

Missing Persons Age-Invariant Face Recognition

Supervisor Lecturer, PhD. Diana-Laura Borza Author Rusu Raluca-Maria

CONTENTS

01 Introduction 05 REST API

02 Research Objectives 06 Missing Persons Web Application

Age-Invariant
Face Recognition
Model

Age-Invariant
Future Improvements

4 Experiments & **08** References

Context

Face Recognition

positively identifying a face in a media file by comparing it to a database of faces that already exist and are considered correct

Age-Invariant Face Recognition

performing face recognition
that remains consistent
despite age-related facial changes

Same person?

Same person?

O1

True

02

False

01

Motivation

face recognition has become **increasingly common in our daily life**, **yet algorithms struggle to recognize faces with an age gap larger than 8.5 years** [20] as significant facial aging differences can overpower identity features [1]

Airport Passport Identity
Verification

Biometric authentication [2] for banks, phones etc.

Access Control

Identifying Long-Missing Persons

Time & Attendance Monitoring

Protecting Problem Gamblers

Video Surveillance [3]

Difficulties

Intra-subject variations

alterations in the same person's images as they age

Inter-subject variations

resemblance between the images of different people

Related works

- typically segregated facial attributes without considering their potential interdependencies
- have shown limitations in addressing the underlying connections between facial features [7]

) Research Objectives

Proposed solution

Develop a capable AIFR model

Factors the facial features into 3 similar yet unique attributes for each individual (age group, gender, identity) and learns to classify and adversarially maximize and minimize their correlation to account for inter and intra-subject variances.

Integrate it into a REST API

Ti be easily used into various applications and services by developers, promoting its usability and scalability.

Missing Persons Web Application

Designed to identify missing persons through image analysis, offers a practical and impactful real-world use case for our model.

Age-Invariant Face Recognition Model

Available Datasets

Dataset	No. Images	No. Subjects	Age Labels	Age Range	Gender Labels
FG-NET [8]	1002	82	yes	0 to 69	no
AgeDB[9]	16.488	568	yes	1 to 101	yes
MORPH[10]	55.125	13,617	yes	16 to 77	yes
CACD[11]	163.446	2000	yes	16 to 62	yes
VGGFace[12]	~3.310.000	9,131	yes	-	yes

Training Datasets (gathered from Age-DB & CACD)

Small

- 500 unique identities, each with over 20 images, spanning ages 0 to 101
- **15, 752** images

Large

- 1035 unique identities, each with over 5 images, spanning ages 0 to 101
- **20, 387** images

FG-NET Dataset (used in evaluations)

- 82 unique identities, each with over 10 images, spanning ages 0 to 69
- **1002** images

Custom Backbone CNN

inspired by ResNet, following [7] and [6]'s Orthogonal with added Batch Normalization

got insignificant results, as the dataset's size and diversity were limited and the learning task was immensely dependent on these resources

Transfer Learning Backbone CNN

conducted research and concluded that the best suited for our task is the **Inception-Resnet-v1** from [13], **pre-trained** on the **VGGFace** [12] dataset

serves as our **feature extractor** converting input images into embeddings or initial face features

Single-Task Model

baseline model that only classifies the identity from facial images, using directly the embeddings from the Backbone

Multi-Task Model

simultaneously classifies identity, age group, and gender from facial images, using the decomposed embeddings returned by the Feature Residual Factorization Module (FRFM)

Discriminators

Identity

- similar to the Single-Task model, but uses only the identity features
- Cosface Margin Loss that increases inter-class separability and intra-class compactness

$$\mathcal{L}_{ID} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta_{y_i,i}) - m)}}{e^{s(\cos(\theta_{y_i,i}) - m)} + \sum_{i \neq y_i} e^{s\cos(\theta_{j,i})}}$$

Age group

- classification for 3 age groups: 0 - 25 (**young**) 25 - 55 (adults)
 - and 56+ (elderly)

Gender

gender classification: O (male) 1 (female)

Cross-Entropy Loss from PyTorch combines the log softmax and negative log-likelihood loss into a single function converts raw model outputs (logits) into probabilities measures the difference between the predicted probabilities and the true labels, penalizing incorrect predictions 03

Multi-Task + DAL model

decomposes features and performs multitask classification using the FRFM module calculates the identity, age group, and gender correlation using the BCCM module, and adversarially learns to maximize and minimize it using the DAL Regularizer

Decorrelated Adversarial Learning (DAL)

strategically manipulate gradients and optimize different parameters during training

