Application of Information Theory, Lecture 10 Hardcore Predicates

Iftach Haitner

Tel Aviv University.

May 31, 2018

Part I

Motivation and Definition

Hardcore predicates

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a "hard to invert" function, how unpredictable is x given f(x)

Hardcore predicates

- Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a "hard to invert" function, how unpredictable is x given f(x)
- ▶ Parts of *x* might be (totally) predictable

Hardcore predicates

- Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a "hard to invert" function, how unpredictable is x given f(x)
- ▶ Parts of x might be (totally) predictable
- It turns out that there is an hardcore part in x.

Definition 1 (hardcore predicates)

Definition 1 (hardcore predicates)

A predicate $b: \{0,1\}^n \mapsto \{0,1\}$ is (s,ε) -hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if $\Pr_{x \leftarrow \{0,1\}^n} [P(f(x)) = b(x)] \le \frac{1}{2} + \varepsilon$, for any s-size P.

Why size?

Definition 1 (hardcore predicates)

- Why size?
- We will typically consider poly-time computable f and b.

Definition 1 (hardcore predicates)

- Why size?
- We will typically consider poly-time computable f and b.
- Does every function has such a predicate?

Definition 1 (hardcore predicates)

- Why size?
- We will typically consider poly-time computable f and b.
- Does every function has such a predicate?
- Does every hard to invert function has such a predicate?

Definition 1 (hardcore predicates)

- Why size?
- ▶ We will typically consider poly-time computable f and b.
- Does every function has such a predicate?
- Does every hard to invert function has such a predicate?
- Is there a generic hardcore predicate for all hard to invert functions?

Definition 1 (hardcore predicates)

- Why size?
- We will typically consider poly-time computable f and b.
- Does every function has such a predicate?
- Does every hard to invert function has such a predicate?
- ▶ Is there a generic hardcore predicate for all hard to invert functions? Let f be a function and let b be a predicate, then b is typically not a hard-core predicate of g(x) = (f(x), b(x)).

Part II

The Information Theoretic Settings

Let $f: \mathcal{D} \mapsto \mathcal{R}$.

▶ $\operatorname{Im}(f) = \{f(x) \colon x \in \mathcal{D}\}.$

- $\blacktriangleright \operatorname{Im}(f) = \{f(x) \colon x \in \mathcal{D}\}.$
- ► $f^{-1}(y) = \{x \in \mathcal{D} : f(x) = y\}$

- $\blacktriangleright \operatorname{Im}(f) = \{f(x) \colon x \in \mathcal{D}\}.$
- ► $f^{-1}(y) = \{x \in \mathcal{D} : f(x) = y\}$
- ▶ f is d regular, if $|f^{-1}(y)| = d$ for every $y \in Im(f)$.

- $\blacktriangleright \operatorname{Im}(f) = \{f(x) \colon x \in \mathcal{D}\}.$
- ► $f^{-1}(y) = \{x \in \mathcal{D} : f(x) = y\}$
- ▶ f is d regular, if $|f^{-1}(y)| = d$ for every $y \in Im(f)$.
- ▶ min entropy of $X \sim p$ is $H_{\infty}(X) = \min_{x \in \mathcal{X}} \{-\log p(x)\} = -\log \max_{x \in \mathcal{X}} \{p(x)\}.$

- $\blacktriangleright \operatorname{Im}(f) = \{f(x) \colon x \in \mathcal{D}\}.$
- ► $f^{-1}(y) = \{x \in \mathcal{D} : f(x) = y\}$
- ▶ f is d regular, if $|f^{-1}(y)| = d$ for every $y \in Im(f)$.
- ▶ min entropy of $X \sim p$ is $H_{\infty}(X) = \min_{x \in \mathcal{X}} \{-\log p(x)\} = -\log \max_{x \in \mathcal{X}} \{p(x)\}.$
- Examples:

- $\blacktriangleright \operatorname{Im}(f) = \{f(x) \colon x \in \mathcal{D}\}.$
- ► $f^{-1}(y) = \{x \in \mathcal{D} : f(x) = y\}$
- ▶ f is d regular, if $|f^{-1}(y)| = d$ for every $y \in Im(f)$.
- ▶ min entropy of $X \sim p$ is $H_{\infty}(X) = \min_{x \in \mathcal{X}} \{-\log p(x)\} = -\log \max_{x \in \mathcal{X}} \{p(x)\}.$
- Examples:
 - Z is uniform over 2^k-size set.

- $\blacktriangleright \operatorname{Im}(f) = \{f(x) \colon x \in \mathcal{D}\}.$
- ► $f^{-1}(y) = \{x \in \mathcal{D} : f(x) = y\}$
- ▶ f is d regular, if $|f^{-1}(y)| = d$ for every $y \in Im(f)$.
- ▶ min entropy of $X \sim p$ is $H_{\infty}(X) = \min_{x \in \mathcal{X}} \{-\log p(x)\} = -\log \max_{x \in \mathcal{X}} \{p(x)\}.$
- Examples:
 - Z is uniform over 2^k-size set.
 - ▶ $Z = X |_{f(X)=y}$, for 2^k -regular $f, y \in Im(f)$ and $X \leftarrow \mathcal{D}$.

- $\blacktriangleright \operatorname{Im}(f) = \{f(x) \colon x \in \mathcal{D}\}.$
- ► $f^{-1}(y) = \{x \in \mathcal{D} : f(x) = y\}$
- ▶ f is d regular, if $|f^{-1}(y)| = d$ for every $y \in Im(f)$.
- ▶ min entropy of $X \sim p$ is $H_{\infty}(X) = \min_{x \in \mathcal{X}} \{-\log p(x)\} = -\log \max_{x \in \mathcal{X}} \{p(x)\}.$
- Examples:
 - Z is uniform over 2^k-size set.
 - ▶ $Z = X |_{f(X)=y}$, for 2^k -regular $f, y \in Im(f)$ and $X \leftarrow \mathcal{D}$.
- ▶ In both examples $H_{\infty}(Z) = k$

2-universal families

Definition 2 (2-universal families)

A function family $\mathcal{G}=\{g\colon \mathcal{D}\mapsto \mathcal{R}\}$ is 2-universal, if $\forall~x\neq x'\in \mathcal{D}$ it holds that $\Pr_{g\leftarrow \mathcal{G}}\left[g(x)=g(x')\right]=\frac{1}{|\mathcal{R}|}.$

2-universal families

Definition 2 (2-universal families)

A function family $\mathcal{G}=\{g\colon \mathcal{D}\mapsto \mathcal{R}\}$ is 2-universal, if $\forall~x\neq x'\in \mathcal{D}$ it holds that $\Pr_{g\leftarrow \mathcal{G}}\left[g(x)=g(x')\right]=\frac{1}{|\mathcal{R}|}.$

Example: $\mathcal{D} = \{0, 1\}^n$, $\mathcal{R} = \{0, 1\}^m$ and $\mathcal{G} = \{A \in \{0, 1\}^{m \times n}\}$ with $A(x) = A \times x \mod 2$.

2-universal families

Definition 2 (2-universal families)

A function family $\mathcal{G}=\{g\colon \mathcal{D}\mapsto \mathcal{R}\}$ is 2-universal, if $\forall~x\neq x'\in \mathcal{D}$ it holds that $\Pr_{g\leftarrow \mathcal{G}}\left[g(x)=g(x')\right]=\frac{1}{|\mathcal{R}|}.$

Example: $\mathcal{D} = \{0, 1\}^n$, $\mathcal{R} = \{0, 1\}^m$ and $\mathcal{G} = \{A \in \{0, 1\}^{m \times n}\}$ with $A(x) = A \times x \mod 2$.

Lemma 3 (leftover hash lemma)

Let X be a rv over $\{0,1\}^n$ with $H_2(X) \ge k$ let $\mathcal{G} = \{g : \{0,1\}^n \mapsto \{0,1\}^m\}$ be 2-universal and let $G \leftarrow \mathcal{G}$. Then $SD((G,G(X)),(G,\sim\{0,1\}^m)) \le \frac{1}{2} \cdot 2^{(m-k)/2}$.

