# Оглавление

| 1        | Лен | кция первая. Введение в БД.   | <b>2</b> |
|----------|-----|-------------------------------|----------|
|          | 1.1 | Базы данных                   | 2        |
|          | 1.2 | Основные требования к БД      |          |
|          | 1.3 | СУБД, журнализация            |          |
|          | 1.4 | Основные компоненты СУБД      | 3        |
|          | 1.5 | Классификация СУБД            | 4        |
| <b>2</b> | Лаб | бораторная работа 1.          | 5        |
|          | 2.1 | Задание:                      | 5        |
| 3        | Сем | линар 1.                      | 6        |
|          | 3.1 | -                             | 6        |
|          | 3.2 | Основные языки                |          |
|          | 3.3 | Способы хранения данных       |          |
| 4        | Рел | яционная модель (Лекция 2)    | 10       |
|          | 4.1 | ER - модель                   | 10       |
|          | 4.2 | Реляционная модель            | 11       |
| 5        | Рел | яционная алгебра (Лекция 3)   | 13       |
|          | 5.1 | Синтаксис реляционной алгебры | 14       |
|          | 5.2 | Примеры                       |          |
| 6        | Сем | линар 2                       | 19       |

### 1

# Лекция первая. Введение в БД.

#### 1.1 Базы данных.

 $B\mathcal{A}$  - это самодокументированная собрание интегрированных записей. Набор таблиц.

 ${\it Camodokymenmupoвanhas}$  - хранятся метаданные, т.е. данные о данных.

*Интегрированные записи* - Файлы данных. Целый комплекс. Имеются индексы. Метаданные

## 1.2 Основные требования к БД.

- Не избыточность не храним лишнюю информацию.
- Эффективность доступа малое время отклика на действие пользователя.
- Совместное использование.
- Безопасность. Также внутренняя безопасность защита от дурака (пример: вместо числа ввел букву).

- Восстановление после сбоя.
- Целостность если ссылаемся на какой-то объект, то он должен быть. Не ссылаться на несуществеющие объекты.
- Независимость от сторонних приложений. Если программа отправляет ерунду БД должна обработать.

## 1.3 СУБД, журнализация.

*СУБД* - (Средства управления БД) приложение, обеспечивающее создание, хранение, обновление и поиск информации в БД.Программа. **СУБД управляет БД**.

 $Cucmema\ B \mathcal{I}$  - совокупность  $B \mathcal{I}$ .

*Транзакция* - набор действий, которые выполняются одновременно. (Пример: онлайн перевод, одновременно в одном месте деньги ушли, в другом появились.)

Xурнализация - информация о действиях, которые происходили в системе. Помогает в откате каких-то действий.  $\mathbf{Б}\mathcal{\mathbf{\Pi}}$  сохраняет запросы в журнале.

СУБД должна поддерживать языки.

#### 1.4 Основные компоненты СУБД

- Ядро управление памятью. Журнализация.
- Процессор языка БД оптимизация. Выполнение.
- Подсистема поддержки времени исполнения.
- Сервисные программы те утилиты, которые мы пишем, доп. возможность. (Вывод звездочек вокруг имени.)

## 1.5 Классификация СУБД

- По модели данных
  - Дореляционная.
    - \* Инвертированный список (рис 1)
    - \* Иерархия. (Дерево)
    - \* Сетевые (граф)
  - Реляционная.
  - Постреляционная
- По архитектуре.
  - Локальные на одном устройстве.
  - Распространенные на многих устройствах.
- По способу доступа к БД
  - Файл-серверный подход Подключились, взяли всё. Нагружаем клиента, а не сервер. Минусы: У каждого клиента своя копия.
  - клиент-серверные запросы выполняются на сервере, клиент получает только нужное
  - Встраиваемые маленькие базы, которые не нужны всем.

### 2

# Лабораторная работа 1.

#### 2.1 Задание:

- Выбрать тему.
- Рисуем ER-модель нашей базы.
- Создать БД. Создать таблицу. (>= 3ёх объектов (таблицы связки не считаются объектами)). Создать ключи. (Все это в SQLскрипт)
- Наполнить (csv) >= 1000 строк.

По итогу 2 фала: 1 SQL-скрипт и 1 модель.

# Семинар 1.

#### 3.1 SQL

SQL - SQL (Structured Query Language – язык структурированных запросов)

декларативный язык программирования, применяемый для создания, модификации и управления данными в реляционной базе данных.

SQL - работает в любой БД. В основах лежит реляционная модель.

В основе реляционной модели лежит теория множеств и логика предикатов.

T-SQL - нек-ое дополнение. Надстройка.



Рис. 3.1: SQL

Заголовок – набор атрибутов (В SQL - столбцы), каждый из которых имеет определенный тип.

