PyLogic 101: Namibians Who Code Boolean logic

Dongwi

This cheat-sheet covers the conditional statement p implies $q p \rightarrow q$ and its negation. The **truth tables** below assist with the obtaining the *truth-value* of the associated logical of statement.

p	q	$p \rightarrow q$	$\neg (p \to q)$
T	Т	T	F
T	F	F	Т
F	T	Т	F
F	F	Т	F

Table 1: Truth table of conditional statment $p \to q$ and its negation.

The only time the negation of the conditional statement is true is when p is true, and q is false. This means that $\sim (p \to q)$ is logically equivalent to $p \land \sim q$, as the following truth table demonstrates.

p	q	$p \rightarrow q$	$\neg(p \to q)$	$\neg q$	$p \land \neg q$	$\mid \neg(p \to q) \leftrightarrow (p \land \neg q)$
T	Т	T	F	F	F	Т
T	F	F	Т	T	T	Т
F	Т	Т	F	F	F	Т
F	F	Т	F	T	F	T

Table 2: Demonstrate via truth truth tables that $\neg(p \to q) \leftrightarrow (p \land \neg q)$.

Property	Conjunction (AND)	Disjunction (OR)
Commutative	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associative	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributive	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
De Morgan's	$\neg (p \land q) \equiv \neg p \lor \neg q$	$\neg (p \lor q) \equiv \neg p \land \neg q$
Conditional	$\neg (p \to q) \equiv p \land \neg q$	$p \to q \equiv \neg p \lor q$

Table 3: Various logical constructions and their corresponding equivalences.

Remark: logically, taking the negation of statement is not logically equivalent the *contrapositive*. in speech these are often mistakenly taken to mean the same thing, but logically that is a fallacy.

Statement	$p \rightarrow q$
Converse	$q \rightarrow p$
Inverse	$\neg p \rightarrow \neg q$
Contrapositive	$\neg q \rightarrow \neg p$

Table 4: Converse, inverse and contrapositive of a conditional statement.

Exercise: Construct a truth table for the following:

a.)
$$p \rightarrow \neg q \equiv \neg p \lor \neg q$$

b.)
$$\neg p \rightarrow q \equiv p \lor q$$

c.)
$$\neg (p \rightarrow \neg q \lor \neg r) \equiv p \land q \land r$$