Reinforcement Learning WS22/23

Assignment 1 Iterative Policy Evaluation

Ozan Özdenizci Horst Petschenig

Presentation: 04.11.2022 12:45

Info Hour: 11.11.2022 12:45, Cisco WebEx meeting, see TC

Deadline: 14.11.2022 23:55

Hand-in procedure: Use the cover sheet from the TeachCenter

Course info: https://tc.tugraz.at/main/course/view.php?id=3110

Group size: up to two students

General remarks

Your submission will be graded based on correctness and clarity: Include intermediary steps, textually explain your thought process!

Math Recap

The following concepts have also been discussed in the lecture.

Definition 1 Let V be a vector space. Then $f: V \mapsto \mathbb{R}_0^+$ is a norm on V provided the following hold:

- 1. f(v) = 0 if and only if v = 0
- 2. For any $\lambda \in \mathbb{R}, v \in V, f(\lambda v) = |\lambda| f(v)$
- 3. For any $v, u \in V, f(u+v) \le f(v) + f(u)$

A vector space together with a norm is called a normed vector space.

According to Definition 1, a norm is a function that assigns a nonnegative number to each vector, which can be interpreted as some notion of "length". The norm of a vector \mathbf{v} is often denoted by $||\mathbf{v}||$. In the n-dimensional Euclidean vector space $V = \{v \mid v = (x_1, \dots, x_n)^T, x_1, \dots, x_n \in \mathbb{R}\}$, a common choice of norm is the max norm $||\mathbf{v}||_{\infty} = \max_i |v_i|$.

A norm $||\cdot||$ gives rise to a <u>distance measure</u> between two vectors v and u by taking the norm of their difference, i.e. ||v-u||.

Definition 2 Let $(v_n; n \ge 0)$ be a sequence of vectors of a normed vector space $V = (V, ||\cdot||)$. Then v_n is called a Cauchy-sequence if $\lim_{n\to\infty} \sup_{m\ge n} ||v_n - v_m|| = 0$, i.e., the elements of the sequence become arbitrarily close as the sequence continues.

Definition 3 A normed vector space V is called $\underline{complete}$ if every Cauchy sequence in V converges to some element in V.

As an example, every Cauchy sequence in the real numbers \mathbb{R} converges to some real number—hence, the real numbers form a complete vector space. On the other hand, we can construct Cauchy sequences in the rational numbers \mathbb{Q} which converge to some irrational number (e.g. to the number $\pi = 3.141592...$)—hence, the rational numbers are <u>not</u> a complete vector space (they are still a normed vector space though).

Definition 4 A complete, normed vector space is called a Banach space.

Definition 5 Let $V = (V, ||\cdot||)$ be a normed vector space. A mapping $T : V \mapsto V$ is called <u>L-Lipschitz</u> if for any $u, v \in V$,

$$||T(u) - T(v)|| \le L||u - v||.$$
 (1)

T is called a <u>contraction</u> if it is L-Lipschitz with L < 1. In this case, L is called the contraction factor of T and T is <u>called an L-contraction</u>.

Definition 6 Let $T: V \mapsto V$ be some mapping defined on some vector space V. Any vector $v \in V$ for which T(v) = v is called a fixed point of T.

The **Banach fixed-point theorem** says that a contraction T in a Banach space always has a <u>unique</u> fixed point, and iterating T will always converge to it:

Theorem 1 Let V be a Banach space and $T: V \mapsto V$ be a contraction mapping. Then T has a unique fixed point v^* . Furthermore, for any $v_0 \in V$, let $(v_n; n \ge 0)$ be the sequence of vectors defined via $v_{n+1} = T(v_n)$. For any v_0 , this sequence converges to v^* .

1 Iterative Policy Evaluation [5 points]

In the lecture, we learned about computing the value function v_{π} by solving the Bellman equation via closed-form matrix inversion. However, this approach does not scale well to large-scale MDPs. To this end, we considered an iterative approach based on the Bellman equation, i.e. interpreting the Bellman equation as an update rule:

$$V_{new}(s) \leftarrow r(s) + \gamma \sum_{s'} p(s'|s) V_{old}(s'), \tag{2}$$

where γ is the discounting factor, r(s) is the expected reward function and p(s'|s) is the state transition. Iterative Policy Evaluation is detailed in Algorithm 1.

```
Algorithm 1: Iterative Policy Evaluation, for estimating V \approx v_{\pi}

Input: \pi, the policy to be evaluated

Data: a small threshold \theta > 0 determining accuracy of estimation

Output: V \approx v_{\pi}
initialize V(s) arbitrarily for all s \in \mathcal{S}, and V(\text{terminal}) to 0;

repeat

\begin{array}{c|c} \Delta \leftarrow 0; \\ \text{foreach } \underline{s} \in \mathcal{S} \text{ do} \\ v_{old} \leftarrow V(s); \\ V(s) \leftarrow r(s) + \gamma \sum_{s'} p(s'|s) V(s'); \\ \Delta \leftarrow \max(\Delta, |v_{old} - V(s)|); \\ \text{end} \\ \text{until } \Delta < \theta; \end{array}
```

Your task: Prove that for $\gamma < 1$, Iterative Policy Evaluation (Algorithm 1) always converges to v_{π} , for any MDP, any policy π and any initialization of V(s). The key step is to interpret the value function as a $|\mathcal{S}|$ -dimensional Euclidean vector and show that the Bellman equation is a <u>contraction</u> for any $\gamma < 1$. When this has been shown, the rest of the proof (which should be provided) will follow via Banach's fixed point theorem.