

SEARCH

INDEX

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 10335577

(43)Date of publication of application: 18.12.1998

(51)Int.Cl.

H01L 25/065 H01L 25/07 H01L 25/18

(21)Application number: 09147918

(22) Date of filing: 05.06.1997

(71)Applicant:

(72)Inventor:

MATSUSHITA ELECTRIC IND CO LTD

FUJIMOTO HIROAKI TAKEHASHI NOBUITSU

(54) SEMICONDUCTOR DEVICE AND ITS MANUFACTURE

(57) Abstract:

PROBLEM TO BE SOLVED: To make a semiconductor device in which a second LSI chip is face—down bonded to the upper surface of a first LSI chip efficiently radiate the heat generated from the second LSI chip.

SOLUTION: A second LSI chip 120 is face—down bonded to the upper surface of a first LSI chip 110 having external electrodes 112 in its peripheral edge section and a die pad 131 is fixed to the lower surface of the chip 110. The external electrodes 112 of the chip 110 are connected to inner leads 133 through bonding wires 134. A resin package 135 seals the first and second LSI chips 110 and 120, die pad 131, and inner leads 133 so that the upper surface of the chip 120 and lower surface of the die pad 131 may be exposed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998 Japanese Patent Office

MENU

SEARCH

INDEX

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-335577

(43)公開日 平成10年(1998)12月18日

(51) Int.Cl.6

識別記号

FΙ

H01L 25/08

В

H01L 25/065 25/07

25/18

審査請求 未請求 請求項の数13 OL (全 13 頁)

(21)出願番号

特願平9-147918

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(22)出顧日

平成9年(1997)6月5日

(72)発明者 藤本 博昭

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 竹橋 信逸

大阪府門真市大字門真1006番地 松下電器

產業株式会社内

(74)代理人 弁理士 前田 弘 (外2名)

(54) 【発明の名称】 半導体装置及びその製造方法

(57)【要約】

【課題】 第1のLSIチップの上に第2のLSIチップがフェイスダウンボンディング方式により接合されてなる半導体装置において、第2のLSIチップに発生した熱を効率良く放散できるようにする。

【解決手段】 周縁部に外部電極112を有する第1のLSIチップ110の上に、第2のLSIチップ120がフェイスダウンボンディング方式により接合されている。第1のLSIチップ110の下面にはダイパッド131が固着されている。第1のLSIチップ110の外部電極112とインナーリード133とはボンディングワイヤ134により接続されている。樹脂パッケージ135は、第1のLSIチップ110、第2のLSIチップ120、ダイパッド131及びインナーリード133を、第2のLSIチップ120の上面及びダイパッド131の下面がそれぞれ露出するように封止している。

【特許請求の範囲】

【請求項1】 周縁部に外部電極を有する第1のLSI チップと、

前記第1のLSIチップの上にフェイスダウンボンディング方式により接合された第2のLSIチップと、

前記第1のLSIチップの下面に設けられたダイパッド レ

前記第1のLSIチップの外部電極と電気的に接続されたインナーリードと、

前記第1のLSIチップ、第2のLSIチップ、ダイパ 10 体装置。 ッド及びインナーリードを、前記第2のLSIチップの 【請求項上面及び前記ダイパッドの下面の少なくとも中央部がそ チップのれぞれ露出するように封止している樹脂パッケージとを ディンケ 備えていることを特徴とする半導体装置。 前記第1

【請求項2】 前記樹脂パッケージは、前記第1のLSIチップ、第2のLSIチップ、ダイパッド及びインナーリードを、前記第2のLSIチップの上面及び前記ダイパッドの下面がそれぞれ全面に亘って露出するように封止していることを特徴とする請求項1に記載の半導体装置。

【請求項3】 前記第2のLSIチップの上面における 前記樹脂パッケージから露出している領域に設けられた 放熱体をさらに備えていることを特徴とする請求項1に 記載の半導体装置。

【請求項4】 周縁部に外部電極を有する第1のLSI チップと、

前記第1のLSIチップの上にフェイスダウンポンディング方式により接合された第2のLSIチップと、

前記第1のLSIチップの外部電極と電気的に接続されたインナーリードと、

前記第1のLSIチップ、第2のLSIチップ及びインナーリードを、前記第2のLSIチップの上面及び前記第1のLSIチップの下面の少なくとも中央部がそれぞれ露出するように封止している樹脂パッケージとを備えていることを特徴とする半導体装置。

【請求項5】 前記樹脂パッケージは、前記第1のLS Iチップ、第2のLSIチップ及びインナーリードを、 前記第2のLSIチップの上面及び前記第1のLSIチップの下面がそれぞれ全面に亘って露出するように封止 していることを特徴とする請求項4に記載の半導体装置。

【請求項6】 前記第2のLSIチップの上面における 前記樹脂パッケージから露出している領域に設けられた 放熱体をさらに備えていることを特徴とする請求項4に 記載の半導体装置。

【請求項7】 周縁部に外部電極を有する第1のLSIチップと、

前記第1のLSIチップの上にフェイスダウンポンディ ング方式により接合された第2のLSIチップと、

前記第1のLSIチップの外部電極に接続されたポンデ 50

ィングワイヤと、

前記第1のLSIチップと前記第2のLSIチップとの間に、前記第1のLSIチップ及び第2のLSIチップの各主面を全面的に覆うように充填された絶縁性樹脂と、

前記第1のLSIチップ及び第2のLSIチップを封止 している樹脂パッケージとを備えており、

前記絶縁性樹脂のヤング率は前記樹脂パッケージを構成する樹脂のヤング率よりも小さいことを特徴とする半導体装置。

【請求項8】 周縁部に外部電極を有する第1のLSI チップの上に第2のLSIチップをフェイスダウンボン ディング方式により接合する工程と、

前記第1のLSIチップの下面にダイパッドを固着する 工程と、

前記第1のLSIチップの外部電極とインナーリードと を電気的に接続する工程と、

前記第1のLSIチップ、第2のLSIチップ、ダイパッド及びインナーリードを樹脂パッケージにより、前記20 第2のLSIチップの上面及び前記ダイパッドの下面の少なくとも中央部がそれぞれ露出するように封止する工程とを備えていることを特徴とする半導体装置の製造方法。

