Devoir surveillé n°07: corrigé

SOLUTION 1.

- **1.** a. On sait que $\phi(x) \equiv 0[q]$ donc $(x-1)\phi(x) \equiv 0[q]$. D'où $x^p-1 \equiv 0[q]$ i.e. $x^p \equiv 1[q]$. Ainsi $p \in A$.
 - **b.** Puisque $\phi(x) \equiv 0[q]$, il existe $r \in \mathbb{Z}$ tel que $\phi(x) = rq$. Ainsi $1 + \sum_{k=1}^{p-1} x^k = rq$ d'où $rq x \sum_{k=1}^{p-1} x^{k-1} = 1$. Or $\sum_{k=1}^{p-1} x^{k-1} \in \mathbb{Z}$ donc 1 et q sont premiers entre eux en vertu du théorème de Bézout. Puisque x est premier avec le nombre premier q, $x^{q-1} \equiv 1[q]$ en vertu du petit théorème de Fermat. Ainsi $q-1 \in A$.
 - c. D'après une des deux questions précédentes, A est non vide. Comme c'est une partie de \mathbb{N} , A possède un plus petit élément.
 - **d.** Il existe $(k,r) \in \mathbb{N}^2$ tel que $\alpha = km + r$ et $0 \le r \le m 1$. Puisque $\alpha \in A$, $x^\alpha \equiv 1[q]$ i.e. $x^{km+r} \equiv 1[q]$ ou encore $(x^m)^k x^r \equiv 1[q]$. Or $m \in A$ donc $x^m \equiv 1[q]$. Il s'ensuit que $x^r \equiv 1[q]$. On ne peut avoir r > 0 sinon r appartiendrait à A et le fait que $r \le m 1$ contredirait la minimalité de m. C'est donc que r = 0 et que m divise A.
 - **e.** Raisonnons par l'absurde et supposons m=1. On a donc $x\equiv 1[q]$. Il s'ensuit que $\varphi(x)\equiv p[q]$. Or $\varphi(x)\equiv 0[q]$ donc $p\equiv 0[q]$. Ainsi q divise p. Comme p est premier, on a donc q=1 (impossible car q est premier) ou q=p (impossible car p et q sont distincts). On aboutit à une contradiction de sorte que $m\neq 1$.
 - **f.** D'après la question **1.a**, $p \in A$. D'après la question **1.d**, m divise p. Or p est premier donc ses seuls diviseurs positifs sont 1 et p. De plus, $m \ne 1$ d'après la question précédente donc m = p.
 - **g.** D'après la question **1.b**, $q 1 \in A$ et toujours d'après la question **1.d**, m = p divise q 1. Ceci signifie que $q 1 \equiv 0[p]$ i.e. $q \equiv 1[p]$.
- 2. a. On a clairement $\phi(q_1q_2\dots q_r)\geqslant 2$ donc $\phi(q_1q_2\dots q_r)$ possède un diviseur premier q'. Ainsi $\phi(q_1q_2\dots q_r)\equiv 0[q']$. L'équation $\phi(x)\equiv 0[q']$ possède donc une solution, à savoir $q_1q_2\dots q_r$. Par hypothèse, ceci signifie que q' est l'un des q_i . Il existe donc $i\in [\![1,r]\!]$ tel que

$$\phi(q_1q_2\dots q_r)\equiv 0[q_i]$$

- **b.** Tout d'abord, $\phi(q_1q_2\ldots q_r)=1+\sum_{k=1}^{p-1}(q_1q_2\ldots q_r)^k$. De plus, pour $k\in [\![1,p-1]\!], (q_1q_2\ldots q_r)^k$ est un multiple de q_i donc $(q_1q_2\ldots q_r)^k\equiv 0[q_i]$. Il s'ensuit que $\phi(q_1q_2\ldots q_r)\equiv 1[q_i]$. D'après la question précédente, $\phi(q_1q_2\ldots q_r)\equiv 0[q_i]$ donc $1\equiv 0[q_i]$ i.e. q_i divise 1, ce qui est absurde.
- 3. D'après la question précédente, il existe un nombre infini de nombres premiers q tels que l'équation $\varphi(x) \equiv 0[q]$ admette une solution. Il existe donc évidemment une infinité de nombres premiers q distincts de p tels que l'équation $\varphi(x) \equiv 0[q]$ admette une solution. La question 1 montre alors que $q \equiv 1[p]$ i.e. q est de la forme 1+kp avec $k \in \mathbb{N}^*$ (on ne peut avoir $k \leqslant 0$ car $q \geqslant 2$ en tant que nombre premier).

