Algorithm Complexity

Zibin Zheng (郑子彬)

School of Data and Computer Science, SYSU

http://www.inpluslab.com

课程主页: http://inpluslab.sysu.edu.cn/dsa2016/

• 如何度量算法的效率?

- 事后统计方法
 - 通过设计好的测试程序和数据,利用计时器对程序的运行时间进行比较,从而确定算法效率的高低。

- 事前分析估算方法
 - 在计算机程序编制前,依据统计方法对算法进行估算

- 一个程序在计算机上运行时消耗的时间取决于:
 - 依据的算法选用何种策略
 - 问题的规模:例如求100以内还是1000以内的素数
 - 书写程序的语言,语言级别越高,执行效率越低
 - 编译程序产生的机器代码的质量
 - 机器执行指令的速度
- 同一算法用不同语言实现,用不同编译器,或是在不同计算机上 运行,效率均不同
- 使用绝对时间衡量算法效率不合适
- ・基本操作重复执行的次数作为算法的时间度量

• 求和1+2+...+100?

第一种算法:

1+(n+1)+n+1=2n+3次

第二种算法:

1+1+1=3次

• 再延伸一下这个例子:

```
int i, j, x = 0, sum = 0, n = 100; /* 执行一次 */
for (i = 1; i < = n; i++)
   for (j = 1; j < = n; j++)
                                   /* 执行 n×n 次 */
       x++;
       sum = sum + x;
                                  /* 执行一次 */
printf ("%d", sum);
```

循环部分执行n²次

算法的执行时间随着n的增加也将远远多于前面2个算法。

• 从上述例子中可以得到启示,同样的输入规模是n

• 第一种方法运行代码n次,则操作数量f(n)=n,显然运行100次是运行10次的10倍时间

• 第二种方法则无论n为多少,运行次数都为1,即f(n)=1

• 第三种方法,由于f(n)=n²,即运算100次是运算10次的100 倍。

- 函数的渐进增长
- 算法A做2n+3次操作,算法B做3n+1次操作,谁更快?

次数	算法 A (2n+3)	算法 A' (2n)	算法B(3n+1)	算法 B' (3n)
n = 1	5	2	4	3
n = 2	7	4	7	6
n = 3	9	6	10	9
n = 10	23	20	31	30
n = 100	203	200	301	300

在输入规模n没有限制的情况下,只要超过一个数值N,这个函数就总是大于另一个函数,则称函数是渐进增长的。

• 注:忽略加法常数,不影响算法变化。

• 算法C是4n+8, 算法D是2n²+1

次数	算法 C (4n+8)	算法 C'(n)	算法 D (2n ² +1)	算法 D'(n²)
n = 1	12	1	3	1
n = 2	16	2	9	4
n = 3	20	3	19	9
n = 10	48	10	201	100
n = 100	408	100	20 001	10 000
n = 1000	. 4 008	1 000	2 000 001	1 000 000

• 注:与最高次项相乘的常数并不重要。

• 算法E是2n²+3n+1, 算法F是2n³+3n+1

次数	算法 E(2n ² +3n+1)	算法 E'(n²)	算法 F (2n³+3n+1)	算法 F'(n³)
n = 1	6	1	6	.1
n = 2	15	4	23	8
n = 3	28	9	64	27
n = 10	231	100	2 031	1 000
n = 100	20 301	10 000	2 000 301	1 000 000

• 注:最高次项的指数大的,函数随着n的增长,结果也会变得增长特别快。

• 算法G是2n², 算法H是3n+1, 算法I是2n²+3n+1

次数	算法 G (2n ²)	算法 H (3n+1)	算法I(2n ² +3n+1)
n = 1	2	4	6
n = 2	8	7	15
n = 5	50	16	66
n = 10	200	31	231
n = 100	20 000	301	20 301
n = 1,000	2 000 000	3 001	2 003 001
n = 10,000	200 000 000	30 001	200 030 001
n = 100,000	20 000 000 000	300 001	20 000 300 001
n = 1,000,000	2 000 000 000 000	3 000 001	200 000 3000 001

随着n的值越来越大,H已经远小于G和I,而G和I越来越相近。

结论:判断一个算法的效率时,函数中的常数和其他次要项常常可以忽略,而更应该关注主项(最高阶项)的阶数。

定义:

