四川大学期末考试试题 A (闭卷)

(2016-2017 学年第 2 学期)

课程号: 201075030 课序号: 课程名称: 微积分(II)-2 任课教师: 成绩:

适用专业年级: 学生人数: 印题份数: 学号: 姓名:

考生承诺

我已认真阅读并知晓《四川大学考场规则》和《四川大学本科学生考试违纪作弊处分规定(修订)》,郑重承诺:

- 1、已按要求将考试禁止携带的文具用品或与考试有关的物品放置在指定地点;
- 2、不带手机进入考场;
- 3、考试期间遵守以上两项规定,若有违规行为,同意按照有关条款接受处理。

考生签名:

一、 (3×7=21 分) 填空题

1.
$$\int_0^1 e^{-x} dx = \underline{\qquad}_0 - 1 - \frac{1}{e} \underline{\qquad}_0$$

$$2 \lim_{x \to 0} \frac{\int_0^x \sin t dt}{x^2} = \frac{1/2}{\sqrt{2}}$$

$$3 \cdot \lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} = 0$$

4、
$$\begin{cases} \frac{dy}{dx} = e^{x-y} & \text{的解为} \\ y(0) = 0 \end{cases}$$

6、
$$I = \int_{1}^{2} dy \int_{-\sqrt{2-y}}^{\sqrt{2-y}} f(x,y) dx + \int_{0}^{1} dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x,y) dx$$
 , 交换积分次序后, $I = \int_{-1}^{1} dx \int_{x^{2}}^{2-x^{2}} f(x,y) dy$ __。

7.
$$\forall z = y^2 f(x^2 - y^2)$$
, $\iiint \frac{1}{x} \frac{\partial z}{\partial x} + \frac{1}{y} \frac{\partial z}{\partial y} = \underline{\qquad} 2f(x^2 - y^2) \underline{\qquad}$

1、计算
$$\int_{-2}^{2} \sqrt{4-x^2} dx$$
。

解: 由定积分的几何意义可知 $\int_{-2}^{2} \sqrt{4-x^2} dx = 2\pi$.

2、计算
$$\int_{-1}^{1} \mathrm{d}x \int_{|x|}^{1} e^{y^2} \mathrm{d}y$$
。

解:

$$\int_{-1}^{1} dx \int_{|x|}^{1} e^{y^{2}} dy$$

$$= \int_{0}^{1} e^{y^{2}} dy \int_{-y}^{y} dx$$

$$= \int_{0}^{1} 2 y e^{y^{2}} dy$$

$$= e - 1$$

3、计算
$$\iint_{D} |x^2 + y^2 - 1| dxdy$$
, $D: x^2 + y^2 \le 4$ 。

解:

$$\iint_{D} |x^{2} + y^{2} - 1| dxdy$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{1} (1 - r^{2}) r dr + \int_{0}^{2\pi} d\theta \int_{1}^{2} (r^{2} - 1) r dr$$

$$= \frac{2\pi}{4} + \frac{18\pi}{4} = 5\pi$$

4、求微分方程 $y''+3y'+2y=e^x+x$ 的通解。

解:
$$r^2 + 3r + 2 = 0 \Rightarrow r_1 = -1, r_2 = -2 \Rightarrow \dots (2)$$

对应的齐次问题的通解为 $C_1e^{-x} + C_2e^{-2x}$ 。(2)

考虑: $y''+3y'+2y=e^x \pi y''+3y'+2y=x$ 的特解。

$$y''+3y'+2y = e^x$$
 的特解为 $\frac{1}{6}e^x$ 。(2)

$$y''+3y'+2y = x$$
 的特解为 $\frac{x}{2} - \frac{3}{4}$ (2)

故通解为
$$C_1e^{-x} + C_2e^{-2x} + e^x + \frac{x}{2} - \frac{3}{4}$$
。(1)

第 2 页,共 5 页 试卷编号:

三、 (9 分) 设
$$f(x,y) = \begin{cases} y \arctan \frac{1}{\sqrt{x^2 + y^2}}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
, (1) 讨论函数 $f(x,y)$

在(0,0) 处的连续性; (2) 求 f_x (0,0), f_y (0,0); (3) 讨论函数f(x,y)在(0,0) 处的可微性。

解: (1) 因为 $\lim_{(x,y)\to(0,0)} y \arctan \frac{1}{\sqrt{x^2+y^2}} = 0 = f(0,0)$,故函数在(0,0) 处的连续。

....(2)

(2)
$$f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{0 - 0}{x} = 0;$$
(2)

$$f_{y}(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} \frac{y \arctan \frac{1}{|y|}}{y} = \frac{\pi}{2}; \dots (2)$$

(3)

$$\begin{split} &\lim_{(x,y)\to(0,0)} \frac{f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)y}{\sqrt{x^2 + y^2}} \\ &= \lim_{(x,y)\to(0,0)} \frac{y}{\sqrt{x^2 + y^2}} (\arctan \frac{1}{\sqrt{x^2 + y^2}} - \frac{\pi}{2}) \qquad (有界函数乘以无穷小量) \end{split}$$

=0

故函数在原点处可微。.....(3)

四、 $(9\, \mathcal{G})$ 设曲线 $\Gamma: y = e^{-x}$ 在(-1,e) 点处的切线为L,以曲线 Γ 、切线L、x 轴为边界围成无界区域D。求无界区域D的面积。

