3.2 Simulasi

Pada sub bab ini, dipaparkan hasil simulasi dari perancangan yang telah dibuat menggunakan *software* HFSS. Simulasi ini meliputi desain dan grafik yang dihasilkan dari purwarupa material dielektrik konvensional dan purwarupa material dielektrik artifisial yang akan direalisasikan.

3.2.1 Simulasi Antena Mikrostrip Konvensional

Pada sub bab ini, substrat antena dibiarkan kosong, tidak disisipkan kawat konduktor pada substrat. Kemudian dipaparkan hasil dipaparkan hasil simulasi antena menggunakan HFSS. Desain antena dapat dilihat pada Gambar III.6 berikut.

Gambar III. 1 Gambar antena mikrostrip konvensional (a) tampak atas; (b) tampak samping; (c) tampak bawah; (d) tampak isometric

Dari beberapa percobaan yang telah disimulasikan, didapatkana hasil grafik sebagai berikut.

Gambar III. 2 Grafik return loss dan VSWR antena mikrostrip dielektrik konvensional sebelum optimasi

Gambar III. 3 Grafik return loss dan VSWR antena mikrostrip dielektrik konvensional optimasi kedua

Gambar III. 4 Grafik *return loss* dan VSWR antena mikrostrip dielektrik konvensional optimasi pertama

Tabel III. 1 Tabel perbandingan antena mikrostrip dielektrik konvensional

Parameter	Sebelum Optimasi	Optimasi Pertama	Optimasi Kedua
Diameter substrat dan ground plane	49 mm	49 mm	49 mm
Panjang microstrip line	38 mm	48 mm	43 mm
Jarak titik catu dari pusat	40 mm	40 mm	38 mm
Frequency center	1400 MHz	1500 MHz	1800 MHz
Upper frequency	1551 MHz	1658 MHz	1960 MHz
Lower frequency	1306 MHZ	1333 MHz	1616 MHz
Bandwidth	245 MHz	325 MHz	344 MHz
Return loss	17,0674 dB	20,1426 dB	31,12975 dB
VSWR	1,3260	1,2182	1,0560

Dari grafik pada Gambar III.7 sampai Gambar III.9 dan Tabel III.3 diatas dapat dilihat bahwa untuk mendapatkan spesifikasi antena yang diinginkan dapat dilakukan dengan mengoptimasi beberapa parameter. Dari Gambar III.7 dapat dilihat keadaan awal grafik sebelum dilakukan optimasi. Pada grafik dapat dilihat *frequency center* sebesar 1400 MHz dan *return loss* sebesar 17,0674 dB.

Kemudian dari Gambar III.7 dan Gambar III.7, dapat dilihat pengaruh dari panjang *microstrip line* terhadap *return loss* dan *frequency center*. Dari yang awalnya sebesar 38 mm kemudian diperpanjang menjadi 48 mm menyebabkan kenaikan pada *frequency center* yang semula 1400 MHz menjadi 1500 MHz. Lalu *return loss* yang semula 17,0674 dB naik menjadi 20,1426 dB.

Kemudian dari Gambar III.8 dan Gambar III.9, dapat dilihat pengaruh panjang *microstrip line* dan jarak titik catu dari pusat terhadap *return loss* dan juga *frequency center*. Panjang saluran microstrip yang semula 48 mm kemudian diperpendek menjadi 43 mm dan juga jarak titik catu yang semula 40 mm dari pusat menjadi 38 dari pusat menyebabkan kenaikan pada *frequency center* yang semula 1500 MHz menjadi 1800 MHz. Lalu *return loss* yang semula 20,1426 dB naik menjadi 31,12975 dB.

Dari beberapa desain yang telah disimulasikan, Gambar III.8 memiliki spesifikasi yang hampir sesuai dengan spesifikasi yang diinginkan. Oleh karena itu, Gambar III.8 dijadikan acuan untuk tahap perealisasian dalam proses pencetakan material dielektrik akrilik.

3.2.2 Simulasi Antena Mikrostrip Artifisial

Pada sub bab ini, antena disisipkan kawat konduktor pada substrat untuk menghasilkan permitivitas baru. Kemudian dipaparkan hasil simulasi antena menggunakan HFSS. Desain antena dapat dilihat pada Gambar III.5 berikut.

Gambar III. 5 Gambar antena mikrostrip artifisial (a) tampak atas; (b) tampak samping; (c) tampak bawah; (d) tampak isometrik

Dari beberapa percobaan yang telah disimulasikan, didapatkana hasil grafik sebagai berikut.

Gambar III. 6 Grafik *return loss* dan VSWR antena mikrostrip dielektrik artifisial sebelum optimasi

Gambar III. 7 Grafik *return loss* dan VSWR antena mikrostrip dielektrik artifisial optimasi pertama

Gambar III. 8 Grafik *return loss* dan VSWR antena mikrostrip dielektrik artifisial optimasi kedua

Gambar III. 9 Grafik *return loss* dan VSWR antena mikrostrip dielektrik artifisial optimasi ketiga

Tabel III. 2 Tabel perbandingan antena mikrostrip dielektrik artifisial

Parameter	Sebelum	Optimasi	Optimasi	Optimasi
	Optimasi	Pertama	Kedua	Ketiga
Jumlah kawat	37	61	61	61
Radius substrat dan ground plane	37 mm	37 mm	37 mm	40 mm
Lebar microstrip line	10 mm	10 mm	12	10 mm
Frequency center	1800 MHz	1800 MHz	1800 MHz	1800 MHz
Upper frequency	1875 MHz	1883 MHz	1868 MHz	1911 MHz
Lower frequency	1760 MHz	1693 MHz	1706 MHz	1664 MHz
Bandwidth	116 MHz	190 MHz	163 MHz	247 MHz
Return loss	11,4745 dB	13.9919 dB	12.9544 dB	15.648 dB
VSWR	1,7280	1,4991	1,5808	1,3953

Dari grafik pada Gambar III.11 sampai Gambar III.14 dan Tabel III.4 diatas dapat dilihat bahwa untuk mendapatkan spesifikasi antena yang diinginkan dapat dilakukan dengan mengoptimasi beberapa parameter. Dari Gambar III.11 dan Gambar III.12, dapat dilihat pengaruh jumlah kawat konduktor terhadap *return loss*. Dari yang awalnya berjumlah 37 buah lalu ditambahkan menjadi 61 buah

menyebabkan kenaikan pada *return loss* yang semula 11.4745 dB menjadi 13,9919 dB.

Kemudian dari Gambar III.12 dan Gambar III.13, dapat dilihat pengaruh dari lebar *microstrip line* terhadap *return loss*. Dari yang awalnya sebesar 10 mm kemudian diperlebar menjadi 12 mm menyebabkan penurunan pada *return loss* yang semula 13,9919 dB menjadi 12,9544 dB.

Selain jumlah kawat dan lebar *microstrip line*, radius substrat juga dapat mempengaruhi *return loss*. Dari Gambar III.13 dan Gambar III.14, dapat dilihat pengaruh dari radius substrat terhadap *return loss*. Dari yang awalnya sebesar 37 mm kemudian diperlebar menjadi 40 mm menyebabkan kenaikan pada *return loss* yang semula 13,9919 dB menjadi 15,648 dB.

Dari beberapa desain yang telah disimulasikan, Gambar III.14 memiliki spesifikasi yang hampir sesuai dengan spesifikasi yang diinginkan. Oleh karena itu, Gambar III.14 dijadikan acuan untuk tahap perealisasian dalam proses pencetakan material dielektrik akrilik.