Fourier Transform Table (1)					
No.	x(t)	$X(\omega)$			
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0		
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	<i>a</i> > 0		
3	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	<i>a</i> > 0		
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	<i>a</i> > 0		
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	<i>a</i> > 0		
6	$\delta(t)$	1			
7	1	$2\pi\delta(\omega)$			

I have provided here and in the next two slides a table of signals (functions) and their Fourier Transform in a closed-form. DO NOT MEMBERISE ANY OF THESE. They are provided here as a reference – something for you to look up in the future.

DESE50002 - Electronics 2

 $2\pi\delta(\omega-\omega_0)$

 $e^{j\omega_0 t}$

PYKC 16 Jan 2023

In my exams, I will NOT require you to remember any of these. I may, however, ask you to derive some simple cases from FIRST PRINCIPLE.

Lecture 4 Slide 14

Fourier Transform Table (2)

No.	x(t)	$X(\omega)$	
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
11	u(t)	$\pi\delta(\omega) + rac{1}{j\omega}$	
12	$\operatorname{sgn} t$	$\frac{2}{j\omega}$	
13	$\cos \omega_0 t u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$	
14	$\sin \omega_0 t u(t)$	$rac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+rac{\omega_0}{\omega_0^2-\omega^2}$	
15	$e^{-at}\sin \omega_0 t u(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0

PYKC 16 Jan 2023 DESE50002 - Electronics 2 Lecture 4 Slide 15

Fourier Transform Table (3)

No.	x(t)	$X(\omega)$	
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$	
18	$\frac{W}{\pi}$ sinc (Wt)	$\operatorname{rect}\left(\frac{\omega}{2W}\right)$	
19	$\Delta\left(\frac{t}{ au}\right)$	$\frac{\tau}{2}$ sinc ² $\left(\frac{\omega\tau}{4}\right)$	
20	$\frac{W}{2\pi}\operatorname{sinc}^2\left(\frac{Wt}{2}\right)$	$\Delta\left(\frac{\omega}{2W}\right)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\omega_0 \sum_{n=-\infty}^\infty \delta(\omega-n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
22	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	

PYKC 16 Jan 2023 DESE50

DESE50002 - Electronics 2 Lecture 4 Slide 16