	300 GeV, 100 cm, region 2017		
Cut	$\epsilon_i^{ ext{CMS}}$	$\epsilon_i^{\rm sim}$, HEPMC	ϵ_i^{sim} , HEPMC, no pileup
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$
trigger	$1.4^{+0.02}_{-0.02} \times 10^{-1}$	$9.3^{+0.09}_{-0.09} \times 10^{-2}$	$9.1^{+0.09}_{-0.09} \times 10^{-2}$
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.4^{+0.02}_{-0.02} \times 10^{-1}$	$9.3^{+0.09}_{-0.09} \times 10^{-2}$	$9.1^{+0.09}_{-0.09} \times 10^{-2}$
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$1.4^{+0.02}_{-0.02} \times 10^{-1}$	$9.3^{+0.09}_{-0.09} \times 10^{-2}$	$9.1^{+0.09}_{-0.09} \times 10^{-2}$
≥ 1 jet with $p_{ m T} > 110{ m GeV}$ and $ \eta < 2.4$	$8.5^{+0.13}_{-0.13} \times 10^{-2}$	$7.5^{+0.09}_{-0.09} \times 10^{-2}$	$7.4^{+0.09}_{-0.09} \times 10^{-2}$
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$7.4^{+0.12}_{-0.12} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.2^{+0.08}_{-0.08} \times 10^{-2}$
$ \Delta\phi({ m leading jet},ar{p}_{ m T}^{ m miss}) >0.5$	$7.4^{+0.12}_{-0.12} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.2^{+0.08}_{-0.08} \times 10^{-2}$
≥ 1 track with $ \eta < 2.1$	$7.4^{+0.12}_{-0.12} \times 10^{-2}$	$\begin{array}{c} -0.08 \\ 6.3_{-0.08}^{+0.08} \times 10^{-2} \\ 5.2_{-0.07}^{+0.07} \times 10^{-2} \\ 4.2_{-0.07}^{+0.07} \times 10^{-2} \end{array}$	$6.2_{-0.08}^{+0.08} \times 10^{-2} 5.1_{-0.07}^{+0.07} \times 10^{-2}$
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$\begin{array}{c c} 5.9^{+0.11}_{-0.11} \times 10^{-2} \\ 5.9^{+0.11}_{-0.11} \times 10^{-2} \end{array}$	$5.2^{+0.07}_{-0.07} \times 10^{-2}$	$5.1^{+0.07}_{-0.07} \times 10^{-2}$
≥ 1 track passing fiducial selections	$4.2^{+0.09}_{-0.09} \times 10^{-2}$	$4.2^{+0.07}_{-0.07} \times 10^{-2}$	$4.2^{+0.07}_{-0.07} \times 10^{-2}$
≥ 1 track with ≥ 4 pixel hits	$2.9^{+0.08}_{-0.08} \times 10^{-2}$	$3.2^{+0.06}_{-0.06} \times 10^{-2}$	$3.2^{+0.06}_{-0.06} \times 10^{-2}$
≥ 1 track with no missing inner hits	$2.9^{+0.08}_{-0.08} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$
≥ 1 track with no missing middle hits	$2.7^{+0.07}_{-0.07} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$
≥ 1 track with relative track isolation $< 5\%$	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } d_{\mathrm{xy}} < 0.02 \mathrm{cm}$	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with $ d_z < 0.5\mathrm{cm}$	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track, jet}) > 0.5$	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{electron}) > 0.15$	$2.1^{+0.07}_{-0.07} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$1.9^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.8^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$1.9^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$ \begin{array}{c} 1.8 + 0.04 \times 10^{-2} \\ 1.8 + 0.04 \times 10^{-2} \\ 1.8 + 0.04 \times 10^{-2} \end{array} $
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$1.9^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.8^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with ≥ 3 missing outer hits	$1.1^{+0.05}_{-0.05} \times 10^{-2}$	$9.6^{+0.32}_{-0.32} \times 10^{-3}$	$1.1^{+0.03}_{-0.03} \times 10^{-2}$
≥ 1 track with number of tracker layers with measurement == 4	$ \begin{array}{c c} & 2.3 \stackrel{+0.29}{-0.22} \times 10^{-3} \\ & 2.1 \stackrel{+0.20}{-0.20} \times 10^{-3} \end{array} $	$1.7^{+0.14}_{-0.14} \times 10^{-3}$	$2.0^{+0.15}_{-0.15} \times 10^{-3}$