- for **40 iterations minimization process**:
 - train only the Backbone and FRFM parameters
 - o freeze the BCCM parameters
- for 30 iterations maximization process:
 - o freeze the Backbone and FRFM
 - o train only the BCCM parameters and flipping its gradients for adversarial training

Experiments & Evaluations

Trial and error was key

Loss Computation

Single-Task:

only identity discriminator loss

Multi-Task:

- combined identity, age, and gender discriminator losses, weighted by lambdas: 1, 0.9, 0.9

Multi-Task + DAL:

- combined identity, age, gender, and DAL discriminator losses, weighted by lambdas: 1, 0.9, 0.9, 0.9

Optimizer

SGD optimizer with momentum 0.9

Single-Task:

- optimize Backbone

Multi-Task:

optimize Backbone and FRFM

Multi-Task + DAL:

- DAL strategy

Evaluations

large

large

large

small

small

small

Trained on

Model

Single-Task

Multi-Task

Single-Task

Multi-Task

Multi-Task + DAL

Multi-Task + DAL

80/20 Split	
85.65%	
85.92%	
86.24%	
93.02%	
93.12%	
93.89%	

on 20% of our curated datasets (excluded from training)

Two-Pairs

Model	Trained on	Evaluation two-pairs
Single-Task	large	79.31%
Multi-Task	large	79.83%
Multi-Task + DAL	large	80.00%
Single-Task	small	78.85%
Multi-Task	small	79.42%
Multi-Task + DAL	small	82.21%

- **FG-NET dataset**
- 1000 positive and negative pairs •
- minimum 15 years age difference
- equal gender distribution
- threshold of 0.5 to determine if two images likely depict the same person

Leave-One-Out

Method	Rank-1
Park et al. (2010) [14]	37.40%
Li et al. (2011) [15]	47.50%
HFA (2013) [16]	69.00%
MEFA (2015) [17]	76.20%
CAN (2017)[18]	86.50%
LFCNNs (2017) [4]	88.10%
AIM (2018) [19]	93.20%
Age + DAL (2019) [7]	94.50%
Multi-Task + DAL	94.61%

- **FG-NET dataset**
- rigorous testing protocol
- each image in the dataset used once as a test image, while the rest formed the training set

Requests

REQUEST	TYPE	PARAMS			RESPONSE
/images_similarity	POST	KEY image1 image2	VALUE File	隐 img1.jpg 隐 img1neg.jpg	{ "similarity": -0.70 } can throw invalid_request_error or request_error
/batch_images_similarity	POST	KEY imageList1 imageList2	VALUE File	₽ 4 files	{ "similarity": 0.89 } can throw invalid_request_error or request_error

Architecture

demo

Functionalities

Architecture

demo

Same person?

O1 True

02

False

Same person?

