Functional Analysis¹

-TW-

2024年8月30日

1参考书籍:

《Linear and Nonlinear Functional Analysis with Applications》 – Philippe G. Ciarlet 《Real Analysis – Modern Techniques and Their Applications》 – Gerald B. Folland 《Functional Analysis – Introduction to Further Topics in Analysis》 – Elias M. Stein 《泛函分析讲义》 – 张恭庆、林源渠

序

天道几何,万品流形先自守; 变分无限,孤心测度有同伦。

2024 年 8 月 30 日 长夜伴浪破晓梦,梦晓破浪伴夜长

目录

第一章	度量空间	1
1.1	L ^p 空间为赋范向量空间	1
	1.1.1 范数, 度量	1
	1.1.2 L^p Space	2
	1.1.3 Young Inequality	4
	1.1.4 Hölder Inequality	5
	1.1.5 Minkowski Inequality	6
1.2	Completion of a metric space	7
	1.2.1 Complete metric spaces	7
	1.2.2 Nowhere dense & Category Set	10
	1.2.3 保距同构, 完备化空间	13
	1.2.4 Completion of a metric space	14
1.3	Sequentially Compact	19
1.4	完全有界集	21
1.5	可分度量空间 2	24
附录 A	Supplementary Content	28
A.1	度量空间稠密子集的等价刻画	28

第一章 度量空间

1.1 L^p 空间为赋范向量空间

回顾实分析中对**范数、度量**及 L^p 空间的定义.

1.1.1 范数, 度量

下面给出范数和度量的严格定义.

定义 **1.1.1.** Let X be a vector space over \mathbb{F} , a **norm** is a function:

$$X \longrightarrow \mathbb{R}_{\geq 0} \tag{1.1}$$

$$f \longmapsto ||f|| \tag{1.2}$$

satisfying the following properties:

- (i) $||f|| \ge 0, \forall f \in X$. ($||f|| = 0 \Leftrightarrow f = 0 \text{ a.e.}$)
- (ii) $||af|| = |a| ||f||, \forall a \in \mathbb{F}, f \in X.$
- (iii) $||f + g|| \le ||f|| + ||g||, \forall f, g \in X$.
 - 注. (i) 中的 " $||f|| = 0 \Leftrightarrow f = 0$ a.e." 的 "a.e." 是对于 X 取函数空间时的条件,在实分析的取等条件中基本为默认叙述,在后续定义中往往省略. 在对 \mathcal{L}^p 空间的定义 (定义 1.1.3) 中可以看到其合理性.
 - **范数**实际上是对 ℝⁿ 空间中 "与原点之间的距离"这一概念的推广. 将函数视作向量,则 其范数即为到原点的距离,即模长.
 - 若一个线性空间 X 上配备了一个范数,则称其为赋范向量空间(赋范线性空间).

将函数视作向量,就有其**到原点的距离**为**范数**.但若是想要衡量**任意两个函数之间的距 离**,则需要引入下面**度量**的概念.

定义 **1.1.2.** A **metric** on *X* is a map

$$\rho: X \times X \longrightarrow \mathbb{R}_{>0} \tag{1.3}$$

$$(x, y) \longmapsto \rho(x, y)$$
 (1.4)

satisfying

- (i) $\rho(x, y) \ge 0, \forall x, y \in X$. $(\rho(x, y) = 0 \iff x = y)$
- (ii) $\rho(x, y) = \rho(y, x), \forall x, y \in X$.
- (iii) $\rho(x, y) + \rho(y, z) \ge \rho(x, z), \forall x, y, z \in X.$
 - 注. 若 X 为函数空间,则 (i) 中 " $\rho(x,y) = 0$ " 等价条件默认为 "x = y a.e.".
 - 度量可看作将两个函数 (向量) 的起点均平移至原点后,其两个终点之间的距离.

1.1.2 L^p Space

 L^p Space 下面给出 L^p 空间的定义.

定义 **1.1.3.** For any measure space (X, \mathcal{M}, μ) , define the L^p Space $L^p(X)$ on X $(1 \le p < \infty)$

$$L^{p}(X) = \left\{ f \in \mathcal{M} \mid \int_{X} |f|^{p} d\mu < \infty \right\}, \ \forall 1 \le p < \infty$$
 (1.5)

$$L^{\infty}(X) = \left\{ f \in \mathcal{M} \middle| \inf \{ C \ge 0 \mid |f| \le C \text{ a.e.} \} < \infty \right\}$$
 (1.6)

$$f \sim g \Leftrightarrow f = g \text{ a.e.}$$

此时再令 $L^p(X)$ 空间模去该等价关系 ~, 即

$$L^p(X) := L^p(X) / \sim$$

L^p 范数 在 L^p 空间上, 我们来定义 L^p 范数.

定义 1.1.4. Measure space (X, \mathcal{M}, μ) . For any function $f \in L^p(X)$, define the L^p norm of f

$$||f||_p = \left(\int_X |f|^p \, d\mu\right)^{\frac{1}{p}}, \quad \forall 1 \le p < \infty \tag{1.7}$$

$$||f||_{\infty} = \inf\{C \ge 0 \mid |f| \le C \text{ a.e.}\}$$
 (1.8)

$$||f||_{\infty} = \sup\{C \ge 0 \mid \mu(|f| > C) > 0\}$$
(1.9)

• 为了说明上述定义是 well-defined, 我们需要验证其满足**范数的三条公理 (Def 1.1.1)**. 其中前面两条 (正定性、绝对齐性) 是显然的, 而对于三角不等式, 我们需要用到后续证明的 **Minkowski Inequality (Thm 1.1.4)**.

事实上, 在证明了 **Minkowski Inequality (Thm 1.1.4)** 后, 我们还可得到 $L^p(X)$ 为**线性空间**, 从而证明 $(L^p(X), \|\cdot\|_p)$ 为**赋范向量空间**. 下面我们的证明思路如下:

Young Inequality ⇒ Hölder Inequality ⇒ Minkowski Inequality

1.1.3 Young Inequality

为了证明 Hölder 不等式, 先来给出 Young 不等式, 可视作一条均值不等式的加权推广.

定理 1.1.1. Young Inequality.

Suppose p, q > 0 and $\frac{1}{p} + \frac{1}{q} = 1$. Then for $\forall a, b \ge 0$, s. t.