【請求項9】 周縁部に外部電極を有する第1のLSI チップの上に第2のLSIチップをフェイスダウンボン ディング方式により接合する工程と、

前記第1のLSIチップの下面にダイパッドを固着する 工程と、

前記第1のLSIチップの外部電極とインナーリードと 30 を電気的に接続する工程と、

前記第1のLSIチップ、第2のLSIチップ、ダイパット及びインナーリードを樹脂パッケージにより全面的に封止する工程と、

前記樹脂パッケージを研磨して、前記第2のLSIチップの上面及び前記ダイパッドの下面をそれぞれ全面に亘って露出させる工程とを備えていることを特徴とする半導体装置の製造方法。

【請求項10】 周縁部に外部電極を有する第1のLS Iチップの上に第2のLSIチップをフェイスダウンボ 40 ンディング方式により接合する工程と、

前記第1のLSIチップの外部電極とインナーリードと を電気的に接続する工程と、

前記第1のLSIチップ、第2のLSIチップ及びインナーリードを樹脂パッケージにより、前記第2のLSIチップの上面及び前記第1のLSIチップの下面の少なくとも中央部がそれぞれ露出するように封止する工程とを備えていることを特徴とする半導体装置の製造方法。

2

3

前記第1のLSIチップの外部電極とインナーリードと を電気的に接続する工程と、

前記第1のLSIチップ、第2のLSIチップ及びイン ナーリードを樹脂パッケージにより全面的に封止するエ 程と、

前記樹脂パッケージを研磨して、前記第2のLSIチップの上面及び前記第1のLSIの下面をそれぞれ全面に 亘って露出させる工程とを備えていることを特徴とする 半導体装置の製造方法。

【請求項12】 周縁部に外部電極を有する第1のLS Iチップの前記外部電極にポンディングワイヤを接続するワイヤ接続工程と、

前記外部電極にボンディングワイヤが接続された第1の LSIチップと第2のLSIチップとをフェイスダウン ボンディング方式により接合すると共に、前記第1のL SIチップと前記第2のLSIチップとの間に絶縁性樹 脂を充填して、前記第1のLSIチップ及び第2のLS IチップよりなるLSIモジュールを形成するモジュー ル形成工程と、

前記LSIモジュールを半導体パッケージに封止する封 20 止工程とを備えていることを特徴とする半導体装置の製 造方法。

【請求項13】 前記モジュール形成工程は、前記絶縁性樹脂を前記第1のLSIチップ及び第2のLSIチップの各主面が全面的に覆われるように充填する工程を含み、

前記封止工程は、前記LSIモジュールを樹脂パッケージよりなる前記半導体パッケージに樹脂封止する工程を含み、

前記モジュール形成工程における絶縁性樹脂のヤング率は、前記封止工程における樹脂パッケージを構成する樹脂のヤング率よりも小さいことを特徴とする請求項12 に記載の半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、主面上にLSIがそれぞれ形成された第1の半導体チップと第2の半導体チップとがフェイスダウンボンディング方式により接合されてなる半導体装置及びその製造方法に関する。

[0002]

【従来の技術】近年、半導体集積回路装置の低コスト化及び小型化を図るため、例えば異なる機能を持つLSI又は異なるプロセスにより形成されたLSIが形成された、第1のLSIチップと第2のLSIチップとがフェイスダウンボンディング方式により接合されてなる半導体装置が提案されている。

【0003】以下、例えば特開平2-15660号公報に示されている、2つのLSIチップがフェイスダウンボンディング方式により接合されてなる半導体装置及びその製造方法について図9を参照しながら説明する。

4

【0004】図9に示すように、第1のLSIチップ1 0における第1のLSIが形成されている主面上には内 部電極11及び外部電極12が形成されていると共に、 第2のLSIチップ13における第2のLSIが形成さ れている主面上にはバンプ14が形成されており、内部 電極11とバンプ14とが接続された状態で、第1のL SIチップ10と第2のLSIチップ13とがフェイス ダウンボンディング方式により接合している。この場 合、第1のLSIチップ10と第2のLSIチップ13 との間には絶縁性樹脂15が充填されている。また、第 1のLSIチップ10はリードフレームのダイパッド1 6にはんだ17により固定されていると共に、第1のL SIチップ10の外部電極12とリードフレームのイン ナーリード18とはボンディングワイヤ19により電気 的に接続されている。第1のLSIチップ10、第2の LSIチップ13、ダイパッド16、インナーリード1 8及びポンディングワイヤ19は樹脂パッケージ20に より封止されている。

【0005】前記従来の半導体装置は以下のようにして製造される。

【0006】まず、周縁部に外部電極12が形成されている第1のLSIチップ10上の中央部に絶縁性樹脂15を塗布した後、第2のLSIチップ13を第1のLSIチップ10に押圧して、第1のLSIチップ10の内部電極11と第2のLSIチップ13のバンプ14とが接続した状態で、第1のLSIチップと第2のLSIチップとを接合する。

【0007】次に、第1のLSIチップ10の外部電極 12とインナーリード18とをポンディングワイヤ19 により接続した後、第1のLSIチップ10、第2のL SIチップ13、ダイパッド16、インナーリード18 及びポンディングワイヤ19を樹脂パッケージ20によ り封止する。

[0008]

50

【発明が解決しようとする課題】ところで、第1のLS Iチップ10と第2のLSIチップ13とがフェイスダウンボンディング方式により接合されてなる半導体装置においては、絶縁性樹脂15及び樹脂パッケージ20の熱伝導率が低いため、第2のLSIチップ13の主面に形成されている第1のLSIから発生した熱は、バンブ14を介して第1のLSIチップ10に伝達された後、ダイパッド16に伝わり、その後、ダイパッド16と一体化されているインナーリード18から外部に放出されるが、バンブ14の断面積の合計は第2のLSIチップ13に発生した熱のバンブ14を介しての放散は十分ではない。

【0009】このため、第2のLSIチップ13の主面に形成されているLSIにおいて、pn接合のダイオード特性が劣化するという問題及び金属配線の抵抗が大き

くなってトランジスタ特性が劣化するという問題等が発生する。特に、第2のLSIチップ13の主面に形成されているLSIの消費電力が大きい場合には、前記の問題は顕著に表われる。

【0010】また、前記従来の半導体装置の製造方法は、周縁部に外部電極12が形成されている第1のLSIチップ10上の中央部に絶縁性樹脂15を塗布した後、第2のLSIチップ13を第1のLSIチップ10に押圧して第1のLSIチップ10と第2のLSIチップ13とを接合するが、この際、絶縁性樹脂15が第1のLSIチップ10の外部電極12に付着すると、第1のLSIチップ10の外部電極12とインナーリード18とをポンディングワイヤ19により接合することができない。