SOLUTION 2.

- 1. Clairement $F \subset E$. La suite nulle est clairement 4-périodique. Enfin, une combinaison linéaire de suites 4-périodiques est bien 4-périodique. Ainsi F est bien un sous-espace vectoriel de E.
- **2.** Soit $(u_n) \in G$. Alors pour tout $n \in \mathbb{N}$,

$$u_{n+4}=u_{n+2}=u_n$$

Donc $(\mathfrak{u}_{\mathfrak{n}}) \in F$.

De même, si $(u_n) \in H$. Alors pour tout $n \in \mathbb{N}$,

$$u_{n+4} = -u_{n+2} = u_n$$

Donc $(\mathfrak{u}_n) \in F$.

G et H sont bien inclus dans F.

3. On prouve sans difficulté qu'en posant pour tout $n \in \mathbb{N}$,

$$a_n = 1$$
 $b_n = (-1)^n$ $c_n = \cos(n\pi/2)$ $d_n = \sin(n\pi/2)$

alors

$$G = \text{vect}((a_n), (b_n)) \qquad \qquad H = \text{vect}((c_n), (d_n))$$

Ainsi G et H sont bien des sous-espaces vectoriels de F et les familles $((a_n), (b_n))$ et $((c_n), (d_n))$ engendrent respectivement G et H.

4. Soit $(u_n) \in G \cap H$. Alors pour tout $n \in \mathbb{N}$, $u_{n+2} = u_n = -u_n$ de sorte que la suite (u_n) est nulle. Ainsi $F \cap G = \{0_F\}$. F et G sont bien en somme directe.

Puisque G et H sont inclus dans F, $G \oplus H \subset F$. Réciproquement, soit $(u_n) \in F$ et posons $v_n = \frac{u_n + u_{n+2}}{2}$ et $w_n = \frac{u_n - u_{n+2}}{2}$ pour tout $n \in \mathbb{N}$. Alors, on a clairement $(u_n) = (v_n) + (w_n)$.

Remarquons tout d'abord que $u_{n+4} = u_n$ pour tout $n \in \mathbb{N}$ puisque $(u_n) \in H$. Alors pour tout $n \in \mathbb{N}$,

$$v_{n+2} - v_n = \frac{u_{n+2} + u_{n+4}}{2} - \frac{u_n + u_{n+2}}{2} = 0$$

$$w_{n+2} + w_n = \frac{u_{n+2} - u_{n+4}}{2} + \frac{u_n - u_{n+2}}{2} = 0$$

Ainsi $(v_n) \in G$ et $(w_n) \in H$, puis $(u_n) \in G \oplus H$ de sorte que $F \subset G \oplus H$. Par double inclusion, $F = G \oplus H$.

5. Puisque

$$F = G \oplus H = \text{vect}((a_n), (b_n)) \oplus \text{vect}((c_n), (d_n)) = \text{vect}((a_n), (b_n), (c_n), (d_n))$$

la famille $((a_n), (b_n), (c_n), (d_n))$ engendre F.

SOLUTION 3.

1. On trouve sans peine que F = vect((1, 1, 0), (0, 1, 1)) donc F est bien un sous-espace vectoriel de E. Par ailleurs.

$$\begin{cases} x + y - z = 0 \\ x - y - z = 0 \end{cases} \iff \begin{cases} y = 0 \\ x = z \end{cases}$$

donc G = vect((1, 0, 1)). Ainsi G est bien un sous-espaces vectoriel de E.

- 2. Une résolution de système montre que $F \cap G = \{(0,0,0)\}$. Par ailleurs, la question précédente montre que dim F = 2 et dim G = 1 puisque les familles ((1,1,0),(0,1,1)) et ((1,0,1)) sont clairement libres. Ainsi dim F+dim G dim E donc F et G sont bien supplémentaires dans E.
- 3. On remarque que (1,2,3)=(0,2,2)+(1,0,1). On vérifie sans peine que $(0,2,2)\in F$ et que $(1,0,1)\in G$. Ainsi (0,2,2) est le projeté de (1,2,3) sur F parallélement à G tandis que (1,0,1) est le projeté de (1,2,3) sur G parallélement à F.