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q \tag{1.10}$$

注. Young 不等式可视作一条均值不等式 (几何平均数 \leq 平方平均数) 的加权推广, 即

$$\sqrt{ab} \le \sqrt{\frac{a^2+b^2}{2}}$$

证明. (利用指数函数的凸性及 Jensen Inequality).

It's trivial when a = 0 or b = 0. 不妨设 $a, b \neq 0$, 即 a, b > 0.

Since $f(x) = e^x$ is convex, $\frac{1}{p} + \frac{1}{q} = 1$, then by **Jensen Inequality**,

$$e^{\frac{x}{p} + \frac{y}{q}} \le \frac{1}{p} e^x + \frac{1}{q} e^y, \ \forall x, y \in \mathbb{R}$$
 (1.11)

Let $x = \log a^p$, $y = \log b^q$, $\forall a, b > 0$, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}, \ \forall a, b > 0 \tag{1.12}$$

下面给出一条推论,将用于 Hölder Inequality 的证明中.

推论 1.1.2. Suppose p, q > 0 and $\frac{1}{p} + \frac{1}{q} = 1$. Then for $\forall f \in L^p, g \in L^q$, s. t.

$$\int |fg| \le \frac{1}{p} \int |f|^p + \frac{1}{q} \int |g|^q \tag{1.13}$$

证明. By Young Inequality (Thm 1.1.1), 逐点均有

$$|fg|(x) \le \frac{1}{p}|f|^p(x) + \frac{1}{q}|g|^q(x), \ \forall x \in X$$
 (1.14)

积分,得

$$\int |fg| \le \frac{1}{p} \int |f|^p + \frac{1}{q} \int |g|^q \tag{1.15}$$

1.1.4 Hölder Inequality

下面给出二元情形下的 Hölder 不等式.

定理 1.1.3. Hölder Inequality.

Suppose $1 < p, q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then $\forall f \in L^p, g \in L^q$, s. t. $fg \in L^1$ and

$$||fg||_1 \le ||f||_p \cdot ||g||_q \tag{1.16}$$

证明. It's trivial when $||f||_p=0$ or $||g||_q=0$. 不妨设 $||f||_p$, $||g||_q\neq 0$. 不妨设 $||f||_p=||g||_q=1$. (Otherwise we can let $\widetilde{f}=\frac{f}{||f||_p}$ and $\widetilde{g}=\frac{g}{||g||_q}$)

Then by Young Inequality (Cor 1.1.2),

$$||fg||_1 = \int |fg| \le \frac{1}{p} \int |f|^p + \frac{1}{q} \int |g|^q$$
 (1.17)

$$= \frac{1}{p} ||f||_p^p + \frac{1}{q} ||g||_q^q \tag{1.18}$$

$$= \frac{1}{p} + \frac{1}{q} \tag{1.19}$$

$$= 1 = ||f||_p \cdot ||g||_q \tag{1.20}$$

1.1.5 Minkowski Inequality

下面给出 **Minkowski 不等式**的内容, 它说明了我们所定义的 L^p 范数 $\|\cdot\|_p$ (Def 1.1.4) 的合理性, 并且可以推出 L^p 空间为**线性空间**, 从而得到 ($L^p(X)$, $\|\cdot\|_p$) 为**赋范向量空间**.

定理 1.1.4. Minkowski Inequality.

Suppose $1 \le p < \infty$. Then for $\forall f, g \in L^p$, s. t.

$$||f + g||_p \le ||f||_p + ||g||_p \tag{1.21}$$

证明. $\forall f, g \in L^p$, we have

$$||f + g||_p^p = \int |f + g|^p = \int |f + g| \cdot |f + g|^{p-1}$$
(1.22)

$$\leq \int |f| \cdot |f + g|^{p-1} + \int |g| \cdot |f + g|^{p-1} \tag{1.23}$$

By Hölder Inequality (Thm 1.1.3),

$$\int |f| \cdot |f + g|^{p-1} = \||f| \cdot |f + g|^{p-1}\|_{1} \le \left(\int |f|^{p}\right)^{\frac{1}{p}} \cdot \left(\int |f + g|^{(p-1)\cdot q}\right)^{\frac{1}{q}} \tag{1.24}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. Thus $q = \frac{p}{p-1}$, (p-1)q = p, we have

$$\int |f| \cdot |f + g|^{p-1} \le \left(\int |f|^p \right)^{\frac{1}{p}} \cdot \left(\int |f + g|^p \right)^{\frac{p-1}{p}} = ||f||_p \cdot ||f + g||_p^{p-1}$$
(1.25)

Similarly, we get

$$\int |g| \cdot |f + g|^{p-1} \le \left(\int |g|^p \right)^{\frac{1}{p}} \cdot \left(\int |f + g|^p \right)^{\frac{p-1}{p}} = ||g||_p \cdot ||f + g||_p^{p-1}$$
 (1.26)

Therefore,

$$||f + g||_p^p \le \int |f| \cdot |f + g|^{p-1} + \int |g| \cdot |f + g|^{p-1}$$
(1.27)

$$\leq (||f||_p + ||g||_p) \cdot ||f + g||_p^{p-1}$$
 (1.28)

i.e.

$$||f + g||_p \le ||f||_p + ||g||_p, \ \forall f, g \in L^p$$
(1.29)

1.2 Completion of a metric space

下面我们来讨论度量空间的完备化的内容. 在此之前先给出一些基础概念.

1.2.1 Complete metric spaces

柯西列 先来推广一般度量空间 (X, ρ) 上的柯西列的定义.

定义 **1.2.1.** In a metric space (X, ρ) , a sequence $\{x_n\}_{n=1}^{\infty}$ of points $x_n \in X$ is a <u>Cauchy sequence</u> if $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s. t.}$

$$\rho(x_m, x_n) < \epsilon, \ \forall m, n > N \tag{1.30}$$

注. Cauchy sequence 也有一种等价定义, 涉及到直径 diam 在一般度量空间 (X, ρ) 上的推广, 即

定义 1.2.2. In a metric space (X, ρ) , a sequence $\{x_n\}_{n=1}^{\infty}$ of points $x_n \in X$ is a Cauchy sequence if

$$\lim_{n \to \infty} diam(\bigcup_{m=n}^{\infty} \{x_m\}) = 0$$
 (1.31)

where

$$diam(\Omega) = \sup_{x,y \in \Omega} \rho(x,y), \ \forall \Omega \subset X$$
 (1.32)

完备性 下面给出一般度量空间**完备性**的定义.