【0011】そこで、従来の半導体装置においては、絶縁性樹脂15が第1のLSIチップ10の外部電極12に付着しないように、第2のLSIチップ13の外形寸法を第1のLSIチップ10の外部電極12の内側寸法よりもかなり小さくしている。すなわち、第2のLSIチップ13のサイズを第1のLSIチップ10のサイズ 20よりも十分に小さく、例えば、第2のLSIチップ13の1辺の長さを第1のLSIチップ10の1辺の長さに対して2mm程度小さくしている。このため、第2のLSIチップ13の集積度、ひいては第1のLSIチップ10と第2のLSIチップ13とからなるLSIモジュールの集積度が制約を受けると言う問題がある。

【0012】前記に鑑み、本発明は、第1のLSIチップの上に第2のLSIチップがフェイスダウンボンディング方式により接合されてなる半導体装置において、第2のLSIチップに発生した熱を効率良く放散できるようにすることを第1の目的とし、第2のLSIチップの集積度を向上させることを第2の目的とする。

[0013]

【課題を解決するための手段】本発明に係る第1の半導体装置は、周縁部に外部電極を有する第1のLSIチップと、第1のLSIチップの上にフェイスダウンボンディング方式により接合された第2のLSIチップと、第1のLSIチップの下面に設けられたダイパッドと、第1のLSIチップの外部電極と電気的に接続されたインナーリードと、第1のLSIチップ、ダイパッド及びインナーリードを、第2のLSIチップの上面及びダイパッドの下面の少なくとも中央部がそれぞれ露出するように封止している樹脂パッケージとを備えている。

【0014】第10半導体装置によると、樹脂パッケージが第20LSIチップの上面の少なくとも中央部が露出するように封止しているため、第20LSIチップの主面に形成されているLSIから発生した熱は、第20LSIチップの上面における樹脂パッケージに露出している領域から放散され、また、樹脂パッケージがダイパ 500外部電極に接続されたボンディングワイヤと、第10LSIチップと第20LSIチップの各主面を全面的にでは、第10LSIチップの上面における樹脂パッケージに露出している樹脂パッケージがダイパ 20LSIチップを封止している樹脂パッケージがダイパ 20LSIチップを封止している樹脂パッケージがダイパ 20LSIチップを封止している樹脂パッケージがダイパ 20LSI

6

ッドの下面の少なくとも中央部が露出するように封止しているため、第1のLSIチップの主面に形成されているLSIから発生した熱は、ダイパッドの下面における樹脂パッケージに露出している領域から放散される。

【0015】第1の半導体装置において、樹脂パッケージは、第1のLSIチップ、第2のLSIチップ、ダイパッド及びインナーリードを、第2のLSIチップの上面及びダイパッドの下面がそれぞれ全面に亘って露出するように封止していることが好ましい。

【0016】第1の半導体装置は、第2のLSIチップの上面における樹脂パッケージから露出している領域に設けられた放熱体をさらに備えていることが好ましい。 【0017】本発明に係る第2の半導体装置は、周縁部に外部電極を有する第1のLSIチップと、第1のLSIチップと大き式により接合された第2のLSIチップと、第1のLSIチップの外部電極と電気的に接続されたインナーリードと、第1のLSIチップ、第2のLSIチップ及びインナーリードを、第2のLSIチップの上面及び第1のLSIチップの下面の少なくとも中央部がそれぞれ露出するように封止している樹脂パッケージとを備えている。

【0018】第2の半導体装置によると、樹脂バッケージが第2のLSIチップの上面の少なくとも中央部が露出するように封止しているため、第2のLSIチップの主面に形成されているLSIから発生した熱は、第2のLSIチップの上面における樹脂パッケージに露出している領域から放散され、また、樹脂パッケージが第1の半導体チップの下面の少なくとも中央部が露出するように封止しているため、第1のLSIチップの主面に形成されているLSIから発生した熱は、第1のLSIチップの下面における樹脂パッケージに露出している領域から放散される。

【0019】第2の半導体装置において、樹脂パッケージは、第1のLSIチップ、第2のLSIチップ及びインナーリードを、第2のLSIチップの上面及び第1のLSIチップの下面がそれぞれ全面に亘って露出するように封止していることが好ましい。

【0020】第2の半導体装置は、第2のLSIチップの上面における樹脂パッケージから露出している領域に設けられた放熱体をさらに備えていることが好ましい。【0021】本発明に係る第3の半導体装置は、周縁部に外部電極を有する第1のLSIチップと、第1のLSIチップの上にフェイスダウンボンディング方式により接合された第2のLSIチップと、第1のLSIチップと第2のLSIチップとの間に、第1のLSIチップと第2のLSIチップとの間に、第1のLSIチップ及び第2のLSIチップの各主面を全面的に変うように充填された絶縁性樹脂と、第1のLSIチップ及び第2のLSIチップを封止している樹脂パッケブ及び第2のLSIチップを封止している樹脂パッケブ及び第2のLSIチップを対止している樹脂パッケブスで第2のLSIチップを対止している樹脂パッケブスを使きており、絶縁性樹脂のヤング率は樹脂パッケブスを使きており、絶縁性樹脂のヤング率は樹脂パッケブ

ージを構成する樹脂のヤング率よりも小さい。

【0022】第3の半導体装置によると、第1のLSIチップと第2のLSIチップとの間に、第1のLSIチップ及び第2のLSIチップの各主面を全面的に覆うように絶縁性樹脂が介在し、しかも、該絶縁性樹脂のヤング率は樹脂パッケージを構成する樹脂のヤング率よりも小さいため、第1のLSIチップ及び第2のLSIチップの各主面はヤング率の小さい樹脂によって全面的に覆われている。

【0023】従来においては、第1のLSIチップの外部電極同士の間まで延びる金属配線が、樹脂パッケージを構成する樹脂の熱応力の影響を受けないように、第1のLSIチップの主面を予めポリイミド膜等により覆う必要があったが、第3の半導体装置によると、第1のLSIチップ及び第2のLSIチップの各主面がヤング率の小さいつまり熱応力の小さい絶縁性樹脂により全面的に覆われているため、ヤング率の大きい封止用樹脂が第1のLSIチップ及び第2のLSIチップの各主面に接触する事態を回避することができる。

