Chapter 41 Matrice d'une application linéaire

Exercice 1 (41.0)

Soit $T: \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire donnée par

$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -5x_1 + 13x_2 \\ -7x_1 + 16x_2 \end{pmatrix}.$$

Déterminer la matrice de T relativement aux bases

$$\mathcal{B} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 5 \\ 2 \end{pmatrix} \end{pmatrix} \qquad \text{et} \qquad \qquad \mathcal{B}' = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \end{pmatrix}.$$

Exercice 2 (41.0)

Soit $u \in \mathbf{L}(\mathbb{R}^4, \mathbb{R}^3)$ canoniquement associée à $A = \begin{pmatrix} 4 & 5 & -7 & 7 \\ 2 & 1 & -1 & 3 \\ 1 & -1 & 2 & 1 \end{pmatrix}$.

1. On considère les quatre vecteurs

$$e_1 = (1, 0, 0, 0),$$
 $e_2 = (0, 1, 0, 0),$ $e_3 = (4, 1, 0, -3)$ et $e_4 = (-7, 0, 1, 5).$

Montrer que $e = (e_1, e_2, e_3, e_4)$ est une base de \mathbb{R}^4 .

2. On considère les trois vecteurs

$$f_1 = (4, 2, 1),$$
 et $f_2 = (1, 1, -1)$ et $f_3 = (0, 0, 1).$

Montrer que $\mathbf{f} = (f_1, f_2, f_3)$ est une base de \mathbb{R}^3 .

3. Déterminer la matrice de u dans les bases e et f.

Exercice 3 (41.0)

Soit f l'application de $\mathbb{R}_3[X]$ dans $\mathbb{R}_4[X]$ définie par

$$\forall P \in \mathbb{R}_3[X], f(P) = P(X+1) + P(X+2) - 2P(X).$$

- **1.** Montrer que f est linéaire et que son image est incluse dans $\mathbb{R}_3[X]$.
- **2.** Donner la matrice de f par rapport aux bases canoniques.
- 3. Déterminer le noyau et l'image de f. Calculer leurs dimensions respectives.
- **4.** Soit $Q \in \text{Im } f$. Montrer qu'il existe un unique $P \in \mathbb{R}_3[X]$ vérifiant f(P) = Q et P(0) = P'(0) = 0.

Exercice 4 (41.0)

Soient $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et f l'application de $\mathcal{M}_2(\mathbb{K})$ dans lui même définie par f(X) = AX.

- 1. Déterminer le noyau et l'image de f.
- **2.** Écrire la matrice de f dans la base $\mathcal{B} = (E_{1,1}, E_{2,1}, E_{1,2}, E_{2,2})$.

Exercice 5 (41.0)

Montrer que

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

sont les matrices d'un même endomorphisme relativement à des bases différentes.

Exercice 6 (41.0)

Soit E l'espace vectoriel des fonctions réelles indéfiniment dérivables à valeurs dans \mathbb{R} .

1. Montrer que les quatre fonctions définies par

$$x_1(t) = \cos(t) \operatorname{ch}(t), \qquad x_2(t) = \sin(t) \operatorname{ch}(t), \qquad x_3(t) = \cos(t) \operatorname{sh}(t), \qquad x_4(t) = \sin(t) \operatorname{sh}(t).$$

appartiennent à E et sont linéairement indépendantes.

- 2. Soit F le sous-espace vectoriel de E engendré par ces quatres vecteurs, et u l'endomorphisme de E défini par u(f) = f'. Montrer que F est stable par u et déterminer la matrice M de u dans la base (x_1, x_2, x_3, x_4) de F.
- **3.** Calculer M^2 , M^3 , M^4 . En déduire M^n pour tout $n \in \mathbb{N}$.

Exercice 7 (41.0)

Soit u l'endomorphisme de \mathbb{R}^2 de matrice

$$A = \begin{pmatrix} 2 & \frac{2}{3} \\ -\frac{5}{2} & -\frac{2}{3} \end{pmatrix}$$

dans la base canonique $e = (e_1, e_2)$. Soient $f_1 = (-2, 3)$ et $f_2 = (-2, 5)$.