定义 **1.2.3.** A metric space (X, ρ) is **complete** if every Cauchy sequence of points of X converges in X.

下面给出几个完备与不完备度量空间的例子.

• ◎ 不完备, ℝ 完备. 例 1.2.1.

• 在 L^{∞} 意义下, P[a, b] 不完备 ([a, b] 上的多项式空间), C[a, b] 完备.

下面给出度量空间完备的等价表述.

命题 **1.2.1.** Suppose (X, ρ) be a metric space, then

 (X, ρ) is complete $\Leftrightarrow X$ 中闭集套定理成立

i.e. \forall 非空闭集列 $\{F_n\}_{n=1}^{\infty} \subset \mathcal{P}(X)$

If
$$F_1 \supset F_2 \supset \cdots$$
 and $diam(F_n) \to 0$, then $\bigcap_{n=1}^{\infty} F_n$ 为单点集

证明.

(a) 必要性 ⇒: Suppose (X, ρ) is complete.

$$\forall \{F_n\}_{n=1}^{\infty}, F_n \subset_{closed} X, F_1 \supset F_2 \supset \cdots \text{ and } diam(F_n) \to 0. \text{ Take } x_n \in F_n, \ \forall n \in \mathbb{N}.$$

Then $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in X.

Since (X, ρ) is complete, then $x_n \to x_0 \in X$. \mathbb{Z} 难证明, $x_0 \in \bigcap_{n=1}^{\infty} F_n$. Thus $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

下用反证法证明 $\bigcap_{n=1}^{\infty} F_n$ 为单点集: Assume $\exists x' \in \bigcap_{n=1}^{\infty} F_n, x' \neq x_0$, then

$$x', x_0 \in F_n, \forall n \in N$$

Then

$$diam(F_n) \ge \rho(x', x_0) > 0, \ \forall n \in \mathbb{N}$$

 $diam(F_n) \nrightarrow 0$

which is a contradiction. Therefore, $\bigcap_{n=1}^{\infty} F_n = \{x_0\}$ 为单点集.

(b) 充分性 \Leftarrow : \forall Cauchy sequence $\{x_n\}_{n=1}^{\infty} \subset X$. Let

$$F_j = \bigcup_{n=j}^{\infty} \{x_n\}, \ j = 1, 2, \cdots$$
 (1.33)

Then $\{F_n\}_{n=1}^{\infty}$ 满足闭集套条件, $\bigcap_{n=1}^{\infty} F_n = \{x_0\}$ 为单点集, $x_n \to x_0 \in X$. (X, ρ) complete.

1.2.2 Nowhere dense & Category Set

在这一节我们给出无处稠密(稀疏)以及纲集的概念.

Nowhere dense 下面给出无处稠密 / 稀疏的定义.

定义 **1.2.4.** Suppose (X, ρ) be a metric space. We call $A \subset X$ nowhere dense if

$$\left(\overline{A}\right)^{\circ} = \emptyset \tag{1.34}$$

• 稠密 (dense) 和无处稠密 / 稀疏 (nowhere dense)并不是一对对偶概念, 有如下关系:

 $A \text{ dense} \Leftarrow A^c \text{ nowhere dense}$

A dense \Rightarrow A^c nowhere dense

证明. A^c nowhere dense \Rightarrow $(\overline{A^c})^\circ = \emptyset \Rightarrow (A^c)^\circ = (\overline{A})^c = \emptyset \Rightarrow \overline{A} = X \Rightarrow A$ dense \Box

• 单点集 $\overline{\Lambda}$ 一定为无处稠密集 / 稀疏集. 这取决于度量 ρ 的选取, 下面给出反例.

例 1.2.2. Consider a metric space (\mathbb{Z}, ρ) with

$$\rho: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{R}_{\geq 0} \tag{1.35}$$

$$(x,y)\longmapsto \rho(x,y) = \begin{cases} 0, & \text{if } x=y\\ 1, & \text{if } x\neq y \end{cases}$$
 (1.36)

Then for $\forall \{x\} \subset \mathbb{Z}$, $B(x, \frac{1}{2}) \cap \mathbb{Z} \subset \overline{\{x\}}$, 于是 $\left(\overline{\{x\}}\right)^{\circ} = \{x\}$ 非空, 单点集 $\{x\}$ 不稀疏.

下面给出更常用的用于判断无处稠密/稀疏的等价刻画.

命题 **1.2.2.** Suppose (X, ρ) be a metric space. Then

 $A \subset X$ nowhere dense $\Leftrightarrow \forall B(x,r) \subset X, \exists \overline{B(x',r')} \subset B(x,r), \text{ s. t. } \overline{B(x',r')} \cap \overline{A} = \emptyset$

证明.

- (a) 必要性 \Rightarrow : 反证法. Assume $\exists B(x,r) \subset X$, s. t. $\forall \overline{B(x',r')} \subset B(x,r)$, $\overline{B(x',r')} \cap \overline{A} \neq \emptyset$. Then $\forall x' \in B(x,r)$, $x' \in \overline{A}$. Thus $x \in \overline{A}$ and $B(x,r) \subset \overline{A} \Rightarrow x 为 \overline{A}$ 的内点, 矛盾.
- (b) 充分性 \Leftarrow : 反证法. Suppose $\exists x_0 \in (\overline{A})^\circ$, then $\exists B(x_0, r_0) \subset \overline{A}$. $\forall \overline{B(x', r')} \subset B(x_0, r_0), \overline{B(x', r')} \subset \overline{A},$ 矛盾.

Category Set 下面我们来给出纲集的定义, 这实际上给出了度量空间 (X, ρ) 的子集的分类.

定义 **1.2.5.** Suppose (X, ρ) be a metric space. If $A \subset X$ is a countable union of nowhere dense subsets of X, i.e.

$$A = \bigcup_{n=1}^{\infty} E_n, \text{ where } E'_n s \text{ are nowhere dense}$$
 (1.37)

then we say A is a First Category Set. Otherwise we call it a Second Category Set.

例 1.2.3. 考虑欧式度量 (\mathbb{R}^1 , d), 则有理数集 \mathbb{Q} 为第一纲集. 一般地, (\mathbb{R}^1 , d) 中的可数点集 均为第一纲集.

下面给出 Baire 定理, 它给出了完备度量空间的刻画.

定理 1.2.1. Baire's Theorem.

