基于深度学习的光伏发电量预测方法的实现与 分析

汇报人: xxx 指导老师: xxx

XXX

2023年3月10日

目录

- Motivation
 - Why We Need PV
 - Why We Need to Predict
- Related Work
 - Physical Methods
 - Statistic Methods
 - Deep Learning Methods
- My Methods and Methodology
 - dataset
 - Review of Model
 - Details of Model
 - Experiment
- Summary

- Motivation
 - Why We Need PV
 - Why We Need to Predict
- Related Work
 - Physical Methods
 - Statistic Methods
 - Deep Learning Methods
- My Methods and Methodology
 - dataset
 - Review of Model
 - Details of Model
 - Experiment
- 4 Summary

Why We Need PV 光伏新能源

- 太阳能已迅速成为许多国家日益重要的能源。光伏发电数据 是典型的时间序列、具有趋势和周期性。
- 在与全球变暖作斗争中,发展可再生能源已成为各国共同努力的目标.光伏 (PV) 是最受欢迎的可再生能源之一,因为它环保.无限且具有成本效益.

Why We Need to Predict

间断,不连续,波动大

- 光伏发电间歇性的性质和与预测相关的不确定性是必须克服的难题,以保持电力系统的稳定性。
- 虽然储能设备可以节省过多的能源用于周转,但其高成本并不适合大多数用户。因此,光伏发电的准确预测对于工业应用变得非常重要。

- Motivation
 - Why We Need PV
 - Why We Need to Predict
- Related Work
 - Physical Methods
 - Statistic Methods
 - Deep Learning Methods
- My Methods and Methodology
 - dataset
 - Review of Model
 - Details of Model
 - Experiment
- 4 Summary

物理方法

数值预报, 微分方程

- 是对表现最佳的全球数值天气预报 (NWP) 模型的气象输出 的后处理。
- 固定时间间隔地处理来自 5 个地球静止气象卫星的卫星图像。
- 利用实时卫星数据预测近期的云运动,然后应用卫星到辐照度模型来计算全球水平和平面内辐照度.云运动矢量 (CMV)模型从最近的历史到当前时间到未来 10 天的太阳能和光伏数据。

统计方法

ARIMA

• 自回归模型:AR

$$y_t = \mu + \sum_{i=1}^{p} \gamma_i y_{t-i} + \epsilon_t \tag{1}$$

移动平均模型:MA

$$y_t = \mu + \sum_{i=1}^p \theta_i \epsilon_{t-i} + \epsilon_t \tag{2}$$

● 自回归移动平均模型:ARMA

$$y_{t} = \mu + \sum_{i=1}^{p} \gamma_{i} y_{t-i} + \sum_{i=1}^{p} \theta_{i} \epsilon_{t-i} + \epsilon_{t}$$
 (3)

深度学习

LSTM

Mathematics

$$f_t = \sigma(W_f[h_{t-1}, x_t] + b_f)$$
 $i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$
 $\tilde{C}_t = tanh(W_c[h_{t-1}, x_t] + b_c)$
 $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$
 $o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$
 $h_t = o_t * tanh(C_t)$

- Motivation
 - Why We Need PV
 - Why We Need to Predict
- Related Work
 - Physical Methods
 - Statistic Methods
 - Deep Learning Methods
- My Methods and Methodology
 - dataset
 - Review of Model
 - Details of Model
 - Experiment
- Summary

数据集

浙江台州光伏传感器

如表1所示

Table: Dataset

时间戳	发电量	直流电流	逆变器温度	天气
2021-4-1 00:00:00	0	0	18	晴
2021-4-1 01:00:00	99	100	50	晴
2021-4-1 02:00:00	128	100	50	晴
•••		•••	•••	
2022-12-30 23:00:00	0	0	20	小雨

15000 rows-5 cols

模型综述

Patch-LSTM

- 模型输入: 光伏发电量的历史数据 (24h,48h,72h), 天气信息, 逆变器温度, 直流电流
- 模型结构: 维度变换, 特征提取 (CNN,LSTM), 信息 融合 (MLP)
- 模型输出: 未来 24 小时的发电量

维度转换

Dimention Transformation

Formula:

$$B*N*L = B*N*P*PN$$

局部信息提取

Extract Local Information

通过一个固定大小的感受野随着时间维度进行滑动, 提取局部信息

Mathematics

$$C_t = W_{t-1}X_{t-1} + W_tX_t + W_{t+1}X_{t+1}$$

时序信息提取

Extract Temporal Information

通过 LSTM 循环神经网络, 提取时序信息。

Mathematics

$$f_{t} = \sigma(W_{f}[h_{t-1}, x_{t}] + b_{f})$$
 $i_{t} = \sigma(W_{i}[h_{t-1}, x_{t}] + b_{i})$
 $\tilde{C}_{t} = tanh(W_{c}[h_{t-1}, x_{t}] + b_{c})$
 $C_{t} = f_{t} * C_{t-1} + i_{t} * \tilde{C}_{t}$
 $o_{t} = \sigma(W_{o}[h_{t-1}, x_{t}] + b_{o})$
 $h_{t} = o_{t} * tanh(C_{t})$

实验

指标,对比模型,预期结果

 指标: 平均绝对百分比误差 (Mean Absolute Percentage Error)

MAPE =
$$\frac{100\%}{n} \sum_{i=1}^{n} |\frac{\hat{y}_i - y_i}{y_i}|$$

- 对比模型:
 - Informer
 - Autoformer
- 预期结果:
 - MAPE 低于 20% 的天数占比 50% 以上

- Motivation
 - Why We Need PV
 - Why We Need to Predict
- 2 Related Work
 - Physical Methods
 - Statistic Methods
 - Deep Learning Methods
- My Methods and Methodology
 - dataset
 - Review of Model
 - Details of Model
 - Experiment
- Summary

时间安排

Timeline

如表2所示

Table: Dataset

序号	时间	内容
1	2022.12.20-2023.1.7	查询相关资料并熟悉课题
2	2023.1.8-2023.1.12	任务书
3	2023.3.6-2023.3.12	开题报告
4	2023.3.19-2023.4.1	研究具体方案,搭建程序框架
5	2023.4.2-2023.4.15	进行实验分析
6	2023.4.16-2023.4.29	改进深度学习模型
7	2023.4.30-2023.5.13	期中检查并撰写毕业论文
8	2023.5.24-2023.5.30	论文评审及查重
10	2023.6.4-2023.6.10	答辩报告会

Motivation Related Work My Methods and Methodology Summary

汇报完毕 恳请指正

Presented by xxx