

Precision Reference

FEATURES

- 6.95V Shunt Reference
- Guaranteed 0.5ppm/°C Temperature Coefficient
- Guaranteed 1Ω Maximum Dynamic Impedance
- Guaranteed 20µV_{RMS} Maximum Noise Guaranteed Initial Tolerance of 2%
- Wide Operating Current Range
- Available in 4-Lead TO-46 Metal Can

APPLICATIONS

- Precision Voltage Reference for Multimeters
- Calibration Equipment Voltage Standards
- Laboratory Measurement Equipment
- Industrial Monitor/Control Instruments
- High Accuracy Data Converters

DESCRIPTION

The LM199/LM399 precision shunt reference features excellent temperature stability over a wide range of voltage, temperature and operating current conditions. A stabilizing heater is incorporated with the active Zener on a monolithic substrate which nearly eliminates changes in voltage with temperature. The subsurface Zener operates over a current range of 0.5mA to 10mA, and offers minimal noise and excellent long-term stability.

Ideal applications for the LM199/LM399 include digital voltmeters, precision calibration equipment, current sources and a variety of other precision low cost references. A 10V buffered reference application is shown below.

17, LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

10V Buffered Reference

Reverse Voltage Change

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Temperature Stabilizer40V
Reverse Breakdown Current20mA
Forward Current1mA
Reference to Substrate Voltage, V _{RS} (Note 2)0.1V
Operating Temperature Range
LM199/LM199A (OBSOLETE)55°C to 125°C
LM399/LM399A0°C to 70°C
Storage Temperature Range
LM199/LM199A (OBSOLETE)65°C to 150°C
LM399/LM399A65°C to 150°C
Lead Temperature (Soldering, 10 sec)300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

Lead Free Part Marking: http://www.linear.com/leadfree/

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. (Note 3)

			LM ⁻	199/LM	199A	LM399/LM399A				
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
$\overline{V_Z}$	Reverse Breakdown Voltage	$0.5\text{mA} \le I_R \le 10\text{mA}$	•	6.8	6.95	7.1	6.75	6.95	7.3	V
ΔV_Z	Reverse Breakdown Voltage Change with Current	0.5mA ≤ I _R ≤ 10mA	•		6	9		6	12	mV
r_Z	Reverse Dynamic Impedance	$I_R = 1 \text{ mA (Note 6) (10Hz} \le f \le 100 \text{Hz})$	•		0.5	1		0.5	1.5	Ω
$\Delta V_Z \over \Delta Temp$	Temperature Coefficient LM199/LM399	$-55^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$ $85^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$ $0^{\circ}\text{C} \le T_{A} \le 70^{\circ}\text{C}$			0.3 5	1 15		0.3	2	ppm/°C ppm/°C ppm/°C
	LM199A/LM399A	$-55^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$ $85^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$ $0^{\circ}\text{C} \le T_{A} \le 70^{\circ}\text{C}$			0.2 5	0.5 10		0.3	1	ppm/°C ppm/°C ppm/°C
e _n	RMS Noise	10Hz ≤ f ≤ 10kHz	•		7	20		7	50	μV
$\frac{\Delta V_Z}{\Delta Time}$	Long-Term Stability	Stabilized, $22^{\circ}\text{C} \le T_{A} \le 28^{\circ}\text{C}$, 1000 Hours , $I_{R} = 1\text{mA} \pm 0.1\%$			8	(Note 4)		8	(Note 4)	ppm/√kH
I _H	Temperature Stabilizer Supply Current	$T_A = 25$ °C, Still Air, $V_H = 30V$ $T_A = -55$ °C (Note 5)			8.5 22	14 28		8.5	15	mA
V_{H}	Temperature Stabilizer Supply Voltage		•	9		40	9		40	V
	Warm-Up Time to ±0.05% V _Z	V _H = 30V			3			3		Seconds
	Initial Turn-On Current	9V ≤ V _H ≤ 40V (Note 5)			140	200		140	200	mA

LM199399fb

ELECTRICAL CHARACTERISTICS

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The substrate is electrically connected to the negative terminal of the temperature stabilizer. The voltage that can be applied to either terminal of the reference is 40V more positive or 0.1V more negative than the substrate.

Note 3: These specifications apply for 30V applied to the temperature stabilizer and $-55^{\circ}C \le T_{A} \le 125^{\circ}C$ for the LM199; and $0^{\circ}C \le T_{A} \le 70^{\circ}C$ for the LM399.

Note 4: Devices with maximum guaranteed long-term stability of 20ppm/√kH are available. Drift decreases with time.

Note 5: This initial current can be reduced by adding an appropriate resistor and capacitor to the heater circuit. See the Typical Performance Characteristics graphs to determine values.

Note 6: Guaranteed by "Reverse Breakdown Change with Current."

TYPICAL PERFORMANCE CHARACTERISTICS

LM199399fb

TYPICAL PERFORMANCE CHARACTERISTICS

FUNCTIONAL BLOCK DIAGRAM

TYPICAL APPLICATIONS

Single Supply Operation

Split Supply Operation

Negative Heater Supply with Positive Reference

Standard Cell Replacement

TYPICAL APPLICATIONS

Portable Calibrator

SCHEMATIC DIAGRAMS

Temperature Stabilizer

Reference

PACKAGE DESCRIPTION

H Package 4-Lead TO-46 Metal Can

(Reference LTC DWG # 05-08-1341)

- *LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND .050" BELOW THE REFERENCE PLANE
- **FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS $\frac{.016 .024}{(0.406 0.610)}$

Thermal Shield* for TO-46, H Package

* THERMAL SHIELD MATERIAL IS VALOXTM. VALOX IS A TRADEMARK OF GENERAL ELECTRIC

LM199/LM399 LM199A/LM399A

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1021	Precision References for Series or Shunt Operation	Industry Standard Pinout, -40°C to 125°C
LT1389	1.25V, 2.5V, 4V and 5V Nanopower Shunt Reference	800nA, 0.05% Accuracy, 10ppm/°C Drift
LT1634	1.25 and 2.5V Micropower Shunt Reference	0.05%, 10ppm/°C, 10μA Current
LTZ1000	7V Ultra Precision, Stable Shunt Reference	0.05ppm/°C, 1.2mV _{P-P} Noise