	740	672	.010	.463	858	902	825	.007
.519	704	744	667	.010	.519	867	903	827	.009
.579	760	805	728	.008	.579	534	913	312	.110
.659	781	812	757	.009	.659	337	414	267	.019
.739	780	910	476	.083	.739	311	375	240	.020
.819	300	373	227	.019	.819	235	348	048	.042
.899	223	293	159	.023	.899	.002	191	.211	.064
.990	049	145	.020	.025	.974	.202	.049	.348	.047
EŢĄ=.	.871	C	P UPPER MIN	~	EŢA=	:.871 MEAN	C	P LOWEI MIN	R
$\overline{X}/\overline{C}$	MEAN								
.025	261	308	219	.009	.025	331	381	289	.015
.084	522	556	491	.008	.084	475	514	445	.009
.143	558	608	522	.012	.143	555	600	531	.010
.202	554	593	513	.011	.202	567	612	543	.009
.301	609	669	588	.010	.301	588	652	546	.014
.354	624	675	584	.013	.354	610	661	573	.012
.407	614	682	571	.014	.407	661	699	631	.007
.460	603	659	562	.015	.460	765	804	738	.008
.513	730	779	700	.010	.513	811	848	784	.009
.566	863	908	834	.008	.566	920	962	885	.010
.680	818	856	789	.011	.680	360	443	248	.039
.742	711	903	401	.105	.742	268	390	120	.049
.830	224	296	158	.019	.830	.141	067	.327	.061
.910	129	206	058	.023	.910	.394	.326	.463	.019
.990	005	093	.066	.025	.975	.212	.167	.254	.016
.550	.000	.033	.000	.020	.510	.212	.101	.204	.010
ETA = .	.972	C	P UPPER		ETA=	.972	C	P LOWE	{
X/C	MEAN	MAX	P UPPER MIN	SIGMA	X/C	:.972 MEAN		P LOWEI MIN	
.025	466	515	417	.016	.025	485	539	434	.014
.092	521	571	459	.014	.092	371	409	343	.011
.126	608	653	565	.013	.126	506	535	468	.010
.227	681	735	637	.013	.227	622	661	594	.009
.294	677	742	607	.020	.294	743	796	707	.011
.362	710	752	675	.009	.362	734	772	693	.012
.430	768	818	730	.010	.430	795	839	759	.011
.497	798	859	726	.015	.497	793	851	489	.034
.565	748	822	558	.021	.565	253	376	135	.033
.632	422	729	121	.118	.632	141	282	.037	.046
.700	422 $055$	729 $226$	.061	.042	.700	.008	142	.184	.053
.767	033	$220 \\082$	.080	.042	.767	.136	020	.268	.033
.835									
	.058	018	.131	.019	.835	.221	.055	.350	.048
.902	.050	029	.115	.023	.902	.265	.109	.370	.034
.990	.118	026	.192	.028	.973	.213	.113	.289	.025

Table 11. Continued  $\label{eq:mass_mass} \mbox{(u) Tab point 101, } M=0.96, \, q=161.7 \mbox{ psf, } \alpha=0^{\rm o}$ 

ETA=.	707	CF	UPPER -	CICINA A	ETA=	.707 MEAN	MAX CI	P LOWEI MIN	SIGMA
X/C	MEAN	MAX		SIGMA	$\Lambda/C$	MEAN	MAA	141114	DIGMIN
.025	348	377	181	.011					
.087	478	522	458	.007					
.148	568	602	539	.009	000	407	420	274	.009
.209	547	577	515	.007	.209	407	439	374	
.294	570	599	546	.009	.294	520	559	497	.007
.350	583	608	554	.006	.350	608	654	577	.008
.407	635	679	614	.007	.407	734	776	712	.007
.463	683	718	653	.010	.463	805	843	780	.007
.519	687	722	647	.009	.519	816	845	792	.007
.579	741	782	717	.007	.579	917	957	897	.006
.659	770	-810	745	.008	.659	921	952	743	.021
.739	866	905	840	.007	.739	455	507	419	.012
.819	373	460	275	.023	.819	405	456	370	.012
.899	297	371	230	.021	.899	292	354	206	.018
.990	189	279	119	.021	.974	093	157	.015	.025
.000									
ETA = .	871	CI	P UPPER		EŢA=	:.871	C	P LOWEI MIN	R SIGMA
X/C	MEAN	MAX		SIGMA	$\bar{X}/\bar{C}$	MEAN	MAX		
.025	276	321	245	.011	.025	247	291	202	.010
.084	519	561	497	.007	.084	405	443	043	.011
.143	565	611	538	.008	.143	484	526	459	.006
.202	556	598	531	.009	.202	513	549	461	.008
.301	601	639	581	.009	.301	513	553	484	.010
.354	628	655	600	.008	.354	554	599	524	.009
.407	625	672	597	.009	.407	613	646	591	.007
.460	635	671	598	.010	.460	715	749	685	.007
.513	719	745	691	.008	.513	760	782	740	.004
.566	843	881	820	.007	.566	862	902	848	.008
.680	834	874	809	.008	.680	956	986	934	.006
.742	886	919	465	.025	.742	514	698	436	.041
.830	339	398	254	.018	.830	398	437	354	.012
.910	263	311	200	.016	.910	313	382	194	.027
.990	141	200	057	.021	.975	075	215	.100	.051
.990	141	200	.001	.021					
$E'\Gamma A =$	972	C]	P UPPER		ETA=	=.972	C	P LOWE MIN	R
X/C	.972 MEAN	MAX	P UPPER MIN	SIGMA	X/C		MAX	MIN	SIGMA
.025	486	532	447	.012	.025	396	455	331	.018
.092	529	598	500	.009	.092	315	365	279	.009
.126	611	645	580	.009	.126	427	476	390	.012
.227	675	714	650	.008	.227	560	598	533	.008
.294	704	742	676	.009	.294	676	718	654	.010
.362	702	751	676	.010	.362	670	717	640	.009
.430	745	783	719	.009	.430	742	792	715	.009
.497	782	823	758	.008	.497	804	837	782	.005
.565	765	829	702	.020	.565	880	912	857	.009
.632	649	785	407	.063	.632	491	914	351	.096
.032 .700	049 $210$	575	052	.060	.700	348	443	243	.028
		247	027	.028	.767	265	364	170	.030
.767	158	247 $195$	027 $039$	.023	.835	181	288	035	.036
.835	114			.023	.902	089	191	.051	.034
.902	091	189	.004		.973	003	124	.206	.040
.990	012	204	.113	.041	.913	.022	124	.200	.010

Table 11. Continued  $\label{eq:continued} \mbox{(v) Tab point 239, } M=0.80, \, q=122.6 \mbox{ psf, } \alpha=1^{\rm o}$ 

ETA=. X/C	707 MEAN	CF	OUPPER -	SIGMA	ETA= X/C	.707 MEAN	MAX CI	P LOWEI MIN	SIGMA
.025	885	942	813	.018					
.087	807	877	694	.018					
.148 .209	$855 \\613$	$907 \\724$	$644 \\464$	.024 .051	.209	222	286	142	.020
.203	646	805	397	.070	.294	275	346	209	.020
.350	598	729	403	.058	.350	282	336	221	.019
.407	688	817	460	.058	.407	362	436	282	.025
.463	676	844	440	.078	.463	337	404	264	.020
.519	601	836	373	.103	.519	222	278	152	.019
.579	546	852		.082	.579	146	203	083	.017
.659	426	602		.046	.659	.036	014	.102	.015
.739	387	506		.036	.739	.194	.142	.243	.016
.819	269	363		.022	.819	.332	.293	.378	.012
.899		177		.017	.899	.430	.357	.468	.011 .011
.990	.089	.030	.142	.016	.974	.341	.292	.377	.011
ETA=.	871	MAX CI	P UPPER -		ETA=	.871	C	P LOWEI MIN	R
X/C	MEAN				X/C	MEAN			
.025	783	834		.013	.025	006	074	.045	.018
.084	925	984	886	.012	.084	190	256	139	.014
.143	760	846	625	.029	.143	214	269	$166 \\237$	.012 .013
.202	603	686	524	.030	.202 .301	$281 \\275$	354 $348$	237 $197$	.013 .019
.301	$550 \\537$	$793 \\725$	$368 \\332$	.082 $.075$	.354	$275 \\276$	359	197 $203$	.023
.354 $.407$	537 $530$	725 $677$	332 $335$	.073	.407	268	340	209	.019
.460	535	690	357	.058	.460	308	377	-236	.019
.513	527	735	098	.070	.513	255	317	167	.021
.566	523	738	332	.055	.566	179	229	116	.022
.680	377	508	279	.028	.680	.024	009	.074	.014
.742	- 311	380	237	.022	.742	.127	.072	.162	.014
.830	175	255	123	.011	.830	.324	.267	.362	.012
.910	107	168	065	.014	.910	.351	.297	.385	.021
.990	.108	.050	.152	.011	.975	.231	.171	.268	.013
ETA=.	072	CI	TIPPER -		ETA =	- 972	C	P LOWE	R
X/C	MEAN	MAX	P UPPER - MIN	SIGMA	$\ddot{X}/\dot{C}$	=.972 MEAN	MAX	P LOWEI MIN	ŠIGMA
.025	-1.063	-1.127	-1.001	.017		162			
.092	829	-1.022	620	.081	.092	157	231	089	.027
.126	699	799	503	.063	.126	203	290	120	.020
.227	460	643	322	.045	.227	313	362	262	.014
.294	391	488	300	.033	.294	279	338	225	.019
.362	383	475	292	.036	.362	220	273	157	.023
.430	353	457	245	.028	.430	259	329	183 $134$	.023 .020
.497	272	$354 \\380$	$240 \\197$	.017 $.025$	.497 $.565$	$197 \\138$	$265 \\208$	134 $060$	.020
$.565 \\ .632$	$279 \\274$	360	197 $198$	.023	.632	050	208	.006	.017
.032 .700	274 $227$	286	140	.024	.700	.099	.038	.149	.015
.767	195	241	116	.018	.767	.223	.178	.263	.013
.835	132	190	087	.019	.835	.281	.220	.336	.016
.902	082	140	027	.017	.902	.283	.227	.328	.011
.990	.056	008	.118	.016	.973	.188	.126	.224	.015

Table 11. Continued  $\label{eq:mass_mass} \mbox{(w) Tab point 243, } M=0.85, \, q=134.6 \mbox{ psf, } \alpha=1^{\rm o}$ 

EŢĄ=.	.707	CF	· UPPER ·		ĘŢĄ=	.707 MEAN	7777-C	P LOWE	R
X/C	MEAN	MAX		SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	644	701	583	.018					
.087	716	759	683	.012					
.148	813	851	763	.011					
.209	734	796	672	.014	.209	289	378	155	.026
.294	725	797	656	.019	.294	341	427	215	.031
.350	688	728	625	.013	.350	339	437	227	.031
.407	823	873	782	.012	.407	420	563	270	.037
.463	838	886	768	.015	.463	377	482	240	.029
.519	816	876	761	.018	.519	244	329	151	.028
.579	882	943	801	.016	.579	139	209	064	.021
.659	863	923	600	.030	.659	.051	.001	.106	.018
.739	346	772	202	.061	.739	.228	.168	.274	.015
.819	400	304	108	.028	.819	.346	.279	.396	.015
.899	046	109	.021	.018	.899	.446	.388	.489	.014
.990	.125	.053	.168	.012	.974	.375	.330	.433	.014
.550	.120	.000	.100	.012	.0,1	.010			
ETA = .	.871	MAX CF	UPPER -		ETA=	:.871 MEAN	C	P LOWE MIN	R
X/C	MEAN								
.025	589	642	551	.012	.025	101	161	054	.019
.084	860	896	807	.012	.084	282	367	233	.016
.143	819	858	770	.010	.143	296	366	245	.016
.202	778	812	732	.011	.202	353	429	296	.016
.301	769	839	675	.017	.301	334	441	207	.029
.354	764	845	686	.024	.354	328	430	211	.029
.407	738	797	680	.014	.407	314	415	204	.030
.460	791	842	716	.016	.460	357	471	240	.033
.513	844	906	774	.019	.513	283	376	190	.027
.566	933	-1.017	302	.080	.566	191	273	105	.027
.680	255	449	137	.043	.680	.040	008	.093	.015
.742	223	372	112	.037	.742	.144	.079	.188	.016
.830	144	232		.020	.830	.342	.292	.379	.012
.910	102		006	.017	.910	.360			.012
	.163		.205	.015	.975	.268	.218	.307	.011
.550	.100	.000	.200	.010	.510	.200			
ETA =	.972	CF	UPPER		ETA=	972	C	P LOWE! MIN	R
$\overline{X}/C$	.972 MEAN	CF	MIN	SIGMA		.972 MEAN	$\mathbf{MAX}$	MIN	SIGMA
.025	870	924	822	.013	.025	262	362	172	.027
.092	892	957	813	.017	.092	243	365	145	.025
.126	873	907	830	.013	.126	288	380	187	.027
.227	920	980	828	.016	.227	425	500	369	.020
.294	827	929	208	.058	.294	350	502	256	.033
.362	261		098	.078	.362	250	367	143	.037
.430	258		133	.039	.430	279	380	114	.032
.497	229		153	.022	.497	209	294	122	.026
.565	259		115	.037	.565	138	203	068	.025
.632	268		167	.029	.632	044	114	.032	.019
.700	221	314	114	.028	.700	.112	.059	.161	.015
.767	190	257	106	.019	.767	.232	.175	.278	.012
.835	127	212	053	.021	.835	.275	.214	.319	.012
.902	127 $082$		.001	.018	.902	.284	.214	.338	.012
			.145	.018	.902	.193	.140	.243	.015
.990	.066	007	.145	.010	.913	.130	.140	.240	.010

Table 11. Continued  $\label{eq:alpha} \mbox{(x) Tab point 247, $M=0.88$, $q=142.2$ psf, $\alpha=1^\circ$}$ 

ETA=- X/C .025	MEAN 500	MAX 564	P UPPER MIN 452	SIGMA .014	ETA= X/C	:.707 MEAN	$\overline{\text{MAX}}^{\text{C}}$	P LOWEF MIN	SIGMA
.087 .148 .209 .294 .350 .407 .463 .519	643 730 653 698 666 790 810 808 860	695 770 707 742 714 839 864 865 917	622 698 624 657 616 753 764 756	.008 .009 .011 .014 .011 .010 .011 .013	.209 .294 .350 .407 .463 .519	348 406 401 516 429 282 162	432 570 512 665 661 396 255	246 263 265 339 251 167 083	.025 .057 .039 .065 .054 .034
.659 .739 .819 .899 .990	880 522 298 142 .048	923 939 387 263 071	849 313 152 017 .134	.011 .127 .029 .035 .032	.659 .739 .819 .899 .974	.033 .210 .324 .422 .336	024 $.147$ $.264$ $.355$ $.276$	.088 .259 .362 .463 .410	.018 .017 .015 .016 .019
ETA=. X/C .025	.871 MEAN 463	MAX 509	P UPPER MIN 424	SIGMA .012	ETA= X/C .025	.871 MEAN 206	MAX 280	P LOWEF MIN 140	SIGMA .022
.084 .143 .202	722 730 696	752 777 743	680 705 667	.009 .010 .009	.084 .143 .202	366 403 436	423 448 506	309 334 368	.018 .019 .020
.301 .354 .407	712 $753$ $732$	772 800 779	683 $712$ $681$	.012 .012 .012	.301 .354 .407	437 $382$ $385$	547 530 506	274 236 243	.051 .039 .039
.460 .513 .566	749 826 941	797 870 985	701 783 892	.014 .012 .011	.460 .513 .566	442 $331$ $215$	604 $497$ $307$	227 179 124	.057 .044 .028
.680 .742 .830	751 334 138	954 $598$ $245$	228 131 043	.157 .051 .028	.680 .742 .830	.030 .138 .333	020 .075 .277	.076 .191 .370	.016 .016 .013
.910 .990	030 $.150$	132 $.056$	.032 .219	.025 .019	.910 .975	.350 .261	.319	.394	.012 .013
	.972 MEAN 726 740	MAX 790 819				.972 MEAN 363 320		P LOWER MIN 252 223	
.126 .227 .294	788 858 860	822 904 929	761 819 805	.010 .011 .014	.126 .227 .294	400 $520$ $595$	470 $609$ $732$	274 $448$ $389$	.030 .021 .054
.362 .430 .497	$828 \\695 \\236$	897 $831$ $624$	726 $162$ $096$	.024 .132 .076	.362 .430 .497	283 276 215	610 447 315	$085 \\082 \\116$	.088 .051 .033
.565 .632 .700	169 $204$ $180$	327 $336$ $285$	$036 \\108 \\044$	.042 .032 .032	.565 .632 .700	136 $039$ $.118$	204 108 .068	052 .030 .176	.025 .020 .015
.767 .835 .902	164 102 074	243 $163$ $145$	053 050 .001	.025 .021 .019	.767 .835 .902	.237 .270 .283	.190 .215 .220	.287 .327 .333	.015 .014 .016
.990	.072	.005	.173	.020	.973	.206	.145	.254	.017