Complete metric spaces are Second Category Sets.

证明. 反证法. Assume complete metric space (X, ρ) is a first category set. Then $\exists \{E_n\}_{n=1}^{\infty}$, $E_n \subset X$ nowhere dense, s. t.

$$X = \bigcup_{n=1}^{\infty} E_n \tag{1.38}$$

Since E_n is nowhere dense, then $\exists \overline{B(x_1, r_1)} \subset X$, s. t. $\overline{B(x_1, r_1)} \cap \overline{E_1} = \emptyset$.

Similarly, for E_2 nowhere dense, $\exists \overline{B(x_2, r_2)} \subset B(x_1, r_1)$, s. t. $\overline{B(x_2, r_2)} \cap \overline{E_2} = \emptyset$

. . .

Denote $F_n = \overline{B(x_n, r_n)}$, we can always choose F_k with $diam(F_{k+1}) \le \frac{diam(F_k)}{2}$. Then F_n 's satisfies:

$$F_n \subset X, F_1 \supset F_2 \supset \cdots, diam(F_n) \rightarrow 0$$

Since X is complete, then by **Prop 1.2.1** (完备的等价表述),

$$\bigcap_{n=1}^{\infty} F_n = \{x_0\} 为单点集.$$

Since $(\bigcap_{n=1}^{\infty} F_n) \cap (\bigcup_{n=1}^{\infty} \overline{E_n}) = \emptyset$, $\overrightarrow{\prod} \bigcup_{n=1}^{\infty} \overline{E_n} = X$, then $x_0 \notin X$, $\overrightarrow{\mathcal{F}}$ $\overrightarrow{\mathbb{A}}$.

Therefore, (X, ρ) is a Second Category Set.

1.2.3 保距同构,完备化空间

这一小节我们来介绍等距同构 (Isometry) 和完备化 (度量) 空间的概念.

等距同构 (Isometry) 下面给出度量空间之间的等距 (保距) 同构的定义.

定义 **1.2.6.** Suppose $(X_1, \rho_1), (X_2, \rho_2)$ are both metric spaces. Suppose

$$T: (X_1, \rho_1) \to (X_2, \rho_2)$$

If $\rho_2 \circ T = \rho_1$, then we call T an **isometry** (等距 / 保距映射). 若进一步 T 为满射, 则称 T 为等距 / 保距同构.

注. 事实上, 条件 " $\rho_2 \circ T = \rho_1$ " 已经蕴含了 T 为单射. 从而加上满射的条件即为同构.

证明. $\forall x, y \in X_1, x \neq y$, we have

$$\rho_1(x, y) = \rho_2(T(x), T(y)) \neq 0 \implies T(x) \neq T(y) \implies T \text{ injective}$$

完备化空间 下面给出一般度量空间的完备化空间的定义.

定义 1.2.7. Suppose (X, ρ) be a metric space. If there exists a complete metric space (X_1, ρ_1) , s. t.

$$(X,\rho)$$
 等距同构于 (X_1,ρ_1) 的某个稠密子集

则称 X_1 为 X 的完备化空间.

注. 事实上, 不难说明度量空间的完备化空间有如下的等价定义1.

定义 1.2.8. 包含 (X, ρ) 的最小的完备度量空间称为 (X, ρ) 的完备化空间.

1详见《泛函分析讲义》-张恭庆、林源渠, 定义 1.2.2 & 命题 1.2.5

1.2.4 Completion of a metric space

下面给出一般度量空间完备化的过程.

定理 1.2.2. Completion of a metric space.

任一度量空间 (X, ρ) 存在完备化空间, 且在保距同构意义下唯一.

证明.

1. Construction of the complete metric space (X_2, ρ_2) :

Let

$$X_1 = \{\{x_n\}_{n=1}^{\infty} \mid \{x_n\}_{n=1}^{\infty} \subset X \text{ is a Cauchy squence}\}$$
 (1.39)

 $\forall \xi = \{x_n\}_{n=1}^{\infty}, \eta = \{y_n\}_{n=1}^{\infty} \in X_1$, we define a equivalence relation \sim^2 :

$$\xi \sim \eta \iff \lim_{n \to \infty} \rho(x_n, y_n) = 0$$
 (1.40)

Then let

$$X_2 = X_1 / \sim \tag{1.41}$$

Define the metric ρ_2 on X_2

$$\rho_2: X_2 \times X_2 \longrightarrow \mathbb{R}_{>0} \tag{1.42}$$

$$([\xi], [\eta]) \longmapsto \rho_2([\xi], [\eta]) = \lim_{n \to \infty} \rho(x_n, y_n)$$
 (1.43)

where $\xi = \{x_n\}_{n=1}^{\infty}$, $\eta = \{y_n\}_{n=1}^{\infty} \in X_1$.

下面说明 ρ_2 is well-defined (与代表元无关 & 极限存在):

(a) 与代表元无关:
$$\forall \widetilde{\xi} = \{\widetilde{x_n}\}_{n=1}^{\infty}, \widetilde{\eta} = \{\widetilde{y_n}\}_{n=1}^{\infty} \text{ with } [\widetilde{\xi}] = [\xi], [\widetilde{\eta}] = [\eta].$$
 Then

$$\rho(\widetilde{x_n}, \widetilde{y_n}) \le \rho(\widetilde{x_n}, x_n) + \rho(x_n, y_n) + \rho(y_n, \widetilde{y_n}), \ \forall n \in \mathbb{N}$$
 (1.44)

$$\rho(x_n, y_n) \le \rho(x_n, \widetilde{x_n}) + \rho(\widetilde{x_n}, \widetilde{y_n}) + \rho(\widetilde{y_n}, y_n), \ \forall n \in \mathbb{N}$$
 (1.45)

²不难证明 well-defined: 自反性、对称性、传递性

Since $[\widetilde{\xi}] = [\xi]$, $[\widetilde{\eta}] = [\eta]$, then

$$\rho(x_n, \widetilde{x_n}) \to 0, \ \rho(y_n, \widetilde{y_n}) \to 0$$
 (1.46)

Letting $n \to \infty$, we get

$$\rho_2(\widetilde{x_n}, \widetilde{y_n}) = \rho_2(x_n, y_n) \tag{1.47}$$

(b) 极限存在: 即证 $\{\rho(x_n,y_n)\}_{n=1}^{\infty}$ 为 \mathbb{R} 中 Cauchy sequence.

