NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER II EXAMINATION 2013–2014 MH1810 – Mathematics 1

MAY 2014 Matriculation Number:				TIME ALLOWED: 2 HOURS									
Seat Nu	mber	:											
INSTRU	JCTI	ONS TO) CA	NDIDATE	es								
			_	contains SI, including a	`			and	com	prise	es		
		LL qu of each		ns. The ma	arks for	eac	h qu	estic	n ar	e ind	dicat	ed at	t the
		NOT an cachments		N BOOK 6	exam. Ho	owe ⁻	ver,	a list	of fo	rmu	lae is	prov	vided
		es may us in the wo		culators. Hogs.	wever, th	iey i	shou	ld wi	rite d	own	$\operatorname{syst}\epsilon$	emati	cally
afte	r each	question	. If y	ld be writte ou use an add e end of the	ditional a	nsv	ver b				-	-	
For ex	amine	ers only								***************************************			
1	tions 5)	Marks		Questions 4 (15)	Marks				****	-			-

5

 $\frac{(15)}{6}$

(20)

2

(15)

(20)

Total

(100)

QUESTION 1. (15 Marks)

(a) Let $z = 1 - i\sqrt{3}$. Determine the following complex numbers and find the polar representation of all numbers and plot them on the complex plane:

$$iz^{-2}$$
, $(1+i)z^3$, $\frac{z}{\overline{z}}$, z^2+4

- (b) Consider vectors $\mathbf{u} = \mathbf{i} \mathbf{j} + 2\mathbf{k}$ and $\mathbf{v} = 4\mathbf{i} + \mathbf{j} 2\mathbf{k}$.
 - (i) Find a unit vector that is perpendicular to vectors \mathbf{u} and \mathbf{v} .
 - (ii) Determine the scalar equation of the plane Π which passes through the point (1,1,0) and is parallel to \mathbf{u} and \mathbf{v} . What is the distance between plane Π and the plane containing \mathbf{u} and \mathbf{v} ?

QUESTION 2.

(15 Marks)

(a) Find the limit:

$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$$

Question 2 continues on the next page

(b) Consider the function f which is defined as follows:

$$f(x) = \begin{cases} \frac{e^x}{2+x} & \text{if } x \le 0, \\ \cos(1-e^{\pi x}) & \text{if } x > 0. \end{cases}$$

Is f differentiable at x = 0? Justify your answer.

QUESTION 3. (20 Marks)

(a) Used the closed interval method to find the absolute minimum and absolute maximum of the function $f(x) = (x-1)^2 + x$ on the interval [0, 1].

Question 3 continues on the next page

(b) Use the intermediate value theorem to show that the function $f(x) = \cos(x) - x$ has a root between 0 and π .

Question 3 continues on the next page

(c) Let a,b, and c be real numbers. Use the mean value theorem to show that the equation

$$4ax^3 + 3bx^2 + 2cx = a + b + c$$

always has a root between 0 and 1.

QUESTION 4. (15 Marks)

Consider the function f defined as follows: $f(x) = (x+6)^3(x-2)$.

- (a) Find the intervals of monotonicity of the function.
- (b) Find the intervals of concavity/convexity of the function f and the possible infection points.

QUESTION 5. (15 Marks)

(a) Find the curve y = f(x) that passes through the point (4,9) and whose gradient at each point (x,y) is $2\sqrt{x}$.

Question 5 continues on the next page

(b) Find the volume of the solid obtained by revolving the region bounded by the curves y=x and $y=\sqrt{x}$ about the line x=2.

QUESTION 6. (20 Marks)

(a) Evaluate the definite integrals: $\int_{-\pi}^{\pi/2} f(x) \, dx,$ where $f(x) = \left\{ \begin{array}{ll} e^x & \text{if } -\pi \leq x \leq 0, \\ \cos x & \text{if } 0 < x \leq \pi. \end{array} \right.$

(b) When the region bounded by the x-axis and the curve $y = \sqrt{r^2 - x^2}$ for $-r \le x \le r$ is rotated about the x-axis, we get a sphere with radius r. Find the volume of the sphere.

END OF PAPER

Appendix

Numerical Methods.

• Linearization Formula:

$$L(x) = f(a) + f'(a)(x - a)$$

• Newton's Method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• Trapezoidal Rule:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} [y_0 + 2 (y_1 + y_2 + \dots + y_{n-1}) + y_n]$$

• Simpson's Rule:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 2y_{n-2} + 4y_{n-1} + y_n \right]$$

Derivatives.

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\cot x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\cos x) = -\csc x \cot x$$

$$\frac{d}{dx}(a^x) = a^x \ln a$$

$$\frac{d}{dx}(\sin x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx}(\sinh x) = \operatorname{sech}^2 x$$

$$\frac{d}{dx}(\cosh x) = -\operatorname{csch}^2 x$$

$$\frac{d}{dx}(\sinh x) = -\operatorname{csch}^2 x$$

$$\frac{d}{dx}(\sinh x) = -\operatorname{csch}^2 x$$

$$\frac{d}{dx}(\sinh x) = -\operatorname{csch}^2 x$$

$$\frac{d}{dx}(\cosh x) = -\operatorname{csch} x \coth x$$

$$\frac{d}{dx}(\sinh^{-1} x) = \frac{1}{\sqrt{x^2 + 1}}$$

Antiderivatives.

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos^{2} x \, dx = \sin x + C$$

$$\int \csc^{2} x \, dx = -\cot x + C$$

$$\int \tan x \sec x \, dx = \sec x + C$$

$$\int \cot x \csc x \, dx = -\csc x + C$$

$$\int \cot x \, dx = \ln|\sin x| + C$$

$$\int e^{x} \, dx = e^{x} + C$$

$$\int a^{x} \, dx = \frac{a^{x}}{\ln a} + C, \ a > 0$$

$$\int \frac{1}{\sqrt{1-x^{2}}} \, dx = \sin^{-1} x + C$$

$$\int \frac{1}{\sqrt{a^{2}-x^{2}}} \, dx = \sin^{-1} \left(\frac{x}{a}\right) + C, \ |x| < |a|$$

$$\int \frac{1}{x^{2}+a^{2}} \, dx = \sinh^{-1} x + C$$

$$\int \frac{1}{x\sqrt{x^{2}-1}} \, dx = \sec^{-1} |x| + C, \ |x| > 1$$

$$\int \frac{1}{\sqrt{x^{2}+1}} \, dx = \sinh^{-1} x + C$$

$$\int \frac{1}{x\sqrt{x^{2}-a^{2}}} \, dx = \frac{1}{a} \sec^{-1} \left|\frac{x}{a}\right| + C, \ |x| > |a|$$

$$\int \frac{1}{\sqrt{x^{2}+a^{2}}} \, dx = \sinh^{-1} \left(\frac{x}{a}\right) + C$$

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

MH1810 MATHEMATICS 1

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.