≥ 1 track with number of tracker layers with measurement == 5	$2.1^{+0.20}_{-0.20} \times 10^{-3}$	$\begin{array}{c} -0.32 \\ 9.6^{+0.32}_{-0.32} \times 10^{-3} \\ 1.7^{+0.14}_{-0.14} \times 10^{-3} \\ 1.3^{+0.12}_{-0.12} \times 10^{-3} \end{array}$	$\begin{array}{c} 1.1^{+0.03}_{-0.03} \times 10^{-2} \\ 2.0^{+0.15}_{-0.15} \times 10^{-3} \\ 1.6^{+0.13}_{-0.13} \times 10^{-3} \\ 1.6^{+0.13}_{-0.13} \times 10^{-3} \end{array}$
≥ 1 track with number of tracker layers with measurement ≥ 6	$7.1^{+0.38}_{-0.38} \times 10^{-3}$	$6.4^{+0.26}_{-0.26} \times 10^{-3}$	$7.5^{+0.28}_{-0.28} \times 10^{-3}$

Table 1: Cutflow comparison for 300 GeV, 100 cm, region 2017

	200 CLT 100		
	300 GeV, 100 cm, region 2018A		
Cut	$\epsilon_i^{ m CMS}$	$\epsilon_i^{\rm sim}$, HEPMC	ϵ_i^{sim} , HEPMC, no pileup
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$
trigger	$9.5^{+0.14}_{-0.14} \times 10^{-2}$	$9.3^{+0.09}_{-0.09} \times 10^{-2}$	$9.1^{+0.09}_{-0.09} \times 10^{-2}$
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$9.5^{+0.14}_{-0.14} \times 10^{-2}$	$9.3^{+0.09}_{-0.09} \times 10^{-2}$	$9.1^{+0.09}_{-0.09} \times 10^{-2}$
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$9.3^{+0.14}_{-0.14} \times 10^{-2}$	$9.3^{+0.09}_{-0.09} \times 10^{-2}$	$9.1^{+0.09}_{-0.09} \times 10^{-2}$
≥ 1 jet with $p_{ m T} > 110{ m GeV}$ and $ \eta < 2.4$	$8.2^{+0.13}_{-0.13} \times 10^{-2}$	$7.5^{+0.09}_{-0.09} \times 10^{-2}$	$7.4^{+0.09}_{-0.09} \times 10^{-2}$
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$7.1^{+0.12}_{-0.12} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.2^{+0.08}_{-0.08} \times 10^{-2}$
$ \Delta\phi({ m leading jet},ar{p}_{ m T}^{ m miss}) >0.5$	$7.1^{+0.12}_{-0.12} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.2^{+0.08}_{-0.08} \times 10^{-2}$
≥ 1 track with $ \eta < 2.1$	$7.0^{+0.12}_{-0.12} \times 10^{-2}$	$\begin{array}{c} -0.08 \\ 6.3_{-0.08}^{+0.08} \times 10^{-2} \\ 5.2_{-0.07}^{+0.07} \times 10^{-2} \\ 4.2_{-0.07}^{+0.07} \times 10^{-2} \end{array}$	$6.2_{-0.08}^{+0.08} \times 10^{-2} 5.1_{-0.07}^{+0.07} \times 10^{-2}$
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$5.5^{+0.11}_{-0.11} \times 10^{-2}$	$5.2^{+0.07}_{-0.07} \times 10^{-2}$	$5.1^{+0.07}_{-0.07} \times 10^{-2}$
≥ 1 track passing fiducial selections	$3.8^{+0.09}_{-0.09} \times 10^{-2}$	$4.2^{+0.07}_{-0.07} \times 10^{-2}$	$4.2^{+0.07}_{-0.07} \times 10^{-2}$
≥ 1 track with ≥ 4 pixel hits	$2.5^{+0.07}_{-0.07} \times 10^{-2}$	$3.2^{+0.06}_{-0.06} \times 10^{-2}$	$3.2^{+0.06}_{-0.06} \times 10^{-2}$
≥ 1 track with no missing inner hits	$2.5^{+0.07}_{-0.07} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$
≥ 1 track with no missing middle hits	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$
≥ 1 track with relative track isolation $< 5\%$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{ cm}$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with $ d_z < 0.5\mathrm{cm}$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track, jet}) > 0.5$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{electron}) > 0.15$	$1.7^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$1.6^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.8^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$1.6^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$ \begin{array}{c} 1.8 + 0.04 \times 10^{-2} \\ 1.8 + 0.04 \times 10^{-2} \\ 1.8 + 0.04 \times 10^{-2} \end{array} $