Hardcore predicate for regular functions

Lemma 4

```
Let f: \{0,1\}^n \mapsto \{0,1\}^n be 2^k-regular function, let \mathcal{G} = \{g: \{0,1\}^n \mapsto \{0,1\}\} be 2-universal and let v: \{0,1\}^n \times \mathcal{G} \mapsto \{0,1\}^n \times \mathcal{G} be defined by v(x,g) = (f(x),g).
Then b(x,g) = g(x) is (\infty,2^{-(k-1)/2}) hardcore-predicated of v.
```

Hardcore predicate for regular functions

Lemma 4

```
Let f: \{0,1\}^n \mapsto \{0,1\}^n be 2^k-regular function, let \mathcal{G} = \{g: \{0,1\}^n \mapsto \{0,1\}\} be 2-universal and let v: \{0,1\}^n \times \mathcal{G} \mapsto \{0,1\}^n \times \mathcal{G} be defined by v(x,g) = (f(x),g).
Then b(x,g) = g(x) is (\infty,2^{-(k-1)/2}) hardcore-predicated of v.
```

 \triangleright b is an hardcore predicate of \mathbf{v} (not of \mathbf{f})

Claim 5

SD
$$((f(X), G, G(X)), (f(X), G, U)) \le 2^{-(k-1)/2}$$
, for $G \leftarrow \mathcal{G}, X \leftarrow \{0, 1\}^n$ and $U \leftarrow \{0, 1\}$.

Claim 5

SD
$$((f(X), G, G(X)), (f(X), G, U)) \le 2^{-(k-1)/2}$$
, for $G \leftarrow \mathcal{G}, X \leftarrow \{0, 1\}^n$ and $U \leftarrow \{0, 1\}$.

We conclude the proof showing that indistinguishability implies unpredictability.

Claim 5

SD
$$((f(X), G, G(X)), (f(X), G, U)) \le 2^{-(k-1)/2}$$
, for $G \leftarrow \mathcal{G}, X \leftarrow \{0, 1\}^n$ and $U \leftarrow \{0, 1\}$.

We conclude the proof showing that indistinguishability implies unpredictability.

Lemma 6 (predicting to distinguishing)

Let (Y, Z) be rv over $\{0, 1\}^* \times \{0, 1\}$ and let P be an algorithm with $\Pr[P(Y) = Z] \ge \frac{1}{2} + \varepsilon$. Then \exists algorithm D, with essentially the same complexity as P, with $\Pr[D(Y, Z) = 1] - \Pr[D(Y, U) = 1] \ge \varepsilon$.

Claim 5

SD
$$((f(X), G, G(X)), (f(X), G, U)) \le 2^{-(k-1)/2}$$
, for $G \leftarrow \mathcal{G}, X \leftarrow \{0, 1\}^n$ and $U \leftarrow \{0, 1\}$.

We conclude the proof showing that indistinguishability implies unpredictability.

Lemma 6 (predicting to distinguishing)

Let (Y, Z) be rv over $\{0, 1\}^* \times \{0, 1\}$ and let P be an algorithm with $\Pr[P(Y) = Z] \ge \frac{1}{2} + \varepsilon$. Then \exists algorithm D, with essentially the same complexity as P, with $\Pr[D(Y, Z) = 1] - \Pr[D(Y, U) = 1] \ge \varepsilon$.

Proof:

Claim 5

SD
$$((f(X), G, G(X)), (f(X), G, U)) \le 2^{-(k-1)/2}$$
, for $G \leftarrow \mathcal{G}, X \leftarrow \{0, 1\}^n$ and $U \leftarrow \{0, 1\}$.

We conclude the proof showing that indistinguishability implies unpredictability.

Lemma 6 (predicting to distinguishing)

Let (Y, Z) be rv over $\{0, 1\}^* \times \{0, 1\}$ and let P be an algorithm with $\Pr[P(Y) = Z] \ge \frac{1}{2} + \varepsilon$. Then \exists algorithm D, with essentially the same complexity as P, with $\Pr[D(Y, Z) = 1] - \Pr[D(Y, U) = 1] \ge \varepsilon$.

Proof: D(y, z) outputs 1 if P(y) = z and 0 otherwise.

Claim 5

SD
$$((f(X), G, G(X)), (f(X), G, U)) \le 2^{-(k-1)/2}$$
, for $G \leftarrow \mathcal{G}, X \leftarrow \{0, 1\}^n$ and $U \leftarrow \{0, 1\}$.

We conclude the proof showing that indistinguishability implies unpredictability.

Lemma 6 (predicting to distinguishing)

Let (Y,Z) be rv over $\{0,1\}^* \times \{0,1\}$ and let P be an algorithm with $\Pr\left[\mathsf{P}(Y) = Z\right] \geq \frac{1}{2} + \varepsilon$. Then \exists algorithm D, with essentially the same complexity as P, with $\Pr\left[\mathsf{D}(Y,Z) = 1\right] - \Pr\left[\mathsf{D}(Y,U) = 1\right] \geq \varepsilon$.

Proof: D(y, z) outputs 1 if P(y) = z and 0 otherwise.

Corollary 7

If $SD((Y, Z), (Y, U)) < \varepsilon$, then $Pr[P(Y) = Z] < \frac{1}{2} + \varepsilon$ for any predictor P.

For $y \in Im(f)$, let X_y be uniformly distributed over $f^{-1}(y)$.

For $y \in Im(f)$, let X_y be uniformly distributed over $f^{-1}(y)$. Compute

$$SD((f(X), G, G(X)), (f(X), G, U))$$

$$= \sum_{y \in Im(f)} Pr[f(X) = y] \cdot SD((y, G, G(X)|_{f(X) = y}), (y, G, U)) \quad \text{(board)}$$

For $y \in \text{Im}(f)$, let X_y be uniformly distributed over $f^{-1}(y)$. Compute

$$\begin{split} & \text{SD}((f(X), G, G(X)), (f(X), G, U)) \\ &= \sum_{y \in \text{Im}(f)} \Pr[f(X) = y] \cdot \text{SD}((y, G, G(X)|_{f(X) = y}), (y, G, U)) \\ &= \sum_{y \in \text{Im}(f)} \Pr[f(X) = y] \cdot \text{SD}((y, G, G(X_y)), (y, G, U)) \end{split}$$
 (board)

For $y \in \text{Im}(f)$, let X_y be uniformly distributed over $f^{-1}(y)$. Compute

$$\begin{split} & \text{SD}((f(X), G, G(X)), (f(X), G, U)) \\ &= \sum_{y \in \text{Im}(f)} \Pr[f(X) = y] \cdot \text{SD}((y, G, G(X)|_{f(X) = y}), (y, G, U)) \\ &= \sum_{y \in \text{Im}(f)} \Pr[f(X) = y] \cdot \text{SD}((y, G, G(X_y)), (y, G, U)) \\ &\leq \max_{y \in \text{Im}(f)} \text{SD}((y, G, G(X_y)), (y, G, U)) \end{split}$$

Proving Claim 5

For $y \in \text{Im}(f)$, let X_y be uniformly distributed over $f^{-1}(y)$. Compute

$$\begin{split} & \text{SD}((f(X), G, G(X)), (f(X), G, U)) \\ &= \sum_{y \in \text{Im}(f)} \Pr[f(X) = y] \cdot \text{SD}((y, G, G(X)|_{f(X) = y}), (y, G, U)) \\ &= \sum_{y \in \text{Im}(f)} \Pr[f(X) = y] \cdot \text{SD}((y, G, G(X_y)), (y, G, U)) \\ &\leq \max_{y \in \text{Im}(f)} \text{SD}((y, G, G(X_y)), (y, G, U)) \\ &= \max_{y \in \text{Im}(f)} \text{SD}((G, G(X_y)), (G, U)) \end{split}$$

Proving Claim 5

For $y \in \text{Im}(f)$, let X_y be uniformly distributed over $f^{-1}(y)$. Compute

$$\begin{split} & \text{SD}((f(X), G, G(X)), (f(X), G, U)) \\ &= \sum_{y \in \text{Im}(f)} \Pr[f(X) = y] \cdot \text{SD}((y, G, G(X)|_{f(X) = y}), (y, G, U)) \\ &= \sum_{y \in \text{Im}(f)} \Pr[f(X) = y] \cdot \text{SD}((y, G, G(X_y)), (y, G, U)) \\ &\leq \max_{y \in \text{Im}(f)} \text{SD}((y, G, G(X_y)), (y, G, U)) \\ &= \max_{y \in \text{Im}(f)} \text{SD}((G, G(X_y)), (G, U)) \end{split}$$

Since $H_{\infty}(X_y) = k$ for every $y \in Im(f)$, the leftover hash lemma yields that

$$\begin{split} \mathsf{SD}((G,G(X_y)),(G,U)) \leq & \frac{1}{2} \cdot 2^{(1-\mathsf{H}_\infty(X_y)))} \\ & = 2^{(-k-1)/2}. \Box \end{split}$$

Part III

The Computational Settings

An injective function has hardcore bit, only if it is "hard to invert".

