Chapter 3 Functions, Sequences, and Relations 函数、序列、和关系

Lu Han

hl@bupt.edu.cn

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

A relation on a set

- draw its digraph (有向图)
- reflexive 自反的
- symmetric 对称的
- antisymmetric 反对称的
- transitive 传递的

Definition 3.3.6 A relation R on a set X is **reflexive** (自反的) if $(x, x) \in R$ for every $x \in X$.

Definition 3.3.9 A relation R on a set X is **symmetric (**对称的**)** if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

Definition 3.3.12 A relation R on a set X is **antisymmetric** (反对称的) if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

Definition 3.3.17 A relation R on a set X is **transitive (传递的)** if for all $x, y, z \in X$, if (x, y) and $(y, z) \in R$, then $(x, z) \in R$.

Negation

Definition 3.3.6 A relation R on a set X is **reflexive** (自反的) if $(x, x) \in R$ for every $x \in X$.

not reflexive: if there exists $x \in X$, such that $(x, x) \notin R$.

Definition 3.3.9 A relation R on a set X is **symmetric (**对称的**)** if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

not symmetric: if there exists x and y, such that $(x, y) \in R$ and $(y, x) \notin R$.

Definition 3.3.12 A relation R on a set X is **antisymmetric** (反对称的) if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

not antisymmetric: if there exists x and y, $x \neq y$, such that $(x, y) \in R$ and $(y, x) \in R$.

Definition 3.3.17 A relation R on a set X is **transitive** (传递的)

if for all $x, y, z \in X$, if (x, y) and $(y, z) \in R$, then $(x, z) \in R$.

not transitive: if there exists $x, y, z \in X$, if (x, y) and $(y, z) \in R$, then $(x, z) \notin R$.

Exercise Give examples of relations on $\{1, 2, 3, 4\}$ having the properties specified as follows.

- (a) Reflexive, symmetric, and not transitive
- (b) Reflexive, not symmetric, and not transitive
- (c) Reflexive, antisymmetric, and not transitive
- (d) Not reflexive, symmetric, not antisymmetric, and transitive
- (e) Not reflexive, not symmetric, and transitive

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If R is a partial order on a set X, the notation $x \le y$ is sometimes used to indicate that $(x, y) \in R$.

We say that

- x and y are comparable (可比的): If $x, y \in X$ and either $x \leq y$ or $y \leq x$.
- x and y are incomparable (不可比的): If $x, y \in X$ and either $x \not \leq y$ or $y \not \leq x$.

If every pair of elements in X is comparable, we call R a total order (全序).

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If every pair of elements in X is comparable, we call R a total order (全序).

Example?

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If every pair of elements in X is comparable, we call R a total order (全序).

Example 3.3.4 Let $X = \{2, 3, 4\}$ definded by $(x, y) \in R$ if $x \le y$, $x, y \in X$. Then $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4)(4,4)\}$.

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If every pair of elements in X is comparable, we call R a total order (全序).

Example 3.3.4 Let $X = \{2, 3, 4\}$ definded by $(x, y) \in R$ if $x \le y$, $x, y \in X$. Then $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4)(4,4)\}$.

Example 3.3.3 Let $X = \{2, 3, 4\}$ and $Y = \{3, 4, 5, 6, 7\}$. If we define a relation R from X to Y by

 $(x, y) \in R$ if x divides y, we obtain $R = \{(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}.$

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If every pair of elements in X is comparable, we call R a total order (全序).

Whether the ralation of $R = X \times X$ is a toal order on X?