Table 11. Continued  $\label{eq:model} \mbox{(y) Tab point 250, } M=0.90, \, q=147.4 \mbox{ psf, } \alpha=1^{\circ}$ 

ETA=	.707 MEAN	MAX CI	P UPPER MIN	SIGMA	ETA=	.707 MEAN	MAX CI	P LOWER MIN	SIGMA
.025	421	472	389	.012					
.087	586	623	565	.010					
.148	672	708	639	.009	200	221	400	001	019
.209	612	648	579	.011	.209	451	489	381	.013
.294	659	704	622	.013	.294	557	607	481 $291$	$.016 \\ .052$
.350	639	689	606	.010	.350	$597 \\606$	$661 \\793$	291 $246$	.111
.407	763	809	726	.010	.407	600 $483$	193 836	240 $231$	.116
.463	785	833	749	.010	.463 .519	302	591	231 $138$	.061
.519	787	834	753	.011 .010	.579	302 $177$	279	069	.029
.579	834	885	802 $808$	.010	.659	.017	048	.085	.018
.659	850	890	362	.138	.739	.193	.130	.250	.019
.739	754	$942 \\397$	302 $218$	.024	.819	.305	.243	.361	.017
.819	309	290	218 $076$	.034	.899	.411	.343	.470	.017
.899	$195 \\035$	290 $174$	.083	.034	.974	.314	.242	.396	.021
.990	030	114	.000	.030	.014	.011	.2.12	1000	
ETA=	.871	C]	P UPPER		ETA=	.871	C	P LOWE	{
$\overline{X}/C$	MEAN	MAX	MIN	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	374	421	338	.012	.025	284	344	209	.022
.084	642	679	621	.009	.084	449	506	396	.014
.143	662	715	634	.011	.143	456	518	408	.021
.202	637	680	607	.012	.202	509	561	428	.018
.301	661	702	627	.012	.301	535		277	.040
.354	713	760	675	.014	.354	515		263	.104
.407	699	751	657	.012	.407	445		234	.085
.460	739	792	688	.015	.460	532	759	266	.078
.513	799	851	767	.012	.513	420	729	150	.096
.566	914	962	872	.014	.566	233	378	073	.037
.680	888	932	374	.033	.680	.016	042	.085	.019
.742	433	838	257	.087	.742	.129	.059	.184	.018
.830	217	310	090	.031	.830	.322	.267	.369	.015
.910		225	.019	.039	.910	.339	.271	.393	.014
.990	.085	019	.175	.031	.975	.233	.165	.291	.019
TOTAL A	070	C	D HDDED		ЕТА -	- 072	C	PLOWEI	3
X/C	=.972 MEAN	MAX	P UPPER MIN	SIGMA	$\ddot{X}/\dot{C}$	=.972 MEAN	MAX	P LOWEI MIN	SIGMA
	625		564		.025	441	541	281	.035
.092	657	718	611	.016	.092	380	474	239	.027
.126	727	758	699	.012	.126	458	559	335	.035
.227	798	849	756	.012	.227	593	671	504	.018
.294	818	872	777	.014	.294	699	754	529	.026
.362	830	865	794	.013	.362	601	769	131	.112
.430	805	861	673	.018	.430	297	784	067	.139
.497	719	839	223	.073	.497	153	340	015	.047
.565	267	806	023	.136	.565	110	197	.011	.031
.632	111	226	006	.032	.632	028	092	.053	.021
.700	101	201	.006	.033	.700	.126	.077	.193	.015
.767	114	189	016	.025	.767	.245	.183	.301	.015
.835	064	121	.025	.019	.835	.272	.207	.340	.016
.902	051	105	.025	.019	.902	.286	.225	.345	.015
.990	.087	.017	.167	.021	.973	.218	.175	.292	.015

Table 11. Continued  $\label{eq:continued} \mbox{(z) Tab point 253, $M=0.92$, $q=153.1$ psf, $\alpha=1^\circ$}$ 

ETA=.707	AN MAX MIN SIGMA
0.087  -0.549  -0.601  -0.511  0.009	
.148642693615 .007	40 500 405 000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$.294 647 690 611  .012 \qquad .294 590  .614  .662  .579  .000  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .250  .25$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$.463 770 814 745  .012 \qquad .463 8 $ $.519 777 826 736  .011 \qquad .519 7 $	
$579 803 852 773  .010 \qquad .579 20 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200  .579 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200  $	
859 $803$ $892$ $801$ $.011$ $.659$ $1$	
$739 779 930 337  .112 \qquad .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607  .739 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 607 $	
	18085 .268 .054
	09 .163 .430 .043
	89 .199 .381 .028
ETA=.871 CP UPPER ETA=.871 X/C MEAN MAX MIN SIGMA X/C ME	AN MAX MIN SIGMA
	AN MAX MIN SIGMA
$.025 341 394 280  .012 \qquad .025 280  .025 280  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .025  .0$	
$.084 611 654 587  .008 \qquad .084 4$	
$.143 634 689 589  .013 \qquad \qquad .143 589  .013 \qquad \qquad .143 589  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013  .013 $	
$.202 617 667 573  .012 \qquad .202 5$	
$.301 648 707 604  .014 \qquad .301 5$	
$.354 705 767 650  .013 \qquad .354 667  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .019  .01$	
$.407 686 735 633  .012 \qquad .407 6 $ $.460 737 796 685  .013 \qquad .460 7 $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
.680890967841 .014 .6800	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	03 .126 .355 .021
	25 .238 .378 .016
	09 .115 .270 .021
$.025 575 655 510  .020 \qquad .025 4$	
1020 1010 1020 1020	1000 1000
ETA=.972 CP UPPER ETA=.972	CP LOWER
X/C MEAN MAX MIN SIGMA X/C ME	
$.092 624 727 554  .018 \qquad .092 4$	
$.126 691 752 640  .014 \qquad \qquad .126 5$	
$.227 770 818 717  .013 \qquad .227 6$	
$.294 807 875 737  .015 \qquad .294 737  .014 \qquad .294  .767  .014 \qquad .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .294  .29$	
$.362 826 890 765  .014 \qquad .362 764  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .012  .01$	
$.430 829 897 784  .013 \qquad .430 784  .013 \qquad .430  .014 \qquad .014 \qquad .017  .014 \qquad .017  .014 \qquad .017  .014 \qquad .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .018  .01$	
.497807877729 .014 .4971	
	(P) (P) (P) (P)
	82202 .034 .036 61205 .040 .043
- 700 - 051 - 900 - 065 - 041 - 700 - 6	61 205  .040  .043
	61205 .040 .043 56126 .175 .048
$.767 038 138 \qquad .018  .022 \qquad \qquad .767 \qquad .1$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
.767 $038$ $138$ $.018$ $.022$ $.767$ $.1$ $.835$ $.004$ $058$ $.071$ $.020$ $.835$ $.1$	61205 .040 .043 56126 .175 .048

Table 11. Continued  $\label{eq:abs} \mbox{(aa) Tab point 256, } M=0.94, \, q=158.2 \mbox{ psf, } \alpha=1^{\circ}$ 

		` '	, -	·		_			
ETA = .	707	C	P UPPER		EŢA=	.707 MEAN	C	P LOWER MIN	CTCLA
X/C	MEAN	MAX		SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	394	440	340	.011					
.087	559	603	516	.014					
.148	623	660	595	.006					
.209	617	646	593	.008	.209	406	445	378	.008
.294	645	689	602	.010	.294	546	587	523	.007
.350	614	652	587	.009	.350	590	627	561	.010
.407	742	787	721	.007	.407	726	771	695	.010
.463	764	810	743	.008	.463	798	844	779	.009
.519	783	832	745	.010	.519	826	865	800	.008
.579	794	835	769	.008	.579	666	929	301	.149
.659	839	885	807	.009	.659	347	415	280	.019
.739	765	899	348	.100	.739	305	361	238	.018
.819	$703 \\332$	448	181	.038	.819	278	347	204	.020
		314	126	.031	.899	150	230	057	.028
.899					.974	130.012	082	.160	.034
.990	135	270	053	.030	.914	.012			
TEVEN A	071	C	משממוז מ		ETA —	. 971	C	P LOWER MIN	•
ETA = X/C	MEAN	MAX	P UPPER MIN	SIGMA	ETA= X/C	MEAN	MAX	MIN	SIGMA
.025	357	381	326	.009	.025	212	263	172	.010
.084	631	665	611	.008	.084	417	460	380	.008
.143	638	666	613	.009	.143	462	495	426	.009
.202	621	657	588	.007	.202	512	546	489	.012
			634	.011	.301	512	551	492	.010
.301	666	704		.011	.354	612	652	597	.007
.354	712	742	685			612	652	601	.007
.407	688	722	667	.010	.407			729	.007
.460	742	781	716	.008	.460	753	783		
.513	806	838	782	.010	.513	798	827	775	.007
.566	916	949	886	.008	.566	885	921	670	.009
.680	906	935	880	.008	.680	376	447	286	.024
.742	724	958	449	.108	.742	326	399	247	.025
.830	351	402	289	.017	.830	226	353	079	.041
.910	272	345	187	.026	.910	024	212	.196	.059
.990	019	175	.073	.034	.975	.132	018	.239	.038
			_				~		
ETA=	.972 NATE A NI	· C	P UPPER MIN	SIGMA	ETA=	:.972 MEAN	MAY	P LOWER MIN	SIGMA
								308	
.025	589		547			357			
.092	659	714	614	.013	.092	340	398	299	.013
126	691	739	662	.010	.126	430	466	389	.011
.227	765	812	737	.010	.227	571	614	548	.009
.294	820	880	790	.010	.294	703	746	658	.012
.362	840	894	806	.012	.362	680	717	661	.009
.430	833	879	791	.008	.430	782	832	742	.009
.497	824	871	782	.011	.497	379	810	149	.127
.565	799	904	436	.084	.565	208	309	104	.029
.632	343	711	199	.073	.632	249	345	131	.031
.700	196	313	085	.034	.700	194	294	078	.030
.767	132	272	015	.033	.767	147	236	049	.026
.835	064	169	.034	.029	.835	152	279	.070	.040
.902	057	153	.067	.031	.902	115	241	.018	.035
.990	025	265	.123	.051	.973	026	163	.152	.048
				-					

Table 11. Continued  $\label{eq:mass_mass} \mbox{(bb) Tab point 259, } M=0.96, \, q=162.9 \mbox{ psf, } \alpha=1^{\circ}$ 

ETA=	.707 MEAN	CP	UPPER -	SIGMA	ETA= X/C	.707 MEAN	MAX CH	P LOWER MIN	SIGMA
.025	377	417	341	.010					
.087	560	607	522	.011					
.148	597	630	578	.008				0.50	010
.209	586	628	566	.008	.209	374	410	356	.010
.294	628	669	606	.008	.294	511	550	488	.006
.350	595	623	570	.008	.350	557	588	534	.006
.407	717	765	701	.007	.407	676	718	655	.006
.463	734	776	700	.009	.463	751	788	736	.007 .007
.519	758	798	724	.009	.519	782	809	767	.007
.579	769	812	748	.007	.579	882	913	863	.007
.659	811	838	795	.010	.659	930	960	851	.008
.739	865	906	810	.010	.739	472	536	416	.013
.819	469	673	338	.053	.819	394	434	359	.013
.899	317	413	219	.028	.899	270	328	223	.025
.990	241	347	168	.023	.974	105	176	015	.020
E/E A	071	CP	HODER		ETA=	871	C	P LOWER	{
ETA= X/C	MEAN	MAX	MIN	SIGMA	$\ddot{\mathbf{x}}/\dot{\mathbf{c}}$	MEAN	MAX	MIN	SIGMA
.025	349	391	327	.007	.025	159	189	122	.008
.084	620	657	594	.007	.084	373	414	347	.007
.143	619	647	595	.007	.143	396	447	380	.011
.202	604	649	583	.005	.202	471	508	442	.006
.301	656	684	636	.006	.301	482	524	455	.006
.354	687	721	666	.011	.354	576	602	548	.009
.407	668	702	648	.009	.407	576	606	551	.008
.460	717	759	696	.007	.460	706	740	687	.008
.513	785	814	760	.008	.513	752	783	732	.004
.566	887	922	861	.007	.566	838	874	821	.007
.680	878	909	855	.007	.680	963	987	934	.006
.742	971	-1.006	952	.006	.742	927	965	738	.016
.830	465	512	402	.020	.830	416	476	374	.011
.910	420	468	347	.018	.910	392	448	360	.011
.990	231	301	170	.016	.975	263	298	205	.014
	•				T2(T) A	070		D I OWEI	<b>o</b>
ETA=	=.972 MEAN	MAX	P UPPER MIN	SIGMA	X/C	=.972 MEAN	MAX	P LOWEI MIN	SIGMA
,	572		542		.025	292	344	254	.013
.023	645	694	618	.008	.092	282	333	238	.011
.126	664	697	644	.008	.126	377	410	357	.007
.227	742	<b>77</b> 9	726	.008	.227	533	565	510	.006
.294	799	833	768	.008	.294	652	693	629	.008
.362	821	858	804	.008	.362	639	664	609	.007
.430	813	854	790	.007	.430	741	787	721	.007
.497	800	846	782	.009	.497	791	831	766	.008
.565	841	878	815	.007	.565	651	899	256	.136
.632	821	879	625	.029	.632	433	588	314	.040
.700	343	613	249	.044	.700	384	494	264	.036
.767	278	358	181	.026	.767	355	443	272	.027
.835	236	308	165	.020	.835	373	500	195	.040
.902	234	319	148	.024	.902	334	420	234	.028
.990	165	362	027	.047	.973	247	423	053	.054

Table 11. Continued  $\label{eq:cc} \mbox{(cc) Tab point 105, $M=0.80$, $q=125.9$ psf, $\alpha=2^\circ$}$ 

