통신이론

- 문 1. 랜덤 변수 X의 확률밀도함수 $f_X(x)$ 에 대한 설명으로 옳지 않은 것은?
 - ① $f_v(x)$ 는 x가 증가하면 항상 증가한다.
 - ② $f_{X}(x)$ 의 면적은 1이다.
 - ③ $f_{\nu}(x)$ 는 항상 0보다 크거나 같다.
 - ④ $f_X(x)$ 가 주어지면 X의 평균값과 분산값을 계산할 수 있다.
- 문 2. 다음 그림은 3비트를 한꺼번에 전송하는 8-PSK(phase shift keying) 디지털 변조의 신호 성상도이다. 모든 심벌의 발생확률이 동일할 경우, 비트오율을 최소화하기 위한 신호 성상도는?

문 3. 전송률이 각각 8kbps인 두 사용자의 데이터를 동일한 채널 대역에서 코드분할 다중접속(CDMA) 방식으로 동시에 전송 하고자 할 때, 수신단에서 사용자 1의 신호를 완벽하게 검출하기 위한 부호로 옳은 것은? (단, 사용자 1과 사용자 2의 데이터 비트를 각각 다음과 같은 부호로 확산한다)

사용자 1:[1	-1	1	-1	1	-1	1	-1
사용자 2:[1	1	1	1	-1	-1	-1	-1

- ① 1 -1 1 -1 1 -1 1 -1 ② 1 1 1 1 -1 -1 -1 -1 ③ -1 -1 -1 -1 1 1 1 1
- 4 1 1 1 1 1 1 1 1 1
- 문 4. 다음 그림과 같이 전송률 $R=2{
 m Mbits/sec}$ 의 데이터를 부호율 $R_c=rac{1}{2}$ 인 채널 부호화기에 통과 시킨 후 디지털 변조하여 $R_s=1{
 m M\,symbols/sec}$ 의 속도로 전송하였다면 사용된 디지털 변조기법은?

- ① BPSK
- ② QPSK
- ③ 16-QAM
- ④ 64-QAM

- 문 5. 채널용량(channel capacity)에 대한 설명으로 옳지 않은 것은?
 - ① 주어진 채널 대역폭에서 오류없이 전송가능한 최대 데이터율로 정의된다.
 - ② 채널의 대역폭이 커지면 채널용량이 증가한다.
 - ③ 채널의 입력신호와 출력신호 사이의 최소 상호정보량(mutual information)으로 표현된다.
 - ④ 데이터전송률을 채널용량보다 낮게 하면, 비트오율이 0에 근접한 통신시스템을 설계할 수 있다.
- 문 6. 다음 그림과 같은 펄스열 신호 x(t)에 대한 설명으로 옳지 않은 것은?

- ① 펄스폭 τ 가 커지면 대역폭이 줄어든다.
- ② 펄스폭 τ 가 커지면 주파수 스펙트럼의 진폭이 커진다.
- ③ 푸리에 급수로 전개할 경우 sine 성분이 존재한다.
- ④ 주기 T가 무한히 증가하면 주파수 스펙트럼은 연속함수가 된다.
- 문 7. 채널부호에 대한 설명으로 옳지 않은 것은?
 - ① 채널부호화는 정보의 전송 중에 발생한 오류를 수신측에서 검출·정정할 수 있도록 하는 송신측에서의 신호 변환 과정을 의미한다.
 - ② 오류검출부호는 전송 중에 발생한 오류를 검출만 할 수 있고, 오류정정부호는 발생한 오류를 검출뿐만 아니라 정정할 수도 있다.
 - ③ 채널부호의 목적은 전송 데이터에 잉여정보를 삽입함으로써 전력 또는 대역폭이 제한된 채널 환경에서 전송오율을 줄이기 위한 것이다.
 - ④ 채널부호로는 연집오류에 강인한 길쌈부호, 불규칙하고 독립적인 오류에 강인한 RS부호 등이 있다.
- 문 8. 무선 채널의 특성에 대한 설명으로 옳지 않은 것은?
 - ① 채널의 다중경로확산이 커질수록 상관대역폭(coherent bandwidth)은 작아진다.
 - ② 채널이 시간에 따라 빠르게 변화할수록 도플러확산(Doppler spread)은 작아진다.
 - ③ 채널의 임펄스 응답이 영평균 복소 가우시안 과정(zero-mean complex-valued Gaussian process)으로 모델링될 때 이 채널을 레일리(Rayleigh) 페이딩 채널이라고 한다.
 - ④ 신호가 세게 수신되는 직접파가 존재하는 무선채널은 라이시안 (Rician) 페이딩 채널로 모델링 될 수 있다.

