DNG SDK 1.5

Generated by Doxygen 1.8.15

1 Adobe Digital Negative SDK 1.5	2
1.1 Introduction	 . 2
1.2 Command line validation: dng_validate	 . 2
1.3 Starting points	 . 2
1.4 Related documentation	 . 2
2 Hierarchical Index	2
2.1 Class Hierarchy	 . 2
3 Class Index	11
3.1 Class List	 . 11
4 File Index	22
4.1 File List	 . 22
5 Class Documentation	25
5.1 AutoArray< T > Class Template Reference	 . 25
5.1.1 Detailed Description	 . 25
5.1.2 Constructor & Destructor Documentation	 . 25
5.1.3 Member Function Documentation	 . 26
5.2 AutoPtr< T > Class Template Reference	 . 27
5.2.1 Detailed Description	 . 28
5.2.2 Constructor & Destructor Documentation	 . 28
5.2.3 Member Function Documentation	 . 28
5.3 color_tag_set Class Reference	 . 30
5.4 DecompressInfo Struct Reference	 . 30
5.5 dng_1d_concatenate Class Reference	 . 31
5.5.1 Detailed Description	 . 31
5.5.2 Constructor & Destructor Documentation	 . 31
5.5.3 Member Function Documentation	 . 32
5.6 dng_1d_function Class Reference	 . 33
5.6.1 Detailed Description	 . 34
5.6.2 Member Function Documentation	 . 34
5.7 dng_1d_identity Class Reference	 . 35
5.7.1 Detailed Description	 . 36
5.8 dng_1d_inverse Class Reference	 . 36
5.8.1 Detailed Description	 . 36
5.8.2 Member Function Documentation	 . 36
5.9 dng_1d_table Class Reference	 . 37
5.9.1 Detailed Description	 . 38
5.9.2 Constructor & Destructor Documentation	 . 38

5.9.3 Member Function Documentation
5.10 dng_abort_sniffer Class Reference
5.10.1 Detailed Description
5.10.2 Member Function Documentation
5.11 dng_area_spec Class Reference
5.11.1 Detailed Description
5.11.2 Member Function Documentation
5.12 dng_area_task Class Reference
5.12.1 Detailed Description
5.12.2 Member Function Documentation
5.13 dng_area_task_progress Class Reference
5.14 dng_bad_pixel_list Class Reference
5.14.1 Detailed Description
5.14.2 Member Function Documentation
5.15 dng_base_tile_iterator Class Reference
5.16 dng_basic_tag_set Class Reference
5.17 dng_big_table Class Reference
5.18 dng_big_table_cache Class Reference
5.19 dng_big_table_storage Class Reference
5.20 dng_bilinear_interpolator Class Reference
5.21 dng_bilinear_kernel Class Reference
5.22 dng_bilinear_pattern Class Reference
5.23 dng_camera_profile Class Reference
5.23.1 Detailed Description
5.23.2 Member Function Documentation
5.24 dng_camera_profile_id Class Reference
5.24.1 Detailed Description
5.24.2 Constructor & Destructor Documentation
5.24.3 Member Function Documentation
5.25 dng_camera_profile_info Class Reference
5.26 dng_color_space Class Reference
5.26.1 Detailed Description
5.26.2 Member Function Documentation
5.27 dng_color_spec Class Reference
5.27.1 Detailed Description
5.27.2 Constructor & Destructor Documentation
5.27.3 Member Function Documentation
5.28 dng_condition Class Reference
5.29 dng const tile buffer Class Reference

	5.29.1 Detailed Description	. 81
	5.29.2 Constructor & Destructor Documentation	. 81
5.30	dng_date_time Class Reference	. 81
	5.30.1 Detailed Description	. 82
	5.30.2 Constructor & Destructor Documentation	. 82
	5.30.3 Member Function Documentation	. 83
5.31	dng_date_time_info Class Reference	. 84
	5.31.1 Detailed Description	. 84
5.32	dng_date_time_storage_info Class Reference	. 84
	5.32.1 Detailed Description	. 85
	5.32.2 Member Function Documentation	. 85
5.33	dng_depth_preview Class Reference	. 86
5.34	dng_dirty_tile_buffer Class Reference	. 87
	5.34.1 Detailed Description	. 87
	5.34.2 Constructor & Destructor Documentation	. 87
5.35	dng_dither Class Reference	. 88
5.36	dng_encode_proxy_task Class Reference	. 88
	5.36.1 Member Function Documentation	. 89
5.37	dng_exception Class Reference	. 90
	5.37.1 Detailed Description	. 90
	5.37.2 Constructor & Destructor Documentation	. 90
	5.37.3 Member Function Documentation	. 91
5.38	dng_exif Class Reference	. 91
	5.38.1 Detailed Description	. 95
	5.38.2 Member Function Documentation	. 95
5.39	dng_fast_interpolator Class Reference	. 99
	5.39.1 Member Function Documentation	. 99
5.40	dng_file_stream Class Reference	. 100
	5.40.1 Detailed Description	. 101
	5.40.2 Constructor & Destructor Documentation	. 101
5.41	dng_filter_opcode Class Reference	. 102
	5.41.1 Detailed Description	. 102
	5.41.2 Member Function Documentation	. 102
5.42	dng_filter_opcode_task Class Reference	. 106
	5.42.1 Member Function Documentation	. 106
5.43	dng_filter_task Class Reference	. 108
	5.43.1 Detailed Description	. 109
	5.43.2 Constructor & Destructor Documentation	. 109
	5.43.3 Member Function Documentation	. 110

5.44 dng_filter_warp Class Reference
5.44.1 Member Function Documentation
5.45 dng_find_new_raw_image_digest_task Class Reference
5.45.1 Member Function Documentation
5.46 dng_fingerprint Class Reference
5.46.1 Detailed Description
5.46.2 Member Function Documentation
5.47 dng_fingerprint_hash Struct Reference
5.47.1 Detailed Description
5.48 dng_fingerprint_less_than Struct Reference
5.48.1 Detailed Description
5.49 dng_function_exposure_ramp Class Reference
5.49.1 Detailed Description
5.49.2 Member Function Documentation
5.50 dng_function_exposure_tone Class Reference
5.50.1 Detailed Description
5.51 dng_function_gamma_encode Class Reference
5.51.1 Detailed Description
5.51.2 Member Function Documentation
5.52 dng_function_GammaEncode_1_8 Class Reference
5.52.1 Detailed Description
5.52.2 Member Function Documentation
5.53 dng_function_GammaEncode_2_2 Class Reference
5.53.1 Detailed Description
5.53.2 Member Function Documentation
5.54 dng_function_GammaEncode_sRGB Class Reference
5.54.1 Detailed Description
5.54.2 Member Function Documentation
5.55 dng_function_zero_offset Class Reference
5.55.1 Detailed Description
5.55.2 Member Function Documentation
5.56 dng_gain_map Class Reference
5.56.1 Detailed Description
5.56.2 Constructor & Destructor Documentation
5.56.3 Member Function Documentation
5.57 dng_gain_map_interpolator Class Reference
5.58 dng_gamma_encode_proxy Class Reference
5.58.1 Member Function Documentation
5.59 dng host Class Reference

5.59	Detailed Description
5.59	Constructor & Destructor Documentation
5.59	Member Function Documentation
5.60 dng_l	e_sat_map Class Reference
5.60	Detailed Description
5.60	Member Function Documentation
5.61 dng_i	Class Reference
5.61	Detailed Description
5.62 dng_i	age Class Reference
5.62	Detailed Description
5.62	Member Enumeration Documentation
5.62	Member Function Documentation
5.63 dng_i	age_preview Class Reference
5.64 dng_i	age_spooler Class Reference
5.65 dng_i	age_writer Class Reference
5.65	Detailed Description
5.65	Member Function Documentation
5.66 dng_i	o Class Reference
5.66	Detailed Description
5.66	Member Function Documentation
5.67 dng_i	place_opcode Class Reference
5.67	Detailed Description
5.67	Member Function Documentation
5.68 dng_i	place_opcode_task Class Reference
5.68	Member Function Documentation
5.69 dng_i	c Class Reference
5.69	Detailed Description
5.69	Member Function Documentation
5.70 dng_j	eg_image Class Reference
5.71 dng_j	eg_image_encode_task Class Reference
5.71	Member Function Documentation
5.72 dng_j	eg_image_find_digest_task Class Reference
5.72	Member Function Documentation
5.73 dng_j	eg_preview Class Reference
5.74 dng_j	eg_preview_tag_set Class Reference
5.75 dng_l	nit_float_depth_task< simd > Class Template Reference
5.75	Member Function Documentation
5.76 dng_l	earization_info Class Reference
5.76	Detailed Description

5.76.2 Member Function Documentation
5.76.3 Member Data Documentation
5.77 dng_linearize_image Class Reference
5.77.1 Member Function Documentation
5.78 dng_linearize_plane Class Reference
5.79 dng_local_string Class Reference
5.80 dng_lock_mutex Class Reference
5.81 dng_look_table Class Reference
5.82 dng_look_table_cache Class Reference
5.83 dng_lossless_decoder Class Reference
5.84 dng_lossless_encoder Class Reference
5.85 dng_lzw_compressor Class Reference
5.86 dng_lzw_expander Class Reference
5.87 dng_malloc_block Class Reference
5.88 dng_mask_preview Class Reference
5.89 dng_matrix Class Reference
5.89.1 Detailed Description
5.90 dng_matrix_3by3 Class Reference
5.90.1 Detailed Description
5.91 dng_matrix_4by3 Class Reference
5.91.1 Detailed Description
5.92 dng_matrix_4by4 Class Reference
5.92.1 Detailed Description
5.93 dng_md5_printer Class Reference
5.93.1 Detailed Description
5.93.2 Member Function Documentation
5.94 dng_md5_printer_stream Class Reference
5.94.1 Detailed Description
5.95 dng_memory_allocator Class Reference
5.95.1 Detailed Description
5.95.2 Member Function Documentation
5.96 dng_memory_block Class Reference
5.96.1 Detailed Description
5.96.2 Member Function Documentation
5.97 dng_memory_data Class Reference
5.97.1 Detailed Description
5.97.2 Constructor & Destructor Documentation
5.97.3 Member Function Documentation
5.98 dng_memory_stream Class Reference 212

5.98.1 Detailed Description
5.98.2 Constructor & Destructor Documentation
5.98.3 Member Function Documentation
5.99 dng_metadata Class Reference
5.99.1 Detailed Description
5.99.2 Member Function Documentation
5.100 dng_mosaic_info Class Reference
5.100.1 Detailed Description
5.100.2 Member Function Documentation
5.100.3 Member Data Documentation
5.101 dng_mutex Class Reference
5.102 dng_negative Class Reference
5.102.1 Detailed Description
5.102.2 Member Function Documentation
5.103 dng_noise_function Class Reference
5.103.1 Detailed Description
5.103.2 Member Function Documentation
5.104 dng_noise_profile Class Reference
5.104.1 Detailed Description
5.105 dng_opcode Class Reference
5.105.1 Detailed Description
5.105.2 Member Enumeration Documentation
5.105.3 Member Function Documentation
5.106 dng_opcode_DeltaPerColumn Class Reference
5.106.1 Detailed Description
5.106.2 Constructor & Destructor Documentation
5.106.3 Member Function Documentation
5.107 dng_opcode_DeltaPerRow Class Reference
5.107.1 Detailed Description
5.107.2 Constructor & Destructor Documentation
5.107.3 Member Function Documentation
5.108 dng_opcode_FixBadPixelsConstant Class Reference
5.108.1 Detailed Description
5.108.2 Constructor & Destructor Documentation
5.108.3 Member Function Documentation
5.109 dng_opcode_FixBadPixelsList Class Reference
5.109.1 Detailed Description
5.109.2 Constructor & Destructor Documentation
5.109.3 Member Function Documentation

5.110 dng_opcode_FixVignetteRadial Class Reference
5.110.1 Detailed Description
5.110.2 Member Function Documentation
5.111 dng_opcode_GainMap Class Reference
5.111.1 Detailed Description
5.111.2 Constructor & Destructor Documentation
5.111.3 Member Function Documentation
5.112 dng_opcode_list Class Reference
5.112.1 Detailed Description
5.112.2 Member Function Documentation
5.113 dng_opcode_MapPolynomial Class Reference
5.113.1 Detailed Description
5.113.2 Constructor & Destructor Documentation
5.113.3 Member Function Documentation
5.114 dng_opcode_MapTable Class Reference
5.114.1 Detailed Description
5.114.2 Constructor & Destructor Documentation
5.114.3 Member Function Documentation
5.115 dng_opcode_ScalePerColumn Class Reference
5.115.1 Detailed Description
5.115.2 Constructor & Destructor Documentation
5.115.3 Member Function Documentation
5.116 dng_opcode_ScalePerRow Class Reference
5.116.1 Detailed Description
5.116.2 Constructor & Destructor Documentation
5.116.3 Member Function Documentation
5.117 dng_opcode_TrimBounds Class Reference
5.117.1 Detailed Description
5.117.2 Member Function Documentation
5.118 dng_opcode_Unknown Class Reference
5.118.1 Detailed Description
5.118.2 Member Function Documentation
5.119 dng_opcode_WarpFisheye Class Reference
5.119.1 Detailed Description
5.119.2 Member Function Documentation
5.120 dng_opcode_WarpRectilinear Class Reference
5.120.1 Detailed Description
5.120.2 Member Function Documentation
5.121 dng_orientation Class Reference

5.122 dng_pixel_buffer Class Reference
5.122.1 Detailed Description
5.122.2 Constructor & Destructor Documentation
5.122.3 Member Function Documentation
5.123 dng_point Class Reference
5.124 dng_point_real64 Class Reference
5.125 dng_preview Class Reference
5.126 dng_preview_info Class Reference
5.127 dng_preview_list Class Reference
5.128 dng_preview_tag_set Class Reference
5.129 dng_raw_preview Class Reference
5.130 dng_raw_preview_tag_set Class Reference
5.131 dng_read_image Class Reference
5.132 dng_read_tiles_task Class Reference
5.132.1 Member Function Documentation
5.133 dng_rect Class Reference
5.134 dng_rect_real64 Class Reference
5.135 dng_ref_counted_block Class Reference
5.135.1 Detailed Description
5.135.2 Constructor & Destructor Documentation
5.135.3 Member Function Documentation
5.136 dng_render Class Reference
5.136.1 Detailed Description
5.136.2 Constructor & Destructor Documentation
5.136.3 Member Function Documentation
5.137 dng_render_task Class Reference
5.137.1 Member Function Documentation
5.138 dng_resample_bicubic Class Reference
5.139 dng_resample_coords Class Reference
5.140 dng_resample_function Class Reference
5.141 dng_resample_task Class Reference
5.141.1 Member Function Documentation
5.142 dng_resample_weights Class Reference
5.143 dng_resample_weights_2d Class Reference
5.144 dng_resolution Class Reference
5.144.1 Detailed Description
5.145 dng_rgb_table Class Reference
5.146 dng_rgb_table_cache Class Reference
5.147 dng_row_interleaved_image Class Reference

5.148 dng_sate_int32 Class Reference
5.149 dng_safe_uint32 Class Reference
5.150 dng_set_minimum_priority Class Reference
5.150.1 Detailed Description
5.151 dng_shared Class Reference
5.152 dng_simple_image Class Reference
5.152.1 Detailed Description
5.153 dng_sniffer_task Class Reference
5.153.1 Detailed Description
5.153.2 Constructor & Destructor Documentation
5.153.3 Member Function Documentation
5.154 dng_space_AdobeRGB Class Reference
5.154.1 Detailed Description
5.155 dng_space_ColorMatch Class Reference
5.155.1 Detailed Description
5.156 dng_space_fakeRGB Class Reference
5.157 dng_space_GrayGamma18 Class Reference
5.157.1 Detailed Description
5.158 dng_space_GrayGamma22 Class Reference
5.158.1 Detailed Description
5.159 dng_space_ProPhoto Class Reference
5.159.1 Detailed Description
5.160 dng_space_sRGB Class Reference
5.160.1 Detailed Description
5.161 dng_spline_solver Class Reference
5.161.1 Member Function Documentation
5.162 dng_spooler Class Reference
5.163 dng_srational Class Reference
$5.164\ dng_std_allocator < T > Class\ Template\ Reference\ \dots$
5.164.1 Detailed Description
5.165 dng_stream Class Reference
5.165.1 Detailed Description
5.165.2 Constructor & Destructor Documentation
5.165.3 Member Function Documentation
5.166 dng_stream_contiguous_read_hint Class Reference
5.167 dng_stream_double_buffered Class Reference
5.168 dng_string Class Reference
5.169 dng_string_list Class Reference
5.170 dng suite Struct Reference

5.171 dng_temperature Class Reference
5.172 dng_tiff_directory Class Reference
5.173 dng_tile_buffer Class Reference
5.173.1 Detailed Description
5.173.2 Constructor & Destructor Documentation
5.174 dng_tile_iterator Class Reference
5.175 dng_tile_reverse_iterator Class Reference
5.176 dng_time_zone Class Reference
5.176.1 Detailed Description
5.177 dng_timer Class Reference
5.178 dng_tone_curve Class Reference
5.179 dng_tone_curve_acr3_default Class Reference
5.179.1 Detailed Description
5.180 dng_uncopyable Class Reference
5.181 dng_unlock_mutex Class Reference
5.182 dng_urational Class Reference
5.183 dng_vector Class Reference
5.183.1 Detailed Description
5.184 dng_vector_3 Class Reference
5.184.1 Detailed Description
5.185 dng_vector_4 Class Reference
5.185.1 Detailed Description
5.186 dng_vignette_radial_function Class Reference
5.186.1 Member Function Documentation
5.187 dng_vignette_radial_params Class Reference
5.187.1 Detailed Description
5.188 dng_warp_params Class Reference
5.188.1 Detailed Description
5.188.2 Constructor & Destructor Documentation
5.188.3 Member Function Documentation
5.189 dng_warp_params_fisheye Class Reference
5.189.1 Detailed Description
5.189.2 Constructor & Destructor Documentation
5.189.3 Member Function Documentation
5.190 dng_warp_params_rectilinear Class Reference
5.190.1 Detailed Description
5.190.2 Constructor & Destructor Documentation
5.190.3 Member Function Documentation
5.191 dng_write_tiles_task Class Reference

5.191.1 Member Function Documentation
5.192 dng_xmp Class Reference
5.193 dng_xmp_namespace Struct Reference
5.194 dng_xmp_private Class Reference
5.195 dng_xmp_sdk Class Reference
5.196 dng_xy_coord Class Reference
5.197 exif_tag_set Class Reference
5.198 dng_hue_sat_map::HSBModify Struct Reference
5.198.1 Detailed Description
5.199 HuffmanTable Struct Reference
5.200 JpegComponentInfo Struct Reference
5.201 mosaic_tag_set Class Reference
5.202 PreserveStreamReadPosition Class Reference
5.203 profile_tag_set Class Reference
5.204 range_tag_set Class Reference
5.205 ruvt Struct Reference
$5.206 \ SIMDTraits < SIMDType > Class \ Template \ Reference \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$5.207 \ SIMDTraits < AVX > Class \ Template \ Reference \ \dots \ $
$5.208 \ SIMDTraits < AVX2 > Class \ Template \ Reference \\ \dots $
$5.209 \ SIMDTraits < AVX512_SKX > Class \ Template \ Reference \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$5.210 \ SIMDTraits < SSE2 > Class \ Template \ Reference \\ \ldots \\ $
5.211 tag_cfa_pattern Class Reference
5.212 tag_data_ptr Class Reference
5.213 tag_dng_noise_profile Class Reference
5.214 tag_encoded_text Class Reference
5.215 tag_exif_date_time Class Reference
5.216 tag_icc_profile Class Reference
5.217 tag_int16_ptr Class Reference
5.218 tag_iptc Class Reference
5.219 tag_matrix Class Reference
5.220 tag_real64 Class Reference
5.221 tag_srational Class Reference
5.222 tag_srational_ptr Class Reference
5.223 tag_string Class Reference
5.224 tag_uint16 Class Reference
5.225 tag_uint16_ptr Class Reference
5.226 tag_uint32 Class Reference
5.227 tag_uint32_ptr Class Reference
5.228 tag_uint8 Class Reference

	5.229 tag_uint8_ptr Class Reference	. 417
	5.230 tag_urational Class Reference	. 418
	5.231 tag_urational_ptr Class Reference	. 418
	5.232 tag_xmp Class Reference	. 419
	5.233 TempBigEndian Class Reference	. 419
	5.234 TempLittleEndian Class Reference	. 420
	5.235 TempStreamSniffer Class Reference	. 420
	5.236 tiff_dng_extended_color_profile Class Reference	. 421
	5.237 tiff_tag Class Reference	. 421
	5.238 UnicodeToLowASCIIEntry Struct Reference	. 423
6 I	File Documentation	423
٠.	6.1 dng_1d_function.h File Reference	
	6.1.1 Detailed Description	
	6.2 dng_1d_table.h File Reference	
	6.2.1 Detailed Description	
	6.3 dng abort sniffer.h File Reference	
	6.3.1 Detailed Description	
	6.4 dng_area_task.h File Reference	
	6.4.1 Detailed Description	
	6.5 dng assertions.h File Reference	
	6.5.1 Detailed Description	
	6.5.2 Macro Definition Documentation	
	6.6 dng_auto_ptr.h File Reference	
	6.6.1 Detailed Description	
	6.7 dng bad pixels.h File Reference	
	6.7.1 Detailed Description	
	6.8 dng_bottlenecks.h File Reference	. 427
	6.8.1 Detailed Description	. 431
	6.9 dng_camera_profile.h File Reference	. 432
	6.9.1 Detailed Description	. 432
	6.10 dng_color_space.h File Reference	. 433
	6.10.1 Detailed Description	. 433
	6.11 dng_color_spec.h File Reference	. 433
	6.11.1 Detailed Description	. 434
	6.11.2 Function Documentation	. 434
	6.12 dng_date_time.h File Reference	. 434
	6.12.1 Detailed Description	. 435
	6.12.2 Enumeration Type Documentation	. 435

6.12.3 Function Documentation	35
6.13 dng_errors.h File Reference	36
6.13.1 Detailed Description	37
6.13.2 Enumeration Type Documentation	37
6.14 dng_exceptions.h File Reference	37
6.14.1 Detailed Description	39
6.15 dng_exif.h File Reference	39
6.15.1 Detailed Description	39
6.16 dng_fast_module.h File Reference	39
6.16.1 Detailed Description	39
6.17 dng_file_stream.h File Reference	39
6.17.1 Detailed Description	40
6.18 dng_filter_task.h File Reference	40
6.18.1 Detailed Description	40
6.19 dng_fingerprint.h File Reference	40
6.19.1 Detailed Description	41
6.20 dng_flags.h File Reference	41
6.20.1 Detailed Description	41
6.20.2 Macro Definition Documentation	42
6.21 dng_gain_map.h File Reference	43
6.21.1 Detailed Description	44
6.22 dng_globals.h File Reference	44
6.22.1 Detailed Description	44
6.23 dng_host.h File Reference	44
6.23.1 Detailed Description	45
6.24 dng_hue_sat_map.h File Reference	45
6.24.1 Detailed Description	45
6.25 dng_ifd.h File Reference	45
6.25.1 Detailed Description	46
6.26 dng_image.h File Reference	46
6.26.1 Detailed Description	46
6.27 dng_image_writer.h File Reference	47
6.27.1 Detailed Description	48
6.28 dng_info.h File Reference	48
6.28.1 Detailed Description	48
6.29 dng_iptc.h File Reference	48
6.29.1 Detailed Description	49
6.30 dng_lens_correction.h File Reference	49
6.30.1 Detailed Description	149

461

6.31 dng_linearization_info.h File Reference
6.31.1 Detailed Description
6.32 dng_lossless_jpeg.h File Reference
6.32.1 Detailed Description
6.33 dng_matrix.h File Reference
6.33.1 Detailed Description
6.34 dng_memory_stream.h File Reference
6.34.1 Detailed Description
6.35 dng_misc_opcodes.h File Reference
6.35.1 Detailed Description
6.36 dng_mosaic_info.h File Reference
6.36.1 Detailed Description
6.37 dng_negative.h File Reference
6.37.1 Detailed Description
6.38 dng_opcode_list.h File Reference
6.38.1 Detailed Description
6.39 dng_opcodes.h File Reference
6.39.1 Detailed Description
6.40 dng_pixel_buffer.h File Reference
6.40.1 Detailed Description
6.41 dng_rational.h File Reference
6.41.1 Detailed Description
6.42 dng_read_image.h File Reference
6.42.1 Detailed Description
6.43 dng_render.h File Reference
6.43.1 Detailed Description
6.44 dng_sdk_limits.h File Reference
6.44.1 Detailed Description
6.44.2 Variable Documentation
6.45 dng_string.h File Reference
6.45.1 Detailed Description
6.46 dng_temperature.h File Reference
6.46.1 Detailed Description
6.47 dng_tone_curve.h File Reference
6.47.1 Detailed Description
6.48 dng_xy_coord.h File Reference
6.48.1 Detailed Description

Index

1 Adobe Digital Negative SDK 1.5

1.1 Introduction

Digital Negative (DNG) is a non-proprietary file format for camera raw image data and metadata. A wide variety of cameras and sensor types are supported by DNG, using the same documented file layout.

This SDK provides support for reading and writing DNG files as well as support for converting DNG data into a displayable or processible image. This SDK is intended to serve as a starting point for adding DNG support to existing applications that use and manipulate images.

1.2 Command line validation: dng_validate

A good place to start investigating the DNG SDK is the dng_validate command line tool, which can read, validate and convert an existing DNG file. The dng_validate.cpp file demonstrates a number of common uses of the SDK.

1.3 Starting points

- dng host Used to customize memory allocation, to communicate progress updates and test for cancellation.
- dng_negative Main container for metadata and image data in a DNG file.
- dng image Class used to hold and manipualte image data.
- dng_render Class used to convert DNG RAW data to displayable image data.
- dng_image_writer Class used to write DNG files.

1.4 Related documentation

- The Adobe Digital Negative specification: https://helpx.adobe.com/photoshop/digital-negative. ← html
- TIFF6 specification: https://www.adobe.io/content/dam/udp/en/open/standards/tiff/← TIFF6.pdf
- TIFF/EP specification: http://www.iso.org/iso/en/CatalogueDetailPage.Catalogue← Detail?CSNUMBER=29377&ICS1=37&ICS2=40&ICS3=99
- EXIF specification: http://www.cipa.jp/std/documents/e/DC-008-Translation-2016- \leftarrow E.pdf
- IPTC specification: http://www.iptc.org/IPTC7901/

2 Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

color_tag_set	30
DecompressInfo	
dng_1d_function	
dng_1d_concatenate	31
dng_1d_identity	35
dng_1d_inverse	36
dng_function_exposure_ramp	119
dng_function_exposure_tone	120
dng_function_gamma_encode	12 1
dng_function_GammaEncode_1_8	122
dng_function_GammaEncode_2_2	124
dng_function_GammaEncode_sRGB	126
dng_function_zero_offset	128
dng_gamma_encode_proxy	13 1
dng_noise_function	235
dng_spline_solver	343
dng_tone_curve_acr3_default	376
dng_vignette_radial_function	381
dng_abort_sniffer	39
dng_area_spec	42
dng_area_task	43
dng_encode_proxy_task	88
dng_filter_task	108
dng_fast_interpolator	99
dng_filter_opcode_task	106
dng_filter_warp	112
dng_render_task	32 1
dng_resample_task	325
dng_find_new_raw_image_digest_task	115
dng_inplace_opcode_task	165

dng_jpeg_image_encode_task	171
dng_jpeg_image_find_digest_task	172
dng_limit_float_depth_task< simd >	175
dng_linearize_image	181
dng_read_tiles_task	302
dng_write_tiles_task	394
dng_bad_pixel_list	51
dng_base_tile_iterator	55
dng_tile_iterator	373
dng_tile_reverse_iterator	374
dng_big_table	56
dng_look_table	184
dng_rgb_table	329
dng_big_table_cache	57
dng_look_table_cache	185
dng_rgb_table_cache	330
dng_big_table_storage	58
dng_bilinear_interpolator	58
dng_bilinear_kernel	58
dng_bilinear_pattern	59
dng_camera_profile	59
dng_camera_profile_id	70
dng_camera_profile_info	74
dng_color_space	75
dng_space_AdobeRGB	338
dng_space_ColorMatch	339
dng_space_fakeRGB	339
dng_space_GrayGamma18	340
dng_space_GrayGamma22	341
dng_space_ProPhoto	341

dng_space_sRGB	342
dng_color_spec	77
dng_date_time	81
dng_date_time_info	84
dng_date_time_storage_info	84
dng_exception	90
dng_exif	91
dng_fingerprint	116
dng_fingerprint_hash	118
dng_fingerprint_less_than	119
dng_gain_map_interpolator	131
dng_hue_sat_map	142
dng_ifd	145
dng_image	148
dng_row_interleaved_image	331
dng_simple_image	335
dng_image_writer	155
dng_iptc	167
dng_jpeg_image	17 1
dng_linearization_info	177
dng_linearize_plane	182
dng_local_string	183
dng_lossless_encoder	186
dng_matrix	188
dng_matrix_3by3	189
dng_matrix_4by3	190
dng_matrix_4by4	190
dng_md5_printer	19 1
dng_md5_printer_stream	192
dng_memory_allocator	193

dng_metadata	214
dng_mosaic_info	215
dng_negative	222
dng_noise_profile	237
dng_opcode	238
dng_filter_opcode	102
dng_opcode_FixBadPixelsConstant	245
dng_opcode_FixBadPixelsList	250
dng_inplace_opcode	162
dng_opcode_DeltaPerColumn	241
dng_opcode_DeltaPerRow	243
dng_opcode_FixVignetteRadial	254
dng_opcode_GainMap	257
dng_opcode_MapPolynomial	26 1
dng_opcode_MapTable	263
dng_opcode_ScalePerColumn	266
dng_opcode_ScalePerRow	269
dng_opcode_TrimBounds	271
dng_opcode_Unknown	272
dng_opcode_WarpFisheye	273
dng_opcode_WarpRectilinear	275
dng_orientation	277
dng_pixel_buffer	278
dng_tile_buffer	372
dng_const_tile_buffer	80
dng_dirty_tile_buffer	87
dng_point	296
dng_point_real64	297
dng_preview_info	298
dng_preview_list	298

dng_read_image	300
dng_rect	303
dng_rect_real64	304
dng_ref_counted_block	305
dng_resample_coords	324
dng_resample_function	324
dng_resample_bicubic	323
dng_resample_weights	327
dng_resample_weights_2d	328
dng_resolution	328
dng_safe_int32	332
dng_safe_uint32	332
dng_set_minimum_priority	333
dng_shared	333
dng_spooler	344
dng_image_spooler	155
dng_srational	344
${\tt dng_std_allocator} < {\tt T} >$	345
dng_stream_contiguous_read_hint	367
dng_string	368
dng_suite	370
dng_temperature	371
dng_time_zone	374
dng_tone_curve	375
dng_uncopyable	377
AutoArray < T >	25
AutoArray< AutoPtr< dng_memory_block >>	25
AutoArray< dng_fingerprint >	25
AutoPtr< T >	27
AutoPtr< dng_1d_table >	27

AutoPtr< dng_bad_pixel_list >	27
AutoPtr< dng_exif >	27
AutoPtr< dng_gain_map >	27
AutoPtr< dng_hue_sat_map >	27
AutoPtr< dng_image >	27
AutoPtr< dng_jpeg_image >	27
AutoPtr< dng_linearization_info >	27
AutoPtr< dng_linearize_plane >	27
AutoPtr< dng_memory_block >	27
AutoPtr< dng_mosaic_info >	27
AutoPtr< dng_preview >	27
AutoPtr< dng_shared >	27
AutoPtr< dng_spline_solver >	27
AutoPtr< dng_warp_params >	27
AutoPtr< dng_xmp >	27
dng_1d_table	37
dng_area_task_progress	50
dng_basic_tag_set	55
dng_preview_tag_set	299
dng_jpeg_preview_tag_set	174
dng_raw_preview_tag_set	300
dng_condition	80
dng_dither	88
dng_encode_proxy_task	88
dng_gain_map	129
dng_host	132
dng_image_spooler	155
dng_info	160
dng_jpeg_image_encode_task	171
dng_jpeg_image_find_digest_task	172

dng_lock_mutex	183
dng_lossless_decoder	185
dng_lzw_compressor	186
dng_lzw_expander	186
dng_memory_block	195
dng_malloc_block	187
dng_memory_data	202
dng_mutex	221
dng_opcode_GainMap	257
dng_opcode_list	258
dng_preview	297
dng_depth_preview	86
dng_image_preview	154
dng_jpeg_preview	174
dng_mask_preview	187
dng_raw_preview	299
dng_read_tiles_task	302
dng_render	315
dng_sniffer_task	336
dng_stream	346
dng_file_stream	100
dng_md5_printer_stream	192
dng_memory_stream	212
dng_stream_double_buffered	367
dng_string_list	369
dng_tiff_directory	37 1
tiff_dng_extended_color_profile	421
dng_tile_buffer	372
dng_timer	375
dng_unlock_mutex	377

	dng_write_tiles_task	39
	exif_tag_set	40
	PreserveStreamReadPosition	40:
	TempStreamSniffer	42
	tiff_tag	42
	tag_cfa_pattern	400
	tag_data_ptr	400
	tag_dng_noise_profile	400
	tag_exif_date_time	409
	tag_icc_profile	409
	tag_int16_ptr	410
	tag_real64	41:
	tag_srational	41:
	tag_srational_ptr	41:
	tag_matrix	41
	tag_uint16	41
	tag_uint16_ptr	41
	tag_uint32	419
	tag_uint32_ptr	410
	tag_uint8	410
	tag_uint8_ptr	41
	tag_xmp	419
	tag_urational	418
	tag_urational_ptr	419
	tag_encoded_text	40
	tag_iptc	41
	tag_string	41:
dn	g_urational	37
dn	g_vector	37
	dng_vector_3	379

3 Class Index

dng_vector_4	380
dng_vignette_radial_params	382
dng_warp_params	382
dng_warp_params_fisheye	387
dng_warp_params_rectilinear	391
dng_xmp	396
dng_xmp_namespace	399
dng_xmp_private	399
dng_xmp_sdk	400
dng_xy_coord	401
dng_hue_sat_map::HSBModify	402
HuffmanTable	402
JpegComponentInfo	403
mosaic_tag_set	403
profile_tag_set	404
range_tag_set	404
ruvt	404
SIMDTraits < SIMDType >	404
SIMDTraits < AVX >	405
SIMDTraits < AVX2 >	405
SIMDTraits < AVX512_SKX >	405
SIMDTraits < SSE2 >	405
TempBigEndian	419
TempLittleEndian	420
UnicodeToLowASCIIEntry	423

3 Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AutoArray< T > A class intended to be used similarly to AutoPtr but for arrays	25
A class intended to be used similarly to Autor it but for arrays	23
AutoPtr < T > A class intended to be used in stack scope to hold a pointer from new. The held pointer will be deleted automatically if the scope is left without calling Release on the AutoPtr first	27
color_tag_set	30
DecompressInfo	30
dng_1d_concatenate A dng_1d_function that represents the composition (curry) of two other dng_1d_functions	31
dng_1d_function A 1D floating-point function	33
dng_1d_identity An identity (x -> y such that x == y for all x) mapping function	35
dng_1d_inverse A dng_1d_function that represents the inverse of another dng_1d_function	36
dng_1d_table A 1D floating-point lookup table using linear interpolation	37
dng_abort_sniffer Class for signaling user cancellation and receiving progress updates	39
dng_area_spec A class to describe an area of an image, including a pixel subrectangle, plane range, and row/column pitch (e.g., for mosaic images). Useful for specifying opcodes that only apply to specific color planes or pixel types (e.g., only one of the two green Bayer pixels)	42
dng_area_task Abstract class for rectangular processing operations with support for partitioning across multiple processing resources and observing memory constraints	43
dng_area_task_progress	50
dng_bad_pixel_list A list of bad pixels and rectangles (usually single rows or columns)	51
dng_base_tile_iterator	55
dng_basic_tag_set	55
dng_big_table	56
dng_big_table_cache	57
dng_big_table_storage	58
dng_bilinear_interpolator	58
dng_bilinear_kernel	58

dng_bilinear_pattern	59
dng_camera_profile Container for DNG camera color profile and calibration data	59
dng_camera_profile_id An ID for a camera profile consisting of a name and optional fingerprint	70
dng_camera_profile_info	74
dng_color_space An abstract color space	75
dng_color_spec	77
dng_condition	80
dng_const_tile_buffer Class to get resource acquisition is instantiation behavior for constant (read-only) tile buffers	80
dng_date_time Class for holding a date/time and converting to and from relevant date/time formats	81
dng_date_time_info Class for holding complete data/time/zone information	84
dng_date_time_storage_info Store file offset from which date was read	84
dng_depth_preview	86
dng_dirty_tile_buffer Class to get resource acquisition is instantiation behavior for dirty (writable) tile buffers	87
dng_dither	88
dng_encode_proxy_task	88
dng_exception All exceptions thrown by the DNG SDK use this exception class	90
dng_exif Container class for parsing and holding EXIF tags	91
dng_fast_interpolator	99
dng_file_stream A stream to/from a disk file. See dng_stream for read/write interface	100
dng_filter_opcode Class to represent a filter opcode, such as a convolution	102
dng_filter_opcode_task	106
dng_filter_task Represents a task which filters an area of a source dng_image to an area of a destination dng_image	108

dng_filter_warp	112
dng_find_new_raw_image_digest_task	115
dng_fingerprint	
Container fingerprint (MD5 only at present)	116
dng_fingerprint_hash Utility to hash fingerprints (e.g., for hashtables)	118
dng_fingerprint_less_than Utility to compare fingerprints (e.g., for sorting)	119
<pre>dng_function_exposure_ramp Curve for pre-exposure-compensation adjustment based on noise floor, shadows, and highlight level</pre>	119
dng_function_exposure_tone Exposure compensation curve for a given compensation amount in stops using quadric for roll-off	120
dng_function_gamma_encode Encoding gamma curve for a given color space	121
dng_function_GammaEncode_1_8 A dng_1d_function for gamma encoding with 1.8 gamma	122
dng_function_GammaEncode_2_2 A dng_1d_function for gamma encoding with 2.2 gamma	124
dng_function_GammaEncode_sRGB A dng_1d_function for gamma encoding in sRGB color space	126
dng_function_zero_offset Curve for removing zero offset from stage3 image	128
<pre>dng_gain_map Holds a discrete (i.e., sampled) 2D representation of a gain map. This is effectively an image containing scale factors</pre>	129
dng_gain_map_interpolator	131
dng_gamma_encode_proxy	131
dng_host The main class for communication between the application and the DNG SDK. Used to customize memory allocation and other behaviors	132
 dng_hue_sat_map A 3D table that maps HSV (hue, saturation, and value) floating-point input coordinates in the range [0,1] to delta signals. The table must have at least 1 sample in the hue dimension, at least 2 samples in the saturation dimension, and at least 1 sample in the value dimension. Tables are stored in value-hue-saturation order 	142
dng_ifd Container for a single image file directory of a digital negative	145

<pre>dng_image</pre> Base class for holding image data in DNG SDK. See dng_simple_image for derived class most often	
used in DNG SDK	148
dng_image_preview	154
dng_image_spooler	155
dng_image_writer Support for writing dng_image or dng_negative instances to a dng_stream in TIFF or DNG format	155
dng_info Top-level structure of DNG file with access to metadata	160
dng_inplace_opcode Class to represent an in-place (i.e., pointwise, per-pixel) opcode, such as a global tone curve	162
dng_inplace_opcode_task	165
dng_iptc Class for reading and holding IPTC metadata associated with a DNG file	167
dng_jpeg_image	171
dng_jpeg_image_encode_task	171
dng_jpeg_image_find_digest_task	172
dng_jpeg_preview	174
dng_jpeg_preview_tag_set	174
dng_limit_float_depth_task< simd >	175
dng_linearization_info Class for managing data values related to DNG linearization	177
dng_linearize_image	181
dng_linearize_plane	182
dng_local_string	183
dng_lock_mutex	183
dng_look_table	184
dng_look_table_cache	185
dng_lossless_decoder	185
dng_lossless_encoder	186
dng_lzw_compressor	186
dng_lzw_expander	186
dng_malloc_block	187

dng_mask_preview	187
dng_matrix Class to represent 2D matrix up to kMaxColorPlanes x kMaxColorPlanes in size	188
dng_matrix_3by3 A 3x3 matrix	189
dng_matrix_4by3 A 4x3 matrix. Handy for working with 4-color cameras	190
dng_matrix_4by4 A 4x4 matrix. Handy for GPU APIs	190
dng_md5_printer Class to hash binary data to a fingerprint using the MD5 Message-Digest Algorithm	191
dng_md5_printer_stream A dng_stream based interface to the MD5 printing logic	192
dng_memory_allocator Interface for dng_memory_block allocator	193
dng_memory_block Class to provide resource acquisition is instantiation discipline for image buffers and other larger memory allocations	195
dng_memory_data Class to provide resource acquisition is instantiation discipline for small memory allocations	202
dng_memory_stream A dng_stream which can be read from or written to memory	212
dng_metadata Main class for holding metadata	214
dng_mosaic_info Support for describing color filter array patterns and manipulating mosaic sample data	215
dng_mutex	221
dng_negative Main class for holding DNG image data and associated metadata	222
<pre>dng_noise_function Noise model for photon and sensor read noise, assuming that they are independent random variables and spatially invariant</pre>	235
dng_noise_profile Noise profile for a negative	237
dng_opcode Virtual base class for opcode	238
dng_opcode_DeltaPerColumn An opcode to apply a delta (i.e., offset) that varies per column. Within a column, the same delta value is applied to all specified pixels	241

dng_opcode_DeltaPerRow An opcode to apply a delta (i.e., offset) that varies per row. Within a row, the same delta value is applied to all specified pixels	243
Annual El Bull Control	
dng_opcode_FixBadPixelsConstant An opcode to fix individual bad pixels that are marked with a constant value (e.g., 0) in a Bayer image	245
dng_opcode_FixBadPixelsList	
An opcode to fix lists of bad pixels (indicated by position) in a Bayer image	250
dng_opcode_FixVignetteRadial Radially-symmetric lens vignette correction opcode	25 4
<pre>dng_opcode_GainMap An opcode to fix 2D spatially-varying light falloff or color casts (i.e., uniformity issues). This is commonly due to shading</pre>	257
dng_opcode_list A list of opcodes	258
dng_opcode_MapPolynomial An opcode to apply a 1D function (represented as a polynomial) to an image area	26 1
dng_opcode_MapTable An opcode to apply a 1D function (represented as a 16-bit table) to an image area	263
dng_opcode_ScalePerColumn An opcode to apply a scale factor that varies per column. Within a column, the same scale factor is applied to all specified pixels	266
<pre>dng_opcode_ScalePerRow An opcode to apply a scale factor that varies per row. Within a row, the same scale factor is applied to all specified pixels</pre>	269
dng_opcode_TrimBounds Opcode to trim image to a specified rectangle	271
dng_opcode_Unknown Class to represent unknown opcodes (e.g, opcodes defined in future DNG versions)	272
dng_opcode_WarpFisheye Warp opcode for fisheye camera model	273
dng_opcode_WarpRectilinear Warp opcode for pinhole perspective (rectilinear) camera model	275
dng_orientation	277
dng_pixel_buffer Holds a buffer of pixel data with "pixel geometry" metadata	278
dng_point	296
dng_point_real64	297
dng_preview	297

dng_preview_info	298
dng_preview_list	298
dng_preview_tag_set	299
dng_raw_preview	299
dng_raw_preview_tag_set	300
dng_read_image	300
dng_read_tiles_task	302
dng_rect	303
dng_rect_real64	304
dng_ref_counted_block Class to provide resource acquisition is instantiation discipline for small memory allocations	305
dng_render Class used to render digital negative to displayable image	315
dng_render_task	32 1
dng_resample_bicubic	323
dng_resample_coords	324
dng_resample_function	324
dng_resample_task	325
dng_resample_weights	327
dng_resample_weights_2d	328
dng_resolution Image resolution	328
dng_rgb_table	329
dng_rgb_table_cache	330
dng_row_interleaved_image	331
dng_safe_int32	332
dng_safe_uint32	332
dng_set_minimum_priority Convenience class for setting thread priority level to minimum	333
dng_shared	333
dng_simple_image Dng_image derived class with simple Trim and Rotate functionality	335

dng_sniffer_task Class to establish scope of a named subtask in DNG processing	336
dng_space_AdobeRGB Singleton class for AdobeRGB color space	338
dng_space_ColorMatch Singleton class for ColorMatch color space	339
dng_space_fakeRGB	339
dng_space_GrayGamma18 Singleton class for gamma 1.8 grayscale color space	340
dng_space_GrayGamma22 Singleton class for gamma 2.2 grayscale color space	341
dng_space_ProPhoto Singleton class for ProPhoto RGB color space	341
dng_space_sRGB Singleton class for sRGB color space	342
dng_spline_solver	343
dng_spooler	344
dng_srational	344
<pre>dng_std_allocator < T > C++ allocator (i.e. an implementation of the Allocator concept) that throws a dng_exception with error code dng_error_memory if it cannot allocate memory</pre>	345
dng_stream	346
dng_stream_contiguous_read_hint	367
dng_stream_double_buffered	367
dng_string	368
dng_string dng_string_list	368 369
dng_string_list	369
dng_string_list dng_suite	369 370
dng_string_list dng_suite dng_temperature	369 370 371
dng_string_list dng_suite dng_temperature dng_tiff_directory dng_tile_buffer Class to get resource acquisition is instantiation behavior for tile buffers. Can be dirty or constant	369 370 371 371

dng_time_zone Class for holding a time zone	374
dng_timer	375
dng_tone_curve	375
dng_tone_curve_acr3_default Default ACR3 tone curve	376
dng_uncopyable	377
dng_unlock_mutex	377
dng_urational	378
dng_vector Class to represent 1-dimensional vector with up to kMaxColorPlanes components	378
dng_vector_3 A 3-element vector	379
dng_vector_4 A 4-element vector	380
dng_vignette_radial_function	381
dng_vignette_radial_params Radially-symmetric vignette (peripheral illuminational falloff) correction parameters	382
<pre>dng_warp_params Abstract base class holding common warp opcode parameters (e.g., number of planes, optical center) and common warp routines</pre>	382
<pre>dng_warp_params_fisheye Warp parameters for fisheye camera model (radial component only). Note the restrictions described below</pre>	387
<pre>dng_warp_params_rectilinear Warp parameters for pinhole perspective rectilinear (not fisheye) camera model. Supports radial and tangential (decentering) distortion correction parameters</pre>	391
dng_write_tiles_task	394
dng_xmp	396
dng_xmp_namespace	399
dng_xmp_private	399
dng_xmp_sdk	400
dng_xy_coord	401
exif_tag_set	401
dng_hue_sat_map::HSBModify	402

HuffmanTable	402
JpegComponentInfo	403
mosaic_tag_set	403
PreserveStreamReadPosition	403
profile_tag_set	404
range_tag_set	404
ruvt	404
SIMDTraits < SIMDType >	404
SIMDTraits < AVX >	405
SIMDTraits < AVX2 >	405
SIMDTraits < AVX512_SKX >	405
SIMDTraits < SSE2 >	405
tag_cfa_pattern	406
tag_data_ptr	406
tag_dng_noise_profile	408
tag_encoded_text	408
tag_exif_date_time	409
tag_icc_profile	409
tag_int16_ptr	410
tag_iptc	410
tag_matrix	411
tag_real64	412
tag_srational	412
tag_srational_ptr	413
tag_string	413
tag_uint16	414
tag_uint16_ptr	415
tag_uint32	415
tag_uint32_ptr	416
tag_uint8	416

	tag_uint8_ptr	417
	tag_urational	418
	tag_urational_ptr	418
	tag_xmp	419
	TempBigEndian	419
	TempLittleEndian	420
	TempStreamSniffer	420
	tiff_dng_extended_color_profile	421
	tiff_tag	421
	UnicodeToLowASCIIEntry	423
4	File Index	
4.1	I File List	
He	ere is a list of all documented files with brief descriptions:	
	dng_1d_function.h	423
	dng_1d_table.h	423
	dng_abort_sniffer.h	424
	dng_area_task.h	424
	dng_assertions.h	425
	dng_auto_ptr.h	426
	dng_bad_pixels.h	427
	dng_big_table.h	??
	dng_bottlenecks.h	427
	dng_camera_profile.h	432
	dng_classes.h	??
	dng_color_space.h	433
	dng_color_spec.h	433
	dng_date_time.h	434
	dng_errors.h	436

4.1 File List 23

dng_exceptions.h	43
dng_exif.h	439
dng_fast_module.h	439
dng_file_stream.h	439
dng_filter_task.h	440
dng_fingerprint.h	440
dng_flags.h	44
dng_gain_map.h	44:
dng_globals.h	444
dng_host.h	444
dng_hue_sat_map.h	44
dng_ifd.h	44
dng_image.h	440
dng_image_writer.h	44
dng_info.h	448
dng_iptc.h	448
dng_jpeg_image.h	?'
dng_lens_correction.h	449
dng_linearization_info.h	449
dng_local_string.h	?'
dng_lossless_jpeg.h	450
dng_matrix.h	450
dng_memory.h	?'
dng_memory_stream.h	45
dng_misc_opcodes.h	45
dng_mosaic_info.h	45
dng_mutex.h	?'
dng_negative.h	45
dng_opcode_list.h	454
dng_opcodes.h	454

dng_orientation.h	??
dng_parse_utils.h	??
dng_pixel_buffer.h	455
dng_point.h	??
dng_preview.h	??
dng_pthread.h	??
dng_rational.h	456
dng_read_image.h	456
dng_rect.h	??
dng_ref_counted_block.h	??
dng_reference.h	??
dng_render.h	457
dng_resample.h	??
dng_safe_arithmetic.h	??
dng_sdk_limits.h	457
dng_shared.h	??
dng_simd_type.h	??
dng_simple_image.h	??
dng_spline.h	??
dng_stream.h	??
dng_string.h	458
dng_string_list.h	??
dng_tag_codes.h	??
dng_tag_types.h	??
dng_tag_values.h	??
dng_temperature.h	459
dng_tile_iterator.h	??
dng_tone_curve.h	459
dng_types.h	??
dng_uncopyable.h	??

5 Class Documentation 25

dng_utils.h	??
dng_xmp.h	??
dng_xmp_sdk.h	??
dng_xy_coord.h	459

5 Class Documentation

5.1 AutoArray < T > Class Template Reference

A class intended to be used similarly to AutoPtr but for arrays.

```
#include <dng_auto_ptr.h>
Inheritance diagram for AutoArray< T >:
```

dng_uncopyable
AutoArray< T >

Public Member Functions

- AutoArray (T *p_=0)
- ∼AutoArray ()

Reset is called on destruction.

- T * Release ()
- void Reset (T *p_=0)
- T & operator[] (ptrdiff_t i) const
- T * Get () const

5.1.1 Detailed Description

```
template<typename T> class AutoArray< T>
```

A class intended to be used similarly to AutoPtr but for arrays.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 AutoArray()

Construct an AutoArray which owns the argument pointer.

p← array pointer which constructed AutoArray takes ownership of. p_ will be deleted on destruction or Reset unless
 _← Release is called first.

5.1.3 Member Function Documentation

5.1.3.1 Get()

```
template<typename T>
T* AutoArray< T >::Get ( ) const [inline]
```

Return the owned pointer of this AutoArray, NULL if none. No change in ownership or other effects occur.

5.1.3.2 operator[]()

```
template<typename T>
T& AutoArray< T >::operator[] (
         ptrdiff_t i ) const [inline]
```

Allows indexing into the AutoArray. It is an error to call this if the AutoArray has NULL as its value.

5.1.3.3 Release()

```
template<typename T>
T* AutoArray< T >::Release ( ) [inline]
```

Return the owned array pointer of this AutoArray, NULL if none. The AutoArray gives up ownership and takes NULL as its value.

5.1.3.4 Reset()

```
template<typename T> void AutoArray< T >::Reset (  T * p_{-} = 0 ) [inline]
```

If an array pointer is owned, it is deleted. Ownership is taken of the passed in pointer p_.

Parameters 2 4 1

p← array pointer which constructed AutoArray takes ownership of. p_ will be deleted on destruction or Reset unless
 Release is called first.

Referenced by dng_find_new_raw_image_digest_task::Start().

The documentation for this class was generated from the following file:

• dng_auto_ptr.h

5.2 AutoPtr < T > Class Template Reference

A class intended to be used in stack scope to hold a pointer from new. The held pointer will be deleted automatically if the scope is left without calling Release on the AutoPtr first.

```
#include <dng_auto_ptr.h>
```

Inheritance diagram for AutoPtr< T >:

Public Member Functions

• AutoPtr ()

Construct an AutoPtr with no referent.

- AutoPtr (T *p)
- ∼AutoPtr ()

Reset is called on destruction.

· void Alloc ()

Call Reset with a pointer from new. Uses T's default constructor.

- T * Get () const
- T * Release ()
- void Reset (T *p)
- void Reset ()
- T * operator-> () const
- T & operator * () const

Friends

void Swap (AutoPtr< T > &x, AutoPtr< T > &y)

Swap with another auto ptr.

5.2.1 Detailed Description

```
template < class T > class AutoPtr < T >
```

A class intended to be used in stack scope to hold a pointer from new. The held pointer will be deleted automatically if the scope is left without calling Release on the AutoPtr first.

5.2.2 Constructor & Destructor Documentation

5.2.2.1 AutoPtr()

Construct an AutoPtr which owns the argument pointer.

Parameters

p pointer which constructed AutoPtr takes ownership of. p will be deleted on destruction or Reset unless Release is called first.

5.2.3 Member Function Documentation

5.2.3.1 Get()

```
template<class T>
T* AutoPtr< T >::Get ( ) const [inline]
```

Return the owned pointer of this AutoPtr, NULL if none. No change in ownership or other effects occur.

Referenced by dng_opcode_list::Apply(), dng_linearization_info::ColumnBlack(), dng_linearization_info::Column BlackCount(), dng_render::dng_render(), dng_info::IsValidDNG(), dng_linearization_info::MaxBlackLevel(), dng_info::Parse(), dng_info::PostParse(), dng_opcode_FixVignetteRadial::Prepare(), dng_read_tiles_task::Process(), dng_opcode_MapTable::ProcessArea(), dng_opcode_Unknown::PutData(), dng_render::Render(), dng_linearization_info::RowBlack(), and dng_linearization_info::RowBlackCount().

5.2.3.2 operator *()

```
template<class T>
T& AutoPtr< T >::operator * ( ) const [inline]
```

Returns a reference to the object that the owned pointer points to. It is an error to call this if the AutoPtr has NULL as its value.

5.2.3.3 operator->()

```
template<class T>
T* AutoPtr< T >::operator-> ( ) const [inline]
```

Allows members of the owned pointer to be accessed directly. It is an error to call this if the AutoPtr has NULL as its value.

5.2.3.4 Release()

```
template<class T >
T * AutoPtr< T >::Release ( )
```

Return the owned pointer of this AutoPtr, NULL if none. The AutoPtr gives up ownership and takes NULL as its value.

Referenced by dng_filter_opcode::Apply(), dng_opcode_WarpRectilinear::Apply(), dng_opcode_WarpFisheye::Apply(), dng_gain_map::GetStream(), dng_hue_sat_map::Interpolate(), and dng_render::Render().

5.2.3.5 Reset() [1/2]

If a pointer is owned, it is deleted. Ownership is taken of passed in pointer.

Parameters

p pointer which constructed AutoPtr takes ownership of. p will be deleted on destruction or Reset unless Release is called first.

Referenced by dng_filter_opcode::Apply(), dng_opcode_WarpRectilinear::Apply(), dng_opcode_WarpFisheye::Apply(), dng_render::dng_render(), dng_1d_table::Initialize(), dng_info::Parse(), dng_opcode_MapTable::Prepare(), dng_opcode_FixVignetteRadial::Prepare(), dng_ipeg_image_encode_task::Process(), dng_read_tiles_task::Process(), dng_write_tiles_task::Process(), dng_render::Render(), and dng_find_new_raw_image_digest_task::Start().

```
5.2.3.6 Reset() [2/2]
```

```
template<class T>
void AutoPtr< T >::Reset ( )
```

If a pointer is owned, it is deleted and the AutoPtr takes NULL as its value.

The documentation for this class was generated from the following file:

• dng_auto_ptr.h

5.3 color_tag_set Class Reference

Public Member Functions

• color_tag_set (dng_tiff_directory &directory, const dng_negative &negative)

The documentation for this class was generated from the following file:

• dng_image_writer.cpp

5.4 DecompressInfo Struct Reference

Public Attributes

- · int32 imageWidth
- int32 imageHeight
- · int32 dataPrecision
- JpegComponentInfo * compInfo
- int16 numComponents
- JpegComponentInfo * curCompInfo [4]
- int16 compsInScan
- int16 MCUmembership [10]
- HuffmanTable * dcHuffTblPtrs [4]
- int32 **Ss**
- int32 Pt
- int32 restartInterval
- int32 restartInRows
- int32 restartRowsToGo
- int16 nextRestartNum

The documentation for this struct was generated from the following file:

· dng_lossless_jpeg.cpp

5.5 dng_1d_concatenate Class Reference

A dng_1d_function that represents the composition (curry) of two other dng_1d_functions.

```
#include <dng_1d_function.h>
```

Inheritance diagram for dng_1d_concatenate:

Public Member Functions

- dng_1d_concatenate (const dng_1d_function &function1, const dng_1d_function &function2)
- virtual bool Isldentity () const

Only true if both function1 and function2 have IsIdentity equal to true.

- virtual real64 Evaluate (real64 x) const
- virtual real64 EvaluateInverse (real64 y) const

Protected Attributes

- const dng_1d_function & fFunction1
- const dng 1d function & fFunction2

5.5.1 Detailed Description

A dng_1d_function that represents the composition (curry) of two other dng_1d_functions.

5.5.2 Constructor & Destructor Documentation

5.5.2.1 dng_1d_concatenate()

Create a $dng_1d_function$ which computes $y = function_2$. Evaluate(function_1. Evaluate(x)). Compose function_1 and function_2 to compute $y = function_2$. Evaluate(function_1. Evaluate(x)). The range of function_1. Evaluate must be a subset of 0.0 to 1.0 inclusive, otherwise the result of function_1(x) will be pinned (clipped) to 0.0 if <0.0 and to 1.0 if > 1.0 .

function1	Inner function of composition.
function2	Outer function of composition.

5.5.3 Member Function Documentation

5.5.3.1 Evaluate()

Return the composed mapping for value x.

Parameters

x A value between 0.0 and 1.0 (inclusive).

Return values

function2.Evaluate(function1.Evaluate(x)).

Implements dng_1d_function.

References dng_1d_function::Evaluate().

5.5.3.2 EvaluateInverse()

Return the reverse mapped value for y. Be careful using this method with compositions where the inner function does not have a range 0.0 to 1.0 . (Or better yet, do not use such functions.)

Parameters

y A value to reverse map. Should be within the range of function2. Evaluate.

Return values

A value x such that function2. Evaluate (function1. Evaluate(x)) == y (to very close approximation).

Reimplemented from dng_1d_function.

References dng_1d_function::EvaluateInverse().

The documentation for this class was generated from the following files:

- dng_1d_function.h
- dng_1d_function.cpp

5.6 dng_1d_function Class Reference

A 1D floating-point function.

#include <dng_1d_function.h>

Inheritance diagram for dng_1d_function:

Public Member Functions

- virtual bool IsIdentity () const
 - Returns true if this function is the map $x \to y$ such that x = y for all x. That is if Evaluate(x) == x for all x.
- virtual real64 Evaluate (real64 x) const =0
- virtual real64 EvaluateInverse (real64 y) const

5.6.1 Detailed Description

A 1D floating-point function.

The domain (input) is always from 0.0 to 1.0, while the range (output) can be an arbitrary interval.

5.6.2 Member Function Documentation

5.6.2.1 Evaluate()

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

Parameters

```
x A value between 0.0 and 1.0 (inclusive).
```

Return values

Mapped value for x

Implemented in dng_gamma_encode_proxy, dng_vignette_radial_function, dng_1d_inverse, dng_function_gamma_encode, dng_1d_concatenate, dng_tone_curve_acr3_default, dng_noise_function, dng_function_exposure_tone, dng_1d_identity, dng_function_exposure_ramp, dng_spline_solver, dng_function_GammaEncode_2_2, dng_function_GammaEncode_1_8, dng_function_zero_offset, and dng_function_GammaEncode_sRGB.

Referenced by dng_1d_concatenate::Evaluate(), EvaluateInverse(), dng_1d_inverse::EvaluateInverse(), and dng_color_space::GammaEncode().

5.6.2.2 EvaluateInverse()

Return the reverse mapped value for y. This method can be implemented by derived classes. The default implementation uses Newton's method to solve for x such that Evaluate(x) == y.

Parameters

y A value to reverse map. Should be within the range of the function implemented by this dng_1d_function.

Return values

A value x such that Evaluate(x) == y (to very close approximation).

Reimplemented in dng_1d_inverse, dng_1d_concatenate, dng_tone_curve_acr3_default, dng_1d_identity, dng_function_GammaEncode_dng_function_GammaEncode_sRGB.

References Evaluate().

Referenced by dng_1d_inverse::Evaluate(), dng_function_GammaEncode_1_8::EvaluateInverse(), dng_function_
GammaEncode_2_2::EvaluateInverse(), dng_1d_concatenate::EvaluateInverse(), and dng_color_space::Gamma
Decode().

The documentation for this class was generated from the following files:

- · dng 1d function.h
- dng_1d_function.cpp

5.7 dng_1d_identity Class Reference

An identity (x -> y such that x == y for all x) mapping function.

#include <dng_1d_function.h>

Inheritance diagram for dng_1d_identity:

Public Member Functions

- · virtual bool IsIdentity () const
 - Always returns true for this class.
- virtual real64 Evaluate (real64 x) const

Always returns x for this class.

• virtual real64 EvaluateInverse (real64 y) const

Always returns y for this class.

Static Public Member Functions

• static const dng_1d_function & Get ()

This class is a singleton, and is entirely threadsafe. Use this method to get an instance of the class.

5.7.1 Detailed Description

An identity (x -> y such that x == y for all x) mapping function.

The documentation for this class was generated from the following files:

- · dng 1d function.h
- dng_1d_function.cpp

5.8 dng_1d_inverse Class Reference

A dng 1d function that represents the inverse of another dng 1d function.

```
#include <dng_1d_function.h>
```

Inheritance diagram for dng 1d inverse:

Public Member Functions

- dng_1d_inverse (const dng_1d_function &f)
- virtual bool Isldentity () const

Returns true if this function is the map x - y such that x = y for all x. That is if Evaluate(x) == x for all x.

- virtual real64 Evaluate (real64 x) const
- virtual real64 EvaluateInverse (real64 y) const

Protected Attributes

• const dng_1d_function & fFunction

5.8.1 Detailed Description

A dng_1d_function that represents the inverse of another dng_1d_function.

5.8.2 Member Function Documentation

5.8.2.1 Evaluate()

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

x A value between 0.0 and 1.0 (inclusive).

Return values

```
Mapped value for x
```

Implements dng_1d_function.

References dng 1d function::EvaluateInverse().

5.8.2.2 EvaluateInverse()

Return the reverse mapped value for y. This method can be implemented by derived classes. The default implementation uses Newton's method to solve for x such that Evaluate(x) == y.

Parameters

y A value to reverse map. Should be within the range of the function implemented by this dng_1d_function.

Return values

```
A value x such that Evaluate(x) == y (to very close approximation).
```

Reimplemented from dng_1d_function.

References dng_1d_function::Evaluate().

The documentation for this class was generated from the following files:

- dng_1d_function.h
- dng_1d_function.cpp

5.9 dng_1d_table Class Reference

A 1D floating-point lookup table using linear interpolation.

```
#include <dng_1d_table.h>
```

Inheritance diagram for dng_1d_table:

Public Member Functions

- dng_1d_table (uint32 count=kDefaultTableSize)
- · uint32 Count () const

Number of table entries.

- void Initialize (dng memory allocator &allocator, const dng 1d function &function, bool subSample=false)
- real32 Interpolate (real32 x) const
- const real32 * Table () const

Direct access function for table data.

void Expand16 (uint16 *table16) const

Expand the table to a 16-bit to 16-bit table.

Static Public Attributes

static const uint32 kMinTableSize = 512
 Constant denoting minimum size of table.

Protected Attributes

- AutoPtr< dng memory block > fBuffer
- real32 * fTable
- · const uint32 fTableCount

5.9.1 Detailed Description

A 1D floating-point lookup table using linear interpolation.

5.9.2 Constructor & Destructor Documentation

Table constructor. count must be a power of two and at least kMinTableSize.

References DNG_REQUIRE, and kMinTableSize.

5.9.3 Member Function Documentation

5.9.3.1 Initialize()

Set up table, initialize entries using functiion. This method can throw an exception, e.g. if there is not enough memory.

allocator	Memory allocator from which table memory is allocated.
function	Table is initialized with values of finction. Evalluate (0.0) to function. Evaluate (1.0).
subSample	If true, only sample the function a limited number of times and interpolate.

References dng_memory_allocator::Allocate(), dng_memory_block::Buffer_real32(), and AutoPtr< T >::Reset().

Referenced by dng_opcode_FixVignetteRadial::Prepare(), and dng_render_task::Start().

5.9.3.2 Interpolate()

Lookup and interpolate mapping for an input.

Parameters

Return values

Approximation	of function.Evaluate(x)
---------------	-------------------------

References DNG_ASSERT.

Referenced by dng_opcode_FixVignetteRadial::Prepare().

The documentation for this class was generated from the following files:

- dng_1d_table.h
- dng_1d_table.cpp

5.10 dng_abort_sniffer Class Reference

Class for signaling user cancellation and receiving progress updates.

```
#include <dng_abort_sniffer.h>
```

Public Member Functions

• dng_priority Priority () const

Getter for priority level.

void SetPriority (dng_priority priority)

Setter for priority level.

- void SniffNoPriorityWait ()
- virtual bool ThreadSafe () const
- · virtual bool SupportsPriorityWait () const

Static Public Member Functions

static void SniffForAbort (dng_abort_sniffer *sniffer)

Protected Member Functions

- virtual void Sniff ()=0
- virtual void StartTask (const char *name, real64 fract)
- virtual void EndTask ()

Signals the end of the innermost task that has been started.

virtual void UpdateProgress (real64 fract)

Friends

• class dng_sniffer_task

5.10.1 Detailed Description

Class for signaling user cancellation and receiving progress updates.

DNG SDK clients should derive a host application specific implementation from this class.

5.10.2 Member Function Documentation

```
5.10.2.1 Sniff()
virtual void dng_abort_sniffer::Sniff ( ) [protected], [pure virtual]
```

Should be implemented by derived classes to check for an user cancellation.

Referenced by SniffForAbort().

5.10.2.2 SniffForAbort()

Check for pending user cancellation or other abort. ThrowUserCanceled will be called if one is pending. This static method is provided as a convenience for quickly testing for an abort and throwing an exception if one is pending.

sniffer	The dng_sniffer to test for a pending abort. Can be NULL, in which case there an abort is never signalled.
---------	--

References Sniff().

Referenced by dng_stream::Flush(), dng_jpeg_image_encode_task::Process(), dng_jpeg_image_find_digest_task::

Process(), dng_area_task::ProcessOnThread(), dng_sniffer_task::Sniff(), and dng_host::SniffForAbort().

5.10.2.3 StartTask()

Signals the start of a named task withn processing in the DNG SDK. Tasks may be nested.

Parameters

name	of the task
fract	Percentage of total processing this task is expected to take. From 0.0 to 1.0.

Referenced by dng_sniffer_task::dng_sniffer_task().

5.10.2.4 UpdateProgress()

Signals progress made on current task.

Parameters

fract percentage of processing completed on current task. From 0.0 to 1.0.

Referenced by dng_sniffer_task::UpdateProgress().

- · dng_abort_sniffer.h
- · dng abort sniffer.cpp

5.11 dng_area_spec Class Reference

A class to describe an area of an image, including a pixel subrectangle, plane range, and row/column pitch (e.g., for mosaic images). Useful for specifying opcodes that only apply to specific color planes or pixel types (e.g., only one of the two green Bayer pixels).

```
#include <dng_misc_opcodes.h>
```

Public Types

enum { kDataSize = 32 }

Public Member Functions

dng_area_spec (const dng_rect &area=dng_rect(), uint32 plane=0, uint32 planes=1, uint32 rowPitch=1, uint32 colPitch=1)

Create an empty area.

• const dng_rect & Area () const

The pixel area.

• uint32 Plane () const

The first plane.

• uint32 Planes () const

The total number of planes.

• uint32 RowPitch () const

The row pitch (i.e., stride). A pitch of 1 means all rows.

• uint32 ColPitch () const

The column pitch (i.e., stride). A pitch of 1 means all columns.

• void GetData (dng_stream &stream)

Read area data from the specified stream.

void PutData (dng_stream &stream) const

Write area data to the specified stream.

dng_rect Overlap (const dng_rect &tile) const

5.11.1 Detailed Description

A class to describe an area of an image, including a pixel subrectangle, plane range, and row/column pitch (e.g., for mosaic images). Useful for specifying opcodes that only apply to specific color planes or pixel types (e.g., only one of the two green Bayer pixels).

5.11.2 Member Function Documentation

5.11.2.1 Overlap()

Compute and return pixel area overlap (i.e., intersection) between this area and the specified tile.

Referenced by dng_opcode_GainMap::ModifiedBounds(), dng_opcode_MapTable::ModifiedBounds(), dng_opcode — __MapPolynomial::ModifiedBounds(), dng_opcode_DeltaPerRow::ModifiedBounds(), dng_opcode_DeltaPerColumn::

ModifiedBounds(), dng_opcode_ScalePerRow::ModifiedBounds(), dng_opcode_ScalePerColumn::ModifiedBounds(), dng_opcode_GainMap::ProcessArea(), dng_opcode_MapTable::ProcessArea(), dng_opcode_MapPolynomial::

ProcessArea(), dng_opcode_DeltaPerRow::ProcessArea(), dng_opcode_DeltaPerColumn::ProcessArea(), dng_opcode_ScalePerRow::ProcessArea(), dng_opcode_ScalePerRow::ProcessArea().

The documentation for this class was generated from the following files:

- · dng misc opcodes.h
- dng_misc_opcodes.cpp

5.12 dng_area_task Class Reference

Abstract class for rectangular processing operations with support for partitioning across multiple processing resources and observing memory constraints.

```
#include <dng_area_task.h>
```

Inheritance diagram for dng area task:

Public Member Functions

- dng area task (const char *name="unnamed dng area task")
- const char * Name () const
- · virtual uint32 MaxThreads () const
- · virtual uint32 MinTaskArea () const

operation. (Partitions can be smaller due to small inputs and edge cases.)

- virtual dng point UnitCell () const
- virtual dng point MaxTileSize () const
- virtual dng_rect RepeatingTile1 () const
- · virtual dng_rect RepeatingTile2 () const
- virtual dng rect RepeatingTile3 () const
- virtual void Start (uint32 threadCount, const dng_rect &dstArea, const dng_point &tileSize, dng_memory_allocator
 *allocator, dng_abort_sniffer *sniffer)
- virtual void Process (uint32 threadIndex, const dng_rect &tile, dng_abort_sniffer *sniffer)=0
 and progress updates.
- virtual void Finish (uint32 threadCount)
- dng point FindTileSize (const dng rect &area) const
- void ProcessOnThread (uint32 threadIndex, const dng_rect &area, const dng_point &tileSize, dng_abort_sniffer
 *sniffer, dng_area_task_progress *progress)
- virtual dng_base_tile_iterator * MakeTileIterator (uint32 threadIndex, const dng_rect &tile, const dng_rect &area)
 const
- virtual dng_base_tile_iterator * MakeTileIterator (uint32 threadIndex, const dng_point &tileSize, const dng_rect &area) const

Static Public Member Functions

 static void Perform (dng_area_task &task, const dng_rect &area, dng_memory_allocator *allocator, dng_abort_sniffer *sniffer, dng_area_task_progress *progress)

Protected Attributes

- uint32 fMaxThreads
- uint32 fMinTaskArea
- dng point fUnitCell
- dng point fMaxTileSize
- · dng string fName

5.12.1 Detailed Description

Abstract class for rectangular processing operations with support for partitioning across multiple processing resources and observing memory constraints.

5.12.2 Member Function Documentation

5.12.2.1 FindTileSize()

Find tile size taking into account repeating tiles, unit cell, and maximum tile size.

area	Computation area for which to find tile size.
------	---

Return values

Tile	size as height and width in point.

References MaxTileSize(), RepeatingTile1(), RepeatingTile2(), RepeatingTile3(), and UnitCell().

Referenced by Perform().

5.12.2.2 Finish()

Task computation finalization and teardown method. Called after all resources have completed processing. Can be overridden to accumulate results and free resources allocated in Start.

Parameters

threadCount	Number of threads used for processing. Same as value passed to Start.
-------------	---

Referenced by Perform().

5.12.2.3 MakeTileIterator() [1/2]

Factory method to make a tile iterator. This iterator will be used by a thread to process tiles in an area in a specific order. The default implementation uses a forward iterator that visits tiles from left to right (inner), top down (outer). Subclasses can override this method to produce tile iterators that visit tiles in different orders.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is.
tile	The tile to be traversed within the tile area.
area	Tile area partitioned to this resource.

Referenced by ProcessOnThread().

5.12.2.4 MakeTileIterator() [2/2]

Factory method to make a tile iterator. This iterator will be used by a thread to process tiles in an area in a specific order. The default implementation uses a forward iterator that visits tiles from left to right (inner), top down (outer). Subclasses can override this method to produce tile iterators that visit tiles in different orders.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is.
tileSize	The tile size to be traversed within the tile area.
area	Tile area partitioned to this resource.

5.12.2.5 MaxThreads()

```
virtual uint32 dng_area_task::MaxThreads ( ) const [inline], [virtual]
```

Getter for the maximum number of threads (resources) that can be used for processing

Return values

Numbe	r	of threads, minimum of 1, that can be used for this task.
-------	---	---

5.12.2.6 MaxTileSize()

```
virtual dng_point dng_area_task::MaxTileSize ( ) const [inline], [virtual]
```

Getter for maximum size of a tile for processing. Often processing will need to allocate temporary buffers or use other resources that are either fixed or in limited supply. The maximum tile size forces further partitioning if the tile is bigger than this size.

Return values

e size allowed for this area	tile size allowed for this area task.
------------------------------	---------------------------------------

Referenced by FindTileSize().

5.12.2.7 MinTaskArea()

```
virtual uint32 dng_area_task::MinTaskArea ( ) const [inline], [virtual]
```

operation. (Partitions can be smaller due to small inputs and edge cases.)

Getter for minimum area of a partitioned rectangle. Often it is not profitable to use more resources if it requires partitioning the input into chunks that are too small, as the overhead increases more than the speedup. This method can be overridden for a specific task to indicate the smallest area for partitioning. Default is 256x256 pixels.

Return values

Minimum	area for a partitoned tile in order to give performant
---------	--

5.12.2.8 Perform()

Default resource partitioner that assumes a single resource to be used for processing. Implementations that are aware of multiple processing resources should override (replace) this method. This is usually done in dng host::PerformAreaTask.