【0024】本発明に係る第1の半導体装置の製造方法は、周縁部に外部電極を有する第1のLSIチップの上に第2のLSIチップをフェイスダウンボンディング方式により接合する工程と、第1のLSIチップの下面にダイパッドを固着する工程と、第1のLSIチップの外部電極とインナーリードとを電気的に接続する工程と、第1のLSIチップ、第2のLSIチップ、ダイバッド及びインナーリードを樹脂パッケージにより、第2のLSIチップの上面及びダイパッドの下面の少なくとも中央部がそれぞれ露出するように封止する工程とを備えている。

【0025】第1の半導体装置の製造方法によると、第1のLSIチップ、第2のLSIチップ、ダイパッド及びインナーリードを樹脂パッケージにより、第2のLSIチップの上面及びダイパッドの下面の少なくとも中央部がそれぞれ露出するように封止する工程を備えているため、得られる半導体装置においては、第2のLSIチップの上面及びダイパッドの下面の少なくとも中央部はそれぞれ露出している。

【0026】本発明に係る第2の半導体装置の製造方法は、周縁部に外部電極を有する第1のLSIチップの上に第2のLSIチップをフェイスダウンボンディング方式により接合する工程と、第1のLSIチップの下面にダイパッドを固着する工程と、第1のLSIチップの外部電極とインナーリードとを電気的に接続する工程と、第1のLSIチップ、第2のLSIチップ、ダイバッド及びインナーリードを樹脂パッケージにより全面的に封止する工程と、樹脂パッケージを研磨して第2のLSIチップの上面及びダイパッドの下面をそれぞれ全面に亘って露出させる工程とを備えている。

【0027】第2の半導体装置の製造方法によると、第 50

8

1のLSIチップ、第2のLSIチップ、ダイパッド及びインナーリードを樹脂パッケージにより全面的に封止した後、樹脂パッケージを研磨して第2のLSIチップの上面及びダイパッドの下面をそれぞれ全面に亘って露出させる工程を備えているため、得られる半導体装置においては、第2のLSIチップの上面及びダイパッドの下面はそれぞれ全面に亘って露出している。

【0028】本発明に係る第3の半導体装置の製造方法は、周縁部に外部電極を有する第1のLSIチップの上に第2のLSIチップをフェイスダウンボンディング方式により接合する工程と、第1のLSIチップの外部電極とインナーリードとを電気的に接続する工程と、第1のLSIチップ、第2のLSIチップ及びインナーリードを樹脂パッケージにより、第2のLSIチップの上面及び第1のLSIチップの下面の少なくとも中央部がそれぞれ露出するように封止する工程とを備えている。

【0029】第3の半導体装置の製造方法によると、第1のLSIチップ、第2のLSIチップ及びインナーリードを樹脂パッケージにより、第2のLSIチップの上面及び第1のLSIチップの下面の少なくとも中央部がそれぞれ露出するように封止する工程を備えているため、得られる半導体装置においては、第2のLSIチップの上面及び第1のLSIチップの下面の少なくとも中央部はそれぞれ露出している。

【0030】本発明に係る第4の半導体装置の製造方法は、周縁部に外部電極を有する第1のLSIチップの上に第2のLSIチップをフェイスダウンポンディング方式により接合する工程と、第1のLSIチップの外部電極とインナーリードとを電気的に接続する工程と、第1のLSIチップ、第2のLSIチップ及びインナーリードを樹脂パッケージにより全面的に封止する工程と、樹脂パッケージを研磨して、第2のLSIチップの上面及び第1のLSIの下面をそれぞれ全面に亘って露出させる工程とを備えている。

【0031】第4の半導体装置の製造方法によると、第1のLSIチップ、第2のLSIチップ及びインナーリードを樹脂パッケージにより全面的に封止した後、樹脂パッケージを研磨して、第2のLSIチップの上面及び第1のLSIの下面をそれぞれ全面に亘って露出させる工程を備えているため、得られる半導体装置においては、第2のLSIチップの上面及び第1のLSIの下面はそれぞれ全面に亘って露出している。

【0032】本発明に係る第5の半導体装置の製造方法は、周縁部に外部電極を有する第1のLSIチップの外部電極にボンディングワイヤを接続するワイヤ接続工程と、外部電極にボンディングワイヤが接続された第1のLSIチップと第2のLSIチップとをフェイスダウンボンディング方式により接合すると共に、第1のLSIチップとの間に絶縁性樹脂を充填して、第1のLSIチップ及び第2のLSIチップより

なるLSIモジュールを形成するモジュール形成工程と、LSIモジュールを半導体パッケージに封止する封止工程とを備えている。

【0033】第5の半導体装置の製造方法によると、第1のLSIチップの外部電極にポンディングワイヤを接続した後に、第1のLSIチップと第2のLSIチップとの間に絶縁性樹脂を充填するため、絶縁性樹脂が外部電極とポンディングワイヤとの接続部を覆うように拡がってもよいので、第2のLSIチップの外形が第1のLSIチップの外部電極の内側に位置する程度まで、第2のLSIチップのサイズを大きくすることができる。

【0034】第5の半導体装置の製造方法において、モジュール形成工程は、絶縁性樹脂を第1のLSIチップ及び第2のLSIチップの各主面が全面的に覆われるように充填する工程を含み、封止工程は、LSIモジュールを樹脂パッケージよりなる半導体パッケージに樹脂封止する工程を含み、モジュール形成工程における絶縁性樹脂のヤング率は、封止工程における樹脂パッケージを構成する樹脂のヤング率よりも小さいことが好ましい。【0035】

【発明の実施の形態】

(第1の実施形態)以下、本発明の第1の実施形態に係る半導体装置及び製造方法について、図1(a)~(c)及び図2(a)、(b)を参照しながら説明する

【0037】第1のLSIチップ110の主面上には多数の内部電極111が形成されていると共に、主面上の周縁部には内部電極111と電気的に接続された外部電極112が形成されている。また、第2のLSIチップ120の中部電極111と対応する部位には、図示しない内部電極が形成されており、該内部電極の上にはAu、Cu、In又ははんだ等よりなるパンプ121が形成されている。パンプ121の大きさは、 5μ m~200 μ m程度である。パンプ121の形成方法としては、ウェハ上に金属膜を蒸着した後、該金属膜にフォトレジストパターンをマスクにして電解めっきを行なってパンプ121を

形成し、その後、金属膜をエッチングにより除去する方法や、アルミニウムよりなる内部電極の上に無電解めっき法によりNi-Au等の金属膜を形成した後、該金属膜の上に転写又はディッピングによりバンプ121を形成する方法等を採用することができる。