1.188	ETA= X/C .025 .087	MEAN -1.124 -1.206	MAX -1.171 -1.273	P UPPER MIN -1.073 -1.150	.014 .014		ETA= X/C	=.707 MEAN	MAX	CP LOWE MIN	R SIGMA
A07	.294	626	811	318	.085		.294	194	264	131	.017
1.579  521  894  328   .084   .579  131  182  078   .015   .659  420  556  293   .041   .659   .062   .007   .106   .014   .106   .014   .107   .036   .511  289   .032   .739   .213   .152   .251   .015   .819  252  353  171   .020   .819   .341   .273   .384   .012   .899   .096  170  031   .015   .899   .426   .371   .453   .013   .013   .099   .103   .038   .147   .015   .974   .322   .268   .351   .013   .013   .013   .025   .026   .351   .013   .013   .025   .026   .351   .013   .013   .025   .026   .351   .013   .025   .026   .351   .013   .025   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026									362	239	
Color											
1.739  386  511  289   .032   .739   .213   .152   .251   .015											
Ref						•					
Seps											
Page											
ETA=871  X/C MEAN  MAX MIN SIGMA  .025 -9.975 -1.022 -9.39 .011  .025 .147 .087 .202 .014  .084 -1.251 -1.303 -1.222 .008  .084 -0.070 -1.141 -0.12 .014  .143 -1.179 -1.243 -1.068 .019  .143 .124 -1.187 -0.866 .013  .202 -1.041 -1.113 .783 .026  .202 -1.041 -1.113 .783 .026  .202 -1.042 -2.809 -2.57 .069  .301 -2.07 -2.83 -1.51 .020  .354 -2.49 -6.69 -2.75 .061  .354 -2.04 -2.25 .147 .018  .407 -5.84 -6.98 -3.79 .058  .407 -2.20 -2.29 -1.51 .018  .407 -5.84 -6.98 -3.90 .081 .460 -2.51 .303 -1.193 .020  .513 -5.12 -7.46 -3.24 .065 .513 .211 -2.773 .140 .021  .566 -5.05 -7.11 -3.02 .049 .566 -1.58 .236 .085 .019  .680 -3.67 -4.55 -2.46 .028 .680 .043 .013 .109 .017  .742 -3.10 -3.75 -2.22 .024 .742 .128 .055 .187 .017  .830 -1.78 -2.54 -1.26 .019 .830 .335 .288 .381 .014  .910 -0.69 -1.29 -0.01 .014 .910 .373 .321 .406 .014  .990 .105 .040 .154 .017 .975 .212 .155 .236 .013  ETA=972  X/C MEAN MAX MIN SIGMA  .227 -3.36 -4.45 -2.22 .044 .227 .240 .037 .181 .013  .294 -3.30 -4.34 -2.24 .033 .294 -2.32 .314 -1.75 .018  .362 -3.45 -4.42 .263 .035 .362 .179 .257 .100 .021  .430 -3.35 -4.45 .222 .034 .546 .277 .290 .307 .181 .013  .294 -3.30 -4.34 -2.24 .033 .294 .232 .314 .175 .018  .362 -3.45 -4.42 .263 .035 .362 .179 .257 .100 .021  .497 -2.66 .349 .224 .033 .497 .186 .258 .117 .019  .565 .272 .354 .203 .024 .565 .120 .197 .055 .019  .497 -2.66 .349 .224 .033 .497 .186 .258 .117 .019  .565 .272 .354 .203 .024 .565 .120 .197 .055 .019  .497 -2.66 .349 .224 .033 .497 .186 .258 .117 .019  .565 .272 .354 .203 .024 .565 .120 .197 .055 .019  .497 -2.66 .349 .224 .033 .497 .186 .258 .117 .019  .565 .272 .354 .203 .024 .565 .120 .197 .055 .019  .497 -2.66 .349 .224 .033 .497 .186 .258 .117 .019  .565 .272 .354 .203 .024 .565 .120 .197 .055 .019  .497 -2.66 .349 .224 .033 .497 .186 .258 .117 .019  .565 .272 .354 .203 .024 .565 .120 .197 .055 .019  .497 -2.66 .349 .224 .033 .497 .186 .258 .117 .019  .565 .272 .354 .203 .024 .565 .120 .197 .055 .019  .497 -2.66 .349 .224 .033 .497 .186 .258 .117 .019  .562 .268 .336 .208 .020 .						-					
MEAN							.014	.022	.200	.501	.013
.025	$\frac{\text{ETA}}{\text{X/C}}$	.871 MEAN	MAX C	P UPPER MIN	SIGMA		ETA=	=.871 MEAN	MAX C	P LOWE	R SIGMA
.084 -1.251 -1.303 -1.222 .008					.011						
1.020							.084	070			
301								124	187	086	.013
.354										137	.015
.407      584      698      379       .058       .407      220      292      151       .018         .460      555      808      390       .081       .460      251      303      193       .020         .513      512      746      324       .065       .513      211      273      140       .021         .566      505      711      302       .049       .566      158      236      085       .019         .680      367      455      246       .028       .680       .043      013       .109       .017         .742      310      375      222       .024       .742       .128       .055       .187       .017         .830      178      254      126       .019       .830       .335       .288       .381       .014         .910      069      129      001       .014       .910       .373       .321       .406       .014         .990       .105       .040       .154       .017       .975       .212       .155       .236       .013         ETA=.97											
.460      555      808      390       .081       .460      251      303      193       .020         .513      512      746      324       .065       .513      211      273      140       .021         .566      505      711      302       .049       .566      158      236      085       .019         .680      367      455      246       .028       .680       .043      013       .109       .017         .742      310      375      222       .024       .742       .128       .055       .187       .017         .830      178      254      126       .019       .830       .335       .288       .381       .014         .910      069      129      001       .014       .910       .373       .321       .406       .014         .990       .105       .040       .154       .017       .975       .212       .155       .236       .013         ETA= .972											
Signature											
.566        505        711        302         .049         .566        158        236        085         .019           .680        367        455        246         .028         .680         .043        013         .109         .017           .742        310        375        222         .024         .742         .128         .055         .187         .017           .830        178        254        126         .019         .830         .335         .288         .381         .014           .910        069        129        001         .014         .910         .373         .321         .406         .014           .990         .105         .040         .154         .017         .975         .212         .155         .236         .013           ETA=.972											
.680        367        455        246         .028         .680         .043        013         .109         .017           .742        310        375        222         .024         .742         .128         .055         .187         .017           .830        178        254        126         .019         .830         .335         .288         .381         .014           .910        069        129        001         .014         .910         .373         .321         .406         .014           .990         .105         .040         .154         .017         .975         .212         .155         .236         .013           ETA=.972				•							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						•					
.830											
.910											
.990         .105         .040         .154         .017         .975         .212         .155         .236         .013           ETA=.972											
ETA=.972 X/C MEAN MAX MIN SIGMA  .025 -1.211 -1.270 -1.161 .013 .025 .005077 .083 .022  .092 -1.221 -1.314 -1.132 .023 .092049110 .028 .016  .126 -1.017 -1.144444 .108 .126115184046 .020  .227336495222 .044 .227240307181 .013  .294330434224 .033 .294232314175 .018  .362345442263 .035 .362179257102 .021  .430335415250 .026 .430224292150 .019  .497266349224 .033 .497186258117 .019  .565272354203 .024 .565120197053 .019  .632268336208 .020 .632024110 .046 .017  .700228310167 .020 .700 .106 .067 .161 .016  .767190223129 .017 .767 .235 .182 .265 .011  .835124179065 .016 .835 .317 .238 .365 .014  .902079132022 .016 .902 .318 .264 .363 .013	.990	.105				_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ETA=. X/C	.972 MEAN	MAX	P UPPER - MIN	SIGMA		ETA=	:.972 MEAN	MAX C	P LOWEI MIN	SIGMA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	.025	-1.211	-1.270	-1.161	.013						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-1.314	-1.132	.023						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					.108	•	.126	115	184		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-	.227	240	307	181	.013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								232	314	175	.018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$.902 079 132 022  .016 \qquad \qquad .902  .318  .264  .363  .013$											
100 1010											

Table 11. Continued  $\label{eq:mass_mass} \mbox{(dd) Tab point 106, } M=0.85, \, q=137.9 \mbox{ psf, } \alpha=2^{\circ}$ 

ETA= X/C	MEAN	CF	MIN	SIGMA	ETA=X/C	=.707 MEAN	MAX C	P LOWEI MIN	R SIGMA
.025	839	889	800	.015					
.087	955	-1.012	912	.012					
.148	914	952	890	.011					
.209	901	944	871	.007	.209	192	259	105	.021
.294	903	953	865	.011	.294	248	327	156	.023
.350	865	901	826	.010	.350	277	358	192	.023
.407	926	986	885	.011	.407	342	425	238	.026
.463	971	-1.021	944	.011	.463	329	404	243	.024
.519	977	-1.033	933	.012	.519	209	282	133	.021
.579	986	-1.042	941	.011	.579	132	189	059	.018
.659	982	-1.038	810	.020	.659	.068	.019	.122	.015
.739	307	618	150	.062	.739	.223	.164	.254	.012
.819	133	233	067	.021	.819	.345	.287	.389	.013
.899	031	104	.023	.018	.899	.432	.388	.475	.011
.990	.136	.072	.184	.013	.974	.347	.295	.383	.019
ЕТА=	.871	CF			EŢA=	871	C	P LOWEI	?
X/C	MEAN	MAX	MIN	SIGMA	$\tilde{X}/\tilde{C}$	MEAN	MAX	MIN	SIGMA
.025	726	781	692	.008	.025	.045	013	.092	.016
.084	-1.004	-1.053	979	.010	.084	150	207	102	.014
.143	990	-1.036	950	.009	.143	199	249	158	.012
.202	929	989	884	.010	.202	257	307	203	.016
.301	917	956	875	.011	.301	260	326	164	.021
.354	931	975	897	.010	.354	255	336	159	.023
.407	906	965	877	.011	.407	267	357	176	.023
.460	880	922	836	.012	.460	293	364	201	.025
.513	-1.006	-1.054	964	.011	.513	241	322	152	.023
.566	-1.103	-1.177	528	.065	.566	173	241	103	.022
.680	214	402	110	.043	.680	.056	.001	.099	.013
.742	167	266	076	.025	.742	.145	.090	.197	.014
.830	111	206	037	.020	.830	.354	.299	.384	.012
.910	044	092	.025	.015	.910	.396	.344	.435	.010
.990	.162	.101	.205	.012	.975	.256	.215	.289	.012
$\text{ETA} = \mathbf{V} / \mathbf{C}$	.972 MEAN	MAX CP	UPPER	SIGMA	ETA = X/C	:.972 MEAN	C	P LOWEI MIN	₹ SIGMA
.025						098			
.023	965	-1.034	994	.011				017	.025
.092 $.126$	-1.031	-1.096		.011	.092	120	201	050	
.120 $.227$	-1.035	-1.094	994	.014	.126	194	269	118	.023
.294	-1.050	-1.085	998	.012	.227 $.294$	343	408	293	.018 $.023$
	964	-1.036	$908 \\140$	.018		324	400	248	
.362	572	956		.161	.362	228	338	106	.033
.430	163	429	065	.033	.430	255	344	150	.031
.497	154	217	078	.025	.497	202	287	132	.024
.565	201	323	085	.031	.565	123	179	049	.020
.632	235	320	150	.024	.632	012	087	.055	.068
.700	212	309	114	.025	.700	.125	.073	.184	.017
.767	182	253	105	.018	.767	.245	.204	.292	.012
.835	122	202	059	.018	.835	.319	.269	.372	.016
.902	083	133	033	.017	.902	.326	.279	.370	.013
.990	.067	004	.132	.019	.973	.201	.141	.241	.065

Table 11. Continued  $\label{eq:alpha} \mbox{(ee) Tab point 107, $M=0.88$, $q=145.7$ psf, $\alpha=2^\circ$}$ 

ETA=	=.707 MEAN	C	P UPPER	OTO A	ĘŢĄ=	=.707	C	P LOWE	R
$^{ m X/C}_{.025}$	MEAN	MAX	MIN	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.023	669	721	624	.013					
	792	851	757	.012					
.148	804	843	773	.010					
.209	794	848	779	.008	.209	267	342	160	.024
.294	798	855	772	.011	.294	313	448	217	.026
.350	791	829	758	.009	.350	368	472	254	.032
.407	853	898	825	.010	.407	443	626	296	.046
.463	901	955	870	.011	.463	417	618	277	.040
.519	918	966	164	.018	.519	275	396	173	.030
.579	932	987	891	.010	.579	180	257	101	.022
.659	965	-1.018	923	.013	.659	.033	031	.091	.016
.739	606	860	322	.094	.739	.193	.131	.241	.015
.819	209	329	112	.034	.819	.320	.260	.356	.014
.899	098	195	014	.029	.899	.404	.356	.449	.013
.990	.051	050	.127	.028	.974	.302	.244	.351	.019
$\mathbf{E}\mathbf{T}\mathbf{A} =$	=.871	-,-,-,- Cl	P UPPER		ETA=	=.871 MEAN	C	P LOWE MIN	R
X/C	MEAN	MAX	MIN	SIGMA					
.025	565	607	523	.011	.025	055	137	.013	.020
.084	844	880	821	.007	.084	240	319	183	.018
.143	833	888	795	.011	.143	292	360	249	.017
.202	798	862	775	.008	.202	343	401	290	.021
.301	809	850	785	.008	.301	344	461	232	.035
.354	847	898	813	.009	.354	326	414	223	.028
.407	821	866	782	.011	.407	353	448	252	.035
.460	802	850	768	.009	.460	385	534	226	.042
.513	926	973	900	.009	.513	309	431	190	.036
.566	-1.059	-1.103	-1.023	.010	.566	215	311	121	.025
.680	547	970	297	.125	.680	.035	023	.222	.016
.742	327	468	168	.040	.742	.132	.073	.187	.014
.830	110	232	022	.030	.830	.341	.272	.375	.011
.910	.007	074	.061	.018	.910	.386	.351	.424	.011
.990	.143	.059	.194	.015	.975	.252	.204	.297	.013
							.201	.201	.010
ETA =	.972	MAX CI	UPPER		ETA=	.972 MEAN	C	P LOWE! MIN	R
$\bar{X}/\bar{C}$									
.025	809	861	767	.014	.025	198	292	091	.027
.092	859	917	820	.015	.092	192	274	119	.023
.126	869	917	834	.012	.126	269	361	183	.027
.227	932	980	898	.010	.227	448	495	386	.019
.294	935	993	860	.010	.294	511	618	379	.038
.362	859	917	810	.017	.362	293	527	100	.078
.430	808	893	192	.067	.430	261	437	117	.049
.497	236	722	050	,121	.497	218	332	113	.034
.565	097	211	.002	.037	.565	125	195	034	.023
.632	160	241	080	.027	.632	010	083	.076	.019
.700	158	243	058	.027	.700	.135	.081	.198	.016
.767	141	193	065	.022	.767	.256	.205	.300	.013
.835	087	142	031	.018	.835	.323	.267	.377	.013
.902	057	114	007	.018	.902	.335	.277	.399	.014
.990	.091	.031	.160	.017	.973	.217	.157	.264	.014
.000	.001	.001	.100	.011			1101	.204	.010

Table 11. Continued  $\label{eq:mass} \mbox{(ff) Tab point 109, } M=0.90, \, q=150.7 \mbox{ psf, } \alpha=2^{\rm o}$ 

ETA=	.707	CP	UPPER		ĘŢĄ=	707	;;;;; C	P ĻOWEI	}
X/C	MEAN	MAX	MIN	SIGMA	$\bar{\mathbf{X}}/\bar{\mathbf{C}}$	MEAN	MAX	MIN	SIGMA
.025	575	638	533	.013					
.087	695	743	652	.012					
.148	742	781	713	.009					
.209	735	775	708	.009	.209	326	389	237	.017
.294	745	780	712	.011	.294	432	544	254	.036
.350	736	790	710	.010	.350	425	538	281	.044
.407	808	856	775	.009	.407	556	662	354	.046
.463	857	923	829	.010	.463	558	757	256	.090
.519	876	922	843	.011	.519	309	588	144	.057
.579	890	931	850	.010	.579	206	281	119	.026
.659	941	996	869	.017	.659	.006	053	.065	.017
.739	632	866	299	.101	.739	.165	.103	.209	.016
.819	267	400	155	.036	.819	.291	.240	.332	.013
.899	174	258	072	.028	.899	.380	.333	.423	.013
.990	033	105	.055	.026	.974	.265	.212	.339	.016
ETA =	.871	CP	UPPER		ETA=	.871	C	P LOWE	}
X/C	MEAN	MAX	MIN	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	471	518	436	.010	.025	126	180	048	.021
.084	749	794	726	.007	.084	313	380	261	.015
.143	740	779	712	.013	.143	382	432	324	.016
.202	728	761	689	.010	.202	422	494	364	.021
.301	756	791	728	.009	.301	443	544	298	.027
.354	793	845	750	.011	.354	419	550	261	.050
.407	762	814	721	.013	.407	409	574	256	.047
.460	763	821	731	.011	.460	513		322	.053
.513	877	929	846	.010	.513	402	694	206	.074
.566	-1.005	-1.044	978	.010	.566	246	404	140	.034
.680	836	995	403	.125	.680	.013	056	.079	.016
.742	398	719	301	.043	.742	.115	.034	.168	.016
.830	208	296	501 $117$	.027	.830	.322	.262	.362	.014
.910	203	250 $167$	.023	.021	.910	.369	.315		.014
								.410	
.990	.065	049	.140	.026	.975	.215	.152	.264	.016
ETA=	.972	CP MAX	UPPER	~~~~	ETA=	.972 MEAN	C	P LOWEF MIN	}
X/C	MEAN								
.025	710	752	661	.012	.025	263	367	137	.027
.092	761	840	711	.016	.092	251	322	149	.025
.126	789	840	760	.013	.126	346	418	246	.024
.227	860	913	811	.011	.227	496	548	431	.018
.294	872	925	843	.012	.294	627	713	505	.027
.362	847	898	806	.016	.362	547	698	191	.060
.430	800	874	748	.015	.430	386	707	101	.150
.497	753	837	373	.056	.497	168	380	039	.046
.565	225	752	.014	.144	.565	116	212	009	.029
.632	078	197	.006	.028	.632	011	080	.062	.021
.700	096	199	.039	.028	.700	.131	.078	.191	.016
.767	030 $105$	175	006	.020	.767	.254	.198	.313	.014
.835	103 $060$	175	.041	.020	.835	.330	.281	.313	.014
.902	000 $041$	125 $099$	.041 $.051$	.019	.902	.343	.291	.399 .385	.013
.902 .990	041 $.084$	099 $.019$							
.990	.004	.019	.155	.018	.973	.222	.164	.266	.015