SOLUTION 4.

1. Clairement $F \subset E$. Soient $(y_1, y_2) \in F^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Alors pour tout $x \in \mathbb{R}$,

$$(\lambda y_1 + \mu y_2)''(x) = \lambda y_1''(x) + \mu y_2''(x) = \lambda (1 + x^2) y_1(x) + \mu (1 + x^2) y_2(x) = (1 + x^2) (\lambda y_1 + \mu y_2)(x)$$

Donc $\lambda y_1 + \mu y_2$ est solution de (\mathcal{E}) et appartient donc à F. Ainsi F est un sous-espace vectoriel de E.

2. f est clairement de classe \mathcal{C}^2 sur \mathbb{R} et

$$\forall x \in \mathbb{R}, f'(x) = xe^{\frac{x^2}{2}} = xf(x)$$

puis

$$\forall x \in \mathbb{R}, f''(x) = f(x) + xf'(x) = f(x) + x^2 f(x) = (1 + x^2) f(x)$$

Ainsi $f \in F$.

Puisque la fonction $\varphi \colon t \mapsto e^{-t^2}$ est continue sur \mathbb{R} , le théorème fondamental de l'analyse permet d'affirmer que $\psi \colon x \mapsto \int_0^x e^{-t^2}$ dt est une primitive de φ sur \mathbb{R} . Puisque $g = f\psi$, g est de classe \mathcal{C}^1 et

$$g' = f'\psi + f\psi' = f'\psi + f\phi$$

On en déduit que g' est elle-même de classe C^1 (donc g est de classe C^2) et que

$$g'' = f''\psi + f'\psi' + f'\phi + f\phi' = f''\psi + 2f'\phi + f\phi'$$

Alors pour tout $x \in \mathbb{R}$,

$$g''(x) = f''(x)\psi(x) + 2f'(x)\phi(x) + f(x)\phi'(x) = (1+x^2)f(x)\psi(x) + 2xf(x)\phi(x) - 2xf(x)\phi(x) = (1+x^2)g(x)$$

g appartient donc bien à F.

3. Soit $(v, w) \in F^2$. Alors pour tout $x \in \mathbb{R}$,

$$(v'w - vw')'(x) = v''(x)w(x) - v(x)w''(x) = (1 + x^2)v(x)w(x) - (1 + x^2)v(x)w(x) = 0$$

La fonction v'w - vw' est donc constante sur \mathbb{R} .

4. Conformément à l'indication de l'énoncé, on calcule la dérivée de h/f.

$$(h/f)' = \frac{h'f - hf'}{f^2}$$

Puisque h et f appartiennent à F, la question précédente montre que h'f – hf' est constante. Notons β cette constante réelle. Ainsi $(h/f)' = \frac{be}{f^2}$. Autrement dit, pour tout $x \in \mathbb{R}$,

$$(h/f)'(x) = \beta e^{-x^2} = \beta \phi(x) = \beta \psi'(x)$$

Il existe donc une constante réelle α telle que

$$h/f = \beta \psi + \alpha$$

On en déduit que

$$h=\beta f\psi+\alpha f=\alpha f+\beta g$$

- **5.** Puisque f et g appartient au sous-espace vectoriel F, $\text{vect}(f,g) \subset F$. La question précédente montre l'inclusion réciproque. Ainsi F = vect(f,g).
- **6.** La famille (f,g) engendre F. Montrons que cette famille est libre. Soit donc $(\alpha,\beta) \in \mathbb{R}^2$ tel que $\alpha f + \beta g = 0$. En évaluant en 0, on obtient $\alpha = 0$. On a donc $\beta g = 0$. En dérivant et en évaluant en 0, on obtient $\beta g'(0) = 0$. Or

$$g'(0) = f'(0)\psi(0) + f(0)\varphi(0) = 1$$

de sorte que $\beta = 0$. La famille (f, g) est donc également libre : c'est donc une base de F de sorte que dim F = 2.