

KB9012 Keyboard Controller Data Sheet

Revision 0.9 June 2010

ENE RESERVES THE RIGHT TO AMEND THIS DOCUMENT WITHOUT NOTICE AT ANY TIME. ENE ASSUMES NO RESPONSIBILITY FOR ANY ERRORS APPEAR IN THE DOCUMENT, AND ENE DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF ENE PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, OR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

Headquarters Taipei Office

4F-1, No.9, Prosperity Rd.,

Science-based Industrial Park,

Hsinchu City, Taiwan, R.O.C

TEL: 886-3-6662888

4F, No.88, Bauchiau Rd.

Shindian City, Taipei,

Taiwan, R.O.C.

TEL: 886-2-89111525

FAX: 886-2-89111523

Copyright©2011, ENE Technology Inc. All rights reserved.

ENE Technology Inc. Confidential Document Restricted Circulation

- This document is issued for _____ only. Please do not transfer it to other companies.
- This document is the property of ENE Technology Corp. It should be returned once unused.
- Please do not make any copy of this document and deliver to others.

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION OF ENE PRODUCTS. ANY UNAUTHORIZED USE OR DISCLOSURE COULD IMPACT ENE'S COMPETITIVE ADVANTAGE.

	This document issued to:
Recipient	
Company	
Serial Number	

Revision

Revision	Description	Date
0.1	Draft with only pin-assignment and IO cells	2010/5
0.2	1. Re-organize contents,	2010/6
	2. Update IO cell name / structure	
	3. Update Memory Map	
	4. Reserved all electronic character for design characteristic only	
0.3	Update IO cell drive	2010/6
0.4	Update Block Diagram with GWG	2010/10
	Correct IO cells typo, remove BQCZT04HIV	
	3. Update power-fail flag in application appendix	
	4. Update Register files as following:	
	5. Update IKB HW command brief	
	6. Update Open-Drain PWM register	
	7. Modify SHDI registers for fixed clock source, SHI modes	
	Update WDT registers breathe LED flexible configuration	
	Update LPC MEM cycle map to XRAM illustration	
	10. Update XBI for e-flash operation and remove SHC description	
	11. Update GWG register as new-added functions	
	12. Update EC section registers for VC/PLC/ADC	
	13. Update SMB, extend previously banked-REGs, slave address	
	14. Update power-latch&voltage comparator in application appendix	
0.5	1. Undata CTOD made naviar as navimntian	2010/10
0.5	1. Update STOP mode power consumption	2010/10
0.6	2. Add KBC POR and ECRST# timing 1. Update KB9012 A1 P/N	2010/12
0.6	Fix register typo, TCON W0C	2011/01
0.7	2. Update PCON2 description	2011/01
	3. Update GPIO_MISC for SHDI pin-out enable for each ports	
	4. Fix WDTCFG description of WDT disable password	
	5. Update SHDI clock setting	
	6. Update XBIMISC IC trimming status	
0.8	1. Update PS/2 Timing	2011/03
	2. Remove external SPI flashing timing	
	3. Update BQCZT04IV cell character	
	4. Update ESD information	
	5. Update thermal information	
	6. Update 9012A2 into P/N list and VC related setting. Please refer	
	ECN for details.	
0.9	1. Update 9012A3 into P/N list and related changes. Please refer	2011/06
	ECN for details.	
	2. Remove 4.13.3 & 4.13.4 LPC/FWH Memory decode range;	
	remove Bank0 0xFE90[3], 0xFE94[7:0], 0xFE95[2],[7]	
	Bank1 0xFE92[5:0], 0xFE93[5:0]	
	3. Refine WDT breath LED similar to non-embedded-flash product	
	4. Refine ECMISC, IOSCCR for power consumption control	
	5. Refine function select control of tables SDI boot two ports select in by GPIO. MISCI2:11	
	SDI host two ports select is by GPIO_MISC[2:1]	
	GPIO5D/5E (Crystal) is by CLK32CR[5:4]	
	VCouts are by GPIOFSx Vcins are by VCCR[1:0]	
	6. Revise application appendix to correspond latest setting	
1.0	Refine hardware trap section, recover FDA trap in A3 version	2011/06
1.0	1. Refine flardware trap section, recover FDA trap in A3 version	2011/06

CONTENT

C	ONTENT	II
1	. GENERAL DESCRIPTION	0
	1.1 Overview	0
	1.2 FEATURES	1
	1.3 COMPARISON (KB930 vs. KB9012)	6
	1.4 BLOCK DIAGRAM	7
2	. PIN ASSIGNMENT AND DESCRIPTION	
	2.1 KB9012 128-PIN LQFP DIAGRAM TOP VIEW	8
	2.2 KB9012 128 LFBGA BALL MAP	9
	2.3 KB9012 PIN ASSIGNMENT SIDE A	. 10
	2.4 KB9012 PIN ASSIGNMENT SIDE B	11
	2.5 KB9012 PIN ASSIGNMENT SIDE C	
	2.6 KB9012 PIN ASSIGNMENT SIDE D	. 13
	2.7 I/O CELL DESCRIPTIONS	. 14
	2.7.1 I/O Buffer Table	
	2.7.2 I/O Buffer Characteristic Table	
3	. PIN DESCRIPTIONS	. 15
	3.1 HARDWARE TRAP	. 15
	3.2 PIN DESCRIPTIONS BY FUNCTIONS	. 16
	3.2.1 Low Pin Count I/F Descriptions	. 16
	3.2.2 PS/2 I/F Descriptions	. 16
	3.2.3 Internal Keyboard Encoder (IKB) Descriptions	. 16
	3.2.4 SMBus Descriptions	
	3.2.5 FAN Descriptions	
	3.2.6 Pulse Width Modulation (PWM) Descriptions	
	3.2.7 Analog-to-Digital Converter Descriptions	
	3.2.8 Digital-to-Analog Converter Descriptions	
	3.2.10 External Clock Descriptions	
	3.2.11 Miscellaneous Signals Descriptions	
	3.2.12 Voltage Comparator Pins Descriptions	
	3.2.13 Power Pins Descriptions	
	3.2.14 510N Power Pins Descriptions	. 19

4. MODULE DESCRIPTIONS	20
4.1 CHIP ARCHITECTURE	20
4.1.1 Power Planes	20
4.1.2 Clock Domains	
4.1.3 PCICLK and CLKRUN#	
4.1.4 Internal Memory Map	
4.2 GPIO	25
4.2.1 GPIO Function Description	
4.2.2 GPIO Structures	
4.2.3 GPIO Attribution Table	
4.2.4 GPIO Registers Descriptions (0xFC00~0xFC7F)	
4.2.5 GPIO Programming Sample	
4.3 KEYBOARD AND MOUSE CONTROL INTERFACE (KBC)	
4.3.1 KBC I/F Function Description	
4.3.2 KBC Registers Description (0xFC80~0xFC8F)	
4.4 ENE SERIAL BUS CONTROLLER (ESB)	54
4.4.1 ESB Function Description	54
4.4.2 ESB Registers Description (0xFC90~0xFC9F)	55
4.4.3 ESB Programming Sample	60
4.5 INTERNAL KEYBOARD (IKB) ENCODER	61
4.5.1 IKB Function Description	61
4.5.2 IKB Registers Description (0xFCA0~0xFCAF)	63
4.5.3 IKB Matrix Value Mapping Table	69
4.6 PECI	72
4.6.1 PECI Functional Description	72
4.6.2 PECI Timing Setting	73
4.6.3 PECI Register Description (0xFCD0~0xFCDF)	74
4.7 OWM	78
4.7.1 OWM Functional Description	78
4.7.2 OWM Timing Setting Illustration	79
4.7.3 OWM Register Description (0xFCF0~0xFCFF)	80
4.8 Pulse Width Modulation (PWM)	83
4.8.1 PWM Function Description	83
4.8.2 PWM Duty Cycle Setting Illustration	84
4.8.3 PWM Registers Description (0xFE00~0xFE1F)	87
4.9 FAN CONTROLLER	90

4.9.1 Fan Function Description	90
4.9.1.1 Fan Tachometer Monitor & Auto-FAN mode	91
4.9.1.2 FANPWM Setting & Fixed-FAN Mode	92
4.9.2 Fan Registers Description (0xFE20~0xFE4F)	93
4.9.3 Fan Programming Sample	99
4.10 GENERAL PURPOSE TIMER (GPT)	100
4.10.1 GPT Function Description	100
4.10.2 GPT Registers Description (0xFE50~0xFE6F)	101
4.10.3 GPT Programming Sample	
4.11 SDI Host/Device Interface Controller	
4.11.1 SDI Host/Device Interface Description	
4.11.2 SDI Host Interface Register Description (0xFE70~0xFE7F)	106
4.11.3 SDI Device Interface Register Description (0xFE70~0xFE7F	_
4.11.4 SDI Programming Sample	111
4.12 WATCHDOG TIMER (WDT)	112
4.12.1 WDT Function Description	112
4.12.2 Setting for WDT Breathing LED	113
4.12.3 WDT Registers Description (0xFE80~0xFE8F)	114
4.12.4 WDT Programming Sample	118
4.13 Low Pin Count Interface (LPC)	119
4.13.1 LPC Function Description	119
4.13.2 LPC I/O Decode Range	119
4.13.3 Index-I/O Port	120
4.13.4 LPC to MEM cycle XRAM	121
4.13.5 Extended I/O Port (Debug Port, Port80)	123
4.13.6 LPC Registers Description (0xFE90~0xFE9F for bank selection)	tion) 124
4.14 X-Bus Interface (XBI)	132
4.14.1 XBI Function Description	132
4.14.2 XBI Registers Description (0xFEA0~0xFEBF)	133
4.15 CONSUMER IR CONTROLLER (CIR)	138
4.15.1 CIR Function Description	138
4.15.2 CIR Block Diagram	140
4.15.3 CIR Remote Protocol	141
4.15.3.1 Philips RC5 Protocol	141
4.15.3.2 Philips RC6 Protocol	
4.15.3.3 NEC Protocol	
4.15.4 CIR Automatic Carrier Frequency Detection and Modulation	143

4.15.5 CIR Registers Description (0xFEC0~0xFECF)4.15.6 CIR Programming Sample	
4.16 GENERAL WAVEFORM GENERATOR (GWG)	
4.16.1 GWG Function Description	
4.16.2 GWG Register Description (0xFED0~0xFEDF)	
4.17 PS/2 INTERFACE (PS/2)	
4.17.1 PS/2 Interface Function Description	
4.17.2 PS/2 Interface Registers Description (0xFEE0~0xFEFF)	
4.18 EMBEDDED CONTROLLER (EC)	157
4.18.1 EC Function Description	157
4.18.2 EC Command Program Sequence	
4.18.3 EC SCI Generation	
4.18.4 EC/KBC Clock Configuration	
4.18.5.1 A/D Converter Control	
4.18.5.2 A/D Panel Drive Mode	
4.18.6 D/A Converter Control	
4.18.7 Power Management Control	
4.18.8 EC Registers Description (0xFF00~0xFF2F)	
4.19 GENERAL PURPOSE WAKE-UP CONTROLLER (GPWU)	
4.19.1 GPWU Function Description	
4.19.2 GPWU Registers Description (0xFF30~0xFF7F)	
4.19.3 GPWU Programming Sample	
4.20 SYSTEM MANAGEMENT BUS CONTROLLER (SMBUS)	
4.20.1 SMBus Function Description	188
4.20.2 SMBus Controller 0 Register Description (0xFF90~0xFFBF)	
4.20.3 SMBus Controller 1 Register Description (0xFFD0~0xFFFF)	196
4.21 8051 MICROPROCESSOR	201
4.21.1 8051 Microprocessor Function Description	201
4.21.2 8051 Microprocessor Instruction	202
4.21.3 8051 Interrupt Controller	
4.21.4 Interrupt Enable/Flag Table	
4.21.5 8051 Special Function Register (SFR)	
4.21.6 8051 Microprocessor Register Description	
APPLICATION APPENDIX :	218
A.1 ENE DEBUG INTERFACE, EDI	218
A.1.1 Enable EDI	219

	A.1.2 EDI Instructions	219
	A.1.3 Read Command	220
	A.1.4 Write Command	220
	A.1.5 Disable EDI Command	221
	A.2 POWER-LATCH	222
	A.3 VOLTAGE COMPARATOR	223
	A.4 Power Fail Flag Brief Description	225
	A.5 EMBEDDED FLASH BRIEF DESCRIPTION	226
5	ELECTRICAL CHARACTERISTICS	227
	5.1 ABSOLUTE MAXIMUM RATING	227
	5.2 DC ELECTRICAL CHARACTERISTICS	
	BQCZ16HIV	
	BQC04HIV	<u></u> .
	BQCW16HIV	
	BQC04HI	
	BQC08HIV	228
	BQC04HIVPECI	229
	BQCZT04IV (XCLKI, XCLKO, ADC/DAC)	230
	5.3 A/D & D/A CHARACTERISTICS	231
	5.4 RECOMMEND OPERATION CONDITION	232
	5.5 OPERATING CURRENT	232
	5.6 PACKAGE THERMAL INFORMATION	232
	5.7 AC ELECTRICAL CHARACTERISTICS	233
	5.7.1 KBC POR and ECRST#	233
	5.7.2 LPC interface Timing	234
	5.7.3 PS/2 interface Timing	236
	5.7.4 SMBus interface Timing	237
6	PACKAGE INFORMATION	238
	6.1 LQFP 128-PIN OUTLINE DIAGRAM	238
	6.1.1 Top View	238
	6.1.2 Side View	239
	6.1.3 Lead View	240
	6.1.4 LQFP Outline Dimensions	241
	6.2 LFBGA 128-PIN OUTLINE DIAGRAM	242
	6.2.1 Top View	242
	6.2.2 Side View	243

6.2.3 Bottom View	244
6.2.4 LFBGA Outline Dimensions	245
6.3 DADT NUMBER DESCRIPTION	246

1. General Description

1.1 Overview

The ENE KB9012 is a customized IC based on KB9010 for specific application of minimizing power-consumption. Several pins are provided for external power-latch to save power-consumption. IO characteristic and cells are also improved.

The ENE KB901x series is embedded controller (EC) with embedded-Flash for notebook platforms. In KB9012, the e-Flash is 128KB. The embedded controller contains industrial standard 8051 microprocessor and provides function of i8042 keyboard controller basically. KB9012 is embedded LPC interface used to communicate with Host. The embedded controller also features rich interfaces for general applications, such as PS/2 interface, Keyboard matrix encoder, PWM controller, A/D converter, D/A converter, Fan controller, SMBus controller, GPIO controller, PECI controller, one wire master, SPI controller, and extended interface (ENE Serial Bus) for more applications, like capacitive touch button application and GPIO extender.

Compared with last generation of KB3926 series, KB9012 added PECI/OWM, another 2 SMBus, another 2 Fan tachometers, enhanced SPI host/slave controller, internal oscillator for newest application. KB9012 also improves structure of other modules including 8051, XBI, LPC, IKB, FAN, WDT, GPIO, ESB, EDI. For detail improvement, please refer the related section.

1.2 Features

LPC Low Pin Count Interface

- SIRQ supporting IRQ1, IRQ12, SCI or SMI# interrupt and one programmable IRQ provided.
- I/O Address Decoding:
 - Legacy KBC I/O port 60h/64h
 - Programmable EC I/O port, 62h/66h(recommend)
 - I/O port 68h/6Ch (sideband)
 - 2 Programmable 4-byte Index-I/O ports to access internal EC registers.
- Memory Decoding:
 - Firmware Hub decode
 - LPC memory decode
- Compatible with LPC specification v1.1
- Support LPC interface re-direction to IKB for debugging

X-bus Bus Interface (XBI): Flash Interface

- Embedded 128KB flash support
- The 64KB code memory can be mapped into system memory by one 16KB and one 48KB programmable pages independently.
- Enhanced pre-fetch mechanism.

8051 Microprocessor

- Compatible with industrial 8051 instructions with 3 cycles.
- 8051 runs at 8/16/22 MHz, programmable.
- 256 bytes internal RAM. (special design) and 4KB tight-coupled SRAM.
- 24 extended interrupt sources.
- Two 16-bit timers.
- Supports idle and stop mode.
- Enhanced embedded debug interface.
- Support Tx/Rx and support re-direction to IKB for debugging

8042 Keyboard Controller

- 8 standard 8042 commands processed by hardware.
- Each hardware command can be optionally processed by firmware.
- Pointing device multiplex mode support.
- Fast GA20 and KB reset support.

PS/2 Controller

- Support at most 3 external PS/2 devices.
- External PS/2 device operation in firmware mode.

Internal Keyboard Matrix (IKB)

- 18x8 keyboard scan matrix.
- Support W2K Internet and multimedia keys.
- Support hotkey events defined.
- Ghost key cancellation mechanism provided.
- Enhanced de-bounce feature added

Embedded Controller (EC)

- ACPI Spec 2.0 compliant.
- 5 standard EC commands supported directly by hardware.
- Each hardware command can be processed by firmware optionally.
- Programmable EC I/O ports, 62h/66h by default.

SMBus Host Controller

- 4 SMBus Interfaces with 2 SMBus Controllers
- SMBus Spec 2.0 compliant.
- Byte mode support.
- Slave function support.

Digital-to-Analog Converter (DAC)

- 4 DAC channels with 8-bit resolution.
- All pins of DAC can be alternatively configured as GPIO.

Analog-to-Digital Converter (ADC)

- 8 ADC channels with 10-bit resolution.
- All pins of ADC can be alternatively configured as GPIO.

Pulse Width Modulator (PWM)

- 6 PWM channels are provided. (8-bit *2, 14-bit *2 and FANPWM(12-bit) *2)
- Clock source selectable:.
 - 1MHz/64KHz/4KHz/256Hz (for 8-bit PWM)
 - Peripheral clock or 1MHz (for 14-bit PWM)
 - Peripheral clock (for FANPWM)
- Duty cycle programmable and cycle time up to 1 sec(for 8-bit PWM)

WatchDog Timer (WDT)

- 32.768KHz input clock.
- 10-bit counter with 32ms unit for watchdog reset.
- Three watchdog reset mechanism.
 - Reset 8051
 - Reset whole chip, except GPIO.
 - Reset whole chip including GPIO.
- WDT breathing LED

Real Time Clock

- 32.768KHz input clock.
- 24-bit timer support.

General Purpose Timer (GPT)

Two 16-bit and two 8-bit general purpose timer with 32.768KHz clock source.

General Purpose Wakeup (GPWU)

 Those I/O with GPI (general purpose input) configuration can generate interrupts or wakeup events, including pins named in GPXIOAxx.

General Purpose Input/Output (GPIO)

- All general purpose I/O can be programmed as input or output.
- All output pins can be configured to be tri-state optionally.
- All input pins are equipped with pull-up, high/low active and edge/level trigger selection.
- All pins of DAC can be configured as GPIO.
- All pins of ADC can be configured as GPIO.
- A specific pair of GPIO pins with signal pass-through feature.
- GPIO50 for external lock signal set by firmware, un-locked by PCIRST# falling

FAN Controller

- Two fan controllers with tachometer inputs.
- Automatic fan control support.
- 12-bit FANPWM support.

Consumer IR (CIR)

- Several protocols decoded/encoded by hardware.
- Interrupt for CIR application.
- Support wide/narrow band receiver.
- Transmit/Receive simultaneously.
- Remote power-on support.

ENE Serial Bus Interface (ESB)

- A proprietary and flexible interface for extension with ENE KBC.
- Firmware accesses ESB devices via internal memory address directly.
- Interrupt capability.

ENE Debug Interface (EDI)

- Flexible debug interface with IKB pins.
- Keil-C development tool compatible
- EDI detect frequency support 1M~8M

SPI Device Interface (SHDI)

- A enhanced SPI host/device controller is embedded in the KBC.
- Flexible design for SPI applications.

One Wire Master (OWM)

• Embedded One Wire controller used to control one wire devices.

PECI Interface

- Support Intel PECI.
- Support wide speed range from 2Kbps to 2Mbps.

Power Management

- Sleep mode: 8051 program counter (PC) stops and enters idle mode.
- Deep sleep mode: All clocks stop except external 32.768KHz OSC. 8051 enters stop mode.
- 510N power management function

MISC

- Support General Waveform Generator to easily and accurately generate us-scale to ms-scale specific waveform.
- Support two voltage comparators. Two voltage input sources to compare with internal DAC voltage value, and response the comparison result on two digital outputs, used to detect abnormal situation (like over temperature and etc.).

Package

• 128-pin LQFP package, Lead Free (RoHS).

1.3 Comparison (KB930 vs. KB9012)

•	KB930A	KB9012			
Microprocessor	8051 (256byte IRAM)	8051 (256byte IRAM)			
Built-in SRAM	4KB	4KB			
LPC	2 index-I/O sets	2 index-I/O sets			
Flash	None	Embedded flash 128KB			
Real Time Clock	support	Support			
ADC	Six 10-bit ADC channels	Eight 10-bit ADC channels			
DAC	Four 8-bit DAC channels	Four 8-bit DAC channels			
WDT	32ms timer unit with 10bits control	32ms timer unit with 10bits control			
OWM	Support	Support			
PWM	6 sets	6 sets			
	PWM0/1 – 8 bit	PWM0/1 – 8 bit			
	PWM2/3 – 14 bit	PWM2/3 – 14 bit			
	FANPWM0/1 – 12 bit	FANPWM0/1 – 12 bit			
External PS/2 I/F	3	3			
GPIO	Programmable Bi-direction I/O	Programmable Bi-direction I/O			
	GPIO pass through: 1 pair	GPIO pass through : 1 pair			
	Max 100 pins I/O	Max 106 pins I/O			
		All GPIO are bi-directional			
		All GPIO are wake-up enable			
IKB Matrix	18x8	18x8			
FAN controller	2 (Enhanced precision and 2	2 (Enhanced precision and 2			
	additional Tachometer Monitors)	additional Tachometer Monitors)			
GPT	4	4			
SMBus	4 Interfaces with 2 controllers	4 (F/W updated)			
0.5	Byte mode support	Byte mode support			
CIR	Hardware encode/decode	Hardware encode/decode			
	IRQ and I/O port support	IRQ and I/O port support			
	Carrier frequency calculation	Carrier frequency calculation			
	TX with carrier modulation	TX with carrier modulation			
	Learning mode support TX/RX simultaneously	Learning mode support TX/RX simultaneously			
PECI	Support PECI 3.0	Support PECI 3.0			
EDI	Support	Support PECI 3.0			
ESB	Support	Support			
SDI/SHDI	SDI Host/Slave support	SDI Host/Slave support			
MISC	Voltage Comparator	Voltage Comparator (Different pin-out			
IVIISC	voltage Comparator	compared with KB930)			
		General Waveform Generator			
		510N Power Management			
Package	128 LQFP	128 LQFP			
Dimension	14mmx14mm	14mmx14mm			
Dimonolori	1 1111111111111111111111111111111111111				

1.4 Block Diagram

2. Pin Assignment and Description

2.1 KB9012 128-pin LQFP Diagram Top View

2.2 KB9012 128 LFBGA Ball Map

2.3 KB9012 Pin Assignment Side A

KB9012 Pin No.	KB9012 BGA	Name	GPIO	Alt Output	Alt. Input	Default	ECRST# L/H	IO CELL
1	M2	GA20	GPIO00	GA20		GPIO00	HiZ / HiZ	BQC04HIV
2	L2	KBRST#	GPIO01	KBRST#		GPIO01	HiZ / HiZ	BQC04HIV
3	М3	SERIRQ					HiZ / HiZ	BQCZ16HIV
4	K4	LFRAME#					HiZ / HiZ	BQCZ16HIV
5	N3	LAD3					HiZ / HiZ	BQCZ16HIV
6	J5	GPIO04	GPIO04			GPIO04	HiZ / HiZ	BQC04HIV
7	M4	LAD2					HiZ / HiZ	BQCZ16HIV
8	K5	LAD1					HiZ/HiZ	BQCZ16HIV
9		VCC						VCC
10	N4	LAD0					HiZ/HiZ	BQCZ16HIV
11		GND						GND
12	N5	PCICLK					HiZ / HiZ	BQCZ16HIV
13	M5	PCIRST#	GPIO05		PCIRST#	GPIO05	IE / IE	BQCZ16HIV
14	N9	GPIO07	GPIO07	i_clk_8051		GPIO07	HiZ / HiZ	BQC04HIV
15	L13	GPIO08	GPIO08	i_clk_peri		GPIO08	HiZ / HiZ	BQC04HIV
16	K6	GPIO0A	GPIO0A	OWM	RLC_RX2 OWM	GPIO0A	HiZ / HiZ	BQC04HIV
17	N7	GPIO0B	GPIO0B	ESB_CLK		GPIO0B	HiZ / HiZ	BQCW16HIV
18	M7	GPIO0C	GPIO0C	ESB_DAT	ESB_DAT	GPIO0C	HiZ / HiZ	BQC08HIV
19	N8	GPIO0D	GPIO0D	RLC_TX2		GPIO0D	HiZ / HiZ	BQC04HIV
20	N6	SCI#	GPIO0E	SCI#		GPIO0E	HiZ / HiZ	BQC04HIV
21	M9	PWM0	GPIO0F	PWM0		GPIO0F	HiZ / HiZ	BQCZ16HIV
22	K7/J7	VCC	VCC					VCC
23	М8	PWM1	GPIO10	PWM1		GPIO10	HiZ / HiZ	BQC04HIV
24	J8/J9/J10	GND	GND					GND
25	K8	GPIO11	GPIO11	PWM2		GPIO11	HiZ / HiZ	BQC04HIV
26	M10	FANPWM0	GPIO12	FANPWM0		GPIO12	HiZ / HiZ	BQC04HIV
27	N10	FANPWM1	GPIO13	FANPWM1		GPIO13	HiZ / HiZ	BQC04HIV
28	M11	FANFB0	GPIO14		FANFB0	GPIO14	HiZ / HiZ	BQC04HIV
29	N11	FANFB1	GPIO15		FANFB1	GPIO15	HiZ / HiZ	BQC04HIV
30	K10	GPIO16	GPIO16	E51TXD		GPIO16	HiZ / HiZ	BQC04HIV
31	K9	GPIO17	GPIO17	E51CLK	E51RXD	GPIO17	HiZ / HiZ	BQC04HIV
32	N12	GPIO18	GPIO18	POWER_FAIL1		GPIO18	HiZ / HiZ	BQC04HIV

2.4 KB9012 Pin Assignment Side B

KB9012 Pin No.	KB9012 BGA	Name	GPIO	Alt Output	Alt. Input	Default	ECRST# L/H	IO CELL
33		VCC						VCC
34	M13	GPIO19	GPIO19	PWM3		GPIO19	HiZ / HiZ	BQCZ16HIV
35		GND						GND
36	L12	GPIO1A	GPIO1A	NUMLED#		GPIO1A	HiZ / HiZ	BQC20HIV
37	K13	ECRST#					IE / IE	BQC04HIV
38	M6	CLKRUN#	GPIO1D	CLKRUN#	CLKRUN#	GPIO1D	HiZ / HiZ	BQCZ16HIV
39	J13	KSO0	GPIO20	KSO0	TP_TEST	GPIO20	IE(PU)/IE(PU)	BQC04HIV
40	J12	KSO1	GPIO21	KSO1	TP_PLL	GPIO21	IE(PU)/IE(PU)	BQC04HIV
41	H12	KSO2	GPIO22	KSO2	TP_TMUX	GPIO22	IE(PU)/IE(PU)	BQC04HIV
42	H13	KSO3	GPIO23	KSO3	TP_PLL_LOCK	GPIO23	IE(PU)/IE(PU)	BQC04HIV
43	H10	KSO4	GPIO24	KSO4		GPIO24	HiZ / HiZ	BQC04HIV
44	H9	KSO5	GPIO25	KSO5	PCICLK (LPC)	GPIO25	HiZ / HiZ	BQCZ16HIV
45	G9	KSO6	GPIO26	KSO6	PCIRST# (LPC)	GPIO26	HiZ / HiZ	BQC04HIV
46	G10	KSO7	GPIO27	KSO7 SERIRQ(LPC)	SERIRQ(LPC)	GPIO27	HiZ / HiZ	BQC04HIV
47	G13	KSO8	GPIO28	KSO8	LFRAME# (LPC)	GPIO28	HiZ / HiZ	BQC04HIV
48	G12	KSO9	GPIO29	KSO9		GPIO29	HiZ / HiZ	BQC04HIV
49	F13	KSO10	GPIO2A	KSO10		GPIO2A	HiZ / HiZ	BQC04HIV
50	F12	KSO11	GPIO2B	KSO11 LAD3(LPC)	LAD3(LPC)	GPIO2B	HiZ / HiZ	BQC04HIV
51	F10	KSO12	GPIO2C	KSO12 LAD2(LPC)	LAD2(LPC)	GPIO2C	HiZ / HiZ	BQC04HIV
52	F9	KSO13	GPIO2D	KSO13 LAD1(LPC)	LAD1(LPC)	GPIO2D	HiZ / HiZ	BQC04HIV
53	E10	KSO14	GPIO2E	KSO14 LAD0(LPC)	LAD0(LPC)	GPIO2E	HiZ / HiZ	BQC04HIV
54	E9	KSO15	GPIO2F	KSO15	(E51_RXD)	GPIO2F	HiZ / HiZ	BQC04HIV
55	D9	KSI0	GPIO30	(E51_TXD)	KSI0	GPIO30	IE(PU)/IE(PU)	BQC04HIV
56	E12	KSI1	GPIO31		KSI1	GPIO31	IE(PU)/IE(PU)	BQC04HIV
57	E13	KSI2	GPIO32		KSI2	GPIO32	IE(PU)/IE(PU)	BQC04HIV
58	D12	KSI3	GPIO33		KSI3	GPIO33	IE(PU)/IE(PU)	BQC04HIV
59	D13	KSI4	GPIO34		KSI4/EDI_CS	GPIO34	IE(PU)/IE(PU)	BQC04HIV
60	C12	KSI5	GPIO35		KSI5/EDI_CLK	GPIO35	IE(PU)/IE(PU)	BQC04HIV
61	C13	KSI6	GPIO36		KSI6/EDI_DIN	GPIO36	IE(PU)/IE(PU)	BQC04HIV
62	D10	KSI7	GPIO37	EDI_DO	KSI7	GPIO37	IE(PU)/IE(PU)	BQC04HIV
63	B13	AD0	GPIO38		AD0	GPIO38	HiZ / HiZ	BQCZT04IV
64	A13	AD1	GPIO39		AD1	GPIO39	HiZ / HiZ	BQCZT04IV

2.5 KB9012 Pin Assignment Side C

KB9012 Pin No.	KB9012 BGA	Name	GPIO	Alt Output	Alt. Input	Default	ECRST# L/H	IO CELL
65	B12	AD2	GPIO3A		AD2	GPIO3A	HiZ / HiZ	BQCZT04IV
66	A12	AD3	GPIO3B		AD3	GPIO3B	HiZ / HiZ	BQCZT04IV
67	B11	AVCC						AVCC
68	B10	DA0	GPIO3C	DA0		GPIO3C	HiZ / HiZ	BQCZT04IV
69	A11	AGND						AGND
70	A9	DA1	GPIO3D	DA1		GPIO3D	HiZ / HiZ	BQCZT04IV
71	A10	DA2	GPIO3E	DA2		GPIO3E	HiZ / HiZ	BQCZT04IV
72	В9	DA3	GPIO3F	DA3		GPIO3F	HiZ / HiZ	BQCZT04IV
73	В6	AD6	GPIO40		CIR_RX / AD6	GPIO40	HiZ / HiZ	BQCZT04IV
74	В7	AD7	GPIO41	CIR_RLC_TX	AD7	GPIO41	HiZ / HiZ	BQCZT04IV
75	E7	AD4	GPIO42		AD4	GPIO42	HiZ / HiZ	BQCZT04IV
76	D7	AD5	GPIO43		AD5	GPIO43	HiZ / HiZ	BQCZT04IV
77	A8	SCL0	GPIO44	SCL0		GPIO44	HiZ / HiZ	BQC04HI
78	A7	SDA0	GPIO45	SDA0		GPIO45	HiZ / HiZ	BQC04HI
79	B8	SCL1	GPIO46	SCL1		GPIO46	HiZ / HiZ	BQC04HI
80	A6	SDA1	GPIO47	SDA1		GPIO47	HiZ / HiZ	BQC04HI
81	E8	KSO16	GPIO48	KSO16		GPIO48	HiZ / HiZ	BQC04HIV
82	D8	KSO17	GPIO49	KSO17		GPIO49	HiZ / HiZ	BQC04HIV
83	D6	PSCLK1	GPIO4A	PSCLK1 / SCL2		GPIO4A	HiZ / HiZ	BQC04HI
84	E6	PSDAT1	GPIO4B	PSDAT1 / SDA2		GPIO4B	HiZ / HiZ	BQC04HI
85	E5	PSCLK2	GPIO4C	PSCLK2 / SCL3		GPIO4C	HiZ / HiZ	BQCZ16HIV
86	D5	PSDAT2	GPIO4D	PSDAT2 / SDA3		GPIO4D	HiZ / HiZ	BQC20HIV
87	A5	PSCLK3	GPIO4E	PSCLK3		GPIO4E	HiZ / HiZ	BQC04HI
88	B5	PSDAT3	GPIO4F	PSDAT3		GPIO4F	HiZ / HiZ	BQC04HI
89	B4	GPIO50	GPIO50			GPIO50	HiZ / HiZ	BQC04HI
90	A4	GPIO52	GPIO52	E51CS#		GPIO52	HiZ / HiZ	BQC20HIV
91	В3	GPIO53	GPIO53	CAPSLED#	E51TMR1	GPIO53	HiZ / HiZ	BQC20HIV
92	А3	GPIO54	GPIO54	WDT_LED#	E51TMR0	GPIO54	HiZ / HiZ	BQC20HIV
93	A2	GPIO55	GPIO55	SCROLED#	E51INT0	GPIO55	HiZ / HiZ	BQC20HIV
94		GND						GND
95	B2	GPIO56	GPIO56		E51INT1	GPIO56	HiZ / HiZ	BQC04HIV
96		VCC						VCC

2.6 KB9012 Pin Assignment Side D

KB9012 Pin No.	KB9012 BGA	Name	GPIO	Alt Output	Alt. Input	Default	ECRST# L/H	IO CELL
97	B1	GPXIOA00	GPXIOA00	SHICS#	SDICS#		HiZ / HiZ	BQC04HIV
98	A1	GPXIOA01	GPXIOA01	SHICLK	SDICLK		HiZ / HiZ	BQC04HIV
99	C1	GPXIOA02	GPXIOA02	SHIDO	SDIDI		HiZ / HiZ	BQC04HIV
100	D4	GPXIOA03	GPXIOA03	POWER_FAIL0	FANFB2		HiZ / HiZ	BQC04HIV
101	D1	GPXIOA04	GPXIOA04		FANFB3		HiZ / HiZ	BQC04HIV
102	D2	GPXIOA05	GPXIOA05		VCIN1		HiZ / HiZ	BQC04HIV
103	E2	GPXIOA06	GPXIOA06	VCOUT1			HiZ / HiZ	BQC04HIV
104	E4	GPXIOA07	GPXIOA07	VCOUT0			HiZ/HiZ	BQC04HIV
105	E1	GPXIOA08	GPXIOA08				HiZ / HiZ	BQCZ16HIV
106	F4	GPXIOA09	GPXIOA09				HiZ / HiZ	BQCZ16HIV
107	F2	GPXIOA10	GPXIOA10				HiZ / HiZ	BQCZ16HIV
108	F1	GPXIOA11	GPXIOA11	GWG			HiZ / HiZ	BQCZ16HIV
109	C2	GPXIOD00	GPXIOD00	SDIDO	SHIDI / VCIN0		HiZ / HiZ	BQC04HIV
110	F5	GPXIOD01	GPXIOD01		AC_IN		HiZ / HiZ	BQC04HIV
111	J6	VCC_0					HiZ / HiZ	VCC_0
112	G1	GPXIOD02	GPXIOD02	ALW_PWR_EN			HiZ / HiZ	BQC04HIV
113	G2	GND_0					HiZ / HiZ	GND_0
114	G5	GPXIOD03	GPXIOD03	•	ON/OFFBTN#		HiZ / HiZ	BQC04HIV
115	H1	GPXIOD04	GPXIOD04				HiZ / HiZ	BQC04HIV
116	G4	GPXIOD05	GPXIOD05				HiZ / HiZ	BQC04HIV
117	H4	GPXIOD06	GPXIOD06				HiZ / HiZ	BQC04HIV
118	H2	GPXIOD07	GPXIOD07	PECI	PECI		HiZ / HiZ	BQC04HIVPECI
119	K2	GPIO5B	GPIO5B		(MISO)	GPIO5B	HiZ / HiZ	BQCZ16HIV
120	J2	GPIO5C	GPIO5C	(MOSI)		GPIO5C	HiZ / HiZ	BQCZ16HIV
121	H5	GPIO57	GPIO57	XCLK32K		GPIO57	HiZ / HiZ	BQC04HIV
122	J1	GPIO5D	GPIO5D		(XCLKI)	GPIO5D	HiZ / HiZ	BQCZT04IV
123	K1	GPIO5E	GPIO5E		(XCLKO)	GPIO5E	HiZ / HiZ	BQCZT04IV
124	L1	V18R						
125	J4	VCC						VCC
126	M1	GPIO58	GPIO58	(SPICLK)		GPIO58	HiZ / HiZ	BQCW16HIV
127	N1	GPIO59	GPIO59			GPIO59	IE / IE	BQC04HIV
128	N2	GPIO5A	GPIO5A	(SPICS#)		GPIO5A	HiZ / HiZ	BQCZ16HIV

^{*} Please note, crystal pad signal frequency should be lower than 1MHz.

2.7 I/O Cell Descriptions

2.7.1 I/O Buffer Table

Cell	Description	Application
BQCZ16HIV	Schmitt trigger, 16mA Output / Sink Current, Input / Output / Pull Up Enable(40K Ω), 5 V Tolerance.	GPIO, LPC I/F
BQC04HIV	Schmitt trigger, 4mA Output / Sink Current, Input / Output / Pull Up Enable(40K Ω), 5 V Tolerance	GPIO
BQCW16HIV	Schmitt trigger, 16mA Output / Sink Current, 5 V Tolerance, Input / Output / Pull Up Enable	ESB_CLK/ SPI_CLK
BQC04HI	Schmitt trigger, 4mA Output / Sink Current, 5 V Tolerance, Input / Output Enable	GPIO
BQC08HIV	Schmitt trigger, 8mA Output / Sink Current, 5V Tolerance, Input / Output / Pull Up Enable	ESB_DAT
BQC04HIVPECI	Mixed Mode IO, PECI enable, with GPIO GPIO: Schmitt trigger, 4mA Output / Sink Current, PECI: 0.9V~1.2V	PECI, GPIO
BQCZT04IV ***	Mixed Mode IO, AE enable, with GPIO GPIO: Schmitt trigger, 4mA Output / Sink Current, Input / Output / Pull Up Enable	ADC/DAC, XCLKI, XCLKO

2.7.2 I/O Buffer Characteristic Table

Cell	Output	Input	Analog Signal	Pull-High Enable(40k)	5V Tolerance	Current (mA)	Application
BQCZ16HIV		ĵ		•	·	8~16	GPIO, LPC I/F
BQC04HIV		v		~	v	2~4	GPIO
BQCW16HIV	,	v		·	·	8~16	ESB_CLK/ SPI_CLK
BQC04HI	~	~			v	2~4	GPIO
BQC08HIV	~	~		~	v	4~8	ESB_DAT
BQC04HIVPECI	~	~		~	v	2~4	PECI, GPIO
BQCZT04IV	·	Č	•	·		2~4	ADC/DAC, XCLKI, XCLKO

^{* 5}V Tolerance, only if pull-high disable and output disable.

** Please note, the total current in each side on VCC or VSS of chip can not exceed over 48mA.

*** Please note, As BQCZT04IV with shared crystal pad, signal frequency should be lower than 1MHz.

3. Pin Descriptions

3.1 Hardware Trap

Hardware trap pins are used to latch external signal at rising edge of **ECRST#**. The hardware trap pins are for some special purpose which should be defined while boot-up. The following table gives the collection of hardware trap pins. Please note, all the following hardware trap pins are **pull-high** internally after reset.

Trap Name	Pin No.	Description
TP_TEST (GPIO20,KSO0)	39	While this trap is asserted to be low, the internal DPLL circuit uses other clock source for reference, instead of 32KHz oscillator. Low: test clock mode enable High: normal mode using 32KHz oscillator.
TP_PLL (GPIO21,KSO1)	40	While this trap is asserted to be low, some DPLL related signals can be output for test. Low: DPLL test mode enable. High: DPLL test mode disable
TP_TMUX (GPIO22,KSO2)	41	TestMux Mode Trap Low: Test mode High: Normal operation
TP_PLL_Lock (GPIO23,KSO3)	42	This trap is used for eFlash & EDI operation, , the 8051 will be held at reset state LOW: Test Mode HIGH: Normal operation

^{*} Please note while TP_TMUX and TP_PLL_Lock keep low at the same time, a mechanism called **FlashDirectAccess** will enable. That is, users can flush and program a SPI flash via specific IKB pins with external tool.

FlashDirectAccess

The KBC provides a new interface to program SPI flash via IKB interface. With this feature, users can easily utilize 4 pins from keyboard matrix (IKB) without disassembly whole machine. These 4 pins are connected directly to external SPI-Flash interface. The following table shows the mapped pins while entering FlashDirectAccess mode.

EDI: For detail ENE Debug Interface, please refer the EDI section for enabling, instruction, and application.

Pin No.	Normal Mode	FlashDirectAccess Mode
59	KSI4 (I)	(Input) EDI_CS, Transfer signal from terminal into KBC and though SPICS# to SPI_Flash
60	KSI5 (I)	(Input) EDI_CLK, Transfer signal from terminal into KBC and though SPICLK to SPI_Flash
61	KSI6 (I)	(Input) EDI_DIN, Transfer signal from terminal into KBC and though MOSI to SPI_Flash
62	KSI7 (I)	(Output) EDI_DO, Transfer signal from terminal into KBC and though MISO to SPI_Flash

3.2 Pin Descriptions by Functions

3.2.1 Low Pin Count I/F Descriptions.

Pin Name	Pin No.	Direction	Description
LAD[3:0]	5, 7,8,10	I/O	LPC address bus.
LFARAME#	4	I	LPC frame control signal.
PCIRST#	13	I	LPC module reset by this signal.
PCICLK	12	I	33MHz PCI clock input.
SERIRQ	3	I/O	Serial IRQ
CLKRUN#	38	I/OD	Clock run control

3.2.2 PS/2 I/F Descriptions

Pin Name	Pin No.	Direction	Description
PSCLK1	83	I/OD	PS/2 port 1 clock
			Muxed with SMBus port 2 clock
PSDAT1	84	I/OD	PS/2 port 1 data
			Muxed with SMBus port 2 data
PSCLK2	85	I/OD	PS/2 port 2 clock
			Muxed with SMBus port 3 clock
PSDAT2	86	I/OD	PS/2 port 2 data
			Muxed with SMBus port 3 data
PSCLK3	87	I/OD	PS/2 port 3 clock
PSDAT3	88	I/OD	PS/2 port 3 data

3.2.3 Internal Keyboard Encoder (IKB) Descriptions

Pin Name	Pin No.	Direction	Description
KSO[17:0]	82,81,54-39	0	Keyboard Scan Out
KSI[7:0]	62-55	I	Keyboard Scan In

3.2.4 SMBus Descriptions

Pin Name	Pin No.	Direction	Description
SCL0	77	I/OD	SMBus clock (interface 0)
SDA0	78	I/OD	SMBus data (interface 0)
SCL1	79	I/OD	SMBus clock (interface 1)
SDA1	80	I/OD	SMBus data (interface 1)
SCL2	83	I/OD	SMBus clock (interface 2) Muxed with PS/2 port 1 clock
SDA2	84	I/OD	SMBus data (interface 2) Muxed with PS/2 port 1 data
SCL3	85	I/OD	SMBus clock (interface 3) Muxed with PS/2 port 2 clock
SDA3	86	I/OD	SMBus data (interface 3) Muxed with PS/2 port 2 data

3.2.5 FAN Descriptions

Pin Name	Pin No.	Direction	Description
FANPWM0	26	0	FANPWM0 output
FANPWM1	27	0	FANPWM1 output
FANFB0	28	I	FAN0 tachometer input
FANFB1	29	I	FAN1 tachometer input
FANFB2	100	I	FAN2 tachometer input
FANFB3	101	I	FAN3 tachometer input

3.2.6 Pulse Width Modulation (PWM) Descriptions

Pin Name	Pin No.	Direction	Description
PWM0	21	0	PWM pulse output
PWM1	23	0	PWM pulse output
PWM2	25	0	PWM pulse output
PWM3	34	0	PWM pulse output

3.2.7 Analog-to-Digital Converter Descriptions

	<u> </u>		
Pin Name	Pin No.	Direction	Description
AD[3:0]	66-63		10bit A/D converter input
AD[5:4]	76,75	1	10bit A/D converter input
AD6	73	1	10bit A/D converter input
AD7	74		10bit A/D converter input

3.2.8 Digital-to-Analog Converter Descriptions

		_		•
Pin Name	Pin	No.	Direction	Description
DA[3:0]	72-7	0,68	0	8bit D/A converter output

3.2.9 8051 External I/F Descriptions

Pin Name	Pin No.	Direction	Description
E51TXD	30	0	8051 serial port, transmit port.
E51RXD	31	I	8051 serial port, receive port.
E51CLK	31	0	For different serial scheme, E51CLK will shift out clock.
E51CS#	90	0	
E51TMR0	92	I	
E51INT0	93	I	
E51TMR1	91	I	
E51INT1	95	I	

3.2.10 External Clock Descriptions

(These pins are reserved for external CLK design structure, also could be set as GPIO function)

Pin Name	Pin No.	Direction	Description
XCLKI	122	I	32.768KHz input
XCLKO	123	0	32.768KHz output

3.2.11 Miscellaneous Signals Descriptions

Pin Name	Pin No.	Direction	Description
GA20	1	0	KBC will gate A20 address line
KBRST#	2	0	KBRST# is used to generate system reset.
SCI#	20	0	SCI# asserts to the system for requesting service while related events occur.
ECRST#	37	I	While ECRST# asserted, the KBC will reset globally.
OWM	16	I/O	One Wire Master input and output signal
PECI	118	I/O	PECI input and output signal
GWG	108	0	General Waveform Generator for 3D application
POWER_FAIL0	100	0	Used to indicate the power fail under Power Fail Voltage.
POWER_FAIL1	32	0	Used to indicate the power fail under Power Fail Voltage.

3.2.12 Voltage Comparator Pins Descriptions

			•
Pin Name	Pin No.	Direction	Description
VCIN0	109	I	Voltage comparator input port0
VCOUT0	104	0	Voltage comparator output port0
VCIN1	102	I	Voltage comparator input port1
VCOUT1	103	0	Voltage comparator output port1

3.2.13 Power Pins Descriptions

Pin Name	Pin No.	Direction	Description	
VCC	9,22,33,96,111,125		Power supply for digital plane.	
GND	11,24,35,94,113		Power ground for digital plane.	
AVCC	67		Power supply for analog plane.	
AGND	69		Power ground for analog plane.	
V18R	124		Connected to external Capacitor for internal 1.8V	
VCC_0	111		Power supply for 51ON power management	
GND_0	113		Power ground for 51ON power management	

3.2.14 510N Power Pins Descriptions

(The 510N power management are with different power domain from main IC power)

Pin Name	Pin No.	Direction	Description
GPXIOD01	110	I/O	AC_IN
GPXIOD02	112	I/O	ALW_PWR_EN
GPXIOD03	114	I/O	ON/OFFBTN#

4. Module Descriptions

4.1 Chip Architecture

4.1.1 Power Planes

Power planes are $\pm 10\%$ tolerance for recommend operation condition, The KBC provides V1.8 power plane for different generation.