Table 11. Continued  $\label{eq:mass_eq} \mbox{(gg) Tab point 111, $M=0.92$, $q=154.8$ psf, $\alpha=2^\circ$}$ 

ETA = .707			(00)	•	•					
0.55	ETA = .	707	Cl	P UPPER -		EŢA=	.707	7777-Cl	P LOWER	CICMA
0.87	X/C	MEAN				X/C	MEAN	MAX	IVIIIN	SIGMA
1.18										
209	.087									
1.294	.148	700	739							
1.55	.209	701	744	679	.009					
350   -7.07   -7.78   -8.84   -7.74   -0.10   -0.09   -0.09   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.0009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.0009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.0009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.0009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0.0009   -0	.294	717	771	682	.013	.294				
A07	.350	707	758	680	.009	.350	607			
A63	.407	778	834	754	.010	.407	707			
5.19				796	.009	.463	778	837	726	
1.579				810	.010	.519	794	838	373	.023
Columb   C					.009	.579	227	358	116	.033
1739						.659	042	144	.017	.026
Sign								014	.169	.026
Sepsition   Seps									.301	.019
Page										
ETA = 871 X/C MEAN MAX MIN SIGMA  025404459369 .008 .025173222129 .012  084683718652 .008 .084374417335 .009  1.43690726661 .008 .143421480386 .012  2.02679718648 .011 .202471516424 .010  .301710750688 .010 .301513566482 .010  .354754799719 .010 .354599637558 .013  .407732770702 .011 .407629674571 .014  .460765811734 .010 .460691760626 .020  .513835882802 .012 .513728816244 .080  .566948985931 .008 .566275718114 .074  .680924969619 .021 .680 .001076 .066 .018  .742513802339 .078 .742 .097 .033 .152 .017  .830272346195 .021 .830 .306 .245 .342 .015  .910163244082 .023 .910 .354 .295 .400 .012  .990030117 .056 .025 .975 .172 .115 .224 .016  ETA = .972  X/C MEAN MAX MIN SIGMA  X/C MEA										
.025         -404         -459         -369         .008         .025        173        222        129         .012           .084        683        718        652         .008         .084        374        417        335         .009           .143        690        726        661         .008         .143        421        480        386         .012           .202        679        718        648         .011         .202        471        516        424         .010           .301        710        750        688         .010         .301        513        566        482         .010           .354        754        799        719         .010         .354        599        637        558         .013           .407        732        770         .011         .407        629         .674        571         .014           .460        765        811        734         .010         .460        691         .760         .626         .020           .513        835        882        802         .	.990	069	100	013	.022	.014	.240			
.025         -404         -459         -369         .008         .025        173        222        129         .012           .084        683        718        652         .008         .084        374        417        335         .009           .143        690        726        661         .008         .143        421        480        386         .012           .202        679        718        648         .011         .202        471        516        424         .010           .301        710        750        688         .010         .301        513        566        482         .010           .354        754        799        719         .010         .354        599        637        558         .013           .407        732        770         .011         .407        629         .674        571         .014           .460        765        811        734         .010         .460        691         .760         .626         .020           .513        835        882        802         .	ETA —	Q71	C	P HPPER		ETA=	=.8 <b>7</b> 1	C	P LOWER	{ }
.025         -404         -459         -369         .008         .025        173        222        129         .012           .084        683        718        652         .008         .084        374        417        335         .009           .143        690        726        661         .008         .143        421        480        386         .012           .202        679        718        648         .011         .202        471        516        424         .010           .301        710        750        688         .010         .301        513        566        482         .010           .354        754        799        719         .010         .354        599        637        558         .013           .407        732        770         .011         .407        629         .674        571         .014           .460        765        811        734         .010         .460        691         .760         .626         .020           .513        835        882        802         .	X/C -	MEAN	MAX	MIN	SIGMA	$\bar{X}/\bar{C}$	MEAN	MAX	MIN	SIGMA
.084        683        718        652         .008         .084        374        417        335         .009           .143        690        726        661         .008         .143        421        480        386         .012           .202        679        718        648         .011         .202        471        516        424         .010           .301        710        750        688         .010         .301        513        566        482         .010           .354        754        799        719         .010         .354        599        637        558         .013           .407        732        770        702         .011         .407        629        674        571         .014           .460        765        811        734         .010         .466        629         .674        571         .014           .460        785        881        734         .010         .466         .629         .674         .571         .014           .460        924        969 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>222</td><td>129</td><td>.012</td></td<>								222	129	.012
143      690      726      661       .008       .143      421      480      386       .012         202      679      718      648       .011       .202      471      516      424       .010         .301      710      750      688       .010       .301      513      566      482       .010         .354      754      799      719       .010       .354      599      637      558       .013         .407      732      770      702       .011       .407      629      674      571       .014         .460      765      811      734       .010       .460      691      760      626       .020         .513      835      882      802       .012       .513      728      816      244       .080         .566      948      985      931       .008       .566      275      718      114       .074         .680      924      969      619       .021       .830       .306       .245       .342       .015						.084		417	335	.009
202  679  718  648   .011   .202  471  516  424   .010   .301  710  750  688   .010   .301  513  566  482   .010   .354  754  799  719   .010   .354  599  637  558   .013   .407  732  770  702   .011   .407  629  674  571   .014   .460  765  811  734   .010   .460  691  760  626   .020   .513  835  882  802   .012   .513  728  816  244   .080   .566  948  985  931   .008   .566  275  718  114   .074   .680  924  969  619   .021   .680   .001  076   .066   .018   .742  513  802  339   .078   .742   .097   .033   .152   .017   .830  272  346  195   .021   .830   .306   .245   .342   .015   .910  163  244  082   .023   .910   .354   .295   .400   .012   .990  030  117   .056   .025   .975   .172   .115   .224   .016   .224   .016   .025   .635  689  600   .015   .025  318  381  240   .023   .092  689  761  636   .013   .092  291  359  246   .016   .126  738  796  707   .009   .126  381  381  240   .023   .092  878  800   .009   .294  647  694  615   .013   .362  832  874  796   .014   .362  677  726  634   .012   .430  826  874  785   .012   .430  745  816   .608   .021   .497  788  837  747   .015   .497  486  794   .083   .178   .565  648  811  232   .104   .362  677  726  634   .012   .497  788  837  747   .015   .497  486  794   .083   .178   .565   .648  811  232   .104   .565  070   .218   .038   .040   .632  170  483   .006   .084   .632   .021  101   .084   .021   .000   .023   .101   .050   .022   .700   .141   .076   .197   .015   .767   .048   .116   .027   .021   .767   .250   .334   .283   .375   .061   .000   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .026   .									386	.012
301  710  750  688   .010   .301  513  566  482   .010   .354  754  799  719   .010   .354  599  637  558   .013   .407  732  770  702   .011   .407  629  674  571   .014   .460  765  881  734   .010   .460  691  760  626   .020   .513  835  882  802   .012   .513  728  816  244   .080   .566  948  985  931   .008   .566  275  718  114   .074   .680  924  969  619   .021   .680   .001  076   .066   .018   .742  513  802  339   .078   .742   .097   .033   .152   .017   .830  272  346  195   .021   .830   .306   .245   .342   .015   .910  163  244  082   .023   .910   .354   .295   .400   .012   .990  030  117   .056   .025   .975   .172   .115   .224   .016   .245   .342   .015   .246   .023   .092  689  761  636   .013   .092  291  359  246   .016   .126  738  796  707   .009   .126  331  340  318   .017   .227  807  856  768   .013   .227  527  568  488   .012   .294  829  878  809   .009   .294  647  694  615   .013   .362  832  874  796   .014   .362  677  726  634   .012   .430  826  874  795   .014   .362  677  726  634   .012   .430  826  874  795   .012   .430  745  816  608   .021   .497  788  837  747   .015   .497  486  794   .083   .178   .565  648  811  232   .104   .565  070  218   .038   .040   .632  170  483   .006   .084   .632   .021  101   .084   .021   .700   .023  101   .050   .022   .700   .141   .076   .197   .015   .767   .048   .116   .027   .021   .767   .250   .193   .305   .014   .835  023  087   .052   .020   .835   .330   .263   .377   .014   .902  026  096   .050   .022   .902   .334   .283   .375   .061   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .005   .0										.010
3354  754  799  719   0.10   .354  599  637  558   .013   .407  732  770  702   .011   .407  629  674  571   .014   .460  765  811  734   .010   .460  691  760  626   .020   .513  835  882  802   .012   .513  728  816  244   .080   .566  948  985  931   .008   .566  275  718  114   .074   .680  924  969  619   .021   .680   .001  076   .066   .018   .742  513  802  339   .078   .742   .097   .033   .152   .017   .830  272  346  195   .021   .830   .306   .245   .342   .015   .990  030  117   .056   .025   .975   .172   .115   .224   .016   .244   .080   .025  635  689  600   .015   .025  318  381  240   .023   .092  689  761  636   .013   .092  291   .359  246   .016   .126  738  796  707   .009   .126  381  430   .318   .017   .227  807  856  768   .013   .227  527  568   .488   .012   .294  829  878  809   .009   .294  647  694  615   .013   .362  832  874  796   .014   .362  677  726  634   .012   .430  826  874  795   .014   .362  677  726  634   .012   .430  745  816  608   .021   .497  788  837  747   .015   .497  486  794   .083   .178   .565  648  811  232   .104   .565  070  218   .038   .040   .632  170  483   .006   .084   .632   .021  101   .084   .021   .700  023  101   .050   .022   .700   .141   .076   .197   .015   .767  048  116   .027   .021   .767   .250   .193   .305   .014   .835  023  086   .050   .022   .902   .334   .283   .375   .061   .902  026  096   .050   .022   .902   .334   .283   .375   .061   .902  026  096   .050   .022   .902   .334   .283   .375   .061   .902   .0026   .006   .050   .0022   .902   .334   .283   .375   .061   .902   .0026   .006   .050   .0022   .902   .334   .283   .375   .061   .902   .0026   .006   .050   .0022   .902   .334   .283   .375										
A07										
1.460										
Signature   Sign										
1.566										
680        924        969        619         .021         .680         .001        076         .066         .018           .742        513        802        339         .078         .742         .097         .033         .152         .017           .830        272        346        195         .021         .830         .306         .245         .342         .015           .910        163        244        082         .023         .910         .354         .295         .400         .012           .990        030        117         .056         .025         .975         .172         .115         .224         .016           ETA=.972										
Table   Tabl										
R830   -272   -346  195   .021   .830   .306   .245   .342   .015   .910  163  244  082   .023   .910   .354   .295   .400   .012   .990  030  117   .056   .025   .975   .172   .115   .224   .016   .224   .016   .224   .016   .224   .016   .224   .016   .224   .016   .224   .016   .224   .016   .224   .016   .224   .016   .224   .016   .225   .325   .224   .016   .225   .326   .224   .016   .225   .326   .224   .016   .224   .016   .225   .326   .224   .224   .023   .225   .238   .224   .224   .223   .225   .226   .229   .2291   .226   .2291   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226   .226										
10										
Section   Sect										
ETA=.972 X/C MEAN MAX MIN SIGMA  .025										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	.990	030	117	.056	.025	.975	.172	.113	.224	.010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0=0	a	DIIDDED		TOTA	079	C	D I OWEI	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{E}^{T}\mathbf{A} = \mathbf{X}/\mathbf{C}$	.972 MEAN	MAX	MIN	SIGMA	$\mathbf{x}/\mathbf{c}$	MEAN	MAX	MIN	SIGMA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$.902 026 096  .050  .022 \qquad .902  .334  .283  .375  .061$										
.502020 .050 .050 .050 .050 .050 .050 .050										
$.990 \qquad .068 \qquad037 \qquad .140 \qquad .020 \qquad \qquad .973 \qquad .212 \qquad .137 \qquad .270 \qquad .016$	.902	026								
	.990	.068	037	.140	.020	.973	.212	.137	.270	.016

Table 11. Continued  $\label{eq:mass_mass} \mbox{(hh) Tab point 113, } M=0.94, \, q=159.7 \mbox{ psf, } \alpha=2^{\rm o}$ 

ETA=. X/C .025	707 MEAN 507	MAX 547	P UPPER MIN 470	SIGMA .010	ETA= X/C	.707 MEAN	MAX C	P LOWER MIN	SIGMA
.020	655	691	626	.010					
.148	681	705	663	.007					
.209	682	711	658	.008	.209	357	400	334	.008
.294	715	737	672	.008	.294	465	503	440	.009
.350	694	724	670	.010	.350	581	618	552	.011
.407	766	797	731	.009	.407	691	743	668	.010
.463	803	827	772	.009	.463	762	800	725	.010
.519	833	860	806	.009	.519	790	813	770	.006
.579	845	857	824	.008	.579	779	898	398	.086
.659	890	929	831	.014	.659	288	340	229	.016
.739	623	873	337	.097	.739	243	302	169	.019
.819	287	444	168	.037	.819	139	233	003	.035
.899	237	332	145	.026	.899	.105	049	.261	.049
.990	120	196	035	.021	.974	.214	.113	.320	.028
ETA=.	871	C	P UPPER MIN		ETA=	.871	C	P LOWEF MIN	}
X/C	MEAN	MAX	MIN	SIGMA	$\bar{\mathbf{X}}/\bar{\mathbf{C}}^-$	MEAN	MAX	MIN	SIGMA
.025	402	445	379	.012	.025	121	170	079	.013
.084	679	707	653	.007	.084	348	393	314	.010
.143	685	736	651	.010	.143	391	431	352	.009
.202	678	719	640	.009	.202	453	489	433	.007
.301	706	736	677	.011	.301	487	537	455	.010
.354	746	775	708	.009	.354	582	628	552	.009
.407	735	779	703	.010	.407	615	654	587	.011
.460	769	797	743	.009	.460	700	736	672	.010
.513	827	855	799	.008	.513	756	770	739	.009
.566	925	944	903	.009	.566	861	891	826	.008
.680	895	929	402	.047	.680	333	382	223	.024
.742	557	887	339	.093	.742	242	349	095	.038
.830	293	358	223	.019	.830	.123	045	.300	.054
.910	201	259	135	.020	.910	.361	.320	.421	.014
.990	085	169	024	.025	.975	.162	.111	.207	.014
EŢA=.	972	· C	P UPPER MIN	~~~~	EŢA=	:.972 MEAN	C	P LOWEF MIN	}
X/C	MEAN								
		667					335		
.092	684	726	649	.016	.092	246	304	206	.014
.126	720	750	696	.007	.126	345	384	308	.011
.227	798	830	766	.010	.227	501	540	473	.009
.294	822	862	785	.012	.294	629	673	585	.014
.362	843	880	793	.011	.362	652	692	626	.009 $.012$
.430	834	880	804	.011	.430	741	802	713 $770$	
.497	803	834	757	.011 .068	.497 $.565$	$804 \\327$	$847 \\562$	770	.010 .059
.565 632	713	829 640	$387 \\130$	.008 .079	.632	327 225	302 $322$	200 087	.039
.632	315	649	130 $.037$	.079 .046	.03 <i>2</i> .700	225 $089$	322 $203$	.063	.032
.700 767	114	$256 \\229$	.037	.046	.767	089 $.042$	203 $074$	.209	.041
.767 .835	$068 \\014$	229 $107$	.084	.032 .024	.835	.138	074 $002$	.321	.044
.635 .902	014 $024$	107 $126$	.048	.024	.835 .902	.136	002 $.085$	.319	.034
.902	024 $.054$	120 $164$	.157	.033	.973	.161	.068	.284	.029
.000	.003	.107	.101	.000	.010	.101	.000	.201	.020

