LINEAIRE ALGEBRA

(27/01/2011 (13u-17.30u))

- (a) Zij W een –eventueel oneindige– deelverzameling van een vectorruimte V. Bewijs dat als W een maximaal vrij deel is van V, dan is W een basis van V.
 - (b) Zij V en W vectorruimten en $\mathcal{L}: V \to W$ een lineaire afbeelding en $\mathcal{L}(v) = w$. Bewijs dat $\{x \in V | L(x) = w\} = v + \text{Ker}(L)$.
- [2] Zij $A \in \mathbb{R}^{n \times n}$ een symmetrische matrix. Bewijs dat A uitsluitend reële eigenwaarden heeft. Met andere woorden dat de karakteristieke veelterm $\varphi(A)$ volledig ontbindt als een product van eerstegraadsfactoren over \mathbb{R} .

<u>Hint</u>: Het zou nuttig kunnen zijn om de standaard unitaire ruimte $\mathbb{C}, \mathbb{C}^n, +, \langle \cdot, \cdot \rangle$ met standaard Hermitisch product te gebruiken.

3 Beschouw voor alle $n \geq 2$ de lineaire afbeelding $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n$ met als matrixvoorstelling

$$M_{\mathcal{E},\mathcal{E}} = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}.$$

Ten opzichte van de standaarbasis $\mathcal{E} = \{(1, 0, \dots, 0), (0, 1, \dots, 0), (0, 0, \dots, 1)\}$ van \mathbb{R}^n . We nemen $a_0, \dots, a_1 \in \mathbb{R}$

(a) Bewijs dat de karakteristieke veelterm

$$\varphi_{\mathcal{A}}(x) = \det\left(X \cdot I_n - M_{\mathcal{E},\mathcal{E}}\right) = x^n + a_{n-1}x^{n-1} + \dots + a_0.$$

- (b) Bewijs dat voor elke eigenwaarde van L de bijbehorende eigenruimte ééndimensionaal is.
- (c) Bewijs dat L diagonaliseerbaar is als en slechts als L precies n verschillende eigenruimten heeft.
- [4] Zijn de volgende uitspraken waar of vals? Bewijs of geef een tegenvoorbeeld.
 - (a) Zij U_1 , U_2 en U_3 lineaire deelruimten van een eindigdimensionale reële vectorruimte V.

Veronderstel dat $V = U_1 \oplus U_2$. Dan is $U_2 = (U_3 \cap U_1) \oplus (U_3 \cap U_2)$

- (b) Zij U_1 en U_2 lineaire deelruimten van een Euclidische ruimte $(\mathbb{R}, V, +, \langle \cdot, \cdot \rangle)$. Dan is $U_1^{\perp} \cap U_2^{\perp} = (U_1 + U_2)^{\perp}$.
- [5] Beschouw de lineaire afbeelding

$$\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (x + y, x + y, x + z).$

(a) Bereken de dimensie en basis van Ker(A) en Im(A).

(b) Bereken basissen \mathcal{V} en \mathcal{W} van \mathbb{R}^3 zo dat

$$M_{\mathcal{V},\mathcal{W}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

(c) Bestaan er basissen $\mathcal V$ en $\mathcal W$ van $\mathbb R^3$ zo dat

$$M_{\mathcal{V},\mathcal{W}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
?

Zo ja, bepaal dan dergelijke V en W. Zo nee, argumenteer waarom niet.

- (d) Bestaat er een basis $\mathcal V$ van $\mathbb R^3$ zo dat $M_{\mathcal V,\mathcal V}$ een diagonaalmatrix is? Argumenteer.
- 6 Beschouw een deelruimte

$$U = \langle (a, b, c), (a, 2b, 3c), (a, c, c) \rangle$$

van \mathbb{R}^3 .

- (a) Voor welke waarden van de parameters a, b en c is U een strikte deelruimte van \mathbb{R}^3 ? Dus $U \neq \mathbb{R}^3$.
- (b) Als b = c, geef dan een basis van U naargelang de waarden van de parameters a en b.
- (c) Als b=c, bepaal dan het orthogonaal complement van U ten opzichte van het standaard inproduct op \mathbb{R}^3 naargelang de waarden van de parameters a en b.