Exercice 1

Il est possible de le prouver en effectuant la table de vérité de l'expression:

p	q	r	$p \wedge q$	$(p \land q) \implies r$	$p \implies r$	$q \implies r$	$(p \implies r) \land (q \implies r)$
V	V	V	V	V V V		V	
V	V	F	V	F	F	\mathbf{F}	F
V	F	V	F	V	V	V	V
V	F	F	F	V	F	V	\mathbf{F}
F	V	V	F	V	V	V	V
F	V	F	F	V	V	\mathbf{F}	F
F	F	V	F	V	V	V	V
F	F	F	F	V	V	V	V

Pour clarifier, les expressions $(p \land q) \implies r$ et $(p \implies r) \land (q \implies r)$ ne sont pas logiquement équivalentes car elles diffèrent dans les lignes 2 et 4 du tableau de vérité. Plus précisément :

- $\bullet \text{ Dans la ligne 2, } (p \wedge q) \implies r \text{ est **}F^{**} \text{ tandis que } (p \implies r) \wedge (q \implies r) \text{ est **}F^{**}.$
- Dans la ligne 4, $(p \land q) \implies r$ est **V** tandis que $(p \implies r) \land (q \implies r)$ est **F**.

Cette différence montre que les deux expressions ne sont pas logiquement équivalentes.

b) Soient les expressions

$$A := (p \implies (q \land r)) \implies ((p \implies q) \land (p \implies r))$$

 et

$$B := (p \implies (q \land r)) \leftarrow ((p \implies q) \land (p \implies r))$$

Voici un tableau de vérité pour montrer que l'expression est vraie.

p	q	r	$p \implies (q \wedge r)$	$q \wedge r$	A	$p \implies q$	$(p \implies q) \land (p \implies r)$	$p \implies r$	B
V	V	V	V	V	V	V	V	V	V
V	V	F	F	F	F	V	F	F	F
V	F	V	\mathbf{F}	F	F	F	\mathbf{F}	V	F
F	V	V	V	V	V	V	V	V	V
V	F	F	\mathbf{F}	F	F	F	\mathbf{F}	F	F
F	F	V	V	F	V	V	V	V	V
F	V	F	V	F	V	V	V	V	V
F	F	F	V	F	V	V	V	V	V

$A \wedge B$	$(p \implies (q \land r)) \iff ((p \implies q) \land (p \implies r))$
V	V
F	\mathbf{F}
F	\mathbf{F}
V	V
F	\mathbf{F}
V	V
V	V
V	V

par la définition de l'opérateur si et seulement si.