7-16

Assignment 5 (or Final project)

Correlation distributions of different GNM methods with conservation scores

You may get good correlations between between GNM-BF and ConSURF scores. But it is highly likely that you will get very bad correlations.

Now, instead of presenting the results as they are, you may need to think of why they are so - not any reasons but those that are supported by evidence. And then draw your conclusions from your calculations.

From GNM to Contact number

Flexibility and packing in proteins

Halle showed that

$$S_{k} = \int C^{-1} d \xi_{k} \xi_{k}^{T} \xi_{k} \exp(-\beta W(\xi_{k}))$$

$$\beta W(\xi_{k}) \sim \Lambda_{k} \xi_{k}^{T} \xi_{k}$$

$$S_{k} = \frac{3}{2\Lambda_{k}} = (\frac{3}{2\lambda_{k}}) (\frac{1}{n_{k}})$$

PNAS 2002;99;1274-1279

Ignoring off-diagonal elements of the Hessian matrix

$$H = \begin{pmatrix} h_{11} & h_{12} & h_{13} & \dots \\ h_{21} & h_{22} & h_{23} & \dots \\ h_{31} & h_{32} & h_{23} & \dots \end{pmatrix} \sim \begin{pmatrix} h_{11} & 0 & 0 & \dots \\ 0 & h_{22} & 0 & \dots \\ 0 & 0 & h_{23} & \dots \end{pmatrix}$$

$$C = H' = \begin{pmatrix} h_{11} & O & O & & \\ O & h_{21} & O & & \\ O & O & h_{31} & & \end{pmatrix} = \begin{pmatrix} \frac{1}{n_1} & O & O & & \\ O & \frac{1}{n_2} & O & & \\ O & O & \frac{1}{n_3} & & \end{pmatrix}$$

Comparison between GNM and Contact Number (CN)

Table 1. Indicators for model predictions of $C\alpha$ AMSDs for full protein set

	Model	Density*	$\langle \Delta \rangle^{\dagger}$	Range of Δ	$\langle ho angle^{\dagger}$	Range of ρ
a	LDM	all/ref/fix	0.89 ± 0.27	0.63-2.19	0.62 ± 0.09	0.41-0.80
b	LDM	all/ref/scd	0.86 ± 0.26	0.62-2.09	0.64 ± 0.09	0.43-0.81
C	LDM	all/xtl/fix	0.75 ± 0.12	0.52-1.21	0.67 ± 0.09	0.45-0.83
d	LDM	all/xtl/scd	0.72 ± 0.11	0.53-1.13	0.70 ± 0.09	0.49-0.85
e	P-GNM	$C\alpha/ref/fix$	1.08 ± 0.42	0.65-3.06	0.58 ± 0.17	0.05-0.84
f	LDM	$C\alpha/ref/fix$	1.02 ± 0.32	0.74-2.58	0.51 ± 0.11	0.20-0.70
g	LDM	$C\alpha/ref/scd$	0.97 ± 0.29	0.68-2.32	0.58 ± 0.08	0.42-0.75

t = 0

Comparison between GNM, CN and WCN

Table IThe Performance Breakdown of the WCN Model, the CN Model and the GNM for the Structures Classified According to the SCOP Classes

	WCN		CN		GNM	
SCOP classes	\overline{c}	$p_{0.5}$	\overline{c}	$p_{0.5}$	\overline{c}	$p_{0.5}$
All- α proteins All- β proteins α/β proteins $\alpha + \beta$ proteins	0.59 0.64 0.62 0.60	0.73 0.82 0.82 0.77	0.47 0.51 0.49 0.49	0.43 0.58 0.51 0.51	0.54 0.58 0.57 0.54	0.68 0.73 0.75 0.65

CN and WCN

Contact Number

Weighted Contact Number

$$W_{\kappa} = \sum_{i} \frac{1}{\gamma_{\kappa i}^{2}}$$

The link between contact number and conservation

The distribution of the correlations between WCN and conservation

Average correlation coefficient for 554 structures is 0.57

WCN vs. Conservation

Solid: WCN
Dotted: Consv

Solid: WCN
Dotted: Consv

- 1. The BF is correlated with GNM-B factors and WCN and CN (published)
- 2. The WCN and CN is associated with conservation (published)
- 3. Is BF associated with conservation your final project?

The distribution of WCN of catalytic amino acids

The distribution of WCN of an amino acid type

Catalytic residues

among the most considered residues

Comparison between WCN and X-ray BF distributions of catalytic residues vs. other residues

prediction of catalytic residues

prediction of catalytic residues

prediction of catalytic residues

Why BF is not good at predicting catalytic residues?

If **B** factors appear to be correlated well with **WCN** and **CN** (published), and **WCN** is shown to be correlated well with **conservation scores** and is a good predictor of catalytic residues, then why **B**-factors are such a poor predictor of catalytic residues?

One of the reasons is that the values of X-ray B-factors are subject to the changes of many factors such as crystallization conditions, refinement methods, temperatures...

The x-rat B-factor profiles are different even for the same protein

- 1. The GNM-BF is correlated with GNM-B factors and WCN and CN (published)
- 2. The WCN and CN is associated with conservation (published)
- 3. Is GNM-BF associated with conservation your final project?

QM/MM simulation

Classical particles

Continuous energy

Quantum particles

Zero-point energy

Feynman Path integral approach

Feynman Path integral approach

Double slit experiment

Double Slit Experiment explained! by Jim Al-Khalili

https://www.youtube.com/watch?v=A9tKncAdIHQ&frags=pl%2Cwn

Double Slit Experiment explained! by Dr. Quantum

https://www.youtube.com/watch?v=DfPeprQ7oGc&frags=pl%2Cwn

Feynman Path integral

$$U_{q} = \frac{1}{p} \sum_{k=1}^{p} \frac{1}{2} M \Omega^{2} \Delta x_{k}^{2} + U(x_{k})$$

QM/MM simulation using Feynman path integral

