Modelowanie i identyfikacja – laboratorium 10.

Identyfikacja liniowych systemów dynamicznych.

Skorelowane zakłócenie, uogólniona metoda najmniejszych kwadratów

Paweł Wachel

Wymagania wstępne:

- 1. Wymagania wstępne z poprzednich zajęć¹.
- 2. Znajomość podstawowych własności liniowych systemów dynamicznych z czasem dyskretnym: odpowiedź impulsowa i skokowa systemu, reprezentacja za pomocą splotu, stabilność.

Zadania do wykonania:

Dany jest **dynamiczny** system liniowy typu SISO ze skończoną pamięcią o znanej długości s (np. s=5,10) opisany równaniem

$$Y_n = b_0^* U_n + b_1^* U_{n-1} + b_2^* U_{n-2} + \dots + b_s^* U_{n-s} + Z_n$$
(1)

gdzie $\{U_n\}$, $\{Y_n\}$ to odpowiednio sygnały wejścia i wyjścia, $\{Z_n\}$ jest addytywnym zakłóce-

niem, a $\{b_0^*, b_1^*, \dots, b_s^*\}$ jest ciągiem szukanych prametrów systemu (odpowiedź imp.). Niech $b^* = [b_0^*, b_1^*, \dots, b_s^*]^T$ oraz $\varphi_n = [U_n, U_{n-1}, \dots, U_{n-s}]^T$. Wtedy $Y_n = \varphi_n^T b^* + Z_n$.

- 1. Ustalić arbitralnie składowe wektora b^* . Wygenerować N-elementową sekwencję obserwacji wejścia $\{U_n\}$ typu i.i.d. o rozkładzie normalnym $\mathcal{N}(\mu, \sigma_U^2)$.
- 2. Wygenerować zakłócenie $Z_n=e_n,$ gdzie $\{e_n\}$ jest białym szumem o rozkładzie normalnym. Skonstruować macierze

$$\Phi_{N} = \begin{bmatrix} \varphi_{1}^{T} \\ \varphi_{2}^{T} \\ \vdots \\ \varphi_{N}^{T} \end{bmatrix} = \begin{bmatrix} U_{1} & U_{0} & \cdots & U_{1-s} \\ U_{2} & U_{1} & \cdots & U_{2-s} \\ \vdots & \vdots & \ddots & \vdots \\ U_{N} & U_{N-1} & \cdots & U_{N-s} \end{bmatrix}, \mathbf{Y}_{N} = \begin{bmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{N} \end{bmatrix}, \mathbf{Z}_{N} = \begin{bmatrix} Z_{1} \\ Z_{2} \\ \vdots \\ Z_{N} \end{bmatrix}$$
(2)

(wtedy $\mathbf{Y}_N = \Phi_N b^* + \mathbf{Z}_N$)

Skonstruować estmator odpowiedzi impulsowej systemu zgodnie ze wzorem

$$\hat{b}_N = (\Phi_N^T \Phi_N)^{-1} \Phi_N^T \mathbf{Y}_N. \tag{3}$$

¹Całkujemy wiedzę... przynajmniej do wakacji.

3. Dla (ustalonego) sygnału wejściowego $\{U_n\}$ z punktu 1. wygenerować L (np. L=100) niezależnych sekwencji $\{Z_n\}$ i utworzyć odpowiadające im zbiory pomiarów wejściawyjścia $T_N^{[1]}, T_N^{[2]}, \ldots, T_N^{[L]}$. Niech $\hat{b}_N^{[l]}$ oznacza realizację estymatora \hat{b}_N uzyskaną na podstawie pomiarów ze zbioru $T_N^{[l]}$. Wykreślić błąd

$$Err\{\hat{b}_N\} = \frac{1}{L} \sum_{l=1}^{L} \left\| \hat{b}_N^{[l]} - b^* \right\|^2 \tag{4}$$

w funkcji N.

4. Powtórzyć eksperyment z p. 3. dla zakłócenia

$$Z_n = e_n + \alpha e_{n-1},\tag{5}$$

gdzie α jest dowolną stałą i porównać uzyskany rezultat z wykresem otrzymanym w punkcie 3.

5. Macierz kowariancji zakłóceń (5) przyjmuje postać

$$\mathbf{R} = \begin{bmatrix} c_0 & c_1 & 0 & 0 & \cdots & 0 \\ c_1 & c_0 & c_1 & 0 & & 0 \\ 0 & c_1 & c_0 & c_1 & & \vdots \\ \vdots & & & \ddots & c_1 \\ 0 & 0 & 0 & \cdots & c_1 & c_0 \end{bmatrix}_{N \times N} , \tag{6}$$

gdzie $c_0 = (1+\alpha^2)\sigma_e^2$, $c_1 = \alpha\sigma_e^2$ oraz $\sigma_e^2 < \infty$ jest wariancją sygnału $\{e_n\}$. W wybranym środowisku obliczeniowym skonstruować macierz \mathbf{R} (np. przy użyciu funkcji toeplitz()–MATLAB) i sprawdzić czy jest ona nieosobliwa.

6. Skonstruować estymator uogólnionej metody najmniejszych kwadratów zgodnie ze wzorem

$$\hat{b}_N^{GLS} = [\boldsymbol{\Phi}_N^T \mathbf{R}^{-1} \boldsymbol{\Phi}_N]^{-1} \boldsymbol{\Phi}_N^T \mathbf{R}^{-1} \mathbf{Y}_n. \tag{7}$$

7. Dla estymatora \hat{b}_N^{GLS} powtórzyć ekperyment z pkt. 3 i porównać uzyskane rezultaty z wcześniejszymi wynikami.

Zadania dodatkowe:

1. Powtórzyć przeprowadzone powyżej eksperymenty (dla estymatora \hat{b}_N) i zakłócenia

$$Z_n = \alpha Z_{n-1} + e_{n-1}, (8)$$

gdzie $|\alpha|<1$. Następnie skonstruować macierz kowariancji ${\bf R}$ dla ciągu (8) i zbadać własności estymatora \hat{b}_N^{GLS} .

Literatura:

- 1. Söderström, Torsten D., and Petre Gheorghe Stoica. Identyfikacja systemów. Wydawnictwo Naukowe PWN, 1997.
- 2. Mańczak, Kazimierz, and Zbigniew Nahorski. Komputerowa identyfikacja obiektów dynamicznych. Państwowe Wydawnictwo Naukowe, 1983.
- 3. Wasserman, Larry. All of statistics: a concise course in statistical inference. Springer Science & Business Media, 2013.
- 4. Gajek Lesław, Kałuszka Marek. Wnioskowanie statystyczne: modele i metody. Wydawnictwa Naukowo-Techniczne, 1993.
- 5. Notatki z wykładu.