Power Plane	Description	Power	Ground
Digital Plane	This power provides power for all digital logic no matter what power mode is.	VCC	GND
Analog Plane	This power provides power for all analog logic, such as A/D and D/A converter.	AVCC	AGND
Digital V1.8	The system inputs 3.3V power and the internal regulator outputs 1.8V voltage. The 1.8V output should connect a capacitor for stable purpose.	V1.8	GND
Power Latch Plane	This power provides power for the power-latch circuit. It could help to provide power saving management.	VCC_0	GND_0

4.1.2 Clock Domains

Three clock sources, PCICLK, DPLL_CLK and XCLKI will be discussed in this section. A summary is list in the following table.

Clock	Description
PCICLK	PCI clock 33MHz for LPC I/F.
DPLL_CLK	Main clock for 8051/peripheral. DPLL clock can be generated with or without XCLK for reference. DPLL clock can be divided for different applications. Fig. 4-1 gives an example for illustration.
XCLKI	External 32.768KHz for reference.

The following figure shows more detail about the operation in the KBC. The external 32.768KHz is provided for two purposes. One is to provide an accurate reference for internal DPLL module, and the other one is to provide another clock source for watchdog timer.

The possible (X,Y,Z) combination with exact clock value is summarized as the following table.

	SPI CI	ock (X)	Main C	lock (Y)	Peripheral Clock (Z)	
CLKCFG[6]=0 CL (default)		CLKCFG[6]=1	CLKCFG[6]=0 (default)	CLKCFG[6]=1	CLKCFG[6]=0 (default)	CLKCFG[6]=1
CLKCFG[3:2]=0 (default)	16*	66	8*	8	4*	4
CLKCFG[3:2]=1	32	66	16	16	8	8
CLKCFG[3:2]=2	32	66	22	22	11	11
CLKCFG[3:2]=3	32	66	32	32	16	16

^{*} While power on default, no matter what value CLKCFG[3:2], CLKCFG[6] are, the dividend (X,Y,Z) is always (4, 8, 16). The PCI clock is 66MHz, X = 66/4 = 16MHz, Y = 66/8 = 8Mhz, Z = 66/16 = 4MHz

Be noted that, these clock frequency is only valid after KBC correctly referring clock.

Note: Internal OSC of KB9012 application

Since KB9012 also provide internal OSC, the clock source selection is similar to KBx930. Developer could choose clock source from internal-OSC, external crystal, or host LPCLCK depending on different application and system status. As following is simplified clocking distribution tree for setting.

Please note that, KB9012 also support external clock source without crystal device. For correctly configuration, please contact your sales or technical representative for the application note: *Using External OSC Clock Source for ENE Keyboard Controller.*

32k Source Pad Configuration 0xFE8A[5:4] CLK32CR Pin 122, Pin 123 00: GPIO5D, GPIO5E 01: GPIO5D, XCLKO as external clock input 10: XLCKI, GPIO5E, where XLCKI is external clock input **11**: XLCKI, XCLKO, as crystal pads to external crystal 0xFE80[7] WDŢCFG WDT Pin 122 **KBC** Pin <u>123</u> XBI, SPI Flash **DPLL** PCICLK 0 8051, SRAM, GPT, GPIO 0 & Clock External Source 10-bit 1 0xFE8A[0] Generator Divider Peripheral Internal OSC 0xFE8A[1] Enable 0xFF1F[4] 0xFF1F[5] PLLCFG2 0xFF0D[5] 0xFE8A[2] PLLCFG2 **CLKCFG** CLK32CR

4.1.3 PCICLK and CLKRUN#

While system power-on, the host starts to drive CLKRUN# low for a while to inform the slaves that a 33MHz PCICLK will be given. At this moment, CLKRUN# of KBC is in input mode. If the host tries to stop the PCICLK for some purpose, the CLKRUN# will be de-asserted. In KB9012 design, the KBC responses CLKRUN# signal according to LPC_CDCSR configuration. Please refer section 4.13.7 LPC Registers Description for KB9012 application. For more detail please refer to *PCI Mobile Design Guide version 1.1*.

- 1 Host asserts CLKRUN# and PCICLK is driven
- 2 Host de-asserts CLKRUN# for some considerations
- ③ KBC monitors CLKRUN# de-asserting and then KBC keeps asserting CLKRUN#. This forces PCICLK keeping driving.
- ④ Host monitors CLKRUN# for 3T and sees the request from device. And then Host keeps CLKRUN# asserting.

4.1.4 Internal Memory Map

No	Module	Descriptions	Address Range	Size (E	Byte)
1	Flash	Space mapped to system BIOS	0x0000~0xEBFF	59ł	<
2	XRAM	Embedded SRAM	0xEC00~0xFBFF	4K	,
3	GPIO	General purpose I/O	0xFC00~0xFC7F	128	
4	KBC	Keyboard controller	0xFC80~0xFC8F	16	
5	ESB	ENE serial bus controller	0xFC90~0xFC9F	16	
6	IKB	Internal keyboard matrix	0xFCA0~0xFCAF	16	
7	(ESB)	(Available for ESB)	0xFCB0~0xFCBF	16	
8	(ESB)	(Available for ESB)	0xFCC0~0xFCCF	16	
9	PECI	PECI controller	0xFCD0~0xFCDF	16	
10	RSV	Reserved	0xFCE0~0xFCEF	16	
11	OWM	One Wire Master	0xFCF0~0xFCFF	16	
12	(ESB)	(Available for ESB)	0xFD00~0xFDFF	256	1K
13	PWM	Pulse width modulation	0xFE00~0xFE1F	32	
14	FAN	Fan controller	0xFE20~0xFE4F	48	
15	GPT	General purpose timer	0xFE50~0xFE6F	32	
16	SDIH/ SDID	SPI host interface/ SPI device interface	0xFE70~0xFE7F	16	
17	WDT	Watchdog timer	0xFE80~0xFE8F	16	
18	LPC	Low pin count interface	0xFE90~0xFE9F	16	
19	XBI	X-bus interface	0xFEA0~0xFEBF	32	
20	CIR	Consumer IR controller	0xFEC0~0xFECF	16	
21	GWG	General Waveform Generation	0xFED0~0xFEDF	16	
22	PS2	PS/2 interface	0xFEE0~0xFEFF	32	
23	EC	Embedded controller	0xFF00~0xFF2F	48	
24	GPWU	General purpose wakeup event	0xFF30~0xFF7F	80	
25	RSV	Reserved	0xFF80~0xFF8F	16	
26	SMBus	SMBus controller 0	0xFF90~0xFFBF	48	
27	RSV	Reserved	0xFFC0~0xFFCF	16	
28	SMBus	SMBus controller 1	0xFFD0~0xFFFF	48	

4.2 GPIO

GPIOFSx is only for **Output Function Selection**, not for **Input Function**.

Example1 – GPIO14 is used as FANFB1, then

GPIO(GPIOFS10) 0xFC02 b'4 must be 0,

GPIO(GPIOIE10) 0xFC62 b'4 must be 1.

Example2 – PS/2 clock/data lines and SMBus clock/data are bi-directional.

They must be programmed as Output Function Selection = 1 and Input Enable = 1.

For other specific GPIO initialization, please refer the SW programming guide.

4.2.1 GPIO Function Description

The GPIO module is flexible for different applications. Each GPIO pin can be configured as alternative input or alternative output mode. The alternative function can be selected by register setting. A summary table is given as below for more detail.

GPIO	Alt. Output	Alt. Input	Default Alt. Output	Alt. Selection Reg.
GPIO00	GA20		GPIO00	GPIOFS00.[0]
GPIO01	KBRST#		GPIO01	GPIOFS00.[1]
GPIO02∗			GPIO02	GPIOFS00.[2]
GPIO03∗			GPIO03	GPIOFS00.[3]
GPIO04			GPIO04	GPIOFS00.[4]
GPIO05		PCIRST#	GPIO05	GPIOFS00.[5]
GPIO06∗			GPIO06	GPIOFS00.[6]
GPIO07	i_clk_8051		GPIO07	GPIOFS00.[7]
GPIO08	i_clk_peri	~	GPIO08	GPIOFS08.[0]
GPIO09*			GPIO09	GPIOFS08.[1]
GPIO0A	OWM	RLC_RX2 / OWM	GPIO0A	GPIOFS08.[2] OWMCFG[7]
GPIO0B	ESB_CLK		GPIO0B	GPIOFS08.[3]
GPIO0C	ESB_DAT	ESB_DAT	GPIO0C	GPIOFS08.[4]
GPIO0D	RLC_TX2		GPIO0D	GPIOFS08.[5]
GPIO0E	SCI#		GPIO0E	GPIOFS08.[6]
GPIO0F	PWM0		GPIO0F	GPIOFS08.[7]
GPIO10	PWM1		GPIO10	GPIOFS10.[0]
GPIO11	PWM2		GPIO11	GPIOFS10.[1]
GPIO12	FANPWM0		GPIO12	GPIOFS10.[2]
GPIO13	FANPWM1		GPIO13	GPIOFS10.[3]
GPIO14		FANFB0	GPIO14	GPIOFS10.[4]
GPIO15		FANFB1	GPIO15	GPIOFS10.[5]
GPIO16	E51TXD		GPIO16	GPIOFS10.[6]
GPIO17	E51CLK	E51RXD	GPIO17	GPIOFS10.[7]
GPIO18	POWER_FAIL1		GPIO18	GPIOFS18.[0]
GPIO19	PWM3		GPIO19	GPIOFS18.[1]
GPIO1A	NUMLED#		GPIO1A	GPIOFS18.[2]
GPIO1B∗			GPIO1B	GPIOFS18.[3]
GPIO1C*			GPIO1C	GPIOFS18.[4]

GPIO	Alt. Output	Alt. Input	Default Alt. Output	Alt. Selection Reg.
GPIO1D	CLKRUN#	CLKRUN#	GPIO1D	GPIOFS18.[5]
GPIO1E*			GPIO1E	GPIOFS18.[6]
GPIO1F*			GPIO1F	GPIOFS18.[7]
GPIO20	KSO00	TP_TEST	GPIO20	GPIOFS20.[0]
GPIO21	KSO01	TP_PLL	GPIO21	GPIOFS20.[1]
GPIO22	KSO02	TP_TMUX	GPIO22	GPIOFS20.[2]
GPIO23	KSO03	TP_PLL_Lock	GPIO23	GPIOFS20.[3]
GPIO24	KSO04		GPIO24	GPIOFS20.[4]
GPIO25	KSO05	PCICLK (LPC)	GPIO25	GPIOFS20.[5] GPIO_MISC2[7]
GPIO26	KSO06	PCIRST# (LPC)	GPIO26	GPIOFS20.[6] GPIO_MISC2[7]
GPIO27	KSO07 SERIRQ (LPC)	SERIRQ (LPC)	GPIO27	GPIOFS20.[7] GPIO_MISC2[7]
GPIO28	KSO08	LFRAME# (LPC)	GPIO28	GPIOFS28.[0] GPIO_MISC2[7]
GPIO29	KSO09		GPIO29	GPIOFS28.[1]
GPIO2A	KSO10		GPIO2A	GPIOFS28.[2]
GPIO2B	KSO11 LAD0 (LPC)	LAD0 (LPC)	GPIO2B	GPIOFS28.[3] GPIO_MISC2[7]
GPIO2C	KSO12 LAD1 (LPC)	LAD1 (LPC)	GPIO2C	GPIOFS28.[4] GPIO_MISC2[7]
GPIO2D	KSO13 LAD2 (LPC)	LAD2 (LPC)	GPIO2D	GPIOFS28.[5] GPIO_MISC2[7]
GPIO2E	KSO14 LAD3 (LPC)	LAD3 (LPC)	GPIO2E	GPIOFS28.[6] GPIO_MISC2[7]
GPIO2F	KSO15	(E51_RXD)	GPIO2F	GPIOFS28.[7] GPIO_MISC2[2]
GPIO30	(E51_TXD)	KSI0	GPIO30	GPIOFS30.[0] GPIO_MISC2[2]
GPIO31		KSI1	GPIO31	GPIOFS30.[1]
GPIO32		KSI2	GPIO32	GPIOFS30.[2]
GPIO33		KSI3	GPIO33	GPIOFS30.[3]
GPIO34		KSI4 / EDI_CS	GPIO34	GPIOFS30.[4]
GPIO35		KSI5 / EDI_CLK	GPIO35	GPIOFS30.[5]
GPIO36		KSI6 / EDI_DIN	GPIO36	GPIOFS30.[6]
GPIO37	EDI_DO	KSI7	GPIO37	GPIOFS30.[7]
GPIO38		AD0	GPIO38	GPIOFS38.[0]
GPIO39		AD1	GPIO39	GPIOFS38.[1]
GPIO3A		AD2	GPIO3A	GPIOFS38.[2]
GPIO3B		AD3	GPIO3B	GPIOFS38.[3]
GPIO3C	DA0		GPIO3C	GPIOFS38.[4] ★

GPIO	Alt. Output	Alt. Input	Default Alt. Output	Alt. Selection Reg.
GPIO3D	DA1		GPIO3D	GPIOFS38.[5] ★
GPIO3E	DA2		GPIO3E	GPIOFS38.[6] ★
GPIO3F	DA3		GPIO3F	GPIOFS38.[7] ★
GPIO40		AD6 CIR_RX	GPIO40	GPIOFS40.[0]
GPIO41	CIR_RLC_TX	AD7	GPIO41	GPIOFS40.[1]
GPIO42		AD4	GPIO42	GPIOFS40.[2]
GPIO43		AD5	GPIO43	GPIOFS40.[3]
GPIO44	SCL0		GPIO44	GPIOFS40.[4]
GPIO45	SDA0		GPIO45	GPIOFS40.[5]
GPIO46	SCL1		GPIO46	GPIOFS40.[6]
GPIO47	SDA1		GPIO47	GPIOFS40.[7]
GPIO48	KSO16		GPIO48	GPIOFS48.[0]
GPIO49	KSO17		GPIO49	GPIOFS48.[1]
GPIO4A	PSCLK1 / SCL2		GPIO4A	GPIOFS48.[2] GPIO_MISC2[4]
GPIO4B	PSDAT1 / SDA2		GPIO4B	GPIOFS48.[3] GPIO_MISC2[4]
GPIO4C	PSCLK2 / SCL3		GPIO4C	GPIOFS48.[4] GPIO_MISC2[5]
GPIO4D	PSDAT2 / SDA3		GPIO4D	GPIOFS48.[5] GPIO_MISC2[5]
GPIO4E	PSCLK3	,	GPIO4E	GPIOFS48.[6]
GPIO4F	PSDAT3		GPIO4F	GPIOFS48.[7]
GPIO50			GPIO50	GPIOFS50.[0]
GPIO51*			GPIO51	GPIOFS50.[1]
GPIO52	E51CS#		GPIO52	GPIOFS50.[2]
GPIO53	CAPSLED#	E51TMR1	GPIO53	GPIOFS50.[3]
GPIO54	WDT_LED#	E51TMR0	GPIO54	GPIOFS50.[4]
GPIO55	SCORLED#	E51INT0	GPIO55	GPIOFS50.[5]
GPIO56		E51INT1	GPIO56	GPIOFS50.[6]
GPIO57	XCLK32K		GPIO57	GPIOFS50.[7]
GPIO58		(SPICLK)	GPIO58	GPIO_MISC.[1]
GPIO59		TEST_CLK	GPIO59	GPIOFS58.[1]
GPIO5A		(SPICS#)	GPIO5A	GPIO_MISC.[1]
GPIO5B	(MISO)		GPIO5B	GPIO_MISC.[1]
GPIO5C		(MOSI)	GPIO5C	GPIO_MISC.[1]
GPIO5D		(XCLKI)	GPIO5D	CLK32CR[5:4]
GPIO5E		(XCLKO)	GPIO5E	CLK32CR[5:4]
GPXIOA00	SHICS#	SDICS#	GPXIOA00	GPIO_MISC.[2]
GPXIOA01	SHICLK	SDICLK	GPXIOA01	GPIO_MISC.[2]
GPXIOA02	SHIDO	SDIDI	GPXIOA02	GPIO_MISC.[2]
GPXIOA03	POWER_FAIL0	FANFB2	GPXIOA03	GPXAFS00[3] FANTMCFG0[0]

GPIO	Alt. Output	Alt. Input	Default Alt. Output	Alt. Selection Reg.
GPXIOA04		FANFB3	GPXIOA04	GPXAFS00[4] FANTMCFG1[0]
GPXIOA05		VCIN1	GPXIOA05	VCCR[1]
GPXIOA06	VCOUT1		GPXIOA06	GPXAFS00[6]
GPXIOA07	VCOUT0		GPXIOA07	GPXAFS00[7]
GPXIOA08			GPXIOA08	GPXAFS08[0]
GPXIOA09			GPXIOA09	GPXAFS08[1]
GPXIOA10			GPXIOA10	GPXAFS08[2]
GPXIOA11	GWG		GPXIOA11	GPXAFS08[3]
GPXIOD00	SDIDO	SHIDI / VCINO	GPXIOD00	GPIO_MISC.[2] VCCR[0]
GPXIOD01		AC_IN	GPXIOD01	GPXDFS00[1]
GPXIOD02	ALW_PWR_EN		GPXIOD02	GPXDFS00[2]
GPXIOD03		ON/OFFBTN#	GPXIOD03	GPXDFS00[3]
GPXIOD04			GPXIOD04	GPXDFS00[4]
GPXIOD05			GPXIOD05	GPXDFS00[5]
GPXIOD06			GPXIOD06	GPXDFS00[6]
GPXIOD07	PECI	PECI	GPXIOD07	GPXDFS00[7]

^{*} In KB9012, these GPIO pins no more exist. The corresponding register bits do not work.

^{**} Please Note in KB9012, the GPXIOAx / GPXIODx could be configured PU / OD pin by pin.

^{***} Please note, crystal pad signal frequency should be lower than 1MHz.

 $[\]bigstar$ If DAC function selected, please $\underline{\text{do not}}$ set this register bit.

4.2.2 GPIO Structures

In this section, the GPIO structure is illustrated as following diagram. The upper part is alternative output circuit and the lower part is alternative input circuit. In the figure, **GPIOFS** is used to enable alternative output. **GPIOOD** is for open-drain setting with output function. **GPIOOE** is the switch for data output. As shown in the figure, the alternative input embedded with pull-high and interrupt feature.

4.2.3 GPIO Attribution Table

		tti ibution i							
GPIO	Alt. Output	Alt. Input	Default Alt. Output	Alt. Selection Reg.	Input Enable	Output Enable	Pull Up (40KΩ)	Open Drain	Output Current
GPIO00	GA20		GPIO00	GPIOFS00.[0]	V	V	V	V	2-4mA
GPIO01	KBRST#		GPIO01	GPIOFS00.[1]	V	V	V	V	2-4mA
GPI002*			GPIO02	GPIOFS00.[2]					
GPIO03*			GPIO03	GPIOFS00.[3]					
GPIO04			GPIO04	GPIOFS00.[4]	V	V	V	V	2-4mA
GPIO05		PCIRST#	GPIO05	GPIOFS00.[5]	V	V	V	V	8-16mA
GPIO06*			GPIO06	GPIOFS00.[6]					
GPIO07	i_clk_805)		GPIO07	GPIOFS00.[7]	V	V	V	V	2-4mA
GPIO08	i_clk_peri		GPIO08	GPIOFS08.[0]	V	V	V	V	2-4mA
GPIO09*			GPIO09	GPIOFS08.[1]					
GPI00A	OWM	RLC_RX2 OWM	GPI00A	GPIOFS08.[2] OWMCFG[7]	V	V	V	V	2-4mA
GPI00B	ESB_CLK		GPI00B	GPIOFS08.[3]	V	V	V	V	8-16mA
GPI00C	ESB_DAT	ESB_DAT	GPI00C	GPIOFS08.[4]	٧	V	V	V	4~8mA
GPI00D	RLC_TX2		GPI00D	GPIOFS08.[5]	V	V	V	V	2-4mA
GPI00E	SCI#		GPI00E	GPIOFS08.[6]	V	V	V	V	2-4mA
GPI00F	PWM0		GPI00F	GPIOFS08.[7]	V	V	V	V	8-16mA
GPIO10	PWM1		GPIO10	GPIOFS10.[0]	V	V	V	V	2-4mA
GPIO11	PWM2		GPIO11	GPIOFS10.[1]	V	V	V	V	2-4mA
GPIO12	FANPWM0		GPIO12	GPIOFS10.[2]	V	V	V	V	2-4mA
GPIO13	FANPWM1		GPIO13	GPIOFS10.[3]	V	V	V	V	2-4mA
GPIO14		FANFB0	GPIO14	GPIOFS10.[4]	V	V	V	V	2-4mA
GPIO15		FANFB1	GPIO15	GPIOFS10.[5]	V	V	V	V	2-4mA
GPIO16	E51TXD		GPIO16	GPIOFS10.[6]	V	V	V	V	2-4mA
GPIO17	E51CLK	E51RXD	GPIO17	GPIOFS10.[7]	V	V	V	V	2-4mA
GPIO18	POWER_FAIL1		GPIO18	GPIOFS18.[0]	V	V	V	V	2-4mA
GPIO19	PWM3		GPIO19	GPIOFS18.[1]	V	V	V	V	8-16mA
GPIO1A	NUMLED#		GPIO1A	GPIOFS18.[2]	V	V	V	V	16-20mA
GPIO1B*			GPIO1B	GPIOFS18.[3]					
GPIO1C*			GPIO1C	GPIOFS18.[4]					
GPIO1D	CLKRUN#	CLKRUN#	GPIO1D	GPIOFS18.[5]	V	V	V	V	8-16mA
GPIO1E*			GPIO1E	GPIOFS18.[6]					
GPIO1F*			GPIO1F	GPIOFS18.[7]					
GPIO20	KSO00	TP_TEST	GPIO20	GPIOFS20.[0]	V	V	V	V	2-4mA
GPIO21	KSO01	TP_PLL	GPIO21	GPIOFS20.[1]	V	V	V	V	2-4mA
GPIO22	KS002	TP_TMUX	GPIO22	GPIOFS20.[2]	V	V	V	V	2-4mA
GPIO23	KSO03	TP_PLL_Lock	GPIO23	GPIOFS20.[3]	V	V	V	V	2-4mA
GPIO24	KSO04		GPIO24	GPIOFS20.[4]	V	V	V	V	2-4mA
GPIO25	KS005	PCICLK(LPC)	GPIO25	GPIOFS20.[5] GPIO_MISC2[7]	V	V	V	V	8-16mA
GPIO26	KS006	PCIRST#(LPC)	GPIO26	GPIOFS20.[6] GPIO_MISC2[7]	V	V	V	V	2-4mA
GPIO27	KSO07 / SERIRQ(LPC)	SERIRQ(LPC)	GPIO27	GPIOFS20.[7] GPIO_MISC2[7]	V	V	V	V	2-4mA
GPIO28	KS008	LFRAME#(LPC)	GPIO28	GPIOFS28.[0] GPIO_MISC2[7]	V	V	V	V	2-4mA
GPIO29	KS009		GPIO29	GPIOFS28.[1]	V	V	V	V	2~4mA
GPIO2A	KSO10		GPIO2A	GPIOFS28.[2]	V	V	V	V	2~4mA

GPIO2B	KSO11 / LAD0(LPC)	LAD0(LPC)	GPIO2B	GPIOFS28.[3] GPIO_MISC2[7]	V	V	V	V	2-4mA
GPIO2C	KSO12 / LAD1(LPC)	LAD1(LPC)	GPIO2C	GPIOFS28.[4] GPIO_MISC2[7]	V	V	V	V	2-4mA
GPIO2D	KSO13 / LAD2(LPC)	LAD2(LPC)	GPIO2D	GPIOFS28.[5] GPIO_MISC2[7]	V	V	V	V	2-4mA
GPIO2E	KSO14 /		GPIO2E	GPIOFS28.[6]	V	V	V	V	2-4mA
071007	LAD3(LPC)	LAD3(LPC)		GPIO_MISC2[7]	.,	.,	.,	.,	
GPIO2F	KSO15	(E51_RXD)	GPIO2F	GPIOFS28.[7] GPIO_MISC2[2]	V	V	V	V	2-4mA
GPIO30	(E51_TXD)	KSI0	GPIO30	GPIOFS30.[0] GPIO_MISC2[2]	V	V	V	V	2-4mA
GPIO31		KSI1	GPIO31	GPIOFS30.[1]	V	V	V	V	2-4mA
GPIO32		KSI2	GPIO32	GPIOFS30.[2]	V	V	V	V	2-4mA
GPIO33		KSI3	GPIO33	GPIOFS30.[3]	V	V	V	V	2-4mA
GPIO34		KSI4 / EDI_CS	GPIO34	GPIOFS30.[4]	V	V	V	V	2-4mA
GPIO35		KSI5 / EDI_CLK	GPIO35	GPIOFS30.[5]	V	V	V	V	2-4mA
GPIO36		KSI6 / EDI_DIN	GPIO36	GPIOFS30.[6]	V	V	V	V	2-4mA
GPIO37	EDI_DO	KSI7	GPIO37	GPIOFS30.[7]	V	V	V	V	2-4mA
GPIO38		AD0	GPIO38	GPIOFS38.[0]	V	V	V	V	2-4mA
GPIO39		AD1	GPIO39	GPIOFS38.[1]	V	V	V	V	2-4mA
GPIO3A		AD2	GPIO3A	GPIOFS38.[2]	V	V	V	V	2-4mA
GPIO3B		AD3	GPIO3B	GPIOFS38.[3]	V	V	V	V	2-4mA
GPIO3C	DA0		GPIO3C	GPIOFS38.[4]	V	V	V	V	2-4mA
GPIO3D	DA1		GPIO3D	GPIOFS38.[5]	V	V	V	V	2-4mA
GPIO3E	DA2		GPIO3E	GPIOFS38.[6]	V	V	V	V	2-4mA
GPIO3F	DA3		GPIO3F	GPIOFS38.[7]	V	V	V	V	2-4mA
GPIO40		AD6 CIR_RX	GPIO40	GPIOFS40.[0]	V	V	V	V	2-4mA
GPIO41	CIR_RLC_TX	AD7	GPIO41	GPIOFS40.[1]	V	V	V	V	2-4mA
GPIO42		AD4	GPIO42	GPIOFS40.[2]	V	V	V	V	2-4mA
GPIO43		AD5	GPIO43	GPIOFS40.[3]	V	V	V	V	2-4mA
GPIO44	SCL0		GPIO44	GPIOFS40.[4]	V	V		V	2-4mA
GPIO45	SDA0		GPIO45	GPIOFS40.[5]	V	V		V	2-4mA
GPIO46	SCL1		GPIO46	GPIOFS40.[6]	V	V		V	2-4mA
GPIO47	SDA1		GPIO47	GPIOFS40.[7]	V	V		V	2-4mA
GPIO48	KSO16 /		GPIO48	GPIOFS48.[0]	V	V	V	V	2-4mA
GPIO49	KSO17		GPIO49	GPIOFS48.[1]	V	V	V	V	2-4mA
GPIO4A	PSCLK1 / SCL2		GPIO4A	GPIOFS48.[2] GPIO_MISC2[4]	V	V		V	2-4mA
GPIO4B	PSDAT1 / SDA2		GPIO4B	GPIOFS48.[3] GPIO_MISC2[4]	V	V		V	2-4mA
GPIO4C	PSCLK2 / SCL3		GPIO4C	GPIOFS48.[4]	V	V	V	V	8-16mA
GPIO4D	PSDAT2 / SDA3		GPIO4D	GPIO_MISC2[5] GPIOFS48.[5] GPIO_MISC2[5]	V	V	V	V	16-20mA
GPIO4E	PSCLK3		GPIO4E	GPIOFS48.[6]	V	V		V	2-4mA
GPIO4F	PSDAT3		GPIO4F	GPIOFS48.[7]	V	V		V	2-4mA
GP1050	1 ODATO		GPIO50	GPIOFS50.[0]	V	V		V	2-4mA
GPI051*			GPI051	GPIOFS50.[0]	v	v		v	Z:7111/A
GPI052	E51CS#		GP1052	GPIOFS50.[1]	V	V	V	V	16-20mA
GP1052 GP1053	CAPSLED#	E51TMR1	GP1052 GP1053	GPIOFS50.[2] GPIOFS50.[3]	V	V	V	V	16-20mA
GF1003	OAF SLED#	FOLLINIKI	GF 1000	GF101 330.[3]	v	٧	٧	٧	10-2011IA

	·r					,	1		
GPI 054	WDT_LED#	E51TMR0	GPIO54	GPIOFS50.[4]	V	V	V	V	16-20mA
GPIO55	SCORLED#	E51INT0	GPIO55	GPIOFS50.[5]	V	V	V	V	16-20mA
GPIO56		E51INT1	GPIO56	GPIOFS50.[6]	V	V	V	V	2-4mA
GPIO57	XCLK32K		GPIO57	GPIOFS50.[7]	V	V	V	V	2-4mA
GPIO58	(SPICLK)		GPIO59	GPIO_MISC[1]	V	V	V	V	8~16mA
GPIO59		TEST_CLK	GPIO59	GPIOFS58.[1]	V	V	V	٧	2-4mA
GPIO5A	(SPICS#)		GPIO5A	GPIO_MISC[1]	V	V	V	V	8~16mA
GPIO5B		(MISO)	GPIO5B	GPIO_MISC[1]	V	V	V	V	8~16mA
GPIO5C	(MOSI)		GPIO5C	GPIO_MISC[1]	V	V	V	V	8~16mA
GPIO5D		(XCLKI)	GPIO5D	CLK32CR[5:4]	V	V	V	V	2-4mA
GPIO5E		(XCLIO)	GPIO5E	CLK32CR[5:4]	V	V	V	V	2-4mA
GPXIOA00	SHICS#	SDICS#	GPXIOA00	GPIO_MISC.[2]	V	V	V	V	2-4mA
GPXIOA01	SHICLK	SDICLK	GPXIOA01	GPIO_MISC.[2]	V	V	V	V	2-4mA
GPXIOA02	SHIDO	SDIDI	GPXIOA02	GPIO_MISC.[2]	V	V	V	V	2-4mA
GPXIOA03	POWER_FAIL0	FANFB2	GPXIOA03	GPXAFS00[3] FANTMCFG0[0]	V	V	V	V	2-4mA
GPXIOA04		FANFB3	GPXIOA04	GPXAFS00[4] FANTMCFG1[0]	V	V	V	V	2-4mA
GPXIOA05		VCIN1	GPXIOA05	VCCR[1]	V	V	V	V	2-4mA
GPXIOA06	VCOUT1		GPXIOA06	GPXAFS00[6]	V	V	V	V	2-4mA
GPXIOA07	VCOUT0		GPXIOA07	GPXAFS00[7]	V	V	V	V	2-4mA
GPXIOA08			GPXIOA08	GPXAFS08[0]	V	V	V	V	8-16mA
GPXIOA09			GPXIOA09	GPXAFS08[1]	V	V	V	V	8-16mA
GPXIOA10			GPXIOA10	GPXAFS08[2]	V	V	V	V	8-16mA
GPXIOA11			GPXIOA11	GPXAFS08[3]	V	V	V	V	8-16mA
GPXIOD00	SDIDO	SHIDI / VCIN0	GPXIOD00	GPIO_MISC.[2] VCCR[0]	V	V	V	٧	2-4mA
GPXIOD01		AC_IN	GPXIOD01	GPXDFS00[1]	V	V	V	V	2-4mA
GPXIOD02	ALW_PWR_EN		GPXIOD02	GPXDFS00[2]	V	V	V	V	2-4mA
GPXIOD03		ON/OFFBTN#	GPXIOD03	GPXDFS00[3]	V	V	V	V	2-4mA
GPXIOD04			GPXIOD04	GPXDFS00[4]	V	V	V	V	2-4mA
GPXIOD05			GPXIOD05	GPXDFS00[5]	V	V	V	V	2-4mA
GPXIOD06			GPXIOD06	GPXDFS00[6]	V	V	V	V	2-4mA
GPXIOD07	PECI	PECI	GPXIOD07	GPXDFS00[7]	V	V	V	V	2-4mA
		-	-	-	-				

^{*} Denotes that these pins do not exist in KB9012

** Please Note in KB9012, the GPXIOAx / GPXIODx could be configured PU / OD pin by pin.

*** Please note, crystal pad signal frequency should be lower than 1MHz.

4.2.4 GPIO Registers Descriptions (0xFC00~0xFC7F)

In KB9012, new GPIOs are added. Related control registers are added for ADC/DAC/CLK/GPXIOA/GPXIOD related GPIOs.

Function	on Selection	Register			
Offset	Name	Туре.	Description	Default	Bank
0x00	GPIOFS00	R/W	GPIO00~GPIO07 Function Selection bit[0]~bit[7] stand for GPIO00~GPIO07 separately 0: General purpose output function selected 1: Alternative output function selected. Note: No GPIO02/03/06 in KB9012 IC.	0x00	0xFC
0x01	GPIOFS08	R/W	GPIO08~GPIO0F Function Selection bit[0]~bit[7] stand for GPIO08~GPIO0F separately 0: General purpose output function selected 1: Alternative output function selected. Note: No GPIO09 in KB9012 IC.	0x00	0xFC
0x02	GPIOFS10	R/W	GPIO10~GPIO17 Function Selection bit[0]~bit[7] stand for GPIO10~GPIO17 separately 0: General purpose output function selected 1: Alternative output function selected.	0x00	0xFC
0x03	GPIOFS18	R/W	GPIO18~GPIO1F Function Selection bit[0]~bit[7] stand for GPIO18~GPIO1F separately 0: General purpose output function selected 1: Alternative output function selected. Note: No GPIO1B/1C/1E/1F in KB9012 IC.	0x00	0xFC
0x04	GPIOFS20	R/W	GPIO20~GPIO27 Function Selection bit[0]~bit[7] stand for GPIO20~GPIO27 separately 0: General purpose output function selected 1: Alternative output function selected.	0x00	0xFC
0x05	GPIOFS28	R/W	GPIO28~GPIO2F Function Selection bit[0]~bit[7] stand for GPIO28~GPIO2F separately 0: General purpose output function selected 1: Alternative output function selected.	0x00	0xFC
0x06	GPIOFS30	R/W	GPIO30~GPIO37 Function Selection bit[0]~bit[7] stand for GPIO30~GPIO37 separately 0: General purpose output function selected 1: Alternative output function selected.	0x00	0xFC
0x07	GPIOFS38	R/W	GPIO38~GPIO3F Function Selection bit[0]~bit[7] stand for GPIO38~GPIO3F separately 0: General purpose output function selected 1: Alternative output function selected.	0x00	0xFC
0x08	GPIOFS40	R/W	GPIO40~GPIO47 Function Selection bit[0]~bit[7] stand for GPIO40~GPIO47 separately 0: General purpose output function selected 1: Alternative output function selected.	0x00	0xFC
0x09	GPIOFS48	R/W	GPIO48~GPIO4F Function Selection bit[0]~bit[7] stand for GPIO48~GPIO4F separately 0: General purpose output function selected 1: Alternative output function selected.	0x00	0xFC

GPIOFS50	R/W	GPIO50~GPIO57 Function Selection bit[0]~bit[7] stand for GPIO50~GPIO57 separately 0: General purpose output function selected	0x00	0xFC
		1: Alternative output function selected. Note: No GPIO51 in KB9012 IC.		
GPIOFS58	R/W	GPIO58~GPIO5F Function Selection bit[0]~bit[7] stand for GPIO58~GPIO5F separately 0: General purpose output function selected 1: Alternative output function selected. Note: No GPIO5F in KB9012 IC.	0x00	0xFC
GPXAFS00	R/W	GPXIOA00~GPXIOA07 Function Selection bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: General purpose output function selected 1: Alternative output function selected.	0xC0	0xFC
SPXAFS08	R/W	GPXIOA08~GPXIOA15 Function Selection bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: General purpose output function selected 1: Alternative output function selected. Note: No GPXIOA12/13/14/15 in KB9012 IC.	0x00	0xFC
Reserved	RSV	Reserved	RSV	0xFC
GPXDFS00	R/W	GPXIOD00~GPXIOD07 Function Selection bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: General purpose output function selected 1: Alternative output function selected.	0x00	0xFC
, }	PXAFS00 PXAFS08 Reserved	PXAFS00 R/W PXAFS08 R/W Reserved RSV	GPIOFS58 R/W GPIO58~GPIO5F Function Selection bit[0]~bit[7] stand for GPIO58~GPIO5F separately 0: General purpose output function selected 1: Alternative output function selected. Note: No GPIO5F in KB9012 IC. PXAFS00 R/W GPXIOA00~GPXIOA07 Function Selection bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: General purpose output function selected 1: Alternative output function selected. PXAFS08 R/W GPXIOA08~GPXIOA15 Function Selection bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: General purpose output function selected 1: Alternative output function selected 1: Alternative output function selected RSV Reserved RSV Reserved RSV GPXIOD00~GPXIOD07 Function Selection bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: General purpose output function selected	APIOFS58 R/W GPIO58~GPIO5F Function Selection bit[0]~bit[7] stand for GPIO58~GPIO5F separately 0: General purpose output function selected 1: Alternative output function selected. Note: No GPIO5F in KB9012 IC. PXAFS00 R/W GPXIOA00~GPXIOA07 Function Selection bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: General purpose output function selected 1: Alternative output function selected 1: Alternative output function Selection bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: General purpose output function selected 1: Alternative output function selected 1: Alternative output function selected 1: Alternative output function selected RSV Reserved RSV Reserved RSV Reserved RSV GPXIOD00~GPXIOD07 Function Selection bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: General purpose output function selected

Output	Enable Reg	jister			
Offset	Name	Type.	Description	Default	Bank
0x10	GPIOOE00	R/W	GPIO00~GPIO07 Output Enable bit[0]~bit[7] stand for GPIO00~GPIO07 separately 0: Output Disable 1: Output Enable Note: No GPIO02/03/06 in KB9012 IC.	0x00	0xFC
0x11	GPIOOE08	R/W	GPIO08~GPIO0F Output Enable bit[0]~bit[7] stand for GPIO08~GPIO0F separately 0: Output Disable 1: Output Enable Note: No GPIO09 in KB9012 IC.	0x00	0xFC
0x12	GPIOOE10	R/W	GPIO10~GPIO17 Output Enable bit[0]~bit[7] stand for GPIO10~GPIO17 separately 0: Output Disable 1: Output Enable	0x00	0xFC
0x13	GPIOOE18	R/W	GPIO18~GPIO1F Output Enable bit[0]~bit[7] stand for GPIO18~GPIO1F separately 0: Output Disable 1: Output Enable Note: No GPIO1B/1C/1E/1F in KB9012 IC.	0x00	0xFC
0x14	GPIOOE20	R/W	GPIO20~GPIO27 Output Enable bit[0]~bit[7] stand for GPIO20~GPIO27 separately 0: Output Disable 1: Output Enable	0x00	0xFC
0x15	GPIOOE28	R/W	GPIO28~GPIO2F Output Enable bit[0]~bit[7] stand for GPIO28~GPIO2F separately 0: Output Disable 1: Output Enable	0x00	0xFC
0x16	GPIOOE30	R/W	GPIO30~GPIO37 Output Enable bit[0]~bit[7] stand for GPIO30~GPIO37 separately 0: Output Disable 1: Output Enable	0x00	0xFC
0x17	GPIOOE38	R/W	GPIO38~GPIO3F Output Enable bit[0]~bit[7] stand for GPIO3C~GPIO3F separately 0: Output Disable 1: Output Enable	0x00	0xFC
0x18	GPIOOE40	R/W	GPIO40~47 Output Enable bit[0]~bit[7] stand for GPIO40~GPIO47 separately 0: Output Disable 1: Output Enable	0x00	0xFC
0x19	GPIOOE48	R/W	GPIO48~GPIO4F Output Enable bit[0]~bit[7] stand for GPIO48~GPIO4F separately 0: Output Disable 1: Output Enable	0x00	0xFC
0x1A	GPIOOE50	R/W	GPIO50~GPIO57 Output Enable bit[0]~bit[7] stand for GPIO50~GPIO57 separately 0: Output Disable 1: Output Enable Note: No GPIO51 in KB9012 IC.	0x00	0xFC
0x1B	GPIOOE58	R/W	GPIO58~GPIO5F Output Enable bit[0]~bit[7] stand for GPIO58~GPIO59 separately 0: Output Disable 1: Output Enable Note: No GPIO5F in KB9012 IC.	0x00	0xFC

Output Enable Register								
Offset	Name	Туре.	Description	Default	Bank			
0x1C	GPXAOE00	R/W	GPXIOA00~GPXIOA07 Output Enable bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: Output Disable 1: Output Enable	0x00	0xFC			
0x1D	GPXAOE08	R/W	GPXIOA08~GPXIOA15 Output Enable bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: Output Disable 1: Output Enable Note: No GPXIOA12/13/14/15 in KB9012 IC.	0x00	0xFC			
0x1E	RSV	RSV	Reserved	RSV	0xFC			
0x1F	GPXDOE00	R/W	GPXIOD00~GPXIOD07 Output Enable bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: Output Disable 1: Output Enable	0x00	0xFC			

Output	Data Port	Register			
Offset	Name	Type.	Description	Default	Bank
0x20	GPIOD00	R/W	GPIO00~GPIO07 Output Data Port for output function. Bit[0]~bit[7] stand for GPIO00~GPIO07 separately Note: No GPIO02/03/06 in KB9012 IC.	0x00	0xFC
0x21	GPIOD08	R/W	GPIO08~GPIO0F Output Data Port for output function. Bit[0]~bit[7] stand for GPIO08~GPIO0F separately Note: No GPIO09 in KB9012 IC.	0x00	0xFC
0x22	GPIOD10	R/W	GPIO10~GPIO17 Output Data Port for output function. Bit[0]~bit[7] stand for GPIO10~GPIO17 separately	0x00	0xFC
0x23	GPIOD18	R/W	GPIO18~GPIO1F Output Data Port for output function. Bit[0]~bit[7] stand for GPIO18~GPIO1F separately Note: No GPIO1B/1C/1E/1F in KB9012 IC.	0x00	0xFC
0x24	GPIOD20	R/W	GPIO20~GPIO27 Output Data Port for output function. Bit[0]~bit[7] stand for GPIO20~GPIO27 separately	0x00	0xFC
0x25	GPIOD28	R/W	GPIO28~GPIO2F Output Data Port for output function. Bit[0]~bit[7] stand for GPIO28~GPIO2F separately	0x00	0xFC
0x26	GPIOD30	R/W	GPIO30~GPIO37 Output Data Port for output function. Bit[0]~bit[7] stand for GPIO30~GPIO37 separately	0x00	0xFC
0x27	GPIOD38	R/W	GPIO38~GPIO3F Output Data Port for output function. Bit[0]~bit[7] stand for GPIO38~GPIO3F separately	0x00	0xFC
0x28	GPIOD40	R/W	GPIO40~47 Output Data Port for output function. Bit[0]~bit[7] stand for GPIO40~GPIO47 separately	0x00	0xFC
0x29	GPIOD48	R/W	GPIO48~GPIO4F Output Data Port for output function. Bit[0]~bit[7] stand for GPIO48~GPIO4F separately	0x00	0xFC
0x2A	GPIOD50	R/W	GPIO50~GPIO57 Output Data Port for output function. Bit[0]~bit[7] stand for GPIO50~GPIO57 separately Note: No GPIO51 in KB9012 IC.	0x00	0xFC
0x2B	GPIOD58	R/W	GPIO58~GPIO5F Output Data Port for output function. Bit[0]~bit[7] stand for GPIO58~GPIO5F separately Note: No GPIO5F in KB9012 IC.	0x00	0xFC
0x2C	GPXAD00	R/W	GPXIOA00~GPXIOA07 Output Data Port for output function. Bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately	0x00	0xFC
0x2D	GPXAD08	R/W	GPXIOA08~GPXIOA15 Output Data Port for output function. Bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately Note: No GPXIOA12/13/14/15 in KB9012 IC.	0x00	0xFC
0x2E	RSV	RSV	Reserved	RSV	0xFC
0x2F	GPXDD00	R/W	GPXIOD00~GPXIOD07 Output Data Port for output function. Bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately	0x00	0xFC

Offset	Name	Туре.	Description	Default	Bank
0x30	GPIOIN00	R	GPIO00~GPIO07 Input Data Port for input function. Bit[0]~bit[7] stand for GPIO00~GPIO07 separately Note: No GPIO02/03/06 in KB9012 IC.	0xFF	0xFC
0x31	GPIOIN08	R	GPIO08~GPIO0F Input Data Port for input function. Bit[0]~bit[7] stand for GPIO08~GPIO0F separately Note: No GPIO09 in KB9012 IC.	0xFF	0xFC
0x32	GPIOIN10	R	GPIO10~GPIO17 Input Data Port for input function. Bit[0]~bit[7] stand for GPIO10~GPIO17 separately	0xFF	0xFC
0x33	GPIOIN18	R	GPIO18~GPIO1F Input Data Port for input function. Bit[0]~bit[7] stand for GPIO18~GPIO1F separately Note: No GPIO1B/1C/1E/1F in KB9012 IC.	0xFF	0xFC
0x34	GPIOIN20	R	GPIO20~GPIO27 Input Data Port for input function. Bit[0]~bit[7] stand for GPIO20~GPIO27 separately	0xFF	0xFC
0x35	GPIOIN28	R	GPIO28~GPIO2F Input Data Port for input function. Bit[0]~bit[7] stand for GPIO28~GPIO2F separately	0xFF	0xFC
0x36	GPIOIN30	R	GPIO30~GPIO37 Input Data Port for input function. Bit[0]~bit[7] stand for GPIO30~GPIO37 separately	0xFF	0xFC
0x37	GPIOIN38	R	GPIO38~GPIO3F Input Data Port for input function. Bit[0]~bit[7] stand for GPIO38~GPIO3F separately	0xFF	0xFC
0x38	GPIOIN40	R	GPIO40~GPIO47 Input Data Port for input function. Bit[0]~bit[7] stand for GPIO40~GPIO47 separately	0xFF	0xFC
0x39	GPIOIN48	R	GPIO48~GPIO4F Input Data Port for input function. Bit[0]~bit[7] stand for GPIO48~GPIO4F separately	0xFF	0xFC
0x3A	GPIOIN50	R	GPIO50~GPIO57 Input Data Port for input function. Bit[0]~bit[7] stand for GPIO50~GPIO57 separately Note: No GPIO51 in KB9012 IC.	0xFF	0xFC
0x3B	GPIOIN58	R	GPIO58~GPIO5F Input Data Port for input function. Bit[0]~bit[7] stand for GPIO58~GPIO5F separately Note: No GPIO5F in KB9012 IC.	0xFF	0xFC
0x3C	GPXAIN00	R	GPXIOA00~GPXIOA07 Input Data Port for input function. Bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately	0xFF	0xFC
0x3D	GPXAIN08	R	GPXIOA08~GPXIOA15 Input Data Port for input function. Bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately Note: No GPXIOA12/13/14/15 in KB9012 IC.	0xFF	0xFC
0x3E	RSV	RSV	Reserved	RSV	0xFC
0x3F	GPXDIN00	R	GPXIOD00~GPXIOD07 Input Data Port for input function. Bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately	0xFF	0xFC