Definition 3.3.23 Let R be a relation from X to Y. The **inverse of** R (R的逆), denoted R^{-1} , is the relation from Y to X defined by

$$R^{-1} = \{ (y, x) \mid (x, y) \in R \}.$$

Example 3.3.3 Let $X = \{2, 3, 4\}$ and $Y = \{3, 4, 5, 6, 7\}$. If we define a relation R from X to Y by

$$(x, y) \in R$$
 if x divides y,

we obtain $R = \{(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}.$

$$R^{-1} =$$

Definition 3.3.25 Let R_1 be a relation from X to Y and R_2 be a relation from Y to Z. The composition of R_1 and R_2 , denoted $R_2 \circ R_1$, is the relation from X to Z defined by

$$R_2 \circ R_1 = \{(x, z) \mid (x, y) \in R_1 \text{ and } (y, z) \in R_2 \text{ for some } y \in Y\}.$$

Example 3.3.26 The composition of the relations

$$R_1 = \{(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)\}$$

and

$$R_2 = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}$$

is
$$R_2 \circ R_1 =$$

Definition 3.3.25 Let R_1 be a relation from X to Y and R_2 be a relation from Y to Z. The composition of R_1 and R_2 , denoted $R_2 \circ R_1$, is the relation from X to Z defined by

$$R_2 \circ R_1 = \{(x, z) \mid (x, y) \in R_1 \text{ and } (y, z) \in R_2 \text{ for some } y \in Y\}.$$

Example 3.3.26 The composition of the relations

$$R_1 = \{(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)\}$$

and

$$R_2 = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}$$

is
$$R_2 \circ R_1 = \{(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)\}.$$

Example 3.3.27 Suppose that R and S are transitive relations on a set X. Determine whether each of $R \cup S$, $R \cap S$, or $R \circ S$ must be transitive.

(1) $R \cup S$

(2) $R \cap S$

(3) $R \circ S$

Example 3.3.27 Suppose that R and S are transitive relations on a set X. Determine whether each of $R \cup S$, $R \cap S$, or $R \circ S$ must be transitive.

(1) $R \cup S$

$$R = \{(1, 2)\}, S = \{(2, 3)\}, R \cup S = \{(1, 2), (2, 3)\}.$$

(2) $R \cap S$

If
$$\{x, y\}$$
, $\{y, z\} \in R \cap S$, then $\{x, z\} \in R \cap S$.

(3) $R \circ S$

$$R = \{(5, 2), (6, 3)\}, S = \{(1, 5), (2, 6)\}, R \circ S = \{(1, 2), (2, 3)\}.$$

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Example Suppose that R is the relation on the set of strings that consist of English letters such that aRb if and only if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Obviously, these three properties are necessary for a reasonable definition of equivalence.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Theorem 3.4.1 Let S be a partition of a set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Theorem 3.4.1 Let S be a partition of a set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.

- A partition (划分):
- A collection of sets (集族): A set S whose elements are sets.

Example: $S = \{\{1, 2\}, \{1, 3\}, \{1, 7, 10\}\}.$

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Theorem 3.4.1 Let S be a partition of a set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.

- A partition (划分): A collection S of nonempty subsets of X is said to be a partition of the set X if every element in X belongs to exactly one member of S.
- \bullet A collection of sets (集族): A set S whose elements are sets.

Example: $S = \{\{1, 2\}, \{1, 3\}, \{1, 7, 10\}\}.$

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Theorem 3.4.1 Let S be a partition of a set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.

- A partition (划分): A collection S of nonempty subsets of X is said to be a partition of the set X if every element in X belongs to exactly one member of S.
- A collection of sets (集族): A set S whose elements are sets.

Example: $S = \{\{1, 2\}, \{1, 3\}, \{1, 7, 10\}\}.$

In other words, the collection of subsets A_i , $i \in I$, forms a partition of X if and only if (i) $A_i \neq \emptyset$ for $i \in I$ (ii) $A_i \cap A_j = \emptyset$, if $i \neq j$ (iii) $\bigcup_{i \in I} A_i = X$

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Theorem 3.4.1 Let S be a partition of a set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.

• A partition (划分): A collection S of nonempty subsets of X is said to be a partition of the set X if every element in X belongs to exactly one member of S.

