Question number	Scheme	Marks
4	$u_1 = (1+1) \ln 4 = 2 \ln 4$ and $d = \ln 4$	M1
	$S_n = \frac{n}{2} (2 \times 2 \ln 4 + (n-1) \ln 4)$ or $S_n = \frac{n}{2} (2 \ln 4 + (n+1) \ln 4)$	M1
	$\ln 4$ to either $2 \ln 2$ or $\ln 2^2$ at any stage.	M1
	$S_n = \frac{n}{2} (2n+6) \ln 2$ or	
	$S_n = \frac{n}{2}(n+3)\ln 4$	
	or	M1
	$S_n = \frac{n}{2} \left(\ln 2^6 + \ln 2^{2n} \right)$	
	or	
	$S_n = \frac{n}{2} \left(\ln 4^3 + \ln 4^n \right)$	
	$S_n = \ln 2^{n^2 + 3n}$	A1 cso
Total 5 marks		

Note: You may see the use of $\ln 4\sum_{1}^{n} (r+1)$

Solution

$$S_n = \ln 4 \sum_{1}^{n} (r+1)$$

$$= \ln 4 \left(\sum_{1}^{n} r + \sum_{1}^{n} 1 \right)$$

$$= \ln 4 \left(\frac{n}{2} (n+1) + n \right)$$

$$= 2 \ln 2 \left(\frac{n^2}{2} + \frac{3n}{2} \right)$$

$$= (n^2 + 3n) \ln 2$$

$$S_n = \ln 2^{n^2 + 3n}$$

If this is a full and correct solution (no errors) as shown – award full marks – otherwise, please send to Review.

Mark	Notes	
M1	Finds the first term and the common difference.	
	$u_1 = (1+1)\ln 4 = 2\ln 4$ and $d = \ln 4$	
	Both must be correct for this mark.	
The general principle of marking this question is as follows:		
Note: Their a and d must be in terms of $\ln 4$ or $2\ln 2$		
• Second M1 for a correct substitution of their a and their d into either $\frac{n}{2}(2a+(n-1)d)$ or		
	$\frac{n}{2}(a+L)$	
• Third M1 is for dealing correctly with all terms in ln 4 at any stage		
$(\ln 4 = 2 \ln 2 \text{ or } \ln 2^2)$ seen anywhere in the solution.		
• Fourth M1 for attempting to simplify the sum to the required form using their		
a and d		
•]	Final mark is for obtaining the given answer with no errors seen. Uses either form of the summation formula for an arithmetic series with their <i>a</i> and <i>d</i>	
M1	provided both are in terms of ln 4 or 2ln 2	
	There must be no errors in the use of and substitution of their values into the	
	formula for this question – it is given on page 2.	
	$S_n = \frac{n}{2} (2 \times 2 \ln 4 + (n-1) \ln 4)$ or $S_n = \frac{n}{2} (2 \ln 4 + (n+1) \ln 4)$	
M1	For correctly changing all terms in ln 4 to either 2ln 2 or ln 2 ² at any stage.	
	You may see this step at the end of the solution.	
	Simplifies their expression in either ln 2 or ln 4 to obtain one of the following.	
	$S_n = \frac{n}{2}(2n+6)\ln 2$	
	$\int_{n}^{\infty} \frac{1}{2} (2n+0) \ln 2$	
	or	
	$S_n = \frac{n}{2}(n+3)\ln 4$	
	$\int_{0}^{\infty} \frac{1}{2} \left(n + 3 \right) \ln 4$	
M1	or	
1711	$S = n \left(\ln 2^6 + \ln 2^{2n} \right)$	
	$S_n = \frac{n}{2} \left(\ln 2^6 + \ln 2^{2n} \right)$	
	or	
	$S = n \left(\frac{1}{100} A^3 + \frac{1}{100} A^n \right)$	
	$S_n = \frac{n}{2} \left(\ln 4^3 + \ln 4^n \right)$	
	For obtaining the given answer in full with no errors.	
A1cso*	$S_n = \ln 2^{n^2 + 3n}$	
	0 m 2	