- 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况,并确定T(n)的数量级。
- 算法的时间复杂度,记作: T(n)=O(f(n))。表示随问题规模n的增大, 算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间 复杂度,简称为时间复杂度。
- 其中f(n)是问题规模n的某个函数。
- 用大写O()来体现算法时间复杂度的记法, 称之为大O记法。
- O(1)为常数阶,O(n)为线性阶,O(n²)为平方阶。

• 常数阶

```
int sum = 0,n = 100; /* 执行一次 */
sum = (1+n)*n/2; /* 执行一次 */
printf("%d", sum); /* 执行一次 */
```

```
int sum = 0, n = 100; /* 执行1次 */
sum = (1+n) *n/2;
               /* 执行第 1 次 */
sum = (1+n) *n/2;
               /* 执行第 2 次 */
sum = (1+n) *n/2;
                  /* 执行第 3 次 */
sum = (1+n) *n/2;
                  /* 执行第 4 次 */
sum = (1+n) *n/2;
                  /* 执行第 5 次 */
sum = (1+n) *n/2;
               /* 执行第 6 次 */
sum = (1+n) *n/2;
               /* 执行第 7 次 */
sum = (1+n) *n/2;
               /* 执行第 B 次 */
sum = (1+n) *n/2;
               /* 执行第 9 次 */
sum = (1+n) *n/2;
                /* 执行第 10 次 */
printf("%d", sum); /* 执行1次 */
```

3次

只有执行次数的差异,跟问题规模n的取值无关,所以为O(1)时间复杂度

12次

• 线性阶

```
int i;
for(i = 0; i < n; i++)
{
    /* 时间复杂度为 O(1) 的程序步骤序列 */
}
```

循环n次,所以为O(n)时间复杂度

• 对数阶

```
int count = 1;
while (count < n)
{
    count = count * 2;
    /* 时间复杂度为 O(1) 的程序步骤序列 */
}
```

由2^x=n,得x=log₂n,所 以为O(logn)时间复杂度

• 平方阶

```
int i,j;
for(i = 0; i < n; i++)
{
    for (j = 0; j < n; j++)
    {
        /* 时间复杂度为 O(1) 的程序步骤序列 */
    }
}
```

内循环n次,再进行外循环n次,所以为O(n²)时间复杂度

```
int i,j;
for (i = 0; i < m; i++)
{
    for (j = 0; j < n; j++)
    {
        /* 时间复杂度为 O(1) 的程序步骤序列 */
    }
}
```

内循环n次,外循环m次,所 以为O(mn)时间复杂度

Complicated cases

• 嵌套循环

```
int i,j;
for(i = 0; i < n; i++)
{
   for (j = i; j < n; j++) /* 注意j = i而不是0 */
   {
      /* 时间复杂度为0(1)的程序步骤序列 */
   }
}
```

i=0时,内循环执行n次 i=1时,内循环执行n-1次 i=n-1时,内循环执行1次

- 总的执行次数为: $n + (n-1) + (n-2) + \dots + 1 = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2}$
- 最终时间复杂度为O(n²)

Complicated cases

```
void function (int count)
{
    int j;
    for (j = count; j < n; j++)
    {
        /* 时间复杂度为 O(1)的程序步骤序列 */
    }
}
```

执行次数:

$$f(n)=1+n+n^2+\frac{n(n+1)}{2}=\frac{3}{2}n^2+\frac{3}{2}n+1$$

时间复杂度:O(n²)

• 常见的时间复杂度:

执行次数函数	阶	非正式术语
12	O(1)	常数阶
2n+3	O(n)	线性阶
3n ² +2n+1	$O(n^2)$	平方阶
5log₂n+20	O(logn)	对数阶
2n+3nlog ₂ n+19	O(nlogn)	nlogn 阶
6n ³ +2n ² +3n+4	O(n ³)	立方阶
2 ⁿ	O(2")	指数阶

• 所耗费的时间从小到大排列:

$$O(1) < O(\log n) < O(n) < O(n\log n) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)$$

算法的空间复杂度

算法的空间复杂度通过计算算法所需的存储空间实现,记作S(n)=O(f(n)),其中n为问题的规模,f(n)为语句关于n所占存储空间的函数。

若算法执行时所需的辅助空间相对于输入数据量而言是个常数,则称此算法的空间复杂度为O(1)。

本章小结——知识结构图

谢谢!