Parameters

task	The task to perform.
area	The area on which mage processing should be performed.
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.
sniffer	<pre>dng_abort_sniffer to use to check for user cancellation and progress updates.</pre>
progress	optional pointer to progress reporting object.

References FindTileSize(), Finish(), ProcessOnThread(), and Start().

Referenced by dng_host::PerformAreaTask().

5.12.2.9 Process()

and progress updates.

Process one tile or fully partitioned area. This method is overridden by derived classes to implement the actual image processing. Note that the sniffer can be ignored if it is certain that a processing task will complete very quickly. This method should never be called directly but rather accessed via Process. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)
tile	Area to process.
sniffer	dng_abort_sniffer to use to check for user cancellation

Implemented in dng_encode_proxy_task, dng_find_new_raw_image_digest_task, dng_write_tiles_task, dng_linearize_image, dng_limit_float_depth_task< simd >, dng_inplace_opcode_task, dng_jpeg_image_find_digest_task, dng_read_tiles_task, dng_filter_task, and dng_jpeg_image_encode_task.

Referenced by ProcessOnThread().

5.12.2.10 ProcessOnThread()

Handle one resource's worth of partitioned tiles. Called after thread partitioning has already been done. Area may be further subdivided to handle maximum tile size, etc. It will be rare to override this method.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is.
area	Tile area partitioned to this resource.
tileSize	size of tiles to use for processing.
sniffer	<pre>dng_abort_sniffer to use to check for user cancellation and progress updates.</pre>
progress	optional pointer to progress reporting object.

References MakeTileIterator(), Process(), RepeatingTile1(), RepeatingTile2(), RepeatingTile3(), and $dng_abort_{\leftarrow} sniffer::SniffForAbort()$.

Referenced by Perform().

5.12.2.11 RepeatingTile1()

```
dng_rect dng_area_task::RepeatingTile1 ( ) const [virtual]
```

Getter for RepeatingTile1. RepeatingTile1, RepeatingTile2, and RepeatingTile3 are used to establish a set of 0 to 3 tile patterns for which the resulting partitions that the final Process method is called on will not cross tile boundaries in any of the tile patterns. This can be used for a processing routine that needs to read from two tiles and write to a third such that all the tiles are aligned and sized in a certain way. A RepeatingTile value is valid if it is non-empty. Higher numbered RepeatingTile patterns are only used if all lower ones are non-empty. A RepeatingTile pattern must be a multiple of UnitCell in size for all constraints of the partitionerr to be met.

Reimplemented in dng_encode_proxy_task, dng_linearize_image, and dng_limit_float_depth_task< simd >.

Referenced by FindTileSize(), and ProcessOnThread().

5.12.2.12 RepeatingTile2()

```
dng_rect dng_area_task::RepeatingTile2 ( ) const [virtual]
```

Getter for RepeatingTile2. RepeatingTile1, RepeatingTile2, and RepeatingTile3 are used to establish a set of 0 to 3 tile patterns for which the resulting partitions that the final Process method is called on will not cross tile boundaries in any of the tile patterns. This can be used for a processing routine that needs to read from two tiles and write to a third such that all the tiles are aligned and sized in a certain way. A RepeatingTile value is valid if it is non-empty. Higher numbered RepeatingTile patterns are only used if all lower ones are non-empty. A RepeatingTile pattern must be a multiple of UnitCell in size for all constraints of the partitionerr to be met.

Reimplemented in dng encode proxy task, dng linearize image, and dng limit float depth task< simd >.

Referenced by FindTileSize(), and ProcessOnThread().

5.12.2.13 RepeatingTile3()

```
dng_rect dng_area_task::RepeatingTile3 ( ) const [virtual]
```

Getter for RepeatingTile3. RepeatingTile1, RepeatingTile2, and RepeatingTile3 are used to establish a set of 0 to 3 tile patterns for which the resulting partitions that the final Process method is called on will not cross tile boundaries in any of the tile patterns. This can be used for a processing routine that needs to read from two tiles and write to a third such that all the tiles are aligned and sized in a certain way. A RepeatingTile value is valid if it is non-empty. Higher numbered RepeatingTile patterns are only used if all lower ones are non-empty. A RepeatingTile pattern must be a multiple of UnitCell in size for all constraints of the partitionerr to be met.

Referenced by FindTileSize(), and ProcessOnThread().

5.12.2.14 Start()

```
void dng_area_task::Start (
          uint32 threadCount,
          const dng_rect & dstArea,
          const dng_point & tileSize,
          dng_memory_allocator * allocator,
          dng_abort_sniffer * sniffer ) [virtual]
```

Task startup method called before any processing is done on partitions. The Start method is called before any processing is done and can be overridden to allocate temporary buffers, etc.

threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads.
dstArea	Area to be processed in the current run of the task.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.
sniffer	Sniffer to test for user cancellation and to set up progress.

Reimplemented in dng_find_new_raw_image_digest_task, dng_render_task, dng_resample_task, dng_inplace_opcode_task, dng_filter_opcode_task, and dng_filter_task.

Referenced by Perform().

5.12.2.15 UnitCell()

```
virtual dng_point dng_area_task::UnitCell ( ) const [inline], [virtual]
```

Getter for dimensions of which partitioned tiles should be a multiple. Various methods of processing prefer certain alignments. The partitioning attempts to construct tiles such that the sizes are a multiple of the dimensions of this point.

Return values

а	point giving preferred alignment in x and y
---	---

Referenced by FindTileSize().

The documentation for this class was generated from the following files:

- · dng area task.h
- dng_area_task.cpp

5.13 dng_area_task_progress Class Reference

Inheritance diagram for dng_area_task_progress:

Public Member Functions

• virtual void FinishedTile (const dng_rect &)=0

The documentation for this class was generated from the following file:

· dng area task.h

5.14 dng_bad_pixel_list Class Reference

A list of bad pixels and rectangles (usually single rows or columns).

```
#include <dng_bad_pixels.h>
```

Public Types

• enum { kNoIndex = 0xFFFFFFF }

Public Member Functions

dng_bad_pixel_list ()

Create an empty bad pixel list.

uint32 PointCount () const

Returns the number of bad single pixels.

- · const dng_point & Point (uint32 index) const
- · uint32 RectCount () const

Returns the number of bad rectangles.

- const dng_rect & Rect (uint32 index) const
- bool IsEmpty () const
- bool NotEmpty () const
- void AddPoint (const dng_point &pt)
- void AddRect (const dng_rect &r)
- void Sort ()
- · bool IsPointIsolated (uint32 index, uint32 radius) const
- bool IsRectIsolated (uint32 index, uint32 radius) const
- bool IsPointValid (const dng point &pt, const dng rect &imageBounds, uint32 index=kNoIndex) const

5.14.1 Detailed Description

A list of bad pixels and rectangles (usually single rows or columns).

5.14.2 Member Function Documentation

5.14.2.1 AddPoint()

Add the specified coordinate to the list of bad single pixels.

pt The bad single pixel to add.

5.14.2.2 AddRect()

Add the specified rectangle to the list of bad rectangles.

Parameters

r The bad rectangle to add.

5.14.2.3 IsEmpty()

```
bool dng_bad_pixel_list::IsEmpty ( ) const [inline]
```

Returns true iff there are zero bad single pixels and zero bad rectangles.

References PointCount(), and RectCount().

Referenced by NotEmpty().

5.14.2.4 IsPointIsolated()

Returns true iff the specified bad single pixel is isolated, i.e., there is no other bad single pixel or bad rectangle that lies within radius pixels of this bad single pixel.

Parameters

index	The index of the bad single pixel to test.
radius	The pixel radius to test for isolation.

References Point(), PointCount(), Rect(), and RectCount().

Referenced by dng_opcode_FixBadPixelsList::ProcessArea().

5.14.2.5 IsPointValid()

Returns true iff the specified point is valid, i.e., lies within the specified image bounds, is different from all other bad single pixels, and is not contained in any bad rectangle. The second and third conditions are only checked if provided with a starting search index.

Parameters

pt	The point to test for validity.
imageBounds	The pt must lie within imageBounds to be valid. \index The search index to use (or kNoIndex, to
	avoid a search) for checking for validity.

References Point(), PointCount(), Rect(), and RectCount().

5.14.2.6 IsRectIsolated()

Returns true iff the specified bad rectangle is isolated, i.e., there is no other bad single pixel or bad rectangle that lies within radius pixels of this bad rectangle.

Parameters

index	The index of the bad rectangle to test.
radius	The pixel radius to test for isolation.

References Rect(), and RectCount().

Referenced by dng_opcode_FixBadPixelsList::ProcessArea().

5.14.2.7 NotEmpty()

```
bool dng_bad_pixel_list::NotEmpty ( ) const [inline]
```

Returns true iff there is at least one bad single pixel or at least one bad rectangle.

References IsEmpty().

5.14.2.8 Point()

Retrieves the bad single pixel coordinate via the specified list index.

Parameters

inde	The list index from which to retrieve the bad single pixel coordinate.
------	--

Referenced by IsPointIsolated(), IsPointValid(), dng_opcode_FixBadPixelsList::ProcessArea(), and dng_opcode_Fix BadPixelsList::ProcessArea(), and dng_opcode_Fix BadPixelsList::PutData().

5.14.2.9 Rect()

Retrieves the bad rectangle via the specified list index.

Parameters

index The list index from which to retrieve the bad rectangle coordinates.

Referenced by IsPointIsolated(), IsPointValid(), IsRectIsolated(), dng_opcode_FixBadPixelsList::ProcessArea(), and dng_opcode_FixBadPixelsList::PutData().

5.14.2.10 Sort()

```
void dng_bad_pixel_list::Sort ( )
```

Sort the bad single pixels and bad rectangles by coordinates (top to bottom, then left to right).

References PointCount(), and RectCount().

- dng_bad_pixels.h
- dng_bad_pixels.cpp

5.15 dng_base_tile_iterator Class Reference

Inheritance diagram for dng_base_tile_iterator:

Public Member Functions

virtual bool GetOneTile (dng_rect &tile)=0

The documentation for this class was generated from the following file:

· dng_tile_iterator.h

5.16 dng_basic_tag_set Class Reference

Inheritance diagram for dng_basic_tag_set:

Public Member Functions

- dng_basic_tag_set (dng_tiff_directory &directory, const dng_ifd &info)
- void SetTileOffset (uint32 index, uint32 offset)
- void SetTileByteCount (uint32 index, uint32 count)
- bool WritingStrips () const

- dng_image_writer.h
- dng_image_writer.cpp

5.17 dng_big_table Class Reference

Inheritance diagram for dng big table:

Public Member Functions

- · bool IsMissing () const
- void SetMissing ()
- virtual bool IsValid () const =0
- · const dng_fingerprint & Fingerprint () const
- bool DecodeFromBinary (const uint8 *compressedData, uint32 compressedSize, dng_memory_allocator &allocator)
- bool DecodeFromString (const dng_string &block1, dng_memory_allocator &allocator)
- dng_memory_block * EncodeAsBinary (dng_memory_allocator &allocator, uint32 &compressedSize) const
- dng_memory_block * EncodeAsString (dng_memory_allocator &allocator) const
- bool ExtractFromCache (const dng_fingerprint &fingerprint)
- bool ReadTableFromXMP (const dng xmp &xmp, const char *ns, const dng fingerprint &fingerprint)
- bool ReadFromXMP (const dng_xmp &xmp, const char *ns, const char *path, dng_big_table_storage &storage)
- void WriteToXMP (dng_xmp &xmp, const char *ns, const char *path, dng_big_table_storage &storage) const

Protected Types

enum BigTableTypeEnum { btt_LookTable = 0, btt_RGBTable = 1 }

Protected Member Functions

- dng big table (dng big table cache *cache)
- dng_big_table (const dng_big_table &table)
- dng big table & operator= (const dng big table &table)
- void RecomputeFingerprint ()
- virtual void GetStream (dng_stream &stream)=0
- virtual void **PutStream** (dng_stream &stream, bool forFingerprint) const =0

- · dng_big_table.h
- · dng big table.cpp

5.18 dng_big_table_cache Class Reference

Inheritance diagram for dng_big_table_cache:

Public Member Functions

· void FlushRecentlyUsed ()

Static Public Member Functions

- static void Increment (dng_big_table_cache *cache, const dng_fingerprint &fingerprint)
- static void Decrement (dng big table cache *cache, const dng fingerprint &fingerprint)
- static void Add (dng big table cache *cache, const dng big table &table)
- static bool Extract (dng_big_table_cache *cache, const dng_fingerprint &fingerprint, dng_big_table &table)

Protected Types

enum { kDefaultRecentlyUsedLimit = 5 }

Protected Member Functions

- void UseTable (dng lock std mutex &lock, const dng fingerprint &fingerprint)
- virtual void Cachelncrement (dng lock std mutex &lock, const dng fingerprint &fingerprint)
- virtual void CacheDecrement (dng_lock_std_mutex &lock, const dng_fingerprint &fingerprint)
- virtual void CacheAdd (dng_lock_std_mutex &lock, const dng_big_table &table)
- virtual bool CacheExtract (dng_lock_std_mutex &lock, const dng_fingerprint &fingerprint, dng_big_table &table)
- virtual void InsertTableData (dng_lock_std_mutex &lock, const dng_big_table &table)=0
- virtual void EraseTableData (dng lock std mutex &lock, const dng fingerprint &fingerprint)=0
- virtual void ExtractTableData (dng_lock_std_mutex &lock, const dng_fingerprint &fingerprint, dng_big_table &ta-ble)=0

Protected Attributes

uint32 fRecentlyUsedLimit

The documentation for this class was generated from the following file:

· dng big table.cpp

5.19 dng_big_table_storage Class Reference

Public Member Functions

- virtual bool ReadTable (dng_big_table &table, const dng_fingerprint &fingerprint, dng_memory_allocator &allocator)
- virtual bool WriteTable (const dng_big_table &table, const dng_fingerprint &fingerprint, dng_memory_allocator &allocator)
- virtual void MissingTable (const dng_fingerprint &fingerprint)

The documentation for this class was generated from the following files:

- · dng_big_table.h
- · dng_big_table.cpp

5.20 dng_bilinear_interpolator Class Reference

Public Member Functions

- dng_bilinear_interpolator (const dng_mosaic_info &info, int32 rowStep, int32 colStep)
- void Interpolate (dng_pixel_buffer &srcBuffer, dng_pixel_buffer &dstBuffer)

The documentation for this class was generated from the following file:

· dng_mosaic_info.cpp

5.21 dng bilinear kernel Class Reference

Public Types

enum { kMaxCount = 8 }

Public Member Functions

- void **Add** (const dng_point &delta, real32 weight)
- void Finalize (const dng_point &scale, uint32 patRow, uint32 patCol, int32 rowStep, int32 colStep)

Public Attributes

- uint32 fCount
- dng_point fDelta [kMaxCount]
- real32 fWeight32 [kMaxCount]
- uint16 fWeight16 [kMaxCount]
- int32 fOffset [kMaxCount]

The documentation for this class was generated from the following file:

· dng mosaic info.cpp

5.22 dng_bilinear_pattern Class Reference

Public Types

• enum { kMaxPattern = kMaxCFAPattern * 2 }

Public Member Functions

void Calculate (const dng_mosaic_info &info, uint32 dstPlane, int32 rowStep, int32 colStep)

Public Attributes

- · dng_point fScale
- uint32 fPatRows
- uint32 fPatCols
- dng bilinear kernel fKernel [kMaxPattern][kMaxPattern]
- uint32 fCounts [kMaxPattern][kMaxPattern]
- int32 * fOffsets [kMaxPattern][kMaxPattern]
- uint16 * fWeights16 [kMaxPattern][kMaxPattern]
- real32 * fWeights32 [kMaxPattern][kMaxPattern]

The documentation for this class was generated from the following file:

· dng_mosaic_info.cpp

5.23 dng_camera_profile Class Reference

Container for DNG camera color profile and calibration data.

```
#include <dng_camera_profile.h>
```

Public Member Functions

- void SetName (const char *name)
- const dng_string & Name () const
- bool NamelsEmbedded () const
- · void SetCalibrationIlluminant1 (uint32 light)
- void SetCalibrationIlluminant2 (uint32 light)
- uint32 CalibrationIlluminant1 () const
- uint32 CalibrationIlluminant2 () const
- real64 CalibrationTemperature1 () const
- real64 CalibrationTemperature2 () const
- void SetColorMatrix1 (const dng_matrix &m)
- void SetColorMatrix2 (const dng matrix &m)
- bool HasColorMatrix1 () const

Predicate to test if first camera matrix is set.

bool HasColorMatrix2 () const

Predicate to test if second camera matrix is set.

const dng_matrix & ColorMatrix1 () const

Getter for first of up to two color matrices used for calibrations.

const dng_matrix & ColorMatrix2 () const

Getter for second of up to two color matrices used for calibrations.

void SetForwardMatrix1 (const dng matrix &m)

Setter for first of up to two forward matrices used for calibrations.

void SetForwardMatrix2 (const dng matrix &m)

Setter for second of up to two forward matrices used for calibrations.

const dng matrix & ForwardMatrix1 () const

Getter for first of up to two forward matrices used for calibrations.

const dng matrix & ForwardMatrix2 () const

Getter for second of up to two forward matrices used for calibrations.

- void SetReductionMatrix1 (const dng matrix &m)
- void SetReductionMatrix2 (const dng_matrix &m)
- const dng matrix & ReductionMatrix1 () const

Getter for first of up to two dimensionality reduction hints for four color cameras.

const dng_matrix & ReductionMatrix2 () const

Getter for second of up to two dimensionality reduction hints for four color cameras.

const dng_fingerprint & Fingerprint () const

Getter function from profile fingerprint.

- · dng fingerprint UniqueID () const
- · dng camera profile id ProfileID () const
- void SetCopyright (const char *copyright)
- · const dng_string & Copyright () const
- void SetEmbedPolicy (uint32 policy)
- uint32 EmbedPolicy () const
- bool IsLegalToEmbed () const
- bool HasHueSatDeltas () const

Returns true iff the profile has a valid HueSatMap color table.

const dng_hue_sat_map & HueSatDeltas1 () const

Getter for first HueSatMap color table (for calibration illuminant 1).

void SetHueSatDeltas1 (const dng_hue_sat_map &deltas1)

Setter for first HueSatMap color table (for calibration illuminant 1).

• const dng_hue_sat_map & HueSatDeltas2 () const

Getter for second HueSatMap color table (for calibration illuminant 2).

void SetHueSatDeltas2 (const dng_hue_sat_map &deltas2)

Setter for second HueSatMap color table (for calibration illuminant 2).

uint32 HueSatMapEncoding () const

Returns the hue sat map encoding (see ProfileHueSatMapEncoding tag).

- void SetHueSatMapEncoding (uint32 encoding)
- bool HasLookTable () const

Returns true if the profile has a LookTable.

const dng_hue_sat_map & LookTable () const

Getter for LookTable.

void SetLookTable (const dng hue sat map &table)

Setter for LookTable.

uint32 LookTableEncoding () const

Returns the LookTable encoding (see ProfileLookTableEncoding tag).

- void SetLookTableEncoding (uint32 encoding)
- void SetBaselineExposureOffset (real64 exposureOffset)
- const dng srational & BaselineExposureOffset () const
- void SetDefaultBlackRender (uint32 defaultBlackRender)
- uint32 DefaultBlackRender () const
- · const dng_tone_curve & ToneCurve () const

Returns the tone curve of the profile.

void SetToneCurve (const dng_tone_curve &curve)

Sets the tone curve of the profile to the specified curve.

- void SetProfileCalibrationSignature (const char *signature)
- const dng_string & ProfileCalibrationSignature () const
- void SetUniqueCameraModelRestriction (const char *camera)
- · const dng string & UniqueCameraModelRestriction () const
- void SetWasReadFromDNG (bool state=true)
- · bool WasReadFromDNG () const

Was this profile read from a DNG?

- void SetWasReadFromDisk (bool state=true)
- bool WasReadFromDisk () const

Was this profile read from disk?

- void SetWasBuiltinMatrix (bool state=true)
- bool WasBuiltinMatrix () const

Was this profile a built-in matrix profile?

- · bool IsValid (uint32 channels) const
- · bool EqualData (const dng camera profile &profile) const
- void Parse (dng_stream &stream, dng_camera_profile_info &profileInfo)

Parse profile from dng_camera_profile_info data.

- bool ParseExtended (dng_stream &stream)
- virtual void SetFourColorBayer ()

Convert from a three-color to a four-color Bayer profile.

- dng_hue_sat_map * HueSatMapForWhite (const dng_xy_coord &white) const
- void Stub ()

Stub out the profile (free memory used by large tables).

· bool WasStubbed () const

Was this profile stubbed?

Static Public Member Functions

static void NormalizeColorMatrix (dng matrix &m)

Utility function to normalize the scale of the color matrix.

static void NormalizeForwardMatrix (dng_matrix &m)

Utility function to normalize the scale of the forward matrix.

Protected Member Functions

- void ClearFingerprint ()
- · void CalculateFingerprint () const

Static Protected Member Functions

- static real64 **IlluminantToTemperature** (uint32 light)
- static bool ValidForwardMatrix (const dng_matrix &m)
- static void **ReadHueSatMap** (dng_stream &stream, dng_hue_sat_map &hueSatMap, uint32 hues, uint32 sats, uint32 vals, bool skipSat0)

Protected Attributes

- dng_string fName
- uint32 fCalibrationIlluminant1
- uint32 fCalibrationIlluminant2
- dng matrix fColorMatrix1
- dng matrix fColorMatrix2
- dng_matrix fForwardMatrix1
- dng_matrix fForwardMatrix2
- dng_matrix fReductionMatrix1
- dng matrix fReductionMatrix2
- · dng fingerprint fFingerprint
- dng_string fCopyright
- uint32 fEmbedPolicy
- dng_hue_sat_map fHueSatDeltas1
- dng_hue_sat_map fHueSatDeltas2
- uint32 fHueSatMapEncoding
- · dng hue sat map fLookTable
- uint32 fLookTableEncoding
- dng srational fBaselineExposureOffset
- uint32 fDefaultBlackRender
- dng tone curve fToneCurve
- · dng string fProfileCalibrationSignature
- dng_string fUniqueCameraModelRestriction
- bool fWasReadFromDNG
- bool fWasReadFromDisk
- bool fWasBuiltinMatrix
- bool fWasStubbed

5.23.1 Detailed Description

Container for DNG camera color profile and calibration data.

5.23.2 Member Function Documentation

5.23.2.1 BaselineExposureOffset()

```
const dng_srational& dng_camera_profile::BaselineExposureOffset ( ) const [inline]
```

Returns the baseline exposure offset of the profile (see BaselineExposureOffset tag).

Referenced by dng negative::TotalBaselineExposure().

5.23.2.2 CalibrationIlluminant1()

```
uint32 dng_camera_profile::CalibrationIlluminant1 ( ) const [inline]
```

Getter for first of up to two light sources used for calibration. Uses the EXIF encodings for illuminant and is used to distinguish which matrix to use. Corresponds to the DNG CalibrationIlluminant1 tag.

Referenced by CalibrationTemperature1().

5.23.2.3 CalibrationIlluminant2()

```
uint32 dng_camera_profile::CalibrationIlluminant2 ( ) const [inline]
```

Getter for second of up to two light sources used for calibration. Uses the EXIF encodings for illuminant and is used to distinguish which matrix to use. Corresponds to the DNG CalibrationIlluminant2 tag.

Referenced by CalibrationTemperature2().

5.23.2.4 CalibrationTemperature1()

```
real64 dng_camera_profile::CalibrationTemperature1 ( ) const [inline]
```

Getter for first of up to two light sources used for calibration, returning result as color temperature.

References CalibrationIlluminant1().

Referenced by dng_color_spec::dng_color_spec(), and HueSatMapForWhite().

5.23.2.5 CalibrationTemperature2()

```
real64 dng_camera_profile::CalibrationTemperature2 ( ) const [inline]
```

Getter for second of up to two light sources used for calibration, returning result as color temperature.

References CalibrationIlluminant2().

Referenced by dng_color_spec::dng_color_spec(), and HueSatMapForWhite().

5.23.2.6 Copyright()

```
const dng_string& dng_camera_profile::Copyright ( ) const [inline]
```

Getter for camera profile copyright.

Return values

Copyright string for profile.

5.23.2.7 DefaultBlackRender()

```
uint32 dng_camera_profile::DefaultBlackRender ( ) const [inline]
```

Returns the default black render of the profile (see DefaultBlackRender tag).

Referenced by dng_render::dng_render().

5.23.2.8 EmbedPolicy()

```
uint32 dng_camera_profile::EmbedPolicy ( ) const [inline]
```

Getter for camera profile embed policy.

Return values

```
Policy for profile.
```

Referenced by IsLegalToEmbed().

5.23.2.9 EqualData()

Predicate to check if two camera profiles are colorwise equal, thus ignores the profile name.

Parameters

```
profile Camera profile to compare to.
```

5.23.2.10 HueSatMapForWhite()

Find the hue/sat table to use for a given white point, if any. The calling routine owns the resulting table.

References CalibrationTemperature1(), CalibrationTemperature2(), HueSatDeltas1(), HueSatDeltas2(), dng_hue_sat—map::Interpolate(), and dng_hue_sat_map::IsValid().

5.23.2.11 IsLegalToEmbed()

```
bool dng_camera_profile::IsLegalToEmbed ( ) const [inline]
```

Returns true iff the profile is legal to embed in a DNG, per the profile's embed policy.

References EmbedPolicy(), and WasReadFromDNG().

5.23.2.12 IsValid()

Determines if this a valid profile for this number of color channels?

Return values

true	if the profile is valid.
------	--------------------------

References ReportError().

Referenced by dng_color_spec::dng_color_spec(), dng_info::Parse(), and SetFourColorBayer().

5.23.2.13 Name()

```
const dng_string& dng_camera_profile::Name ( ) const [inline]
```

Getter for camera profile name.

Return values

```
Name of profile.
```

Referenced by ProfileID().

5.23.2.14 NamelsEmbedded()

```
bool dng_camera_profile::NameIsEmbedded ( ) const [inline]
```

Test if this name is embedded.

Return values

true if the name matches the name of the embedded camera profile.

5.23.2.15 ParseExtended()

Parse from an extended profile stream, which is similar to stand alone TIFF file.

References Parse().

5.23.2.16 ProfileCalibrationSignature()

```
\verb|const|| \verb|dng_string|| \verb| ang_camera_profile:: Profile Calibration Signature () const [inline]|
```

Returns the profile calibration signature (see ProfileCalibrationSignature tag) of the profile.

Referenced by dng_color_spec::dng_color_spec().

5.23.2.17 ProfileID()

```
dng_camera_profile_id dng_camera_profile::ProfileID ( ) const [inline]
```

Getter for camera profile id.

Return values

ID of profile.

References Fingerprint(), and Name().

5.23.2.18 SetBaselineExposureOffset()

Sets the baseline exposure offset of the profile (see BaselineExposureOffset tag) to the specified value.

5.23.2.19 SetCalibrationIlluminant1()

Setter for first of up to two light sources used for calibration. Uses the EXIF encodings for illuminant and is used to distinguish which matrix to use. Corresponds to the DNG CalibrationIlluminant1 tag.

5.23.2.20 SetCalibrationIlluminant2()

Setter for second of up to two light sources used for calibration. Uses the EXIF encodings for illuminant and is used to distinguish which matrix to use. Corresponds to the DNG CalibrationIlluminant2 tag.

5.23.2.21 SetColorMatrix1()

Setter for first of up to two color matrices used for reference camera calibrations. These matrices map XYZ values to camera values. The DNG SDK needs to map colors that direction in order to determine the clipping points for highlight recovery logic based on the white point. If cameras were all three-color, the matrix could be stored as a forward matrix. The inverse matrix is required to support four-color cameras.

References NormalizeColorMatrix().

5.23.2.22 SetColorMatrix2()

Setter for second of up to two color matrices used for reference camera calibrations. These matrices map XYZ values to camera values. The DNG SDK needs to map colors that direction in order to determine the clipping points for highlight recovery logic based on the white point. If cameras were all three-color, the matrix could be stored as a forward matrix. The inverse matrix is required to support four-color cameras.

References NormalizeColorMatrix().

5.23.2.23 SetCopyright()

Setter for camera profile copyright.

Parameters

copyright | Copyright string to use for this camera profile.

5.23.2.24 SetDefaultBlackRender()

Sets the default black render of the profile (see DefaultBlackRender tag) to the specified option.

5.23.2.25 SetEmbedPolicy()

Setter for camera profile embed policy.

Parameters

policy Policy to use for this camera profile.

5.23.2.26 SetHueSatMapEncoding()

Sets the hue sat map encoding (see ProfileHueSatMapEncoding tag) to the specified encoding.

5.23.2.27 SetLookTableEncoding()

Sets the LookTable encoding (see ProfileLookTableEncoding tag) to the specified encoding.

5.23.2.28 SetName()

Setter for camera profile name.

Parameters

5.23.2.29 SetProfileCalibrationSignature()

Sets the profile calibration signature (see ProfileCalibrationSignature tag) to the specified string.

5.23.2.30 SetReductionMatrix1()

Setter for first of up to two dimensionality reduction hints for four-color cameras. This is an optional matrix that maps four components to three. See Appendix 6 of the DNG 1.1.0 specification.

5.23.2.31 SetReductionMatrix2()

Setter for second of up to two dimensionality reduction hints for four-color cameras. This is an optional matrix that maps four components to three. See Appendix 6 of the DNG 1.1.0 specification.

5.23.2.32 SetUniqueCameraModelRestriction()

Setter for camera unique model name to restrict use of this profile.

Parameters

camera	Camera unique model name designating only camera this profile can be used with. (Empty string for no
	restriction.)

5.23.2.33 SetWasBuiltinMatrix()

Sets internal flag to indicate this profile was originally a built-in matrix profile.

5.23.2.34 SetWasReadFromDisk()

Sets internal flag to indicate this profile was originally read from disk.

5.23.2.35 SetWasReadFromDNG()

Sets internal flag to indicate this profile was originally read from a DNG file.

5.23.2.36 UniqueCameraModelRestriction()

```
const dng_string& dng_camera_profile::UniqueCameraModelRestriction ( ) const [inline]
```

Getter for camera unique model name to restrict use of this profile.

Return values

Unique | model name of only camera this profile can be used with or empty if no restriction.

5.23.2.37 UniqueID()

```
dng_fingerprint dng_camera_profile::UniqueID ( ) const
```

Getter for camera profile unique ID. Use this ID for uniquely identifying profiles (e.g., for syncing purposes).

References dng_fingerprint::IsValid(), dng_stream::Put(), and dng_stream::SetLittleEndian().

The documentation for this class was generated from the following files:

- dng_camera_profile.h
- · dng camera profile.cpp

5.24 dng_camera_profile_id Class Reference

An ID for a camera profile consisting of a name and optional fingerprint.

```
#include <dng_camera_profile.h>
```

Public Member Functions

dng camera profile id ()

Construct an invalid camera profile ID (empty name and fingerprint).

- dng_camera_profile_id (const char *name)
- dng_camera_profile_id (const dng_string &name)
- dng_camera_profile_id (const char *name, const dng_fingerprint &fingerprint)
- dng_camera_profile_id (const dng_string &name, const dng_fingerprint &fingerprint)
- const dng_string & Name () const
- const dng fingerprint & Fingerprint () const
- bool operator== (const dng_camera_profile_id &id) const
- bool operator!= (const dng camera profile id &id) const
- bool IsValid () const

Returns true iff the camera profile ID is valid.

• void Clear ()

5.24.1 Detailed Description

An ID for a camera profile consisting of a name and optional fingerprint.

5.24.2 Constructor & Destructor Documentation

```
5.24.2.1 dng_camera_profile_id() [1/4]
```

Construct a camera profile ID with the specified name and no fingerprint.

Parameters

name The name of the camera profile ID.

```
5.24.2.2 dng_camera_profile_id() [2/4]
```

Construct a camera profile ID with the specified name and no fingerprint.

Parameters

name	The name of the camera profile ID.

5.24.2.3 dng_camera_profile_id() [3/4]

Construct a camera profile ID with the specified name and fingerprint.

Parameters

name	The name of the camera profile ID.
fingerprint	The fingerprint of the camera profile ID.

References DNG_ASSERT, and dng_fingerprint::IsValid().

5.24.2.4 dng_camera_profile_id() [4/4]

Construct a camera profile ID with the specified name and fingerprint.

Parameters

name	The name of the camera profile ID.
fingerprint	The fingerprint of the camera profile ID.

References DNG_ASSERT, and dng_fingerprint::lsValid().

5.24.3 Member Function Documentation

5.24.3.1 Clear()

```
void dng_camera_profile_id::Clear ( ) [inline]
```

Resets the name and fingerprint, thereby making this camera profile ID invalid.

References dng_camera_profile_id().

5.24.3.2 Fingerprint()

```
const dng_fingerprint& dng_camera_profile_id::Fingerprint ( ) const [inline]
```

Getter for the fingerprint of the camera profile ID.

Return values

The fingerprint of the camera profile ID.	The
---	-----

5.24.3.3 Name()

```
const dng_string& dng_camera_profile_id::Name ( ) const [inline]
```

Getter for the name of the camera profile ID.

Return values

The name of the camera pro

5.24.3.4 operator"!=()

Test for inequality of two camera profile IDs.

Parameters

id The id of the camera profile ID to compare.

5.24.3.5 operator==()

Test for equality of two camera profile IDs.

Parameters

id The id of the camera profile ID to compare.

The documentation for this class was generated from the following file:

dng_camera_profile.h

5.25 dng_camera_profile_info Class Reference

Public Member Functions

- bool ParseTag (dng_stream &stream, uint32 parentCode, uint32 tagCode, uint32 tagType, uint32 tagCount, uint64 tagOffset)
- bool ParseExtended (dng_stream &stream)

Public Attributes

- bool fBigEndian
- uint32 fColorPlanes
- uint32 fCalibrationIlluminant1
- uint32 fCalibrationIlluminant2
- dng_matrix fColorMatrix1
- dng matrix fColorMatrix2
- dng_matrix fForwardMatrix1
- dng_matrix fForwardMatrix2
- dng_matrix fReductionMatrix1
- dng matrix fReductionMatrix2
- dng_string fProfileCalibrationSignature
- dng string fProfileName
- dng_string fProfileCopyright
- uint32 fEmbedPolicy
- uint32 fProfileHues
- uint32 fProfileSats
- · uint32 fProfileVals
- uint64 fHueSatDeltas1Offset
- uint32 fHueSatDeltas1Count
- uint64 fHueSatDeltas2Offset
- uint32 fHueSatDeltas2Count
- uint32 fHueSatMapEncoding
- uint32 fLookTableHues
- uint32 fLookTableSats
- uint32 fLookTableVals
- uint64 fLookTableOffsetuint32 fLookTableCount
- uint32 fLookTableEncoding
- · dng srational fBaselineExposureOffset
- uint32 fDefaultBlackRender
- uint64 fToneCurveOffset
- uint32 fToneCurveCount
- dng_string fUniqueCameraModel

The documentation for this class was generated from the following files:

- · dng_shared.h
- · dng shared.cpp

5.26 dng_color_space Class Reference

An abstract color space.

#include <dng_color_space.h>

Inheritance diagram for dng_color_space:

Public Member Functions

- const dng_matrix & MatrixToPCS () const
- const dng_matrix & MatrixFromPCS () const
- bool IsMonochrome () const
- virtual const dng_1d_function & GammaFunction () const

Getter for the gamma function for this color space.

· bool IsLinear () const

Returns true if this color space is linear. (I.e. has gamma 1.0.)

• real64 GammaEncode (real64 x) const

Map an input value through this color space's encoding gamma.

- real64 GammaDecode (real64 y) const
- virtual bool ICCProfile (uint32 &size, const uint8 *&data) const

Protected Member Functions

- void SetMonochrome ()
- void **SetMatrixToPCS** (const dng_matrix_3by3 &M)

Protected Attributes

- dng_matrix fMatrixToPCS
- dng_matrix fMatrixFromPCS

5.26.1 Detailed Description

An abstract color space.

5.26.2 Member Function Documentation

5.26.2.1 GammaDecode()

Map an input value through this color space's decoding gamma (inverse of the encoding gamma).

References dng_1d_function::EvaluateInverse(), and GammaFunction().

5.26.2.2 ICCProfile()

Getter for ICC profile, if this color space has one.

Parameters

size	Out parameter which receives size on return.
data	Receives bytes of profile.

Return values

Returns	true if this color space has an ICC profile, false otherwise.
---------	---

Reimplemented in dng_space_GrayGamma22, dng_space_GrayGamma18, dng_space_ProPhoto, dng_space_ColorMatch, dng_space_AdobeRGB, and dng_space_sRGB.

5.26.2.3 IsMonochrome()

```
bool dng_color_space::IsMonochrome ( ) const [inline]
```

Predicate which is true if this color space is monochrome (has only a single column).

Referenced by dng render::Render().

5.26.2.4 MatrixFromPCS()

```
const dng_matrix& dng_color_space::MatrixFromPCS ( ) const [inline]
```

Return a matrix which transforms Profile Connection Space data into this color space.

5.26.2.5 MatrixToPCS()

```
const dng_matrix& dng_color_space::MatrixToPCS ( ) const [inline]
```

Return a matrix which transforms source data in this color space into the Profile Connection Space.

The documentation for this class was generated from the following files:

- · dng color space.h
- dng_color_space.cpp

5.27 dng_color_spec Class Reference

```
#include <dng_color_spec.h>
```

Public Member Functions

- dng_color_spec (const dng_negative &negative, const dng_camera_profile *profile)
- uint32 Channels () const
- void SetWhiteXY (const dng_xy_coord &white)
- const dng xy coord & WhiteXY () const
- · const dng vector & CameraWhite () const
- const dng_matrix & CameraToPCS () const
- · const dng matrix & PCStoCamera () const
- dng_xy_coord NeutralToXY (const dng_vector &neutral)

5.27.1 Detailed Description

Color transform taking into account white point and camera calibration and individual calibration from DNG negative.

5.27.2 Constructor & Destructor Documentation

5.27.2.1 dng_color_spec()

Read calibration info from DNG negative and construct a dng color spec.

References dng_negative::AnalogBalance(), dng_camera_profile::CalibrationTemperature1(), dng_camera_profile ::CalibrationTemperature2(), dng_negative::CameraCalibration1(), dng_negative::CameraCalibration2(), dng_camera_profile::ColorMatrix1(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::ForwardMatrix1(), dng_camera_profile::HasColorMatrix2(), dng_camera_profile::IsValid(), dng_camera_profile::ProfileCalibrationSignature(), dng_camera_profile::ProfileCalibrationSignature(), dng_camera_profile::ProfileCalibrationSignature(), dng_camera_profile::ColorMatrix1(), dng_camera_profile::ProfileCalibrationSignature(), dng_camera_profile::ColorMatrix1(), dng_camera_profile::ProfileCalibrationSignature(), dng_camera_profile::ColorMatrix1(), dng_camera_profile::ProfileCalibrationSignature(), dng_camera_profile::ColorMatrix1(), dng_camera_profile::ColorMatrix2(), ThrowBadFormat(), ThrowProgramError(), and dng_camera_profile::ColorMatrix1(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::IsValid(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::IsValid(), dng_camera_profile::ColorMatrix2(), dng_camera_profile::Co

5.27.3 Member Function Documentation

5.27.3.1 CameraToPCS()

```
const dng_matrix & dng_color_spec::CameraToPCS ( ) const
```

Getter for camera to Profile Connection Space color transform.

Return values

I transform that takes into account all camera calibration transforms and white point.

References DNG_ASSERT.

5.27.3.2 CameraWhite()

```
const dng_vector & dng_color_spec::CameraWhite ( ) const
```

Return white point in camera native color coordinates.

Return values

dng_vector with components ranging from 0.0 to 1.0 that is normalized such that one component is equal to 1.0.

References DNG_ASSERT.

5.27.3.3 Channels()

```
uint32 dng_color_spec::Channels ( ) const [inline]
```

Number of channels used for this color transform. Three for most cameras.

5.27.3.4 NeutralToXY()

Return the XY value to use for SetWhiteXY for a given camera color space coordinate as the white point.

Parameters

A camera color space value to use for white point. Components range from 0.0 to 1.0 and should be normalized such that the largest value is 1.0.

Return values

White

point in XY space that makes neutral map to this XY value as closely as possible.

5.27.3.5 PCStoCamera()

```
const dng_matrix & dng_color_spec::PCStoCamera ( ) const
```

Getter for Profile Connection Space to camera color transform.

Return values

. .

transform that takes into account all camera calibration transforms and white point.

References DNG ASSERT.

5.27.3.6 SetWhiteXY()

Setter for white point. Value is as XY colorspace coordinate.

Parameters

white

White point to set as an XY value.

5.27.3.7 WhiteXY()

```
const dng_xy_coord & dng_color_spec::WhiteXY ( ) const
```

Getter for white point. Value is as XY colorspace coordinate.

Return values

XY value of white point.

References DNG_ASSERT.

The documentation for this class was generated from the following files:

- · dng_color_spec.h
- · dng_color_spec.cpp

5.28 dng_condition Class Reference

Inheritance diagram for dng_condition:

Public Member Functions

- bool Wait (dng_mutex &mutex, double timeoutSecs=-1.0)
- void Signal ()
- void Broadcast ()

The documentation for this class was generated from the following files:

- · dng_mutex.h
- dng_mutex.cpp

5.29 dng_const_tile_buffer Class Reference

Class to get resource acquisition is instantiation behavior for constant (read-only) tile buffers.

```
#include <dng_image.h>
```

Inheritance diagram for dng_const_tile_buffer:

Public Member Functions

dng_const_tile_buffer (const dng_image &image, const dng_rect &tile)

Additional Inherited Members

5.29.1 Detailed Description

Class to get resource acquisition is instantiation behavior for constant (read-only) tile buffers.

5.29.2 Constructor & Destructor Documentation

5.29.2.1 dng_const_tile_buffer()

Obtain a read-only tile from an image.

Parameters

image	Image tile will come from.
tile	Rectangle denoting extent of tile.

The documentation for this class was generated from the following files:

- · dng_image.h
- · dng_image.cpp

5.30 dng_date_time Class Reference

Class for holding a date/time and converting to and from relevant date/time formats.

```
#include <dng_date_time.h>
```

Public Member Functions

dng_date_time ()

Construct an invalid date/time.

dng_date_time (uint32 year, uint32 month, uint32 day, uint32 hour, uint32 minute, uint32 second)

- bool IsValid () const
- bool NotValid () const
- bool operator== (const dng_date_time &dt) const Equal operator.
- bool operator!= (const dng_date_time &dt) const
- void Clear ()

Set date to an invalid value.

• bool Parse (const char *s)

Public Attributes

- uint32 fYear
- uint32 fMonth
- uint32 fDay
- uint32 fHour
- uint32 fMinute
- uint32 fSecond

5.30.1 Detailed Description

Class for holding a date/time and converting to and from relevant date/time formats.

5.30.2 Constructor & Destructor Documentation

5.30.2.1 dng_date_time()

Construct a date/time with specific values.

Parameters

year	Year to use as actual integer value, such as 2006.
month	Month to use from 1 - 12, where 1 is January.
day	Day of month to use from 1 -31, where 1 is the first.
hour	Hour of day to use from 0 - 23, where 0 is midnight.
minute	Minute of hour to use from 0 - 59.
second	Second of minute to use from 0 - 59.

5.30.3 Member Function Documentation

5.30.3.1 IsValid()

```
bool dng_date_time::IsValid ( ) const
```

Predicate to determine if a date is valid.

Return values

true if all fields are within range.

Referenced by LocalTimeZone(), NotValid(), and Parse().

5.30.3.2 NotValid()

```
bool dng_date_time::NotValid ( ) const [inline]
```

Predicate to determine if a date is invalid.

Return values

```
true if any field is out of range.
```

References IsValid().

5.30.3.3 Parse()

```
bool dng_date_time::Parse (  {\tt const\ char}\ *\ s\ )
```

Parse an EXIF format date string.

Parameters

s Input date string to parse.

Return values

true	if date was parsed successfully and date is valid.
	in date trae pareed edecederany arta date to railar

References IsValid().

The documentation for this class was generated from the following files:

- · dng date time.h
- · dng_date_time.cpp

5.31 dng_date_time_info Class Reference

Class for holding complete data/time/zone information.

```
#include <dng_date_time.h>
```

Public Member Functions

- · bool IsValid () const
- bool NotValid () const
- · void Clear ()
- · bool IsDateOnly () const
- · const dng_date_time & DateTime () const
- void SetDateTime (const dng_date_time &dt)
- const dng_string & Subseconds () const
- void SetSubseconds (const dng_string &s)
- const dng_time_zone & TimeZone () const
- void SetZone (const dng_time_zone &zone)
- void ClearZone ()
- void SetOffsetTime (const dng string &s)
- dng string OffsetTime () const
- void Decode_ISO_8601 (const char *s)
- dng string Encode ISO 8601 () const
- void Decode IPTC Date (const char *s)
- dng_string Encode_IPTC_Date () const
- void Decode_IPTC_Time (const char *s)
- dng_string Encode_IPTC_Time () const

5.31.1 Detailed Description

Class for holding complete data/time/zone information.

The documentation for this class was generated from the following files:

- dng_date_time.h
- · dng_date_time.cpp

5.32 dng_date_time_storage_info Class Reference

Store file offset from which date was read.

```
#include <dng_date_time.h>
```

Public Member Functions

• dng_date_time_storage_info ()

The default constructor initializes to an invalid state.

dng_date_time_storage_info (uint64 offset, dng_date_time_format format)

Construct with file offset and date format.

- bool IsValid () const
- uint64 Offset () const
- dng_date_time_format Format () const

5.32.1 Detailed Description

Store file offset from which date was read.

Used internally by Adobe to update date in original file.

Warning

Use at your own risk.

5.32.2 Member Function Documentation

5.32.2.1 Format()

```
dng_date_time_format dng_date_time_storage_info::Format ( ) const
```

Get for format date was originally stored in file. Throws a dng_error_unknown exception if offset is invalid.

Exceptions

```
dng_exception with fErrorCode equal to dng_error_unknown if offset is not valid.
```

References IsValid(), and ThrowProgramError().

5.32.2.2 IsValid()

```
bool dng_date_time_storage_info::IsValid ( ) const
```

Predicate to determine if an offset is valid.

Return values

true if offset is valid.

Referenced by Format(), and Offset().

5.32.2.3 Offset()

```
uint64 dng_date_time_storage_info::Offset ( ) const
```

Getter for offset in file.

Exceptions

eption with fErrorCode equal to dng_error_unknown if offset is not valid.

References IsValid(), and ThrowProgramError().

The documentation for this class was generated from the following files:

- dng_date_time.h
- · dng_date_time.cpp

5.33 dng_depth_preview Class Reference

Inheritance diagram for dng_depth_preview:

Public Member Functions

- virtual dng_basic_tag_set * AddTagSet (dng_tiff_directory &directory) const
- virtual void WriteData (dng_host &host, dng_image_writer &writer, dng_basic_tag_set &basic, dng_stream &stream) const

Public Attributes

- AutoPtr< dng image > flmage
- int32 fCompressionQuality
- bool fFullResolution

The documentation for this class was generated from the following files:

- dng_preview.h
- · dng_preview.cpp

5.34 dng_dirty_tile_buffer Class Reference

Class to get resource acquisition is instantiation behavior for dirty (writable) tile buffers.

```
#include <dng_image.h>
```

Inheritance diagram for dng_dirty_tile_buffer:

Public Member Functions

dng_dirty_tile_buffer (dng_image &image, const dng_rect &tile)

Additional Inherited Members

5.34.1 Detailed Description

Class to get resource acquisition is instantiation behavior for dirty (writable) tile buffers.

5.34.2 Constructor & Destructor Documentation

5.34.2.1 dng_dirty_tile_buffer()

Obtain a writable tile from an image.

Parameters

image	Image tile will come from.
tile	Rectangle denoting extent of tile.

The documentation for this class was generated from the following files:

- · dng_image.h
- dng_image.cpp

5.35 dng_dither Class Reference

Inheritance diagram for dng_dither:

Public Member Functions

• const uint16 * NoiseBuffer16 () const

Static Public Member Functions

• static const dng_dither & Get ()

Static Public Attributes

- static const uint32 kRNGBits = 7
- static const uint32 kRNGSize = 1 << kRNGBits
- static const uint32 kRNGMask = kRNGSize 1
- static const uint32 kRNGSize2D = kRNGSize * kRNGSize

The documentation for this class was generated from the following files:

- dng_utils.h
- · dng_utils.cpp

5.36 dng_encode_proxy_task Class Reference

Inheritance diagram for dng_encode_proxy_task:

Public Member Functions

- dng_encode_proxy_task (dng_host &host, const dng_image &srcImage, dng_image &dstImage, const real64
 *lower, const real64 *upper, bool isSceneReferred, real64 stage3BlackLevel, real64 *blackLevel)
- virtual dng_rect RepeatingTile1 () const
- virtual dng rect RepeatingTile2 () const
- virtual void Process (uint32 threadIndex, const dng_rect &tile, dng_abort_sniffer *sniffer)
 and progress updates.

Additional Inherited Members

5.36.1 Member Function Documentation

5.36.1.1 Process()

and progress updates.

Process one tile or fully partitioned area. This method is overridden by derived classes to implement the actual image processing. Note that the sniffer can be ignored if it is certain that a processing task will complete very quickly. This method should never be called directly but rather accessed via Process. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)
tile	Area to process.
sniffer	dng_abort_sniffer to use to check for user cancellation

Implements dng_area_task.

References dng_memory_block::Buffer_uint16(), dng_pixel_buffer::ConstPixel_uint16(), dng_pixel_buffer::DirtyPixel_← uint8(), and dng_image::Planes().

5.36.1.2 RepeatingTile1()

```
virtual dng_rect dng_encode_proxy_task::RepeatingTile1 ( ) const [inline], [virtual]
```

Getter for RepeatingTile1. RepeatingTile1, RepeatingTile2, and RepeatingTile3 are used to establish a set of 0 to 3 tile patterns for which the resulting partitions that the final Process method is called on will not cross tile boundaries in any

of the tile patterns. This can be used for a processing routine that needs to read from two tiles and write to a third such that all the tiles are aligned and sized in a certain way. A RepeatingTile value is valid if it is non-empty. Higher numbered RepeatingTile patterns are only used if all lower ones are non-empty. A RepeatingTile pattern must be a multiple of UnitCell in size for all constraints of the partitionerr to be met.

Reimplemented from dng_area_task.

References dng image::RepeatingTile().

5.36.1.3 RepeatingTile2()

```
virtual dng_rect dng_encode_proxy_task::RepeatingTile2 ( ) const [inline], [virtual]
```

Getter for RepeatingTile2. RepeatingTile1, RepeatingTile2, and RepeatingTile3 are used to establish a set of 0 to 3 tile patterns for which the resulting partitions that the final Process method is called on will not cross tile boundaries in any of the tile patterns. This can be used for a processing routine that needs to read from two tiles and write to a third such that all the tiles are aligned and sized in a certain way. A RepeatingTile value is valid if it is non-empty. Higher numbered RepeatingTile patterns are only used if all lower ones are non-empty. A RepeatingTile pattern must be a multiple of UnitCell in size for all constraints of the partitionerr to be met.

Reimplemented from dng_area_task.

References dng_image::RepeatingTile().

The documentation for this class was generated from the following file:

· dng negative.cpp

5.37 dng exception Class Reference

All exceptions thrown by the DNG SDK use this exception class.

```
#include <dng_exceptions.h>
```

Public Member Functions

- dng exception (dng error code code)
- dng error code ErrorCode () const

5.37.1 Detailed Description

All exceptions thrown by the DNG SDK use this exception class.

5.37.2 Constructor & Destructor Documentation

5.37.2.1 dng_exception()

Construct an exception representing the given error code.

Parameters

code	Error code this exception is for.
------	-----------------------------------

5.37.3 Member Function Documentation

5.37.3.1 ErrorCode()

```
dng_error_code dng_exception::ErrorCode ( ) const [inline]
```

Getter for error code of this exception

Return values

The documentation for this class was generated from the following file:

• dng_exceptions.h

5.38 dng_exif Class Reference

Container class for parsing and holding EXIF tags.

```
#include <dng exif.h>
```

Public Member Functions

• virtual dng_exif * Clone () const

Make clone.

• void SetEmpty ()

Clear all EXIF fields.

- void CopyGPSFrom (const dng_exif &exif)
- void SetExposureTime (real64 et, bool snap=true)
- void SetShutterSpeedValue (real64 ss)
- void SetFNumber (real64 fs)
- void SetApertureValue (real64 av)
- void UpdateDateTime (const dng_date_time_info &dt)
- bool AtLeastVersion0230 () const

Returns true iff the EXIF version is at least 2.3.

• bool AtLeastVersion0231 () const

Returns true iff the EXIF version is at least 2.3.1.

- void SetVersion0231 ()
 - Sets the EXIF version to 2.3.1.
- bool HasLensDistortInfo () const
- void SetLensDistortInfo (const dng_vector ¶ms)
- virtual bool ParseTag (dng_stream &stream, dng_shared &shared, uint32 parentCode, bool isMainIFD, uint32 tagCode, uint32 tagType, uint32 tagCount, uint64 tagOffset)
- virtual void PostParse (dng host &host, dng shared &shared)

Static Public Member Functions

- static real64 SnapExposureTime (real64 et)
- static dng_urational EncodeFNumber (real64 fs)
- static real64 ApertureValueToFNumber (real64 av)
- static real64 ApertureValueToFNumber (const dng_urational &av)
- static real64 FNumberToApertureValue (real64 fNumber)
- static real64 FNumberToApertureValue (const dng_urational &fNumber)

Public Attributes

- dng string flmageDescription
- · dng_string fMake
- · dng string fModel
- dng_string fSoftware
- · dng string fArtist
- dng_string fCopyright
- dng_string fCopyright2
- dng_string fUserComment
- dng date time info fDateTime
- dng_date_time_storage_info fDateTimeStorageInfo
- dng_date_time_info fDateTimeOriginal
- dng_date_time_storage_info fDateTimeOriginalStorageInfo
- dng_date_time_info fDateTimeDigitized
- dng_date_time_storage_info fDateTimeDigitizedStorageInfo
- uint32 fTIFF_EP_StandardID
- uint32 fExifVersion
- uint32 fFlashPixVersion
- dng_urational fExposureTime
- dng_urational fFNumber
- dng_srational fShutterSpeedValue
- · dng urational fApertureValue
- · dng_srational fBrightnessValue
- dng srational fExposureBiasValue
- dng urational fMaxApertureValue
- · dng_urational fFocalLength
- · dng urational fDigitalZoomRatio
- dng_urational fExposureIndex
- dng_urational fSubjectDistance
- · dng urational fGamma
- dng urational fBatteryLevelR

- dng_string fBatteryLevelA
- uint32 fExposureProgram
- uint32 fMeteringMode
- uint32 fLightSource
- · uint32 fFlash
- uint32 fFlashMask
- uint32 fSensingMethod
- · uint32 fColorSpace
- uint32 fFileSource
- uint32 fSceneType
- uint32 fCustomRendered
- uint32 fExposureMode
- uint32 fWhiteBalance
- uint32 fSceneCaptureType
- uint32 fGainControl
- uint32 fContrast
- uint32 fSaturation
- · uint32 fSharpness
- uint32 fSubjectDistanceRange
- uint32 fSelfTimerMode
- uint32 flmageNumber
- uint32 fFocalLengthln35mmFilm
- uint32 flSOSpeedRatings [3]
- uint32 fSensitivityType
- uint32 fStandardOutputSensitivity
- uint32 fRecommendedExposureIndex
- uint32 flSOSpeed
- uint32 flSOSpeedLatitudeyyy
- uint32 flSOSpeedLatitudezzz
- uint32 fSubjectAreaCount
- uint32 fSubjectArea [4]
- uint32 fComponentsConfiguration
- · dng_urational fCompressedBitsPerPixel
- uint32 fPixeIXDimension
- uint32 fPixelYDimension
- dng urational fFocalPlaneXResolution
- dng_urational fFocalPlaneYResolution
- uint32 fFocalPlaneResolutionUnit
- uint32 fCFARepeatPatternRows
- uint32 fCFARepeatPatternCols
- uint8 fCFAPattern [kMaxCFAPattern][kMaxCFAPattern]
- dng_fingerprint flmageUniqueID
- uint32 fGPSVersionID
- · dng string fGPSLatitudeRef
- dng urational fGPSLatitude [3]
- · dng_string fGPSLongitudeRef
- dng_urational fGPSLongitude [3]
- uint32 fGPSAltitudeRef
- · dng_urational fGPSAltitude
- dng urational fGPSTimeStamp [3]
- dng_string fGPSSatellites

- · dng_string fGPSStatus
- dng string fGPSMeasureMode
- · dng urational fGPSDOP
- dng_string fGPSSpeedRef
- dng_urational fGPSSpeed
- · dng string fGPSTrackRef
- dng urational fGPSTrack
- dng_string fGPSImgDirectionRef
- dng_urational fGPSImgDirection
- dng string fGPSMapDatum
- · dng string fGPSDestLatitudeRef
- dng_urational fGPSDestLatitude [3]
- dng string fGPSDestLongitudeRef
- dng_urational fGPSDestLongitude [3]
- · dng string fGPSDestBearingRef
- dng_urational fGPSDestBearing
- dng string fGPSDestDistanceRef
- · dng urational fGPSDestDistance
- dng_string fGPSProcessingMethod
- dng string fGPSAreaInformation
- dng_string fGPSDateStamp
- uint32 fGPSDifferential
- dng_urational fGPSHPositioningError
- dng string fInteroperabilityIndex
- · uint32 fInteroperabilityVersion
- dng_string fRelatedImageFileFormat
- · uint32 fRelatedImageWidth
- · uint32 fRelatedImageLength
- dng string fCameraSerialNumber
- dng_urational fLensInfo [4]
- dng_string fLensID
- · dng string fLensMake
- dng_string fLensName
- dng_string fLensSerialNumber
- bool fLensNameWasReadFromExif
- dng_urational fApproxFocusDistance
- dng_srational fFlashCompensation
- dng_string fOwnerName
- · dng string fFirmware
- dng_srational fTemperature
- dng_urational fHumidity
- · dng_urational fPressure
- dng srational fWaterDepth
- · dng_urational fAcceleration
- dng srational fCameraElevationAngle
- dng_string fTitle
- dng srational fLensDistortInfo [4]

Protected Member Functions

- virtual bool Parse_ifd0 (dng_stream &stream, dng_shared &shared, uint32 parentCode, uint32 tagCode, uint32 tagType, uint32 tagCount, uint64 tagOffset)
- virtual bool Parse_ifd0_main (dng_stream &stream, dng_shared &shared, uint32 parentCode, uint32 tagCode, uint32 tagCount, uint64 tagOffset)
- virtual bool Parse_ifd0_exif (dng_stream &stream, dng_shared &shared, uint32 parentCode, uint32 tagCode, uint32 tagCount, uint64 tagOffset)
- virtual bool **Parse_gps** (dng_stream &stream, dng_shared &shared, uint32 parentCode, uint32 tagCode, uint32 tagType, uint32 tagCount, uint64 tagOffset)
- virtual bool Parse_interoperability (dng_stream &stream, dng_shared &shared, uint32 parentCode, uint32 tag
 — Code, uint32 tagType, uint32 tagCount, uint64 tagOffset)

5.38.1 Detailed Description

Container class for parsing and holding EXIF tags.

Public member fields are documented in EXIF specification.

5.38.2 Member Function Documentation

5.38.2.1 ApertureValueToFNumber() [1/2]

Utility to convert aperture value (APEX units) to f-number.

Parameters

av The aperture value (APEX units) to convert.

Referenced by ApertureValueToFNumber(), and SetApertureValue().

5.38.2.2 ApertureValueToFNumber() [2/2]

```
real64 dng_exif::ApertureValueToFNumber (

const dng_urational & av ) [static]
```

Utility to convert aperture value (APEX units) to f-number.

Parameters

av The aperture value (APEX units) to convert.

References ApertureValueToFNumber().

5.38.2.3 CopyGPSFrom()

Copy all GPS-related fields.

Parameters

exif | Source object from which to copy GPS fields.

5.38.2.4 EncodeFNumber()

Utility to encode f-number as a rational.

Parameters

fs The f-number to encode.

Referenced by SetFNumber().

5.38.2.5 FNumberToApertureValue() [1/2]

Utility to convert f-number to aperture value (APEX units).

Parameters

fNumber The f-number to convert.

Referenced by FNumberToApertureValue(), and SetFNumber().

5.38.2.6 FNumberToApertureValue() [2/2]

Utility to convert f-number to aperture value (APEX units).

Parameters

fNumber	The f-number to convert.
---------	--------------------------

References FNumberToApertureValue().

5.38.2.7 SetApertureValue()

Set the FNumber and Aperture Value fields.

Parameters

	av	The aperture value (APEX units).	l
--	----	----------------------------------	---

References ApertureValueToFNumber(), and SetFNumber().

5.38.2.8 SetExposureTime()

Set exposure time and shutter speed fields. Optionally fix up common errors and rounding issues with EXIF exposure times.

Parameters

et	Exposure time in seconds.
snap	Set to true to fix up common errors and rounding issues with EXIF exposure times.

References SnapExposureTime().

Referenced by SetShutterSpeedValue().

5.38.2.9 SetFNumber()

Set the FNumber and Aperture Value fields.

Parameters

```
fs The f-number to set.
```

References EncodeFNumber(), and FNumberToApertureValue().

Referenced by SetApertureValue().

5.38.2.10 SetShutterSpeedValue()

Set shutter speed value (APEX units) and exposure time.

Parameters

```
ss Shutter speed in APEX units.
```

References SetExposureTime().

5.38.2.11 SnapExposureTime()

Utility to fix up common errors and rounding issues with EXIF exposure times.

Referenced by SetExposureTime().

5.38.2.12 UpdateDateTime()

Set the DateTime field.

```
dt The DateTime value.
```

The documentation for this class was generated from the following files:

- dng_exif.h
- · dng exif.cpp

5.39 dng_fast_interpolator Class Reference

Inheritance diagram for dng_fast_interpolator:

Public Member Functions

- dng_fast_interpolator (const dng_mosaic_info &info, const dng_image &srcImage, dng_image &dstImage, const dng_point &downScale, uint32 srcPlane)
- virtual dng rect SrcArea (const dng rect &dstArea)
- virtual void ProcessArea (uint32 threadIndex, dng_pixel_buffer &srcBuffer, dng_pixel_buffer &dstBuffer)

Protected Attributes

- · const dng mosaic info & fInfo
- dng_point fDownScale
- uint32 fFilterColor [kMaxCFAPattern][kMaxCFAPattern]

Additional Inherited Members

5.39.1 Member Function Documentation

5.39.1.1 ProcessArea()

Implements filtering operation from one buffer to another. Source and destination pixels are set up in member fields of this class. Ideally, no allocation should be done in this routine.

threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Start method.
srcBuffer	Input area and source pixels.
dstBuffer	Output area and destination pixels.

Implements dng_filter_task.

References dng_pixel_buffer::ConstPixel_uint16(), dng_pixel_buffer::DirtyPixel_uint16(), dng_mosaic_info::fCFA PatternSize, dng_mosaic_info::fColorPlanes, and kMaxColorPlanes.

5.39.1.2 SrcArea()

Compute the source area needed for a given destination area. Default implementation assumes destination area is equal to source area for all cases.

Parameters

dstArea	Area to for which pixels will be computed.
---------	--

Return values

The	source area needed as input to calculate the requested destination area.
-----	--

Reimplemented from dng_filter_task.

The documentation for this class was generated from the following file:

• dng_mosaic_info.cpp

5.40 dng_file_stream Class Reference

A stream to/from a disk file. See dng_stream for read/write interface.

```
#include <dng_file_stream.h>
```

Inheritance diagram for dng_file_stream:

Public Member Functions

dng_file_stream (const char *filename, bool output=false, uint32 bufferSize=kDefaultBufferSize)

Protected Member Functions

- virtual uint64 DoGetLength ()
- virtual void **DoRead** (void *data, uint32 count, uint64 offset)
- virtual void **DoWrite** (const void *data, uint32 count, uint64 offset)

Additional Inherited Members

5.40.1 Detailed Description

A stream to/from a disk file. See dng_stream for read/write interface.

5.40.2 Constructor & Destructor Documentation

5.40.2.1 dng_file_stream()

Open a stream on a file.

Parameters

filename	Pathname in platform synax.
output	Set to true if writing, false otherwise.
bufferSize	size of internal buffer to use. Defaults to 4k.

References ReportError(), ThrowOpenFile(), and ThrowSilentError().

The documentation for this class was generated from the following files:

- · dng_file_stream.h
- dng_file_stream.cpp

5.41 dng_filter_opcode Class Reference

Class to represent a filter opcode, such as a convolution.

```
#include <dng_opcodes.h>
```

Inheritance diagram for dng filter opcode:

Public Member Functions

- virtual uint32 BufferPixelType (uint32 imagePixelType)
 - The pixel data type of this opcode.
- virtual dng_rect ModifiedBounds (const dng_rect &imageBounds)
- virtual dng_point SrcRepeat ()

Returns the width and height (in pixels) of the repeating mosaic pattern.

- virtual dng_rect SrcArea (const dng_rect &dstArea, const dng_rect &imageBounds)
- virtual dng point SrcTileSize (const dng point &dstTileSize, const dng rect &imageBounds)
- virtual void Prepare (dng_negative &negative, uint32 threadCount, const dng_point &tileSize, const dng_rect &imageBounds, uint32 imagePlanes, uint32 bufferPixelType, dng_memory_allocator &allocator)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &srcBuffer, dng pixel buffer &dstBuffer, const dng rect &dstArea, const dng rect &imageBounds)=0
- virtual void Apply (dng_host &host, dng_negative &negative, AutoPtr< dng_image > &image)

Apply this opcode to the specified image with associated negative.

Protected Member Functions

- dng_filter_opcode (uint32 opcodeID, uint32 minVersion, uint32 flags)
- dng_filter_opcode (uint32 opcodeID, dng_stream &stream, const char *name)

Additional Inherited Members

5.41.1 Detailed Description

Class to represent a filter opcode, such as a convolution.

5.41.2 Member Function Documentation

5.41.2.1 ModifiedBounds()

The adjusted bounds (processing area) of this opcode. It is limited to the intersection of the specified image area and the GainMap area.

Referenced by Apply().

5.41.2.2 Prepare()

Startup method called before any processing is performed on pixel areas. It can be used to allocate (per-thread) memory and setup tasks.

Parameters

negative	The negative object to be processed.
threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
imageBounds	Total size of image to be processed.
imagePlanes	Number of planes in the image. Less than or equal to kMaxColorPlanes.
bufferPixelType	Pixel type of image buffer (see dng_tag_types.h).
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.

Reimplemented in dng_opcode_FixBadPixelsList, and dng_opcode_FixBadPixelsConstant.

Referenced by dng_filter_opcode_task::Start().

5.41.2.3 ProcessArea()

```
const dng_rect & dstArea,
const dng_rect & imageBounds ) [pure virtual]
```

Implements filtering operation from one buffer to another. Source and destination pixels are set up in member fields of this class. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Prepare method.
srcBuffer	Input area and source pixels.
dstBuffer	Destination pixels.
dstArea	Destination pixel processing area.
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.

Implemented in dng_opcode_FixBadPixelsList, and dng_opcode_FixBadPixelsConstant.

Referenced by dng_filter_opcode_task::ProcessArea().

5.41.2.4 SrcArea()

Returns the source pixel area needed to process a destination pixel area that lies within the specified bounds.

Parameters

dstArea	The destination pixel area to be computed.
imageBounds	The overall image area (dstArea will lie within these bounds).

Return values

-	. 1	
//	пе	source pixel area needed to process the specified dstArea.

Reimplemented in dng_opcode_FixBadPixelsList, and dng_opcode_FixBadPixelsConstant.

Referenced by dng_filter_opcode_task::SrcArea(), and SrcTileSize().

5.41.2.5 SrcTileSize()

Given a destination tile size, calculate input tile size. Simlar to SrcArea, and should seldom be overridden.	

dstTileSize	The destination tile size that is targeted for output.	1
imageBounds	The image bounds (the destination tile will always lie within these bounds).]

Return values

7

References SrcArea().

Referenced by dng_filter_opcode_task::SrcTileSize().

The documentation for this class was generated from the following files:

- · dng opcodes.h
- · dng_opcodes.cpp

5.42 dng_filter_opcode_task Class Reference

Inheritance diagram for dng_filter_opcode_task:

Public Member Functions

- dng_filter_opcode_task (dng_filter_opcode &opcode, dng_negative &negative, const dng_image &srcImage, dng_image &dstImage)
- virtual dng_rect SrcArea (const dng_rect &dstArea)
- virtual dng_point SrcTileSize (const dng_point &dstTileSize)
- virtual void ProcessArea (uint32 threadIndex, dng_pixel_buffer &srcBuffer, dng_pixel_buffer &dstBuffer)
- virtual void Start (uint32 threadCount, const dng_rect &dstArea, const dng_point &tileSize, dng_memory_allocator *allocator, dng_abort_sniffer *sniffer)

Additional Inherited Members

5.42.1 Member Function Documentation

5.42.1.1 ProcessArea()

Implements filtering operation from one buffer to another. Source and destination pixels are set up in member fields of this class. Ideally, no allocation should be done in this routine.

Parameters

threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Start method.
srcBuffer	Input area and source pixels.
dstBuffer	Output area and destination pixels.

Implements dng_filter_task.

References dng_pixel_buffer::Area(), dng_image::Bounds(), and dng_filter_opcode::ProcessArea().

5.42.1.2 SrcArea()

Compute the source area needed for a given destination area. Default implementation assumes destination area is equal to source area for all cases.

Parameters

dstAre	а	Area to for which pixels will be computed.

Return values

The	source area needed as input to calculate the requested destination area.
-----	--

Reimplemented from dng_filter_task.

References dng_image::Bounds(), and dng_filter_opcode::SrcArea().

5.42.1.3 SrcTileSize()

Given a destination tile size, calculate input tile size. Simlar to SrcArea, and should seldom be overridden.

dstTileSize	The destination tile size that is targeted for output.
-------------	--

Return values

The	source tile size needed to compute a tile of the destination size.
-----	--

Reimplemented from dng_filter_task.

References dng_image::Bounds(), and dng_filter_opcode::SrcTileSize().

5.42.1.4 Start()

Called prior to processing on specific threads. Can be used to allocate per-thread memory buffers, etc.

Parameters

threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads of dng_area_task.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.
sniffer	Sniffer to test for user cancellation and to set up progress.

Reimplemented from dng_filter_task.

References dng image::Bounds(), dng image::Planes(), dng filter opcode::Prepare(), and dng filter task::Start().

The documentation for this class was generated from the following file:

· dng_opcodes.cpp

5.43 dng_filter_task Class Reference

Represents a task which filters an area of a source dng_image to an area of a destination dng_image.

```
#include <dng_filter_task.h>
```

Inheritance diagram for dng_filter_task:

Public Member Functions

- dng_filter_task (const char *name, const dng_image &srcImage, dng_image &dstImage)
- virtual dng_rect SrcArea (const dng_rect &dstArea)
- virtual dng_point SrcTileSize (const dng_point &dstTileSize)
- virtual void ProcessArea (uint32 threadIndex, dng pixel buffer &srcBuffer, dng pixel buffer &dstBuffer)=0
- virtual void Start (uint32 threadCount, const dng_rect &dstArea, const dng_point &tileSize, dng_memory_allocator
 *allocator, dng_abort_sniffer *sniffer)
- virtual void Process (uint32 threadIndex, const dng rect &area, dng abort sniffer *sniffer)

Protected Attributes

- const dng_image & fSrcImage
- dng image & fDstImage
- uint32 fSrcPlane
- · uint32 fSrcPlanes
- uint32 fSrcPixelType
- · uint32 fDstPlane
- · uint32 fDstPlanes
- uint32 fDstPixelType
- · dng_point fSrcRepeat
- dng point fSrcTileSize
- AutoPtr< dng memory block > fSrcBuffer [kMaxMPThreads]
- AutoPtr< dng_memory_block > fDstBuffer [kMaxMPThreads]

Additional Inherited Members

5.43.1 Detailed Description

Represents a task which filters an area of a source dng_image to an area of a destination dng_image.

5.43.2 Constructor & Destructor Documentation

5.43.2.1 dng_filter_task()

Construct a filter task given a source and destination images.

srcImage	Image from which source pixels are read.
dstlmage	Image to which result pixels are written.

5.43.3 Member Function Documentation

5.43.3.1 Process()

```
void dng_filter_task::Process (
            uint32 threadIndex,
             const dng_rect & area,
             dng_abort_sniffer * sniffer ) [virtual]
```

Process one tile or partitioned area. Should not be overridden. Instead, override ProcessArea, which is where to implement filter processing for a specific type of dng_filter_task. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)
area Size of tiles to be used for sizing buffers, etc. (Edges of proces	Size of tiles to be used for sizing buffers, etc. (Edges of processing can be smaller.)
sniffer	dng_abort_sniffer to use to check for user cancellation and progress updates.

Implements dng_area_task.

References dng_image::edge_repeat, dng_image::Get(), ProcessArea(), dng_image::Put(), SrcArea(), and Throw-MemoryFull().

5.43.3.2 ProcessArea()

```
virtual void dng_filter_task::ProcessArea (
            uint32 threadIndex,
            dng_pixel_buffer & srcBuffer,
            dng_pixel_buffer & dstBuffer ) [pure virtual]
```

Implements filtering operation from one buffer to another. Source and destination pixels are set up in member fields of this class. Ideally, no allocation should be done in this routine.

Parameters

threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Start method.
srcBuffer	Input area and source pixels.
-dstBuffer	Output area and destination pixels.
	Generated by Dovugen

Generated by Doxygen

Implemented in dng_fast_interpolator, dng_filter_warp, dng_render_task, dng_resample_task, and dng_filter_opcode_task.

Referenced by Process().

5.43.3.3 SrcArea()

Compute the source area needed for a given destination area. Default implementation assumes destination area is equal to source area for all cases.

Parameters

	dstArea	Area to for which pixels will be computed.
--	---------	--

Return values

The source area needed as input to calculate the requested destination area.

Reimplemented in dng_fast_interpolator, dng_filter_warp, dng_render_task, dng_resample_task, and dng_filter_opcode_task.

Referenced by Process(), and SrcTileSize().

5.43.3.4 SrcTileSize()

Given a destination tile size, calculate input tile size. Simlar to SrcArea, and should seldom be overridden.

Parameters

dstTileSize	The destination tile size that is targeted for output.

Return values

The	source tile size needed to compute a tile of the destination size.

Reimplemented in dng_filter_warp, dng_resample_task, and dng_filter_opcode_task.

References SrcArea().

Referenced by Start().

5.43.3.5 Start()

```
void dng_filter_task::Start (
          uint32 threadCount,
          const dng_rect & dstArea,
          const dng_point & tileSize,
          dng_memory_allocator * allocator,
          dng_abort_sniffer * sniffer ) [virtual]
```

Called prior to processing on specific threads. Can be used to allocate per-thread memory buffers, etc.

Parameters

threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads of dng area task.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.
sniffer	Sniffer to test for user cancellation and to set up progress.

