Importing the Dependencies

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

Data Collection and Processing

loading the csv data to a Pandas DataFrame
heart_data = pd.read_csv('/content/data.csv')

print first 5 rows of the dataset
heart_data.head()

→		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

print last 5 rows of the dataset
heart_data.tail()

₹		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

number of rows and columns in the dataset
heart_data.shape

→ (303, 14)

getting some info about the data
heart_data.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
Column Non-Null Count Dtype

20.00		(, -
#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64

```
int64
             303 non-null
3
   trestbps 303 non-null
                             int64
   chol
             303 non-null
                             int64
5
   fbs
             303 non-null
                             int64
6
   restecg 303 non-null
                             int64
7
             303 non-null
                             int64
   thalach
8
   exang
             303 non-null
                             int64
9
             303 non-null
                             float64
   oldpeak
10 slope
             303 non-null
                             int64
11 ca
             303 non-null
                             int64
12 thal
             303 non-null
                             int64
13 target
             303 non-null
                             int64
```

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

checking for missing values
heart_data.isnull().sum()

\rightarrow	age	0
	sex	0
	ср	0
	trestbps	0
	chol	0
	fbs	0
	restecg	0
	thalach	0
	exang	0
	oldpeak	0
	slope	0
	ca	0
	thal	0
	target	0
	dtype: int6	4

statistical measures about the data
heart_data.describe()

₹		age	sex	ср	trestbps	chol	fbs	restecg	thalach	ex
	count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000
	mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326
	std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469
	min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000
	25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000
	50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000
	75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000
	max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000

checking the distribution of Target Variable
heart_data['target'].value_counts()

1 165 0 138

Name: target, dtype: int64

1 --> Defective Heart

0 --> Healthy Heart

```
Splitting the Features and Target
```

```
X = heart_data.drop(columns='target', axis=1)
Y = heart_data['target']
```

print(X)

```
\rightarrow
                           trestbps
                                       chol
                                                    exang
                                                            oldpeak
                                                                       slope
                                                                               ca
                                                                                    thal
           age
                 sex
                      ср
                                              . . .
     0
            63
                                                                 2.3
                                                                            0
                                                                                 0
                   1
                        3
                                 145
                                        233
                                                         0
                                                                                        1
     1
            37
                   1
                        2
                                 130
                                        250
                                                         0
                                                                 3.5
                                                                            0
                                                                                 0
                                                                                        2
     2
                                                                                        2
            41
                   0
                        1
                                 130
                                                                 1.4
                                                                            2
                                                                                 0
                                        204
                                                         0
     3
            56
                        1
                                                                 0.8
                                                                            2
                                                                                 0
                                                                                        2
                   1
                                 120
                                        236
                                               . . .
                                                         0
            57
                                                                            2
                                                                                        2
     4
                   0
                        0
                                 120
                                        354
                                                         1
                                                                 0.6
                                                                                 0
                                               . . .
                       . .
                                  . . .
                                         . . .
                                               . . .
                                                                  . . .
     298
            57
                   0
                        0
                                 140
                                        241
                                                         1
                                                                 0.2
                                                                            1
                                                                                 0
                                                                                        3
                                              . . .
     299
            45
                   1
                        3
                                 110
                                        264
                                                                 1.2
                                                                            1
                                                                                        3
                                              . . .
     300
            68
                   1
                        0
                                 144
                                        193
                                                                 3.4
                                                                            1
                                                                                 2
                                                                                        3
                                              . . .
                                        131 ...
     301
            57
                   1
                        0
                                 130
                                                         1
                                                                 1.2
                                                                            1
                                                                                 1
                                                                                        3
     302
            57
                   0
                                 130
                                        236 ...
                                                                 0.0
```

[303 rows x 13 columns]

print(Y)

```
1
       1
2
       1
3
       1
       1
298
       0
299
       0
300
       0
301
       0
302
Name: target, Length: 303, dtype: int64
```

Splitting the Data into Training data & Test Data

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)

$\frac{1}{2}$ (303, 13) (242, 13) (61, 13)
```

Model Training

Logistic Regression

```
model = LogisticRegression()

# training the LogisticRegression model with Training data
model.fit(X train, Y train)
```

Model Evaluation

Accuracy Score

```
# accuracy on training data
X train prediction = model.predict(X train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy on Training data : ', training_data_accuracy)
→ Accuracy on Training data : 0.8512396694214877
# accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
print('Accuracy on Test data : ', test_data_accuracy)
Accuracy on Test data: 0.819672131147541
Building a Predictive System
input_data = (62,0,0,140,268,0,0,160,0,3.6,0,2,2)
# change the input data to a numpy array
input_data_as_numpy_array= np.asarray(input_data)
# reshape the numpy array as we are predicting for only on instance
input data reshaped = input data as numpy array.reshape(1,-1)
prediction = model.predict(input data reshaped)
print(prediction)
if (prediction[0]== 0):
  print('The Person does not have a Heart Disease')
else:
  print('The Person has Heart Disease')
     [0]
     The Person does not have a Heart Disease
```

https://colab.research.google.com/drive/1FYGPRSEGvd0urNIZmRJHx-qq6ANn3lpX?usp=sharing#printMode=true