Term Project

2025 1학기 인공지능

아래와 같은 내용을 수행하고 보고서(자유 양식)로 작성하시오. ※단, 작성한 소스코드를 보고서 끝에 부록으로 넣고, 소스코드는 *.zip 압축하여 보고서와 같이 첨부하여 제출

1. 프로젝트 수행 조건 확인하기

- o Image Classifier 및 Image Feature Vector의 아키텍처(architecture)는 ResNet-18을 사용해야 한다.
- o Pre-trained Weights (Model)를 그대로 사용할 수 없고, 직접 학습을 통해 생성해야 한다.
- o 마크다운 또는 주석 등으로 코드의 부분(예: cell)별 역할 설명을 기재한다.
- o 코드 상에 각 주어진 문제별 구분(3-1, 3-2, 4-1, 4-2, 4-3, 4-4, 4-5)이 가능하도록 한다.
- o 성능 평가지표는 Top-1 accuracy를 사용한다.

2. 데이터셋 획득하기 및 읽기

o AI-hub에서 "연도별 패션 선호도 파악 및 추천 데이터" 데이터셋을 다운로드

3. 패션 스타일 이미지 분류하기

3-1. 주어진 이미지 데이터의 파일 명은 아래와 같은 형식이다. "{W/T}_ {이미지ID}_{시대별}_{스타일별}_{성별}.jpg"이에 기반하여 "이미지ID" 수 기준으로 "성별 & 스타일" 통계치를 아래 표 형식으로 기입한다.

※ Training, Validation 데이터에 대해서 각각 통계표를 작성한다.

성별	스타일	이미지 수	V V
여성	feminine		V
	classic		W
	minimal		W
	popart		V
			V
남성	ivy		
	mods		T N
	hippie		W W
	bold		W W
		E.	V V

W_96600_60_minimal_W.jpg W_96606_60_popart_W.jpg W_96607_60_popart_W.jpg W_96612_60_popart_W.jpg W_96616_60_minimal_W.jpg W_96617_60_minimal_W.jpg W_96619_60_minimal_W.jpg W_96625_60_minimal_W.jpg W_96632_60_minimal_W.jpg W_96634_60_minimal_W.jpg W_96634_60_minimal_W.jpg 3-2. ResNet-18를 활용하여 "성별 & 스타일" 단위로 클래스 분류를 수행하고 Validation 데이터에 대한 정확도를 제시한다. ResNet-18의 parameters는 무작위로 초기화하여 사용한다 (즉, pretrained weights는 사용할 수 없음). 성능을 높이기 위해 object detection, image cropping 등의 다양한 데이터 전처리 기법을 활용하기를 권장한다 (데이터 전처리 단계에 한해서는 외부 라이브러리 활용 가능).

여성놈코어룩

4. 패션 스타일 선호 여부 예측하기

41. 주어진 라벨링 데이터의 파일 명은 아래와 같은 형식이다."{W/T}_{이미지 ID}_{시대별}_{스타일별}_{성별}_{설문ID}.json"이에 기반하여 "설문ID" 수 기준으로 "성별 & 스타일" 통계치를 아래 표 형식으로 기입한다.

※ 이때 주어진 이미지 데이터에 존재하는 "이미지IID"를 식별하여 유효한 라벨링 데이터 대상으로만 통계치를 구해 야 한다. (이미지ID 기준으로 라벨링 데이터에는 있지만, 이미지 데이터에는 없는 경우가 있음)

※ Training, Validation 데이터에 대해서 각각 통계표를 작성한다.

여성클래식룩

W 96626 60 minimal W 008455.json W 96626 60 minimal W 234988.json W 96632 60 minimal W 234973.json W 96634 60 minimal W 008471.json W 96634 60 minimal W 234973.json W 96637 60 minimal W 008472.json W 96637 60 minimal W 008472.json W 96636 60 minimal W 018557.json W 96643 60 minimal W 234974.json W 96645 60 minimal W 018565.json W 96645 60 minimal W 018573.json W 96646 60 minimal W 234992.json W 96646 60 minimal W 234990.json

4-2. 앞서 4-1에서 구한 유효한 라벨링 데이터만 따로 분리하여 아래와 같이 100명 응답자의 "스타일 선호 정보표"를 구한다. 파일은 json 포맷으로 되어 있으며 json 필드 중, "응답자ID"는 "user>R_id"로 알 수 있고, "스타일 선호 여부"는 "item>survey>Q5"로 알 수 있다.

※ 스타일 선호도 값은 "1: 비선호", "2: 선호"이다.

응답자 ID	Training		Validation		
	스타일 선호	스타일 비선호	스타일 선호	스타일 비선호	
64747	W_07894_00_cityglarn_ W.jpg	W_44386_80_powersuit_ W.jpg	W_05628_00_cityglarn_ W.jpg	W_34024_10_ sportivecasual_W.jpg	
	W_37160_70_punk_W.jpg	W_34573_10_ sportivecasual_W.jpg	W_37491_70_military_W.jpg	W_11610_90_grunge_W.jpg	
	W_39725_19_normcore_ W.jpg	W_40876_70_punk_W.jpg	W_38588_19_genderless_ W.jpg	W_47169_70_hippie_W.jpg	
	***	***	***	***	
		1444		***	

- 4-3. 추천 시스템에서 자주 사용하는 협업 필터링 (Collaborative Filtering)은 크게 user-based filtering, item-based filtering 방식으로 나뉘어져 있다. 각각에 대해서 이해하고, 4-2에서 구해 본 응답자의 "스타일 선호 정보표"를 토대로 Validation 데이터 내 응답자의 "스타일 선호 여부 예측" 문제에 적용할 경우 두 가지 기법은 각각 어떤 장단점을 갖는지 설명한다.
- 44. 앞서 4-3에서 살펴 본 기법 중, item-based filtering을 직접 구현해본다. "이미지 간 유사도" (image2image)만을 활용하여 Validation 데이터 내응답자의 "스타일 선호 여부 예측" 문제를 수행하고 성능을 측정한다. 예측 문제에서 활용한 파라미터 및 임계값 등의 수치를 정확하게 제시한다. ※힌트: 앞서 3-2에서 구한 ResNet-18의 중간 layer 값을 활용하여 각이미지의 feature vector를 구하고, 벡터 연산을 통해 이미지 간 유사도를 구해볼 수 있다.
- 45. "이미지 간 유사도" 이외 다른 정보들을 활용하여 성능을 측정함으로써, 문제에 대한 성능을 높일 수 있는지 확인해본다. (예시: 라벨링 데이터 내 응답자의 "설문 정보"를 활용하여 이미지에 대한 정보를 추가적으로 사용)