```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

## Programming Languages Dan Grossman

**Defining Streams** 

## Streams

Coding up a stream in your program is easy

We will do functional streams using pairs and thunks

Let a stream be a thunk that *when called* returns a pair:

```
'(next-answer . next-thunk)
```

Saw how to use them, now how to make them...

Admittedly mind-bending, but uses what we know

## Making streams

- How can one thunk create the right next thunk? Recursion!
  - Make a thunk that produces a pair where cdr is next thunk
  - A recursive function can return a thunk where recursive call does not happen until thunk is called

## Getting it wrong

This uses a variable before it is defined

```
(define ones-really-bad (cons 1 ones-really-bad))
```

This goes into an infinite loop making an infinite-length list

```
(define ones-bad (lambda () cons 1 (ones-bad)))
(define (ones-bad) (cons 1 (ones-bad)))
```

This is a stream: thunk that returns a pair with cdr a thunk

```
(define ones (lambda () (cons 1 ones)))
(define (ones) (cons 1 ones))
```