10

【0038】次に、第1のLSIチップ110における 第2のLSIチップ120の搭載領域に、光硬化型又は 熱硬化型等のエポキシ系、アクリル系又はポリイミド等 よりなる絶縁性樹脂130をディスペンサー又はスタン ピング等により塗布する。

【0039】次に、図1(b)に示すように、第1のL SIチップ110の内部電極111と第2のLSIチップ120のバンプ121とを位置合わせした後、第1の LSIチップ110の上に第2のLSIチップ120を 載置する。その後、加圧ツール140を降下させて、第 2のLSIチップ120を第1のLSIチップ110に 対して押圧すると共に、加圧ツール140により押圧し た状態で絶縁性樹脂130に対して光の照射又は加熱を 行なって絶縁性樹脂130を硬化させる。この場合、絶 20 縁性樹脂130が熱硬化型のときには、加熱された加圧 ツール140により絶縁性樹脂130を加熱し、絶縁性 樹脂130が光硬化型のときには、絶縁性樹脂130に 対して紫外線等の光を第2のLSIチップ120の側方 から照射する。

【0040】次に、絶縁性樹脂130が硬化すると、図1(c)に示すように、加圧ツール140による加圧を解放する。このようにすると、第1のLSIチップ110と第2のLSIチップ120とが絶縁性樹脂130により一体化されてなると共に、内部電極111とバンプ121とが電気的に接続されてなるLSIモジュールが得られる。尚、絶縁性樹脂130が熱及び光硬化型の場合には、絶縁性樹脂130における光が照射されなかった部分を常温下又は加熱により硬化させる。

【0041】次に、図2 (a) に示すように、LSIモジュールの第1のLSIチップ110の下面をリードフレームのダイパッド131にダイボンド樹脂132を用いて固着する。この場合、リードフレームのインナーリード133がLSIモジュールの厚さ方向のほぼ中央部に位置するようにディプレス加工、すなわち、ダイパッド131がインナーリード133よりも窪むような成形加工を、予め金型を用いてリードフレームに対してがしている。その後、Au等よりなるボンディングワイヤ134により、第1のLSIチップ110の外部電極112とリードフレームのインナーリード133とを接続する

【0042】次に、図2(b)に示すように、第1のLSIチップ110、第2のLSIチップ120及びダイパッド131を樹脂パッケージ135により、第2のLSIチップの上面及びダイパッド131の下面が樹脂パッケージ135から露出するように樹脂封止する。樹脂

11

封止は、上型と下型とからなる金型を用いるトランスファモールド法により行なうが、上型と下型により形成されるキャビティの高さを、第1のLSIチップ110、第2のLSIチップ120及びダイパッド131の合計厚さに設定しておくことにより、第2のLSIチップ120の上面及びダイパッド131の下面を樹脂パッケージ135から露出させることができる。その後、リードフレームのアウターリード136を折り曲げ成形すると、第1の実施形態に係る半導体装置が得られる。

【0043】第1の実施形態に係る半導体装置によると、第2のLSIチップ120の上面が樹脂パッケージ135から露出しているため、第2のLSIチップ120の主面に発生した熱は第2のLSIチップ120の上面から効率良く放散される。

【0044】また、樹脂パッケージ135の厚さは、第1のLS I チップ110、第2のLS I チップ120及びダイパッド131の合計厚さと等しいため、2つのLS I チップがフェイスダウンボンディング方式により一体化されてなる半導体装置の厚さを薄くすることができる。例えば、第1のLS I チップ110及び第2のLS I チップ110及び第2の厚さがそれぞれ1100の厚さがの、150の厚さがわいた材脂 13200厚さが約1020~1510周さが約1020~1510月200月20日 第1520~15

【0046】(第2の実施形態)図3は本発明の第2の 実施形態に係る半導体装置を示しており、第2の実施形 態において、第1の実施形態と同一の部材については同 一の符号を付すことにより説明を省略する。

【0047】第2の実施形態の特徴として、樹脂パッケージ135は第2のLSIチップ120の上面の周縁部を覆っており、第2のLSIチップ120は上面における周縁部を除く領域において樹脂パッケージ135から露出している。

【0048】第2の実施形態に係る半導体装置によると、樹脂パッケージ135が第2のLSIチップ120の上面の周縁部を覆う構造であるため、キャビティ内における第2のLSIチップ120の上面において、樹脂パッケージ135を形成するための樹脂の流動性が向上するので、良好な樹脂パッケージ135が得られる。

【0049】(第3の実施形態)以下、本発明の第3の 実施形態に係る半導体装置及び該半導体装置の第1の製造方法について、図4(a)~(c)を参照しながら説明する。

【0050】まず、第1の実施形態と同様に、互いに異なる機能を持つLSI又は互いに異なるプロセスにより

形成されたLSIを有する第1のLSIチップ110及 び第2のLSIチップ120を製造した後、第1のLS Iチップ110における第2のLSIチップ120の搭 載領域に、光硬化型又は熱硬化型等のエポキシ系、アク リル系又はポリイミド等よりなる絶縁性樹脂130をデ ィスペンサー又はスタンピング等により塗布する。次 に、第1のLSIチップ110の内部電極111と第2 のLSIチップ120のバンプ121とを位置合わせし た後、第1のLSIチップ110の上に第2のLSIチ ップ120を載置し、その後、第2のLSIチップ12 0を第1のLSIチップ110に対して押圧すると共に 絶縁性樹脂130に対して光の照射又は加熱を行なって 絶縁性樹脂130を硬化させて、図4(c)に示すよう な、第1のLSIチップ110と第2のLSIチップ1 20とが絶縁性樹脂130により一体化されてなると共 に、内部電極111とバンプ121とが電気的に接続さ

12

【0051】次に、図4(b)に示すような、第1のLSIモジュール110よりも若干大きい平面形状と第1のLSIチップ110と同程度の深さとを有する収納凹部141aの中央に設けられた真空吸引孔141bとを有するワイヤボンディング用ステージ141を準備し、該ワイヤボンディング用ステージ141の収納凹部141aにLSIモジュールを収納すると共に、真空吸引孔141bから第1のLSIチップ110を真空引きして、第1のLSIチップ110を

