

제주도 도로 교통량 예측 AI 경진대회

팀명:성인ADHD

Table of Contents

01

Data

02

Modeling

파생변수 - distance(Km 기준)

start_latitude	start_longitude	end_latitude	end_longitude	distance
33.500730	126.529107	33.504811	126.526240	0.525891
33.248505	126.569797	33.248633	126.567766	0.189391
33.485885	126.489979	33.485975	126.486409	0.331239
33.500103	126.512851	33.500132	126.512046	0.074720
33.485704	126.496451	33.483589	126.496368	0.235388

▶ 시작점, 도착점의 거리를 위도, 경도와 haversine을 이용해서 구하고 distance 컬럼 추가

01. Data

파생변수 - 금요일 / 요일별 가중치

- ✔ 금요일이면 True, 아니면 False를 추가
 - ▶ isfriday 컬럼 추가

✔ 요일별로 가중치를 줌

화, 수, 목: 1 월, 금: 2 토, 일: 3

▶ day_weight 컬럼 추가

day_of_week	isfriday
목	False
일	False
금	True
금	True
토	False

day_of_week	day_weight	
목	1	
목	1	
일	3	
금	2	
화	1	

파생변수 - 상대 유동 지수 hour, day, road, lane, maxspeed, roadrating, roadtype

 ✔ hour, day 그래프를 살펴보면, 각각의 패턴이 존재 이를 바탕으로 각 시간, 날짜별 평균 속도를 구해 상대 유동지수 컬럼추가 그 외에 road, lane, maxspeed, roadrating, roadtype에도 같은 방법으로 상대유동지수를 구한 후 컬럼 추가

hour_mean_speed day_mean_speed road_mean_speed lane_mean_speed maxspeed_mean roadrating_mean roadtype_mean

42.173431	42.768345	26.400712	44.915713	42.316287	46.388468	41.160930
50.278658	43.179300	26.352858	43.570562	35.492231	34.701408	41.160930

01. Data

#7월 데이터

- ✔ base_date : 2022년 7월 기준 교통량 증가
- ✓ 7월의 lane, maxspeed, roadrating, roadtype에 대해서 상대유동지수를 구한 후 컬럼 추가

lane_mean_july_speed maxspeed_mean_july roadrating_mean_july roadtype_mean_july

35.776806	37.977766	39.353222	34.320044
38.590217	31.048812	29.995480	34.320044

01. Data

학습

- ✓ 각 월별로 나눈 후 학습
 - ▶ 7월의 데이터셋으로 학습했을 때가 제일 성능이 좋음

✓ 7월 데이터셋에서 16일 기준으로 나눠봄(16일 기점으로 추이가 다르다고 판단)

02. Modeling

optuna를 이용해서 최적의 하이퍼파라미터 찾기

LightGBM, CatBoost, GradientBoost 이용

ensemble

결과 값의 mean, median값을 이용해서 도출

감사합니다.