Math 101, Spring 2009 Assignment 4

Due at the beginning of the class, Wed., March 04. No late assignments will be considered.

Show your work!

1. In each part, determine all values of p for which the integral is improper.

[3] (a)
$$\int_{0}^{1} \frac{dx}{x^{p}}$$
. For this integral to be improper, $f(x)=x^{p}$ has to have discont. on [0,1]. Therefore, if $-p \ge 0$, $f(x)=x^{-p}$ is cont. (or if) If $p > 0$, then $f(x)=x^{-p}=\frac{1}{x^{p}}$ has discond. at $x=0$. For example, see $f(x)=\frac{1}{x^{2}}$ $f(x)=\frac{1}{x^{2}}$ $f(x)=\frac{1}{x^{2}}$ $f(x)=\frac{1}{x^{2}}$ has discond [1,2]. Therefore, if $f(x)=\frac{1}{x^{2}}$ has discond [1,2]. Therefore, if $f(x)=\frac{1}{x^{2}}$ $f(x)$ will have discond. on [1,2]. For example, see $f(x)=\frac{1}{x^{2}}$. The integrity $f(x)=\frac{1}{x^{2}}$ $f(x)=\frac$

2. Determine if given integrals converge or diverges:

[27] (a)
$$\int_{e}^{+\infty} \frac{1}{x \ln^{3} x} dx = 1$$
; Let $u = \ln x$ $\Rightarrow du = \frac{dx}{x}$

if $x = e \Rightarrow u = 1$

as $x \Rightarrow +\infty$, $u \Rightarrow +\infty$

$$T = \int_{1}^{+\infty} \frac{du}{u^{3}} = \lim_{t \to +\infty} \int_{1}^{+\infty} \frac{du}{u^{3}} = \lim_{t \to +\infty} \left(-\frac{1}{2u^{2}} \right) = \frac{1}{2}$$

$$= \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \frac{1}{2} = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \frac{1}{2} = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \frac{1}{2} = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \frac{1}{2} = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to +\infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2} \right) = \lim_{t \to$$

[2]
$$(b) \int_{-\infty}^{3} \frac{dx}{x^{2}+9} = \int_{-\infty}^{3} \frac{dx}{x^{2}+3^{2}} = \lim_{t \to -\infty} \int_{t}^{3} \frac{dx}{x^{2}+3^{2}} = \lim_{t \to -\infty} \frac{1}{3} \arctan \frac{x}{3} \Big|_{t \to -\infty}^{3} = \lim_{t \to -\infty} \left(\frac{1}{3} \arctan \left(\frac$$

[2] (c)
$$\int_{0}^{\pi/2} \tan x \, dx = \lim_{x \to \frac{\pi}{2}} \int_{0}^{\pi/2} \tan x \, dx = \lim_{x \to \frac{\pi}{2}} \int_{0}^{\pi/2} \tan x \, dx = \lim_{x \to \infty} \int_{0}^{\pi/2} \tan x \, dx = \lim_{x \to \infty} \int_{0}^{\pi/2} \tan x \, dx = \lim_{x \to \infty} \int_{0}^{\pi/2} \tan x \, dx = \lim_{x \to \infty} \int_{0}^{\pi/2} \frac{dx}{x} = \lim_{x \to \infty} \int_{0}^{\pi/2}$$

3. Make the *u*-substitution $u = \sqrt{x}$ and evaluate the resulting definite integral:

$$\int_{12}^{12} \frac{dx}{\sqrt{x}(x+4)} = I$$

$$\int_{12}^{12} \frac{$$

$$T = \int \frac{2 du}{u^2 + 4} = 2 \int \frac{du}{u^2 + 2^2} = 2 \cdot \lim_{t \to +\infty} \int \frac{du}{u^2 + 2^2} = \frac{1}{\sqrt{12}} \int$$

$$=\lim_{t\to+\infty}\left(\tan\frac{t}{2}-\tan\frac{\pi z}{2}\right)=\frac{\pi}{2}-\tan^{-1}\frac{2\pi}{2}=$$

$$=\frac{1}{2}-\tan 3=\frac{1}{3}=\frac{1}{6}$$

- 4. (a) Sketch some typical integral curves of the differential equation y' = y/(2x).
- (b) Find an equation for the integral curve that passes through the point (2,1).

