Microeconomía I Ayudantía 4

Profesora: Adriana Piazza **Ayudantes**: Valeria Ulloa, Benjamín Peña, Marcelo Gómez

Pregunta 1

Muestre que para una tecnología de un solo output, Y es convexo si y sólo si la función de producción es cóncava.

Pregunta 2

Muestre que, en general, si Y tiene retornos no decrecientes de escala entonces se cumple que $\pi(y) \leq 0$ o $\pi(p) = +\infty$.

Pregunta 3

Dado un conjunto de producción Y, se dice que un plan de producción $y \in Y$ es débilmente eficiente si no existe un $y' \in Y$ que cumpla $y' \gg y$. Tomando en cuenta lo anterior y asumiendo que Y es convexo, demuestre que $y \in Y$ es débilmente eficiente si y sólo si es maximizador de utilidades para algún precio $p \geq 0$, $p \neq 0$.

Pregunta 4

Considere una firma que produce un único producto. Demuestre matemáticamente que si la firma maximiza utilidades, está minimizando costos.

Pregunta 5

Encuentre la función de costos y la función de demanda condicional por factores para cada una de las siguientes tecnologías de un solo output, con funciones de producción dadas por:

a)
$$f(z) = az_1 + bz_2$$

Resolviendo el problema de minimización de gasto sujeto a llegar a un nivel de producción q, se llega a lo siguiente luego de reemplazar la restricción presupuestaria en la función objetivo:

Respuesta

$$z(w,q) = \begin{cases} (q/a,0) & \text{si } \frac{b}{a}w_1 < w_2 \\ \{(z_1, z_2) \in \mathbb{R}^2 : az_1 + bz_2 = q\} & \text{si } w_1 = w_2 \\ (0, q/b) & \text{si } \frac{b}{a}w_1 > w_2 \end{cases}$$
$$c(w,q) = \begin{cases} qw_1 & \text{si } \frac{b}{a}w_1 \le w_2 \\ qw_2 & \text{si } \frac{b}{a}w_1 > w_2 \end{cases}$$

b)
$$f(z) = \min\{z_1, z_2\}$$

Respuesta

Ocupando que se tiene que al ser una función de producción Leontief se cumplir que $z_1=z_2$, es directo que tenemos lo siguiente:

$$z(w,q) = (q,q)$$
$$c(w,q) = q(w_1 + w_2)$$

c)
$$f(z) = (z_1^{\rho} + z_2^{\rho})^{1/\rho}, \ \rho \le 1$$

Pregunta 6

Suponga que una firma ocupa dos insumos (capital y trabajo) para producir unidades de dos productos finales mediante la función de producción $F: \mathbb{R}^4 \to \mathbb{R}^2$ que representa su tecnología,

$$F(K_1, K_2, L_1, L_2) = (F_1(K_1, L_1), F_2(K_2, L_2))$$

donde F_i es la función de producción del producto i, y K_i y L_i son, respectivamente, las cantidades de capital y trabajo dedicadas a la producción del producto i.

a) Suponga que las funciones F_i son dos veces diferenciables y son tales que $F_i(K_i, L_i) = 0$ si $K_i = 0$ o $L_i = 0$. Encuentre las condiciones de optimalidad del problema de minimización de costos para una producción que asegure un *ingreso mínimo* de m.

Respuesta:

Denotamos los precios p_i , precio de los productos, r precio del capital y w precio del trabajo. El problema que tenemos que resolver es

$$\min_{K_1, K_2, L_1, L_2} r(K_1 + K_2) + w(L_1 + L_2)$$
s.a. $p_1 F_1(K_1, L_1) + p_2 F_2(K_2, L_2) \ge m$

$$K_i, L_i \ge 0, i = 1, 2$$

$$(1)$$

El Lagrangiano de este problema es

$$\mathcal{L} = r(K_1 + K_2) + w(L_1 + L_2) + \lambda(m - p_1 F_1(K_1, L_1) - p_2 F_2(K_2, L_2))$$

con $\lambda \geq 0$, y las condiciones de optimalidad para i=1,2 son

$$r - p_i \lambda \frac{\partial F_i(K_i^*, L_i^*)}{\partial K_i} \ge 0$$
, con igualdad si $K_i^* > 0$
 $w - p_i \lambda \frac{\partial F_i(K_i^*, L_i^*)}{\partial L_i} \ge 0$, con igualdad si $L_i^* > 0$

Cuando se producen ambos productos, entonces las condiciones de optimalidad son

$$\frac{r}{w} = \frac{\frac{\partial F_1(K_1^*, L_1^*)}{\partial K_1}}{\frac{\partial F_1(K_1^*, L_1^*)}{\partial L_1}} = \frac{\frac{\partial F_2(K_2^*, L_2^*)}{\partial K_2}}{\frac{\partial F_2(K_2^*, L_2^*)}{\partial L_2}}$$