 $\forall [\xi], [\eta] \in X_2$, where $\xi = \{x_n\}_{n=1}^{\infty}, \eta = \{y_n\}_{n=1}^{\infty} \subset X$ are Cauchy sequences. Then

$$|\rho(x_n, y_n) - \rho(x_m, y_m)| = |(\rho(x_n, y_n) - \rho(x_m, y_n)) + (\rho(x_m, y_n) - \rho(x_m, y_m))|$$
 (1.48)

$$\leq |\rho(x_n, y_n) - \rho(x_m, y_n)| + |\rho(x_m, y_n) - \rho(x_m, y_m)| \tag{1.49}$$

$$\leq \rho(x_n, x_m) + \rho(y_n, y_m), \ \forall n, m \in \mathbb{N}$$
 (1.50)

Since $\xi = \{x_n\}_{n=1}^{\infty}$, $\eta = \{y_n\}_{n=1}^{\infty} \subset X$ are Cauchy sequences, then $\{\rho(x_n, y_n)\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} .

2. Construct isometry *T*:

Consider 嵌入映射

$$T: X \to X_2 \tag{1.51}$$

$$x \longmapsto [\{x\}_{n=1}^{\infty}] \tag{1.52}$$

下面证明 T 为保距映射:

 $\forall x, y \in X$, then

$$\rho(T(x), T(y)) = \lim_{n \to \infty} \rho(x, y) = \rho(x, y), \ \forall x, y \in X$$
 (1.53)

Thus T is an isometry (保距映射).

3. T(X) is dense in X_2 :

 $\forall [\xi] = [\{x_n\}_{n=1}^{\infty}] \in X_2$, where $\xi = \{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in X. Then

Consider the sequence $\{T(x_n)\}_{n=1}^{\infty}$ in X_2 . We have

$$\rho_2(T(x_n), [\xi]) = \lim_{m \to \infty} \rho(x_n, x_m), \ \forall n \in \mathbb{N}$$
 (1.54)

Since $\{x_n\}_{n=1}^{\infty} \subset X$ is a Cauchy sequence in X, then

$$\lim_{n \to \infty} \rho_2(T(x_n), [\xi]) = \lim_{n \to \infty} \lim_{m \to \infty} \rho(x_n, x_m) = 0$$
(1.55)

i.e.

$$T(x_n) \stackrel{\rho_2}{\to} [\xi], \ \forall [\xi] = [\{x_n\}_{n=1}^{\infty}] \in X_2$$
 (1.56)

Therefore, T(X) is dense³ in X_2 , and so (X, ρ) 保距同构于 (X_2, ρ_2) 的稠密子集 TX.

4. (X_2, ρ_2) is complete:

 \forall Cauchy sequence $\{[\xi_n]\}_{n=1}^{\infty} \subset X_2$, where $\xi_n = \{x_j^n\}_{j=1}^{\infty} \subset X$ is a Cauchy sequence.

By **Step 3**, T(X) is dense in X_2 and $\forall n \in \mathbb{N}$,

$$\rho_2(T(x_i^n), [\xi_n]) \to 0, \text{ as } j \to \infty$$
 (1.57)

Thus $\exists j_n \in \mathbb{N}$, s. t.

$$\rho_2(T(\mathbf{x}_{j_n}^n), [\xi_n]) < \frac{1}{n}, \ \forall n \in \mathbb{N}$$

$$(1.58)$$

Let $\xi = \{x_{j_n}^n\}_{n=1}^{\infty}$. It suffices to show $[\xi_n] \to [\xi]$, i.e.

$$\rho_2([\xi_n], [\xi]) \to 0$$
, as $n \to \infty$ (1.59)

而这需要证明两点结论, 即 $[\xi] \in X_2$ & $[\xi_n] \rightarrow [\xi]$:

³此处实际用到了度量空间稠密子集的等价刻画, 具体可见附录 A - Lemma A.1.1

(a) $[\xi] \in X_2$, i.e. $\xi = \{x_{j_n}^n\}_{n=1}^{\infty} \subset X$ is a Cauchy sequence in X:

Fix $\epsilon > 0$. Since $\{ [\xi_n] \}_{n=1}^{\infty}$ is a Cauchy sequence in X_2 , and $\rho_2(T(x_{j_n}^n), [\xi_n]) \to 0$, then since T is isometry (by **Step 2**)

 $\exists N \in \mathbb{N}, \text{ s. t.}$

$$\rho(x_{i_k}^k, x_{i_l}^l) = \rho_2(T(x_{i_k}^k), T(x_{i_l}^l))$$
(1.60)

$$\leq \rho_2(T(x_{j_k}^k), [\xi_k]) + \rho_2([\xi_k], [\xi_l]) + \rho_2([\xi_l], T(x_{j_l}^l))$$
(1.61)

$$<\epsilon, \ \forall k, l > N$$
 (1.62)

Therefore, $\xi = \{x_{j_n}^n\}_{n=1}^{\infty} \subset X$ is a Cauchy sequence, thus $[\xi] \in X_2$.

(b) $[\xi_n] \rightarrow [\xi]$:

WTS: $\rho_2([\xi_n], [\xi]) \to 0$, i.e.

$$\lim_{n \to \infty} \rho_2([\xi_n], [\xi]) = \lim_{n \to \infty} \lim_{k \to \infty} \rho(x_k^n, x_{j_k}^k) = 0$$
(1.63)

Fix $n \in \mathbb{N}$. Since

$$\lim_{k \to \infty} \rho(x_{j_n}^n, x_k^n) = \rho_2(T(x_{j_n}^n), [\xi_n]) < \frac{1}{n}$$
 (1.64)

Then $\forall \epsilon > 0, \exists k_0 \in \mathbb{N}, \text{ s. t.}$

$$\rho(x_{j_n}^n, x_k^n) < \frac{1}{n} + \epsilon, \ \forall k > k_0$$
 (1.65)

Since $\xi = \{x_{j_n}^n\}_{n=1}^{\infty} \subset X$ is a Cauchy sequence in X, then

$$\rho(x_{j_n}^n, x_{j_k}^k) \to 0 \text{ as } n, k \to \infty$$
 (1.66)