Pull-up	Enable Reg	jister			
Offset	Name	Type.	Description	Default	Bank
0x40	GPIOPU00	R/W	GPIO00~GPIO07 Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO00~GPIO07 separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable Note: No GPIO02/03/06 in KB9012 IC.	0x00	0xFC
0x41	GPIOPU08	R/W	GPIO08~GPIO0F Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO08~GPIO0F separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable Note: No GPIO09 in KB9012 IC.	0x00	0xFC
0x42	GPIOPU10	R/W	GPIO10~GPIO17 Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO10~GPIO17 separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable	0x00	0xFC
0x43	GPIOPU18	R/W	GPIO18~GPIO1F Internal Pull-Up Resistor Enable for input function bit[0]~ bit[7] stand for GPIO18~GPIO1F separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable Note: No GPIO1B/1C/1E/1F in KB9012 IC.	0x00	0xFC
0x44	GPIOPU20	R/W	GPIO20~GPIO27 Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO20~GPIO27 separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable	0x0F	0xFC
0x45	GPIOPU28	R/W	GPIO28~GPIO2F Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO28~GPIO2F separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable	0x00	0xFC
0x46	GPIOPU30	R/W	GPIO30~GPIO37 Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO30~GPIO37 separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable	0xFF	0xFC
0x47	GPIOPU38	R/W	GPIO38~GPIO3F Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO38~GPIO3F separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable	0x00	0xFC
0x48	GPIOPU40	R/W	GPIO40~47 Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO40~GPIO47 separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable Note: No Pull-UP Resistor in GPIO44/45/46/47 in KB9012 IC.	0x00	0xFC
0x49	GPIOPU48	R/W	GPIO48~GPIO4F Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO48~GPIO4F separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable Note: No Pull-UP Resistor in GPIO4A/4B/4E/4F in KB9012 IC.	0x00	0xFC

Offset	Name	Type.	Description	Default	Bank
0x4A	GPIOPU50	R/W	GPIO50~GPIO57 Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO50~57 separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable Note: No GPIO51 in KB9012 IC. Note: No Pull-UP Resistor in GPIO50 in KB9012 IC.	0x00	0xFC
0x4B	GPIOPU58	R/W	GPIO58~GPIO5F Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPIO58~GPIO5F separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable Note: No GPIO5F in KB9012 IC.	0x00	0xFC
0x4C	GPXAPU00	R/W	GPXIOA00~GPXIOA07 Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable	0x00	0xFC
0x4D	GPXAPU08	R/W	GPXIOA08~GPXIOA15 Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable Note: No GPXIOA12/13/14/15 in KB9012 IC.	0x00	0xFC
0x4E	RSV	RSV	Reserved	RSV	0xFC
0x4F	GPXDPU00	R/W	GPXIOD00~GPXIOA07 Internal Pull-Up Resistor Enable for input function bit[0]~bit[7] stand for GPXIOD00~GPXIOA07 separately 0: Pull-Up resistor disable 1: Pull-Up resistor enable	0x00	0xFC

	Prain Enable				
Offset	Name	Type.	Description	Default	Bank
0x50	GPIOOD00	R/W0C	GPIO00~GPIO07 Open Drain Enable for output function bit[0]~bit[7] stand for GPIO00~GPIO07 separately 0: Open drain disable 1: Open drain enable. Note: No GPIO02/03/06 in KB9012 IC.	0x00	0xFC
0x51	GPIOOD08	R/W0C	GPIO08~GPIO0F Open Drain Enable for output function bit[0]~bit[7] stand for GPIO08~GPIO0F separately 0: Open drain disable 1: Open drain enable. Note: No GPIO09 in KB9012 IC.	0x00	0xFC
0x52	GPIOOD10	R/W0C	GPIO10~GPIO17 Open Drain Enable for output function bit[0]~bit[7] stand for GPIO10~GPIO17 separately 0: Open drain disable 1: Open drain enable.	0x00	0xFC
0x53	GPIOOD18	R/W0C	GPIO18~GPIO1F Open Drain Enable for output function bit[0]~bit[7] stand for GPIO18~GPIO1F separately 0: Open drain disable 1: Open drain enable. Note: No GPIO1B/1C/1E/1F in KB9012 IC.	0x00	0xFC
0x54	GPIOOD20	R/W0C	GPIO20~GPIO27 Open Drain Enable for output function bit[0]~bit[7] stand for GPIO20~GPIO27 separately 0: Open drain disable 1: Open drain enable.	0x00	0xF0
0x55	GPIOOD28	R/W0C	GPIO28~GPIO2F Open Drain Enable for output function bit[0]~bit[7] stand for GPIO28~GPIO2F separately 0: Open drain disable 1: Open drain enable.	0x00	0xFC
0x56	GPIOOD30	R/W0C	GPIO30~GPIO37 Open Drain Enable for output function bit[0]~bit[7] stand for GPIO30~GPIO37 separately 0: Open drain disable 1: Open drain enable.	0x00	0xF0
0x57	GPIOOD38	R/W0C	GPIO38~GPIO3F Open Drain Enable for output function bit[0]~bit[7] stand for GPIO38~GPIO3F separately 0: Open drain disable 1: Open drain enable.	0x00	0xF0
0x58	GPIOOD40	R/W0C	GPIO40~47 Open Drain Enable for output function bit[0]~bit[7] stand for GPIO40~GPIO47 separately 0: Open drain disable 1: Open drain enable.	0x00	0xF0
0x59	GPIOOD48	R/W0C	GPIO48~GPIO4F Open Drain Enable for output function bit[0]~bit[7] stand for GPIO48~GPIO4F separately 0: Open drain disable 1: Open drain enable.	0x00	0xF0
0x5A	GPIOOD50	R/W0C	GPIO50~GPIO57 Open Drain Enable for output function bit[0]~bit[7] stand for GPIO50~GPIO57 separately 0: Open drain disable 1: Open drain enable. Note: No GPIO51 in KB9012 IC.	0x00	0xF0
0x5B	GPIOOD58	R/W0C	GPIO58~GPIO5F Open Drain Enable for output function bit[0]~bit[7] stand for GPIO58~GPIO5F separately 0: Open drain disable 1: Open drain enable. Note: No GPIO5F in KB9012 IC.	0x00	0xF0

Open [Open Drain Enable Register								
Offset	Name	Type.	Description	Default	Bank				
0x5C	GPXAOD00	R/W	GPXIOA00~GPXIOA07 Open Drain Enable for output function bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: Open drain disable 1: Open drain enable.	0x00	0xFC				
0x5D	GPXAOD08	R/W	GPXIOA08~GPXIOA15 Open Drain Enable for output function bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: Open drain disable 1: Open drain enable. Note: No GPXIOA12/13/14/15 in KB9012 IC.	0x00	0xFC				
0x5E	RSV	RSV	Reserved	RSV	0xFC				
0x5F	GPXDOD00	R/W	GPXIOD00~GPXIOD07 Open Drain Enable for output function bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: Open drain disable 1: Open drain enable.	0x00	0xFC				

Offset	Name	Type.	Description	Default	Bank
0x60	GPIOIE00	R/W	GPIO00~GPIO07 Input Enable for input function bit[0]~bit[7] stand for GPIO00~GPIO07 separately 0: GPIO input mode disable 1: GPIO input mode enable. Note: No GPIO02/03/06 in KB9012 IC.	0x20	0xFC
0x61	GPIOIE08	R/W	GPIO08~GPIOF Input Enable for input function bit[0]~bit[7] stand for GPIO08~GPIO0F separately 0: GPIO input mode disable 1: GPIO input mode enable. Note: No GPIO09 in KB9012 IC.	0x00	0xFC
0x62	GPIOIE10	R/W	GPIO10~GPIO17 Input Enable for input function bit[0]~bit[7] stand for GPIO10~GPIO17 separately 0: GPIO input mode disable 1: GPIO input mode enable.	0x00	0xFC
0x63	GPIOIE18	R/W	GPIO18~GPIO1F Input Enable for input function bit[0]~bit[7] stand for GPIO18~GPIO1F separately 0: GPIO input mode disable 1: GPIO input mode enable. Note: No GPIO1B/1C/1E/1F in KB9012 IC.	0x00	0xFC
0x64	GPIOIE20	R/W	GPIO20~GPIO27 Input Enable for input function bit[0]~bit[7] stand for GPIO20~GPIO27 separately 0: GPIO input mode disable 1: GPIO input mode enable.	0x0F	0xFC
0x65	GPIOIE28	R/W	GPIO28~GPIO2F Input Enable for input function bit[0]~bit[7] stand for GPIO28~GPIO2F separately 0: GPIO input mode disable 1: GPIO input mode enable.	0x00	0xFC
0x66	GPIOIE30	R/W	GPIO30~GPIO37 Input Enable for input function bit[0]~bit[7] stand for GPIO30~GPIO37 separately 0: GPIO input mode disable 1: GPIO input mode enable.	0xFF	0xFC
0x67	GPIOIE38	R/W	GPIO38~GPIO3F Input Enable for input function bit[0]~bit[7] stand for GPIO38~GPIO3F separately 0: GPIO input mode disable 1: GPIO input mode enable.	0x00	0xFC
0x68	GPIOIE40	R/W	GPIO40~GPIO47 Input Enable for input function bit[0]~bit[7] stand for GPIO40~GPIO47 separately 0: GPIO input mode disable 1: GPIO input mode enable.	0x00	0xFC
0x69	GPIOIE48	R/W	GPIO48~GPIO4F Input Enable for input function bit[0]~bit[7] stand for GPIO48~GPIO4F separately 0: GPIO input mode disable 1: GPIO input mode enable.	0x00	0xFC
0x6A	GPIOIE50	R/W	GPIO50~GPIO57 Input Enable for input function bit[0]~bit[7] stand for GPIO50~GPIO57 separately 0: GPIO input mode disable 1: GPIO input mode enable. Note: No GPIO51 in KB9012 IC.	0x00	0xFC
0x6B	GPIOIE58	R/W	GPIO58~GPIO5F Input Enable for input function bit[0]~bit[7] stand for GPIO58~GPIO5F separately 0: GPIO input mode disable 1: GPIO input mode enable. Note: No GPIO5F in KB9012 IC.	0x02	0xFC

Input E	Input Enable Register								
Offset	Name	Туре.	Description	Default	Bank				
0x6C	GPXAIE00	R/W	GPXIOA00~GPXIOA07 Input Enable for input function bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: GPIO input mode disable 1: GPIO input mode enable.	0x00	0xFC				
0x6D	GPXAIE08	R/W	GPXIOA08~GPXIOA15 Input Enable for input function bit[0]~bit[7] stand for GPXIOA08~GPXIOA15separately 0: GPIO input mode disable 1: GPIO input mode enable. Note: No GPXIOA12/13/14/15 in KB9012 IC.	0x00	0xFC				
0x6E	RSV	RSV	Reserved	RSV	0xFC				
0x6F	GPXDIE00	R/W	GPXIOD00~GPXIOD07 Input Enable for input function bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: GPIO input mode disable 1: GPIO input mode enable.	0x00	0xFC				

Offset	Name	Bit	Туре	Description	Default	Bank
0x70 GPIO_MISC	GPIO_MISC	7	R/W	ESB_DAT(GPIO0C) output current selection 0: 4mA 1: 8mA	0x60	0xFC
		6	R/W	SPICLK(GPIO58) output current selection 0: 8mA 1: 16mA		
		5	R/W	ESB_CLK(GPIO0B) output current selection 0: 8mA 1: 16mA		
		4	R/W	RSV		
	3	R/W	GPIO17 / GPIO18 are featured with signal bypass function. Signal input via GPIO17 can be directly passed through GPIO18. 0: Pass through function disable 1: Pass through function enable			
		2	R/W	SHDI pin-out enable (GPXA00/01/02, GPXD00) 0: disable 1: enable Also refer to SHICFG		
	1	R/W	SHDI pin-out enable (GPIO58/5A/5B/5C) 0: disable 1: enable Also refer to SHICFG			
		0	R/W	Beep glue logic switch. GPIO12 can be output a specific function as following formula. GPIO12 = PWM2 GPIO16(input) GPIO17(input)		
				Beep glue logic function disable Beep glue logic function enable		

GPIO_	MISC 2 Cont	rol R	egister			
Offset	Name	Bit	Туре	Description	Default	Bank
0x71	GPIO_MISC2	7	R/W	LPC bus redirection enable, will redirect LPC bus to relative KSO pins: 0: Disable 1: Enable PCICLK to GPIO25(KSO5) PCIRST# to GPIO26(KSO6) SERIRQ to GPIO27(KSO7) LFRAME# to GPIO28(KSO8) LAD3 to GPIO2B(KSO11) LAD2 to GPIO2C(KSO12) LAD1 to GPIO2D(KSO13) LAD0 to GPIO2E(KSO14)	0x00	0xFC
		6	R/W	Select GPIO25(KSO5) output current 4mA/16mA =0, Select Output Current 4mA for GPIO25(KSO5) =1, Select Output Current 16mA for GPIO25(KSO5)		
		5	R/W	Enable SMBus port 3 (SCL3/SDA3) 0:Disable 1:Enable		
		4	R/W	Enable SMBus port 2 (SCL2/SDA2) 0:Disable 1:Enable		
		3	RSV	Reserved		
		2	R/W	Enable E51 Tx/Rx to IKB interface for debugging E51_TXD: Pin 30, GPIO16 -> Pin 55, GPIO30 E51_RXD: Pin 31, GPIo17 -> Pin 54, GPIO2F		
		1~0	RSV	Reserved		

GPIO '	GPIO Test Mux Register										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x72	Reserved	7~0	RSV	Reserved	0x00	0xFC					

GPX M	GPX MISC Control Register										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x73	GPX_MISC	7~3	RSV	Reserved	0x00	0xFC					
		2	R/W	GPIO18 output power fail flag enable 0: Disable 1: Enable							
		1	R/W	GPXIOA03 output power fail flag enable 0: Disable 1: Enable							
		0	RSV	Reserved							

GPIO I	_ED Control					
Offset	Name	Bit	Туре	Description	Default	Bank
0x74	GPIO_LED	7~6	RSV	Reserved	0x00	0xFC
		5	R/W	Enable high drive IO cell for the specific GPIO, GPIO55 (SCORLED#) enable 0: Disable (16mA) 1: Enable (20mA)		
		4	R/W	Enable high drive IO cell for the specific GPIO, GPIO54 (WDT_LED#) enable 0: Disable (16mA) 1: Enable (20mA)		
		3	R/W	Enable high drive IO cell for the specific GPIO, GPIO53 (CAPSLED#) enable 0: Disable (16mA) 1: Enable (20mA)		
		2	R/W	Enable high drive IO cell for the specific GPIO, GPIO52 enable 0: Disable (16mA) 1: Enable (20mA)		
		1	R/W	Enable high drive IO cell for the specific GPIO, GPIO4D enable 0: Disable (16mA) 1: Enable (20mA)		
		0	R/W	Enable high drive IO cell for the specific GPIO, GPIO1A (NUMLED#) enable 0: Disable (16mA) 1: Enable (20mA)		

GPIO I	GPIO Flash Direct Access Configuration										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x75	GPIO_FDA	7~2	RSV	Reserved	0x00	0xFC					
	5	1~0	R/W	Configuration for FDA Mode 00: Disable 01: Reserved 10: Reserved 11: Reserved							

4.2.5 GPIO Programming Sample

In this section gives some programming sample to control GPIO module. Please note, ENE does not guarantee these codes in every field application. The following table describes scenario of GPIO filed application.

Example									
PIN	Function								
GPIO00 (GA20)	Output								
GPIO01 (KBRST#)	Output								
GPIO02 (GPIO) *	Input								
GPIO03 (GPIO) *	Input								
GPIO04 (GPIO)	Output								
GPIO05 (PCIRST#)	Input								
GPIO06 (GPIO) *	Input								
GPIO07 (GPIO)	Output								

Programming model

- 1. Set function selection register.

 GPIOFS00 (0xFC00) = 0x23 (0b 0010 0011)
- 2. Set related pins to be output enable.

 GPIOOE00 (0xFC10) = 0x93 (0b 1001 0011)
- 3. Set related pins to be input enable.

 GPIOIE00 (0xFC60) = 0x6C (0b 0110 1100)
- * GPIO02/03/06 do not exist in KB9012 chip

4.3 Keyboard and Mouse Control Interface (KBC)

4.3.1 KBC I/F Function Description

The KBC is compatible with i8042 and responsible for keyboard/mouse accessing via legacy 60h/64h ports. The port 60h is the data port and port 64h is the command port. The legacy IRQ1 for keyboard devices and IRQ12 for mouse devices can be generated. The KBC interface provides fast GA20 control for legacy application.

KBC data register can be accessed by host or KBC firmware. Writing this register will setup a **OBF** (**O**utput **B**uffer **F**ull) flag, which can be clear by firmware. While the host issues I/O write to 60h/64h port, an **IBF** (Input **B**uffer **F**ull) flag will assert. The interrupts can be programmed to issue while the flag of IBF/OBF asserting.

The following table gives a summary about port 60h/64h accessing.

Port	Access	Туре	Register	Flag	Comment
60h	I/O Write	Data	KBCDAT (0xFC85)	IBF	Write data to keyboard/mouse
64h	I/O Write	Command	KBCCMD (0xFC84)	IBF	Write command to keyboard/mouse
60h	I/O Read	Data	KBCDAT (0xFC85)	OBF	Read data from keyboard/mouse
64h	I/O Read	Status	KBCSTS (0xFC86)	7	Read status from keyboard/mouse

KBC data register, KBCDAT, keeps data from host or data written by KBC firmware.

Bit	7	6	5	4	3	2	1	0
Name			Keyk	oard/Mous	e Data Reg	jister		

KBC command register, **KBCCMD**, is used to keep the command from host. This register is read only.

Bit	7	6	5	4	3	2	1	0
Name			Keyboa	ard/Mouse C	Command F	Register		

KBC status register, **KBCSTS**, keeps the status as the following table. For more detail please refer to the section, **KBC Registers Description**.

Bit	7	6	5	4	3	2	1	0
Name	Parity Error	Time Out	Aux. Data Flag	Un-inhibited	Address (A2)	System Flag	IBF	OBF

4.3.2 KBC Registers Description (0xFC80~0xFC8F)

Offset	Name	Bit	Туре	Description	Default	Bank
0x80	КВССВ	7	R/W	PS/2 hardware mode enable 0: Disable 1: Enable If the host issues command 20h via port 64h, and the KBC returns data via port 60h. This bit will always be read as zero.	0x40	0xFC
	6	R/W	Scan code set2 conversion enable (PS/2 scan code set2 converts to set 1) 0: Disable 1: Enable	D		
		5	R/W	Disable Auxiliary device 0: Enable 1: Disable		
		4	R/W	Disable Keyboard device 0: Enable 1: Disable		
		3	R/W	Inhibit Override 0: Disable 1: Enable		
		2	R/W	System Flag (warm boot flag) 0: cold boot 1: warm boot		
		1	R/W	IRQ12 Enable While KBCSTS[5]=1(Auxiliary Data Flag) and KBCSTS[0]=1 (OBF), then IRQ12 will issue. 0: Disable 1: Enable		
	-	0	R/W	IRQ1 Enable While KBCSTS[5]=0 (Auxiliary Data Flag) and KBCSTS[0]=1 (OBF), then IRQ1 will issue. 0: Disable 1: Enable		

KBC C	onfiguration	1				
Offset	Name	Bit	Туре	Description	Default	Bank
0x81	KBCCFG	7	R/W	Keyboard lock enable 0: Disable 1: Enable	0x00	0xFC
		6	R/W	Fast gate A20 control 0: Disable gate A20 control 1: Enable gate A20 control		
		5	R/W	KBC hardware command sets (90h~93h, D4h) enable. 0: Disable 1: Enable	B	
		4	R/W	KBC hardware command sets (60h, A7h~ABh, Adh~Aeh) enable. 0: Disable 1: Enable		
		3	R/W	Keyboard lock flag status 0: keyboard not lock or not inhibit 1: keyboard lock or inhibit		
		2	R/W	KBC hardware command sets (A4h, A6h) enable. 0: Disable 1: Enable		
		1	R/W	IBF (KBCSTS[1]) interrupt enable. (IBF from 0 to 1) 0: Disable 1: Enable		
		0	R/W	OBF (KBCSTS[0]) interrupt enable (OBF from 1 to 0) 0: Disable 1: Enable		

KBC Ir	KBC Interrupt Pending Flag											
Offset	Name	Bit	Туре	Description	Default	Bank						
0x82	KBCIF	7-3	RSV	Reserved	0x00	0xFC						
		2	R/W1C	Status of KBC command handled by firmware While receiving KBC commands which need firmware to handle, the hardware will set this bit. Then the firmware will deal with all the following command until this bit is clear by firmware.								
		1	R/W1C	IBF interrupt pending flag 0: no IBF interrupt occurs 1: IBF interrupt occurs								
		0	R/W1C	OBF interrupt pending flag 0: no OBF interrupt occurs 1: OBF interrupt occurs								

KBC H	ardware Co	mman	d Enab	le					
Offset	Name	Bit	Туре	Description	Default	Bank			
0x83	KBCHWEN	7	R/W	KBC hardware command set (FEh) enable 0: Disable 1: Enable	0x00	0xFC			
		6	R/W	KBC hardware command set (E0h) enable 0: Disable 1: Enable					
		5	R/W	KBC hardware command set (D3h) enable 0: Disable 1: Enable	1				
		4	R/W	KBC hardware command set (D2h) enable 0: Disable 1: Enable					
					3	R/W	KBC hardware command set (D1h) enable 0: Disable 1: Enable		
		2	R/W	KBC hardware command set (D0h) enable 0: Disable 1: Enable					
		1	R/W	KBC hardware command set (C0h) enable 0: Disable 1: Enable					
		0	R/W	KBC hardware command set (20h) enable 0: Disable 1: Enable					

KBC C	KBC Command Buffer										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x84	KBCCMD	7-0	RO	Command written to port 64h will be stored in this register	0x00	0xFC					

KBC D	KBC Data Input/Output Buffer									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x85	KBCDAT	7-0	R/W	Data written to this register to make OBF set (OBF=1). The host read this register via port 60h.	0x00	0xFC				

KBC H	ost Status					
Offset	Name	Bit	Туре	Description	Default	Bank
0x86	KBCSTS	7	R/W	Parity error 0: No parity error occurs in PS/2 protocol 1: Parity error occurs in PS/2 protocol.	0x00	0xFC
		6	R/W	Timeout O: No timeout occurs in PS/2 protocol 1: Timeout occurs in PS/2 protocol.		
		5	R/W	Auxiliary data flag		
	4	4	RO	Uninhibited 0: keyboard inhibited 1: keyboard not inhibited		
		3	RO	Address (A2) 0: output buffer data from 60h 1: output buffer data from 64h		
		2	RO	System flag		
		1	R/W1C	IBF		
		0	R/W1C	OBF		

RSV									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x87~ 0x89	RSV	7-0	RSV	Reserved	0x00	0xFC			

KBC V	/rite Data		_			
Offset	Name	Bit	Туре	Description	Default	Bank
0x8A	KBCDATR	7-0	RO	Read back port of KBCDAT, [0xFC85]	0x00	0xFC

RSV						
Offset	Name	Bit	Туре	Description	Default	Bank
0x8B~ 0x8F	RSV	7~0	RSV	Reserved	0x00	0xFC

4.4 ENE Serial Bus Controller (ESB)

4.4.1 ESB Function Description

To extend the usage of the current design, an ENE Serial Bus interface is introduced. An external ESB device can be controlled by firmware transparently. As the following table, 3 memory address ranges are reserved for ESB devices.

ESBED field	Memory Range
Bit 2	0xFCC0~0xFCCF
Bit 1	0xFCB0~0xFCBF
Bit 0	0xFD00~0xFDFF

In the ESB architecture, external ESB devices are supported. And each device can be configured with interrupt capability. A figure gives the topology of ENE Serial Bus as following.

The topology of ENE Serial Bus

4.4.2 ESB Registers Description (0xFC90~0xFC9F)

ESB C	onfiguration					
Offset	Name	Bit	Туре	Description	Default	Bank
0x90	ESBCFG	7	R/W	Loop back test enable 0: Disable 1: Enable	0x00	0xFC
		6-5	R/W	ESB clock divide factor selection. 00: 2Mhz 01: 4Mhz 10: 8Mhz 11: 16Mhz		
		4	R/W	External device access mode. 0: Access external device via 4 predefined memory ranges. (automatic mode) 1: Access external devices via ESBCA, ESBCD and ESBRD registers. (byte mode)		
		3	R/W	ESB clock output enable 0: Disable 1: Enable		
		2	R/W	ESB interrupt enable 0: Disable 1: Enable		
		1	R/W	ESB host queries device interrupt status automatically. (when ESBCFG[3]=1) 0: Disable 1: Enable		
		0	R/W	ESB function enable 0: Disable 1: Enable		

 C_{O}

ESB C	ommand an	d Stat	us			
Offset	Name	Bit	Туре	Description	Default	Bank
0x91	ESBCS	7	RSV	Reserved	0x00	0xFC
		6	R/W1C	Device resume signal flag 0: no event 1: event occurs.		
		5	R/W1C	ESB bus timeout status 0: no timeout event 1: bus timeout		
		4	R/W1C	Device data received status. 0: no data received 1: data received.		
		3	R	ESB host busy flag. 0: not busy 1: host busy		
		2	W	Start to send command, command byte in ESBCD , 0xFC94 Write "0" will not work. 1: send command		
		1-0	R/W	ESB access command type (while ESBCFG[3]=1) 00: interrupt query 01: read 10: write 11: Reserved		

Offset	Name	Bit	Туре	Description	Default	Bank
0x92	ESBINTE	7	RSV	Reserved	0x00	0xFC
		6	R/W	Device resume signal interrupt enable 0: Disable 1: Enable		
		5	R/W	Bus timeout interrupt enable 0: Disable 1: Enable		
		4	R/W	Device data received interrupt enable 0: Disable 1: Enable	8	
		3	R/W	Interrupt enable (IRQ3) of external ESB device. 0: Disable 1: Enable		
	0: Disa 1: Enal 1 R/W Interru 0: Disa 1: Enal 0 R/W Interru 0: Disa	Interrupt enable (IRQ2) of external ESB device. 0: Disable 1: Enable				
		0: Disable 1: Enable				
			0	R/W		

ESB C	ESB Command Address							
Offset	Name	Bit	Туре	Description	Default	Bank		
0x93	ESBCA	7-0	R/W	External ESB device address to be accessed. (when ESBCFG[4]=1)	0x00	0xFC		
				The address is predefined according to different device.				

ESB C	ommand Da	ta				
Offset	Name	Bit	Туре	Description	Default	Bank
0x94	ESBCD	7-0	R/W	Write data port to external ESB device (when ESBCFG [4]=1)	0x00	0xFC

ESB R	eceived Data	a				
Offset	Name	Bit	Туре	Description	Default	Bank
0x95	ESBRD	7-0	R/W	Read data port to external ESB device (when ESBCFG [4]=1) If loop back test enabled (when ESBCFG [7]=1), the register will be writable, otherwise, read-only.	0x00	0xFC

ESB E	nable for Ex	ternal	Device			
Offset	Name	Bit	Туре	Description	Default	Bank
0x96	ESBED	7-5	RSV	Reserved	0x00	0xFC
		4	R/W	Low clock mode enable (clock source 32KHz) For performance and power saving consideration, while low clock mode enabled, please set the query function off. 0: Disable 1: Enable		
		3	RSV	Reserved	P	
		2	R/W	Enable external ESB device decoding address 0xFCC0~0xFCCF 0: Disable 1: Enable		
		1	R/W	Enable external ESB device decoding address 0xFCB0~0xFCBF 0: Disable 1: Enable		
		0	R/W	Enable external ESB device decoding address 0xFD00~0xFDFF. 0: Disable 1: Enable		

ESB II	iterrupt Ever	nt Per	iding Fi	ag for External Chip		ı
Offset	Name	Bit	Type	Description	Default	Bank
0x97	0x97 ESBINT	7	R/W1C	Interrupt event pending flag of IRQ7 (cascade mode only) 0: no event 1: event occurs	0x00	0xFC
	6	R/W1C	Interrupt event pending flag of IRQ6 (cascade mode only) 0: no event 1: event occurs			
		5	R/W1C	I Interrupt event pending flag of IRQ5 (cascade mode only) 0: no event 1: event occurs		
		4	R/W1C	Interrupt event pending flag of IRQ4 (cascade mode only) 0: no event 1: event occurs		
		3	R/W1C	Interrupt event pending flag of IRQ3 0: no event 1: event occurs		
	2	R/W1C	Interrupt event pending flag of IRQ2 0: no event 1: event occurs			
		1 R/	R/W1C	Interrupt event pending flag of IRQ1 0: no event 1: event occurs		
		0	R/W1C	Interrupt event pending flag of IRQ0 0: no event 1: event occurs		

Offset	Name	Bit	Туре	Description	Default	Bank
0x98	ESBCAS	7	R/W	Interrupt enable of IRQ7 for external chip 0: disable 1: enable	0x00	0xFC
		6	R/W	Interrupt enable of IRQ6 for external chip 0: disable 1: enable		
		5	R/W	Interrupt enable of IRQ5 for external chip 0: disable 1: enable		
	4 R/W Interrupt enable of IRQ4 for externa 0: disable 1: enable					
		3-1	RSV	Reserved		
	0	0	R/W	Cascade mode enable 0: disable 1: enable		

4.4.3 ESB Programming Sample

In this section gives some programming sample to control ESB module. Please note, ENE does not guarantee these codes in every field application. The following table describes scenario of ESB filed application.

Example

A device connecting to ESB master.

Programming model

 $\label{eq:GPIOFS08[4:3]} \text{GPIOFS08[4:3]} \text{ (0xFC01[4:3])= 11b} \qquad \text{; ESB function selection pin}$

 $GPIOIE08[4] (0xFC61[4]) = 1b ; Set ESB_DAT pin IE$

ESBCFG (0xFC90) = 0x69 ; ESB clock = Main CLOCK 32MHz

; ESB enable & automatic mode enable

ESBED (0xFC96) = 0x02; Enable ESB range $0xFCC0 \sim 0xFCCF$

Now F/W can access ESB device via 0xFCC0~0xFCCF

4.5 Internal KeyBoard (IKB) Encoder

4.5.1 IKB Function Description

The KBC supports internal keyboard encoder (IKB) in the notebook system. Here is the feature highlight of IKB module.

- Support 18x8 matrix.
- Keyboard scan output (KSO) 18 lines.
- Keyboard scan input (KSI) 8 lines
- KSO/KSI can be programmed to be GPIO
- KSO/KSI internal programmable pull-high feature supported.
- KSO/KSI can be used for redirection for LPC, 8051 Tx/Rx, EDI debug application
- Support half-HW mode & FW mode de-bounce setting

Table for IKB Hardware Command Brief:

	B Hardware Command Brief:	
Command	Description	
*ED	Set LED. Modify the status of LED by the following argument byte. Normal sequence: ED FA WW FA (WW is setting to IKBLED[2:0])	
	Bits 7~3	Must be Zero
	Bit 2	Caps Lock LED
	Bit 1	Num Lock LED
	Bit 0	Scroll Lock LED
		WW define as above
EE	ECHO. Send EE back to the host after receiving this command. Normal sequence: EE EE	
* F0	Access Scan Code Set. Host uses the 1 st argument to specify the R/W operation. If 1 st argument equals 0x00, it's a read operation. If 1 st argument not equals 0x00, it's a write operation and KBC ignores the argument. (Supports Set 2 scan code) Normal sequence: F0 FA 00 FA 02, (read scan code set as 2) F0 FA 02 FA (use set 2 scan code)	
F2	Get Device ID. Normal sequence: F2 FA AB 41	
* F3	Set Typematic Rate. Normal sequence: F3 FA WW FA (WW is setting to IKBTYPEC)	
F4	Enable. Start scanning the key matrix and sending the scan code to the host KBC is in disable mode after hardware rest. System BIOS should configure all options of KBC and enable it. Normal sequence: F4 FA	
F5	Disable. When disabled, KBC can't TX key to PS2. And KBC will keep the key until Enable or Reset or Default occurs.	
F6	Set Default. Restore the default setting of typematic rate and LED status, Normal sequence: F6 FA	
FE	Resend. Re-transmit the last byte. Normal sequence: FE WW (WW is the last byte of KBC sent to PS2 to be resent)	
FF	Reset. Generate soft-reset to reset PS2 interface, It will clear all internal flags of scan controller. The scan, kgen, TX/RX state machine will go to idle and clear all buffers.	

^{*} When these commands waiting RX argument, KBC can TX key to PS2.

4.5.2 IKB Registers Description (0xFCA0~0xFCAF)

IKB Co	nfiguration					
Offset	Name	Bit	Туре	Description	Default	Bank
0xA0	IKBCFG	7	R/W	IKB scan controller test mode enable. 0: Disable 1: Enable	0x00	0xFC
	6	R/W	IKB PS/2 wait time setting. The IKB makes sure PS/2 bus idle for specific time and then transmit the scan codes. 0 : 8 μ s 1 : 64 μ s			
		5	RW	IKB De-bounce function control for half-HW mode 0: Disable 1: Enable	D	
		4	WO	Force controller to scan key matrix. Write "1" to start.		
		3	RSV	Reserved		
		2	R/W	IKB scan repeat enable. Set this bit force the IKB controller to scan every 30ms. 0: Disable 1: Enable		
		1	R/W	Standard KB command hardware mode enable. Once the IKB received standard KB command, the hardware will handle it. 0: Disable 1: Enable		
		0	R/W	IKB scan controller enable. 0: Disable 1: Enable		

IKB LE	D Control					
Offset	Name	Bit	Туре	Description	Default	Bank
0xA1	IKBLED	7	R/W	NumLock key 0: Fn-Lock 1: NumLock = Fn-Lock	0x00	0xFC
		6	R/W	Flag of Fn-Shift (in hardware mode) 0: Fn-Shift not pressed 1: Fn-Shift pressed		
		5	R/W	Flag of Fn-Lock (in hardware mode) 0: Fn-Lock not pressed 1: Fn-Lock pressed		
		4	R/W	LED output polarity, CapLock/NumLock/ScrLock output 0: positive logic 1: negative logic		
		3	RSV	Reserved		
		2	R/W	CapLock LED driving H/W auto set or clear it, polarity depend on IKBLED[4]		
		1	R/W	NumLock LED driving H/W auto set or clear it, polarity depend on IKBLED[4]		
		0	R/W	ScrLock LED driving H/W auto set or clear it, polarity depend on IKBLED[4]		

IKB Ty	IKB Typematic Control										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xA2	IKBTYPEC	7	RSV	Reserved	0x00	0xFC					
		6-5	R/W	1 st key repeat delay time selection.							
				00b : 250ms		ļ					
				01b : 500ms							
				10b : 750ms							
				11b : 1 sec							
		4-0	R/W	Typematic repeat characters per second.							
				1Fh: 2 char/sec 10h: 10 char/sec							
				1Bh: 3 char/sec 0Dh: 12 char/sec							
				18h: 4 char/sec 0Bh: 15 char/sec							
				17h : 5 char/sec 08h : 16 char/sec							
				15h : 6 char/sec 05h : 20 char/sec							
				13h : 8 char/sec 00h : 30 char/sec							

IKB Int	errupt Enab	le				
Offset	Name	Bit	Туре	Description	Default	Bank
0xA3 IKBIE	IKBIE	7	R/W	Enable F/W mode IKB de-bounce control for wait time cycle 0: disable 1: enable	0x00	0xFC
		6	R/W	Wait time cycle timing unit selection (Only valid when IKBIE[7]=1, also refer IKBSFC[7:4] for details) 1: 1m sec pulse 0: 4m sec pulse		
		5	R/W	Interrupt enable. While the following commands handled by hardware occur. KB reset / KB disable / KB Enable / Non-standard hardware mode command 0: Disable 1: Enable	P	
		4	R/W	IKB RX finished interrupt enable. 0: Disable 1: Enable		
		3	R/W	IKB TX finished interrupt enable. 0: Disable 1: Enable		
		2	R/W	IKB typmatic repeat timeout interrupt enable. 0: Disable 1: Enable		
		1	R/W	IKB scan code finished interrupt enable. (IKBHCFG[0]=0) IKB break key (hotkey) interrupt enable. (IKBHCFG[0]=1) 0: Disable 1: Enable		
		0	R/W	IKB make key interrupt enable. (IKBHCFG[0]=0) IKB make key (hotkey) interrupt enable. (IKBHCFG[0]=1) 0: Disable 1: Enable		

IKB Int	errupt Pend	ing Fl	ag			
Offset	Name	Bit	Туре	Description	Default	Bank
0xA4	IKBPF	7	WO	Force the IKB controller enter idle mode. Write "1" to enter idle mode.	0x00	0xFC
		6	R/W1C	IKBSADR (0xFCA9) valid flag. 0: no more valid IKBSADR 1: IKBSADR valid		
		5	R/W1C	Interrupt flag. While the following commands handled by hardware occur. KB reset / KB disable / KB enable 0: event is not active 1: event is active		
		4	R/W1C	IKB RX finished and non-standard hardware mode command occurring interrupt flag. 0: event is not active 1: event is active		
		3	R/W1C	IKB TX finished interrupt flag. 0: event is not active 1: event is active		
		2	R/W1C	IKB typematic repeat timeout interrupt flag 0: event is not active 1: event is active		
		1	R/W1C	IKB scan code finished interrupt flag. (IKBHCFG[0]=0) IKB break key (hotkey) interrupt flag. (IKBHCFG[0]=1) 0: event is not active 1: event is active		
		0	R/W1C	IKB make key interrupt flag. (IKBHCFG[0]=0) IKB make key (hotkey) interrupt flag. (IKBHCFG[0]=1) 0: Disable 1: Enable		

IKB PS	IKB PS/2 TX Data Byte									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xA5	IKBTXDAT	7-0	R/W	The IKB port to transmit data to PS/2 controller Writing to this port, the data will be delivered to PS/2 controller. After transmission completes and a TX finished interrupt issues.	0x00	0xFC				

IKB PS	IKB PS/2 RX Data Byte									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xA6	IKBRXDAT	7-0	R/W	The IKB port to receive data from PS/2 controller. After receiving data from PS/2 controller, a RX finished interrupt issues.	0x00	0xFC				

IKB Ha	IKB Hardware Mode Configuration										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xA7	IKBHCFG	7-3	RSV	Reserved	0x00	0xFC					
		2	R/W	IKB hotkey flag while hardware mode enable (IKBCFG[0]=1) 0: event is not active 1: event is active							
		1	R/W	IKB hotkey finish indicator While KBC recognizes a hotkey, the KBC setup the hotkey flag (IKBCFG[2]) to invoke firmware to handle. Firmware will write "1" to this bit after completing the hotkey event.	4						
		0	R/W	IKB hardware mode enable 0: Disable 1: Enable	D						

IKB So	IKB Scan Inputs								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xA8	IKBKSI	7-0	RO	IKB scan input buffer	0x00	0xFC			

IKB So	IKB Scan Address								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xA9	IKBSADR	7-0	RO	IKB scan address of current key	0x00	0xFC			

IKB So	IKB Scan Timing Control								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xAA	IKBSDB	7-4	R/W	KSO release (floating) time Time = (value + 1) * 8μ s	0xF7	0xFC			
		3-0	R/W	KSO drive low time Time = (value + 1) * 8μ s					

IKB Make Key (hardware mode)								
Offset	Name	Bit	Туре	Description	Default	Bank		
0xAB	IKBMK	7-0	RO	The scan controller places make key in this register. If hotkey occurs, the register contains the matrix value.	0x00	0xFC		

IKB Br	IKB Break Key (hardware mode)							
Offset	Name	Bit	Туре	Description	Default	Bank		
0xAC	IKBBK	7-0	RO	The scan controller places break key in this register. If hotkey occurs, the register contains the matrix value.	0x00	0xFC		

IKB So	IKB Scan All key de-bounce control								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xAD	IKBSADB	7	RSV	Reserved	0x55	0xFC			
		6~4	R/W	De-bounce times for valid break key 000: 1 times 1 111: 8 times					
		3	RSV	Reserved					
		2~0	R/W	De-bounce times for valid make key 000: 1 times 1 111: 8 times	B				

IKB Sc	IKB Scan Function Control									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xAE	IKBSFC	7-4	R/W	The scan function will wait "X" time after then scan all keys again. "X" range 0~15m sec 0000 0m sec 11111 15m sec (F/W mode de-bounce, also refer IKBIE for wait time timing base setting which could be 1ms base / 4ms base)	0x00	0xFC				
		3-0	RSV	Reserved						

IKB Ke	IKB Key Generation Flag							
Offset	Name	Bit	Туре	Description	Default	Bank		
0xAF IKBKGENFG		7-6	RO	IKB PS2 KB Reset, Disable and Enable hardware command interrupt pending flag status 00: No interrupt event 01: Reset command interrupt 10: Disable command interrupt 11: Enable command interrupt	0x00	0xFC		
		5~3	RSV	Reserved				
		2	RO	Idle mode status				
		1	R/W1C	Ghost key identification flag (IKBHCFG[0]=1) 0: No ghost key 1: Ghost key found				
		0	R/W1C	IKB make key scan flag. If this bit is set to "1", all the make keys will be ignored. O: not over 5 make key occur at a time 1: over 5 make key occur at a time				

4.5.3 IKB Matrix Value Mapping Table

In this section, the following tables show the mapping information between matrix value and PS/2 set1 scan code. The first one is the standard keys mapping, and the second one is for multimedia keys mapping.

Standard Keys

	Statidard Neys								
Matrix Value (set 2)	Description	Scan Code (set 1)	Matrix Value (set 2)	Description	Scan Code (set 1)				
00h	Error(overrun)	FFh	40h	Reserved	6Bh				
01h	F9	43h	41h	< ,	33h				
02h	F7	41h	42h	К	25h				
03h	F5	3Fh	43h	1	17h				
04h	F3	3Dh	44h	0	18h				
05h	F1	3Bh	45h) 0	0Bh				
06h	F2	3Ch	46h	(9	0Ah				
07h	F12	58h	47h	Reserved	60h				
08h	Reserved	64h	48h	Reserved	6Ch				
09h	F10	44h	49h	> .	34h				
0Ah	F8	42h	4Ah	? /	35h				
0Bh	F6	40h	4Bh	L	26h				
0Ch	F4	3Eh	4Ch	: ;	27h				
0Dh	Tab	0Fh	4Dh	Р	19h				
0Eh		29h	4Eh		0Ch				
0Fh	Reserved	59h	4Fh	Reserved	61h				
10h	Reserved	65h	50h	Reserved	6Dh				
11h	Left Alt	38h	51h	Reserved	73h				
12h	Left Shift	2Ah	52h	u t	28h				
13h	Reserved	70h	53h	Reserved	74h				
14h	Left Ctrl	1Dh	54h] }	1Ah				
15h	Q	10h	55h	+ =	0Dh				
16h	! 1	02h	56h	Reserved	62h				
17h	Reserved	5Ah	57h	Reserved	6Eh				
18h	Reserved	66h	58h	Caps Lock	3Ah				
19h	Reserved	71h	59h	Right Shift	36h				
1Ah	Z	2Ch	5Ah	Return	1Ch				
1Bh	S	1Fh	5Bh	}]	1Bh				
1Ch	A	1Eh	5Ch	Reserved	75h				
1Dh	W	11h	5Dh	\(US only) ~#(102-key)	2Bh				
1Eh	@ 2	03h	5Eh	Reserved	63h				
1Fh	Reserved	5Bh	5Fh	Reserved	76h				
20h	Reserved	67h	60h	Fn (PTL)	55h				
21h	С	2Eh	61h	\(102-key)	56h				

Matrix Value (set 2)	Description	Scan Code (set 1)	Matrix Value (set 2)	Description	Scan Code (set 1)
22h	Х	2Dh	62h	Reserved	77h
23h	D	20h	63h	Reserved	78h
24h	Е	12h	64h	Reserved	79h
25h	\$ 4	5Ch	65h	Reserved	7Ah
26h	# 3	04h	66h	Backspace	0Eh
27h	Reserved	05h	67h	Reserved	7Bh
28h	Reserved	68h	68h	Reserved	7Ch
29h	Space	39h	69h	1 End	4Fh
2Ah	V	2Fh	6Ah	Reserved	7Dh
2Bh	F	21h	6Bh	4 Left Arrow	4Bh
2Ch	Т	14h	6Ch	7 Home	47h
2Dh	R	13h	6Dh	Reserved	7Eh
2Eh	% 5	06h	6Eh	Reserved	7Fh
2Fh	Reserved	5Dh	6Fh	Reserved	6Fh
30h	Reserved	69h	70h	0 Ins	52h
31h	N	31h	71h	. Del	53h
32h	В	30h	72h	2 Down Arrow	50h
33h	Н	23h	73h	5	4Ch
34h	G	22h	74h	6 Right Arrow	4Dh
35h	Y	15h	75h	8 Up Arrow	48h
36h	^ 6	07h	76h	ESC	01h
37h	Reserved	5Eh	77h	Num Lock	45h
38h	Reserved	6Ah	78h	F11	57h
39h	Reserved	72h	79h	+	4Eh
3Ah	М	32h	7Ah	3 PgDn	51h
3Bh	J	24h	7Bh	-	4Ah
3Ch	U	16h	7Ch	*	37h
3Dh	& 7	08h	7Dh	9 PgUp	49h
3Eh	* 8	09h	7Eh	Scroll Lock	46h
3Fh	Reserved	5Fh	7Fh	Sys Req (84-key)	54h

Multimedia Keys

	Multimedia Reys								
Matrix Value (set 2)	Description	Scan Code (set 1)	Matrix Value (set 2)	Description	Scan Code (set 1)				
00h – 7Fh	Standard Keys	See table above	9Ah	ACPI Sleep	E0 5F				
80h	Left Shift	2Ah	9Bh	ACPI Wake	E0 63				
81h	Left Ctrl	1Dh	9Ch	Left Window	E0 5B				
82h	Left Alt	38h	9Dh	Right Window	E0 5C				
83h	F7	41h	9Eh	Windows App	E0 5D				
84h	SysReq	54h	9Fh	Break	1D E0 46				
85h	Right Shift	36h	A0h	Volume Up	E0h 30h				
86h	Right Ctrl	E0h 1Dh	A1h	Volume Down	E0h 2Eh				
87h	Right Alt	E0h 38h	A2h	Next	E0h 19h				
88h	Print Screen	E0h 2Ah E0h 37h	A3h	Previous	E0h 10h				
89h	Pause	E1h 1Dh 45h	A4h	Stop	E0h 24h				
8Ah	Insert	E0h 52h	A5h	Play/Pause	E0h 22h				
8Bh	Home	E0h 47h	A6h	Mute	E0h 20h				
8Ch	Page Up	E0h 49h	A7h	Media Select	E0h 6Dh				
8Dh	Delete	E0h 53h	A8h	Email Reader	E0h 6Ch				
8Eh	End	E0h 4Fh	A9h	Calculator	E0h 21h				
8Fh	Page Down	E0h 51h	AAh	My Computer	E0h 6Bh				
90h	Up Arrow	E0h 48h	ABh	WWW Search	E0h 65h				
91h	Left Arrow	E0h 41h	ACh	WWW Home	E0h 32h				
92h	Down Arrow	E0h 50h	ADh	WWW Back	E0h 6Ah				
93h	Right Arrow	E0h 4Dh	AEh	WWW Forward	E0h 69h				
94h	/	E0h 35h	AFh	WWW Stop	E0h 68h				
95h	Enter	E0h 1Ch	B0h	WWW Refresh	E0h 67h				
96h	Fn Shift	No scan code	B1h	WWW Favor	E0h 66h				
97h	Fn Lock	No scan code	B2h	OADG	45h/46h				
98h	Num/Fn Lock	45h	B3h	Empty Key	No scan code				
99h	ACPI Power	E0h 5Eh	B4h – FFh	Hot Key					

4.6 PECI

4.6.1 PECI Functional Description

The **Platform Environment Control Interface (PECI)** is a one-wire bus interface that provides a communication channel between Intel processor and chipset components to external monitoring devices. PECI could be used for real time control and implement Intel's latest platform control methodology.

