Fotokemična sinteza ksenonovega difluorida v večjem laboratorijskem merilu

K. Lutar in A. Šmalc Institut »Jožef Stefan« Univerza Edvarda Kardelja v Ljubljani UDK 546.295'161.07 Stručni rad KUI 48/89 Prispjelo 21. travnja 1989. Prihvaćeno 19. lipnja 1989.

V članku je opisana metoda za fotokemično sintezo ksenonovega difluorida v večjem laboratorijskem merilu, ki je bila razvita na Institutu »Jožef Stefan« v Ljubljani. Ksenonov difluorid je kot ena osnovnih ksenonovih spojin pomemben za nadaljnji razvoj tega področja kemije, obenem pa je to tudi spojina, ki se danes že uporablja kot fluorirno sredstvo tudi v industriji, saj je delo z njo enostavno in varno. Velikost opisane naprave omogoča sintezo do 1 kg produkta v eni šarži.

Uvod

Začetek kemije žlahtih plinov sega v leto 1962, ko je bil izoliran ksenonov heksafluoroplatinat(V) kot prva prava spojina žlahtnega plina¹. V raziskave na tem področju se je s ponovljeno sintezo ksenonovega tetrafluorida², predvsem pa z odkritjem nove spojine — ksenonovega heksafluorida³ vključil tudi Odsek za kemijo fluora na Institutu »Jožef Stefan« v Ljubljani, ki je kasneje tudi prispeval pomemben delež k razvoju tega področja⁴,⁵.

Ksenonov difluorid je zmerno močan oksidant in se lahko uporablja v organski kemiji kot razmeroma blago, predvsem pa selektivno fuorirno sredstvo, ki ima pred drugimi še to prednost, da ne onesnažuje reakcijskih produktov kot npr. antimonov pentafluorid, kobaltov trifluiorid i dr. Je povsem varen za delo in je obstojen, sicer omejeno, celo v vodni raztopini. Prvič je bil pripravljen že leta $1962^{6,7}$ in sicer s sintezo iz elementov pri povišani temperaturi in tlaku. Kasneje je bilo opisanih še nekaj tovrstnih sinteza⁸⁻¹¹. Slaba stran termične metode je v tem, da nastane kot produkt ravnotežna zmes ksenonovega difluorida, tetrafluorida in heksafluorida, katere sestava je odvisna od uporabljenih reakcijskih pogojev. Zato so posamezni avtorji priporočali pri sintezi ksenonovega difluorida velik prebitek ksenona v izhodni zmesi. Kljub temu pa na ta način ni mogoče pripraviti popolnoma čistega ksenonovega difluorida, kar so potrdile tudi nekatere kasnejše raziskave na Institutu »Jožef Stefan«12-15.

Kot primernejša pot za sintezo čistega ksenonovega difluorida se je pokazala fotokemična reakcija med ksenonom in fluorom, ki je bila odkrita že leta 1962^{16,17}. Kasneje je bilo objavljenih še nekaj bolj ali manj izpopolnjenih ali modificiranih metod fotosinteze^{18–20}, vendar je ostal vpliv reakcijskih pogojev na potek fotosinteze še dolgo neraziskan. Sistematične raziskave odseka na tem področju so omogočile ne samo določiti optimalne pogoje sinteze, temveč so pokazale, da je mogoče ob ustrezno izbranih reakcijskih pogojih na ta način sintetizirati celo čisti ksenonov tetrafluorid²¹.

Pri študiju vpliva reakcijskih pogojev na potek fotosinteze ksenonovega difluorida smo ugotovili,

da je najugodnejše molsko razmerje $n(Xe):n(F_2)=1:2$ in da je mogoče reakcijo znatno pospešiti s katalizatorji, npr. z vodikovim fluoridom kisikom, ali nikljevim(II)-fluoridom 22,23 . Na osnovi izsledkov teh raziskav je bila razvita metoda za fotosintezo ksenonovega difluorida v večjem laboratorijskem merilu, ki lahko da v eni šarži tudi do 1 kg čistega produkta 24 .