Reimplemented from dng_area_task.

Reimplemented in dng_render_task, dng_resample_task, and dng_filter_opcode_task.

References dng_memory_allocator::Allocate(), and SrcTileSize().

Referenced by dng_filter_opcode_task::Start(), dng_resample_task::Start(), and dng_render_task::Start().

The documentation for this class was generated from the following files:

- dng_filter_task.h
- · dng_filter_task.cpp

5.44 dng_filter_warp Class Reference

Inheritance diagram for dng_filter_warp:

Public Member Functions

- dng_filter_warp (const dng_image &srcImage, dng_image &dstImage, const dng_negative &negative, AutoPtr
 dng_warp_params > ¶ms)
- virtual void Initialize (dng_host &host)
- virtual dng_rect SrcArea (const dng_rect &dstArea)
- virtual dng_point SrcTileSize (const dng_point &dstTileSize)
- virtual void ProcessArea (uint32 threadIndex, dng pixel buffer &srcBuffer, dng pixel buffer &dstBuffer)
- virtual dng_point_real64 GetSrcPixelPosition (const dng_point_real64 &dst, uint32 plane)

Protected Attributes

- AutoPtr< dng_warp_params > fParams
- dng_point_real64 fCenter
- dng_resample_weights_2d fWeights
- · real64 fNormRadius
- real64 flnvNormRadius
- · bool flsRadNOP
- bool flsTanNOP
- const real64 fPixelScaleV
- const real64 fPixelScaleVInv

Additional Inherited Members

5.44.1 Member Function Documentation

5.44.1.1 ProcessArea()

Implements filtering operation from one buffer to another. Source and destination pixels are set up in member fields of this class. Ideally, no allocation should be done in this routine.

Parameters

threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Start method.
srcBuffer	Input area and source pixels.
dstBuffer	Output area and destination pixels.

Implements dng_filter_task.

References dng_image::Bounds(), dng_pixel_buffer::ConstPixel_real32(), dng_pixel_buffer::DirtyPixel_real32(), dng_cixel_buffer::DirtyPixel_real32(), dng_cixel_buffer::DirtyPixel_cixel_buffer::DirtyPixel_cixel_buffer::DirtyPixel_cixel_buffer::DirtyPixel_cixel_buffer::DirtyPixel_cixel_buffer::DirtyPixel_cixel_buffer::DirtyPixel_cixel_buffer::DirtyPixel_buffer::DirtyPixel_buffer::DirtyPixel_buffer::DirtyPixel_buffer::DirtyPixel_buffer::DirtyPixel_buffer::DirtyPixel_buffer::DirtyPixel_

5.44.1.2 SrcArea()

Compute the source area needed for a given destination area. Default implementation assumes destination area is equal to source area for all cases.

Parameters

dstArea Area to for which pixels v	will be computed.
------------------------------------	-------------------

Return values

The source area needed as input to calculate the requested destination area.

Reimplemented from dng filter task.

References dng_image::Bounds().

Referenced by SrcTileSize().

5.44.1.3 SrcTileSize()

Given a destination tile size, calculate input tile size. Simlar to SrcArea, and should seldom be overridden.

Parameters

dstTileSize	The destination tile size that is targeted for output.
-------------	--

Return values

Reimplemented from dng_filter_task.

References dng_image::Bounds(), DNG_REQUIRE, dng_warp_params::MaxSrcRadiusGap(), dng_warp_params::

MaxSrcTanGap(), and SrcArea().

The documentation for this class was generated from the following file:

• dng_lens_correction.cpp

5.45 dng_find_new_raw_image_digest_task Class Reference

Inheritance diagram for dng_find_new_raw_image_digest_task:

Public Member Functions

- dng_find_new_raw_image_digest_task (const dng_image &image, uint32 pixelType)
- virtual void Start (uint32 threadCount, const dng_rect &, const dng_point &tileSize, dng_memory_allocator
 *allocator, dng_abort_sniffer *)
- virtual void Process (uint32 threadIndex, const dng_rect &tile, dng_abort_sniffer *)
 and progress updates.
- dng fingerprint Result ()

Additional Inherited Members

5.45.1 Member Function Documentation

5.45.1.1 Process()

and progress updates.

Process one tile or fully partitioned area. This method is overridden by derived classes to implement the actual image processing. Note that the sniffer can be ignored if it is certain that a processing task will complete very quickly. This method should never be called directly but rather accessed via Process. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)
tile	Area to process.
sniffer	dng_abort_sniffer to use to check for user cancellation

Implements dng_area_task.

References dng_image::Bounds(), dng_memory_block::Buffer(), DNG_ASSERT, dng_image::Get(), and dng_image::

Planes().

5.45.1.2 Start()

Task startup method called before any processing is done on partitions. The Start method is called before any processing is done and can be overridden to allocate temporary buffers, etc.

Parameters

threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads.
dstArea	Area to be processed in the current run of the task.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.
sniffer	Sniffer to test for user cancellation and to set up progress.

Reimplemented from dng_area_task.

References dng_memory_allocator::Allocate(), dng_image::Bounds(), dng_image::Planes(), AutoPtr< T >::Reset(), AutoArray< T >::Reset(), and ThrowProgramError().

The documentation for this class was generated from the following file:

· dng_negative.cpp

5.46 dng_fingerprint Class Reference

Container fingerprint (MD5 only at present).

```
#include <dng_fingerprint.h>
```

Public Member Functions

- **dng_fingerprint** (const char *hex)
- · bool IsNull () const

Check if fingerprint is all zeros.

• bool IsValid () const

Same as IsNull but expresses intention of testing validity.

void Clear ()

Set to all zeros, a value used to indicate an invalid fingerprint.

bool operator== (const dng fingerprint &print) const

Test if two fingerprints are equal.

bool operator!= (const dng fingerprint &print) const

Test if two fingerprints are not equal.

bool operator< (const dng_fingerprint &print) const

Comparision test for fingerprints.

- uint32 Collapse32 () const
- void ToUtf8HexString (char resultStr [2 *kDNGFingerprintSize+1]) const
- bool FromUtf8HexString (const char inputStr [2 *kDNGFingerprintSize+1])

Public Attributes

· uint8 data [kDNGFingerprintSize]

Static Public Attributes

• static const size_t kDNGFingerprintSize = 16

5.46.1 Detailed Description

Container fingerprint (MD5 only at present).

5.46.2 Member Function Documentation

5.46.2.1 Collapse32()

```
uint32 dng_fingerprint::Collapse32 ( ) const
```

Produce a 32-bit hash value from fingerprint used for faster hashing of fingerprints.

Referenced by dng_fingerprint_hash::operator()().

5.46.2.2 FromUtf8HexString()

Convert UTF-8 string to fingerprint. Returns true on success, false on failure.

Return values

True indicates success.	
-------------------------	--

5.46.2.3 ToUtf8HexString()

Convert fingerprint to UTF-8 string.

Parameters

resultStr	The output array to which the UTF-8 encoding of the fingerprint will be written.
-----------	--

The documentation for this class was generated from the following files:

- · dng_fingerprint.h
- dng_fingerprint.cpp

5.47 dng_fingerprint_hash Struct Reference

Utility to hash fingerprints (e.g., for hashtables).

```
#include <dng_fingerprint.h>
```

Public Member Functions

• size_t operator() (const dng_fingerprint &digest) const Hash function.

5.47.1 Detailed Description

Utility to hash fingerprints (e.g., for hashtables).

The documentation for this struct was generated from the following file:

· dng_fingerprint.h

5.48 dng_fingerprint_less_than Struct Reference

Utility to compare fingerprints (e.g., for sorting).

```
#include <dng_fingerprint.h>
```

Public Member Functions

 bool operator() (const dng_fingerprint &a, const dng_fingerprint &b) const Less-than comparison.

5.48.1 Detailed Description

Utility to compare fingerprints (e.g., for sorting).

The documentation for this struct was generated from the following file:

dng_fingerprint.h

5.49 dng_function_exposure_ramp Class Reference

Curve for pre-exposure-compensation adjustment based on noise floor, shadows, and highlight level.

```
#include <dng_render.h>
```

Inheritance diagram for dng_function_exposure_ramp:

Public Member Functions

- dng_function_exposure_ramp (real64 white, real64 black, real64 minBlack)
- virtual real64 Evaluate (real64 x) const

Public Attributes

- real64 fSlope
- · real64 fBlack
- · real64 fRadius
- real64 fQScale

5.49.1 Detailed Description

Curve for pre-exposure-compensation adjustment based on noise floor, shadows, and highlight level.

5.49.2 Member Function Documentation

5.49.2.1 Evaluate()

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

Parameters

x A value between 0.0 and 1.0 (inclusive).

Return values

Implements dng_1d_function.

The documentation for this class was generated from the following files:

- dng_render.h
- · dng_render.cpp

5.50 dng_function_exposure_tone Class Reference

Exposure compensation curve for a given compensation amount in stops using quadric for roll-off.

```
#include <dng_render.h>
```

Inheritance diagram for dng_function_exposure_tone:

Public Member Functions

- dng_function_exposure_tone (real64 exposure)
- virtual real64 Evaluate (real64 x) const

Returns output value for a given input tone.

Protected Attributes

- · bool flsNOP
- · real64 fSlope
- real64 a
- real64 b
- real64 c

5.50.1 Detailed Description

Exposure compensation curve for a given compensation amount in stops using quadric for roll-off.

The documentation for this class was generated from the following files:

- dng_render.h
- · dng_render.cpp

5.51 dng_function_gamma_encode Class Reference

Encoding gamma curve for a given color space.

```
#include <dng_render.h>
```

Inheritance diagram for dng_function_gamma_encode:

Public Member Functions

- dng_function_gamma_encode (const dng_color_space &space)
- virtual real64 Evaluate (real64 x) const

Protected Attributes

const dng color space & fSpace

5.51.1 Detailed Description

Encoding gamma curve for a given color space.

5.51.2 Member Function Documentation

5.51.2.1 Evaluate()

```
virtual real64 dng_function_gamma_encode::Evaluate ( real64 x ) const [virtual]
```

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

Parameters

x A value between 0.0 and 1.0 (inclusive).

Return values

Implements dng_1d_function.

The documentation for this class was generated from the following file:

· dng_render.h

5.52 dng_function_GammaEncode_1_8 Class Reference

A dng_1d_function for gamma encoding with 1.8 gamma.

```
#include <dng_color_space.h>
```

Inheritance diagram for dng_function_GammaEncode_1_8:

Public Member Functions

- virtual real64 Evaluate (real64 x) const
- virtual real64 EvaluateInverse (real64 y) const

Static Public Member Functions

• static const dng_1d_function & Get ()

5.52.1 Detailed Description

A dng_1d_function for gamma encoding with 1.8 gamma.

5.52.2 Member Function Documentation

5.52.2.1 Evaluate()

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

Parameters

x A value between 0.0 and 1.0 (inclusive).

Return values

```
Mapped value for x
```

Implements dng_1d_function.

5.52.2.2 EvaluateInverse()

Return the reverse mapped value for y. This method can be implemented by derived classes. The default implementation uses Newton's method to solve for x such that Evaluate(x) == y.

y A value to reverse map. Should be within the range of the function implemented by this dng_1d_function.

Return values

```
A value x such that Evaluate(x) == y (to very close approximation).
```

Reimplemented from dng_1d_function.

References dng_1d_function::EvaluateInverse().

The documentation for this class was generated from the following files:

- · dng_color_space.h
- dng_color_space.cpp

5.53 dng_function_GammaEncode_2_2 Class Reference

A dng_1d_function for gamma encoding with 2.2 gamma.

```
#include <dng_color_space.h>
```

Inheritance diagram for dng function GammaEncode 2 2:

Public Member Functions

- virtual real64 Evaluate (real64 x) const
- virtual real64 EvaluateInverse (real64 y) const

Static Public Member Functions

• static const dng_1d_function & Get ()

5.53.1 Detailed Description

A dng 1d function for gamma encoding with 2.2 gamma.

5.53.2 Member Function Documentation

5.53.2.1 Evaluate()

```
real64 dng_function_GammaEncode_2_2::Evaluate ( {\tt real64\ x\ )\ const\ [virtual]}
```

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

x A value between 0.0 and 1.0 (inclusive).

Return values

```
Mapped value for x
```

Implements dng_1d_function.

5.53.2.2 EvaluateInverse()

Return the reverse mapped value for y. This method can be implemented by derived classes. The default implementation uses Newton's method to solve for x such that Evaluate(x) == y.

Parameters

y A value to reverse map. Should be within the range of the function implemented by this dng_1d_function.

Return values

A value x such that Evaluate(x) == y (to very close approximation).

Reimplemented from dng_1d_function.

References dng_1d_function::EvaluateInverse().

The documentation for this class was generated from the following files:

- · dng color space.h
- dng_color_space.cpp

5.54 dng_function_GammaEncode_sRGB Class Reference

A dng_1d_function for gamma encoding in sRGB color space.

```
#include <dng_color_space.h>
```

Inheritance diagram for dng_function_GammaEncode_sRGB:

Public Member Functions

- virtual real64 Evaluate (real64 x) const
- virtual real64 EvaluateInverse (real64 y) const

Static Public Member Functions

• static const dng_1d_function & Get ()

5.54.1 Detailed Description

A dng_1d_function for gamma encoding in sRGB color space.

5.54.2 Member Function Documentation

5.54.2.1 Evaluate()

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

Parameters

```
x A value between 0.0 and 1.0 (inclusive).
```

Return values

```
Mapped value for x
```

Implements dng_1d_function.

5.54.2.2 EvaluateInverse()

Return the reverse mapped value for y. This method can be implemented by derived classes. The default implementation uses Newton's method to solve for x such that Evaluate(x) == y.

y A value to reverse map. Should be within the range of the function implemented by this dng_1d_function .

Return values

```
A value x such that Evaluate(x) == y (to very close approximation).
```

Reimplemented from dng_1d_function.

The documentation for this class was generated from the following files:

- dng_color_space.h
- · dng color space.cpp

5.55 dng_function_zero_offset Class Reference

Curve for removing zero offset from stage3 image.

```
#include <dng_render.h>
```

Inheritance diagram for dng function zero offset:

Public Member Functions

- dng_function_zero_offset (real64 zeroOffset)
- virtual real64 Evaluate (real64 x) const

Public Attributes

- real64 fZeroOffset
- · real64 fScale

5.55.1 Detailed Description

Curve for removing zero offset from stage3 image.

5.55.2 Member Function Documentation

5.55.2.1 Evaluate()

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

x A value between 0.0 and 1.0 (inclusive).

Return values

Mapped value for x

Implements dng_1d_function.

The documentation for this class was generated from the following files:

- · dng_render.h
- · dng_render.cpp

5.56 dng_gain_map Class Reference

Holds a discrete (i.e., sampled) 2D representation of a gain map. This is effectively an image containing scale factors.

#include <dng_gain_map.h>

Inheritance diagram for dng gain map:

Public Member Functions

- dng_gain_map (dng_memory_allocator &allocator, const dng_point &points, const dng_point_real64 &spacing, const dng_point_real64 &origin, uint32 planes)
- · const dng point & Points () const

The number of samples in the horizontal and vertical directions.

- const dng point real64 & Spacing () const
- const dng point real64 & Origin () const

The 2D coordinate for the first (i.e., top-left-most) sample.

• uint32 Planes () const

The number of color planes.

real32 & Entry (uint32 rowIndex, uint32 colIndex, uint32 plane)

Getter for a gain map sample (specified by row, column, and plane).

- const real32 & Entry (uint32 rowlndex, uint32 collndex, uint32 plane) const
- real32 Interpolate (int32 row, int32 col, uint32 plane, const dng_rect &bounds) const
- uint32 PutStreamSize () const

The number of bytes needed to hold the gain map data.

· void PutStream (dng_stream &stream) const

Write the gain map to the specified stream.

Static Public Member Functions

static dng_gain_map * GetStream (dng_host &host, dng_stream &stream)
 Read a gain map from the specified stream.

5.56.1 Detailed Description

Holds a discrete (i.e., sampled) 2D representation of a gain map. This is effectively an image containing scale factors.

5.56.2 Constructor & Destructor Documentation

5.56.2.1 dng_gain_map()

Construct a gain map with the specified memory allocator, number of samples (points), sample spacing, origin, and number of color planes.

5.56.3 Member Function Documentation

5.56.3.1 Entry()

Getter for a gain map sample (specified by row index, column index, and plane index).

References dng_memory_block::Buffer_real32().

5.56.3.2 Interpolate()

Compute the interpolated gain (i.e., scale factor) at the specified pixel position and color plane, within the specified image bounds (in pixels).

5.56.3.3 Spacing()

```
const dng_point_real64& dng_gain_map::Spacing ( ) const [inline]
```

The space between adjacent samples in the horizontal and vertical directions.

The documentation for this class was generated from the following files:

- dng_gain_map.h
- · dng_gain_map.cpp

5.57 dng_gain_map_interpolator Class Reference

Public Member Functions

- dng_gain_map_interpolator (const dng_gain_map &map, const dng_rect &mapBounds, int32 row, int32 column, uint32 plane)
- · real32 Interpolate () const
- · void Increment ()

The documentation for this class was generated from the following file:

· dng_gain_map.cpp

5.58 dng_gamma_encode_proxy Class Reference

Inheritance diagram for dng_gamma_encode_proxy:

- dng_gamma_encode_proxy (real64 lower, real64 upper, bool isSceneReferred, real64 stage3BlackLevel, real64 blackLevel)
- virtual real64 Evaluate (real64 x) const

5.58.1 Member Function Documentation

5.58.1.1 Evaluate()

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

Parameters

x A value between 0.0 and 1.0 (inclusive).

Return values

Mapped value for x

Implements dng_1d_function.

The documentation for this class was generated from the following file:

· dng_negative.cpp

5.59 dng_host Class Reference

The main class for communication between the application and the DNG SDK. Used to customize memory allocation and other behaviors.

```
#include <dng_host.h>
```

Inheritance diagram for dng_host:

- dng_host (dng_memory_allocator *allocator=NULL, dng_abort_sniffer *sniffer=NULL)
- virtual ~dng_host ()
- dng_memory_allocator & Allocator ()

Getter for host's memory allocator.

- virtual dng memory block * Allocate (uint32 logicalSize)
- void SetSniffer (dng_abort_sniffer *sniffer)

Setter for host's abort sniffer.

dng_abort_sniffer * Sniffer ()

Getter for host's abort sniffer.

- virtual void SniffForAbort ()
- void SetNeedsMeta (bool needs)
- bool NeedsMeta () const

Getter for flag determining whether all XMP metadata should be parsed.

- void SetNeedsImage (bool needs)
- · bool NeedsImage () const

Setter for flag determining whether DNG image data is needed.

- void SetForPreview (bool preview)
- bool ForPreview () const
- void SetMinimumSize (uint32 size)
- uint32 MinimumSize () const

Getter for the minimum preview size.

- void SetPreferredSize (uint32 size)
- · uint32 PreferredSize () const

Getter for the preferred preview size.

- void SetMaximumSize (uint32 size)
- · uint32 MaximumSize () const

Getter for the maximum preview size.

- void SetForFastSaveToDNG (bool flag, uint32 size)
- · bool ForFastSaveToDNG () const
- · uint32 FastSaveToDNGSize () const
- void SetCropFactor (real64 cropFactor)
- real64 CropFactor () const

Getter for the cropping factor.

void ValidateSizes ()

Makes sures minimum, preferred, and maximum sizes are reasonable.

- void SetSaveDNGVersion (uint32 version)
- virtual uint32 SaveDNGVersion () const

Getter for what version to save DNG file compatible with.

- void SetSaveLinearDNG (bool linear)
- virtual bool SaveLinearDNG (const dng negative &negative) const

Getter for flag determining whether to save a linear DNG file.

- void SetKeepOriginalFile (bool keep)
- bool KeepOriginalFile ()

Getter for flag determining whether to keep original RAW file data.

- virtual bool IsTransientError (dng_error_code code)
- virtual void PerformAreaTask (dng_area_task &task, const dng_rect &area, dng_area_task_progress *progress=NULL)

- virtual uint32 PerformAreaTaskThreads ()
- virtual dng_exif * Make_dng_exif ()
- virtual dng_xmp * Make_dng_xmp ()
- virtual dng shared * Make dng shared ()
- virtual dng ifd * Make dng ifd ()
- virtual dng_negative * Make_dng_negative ()
- virtual dng image * Make dng image (const dng rect &bounds, uint32 planes, uint32 pixelType)
- virtual dng opcode * Make dng opcode (uint32 opcodeID, dng stream &stream)
- virtual void ApplyOpcodeList (dng_opcode_list &list, dng_negative &negative, AutoPtr< dng_image > &image)
- virtual void ResampleImage (const dng_image &srcImage, dng_image &dstImage)
- bool WantsPreserveStage2 () const
- · void SetWantsPreserveStage2 (bool flag)

5.59.1 Detailed Description

The main class for communication between the application and the DNG SDK. Used to customize memory allocation and other behaviors.

dng_host allows setting parameters for the DNG conversion, mediates callback style interactions between the host application and the DNG SDK, and allows controlling certain internal behavior of the SDK such as memory allocation. Many applications will be able to use the default implementation of dng_host by just setting the dng_memory_allocator and dng_abort_sniffer in the constructor. More complex interactions will require deriving a class from dng_host.

Multiple dng_host objects can be allocated in a single process. This may be useful for DNG processing on separate threads. (Distinct dng_host objects are completely threadsafe for read/write. The application is responsible for establishing mutual exclusion for read/write access to a single dng_host object if it is used in multiple threads.)

5.59.2 Constructor & Destructor Documentation

5.59.2.1 dng_host()

Allocate a dng_host object, possiblly with custom allocator and sniffer.

Parameters

allocator	Allows controlling all memory allocation done via this dng_host. Defaults to singleton global dng_memory_allocator, which calls new/delete dng_malloc_block for appropriate size.
sniffer	Used to periodically check if pending DNG conversions should be aborted and to communicate progress updates. Defaults to singleton global dng_abort_sniffer, which never aborts and ignores
	progress updated.

```
5.59.2.2 \simdng_host()
```

dng_host::~dng_host () [virtual]

Clean up direct memory for dng_host. Memory allocator and abort sniffer are not deleted. Objects such as dng_image and others returned from host can still be used after host is deleted.

5.59.3 Member Function Documentation

5.59.3.1 Allocate()

Alocate a new dng_memory_block using the host's memory allocator. Uses the Allocator() property of host to allocate a new block of memory. Will call ThrowMemoryFull if block cannot be allocated.

Parameters

logicalSize Number of usable bytes returned dng_memory_block must contain.

References dng memory allocator::Allocate(), and Allocator().

Referenced by dng_mosaic_info::InterpolateGeneric(), dng_jpeg_image_encode_task::Process(), dng_read_tiles_ \leftarrow task::Process(), and dng_write_tiles_task::Process().

5.59.3.2 ApplyOpcodeList()

Factory method to apply a dng_opcode_list. Can be used to override opcode list applications.

References dng_opcode_list::Apply().

5.59.3.3 ForFastSaveToDNG()

```
bool dng_host::ForFastSaveToDNG ( ) const [inline]
```

Getter for the Boolean value that indicates whether this host is being used to perform a negative read for fast conversion to DNG.

5.59.3.4 ForPreview()

```
bool dng_host::ForPreview ( ) const [inline]
```

Getter for flag determining whether image should be preview quality. Preview quality images may be rendered more quickly. Current DNG SDK does not change rendering behavior based on this flag, but derived versions may use this getter to choose between a slower more accurate path and a faster "good enough for preview" one. Data produce with ForPreview set to true should not be written back to a DNG file, except as a preview image.

Referenced by dng_opcode::AboutToApply().

5.59.3.5 IsTransientError()

Determine if an error is the result of a temporary, but planned-for occurence such as user cancellation or memory exhaustion. This method is sometimes used to determine whether to try and continue processing a DNG file despite errors in the file format, etc. In such cases, processing will be continued if IsTransientError returns false. This is so that user cancellation and memory exhaustion always terminate processing.

Parameters

code	Error to test for transience.
------	-------------------------------

References dng_error_memory, and dng_error_user_canceled.

```
5.59.3.6 Make_dng_exif()
```

```
dng_exif * dng_host::Make_dng_exif ( ) [virtual]
```

Factory method for dng_exif class. Can be used to customize allocation or to ensure a derived class is used instead of dng_exif.

References ThrowMemoryFull().

Referenced by dng_info::Parse().

```
5.59.3.7 Make_dng_ifd()
```

```
dng_ifd * dng_host::Make_dng_ifd ( ) [virtual]
```

Factory method for dng_ifd class. Can be used to customize allocation or to ensure a derived class is used instead of dng_ifd.

References ThrowMemoryFull().

Referenced by dng_info::Parse().

5.59.3.8 Make_dng_image()

Factory method for dng_image class. Can be used to customize allocation or to ensure a derived class is used instead of dng_simple_image.

References Allocator(), and ThrowMemoryFull().

Referenced by dng_filter_opcode::Apply(), dng_opcode_WarpRectilinear::Apply(), dng_opcode_WarpFisheye::Apply(), and dng_render::Render().

```
5.59.3.9 Make_dng_negative()
```

```
dng_negative * dng_host::Make_dng_negative ( ) [virtual]
```

Factory method for dng_negative class. Can be used to customize allocation or to ensure a derived class is used instead of dng_negative.

5.59.3.10 Make_dng_opcode()

Factory method for parsing dng opcode based classs. Can be used to override opcode implementations.

Referenced by dng_opcode_list::Parse().

5.59.3.11 Make dng shared()

```
dng_shared * dng_host::Make_dng_shared ( ) [virtual]
```

Factory method for dng_shared class. Can be used to customize allocation or to ensure a derived class is used instead of dng_shared.

References ThrowMemoryFull().

Referenced by dng_info::Parse().

5.59.3.12 Make_dng_xmp()

```
dng_xmp * dng_host::Make_dng_xmp ( ) [virtual]
```

Factory method for dng_xmp class. Can be used to customize allocation or to ensure a derived class is used instead of dng_xmp.

References Allocator(), and ThrowMemoryFull().

5.59.3.13 PerformAreaTask()

General top-level botttleneck for image processing tasks. Default implementation calls dng_area_task::PerformAreaTask method on task. Can be overridden in derived classes to support multiprocessing, for example.

Parameters

task	Image processing task to perform on area.
area	Rectangle over which to perform image processing task.

References Allocator(), dng_area_task::Perform(), and Sniffer().

Referenced by dng_filter_opcode::Apply(), dng_opcode_WarpRectilinear::Apply(), dng_inplace_opcode::Apply(), dng \leftarrow _opcode_WarpFisheye::Apply(), dng_mosaic_info::InterpolateFast(), dng_linearization_info::Linearize(), and dng \leftarrow render::Render().

5.59.3.14 PerformAreaTaskThreads()

```
uint32 dng_host::PerformAreaTaskThreads ( ) [virtual]
```

How many multiprocessing threads does PerformAreaTask use? Default implementation always returns 1 since it is single threaded.

5.59.3.15 ResampleImage()

Factory method to resample an image. Can be used to override image method used to resample images.

References dng image::Bounds().

5.59.3.16 SetCropFactor()

Setter for the cropping factor.

Parameters

5.59.3.17 SetForFastSaveToDNG()

Setter for the perform fast save to DNG.

Parameters

flag | True if the host is being used to perform a negative read for fast conversion to DNG, false otherwise.

5.59.3.18 SetForPreview()

Setter for flag determining whether image should be preview quality, or full quality.

Parameters

preview	If true, rendered images are for preview.
---------	---

5.59.3.19 SetKeepOriginalFile()

```
void dng_host::SetKeepOriginalFile (
          bool keep ) [inline]
```

Setter for flag determining whether to keep original RAW file data.

Parameters

keep If true, origianl RAW data will be kept.

5.59.3.20 SetMaximumSize()

Setter for the maximum preview size.

Parameters

size Maximum pixel size (long side of image).

5.59.3.21 SetMinimumSize()

Setter for the minimum preview size.

Parameters

size Minimum pixel size (long side of image).

Referenced by ValidateSizes().

5.59.3.22 SetNeedsImage()

Setter for flag determining whether DNG image data is needed. Defaults to true. Image data might not be needed for applications which only manipulate metadata.

Parameters

needs If true, image data is needed.

5.59.3.23 SetNeedsMeta()

```
void dng_host::SetNeedsMeta (
          bool needs ) [inline]
```

Setter for flag determining whether all XMP metadata should be parsed. Defaults to true. One might not want metadata when doing a quick check to see if a file is readable.

Parameters

needs If true, metadata is r	needed.
------------------------------	---------

5.59.3.24 SetPreferredSize()

Setter for the preferred preview size.

Parameters

size Preferred pixel size (long side of image	e).
---	-----

Referenced by ValidateSizes().

5.59.3.25 SetSaveDNGVersion()

Setter for what version to save DNG file compatible with.

Parameters

version What version to save DNG file compatible with.

5.59.3.26 SetSaveLinearDNG()

```
void dng_host::SetSaveLinearDNG (
                bool linear ) [inline]
```

Setter for flag determining whether to force saving a linear DNG file.

Parameters

linear	If true, we should force saving a linear DNG file.
--------	--

5.59.3.27 SetWantsPreserveStage2()

Setter for flag determining whether we should preserve the stage 2 image after building the stage 3 image.

5.59.3.28 SniffForAbort()

```
void dng_host::SniffForAbort ( ) [virtual]
```

Check for pending abort. Should call ThrowUserCanceled if an abort is pending.

References Sniffer(), and dng_abort_sniffer::SniffForAbort().

Referenced by dng_mosaic_info::InterpolateGeneric().

5.59.3.29 WantsPreserveStage2()

```
bool dng_host::WantsPreserveStage2 ( ) const [inline]
```

Getter for flag determining whether we should preserve the stage 2 image after building the stage 3 image.

The documentation for this class was generated from the following files:

- dng_host.h
- · dng_host.cpp

5.60 dng_hue_sat_map Class Reference

A 3D table that maps HSV (hue, saturation, and value) floating-point input coordinates in the range [0,1] to delta signals. The table must have at least 1 sample in the hue dimension, at least 2 samples in the saturation dimension, and at least 1 sample in the value dimension. Tables are stored in value-hue-saturation order.

```
#include <dng_hue_sat_map.h>
```

Classes

struct HSBModify

dng_hue_sat_map ()

Construct an empty (and invalid) hue sat map.

dng_hue_sat_map (const dng_hue_sat_map &src)

Copy an existing hue sat map.

• dng hue sat map & operator= (const dng hue sat map &rhs)

Copy an existing hue sat map.

virtual ~dng_hue_sat_map ()

Destructor.

bool IsNull () const

Is this hue sat map invalid?

bool IsValid () const

Is this hue sat map valid?

void SetInvalid ()

Clear the hue sat map, making it invalid.

· void GetDivisions (uint32 &hueDivisions, uint32 &satDivisions, uint32 &valDivisions) const

Get the table dimensions (number of samples in each dimension).

- void SetDivisions (uint32 hueDivisions, uint32 satDivisions, uint32 valDivisions=1)
- void GetDelta (uint32 hueDiv, uint32 satDiv, uint32 valDiv, HSBModify &modify) const

Get a specific table entry, specified by table indices.

• void EnsureWriteable ()

Make sure the table is writeable.

void SetDelta (uint32 hueDiv, uint32 satDiv, uint32 valDiv, const HSBModify &modify)

Set a specific table entry, specified by table indices.

void SetDeltaKnownWriteable (uint32 hueDiv, uint32 satDiv, uint32 valDiv, const HSBModify &modify)

Same as SetDelta, without checking that the table is writeable.

uint32 DeltasCount () const

Get the total number of samples (across all dimensions).

- HSBModify * GetDeltas ()
- const HSBModify * GetConstDeltas () const
- void AssignNewUniqueRuntimeFingerprint ()
- void SetRuntimeFingerprint (const dng_fingerprint fingerprint)

Set Fingerprint. Rare use cases want to set the fingerprint.

const dng_fingerprint & RuntimeFingerprint () const

Get the runtime fingerprint of this hue sat map.

bool operator== (const dng_hue_sat_map &rhs) const

Equality test.

Static Public Member Functions

static dng_hue_sat_map * Interpolate (const dng_hue_sat_map &map1, const dng_hue_sat_map &map2, real64 weight1)

5.60.1 Detailed Description

A 3D table that maps HSV (hue, saturation, and value) floating-point input coordinates in the range [0,1] to delta signals. The table must have at least 1 sample in the hue dimension, at least 2 samples in the saturation dimension, and at least 1 sample in the value dimension. Tables are stored in value-hue-saturation order.

5.60.2 Member Function Documentation

5.60.2.1 GetConstDeltas()

```
const HSBModify* dng_hue_sat_map::GetConstDeltas ( ) const [inline]
```

Direct read-only access to table entries. The entries are stored in value-hue-saturation order (outer to inner).

References dng_ref_counted_block::Buffer_real32().

Referenced by GetDelta(), Interpolate(), and operator==().

5.60.2.2 GetDeltas()

```
HSBModify* dng_hue_sat_map::GetDeltas ( ) [inline]
```

Direct read/write access to table entries. The entries are stored in value-hue-saturation order (outer to inner).

References dng_ref_counted_block::Buffer_real32(), and EnsureWriteable().

5.60.2.3 Interpolate()

Compute a linearly-interpolated hue sat map (i.e., delta and scale factors) from the specified tables, with the specified weight. map1 and map2 must have the same dimensions.

References DeltasCount(), dng_hue_sat_map(), DNG_REPORT, GetConstDeltas(), IsValid(), dng_md5_printer:: \leftarrow Process(), AutoPtr< T >::Release(), dng_md5_printer::Result(), RuntimeFingerprint(), SetDivisions(), SetRuntime \leftarrow Fingerprint(), and ThrowProgramError().

Referenced by dng camera profile::HueSatMapForWhite().

5.60.2.4 SetDivisions()

Set the table dimensions (number of samples in each dimension). This erases any existing table data.

References dng_ref_counted_block::Allocate(), DeltasCount(), and DNG_ASSERT.

Referenced by Interpolate().

The documentation for this class was generated from the following files:

- · dng_hue_sat_map.h
- dng_hue_sat_map.cpp

5.61 dng_ifd Class Reference

Container for a single image file directory of a digital negative.

```
#include <dng_ifd.h>
```

Public Types

enum { kMaxTileInfo = 32 }

Public Member Functions

- virtual dng_ifd * Clone () const
- virtual bool ParseTag (dng_stream &stream, uint32 parentCode, uint32 tagCode, uint32 tagType, uint32 tag
 — Count, uint64 tagOffset)
- virtual void PostParse ()
- virtual bool IsValidDNG (dng_shared &shared, uint32 parentCode)
- dng_rect Bounds () const
- uint32 TilesAcross () const
- uint32 TilesDown () const
- uint32 TilesPerImage () const
- dng rect TileArea (uint32 rowlndex, uint32 collndex) const
- virtual uint32 TileByteCount (const dng rect &tile) const
- void SetSingleStrip ()
- void FindTileSize (uint32 bytesPerTile=128 *1024, uint32 cellH=16, uint32 cellV=16)
- void FindStripSize (uint32 bytesPerStrip=128 *1024, uint32 cellV=16)
- virtual uint32 PixelType () const
- virtual bool IsBaselineJPEG () const
- · virtual bool CanRead () const

Public Attributes

- bool fUsesNewSubFileType
- uint32 fNewSubFileType
- uint32 flmageWidth
- · uint32 flmageLength
- uint32 fBitsPerSample [kMaxSamplesPerPixel]
- uint32 fCompression
- · uint32 fPredictor
- uint32 fPhotometricInterpretation
- · uint32 fFillOrder
- uint32 fOrientation
- uint32 fOrientationType
- uint64 fOrientationOffset
- bool fOrientationBigEndian
- uint32 fSamplesPerPixel
- uint32 fPlanarConfiguration
- real64 fXResolution
- real64 fYResolution
- uint32 fResolutionUnit
- bool fUsesStrips
- · bool fUsesTiles
- uint32 fTileWidth
- · uint32 fTileLength
- uint32 fTileOffsetsType
- uint32 fTileOffsetsCount
- uint64 fTileOffsetsOffset
- uint64 fTileOffset [kMaxTileInfo]
- uint32 fTileByteCountsType
- uint32 fTileByteCountsCount
- uint64 fTileByteCountsOffset
- uint32 fTileByteCount [kMaxTileInfo]
- uint32 fSubIFDsCount
- uint64 fSubIFDsOffset
- uint32 fExtraSamplesCount
- uint32 fExtraSamples [kMaxSamplesPerPixel]
- uint32 fSampleFormat [kMaxSamplesPerPixel]
- uint32 fJPEGTablesCount
- uint64 fJPEGTablesOffset
- uint64 fJPEGInterchangeFormat
- · uint32 fJPEGInterchangeFormatLength
- real64 fYCbCrCoefficientR
- real64 fYCbCrCoefficientG
- real64 fYCbCrCoefficientB
- uint32 fYCbCrSubSampleH
- uint32 fYCbCrSubSampleV
- uint32 fYCbCrPositioning
- real64 fReferenceBlackWhite [6]
- uint32 fCFARepeatPatternRows
- uint32 fCFARepeatPatternCols
- uint8 fCFAPattern [kMaxCFAPattern][kMaxCFAPattern]

- uint8 fCFAPlaneColor [kMaxColorPlanes]
- uint32 fCFALayout
- uint32 fLinearizationTableType
- uint32 fLinearizationTableCount
- uint64 fLinearizationTableOffset
- uint32 fBlackLevelRepeatRows
- uint32 fBlackLevelRepeatCols
- real64 fBlackLevel [kMaxBlackPattern][kMaxBlackPattern][kMaxSamplesPerPixel]
- uint32 fBlackLevelDeltaHType
- uint32 fBlackLevelDeltaHCount
- uint64 fBlackLevelDeltaHOffset
- uint32 fBlackLevelDeltaVType
- uint32 fBlackLevelDeltaVCount
- uint64 fBlackLevelDeltaVOffset
- real64 fWhiteLevel [kMaxSamplesPerPixel]
- dng urational fDefaultScaleH
- dng urational fDefaultScaleV
- · dng urational fBestQualityScale
- dng urational fDefaultCropOriginH
- dng_urational fDefaultCropOriginV
- · dng_urational fDefaultCropSizeH
- dng_urational fDefaultCropSizeV
- dng_urational fDefaultUserCropT
- dng urational fDefaultUserCropL
- dng urational fDefaultUserCropB
- · dng urational fDefaultUserCropR
- · uint32 fBayerGreenSplit
- · dng urational fChromaBlurRadius
- dng_urational fAntiAliasStrength
- · dng rect fActiveArea
- uint32 fMaskedAreaCount
- dng_rect fMaskedArea [kMaxMaskedAreas]
- uint32 fRowInterleaveFactor
- uint32 fSubTileBlockRows
- uint32 fSubTileBlockCols
- dng preview info fPreviewInfo
- uint32 fOpcodeList1Count
- uint64 fOpcodeList1Offset
- uint32 fOpcodeList2Count
- uint64 fOpcodeList2Offset
- uint32 fOpcodeList3Count
- uint64 fOpcodeList3Offset
- dng_noise_profile fNoiseProfile
- dng string fEnhanceParams
- · dng urational fBaselineSharpness
- dng_urational fNoiseReductionApplied
- bool fLosslessJPEGBug16
- uint32 fSampleBitShift
- uint64 fThisIFD
- uint64 fNextIFD
- int32 fCompressionQuality
- bool fPatchFirstJPEGByte

Protected Member Functions

• virtual bool IsValidCFA (dng_shared &shared, uint32 parentCode)

5.61.1 Detailed Description

Container for a single image file directory of a digital negative.

See DNG 1.1.0 specification for documentation of specific tags.

The documentation for this class was generated from the following files:

- dng_ifd.h
- dng_ifd.cpp

5.62 dng_image Class Reference

Base class for holding image data in DNG SDK. See dng_simple_image for derived class most often used in DNG SDK.

```
#include <dng_image.h>
```

Inheritance diagram for dng_image:

Public Types

• enum edge_option { edge_none, edge_zero, edge_repeat, edge_repeat_zero_last }

How to handle requests to get image areas outside the image bounds.

- virtual dng_image * Clone () const
- · const dng_rect & Bounds () const

Getter method for bounds of an image.

dng_point Size () const

Getter method for size of an image.

uint32 Width () const

Getter method for width of an image.

uint32 Height () const

Getter method for height of an image.

• uint32 Planes () const

Getter method for number of planes in an image.

- uint32 PixelType () const
- virtual void SetPixelType (uint32 pixelType)
- uint32 PixelSize () const
- uint32 PixelRange () const
- virtual dng_rect RepeatingTile () const

Getter for best "tile stride" for accessing image.

- void Get (dng_pixel_buffer &buffer, edge_option edgeOption=edge_none, uint32 repeatV=1, uint32 repeatH=1)
 const
- void Put (const dng pixel buffer &buffer)
- virtual void Trim (const dng rect &r)
- virtual void Rotate (const dng_orientation & orientation)
- void CopyArea (const dng_image &src, const dng_rect &area, uint32 srcPlane, uint32 dstPlane, uint32 planes)
- void CopyArea (const dng_image &src, const dng_rect &area, uint32 plane, uint32 planes)
- virtual bool EqualArea (const dng image &rhs, const dng rect &area, uint32 plane, uint32 planes) const
- void SetConstant_uint8 (uint8 value, const dng_rect &area)
- void SetConstant uint8 (uint8 value)
- void SetConstant_uint16 (uint16 value, const dng_rect &area)
- void SetConstant_uint16 (uint16 value)
- void SetConstant_int16 (int16 value, const dng_rect &area)
- void SetConstant_int16 (int16 value)
- void SetConstant_uint32 (uint32 value, const dng_rect &area)
- void SetConstant_uint32 (uint32 value)
- void **SetConstant real32** (real32 value, const dng rect &area)
- void **SetConstant real32** (real32 value)
- virtual void GetRepeat (dng_pixel_buffer &buffer, const dng_rect &srcArea, const dng_rect &dstArea) const

Protected Member Functions

- dng_image (const dng_rect &bounds, uint32 planes, uint32 pixelType)
- virtual void AcquireTileBuffer (dng tile buffer &buffer, const dng rect &area, bool dirty) const
- virtual void ReleaseTileBuffer (dng_tile_buffer &buffer) const
- virtual void DoGet (dng pixel buffer &buffer) const
- virtual void **DoPut** (const dng pixel buffer &buffer)
- virtual void DoCopyArea (const dng_image &src, const dng_rect &area, uint32 srcPlane, uint32 dstPlane, uint32 planes)
- void GetEdge (dng_pixel_buffer &buffer, edge_option edgeOption, const dng_rect &srcArea, const dng_rect &dstArea) const
- virtual void SetConstant (uint32 value, const dng rect &area)

Protected Attributes

- · dng rect fBounds
- uint32 fPlanes
- uint32 fPixelType

Friends

· class dng_tile_buffer

5.62.1 Detailed Description

Base class for holding image data in DNG SDK. See dng_simple_image for derived class most often used in DNG SDK.

5.62.2 Member Enumeration Documentation

5.62.2.1 edge_option

```
enum dng_image::edge_option
```

How to handle requests to get image areas outside the image bounds.

Enumerator

edge_none	Leave edge pixels unchanged.
edge_zero	Pad with zeros.
edge_repeat	Repeat edge pixels.
edge_repeat_zero_last	Repeat edge pixels, except for last plane which is zero padded.

5.62.3 Member Function Documentation

5.62.3.1 CopyArea() [1/2]

Copy image data from an area of one image to same area of another.

Parameters

src	Image to copy from.
area	Rectangle of images to copy.
srcPlane	Plane to start copying in src.
dstPlane	Plane to start copying in this.
planes	Number of planes to copy.

5.62.3.2 CopyArea() [2/2]

Copy image data from an area of one image to same area of another.

Parameters

src	Image to copy from.
area	Rectangle of images to copy.
plane	Plane to start copying in src and this.
planes	Number of planes to copy.

5.62.3.3 EqualArea()

Return true if the contents of an area of the image are the same as those of another.

Parameters

rhs	Image to compare against.
area	Rectangle of image to test.
plane	Plane to start comparing.
planes	Number of planes to compare.

References dng_pixel_buffer::EqualArea().

5.62.3.4 Get()

Get a pixel buffer of data on image with proper edge padding.

Parameters

buffer	Receives resulting pixel buffer.
edgeOption	edge_option describing how to pad edges.
repeatV	Amount of repeated padding needed in vertical for edge_repeat and edge_repeat_zero_last edgeOption cases.
repeatH	Amount of repeated padding needed in horizontal for edge_repeat and edge_repeat_zero_last edgeOption cases.

References dng_pixel_buffer::DirtyPixel(), and edge_none.

Referenced by dng_mosaic_info::InterpolateGeneric(), dng_filter_task::Process(), dng_inplace_opcode_task::

Process(), dng_find_new_raw_image_digest_task::Process(), and dng_render_task::ProcessArea().

5.62.3.5 PixelRange()

```
uint32 dng_image::PixelRange ( ) const
```

Getter for pixel range. For unsigned types, range is 0 to return value. For signed types, range is return value - 0x8000U. For ttFloat type, pixel range is 0.0 to 1.0 and this routine returns 1.

5.62.3.6 PixelSize()

```
uint32 dng_image::PixelSize ( ) const
```

Getter for pixel size.

Return values

Size,in	bytes, of pixel type for this image .
---------	---------------------------------------

References PixelType().

Referenced by SetPixelType().

5.62.3.7 PixelType()

```
uint32 dng_image::PixelType ( ) const [inline]
```

Getter for pixel type.

Return values

```
See dng_tagtypes.h . Valid values are ttByte, ttShort, ttShort, ttLong, ttFloat .
```

Referenced by dng_filter_opcode::Apply(), dng_opcode_WarpRectilinear::Apply(), dng_opcode_WarpFisheye::Apply(), dng_mosaic_info::InterpolateGeneric(), dng_linearization_info::Linearize(), PixelSize(), and dng_render::Render().

5.62.3.8 Put()

Put a pixel buffer into image.

Parameters

References dng_pixel_buffer::ConstPixel(), and Planes().

Referenced by dng_mosaic_info::InterpolateGeneric(), dng_filter_task::Process(), and dng_inplace_opcode_task::

Process().

5.62.3.9 Rotate()

Rotate image to reflect given orientation change.

Parameters

orientation Directive to rotate image in a certain way.

Reimplemented in dng simple image.

References ThrowProgramError().

5.62.3.10 SetPixelType()

Setter for pixel type.

Parameters

Reimplemented in dng_simple_image.

References PixelSize(), and ThrowProgramError().

Referenced by dng_simple_image::SetPixelType().

5.62.3.11 Trim()

Shrink bounds of image to given rectangle.

Parameters

```
r Rectangle to crop to.
```

Reimplemented in dng_simple_image.

References Bounds(), and ThrowProgramError().

Referenced by dng_opcode_TrimBounds::Apply().

The documentation for this class was generated from the following files:

- dng_image.h
- · dng_image.cpp

5.63 dng_image_preview Class Reference

Inheritance diagram for dng_image_preview:

- virtual dng_basic_tag_set * AddTagSet (dng_tiff_directory &directory) const
- virtual void WriteData (dng_host &host, dng_image_writer &writer, dng_basic_tag_set &basic, dng_stream &stream) const

Public Attributes

• AutoPtr< dng_image > flmage

The documentation for this class was generated from the following files:

- · dng_preview.h
- · dng_preview.cpp

5.64 dng_image_spooler Class Reference

Inheritance diagram for dng_image_spooler:

Public Member Functions

- dng_image_spooler (dng_host &host, const dng_ifd &ifd, dng_image &image, const dng_rect &tileArea, uint32 plane, uint32 planes, dng_memory_block &block, AutoPtr< dng_memory_block > &subTileBuffer)
- virtual void Spool (const void *data, uint32 count)

The documentation for this class was generated from the following file:

· dng_read_image.cpp

5.65 dng_image_writer Class Reference

Support for writing dng_image or dng_negative instances to a dng_stream in TIFF or DNG format.

#include <dng_image_writer.h>

- virtual void EncodeJPEGPreview (dng_host &host, const dng_image &image, dng_jpeg_preview &preview, int32 quality=-1)
- virtual void Writelmage (dng_host &host, const dng_ifd &ifd, dng_basic_tag_set &basic, dng_stream &stream, const dng_image &image, uint32 fakeChannels=1)
- void WriteTIFF (dng_host &host, dng_stream &stream, const dng_image &image, uint32 photometric
 Interpretation, uint32 compression, dng_negative *negative, const dng_color_space *space=NULL, const
 dng_resolution *resolution=NULL, const dng_jpeg_preview *thumbnail=NULL, const dng_memory_block
 *imageResources=NULL, dng_metadata_subset_metadataSubset_kMetadataSubset_All, bool hasTransparency=false)
- void WriteTIFF (dng_host &host, dng_stream &stream, const dng_image &image, uint32 photometric
 Interpretation=piBlackIsZero, uint32 compression=ccUncompressed, const dng_metadata *metadata=NU
 LL, const dng_color_space *space=NULL, const dng_resolution *resolution=NULL, const dng_jpeg_preview
 *thumbnail=NULL, const dng_memory_block *imageResources=NULL, dng_metadata_subset metadata
 Subset=kMetadataSubset_All, bool hasTransparency=false)
- void WriteTIFFWithProfile (dng_host &host, dng_stream &stream, const dng_image &image, uint32 photometricInterpretation, uint32 compression, dng_negative *negative, const void *profileData=NULL, uint32 profileSize=0, const dng_resolution *resolution=NULL, const dng_jpeg_preview *thumbnail=NULL, const dng_memory_block *imageResources=NULL, dng_metadata_subset metadataSubset=kMetadataSubset_All, bool hasTransparency=false)
- virtual void WriteTIFFWithProfile (dng_host &host, dng_stream &stream, const dng_image &image, uint32 photometricInterpretation=piBlackIsZero, uint32 compression=ccUncompressed, const dng_metadata *metadata=NULL, const void *profileData=NULL, uint32 profileSize=0, const dng_resolution *resolution=N ULL, const dng_jpeg_preview *thumbnail=NULL, const dng_memory_block *imageResources=NULL, dng_metadata_subset_ekMetadataSubset_All, bool hasTransparency=false)
- void WriteDNG (dng_host &host, dng_stream &stream, dng_negative &negative, const dng_preview_list *previewList=NULL, uint32 maxBackwardVersion=dngVersion_SaveDefault, bool uncompressed=false)
- virtual void CleanUpMetadata (dng_host &host, dng_metadata &metadata, dng_metadata_subset metadata
 Subset, const char *dstMIME, const char *software=NULL)

Protected Types

enum { klmageBufferSize = 128 * 1024 }

Protected Member Functions

- virtual void UpdateExifColorSpaceTag (dng_metadata &metadata, const void *profileData, const uint32 profileSize)
- virtual uint32 CompressedBufferSize (const dng ifd &ifd, uint32 uncompressedSize)
- virtual void EncodePredictor (dng_host &host, const dng_ifd &ifd, dng_pixel_buffer &buffer, AutoPtr
 dng_memory_block > &tempBuffer)
- virtual void ByteSwapBuffer (dng_host &host, dng_pixel_buffer &buffer)
- void ReorderSubTileBlocks (const dng_ifd &ifd, dng_pixel_buffer &buffer, AutoPtr< dng_memory_block > &uncompressedBuffer, AutoPtr< dng_memory_block > &subTileBlockBuffer)
- virtual void WriteData (dng_host &host, const dng_ifd &ifd, dng_stream &stream, dng_pixel_buffer &buffer, AutoPtr< dng memory block > &compressedBuffer, bool usingMultipleThreads)

- virtual void WriteTile (dng_host &host, const dng_ifd &ifd, dng_stream &stream, const dng_image &image, const dng_rect &tileArea, uint32 fakeChannels, AutoPtr< dng_memory_block > &compressedBuffer, AutoPtr< dng_memory_block > &subTileBlockBuffer, AutoPtr< dng_memory_block > &subTileBlockBuffer, AutoPtr< dng_memory_block > &tempBuffer, bool usingMultipleThreads)
- virtual void DoWriteTiles (dng_host &host, const dng_ifd &ifd, dng_basic_tag_set &basic, dng_stream &stream, const dng_image &image, uint32 fakeChannels, uint32 tilesDown, uint32 tilesAcross, uint32 compressedSize, const dng_safe_uint32 &uncompressedSize)

Friends

- · class dng jpeg image
- class dng_jpeg_image_encode_task
- · class dng_write_tiles_task

5.65.1 Detailed Description

Support for writing dng_image or dng_negative instances to a dng_stream in TIFF or DNG format.

5.65.2 Member Function Documentation

5.65.2.1 CleanUpMetadata()

Resolve metadata conflicts and apply metadata policies in keeping with Metadata Working Group (MWG) guidelines.

Referenced by WriteDNGWithMetadata().

5.65.2.2 WriteDNG()

Write a dng_image to a dng_stream in DNG format.

Parameters

host	Host interface used for progress updates, abort testing, buffer allocation, etc.
stream	The dng_stream on which to write the TIFF.
negative	The image data and metadata (EXIF, IPTC, XMP) to be written.
previewList	List of previews (not counting thumbnail) to write to the file. Defaults to empty.
maxBackwardVersion	The DNG file should be readable by readers at least back to this version.
uncompressed	True to force uncompressed images. Otherwise use normal compression.

References dng_negative::Metadata(), and WriteDNGWithMetadata().

5.65.2.3 WriteDNGWithMetadata()

Write a dng_image to a dng_stream in DNG format.

Parameters

host	Host interface used for progress updates, abort testing, buffer allocation, etc.
stream	The dng_stream on which to write the TIFF.
negative	The image data to be written.
metadata	The metadata (EXIF, IPTC, XMP) to be written.
previewList	List of previews (not counting thumbnail) to write to the file. Defaults to empty.
maxBackwardVersion	The DNG file should be readable by readers at least back to this version.
uncompressed	True to force uncompressed images. Otherwise use normal compression.

References dng_host::Allocator(), CleanUpMetadata(), and dng_metadata::Clone().

Referenced by WriteDNG().

5.65.2.4 WriteTIFF()

```
uint32 photometricInterpretation,
uint32 compression,
dng_negative * negative,
const dng_color_space * space = NULL,
const dng_resolution * resolution = NULL,
const dng_jpeg_preview * thumbnail = NULL,
const dng_memory_block * imageResources = NULL,
dng_metadata_subset metadataSubset = kMetadataSubset_All,
bool hasTransparency = false )
```

Write a dng_image to a dng_stream in TIFF format.

Parameters

host	Host interface used for progress updates, abort testing, buffer allocation, etc.
stream	The dng_stream on which to write the TIFF.
image	The actual image data to be written.
photometricInterpretation	Either piBlackIsZero for monochrome or piRGB for RGB images.
compression	Must be ccUncompressed.
negative	or metadata If non-NULL, EXIF, IPTC, and XMP metadata from this negative is written to TIFF.
space	If non-null and color space has an ICC profile, TIFF will be tagged with this profile. No color space conversion of image data occurs.
resolution	If non-NULL, TIFF will be tagged with this resolution.
thumbnail	If non-NULL, will be stored in TIFF as preview image.
imageResources	If non-NULL, will image resources be stored in TIFF as well.
metadataSubset	The subset of metadata (e.g., copyright only) to include in the TIFF.

References dng_negative::Metadata().

5.65.2.5 WriteTIFFWithProfile()

Write a dng_image to a dng_stream in TIFF format.

Parameters

host	Host interface used for progress updates, abort testing, buffer allocation, etc.
stream	The dng_stream on which to write the TIFF.
image	The actual image data to be written.
photometricInterpretation	Either piBlackIsZero for monochrome or piRGB for RGB images.
compression	Must be ccUncompressed.
negative	or metadata If non-NULL, EXIF, IPTC, and XMP metadata from this negative is written
	to TIFF.
profileData	If non-null, TIFF will be tagged with this profile. No color space conversion of image
	data occurs.
profileSize	The size for the profile data.
resolution	If non-NULL, TIFF will be tagged with this resolution.
thumbnail	If non-NULL, will be stored in TIFF as preview image.
imageResources	If non-NULL, will image resources be stored in TIFF as well.
metadataSubset	The subset of metadata (e.g., copyright only) to include in the TIFF.

References dng_negative::Metadata().

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.66 dng_info Class Reference

Top-level structure of DNG file with access to metadata.

#include <dng_info.h>

Inheritance diagram for dng_info:

Public Member Functions

• uint32 IFDCount () const

Returns the number of parsed SubIFDs (including the main IFD).

• uint32 ChainedIFDCount () const

Returns the number of chained IFDs.

• uint32 ChainedSubIFDCount (uint32 chainIndex) const

Returns number SubIFDs for a chained IFD.

- virtual void Parse (dng_host &host, dng_stream &stream)
- virtual void PostParse (dng_host &host)

Must be called immediately after a successful Parse operation.

virtual bool IsValidDNG ()

Public Attributes

- uint64 fTIFFBlockOffset
- uint64 fTIFFBlockOriginalOffset
- bool fBigEndian
- · uint32 fMagic
- AutoPtr< dng exif > fExif
- AutoPtr< dng_shared > fShared
- int32 fMainIndex
- int32 fMaskIndex
- int32 fDepthIndex
- int32 fEnhancedIndex
- std::vector < dng_ifd * > fIFD
- std::vector< dng ifd * > fChainedIFD
- std::vector< std::vector< dng ifd * > > fChainedSubIFD

Protected Member Functions

- virtual void ValidateMagic ()
- virtual void ParseTag (dng_host &host, dng_stream &stream, dng_exif *exif, dng_shared *shared, dng_ifd *ifd, uint32 parentCode, uint32 tagCode, uint32 tagType, uint32 tagCount, uint64 tagOffset, int64 offsetDelta)
- virtual bool ValidateIFD (dng_stream &stream, uint64 ifdOffset, int64 offsetDelta)
- virtual void ParseIFD (dng_host &host, dng_stream &stream, dng_exif *exif, dng_shared *shared, dng_ifd *ifd, uint64 ifdOffset, int64 offsetDelta, uint32 parentCode)
- virtual bool ParseMakerNoteIFD (dng_host &host, dng_stream &stream, uint64 ifdSize, uint64 ifdOffset, int64 offsetDelta, uint64 minOffset, uint64 maxOffset, uint32 parentCode)
- virtual void ParseMakerNote (dng_host &host, dng_stream &stream, uint32 makerNoteCount, uint64 maker←
 NoteOffset, int64 offsetDelta, uint64 minOffset, uint64 maxOffset)
- virtual void ParseSonyPrivateData (dng_host &host, dng_stream &stream, uint64 count, uint64 oldOffset, uint64 newOffset)
- virtual void ParseDNGPrivateData (dng_host &host, dng_stream &stream)

Protected Attributes

uint32 fMakerNoteNextIFD

5.66.1 Detailed Description

Top-level structure of DNG file with access to metadata.

See DNG 1.1.0 specification for information on member fields of this class.

5.66.2 Member Function Documentation

5.66.2.1 IsValidDNG()

```
bool dng_info::IsValidDNG ( ) [virtual]
```

Test validity of DNG data.

Return values

	true	if stream provided a valid DNG.
--	------	---------------------------------

 $References \ AutoPtr < T > ::Get(), \ IFDCount(), \ and \ ReportError().$

5.66.2.2 Parse()

Read dng_info from a dng_stream

Parameters

host	DNG host used for progress updating, abort testing, buffer allocation, etc.
stream	Stream to read DNG data from.

References ChainedIFDCount(), AutoPtr< T >::Get(), dng_stream::Get_uint16(), dng_stream::Get_uint32(), IFD \leftarrow Count(), dng_camera_profile::IsValid(), kMaxChainedIFDs, kMaxSubIFDs, dng_stream::Length(), dng_host::Make \leftarrow dng_exif(), dng_host::Make_dng_ifd(), dng_host::Make_dng_shared(), dng_camera_profile::Parse(), dng_stream:: \leftarrow Position(), dng_stream::PositionInOriginalFile(), ReportError(), ReportWarning(), AutoPtr< T >::Reset(), dng_stream \leftarrow ::SetBigEndian(), dng_stream::SetLittleEndian(), dng_stream::SetReadPosition(), and ThrowBadFormat().

The documentation for this class was generated from the following files:

- dng_info.h
- · dng_info.cpp

5.67 dng_inplace_opcode Class Reference

Class to represent an in-place (i.e., pointwise, per-pixel) opcode, such as a global tone curve.

```
#include <dng_opcodes.h>
```

Inheritance diagram for dng inplace opcode:

- virtual uint32 BufferPixelType (uint32 imagePixelType)

 The pixel data type of this opcode.
- virtual dng_rect ModifiedBounds (const dng_rect &imageBounds)
- virtual void Prepare (dng_negative &negative, uint32 threadCount, const dng_point &tileSize, const dng_rect &imageBounds, uint32 imagePlanes, uint32 bufferPixelType, dng_memory_allocator &allocator)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &buffer, const dng_rect &dstArea, const dng_rect &imageBounds)=0
- $\bullet \ \ \text{virtual void Apply (dng_host \&host, dng_negative \&negative, AutoPtr{< dng_image} > \&image)}\\$

Apply this opcode to the specified image with associated negative.

Protected Member Functions

- dng_inplace_opcode (uint32 opcodeID, uint32 minVersion, uint32 flags)
- dng_inplace_opcode (uint32 opcodeID, dng_stream &stream, const char *name)

Additional Inherited Members

5.67.1 Detailed Description

Class to represent an in-place (i.e., pointwise, per-pixel) opcode, such as a global tone curve.

5.67.2 Member Function Documentation

5.67.2.1 ModifiedBounds()

The adjusted bounds (processing area) of this opcode. It is limited to the intersection of the specified image area and the GainMap area.

Reimplemented in dng_opcode_ScalePerColumn, dng_opcode_ScalePerRow, dng_opcode_DeltaPerColumn, dng_opcode_DeltaPerRow, dng_opcode_MapTable, and dng_opcode_GainMap.

Referenced by Apply().

5.67.2.2 Prepare()

Startup method called before any processing is performed on pixel areas. It can be used to allocate (per-thread) memory and setup tasks.

Parameters

negative	The negative object to be processed.
threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
imageBounds	Total size of image to be processed.
imagePlanes	Number of planes in the image. Less than or equal to kMaxColorPlanes.
bufferPixelType	Pixel type of image buffer (see dng_tag_types.h).
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.

Reimplemented in dng opcode FixVignetteRadial, and dng opcode MapTable.

Referenced by dng_inplace_opcode_task::Start().

5.67.2.3 ProcessArea()

Implements image processing operation in a single buffer. The source pixels are provided as input to the buffer, and this routine calculates and writes the destination pixels to the same buffer. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Prepare method.
buffer	Source and Destination pixels.
dstArea	Destination pixel processing area.
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.

Implemented in dng_opcode_FixVignetteRadial, dng_opcode_ScalePerColumn, dng_opcode_ScalePerRow, dng_opcode_DeltaPerColumn, dng_opcode_DeltaPerRow, dng_opcode_MapPolynomial, dng_opcode_MapTable, and dng_opcode_GainMap.

Referenced by dng inplace opcode task::Process().

The documentation for this class was generated from the following files:

- · dng opcodes.h
- dng_opcodes.cpp

5.68 dng_inplace_opcode_task Class Reference

Inheritance diagram for dng_inplace_opcode_task:

Public Member Functions

- dng_inplace_opcode_task (dng_inplace_opcode &opcode, dng_negative &negative, dng_image &image)
- virtual void Start (uint32 threadCount, const dng_rect &, const dng_point &tileSize, dng_memory_allocator
 *allocator, dng_abort_sniffer *)
- virtual void Process (uint32 threadIndex, const dng_rect &tile, dng_abort_sniffer *)
 and progress updates.

Additional Inherited Members

5.68.1 Member Function Documentation

5.68.1.1 Process()

and progress updates.

Process one tile or fully partitioned area. This method is overridden by derived classes to implement the actual image processing. Note that the sniffer can be ignored if it is certain that a processing task will complete very quickly. This method should never be called directly but rather accessed via Process. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)
tile	Area to process.
sniffer	dng_abort_sniffer to use to check for user cancellation

Implements dng_area_task.

References dng_image::Bounds(), dng_memory_block::Buffer(), dng_image::Get(), dng_image::Planes(), dng_image::Plan

5.68.1.2 Start()

Task startup method called before any processing is done on partitions. The Start method is called before any processing is done and can be overridden to allocate temporary buffers, etc.

Parameters

threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads.
dstArea	Area to be processed in the current run of the task.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.
sniffer	Sniffer to test for user cancellation and to set up progress.

Reimplemented from dng_area_task.

References dng_memory_allocator::Allocate(), dng_image::Bounds(), dng_image::Planes(), and dng_inplace_ opcode::Prepare().

The documentation for this class was generated from the following file:

· dng_opcodes.cpp

5.69 dng iptc Class Reference

Class for reading and holding IPTC metadata associated with a DNG file.

```
#include <dng_iptc.h>
```

Public Member Functions

- bool IsEmpty () const
- bool NotEmpty () const
- void Parse (const void *blockData, uint32 blockSize, uint64 offsetInOriginalFile)
- dng_memory_block * Spool (dng_memory_allocator &allocator, bool padForTIFF)

Public Attributes

- dng_string fTitle
- int32 fUrgency
- dng_string fCategory
- dng_string_list fSupplementalCategories
- dng_string_list fKeywords
- · dng string finstructions
- dng_date_time_info fDateTimeCreated
- dng date time info fDigitalCreationDateTime
- · dng string list fAuthors
- dng_string fAuthorsPosition
- dng_string fCity
- dng_string fState
- dng_string fCountry
- dng_string fCountryCode
- dng_string fLocation
- dng_string fTransmissionReference
- dng_string fHeadline
- dng_string fCredit
- · dng string fSource
- dng_string fCopyrightNotice
- dng_string fDescription
- dng string fDescriptionWriter

Protected Types enum DataSet { kRecordVersionSet = 0, kObjectNameSet = 5, kUrgencySet = 10, kCategorySet = 15, kSupplementalCategoriesSet = 20, kKeywordsSet = 25, kSpecialInstructionsSet = 40, kDateCreatedSet = kTimeCreatedSet = 60, kDigitalCreationDateSet = 62, kDigitalCreationTimeSet = 63, kBylineSet = 80, kBylineTitleSet = 85, kCitySet = 90, kSublocationSet = 92, kProvinceStateSet = 95, kCountryCodeSet = 100, kCountryNameSet = 101, kOriginalTransmissionReferenceSet = 103, kHeadline ← **Set** = 105. kCreditSet = 110, kSourceSet = 115, kCopyrightNoticeSet = 116, kCaptionSet = 120, kCaptionWriterSet = 122 } enum CharSet { kCharSetUnknown = 0, kCharSetUTF8 = 1 } **Protected Member Functions** void ParseString (dng_stream &stream, dng_string &s, CharSet charSet) void SpoolString (dng stream &stream, const dng string &s, uint8 dataSet, uint32 maxChars, CharSet charSet)

5.69.1 Detailed Description

Class for reading and holding IPTC metadata associated with a DNG file.

See the IPTC specification for information on member fields of this class.

5.69.2 Member Function Documentation

5.69.2.1 IsEmpty()

```
bool dng_iptc::IsEmpty ( ) const
```

Test if IPTC metadata exists.

Return values

true	if no IPTC metadata exists for this DNG.
------	--

References NotEmpty().

Referenced by NotEmpty().

5.69.2.2 NotEmpty()

bool dng_iptc::NotEmpty () const [inline]

Test if IPTC metadata exists.

Return values

true	if IPTC metadata exists for this DNG.
------	---------------------------------------

References IsEmpty().

Referenced by IsEmpty().

5.69.2.3 Parse()

Parse a complete block of IPTC data.

Parameters

blockData	The block of IPTC data.
blockSize	Size in bytes of data block.
offsetInOriginalFile	Used to enable certain file patching operations such as updating date/time in place.

References dng_memory_data::Buffer_char(), dng_stream::Get(), dng_stream::Get_int8(), dng_stream::Get_uint16(), dng_stream::Get_uint8(), dng_stream::Get_uint8(), dng_stream::SetBigEndian(), and dng_ \leftarrow stream::SetReadPosition().

5.69.2.4 Spool()

Serialize IPTC data to a memory block.

Parameters

allocator	Memory allocator used to acquire memory block.
padForTIFF	Forces length of block to be a multiple of four bytes in accordance with TIFF standard.

Return values

ock

 $References\ dng_stream::AsMemoryBlock(),\ DNG_ASSERT,\ dng_stream::Flush(),\ dng_stream::Length(),\ dng_stream::Put(),\ dng_stream::Put_uint16(),\ dng_stream::Put_uint8(),\ and\ dng_stream::SetBigEndian().$

The documentation for this class was generated from the following files:

- dng_iptc.h
- · dng_iptc.cpp

5.70 dng_jpeg_image Class Reference

Public Member Functions

- · uint32 TilesAcross () const
- uint32 TilesDown () const
- · uint32 TileCount () const
- void Encode (dng_host &host, const dng_negative &negative, dng_image_writer &writer, const dng_image &image)
- dng_fingerprint FindDigest (dng_host &host) const

Public Attributes

- dng_point flmageSize
- · dng_point fTileSize
- bool fUsesStrips
- AutoPtr< dng memory block > fJPEGTables
- AutoArray< dng_jpeg_image_tile_ptr > fJPEGData

The documentation for this class was generated from the following files:

- · dng_jpeg_image.h
- dng_jpeg_image.cpp

5.71 dng_jpeg_image_encode_task Class Reference

Inheritance diagram for dng_jpeg_image_encode_task:

Public Member Functions

- dng_jpeg_image_encode_task (dng_host &host, dng_image_writer &writer, const dng_image &image, dng_jpeg_image &jpegImage, uint32 tileCount, const dng_ifd &ifd)
- void Process (uint32, const dng_rect &, dng_abort_sniffer *sniffer)
 and progress updates.

Additional Inherited Members

5.71.1 Member Function Documentation

5.71.1.1 Process()

and progress updates.

Process one tile or fully partitioned area. This method is overridden by derived classes to implement the actual image processing. Note that the sniffer can be ignored if it is certain that a processing task will complete very quickly. This method should never be called directly but rather accessed via Process. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)
tile	Area to process.
sniffer	dng_abort_sniffer to use to check for user cancellation

Implements dng area task.

References dng_host::Allocate(), dng_host::Allocator(), AutoPtr< T >::Reset(), and dng_abort_sniffer::SniffForAbort().

The documentation for this class was generated from the following file:

dng_jpeg_image.cpp

5.72 dng_jpeg_image_find_digest_task Class Reference

Inheritance diagram for dng_jpeg_image_find_digest_task:

Public Member Functions

- dng_jpeg_image_find_digest_task (const dng_jpeg_image &jpegImage, uint32 tileCount, dng_fingerprint *digests)
- void Process (uint32, const dng_rect &, dng_abort_sniffer *sniffer)
 and progress updates.

Additional Inherited Members

5.72.1 Member Function Documentation

5.72.1.1 Process()

and progress updates.

Process one tile or fully partitioned area. This method is overridden by derived classes to implement the actual image processing. Note that the sniffer can be ignored if it is certain that a processing task will complete very quickly. This method should never be called directly but rather accessed via Process. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)
tile	Area to process.
sniffer	dng_abort_sniffer to use to check for user cancellation

Implements dng_area_task.

References dng_md5_printer::Process(), dng_md5_printer::Result(), and dng_abort_sniffer::SniffForAbort().

The documentation for this class was generated from the following file:

• dng_jpeg_image.cpp

5.73 dng_jpeg_preview Class Reference

Inheritance diagram for dng_jpeg_preview:

Public Member Functions

- virtual dng_basic_tag_set * AddTagSet (dng_tiff_directory &directory) const
- virtual void WriteData (dng_host &host, dng_image_writer &writer, dng_basic_tag_set &basic, dng_stream &stream) const
- void SpoolAdobeThumbnail (dng_stream &stream) const

Public Attributes

- · dng point fPreviewSize
- uint16 fPhotometricInterpretation
- dng point fYCbCrSubSampling
- uint16 fYCbCrPositioning
- AutoPtr< dng_memory_block > fCompressedData

The documentation for this class was generated from the following files:

- · dng_preview.h
- · dng_preview.cpp

5.74 dng_jpeg_preview_tag_set Class Reference

Inheritance diagram for dng_jpeg_preview_tag_set:

Public Member Functions

dng_jpeg_preview_tag_set (dng_tiff_directory &directory, const dng_jpeg_preview &preview, const dng_ifd &ifd)

The documentation for this class was generated from the following file:

· dng_preview.cpp

5.75 dng_limit_float_depth_task< simd > Class Template Reference

Inheritance diagram for dng limit float depth task< simd >:

Public Member Functions

- dng_limit_float_depth_task (const dng_image &srcImage, dng_image &dstImage, uint32 bitDepth, real32 scale)
- · virtual dng rect RepeatingTile1 () const
- virtual dng_rect RepeatingTile2 () const
- virtual void Process (uint32 threadIndex, const dng_rect &tile, dng_abort_sniffer *sniffer)
 and progress updates.

Additional Inherited Members

5.75.1 Member Function Documentation

5.75.1.1 Process()

and progress updates.

Process one tile or fully partitioned area. This method is overridden by derived classes to implement the actual image processing. Note that the sniffer can be ignored if it is certain that a processing task will complete very quickly. This method should never be called directly but rather accessed via Process. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)
tile	Area to process.
sniffer	dng_abort_sniffer to use to check for user cancellation

Implements dng area task.

References dng_pixel_buffer::ConstPixel(), dng_pixel_buffer::DirtyPixel(), and OptimizeOrder().

5.75.1.2 RepeatingTile1()

```
template<SIMDType simd>
virtual dng_rect dng_limit_float_depth_task< simd >::RepeatingTile1 ( ) const [inline], [virtual]
```

Getter for RepeatingTile1. RepeatingTile1, RepeatingTile2, and RepeatingTile3 are used to establish a set of 0 to 3 tile patterns for which the resulting partitions that the final Process method is called on will not cross tile boundaries in any of the tile patterns. This can be used for a processing routine that needs to read from two tiles and write to a third such that all the tiles are aligned and sized in a certain way. A RepeatingTile value is valid if it is non-empty. Higher numbered RepeatingTile patterns are only used if all lower ones are non-empty. A RepeatingTile pattern must be a multiple of UnitCell in size for all constraints of the partitionerr to be met.

Reimplemented from dng_area_task.

References dng_image::RepeatingTile().

5.75.1.3 RepeatingTile2()

```
template<SIMDType simd>
virtual dng_rect dng_limit_float_depth_task< simd >::RepeatingTile2 ( ) const [inline], [virtual]
```

Getter for RepeatingTile2. RepeatingTile1, RepeatingTile2, and RepeatingTile3 are used to establish a set of 0 to 3 tile patterns for which the resulting partitions that the final Process method is called on will not cross tile boundaries in any of the tile patterns. This can be used for a processing routine that needs to read from two tiles and write to a third such that all the tiles are aligned and sized in a certain way. A RepeatingTile value is valid if it is non-empty. Higher numbered RepeatingTile patterns are only used if all lower ones are non-empty. A RepeatingTile pattern must be a multiple of UnitCell in size for all constraints of the partitionerr to be met.

Reimplemented from dng_area_task.

References dng_image::RepeatingTile().