れてなるLSIモジュールを得る。

【0052】次に、ワイヤボンディング用ステージ14 1の周縁部の上に、ダイパッドを有しないリードフレームのインナーリード133及びアウターリード136を 載置した後、該リードフレームのインナーリード133 と第1のLSIチップ110の外部電極112とをボン ディングワイヤ134により接続する。第1のLSIチップ110は、リードフレームのダイパッドに固定され ていないが、ワイヤボンディング用ステージ141に保 持されているため、ワイヤボンディング工程を確実に行 なうことができる。

【0053】次に、第1のLSIチップ110及び第2のLSIチップ120を樹脂パッケージ135により、第2のLSIチップの上面及び第1のLSIチップの下面が樹脂パッケージ135から露出するように樹脂はする。この場合、上型と下型により形成されるキャーでは、第100時間では、第2のLSIチップ110の下面を樹脂パッケージ135から露出させることができる。尚、リードフレームのインナーリーと133と第1のLSIチップ110の外部電極112とがボンディングワイヤ134により接続されているので、LSIモジュールをワイヤボンディング用ステージ14

1から上型と下型からなる金型に移動する際、LSIモジュールとリードフレームとが分離してしまう恐れはない。その後、リードフレームのアウターリード136を折り曲げ成形すると、図4(c)に示すような第3の実施形態に係る半導体装置が得られる。

【0054】第3の実施形態に係る半導体装置によると、第2のLSIチップ120の上面及び第1のLSIチップ110の下面が樹脂パッケージ135から露出しているため、第1のLSIチップ110及び第2のLSIチップ120に発生した熱は、第1のLSIチップ110の下面及び第2のLSIチップ120の上面からそれぞれ効率良く放散される。

【0055】また、樹脂パッケージ135の厚さは、第1のLSIチップ110及び第2のLSIチップ120の合計厚さと等しいため、2つのLSIチップがフェイスダウンボンディング方式により一体化されてなる半導体装置の厚さを薄くすることができる。例えば、第1のLSIチップ110及び第2のLSIチップ120の厚さがそれぞれ0.3mmであるとすると、バンプ121の高さは小さいので、約0.6mmの厚さの超薄型の樹20脂パッケージ135を得ることができる。

【0056】以下、本発明の第3の実施形態に係る半導体装置の第2の製造方法について、図5(a)~(c)を参照しながら説明する。

【0057】第1の製造方法と同様にして、第1のLS I チップ110と第2のLS I チップ120とが絶縁性樹脂 130により一体化されてなると共に、内部電極112にバンプ121とが電気的に接続されてなるLS I モジュールを得た後、図5((a)に示すように、第10のLS I チップ110及び第2のLS I チップ120が露出することなく完全に覆われるように樹脂バッケージ135により樹脂封止する。

【0058】次に、樹脂パッケージ135の上面及び下面をそれぞれ機械研磨して、図5((b)に示すように、第2のLSIチップ120の上面及び第1のLSIチップ110の下面を樹脂パッケージ135から露出させた後、リードフレームのアウターリード136を折り曲げ成形すると、図5(c)に示すような第3の実施形態に係る半導体装置が得られる。

【0059】LSIモジュールの厚さが小さくてキャビ 40 ティの高さが小さいために、キャビティ内における樹脂の流動性が低下する恐れがある場合でも、第2の製造方法によると、良好な樹脂パッケージ135を得ることができる。

【0060】(第4の実施形態)以下、本発明の第4の 実施形態に係る半導体装置について、図6を参照しなが ら説明する。

【0061】第4の実施形態に係る半導体装置は、第1の実施形態に係る半導体装置における第2のLSIチップ120の上面に放熟体137が熱伝導性樹脂138に 50

14

より固定されている。放熱体137の構造としては、互いに平行に延びる複数の凹状溝が形成されているものでもよいし、多数の凹部がマトリックス状に配列されているものでもよい。

【0062】(第5の実施形態)以下、本発明の第5の 実施形態に係る半導体装置について、図7を参照しなが ら説明する。

【0063】第5の実施形態に係る半導体装置は、第3の実施形態に係る半導体装置における第2のLSIチップ120の上面に放熱体137が熱伝導性樹脂138により固定されている。

【0064】第4又は第5の実施形態に係る半導体装置 によると、第2のLSIチップ120の上面に放熱体1 37が固定されているため、第2のLSIの消費電力が 大きくて第2のLSIチップ120における発熱量が大 きい場合でも、第2のLSIチップ120に発生した熱 は放熱体137から効率良く放散される。この場合、第 2のLSIチップ120の上面に放熱体137が固定さ れているため、つまり、アウタリード136が延びてい る方向と反対側に放熱体137が固定されているため、 第4又は第5の実施形態に係る半導体装置がプリント基 板等に実装された場合の放熱がプリント基板等に対して 反対側に行なわれるので、放熱性が極めて良好である。 【0065】従って、第4又は第5の実施形態に係る半 導体装置によると、熱抵抗の小さいパッケージを得るこ とができるので、高速化且つ高集積化されたマイクロブ ロセッサー等にも適用することができ、低コストで高機 能のLSIを得ることができる。

【0066】(第6の実施形態)以下、本発明の第6の 実施形態に係る半導体装置及び製造方法について、図8 (a)~(c)を参照しながら説明する。

【0067】まず、図8(a)、(b)に示すように、互いに異なる機能を持つLSI又は互いに異なるプロセスにより形成されたLSIを有する第1のLSIチップ110及び第2のLSIチップ120を製造しておく。第1のLSIチップ110の主面上には多数の内部電極111が形成されていると共に、主面上の周縁部には内部電極1-11と電気的に接続された外部電極112が形成されている。また、第2のLSIチップ120の主面上における第1のLSIチップ110の内部電極111と対応する部位には、内部電極122が形成されており、該内部電極122の上にはAu、Cu又ははんだ等よりなるバンプ121が形成されている。

【0068】次に、図8(a)に示すように、第1のL SIチップ110をリードフレームのダイパッド131 にダイボンド樹脂132を用いて固着する。この場合、 第1の実施形態と同様、リードフレームのインナーリー ド133がLSIモジュールの厚さ方向のほぼ中央部に 位置するようにディプレス加工、すなわち、ダイパッド 131がインナーリード133よりも窪むような成形加

工を、予め金型を用いてリードフレームに対して施している。その後、A u 等よりなるボンディングワイヤ 1 3 4 により、第1 の L S I チップ 1 1 0 の外部電極 1 1 2 とリードフレームのインナーリード 1 3 3 とを接続す