Eksperimentalni del

Aparatura

Fotokemični reaktor je bil izdelan iz 10 litrske buče (Pyrex) in je prikazan na sliki 1. V sredini ima vodno hlajen jašek za živosrebrno svetilko (srednjetlačna, 400 W, Applied Photophysics, tip 400 LQ, območje sevanja pretežno 365—366 nm), na dnu pa ima nastavek za praznjenje. Priključek za dodajanje reaktantov je opremljen s steklenim ventilom s teflonsko iglo (npr. Quickfit, Rotaflo št. 18), ki je preko plastične cevke (FEP ali KelF) prožno povezan z manometrom na Bourdonovo cev iz monela (Helicoid Gage, 0—1500 torr abs,). Med obsevanjem obliva reaktor hladilna voda, s čimer se prepreči pretirano segrevanje reaktorja, ki bi imelo za posledico povečano korozijo steklene posode.

Reagenti

Fluor, ki ga uporabljamo, pripravljamo sami z elektrolizo taline KF 2 HF 25,26 . Njegova čistota je $96\pm2^{0}/_{0}$, ostalo je pretežno kisik in manjše količine vodikovega fluorida (okrog $0.5^{0}/_{0}$). Slednji je v tej koncentraciji celo zaželen, saj katalizira reakcijo, ne da bi povzročal znatno korozijo steklene posode 24 .

Ksenon (L'Air Liquide, Pariz) je imel čistoto $99.95^{0}/_{0}$.

Izvedba

Pred prvo sintezo je treba reaktor temeljito evakuirati, da odstranimo na stenah adsorbirano vlago. Nato vanj spustimo do določenega tlaka (okrog 40 kPa) ksenon in nato še fluor iz jeklenke, tako da je molsko razmerje reaktantov $n(Xe):n(F_2)=1:2$,

Slika 1 — Aparatura za fotosintezo ksenonovega difluorida v večjem laboratorijskem merilu;

1 — fotokemični reaktor; 2 — vodno hlajeni jašek; 3 — svetlobni izvor; 4 — stekleni ventil; 5 — nastavek za praznjenje; 6 — manometar z Bourdonovo cevjo iz monela; 7 — kovinski ventil; 8 — cevka iz FEP.

Fig. 1 — Apparatus for the large laboratory scale photosynthesis of xenon difluoride;
1 — photochemical reactor; 2 — water-cooled well; 3 — light source; 4 — glass valve; 5 — bottom outlet; 6 — monel Bourdon-type gauge; 7 — metal valve; 8 — FEP tubing.

skupni tlak pa okrog 160—200 kPa. Nato prižgemo svetilko in zasledujemo potek reakcije z merjenjem tlaka v reaktorju. Še preden reakcija poteče do konca prve stopnje, ko bi začel nastajati ksenonov tetrafluorid, ponovno dodamo v reaktor ksenon in fluor (v molskem razmjerju 1:1). Časovni potek tipične fotosinteze ksenonovega difluorida je podan v tabeli 1.

Ksenonov difluorid se med reakcijo nabira na hladnejši zunanji steni reaktorja. Po končani sintezi nezreagirane pline odčrpamo skozi past z natronskim apnom, kjer se absorbira prebitni fluor, in skozi past, hlajeno s tekočim dušikom, kjer se kondenzira ksenon, ki ga lahko spet uporabimo. Kristale ksenonovega difluorida ločimo od stene reaktorja najlaže na ta način, da evakuiran reaktor nekoliko ugrejemo. Reaktor nato napolnimo s suhim dušikom ali kar z zrakom in produkt skozi nastavek za praznjenje pretresemo v primerno posodo.

