Problem Set 10

Due: TA Discussion, 8 November 2023.

1 Additional Exercises

Exercise 1. Consider the problem of maximising $u : \mathbb{R}^2 \to \mathbb{R}$ given by $u(x_1, x_2) := x_1^{0.5} + x_2^{0.5}$ subject to the budget constraint; i.e.,

$$\Gamma := \left\{ (x_1, x_2) \in \mathbb{R}^2 : px_1 + x_2 \le m, \ x_1, x_2 \ge 0 \right\},$$

where p, m > 0.

- (i) Prove that a solution to the utility maximisation problem exists.
- (ii) Prove that a solution must lie on the boundary of the set Γ .
- (iii) Solve the Lagrangian as an equality-constrained one while ignoring the nonnegativity constraints. Does the solution to the Lagrangian identify a solution to the original problem? Why or why not?

Exercise 2. Consider the equality-constrained optimisation problem from class notes:

$$\max_{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x}) \text{ s.t. } h_{k}(\mathbf{x}) = 0 \ \forall k \in \{1, \dots, K\},$$

$$g_{j}(\mathbf{x}) \geq 0 \ \forall j \in \{1, \dots, J\}$$

$$(1)$$

were $f: \mathbb{R}^d \to \mathbb{R}$, $h_k: \mathbb{R}^d \to \mathbb{R}$ for each $k \in \{1, ..., K\}$, and $g_j: \mathbb{R}^d \to \mathbb{R}$ for each $j \in \{1, ..., J\}$ are all \mathbb{C}^1 functions. Define the *Lagrangian*, $\mathcal{L}: \mathbb{R}^d \times \mathbb{R}^K \times \mathbb{R}^J \to \mathbb{R}$, as

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{k=1}^{K} \mu_k h_k(\mathbf{x}) + \sum_{j=1}^{J} \lambda_j g_j(\mathbf{x}).$$
 (2)

Say that a vector $(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) \in \mathbb{R}^d \times \mathbb{R}^K \times \mathbb{R}^J$ is a *critical point* of \mathcal{L} if it satisfies the following set of equations:

(i) for all
$$i \in \{1, ..., d\}$$
,

$$\frac{\partial \mathcal{L}}{\partial x_i}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) = 0;$$

(ii) for all
$$k \in \{1, ..., K\}$$
,

$$\frac{\partial \mathcal{L}}{\partial \mu_k} (\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) = 0;$$

(iii) for all $j \in \{1, ..., J\}$,

$$\lambda_j \geq 0 \frac{\partial \mathcal{L}}{\partial \lambda_j}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) \geq 0, \ \lambda_j \frac{\partial \mathcal{L}}{\partial \lambda_j}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) = 0.$$

Let *S* denote the set of all critical points of \mathcal{L} and S_X denote the projection of *S* onto the first *d* components of *S*; i.e.,

$$S_X := \left\{ \mathbf{x} \in \mathbb{R}^d : \exists \left(\boldsymbol{\mu}, \boldsymbol{\lambda} \right) \in \mathbb{R}^K \times \mathbb{R}^J, \left(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda} \right) \in S \right\}.$$

Now consider the following problem:

$$\max_{\mathbf{x} \in S_X} f(\mathbf{x}). \tag{3}$$

Show that if a the problem (1) attains a global maximum at some $\mathbf{x}^* \in \mathbb{R}^d$ such that $h_k(\mathbf{x}^*) = 0$ for all $k \in \{1, ..., K\}$, $g_j(\mathbf{x}^*) \geq 0$ for all $j \in \{1, ..., J\}$, and the constraint qualification holds at \mathbf{x}^* , then a $\mathbf{x}^\circ \in S_X$ that solves (3) is also a global maximum.

Remark 1. This should convince you that the "usual" approach you use to solve for constrained optimisation using Lagrangian works if (i) a global maximum exists and (ii) the constraint qualification is met at global maxima.

Exercise 3. Consider the consumer's problem of maximising utility $u : \mathbb{R}^2 \to \mathbb{R}$ given by $u(x_1, x_2) := x_1 + x_2$ subject to the budget set

$$B(p_1, p_2, m) := \{(x_1, x_2) \in \mathbb{R}^2_+ : m - p_1 x_1 - p_2 x_2 \ge 0\},$$

where $m, p_1, p_2 > 0$.

- (i) Write the constrained optimisation problem and the associated Lagrangian.
- (ii) Show that the constraint qualification is satisfied. Hint: Argue that any optimum must exhaust income and then that the constraint qualification constraint holds no matter what other constraints bind.
- (iii) What can you say about critical points that solve the Lagrangian in this case?

Exercise 4. Suppose a firm's production function is given by $g : \mathbb{R}^3 \to \mathbb{R}$, where

$$f(x_1, x_2, x_3) := x_1(x_2 + x_3).$$

The unit price of firm's output is p > 0 and the price of each inputs are $w_i > 0$ for $i \in \{1, 2, 3\}$.

- (i) Describe the firm's profit-maximisation problem, and derive the equations that define the critical points of the Lagrangian of this problem.
- (ii) Show that the Lagrangian as has multiple critical points for any choice of $(p, w_1, w_2, w_3) \in \mathbb{R}^4_{++}$.
- (iii) Show that none of these critical points identifies a solution of the profit-maximisation problem. Explain why.

 $^{^{1}}$ The relevant constraint qualification is the one that allows for both equality and inequality constraints.