An injective function has hardcore bit, only if it is "hard to invert".

```
f \colon \{0,1\}^n \mapsto \{0,1\}^n \text{ is } (s,\varepsilon)\text{-hard, if } \Pr_{x \leftarrow \{0,1\}^n} \left[ \operatorname{Inv}(f(x)) \in f^{-1}(f(x)) \right] \right] \le \varepsilon \text{ for any } s\text{-size Inv.}
```

An injective function has hardcore bit, only if it is "hard to invert".

Definition 8 (hard function)

```
f \colon \{0,1\}^n \mapsto \{0,1\}^n \text{ is } (s,\varepsilon)\text{-hard, if}

\Pr_{x \leftarrow \{0,1\}^n} \left[ \operatorname{Inv}(f(x)) \in f^{-1}(f(x)) \right] \le \varepsilon \text{ for any } s\text{-size Inv.}
```

Size?

An injective function has hardcore bit, only if it is "hard to invert".

Definition 8 (hard function)

```
f \colon \{0,1\}^n \mapsto \{0,1\}^n \text{ is } (s,\varepsilon)\text{-hard, if}

\Pr_{x \leftarrow \{0,1\}^n} \left[ \operatorname{Inv}(f(x)) \in f^{-1}(f(x)) \right] \le \varepsilon \text{ for any } s\text{-size Inv.}
```

Size?

An injective function has hardcore bit, only if it is "hard to invert".

Definition 8 (hard function)

```
f \colon \{0,1\}^n \mapsto \{0,1\}^n \text{ is } (s,\varepsilon)\text{-hard, if}

\Pr_{x \leftarrow \{0,1\}^n} \left[ \operatorname{Inv}(f(x)) \in f^{-1}(f(x)) \right] \le \varepsilon \text{ for any } s\text{-size Inv.}
```

Size? Length preserving?

An injective function has hardcore bit, only if it is "hard to invert".

```
f \colon \{0,1\}^n \mapsto \{0,1\}^n is (s,\varepsilon)-hard, if \Pr_{x \leftarrow \{0,1\}^n} \left[ \operatorname{Inv}(f(x)) \in f^{-1}(f(x)) \right] \le \varepsilon for any s-size Inv.
```

- Size? Length preserving?
- f is hard \implies predicting x from f(x) is hard.

An injective function has hardcore bit, only if it is "hard to invert".

```
f \colon \{0,1\}^n \mapsto \{0,1\}^n is (s,\varepsilon)-hard, if \Pr_{x \leftarrow \{0,1\}^n}\left[\operatorname{Inv}(f(x)) \in f^{-1}(f(x))\right]\right] \leq \varepsilon for any s-size Inv.
```

- Size? Length preserving?
- f is hard \implies predicting x from f(x) is hard.
- But does any hard function has an hardcore predicate?

An injective function has hardcore bit, only if it is "hard to invert".

```
f \colon \{0,1\}^n \mapsto \{0,1\}^n is (s,\varepsilon)-hard, if \Pr_{x \leftarrow \{0,1\}^n}\left[\operatorname{Inv}(f(x)) \in f^{-1}(f(x))\right]\right] \leq \varepsilon for any s-size Inv.
```

- Size? Length preserving?
- f is hard \implies predicting x from f(x) is hard.
- But does any hard function has an hardcore predicate?
- ightharpoonup f is injective and not hard $\implies f$ has no hardcore predicate.

For
$$x, r \in \{0, 1\}^n$$
, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

For
$$x, r \in \{0, 1\}^n$$
, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 9 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ by g(x,r) = (f(x),r). Assume f is (s,ε) -hard, then $b(x,r) := \langle x,r \rangle_2$ is an $(\frac{\varepsilon}{n^2} \cdot s, \sqrt[3]{n\varepsilon})$ -hardcore predicate of g.

For
$$x, r \in \{0, 1\}^n$$
, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 9 (Goldreich-Levin)

```
For f: \{0,1\}^n \mapsto \{0,1\}^n, define g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n by g(x,r) = (f(x),r). Assume f is (s,\varepsilon)-hard, then b(x,r) := \langle x,r \rangle_2 is an (\frac{\varepsilon}{n^2} \cdot s, \sqrt[3]{n\varepsilon})-hardcore predicate of g.
```

Parameters are not tight, and we ignore small terms.

For
$$x, r \in \{0, 1\}^n$$
, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 9 (Goldreich-Levin)

```
For f: \{0,1\}^n \mapsto \{0,1\}^n, define g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n by g(x,r) = (f(x),r). Assume f is (s,\varepsilon)-hard, then b(x,r) := \langle x,r \rangle_2 is an (\frac{\varepsilon}{n^2} \cdot s, \sqrt[3]{n\varepsilon})-hardcore predicate of g.
```

- Parameters are not tight, and we ignore small terms.
- ▶ If f is $(n^{\omega(1)}, 1/n^{\omega(1)})$ -hard, then b is an $(n^{\omega(1)}, 1/n^{\omega(1)})$ -hardcore predicate of g.

For
$$x, r \in \{0, 1\}^n$$
, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 9 (Goldreich-Levin)

```
For f: \{0,1\}^n \mapsto \{0,1\}^n, define g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n by g(x,r) = (f(x),r). Assume f is (s,\varepsilon)-hard, then b(x,r) := \langle x,r \rangle_2 is an (\frac{\varepsilon}{n^2} \cdot s, \sqrt[3]{n\varepsilon})-hardcore predicate of g.
```

- Parameters are not tight, and we ignore small terms.
- ▶ If f is $(n^{\omega(1)}, 1/n^{\omega(1)})$ -hard, then b is an $(n^{\omega(1)}, 1/n^{\omega(1)})$ -hardcore predicate of g.
- Proof by reduction: a too small P for predicting b(x, r) "too well" from (f(x), r), implies a too small inverter for f:

For
$$x, r \in \{0, 1\}^n$$
, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 9 (Goldreich-Levin)

```
For f: \{0,1\}^n \mapsto \{0,1\}^n, define g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n by g(x,r) = (f(x),r). Assume f is (s,\varepsilon)-hard, then b(x,r) := \langle x,r \rangle_2 is an (\frac{\varepsilon}{n^2} \cdot s, \sqrt[3]{n\varepsilon})-hardcore predicate of g.
```

- Parameters are not tight, and we ignore small terms.
- ▶ If f is $(n^{\omega(1)}, 1/n^{\omega(1)})$ -hard, then b is an $(n^{\omega(1)}, 1/n^{\omega(1)})$ -hardcore predicate of g.
- ▶ Proof by reduction: a too small P for predicting b(x, r) "too well" from (f(x), r), implies a too small inverter for f:
- ► Assume \exists s'-size P with $\Pr[P(g(X,R)) = b(X,R)] \ge \frac{1}{2} + \delta$, where hereafter R and X are iid uniformly distributed over $\{0,1\}^n$

For
$$x, r \in \{0, 1\}^n$$
, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 9 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ by g(x,r) = (f(x),r). Assume f is (s,ε) -hard, then $b(x,r) := \langle x,r \rangle_2$ is an $(\frac{\varepsilon}{n^2} \cdot s, \sqrt[3]{n\varepsilon})$ -hardcore predicate of g.