Zaključak

Kot je razvidno iz navedenih podatkov, se v opisanem fotokemičnem reaktorju pri navedenih pogojih dobi okrog 2 g XeF₂ na uro ob praktično

100% izkoristku. Dobljeni ksenonov difluorid je zelo čist in v njegovem infrardečem spektru ni zasledi i trakov, značilnih za ksenonov tetrafluorid. Velikost reaktorja omogoča sintetizirati do 1 kg XeF₂ v eni šarži. Ker gre v primeru ksenonovega difluorida za specialno fluorirno sredstvo, ki naj bi našlo uporabo predvsem pri proizvodnji dragih specialnih preparatov, npr. farmacevtskih učinkovin, se bo proizvajalo v manjših (kilogramskih) količinah, kar bi se dalo doseči z uporabo ustreznega števila takih fotokemičnih reaktorjev, morda ob uporabi močnejših svetilk.

Tabela 1 — Tipičen potek fotosinteze ksenonovega difluorida

Table 1 — Typical run of the photosynthesis of xenon difluoride

Čas Time t	Dodajanje reaktantov Addition of reactants		Skupni tlak Total pressure	Razlika v tlaku Pressure difference		Masa XeF ₂ Mass of XeF ₃
	p(Xe) (kPa)	p(F ₂) (kPa)	p (kPa)	Δp (kPa)	ΣΔp (kPa)	$m(XeF_2)$ (g)
0	53,3	106,7	160,0			- Indian
19	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		74,6	85,4	85,4	28,7
	42,7	42,7	160,0			20,1
31			102,7	57,3	142,7	47,9
	42,0	42,0	186,6			-,,0
46			86,6	100,0	242,7	81,5
	53,3	53,3	193,2			02,0
56			106,6	86,6	329,3	110,5
	40,0	40,0	186,6			,
67			106,6	80,0	409,3	137,4
	40,0	40,0	186,6	,-		201,1
79			104,0	82,6	491,9	165,1
	41,3	41,3	186,6	115752 -	1000	
91,5	ontaro e		100,0	86,6	578,5	194,2
	43,3	43,3	186,6			
96			146,6	40,0	618,5	207,6
es A	20,0	20,0	186,6			,-
114,5			80,0	106,6	725,1	243,4
	53,3	53,3	186,6	sac el		57 HEE
118,5	1		156,6	30,0	755,1	253,4
	15,0	15,0	186,6	gara e		a te ati e
132,0	n. In.		102,6	84,0	839,1	281,6
	42,0	42,0	186,6		6 - 11 d.	
144			106,6	80,0	919,1	308,5
	40,0	40,0	186,6		,	,
157			98,6	88,0	1007,1	338,0
	44,0	44,0	186,6		th, is a	
181,5			102,6	84,0	1091,1	366,2
	42,0	42,0	186,6	41.54	1124	
192,5			113,3	73,3	1164,4	390,8
	36,7	36,7	186,6		,	
204,5			106,6	80,0	1244,4	417,7
	33,3	33,3	173,2		-1. 1. 1	
216			80,0	93,2	1337,7	449,0

Literatura: References:

- 1. N. Bartlett, Proc. Chem. Soc. 1962 218
- J. Slivnik, B. S. Brčić, B. Volavšek, A. Šmalc, B. Frlec, A. Zemljič, A. Anžur, Z. Veksli, Croat. Chem. Acta 34 (1962) 187
- J. Slivnik, B. S. Brčić, B. Volavšek, J. Marsel, V. Vrščaj. A. Šmalc, B. Frlec, A. Zemljič, Croat. Chem. Acta, 34 (1962) 253
- 4. B. Žemva, Croat. Chem. Acta, 61 (1988) 163
- D. T. Hawkins, W. E. Falconer, N. Bartlett, Noble Gas Compounds, A Bibliography 1962—1976, IFI//Plenum, New York, Washington, London, 1978
- R. Hoppe, W. Dähne, H. Mattauch, K. M. Rödder, Angew. Chem., 74 (1962) 903
- 7. C. L. Chernick et al., Science, 138 (1962) 136
- 8. D. F. Smith, J. Chem. Phys. 38 (1963) 270
- R. Hoppe, H. Mattauch, K. M. Röder, W. Dähne, Z. Anorg. Allg. Chem., 324 (1963) 214
- J. G. Malm, H. Selig, J. Jortner, S. A. Rice, Chem. Rev. 65 (1965) 199
- W. E. Falconer, W. A. Sunder, J. Inorg. Nucl. Chem. 29 (1967) 1380
- 12. J. Slivnik, B. Volavšek, J. Marsel, V. Vrščaj, A. Šmalc, B. Frlec, A. Zemljič, On the Synthesis of Higher Xenon Fluorides, v Noble Gas-Compounds, H. H. Hyman ed., The University of Chicago Press, Chicago and London, 1963, p. 64
- J. Slivnik, A. Šmalc, B. Žemva, A. N. Mosevič, Croat. Chem. Acta, 40 (1968) 49