Then

$$\rho(x_k^n, x_{j_k}^k) \le \rho(x_k^n, x_{j_n}^n) + \rho(x_{j_n}^n, x_{j_k}^k)$$
(1.67)

$$\leq \frac{1}{n} + \epsilon + \rho(x_{j_n}^n, x_{j_k}^k) \tag{1.68}$$

Letting $\epsilon \to 0^+$ and $n, k \to \infty$, we have

$$\lim_{n \to \infty} \rho_2([\xi_n], [\xi]) = \lim_{n \to \infty} \lim_{k \to \infty} \rho(x_k^n, x_{j_k}^k) = 0$$
 (1.69)

5. X₂ 在保距同构下的唯一性:

Suppose (X_2, ρ_2) , $(X_2^{'}, \rho_2^{'})$ 均为 (X, ρ) 的完备化空间. $i_1: X \to X_2, \ i_2: X \to X_2^{'}$ 为保距同构. $\forall [\xi] \in X_2$. By **Step 3**, $\exists \{x_n\}_{n=1}^{\infty} \subset X$, s. t.

$$i_1(x_n) \to [\xi] \text{ in } X_2, \text{ as } n \to \infty$$
 (1.70)

- $\Rightarrow \{i_1(x_n)\}_{n=1}^{\infty} \subset X_2 \text{ is a Cauchy sequence in } X_2.$
- $\Rightarrow \forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s. t.}$

$$\rho_2(i_1(x_n), i_1(x_m)) = \rho(x_n, x_m) < \epsilon, \ \forall n, m > N$$
 (1.71)

- $\Rightarrow \{x_n\}_{n=1}^{\infty} \subset X \text{ is a Cauchy sequence in } X.$
- $\Rightarrow \{i_2(x_n)\}_{n=1}^{\infty} \subset X_2^{'} \text{ is a Cauchy sequence in } X_2^{'}.$
- \Rightarrow Suppose $i_2(x_n) \to [\xi'] \in X_2'$ as $n \to \infty$. Let

$$T: X_2 \longrightarrow X_2' \tag{1.72}$$

$$[\xi] \longmapsto T([\xi]) = [\xi'] \tag{1.73}$$

不难证明 $T: X_2 \to X_2'$ 为保距映射. Similarly, we can prove T is surjective.

 \Rightarrow T is an isometry. i.e. X_2, X_2' 保距同构.

图 1.1: X2 在保距同构下的唯一性

例 1.2.4. 下面给出两个完备化空间的例子.

1. $(P[a, b], \rho_{\infty}) \to (C[a, b], \rho_{\infty})$, 即区间 [a, b] 上的多项式全体在度量 ρ_{∞} 下的完备化空间为 [a, b] 上的连续函数全体. 其中

$$\rho_{\infty}(x, y) = \max_{a < t < b} |x(t) - y(t)| \tag{1.74}$$

2. $(C[a, b], \rho_1) \to (L^1[a, b], \rho_1)$, 即区间 [a, b] 上的连续函数全体在度量 ρ_1 下的完备化空间为 [a, b] 上 Lebesgue 可积函数全体.

1.3 Sequentially Compact

引入 回顾在拓扑和数学分析中接触过的概念, 列紧性 (sequentially compact). 现将其限制于 度量空间上给出定义.

定义 **1.3.1.** Suppose (X, ρ) be a metric space, $A \subset X$. If $\forall \{x_n\}_{n=1}^{\infty} \subset A$, \exists subsequence $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$ convergent in X, then we call A sequentially compact (列紧的).

注. • 将条件 "**metric space** (X, ρ)" 改为 "**拓扑空间** X" 即可得到拓扑中的一般性定义. 回顾一般拓扑空间中 "**紧致**"、"**列紧**"、"**极限点紧**" 的定义与性质, 有如下关系:

图 1.2: Relations among compact, sequentially compact and limit point compact

• If $\forall \{x_n\}_{n=1}^{\infty} \subset A$, \exists subsequence $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$ convergent in A, then 称 A <u>自列紧</u>.

例子 下面给出一个经典的非列紧空间的例子.

例 1.3.1. Consider the set

$$l^{1} = \left\{ \{x_{n}\}_{n=1}^{\infty} \mid \sum_{n=1}^{\infty} |x_{n}| < \infty, \ x_{n} \in \mathbb{R} \right\}$$
 (1.75)

 $\forall \xi = \{x_n\}_{n=1}^{\infty}, \, \eta = \{y_n\}_{n=1}^{\infty} \in l^1, \, \text{define the metric } \rho_1 \text{ on } l^1:$

$$\rho_1: l^1 \times l^1 \longrightarrow \mathbb{R}_{\geq 0} \tag{1.76}$$

$$(\xi, \eta) \longmapsto \rho_1(\xi, \eta) = \sum_{n=1}^{\infty} |x_n - y_n|$$
 (1.77)

Let

$$A = \left\{ \{ \delta_{kj} \}_{j=1}^{\infty} \right\}_{k=1}^{\infty} \tag{1.78}$$

$$= \{(1, 0, \dots, 0, \dots), (0, 1, \dots, 0, \dots), \dots, (0, 0, \dots, 1, \dots), \dots\} \subset l^{1}$$
(1.79)

则 $A \subset l^1$ 中每两个元素之间的距离均为 2, 无收敛子列, 故 (l^1, ρ_1) 非列紧.

性质 对于度量空间中的列紧集,容易得到其必为完备度量空间.

命题 1.3.1. 列紧度量空间必完备.

证明. Suppose (X, ρ) be sequentially compact. Then for \forall Cauchy sequence $\{x_n\}_{n=1}^{\infty} \subset X$, \exists subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ convergent \Rightarrow Cauchy sequence $\{x_n\}_{n=1}^{\infty}$ convergent \Rightarrow (X, ρ) complete \Box

为了更好地理解一般度量空间中的**列紧性**, 我们可以与欧氏空间 ℝⁿ 中**有界**的概念联系.

\mathbb{R}^n	度量空间
有界 (bounded)	列紧
 有界闭	自列紧

1.4 完全有界集

 ϵ -网 在一般的度量空间中, 我们来引入一个比**有界集**更强的概念. 首先来给出 ϵ -网的定义.

定义 **1.4.1.** Suppose (X, ρ) be a metric space, $N \subset M \subset X$ and $\epsilon > 0$. If for $\forall x \in M, \exists y \in N$, s. t.

$$\rho(x,y)<\epsilon$$

则称 N 为 M 的一个 $\underline{\epsilon}$ -网, 即 $M \subset \bigcup_{x \in N} B(x, \epsilon)$. 进一步若 N 为有穷集 (*finite*), 则称 N 为 M 的一个**有穷** ϵ -网.