The PECI is a subset of SST(**Simple Serial Transport**) application. The PECI specification provides information for electrical requirements, platform topologies, power management handling, bus device enumeration, commands and addressing for Intel based system.

Compared with ENE KB930, KB9012 is added with AWFCS application for PECI 3.0 implement for latest Intel feature.

Figure 4.6.1 Example stream of 4 bits: "0101"

(Logic bit '0' encodes as 1000 pulse; Logic bit '1' encodes as 1110 pulse)

Figure 4.6.2 Conceptual Block Diagram for PECI application

4.6.2 PECI Timing Setting

Terminology	Description	Formula
Source Clock	Select the source in PECICFG[7] for 32Mhz	0 : 32M
	or 4Mhz	1: 4M
Quarter bit timing	1/4 bit timing could be selected in PECICTL[7:5]	Quarter bit timing is N * (Source Clock) N is: 4 for PECICTL[7:5] = b000
Твп	Bit clock rate, which logic bit '0' encodes as	11 for PECICTL[7:5] = b111 T _{BIT} = Quarter bit timing * 4
. 111	1000 pulse; Logic bit '1' encodes as 1110 pulse	TBII Cook of the second of the

Frequency setting table:

PECICFG[7] value	Source Frequency	Source Period
0	32M	31.3 ns
1	4M	250 ns

32Mhz ⇔ 31.3 ns							
PECICTL[7:5] factor		Quarter bit timing (ns) = source period * factor	T _{BIT} (ns)= Quarter bit timing * 4	Bus Frequency			
000	4	125	500	2M			
001	5	156.25	625	1.6M			
010	6	187.5	750	1.3M			
011	7	218.75	875	1.1M			
100	8	250	1000	1M			
101	9	281.25	1125	889K			
110	10	312.5	1250	800K			
111	11	343.75	1375	727K			

4Mhz ⇔ 250 ns (0.25us)								
PECICTL[7:5]	factor	Quarter bit timing (us) = source period * factor	T _{BIT} (us)= Quarter bit timing * 4	Bus Frequency				
000	4	1.00	4.00	250K				
001	5	1.25	5.00	200K				
010	6	1.50	6.00	167K				
011	7	1.75	7.00	143K				
100	8	2.00	8.00	125K				
101	9	2.25	9.00	111K				
110	10	2.50	10.00	100K				
111	11	2.75	11.00	90K				

4.6.3 PECI Register Description (0xFCD0~0xFCDF)

PECI fu	nction config	uratio	on			
Offset	Name	Bit	Туре	Description	Default	Bank
0xD0	PECICFG	7	R/W	PECI operation frequency setting 0: 2Mhz ~ 16Khz 1: 250Khz ~ 2Khz	0x00	0xFC
		6	R/W	PECI output enable selection 0: normal mode 1: PECI output enable always high		
		5	R/W	PECI output data selection 0: normal mode 1: PECI output data always high for debugging		
		4	R/W	Slow clock at idle state disable (for low power) 0: enable 1: disable		
		3	R/W	PECI Interrupt Enable (total enable)		
		2	R/W	Increase cycle of quarter bit timing, then quarter bit timing will be increased to 1T O: disable 1: enable		
		1	R/W	PECI data input de-bounce enable 0: disable, monitor data 1/2bit timing point. 1: enable, monitor data from 1/2bit to 3/4bit timing.		
		0	R/W	PECI function enable, state machine will come back to idle state, when this bit is disabled. 0: enable 1: disable		

PECI fui	nction contro	ol				
Offset	Name	Bit	Туре	Description	Default	Bank
0xD1	PECICTL	7~5	R/W	Quarter bit timing setting factor, timing unit is based on PECI source clock (PECICFG[7]) and it could form PECI bus frequency = 4 * quarter bit timing 000: Quarter bit timing = 4 * T 001: (4+1) = 5T 111: (4+7) = 11T	0x00	0xFC
		4	R/W	AW(Assured Write) FCS function enable for PECI 3.0 0: disable 1: enable		
		3	R/W	Restrict read FIFO data status path only for E51 0: disable (All path can read FIFO data) 1: enable (only 8051)		
		2	WO	FIFO reset Write 1 to clear all FIFO pointers and data.		
		1	WO	Issue abort command This bit will be auto clear when abort behavior finish. The originator can't abort message when receives data state.		
		0	WO	Issue package to client This bit will be auto clear when package transfer finish.		

PECI sta	PECI status observation										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xD2	PECIST	7	RO	The counter value of quarter bit timing for debugging The overall counter is 9 bit length. PECIST[7]: PECIQTB[7:0] = overall 9 bit counter value	0x01	0xFC					
		6	RSV	Reserved							
		5	RO	TX active flag for transmitter state							
		4	RO	RX active flag for receiver state							
		3	RO	PECI bus line status for debugging							
		2	RO	Bus busy							
		1	RO	FIFO full flag for write/read state							
		0	RO	FIFO empty flag for write/read state							

PECI int	PECI interrupt enable control										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xD3	PECIINTE	7~5	RSV	Reserved	0x00	0xFC					
		4	R/W	Interrupt Enable of Command complete							
		3	R/W	Interrupt Enable of Client Abort							
		2	R/W	Interrupt Enable of FCS fault							
		1	R/W	Interrupt Enable of FIFO half							
		0	R/W	Interrupt Enable of FIFO error							

Offset	Name	Bit	Туре	Description	Default	Bank
0xD4	PECIINT	7~5	RSV	Reserved	0x00	0xFC
	4	R/W1C	Interrupt Status of Command Complete The protocol status is finish, so state machine come back idle state then this bit will be set.			
	3	R/W1C	Interrupt Status of Client Abort The client reply to FCS is a one's complement. That means client will abort this message.			
	2	R/W1C	Interrupt Status of FCS fault The client reply to FCS is not correct. If FCS value is wrong then this bit will be set.			
		1	R/W1C	Interrupt Status of FIFO half If FIFO half, this bit will be set. That means FW must be write/read register PECIWD/PECIRD.		
		0	R/W1C	Interrupt Status of FIFO error If full flag is set and write data to PECIWD, it will be set; If empty flag is set and read data from PECIRD, it will be set.		

PECI target address									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xD5	PECIADR	7~0	R/W	This is the address of the PECI device targeted to receive a message.	0x00	0xFC			

PECI write length byte									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xD6	PECIWLB	7~0	R/W	The Write Length byte in the PECI header is used to convey the number of bytes the originator will send to the target device. The length byte includes command and data byte.	0x00	0xFC			

PECI read length byte									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xD7	PECIRLB	7~0	R/W	The Read Length byte is used by the target to determine the number of data bytes it must supply to the originator before Returning the FCS over that data.	0x00	0xFC			

PECI wr	PECI write data byte									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xD8	PECIWD	7~0	R/W	PECI Write data. This includes both commands and data. All commands require at least one Command byte with the exception of Ping().	0x00	0xFC				

PECI read data byte								
Offset	Name	Bit	Туре	Description	Default	Bank		
0xD9	PECIRD	7~0	RO	PECI Received (Read) data from client devices.	0x00	0xFC		

PECI CI	PECI Client Read FCS value									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xDA	PECICRFCS	7~0	RO	Read FCS value from client	0x00	0xFC				

PECI ge	PECI generated FCS value								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xDB	PECIOFCS	7~0	RO	The FCS value generated from originator	0x00	0xFC			

PECI t _{bit} counter value observation										
Offset	Name	Bit	Туре	Description	Default	Bank				
0xDC	PECIQTB	7~0	RO	The counter value of quarter bit timing for debugging The overall counter is 9 bit length. PECIST[7]: PECIQTB[7:0] = overall 9 bit counter value	0x00	0xFC				

PECI FII	PECI FIFO write/read pointer observation										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xDD	PECIPOIN	7~4	RO	FIFO Read Pointer FIFO read pointer points to the location in the FIFO to read from next	0x00	0xFC					
		3~0	RO	FIFO Write Pointer FIFO write pointer points to the location in the FIFO to write to next							

PECI AV	PECI AW FCS Value											
Offset	Name	Bit	Туре	Description	Default	Bank						
0xDE	PECIAWFCS	7~0	RO	AW FCS value from originator	0x00	0xFC						

PECI CI	PECI Client Write FCS Value									
Offset	Offset Name Bit Type Description Default Bank									
0xDF	PECICWFCS	7~0	RO	Write FCS value from client	0x00	0xFC				

4.7 OWM

4.7.1 OWM Functional Description

OWM is called One Wire Bus Master Interface (GPIO0A) which could be used as simple host interface, OWM device ID identification, and device power. OWM interface is featured as 1) Bi-directional; 2) single-master/multi-slave; 3) half-duplex. OWM is physically implemented with single open-drain master connected to one or more open-drain slave devices. Pull-up resistor is commonly used to pull the bus to 3 or 5 V.

The OWM supports:

- 1. Dallas One Wire Bus Master and TI HDQ protocol.
- 2. Interrupt enable for Reset/Break, Read and Write command.
- 3. Separate 8-bit read and write buffers.
- 4. Configurable timing registers can be setting by F/W.

4.7.2 OWM Timing Setting Illustration

Reset / Break Timing

Register Name	Time Base	Default Value	Default Timing
OWMRSTL, 0xFCF5	8 us	0x40	512 us
OWMRSTH, 0xFCF6	8 us	0x40	512 us
	Reset Time Low (OWMRSTL)	Reset Tim (OWMRS	ÿ <u> </u>

Write Timing

Register Name	Time Base	Default Value	Default Timing
OWMWT, 0xFCF7	2 us	0x2D	90 us
OWMW1L, 0xFCF8	1 us	0x0A	10 us
OWMW0L, 0xFCF9	1 us	0x50	80 us

Read Timing

Register Name	Time Base	Default Value	Default Timing
OWMRT, 0xFCFA	2 us	0x2D	90 us
OWMRL, 0xFCFB	1 us	0x03	3 us
OWMRS, 0xFCFC	1 us	0x14	20 us

Note: OWMRL is for Dallas only

4.7.3 OWM Register Description (0xFCF0~0xFCFF)

DWM bu	ıs master co	nfigur	ation			
Offset	Name	Bit	Туре	Description	Default	Bank
0xF0	OWMCFG	7	R/W	EN : One Wire Bus Master Interface Enable 0: Disable One Wire Bus Master Interface 1: Enable One Wire Bus Master Interface	0x00	0xFC
		6	R/W	TI/Dallas Mode Select 1: TI mode 0: Dallas mode		
		5~4	RSV	Reserved		
		3	R/W	ETMOI: Enable Timeout Interrupt. Interrupt occurs if timeout interrupt flag is set 0: Disable 1: Enable		
		2	R/W	EWRI: Enable Write Command Complete Interrupt. Interrupt occurs if write command complete flag is set 0: Disable 1: Enable		
		1	R/W	ERDI: Enable Read Command Complete Interrupt. Interrupt occurs if read command complete flag is set 0: Disable 1: Enable		
	**	0	R/W	ERSTI: Enable Reset/Break Completely Interrupt. Interrupt occurs if reset/break complete flag is set 0: Disable 1: Enable		

Offset	Name	Bit	Туре	Description	Default	Bank
0xF1 OWMSR	7	RO	BSY : One Wire Host Busy Status 0: Idle 1: Busy	0x00	0xFC	
		6~5	RO	Reserved		
		4	RO	PDR: Presence Detect Result. (for Dallas Only) The detect result status of the presence detect when reset/break complete interrupt occurs. 0: Not Exist 1: Exist		
		3	R/W1C	TMO: Timeout flag of read/write command for slave response. 0: No timeout event 1: Timeout event		
		2	R/W1C	WRC: Status flag of write command for operation completion 0: Write command not complete 1: Write command complete		
		1	R/W1C	RDC : Status flag of read command for operation completion 0: Read command not complete 1: Read command complete		
	0	R/W1C	RSTC: Status flag of reset/break for operation completion 0: Reset/Break command not complete 1: Reset/Break command complete (Set when the reset high time reached after reset low time)			

OWM bu	OWM bus master command									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xF2	OWMCMD	7~2	RSV	Reserved	0x03	0xFC				
		1~0	R/W	One Wire Interface Command 00: Reset /Break 01: Read 10: Write 11: No operation						

OWM bu	OWM bus master write data buffer (transmit)										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xF3	OWMWB	7~0	R/W	The transmit data buffer send to a slave device	0x00	0xFC					
OWM bu	us master rea	d dat	a buffer (r	receive)							
Offset	Name	Bit	Туре	Description	Default	Bank					
0xF4	OWMRB	7~0	RO	The receive data buffer got from a slave device	0x00	0xFC					

OWM re	OWM reset/break low timing										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xF5	OWMRSTL	7	RSV	Reserved	0x40	0xFC					
		6~0	R/W	The Reset Time Low interval,, Clock time base = 8us							
OWM re	set/break hig	h tim	ing								
Offset	Name	Bit	Туре	Description	Default	Bank					
0xF6	OWMRSTH	7	RSV	Reserved	0x40	0xFC					
		6~0	R/W	The Reset Time High interval Clock time base = 8us							

OWM w	rite slot timin	g							
Offset	Name	Bit	Туре	Description	Default	Bank			
0xF7	OWMWT	7~0	R/W	Write 1-bit Data time interval Clock time base = 2us	0x2D	0xFC			
OWM w	OWM write 1 low timing								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xF8	OWMW1L	7~0	R/W	Write 1 time interval Clock time base = 1us	0x0A	0xFC			
OWM w	rite 0 low tim	ing							
Offset	Name	Bit	Туре	Description	Default	Bank			
0xF9	OWMW0L	7~0	R/w	Write 0 time interval Clock time base = 1us	0x50	0xFC			

OWM read slot timing										
Offset	Name	Bit	Туре	Description	Default	Bank				
0xFA	OWMRT	7	R/W	Host Read 1-bit Data time, clock time base = 2us .	0x2D	0xFC				
OWM re	OWM read low timing									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xFB	OWMRL	7~4	RSV	Reserved	0x03	0xFC				
		3~0	R/W	For Dallas only, Host to pull low time Clock time base = 1us						

OWM re	OWM read sample timing									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xFC	OWMRS	7~0	R/W	The time interval for Host to check read data 0 or 1, Clock time base = 1us.	0x14	0xFC				

4.8 Pulse Width Modulation (PWM)

4.8.1 PWM Function Description

The PWM supports 6 PWM channels:

- 1. two 8-bits PWM @ PWM0 (16mA) / PWM1(4mA)
- 2. two 14-bits PWM with pre-scaler @ PWM2(4mA) / PWM3(16mA)
- two 12-bits PWM @ FANPWM0(4mA) / FANPWM1(4mA) (Refer FAN section)

Pulse width modulation (PWM) is a powerful technique for controlling analog circuits with a processor's digital outputs. PWM is employed in a wide variety of applications, ranging from measurement and communications to power control and conversion. The duty cycle of PWM is illustrated as the following figure.

PWM Duty-Cycle range from 0%~100% (10% per scale in the illustration)

4.8.2 PWM Duty Cycle Setting Illustration

The following table summarizes the relationship about the applications with the definition in the PWM registers description. The setting of PWM0/1(8 bits) and PWM2/3(14 bits) is different.

PWM0/1 (8 bits):

Definition Formula				
Duty Cycle	(PWM High Period Length+1)/(PWM Cycle Period Length+1) *100%			
Cycle Length	(PWM Cycle Length Register +1) * (PWM clock source)			

PWM Channel	Term	Register Field
PWM0	PWM High Period Length	PWMHIGH0 (0xFE01)
	PWM Cycle Length	PWMCYC0 (0xFE02)
	PWM clock source	PWMCFG[3:2] (0xFE00[3:2])
	PWM enable	PWMCFG[0] (0xFE00[0])
PWM1	PWM High Period Length	PWMHIGH1 (0xFE03)
	PWM Cycle Length	PWMCYC1 (0xFE04)
	PWM clock source	PWMCFG[7:6] (0xFE00[7:7])
	PWM enable	PWMCFG[4] (0xFE00[4])

Example:

Set PWM0 with period = 100ms (10Hz), with duty cycle = 40% (40ms)

Term	Register Field	Designed Value
PWM clock source	PWMCFG[3:2] (0xFE00[3:2])	4 ms
PWM Cycle Length	PWMCYC0 (0xFE02)	4 * (X+1) = 100ms , X = 24
PWM High Period Length	PWMHIGH0 (0xFE01)	(X+1) / (24+1) = 40%, X = 9

Programming Model:

- 1. GPIOFS08[7] (0xFC01[7]) = 1b // Set GPIO function
- 2. PWMCFG[3:0] (0xFE00[3:0]) = 1101b // Set 4ms and enable PWM0
- 3. PWMCYC0 (0xFE02) = 0x18 // Set PWM period 100ms
- 4. PWMHIGH0 (0xFE01) = 0x09 // Set duty cycle 40%

PWM2/3 (14 bits):

Definition	Formula
Duty Cycle	(PWM High Period Length+1)/(PWM Cycle Period Length+1) *100%
Cycle Length	(PWMCYC + 1) * 2 * (1 + Prescaler)/(Peripheral clock or fixed 1 MHz)

PWM Channel	Term	Register Field
PWM2	PWM High Period Length	PWMHIGH2H (0xFE08[5:0])
		PWMHIGH2L (0xFE09)
	PWM Cycle Length	PWMCYC2H (0xFE0A [5:0])
		PWMCYC2L (0xFE0B)
	PWM clock source	PWMCFG2 (0xFE06[6])
	PWM prescaler	PWMCFG2[5:0] (0xFE06[5:0])
	PWM enable	PWMCFG2[7] (0xFE06[7])
PWM3	PWM High Period Length	PWMHIGH3H (0xFE0C[5:0])
		PWMHIGH3L (0xFE0D)
	PWM Cycle Length	PWMCYC3H (0xFE0E [5:0])
		PWMCYC3L (0xFE0F)
	PWM clock source	PWMCFG3 (0xFE07[6])
	PWM prescaler	PWMCFG3[5:0] (0xFE07[5:0])
	PWM enable	PWMCFG3[7] (0xFE07[7])

Example:

Set PWM2 with 800hz pulse with peripheral clock @ 11Mhz

Term	Register Field	Designed Value
PWM prescaler	PWMCFG2[5:0] (0xFE06[5:0])	0
PWM Cycle Length	PWMCYC2H (0xFE0A [5:0])	(X+1)*2*(1+0) / 11M = 1/800
	PWMCYC2L (0xFE0B)	X = 6874 , 0x1ADB
PWM clock source	PWMCFG2 (0xFE06[6])	0b for peripheral @ 11MHz

Note: Peripheral clock could be programmed by clock setting

Programming Model:

1. GPIOFS10[1] (0xFC01[7]) = 1b // Set GPIO function

2. PWMCFG2 (0xFE00) = 0x80 // Set peripheral clock, prescaler, enable PWM0

3. PWMCYC2H (0xFE0A) = 0x1A // Set PWM frequency 800hz

4. PWMCYC2L (0xFE0B) =0xDB // Set PWM frequency 800hz

Special Cases:

When the related PWM setting meet some special condition, the PWM would response with specific behavior as the following table.

Condition	PWM Output
high period length> cycle length	Always "1" (High)
high period length = 0x00 and cycle length = 0x00	Always "1" (High)
high period length = 0x00 and cycle length = 0xFF	A Short Pulse
high period length = 0xFF and cycle length = 0x00	Always "1" (High)
Switch to GPIO mode and output low	Always "0" (Low)

4.8.3 PWM Registers Description (0xFE00~0xFE1F)

PWM (PWM Configuration								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x00	PWMCFG	7-6	R/W	PWM1 clock source selection 0: 0.976μ s (1μ s) 1: 62.5μ s (64μ s) 2: 250μ s (256μ s) 3: 3.99ms (4ms)	0x00	0xFE			
		5	RSV	Reserved					
		4	R/W	PWM1 Enable 0: Disable 1: Enable	0				
		3-2	R/W	PWM0 clock source selection 0: 0.976μ s (1μ s) 1: 62.5μ s (64μ s) 2: 250μ s (256μ s) 3: 3.99ms (4ms)					
		1	RSV	Reserved					
		0	R/W	PWM0 Enable 0: Disable 1: Enable					

PWM0 High Period Length								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x01	PWMHIGH0	7-0	R/W	High Period Length of PWM0. This should be smaller than Cycle Length.	0x00	0xFE		

PWM0 Cycle Length								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x02	PWMCYC0	7-0	R/W	Cycle Length of PWM0.	0x00	0xFE		

PWM1 High Period Length							
Offset	Name	Name Bit Type Description				Bank	
0x03	PWMHIGH1	7-0	R/W	High Period Length of PWM1. This should be smaller than Cycle Length.	0x00	0xFE	

PWM1	PWM1 Cycle Length								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x04	PWMCYC1	7-0	R/W	Cycle Length of PWM1	0x00	0xFE			

PWM Open Drain Configuration										
Offset	Name	Bit	Туре	Description	Default	Bank				
0x05	PWMOD	7-4	RSV	RSV	0x00	0xFE				
		3	R/W	PWM3 Open Drain Enable 0: Disable, Push-Pull PWM 1: Enable, Open Drain PWM						
		2	R/W	PWM2 Open Drain Enable 0: Disable, Push-Pull PWM 1: Enable, Open Drain PWM						
		1	R/W	PWM1 Open Drain Enable 0: Disable, Push-Pull PWM 1: Enable, Open Drain PWM	6					
		0	R/W	PWM0 Open Drain Enable 0: Disable, Push-Pull PWM 1: Enable, Open Drain PWM						

PWM2	PWM2 Configuration									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x06	PWMCFG2	7	R/W	PWM2 Enable 0: Disable 1: Enable	0x00	0xFE				
		6	R/W	PWM2 pre-scaler clock selection 0: peripheral clock 1: 1MHz clock (fixed)						
		5-0	R/W	The 6-bit pre-scaler of PWM2 The pre-scalar value = register value + 1						

PWM3 Configuration									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x07	PWMCFG3	7	R/W	PWM3 Enable 0: Disable 1: Enable	0x00	0xFE			
		6	R/W	PWM3 pre-scaler clock selection 0: peripheral clock 1: 1MHz clock (fixed)					
		5-0	R/W	The 6-bit pre-scaler of PWM3 The pre-scaler value = register value + 1					

PWM2	PWM2 High Period Length (14-bit)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x08	PWMHIGH2H	5-0	R/W	Higher 6 bits (of 14-bit)	0x00	0xFE			
0x09	PWMHIGH2L	7-0	R/W	Lower 8 bits (of 14-bit)	0x00	0xFE			

PWM2 Cycle Length (14-bit)								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x0A	PWMCYC2H	5-0	R/W	Higher 6 bits (of 14-bit)	0x00	0xFE		
0x0B	PWMCYC2L	7-0	R/W	Lower 8 bits (of 14-bit)	0x00	0xFE		

PWM3	PWM3 High Period Length (14-bit)							
Offset	Name	Bit	Туре	Description	Default	Bank		
0x0C	PWMHIGH3H	5-0	R/W	Higher 6 bits (of 14-bit)	0x00	0xFE		
0x0D	PWMHIGH3L	7-0	R/W	Lower 8 bits (of 14-bit)	0x00	0xFE		

PWM3 Cycle Length (14-bit)								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x0E	PWMCYC3H	5-0	R/W	Higher 6 bits (of 14-bit)	0x00	0xFE		
0x0F	PWMCYC3L	7-0	R/W	Lower 8 bits (of 14-bit)	0x00	0xFE		

4.9 Fan Controller

4.9.1 Fan Function Description

The KBC provides 2 interfaces with speed monitor for fan control. There are two clock sources for fan controller, one is based on peripheral clock and the other is set as 4 choices from 62.5us~7.8125us. The fan controller can be configured to control PWM known as FANPWM. FANPWM could operate as automatic-FAN mode or Fixed-FAN mode.

The KBC uses the pin FANPWM0/1 to drive external fan device, and the fan device feedback the speed via the pin FANFB0/1. The fan controller keeps the speed in the monitor register.

4.9.1.1 Fan Tachometer Monitor & Auto-FAN mode

When used as automatic mode, it will compare the speed and check if the current speed is higher or slower than the expected one. If slower, the controller will increase the frequency to drive FANPWM0/1 automatically, otherwise decrease the frequency. The expected speed can be programmable by F/W.

Here is table for programmers use automatic FAN mode. In this table, information is illustrated with 62.5us clock resolution. The Set Counter is the required values filled in FANSETH0/1 and FANSETL0/1.

RPM = 60,000,000 / {FANSET * (FANPWM Period) } or Set Counter = 60,000,000 / { RPM * (FANPWM Period) } or Set Counter = (us per round) / (FANPWM Period)

Auto-FAN mode clock could be set in **FANCFG0/1[7]**, **FANSTS0/1[6:5]** to select 1) peripheral clock, 2) 62.5us d, 3) 31.25us, 4) 15.625us, 5) 7.8125us

RPM	RPS	us per round = (1/RPS) * 10^6	Set Counter (62.5 us)	Set Counter (7.8125 us)
8000	133	7500	120	960
6000	100	10000	160	1280
5000	83.33	12000	192	1536
4000	66.667	15000	240	1920
3000	50	20000	320	2560
2000	33.333	30000	480	3840
1000	16.667	60000	960	7680
500	8.3	120000	1920	15360

Note: RPM = Rounds per minute, RPS = Rounds per second

4.9.1.2 FANPWM Setting & Fixed-FAN Mode

The fan controller can be used to control 12-bit PWM channel called FANPWM. While Fixed-FAN mode enable and PWM function applied, the fan controller will refer to the peripheral clock, and the PWM high period and cycle time can be determined as the following formula (Behavior is similar to general ENE-KBC PWM channels without pre-scaler referring peripheral clock):

PWM Cycle Length = (PWM cycle register + 1) * peripheral clock resolution

PWM High Period = (PWM high period register + 1) * peripheral clock

Duty Cycle = (PWM high period register +1) / (PWM cycle register +1)

The high pulse width of PWM can be set in FANPWMH0/1 and FANPWML0/1, fill in the high-byte first and then low-byte in order.

4.9.2 Fan Registers Description (0xFE20~0xFE4F)

Fan0 (Configuration	1				
Offset	Name	Bit	Туре	Description	Default	Bank
0x20	FANCFG0	7	R/W	FAN0 monitor clock selection. 0: peripheral clock 1: the base clock will be based on FANSTS0[6:5](0xFE21)	0x00	0xFE
		6	R/W	FAN0 speed monitor counter edge trigger selection. 0: count pulse event on rising edge. 1: count pulse event on rising and falling edge.		
		5	R/W	FANPWM0 cycle width enable 0: Disable 1: Enable		
		4	R/W	FANPWM0 enable. 0: Disable 1: Enable		
	3	3	R/W	FAN0 speed monitor interrupt enable 0: Disable 1: Enable		
		2	R/W	FAN0 speed monitor timeout error interrupt enable 0: Disable 1: Enable		
		1	R/W	Auto-fan mode enable (FANCFG0[0] for FANFB0 , FANCFG0[4] for FANPWM0 should also be enabled) 0: Disable 1: Enable		
		0	R/W	FAN0 tachometer monitor enable. 0: Disable 1: Enable		

Fan0 (Fan0 Control and Status Register								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x21	FANSTS0	7	R/W	FAN0 auto-load FANCPWM function enable 0: Disable 1: Enable	0x00	0xFE			
		6-5	R/W	Clock resolution selection when not referring peripheral clock. (FANCFG0[7](0xFE20) = 1) 00: 62.5us (default) 01: 31.25us 10: 15.625us 11: 7.8125us					
		4	R/W	FAN0 digital noise filter enable. 0: Disable 1: Enable					
		3-2	RSV	Reserved					
		1	R/W1C	Flag of FAN0 speed monitor timeout error 0: no timeout error 1: timeout error event					
		0	R/W1C	Flag of FAN0 speed monitor update event. 0: no update event. 1: update event					

Fan0 Speed Monitor Counter Value (12-bit)									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x22	FANMONH0	3-0	RO	High 4 bits of FAN0 speed monitor counter value	0x0F	0xFE			
0x23	FANMONL0	7-0	RO	Low 8 bits of FAN0 speed monitor counter value	0xFF	0xFE			

Fan0 Speed Set Counter Value (12-bit)									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x24	FANSETH0	3-0	R/W	High 4 bits of target FAN0 speed counter value.	0x00	0xFE			
0x25	FANSETL0	7-0	R/W	Low 8 bits of target FAN0 speed counter value.	0x00	0xFE			
Notice: T	Notice: These two registers are used in auto-fan mode and are set as target fan speed counter value								

FANPWM0 High Pulse Width Bits (12-bit) (Fixed-FAN mode, FANCFG0[1]=0)								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x26	FANPWMH0	3-0	R/W	High 4 bits of FANPWM0 high pulse width.	0x00	0xFE		
0x27	FANPWML0	7-0	R/W	Low 8 bits of FANPWM0 high pulse width.	0x00	0xFE		
Notice: 7	Notice: These two registers are used in fixed-fan mode and are set as target FANPWM high width to change effective fan speed							

Current FANPWM0 High Pulse Width Bits (12-bit)								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x28	FANCPWMH0	3-0	RO	High 4 bits of current FANPWM0 high pulse width.	0x00	0xFE		
0x29	FANCPWML0	7-0	RO	Low 8 bits of current FANPWM0 high pulse width.	0x00	0xFE		

FANPWM0 Cycle Length (12-bit) (Fixed-FAN mode, FANCFG0[5]=1)								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x2A	FANPWMCH0	3-0	R/W	High 4 bits of Cycle length of FANPWM0	0x00	0xFE		
0x2B	FANPWMCL0	7-0	R/W	Low 8 bits of Cycle length of FANPWM0	0x00	0xFE		
Notice: 7	Notice: These two registers are used in fixed-fan mode and are set as target FANPWM cycle length							

FANP	FANPWM0 Auto-Load High Pulse Width Bits								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x2C	FANUPWM0	7-4	RSV	Reserved	0x0F	0xFE			
		3-0	R/W	If auto-load feature enabled (FANSTS0[7]=1), this register value will be auto-loaded into FANCPWMH0 registers and FANCPWML0 will be forced to be zero to handle monitor timeout.					

FAN ta	FAN tachometer monitor controller configuration for FANFB2									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x2D	FANTMCFG0	7-6	RSV	Reserved	0x00	0xFE				
		5-4	R/W	Clock resolution selection (FANTMCFG0[1](0xFE2D[1]) = 0) 00: 62.5us (default) 01: 31.25us 10: 15.625us 11: 7.8125us						
		3	R/W1C	Flag bit for Fan tachometer monitor timeout error event. 0: no timeout error 1: timeout error event						
		2 R/W FAN digital filter enable for Fan tachometer 0: Disable 1: Enable								
	7	1	R/W	Test mode enable for Fan tachometer monitor 0: the monitor base clock will be based on FANTMCFG0[5:4] 1: the monitor base clock will be peripheral clock.						
		0	R/W	FAN tachometer monitor enable for FANFB2 0: Disable 1: Enable						

FAN ta	FAN tachometer monitor speed monitor counter value for FANFB2								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x2E	FANTMMONH0	3-0	RO	High 4 bits of FANFB2 speed monitor counter value	0x0F	0xFE			
0x2F	FANTMMONL0	7-0	RO	Low 8 bits of FANFB2 speed monitors counter value.	0xFF	0xFE			

Fan1 (Configuration	า				
Offset	Name	Bit	Туре	Description	Default	Bank
0x30	FANCFG1	7	R/W	FAN1 monitor clock selection. 0: peripheral clock 1: the monitor base clock will based on FANSTS1[6:5](0xFE31)	0x00	0xFE
		6	R/W	FAN1 speed monitor counter edge trigger selection. 0: count pulse event on rising edge. 1: count pulse event on rising and falling edge.		
		5	R/W	FANPWM1 cycle width enable 0: Disable 1: Enable		
		4	R/W	FANPWM1 enable. 0: Disable 1: Enable		
		3	R/W	FAN1 speed monitor interrupt enable 0: Disable 1: Enable		
		2	R/W	FAN1 speed monitor timeout error interrupt enable 0: Disable 1: Enable		
		1	R/W	Auto-fan mode enable (FANCFG1[0] for FANFB1 , FANCFG1[4] for FANPWM1 should also be enabled) 0: Disable 1: Enable		
		0	R/W	FAN1 tachometer monitor enable. 0: Disable 1: Enable		

Fan1 (Control and S	Status	Regist	er			
Offset	Name	Bit	Туре	Description	Default	Bank	
0x31	FANSTS1	7	R/W	FAN1 auto-load FANCPWM function enable 0: Disable 1: Enable	0x00	0xFE	
		6-5	R/W	Clock resolution selection when not referring peripheral clock. (FANCFG1[7](0xFE30) = 1) 00: 62.5us (default) 01: 31.25us 10: 15.625us 11: 7.8125us	•		
			4	4	R/W	FAN1 digital noise filter enable. 0: Disable 1: Enable	
		3-2	R/W	Reserved			
		1	R/W	Flag of FAN1 speed monitor timeout error 0: no timeout error 1: timeout error event			
		0	R/W	Flag of FAN1 speed monitor update event. 0: no update event. 1: update event			

Fan1 Speed Monitor Counter Value (12-bit)									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x32	FANMONH1	3-0	RO	High 4 bits of FAN1 speed monitor counter value	0x0F	0xFE			
0x33	FANMONL1	7-0	RO	Low 8 bits of FAN1 speed monitor counter value	0xFF	0xFE			

Fan1 Speed Set Counter Value (12-bit)									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x34	FANSETH1	3-0	R/W	High 4 bits of target FAN1 speed counter value.	0x00	0xFE			
0x35	FANSETL1	7-0	R/W	Low 8 bits of target FAN1 speed counter value.	0x00	0xFE			
Notice: 7	Notice: These two registers are used in auto-fan mode and are set as target fan speed counter value								

FANPWM1 High Pulse Width Bits (12-bit) (Fixed-FAN mode, FANCFG1[1]=0)								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x36	FANPWMH1	3-0	R/W	High 4 bits of FANPWM1 high pulse width.	0x00	0xFE		
0x37	FANPWML1	7-0	R/W	Low 8 bits of FANPWM1 high pulse width.	0x00	0xFE		
Notice: These two registers are used in fixed-fan mode and are set as target FANPWM high width to change effective fan speed								

Current FANPWM1 High Pulse Width Bits (12-bit)									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x38	FANCPWMH1	3-0	RO	High 4 bits of current FANPWM1 high pulse width.	0x00	0xFE			
0x39	FANCPWML1	7-0	RO	Low 8 bits of current FANPWM1 high pulse width.	0x00	0xFE			

FANPWM1 Cycle Length (12-bit) (Fixed-FAN mode, FANCFG1[5]=1)									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x3A	FANPWMCH1	3-0	R/W	High 4 bits of Cycle length of FANPWM1	0x00	0xFE			
0x3B	FANPWMCL1	7-0	R/W	Low 8 bits of Cycle length of FANPWM1	0x00	0xFE			
Notice: These two registers are used in fixed-fan mode and are set as target FANPWM cycle length									

FANPWM1 Update High Pulse Width Bits									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x3C	FANUPWM1	7-4	RSV	Reserved	0x0F	0xFE			
		3-0	R/W	If auto-load feature enabled (FANSTS1[7]=1), this register value will be auto-loaded into FANCPWMH1 registers and FANCPWML1 will be forced to be zero to handle monitor timeout.	P				

FAN tachometer monitor controller configuration for FANFB3								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x3D	FANTMCFG1	7-6	RSV	Reserved	0x00	0xFE		
		5-4	R/W	Clock resolution selection (FANTMCFG1[1](0xFE3D[1]) = 0) 00: 62.5us (default) 01: 31.25us 10: 15.625us 11: 7.8125us				
			3	R/W1C	Flag bit for Fan tachometer monitor timeout error event. 0: no timeout error 1: timeout error event			
			2	R/W	FAN digital filter enable for Fan tachometer monitor 0: Disable 1: Enable			
	7	1	R/W	Test mode enable for Fan tachometer monitor 1: the monitor base clock will be peripheral clock. 0: the monitor base clock will be based on FANTMCFG1[5:4]				
		0	R/W	FAN tachometer monitor enable for FANFB3 0: Disable 1: Enable				

FAN tachometer monitor speed monitor counter value for FANFB3								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x3E	FANTMMONH1	3-0	RO	High 4 bits of FANFB3 speed monitor counter value	0x0F	0xFE		
0x3F	FANTMMONL1	7-0	RO	Low 8 bits of FANFB3 speed monitors counter value.	0xFF	0xFE		

4.9.3 Fan Programming Sample

In this section gives some programming sample to control FAN module. Please note, ENE does not guarantee these codes in every field application. The following table describes scenario of FAN filed application.

Example

FAN0 @ 4000 rpm with automatic PWM control

FAN1 @ some rpm with fixed PWM control

Programming model

For FAN0:

- 1. Set related GPIO function select register to enable alternative output. GPIOFS10[2] (0xFC02[2]) = 1b
- 2. Set related GPIO input enable. GPIOIE10[4] (0xFC62[4]) = 1b
- 3. Set FAN0 Auto-FAN mode and refer default 62.5us clock FANCFG0 (0xFE20) = 0x93
- 4. Set FAN0 target speed value (Refer the table 4.9.1.1 for calculation)
 FANMONH0 (0xFE24) = 0x00
 FANMONL0 (0xFE25) = 0xF0

For FAN1:

- 1. Set related GPIO function select register to enable alternative output. GPIOFS10[3] (0xFC02[3]) = 1b
- 2. Set FAN1 Fixed-FAN mode and enable FANPWM1 FANCFG1 (0xFE30) = 0x90
- 3. set FAN1 speed monitor counter value FANPWMH1 (0xFE36) = 0x03

FANPWML2 (0xFE37) = 0xE8

4.10 General Purpose Timer (GPT)

4.10.1 GPT Function Description

The KBC provides 4 GPTs (General Purpose Timers), two 16-bit timers and two 8-bit timers. These 4 GPTs operate based on 32.768 khz and all timers have the interrupt capability. The GPT is simply a free run counter. While the timer meets the specific value in counter register, for instance, 0xFE53 and 0xFE55, an interrupt issues (if interrupt enabled) and the counter reset to be zero.

- GPT0 and GPT1 are 8-bit timers.
- GPT2 and GPT3 are 16-bit timers.

Since 32.768 khz = 30 us period. For the designed target timer period T us, the required value need to be filled in counter register = (T in us)/30.

Eg: A 200Hz timer is with timer period of 5ms. The required value is 5000 / 30 = 166 = 0xA6

4.10.2 GPT Registers Description (0xFE50~0xFE6F)

GPT C	onfiguration	1				
Offset	Name	Bit	Туре	Description	Default	Bank
0x50	GPTCFG	7-5	RSV	Reserved	0x00	0xFE
		4	R/W	GPT test mode enable. In test mode, the GPT runs with main clock. 0: Disable 1: Enable		
		3	R/W	GPT3 counting and interrupt enable. 0: Disable 1: Enable		
		2	R/W	GPT2 counting and interrupt enable. 0: Disable 1: Enable		
		1	R/W	GPT1 counting and interrupt enable. 0: Disable 1: Enable		
		0	R/W	GPT0 counting and interrupt enable. 0: Disable 1: Enable		

GPT P	GPT Pending Flag									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x51	GPTPF	7	wo	Writing "1" to this bit forces GPT3 restart.	0x00	0xFE				
		6	wo	Writing "1" to this bit forces GPT2 restart.						
		5	WO	Writing "1" to this bit forces GPT1 restart.						
		4	wo	Writing "1" to this bit forces GPT0 restart.						
		3	R/W1C	Interrupt pending flag of GPT3.						
		2	R/W1C	Interrupt pending flag of GPT2.						
		1	R/W1C	Interrupt pending flag of GPT1.						
		0	R/W1C	Interrupt pending flag of GPT0.						

GPT0	GPT0 Counter Value								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x53	GPT0	7-0	R/W	Once GPT0 counter meets this value, an interrupt issues. GPT0 restart to count from zero.	0x00	0xFE			

RSV						
Offset	Name	Bit	Туре	Description	Default	Bank
0x54	RSV	7-0	RSV	Reserved	0x00	0xFE

GPT1	GPT1 Counter Value								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x55	GPT1	7-0	R/W	Once GPT1 counter meets this value, an interrupt issues. GPT1 restart to count from zero.	0x00	0xFE			

GPT2	GPT2 Counter Value (16-bit)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x56	GPT2H	7-0	R/W	High byte of GPT2 counter value Once GPT2 counter meets this 16-bit value, an interrupt issues. GPT2 restart to count from zero.	0x00	0xFE			
0x57	GPT2L	7-0	R/W	Low byte of GPT2 counter value Once GPT2 counter meets this 16-bit value, an interrupt issues. GPT2 restart to count from zero.	0x00	0xFE			

GPT3	GPT3 Counter Value (16-bit)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x58	GPT3H	7-0	R/W	High byte of GPT3 counter value. Once GPT3 counter meets this 16-bit value, an interrupt issues. GPT3 restart to count from zero.	0×00	0xFE			
0x59	GPT3L	7-0	R/W	Low byte of GPT3 counter value. Once GPT2 counter meets this 16-bit value, an interrupt issues. GPT3 restart to count from zero.	0x00	0xFE			

4.10.3 GPT Programming Sample

In this section gives some programming sample to control GPT module. Please note, ENE does not guarantee these codes in every field application. The following table describes scenario of GPT filed application.

Example

Programming GPT0 to issue an interrupt every 5ms

Programming model

- Set GPT configuration register, enable GPT0 interrupt.
 GPTCFG[0] (0xFE50[0]) = 1b
- 2. Fill the GPT counter value. GPT0 (0xFE53) = 0xA6 ; 5000/30 = 0xA6

4.11 SDI Host/Device Interface Controller

The SDI host/device controller can be programmed to a SPI Host or a SPI Device. The Default is the SPI Host. The SPI Host and Device use the same IO pins.

4.11.1 SDI Host/Device Interface Description

The Serial Peripheral Interface Bus or SPI (often pronounced "spy") bus is a synchronous serial data link standard designed by Motorola that operates in full duplex mode. Devices communicate in master/slave mode where the master device initiates the data frame.

The SDI host mode could support the SPI mode 0/1. Mode 2/3 are added and is configurable by SHICFG[5:4] now.

SDI device mode could support the SPI mode 0. SDI device is recommended to operate at Command Mode.

Illustration of General SPI modes:

Mode 0

Mode 1

Mode 2

Mode 3

4.11.2 SDI Host Interface Register Description (0xFE70~0xFE7F)

Offset	Name	Bit	Type	Description	Default	Bank	
0x70 SHICFG	7	RSV	Reserved	0x00	0xFE		
	6	R/W	Select SDI host/device Pins				
				0 : Select pins from Pin 97/98/99/109			
				1 : Select pins form Pin 119/120/126/128 Please refer section 4.11.1 illustration			
				Also Refer GPIO_MISC[2:1]			
		5-4	R/W	SDI host signal timing relation and SPI mode			
				00 : Mode 0,			
				Clock default low, Data drive @ falling, latch			
			@ rising				
			01 : Mode 1,				
				Clock default low, Data drive @ rising, latch			
				@ falling			
				10: Mode 2,			
		<pre>@ falling 11: Mode 3,</pre>	Clock default high, Data drive @ rising, latch				
			@ falling				
					11: Mode 3,		
			Clock default high, Data drive @ falling, latch				
				@ rising			
				Please refer section 4.11.1 illustration			
		3-1	R/W	SPI clock divide			
				000 : SPI clock run 16 Mhz			
				001 : SPI clock run 8 Mhz 010 : SPI clock run 4 Mhz			
				011 : SPI clock run 2 Mhz			
				100, 101, 111 : SPI clock run 1 Mhz			
	0	R/W	SDI host controller enable				
				0: Disable			

SDI ho	SDI host control register								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x71	SHICTR	7 6-1 0	RO RSV R/W	SDI host Idle flag. If this bit set, the SDI host is in an idle state. 0: busy 1: idle Reserved SDI host SHICS# Pin Control 0: Set SHICS# High	0x00	0xFE			
				1 : Set SHICS# Low					

SDI host interface transmit data port								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x72	SHITBUF	7-0	R/W	While SHICFG[7]=1 (SDI host not busy), writing to this register will force data output to SHIDO in continuously serial 8 bits. MSB first.	0x00	0xFE		

SDI ho	SDI host interface receive data port								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x73	SHIRBUF	7-0	RO	SDI host reading port.	0x00	0xFE			

4.11.3 SDI Device Interface Register Description (0xFE70~0xFE7F)

SDI de	Name	Bit	Туре	Description	Default	Bank
0x78	SDICFG	7	RO	SDICS# status	0x44	0xFE
	6~4	RSV	Reserved			
		3	R/W	SDI command mode 0: Disable. (Normal mode) 1: Enable. (Command mode) (When enable this mode, SDICFG[2:1] would not take effect) (Configurable command: Read TX buffer in register SDICMD)		
		2	R/W	Enable SDI device TX. 0: Disable 1: Enable		
		1	R/W	Enable SDI device RX. 0: Disable 1: Enable		
		0	R/W	SDI device controller enable 0: Disable 1: Enable		

SDI de	SDI device interface interrupt configuration										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x79	SDIINT	7	RSV	Reserved	0x00	0xFE					
	6	R/W1C	(Normal mode only) Transmit buffer empty pending flag								
		5	R/W1C	(Normal mode only) Receive buffer full pending flag							
		4	R/W1C	SDICS# rising edge pending flag							
		3	RSV	Reserved							
		2	R/W	(Normal mode only) Transmit buffer empty interrupt enable bit When Tx buffer counter from 1 to 0, interrupt would occur. 0: Disable 1: Enable							
		1	R/W	(Normal mode only) Receive buffer full interrupt enable bit When Rx buffer counter from 3 to 4, interrupt would occur. 0: Disable 1: Enable							
		0	R/W	SDICS# rising edge interrupt enable bit 0: Disable 1: Enable							

SDI de	SDI device interface transmit status									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x7A	SDITSTS	7	RSV	Reserved	0x00	0xFE				
		6~4	RO	Transmit buffer counter In normal mode: The number how many data in Tx Buffer not transmitted. In command mode:						
				The number of transmitted byte data in single transition.						
		3	RSV	Reserved						
		2	R/W1C	(Normal mode only) Transmit buffer underflow flag						
					1	RO	(Normal mode only) Transmit buffer full flag			
		0	R	(Normal mode only) Transmit buffer empty flag						
			W	Write 1 to clear Tx buffer Normal mode: FIFO's write point and read point are both reset to point to position "0". Command mode:						
				Only FIFO's write point is reset to point to position "0".						

