# Total Recall: the New Google\*

Rohan Tilva, Jordan Peykar, Matthew Lee, Bryan Ki, Hannah Cowley



#### Final K-Score Results

| K    | Baseline<br>success <u>@k</u> |
|------|-------------------------------|
| 1    | 0.0                           |
| 10   | 0.06                          |
| 100  | 0.18                          |
| 1000 | 0.30                          |

| К    | Success @k<br>with Query<br>Expansion |
|------|---------------------------------------|
| 1    | 0.04                                  |
| 10   | 0.16                                  |
| 100  | 0.48                                  |
| 1000 | 0.64                                  |

| К    | Final success<br>@k<br>(with MLP mini<br>classifier) |
|------|------------------------------------------------------|
| 1    | 0.0                                                  |
| 10   | 0.0                                                  |
| 100  | .04                                                  |
| 1000 | .26                                                  |

| К    | Final success<br>@k<br>(with logistic<br>regression mini<br>classifier) |
|------|-------------------------------------------------------------------------|
| 1    | 0.0                                                                     |
| 10   | .01                                                                     |
| 100  | .09                                                                     |
| 1000 | .30                                                                     |

Our MLP did not provide truly continuous probability estimations (they were skewed)... so we tried logistic regression.

# F1 Results: MLP (with all features)

#### Final Dev Results:

o F1: 0.18

o P: 0.11, R: 0.54

#### Final Test Results:

o F1: 0.16

• P: 0.11, R: 0.30

#### Compare to old Dev:

o F1: .133

o P: .08, R: .55



# F1 Results: Logistic Regression (with only 3 simple features)

- Final Dev Results:
  - o F1: .14
  - o P: .10, R: .24
- Final Test Results:
  - o F1: .14
  - o P: .10, R: .23
- While this model does worse on F1 scores, k-scores show improvement over the MLP

#### Query Expansion (Learning to Paraphrase for Question Answering)

- The Good
  - (NLTK) WordNet
  - Stem each word
    - Synonyms for adverb, adjectives, and verbs only
    - Synonyms only found for non-common verbs
  - List of queries formed, search called on all
- The Bad
  - Synonyms too broad and varied
    - le. "run" → "chop-chop"
    - Possible fix: receive synonyms based on higher threshold of similarity

- TF-IDF Cosine-Similarity:
  - Added feature for cosine similarity
  - Problem: too many common words
    - Fix: stopword filtering of 200 most common words
      - Added for both question & answer
  - Cosine-similarity from sparse vectors
    - Thanks scikit-learn!

- Question Words:
  - ["", who", "what", "when", "where", "why", "how", "is", "whom"]
  - Index corresponding to question word for given question
    - New feature vector
  - Hope: certain answers correlated with certain question words
    - Ie. "When" always correlated with "<date>" in answer
    - "How deep is the ocean?" vs. "Why is the ocean deep?"
      - Most of the words are the same
      - Question word = key distinguisher!

- Sums of Word Embeddings: The Good
  - Sum individual word embeddings into a vector
    - Do for query and answer
  - o Encaptures similar words
  - Words in query/answer don't necessarily have to be same exactly
- Sums of Word Embeddings: The Bad
  - Does not account for length of sentences
  - Sum of two different sentences could have a high cosine similarity

#### Jaccard Similarity

- le. Percentage overlap between query and answer
- Effort to quantify similarity in query/answer
- Not perfect → words need to be exactly the same

- Spacy Sentence Similarity Metric
  - The sentence similarity metric is able to use context clues to determine similarity sentences
  - Word Embeddings usage
  - 4-layer CNN
    - Takes in context in 4-grams around the word in question to disambiguate the vocabulary

- Determinant of Word Embedding Vectors
  - (Boratto et al. 2016)
  - Used to measure linear independence (determinant) of word embedding vectors
  - F1 score had little change

- Using a Multi-Layer Perceptron
  - Better F1 score than SVM
  - Hypothesis: data not linearly separable
  - So, MLP better!
  - Used MLPClassifier from scikit-learn
  - Fiddled with the following to maximize F1:
    - Parameters
    - Subtractive Balancing
    - Resampling



- Using a Logistic Regression model (with only 3 features)
  - Better F1 score than SVM
  - Allowed for better probability distribution of whether sentence answers query
  - This allowed for better ranking, but didn't have time to integrate this
- Integrated version still has the MLP (with full feature set)

- Using Continuous Predictions for Ranking
  - Idea 1: Hard predictions (yes vs. no)
    - No method of determining which instances better answered question
  - Idea 2: Continuous predictions
    - Tuple of probabilities (one for "no", one for "yes")
    - Higher P("yes")  $\rightarrow$  higher ranked

- Modified Subtractive Balance
  - Idea 1: Train on all samples
    - Problem: number negative instances >> number positive instances
    - Skewed model to always predict "no"
  - Idea 2: Subtractive Balancing → number positive == number negative
    - Better F1 score
    - Problem: more negative instances in training data
  - o Idea 3: Modified Subtractive Balancing → number negative = 1.8 \* number pos
    - Best F1 score!

# Error Analysis: Questions we got wrong (dev)

- Questions we got wrong
  - Ones that necessitated a numeric answer
    - How big is the Pacific Ocean? (Entity Recognition problem)
  - Where/What questions
- Shows that our precision is relatively low, but for a subset of question words in particular



# Error Analysis: Questions we got right (on dev)

- Questions that were clear were classified correctly
  - Questions that had one clear answer
  - Questions that were highly specific
- A nice, even distribution of question words correctly classified relative to their corpus frequency!
  - Further confirmation: our system provides high recall, but low precision





#### Not the best, but still ok attempts

- Concrete-ly annotated POS tagging
  - Idea 1: Train model on POS tagging
    - Too slow
  - Conclusion:
    - We wish we could have incorporated this
    - le. matching subject in query to subject in answer could help a lot
    - Just need to try it on the quicker concrete fetch service (ran out of time)

#### Not the best, but still ok attempts

- Keras Sequential Model
  - Wanted to build a deep net
    - Problem: we don't know ML
    - Didn't know what input number of layers should be
    - Didn't know the input shape
  - Back to MLP from scikit-learn

## Areas for Improvement

- Increase F1 scores
  - Better feature engineering
  - Using a deep net instead
  - More positive data
    - Generate our own positive data?
  - MLP parameter adjustment
    - Not enough knowledge about ML to accurately change parameters
- Query Expansion
  - NLTK doesn't have the best synonyms
  - Use other paraphrasing methods: SMT, PPDB

#### Citations

- L. Boratto, S. Carta, G. Fenu and R. Saia, "Exploiting a Determinant-Based Metric to Evaluate a Word-Embeddings Matrix of Items," 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, 2016, pp. 984-991.
- Chen, Tongfei and Van Durme, Benjamin. Discriminative Information Retrieval for Question Answering Sentence Selection. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 719-725. 2017.
- Dong, Li and Mallinson, Jonathan and Reddy, Siva, and Lapata, Mirella. Learning to Paraphrase for Question Answering. 2017.