Cuando se produce únicamente el producto i, las condiciones de optimalidad son:

$$\frac{r}{w} = \frac{\frac{\partial F_i(K_i^*, L_i^*)}{\partial K_i}}{\frac{\partial F_i(K_i^*, L_i^*)}{\partial L_i}}$$

y
$$F_i(K_i, L_i) = m/p_i$$

b) Encuentre (K_1, K_2, L_1, L_2) que minimizan el costo de producir lo suficiente para asegurar un ingreso mínimo de m para las funciones de producción de Leontief, $F_i = \min\{\alpha_i K_i, \beta_i L_i\}$, con $\alpha_i, \beta_i > 0$ para i = 1, 2. Encuentre el costo mínimo.

Respuesta:

Como los precios de los insumos son positivos, en el óptimo $\alpha_i K_i^* = \beta_i L_i^*$ para i = 1, 2.

Entonces, $q_i^* = \alpha_i K_i^* = \beta_i L_i^*$, y el problema se reduce a:

mín
$$q_1^* \left(\frac{r}{\alpha_1} + \frac{w}{\beta_1}\right) + q_2^* \left(\frac{r}{\alpha_2} + \frac{w}{\beta_2}\right)$$

s.a. $p_1 q_1^* + p_2 q_2^* \ge m$
 $q_i^* \ge 0, i = 1, 2$ (2)

Este es un problema de optimización con restricciones lineales y función objetivo lineal. Se soluciona por casos.

Si $\frac{1}{p_i} \left(\frac{r}{\alpha_i} + \frac{w}{\beta_i} \right) < \frac{1}{p_j} \left(\frac{r}{\alpha_j} + \frac{w}{\beta_j} \right)$, la solución es:

$$q_i^* = m/p_i$$

$$q_j^* = 0$$

$$c(m, w, r) = \frac{m}{p_i} \left(\frac{r}{\alpha_i} + \frac{w}{\beta_i} \right)$$

Si $\frac{1}{p_1}\left(\frac{r}{\alpha_1} + \frac{w}{\beta_1}\right) = \frac{1}{p_2}\left(\frac{r}{\alpha_2} + \frac{w}{\beta_2}\right)$, todos los pares $(q_1, q_2) \ge 0$ que cumplan $p_1q_1 + p_2q_2 = m$ alcanzan el costo mínimo:

$$c(m, w, r) = \frac{m}{p_1} \left(\frac{r}{\alpha_1} + \frac{w}{\beta_1} \right) = \frac{m}{p_2} \left(\frac{r}{\alpha_2} + \frac{w}{\beta_2} \right)$$

c) Suponga ahora que el costo promedio de producción del producto i es $AC_i(q_i) = b_i q_i$, con $b_i > 0$ para i = 1, 2. Si quiere minimizar el costo de producir lo suficiente para asegurar un ingreso mínimo de m, ¿cuánto debería producir de cada uno de los productos?

Respuesta

El problema se puede escribir como

mín
$$q_1(b_1q_1) + q_2(b_2q_2)$$

s.a. $p_1q_1^* + p_2q_2^* \ge m$
 $q_i^* \ge 0, i = 1, 2$ (3)

El Lagrangiano asociado es

$$\mathcal{L} = b_1 q_1^2 + b_2 q_2^2 + \lambda (m - p_1 q_1 - p_2 q_2)$$

Las condiciones de optimalidad son

$$2b_1q_1 - \lambda p_1 \ge 0 \text{ y } q_1(2b_1q_1 - \lambda p_1) = 0$$

$$2b_2q_2 - \lambda p_2 \ge 0 \text{ y } q_2(2b_2q_2 - \lambda p_2) = 0$$

$$\lambda(m - p_1q_1 - p_2q_2) = 0 \text{ y } \lambda \ge 0$$

Por lo tanto, los q_i^* quedan determinados por

$$\frac{b_1}{p_1}q_1 = \frac{b_2}{p_2}q_2p_1q_1 + p_2q_2 = m \tag{4}$$

Resolviendo, obtenemos lo siguiente:

$$q_1^* = \frac{mp_1}{b_1} \frac{1}{p_1^2/b_1 + p_2^2/b_2}$$
$$q_2^* = \frac{mp_2}{b_2} \frac{1}{p_1^2/b_1 + p_2^2/b_2}$$

Otra forma de resolver es igualando productividades marginales de ambos productos. Sabemos que el costo marginal es $MC(q_i) = 2b_iq_i$, y entonces igualando productividades marginales obtenemos:

$$\frac{p_1}{2b_1q_1} = \frac{p_2}{2b_2q_2}$$

que es equivalente a (4). El resto de la resolución continúa igual que arriba.