NeuralNet 101

6. CNN

We have a problem.. (again)

We have a problem..

We have a problem..

We have a problem..

How to train for image data?

CNN (step-by-step)

Convolution

Stride(step) ->

input

Convolution Filter (Kernel)

ex) Sobel X/Y: Edge Filter

-1	0	+1
-2	0	+2
-1	0	+1

lta.
lter

+1	+2	+1
0	0	0
-1	-2	-1

y filter

Appropriate filters automatically trained in CNN, to extract feature

Pooling (sub sampling)

Reduce data size for less calculation and less overfitting

Dropout

Random dropout prevents overfitting and co-adaptation -> better feature!

Activation Function

tanh: better slope, back-prop direction not biased ReLU: faster training, no saturation for extreme values

CNN Architecture Overview

```
LeNet -> AlexNet/ZFNet -> VGG/GoogLeNet -> ResNet -> ...
```

LeNet-5

AlexNet

ResNet

skip connection: residual mapping

-> deep layer performance!