【0069】次に、図8(b)に示すように、第1のL SIチップ110における第2のLSIチップ120の 搭載領域に、光硬化型又は熱硬化型等のエポキシ系、ア クリル系又はポリイミド等よりなる絶縁性樹脂130を ディスペンサー又はスタンピング等により塗布した後、 第1のLSIチップ110の内部電極111と第2のL SIチップ120のパンプ121とを位置合わせする。 【0070】次に、図8 (c) に示すように、第1のL SIチップ110の上に第2のLSIチップ120を載 置した後、加圧ツール140を降下させて、第2のLS Iチップ120を第1のLSIチップ110に対して押 圧する。この場合、絶縁性樹脂130は、第2のLSI チップ120の側面を覆うと共に、第1のLSIチップ 110の外部電極112とボンディングワイヤ134と の接合部を覆うように拡がる。その後、加圧ツール14 0により第2のLSIチップ120を押圧した状態で、 絶縁性樹脂130に対して光の照射又は加熱を行なって 絶縁性樹脂130を硬化させる。

【0071】尚、第1のLSIチップ110と第2のLSIチップ120との間に充填された絶縁性樹脂130のヤング率は、後述する樹脂パッケージ135を構成する樹脂のヤング率よりも小さいことが好ましい。このようにすると、第1のLSIチップ110及び第2のLSIチップ120の主面が受ける熱応力が低減する。

【0072】次に、絶縁性樹脂130が硬化すると、図8(d)に示すように、加圧ツール140による加圧を解放する。このようにすると、第1のLSIチップ110と第2のLSIチップ120とが絶縁性樹脂130により一体化されてなると共に、内部電極111とパンプ121とが電気的に接続されてなるLSIモジュールが得られる。尚、絶縁性樹脂130が熱及び光硬化型の場合には、絶縁性樹脂130における光が照射されなかった部分を常温下又は加熱により硬化させる。

【0073】次に、第1のLSIチップ110、第2の LSIチップ120及びダイパッド131を樹脂パッケージ135により樹脂封止する。その後、リードフレームのアウターリード136を折り曲げ成形すると、第6の実施形態に係る半導体装置が得られる。

【0074】第6の実施形態に係る半導体装置によると、第1のLSIチップ110の外部電極112とポンディングワイヤ134との接合部がヤング率の小さい絶縁性樹脂130により覆われているため、つまり、第1のLSIチップ110及び第2のLSIチップ120の主面が全面に亘ってヤング率の小さい樹脂により覆われているため、第1のLSIチップ110及び第2のLS.50

16

Iチップ120からなるLSIモジュールを封止する熱応力の大きい封止用樹脂が第1のLSIチップ110及び第2のLSIチップ120の主面に接触しないので、第1のLSIチップ110及び第2のLSIチップ120の主面に形成されているアルミニウム配線が位置ずれを起こす事態を防止できる。

【0075】また、第6の実施形態に係る半導体装置の 製造方法は、第1のLSIチップ110の外部電極11 2とインナーリード133とをボンディングワイヤ13 4により接続した後に、第1のLSIチップ110の内 部電極111と第2のLSIチップ120のバンプ12 1とを接続するため、第2のLSIチップ120のサイ ズを、第2のLSIチップ120の外形が第1のLSI チップ110の外部電極112の近傍に位置する程度ま で大きくできるので、LSIモジュールの集積度を向上 させることができる。例えば、第2のLSIチップ12 0の外形が第1のLSIチップ110の外部電極112 の内側の線に位置するようにすると、第2のLSIチッ プ120の1辺の長さが第1のLSIチップ110の1 辺の長さに対して約0.2mm小さくなる程度まで、第 2のLSIチップ120のサイズを大きくすることがで きる。例えば、第1のLSIチップのサイズが6.0m m角であるとすると、第2のLSIチップのサイズは、 従来が4.0mm角であるのに対して、第6の実施形態 では5.8mm角にすることができ、面積比は2倍以上 になる。

【0076】尚、第1~第5の実施形態においては、第1のLSIチップ110と第2のLSIチップ120とを両方がチップ状態のときに接合したが、これに代えて、ウェハ状態の第1のLSIチップ110の上にチップ化された第2のLSIチップ110を接合した後、第1のLSIチップ110が形成されているウェハに対してダイシングを行なってLSIモジュールを得てもよい。

【0077】また、第1~第6の実施形態においては、内部電極111とバンプ121とを接触させると共に、第1のLSIチップ110と第2のLSIチップ120とを絶縁性樹脂130により一体化するマイクロバンプボンディング方式を用いたが、これに代えて、はんだ材によりバンプ121を形成すると共に、内部電極111とバンプ121とをはんだ材により接合した後、第1のLSIチップ110と第2のLSIチップ120との間に絶縁性樹脂を充填する方式でもよい。

【0078】また、第1~第6の実施形態においては、第2のLSIチップ120の内部電極の上にバンプ121を形成したが、これに代えて、第1のLSIチップ110の内部電極1110上にバンプ121を形成してもよい。

【0079】また、第1~第6の実施形態においては、 1つの第1のLSIチップ110の上に1つの第2のL

40

18

SIチップ120を載置したが、これに代えて、1つの 第1のLSIチップ110の上に複数のLSIチップ1 20を載置してもよい。

【0080】さらに、第6の実施形態においては、第1のLSIチップ110の外部電極112とインナーリード133とがボンディングワイヤ134により接続され、第1のLSIチップ110及び第2のLSIチップ120からなるLSIモジュールが樹脂パッケージ135により封止されてなる構造であったが、これに代えて、第1のLSIチップ110及び第2のLSIチップ120からなるLSIモジュールがセラミックパッケージに収納され、第1のLSIチップ110の外部電極112とセラミックパッケージの電極とがボンディングワイヤ134により接続されてなる構造(BGA)でもよい。

[0081]

【発明の効果】第1の半導体装置によると、第2のLSIチップの主面に形成されているLSIから発生した熱は第2のLSIチップの上面における樹脂パッケージに露出している領域から放散され、第1のLSIチップの主面に形成されているLSIから発生した熱はダイパッドの下面における樹脂パッケージに露出している領域から放散されるため、第1及び第2のLSIチップに形成されているLSIにおいて、pn接合のダイオード特性が劣化したり、金属配線の抵抗が大きくなってトランジスタ特性が劣化したりするという問題を回避することができる。

