Resueltos Guia de Ejercicios 2019

Investigación Operativa UTN FRBA Curso Miercoles Noche I4051

Ayudante: Juan Piro Docente: Martin Palazzo

Universidad Tecnológica Nacional Facultad Regional Buenos Aires

Resumen El siguiente documento se ha desarrollado con el fin de preparar la sección práctica de la materia Investigación Operativa de la carrera de Ingeniería Industrial.

Práctica Cadenas de Markov: Ejercicio 06.

En una comunidad hay 3 supermercados (S1, S2, S3) existe la movilidad de un cliente de uno a otro. El 1 de septiembre, 1/4 de los clientes va al S1, 1/3 al S2 y 5/12 al S3 de un total de 10.000 personas. Cada mes el S1 retiene el 90 % de sus clientes y pierde el 10 % que se va al S2. Se averiguó que el S2 solo retiene el 5 % y pierde el 85 % que va a S1 y el resto se va a S3, el S3 retiene solo el 40 %, pierde el 50 % que va al S1 y el 10 % va al S2.

- 1. Establecer la matriz de transición
- 2. ¿Cuál es la proporción de clientes para los supermercados el 1 de noviembre?
- 3. Hallar el vector de probabilidad estable.

Resolución

Comenzamos analizando los datos:

El ejercicio plantea que hay tres estados posibles:

- Cliente de S1
- Cliente de S2
- Cliente de S3

Luego, considerando la oración: "El 1 de septiembre, 1/4 de los clientes va al S1, 1/3 al S2 y 5/12 al S3 de un total de 10.000 personas."

Podemos obtener el vector de probabilidad de estado inicial, definiendo como **t=0 al 1 de Septiembre.** El hecho que nos diga la cantidad total de clientes totales (10000), no tiene implicancia para calcular dicho vector, ya que en este solamente nos importa la probabilidad de pertenecer a cada uno de los estados.

De esta manera definimos:

 $p(t\text{=}0)\text{:}\{\,1/25,\,1/3\,\,,\,5/12\,\}$ Con t=0 al 1 de Septiembre

Luego el ejercicio continúa describiendo cómo se mueven los clientes de un supermercado al otro en la próxima compra, es decir, cómo pueden pasar de un estado a otro de t=i a t=i+1. Entonces:

S1: S2: S3:

- Retiene el 90%
- El 10% se mueve a S2
- Retiene el 5%
- El 85% se mueve a S1
- El 10% se mueve a S3
- Retiene el 40%
- El 50% se mueve a S1
- El 10% se mueve a S3

Con estos datos podemos confeccionar el grafo del ejercicio, recordando que:

- Los Estados son representados por los nodos
- Los arcos con sus respectivos pesos representan la probabilidad de transición de estado.

Grafo asociado:

Procediendo con las consignas:

1. Establecer la matriz de transición:

Como ya tenemos el grafo confeccionado podemos armar la matriz de transición de un paso sin problema, teniendo en cuenta el peso, dirección y sentido de los arcos:

S1 S2 S3

S1 0.9 0.1 0

S2 0.85 0.05 0.1

S3 0.5 0.1 0.4

$$P^{(1)} = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0.85 & 0.05 & 0.1 \\ 0.5 & 0.1 & 0.4 \end{bmatrix}$$

2. ¿Cuál es la proporción de clientes para los supermercados el 1 de noviembre?

El ejercicio nos está pidiendo que calculemos el vector de probabilidad de estados al 1 de Noviembre, ya que este representa la distribución de clientes en dicha fecha. Para ello recurriremos a la siguiente ecuación:

(1)
$$p^{(n)} = p^{(0)} \times P^{(n)}$$

Donde:

- p(n): Vector de probabilidad de estado luego de n pasos.
- p(0): Vector de probabilidad de estado inicial.
- P(n): Matriz de transición de n pasos.

En nuestro ejercicio ya conocemos p(0), ya que lo definimos al comienzo con el análisis de los datos del ejercicio. Por ende nos queda calcular p(n) y P(n), para ello primero vamos a averiguar cuántos intervalos debemos analizar, es decir, el valor de n. Para comprenderlo fácilmente realizamos el siguiente gráfico:

Podemos ver todas transiciones posibles al realizar distintos pasos, como nos solicita al 1 de Noviembre, definimos n=2.

Conociendo esto, procedemos a calcular la matriz de transición de dos pasos:

$$P^{(2)} = P^{(1)} \times P^{(1)}$$

$$P^{(2)} = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0.85 & 0.05 & 0.1 \\ 0.5 & 0.1 & 0.4 \end{bmatrix} \times \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0.85 & 0.05 & 0.1 \\ 0.5 & 0.1 & 0.4 \end{bmatrix}$$

Haciendo el producto Matricial obtenemos:

$$P^{(2)} = \begin{bmatrix} 0.895 & 0.095 & 0.01 \\ 0.8575 & 0.0975 & 0.045 \\ 0.735 & 0.095 & 0.17 \end{bmatrix}$$

Luego volvemos a la ecuación (1) reemplazamos. Calculamos el vector de probabilidad de estado al 1 de Noviembre:

$$p^{(2)} = p^{(0)} \times P^{(2)}$$

$$p^{(2)} = \begin{bmatrix} 1/4 & 1/3 & 5/12 \end{bmatrix} \times \begin{bmatrix} 0.895 & 0.095 & 0.01 \\ 0.8575 & 0.0975 & 0.045 \\ 0.735 & 0.095 & 0.17 \end{bmatrix}$$

$$p^{(2)} = \begin{bmatrix} 0.8158 & 0.0958 & 0.0883 \end{bmatrix}$$

De esta manera obtenemos en porcentaje de cómo se distribuye el mercado de clientes al 1 de Noviembre.

Tambiens se puede expresar en unidades de clientes:

- S1: 8158 Clientes
- S2: 959 Clientes
- S3: 883 Clientes

3. Hallar el vector de probabilidad estable.

Para dicho vector, podemos recurrir a las siguientes ecuaciones:

$$p^{(n)} = p^{(n)} \times P^{(1)}$$

 $\sum_{i=1}^{n} p_i = 1$

$$[ps_1 \quad ps_2 \quad ps_3] = [ps_1 \quad ps_2 \quad ps_3] \times \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0.85 & 0.05 & 0.1 \\ 0.5 & 0.1 & 0.4 \end{bmatrix}$$

Resolvemos:

(1)
$$ps_1 = 0.9ps_1 + 0.85ps_2 + 0 ps_3$$

(2)
$$ps_2 = 0.1ps_1 + 0.05ps_2 + 0.1ps_3$$

(3)
$$ps_3 = 0ps_1 + 0.1ps_2 + 0.4 ps_3$$

Y recordando de agregar la condición, para salvar la indeterminación:

$$(4) \quad ps_1 + ps_2 + ps_3 = 1$$

Resolvemos el sistema de ecuaciones trabajando con (1), (2) y (4). Obtenemos:

$$\pi = [ps_1 \quad ps_2 \quad ps_3] = [8/9 \quad 2/21 \quad 1/63]$$