This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

03054074

PUBLICATION DATE

08-03-91

APPLICATION DATE

20-07-89

APPLICATION NUMBER

01186089

APPLICANT: KYOSAN ELECTRIC MFG CO LTD:

INVENTOR:

NAITO HIROSHI;

INT.CL.

B61L 27/00 G05B 23/02

TITLE

TEST CIRCUIT FOR DEVICE FOR

CONTROLLING A PLURALITY OF

LOADS

ABSTRACT:

PURPOSE: To enable execution of a test not needing connection of an actual load by providing 8 memory to store data regarding a plurality of loads in an address intrinsic to each load and a simulator to effect control simulation responding to a memory content.

CONSTITUTION: A simulator comprises an inspecting device 3 of a control device (a product) to control an actual process 1 being an object to be controlled, e.g. a railway signalling device, and a personal computer 4. The control device comprises a CPU 21, an ROM 22, and an RAM 23, and the inspecting device 3 comprises a memory 31 of a dual port, a CPU 32, and an ROM 33. In the memory 31, data regarding each load is stored in an address intrinsic to each load, and the memory 31 is capable of accessing from both of a CPU₁ and a CPU₂. Inspection of the control device is effected through selection of either operation of the actual process 1 or operation of the inspection device 3 through an enable switch 27.

COPYRIGHT: (C)1991, JPO& Japio

⑩特許出願公開

@ 公 開 特 許 公 報 (A) 平3-54074

Mint. Cl. 3

❸公開 平成3年(1991)3月8日

B 61 L 27/00 G 05 B 23/02 G 7829-5H H 7429-5H

審査請求 未請求 請求項の数 1 (全7頁)

会発明の名称

複数の負荷を制御する装置の試験回路

②特 願 平1-186089

②出 願 平1(1989)7月20日

@発明者 内藤

央 神奈川県横浜市鶴見区平安町2丁目29番地の1 株式会社

京三製作所内

②出 願 人 株式会社京三製作所

神奈川県横浜市鶴見区平安町2丁目29番地の1

⑩代 理 人 弁理士 山川 政樹 外3名

明 相 镇

1. 発明の名称

推費の負荷を制御する装置の試験回路

2. 特許請求の範囲

それぞれ固有アドレスが割り付けられた複数の 具存を制御する装置の試験を行う試験回路におい て

負荷に関するデータをその負荷に固有のアドレスに記憶するメモリと、

そのメモリ内容に対応する制御シミュレーションを行うシミュレータとを備えたことを特位とする複数の負荷を制御する装置の試験回路。

3. 発明の詳細な説明

[産業上の利用分野]

この発明は、例えば鉄道倡号の制御装置を試験 する試験装置に関するものである。

〔従来の技術〕

一段に、例えば列車選行を制御するための制御 装置は、超路に沿って多数設けられる装置、例え ば信号機を列車の進行にともなって版次制御する ようになってる。この装置の製造にあたっては所 望の制御が確実に行われているか否かを検査する 必要があり、このため従来は負荷である制御対象 と類似するものをランプとスイッチなどで作り、 これを制御装置に接続して検査を行っていた。

[発明が解決しようとする課題]

しかしながらこのような従来の方法は、負荷が 実際の制御対象と同一のものではないため、実際 の負荷の動きと完全に一致した決め細かい検査は 不可能であり、また制御対象が多くなると制御対 像の作成および検査に聞大な工数を要するため経 済性が悪い。このため制御対象と全く同一機能の 装置をシミュレータとして作れば良いが、制御対 像の数が多い場合はそのシミュレータが大形の装 置になってしまい、循端な場合は制御装置よりも 制御対象が占める価格の方が価格が大きくなり、 やはり経済性に問題があるという課題を有してい

[謀節を解決するための手段]

このような課題を解決するためにこの発明は、

負荷に関するデータをその負荷に固有のアドレス に記憶するメモリと、そのメモリ内容に対応する 制御のシミュレーションを行うシミュレータとを 備えたものである。

[作用]