【0082】第1の半導体装置において、第2のLSI チップの上面及びダイバッドの下面がそれぞれ全面に亘って樹脂パッケージから露出していると、第1及び第2 のLSIチップに形成されているLSIから発生した熱が確実に放散されると共に、樹脂パッケージが第2のL SIチップの上面及びダイパッドの下面を覆っていないため、樹脂パッケージの厚さが小さくなるので、薄型のパッケージ構造を実現することができる。

【0083】第1の半導体装置において、第2のLSI チップの上面における樹脂パッケージから露出している 領域に放熱体が設けられていると、第2のLSIチップ に形成されているLSIから発生した熱の放散が一層確 実になる。

【0084】第2の半導体装置によると、第2のLSIチップの主面に形成されているLSIから発生した熱は第2のLSIチップの上面における樹脂パッケージに露出している領域から放散され、第1のLSIチップの主面に形成されているLSIから発生した熱は第1のLSIチップの下面における樹脂パッケージに露出している領域から放散されるため、第1及び第2のLSIチップに形成されているLSIにおいて、pn接合のダイオード特性が劣化したり、金属配線の抵抗が大きくなってトランジスタ特性が劣化したりするという問題を回避する

ことができる。

【0085】第2の半導体装置において、第2のLSI チップの上面及び第1のLSIチップの下面がそれぞれ 全面に亘って樹脂パッケージから露出していると、第1 及び第2のLSIチップに形成されているLSIから発 生した熱が確実に放散されると共に、樹脂パッケージが 第2のLSIチップの上面及び第1のLSIチップの下 面を覆っていないため、樹脂パッケージの厚さが小さく なるので、薄型のパッケージ構造を実現することができ る。

【0086】第2の半導体装置において、第2のLSIチップの上面における樹脂パッケージから露出している領域に放熱体が設けられていると、第2のLSIチップに形成されているLSIから発生した熱の放散が一層確実になる。

【0087】第3の半導体装置によると、第1のLSIチップ及び第2のLSIチップの各主面はヤング率の小さいつまり熱応力の小さい絶縁性樹脂によって全面的に覆われているため、ヤング率の大きいつまり熱応力の大きい封止用樹脂が第1のLSIチップ及び第2のLSIチップの各主面に接触する事態を回避できるので、第1のLSIチップの主面を予めポリイミド膜等により覆う工程を省略することができる。

【0088】第1の半導体装置の製造方法によると、第1のLSIチップ、第2のLSIチップ、ダイパッド及びインナーリードを樹脂パッケージにより、第2のLSIチップの上面及びダイパッドの下面の少なくとも中央部がそれぞれ露出するように封止するため、得られる半導体装置においては、第2のLSIチップの上面及びダイパッドの下面の少なくとも中央部は露出しているので、第1及び第2のLSIチップに形成されているLSIから発生する熱は確実に放散される。

【0089】第2の半導体装置の製造方法によると、得られる半導体装置においては、第2のLSIチップの上面及びダイパッドの下面の少なくとも中央部は露出しているので、第1及び第2のLSIチップに形成されているLSIから発生する熱は確実に放散される。また、LSIモジュールの厚さが小さくてキャビティの高さが小さいときでも、キャビティ内における樹脂の流動性が確保されるので、良好な樹脂パッケージを得ることができる。

【0090】第3の半導体装置の製造方法によると、第1のLSIチップ、第2のLSIチップ及びインナーリードを樹脂パッケージにより、第2のLSIチップの上面及び第1のLSIチップの下面の少なくとも中央部がそれぞれ露出するように封止するため、得られる半導体装置においては、第2のLSIチップの上面及び第1のLSIチップの下面の少なくとも中央部は露出しているので、第1及び第2のLSIチップに形成されているLSIから発生する熱は確実に放散される。

20

【0091】第4の半導体装置の製造方法によると、得られる半導体装置においては、第2のLSIチップの上面及び第1のLSIチップの下面の中央部は露出しているので、第1及び第2のLSIチップに形成されているLSIから発生する熱は確実に放散される。また、LSIやら発生する熱は確実に放散される。また、LSIモジュールの厚さが小さくてキャビティの高さが小さいときでも、キャビティ内における樹脂の流動性が確保されるので、良好な樹脂パッケージを得ることができる。

【0092】第5の半導体装置の製造方法によると、第 10 1のLSIチップと第2のLSIチップとの間に充填される絶縁性樹脂が外部電極とボンディングワイヤとの接続部を覆うように拡がってもよいため、第2のLSIチップの外形が第1のLSIチップの外部電極の内側に位置する程度まで、第2のLSIチップのサイズを大きくできるので、LSIモジュールの集積度が向上する。

【0093】第5の半導体装置の製造方法において、第1のLSIチップと第2のLSIチップとの間に、第1のLSIチップ及び第2のLSIチップの各主面が全面的に覆われるように、樹脂パッケージを構成する樹脂よ20りもヤング率の小さい絶縁性樹脂を充填すると、ヤング率の大きいつまり熱応力の大きい封止用樹脂が第1のLSIチップ及び第2のLSIチップの各主面に接触する事態を回避できるので、第1のLSIチップの主面を予めポリイミド膜等により覆う工程を省略することができる。

【図面の簡単な説明】

【図1】(a)~(c)は、第1の実施形態に係る半導体装置の製造方法の各工程を示す断面図である。

【図2】(a)、(b)は、第1の実施形態に係る半導体装置の製造方法の各工程を示す断面図である。

【図3】第2の実施形態に係る半導体装置の断面図であ

る。

【図4】(a)~(c)は、第3の実施形態に係る半導体装置の第1の製造方法の各工程を示す断面図である。

【図5】(a)~(c)は、第3の実施形態に係る半導体装置の第2の製造方法の各工程を示す断面図である。

【図6】第4の実施形態に係る半導体装置の断面図である。

【図7】第5の実施形態に係る半導体装置の断面図である。

【図8】(a)~(c)は、第6の実施形態に係る半導体装置の製造方法の各工程を示す断面図である。

【図9】従来の半導体装置を示す断面図である。

【符号の説明】

110 第1のLSIチップ

111 内部電極

112 外部電極

120 第2のLSIチップ

121 バンプ

122 内部電極

130 絶縁性樹脂

131 ダイパッド

132 ダイボンド樹脂

133 インナーリード

134 ポンディングワイヤ

135 樹脂パッケージ

136 アウターリード

137 放熱体

140 加圧ツール

141 ワイヤボンディング用ステージ

141a 収納凹部

30

141b 真空吸引孔

【図3】

[図7]

[図6]

[図9]

