Unitary Renormalization Group Approach to the Single-Impurity Anderson model

ABHIRUP MUKHERJEE (18IP014)

SUPERVISOR: DR. SIDDHARTHA LAL

IISER KOLKATA

JANUARY 5, 2021

OUTLINE

- The model
- Motivation
- Unitary Renormalization Group (URG) formalism
- Results

1

THE SINGLE-IMPURITY ANDERSON MODEL

■ "Poor man's" scaling¹ is *perturbative* and fails at large values - cannot show strong-coupling (SC) fixed point.

¹Haldane 1978, Jefferson 1977

■ "Poor man's" scaling¹ is *perturbative* and fails at large values - cannot show strong-coupling (SC) fixed point.

■ Instead, one needs to flow to large value of *U*, do a Schrieffer -Wolff transformation and then flow to the SC fixed point.

¹Haldane 1978, Jefferson 1977

- "Poor man's" scaling¹ is *perturbative* and fails at large values cannot show strong-coupling (SC) fixed point.
- Instead, one needs to flow to large value of *U*, do a Schrieffer -Wolff transformation and then flow to the SC fixed point.
- It would be nice to get a single set of equations that show the crossover to the strong-coupling fixed point.

¹Haldane 1978, Jefferson 1977

■ Numerical Renormalization Group (NRG) does not provide any scaling equations - hard to figure out what is really happening.

4 5

- Numerical Renormalization Group (NRG) does not provide any scaling equations hard to figure out what is really happening.
- NRG cannot show how the Hamiltonians and many-body wavefunctions vary along the flow projective in nature.

4 5

- Numerical Renormalization Group (NRG) does not provide any scaling equations hard to figure out what is really happening.
- NRG cannot show how the Hamiltonians and many-body wavefunctions vary along the flow projective in nature.
- It would be enlightening to see the flow into SC regime by tracking the change in entanglement hence we need wavefunctions.

UNITARY RENORMALIZATION GROUP FORMALISM

Start with the electrons farthest from the Fermi surface. Write the Hamiltonian as diagonal and off-diagonal terms in this basis.

Unitary Renormalization Group Formalism

Start with the electrons farthest from the Fermi surface. Write the Hamiltonian as diagonal and off-diagonal terms in this basis.