制御装置は実際に負荷を駆動するデータを出力する。このとき負荷が接続されていなくてもそのデータはメモリをアクセスし、その記憶されたデータをもとにシミュレータが負荷の動作をシミュレートする。すなわち、実際の負荷をつないでシミュレーションするのでなく、負荷が接続されていなくても実際の負荷を駆動する制御を行うと、負荷が接続されていると同等のシミュレーションが行われる。

[実施例]

第1 図はこの発明の一実施例を示すブロック図である。図において製品である制御装置は例えば 信号機等の制御対象である実プロセス1を制御するものであり、CPU21、ROM21、シリアル1/F24、CRTおよびキーボード25、バ

プロセス1の動作か検査装置3の動作かを選択するようになっている。このため、スイッチ2ヶが検査装置3側にあるときCPU2,が1/0命を実行すると、実際の1/0ではなくメモリ3,がアクセスされる。このため検査装置3のCPU3,が実1/0と同じイメージで情報を発生させ(実プロセスの反応と同一のデータを発生させる)、制御装置のCPU2,が実プロセスを制御するとになる。この結果、制御装置は実プロセス1を制御装置でいると等値な反応を得ることができ、制御装置の確実な検査が行える。

第2図はこの発明を鉄道におけるPTC(Pros raned Train Control)装置に応用したときの例であり、実プロセスは難電速動装置である。そして入力はポイント位置、列車位置、進路額提択55、信号表示状態であり、出力は進路制御である。機能としては駅における列車の進路制御、一日の列車選行をダイヤデータとしてメモリに配憶、ダイ

ッファ 2。、スイッチ 2 ,、入力 1/0 2 a および 2 ,、出力 1/0 2 ioおよび 2 ii、C P U バス 2 i 2、 1/0 バス 2 i 3 から構成されている。

3はシミュレーションを行うための検査装置であり、デュアルポートのメモリ3 L、CPU3 L、ROM3,、RAM3 L、シリアルI/F3, RS232CのI/F3。から構成されている。4はパーソナルコンピュータであり、検査装置3とパーソナルコンピュータ4はシミュレータを構成している。

このように構成された装置において、メモリ
3、は制御装置側のCPU2」および検査装置側
のCPU3。のいずれの側からもアクセス可能な
ように構成されている。このためCPU3。から
メモリ3」の、あるアドレスにデータを書いたと
き、制御装置のCPU2」は同じアドレスをアク
セスすることによって、そのデータを設むことが
できる。つまり、両CPUはメモリレベルでのデータの交換が可能なように構成されている。

スイッチ2,はイネーブルスイッチであり、実

ヤデータに悲づき順次列車の進路を制御、列車追 跡、遅延監視、制御にたいするアンサーチェック がある。

この場合のシミュレータの動作は、進路制御が 行われると次のように制御が順次行われる。

ポイントを所定の方向に転換。

進路を鎮錠、信号現示。

信号が進行現示の場合、列車を順次避めて到着 点に到着させる。列車の動きは軌道回路の列車検 知で表現する。

列車の進行によって列車が去った軌道回路の進 路額線を解説する。

これらの動きをパーソナルコンピュータ内部の ソフトウェアで実現し、その情報をシリアル回線 を通じて検査装置3へ伝達する。

第3図は実1/0 の情報フォーマットであり、シミュレータ内では同じイメージで情報管理される。そして実プロセスの動きを模型して情報を発生し、第3図のイメージに反映するようになっており、 出力(朝鮮装置からシミュレータ方向)も同様に なっている。第3図において横軸は1パイトを表している。第3図において横軸は1/0 アドレスを表している。博報伝達は第4図に示すように3パイトで構成され、情報変化の度にその変化の状態(「1」に変化または「0」に変化)と変化したアドレスデータの最終状態をパイト単位で伝送するようになっている。そしてこの情報はメモリ3、へ反映され、また出力についてはメモリ3、の内容が変化した場合、同じフォーマットでシミュレータへ伝送するようになっている。

制御装置の入出力データフォーマットは第1表および第2表のようになっている。第1表は出力データフォーマットであり、CPU2』から実プロセスへのデータであり、ここでは逸路制御情報である。この例は最も単純な例で示してあるので6ビットしか用いていないが、実際には更に多くの信仰で構成される。

第2表は入力データフォーマットで実プロセス からCPU2,へのデータである.