- 1. Montrer que $f = (f_1, f_2)$ est une base de \mathbb{R}^2 et déterminer $D = M_f(u)$.
- **2.** Exprimer A en fonction de D.
- **3.** Calculer A^n pour $n \in \mathbb{N}$.
- 4. Déterminer l'ensemble des suites réelles qui vérifient

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 2x_n + \frac{2}{3}y_n \\ y_{n+1} = -\frac{5}{2}x_n - \frac{2}{3}y_n \end{cases}$$
 (R)

Exercice 8 (41.0)

Soit *u* l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique $e = (e_1, e_2, e_3)$ est

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -3 \\ 1 & 1 & -2 \end{pmatrix}.$$

- 1. À l'aide de la méthode du pivot de Gauß ou du déterminant, déterminer pour quelles valeurs de $\lambda \in \mathbb{R}$, la matrice $A \lambda I_3$ n'est pas inversible.
- 2. Pour chacune des valeurs trouvées à la question précédente, déterminer le sous-espace vectoriel ker $(u \lambda \operatorname{Id}_{\mathbb{R}^3})$.
- 3. En déduire une base $e' = (e'_1, e'_2, e'_3)$ dans laquelle la matrice D de u soit une matrice diagonale.

- **4.** Exprimer A en fonction de D.
- **5.** En déduire une expression de A^n pour tout $n \in \mathbb{N}^*$.

Exercice 9 (41.0)

Soient (u_n) et (v_n) les suites à termes réels définies par

$$u_0 = 1, v_0 = 2, \quad \forall n \in \mathbb{N}, \begin{cases} u_{n+1} = 4u_n - 2v_n \\ v_{n+1} = u_n + v_n \end{cases}.$$

Pour $n \in \mathbb{N}$, on pose $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

- **1.** Trouver une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que, quel que soit $n \in \mathbb{N}$, on ait $X_{n+1} = AX_n$.
- **2.** Soit $n \in \mathbb{N}$. Exprimer X_n en fonction des puissance de A et de X_0 .
- **3.** Notons f l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique est A. Calculer une base des espaces vectoriels $\ker(f-2\operatorname{Id})$ et $\ker(f-3\operatorname{Id})$. En déduire une matrice $P\in\operatorname{GL}_2(R)$ vérifiant

$$P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = D.$$

4. Soit $n \in \mathbb{N}$. Calculer A^n en fonction de D^n . En déduire l'expression de u_n et v_n .

Exercice 10 (41.0)

Soit $u \in \mathbf{L}(\mathbb{R}^3)$ canoniquement associée à $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

1. On considère les trois vecteurs

$$e_1 = (1, -1, 0),$$
 $e_2 = (1, 1, 0),$ $e_3 = (0, 0, 1).$

Montrer que $e = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 .

- **2.** Calculer la matrice T de u dans la base e.
- **3.** Calculer T^n pour tout $n \in \mathbb{N}^*$.
- **4.** En déduire A^n pour tout $n \in \mathbb{N}^*$.

Exercice 11 (41.0)

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire dont la matrice relativement à la base canonique $\mathcal{B} = (e_1, e_2)$ de \mathbb{R}^2 est

$$A = \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix}.$$

Déterminer une base $\mathcal{B}' = (v_1, v_2)$ de \mathbb{R}^2 telle que la matrice de f relativement à \mathcal{B}' soit

$$D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Exercice 12 (41.0)

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice relativement à la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 est

$$A = \begin{pmatrix} 5 & 5 & -6 \\ -4 & -4 & 6 \\ -2 & -3 & 5 \end{pmatrix}.$$

Déterminer une base $\mathcal{B}' = (v_1, v_2, v_3)$ de \mathbb{R}^3 telle que la matrice de f relativement à \mathcal{B}' soit

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 13 (41.0)

