Como escrever a resolução de um limite?

EXEMPLO 9 Encontre $\lim_{x\to 3^+} \frac{2x}{x-3}$ e $\lim_{x\to 3^-} \frac{2x}{x-3}$.

Análise de sinal de y=x-3

$$\lim_{x \to 3^+} \frac{2x}{x-3} \to \frac{6}{0^+} \to \infty$$

EXEMPLO 10 Encontre as assíntotas verticais de $f(x) = \operatorname{tg} x$.

$$tg x = \frac{sen x}{m}$$
 Assíntotas verticais só podem ocorrer em torno de decontinuidades.

No caso da tangente, só pode ocorrer quando o cosseno for zero.

Quando o cosseno é zero?

quando
$$x \rightarrow (\pi/2)^-$$

$$\cos x \rightarrow 0^+$$

quando $x \rightarrow (\pi/2)^+$

$$\cos x \rightarrow 0^-$$

Propriedades dos Limites Supondo que c seja uma constante e os limites

$$\lim_{x \to a} f(x) \qquad e \qquad \lim_{x \to a} g(x)$$

existam, então

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
 se $\lim_{x \to a} g(x) \neq 0$

O mais importante sobre essas propriedades é que elas dependem que os limites individuais de f(x) e g(x) tenham sido chacados antes.

Enquanto você não fez isso, não se sabe se as igualdades são válidas.

Se, depois de ter usado a propriedade, um destes limites não existir você não poderia ter usada a propriedade.

EXEMPLO 1 Use as Propriedades dos Limites e os gráficos de f e g na Figura 1 para calcular os seguintes limites, se eles existirem.

(a)
$$\lim_{x \to -2} [f(x) + 5g(x)]$$

$$= \lim_{x \to 2} f(x) + 5 \cdot \lim_{x \to 2} g(x) = 1 + 5 \cdot (-1) = -4$$

(b) $\lim_{x\to 1} [f(x)g(x)]$ g(x) tem limites laterais diferentes em 1

Ħ

Mas os limites laterais existem

$$\lim_{x \to 1^{-}} f(x) \cdot g(x) = 2 \cdot (-2) = -4 \underline{\qquad} \lim_{x \to 1^{+}} f(x) \cdot g(x) = 2 \cdot (-1) = -2$$

(c) $\lim_{x\to 2} \frac{f(x)}{g(x)}$ f(x) tende a um valor constante, mas g(x) tende a zero.

Logo, não se pode aplicar a propriedade 5 neste limite.

Mas, é possível obter os limites laterais.

$$\lim_{x \to 2^-} \frac{f(x)}{g(x)} \quad \to \quad \frac{c}{0^-} \quad \to \quad -\infty \qquad \qquad \lim_{x \to 2^+} \frac{f(x)}{g(x)} \quad \to \quad \frac{c}{0^+} \quad \to \quad \infty$$

Propriedade de Substituição Direta Se f for uma função polinomial ou racional e a estiver no domínio de f, então

$$\lim_{x \to a} f(x) = f(a)$$

6. $\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$

onde n é um inteiro positivo

7. $\lim_{x \to a} c = c$

8. $\lim_{x \to a} x = a$

9. $\lim x^n = a^n$

onde n é um inteiro positivo

- **10.** $\lim \sqrt[n]{x} = \sqrt[n]{a}$ onde n é um inteiro positivo (Se n for par, supomos que a > 0.)
- **11.** $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ onde n é um inteiro positivo

Se *n* for par, supomos que $\lim_{x\to a} f(x) > 0$.

Teorema Se $f(x) \le g(x)$ quando x está próximo a a (exceto possivelmente em a) e os limites de f e g, ambos existem quando x tende a a, então

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

Teorema do Confronto Se $f(x) \le g(x) \le h(x)$ quando x está próximo a a (exceto possivelmente em a) e

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

então

$$\lim_{x \to a} g(x) = L$$

ightarrow 0 $\underset{x \to 0}{=} \lim \sin \frac{1}{x} \rightarrow [-1, 1]$

Uma certeza que temos sobre o seno é que:

 $-1 \le \operatorname{sen} \frac{1}{r} \le 1$

Independente da função que estiver dentro do seno!

Multiplicando a desigualdade por x2, fica

$$-x^2 \le x^2 \operatorname{sen} \frac{1}{x} \le x^2$$

Tomando o limite em cada menbro da desigualdade (Teorema 2):

$$-\lim_{x\to 0} -x^2 \leqslant \lim_{x\to 0} x^2 \cdot \operatorname{sen} \frac{1}{x} \leqslant \lim_{x\to 0} x^2 - \frac{1}{x}$$

Segue que,
$$0 = \lim_{x \to 0} -x^2 \leqslant \lim_{x \to 0} x^2 \cdot \operatorname{sen} \frac{1}{x} \leqslant \lim_{x \to 0} x^2 = 0$$

Assim, pelo Teorema do confronto, temos que
$$\lim_{x \to 0} x^2 \cdot \sin \frac{1}{x} = 0$$