- Parameters are not tight, and we ignore small terms.
- ▶ If f is $(n^{\omega(1)}, 1/n^{\omega(1)})$ -hard, then b is an $(n^{\omega(1)}, 1/n^{\omega(1)})$ -hardcore predicate of g.
- Proof by reduction: a too small P for predicting b(x, r) "too well" from (f(x), r), implies a too small inverter for f:
- ► Assume \exists s'-size P with $\Pr[P(g(X,R)) = b(X,R)] \ge \frac{1}{2} + \delta$, where hereafter R and X are iid uniformly distributed over $\{0,1\}^n$
- ▶ We prove $\exists \ (\frac{n^2}{\delta^2} \cdot s')$ -size Inv with $\Pr[\text{Inv}(f(X)) = X] \in \Omega(\delta^3/n)$.

Claim 10

There exists set $S \subseteq \{0,1\}^n$ with

- **1.** $\frac{|\mathcal{S}|}{2^n} \geq \frac{\delta}{2}$, and
- **2.** $\Pr[P(f(x), R) = b(x, R)] \ge \frac{1}{2} + \frac{\delta}{2}$,

Claim 10

There exists set $S \subseteq \{0,1\}^n$ with

- **1.** $\frac{|\mathcal{S}|}{2^n} \geq \frac{\delta}{2}$, and
- **2.** $\Pr[P(f(x), R) = b(x, R)]] \ge \frac{1}{2} + \frac{\delta}{2}, \quad \forall x \in S.$

Proof:

Claim 10

There exists set $S \subseteq \{0, 1\}^n$ with

- **1.** $\frac{|\mathcal{S}|}{2^n} \geq \frac{\delta}{2}$, and
- **2.** $\Pr[P(f(x), R) = b(x, R)] \ge \frac{1}{2} + \frac{\delta}{2}$,

$$\forall x \in S$$
.

Proof: Let $S := \{x \in \{0,1\}^n : \Pr[P(f(x),R) = b(x,R)] \ge \frac{1}{2} + \frac{\delta}{2}\}.$

Claim 10

There exists set $S \subseteq \{0,1\}^n$ with

- 1. $\frac{|\mathcal{S}|}{2^n} \geq \frac{\delta}{2}$, and
- **2.** $\Pr[P(f(x), R) = b(x, R)] \ge \frac{1}{2} + \frac{\delta}{2}$,

$$\forall x \in S$$
.

Proof: Let $S := \{x \in \{0,1\}^n : \Pr[P(f(x),R) = b(x,R)] \ge \frac{1}{2} + \frac{\delta}{2}\}.$

$$\Pr[\mathsf{P}(g(X,R)) = b(X,R)] \le \Pr[X \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in \mathcal{S}]$$

Claim 10

There exists set $S \subseteq \{0,1\}^n$ with

- **1.** $\frac{|\mathcal{S}|}{2^n} \geq \frac{\delta}{2}$, and
- **2.** $\Pr[P(f(x), R) = b(x, R)]] \ge \frac{1}{2} + \frac{\delta}{2}$,

$$\forall x \in S$$
.

Proof: Let $S := \{x \in \{0,1\}^n : \Pr[P(f(x),R) = b(x,R)] \ge \frac{1}{2} + \frac{\delta}{2}\}.$

$$\Pr[\mathsf{P}(g(X,R)) = b(X,R)] \le \Pr[X \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in \mathcal{S}]$$
$$\le \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in \mathcal{S}].$$

Claim 10

There exists set $S \subseteq \{0, 1\}^n$ with

- 1. $\frac{|\mathcal{S}|}{2^n} \geq \frac{\delta}{2}$, and
- **2.** $\Pr[P(f(x), R) = b(x, R)]] \ge \frac{1}{2} + \frac{\delta}{2}, \quad \forall x \in S.$

Proof: Let $S := \{x \in \{0,1\}^n : \Pr[P(f(x),R) = b(x,R)] \ge \frac{1}{2} + \frac{\delta}{2}\}.$

$$\Pr[\mathsf{P}(g(X,R)) = b(X,R)] \le \Pr[X \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in \mathcal{S}]$$
$$\le \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in \mathcal{S}].$$

We conclude the theorem's proof showing that there exists a $\frac{n^2}{\delta^2}$ -size Inv with

$$\Pr\left[\mathsf{Inv}(f(x)) = x\right] \in \Omega(\delta^2/n)$$

for every $x \in S$.

Claim 10

There exists set $S \subseteq \{0,1\}^n$ with

- **1.** $\frac{|\mathcal{S}|}{2^n} \geq \frac{\delta}{2}$, and
- **2.** $\Pr[P(f(x), R) = b(x, R)] \ge \frac{1}{2} + \frac{\delta}{2}$,

Proof: Let $S := \{x \in \{0,1\}^n : \Pr[P(f(x),R) = b(x,R)] \ge \frac{1}{2} + \frac{\delta}{2}\}.$

$$\Pr[\mathsf{P}(g(X,R)) = b(X,R)] \le \Pr[X \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in \mathcal{S}]$$
$$\le \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in \mathcal{S}].$$

 $\forall x \in S$.

We conclude the theorem's proof showing that there exists a $\frac{n^2}{\delta^2}$ -size Inv with

$$\Pr\left[\mathsf{Inv}(f(x)) = x\right] \in \Omega(\delta^2/n)$$

for every $x \in \mathcal{S}$. In the following we fix $x \in \mathcal{S}$.

$$Pr[P(f(x), R) = b(x, R)] = 1$$

$$Pr[P(f(x), R) = b(x, R)] = 1$$

$$P(f(x),r) \neq b(x,r)$$

In particular,
$$P(f(x), e^i) = b(x, e^i)$$
 for every $i \in [n]$, for $e^i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i})$.

$$Pr[P(f(x), R) = b(x, R)] = 1$$

$$P(f(x),r) \neq b(x,r)$$

In particular,
$$P(f(x), e^i) = b(x, e^i)$$
 for every $i \in [n]$, for $e^i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i})$.

Hence,
$$x_i = \langle x, e^i \rangle_2$$

$$Pr[P(f(x), R) = b(x, R)] = 1$$

$$P(f(x),r) \neq b(x,r)$$

In particular,
$$P(f(x), e^i) = b(x, e^i)$$
 for every $i \in [n]$, for $e^i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i})$.

Hence,
$$x_i = \langle x, e^i \rangle_2 = b(x, e^i) = P(f(x), e^i)$$

$$Pr[P(f(x), R) = b(x, R)] = 1$$

In particular,
$$P(f(x), e^i) = b(x, e^i)$$
 for every $i \in [n]$, for $e^i = (\underbrace{0, \dots, 0}_{i-1}, \underbrace{1, \underbrace{0, \dots, 0}_{n-i}})$.

Hence,
$$x_i = \langle x, e^i \rangle_2 = b(x, e^i) = P(f(x), e^i)$$

Algorithm 11 (Inverter Inv on input $y \in Im(f)$)

Return $(P(y, e^1), \dots, P(y, e^n))$.

$$Pr[P(f(x), R) = b(x, R)] = 1$$

In particular,
$$P(f(x), e^i) = b(x, e^i)$$
 for every $i \in [n]$, for $e^i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i})$.

Hence, $x_i = \langle x, e^i \rangle_2 = b(x, e^i) = P(f(x), e^i)$

Algorithm 11 (Inverter Inv on input $y \in Im(f)$)

Return $(P(y, e^1), \dots, P(y, e^n))$.

$$Inv(f(x)) = x$$
.

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

- P(f(x),r) = b(x,r)
- $P(f(x),r) \neq b(x,r)$

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

- P(f(x),r) = b(x,r)
- $P(f(x),r) \neq b(x,r)$

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

- P(f(x),r) = b(x,r)
- $P(f(x),r) \neq b(x,r)$

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

- P(f(x),r) = b(x,r)
- $P(f(x),r) \neq b(x,r)$

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

- P(f(x),r) = b(x,r)
- $P(f(x),r) \neq b(x,r)$

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

- P(f(x),r) = b(x,r)
- $P(f(x),r) \neq b(x,r)$

Fact 12

1. $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$, for every $w, y \in \{0, 1\}^n$.