Example

$$S = \{\{1, 4, 5\}, \{2, 6\}, \{3\}, \{7, 8\}\}\}$$
 is a partition of $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

In other words, the collection of subsets A_i , $i \in I$, forms a partition of X if and only if (i) $A_i \neq \emptyset$ for $i \in I$ (ii) $A_i \cap A_j = \emptyset$, if $i \neq j$ (iii) $\bigcup_{i \in I} A_i = X$

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Theorem 3.4.1 Let S be a partition of a set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.

- reflexive
- symmetric
- transitive

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Theorem 3.4.1 Let S be a partition of a set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.

Example 3.4.2 Consider the partition $S = \{\{1, 3, 5\}, \{2, 6\}, \{4\}\}\}$ of $X = \{1, 2, 3, 4, 5, 6\}$. The relation R on X is given by Theorem 3.4.1. Then $R = \{1, 2, 3, 4, 5, 6\}$.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Example Consider the relation $R = \{(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4), (5, 1), (5, 3), (5, 5)\}$ on $\{1, 2, 3, 4, 5\}$. Is it an equivalence relation?

Diagraph?

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Exercise Which of the following relation is an equivalence relation?

The relation R on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$ if $x \le y, x, y \in X$.

The relation $R = \{(a, a), (b, c), (c, b), (d, d)\}$ on $X = \{a, b, c, d\}$.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Exercise Which of the following relation is an equivalence relation?

The relation R on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$ if $x \le y, x, y \in X$. No.

The relation $R = \{(a, a), (b, c), (c, b), (d, d)\}$ on $X = \{a, b, c, d\}$.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Definition 3.4.9 Let R be an equivalence relation on a set X. For $\forall a \in X$, let $[a] = \{x \in X \mid xRa\}$. The sets [a] is called the **equivalence classes (等价类)** of X given by the relation R.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Definition 3.4.9 Let R be an equivalence relation on a set X. For $\forall a \in X$, let $[a] = \{x \in X \mid xRa\}$. The sets [a] is called the **equivalence classes (等价类)** of X given by the relation R.

Theorem 3.4.8 Let R be an equivalence relation on a set X. Then $S = \{[a] \mid a \in X\}$ is a partition of X.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Definition 3.4.9 Let R be an equivalence relation on a set X. For $\forall a \in X$, let $[a] = \{x \in X \mid xRa\}$. The sets [a] is called the **equivalence classes (等价类)** of X given by the relation R.

Theorem 3.4.8 Let R be an equivalence relation on a set X. Then $S = \{[a] \mid a \in X\}$ is a partition of X.

Example 3.4.2 Consider the relation

 $R = \{(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5), (2, 2), (2, 6), (6, 2), (6, 6), (4, 4)\}$ on $\{1, 2, 3, 4, 5, 6\}$.

Theorem 3.4.16 Let R be an equivalence relation on a finite set X. If each equivalence class has r elements, there are |X|/r equivalence classes.

The matrix of the relation R from X to Y

Lable the rows with the elements of X (in some arbitrary order), and label the columns with the elements of Y (again, in some arbitrary order). Set the entry in row x and column y to 1 if xRy and to 0 otherwise.

The matrix of the relation R from X to Y

Lable the rows with the elements of X (in some arbitrary order), and label the columns with the elements of Y (again, in some arbitrary order). Set the entry in row x and column y to 1 if xRy and to 0 otherwise.

Example 3.5.1 The relation $R = \{(1, b), (1, d), (2, c), (3, c), (3, b), (4, a)\}$ from $X = \{1, 2, 3, 4\}$ to $Y = \{a, b, c, d\}$ relative to the orderings 1, 2, 3, 4 and a, b, c, d is ?

The matrix of the relation R from X to Y

Lable the rows with the elements of X (in some arbitrary order), and label the columns with the elements of Y (again, in some arbitrary order). Set the entry in row x and column y to 1 if xRy and to 0 otherwise.

Example 3.5.1 The relation $R = \{(1, b), (1, d), (2, c), (3, c), (3, b), (4, a)\}$ from $X = \{1, 2, 3, 4\}$ to $Y = \{a, b, c, d\}$ relative to the orderings 1, 2, 3, 4 and a, b, c, d is

The matrix of a relation from X to Y is dependent on the orderings of X and Y.