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$1.6^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.8^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with ≥ 3 missing outer hits	$8.8^{+0.42}_{-0.42} \times 10^{-3}$	$9.6^{+0.32}_{-0.32} \times 10^{-3}$	$1.1^{+0.03}_{-0.03} \times 10^{-2}$
≥ 1 track with number of tracker layers with measurement == 4	$1.7^{+0.19}_{-0.19} \times 10^{-3}$	$1.7^{+0.13}_{-0.13} \times 10^{-3}$	$2.0^{+0.15}_{-0.15} \times 10^{-3}$
≥ 1 track with number of tracker layers with measurement == 5	$ \begin{vmatrix} 8.8^{+0.42}_{-0.42} \times 10^{-3} \\ 1.7^{+0.19}_{-0.19} \times 10^{-3} \\ 1.6^{+0.18}_{-0.18} \times 10^{-3} \end{vmatrix} $	$\begin{array}{c} -0.32 \\ 9.6^{+0.32}_{-0.32} \times 10^{-3} \\ 1.7^{+0.13}_{-0.13} \times 10^{-3} \\ 1.3^{+0.12}_{-0.12} \times 10^{-3} \end{array}$	$\begin{array}{c} 1.1^{+0.03}_{-0.03} \times 10^{-2} \\ 2.0^{+0.15}_{-0.15} \times 10^{-3} \\ 1.6^{+0.13}_{-0.13} \times 10^{-3} \\ 1.6^{+0.13}_{-0.13} \times 10^{-3} \end{array}$
≥ 1 track with number of tracker layers with measurement ≥ 6	$5.7^{+0.34}_{-0.34} \times 10^{-3}$	$6.5^{+0.26}_{-0.26} \times 10^{-3}$	$7.4^{+0.28}_{-0.28} \times 10^{-3}$

Table 2: Cutflow comparison for 300 GeV, 100 cm, region 2018 A

	300 GeV, 100 cm, region 2018B		
Cut	$\epsilon_i^{ m CMS}$	$\mid \epsilon_i^{\mathrm{sim}}, \mathrm{HEPMC} \mid$	$\mid \epsilon_i^{\text{sim}}, \text{HEPMC}, \text{ no pileup} \mid$
	l t		
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$
trigger	$9.5^{+0.14}_{-0.14} \times 10^{-2}$	$9.3^{+0.09}_{-0.09} \times 10^{-2}$	$9.1^{+0.09}_{-0.09} \times 10^{-2}$
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$ \begin{vmatrix} 9.5 & -0.14 \\ -0.14 \\ 9.3 & -0.14 \\ -0.14 \\ -0.14 \\ -0.14 \end{vmatrix} \times 10^{-2} $	$9.3^{+0.09}_{-0.09} \times 10^{-2}$	$\begin{array}{c} 9.1_{-0.09}^{+0.09} \times 10^{-2} \\ 9.1_{-0.09}^{+0.09} \times 10^{-2} \end{array}$
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$9.3^{+0.14}_{-0.14} \times 10^{-2}$	$9.3^{+0.03}_{-0.09} \times 10^{-2}$	$9.1^{+0.09}_{-0.09} \times 10^{-2}$
≥ 1 jet with $p_{\rm T} > 110{ m GeV}$ and $ \eta < 2.4$	$\begin{vmatrix} 3.0_{-0.14} \times 10 \\ 9.3_{-0.14}^{+0.14} \times 10^{-2} \\ 8.2_{-0.13}^{+0.13} \times 10^{-2} \end{vmatrix}$	$\begin{array}{c} -0.09 \\ 9.3^{+0.09}_{-0.09} \times 10^{-2} \\ 7.5^{+0.09}_{-0.09} \times 10^{-2} \end{array}$	$\begin{array}{c} 9.1^{+0.09}_{-0.09} \times 10^{-2} \\ 7.4^{+0.09}_{-0.09} \times 10^{-2} \\ 7.4^{+0.09}_{-0.09} \times 10^{-2} \\ 6.2^{+0.08}_{-0.08} \times 10^{-2} \end{array}$
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$\parallel 7.1^{+0.12}_{-0.12} \times 10^{-2}$	$ 6.3^{+0.08}_{-0.08} \times 10^{-2} $	$\begin{array}{c} -6.2^{+0.08}_{-0.08} \times 10^{-2} \\ 6.2^{+0.08}_{-0.08} \times 10^{-2} \end{array}$
$ \Delta\phi({ m leading jet},ar{p}_{ m T}^{ m miss}) >0.5$	$1.1^{+0.12}_{-0.12} \times 10^{-2}$	$ 6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.2^{+0.08}_{-0.08} \times 10^{-2}$
$\geq 1 \text{ track with } \eta < 2.1$	$7.0^{+0.12}_{-0.12} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.2^{+0.08}_{-0.08} \times 10^{-2}$
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$5.5^{+0.10}_{-0.10} \times 10^{-2}$	$5.2^{+0.07}_{-0.07} \times 10^{-2}$	$5.1^{+0.07}_{-0.07} \times 10^{-2}$
