Examen Lineaire Algebra

Bachelor Informatica

August 31, 2010

- 1. Zij V en W eindigdimensionale vectorruimten en $\mathcal{A}:V\to W$ een lineaire afbeelding. Formuleer en bewijs de dimensiestelling voor \mathcal{A} .
- 2. (a) Bewijs dat een maximaal vrij deel van een vectorruimte V een basis is van deze vectorruimte.
 - (b) Zij $A: V \to V$ een lineaire transformatie op een inproductruimte V. Zijn volgende uitspraken juist of fout? Argumenteer.
 - (i) Als \mathcal{A} orthogonaal is, dan is \mathcal{A} inverteerbaar.
 - (ii) Als \mathcal{A} symmetrisch is, dan is \mathcal{A} inverteerbaar.
- 3. Beschouw de afbeelding $\varphi: \mathbb{R}^3 \to \mathbb{R}^3: (x,y,z) \mapsto (2x+y-z,y-2z,-2x-z)$ Zij verder $U = [(0,0,1),(1,1,1)] \subseteq \mathbb{R}^3$ een deelruimte. Bepaal dan $\varphi^{-1}(U)$.
- 4. Beschouw $\mathbb{R}[x,y]_{\leq 2} = \{a_0x^2 + a_1xy + a_2y^2 + a_3x + a_4y + a_5|a_i \in \mathbb{R}\}$ en verder $U = \{f \in \mathbb{R}[x,y]_{\leq 2}|f(0,0) = 0, f(1,0) = 0, f(0,1) = 0\}.$

De optelling en vermenigvuldiging zijn op natuurlijke wijze gedefinieerd (of iets dergelijks).

- (a) Is U een linaire deelruimte? Zo ja, stel V=U. Zo nee, stel V gelijk aan de kleinste lineaire deelruimte van $\mathbb{R}[x,y]_{\leq 2}$ die U omvat. Geef de dimensie en een basis van V.
- (b) Bepaal $V' \subseteq \mathbb{R}[x,y]_{\leq 2}$ zodat $V \oplus V' = \mathbb{R}[x,y]_{\leq 2}$.
- 5. Zijn $N, P \in \mathbb{R}^{n \times n}, P \neq O$. Bewijs: als P = NP en P is een diagonaal-matrix, dan heeft N een eigenruimte die minstens rang(P)-dimensionaal is.
- 6. Waar of fout? Bewijs of geef een tegenvoorbeeld.
 - (a) Zij V een vectorruimte van dimensie n. Zijn $U_1 \subseteq ... \subseteq U_r$ lineaire deelruimten van V. Indien r > n + 1, dan bestaat er een i zodanig dat $U_i = U_{i+1}$.
 - (b) Zij V een vectorruimte van dimensie 3 met een basis $\mathcal{E} = \{e_1, e_2, e_3\}$. Zij $W \subset V$ opgespannen door de vectoren $\{e_1, e_2\}$. Er bestaat een basis $\mathcal{V} = \{v1, v2, v3\}$ van V zodat $v_1 \notin W$, $v_2 \notin W$, $v_3 \notin W$.

7. Zij
$$M_a = \begin{pmatrix} a & 1 & -a \\ 1 & 1 & 1 \\ -a & 1 & a \end{pmatrix}$$
 met $a \in \mathbb{R}$

7. Zij $M_a = \begin{pmatrix} a & 1 & -a \\ 1 & 1 & 1 \\ -a & 1 & a \end{pmatrix}$ met $a \in \mathbb{R}$ Construeer voor elke $a \in \mathbb{R}$ een orthogonale basis (t.o.v. het standaard inproduct op \mathbb{R}^3) van eigenwaarden van M_a .