MATH 3043, Numerical Analysis I

Fall 2018

Lab 4

This lab will have you implementing Neville's method to generate approximations based on Lagrange interpolating polynomials.

Solutions must be submitted on Canvas and are due **October 8** at the beginning of lab. Please submit a single script file Lab4Lastname.m and the corresponding published file Lab4Lastname.pdf (for example, my submitted files would be Lab4Zumbrum.m and Lab4Zumbrum.pdf). Each solution should

- be contained in a separate cell which includes the problem number and short problem description,
- run independent of other cells,
- be adequately commented.
- 1. Approximate f(0.8), f(1.2), and f(1.7) given the data in the following table:

\underline{x}	f(x)
0.5	1.772454
0.7	1.298055
1.0	1.000000
1.3	0.897471
1.5	0.886227
1.6	0.893515
2.0	1.000000

2. Generate function data for

$$f(x) = \frac{1}{1+x^2}$$

on N equally-spaced nodes on the interval [-5,5]. Use Neville's method to approximate f(4.9) for N=11,21,41,81,121,161. Output the value of N and the corresponding approximation in the following format:

N: 11 Approximation: 0.123456
N: 21 Approximation: 3.456789
N: 41 Approximation: 234.567890

3. Repeat Problem 2 with function data at the Chebyshev nodes defined by

$$x = -5\cos\left(\frac{2k-1}{2N}\pi\right), \ k = 1, \dots, N.$$

4. Inverse Interpolation (another root-finding technique!) Suppose $f \in C^1[a, b]$, $f'(x) \neq 0$ on [a, b] and f has one zero p in [a, b]. Let x_0, \ldots, x_n be n + 1 distinct numbers in [a, b] with $f(x_k) = y_k$, for each $k = 0, 1, \ldots, n$. To approximate p, construct the interpolating polynomial of degree p on the nodes y_0, \ldots, y_n for f^{-1} . Since $y_k = f(x_k)$ and 0 = f(p), it follows that $f^{-1}(y_k) = x_k$ and $p = f^{-1}(0)$. Using iterated interpolation to approximate $f^{-1}(0)$ is called iterated inverse interpolation.

Use iterated inverse interpolation to find an approximation to the solution of $x - e^{-x} = 0$, using the data

x	e^{-x}
0.3	0.740818
0.4	0.670320
0.5	0.606531
0.6	0.548812
0.7	0.496585