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice relativement à la base canonique $\mathcal{B}=(e_1,e_2,e_3)$ de \mathbb{R}^3 est

$$A = \begin{pmatrix} 2 & 6 & -8 \\ 1 & 1 & 4 \\ 1 & -3 & 8 \end{pmatrix}.$$

Déterminer une base $\mathcal{B}'=(v_1,v_2,v_3)$ de \mathbb{R}^3 telle que la matrice de f relativement à \mathcal{B}' soit

$$D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Exercice 14 (41.0)

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice relativement à la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 est

$$A = \begin{pmatrix} 5 & 3 & -6 \\ -4 & 0 & 4 \\ 1 & 2 & -2 \end{pmatrix}.$$

Déterminer une base $\mathcal{B}' = (v_1, v_2, v_3)$ de \mathbb{R}^3 telle que la matrice de f relativement à \mathcal{B}' soit

$$T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 15 (41.0)

On considère les deux applications f et g définies par

$$f: \mathbb{R}_2[X] \to \mathbb{R}^4$$

$$P \mapsto (P(0), P(1), P'(0), P'(1))$$
 et $g: \mathbb{R}^4 \to \mathbb{R}^2$
$$(x, y, z, t) \mapsto (x + y + z + t, x - t)$$

- 1. Montrer que f et g sont linéaires.
- 2. Déterminer les matrices de f et g relativement aux bases canoniques de leurs ensembles de départ et d'arrivée.
- **3.** En déduire la matrice de $g \circ f$ relativement aux bases canoniques de $\mathbb{R}_2[X]$ et \mathbb{R}^2 .

Exercice 16 (41.0)

On note $E = \mathbb{R}_3[X]$. On désigne par u et v les endomorphismes suivants

- 1. Déterminer la matrice, sur la base canonique de E, de l'endomorphisme $u+\lambda v$, où λ est un réel arbitraire. On notera M_{λ} cette matrice.
- **2.** Discuter suivant le réel λ , le rang de la matrice M_{λ} .

Exercice 17 (41.0)

Vérifier que $P \mapsto (X^2 - 1)P'' + XP'$ est un endomorphisme de $\mathbb{R}_n[X]$ et écrire sa matrice dans la base canonique de $\mathbb{R}_n[X]$.

Exercice 18 (41.0)

Donner les matrices des applications linéaires suivantes dans les bases canoniques puis déterminer le noyau et l'image de l'application.

1.
$$u: \mathbb{R}^2 \to \mathbb{R}^3$$
 .
 3. $u: \mathbb{R}^3 \to \mathbb{R}$
 .

 $(x, y) \mapsto (2x - y, x + y, x)$
 .
 $(x, y, z) \mapsto x + y + 2z$

 2. $u: \mathbb{R} \to \mathbb{R}^3$
 .
 .

 $x \mapsto (x, 2x, x)$
 .
 .

 3. $u: \mathbb{R}^3 \to \mathbb{R}$
 .

 $(x, y, z) \mapsto (2x + 3y, x - z, 3x)$

Exercice 19 (41.0)

Donner les matrices des applications linéaires suivantes dans les bases canoniques puis déterminer le noyau et l'image de l'application.

1.
$$u : \mathbb{R}_{5}[X] \to \mathbb{R}_{5}[X]$$
.
 $P \mapsto XP'$

2. $u : \mathbb{R}_{2}[X] \to \mathbb{R}_{3}[X]$
 $P \mapsto XP - (X - 1)^{2}P'$

3. $u : \mathbb{R}_{3}[X] \to \mathbb{R}_{3}[X]$
 $P \mapsto (1 + X^{2})P'' - 2XP'$

4. $u : \mathbb{R}_{5}[X] \to \mathbb{R}^{3}$
 $P \mapsto (P(-1), P(0), P(1))$

Exercice 20 (41.0)

Soit
$$A\in\mathcal{M}_n(\mathbb{R})$$
 et $u:\mathcal{M}_n(\mathbb{R})\to\mathcal{M}_n(\mathbb{R})$. Calculer $\mathrm{Tr}(u)$.
$$M\mapsto AM+MA$$