Example 3.5.1 The relation $R = \{(1, b), (1, d), (2, c), (3, c), (3, b), (4, a)\}$ from $X = \{1, 2, 3, 4\}$ to $Y = \{a, b, c, d\}$ relative to the orderings 1, 2, 3, 4 and a, b, c, d is

Example 3.5.2 The matrix of the above relation R relative to the orderings 2, 3, 4, 1 and d, b, a, c is ?

The matrix of a relation from X to Y is dependent on the orderings of X and Y.

Example 3.5.1 The relation $R = \{(1, b), (1, d), (2, c), (3, c), (3, b), (4, a)\}$ from $X = \{1, 2, 3, 4\}$ to $Y = \{a, b, c, d\}$ relative to the orderings 1, 2, 3, 4 and a, b, c, d is

Example 3.5.2 The matrix of the above relation R relative to the orderings 2, 3, 4, 1 and d, b, a, c is

The matrix of the relation R from X to Y

Lable the rows with the elements of X (in some arbitrary order), and label the columns with the elements of Y (again, in some arbitrary order). Set the entry in row x and column y to 1 if xRy and to 0 otherwise.

Example 3.5.4 The relation $R = \{(a, a), (b, b), (c, c), (d, d), (b, c), (c, b)\}$ on $\{a, b, c, d\}$ relative to the ordering a, b, c, d is ?

When we write the matrix of a relation R on a set X (i.e., from X to X), we use the same ordering for the rows as we do for the columns.

The matrix of the relation R from X to Y

Lable the rows with the elements of X (in some arbitrary order), and label the columns with the elements of Y (again, in some arbitrary order). Set the entry in row x and column y to 1 if xRy and to 0 otherwise.

A relation on a set

- reflexive 自反的
- symmetric 对称的
- antisymmetric 反对称的
- transitive 传递的

When we write the matrix of a relation R on a set X (i.e., from X to X), we use the same ordering for the rows as we do for the columns.

Example 3.5.5 Let R_1 be the relation from $X = \{1, 2, 3\}$ to $Y = \{a, b\}$ defined by $R_1 = \{(1, a), (2, b), (3, a), (3, b)\}$ and let R_1 be the relation from Y to $Z = \{x, y, z\}$ defined by $R_2 = \{(a, x), (a, y), (b, y), (b, z)\}.$

The matrix of R_1 relative to the orderings 1, 2, 3 and a, b is $A_1 = ?$

The matrix of R_2 relative to the orderings a, b and x, y, z is $A_2 = ?$

The product of these matrices is $A_1A_2 = ?$

设矩阵 $A = (a_{ij})_{m \times s}$, $B = (b_{ij})_{s \times n}$,令 $C = (c_{ij})_{m \times n}$ 是由下面的 $m \times n$ 个元素 $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{is}b_{sj}$ ($i = 1, 2, \ldots, m$) 构成的 m 行 n 列矩阵. 称矩阵 C 为矩阵 A 与矩阵 B 的乘积,记为 C = AB.

Example 3.5.5 Let R_1 be the relation from $X = \{1, 2, 3\}$ to $Y = \{a, b\}$ defined by $R_1 = \{(1, a), (2, b), (3, a), (3, b)\}$ and

let R_2 be the relation from Y to $Z = \{x, y, z\}$ defined by $R_2 = \{(a, x), (a, y), (b, y), (b, z)\}.$

$$A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

The matrix of R_1 relative to the orderings 1, 2, 3 and a, b is $A_1 = ?$

 $A_2 = \begin{pmatrix} x & y & z \\ a & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

The matrix of R_2 relative to the orderings a, b and x, y, z is $A_2 = ?$

The product of these matrices is $A_1A_2 = ?$

$$A_1 A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}.$$

设矩阵 $A = (a_{ij})_{m \times s}$, $B = (b_{ij})_{s \times n}$, 令 $C = (c_{ij})_{m \times n}$ 是由下面的 $m \times n$ 个元素 $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{is}b_{sj}$ ($i = 1, 2, \ldots, m$) 构成的 m 行 n 列矩阵. 称矩阵 C 为矩阵 A 与矩阵 B 的乘积,记为 C = AB.