The documentation for this class was generated from the following file:

· dng utils.cpp

5.76 dng_linearization_info Class Reference

Class for managing data values related to DNG linearization.

```
#include <dng_linearization_info.h>
```

Public Member Functions

- void RoundBlacks ()
- virtual void Parse (dng_host &host, dng_stream &stream, dng_info &info)
- virtual void PostParse (dng_host &host, dng_negative &negative)
- real64 MaxBlackLevel (uint32 plane) const
- virtual void Linearize (dng_host &host, dng_negative &negative, const dng_image &srcImage, dng_image &dst
 Image)
- dng_urational BlackLevel (uint32 row, uint32 col, uint32 plane) const
- uint32 RowBlackCount () const

Number of per-row black level deltas in fBlackDeltaV.

- · dng_srational RowBlack (uint32 row) const
- uint32 ColumnBlackCount () const

Number of per-column black level deltas in fBlackDeltaV.

· dng srational ColumnBlack (uint32 col) const

Public Attributes

- dng_rect fActiveArea
- uint32 fMaskedAreaCount

Number of rectangles in fMaskedArea.

- dng rect fMaskedArea [kMaxMaskedAreas]
- AutoPtr< dng memory block > fLinearizationTable
- uint32 fBlackLevelRepeatRows

Actual number of rows in fBlackLevel pattern.

uint32 fBlackLevelRepeatCols

Actual number of columns in fBlackLevel pattern.

real64 fBlackLevel [kMaxBlackPattern][kMaxBlackPattern][kMaxSamplesPerPixel]

 $Repeating\ pattern\ of\ black\ level\ deltas\ fBlackLevelRepeatRows\ by\ fBlackLevelRepeatCols\ in\ size.$

AutoPtr< dng_memory_block > fBlackDeltaH

Memory block of double-precision floating point deltas between baseline black level and a given column's black level.

AutoPtr< dng_memory_block > fBlackDeltaV

Memory block of double-precision floating point deltas between baseline black level and a given row's black level.

real64 fWhiteLevel [kMaxSamplesPerPixel]

Single white level (maximum sensor value) for each sample plane.

Protected Attributes

int32 fBlackDenom

5.76.1 Detailed Description

Class for managing data values related to DNG linearization.

See LinearizationTable, BlackLevel, BlackLevelRepeatDim, BlackLevelDeltaH, BlackLevelDeltaV and WhiteLevel tags in the DNG 1.1.0 specification.

5.76.2 Member Function Documentation

5.76.2.1 BlackLevel()

Compute black level for one coordinate and sample plane in the image.

Parameters

row	Row to compute black level for.
col	Column to compute black level for.
plane	Sample plane to compute black level for.

References fBlackLevel.

5.76.2.2 ColumnBlack()

Lookup black level delta for a given column.

Parameters

col	Column to get black level for.
-----	--------------------------------

Return values

black	level for indicated column.
Diaon	lovor for indicatod coldinii.

References dng_memory_block::Buffer_real64(), fBlackDeltaH, and AutoPtr< T >::Get().

5.76.2.3 Linearize()

Convert raw data from in-file format to a true linear image using linearization data from DNG.

Parameters

host	Used to allocate buffers, check for aborts, and post progress updates.	
negative	Used to remember preserved black point.	
srcImage	Input pre-linearization RAW samples.	
dstlmage	Output linearized image.	

References fActiveArea, fWhiteLevel, kMaxStage3BlackLevelNormalized, MaxBlackLevel(), dng_host::PerformArea Task(), dng_image::PixelType(), and dng_image::Planes().

5.76.2.4 MaxBlackLevel()

Compute the maximum black level for a given sample plane taking into account base black level, repeated black level patter, and row/column delta maps.

References dng_memory_block::Buffer_real64(), DNG_REQUIRE, fBlackDeltaH, fBlackDeltaV, fBlackLevel, fBlackLev

Referenced by Linearize().

5.76.2.5 RowBlack()

Lookup black level delta for a given row.

Parameters

row	Row to get black level for.
-----	-----------------------------

Return values

black	level for indicated row.
21aon	iovoi ioi indicatoa iovi.

References dng_memory_block::Buffer_real64(), fBlackDeltaV, and AutoPtr< T >::Get().

5.76.3 Member Data Documentation

5.76.3.1 fActiveArea

```
dng_rect dng_linearization_info::fActiveArea
```

This rectangle defines the active (non-masked) pixels of the sensor. The order of the rectangle coordinates is: top, left, bottom, right.

Referenced by Linearize().

5.76.3.2 fLinearizationTable

AutoPtr<dng_memory_block> dng_linearization_info::fLinearizationTable

A lookup table that maps stored values into linear values. This tag is typically used to increase compression ratios by storing the raw data in a non-linear, more visually uniform space with fewer total encoding levels. If SamplesPerPixel is not equal to one, e.g. Fuji S3 type sensor, this single table applies to all the samples for each pixel.

5.76.3.3 fMaskedArea

List of non-overlapping rectangle coordinates of fully masked pixels. Can be optionally used by DNG readers to measure the black encoding level. The order of each rectangle's coordinates is: top, left, bottom, right. If the raw image data has already had its black encoding level subtracted, then this tag should not be used, since the masked pixels are no longer useful. Note that DNG writers are still required to include an estimate and store the black encoding level using the black level DNG tags. Support for the MaskedAreas tag is not required of DNG readers.

The documentation for this class was generated from the following files:

- dng_linearization_info.h
- · dng linearization info.cpp

5.77 dng_linearize_image Class Reference

Inheritance diagram for dng_linearize_image:

Public Member Functions

- dng_linearize_image (dng_host &host, dng_linearization_info &info, uint16 dstBlackLevel, bool forceClipBlack←
 Level, const dng_image &srcImage, dng_image &dstImage)
- virtual dng_rect RepeatingTile1 () const
- virtual dng_rect RepeatingTile2 () const
- virtual void Process (uint32 threadIndex, const dng_rect &tile, dng_abort_sniffer *sniffer)
 and progress updates.

Additional Inherited Members

5.77.1 Member Function Documentation

5.77.1.1 Process()

and progress updates.

Process one tile or fully partitioned area. This method is overridden by derived classes to implement the actual image processing. Note that the sniffer can be ignored if it is certain that a processing task will complete very quickly. This method should never be called directly but rather accessed via Process. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)	
tile	Area to process.	
sniffer	dng_abort_sniffer to use to check for user cancellation	

Implements dng area task.

References dng_image::Planes().

5.77.1.2 RepeatingTile1()

```
dng_rect dng_linearize_image::RepeatingTile1 ( ) const [virtual]
```

Getter for RepeatingTile1. RepeatingTile1, RepeatingTile2, and RepeatingTile3 are used to establish a set of 0 to 3 tile patterns for which the resulting partitions that the final Process method is called on will not cross tile boundaries in any of the tile patterns. This can be used for a processing routine that needs to read from two tiles and write to a third such that all the tiles are aligned and sized in a certain way. A RepeatingTile value is valid if it is non-empty. Higher numbered RepeatingTile patterns are only used if all lower ones are non-empty. A RepeatingTile pattern must be a multiple of UnitCell in size for all constraints of the partitionerr to be met.

Reimplemented from dng area task.

References dng image::RepeatingTile().

5.77.1.3 RepeatingTile2()

```
dng_rect dng_linearize_image::RepeatingTile2 ( ) const [virtual]
```

Getter for RepeatingTile2. RepeatingTile1, RepeatingTile2, and RepeatingTile3 are used to establish a set of 0 to 3 tile patterns for which the resulting partitions that the final Process method is called on will not cross tile boundaries in any of the tile patterns. This can be used for a processing routine that needs to read from two tiles and write to a third such that all the tiles are aligned and sized in a certain way. A RepeatingTile value is valid if it is non-empty. Higher numbered RepeatingTile patterns are only used if all lower ones are non-empty. A RepeatingTile pattern must be a multiple of UnitCell in size for all constraints of the partitionerr to be met.

Reimplemented from dng_area_task.

References dng_image::RepeatingTile().

The documentation for this class was generated from the following file:

dng_linearization_info.cpp

5.78 dng_linearize_plane Class Reference

Public Member Functions

- void Process (const dng rect &tile)

The documentation for this class was generated from the following file:

· dng linearization info.cpp

5.79 dng_local_string Class Reference

Public Member Functions

- dng_local_string (const dng_string &s)
- void Clear ()
- void SetDefaultText (const dng_string &s)
- void AddTranslation (const dng_string &language, const dng_string &translation)
- void **Set** (const char *s)
- const dng_string & DefaultText () const
- dng string & DefaultText ()
- uint32 TranslationCount () const
- const dng_string & Language (uint32 index) const
- · const dng string & Translation (uint32 index) const
- const dng_string & LocalText (const dng_string &locale) const
- bool IsEmpty () const
- bool NotEmpty () const
- bool operator== (const dng_local_string &s) const
- bool operator!= (const dng local string &s) const
- void Truncate (uint32 maxBytes)

The documentation for this class was generated from the following files:

- · dng_local_string.h
- · dng_local_string.cpp

5.80 dng_lock_mutex Class Reference

Inheritance diagram for dng lock mutex:

Public Member Functions

- dng_lock_mutex (dng_mutex *mutex)
- dng_lock_mutex (dng_mutex &mutex)

The documentation for this class was generated from the following files:

- dng_mutex.h
- · dng mutex.cpp

5.81 dng_look_table Class Reference

Inheritance diagram for dng look table:

Public Types

Public Member Functions

- dng_look_table (const dng_look_table &table)
- dng_look_table & operator= (const dng_look_table &table)
- bool operator== (const dng_look_table &table) const
- bool operator!= (const dng_look_table &table) const
- void Set (const dng_hue_sat_map &map, uint32 encoding)
- virtual bool IsValid () const
- void SetInvalid ()
- · real64 MinAmount () const
- · real64 MaxAmount () const
- void SetAmountRange (real64 minAmount, real64 maxAmount)
- · real64 Amount () const
- · void SetAmount (real64 amount)
- const dng_hue_sat_map & Map () const
- uint32 **Encoding** () const
- bool Monochrome () const

Protected Member Functions

- virtual void GetStream (dng_stream &stream)
- virtual void PutStream (dng_stream &stream, bool forFingerprint) const

Friends

class dng_look_table_cache

Additional Inherited Members

The documentation for this class was generated from the following files:

- · dng_big_table.h
- · dng_big_table.cpp

5.82 dng_look_table_cache Class Reference

Inheritance diagram for dng_look_table_cache:

Public Member Functions

- virtual void InsertTableData (dng_lock_std_mutex &, const dng_big_table &table)
- virtual void EraseTableData (dng lock std mutex &, const dng fingerprint &fingerprint)
- virtual void ExtractTableData (dng_lock_std_mutex &, const dng_fingerprint &fingerprint, dng_big_table &table)

Additional Inherited Members

The documentation for this class was generated from the following file:

· dng_big_table.cpp

5.83 dng_lossless_decoder Class Reference

Inheritance diagram for dng_lossless_decoder:

Public Member Functions

- dng_lossless_decoder (dng_stream *stream, dng_spooler *spooler, bool bug16)
- void StartRead (uint32 &imageWidth, uint32 &imageHeight, uint32 &imageChannels)
- void FinishRead ()
- bool IsHasselblad3FR ()

The documentation for this class was generated from the following file:

dng_lossless_jpeg.cpp

5.84 dng_lossless_encoder Class Reference

Public Member Functions

- dng_lossless_encoder (const uint16 *srcData, uint32 srcRows, uint32 srcCols, uint32 srcChannels, uint32 srcBitDepth, int32 srcRowStep, int32 srcColStep, dng_stream &stream)
- void Encode ()

The documentation for this class was generated from the following file:

· dng_lossless_jpeg.cpp

5.85 dng_lzw_compressor Class Reference

Inheritance diagram for dng_lzw_compressor:

Public Member Functions

• void Compress (const uint8 *sPtr, uint8 *dPtr, uint32 sCount, uint32 &dCount)

The documentation for this class was generated from the following file:

dng_image_writer.cpp

5.86 dng_lzw_expander Class Reference

Inheritance diagram for dng_lzw_expander:

Public Member Functions

• bool Expand (const uint8 *sPtr, uint8 *dPtr, int32 sCount, int32 dCount)

The documentation for this class was generated from the following file:

• dng_read_image.cpp

5.87 dng_malloc_block Class Reference

Inheritance diagram for dng_malloc_block:

Public Member Functions

• dng_malloc_block (uint32 logicalSize)

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_memory.h
- · dng_memory.cpp

5.88 dng_mask_preview Class Reference

Inheritance diagram for dng_mask_preview:

Public Member Functions

- virtual dng_basic_tag_set * AddTagSet (dng_tiff_directory &directory) const
- virtual void WriteData (dng_host &host, dng_image_writer &writer, dng_basic_tag_set &basic, dng_stream &stream) const

Public Attributes

- AutoPtr< dng image > flmage
- · int32 fCompressionQuality

The documentation for this class was generated from the following files:

- · dng preview.h
- dng_preview.cpp

5.89 dng_matrix Class Reference

Class to represent 2D matrix up to kMaxColorPlanes x kMaxColorPlanes in size.

Inheritance diagram for dng_matrix:

Public Member Functions

- dng_matrix (uint32 rows, uint32 cols)
- dng_matrix (const dng_matrix &m)
- void Clear ()
- · void SetIdentity (uint32 count)
- · uint32 Rows () const
- uint32 Cols () const
- real64 * operator [] (uint32 row)
- const real64 * operator [] (uint32 row) const
- bool operator== (const dng_matrix &m) const
- bool operator!= (const dng matrix &m) const
- bool IsEmpty () const
- bool NotEmpty () const
- · bool IsDiagonal () const
- bool Isldentity () const
- real64 MaxEntry () const
- · real64 MinEntry () const
- · void Scale (real64 factor)
- void Round (real64 factor)
- · void SafeRound (real64 factor)
- bool AlmostEqual (const dng_matrix &m, real64 slop=1.0e-8) const
- bool AlmostIdentity (real64 slop=1.0e-8) const

Protected Attributes

- uint32 fRows
- uint32 fCols
- real64 fData [kMaxColorPlanes][kMaxColorPlanes]

5.89.1 Detailed Description

Class to represent 2D matrix up to kMaxColorPlanes x kMaxColorPlanes in size.

The documentation for this class was generated from the following files:

- dng_matrix.h
- · dng_matrix.cpp

5.90 dng_matrix_3by3 Class Reference

A 3x3 matrix.

```
#include <dng_matrix.h>
```

Inheritance diagram for dng_matrix_3by3:

Public Member Functions

- dng_matrix_3by3 (const dng_matrix &m)
- dng_matrix_3by3 (real64 a00, real64 a01, real64 a02, real64 a10, real64 a11, real64 a12, real64 a20, real64 a21, real64 a22)
- dng_matrix_3by3 (real64 a00, real64 a11, real64 a22)

Additional Inherited Members

5.90.1 Detailed Description

A 3x3 matrix.

The documentation for this class was generated from the following files:

- dng_matrix.h
- · dng_matrix.cpp

5.91 dng_matrix_4by3 Class Reference

A 4x3 matrix. Handy for working with 4-color cameras.

```
#include <dng_matrix.h>
```

Inheritance diagram for dng matrix 4by3:

Public Member Functions

- dng_matrix_4by3 (const dng_matrix &m)
- dng_matrix_4by3 (real64 a00, real64 a01, real64 a02, real64 a10, real64 a11, real64 a12, real64 a20, real64 a21, real64 a22, real64 a30, real64 a31, real64 a32)

Additional Inherited Members

5.91.1 Detailed Description

A 4x3 matrix. Handy for working with 4-color cameras.

The documentation for this class was generated from the following files:

- dng_matrix.h
- · dng_matrix.cpp

5.92 dng_matrix_4by4 Class Reference

A 4x4 matrix. Handy for GPU APIs.

Inheritance diagram for dng_matrix_4by4:

Public Member Functions

- dng matrix 4by4 (const dng matrix &m)
- dng_matrix_4by4 (real64 a00, real64 a01, real64 a02, real64 a03, real64 a10, real64 a11, real64 a12, real64 a13, real64 a20, real64 a21, real64 a22, real64 a23, real64 a30, real64 a31, real64 a32, real64 a33)
- dng_matrix_4by4 (real64 a00, real64 a11, real64 a22, real64 a33)

Additional Inherited Members

5.92.1 Detailed Description

A 4x4 matrix. Handy for GPU APIs.

The documentation for this class was generated from the following files:

- dng_matrix.h
- · dng_matrix.cpp

5.93 dng md5 printer Class Reference

Class to hash binary data to a fingerprint using the MD5 Message-Digest Algorithm.

```
#include <dng_fingerprint.h>
```

Inheritance diagram for dng_md5_printer:

Public Member Functions

· void Reset ()

Reset the fingerprint.

- void Process (const void *data, uint32 inputLen)
- void Process (const char *text)
- const dng_fingerprint & Result ()

Get the fingerprint (i.e., result of the hash).

5.93.1 Detailed Description

Class to hash binary data to a fingerprint using the MD5 Message-Digest Algorithm.

5.93.2 Member Function Documentation

Append the data to the stream to be hashed.

Parameters

data	The data to be hashed.
inputLen	The length of data, in bytes.

References DNG_ASSERT.

Referenced by dng_hue_sat_map::Interpolate(), Process(), dng_jpeg_image_find_digest_task::Process(), and Result().

Append the string to the stream to be hashed.

Parameters

text	The string to be hashed.

References Process().

The documentation for this class was generated from the following files:

- dng_fingerprint.h
- · dng_fingerprint.cpp

5.94 dng_md5_printer_stream Class Reference

A dng_stream based interface to the MD5 printing logic.

```
#include <dng_fingerprint.h>
```

Inheritance diagram for dng_md5_printer_stream:

Public Member Functions

- dng_md5_printer_stream ()
 - Create an empty MD5 printer stream.
- virtual uint64 DoGetLength ()
- virtual void DoRead (void *, uint32, uint64)
- virtual void **DoSetLength** (uint64 length)
- virtual void DoWrite (const void *data, uint32 count2, uint64 offset)
- const dng_fingerprint & Result ()

Additional Inherited Members

5.94.1 Detailed Description

A dng_stream based interface to the MD5 printing logic.

The documentation for this class was generated from the following file:

· dng_fingerprint.h

5.95 dng_memory_allocator Class Reference

Interface for dng_memory_block allocator.

```
#include <dng_memory.h>
```

Public Member Functions

- virtual dng_memory_block * Allocate (uint32 size)
- virtual void * Malloc (size_t size)
- virtual void Free (void *ptr)

5.95.1 Detailed Description

Interface for dng_memory_block allocator.

5.95.2 Member Function Documentation

5.95.2.1 Allocate()

Allocate a dng_memory block.

Parameters

size Number of bytes in memory block.

Return values

A dng_memory_block with at least size bytes of valid storage.

Exceptions

```
dng_exception with fErrorCode equal to dng_error_memory.
```

References ThrowMemoryFull().

Referenced by dng_host::Allocate(), dng_stream::AsMemoryBlock(), dng_1d_table::Initialize(), dng_opcode_Map Table::Prepare(), dng_opcode_FixVignetteRadial::Prepare(), dng_filter_task::Start(), dng_inplace_opcode_task::

Start(), dng_resample_task::Start(), and dng_find_new_raw_image_digest_task::Start().

5.95.2.2 Free()

Free the specified block of memory previously allocated with Malloc. Default implementation uses standard library 'free' routine.

5.95.2.3 Malloc()

Directly allocate a block of at least 'size' bytes.

Parameters

size Number of bytes in memory	block.
--------------------------------	--------

Return values

A pointer to a contiguous block of memory with at least size bytes of valid storage. Caller is responsible for freeing the memory with Free. Default implementation uses standard library 'malloc' routine.

The documentation for this class was generated from the following files:

- · dng memory.h
- dng_memory.cpp

5.96 dng_memory_block Class Reference

Class to provide resource acquisition is instantiation discipline for image buffers and other larger memory allocations.

```
#include <dng_memory.h>
```

Inheritance diagram for dng_memory_block:

Public Member Functions

- dng_memory_block * Clone (dng_memory_allocator &allocator) const
- uint32 LogicalSize () const
- void * Buffer ()
- const void * Buffer () const
- char * Buffer char ()
- const char * Buffer_char () const
- uint8 * Buffer_uint8 ()
- const uint8 * Buffer_uint8 () const
- uint16 * Buffer_uint16 ()
- const uint16 * Buffer_uint16 () const
- int16 * Buffer_int16 ()
- const int16 * Buffer_int16 () const
- uint32 * Buffer_uint32 ()
- const uint32 * Buffer_uint32 () const
- int32 * Buffer int32 ()
- const int32 * Buffer_int32 () const
- real32 * Buffer_real32 ()
- const real32 * Buffer_real32 () const
- real64 * Buffer real64 ()
- const real64 * Buffer real64 () const

Protected Member Functions

- dng_memory_block (uint32 logicalSize)
- uint32 PhysicalSize ()
- void SetBuffer (void *p)

5.96.1 Detailed Description

Class to provide resource acquisition is instantiation discipline for image buffers and other larger memory allocations.

This class requires a dng_memory_allocator for allocation.

5.96.2 Member Function Documentation

```
5.96.2.1 Buffer() [1/2]
void* dng_memory_block::Buffer ( ) [inline]
```

Return pointer to allocated memory as a void *..

Return values

void * valid for as many bytes as were allocated.

Referenced by Buffer_char(), Buffer_int16(), Buffer_int32(), Buffer_real32(), Buffer_real64(), Buffer_uint16(), Buffer uint32(), Buffer_uint8(), dng_inplace_opcode_task::Process(), dng_find_new_raw_image_digest_task::Process(), and dng_opcode_Unknown::PutData().

```
5.96.2.2 Buffer() [2/2]
const void* dng_memory_block::Buffer ( ) const [inline]
```

Return pointer to allocated memory as a const void $\ast.$

Return values

const void * valid for as many bytes as were allocated.

```
5.96.2.3 Buffer_char() [1/2]
char* dng_memory_block::Buffer_char ( ) [inline]
```

Return pointer to allocated memory as a char *.

Return values

```
char * valid for as many bytes as were allocated.
```

References Buffer().

```
5.96.2.4 Buffer_char() [2/2]
```

```
const char* dng_memory_block::Buffer_char ( ) const [inline]
```

Return pointer to allocated memory as a const char *.

Return values

```
const char * valid for as many bytes as were allocated.
```

References Buffer().

```
5.96.2.5 Buffer_int16() [1/2]
```

```
int16* dng_memory_block::Buffer_int16 ( ) [inline]
```

Return pointer to allocated memory as a int16 *.

Return values

```
int16 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.96.2.6 Buffer_int16() [2/2]
```

```
const int16* dng_memory_block::Buffer_int16 ( ) const [inline]
```

Return pointer to allocated memory as a const int16 *.

Return values

const int16 * valid for as many bytes as were allocated.

References Buffer().

```
5.96.2.7 Buffer_int32() [1/2]
```

```
int32* dng_memory_block::Buffer_int32 ( ) [inline]
```

Return pointer to allocated memory as a int32 *.

Return values

int32 | * valid for as many bytes as were allocated.

References Buffer().

```
5.96.2.8 Buffer_int32() [2/2]
```

```
const int32* dng_memory_block::Buffer_int32 ( ) const [inline]
```

Return pointer to allocated memory as a const int32 *.

Return values

```
const int32 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.96.2.9 Buffer_real32() [1/2]
```

```
real32* dng_memory_block::Buffer_real32 ( ) [inline]
```

Return pointer to allocated memory as a real32 *.

Return values

```
real32 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.96.2.10 Buffer_real32() [2/2]
```

```
const real32* dng_memory_block::Buffer_real32 ( ) const [inline]
```

Return pointer to allocated memory as a const real32 *.

Return values

```
const real32 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.96.2.11 Buffer_real64() [1/2]
```

```
real64* dng_memory_block::Buffer_real64 ( ) [inline]
```

Return pointer to allocated memory as a real64 *.

Return values

```
real64 * valid for as many bytes as were allocated.
```

References Buffer().

Referenced by dng_linearization_info::ColumnBlack(), dng_linearization_info::MaxBlackLevel(), and dng_linearization ← _info::RowBlack().

```
5.96.2.12 Buffer_real64() [2/2]
```

```
const real64* dng_memory_block::Buffer_real64 ( ) const [inline]
```

Return pointer to allocated memory as a const real64 *.

Return values

```
const real64 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.96.2.13 Buffer_uint16() [1/2]
```

```
uint16* dng_memory_block::Buffer_uint16 ( ) [inline]
```

Return pointer to allocated memory as a uint16 *.

Return values

```
uint16 * valid for as many bytes as were allocated.
```

References Buffer().

Referenced by dng_opcode_MapTable::Prepare(), dng_opcode_FixVignetteRadial::Prepare(), dng_encode_proxy_
task::Process(), dng_opcode_MapTable::ProcessArea(), and dng_opcode_MapTable::PutData().

```
5.96.2.14 Buffer_uint16() [2/2]
```

```
const uint16* dng_memory_block::Buffer_uint16 ( ) const [inline]
```

Return pointer to allocated memory as a const uint16 *.

Return values

const uint16 * valid for as many bytes as were allocated.

References Buffer().

```
5.96.2.15 Buffer_uint32() [1/2]
```

```
uint32* dng_memory_block::Buffer_uint32 ( ) [inline]
```

Return pointer to allocated memory as a uint32 *.

Return values

```
uint32 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.96.2.16 Buffer_uint32() [2/2]
```

```
\verb|const uint32*| dng_memory_block::Buffer_uint32 ( ) const [inline]|
```

Return pointer to allocated memory as a const uint32 *.

Return values

const uint32 * valid for as many bytes as were allocated.

References Buffer().

```
5.96.2.17 Buffer_uint8() [1/2]
```

```
uint8* dng_memory_block::Buffer_uint8 ( ) [inline]
```

Return pointer to allocated memory as a uint8 *.

Return values

uint8 * valid for as many bytes as were allocated.

References Buffer().

Referenced by dng_memory_stream::CopyToStream().

```
5.96.2.18 Buffer_uint8() [2/2]
```

```
const uint8* dng_memory_block::Buffer_uint8 ( ) const [inline]
```

Return pointer to allocated memory as a const uint8 *.

Return values

const | uint8 * valid for as many bytes as were allocated.

References Buffer().

5.96.2.19 LogicalSize()

```
uint32 dng_memory_block::LogicalSize ( ) const [inline]
```

Getter for available size, in bytes, of memory block.

Return values

size in bytes of available memory in memory block.

Referenced by dng_linearization_info::ColumnBlackCount(), dng_linearization_info::MaxBlackLevel(), dng_opcode_ Unknown::PutData(), and dng_linearization_info::RowBlackCount().

The documentation for this class was generated from the following files:

- · dng memory.h
- · dng_memory.cpp

5.97 dng_memory_data Class Reference

Class to provide resource acquisition is instantiation discipline for small memory allocations.

```
#include <dng_memory.h>
```

Inheritance diagram for dng memory data:

Public Member Functions

- dng_memory_data ()
- dng_memory_data (uint32 size)
- dng memory data (const dng safe uint32 &size)
- dng memory data (uint32 count, std::size t elementSize)
- ~dng_memory_data ()

Release memory buffer using free.

- void Allocate (uint32 size)
- void Allocate (const dng_safe_uint32 &size)
- void Allocate (uint32 count, std::size_t elementSize)
- void Allocate (const dng_safe_uint32 &count, std::size_t elementSize)
- void Clear ()
- void * Buffer ()
- const void * Buffer () const
- char * Buffer_char ()
- const char * Buffer_char () const
- uint8 * Buffer_uint8 ()
- const uint8 * Buffer uint8 () const
- uint16 * Buffer uint16 ()
- const uint16 * Buffer_uint16 () const
- int16 * Buffer_int16 ()
- const int16 * Buffer_int16 () const
- uint32 * Buffer_uint32 ()
- const uint32 * Buffer_uint32 () const
- int32 * Buffer int32 ()

```
const int32 * Buffer_int32 () const
uint64 * Buffer_uint64 ()
const uint64 * Buffer_uint64 () const
```

int64 * Buffer_int64 ()

• const int64 * Buffer_int64 () const

real32 * Buffer_real32 ()

const real32 * Buffer_real32 () const

real64 * Buffer real64 ()

• const real64 * Buffer_real64 () const

5.97.1 Detailed Description

Class to provide resource acquisition is instantiation discipline for small memory allocations.

This class does not use dng_memory_allocator for memory allocation.

5.97.2 Constructor & Destructor Documentation

```
5.97.2.1 dng_memory_data() [1/3]
dng_memory_data::dng_memory_data ( )
```

Construct an empty memory buffer using malloc.

Exceptions

```
dng_memory_full with fErrorCode equal to dng_error_memory.
```

5.97.2.2 dng_memory_data() [2/3]

Construct memory buffer of size bytes using malloc.

Parameters

size	Number of bytes of memory needed.
------	-----------------------------------

Exceptions

•	
dng_memory_full	with fErrorCode equal to dng_error_memory.

References Allocate().

5.97.2.3 dng_memory_data() [3/3]

Note: This constructor is for internal use only and should not be considered part of the DNG SDK API.

Construct memory buffer of count elements of elementSize bytes each.

Parameters

count	Number of elements.
elementSize	Size of each element.

Exceptions

References Allocate().

5.97.3 Member Function Documentation

```
5.97.3.1 Allocate() [1/2]
```

Clear existing memory buffer and allocate new memory of size bytes.

Parameters

size	Number of bytes of memory needed.
------	-----------------------------------

Exceptions

dng_memory_full	with fErrorCode equal to dng_error_memory.
-----------------	--

References Clear(), and ThrowMemoryFull().

Referenced by Allocate(), and dng_memory_data().

5.97.3.2 Allocate() [2/2]

Note: This method is for internal use only and should not be considered part of the DNG SDK API.

Clear existing memory buffer and allocate new memory of count elements of elementSize bytes each.

Parameters

count	Number of elements.
elementSize	Size of each element.

Exceptions

dng_memory_full	with fErrorCode equal to dng_error_memory.
-----------------	--

References Allocate(), and ThrowOverflow().

```
5.97.3.3 Buffer() [1/2]
```

```
void* dng_memory_data::Buffer ( ) [inline]
```

Return pointer to allocated memory as a void *..

Return values

```
void * valid for as many bytes as were allocated.
```

Referenced by Buffer_char(), Buffer_int16(), Buffer_int32(), Buffer_int64(), Buffer_real32(), Buffer_real64(), Buffer_wint16(), Buffer_uint32(), Buffer_uint8(), and dng_stream::CopyToStream().

```
5.97.3.4 Buffer() [2/2]
```

```
const void* dng_memory_data::Buffer ( ) const [inline]
```

Return pointer to allocated memory as a const void *.

Return values

const	void * valid for as many bytes as were allocated.

```
5.97.3.5 Buffer_char() [1/2]
char* dng_memory_data::Buffer_char ( ) [inline]
Return pointer to allocated memory as a char *.
Return values
        * valid for as many bytes as were allocated.
References Buffer().
Referenced by dng_iptc::Parse().
5.97.3.6 Buffer_char() [2/2]
const char* dng_memory_data::Buffer_char ( ) const [inline]
Return pointer to allocated memory as a const char *.
Return values
 const
         char * valid for as many bytes as were allocated.
References Buffer().
5.97.3.7 Buffer_int16() [1/2]
int16* dng_memory_data::Buffer_int16 ( ) [inline]
Return pointer to allocated memory as a int16 *.
Return values
 int16
         * valid for as many bytes as were allocated.
References Buffer().
5.97.3.8 Buffer_int16() [2/2]
```

const int16* dng_memory_data::Buffer_int16 () const [inline]

Return pointer to allocated memory as a const int16 *.

Return values

	const	int16 \ast valid for as many bytes as were allocated.
--	-------	---

References Buffer().

```
5.97.3.9 Buffer_int32() [1/2]
```

```
int32* dng_memory_data::Buffer_int32 ( ) [inline]
```

Return pointer to allocated memory as a const int32 *.

Return values

```
const int32 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.10 Buffer_int32() [2/2]
```

```
const int32* dng_memory_data::Buffer_int32 ( ) const [inline]
```

Return pointer to allocated memory as a const int32 *.

Return values

```
const int32 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.11 Buffer_int64() [1/2]
```

```
int64* dng_memory_data::Buffer_int64 ( ) [inline]
```

Return pointer to allocated memory as a const int64 *.

Return values

const int64 * valid for as many bytes as were allocated.

References Buffer().

```
5.97.3.12 Buffer_int64() [2/2]
```

```
const int64* dng_memory_data::Buffer_int64 ( ) const [inline]
```

Return pointer to allocated memory as a const int64 *.

Return values

```
const int64 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.13 Buffer_real32() [1/2]
```

```
real32* dng_memory_data::Buffer_real32 ( ) [inline]
```

Return pointer to allocated memory as a real32 *.

Return values

```
real32 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.14 Buffer_real32() [2/2]
```

```
const real32* dng_memory_data::Buffer_real32 ( ) const [inline]
```

Return pointer to allocated memory as a const real32 *.

Return values

```
const real32 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.15 Buffer_real64() [1/2]
```

```
real64* dng_memory_data::Buffer_real64 ( ) [inline]
```

Return pointer to allocated memory as a real64 *.

Return values

```
real64 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.16 Buffer_real64() [2/2]
```

```
const real64* dng_memory_data::Buffer_real64 ( ) const [inline]
```

Return pointer to allocated memory as a const real64 *.

Return values

```
const real64 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.17 Buffer_uint16() [1/2]
```

```
uint16* dng_memory_data::Buffer_uint16 ( ) [inline]
```

Return pointer to allocated memory as a uint16 *.

Return values

```
uint16 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.18 Buffer_uint16() [2/2]
```

```
const uint16* dng_memory_data::Buffer_uint16 ( ) const [inline]
```

Return pointer to allocated memory as a const uint16 *.

Return values

const uint16 * valid for as many bytes as were allocated.

References Buffer().

```
5.97.3.19 Buffer_uint32() [1/2]
```

```
uint32* dng_memory_data::Buffer_uint32 ( ) [inline]
```

Return pointer to allocated memory as a uint32 *.

Return values

```
uint32 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.20 Buffer_uint32() [2/2]
```

```
const uint32* dng_memory_data::Buffer_uint32 ( ) const [inline]
```

Return pointer to allocated memory as a uint32 \ast .

Return values

```
uint32 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.21 Buffer_uint64() [1/2]
```

```
uint64* dng_memory_data::Buffer_uint64 ( ) [inline]
```

Return pointer to allocated memory as a uint64 \ast .

Return values

```
uint64 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.22 Buffer_uint64() [2/2]
```

```
\verb|const uint64*| \verb|dng_memory_data::Buffer_uint64| ( ) | const [inline]| \\
```

Return pointer to allocated memory as a uint64 *.

Return values

```
uint64 * valid for as many bytes as were allocated.
```

References Buffer().

```
5.97.3.23 Buffer_uint8() [1/2]
```

```
uint8* dng_memory_data::Buffer_uint8 ( ) [inline]
```

Return pointer to allocated memory as a uint8 *.

Return values

uint8 * valid for as many bytes as were allocated.

References Buffer().

```
5.97.3.24 Buffer_uint8() [2/2]
```

```
const uint8* dng_memory_data::Buffer_uint8 ( ) const [inline]
```

Return pointer to allocated memory as a const uint8 *.

Return values

```
const uint8 * valid for as many bytes as were allocated.
```

References Buffer().

5.97.3.25 Clear()

```
void dng_memory_data::Clear ( )
```

Release any allocated memory using free. Object is still valid and Allocate can be called again.

Referenced by Allocate(), and ~dng_memory_data().

The documentation for this class was generated from the following files:

- · dng_memory.h
- dng_memory.cpp

5.98 dng_memory_stream Class Reference

A dng_stream which can be read from or written to memory.

```
#include <dng_memory_stream.h>
```

Inheritance diagram for dng memory stream:

Public Member Functions

- dng_memory_stream (dng_memory_allocator &allocator, dng_abort_sniffer *sniffer=NULL, uint32 pageSize=64 *1024)
- void SetLengthLimit (uint64 limit)

Sets a maximum length limit.

• virtual void CopyToStream (dng_stream &dstStream, uint64 count)

Protected Member Functions

- virtual uint64 DoGetLength ()
- virtual void **DoRead** (void *data, uint32 count, uint64 offset)
- virtual void **DoSetLength** (uint64 length)
- virtual void **DoWrite** (const void *data, uint32 count, uint64 offset)

Protected Attributes

- dng_memory_allocator & fAllocator
- uint32 fPageSize
- · uint32 fPageCount
- · uint32 fPagesAllocated
- dng_memory_block ** fPageList
- uint64 fMemoryStreamLength
- · uint64 fLengthLimit

Additional Inherited Members

5.98.1 Detailed Description

A dng stream which can be read from or written to memory.

Stream is populated via writing and either read or accessed by asking for contents as a pointer.

5.98.2 Constructor & Destructor Documentation

5.98.2.1 dng_memory_stream()

Construct a new memory-based stream.

Parameters

allocator	Allocator to use to allocate memory in stream as needed.
sniffer	If non-NULL used to check for user cancellation.
pageSize	Unit of allocation for data stored in stream.

5.98.3 Member Function Documentation

5.98.3.1 CopyToStream()

Copy a specified number of bytes to a target stream.

Parameters

dstStream	The target stream.
count	The number of bytes to copy.

Reimplemented from dng_stream.

References dng_memory_block::Buffer_uint8(), dng_stream::CopyToStream(), dng_stream::Flush(), dng_stream::CopyToStream(), dng_stream::Flush(), dng_stream::Position(), dng_stream::Position(), dng_stream::Position(), dng_stream::Dosition(), dng_stream::Position(), dng_stream::Dosition(), dng_str

The documentation for this class was generated from the following files:

- dng_memory_stream.h
- · dng_memory_stream.cpp

5.99 dng_metadata Class Reference

Main class for holding metadata.

```
#include <dng_negative.h>
```

Public Member Functions

- dng metadata (dng host &host)
- dng metadata (const dng metadata &rhs, dng memory allocator &allocator)
- virtual dng_metadata * Clone (dng_memory_allocator &allocator) const

Copy this metadata.

void SetBaseOrientation (const dng_orientation &orientation)

Setter for BaseOrientation.

· bool HasBaseOrientation () const

Has BaseOrientation been set?

· const dng_orientation & BaseOrientation () const

Getter for BaseOrientation.

- void ApplyOrientation (const dng orientation & orientation)
- void SetIPTC (AutoPtr< dng_memory_block > &block, uint64 offset)
- void SetIPTC (AutoPtr< dng_memory_block > &block)
- void ClearIPTC ()
- const void * IPTCData () const
- uint32 IPTCLength () const
- uint64 IPTCOffset () const
- dng_fingerprint IPTCDigest (bool includePadding=true) const
- void RebuildIPTC (dng_memory_allocator &allocator, bool padForTIFF)
- void SetMakerNoteSafety (bool safe)
- · bool IsMakerNoteSafe () const
- void SetMakerNote (AutoPtr< dng memory block > &block)
- void ClearMakerNote ()
- const void * MakerNoteData () const
- uint32 MakerNoteLength () const
- dng_exif * GetExif ()
- const dng_exif * GetExif () const
- template<class E >

E & **Exif** ()

template<class E >

const E & Exif () const

- void ResetExif (dng_exif *newExif)
- dng_memory_block * BuildExifBlock (dng_memory_allocator &allocator, const dng_resolution *resolution=N←
 ULL, bool includeIPTC=false, const dng_jpeg_preview *thumbnail=NULL) const
- dng exif * GetOriginalExif ()
- const dng exif * GetOriginalExif () const
- bool SetXMP (dng_host &host, const void *buffer, uint32 count, bool xmpInSidecar=false, bool xmpIs←
 Newer=false)
- void SetEmbeddedXMP (dng_host &host, const void *buffer, uint32 count)
- dng_xmp * GetXMP ()
- const dng xmp * GetXMP () const

```
template < class X > X & XMP ()template < class X >
```

const X & XMP () const

- bool XMPinSidecar () const
- const dng_fingerprint & EmbeddedXMPDigest () const
- · bool HaveValidEmbeddedXMP () const
- void ResetXMP (dng xmp *newXMP)
- void ResetXMPSidecarNewer (dng_xmp *newXMP, bool inSidecar, bool isNewer)
- void SynchronizeMetadata ()
- void UpdateDateTime (const dng_date_time_info &dt)
- void UpdateDateTimeToNow ()
- void UpdateMetadataDateTimeToNow ()
- void SetSourceMIME (const char *s)
- const dng_string & SourceMIME () const

5.99.1 Detailed Description

Main class for holding metadata.

5.99.2 Member Function Documentation

5.99.2.1 ApplyOrientation()

Logically rotates the image by changing the orientation values. This will also update the XMP data.

Referenced by dng_negative::ApplyOrientation().

The documentation for this class was generated from the following files:

- · dng_negative.h
- dng_negative.cpp

5.100 dng_mosaic_info Class Reference

Support for describing color filter array patterns and manipulating mosaic sample data.

```
#include <dng_mosaic_info.h>
```

Public Member Functions

- virtual void Parse (dng host &host, dng stream &stream, dng info &info)
- virtual void PostParse (dng_host &host, dng_negative &negative)
- bool IsColorFilterArray () const
- virtual bool SetFourColorBayer ()
- virtual dng point FullScale () const
- virtual dng_point DownScale (uint32 minSize, uint32 prefSize, real64 cropFactor) const
- virtual dng_point DstSize (const dng_point &downScale) const
- virtual void InterpolateGeneric (dng_host &host, dng_negative &negative, const dng_image &srcImage, dng_image &dstImage, uint32 srcPlane=0) const
- virtual void InterpolateFast (dng_host &host, dng_negative &negative, const dng_image &srcImage, dng_image &dstImage, const dng_point &downScale, uint32 srcPlane=0) const
- virtual void Interpolate (dng_host &host, dng_negative &negative, const dng_image &srcImage, dng_image &dstImage, const dng_point &downScale, uint32 srcPlane=0, dng_matrix *scaleTransforms=NULL) const
- virtual bool SupportsPreservedBlackLevels () const

Public Attributes

dng point fCFAPatternSize

Size of fCFAPattern.

uint8 fCFAPattern [kMaxCFAPattern][kMaxCFAPattern]

CFA pattern from CFAPattern tag in the TIFF/EP specification..

uint32 fColorPlanes

Number of color planes in DNG input.

- uint8 fCFAPlaneColor [kMaxColorPlanes]
- uint32 fCFALayout
- uint32 fBayerGreenSplit

Protected Member Functions

- virtual bool IsSafeDownScale (const dng point &downScale) const
- uint32 SizeForDownScale (const dng point &downScale) const
- virtual bool ValidSizeDownScale (const dng_point &downScale, uint32 minSize) const

Protected Attributes

- dng_point fSrcSize
- · dng_point fCroppedSize
- real64 fAspectRatio

5.100.1 Detailed Description

Support for describing color filter array patterns and manipulating mosaic sample data.

See CFAPattern tag in TIFF/EP specification and CFAPlaneColor, CFALayout, and BayerGreenSplit tags in the DNG 1.1.0 specification.

5.100.2 Member Function Documentation

5.100.2.1 DownScale()

Returns integer factors by which mosaic data must be downsampled to produce an image which is as close to prefSize as possible in longer dimension, but no smaller than minSize.

Parameters

minSize	Number of pixels as minium for longer dimension of downsampled image.
prefSize	Number of pixels as target for longer dimension of downsampled image.
cropFactor	Faction of the image to be used after cropping.

Return values

Point containing integer factors by which im-	nage must be downsampled.
---	---------------------------

References IsColorFilterArray().

5.100.2.2 DstSize()

Return size of demosaiced image for passed in downscaling factor.

Parameters

downScale	Integer downsampling factor obtained from DownScale method.
-----------	---

Return values

Size	of resulting demosaiced image.
------	--------------------------------

References FullScale().

5.100.2.3 FullScale()

```
dng_point dng_mosaic_info::FullScale ( ) const [virtual]
```

Returns scaling factor relative to input size needed to capture output data. Staggered (or rotated) sensing arrays are produced to a larger output than the number of input samples. This method indicates how much larger.

Return values

```
a point with integer scaling factors for the horizotal and vertical dimensions.
```

References fCFALayout.

Referenced by DstSize(), and InterpolateGeneric().

5.100.2.4 Interpolate()

Demosaic interpolation of a single plane. Chooses between generic and fast interpolators based on parameters.

Parameters

host	dng_host to use for buffer allocation requests, user cancellation testing, and progress updates.
negative	DNG negative of mosaiced data.
srcImage	Source image for mosaiced data.
dstlmage	Destination image for resulting interpolated data.
downScale	Amount (in horizontal and vertical) by which to subsample image.
srcPlane	Which plane to interpolate.

References InterpolateFast(), InterpolateGeneric(), and dng_image::Planes().

5.100.2.5 InterpolateFast()

```
dng_image & dstImage,
const dng_point & downScale,
uint32 srcPlane = 0 ) const [virtual]
```

Demosaic interpolation of a single plane for downsampled case.

Parameters

host	dng_host to use for buffer allocation requests, user cancellation testing, and progress updates.
negative	DNG negative of mosaiced data.
srcImage	Source image for mosaiced data.
dstlmage	Destination image for resulting interpolated data.
downScale	Amount (in horizontal and vertical) by which to subsample image.
srcPlane	Which plane to interpolate.

References dng_image::Bounds(), and dng_host::PerformAreaTask().

Referenced by Interpolate().

5.100.2.6 InterpolateGeneric()

Demosaic interpolation of a single plane for non-downsampled case.

Parameters

host	dng_host to use for buffer allocation requests, user cancellation testing, and progress updates.
negative	DNG negative of mosaiced data.
srcImage	Source image for mosaiced data.
dstlmage	Destination image for resulting interpolated data.
srcPlane	Which plane to interpolate.

References dng_host::Allocate(), dng_image::Bounds(), dng_image::edge_repeat, fCFAPatternSize, fColorPlanes, FullScale(), dng_image::Get(), dng_image::PixelType(), dng_image::Put(), dng_image::RepeatingTile(), and dng_ \leftarrow host::SniffForAbort().

Referenced by Interpolate().

5.100.2.7 IsColorFilterArray()

```
bool dng_mosaic_info::IsColorFilterArray ( ) const [inline]
```

Returns whether the RAW data in this DNG file from a color filter array (mosaiced) source.

Return values

true	if this DNG file is from a color filter array (mosiaced) source.
------	--

References fCFAPatternSize.

Referenced by DownScale().

5.100.2.8 SetFourColorBayer()

```
bool dng_mosaic_info::SetFourColorBayer ( ) [virtual]
```

Enable generating four-plane output from three-plane Bayer input. Extra plane is a second version of the green channel. First green is produced using green mosaic samples from one set of rows/columns (even/odd) and the second green channel is produced using the other set of rows/columns. One can compare the two versions to judge whether Bayer GreenSplit needs to be set for a given input source.

References fCFAPattern, fCFAPatternSize, and fColorPlanes.

5.100.3 Member Data Documentation

5.100.3.1 fBayerGreenSplit

```
uint32 dng_mosaic_info::fBayerGreenSplit
```

Value of BayerGreeSplit tag in DNG file. BayerGreenSplit only applies to CFA images using a Bayer pattern filter array. This tag specifies, in arbitrary units, how closely the values of the green pixels in the blue/green rows track the values of the green pixels in the red/green rows.

A value of zero means the two kinds of green pixels track closely, while a non-zero value means they sometimes diverge. The useful range for this tag is from 0 (no divergence) to about 5000 (large divergence).

5.100.3.2 fCFALayout

```
uint32 dng_mosaic_info::fCFALayout
```

Value of CFALayout tag in the DNG 1.3 specification. CFALayout describes the spatial layout of the CFA. The currently defined values are:

- 1 = Rectangular (or square) layout.
- 2 = Staggered layout A: even columns are offset down by 1/2 row.
- 3 = Staggered layout B: even columns are offset up by 1/2 row.
- 4 = Staggered layout C: even rows are offset right by 1/2 column.
- 5 = Staggered layout D: even rows are offset left by 1/2 column.
- 6 = Staggered layout E: even rows are offset up by 1/2 row, even columns are offset left by 1/2 column.
- 7 = Staggered layout F: even rows are offset up by 1/2 row, even columns are offset right by 1/2 column.
- 8 = Staggered layout G: even rows are offset down by 1/2 row, even columns are offset left by 1/2 column.
- 9 = Staggered layout H: even rows are offset down by 1/2 row, even columns are offset right by 1/2 column.

Referenced by FullScale().

The documentation for this class was generated from the following files:

- · dng mosaic info.h
- · dng_mosaic_info.cpp

5.101 dng_mutex Class Reference

Inheritance diagram for dng_mutex:

Public Types

enum { kDNGMutexLevelLeaf = 0x70000000u, kDNGMutexLevelIgnore = 0x7FFFFFFu }

Public Member Functions

- dng_mutex (const char *mutexName, uint32 mutexLevel=kDNGMutexLevelLeaf)
- · void Lock ()
- · void Unlock ()
- · const char * MutexName () const

The documentation for this class was generated from the following files:

- · dng mutex.h
- · dng mutex.cpp

5.102 dng_negative Class Reference

Main class for holding DNG image data and associated metadata.

```
#include <dng_negative.h>
```

Public Types

enum RawlmageStageEnum {
 rawlmageStagePreOpcode1, rawlmageStagePostOpcode1, rawlmageStagePostOpcode2, rawlmage
 StagePreOpcode3,
 rawlmageStagePostOpcode3, rawlmageStageNone }

Public Member Functions

dng_memory_allocator & Allocator () const

Provide access to the memory allocator used for this object.

void SetModelName (const char *name)

Getter for ModelName.

const dng_string & ModelName () const

Setter for ModelName.

void SetLocalName (const char *name)

Setter for LocalName.

const dng_string & LocalName () const

Getter for LocalName.

• dng_metadata & Metadata ()

Getter for metadata.

- dng_metadata * CloneInternalMetadata () const
- void SetBaseOrientation (const dng_orientation &orientation)

Setter for BaseOrientation.

· bool HasBaseOrientation () METACONST

Has BaseOrientation been set?

· const dng_orientation & BaseOrientation () METACONST

Getter for BaseOrientation.

 virtual dng_orientation ComputeOrientation (const dng_metadata &metadata) const Hook to allow SDK host code to add additional rotations.

dng orientation Orientation ()

For non-const negatives, we simply default to using the metadata attached to the negative.

- void ApplyOrientation (const dng orientation & orientation)
- void SetDefaultCropSize (const dng_urational &sizeH, const dng_urational &sizeV)

Setter for DefaultCropSize.

void SetDefaultCropSize (uint32 sizeH, uint32 sizeV)

Setter for DefaultCropSize.

const dng urational & DefaultCropSizeH () const

Getter for DefaultCropSize horizontal.

const dng_urational & DefaultCropSizeV () const

Getter for DefaultCropSize vertical.

void SetDefaultCropOrigin (const dng_urational &originH, const dng_urational &originV)

Setter for DefaultCropOrigin.

void SetDefaultCropOrigin (uint32 originH, uint32 originV)

Setter for DefaultCropOrigin.

void SetDefaultCropCentered (const dng_point &rawSize)

Set default crop around center of image.

const dng urational & DefaultCropOriginH () const

Get default crop origin horizontal value.

const dng_urational & DefaultCropOriginV () const

Get default crop origin vertical value.

bool HasDefaultUserCrop () const

Is there a default user crop?

const dng_urational & DefaultUserCropT () const

Getter for top coordinate of default user crop.

const dng_urational & DefaultUserCropL () const

Getter for left coordinate of default user crop.

const dng_urational & DefaultUserCropB () const

Getter for bottom coordinate of default user crop.

const dng_urational & DefaultUserCropR () const

Getter for right coordinate of default user crop.

void ResetDefaultUserCrop ()

Reset default user crop to default crop area.

 void SetDefaultUserCrop (const dng_urational &t, const dng_urational &l, const dng_urational &b, const dng_urational &r)

Setter for all 4 coordinates of default user crop.

void SetDefaultUserCropT (const dng_urational &value)

Setter for top coordinate of default user crop.

void SetDefaultUserCropL (const dng_urational &value)

Setter for left coordinate of default user crop.

void SetDefaultUserCropB (const dng_urational &value)

Setter for bottom coordinate of default user crop.

void SetDefaultUserCropR (const dng_urational &value)

Setter for right coordinate of default user crop.

void SetDefaultScale (const dng_urational &scaleH, const dng_urational &scaleV)

Setter for DefaultScale.

· const dng_urational & DefaultScaleH () const

Get default scale horizontal value.

const dng urational & DefaultScaleV () const

Get default scale vertical value.

void SetBestQualityScale (const dng_urational &scale)

Setter for BestQualityScale.

const dng_urational & BestQualityScale () const

Getter for BestQualityScale.

• bool HasBestQualityScale () const

Is the best quality scale different than the default scale?

real64 RawToFullScaleH () const

API for raw to full image scaling factors horizontal.

real64 RawToFullScaleV () const

API for raw to full image scaling factors vertical.

void SetRawToFullScale (real64 scaleH, real64 scaleV)

Setter for raw to full scales.

- real64 DefaultScale () const
- · real64 SquareWidth () const

Default cropped image size (at scale == 1.0) width.

• real64 SquareHeight () const

Default cropped image size (at scale == 1.0) height.

real64 AspectRatio () const

Default cropped image aspect ratio.

• real64 PixelAspectRatio () const

Pixel aspect ratio of stage 3 image.

uint32 FinalWidth (real64 scale) const

Default cropped image size at given scale factor width.

uint32 FinalHeight (real64 scale) const

Default cropped image size at given scale factor height.

uint32 DefaultFinalWidth () const

Default cropped image size at default scale factor width.

· uint32 DefaultFinalHeight () const

Default cropped image size at default scale factor height.

- uint32 BestQualityFinalWidth () const
- uint32 BestQualityFinalHeight () const
- const dng_point & OriginalDefaultFinalSize () const
- void SetOriginalDefaultFinalSize (const dng_point &size)

Setter for OriginalDefaultFinalSize.

- const dng_point & OriginalBestQualityFinalSize () const
- void SetOriginalBestQualityFinalSize (const dng_point &size)

Setter for OriginalBestQualityFinalSize.

- const dng_urational & OriginalDefaultCropSizeH () const
- const dng_urational & OriginalDefaultCropSizeV () const
- void SetOriginalDefaultCropSize (const dng urational &sizeH, const dng urational &sizeV)

Setter for OriginalDefaultCropSize.

- void SetDefaultOriginalSizes ()
- void SetOriginalSizes (const dng point &size)

Set all the original size fields to a specific size.

· dng_rect DefaultCropArea () const

The default crop area in the stage 3 image coordinates.

void SetBaselineNoise (real64 noise)

Setter for BaselineNoise.

const dng_urational & BaselineNoiseR () const

Getter for BaselineNoise as dng_urational.

· real64 BaselineNoise () const

Getter for BaselineNoise as real64.

void SetNoiseReductionApplied (const dng urational &value)

Setter for NoiseReductionApplied.

const dng_urational & NoiseReductionApplied () const

Getter for NoiseReductionApplied.

- void SetRawNoiseReductionApplied ()
- const dng urational & RawNoiseReductionApplied () const
- void SetNoiseProfile (const dng noise profile &noiseProfile)

Setter for noise profile.

• bool HasNoiseProfile () const

Does this negative have a valid noise profile?

const dng noise profile & NoiseProfile () const

Getter for noise profile.

- bool HasRawNoiseProfile () const
- void SetRawNoiseProfile ()
- const dng noise profile & RawNoiseProfile () const
- void SetBaselineExposure (real64 exposure)

Setter for BaselineExposure.

· const dng srational & BaselineExposureR () const

Getter for BaselineExposure as dng_urational.

real64 BaselineExposure () const

Getter for BaselineExposure as real64.

- real64 TotalBaselineExposure (const dng camera profile id &profileID) const
- void SetBaselineSharpness (real64 sharpness)

Setter for BaselineSharpness.

· const dng urational & BaselineSharpnessR () const

Getter for BaselineSharpness as dng_urational.

real64 BaselineSharpness () const

Getter for BaselineSharpness as real64.

- void SetRawBaselineSharpness ()
- const dng_urational & RawBaselineSharpness () const
- void SetChromaBlurRadius (const dng_urational &radius)

Setter for ChromaBlurRadius.

· const dng_urational & ChromaBlurRadius () const

Getter for ChromaBlurRadius as dng_urational.

void SetAntiAliasStrength (const dng_urational &strength)

Setter for AntiAliasStrength.

const dng urational & AntiAliasStrength () const

Getter for AntiAliasStrength as dng_urational.

void SetLinearResponseLimit (real64 limit)

Setter for LinearResponseLimit.

const dng_urational & LinearResponseLimitR () const

Getter for LinearResponseLimit as dng urational.

real64 LinearResponseLimit () const

Getter for LinearResponseLimit as real64.

void SetShadowScale (const dng_urational &scale)

Setter for ShadowScale.

· const dng urational & ShadowScaleR () const

Getter for ShadowScale as dng urational.

• real64 ShadowScale () const

Getter for ShadowScale as real64.

- void SetColorimetricReference (uint32 ref)
- uint32 ColorimetricReference () const
- void SetFloatingPoint (bool isFloatingPoint)
- bool IsFloatingPoint () const
- bool IsHighDynamicRange () const
- bool IsNormalDynamicRange () const
- · void SetColorChannels (uint32 channels)

Setter for ColorChannels.

uint32 ColorChannels () const

Getter for ColorChannels.

• void SetMonochrome ()

Setter for Monochrome.

· bool IsMonochrome () const

Getter for Monochrome.

void SetAnalogBalance (const dng_vector &b)

Setter for AnalogBalance.

dng_urational AnalogBalanceR (uint32 channel) const

Getter for AnalogBalance as dng_urational.

real64 AnalogBalance (uint32 channel) const

Getter for AnalogBalance as real64.

void SetCameraNeutral (const dng vector &n)

Setter for CameraNeutral.

void ClearCameraNeutral ()

Clear CameraNeutral.

bool HasCameraNeutral () const

Determine if CameraNeutral has been set but not cleared.

· const dng vector & CameraNeutral () const

Getter for CameraNeutral.

- dng_urational CameraNeutralR (uint32 channel) const
- void SetCameraWhiteXY (const dng xy coord &coord)

Setter for CameraWhiteXY.

- · bool HasCameraWhiteXY () const
- · const dng xy coord & CameraWhiteXY () const
- void GetCameraWhiteXY (dng_urational &x, dng_urational &y) const
- void SetCameraCalibration1 (const dng_matrix &m)
- void SetCameraCalibration2 (const dng matrix &m)
- const dng matrix & CameraCalibration1 () const

Getter for first of up to two color matrices used for individual camera calibrations.

· const dng matrix & CameraCalibration2 () const

Getter for second of up to two color matrices used for individual camera calibrations.

- void SetCameraCalibrationSignature (const char *signature)
- · const dng_string & CameraCalibrationSignature () const
- void AddProfile (AutoPtr< dng_camera_profile > &profile)
- void ClearProfiles ()
- void ClearProfiles (bool clearBuiltinMatrixProfiles, bool clearReadFromDisk)
- · uint32 ProfileCount () const
- const dng camera profile & ProfileByIndex (uint32 index) const
- virtual const dng_camera_profile * ProfileByID (const dng_camera_profile_id &id, bool useDefaultIfNo

 Match=true) const
- bool HasProfileID (const dng camera profile id &id) const
- virtual const dng camera profile * ComputeCameraProfileToEmbed (const dng metadata &metadata) const
- const dng camera profile * CameraProfileToEmbed ()
- void SetAsShotProfileName (const char *name)
- const dng string & AsShotProfileName () const
- virtual dng color spec * MakeColorSpec (const dng camera profile id &id) const
- void SetRawlmageDigest (const dng fingerprint &digest)
- void SetNewRawImageDigest (const dng fingerprint &digest)
- void ClearRawImageDigest () const
- const dng_fingerprint & RawImageDigest () const
- const dng fingerprint & NewRawImageDigest () const
- void FindRawImageDigest (dng host &host) const
- void FindNewRawImageDigest (dng_host &host) const
- void ValidateRawlmageDigest (dng_host &host)
- void SetRawDataUniqueID (const dng_fingerprint &id)
- dng fingerprint RawDataUniqueID () const
- void FindRawDataUniqueID (dng host &host) const
- virtual void RecomputeRawDataUniqueID (dng host &host)
- void SetOriginalRawFileName (const char *name)
- bool HasOriginalRawFileName () const
- const dng_string & OriginalRawFileName () const
- void SetHasOriginalRawFileData (bool hasData)
- · bool CanEmbedOriginalRaw () const
- void SetOriginalRawFileData (AutoPtr< dng_memory_block > &data)
- const void * OriginalRawFileData () const
- uint32 OriginalRawFileDataLength () const
- void SetOriginalRawFileDigest (const dng_fingerprint &digest)
- const dng_fingerprint & OriginalRawFileDigest () const
- · void FindOriginalRawFileDigest () const
- void ValidateOriginalRawFileDigest ()
- void SetPrivateData (AutoPtr< dng_memory_block > &block)
- void ClearPrivateData ()
- const uint8 * PrivateData () const
- · uint32 PrivateLength () const
- void SetMakerNoteSafety (bool safe)
- bool IsMakerNoteSafe () METACONST
- void SetMakerNote (AutoPtr< dng_memory_block > &block)
- void ClearMakerNote ()
- const void * MakerNoteData () METACONST

- uint32 MakerNoteLength () METACONST
- dng exif * GetExif ()
- void ResetExif (dng exif *newExif)
- dng_exif * GetOriginalExif ()
- void SetIPTC (AutoPtr< dng memory block > &block, uint64 offset)
- void SetIPTC (AutoPtr< dng memory block > &block)
- · void ClearIPTC ()
- · const void * IPTCData () METACONST
- · uint32 IPTCLength () METACONST
- uint64 IPTCOffset () METACONST
- dng_fingerprint IPTCDigest (bool includePadding=true) METACONST
- void RebuildIPTC (bool padForTIFF)
- bool SetXMP (dng_host &host, const void *buffer, uint32 count, bool xmpInSidecar=false, bool xmpIs
 —
 Newer=false)
- dng xmp * GetXMP ()
- · bool XMPinSidecar () METACONST
- void ResetXMP (dng_xmp *newXMP)
- void ResetXMPSidecarNewer (dng xmp *newXMP, bool inSidecar, bool isNewer)
- bool HaveValidEmbeddedXMP () METACONST
- void SetSourceMIME (const char *s)
- const dng_linearization_info * GetLinearizationInfo () const
- void ClearLinearizationInfo ()
- void SetLinearization (AutoPtr< dng memory block > &curve)
- · void SetActiveArea (const dng rect &area)
- void SetMaskedAreas (uint32 count, const dng rect *area)
- void SetMaskedArea (const dng_rect &area)
- void SetBlackLevel (real64 black, int32 plane=-1)
- void SetQuadBlacks (real64 black0, real64 black1, real64 black2, real64 black3, int32 plane=-1)
- void Set6x6Blacks (real64 blacks6x6 [36], int32 plane=-1)
- · void SetRowBlacks (const real64 *blacks, uint32 count)
- void SetColumnBlacks (const real64 *blacks, uint32 count)
- uint32 WhiteLevel (uint32 plane=0) const
- void SetWhiteLevel (uint32 white, int32 plane=-1)
- const dng_mosaic_info * GetMosaicInfo () const
- void ClearMosaicInfo ()
- void SetColorKeys (ColorKeyCode color0, ColorKeyCode color1, ColorKeyCode color2, ColorKeyCode color3=colorKeyMaxEnum)
- · void SetRGB ()
- · void SetCMY ()
- · void SetGMCY ()
- · void SetBayerMosaic (uint32 phase)
- void SetFujiMosaic (uint32 phase)
- void SetFujiMosaic6x6 (uint32 phase)
- void SetQuadMosaic (uint32 pattern)
- void SetGreenSplit (uint32 split)
- · const dng_opcode_list & OpcodeList1 () const
- dng opcode list & OpcodeList1 ()
- const dng_opcode_list & OpcodeList2 () const
- dng_opcode_list & OpcodeList2 ()
- const dng opcode list & OpcodeList3 () const
- dng opcode list & OpcodeList3 ()

- virtual void Parse (dng_host &host, dng_stream &stream, dng_info &info)
- virtual void PostParse (dng host &host, dng stream &stream, dng info &info)
- void SynchronizeMetadata ()
- void UpdateDateTime (const dng date time info &dt)
- void UpdateDateTimeToNow ()
- virtual bool SetFourColorBayer ()
- const dng image * Stage1Image () const
- const dng image * Stage2Image () const
- const dng_image * Stage3Image () const
- RawlmageStageEnum RawlmageStage () const
- const dng image & Rawlmage () const
- · uint16 RawlmageBlackLevel () const
- uint32 RawFloatBitDepth () const
- void SetRawFloatBitDepth (uint32 bitDepth)
- const dng_jpeg_image * RawJPEGImage () const
- void SetRawJPEGImage (AutoPtr< dng_jpeg_image > &jpegImage)
- void ClearRawJPEGImage ()
- void SetRawJPEGImageDigest (const dng fingerprint &digest)
- void ClearRawJPEGImageDigest () const
- const dng fingerprint & RawJPEGImageDigest () const
- void FindRawJPEGImageDigest (dng host &host) const
- virtual void ReadOpcodeLists (dng_host &host, dng_stream &stream, dng_info &info)
- virtual void ReadStage1Image (dng_host &host, dng_stream &stream, dng_info &info)
- virtual void ReadEnhancedImage (dng host &host, dng stream &stream, dng info &info)
- void SetStage1Image (AutoPtr< dng image > &image)
- void SetStage2Image (AutoPtr< dng_image > &image)
- void SetStage3Image (AutoPtr< dng image > &image)
- void BuildStage2Image (dng host &host)
- void BuildStage3Image (dng host &host, int32 srcPlane=-1)
- void SetStage3Gain (real64 gain)
- real64 Stage3Gain () const
- void SetStage3BlackLevel (uint16 level)
- · uint16 Stage3BlackLevel () const
- real64 Stage3BlackLevelNormalized () const
- virtual bool SupportsPreservedBlackLevels (dng host &host)
- dng_image * EncodeRawProxy (dng_host &host, const dng_image &srcImage, dng_opcode_list &opcodeList, real64 *blackLevel) const
- void ConvertToProxy (dng host &host, dng image writer &writer, uint32 proxySize=0, uint64 proxyCount=0)
- · bool IsProxy () const
- void SetIsPreview (bool preview)
- bool IsPreview () const
- void SetIsDamaged (bool damaged)
- · bool IsDamaged () const
- void SetTransparencyMask (AutoPtr< dng image > &image, uint32 bitDepth=0)
- const dng image * TransparencyMask () const
- const dng image * RawTransparencyMask () const
- uint32 RawTransparencyMaskBitDepth () const
- void ReadTransparencyMask (dng_host &host, dng_stream &stream, dng_info &info)
- virtual void ResizeTransparencyToMatchStage3 (dng_host &host, bool convertTo8Bit=false)
- virtual bool NeedFlattenTransparency (dng host &host)
- virtual void FlattenTransparency (dng host &host)

- const dng_image * UnflattenedStage3Image () const
- · bool HasDepthMap () const
- void SetHasDepthMap (bool hasDepthMap)
- const dng_image * DepthMap () const
- void SetDepthMap (AutoPtr< dng_image > &depthMap)
- · bool HasDepthMapImage () const
- const dng_image * RawDepthMap () const
- void ReadDepthMap (dng host &host, dng stream &stream, dng info &info)
- virtual void ResizeDepthToMatchStage3 (dng_host &host)
- uint32 DepthFormat () const
- · void SetDepthFormat (uint32 format)
- · const dng urational & DepthNear () const
- void SetDepthNear (const dng_urational &dist)
- const dng_urational & DepthFar () const
- void SetDepthFar (const dng_urational &dist)
- uint32 DepthUnits () const
- void SetDepthUnits (uint32 units)
- uint32 DepthMeasureType () const
- void SetDepthMeasureType (uint32 measure)
- · const dng_string & EnhanceParams () const
- void **SetEnhanceParams** (const dng_string &s)
- void SetEnhanceParams (const char *s)

Static Public Member Functions

- static dng negative * Make (dng host &host)
- static dng_fingerprint FindImageDigest (dng_host &host, const dng_image &image)

Protected Member Functions

- const dng metadata & InternalMetadata () const
- dng_negative (dng_host &host)
- · virtual void Initialize ()
- virtual dng linearization info * MakeLinearizationInfo ()
- void NeedLinearizationInfo ()
- virtual dng_mosaic_info * MakeMosaicInfo ()
- void NeedMosaicInfo ()
- virtual void DoBuildStage2 (dng host &host)
- virtual void DoPostOpcodeList2 (dng host &host)
- virtual bool NeedDefloatStage2 (dng_host &host)
- virtual void DefloatStage2 (dng host &host)
- virtual void DoInterpolateStage3 (dng_host &host, int32 srcPlane, dng_matrix *scaleTransforms)
- virtual void DoMergeStage3 (dng host &host, dng matrix *scaleTransforms)
- virtual void DoBuildStage3 (dng_host &host, int32 srcPlane, dng_matrix *scaleTransforms)
- virtual void AdjustProfileForStage3 ()

Protected Attributes

- · dng memory allocator & fAllocator
- · dng string fModelName
- dng_string fLocalName
- dng urational fDefaultCropSizeH
- dng urational fDefaultCropSizeV
- · dng_urational fDefaultCropOriginH
- dng urational fDefaultCropOriginV
- dng_urational fDefaultUserCropT
- dng_urational fDefaultUserCropL
- dng urational fDefaultUserCropB
- · dng urational fDefaultUserCropR
- · dng urational fDefaultScaleH
- dng urational fDefaultScaleV
- dng_urational fBestQualityScale
- dng_point fOriginalDefaultFinalSize
- dng_point fOriginalBestQualityFinalSize
- · dng_urational fOriginalDefaultCropSizeH
- dng_urational fOriginalDefaultCropSizeV
- real64 fRawToFullScaleH
- real64 fRawToFullScaleV
- · dng urational fBaselineNoise
- dng urational fNoiseReductionApplied
- · dng urational fRawNoiseReductionApplied
- · dng noise profile fNoiseProfile
- · dng noise profile fRawNoiseProfile
- dng_srational fBaselineExposure
- · dng_urational fBaselineSharpness
- dng urational fRawBaselineSharpness
- · dng urational fChromaBlurRadius
- dng_urational fAntiAliasStrength
- dng_urational fLinearResponseLimit
- · dng urational fShadowScale
- uint32 fColorimetricReference
- bool fFloatingPoint
- uint32 fColorChannels
- dng vector fAnalogBalance
- · dng vector fCameraNeutral
- dng_xy_coord fCameraWhiteXY
- dng_matrix fCameraCalibration1
- dng_matrix fCameraCalibration2
- dng_string fCameraCalibrationSignature
- dng std vector< dng camera profile * > fCameraProfile
- dng string fAsShotProfileName
- dng_fingerprint fRawImageDigest
- dng fingerprint fNewRawImageDigest
- · dng_fingerprint fRawDataUniqueID
- dng_std_mutex fRawDataUniqueIDMutex
- · dng string fOriginalRawFileName
- bool fHasOriginalRawFileData

- AutoPtr< dng_memory_block > fOriginalRawFileData
- · dng fingerprint fOriginalRawFileDigest
- AutoPtr< dng memory block > fDNGPrivateData
- · dng metadata fMetadata
- AutoPtr< dng_linearization_info > fLinearizationInfo
- AutoPtr< dng mosaic info > fMosaicInfo
- · dng opcode list fOpcodeList1
- dng_opcode_list fOpcodeList2
- dng opcode list fOpcodeList3
- AutoPtr< dng_image > fStage1Image
- AutoPtr< dng_image > fStage2Image
- AutoPtr< dng_image > fStage3Image
- real64 fStage3Gain
- · uint16 fStage3BlackLevel
- bool flsPreview
- · bool flsDamaged
- RawlmageStageEnum fRawlmageStage
- AutoPtr< dng image > fRawImage
- · uint16 fRawlmageBlackLevel
- uint32 fRawFloatBitDepth
- AutoPtr< dng_jpeg_image > fRawJPEGImage
- dng_fingerprint fRawJPEGImageDigest
- AutoPtr< dng_image > fTransparencyMask
- AutoPtr< dng_image > fRawTransparencyMask
- uint32 fRawTransparencyMaskBitDepth
- AutoPtr< dng_image > fUnflattenedStage3Image
- bool fHasDepthMap
- AutoPtr< dng_image > fDepthMap
- AutoPtr< dng_image > fRawDepthMap
- uint32 fDepthFormat
- · dng urational fDepthNear
- dng_urational fDepthFar
- uint32 fDepthUnits
- uint32 fDepthMeasureType
- · dng string fEnhanceParams

5.102.1 Detailed Description

Main class for holding DNG image data and associated metadata.

5.102.2 Member Function Documentation

5.102.2.1 ApplyOrientation()

Logically rotates the image by changing the orientation values. This will also update the XMP data.

References dng_metadata::ApplyOrientation(), and Metadata().

5.102.2.2 BestQualityFinalHeight()

```
uint32 dng_negative::BestQualityFinalHeight ( ) const [inline]
```

Get best quality height. For a naive conversion, one could use either the default size, or the best quality size.

References BestQualityScale(), DefaultScale(), and FinalHeight().

Referenced by SetDefaultOriginalSizes().

5.102.2.3 BestQualityFinalWidth()

```
uint32 dng_negative::BestQualityFinalWidth ( ) const [inline]
```

Get best quality width. For a naive conversion, one could use either the default size, or the best quality size.

References BestQualityScale(), DefaultScale(), and FinalWidth().

Referenced by SetDefaultOriginalSizes().

5.102.2.4 CloneInternalMetadata()

```
dng_metadata * dng_negative::CloneInternalMetadata ( ) const
```

Make a copy of the internal metadata generally as a basis for further changes.

References Allocator(), dng_metadata::Clone(), and InternalMetadata().

5.102.2.5 DefaultScale()

```
real64 dng_negative::DefaultScale ( ) const [inline]
```

Get default scale factor. When specifing a single scale factor, we use the horizontal scale factor, and let the vertical scale factor be calculated based on the pixel aspect ratio.

References DefaultScaleH().

Referenced by BestQualityFinalHeight(), BestQualityFinalWidth(), DefaultFinalHeight(), and DefaultFinalWidth().

5.102.2.6 InternalMetadata()

```
const dng_metadata& dng_negative::InternalMetadata ( ) const [inline], [protected]
```

An accessor for the internal metadata that works even when we have general access turned off. This is needed to provide access to EXIF ISO information.

Referenced by CloneInternalMetadata().

5.102.2.7 OriginalBestQualityFinalSize()

```
const dng_point& dng_negative::OriginalBestQualityFinalSize ( ) const [inline]
```

Best quality size of original (non-proxy) image. For non-proxy images, this is equal to BestQualityFinalWidth/Best← QualityFinalHeight. For proxy images, this is equal to the BestQualityFinalWidth/BestQualityFinalHeight of the image this proxy was derived from.

Referenced by SetDefaultOriginalSizes().

5.102.2.8 OriginalDefaultCropSizeH()

```
const dng_urational& dng_negative::OriginalDefaultCropSizeH ( ) const [inline]
```

DefaultCropSize for original (non-proxy) image. For non-proxy images, this is equal to the DefaultCropSize. for proxy images, this is equal size of the DefaultCropSize of the image this proxy was derived from.