完全有界集 下面给出完全有界集的概念.

定义 **1.4.2.** Suppose (X, ρ) be a metric space, $A \subset X$. If $\forall \epsilon > 0$, A 存在有穷 ϵ -网, 则称 A 为完全有界集.

注. 完全有界集的概念比有界集要更强, 即

完全有界集 ⇒ 有界集 , 完全有界集 ∉ 有界集

例1.3.1 中集合 $A = \left\{ \left\{ \delta_{l j} \right\}_{j=1}^{\infty} \right\}_{k=1}^{\infty}$ 即为有界集但非**完全有界**.

等价表述 下面我们将给出一般度量空间中完全有界集的等价表述, 便于我们判断和理解完全有界集的概念.

定理 1.4.1. 完全有界集的等价表述.

Suppose (X, ρ) be a metric space and $A \subset X$. Then

A 完全有界 ⇔ A 中任意点列存在 Cauchy 子列

证明.

- ⇒: 若 A 完全有界. $\forall \{x_n\}_{n=1}^{\infty} \subset A$, 下面证明 $\{x_n\}_{n=1}^{\infty}$ 存在 Cauchy 子列:
 - For $\epsilon = 1$, $\exists y_1 \in A$, s. t. $B(y_1, 1)$ 中包含 $\{x_n\}_{n=1}^{\infty}$ 无穷多项, 记为 $\{x_n^{(1)}\}_{n=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$. (否则若 $\forall y \in A$, B(y, 1) 均至多包含 $\{x_n\}_{n=1}^{\infty}$ 中有穷个点, 则 A 无有穷 1-网)
 - For $\epsilon = \frac{1}{2}$, $\exists y_2 \in A$, s. t. $B(y_2, \frac{1}{2})$ 中包含 $\{x_n^{(1)}\}_{n=1}^{\infty}$ 无穷多项, 记为 $\{x_n^{(2)}\}_{n=1}^{\infty} \subset \{x_n^{(1)}\}_{n=1}^{\infty}$.
 - For $\epsilon = \frac{1}{k}$, $\exists y_k \in A$, s. t. $B(y_k, \frac{1}{k})$ 中包含 $\{x_n^{(k-1)}\}_{n=1}^{\infty}$ 中无穷多项, 记为 $\{x_n^{(k)}\}_{n=1}^{\infty}$ $\subset \{x_n^{(k-1)}\}_{n=1}^{\infty}$.

从而我们得到了 $\{x_n\}_{n=1}^{\infty}$ 的一列子列: $\{x_n^{(1)}\}_{n=1}^{\infty}, \{x_n^{(2)}\}_{n=1}^{\infty}, \cdots, \{x_n^{(k)}\}_{n=1}^{\infty}, \cdots$ 取出第 k 个子列 $\{x_n^{(k)}\}_{n=1}^{\infty}$ 的第 k 项 $x_k^{(k)}$, 得到子列 $\{x_n^{(n)}\}_{n=1}^{\infty}$.

下面证明: $\{x_n^{(n)}\}_{n=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$ 为 Cauchy 列.

Since

$$\rho(x_{n+p}^{(n+p)}, x_n^{(n)}) \le \rho(x_{n+p}^{(n+p)}, y_n) + \rho(y_n, x_n^{(n)}) \le \frac{2}{n}, \ \forall n, p \in \mathbb{N}$$
 (1.80)

Therefore, $\{x_n^{(n)}\}_{n=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in A.

⁴这种从一列序列中各取出一个元素构成新序列,再 (一致) 收敛的方法称为**对角线法则**,在**实分析** (*Real Analysis*) 中证明**任一可测函数可由简单函数列逼近**时曾使用,详情可见 *Real Analysis* 笔记定理 **2.2.1**.

 \Leftarrow : 反证法. Assume A 非完全有界, 即 $\exists \epsilon_0 > 0$, s. t. A 无有穷 ϵ_0 -网.

- $\forall x_1 \in A, \exists x_2 \in A \setminus B(x_1, \epsilon_0)$ (Otherwise $A \subset B(x_1, \epsilon_0), A$ 存在有穷 ϵ_0 -网)
- Similarly, $\exists x_3 \in A \setminus (B(x_1, \epsilon_0) \cup B(x_2, \epsilon_0))$

. . .

• $\exists x_k \in A \setminus \left(\bigcup_{i=1}^{k-1} B(x_i, \epsilon_0)\right)$

从而得到 A 中的一列点 $\{x_n\}_{n=1}^{\infty} \subset A$, 其中

$$\rho(x_i, x_j) > \epsilon_0 > 0, \ \forall i \neq j$$

于是 $\{x_n\}_{n=1}^{\infty} \subset A$ 无 Cauchy 子列, 矛盾.

1.5 可分度量空间

作为一类特殊的**拓扑空间**,下面我们来讨论一些常见的**度量空间**的**可分性**. 首先回顾一下**可分**的定义.

定义 **1.5.1.** Suppose (X, τ) be a Topological space. If (X, τ) 存在可数稠密子集, then (X, τ) is called **separable** (可分的).

根据可分空间的定义,不难得到上节所介绍的完全有界空间可分.

命题 1.5.1. 完全有界空间为可分度量空间.

证明. Suppose (X, ρ) is totally bounded. Then for $\forall k \in \mathbb{N}, \exists n_k \in \mathbb{N}, y_1, \dots, y_{n_k} \in X$, s. t.

$$X \subset \bigcup_{i=1}^{n_k} B(y_i^k, \frac{1}{k}) \tag{1.81}$$

Let

$$A = \bigcup_{k=1}^{\infty} \bigcup_{i=1}^{n_k} \{y_i^k\} \subset X \text{ countable}$$
 (1.82)

Then for $\forall x \in X$, $\exists 1 \leq l_k \leq n_k$, $y_{l_k}^k \in A$, s. t.

$$\rho(x, y_{l_k}^k) < \frac{1}{k}, \ \forall k \in \mathbb{N}$$

Thus $\{y_{l_k}^k\}_{k=1}^{\infty} \subset A \text{ convergent to } x \in X, \text{ i.e. } y_{l_k}^k \xrightarrow{\rho} x \text{ as } k \to \infty.$

Therefore, by Lemma A.1.1, $A \subset X$ is dense in X. X is separable.