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

- P(f(x),r) = b(x,r)
- $P(f(x),r) \neq b(x,r)$

Fact 12

- **1.** $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$, for every $w, y \in \{0, 1\}^n$.
- **2.** $\forall r \in \{0,1\}^n$, the rv $(R \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

$$\Pr[P(f(x), R) = b(x, R)] \ge 1 - \frac{1}{4n}$$

- P(f(x),r) = b(x,r)
- $P(f(x),r) \neq b(x,r)$

Fact 12

- **1.** $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$, for every $w, y \in \{0, 1\}^n$.
- **2.** $\forall r \in \{0,1\}^n$, the $rv(R \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

Hence, $\forall i \in [n]$:

1.
$$x_i = b(x, e^i) = b(x, r) \oplus b(x, r \oplus e^i)$$
 for every $r \in \{0, 1\}^n$

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

P(f(x),r) = b(x,r) $P(f(x),r) \neq b(x,r)$

- Fact 12
 - **1.** $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$, for every $w, y \in \{0, 1\}^n$.
 - **2.** $\forall r \in \{0,1\}^n$, the $rv(R \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

Hence, $\forall i \in [n]$:

- **1.** $x_i = b(x, e^i) = b(x, r) \oplus b(x, r \oplus e^i)$ for every $r \in \{0, 1\}^n$
- **2.** $Pr[P(f(x), R) = b(x, R) \land P(f(x), R \oplus e^i) = b(x, R \oplus e^i)] \ge 1 2 \cdot \frac{1}{4n}$

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

P(f(x),r) = b(x,r) $P(f(x),r) \neq b(x,r)$

Fact 12

- **1.** $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$, for every $w, y \in \{0, 1\}^n$.
- **2.** $\forall r \in \{0,1\}^n$, the $rv(R \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

Hence, $\forall i \in [n]$:

- **1.** $x_i = b(x, e^i) = b(x, r) \oplus b(x, r \oplus e^i)$ for every $r \in \{0, 1\}^n$
- **2.** $\Pr\left[P(f(x), R) = b(x, R) \land P(f(x), R \oplus e^i) = b(x, R \oplus e^i)\right] \ge 1 2 \cdot \frac{1}{4n}$

Algorithm 13 (Inverter Inv on input y)

Return $(P(y,R) \oplus P(y,R \oplus e^1)), \dots, P(y,R) \oplus P(y,R \oplus e^n)).$

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

 $P(f(x),r) \neq b(x,r)$

Fact 12

- **1.** $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$, for every $w, y \in \{0, 1\}^n$.
- **2.** $\forall r \in \{0,1\}^n$, the rv $(R \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

Hence, $\forall i \in [n]$:

- **1.** $x_i = b(x, e^i) = b(x, r) \oplus b(x, r \oplus e^i)$ for every $r \in \{0, 1\}^n$
- **2.** $\Pr\left[P(f(x), R) = b(x, R) \land P(f(x), R \oplus e^i) = b(x, R \oplus e^i)\right] \ge 1 2 \cdot \frac{1}{4n}$

Algorithm 13 (Inverter Inv on input y)

Return $(P(y,R) \oplus P(y,R \oplus e^1)), \dots, P(y,R) \oplus P(y,R \oplus e^n)).$

$$\Pr[Inv(f(x)) = x] \ge 1 - 2n \cdot \frac{1}{4n} = \frac{1}{2}$$

Proving Fact 12

1. For $w, y \in \{0, 1\}^n$:

$$b(x,y) \oplus b(x,w) = \left(\bigoplus_{i=1}^{n} x_{i} \cdot y_{i}\right) \oplus \left(\bigoplus_{i=1}^{n} x_{i} \cdot w_{i}\right)$$
$$= \bigoplus_{i=1}^{n} x_{i} \cdot (y_{i} \oplus w_{i})$$
$$= b(x, y \oplus w)$$

Proving Fact 12

1. For $w, y \in \{0, 1\}^n$:

$$b(x,y) \oplus b(x,w) = \left(\bigoplus_{i=1}^{n} x_{i} \cdot y_{i}\right) \oplus \left(\bigoplus_{i=1}^{n} x_{i} \cdot w_{i}\right)$$
$$= \bigoplus_{i=1}^{n} x_{i} \cdot (y_{i} \oplus w_{i})$$
$$= b(x, y \oplus w)$$

2. For $r, y \in \{0, 1\}^n$:

$$\Pr[R \oplus r = y] = \Pr[R = y \oplus r] = 2^{-n}$$

Intermediate case

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq \tfrac{3}{4}+\tfrac{\delta}{2}$$

Intermediate case

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right] \geq \frac{3}{4} + \frac{\delta}{2}$$

 $P(f(x),r) \neq b(x,r)$

For any $i \in [n]$

$$\Pr[\mathsf{P}(f(x),R) \oplus \mathsf{P}(f(x),R \oplus e^{i}) = x_{i}]$$

$$\geq \Pr[\mathsf{P}(f(x),R) = b(x,R) \land \mathsf{P}(f(x),R \oplus e^{i}) = b(x,R \oplus e^{i})]$$

$$\geq 1 - \left(1 - \left(\frac{3}{4} + \frac{\delta}{2}\right)\right) - \left(1 - \left(\frac{3}{4} + \frac{\delta}{2}\right)\right) = \frac{1}{2} + \delta$$

Intermediate case

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right] \geq \frac{3}{4}+\frac{\delta}{2}$$

For any $i \in [n]$

$$\Pr[\mathsf{P}(f(x),R) \oplus \mathsf{P}(f(x),R \oplus e^{i}) = x_{i}]$$

$$\geq \Pr[\mathsf{P}(f(x),R) = b(x,R) \land \mathsf{P}(f(x),R \oplus e^{i}) = b(x,R \oplus e^{i})]$$

$$\geq 1 - \left(1 - \left(\frac{3}{4} + \frac{\delta}{2}\right)\right) - \left(1 - \left(\frac{3}{4} + \frac{\delta}{2}\right)\right) = \frac{1}{2} + \delta$$

$$P(f(x),r) = b(x,r)$$

$$P(f(x),r) \neq b(x,r)$$

Algorithm 14 (Inv(y))

For every $i \in [n]$:

- **1.** Sample $r^1, \ldots, r^v \in \{0, 1\}^n$ uniformly at random
- **2.** Let $m_i = \text{maj}_{i \in [v]} \{ (P(y, r^j) \oplus P(y, r^j \oplus e^i) \}$

Output (m_1, \ldots, m_n)

The following claim holds for "large enough" v.

The following claim holds for "large enough" v.

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \frac{1}{2n}$.

The following claim holds for "large enough" v.

Claim 15

For every $i \in [n]$, it holds that $Pr[m_i = x_i] \ge 1 - \frac{1}{2n}$.

Hence, $\Pr[\operatorname{Inv}(f(x)) = x] \ge \frac{1}{2}$.

The following claim holds for "large enough" v.

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \frac{1}{2n}$.

Hence, $\Pr[\operatorname{Inv}(f(x)) = x] \ge \frac{1}{2}$. Proof: (of claim):

► For $j \in [v]$, let W^j be 1, iff $P(f(x), r^j) \oplus P(f(x), r^j \oplus e^i) = x_i$.

The following claim holds for "large enough" v.

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \frac{1}{2n}$.

Hence, $\Pr[\operatorname{Inv}(f(x)) = x] \ge \frac{1}{2}$. Proof: (of claim):

- ► For $j \in [v]$, let W^j be 1, iff $P(f(x), r^j) \oplus P(f(x), r^j \oplus e^i) = x_i$.
- ▶ We need to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^j > \frac{\nu}{2}\right]$.

The following claim holds for "large enough" v.

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \frac{1}{2n}$.

Hence, $\Pr[\operatorname{Inv}(f(x)) = x] \ge \frac{1}{2}$. Proof: (of claim):

- ► For $j \in [v]$, let W^j be 1, iff $P(f(x), r^j) \oplus P(f(x), r^j \oplus e^i) = x_i$.
- ▶ We need to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^{j} > \frac{\nu}{2}\right]$.
- ▶ W^j are iids and $E[W^j] \ge \frac{1}{2} + \delta$, for every $j \in [v]$

The following claim holds for "large enough" v.