Table 11. Concluded (ii) Tab point 114,  $M=0.96,\,q=163.3$  psf,  $\alpha=2^{\circ}$ 

ЕТА=.	707	;;;;;;C	P ŲPPER	OTO A	ЕТА=	707 MEAN	CP MAX	LOWER	CICIA
X/C	MEAN	MAX		SIGMA	X/C	MEAN	MAX	IVIIIN	SIGMA
.025	494	525	460	.009					
.087	647	686	623	.009					
.148	660	690	638	.008	200	318	359	294	.007
.209	667	705	643	.007	.209	318 $421$	359 $461$	294 $399$	.007
.294	698	731	678	.006	.294		572	518	.007
.350	685	730	655	.009	.350	543		632	.007
.407	746	790	726	.007	.407	$656 \\727$	$705 \\772$	688	.008
.463	788	830	765	.007	.463 .519	727 $752$	772 $784$	732	.009
.519	815	862	788	.007 .008	.579	752 $854$	184 888	732 $828$	.009
.579	833	880	806	.008	.659	875	910	828	.009
.659	883	930	855	.028	.739	388	437	361	.010
.739	857	928	714	.028	.819	338	437	301 $302$	.010
.819	417	542	294		.899	222	377 $288$	302 $152$	.011
.899	313	389	249	.019 .019	.099 .974	222 $032$	266 $113$	.058	.026
.990	224	318	160	.019	.914	032	113	.006	.020
ЕТА=	.871	C	P UPPER MIN		ETA= X/C	871	MAX CP	LOWER	CICMA
X/C	MEAN								
.025	413	456	382	.007	.025	061	111	022	.009
.084	673	712	649	.007	.084	295	340	274	.006
.143	698	730	668	.007	.143	343	377	322	.007
.202	678	703	659	.007	.202	415	445	391	.009
.301	<b>710</b>	740	691	.006	.301	450	491	423	.007
.354	732	769	714	.007	.354	544	582	518	.007
.407	732	773	709	.007	.407	573	617	552	.007
.460	769	800	748	.008	.460	662	699	636	.007
.513	823	868	803	.007	.513	723	753	702	.005
.566	910	944	883	.007	.566	828	861	808	.005
.680	907	951	801	.008	.680	893	$925 \\770$	$873 \\387$	.006 .072
.742	873	975	439	.085	.742	526		307	.009
.830	397	482	295	.025	.830	351	392	310 $236$	.009
.910	301	363	242	.020	.910	309	356	230 .016	.013
.990	196	264	122	.023	.975	147	223	.010	.055
ETA =	972	C	PHPPER		ETA=	972	CF	LOWER	
$\mathbf{x}/\mathbf{c}$	.972 MEAN	MAX	P UPPER MIN	SIGMA	$\bar{X}/C$	=.972 MEAN	$\widetilde{MAX}^{\mathrm{CF}}$	MIN	SIGMA
	614	653	579	.009	.025	188	238	149	
.092	688	732	657	.010	.092	190	244	148	.009
.126	714	755	691	.008	.126	295	333	269	.008
.227	790	833	770	.006	.227	457	495	441	.008
.294	819	865	800	.009	.294	586	626	562	.006
.362	841	871	818	.010	.362	614	655	590	.009
.430	838	882	807	.009	.430	706	752	686	.007
.497	826	869	794	.007	.497	775	818	753	.008
.565	799	842	600	.021	.565	866	893	848	.007
.632	550	800	281	.078	.632	974	-1.014	632	.026
.700	284	448	085	.046	.700	424	564	345	.024
.767	225	328	068	.039	.767	344	424	275	.021
.835	164	259	061	.027	.835	253	339	165	.028
.902	151	272	038	.034	.902	143	233	037	.027
.990	067	307	.080	.047	.973	.017	102	.214	.041

Table 12. Pressure Coefficient Statistical Data for High Dynamic Pressure Test Conditions (a) Tab point 303,  $M=0.85,\,q=290.0$  psf,  $\alpha=-1^\circ$ 

ETA=. X/C .025	707 MEAN 139	MAX 183	P UPPER MIN –.092	SIGMA .013	ETA= X/C	707 MEAN	MAX C	P LOWER MIN	SIGMA
.087 .148 .209	428 $466$ $340$	469 $495$ $392$	386 $419$ $282$	.011 .009 .015	.209	661	752	325	.070
.294 $.350$	$406 \\448$	$472 \\492$	$305 \\354$	.023 $.016$	$.294 \\ .350$	$586 \\497$	708 $803$	$261 \\299$	.091 .099
.407	538	591	440	.019	.407	601	819	275	.093
.463	585	651	353	.021	.463	525		258	.092
.519 .579	$554 \\614$	$635 \\736$	$226 \\202$	.037 $.093$	.519 .579	$338 \\198$	$520 \\287$	$165 \\040$	.052 $.033$
.659	347	722	202 $128$	.082	.659	.017	267 $048$	.093	.033
.739	343	643	125	.079	.739	.172	.116	.226	.017
.819	239	380	107	.042	.819	.274	.222	.343	.017
.899	076	152	.017	.026	.899	.369	.321	.432	.016
.990	.141	.078	.197	.016	.974	.327	.275	.389	.017
$_{ m X/C}^{ m ETA}=$ .	871 MEAN					:.871 MEAN		P LOWEF MIN	R SIGMA
.025	040	076	.008	.013	.025	796	829	747	.011
.084	305	335	276	.009	.084	891	937	800	.020
.143 .202	$305 \\330$	$351 \\385$	$211 \\273$	.018 .014	.143 .202	$761 \\733$	822 $909$	$685 \\495$	.020 $.092$
.301	344	442	273	.027	.301	593	730	295	.092
.354	379	461	196	.035	.354	516	799	193	.111
.407	433	504	228	.043	.407	470	749	184	.084
.460	470	582	213	.063	.460	484	726	231	.088
.513	481	637	197	.083	.513	345	551	158	.062
.566	$543 \\361$	$774 \\566$	179	.110 .067	.566	$226 \\ .024$	343	$080 \\ .078$	.041
.680 $.742$	295	446	$155 \\151$	.046	.680 .742	.129	039 $.056$	.196	.018 .019
.830	152	245	065	.026	.830	.303	.243	.358	.016
.910	083	149	.000	.022	.910	.334	.286	.385	.014
.990	.145	.082	.199	.017	.975	.253	.212	.293	.013
ETA=.	972 MEAN	C	P UPPER MIN	CICIAA	ETA=	.972 MEAN	C	P LOWER MIN	SIGMA
			151			843			
.092	379	424	285	.016	.092	831	894	367	.039
.126	478	533	343	.019	.126	766	892	402	.085
.227	507	593	268	.051	.227	512	790	328	.075
.294	383	583	175	.087	.294	330	595	144	.059
.362	345	617	127	.065	.362	280	478	111	.056
.430	322	490	114	.063	.430	293	438	129	.048
.497 $.565$	$245 \\230$	$355 \\366$	$156 \\045$	.032 $.050$	.497 $.565$	$249 \\141$	$355 \\223$	$129 \\042$	.034 .028
.632	246	354	043 $124$	.037	.632	$141 \\027$	223 $102$	042 $.045$	.023
.700	167	288	046	.036	.700	.135	.079	.202	.019
.767	162	246	047	.027	.767	.242	.196	.298	.013
.835	062	117	.013	.020	.835	.299	.242	.370	.017
.902	057	123	.021	.020	.902	.302	.250	.367	.014
.990	.104	.025	.196	.022	.973	.234	.184	.303	.016

Table 12. Continued (b) Tab point 304,  $M=0.88,\,q=303.7$  psf,  $\alpha=-1^\circ$ 

ETA=.	707	C	P UPPER		ETA=	:.707 MEAN	CP	LOWER	
X/C	MEAN	MAX	MIN	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	144	192	099	.013					
.087	432	460	409	.008					
.148	448	484	417	.012					
.209	347		314	.013	.209	694	724	660	.010
.294	459	502	405	.016	.294	811	847	748	.013
.350	466	521	401	.022	.350	760	819	662	.016
.407	546	587	507	.011	.407	897	957	421	.037
.463	608	645	564	.014	.463	684	-1.037	207	.225
.519	583	635	516	.017	.519	280	575	140	.052
.579	677	725	594	.018	.579	160	290	043	.034
.659	667	736	162	.070	.659	.014	046	.077	.020
.739	303	763	108	.096	.739	.157	.087	.216	.018
.819	177	345	061	.043	.819	.263	.195	.327	.018
.899	035	145	.045	.028	.899	.364	.306	.430	.017
.990	.145	.098	.194	.015	.974	.326	.269	.406	.018
TOTAL A	071	C	n tinnen		ETA	.871	CD	LOWED	
$ \begin{array}{c} \text{ETA} = . \\ \text{X/C} \end{array} $	MEAN	MAX	P UPPER MIN	SIGMA	$\ddot{\mathbf{x}}/\ddot{\mathbf{c}}$	MEAN	CP	MIN	SIGMA
.025	038	079	004	.012	.025	736	767	702	.010
.084	308	353	280	.010	.084	874	906	835	.010
.143	299	336	263	.011	.143	808	845	767	.012
.202	337	374	308	.008	.202	911	944	868	.011
.301	399	500	329	.026	.301	835	892	764	.018
.354	413	464	334	.018	.354	849	901	310	.042
.407	454	516	350	.023	.407	697	891	147	.182
.460	512	572	421	.018	.460	<b>41</b> 1	903	169	.121
.513	572	626	334	.020	.513	282	592	113	.063
.566	734	789	264	.045	.566	175	305	048	.042
.680	364	754	125	.110	.680	.049	009	.119	.020
.742	260	507	125	.060	.742	.148	.084	.218	.019
	200		027	.032	.830	.321	.276	.386	.016
.830		234 $131$	027	.029	.910	.350	.297	.409	.014
.910				.029	.975	.262	.224	.314	.014
.990	.153	.090	.213	.019	.970	.202	.224	.514	.010
ETA=.	972 MEAN	::::::C	P UPPER MIN	~~~~~	EŢĄ=	972 MEAN	CP	LOWER	CICALA
		303					834		
.092	353	382	318	.008	.092	806	848	751	.016
.126	477	509	435	.010	.126	819	898	743	.028
.227	553	611	470	.031	.227	883	940	824	.018
.294	530	604	470	.017	.294	830	-1.004	201	.161
.362	600	669	179	.048	.362	193	533	018	.071
.430	476	695	097	.163	.430	151	394	.013	.050
.497	216	638	086	.064	.497	168	327	018	.045
.565	181	361	.008	.059	.565	101	195	.025	.032
.632	216	349	065	.045	.632	002	068	.084	.023
.700	149	287	020	.040	.700	.146	.092	.210	.019
.767	147	229	023	.029	.767	.261	.216	.308	.013
.835	048	111	.036	.021	.835	.328	.277	.383	.016
.902	047	106	.026	.020	.902	.320	.280	.368	.014
.990	.105	.030	.182	.022	.973	.236	.187	.312	.016

Table 12. Continued  $\label{eq:continued} \mbox{(c) Tab point 310, } M=0.90, \, q=318.4 \mbox{ psf, } \alpha=-1^{\rm o}$ 

ETA=	=.707 MEAN	MAX C	P UPPER	CICIA	ETA=	:.707	CF	LOWER	CICIA
$\overline{\mathrm{X}}/\overline{\mathrm{C}}$ .025	MEAN	266	MIN	SIGMA	$\bar{X}/\bar{C}$	MEAN	MAX	MIN	SIGMA
	190		128	.026					
.087	408	460	384	.013					
.148	471	531	419	.018	000	050	050	400	7007
.209	394	<b>44</b> 1	347	.014	.209	656	679	629	.007
.294	481	517	430	.012	.294	762	798	724	.010
.350	510	557	453	.017	.350	761	825	709	.022
.407	601	648	511	.020	.407	883	907	848	.009
.463	607	660	560	.015	.463	954	-1.005	456	.061
.519	608	654	557	.014	.519	316	705	193	.052
.579	702	741	659	.011	.579	255	379	154	.034
.659	698	762	259	.077	.659	231	356	066	.042
.739	264	772	103	.091	.739	171	329	.078	.055
.819	118	269	014	.036	.819	069	263	.246	.075
.899	008	106	.071	.024	.899	.116	088	.458	.089
.990	.083	069	.169	.032	.974	.221	.038	.442	.067
EŢA=	871	C	P UPPER		ETA=	.871	CF	LOWER	
X/C	MEAN	MAX	MIN	SIGMA			MAX	MIN	SIGMA
.025	102	174	042	.021	.025	607	652	550	.017
.084	370	412	326	.016	.084	744	797	678	.020
.143	321	421	235	.045	.143	701	749	664	.013
.202	358	385	334	.007	.202	819	867	788	.011
.301	517	557	472	.014	.301	780	822	740	.011
.354	522	588	442	.029	.354	822	859	783	.011
.407	541	591	470	.020	.407	824	861	772	.012
.460	580	642	509	.024	.460	767	954	254	.170
.513	621	686	547	.024	.513	335	796	144	.069
.566	759	830	690	.021	.566	213	378	084	.043
.680	608	790	141	.157	.680	071	217	.050	.045
.742	269	560	110	.066	.742	.002	186	.138	.054
.830	074	167	.020	.027	.830	.127	099	.300	.064
.910	.017	062	.084	.022	.910	.187	026	.351	.064
.990	.134	.019	.203	.025	.975	.199	.044	.299	.037
.000	.101	.015	.200	.020	.010	.100	.044	.233	.001
ETA=	.972	C	P UPPER		ETA=	.972	CP	LOWER	
X/C	MEAN	MAX	P UPPER MIN	SIGMA	$\bar{\mathrm{X}}/\bar{\mathrm{C}}$	$^{.972}_{ m MEAN}$	$\overline{\text{MAX}}^{\text{CP}}$	MIN	SIGMA
.025	301	391	213	.028	.025	670	726	629	.014
.092	376	436	309	.019	.092	681	760	520	.034
.126	482	518	437	.014	.126	684	758	529	.031
.227	584	626	540	.013	.227	802	841	764	.013
.294	644	687	598	.013	.294	904	952	854	.014
.362	688	769	600	.031	.362	649	899	235	.186
.430	694	756	625	.023	.430	273	483	067	.047
.497	681	779	153	.083	.497	145	301	023	.044
.565	249	767	009	.164	.565	046	248	.098	.042
.632	088	232	.023	.035	.632	006	234	.131	.044
.700	048	206	.071	.037	.700	.100	234 $131$	.243	.055
.767	048	200 $182$	.026	.031	.767	.164	029	.243	.057
.835	.002	162 $072$	.026	.031	.835	.104 $.205$			
.000 .902							087	.388	.077
	008	073	.079	.022	.902	.221	007	.345	.061
.990	.142	.018	.243	.030	.973	.219	.027	.330	.041

Table 12. Continued (d) Tab point 311,  $M=0.92,\,q=325.6$  psf,  $\alpha=-1^\circ$ 