Example 3.5.5 Let R_1 be the relation from $X = \{1, 2, 3\}$ to $Y = \{a, b\}$ defined by $R_1 = \{(1, a), (2, b), (3, a), (3, b)\}$ and let R_1 be the relation from Y to $Z = \{x, y, z\}$ defined by

let
$$R_1$$
 be the relation from Y to $Z = \{x, y, z\}$ defined by $R_2 = \{(a, x), (a, y), (b, y), (b, z)\}.$

The matrix of R_1 relative to the orderings 1, 2, 3 and a, b is $A_1 = ?$

The matrix of R_2 relative to the orderings a, b and x, y, z is $A_2 = ?$

The product of these matrices is $A_1A_2 = ?$

$$A_1 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}$$

$$x \quad y \quad z$$

$$x \quad y \quad z$$

$$A_2 = \begin{pmatrix} x & y & z \\ a & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$A_1 A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}.$$

Definition 3.3.25 Let R_1 be a relation from X to Y and R_2 be a relation from Y to Z. The composition of R_1 and R_2 , denoted $R_2 \circ R_1$, is the relation from X to Z defined by $R_2 \circ R_1 = \{(x, z) \mid (x, y) \in R_1 \text{ and } (y, z) \in R_2 \text{ for some } y \in Y\}$.

Theorem 3.5.6 Let R_1 be a relation from X to Y and let R_2 be a relation from Y to Z. Choose orderings of X, Y, and Z. Let A_1 be the matrix of R_1 and let A_1 be the matrix of R_2 with respect to the orderings selected. The matrix of the relation $R_2 \circ R_1$ with respect to the orderings selected is obtained by replacing each nonzero term in the matrix product A_1A_2 by 1.

$$A_{1} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \qquad A_{2} = \frac{a}{b} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \qquad A_{1}A_{2} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}.$$

Definition 3.3.25 Let R_1 be a relation from X to Y and R_2 be a relation from Y to Z. The composition of R_1 and R_2 , denoted $R_2 \circ R_1$, is the relation from X to Z defined by $R_2 \circ R_1 = \{(x, z) \mid (x, y) \in R_1 \text{ and } (y, z) \in R_2 \text{ for some } y \in Y\}$.

Theorem 3.5.6 Let R_1 be a relation from X to Y and let R_2 be a relation from Y to Z. Choose orderings of X, Y, and Z. Let A_1 be the matrix of R_1 and let A_1 be the matrix of R_2 with respect to the orderings selected. The matrix of the relation $R_2 \circ R_1$ with respect to the orderings selected is obtained by replacing each nonzero term in the matrix product A_1A_2 by 1.

The relation R is transitive if and only if whenever entry i, j in A^2 is nonzero, entry i, j in A is also nonzero.

Example 3.5.7 The relation $R = \{(a, a), (b, b), (c, c), (d, d), (b, c), (c, b)\}$ on $\{a, b, c, d\}$ is transitive?

The relation R is transitive if and only if whenever entry i, j in A^2 is nonzero, entry i, j in A is also nonzero.

Example 3.5.7 The relation $R = \{(a, a), (b, b), (c, c), (d, d), (a, c), (c, b)\}$ on $\{a, b, c, d\}$ is transitive?

The relation R is transitive if and only if whenever entry i, j in A^2 is nonzero, entry i, j in A is also nonzero.

Let X be an n-element set.

- How many relations are there on X?
- How many reflexive relations are there on X?
- How many symmetric relations are there on X?
- How many antisymmetric relations are there on *X*?

Let X be an n-element set.

- How many reflexive and symmetric relations are there on *X*?
- How many reflexive and antisymmetric relations are there on X?
- How many aymmetric and antisymmetric relations are there on X?
- How many reflexive, symmetric, and antisymmetric relations are there on X?