Exercice 21 (41.0) Crochets de Lie de $\mathcal{M}_n(\mathbb{K})$

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

- **1.** Soit n un entier ≥ 2 et $u \in \mathbf{L}(\mathbb{K}^n)$. Montrer que si u n'est pas une homothétie, il existe e_1 et e_2 dans \mathbb{K}^n tels que $u(e_1) = e_2$ et (e_1, e_2) linéairement indépendants.
- **2.** Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que Tr A = 0. Montrer que A est semblable à une matrice dont tous les termes diagonaux sont nuls.
- 3. Soit $D = \text{diag}(d_1, \dots, d_n)$ une matrice diagonale dont tous les termes diagonaux sont distincts. Soit f l'endomorphisme de $\mathcal{M}_n(\mathbb{K})$ qui à M associe DM MD. Déterminer le noyau et l'image de f.
- **4.** Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que la trace de A est nulle si et seulement si il existe deux matrices R et S de $\mathcal{M}_n(\mathbb{K})$ telles que A = RS SR.

Exercice 22 (41.0)

Soient p matrices A_1, A_2, \ldots, A_p de $\operatorname{GL}_n(\mathbb{K})$ tels que l'ensemble de ces p matrices soit stable par produit matriciel. Montrer que

$$\operatorname{Tr}\left(\sum_{i=1}^{p} A_i\right) \equiv 0 \pmod{p}.$$

Exercice 23 (41.0)

L'espace $E=\mathcal{M}_{n,1}(\mathbb{C})$ est identifié à \mathbb{C}^n par isomorphisme canonique. Soit G un sous-groupe fini de $\mathbf{GL}_n(\mathbb{C})$. On pose

$$E^G = \{ x \in E \mid \forall g \in G, gx = x \}.$$

Montrer que

$$\dim E^G = \frac{1}{\operatorname{card} G} \sum_{g \in G} \operatorname{Tr}(g).$$

Exercice 24 (41.1)

Soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$ et $\mathcal{B}' = (X^2 + X + 1, X^2 - 1, X^2 + X)$.

- **1.** Démontrer que \mathcal{B}' est une base de $\mathbb{R}_2[X]$.
- 2. Déterminer les matrices de passage de \mathcal{B} à \mathcal{B}' et de \mathcal{B}' à \mathcal{B} .
- 3. Déterminer les coordonnées du polynôme $P = 3X^2 6X + 5$ dans \mathcal{B}' .

Exercice 25 (41.1)

1. Déterminer les valeurs du paramètre λ telles que

$$v_1 = \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}, \qquad \qquad v_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \qquad \qquad v_3 = \begin{pmatrix} 2 \\ 0 \\ \lambda \end{pmatrix}$$

forment une base de \mathbb{R}^3 .

2. Soit $b = (2,0,1)^T$ et $s = (2,0,3)^T$. Vérifier que chacune des familles

$$\mathcal{B} = (v_1, v_2, b)$$
 et $\mathcal{S} = (v_1, v_2, s)$

est une base de \mathbb{R}^3 . Déterminer la matrice de passage de la base \mathcal{B} à la base \mathcal{S} .

3. Si Coord_S(w) = $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, déterminer Coord_B(w).

Exercice 26 (41.1)

On considère le plan W dans \mathbb{R}^3 ,

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x - 2y + 3z = 0 \right\}.$$

1. Monter que chacune des familles

$$S = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \quad \text{et} \quad \mathcal{B} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

est une base de W.

- **2.** Montrer que le vecteur $v = (5,7,3)^T$ est un vecteur de W et déterminer ses coordonnées $Coord_S(v)$ relativement à la base S.
- 3. Déterminer la matrice de passage M de la base S à la base B; ainsi

$$Coord_{S}(x) = M \times Coord_{B}(x)$$
.

Utiliser la relation précédente pour déterminer $Coord_{\mathcal{B}}(v)$ pour le vecteur $v = (5,7,3)^T$ et vérifier votre réponse.

Exercice 27 (41.1)

Soit $e = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 et $\mathbf{f} = (f_1, f_2, f_3, f_4)$ la famille de \mathbb{R}^4 définie par

$$f_1 = e_1 - 2e_2,$$
 $f_2 = e_2 - 3e_3,$ $f_3 = e_3 - 4e_4,$ $f_4 = e_4.$

- **1.** Prouver que la famille f est une base de \mathbb{R}^4 .
- 2. Déterminer les matrices de passage de e à f et de f à e.