第2表

	7	6	5	4	3	2	1	0
8	2 l 定位	2 l 反位	22 定位	2 2 反位	23 定位	23 反位		
Al	TH2T	2H1T	21 √ T	21 oT	23T	1AT	2AT	3AT
A2	1~3 RMR	23 TRS	5 LWR	4LMR				
A3	IRH	2RH	3RH	4LH	5LH	6UH		
м								

第2表において0~7はピット番号、A0・・・・A4は1/0アドレスであり、A0はポイント位置、A1は列車位置(軌道回路の状態)、A2は直路級技状態、A3は信号表示状態であり、第7回、第8回はこの状態を示している。第7回、第8回において21、等の記号はポイント名称、1AT等の記号は軌道回路名である。

これらのデータは次の用途に使用される。 列車検知

胡儿表

	7	6	5	4	3	2	1	0
۸٥	1 R	2R	3R	46	5L	6L		
Al								
۸2								
А3								
A4								

第1 表において0~7はビット番号、A 0・・・A 4 は1/0 アドレスであり、アドレスA 0 は 逃路制御指令である。1 Rから3 Rまでは場内避 路、1 しから6 しまでは出発逃路であり、次の意 味をもっている。

LR:接近(THIT)から1番線へ入場する進路 2R:接近(THIT)から2番線へ入場する進路 3R:接近(THIT)から3番線へ入場する進路

4 L: 3 番級から出発する進路 5 L: 2番級から出発する進路

6 L: 1 番線から出発する進路

この様子を第5図および第6図に示している。

進路制御は予め定められた制御地点に列車が存在していることを条件に行われる。制御地点は場内についてはTH1TまたはTH2Tであり、出発は1AT、2AT、3ATである。

進路支障チェック

進路制御を行うにあたっては、例即対象進路が 他の進路により支降されていないことをチェック した上で行う。進路頻錠やポイントの条件を参照 してチェックする。

制御アンサチェック

初御出力した後、進路が構成されたことを信号 表示状態を基にチェックする。出力した後、一定 時間経過後も信号が表示されない場合は制御不能 を整備出力する。

進路自動リセット

出力した進路制御条件は列車が進路の内方に役 入したことにより自動リセットする。進路鎮袞、 ポイント、列車位置を使用して進路の内方への 侵入を検知する。

列取追路

列車位置条件の状態に基づいて列車の追跡を行う。

制御装置が実プロセスへの進路制御指令を伝え ることは、I/O アドレスAOへ必要なデータをラ イトすることにより行われる。また、劇御装置は 1/0 アドレスA0~A4をリードすることにより、 災プロセスの各種状態を知ることがてきる。スイ ッチ2,が実プロセス間にあるときは、このフォ ーマットに迭づいた情報がCPU2」と実プロセ スの同でやりとりされる。スイッチ2,が検査装 双個にあると、メモリ3」を介してCPU2」と CPU3』との間で情報のやりとりが行われる。 その情報のフォーマットは実プロセスとの間で行 われるのと全く同じである。このときメモリ3: のアドレスは実プロセスの1/0 アドレスと同じに 設定されているので、CPU2は入出力データを 実プロセスとやりとりしているのか、検査装置と やりとりしているのかは全く登録しない。すなわ ちCPU3。がメモリ3」を介して得られるCP U 2 , からの制御指令に応答して実プロセスが発

パーソナルコンピュータ内にも第1表、第2表 と同じフォーマットの入出力管理プログラムが第 4 図のフォーマットに基づくデータを検査装置か ら受信すると、自身の出力データエリアを最新の 状態に書き換える。

パーソナルコンピュータのシミュレーションプログラムは出力データエリアを常時チェックし、 進路制御指令が与えられたことを検知すると、実プロセス (この場合は離電速動装置) の動きを模 低に、その結果を入力データエリアへ反映させる。 実際のデータは列車の動きなどによって刻々と変 化するが変化の都度、入力エリアの内容を書き換 える。