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \frac{1}{2n}$.

Hence, $\Pr[\operatorname{Inv}(f(x)) = x] \ge \frac{1}{2}$. Proof: (of claim):

- ► For $j \in [v]$, let W^j be 1, iff $P(f(x), r^j) \oplus P(f(x), r^j \oplus e^i) = x_i$.
- ▶ We need to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^{j} > \frac{\nu}{2}\right]$.
- ▶ W^j are iids and $E[W^j] \ge \frac{1}{2} + \delta$, for every $j \in [v]$

The following claim holds for "large enough" v.

Claim 15

For every $i \in [n]$, it holds that $Pr[m_i = x_i] \ge 1 - \frac{1}{2n}$.

Hence, $\Pr[\operatorname{Inv}(f(x)) = x] \ge \frac{1}{2}$. Proof: (of claim):

- ► For $j \in [v]$, let W^j be 1, iff $P(f(x), r^j) \oplus P(f(x), r^j \oplus e^i) = x_i$.
- ▶ We need to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^{j} > \frac{\nu}{2}\right]$.
- ▶ W^j are iids and $E[W^j] \ge \frac{1}{2} + \delta$, for every $j \in [v]$

Lemma 16 (Hoeffding's inequality)

Let X^1, \ldots, X^v be iids over [0, 1] with expectation μ . Then,

$$\Pr[|\frac{\sum_{j=i}^{\nu} \chi^j}{\nu} - \mu| \ge \alpha] \le 2 \cdot \exp(-2\alpha^2 \nu)$$
 for every $\alpha > 0$.

The following claim holds for "large enough" v.

Claim 15

For every $i \in [n]$, it holds that $Pr[m_i = x_i] \ge 1 - \frac{1}{2n}$.

Hence, $\Pr[\operatorname{Inv}(f(x)) = x] \ge \frac{1}{2}$. Proof: (of claim):

- ► For $j \in [v]$, let W^j be 1, iff $P(f(x), r^j) \oplus P(f(x), r^j \oplus e^i) = x_i$.
- ▶ We need to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^{j} > \frac{\nu}{2}\right]$.
- ▶ W^j are iids and $E[W^j] \ge \frac{1}{2} + \delta$, for every $j \in [v]$

Lemma 16 (Hoeffding's inequality)

Let X^1, \ldots, X^v be iids over [0, 1] with expectation μ . Then,

$$\Pr[|\frac{\sum_{j=i}^{\nu} \chi^j}{\nu} - \mu| \ge \alpha] \le 2 \cdot \exp(-2\alpha^2 \nu)$$
 for every $\alpha > 0$.

The following claim holds for "large enough" v.

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \frac{1}{2n}$.

Hence, $\Pr[\operatorname{Inv}(f(x)) = x] \ge \frac{1}{2}$. Proof: (of claim):

- ► For $j \in [v]$, let W^j be 1, iff $P(f(x), r^j) \oplus P(f(x), r^j \oplus e^i) = x_i$.
- ▶ We need to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^{j} > \frac{\nu}{2}\right]$.
- ▶ W^j are iids and $E[W^j] \ge \frac{1}{2} + \delta$, for every $j \in [v]$

Lemma 16 (Hoeffding's inequality)

Let X^1, \ldots, X^V be iids over [0, 1] with expectation μ . Then,

$$\Pr[|\frac{\sum_{j=i}^{\nu} \chi^j}{\nu} - \mu| \ge \alpha] \le 2 \cdot \exp(-2\alpha^2 \nu)$$
 for every $\alpha > 0$.

► Hence, the proof follows for $v = \lceil \log(n) \cdot \frac{1}{2\delta^2} \rceil + 1$.

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq \tfrac{1}{2}+\tfrac{\delta}{2}$$

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq \tfrac{1}{2}+\tfrac{\delta}{2}$$

What goes wrong?

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq \tfrac{1}{2}+\tfrac{\delta}{2}$$

- What goes wrong?
- ► $\Pr[P(f(x), R) \oplus P(f(x), R \oplus e^i) = x_i] \ge \delta$

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq \tfrac{1}{2}+\tfrac{\delta}{2}$$

- What goes wrong?
- ▶ $Pr[P(f(x), R) \oplus P(f(x), R \oplus e^i) = x_i] \ge \delta$
- Hence, using a random guess does better than using P:-<</p>

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right] \geq \tfrac{1}{2} + \tfrac{\delta}{2}$$

- What goes wrong?
- ▶ $Pr[P(f(x), R) \oplus P(f(x), R \oplus e^i) = x_i] \ge \delta$
- Hence, using a random guess does better than using P:-<</p>
- ▶ Idea: guess the values of $\{b(x, r^1), ..., b(x, r^v)\}$ (instead of calling $\{P(f(x), r^1), ..., P(f(x), r^v)\}$)

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right] \geq \tfrac{1}{2} + \tfrac{\delta}{2}$$

- What goes wrong?
- ▶ $Pr[P(f(x), R) \oplus P(f(x), R \oplus e^i) = x_i] \ge \delta$
- Hence, using a random guess does better than using P:-<</p>
- ▶ Idea: guess the values of $\{b(x, r^1), ..., b(x, r^v)\}$ (instead of calling $\{P(f(x), r^1), ..., P(f(x), r^v)\}$)
- Problem: tiny success probability

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right] \geq \frac{1}{2} + \frac{\delta}{2}$$

- What goes wrong?
- ▶ $Pr[P(f(x), R) \oplus P(f(x), R \oplus e^i) = x_i] \ge \delta$
- Hence, using a random guess does better than using P:-<</p>
- ▶ Idea: guess the values of $\{b(x, r^1), ..., b(x, r^v)\}$ (instead of calling $\{P(f(x), r^1), ..., P(f(x), r^v)\}$)
- Problem: tiny success probability
- Solution: choose the samples in a correlated manner

▶ For $\ell \in \mathbb{N}$ ($\approx \log \frac{n}{\delta}$, to be determined later), let $v = 2^{\ell} - 1$.

- ▶ For $\ell \in \mathbb{N}$ ($\approx \log \frac{n}{\delta}$, to be determined later), let $v = 2^{\ell} 1$.
- ▶ In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty subset

- ▶ For $\ell \in \mathbb{N}$ ($\approx \log \frac{n}{\delta}$, to be determined later), let $v = 2^{\ell} 1$.
- ▶ In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty subset

- ▶ For $\ell \in \mathbb{N}$ ($\approx \log \frac{n}{\delta}$, to be determined later), let $v = 2^{\ell} 1$.
- ▶ In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty subset

- 1. Sample uniformly (and independently) $t^1, \ldots, t^{\ell} \in \{0, 1\}^n$
- **2.** Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
- **3.** For all $\mathcal{L} \subseteq [\ell]$: set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
- **4.** For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subseteq [\ell]} \{ \mathsf{P}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- **5.** Output $(m_1, ..., m_n)$

- ▶ For $\ell \in \mathbb{N}$ ($\approx \log \frac{n}{\delta}$, to be determined later), let $v = 2^{\ell} 1$.
- ▶ In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty subset

- 1. Sample uniformly (and independently) $t^1, \dots, t^{\ell} \in \{0, 1\}^n$
- **2.** Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
- **3.** For all $\mathcal{L} \subseteq [\ell]$: set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
- **4.** For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subset [\ell]} \{ \mathsf{P}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- **5.** Output $(m_1, ..., m_n)$
- ▶ Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $P(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i$.