SDI de	vice interfac	e rec	eive statu	s		
Offset	Name	Bit	Туре	Description	Default	Bank
0x7B	SDIRSTS	7	RSV	Reserved	0x00	0xFE
		6~4	RO	Receive Buffer count		
				Normal mode :		
				The number how many data in Rx Buffer not read.		
				Command mode:		
				The number of received byte data in single transition.		
		3	RSV	Reserved		
		2	R/W1C	(Normal mode only) Receive buffer overflow flag		
		1	RO	(Normal mode only) Receive buffer full flag		
		0	R	(Normal mode only) Receive buffer empty flag		
			W	Write 1 to clear Rx buffer		
				Normal mode:		
				FIFO's write point and read point are both reset to point to position "0".		
				Command mode:		
				Only FIFO's read point is reset to point to position "0".		

SDI de	SDI device interface transmit data port (4 bytes buffer)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x7C	SDITBUF	7~0	WO	SDI Device Interface Transmitted Data Port Normal mode: Before write operation to external SPI host. TX flags should be confirmed. If TX buffer is full, SDI device would preserve the previous data If TX buffer is empty, SDI device always transmit data = 0x00.	0x00	0xFE			

SDI de	SDI device interface receive data port (4 bytes buffer)									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x7D	SDIRBUF	7	RO	SDI Device Interface Received Data Port Normal mode:	0x00	0xFE				
				Before read operation from external SPI host. RX flags should be confirmed. If RX buffer is full, SDI device would preserve the previous data If RX buffer is empty, SDI device always read data = 0x00. Command mode: In single transaction, SDI device will only receive 4 bytes data. If over 4 bytes data are read, SDI will skip the latest data and preserve the previous data. RX buffer can be read according the Rx buffer's read point.						

Comm	Command : Read TX buffer								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x7E	SDICMD	7~0	R/W	(Command mode only) Configurable command : Read TX buffer	0x5A	0xFE			

SDITX	SDI TX/RX buffer write point and read point									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x7F	SDIPT	7~6	RO	Tx buffer write point	0x00	0xFE				
		5~4	RO	Tx buffer read point						
		3~2	RO	Rx buffer write point						
		1~0	RO	Rx buffer read point						

4.11.4 SDI Programming Sample

In this section gives some programming sample to control SDI module. Please note, ENE does not guarantee these codes in every field application. The following table describes scenario of SDI host filed application.

GPXDIE00[0] (0xFC6F[0]) = 1b;//Enable SDI host data input

SHICFG (0xFE70) = 0x01; //Enable SDI host module mode 0, clock = Peripheral clock/2

SHICFG \mid = 0x10; //Set SDICS# low

SHITBUF = 0x06; //Transfer CMD WREN(0x06) to device

while((SDI_Non_IDLE)==0); //Wait bus idle SHICFG $\&= \sim 0x10$; //Set SDICS# H

SHICFG = 0x10; // Set SDICS# Low

SHITBUF = 0x05; // Transfer CMD RDSR to device

//Wait bus idle while((SDI_Non_IDLE)==0);

SHITBUF = 0x00; // Write Dummy

while((SDI_Non_IDLE)==0);

temp = SHIRBUF;

SHICFG = 0x00; //disable SDICS# and SDI data port

if(temp = 0x02)/WREN success to device

4.12 Watchdog Timer (WDT)

4.12.1 WDT Function Description

A Watchdog Timer (WDT) is a hardware timing device that triggers a system reset while the system encounters any unrecoverable situation. The WDT utilizes 32.768 khz for operation. The WDT triggers the system WDT reset in three ways.

- Reset the 8051 microprocessor only.
- Reset the whole logic, except GPIO modules.
- Reset the whole logic, including GPIO modules.

Here gives the highlight of WDT register field features & setting:

- 20 bit Watchdog (10bit programmable register field with 31.25ms resolution)
- Interrupt support
- WDT LED breathing support
- 24 bit timer (TMR) support
- System 32khz clock source setting

Timing Example:

With a 32.768 khz WDT clock source, the timing period is about 30.5 us.

In KB9012:

The maximum WDT reset timer is 20bit (2^{20} x 30.5us = 32 seconds)

(Higher 10 bit register field available, 32ms), for real application recommended N≥3.

The maximum WDT interrupt time is half the WDT timer, (16 seconds)

The maximum TMR timer is 24 bit $(2^{24} \times 30.5 \text{ us} = 512 \text{ seconds}, \text{ about } 8 \text{ minute})$

4.12.2 Setting for WDT Breathing LED

In KB9010 series, GPIO54(WDT_LED#) support a breathing LED functionality. The configuration is recommended as the above illustration: Connected via LED to high voltage power supply. The breathing characteristic could be programmed as the following illustration: Please be noted that output PWM higher duty cycle means less lighting and vice versa.

Configuration:

- 1. Max lighting period would keep (M * 32 ms), in BRTMR_BD[7:4], Timing unit can be set in BRTMR_CFG[5:4], (32/64/128/256 ms)
- 2. DEC lighting period would gradually increase the PWM duty cycle, thus the breathing LED would be less bright. The scale is divided into 64 scales as default. The scale-up floor can be set in BRTMR_CFG[3:0], as numbered 30h~3Fh. Every (Y * 2 ms) would increase 1 scale PWM duty(thus less lighting) until the min lighting period. In other words, with larger Y, DEC would be slower. With smaller Y, DEC would be faster. Y can be set in the register BRTMR_ID[3:0].
- Min lighting period would keep (N * 32 ms), in BRTMR_BD[3:0],
 Timing unit can be set in BRTMR_CFG[5:4], (32/64/128/256 ms)
- 4. INC lighting period would gradually decrease the PWM duty cycle, thus the breathing LED would be brighter. The scale is divided into 64 scales as default. The start scale-down can be set in BRTMR_CFG[3:0], as numbered 30h~3Fh. Every (X * 2 ms) would decrease 1 scale until the next max lighting period. In other words, with larger Y, INC would be slower. With smaller Y, INC would be faster. X can be set in the register BRTMR ID[7:4],

4.12.3 WDT Registers Description (0xFE80~0xFE8F)

WDT C	Configuration	n						
Offset	Name	Bit	Туре	Description	Default	Bank		
0x80	WDTCFG	7	R/W	WDT clock source selection 0: DPLL 32.768KHz source 1: Internal OSC or External Crystal 32.768KHz source	0x00	0xFE		
		6~3	R/W	WDT disable password Writing 1001b to this field will force WDT disable				
		2	R/W	WDT test mode enable 0: normal mode (depend on WDTCFG[7], 0xFE80[7]) 1: test mode, clock driven by internal 32MHz				
				1	R/W	WDT interrupt enable (WDT reset warning) 0: Disable 1: Enable		
		0	R/W	WDT reset enable. Once WDT resets, two WDT pending flags are clear. 0: Disable 1: Enable				

WDT F	WDT Pending Flag									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x81	WDTPF	7-5	RSV	Reserved	0x00	0xFE				
		1	R/W1C	WDT interrupt flag						
				Once the timer counts to half of WDT (0xFE82), an interrupt occurs. If the timer counts to WDT(0xFE82), a WDT reset occurs.						
				0: no event						
				1: event occurs						
		0	R/W1C	WDT reset flag						
				Once the timer counts to WDT (0xFE82), a WDT reset occurs and this flag is set.						
				0: no event						
				1: event occurs						

WDT H	WDT High 8-bit Counter Value (for WDT reset system of 10 bits counter)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x82	WDT	7-0	R/W	The high 8-bits of WDT counter value. The WDT timer unit is 30.5us * 2 ¹⁰ = 32ms. The overall high 10 bits counter is combined from WDT:LEDCFG[7:6] Please note, fill the overall value at least greater than or equal 3 (>=3) for hardware limitation.	0x00	0xFE			

WDT E	WDT Breathing LED Configuration											
Offset	Name	Bit	Туре	Description	Default	Bank						
0x83	LEDCFG	7~6	R/W	The following 2 bits after WDT counter value. The WDT timer unit is 30.5us * 2 ¹⁰ = 32ms. The overall high 10 bits counter is combined from WDT:LEDCFG[7:6] Please note, fill the overall value at least greater than or equal 3 (>=3) for hardware limitation.	0x00	0xFE						
		5	RSV	Reserved								
		4	R/W	Breathing LED Open-Drain function enable 0: Disable 1: Enable								
		3	R/W	Breathing LED function enable 0: Disable 1: Enable	D							
		2-0	RSV	Reserved								

WDT T	WDT TMR (24-bit Timer) Configuration									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x84	TMR_CFG	7	R/W	TMR enable 0: Disable/reset TMR 1: Enable TMR	0x00	0xFE				
		6~3	RSV	Reserved						
		2	RO	TMR interrupt pending flag overflow. While TMR interrupt flag (TMR_CFG[1]) is set and an interrupt event occurs again. This bit will be set and can be clear via writing TMR_CFG[7] with "0". 0: no event 1: event occurs						
	- (1	R/W1C	TMR interrupt flag. When TMR counter[23:16] is equal to TMR_MATCH register. This bit will be set. 0: no event 1: event occurs						
		0	R/W	TMR counter start control. 0: stop counting 1: start counting						

WDT 1	WDT TMR (24-bit Timer) Counter Match Value							
Offset	Name	Bit	Туре	Description	Default	Bank		
0x85	TMR_MATCH	7-0	R/W	The highest 8bit counter match value register Assumed clock source 32.768KHz, the TMR time unit is 2^{16} x 30.5us = 2 second in this register. When timer counter[23:16] is reached this value, timer emits interrupt and TMR_CFG[1] is set to 1 .	0x00	0xFE		

WDT TMR (24-bit Timer) Counter Value 1						
Offset	Name	Bit	Туре	Description	Default	Bank
0x86	TMR_V1	7-0	RO	Value for TMR counter[23:16]	0x00	0xFE

WDT 1	MR (24-bit T	imer)	er) Counter Value 2			
Offset	Name	Bit	Туре	Description	Default	Bank
0x87	TMR_V2	7-0	RO	Value for TMR counter[15:8]	0x00	0xFE

Breath	Breathing LED Timer for Bright (max lighting) & Dark (min lighting)						
Offset	Name	Bit	Туре	ype Description D		Bank	
0x88	BRTMR_BD	7-4	R/W	Timer values for the max lighting period M * {Setting of BRTMR_CFG[5:4]}default 32 ms	0x00	0xFE	
		3-0	R/W	Timer values for the min lighting period N * {Setting of BRTMR_CFG[5:4]}default 32 ms			

Breath	Breathing LED Timer for INC lighting & DEC lighting							
Offset	Name	Bit	Туре	Description	Default	Bank		
0x89	BRTMR_ID	7-4	R/W	Timer values for the DEC lighting period X * 2 ms (DEC starts from the setting value of BRTMR_CFG[3:0], until 0)	0x00	0xFE		
		3-0	R/W	Timer values for the INC lighting period Y * 2 ms (INC ends at the setting value of BRTMR_CFG[3:0], from 0)				

Clock	Clock 32khz Control Register					
Offset	Name	Bit	Туре	Description Default		Bank
A8x0	CLK32CR	7~6	RSV	Reserved	0x00	0xFE
		5~4	RSV R/W	prinction selection for XCLKI & XCLKO pad (Pin 122 GPIO5D, n 123 GPIO5E) Pin 122 , Pin 123 GPIO5D, GPIO5E GPIO5D, XCLKO as external clock input XLCKI, GPIO5E, where XLCKI is external clock input XLCKI, XCLKO, as crystal pads to external crystal S2, GPT, FAN, FANMON, PWM clock source selection		
				O: Clock source from KBC DPLL divider Clock source from external 32khz crystal		
		2	R/W	Crystal 32khz clock selection 0: Clock source from external clock or external crystal 1: Clock source from internal osc Note: For proper changes of clock source during operation, be sure to program CLK32CR[0], or CLK32CR[1] to enable the related source before applying changes.	rystal 32khz clock selection Clock source from external clock or external crystal Clock source from internal osc ote: For proper changes of clock source during operation, be ure to program CLK32CR[0], or CLK32CR[1] to enable the	
		1	R/W	Internal osc enable 0: Disable 1: Enable	ernal osc enable Disable	
		0	R/W	External crystal / clock enable 0: Disable 1: Enable		

Interna	Internal OSC Control Register							
Offset	Name	Bit	Туре	Description	Default	Bank		
0x8B	IOSCCR	7	RSV	Reserved	0x00	0xFE		
		6	R/W	OSC OP Enable, OSC OP is used to trade-off the precision and power consumption, the approximate trade-off is as followed: 0: Disable, 10uA leakage with 32Khz±20% 1: Enable, 28uA leakage with 32Khz±10%				
		5-0	RSV	Reserved				

Breath	Breathing LED Timer Configuration Register					
Offset	Name	Bit	Туре	Description Def		Bank
0x8C	BRTMR_CFG	7~6	RSV	Reserved	0x0F	0xFE
		5~4	R/W	Timing Unit for the max lighting & min lighting period 00: 32ms 01: 64ms 10: 128ms 11: 256ms		
		3~0	R/W	Start value & end value for DEC lighting & INC lighting period 0000: The reference values as 30h 0001: The reference values as 31h		

4.12.4 WDT Programming Sample

In this section gives some programming sample to control WDT module. Please note, ENE does not guarantee these codes in every field application. The following table describes scenario of WDT filed application.

Example

Set WDT=512ms to reset system, and an interrupt occurs while WDT=256ms (half of WDT)

Programming model

WDT (0xFE82) = 0x10 ; set WDT=512ms

WDTCFG (0xFE80) = 0x03 ; enable interrupt and WDT reset

4.13 Low Pin Count Interface (LPC)

4.13.1 LPC Function Description

The Low Pin Count (LPC) is an interface for modern ISA-free system. The KBC connects to the system via LPC interface. The following LPC cycle types are supported.

Туре	Address	Data
LPC I/O Read	16-bit	8-bit
LPC I/O Write	16-bit	8-bit
LPC Memory Read	32-bit	8-bit
LPC Memory Write	32-bit	8-bit
FWH Read	28-bit	8-bit
FWH Write	28-bit	8-bit

4.13.2 LPC I/O Decode Range

	_	
Item	Port	Comment
Keyboard Controller	60h/64h	
Embedded Controller	62h/66h (default)	Programmable
Legacy I/O	68h/6Ch, 2Eh/2Fh	
EC Index-I/O	FF29h~FF2Bh/FF2Dh~FF2Fh(default)	2 Sets, Programmable.
Debug Port	80h	Only write cycle support interrupt

4.13.3 Index-I/O Port

The KBC provides a method to communicate with the host via legacy I/O port. The host can access the XRAM space inside the KBC. The I/O port is called Index-I/O. Two Index-I/Os are supported and programmable. The registers, **LPCIBAH** and **LPCIBAL** (0xFE92 and 0xFE93), are used to specify the desired I/O port base. To enable the 2nd Index-I/O, the **LPCSCFG**[5], (0xFE90[5]) should be set.

With only 1 index-I/O, the base address is 4 bytes alignment. If the LPCSCFG[5] set, the index-I/O base address will be 8 bytes align for the 1st & 2nd Index-I/O reserved.

For example, while the base address is 0xFF2C (**LPCIBAH**=0xFF, **LPCIBAL**=0x2C) and **LPCSCFG[5]** set, the 1st index-I/O address will be 0xFF29 (io_base +1).

The following table collects the port definition for the <u>host</u>. The base address of Index-I/O is assumed to be **io_base**.

1 st Ind	lex-I/O	2 nd Index-I/O (LPCSCFG[5]=1)		
XRAM address (high)	io_base+1	XRAM address (high)	io_base+5	
XRAM address (low)	io_base+2	XRAM address (low)	io_base+6	
XRAM data (high)	io_base+3	XRAM data (high)	io_base+7	

Here is an example how to use an Index-I/O.

EC F/W	Host software
 EC F/W setups the base address, for instance, 0x380. That is, LPCIBAH=0x03 and LPCIBAL=0x80. If the 2nd Index-I/O is needed, turn on the enable bit. That is, LPCSCFG[5]=1 (0xFE90[5]=1). 	 Host setups the desired XRAM address: Port 0x381 = high byte of XRAM address Port 0x382 = low byte of XRAM address And then the host can access the content/data via Port 0x383. If the 2nd Index-I/O required. Port 0x385 = high byte of XRAM address Port 0x386 = low byte of XRAM address Port 0x387 = content/data of XRAM address

4.13.4 LPC to MEM cycle XRAM

In KB9012, the KBC 4K SRAM could be mapped for LPC memory decoding. The related register fields are as followed. Also refer the next page for the simplified illustration of the LPC to XRAM.

Register Name	Description
LPCFPCFG (0xFE91[1])	Enable bit
LPCXRAMHA (0xFE9E) LPCXRAMLA (0xFE9F)	Highest two bytes of the full decoding address
LPCXRAMCFG (0xFE97[0])	XRAM slot & corresponded LPC address selection
LPCXRAMBL (0xFE9D)	Select the 256 bytes block window within the selected XRAM slot & corresponded LPC address
	FG, LPCXRAMHA, LPCXRAMLA, LPCXRAMCFG, LPCXRAMBL CSCFG[7:6]=2'b01 to select LPC register bank 1 field

LPC full 32bits address										
MSB 8 bits	8 bits		8 bits	LSB 8 bits						
o bits	O Dits	LPCXRAMBL (0xFE9D) are the 256 been able separately registers by each enable separately registers enable s								
		When LI	PCXRAMCFG ((AM 0xF400~0xFE	0xFE97[0]) = 1 BFF would map LPC 0x0800~0x0FFF						
		Bit		AM Decode Range						
		0		300~08FF						
		1	08	900~09FF						
		2		NO0~OAFF						
		3		300~0BFF						
		4 5		COO~OCFF DOO~ODFF						
LPCXRAMHA	LPCXRAMLA	6		000~0DFF 00~0EFF						
(0xFE9E)	(0xFE9F)	7		F00~0FFF						
		The XR		0xFE97[0]) = 0 F3FF would map LPC 0x0000~0x07FF						
			LPCXRAMBI	L (0xFE9D)						
		Bit		AM Decode Range						
		0		300~08FF						
		1 2		900~09FF \00~0AFF						
		3	_	800~0AFF						
		4		000~0CFF						
		5		000~0DFF						
		6 7		00~0EFF						
		/	OH	F00~0FFF						

4.13.5 Extended I/O Port (Debug Port, Port80)

Developers may use legacy I/O port, 0x80 for debug. The KBC provides a debug interface for this application, called extended I/O port (debug port). The port address can be programmable in the KBC. The host software can use this interface not only for debug but also for special communication with the EC F/W. This interface provides interrupt capability as well. That is, while host accesses this I/O port, an interrupt to 8051 occurs. There is one thing should be reminded. The interrupt feature is only for **I/O-write** to this port, not for I/O-read. Please note, the interrupt capability is controlled in the register **ECCFG**[2] (0xFF04[2]).

4.13.6 LPC Registers Description (0xFE90~0xFE9F for bank selection)

LPC S	IRQ Configu	ration	for Qu	iet Mode		
Offset	Name	Bit	Туре	Description	Default	Bank
0x90	LPCSCFG	7-6	R/W	LPC Register Bank Switch Registers, 0xFE91~0xFE9F, are mapping to 2 banks. 00: Bank 0 01: Bank 1 10: Reserved 11: Reserved	0x20	0xFE
		5	R/W	Enable 2 nd index-I/O mode		
		4	R/W	Switch of CIR/User-defined IRQ Switch between CIR and User defined SIRQ, and the SIRQ channel is defined in LPCTCFG[3:0] 0: User defined SIRQ 1: CIR SIRQ (Any one from CIRPF [3:0],FEC2h)	P	
		3	RSV	Reserved		
		2	R/W	LPC I/O 2Eh/2Fh decode enable. If enabled, 0xFE9A/0xFE9B are configured to take in charge of LPC I/O 2Eh/2Fh. 0: Disable 1: Enable		
		1	Ro	LPC SIRQ mode 0: Continuous mode 1: Quiet mode		
		0	WO	Force LPC SIRQ cycle start. Writing "1" to this bit forces SIRQ signal low for a pulse.		

4.13.6.1 LPC Registers Bank0 Descriptions (LPCSCFG[7:6]=2'b00, 15 bytes)

LPC S	IRQ Configu	ration				
Offset	Name	Bit	Туре	Description	Default	Bank
0x91	LPCSIRQ	7	R/W	Ignore A22 of FWH cycle. 0: Disable 1: Enable	0x00	0xFE
		6	R/W	SCI SIRQ enable 0: Disable 1: Enable		
		5	R/W	IRQ12 SIRQ enable 0: Disable 1: Enable	B	
		4	R/W	IRQ1 SIRQ enable 0: Disable 1: Enable		
		3-0	R/W	SCI SIRQ channel. 0x00: no SIRQ 0x01: IRQ1 0x02: SMI# 0x03: IRQ3		
				0x04: IRQ4 0x0F: IRQ15		

LPC In	LPC Index-I/O Base Address (16-bit)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x92	LPCIBAH	7-0	R/W	High byte of LPC index-I/O address	0xFF	0xFE			
0x93	LPCIBAL	7-0	R/W	Low byte of LPC index-I/O address (8-byte alignment required)	0x28	0xFE			

LPC F	LPC Firmware Hub Configuration								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x94	Reserved	7-0	RSV	Reserved	0x00	0xFE			

LPC C	LPC Configuration								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x95	LPCCFG	7	RSV	Reserved	0x80	0xFE			
	6	R/W	Index-I/O port enable 0: Disable 1: Enable						
		5	R/W	KBC 60h/64h I/O port enable 0: Disable 1: Enable					
		4	R/W	Debug port (port 80) enable 0: Disable 1: Enable	8				
		3	R/W	EC I/O port enable (default port 62h/66h) 0: Disable 1: Enable					
		2	RSV	Reserved					
		1	R/W	SIRQ always in continuous mode enable 0: Disable 1: Enable					
		0	R/W	LPC CLKRUN# enable 0: Disable 1: Enable					

LPC Extended (Debug) I/O Base Address (16-bit)								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x96	LPCXBAH	7-0	R/W	High byte of Extended I/O (debug port)	0x00	0xFE		
0x97	LPCXBAL	7-0	R/W	Low byte of Extended I/O (debug port)	0x80	0xFE		

LPC E	LPC EC I/O Base Address (16-bit)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x98	LPCEBAH	7-0	R/W	High byte of EC I/O	0x00	0xFE			
0x99	LPCEBAL	7-0	R/W	Low byte of EC I/O	0x62	0xFE			

LPC I/	O 0x2E/0x2F	Conf	iguratio	n and Status (LPCSCFG[2]=1)		
Offset	Name	Bit	Туре	Description	Default	Bank
0x9A	LPC2ECFG	7-4	RSV	Reserved	0x00	0xFE
		3	RO	The previous access type of 2Eh/2Fh 0: Read 1: Write		
		2	R/W1C	Interrupt flag of accessing 2Fh I/O. 0: no event 1: event occurs		
		1	R/W	2Fh I/O interrupt enable If this bit set, while host accesses 2Fh I/O, an interrupt will issue. 0: Disable 1: Enable	P	
		0	R/W	Decode 2Eh/2Fh I/O enable. 0: Disable 1: Enable		

LPC U	LPC USER SIRQ Configuration (LPCSCFG[2]=0)										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x9B	LPCTCFG	7-6	RSV	Reserved	0x00	0xFE					
		5	R/W	User defined SIRQ Setting.							
				0: Low							
				1: High							
		4	R/W	User defined SIRQ channel enable							
				0: Disable							
				1: Enable							
		3~0	R/W	User defined SIRQ channel number							
				0x00: no SIRQ							
				0x01: IRQ1							
				0x02: SMI#							
				0x03: IRQ3							
				0x04 : IRQ4							
				0x0F: IRQ15							
LPC I/	O 2E Read P	ort Re	egister (LPCSCFG[2]=1)							
Offset	Name	Bit	Туре	Description	Default	Bank					
0x9B	LPCTCFG	7-0	RO	Host writes data to I/O port 0x2E,	0x00	0xFE					
				EC F/W could read data from this register.							

LPC R	LPC Read/Write Data of I/O 0x2F (LPCSCFG[2]=1)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x9C	LPC2FDAT	7-0	R	Host writes data to I/O port 0x2F, EC F/W could read data from this register.	0x00	0xFE			
		7-0	W	If host issue any read access to I/O port 0x2F, the host will get the data which kept in this register					

LPC I/	LPC I/O 0x68/0x6C Configuration										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x9D	LPC68CFG	7	R/W	LPC decode I/O port 68h/6Ch enable 0: Disable 1: Enable	0x00	0xFE					
		6-2	RSV	Reserved							
				1	1	R/W	IBF interrupt enable Interrupt issues while IBF rising (LPC write I/O 68h/6Ch) 0: Disable 1: Enable	1			
		0	R/W	OBF interrupt enable Interrupt issues while OBF falling (LPC read I/O 68h) 0: Disable 1: Enable	P						

LPC I/	O 0x68/0x6C	Conf	iguratio	n and Status Register		
Offset	Name	Bit	Туре	Description	Default	Bank
0x9E LPC68CS	LPC68CSR	7	R/W1C	I/O 68h/6Ch busy flag. EC F/W can write "1" to clear this flag. A write cycle to port 6Ch with data 0xFF also clear this flag 0: not busy 1: busy	0x00	0xFE
		6	RO	Indicator of write port. 0: write 68h occurs 1: write 6Ch occurs.		
		5-4	RSV	Reserved		
		3	R/W1C	IBF interrupt flag Interrupt flag while IBF rising (LPC write I/O 68h/6Ch) 0: no event 1: event occurs	_	
		2	R/W1C	OBF interrupt flag Interrupt flag while OBF falling (LPC read I/O 68h) 0: no event 1: event occurs		
		1	R/W1C	IBF of port 68h/6Ch		
		0	R/W1C	OBF of port 68h/6Ch		

LPC I/	LPC I/O 0x68/0x6C Data Register									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x9F	LPC68DAT	7-0	R	Host writes data to I/O port 0x68/0x6C, EC F/W could read data from this register.	0x00	0xFE				
		7-0	W	If host issue any read access to I/O port 0x68/0x6C, the host will get the data which kept in this register						

4.13.6.2 LPC Registers Bank1 Descriptions (LPCSCFG[7:6]=2'b01, 15 bytes)

LPC M	LPC MEM/FWH Configuration register									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x91	LPCFPCFG	7~2	RSV	Reserved	0x00	0xFE				
		1	R/W	LPC to XRAM enable bit 0: Disable 1: Enable						
		0	R/W	Protection enable 0: Disable 1: Enable						

LPC MEM/FWH protection segment										
Offset	Name	Bit	Туре	Description	Default	Bank				
0x92	Reserved	7-0	RSV	Reserved	0x00	0xFE				

LPC MEM/FWH block number									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x93	Reserved	7-0	RSV	Reserved	0x00	0xFE			

LPC m	LPC misc register set 0										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x94 LPCMISCO	7	R/W	Embedded-Flash and external SPI-Flash., write 1 to enable After enable the lock function, this bit could only be clear by PCIRST# falling 1. Erase/Program Embedded-Flash is locked, F/W mode is also in-active. 2. The related GPIO50 alt. function select, output enable, output data, pull-up enable, open drain would be locked. 3. GPIO_MISC[1] is locked to prevent SDI host access via SPI-flash port	0x00	0xFE						
		6	R/W1C	SIRQ start frame detection flag Set 1 by hardware, and clear by firmware							
		5	RO	Latched status of SERIRQ (pin3)							
		4	RO	Latched status of LFRAME# (pin 4)							
		3~0	RO	Latched status of LAD[3:0] ports							

LPC c	ontrol and st	atus r	egister fo	r clock detection function		
Offset	Name	Bit	Туре	Description	Default	Bank
0x95	LPC_CDCSR	7~5	RSV	Reserved	0x00	0xFE
		4	R/W1C	Clock detection pending flag		
				When clock stopping detected, this bit will be high and clock monitoring will be stopped. Clearing the pending flag will cause detection start again.		
				0:Clock alive detected, and clock source is still in monitoring		
				1:Clock stop detected		
		3	RSV	Reserved		
		2	R/W	CLKRUN# Pull Down Enable		
				The signal of CLKRUN# will be pulled down by satisfying all following conditions:		
				The port of CLKRUN# is at Pull Up state.		
				2. PCI Clock stopping detected.		
				There are latched SIRQ request to be emitted. O:Disable		
				1:Enable		
		1	R/W	Clock source select for detection		
				0: Select PCI clock signal for detection.1: Select clock path of 32K OSC to detect.		
		0	R/W	Clock detection enable 0:Disable 1:Enable		

LPC ra	LPC raw counter value output for clock detection function								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x96	LPC_CDCV	7-0	RO	Referenced output of counter value for debugging purpose	0x00	0xFE			

LPCX	LPCXRAMCFG										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x97	LPCXRAMCFG	7-1	RSV	Reserved	0x00	0xFE					
		0	R/W	LPC to XRAM 2K range select 0: 0xEC00~0xF3FF to 0x0000~0x07FF 1: 0xF400~0xFBFF to 0x0800~0x0FFF		0xFE					

LPC tr	LPC transaction debug output register 0										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x98	LPCTDR0	7	RO	Transaction data valid indication	0x00	0xFE					
		6	RSV	Reserved							
		5~4	RO	Transaction Toggle bits It will be accumulated after a valid transaction done							
		3~0	RSV	Reserved							

RSV									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x99~9C	RSV	7-0	RSV	Reserved	0x00	0xFE			

LPC to XRAM Select Block Register (Depend on LPCXRAMCFG for different range)

Select LPC to XRAM block according to the corresponded XRAM range. Each block can be enabled separately (When **LPCXRAMCFG**[0]=0)

Offset	Name	Bit	Туре	Description	Default	Bank
0x9D	LPCXRAMBL	7	R/W	0700~07FF	0x00	0xFE
		6	R/W	0600~06FF		
		5	R/W	0500~05FF		
		4	R/W	0400~04FF	•	
		3	R/W	0300~03FF		
		2	R/W	0200~02FF		
		1	R/W	0100~01FF		
		0	R/W	0000~00FF		

Select LPC to XRAM block according to the corresponded XRAM range. Each block can be enabled separately (When **LPCXRAMCFG**[0]=1)

Offset	Name	Bit	Туре	Description	Default	Bank
0x9D	LPCXRAMBL	7	R/W	0F00~0FFF	0x00	0xFE
		6	R/W	0E00~0EFF		
		5	R/W	0D00~0DFF		
		4	R/W	0C00~0CFF		
		3	R/W	0B00~0BFF		
		2	R/W	0A00~0AFF		
		1	R/W	0900~09FF		
		0	R/W	0800~08FF		

LPC to	LPC to XRAM High Address Register								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x9E	LPCXRAMHA	7-0	R/W	LPC to XRAM high address	0x00	0xFE			

LPC to	LPC to XRAM Low Address Register								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x9F	LPCXRAMLA	7-0	R/W	LPC to XRAM low address	0x00	0xFE			

4.14 X-Bus Interface (XBI)

4.14.1 XBI Function Description

The KBC implements a XBI module to handle the related request from 8051/LPC to internal flash device. Since in 901x KBC series, embedded flash is designed. The XBI serves as interface between 8051/LPC to e-flash rather than external SPI-Flash(which is via external SPI interface)

The following figure is operation illustration.

Here gives the feature of XBI module.

- Two 8051 code segments, one for 16K and the other for 48K.
- XBI arbiter to handle the transaction of 8051 and LPC request.
- Embedded flash burst write support

4.14.2 XBI Registers Description (0xFEA0~0xFEBF)

8051 A	8051 Address Segment 0 Mapping Configuration (0x0000~0x3FFF)										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xA0	XBISEG0	7	R/W	8051 code segment SEG0 remapping enable. 0: Disable 1: Enable	0x00	0xFE					
		6	RSV	Reserved							
		5-0	R/W	SEG0 XBI Address SEG0 XBI Address = XBISEG0[5:0]*16K + 8051 Address[13:0]	•						

8051 A	8051 Address Segment 3 Mapping Configuration									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xA1	XBISEG3	7	R/W	8051 code segment SEG3 remapping enable. 0: Disable 1: Enable	0x00	0xFE				
		6	RSV	Reserved						
		5-0	R/W	When 8051 Address is C000h~FFFFh, Set for the SEG3 XBI Address SEG3 XBI Address = XBISEG3[5:0]*16K + 8051 Address[13:0] (XBI addressing range is 1M, where XBI addressing > Flash physical addressing. The address will round robin)						

SPI host controller configuration								
Offset	Name	Bit	Туре	Description	Default	Bank		
0xA2	SHCCFG	7~0	RSV	Reserved	0x00	0xFE		

LPC R	LPC Read Buffer Configuration									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xA3	XBI_LPBCFG	7-4	RSV	Reserved	0x0F	0xFE				
		3~0	R/W	Code-Memory Region Selection						
				Should enable XRAM as code-Memory by XBICS[3] (0xFEA6) at first, and 8051 can fetch code from XRAM region for following setting						
				0000 : 0xEC00~0xECFF						
				0001 : 0xEC00~0xEDFF						
				0010 : 0xEC00~0xEEFF						
				0011 : 0xEC00~0xEFFF						
				1111: 0xEC00~0xFBFF						

XBI XIO Enable								
Offset	Name	Bit	Туре	Description	Default	Bank		
0xA4	RSV	7-0	RSV	Reserved	0x00	0xFE		

XBI Co	XBI Configuration										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xA5	XBICFG	7	RSV	Reserved	0x07	0xFE					
		6	R/W	8051 instruction fetch (sustaining access)							
				0: Disable							
				1: Enable							
		5	RSV	Reserved							
		4	RO	Enable WR# to Flash							
				Enable FW mode							
		3	R/W	Enable extend SELMEM# and SELE51# 1 clock for RD# and WR# setup and hold time							
		2~0	R/W	RD# and WR# command clock count							

XBI E	51CS# Config	juratio	on			
Offset	Name	Bit	Туре	Description	Default	Bank
0xA6	XBICS	7-6	RSV	Reserved	0x00	0xFE
		5	R/W	XBI arbitration priority. 0: Disable 1: Enable		
		4	R/W	Reset code segment enable. Once the 8051 reset, the code segment SEG0 or SEG1 can be reset if the corresponding code segment enabled. (XBISEG0[7]/XBISEG1[7])		
				0: Disable 1: Enable		
		3	R/W	Enable XRAM for 8051 to fetch code The targeted XRAM region is selected by XBILPBCFG[3:0] (0xFEA3).		
				0: Disable 1: Enable		
				Note, users should move codes from Flash to XRAM, jump to XRAM and then enable this bit.		
		2	R/W	Reset XBI arbiter while in idle/stop mode. 0: Disable 1: Enable		
		1	R/W	EHB fast accessing enable. Enable this bit gets better performance in EHB. 0: Disable 1: Enable		
		0	RSV	Reserved		

XBI Write Enable									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xA7	XBIWE	7-0	R/W	XBI write command. 00h: exit SRAM test mode A4h: Enable flash write cycle C5h: enter SRAM test mode	0x00	0xFE			

XBI Er	XBI Embedded Flash Address (22-bit) = [SPIA2(6bit) : SPIA1(8bit) : SPIA0(8bit)]									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xA8	EFA0	7-0	R/W	Embedded Address lower 8-bits (A7:A0)	0x00	0xFE				
0xA9	EFA1	7-0	R/W	Embedded Address middle 8-bits (A15:A8)	0x00	0xFE				
0xAA	EFA2	5-0	R/W	Embedded Address upper 6-bits (A21:A16)	0x00	0xFE				

XBI Embedded Flash Output/Input Data Port									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xAB	EFDAT	7-0	R/W	Input (read) / Output (write) data port of Embedded flash interface.	0x00	0xFE			

XBI Embedded Flash Command Port									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xAC	EFCMD	7-0	R/W	Commands support for embedded flash. Writing this register will force the protocol start. Please note, the address phases must be prior to command phase. Embedded flash command support: 02h Page latch 03h Read 20h Erase selected page 70h Program selected page 80h Clear HVPL data 90h Read Trim data from special rows	0x00	0xFE			

XBI En	XBI Embedded Flash Configuration/Status Register										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xAD	EFCFG	7~4	RSV	Reserved	0x00	0xFE					
	> (3	R/W	Write enable of EFCMD register,0xFEAC. 0 : Disable 1 : Enable							
		2	RSV	Reserved							
		1	RO	Embedded flash controller accessing in busy status. 0: not busy 1: busy							
		0	RSV	Reserved							

XBI Er	XBI Embedded Flash Output Data for Read compare								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xAE	EFDATR	7-0	RO	Output data to embedded flash interface.	0x00	0xFE			

XBI Embedded Flash Burst Write									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xAF	EMFBURW	7-1	RSV	Reserved	0x00	0xFE			
		0	R/W	Abort Burst Write (Page Latch) 0: Disable 1: Enable					

Reserved									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xB0~ 0xB3	RSV	7~0	RSV	Reserved	0x00	0xFE			

Offset	Name	Bit	Туре	Description	Default	Bank
0xB4	XBIEFSIG1	7	R/W	When F/W mode enable, the control bit of stand-by power 0: Disable 1: Enable	0x00	0xFE
		6	R/W	When F/W mode enable, the control bit of VPOS/VNEG discharge 0: Disable 1: Enable		
		5~4	R/W	When F/W mode enable, Erase/Program sequence control		
		3	R/W	When F/W mode enable, Auxiliary memory address select		
		2	R/W	When F/W mode enable, Page buffer write enable 0: Disable 1: Enable		
		1	R/W	When F/W mode enable, CLK enable for address/mode/ sequence control 0: Disable 1: Enable		
		0	R/W	When F/W mode enable, Address CLK input		

XBI En	XBI Embedded Flash signals 2 in FW mode										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xB5 X	XBIEFSIG2	7	R/W	PCLK source selection 0: PCLK from OSC output (CLKOUT) 1: PCLK form 32M fix clock	0x00	0xFE					
		6	R/W	Pump source selection 0: Pump from flash output 1: Pump from Pe of embedded flash controller							
		5~4	R/W	When F/W mode enable, Data ouitput bit number control							
		3~0	R/W	When F/W mode enable, Operational mode inputs							

XBI Pump IP trimming bits									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xB6	XBIPUMP	7~4	R/W	PDAC[3:0] For independent control of VPOS pump level output DAC	0xD5	0xFE			
		3~0	R/W	NDAC[3:0] For independent control of VNEG pump level output DAC					

XBI Flash IP trimming bits									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xB7	XBIFM	7~4	R/W	ITIM[3:0] Trim DAC for trimming SA timing current of Vref	0x14	0xFE			
		3~0	R/W	BDAC[3:0] For flash test					

XBI VR IP trimming bits										
Offset	Name	Bit	Туре	Description	Default	Bank				
0xB8	XBIVR	7~4	R/W	TCTRIM[3:0] Trimming bits for temperature coefficient of Vref	0x33	0xFE				
		3~0	R/W	ABSTRIM[3:0] Trimming bits for absolute value of Vref						

XBI MI	XBI MISC Reg											
Offset	Name	Bit	Туре	Description	Default	Bank						
0xB9	XBIMISC	7~6	RO	IC Trimming Status	0x00	0xFE						
		5	R/W	Reserved								
		4~0	R/W	S[4:0] TRIM bits for frequenct.								

4.15 Consumer IR Controller (CIR)

4.15.1 CIR Function Description

The KBC embeds with a native hardware Consumer IR controller, which connects to system via LPC interface. Popular protocols are supported, such as RC-5/RC-6/NEC/RLC. The CIR controller handles the protocol of RC-5/RC-6/NEC/RLC for receiving, and only RLC for transmit. IRQ and I/O port are implemented. An extended function is implemented to support learning application. The basic features are list as the following table. The CIR functionality of KB9012 is compatible to KBx926/KBx390 series.

	9012
RX carrier demodulation	V
TX carrier modulation	V
RX protocol support	RC5/RC6/NEC/RLC
TX protocol support	RLC
RX carrier frequency measurement	V

A SIRQ channel can be assigned for CIR application. The related programming registers are summarized as following table.

Register	Description
LPCSCFG[4] (0xFE90[4])	SIRQ selection for LPCTCFG[3:0] (0xFE9B[3:0]) 0: User defined IRQ 1: CIR IRQ enable
LPCTCFG[3:0] (0xFE9B[3:0])	SIRQ channel number. 0x00: IRQ0 0x01: IRQ1 0x0F: IRQ15

Here is the features highlight.

- Native hardware protocol decoder, such as RC5/RC6/NEC and RLC.
- I/O and IRQ resource for CIR controller.
- Support **2** sets of RX/TX in one chip, and RX/TX works simultaneously.
- RX carrier demodulation/ TX carrier modulation support.
- Wide range of carrier frequency support, **15K~1MHz**. (The carrier frequency is 30K~60KHz in normal application)
- More flexible in carrier sample frequency, **1μs.~128μs** (The sample frequencies are 25, 50 and 100μs for normal application).
- Remote controller learning support.

The following figure shows an example how a CIR controller works with narrow band receiver.

Here gives the guidance for programming CIR.

	For Receive		For Transmit
1.	Select protocol via setting CIRCFG2 (0xFEC1)	1.	Select RLC protocol and enable via setting
2.	According to the selected protocol, setup		CIRCFG (0xFEC0)
	CIRHIGH/CIRBIT/CIRSTART/CIRSTART2, i.e., 0xFEC3~0xFEC6	2.	Writing to CIRRLC_OUT0, 0xFEC9, will start to transmit.
3.	Enable protocol and other configuration setting via CIRCFG (0xFEC0)	3.	If CIRRLC_OUT0 (0xFEC9) and CIRRLC_OUT1 (0xFECA) are written at the same time, it start to
4.	EC F/W waits for data-in by pooling or interrupt.		transmit CIRRLC_OUT0 and then CIRRLC_OUT1.
		4.	If only CIRRLC_OUT0 (0xFEC9) is written, the hardware will transmit CIRRLC_OUT0 first and then CIRRLC_OUT1.
\		5.	Each byte transmit completion, an interrupt will occur.

4.15.2 CIR Block Diagram

The CIR controller supports two RX ports (GPIO40/GPIO0A) and two TX ports (GPIO41/GPIO0D). A register bit, **CIRCFG2**[5] (0xFEC1[5]), is used to determine RX source. For example, if CIRCFG2[5]=0, GPIO40 is the RX source, otherwise GPIO0A. The TX port is selected according to the GPIO function selection register. The following table gives an example of RX/TX combination.

	GPIOFS08[5]=0b, GPIOFS[1]=1b	GPIOFS08[5]=1b, GPIOFS[1]=0b
CIRCFG2[5]=0b	(RX,TX)=(GPIO40, GPIO41)	(RX,TX)=(GPIO40, GPIO0D)
CIRCFG2[5]=1b	(RX,TX)=(GPIO0A, GPIO41)	(RX,TX)=(GPIO0A, GPIO0D)

The CIR controller could detect the carrier frequency and demodulate the carrier. This provides a *learning* feature for CIR application. The frequency detection range is from 15.75KHz to 1MHz. After demodulation, the CIR controller handles remote signals with hardware decoder which supports *RC5/RC6/NEC/RLC* protocols. If transmit function needed, the CIR controller could modulate the carrier and send it out via GPIO41/GPIO0D. The output carrier frequency range is the same as input (15.75KHz~1MHz). *The RX and TX can work simultaneously in the current design*. The following diagram gives more detail about CIR controller.

4.15.3 CIR Remote Protocol

In this section, brief introduction of protocols supported in the CIR is given. Four protocols are supported, Philips RC5/RC6, NEC and Run-Length-Code. Only features and protocol definition listed. For more detail please refer to the related specifications.

4.15.3.1 Philips RC5 Protocol

Here highlights the features of Philips RC5 protocol.

- Manufacturer Philips.
- Carrier frequency 36KHz.
- Bi-phase coding.
- 5 bits address / 6 bits command lengths

						RC5 P	rotocol						
Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Bit9	Bit10	Bit11	Bit12	Bit13	Bit14
S1	S2	Т	Address						Com	mand			

\$1/\$2: start bits, always "1"

T: toggle bit, This bit is inverted every time a key is released and pressed again.

Address: IR device address, MSB first. **Command**: IR command, MSB first.

4.15.3.2 Philips RC6 Protocol

Here highlights the features of Philips RC6 protocol.

- Manufacturer Philips.
- Carrier frequency 36KHz.
- Bi-phase coding.
- 5 bits address
- Variable command lengths based on the operation mode.

	RC6 Protocol																					
LS	SB	MB2	MB1	MB0	Т	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0	C 7	C 6	C 5	C 4	C 3	C 2	C 1	C 0	
	Header Control Information S							SF														
	Header Phase (ENE CIR)											Dat	a Pl	hase	(EN	IE C	IR)					

LS: Leader symbol SB: Start bit, always "1"

MB2-MB0: Mode bits, operation mode selection.T: Trailer bit, this bit can be served as a toggle bit.

A7-A0: Address C7-C0: Command

SF: Signal free time, 2.666ms.

4.15.3.3 NEC Protocol

Here highlights the features of NEC protocol.

- Manufacturer NEC.
- Carrier frequency 38KHz.
- Pulse distance modulation.
- 8 bit address / 8 bit command length
- Address/Command transmitted twice.
- Total transmit time is constant.

	NCE Protocol										
AGC burst	space	Address	\sim Address	Command	~Command						
9ms	4.5ms	8bit	8bit	8bit	8bit						

AGC burst: set gain of IR remote controller, 9ms long

Space: follow by AGC burst, 4.5ms. **Address**: 8-bit address, LSB first.

~Address: inverted 8-bit address, LSB first. **Command**: 8-bit command, LSB first.

~Command: inverted 8-bit command, LSB first

4.15.4 CIR Automatic Carrier Frequency Detection and Modulation

To support learning feature, wide-band transmitter and receiver will be used in a system. The KBC introduces a new mechanism to provide carrier frequency information of wide-band receiver to the host.

The CIR controller needs to be programmed with two parameters for the detection. Register CIRCAR_PULS is used to determine these two parameters. CIRCAR_PULS[7:4] keeps the discard number of carrier pulse and CIRCAR_PULS[3:0] keeps the average number to detect. The CIRCAR_PULS[7:4] tells the controller to discard the specific number of carrier pulse from the beginning. The controller then gets the average number of carriers pulse as sample data and analyzes. The detection of carrier period is kept in CIRCAR_PRD[6:0], and the valid flag is kept in CIRCAR_PRD[7]. Please note, the detection range is from 15.75KHz~1MHz. (The general application is from 30K~60KHz).

Here gives an example as the above waveform. Bit stream with 38KHz carrier is shown as bit-0. Each bit is 0.56ms in length and 38KHz carrier period is 26.3µ s, that is, there will be about 21 carrier pulses in a bit. If **CIRCAR_PULS**[7:4]=5 and **CIRCAR_PULS**[3:0]=10, once the detection enabled, the CIR controller will get 6th carrier pulse as the first one and analyze the sequential 10 pluses. The detection result can be obtained via register **CIRCAR_PRD**.

The related region	ters for automatic	carrier frequency	v detection ar	e listed as following.
THE ICIALCA ICAIS	tors for automatic	, carrier ireaucite	v actobilon an	c listed as lollowilla.

Register	Address	Description
CIRCFG2[5:4]	0xFEC1[5:4]	Bit5=1, select wide-band as bit-decoder input.
		Bit4=1, enable wide-band frequency detection
CIRCAR_PULS	0xFECB	CIRCAR_PULS[7:4] = discard number of carrier pulse
		CIRCAR_PULS[3:0] = average number of carrier pulse
CIRCAR_PRD	0xFECC	Detection of wide-band carrier period
CIRCAR_HPRD	0xFECD	Detection of wide-band carrier period, pulse width high.

