Math 600 Fall 2015 Homework #4

Due Oct. 22, Thu. in class

Note: For the Euclidean space \mathbb{R}^n , consider the usual metric induced by the Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^n , unless otherwise stated.

- 1. What are connected and compact sets in \mathbb{R} ?
- 2. Let (M,d) be a metric space. Fix $z \in M$, define $f: M \to \mathbb{R}$ by f(x) := d(z,x). Show that f is continuous on M.
- 3. Define $f: \mathbb{R}^2 \to \mathbb{R}$ as:

$$f(x_1, x_2) := \begin{cases} 0, & \text{if } x_1 \text{ is rational and } x_2 \text{ is irrational} \\ 1, & \text{otherwise} \end{cases}$$

Show that f is discontinuous at any point of \mathbb{R}^2 .

- 4. Solve the following problems.
 - (1) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be $f(x_1, x_2) = x_1$. Show that f is continuous on \mathbb{R}^2 .
 - (2) Let A be an open set in \mathbb{R} , and $B = \{(x_1, x_2) : x_1 \in A\} \subseteq \mathbb{R}^2$. Use (1) to show that B is open in \mathbb{R}^2 .
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} . Which of the following sets are necessarily open, closed, compact, and connected (no proof is needed)?

(1)
$$\{x \in \mathbb{R} \mid f(x) = 0\};$$
 (2) $\{x \in \mathbb{R} \mid f(x) > 1\}.$

6. Let $f:(M,d)\to (N,\rho)$ be continuous on M, and $B\subseteq M$. Show that $f(\operatorname{cl}(B))\subseteq\operatorname{cl}(f(B))$. (*Hint*: use the sequential criteria.)

Miscellaneous practice problems: Do not submit

1. Which of the following sets are connected in \mathbb{R} ?

$$\{3,-10\}, [0,1), (-7,\infty), \mathbb{Z}, \mathbb{Q}, \mathbb{R}.$$

Here \mathbb{Z} and \mathbb{Q} are the sets of integers and rational numbers, respectively.

- 2. Let $f, g: (M, d) \to (V, \|\cdot\|)$ be two functions, where (M, d) is a metric space and $(V, \|\cdot\|)$ is a normed space.
 - (1) Use the sequential criterion to show that if f and g are continuous at $x_0 \in M$, so is f + g;
 - (2) Let λ be a scalar. Use the $\varepsilon \delta$ definition to show that if f is continuous at $x_0 \in M$, so is λf .