Referenced by SetDefaultOriginalSizes().

5.102.2.9 OriginalDefaultFinalSize()

```
const dng_point& dng_negative::OriginalDefaultFinalSize ( ) const [inline]
```

Default size of original (non-proxy) image. For non-proxy images, this is equal to DefaultFinalWidth/DefaultFinalHight. For proxy images, this is equal to the DefaultFinalWidth/DefaultFinalHeight of the image this proxy was derived from.

Referenced by SetDefaultOriginalSizes().

5.102.2.10 SetCameraCalibration1()

Setter for first of up to two color matrices used for individual camera calibrations.

The sequence of matrix transforms is: Camera data --> camera calibration --> "inverse" of color matrix

This will be a 4x4 matrix for a four-color camera. The defaults are almost always the identity matrix, and for the cases where they aren't, they are diagonal matrices.

5.102.2.11 SetCameraCalibration2()

Setter for second of up to two color matrices used for individual camera calibrations.

The sequence of matrix transforms is: Camera data --> camera calibration --> "inverse" of color matrix

This will be a 4x4 matrix for a four-color camera. The defaults are almost always the identity matrix, and for the cases where they aren't, they are diagonal matrices.

5.102.2.12 SetDefaultOriginalSizes()

```
void dng_negative::SetDefaultOriginalSizes ( )
```

If the original size fields are undefined, set them to the current sizes.

References BestQualityFinalHeight(), BestQualityFinalWidth(), DefaultCropSizeH(), DefaultCropSizeV(), DefaultFinal Height(), DefaultFinalWidth(), OriginalBestQualityFinalSize(), OriginalDefaultCropSizeH(), OriginalDefaultFinalSize(), SetOriginalBestQualityFinalSize(), SetOriginalDefaultCropSize(), and SetOriginalDefaultFinalSize().

5.102.2.13 TotalBaselineExposure()

Compute total baseline exposure (sum of negative's BaselineExposure and profile's BaselineExposureOffset).

References BaselineExposure(), and dng camera profile::BaselineExposureOffset().

The documentation for this class was generated from the following files:

- dng_negative.h
- dng_negative.cpp

5.103 dng noise function Class Reference

Noise model for photon and sensor read noise, assuming that they are independent random variables and spatially invariant.

```
#include <dng_negative.h>
```

Inheritance diagram for dng_noise_function:

Public Member Functions

dng_noise_function ()

Create empty and invalid noise function.

dng_noise_function (real64 scale, real64 offset)

Create noise function with the specified scale and offset.

- virtual real64 Evaluate (real64 x) const
- real64 Scale () const

The scale (slope, gain) of the noise function.

real64 Offset () const

The offset (square of the noise floor) of the noise function.

• void SetScale (real64 scale)

Set the scale (slope, gain) of the noise function.

void SetOffset (real64 offset)

Set the offset (square of the noise floor) of the noise function.

• bool IsValid () const

Is the noise function valid?

Protected Attributes

- · real64 fScale
- · real64 fOffset

5.103.1 Detailed Description

Noise model for photon and sensor read noise, assuming that they are independent random variables and spatially invariant.

The noise model is N(x) = sqrt (scale*x + offset), where x represents a linear signal value in the range [0,1], and N(x) is the standard deviation (i.e., noise). The parameters scale and offset are both sensor-dependent and ISO-dependent. scale must be positive, and offset must be non-negative.

5.103.2 Member Function Documentation

5.103.2.1 Evaluate()

Compute noise (standard deviation) at the specified average signal level x.

Implements dng 1d function.

The documentation for this class was generated from the following file:

• dng_negative.h

5.104 dng_noise_profile Class Reference

Noise profile for a negative.

```
#include <dng_negative.h>
```

Public Member Functions

• dng_noise_profile ()

Create empty (invalid) noise profile.

dng_noise_profile (const dng_std_vector< dng_noise_function > &functions)

Create noise profile with the specified noise functions (1 per plane).

· bool IsValid () const

Is the noise profile valid?

bool IsValidForNegative (const dng_negative &negative) const

Is the noise profile valid for the specified negative?

const dng_noise_function & NoiseFunction (uint32 plane) const

The noise function for the specified plane.

• uint32 NumFunctions () const

The number of noise functions in this profile.

 bool operator== (const dng_noise_profile &profile) const Equality test.

bool operator!= (const dng_noise_profile &profile) const

Protected Attributes

dng_std_vector< dng_noise_function > fNoiseFunctions

5.104.1 Detailed Description

Noise profile for a negative.

For mosaiced negatives, the noise profile describes the approximate noise characteristics of a mosaic negative after linearization, but prior to demosaicing. For demosaiced negatives (i.e., linear DNGs), the noise profile describes the approximate noise characteristics of the image data immediately following the demosaic step, prior to the processing of opcode list 3.

A noise profile may contain 1 or N noise functions, where N is the number of color planes for the negative. Otherwise the noise profile is considered to be invalid for that negative. If the noise profile contains 1 noise function, then it is assumed that this single noise function applies to all color planes of the negative. Otherwise, the N noise functions map to the N planes of the negative in order specified in the CFAPlaneColor tag.

The documentation for this class was generated from the following files:

- · dng negative.h
- · dng negative.cpp

5.105 dng_opcode Class Reference

Virtual base class for opcode.

#include <dng_opcodes.h>

Inheritance diagram for dng opcode:

Public Types

enum { kFlag_None = 0, kFlag_Optional = 1, kFlag_SkiplfPreview = 2 }
 Opcode flags.

Public Member Functions

• uint32 OpcodeID () const

The ID of this opcode.

• uint32 MinVersion () const

The first DNG version that supports this opcode.

• uint32 Flags () const

The flags for this opcode.

· bool Optional () const

Is this opcode optional?

· bool SkipIfPreview () const

Should the opcode be skipped when rendering preview images?

· bool WasReadFromStream () const

Was this opcode read from a data stream?

- uint32 Stage () const
- void SetStage (uint32 stage)
- virtual bool IsNOP () const
- virtual bool IsValidForNegative (const dng_negative &) const

Is this opcode valid for the specified negative?

- virtual void PutData (dng_stream &stream) const
- bool AboutToApply (dng_host &host, dng_negative &negative, const dng_rect &imageBounds, uint32 image
 — Planes)
- virtual void Apply (dng_host &host, dng_negative &negative, AutoPtr < dng_image > &image)=0
 Apply this opcode to the specified image with associated negative.

Protected Member Functions

- dng_opcode (uint32 opcodeID, uint32 minVersion, uint32 flags)
- dng_opcode (uint32 opcodeID, dng_stream &stream, const char *name)
- virtual void DoAboutToApply (dng host &, dng negative &, const dng rect &, uint32)

5.105.1 Detailed Description

Virtual base class for opcode.

5.105.2 Member Enumeration Documentation

5.105.2.1 anonymous enum

```
anonymous enum
```

Opcode flags.

Enumerator

kFlag_None	No flag.
kFlag_Optional	This opcode is optional.
kFlag_SkipIfPreview	May skip opcode for preview images.

5.105.3 Member Function Documentation

5.105.3.1 AboutToApply()

Perform error checking prior to applying this opcode to the specified negative. Returns true if this opcode should be applied to the negative, false otherwise.

References dng_host::ForPreview(), IsNOP(), IsValidForNegative(), MinVersion(), Optional(), SkipIfPreview(), Throw-BadFormat(), and WasReadFromStream().

Referenced by dng_opcode_list::Apply().

5.105.3.2 IsNOP()

```
virtual bool dng_opcode::IsNOP ( ) const [inline], [virtual]
```

Is the opcode a NOP (i.e., does nothing)? An opcode could be a NOP for some specific parameters.

Reimplemented in dng_opcode_FixVignetteRadial, dng_opcode_WarpFisheye, and dng_opcode_WarpRectilinear.

Referenced by AboutToApply().

5.105.3.3 PutData()

Write opcode to a stream.

Parameters

m to which to write the opcode data.	stream
--------------------------------------	--------

Reimplemented in dng_opcode_FixVignetteRadial, dng_opcode_WarpFisheye, dng_opcode_WarpRectilinear, dng_opcode_ScalePerColumn, dng_opcode_ScalePerRow, dng_opcode_DeltaPerColumn, dng_opcode_DeltaPerRow, dng_opcode_Unknown, dng_opcode_FixBadPixelsList, dng_opcode_MapPolynomial, dng_opcode_MapTable, dng_opcode_GainMap, dng_opcode_FixBadPixelsConstant, and dng_opcode_TrimBounds.

References dng stream::Put uint32().

5.105.3.4 SetStage()

Set the image processing stage (1, 2, 3) for this opcode. Stage 1 is the original image data, including masked areas. Stage 2 is linearized image data and trimmed to the active area. Stage 3 is demosaiced and trimmed to the active area.

5.105.3.5 Stage()

```
uint32 dng_opcode::Stage ( ) const [inline]
```

Which image processing stage (1, 2, 3) is associated with this opcode?

Referenced by dng_opcode_MapPolynomial::BufferPixelType(), dng_opcode_MapTable::Prepare(), dng_opcode_ GainMap::ProcessArea(), dng_opcode_MapPolynomial::ProcessArea(), dng_opcode_DeltaPerRow::ProcessArea(), dng_opcode_DeltaPerColumn::ProcessArea(), dng_opcode_ScalePerRow::ProcessArea(), and dng_opcode_Scale PerColumn::ProcessArea().

The documentation for this class was generated from the following files:

- · dng opcodes.h
- · dng opcodes.cpp

5.106 dng_opcode_DeltaPerColumn Class Reference

An opcode to apply a delta (i.e., offset) that varies per column. Within a column, the same delta value is applied to all specified pixels.

```
#include <dng_misc_opcodes.h>
```

Inheritance diagram for dng_opcode_DeltaPerColumn:

Public Member Functions

- dng_opcode_DeltaPerColumn (const dng_area_spec &areaSpec, AutoPtr< dng_memory_block > &table)
- dng opcode DeltaPerColumn (dng host &host, dng stream &stream)
- virtual void PutData (dng_stream &stream) const
- virtual uint32 BufferPixelType (uint32 imagePixelType)

The pixel data type of this opcode.

- virtual dng_rect ModifiedBounds (const dng_rect &imageBounds)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &buffer, const dng_rect &dstArea, const dng_rect &imageBounds)

Additional Inherited Members

5.106.1 Detailed Description

An opcode to apply a delta (i.e., offset) that varies per column. Within a column, the same delta value is applied to all specified pixels.

5.106.2 Constructor & Destructor Documentation

5.106.2.1 dng_opcode_DeltaPerColumn()

Create a DeltaPerColumn opcode with the specified area and column deltas (specified as a table of 32-bit floats).

5.106.3 Member Function Documentation

5.106.3.1 ModifiedBounds()

The adjusted bounds (processing area) of this opcode. It is limited to the intersection of the specified image area and the GainMap area.

Reimplemented from dng_inplace_opcode.

References dng_area_spec::Overlap().

5.106.3.2 ProcessArea()

Implements image processing operation in a single buffer. The source pixels are provided as input to the buffer, and this routine calculates and writes the destination pixels to the same buffer. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.	
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Prepare method.	
buffer	Source and Destination pixels.	
dstArea	Destination pixel processing area.	
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.	

Implements dng_inplace_opcode.

References dng_area_spec::Area(), dng_memory_block::Buffer_real32(), dng_area_spec::ColPitch(), dng_pixel_ \leftarrow buffer::DirtyPixel_real32(), dng_area_spec::Overlap(), dng_area_spec::Plane(), dng_area_spec::Planes(), dng_pixel buffer::Planes(), dng_area_spec::RowPitch(), dng_pixel_buffer::RowStep(), and dng_opcode::Stage().

5.106.3.3 PutData()

Write opcode to a stream.

Parameters

stream	The stream to which to write the opcode data.
--------	---

Reimplemented from dng_opcode.

References dng_area_spec::Area(), dng_memory_block::Buffer_real32(), dng_area_spec::ColPitch(), dng_stream::

Put_real32(), dng_stream::Put_uint32(), and dng_area_spec::PutData().

The documentation for this class was generated from the following files:

- dng_misc_opcodes.h
- dng_misc_opcodes.cpp

5.107 dng_opcode_DeltaPerRow Class Reference

An opcode to apply a delta (i.e., offset) that varies per row. Within a row, the same delta value is applied to all specified pixels.

```
#include <dng_misc_opcodes.h>
```

Inheritance diagram for dng_opcode_DeltaPerRow:

Public Member Functions

- dng_opcode_DeltaPerRow (const dng_area_spec &areaSpec, AutoPtr< dng_memory_block > &table)
- dng_opcode_DeltaPerRow (dng_host &host, dng_stream &stream)
- virtual void PutData (dng_stream &stream) const
- virtual uint32 BufferPixelType (uint32 imagePixelType)

The pixel data type of this opcode.

- virtual dng_rect ModifiedBounds (const dng_rect &imageBounds)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &buffer, const dng_rect &dstArea, const dng_rect &imageBounds)

Additional Inherited Members

5.107.1 Detailed Description

An opcode to apply a delta (i.e., offset) that varies per row. Within a row, the same delta value is applied to all specified pixels.

5.107.2 Constructor & Destructor Documentation

5.107.2.1 dng_opcode_DeltaPerRow()

Create a DeltaPerRow opcode with the specified area and row deltas (specified as a table of 32-bit floats).

5.107.3 Member Function Documentation

5.107.3.1 ModifiedBounds()

The adjusted bounds (processing area) of this opcode. It is limited to the intersection of the specified image area and the GainMap area.

Reimplemented from dng_inplace_opcode.

References dng_area_spec::Overlap().

5.107.3.2 ProcessArea()

Implements image processing operation in a single buffer. The source pixels are provided as input to the buffer, and this routine calculates and writes the destination pixels to the same buffer. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Prepare method.
buffer	Source and Destination pixels.
dstArea	Destination pixel processing area.
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.

Implements dng_inplace_opcode.

References dng_area_spec::Area(), dng_memory_block::Buffer_real32(), dng_area_spec::ColPitch(), dng_pixel_ \leftarrow buffer::DirtyPixel_real32(), dng_area_spec::Overlap(), dng_area_spec::Planes(), dng_area_spec::Planes(), dng_pixel \leftarrow _buffer::Planes(), dng_area_spec::RowPitch(), and dng_opcode::Stage().

5.107.3.3 PutData()

Write opcode to a stream.

Parameters

stream	The stream to which to write the opcode data.

Reimplemented from dng_opcode.

References dng_area_spec::Area(), dng_memory_block::Buffer_real32(), dng_stream::Put_real32(), dng_stream::

Put_uint32(), dng_area_spec::PutData(), and dng_area_spec::RowPitch().

The documentation for this class was generated from the following files:

- dng_misc_opcodes.h
- · dng_misc_opcodes.cpp

5.108 dng opcode FixBadPixelsConstant Class Reference

An opcode to fix individual bad pixels that are marked with a constant value (e.g., 0) in a Bayer image.

```
#include <dng_bad_pixels.h>
```

Inheritance diagram for dng opcode FixBadPixelsConstant:

Public Member Functions

- dng opcode FixBadPixelsConstant (uint32 constant, uint32 bayerPhase)
- dng_opcode_FixBadPixelsConstant (dng_stream &stream)
- · virtual void PutData (dng_stream &stream) const
- virtual dng point SrcRepeat ()

Returns the width and height (in pixels) of the repeating mosaic pattern.

- virtual dng_rect SrcArea (const dng_rect &dstArea, const dng_rect &imageBounds)
- virtual void Prepare (dng_negative &negative, uint32 threadCount, const dng_point &tileSize, const dng_rect &imageBounds, uint32 imagePlanes, uint32 bufferPixelType, dng_memory_allocator &allocator)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &srcBuffer, dng_pixel_buffer &dstBuffer, const dng_rect &dstArea, const dng_rect &imageBounds)

Protected Member Functions

· bool IsGreen (int32 row, int32 col) const

Additional Inherited Members

5.108.1 Detailed Description

An opcode to fix individual bad pixels that are marked with a constant value (e.g., 0) in a Bayer image.

5.108.2 Constructor & Destructor Documentation

5.108.2.1 dng_opcode_FixBadPixelsConstant()

Construct an opcode to fix an individual bad pixels that are marked with a constant value in a Bayer image.

Parameters

constant	The constant value that indicates a bad pixel.
bayerPhase	The phase of the Bayer mosaic pattern (0, 1, 2, 3).

5.108.3 Member Function Documentation

5.108.3.1 Prepare()

Startup method called before any processing is performed on pixel areas. It can be used to allocate (per-thread) memory and setup tasks.

Parameters

negative	The negative object to be processed.
threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
imageBounds	Total size of image to be processed.
imagePlanes	Number of planes in the image. Less than or equal to kMaxColorPlanes.
bufferPixelType	Pixel type of image buffer (see dng_tag_types.h).
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.

Reimplemented from dng_filter_opcode.

References ThrowBadFormat().

5.108.3.2 ProcessArea()

```
const dng_rect & dstArea,
const dng_rect & imageBounds ) [virtual]
```

Implements filtering operation from one buffer to another. Source and destination pixels are set up in member fields of this class. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Prepare method.
srcBuffer	Input area and source pixels.
dstBuffer	Destination pixels.
dstArea	Destination pixel processing area.
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.

Implements dng_filter_opcode.

References dng_pixel_buffer::ConstPixel_uint16(), dng_pixel_buffer::CopyArea(), and dng_pixel_buffer::DirtyPixel_ \leftarrow uint16().

5.108.3.3 PutData()

Write opcode to a stream.

Parameters

stream	The stream to which to write the opcode data.
--------	---

Reimplemented from dng_opcode.

References dng_stream::Put_uint32().

5.108.3.4 SrcArea()

Returns the source pixel area needed to process a destination pixel area that lies within the specified bounds.

Parameters

dstArea	The destination pixel area to be computed.]
imageBounds	The overall image area (dstArea will lie within these bounds).]

Return values

The source pixel area needed to process the specified dstAr	rea.
---	------

Reimplemented from dng_filter_opcode.

The documentation for this class was generated from the following files:

- · dng bad pixels.h
- · dng bad pixels.cpp

5.109 dng_opcode_FixBadPixelsList Class Reference

An opcode to fix lists of bad pixels (indicated by position) in a Bayer image.

```
#include <dng_bad_pixels.h>
```

Inheritance diagram for dng opcode FixBadPixelsList:

Public Member Functions

- dng_opcode_FixBadPixelsList (AutoPtr< dng_bad_pixel_list > &list, uint32 bayerPhase)
- dng_opcode_FixBadPixelsList (dng_stream &stream)
- virtual void PutData (dng_stream &stream) const
- virtual dng_point SrcRepeat ()

Returns the width and height (in pixels) of the repeating mosaic pattern.

- virtual dng_rect SrcArea (const dng_rect &dstArea, const dng_rect &imageBounds)
- virtual void Prepare (dng_negative &negative, uint32 threadCount, const dng_point &tileSize, const dng_rect &imageBounds, uint32 imagePlanes, uint32 bufferPixelType, dng_memory_allocator &allocator)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &srcBuffer, dng_pixel_buffer &dstBuffer, const dng_rect &dstArea, const dng_rect &imageBounds)

Protected Types

enum { kBadPointPadding = 2, kBadRectPadding = 4 }

Protected Member Functions

- bool IsGreen (int32 row, int32 col) const
- virtual void FixIsolatedPixel (dng_pixel_buffer &buffer, dng_point &badPoint)
- virtual void FixClusteredPixel (dng pixel buffer &buffer, uint32 pointIndex, const dng rect &imageBounds)
- virtual void FixSingleColumn (dng_pixel_buffer &buffer, const dng_rect &badRect)
- virtual void FixSingleRow (dng_pixel_buffer &buffer, const dng_rect &badRect)
- virtual void FixClusteredRect (dng_pixel_buffer &buffer, const dng_rect &badRect, const dng_rect &image
 — Bounds)

Additional Inherited Members

5.109.1 Detailed Description

An opcode to fix lists of bad pixels (indicated by position) in a Bayer image.

5.109.2 Constructor & Destructor Documentation

5.109.2.1 dng_opcode_FixBadPixelsList()

Construct an opcode to fix lists of bad pixels (indicated by position) in a Bayer image.

Parameters

list	The list of bad pixels to fix.
bayerPhase	The phase of the Bayer mosaic pattern (0, 1, 2, 3).

5.109.3 Member Function Documentation

5.109.3.1 Prepare()

```
uint32 imagePlanes,
uint32 bufferPixelType,
dng_memory_allocator & allocator ) [virtual]
```

Startup method called before any processing is performed on pixel areas. It can be used to allocate (per-thread) memory and setup tasks.

Parameters

negative	The negative object to be processed.
threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
imageBounds	Total size of image to be processed.
imagePlanes	Number of planes in the image. Less than or equal to kMaxColorPlanes.
bufferPixelType	Pixel type of image buffer (see dng_tag_types.h).
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.

Reimplemented from dng_filter_opcode.

References ThrowBadFormat().

5.109.3.2 ProcessArea()

Implements filtering operation from one buffer to another. Source and destination pixels are set up in member fields of this class. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Prepare method.
srcBuffer	Input area and source pixels.
dstBuffer	Destination pixels.
dstArea	Destination pixel processing area.
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.

Implements dng_filter_opcode.

References dng pixel buffer::CopyArea(), dng bad pixel list::IsPointIsolated(), dng bad pixel list::IsRectIsolated(),

dng_bad_pixel_list::Point(), dng_bad_pixel_list::PointCount(), dng_bad_pixel_list::Rect(), dng_bad_pixel_list::Rect ← Count(), dng_pixel_buffer::RepeatSubArea(), and SrcRepeat().

5.109.3.3 PutData()

Write opcode to a stream.

Parameters

stream	The stream to which to write the opcode data.
--------	---

Reimplemented from dng_opcode.

References dng_bad_pixel_list::Point(), dng_bad_pixel_list::PointCount(), dng_stream::Put_int32(), dng_stream::Put_int32(), dng_bad_pixel_list::Rect(), and dng_bad_pixel_list::RectCount().

5.109.3.4 SrcArea()

Returns the source pixel area needed to process a destination pixel area that lies within the specified bounds.

Parameters

а	lstArea	The destination pixel area to be computed.
ir	mageBounds	The overall image area (dstArea will lie within these bounds).

Return values

The	source pixel area needed to process the specified dstArea.
-----	--

Reimplemented from dng_filter_opcode.

References dng_bad_pixel_list::PointCount(), and dng_bad_pixel_list::RectCount().

The documentation for this class was generated from the following files:

- dng_bad_pixels.h
- · dng bad pixels.cpp

5.110 dng_opcode_FixVignetteRadial Class Reference

Radially-symmetric lens vignette correction opcode.

```
#include <dng_lens_correction.h>
```

Inheritance diagram for dng_opcode_FixVignetteRadial:

Public Member Functions

- dng_opcode_FixVignetteRadial (const dng_vignette_radial_params ¶ms, uint32 flags)
- dng opcode FixVignetteRadial (dng stream &stream)
- const dng_vignette_radial_params & Params () const
- virtual bool IsNOP () const
- virtual bool IsValidForNegative (const dng_negative &) const

Is this opcode valid for the specified negative?

- virtual void PutData (dng_stream &stream) const
- virtual uint32 BufferPixelType (uint32)

The pixel data type of this opcode.

- virtual void Prepare (dng_negative &negative, uint32 threadCount, const dng_point &tileSize, const dng_rect &imageBounds, uint32 imagePlanes, uint32 bufferPixelType, dng_memory_allocator &allocator)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &buffer, const dng_rect &dstArea, const dng_rect &imageBounds)

Protected Member Functions

virtual dng_vignette_radial_params MakeParamsForRender (const dng_negative &negative)

Static Protected Member Functions

• static uint32 ParamBytes ()

Protected Attributes

- dng_vignette_radial_params fParams
- uint32 flmagePlanes
- int64 fSrcOriginH
- int64 fSrcOriginV
- int64 fSrcStepH
- int64 fSrcStepV
- uint32 fTableInputBits
- uint32 fTableOutputBits
- AutoPtr< dng_memory_block > fGainTable
- AutoPtr< dng memory block > fMaskBuffers [kMaxMPThreads]

Additional Inherited Members

5.110.1 Detailed Description

Radially-symmetric lens vignette correction opcode.

5.110.2 Member Function Documentation

5.110.2.1 IsNOP()

```
bool dng_opcode_FixVignetteRadial::IsNOP ( ) const [virtual]
```

Is the opcode a NOP (i.e., does nothing)? An opcode could be a NOP for some specific parameters.

Reimplemented from dng opcode.

5.110.2.2 Prepare()

Startup method called before any processing is performed on pixel areas. It can be used to allocate (per-thread) memory and setup tasks.

Parameters

negative	The negative object to be processed.
threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
imageBounds	Total size of image to be processed.
imagePlanes	Number of planes in the image. Less than or equal to kMaxColorPlanes.
bufferPixelType	Pixel type of image buffer (see dng_tag_types.h).
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.

Reimplemented from dng_inplace_opcode.

References dng_memory_allocator::Allocate(), dng_memory_block::Buffer_uint16(), DNG_ASSERT, AutoPtr< T >←

::Get(), dng_1d_table::Initialize(), dng_1d_table::Interpolate(), kMaxColorPlanes, kMaxMPThreads, dng_negative::

PixelAspectRatio(), AutoPtr< T >::Reset(), ThrowBadFormat(), and ThrowProgramError().

5.110.2.3 ProcessArea()

Implements image processing operation in a single buffer. The source pixels are provided as input to the buffer, and this routine calculates and writes the destination pixels to the same buffer. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the
	threadCount passed to Prepare method.
buffer	Source and Destination pixels.
dstArea	Destination pixel processing area.
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.

Implements dng_inplace_opcode.

5.110.2.4 PutData()

Write opcode to a stream.

Parameters

stream	The stream to which to write the opcode data.
--------	---

Reimplemented from dng_opcode.

References DNG_REQUIRE, dng_stream::Put_real64(), and dng_stream::Put_uint32().

The documentation for this class was generated from the following files:

- dng_lens_correction.h
- · dng lens correction.cpp

5.111 dng_opcode_GainMap Class Reference

An opcode to fix 2D spatially-varying light falloff or color casts (i.e., uniformity issues). This is commonly due to shading.

```
#include <dng_gain_map.h>
```

Inheritance diagram for dng_opcode_GainMap:

Public Member Functions

- dng_opcode_GainMap (const dng_area_spec &areaSpec, AutoPtr< dng_gain_map > &gainMap)
- dng_opcode_GainMap (dng_host &host, dng_stream &stream)

Construct a GainMap opcode from the specified stream.

virtual void PutData (dng stream &stream) const

Write the opcode to the specified stream.

virtual uint32 BufferPixelType (uint32)

The pixel data type of this opcode.

- virtual dng_rect ModifiedBounds (const dng_rect &imageBounds)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &buffer, const dng_rect &dstArea, const dng_rect &imageBounds)

Apply the gain map.

Additional Inherited Members

5.111.1 Detailed Description

An opcode to fix 2D spatially-varying light falloff or color casts (i.e., uniformity issues). This is commonly due to shading.

5.111.2 Constructor & Destructor Documentation

5.111.2.1 dng_opcode_GainMap()

Construct a GainMap opcode for the specified image area and the specified gain map.

5.111.3 Member Function Documentation

5.111.3.1 ModifiedBounds()

The adjusted bounds (processing area) of this opcode. It is limited to the intersection of the specified image area and the GainMap area.

Reimplemented from dng_inplace_opcode.

References dng_area_spec::Overlap().

The documentation for this class was generated from the following files:

- dng_gain_map.h
- · dng_gain_map.cpp

5.112 dng_opcode_list Class Reference

A list of opcodes.

```
#include <dng_opcode_list.h>
```

Inheritance diagram for dng_opcode_list:

Public Member Functions

• dng_opcode_list (uint32 stage)

Create an empty opcode list for the specific image stage (1, 2, or 3).

• bool IsEmpty () const

Is the opcode list empty?

• bool NotEmpty () const

Does the list contain at least 1 opcode?

bool AlwaysApply () const

Should the opcode list always be applied to the image?

- void SetAlwaysApply ()
- uint32 Count () const

The number of opcodes in this list.

- dng_opcode & Entry (uint32 index)
- const dng_opcode & Entry (uint32 index) const
- · void Clear ()

Remove all opcodes from the list.

void Swap (dng_opcode_list &otherList)

Swap two opcode lists.

- uint32 MinVersion (bool includeOptional) const
- void Apply (dng_host &host, dng_negative &negative, AutoPtr< dng_image > &image)
- void Append (AutoPtr< dng_opcode > &opcode)

Append the specified opcode to this list.

- dng_memory_block * Spool (dng_host &host) const
- void FingerprintToStream (dng_stream &stream) const

Write a fingerprint of this opcode list to the specified stream.

• void Parse (dng_host &host, dng_stream &stream, uint32 byteCount, uint64 streamOffset)

5.112.1 Detailed Description

A list of opcodes.

5.112.2 Member Function Documentation

5.112.2.1 Apply()

Apply this opcode list to the specified image with corresponding negative.

References dng_opcode::AboutToApply(), dng_opcode::Apply(), dng_image::Bounds(), Count(), DNG_REQUIRE, Entry(), AutoPtr< T >::Get(), and dng_image::Planes().

Referenced by dng host::ApplyOpcodeList().

Retrieve read/write opcode by index (must be in the range 0 to Count () - 1).

Referenced by Apply().

Retrieve read-only opcode by index (must be in the range 0 to Count () - 1).

5.112.2.4 MinVersion()

Return minimum DNG version required to support all opcodes in this list. If includeOptional is set to true, then this calculation will include optional opcodes.

Referenced by FingerprintToStream(), and Spool().

5.112.2.5 Parse()

Read an opcode list from the specified stream, starting at the specified offset (streamOffset, in bytes). byteCount is provided for error checking purposes. A bad format exception will be thrown if the length of the opcode stream does not exactly match byteCount.

References Append(), Clear(), dng_stream::Get_uint32(), dng_host::Make_dng_opcode(), dng_stream::Position(), dng_stream::SetReadPosition(), and ThrowBadFormat().

5.112.2.6 SetAlwaysApply()

```
void dng_opcode_list::SetAlwaysApply ( ) [inline]
```

Set internal flag to indicate this opcode list should always be applied.

5.112.2.7 Spool()

Serialize this opcode list to a block of memory. The caller is responsible for deleting this block.

References dng_host::Allocator(), AlwaysApply(), IsEmpty(), MinVersion(), dng_stream::SetBigEndian(), and Throw← ProgramError().

The documentation for this class was generated from the following files:

- · dng_opcode_list.h
- · dng opcode list.cpp

5.113 dng_opcode_MapPolynomial Class Reference

An opcode to apply a 1D function (represented as a polynomial) to an image area.

```
#include <dng_misc_opcodes.h>
```

Inheritance diagram for dng opcode MapPolynomial:

Public Types

enum { kMaxDegree = 8 }

Public Member Functions

- dng_opcode_MapPolynomial (const dng_area_spec &areaSpec, uint32 degree, const real64 *coefficient)
- dng_opcode_MapPolynomial (dng_stream &stream)
- virtual void PutData (dng_stream &stream) const
- virtual uint32 BufferPixelType (uint32 imagePixelType)

The pixel data type of this opcode.

- virtual dng_rect ModifiedBounds (const dng_rect &imageBounds)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &buffer, const dng_rect &dstArea, const dng_rect &imageBounds)
- uint32 Degree () const
- · const real64 * Coefficients () const

Protected Member Functions

Protected Attributes

- · dng area spec fAreaSpec
- uint32 fDegree
- real64 fCoefficient [kMaxDegree+1]
- real32 fCoefficient32 [kMaxDegree+1]

5.113.1 Detailed Description

An opcode to apply a 1D function (represented as a polynomial) to an image area.

5.113.2 Constructor & Destructor Documentation

5.113.2.1 dng_opcode_MapPolynomial()

Create a MapPolynomial opcode with the specified area, polynomial degree, and polynomial coefficients. The function that will be applied to each pixel x is:

```
f(x) = \text{coefficient } [0] + ((x * \text{coefficient } [1]) + (x^2 * \text{coefficient } [2]) + (x^3 * \text{coefficient } [3]) + (x^4 * \text{coefficient } [4]) \dots
```

5.113.3 Member Function Documentation

5.113.3.1 ModifiedBounds()

The adjusted bounds (processing area) of this opcode. It is limited to the intersection of the specified image area and the GainMap area.

Reimplemented from dng_inplace_opcode.

References dng_area_spec::Overlap().

5.113.3.2 ProcessArea()

Implements image processing operation in a single buffer. The source pixels are provided as input to the buffer, and this routine calculates and writes the destination pixels to the same buffer. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Prepare method.
buffer	Source and Destination pixels.
dstArea	Destination pixel processing area.
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.

Implements dng_inplace_opcode.

 $References\ dng_area_spec::Overlap(),\ dng_area_spec::Plane(),\ dng_area_spec::Plane(),\ dng_area_spec::Planes(),\ dng_a$

5.113.3.3 PutData()

Write opcode to a stream.

Parameters

stream	The stream to which to write the opcode data.
--------	---

Reimplemented from dng_opcode.

References dng stream::Put real64(), dng stream::Put uint32(), and dng area spec::PutData().

The documentation for this class was generated from the following files:

- dng_misc_opcodes.h
- dng_misc_opcodes.cpp

5.114 dng_opcode_MapTable Class Reference

An opcode to apply a 1D function (represented as a 16-bit table) to an image area.

```
#include <dng_misc_opcodes.h>
```

Inheritance diagram for dng_opcode_MapTable:

Public Member Functions

- dng_opcode_MapTable (dng_host &host, const dng_area_spec &areaSpec, const uint16 *table, uint32 count=0x10000)
- dng_opcode_MapTable (dng_host &host, dng_stream &stream)
- virtual void PutData (dng stream &stream) const
- virtual uint32 BufferPixelType (uint32 imagePixelType)

The pixel data type of this opcode.

- virtual dng_rect ModifiedBounds (const dng_rect &imageBounds)
- virtual void Prepare (dng_negative &negative, uint32 threadCount, const dng_point &tileSize, const dng_rect &imageBounds, uint32 imagePlanes, uint32 bufferPixelType, dng_memory_allocator &allocator)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &buffer, const dng_rect &dstArea, const dng_rect &imageBounds)

Additional Inherited Members

5.114.1 Detailed Description

An opcode to apply a 1D function (represented as a 16-bit table) to an image area.

5.114.2 Constructor & Destructor Documentation

5.114.2.1 dng opcode MapTable()

Create a MapTable opcode with the specified area, table, and number of table entries.

5.114.3 Member Function Documentation

5.114.3.1 ModifiedBounds()

The adjusted bounds (processing area) of this opcode. It is limited to the intersection of the specified image area and the GainMap area.

Reimplemented from dng_inplace_opcode.

References dng_area_spec::Overlap().

5.114.3.2 Prepare()

Startup method called before any processing is performed on pixel areas. It can be used to allocate (per-thread) memory and setup tasks.

Parameters

negative	The negative object to be processed.
threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
imageBounds	Total size of image to be processed.
imagePlanes	Number of planes in the image. Less than or equal to kMaxColorPlanes.
bufferPixelType	Pixel type of image buffer (see dng_tag_types.h).
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.

Reimplemented from dng_inplace_opcode.

References dng_memory_allocator::Allocate(), dng_memory_block::Buffer_uint16(), AutoPtr< T >::Reset(), and dng \leftarrow _opcode::Stage().

5.114.3.3 ProcessArea()

Implements image processing operation in a single buffer. The source pixels are provided as input to the buffer, and this routine calculates and writes the destination pixels to the same buffer. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Prepare method.
buffer	Source and Destination pixels.
dstArea	Destination pixel processing area.
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.

Implements dng_inplace_opcode.

References dng_memory_block::Buffer_uint16(), AutoPtr< T >::Get(), dng_area_spec::Overlap(), dng_area_spec::Overlap(), dng_area_spec::Planes(), and dng_pixel_buffer::Planes().

5.114.3.4 PutData()

Write opcode to a stream.

Parameters

Reimplemented from dng_opcode.

References dng_memory_block::Buffer_uint16(), dng_stream::Put_uint16(), dng_stream::Put_uint32(), and dng_area \leftarrow _spec::PutData().

The documentation for this class was generated from the following files:

- dng_misc_opcodes.h
- dng_misc_opcodes.cpp

5.115 dng_opcode_ScalePerColumn Class Reference

An opcode to apply a scale factor that varies per column. Within a column, the same scale factor is applied to all specified pixels.

```
#include <dng_misc_opcodes.h>
```

Inheritance diagram for dng opcode ScalePerColumn:

Public Member Functions

- dng_opcode_ScalePerColumn (const dng_area_spec &areaSpec, AutoPtr< dng_memory_block > &table)
- dng_opcode_ScalePerColumn (dng_host &host, dng_stream &stream)
- virtual void PutData (dng_stream &stream) const
- virtual uint32 BufferPixelType (uint32 imagePixelType)

The pixel data type of this opcode.

- virtual dng_rect ModifiedBounds (const dng_rect &imageBounds)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &buffer, const dng_rect &dstArea, const dng_rect &imageBounds)

Additional Inherited Members

5.115.1 Detailed Description

An opcode to apply a scale factor that varies per column. Within a column, the same scale factor is applied to all specified pixels.

5.115.2 Constructor & Destructor Documentation

5.115.2.1 dng_opcode_ScalePerColumn()

Create a ScalePerColumn opcode with the specified area and column scale factors (specified as a table of 32-bit floats).

5.115.3 Member Function Documentation

5.115.3.1 ModifiedBounds()

The adjusted bounds (processing area) of this opcode. It is limited to the intersection of the specified image area and the GainMap area.

Reimplemented from dng_inplace_opcode.

References dng_area_spec::Overlap().

5.115.3.2 ProcessArea()

Implements image processing operation in a single buffer. The source pixels are provided as input to the buffer, and this routine calculates and writes the destination pixels to the same buffer. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Prepare method.
buffer	Source and Destination pixels.
dstArea	Destination pixel processing area.
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.

Implements dng_inplace_opcode.

References dng_area_spec::Area(), dng_memory_block::Buffer_real32(), dng_area_spec::ColPitch(), dng_pixel_
buffer::DirtyPixel_real32(), dng_area_spec::Overlap(), dng_area_spec::Plane(), dng_area_spec::Planes(), dng_pixel
buffer::Planes(), dng_area_spec::RowPitch(), dng_pixel_buffer::RowStep(), and dng_opcode::Stage().

5.115.3.3 PutData()

Write opcode to a stream.

Parameters

stream	The stream to which to write the opcode data.

Reimplemented from dng_opcode.

References dng_area_spec::Area(), dng_memory_block::Buffer_real32(), dng_area_spec::ColPitch(), dng_stream:: \leftarrow Put_real32(), dng_stream::Put_uint32(), and dng_area_spec::PutData().

The documentation for this class was generated from the following files:

- · dng misc opcodes.h
- · dng misc opcodes.cpp

5.116 dng_opcode_ScalePerRow Class Reference

An opcode to apply a scale factor that varies per row. Within a row, the same scale factor is applied to all specified pixels.

```
#include <dng_misc_opcodes.h>
```

Inheritance diagram for dng_opcode_ScalePerRow:

Public Member Functions

- dng_opcode_ScalePerRow (const dng_area_spec &areaSpec, AutoPtr< dng_memory_block > &table)
- dng opcode ScalePerRow (dng host &host, dng stream &stream)
- virtual void PutData (dng_stream &stream) const
- virtual uint32 BufferPixelType (uint32 imagePixelType)

The pixel data type of this opcode.

- virtual dng_rect ModifiedBounds (const dng_rect &imageBounds)
- virtual void ProcessArea (dng_negative &negative, uint32 threadIndex, dng_pixel_buffer &buffer, const dng_rect &dstArea, const dng_rect &imageBounds)

Additional Inherited Members

5.116.1 Detailed Description

An opcode to apply a scale factor that varies per row. Within a row, the same scale factor is applied to all specified pixels.

5.116.2 Constructor & Destructor Documentation

5.116.2.1 dng_opcode_ScalePerRow()

Create a ScalePerRow opcode with the specified area and row scale factors (specified as a table of 32-bit floats).

5.116.3 Member Function Documentation

5.116.3.1 ModifiedBounds()

The adjusted bounds (processing area) of this opcode. It is limited to the intersection of the specified image area and the GainMap area.

Reimplemented from dng_inplace_opcode.

References dng_area_spec::Overlap().

5.116.3.2 ProcessArea()

Implements image processing operation in a single buffer. The source pixels are provided as input to the buffer, and this routine calculates and writes the destination pixels to the same buffer. Ideally, no allocation should be done in this routine.

Parameters

negative	The negative associated with the pixels to be processed.
threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Prepare method.
buffer	Source and Destination pixels.
dstArea	Destination pixel processing area.
imageBounds	Total image area to be processed; dstArea will always lie within these bounds.

Implements dng_inplace_opcode.

References dng_area_spec::Area(), dng_memory_block::Buffer_real32(), dng_area_spec::ColPitch(), dng_pixel_ \leftarrow buffer::DirtyPixel_real32(), dng_area_spec::Overlap(), dng_area_spec::Planes(), dng_area_spec::Planes(), dng_pixel buffer::Planes(), dng_area_spec::RowPitch(), and dng_opcode::Stage().

5.116.3.3 PutData()

Write opcode to a stream.

Parameters

stream	The stream to which to write the opcode data.
--------	---

Reimplemented from dng_opcode.

References dng_area_spec::Area(), dng_memory_block::Buffer_real32(), dng_stream::Put_real32(), dng_stream::

Put_uint32(), dng_area_spec::PutData(), and dng_area_spec::RowPitch().

The documentation for this class was generated from the following files:

- dng_misc_opcodes.h
- dng_misc_opcodes.cpp

5.117 dng_opcode_TrimBounds Class Reference

Opcode to trim image to a specified rectangle.

```
#include <dng_misc_opcodes.h>
```

Inheritance diagram for dng_opcode_TrimBounds:

Public Member Functions

• dng_opcode_TrimBounds (const dng_rect &bounds)

Create opcode to trim image to the specified bounds.

- dng_opcode_TrimBounds (dng_stream &stream)
- virtual void PutData (dng_stream &stream) const
- virtual void Apply (dng_host &host, dng_negative &negative, AutoPtr< dng_image > &image)

Apply this opcode to the specified image with associated negative.

Additional Inherited Members

5.117.1 Detailed Description

Opcode to trim image to a specified rectangle.

5.117.2 Member Function Documentation

5.117.2.1 PutData()

Write opcode to a stream.

Parameters

stream The stream to which to write the opcode data.

Reimplemented from dng_opcode.

References dng_stream::Put_int32(), and dng_stream::Put_uint32().

The documentation for this class was generated from the following files:

- dng_misc_opcodes.h
- dng_misc_opcodes.cpp

5.118 dng_opcode_Unknown Class Reference

Class to represent unknown opcodes (e.g, opcodes defined in future DNG versions).

```
#include <dng_opcodes.h>
```

Inheritance diagram for dng_opcode_Unknown:

Public Member Functions

- dng_opcode_Unknown (dng_host &host, uint32 opcodeID, dng_stream &stream)
- virtual void PutData (dng_stream &stream) const
- virtual void Apply (dng_host &host, dng_negative &negative, AutoPtr< dng_image > &image)

Apply this opcode to the specified image with associated negative.

Additional Inherited Members

5.118.1 Detailed Description

Class to represent unknown opcodes (e.g., opcodes defined in future DNG versions).

5.118.2 Member Function Documentation

5.118.2.1 PutData()

Write opcode to a stream.

Parameters

stream | The stream to which to write the opcode data.

Reimplemented from dng_opcode.

References dng_memory_block::Buffer(), AutoPtr< T >::Get(), dng_memory_block::LogicalSize(), dng_stream::Put(), and dng_stream::Put_uint32().

The documentation for this class was generated from the following files:

- · dng_opcodes.h
- · dng_opcodes.cpp

5.119 dng_opcode_WarpFisheye Class Reference

Warp opcode for fisheye camera model.

```
#include <dng_lens_correction.h>
```

Inheritance diagram for dng opcode WarpFisheye:

Public Member Functions

- dng_opcode_WarpFisheye (const dng_warp_params_fisheye ¶ms, uint32 flags)
- dng_opcode_WarpFisheye (dng_stream &stream)
- virtual bool IsNOP () const
- virtual bool IsValidForNegative (const dng_negative &negative) const Is this opcode valid for the specified negative?
- virtual void PutData (dng_stream &stream) const
- $\bullet \ \ \text{virtual void Apply (dng_host \&host, dng_negative \&negative, AutoPtr{< dng_image} > \&image)}\\$

Apply this opcode to the specified image with associated negative.

Static Protected Member Functions

• static uint32 ParamBytes (uint32 planes)

Protected Attributes

· dng_warp_params_fisheye fWarpParams

Additional Inherited Members

5.119.1 Detailed Description

Warp opcode for fisheye camera model.

5.119.2 Member Function Documentation

```
5.119.2.1 IsNOP()
```

```
bool dng_opcode_WarpFisheye::IsNOP ( ) const [virtual]
```

Is the opcode a NOP (i.e., does nothing)? An opcode could be a NOP for some specific parameters.

Reimplemented from dng_opcode.

References dng_warp_params::IsNOPAII().

5.119.2.2 PutData()

Write opcode to a stream.

Parameters

stream	The stream to which to write the opcode data.
--------	---

Reimplemented from dng opcode.

References dng_stream::Put_real64(), and dng_stream::Put_uint32().

The documentation for this class was generated from the following files:

- dng_lens_correction.h
- dng_lens_correction.cpp

5.120 dng_opcode_WarpRectilinear Class Reference

Warp opcode for pinhole perspective (rectilinear) camera model.

```
#include <dng_lens_correction.h>
```

Inheritance diagram for dng_opcode_WarpRectilinear:

Public Member Functions

- dng_opcode_WarpRectilinear (const dng_warp_params_rectilinear ¶ms, uint32 flags)
- dng_opcode_WarpRectilinear (dng_stream &stream)
- virtual bool IsNOP () const
- virtual bool IsValidForNegative (const dng_negative &negative) const

Is this opcode valid for the specified negative?

- virtual void PutData (dng_stream &stream) const
- virtual void Apply (dng_host &host, dng_negative &negative, AutoPtr< dng_image > &image)

Apply this opcode to the specified image with associated negative.

- · bool HasDistort () const
- bool HasLateralCA () const
- · const dng_warp_params_rectilinear & Params () const

Static Protected Member Functions

static uint32 ParamBytes (uint32 planes)

Protected Attributes

dng_warp_params_rectilinear fWarpParams

Additional Inherited Members

5.120.1 Detailed Description

Warp opcode for pinhole perspective (rectilinear) camera model.

5.120.2 Member Function Documentation

5.120.2.1 IsNOP()

```
bool dng_opcode_WarpRectilinear::IsNOP ( ) const [virtual]
```

Is the opcode a NOP (i.e., does nothing)? An opcode could be a NOP for some specific parameters.

Reimplemented from dng_opcode.

References dng_warp_params::IsNOPAll().

5.120.2.2 PutData()

Write opcode to a stream.

Parameters

stream	The stream to which to write the opcode data.

Reimplemented from dng_opcode.

References dng_stream::Put_real64(), and dng_stream::Put_uint32().

The documentation for this class was generated from the following files:

- dng_lens_correction.h
- dng_lens_correction.cpp

5.121 dng_orientation Class Reference

Public Types

```
    enum {
    kNormal = 0, kRotate90CW = 1, kRotate180 = 2, kRotate90CCW = 3, kMirror = 4, kMirror90CW = 5, kMirror180 = 6, kMirror90CCW = 7, kUnknown = 8 }
```

Public Member Functions

- void SetAdobe (uint32 adobe)
- uint32 GetAdobe () const
- void SetTIFF (uint32 tiff)
- uint32 GetTIFF () const
- bool IsValid () const
- · bool NotValid () const
- · bool FlipD () const
- · bool FlipH () const
- · bool FlipV () const
- bool operator== (const dng_orientation &b) const
- bool operator!= (const dng orientation &b) const
- dng orientation operator- () const
- dng orientation operator+ (const dng orientation &b) const
- dng_orientation operator- (const dng_orientation &b) const
- void operator+= (const dng_orientation &b)
- void operator-= (const dng_orientation &b)
- bool CalcForwardMatrix3by3 (dng_matrix &matrix, bool horizontalFirstRow) const
- bool CalcForwardMatrix4by4 (dng_matrix &matrix, bool horizontalFirstRow) const

Static Public Member Functions

- static dng_orientation AdobeToDNG (uint32 adobe)
- static dng_orientation TIFFtoDNG (uint32 tiff)
- static dng orientation Normal ()
- static dng orientation Rotate90CW ()
- static dng orientation Rotate180 ()
- static dng_orientation Rotate90CCW ()
- static dng_orientation Mirror ()
- static dng orientation Mirror90CW ()
- static dng_orientation Mirror180 ()
- static dng_orientation Mirror90CCW ()
- static dng orientation Unknown ()

The documentation for this class was generated from the following files:

- · dng_orientation.h
- · dng orientation.cpp

5.122 dng_pixel_buffer Class Reference

Holds a buffer of pixel data with "pixel geometry" metadata.

```
#include <dng_pixel_buffer.h>
```

Inheritance diagram for dng pixel buffer:

Public Member Functions

- dng_pixel_buffer (const dng_rect &area, uint32 plane, uint32 planes, uint32 pixelType, uint32 planarConfiguration, void *data)
- dng_pixel_buffer (const dng_pixel_buffer &buffer)
- dng_pixel_buffer & operator= (const dng_pixel_buffer &buffer)
- uint32 PixelRange () const
- const dng_rect & Area () const
- uint32 Planes () const
- int32 RowStep () const
- int32 PlaneStep () const
- const void * ConstPixel (int32 row, int32 col, uint32 plane=0) const
- void * DirtyPixel (int32 row, int32 col, uint32 plane=0)
- const uint8 * ConstPixel_uint8 (int32 row, int32 col, uint32 plane=0) const
- const uint8 * ConstPixel uint8 overrideType (int32 row, int32 col, uint32 plane=0) const
- uint8 * DirtyPixel uint8 (int32 row, int32 col, uint32 plane=0)
- uint8 * DirtyPixel_uint8_overrideType (int32 row, int32 col, uint32 plane=0)
- const int8 * ConstPixel int8 (int32 row, int32 col, uint32 plane=0) const
- int8 * DirtyPixel int8 (int32 row, int32 col, uint32 plane=0)
- const uint16 * ConstPixel_uint16 (int32 row, int32 col, uint32 plane=0) const
- uint16 * DirtyPixel uint16 (int32 row, int32 col, uint32 plane=0)
- const int16 * ConstPixel int16 (int32 row, int32 col, uint32 plane=0) const
- int16 * DirtyPixel int16 (int32 row, int32 col, uint32 plane=0)
- const uint32 * ConstPixel uint32 (int32 row, int32 col, uint32 plane=0) const
- uint32 * DirtyPixel_uint32 (int32 row, int32 col, uint32 plane=0)
- const int32 * ConstPixel_int32 (int32 row, int32 col, uint32 plane=0) const
- int32 * DirtyPixel int32 (int32 row, int32 col, uint32 plane=0)
- const real32 * ConstPixel real32 (int32 row, int32 col, uint32 plane=0) const
- real32 * DirtyPixel real32 (int32 row, int32 col, uint32 plane=0)
- void SetConstant (const dng_rect &area, uint32 plane, uint32 planes, uint32 value)
- void SetConstant_uint8 (const dng_rect &area, uint32 plane, uint32 planes, uint8 value)
- void SetConstant uint16 (const dng rect &area, uint32 plane, uint32 planes, uint16 value)
- void SetConstant int16 (const dng rect &area, uint32 plane, uint32 planes, int16 value)

- void SetConstant_uint32 (const dng_rect &area, uint32 plane, uint32 planes, uint32 value)
- void SetConstant real32 (const dng rect &area, uint32 plane, uint32 planes, real32 value)
- void SetZero (const dng_rect &area, uint32 plane, uint32 planes)
- void CopyArea (const dng_pixel_buffer &src, const dng_rect &area, uint32 srcPlane, uint32 dstPlane, uint32 planes)
- void CopyArea (const dng_pixel_buffer &src, const dng_rect &area, uint32 plane, uint32 planes)
- void RepeatArea (const dng_rect &srcArea, const dng_rect &dstArea)
- void RepeatSubArea (const dng_rect subArea, uint32 repeatV=1, uint32 repeatH=1)

Replicates a sub-area of a buffer to fill the entire buffer.

- void ShiftRight (uint32 shift)
- void FlipH ()
- void FlipV ()
- void FlipZ ()
- bool EqualArea (const dng_pixel_buffer &rhs, const dng_rect &area, uint32 plane, uint32 planes) const
- real64 MaximumDifference (const dng_pixel_buffer &rhs, const dng_rect &area, uint32 plane, uint32 planes) const

Static Public Member Functions

static dng_point RepeatPhase (const dng_rect &srcArea, const dng_rect &dstArea)

Public Attributes

- dng_rect fArea
- uint32 fPlane
- uint32 fPlanes
- · int32 fRowStep
- · int32 fColStep
- int32 fPlaneStep
- uint32 fPixelType
- · uint32 fPixelSize
- void * fData
- · bool fDirty

5.122.1 Detailed Description

Holds a buffer of pixel data with "pixel geometry" metadata.

The pixel geometry describes the layout in terms of how many planes, rows and columns plus the steps (in bytes) between each column, row and plane.

5.122.2 Constructor & Destructor Documentation

5.122.2.1 dng_pixel_buffer()

Note: This constructor is for internal use only and should not be considered part of the DNG SDK API.

Initialize the pixel buffer according to the given parameters (see below). May throw an error if arithmetic overflow occurs when computing the row, column or plane step, or if an invalid value was passed for planarConfiguration.

Parameters

area	Area covered by the pixel buffer
plane	Index of the first plane
planes	Number of planes
pixelType	Pixel data type (one of the values defined in dng_tag_types.h)
planarConfiguration	Layout of the pixel planes in memory: One of pcInterleaved, pcPlanar, or pcRowInterleaved (defined in dng_tag_values.h)
data	Pointer to the pixel data

References ThrowOverflow(), and ThrowProgramError().

5.122.3 Member Function Documentation

5.122.3.1 Area()

```
const dng_rect& dng_pixel_buffer::Area ( ) const [inline]
```

Get extent of pixels in buffer

Return values

Rectangle	giving valid extent of buffer.

Referenced by dng_filter_opcode_task::ProcessArea().

5.122.3.2 ConstPixel()

```
int32 col,
uint32 plane = 0 ) const [inline]
```

Get read-only untyped (void *) pointer to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer	to pixel data as void $*$.
---------	-----------------------------

Referenced by CopyArea(), EqualArea(), MaximumDifference(), dng_limit_float_depth_task < simd >::Process(), dng \leftarrow _image::Put(), and RepeatArea().

5.122.3.3 ConstPixel_int16()

Get read-only int16 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer	to pixel data as int16 *.

5.122.3.4 ConstPixel_int32()

Get read-only int32 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer to pixel data as in	nt32 *.
-----------------------------	---------

5.122.3.5 ConstPixel_int8()

```
const int8* dng_pixel_buffer::ConstPixel_int8 (
    int32 row,
    int32 col,
    uint32 plane = 0 ) const [inline]
```

Get read-only int8 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

5.122.3.6 ConstPixel_real32()

Get read-only real32 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer	to pixel data as real32 *.
---------	----------------------------

Referenced by dng_resample_task::ProcessArea(), and dng_filter_warp::ProcessArea().

5.122.3.7 ConstPixel_uint16()

Get read-only uint16 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer	to pixel data as uint16 *.
---------	----------------------------

Referenced by dng_encode_proxy_task::Process(), dng_opcode_FixBadPixelsConstant::ProcessArea(), and dng_ \leftarrow fast_interpolator::ProcessArea().

5.122.3.8 ConstPixel_uint32()

Get read-only uint 32 \ast to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer to pixel data as uint32 *.

5.122.3.9 ConstPixel_uint8()

```
const uint8* dng_pixel_buffer::ConstPixel_uint8 (
    int32 row,
    int32 col,
    uint32 plane = 0 ) const [inline]
```

Get read-only uint8 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

5.122.3.10 CopyArea() [1/2]

Copy image data from an area of one pixel buffer to same area of another.

Parameters

src	Buffer to copy from.
area	Rectangle of pixel buffer to copy.
srcPlane	Plane to start copy in src.
dstPlane	Plane to start copy in dst.
planes	Number of planes to copy.

References ConstPixel(), DirtyPixel(), and OptimizeOrder().

Referenced by CopyArea(), dng_opcode_FixBadPixelsConstant::ProcessArea(), and dng_opcode_FixBadPixelsList::

ProcessArea().

5.122.3.11 CopyArea() [2/2]

Copy image data from an area of one pixel buffer to same area of another.

Parameters

src	Buffer to copy from.
area	Rectangle of pixel buffer to copy.
plane	Plane to start copy in src and this.
planes	Number of planes to copy.

References CopyArea().

5.122.3.12 DirtyPixel()

Get a writable untyped (void *) pointer to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer	to pixel data as void $*$.

References DNG_ASSERT.

Referenced by CopyArea(), dng_image::Get(), dng_limit_float_depth_task< simd >::Process(), dng_render_task::

ProcessArea(), RepeatArea(), dng_simple_image::Rotate(), SetConstant(), ShiftRight(), and dng_simple_image::Trim().

5.122.3.13 DirtyPixel_int16()

Get a writable int16 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer	to pixel data as int16 *.
---------	---------------------------

5.122.3.14 DirtyPixel_int32()

Get a writable int32 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer to pixel data as int32 *.	
-------------------------------------	--

5.122.3.15 DirtyPixel_int8()

```
int32 col,
uint32 plane = 0 ) [inline]
```

Get a writable int8 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

5.122.3.16 DirtyPixel_real32()

Get a writable real32 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer	to pixel data as real32 *.	

Referenced by dng_opcode_GainMap::ProcessArea(), dng_opcode_DeltaPerRow::ProcessArea(), dng_opcode \leftarrow _DeltaPerColumn::ProcessArea(), dng_opcode_ScalePerRow::ProcessArea(), dng_opcode_ScalePerColumn:: \leftarrow ProcessArea(), and dng_filter_warp::ProcessArea().

5.122.3.17 DirtyPixel_uint16()

Get a writable uint16 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer to pixel data	a as uint16 *.
-----------------------	----------------

Referenced by dng_opcode_FixBadPixelsConstant::ProcessArea(), and dng_fast_interpolator::ProcessArea().

5.122.3.18 DirtyPixel_uint32()

Get a writable uint32 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer t	o pixel data as uint32 *.
-----------	---------------------------

5.122.3.19 DirtyPixel_uint8()

Get a writable uint8 * to pixel data starting at a specific pixel in the buffer.

Parameters

row	Start row for buffer pointer.
col	Start column for buffer pointer.
plane	Start plane for buffer pointer.

Return values

Pointer	to pixel data as uint8 *.
---------	---------------------------

Referenced by dng_encode_proxy_task::Process().

5.122.3.20 EqualArea()

Return true if the contents of an area of the pixel buffer area are the same as those of another.

Parameters

rhs	Buffer to compare against.	
area	Rectangle of pixel buffer to test.	
plane Plane to start comparing.		
planes	Number of planes to compare.	

Return values

bool	true if areas are equal, false otherwise.

References ConstPixel().

Referenced by dng_image::EqualArea().

5.122.3.21 FlipH()

```
void dng_pixel_buffer::FlipH ( )
```

Change metadata so pixels are iterated in opposite horizontal order. This operation does not require movement of actual pixel data.

5.122.3.22 FlipV()

```
void dng_pixel_buffer::FlipV ( )
```

Change metadata so pixels are iterated in opposite vertical order. This operation does not require movement of actual pixel data.

5.122.3.23 FlipZ()

```
void dng_pixel_buffer::FlipZ ( )
```

Change metadata so pixels are iterated in opposite plane order. This operation does not require movement of actual pixel data.

5.122.3.24 MaximumDifference()

Return the absolute value of the maximum difference between two pixel buffers. Used for comparison testing with tolerance

Parameters

rhs	Buffer to compare against.
area	Rectangle of pixel buffer to test.
plane	Plane to start comparing.
planes	Number of planes to compare.

Return values

larges	absolute value difference between the corresponding pixels each buffer across area.
--------	---

References ConstPixel(), ThrowNotYetImplemented(), and ThrowProgramError().

5.122.3.25 PixelRange()

```
uint32 dng_pixel_buffer::PixelRange ( ) const
```

Get the range of pixel values.

Return values

Range	of value a pixel can take. (Meaning [0, max] for unsigned case. Signed case is biased so [-32768, max -
	32768].)

5.122.3.26 Planes()

```
uint32 dng_pixel_buffer::Planes ( ) const [inline]
```

Number of planes of image data.

Return values

Referenced by dng_opcode_GainMap::ProcessArea(), dng_opcode_MapTable::ProcessArea(), dng_opcode_Map Polynomial::ProcessArea(), dng_opcode_DeltaPerRow::ProcessArea(), dng_opcode_DeltaPerColumn::ProcessArea(), dng_opcode_ScalePerColumn::ProcessArea().

5.122.3.27 PlaneStep()

```
int32 dng_pixel_buffer::PlaneStep ( ) const [inline]
```

Step, in pixels not bytes, between planes of data in buffer.

Return values

ay be negative.	step in pixels.	plane
-----------------	-----------------	-------

5.122.3.28 RepeatArea()

Repeat the image data in srcArea across dstArea. (Generally used for padding operations.)

Parameters

srcArea	Area to repeat from.
dstArea	Area to fill with data from srcArea.

References ConstPixel(), DirtyPixel(), and RepeatPhase().

Referenced by RepeatSubArea().

5.122.3.29 RepeatPhase()

Calculate the offset phase of destination rectangle relative to source rectangle. Phase is based on a 0,0 origin and the notion of repeating srcArea across dstArea. It is the number of pixels into srcArea to start repeating from when tiling dstArea.

Return values

dng_point	containing horizontal and vertical phase.
-----------	---

References DNG_REPORT.

Referenced by RepeatArea().

5.122.3.30 RowStep()

```
int32 dng_pixel_buffer::RowStep ( ) const [inline]
```

Step, in pixels not bytes, between rows of data in buffer.

Return values

row	step in pixels. May be negative.
-----	----------------------------------

Referenced by dng_opcode_DeltaPerColumn::ProcessArea(), dng_opcode_ScalePerColumn::ProcessArea(), and dng_filter_warp::ProcessArea().

5.122.3.31 SetConstant()

Initialize a rectangular area of pixel buffer to a constant.

Parameters

area	Rectangle of pixel buffer to set.
plane	Plane to start filling on.
planes	Number of planes to fill.
value	Constant value to set pixels to.

References DirtyPixel(), and OptimizeOrder().

Referenced by SetConstant_int16(), SetConstant_real32(), SetConstant_uint16(), SetConstant_uint32(), SetConst

5.122.3.32 SetConstant_int16()

Initialize a rectangular area of pixel buffer to a constant signed 16-bit value.

Parameters

area	Rectangle of pixel buffer to set.
plane	Plane to start filling on.
planes	Number of planes to fill.
value	Constant int16 value to set pixels to.

References DNG_ASSERT, and SetConstant().

5.122.3.33 SetConstant_real32()

Initialize a rectangular area of pixel buffer to a constant real 32-bit value.

Parameters

area	Rectangle of pixel buffer to set.
plane	Plane to start filling on.
planes	Number of planes to fill.
value	Constant real32 value to set pixels to.

References DNG_ASSERT, and SetConstant().

5.122.3.34 SetConstant_uint16()

Initialize a rectangular area of pixel buffer to a constant unsigned 16-bit value.

Parameters

area	Rectangle of pixel buffer to set.
plane	Plane to start filling on.
planes	Number of planes to fill.
value	Constant uint16 value to set pixels to.

References DNG_ASSERT, and SetConstant().

5.122.3.35 SetConstant_uint32()

Initialize a rectangular area of pixel buffer to a constant unsigned 32-bit value.

Parameters

area	Rectangle of pixel buffer to set.
plane	Plane to start filling on.
planes	Number of planes to fill.
value	Constant uint32 value to set pixels to.

References DNG_ASSERT, and SetConstant().

5.122.3.36 SetConstant_uint8()

Initialize a rectangular area of pixel buffer to a constant unsigned 8-bit value.

Parameters

area	Rectangle of pixel buffer to set.
plane	Plane to start filling on.
planes	Number of planes to fill.
value	Constant uint8 value to set pixels to.

References DNG_ASSERT, and SetConstant().

5.122.3.37 SetZero()

Initialize a rectangular area of pixel buffer to zeros.

Parameters

area	Rectangle of pixel buffer to zero.
plane	Plane to start filling on.
planes	Number of planes to fill.

References SetConstant(), and ThrowNotYetImplemented().

5.122.3.38 ShiftRight()

Apply a right shift (C++ oerpator >>) to all pixel values. Only implemented for 16-bit (signed or unsigned) pixel buffers.

Parameters

er of bits by which to right shift each pixel value.	shift
--	-------

References DirtyPixel(), OptimizeOrder(), and ThrowNotYetImplemented().

The documentation for this class was generated from the following files:

- dng_pixel_buffer.h
- dng_pixel_buffer.cpp

5.123 dng_point Class Reference

Public Member Functions

- **dng_point** (int32 vv, int32 hh)
- bool **operator**== (const dng_point &pt) const
- bool operator!= (const dng_point &pt) const
- real64 Length () const

Public Attributes

- int32 **v**
- int32 h

The documentation for this class was generated from the following file:

· dng_point.h

5.124 dng_point_real64 Class Reference

Public Member Functions

- dng_point_real64 (real64 vv, real64 hh)
- dng_point_real64 (const dng_point &pt)
- bool operator== (const dng_point_real64 &pt) const
- bool operator!= (const dng_point_real64 &pt) const
- dng point Round () const
- · real64 Length () const
- void Scale (real64 scale)
- void Normalize ()

Public Attributes

- real64 v
- real64 h

The documentation for this class was generated from the following file:

· dng_point.h

5.125 dng_preview Class Reference

Inheritance diagram for dng_preview:

Public Member Functions

- virtual dng_basic_tag_set * AddTagSet (dng_tiff_directory &directory) const =0
- virtual void WriteData (dng_host &host, dng_image_writer &writer, dng_basic_tag_set &basic, dng_stream &stream) const =0

Public Attributes

• dng_preview_info flnfo

The documentation for this class was generated from the following files:

- dng_preview.h
- · dng_preview.cpp

5.126 dng_preview_info Class Reference

Public Attributes

- · bool flsPrimary
- · dng string fApplicationName
- · dng string fApplicationVersion
- dng_string fSettingsName
- dng fingerprint fSettingsDigest
- PreviewColorSpaceEnum fColorSpace
- dng_string fDateTime
- real64 fRawToPreviewGain
- uint32 fCacheVersion

The documentation for this class was generated from the following files:

- · dng ifd.h
- · dng_ifd.cpp

5.127 dng_preview_list Class Reference

Public Member Functions

- · uint32 Count () const
- const dng_preview & Preview (uint32 index) const
- void Append (AutoPtr< dng_preview > &preview)

The documentation for this class was generated from the following files:

- · dng_preview.h
- · dng preview.cpp

5.128 dng_preview_tag_set Class Reference

Inheritance diagram for dng_preview_tag_set:

Public Member Functions

dng_preview_tag_set (dng_tiff_directory & directory, const dng_preview & preview, const dng_ifd & ifd)

The documentation for this class was generated from the following file:

· dng_preview.cpp

5.129 dng_raw_preview Class Reference

Inheritance diagram for dng_raw_preview:

Public Member Functions

- virtual dng_basic_tag_set * AddTagSet (dng_tiff_directory &directory) const
- virtual void WriteData (dng_host &host, dng_image_writer &writer, dng_basic_tag_set &basic, dng_stream &stream) const

Public Attributes

- AutoPtr< dng_image > flmage
- AutoPtr< dng_memory_block > fOpcodeList2Data
- real64 fBlackLevel [kMaxSamplesPerPixel]
- int32 fCompressionQuality

The documentation for this class was generated from the following files:

- · dng preview.h
- · dng_preview.cpp

5.130 dng_raw_preview_tag_set Class Reference

Inheritance diagram for dng_raw_preview_tag_set:

Public Member Functions

dng_raw_preview_tag_set (dng_tiff_directory & directory, const dng_raw_preview & preview, const dng_ifd & ifd)

The documentation for this class was generated from the following file:

· dng_preview.cpp

5.131 dng_read_image Class Reference

Public Member Functions

- virtual bool CanRead (const dng_ifd &ifd)
- virtual void Read (dng_host &host, const dng_ifd &ifd, dng_stream &stream, dng_image &image, dng_jpeg_image *jpegImage, dng_fingerprint *jpegDigest)

Protected Types

enum { klmageBufferSize = 128 * 1024 }

Protected Member Functions

- virtual bool ReadUncompressed (dng_host &host, const dng_ifd &ifd, dng_stream &stream, dng_image &image, const dng_rect &tileArea, uint32 plane, uint32 planes, AutoPtr < dng_memory_block > &uncompressed Buffer, AutoPtr < dng_memory_block > &subTileBlockBuffer)
- virtual void DecodeLossyJPEG (dng_host &host, dng_image &image, const dng_rect &tileArea, uint32 plane, uint32 planes, uint32 photometricInterpretation, uint32 jpegDataSize, uint8 *jpegDataInMemory, bool using
 MultipleThreads)
- virtual bool ReadBaselineJPEG (dng_host &host, const dng_ifd &ifd, dng_stream &stream, dng_image &image, const dng_rect &tileArea, uint32 plane, uint32 planes, uint32 tileByteCount, uint8 *jpegDataInMemory, bool usingMultipleThreads)
- virtual bool ReadLosslessJPEG (dng_host &host, const dng_ifd &ifd, dng_stream &stream, dng_image &image, const dng_rect &tileArea, uint32 plane, uint32 planes, uint32 tileByteCount, AutoPtr< dng_memory_block > &uncompressedBuffer, AutoPtr< dng_memory_block > &subTileBlockBuffer)
- virtual bool CanReadTile (const dng_ifd &ifd)
- virtual bool NeedsCompressedBuffer (const dng_ifd &ifd)
- virtual void ByteSwapBuffer (dng_host &host, dng_pixel_buffer &buffer)
- virtual void DecodePredictor (dng_host &host, const dng_ifd &ifd, dng_pixel_buffer &buffer)
- virtual void ReadTile (dng_host &host, const dng_ifd &ifd, dng_stream &stream, dng_image &image, const dng_rect &tileArea, uint32 plane, uint32 planes, uint32 tileByteCount, AutoPtr< dng_memory_block > &compressedBuffer, AutoPtr< dng_memory_block > &uncompressedBuffer, AutoPtr< dng_memory_block > &subTileBlockBuffer, bool usingMultipleThreads)
- virtual void DoReadTiles (dng_host &host, const dng_ifd &ifd, dng_stream &stream, dng_image &image, dng_jpeg_image *jpegImage, dng_fingerprint *jpegTileDigest, uint32 outerSamples, uint32 innerSamples, uint32 tilesDown, uint32 tilesAcross, uint64 *tileOffset, uint32 *tileByteCount, uint32 compressedSize, uint32 uncompressedSize)

Protected Attributes

AutoPtr< dng_memory_block > fJPEGTables

Friends

· class dng read tiles task

The documentation for this class was generated from the following files:

- dng_read_image.h
- · dng read image.cpp

5.132 dng_read_tiles_task Class Reference

Inheritance diagram for dng_read_tiles_task:

Public Member Functions

- dng_read_tiles_task (dng_read_image &readImage, dng_host &host, const dng_ifd &ifd, dng_stream &stream, dng_image &image, dng_jpeg_image *jpegImage, dng_fingerprint *jpegTileDigest, uint32 outerSamples, uint32 innerSamples, uint32 tilesDown, uint32 tilesAcross, uint64 *tileOffset, uint32 *tileByteCount, uint32 compressedSize, uint32 uncompressedSize)
- void Process (uint32 threadIndex, const dng_rect &tile, dng_abort_sniffer *sniffer)
 and progress updates.

Protected Member Functions

- void ReadTask (uint32 tileIndex, uint32 &byteCount, dng_memory_block *compressedBuffer)
- void ProcessTask (uint32 tileIndex, uint32 byteCount, dng_abort_sniffer *sniffer, AutoPtr< dng_memory_block
 &compressedBuffer, AutoPtr< dng_memory_block
 &subTileBlockBuffer)

Protected Attributes

- dng_read_image & fReadImage
- dng_host & fHost
- · const dng ifd & fIFD
- · dng_stream & fStream
- · dng image & flmage
- dng_jpeg_image * fJPEGImage
- dng_fingerprint * fJPEGTileDigest
- uint32 fOuterSamples
- uint32 flnnerSamples
- uint32 fTilesDown
- uint32 fTilesAcross
- uint64 * fTileOffset
- uint32 * fTileByteCount
- uint32 fCompressedSize
- uint32 fUncompressedSize
- dng_mutex fMutex
- uint32 fNextTileIndex

Additional Inherited Members

5.132.1 Member Function Documentation

5.132.1.1 Process()

and progress updates.

Process one tile or fully partitioned area. This method is overridden by derived classes to implement the actual image processing. Note that the sniffer can be ignored if it is certain that a processing task will complete very quickly. This method should never be called directly but rather accessed via Process. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)
tile	Area to process.
sniffer	dng_abort_sniffer to use to check for user cancellation

Implements dng_area_task.

References dng_host::Allocate(), AutoPtr< T >::Get(), and AutoPtr< T >::Reset().

The documentation for this class was generated from the following files:

- dng_read_image.h
- dng_read_image.cpp

5.133 dng_rect Class Reference

Public Member Functions

- dng rect (int32 tt, int32 ll, int32 bb, int32 rr)
- dng_rect (uint32 h, uint32 w)
- dng_rect (const dng_point &size)
- void Clear ()
- bool operator== (const dng_rect &rect) const
- bool operator!= (const dng_rect &rect) const
- bool IsZero () const
- · bool NotZero () const

- bool IsEmpty () const
- bool NotEmpty () const
- uint32 W () const
- uint32 H () const
- dng_point TL () const
- dng_point TR () const
- dng point BL () const
- dng point BR () const
- dng_point Size () const
- · uint32 LongSide () const
- uint32 ShortSide () const
- · real64 Diagonal () const

Public Attributes

- int32 t
- int32 I
- int32 b
- int32 r

The documentation for this class was generated from the following files:

- · dng_rect.h
- dng_rect.cpp

5.134 dng_rect_real64 Class Reference

Public Member Functions

- dng_rect_real64 (real64 tt, real64 ll, real64 bb, real64 rr)
- dng_rect_real64 (real64 h, real64 w)
- dng_rect_real64 (const dng_point_real64 &size)
- dng rect real64 (const dng point real64 &pt1, const dng point real64 &pt2)
- dng_rect_real64 (const dng_rect &rect)
- · void Clear ()
- bool operator== (const dng_rect_real64 &rect) const
- bool operator!= (const dng_rect_real64 &rect) const
- bool IsZero () const
- · bool NotZero () const
- bool IsEmpty () const
- bool **NotEmpty** () const
- · real64 W () const
- real64 **H** () const
- dng_point_real64 TL () const
- dng point real64 TR () const
- dng_point_real64 BL () const
- dng_point_real64 BR () const
- dng point real64 Size () const
- dng rect Round () const
- real64 LongSide () const
- · real64 ShortSide () const
- · real64 Diagonal () const
- dng_point_real64 Center () const

Public Attributes

- real64 t
- real64 I
- real64 b
- real64 r

The documentation for this class was generated from the following files:

- · dng rect.h
- · dng_rect.cpp

5.135 dng_ref_counted_block Class Reference

Class to provide resource acquisition is instantiation discipline for small memory allocations.

```
#include <dng_ref_counted_block.h>
```

Public Member Functions

- dng ref counted block ()
- dng_ref_counted_block (uint32 size)
- ~dng_ref_counted_block ()

Release memory buffer using free.

dng_ref_counted_block (const dng_ref_counted_block &data)

Copy constructore, which takes a reference to data and does not copy the block.

dng_ref_counted_block & operator= (const dng_ref_counted_block &data)

Assignment operatore takes a reference to right hand side and does not copy the data.

