

DMA: Lattices and Boolean Algebras

Jurij Volčič

Institut for Matematiske Fag

Outline

- Lattices
 - Definition and examples
 - Hasse diagrams of lattices
 - Isomorphic lattices
- Boolean algebras

Reading: KBR 6.3 and 6.4

Lattices

Def. A poset (L, \leq) is a lattice if all of its two-element subsets, $\{a, b\}$, have a least upper bound (LUB) and a greatest lower bound (GLB).

• Take 1-2 minutes to understand the definition. What pre-defined terms does it include? Recall their definitions. How would I check that (L,\leqslant) is a lattice?

Lattices: the join and the meet

Def. A poset (L, \leq) is a lattice if all of its two-element subsets, $\{a, b\}$, have a least upper bound (LUB) and a greatest lower bound (GLB).

We denote

- LUB($\{a,b\}$) by $a \lor b$ and call it the join of a and b.
- GLB($\{a,b\}$) by $a \wedge b$ and call it the meet of a and b.

Recall: (Uniqueness Thm) If (A, \leq) is a poset and $\{a, b\} \in A$ admits a LUB (GLB), then it is unique.

Examples of lattices

Example: Consider the power set $P(\{1,2,\ldots,n\})$ of $\{1,2,\ldots,n\}$. $(P(\{1,2,\ldots,n\}),\subseteq)$ is a poset. It is also a lattice with

$$A \wedge B = A \cap B$$
 $A \vee B = A \cup B$

- Why is A ∪ B the LUB of {A, B}?
- Why is A ∩ B the GLB of {A, B}?

Example. Let
$$D_{\mathfrak{m}} = \{ \mathfrak{n} \in \mathbb{Z}^+ | \mathfrak{n} | \mathfrak{m} \}.$$

The poset $(D_{\mathfrak{m}}, |)$ is a lattice and

$$a \wedge b = GCD(a, b)$$
 $a \vee b = LCM(a, b)$

Recall: We can specify a poset by its Hasse diagram

To get the Hasse diagram of (A, \leq) :

- 1 Start with the digraph.
- Remove loops.
- Remove the arrows implied by transitivity.
- Make all the arrows point upwards and replace them with lines.

Exercise: $A = \{1, 2, 3, 4, 6, 24\}.$

- Draw the Hasse diagram of (A, |).
- Is (A, |) a lattice?
- List all pairs $\{a,b\}$ of incomparable elements of A.

Setting the stage for **Boolean algebras**

- Product lattices
- Isomorphic lattices

Product lattices

Thm. Let (L_1, \leqslant_1) and (L_2, \leqslant_2) be lattices and consider the product partial order¹, \leqslant , on $L_1 \times L_2$. Then $(L_1 \times L_2, \leqslant)$ is a lattice.

Example

¹Recall: $(a_1, a_2) \leq (b_1, b_2) \Leftrightarrow (a_1 \leq_1 b_1 \text{ and } a_2 \leq_2 b_2)$

The (binary string) lattice $(\{0,1\}^n, \leq)$

Consider lattice
$$(\{0,1\},\leqslant)$$
. (Here, \leqslant is comparison of numbers.)
$$\{0,1\}^n = \overbrace{\{0,1\} \times \cdots \times \{0,1\}}^n$$
 $(\{0,1\}^n,\leqslant)$ is a lattice with
$$x_1 \dots x_n \wedge y_1 \dots y_n = \min(x_1,y_1) \dots \min(x_n,y_n)$$
 $x_1 \dots x_n \vee y_1 \dots y_n = \max(x_1,y_1) \dots \max(x_n,y_n)$

Questions

- Find 010 ∧ 110 and 010 ∨ 110
- How many elements does this lattice have?

Isomorphic lattices

Posets (A_1,\leqslant_1) and (A_2,\leqslant_2) are isomorphic if there is a bijection $f:A_1\to A_2$ such that for all $\alpha,b\in A_1$ we have

$$a \leqslant_1 b \Leftrightarrow f(a) \leqslant_2 f(b)$$

Def. We say that lattices (L_1, \leq_1) and (L_2, \leq_2) are isomorphic if they are isomorphic as posets.

An example of isomorphic lattices

Thm. For any $n \in \mathbb{N}$, the lattices $(\{0,1\}^n, \leq)$ and $(P(\{1,...,n\}),\subseteq)$ are isomorphic.

Boolean algebras

Def. A lattice (L, \leq) is called a Boolean algebra if it is isomorphic to $(\{0,1\}^n, \leq)$ for some n.

Examples of Boolean algebras

- $(\{0,1\}^n, \leq)$ for any $n \in \mathbb{N}$.
- $(P(\{1,...,n\}),\subseteq)$ for any $n \in \mathbb{N}$.
- Thm. If $m=p_1p_2...p_n$, where all the p_i 's are distinct primes, then $(D_m,|)$ is a Boolean algebra.

Properties² of Boolean algebras

Let (L, \leq) be a Boolean algebra. Then we have

- $|L| = 2^n$ for some n.
- L has a greatest element, denoted I, and a least element, denoted 0.
- Every element $x \in L$ has a unique complement (i.e., there is a unique x', s.t. $x \lor x' = I$ and $x \land x' = 0$)

Tips for exercises: To show that a poset (A, \leq')

- is a Boolean algebra, argue that it is isomorphic to ({0,1}ⁿ, ≤) for some n∈ N by exhibiting a suitable bijection f: A → {0,1}ⁿ.
- is not a Boolean algebra, find a property that it violates.

