In-class problems (April 15/16)

Problem 1

Let k be a field of characteristic 0 and let $h \in k[x]$ be a separable polynomial of degree $m \ge 4$. Let $F \in k[X,Y,Z]$ be the homogenization of

$$f(x,y) = y^2 - h(x).$$

Show that $V_+(F) = V(f) \cup \{[0:1:0]\}$ and that V(f) is smooth.¹

Show further that $V_{+}(F)$ is not smooth in [0:1:0].

Problem 2

Let k be a field with $char(k) \neq 2$. Consider a smooth simplified Weierstrass equation

$$f(x,y) = y^2 - x^3 - ax - b.$$

Find an equation for the line T_P tangent to V(f) in a point $P = (x_0, y_0) \in V(f)(k)$.

Bonus: Determine the intersection $T_P \cap V(f)$ and obtain a formula for P + P.

Homework problem (Hand in April 17)

Problem 3

Let $f \in k[x,y]$ be a non-zero polynomial and set $X = V(f) \subset \mathbb{A}^2_k$. Let $(x_0,y_0) \in X(k)$ be a rational point and let \mathfrak{m} be the maximal ideal of $\mathcal{O}_{X,x}$. Prove that

$$\dim_k(\mathfrak{m}/\mathfrak{m}^2) = 1 \quad \Leftrightarrow \quad (\partial f/\partial x, \ \partial f/\partial y)(x_0, y_0) \neq (0, 0).$$

Deduce that smoothness and normality² are equivalent for plane curves when k is algebraically closed.

Hint: First show that $\mathfrak{m}/\mathfrak{m}^2$ is the image of $(x - x_0, y - y_0)/(x - x_0, y - y_0)^2$ in k[x, y]/(f). Then determine the image of f in $(x - x_0, y - y_0)/(x - x_0, y - y_0)^2$.

¹Here, we have identified $V_+(F) \cap D_+(Z) = V(f)$ via x = X/Z and y = Y/Z.

²See §20 and §21 of last semester's algebraic geometry for a recap on normality.