The KBC provides the modulation ability for RLC transmit. The carrier frequency of modulation can be programmable. Before the carrier modulation, the programmer should notice the modulation polarity. That is, if the data bus (TX) is kept low in idle state, only data in high state will be modulated and the bit, **CIRMOD_PRD**[7], should be "1".

The related registers for RLC modulation is summarized as below.

Register	Address	Description
CIRCFG[7]	0xFEC0	RLC output modulation enable.
CIRMOD_PRD	0xFECE	CIRMOD_PRD[7] = modulation polarity selection CIRMOD_PRD[6:0] = modulation carrier period
CIRMOD_HPRD	0xFECF	CIRMOD_HPRD[6:0] = modulation carrier period, pulse width high.

4.15.5 CIR Registers Description (0xFEC0~0xFECF)

CIR Co	onfiguration					
Offset	Name	Bit	Туре	Description	Default	Bank
0xC0	CIRCFG	7	R/W	Output carrier modulator for RLC (TX) 0: Disable 1: Enable	0x00	0xFE
		6	R/W	Output polarity reversed for RLC. (TX) 0: Disable 1: Enable		
		5	R/W	Interrupt while transmit completes with RLC protocol. (TX) 0: Disable 1: Enable	B	
		4	R/W	Output enable for RLC protocol. (TX) Once the data filled into CIRRLC_OUT1 (0xFECA), the controller starts the transmit with RLC protocol 0: Disable 1: Enable		
		3	R/W	Input carrier demodulator. (RX) 0: Disable 1: Enable		
		2	R/W	Input polarity reversed. (RX) 0: Disable 1: Enable		
		1	R/W	Interrupt enable. (RX) Two conditions issue interrupt. 1. After decode a byte in RX 2. Once receive the "Repeat" in NEC protocol 0: Disable 1: Enable		
	- C	0	R/W	Protocol decode enable. (RX) The protocol type is determined by CIRCFG2[3:0] (0xFEC1) 0: Disable 1: Enable,		

CIR Co	onfiguration	2						
Offset	Name	Bit	Туре	Description	Default	Bank		
0xC1	CIRCFG2	7	R/W	Fast sample (data phase, not leader phase) enable for input signal. If this bit set, the sample period changes. For RC5/RC6, period changes from 30μ s to 16μ s For NEC, period changes from 64μ s to 30μ s 0: Disable 1: Enable	0x00	0xFE		
				6 R/	R/W	Fast sample (leader phase) enable for input signal. If this bit set, the sample period changes. For RC6, period changes from 64μ s to 30μ s 0: Disable 1: Enable	6	
			5	R/W	Input selection for protocol decoder (bit-decoder) 0: from GPIO40 1: from GPIO0A			
		4	R/W	Frequency detection enable. 0: Disable 1: Enable				
		3-0	R/W	CIR Protocol selection. (valid while CIRCFG[0]=1) 000: RLC 001: RC5 010: RC6 011: NEC others: reserved.				

CIR Pe	ending Flag	and S	tatus			
Offset	Name	Bit	Туре	Description	Default	Bank
0xC2	0xC2 CIRPF	7	RO	Hardware RX idle state. 0: not idle state 1: idle state	0x00	0xFE
	6	RO	Hardware TX (RLC) idle state. 0: not idle state 1: idle state			
		5-4	RSV	Reserved		
		3	R/W1C	Pending flag of RLC transmit complete 0: no event 1: event occurs		
		2	R/W1C	Pending flag of RLC receive counter overflow 0: no event 1: event occurs		
		1	R/W1C	Pending flag of NEC repeat protocol 0: no event 1: event occurs		
		0	R/W1C	Pending flag of data-in This bit is set while data received and stored in CIRDAT_IN. 0: no event 1: event occurs		

Value for High Pulse Width									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xC3	CIRHIGH	5-0	R/W	This register determines the high pulse width of a "logic bit". High pulse width = Decoder sample period * CIRHIGH	0x00	0xFE			

Value	Value for Bit Width(RC5/RC6) / Logic Bit-One (NEC)									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xC4	CIRBIT	6-0	R/W	This register determines the bit width of a "logic bit". (RC5/RC6) Bit width = Decoder sample period * CIRBIT	0x00	0xFE				
				This register determines the "logic bit-one". (NEC) Logic bit-one = Decoder sample period * CIRBIT						

Value for Leader Pulse Width (RC6/NEC) for Normal Packet								
Offset	Name	Bit	Туре	Description	Default	Bank		
0xC5	CIRSTART	6-0	R/W	This register determines the leader pulse width for normal packet (RC6/ENC) Leader pulse width = Decoder sample period * CIRSTART	0x00	0xFE		

Value for Tailer Bit Width (RC6) / Leader Width of Repeat Packet (NEC)									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xC6	CIRSTART2	6-0	R/W	This register determines the bit width of trailer (RC6) trailer bit width = Decoder sample period * CIRSTART2	0x00	0xFE			
				This register determines the leader width of repeat packet (NEC) Leader width(repeat) = Decoder sample period * CIRSTART2					

CIR De	CIR Decode Data Byte									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xC7	CIRDAT_IN	7-0	RO	Received data to decode.	0x00	0xFE				

CIR C	CIR Counter Value for RLC Sample Period									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xC8	CIRRLC_CFG	7	R/W	Counter overflow control bit. O: if overflow, the counter will stop. 1: if overflow, an interrupt issues and the counter keeps counting.	0x00	0xFE				
		6-0	R/W	CIR RLC sample period, The unit is 1µ s. Please note CIRRLC_CFG[6:0] can not be zero.						

CIR RLC Output 1 st Byte									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xC9	CIRRLC_OUT0	7-0	R/W	Output (TX) 1 st byte for RLC protocol.	0x00	0xFE			

CIR RLC Output 2 nd Byte									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xCA	CIRRLC_OUT1	7-0	R/W	Output (TX) 2 nd byte for RLC protocol.	0x00	0xFE			

CIR Ca	CIR Carrier Discard/Average Pulse Number Setting for Automatic Carrier Detection.									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xCB	CIRCAR_PULS	7-4	R/W	Discard carrier pulse number F/W should specify the number of pulse to discard	0x44	0xFE				
		3-0	R/W	Average carrier pulse number F/W should specify the average number to calculate the carrier period.	1					

CIR De	CIR Detected Carrier Period									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xCC	CIRCAR_PRD	7	RO	Detected carrier period valid. 0: carrier detection not completed. 1: carrier detection completed.	0x00	0xFE				
		6-0	RO	Detected carrier period. Detected carrier period = CIRCAR_PRD[6:0] x 500ns						

CIR De	CIR Detected Pulse Width High of Carrier								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xCD	CIRCAR_HPRD	7	RSV	Reserved	0x00	0xFE			
		6-0	R/W	Detected pulse width high of carrier Pulse width high = CIRCAR_HPRD[6:0] x 500ns					

CIR M	CIR Modulation Carrier Period (RLC only)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xCE	CIRMOD_PRD	7	R/W	Carrier modulation selection. 0: If TX idle state is high ,only low signal in TX will be modulated 1: If TX idle state is low, only high signal in TX will be modulated	0x00	0xFE			
		6-0	R/W	Modulation carrier period. This register determines the modulation carrier period. The unit is 500ns. The value can be chosen from 0x02 to 0x7F, i.e., the period is from 15.87KHz~1MHz. The period = CIRMOD_PRD[6:0] x 500 ns.					

CIR Pulse Width High of Modulation Carrier (RLC only)									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xCF	CIRMOD_HPRD	7	R/W	Reserved	0x00	0xFE			
		6-0	R/W	Pulse width high of modulation carrier. This register determines the pulse width high of modulation carrier. The unit is 500ns. The value can be chosen from 0x01 to 0x7E. Please note, the pulse width high can not be larger than the carrier period. The pulse width high = CIRMOD_HPRD[6:0] x 500 ns.					

4.15.6 CIR Programming Sample

In this section gives some programming sample to control CIR module. Please note, ENE does not guarantee these codes in every field application. The following table describes scenario of CIR filed application.

Example

A RC6 receiver which filters out carrier is connected to CIR RX pin.

Programming model

GPIOIE40[0] (0xFC68[0]) = 1; //Enable CIR Rx input

CIRCFG (0xFEC0) = 0x07; //Enable Rx interrupt and protocol

CIRCFG2 (0xFEC1) = 0x02; //Select RC-6 protocol

CIRHIGH (0xFEC3) = 0x0B; //High width = 32*11 = 352 us CIRBIT (0xFEC4) = 0x22; //Bit width = 32*34 = 1088 us CIRSTART (0xFEC5) = 0x3B; //Leader width = 64*59 = 3776 us CIRSTART2 (0xFEC6) = 0x4A; //Trailer width = 32*74 = 2368 us When CIRPF[0] (0xFEC2[0]) = 1, Read CIRDAT_IN (0xFEC7) to get data.

4.16 General Waveform Generator (GWG) 4.16.1 GWG Function Description

General waveform generator is used to output specific pre-defined pulse (two phase available) with single trigger or continuous trigger. User can generate the arbitrary pulse width with concatenate method by the co-operation of interrupt mode using dynamic adjusting of pulse registers. The programmable characteristic is as followed:

R	legister Name	Description
		Output drive level when idle state
GWGCFG[3]	(0xFED0)	0: for low level when idle state
		1: for high level when idle state
GWGCFG[2]	(0xFED0)	Output drive enable when idle state
GWGCFG[1]	(0xFED0)	Continuously pulses train enable bit
GWGCFG[0]	(0xFED0)	GWG enable bit
GWGCP	(0xFED3)	Timing base setting for phase 0/1 pulse timing.
ONICO	(OXI EDO)	Time base = (GWGCP+1) * 2 us
		Phase 0 signal level,
GWGPR0[7]	(0xFED4)	0: for low level
		1: for high level
GWGPR0 [6:0]	(0vEED4)	Phase 0 signal lasting period
GWGFKU[0.0]	(OXFED4)	The time base is from GWGCP
		Phase 1 signal level,
GWGPR1[7]	(0xFED5)	0: for low level
		1: for high level
CWCDD1[6:0]	(0vEED5)	Phase 1 signal lasting period
GWGPR1 [6:0]	(OXFEDS)	The time base is from GWGCP

Timing Example:

GWGCP is to set the phase 0/1 timing base. Eg: **GWGCP** = 0xFF, the timing base would be 256*2 = 512 us. And if set the **GWGPR0** = 0xFF, the phase 0 of pulse will be high level and sustain 512 us *127 = 65024 us which is about 65ms length.

4.16.2 GWG Register Description (0xFED0~0xFEDF)

Config	Configuration of GWG									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xD0	GWGCFG	7~6	RSV	Reserved	0x00	0xFE				
		5	R/W	Test mode enable						
		4	R/W	Interrupt enable						
		3	R/W	Output level when idle state						
				0: for low level when idle state						
				1: for high level when idle state						
		2	R/W	Output enable when idle state						
				0: disable						
				1: output the signal level according to GWGCFG[3] (0xFED0)						
		1	R/W	Continuously pulses train enable						
		0	R/W	GWG function enable						

Event	Event Pending Flag									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xD1	GWGPF	7~5	RSV	Reserved	0x00	0xFE				
		4	R/W1C	Start bit of GWG						
				Write 1 to this bit would start the waveform output						
		3~2	RSV	Reserved						
		1	R/W	Event pending flag for the phase 1 waveform finished						
		0	R/W	Event pending flag for the phase 0 waveform finished	1					

Event Interrupt Enable Registers								
Offset	Name	Bit	Туре	Description	Default	Bank		
0xD2	GWGIE	7~2	RSV	Reserved	0x00	0xFE		
		1	R/W	Interrupt enable for the event pending flag for the phase 1				
		0	R/W	Interrupt enable for the event pending flag for the phase 0				

Clock Period Register									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xD3	GWGCP	7~0	R/W	Timing base setting for phase 0/1 pulse timing Time base = (N+1) * 2 us	0x00	0xFE			

Pulse Setting Register 0								
Offset	Name	Bit	Туре	Description	Default	Bank		
0xD4	GWGPR0	7	R/W	Output Level setting for phase 0 0: for low level 1: for high level	0x00	0xFE		
		6~0	R/W	Counter Value for phase 0 pulse sustain time Timing unit is based on GWGCP				

Pulse	Pulse Setting Register 1									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xD5	GWGPR1	7	R/W	Output Level setting for phase 1 0: for low level 1: for high level	0x00	0xFE				
		6~0	R/W	Counter value for phase 1 pulse sustain time Timing unit is based on GWGCP						

4.17 PS/2 Interface (PS/2)

4.17.1 PS/2 Interface Function Description

The PS/2 protocol is a two-wire bi-direction interface in the industrial standard. This supports many PS/2 human interface devices, such as keyboard, mouse or touchpad device. Here gives the highlights of PS/2 features in the KBC.

- 3 external PS/2 channels supported.
- 1 internal PS/2 channel for IKB.
- Each PS/2 channel is with interrupt capability.
- Each PS/2 channel can be enabled/disabled individually.
- Both hardware and flexible firmware mode support for PS/2 protocol.
- Each PS/2 channel can be programmed to be GPIO function.

4.17.2 PS/2 Interface Registers Description (0xFEE0~0xFEFF)

PS/2 C	Configuration)				
Offset	Name	Bit	Туре	Description	Default	Bank
0xE0	PS2CFG	7	R/W	PS/2 port3 (TX/RX) enable. If disable, PS3CLK will be low. 0: Disable 1: Enable	0x00	0xFE
		6	R/W	PS/2 port2 (TX/RX) enable. If disable, PS2CLK will be low. 0: Disable 1: Enable		
		5	R/W	PS/2 port1 (TX/RX) enable. If disable, PS1CLK will be low. 0: Disable 1: Enable		
		4	R/W	PS/2 port0 IKB(TX/RX) enable. If disable, IKB clock will be low. 0: Disable 1: Enable		
	7	3	R/W	PS/2 parity error interrupt 0: Disable 1: Enable		
		2	R/W	PS/2 TX timeout interrupt. TX timeout condition: (a)ps2clk keeps high over 210µ s~240µ s during TX. (b)Host requests bus and waits over 120ms~150ms 0: Disable 1: Enable		
		1	R/W	PS/2 transmit-one-byte interrupt 0: Disable 1: Enable		
		0	R/W	PS/2 receive-one-byte interrupt 0: Disable 1: Enable		

PS/2 Ir	terrupt Pen	ding F	Flag			
Offset	Name	Bit	Туре	Description	Default	Bank
0xE1	PS2PF	7	RO	Flag of PS/2 port3 received one byte. 0: no event 1: event occurs	0x00	0xFE
		6	RO	Flag of PS/2 port2 received one byte. 0: no event 1: event occurs		
		5	RO	Flag of PS/2 port1 received one byte. 0: no event 1: event occurs		
		4	RO	Flag of PS/2 port0 (IKB) received one byte. 0: no event 1: event occurs		
		3	R/W1C	Interrupt flag of PS/2 parity error 0: no event 1: event occurs		
		2 R/W1C Interrupt flag of PS/2 TX timeout. 0: no event 1: event occurs				
		1 R/W1C Interrupt flag of PS/2 transmit-one-byte 0: no event 1: event occurs				
		0	R/W1C	Interrupt flag of PS/2 receive-one-byte 0: no event 1: event occurs		

PS/2 T	PS/2 Transmitter/Receiver Control						
Offset	Name	Bit	Туре	Description	Default	Bank	
0xE2	PS2CTRL	7	R/W	Data port PS2DATA (0xFEE3) connects to PS/2 port3 0: Disconnect 1: Connect	0x00	0xFE	
V		6	R/W	Data port PS2DATA (0xFEE3) connects to PS/2 port2 0: Disconnect 1: Connect			
		5	R/W	Data port PS2DATA (0xFEE3) connects to PS/2 port1 0: Disconnect 1: Connect			
	4 R/W Data port PS2DATA (0xFEE3) connects to PS/2 port0 0: Disconnect 1: Connect						
		3	wo	Write "1" to force PS/2 TX reset.			
		2	WO	Write "1" to force PS/2 RX reset.			
		1	RO	 PS/2 RX timeout flag. The flag may implies the followings. (a) ps2clk keeps high over 210μ s~240μ s during RX (b) host issues reset command and the device does not response. (c) General PS/2 packet timeout defined in the protocol. 			
		0	RSV	Reserved			

PS/2 D	Data Port					
Offset	Name	Bit	Туре	Description	Default	Bank
0xE3	PS2DATA	7-0	R/W	EC F/W gets/writes data from/to host via this register.	0x00	0xFE

PS/2 C	PS/2 Configuration 2					
Offset	Name	Bit	Туре	Description	Default	Bank
0xE4	PS2CFG2	7	R/W	PS/2 port3 hardware mode enable. 0: Disable 1: Enable	0x00	0xFE
		6	R/W	PS/2 port2 hardware mode enable. 0: Disable 1: Enable	D	
		5	R/W	PS/2 port1 hardware mode enable. 0: Disable 1: Enable		
		4	R/W	PS/2 port0 (IKB) hardware mode enable. 0: Disable 1: Enable		
		3	R/W	PS/2 hardware mode enable. 0: Disable 1: Enable		
		2	R/W	PS/2 host request timeout control. (in PS/2 hardware mode only) 0: Host request timeout 120ms~150ms 1: Host request timeout 15ms~16ms		
		1	RSV	Reserved.		
		0	R/W	PS/2 clock/data input debounce control 0: 1μ s 1: 2μ s		

PS/2 Pin Input Status						
Offset	Name	Bit	Туре	Description	Default	Bank
0xE5	PS2PINS	7	RO	PS/2 port3 clock pin status	0x00	0xFE
	6 RO PS/2 port2 clock pin status					
	5 RO PS/2 port1 clock pin status					
		4	RO	PS/2 port0 (IKB) clock pin status		
		3	RO	PS/2 port3 data pin status		
		2	RO	PS/2 port2 data pin status		
		1	RO	PS/2 port1 data pin status		
		0	RO	PS/2 port0 (IKB) data pin status		

PS/2 Pin Output							
Offset	Name	Bit	Туре	Description	Default	Bank	
0xE6	PS2PINO	7	RO	PS/2 port3 clock pin status	0x00	0xFE	
		6	RO	PS/2 port2 clock pin status			
		5	RO	PS/2 port1 clock pin status			
		4	RO	PS/2 port0 (IKB) clock pin status			
		3	RO	PS/2 port3 data pin status			
		2	RO	PS/2 port2 data pin status			
		1	RO	PS/2 port1 data pin status			
		0	RO	Command control TX state			

4.18 Embedded Controller (EC)

4.18.1 EC Function Description

The ACPI specification defined for the embedded controller (EC) interface requires either three separate host interfaces (KBC, SCI, SMI) or two interfaces (KBC, and shared SCI/SMI). The ENE KBC supports KBC and SCI interface, and SMI interface can be shared with SCI or use a dedicated GPIO. The embedded controller also provides some features which are collected as following:

- Handles EC standard commands from host, firmware mode support.
- Handles EC extended commands from host, only firmware mode support.
- SCI generation capability.
- Extended I/O write interface, i.e., debug port (port 80) support.
- KBC/EC clock configuration.
- A/D and D/A control.
- Power management control.
- Miscellaneous control.

The host queries (read) EC status and issues (write) EC command via port **66h**. The EC data port is **62h**. The status of EC is defined as the below table:

Status Bit	Name	Description
7	RSV	Reserved
6	RSV	Reserved
5	SCI	SCI event flag. Please note, this bit will not be set if standard EC commands (80h~84h) issued by host. 0: No SCI event occurs 1: SCI event occurs
4	Burst Enable	The burst enable flag 0: Disable 1: Enable
3	Command/Data Flag	O: Previous access port is data port. (EC_DAT) 1: Previous access port is command/status port. (EC_CMD/EC_STS)
2	RSV	Reserved
1	IBF	Input Buffer Full flag of EC
0	OBF	Output Buffer Full flag of EC

The EC commands are defined as following, for more detail please refer to ACPI, *Advanced Configuration Power Interface Specification*. 2.0

Value	Command	Description
80h	EC Read	Read EC space registers
81h	EC Write	Write EC space registers
82h	EC Burst Enable	Enable EC operation in burst mode
83h	EC Burst Disable	Disable EC operation in burst mode
84h	EC Query	Query SCI events
Others	Firmware Command	Extended commands and handled with F/W mode.

4.18.2 EC Command Program Sequence

The following table summarizes the standard EC commands programming flow. Port **66h** is the EC command and status port and port **62h** is the EC data port.

Command Byte	Command	Program Sequence
80h	EC Read	 Host writes command byte 80h (EC_Read) to port 66h. EC will issue SCI to host while IBF=0 Host writes address to port 62h. EC will issue SCI to host while OBF=1 Host reads data via port 62h.
81h	EC Write	 Host writes command byte 81h (EC_Write) to port 66h. EC will issue SCI to host while IBF=0 Host writes address to port 62h. EC will issue SCI to host while IBF=0 Host writes data to port 62h. EC will issue SCI to host while IBF=0
82h	Burst Enable	 Host writes command byte 82h (Burst_Enable) to port 66h. EC will issue SCI to host while OBF=1. Host reads via port62h. If 90h obtained, it's Burst Ack.
83h	Burst Disable	 Host writes command byte 83h (Burst_Disable) to port 66h. EC will issue SCI to host while IBF=0
84h	Query EC	 Host writes command byte 84h (Query_EC) to port 66h. EC will issue SCI to host while OBF=1. Host reads data via port 62h. The data obtained is SCI_ID number.

4.18.3 EC SCI Generation

The EC can generate SCI with independent enable control and status flag. Plenty of hardware SCI events are predefined, and a firmware SCI event gives more flexible use for different applications. There is a F/W SCI command port located at **SCID** (0xFF0B). As the F/W writes any **non-zero** value to this port, and corresponding enable bit (SCIE0[6]) is set. A hardware SCI signal will issue to host in sequence. Then the host uses standard EC_Query (84h) command to get the **SCI ID** which is written by F/W before. The below table summarizes the information about SCI events, SCI IDs and the priorities.

SCI ID	Event	Switch	Applications	Priority
00h	Nothing	N/A		0(Highest)
01h-07h	RSV	N/A	Reserved	1
08h	WDT	SCIE0[0]	Watchdog	2
09h	LPC_IO2F / OWM	SCIE0[1]	LPC I/O 0x2F R/W accessing interrupt / OWM	3
0Ah	PS2	SCIE0[2]	PS/2 event	4
0Bh	KBC	SCIE0[3]	IBF rising (LPC write I/O 60h/64h) OBF falling (LPC read I/O 60h)	5
0Ch	IKB	SCIE0[4]	IKB	6
0Dh	LPC_IO686C	SCIE0[5]	IBF rising (LPC write I/O 68h/6Ch) OBF falling (LPC read I/O 68h)	7
0Eh	LPC_IO6266	SCIE0[6]	IBF rising (LPC write I/O 62h/66h) OBF falling (LPC read I/O 62h)	8
FW_SCIID	FW_SCI	SCIE0[7]	EC F/W SCI event	9
10h	FAN0	SCIE1[0]	FAN0 monitor event (update/overflow)	10
11h	FAN1	SCIE1[1]	FAN1 monitor event (update/overflow)	11
12h	SMBus	SCIE1[2]	SMBus events	12
13h	CIR	SCIE1[3]	CIR events	13
14h	GPT0	SCIE1[4]	GPT0 event	14
15h	GPT1	SCIE1[5]	GPT1 event	15
16h	GPT2	SCIE1[6]	GPT2 event	16
17h	GPT3 / SDI	SCIE1[7]	GPT3 event /SDI	17
18h	EXTWIO / PECI	SCIE3[0]	Write extended I/O (LPC I/O port 80)	18
19h	GPIO00~GPIO0F	SCIE3[1]	GPIO00~GPIO0F	19
1Ah	GPIO10~GPIO1F	SCIE3[2]	GPIO10~GPIO1F	20
1Bh	GPIO20~GPIO2F	SCIE3[3]	GPIO20~GPIO2F	21
1Ch	GPIO30~GPIO3F	SCIE3[4]	GPIO30~GPIO3F	22
1Dh	GPIO40~GPIO4F	SCIE3[5]	GPIO40~GPIO4F / GPXIOA00~GPXIOA11	23
1Eh	GPIO50~GPIO5F	SCIE3[6]	GPIO50~GPIO59 / GPXIOD00~GPXIOD07	24
1Fh	ADC	SCIE3[7]	ADC update	25(Lowest)

The SCI pulse width is programmable for different applications. Two unit basis, 16µs and 64 µs can be chosen. To change the SCI pulse width, register **PXCFG**[2] (0xFF14) is to select the timing base unit and **SCICFG**[3:0] (0xFF03) is to decide another coefficient. The SCI pulse is decided by the following equation. Please refer to registers description for details.

SCI Pulse Width = SCICFG[3:0] * Unit (16μ s or 64μ s)

4.18.4 EC/KBC Clock Configuration

he EC provides programmable interface to adjust the microprocessor and peripheral frequency. The programming interface is located at register **CLKCFG/CLKCFG2** (0xFF0D/0xFF1E) and **PLLCFG/PLLCFG2** (0xFF0F/0xFF1F). The figure 4-1 (in section **Clock Domain**) illustrates the clock scheme applied in the KBC.

4.18.5.1 A/D Converter Control

The control interface of A/D is in the EC space. Details SPEC of the A/D converters could be found in the electronics characteristic chapter.

The following table summarizes the related registers of these 8 A/D converters.

Name	Address	Description
ADDAEN[3:0]	0xFF15	ADC port enable bits of ADC3~ADC0 Bit3: ADC3 Bit2: ADC2 Bit1: ADC1 Bit0: ADC0 If ADC selected, please do not set related IE register.
ADCTRL[7:4]	0xFF18	ADC port enable bits of ADC7~ADC4 Bit7: ADC7 Bit6: ADC5 Bit5: ADC4 Bit4: ADC4
ADCTRL[3:1]	0xFF18	ADC channels selection to be converted and put in ADCDAT and ECIF[7:6]
ADCDAT	0xFF19	This stands for higher bit9~bit2 of 10bit A/D result.
ECIF[7:6]	0xFF1A	This stands for lower bit1~bit0 of 10bit A/D result.

The following gives the programming sample to control ADC.

Example

Using ADC0 to get input analog signal

Programming model

- 1. Clear IE of the related pin GPIOIE38[0] (0xFC67[0]) = 0b
- 2. Enable ADC function ADDAEN[0] (0xFF15[0]) = 1b
- 3. Enable ADC control
 ADCTRL (0xFF18) = 0x01
 Waiting ADC interrupt.
- 4. Read ADCDAT (0xFF19) and ECIF (0xFF1A)

4.18.5.2 A/D Panel Drive Mode

Table for Panel Drive Mode:

PDM	Input Channel	X Driver	Y Driver	Measurement	Description
0	ADC 0~6	OFF	OFF	ADC	Normal ADC
1	0 (X+)	OFF	1 (Y+), VCC 3 (Y-), GND	Y Position	4-Wire
2	0 (X+)	2 (X-) , GND	1 (Y+), VCC	Z1 Position	4-Wire
3	3 (Y-)	2 (X-), GND	1 (Y+), VCC	Z2 Position	4-Wire
4	1 (Y+)	0 (X+) , VCC 2 (X-) , GND	OFF	X Position	4-Wire
5	4 (WIPER)	0 (UL) , VCC 2 (LL), GND	1 (UR), VCC 3 (LR), GND	Y Position	5-Wire
6	4 (WIPER)	0 (UL), VCC 2 (LL), VCC	1 (UR), GND 3 (LR), GND	X Position	5-Wire
7	0 (X+)	0 (X+), PU	3 (Y-), GND	PENIRQ	4-Wire
8	4 (WIPER)	4 (WIPER), PU	3 (Y-), GND	PENIRQ	5-Wire

4-Wire Touch, Note:

X+	ADC0	
Y+	ADC1	
X-	ADC2	\
Y-	ADC3	

5-Wire Touch, Note:

Upper Left	ADC0
Upper Right	ADC1
Lower Left	ADC2
Lower Right	ADC3
WIPER	ADC4

4.18.6 D/A Converter Control

The control interface of D/A is in the EC space. Details SPEC of the D/A converters could be found in the electronics characteristic chapter.

The following table summarizes the related registers of these 4 D/A converters.

Name	Address	Description
ADDAEN[7:4]	0xFF15	DAC port Enable bits of DAC3~DAC0 Bit7: DAC3 Bit6: DAC2 Bit5: DAC1 Bit4: DAC0 If DAC selected, please do not set related GPIO function selection register.
DAC0	0xFF10	DAC0 Output Value
DAC1	0xFF11	DAC1 Output Value
DAC2	0xFF12	DAC2 Output Value
DAC3	0xFF13	DAC3 Output Value

The following gives the programming sample to control a DAC.

DAC2 (0xFF12) = specific value to convert

Using DAC2 Programming model 1. Clear the alternative function selection of the related pin GPIOFS38[6] (0xFC07[6]) = 0b; 2. Enable DAC function ADDAEN[6] (0xFF15[6]) = 1b 3. Fill the value to be converted.

4.18.7 Power Management Control

Two power modes are defined, one is **STOP** mode and the other is **IDLE** mode. The register **PMUCFG** (0xFF0C) is used to configure the power management. The following table gives more detail about the definition for these two power modes.

Mode	Description
STOP	All clock sources stop, except external PCI clock and 32.768KHz.
IDLE	Only clock of 8051 microprocessor stops.
RUN	System operations in normal mode.
OFF	All power supply removed, including AC and battery

The diagram below shows the relationship between each power mode.

- ① power supply on
- ② enter idle mode from run mode set PMUCFG[6]=1
- ③ enter stop mode from idle mode set PMUCFG[7]=1 (by Host)
- ④ back to run mode from stop mode by wakeup source
- ⑤ enter stop mode from run mode set PMUCFG[7]=1
- ⑥ back to run mode from idle mode by wakeup source
- ② all power removed

4.18.8 EC Registers Description (0xFF00~0xFF2F)

EC Hardware Revision ID								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x00	ECHV	7-0	RO	EC Hardware version	0xA3	0xFF		

EC Fir	EC Firmware Revision ID									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x01	ECFV	7-0	R/W	EC firmware version This register will be a data port, ADC_test_data[7:0] in ADC test mode (ADCTRL[1]=1).	0x00	0xFF				

EC Hig	EC High Address										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x02	ECHA	7-6	RSV	Reserved	0x0F	0xFF					
		5	R/W	Write protection of PXCFG[1], PXCFG[4]. 0: writable. 1: write protection.							
		4	R/W	Index-I/O mode access control. 0: access range 0xF400~0xFFFF 1: access range 0xF400~0xF403 and 0xFC00~0xFFFF Reserved							
		3-0	RSV	Reserved							

EC SC	I Configurati	ion				
Offset	Name	Bit	Туре	Description	Default	Bank
0x03	SCICFG	7	R/W	Standard EC commands generate SCI. 0: Disable 1: Enable	0x90	0xFF
		6	R/W	SCIID port enable. (F/W SCI write port enable) 0: Disable 1: Enable		
		5	R/W	SCI polarity 0: Low active (default) 1: High active		
		4	R/W	SCIE0/SCIE1/SCIE2 (0xFF05~0xFF07) enable. 0: Disable 1: Enable		
		3-0	R/W	SCI pulse width. (max. 1ms) SCI pulse width = SCICFG[3:0] * (time unit) where time unit is determined by PXCFG[2], 64µs or 16µs If SCICFG[3:0]=0, SCI pulse width = width of system clock.		

EC Co	nfiguration					
Offset	Name	Bit	Туре	Description	Default	Bank
0x04	ECCFG	7	R/W	EPB fast access enable. To enhance EPB performance. 0: Disable 1: Enable	0x00	0xFF
		6	R/W	Test mode selection 0: Normal mode 1: Test mode.		
		5~3	RSV	Reserved		
		2	R/W	Extended I/O (debug I/O, port 80) interrupt enable. Only available while write cycle to port 80 from the host. 0: Disable 1: Enable	D	
		1	R/W	Reserved		
		0	R/W	OBF interrupt enable. EC data port interrupt enable. CPU reads data from EC data port. 0: Disable 1: Enable		

EC SC	EC SCI Interrupt Enable (SCIE0,SCIE1,SCIE3)									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x05	SCIE0	7-0	R/W	SCI Event0 enable 0: Disable 1: Enable	0x00	0xFF				
0x06	SCIE1	7-0	R/W	SCI Event1 enable 0: Disable 1: Enable	0x00	0xFF				
0x07	SCIE3	7-0	R/W	SCI Event3 enable 0: Disable 1: Enable	0x00	0xFF				

EC SC	EC SCI Flag (SCIF0,SCIF1,SCIF3)										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x08	ECIF0	7-0	R/W1C	SCI Event0 flag 0: no event 1: event occurs	0x00	0xFF					
0x09	ECIF1	7-0	R/W1C	SCI Event1 flag 0: no event 1: event occurs	0x00	0xFF					
0x0A	ECIF3	7-0	R/W1C	SCI Event3 flag 0: no event 1: event occurs	0x00	0xFF					

EC SCI ID Write Port (to Generate SCI Event)								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x0B	SCID	7-0	R/W	Firmware SCI write port	0x00	0xFF		

EC PM	EC PMU Control/Configuration										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x0C	PMUCFG	7	WO	Write "1" to enter STOP mode.	0x2F	0xFF					
		6	WO	Write "1" to enter Idle mode.							
		5	R/W	LPC cycle wakeup system from STOP mode. 0: Disable 1: Enable							
		4	R/W	Reset 8051 while in STOP mode. 0: Disable 1: Enable							
			3	3	3	R/W	SCI wakeup system 0: Disable 1: Enable	D			
		2	R/W	WDT wakeup system from STOP mode. 0: Disable 1: Enable							
		1	R/W	GPWU wakeup system from STOP mode. 0: Disable 1: Enable							
		0	R/W	Interrupt wakeup system from Idle mode. 0: Disable 1: Enable							

EC Clo	ock Configur	ation				
Offset	Name	Bit	Туре	Description	Default	Bank
0x0D	CLKCFG	7	R/W	Flash clock from external clock (GPIO59). 0: Disable 1: Enable	0x00	0xFF
		6	R/W	Flash clock control. 0: Half speed. (DPLL_CLK/2) 1: Full speed (DPLL_CLK) please note, while CLKCFG[6]=0 and CLKCFG[3:2]=0 (power-on default), the SPI flash clock is always 16MHz.	•	
		5	R/W	Enable DPLL to generate 32.768 MHz 0: Disable 1: Enable	B	
		4	R/W	DPLL enters low power state while in STOP mode. 0: Disable 1: Enable		
		3-2	R/W	8051/Peripheral clock selection. 11b: 32 MHz / 16 MHz 10b: 22 MHz / 11 MHz 01b: 16 MHz / 8 MHz 00b: 8 MHz / 4 MHz (default)		
		1	R/W	Peripheral slow down to 1MHz automatically. If no host access, the peripheral clock will slow down to 1MHz automatically. 0: Disable 1: Enable		
		0	R/W	Clock slow down to 2MHz / 1MHz (8051 / Peripheral) in Idle mode. If this bit set, the clock of flash will be stopped in idle mode. 0: Disable 1: Enable		

EC Ex	EC Extended I/O (Debug Port) Write Data								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x0E	EXTIOW	7-0	R/W	If the host write data to extended I/O (debug port, port80), an interrupt occurs, and then the firmware read it back via this register.	0x00	0xFF			

EC PL	EC PLL Configuration									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x0F	PLLCFG	7-0	R/W	DPLL initial value. (low 8-bit) After reset, the DPLL will output frequency about 32MHz with default value 0xD0. DPLL initial value is 10-bit, the higher two bits are located at 0xFF1F, PLLCFG2 [7:6].	0x51	0xFF				

EC DA	EC DAC0 Output Value (ECMISC[1:0]=00b) / Extended Command (ECMISC[1:0]=11b)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x10	DAC0	7-0	R/W	The digital data to be converted in DAC0.	0x00	0xFF			
0x10	EXTCMD	7-0	R/W	8051 extended command port. Once the command is filled, two events may occur. - if non-zero command written, 8051 interrupt issues. - If zero command written, SCI event issues. Please note, EXTARG0/EXTARG1/EXTARG2 must be ready before filling this register.	0x00	0xFF			

EC DA	EC DAC1 Output Value (ECMISC[1:0]=00b)/ Extended Command Argument 0(ECMISC[1:0]=11b)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x11	DAC1	7-0	R/W	The digital data to be converted in DAC1.	0x00	0xFF			
0x11	EXTARG0	7-0	R/W	Extended command argument0	0x00	0xFF			

EC DA	EC DAC2 Output Value (ECMISC[1:0]=00b)/ Extended Command Argument 1(ECMISC[1:0]=11b)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x12	DAC2	7-0	R/W	The digital data to be converted in DAC2.	0x00	0xFF			
0x12	EXTARG1	7-0	R/W	Extended command argument1	0x00	0xFF			

EC DA	EC DAC3 Output Value (ECMISC[1:0]=00b)/ Extended Command Argument 2(ECMISC[1:0]=11b)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x13	DAC3	7-0	R/W	The digital data to be converted in DAC3.	0x00	0xFF			
0x13	EXTARG2	7-0	R/W	Extended command argument2	0x00	0xFF			

EC 80	51 On-Chip (Contro	ol			
Offset	Name	Bit	Туре	Description	Default	Bank
0x14	PXCFG	7-5	RSV	Reserved	0x00	0xFF
		4	R/W	Setting for WDT timeout reset of GPIO This field is only valid when PXCFG[1]='0' To write this bit, set the field on ECHA[5]='0' 0: GPIO module when WDT timeout reset will not be reset. 1: GPIO module when WDT timeout reset will be reset.		
	2	3	RSV	Reserved		
		2	R/W	SCI pulse width time unit. 0: 64µs 1: 16µs		
		1	R/W WDT timeout reset selection 0: reset whole KBC, selectable GPIO module. 1: reset 8051 only To write this bit, set the field on ECHA[5]='0'			
		0	R/W	8051 program counter control 0: program counter starts to execute. 1: 8051 reset and PC=0 PC will keep 0 (reset vector) until this bit is written to "0"		

EC AD	EC ADC/DAC Function Switch										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x15	ADDAEN	7-4	R/W	DAC3~DAC0 Function Enable Bit7~Bit4 represents DAC3~DAC0 respectively 0: DAC Disable 1: DAC Enable If DAC enable, please do not set related GPIO function selection register.	0x00	0xFF					
		3-0	R/W	ADC3~ADC0 Function Enable Bit3~Bit0 represents ADC3~ADC0 respectively 0: ADC Disable 1: ADC Enable. If ADC enable, please do not set related GPIO bit with input enable (IE).	D						

EC PL	EC PLL Frequency Register (High Byte)									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x16	PLLFRH	7-0	R/W	DPLL frequency = 32.768KHz(external) * PLLFR PLLFR[11:0] =(PLLFRH[7:0] : PLLFRL[7:4]) To generate 32.768MHz, PLLFR = 1000 (decimal) = 0x3E8 i.e., PLLFRH=0x3E	0x3E	0xFF				

EC PL	EC PLL Frequency Register (Low Byte)										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x17 PLLFRL	7-4	R/W	DPLL frequency = 32.768KHz * PLLFR PLLFR[11:0] =(PLLFRH[7:0] : PLLFRL [7:4]) To generate 32.768MHz, PLLFR = 1000 (decimal) = 0x3E8 i.e., PLLFRL[7:4]=0x8	0x83	0xFF						
		3	R/W	DPLL lock value presented in CHIPID (0xFF1E~0xFF1F). (Only valid if ECSTS[2]=0) 0: Disable 1: Enable.							
		2	R/W	DPLL test mode enable 0: Disable 1: Enable.							
		1-0	RSV	Reserved							

EC AD	C Control R	egiste	r			
Offset	Name	Bit	Туре	Description	Default	Bank
0x18	ADCTRL	ADCTRL	Bit7~Bit4 represents ADC7~ADC4 respectively 0: ADC Disable 1: ADC Enable. If ADC enable, please do not set related GPIO be	Bit7~Bit4 represents ADC7~ADC4 respectively 0: ADC Disable 1: ADC Enable. If ADC enable, please do not set related GPIO bit with	0x00	0xFF
		3-1	R/W	input enable (IÉ). Convert ADC channel selection. 000: ADC0 001: ADC1 010: ADC2 011: ADC3 100: ADC4 101: ADC5 110: ADC5 111: ADC7	P	
		0	R/W	ADC convert start and force interrupt after converting. 0: ADC stops converting, interrupt disable 1: ADC starts converting, interrupt enable		

EC AD	EC ADC Data Output Port									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x19	ADCDAT	7-0	RO	Converted data by ADC. ADC output[9:2]=ADCDAT[7:0]	0x00	0xFF				

FC Int	EC Interrupt Pending Flag											
Offset	Name	Bit	Туре	Description	Default	Bank						
0x1A	ECIF	7-6	RO	Converted data by ADC. ADC output[1:0]= ECIF [7:6]	0x00	0xFF						
	5-3	RSV	Reserved									
	2	R/W1C	EC firmware mode flag. If EC command handled by F/W, this flag will be set									
		1	R/W1C	EC IBF interrupt pending flag 0: no event 1: event occurs								
		0	R/W1C	EC OBF interrupt pending flag 0: no event 1: event occurs								

EC Da	EC Data Port									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x1B	ECDAT	7-0	R/W	EC data port. If ECDAT written, ECSTS [0] (OBF) becomes "1".	0x00	0xFF				

EC Co	EC Command Port									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x1C	ECCMD	7-0	RO	This register keeps EC command issued by the host.	0x00	0xFF				

EC Co	ntrol and Sta	atus P	ort				
Offset	Name	Bit	Туре	Description	Default	Bank	
0x1D	ECSTS	7	R/W	Reserved	0x00	0xFF	
		6	R/W	Reserved			
		5	RO	SCI pending flag 0: no event 1: event occurs			
		3	R/W	Burst enable status. 0: EC burst mode disable 1: EC burst mode enable.			
			3	R/W	EC I/O write port indicator 0: host writes for data (writes I/O port 62h) 1: host writes for command (writes I/O port 66h)	D	
			2	R/W	Register 0xFF1E and 0xFF1F function select. 0: CHIPID display selected or show DPLL lock value based on 0xFF17[3] 1: CLKCFG2/PLLCFG2 function selected		
		1	R/W1C	IBF (Input Buffer Full) 0: buffer not full 1: buffer full			
		0	R/W1C	OBF (Output Buffer Full) 0: buffer not full 1: buffer full			

EC Clo	EC Clock Configuration 2										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x1E	CHIPID_H	7-0	R/W	CHIPID high byte. (ECSTS[2]=0)	0x90	0xFF					
0x1E	DPLL_FREQH	7-6	RSV	Reserved	0x00	0xFF					
		5-0	RO	ECSTS[2] = 0, and PLLFRL[3]=1, DPLL setting frequency value [9:4]							
0x1E	CLKCFG2	7-0	R/W	Divider of (DPLL Freq)/2 to generate 1µs (ECSTS[2]=1) Eg: DPLL outputs 64MHz (by default), to generate 1µs, the divider should be 32. That is the CLKCFG2 will be 0x1F.	0x1F	0xFF					

EC PL	L Configurat	ion 2				
Offset	Name	Bit	Туре	Description	Default	Bank
0x1F	CHIPID_L	7-0	R/W	CHIPID low byte. (ECSTS[2]=0)	0x12	0xFF
0x1F	DPLL_FREQL	7-4	RO	ECSTS[2] = 0, and PLLFRL[3]=1, DPLL setting frequency value [3:0]	0x00	0xFF
		3-0	RO	ECSTS[2] = 0, and PLLFRL[3]=1, DPLL setting phase [3:0]		
0x1F	PLLCFG2	7-6	R/W	High 2 bits of DPLL initial value. (ECSTS[2]=1) DPLL initial value is 10-bit, the low 8 bits are located at 0xFF0F, PLLCFG[7:0].	0x21	0xFF
		5	R/W	DPLL reference selection. 0: Reference PCI clock 1: Reference 32.768KHz source. (default)	D	
		4	R/W	DPLL source clock divider. 0: Disable. (default) 1: Enable. If PLLCFG2[5]=1, then this bit should be "0". If PLLCFG2[5]=0, this bit should be "1".		
		3-0	R/W	DPLL low speed state setting in Idle mode. The default value is 0001b , the DPLL will provide 2MHz (8051)/1MHz (Peripheral) clock.		

EC MI	SC Config	uration				
Offset	Name	Bit	Туре	Description	Default	Bank
0x20	0x20 ECMISC	7	RO	8051 state. 0: Idle state 1: Normal state	0x80	0xFF
		6	RSV	Reserved		
		5	R/W	POFR standby enable Trade-off for leakage current and POFR, about 3uA		
		4	R/W	LDO standby enable Trade-off for leakage current and LDO, about 26uA		
		3	RSV	Reserved		
		2	R/W	8051 extended command (ExtCMD , 0xFF10) interrupt enable. 0 : Disable 1 : Enable		
		1	R/W	Register function select of 0x1410~0x1413 for LPC index-I/O 0: DAC 1: LPC index-I/O Extended command related registers		
		0	R/W	Register function select of 0x1410~0x1413 for 8051. 0: DAC 1: 8051 Extended command related registers		

EC Ex	EC Extended I/O (Debug I/O) Data Port by Host								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x21	EXTIOR	7-0	R/W	The host reads extended I/O port and gets data from this register. <i>No interrupt occurs</i> .	0x00	0xFF			

Embed	Embedded Debug Interface Feature Register									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x22	EDIF	7	R/W	EDI feature enable 0: disable 1: enable	0x00	0xFF				
		6-0	RSV	Reserved						

Embed	Embedded Debug Interface Active Status Register										
Offset	Name	Bit	Туре	Description		Default	Bank				
0x23	EDIAS	7	R/W	EDI active status 0: not active 1: active		0x00	0xFF				
		6-0	RSV	Reserved							

Embed	Embedded Debug Version ID								
Offset	Name	Bit	Туре	Description	Description Default Bank				
0x24	EDIID	7-0	RO	EDI version	0x04	0xFF			

ADC P	ADC Pending Flag Register								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x25	ADCPF	7~3	RSV	Reserved	0x00	0xFF			
		2	RO	ADC PENIRQ in-line status					
		1	R/W1C	ADC PENIRQ pending flag					
		0	R/W1C	Converting ADC channel pending flag					

ADC I	ADC Interrupt Enable								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x26	ADCIE	7~2	RSV	Reserved	0x00	0xFF			
		1	R/W	ADC PENIRQ interrupt enable					
		0	R/W	Converting ADC interrupt enable					

Voltag	Voltage comparator control and status register								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x27	VCCR	7~6	RSV	Reserved	0x03	0xFF			
		5	R/W	VC1 output active polarity, 0: active low (Default) 1: active high					
		4	R/W	VC0 output active polarity, 0: active low (Default) 1: active high					
		3~2	R/W	Voltage comparator de-bounce De-bounce setting 00: No De-bounce 01: continually trigger 2 times 10: continually trigger 4 times 11: continually trigger 6 times	P				
		1	R/W	Voltage comparator pair 1 enable					
		0	R/W	Voltage comparator pair 0 enable					

Power	fail contro	ol and s	status regi	ster		
Offset	Name	Bit	Туре	Description	Default	Bank
0x28	PFCSR	7	R/W1C	Power Fail status flag This bit is set by hardware if voltage of power is under Power Fail Voltage and write 1 clear by firmware or system reset occur	0x00	0xFF
		6	RSV	Reserved		ļ
		5~4	R/W	Power fail De-bounce setting 00: No De-bounce 01: continually trigger twice 10: continually trigger 4 times 11: continually trigger 6 times		
		3~1	RSV	Reserved		
	G	0	R/W	Power fail status enable GPXIOA03 or GPIO18 will output low to indicate the system power is under Power Fail Voltage. The output pin select is controlled by GPX_MISC[2:1]. 0: Disable 1: Enable Note: GPXIOA03 / GPIO18 will return to previous state if PFCSR[7] is written 1 clear.		

