# SSN COLLEGE OF ENGINEERING Department of Mathematics

UMA1477 & UMA1478

# **UNIT- 1 Random Variables**

## -Prepared by Dr.N.Padmapriya

#### **Random Experiment**

An experiment whose outcome is not known in certainty or in advance is known as random experiment.

Example: Tossing a coin, throwing a die.

#### **Event**

The set of likelihood of particular outcome.

Example: Tossing a coin and getting a head or tail.

#### **Exhaustive Events**

The total number of possible outcomes in any trial is known as exhaustive events.

Example: Throwing a die – six exhaustive events

#### Sample space

Throwing a single fair die. This experiment may show any number from one to six. The set of all possible outcomes is called sample space.

#### Mutually exclusive events

Two events are said to be mutually exclusive or incompatible if the happening of one event prevents the happening of the other.

Example: In tossing a coin the events head and tail are mutually exclusive.

#### **Independent Events**

Two events are said to be independent if the happening of one event does not affect the happening of the other.

Example: In tossing an unbiased coin the event of getting head in first toss is independent of getting a head or tail in the second, third and subsequent throws.

### **Conditional Probability**

Consider an event A which depends on the event B. The probability of the event A given that the event B has already occurred is denoted as P (A/B) and is called as conditional probability.

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

## **Elementary theorems**

$$P(A \cap \overline{A}) = \phi$$
, Aisthecomplement of A

$$P(A \cup \overline{A}) = S$$

$$P(\overline{A}) = 1 - P(A)$$

$$P(S \cup \phi) = P(S)$$

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

$$For any event P(E) \ge 0, \sum p_i = 1$$

# One dimensional random variable

Let S be the sample space associated with a given random experiment. A real valued function defined on S and taking values in  $(-\infty,\infty)$  is called a one dimensional random variable.



# Example:

In the experiment of tossing a coin once the sample space S= {H, T} where H denotes head and T denotes tail.

A random variable X can be defined as 
$$X(w) = \begin{cases} 0 & \text{if } w \in T \\ 1 & \text{if } w \in H \end{cases}$$



Here X takes two vales such a random variable is called a Bernoulli random variable.

There are two types of random variables. They are,

- Discrete random variable
- Continuous random variable.

#### **Discrete Random Variable**

If a random variable takes at most a countable number of values it is called a discrete random variable. In other words, a real valued function defined on a discrete sample space is called a discrete random variable.

#### **Probability mass function**

Suppose X is a discrete random variable taking at most a countable number of values  $x_1, x_2, x_3,...$  Each possible outcome  $x_i$  is associated with a probability i.e.

P(X=xi) = p (xi) =pi called the probability of xi. The number p (xi) must satisfy the following conditions.

$$p(x_i) \ge 0$$

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

The function p is called the probability mass function.

# Distribution function of a random variable or Cumulative Distribution function

Let X be a discrete random variable taking countable number of values  $x_1, x_2, x_3...$  with associated probabilities  $p(x_i) \ge 0$ . Then the distribution function of X is given by

$$F(x) = F_X(x) = P(X \le x) = \sum_{x_i \le x} p(x_i), -\infty \le x \le \infty$$
$$P(X \le x) = \{ w \in S \mid X(w) \le x \}$$

# Continuous random variable

A random variable X is said to be continuous if it can take all possible values between certain limits i.e., it takes all possible values in a given interval.

#### **Probability density function**

If X is continuous random variable such that

$$P(x - \frac{dx}{2} \le X \le x + \frac{dx}{2}) = f(x)dx$$

then f(x) is called the pdf of X provided f(x) satisfied the following conditions.

$$f(x) \ge 0$$

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

#### Continuous distribution function

If X is a continuous random variable with pdf f(x) then the function

 $F(x)=P(X \le x)=\int_{-\infty}^{x}f(x)dx, -\infty < x < \infty$  is called the distribution function or cumulative

distribution function.

# **Properties of distribution function**

- 2.  $0 \le F(x) \le 1$
- 3. If x < y,  $F(x) \le F(y)$
- 4. If X is a discrete random variable taking  $x_1, x_2, x_3$ .....

$$\mathbf{x}_1 \leq \mathbf{x}_2 \leq \dots \leq \mathbf{x}_i$$

$$P(X = x_i) = F(x_i) - F(x_{i-1})$$

5. 
$$F'(x) = \frac{d}{dx}(F(x)) = f(x), f(x) \ge 0$$

6. 
$$P(a \le x \le b) = \int_{a}^{b} f(x)dx = \int_{-\infty}^{b} f(x)dx - \int_{-\infty}^{a} f(x)dx = P(X \le b) - P(X \le a)$$

7. If X is a continuous random variable then

$$P(a < X < b) = P(a \le X < b) = P(a \le X \le b) = P(a \le X \le b) = \int_{a}^{b} f(x)dx = F(b) - F(a)$$

8. If X is a discrete random variable then

$$P(a < X \le b) = F(b) - F(a)$$

$$P(X \le b) = P(X \le a) + P(a < X \le b)$$

$$\therefore P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

9. If X is a discrete random variable then

$$P(a \leq X \leq b) = P(X = a) + F(b) - F(a)$$

*Event*( $a \le X \le b$ )*isthedisjo* int *unionof* ( $a < X \le b$ )  $\cup$  (X = a)

$$P(a \le X \le b) = P(a < X \le b) + P(X = a) = F(b) - F(a) + P(X = a)$$

10. If X is a discrete random variable then

$$P(a < X < b) = F(b) - F(a) - P(X = b)$$
  
 
$$P(a < X < b) = P(a < X \le b) - P(X = b) = F(b) - F(a) - P(X = b)$$

11. If X is a discrete random variable then

$$P(a \le X < b) = P(X = a) + F(b) - F(a) - P(X = b)$$

$$(a \le X < b) = (X = a) \cup (a < X < b)$$

$$P(a \le X < b) = P(X = a) + P(a < X < b) = P(X = a) + F(b) - F(a) - P(X = b)$$

\_\_\_\_\_