Атрибут — совокупность имени и типа данных (Атрибут == столбец). Атрибут — название столбца, его тип + дополнительные настройки

*Тело* – множество картежей (В SQL – строки).

Заголовок кортежа – заголовок отношения.



Рис. 3.2: Пример таблицы.

#### 3.2 Основные языки

Логику работы с данными можно разделить на три основных языка:

- DLL (Data Definition Language) (Создаем объекты для хранения данных).Служит для описания структуры БД:
  - Создать (Create)
  - Удалить (Drop)
  - Изменить (Alter)
- DML (Data Manipulation Language) Язык для работы с данными
  - Обновить (update)
  - Загружать (insert)
  - Удалять (delete/truncate)

- Читать (select)
- DCL (Data Control Language) Служит для управления доступа к объектам.
  - Выдача прав доступа к объекту (grand)
  - Удаление прав доступа на объект (revoke)

Обращение к таблице. Схема обращения к таблице: [название БД].[название схемы].Название таблицы. Рис. 3.3



Рис. 3.3: Структура БД.

### 3.3 Способы хранения данных

- Таблица (table).
- Временные таблица (temp table). По завершению сессии таблица удаляется.
- Представление (View)

- Производные таблицы. (Временная)
- Индексированное представление.

#### Пример создания таблицы

```
CREATE TABLE dbo.EmployeePhoto

(
Id int IDENTITY(1, 1),
EmployeeId int NOT NULL PRIMARY KEY,
Photo varbinary (max) FILESTREAM NULL,
MyRowGuidColumn uniqueidentifier NOT NULL ROWGUIDCOL
UNIQUE DEFAULT NEWID()
);
```

id - ATPИБУТ типа int счетчик шагаем начиная с единицы с шагом 1.

Employer id - поле, которое используем в кач-ве идентификатора. Photo - По умолчанию NULL - пустой.

MyRawGuidColumn - Уникальное, DEFAULT - по умолчанию поле задается newID.

nvarchar - Выделяет столько памяти, какова длина строки varchar - Физически занята вся строка. Занято пробелами.

Salary - numeric(15, 2) - Сколько всего цифр выделено в нашем числа, сколько знаков после запятой.

## 4

# Реляционная модель (Лекция 2)

## 4.1 ER - модель

- Сущность
- Связь

Объекты обозначаются прямоугольниками. Внутри пишем название.

#### Виды сущностей:

- Сильные Обозначаются просто в рамке.
- Слабые не могут существовать друг без друга. Факультет и предметы. Обозначается вложенным квадратом (рамочка).

**Атрибуты** отображаются овалами. Внутри пишем название атрибута.

#### Виды связей:

- Один к одному. Студент-зачетка.
- Один ко многим. Статья-рецензия. Добавляем внешний ключ со стороны многих. Из многих в сторону одного.

• Многие ко многим. Студент-преподаватель. Добавляем связочную таблицу.

#### 4.2 Реляционная модель

#### Реляционная модель

- Структурная часть отвечает за то, какие объекты есть.
- Целостная отвечает за ссылки. DDL.
  - Ссылочная целостность (FK)
  - Целостность сущности (РК) говорит о том, что есть первичный ключ. Нет повторения. Всегда знаем на что ссылаемся.
- Манипуляционная за механизм работы с данными. DML.

Домен = (примерно равно) тип данных.

**Атрибут** (отношения) = (примерно равно) столбец. Упорядоченная пара вида:

имя-атрибута,имя-домена

**Схема отношений** = (примерно равно) Заголовок. имя-отношение, имя-домена

**Кортеж** = (примерно равно) Строка. Имя-атрибута, значение-атрибута **Отношение** = (примерно равно) таблица.

Непустое подмножество множества атрибутов схемы отношения будет **потенциальным ключом** тогда и только тогда, когда оно будет обладать свойствами:

- уникальности (в отношении нет двух различных кортежей с одинаковыми значениями потенциального ключа)
- неизбыточности (никакое из собственных подмножеств множества потенциального ключа не обладает свойством уникальности

**Внешний ключ** в отношении R2 – это непустое подмножество множества атрибутов FK этого отношения, такое, что:

- Существует отношение R1 (причем отношения R1 и R2 необязательно различны) с потенциальным ключом СК;
- Каждое значение внешнего ключа FK в текущем значении отношения R2 обязательно совпадает со значением ключа CK некоторого кортежа в текущем значении отношения R1.

# Реляционная алгебра (Лекция 3)

Реляционная алгебра - замкнутая система.