Voltage	e Compar	ator Co	ntrol and	Status Register		
Offset	Name	Bit	Туре	Description	Default	Bank
0x29	VCSR	7	RO	Voltage Comparator 1 output status	0x0C	0xFF
		6	RO	Voltage Comparator 0 output status		
		5-4	RSV	Reserved		
		3	R/W	VC1 output open-drain enable		
		2	R/W	VC0 output open-drain enable		
		1~0	RSV	Reserved		

Crystal 32k control register							
Offset	Name	Bit	Туре	Description	Default	Bank	
0x2A	RSV	7~0	RSV	Reserved	0x00	0xFF	

Voltage Comparator 0 DAC compare value						
Offset	Name	Bit	Туре	Description	Default	Bank
0x2B	VCDAC0	7~0	R/W	The DAC value compared with VC0	0x5D	0xFF

Voltag	Voltage Comparator 1 DAC compare value							
Offset	Name	Bit	Туре	Description	Description Default Bank			
0x2C	VCDAC1	7~0	R/W	The DAC value compared with VC1	0x5D	0xFF		

Power	-Latch / Vo	oltage (Comparate	or register (Power Supply from VCC_0)		
Offset	Name	Bit	Туре	Description	Default	Bank
0x2D	PA0_REG	7~5	RSV	Reserved	0x08	0xFF
		4	R/W	Voltage Comparator 1 output into power-latch enable		
		3	R/W	Voltage Comparator 0 output into power-latch enable		
		2	R/W0C	Voltage Comparator 1 output into power-latch pending flag		
		1	R/W0C	Voltage Comparator 0 output into power-latch pending flag		
		0	RSV	Valid bit for PA0_REG		
				Whenever POR reset, PA0_REG[0] will reset to 0. Value of '1' to present PA0_REG is valid for power-latch.		

4.19 General Purpose Wake-up Controller (GPWU)

4.19.1 GPWU Function Description

The GPIO module provides flexible methods to wakeup the KBC or to generate interrupt. Once the input function is determined, plenty of features for wakeup can be setup. Here is the table to summarize all the features.

Compared with KBx926 series, KB9012 enable all GPXIOAx pins as external wake-up source. For detail register description, please refer the following section.

Wakeup Enable 0: Disable 1: Enable	Polarity 0:↓/ L 1:↑/ H	Edge/Level 0: Edge 1: Level	Toggle 0: Disable 1: Enable	Description
0	X	X	X	No wakeup events occur
1	X	X	1	Signal toggle trigger
1	0	0	0	Falling edge trigger
1	0	1	0	Low level trigger
1	1	0	0	Rising edge trigger
1	1	1	0	High level trigger

4.19.2 GPWU Registers Description (0xFF30~0xFF7F)

GPIO '	Wakeup Eve	nt Ena	able			
Offset	Name	Bit	Туре	Description	Default	Bank
0x30	GPWUEN00	7-0	R/W	GPIO00~GPIO07 Wakeup Event Switch bit[0]~bit[7] stand for GPIO00~GPIO07 separately 0: Wakeup event disable 1: Wakeup event enable Note: NO GPIO02/03/06 in KB9012 IC	0x00	0xFF
0x31	GPWUEN08	7-0	R/W	GPIO08~GPIO0F Wakeup Event Switch bit[0]~bit[7] stand for GPIO08~GPIO0F separately 0: Wakeup event disable 1: Wakeup event enable Note: NO GPIO09 in KB9012 IC	0x00	0xFF
0x32	GPWUEN10	7-0	R/W	GPIO10~GPIO17 Wakeup Event Switch bit[0]~bit[7] stand for GPIO10~GPIO17 separately 0: Wakeup event disable 1: Wakeup event enable	0x00	0xFF
0x33	GPWUEN18	7-0	R/W	GPIO18~GPIO1F Wakeup Event Switch bit[0]~bit[7] stand for GPIO18~GPIO1F separately 0: Wakeup event disable 1: Wakeup event enable Note: NO GPIO1B/1C/1E/1F in KB9012 IC	0x00	0xFF
0x34	GPWUEN20	7-0	R/W	GPIO20~GPIO27 Wakeup Event Switch bit[0]~bit[7] stand for GPIO20~GPIO27 separately 0: Wakeup event disable 1: Wakeup event enable	0x00	0xFF
0x35	GPWUEN28	7-0	R/W	GPIO28~GPIO2F Wakeup Event Switch bit[0]~bit[7] stand for GPIO28~GPIO2F separately 0: Wakeup event disable 1: Wakeup event enable	0x00	0xFF
0x36	GPWUEN30	7-0	R/W	GPIO30~GPIO37 Wakeup Event Switch bit[0]~bit[7] stand for GPIO30~GPIO37 separately 0: Wakeup event disable 1: Wakeup event enable	0x00	0xFF
0x37	GPWUEN38	7-0	R/W	GPIO38~GPIO3F Wakeup Event Switch bit[0]~bit[7] stand for GPIO38~GPIO3F separately 0: Wakeup event disable 1: Wakeup event enable	0x00	0xFF
0x38	GPWUEN40	7-0	R/W	GPIO40~GPIO47 Wakeup Event Switch bit[0]~bit[7] stand for GPIO40~GPIO47 separately 0: Wakeup event disable 1: Wakeup event enable	0x00	0xFF
0x39	GPWUEN48	7-0	R/W	GPIO48~GPIO4F Wakeup Event Switch bit[0]~bit[7] stand for GPIO48~GPIO4F separately 0: Wakeup event disable 1: Wakeup event enable	0x00	0xFF
0x3A	GPWUEN50	7-0	R/W	GPIO50~GPIO57 Wakeup Event Switch bit[0]~bit[7] stand for GPIO50~GPIO57 separately 0: Wakeup event disable 1: Wakeup event enable Note: NO GPIO51 in KB9012 IC	0x00	0xFF

GPIO '	GPIO Wakeup Event Enable									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x3B	GPWUEN58	7-0	R/W	GPIO58~GPIO5F Wakeup Event Switch bit[0]~bit[1] stand for GPIO58~GPIO5F separately 0: Wakeup event disable 1: Wakeup event enable Note: NO GPIO5F in KB9012 IC		0xFF				
0x3C	GXDWUEN00	7-0	R/W	GPXIOD00~GPXIOD07 Wakeup Event Switch bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: Wakeup event disable 1: Wakeup event enable	0x00	0xFF				
0x3D	GXAWUEN00	7-0	R/W	GPXIOA00~GPXIOA07 Wakeup Event Switch bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: Wakeup event disable 1: Wakeup event enable		0xFF				
0x3E	GXAWUEN08	7-0	R/W	GPXIOA08~GPXIOA15 Wakeup Event Switch bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: Wakeup event disable 1: Wakeup event enable Note: NO GPXIOA12/13/14/15 in KB9012 IC	0x00	0xFF				

	Wakeup Eve	1				
Offset	Name	Bit	Туре	Description	Default	Bank
0x40	GPWUPF00	7-0	R/W1C	GPIO00~GPIO07 Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO00~GPIO07 separately 0: No wakeup event 1: Wakeup event pending Note: NO GPIO02/03/06 in KB9012 IC	0x00	0xFF
0x41	GPWUPF08	7-0	R/W1C	GPIO08~GPIO0F Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO08~GPIO0F separately 0: No wakeup event 1: Wakeup event pending Note: NO GPIO09 in KB9012IC	0x00	0xFF
0x42	GPWUPF10	7-0	R/W1C	GPIO10~GPIO17 Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO10~GPIO17 separately 0: No wakeup event 1: Wakeup event pending	0x00	0xFF
0x43	GPWUPF18	7-0	R/W1C	GPIO18~GPIO1F Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO18~GPIO1F separately 0: No wakeup event 1: Wakeup event pending Note: NO GPIO1B/1C/1E/1F in KB9012IC	0x00	0xFF
0x44	GPWUPF20	7-0	R/W1C	GPIO20~GPIO27 Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO20~GPIO27 separately 0: No wakeup event 1: Wakeup event pending	0x00	0xFF
0x45	GPWUPF28	7-0	R/W1C	GPIO28~GPIO2F Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO28~GPIO2F separately 0: No wakeup event 1: Wakeup event pending		0xFF
0x46	GPWUPF30	7-0	R/W1C	GPIO30~GPIO37 Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO30~GPIO37 separately 0: No wakeup event 1: Wakeup event pending	0x00	0xFF
0x47	GPWUPF38	7-0	R/W1C	GPIO38~GPIO3F Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO38~GPIO3Fseparately 0: No wakeup event 1: Wakeup event pending	0x00	0xFF
0x48	GPWUPF40	7-0	R/W1C	GPIO40~GPIO47 Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO40~GPIO47 separately 0: No wakeup event 1: Wakeup event pending	0x00	0xFF
0x49	GPWUPF48	7-0	R/W1C	GPIO48~GPIO4F Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO48~GPIO4F separately 0: No wakeup event 1: Wakeup event pending		0xFF
0x4A	GPWUPf50	7-0	R/W1C	GPIO50~GPIO57 Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO50~GPIO57 separately 0: No wakeup event 1: Wakeup event pending Note: NO GPIO51 in KB9012 IC	0x00	0xFF
0x4B	GPWUPF58	7-0	R/W1C	GPIO58~GPIO5F Wakeup Event Pending Flag bit[0]~bit[7] stand for GPIO58~GPIO5F separately 0: No wakeup event 1: Wakeup event pending Note: NO GPIO5F in KB9012 IC	0x00	0xFF

GPIO Wakeup Event Pending Flag								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x4C	GXDWUPF00	7-0	R/W1C	GPXIOD00~GPXIOD07 Wakeup Event Pending Flag bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: No wakeup event 1: Wakeup event pending	0x00	0xFF		
0x4D	GXAWUPF00	7-0	R/W	GPXIOA00~GPXIOA07 Wakeup Event Pending Flag bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: No wakeup event 1: Wakeup event pending	0x00	0xFF		
0x4E	GXAWUPF08	7-0	R/W	GPXIOA08~GPXIOA15 Wakeup Event Pending Flag bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: No wakeup event 1: Wakeup event pending Note: NO GPXIOA12/13/14/15 in KB9012 IC	0x00	0xFF		

	Wakeup Pola	1				
Offset	Name	Bit	Type	Description	Default	Bank
0x50	GPWUPS00	7-0	R/W	GPIO00~GPIO07 Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO00~GPIO07 separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger) Note: NO GPIO02/03/06 in KB9012 IC	0x00	0xFF
0x51	GPWUPS08	7-0	R/W	GPIO08~GPIO0F Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO08~GPIO0F separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger) Note: NO GPIO09 in KB9012 IC	0x00	0xFF
0x52	GPWUPS10	7-0	R/W	GPIO10~GPIO17 Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO10~GPIO17 separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger)	0x00	0xFF
0x53	GPWUPS18	7-0	R/W	GPIO18~GPIO1F Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO18~GPIO1F separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger) Note: NO GPIO1B/1C/1E/1F in KB9012 IC	0x00	0xFF
0x54	GPWUPS20	7-0	R/W	GPIO20~GPIO27 Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO20~GPIO27 separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger)	0x00	0xFF
0x55	GPWUPS28	7-0	R/W	GPIO28~GPIO2F Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO28~GPIO2F separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger)		0xFF
0x56	GPWUPS30	7-0	R/W	GPIO30~GPIO37 Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO30~GPIO37 separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger)	0x00	0xFF
0x57	GPWUPS38	7-0	R/W	GPIO38~GPIO3F Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO38~GPIO3F separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger)	0x00	0xFF
0x58	GPWUPS40	7-0	R/W	GPIO40~GPIO47 Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO40~GPIO47 separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger)	0x00	0xFF
0x59	GPWUPS48	7-0	R/W	GPIO48~GPIO4F Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO48~GPIO4F separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger)		0xFF
0x5A	GPWUPS50	7-0	R/W	GPIO50~GPIO57 Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO50~GPIO57 separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger) Note: NO GPIO51 in KB9012 IC	0x00	0xFF
0x5B	GPWUPS58	7-0	R/W	GPIO58~GPIO5F Wakeup Polarity Selection bit[0]~bit[7] stand for GPIO58~GPIO5F separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger) Note: NO GPIO5F in KB9012 IC	0x00	0xFF

GPIO Wakeup Polarity Selection								
Offset	Name	Bit	Туре	Description	Default	Bank		
0x5C	GXDWUPS00	7-0	R/W	GPXIOD00~GPXIOD07 Wakeup Polarity Selection bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger)	0x00	0xFF		
0x5D	GXAWUPS00	7-0	R/W	GPXIOA00~GPXIOA07 Wakeup Polarity Selection bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger)	0x00	0xFF		
0x5E	GXAWUPS08	7-0	R/W	GPXIOA08~GPXIOA15 Wakeup Polarity Selection bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: Low active (level trigger) / Falling (edge trigger) 1: High active (high trigger) / Rising (edge trigger) Note: NO GPXIOA12/13/14/15 in KB9012 IC	0x00	0xFF		

GFIO	Wakeup Leve	eı/ Eu ç	Je myy	er Selection		T
Offset	Name	Bit	Туре	Description	Default	Bank
0x60	GPWUEL00	7-0	R/W	GPIO00~GPIO07 Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO00~GPIO07 separately 0: Edge trigger 1: Level trigger Note: NO GPIO02/03/06 in KB9012 IC	0x00	0xFF
0x61	GPWUEL08	7-0	R/W	GPIO08~GPIO0F Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO08~GPIO0F separately 0: Edge trigger 1: Level trigger Note: NO GPIO09 in KB9012 IC	0x00	0xFF
0x62	GPWUEL10	7-0	R/W	GPIO10~GPIO17 Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO10~GPIO17 separately 0: Edge trigger 1: Level trigger	0x00	0xFF
0x63	GPWUEL18	7-0	R/W	GPIO18~GPIO1F Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO18~GPIO1F separately 0: Edge trigger 1: Level trigger Note: NO GPIO1B/1C/1E/1F in KB9012 IC	0x00	0xFF
0x64	GPWUEL20	7-0	R/W	GPIO20~GPIO27 Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO20~GPIO27 separately 0: Edge trigger 1: Level trigger	0x00	0xFF
0x65	GPWUEL28	7-0	R/W	GPIO28~GPIO2F Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO28~GPIO2F separately 0: Edge trigger 1: Level trigger	0x00	0xFF
0x66	GPWUEL30	7-0	R/W	GPIO30~GPIO37 Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO30~GPIO37 separately 0: Edge trigger 1: Level trigger	0x00	0xFF
0x67	GPWUEL38	7-0	R/W	GPIO38~GPIO3F Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO38~GPIO3F separately 0: Edge trigger 1: Level trigger	0x00	0xFF
0x68	GPWUEL40	7-0	R/W	GPIO40~GPIO47 Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO40~GPIO47 separately 0: Edge trigger 1: Level trigger	0x00	0xFF
0x69	GPWUEL48	7-0	R/W	GPIO48~GPIO4F Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO48~GPIO4F separately 0: Edge trigger 1: Level trigger		0xFF
0x6A	GPWUEL50	7-0	R/W	GPIO50~GPIO57 Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO50~GPIO57 separately 0: Edge trigger 1: Level trigger Note: NO GPIO51 in KB9012 IC	0x00	0xFF
0x6B	GPWUEL58	7-0	R/W	GPIO58~GPIO5F Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPIO58~GPIO5F separately 0: Edge trigger 1: Level trigger Note: NO GPIO5F in KB9012 IC	0x00	0xFF

GPIO V	GPIO Wakeup Level/Edge Trigger Selection									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x6C	GXDWUEL00	7-0	R/W	GPXIOD00~GPXIOD07 Wakeup Level/Edge Selection bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: Edge trigger 1: Level trigger	0x00	0xFF				
0x6D	GXAWUEL00	7-0	R/W	GPXIOA00~GPXIOA07 Wakeup Polarity Selection bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: Edge trigger 1: Level trigger	0x00	0xFF				
0x6E	GXAWUEL08	7-0	R/W	GPXIOA08~GPXIOA15 Wakeup Polarity Selection bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: Edge trigger 1: Level trigger Note: NO GPXIOA12/13/14/15 in KB9012 IC	0x00	0xFF				

GPIO Wakeup Input Change (Toggle) Trigger Selection Note: This setting will ignore the corresponding bit of GPWUELxx. Offset Default Name Type Description Bank R/W GPIO00~GPIO07 Wakeup Input Change (Toggle) Trigger GPWUCHG00 0x70 7-0 0x00 0xFF bit[0]~bit[7] stand for GPIO00~GPIO07 separately 0: Toggle trigger disable 1: Toggle trigger enable Note: NO GPIO02/03/06 in KB9012 IC R/W GPIO08~GPIO0F Wakeup Input Change (Toggle) Trigger 7-0 0x71 **GPWUCHG08** 0x00 0xFF bit[0]~bit[7] stand for GPIO08~GPIO0F separately 0: Toggle trigger disable 1: Toggle trigger enable Note: NO GPIO09 in KB9012 IC GPIO10~GPIO17 Wakeup Input Change (Toggle) Trigger R/W 0x72 GPWUCHG10 7-0 0x00 0xFF bit[0]~bit[7] stand for GPIO10~GPIO17 separately 0: Toggle trigger disable 1: Toggle trigger enable R/W GPIO18~GPIO1F Wakeup Input Change (Toggle) Trigger 7-0 0x73 GPWUCHG18 0x00 0xFF bit[0]~bit[7] stand for GPIO18~GPIO1F separately 0: Toggle trigger disable 1: Toggle trigger enable Note: NO GPIO1B/1C/1E/1F in KB9012 IC GPWUCHG20 7-0 R/W GPIO20~GPIO27 Wakeup Input Change (Toggle) Trigger 0x74 0x00 0xFF bit[0]~bit[7] stand for GPIO20~GPIO27 separately 0: Toggle trigger disable 1: Toggle trigger enable R/W GPIO28~GPIO2F Wakeup Input Change (Toggle) Trigger 0x75 **GPWUCHG28** 7-0 0x00 0xFF bit[0]~bit[7] stand for GPIO28~GPIO2F separately 0: Toggle trigger disable 1: Toggle trigger enable GPIO30~GPIO37 Wakeup Input Change (Toggle) Trigger GPWUCHG30 R/W 0x76 7-0 0x00 0xFF bit[0]~bit[7] stand for GPIO30~GPIO37 separately 0: Toggle trigger disable 1: Toggle trigger enable GPWUCHG38 R/W GPIO38~GPIO3F Wakeup Input Change (Toggle) Trigger 0x77 7-0 0x00 0xFF bit[0]~bit[7] stand for GPIO38~GPIO3F separately 0: Toggle trigger disable 1: Toggle trigger enable GPIO40~GPIO47 Wakeup Input Change (Toggle) Trigger R/W 0x78 GPWUCHG40 7-0 0x00 0xFF bit[0]~bit[7] stand for GPIO40~GPIO47 separately 0: Toggle trigger disable 1: Toggle trigger enable GPIO48~GPIO4F Wakeup Input Change (Toggle) Trigger R/W **GPWUCHG48** 7-0 0xFF 0x79 0x00 bit[0]~bit[7] stand for GPIO48~GPIO4F separately 0: Toggle trigger disable 1: Toggle trigger enable R/W GPIO50~GPIO57 Wakeup Input Change (Toggle) Trigger 0x7A GPWUCHG50 7-0 0xFF 0x00bit[0]~bit[7] stand for GPIO50~GPIO57 separately 0: Toggle trigger disable 1: Toggle trigger enable Note: NO GPIO51 in KB9012 IC R/W GPIO58~GPIO5F Wakeup Input Change (Toggle) Trigger 0x7B **GPWUCHG58** 7-0 0x00 0xFF bit[0]~bit[7] stand for GPIO58~GPIO5F separately 0: Toggle trigger disable 1: Toggle trigger enable Note: NO GPIO5F in KB9012 IC

GPIO Wakeup Input Change (Toggle) Trigger Selection Note: This setting will ignore the corresponding bit of GPWUELxx.									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x7C	GXDWUCHG00	7-0	R/W	GPXIOD00~GPXIOD07 Wakeup Input Change (Toggle) Trigger bit[0]~bit[7] stand for GPXIOD00~GPXIOD07 separately 0: Toggle trigger disable 1: Toggle trigger enable	0x00	0xFF			
0x7D	GXAWUCHG00	7-0	R/W	GPXIOA00~GPXIOA07 Wakeup Input Change (Toggle) Trigger bit[0]~bit[7] stand for GPXIOA00~GPXIOA07 separately 0: Toggle trigger disable 1: Toggle trigger enable	0x00	0xFF			
0x7E	GXAWUCHG08	7-0	R/W	GPXIOA08~GPXIOA15 Wakeup Input Change (Toggle) Trigger bit[0]~bit[7] stand for GPXIOA08~GPXIOA15 separately 0: Toggle trigger disable 1: Toggle trigger enable Note: NO GPXIOA12/13/14/15 in KB9012 IC	0x00	0xFF			

4.19.3 GPWU Programming Sample

In this section gives some programming sample to control GPWU module. Please note, ENE does not guarantee these codes in every field application. The following table describes scenario of GPWU filed application.

Example	
PIN	Function
GPIO02	Low level trigger
GPIO03	Rising edge trigger
GPIO05	Falling edge trigger
GPIO06	Edge change trigger

Programming model

- 1. Set related wakeup enable register. GPWUEN00 (0xFF30) = 0x6C
- 2. Set related wakeup polarity register GPWUPS00 (0xFF50) = 0x08
- 3. Set related wakeup edge/level trigger register GPWUEL00 (0xFC60) = 0x04
- 4. Set related wakeup input change register GPWUCHG00 (0xFF70) = 0x40

4.20 System Management Bus Controller (SMBus)

4.20.1 SMBus Function Description

The SMBus is a two wire interface design based on I²C bus. The SMBus controller in the KBC supports SMBus 2.0 and supports both master and slave mode with 4 interfaces. The SMBus controller 0 is responsible for SMBus 0/1 : SCL0/SDA0, SCL1/SDA1. The SMBus controller 1 is responsible for SMBus 2/3 : SCL2/SDA2, SCL3/SDA3. Please be noted that the slave address register is different compared with KBx926 series.

The SMBus controller supports 12 command protocols as following table. For more detail about each command protocol, please refer to the *System Management Bus Specification 2.0*.

Command Byte	Command	Command Byte	Command
02h	Quick Write	08h	Write Word
03h	Quick Read	09h	Read Word
04h	Send Byte	0Ah	Write Block
05h	Receive Byte	0Bh	Read Block
06h	Write Byte	0Ch	Word Process
07h	Read Byte	0Dh	Block Process

The SMBus introduces new mechanism to communicate with I²C devices, called **Byte mode**. If the SMBus operates in this mode, only 3 protocols are supported, *05h* (*Receive Byte*), *0Ah* (*Write Block*) and *0Bh* (*Read Block*). Here gives the brief programming guide of how to use Byte mode as following table and timing illustration.

05h, Receive Byte	0Ah, Write Block	0Bh, Read Block
Set the address in SMBADR (0xFF9A).	Set the address in SMBADR (0xFF9A).	Set the address in SMBADR (0xFF9A).
2. Set the ACK or NACK bit in SMBPF (0xFF96[6]).	2. Set the data array in SMBDAT (0xFF9C).	Set the count number in SMBCNT (0xFFBC).
3. Set the protocol in SMBPRTCL (0xFF98).	 Set the count number in SMBCNT (0xFFBC). 	3. Set the protocol in SMBPRTCL (0xFF98).
 Once one byte data received, the interrupt pending flag will be set (0xFF96[5]). And the F/W could obtain the data via pooling or interrupt method. If more than one byte received, the F/W must set the ACK or NACK response in advance. (the same as step 2), then continue to the step 4 until all bytes complete. 	4. Set the protocol in SMBPRTCL (0xFF98).	

Examples:

A. Write 12 bytes data into SMBus device (address = 0x16)

- 1. Set SMBADR (0xFF9A) = 0x16.
- $//bit0 = 0 \rightarrow write$
- 2. Write 8 bytes data into SMBDAT (0xFF9C~0xFFA3)//the length of data array = 8
- 3. Set SMBCNT (0xFFBC) = 0x0C.

//12 bytes data

4. Set SMBPRTCL (0xFF98) = 0x0A.

//start protocol, 0Ah write block.

5. Wait the interrupt of SMBus.

//8 bytes data transferred

//completely.

- 6. Write other 4 bytes data into SMBDAT (0xFF9C~0xFF9F).
- 7. Clear the bit5 of SMBSTS(0xFF99) to notify the block protocol going.
- 8. Wait the interrupt of SMBus.

//protocol completed.

- B. Read 12 bytes data from SMBus device (address = 0x16)
 - 1. Set SMBADR (0xFF9A) = 0x17.

//bit0 = 1 -> read

2. Set SMBCNT (0xFFBC) = 0x0C.

//12 bytes data

3. Set SMBPRTCL (0xFF98) = 0x0B.

//start protocol, 0Bh read block

4. Wait the interrupt of SMBus.

//8 bytes data transferred

//completely

- 5. Read 8 bytes data from SMBDAT (0xFF9C~0xFFA3)
- 6. Clear the bit5 of SMBSTS(0xFF99) to notify the block protocol going.
- 7. Wait the interrupt of SMBus.

//completely

- 8. Read other 4 bytes data from SMBDAT (0xFF9C~0xFF9F)
- C. Read n (>1) bytes data from SMBus device (address = 0x16)

1. Set SMBADR (0xFF9A) = 0x17.

//bit0 = 1 -> read

2. Set SMBPF (0xFF96.6) = 0.

//ACK

3. Set SMBPRTCL (0xFF98) = 0x05.

//start protocol, 05h receive byte

4. Wait the interrupt of SMBus.

//Received one byte

- 5. Read 1 byte data from SMBDAT (0xFF9C).
- 6. This protocol is completed (Is it the last 1 byte data to be read)?

Yes -> Set SMBPF (0xFF96.6) = 1 (NACK) and clear SMBPF (0xFF96.5). Go to step7.

No -> Clear SMBPF (0xFF96.5). Go to step4.

7. Wait the interrupt of SMBus.

//protocol completed.

8. Read the last byte data from SMBDAT (0xFF9C).

The SMBus controller works as a host (master). The controller can be programmed to enable slave mode. In slave mode, the controllers will response to its slave address which is programmable. A slave device could communicate with the SMBus host controller via **SMBus Alert** or **Host Notify** protocols. The **SMBus Alert** protocol can be implemented via optional SMBAlert# signal or periodical ARA (Alert Response Address) command. As to **Host Notify** protocol, The controller provides registers for F/W to achieve different applications. The following gives the brief summary between Host Notify protocol and SMBus register interface.

1bit	7bit	1bit	1bit	7bit	1bit	8bit	1bit	8bit	1bit	1bit
S	SMB Host Addr.	Wr	Α	Device Addr.	Α	Data Low Byte	Α	Data High Byte	А	Р

SMB Host Addr: stored in **SMBAADR**, 0xFFBD. Device Addr: stored in **SMBAADR**, 0xFFBD. Data Low Byte: stored in **SMBADAT0**, 0xFFBE. Data High Byte: stored in **SMBADAT1**, 0xFFBF.

S: Start bit P: Stop bit

Slave (SMBus device) to Master

Master (SMBus host) to Slave

4.20.2 SMBus Controller 0 Register Description (0xFF90~0xFFBF)

SMBu	SMBus Slave Address									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x90	SMB0RSA	7-0	RO	SMBus slave address (7-bits long), bit0 ignores.	0x00	0xFF				

SMBus CRC Value									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x92	SMB0TCRC	7-0	RO	CRC value transmits to SMBus.	0x00	0xFF			

SMBus	s Pin Contro	I				
Offset	Name	Bit	Туре	Description	Default	Bank
0x93	SMB0PIN	7	R/W	SMBus data line forced to low. Write "0" to force SDA0 or SDA1 low.	0x00	0xFF
		6	R/W	SMBus clock line forced to low. Write "0" to force SCL0 or SCL1 low.		
		5	RO	Status of SDA0 or SDA1 or SDA0 wired SDA1		
		4	RO	Status of SCL0 or SCL1 or SCL0 wired SCL1.		
		3	R/W	Byte mode function enable 3 protocols support, Write Block/Read Block/Receive Byte. Protocols are defined via register SMB0PRTCL[6:0] 0: Disable 1: Enable		
		2	R/W	SCL/SDA input debounce enable. 0: Disable 1: Enable		
	-	1	R/W	SCL1/SDA1 pin connected to SMBus controller. 0: Disable 1: Enable		
		0	R/W	SCL0/SDA0 pin connected to SMBus controller. 0: Disable 1: Enable		

SMBus	SMBus Configuration										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x94	SMB0CFG	7	R/W	SMBus master disable 0: Enable master function. 1: Disable master function	0x06	0xFF					
		6	R/W	SMBus host alarm protocol disable (0xFFBD~0xFFBF disable) 0: Enable slave function. 1: Disable slave function							
		5	RSV	Reserved							
		4-0	R/W	SMBus clock period If SMB0CFG[4:0]>0 and SMB0PIN[2]=1, the period is SMBus 0/1 clock period = (SMB0CFG[4:0]+1) * 4μ s If SMB0CFG[4:0]>0 and SMB0PIN[2]=0, the period is SMBus 0/1 clock period = SMB0CFG[4:0] * 4μ s Please do not set these bits to "0".							

SMBus	Interrupt E	nable										
Offset	Name	Bit	Туре	Description	Default	Bank						
0x95	SMB0EN	7	RO	SMBus host controller status 0: not busy 1: busy	0x00	0xFF						
								6-4	RSV	Reserved		
		3	R/W	SMBus slave protocol selection. 0: word read/write 1: byte read/write	6							
		2	R/W	SMBus slave mode enable. 0: Disable 1: Enable								
		1	R/W	SMBus alert (host notify protocol) interrupt 0: Disable 1: Enable								
		0	R/W	SMBus protocol completion interrupt 0: Disable 1: Enable								

SMBu	s Interrupt P	endin	g Flag			
Offset	Name	Bit	Туре	Description	Default	Bank
0x96	SMB0PF	7	RSV	Reserved	0x00	0xFF
	6	R/W	ACK bit of Receive Byte (Byte Mode) protocol C: ACK, the Receive Byte protocol keeps going NACK, once the F/W ready to obtain the last Receive Byte, F/W set this bit in advance. After this last byte transferred, the controller issues NACK to device and the protocol stop.			
		5	R/W1C	Read data interrupt flag of Receive Byte (Byte Mode) protocol 0: no event 1: event occurs		
		4	RO	Read protocol interrupt flag of SMBus slave 0: no event 1: event occurs		
		3	R/W1C	Interrupt flag of SMBus slave 0: no event 1: event occurs		
		2-0	RSV	Reserved		

SMBu	SMBus Received CRC Value								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x97	SMB0RCRC	7-0	RO	The CRC value received from SMBus slave device.	0x00	0xFF			

SMBu	s Protocol					
Offset	Name	Bit	Туре	Description	Default	Bank
0x98	SMB0PRTCL	7	R/W	SMBus transaction with PEC (Packet Error Check) 0: Disable 1: Enable.	0x00	0xFF
		6-0	R/W	Command protocol. 02h: Quick Write 03h: Quick Read 04h: Send Byte 05h: Receive Byte / Receive Byte (Byte Mode) 06h: Write Byte 07h: Read Byte 08h: Write Word 09h: Read Word 04h: Write Block / Write Block (Byte Mode) 06h: Write Block / Read Block (Byte Mode) 06h: Word Process 00h: Block Process others: Reserved	P	

SMBu	s Status					
Offset	Name	Bit	Туре	Description	Default	Bank
0x99	SMB0STS	7	R/W	SMBus command done flag 0: no event (Write 0 to clear) 1: event occurs	0x00	0xFF
		6	R/W	SMBus alarm (host notify protocol) interrupt flag 0: no event (Write 0 to clear) 1: event occurs		
		5	R/W	SMBus block data array protocol control. F/W could control the protocol progress via this bit. 0: Block Data Array protocol keeps going. 1: Block Data Array protocol stops		
		4-0	R/W	Error code. 00h: no error 07h: unknown address failure. 10h: device address no ACK 12h: command no ACK 13h: device data no ACK 17h: device access deny 18h: SMBus timeout 19h: unsupported protocol 1Ah: SMBus busy 1Fh: PEC (Packet Error Check) error others: Reserved		

SMBus Address Port										
Offset	Name	Bit	Туре	Description	Default	Bank				
0x9A	SMB0ADR	7-0	R/W	SMBus address (7-bits long), bit0 ignored.	0x00	0xFF				
0x9A	SMB0ADR	7-1	R/W	SMBus address (7-bits long).	0x00	0xFF				
	(SMB0PIN[3]=1)	0	R/W	Data direction bit 0: Write 1: Read						

SMBus Command Port									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x9B	SMB0CMD	7-0	R/W	SMBus command port	0x00	0xFF			

SMBus	SMBus Data Array (8 Bytes)										
Offset	Name	Bit	Туре	Description	Default	Bank					
0x9C	SMB0DAT0	7-0	R/W	Data port for Send/Receive/Read Byte/Write Byte protocol	0x00	0xFF					
0x9D	SMB0DAT1	7-0	R/W	Data port for Read Word/Write Word protocol, 2 nd byte data	0x00	0xFF					
0x9E	SMB0DAT2	7-0	R/W	Data port for <i>Block</i> protocol	0x00	0xFF					
0x9F	SMB0DAT3	7-0	R/W	Data port for Block protocol	0x00	0xFF					
0xA0	SMB0DAT4	7-0	R/W	Data port for Block protocol	0x00	0xFF					
0xA1	SMB0DAT5	7-0	R/W	Data port for Block protocol	0x00	0xFF					
0xA2	SMB0DAT6	7-0	R/W	Data port for Block protocol	0x00	0xFF					
0xA3	SMB0DAT7	7-0	R/W	Data port for <i>Block</i> protocol	0x00	0xFF					

SMBus	SMBus Slave Address									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xA4~ 0xBB	RSV	7-0	RSV	Reserved	0x00	0xFF				

SMBus Block Count									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xBC	SMB0CNT	7-5	RSV	Reserved	0x00	0xFF			
		4~0	R/W	SMBus block count. "0x00", for 32-byte length in a block transfer.					

SMBus Alarm (Host Notify Protocol) Address / SMBus Slave Received Command Code									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xBD	SMB0AADR	7-0	R/W	This register is alarm address or SMBus Slave Command Code for Response Slave Address.	0x00	0xFF			

SMBus Alarm Data									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xBE	SMB0DAT0	7-0	R/W	Alarm data (low byte)	0x00	0xFF			
0xBF	SMB0DAT1	7-0	R/W	Alarm data (high byte)	0x00	0xFF			

4.20.3 SMBus Controller 1 Register Description (0xFFD0~0xFFFF)

SMBu	SMBus Slave Address									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xD0	SMB1RSA	7-0	RO	SMBus slave address (7-bits long), bit0 ignores.	0x00	0xFF				

SMBus CRC Value									
Offset	Name	Bit	Туре	Description	Default	Bank			
0xD2	SMB1TCRC	7-0	RO	CRC value transmits to SMBus.	0x00	0xFF			

SMBus	s Pin Contro	I				
Offset	Name	Bit	Туре	Description	Default	Bank
0xD3	SMB1PIN	7	R/W	SMBus data line forced to low. Write "0" to force SDA2 or SDA3 low.	0x00	0xFF
		6	R/W	SMBus clock line forced to low. Write "0" to force SCL2 or SCL3 low.		
		5	RO	Status of SDA2 or SDA3 or SDA2 wired SDA3		
		4	RO	Status of SCL2 or SCL3 or SCL2 wired SCL3		
		3	R/W	Byte mode function enable 3 protocols support, Write Block/Read Block/Receive Byte. Protocols are defined via register SMB1PRTCL[6:0] 0: Disable 1: Enable		
		2	R/W	SCL/SDA input debounce enable. 0: Disable 1: Enable		
	>(1	R/W	SCL3/SDA3 pin connected to SMBus controller. 0: Disable 1: Enable		
		0	R/W	SCL2/SDA2 pin connected to SMBus controller. 0: Disable 1: Enable		

SMBus	SMBus Configuration										
Offset	Name	Bit	Туре	Description	Default	Bank					
0xD4	SMB1CFG	7	R/W	SMBus master disable 0: Enable master function. 1: Disable master function	0x06	0xFF					
		6	R/W	SMBus host alarm protocol disable (0xFFFD~0xFFFF disable) 0: Enable slave function. 1: Disable slave function							
		5	RSV	Reserved							
		4-0	R/W	SMBus clock period If SMB1CFG[4:0]>0 and SMB1PIN[2]=1, the period is SMBus clock period = (SMB1CFG[4:0]+1) * 4μ s If SMB1CFG[4:0]>0 and SMB1PIN[2]=0, the period is SMBus clock period = SMB1CFG[4:0] * 4μ s Please do not set these bits to "0".							

SMBus	s Interrupt E	nable				
Offset	Name	Bit	Туре	Description	Default	Bank
0xD5	SMB1EN	7	RO	SMBus host controller status 0: not busy 1: busy	0x00	0xFF
		6-4	RSV	Reserved		
		3	R/W	SMBus slave protocol selection. 0: word read/write 1: byte read/write		
		2	R/W	SMBus slave mode enable. 0: Disable 1: Enable	1	
		1	R/W	SMBus alert (host notify protocol) interrupt 0: Disable 1: Enable		
		0	R/W	SMBus protocol completion interrupt 0: Disable 1: Enable		

SMBu	s Interrupt Po	endin	g Flag			
Offset	Name	Bit	Туре	Description	Default	Bank
0xD6	SMB1PF	7	RSV	Reserved	0x00	0xFF
	6	R/W	ACK bit of Receive Byte (Byte Mode) protocol C: ACK, the Receive Byte protocol keeps going NACK, once the F/W ready to obtain the last Receive Byte, F/W set this bit in advance. After this last byte transferred, the controller issues NACK to device and the protocol stop.			
		5	R/W1C	Read data interrupt flag of Receive Byte (Byte Mode) protocol 0: no event 1: event occurs		
		4	RO	Read protocol interrupt flag of SMBus slave 0: no event 1: event occurs		
		3	R/W1C	Interrupt flag of SMBus slave 0: no event 1: event occurs		
		2-0	RSV	Reserved		

SMBu	SMBus Received CRC Value									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xD7	SMB1RCRC	7-0	RO	The CRC value received from SMBus slave device.	0x00	0xFF				

SMBu	s Protocol					
Offset	Name	Bit	Туре	Description	Default	Bank
0xD8	SMB1PRTCL	7	R/W	SMBus transaction with PEC (Packet Error Check) 0: Disable 1: Enable.	0x00	0xFF
		6-0	R/W	Command protocol. 02h: Quick Write 03h: Quick Read 04h: Send Byte 05h: Receive Byte / Receive Byte (Byte Mode) 06h: Write Byte 07h: Read Byte 08h: Write Word 09h: Read Word 0Ah: Write Block / Write Block (Byte Mode) 0Bh: Read Block / Read Block (Byte Mode) 0Ch: Word Process 0Dh: Block Process others: Reserved	P	

SMBu	s Status					
Offset	Name	Bit	Туре	Description	Default	Bank
0xD9	SMB1STS	7	R/W	SMBus command done flag 0: no event (Write 0 to clear) 1: event occurs	0x00	0xFF
		6	R/W	SMBus alarm (host notify protocol) interrupt flag 0: no event (Write 0 to clear) 1: event occurs		
		5	R/W	SMBus block data array protocol control. F/W could control the protocol progress via this bit. 0: Block Data Array protocol keeps going. 1: Block Data Array protocol stops		
		4-0	R/W	Error code. 00h: no error 07h: unknown address failure. 10h: device address no ACK 12h: command no ACK 13h: device data no ACK 17h: device access deny 18h: SMBus timeout 19h: unsupported protocol 1Ah: SMBus busy 1Fh: PEC (Packet Error Check) error others: Reserved		

SMBu	SMBus Address Port									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xDA	SMB1ADR	7-0	R/W	SMBus address (7-bits long), bit0 ignored.	0x00	0xFF				
0xDA	SMB1ADR	7-1	R/W	SMBus address (7-bits long).	0x00	0xFF				
	(SMB1PIN[3]=1)	0	R/W	Data direction bit 0: Write 1: Read						

SMBu	SMBus Command Port								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xDB	SMB1CMD	7-0	R/W	SMBus command port	0x00	0xFF			

SMBu	SMBus Data Array (8 Bytes)									
Offset	Name	Bit	Туре	Description	Default	Bank				
0xDC	SMB1DAT0	7-0	R/W	Data port for Send/Receive/Read Byte/Write Byte protocol	0x00	0xFF				
0xDD	SMB1DAT1	7-0	R/W	Data port for Read Word/Write Word protocol, 2 nd byte data	0x00	0xFF				
0xDE	SMB1DAT2	7-0	R/W	Data port for <i>Block</i> protocol	0x00	0xFF				
0xDF	SMB1DAT3	7-0	R/W	Data port for Block protocol	0x00	0xFF				
0xE0	SMB1DAT4	7-0	R/W	Data port for Block protocol	0x00	0xFF				
0xE1	SMB1DAT5	7-0	R/W	Data port for Block protocol	0x00	0xFF				
0xE2	SMB1DAT6	7-0	R/W	Data port for Block protocol	0x00	0xFF				
0xE3	SMB1DAT7	7-0	R/W	Data port for <i>Block</i> protocol	0x00	0xFF				

SMBus	SMBus Slave Address							
Offset	Name	Bit	Туре	Description	Default	Bank		
0xE4~ 0xFB	RSV	7-0	RSV	Reserved	0x00	0xFF		

SMBu	SMBus Block Count								
Offset	Name	Bit	Туре	Description D		Bank			
0xFC	SMB1CNT	7-5	RSV	Reserved		0xFF			
		4~0	R/W	SMBus block count. 0x00", for 32-byte length in a block transfer.					

SMBus Alarm (Host Notify Protocol) Address / SMBus Slave Received Command Code							
Offset	Name	Bit	Туре	Description	Default	Bank	
0xFD	SMB1AADR	7-0	R/W	This register is alarm address or SMBus Slave Command Code for Response Slave Address.	0x00	0xFF	

SMBu	SMBus Alarm Data								
Offset	Name	Bit	Туре	Description	Default	Bank			
0xFE	SMB1DAT0	7-0	R/W	Alarm data (low byte)	0x00	0xFF			
0xFF	SMB1DAT1	7-0	R/W	Alarm data (high byte)	0x00	0xFF			

SMBus Programming Sample

In this section gives some programming sample to control SMBus module. Please note, ENE does not guarantee these codes in every field application. The following table describes scenario of SMBus filed application.

Example

Reading status of a battery (address 0x0A)

Programming model

SMB0ADR (0xFF9A) = 0x0A; battery address

SMB0CMD (0xFF9B) = 0x12SMB0PTCL (0xFF98) = 0x07

Wait SMB0STS (0xFF99[7]) = 1b ; command complete

Check if SMB0STS[4:0] = 0000b ; no error

Read SMB0DAT (0xFF9C) ; the current status

4.21 8051 Microprocessor

4.21.1 8051 Microprocessor Function Description

The Microprocessor inside KBC is an industrial compatible i8051. The 8051 is featured with 128bytes Special Function Register (SFR), Serial port, 2 16-bit Timers and 3 I/O ports with interrupt capability. The 8051 operates based on external crystal and runs at 8MHz by default. The following figure gives an illustration of the 8051 architecture. Except the standard 128bytes SFR, 8051 in KBx930 series is designed with overall 256 bytes internal memory

4.21.2 8051 Microprocessor Instruction

The instruction of 8051 microprocessor is fully compatible with industrial i8051. The instruction sets are as following table. The **OpCode** is in *Hexadecimal* and (b) means *Binary*. **B** stands for *byte number of instruction*. **C** stands for *number of cycle needed*.