0.56

0.42

04

Future Improvements

integrating
other biometric
characteristics

experimenting with different loss functions

optimizing hyperparameters

fine-tuning on more diverse datasets

References

- [1] Zhang Junping Shan Hongming Huang, Zhizhong. When age-invariant face recognition meets face age synthesis: A multi-task learning framework and a new benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45:7917–7932, 2023.
- [2] M. M. Sawant, K. M. Bhurchandi. Age Invariant Face Recognition: a Survey on Facial Aging Databases, Techniques and Effect of Aging. Artificial Intelligence Review. 10.1007/s10462-018-9661-z. 2019. 52. 1-28.
- [3] G. Guo and N. Zhang. A survey on deep learning based face recognition. Computer Vision and Image Understanding, 189:102805, 2019
- [4] Y. Wen, Z. Li, and Y. Qiao. Latent factor guided convolutional neural networks for age-invariant face recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 2, 4, 5, 7
- [5] T. Zheng, W. Deng, and J. Hu. Age Estimation Guided Convolutional Neural Network for Age-Invariant Face Recognition. In IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017. 2, 7
- [6] Y. Wang, D. Gong, Z. Zhou, X. Ji, H. Wang, Z. Li, W. Liu, and T. Zhang. Orthogonal Deep Features Decomposition for Age- Invariant Face Recognition. In European Conference on Computer Vision (ECCV), 2018. 2, 5, 7, 8
- [7] Zhifeng Li Wei Liu Hao Wang, Dihong Gong. Decorrelated adversarial learning for age-invariant face recognition, 2019.
- [8] Lanitis, A., Taylor, C.J., Cootes, T.F. Toward automatic simulation of aging effects on face images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002.
- [9] Papaioannou Athanasios Sagonas Christos Deng Jiankang Kotsia Irene Zafeiriou Stefanos Moschoglou, Stylianos. Agedb: The first manually collected, in-the-wild age database. pages 1997–2005, 2017.
- [10] Tesafaye T. Ricanek, Karl. Morph: A longitudinal image database of normal adult age-progression. pages 341 345, 2006.
- [11] Chen Chu-Song Hsu Winston Chen, Bor-Chun. Face recognition and retrieval using cross-age reference coding with crossage celebrity dataset. IEEE Transactions on Multimedia, page 804–815, 2015.
- [12] W. Xie O. M. Parkhi A. Zisserman Q. Cao, L. Shen. Vggface2: A dataset for recognising faces across pose and age. In International Conference on Automatic Face and Gesture Recognition, 2018.
- [13] V. Vanhoucke A. Alemi C. Szegedy, S. Ioffe. Inception-v4, inception- resnet and the impact of residual connections on learning, 2016.
- [14] A. K. Jain U. Park, Y. Tong. Age-invariant face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2010.
- [15] A. K. Jain Z. Li, U. Park. A discriminative model for age invariant face recognition. IEEE transactions on Information Forensics and Security (TIFS), 2011.
- [16] D. Lin J. Liu X. Tang D. Gong, Z. Li. Hidden factor analysis for age invariant face recognition. International Conference on Computer Vision (ICCV), 2013.
- [17] D. Tao J. Liu X. Li. D. Gong, Z. Li. A maximum entropy feature descriptor for age invariant face recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), page 5289–5297, 2015.
- [18] M. Ye C. Xu, Q. Liu. Age invariant face recognition and retrieval by coupled auto-encoder networks. Neurocomputing, 2017.
- [19] J. Zhao, Yu Cheng, Yi Cheng, Y. Yang, H. Lan, F. Zhao, L. Xiong, Y. Xu, J. Li, S. Pranata, S. Shen, J. Xing, H. Liu, S. Yan, J. Feng. Look Across Elapse: Disentangled Representation Learning and Photoreal- istic Cross-Age Face Synthesis for Age-Invariant Face Recognition, 2018.
- [20] Ling, H., Soatto, S., Ramanathan, N., & Jacobs, D. (2010). Face Verification Across Age Progression Using Discriminative Methods. IEEE Transactions on Information Forensics and Security, 5, 82-91.

THANK YOU!

Context

Age-Invariant Face **Recognition** (1:n matching)

matching a given image of an individual with other images of the individual at different ages that are present in a collection with multiple identities

Age-Invariant Face **Verification** (1:1 matching)

determine if two or more provided photos reveal the same or different identities by calculating the cosine similarity between the features extracted from the images

Feature Residual Factorization Module (FRFM)

Batch Canonical Correlation Mapping Module (BCCM)

measures the linear relationship between features

each feature set (identity, age, gender) is reduced to one dimension using a linear predictor

predictions are used to calculate means and variances

pairwise correlations are then computed using covariance divided by the product of standard deviations

$$id_age_corr = \frac{(age_pred - age_mean) * (id_pred - id_mean)}{\sqrt{age_var * id_var}}$$

$$id_gender_corr = \frac{(gender_pred - gender_mean) * (id_pred - id_mean)}{\sqrt{gender_var * id_var}}$$

$$age_gender_corr = \frac{(age_pred - age_mean) * (gender_pred - gender_mean)}{\sqrt{age_var * gender_var}}$$

Decorrelated Adversarial Learning (DAL)

strategically manipulate gradients and optimizing different parameters during training

- for 40 iterations minimization process:
 - train only the Backbone and FRFM parameters
 - o freeze the BCCM parameters
- for 30 iterations maximization process:
 - freeze the Backbone and FRFM
 - train only the BCCM parameters and flipping its gradients for adversarial training

training governed by a multi-task loss function:

$$TL = L_{CE}(x_{id}) + \lambda_1 L_{CE}(x_{age}) + \lambda_2 L_{CE}(x_{gender}) + \lambda_3 L_{DALR}(i_{id}, x_{age}, x_{gender})$$

Objectives

Age-Invariant Face Recognition model available for use

AIFR model .

decompose mixed facial features into three components: identity, age, and gender

Multi-Task Learning •

age group, gender, and identity classification tasks

Canonical Correlation Mapping

calculate the correlation between the three components

Decorrelated - Adversarial Learning

adversarially maximize and minimize the correlation between the components to account for both inter and intra-subject variances.

Shallow Face Recognition

illumination, pose, clarity, or facial expressions variations in dataset images

Data Preprocessing

Same person?

Same person?

Same person?

0.22

0.42

04

07