Redes Aquáticas

Reuben Nascimento Morais http://reub.in/seminario.pdf

Outline

- 1. Introdução
- 2. Características do meio, camada física e enlace
- 3. Camada de rede
- 4. Localização
- 5. Mobilidade
- 6. Referências

Introdução

- Redes aquáticas podem ser usadas para monitorar ambientes naturais e artificiais (ex: oceano, lago de usina hidrelétrica).
- Estudos de biologia marinha, poluição dos oceanos, aquecimento global, exploração e monitoração de campos de gás e petróleo.
- Ambiente aquático apresenta várias dificuldades tecnológicas.
- Redes podem ter nós em posições ancoradas, ou livres para se mover nas correntes.

- Água atenua rapidamente a energia eletromagnética de alta frequência, o que dificulta o uso de tecnologias de RF típicas em redes fora d'água, diminuindo seu alcance.
- Comunicação ótica tem alta velocidade de propagação, mas devido a reflexões em partículas suspensas na água, curto alcance.
- Comunicação via ondas acústicas é a principal alternativa pois tem alcance de vários quilômetros, mas sofre de baixa velocidade de propagação e largura de banda, além de sensibilidade às características da água.

	RF	MI	Ótica	Acústica
Troughput	Mbps	Mbps	Mbps	kbps
Alcance	10m	100m	100m	10km
Uso de energia (Tx)	Baixo	Baixo	Médio	Alto
Propagação	~0.75c	~0.75c	~0.75c	10 ⁻⁵ c

- Atraso de propagação grande e variável com temperatura, salinidade e profundidade: handshakes caros e difícil sincronização.
- Tx acústico gasta ~100x mais energia que Rx: alto custo de colisões.
- Redes esparsas, baixa correlação entre leituras de nós sensores: pouca redundância nos dados.
- Near-Far Effect: nós com P_{Tx} iguais -> nós próximos geram muito ruído e tornam impossível escutar nós distantes

- MAC: três categorias
 - Livre de colisão
 - Com colisão
 - Baseado em reserva

Protocolos MAC livres de colisão: FDMA, TDMA, CDMA

FDMA

(Frequency Division Multiple Access)

TDMA

(Time Division Multiple Access)

CDMA

(Code Division Multiple Access)

- Protocolos MAC livres de colisão: FDMA, TDMA, CDMA
- Vantagens: simples, FDMA e CDMA permitem comunicações simultâneas sem handshaking.
- Desvantagens: sincronização difícil, dificuldades práticas em manter ortogonalidade, baixa utilização do meio devido à velocidade de propagação.
- Exemplo de protocolo: UW-OFDMAC

- Protocolos com colisão: ALOHA, CSMA/MACA/FAMA
- Vantagens: Atraso de propagação pode ser usado para fazer outras transmissões de controle enquanto CTS é esperado.
- Desvantagens: Performance depende da precisão da informação sobre o meio (estimativas de tempo de atraso). Controle de colisão focado no transmissor.
- Exemplo de protocolo: ISA-ALOHA, Ordered CSMA

- Protocolos baseados em reservas
- Vantagens: Intervalos sincronizados permitem que nós durmam, economizando energia. Uso de tons é resiliente a interferência comparado com mensagens e também economiza energia.
- Desvantagens: Custoso em topologias descentralizadas devido à troca de mensagens.
- Exemplos de protocolos: R-MAC, T-Lohi

Camada de rede

Camada de rede

- Protocolos pró-ativos e reativos gastam banda preciosa para estabelecimento e manutenção de rota, o ideal é usar um protocolo geográfico.
- Roteamento geográfico promissor, pode usar características específicas do meio: roteamento baseado em pressão.
- Ideia geral: rotear geograficamente para uma boia na superfície que pode então utilizar meios convencionais de transmissão.
- Exemplo de protocolo: GEDAR