				Arithmetic
Mnemonic	OP code	Byte	Cycle	Description
ADD A, #data	24	2	2	Add immediate data to Accumulator
ADD A, direct	25	2	2	Add direct byte to Accumulator
ADD A, @ R _N	26~27	1	2	Add indirect RAM to Accumulator (@R0~R1, OP 0x26~0x27)
ADD A, R _N	28~2F	1	2	Add register to Accumulator (R0~R7, OP 0x28~0x2F)
ADDC A, #data	34	2	2	Add immediate data to Accumulator with Carry
ADDC A, direct	35	2	2	Add direct byte to Accumulator with Carry
ADDC A, @ R _N	36~37	1	2	Add indirect RAM to Accumulator with Carry (@R0~R1, OP 0x26~0x27)
ADDC A, R _N	38~3F	1	2	Add register to Accumulator with Carry (R0~R7, OP 0x38~0x3F)
SUBB A, #data	94	2	2	Subtract immediate data from ACC with Borrow
SUBB A, direct	95	2	2	Subtract direct byte from ACC with Borrow
SUBB A, @ R _N	96~97	1	2	Subtract indirect RAM from ACC with Borrow (R0~R1, OP 0x96~0x97)
SUBB A, R _N	98~9F	1	2	Subtract register from Accumulator with Borrow (R0~R7, OP 0x98~0x9F)
INC A	04	1	2	Increment Accumulator
INC direct	05	2	2	Increment direct byte
INC @ R _N	06~07	1	2	Increment indirect RAM (R0~R1, OP 0x06~0x07)
INC R _N	08~0F	1	2	Increment Register (R0~R7, OP 0x08~0x0F)
DEC A	14	1	2	Decrement Accumulator
DEC direct	15	2	2	Decrement direct byte
DEC @ R _N	16~17	1	2	Decrement indirect RAM (R0~R1, OP 0x16~0x17)
DEC R _N	18~1F	1	2	Decrement Register (R0~R7, OP 0x18~0x1F)
INC DPTR	А3	1	2	Increment Data Pointer
MUL AB	A4	1	2	Multiply A & B
DIV AB	84	1	2	Divide A by B
DA A	D4	1	2	Decimal Adjust Accumulator

				Logic & Byte Operation
Mnemonic	OP code	Byte	Cycle	Description
ANL direct, A	52	2	2	AND Accumulator to direct byte
ANL direct, #data	53	3	2	AND immediate data to direct byte
ANL A, #data	54	2	2	AND immediate data to Accumulator
ANL A, direct	55	2	2	AND direct byte to Accumulator
ANL A, @ R _N	56~57	1	2	AND indirect RAM to Accumulator (R0~R1, OP 0x56~0x57)
ANL A, R _N	58~58	1	2	AND Register to Accumulator (R0~R7, OP 0x58~0x5F)
ORL direct, A	42	2	2	OR Accumulator to direct byte
ORL direct, #data	43	3	2	OR immediate data to direct byte
ORL A, #data	44	2	2	OR immediate data to Accumulator
ORL A, direct	45	2	2	OR direct byte to Accumulator
ORL A, @ R _N	46~47	1	2	OR indirect RAM to Accumulator (R0~R1, OP 0x46~0x47)
ORL A, R _N	48~4F	1	2	OR Register to Accumulator (R0~R7, OP 0x48~0x4F)
XRL direct, A	62	2	2	XOR Accumulator to direct byte
XRL direct, #data	63	3	2	XOR immediate data to direct byte
XRL A, #data	64	2	2	XOR immediate data to Accumulator
XRL A, direct	65	2	2	XOR direct byte to Accumulator
XRL A, @ R _N	66~67	1	2	XOR indirect RAM to Accumulator (R0~R1, OP 0x66~0x67)
XRL A, R _N	68~6F	1	2	XOR Register to Accumulator (R0~R7, OP 0x68~0x6F)
CLR A	E4	1	2	Clear Accumulator
CPL A	F4	1	2	Complement Accumulator
RL A	23	1	2	Left rotate Accumulator
RLC A	33	1	2	Left rotate Accumulator through Carry
RR A	03	1	2	Right rotate Accumulator
RRC A	13	1	2	Right rotate Accumulator through Carry
SWAP A	C 4	1	2	Swap Accumulator Nibbles

	Data Movement							
Mnemonic	OP code	Byte	Cycle	Description				
MOV A, R _N	E8~EF	1	2	Move Register to Accumulator (R0~R7, OP 0xE8~0xEF)				
MOV A, direct	E5	2	2	Move direct byte to Accumulator				
MOV A, @ R _N	E6~E7	1	2	Move indirect RAM to Accumulator (R0~R1, OP 0xE6~0xE7)				
MOV A, #data	74	2	2	Move immediate data to Accumulator				
MOV R _N , A	F8~FF	1	2	Move Accumulator to Register (R0~R7, OP 0xF8~0xFF)				
MOV R _N , direct	A8~AF	2	2	Move direct byte to Register (R0~R7, OP 0xA8~0xAF)				
MOV R _N , #data	78~7F	2	2	Move immediate data to Register (R0~R7, OP 0x78~0x7F)				
MOV direct, A	F5	2	2	Move Accumulator to direct byte				
MOV direct, @ R _N	86~87	2	2	Move indirect RAM to direct byte (R0~R1, OP 0x86~0x87)				
MOV direct, R _N	88~8F	2	2	Move Register to direct byte (R0~R7, OP 0x88~0x8F)				
MOV direct, #data	75	3	2	Move immediate data to direct byte				
MOV direct, direct	85	3	2	Move direct byte to direct byte				
MOV @ R _N , direct	A6~A7	2	2	Move direct byte to indirect RAM (R0~R1, OP 0xA6~0xA7)				
MOV @ R _N , A	F6~F7	1	2	Move Accumulator to indirect RAM (R0~R1, OP 0xF6~0xF7)				
MOV @ R _N , #data	76~77	2	2	Move immediate to indirect RAM (R0~R1, OP 0x76~0x77)				
MOV DPTR,#data16	90	3	2	Load Data Pointer with a 16bit constant				
MOVC A,@ A+PC	83	1	>33	Move Code byte relative to PC to Accumulator				
MOVC A,@ A+DPTR	93	1	>33	Move Code byte relative to DPTR to Accumulator				
MOVX A, @ DPTR	E0	1	>=5	Move External RAM to Accumulator				
MOVX A, @ R _N	E2~E3	1	>=5	Move External RAM to Accumulator (R0~R1, OP 0xE2~0xE3)				
MOVX @ DPTR, A	F0	1	>=4	Move Accumulator to External RAM				
MOVX @ R _N , A	F2~F3	1	>=4	Move Accumulator to External RAM (R0~R1, OP 0xF2~0xF3)				
POP direct	D0	2	2	POP direct byte from Stack				
PUSH direct	C0	2	2	Push direct byte to Stack				
XCH A, direct	C 5	2	2	Exchange direct byte with Accumulator				
XCH A, @ R _N	C6~C7	1	2	Exchange indirect RAM with Accumulator (R0~R1, OP 0xC6~0xC7)				
XCH A, R _N	C8~CF	1	2	Exchange Register with Accumulator (R0~R7, OP 0xC8~0xCF)				
XCHD A, @ R _N	D6~D7	1	2	Exchange low order nibble of indirect RAM with Accumulator (R0~R1, OP 0xD6~0xD7)				

				Bit Operation
Mnemonic	OP code	Byte	Cycle	Description
SETB bit	D2	2	2	Set direct bit
SETB C	D3	1	2	Set Carry
CLR bit	C2	2	2	Clear direct bit
CLR C	СЗ	1	2	Clear Carry
CPL bit	B2	2	2	Complement direct bit
CPL C	В3	1	2	Complement Carry
ANL C, bit	82	2	2	AND direct bit to Carry
ANL C, /bit	B0	2	2	AND complement of direct bit to Carry
ORL C, bit	72	2	2	OR direct bit to Carry
ORL C, /bit	A0	2	2	OR complement of direct bit to Carry
MOV C, bit	92	2	2	Move direct bit to Carry
MOV bit, C	A2	2	2	Move Carry to direct bit
JC relative	4 0	2	2	Jump if Carry is set
JNC relative	5 0	2	2	Jump if Carry is NOT set
JB bit, relative	20	3	2	Jump if direct bit is set
JBC bit, relative	1 0	3	2	Jump if direct bit is set & clear bit
JNB bit, relative	3 0	3	2	Jump if direct bit is NOT set

Program Branching						
Mnemonic	OP code	Byte	Cycle	Description		
ACALL address11	bbb1 0001	2	3	Absolute sub-routine call		
AJMP address11	bbb0 0001	2	2	Absolute jump		
LCALL address16	12	3	3	Long sub-routine call		
LJMP address16	02	3	2	Long jump		
SJMP relative	80	2	2	Short jump (relative address)		
JMP @ A+DPTR	73	1	2	Jump indirect relative to the DPTR		
JNZ relative	70	2	2	Jump if Accumulator is NOT zero		
JZ relative	60	2	2	Jump if Accumulator is zero		
CJNE A, #data, relative	B4	3	2	Compare immediate to Accumulator and Jump if NOT equal		
CJNE A, direct, relative	B5	3	2	Compare direct byte to Accumulator and Jump if NOT equal		
CJNE @ R _N , #data, relative	B6~B7	3	2	Compare immediate to indirect and Jump if NOT equal (R0~R1, OP 0xB6~0xB7)		
CJNE R _N , #data, relative	B8~BF	3	2	Compare immediate to Register and Jump if NOT equal (R0~R7, OP 0xB8~0xBF)		
DJNZ direct, relative	D5	3	2	Decrement direct byte and Jump if NOT zero		
DJNZ R _N , relative	D8~DF	2	2	Decrement register and Jump if NOT zero (R0~R7, OP 0xD8~0xDF)		
RET	22	1	3	Return from sub-routine		
RETI	32	1	3	Return form interrupt		

Special Instruction							
Mnemonic	OP code	Byte	Cycle	Description			
NOP	00	1	2	No Operation			

4.21.3 8051 Interrupt Controller

In order to support more application, the 8051 in KBC extends interrupt channel to 24 for internal peripherals, that is, I/O port P0, P1 and P3 are with interrupt capability. The *interrupt priority* for each channel is fixed and no nested interrupt is supported. Here is the table to summarize the implementation of the interrupt controller.

Int. Source	Vector Address	Applications	Priority
IE0	0x0003	8051 external interrupt 0	0(Highest)
TF0	0x000B	8051 Timer 0	1
IE1	0x0013	8051 external interrupt 1	2
TF1	0x001B	8051 Timer 1	3
RI & TI	0x0023	8051 Serial port TX/RX interrupt	4
P0I[0]	0x0043	Watchdog / General Waveform Generator	5
P0I[1]	0x004B	LPC I/O 0x2F R/W accessing interrupt / OWM	6
P0I[2]	0x0053	PS/2 event	7
P0I[3]	0x005B	KBC	8
P0I[4]	0x0063	IKB	9
P0I[5]	0x006B	68h/6Ch ports	10
P0I[6]	0x0073	EC	11
P0I[7]	0x007B	ESB events	12
P1I[0]	0x0083	FAN0 monitor event (update/overflow)	13
P1I[1]	0x008B	FAN1 monitor event (update/overflow)	14
P1I[2]	0x0093	SMBus events	15
P1I[3]	0x009B	CIR events	16
P1I[4]	0x00A3	GPT0 event	17
P1I[5]	0x00AB	GPT1 event	18
P1I[6]	0x00B3	GPT2 event	19
P1I[7]	0x00BB	GPT3 event / SDI	20
P3I[0]	0x00C3	Write extended I/O (LPC I/O port 80) / PECI	21
P3I[1]	0x00CB	GPIO00~GPIO0F	22
P3I[2]	0x00D3	GPIO10~GPIO1F	23
P3I[3]	0x00DB	GPIO20~GPIO2F	24
P3I[4]	0x00E3	GPIO30~GPIO3F	25
P3I[5]	0x00EB	GPIO40~GPIO4F / GPXIOA00~GPXIOA11	26
P3I[6]	0x00F3	GPIO50~GPIO59 / GPXIOD00~GPXIOD07	27
P3I[7]	0x00FB	ADC update	28(Lowest)

4.21.4 Interrupt Enable/Flag Table

	Int	errupt Ena		Per	nding Flag	
Application	address	bit	behavior	address	bit	type
8051 external interrupt0 (GPIO1A)	A8h (IE)	0	2	88h (TCON)	1	2
8051 Timer0	A8h (IE)	1	2	88h (TCON)	5	2
8051 external interrupt0 (GPIO1B)	A8h (IE)	2	2	88h (TCON)	3	2
8051 Timer1	A8h (IE)	3	2	88h (TCON)	7	2
8051 Serial Port	A8h (IE)	4	2	98h (SCON)	1~0	1
WDT	FE80h (WDTCFG)	1	1	FE81h (WDTPF)	1	1
				FE81h (WDTPF)	0	1
RTC	FE84h (TMR_CFG)	7,0	1	FE84h (TMR_CFG)	1	1
LPC I/O R/W 0x2F	FF20h (ECMISC)	2	1	-	-	-
	FF9Ah (LPC2ECFG)	1	1	FE9Ah (LPC2ECFG)	2	1
PS/2	FEE0h (PS2CFG)	3~0	2	FEE1h (PS2PF)	3~0	2
КВС	FC81h (KBCCFG)	1,0	1	FC82h (KBCIF)	1,0	2
IKB	FCA3h (IKBIE)	5~0	1	FCA4h (IKBPF)	5~0	2
LPC 68h/6Ch IBF_Rising	FE9Dh (LPC68CFG)	1,0	1	FE9Eh (LPC68CSR)	1,0	1
OBF_Falling				FE9Eh (LPC68CSR)	3,2	2
EC host interrupt	FF04h (ECCFG,IBF)	1	4	FF1Ah (ECIF,IBF)	1	1
20 nostmonapt	FF04h (ECCFG,OBF)	0	2	FF1Ah (ECIF,OBF)	0	2
behavior			hen trigger event oo hen trigger event oo			
			pt will continue asse n trigger event occu	-		
		_		ding Flag(PF) is = 1 trigger event occurs		
type	1. When trigger e		PF will be set to 1.			
	2. IE bit = 1, when	-	s, PF will be set to 1			

4.21.4 Interrupt Enable/Flag Table (Continued)

Application	Ir	nterrupt Enab	le	Pe	nding Flag	
Application	address	bit	behavior	address	bit	type
	FC90h (ESBCFG)	2	3	-	-	-
	FC92h (ESBINTE)	6~4	3	FC91h (ESBCS)	6~4	1
ESB	FC92h (ESBINTE)	3~0	3	FC97h (ESBINT)	7~0	1
	FC98h (ESBCAS)	7~4	3	FC97h (ESBINT)		1
FAN	FE20h (FANCFG0)	3,2	3	FE21h (FANSTS0)	1,0	1
17,00	FE30h (FANCFG1)	3,2	3	FE31h (FANSTS1)	1,0	1
	FF95h (SMBEB)	0	1	FF99h (SMBSTS)	7,5	1
SMBus				FF96h (SMBPF)	5	1
SWIDUS	FF95h (SMBEB)	1	1	FF99h (SMBSTS,alarm)	6	1
	FF95h (SMBEB)	2	1	FF96h (SMBPF,Slave)	3	1
CIR TX	FEC0h (CIRCFG, TX)	5	1	FEC2h (CIRPF, TX)	3	1
CIR RX	FEC0h (CIRCFG, RX)	1	1	FEC2h (CIRPF)	2~0	1
GPT0~GPT3	FE50h (GPTCFG)	3~0	1	FE51h (GPTPF)	3~0	2
Write Extended I/O	FE95h (LPCCFG)	4	1	-	-	-
GPWU	FF3xh (GPWUENxx)	7~0	3	FF4xh (GPWUPFxx)	7~0	1
ADC	FF18h (ADCTRL)	0	1	-	-	-
behavior	(2) IE bit = 1, inte but if PF no (3) IE = 1, interrup or IE bit is fu	rrupt asserts v rrupt asserts v t clear, interru pt asserts whe rom low to hig	when trigger event of when trigger event of pt will continue asso en trigger event occ h(0 -> 1) when Pen	occurs erting	5	
type	PF cleared (2) IE bit = 1, whe	r event occurs I to 0 by WC1/	s, PF will be set to			

4.21.5 8051 Special Function Register (SFR)

The Special Function Registers are located in the internal RAM of 8051 microprocessor. The internal address is from 0x80 to 0xFF, sized with 128 bytes. All the SFRs are compatible with the standard ones. Some SFRs are redesigned with new features for flexible application. The following table gives a brief summary.

P3IE, P1IE, P0IE are read/write registers used as Interrupt Enable (IE) to their corresponding interrupt inputs. These three registers are original 8051 port registers with 8-bits. For the embedded 8051 inside KB910, the 3 ports are used for interrupt input (always rise pulses) extensions. The overall interrupt events are 24.

P3IF, P1IF, P0IF are Interrupt Flag(IF) corresponding to the 24 interrupt inputs. The IFs are set by external interrupt event (always a rising pulse, one clock width), and are cleared by software (execute IRET instruction for active interrupt). The original alternate 8051 port 3 functions are not related with P3IE and P3IF.

For more detail, please refer to the section of register description.

80	P0IE	SP	DPL	DPH			PCON2	PCON	87
88	TCON	TMOD	TL0	TL1	TH0	TH1			8F
90	P1IE								97
98	SCON	SBUF	SCON2	SCON3	SCON4	•			9F
A0	P2								A7
A8	E								AF
В0	P3IE								B7
B8	IP								BF
C0		7 2	•						C7
C8									CF
D0	PSW								D7
D8	POIF								DF
E0	ACC								E7
E8	P1IF								EF
F0	В								F7
F8	P3IF								FF
4 75	*				-10				

^{1.} The blue parts are changed from standard features and the green ones are the new design for special features. And all the others are the standard features of conventional 8051.

^{2.} The registers listed in the column with mark are all bit addressable.

4.21.6 8051 Microprocessor Register Description

The SFR registers are located at internal RAM 0x80 ~ 0xFF.

P0 Interr	P0 Interrupt Enable Register							
Address	Name	Bit	Туре	Description	Default			
0x80	POIE	7-0	R/W	P0 interrupt enable. Bit0~7 for P0[0]~P0[7] respectively. 0: Disable 1: Enable	0x00			

Stack Po	ointer				
Address	Name	Bit	Туре	Description	Default
0x81	SP	7-0	R/W	8051 stack pointer register	0x07

Data Poi	nter Low E	Byte				
Address	Name	Bit	Туре		Description	Default
0x82	DPL	7-0	R/W	Low byte of DPTR		0x00

Data Poi	Data Pointer High Byte								
Address Name Bit Type Description Default									
0x83	DPH	7-0	R/W	High byte of DPTR	0x00				

Interrupt Vector High Address							
Address	Name	Bit	Туре	Description	Default		
0x85	IVHA	7-3	R/W	Interrupt Vector High Address Setting: Interrupt Vector = { IVHA, 3'b0 } + Original_Vector_Address	0x00		
		2-0	RSV	Reserved			

Process	or Control	Regis	ster 2		
Address	Name	Bit	Туре	Description	Default
0x86	PCON2	7	R/W	Reserved but this bit should be "0".	0x20
		6	R/W	Timer0/Timer1 test mode enable. 0: Disable 1: Enable	
		5	R/W	Reserved	
		4	R/W	KBC modules write control. Once this bit set, 8051 could issue write access to external modules. 0: Disable 1: Enable	
		3	R/WC0	Same interrupt source pending flag. If the 8051 is handling some interrupt event, at the same time, the same source asserting the interrupt again, this flag will be set. If this flag set, the 8051 will re-enter ISR again once executing IRET. Writing "0" to clear this flag.	
		2	RSV	Reserved	
		1	R/W	E51 Timer select 1us	
		0	RSV	Reserved	

Address	Name	Bit	Туре	Description	Default
0x87	PCON	7	RSV	Reserved	0x00
		6	R/W	Enable "detection of 8051 whether in idle loop"	
		5	R/W	Interrupt vector offset address1 0: Interrupt vector address offset adding 0x0 1: Interrupt vector address offset adding 0x8000	
		4	R/W	Interrupt vector offset address2 0: Interrupt vector address offset adding 0x0 1: Interrupt vector address offset adding 0x4000 Please note, if PCON[5]=1 and PCON[4]=1 then the result of interrupt vector address will be added 0xC000.	
		3	R/W	General purpose flag 1 0: no event 1: event occurs	
		2	R/W	General purpose flag 2 0: no event 1: event occurs	
	1	WO	Stop mode enable. All clock stop except the external 32.768K OSC and PCICLK. 1: Enable (write "0" no work)		
		0	WO	Idle mode enable. The clock of 8051 stops. 1: Enable (write "0" no work)	

Timer/Co	ounter Co	ntrol F	Register		
Address	Name	Bit	Туре	Description	Default
0x88	TCON	7	R/W0C	TF1, Timer1 overflow flag 0: no event 1: event occurs	0x00
		6	R/W	TR1, Timer1 start control. 0: stop to count 1: start to count	
		5	R/W0C	TF0, Timer0 overflow flag 0: no event 1: event occurs	
		4	R/W	TR0, Timer0 start control. 0: stop to count 1: start to count	
		3	R/W0C	IE1, External interrupt 1 flag 0: no event 1: event occurs	
		2	R/W	IT1, External interrupt 1 trigger selection 0: low level trigger 1: falling edge trigger	
		1	R/W0C	IE0, External interrupt 0 flag 0: no event 1: event occurs	
		0	R/W	IT0, External interrupt 0 trigger selection 0: low level trigger 1: falling edge trigger	

Timer Mo	Timer Mode Register								
Address	Name	Bit	Туре	Description	Default				
0x89	TMOD	7	R/W	GATE1, this bit is the gate control of TR1 and INT1 0: Disable 1: Enable	0x00				
		6	R/W	CT1, Timer1 timer/counter selection 0: Timer 1: Counter					
		5-4	R/W	TM1, Timer1 mode selection 0: 13-bit timer 1: 16-bit timer 2: 8-bit auto reload timer 3: Timer 1 stops.	D				
		3	R/W	GATE0, this bit is the gate control of TR0 and INT0 0: Disable 1: Enable					
		2	R/W	CT0, Timer0 timer/counter selection 0: Timer 1: Counter					
		1-0	R/W	TM0, Timer0 mode selection 0: 13-bit timer 1: 16-bit timer 2: 8-bit auto reload timer 3: TL0 and TH0 are two 8-bit timers.					

Timer 0 Low Byte									
Address	Name	Bit	Туре	Description	Default				
0x8A	TL0	7-0	R/W	Low byte of timer 0	0x00				

Timer 1 Low Byte								
Address	Name	Bit	Туре	Description	Default			
0x8B	TL1	7-0	R/W	Low byte of timer 1.	0x00			

Timer 0 High Byte									
Address	Name	Bit	Туре	Description	Default				
0x8C	TH0	7-0	R/W	High byte of timer 0	0x00				

Timer 1	Timer 1 High Byte									
Address	Name	Bit	Туре	Description	Default					
0x8D	TH1	7-0	R/W	High byte of timer 1	0x00					

Port1 Interrupt Enable Register							
Address	Name	Bit	Туре	Description	Default		
0x90	P1IE	7-0	R/W	Port 1 interrupt enable. Bit0~7 for P1[0]~P1[7] respectively 0: Disable 1: Enable	0x00		

Serial Po	Serial Port Control Register								
Address	Name	Bit	Туре	Description	Default				
0x98	SCON	7-6	R/W	SM1,SM0, serial port mode 00: 8-bit shift register, E51RX will be shift clock of E51CLK. 01: 8-bit serial port (variable) 10: 9-bit serial port (variable) 11: 9-bit serial port (variable)	0x50				
		5	RSV	Reserved					
		4	R/W	REN, serial port receive function enable. 0: Disable 1: Enable					
		3	R/W	TB8, The 9 th bit of transmit data in mode2 and mode3.					
		2	R/W	RB8, The 9 th bit of receive data					
		1	R/W0C	TI, TX interrupt flag 0: no event 1: event occurs					
		0	R/W0C	RI, RX interrupt flag 0: no event 1: event occurs					

Serial Port Data Buffer Register								
Address	Name	Bit	Туре	Description	Default			
0x99	SBUF	7-0	R/W	Serial port data buffer	0x00			

Serial Port Control Register 2								
Address	Name	Bit	Туре	Description	Default			
0x9A	SCON2	7-0	R/W	High byte of 16-bit counter for baud rate	0x00			

Serial Port Control Register 3								
Address	Name	Bit	Туре	Description	Default			
0x9B	SCON3	7-0	R/W	Low byte of 16-bit counter for baud rate	0x00			

Serial Port Control Register 4								
Address	Name	Bit	Туре	Description	Default			
0x9C	SCON4	7-2	RSV	Reserved	0x00			
		1~0	R/W	Serial Port mode 0 baud- rate setting (E51 clock set in CLKCFG, 0xFF0D) 00: E51 clock divide 2 01: E51 clock divide 4 10: E51 clock divide 8				
				11: E51 clock divide 16				

Port 2 R	Port 2 Register									
Address	Name	Bit	Туре	Description	Default					
0xA0	P2	7-0	R/W	Port 2 register	0x00					

Interrupt Enable Register							
Address	Name	Bit	Туре	Description	Default		
0xA8	A8 IE 7 R/W		R/W	EA, all interrupts enable. 0: Disable 1: Enable	0x00		
		6	R/W	EP, Change P0IF, P1IF, P3IF Interrupt event trigger flag to Interrupt event pending flag 0: Disable 1: Enable			
		5 RSV		Reserved	ı		
		4	R/W	ES, serial port interrupt enable 0: Disable 1: Enable			
C		3	R/W	ET1, timer1 overflow interrupt enable 0: Disable 1: Enable			
	2	R/W	EX1, external interrupt 1 enable. 0: Disable 1: Enable				
		1	R/W	ET0, timer0 overflow interrupt enable 0: Disable 1: Enable			
		0	R/W	EX0, external interrupt 0 enable. 0: Disable 1: Enable			

Interrupt Enable Register						
Address	Name	Bit	Туре	Description	Default	
0xB0	P3IE	7-0	R/W	Port 3 interrupt enable. Bit0~7 for P3[0]~P3[7] respectively 0: Disable 1: Enable	0x00	

Interrupt	Interrupt Priority Register							
Address	Name	Bit	Туре	Description	Default			
0xB8	IP	7-5	RSV	Reserved	0x00			
		4	R/W	Serial port interrupt priority 0: Low 1: High				
		3	R/W	Timer1 interrupt priority 0: Low 1: High				
		2	R/W	External interrupt 1 priority 0: Low 1: High				
		1	R/W	Timer 0 interrupt priority 0: Low 1: High				
		0	R/W	External interrupt 0 priority 0: Low 1: High				

Processo	Processor Status Word Register								
Address	Name	Bit	Туре	Description	Default				
0xD0	PSW	7	R/W	CY, carry flag	0x00				
		6	R/W	AC, auxiliary carry flag.					
		5	R/W	F0, for user general purpose.					
		4	R/W	RS1, register bank selector 1.					
		3	R/W	RS0, register bank selector 0.					
		2	R/W	OV, overflow flag					
		1	R/W	F1, flag 1 for user general purpose					
		0	R/W	P, parity flag					

Port0 Int	Port0 Interrupt Flag Register						
Address	Name	Bit	Туре	Description	Default		
0xD8	P0IF	7-0	R/W	Port 0 interrupt flag.			

Accumulator, ACC						
Address	Name	Bit	Туре	Description	Default	
0xE0	ACC	7-0	R/W	Accumulator	0x00	

Port1 Interrupt Flag Register						
Address	Name	Bit	Туре	Description	Default	
0xE8	P1IF	7-0	R/W	Port 1 interrupt flag.	0x00	

B Regist	B Register						
Address	Name	Bit	Туре	Description	Default		
0xF0	В	7-0	R/W	B register, for MUL and DIV instructions.	0x00		

Port3 Int	Port3 Interrupt Flag Register						
Address	Name	Bit	Туре	Description	Default		
0xF8	P3IF	7-0	R/W	Port 3 interrupt flag.			

Application Appendix:

A.1 ENE debug Interface, EDI

The above picture shows: EDI provide a SPI I/F as a debug interface.

The interface pin number in KB9012 is as following:

KB9012 Pin No.	KB9012 BGA	Name	GPIO	Alt Output	Alt. Input	Default	ECRST# L/H	IO CELL
59		KSI4	GPIO34		KSI4/EDI_CS	GPIO34	IE(PU)/IE(PU)	BQC04HIV
60		KSI5	GPIO35		KSI5/EDI_CLK	GPIO35	IE(PU)/IE(PU)	BQC04HIV
61		KSI6	GPIO36		KSI6/EDI_DIN	GPIO36	IE(PU)/IE(PU)	BQC04HIV
62		KSI7	GPIO37	EDI_DO	KSI7	GPIO37	IE(PU)/IE(PU)	BQC04HIV

A.1.1 Enable EDI

To enable EDI, it is by detecting any SPI command with EDI_CLK frequency between 1MHz to 8MHz. After enabling EDI, the transaction frequency could be up to 16MHz.

A.1.2 EDI Instructions

Command Name	Command Code	Address	Byte Count
Read	30h		3
Write	40h		3
Disable EDI	F3h		0

A.1.3 Read Command

Read command is by issuing command code **30h**, which is followed by 3-bytes of the target address. While fetching data, **5Fh** is shown on EDI_DO to indicate BUSY. This could be lasting for n bytes length. After fetching data, **50h** is shown on EDI_DO to indicate the data is ready to be read, and the next 1 byte is the valid read data.

A.1.4 Write Command

Write command is by issuing command code **40h**, which is followed by 3-bytes of the target address. The 64k address boundary should be kept. Write command on EDI v2.0 (KB9010) only support EHB memory space (0h~FFFFh), in other words A[23:16] should be **0h**). For details memory space mapping, please refer Part B.

A.1.5 Disable EDI Command

Disable EDI command is by issuing command code **F3h**. On EDI_DO pin, **8Ch** would be shown to indicate the EDI is disabled.

A.2 Power-Latch

In KB9012, a separated power plane VCC_0 is implemented for basic power detection and management. VCC_0 power plane is with GPXIOD01 / GPXIOD02 / GPXIOD03 pins. They serve as power latch logic as following:

Pin Name	Pin No.	Direction	Description
GPXIOD01	110	I/O	AC_IN
GPXIOD02	112	I/O	ALW_PWR_EN
GPXIOD03	114	I/O	ON/OFFBTN#
VCC_0	111		Power supply for 510N power-latch.
GND_0	113		Power ground for 510N power-latch.

AC_IN Input State	ON/OFFBTN# Input State	ALW_PWR_EN Output State
High voltage Level	X	High voltage Level
X	Low voltage Level	High voltage Level
Low voltage Level	High voltage Level	Low voltage Level

Note: The Power-Latch / Voltage Comparator Register is designed with power-supply of VCC_0. It could be used to keep Voltage Comparator within VCC_0 power plane which provide firmware management flexibility. Please refer the later section for other voltage comparator information.

A.3 Voltage Comparator

In KB9012, a voltage comparator is implemented for comparison of external input and programmed voltage. The comparison valued is based on DAC behavior. In KB9012A2 later version, The VC is default enabled; special function hardware trap is also designed to disable VC1.

Pin Name	Pin No. Direction		Description
VCIN0	109	I	Pin-out is also GPXIOD00
VCOUT0	104	0	Pin-out is also GPXIOA07
VCIN1	102	I	Pin-out is also GPXIOA05
VCOUT1	103	0	Pin-out is also GPXIOA06

Voltag	Voltage Comparator Control and Status Register								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x29	VCSR	7	RO	Voltage Comparator 1 output status	0x0C	0xFF			
		6	RO	Voltage Comparator 0 output status					
		5-4	RSV	Reserved					
		3	R/W	VC1 output open-drain enable					
		2	R/W	VC0 output open-drain enable	=				
		1~0	RSV	Reserved					

Crysta	Crystal 32k control register							
Offset	Name	Bit	Туре	Description	Default	Bank		
0x2A	RSV	7~0	RSV	Reserved	0x00	0xFF		

Voltag	Voltage Comparator 0 DAC compare value							
Offset	Name	Bit Type Description Default Bar				Bank		
0x2B	VCDAC0	7~0	R/W	The DAC value compared with VC0	0x5D	0xFF		

Voltag	Voltage Comparator 1 DAC compare value							
Offset	Name	Bit	Туре	Description	Default	Bank		
0x2C	VCDAC1	7~0	R/W	The DAC value compared with VC1	0x5D	0xFF		

Power	Power-Latch / Voltage Comparator register (Power Supply from VCC_0)								
Offset	Name	Bit	Туре	Description	Default	Bank			
0x2D	PA0_REG	7~5	RSV	Reserved	80x0	0xFF			
		4	R/W	Voltage Comparator 1 output into power-latch enable					
		3	R/W	Voltage Comparator 0 output into power-latch enable					
		2	R/W0C	VOC Voltage Comparator 1 output into power-latch pending flag					
		1	R/W0C	Voltage Comparator 0 output into power-latch pending flag					
		0	RSV	Valid bit for PA0_REG Whenever POR reset, PA0_REG[0] will reset to 0. Value of '1' to present PA0_REG is valid for power-latch.					

Voltage comparator control and status register									
Offset	Name	Bit	Туре	Description	Default	Bank			
0x27	VCCR	7~6	RSV	Reserved	0x03	0xFF			
		5	R/W	VC1 output active polarity, 0: active low (Default) 1: active high					
		4	R/W	VC0 output active polarity, 0: active low (Default) 1: active high					
		3~2	R/W	Voltage comparator de-bounce De-bounce setting 00: No De-bounce 01: continually trigger 2 times 10: continually trigger 4 times 11: continually trigger 6 times	P				
		1	R/W	Voltage comparator pair 1 enable					
		0	R/W	Voltage comparator pair 0 enable					

The Comparison behavior is as followed:

VCIN input voltage is compared with the programmed value of **VCDAC**.

Once the VCIN voltage > VCDAC, the VCOUT will drive the active status of VCCR.

The driving status will response on **VCSR** which is by system power plane; and **PA0_REG** which is by **VCC_0** power plane.

For example:

If VCIN0 input is 3.3 voltage and VCDAC0 is configured as 2.7V. VCCR is also as default active low. Now, VCIN0>VCDAC0, VCOUT will drive low.

A.4 Power Fail Flag Brief Description

In KB9012, GPIO18 and GPXIOA03 could be used to signal the power status of ENE-KBC. Once the VCC is lower than specific value, GPIO18 and GPXIOA03 would drive low to indicate the system low situation. The specific value is characterized as Power Fail Voltage.

GPX_MISC bits could be programmed separately to choose which pin is used for signaling. **PFCSR** could be used for fail detection de-bounce control, status flag, and functionality enable bit.

Pin Name	Pin No.	Direction	Description
POWER_FAIL0	WER_FAILO O Used to indicate		Used to indicate the power fail under Power Fail Voltage.
POWER_FAIL1	32	0	Used to indicate the power fail under Power Fail Voltage.

GPX N	GPX MISC Control Register									
Offset	Name	Bit	Туре	Description	Default	Bank				
0x73	GPX_MISC	7~3	RSV	Reserved	0x00	0xFC				
		2	R/W	GPIO18 output power fail flag enable 0: Disable 1: Enable						
		1	R/W	GPXIOA03 output power fail flag enable 0: Disable 1: Enable						
		0	RSV	Reserved						

Power	Power fail control and status register						
Offset	Name	Bit	Туре	Description	Default	Bank	
0x28	0x28 PFCSR 7		R/W1C	Power Fail status flag This bit is set by hardware if voltage of power is under Power Fail Voltage and write 1 clear by firmware or system reset occur	0x00	0xFF	
		6	RSV	Reserved			
		5~4	R/W	Power fail De-bounce setting 00: No De-bounce 01: continually trigger twice 10: continually trigger 4 times 11: continually trigger 6 times			
		3~1	RSV	Reserved			
		0	R/W	Power fail status enable GPXIOA03 or GPIO18 will output low to indicate the system power is under Power Fail Voltage. The output pin select is controlled by GPX_MISC[2:1]. 0: Disable 1: Enable Note: GPXIOA03 / GPIO18 will return to previous state if PFCSR[7] is written 1 clear.			

A.5 Embedded Flash Brief Description

KB901x series is designed with embedded flash. The flash control registers are in KB901x XBI section, 0xFEA0~0xFEBF. In KB9012, the embedded-flash is 128Kbyte. The physical structure divides the 128Kbyte into pages. Each page is 128Byte size. A buffer HVPL is used to manage physical operation into/from flash. (Physical write into flash cost more operation time.)

General commands are as followed and also described in 0xFEA0~0xFEBF registers.

Command	Name	Description
ID		
0x02	Page Latch	Latch the data into page buffer
0x03	Read	
0x20	Erase selected page	Erase the page (128B size) based
		on the A8~A21
0x70	Program selected page	Write the data of page buffer into
		flash cell
0x80	Clear HVPL data	Clear the data of page buffer

Embedded-Flash could be accessed via EDI, LPC index-I/O, and other flexible programming management. For further information, please refer ENE flash related application note.

5. Electrical Characteristics

5.1 Absolute Maximum Rating

Symbol	Parameter	Condition	Rating	Unit
V _{CC}	Power Source Voltage	All voltages are referred to GND.	-0.3 ~ 3.6	V
Vi	Input Voltage		-0.3 ~ 3.6	V
Vo	Output Voltage		-0.3 ~ 3.6	V
T _{STG}	Storage Temperature		-65 ~ 150	°C
	ESD	Human Body Mode (HBM)	4K	V
		Machine Mode (MM)	200	

5.2 DC Electrical Characteristics

BQCZ16HIV

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Input Low Threshold	V _{t-}		1.23		V	
Input High Threshold	V _{t+}		1.90		V	
Hysteresis	V _{TH}		0.67		V	
Output Low Voltage	VoL			0.4	V	16mA Sink
Output High Voltage	V _{OH}	2.8			V	16mA Source
Input Leakage Current	I _{IL}		0.02		μΑ	No pull-up
Input Pull-Up Resistance	R _{PU}		40K		Ω	V _I =0V
Input Capacitance	C _{PU}		5.5		pF	
Output Capacitance	C _{OUT}		5.5		pF	
Bi-directional Capacitance	C _{BID}		5.5		pF	

BQC04HIV

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Input Low Threshold	V _{t-}		1.23		V	
Input High Threshold	V _{t+}		1.90		V	
Hysteresis	V_{TH}		0.67		V	
Output Low Voltage	V _{OL}			0.4	V	4mA Sink
Output High Voltage	V _{OH}	2.8			V	4mA Source
Input Leakage Current	I _{IL}		0.02		μА	No pull-up
Input Pull-Up Resistance	R _{PU}		40K		Ω	V _I =0V
Input Capacitance	C _{PU}		5.5		pF	
Output Capacitance	Соит		5.5		pF	
Bi-directional Capacitance	C _{BID}		5.5		pF	

BQCW16HIV

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Input Low Threshold	V _{t-}		1.23		V	
Input High Threshold	V _{t+}		1.90		V	
Hysteresis	V _{TH}		0.67		V	
Output Low Voltage	V_{OL}			0.4	V	16mA Sink
Output High Voltage	V _{OH}	2.8			V	16mA Source
Input Leakage Current	I _{IL}		0.02		μΑ	No pull-up
Input Pull-Up Resistance	R _{PU}		40K		Ω	V _i =0V
Input Capacitance	C _{PU}		5.5		pF	
Output Capacitance	C _{OUT}		5.5		pF	
Bi-directional Capacitance	C _{BID}		5.5		pF	

BQC04HI

(No Pull-Up resistance function)

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Input Low Threshold	V_{t-}		1.23		٧	
Input High Threshold	V _{t+}		1.90		V	
Hysteresis	V _{TH}		0.67		V	
Output Low Voltage	VoL			0.4	٧	4mA Sink
Output High Voltage	V _{OH}	2.8			V	4mA Source
Input Leakage Current	Ĭ <u>Ŀ</u>		0.02		μА	No pull-up
Input Pull-Up Resistance *	R _{PU}		-		Ω	
Input Capacitance	C _{PU}		5.5		pF	
Output Capacitance	C _{OUT}		5.5		pF	
Bi-directional Capacitance	C _{BID}		5.5		pF	

BQC08HIV

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Input Low Threshold	V _{t-}		1.23		V	
Input High Threshold	V_{t+}		1.90		V	
Hysteresis	V_{TH}		0.67		V	
Output Low Voltage	V_{OL}			0.4	V	8mA Sink
Output High Voltage	V _{OH}	2.8			V	8mA Source
Input Leakage Current	I _{IL}		0.02		μА	No pull-up
Input Pull-Up Resistance	R _{PU}		40K		Ω	
Input Capacitance	C _{PU}		5.5		pF	
Output Capacitance	C _{OUT}		5.5		pF	
Bi-directional Capacitance	C _{BID}		5.5		pF	

BQC04HIVPECI

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Input Low Threshold	V _{t-}		1.23		V	
Input High Threshold	V _{t+}		1.90		V	
Hysteresis	V _{TH}		0.67		V	
Input Low Threshold	V _{t-}		0.37		V	PECI Enable
Input High Threshold	V _{t+}		0.68		V	PECI Enable
Hysteresis	V _{TH}		0.31		V	PECI Enable
Output Low Voltage	V _{OL}			0.4	V	4mA Sink
Output High Voltage	V _{OH}	2.8			V	4mA Source
Input Leakage Current	lıL		0.02		μА	No pull-up
Input Pull-Up Resistance	R _{PU}		40K		Ω	
Input Capacitance	C _{PU}		5.5		pF	
Output Capacitance	C _{OUT}		5.5		pF	
Bi-directional Capacitance	C _{BID}		5.5		pF	

BQCZT04IV (XCLKI, XCLKO, ADC/DAC)

Parameter	Symbol	Min	Тур.	Max	Unit	Condition
Input Low Threshold	V _{t-}		1.18		V	
Input High Threshold	V _{t+}		1.97		V	
Hysteresis	V _{TH}		0.79		V	
Output Low Voltage	V _{OL}			0.4	V	
Output High Voltage	V _{OH}	2.8			V	
Input Leakage Current	I _{IL}		0.02		μА	
Input Pull-Up Resistance	R _{PU}		40K		Ω	
Input Capacitance	C _{PU}		5.5		pF	
Output Capacitance	C _{OUT}		5.5		pF	
Bi-directional Capacitance	C _{BID}		5.5		pF	

5.3 A/D & D/A Characteristics

ADC characteristics

Parameter	Limits					
	Min	Тур	Max			
Resolution		10		Bit		
Integral Non-linearity Error (INL)			±4	LSB		
Differential Non-linearity Error (DNL)			±4	LSB		
Offset Error			±4	LSB		
Gain Error			±4	LSB		
A/D Input Voltage Range	0.1V _{cca}		0.9V _{cca}	V		
A/D Input Leakage Current		<0.5		uA		
A/D Input Resistance	10			МΩ		
A/D Input Capacitance			2	pF		
A/D Clock Frequency		1		MHz		
Voltage Conversion Time		256		uS		

DAC characteristics

Parameter		Unit		
	Min	Тур	Max	
Resolution		8		Bit
Integral Non-linearity Error (INL)			±2	LSB
Differential Non-linearity Error (DNL)			±1	LSB
Offset Error			±1	LSB
Gain Error			±2	LSB
D/A Output Voltage Range	0		V_{cca}	V
D/A Output Setting Time			1.12	uS
D/A Output Resistance		3.5		kΩ
D/A Output Capacitance		1		pF

5.4 Recommend Operation Condition

Symbol	Parameter			Unit	
		Min	Тур	Max	
Vcc	Power Source Voltage	3.0	3.3	3.6	V
GND	Ground Voltage	-0.3	0	0.3	V
V _{CCA}	Analog Reference Voltage (for A/D and D/A)	3.0	3.3	3.6	V
AGND	Analog Ground Voltage	-0.3	0	0.3	V
T _{op}	Operating Temperature	0	25	70	$^{\circ}$ C
V _{FAIL}	Power Fail Voltage		2.9		V

^{*} Design SPEC and Characteristic only

5.5 Operating Current

Symbol	Parameter	Limits	Unit
		Тур	
I _{CC}	Typical current consumption in operating state under Windows environment. All clock domains are running, and no keyboard/mouse activities.	20	mA
I _{STOP}	Typical current consumption in STOP mode when PLL in low power state, WDT disable, functional modules OFF	90	uA

5.6 Package Thermal Information

Thermal resistance (degrees C/W). Theta_{JA} · Theta_{JC} values for KB9012

	Theta _{JA} @ 0 m/s	Theta _{JC}
128-Pin LQFP	52.3	21.9
128-Pin LFBGA	50.9	

5.7 AC Electrical Characteristics

5.7.1 KBC POR and ECRST#

ECRST# is external input pin for power-on reset and HW reset. However, ENE-KBC is also implemented with internal POR. Simplified power-on logic is as illustrated:

There is one constrain for the ECRST# signals.

For power-on reset, the internal POR circuit is designed with T_{POR} to boot-up. The ECRST# should be implemented with external delay circuit of $T_{ECRST\#}$ for system application. The delay timing $T_{ECRST\#}$ is only meaningful when it is larger than T_{POR} .

For general application, ENE recommends to used internal POR for power-on reset; design to place a pull-high resistor on ECRST# to guarantee reset event would not be triggered unexpectedly.

Please also note that, IC reset signal is sensitive to environment, the signal should be kept clean.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Internal POR timing	T _{POR}		30		ms	
Application depending design of external delay	T _{ECRST#}				us	

5.7.2 LPC interface Timing

Note: All AC characteristics of the LPC interface meet the PCI Local Bus SPEC for 3.3V DC signaling.

Clock & Reset:

Symbol	Parameter	Min	Max	Units	Notes
T _{cyc}	CLK Cycle Time	30	33	ns	1,4
T _{high}	CLK High Time	11		ns	
Tlow	CLK Low Time	11		ns	
	CLK Slew Rate	1	4	V/ns	2
	Reset Slew Rate	50		mV/ns	3

- 1. In general, all PCI components must work within clock frequency constrain. The clock frequency may be changed at any time during the operation of the system so long as the clock edges remain "clean" (monotonic) and the minimum cycle and high and low times are not violated. The clock may only be stopped in a low state.
- 2. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met across the minimum peak-to-peak portion of the clock waveform as shown below.
- 3. The minimum RST# slew rate applies only to the rising (de-assertion) edge of the reset signal and ensures that system noise cannot render an otherwise monotonic signal to appear to bounce in the switching range.
- 4. Device operational parameters at frequencies under 16 MHz may be guaranteed by design rather than by testing.

Timing Parameters

Symbol	Parameter	Min	Max	Units	Notes
T _{val}	CLK to Signal Valid Delay	2	11	ns	
T _{on}	Float to Active Delay	2		ns	1
T _{off}	Active to Float Delay		28	ns	1
T _{su}	Input Setup Time to CLK	7		ns	2,3
T _h	Input Hold Time from CLK	0		ns	3

- For purposes of Active/Float timing measurements, the Hi-Z or "off" state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 2. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at the same time.
- 3. Refer the timing measurement conditions as below

5.7.3 PS/2 interface Timing

Receive:

PS2_CLK PS2_DAT

Timing Parameters

Symbol	Parameter	Min	Max	Units	Notes
T _{PSRTS}	Request to send state time	110		μs	
T _{PSCLL}	Clock low time	125		ns	1, 2
T _{PSDSU}	Data input setup time	1		ns	2
T _{PSDV}	Data output data valid time		5	μs	

- 1. Simulated under 8051=8Mhz
- 2. For characteristic only.

5.7.4 SMBus interface Timing

Timing Parameters

Symbol	Parameter	Min	Тур.	Max	Units	Notes		
T_buf	Bus free time between Stop and Start Condition	4.7			μs			
$T_{hd:sta}$	Hold time after (repeated) star condition. After this period, the first clock is generated.	4.0			μs			
T _{su:sta}	Repeated start condition setup time	4.7			μs			
T _{su:sto}	Stop condition setup time	4.0			μs			
T _{hd:dat}	Data hold time	300			ns			
T _{su:dat}	Data setup time	250			ns			
T _{timeout}	Detect clock low timeout	25		35	ms			
T_low	Clock low period	4.7			μs	2		
T_{high}	Clock high period	4.0		50	μs	2		
T _f	Data fall time			300	ns			
Tr	Data rise time			1000	ns			

- 1. For characteristic only
- 2. SMBUS frequency dependant

6. Package Information

6.1 LQFP 128-Pin Outline Diagram

6.1.1 Top View

6.1.2 Side View

6.1.3 Lead View

6.1.4 LQFP Outline Dimensions

DIM	Min.	Тур.	Max.	DIM	Min.	Тур.	Max.	
А			1.6	E1		14 BSC		
A1	0.05		0.15	L	0.45	0.6	0.75	
A2	1.35	1.4	1.45	L1		1 REF		
b	0.13	0.16	0.23	R1	0.08			
b1	0.13		0.19	R2	0.08		0.2	
С	0.09		0.2	S	0.2			
с1	0.09		0.16	θ	0°	3.5°	7°	
D		16 BSC		θ 1	0°	Λ		
D1		14 BSC		θ2	11°	12°	13°	
е		0.4 BSC		θ 3	11°	12°	13°	
Е		16 BSC						
Unit	mm							
Package	14x14x1.4							
Pitch POD	0.4							
Footprint	2mm							

6.2 LFBGA 128-Pin Outline Diagram 6.2.1 Top View

6.2.2 Side View

6.2.3 Bottom View

6.2.4 LFBGA Outline Dimensions

DIM	Min.	Nor.	Max.
А			1.3
A1	0.16		0.26
A2		0.21	
А3		0.7	
b	0.27		0.37
D		7	
Е		7	
е		0.5	
D1		6	
E1		6	
Unit	mm		
Package	7mm * 7 mm		

6.3 Part Number Description

Part Number	Package Size	Lead Free Process	Status	
KB9012QF A3	14mm * 14mm 128 pins LQFP	Lead Free	Available	
KB9012BF A3	7mm * 7mm 128 balls LFBGA	Lead Free	Available	
KB9012QF A2	14mm * 14mm 128 pins LQFP	Lead Free	EOL	
KB9012BF A2	7mm * 7mm 128 balls LFBGA	Lead Free	EOL	

www.s-manuals.com