パーソナルコンピュータの入出力管理プログラムは常時入出力データエリアをチェックし、そのデータが変化した都度、第4回のフォーマットで変化データをシリアルI/Fを選じて検査装置へ伝える。検査装置のCPU3』はシリアルI/Fを通じてパーソナルコンピュータより入出力データ変化情報を受信すると、その認度、受信したデータ

生するのと等値な情報をメモリ3, ヘ与えてやれば、あたかも災プロセスが接続されているような 状態で制御装置の試験を行うことが可能となる。

東アロセスと等価な情報を発生するのは、パーソナルコンピュータを利用したシミュレータである。CPU3』はメモリ3』とパーソナルコンピュータとの間を中離する役目を持つ。CPU3』はシリアル回線を通じてパーソナルコンピュータとの間で情報の交換を行う。CPU3』とパーソナルコンピュータの動作は概ね次の通りである。

CPU3』はメモリ3」の内容を常時チェックしてその変化を調べる。CPU3』がメモリ3」の内容の変化を検知した場合は、直ちにシリアル1/Fを通じて第4図フォーマットによってパーソナルコンピュータに伝える。ごの場合、無4図において1/0 アドレスはデータの変化した1/0アドレス、情報種別は「0」から「1」に変化したか(立ち上がり)、「1」から「0」に変化したか(立ち下がり)かの区別、データは変化後のデータである。

の内容指定に基づいてメモリ3』の該当するアド レスの内容を書き換える。

以上の動作はパーソナルコンピュータのシミュレーションアログラムの動きに応じてランダムに行われ、メモリ31に実プロセスと等値なデータがリアルタイムに与えられる。

校を装置のアログラム動作のフローチャートを第9回に、パーソナルコンピュータ入出力管理アログラムの動作フローチャートを第10回に、パーソナルコンピュータメインアログラムの動作フローチャートを第11回に示す。検査装置のアログラムはコード化されてROM3%に配便されている。第11回において、シミュレーショックといる。第11回において、ションアをチェックといるの動作は、出力データエリアをチェックといるの動作は、出力データエリアをチェックといるの動作は、出力データと、ボイントを転換した、独角をが与えられると、ボイントを転換した。の進路を設定しては、列車が去った、列車の進行にとしない、列車が去った、関車の進行にとしない、列車が去った、関車の進行にとしない、列車が去った、関車の進路を解験する。ボイントの状態、信号

特別平3-54074(6)

現示の状態、軌道回路の状態、進路額線の状態等 は変化の都度、第4図のフォーマットに基づいて 入力データエリアに反映させる。

パーソナルコンピュータとの通信はシリアル I/F 3、およびRS232CのI/F 3。を介して 行われる.RAM3、はでの一時紀使用メモリで ある.パーソナルコンピュータからのデータの受 信処理はシリアルI/F からの受信割り込みに基づ いて起動される.

[発明の効果]

以上説明したようにこの発明は負荷に関する情報をメモリに記憶させ、そのメモリを制御装置と 校立装置の両方からアクセスできるようにしたので、実負荷を提続しなくても、接続したと等値な 校並が行えるという効果を有する。

4. 図面の簡単な説明

第1日はこの発明の一実施例を示すブロック図、 第2回はこの発明を応用した例を示す図、第3回 は信号フォーマットを示す図第4回はデータ構成 を示す図、第5回から第8回は信号状態を示す図、 ボ9図からボ11図は各部の効化を示すフローチャートである。

1・・・・ 実プロセス、2:・・・ 鯏卸装置、
2::3:・・・ CPU、2::3:・・・
ROM、2::3:・・・ RAM、3:・・・
・メモリ、4・・・・パーソナルコンピュータ。

特許出願人 株式会社京三製作所 代 理 人 山 川 政 圀

特閒平3-54074(6)

第3日

第4 図

167112		7-7
1/17}	1/1/1	1/5-1}

第11 図