- B. Žemva, Študij pogojev sintez ksenonovih fluoridov, Magistrsko delo, FNT, Univerza v Ljubljani, 1968
- B. Žemva, J. Slivnik, J. Inorg. Nucl. Chem., H. Hyman Memorial Volume, 173 (1976)
- J. L. Weeks, C. L. Chernick, M. S. Matheson, J. Am. Chem. Soc. 84 (1962) 4612
- 17. J. L. Weeks, M. S. Matheson, Photochemistry of the formation of xenon difluoride, v Noble-Gas Compounds, H. H. Hyman ed., The University of Chicago Press, Chicago and London, 1963, p. 89
- L. V. Streng, A. G. Streng, Inorg. Chem. 4 (1965) 1370
- J. H. Holloway, J. Chem. Soc., Chem. Commun. 1966 22
- 20. J. H. Holloway, J. Chem. Educ. 43 (1966) 202
- A. Smalc, K. Lutar, J. Slivnik, J. Fluorine Chem., 8 (1976) 95
- K. Lutar, A. Šmalc, J. Slivnik, Vestn. Slov. Kem. Drus. 26 (1979) 435
- 23. K. Lutar, Doktorsko delo, Univerza Edvarda Kardelja v Ljubljani, 1980
- A. Šmalc, K. Lutar, J. Slivnik, Postopek za pripravo ksenonovega difluorida, Jug. patent. št. 41403 (1987)
- J. Slivnik, A. Šmalc, A. Zemljič, Vestn. Slov. Kem. Drus. 9 (1962) 61
- J. Slivnik, A. Šmalc, A. Zemljič, Vestn. Slov. Kem. Drus. 12 (1965) 17

SUMMARY

On a Large Laboratory Scale Photochemical Synthesis of Xenon Difluoride

K. Lutar and A. Smalc

A method developed at the »J. Stefan« Institute in Ljubljana for the photochemical synthesis of xenon diffuoride on a large laboratory scale is described. The synthesis is carried out in a 10-L Pyrex photochemical reactor which is shown in Fig. 1. As the light source, a 400 W medium pressure mercury lamp is used, placed in a water-jacketed well in the middle of the reactor. Before irradiation, the reactor is thoroughly evacuated and filled with xenon (about 40 kPa) and with fluorine (about 80 kPa). During the reaction, the pressure of the gas mixture is measured by means of a Helicoid absolute gauge connected to the reactor. Before all xenon is consumed, the reactor is refilled with xenon and an equivalent amount of fluorine. This prevents formation of xenon tetrafluoride, which would otherwise occur when the xenon is depleted from reaction mixture. Data from a typical photosynthesis run are given in Table 1.

In the apparatus described, about 2 g XeF₂ per hour can be continuously obtained. The infrared spectrum of the product shows no bands characteristic for xenon tetrafluoride. About 1 kg of xenon difloride can be synthetized in a single batch.

»J. Stefan« Institute »E. Kardelj« University of Ljubljana, 61000 Ljubljana, Slovenia, Yugoslavia

Received April 21, 1989 Accepted June 19, 1989