- para adicionar escolhemos umk ao acaso
- para adicional escollernos univ. ao acasc
- para remover escolhemos uma partícula ao acaso da lista

perturbações do estado: adição ou remoção de partícula

- escolhemos adicionar/remover com probabilidade 1/2

Adição:
$$x' = \{m, m_{z} + 1\}$$
 $Q(x'|x) = \frac{1}{2}$ $\frac{1}{m^{2}}$ $\frac{1}{m$

Modelação e Física Estatística Modelos de Epidemias

António Luís Ferreira

May 26, 2021

Temas

Modelo SIR

- 2 Epidemias em Redes
 - Redes Aleatórias
 - Modelo SI em redes
 - Modelo SIR em redes

o modelo

- Variáveis
 - s= número de <u>suscetiveis</u>, i=número de <u>infeciosos ativos</u>, r=número de <u>recuperados</u> (assume-se imunidade e incluêm-se óbitos), n=s+i+r tamanho da população
- Equações dinâmicas $\frac{ds}{dt} = -\beta \, s \, i; \; \frac{di}{dt} = \beta \, s \, i \gamma \, i; \; \frac{dr}{dt} = \gamma \, i$

 $\beta \rightarrow \ell_m$ de n

- Parâmetros
 - eta é o produto da frequência de contactos pela probabilidade de transmissão
 - γ^{-1} é o tempo médio em que um infetado permanece ativo. Condições iniciais: $i(0) = i_0$; $s(0) = s_0$.

$R_0 \in R_t$

tempo médio que um infetado

- Tempo médio de duração da infeção permanece ativo Na ausência de novos infetados $i(t)=i_0\exp(-\gamma t)$ $di=i(t)\gamma dt$ é o numero de recuperados entre t e t+dt. $\int_0^\infty \gamma i(t) dt = \text{número de total de recuperações}$ $\langle t \rangle = \frac{\int_0^\infty \gamma i(t) t \, dt}{\int_0^\infty \gamma i(t) dt} = \frac{1}{\gamma} = \text{tempo médio que um infetado leva a recuperar}$
- R_0 e R_t se cresce o número de infetados ativos A epidemia existe se $\underline{i(t)} > \underline{i_0}$ para um dado intervalo de tempo.

A epidemia existe se $s_0eta>\gamma$ (ver equação para $rac{di}{dt}$) isto é se $R_0=s_0rac{eta}{\gamma}>1$

Define-se $R_t = s(t) \frac{\beta}{\gamma}$. Quando $R_t = 1$ atinge-se o pico da infeção e i(t) começa a decrescer.

Questões a responder

- Estados de equilibrio i=0 e s qualquer. Se $R_0=s_0\frac{\beta}{\gamma}>1$ o equilíbrio é instável e basta um infetado para a epidemia começar.
- Questões
 - Quantos suscetíveis terminam infetados $(n s_{\infty})$?
 - Qual o tempo, t_{pico} em que se atinge o pico da infeção?
 - Quantos infeciosos existem no pico da infeção, i_{pico}?
 - Quantos suscetíveis existem no pico da infeção, spico?
 - O que é a imunidade de grupo e como se atinge?

Cálculo de s_{∞}

Relação entre i e s de $\frac{ds}{dt} = -\beta s i$; $\frac{di}{dt} = \beta s i - \beta i$ obtemos $\frac{di}{ds} = -1 + \frac{\gamma}{\beta s}$ $i - i_0 = \int_{s_o}^s \frac{di}{ds} ds = \int_{s_o}^s -\left(1 - \frac{\gamma}{\beta s}\right) ds = -(s - s_0) + \frac{\gamma}{\beta} \ln \frac{s}{s_0}$ $i = -f(s) + i_0 \text{ com } f(s) = s_0(s/s_0 - 1) - \frac{s_0}{R_0} \ln \frac{s}{s_0}$ of $f(s_\infty) = i_0$ ou seja $s_0(s_\infty/s_0 - 1) - \frac{s_0}{R_0} \ln \frac{s_\infty}{s_0} = i_0$

• Caso
$$R_0 \gg 1$$
 e $s_0 + r_0 = n$. Então $\frac{s_\infty}{s_0} \ll 1$ e $-s_0 - \frac{s_0}{R_0} \ln \frac{s_\infty}{s_0} = i_0$ $\frac{s_0}{R_0} \ln \frac{s_\infty}{s_0} = n$ e $s_\infty = s_0 \exp(-\frac{R_0}{s_0}n)$

Trajetórias de fase

de Murray (Mathematical Biology, vol 1)

Figure 10.1. Phase trajectories in the susceptibles (S)-infectives (I) phase plane for the SIR model epidemic system (10.1)–(10.3). The curves are determined by the initial conditions $I(0) = I_0$ and $S(0) = S_0$. With R(0) = 0, all trajectories start on the line S + I = N and remain within the triangle since 0 < S + I < N for all time. An epidemic situation formally exists if $I(t) > I_0$ for any time t > 0; this always occurs if $S_0 > \rho (= a/t)$ and $I_0 > 0$.