- void Allocate (uint32 size)
- void Clear ()
- void EnsureWriteable ()

If there is only one reference, do nothing, otherwise copy the data into a new block and return an object with that block as the data.

- uint32 LogicalSize () const
- void * Buffer ()
- const void * Buffer () const
- char * Buffer_char ()
- const char * Buffer_char () const
- uint8 * Buffer_uint8 ()
- const uint8 * Buffer uint8 () const
- uint16 * Buffer uint16 ()
- . const uint16 * Buffer_uint16 () const
- int16 * Buffer_int16 ()
- const int16 * Buffer_int16 () const
- uint32 * Buffer_uint32 ()
- const uint32 * Buffer uint32 () const
- int32 * Buffer int32 ()

- const int32 * Buffer_int32 () const
- uint64 * Buffer_uint64 ()
- const uint64 * Buffer_uint64 () const
- int64 * Buffer int64 ()
- const int64 * Buffer_int64 () const
- real32 * Buffer_real32 ()
- const real32 * Buffer real32 () const
- real64 * Buffer real64 ()
- const real64 * Buffer_real64 () const

5.135.1 Detailed Description

Class to provide resource acquisition is instantiation discipline for small memory allocations.

Support for a refcounted block, with optional copy-on-writeThis class does not use dng_memory_allocator for memory allocation.

5.135.2 Constructor & Destructor Documentation

```
5.135.2.1 dng_ref_counted_block() [1/2]
dng_ref_counted_block::dng_ref_counted_block ( )
```

Construct an empty memory buffer using malloc.

Exceptions

dng_memory_full with fErrorCode equal to dng_error_memory.

Construct memory buffer of size bytes using malloc.

Parameters

size Number of bytes of memory needed.

Exceptions

```
dng_memory_full with fErrorCode equal to dng_error_memory.
```

References Allocate().

5.135.3 Member Function Documentation

5.135.3.1 Allocate()

Clear existing memory buffer and allocate new memory of size bytes.

Parameters

size Number of bytes of memory needed.

Exceptions

```
dng_memory_full with fErrorCode equal to dng_error_memory.
```

References Clear(), and ThrowMemoryFull().

Referenced by dng_ref_counted_block(), EnsureWriteable(), and dng_hue_sat_map::SetDivisions().

5.135.3.2 Buffer()

```
const void* dng_ref_counted_block::Buffer ( ) const [inline]
```

Return pointer to allocated memory as a const void *.

Return values

```
const void * valid for as many bytes as were allocated.
```

```
5.135.3.3 Buffer_char() [1/2]
```

```
char* dng_ref_counted_block::Buffer_char ( ) [inline]
```

Return pointer to allocated memory as a char *.

Return values

char * valid for as many bytes as were allocated.

5.135.3.4 Buffer_char() [2/2]

```
const char* dng_ref_counted_block::Buffer_char ( ) const [inline]
```

Return pointer to allocated memory as a const char *.

Return values

const char * valid for as many bytes as were allocated.

5.135.3.5 Buffer_int16() [1/2]

```
int16* dng_ref_counted_block::Buffer_int16 ( ) [inline]
```

Return pointer to allocated memory as a int16 *.

Return values

int16 | * valid for as many bytes as were allocated.

5.135.3.6 Buffer_int16() [2/2]

```
const int16* dng_ref_counted_block::Buffer_int16 ( ) const [inline]
```

Return pointer to allocated memory as a const int16 *.

Return values

```
const int16 * valid for as many bytes as were allocated.
```

5.135.3.7 Buffer_int32() [1/2]

```
int32* dng_ref_counted_block::Buffer_int32 ( ) [inline]
```

Return pointer to allocated memory as a const int32 *.

Return values

const int32 * valid for as many bytes as were allocated.

5.135.3.8 Buffer_int32() [2/2]

```
const int32* dng_ref_counted_block::Buffer_int32 ( ) const [inline]
```

Return pointer to allocated memory as a const int32 *.

Return values

const int32 * valid for as many bytes as were allocated.

5.135.3.9 Buffer_int64() [1/2]

```
int64* dng_ref_counted_block::Buffer_int64 ( ) [inline]
```

Return pointer to allocated memory as a const int64 *.

Return values

const int64 * valid for as many bytes as were allocated.

5.135.3.10 Buffer_int64() [2/2]

```
const int64* dng_ref_counted_block::Buffer_int64 ( ) const [inline]
```

Return pointer to allocated memory as a const int64 *.

Return values

```
const int64 * valid for as many bytes as were allocated.
```

5.135.3.11 Buffer_real32() [1/2]

```
real32* dng_ref_counted_block::Buffer_real32 ( ) [inline]
```

Return pointer to allocated memory as a real32 \ast .

Return values

real32	?	* valid for as many bytes as were allocated.
--------	---	--

Referenced by dng_hue_sat_map::GetConstDeltas(), and dng_hue_sat_map::GetDeltas().

```
5.135.3.12 Buffer_real32() [2/2]
const real32* dng_ref_counted_block::Buffer_real32 ( ) const [inline]
```

Return pointer to allocated memory as a const real32 *.

Return values

const real32 * valid for as many bytes as were allocated.

```
5.135.3.13 Buffer_real64() [1/2]
real64* dng_ref_counted_block::Buffer_real64 ( ) [inline]
```

Return pointer to allocated memory as a real64 *.

Return values

```
real64 * valid for as many bytes as were allocated.
```

```
5.135.3.14 Buffer_real64() [2/2]
const real64* dng_ref_counted_block::Buffer_real64 ( ) const [inline]
```

Return pointer to allocated memory as a const real64 *.

Return values

```
const real64 * valid for as many bytes as were allocated.
```

```
5.135.3.15 Buffer_uint16() [1/2]
uint16* dng_ref_counted_block::Buffer_uint16 ( ) [inline]
```

Return pointer to allocated memory as a uint16 *.

Return values

uint16 * valid for as many bytes as were allocate	ed.
---	-----

```
5.135.3.16 Buffer_uint16() [2/2]
```

```
const uint16* dng_ref_counted_block::Buffer_uint16 ( ) const [inline]
```

Return pointer to allocated memory as a const uint16 *.

Return values

const uint16 * valid for as many bytes as were allocated.

```
5.135.3.17 Buffer_uint32() [1/2]
```

```
uint32* dng_ref_counted_block::Buffer_uint32 ( ) [inline]
```

Return pointer to allocated memory as a uint32 *.

Return values

```
uint32 * valid for as many bytes as were allocated.
```

```
5.135.3.18 Buffer_uint32() [2/2]
```

```
const uint32* dng_ref_counted_block::Buffer_uint32 ( ) const [inline]
```

Return pointer to allocated memory as a uint32 *.

Return values

```
uint32 * valid for as many bytes as were allocated.
```

```
5.135.3.19 Buffer_uint64() [1/2]
```

```
uint64* dng_ref_counted_block::Buffer_uint64 ( ) [inline]
```

Return pointer to allocated memory as a uint64 *.

Return values

uint64 * valid for as many bytes as were allocated.

```
5.135.3.20 Buffer_uint64() [2/2]
```

```
const uint64* dng_ref_counted_block::Buffer_uint64 ( ) const [inline]
```

Return pointer to allocated memory as a uint64 *.

Return values

```
uint64 * valid for as many bytes as were allocated.
```

```
5.135.3.21 Buffer_uint8() [1/2]
```

```
uint8* dng_ref_counted_block::Buffer_uint8 ( ) [inline]
```

Return pointer to allocated memory as a uint8 *.

Return values

uint8 * valid for as many bytes as were allocated.

```
5.135.3.22 Buffer_uint8() [2/2]
```

```
const uint8* dng_ref_counted_block::Buffer_uint8 ( ) const [inline]
```

Return pointer to allocated memory as a const uint8 *.

Return values

```
const uint8 * valid for as many bytes as were allocated.
```

5.135.3.23 Clear()

```
void dng_ref_counted_block::Clear ( )
```

Release any allocated memory using free. Object is still valid and Allocate can be called again.

Referenced by Allocate(), operator=(), dng_hue_sat_map::SetInvalid(), and ~dng_ref_counted_block().

5.135.3.24 LogicalSize()

```
uint32 dng_ref_counted_block::LogicalSize ( ) const [inline]
```

Return pointer to allocated memory as a void *...

Return values

void	* valid for as many bytes as were allocated.
------	--

The documentation for this class was generated from the following files:

- · dng ref counted block.h
- dng_ref_counted_block.cpp

5.136 dng_render Class Reference

Class used to render digital negative to displayable image.

```
#include <dng_render.h>
```

Inheritance diagram for dng_render:

Public Member Functions

- dng_render (dng_host &host, const dng_negative &negative)
- void SetWhiteXY (const dng xy coord &white)
- const dng_xy_coord WhiteXY () const
- void SetExposure (real64 exposure)
- real64 Exposure () const
- void SetShadows (real64 shadows)
- real64 Shadows () const
- void SetToneCurve (const dng 1d function &curve)
- const dng_1d_function & ToneCurve () const
- void SetFinalSpace (const dng_color_space &space)
- · const dng color space & FinalSpace () const
- void SetFinalPixelType (uint32 type)
- uint32 FinalPixelType () const
- void SetMaximumSize (uint32 size)
- uint32 MaximumSize () const
- virtual dng image * Render ()

Protected Attributes

- dng host & fHost
- const dng_negative & fNegative
- · dng xy coord fWhiteXY
- · real64 fExposure
- · real64 fShadows
- const dng_1d_function * fToneCurve
- const dng_color_space * fFinalSpace
- uint32 fFinalPixelType
- uint32 fMaximumSize

5.136.1 Detailed Description

Class used to render digital negative to displayable image.

5.136.2 Constructor & Destructor Documentation

5.136.2.1 dng_render()

Construct a rendering instance that will be used to convert a given digital negative.

Parameters

host	The host to use for memory allocation, progress updates, and abort testing.
negative	The digital negative to convert to a displayable image.

References dng_camera_profile::DefaultBlackRender(), AutoPtr< T >::Get(), dng_1d_identity::Get(), AutoPtr< T > \leftarrow ::Reset(), and dng_camera_profile::ToneCurve().

5.136.3 Member Function Documentation

5.136.3.1 Exposure()

```
real64 dng_render::Exposure ( ) const [inline]
```

Get exposure compensation.

Return values

value in stops, positive or negative.	Compensation
---------------------------------------	--------------

5.136.3.2 FinalPixelType()

```
uint32 dng_render::FinalPixelType ( ) const [inline]
```

Get pixel type of final image data. Can be ttByte (default), ttShort, or ttFloat.

Return values

Referenced by Render().

5.136.3.3 FinalSpace()

```
const dng_color_space& dng_render::FinalSpace ( ) const [inline]
```

Get final color space in which resulting image data should be represented.

Return values

Color	space to use.
-------	---------------

Referenced by Render().

5.136.3.4 MaximumSize()

```
uint32 dng_render::MaximumSize ( ) const [inline]
```

Get maximum dimension, in pixels, of resulting image. If the final image would have either dimension larger than this maximum, the larger of the two dimensions is set to this maximum size and the smaller dimension is adjusted to preserve the image's aspect ratio.

Return values

Maximum allowed size.

Referenced by Render().

5.136.3.5 Render()

```
dng_image * dng_render::Render ( ) [virtual]
```

Actually render a digital negative to a displayable image. Input digital negative is passed to the constructor of this dng render class.

Return values

The final resulting image.	
----------------------------	--

References dng_negative::AspectRatio(), dng_image::Bounds(), dng_negative::DefaultCropArea(), dng_negative:: \leftarrow DefaultFinalHeight(), dng_negative::DefaultFinalWidth(), FinalPixelType(), FinalSpace(), AutoPtr< T >::Get(), dng_ \leftarrow color_space::IsMonochrome(), dng_host::Make_dng_image(), MaximumSize(), dng_host::PerformAreaTask(), dng_ \leftarrow image::PixelType(), dng_image::Planes(), AutoPtr< T >::Release(), and AutoPtr< T >::Reset().

5.136.3.6 SetExposure()

Set exposure compensation.

Parameters

exposure	Compensation value in stops, positive or negative.
CAPCOUIC	Componibation value in Stope, positive or negative.

5.136.3.7 SetFinalPixelType()

Set pixel type of final image data. Can be ttByte (default), ttShort, or ttFloat.

Parameters

type Pixel type to use.

5.136.3.8 SetFinalSpace()

```
void dng_render::SetFinalSpace (
```

```
const dng_color_space & space ) [inline]
```

Set final color space in which resulting image data should be represented. (See dng_color_space.h for possible values.)

Parameters

```
space Color space to use.
```

5.136.3.9 SetMaximumSize()

Set maximum dimension, in pixels, of resulting image. If final image would have either dimension larger than maximum, the larger of the two dimensions is set to this maximum size and the smaller dimension is adjusted to preserve aspect ratio.

Parameters

size | Maximum size to allow.

5.136.3.10 SetShadows()

Set shadow clip amount.

Parameters

shadows Shadow clip amount.

5.136.3.11 SetToneCurve()

Set custom tone curve for conversion.

Parameters

curve | 1D function that defines tone mapping to use during conversion.

5.136.3.12 SetWhiteXY()

Set the white point to be used for conversion.

Parameters

white White point to use.

5.136.3.13 Shadows()

```
real64 dng_render::Shadows ( ) const [inline]
```

Get shadow clip amount.

Return values

Shadow clip amount.

5.136.3.14 ToneCurve()

```
const dng_ld_function& dng_render::ToneCurve ( ) const [inline]
```

Get custom tone curve for conversion.

Return values

1D | function that defines tone mapping to use during conversion.

5.136.3.15 WhiteXY()

```
const dng_xy_coord dng_render::WhiteXY ( ) const [inline]
```

Get the white point to be used for conversion.

Return values

White point to use.

Referenced by dng_render_task::Start().

The documentation for this class was generated from the following files:

- · dng render.h
- · dng_render.cpp

5.137 dng_render_task Class Reference

Inheritance diagram for dng render task:

Public Member Functions

- dng_render_task (const dng_image &srcImage, const dng_image *srcMask, dng_image &dstImage, const dng_negative &negative, const dng_render ¶ms, const dng_point &srcOffset)
- virtual dng_rect SrcArea (const dng_rect &dstArea)
- virtual void Start (uint32 threadCount, const dng_rect &dstArea, const dng_point &tileSize, dng_memory_allocator
 *allocator, dng_abort_sniffer *sniffer)
- virtual void ProcessArea (uint32 threadIndex, dng_pixel_buffer &srcBuffer, dng_pixel_buffer &dstBuffer)

Protected Attributes

- const dng image * fSrcMask
- · const dng_negative & fNegative
- · const dng render & fParams
- dng point fSrcOffset
- dng_1d_table fZeroOffsetRamp
- dng_vector fCameraWhite
- dng matrix fCameraToRGB
- AutoPtr< dng_hue_sat_map > fHueSatMap
- dng_1d_table fExposureRamp
- AutoPtr< dng_hue_sat_map > fLookTable
- · dng 1d table fToneCurve
- · dng matrix fRGBtoFinal
- dng_1d_table fEncodeGamma
- AutoPtr< dng_1d_table > fHueSatMapEncode
- AutoPtr< dng_1d_table > fHueSatMapDecode
- AutoPtr< dng 1d table > fLookTableEncode
- AutoPtr< dng_1d_table > fLookTableDecode
- AutoPtr< dng_memory_block > fTempBuffer [kMaxMPThreads]
- AutoPtr< dng memory block > fMaskBuffer [kMaxMPThreads]

Additional Inherited Members

5.137.1 Member Function Documentation

5.137.1.1 ProcessArea()

Implements filtering operation from one buffer to another. Source and destination pixels are set up in member fields of this class. Ideally, no allocation should be done in this routine.

Parameters

threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Start method.
srcBuffer	Input area and source pixels.
dstBuffer	Output area and destination pixels.

Implements dng_filter_task.

References dng_memory_block::Buffer_real32(), dng_pixel_buffer::DirtyPixel(), and dng_image::Get().

5.137.1.2 SrcArea()

Compute the source area needed for a given destination area. Default implementation assumes destination area is equal to source area for all cases.

Parameters

det∆rea	Area to for which pixels will be computed.
usii ii ca	Alica to for willon pixels will be computed.

Return values

The	source area needed as input to calculate the requested destination area.
-----	--

Reimplemented from dng_filter_task.

5.137.1.3 Start()

```
void dng_render_task::Start (
          uint32 threadCount,
          const dng_rect & dstArea,
          const dng_point & tileSize,
          dng_memory_allocator * allocator,
          dng_abort_sniffer * sniffer ) [virtual]
```

Called prior to processing on specific threads. Can be used to allocate per-thread memory buffers, etc.

Parameters

threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads of
	dng_area_task.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.
sniffer	Sniffer to test for user cancellation and to set up progress.

Reimplemented from dng_filter_task.

References dng_negative::CameraNeutral(), dng_negative::HasCameraNeutral(), dng_1d_table::Initialize(), dng_inegative::IsMonochrome(), dng_filter_task::Start(), and dng_render::WhiteXY().

The documentation for this class was generated from the following file:

· dng_render.cpp

5.138 dng_resample_bicubic Class Reference

Inheritance diagram for dng_resample_bicubic:

Public Member Functions

- virtual real64 Extent () const
- virtual real64 Evaluate (real64 x) const

Static Public Member Functions

static const dng_resample_function & Get ()

The documentation for this class was generated from the following files:

- · dng_resample.h
- · dng_resample.cpp

5.139 dng_resample_coords Class Reference

Public Member Functions

- void Initialize (int32 srcOrigin, int32 dstOrigin, uint32 srcCount, uint32 dstCount, dng_memory_allocator &allocator)
- const int32 * Coords (int32 index) const
- int32 Pixel (int32 index) const

Protected Attributes

- int32 fOrigin
- AutoPtr< dng_memory_block > fCoords

The documentation for this class was generated from the following files:

- · dng resample.h
- · dng_resample.cpp

5.140 dng_resample_function Class Reference

Inheritance diagram for dng resample function:

Public Member Functions

- virtual real64 Extent () const =0
- virtual real64 Evaluate (real64 x) const =0

The documentation for this class was generated from the following file:

· dng resample.h

5.141 dng_resample_task Class Reference

Inheritance diagram for dng_resample_task:

Public Member Functions

- dng_resample_task (const dng_image &srcImage, dng_image &dstImage, const dng_rect &srcBounds, const dng_rect &dstBounds, const dng_resample_function &kernel)
- virtual dng rect SrcArea (const dng rect &dstArea)
- virtual dng_point SrcTileSize (const dng_point &dstTileSize)
- virtual void Start (uint32 threadCount, const dng_rect &dstArea, const dng_point &tileSize, dng_memory_allocator
 *allocator, dng_abort_sniffer *sniffer)
- virtual void ProcessArea (uint32 threadIndex, dng_pixel_buffer &srcBuffer, dng_pixel_buffer &dstBuffer)

Protected Attributes

- dng rect fSrcBounds
- · dng rect fDstBounds
- · const dng_resample_function & fKernel
- real64 fRowScale
- · real64 fColScale
- dng resample coords fRowCoords
- · dng_resample_coords fColCoords
- · dng_resample_weights fWeightsV
- · dng resample weights fWeightsH
- dng point fSrcTileSize
- AutoPtr< dng_memory_block > fTempBuffer [kMaxMPThreads]

Additional Inherited Members

5.141.1 Member Function Documentation

5.141.1.1 ProcessArea()

Implements filtering operation from one buffer to another. Source and destination pixels are set up in member fields of this class. Ideally, no allocation should be done in this routine.

Parameters

threadIndex	The thread on which this routine is being called, between 0 and threadCount - 1 for the threadCount passed to Start method.
srcBuffer	Input area and source pixels.
dstBuffer	Output area and destination pixels.

Implements dng_filter_task.

References dng_memory_block::Buffer_real32(), and dng_pixel_buffer::ConstPixel_real32().

5.141.1.2 SrcArea()

Compute the source area needed for a given destination area. Default implementation assumes destination area is equal to source area for all cases.

Parameters

dstArea	Area to for which pixels will be computed.
---------	--

Return values

The	source area needed as input to calculate the requested destination area.
-----	--

Reimplemented from dng_filter_task.

5.141.1.3 SrcTileSize()

Given a destination tile size, calculate input tile size. Simlar to SrcArea, and should seldom be overridden.

Parameters

dstTileSize	The destination tile size that is targeted for output.

Return values

The	source tile size needed to compute a tile of the destination size.
-----	--

Reimplemented from dng_filter_task.

5.141.1.4 Start()

```
void dng_resample_task::Start (
          uint32 threadCount,
          const dng_rect & dstArea,
          const dng_point & tileSize,
          dng_memory_allocator * allocator,
          dng_abort_sniffer * sniffer ) [virtual]
```

Called prior to processing on specific threads. Can be used to allocate per-thread memory buffers, etc.

Parameters

threadCount	Total number of threads that will be used for processing. Less than or equal to MaxThreads of dng area task.
tileSize	Size of source tiles which will be processed. (Not all tiles will be this size due to edge conditions.)
allocator	dng_memory_allocator to use for allocating temporary buffers, etc.
sniffer	Sniffer to test for user cancellation and to set up progress.

Reimplemented from dng_filter_task.

References dng_memory_allocator::Allocate(), dng_filter_task::Start(), and ThrowOverflow().

The documentation for this class was generated from the following file:

dng_resample.cpp

5.142 dng_resample_weights Class Reference

Public Member Functions

- void Initialize (real64 scale, const dng_resample_function &kernel, dng_memory_allocator &allocator)
- · uint32 Radius () const
- · uint32 Width () const
- int32 Offset () const
- uint32 Step () const
- const real32 * Weights32 (uint32 fract) const
- . const int16 * Weights16 (uint32 fract) const

Protected Attributes

- · uint32 fRadius
- uint32 fWeightStep
- AutoPtr< dng memory block > fWeights32
- AutoPtr< dng_memory_block > fWeights16

The documentation for this class was generated from the following files:

- · dng_resample.h
- dng_resample.cpp

5.143 dng_resample_weights_2d Class Reference

Public Member Functions

- void Initialize (const dng_resample_function &kernel, dng_memory_allocator &allocator)
- · uint32 Radius () const
- · uint32 Width () const
- int32 Offset () const
- uint32 RowStep () const
- uint32 ColStep () const
- const real32 * Weights32 (dng_point fract) const
- const int16 * Weights16 (dng_point fract) const

Protected Attributes

- · uint32 fRadius
- uint32 fRowStep
- uint32 fColStep
- AutoPtr< dng_memory_block > fWeights32
- AutoPtr< dng_memory_block > fWeights16

The documentation for this class was generated from the following files:

- · dng_resample.h
- dng_resample.cpp

5.144 dng_resolution Class Reference

Image resolution.

```
#include <dng_image_writer.h>
```

Public Attributes

- · dng_urational fXResolution
- dng_urational fYResolution
- uint16 fResolutionUnit

5.144.1 Detailed Description

Image resolution.

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.145 dng_rgb_table Class Reference

Inheritance diagram for dng_rgb_table:

Public Types

```
    enum gamma_enum {
    gamma_Linear = 0, gamma_sRGB, gamma_1_8, gamma_2_2,
    gamma_Rec2020, gamma_count }
```

enum gamut_enum { gamut_clip = 0, gamut_extend, gamut_count }

Public Member Functions

- dng rgb table (const dng rgb table &table)
- dng_rgb_table & operator= (const dng_rgb_table &table)
- bool **operator**== (const dng_rgb_table &table) const
- bool operator!= (const dng_rgb_table &table) const
- · virtual bool IsValid () const
- · void SetInvalid ()
- primaries enum Primaries () const
- void SetPrimaries (primaries_enum primaries)
- gamma enum Gamma () const
- void SetGamma (gamma_enum gamma)
- · gamut enum Gamut () const
- · void SetGamut (gamut_enum gamut)
- · real64 MinAmount () const
- · real64 MaxAmount () const
- void SetAmountRange (real64 minAmount, real64 maxAmount)
- real64 Amount () const
- void SetAmount (real64 amount)
- uint32 Dimensions () const
- · uint32 Divisions () const
- const uint16 * Samples () const
- · bool Monochrome () const
- void **Set** (uint32 dimensions, uint32 divisions, dng_ref_counted_block samples)

Protected Member Functions

- virtual void GetStream (dng_stream &stream)
- virtual void **PutStream** (dng_stream &stream, bool forFingerprint) const

Friends

class dng_rgb_table_cache

Additional Inherited Members

The documentation for this class was generated from the following files:

- · dng_big_table.h
- · dng_big_table.cpp

5.146 dng_rgb_table_cache Class Reference

Inheritance diagram for dng_rgb_table_cache:

Public Member Functions

- virtual void InsertTableData (dng lock std mutex &, const dng big table &table)
- virtual void **EraseTableData** (dng_lock_std_mutex &, const dng_fingerprint &fingerprint)
- virtual void ExtractTableData (dng_lock_std_mutex &, const dng_fingerprint &fingerprint, dng_big_table &table)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_big_table.cpp

5.147 dng_row_interleaved_image Class Reference

Inheritance diagram for dng_row_interleaved_image:

Public Member Functions

- dng_row_interleaved_image (dng_image &image, uint32 factor)
- virtual void DoGet (dng_pixel_buffer &buffer) const
- virtual void DoPut (const dng_pixel_buffer &buffer)

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_read_image.h
- · dng read image.cpp

5.148 dng_safe_int32 Class Reference

Public Member Functions

```
template < typename T > dng_safe_int32 (T x)
dng_safe_int32 (const dng_safe_uint32 &x)
int32 Get () const
void Set_uint32 (uint32 x)
dng_safe_int32 & operator+= (const dng_safe_int32 &x)
template < typename T > dng_safe_int32 & operator+= (T x)
dng_safe_int32 & operator-= (const dng_safe_int32 &x)
template < typename T > dng_safe_int32 & operator-= (T x)
```

The documentation for this class was generated from the following files:

```
    dng_safe_arithmetic.h
```

· dng_safe_arithmetic.cpp

5.149 dng_safe_uint32 Class Reference

Public Member Functions

```
• template<typename T >
  dng_safe_uint32 (T x)

    dng_safe_uint32 (const dng_safe_int32 &x)

• uint32 Get () const
• dng safe uint32 & operator+= (const dng safe uint32 &x)
• template<typename T >
  dng_safe_uint32 & operator+= (T x)

    dng_safe_uint32 & operator *= (const dng_safe_uint32 &x)

• template<typename T >
  dng_safe_uint32 & operator *= (T x)

    const dng_safe_uint32 operator+ (const dng_safe_uint32 &x) const

• template<typename T >
  const dng_safe_uint32 operator+ (T x) const
• const dng_safe_uint32 operator * (const dng_safe_uint32 &x) const
• template<typename T >
  const dng_safe_uint32 operator * (T x) const
```

The documentation for this class was generated from the following files:

```
· dng_safe_arithmetic.h
```

· dng safe arithmetic.cpp

5.150 dng_set_minimum_priority Class Reference

Convenience class for setting thread priority level to minimum.

```
#include <dng_abort_sniffer.h>
```

Public Member Functions

• dng_set_minimum_priority (dng_priority priority, const char *name)

5.150.1 Detailed Description

Convenience class for setting thread priority level to minimum.

The documentation for this class was generated from the following files:

- · dng_abort_sniffer.h
- dng_abort_sniffer.cpp

5.151 dng shared Class Reference

Public Member Functions

- virtual bool ParseTag (dng_stream &stream, dng_exif &exif, uint32 parentCode, bool isMainIFD, uint32 tagCode, uint32 tagType, uint32 tagCount, uint64 tagOffset, int64 offsetDelta)
- virtual void PostParse (dng_host &host, dng_exif &exif)
- virtual bool IsValidDNG ()

Public Attributes

- uint64 fExifIFD
- · uint64 fGPSInfo
- uint64 fInteroperabilityIFD
- uint64 fKodakDCRPrivateIFD
- uint64 fKodakKDCPrivateIFD
- uint32 fXMPCount
- uint64 fXMPOffset
- uint32 fIPTC_NAA_Count
- · uint64 fIPTC NAA Offset
- uint32 fMakerNoteCount
- · uint64 fMakerNoteOffset
- uint32 fMakerNoteSafety
- uint32 fDNGVersion
- uint32 fDNGBackwardVersion
- dng string fUniqueCameraModel
- dng string fLocalizedCameraModel

- dng_camera_profile_info fCameraProfile
- dng std vector< dng camera profile info > fExtraCameraProfiles
- dng matrix fCameraCalibration1
- dng_matrix fCameraCalibration2
- dng_string fCameraCalibrationSignature
- dng vector fAnalogBalance
- dng vector fAsShotNeutral
- dng xy coord fAsShotWhiteXY
- dng srational fBaselineExposure
- · dng urational fBaselineNoise
- dng urational fBaselineSharpness
- dng urational fLinearResponseLimit
- · dng urational fShadowScale
- bool fHasBaselineExposure
- · bool fHasShadowScale
- uint32 fDNGPrivateDataCount
- uint64 fDNGPrivateDataOffset
- · dng fingerprint fRawImageDigest
- dng_fingerprint fNewRawImageDigest
- dng fingerprint fRawDataUniqueID
- dng_string fOriginalRawFileName
- uint32 fOriginalRawFileDataCount
- uint64 fOriginalRawFileDataOffset
- dng_fingerprint fOriginalRawFileDigest
- uint32 fAsShotICCProfileCount
- uint64 fAsShotICCProfileOffset
- dng matrix fAsShotPreProfileMatrix
- uint32 fCurrentlCCProfileCount
- uint64 fCurrentICCProfileOffset
- dng matrix fCurrentPreProfileMatrix
- uint32 fColorimetricReference
- · dng string fAsShotProfileName
- dng_point fOriginalDefaultFinalSize
- dng_point fOriginalBestQualityFinalSize
- dng_urational fOriginalDefaultCropSizeH
- dng_urational fOriginalDefaultCropSizeV
- uint32 fDepthFormat
- dng_urational fDepthNear
- dng_urational fDepthFar
- uint32 fDepthUnits
- uint32 fDepthMeasureType

Protected Member Functions

- virtual bool **Parse_ifd0** (dng_stream &stream, dng_exif &exif, uint32 parentCode, uint32 tagCode, uint32 ta
- virtual bool Parse_ifd0_exif (dng_stream &stream, dng_exif &exif, uint32 parentCode, uint32 tagCode, uint32 tagType, uint32 tagCount, uint64 tagOffset)

The documentation for this class was generated from the following files:

- · dng shared.h
- dng shared.cpp

5.152 dng_simple_image Class Reference

dng_image derived class with simple Trim and Rotate functionality.

```
#include <dng_simple_image.h>
```

Inheritance diagram for dng_simple_image:

Public Member Functions

- dng_simple_image (const dng_rect &bounds, uint32 planes, uint32 pixelType, dng_memory_allocator &allocator)
- virtual dng_image * Clone () const
- virtual void SetPixelType (uint32 pixelType)

Setter for pixel type.

virtual void Trim (const dng_rect &r)

Trim image data outside of given bounds. Memory is not reallocated or freed.

virtual void Rotate (const dng_orientation & orientation)

Rotate image according to orientation.

• void GetPixelBuffer (dng_pixel_buffer &buffer)

Get the buffer for direct processing. (Unique to dng_simple_image.)

Protected Member Functions

virtual void AcquireTileBuffer (dng_tile_buffer &buffer, const dng_rect &area, bool dirty) const

Protected Attributes

- dng_pixel_buffer fBuffer
- AutoPtr< dng_memory_block > fMemory
- dng_memory_allocator & fAllocator

Additional Inherited Members

5.152.1 Detailed Description

dng image derived class with simple Trim and Rotate functionality.

The documentation for this class was generated from the following files:

- dng_simple_image.h
- · dng simple image.cpp

5.153 dng_sniffer_task Class Reference

Class to establish scope of a named subtask in DNG processing.

```
#include <dng_abort_sniffer.h>
```

Inheritance diagram for dng_sniffer_task:

Public Member Functions

- dng_sniffer_task (dng_abort_sniffer *sniffer, const char *name=NULL, real64 fract=0.0)
- void Sniff ()
- void UpdateProgress (real64 fract)
- void UpdateProgress (uint32 done, uint32 total)
- void Finish ()

Signal task completed for progress purposes.

5.153.1 Detailed Description

Class to establish scope of a named subtask in DNG processing.

Instances of this class are intended to be stack allocated.

5.153.2 Constructor & Destructor Documentation

5.153.2.1 dng_sniffer_task()

Inform a sniffer of a subtask in DNG processing.

Parameters

sniffer	The sniffer associated with the host on which this processing is occurring.
name	The name of this subtask as a NUL terminated string.
fract	Percentage of total processing this task is expected to take, from 0.0 to 1.0.

References dng_abort_sniffer::StartTask().

5.153.3 Member Function Documentation

5.153.3.1 Sniff()

```
void dng_sniffer_task::Sniff ( ) [inline]
```

Check for pending user cancellation or other abort. ThrowUserCanceled will be called if one is pending.

References dng_abort_sniffer::SniffForAbort().

5.153.3.2 UpdateProgress() [1/2]

Update progress on this subtask.

Parameters

References dng_abort_sniffer::UpdateProgress().

Referenced by Finish(), and UpdateProgress().

5.153.3.3 UpdateProgress() [2/2]

Update progress on this subtask.

Parameters

done	Amount of task completed in arbitrary integer units.
total	Total size of task in same arbitrary integer units as done.

References UpdateProgress().

The documentation for this class was generated from the following file:

· dng_abort_sniffer.h

5.154 dng_space_AdobeRGB Class Reference

Singleton class for AdobeRGB color space.

```
#include <dng_color_space.h>
```

Inheritance diagram for dng_space_AdobeRGB:

Public Member Functions

- virtual const dng_1d_function & GammaFunction () const Returns dng_function_GammaEncode_2_2.
- virtual bool ICCProfile (uint32 &size, const uint8 *&data) const Returns AdobeRGB (1998) ICC profile.

Static Public Member Functions

static const dng_color_space & Get ()
 Static method for getting single global instance of this color space.

Additional Inherited Members

5.154.1 Detailed Description

Singleton class for AdobeRGB color space.

The documentation for this class was generated from the following files:

- · dng_color_space.h
- dng_color_space.cpp

5.155 dng_space_ColorMatch Class Reference

Singleton class for ColorMatch color space.

Inheritance diagram for dng_space_ColorMatch:

Public Member Functions

- virtual const dng_1d_function & GammaFunction () const Returns dng_function_GammaEncode_1_8.
- virtual bool ICCProfile (uint32 &size, const uint8 *&data) const Returns ColorMatch RGB ICC profile.

Static Public Member Functions

• static const dng_color_space & Get ()

Static method for getting single global instance of this color space.

Additional Inherited Members

5.155.1 Detailed Description

Singleton class for ColorMatch color space.

The documentation for this class was generated from the following files:

- dng_color_space.h
- dng_color_space.cpp

5.156 dng_space_fakeRGB Class Reference

Inheritance diagram for dng_space_fakeRGB:

Static Public Member Functions

• static const dng_color_space & Get ()

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_color_space.h
- dng_color_space.cpp

5.157 dng_space_GrayGamma18 Class Reference

Singleton class for gamma 1.8 grayscale color space.

```
#include <dng_color_space.h>
```

Inheritance diagram for dng_space_GrayGamma18:

Public Member Functions

- virtual const dng_1d_function & GammaFunction () const Returns dng_function_GammaEncode_1_8.
- virtual bool ICCProfile (uint32 &size, const uint8 *&data) const Returns simple grayscale gamma 1.8 ICC profile.

Static Public Member Functions

static const dng_color_space & Get ()
 Static method for getting single global instance of this color space.

Additional Inherited Members

5.157.1 Detailed Description

Singleton class for gamma 1.8 grayscale color space.

The documentation for this class was generated from the following files:

- · dng_color_space.h
- dng_color_space.cpp

5.158 dng_space_GrayGamma22 Class Reference

Singleton class for gamma 2.2 grayscale color space.

Inheritance diagram for dng_space_GrayGamma22:

Public Member Functions

- virtual const dng_1d_function & GammaFunction () const Returns dng_function_GammaEncode_2_2.
- virtual bool ICCProfile (uint32 &size, const uint8 *&data) const Returns simple grayscale gamma 2.2 ICC profile.

Static Public Member Functions

static const dng_color_space & Get ()
 Static method for getting single global instance of this color space.

Additional Inherited Members

5.158.1 Detailed Description

Singleton class for gamma 2.2 grayscale color space.

The documentation for this class was generated from the following files:

- dng_color_space.h
- · dng_color_space.cpp

5.159 dng_space_ProPhoto Class Reference

Singleton class for ProPhoto RGB color space.

```
#include <dng_color_space.h>
```

Inheritance diagram for dng_space_ProPhoto:

Public Member Functions

- virtual const dng_1d_function & GammaFunction () const Returns dng_function_GammaEncode_1_8.
- virtual bool ICCProfile (uint32 &size, const uint8 *&data) const Returns ProPhoto RGB ICC profile.

Static Public Member Functions

static const dng_color_space & Get ()
 Static method for getting single global instance of this color space.

Additional Inherited Members

5.159.1 Detailed Description

Singleton class for ProPhoto RGB color space.

The documentation for this class was generated from the following files:

- · dng_color_space.h
- · dng_color_space.cpp

5.160 dng_space_sRGB Class Reference

Singleton class for sRGB color space.

Inheritance diagram for dng_space_sRGB:

Public Member Functions

- virtual const dng_1d_function & GammaFunction () const Returns dng_function_GammaEncode_sRGB.
- virtual bool ICCProfile (uint32 &size, const uint8 *&data) const Returns sRGB IEC61966-2.1 ICC profile.

Static Public Member Functions

static const dng_color_space & Get ()
 Static method for getting single global instance of this color space.

Additional Inherited Members

5.160.1 Detailed Description

Singleton class for sRGB color space.

The documentation for this class was generated from the following files:

- dng_color_space.h
- dng_color_space.cpp

5.161 dng_spline_solver Class Reference

Inheritance diagram for dng spline solver:

Public Member Functions

- · void Reset ()
- void Add (real64 x, real64 y)
- virtual void Solve ()
- virtual bool Isldentity () const

Returns true if this function is the map x - y such that x = y for all x. That is if Evaluate(x) == x for all x.

• virtual real64 Evaluate (real64 x) const

Protected Attributes

- dng std vector< real64 > X
- dng_std_vector< real64 > Y
- dng_std_vector< real64 > S

5.161.1 Member Function Documentation

5.161.1.1 Evaluate()

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

Parameters

x A value between 0.0 and 1.0 (inclusive).

Return values

Mapped value for x

Implements dng_1d_function.

References DNG_ASSERT.

The documentation for this class was generated from the following files:

- · dng_spline.h
- dng_spline.cpp

5.162 dng_spooler Class Reference

Inheritance diagram for dng_spooler:

Public Member Functions

• virtual void **Spool** (const void *data, uint32 count)=0

The documentation for this class was generated from the following file:

· dng_lossless_jpeg.h

5.163 dng_srational Class Reference

Public Member Functions

- dng_srational (int32 nn, int32 dd)
- · void Clear ()
- bool IsValid () const
- bool NotValid () const
- bool operator== (const dng_srational &r) const
- bool operator!= (const dng_srational &r) const
- real64 As_real64 () const
- void **Set_real64** (real64 x, int32 dd=0)
- void ReduceByFactor (int32 factor)

Public Attributes

- int32 n
- int32 d

The documentation for this class was generated from the following files:

- · dng rational.h
- · dng_rational.cpp

5.164 dng_std_allocator < T > Class Template Reference

C++ allocator (i.e. an implementation of the Allocator concept) that throws a dng_exception with error code dng_error — memory if it cannot allocate memory.

```
#include <dng_memory.h>
```

Public Types

typedef T value_type

Public Member Functions

- T * allocate (size_t n)
- void deallocate (T *ptr, size_t)

5.164.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class dng\_std\_allocator} < \mbox{T} > \\
```

C++ allocator (i.e. an implementation of the Allocator concept) that throws a dng_exception with error code dng_error ← _memory if it cannot allocate memory.

The documentation for this class was generated from the following file:

· dng_memory.h

5.165 dng_stream Class Reference

```
#include <dng_stream.h>
```

Inheritance diagram for dng_stream:

Public Types

enum { kSmallBufferSize = 8 * 1024, kBigBufferSize = 64 * 1024, kDefaultBufferSize = kSmallBufferSize }

Public Member Functions

- dng_stream (const void *data, uint32 count, uint64 offsetInOriginalFile=kDNGStreamInvalidOffset)
- bool SwapBytes () const
- void SetSwapBytes (bool swapBytes)
- · bool BigEndian () const
- void SetBigEndian (bool bigEndian=true)
- bool LittleEndian () const
- void SetLittleEndian (bool littleEndian=true)
- · uint32 BufferSize () const

Returns the size of the buffer used by the stream.

void SetBufferSize (dng memory allocator &allocator, uint32 newBufferSize)

Change the buffer size on the stream, if possible.

- uint64 Length ()
- uint64 Position () const
- uint64 PositionInOriginalFile () const
- uint64 OffsetInOriginalFile () const
- const void * Data () const
- dng_memory_block * AsMemoryBlock (dng_memory_allocator &allocator)
- · void SetReadPosition (uint64 offset)

Seek to a new position in stream for reading.

- void Skip (uint64 delta)
- bool DataInBuffer (uint32 count, uint64 offset)

Quick check to see if data range in completely buffered.

- void Get (void *data, uint32 count, uint32 maxOverRead=0)
- void SetWritePosition (uint64 offset)

Seek to a new position in stream for writing.

void Flush ()

Force any stored data in stream to be written to underlying storage.

- void SetLength (uint64 length)
- void Put (const void *data, uint32 count)

- uint8 Get_uint8 ()
- void Put uint8 (uint8 x)
- uint16 Get uint16 ()
- void Put_uint16 (uint16 x)
- uint32 Get_uint32 ()
- uint32 Get uint32 LE ()
- void Put uint32 (uint32 x)
- uint64 Get_uint64 ()
- void Put_uint64 (uint64 x)
- int8 Get int8 ()
- void Put_int8 (int8 x)
- int16 Get int16 ()
- void Put int16 (int16 x)
- int32 Get_int32 ()
- void Put_int32 (int32 x)
- int64 Get int64 ()
- void Put_int64 (int64 x)
- · real32 Get_real32 ()
- void Put real32 (real32 x)
- real64 Get real64 ()
- void Put real64 (real64 x)
- void Get_CString (char *data, uint32 maxLength)
- void Get UString (char *data, uint32 maxLength)
- void PutZeros (uint64 count)
- void PadAlign2 ()

Writes zeros to align the stream position to a multiple of 2.

· void PadAlign4 ()

Writes zeros to align the stream position to a multiple of 4.

- uint32 TagValue uint32 (uint32 tagType)
- int32 TagValue int32 (uint32 tagType)
- dng_urational TagValue_urational (uint32 tagType)
- dng_srational TagValue_srational (uint32 tagType)
- real64 TagValue_real64 (uint32 tagType)
- dng abort sniffer * Sniffer () const
- void SetSniffer (dng_abort_sniffer *sniffer)
- virtual void CopyToStream (dng_stream &dstStream, uint64 count)
- void DuplicateStream (dng_stream &dstStream)

Protected Member Functions

- virtual uint64 DoGetLength ()
- virtual void DoRead (void *data, uint32 count, uint64 offset)
- virtual void DoSetLength (uint64 length)
- virtual void DoWrite (const void *data, uint32 count, uint64 offset)

5.165.1 Detailed Description

Base stream abstraction. Has support for going between stream and pointer abstraction.

5.165.2 Constructor & Destructor Documentation

5.165.2.1 dng_stream()

Construct a stream with initial data.

Parameters

data	Pointer to initial contents of stream.
count	Number of bytes data is valid for.
offsetInOriginalFile	If data came from a file originally, offset can be saved here for later use.

5.165.3 Member Function Documentation

5.165.3.1 AsMemoryBlock()

Return the entire stream as a single memory block. This works for all streams, but requires copying the data to a new buffer.

Parameters

allocator	Allocator used to allocate memory.
-----------	------------------------------------

References dng_memory_allocator::Allocate(), Flush(), Get(), Length(), SetReadPosition(), and ThrowProgramError().

Referenced by dng_iptc::Spool().

5.165.3.2 BigEndian()

```
bool dng_stream::BigEndian ( ) const
```

Getter for whether data in stream is big endian.

Return values

```
If true, data in stream is big endian.
```

Referenced by LittleEndian().

5.165.3.3 CopyToStream()

Copy a specified number of bytes to a target stream.

Parameters

dstStream	The target stream.
count	The number of bytes to copy.

Reimplemented in dng_memory_stream.

References dng_memory_data::Buffer(), Get(), and Put().

Referenced by dng_memory_stream::CopyToStream(), and DuplicateStream().

5.165.3.4 Data()

```
const void * dng_stream::Data ( ) const
```

Return pointer to stream contents if the stream is entirely available as a single memory block, NULL otherwise.

5.165.3.5 DuplicateStream()

Makes the target stream a copy of this stream.

Parameters

dstStream	The target stream.

References CopyToStream(), Flush(), Length(), SetLength(), SetReadPosition(), and SetWritePosition().

5.165.3.6 Get()

```
void dng_stream::Get (
    void * data,
    uint32 count,
    uint32 maxOverRead = 0 )
```

Get data from stream. Exception is thrown and no data is read if insufficient data available in stream.

Parameters

data	Buffer to put data into. Must be valid for count bytes.
count	Bytes of data to read.

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream	n.
---	----

References DNG_ASSERT, Flush(), Length(), and ThrowEndOfFile().

Referenced by AsMemoryBlock(), CopyToStream(), Get_real64(), Get_uint16(), Get_uint32(), Get_uint64(), Get_uint8(), and dng_iptc::Parse().

5.165.3.7 Get_CString()

Get an 8-bit character string from stream and advance read position. Routine always reads until a NUL character (8-bits of zero) is read. (That is, only maxLength bytes will be returned in buffer, but the stream is always advanced until a NUL is read or EOF is reached.)

Parameters

data	Buffer in which string is returned.
maxLength	Maximum number of bytes to place in buffer.

Exceptions

dna excention	with fErrorCode equal to dng_error_end_of_file if stream runs out before NUL is seen.
ung_cxccption	with introduce equal to drig_criol_crid_or_life if stream rand out belove Not is seen.
· ·	

References Get_uint8().

5.165.3.8 Get_int16()

```
int16 dng_stream::Get_int16 ( ) [inline]
```

Get one 16-bit integer from stream and advance read position. Byte swap if byte swapping is turned on.

Return values

One 16-bit intege

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get_uint16().

Referenced by TagValue int32().

5.165.3.9 Get_int32()

```
int32 dng_stream::Get_int32 ( ) [inline]
```

Get one 32-bit integer from stream and advance read position. Byte swap if byte swapping is turned on.

Return values

One 32-bit integer.

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get_uint32().

Referenced by dng_area_spec::GetData(), TagValue_int32(), TagValue_real64(), TagValue_srational(), and TagValue urational().

5.165.3.10 Get_int64()

```
int64 dng_stream::Get_int64 ( ) [inline]
```

Get one 64-bit integer from stream and advance read position. Byte swap if byte swapping is turned on.

Return values

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get_uint64().

5.165.3.11 Get_int8()

```
int8 dng_stream::Get_int8 ( ) [inline]
```

Get one 8-bit integer from stream and advance read position.

Return values

One 8-bit integer.

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get_uint8().

Referenced by dng iptc::Parse(), and TagValue int32().

5.165.3.12 Get_real32()

```
real32 dng_stream::Get_real32 ()
```

Get one 32-bit IEEE floating-point number from stream and advance read position. Byte swap if byte swapping is turned on.

Return values

One 32-bit IEEE floating-point number.

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get_uint32().

Referenced by dng_gain_map::GetStream(), and TagValue_real64().

5.165.3.13 Get_real64()

```
real64 dng_stream::Get_real64 ( )
```

Get one 64-bit IEEE floating-point number from stream and advance read position. Byte swap if byte swapping is turned on.

Return values

One 64-bit IEEE floating-point number.

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get(), and Get_uint32().

Referenced by dng_gain_map::GetStream(), and TagValue_real64().

5.165.3.14 Get_uint16()

```
uint16 dng_stream::Get_uint16 ( )
```

Get an unsigned 16-bit integer from stream and advance read position. Byte swap if byte swapping is turned on.

Return values

One unsigned 16-bit integer.

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get().

Referenced by Get_int16(), Get_UString(), dng_info::Parse(), dng_iptc::Parse(), and TagValue_uint32().

5.165.3.15 Get_uint32()

```
uint32 dng_stream::Get_uint32 ( )
```

Get an unsigned 32-bit integer from stream and advance read position. Byte swap if byte swapping is turned on.

Return values

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get().

Referenced by Get_int32(), Get_real32(), Get_real64(), Get_uint64(), dng_area_spec::GetData(), dng_gain_map \leftarrow ::GetStream(), dng_info::Parse(), dng_opcode_list::Parse(), TagValue_real64(), TagValue_uint32(), and TagValue_ \leftarrow urational().

5.165.3.16 Get_uint64()

```
uint64 dng_stream::Get_uint64 ( )
```

Get an unsigned 64-bit integer from stream and advance read position. Byte swap if byte swapping is turned on.

Return values

One unsigned 64-bit integer.

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get(), and Get_uint32().

Referenced by Get_int64().

5.165.3.17 Get_uint8()

```
uint8 dng_stream::Get_uint8 ( ) [inline]
```

Get an unsigned 8-bit integer from stream and advance read position.

Return values

One	unsigned 8-bit integer.
-----	-------------------------

Exceptions

dng_exception w	with fErrorCode equal to dng_error_end_of_file if not enough data in stream.
-----------------	--

References Get().

Referenced by Get_CString(), Get_int8(), dng_iptc::Parse(), and TagValue_uint32().

5.165.3.18 Get_UString()

Get a 16-bit character string from stream and advance read position. 16-bit characters are truncated to 8-bits. Routine always reads until a NUL character (16-bits of zero) is read. (That is, only maxLength bytes will be returned in buffer, but the stream is always advanced until a NUL is read or EOF is reached.)

Parameters

data	Buffer to place string in.
maxLength	Maximum number of bytes to place in buffer.

Exceptions

References Get_uint16().

5.165.3.19 Length()

```
uint64 dng_stream::Length ( ) [inline]
```

Getter for length of data in stream.

Return values

Length	of readable data in stream.

Referenced by AsMemoryBlock(), dng_memory_stream::CopyToStream(), DuplicateStream(), Get(), dng_info::Parse(),

dng_iptc::Parse(), Put_uint8(), SetLength(), SetReadPosition(), and dng_iptc::Spool().

5.165.3.20 LittleEndian()

```
bool dng_stream::LittleEndian ( ) const [inline]
```

Getter for whether data in stream is big endian.

Return values

```
If true, data in stream is big endian.
```

References BigEndian().

5.165.3.21 OffsetInOriginalFile()

```
uint64 dng_stream::OffsetInOriginalFile ( ) const
```

Getter for offset in original file.

Return values

kInvalidOffset if no offset in original file is set, offset in original file otherwise.

5.165.3.22 Position()

```
uint64 dng_stream::Position ( ) const [inline]
```

Getter for current offset in stream.

Return values

```
current offset from start of stream.
```

 $Referenced\ by\ dng_memory_stream:: CopyToStream(),\ PadAlign2(),\ PadAlign4(),\ dng_info:: Parse(),\ dng_iptc:: Parse(),\ dng_opcode_list:: Parse(),\ PositionInOriginalFile(),\ and\ Skip().$

5.165.3.23 PositionInOriginalFile()

```
uint64 dng_stream::PositionInOriginalFile ( ) const
```

Getter for current position in original file, taking into account OffsetInOriginalFile stream data was taken from.

Return values

Offset if no offset in original file is set, sum of offset in original file and current position	n otherwise.
--	--------------

References Position().

Referenced by dng_info::Parse().

5.165.3.24 Put()

Write data to stream.

Parameters

data	Buffer of data to write to stream.
count	Bytes of in data.

References Flush().

Referenced by dng_memory_stream::CopyToStream(), CopyToStream(), Put_real32(), Put_real64(), Put_uint16(), Put_uint32(), Put_uint64(), Put_uint8(), dng_opcode_Unknown::PutData(), dng_iptc::Spool(), and dng_camera_ profile::UniqueID().

5.165.3.25 Put_int16()

Put one 16-bit integer to stream and advance write position. Byte swap if byte swapping is turned on.

Parameters

```
x One 16-bit integer.
```

References Put_uint16().

5.165.3.26 Put_int32()

Put one 32-bit integer to stream and advance write position. Byte swap if byte swapping is turned on.

Parameters

```
x One 32-bit integer.
```

References Put_uint32().

Referenced by dng_opcode_TrimBounds::PutData(), dng_area_spec::PutData(), and dng_opcode_FixBadPixelsList ::PutData().

5.165.3.27 Put_int64()

Put one 64-bit integer to stream and advance write position. Byte swap if byte swapping is turned on.

Parameters

```
x One 64-bit integer.
```

References Put_uint64().

5.165.3.28 Put_int8()

Put one 8-bit integer to stream and advance write position.

Parameters

```
x One 8-bit integer.
```

References Put_uint8().

5.165.3.29 Put_real32()

Put one 32-bit IEEE floating-point number to stream and advance write position. Byte swap if byte swapping is turned on.

x One 32-bit IEEE floating-point number.

References Put(), and Put_uint32().

Referenced by dng_opcode_DeltaPerRow::PutData(), dng_opcode_DeltaPerColumn::PutData(), dng_opcode_Scale PerRow::PutData(), dng_opcode_ScalePerColumn::PutData(), and dng_gain_map::PutStream().

5.165.3.30 Put_real64()

Put one 64-bit IEEE floating-point number to stream and advance write position. Byte swap if byte swapping is turned on

Parameters

x One64-bit IEEE floating-point number.

References Put(), and Put_uint32().

Referenced by dng_opcode_MapPolynomial::PutData(), dng_opcode_WarpRectilinear::PutData(), dng_opcode_
WarpFisheye::PutData(), dng_opcode_FixVignetteRadial::PutData(), and dng_gain_map::PutStream().

5.165.3.31 Put_uint16()

Put an unsigned 16-bit integer to stream and advance write position. Byte swap if byte swapping is turned on.

Parameters

x One unsigned 16-bit integer.

References Put().

Referenced by Put_int16(), dng_opcode_MapTable::PutData(), and dng_iptc::Spool().

5.165.3.32 Put_uint32()

Put an unsigned 32-bit integer to stream and advance write position. Byte swap if byte swapping is turned on.

Parameters

```
x One unsigned 32-bit integer.
```

References Put().

Referenced by dng_opcode_list::FingerprintToStream(), Put_int32(), Put_real32(), Put_real64(), Put_uint64(), dng copcode_TrimBounds::PutData(), dng_opcode_FixBadPixelsConstant::PutData(), dng_area_spec::PutData(), dng copcode_GainMap::PutData(), dng_opcode_MapTable::PutData(), dng_opcode::PutData(), dng_opcode_Mapcopcode_SixBadPixelsList::PutData(), dng_opcode_Unknown::PutData(), dng_opcode copcode_DeltaPerColumn::PutData(), dng_opcode_ScalePerRow::PutData(), dng_copcode_ScalePerRow::PutData(), dng_copcode_ScalePerColumn::PutData(), dng_opcode_ScalePerColumn::PutData(), dng_opcode_ScalePerColumn::PutData(), dng_opcode_SixPutData(), dng_op

5.165.3.33 Put_uint64()

Put an unsigned 64-bit integer to stream and advance write position. Byte swap if byte swapping is turned on.

Parameters

```
x One unsigned 64-bit integer.
```

References Put(), and Put_uint32().

Referenced by Put_int64().

5.165.3.34 Put_uint8()

Put an unsigned 8-bit integer to stream and advance write position.

Parameters

x One unsigned 8-bit integer.

References Length(), and Put().

Referenced by Put_int8(), and dng_iptc::Spool().

5.165.3.35 PutZeros()

Writes the specified number of zero bytes to stream.

Parameters

Referenced by PadAlign2(), and PadAlign4().

5.165.3.36 SetBigEndian()

Setter for whether data in stream is big endian.

Parameters

bigEndian If true, data in stream is big endian.

Referenced by dng_info::Parse(), dng_iptc::Parse(), SetLittleEndian(), dng_opcode_list::Spool(), and dng_iptc::Spool().

5.165.3.37 SetLength()

Set length of available data.

Parameters

length Number of bytes of aviable data in stream.

References Flush(), and Length().

Referenced by DuplicateStream().

5.165.3.38 SetLittleEndian()

Setter for whether data in stream is big endian.

Parameters

littleEndian	If true, data in stream is big endian.
IIIIIGEITUIAIT	ii tide, data iii stream is big endiam.

References SetBigEndian().

Referenced by dng_info::Parse(), and dng_camera_profile::UniqueID().

5.165.3.39 SetSniffer()

Putter for sniffer associated with stream.

Parameters

sniffer	The new sniffer to use (or NULL for none).

5.165.3.40 SetSwapBytes()

Setter for whether stream is swapping byte order on input/output.

Parameters

swapBytes	If true, stream will swap byte order on input or output for future reads/writes.

5.165.3.41 Skip()

Skip forward in stream.

Parameters

elta Number of bytes to skip forward.	delta
---------------------------------------	-------

References Position(), and SetReadPosition().

5.165.3.42 Sniffer()

```
dng_abort_sniffer* dng_stream::Sniffer ( ) const [inline]
```

Getter for sniffer associated with stream.

Return values

5.165.3.43 SwapBytes()

```
bool dng_stream::SwapBytes ( ) const [inline]
```

Getter for whether stream is swapping byte order on input/output.

Return values

```
If true, data will be swapped on input/output.
```

5.165.3.44 TagValue_int32()

Get a value of size indicated by tag type from stream and advance read position. Byte swap if byte swapping is turned on and tag type is larger than a byte. Value is returned as a 32-bit integer.

oe of data stored in stream.

Return values

One	32-bit integer.
-----	-----------------

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get_int16(), Get_int32(), Get_int8(), and TagValue_real64().

Referenced by TagValue_real64(), and TagValue_urational().

5.165.3.45 TagValue_real64()

Get a value of size indicated by tag type from stream and advance read position. Byte swap if byte swapping is turned on and tag type is larger than a byte. Value is returned as a 64-bit IEEE floating-point number.

Parameters

g type of data stored in stream.	tagType
----------------------------------	---------

Return values

One	64-bit IEEE floating-point number.
-----	------------------------------------

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get_int32(), Get_real32(), Get_real64(), Get_uint32(), TagValue_int32(), and TagValue_uint32().

Referenced by TagValue_int32(), TagValue_srational(), TagValue_uint32(), and TagValue_urational().

5.165.3.46 TagValue_srational()

Get a value of size indicated by tag type from stream and advance read position. Byte swap if byte swapping is turn on and tag type is larger than a byte. Value is returned as a dng_srational.					
Get a value of size indicated by tag type from stream and advance read position. Byte swap if byte swapping is turn on and tag type is larger than a byte. Value is returned as a dng_srational.					
on and tag type is larger than a byte. Value is returned as a dng_srational.	Set a value of size indicated by tag	tyne from stream and	l advance read nosition	Ryte swan if hyte sw	vanning is turned
	on and tag type is larger than a byte	e. Value is returned as	a dng_srational.	. Dyte swap ii byte sv	rapping is turned
			<u> </u>		

tagType	Tag type of data stored in stream.
---------	------------------------------------

Return values

```
One dng_srational.
```

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get_int32(), and TagValue_real64().

5.165.3.47 TagValue_uint32()

Get a value of size indicated by tag type from stream and advance read position. Byte swap if byte swapping is turned on and tag type is larger than a byte. Value is returned as an unsigned 32-bit integer.

Parameters

pe Tag type of data stored in stream.	tagType
---------------------------------------	---------

Return values

One	unsigned 32-bit integer.
-----	--------------------------

Exceptions

dng_exception with fErrorCode equal to dng_error_end_of_file if not enough data in stream.

References Get_uint16(), Get_uint32(), Get_uint8(), and TagValue_real64().

Referenced by TagValue_real64(), and TagValue_urational().

5.165.3.48 TagValue_urational()

Get a value of size indicated by tag type from stream and advance read position. Byte swap if byte swapping is turned on and tag type is larger than a byte. Value is returned as a dng_urational.

tagType	Tag type of data stored in stream.
---------	------------------------------------

Return values

One	dng_urational.
-----	----------------

Exceptions

dng_exception	with fErrorCode equal to dng_error_end_of_file if not enough data in stream.
---------------	--

References Get_int32(), Get_uint32(), TagValue_int32(), TagValue_real64(), and TagValue_uint32().

The documentation for this class was generated from the following files:

- · dng_stream.h
- dng_stream.cpp

5.166 dng_stream_contiguous_read_hint Class Reference

Public Member Functions

• dng_stream_contiguous_read_hint (dng_stream &stream, dng_memory_allocator &allocator, uint64 offset, uint64 count)

The documentation for this class was generated from the following files:

- · dng_stream.h
- dng_stream.cpp

5.167 dng_stream_double_buffered Class Reference

Inheritance diagram for dng_stream_double_buffered:

dng_stream_double_buffered (dng_stream &stream, uint32 bufferSize=kDefaultBufferSize)

Protected Member Functions

- virtual uint64 DoGetLength ()
- virtual void DoRead (void *data, uint32 count, uint64 offset)

Additional Inherited Members

The documentation for this class was generated from the following file:

· dng stream.h

5.168 dng_string Class Reference

Public Member Functions

- dng_string (const dng_string &s)
- dng_string & operator= (const dng_string &s)
- const char * Get () const
- · bool IsASCII () const
- void Set (const char *s)
- void Set_ASCII (const char *s)
- void Set UTF8 (const char *s)
- uint32 Get_SystemEncoding (dng_memory_data &buffer) const
- void Set SystemEncoding (const char *s)
- bool ValidSystemEncoding () const
- void Set_JIS_X208_1990 (const char *s)
- void Set_UTF8_or_System (const char *s)
- uint32 Get_UTF16 (dng_memory_data &buffer) const
- void Set_UTF16 (const uint16 *s)
- · void Clear ()
- · void Truncate (uint32 maxBytes)
- bool TrimTrailingBlanks ()
- bool TrimLeadingBlanks ()
- bool IsEmpty () const
- · bool NotEmpty () const
- · uint32 Length () const
- bool operator== (const dng string &s) const
- bool operator!= (const dng_string &s) const
- bool Matches (const char *s, bool case_sensitive=false) const
- bool StartsWith (const char *s, bool case_sensitive=false) const
- bool EndsWith (const char *s, bool case_sensitive=false) const
- bool Contains (const char *s, bool case sensitive=false, int32 *match offset=NULL) const
- bool Replace (const char *old string, const char *new string, bool case sensitive=true)

- · void ReplaceChars (char oldChar, char newChar)
- bool TrimLeading (const char *s, bool case_sensitive=false)
- void Append (const char *s)
- void SetUppercase ()
- void SetLowercase ()
- void SetLineEndings (char ending)
- void SetLineEndingsToNewLines ()
- void SetLineEndingsToReturns ()
- void StripLowASCII ()
- void ForceASCII ()
- int32 Compare (const dng_string &s, bool digitsAsNumber=true) const
- void NormalizeAsCommaSeparatedNumbers ()

Static Public Member Functions

- static uint32 DecodeUTF8 (const char *&s, uint32 maxBytes=6, bool *isValid=NULL)
- static bool IsUTF8 (const char *s)
- static bool Matches (const char *t, const char *s, bool case_sensitive=false)

The documentation for this class was generated from the following files:

- dng_string.h
- · dng_string.cpp

5.169 dng_string_list Class Reference

Inheritance diagram for dng string list:

Public Member Functions

- · uint32 Count () const
- dng_string & operator[] (uint32 index)
- const dng_string & operator[] (uint32 index) const
- · void Allocate (uint32 minSize)
- void Insert (uint32 index, const dng string &s)
- void Append (const dng_string &s)
- bool Contains (const dng_string &s) const
- · void Clear ()

The documentation for this class was generated from the following files:

- · dng_string_list.h
- · dng string list.cpp

5.170 dng suite Struct Reference

Public Attributes

- ZeroBytesProc * ZeroBytes
- CopyBytesProc * CopyBytes
- SwapBytes16Proc * SwapBytes16
- SwapBytes32Proc * SwapBytes32
- SetArea8Proc * SetArea8
- SetArea16Proc * SetArea16
- SetArea32Proc * SetArea32
- CopyArea8Proc * CopyArea8
- CopyArea16Proc * CopyArea16
- CopyArea32Proc * CopyArea32
- CopyArea8 16Proc * CopyArea8_16
- CopyArea8_S16Proc * CopyArea8_S16
- CopyArea8 32Proc * CopyArea8 32
- CopyArea16_S16Proc * CopyArea16_S16
- CopyArea16 32Proc * CopyArea16 32
- CopyArea8 R32Proc * CopyArea8 R32
- CopyArea16 R32Proc * CopyArea16 R32
- CopyAreaS16_R32Proc * CopyAreaS16_R32
- CopyAreaR32 8Proc * CopyAreaR32 8
- CopyAreaR32 16Proc * CopyAreaR32 16
- CopyAreaR32 S16Proc * CopyAreaR32 S16
- RepeatArea8Proc * RepeatArea8
- RepeatArea16Proc * RepeatArea16
- RepeatArea32Proc * RepeatArea32
- ShiftRight16Proc * ShiftRight16
- BilinearRow16Proc * BilinearRow16
- BilinearRow32Proc * BilinearRow32
- BaselineABCtoRGBProc * BaselineABCtoRGB
- BaselineABCDtoRGBProc * BaselineABCDtoRGB
- BaselineHueSatMapProc * BaselineHueSatMap
- BaselineGrayToRGBProc * BaselineRGBtoGray
- BaselineRGBtoRGBProc * BaselineRGBtoRGB
- Baseline1DTableProc * Baseline1DTable
- BaselineRGBToneProc * BaselineRGBTone
- ResampleDown16Proc * ResampleDown16
- ResampleDown32Proc * ResampleDown32
- ResampleAcross16Proc * ResampleAcross16
- ResampleAcross32Proc * ResampleAcross32
- EqualBytesProc * EqualBytes
- EqualArea8Proc * EqualArea8
- EqualArea16Proc * EqualArea16
- EqualArea32Proc * EqualArea32
- VignetteMask16Proc * VignetteMask16
- Vignette16Proc * Vignette16
- Vignette32Proc * Vignette32
- MapArea16Proc * MapArea16
- BaselineMapPoly32Proc * BaselineMapPoly32

The documentation for this struct was generated from the following file:

· dng bottlenecks.h

5.171 dng_temperature Class Reference

Public Member Functions

- dng_temperature (real64 temperature, real64 tint)
- dng_temperature (const dng_xy_coord &xy)
- void SetTemperature (real64 temperature)
- real64 Temperature () const
- void SetTint (real64 tint)
- · real64 Tint () const
- void Set_xy_coord (const dng_xy_coord &xy)
- dng_xy_coord Get_xy_coord () const

The documentation for this class was generated from the following files:

- · dng_temperature.h
- dng_temperature.cpp

5.172 dng_tiff_directory Class Reference

Inheritance diagram for dng_tiff_directory:

Public Types

enum OffsetsBase { offsetsRelativeToStream = 0, offsetsRelativeToExplicitBase = 1, offsetsRelativeToIFD = 2 }

Public Member Functions

- void Add (const tiff_tag *tag)
- void SetChained (uint32 offset)
- uint32 Size () const
- void Put (dng_stream &stream, OffsetsBase offsetsBase=offsetsRelativeToStream, uint32 explicitBase=0) const

The documentation for this class was generated from the following files:

- · dng image writer.h
- · dng_image_writer.cpp

5.173 dng_tile_buffer Class Reference

Class to get resource acquisition is instantiation behavior for tile buffers. Can be dirty or constant tile access.

```
#include <dng_image.h>
```

Inheritance diagram for dng_tile_buffer:

Public Member Functions

- void SetRefData (void *refData)
- void * GetRefData () const

Protected Member Functions

• dng_tile_buffer (const dng_image &image, const dng_rect &tile, bool dirty)

Protected Attributes

- const dng_image & flmage
- void * fRefData

Additional Inherited Members

5.173.1 Detailed Description

Class to get resource acquisition is instantiation behavior for tile buffers. Can be dirty or constant tile access.

5.173.2 Constructor & Destructor Documentation

5.173.2.1 dng_tile_buffer()

Obtain a tile from an image.

image	Image tile will come from.
tile	Rectangle denoting extent of tile.
dirty	Flag indicating whether this is read-only or read-write acesss.

The documentation for this class was generated from the following files:

- dng_image.h
- · dng_image.cpp

5.174 dng_tile_iterator Class Reference

Inheritance diagram for dng_tile_iterator:

Public Member Functions

- dng_tile_iterator (const dng_image &image, const dng_rect &area)
- dng_tile_iterator (const dng_point &tileSize, const dng_rect &area)
- dng_tile_iterator (const dng_rect &tile, const dng_rect &area)
- virtual bool GetOneTile (dng_rect &tile)

Protected Attributes

- dng_rect fArea
- int32 fTileWidth
- int32 fTileHeight
- int32 fTileTop
- int32 fTileLeft
- int32 fRowLeft
- int32 fLeftPage
- · int32 fRightPage
- int32 fTopPage
- int32 fBottomPage
- · int32 fHorizontalPage
- int32 fVerticalPage

The documentation for this class was generated from the following files:

- · dng_tile_iterator.h
- dng_tile_iterator.cpp

5.175 dng_tile_reverse_iterator Class Reference

Inheritance diagram for dng_tile_reverse_iterator:

Public Member Functions

- dng_tile_reverse_iterator (const dng_image &image, const dng_rect &area)
- dng_tile_reverse_iterator (const dng_point &tileSize, const dng_rect &area)
- dng_tile_reverse_iterator (const dng_rect &tile, const dng_rect &area)
- virtual bool GetOneTile (dng_rect &tile)

Public Attributes

- std::vector < dng_rect > fTiles
- · size t flndex

The documentation for this class was generated from the following files:

- · dng_tile_iterator.h
- dng_tile_iterator.cpp

5.176 dng_time_zone Class Reference

Class for holding a time zone.

```
#include <dng_date_time.h>
```

Public Member Functions

- void Clear ()
- · void SetOffsetHours (int32 offset)
- void SetOffsetMinutes (int32 offset)
- void SetOffsetSeconds (int32 offset)
- bool IsValid () const
- bool NotValid () const
- int32 OffsetMinutes () const
- bool IsExactHourOffset () const
- int32 ExactHourOffset () const
- dng_string Encode_ISO_8601 () const

5.176.1 Detailed Description

Class for holding a time zone.

The documentation for this class was generated from the following files:

- · dng_date_time.h
- · dng_date_time.cpp

5.177 dng_timer Class Reference

Inheritance diagram for dng_timer:

Public Member Functions

• dng_timer (const char *message)

The documentation for this class was generated from the following files:

- dng_utils.h
- · dng_utils.cpp

5.178 dng_tone_curve Class Reference

Public Member Functions

- bool operator== (const dng_tone_curve &curve) const
- bool operator!= (const dng_tone_curve &curve) const
- void SetNull ()
- · bool IsNull () const
- · void SetInvalid ()
- bool IsValid () const
- · void Solve (dng_spline_solver &solver) const

Public Attributes

dng_std_vector < dng_point_real64 > fCoord

The documentation for this class was generated from the following files:

- dng_tone_curve.h
- dng_tone_curve.cpp

5.179 dng_tone_curve_acr3_default Class Reference

Default ACR3 tone curve.

```
#include <dng_render.h>
```

Inheritance diagram for dng_tone_curve_acr3_default:

Public Member Functions

- virtual real64 Evaluate (real64 x) const Returns output value for a given input tone.
- virtual real64 EvaluateInverse (real64 x) const Returns nearest input value for a given output tone.

Static Public Member Functions

• static const dng_1d_function & Get ()

5.179.1 Detailed Description

Default ACR3 tone curve.

The documentation for this class was generated from the following files:

- · dng_render.h
- · dng_render.cpp

5.180 dng_uncopyable Class Reference

Inheritance diagram for dng_uncopyable:

The documentation for this class was generated from the following file:

• dng_uncopyable.h

5.181 dng_unlock_mutex Class Reference

Inheritance diagram for dng_unlock_mutex:

- dng unlock mutex (dng mutex *mutex)
- dng_unlock_mutex (dng_mutex &mutex)

The documentation for this class was generated from the following files:

- · dng_mutex.h
- · dng_mutex.cpp

5.182 dng_urational Class Reference

Public Member Functions

- dng_urational (uint32 nn, uint32 dd)
- · void Clear ()
- bool IsValid () const
- bool NotValid () const
- bool operator== (const dng_urational &r) const
- bool operator!= (const dng_urational &r) const
- real64 **As real64** () const
- void **Set_real64** (real64 x, uint32 dd=0)
- void ReduceByFactor (uint32 factor)

Public Attributes

- uint32 n
- uint32 **d**

The documentation for this class was generated from the following files:

- dng_rational.h
- dng_rational.cpp

5.183 dng_vector Class Reference

Class to represent 1-dimensional vector with up to kMaxColorPlanes components.

