CS 154

Unrecognizability,
Undecidability,
Diagonalization

"There are more problems to solve than there are programs to solve them."

Languages over {0,1}

Turing Machines

f: A \rightarrow B is *not* onto \Leftrightarrow (\exists b \in B)(\forall a \in A)[f(a) \neq b] Let L be any set and 2^L be the power set of L

Theorem: There is *no* onto function from L to 2^L

No function from L to 2^L can "cover" all the elements in 2^L

No matter what the set L is, the power set 2^L always has strictly larger cardinality than L

Thm: There are unrecognizable languages

Suppose every language is recognizable.

Then for every language L' over {0,1} there is a TM M such that L(M) = L'.

This means that the function f(M) = L(M)from {Turing Machines} to {Languages}
is onto:

For every L' in {Languages}, there is an M in {Turing Machines} such that f(M) = L'

Thm: There are unrecognizable languages

Assuming every language is recog., there's an onto function f: {Turing Machines} \rightarrow {Languages}

Since f is onto, there is also an onto g from S to 2^S. But there is no onto function from S to 2^S. Contradiction!

This is an extremely generic argument!

Russell's Paradox in Set Theory

In the early 1900's, logicians were trying to define consistent foundations for mathematics.

Suppose X = "Universe of all possible sets"

Frege's Axiom: Let $f: X \rightarrow \{0,1\}$

Then $\{S \in X \mid f(S) = 1\}$ is a set.

Define $F = \{ S \in X \mid S \notin S \}$

Suppose $F \in F$. Then by definition, $F \notin F$. So $F \notin F$ and by definition $F \in F$. This logical system is inconsistent!

A Concrete Undecidable Problem: The Acceptance Problem for TMs

A_{TM} = { (M, w) | M is a TM that accepts string w }

Theorem [Turing'30s]

A_{TM} is recognizable but NOT decidable

A_{TM} = { (M,w) | M is a TM that accepts string w }

A_{TM} is undecidable: (proof by contradiction)

Suppose H is a machine that decides A_{TM}

$$H(\ (M,w)\)= \begin{cases} Accept & \text{if M accepts w} \\ Reject & \text{if M does not accept w} \end{cases}$$

Define a new TM D as follows:

D(M): Run H on (M,M) and output the opposite of H

The table of outputs of H(x,y)

	y W ₁	$\mathbf{W_2}$	W_3	W ₄	D
\mathbf{M}_{1}	accept	accept	accept	reject	accept
M_2	reject	accept	reject	reject	reject
M_3	accept	reject	reject	accept	accept
M_4	accept	reject	reject	reject	accept
:					
D	reject	reject	accept	accept	?

The behavior of D(x) is a diagonal on this table

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ A_{TM} is undecidable: (a constructive proof)

Let U be a machine that recognizes A_{TM}

$$U(\ (M,w)\)= \begin{cases} Accept & \text{if M accepts } w\\ Rejects \ or \ loops & \text{otherwise} \end{cases}$$

Define a new TM D_U as follows:

D_U(M): Run U on (M,M) until the simulation halts Output the opposite answer

$$D_{U}(D_{U}) = \begin{cases} Reject \ if \ D_{U} \ accepts \ D_{U} \ (i.e. \ if \ H(D_{U}, D_{U}) = Accept) \end{cases}$$

$$Accept \ if \ D_{U} \ rejects \ D_{U} \ (i.e. \ if \ H(D_{U}, D_{U}) = Reject)$$

$$Loops \ if \ D_{U} \ loops \ on \ D_{U} \ (i.e. \ if \ H(D_{U}, D_{U}) \ loops)$$

Note: There is no contradiction here!

D_U must loop on D_U

We have an input (D_U, D_U) which is *not* in A_{TM} but U infinitely loops on (D_U, D_U) !