- 문 9. 정보신호 $f(t)=\sin 10\pi t$ 를 반송파 $c(t)=\cos (2\pi\times 10^5)t$ 로 SSB-USB (single sideband-upper sideband) 변조하였을 때, 변조된 신호로 옳은 것은? (단, 반송파 크기는 1로 가정한다)
 - ① $\frac{1}{2}\cos 10\pi t\cos(2\pi\times10^5)t + \frac{1}{2}\sin 10\pi t\sin(2\pi\times10^5)t$
 - ② $\frac{1}{2}\cos 10\pi t \cos(2\pi \times 10^5)t \frac{1}{2}\sin 10\pi t \sin(2\pi \times 10^5)t$
 - ③ $\frac{1}{2}\sin 10\pi t \cos(2\pi \times 10^5)t \frac{1}{2}\cos 10\pi t \sin(2\pi \times 10^5)t$
 - (4) $\frac{1}{2} \sin 10\pi t \cos(2\pi \times 10^5)t + \frac{1}{2} \cos 10\pi t \sin(2\pi \times 10^5)t$
- 문 10. 단위 임펄스(Dirac 델타 함수) $\delta(t)$ 의 성질로 옳지 않은 것은? (단, *는 컨벌루션(convolution)을 의미하며 $\alpha \neq 0$ 인 상수이다)
 - ① $\int_{t_1}^{t_2} v(t)\delta(t)dt = \begin{cases} v(0), t_1 < 0 < t_2 \\ 0, & \text{otherwise} \end{cases}$
 - ② $v(t) * \delta(t_d t) = v(t_d t)$
- 문 11. 정보원 부호화에 대한 설명으로 옳지 않은 것은?
 - ① 허프만(Huffman) 부호는 가변 길이(variable-length) 부호화 방식을 사용한다.
 - ② 템펠-지프(Lempel-Ziv) 부호는 정보원 문자의 발생 확률을 고려하지 않는 정보원 부호화 방식이다.
 - ③ 허프만(Huffman) 부호기법을 적용하기 위해서는 모든 정보원 문자의 발생 확률을 미리 알아야 한다.
 - ④ 모든 정보원 문자의 발생 확률이 같을 때 부호어의 평균 비트 수는 최소가 된다.
- 문 12. 다음 FM 신호의 대역폭은?

$$\Phi_{FM}(t) = 10\cos\{2\times91.9\times10^6\pi t + 5\sin(30\times10^3\pi t)\}$$

- ① 45 kHz
- 2 90 kHz
- ③ 180 kHz
- (4) 360 kHz
- 문 13. 이동통신 시스템에서 사용되고 있는 다중 안테나 기술에 대한 설명으로 옳지 않은 것은?
 - ① 다수의 수신 안테나를 사용하는 경우 수신 다이버시티 (diversity)의 이득은 안테나 간 상관도(correlation)가 높을수록 더 클 수 있다.
 - ② 다수의 송신 안테나를 사용하여 공간시간 블럭코딩(space time block coding) 기법을 이용하면 수신 안테나가 하나인 경우에도 다이버시티 이득을 얻을 수 있다.
 - ③ 송신 안테나와 수신 안테나가 각각 두 개일 때 공간다중화 (spatial multiplexing) 기법을 사용하면 송신안테나와 수신 안테나가 각각 한 개일 때보다 이론적으로 최대 전송속도는 2배가 될 수 있다.
 - ④ 송신 안테나에서 빔포밍(beamforming)을 하면 수신기의 수신 신호대잡음비(SNR)가 개선되어 데이터 전송속도를 증가시킬 수 있다.

- 문 14. 상온에서 열저항 R을 대역폭 1 MHz의 대역통과 여파기에 연결하였을 때 여파기 출력에서 발생되는 최대 가용 열잡음 전력은? (단, 상온은 절대온도 290 K, 볼츠만 상수는 1.38×10⁻²³ J/K 이다)
 - \bigcirc -114 [dBm]
 - ② -144 [dBm]
 - 3 -174 [dBm]
 - (4) -204 [dBm]
- 문 15. 다음은 sine파를 반파 정류한 파형이다. 이 파형의 2차 고조파 성분의 크기는?

- $4) \frac{\sqrt{2}}{\pi}$
- 문 16. 다음 FSK 변조신호를 이용하여 사용자 정보를 전송하고자 할 때 심벌 간의 간섭없이 전송할 수 있는 이론적인 최대 비트율은? (단, 채널의 대역폭은 $100\,\mathrm{kHz}$ 이며 f_c 는 반송파 주파수, T는 한 신호의 구간이다)

$$\varPhi_{FSK}(t) = \cos \big\{ 2\pi (f_c + f_m) t \big\}, \ m = 0, 1, \cdots, 7, \ 0 \le t < T$$

- ① 50 kbps
- ② 75 kbps
- ③ 100 kbps
- 4 200 kbps
- 문 17. 4G 이동통신기술인 LTE(long term evolution)에서 역방향 링크의 다중접속 방식으로 OFDMA(orthogonal frequency division multiple access) 대신 SC-FDMA(single carrier frequency division multiple access)를 사용하는 이유로 옳은 것은?
 - ① PAPR(peak-to-average power ratio)이 OFDMA에 비해 작아서 단말기 전력소모를 개선 할 수 있다.
 - ② OFDMA보다 주파수 선택적 페이딩에 강하여 전송속도를 증가시킬 수 있다.
 - ③ OFDMA를 사용할 때보다 기지국의 시스템 복잡도를 줄일 수 있는 장점이 있다.
 - ④ OFDMA보다 ICI(inter-carrier interference)가 감소되어 ICI를 제거하기 위한 부담이 줄어든다.

문 18. 넓은 의미의 정상 확률과정(wide-sense stationary random process) X(t)의 자기상관함수가 $R_X(\tau) = \begin{cases} 5-3|\tau|, & |\tau| \leq 1 \\ 2, & |\tau| > 1 \end{cases}$ 일 때 X(t)의 전력밀도함수는?

- ① $2\delta(f) + 3(\sin(\pi f)/\pi f)^2 + 5(\cos(\pi f)/\pi f)$
- ② $2\delta(f) + 3(\sin(\pi f)/\pi f)^2$
- ③ $2\delta(f) + 3\delta^2(f-3)$
- 4 $2\sin(f) + 5(\sin(\pi f)/\pi f)^2$
- 문 19. 다음 AM 변조된 신호의 변조지수와 전력효율(측대파전력/총전력)은?

$$\Phi_{AM} = 5\cos(280\pi t) + 20\cos(300\pi t) + 5\cos(320\pi t)$$

	변조지수	전력효율
1	$\frac{1}{4}$	$\frac{1}{9}$
2	$\frac{1}{2}$	$\frac{1}{5}$
3	$\frac{1}{4}$	$\frac{1}{5}$
4	$\frac{1}{2}$	$\frac{1}{9}$

문 20. 이진 정보를 부호율 $\frac{1}{3}$ 인 반복부호로 부호화하여 전송하고 수신기 에서 다수 복호(majority decoding)를 한다. 채널에서의 전송 비트오율이 0.1일 때 복호 후 수신단의 정보비트 오율은?

- ① 0.001
- ② 0.01
- 3 0.027
- 4 0.028