2. El coseno de un ángulo con el que se emiten los electrones en un proceso radiactivo es una variable aleatória X con densidad de probabilidad

$$f_x(x) = \begin{cases} \frac{1+\theta x}{2} & si - 1 \le x \le 1\\ 0 & en \ caso \ contrario. \end{cases}$$

donde $-1 \le \theta \le 1$. Se pide:

- (a) Dada una m.a.s. $X_1, ..., X_n$, encuentra un estimador $\hat{\theta}_M$ para θ por el método de los momentos. (4p)
- (b) Comprueba que $\hat{\theta}_M$ es insesgado.(3p)
- (c) Comprueba que $\hat{\theta}_M$ es consistente.(3p)

Solución

(a) Dada una m.a.s. $X_1, ..., X_n$, encuentra un estimador $\hat{\theta}_M$ para θ por el método de los momentos.(4p)

Para aplicar el método de los momentos hemos de igualar el momento poblacional de orden 1 con el momento muestral de orden 1, esto es: $E(X) = \bar{X}$.

Entonces, $E(X) = \int_{-1}^{1} x \frac{1+\theta x}{2} dx = \frac{\theta}{3}$

Por lo tanto obtenemos el estimador al resolver la ecuación $\bar{X} = \frac{\theta}{3}$ con lo cual $\hat{\theta}_M = 3\bar{X}$

(b) Comprueba que $\hat{\theta}_M$ es insesgado.(3p) Hemos de comprobar que $E(\hat{\theta}_M) = \theta$

 $E(\hat{\theta}_M) = E(3\bar{X}) = 3E(\bar{X}) = 3E(X) = 3\frac{\theta}{3} = \theta$ Por lo tanto $\hat{\theta}_M$ es insesgado.

(c) Comprueba que $\hat{\theta}_M$ es consistente.(3p)

Hemos de comprobar que $\lim_{n\to\infty}VAR(\hat{\theta}_M)=0$ $E(X^2)=\int_{-1}^1 x^2\frac{1+\theta x}{2}\,dx=\frac{1}{3}$ Usando la fórmula de Steiner

$$E(X^2) = \int_{-1}^{1} x^2 \frac{1+\theta x}{2} dx = \frac{1}{3}$$

$$VAR(X) = E(X^2) - E(X)^2 = \frac{1}{3} - (\frac{\theta}{3})^2 = \frac{1}{3} - \frac{\theta^2}{9}$$

Entonces

$$VAR(\hat{\theta}_M) = VAR(3\hat{X}) = 9VAR(\hat{X}) = 9\frac{VAR(X)}{n} = 9\frac{\frac{1}{3} - \frac{\theta^2}{9}}{n} = \frac{3 - \theta^2}{n}$$
Así $\lim_{n \to \infty} VAR(\hat{\theta}_M) = \lim_{n \to \infty} \frac{3 - \theta^2}{n} = 0$ y por lo tanto $\hat{\theta}_M$ es consistente.