- ▶ For $\ell \in \mathbb{N}$ ($\approx \log \frac{n}{\delta}$, to be determined later), let $v = 2^{\ell} 1$.
- ▶ In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty subset

- **1.** Sample uniformly (and independently) $t^1, \dots, t^\ell \in \{0, 1\}^n$
- **2.** Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
- **3.** For all $\mathcal{L} \subseteq [\ell]$: set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
- **4.** For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subset [\ell]} \{ \mathsf{P}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- **5.** Output $(m_1, ..., m_n)$
- ► Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $P(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i$.
- ▶ We need to lowerbound $\Pr\left[\sum_{\mathcal{L}\subseteq[\ell]} \mathbf{W}^{\mathcal{L}} > \frac{\mathbf{v}}{2}\right]$

- ▶ For $\ell \in \mathbb{N}$ ($\approx \log \frac{n}{\delta}$, to be determined later), let $v = 2^{\ell} 1$.
- ▶ In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty subset

- **1.** Sample uniformly (and independently) $t^1, \ldots, t^{\ell} \in \{0, 1\}^n$
- **2.** Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
- **3.** For all $\mathcal{L} \subseteq [\ell]$: set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
- **4.** For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subset [\ell]} \{ \mathsf{P}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- **5.** Output $(m_1, ..., m_n)$
- ► Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $P(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i$.
- lacksquare We need to lowerbound $\Pr\left[\sum_{\mathcal{L}\subseteq [\ell]} \mathbf{\textit{W}}^{\mathcal{L}} > rac{\textit{v}}{2}
 ight]$
- ▶ Problem: the $W^{\mathcal{L}}$'s are dependent!

Analyzing Inv's success probability

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **1.** $\forall \mathcal{L} \subseteq [\ell]$, $R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$.
- **2.** $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **1.** $\forall \mathcal{L} \subseteq [\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$.
- **2.** $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

Proof:

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **1.** $\forall \mathcal{L} \subseteq [\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$.
- **2.** $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

Proof: (1) is clear.

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **1.** $\forall \mathcal{L} \subseteq [\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$.
- **2.** $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **1.** $\forall \mathcal{L} \subseteq [\ell]$, $R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$.
- **2.** $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

$$\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w']$$

$$= \sum_{(t^2, \dots, t^{\ell}) \in \{0, 1\}^{(\ell-1)n}} \Pr[T^2, \dots, T^{\ell}] = (t^2, \dots, t^{\ell}) \cdot \Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^{\ell}) = (t^2, \dots, t^{\ell})]$$

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **1.** $\forall \mathcal{L} \subseteq [\ell]$, $R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$.
- **2.** $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

$$\begin{split} & \Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] \\ & = \sum_{(t^2, \dots, t^{\ell}) \in \{0, 1\}^{(\ell-1)n}} & \Pr[(T^2, \dots, T^{\ell}) = (t^2, \dots, t^{\ell})] \cdot \Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^{\ell}) = (t^2, \dots, t^{\ell})] \\ & = \sum_{(t^2, \dots, t^{\ell}) : \; (\bigoplus_{i \in \mathcal{L}} t^i) = w} & \Pr[(T^2, \dots, T^{\ell}) = (t^2, \dots, t^{\ell})] \cdot \Pr[R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^{\ell}) = (t^2, \dots, t^{\ell})] \end{split}$$

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **1.** $\forall \mathcal{L} \subseteq [\ell]$, $R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$.
- 2. $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

Proof: (1) is clear. For (2), assume wlg. that $1 \in (\mathcal{L}' \setminus \mathcal{L})$.

$$\begin{split} & \Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] \\ & = \sum_{(t^2, \dots, t^\ell) \in \{0, 1\}^{(\ell-1)n}} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ & = \sum_{(t^2, \dots, t^\ell) : \ (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \Pr[R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ & = \sum_{i \in \mathcal{L}} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot 2^{-n} \end{split}$$

 $(t^2,\ldots,t^\ell): \bigoplus_{i\in\mathcal{L}} t^i = w$

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **1.** $\forall \mathcal{L} \subseteq [\ell]$, $R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$.
- 2. $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

$$\begin{split} &\Pr[R^{\mathcal{L}} = w \wedge R^{\mathcal{L}'} = w'] \\ &= \sum_{(t^2, \dots, t^{\ell}) \in \{0, 1\}^{(\ell-1)n}} \Pr[(T^2, \dots, T^{\ell}) = (t^2, \dots, t^{\ell})] \cdot \Pr[R^{\mathcal{L}} = w \wedge R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^{\ell}) = (t^2, \dots, t^{\ell})] \\ &= \sum_{(t^2, \dots, t^{\ell}) : \ (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^{\ell}) = (t^2, \dots, t^{\ell})] \cdot \Pr[R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^{\ell}) = (t^2, \dots, t^{\ell})] \\ &= \sum_{(t^2, \dots, t^{\ell}) : \ (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^{\ell}) = (t^2, \dots, t^{\ell})] \cdot 2^{-n} \\ &= 2^{-n} \cdot 2^{-n} \end{split}$$

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **1.** $\forall \mathcal{L} \subseteq [\ell], \, R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$.
- 2. $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

$$\begin{split} & \Pr[R^{\mathcal{L}} = w \wedge R^{\mathcal{L}'} = w'] \\ & = \sum_{(t^2, \dots, t^\ell) \in \{0, 1\}^{(\ell-1)n}} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \Pr[R^{\mathcal{L}} = w \wedge R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ & = \sum_{(t^2, \dots, t^\ell) : \ (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \Pr[R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ & = \sum_{(t^2, \dots, t^\ell) : \ (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot 2^{-n} \\ & = 2^{-n} \cdot 2^{-n} = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w']. \Box \end{split}$$

Definition 19 (pairwise independent random variables)

A sequence of rv's X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$.

Definition 19 (pairwise independent random variables)

A sequence of rv's X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$.

▶ By Claim 18, $r^{\mathcal{L}}$ and $r^{\mathcal{L}'}$ (chosen by Inv) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$.

Definition 19 (pairwise independent random variables)

A sequence of rv's X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$.

- ▶ By Claim 18, $r^{\mathcal{L}}$ and $r^{\mathcal{L}'}$ (chosen by Inv) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$.
- ► Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ are. (Recall, $W^{\mathcal{L}}$ is 1 iff $P(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i)$

Definition 19 (pairwise independent random variables)

A sequence of rv's X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$.

- ▶ By Claim 18, $r^{\mathcal{L}}$ and $r^{\mathcal{L}'}$ (chosen by Inv) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$.
- ► Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ are. (Recall, $W^{\mathcal{L}}$ is 1 iff $P(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i$)

Definition 19 (pairwise independent random variables)

A sequence of rv's X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$.

- ▶ By Claim 18, $r^{\mathcal{L}}$ and $r^{\mathcal{L}'}$ (chosen by Inv) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$.
- ► Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ are. (Recall, $W^{\mathcal{L}}$ is 1 iff $P(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i)$

Lemma 20 (Chebyshev's inequality)

Let X^1,\ldots,X^V be pairwise-independent random variables with expectation μ and variance σ^2 . Then, for every $\alpha>0$: $\Pr\left[\left|\frac{\sum_{j=1}^{\nu}X^j}{\nu}-\mu\right|\geq \alpha\right]\leq \frac{\sigma^2}{\alpha^2 \nu}$.

▶ Assuming that Inv always guesses $\{b(x, t^i)\}$ correctly, then $\forall \mathcal{L} \subseteq [\ell]$:

- ▶ Assuming that Inv always guesses $\{b(x, t^i)\}$ correctly, then $\forall \mathcal{L} \subseteq [\ell]$:
 - ightharpoonup $\mathsf{E}[W^{\mathcal{L}}] \geq rac{1}{2} + rac{\delta}{2}$

- ▶ Assuming that Inv always guesses $\{b(x, t^i)\}$ correctly, then $\forall \mathcal{L} \subseteq [\ell]$:
 - ightharpoonup $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{\delta}{2}$
 - $V(W^{\mathcal{L}}) := E[(W^{\mathcal{L}})^2] E[W^{\mathcal{L}}]^2 \le 1$

- ▶ Assuming that Inv always guesses $\{b(x, t^i)\}$ correctly, then $\forall \mathcal{L} \subseteq [\ell]$:
 - ightharpoonup $\operatorname{\mathsf{E}}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{\delta}{2}$
 - $V(W^{\mathcal{L}}) := E[(W^{\mathcal{L}})^2] E[W^{\mathcal{L}}]^2 \le 1$
- ► Taking $v = 2n/\delta^2$ (hence $\ell = \lceil \log \frac{2n}{\delta^2} \rceil$),