ETA=.	707 MEAN	MAX CF	P UPPER -	SIGMA	ETA=	.707 MEAN	MAX	P LOWER MIN	SIGMA
m X/C .025	248	298	168	.019	11, 0	*******			
.023	240 $449$	508	381	.018					
.148	518	567	467	.016					
.209	458	524	370	.024	.209	611	643	556	.013
.294	466	510	436	.010	.294	699	759	599	.024
.350	519	545	491	.010	.350	707	802	656	.024
.407	622	661	575	.014	.407	845	882	819	.009
.463	643	711	586	.019	.463	945	978	898	.009
.519	633	682	576	.016	.519	528	974	226	.178
.579	717	762	661	.015	.579	327	445	195	.036
.659	515	740	178	.151	.659	328	441	196	.033
.739	201	476	106	.035	.739	306	425	180	.037
.819	133	214	046	.022	.819	270	413	086	.039
.899	087	162	006	.025	.899	146	295	.035	.041
.990	059	210	.043	.032	.974	011	161	.186	.049
		O.	n HDDDD		ETA=	. 071	C	P LOWER MIN	
ETA = . $X/C$	871 MEAN	MAX	P UPPER : MIN	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	170	277	046	.038	.025	493	593	404	.032
.084	436	497	350	.028	.084	631	729	558	.029
.143	438	573	251	.060	.143	625	705	565	.019
.202	378	526	299	.052	.202	761	820	710	.014
.301	501	573	462	.014	.301	725	792	633	.025
.354	541	613	460	.018	.354	769	830	680	.026
.407	567	620	492	.020	.407	778	831	613	.022
.460	617	675	529	.022	.460	808	917	248	.129
.513	664	731	573	.024	.513	408	860	187	.131
.566	800	868	705	.024	.566	277		146	.041
.680	632	811	203	.173	.680	224	311	118	.032
.742	333	806	150	.116	.742	181		029	.042
.830	145	262	036	.034	.830	089	261	.124	.059
.910	062	166	.033	.036	.910	010	218	.244	.074
.990	.044	146	.177	.043	.975	.082	113	.282	.057
		C.	D TIDDED		TOTE A	079	C	DIOWEL	2
$_{ m X/C}^{ m ETA}=$	.972 MEAN	MAX	P UPPER MIN	SIGMA	X/C	=.972 MEAN	MAX	P LOWEI MIN	SIGMA
	362		209			592	671		.024
.023	425	556	313	.042	.092	500	711	338	.093
.126	514	634	417	.049	.126	549	720	470	.056
.227	588	734	523	.036	.227	741	801	682	.018
.294	640	731	585	.019	.294	852	904	776	.020
.362	727	779	619	.022	.362	684	868	219	.163
.430	720	787	633	.022	.430	284	577	148	.043
.497	723	778	365	.041	.497	214	322	093	.035
.565	432	781	109	.178	.565	153	298	.024	.046
.632	168	492	022	.045	.632	152	333	.040	.052
.700	071	201	.053	.041	.700	076	269	.123	.059
.767	050	178	.088	.030	.767	033	204	.170	.048
.835	.022	093	.122	.027	.835	007	233	.248	.068
.902	.012	125	.120	.031	.902	.024	143	.212	.057
.990	.082	182	.253	.054	.973	.100	121	.344	.065

Table 12. Continued  $\label{eq:matter} \mbox{(e) Tab point 195, $M=0.80$, $q=260.2$ psf, $\alpha=0^\circ$}$ 

.025
.209      396      443      302       .021       .209      359      437      227       .029         .294      443      546      201       .054       .294      397      485      272       .033         .350      454      541      268       .047       .350      394      489      266       .031         .407      536      665      268       .065       .407      457      557      313       .036         .463      534      699      305       .072       .463      410      505      294       .031         .519      457      648      186       .084       .519      284      368      171       .028         .579      448      640      185       .072       .579      177      257      094       .023         .659      372      517      209       .051       .659       .016      047       .083       .018         .739      339      488      186       .046       .739       .185       .136       .245       .015
.294      443      546      201       .054       .294      397      485      272       .033         .350      454      541      268       .047       .350      394      489      266       .031         .407      536      665      268       .065       .407      457      557      313       .036         .463      534      699      305       .072       .463      410      505      294       .031         .519      457      648      186       .084       .519      284      368      171       .028         .579      448      640      185       .072       .579      177      257      094       .023         .659      372      517      209       .051       .659       .016      047       .083       .018         .739      339      488      186       .046       .739       .185       .136       .245       .015         .819      248      335      153       .030       .819       .313       .261       .362       .014 <t< td=""></t<>
.350
.407
.463
.519
.579      448      640      185       .072       .579      177      257      094       .023         .659      372      517      209       .051       .659       .016      047       .083       .018         .739      339      488      186       .046       .739       .185       .136       .245       .015         .819      248      335      153       .030       .819       .313       .261       .362       .014         .899      092      156      028       .021       .899       .411       .364       .456       .014         .990       .124       .068       .173       .014       .974       .338       .293       .394       .014         ETA=.871
.659      372      517      209       .051       .659       .016      047       .083       .018         .739      339      488      186       .046       .739       .185       .136       .245       .015         .819      248      335      153       .030       .819       .313       .261       .362       .014         .899      092      156      028       .021       .899       .411       .364       .456       .014         .990       .124       .068       .173       .014       .974       .338       .293       .394       .014         ETA=.871
.739      339      488      186       .046       .739       .185       .136       .245       .015         .819      248      335      153       .030       .819       .313       .261       .362       .014         .899      092      156      028       .021       .899       .411       .364       .456       .014         .990       .124       .068       .173       .014       .974       .338       .293       .394       .014         ETA=.871
.899      092      156      028       .021       .899       .411       .364       .456       .014         .990       .124       .068       .173       .014       .974       .338       .293       .394       .014         ETA=.871       ETA=.871       CP LOWER CP LOWER
.990 .124 .068 .173 .014 .974 .338 .293 .394 .014  ETA=.871
ETA=.871 CP UPPER ETA=.871 CP LOWER X/C MEAN MAX MIN SIGMA
ETA=.871 CP UPPER ETA=.871 CP LOWER CP LOWER MEAN MAX MIN SIGMA
X/C MEAN MAX MIN SIGMA X/C MEAN MAX MIN SIGMA
$.025 287 340 226  .017 \qquad \qquad .025 454 526 373  .023$
$.084 473 511 445  .009 \qquad \qquad .084 467 518 408  .017$
$.143 415 483 320  .025 \qquad \qquad .143 398 450 339  .017$ $.202 452 517 380  .024$
.202 .101 .100 .000 .000
.010 .010 .010 .000
.001
$.407 434 555 234  .045 \qquad \qquad .407 358 472 219  .032 \\ .460 450 564 218  .051 \qquad \qquad .460 397 503 284  .032$
.513 443 628 219  .059 $.513 307 414 183  .031$
$.566 481 653 277  .053 \qquad \qquad .566 222 289 129  .025$
.680 367 469 220  .035 $.680  .007 037  .068  .016$
.742 320 403 215  .027 $.742  .113  .063  .176  .016$
$.830 193 252 121  .020 \qquad \qquad .830  .314  .271  .361  .013$
$.910 098 145 042  .016 \qquad \qquad .910  .332  .291  .388  .013$
.990 .147 .105 .201 .014 .975 .243 .203 .281 .012
ETA = 972
ETA=.972 CP UPPER ETA=.972 CP LOWER X/C MEAN MAX MIN SIGMA X/C MEAN MAX MIN SIGMA
$.025 499 571 413  .024 \qquad \qquad .025 625 734 495  .036$
$.092 502 574 371  .026 \qquad \qquad .092 319 389 209  .029$
.126 507 614 289  .041 $.126 328 427 214  .032$
$.227 413 536 239  .040 \qquad \qquad .227 393 447 339  .017$
$.294 334 433 209  .034 \qquad \qquad .294 332 395 261  .022$
$.362 336 448 195  .035 \qquad \qquad .362 259 349 137  .029$
$.430 312 406 206  .032 \qquad \qquad .430 271 350 171  .028$ $.497 241 335 174  .021 \qquad .497 227 307 103  .024$
101 1211 1000 1211 1000 000 000 000
1000 1202 1020 1211 10,000 010
.002 .001 .001 .002
1700 1701 1870 1870 1870 1870 1870 1870
$.767 166 235 098  .023 \qquad \qquad .767  .226  .185  .272  .013 \\ .835 075 123 013  .018 \qquad \qquad .835  .280  .221  .344  .016$
.859 = .075 = .123 = .013 = .016 $.902 =076 =130 =010 = .017$ $.902 = .285 = .231 = .340 = .014$
.990 .085 .021 .166 .021 .973 .216 .166 .265 .016

Table 12. Continued  $\label{eq:mass_mass} \mbox{(f) Tab point 196, } M=0.85, \, q=283.4 \ \mbox{psf, } \alpha=0^{\rm o}$ 

ETA=.	.707	:::::C	P UPPER MIN		ЕТА=	:.707 MEAN	C	P L <u>OW</u> EI	8
					X/C	MEAN	MAX	MIN	SIGMA
.025	298	349	256	.013					
.087	520	547		.007					
	547	609	495	.019					
.209	417	460	366	.013	.209	410	564	196	.061
.294	516	574	404	.027	.294	489	623	273	.068
.350	469	540	387	.019	.350	473	623	275	.052
.407	583	642	506	.024	.407	553	753	251	.082
.463	617	685	486	.026	.463	467	699	227	.067
.519	603	668	504	.024	.519	305	459	151	.043
.579	728	777	164	.034	.579	183	270	064	.030
.659	437	782	088	.154	.659	.022	043	.102	.021
.739	300	670	067	.075	.739	.189	.137	.250	.017
.819	215	376	066	.041	.819	.301	.252	.351	.014
.899	213 $061$	370 $137$	.024	.025	.899	.400	.358	.454	.014
	001								
.990	.141	.092	.208	.016	.974	.344	.294	.398	.015
ETA = .	871	C	PHPPER		ЕΤΔ —	.871	C	PLOWER	3
X/C	MEAN	MAX	P UPPER MIN	SIGMA	$\bar{x}/c$	MEAN	MAX	P LOWEI MIN	SIGMA
.025	200	244	152	.014	.025	585	637	503	.023
.084	455	481	427	.008	.084	642	705	578	.020
.143	399	437	354	.010	.143	525		458	.027
.202	429	464	388	.012	.202	567	652	424	.037
.301	549	614	229	.060	.301	484	629	256	.073
.354	408	547	176	.061	.354	421		210	.060
.407	432	510	233	.028	.407	454	566	245	.048
.460	554	619	248	.043	.460	494	730	240	.048
									.057
.513	581	733	170	.115	.513			103	
.566	559	869		.152	.566			064	.037
.680		585	159	.072	.680	.018	034	.092	.017
.742		469		.047	.742		.071	.214	.018
.830		270	067	.028	.830		.272	.390	.015
			.000	.021	.910		.286		.014
.990	.161	.109	.216	.017	.975	.260	.222	.294	.012
T) T 1	0.00	~	D TIDDED		72/12/4	070	C)	D I OHEN	
ETA=.	.972 MEAN	MAY	P UPPER MIN	SIGMA	ETA=	.972 MEAN	MAX	P LOWEI MIN	SIGMA
			361			749			
.023	$424 \\455$	502	409	.013	.023	409	461	247	.029
.126	572	612	430	.012	.126	409	576	368	.023
.120	627		430 $280$	.064	.227	499 $591$	703	454	.049
		710							
.294	345	715	148	.097	.294	337	541	227	.045
.362		491	136	.065	.362	265	446	095	.052
.430	330	507	128	.063	.430	285	423	132	.045
.497	246	357	160	.032	.497	233	332	107	.035
.565	232	375	065	.049	.565	134	228	049	.027
.632	236	349	120	.037	.632	030	099	.053	.022
.700	161	301	028	.035	.700	.128	.069	.213	.020
.767	158	240	048	.028	.767	.240	.201	.287	.013
.835	063	113	005	.020	.835	.291	.228	.354	.016
.902	058	119	.022	.020	.902	.298	.262	.350	.015
.990	.105	.038	.188	.022	.973	.232	.182	.304	.016

Table 12. Continued  $\label{eq:approx} \mbox{(g) Tab point 197, $M=0.88$, $q=297.9$ psf, $\alpha=0^\circ$}$ 

ETA= X/C	.707 MEAN	MAX C	P UPPER MIN	SIGMA	ETA= X/C	=.707 MEAN	MAX C	P LOWER MIN	R SIGMA
.025	266	320	214	.017	11,0	1,12,111	1,1111	1,111,	DIGINII
.087	453	497	434	.007					
.148	550	585	516	.007					
.209	416	461	376	.010	.209	549	596	495	.014
.294	513	546	459	.011	.294	640	700	531	.035
.350	531	572	490	.011	.350	699	734	338	.022
.407	601	669	558	.016	.407	686	918	216	.188
.463	646	688	604	.012	.463	438	878	170	.108
.519	629	664	566	.016	.519	296	540	109	.060
.579	<b>7</b> 11	751	664	.012	.579	176	274	039	.033
.659	735	785	276	.035	.659	.018	047	.085	.021
.739	308	807	110	.098	.739	.180	.124	.238	.017
.819	153	287	045	.034	.819	.287	.228	.334	.015
.899	017	107	.064	.023	.899	.387	.335	.432	.015
.990	.133	.076	.186	.016	.974	.333	.285	.396	.015
.000	.100				.514	.000			
ETA =	.871	C	P UPPER MIN		ETA =	.871	C	P LOWEF MIN	<b>{ /</b>
X/C	MEAN	MAX	MIN	SIGMA	X/C	MEAN	MAX		
.025	137	180	098	.013	.025	612	655	557	.016
.084	406	440	389	.008	.084	713	761	664	.017
.143	342	376	319	.008	.143	688	727	630	.013
.202	403	435	381	.006	.202	794	854	518	.049
.301	533	563	499	.009	.301	614	779	231	.069
.354	600	634	544	.014	.354	534	726	135	.145
.407	528	625	462	.017	.407	407	753	120	.114
.460	548	595	430	.016	.460	544	793	225	.092
.513	650	703	370	.020	.513	367	755	109	.116
.566	783	854	214	.039	.566	211	357	072	.043
.680	331	780	086	.110	.680	.031	021	.088	.018
.742	237	434	088	.050	.742	.136	.080	.203	.018
.830	123	226	027	.032	.830	.322	.264	.371	.016
.910	034	109	.036	.024	.910	.348	.290	.399	.015
.990	.171	.110	.229	.017	.975	.270	.229	.314	.012
$\frac{\text{ETA}}{\mathbf{X}/\mathbf{C}} = .$	.972 MEAN	MAX C.	P UPPER MIN	SIGMA	ETA=	.972 MEAN	MAY C.	P LOWER MIN	SIGMA
	355					716	759	666	OIOMA
.092	409	454	372	.014	.023	562	752	000 $212$	.012
.126	506	542	479	.014	.126	562	729	362	.047
.227	642	669	612	.009	.227	686	723	574	.056
.294	680	716	$612 \\633$	.013	.294	639	193 $883$	211	.138
.362	683	764	035	.013	.362	202	782	024	.138
.430	357	755	093	.172	.430	$202 \\229$	162 $444$	024 $035$	.062
.497	180	375	093 $087$	.040	.497				
.565	180	362	067 $004$	.040	.565	$209 \\118$	$346 \\217$	060	.041 .029
.632	161 $203$	$302 \\344$	$004 \\072$	.033 .041	.632			011	
.700	203 $140$	344 $274$	072 $009$	.041	.032 .700	015	088	.074	.023
.767	140 $139$	274 $228$	009 $029$			.140	.083	.208	.019
.835				.029	.767	.254	.209	.302	.014
.835 .902	047	107	.025	.021	.835	.309	.253	.366	.017
	045	102	.044	.020	.902	.313	.261	.369	.015
.990	.112	.053	.214	.022	.973	.241	.191	.301	.017

Table 12. Continued (h) Tab point 199,  $M=0.90,\,q=308.6$  psf,  $\alpha=0^{\circ}$ 