(a)
$$\frac{dy}{dx} = \frac{y}{\lambda x}$$
 $\Rightarrow \frac{dy}{y} = \frac{dx}{\lambda x}$ $\Rightarrow \int \frac{dy}{y} = \frac{1}{2} \int \frac{dx}{x}$

$$e^{\ln |y|} = e^{\ln |x| + c} = e^{\ln |x|} \cdot e^{c} = |x| \cdot |x| \cdot |x|$$

where $e_i = e^c > 0$

$$y = \sqrt{|x|} \cdot c_1$$

$$y = \sqrt{|x|} \cdot c_1$$

$$y = -\sqrt{|x|} \cdot c_1$$

$$= \sqrt{|x|} \cdot c_1$$

For
$$y = -\sqrt{1 \times 1 \cdot C_i} = \int -\sqrt{x} \cdot C_i$$
, if $x \ge 0$

$$\left(-\sqrt{-x} \cdot C_i \right), f < \infty$$

$$1 = \sqrt{2} \cdot C_1 \rightarrow C_1 = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \rightarrow |y| = \sqrt{|x|} \cdot \sqrt{2}$$

Sauce
$$y=1 \Rightarrow y>0$$
, $y=\sqrt{\frac{x}{2}}$

- 5. A cup of water with a temperature of 95°C is placed in a room with a constant temperature of $21^{\circ}C$.
 - (a) Assuming that Newton's Law of Cooling applies, find the temperature of the water t minutes after it is placed in the room.
 - (b) How many minutes will it take for the water to reach a temperature of $51^{\circ}C$ if it cools to $85^{\circ}C$ in 1 minute?

Newton's Law of Cooling: u(+) = temperature of water

(a) $\frac{du}{dt} = -k(u-4)$ $\frac{du}{dt} = -k(u-21) \rightarrow \int \frac{du}{u-21} = -k\int dt$ $\ln|u-21| = -kI + C \rightarrow |u-2I| = e^{-kI}, C,$ $\ln|u-2I| = \int u-2I, if u \ge 2I$ $\ln|u-2I| = \int u-2I, if u \le 2I. This is not possible!$ Temperature of the water can not get lower than

ream temperature!

-kt

-kt

-kt

-kt

-kt

-kt

At the time t=0, $u=95^{\circ}$ C therefore $95=21+c_{1}e^{\circ}$ -kt

-> $95=21+c_{1}-e^{\circ}$ --kt

-> $95=21+c_{1}-e^{\circ}$ --kt

 $\Rightarrow t = -\frac{1}{k} \ln \frac{u-21}{74}$, Page 6 So we need to find k.

Observe that at
$$t=1$$
, $u=85$, therefore

 $85 = 21 + 74e^{-k.1}$ $\Rightarrow \frac{69}{79} = e^{-k} \Rightarrow k = -\ln\frac{69}{79}$

or $k = \ln\frac{79}{69} = \ln\frac{37}{32}$

Using formula for $+$, when $u = 51^{\circ}C$:

 $t = -\frac{1}{k} \ln \frac{9-21}{79} = -\frac{1}{k} \ln \frac{51-21}{79} = -\frac{1}{k} \ln \frac{30}{79} = -\frac{1}{k} \ln$

$$= -\frac{\ln \frac{30}{74}}{\ln \frac{37}{32}} = \frac{\ln \frac{74}{30}}{\ln \frac{37}{32}} = \frac{0.9029}{0.1452} \approx 6.22 \text{ min}$$