- É preciso associar os dados sensoriados por um nó sensor à localização do nó.
- Sinal GPS (1.5GHz) é rapidamente atenuado na água.
- Ideia geral: trilateração a partir de pontos conhecidos.
- Diferentes métodos: com auxílio de veículos aquáticos autônomos, com nós dive-and-rise, e com fonte acústica baseada em pulso de laser (Vieira et al 2009).
- Caso os dados não precisem ser analisados em tempo real, localização pode usar pós-processamento. (Mirza and Schurgers)

- Localização com veículos aquáticos autônomos:
- Veículo obtém coordenada de GPS na superfície, e depois submerge e navega pelos nós, enviando beacons de localização.
- Nós utilizam trilateração ou bounding box para estimar sua localização a partir do atraso da resposta.

Localização com nós dive-and-rise:

Localização com fonte acústica baseada em pulso de laser:

Localização com fonte acústica baseada em pulso de laser:

- Serviços de localização: quorum, hashing, feromônio
- Como espalhar informação de localização ao longo da rede. Um exemplo:

- Modelos de mobilidade são importantes para reduzir overhead dos protocolos de roteamento, localização, além de permitir melhor planejamento do deployment de redes aquáticas.
- Meandering Current Mobility model: mobilidade de acordo com as correntes do oceano.

$$\psi(x, y, t) = -\tanh\left[\frac{y - B(t)\sin(k(x - ct))}{\sqrt{1 + k^2 B^2(t)\cos^2(k(x - ct))}}\right]$$
(3)

Referências

- VIEIRA, L. et al. Redes de sensores aquáticas. XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, Gramado, RS, Brasil, v. 24, 2010.
- AKYILDIZ, Ian F.; WANG, Pu; SUN, Zhi. Realizing underwater communication through magnetic induction. **IEEE Communications Magazine**, v. 53, n. 11, p. 42-48, 2015.
- CHEN, Keyu et al. A survey on MAC protocols for underwater wireless sensor networks. **IEEE Communications Surveys & Tutorials**, v. 16, n. 3, p. 1433-1447, 2014.
- JIANG, S. M. State-of-the-art medium access control (MAC) protocols for underwater acoustic networks: a survey based on a MAC reference model. **IEEE Commun. Surv. Tutor**, v. 20, n. 1, p. 1, 2018.

Referências

- SYED, Affan A.; YE, Wei; HEIDEMANN, John. Comparison and evaluation of the T-Lohi MAC for underwater acoustic sensor networks. **IEEE Journal on Selected Areas in Communications**, v. 26, n. 9, 2008.
- COUTINHO, Rodolfo WL et al. Geographic and opportunistic routing for underwater sensor networks. **IEEE Transactions on Computers**, v. 65, n. 2, p. 548-561, 2016.
- EROL, Melike; VIEIRA, Luiz Filipe M.; GERLA, Mario. AUV-aided localization for underwater sensor networks. In: **Wireless Algorithms, Systems and Applications**, 2007. WASA 2007. International Conference on. IEEE, 2007. p. 44-54.
- JONES, Ted G. et al. Remote underwater ultrashort pulse laser acoustic source. In: Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006. Conference on. IEEE, 2006. p. 1-2.

Referências

- VIEIRA, L. F. M. et al. LPS: Laser positioning system for underwater networks. In: ACM International Workshop on Underwater Networks, WUWNet. 2009.
- MIRZA, Diba; SCHURGERS, Curt. Energy-efficient ranging for post-facto self-localization in mobile underwater networks. IEEE Journal on Selected Areas in Communications, v. 26, n. 9, 2008.
- BOUABDALLAH, Fatma; BOUTABA, Raouf. A Distributed OFDMA Medium Access Control for Underwater Acoustic Sensors Networks. In: ICC. 2011. p. 1-5.
- SYED, Affan A.; YE, Wei; HEIDEMANN, John. T-Lohi: A new class of MAC protocols for underwater acoustic sensor networks. In: INFOCOM 2008.
 The 27th Conference on Computer Communications. IEEE, 2008. p. 231-235.