1. Сколько элементов порядков 2, 3, 6 и 9 в группе $\mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_9$?

Порядок 2.

$$x=(a,b,c)$$
 имеет порядок $2\Leftrightarrow egin{cases} (2a,2b,2c)=0 \ (a,b,c)
eq 0 \end{cases}$

 $2a = 0 \to 2$ варианта в \mathbb{Z}_2 , которые при умножении на два дают ноль. $\{0,1\}$

 $2b=0 \to 2$ варианта в \mathbb{Z}_6 , которые при умножении на два дают ноль. $\{0,3\}$

 $2c = 0 \to 1$ вариант в \mathbb{Z}_9 , который при умножении на два дает ноль. $\{0\}$

2x = 0: всего $2 \cdot 2 \cdot 1 = 4$ решений. x = 0 не подходит, так как порядок 1. Итого: 4 - 1 = 3 варианта порядка 2.

Порядок 3.

$$x=(a,b,c)$$
 имеет порядок $3 \Leftrightarrow \begin{cases} (3a,3b,3c)=0 \\ (a,b,c) \neq 0 \end{cases}$

 $3a = 0 \to 1$ вариант в \mathbb{Z}_2 , который при умножении на три дает ноль. $\{0\}$

3b=0 o 3 варианта в \mathbb{Z}_6 , которые при умножении на три дают ноль. $\{0,2,4\}$

 $3c = 0 \rightarrow 3$ варианта в \mathbb{Z}_9 , которые при умножении на три дают ноль. $\{0,3,6\}$

3x = 0: всего $1 \cdot 3 \cdot 3 = 9$ решений. x = 0 не подходит, так как порядок 1. Итого: 9 - 1 = 8 вариантов порядка 3.

Порядок 6.

$$x = (a, b, c)$$
 имеет порядок $6 \Leftrightarrow \begin{cases} (6a, 6b, 6c) = 0 \\ (a, b, c) \neq 0 \\ (2a, 2b, 2c) \neq 0 \\ (3a, 3b, 3c) \neq 0 \end{cases}$

 $6a = 0 \to 2$ варианта в \mathbb{Z}_2 , которые при умножении на шесть дают ноль. $\{0,1\}$

 $6b=0 \to 6$ вариантов в \mathbb{Z}_6 , которые при умножении на шесть дают ноль. $\{0,1,2,3,4,5\}$

 $6c = 0 \rightarrow 3$ варианта в \mathbb{Z}_9 , которые при умножении на шесть дают ноль. $\{0,3,6\}$

6x = 0: всего $2 \cdot 6 \cdot 3 = 36$ решений.

x = 0 не подходит, так как порядок 1

2x = 0 не подходит, так как порядок 2

3x = 0 не подходит, так как порядок 3

Итого: 36 - 1 - 3 - 8 = 24 варианта порядка 6.

Порядок 9.

$$x = (a, b, c)$$
 имеет порядок $9 \Leftrightarrow \begin{cases} (9a, 9b, 9c) = 0 \\ (a, b, c) \neq 0 \\ (3a, 3b, 3c) \neq 0 \end{cases}$

 $9a = 0 \to 1$ вариант в \mathbb{Z}_2 , который при умножении на девять дает ноль. $\{0\}$

 $9b=0 \to 3$ варианта в \mathbb{Z}_6 , которые при умножении на девять дают ноль. $\{0,2,4\}$

9c=0 o 9 вариантов в \mathbb{Z}_9 , которые при умножении на девять дают ноль. $\{0,1,2,3,4,5,6,7,8\}$

9x = 0: всего $1 \cdot 3 \cdot 9 = 27$ решений.

x = 0 не подходит, так как порядок 1

3x = 0 не подходит, так как порядок 3

Итого: 27 - 1 - 8 = 18 вариантов порядка 9.

2. Сколько подгрупп порядков 7 и 14 в нециклической абелевой группе порядка 98?