Exercice 28 (41.1)

Soient les vecteurs de \mathbb{R}^3

$$b_1 = (1, 1, 2),$$
 $b_2 = (-2, -1, 3),$ $b_3 = (0, -3, -1).$

Notons

$$E = \text{Vect}(b_1, b_2)$$
 et $F = \text{Vect}(b_3)$.

- **1.** Montrer que la famille $b = (b_1, b_2, b_3)$ est une base de \mathbb{R}^3 . Que peut-on dire des espaces E et F?
- 2. Soit p la projection sur E parallèlement à F. Calculer la matrice M de p dans la base b.
- 3. Notons $e = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Calculer la matrice P de passage de e à b.
- **4.** Soit N la matrice de p dans la base e. Quelle relation existe-t-il entre les matrices M, N et P? Calculer la matrice N.

Exercice 29 (41.1)

Soit
$$f \in \mathbf{L}(\mathbb{R}^3)$$
 canoniquement associée à $A = \begin{pmatrix} -2 & 4 & 2 \\ -4 & 8 & 4 \\ 5 & -10 & -5 \end{pmatrix}$.

Vérifier que f est un projecteur. Déterminer le noyau et l'image de f.

Exercice 30 (41.1)

Soit
$$f \in \mathbf{L}(\mathbb{R}^3)$$
 canoniquement associée à $A = \begin{pmatrix} 5 & -8 & -4 \\ 8 & -15 & -8 \\ -10 & 20 & 11 \end{pmatrix}$.

Vérifier que f est une symétrie. Déterminer $\ker(f - \operatorname{Id})$ et $\ker(f' + \operatorname{Id})$.

Problème 31 (41.1) BanquePT 2009, épreuve A, partie A

Dans tout l'exercice, n est un entier strictement positif, E désigne un espace vectoriel réel de dimension finie n, L(E) l'ensemble des endomorphismes de E, I_E l'identité dans E et 0_E l'endomorphisme nul sur E.

1. Dans cette question E est de dimension 2. On considère la base $\mathcal{B}=(e_1,e_2)$ de E. On considère l'application linéaire f ayant pour matrice, dans la base \mathcal{B} :

$$M = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}.$$

- (a) Montrer que f est un projecteur. Quel est son rang?
- (b) Déterminer le noyau et l'image de f.
- **2.** Dans cette question, E est de dimension 3. On considère la base $\mathcal{B}=(e_1,e_2,e_3)$ de E. D désigne la droite vectorielle engendrée par le vecteur $e_1=e_1+3e_2-e_3$ et P le plan engendré par les vecteurs $e_2=e_1-e_3$ et $e_3=2e_1-e_2$.

Déterminer la matrice, dans la base \mathcal{B} , du projecteur sur P parallèlement à D.

- 3. Dans cette question et jusqu'à la fin de cette partie, p désignera un projecteur de E, où E est un espace vectoriel de dimension n. Montrer que $\ker(p)$ et $\operatorname{Im}(p)$ sont supplémentaires dans E; on pourra écrire, pour $x \in E$, x = [x p(x)] + p(x).
- **4.** Soit q l'endomorphisme défini par: $q = I_E p$. Montrer que q est un projecteur de E. Déterminer le noyau et l'image de q. Calculer $p \circ q$ et $q \circ p$.
- 5. Soit p_1 et p_2 deux projecteurs de E et $q = p_1 + p_2 p_2 \circ p_1$.
 - (a) Montrer que si $p_1 \circ p_2 = O_E$, alors q est un projecteur de E.
 - (b) Montrer que $\ker(p_1) \cap \ker(p_2) \subset \ker(q)$.
 - (c) Montrer¹ alors que $ker(p_1) \cap ker(p_2) = ker(q)$.

¹Ça ressemble à une erreur d'énoncé, il faut continuer à supposer $p_1 \circ p_2 = 0_E$.