ЕТА=.	707	CI	P UPPER	CICMA	ETA=	.707 MEAN	Cl	P LOWER MIN	SIGMA
X/C	MEAN	MAX	MIN 240	SIGMA .012	A/C	MEAN	WAA	IVIII	DIGMIN
.025	285	320		.012					
.087	471	508	430						
.148	546	592	510	.014	.209	574	615	523	.017
.209	503	537	450	.015	.209	632	665	523	.012
.294	494	527	449	.012			720	663	.012
.350	528	558	496	.008	.350	694			
.407	664	697	623	.012	.407	875	908	836 $848$	.010
.463	659	710	618	.015	.463	934	959		.010
.519	647	686	602	.014	.519	316	694	$166 \\074$	.064 $.033$
.579	721	765	674	.016	.579	175	291		.033 .041
.659	724	786	323	.067	.659	081	206	.030	
.739	253	649	106	.066	.739	.028	156	.160	.050
.819	119	237	020	.033	.819	.137	017	.299	.050
.899	001	086	.062	.021	.899	.281	.130	.423	.046
.990	.104	027	.168	.024	.974	.291	.168	.422	.034
ETA=.	871	Cl	P UPPER MIN		ETA=	.871	C	P LOWEF MIN	\
$\bar{X}/\bar{C}$	MEAN		MIN	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	161	236	094	.022	.025	540	591	479	.017
.084	429	486	386	.018	.084	669	717	618	.015
.143	310	489	232	.044	.143	660		614	.010
.202	370	397	286	.011	.202	795	825	755	.012
.301	602	656	482	.033	.301	746	794	650	.015
.354	572	612	537	.010	.354	724		565	.037
.407	600	655	519	.022	.407	699		467	.036
.460	584	657	508	.024	.460	767	850	228	.063
.513	659	702	604	.014	.513	450	892	095	.165
.566	818	889	738	.020	.566	181	350	059	.039
.680	548	810	129	.179	.680	.031	064	.090	.019
.742	255	567	091	.057	.742	.132	.035	.208	.019
.830	086	178	003	.027	.830	.315	.207	.374	.019
.910	.005	059	.064	.020	.910	.348	.269	.402	.017
	.148	.060	.216	.023	.975	.261	.199	.314	.015
T3071 A	0=0	CT.	n unnuñ		ETA	079	C	DIAWEE	•
ETA = X/C	MEAN	MAX	P UPPER MIN	SIGMA	$\vec{\mathbf{x}}/\vec{\mathbf{C}}$	=.972 MEAN	MAX	P LOWEF MIN	SIGMA
.025		437				653		607	
.092	409	473	359	.017	.092	550	716	334	.066
.126	477	563	440	.017	.126	573	698	479	.043
.227	602	635	568	.009	.227	763	805	714	.014
.294	688	726	645	.012	.294	840	898	700	.019
.362	<b>73</b> 1	782	675	.017	.362	719	893	070	.183
.430	731	791	421	.022	.430	187	464	028	.060
	134 579	791	096	.159	.497	104	259	.029	.036
.497	579 $159$	193 685	.008	.077	.565	054	168	.042	.034
.565			.008	.036	.632	004	062	.106	.022
.632	094	245	.024 .044	.038	.700	.154	.069	.212	.017
.700	062	189		.036	.767	.257	.173	.303	.017
.767	086	182	.011	.031	.835	.308	.181	.371	.021
.835	012	080	.059	.023 .021	.902	.308	.218	.362	.018
.902	021	076	.054		.902	.246	.190	.313	.017
.990	.123	.051	.217	.021	.913	.240	.190	.010	.011

Table 12. Continued (i) Tab point 202,  $M=0.92,\,q=317.8$  psf,  $\alpha=0^{\circ}$ 

ETA= X/C .025	.707 MEAN 292	MAX 328	CP UPPER MIN	SIGMA	ETA= X/C	=.707 MEAN	MAX C	P LOWEI MIN	SIGMA
.025 .087 .148	292 $532$ $561$	528 $607$	$267 \\483 \\522$	.010 .013 .017					
.209	514	543	485	.009	.209	516	564	464	.020
.294	526	561	496	.009	.294	594	630	566	.010
$.350 \\ .407$	$554 \\660$	$574 \\688$	$525 \\633$	.008 .008	$.350 \\ .407$	$645 \\832$	$672 \\861$	622 $812$	.007 .006
.463	714	756	678	.010	.463	901	920	812 $877$	.006
.519	690	731	639	.012	.519	640	928	258	.170
.579	744	786	704	.015	.579	292	400	195	.032
.659	426	774	193	.136	.659	286	374	195	.028
.739	196	290	087	.027	.739	241	352	134	.031
.819 .899	$141 \\090$	214 $194$	$053 \\017$	.023 $.028$	.819 .899	$172 \\ .007$	$308 \\125$	006 .191	.040 .049
.990	025	167	.072	.031	.974	.147	123	.355	.049
ETA=	Q71		סים מוז מי		ETA_	871	C	D I OWEI	<b>.</b>
X/C	MEAN	MAX	P UPPER MIN	SIGMA	X/C	MEAN	MAX	P LOWEI MIN	SIGMA
.025	239	284	179	.016	.025	429	471	380	.013
.084	504	536	466	.010	.084	568	606	538	.011
.143 .202	$513 \\398$	576	448	.019	.143	581	613	551	.010
.301	587	$488 \\617$	$306 \\558$	.027 .009	.202 .301	$726 \\682$	$756 \\724$	$700 \\607$	.009 .016
.354	747	780	701	.012	.354	682	724 $746$	614	.019
.407	622	685	553	.021	.407	679	734	639	.019
.460	618	675	568	.014	.460	772	803	744	.009
.513	690	721	637	.011	.513	638	882	208	169
.566	830	889	780	.021	.566	244	357	100	.036
.680 $.742$	$445 \\254$	819 $429$	$235 \\160$	.132 $.033$	.680	163	260	051	.034
.830	204 $101$	429 $173$	$100 \\020$	.033 .028	.742 $.830$	$111 \\013$	$233 \\157$	$.052 \\ .227$	$.042 \\ .054$
.910	007	119	.079	.032	.910	.060	107	.317	.063
.990	.109	015	.187	.032	.975	.138	015	.305	.044
ETA=	.972 MEAN	C	P UPPER MIN		ETA=	.972	C	P LOWER	} <b></b> -
						.972 MEAN		P LOWEF MIN	
.025 .092	430		376					521	
.092	$514 \\610$	$581 \\666$	$443 \\421$	.023 .030	.092 $.126$	$365 \\500$	472	319	.025
.227	590	768	$421 \\530$	.043	.227	701	$525 \\737$	$470 \\660$	.009 .011
.294	671	727	638	.014	.294	795	828	751	.011
.362	721	765	683	.011	.362	799	845	705	.021
.430	734	795	681	.015	.430	677	867	253	.148
.497	723	770	616	.018	.497	216	318	084	.032
.565	474	811	085	.184	.565	110	249	.013	.041
.632	138	306	.000	.055	.632	058	234	.069	.047
.700	036	178	.065	.039	.700	.063	126	.260	.052
.767 .835	021	102	.048	.024	.767	.148	034	.283	.046
.835 .902	.043 .037	033 $030$	.125	.021 .024	.835	.198	015	.394	.058
.902	.037	030 .061	.129 .222	.024	.902 .973	.231 .231	.105 .081	.352 $.368$	.043 .036
.000	.110	.001		.020	.010	.201	.001	.500	.000

Table 12. Continued  $\label{eq:continued} \mbox{(j) Tab point 204, } M=0.94, \, q=328.3 \mbox{ psf, } \alpha=0^{\circ}$ 

ETA= X/C	.707 MEAN	C	P UPPER MIN	SIGMA	ETA= X/C	=.707 MEAN	$_{\widetilde{\mathrm{MAX}}}^{\mathrm{C}}$	P LOWEI MIN	SIGMA
.025	309	344	264	.012	, -				
.087	520	540	499	.007					
.148	588	614	567	.005					
.209	541	566	510	.009	.209	425	465	406	.008
.203	553	580	527	.008	.294	541	569	512	.008
			545		.254	541 $585$	607	512 $564$	.006
.350	566	588		.007					
.407	653	677	634	.005	.407	770	791	749	.005
.463	710	732	694	.005	.463	833	854	813	.007
.519	705	723	681	.006	.519	853	877	835	.006
.579	761	787	745	.005	.579	947	963	615	.018
.659	310	553	198	.040	.659	432	514	351	.023
.739	211	302	111	.021	.739	383	465	319	.020
.819	198	266	137	.020	.819	353	431	271	.023
.899	186	263	108	.020	.899	240	345	127	.027
.990	177	339	077	.037	.974	087	191	.063	.037
ETA =	.871	C	P UPPER		ETA=	=.871	C	P LOWEI	?
$\overline{X}/\overline{C}$	MEAN	MAX	MIN	SIGMA			MAX	MIN	SIGMA
.025	291	323	259	.012	.025	303	345	252	.015
.084	522	561	498	.010	.084	476	515	449	.010
.143	579	609	542	.013	.143	492	511	467	.008
.202	572	599	549	.008	.202	631	655	590	.010
.301	536	578	501	.016	.301	547	594	520	.013
.354	699	722	684	.005	.354	595	621	563	.007
.407	767	801	721	.011	.407	634	656	613	.005
.460	724	757	685	.013	.460	735	757	715	.005
		746	692	.013	.513	822	848	807	.007
.513	716					622 $677$			
.566	864	886	836	.008	.566		947	261	.207
.680	488	798	292	.099	.680	311	407	226	.029
.742	322	394	266	.018	.742	286	366	186	.031
.830	218	293	156	.019	.830	244	360	116	.034
.910	142	208	072	.022	.910	208	315	064	.035
.990	048	161	.029	.025	.975	085	180	.047	.030
ETA =	.972	C	P UPPER	CICMA	ETA=	=.972 MEAN	777-C	P LOWEI MIN	CICMA
X/C	MEAN	MAX		SIGMA	X/C	MEAN	MAA	WHN	
.025	489	547	421	.018	.025	464	498	409	.012
.092	548	573	520	.008	.092	312	340	293	.007
.126	642	676	613	.009	.126	430	466	402	.010
.227	747	774	717	.009	.227	601	649	548	.015
.294	730	790	682	.018	.294	723	754	679	.010
.362	754	798	714	.015	.362	700	742	677	.010
.430	781	807	744	.010	.430	780	812	758	.009
.497	754	788	708	.010	.497	797	876	265	.107
.565	453	806	239	.131	.565	303	439	158	.042
.632	232	329	142	.025	.632	283	395	150	.033
.700	161	254	068	.028	.700	223	335	081	.036
.767	111	238	.025	.035	.767	178	271	044	.037
.835	026	130	.023	.033	.835	098	274	.127	.055
.902	020 008	130 $135$	.172	.040	.902	098	274 $148$	.167	.033
.990	.078	170	.204	.043	.973	.177	.016	.351	.053

Table 12. Continued  $\label{eq:mass_mass} \mbox{(k) Tab point 205, } M=0.96, \, q=336.7 \mbox{ psf, } \alpha=0^{\circ}$ 

ETA=.	707 MEAN	MAX CI	P UPPER MIN	SIGMA	ETA=	.707 MEAN	MAX C	P LOWEI MIN	SIGMA
X/C		336	267	.010	M/C	141122114	1711111	141114	D1011111
.025	298								
.087	<b>496</b>	512	481	.006					
.148	568	583	553	.005	200	200	401	250	.006
.209	530	557	512	.005	.209	382	401	359	
.294	545	565	530	.005	.294	504	530	485	.006
.350	553	573	537	.004	.350	542	566	524	.007
.407	639	660	623	.006	.407	719	746	700	.006
.463	687	713	666	.006	.463	785	808	772	.005
.519	677	695	659	.006	.519	798	820	779	.005
.579	738	758	721	.003	.579	891	910	876	.003
.659	762	783	643	.004	.659	923	934	902	.006
.739	344	580	253	.039	.739	856	911	616	.046
.819	295	369	233	.017	.819	417	451	384	.010
.899	288	339	240	.015	.899	283	321	240	.013
.990	274	372	208	.020	.974	126	192	047	.020
ETA = .	871	Cl	P UPPER	~~~~	ETA=	.871	C	P LOWEI MIN	3
X/C	MEAN	MAX		SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	301	320	283	.006	.025	218	251	181	.010
.084	540	567	526	.007	.084	407	438	379	.008
.143	582	604	564	.005	.143	428	445	412	.007
.202	572	584	557	.005	.202	552	575	533	.007
.301	530	554	517	.005	.301	488	513	469	.004
.354	640	657	625	.004	.354	556	580	539	.005
.407	679	703	662	.004	.407	585	608	576	.004
.460	725	748	718	.004	.460	682	697	666	.004
.513	734	759	712	.008	.513	768	787	753	.004
.566	847	864	835	.006	.566	877	898	861	.003
.680	862	883	836	.004	.680	947	961	941	.004
.742	632	883	385	.098	.742	916	937	898	.005
.830	337	382	291	.014	.830	456	505	401	.016
.910	300	358	256	.013	.910	397	440	350	.013
.990	207	300	147	.020	.975	245	291	195	.016
1000	.201	.000		.00					
ETA =	.972	C	P UPPER MIN		ETA=	:.972 MEAN	C	P LOWEI MIN	R
X/C	MEAN								
.025	501	533	472	.009	.025	371	415		.017
.092	549	590	517	.014	.092	255	285	218	.008
.126	628	644	608	.005	.126	356	382	325	.008
.227	730	755	715	.005	.227	511	534	487	.004
.294	748	775	728	.006	.294	645	668	637	.005
.362	788	835	758	.013	.362	649	671	629	.007
.430	767	787	751	.004	.430	726	749	707	.004
.497	752	768	737	.003	.497	810	833	791	.004
.565	793	812	786	.004	.565	832	910	385	.091
.632	804	829	540	.021	.632	476	719	343	.046
.700	329	542	227	.043	.700	401	529	291	.041
.767	268	363	202	.024	.767	363	445	275	.027
.835	211	281	154	.018	.835	356	479	215	.039
.902	211 $221$	297	134	.022	.902	323	435	197	.033
		297 $384$	004	.050	.973	200	409	.108	.068
.990	158	384	004	JUJU	.510	200	403	.100	.000

Table 12. Continued (l) Tab point 302,  $M=0.85,\,q=287.7$  psf,  $\alpha=1^{\circ}$ 

ETA= X/C	.707 MEAN	$\frac{1}{MAX}$ C	P UPPER MIN	SIGMA	ETA=X/C	=.707 MEAN	MAX C	P LOWEI MIN	SIGMA
.025	457	491	429	.009					
.087	636	677	599	.010					
.148	682	718	647	.010					
.209	515	599	454	.026	.209	379	445	199	.034
.294	597	638	536	.014	.294	415	561	216	.050
.350	621	659	580	.013	.350	444	571	258	.047
.407	671	748	590	.025	.407	522	718	277	.072
.463	699	743	503	.017	.463	456	647	206	.058
.519	655	742	527	.035	.519	308	440	166	.042
.579	741	820	609	.026	.579	183	266	080	.029
.659	611	825	201	.159	.659	.027	036	.100	.021
.739	308	545	132	.064	.739	.187	.129	.258	.017
.819	223	383	101	.042	.819	.303	.254	.351	.014
.899	071	153	.011	.026	.899	.400	.353	.448	.014
.990	.124	.073	.199	.015	.974	.334	.284	.392	.015
							-		_
ETA=	.871 MEAN	MAX C	P UPPER MIN	SIGMA	ETA= X/C	=.87 <u>1</u> MEAN	MAX	P LOWEI MIN	SIGMA
.025	337	380	295	.013	.025	406	489	312	.026
.084	563	586	539	.007	.084	524	588	456	.024
.143	451	542	378	.036	.143	477	527	407	.019
.202	495	520	470	.006	.202	499	592	368	.034
.301	648	682	599	.011	.301	444	594	233	.064
.354	601	694	452	.030	.354		570	183	.057
.407	577	678	321	.045	.407		569	242	.056
.460	587	687	268	.049	.460		653	242	.061
.513	608	728	266	.043	.513		485	142	.051
.515 .566		128 879		.165	.566		465 $322$	069	.036
.680		692	109 $126$	.078	.680	.023	033	009 .079	.038
.742		450	120	.051	.742	.128	.063	.198	.019
.830		247	072	.029	.830		.262	.367	.015
.910			.000	.023	.910				.013
	089	109 .076	.194	.023	.975			.290	.013
.990	.136	.070	.194	.010	.910	.200	.213	.290	.013
ETA =	.972	C	P UPPER MIN		ETA=	.972	C	P LOWEF MIN	{
X/C	.972 MEAN					.972 MEAN			
.025	560		510	.014		612		473	
.092	538	587	495	.014	.092	339	442	201	.042
.126	637	664	586	.011	.126	450	525	272	.037
.227	716	759	395	.021	.227	509	606	423	.027
.294	521	784	091	.178	.294	365	569	206	.052
.362	301	490	086	.066	.362	277	445	099	.051
.430	323	506	145	.063	.430	286	410	111	.046
.497	244	382	127	.035	.497	242	339	130	.034
.565	233	399	040	.052	.565	140	224	042	.028
.632	260	381	125	.037	.632	034	103	.039	.022
.700	178	290	046	.038	.700	.122	.062	.186	.019
.767	178	254	077	.027	.767	.231	.180	.276	.013
.835	081	136	018	.021	.835	.293	.243	.355	.016
.902	071	136	009	.020	.902	.292	.252	.339	.014
.990	.093	.025	.168	.023	.973	.222	.174	.293	.016

