State Space Search

13/01/2025

Koustav Rudra

Search Frameworks

- State space search
 - Uninformed/Blind search
 - Informed/Heuristic search
- Problem reduction search
 - Decompose the problem into parts
 - Solve parts best way
 - Integration by parts
- Game tree search
- Advances
 - Memory bound Search
 - Multi-objective Search
 - Learning how to search

State Space Search

- Basic Search Problem:
 - Given: [S,s,O,G] where
 - S is the [implicitly specified] set of states
 - s is the start state
 - O is the set of state transition operators
 - G is the set of goal states
 - To find a sequence of state transitions leading from s to a goal state

Missionaries and Cannibals

- **State:** (#m, #c, 1/0)
- #m: Number of missionaries in the first bank
- #c: Number of cannibals in the first bank
- The last bit indicates whether the boat is in the first bank
- Start state: (3,3,0)
- Goal state: (0,0,1)
- Operators: Boat carries (#missionaries, #cannibals)
- (1,0), (0,1), (1,1)
- (2,0), (0,2)

Missionaries and Cannibals: Search

Search: Challenges

- Is the search space a graph or tree?
 - While exploring the states same state may appear multiple times
- Is it important to identify such repetitive states?
 - Yes
 - It may lead to infinite loop

Basic State Space Search

13/01/2025

Koustav Rudra

- Initialize: Set OPEN={s}
- Fail:
 - If OPEN={}, Terminate with failure
- Select: Select a state, n, from OPEN
- Terminate:
 - If n∈G, terminate with success
- Expand:
 - Generate the successors of n using O and insert them in OPEN
- Loop:
 - Go to step 2

Which data structure should we use for OPEN?

Open Set	Select State	Goal State	Terminate	Expanded Set
[1]	1	N	N	[4,3,2]
[4,3,2]	2	N	N	[4,3,6]
[4,3,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]
[4,5]	5	N	N	[4,7]
[4,7]	7	Υ	Υ	

Stack

Tie: Descending

Open Set	Select State	Goal State	Terminate	Expanded Set
[1]	1	N	N	[4,3,2]
[4,3,2]	4	N	N	[3,2,7]
[3,2,7]	3	N	N	[2,7,5]
[2,7,5]	2	N	N	[7,5,6]
[7,5,6]	7	Υ	Y	

Queue

Tie: Descending

• We don't want to make whole state space explicit

• We only want to unfold that portion of the state space which is necessary to find out the goal

Open Set	Select State	Goal State	Terminate	Expanded Set
[1]	1	N	N	[4,2]
[4,2]	2	N	N	[4,6]
[4,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]
[4,5]	5	N	N	[4,6]
[4,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]

Stack

Tie: Descending

How to maintain part of the state space that are already visited?

Basic State Space Search

13/01/2025

Koustav Rudra

• OPEN is a queue (FIFO) vs a stack (LIFO)

• Is this algorithm guaranteed to terminate?

• Under what circumstances will it terminate?

Complexity

• b: branching factor d: depth of the goal

- Breadth first search:
 - Time: $1 + b + b^2 + b^3 + \dots + b^d = O(b^d)$
 - Space: $O(b^d)$

- Depth first search:
 - Time: $O(b^m)$
 - m: depth of state space tree
 - **Space**: *O*(*bm*)
 - State space tree is the tree that is obtained by applying the state transition operators repeatedly on the set of states

- BFS works well when the goal state is near the start state
- BFS uses too much space
- Nice trade-off between space and time
 - Depth first search to do breadth first search
 - Iterative deepening

Space: b + 2b + 3b + ... db

Time: $1 + b + b^2 + b^3 + \dots + b^d$

- Iterative deepening
 - Perform DFS repeatedly using increasing depth bounds
 - Works in $O(b^d)$ time and O(bd) space
- Can we do something with time complexity?

- Iterative deepening
 - Perform DFS repeatedly using increasing depth bounds
 - Works in $O(b^d)$ time and O(bd) space
- Bi-directional search
 - Possible only if the operators are reversible
 - Works in $O(b^{\frac{d}{2}})$ time and $O(b^{\frac{d}{2}})$ space

Complexity Comparison

Criterion	BFS	DFS	Depth Limited	Iterative Deepening	Bidirectional
Time	b^d	b^m	b^l	b^d	$b^{rac{d}{2}}$
Space	b^d	bm	bl	bd	$b^{rac{d}{2}}$
Optimal?	Yes	No	No	Yes	Yes
Complete?	Yes	No	Yes, if I>=d	Yes	Yes

Open Set	Select State	Goal State	Terminate	Expanded Set
[1]	1	N	N	[4,2]
[4,2]	2	N	N	[4,6]
[4,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]
[4,5]	5	N	N	[4,6]
[4,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]

Stack

Tie: Descending

How to maintain part of the state space that are already visited?

Search Algorithm: Saving Explicit Space

- Initialize: Set OPEN={s}, CLOSED = {}
- Fail:
 - If OPEN={}, Terminate with failure
- Select: Select a state, n, from OPEN and
 - Save n is CLOSED
- Terminate:
 - If n∈G, terminate with success
- Expand:
 - Generate the successors of n using O
 - For each successor, m, insert m in OPEN,
 - Only if $m \notin [OPEN \cup CLOSED]$
- Loop:
 - Go to step 2

Open Set	Select State	Goal State	Terminate	Expanded Set
[1]	1	N	N	[4,2]
[4,2]	2	N	N	[4,6]
[4,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]
[4,5]	5	N	N	[4, 6]
[4]	4	N	N	[7]
[7]	7	Υ	Υ	

Stack

Tie: Descending

Search Algorithm: Saving Explicit Space

- Initialize: Set OPEN={s}, CLOSED = {}
- Fail:
 - If OPEN={ }, Terminate with failure
- Select: Select a state, n, from OPEN and
 - Save n is CLOSED
- Terminate:
 - If n∈G, terminate with success
- Expand:
 - Generate the successors of n using O
 - For each successor, m, insert m in OPEN,
 - Only if $m \notin [OPEN \cup CLOSED]$
- Loop:
 - Go to step 2

How to maintain data structure to trace the path from start to goal?

Search Algorithm: Saving Explicit Space

- How to maintain data structure to trace the path from start to goal?
- Whenever a new node m is added to the OPEN
 - Add a pointer from m to its parent n

Open Issues

• What will happen if state transition operators have associated cost?

• What will happen if the goal state have associated cost?

Thank You