≥ 1 track passing fiducial selections	$3.8^{+0.09}_{-0.09} \times 10^{-2}$	$4.2^{+0.07}_{-0.07} \times 10^{-2}$	$4.2^{+0.07}_{-0.07} \times 10^{-2}$
≥ 1 track with ≥ 4 pixel hits	$2.5^{+0.07}_{-0.07} \times 10^{-2}$	$3.2^{+0.06}_{-0.06} \times 10^{-2}$	$3.2^{+0.06}_{-0.06} \times 10^{-2}$
≥ 1 track with no missing inner hits	$2.5^{+0.07}_{-0.07} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$
≥ 1 track with no missing middle hits	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$2.4^{+0.05}_{-0.05} \times 10^{-2}$	$2.4^{+0.05} \times 10^{-2}$
≥ 1 track with relative track isolation $< 5\%$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$ \begin{vmatrix} 1.7_{-0.04}^{+0.03} \times 10^{-2} \\ 1.7_{-0.04}^{+0.04} \times 10^{-2} \end{vmatrix} $	$\begin{array}{c} 2.4_{-0.05} \times 10 \\ 1.9_{-0.04}^{+0.04} \times 10^{-2} \\ 1.9_{-0.04}^{+0.04} \times 10^{-2} \\ 1.9_{-0.04}^{+0.04} \times 10^{-2} \end{array}$
≥ 1 track with $ d_{\mathrm{xy}} < 0.02\mathrm{cm}$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with $ d_z < 0.5 \mathrm{cm}$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$\begin{array}{c} 1.7^{+0.04}_{-0.04} \times 10^{-2} \\ 1.7^{+0.04}_{-0.04} \times 10^{-2} \\ 1.7^{+0.04}_{-0.04} \times 10^{-2} \\ 1.7^{+0.04}_{-0.04} \times 10^{-2} \\ 1.7^{+0.04}_{-0.04} \times 10^{-2} \end{array}$	$\begin{array}{c} 1.9^{+0.04}_{-0.04} \times 10^{-2} \\ 1.9^{+0.04}_{-0.04} \times 10^{-2} \\ 1.9^{+0.04}_{-0.04} \times 10^{-2} \\ 1.9^{+0.04}_{-0.04} \times 10^{-2} \\ 1.8^{+0.04}_{-0.04} \times 10^{-2} \end{array}$
$\geq 1 \text{ track with } \Delta R(\text{track, jet}) > 0.5$	$ \begin{vmatrix} 1.7^{+0.06}_{-0.06} \times 10^{-2} \\ 1.7^{+0.06}_{-0.06} \times 10^{-2} \end{vmatrix} $	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{electron}) > 0.15$	$1.7^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$1.6^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.8^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$1.6^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.8^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$1.5^{+0.06}_{-0.06} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.8^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with ≥ 3 missing outer hits	$8.8^{+0.42}_{-0.42} \times 10^{-3}$	$9.6^{+0.32}_{-0.32} \times 10^{-3}$	$1.1^{+0.03}_{-0.03} \times 10^{-2}$
$\phi(p_{\rm T}^{\rm miss}) < -1.6 \text{ or } \phi(p_{\rm T}^{\rm miss}) > -0.6$	$7.8^{+0.39}_{-0.39} \times 10^{-3}$		$9.5^{+0.32}_{-0.22} \times 10^{-3}$
≥ 1 track with number of tracker layers with measurement == 4	$\begin{array}{c c} 1.4^{+0.17}_{-0.17} \times 10^{-3} \\ 1.4^{+0.17}_{-0.17} \times 10^{-3} \end{array}$	$1.4^{+0.12}_{-0.12} \times 10^{-3}$	$1.8^{+0.14}_{-0.14} \times 10^{-3}$
≥ 1 track with number of tracker layers with measurement == 5	$1.4^{+0.17}_{-0.17} \times 10^{-3}$	$1.2^{+0.11}_{-0.11} \times 10^{-3}$	$1.4^{+0.12}_{-0.12} \times 10^{-3}$
≥ 1 track with number of tracker layers with measurement ≥ 6	$5.2^{+0.32}_{-0.32} \times 10^{-3}$	$\begin{array}{ c c c }\hline 1.2^{+0.11}_{-0.11} \times 10^{-3} \\ 5.4^{+0.24}_{-0.24} \times 10^{-3} \\ \hline \end{array}$	$\begin{array}{c} -0.32 \\ 1.8^{+0.14}_{-0.14} \times 10^{-3} \\ 1.4^{+0.12}_{-0.12} \times 10^{-3} \\ 6.2^{+0.25}_{-0.25} \times 10^{-3} \end{array}$

Table 3: Cutflow comparison for 300 GeV, 100 cm, region 2018B