

Decision Trees / Árvores de decisão

João Pedro (Dora) Mattos • 17/03/2021 @joaopedromattos Motivação

Day	Outlook	Temp.	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No
				•	

Day	Outlook	Temp.	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Construindo uma árvore

0 0 X

x2

x2

Feature x₂ separa melhor os dados, logo decidimos usá-la para dividir

Na prática

Encontrando a árvore ideal...

- É a menor árvore possível que vai bem em nosso conjunto de treino
- Problema NP-Hard (computacionalmente inviável)
- Solução: Heurísticas greedy (Solução aproximada do que queremos)

Heurísticas para cortar

- Passar por todos os pontos em todas as features e pegar o melhor (Estratégia *Greedy /* Gulosa).
- Nossa melhor divisão é aquela que no passo atual separa melhor nossos dados.
 - Impureza de GiniEntropiaClassificação
 - Variance Reduction -> Regressão

Métricas de Pureza para Classificação

Métrica de Pureza de para Regressão

Variance Reduction

Métrica de Pureza para a divisão

Métrica de Pureza para a divisão

dúvidas?

Custo de treino

$$O(ND \cdot KN) = O(KDN^2)$$
Custo de cada Custo de avaliar cada divisão divisão

Custo de treino

$$O(ND \cdot KN) = O(KDN^2)$$

Custo de cada divisão

Custo de avaliar cada divisão

Podemos aproveitar os cálculos de avaliar uma quebra para todas as subsequentes - Referência

 $O(KDN)$

Custo de teste (Inferência)

Basta descer a árvore, o que é

uma operação logarítmica

(MUITO RÁPIDO)!

Custo em memória

Com as Decision Trees armazenamos apenas os nós da árvore, o que faz com que sejam **muito** leves =D

dúvidas?

O que acontece se fizermos uma árvore

muito profunda? E muito rasa?

Desvantagens de árvores de decisão?

Na prática, árvores de decisão não são muito boas sozinhas

Então... porque Decision Trees?

- Fácil interpretabilidade
- Funcionam "out of the box", pois usam qualquer tipo de dado
- Não são sensíveis à escala das features
- **Muito** rápidas e otimizadas

Na prática, Árvores de Decisão são péssimas, mas são a base do Bagging e do Boosting

Referências

• Aulas <u>29</u> e <u>30</u> - Curso Machine Learning Cornell - Kilian Weinberger

dúvidas?