Taylor approximation

5 October 2011

Solutions can be found linked from:

http://math.harvard.edu/~pflueger/math1b.html

- 1. The derivatives of the function $f(x) = \sin x$ at x = 0 follow the pattern: $1, 0, -1, 0, 1, 0, -1, \ldots$ (i.e. f'(0) = 1, f''(0) = 0, etc.). The following pictures show polynomials that have been rigged specifically to match these derivatives at 0. Determine which polynomial is shown in each picture.
 - (a) This polynomial has p(0) = 0, p'(0) = 1, and all other derivatives 0 at x = 0.

(b) This polynomial has p(0) = 0, p'(0) = 1, p'''(x) = -1, and all other derivatives 0 at x = 0.

(c) This polynomial has p(0) = 0, p'(0) = 1, p'''(x) = -1, $p^{(5)}(x) = 1$, and all other derivatives 0 at x = 0.

(d) This polynomial has p(0) = 0, p'(0) = 1, p'''(x) = -1, $p^{(5)}(x) = 1$, $p^{(7)}(0) = -1$, and all other derivatives 0 at x = 0.

(e) This polynomial has p(0) = 0, p'(0) = 1, p'''(x) = -1, $p^{(5)}(x) = 1$, $p^{(7)}(0) = -1$, $p^{(9)}(0) = 1$, and all other derivatives 0 at x = 0.

(f) This polynomial has p(0)=0, p'(0)=1, p'''(x)=-1, $p^{(5)}(x)=1$, $p^{(7)}(0)=-1$, $p^{(9)}(0)=1$, $p^{(11)}(0)=-1$, and all other derivatives 0 at x=0.

- 2. Let k be any positive integer. Find a function p(x) such that $p^{(k)}(0) = 1$, but p(0) = 0 and all other derivatives of p(x) are equal to 0 at x = 0.
- 3. Let k be a any positive integer, and c be any real number. Find a function p(x) such that $p^{(k)}(c) = 1$, but p(c) = 0 and all other derivatives of p(x) are equal to 0 at x = c.
- 4. Let f(x) be any function. Write a formula (using either Σ notation of ... notation) for a polynomial $P_n(x)$ which matches the value and first n derivatives of f(x) at x = 0, but has all other derivatives equal to 0 at x = 0. This is the degree n Taylor approximation of f(x) centered at x = 0.
- 5. Let f(x) be any function. Write a formula (using either Σ notation of ... notation) for a polynomial $P_n(x)$ which matches the value and first n derivatives of f(x) at x = c, but has all other derivatives equal to 0 at x = c. This is the degree n Taylor approximation of f(x) centered at x = c.
- 6. Approximate $\sqrt{5}$ by hand.