Figure: trajetórias de fase

Valores de pico

minus de infectoros
$$i(t)$$
 compe a diminuir force $t>t_{pilor}$ t $R(t) \leq 1$

• $R_{tpico}=1=s_{pico}\frac{\beta}{\gamma}=\frac{s_{pico}}{s_0}R_0$

- então $s_{pico} = s_0/R_0$
- $i_{pico} = -f(s_{pico}) + i_0 = -s_0 \left(\frac{1}{R_0} 1 \frac{\ln R_0}{R_0} \right) + i_0$
- t_{pico}

$$rac{ds}{dt} = -eta\,s\,i$$
 então $-\int_{t_0}^{t_{pico}} rac{rac{ds}{dt}}{eta\,s\,i(s)} dt = \int_0^{t_{pico}} dt$
 $t_{pico} = rac{1}{eta}\int_{s_0}^{s_{pico}} rac{ds}{s\,(f(s)-i_0)}$

imunidade de grupo

- No pico <u>o número de infetado</u>s é $N_I = n s_{pico}$ então $n_I = \frac{N_I}{n} = 1 \frac{s_{pico}}{n}$
- Dado que $s_{pico}=rac{s_0}{R_0}$ temos $n_I=1-rac{s_0}{R_0}n$
- ullet Como $s_0 \simeq n$ temos para a fração total de infetados $n_I = 1 rac{1}{R_0}$
- Se pelo menos uma fração $n_i'>n_I$ tiver imunidade natural ou por vacinação não haverá nova epidemia pois $s_0'=(1-n_I')n<(1-n_I)n=\frac{n}{R_0}\simeq\frac{\gamma}{B}$ e $R_0'=s_0'\frac{B}{\gamma}<1$.

Fração final de infetados e Imunidade de grupo

Figure: Fração final da população infetada e fração para imunidade de grupo

Fração de infeciosos no pico

Figure: Fração de infeciosos no pico em função de Ro

Caso de estudo

Epidemia de gripe em colégio interno do norte da Inglaterra, com 763 alunos com $i_0 = 1$ descrito no livro de Murray (Mathematical Biology, vol 1)

Figure: Infeciosos em função do tempo. Um infecioso é um aluno acamado

Ajuste ao modelo e trajetória de fase

- A curva i(t) é conhecida por curva epidémica.
- Ajuste com $i_0=1$ e $s_0=762$ fornece $eta=2.18 imes 10^{-3}/dia$ e $\gamma=0.441/dia$

Figure: Trajetória de fase do exemplo

Caso de estudo, R_t

Figure: Variação no tempo de R_t

Redes aleatórias

- Rede de Erdos-Renyi com número de arestas fixo
 n = número de vértices. m = número de arestas entre pares
 de vértices
 - De entre as n(n-1)/2 possíveis arestas (sem arestas múltiplas e auto-arestas) escolher m com probabilidade uniforme. O número total de redes possíveis é $\Omega = \binom{n(n-1)/2}{m}$.
- Grau de um vértice, k = número de arestas de um vértice.
 - Grau médio de um vértice= $c = \langle k \rangle = 2 \frac{m}{n}$.
- Rede de Erdos-Renyi com probabilidade de cada aresta p. Cada aresta existe com probabilidade p. Temos $\langle m \rangle = p \, n(n-1)/2$
 - Grau médio de um vértice= $c = \langle k \rangle = p(n-1)$

Distribuição de grau

- Cada uma das n-1possíveis arestas de um vértice existe com probabilidade, p. O seu número segue uma distribuição binomial. Para n grande a distribuição binomial aproxima-se de uma distribuição de Poisson, $p_k = \frac{e^{-c}c^k}{k!}$
- Se queremos c independente de n devemos ter p proporcional a 1/n.
- p=1 é a rede totalmente conectada.
- Distribuição do grau de excesso de um vizinho, q_k (redes sem correlação)
 - o grau de excesso de um vizinho é $k \ge 0$, $q_k \sim (k+1) p_{k+1}$ porque podemos ser vizinhos dele de k+1 maneiras diferentes.

Então
$$q_k = \frac{(k+1)\,p_{k+1}}{\sum_k k\,p_k}$$

k aredon

Componente Gigante

- Uma componente é um conjunto de vértices para os quais existe pelo menos um caminho de arestas entre qualquer par de vértices do conjunto.
- Uma componente gigante (GC) é uma componente em que o seu tamanho (em número de vértices) cresce com o tamanho da rede, n ou cujo tamanho é comparável com o tamanho da rede
- S é a fração do número total de vértices na componente gigante.

u=probabilidade de um vértice não pertencer a GC. Considerando um vértice a probabilidade de não pertencer a GC é $u=\left((1-p)+pu\right)^{n-1}$: cada uma das n-1 arestas não existe com probabilidade p e existe mas liga a um vértice que não pertence a GC.

$$S = 1 - u = 1 - \exp(-cS)$$

$$S = 1 - 2 = 1 - (1 - pS)^{m-1}$$

$$1 - S = (1 - pS)^{m-1}$$

$$Com \quad p = c \qquad 1 - S = (1 - cS)^{m-1}$$

$$e^{x} = \lim_{n \to \infty} (1 - x)^{m}$$

Componente Gigante

Figure: S em função de c