Table 12. Continued  $\label{eq:matching} \mbox{(m) Tab point 306, } M = 0.88, \, q = 301.6 \mbox{ psf, } \alpha = 1^{\circ}$ 

ETA=. X/C	707 MEAN	MAX	P UPPER MIN	SIGMA	ETA=	.707 MEAN	MAX C	P LOWER MIN	SIGMA
.025	379	410	351	.008	•				
.087	566	617	537	.011					
.148	632	663	601	.009					
.209	564	600	527	.010	.209	457	530	260	.039
.294	552	586	505	.011	.294	541	642	268	.079
.350	604	634	571	.009	.350	469	737	288	.080
.407	715	748	679	.011	.407	612	782	298	.075
.463	704	761	662	.016	.463	566	839	254	.111
.519	684	742	622	.016	.519	319	517	147	.059
.579	784	829	736	.013	.579	190	303	076	.035
.659	784	845	302	.059	.659	.019	046	.101	.021
.739	318	786	138	.083	.739	.177	.117	.235	.017
.819	171	330	067	.036	.819	. <b>29</b> 1	.237	.353	.015
.899	035	129	.028	.024	.899	.392	.348	.438	.015
.990	.109	.013	.167	.020	.974	.326	.259	.374	.017
ETA = . $X/C$	871 MEAN	MAX C	P UPPER MIN	SIGMA	ETA= X/C	:.871 MEAN	MAX C	P LOWEF MIN	SIGMA
.025	252	311	206	.015	.025	503	575	382	.027
.084	503	548	469	.014	.084	602	680	537	.023
.143	414	546	299	.036	.143	532	641	454	.032
.202	440	466	394	.007	.202	593	666	446	.028
.301	601	624	572	.009	.301	558	659	278	.068
.354	600	656	538	.020	.354	498	734	215	.105
.407	617	670	566	.013	.407	450	744	166	.084
.460	651	695	588	.016	.460	493	784	199	.095
.513	695	754	618	.017	.513	343	702	136	.071
.566	831	882	574	.020	.566	218	341	071	.042
.680	353	823	103	.125	.680	.032	043	.087	.019
.742	228	499	099	.048	.742	.137	.073	.207	.019
.830	109	212	003	.031	.830	.317	.261	.372	.015
.910	044	137	.047	.030	.910	.349	.299	.406	.014
.990	.153	.085	.215	.018	.975	.263	.215	.310	.013
ETA = .	972 MEAN	C	P UPPER MIN	SIGMA	EŢA=	:.972 MEAN	777 C	P LOWER MIN	SIGMA
	466 $489$	521 $531$	402 $437$	.020	.023	$680 \\418$	131 474	226	.019
.092 .126	574	593	437 $542$	.008	.126	520	616	220 $375$	.028
.227	671	701	633	.010	.227	645	771	549	.027
.294	718	701 $748$	672	.010	.294	545	832	254	.120
.362	718 $737$	823	072 $168$	.011	.362	232	632	024	.079
.430		758	108 $103$	.145	.430	252 $259$	486	024	.062
	343				.430 .497			076	.002
.497	187	405	092	.038		228	341		
.565	180	346	009	.052	.565	127	214	005 $.055$	.029 $.022$
.632	225	358	113	.040	.632	022	099	.055 .200	
.700	151	277	026	.039	.700	.134	.076		.019
.767	159	242	057	.028	.767	.241	.200	.287	.013
.835	063	130	.013	.021	.835	.301	.238	.362	.016
.902	059	118	.020	.020	.902	.299	.258	.341	.014
.990	.100	.019	.183	.023	.973	.232	.183	.291	.016

Table 12. Concluded  $\label{eq:concluded} \mbox{(n) Tab point 307, } M=0.90, \, q=316.3 \mbox{ psf, } \alpha=1^{\rm o}$ 

EŢĄ=.	707	CF	UPPER	OTOLA	ETA=	.707 MEAN	MAX CI	P LOWER	SIGMA
X/C	MEAN	MAX		SIGMA	A/C	WEAN	MAA	MIN	SIGMA
.025	368	407	335	.012					
.087	586	615	561	.010					
.148	639	675	594	.013	200	470	400	444	.008
.209	580	619	540	.012	.209	470	499	444	
.294	594	635	553	.014	.294	549	585	510	.009
.350	627	665	588	.014	.350	672	697	647	.007
.407	712	746	680	.010	.407	834	864	799	.008
.463	759	793	726	.010	.463	939	963	914	.006
.519	738	778	696	.013	.519	519	894	205	.151
.579	810	856	372	.045	.579	247	361	134	.032
.659	355	805	178	.093	.659	172	274	055	.034
.739	210	324	104	.030	.739	077	208	.072	.045
.819	135	259	053	.025	.819	.029	144	.226	.057
.899	070	178	.016	.030	.899	.179	.003	.375	.063
.990	.004	124	.099	.032	.974	.203	.054	.357	.048
ETA=	.871	CI	P UPPER		EŢA=	.871	C	P LOWER MIN	\ <del></del> -
$\bar{X}/\bar{C}$	MEAN	MAX	MIN	SIGMA	X/C	MEAN	MAX	MIN	SIGMA
.025	291	346	235	.017	.025	410	473	318	.023
.084	547	571	512	.008	.084	556	603	506	.016
.143	573	632	520	.021	.143	565		513	.014
.202	576	627	518	.016	.202	644	742	544	.053
.301	581	655	515	.023	.301	570		522	.012
.354	625	676	541	.021	.354	660		617	.011
.407	638	705	572	.025	.407	714	743	664	.011
.460	675	737	619	.021	.460	840	878	774	.013
.513	722	780	662	.023	.513	726	886	256	.141
.566	851	904	804	.016	.566	259	429	123	.049
.680	426	834	187	.142	.680	042	181	.050	.036
.742	248	420	111	.047	.742	.054	106	.157	.043
.830		185	.003	.029	.830	.221	.001	.349	.057
			.073	.022	.910	.285	.081	.392	.049
		.030	.193	.024	.975	.236	.114	.306	.022
						0.00	<b>~</b>		,
ETA =	.972 MEAN	MAY	P UPPER MIN	SIGMA	X/C	:.972 MEAN	MAX	P LOWEF MIN	SIGMA
	474					571			.018
	$474 \\538$	606	467	.024	.092	385	419	326	.013
.092		686	587	.016	.126	502	549	417	.020
.126	635		592	.027	.227	684	735	602	.028
.227	722	793		.027	.294	753	843	694	.028
.294	706	780	641		.362	743	821	652	.020
.362	771	818	730	.013	.430	432	803	067	.168
.430	759	826	690	.024			241	007	.031
.497	663	779	176	.102	.497 565	119 $039$	241 $158$	028 .041	.031
.565	190	777	.029	.126	.565	039 .007	100	.041	.026
.632	083	193	.000	.028	.632				
.700	037	139	.060	.030	.700	.118	046	.202	.038
.767	077	172	.010	.027	.767	.185	.037	.273	.041
.835	.003	073	.103	.025	.835	.230	.013	.356	.056
.902	007	068	.091	.023	.902	.241	.049	.331	.044
.990	.144	.061	.244	.026	.973	.229	.017	.343	.031

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



Figure 1. DAST ARW-2 model mounted in wind tunnel.

## TOWN CONTROL WARRENCE BY CONTROL TO THE



Figure 2. Sketch of wing planform. All dimensions in inches unless otherwise specified.



Figure 3. Wing frequency response characteristics measured in still air.



Figure 4. Test conditions.



(a) Data from accelerometer 9 for medium q conditions.  $\alpha = 0^{\circ}$ .

Figure 5. Examples of accelerometer time histories.



(b) Data from accelerometer 10 for medium q conditions.  $\alpha = 0^{\circ}$ .

Figure 5. Continued.



(c) Data from accelerometer 9 for high q conditions.  $\alpha = 0^{\circ}$ .

Figure 5. Continued.



(d) Data from accelerometer 10 for high q conditions.  $\alpha=0^{\circ}$ .

Figure 5. Concluded.



Figure 6. Accelerometer measurement standard deviation data.



Figure 7. Maximum PSD peak responses from accelerometer 9.



Figure 8. Real-time peak-hold frequency response analysis results for high q conditions for accelerometer 9 at  $\alpha = 0^{\circ}$ .



Figure 9. Examples of strain gage bridge 4 measurement time histories for medium q condition.  $\alpha = 0^{\circ}$ .



Figure 10. Strain gage bridge 4 mean, minimum, and maximum values for  $\alpha=0^{\circ}$ .



Figure 11. Strain gage bridge 4 standard deviation data.

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



Figure 12. Wool tufts installed on wing lower surface.

М	Upp	er surface	Lower surface				
IVI	x/c	η	x/c	η			
0.85							
.88	0.8 to 1.0	0.517 to 0.816					
.90	.7 to 1.0	.517 to .905	0.6 to 1.0	0.635 to 0.761			
.92	.7 to 1.0	.517 to .938	.6 to 1.0	.635 to .938			
.94	.6 to 1.0	.517 to .938	.5 to 1.0	.635 to .938			
.96	.6 to 1.0	.517 to .938	.5 to 1.0				

(a) Region of separated flow.



(b) Upper-surface trailing-edge flow separation regions as function of M.



(c) Lower-surface trailing-edge flow separation regions as function of  ${\cal M}.$ 

Figure 13. Separated flow regions shown by wool tufts for medium q at  $\alpha=0^{\circ}$ .



Figure 14.  $C_p$  measurement time histories for low q conditions at  $\alpha=0^{\circ}$ .



(b) Tab point 47. M = 0.90; q = 75.7 psf.

Figure 14. Continued.



(c) Tab point 51. M = 0.92; q = 78.5 psf.

Figure 14. Continued.



(d) Tab point 52. M = 0.94; q = 81.1 psf.

Figure 14. Continued.



(e) Tab point 53. M = 0.96; q = 83.5 psf.

Figure 14. Concluded.



Figure 15.  $C_p$  measurement time histories for medium q conditions at  $\alpha=0^{\circ}$ .



(b) Tab point 92. M = 0.85; q = 135.3 psf.

Figure 15. Continued.



(c) Tab point 94. M = 0.88; q = 143.0 psf.

Figure 15. Continued.



Figure 15. Continued.



(e) Tab point 98. M = 0.92; q = 152.5 psf.

Figure 15. Continued.



(f) Tab point 100. M = 0.94; q = 157.0 psf.

Figure 15. Continued.



Figure 15. Concluded.



Figure 16.  $C_p$  measurement time histories for high q conditions at  $\alpha=0^{\circ}$ .



(b) Tab point 196. M = 0.85; q = 283.4 psf.

Figure 16. Continued.



(c) Tab point 197. M = 0.88; q = 297.9 psf.

Figure 16. Continued.



Figure 16. Continued.



Figure 16. Continued.



Figure 16. Continued.



Figure 16. Concluded.



Figure 17. Chordwise pressure distribution data for low q conditions at  $\alpha = 0^{\circ}$ .



(b) Tab point 47. M = 0.90; q = 75.7 psf.

Figure 17. Continued.



Figure 17. Continued.



(d) Tab point 52. M = 0.94; q = 81.1 psf.

Figure 17. Continued.



(e) Tab point 53. M = 0.96; q = 83.5 psf.

Figure 17. Concluded.



Figure 18. Chordwise pressure distribution data for medium q conditions at  $\alpha = 0^{\circ}$ .



(b) Tab point 92. M = 0.85; q = 135.3 psf.

Figure 18. Continued.



(c) Tab point 94. M = 0.88; q = 143.0 psf.

Figure 18. Continued.



Figure 18. Continued.



(e) Tab point 98. M = 0.92; q = 152.5 psf.

Figure 18. Continued.



(f) Tab point 100. M = 0.94; q = 157.0 psf.

Figure 18. Continued.



(g) Tab point 101. M = 0.96; q = 161.7 psf.

Figure 18. Concluded.



Figure 19. Chordwise pressure distribution data for high q conditions at  $\alpha=0^{\circ}$ .



(b) Tab point 196. M = 0.85; q = 283.4 psf.

Figure 19. Continued.



(c) Tab point 197. M = 0.88; q = 297.9 psf.

Figure 19. Continued.



Figure 19. Continued.



Figure 19. Continued.



(f) Tab point 204. M = 0.94; q = 328.3 psf.

Figure 19. Continued.



Figure 19. Concluded.



(a) Attached flow.  $M = 0.80; \eta = 0.707; q = 123.6 \text{ psf.}$  (See fig. 18(a).)



(b) Upper-surface trailing-edge flow separation and separation bubble on lower surface. M=0.92;  $\eta=0.707;$  q=152.5 psf. (See fig. 18(e).)



(c) Detached flow on upper and lower surface.  $M=0.96; \eta=0.707; q=161.7$  psf. (See fig. 18(g).)

Figure 20. Schematic of flow with separation bubble.



Figure 21. Effect of changes in test dynamic pressure.  $\alpha=0^{\circ}$ .



Figure 21. Concluded.



Figure 22. Pressure coefficient rms values for a 2-D NACA 0012 airfoil section.



Figure 22. Concluded.



Figure 23. Pressure coefficient rms values for 2-D NACA 0012 airfoil.  $c_l = 0.45$ ; Reynolds number based on chord,  $2 \times 10^6$ . (From ref. 17.)



Figure 24. Pressure coefficient rms values for 2-D supercritical DSMA 523 airfoil.  $c_l = 0.55$ ; Reynolds number based on chord,  $2 \times 10^6$ . (From ref. 17.)



Figure 25. Pressure coefficient rms values for section of 3-D ARW-2 flexible supercritical wing. Leading-edge sweep =  $28.8^{\circ}$ ;  $Re = 2.6 \times 10^{6}$ ;  $\alpha = 2^{\circ}$ ;  $\eta = 0.871$ .

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188		
Public reporting burden for this collection of infor gathering and maintaining the data needed, and collection of information, including suggestions for Davis Highway, Suite 1204, Arlington, VA 22202	completing and reviewing the conection of in	quarters Services, Directorate fo d Budget, Paperwork Reduction	r Information Op Project (0704-0	erations and Reports, 1215 Jefferson 188), Washington, DC 20503.		
1. AGENCY USE ONLY(Leave blank)	2. REPORT DATE November 1994	3. REPORT TYPE AND DATES COVERED Technical Paper				
4. TITLE AND SUBTITLE  Measurements of Unsteady Pressure and Structural Response for an Elastic Supercritical Wing			5. FUNDING NUMBERS  WU 505-63-50-13			
6. AUTHOR(S) Clinton V. Eckstrom, David						
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NASA Langley Research Center Hampton, VA 23681-0001				8. PERFORMING ORGANIZATION REPORT NUMBER  L-17073		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546-0001			10. SPONSORING/MONITORING AGENCY REPORT NUMBER NASA TP-3443			
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION/AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE			
Unclassified-Unlimited						
Subject Category 01						
response of a high-aspect- Langley Transonic Dynam cruise lift coefficient of 0.55 Mach 0.90 to 0.94 with the	ch define unsteady flow co ratio, elastic, supercritical v ics Tunnel with a heavy gas 3 at a Mach number of 0.80, he maximum response occur forcing function appears to blower surfaces of the wing in	ving at transonic species test medium. The experienced the high ring at about Machoe the oscillatory choose the os	supercritical su	cal wing, designed for a structural response from the maximum response evement of strong shocks		
14. SUBJECT TERMS Aeroelasticity; Supercritic		15. NUMBER OF PAGES				
Aeroeiasticity; Supercritic	ļ	16. PRICE CODE A07				
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATIO OF THIS PAGE Unclassified	N 19. SECURITY CLASS OF ABSTRACT Unclassified	SIFICATION	20. LIMITATION OF ABSTRACT		

		- - -