Абелева группа порядка $98 = 2 \cdot 7^2$. Разложим группу в прямое произведение примарных циклических групп:

1)
$$\mathbb{Z}_2 \times \mathbb{Z}_7 \times \mathbb{Z}_7 = A$$
.

2)
$$\mathbb{Z}_2 \times \mathbb{Z}_{49} \simeq \mathbb{Z}_{98}$$
 ← циклическая группа. НОД(2,49) = 1.

Если |G| = p, то G -цикл.

Подгруппа порядка $7 \simeq \mathbb{Z}_7$. То есть нас интересуют цикл. подгруппы порядка 7.

$$x=(a,b,c)$$
 имеет порядок $7\Leftrightarrow \begin{cases} (7a,7b,7c)=0\\ (a,b,c)\neq 0 \end{cases}$

 $7a = 0 \to 1$ вариант: $\{0\}$

7b = 0 → 7 вариантов: {0,1,2,3,4,5,6}

 $7c = 0 \rightarrow 7$ вариантов: $\{0,1,2,3,4,5,6\}$

7x = 0: всего $1 \cdot 7 \cdot 7 = 49$ решений.

x = 0 не подходит, так как порядок 1

Итого: 49 - 1 = 48

Но возможно и такое, что разные элементы порядка 7 будут порождать одинаковые подгруппы порядка 7.

Подгруппа порядка $7 \simeq \mathbb{Z}_7$:

элемент	0	1	2	3	4	5	6
порядок	1	7	7	7	7	7	7

Подгрупп порядка 7 содержит 6 элементов порядка 7.

Итого подгрупп порядка 7 будет $\frac{48}{6} = 8$.

Подгруппа порядка $14 = 2 \cdot 7 \simeq \mathbb{Z}_2 \times \mathbb{Z}_7 \simeq \mathbb{Z}_{14}$. То есть нас интересуют цикл. подгруппы порядка 14.

$$x=(a,b,c)$$
 имеет порядок $14 \Leftrightarrow egin{cases} (14a,14b,14c)=0 \ (a,b,c)
eq 0 \ (2a,2b,2c)
eq 0 \ (7a,7b,7c)
eq 0 \end{cases}$

14a = 0 → 2 варианта: {0,1}

 $14b = 0 \rightarrow 7$ вариантов: $\{0,1,2,3,4,5,6\}$

14c = 0 → 7 вариантов: {0,1,2,3,4,5,6}

14x = 0: всего $2 \cdot 7 \cdot 7 = 98$ решений.

x = 0, 2x = 0, 7x = 0 не подходят, так как порядки 1, 2, 7 соответственно.

Итого: 98 — 1 — 1 — 48 = 48 элемент 0 1 2 3 4 5 6 порядок 1 147 147 147 элемент 7 8 9 10 111213 порядок 2 7 147 147 14 Подгрупп порядка 14 содержит 6 элементов порядка 14.

Итого подгрупп порядка 14 будет $\frac{48}{6} = 8$.

3. При каком наименьшем $n \in \mathbb{N}$ группа $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ изоморфна прямому произведению n циклических групп?

Разложим группу в прямое произведение циклических групп взаимно простых порядков:

$$\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15} = \mathbb{Z}_{2 \cdot 5} \times \mathbb{Z}_{3 \cdot 4} \times \mathbb{Z}_{3 \cdot 5} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} = (\mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3}) \times (\mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}) \simeq \mathbb{Z}_{30} \times \mathbb{Z}_{60} \times \mathbb{Z$$

То есть сейчас n=2 и нужно проверить, что меньше быть не может.

Необходимым и достаточным условием для цикличности произведения является взаимная простота порядков сомножителей, а $HOJ(30,60) \neq 1$, поэтому и $n \neq 1$.

4. Пусть k- наибольший порядок элементов конечной абелевой группы A. Докажите, что порядок любого элемента A делит k.

