Ejercicio 2.

(a) Sean X e Y dos variables aleatorias independientes con distribución geométrica de parámetros 0 y <math>0 < q < 1, respectivamente. Determinar la función de probabilidad de la variable aleatoria $Z = \min\{X,Y\}$.

Una urna contiene bolas rojas, azules y blancas en proporciones p_1 , p_2 y p_3 , respectivamente, siendo los p_i estrictamente positivos con $p_1 + p_2 + p_3 = 1$. Se extraen sucesivamente bolas de la urna con reemplazamiento. Sea T_1 el número de extracción en el que ha salido, por primera vez, una bola roja; y sea T_2 el número de extracción en el que ha salido, por primera vez, una bola azul.

(b) Hallar la función de probabilidad de mín $\{T_1, T_2\}$, que es el número de extracción en que ha salido, por primera vez, una bola roja o azul.

(a) La función de probabilidad de X es $P\{X=n\}=(1-p)^{n-1}p$ para $n\geq 1$, y análogamente para Y. Se tiene pues que

$$P\{X > n\} = (1-p)^n$$
 y $P\{Y > n\} = (1-q)^n$ para $n \ge 0$.

Siendo X e Y independientes,

$$P{Z > n} = P{X > n, Y > n}$$

= $P{X > n} \cdot P{Y > n}$
= $((1-p)(1-q))^n$.

Se deduce que Z tiene distribución geométrica de parámetro 1-(1-p)(1-q).

(b) Las variables aleatorias T_1 y T_2 tienen distribución geométrica de parámetros p_1 y p_2 , respectivamente. Fijado $n \geq 0$, calculamos $P\{\min\{T_1, T_2\} > n\}$. Se tiene la siguiente igualdad de sucesos.

$$\{\min\{T_1, T_2\} > n\} = \{T_1 > n\} \cap \{T_2 > n\} = \{\text{las primeras } n \text{ bolas son blancas}\}.$$

Por tanto,

$$P\{\min\{T_1, T_2\} > n\} = p_3^n$$

y resulta que mín $\{T_1, T_2\}$ tiene distribución geométrica de parámetro $1 - p_3$.

Se observa que esta distribución no se corresponde con la del apartado (a), dado que $1 - (1 - p_1)(1 - p_2) \neq 1 - p_3$. Esto es porque las variables aleatorias T_1 y T_2 no son independientes. En efecto, si $T_1 = n$ entonces necesariamente $T_2 \neq n$, lo que implica que las variables no son independientes.