In summary:

Given the code of any machine U that *recognizes* A_{TM} (i.e. a Universal Turing Machine) we can effectively construct an input (D_U , D_U), where:

- 1. (D_U, D_U) does not belong to A_{TM}
- 2. U runs forever on the input (D_U , D_U)
- 3. So U cannot decide A_{TM}

Given any program that recognizes the Acceptance Problem, we can efficiently construct an input where the program hangs!

Theorem: A_{TM} is recognizable but NOT decidable

Corollary: $\neg A_{TM}$ is not recognizable

Proof: Suppose $\neg A_{TM}$ is recognizable. Then $\neg A_{TM}$ and A_{TM} are both recognizable.

But that would mean they're both decidable...
... this is a contradiction!

The Halting Problem

HALT_{TM} = { (M,w) | M is a TM that halts on string w }

Theorem: HALT_{TM} is undecidable

Proof: Assume (for a contradiction) there is a TM H that decides $HALT_{TM}$

Idea: Use H to construct a TM M' that decides A_{TM}

M'(M,w): Run H(M,w)

If H rejects then reject

If H accepts, run M on w until it halts:

If M accepts, then accept

If M rejects, then reject

Claim: If H exists, then M' decides A_{TM}

Can often prove a language L is undecidable by proving: "if L is decidable, then so is A_{TM}"

We reduce A_{TM} to the language L

$$A_{TM} \leq L$$

L is "at least as difficult as" ATM

Reducing from One Problem to Another

 $f: \Sigma^* \to \Sigma^*$ is a computable function if there is a Turing machine M that halts with just f(w) written on its tape, for every input w

A language A is mapping reducible to language B, written as $A \leq_m B$, if there is a computable $f: \Sigma^* \to \Sigma^*$ such that for every w,

$$w \in A \iff f(w) \in B$$

f is called a mapping reduction (or many-one reduction) from A to B

Let $f: \Sigma^* \to \Sigma^*$ be a computable function such that $w \in A \Leftrightarrow f(w) \in B$

Say: "A is mapping reducible to B" Write: $A \leq_m B$

Theorem: If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$

 $w \in A \Leftrightarrow f(w) \in B \Leftrightarrow g(f(w)) \in C$

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Proof: Suppose TM M decides B.

Let f be a mapping reduction from A to B

We build a machine M' for deciding A

M′(w):

- 1. Compute f(w)
- 2. Run M on f(w), output its answer

 $w \in A \Leftrightarrow f(w) \in B$ so $w \in A \Rightarrow M'$ accepts $w \notin A \Rightarrow M'$ rejects $w \notin A \Rightarrow M'$

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Proof: Let M recognize B.

Let f be a mapping reduction from A to B

To recognize A, we build a machine M'

M'(w):

- 1. Compute f(w)
- 2. Run M on f(w), output its answer if you ever receive one

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable

A mapping reduction from A_{TM} to HALT_{TM}

Theorem: A_{TM} ≤_m HALT_{TM}

f(z) := Decode z into a pair (M, w)
 Construct a TM M' with the specification:
 "M'(w) = Simulate M on w.
 if M(w) accepts then accept

else *loop forever"*

Output (M', w)

We have $z \in A_{TM} \Leftrightarrow (M', w) \in HALT_{TM}$

Corollary: HALT_{TM} is undecidable

Theorem: A_{TM} ≤_m HALT_{TM}

Corollary: $\neg A_{TM} \leq_m \neg HALT_{TM}$

Proof?

Corollary: ¬HALT_{TM} is unrecognizable!

Proof: If $\neg HALT_{TM}$ were recognizable, then $\neg A_{TM}$ would be recognizable...

Theorem: $HALT_{TM} \leq_m A_{TM}$

Proof: Define the computable function

```
f(M, w) := Construct M' with the specification:

"M'(w) = If M(w) halts then accept

else loop forever"

Output (M', w)
```

Observe $(M, w) \in HALT_{TM} \Leftrightarrow (M', w) \in A_{TM}$