Реляционная алгебра является основным компонентом реляционной модели, опубликованной Коддом, и состоит из восьми операторов, составляющих две группы по четыре оператора:

#### • Традиционные

- Объединение. (union)
- Пересечение. (intersect)
- Вычитание. (minus) (В mysql иначе называется)
- Декартово произведение все со всеми. (times)

#### • Специальные

- Проекция. (PROJECT, []) помогает выбирать не все из нашего отношения. Можно набрать только те атрибуты, которые будем использовать далее.
- Фильтрация. (WHERE)
- Соединения. (JOIN)

– Деление. (DIVIDE BY)

Деление. (DIVIDE BY)

R1 {A, B}

R2 {B}

R1 DIVIDE BY R2 = R1[A] minus(R2 YIMER R1[A]) minus R1)[A]

#### 5.1 Синтаксис реляционной алгебры

Любое реляционное выражение - это унарное выражение или бинарное выражение

- Унарное выражение с одним элементом.
  - Переименование := терм RENAME имя\_атрибута AS новое\_имя\_атрибута
  - Ограничение := терм WHERE логическое\_выражение
  - Проекция := терм | терм[список атрибутов]
- Бинарное с двумя элементами
  - Бинарное выражение := проекция бинарная\_операция (реляционное\_выражение)
  - Бинарный операция := UNION | INTERSECT | MINUS | TIMES | JOIN | DIVIDEBY

Терм - либо отношение, либо другое реляционное выражение. Реляционное выражение всегда берется в круглые скобки.

Имеются таблицы:

- S поставщик S(Sno: integer, Sname: string, Status: integer, City: string)
- Р поставщик P(Pno: integer, Pname: string, Color: string, Weight: real, City: string)
- SP Таблица связка SP(Sno: integer, Pno: integer, Qty: integer)

| id | Имя детали | цвет | вес  | Город    |
|----|------------|------|------|----------|
| 1  | Гвоздь     | K    | 10.3 | Москва   |
| 2  | Винт       | 3    | 15.8 | Рязань   |
| 3  | Гвоздь     | С    | 3.4  | Смоленск |

Таблица 5.1: Детали

| id | Имя поставщика | статус | город       |
|----|----------------|--------|-------------|
| 1  | ООО Ромашка    | 5      | Рязань      |
| 2  | ООО Рубин      | 3      | Красногорск |

Таблица 5.2: Поставщики

#### 5.2 Примеры

Реляционные алгебра. Выражения.

1. Получить имена поставщиков, которые поставляют деталь под номером 2.

```
Листинг 5.1: Пример 1

(( S JOIN SP ) HWEPE Pno = 2 ) [ Sname ]

Листинг 5.2: Пример 1

select Sname
from S
join SP on S. Sno = SP. Sno
where SD. Pno = 2

Пример 1.2 быстрее
```

Листинг 5.3: Пример 1.2 ((SP **where** Pno=2) **join** S) [Sname]

2. Получить имена поставщиков, которые поставляют по крайней мере одну красную деталь.

```
Листинг 5.4: Пример 2
((( PH WERE Color = 'Красный' ) JOIN SP)
[ Sno | JOIN S ) [ Sname ]
```

```
Листинг 5.5: Пример 2
```

```
select Sname
from S
join SP on S.Sno = SP.Sno
join P on P.Pno = SP.Pno
where color='K'
```

3. Получить имена поставщиков, которые поставляют все детали.

4. Получить номера поставщиков, поставляющих по крайней мере все те детали, которые поставляет поставщик под номером 2.

```
Листинг 5.8: Пример 4
SP [Sno, Pno] DIVIDE BY
(SP HWEPE Sno = 2)[ Pno ]

Листинг 5.9: Пример 4
with group SP(Sno, cnt) as (
    select Sno, count(distinct Pno)
    from SP
    where Sno in ()
```

```
group by Sno in (select count(distinct Pno) from SP where Sno=2)
) select Sname from group SP тут( необязательно as) gSP join S on gSP. Sno=S. Sno where cnt=(select count(distinct Pno) from SP where Sno=2)
```

5. Получить все пары номеров поставщиков, размещенных в одном городе

```
Листинг 5.10: Пример 5

((( S MRENAE Sno AS FirstSno )
    [ FirstSno , City ] JOIN
    (S MRENAE Sno AS SecondSno )
    [ SecondSno , City ]) H

WEPE FirstSno < SecondSno )
    [ FirstSno , SecondSno ]

Листинг 5.11: Пример 5

select firstS.Sno , SecondS.Sno

from S firstS inner join S second
```

from S firstS inner join S secondS on firstS.Sno = secondS.Sno where firstS.Sno < SecondS.SnoЭта (фильтрацияизбавитотдублей)

6. Получить имена поставщиков, которые не поставляют деталь под номером 2.

```
Листинг 5.12: Пример 6 ((S[Sno]MINUS(SPHWEPEPno = 2)[Sno]) JOIN S(SPHWEPEPno = 2)
```

Листинг 5.13: Пример 5

select Snp from S
minus
select distinct Sno
from SR
where Pno=2

## 6

# Семинар 2

#### Таблица Р.

| id | Pname  | Color | Weight | City     |
|----|--------|-------|--------|----------|
| 1  | Гвоздь | K     | 10.3   | Москва   |
| 2  | Винт   | 3     | 15.8   | Рязань   |
| 3  | Гвоздь | С     | 3.4    | Смоленск |
| 4  | шуруп  | K     | 11     | Рязань   |
| 5  | шайба  | С     | 17.8   | Смоленск |

Таблица 6.1: Таблица деталей Р.

#### Таблица поставщика - S

| Sno | Sname                  | Status | City     |
|-----|------------------------|--------|----------|
| 1   | ООО Ромашка            | 5      | Москва   |
| 2   | ООО Рубин              | 3      | Рязань   |
| 2   | ООО Зеленоглазое такси | 4      | Смоленск |

Таблица 6.2: Таблица поставщика - S

Агрегатная функция - sum, max, min, count,

Листинг 6.1: Пример

 $\begin{array}{ll} \mathbf{select} & \mathrm{Color} \;,\;\; \mathbf{count} \, (*) \\ \mathbf{from} \;\; \mathrm{p} \end{array}$ 

| Sno | Pno | Cnt |
|-----|-----|-----|
| 1   | 1   | 100 |
| 2   | 1   | 150 |
| 3   | 1   | 180 |
| 1   | 2   | 180 |
| 3   | 2   | 180 |
| 4   | 3   | 180 |
| 5   | 3   | 180 |

Таблица 6.3: Таблица SP

#### group by Color

having используется для фильтрации групп.

Листинг 6.2: Пример

select Color, count(\*)
from p
group by Color
having count(\*)>1

order by - сортировка. Есть прямой порядок () и обратный (desc). По умолчанию по возрастанию.

Отсортируем таблицу деталей по весу.

Листинг 6.3: Пример

select Color, count(\*)
from p
order by Pname, Weight desc;

Порядок записи инструкций. Цифрами показан порядок выполнения.

Листинг 6.4: Порядок записи инструкций

select (5) from (1) where (2) group by (3)

# having (4) order by (6)

Нерабочий пример (потому что имя задаем на этапе позже) На этапе where использовать псевдонимы, которые мы создаем в select нельзя.

(2) - выполнится вторым действием, но у нас еще нет псевдонима. (Пример 6.5)

Листинг 6.5: Пример

```
select Pname as myName
from P (1)
from where myName = 'Гвоздь' (2)
order by myName
```

Листинг 6.6: Пример внутренних запросов

```
select Sname
from S
where Sno in
(select distinct Sno
from SP
where Pno=2)
```

Запрос - найти цвет с тах кол-вом деталей. Действия

- Сначала группируем по цвету. grop by Color
- Найти тах.
- Вернуться к табл. и найти

with - показывает, что след. запрос будет выполняться до select. Это только для запроса.

Листинг 6.7: with. найти цвет с тах кол-вом деталей. Обобщенное табличное выражение

```
with group Color(Color, cnt) as select color count(*)
```

```
from P
group by Color (
(select max(cnt)
from (select Color, count(*) as cnt
from P
grop by Color))
select Color
from group Color
where cnt in (
select max(cnt)
from group Color
   Теперь переходим на JOIN - соединения
   Виды:
   • Внутренний. inner join (Это пересечение на кругах Эллера.);
   • Внешние. outer join. (3 вида)
       - left join (На кругах это весь круг A)
       - right join (На кругах это весь круг В)
       - full join(полное) (На кругах это оба круга (и А и В))
               Листинг 6.8: Внутреннее соединение
select A.id, B.id, A.name, B.fio
from A join B
\mathbf{on} \ \mathrm{A.id} = \mathrm{B.id}
```

Виды join, которыми мы сможем воспользоваться

- Nested loops join. (Сложность n\*n). Можно нашей СУБД указать, что нужно использовать её. Минусы: избыточность.
- Hash join (Сложность n+n). Можно сравнивать только на равенство. Минусы: доп расходы на таблицу.

• Merge join (Изначально таблицы должны отсортированы по ключу.) Минусы: нужно сортировать

Операция над множествами. Тело - это множество кортежей. Ниже представленный запрос даст таблицу с двумя столбцами (id, name). Атрибуты называются по верхней схеме.

Листинг 6.9: union

select id , name , from A
union [all]
select id , FIO from B;

Листинг 6.10: minus

select id , name, from A
minus
select id , FIO from B;

join - добавляет столбцы, union - дописывает в конец.