下面来讨论一些常见的度量空间的可分性.

例 1.5.1. [可分空间].

- $(C[a,b],\rho_{\infty})$ 可分.
- (l^p, ρ_p) 可分.
 - 证明. 此处 (l^p, ρ_p) 定义与例 1.3.1 中一致, 即

$$l^{p} = \left\{ \{x_{n}\}_{n=1}^{\infty} \mid \sum_{n=1}^{\infty} |x_{n}|^{p} < \infty, \ x_{n} \in \mathbb{R} \right\}$$
 (1.83)

$$\rho_p: l^p \times l^p \longrightarrow \mathbb{R}_{\geq 0} \tag{1.84}$$

$$(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) \longmapsto \rho_p(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} |x_n - y_n|^p$$
(1.85)

下面来构造 (l^p, ρ_p) 的可数稠密子集:

* Let

$$A_1 = \{ \{x_n\}_{n=1}^{\infty} \mid x_1 \in \mathbb{Q}, \ x_n = 0, \ \forall n > 1 \} \subset l^p$$
 (1.86)

$$A_2 = \{ \{x_n\}_{n=1}^{\infty} \mid x_1, x_2 \in \mathbb{Q}, \ x_n = 0, \ \forall n > 2 \} \subset l^p$$
 (1.87)

$$\cdots$$
 (1.88)

$$A_k = \{ \{x_n\}_{n=1}^{\infty} \mid x_1, \dots, x_k \in \mathbb{Q}, \ x_n = 0, \ \forall n > k \} \subset l^p$$
 (1.89)

$$A = \bigcup_{k=1}^{\infty} A_k \subset l^p \tag{1.90}$$

* $A \subset l^p$ 即为 (l^p, ρ_p) 的可数稠密子集:

 $\forall \{x_n\}_{n=1}^{\infty} \in l^p$. Since

$$\sum_{n=1}^{\infty} |x_n|^p < \infty$$

Then for $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s. t.}$

$$\sum_{n=N+1}^{\infty} |x_n|^p < \frac{\epsilon}{2}$$

Thus $\exists \{y_n\}_{n=1}^{\infty} \in A_N \subset A, y_n = 0, \forall n > N \text{ and }$

$$|y_n - x_n|^p < \frac{\epsilon}{2N}, \ \forall 1 \le n \le N$$

Therefore

$$\rho_p(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} |x_n - y_n|^p < \epsilon$$

 $A \subset l^p$ is dense in l^p while it's also countable.

• $L^p[a,b]$ 可分.

证明. Review the conclusions in *Real Analysis*. $\forall f \in L^p[a, b]$, then f is measurable.

Since 任一可测函数可由简单函数列逼近 (Real Analysis 笔记 Thm 2.2.1)

又根据 Lusin 定理 (Real Analysis 笔记 Thm 3.8.2), 可得:

连续函数
$$\Rightarrow$$
 简单函数 \Rightarrow $f \in L^p$

• L[∞][a, b] 不可分.

证明. Let

$$E = \left\{ f \in L^{\infty}[a, b] \mid f(x) = \begin{cases} 0, x \in [a, r] \\ 1, x \in (r, b] \end{cases}, \ \forall r \in (a, b) \right\}$$
 (1.91)

Then $E \subset L^{\infty}[a, b]$ is uncountable, and

$$\rho_{\infty}(f,g)=1>0, \ \forall f,g\in E$$

下面用反证法证明 $L^{\infty}[a, b]$ 不可分. Assume $L^{\infty}[a, b]$ is separable.

Then \exists countable $\{f_n\}_{n=1}^{\infty} \subset L^{\infty}[a, b]$, s. t.

$$\overline{\{f_n\}_{n=1}^{\infty}}=L^{\infty}[a,b]$$

即 $L^{\infty}[a,b]$ 中点均可由 $\{f_n\}_{n=1}^{\infty}$ 中的某些点逼近, 从而

$$\bigcup_{n=1}^{\infty} B(f_n, \frac{1}{3}) = L^{\infty}[a, b] \supset E$$

于是 $\exists N \in \mathbb{N}$, s. t.

$$B(f_N, \frac{1}{3})$$
 中包含 E 中至少 2 个点 (事实上可严格地说包含 E 中不可数个点)

而
$$\rho_{\infty}(f,g) = 1 > 0$$
, $\forall f,g \in E$, 这与 $f,g \in B(f_N,\frac{1}{3})$ 矛盾. 综上, $L^{\infty}[a,b]$ 不可分.

l[∞] 不可分.

证明. Similarly. Let

$$E = \{ \{x_n\}_{n=1}^{\infty} \in l^{\infty} \mid x_n = 0 \text{ or } 1, \ \forall n \in \mathbb{N} \} \subset l^{\infty}$$
 (1.92)

Then $E \subset l^{\infty}$ is uncountable (E 与二进制数一一对应, 而二进制数与实数 \mathbb{R} 一一对应), and

$$\rho_{\infty}(\{x_n\}_{n=1}^{\infty},\{y_n\}_{n=1}^{\infty})=1>0,\ \forall \{x_n\}_{n=1}^{\infty},\{y_n\}_{n=1}^{\infty}\in E$$

后续步骤与上述 $L^{\infty}[a,b]$ 不可分证明过程一致.

附录 A Supplementary Content

A.1 度量空间稠密子集的等价刻画

引理 A.1.1. 度量空间稠密子集的等价刻画.

Suppose (X, ρ) be a metric space. Then for $A \subset X$,

A is dense in
$$X \Leftrightarrow \forall x \in X, \exists \{x_n\}_{n=1}^{\infty} \subset A, \text{ s. t. } x_n \xrightarrow{\rho} x$$

证明.

 \Rightarrow : Trivial. $\forall x \in X$, since A is dense in X, then

$$A \cap B(x,r) \cap X \neq \emptyset, \ \forall r > 0$$
 (A.1)

不妨设 $B(x, 1) \cap X \setminus \{x\} \neq \emptyset$. Then we take

$$x_n \in A \cap B(x, \frac{1}{n}), \ \forall n \in \mathbb{N}$$
 (A.2)

where we get $\{x_n\}_{n=1}^{\infty} \subset A$ with $x_n \xrightarrow{\rho} x$.

 \Leftarrow : $\forall x \in X \backslash A$, WTS: $x \in \overline{A} \backslash A$. Trivial.