解 1: 曲线 Γ : $y = e^{-x}$ 在(-1,e)处的切线斜率为y'(-1)=-e,(2)

则有切线方程为: $\frac{y-e}{x+1} = -e \Rightarrow y = -ex$ 。

第 3 页,共 5 页 试卷编号:

故区域**D**的面积
$$S = \int_{-1}^{+\infty} e^{-x} dx - \frac{1}{2} e = \frac{1}{2} e$$
 。(4)

解 2: 区域
$$D$$
的面积 $S = \int_0^e dy \int_{-\frac{y}{e}}^{-\ln y} dx$,(3)

$$S = \int_{0}^{e} dy \int_{-\frac{y}{e}}^{-\ln y} dx$$

$$= \int_{0}^{e} (-\ln y + \frac{y}{e}) dy$$

$$= \frac{y^{2}}{2e} - y \ln y + y \Big|_{0}^{e} \dots (2)$$

$$= \frac{e}{2} \dots (2)$$

五、 $(9 \, \mathcal{G})$ 已知 $\mathbf{a} \leq 0, \mathbf{b} \geq 0$ 满足 $\mathbf{a}^2 + \mathbf{b}^2 = 1$,求曲线 $\mathbf{y} = \mathbf{x}^2 + \mathbf{a}\mathbf{x}$ 与直线 $\mathbf{y} = \mathbf{b}\mathbf{x}$ 所 围区域面积的最大值与最小值。

解:两曲线的交点为 $(0,0),(b-a,b(b-a)),\ldots(2)$

所求面积
$$S(a,b) = \int_0^{b-a} dx \int_{x^2+ax}^{bx} dy = \frac{(b-a)^3}{6}$$
 。(2)

由 lagrange 乘子法得: $S(a,b,\lambda) = \frac{(b-a)^3}{6} + \lambda(a^2+b^2-1)$,

$$X S(-1,0) = \frac{1}{6}, \quad S(0,1) = \frac{1}{6}, \quad \text{iff } S_{\min} = \frac{1}{6}, S_{\max} = \frac{\sqrt{2}}{3} \circ \dots (2)$$

六、 (9 分)设y(x)在[$\frac{1}{2}$,+ ∞)连续可微,且 $y(2) = \frac{4}{3}$ 。假设曲线y = y(x),

直线 $x = \frac{1}{2}$, $x = t(t > \frac{1}{2})$ 与x轴围成平面图形D。(1) 用定积分表示D绕x

轴 旋 转 一 周 而 成 的 旋 转 体 的 体 积 V(t); (2) 若 (1) 中 的

$$V(t) = \frac{\pi}{2} [4t^2 y(t) - y(\frac{1}{2})], \quad \Re y = y(x)$$

解: (1) **D**绕 x 轴旋转一周而成的旋转体的体积

$$V(t) = \pi \int_{1/2}^{t} [y(x)]^2 dx$$
 o(2)

(2)
$$V(t) = \pi \int_{1/2}^{t} [y(x)]^2 dx = \frac{\pi}{2} [4t^2 y(t) - y(\frac{1}{2})](t \ge \frac{1}{2})$$

两边分别求导得: $\pi[y(t)]^2 = 4\pi \cdot t \cdot y(t) + 2\pi \cdot t^2 \cdot y'(t) \Rightarrow y' = \frac{1}{2} \left(\frac{y}{t}\right)^2 - 2\frac{y}{t}$ 。..(2)

$$\diamondsuit u = \frac{y}{t} \Rightarrow ut = y \Rightarrow u + tu' = y', \quad \text{Mf} \dots (2)$$

$$u + tu' = \frac{1}{2}u^2 - 2u \Rightarrow 2tu' = u^2 - 6u \Rightarrow \frac{du}{u^2 - 6u} = \frac{dt}{2t} \Rightarrow y = \frac{6t}{1 + ct^3}, \dots (2)$$

根据定解条件可知c=1,故 $y=\frac{6t}{1+t^3}, t \ge \frac{1}{2}$ 。....(1)

七、 (7 分) 设 f(x) 为 连 续 偶 函 数 , 证 明 :

 $\iint_D f(x-y) dx dy = 2 \int_0^{2a} (2a-t) f(t) dt, \quad 其中 D 为正方形: |x| \le a, |y| \le a, a > 0.$

$$\overrightarrow{\text{iI}}: \iint_{D} f(x-y) dx dy = \int_{-a}^{a} dx \int_{-a}^{a} f(x-y) dy \dots (1)$$

$$= \int_{-a}^{a} dx \int_{x+a}^{x-a} -f(u)du = \int_{-a}^{a} dx \int_{x-a}^{x+a} f(u)du \dots (2)$$

交换积分顺序有

$$\iint_{D} f(x-y)dxdy = \int_{-2a}^{0} du \int_{-a}^{u+a} f(u)dx + \int_{0}^{2a} du \int_{u-a}^{a} f(u)dx$$
$$= \int_{-2a}^{0} f(u)(u+2a)du + \int_{0}^{2a} f(u)(2a-u)du \dots (2)$$

因为f(x)为连续偶函数有

$\int_{-2a}^{0} f(u)(u+2a)du = -\int_{0}^{2a} f(v)(2a-v)d(-v) = \int_{0}^{2a} f(u)(2a-u)du \dots (2)$
结论得证。

第 6 页, 共 5 页 试卷编号: