

Grafs III

Algorísmica Avançada | Enginyeria Informàtica

Santi Seguí | 2019-2020

- Imaginem algun flux de dades que va des d'un lloc s, on aquest és produït, fins a un lloc t on aquest es consumit amb la mateixa taxa de producció.
- Intuïtivament, el flux en qualsevol punt de la xarxa és la taxa a la qual es mou el material.
- Usos: modelat de flux en canonades, línies d'acoblament, corrents elèctrics, informació en xarxes de comunicació (enrutaments), optimització sobre dades matricials, etc.
- Intuïtivament modelable amb grafs.

Source: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

- Cada aresta dirigida pot ser vista com un conducte per on passa el material, segons les següents restriccions:
 - Cada un dels conductes té una capacitat màxima finita (>=0).
 - És compleix la conservació del flux. $\sum f_{input} = \sum f_{output}$ (per node).

- Problema del flux màxim?
 - Quina és la millor taxa a la que podem portar el flux sense violar cap restricció?

Quan podem enviar?

- El mètode iteratiu depèn de tres idees importants:
 - La xarxa residual.
 - Augment de camins.
 - Talls.
- Per tal de resoldre el problema utilitzarem el teorema:
 - max-flow/min-cut que caracteritza el flux màxim en termes de talls de la xarxa.

Teorema max-flow min-cut

- **Teorema**: El màxim valor d'entre tots els fluxos que arriben a **t** en una xarxa és igual a la capacitat mínima d'entre tots els talls que divideixen la xarxa.
- Objectiu: Saturar la xarxa per satisfer el teorema !!!

Xarxa Max-Flow

- Xarxa Max-Flow: G = (V, E,s, t, u)
 - (V,E) = graf dirigit sense arcs
 - Node inicial s, i node destí t
 - u(e) = capacitat de l'aresta e

Problema Min-Cut

Un tall és una partició dels nodes (S, T), tal que **s** està dins **T**.

capacitat(S, T) = suma dels pesos que surten de S

$$\sum_{e \text{ out of } S} u(e) := \sum_{\substack{(v,w) \in E \\ v \in S, w \in T}} u(v,w)$$

Un tall és una partició dels nodes (S, T), tal que **s** està dins **T**.

capacitat(S, T) = suma dels pesos que surten de S

Un tall és una partició dels nodes (S, T), tal que **s** està dins **T**.

capacitat(S, T) = suma dels pesos que surten de S

Problema Min-cut. Trobar el tall s-t amb capacitat mínima.

Problema Max-Flow

Problema de **flux màxim**. Assigna el flux a les arestes de la següent forma:

- Igualem el flux d'entrada i de sortida de tots els nodes intermedis
- Maximitzar el flux enviat de s a t

Problema Max-Flow

Un flux **f** és una assignació de pesos a les arestes de manera que:

- Capacitat: $0 \le f(e) \le u(e)$
- Conservació del flux: Flux d'entrada a v = Flux de sortida a v

Excepte a **s** i **t**

Ford-Fulkerson Max Flow

Algorithm Ford-Fulkerson

Inputs Given a Network G=(V,E) with flow capacity c, a source node s, and a sink node t **Output** Compute a flow f from s to t of maximum value

- 1. $f(u,v) \leftarrow 0$ for all edges (u,v)
- 2. While there is a path p from s to t in G_f , such that $c_f(u,v)>0$ for all edges $(u,v)\in p$:

1. Find
$$c_f(p) = \min\{c_f(u,v): (u,v) \in p\}$$

- 2. For each edge $(u,v) \in p$
 - 1. $f(u,v) \leftarrow f(u,v) + c_f(p)$ (Send flow along the path)
 - 2. $f(v,u) \leftarrow f(v,u) c_f(p)$ (The flow might be "returned" later)
- "←" denotes assignment. For instance, "largest ← item" means that the value of largest changes to the value of item.
- "return" terminates the algorithm and outputs the following value.

Xarxa residual

• La xarxa residual consisteix en arcs que admeten més flux. Donada una xarxa flux G = (V, E) amb inici s i destinació t. Sigui f el flux en G, i consideri un parell de vèrtexs u, v ∈ V, la quantitat de flux addicional que es pot abocar sobre u, v és la capacitat residual.

$$c_f(u,v) = c(u,v) - f(u,v)$$
 Exemple:
$$c(u,v)=16, \ f(u,v)=10 \ \longrightarrow c_f(u,v)=6$$
 Capacitat residual Capacitat residual connexió connexió (u,v) en el pas 1 (u,v) en el pas 2

Taula il·lustrant fluxos i capacitat a través de diferents vores del gràfic anterior

$$f_{s,1} = 9$$
, $c_{s,1} = 10$ (Valid flow since $10 > 9$)

$$f_{s,2} = 6$$
, $c_{s,2} = 6$ (Valid flow since $6 \ge 6$)

$$f_{1,2} = 1$$
, $c_{1,2} = 1$ (Valid flow since $1 \ge 1$)

$$f_{1,t} = 8$$
, $c_{1,t} = 8$ (Valid flow since $8 \ge 8$)

$$f_{2,t} = 7$$
, $c_{2,t} = 10$ (Valid flow since $10 > 7$)

El flux a través dels nodes 1 i 2 també es conserva quan flueixen cap a ells = flow out.

Graf original, i la xarxa residual original

Trobar qualsevol camí s-t al graf G(x)

Determinar la capacitat Δ del camí

Enviar Δ unitats de flux al camí (mínim capacitat de totes les arestes).

Determinar la capacitat Δ del camí Enviar Δ unitats de flux al camí. Actualitzar la capacitat residual.

Troba algun camí entre s i t

Troba algun camí entre s i t Determinar la capacitat Δ del camí Enviar Δ unitats de flux al camí. Actualitzar la capacitat residual.

Troba algun camí entre s i t

Troba algun camí entre s i t

Troba algun camí entre s i t Determinar la capacitat Δ del camí Enviar Δ unitats de flux al camí. Actualitzar la capacitat residual.

Troba algun camí entre s i t

Troba algun camí entre s i t

Troba algun camí entre s i t Determinar la capacitat Δ del camí Enviar Δ unitats de flux al camí. Actualitzar la capacitat residual.

Troba algun camí entre s i t

Troba algun camí entre s i t Determinar la capacitat Δ del camí Enviar Δ unitats de flux al camí. Actualitzar la capacitat residual.

Troba algun camí entre s i t

No hi ha cap camí entre s i t. S'ha trobat el flux òptim

Flux òptim

Quin és min-cut?

Quan no es trobin més rutes al pas 2, no podreu arribar a la t a la xarxa residual. S és el conjunt de nodes accessibles per s a la xarxa residual, V és la resta de nodes.

Graf original, i la xarxa residual original

Exercici: Min-Cut Max-Flow

Aplica Ford-Fulkerson: identifica min-cut y max-flow

min-cut:

Max-flow:

