17–18 Encontre uma equação polar para a curva representada pela equação cartesiana dada.

$$y = 2$$
 18. $x^2 + y^2 = 2$

17.
$$x + y = 2$$

18. $x^2 + y^2 = 2$

17.
$$x + y = 2$$
 18. $x^2 + y^2 = 2$

Y=2-X

15en0 = 2 - 11650

X+92=2

20 moreila

¥²=л²0>³0

X2+42=2

12 cos 2θ + 12 gen 10 = 2

12 (Cos'0 + ser'0)-2

X=1000 e y=15eno

71 Sev9 +17 Cos9 = 2

17 (Seno + 6050)=2

(Seno + Coso)

 $\pi(\theta) = \frac{2}{(\text{Sen}\theta + \text{los}\theta)}$

M2=2 : Π= JZ on Π:-JZ

12=2 .. 7= 52 on R=-V

Ambas disheren

o mezmo lagor.

outra.

Use ume ou

17.
$$x + y = 2$$
18. $x^2 + y^2 = 2$

equação cartesiana dada.
17.
$$x + y = 2$$

18. $x^2 + y^2 = 2$

equação cartesiana dada.
17.
$$x + y = 2$$

18. $x^2 + y^2 = 2$

equação cartesiana dada.
17.
$$x + y = 2$$

18. $x^2 + y^2 = 2$

equação cartesiana dada.
17.
$$x + y = 2$$

18. $x^2 + y^2 = 2$

Encontre a area da região que e delimitada pelas curvas dadas e stá no setor especificado.
$$r = \theta^2, \quad 0 \le \theta \le \pi/4$$

1.
$$r = \theta^2$$
, $0 \le \theta \le \pi/4$

Ouclé o grepes Φ
 $M = \Theta^2$, $0 \le \Theta \le \mu$
 1000
 1000

$$M=0$$
, $0 \le 0 \le 10$ 1000
 $M=0^{2}$, $0 \le 0 \le 10$
 $M=0^{2}$, $0 \le 0 \le 10$

45–48 Calcule o comprimento exato da curva polar.
45.
$$r = 2\cos\theta$$
, $0 \le \theta \le \pi$ **46.** $r = 5^{\theta}$, $0 \le \theta \le 2\pi$

 $= \frac{1}{2} \left(\frac{\left(\frac{1}{2} \right)^{5}}{-} - \frac{0^{5}}{5} \right)$

 $= \frac{1}{10} \left(\frac{\pi^5}{4^5} - 0 \right) = \frac{\pi^5}{4^5}$

$$L = \int_{0}^{\pi} (2\cos\theta)^{2} + (-2\sin\theta)^{2} d\theta$$

$$L = \int_{0}^{\pi} (4\cos^{2}\theta + 4\sin\theta) d\theta$$

$$D = \int_{0}^{\theta_{f}} \int_{0}^{\pi_{2} + \pi^{1/2}} ds$$

$$\Pi = \int_{0}^{\theta_{f}} \int_{0}^{\pi_{2} + \pi^{1/2}} ds$$

$$\Pi = \int_{0}^{\pi_{2} + \pi^{1/2}} \int_{0}^{\pi_{2} + \pi^{1/2}} ds$$

$$\Pi = \int_{0}^{\pi_{2} + \pi^{1/2}} \int_{0}^{\pi_{2} + \pi^{1/2}} ds$$

$$\Pi = \int_{0}^{\pi_{2} + \pi^{1/2}} \int_{0}^{\pi_{2} + \pi^{1/2}} ds$$

$$\Pi = \int_{0}^{\pi_{2} + \pi^{1/2}} \int_{0}^{\pi_{2} + \pi^{1/2}} ds$$

$$L = \int_{0}^{2\pi} \int 5^{2\theta} + 5^{2\theta} (ms)^{2} d\theta$$

$$L = \int_{0}^{2\pi} \int 5^{2\theta} (1 + (ms)^{2}) d\theta$$

$$L = \int_{0}^{2\pi} 5^{9} \int_{0}^{1+[0n5]^{2}} d9$$

$$L = \int_{0}^{2\pi} 5^{9} d9$$

$$L = \int_{0}^{2\pi} (+[0n5]^{2})^{2} \int_{0}^{2\pi} 5^{9} d9$$

$$L = \int_{0}^{2\pi} (+[0n5]^{2})^{2} \int_{0}^{2\pi} 5^{9} d9$$

$$L = \sqrt{1 + (0n5)^{2}} \cdot \left(\frac{5^{2\pi} - 5^{0}}{0n5}\right)$$

$$L = \sqrt{1 + (0n5)^{2}} \cdot \left(\frac{5^{2\pi} - 1}{0n5}\right) \cdot \text{M.c.}$$

