Interrogation écrite n°05

NOM: Prénom: Note:

1. Soit $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Calculer exp(A).

On remarque que $A = I_2 + N$ avec $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. I_2 et N commutent donc $\exp(A) = \exp(I_2) \exp(N)$. D'une part, $\exp(I_2) = \begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix}$

et d'autre part, $N^2 = 0$ donc $\exp(N) = I_2 + N = A$. Finalement, on obtient $\exp(A) = \begin{pmatrix} e & e \\ 0 & e \end{pmatrix}$.

2. On pose $A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$. Calculer A^n pour tout $n \in \mathbb{N}$.

On calcule $\chi_A = X^2 - 5X + 6 = (X - 2)(X - 3)$. Notons $R_n = a_nX + bn$ le reste de la division euclidienne de X^n par χ_A . Alors $R_n(2) = 2a_n + b_n = 2^n$ et $R_n(3) = 3a_n + b_n = 3^n$. Ainsi $a_n = 3^n - 2^n$ et $b_n = 2^n - 2a_n = 3 \cdot 2^n - 2 \cdot 3^n$. On en déduit que

$$A^n = R_n(A) = (3^n - 2^n)A + (3 \cdot 2^n - 2 \cdot 3^n)I_2$$

3. Déterminer les matrices $M \in \mathcal{M}_n(\mathbb{R})$ vérifiant $M^2 - 3M + 2I_n = 0$ et tr(M) = 2n.

Soit M une telle matrice. Comme $X^2 - 3X + 2 = (X - 1)(X - 2)$ annule M, M est diagonalisable et $Sp(M) \subset \{1, 2\}$. En notant m_1 et m_2 les multiplicités respectives des valeurs proppres 1 et 2, on a donc $m_1 + m_2 = n$ et $m_1 + 2m_2 = 2n$. On en déduit que $m_1 = 0$ et $m_2 = n$. Ainsi $Sp(M) = \{2\}$. Comme M est diagonalisable, M est donc semblable à $2I_n$ et finalement $M = 2I_n$. Réciproquement, $2I_n$ convient.

4. On pose $f_n: x \mapsto x^n(1-x)$. La suite de fonctions (f_n) converge-t-elle simplement sur [0,1]? uniformément sur [0,1]? Remarquons que $f_n(1) = 0$ et que pour $x \in [0,1[$, la suite géométrique $(f_n(x))$ converge vers 0. Ainsi (f_n) converge simplement vers la fonction nulle sur [0,1]. Une étude de fonctions montre que f_n est positive et atteint son maximum en $\frac{n}{n+1}$. Par conséquent,

$$||f_n||_{\infty,[0,1]} = f_n\left(\frac{n}{n+1}\right) \le \frac{1}{n+1}$$

Ainsi $\lim_{n\to+\infty} \|f_n\|_{\infty,[0,1]} = 0$ i.e. (f_n) converge uniformément vers la fonction nulle sur [0,1].

5. On pose $f_n: x \mapsto nxe^{-nx}$. La suite de fonctions (f_n) converge-t-elle simplement sur \mathbb{R}_+ ? uniformément sur \mathbb{R}_+ ? $On remarque que <math>f_n(0) = 0$ et pour $x \in \mathbb{R}_+^*$, $\lim_{n \to +\infty} f_n(x) = 0$ par croissances comparées. La suite (f_n) converge donc simplement vers la fonction nulle sur \mathbb{R}_+ . De plus, $f_n(1/n) = e^{-1}$ donc $(f_n(1/n))$ ne converge pas vers 0. La suite (f_n) ne converge donc pas uniformément.