- ▶ Assuming that Inv always guesses $\{b(x, t^i)\}$ correctly, then $\forall \mathcal{L} \subseteq [\ell]$:
 - ightharpoonup $\operatorname{\mathsf{E}}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{\delta}{2}$
 - $V(W^{\mathcal{L}}) := E[(W^{\mathcal{L}})^2] E[W^{\mathcal{L}}]^2 \le 1$
- ► Taking $v = 2n/\delta^2$ (hence $\ell = \lceil \log \frac{2n}{\delta^2} \rceil$),

- ▶ Assuming that Inv always guesses $\{b(x, t^i)\}$ correctly, then $\forall \mathcal{L} \subseteq [\ell]$:
 - ▶ $E[W^L] \ge \frac{1}{2} + \frac{\delta}{2}$
 - $\bigvee (W^{\mathcal{L}}) := \mathsf{E}[(W^{\mathcal{L}})^2] \mathsf{E}[W^{\mathcal{L}}]^2 \le 1$
- ► Taking $v = 2n/\delta^2$ (hence $\ell = \lceil \log \frac{2n}{\delta^2} \rceil$), by Chebyshev's inequality for $i \in [n]$ it holds that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}.$$

- ▶ Assuming that Inv always guesses $\{b(x, t^i)\}$ correctly, then $\forall \mathcal{L} \subseteq [\ell]$:
 - ▶ $E[W^L] \ge \frac{1}{2} + \frac{\delta}{2}$
 - $V(W^{\mathcal{L}}) := E[(W^{\mathcal{L}})^2] E[W^{\mathcal{L}}]^2 \le 1$
- ▶ Taking $v = 2n/\delta^2$ (hence $\ell = \lceil \log \frac{2n}{\delta^2} \rceil$), by Chebyshev's inequality for $i \in [n]$ it holds that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}.$$

▶ By a union bound, Inv outputs x with probability $\frac{1}{2}$.

- ▶ Assuming that Inv always guesses $\{b(x, t^i)\}$ correctly, then $\forall \mathcal{L} \subseteq [\ell]$:
 - ▶ $E[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{\delta}{2}$
 - $\bigvee (W^{\mathcal{L}}) := \mathsf{E}[(W^{\mathcal{L}})^2] \mathsf{E}[W^{\mathcal{L}}]^2 \le 1$
- ▶ Taking $v = 2n/\delta^2$ (hence $\ell = \lceil \log \frac{2n}{\delta^2} \rceil$), by Chebyshev's inequality for $i \in [n]$ it holds that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}.$$

- ▶ By a union bound, Inv outputs x with probability $\frac{1}{2}$.
- ► Taking the guessing probability into account, yields that Inv outputs x with probability at least $2^{-\ell}/2 \in \Theta(\delta^2/n)$.

- ▶ Assuming that Inv always guesses $\{b(x, t^i)\}$ correctly, then $\forall \mathcal{L} \subseteq [\ell]$:
 - ightharpoonup $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{\delta}{2}$
 - $\bigvee (W^{\mathcal{L}}) := \mathsf{E}[(W^{\mathcal{L}})^2] \mathsf{E}[W^{\mathcal{L}}]^2 \le 1$
- ▶ Taking $v = 2n/\delta^2$ (hence $\ell = \lceil \log \frac{2n}{\delta^2} \rceil$), by Chebyshev's inequality for $i \in [n]$ it holds that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}.$$

- ▶ By a union bound, Inv outputs x with probability $\frac{1}{2}$.
- ► Taking the guessing probability into account, yields that Inv outputs x with probability at least $2^{-\ell}/2 \in \Theta(\delta^2/n)$.
- ► Recalling that we guaranteed to work well on $\frac{\delta}{2}$ of the x's. We conclude that $\Pr[\operatorname{Inv}(f(x)) = x] \in \Theta(\delta^3/n)$.

Hardcore functions:

Similar ideas allows to output $\log n$ "pseudorandom bits"

- Hardcore functions: Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the leftover hash lemma:

- Hardcore functions: Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the leftover hash lemma:

- Hardcore functions:
 Similar ideas allows to output log n "pseudorandom bits"
- ▶ Alternative proof for the leftover hash lemma: Let X be a rv with over $\{0,1\}^n$ with $H_\infty(X) \ge k$, and assume $SD((R, \langle R, X \rangle_2), (R, U)) > \alpha = 2^{-c \cdot k}$ for some universal c > 0.

- Hardcore functions: Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the leftover hash lemma: Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge k$, and assume $SD((R, \langle R, X \rangle_2), (R, U)) > \alpha = 2^{-c \cdot k}$ for some universal c > 0.
 - \Rightarrow \exists (a possibly inefficient) D that distinguishes $(R, \langle R, X \rangle_2)$ from (R, U) with advantage α

- Hardcore functions:
 Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the leftover hash lemma:

```
Let X be a rv with over \{0,1\}^n with H_{\infty}(X) \ge k, and assume SD((R,\langle R,X\rangle_2),(R,U)) > \alpha = 2^{-c \cdot k} for some universal c > 0.
```

- \implies \exists (a possibly inefficient) D that distinguishes $(R, \langle R, X \rangle_2)$ from (R, U) with advantage α
- \Rightarrow \exists P that predicts $\langle R, X \rangle_2$ given R with prob $\frac{1}{2} + \alpha$ (?)

- Hardcore functions:
 Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the leftover hash lemma:

```
Let X be a rv with over \{0,1\}^n with H_{\infty}(X) \ge k, and assume SD((R, \langle R, X \rangle_2), (R, U)) > \alpha = 2^{-c \cdot k} for some universal c > 0.
```

- \implies \exists (a possibly inefficient) D that distinguishes $(R, \langle R, X \rangle_2)$ from (R, U) with advantage α
- \implies \exists P that predicts $\langle R, X \rangle_2$ given R with prob $\frac{1}{2} + \alpha$ (?)
- \implies (by GL) \exists Inv that guesses X from nothing, with prob $\alpha^{O(1)} > 2^{-k}$

List decoding:

- List decoding:
 - ▶ Encoder $f: \{0,1\}^n \mapsto \{0,1\}^m$ and decoder g, such that for any $x \in \{0,1\}^n$ and c of hamming distance at most $(\frac{1}{2} \delta)$ from f(x): g examines $poly(1/\delta)$ symbols of c and outputs a $poly(1/\delta)$ -size list that whp contains x

- List decoding:
 - ▶ Encoder $f: \{0,1\}^n \mapsto \{0,1\}^m$ and decoder g, such that for any $x \in \{0,1\}^n$ and c of hamming distance at most $(\frac{1}{2} \delta)$ from f(x): g examines poly $(1/\delta)$ symbols of c and outputs a poly $(1/\delta)$ -size list that whp contains x
 - ▶ The code we used here is known as the Hadamard code

- List decoding:
 - ▶ Encoder $f: \{0,1\}^n \mapsto \{0,1\}^m$ and decoder g, such that for any $x \in \{0,1\}^n$ and c of hamming distance at most $(\frac{1}{2} \delta)$ from f(x): g examines $\operatorname{poly}(1/\delta)$ symbols of c and outputs a $\operatorname{poly}(1/\delta)$ -size list that whp contains x
 - ▶ The code we used here is known as the Hadamard code
- ► LPN learning parity with noise: Given polynomially many samples of the form $(R_i, \langle x, R_i \rangle_2 + \theta)$, for $R_i \leftarrow \{0, 1\}^n$ and boolean $\theta_i \sim (\frac{1}{2} - \delta, \frac{1}{2} - \delta)$, find x.

- List decoding:
 - ▶ Encoder $f: \{0,1\}^n \mapsto \{0,1\}^m$ and decoder g, such that for any $x \in \{0,1\}^n$ and c of hamming distance at most $(\frac{1}{2} \delta)$ from f(x): g examines $\operatorname{poly}(1/\delta)$ symbols of c and outputs a $\operatorname{poly}(1/\delta)$ -size list that whp contains x
 - ▶ The code we used here is known as the Hadamard code
- ▶ LPN learning parity with noise: Given polynomially many samples of the form $(R_i, \langle x, R_i \rangle_2 + \theta)$, for $R_i \leftarrow \{0, 1\}^n$ and boolean $\theta_i \sim (\frac{1}{2} - \delta, \frac{1}{2} - \delta)$, find x.
- ► The difference comparing to Goldreich-Levin no control over the R's.