```
#include <dng_matrix.h>
```

Inheritance diagram for dng_vector:

- dng_vector (uint32 count)
- dng_vector (const dng_vector &v)
- · void Clear ()
- void SetIdentity (uint32 count)
- · uint32 Count () const
- real64 & operator [] (uint32 index)
- const real64 & operator [] (uint32 index) const
- bool **operator==** (const dng_vector &v) const
- bool operator!= (const dng_vector &v) const
- bool IsEmpty () const
- bool NotEmpty () const
- · real64 MaxEntry () const
- · real64 MinEntry () const
- void Scale (real64 factor)
- · void Round (real64 factor)
- dng_matrix AsDiagonal () const
- dng_matrix AsColumn () const

Protected Attributes

- uint32 fCount
- real64 fData [kMaxColorPlanes]

5.183.1 Detailed Description

Class to represent 1-dimensional vector with up to kMaxColorPlanes components.

The documentation for this class was generated from the following files:

- dng_matrix.h
- · dng_matrix.cpp

5.184 dng_vector_3 Class Reference

A 3-element vector.

#include <dng_matrix.h>

Inheritance diagram for dng_vector_3:

- dng_vector_3 (const dng_vector &v)
- dng_vector_3 (real64 a0, real64 a1, real64 a2)

Additional Inherited Members

5.184.1 Detailed Description

A 3-element vector.

The documentation for this class was generated from the following files:

- · dng_matrix.h
- · dng_matrix.cpp

5.185 dng_vector_4 Class Reference

A 4-element vector.

#include <dng_matrix.h>

Inheritance diagram for dng_vector_4:

Public Member Functions

- dng_vector_4 (const dng_vector &v)
- dng_vector_4 (real64 a0, real64 a1, real64 a2, real64 a3)

Additional Inherited Members

5.185.1 Detailed Description

A 4-element vector.

The documentation for this class was generated from the following files:

- dng_matrix.h
- · dng_matrix.cpp

5.186 dng_vignette_radial_function Class Reference

Inheritance diagram for dng_vignette_radial_function:

Public Member Functions

- dng_vignette_radial_function (const dng_vignette_radial_params ¶ms)
- virtual real64 Evaluate (real64 x) const

Protected Attributes

const dng_vignette_radial_params fParams

5.186.1 Member Function Documentation

5.186.1.1 Evaluate()

Return the mapping for value x. This method must be implemented by a derived class of dng_1d_function and the derived class determines the lookup method and function used.

Parameters

x A value between 0.0 and 1.0 (inclusive).

Return values

Mapped value for x

Implements dng_1d_function.

References DNG_REQUIRE.

The documentation for this class was generated from the following file:

· dng lens correction.cpp

5.187 dng_vignette_radial_params Class Reference

Radially-symmetric vignette (peripheral illuminational falloff) correction parameters.

```
#include <dng_lens_correction.h>
```

Public Member Functions

- dng_vignette_radial_params (const dng_std_vector< real64 > ¶ms, const dng_point_real64 ¢er)
- dng_vignette_radial_params (const dng_vignette_radial_params ¶ms)
- bool IsNOP () const
- bool IsValid () const
- · void Dump () const

Public Attributes

- dng_std_vector< real64 > fParams
- dng_point_real64 fCenter

Static Public Attributes

static const uint32 kNumTerms = 5

5.187.1 Detailed Description

Radially-symmetric vignette (peripheral illuminational falloff) correction parameters.

The documentation for this class was generated from the following files:

- dng_lens_correction.h
- dng_lens_correction.cpp

5.188 dng_warp_params Class Reference

Abstract base class holding common warp opcode parameters (e.g., number of planes, optical center) and common warp routines.

```
#include <dng_lens_correction.h>
```

Inheritance diagram for dng_warp_params:

• dng warp params ()

Create empty (invalid) warp parameters.

- dng_warp_params (uint32 planes, const dng_point_real64 &fCenter)
- virtual bool IsNOPAII () const

Is the entire correction a NOP for all planes?

virtual bool IsNOP (uint32 plane) const

Is the entire correction a NOP for the specified plane?

virtual bool IsRadNOPAII () const

Is the radial correction a NOP for all planes?

virtual bool IsRadNOP (uint32 plane) const

Is the radial correction a NOP for the specified plane?

virtual bool IsTanNOPAII () const

Is the tangential correction a NOP for all planes?

virtual bool IsTanNOP (uint32 plane) const

Is the tangential correction a NOP for the specified plane?

· virtual bool IsValid () const

Do these warp params appear valid?

virtual bool IsValidForNegative (const dng_negative &negative) const

Are these warp params valid for the specified negative?

virtual void PropagateToAllPlanes (uint32 totalPlanes)=0

Propagate warp parameters from first plane to all other planes.

- virtual real64 Evaluate (uint32 plane, real64 r) const =0
- virtual real64 EvaluateInverse (uint32 plane, real64 r) const
- virtual real64 EvaluateRatio (uint32 plane, real64 r2) const =0
- virtual dng_point_real64 EvaluateTangential (uint32 plane, real64 r2, const dng_point_real64 &diff, const dng_point_real64 &diff2) const =0
- dng_point_real64 EvaluateTangential2 (uint32 plane, const dng_point_real64 &diff) const
- dng point real64 EvaluateTangential3 (uint32 plane, real64 r2, const dng point real64 &diff) const
- virtual real64 MaxSrcRadiusGap (real64 maxDstGap) const =0
- virtual dng_point_real64 MaxSrcTanGap (dng_point_real64 minDst, dng_point_real64 maxDst) const =0
- virtual real64 SafeMinRatio () const =0
- virtual real64 SafeMaxRatio () const =0
- · virtual void Dump () const

Debug parameters.

Public Attributes

- · uint32 fPlanes
- dng_point_real64 fCenter

5.188.1 Detailed Description

Abstract base class holding common warp opcode parameters (e.g., number of planes, optical center) and common warp routines.

5.188.2 Constructor & Destructor Documentation

5.188.2.1 dng_warp_params()

Create warp parameters with specified number of planes and image center.

Parameters

planes	The number of planes of parameters specified: It must be either 1 or equal to the number of planes of the image to be processed.
fCenter	The image center in relative coordinates.

References DNG_ASSERT, and kMaxColorPlanes.

5.188.3 Member Function Documentation

5.188.3.1 Evaluate()

Evaluate the 1D radial warp function for the specified plane. Parameter r is the destination (i.e., corrected) normalized radius, i.e., the normalized Euclidean distance between a corrected pixel position and the optical center in the image. r lies in the range [0,1]. The returned result is non-negative.

Implemented in dng_warp_params_fisheye, and dng_warp_params_rectilinear.

Referenced by EvaluateInverse().

5.188.3.2 EvaluateInverse()

Compute and return the inverse of Evaluate () above. The base implementation uses Newton's method to perform the inversion. Parameter r is the source (i.e., uncorrected) normalized radius, i.e., normalized Euclidean distance between a corrected pixel position and the optical center in the image. Both r and the computed result are non-negative.

References Evaluate().

5.188.3.3 EvaluateRatio()

Evaluate the 1D radial warp ratio function for the specified plane. Parameter r2 is the square of the destination (i.e., corrected) normalized radius, i.e., the square of the normalized Euclidean distance between a corrected pixel position and the optical center in the image. r2 must lie in the range [0,1]. Note that this is different than the Evaluate () function, above, in that the argument to EvaluateRatio () is the square of the radius, not the radius itself. The returned result is non-negative. Mathematically, EvaluateRatio (r * r) is the same as Evaluate (r) / r.

Implemented in dng_warp_params_fisheye, and dng_warp_params_rectilinear.

5.188.3.4 EvaluateTangential()

Evaluate the 2D tangential warp for the specified plane. Parameter r2 is the square of the destination (i.e., corrected) normalized radius, i.e., the square of the normalized Euclidean distance between a corrected pixel position P and the optical center in the image. r2 must lie in the range [0,1]. diff contains the vertical and horizontal Euclidean distances (in pixels) between P and the optical center. diff2 contains the squares of the vertical and horizontal Euclidean distances (in pixels) between P and the optical center. The returned result is the tangential warp offset, measured in pixels.

Implemented in dng_warp_params_fisheye, and dng_warp_params_rectilinear.

Referenced by EvaluateTangential2(), and EvaluateTangential3().

5.188.3.5 EvaluateTangential2()

Evaluate the 2D tangential warp for the specified plane. diff contains the vertical and horizontal Euclidean distances (in pixels) between the destination (i.e., corrected) pixel position and the optical center in the image. The returned result is the tangential warp offset, measured in pixels.

References EvaluateTangential().

Referenced by dng_warp_params_rectilinear::MaxSrcTanGap().

5.188.3.6 EvaluateTangential3()

Evaluate the 2D tangential warp for the specified plane. Parameter r2 is the square of the destination (i.e., corrected) normalized radius, i.e., the square of the normalized Euclidean distance between a corrected pixel position P and the optical center in the image. r2 must lie in the range [0,1]. diff contains the vertical and horizontal Euclidean distances (in pixels) between P and the optical center. The returned result is the tangential warp offset, measured in pixels.

References EvaluateTangential().

5.188.3.7 MaxSrcRadiusGap()

Compute and return the maximum warped radius gap. Let D be a rectangle in a destination (corrected) image. Let rDstFar and rDstNear be the farthest and nearest points to the image center, respectively. Then the specified parameter maxDstGap is the Euclidean distance between rDstFar and rDstNear. Warp D through this warp function to a closed and bounded (generally not rectangular) region S. Let rSrcfar and rSrcNear be the farthest and nearest points to the image center, respectively. This routine returns a value that is at least (rSrcFar - rSrcNear).

Implemented in dng warp params fisheye, and dng warp params rectilinear.

Referenced by dng_filter_warp::SrcTileSize().

5.188.3.8 MaxSrcTanGap()

Compute and return the maximum warped tangential gap. minDst is the top-left pixel of the image in normalized pixel coordinates. maxDst is the bottom-right pixel of the image in normalized pixel coordinates. MaxSrcTanGap () computes the maximum absolute shift in normalized pixels in the horizontal and vertical directions that can occur as a result of the tangential warp.

Implemented in dng_warp_params_fisheye, and dng_warp_params_rectilinear.

Referenced by dng_filter_warp::SrcTileSize().

5.188.3.9 SafeMaxRatio()

```
virtual real64 dng_warp_params::SafeMaxRatio ( ) const [pure virtual]
```

Compute and return the maximum src/dst ratio that should be used for this warp.

Implemented in dng_warp_params_fisheye, and dng_warp_params_rectilinear.

5.188.3.10 SafeMinRatio()

```
virtual real64 dng_warp_params::SafeMinRatio ( ) const [pure virtual]
```

Compute and return the minimum src/dst ratio that should be used for this warp.

Implemented in dng_warp_params_fisheye, and dng_warp_params_rectilinear.

The documentation for this class was generated from the following files:

- dng_lens_correction.h
- · dng lens correction.cpp

5.189 dng_warp_params_fisheye Class Reference

Warp parameters for fisheye camera model (radial component only). Note the restrictions described below.

```
#include <dng_lens_correction.h>
```

Inheritance diagram for dng warp params fisheye:

dng warp params fisheye ()

Create empty (invalid) fisheye warp parameters.

- dng_warp_params_fisheye (uint32 planes, const dng_vector radParams [], const dng_point_real64 &fCenter)
- · virtual bool IsRadNOP (uint32 plane) const

Is the radial correction a NOP for the specified plane?

• virtual bool IsTanNOP (uint32 plane) const

Is the tangential correction a NOP for the specified plane?

· virtual bool IsValid () const

Do these warp params appear valid?

virtual void PropagateToAllPlanes (uint32 totalPlanes)

Propagate warp parameters from first plane to all other planes.

- virtual real64 Evaluate (uint32 plane, real64 r) const
- virtual real64 EvaluateRatio (uint32 plane, real64 r2) const
- virtual dng_point_real64 EvaluateTangential (uint32 plane, real64 r2, const dng_point_real64 &diff, const dng_point_real64 &diff2) const
- virtual real64 MaxSrcRadiusGap (real64 maxDstGap) const
- virtual dng_point_real64 MaxSrcTanGap (dng_point_real64 minDst, dng_point_real64 maxDst) const
- virtual real64 SafeMinRatio () const
- virtual real64 SafeMaxRatio () const
- · virtual void Dump () const

Debug parameters.

Public Attributes

dng_vector fRadParams [kMaxColorPlanes]

5.189.1 Detailed Description

Warp parameters for fisheye camera model (radial component only). Note the restrictions described below.

5.189.2 Constructor & Destructor Documentation

5.189.2.1 dng_warp_params_fisheye()

Create rectilinear warp parameters with the specified number of planes, radial component terms, and image center in relative coordinates.

5.189.3 Member Function Documentation

5.189.3.1 Evaluate()

Evaluate the 1D radial warp function for the specified plane. Parameter r is the destination (i.e., corrected) normalized radius, i.e., the normalized Euclidean distance between a corrected pixel position and the optical center in the image. r lies in the range [0,1]. The returned result is non-negative.

Implements dng_warp_params.

Referenced by EvaluateRatio(), and MaxSrcRadiusGap().

5.189.3.2 EvaluateRatio()

Evaluate the 1D radial warp ratio function for the specified plane. Parameter r2 is the square of the destination (i.e., corrected) normalized radius, i.e., the square of the normalized Euclidean distance between a corrected pixel position and the optical center in the image. r2 must lie in the range [0,1]. Note that this is different than the Evaluate () function, above, in that the argument to EvaluateRatio () is the square of the radius, not the radius itself. The returned result is non-negative. Mathematically, EvaluateRatio (r * r) is the same as Evaluate r).

Implements dng warp params.

References Evaluate().

5.189.3.3 EvaluateTangential()

Evaluate the 2D tangential warp for the specified plane. Parameter r2 is the square of the destination (i.e., corrected) normalized radius, i.e., the square of the normalized Euclidean distance between a corrected pixel position P and the optical center in the image. r2 must lie in the range [0,1]. diff contains the vertical and horizontal Euclidean distances (in pixels) between P and the optical center. diff2 contains the squares of the vertical and horizontal Euclidean distances (in pixels) between P and the optical center. The returned result is the tangential warp offset, measured in pixels.

Implements dng_warp_params.

References ThrowProgramError().

5.189.3.4 MaxSrcRadiusGap()

Compute and return the maximum warped radius gap. Let D be a rectangle in a destination (corrected) image. Let rDstFar and rDstNear be the farthest and nearest points to the image center, respectively. Then the specified parameter maxDstGap is the Euclidean distance between rDstFar and rDstNear. Warp D through this warp function to a closed and bounded (generally not rectangular) region S. Let rSrcfar and rSrcNear be the farthest and nearest points to the image center, respectively. This routine returns a value that is at least (rSrcFar - rSrcNear).

Implements dng_warp_params.

References DNG_REQUIRE, and Evaluate().

5.189.3.5 MaxSrcTanGap()

Compute and return the maximum warped tangential gap. minDst is the top-left pixel of the image in normalized pixel coordinates. maxDst is the bottom-right pixel of the image in normalized pixel coordinates. MaxSrcTanGap () computes the maximum absolute shift in normalized pixels in the horizontal and vertical directions that can occur as a result of the tangential warp.

Implements dng_warp_params.

5.189.3.6 SafeMaxRatio()

```
real64 dng_warp_params_fisheye::SafeMaxRatio ( ) const [virtual]
```

Compute and return the maximum src/dst ratio that should be used for this warp.

Implements dng_warp_params.

5.189.3.7 SafeMinRatio()

```
real64 dng_warp_params_fisheye::SafeMinRatio ( ) const [virtual]
```

Compute and return the minimum src/dst ratio that should be used for this warp.

Implements dng_warp_params.

The documentation for this class was generated from the following files:

- · dng lens correction.h
- · dng lens correction.cpp

5.190 dng_warp_params_rectilinear Class Reference

Warp parameters for pinhole perspective rectilinear (not fisheye) camera model. Supports radial and tangential (decentering) distortion correction parameters.

```
#include <dng_lens_correction.h>
```

Inheritance diagram for dng_warp_params_rectilinear:

Public Member Functions

dng_warp_params_rectilinear ()

Create empty (invalid) rectilinear warp parameters.

- dng_warp_params_rectilinear (uint32 planes, const dng_vector radParams [], const dng_vector tanParams [], const dng_point_real64 &fCenter)
- · virtual bool IsRadNOP (uint32 plane) const

Is the radial correction a NOP for the specified plane?

virtual bool IsTanNOP (uint32 plane) const

Is the tangential correction a NOP for the specified plane?

· virtual bool IsValid () const

Do these warp params appear valid?

virtual void PropagateToAllPlanes (uint32 totalPlanes)

Propagate warp parameters from first plane to all other planes.

- virtual real64 Evaluate (uint32 plane, real64 r) const
- virtual real64 EvaluateRatio (uint32 plane, real64 r2) const
- virtual dng_point_real64 EvaluateTangential (uint32 plane, real64 r2, const dng_point_real64 &diff, const dng_point_real64 &diff2) const
- virtual real64 MaxSrcRadiusGap (real64 maxDstGap) const
- virtual dng_point_real64 MaxSrcTanGap (dng_point_real64 minDst, dng_point_real64 maxDst) const
- · virtual real64 SafeMinRatio () const
- virtual real64 SafeMaxRatio () const
- virtual void Dump () const

Debug parameters.

Public Attributes

- dng_vector fRadParams [kMaxColorPlanes]
- dng vector fTanParams [kMaxColorPlanes]

5.190.1 Detailed Description

Warp parameters for pinhole perspective rectilinear (not fisheye) camera model. Supports radial and tangential (decentering) distortion correction parameters.

Note the restrictions described below.

5.190.2 Constructor & Destructor Documentation

5.190.2.1 dng_warp_params_rectilinear()

Create rectilinear warp parameters with the specified number of planes, radial component terms, tangential component terms, and image center in relative coordinates.

5.190.3 Member Function Documentation

5.190.3.1 Evaluate()

Evaluate the 1D radial warp function for the specified plane. Parameter r is the destination (i.e., corrected) normalized radius, i.e., the normalized Euclidean distance between a corrected pixel position and the optical center in the image. r lies in the range [0,1]. The returned result is non-negative.

Implements dng_warp_params.

Referenced by MaxSrcRadiusGap().

5.190.3.2 EvaluateRatio()

Evaluate the 1D radial warp ratio function for the specified plane. Parameter r2 is the square of the destination (i.e., corrected) normalized radius, i.e., the square of the normalized Euclidean distance between a corrected pixel position and the optical center in the image. r2 must lie in the range [0,1]. Note that this is different than the Evaluate () function, above, in that the argument to EvaluateRatio () is the square of the radius, not the radius itself. The returned result is non-negative. Mathematically, EvaluateRatio (r * r) is the same as Evaluate (r) / r.

Implements dng warp params.

5.190.3.3 EvaluateTangential()

Evaluate the 2D tangential warp for the specified plane. Parameter r2 is the square of the destination (i.e., corrected) normalized radius, i.e., the square of the normalized Euclidean distance between a corrected pixel position P and the optical center in the image. r2 must lie in the range [0,1]. diff contains the vertical and horizontal Euclidean distances (in pixels) between P and the optical center. diff2 contains the squares of the vertical and horizontal Euclidean distances (in pixels) between P and the optical center. The returned result is the tangential warp offset, measured in pixels.

Implements dng_warp_params.

5.190.3.4 MaxSrcRadiusGap()

Compute and return the maximum warped radius gap. Let D be a rectangle in a destination (corrected) image. Let rDstFar and rDstNear be the farthest and nearest points to the image center, respectively. Then the specified parameter maxDstGap is the Euclidean distance between rDstFar and rDstNear. Warp D through this warp function to a closed and bounded (generally not rectangular) region S. Let rSrcfar and rSrcNear be the farthest and nearest points to the image center, respectively. This routine returns a value that is at least (rSrcFar - rSrcNear).

Implements dng_warp_params.

References Evaluate().

5.190.3.5 MaxSrcTanGap()

Compute and return the maximum warped tangential gap. minDst is the top-left pixel of the image in normalized pixel coordinates. maxDst is the bottom-right pixel of the image in normalized pixel coordinates. MaxSrcTanGap () computes the maximum absolute shift in normalized pixels in the horizontal and vertical directions that can occur as a result of the tangential warp.

Implements dng_warp_params.

References dng warp params::EvaluateTangential2().

5.190.3.6 SafeMaxRatio()

```
real64 dng_warp_params_rectilinear::SafeMaxRatio ( ) const [virtual]
```

Compute and return the maximum src/dst ratio that should be used for this warp.

Implements dng_warp_params.

5.190.3.7 SafeMinRatio()

```
real64 dng_warp_params_rectilinear::SafeMinRatio ( ) const [virtual]
```

Compute and return the minimum src/dst ratio that should be used for this warp.

Implements dng_warp_params.

The documentation for this class was generated from the following files:

- · dng lens correction.h
- dng_lens_correction.cpp

5.191 dng_write_tiles_task Class Reference

Inheritance diagram for dng_write_tiles_task:

- dng_write_tiles_task (dng_image_writer &imageWriter, dng_host &host, const dng_ifd &ifd, dng_basic_tag_set &basic, dng_stream &stream, const dng_image &image, uint32 fakeChannels, uint32 tilesDown, uint32 tiles← Across, uint32 compressedSize, uint32 uncompressedSize)
- void Process (uint32 threadIndex, const dng_rect &tile, dng_abort_sniffer *sniffer)
 and progress updates.

Protected Member Functions

- void ProcessTask (uint32 tileIndex, AutoPtr< dng_memory_block > &compressedBuffer, AutoPtr< dng_memory_block > &subTileBlockBuffer, AutoPtr< dng_memory_block > &subTileBlockBuffer, AutoPtr< dng_memory_block > &tempBuffer, uint32 &tileByteCount, dng_memory_stream &tileStream, dng_abort_sniffer
 *sniffer)
- void WriteTask (uint32 tileIndex, uint32 tileByteCount, dng_memory_stream &tileStream, dng_abort_sniffer *sniffer)

Protected Attributes

- · dng image writer & flmageWriter
- dng host & fHost
- const dng ifd & fIFD
- · dng basic tag set & fBasic
- dng_stream & fStream
- · const dng image & flmage
- · uint32 fFakeChannels
- · uint32 fTilesDown
- uint32 fTilesAcross
- uint32 fCompressedSize
- uint32 fUncompressedSize
- std::atomic uint fNextTileIndex
- dng_mutex fMutex
- dng_condition fCondition
- bool fTaskFailed
- uint32 fWriteTileIndex

Additional Inherited Members

5.191.1 Member Function Documentation

5.191.1.1 Process()

and progress updates.

Process one tile or fully partitioned area. This method is overridden by derived classes to implement the actual image processing. Note that the sniffer can be ignored if it is certain that a processing task will complete very quickly. This method should never be called directly but rather accessed via Process. There is no allocator parameter as all allocation should be done in Start.

Parameters

threadIndex	0 to threadCount - 1 index indicating which thread this is. (Can be used to get a thread-specific buffer allocated in the Start method.)
tile	Area to process.
sniffer	dng_abort_sniffer to use to check for user cancellation

Implements dng area task.

References dng_host::Allocate(), dng_host::Allocator(), and AutoPtr< T >::Reset().

The documentation for this class was generated from the following files:

- · dng_image_writer.h
- · dng_image_writer.cpp

5.192 dng_xmp Class Reference

Public Member Functions

- dng_xmp (dng_memory_allocator &allocator)
- dng_xmp (const dng_xmp &xmp)
- virtual dng_xmp * Clone () const
- dng_memory_allocator & Allocator () const
- void Parse (dng_host &host, const void *buffer, uint32 count)
- dng_memory_block * Serialize (bool asPacket=false, uint32 targetBytes=0, uint32 padBytes=4096, bool forJ

 PEG=false, bool compact=true) const
- dng memory block * SerializeNonCompact () const
- void PackageForJPEG (AutoPtr< dng_memory_block > &stdBlock, AutoPtr< dng_memory_block > &extBlock, dng_string &extDigest) const
- void MergeFromJPEG (const dng xmp &xmp)
- bool HasMeta () const
- void RequireMeta ()
- void * GetPrivateMeta ()
- bool Exists (const char *ns, const char *path) const
- bool HasNameSpace (const char *ns) const
- bool IteratePaths (IteratePathsCallback *callback, void *callbackData, const char *ns=0, const char *path=0)
- void Remove (const char *ns, const char *path)
- void RemoveProperties (const char *ns)
- void RemoveEmptyStringOrArray (const char *ns, const char *path)
- void RemoveEmptyStringsAndArrays (const char *ns=0)
- void Set (const char *ns, const char *path, const char *text)
- bool GetString (const char *ns, const char *path, dng_string &s) const
- void SetString (const char *ns, const char *path, const dng_string &s)
- bool GetStringList (const char *ns, const char *path, dng_string_list &list) const
- void SetStringList (const char *ns, const char *path, const dng_string_list &list, bool isBag=false)
- void SetStructField (const char *ns, const char *path, const char *fieldNS, const char *fieldName, const dng_string &s)

- void SetStructField (const char *ns, const char *path, const char *fieldNS, const char *fieldName, const char *s)
- void DeleteStructField (const char *ns, const char *path, const char *fieldNS, const char *fieldName)
- bool GetStructField (const char *ns, const char *path, const char *fieldNS, const char *fieldName, dng_string &s) const
- void SetAltLangDefault (const char *ns, const char *path, const dng string &s)
- void **SetLocalString** (const char *ns, const char *path, const dng local string &s)
- bool GetAltLangDefault (const char *ns, const char *path, dng string &s, bool silent=false) const
- bool GetLocalString (const char *ns, const char *path, dng local string &s) const
- bool **GetBoolean** (const char *ns, const char *path, bool &x) const
- void SetBoolean (const char *ns, const char *path, bool x)
- bool Get_int32 (const char *ns, const char *path, int32 &x) const
- void Set_int32 (const char *ns, const char *path, int32 x, bool usePlus=false)
- bool **Get uint32** (const char *ns. const char *path, uint32 &x) const
- void Set uint32 (const char *ns, const char *path, uint32 x)
- bool Get_real64 (const char *ns, const char *path, real64 &x) const
- void Set real64 (const char *ns, const char *path, real64 x, uint32 places=6, bool trim=true, bool usePlus=false)
- bool Get_urational (const char *ns, const char *path, dng_urational &r) const
- void **Set_urational** (const char *ns, const char *path, const dng_urational &r)
- bool Get_srational (const char *ns, const char *path, dng_srational &r) const
- void **Set srational** (const char *ns, const char *path, const dng srational &r)
- bool GetFingerprint (const char *ns, const char *path, dng_fingerprint &print) const
- void SetFingerprint (const char *ns, const char *path, const dng fingerprint &print, bool allowInvalid=false)
- void SetVersion2to4 (const char *ns, const char *path, uint32 version)
- dng fingerprint GetIPTCDigest () const
- void SetIPTCDigest (dng_fingerprint &digest)
- void ClearIPTCDigest ()
- void IngestIPTC (dng_metadata &metadata, bool xmplsNewer=false)
- void RebuildIPTC (dng metadata &metadata, dng memory allocator, bool padForTIFF)
- virtual void SyncExif (dng_exif &exif, const dng_exif *originalExif=NULL, bool doingUpdateFromXMP=false, bool removeFromXMP=false)
- void ValidateStringList (const char *ns, const char *path)
- void ValidateMetadata ()
- void UpdateDateTime (const dng_date_time_info &dt)
- void UpdateMetadataDate (const dng_date_time_info &dt)
- void UpdateExifDates (dng exif &exif, bool removeFromXMP=false)
- · bool HasOrientation () const
- dng orientation GetOrientation () const
- void ClearOrientation ()
- void SetOrientation (const dng_orientation & orientation)
- void SyncOrientation (dng_negative &negative, bool xmplsMaster)
- void SyncOrientation (dng_metadata &metadata, bool xmpIsMaster)
- void ClearImageInfo ()
- void SetImageSize (const dng point &size)
- void SetSampleInfo (uint32 samplesPerPixel, uint32 bitsPerSample)
- void SetPhotometricInterpretation (uint32 pi)
- void SetResolution (const dng_resolution &res)
- void ComposeArrayItemPath (const char *ns, const char *arrayName, int32 itemNumber, dng_string &s) const
- void ComposeStructFieldPath (const char *ns, const char *structName, const char *fieldNS, const char *field←
 Name, dng string &s) const
- int32 CountArrayItems (const char *ns, const char *path) const

- void AppendArrayItem (const char *ns, const char *arrayName, const char *itemValue, bool isBag=true, bool propIsStruct=false)
- void DocOpsOpenXMP (const char *srcMIME)
- void DocOpsPrepareForSave (const char *srcMIME, const char *dstMIME, bool newPath=true)
- void DocOpsUpdateMetadata (const char *srcMIME)

Static Public Member Functions

- static dng string EncodeFingerprint (const dng fingerprint &f, bool allowInvalid=false)
- static dng_fingerprint DecodeFingerprint (const dng_string &s)

Protected Types

• enum { ignoreXMP = 1, preferXMP = 2, preferNonXMP = 4, removeXMP = 8 }

Protected Member Functions

- bool SyncString (const char *ns, const char *path, dng string &s, uint32 options=0)
- void SyncStringList (const char *ns, const char *path, dng_string_list &list, bool isBag=false, uint32 options=0)
- bool SyncAltLangDefault (const char *ns, const char *path, dng_string &s, uint32 options=0)
- void Sync uint32 (const char *ns, const char *path, uint32 &x, bool isDefault=false, uint32 options=0)
- void Sync_uint32_array (const char *ns, const char *path, uint32 *data, uint32 &count, uint32 maxCount, uint32 options=0)
- void Sync_urational (const char *ns, const char *path, dng_urational &r, uint32 options=0)
- void Sync srational (const char *ns, const char *path, dng srational &r, uint32 options=0)
- void **SyncIPTC** (dng_iptc &iptc, uint32 options)
- void SyncFlash (uint32 &flashState, uint32 &flashMask, uint32 options)
- void SyncExifDate (const char *ns, const char *path, dng_date_time_info &exifDateTime, bool canRemove←
 FromXMP, bool removeFromXMP, const dng_time_zone &fakeTimeZone)
- virtual void SyncApproximateFocusDistance (dng_exif &exif, const uint32 readOnly)
- virtual void SyncLensName (dng exif &exif)
- virtual void GenerateDefaultLensName (dng_exif &exif)

Static Protected Member Functions

- static void TrimDecimal (char *s)
- static dng_string EncodeGPSVersion (uint32 version)
- static uint32 DecodeGPSVersion (const dng string &s)
- static dng_string EncodeGPSCoordinate (const dng_string &ref, const dng_urational *coord)
- static void DecodeGPSCoordinate (const dng string &s, dng string &ref, dng urational *coord)
- static dng_string EncodeGPSDateTime (const dng_string &dateStamp, const dng_urational *timeStamp)
- static void DecodeGPSDateTime (const dng string &s, dng string &dateStamp, dng urational *timeStamp)

Protected Attributes

- dng_memory_allocator & fAllocator
- dng_xmp_sdk * fSDK

The documentation for this class was generated from the following files:

- dng_xmp.h
- dng_xmp.cpp

5.193 dng_xmp_namespace Struct Reference

Public Attributes

- · const char * fullName
- · const char * shortName

The documentation for this struct was generated from the following file:

· dng_xmp_sdk.h

5.194 dng_xmp_private Class Reference

Public Member Functions

• dng_xmp_private (const dng_xmp_private &xmp)

Public Attributes

• SXMPMeta * fMeta

The documentation for this class was generated from the following file:

dng_xmp_sdk.cpp

5.195 dng_xmp_sdk Class Reference

Public Member Functions

- dng xmp sdk (const dng xmp sdk &sdk)
- · bool HasMeta () const
- void RequireMeta ()
- void * GetPrivateMeta ()
- void Parse (dng_host &host, const char *buffer, uint32 count)
- bool Exists (const char *ns, const char *path) const
- void AppendArrayItem (const char *ns, const char *arrayName, const char *itemValue, bool isBag=true, bool propIsStruct=false)
- int32 CountArrayItems (const char *ns, const char *path) const
- bool HasNameSpace (const char *ns) const
- void Remove (const char *ns, const char *path)
- void RemoveProperties (const char *ns)
- bool IsEmptyString (const char *ns, const char *path)
- bool IsEmptyArray (const char *ns, const char *path)
- void ComposeArrayItemPath (const char *ns, const char *arrayName, int32 itemNumber, dng string &s) const
- void ComposeStructFieldPath (const char *ns, const char *structName, const char *fieldNS, const char *field ← Name, dng_string &s) const
- bool GetNamespacePrefix (const char *uri, dng string &s) const
- bool **GetString** (const char *ns, const char *path, dng_string &s) const
- void ValidateStringList (const char *ns, const char *path)
- bool GetStringList (const char *ns, const char *path, dng string list &list) const
- bool GetAltLangDefault (const char *ns, const char *path, dng_string &s, bool silent=false) const
- bool GetLocalString (const char *ns, const char *path, dng_local_string &s) const
- bool GetStructField (const char *ns, const char *path, const char *fieldNS, const char *fieldName, dng_string &s) const
- void **Set** (const char *ns, const char *path, const char *text)
- void SetString (const char *ns, const char *path, const dng string &s)
- void **SetStringList** (const char *ns, const char *path, const dng_string_list &list, bool isBag)
- void SetAltLangDefault (const char *ns, const char *path, const dng string &s)
- void SetLocalString (const char *ns, const char *path, const dng local string &s)
- void SetStructField (const char *ns, const char *path, const char *fieldNS, const char *fieldName, const char *text)
- void DeleteStructField (const char *ns, const char *structName, const char *fieldNS, const char *fieldName)
- dng_memory_block * Serialize (dng_memory_allocator &allocator, bool asPacket, uint32 targetBytes, uint32 padBytes, bool forJPEG, bool compact) const
- void PackageForJPEG (dng_memory_allocator &allocator, AutoPtr< dng_memory_block > &stdBlock, AutoPtr< dng_memory_block > &extBlock, dng_string &extDigest) const
- void MergeFromJPEG (const dng_xmp_sdk *xmp)
- void ReplaceXMP (dng xmp sdk *xmp)
- bool **IteratePaths** (IteratePathsCallback *callback, void *callbackData=NULL, const char *startNS=0, const char *startingPath=0)
- void DocOpsOpenXMP (const char *srcMIME)
- void DocOpsPrepareForSave (const char *srcMIME, const char *dstMIME, bool newPath=true)
- void DocOpsUpdateMetadata (const char *srcMIME)

Static Public Member Functions

- static void InitializeSDK (dng_xmp_namespace *extraNamespaces=NULL, const char *software=NULL)
- static void TerminateSDK ()

The documentation for this class was generated from the following files:

- · dng_xmp_sdk.h
- · dng_xmp_sdk.cpp

5.196 dng_xy_coord Class Reference

Public Member Functions

- dng xy coord (real64 xx, real64 yy)
- · void Clear ()
- bool IsValid () const
- · bool NotValid () const
- bool operator== (const dng_xy_coord &coord) const
- bool operator!= (const dng_xy_coord &coord) const

Public Attributes

- real64 x
- real64 y

The documentation for this class was generated from the following file:

• dng_xy_coord.h

5.197 exif_tag_set Class Reference

Inheritance diagram for exif_tag_set:

Public Member Functions

- exif_tag_set (dng_tiff_directory &directory, const_dng_exif &exif, bool makerNoteSafe=false, const_void *makerNoteData=NULL, uint32 makerNoteLength=0, bool insideDNG=false)
- void Locate (uint32 offset)
- uint32 Size () const
- void Put (dng stream &stream) const

Protected Member Functions

void AddLinks (dng_tiff_directory &directory)

Protected Attributes

- dng_tiff_directory fExifIFD
- dng_tiff_directory fGPSIFD

The documentation for this class was generated from the following files:

- dng_image_writer.h
- · dng_image_writer.cpp

5.198 dng_hue_sat_map::HSBModify Struct Reference

```
#include <dng_hue_sat_map.h>
```

Public Attributes

- · real32 fHueShift
- · real32 fSatScale
- · real32 fValScale

5.198.1 Detailed Description

HSV delta signal. fHueShift is a delta value specified in degrees. This parameter, added to the original hue, determines the output hue. A value of 0 means no change. fSatScale and fValScale are scale factors that are applied to saturation and value components, respectively. These scale factors, multiplied by the original saturation and value, determine the output saturation and value. A scale factor of 1.0 means no change.

The documentation for this struct was generated from the following file:

• dng_hue_sat_map.h

5.199 HuffmanTable Struct Reference

Public Attributes

- uint8 bits [17]
- uint8 huffval [256]
- uint16 mincode [17]
- int32 maxcode [18]
- int16 valptr [17]
- int32 numbits [256]
- int32 value [256]
- uint16 ehufco [256]
- int8 ehufsi [256]

The documentation for this struct was generated from the following file:

dng_lossless_jpeg.cpp

5.200 JpegComponentInfo Struct Reference

Public Attributes

- int16 componentId
- int16 componentIndex
- int16 hSampFactor
- int16 vSampFactor
- int16 dcTblNo

The documentation for this struct was generated from the following file:

dng_lossless_jpeg.cpp

5.201 mosaic_tag_set Class Reference

Public Member Functions

• mosaic_tag_set (dng_tiff_directory &directory, const dng_mosaic_info &info)

The documentation for this class was generated from the following file:

• dng_image_writer.cpp

5.202 PreserveStreamReadPosition Class Reference

Inheritance diagram for PreserveStreamReadPosition:

Public Member Functions

PreserveStreamReadPosition (dng_stream &stream)

The documentation for this class was generated from the following file:

· dng_stream.h

5.203 profile_tag_set Class Reference

Public Member Functions

• profile_tag_set (dng_tiff_directory &directory, const dng_camera_profile &profile)

The documentation for this class was generated from the following file:

· dng image writer.cpp

5.204 range_tag_set Class Reference

Public Member Functions

• range_tag_set (dng_tiff_directory &directory, const dng_negative &negative)

The documentation for this class was generated from the following file:

• dng_image_writer.cpp

5.205 ruvt Struct Reference

Public Attributes

- real64 r
- real64 u
- real64 v
- real64 t

The documentation for this struct was generated from the following file:

• dng_temperature.cpp

5.206 SIMDTraits < SIMDType > Class Template Reference

Static Public Attributes

- static const int kVecSizeFloat = 1
- static const int kVecSizeInt32 = 1

The documentation for this class was generated from the following file:

· dng_simd_type.h

5.207 SIMDTraits < AVX > Class Template Reference

Static Public Attributes

- static const int kVecSizeFloat = 8
- static const int kVecSizeInt32 = 4

The documentation for this class was generated from the following file:

· dng_simd_type.h

5.208 SIMDTraits < AVX2 > Class Template Reference

Static Public Attributes

- static const int kVecSizeFloat = 8
- static const int kVecSizeInt32 = 8

The documentation for this class was generated from the following file:

dng_simd_type.h

5.209 SIMDTraits < AVX512_SKX > Class Template Reference

Static Public Attributes

- static const int kVecSizeFloat = 16
- static const int kVecSizeInt32 = 16

The documentation for this class was generated from the following file:

dng_simd_type.h

5.210 SIMDTraits < SSE2 > Class Template Reference

Static Public Attributes

- static const int kVecSizeFloat = 4
- static const int kVecSizeInt32 = 4

The documentation for this class was generated from the following file:

· dng_simd_type.h

5.211 tag_cfa_pattern Class Reference

Inheritance diagram for tag_cfa_pattern:

Public Member Functions

- tag_cfa_pattern (uint16 code, uint32 rows, uint32 cols, const uint8 *pattern)
- virtual void Put (dng_stream &stream) const

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.212 tag_data_ptr Class Reference

Inheritance diagram for tag_data_ptr:

- tag_data_ptr (uint16 code, uint16 type, uint32 count, const void *data)
- void SetData (const void *data)
- virtual void Put (dng_stream &stream) const

Protected Attributes

· const void * fData

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.213 tag_dng_noise_profile Class Reference

Inheritance diagram for tag_dng_noise_profile:

Public Member Functions

• tag dng noise profile (const dng noise profile &profile)

Protected Attributes

• real64 fValues [2 *kMaxColorPlanes]

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.214 tag_encoded_text Class Reference

Inheritance diagram for tag_encoded_text:

Public Member Functions

- tag_encoded_text (uint16 code, const dng_string &text)
- virtual void Put (dng_stream &stream) const

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.215 tag_exif_date_time Class Reference

Inheritance diagram for tag_exif_date_time:

Public Member Functions

• tag_exif_date_time (uint16 code, const dng_date_time &dt)

Additional Inherited Members

The documentation for this class was generated from the following files:

- · dng image writer.h
- dng_image_writer.cpp

5.216 tag_icc_profile Class Reference

Inheritance diagram for tag_icc_profile:

• tag_icc_profile (const void *profileData, uint32 profileSize)

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.217 tag_int16_ptr Class Reference

Inheritance diagram for tag_int16_ptr:

Public Member Functions

• tag_int16_ptr (uint16 code, const int16 *data, uint32 count=1)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.218 tag_iptc Class Reference

Inheritance diagram for tag_iptc:

- tag_iptc (const void *data, uint32 length)
- virtual void Put (dng_stream &stream) const

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.219 tag_matrix Class Reference

Inheritance diagram for tag_matrix:

Public Member Functions

• tag_matrix (uint16 code, const dng_matrix &m)

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.220 tag_real64 Class Reference

Inheritance diagram for tag_real64:

Public Member Functions

- tag_real64 (uint16 code, real64 value=0.0)
- void **Set** (real64 value)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.221 tag_srational Class Reference

Inheritance diagram for tag_srational:

Public Member Functions

• tag_srational (uint16 code, const dng_srational &value)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.222 tag_srational_ptr Class Reference

Inheritance diagram for tag_srational_ptr:

Public Member Functions

• tag_srational_ptr (uint16 code, const dng_srational *data=NULL, uint32 count=1)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.223 tag_string Class Reference

Inheritance diagram for tag_string:

- tag_string (uint16 code, const dng_string &s, bool forceASCII=true)
- virtual void Put (dng_stream &stream) const

Protected Attributes

• dng_string fString

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.224 tag_uint16 Class Reference

Inheritance diagram for tag_uint16:

Public Member Functions

- tag_uint16 (uint16 code, uint16 value=0)
- void Set (uint16 value)

Additional Inherited Members

The documentation for this class was generated from the following file:

· dng_image_writer.h

5.225 tag_uint16_ptr Class Reference

Inheritance diagram for tag_uint16_ptr:

Public Member Functions

• tag_uint16_ptr (uint16 code, const uint16 *data, uint32 count=1)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.226 tag_uint32 Class Reference

Inheritance diagram for tag_uint32:

Public Member Functions

- tag_uint32 (uint16 code, uint32 value=0)
- · void Set (uint32 value)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.227 tag_uint32_ptr Class Reference

Inheritance diagram for tag_uint32_ptr:

Public Member Functions

• tag_uint32_ptr (uint16 code, const uint32 *data, uint32 count=1)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.228 tag_uint8 Class Reference

Inheritance diagram for tag_uint8:

- tag_uint8 (uint16 code, uint8 value=0)
- · void Set (uint8 value)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.229 tag_uint8_ptr Class Reference

Inheritance diagram for tag_uint8_ptr:

Public Member Functions

• tag_uint8_ptr (uint16 code, const uint8 *data, uint32 count=1)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.230 tag_urational Class Reference

Inheritance diagram for tag_urational:

Public Member Functions

• tag_urational (uint16 code, const dng_urational &value)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.231 tag_urational_ptr Class Reference

Inheritance diagram for tag_urational_ptr:

Public Member Functions

• tag_urational_ptr (uint16 code, const dng_urational *data=NULL, uint32 count=1)

Additional Inherited Members

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.232 tag_xmp Class Reference

Inheritance diagram for tag_xmp:

Public Member Functions

tag_xmp (const dng_xmp *xmp)

Additional Inherited Members

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.233 TempBigEndian Class Reference

Inheritance diagram for TempBigEndian:

Public Member Functions

• TempBigEndian (dng_stream &stream, bool bigEndian=true)

The documentation for this class was generated from the following files:

- · dng_stream.h
- · dng stream.cpp

5.234 TempLittleEndian Class Reference

Inheritance diagram for TempLittleEndian:

Public Member Functions

• TempLittleEndian (dng_stream &stream, bool littleEndian=true)

The documentation for this class was generated from the following file:

· dng_stream.h

5.235 TempStreamSniffer Class Reference

Inheritance diagram for TempStreamSniffer:

Public Member Functions

TempStreamSniffer (dng_stream &stream, dng_abort_sniffer *sniffer)

The documentation for this class was generated from the following files:

- · dng_stream.h
- dng_stream.cpp

5.236 tiff_dng_extended_color_profile Class Reference

Inheritance diagram for tiff_dng_extended_color_profile:

Public Member Functions

- tiff_dng_extended_color_profile (const dng_camera_profile &profile)
- void **Put** (dng_stream &stream, bool includeModelRestriction=true)

Protected Attributes

• const dng_camera_profile & fProfile

The documentation for this class was generated from the following files:

- dng_image_writer.h
- dng_image_writer.cpp

5.237 tiff_tag Class Reference

Inheritance diagram for tiff_tag:

Public Member Functions

- uint16 Code () const
- uint16 Type () const
- uint32 Count () const
- void SetCount (uint32 count)
- uint32 Size () const
- virtual void **Put** (dng_stream &stream) const =0

Protected Member Functions

• tiff_tag (uint16 code, uint16 type, uint32 count)

Protected Attributes

- uint16 fCode
- uint16 fType
- uint32 fCount

The documentation for this class was generated from the following file:

• dng_image_writer.h

5.238 UnicodeToLowASCIIEntry Struct Reference

Public Attributes

- uint32 unicode
- · const char * ascii

The documentation for this struct was generated from the following file:

· dng_string.cpp

6 File Documentation

6.1 dng_1d_function.h File Reference

```
#include "dng_classes.h"
#include "dng_types.h"
```

Classes

• class dng_1d_function

A 1D floating-point function.

class dng_1d_identity

An identity (x -> y such that x == y for all x) mapping function.

• class dng_1d_concatenate

A dng_1d_function that represents the composition (curry) of two other dng_1d_functions.

• class dng_1d_inverse

A dng_1d_function that represents the inverse of another dng_1d_function.

6.1.1 Detailed Description

Classes for a 1D floating-point to floating-point function abstraction.

6.2 dng_1d_table.h File Reference

```
#include "dng_assertions.h"
#include "dng_auto_ptr.h"
#include "dng_classes.h"
#include "dng_types.h"
#include "dng_uncopyable.h"
```

· class dng_1d_table

A 1D floating-point lookup table using linear interpolation.

6.2.1 Detailed Description

Definition of a lookup table based 1D floating-point to floating-point function abstraction using linear interpolation.

6.3 dng_abort_sniffer.h File Reference

```
#include "dng_classes.h"
#include "dng_flags.h"
#include "dng_string.h"
#include "dng_types.h"
#include "dng_uncopyable.h"
```

Classes

· class dng_set_minimum_priority

Convenience class for setting thread priority level to minimum.

· class dng_abort_sniffer

Class for signaling user cancellation and receiving progress updates.

class dng_sniffer_task

Class to establish scope of a named subtask in DNG processing.

Enumerations

```
    enum dng_priority {
    dng_priority_low, dng_priority_medium, dng_priority_high, dng_priority_count,
    dng_priority_minimum = dng_priority_low, dng_priority_maximum = dng_priority_high }

Thread priority level.
```

6.3.1 Detailed Description

Classes supporting user cancellation and progress tracking.

6.4 dng_area_task.h File Reference

```
#include "dng_classes.h"
#include "dng_point.h"
#include "dng_string.h"
#include "dng_types.h"
#include "dng_uncopyable.h"
```

- class dng_area_task_progress
- · class dng_area_task

Abstract class for rectangular processing operations with support for partitioning across multiple processing resources and observing memory constraints.

6.4.1 Detailed Description

Class to handle partitioning a rectangular image processing operation taking into account multiple processing resources and memory constraints.

6.5 dng_assertions.h File Reference

```
#include "dng_exceptions.h"
#include "dng_flags.h"
```

Macros

- #define DNG ASSERT(x, y)
- #define DNG_REQUIRE(condition, msg)
- #define DNG_REPORT(x) DNG_ASSERT (false, x)

6.5.1 Detailed Description

Conditionally compiled assertion check support.

6.5.2 Macro Definition Documentation

6.5.2.1 DNG_ASSERT

Conditionally compiled macro to check an assertion and display a message if it fails and assertions are compiled in via qDNGDebug

Parameters

Χ	Predicate which must be true.
у	String to display if x is not true.

6.5.2.2 DNG_REPORT

Macro to display an informational message

Parameters

```
x String to display.
```

6.5.2.3 DNG_REQUIRE

Value:

```
do

{
    if (!(condition))
    {
        ThrowProgramError (msg);
    }
    }
    while (0)
```

Conditionally compiled macro to check an assertion, display a message, and throw an exception if it fails and assertions are compiled in via qDNGDebug

Parameters

condition	Predicate which must be true.
msg	String to display if condition is not true.

6.6 dng_auto_ptr.h File Reference

```
#include <stddef.h>
#include "dng_uncopyable.h"
```

Classes

class AutoPtr< T >

A class intended to be used in stack scope to hold a pointer from new. The held pointer will be deleted automatically if the scope is left without calling Release on the AutoPtr first.

class AutoArray

A class intended to be used similarly to AutoPtr but for arrays.

6.6.1 Detailed Description

Class to implement std::auto_ptr like functionality even on platforms which do not have a full Standard C++ library.

6.7 dng_bad_pixels.h File Reference

```
#include "dng_memory.h"
#include "dng_opcodes.h"
#include <vector>
```

Classes

class dng_opcode_FixBadPixelsConstant

An opcode to fix individual bad pixels that are marked with a constant value (e.g., 0) in a Bayer image.

class dng_bad_pixel_list

A list of bad pixels and rectangles (usually single rows or columns).

class dng_opcode_FixBadPixelsList

An opcode to fix lists of bad pixels (indicated by position) in a Bayer image.

6.7.1 Detailed Description

Opcodes to fix defective pixels, including individual pixels and regions (such as defective rows and columns).

6.8 dng_bottlenecks.h File Reference

```
#include "dng_classes.h"
#include "dng_types.h"
```

Classes

· struct dng suite

Typedefs

- typedef void() ZeroBytesProc(void *dPtr, uint32 count)
- typedef void() CopyBytesProc(const void *sPtr, void *dPtr, uint32 count)
- typedef void() SwapBytes16Proc(uint16 *dPtr, uint32 count)
- typedef void() SwapBytes32Proc(uint32 *dPtr, uint32 count)
- typedef void() SetArea8Proc(uint8 *dPtr, uint8 value, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep)
- typedef void() **SetArea16Proc**(uint16 *dPtr, uint16 value, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep)
- typedef void() SetArea32Proc(uint32 *dPtr, uint32 value, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep)
- typedef void() CopyArea8Proc(const uint8 *sPtr, uint8 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 s←
 RowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef void() **CopyArea16Proc**(const uint16 *sPtr, uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef void() **CopyArea32Proc**(const uint32 *sPtr, uint32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef void() **CopyArea8_16Proc**(const uint8 *sPtr, uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef void() CopyArea8_S16Proc(const uint8 *sPtr, int16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef void() **CopyArea8_32Proc**(const uint8 *sPtr, uint32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef void() **CopyArea16_S16Proc**(const uint16 *sPtr, int16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef void() **CopyArea16_32Proc**(const uint16 *sPtr, uint32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef void() CopyArea8_R32Proc(const uint8 *sPtr, real32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- typedef void() CopyArea16_R32Proc(const uint16 *sPtr, real32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- typedef void() CopyAreaS16_R32Proc(const int16 *sPtr, real32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- typedef void() CopyAreaR32_8Proc(const real32 *sPtr, uint8 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- typedef void() CopyAreaR32_16Proc(const real32 *sPtr, uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- typedef void() CopyAreaR32_S16Proc(const real32 *sPtr, int16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- typedef void() RepeatArea8Proc(const uint8 *sPtr, uint8 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep, uint32 repeatV, uint32 repeatH, uint32 phaseV, uint32 phaseH)
- typedef void() RepeatArea16Proc(const uint16 *sPtr, uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep, uint32 repeatV, uint32 repeatH, uint32 phaseV, uint32 phaseH)
- typedef void() RepeatArea32Proc(const uint32 *sPtr, uint32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep, uint32 repeatV, uint32 repeatH, uint32 phaseV, uint32 phaseH)

- typedef void() ShiftRight16Proc(uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 col ← Step, int32 planeStep, uint32 shift)
- typedef void() BilinearRow16Proc(const uint16 *sPtr, uint16 *dPtr, uint32 cols, uint32 patPhase, uint32 pat←
 Count, const uint32 *kernCounts, const int32 *const *kernOffsets, const uint16 *const *kernWeights, uint32
 sShift)
- typedef void() BilinearRow32Proc(const real32 *sPtr, real32 *dPtr, uint32 cols, uint32 patPhase, uint32 pat←
 Count, const uint32 *kernCounts, const int32 *const *kernOffsets, const real32 *const *kernWeights, uint32
 sShift)
- typedef void() BaselineABCtoRGBProc(const real32 *sPtrA, const real32 *sPtrB, const real32 *sPtrC, real32 *dPtrB, real32 *dPtrB, uint32 count, const dng_vector &cameraWhite, const dng_matrix &cameraToRGB)
- typedef void() BaselineABCDtoRGBProc(const real32 *sPtrA, const real32 *sPtrB, const real32 *sPtrC, const real32 *sPtrD, real32 *dPtrR, real32 *dPtrB, uint32 count, const dng_vector &cameraWhite, const dng_matrix &cameraToRGB)
- typedef void() BaselineHueSatMapProc(const real32 *sPtrR, const real32 *sPtrG, const real32 *sPtrB, real32 *dPtrR, real32 *dPtrB, uint32 count, const dng_hue_sat_map &lut, const dng_1d_table *encode Table, const dng_1d_table *decodeTable)
- typedef void() **BaselineGrayToRGBProc**(const real32 *sPtrR, const real32 *sPtrG, const real32 *sPtrB, real32 *dPtrG, uint32 count, const dng matrix &matrix)
- typedef void() BaselineRGBtoRGBProc(const real32 *sPtrR, const real32 *sPtrG, const real32 *sPtrB, real32 *dPtrR, real32 *dPtrG, real32 *dPtrB, uint32 count, const dng_matrix &matrix)
- typedef void() Baseline1DTableProc(const real32 *sPtr, real32 *dPtr, uint32 count, const dng 1d table &table)
- typedef void() BaselineRGBToneProc(const real32 *sPtrR, const real32 *sPtrG, const real32 *sPtrB, real32 *dPtrR, real32 *dPtrB, uint32 count, const dng_1d_table &table)
- typedef void() **ResampleDown16Proc**(const uint16 *sPtr, uint16 *dPtr, uint32 sCount, int32 sRowStep, const int16 *wPtr, uint32 wCount, uint32 pixelRange)
- typedef void() ResampleDown32Proc(const real32 *sPtr, real32 *dPtr, uint32 sCount, int32 sRowStep, const real32 *wPtr, uint32 wCount)
- typedef void() ResampleAcross16Proc(const uint16 *sPtr, uint16 *dPtr, uint32 dCount, const int32 *coord, const int16 *wPtr, uint32 wCount, uint32 wStep, uint32 pixelRange)
- typedef void() ResampleAcross32Proc(const real32 *sPtr, real32 *dPtr, uint32 dCount, const int32 *coord, const real32 *wPtr, uint32 wCount, uint32 wStep)
- typedef bool() EqualBytesProc(const void *sPtr, const void *dPtr, uint32 count)
- typedef bool() **EqualArea8Proc**(const uint8 *sPtr, const uint8 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef bool() EqualArea16Proc(const uint16 *sPtr, const uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef bool() **EqualArea32Proc**(const uint32 *sPtr, const uint32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- typedef void() VignetteMask16Proc(uint16 *mPtr, uint32 rows, uint32 cols, int32 rowStep, int64 offsetH, int64 offsetV, int64 stepH, int64 stepV, uint32 tBits, const uint16 *table)
- typedef void() **Vignette16Proc**(int16 *sPtr, const uint16 *mPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sPlaneStep, int32 mRowStep, uint32 mBits)
- typedef void() **Vignette32Proc**(real32 *sPtr, const uint16 *mPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sPlaneStep, int32 mRowStep, uint32 mBits, uint16 blackLevel)
- typedef void() MapArea16Proc(uint16 *dPtr, uint32 count0, uint32 count1, uint32 count2, int32 step0, int32 step1, int32 step2, const uint16 *map)
- typedef void() BaselineMapPoly32Proc(real32 *dPtr, const int32 rowStep, const uint32 rows, const uint32 cols, const uint32 rowPitch, const uint32 colPitch, const real32 *coefficients, const uint32 degree, uint16 blackLevel)

Functions

- void DoZeroBytes (void *dPtr, uint32 count)
- void DoCopyBytes (const void *sPtr, void *dPtr, uint32 count)
- void DoSwapBytes16 (uint16 *dPtr, uint32 count)
- void DoSwapBytes32 (uint32 *dPtr, uint32 count)
- void DoSetArea8 (uint8 *dPtr, uint8 value, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep)
- void DoSetArea16 (uint16 *dPtr, uint16 value, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep)
- void DoSetArea32 (uint32 *dPtr, uint32 value, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep)
- void **DoCopyArea8** (const uint8 *sPtr, uint8 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- void DoCopyArea16 (const uint16 *sPtr, uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- void DoCopyArea32 (const uint32 *sPtr, uint32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- void DoCopyArea8_16 (const uint8 *sPtr, uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- void DoCopyArea8_S16 (const uint8 *sPtr, int16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- void DoCopyArea8_32 (const uint8 *sPtr, uint32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- void DoCopyArea16_S16 (const uint16 *sPtr, int16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRow
 Step, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- void DoCopyArea16_32 (const uint16 *sPtr, uint32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRow
 Step, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- void DoCopyArea8_R32 (const uint8 *sPtr, real32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRow
 Step, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- void DoCopyArea16_R32 (const uint16 *sPtr, real32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRow
 Step, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- void **DoCopyAreaS16_R32** (const int16 *sPtr, real32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRow Step, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- void **DoCopyAreaR32_8** (const real32 *sPtr, uint8 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRow ← Step, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- void **DoCopyAreaR32_16** (const real32 *sPtr, uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRow Step, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep, uint32 pixelRange)
- void DoCopyAreaR32_S16 (const real32 *sPtr, int16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRow
 Step, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dPlaneStep, uint32 pixelRange)
- void **DoRepeatArea8** (const uint8 *sPtr, uint8 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep, uint32 repeatV, uint32 repeatH, uint32 phaseV, uint32 phaseH)
- void DoRepeatArea16 (const uint16 *sPtr, uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep, uint32 repeatV, uint32 repeatH, uint32 phaseV, uint32 phaseH)
- void DoRepeatArea32 (const uint32 *sPtr, uint32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep, uint32 repeatV, uint32 repeatH, uint32 phaseV, uint32 phaseH)
- void DoShiftRight16 (uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 rowStep, int32 colStep, int32 planeStep, uint32 shift)
- void DoBilinearRow16 (const uint16 *sPtr, uint16 *dPtr, uint32 cols, uint32 patPhase, uint32 patCount, const uint32 *kernCounts, const int32 *const *kernOffsets, const uint16 *const *kernWeights, uint32 sShift)
- void DoBilinearRow32 (const real32 *sPtr, real32 *dPtr, uint32 cols, uint32 patPhase, uint32 patCount, const uint32 *kernCounts, const int32 *const *kernOffsets, const real32 *const *kernWeights, uint32 sShift)

- void DoBaselineABCtoRGB (const real32 *sPtrA, const real32 *sPtrB, const real32 *sPtrC, real32 *dPtrB, real32 *dPtrB, uint32 count, const dng vector &cameraWhite, const dng matrix &cameraToRGB)
- void DoBaselineABCDtoRGB (const real32 *sPtrA, const real32 *sPtrB, const real32 *sPtrC, const real32 *sPtrD, real32 *dPtrR, real32 *dPtrB, uint32 count, const dng_vector &cameraWhite, const dng_matrix &cameraToRGB)
- void DoBaselineHueSatMap (const real32 *sPtrR, const real32 *sPtrG, const real32 *sPtrB, real32 *dPtrR, real32 *dPtrB, uint32 count, const dng_hue_sat_map &lut, const dng_1d_table *encodeTable, const dng_1d_table *decodeTable)
- void DoBaselineRGBtoGray (const real32 *sPtrR, const real32 *sPtrG, const real32 *sPtrB, real32 *dPtrG, uint32 count, const dng matrix &matrix)
- void **DoBaselineRGBtoRGB** (const real32 *sPtrR, const real32 *sPtrG, const real32 *sPtrB, real32 *dPtrR, real32 *dPtrB, uint32 count, const dng_matrix &matrix)
- void DoBaseline1DTable (const real32 *sPtr, real32 *dPtr, uint32 count, const dng_1d_table &table)
- void DoBaselineRGBTone (const real32 *sPtrR, const real32 *sPtrG, const real32 *sPtrB, real32 *dPtrR, real32 *dPtrB, uint32 count, const dng_1d_table &table)
- void **DoResampleDown16** (const uint16 *sPtr, uint16 *dPtr, uint32 sCount, int32 sRowStep, const int16 *wPtr, uint32 wCount, uint32 pixelRange)
- void DoResampleDown32 (const real32 *sPtr, real32 *dPtr, uint32 sCount, int32 sRowStep, const real32 *wPtr, uint32 wCount)
- void DoResampleAcross16 (const uint16 *sPtr, uint16 *dPtr, uint32 dCount, const int32 *coord, const int16 *wPtr, uint32 wCount, uint32 wStep, uint32 pixelRange)
- void DoResampleAcross32 (const real32 *sPtr, real32 *dPtr, uint32 dCount, const int32 *coord, const real32 *wPtr, uint32 wCount, uint32 wStep)
- bool **DoEqualBytes** (const void *sPtr, const void *dPtr, uint32 count)
- bool DoEqualArea8 (const uint8 *sPtr, const uint8 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- bool DoEqualArea16 (const uint16 *sPtr, const uint16 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 s
 RowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- bool **DoEqualArea32** (const uint32 *sPtr, const uint32 *dPtr, uint32 rows, uint32 cols, uint32 planes, int32 s↔ RowStep, int32 sColStep, int32 sPlaneStep, int32 dRowStep, int32 dColStep, int32 dPlaneStep)
- void **DoVignetteMask16** (uint16 *mPtr, uint32 rows, uint32 cols, int32 rowStep, int64 offsetH, int64 offsetV, int64 stepH, int64 stepV, uint32 tBits, const uint16 *table)
- void DoVignette16 (int16 *sPtr, const uint16 *mPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sPlaneStep, int32 mRowStep, uint32 mBits)
- void DoVignette32 (real32 *sPtr, const uint16 *mPtr, uint32 rows, uint32 cols, uint32 planes, int32 sRowStep, int32 sPlaneStep, int32 mRowStep, uint32 mBits, uint16 blackLevel)
- void DoMapArea16 (uint16 *dPtr, uint32 count0, uint32 count1, uint32 count2, int32 step0, int32 step1, int32 step2, const uint16 *map)
- void DoBaselineMapPoly32 (real32 *dPtr, const int32 rowStep, const uint32 rows, const uint32 cols, const uint32 rowPitch, const uint32 colPitch, const real32 *coefficients, const uint32 degree, uint16 blackLevel)

Variables

· dng_suite gDNGSuite

6.8.1 Detailed Description

Indirection mechanism for performance-critical routines that might be replaced with hand-optimized or hardware-specific implementations.

6.9 dng_camera_profile.h File Reference

```
#include "dng_auto_ptr.h"
#include "dng_assertions.h"
#include "dng_classes.h"
#include "dng_fingerprint.h"
#include "dng_hue_sat_map.h"
#include "dng_matrix.h"
#include "dng_string.h"
#include "dng_tag_values.h"
#include "dng_tone_curve.h"
```

Classes

· class dng_camera_profile_id

An ID for a camera profile consisting of a name and optional fingerprint.

class dng_camera_profile

Container for DNG camera color profile and calibration data.

Functions

- void SplitCameraProfileName (const dng_string &name, dng_string &baseName, int32 &version)
- void BuildHueSatMapEncodingTable (dng_memory_allocator &allocator, uint32 encoding, AutoPtr
 dng_1d_table > &encodeTable, AutoPtr< dng_1d_table > &decodeTable, bool subSample)

Variables

- const char * kProfileName_Embedded
- const char * kAdobeCalibrationSignature

6.9.1 Detailed Description

Support for DNG camera color profile information. Per the DNG 1.1.0 specification, a DNG file can store up to two sets of color profile information for a camera in the DNG file from that camera. The second set is optional and when there are two sets, they represent profiles made under different illumination.

Profiling information is optionally separated into two parts. One part represents a profile for a reference camera. (Color ← Matrix1 and ColorMatrix2 here.) The second is a per-camera calibration that takes into account unit-to-unit variation. This is designed to allow replacing the reference color matrix with one of one's own construction while maintaining any unit-specific calibration the camera manufacturer may have provided.

See Appendix 6 of the DNG 1.1.0 specification for more information.

6.10 dng_color_space.h File Reference

```
#include "dng_1d_function.h"
#include "dng_classes.h"
#include "dng_matrix.h"
#include "dng_types.h"
```

Classes

class dng_function_GammaEncode_sRGB

A dng_1d_function for gamma encoding in sRGB color space.

class dng_function_GammaEncode_1_8

A dng_1d_function for gamma encoding with 1.8 gamma.

• class dng_function_GammaEncode_2_2

A dng_1d_function for gamma encoding with 2.2 gamma.

class dng_color_space

An abstract color space.

class dng_space_sRGB

Singleton class for sRGB color space.

class dng_space_AdobeRGB

Singleton class for AdobeRGB color space.

class dng_space_ColorMatch

Singleton class for ColorMatch color space.

class dng_space_ProPhoto

Singleton class for ProPhoto RGB color space.

class dng_space_GrayGamma18

Singleton class for gamma 1.8 grayscale color space.

• class dng_space_GrayGamma22

Singleton class for gamma 2.2 grayscale color space.

class dng_space_fakeRGB

6.10.1 Detailed Description

Standard gamma functions and color spaces used within the DNG SDK.

6.11 dng_color_spec.h File Reference

```
#include "dng_classes.h"
#include "dng_matrix.h"
#include "dng_types.h"
#include "dng_xy_coord.h"
```

• class dng_color_spec

Functions

• dng_matrix_3by3 MapWhiteMatrix (const dng_xy_coord &white1, const dng_xy_coord &white2)

Compute a 3x3 matrix which maps colors from white point white1 to white point white2.

6.11.1 Detailed Description

Class for holding a specific color transform.

6.11.2 Function Documentation

6.11.2.1 MapWhiteMatrix()

Compute a 3x3 matrix which maps colors from white point white1 to white point white2.

Uses linearized Bradford adaptation matrix to compute a mapping from colors measured with one white point (white1) to another (white2).

6.12 dng_date_time.h File Reference

```
#include "dng_classes.h"
#include "dng_string.h"
#include "dng_types.h"
```

Classes

· class dng_date_time

Class for holding a date/time and converting to and from relevant date/time formats.

· class dng_time_zone

Class for holding a time zone.

· class dng_date_time_info

Class for holding complete data/time/zone information.

• class dng_date_time_storage_info

Store file offset from which date was read.

Enumerations

• enum dng_date_time_format { dng_date_time_format_unknown = 0, dng_date_time_format_exif = 1, dng_date_time_format_unix_little_endian = 2, dng_date_time_format_unix_big_endian = 3 }

Tag to encode date represenation format.

Functions

- void CurrentDateTimeAndZone (dng_date_time_info &info)
- void DecodeUnixTime (uint32 unixTime, dng_date_time &dt)

Convert UNIX "seconds since Jan 1, 1970" time to a dng_date_time.

dng_time_zone LocalTimeZone (const dng_date_time &dt)

6.12.1 Detailed Description

Functions and classes for working with dates and times in DNG files.

6.12.2 Enumeration Type Documentation

```
6.12.2.1 dng date time format
```

```
enum dng_date_time_format
```

Tag to encode date represenation format.

Enumerator

dng_date_time_format_exif	Date format not known.
dng_date_time_format_unix_little_endian	EXIF date string.
dng_date_time_format_unix_big_endian	32-bit UNIX time as 4-byte little endian

6.12.3 Function Documentation

6.12.3.1 CurrentDateTimeAndZone()

Get the current date/time and timezone.

Parameters

info	Receives current data/time/zone.

Referenced by LocalTimeZone().

6.12.3.2 LocalTimeZone()

Return timezone of current location at a given date.

Parameters

dt Date at which to compute timezone difference. (For example, used to determine Daylight Savings, etc.)

Return values

Time zone for date/time dt.

References CurrentDateTimeAndZone(), and dng date time::IsValid().

6.13 dng_errors.h File Reference

```
#include "dng_types.h"
```

Typedefs

• typedef int32 dng_error_code

Type for all errors used in DNG SDK. Generally held inside a dng_exception.

Enumerations

enum {
 dng_error_none = 0, dng_error_unknown = 100000, dng_error_not_yet_implemented, dng_error_silent,
 dng_error_user_canceled, dng_error_host_insufficient, dng_error_memory, dng_error_bad_format,
 dng_error_matrix_math, dng_error_open_file, dng_error_read_file, dng_error_write_file,
 dng_error_end_of_file, dng_error_file_is_damaged, dng_error_image_too_big_dng, dng_error_image_too_big_tiff,
 dng_error_unsupported_dng, dng_error_overflow }

6.13.1 Detailed Description

Error code values.

6.13.2 Enumeration Type Documentation

6.13.2.1 anonymous enum

anonymous enum

Enumerator

dng_error_none	No error. Success.
dng_error_unknown	Logic or program error or other unclassifiable error.
dng_error_not_yet_implemented	Functionality requested is not yet implemented.
dng_error_silent	An error which should not be signalled to user.
dng_error_user_canceled	Processing stopped by user (or host application) request.
dng_error_host_insufficient	Necessary host functionality is not present.
dng_error_memory	Out of memory.
dng_error_bad_format	File format is not valid.
dng_error_matrix_math	Matrix has wrong shape, is badly conditioned, or similar problem.
dng_error_open_file	Could not open file.
dng_error_read_file	Error reading file.
dng_error_write_file	Error writing file.
dng_error_end_of_file	Unexpected end of file.
dng_error_file_is_damaged	File is damaged in some way.
dng_error_image_too_big_dng	Image is too big to save as DNG.
dng_error_image_too_big_tiff	Image is too big to save as TIFF.
dng_error_unsupported_dng	DNG version is unsupported.
dng_error_overflow	Arithmetic overflow.

6.14 dng_exceptions.h File Reference

```
#include "dng_errors.h"
#include "dng_flags.h"
```

Classes

• class dng_exception

All exceptions thrown by the DNG SDK use this exception class.

Functions

void ReportWarning (const char *message, const char *sub_message=NULL)

Display a warning message. Note that this may just eat the message.

void ReportError (const char *message, const char *sub message=NULL)

Display an error message. Note that this may just eat the message.

 void Throw_dng_error (dng_error_code err, const char *message=NULL, const char *sub_message=NULL, bool silent=false) DNG_NO_RETURN

Throw an exception based on an arbitrary error code.

· void Fail dng error (dng error code err)

Convenience function to throw dng_exception with error code if error_code is not dng_error_none.

void ThrowProgramError (const char *sub message=NULL)

Convenience function to throw dng_exception with error code dng_error_unknown.

void ThrowOverflow (const char *sub message=NULL)

Convenience function to throw dng_exception with error code dng_error_overflow.

void ThrowNotYetImplemented (const char *sub_message=NULL)

Convenience function to throw dng_exception with error code dng_error_not_yet_implemented .

void ThrowSilentError ()

Convenience function to throw <u>dng_exception</u> with error code <u>dng_error_silent</u>.

void ThrowUserCanceled ()

Convenience function to throw dng_exception with error code dng_error_user_canceled .

void ThrowHostInsufficient (const char *sub message=NULL, bool silent=false)

Convenience function to throw dng_exception with error code dng_error_host_insufficient .

void ThrowMemoryFull (const char *sub_message=NULL)

Convenience function to throw ${\it dng_exception}$ with error code ${\it dng_error_memory}$.

void ThrowBadFormat (const char *sub_message=NULL)

Convenience function to throw dng_exception with error code dng_error_bad_format .

void ThrowMatrixMath (const char *sub_message=NULL)

Convenience function to throw dng_exception with error code dng_error_matrix_math .

void ThrowOpenFile (const char *sub_message=NULL, bool silent=false)

Convenience function to throw dng_exception with error code dng_error_open_file .

void ThrowReadFile (const char *sub message=NULL)

Convenience function to throw dng_exception with error code dng_error_read_file.

void ThrowWriteFile (const char *sub_message=NULL)

Convenience function to throw dng_exception with error code dng_error_write_file .

void ThrowEndOfFile (const char *sub message=NULL)

Convenience function to throw dng_exception with error code dng_error_end_of_file .

void ThrowFileIsDamaged ()

Convenience function to throw dng_exception with error code <

void ThrowImageTooBigDNG ()

 ${\it Convenience function to throw $$dng_exception$ with error code $dng_error_image_too_big_dng$.}$

void ThrowImageTooBigTIFF ()

Convenience function to throw dng_exception with error code dng_error_image_too_big_tiff .

void ThrowUnsupportedDNG ()

Convenience function to throw dng_exception with error code dng_error_unsupported_dng.

6.14.1 Detailed Description

C++ exception support for DNG SDK.

6.15 dng exif.h File Reference

```
#include "dng_classes.h"
#include "dng_date_time.h"
#include "dng_fingerprint.h"
#include "dng_types.h"
#include "dng_matrix.h"
#include "dng_rational.h"
#include "dng_string.h"
#include "dng_stream.h"
#include "dng_sdk_limits.h"
```

Classes

· class dng exif

Container class for parsing and holding EXIF tags.

6.15.1 Detailed Description

EXIF read access support. See the EXIF specification for full description of tags.

6.16 dng_fast_module.h File Reference

6.16.1 Detailed Description

Include file to set optimization to highest level for performance-critical routines. Normal files should have otpimization set to normal level to save code size as there is less cache pollution this way.

6.17 dng file stream.h File Reference

```
#include "dng_stream.h"
```

Classes

· class dng_file_stream

A stream to/from a disk file. See dng_stream for read/write interface.

6.17.1 Detailed Description

Simple, portable, file read/write support.

6.18 dng_filter_task.h File Reference

```
#include "dng_area_task.h"
#include "dng_auto_ptr.h"
#include "dng_point.h"
#include "dng_rect.h"
#include "dng_sdk_limits.h"
```

Classes

class dng_filter_task

Represents a task which filters an area of a source dng_image to an area of a destination dng_image.

6.18.1 Detailed Description

Specialization of dng_area_task for processing an area from one dng_image to an area of another.

6.19 dng_fingerprint.h File Reference

```
#include "dng_exceptions.h"
#include "dng_types.h"
#include "dng_stream.h"
#include <cstring>
```

Classes

· class dng_fingerprint

Container fingerprint (MD5 only at present).

• struct dng_fingerprint_less_than

Utility to compare fingerprints (e.g., for sorting).

struct dng_fingerprint_hash

Utility to hash fingerprints (e.g., for hashtables).

• class dng_md5_printer

Class to hash binary data to a fingerprint using the MD5 Message-Digest Algorithm.

• class dng_md5_printer_stream

A dng_stream based interface to the MD5 printing logic.

6.19.1 Detailed Description

Fingerprint (cryptographic hashing) support for generating strong hashes of image data.

6.20 dng_flags.h File Reference

```
#include "RawEnvironment.h"
```

Macros

- #define qMacOS 0
- #define qiPhone 0
- #define qiPhoneSimulator 0
- #define **qAndroid** 0
- #define qWinOS 0
- #define qWinRT 0
- #define qLinux 0
- #define qWeb 0
- #define qARM 0
- #define qARMNeon 0
- #define qDNGDebug 0
- #define qCRSupportTBB 0
- #define qDNGIntelCompiler 0
- #define qDNGLittleEndian !qDNGBigEndian
- #define qDNG64Bit 0
- #define qDNGThreadSafe (qMacOS || qWinOS)
- #define qDNGValidateTarget 0
- #define qDNGValidate qDNGValidateTarget
- #define qDNGPrintMessages qDNGValidate
- #define qDNGExperimental 1
- #define qDNGXMPFiles 1
- #define qDNGXMPDocOps (!qDNGValidateTarget)
- #define qDNGUseLibJPEG qDNGValidateTarget
- #define qDNGAVXSupport ((qMacOS || qWinOS) && qDNG64Bit && !qARM && 1)
- #define qDNGSupportVC5 (1)
- #define qDNGUsingSanitizer (0)
- #define **DNG_ATTRIB_NO_SANITIZE**(type)

6.20.1 Detailed Description

Conditional compilation flags for DNG SDK.

All conditional compilation macros for the DNG SDK begin with a lowercase 'q'.

6.20.2 Macro Definition Documentation

6.20.2.1 qDNG64Bit

```
#define qDNG64Bit 0
```

1 if this target platform uses 64-bit addresses, 0 otherwise.

6.20.2.2 qDNGDebug

```
#define qDNGDebug 0
```

1 if debug code is compiled in, 0 otherwise. Enables assertions and other debug checks in exchange for slower processing.

6.20.2.3 qDNGLittleEndian

```
#define qDNGLittleEndian !qDNGBigEndian
```

1 if this target platform is little endian (e.g. x86 processors), else 0.

6.20.2.4 qDNGPrintMessages

```
#define qDNGPrintMessages qDNGValidate
```

1 if dng_show_message should use fprintf to stderr. 0 if it should use a platform specific interrupt mechanism.

6.20.2.5 qDNGThreadSafe

```
#define qDNGThreadSafe (qMacOS || qWinOS)
```

1 if target platform has thread support and threadsafe libraries, 0 otherwise.

6.20.2.6 qDNGUseLibJPEG

```
#define qDNGUseLibJPEG qDNGValidateTarget
```

1 to use open-source libjpeg for lossy jpeg processing.

6.20.2.7 qDNGUsingSanitizer

```
#define qDNGUsingSanitizer (0)
```

Set to 1 when using a Sanitizer tool.

```
6.20.2.8 qDNGValidate
#define qDNGValidate qDNGValidateTarget
1 if DNG validation code is enabled, 0 otherwise.
6.20.2.9 qDNGValidateTarget
#define qDNGValidateTarget 0
1 if dng_validate command line tool is being built, 0 otherwise.
6.20.2.10 qDNGXMPDocOps
#define qDNGXMPDocOps (!qDNGValidateTarget)
1 to use XMPDocOps.
6.20.2.11 qDNGXMPFiles
#define qDNGXMPFiles 1
1 to use XMPFiles.
6.20.2.12 qMacOS
#define qMacOS 0
1 if compiling for Mac OS X.
6.20.2.13 qWinOS
#define qWinOS 0
1 if compiling for Windows.
     dng_gain_map.h File Reference
#include "dng_memory.h"
```

#include "dng_misc_opcodes.h"
#include "dng_tag_types.h"
#include "dng_uncopyable.h"

· class dng_gain_map

Holds a discrete (i.e., sampled) 2D representation of a gain map. This is effectively an image containing scale factors.

class dng_opcode_GainMap

An opcode to fix 2D spatially-varying light falloff or color casts (i.e., uniformity issues). This is commonly due to shading.

6.21.1 Detailed Description

Opcode to fix 2D uniformity defects, such as shading.

6.22 dng_globals.h File Reference

```
#include "dng_flags.h"
#include "dng_types.h"
```

Variables

- bool gDNGShowTimers
- bool gDNGUseFakeTimeZonesInXMP
- uint32 gDNGStreamBlockSize
- uint32 gDNGMaxStreamBufferSize
- · bool glmagecore
- bool gPrintTimings
- · bool gPrintAsserts
- bool gBreakOnAsserts

6.22.1 Detailed Description

Definitions of global variables controling DNG SDK behavior.

6.23 dng_host.h File Reference

```
#include "dng_auto_ptr.h"
#include "dng_classes.h"
#include "dng_errors.h"
#include "dng_types.h"
#include "dng_uncopyable.h"
```

· class dng_host

The main class for communication between the application and the DNG SDK. Used to customize memory allocation and other behaviors.

6.23.1 Detailed Description

Class definition for dng_host, initial point of contact and control between host application and DNG SDK.

6.24 dng_hue_sat_map.h File Reference

```
#include "dng_classes.h"
#include "dng_fingerprint.h"
#include "dng_ref_counted_block.h"
#include "dng_safe_arithmetic.h"
#include "dng_types.h"
#include <atomic>
```

Classes

· class dng_hue_sat_map

A 3D table that maps HSV (hue, saturation, and value) floating-point input coordinates in the range [0,1] to delta signals. The table must have at least 1 sample in the hue dimension, at least 2 samples in the saturation dimension, and at least 1 sample in the value dimension. Tables are stored in value-hue-saturation order.

struct dng_hue_sat_map::HSBModify

6.24.1 Detailed Description

Table-based color correction data structure.

6.25 dng_ifd.h File Reference

```
#include "dng_fingerprint.h"
#include "dng_negative.h"
#include "dng_rect.h"
#include "dng_shared.h"
#include "dng_stream.h"
#include "dng_string.h"
#include "dng_sdk_limits.h"
#include "dng_tag_values.h"
```

- class dng_preview_info
- · class dng_ifd

Container for a single image file directory of a digital negative.

6.25.1 Detailed Description

DNG image file directory support.

6.26 dng_image.h File Reference

```
#include "dng_assertions.h"
#include "dng_classes.h"
#include "dng_pixel_buffer.h"
#include "dng_point.h"
#include "dng_rect.h"
#include "dng_tag_types.h"
#include "dng_types.h"
#include "dng_uncopyable.h"
```

Classes

• class dng_tile_buffer

Class to get resource acquisition is instantiation behavior for tile buffers. Can be dirty or constant tile access.

class dng_const_tile_buffer

Class to get resource acquisition is instantiation behavior for constant (read-only) tile buffers.

· class dng_dirty_tile_buffer

Class to get resource acquisition is instantiation behavior for dirty (writable) tile buffers.

· class dng_image

Base class for holding image data in DNG SDK. See dng_simple_image for derived class most often used in DNG SDK.

6.26.1 Detailed Description

Support for working with image data in DNG SDK.

6.27 dng_image_writer.h File Reference

```
#include "dng_area_task.h"
#include "dng_auto_ptr.h"
#include "dng_classes.h"
#include "dng_fingerprint.h"
#include "dng_memory.h"
#include "dng_mutex.h"
#include "dng_point.h"
#include "dng_rational.h"
#include "dng_safe_arithmetic.h"
#include "dng_sdk_limits.h"
#include "dng_string.h"
#include "dng_tag_types.h"
#include "dng_tag_values.h"
#include "dng_types.h"
#include "dng_uncopyable.h"
#include <atomic>
```

Classes

- · class dng_resolution
 - Image resolution.
- class tiff tag
- · class tag_data_ptr
- · class tag_string
- · class tag encoded text
- · class tag_uint8
- · class tag_uint8_ptr
- class tag_uint16
- · class tag_int16_ptr
- · class tag_uint16_ptr
- class tag_uint32
- class tag_uint32_ptr
- · class tag_urational
- · class tag_urational_ptr
- · class tag_srational
- · class tag srational ptr
- class tag real64
- · class tag matrix
- class tag_icc_profile
- class tag_cfa_pattern
- class tag_exif_date_time
- class tag_iptc
- class tag_xmp
- class dng_tiff_directory
- class dng_basic_tag_set
- · class exif tag set
- class tiff_dng_extended_color_profile
- class tag_dng_noise_profile
- · class dng_image_writer

Support for writing dng_image or dng_negative instances to a dng_stream in TIFF or DNG format.

· class dng write tiles task

Enumerations

enum dng_metadata_subset {
 kMetadataSubset_CopyrightOnly = 0, kMetadataSubset_CopyrightAndContact, kMetadataSubset_All
 ExceptCameraInfo, kMetadataSubset_All,
 kMetadataSubset_AllExceptLocationInfo, kMetadataSubset_AllExceptCameraAndLocation, KMetadataSubset_AllExceptCameraRawInfoAndLocation,
 kMetadataSubset_Last = KMetadataSubset_AllExceptCameraRawInfoAndLocation }

6.27.1 Detailed Description

Support for writing DNG images to files.

6.28 dng_info.h File Reference

```
#include "dng_auto_ptr.h"
#include "dng_classes.h"
#include "dng_errors.h"
#include "dng_exif.h"
#include "dng_ifd.h"
#include "dng_sdk_limits.h"
#include "dng_shared.h"
#include "dng_uncopyable.h"
#include <vector>
```

Classes

class dng_info

Top-level structure of DNG file with access to metadata.

6.28.1 Detailed Description

Class for holding top-level information about a DNG image.

6.29 dng_iptc.h File Reference

```
#include "dng_date_time.h"
#include "dng_string.h"
#include "dng_string_list.h"
```

Classes

· class dng_iptc

Class for reading and holding IPTC metadata associated with a DNG file.

6.29.1 Detailed Description

Support for IPTC metadata within DNG files.

6.30 dng lens correction.h File Reference

```
#include "dng_1d_function.h"
#include "dng_matrix.h"
#include "dng_memory.h"
#include "dng_opcodes.h"
#include "dng_pixel_buffer.h"
#include "dng_point.h"
#include "dng_resample.h"
#include "dng_sdk_limits.h"
```

Classes

class dng_warp_params

Abstract base class holding common warp opcode parameters (e.g., number of planes, optical center) and common warp routines.

· class dng warp params rectilinear

Warp parameters for pinhole perspective rectilinear (not fisheye) camera model. Supports radial and tangential (decentering) distortion correction parameters.

· class dng_warp_params_fisheye

Warp parameters for fisheye camera model (radial component only). Note the restrictions described below.

class dng_opcode_WarpRectilinear

Warp opcode for pinhole perspective (rectilinear) camera model.

class dng_opcode_WarpFisheye

Warp opcode for fisheye camera model.

class dng_vignette_radial_params

Radially-symmetric vignette (peripheral illuminational falloff) correction parameters.

class dng_opcode_FixVignetteRadial

Radially-symmetric lens vignette correction opcode.

6.30.1 Detailed Description

Opcodes to fix lens aberrations such as geometric distortion, lateral chromatic aberration, and vignetting (peripheral illumination falloff).

6.31 dng_linearization_info.h File Reference

```
#include "dng_auto_ptr.h"
#include "dng_classes.h"
#include "dng_memory.h"
#include "dng_rational.h"
#include "dng_rect.h"
#include "dng_sdk_limits.h"
```

· class dng_linearization_info

Class for managing data values related to DNG linearization.

6.31.1 Detailed Description

Support for linearization table and black level tags.

6.32 dng_lossless_ipeg.h File Reference

```
#include "dng_classes.h"
#include "dng_types.h"
```

Classes

· class dng_spooler

Functions

- void DecodeLosslessJPEG (dng_stream &stream, dng_spooler &spooler, uint32 minDecodedSize, uint32 maxDecodedSize, bool bug16, uint64 endOfData)
- void **EncodeLosslessJPEG** (const uint16 *srcData, uint32 srcRows, uint32 srcCols, uint32 srcChannels, uint32 srcBitDepth, int32 srcRowStep, int32 srcColStep, dng_stream &stream)

6.32.1 Detailed Description

Functions for encoding and decoding lossless JPEG format.

6.33 dng_matrix.h File Reference

```
#include "dng_sdk_limits.h"
#include "dng_types.h"
```

· class dng_matrix

Class to represent 2D matrix up to kMaxColorPlanes x kMaxColorPlanes in size.

class dng matrix 3by3

A 3x3 matrix.

class dng_matrix_4by3

A 4x3 matrix. Handy for working with 4-color cameras.

class dng_matrix_4by4

A 4x4 matrix. Handy for GPU APIs.

· class dng_vector

Class to represent 1-dimensional vector with up to kMaxColorPlanes components.

class dng vector 3

A 3-element vector.

· class dng_vector_4

A 4-element vector.

Functions

- dng_matrix operator * (const dng_matrix &A, const dng_matrix &B)
- dng_vector operator * (const dng_matrix &A, const dng_vector &B)
- dng_matrix operator * (real64 scale, const dng_matrix &A)
- dng vector operator * (real64 scale, const dng vector &A)
- dng_matrix operator+ (const dng_matrix &A, const dng_matrix &B)
- dng_vector operator- (const dng_vector &a, const dng_vector &b)
- dng matrix Transpose (const dng matrix &A)
- dng matrix Invert (const dng matrix &A)
- dng_matrix Invert (const dng_matrix &A, const dng_matrix &hint)
- real64 MaxEntry (const dng_matrix &A)
- real64 MaxEntry (const dng_vector &A)
- real64 MinEntry (const dng_matrix &A)
- real64 MinEntry (const dng_vector &A)
- real64 Dot (const dng_vector &a, const dng_vector &b)
- real64 Distance (const dng_vector &a, const dng_vector &b)

6.33.1 Detailed Description

Matrix and vector classes, including specialized 3x3 and 4x3 versions as well as length 3 vectors.

6.34 dng_memory_stream.h File Reference

```
#include "dng_stream.h"
```

class dng_memory_stream

A dng_stream which can be read from or written to memory.

6.34.1 Detailed Description

Stream abstraction to/from in-memory data.

6.35 dng_misc_opcodes.h File Reference

```
#include "dng_classes.h"
#include "dng_opcodes.h"
```

Classes

· class dng opcode TrimBounds

Opcode to trim image to a specified rectangle.

class dng_area_spec

A class to describe an area of an image, including a pixel subrectangle, plane range, and row/column pitch (e.g., for mosaic images). Useful for specifying opcodes that only apply to specific color planes or pixel types (e.g., only one of the two green Bayer pixels).

class dng opcode MapTable

An opcode to apply a 1D function (represented as a 16-bit table) to an image area.

class dng_opcode_MapPolynomial

An opcode to apply a 1D function (represented as a polynomial) to an image area.

class dng_opcode_DeltaPerRow

An opcode to apply a delta (i.e., offset) that varies per row. Within a row, the same delta value is applied to all specified pixels.

· class dng opcode DeltaPerColumn

An opcode to apply a delta (i.e., offset) that varies per column. Within a column, the same delta value is applied to all specified pixels.

· class dng opcode ScalePerRow

An opcode to apply a scale factor that varies per row. Within a row, the same scale factor is applied to all specified pixels.

class dng_opcode_ScalePerColumn

An opcode to apply a scale factor that varies per column. Within a column, the same scale factor is applied to all specified pixels.

6.35.1 Detailed Description

Miscellaneous DNG opcodes.

6.36 dng_mosaic_info.h File Reference

```
#include "dng_classes.h"
#include "dng_rect.h"
#include "dng_sdk_limits.h"
#include "dng_types.h"
```

Classes

· class dng_mosaic_info

Support for describing color filter array patterns and manipulating mosaic sample data.

6.36.1 Detailed Description

Support for descriptive information about color filter array patterns.

6.37 dng_negative.h File Reference

```
#include "dng_1d_function.h"
#include "dng_auto_ptr.h"
#include "dng_classes.h"
#include "dng_fingerprint.h"
#include "dng_image.h"
#include "dng_linearization_info.h"
#include "dng_matrix.h"
#include "dng_mosaic_info.h"
#include "dng_mutex.h"
#include "dng_opcode_list.h"
#include "dng_orientation.h"
#include "dng rational.h"
#include "dng_sdk_limits.h"
#include "dng_string.h"
#include "dng_tag_types.h"
#include "dng_tag_values.h"
#include "dng_types.h"
#include "dng_utils.h"
#include "dng_xy_coord.h"
#include <vector>
```

Classes

class dng_noise_function

Noise model for photon and sensor read noise, assuming that they are independent random variables and spatially invariant.

class dng_noise_profile

Noise profile for a negative.

· class dng metadata

Main class for holding metadata.

class dng_negative

Main class for holding DNG image data and associated metadata.

Macros

- #define qMetadataOnConst 0
- #define METACONST

6.37.1 Detailed Description

Functions and classes for working with a digital negative (image data and corresponding metadata).

6.38 dng_opcode_list.h File Reference

```
#include "dng_auto_ptr.h"
#include "dng_classes.h"
#include "dng_opcodes.h"
#include "dng_uncopyable.h"
#include <vector>
```

Classes

class dng_opcode_list
 A list of opcodes.

6.38.1 Detailed Description

List of opcodes.

6.39 dng_opcodes.h File Reference

```
#include "dng_auto_ptr.h"
#include "dng_classes.h"
#include "dng_rect.h"
#include "dng_types.h"
```

Classes

• class dng_opcode

Virtual base class for opcode.

• class dng_opcode_Unknown

Class to represent unknown opcodes (e.g, opcodes defined in future DNG versions).

• class dng_filter_opcode

Class to represent a filter opcode, such as a convolution.

• class dng_inplace_opcode

Class to represent an in-place (i.e., pointwise, per-pixel) opcode, such as a global tone curve.

Enumerations

```
    enum dng_opcode_id {
        dngOpcode_Private = 0, dngOpcode_WarpRectilinear = 1, dngOpcode_WarpFisheye = 2, dngOpcode_
        FixVignetteRadial = 3,
        dngOpcode_FixBadPixelsConstant = 4, dngOpcode_FixBadPixelsList = 5, dngOpcode_TrimBounds = 6,
        dngOpcode_MapTable = 7,
        dngOpcode_MapPolynomial = 8, dngOpcode_GainMap = 9, dngOpcode_DeltaPerRow = 10, dngOpcode
        __DeltaPerColumn = 11,
        dngOpcode_ScalePerRow = 12, dngOpcode_ScalePerColumn = 13 }
        List of supported opcodes (by ID).
```

6.39.1 Detailed Description

Base class and common data structures for opcodes (introduced in DNG 1.3).

6.40 dng_pixel_buffer.h File Reference

```
#include "dng_assertions.h"
#include "dng_rect.h"
#include "dng_safe_arithmetic.h"
#include "dng_tag_types.h"
```

Classes

class dng_pixel_buffer

Holds a buffer of pixel data with "pixel geometry" metadata.

Macros

- #define qDebugPixelType 0
- #define ASSERT_PIXEL_TYPE(typeVal) DNG_ASSERT (fPixelType == typeVal, "Pixel type access mismatch")

Functions

void OptimizeOrder (const void *&sPtr, void *&dPtr, uint32 sPixelSize, uint32 dPixelSize, uint32 &count0, uint32 &count1, uint32 &count2, int32 &sStep0, int32 &sStep1, int32 &sStep2, int32 &dStep0, int32 &dStep1, int32 &dStep2)

Compute best set of step values for a given source and destination area and stride.

- void OptimizeOrder (const void *&sPtr, uint32 sPixelSize, uint32 &count0, uint32 &count1, uint32 &count2, int32 &sStep0, int32 &sStep1, int32 &sStep2)
- void OptimizeOrder (void *&dPtr, uint32 dPixelSize, uint32 &count0, uint32 &count1, uint32 &count2, int32 &dStep0, int32 &dStep1, int32 &dStep2)

6.40.1 Detailed Description

Support for holding buffers of sample data.

6.41 dng_rational.h File Reference

```
#include "dng_types.h"
```

Classes

- · class dng_srational
- · class dng_urational

6.41.1 Detailed Description

Signed and unsigned rational data types.

6.42 dng_read_image.h File Reference

```
#include "dng_area_task.h"
#include "dng_auto_ptr.h"
#include "dng_classes.h"
#include "dng_image.h"
#include "dng_memory.h"
#include "dng_mutex.h"
#include "dng_types.h"
```

Classes

- class dng_row_interleaved_image
- class dng_read_image
- class dng_read_tiles_task

Functions

• bool DecodePackBits (dng_stream &stream, uint8 *dPtr, int32 dstCount)

6.42.1 Detailed Description

Support for DNG image reading.

6.43 dng_render.h File Reference

```
#include "dng_ld_function.h"
#include "dng_auto_ptr.h"
#include "dng_classes.h"
#include "dng_spline.h"
#include "dng_uncopyable.h"
#include "dng_xy_coord.h"
```

Classes

· class dng_function_zero_offset

Curve for removing zero offset from stage3 image.

· class dng_function_exposure_ramp

Curve for pre-exposure-compensation adjustment based on noise floor, shadows, and highlight level.

class dng_function_exposure_tone

Exposure compensation curve for a given compensation amount in stops using quadric for roll-off.

• class dng_tone_curve_acr3_default

Default ACR3 tone curve.

• class dng_function_gamma_encode

Encoding gamma curve for a given color space.

class dng_render

Class used to render digital negative to displayable image.

6.43.1 Detailed Description

Classes for conversion of RAW data to final image.

6.44 dng_sdk_limits.h File Reference

```
#include "dng_types.h"
```

Variables

- const uint32 kMaxDNGPreviews = 20
- const uint32 kMaxSubIFDs = kMaxDNGPreviews + 1

The maximum number of SubIFDs that will be parsed.

const uint32 kMaxChainedIFDs = 10

The maximum number of chained IFDs that will be parsed.

const uint32 kMaxSamplesPerPixel = 4

The maximum number of samples per pixel.

const uint32 kMaxColorPlanes = kMaxSamplesPerPixel

Maximum number of color planes.

• const uint32 kMaxCFAPattern = 8

The maximum size of a CFA repeating pattern.

const uint32 kMaxBlackPattern = 8

The maximum size of a black level repeating pattern.

• const uint32 kMaxMaskedAreas = 4

The maximum number of masked area rectangles.

const uint32 kMaxImageSide = 65000

The maximum image size supported (pixels per side).

• const uint32 kMaxToneCurvePoints = 8192

The maximum number of tone curve points supported.

• const uint32 kMaxMPThreads = 8

Maximum number of MP threads for dng_area_task operations.

const real64 kMaxStage3BlackLevelNormalized = 0.2

Maximum supported value of Stage3BlackLevelNormalized.

6.44.1 Detailed Description

Collection of constants detailing maximum values used in processing in the DNG SDK.

6.44.2 Variable Documentation

6.44.2.1 kMaxDNGPreviews

```
const uint32 kMaxDNGPreviews = 20
```

The maximum number of previews (in addition to the main IFD's thumbnail) that we support embedded in a DNG.

6.45 dng_string.h File Reference

```
#include "dng_types.h"
#include "dng_memory.h"
```

Classes

class dng_string

6.45.1 Detailed Description

Text string representation.

6.46 dng_temperature.h File Reference

```
#include "dng_classes.h"
#include "dng_types.h"
```

Classes

· class dng_temperature

6.46.1 Detailed Description

Representation of color temperature and offset (tint) using black body radiator definition.

6.47 dng_tone_curve.h File Reference

```
#include "dng_classes.h"
#include "dng_memory.h"
#include "dng_point.h"
```

Classes

• class dng_tone_curve

6.47.1 Detailed Description

Representation of 1-dimensional tone curve.

6.48 dng_xy_coord.h File Reference

```
#include "dng_classes.h"
#include "dng_types.h"
```

Classes

class dng_xy_coord

Functions

```
dng_xy_coord operator+ (const dng_xy_coord &A, const dng_xy_coord &B)
dng_xy_coord operator- (const dng_xy_coord &A, const dng_xy_coord &B)
dng_xy_coord operator * (real64 scale, const dng_xy_coord &A)
real64 operator * (const dng_xy_coord &A, const dng_xy_coord &B)
dng_xy_coord StdA_xy_coord ()
dng_xy_coord D50_xy_coord ()
dng_xy_coord D55_xy_coord ()
dng_xy_coord D75_xy_coord ()
dng_xy_coord D75_xy_coord ()
dng_xy_coord XYZtoXY (const dng_vector_3 &coord)
dng_vector_3 XYtoXYZ (const dng_xy_coord &coord)
dng_xy_coord PCStoXY ()
dng_vector_3 PCStoXYZ ()
```

6.48.1 Detailed Description

Representation of colors in xy and XYZ coordinates.

Index

\sim dng_host	dng_stream, 348
dng_host, 134	BlackLevel
	dng_linearization_info, 178
AboutToApply	Buffer
dng_opcode, 239	dng_memory_block, 196
AddPoint	dng memory data, 205
dng_bad_pixel_list, 51	dng_ref_counted_block, 307
AddRect	Buffer char
dng_bad_pixel_list, 52	dng memory block, 196, 197
Allocate	dng_memory_data, 206
dng_host, 135	dng_ref_counted_block, 307, 309
dng_memory_allocator, 194	Buffer_int16
dng_memory_data, 204, 205	dng_memory_block, 197
dng_ref_counted_block, 307	dng_memory_data, 206
ApertureValueToFNumber	dng_ref_counted_block, 309
dng_exif, 95	Buffer_int32
Apply	dng_memory_block, 198
dng_opcode_list, 259	dng memory data, 207
ApplyOpcodeList	dng ref counted block, 309, 310
dng_host, 135	Buffer_int64
ApplyOrientation	dng_memory_data, 207, 208
dng_metadata, 215	dng_ref_counted_block, 310
dng_negative, 232	Buffer real32
Area	dng_memory_block, 198, 199
dng_pixel_buffer, 280	dng_memory_data, 208
AsMemoryBlock	dng_ref_counted_block, 310, 311
dng_stream, 348	Buffer_real64
AutoArray	
AutoArray< T >, 25	dng_memory_block, 199
AutoArray $<$ T $>$, 25	dng_memory_data, 208, 209
AutoArray, 25	dng_ref_counted_block, 311
Get, 26	Buffer_uint16
operator[], 26	dng_memory_block, 199, 200
Release, 26	dng_memory_data, 209
Reset, 26	dng_ref_counted_block, 311, 313
AutoPtr	Buffer_uint32
AutoPtr $<$ T $>$, 28	dng_memory_block, 200
AutoPtr $<$ T $>$, 27	dng_memory_data, 210
AutoPtr, 28	dng_ref_counted_block, 313
Get, 28	Buffer_uint64
operator *, 28	dng_memory_data, 210
operator->, 29	dng_ref_counted_block, 313, 314
Release, 29	Buffer_uint8
Reset, 29	dng_memory_block, 201
	dng_memory_data, 211
BaselineExposureOffset	dng_ref_counted_block, 314
dng_camera_profile, 62	
BestQualityFinalHeight	CalibrationIlluminant1
dng_negative, 233	dng_camera_profile, 63
BestQualityFinalWidth	CalibrationIlluminant2
dng_negative, 233	dng_camera_profile, 63
BigEndian	CalibrationTemperature1

dng_camera_profile, 63	DefaultBlackRender
CalibrationTemperature2	dng_camera_profile, 64
dng_camera_profile, 63	DefaultScale
CameraToPCS	dng_negative, 233
dng_color_spec, 78	DirtyPixel
CameraWhite	dng_pixel_buffer, 285
dng_color_spec, 78	DirtyPixel_int16
Channels	dng_pixel_buffer, 286
dng_color_spec, 78	DirtyPixel_int32
CleanUpMetadata	dng_pixel_buffer, 286
dng_image_writer, 157	DirtyPixel_int8
Clear	dng_pixel_buffer, 286
dng_camera_profile_id, 72	DirtyPixel_real32
dng_memory_data, 211	dng_pixel_buffer, 287
dng_ref_counted_block, 314	DirtyPixel_uint16
CloneInternalMetadata	dng_pixel_buffer, 287
dng_negative, 233	DirtyPixel_uint32
Collapse32	dng_pixel_buffer, 288
dng_fingerprint, 117	DirtyPixel_uint8
color_tag_set, 30	dng_pixel_buffer, 288
ColumnBlack	dng_1d_concatenate, 31
dng_linearization_info, 178	dng_1d_concatenate, 31
ConstPixel	Evaluate, 32
dng_pixel_buffer, 280	EvaluateInverse, 32
ConstPixel_int16	dng_1d_function, 33
dng_pixel_buffer, 281	Evaluate, 34
ConstPixel_int32	EvaluateInverse, 34
dng_pixel_buffer, 281	dng_1d_function.h, 423
ConstPixel_int8	dng_1d_identity, 35
dng_pixel_buffer, 282 ConstPixel real32	dng_1d_inverse, 36 Evaluate, 36
-	Evaluate, 36 EvaluateInverse, 37
dng_pixel_buffer, 282 ConstPixel_uint16	dng_1d_table, 37
dng_pixel_buffer, 283	dng_1d_table, 38
ConstPixel uint32	Initialize, 38
dng_pixel_buffer, 283	Interpolate, 39
ConstPixel_uint8	dng 1d table.h, 423
dng pixel buffer, 284	dng_abort_sniffer, 39
CopyArea	Sniff, 40
dng image, 150, 151	SniffForAbort, 40
dng pixel buffer, 284, 285	StartTask, 41
CopyGPSFrom	UpdateProgress, 41
dng exif, 96	dng abort sniffer.h, 424
Copyright	dng_area_spec, 42
dng camera profile, 63	Overlap, 42
CopyToStream	dng_area_task, 43
dng_memory_stream, 213	FindTileSize, 44
dng stream, 349	Finish, 45
CurrentDateTimeAndZone	MakeTileIterator, 45, 46
dng_date_time.h, 435	MaxThreads, 46
- ·	MaxTileSize, 46
Data	MinTaskArea, 46
dng_stream, 349	Perform, 47
DecompressInfo, 30	Process, 47

ProcessOnThread, 48	SetBaselineExposureOffset, 66
RepeatingTile1, 48	SetCalibrationIlluminant1, 67
RepeatingTile2, 49	SetCalibrationIlluminant2, 67
RepeatingTile3, 49	SetColorMatrix1, 67
Start, 49	SetColorMatrix2, 67
UnitCell, 50	SetCopyright, 67
dng_area_task.h, 424	SetDefaultBlackRender, 68
dng_area_task_progress, 50	SetEmbedPolicy, 68
DNG_ASSERT	SetHueSatMapEncoding, 68
dng_assertions.h, 425	SetLookTableEncoding, 68
dng_assertions.h, 425	SetName, 68
DNG_ASSERT, 425	SetProfileCalibrationSignature, 69
DNG_REPORT, 426	SetReductionMatrix1, 69
DNG_REQUIRE, 426	SetReductionMatrix2, 69
dng_auto_ptr.h, 426	SetUniqueCameraModelRestriction, 69
dng_bad_pixel_list, 51	SetWasBuiltinMatrix, 69
AddPoint, 51	SetWasReadFromDisk, 69
AddRect, 52	SetWasReadFromDNG, 70
IsEmpty, 52	UniqueCameraModelRestriction, 70
IsPointIsolated, 52	UniqueID, 70
IsPointValid, 52	dng_camera_profile.h, 432
IsRectIsolated, 53	dng_camera_profile_id, 70
NotEmpty, 53	Clear, 72
Point, 53	dng_camera_profile_id, 71, 72
Rect, 54	Fingerprint, 72
Sort, 54	Name, 73
dng_bad_pixels.h, 427	operator!=, 73
dng_base_tile_iterator, 55	operator==, 73
dng_basic_tag_set, 55	dng_camera_profile_info, 74
dng_big_table, 56	dng_color_space, 75
dng_big_table_cache, 57	GammaDecode, 75
dng big table storage, 58	ICCProfile, 76
dng_bilinear_interpolator, 58	IsMonochrome, 76
dng_bilinear_kernel, 58	MatrixFromPCS, 76
dng_bilinear_pattern, 59	MatrixToPCS, 76
dng_bottlenecks.h, 427	dng_color_space.h, 433
dng_camera_profile, 59	dng_color_spec, 77
BaselineExposureOffset, 62	CameraToPCS, 78
CalibrationIlluminant1, 63	CameraWhite, 78
CalibrationIlluminant2, 63	Channels, 78
CalibrationTemperature1, 63	dng color spec, 77
CalibrationTemperature2, 63	NeutralToXY, 78
Copyright, 63	PCStoCamera, 79
DefaultBlackRender, 64	SetWhiteXY, 79
EmbedPolicy, 64	WhiteXY, 79
EqualData, 64	dng_color_spec.h, 433
HueSatMapForWhite, 64	MapWhiteMatrix, 434
IsLegalToEmbed, 65	dng condition, 80
IsValid, 65	dng_const_tile_buffer, 80
Name, 65	dng_const_tile_buffer, 81
NamelsEmbedded, 65	dng_date_time, 81
ParseExtended, 66	dng_date_time, 82
ProfileCalibrationSignature, 66	IsValid, 83
ProfileID, 66	NotValid, 83
. 101110115, 00	riotrana, ou

Parse, 83	dng_errors.h, 437
dng_date_time.h, 434	dng_error_silent
CurrentDateTimeAndZone, 435	dng_errors.h, 437
dng_date_time_format, 435	dng_error_unknown
dng_date_time_format_exif, 435	dng_errors.h, 437
dng_date_time_format_unix_big_endian, 435	dng_error_unsupported_dng
dng_date_time_format_unix_little_endian, 435	dng_errors.h, 437
LocalTimeZone, 436	dng_error_user_canceled
dng_date_time_format	dng_errors.h, 437
dng_date_time.h, 435	dng_error_write_file
dng_date_time_format_exif	dng_errors.h, 437
dng_date_time.h, 435	dng_errors.h, 436
dng_date_time_format_unix_big_endian	dng_error_bad_format, 437
dng_date_time.h, 435	dng_error_end_of_file, 437
dng_date_time_format_unix_little_endian	dng_error_file_is_damaged, 437
dng_date_time.h, 435	dng_error_host_insufficient, 437
dng_date_time_info, 84	dng_error_image_too_big_dng, 437
dng_date_time_storage_info, 84	dng_error_image_too_big_tiff, 437
Format, 85	dng_error_matrix_math, 437
IsValid, 85	dng_error_memory, 437
Offset, 86	dng_error_none, 437
dng_depth_preview, 86	dng_error_not_yet_implemented, 437
dng_dirty_tile_buffer, 87	dng_error_open_file, 437
dng_dirty_tile_buffer, 87	dng_error_overflow, 437
dng_dither, 88	dng_error_read_file, 437
dng_encode_proxy_task, 88	dng_error_silent, 437
Process, 89	dng_error_unknown, 437
RepeatingTile1, 89	dng_error_unsupported_dng, 437
RepeatingTile2, 90	dng_error_user_canceled, 437
dng_error_bad_format	dng_error_write_file, 437
dng_errors.h, 437	dng_exception, 90
dng_error_end_of_file	dng_exception, 90
dng_errors.h, 437	ErrorCode, 91
dng_error_file_is_damaged	dng_exceptions.h, 437
dng_errors.h, 437	dng_exif, 91
dng_error_host_insufficient	ApertureValueToFNumber, 95
dng_errors.h, 437	CopyGPSFrom, 96
dng_error_image_too_big_dng	EncodeFNumber, 96
dng_errors.h, 437	FNumberToApertureValue, 96
dng_error_image_too_big_tiff	SetApertureValue, 97
dng_errors.h, 437	SetExposureTime, 97
dng_error_matrix_math	SetFNumber, 97
dng_errors.h, 437	SetShutterSpeedValue, 98
dng_error_memory	SnapExposureTime, 98
dng_errors.h, 437	UpdateDateTime, 98
dng_error_none	dng_exif.h, 439
dng_errors.h, 437	dng_fast_interpolator, 99
dng_error_not_yet_implemented	ProcessArea, 99
dng_errors.h, 437	SrcArea, 100
dng_error_open_file	dng_fast_module.h, 439
dng_errors.h, 437	dng_file_stream, 100
dng_error_overflow	dng_file_stream, 101
dng_errors.h, 437	dng_file_stream.h, 439
dng_error_read_file	dng_filter_opcode, 102

ModifiedBounds, 102	dng_function_GammaEncode_2_2, 124
Prepare, 103	Evaluate, 125
ProcessArea, 103	EvaluateInverse, 126
SrcArea, 104	dng_function_GammaEncode_sRGB, 126
SrcTileSize, 104	Evaluate, 127
dng_filter_opcode_task, 106	EvaluateInverse, 127
ProcessArea, 106	dng_function_zero_offset, 128
SrcArea, 107	Evaluate, 128
SrcTileSize, 107	dng_gain_map, 129
Start, 108	dng_gain_map, 130
dng_filter_task, 108	Entry, 130
dng_filter_task, 109	Interpolate, 130
Process, 110	Spacing, 131
ProcessArea, 110	dng_gain_map.h, 443
SrcArea, 111	dng_gain_map_interpolator, 131
SrcTileSize, 111	dng_gamma_encode_proxy, 131
Start, 111	Evaluate, 132
dng filter task.h, 440	dng_globals.h, 444
dng_filter_warp, 112	dng_host, 132
ProcessArea, 113	\sim dng_host, 134
SrcArea, 114	Allocate, 135
SrcTileSize, 114	ApplyOpcodeList, 135
dng_find_new_raw_image_digest_task, 115	dng host, 134
Process, 115	ForFastSaveToDNG, 135
Start, 116	ForPreview, 135
dng_fingerprint, 116	IsTransientError, 136
Collapse32, 117	Make_dng_exif, 136
FromUtf8HexString, 117	Make_dng_ifd, 136
ToUtf8HexString, 118	Make_dng_image, 136
dng_fingerprint.h, 440	Make_dng_negative, 137
dng_fingerprint_hash, 118	Make_dng_opcode, 137
dng_fingerprint_less_than, 119	Make_dng_shared, 137
dng_flags.h, 441	Make_dng_xmp, 137
qDNG64Bit, 442	PerformAreaTask, 138
gDNGDebug, 442	PerformAreaTaskThreads, 138
qDNGLittleEndian, 442	ResampleImage, 138
qDNGPrintMessages, 442	SetCropFactor, 138
qDNGThreadSafe, 442	SetForFastSaveToDNG, 139
qDNGUseLibJPEG, 442	SetForPreview, 139
qDNGUsingSanitizer, 442	Set of Fredew, 139 SetKeepOriginalFile, 139
qDNGValidate, 442	SetNeepOriginal lie, 139 SetMaximumSize, 140
qDNGValidateTarget, 443	SetMinimumSize, 140
•	SetNeedsImage, 140
qDNGXMPDocOps, 443	G .
qDNGXMPFiles, 443	SetNeedsMeta, 140
qMacOS, 443	SetPreferredSize, 141
qWinOS, 443	SetSaveDNGVersion, 141
dng_function_exposure_ramp, 119	SetSaveLinearDNG, 141
Evaluate, 120	SetWantsPreserveStage2, 142
dng_function_exposure_tone, 120	SniffForAbort, 142
dng_function_gamma_encode, 121	WantsPreserveStage2, 142
Evaluate, 122	dng_host.h, 444
dng_function_GammaEncode_1_8, 122	dng_hue_sat_map, 142
Evaluate, 123	GetConstDeltas, 144
EvaluateInverse, 123	GetDeltas, 144

Interpolate, 144	dng_jpeg_preview, 174
SetDivisions, 144	dng_jpeg_preview_tag_set, 174
dng_hue_sat_map.h, 445	dng_lens_correction.h, 449
dng_hue_sat_map::HSBModify, 402	<pre>dng_limit_float_depth_task< simd >, 175</pre>
dng_ifd, 145	Process, 175
dng_ifd.h, 445	RepeatingTile1, 176
dng_image, 148	RepeatingTile2, 176
CopyArea, 150, 151	dng_linearization_info, 177
edge_none, 150	BlackLevel, 178
edge_option, 150	ColumnBlack, 178
edge_repeat, 150	fActiveArea, 180
edge_repeat_zero_last, 150	fLinearizationTable, 180
edge_zero, 150	fMaskedArea, 180
EqualArea, 151	Linearize, 178
Get, 152	MaxBlackLevel, 179
PixelRange, 152	RowBlack, 179
PixelSize, 152	dng_linearization_info.h, 449
PixelType, 152	dng_linearize_image, 181
Put, 153	Process, 181
Rotate, 153	RepeatingTile1, 182
SetPixelType, 153	RepeatingTile2, 182
Trim, 154	dng_linearize_plane, 182
dng_image.h, 446	dng_local_string, 183
dng_image_preview, 154	dng_lock_mutex, 183
dng_image_spooler, 155	dng_look_table, 184
dng_image_writer, 155	dng_look_table_cache, 185
CleanUpMetadata, 157	dng_lossless_decoder, 185
WriteDNG, 157	dng_lossless_encoder, 186
WriteDNGWithMetadata, 158	dng_lossless_jpeg.h, 450
WriteTIFF, 158	dng_lzw_compressor, 186
WriteTIFFWithProfile, 159	dng_lzw_expander, 186
dng_image_writer.h, 447	dng_malloc_block, 187
dng_info, 160	dng_mask_preview, 187
IsValidDNG, 161	dng_matrix, 188
Parse, 162	dng_matrix.h, 450
dng_info.h, 448	dng_matrix_3by3, 189
dng_inplace_opcode, 162	dng_matrix_4by3, 190
ModifiedBounds, 164	dng_matrix_4by4, 190
Prepare, 164	dng_md5_printer, 191
ProcessArea, 164	Process, 192
dng_inplace_opcode_task, 165	dng_md5_printer_stream, 192
Process, 166	dng_memory_allocator, 193
Start, 166	Allocate, 194
dng_iptc, 167	Free, 194
IsEmpty, 168	Malloc, 194
NotEmpty, 168	dng_memory_block, 195
Parse, 170	Buffer, 196
Spool, 170	Buffer_char, 196, 197
dng_iptc.h, 448	Buffer_int16, 197
dng_jpeg_image, 171	Buffer_int32, 198
dng_jpeg_image_encode_task, 171	Buffer_real32, 198, 199
Process, 172	Buffer_real64, 199
dng_ipeg_image_find_digest_task, 172	Buffer_uint16, 199, 200
Process, 173	Buffer_uint32, 200
,	= ·

Buffer_uint8, 201	dng_noise_profile, 237
LogicalSize, 201	dng_opcode, 238
dng_memory_data, 202	AboutToApply, 239
Allocate, 204, 205	IsNOP, 239
Buffer, 205	kFlag_None, 239
Buffer_char, 206	kFlag_Optional, 239
Buffer_int16, 206	kFlag_SkipIfPreview, 239
Buffer_int32, 207	PutData, 240
Buffer_int64, 207, 208	SetStage, 240
Buffer_real32, 208	Stage, 240
Buffer_real64, 208, 209	dng_opcode_DeltaPerColumn, 241
Buffer_uint16, 209	dng_opcode_DeltaPerColumn, 241
Buffer_uint32, 210	ModifiedBounds, 242
Buffer_uint64, 210	ProcessArea, 242
Buffer_uint8, 211	PutData, 242
Clear, 211	dng_opcode_DeltaPerRow, 243
dng_memory_data, 203, 204	dng_opcode_DeltaPerRow, 244
dng_memory_stream, 212	ModifiedBounds, 244
CopyToStream, 213	ProcessArea, 244
dng_memory_stream, 213	PutData, 245
dng_memory_stream.h, 451	dng_opcode_FixBadPixelsConstant, 245
dng_metadata, 214	dng_opcode_FixBadPixelsConstant, 246
ApplyOrientation, 215	Prepare, 247
dng_misc_opcodes.h, 452	ProcessArea, 247
dng_mosaic_info, 215	PutData, 249
DownScale, 217	SrcArea, 249
DstSize, 217	dng_opcode_FixBadPixelsList, 250
fBayerGreenSplit, 220	dng_opcode_FixBadPixelsList, 251
fCFALayout, 220	Prepare, 251
FullScale, 217	ProcessArea, 252
Interpolate, 218	PutData, 253
InterpolateFast, 218	SrcArea, 253
InterpolateGeneric, 219	dng_opcode_FixVignetteRadial, 254
IsColorFilterArray, 219	IsNOP, 255
SetFourColorBayer, 220	Prepare, 255
dng_mosaic_info.h, 453	ProcessArea, 256
dng_mutex, 221	PutData, 256
dng_negative, 222	dng_opcode_GainMap, 257
ApplyOrientation, 232	dng_opcode_GainMap, 257
BestQualityFinalHeight, 233	ModifiedBounds, 258
BestQualityFinalWidth, 233	dng_opcode_list, 258
CloneInternalMetadata, 233	Apply, 259
DefaultScale, 233	Entry, 259
InternalMetadata, 233	MinVersion, 260
OriginalBestQualityFinalSize, 234	Parse, 260
OriginalDefaultCropSizeH, 234	SetAlwaysApply, 260
OriginalDefaultFinalSize, 234	Spool, 260
SetCameraCalibration1, 234	dng_opcode_list.h, 454
SetCameraCalibration2, 234	dng_opcode_MapPolynomial, 261
SetDefaultOriginalSizes, 235	dng_opcode_MapPolynomial, 262
TotalBaselineExposure, 235	ModifiedBounds, 262
dng_negative.h, 453	ProcessArea, 262
dng_noise_function, 235	PutData, 263
Evaluate, 236	dng_opcode_MapTable, 263

dng_opcode_MapTable, 264	PlaneStep, 291
ModifiedBounds, 264	RepeatArea, 291
Prepare, 264	RepeatPhase, 291
ProcessArea, 265	RowStep, 293
PutData, 266	SetConstant, 293
dng_opcode_ScalePerColumn, 266	SetConstant_int16, 293
dng_opcode_ScalePerColumn, 267	SetConstant_real32, 294
ModifiedBounds, 267	SetConstant_uint16, 294
ProcessArea, 267	SetConstant_uint32, 295
PutData, 268	SetConstant_uint8, 295
dng_opcode_ScalePerRow, 269	SetZero, 296
dng_opcode_ScalePerRow, 269	ShiftRight, 296
ModifiedBounds, 270	dng_pixel_buffer.h, 455
ProcessArea, 270	dng_point, 296
PutData, 270	dng_point_real64, 297
dng_opcode_TrimBounds, 271	dng_preview, 297
PutData, 272	dng_preview_info, 298
dng_opcode_Unknown, 272	dng_preview_list, 298
PutData, 273	dng_preview_tag_set, 299
dng_opcode_WarpFisheye, 273	dng rational.h, 456
IsNOP, 274	dng_raw_preview, 299
PutData, 274	dng raw preview tag set, 300
dng_opcode_WarpRectilinear, 275	dng_read_image, 300
IsNOP, 276	dng_read_image.h, 456
PutData, 276	dng_read_tiles_task, 302
dng_opcodes.h, 454	Process, 303
dng_orientation, 277	dng_rect, 303
dng_pixel_buffer, 278	dng_rect_real64, 304
Area, 280	dng_ref_counted_block, 305
ConstPixel, 280	Allocate, 307
ConstPixel_int16, 281	Buffer, 307
ConstPixel_int32, 281	Buffer_char, 307, 309
ConstPixel_int8, 282	Buffer_int16, 309
ConstPixel real32, 282	Buffer_int32, 309, 310
ConstPixel uint16, 283	Buffer_int64, 310
ConstPixel_uint32, 283	Buffer_real32, 310, 311
ConstPixel_uint8, 284	Buffer_real64, 311
CopyArea, 284, 285	Buffer_uint16, 311, 313
DirtyPixel, 285	Buffer uint32, 313
DirtyPixel_int16, 286	Buffer_uint64, 313, 314
DirtyPixel int32, 286	Buffer_uint8, 314
DirtyPixel_int8, 286	Clear, 314
DirtyPixel_real32, 287	dng ref counted block, 306
DirtyPixel_uint16, 287	LogicalSize, 315
DirtyPixel_uint32, 288	dng_render, 315
DirtyPixel_uint8, 288	dng_render, 316
dng pixel buffer, 279	Exposure, 316
EqualArea, 289	FinalPixelType, 317
FlipH, 289	FinalSpace, 317
FlipV, 289	MaximumSize, 317
FlipZ, 289	Render, 318
MaximumDifference, 290	SetExposure, 318
PixelRange, 290	SetExposure, 318 SetFinalPixelType, 318
Planes, 290	SetFinalSpace, 318
1 141165, 230	Seli-ilidiSpace, STO

SetMaximumSize, 319	AsMemoryBlock, 348
SetShadows, 319	BigEndian, 348
SetToneCurve, 319	CopyToStream, 349
SetWhiteXY, 320	Data, 349
Shadows, 320	dng_stream, 348
ToneCurve, 320	DuplicateStream, 349
WhiteXY, 320	Get, 349
dng_render.h, 457	Get CString, 350
dng_render_task, 321	Get int16, 350
ProcessArea, 322	Get_int32, 351
SrcArea, 322	Get_int64, 351
Start, 322	Get_int8, 352
DNG_REPORT	Get_real32, 352
dng_assertions.h, 426	Get_real64, 353
DNG_REQUIRE	Get_uint16, 353
dng_assertions.h, 426	Get_uint32, 353
dng_resample_bicubic, 323	Get_uint64, 354
dng_resample_coords, 324	Get_uint8, 354
dng_resample_function, 324	Get_UString, 355
dng_resample_task, 325	Length, 355
ProcessArea, 325	LittleEndian, 356
SrcArea, 326	OffsetInOriginalFile, 356
SrcTileSize, 326	Position, 356
Start, 327	PositionInOriginalFile, 356
dng_resample_weights, 327	Put, 357
dng_resample_weights_2d, 328	Put_int16, 357
dng_resolution, 328	Put_int32, 357
dng_rgb_table, 329	Put_int64, 358
dng_rgb_table_cache, 330	Put_int8, 358
dng_row_interleaved_image, 331	Put_real32, 358
dng_safe_int32, 332	Put_real64, 359
dng_safe_uint32, 332	Put_uint16, 359
dng_sdk_limits.h, 457	Put_uint32, 359
kMaxDNGPreviews, 458	Put_uint64, 360
dng_set_minimum_priority, 333	Put_uint8, 360
dng_shared, 333	PutZeros, 361
dng_simple_image, 335	SetBigEndian, 361
dng_sniffer_task, 336	SetLength, 361
dng_sniffer_task, 336	SetLittleEndian, 362
Sniff, 337	SetSniffer, 362
UpdateProgress, 337	SetSwapBytes, 362
dng_space_AdobeRGB, 338	Skip, 362
	Sniffer, 363
dng_space_ColorMatch, 339	
dng_space_fakeRGB, 339	SwapBytes, 363
dng_space_GrayGamma18, 340	TagValue_int32, 363
dng_space_GrayGamma22, 341	TagValue_real64, 364
dng_space_ProPhoto, 341	TagValue_srational, 364
dng_space_sRGB, 342	TagValue_uint32, 366
dng_spline_solver, 343	TagValue_urational, 366
Evaluate, 343	dng_stream_contiguous_read_hint, 367
dng_spooler, 344	dng_stream_double_buffered, 367
dng_srational, 344	dng_string, 368
dng_std_allocator< T >, 345	dng_string.h, 458
dng_stream, 346	dng_string_list, 369

dng_suite, 370	dng_xmp, 396
dng_temperature, 371	dng_xmp_namespace, 399
dng_temperature.h, 459	dng_xmp_private, 399
dng_tiff_directory, 371	dng_xmp_sdk, 400
dng_tile_buffer, 372	dng_xy_coord, 401
dng_tile_buffer, 372	dng_xy_coord.h, 459
dng_tile_iterator, 373	DownScale
dng_tile_reverse_iterator, 374	dng_mosaic_info, 217
dng_time_zone, 374	DstSize
dng_timer, 375	dng_mosaic_info, 217
dng_tone_curve, 375	DuplicateStream
dng_tone_curve.h, 459	dng_stream, 349
dng_tone_curve_acr3_default, 376	
dng_uncopyable, 377	edge_none
dng_unlock_mutex, 377	dng_image, 150
dng_urational, 378	edge_option
dng_vector, 378	dng_image, 150
dng_vector_3, 379	edge_repeat
dng_vector_4, 380	dng_image, 150
dng_vignette_radial_function, 381	edge_repeat_zero_last
Evaluate, 381	dng_image, 150
dng_vignette_radial_params, 382	edge_zero
dng_warp_params, 382	dng_image, 150
dng_warp_params, 384	EmbedPolicy
Evaluate, 384	dng_camera_profile, 64
EvaluateInverse, 384	EncodeFNumber
EvaluateRatio, 384	dng_exif, 96
EvaluateTangential, 385	Entry
	Entry dng_gain_map, 130
EvaluateTangential, 385	-
EvaluateTangential, 385 EvaluateTangential2, 385	dng_gain_map, 130
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385	dng_gain_map, 130 dng_opcode_list, 259
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386	dng_gain_map, 130 dng_opcode_list, 259 EqualArea
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390 dng_warp_params_rectilinear, 391	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122 dng_function_GammaEncode_1_8, 123
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390 dng_warp_params_rectilinear, 391 dng_warp_params_rectilinear, 392	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122 dng_function_GammaEncode_1_8, 123 dng_function_GammaEncode_2_2, 125
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390 dng_warp_params_rectilinear, 391	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122 dng_function_GammaEncode_1_8, 123
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390 dng_warp_params_rectilinear, 391 dng_warp_params_rectilinear, 392 EvaluateRatio, 392 EvaluateRatio, 392	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122 dng_function_GammaEncode_1_8, 123 dng_function_GammaEncode_sRGB, 127 dng_function_zero_offset, 128
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390 dng_warp_params_rectilinear, 391 dng_warp_params_rectilinear, 392 EvaluateRatio, 392 EvaluateRatio, 392 EvaluateTangential, 393	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122 dng_function_GammaEncode_1_8, 123 dng_function_GammaEncode_2_2, 125 dng_function_GammaEncode_sRGB, 127 dng_function_zero_offset, 128 dng_gamma_encode_proxy, 132
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390 dng_warp_params_rectilinear, 391 dng_warp_params_rectilinear, 392 EvaluateRatio, 392 EvaluateTangential, 393 MaxSrcRadiusGap, 393	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122 dng_function_GammaEncode_1_8, 123 dng_function_GammaEncode_2_2, 125 dng_function_GammaEncode_sRGB, 127 dng_function_zero_offset, 128 dng_gamma_encode_proxy, 132 dng_noise_function, 236
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390 dng_warp_params_rectilinear, 391 dng_warp_params_rectilinear, 392 EvaluateRatio, 392 EvaluateTangential, 393 MaxSrcRadiusGap, 393 MaxSrcTanGap, 393 MaxSrcRadiusGap, 393 MaxSrcRadiusGap, 393 MaxSrcRadiusGap, 393	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122 dng_function_GammaEncode_1_8, 123 dng_function_GammaEncode_2_2, 125 dng_function_GammaEncode_sRGB, 127 dng_function_zero_offset, 128 dng_gamma_encode_proxy, 132 dng_noise_function, 236 dng_spline_solver, 343
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390 dng_warp_params_rectilinear, 391 dng_warp_params_rectilinear, 392 EvaluateRatio, 392 EvaluateTangential, 393 MaxSrcRadiusGap, 393 MaxSrcRadiusGap, 393 SafeMaxRatio, 394	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122 dng_function_GammaEncode_1_8, 123 dng_function_GammaEncode_2_2, 125 dng_function_GammaEncode_sRGB, 127 dng_function_gamma_encode_proxy, 132 dng_noise_function, 236 dng_spline_solver, 343 dng_vignette_radial_function, 381
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390 dng_warp_params_rectilinear, 391 dng_warp_params_rectilinear, 392 EvaluateRatio, 392 EvaluateTangential, 393 MaxSrcRadiusGap, 393 MaxSrcRadiusGap, 393 SafeMaxRatio, 394 SafeMinRatio, 394	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122 dng_function_GammaEncode_1_8, 123 dng_function_GammaEncode_2_2, 125 dng_function_GammaEncode_sRGB, 127 dng_function_gamma_encode_proxy, 132 dng_noise_function, 236 dng_spline_solver, 343 dng_vignette_radial_function, 381 dng_warp_params, 384
EvaluateTangential, 385 EvaluateTangential2, 385 EvaluateTangential3, 385 MaxSrcRadiusGap, 386 MaxSrcTanGap, 386 SafeMaxRatio, 386 SafeMinRatio, 387 dng_warp_params_fisheye, 387 dng_warp_params_fisheye, 388 Evaluate, 389 EvaluateRatio, 389 EvaluateTangential, 389 MaxSrcRadiusGap, 389 MaxSrcTanGap, 390 SafeMaxRatio, 390 SafeMinRatio, 390 dng_warp_params_rectilinear, 391 dng_warp_params_rectilinear, 392 EvaluateRatio, 392 EvaluateTangential, 393 MaxSrcRadiusGap, 393 MaxSrcRadiusGap, 393 SafeMaxRatio, 394	dng_gain_map, 130 dng_opcode_list, 259 EqualArea dng_image, 151 dng_pixel_buffer, 289 EqualData dng_camera_profile, 64 ErrorCode dng_exception, 91 Evaluate dng_1d_concatenate, 32 dng_1d_function, 34 dng_1d_inverse, 36 dng_function_exposure_ramp, 120 dng_function_gamma_encode, 122 dng_function_GammaEncode_1_8, 123 dng_function_GammaEncode_2_2, 125 dng_function_GammaEncode_sRGB, 127 dng_function_gamma_encode_proxy, 132 dng_noise_function, 236 dng_spline_solver, 343 dng_vignette_radial_function, 381

EvaluateInverse	Format
dng_1d_concatenate, 32	dng_date_time_storage_info, 85
dng_1d_function, 34	ForPreview
dng_1d_inverse, 37	dng_host, 135
dng_function_GammaEncode_1_8, 123	Free
dng_function_GammaEncode_2_2, 126	dng_memory_allocator, 194
dng_function_GammaEncode_sRGB, 127	FromUtf8HexString
dng_warp_params, 384	dng_fingerprint, 117
EvaluateRatio	FullScale
dng_warp_params, 384	dng mosaic info, 217
dng_warp_params_fisheye, 389	<u>9_</u> , <u>_</u>
dng_warp_params_rectilinear, 392	GammaDecode
EvaluateTangential	dng_color_space, 75
dng_warp_params, 385	Get
dng_warp_params_fisheye, 389	AutoArray< T >, 26
	AutoPtr $<$ T $>$, 28
dng_warp_params_rectilinear, 393	dng_image, 152
EvaluateTangential2	dng stream, 349
dng_warp_params, 385	Get_CString
EvaluateTangential3	dng_stream, 350
dng_warp_params, 385	Get int16
exif_tag_set, 401	dng_stream, 350
Exposure	Get int32
dng_render, 316	-
	dng_stream, 351 Get int64
fActiveArea	-
dng_linearization_info, 180	dng_stream, 351
fBayerGreenSplit	Get_int8
dng_mosaic_info, 220	dng_stream, 352
fCFALayout	Get_real32
dng_mosaic_info, 220	dng_stream, 352
FinalPixelType	Get_real64
dng_render, 317	dng_stream, 353
FinalSpace	Get_uint16
dng render, 317	dng_stream, 353
FindTileSize	Get_uint32
dng_area_task, 44	dng_stream, 353
Fingerprint	Get_uint64
dng_camera_profile_id, 72	dng_stream, 354
Finish	Get_uint8
dng_area_task, 45	dng_stream, 354
fLinearizationTable	Get_UString
	dng_stream, 355
dng_linearization_info, 180	GetConstDeltas
FlipH	dng_hue_sat_map, 144
dng_pixel_buffer, 289	GetDeltas
FlipV	dng_hue_sat_map, 144
dng_pixel_buffer, 289	<u> </u>
FlipZ	HueSatMapForWhite
dng_pixel_buffer, 289	dng_camera_profile, 64
fMaskedArea	HuffmanTable, 402
dng_linearization_info, 180	•
FNumberToApertureValue	ICCProfile
dng_exif, 96	dng_color_space, 76
ForFastSaveToDNG	Initialize
dng_host, 135	dng_1d_table, 38
_ ,	- - ,

InternalMetadata	LittleEndian
dng_negative, 233	dng_stream, 356
Interpolate	LocalTimeZone
dng_1d_table, 39	dng_date_time.h, 436
dng_gain_map, 130	LogicalSize
dng_hue_sat_map, 144	dng_memory_block, 201
dng_mosaic_info, 218	dng_ref_counted_block, 315
InterpolateFast	
dng_mosaic_info, 218	Make_dng_exif
InterpolateGeneric	dng_host, 136
dng_mosaic_info, 219	Make_dng_ifd
IsColorFilterArray	dng_host, 136
dng_mosaic_info, 219	Make_dng_image
IsEmpty	dng_host, 136
dng_bad_pixel_list, 52	Make_dng_negative
dng_iptc, 168	dng_host, 137
IsLegalToEmbed	Make_dng_opcode
dng_camera_profile, 65	dng_host, 137
IsMonochrome	Make_dng_shared
dng_color_space, 76	dng_host, 137
IsNOP dng_opcode, 239	Make_dng_xmp
dng_opcode, 239 dng_opcode FixVignetteRadial, 255	dng_host, 137
dng_opcode_WarpFisheye, 274	MakeTileIterator
dng_opcode_WarpRectilinear, 276	dng_area_task, 45, 46
IsPointIsolated	Malloc
dng_bad_pixel_list, 52	dng_memory_allocator, 194
IsPointValid	MapWhiteMatrix
dng_bad_pixel_list, 52	dng_color_spec.h, 434
IsRectIsolated	MatrixFromPCS
dng_bad_pixel_list, 53	dng_color_space, 76
IsTransientError	MatrixToPCS
dng_host, 136	dng_color_space, 76
IsValid	MaxBlackLevel
dng_camera_profile, 65	dng_linearization_info, 179
dng_date_time, 83	MaximumDifference
dng_date_time_storage_info, 85	dng_pixel_buffer, 290
IsValidDNG	MaximumSize
dng info, 161	dng_render, 317
0	MaxSrcRadiusGap
JpegComponentInfo, 403	dng_warp_params, 386
	dng_warp_params_fisheye, 389
kFlag_None	dng_warp_params_rectilinear, 393
dng_opcode, 239	MaxSrcTanGap
kFlag_Optional	dng_warp_params, 386
dng_opcode, 239	dng_warp_params_fisheye, 390 dng_warp_params_rectilinear, 393
kFlag_SkipIfPreview	MaxThreads
dng_opcode, 239	
kMaxDNGPreviews	dng_area_task, 46 MaxTileSize
dng_sdk_limits.h, 458	
Longth	dng_area_task, 46 MinTaskArea
Length dng_stream, 355	
Linearize	dng_area_task, 46 MinVersion
dng_linearization_info, 178	dng_opcode_list, 260
dig_iiieanzalion_iiio, 170	ung_opooue_nsi, 200

ModifiedBounds	PCStoCamera
dng_filter_opcode, 102	dng_color_spec, 79
dng_inplace_opcode, 164	Perform
dng_opcode_DeltaPerColumn, 242	dng_area_task, 47
dng_opcode_DeltaPerRow, 244	PerformAreaTask
dng_opcode_GainMap, 258	dng_host, 138
dng_opcode_MapPolynomial, 262	PerformAreaTaskThreads
dng_opcode_MapTable, 264	dng_host, 138
dng_opcode_ScalePerColumn, 267	PixelRange
dng_opcode_ScalePerRow, 270	dng_image, 152
mosaic tag set, 403	dng_pixel_buffer, 290
_ 0_ /	PixelSize
Name	dng_image, 152
dng_camera_profile, 65	PixelType
dng_camera_profile_id, 73	dng_image, 152
NamelsEmbedded	Planes
dng_camera_profile, 65	dng_pixel_buffer, 290
NeutralToXY	PlaneStep
dng_color_spec, 78	•
NotEmpty	dng_pixel_buffer, 291
dng_bad_pixel_list, 53	Point
dng_iptc, 168	dng_bad_pixel_list, 53
NotValid	Position
dng_date_time, 83	dng_stream, 356
5 <u>9_</u> 5 555_5 5, 55	PositionInOriginalFile
Offset	dng_stream, 356
dng_date_time_storage_info, 86	Prepare
OffsetInOriginalFile	dng_filter_opcode, 103
dng_stream, 356	dng_inplace_opcode, 164
operator *	dng_opcode_FixBadPixelsConstant, 247
AutoPtr $<$ T $>$, 28	dng_opcode_FixBadPixelsList, 251
operator!=	dng_opcode_FixVignetteRadial, 255
dng_camera_profile_id, 73	dng_opcode_MapTable, 264
operator->	PreserveStreamReadPosition, 403
AutoPtr $<$ T $>$, 29	Process
operator==	dng_area_task, 47
dng_camera_profile_id, 73	dng_encode_proxy_task, 89
operator[]	dng_filter_task, 110
AutoArray< T >, 26	<pre>dng_find_new_raw_image_digest_task, 115</pre>
OriginalBestQualityFinalSize	dng_inplace_opcode_task, 166
dng_negative, 234	dng_jpeg_image_encode_task, 172
OriginalDefaultCropSizeH	dng_jpeg_image_find_digest_task, 173
dng_negative, 234	<pre>dng_limit_float_depth_task< simd >, 175</pre>
OriginalDefaultFinalSize	dng_linearize_image, 181
dng_negative, 234	dng_md5_printer, 192
Overlap	dng_read_tiles_task, 303
dng area spec, 42	dng_write_tiles_task, 395
ung_area_spee, 42	ProcessArea
Parse	dng_fast_interpolator, 99
dng_date_time, 83	dng_filter_opcode, 103
dng_info, 162	dng_filter_opcode_task, 106
dng_iptc, 170	dng_filter_task, 110
dng_opcode_list, 260	dng_filter_warp, 113
ParseExtended	dng_inplace_opcode, 164
dng_camera_profile, 66	dng_opcode_DeltaPerColumn, 242
ung_camera_prome, oo	ang_opodde_DellarelOolullill, 242

dng_opcode_DeltaPerRow, 244	dng_opcode_WarpRectilinear, 276
dng_opcode_FixBadPixelsConstant, 247	PutZeros
dng_opcode_FixBadPixelsList, 252	dng_stream, 361
dng_opcode_FixVignetteRadial, 256	gDNG64Bit
dng_opcode_MapPolynomial, 262	dng_flags.h, 442
dng_opcode_MapTable, 265	qDNGDebug
dng_opcode_ScalePerColumn, 267	dng_flags.h, 442
dng_opcode_ScalePerRow, 270	qDNGLittleEndian
dng_render_task, 322	dng_flags.h, 442
dng_resample_task, 325	qDNGPrintMessages
ProcessOnThread	dng_flags.h, 442
dng_area_task, 48	qDNGThreadSafe
profile_tag_set, 404	dng_flags.h, 442
ProfileCalibrationSignature	qDNGUseLibJPEG
dng_camera_profile, 66	dng_flags.h, 442
ProfileID	qDNGUsingSanitizer
dng_camera_profile, 66	dng_flags.h, 442
Put	qDNGValidate
dng_image, 153	dng_flags.h, 442
dng_stream, 357	qDNGValidateTarget
Put_int16	dng_flags.h, 443
dng_stream, 357	qDNGXMPDocOps
Put_int32	dng_flags.h, 443
dng_stream, 357	qDNGXMPFiles
Put_int64	dng_flags.h, 443
dng_stream, 358	qMacOS
Put_int8	dng_flags.h, 443
dng_stream, 358	qWinOS
Put_real32	dng_flags.h, 443
dng_stream, 358 Put real64	
- .	range_tag_set, 404
dng_stream, 359 Put uint16	Rect
_	dng_bad_pixel_list, 54
dng_stream, 359 Put uint32	Release
dng stream, 359	AutoArray < T >, 26
Put uint64	AutoPtr $<$ T $>$, 29
dng_stream, 360	Render
Put uint8	dng_render, 318
dng_stream, 360	RepeatArea
PutData	dng_pixel_buffer, 291
dng_opcode, 240	RepeatingTile1
dng opcode DeltaPerColumn, 242	dng_area_task, 48
dng_opcode_DeltaPerRow, 245	<pre>dng_encode_proxy_task, 89 dng_limit_float_depth_task< simd >, 176</pre>
dng_opcode_FixBadPixelsConstant, 249	dng_linearize_image, 182
dng_opcode_FixBadPixelsList, 253	RepeatingTile2
dng_opcode_FixVignetteRadial, 256	dng_area_task, 49
dng_opcode_MapPolynomial, 263	dng_encode_proxy_task, 90
dng_opcode_MapTable, 266	drig_ericode_proxy_task, 90 drig_limit_float_depth_task< simd >, 176
dng_opcode_ScalePerColumn, 268	dng_linearize_image, 182
dng_opcode_ScalePerRow, 270	RepeatingTile3
dng_opcode_TrimBounds, 272	dng_area_task, 49
dng_opcode_Unknown, 273	RepeatPhase
dng_opcode_Onknown, 273 dng_opcode_WarpFisheye, 274	dng pixel buffer, 291
and opening training of El	ang pina bandi, LV i

	CI 07
ResampleImage	dng_camera_profile, 67
dng_host, 138	SetCropFactor
Reset AutoArroy < T > 26	dng_host, 138 SetDefaultBlackRender
AutoArray $<$ T $>$, 26 AutoPtr $<$ T $>$, 29	dng camera profile, 68
Rotate	SetDefaultOriginalSizes
dng_image, 153	dng_negative, 235
RowBlack	SetDivisions
dng_linearization_info, 179	dng_hue_sat_map, 144
RowStep	SetEmbedPolicy
dng_pixel_buffer, 293	dng camera profile, 68
ruvt, 404	SetExposure
144, 101	dng_render, 318
SafeMaxRatio	SetExposureTime
dng_warp_params, 386	dng exif, 97
dng warp params fisheye, 390	SetFinalPixelType
dng_warp_params_rectilinear, 394	dng render, 318
SafeMinRatio	SetFinalSpace
dng_warp_params, 387	dng_render, 318
dng_warp_params_fisheye, 390	SetFNumber
dng_warp_params_rectilinear, 394	dng exif, 97
SetAlwaysApply	SetForFastSaveToDNG
dng_opcode_list, 260	dng_host, 139
SetAperture Value	SetForPreview
dng_exif, 97	dng_host, 139
SetBaselineExposureOffset	SetFourColorBayer
dng_camera_profile, 66	dng_mosaic_info, 220
SetBigEndian	SetHueSatMapEncoding
dng_stream, 361	dng_camera_profile, 68
SetCalibrationIlluminant1	SetKeepOriginalFile
dng_camera_profile, 67	dng_host, 139
SetCalibrationIlluminant2	SetLength
dng_camera_profile, 67	dng_stream, 361
SetCameraCalibration1	SetLittleEndian
dng_negative, 234	dng_stream, 362
SetCameraCalibration2	SetLookTableEncoding
dng_negative, 234	dng_camera_profile, 68
SetColorMatrix1	SetMaximumSize
dng_camera_profile, 67	dng_host, 140
SetColorMatrix2	dng_render, 319
dng_camera_profile, 67	SetMinimumSize
SetConstant	dng_host, 140
dng_pixel_buffer, 293	SetName
SetConstant_int16	dng_camera_profile, 68
dng_pixel_buffer, 293	SetNeedsImage
SetConstant_real32	dng_host, 140
dng_pixel_buffer, 294	SetNeedsMeta
SetConstant_uint16	dng_host, 140
dng_pixel_buffer, 294	SetPixelType
SetConstant_uint32	dng_image, 153
dng_pixel_buffer, 295	SetPreferredSize
SetConstant_uint8	dng_host, 141
dng_pixel_buffer, 295	SetProfileCalibrationSignature
SetCopyright	dng_camera_profile, 69

SetReductionMatrix1	dng_abort_sniffer, 40
dng_camera_profile, 69	dng_host, 142
SetReductionMatrix2	Sort
dng_camera_profile, 69	dng_bad_pixel_list, 54
SetSaveDNGVersion	Spacing
dng_host, 141	dng_gain_map, 131
SetSaveLinearDNG	Spool
dng_host, 141	dng_iptc, 170
SetShadows	dng_opcode_list, 260
dng_render, 319	SrcArea
SetShutterSpeedValue	dng_fast_interpolator, 100
dng_exif, 98	dng_filter_opcode, 104
SetSniffer	dng_filter_opcode_task, 107
dng_stream, 362	dng_filter_task, 111
SetStage	dng_filter_warp, 114
dng_opcode, 240	dng_opcode_FixBadPixelsConstant, 249
SetSwapBytes	dng_opcode_FixBadPixelsList, 253
dng_stream, 362	dng_render_task, 322
SetToneCurve	dng_resample_task, 326
dng_render, 319	SrcTileSize
SetUniqueCameraModelRestriction	dng_filter_opcode, 104
dng_camera_profile, 69	dng filter opcode task, 107
SetWantsPreserveStage2	dng_filter_task, 111
dng_host, 142	dng_filter_warp, 114
SetWasBuiltinMatrix	dng_resample_task, 326
dng_camera_profile, 69	Stage
SetWasReadFromDisk	dng_opcode, 240
dng_camera_profile, 69	Start
SetWasReadFromDNG	dng_area_task, 49
dng_camera_profile, 70	dng_filter_opcode_task, 108
SetWhiteXY	dng_filter_task, 111
dng_color_spec, 79	dng_find_new_raw_image_digest_task, 116
dng_render, 320	dng_inplace_opcode_task, 166
SetZero	dng_render_task, 322
	- -
dng_pixel_buffer, 296	dng_resample_task, 327
Shadows	StartTask
dng_render, 320	dng_abort_sniffer, 41
ShiftRight	SwapBytes
dng_pixel_buffer, 296	dng_stream, 363
SIMDTraits < AVX >, 405	
SIMDTraits < AVX2 > , 405	tag_cfa_pattern, 406
SIMDTraits < AVX512_SKX >, 405	tag_data_ptr, 406
SIMDTraits < SIMDType >, 404	tag_dng_noise_profile, 408
SIMDTraits < SSE2 >, 405	tag_encoded_text, 408
Skip	tag_exif_date_time, 409
dng_stream, 362	tag_icc_profile, 409
SnapExposureTime	tag_int16_ptr, 410
dng_exif, 98	tag_iptc, 410
Sniff	tag_matrix, 411
dng_abort_sniffer, 40	tag_real64, 412
dng_sniffer_task, 337	tag_srational, 412
Sniffer	tag_srational_ptr, 413
dng_stream, 363	tag_string, 413
SniffForAbort	tag_uint16, 414

tag_uint16_ptr, 415 tag_uint32, 415	dng_image_writer, 158 WriteTIFFWithProfile
tag_uint32_ptr, 416	dng image writer, 159
tag_uint8, 416	ang_mago_man, rec
tag_uint8_ptr, 417	
tag_urational, 418	
tag_urational_ptr, 418	
-	
tag_xmp, 419	
TagValue_int32	
dng_stream, 363	
TagValue_real64	
dng_stream, 364	
TagValue_srational	
dng_stream, 364	
TagValue_uint32	
dng_stream, 366	
TagValue_urational	
dng_stream, 366	
TempBigEndian, 419	
TempLittleEndian, 420	
TempStreamSniffer, 420	
tiff_dng_extended_color_profile, 421	
tiff_tag, 421	
ToneCurve	
dng_render, 320	
TotalBaselineExposure	
dng_negative, 235	
ToUtf8HexString	
dng_fingerprint, 118	
Trim	
dng_image, 154	
ung_mage, 104	
UnicodeToLowASCIIEntry, 423	
UniqueCameraModelRestriction	
dng_camera_profile, 70	
UniqueID	
dng_camera_profile, 70	
UnitCell	
dng_area_task, 50	
UpdateDateTime	
dng_exif, 98	
UpdateProgress	
dng_abort_sniffer, 41	
·	
dng_sniffer_task, 337	
WantsPreserveStage2	
dng_host, 142	
WhiteXY	
dng_color_spec, 79	
dng_render, 320	
WriteDNG	
dng_image_writer, 157	
WriteDNGWithMetadata	
dng_image_writer, 158	
WriteTIFF	