Contents

1	Classes			
	1.1	poly.u	ınivar – <mark>一変数多項式</mark>	2
			PolynomialInterface – 全ての一変数多項式に対する基底ク	
			ラス	3
			1.1.1.1 differentiate — 正式な微分	4
			1.1.1.2 downshift degree — 多項式の次数を下げる	4
			1.1.1.3 upshift degree — 多項式の次数を上げる	4
			1.1.1.4 ring mul — 環上の乗法	4
			1.1.1.5 scalar mul – スカラーの乗法	4
				4
			1.1.1.7 square – 自身との乗法	5
		1.1.2	BasicPolynomial — 多項式の基本的実装	5
		1.1.3	SortedPolynomial - ソートされた項を維持する多項式	5
			1.1.3.1 degree – 次数	6
			1.1.3.2 leading coefficient — 主係数	6
			1.1.3.3 leading term — 主項	6
			1.1.3.4 †ring_mul_karatsuba – the leading term	6

Chapter 1

Classes

- 1.1 poly.univar 一变数多項式
 - Classes
 - $-\ \dagger \textbf{Polynomial Interface}$
 - †BasicPolynomial
 - SortedPolynomial

この poly.univar は以下の型を使っている:

polynomial:

polynomial はこの文脈では PolynomialInterface の子孫のインスタンス.

1.1.1 PolynomialInterface – 全ての一変数多項式に対する基底 クラス

Initialize (Constructor)

抽象クラスなので例示化はっしません. このクラスは FormalSumContainerInterface から派生される.

Operations

operator	explanation
f * g	乗法 ¹
f ** i	べき乗

Methods

1.1.1.1 differentiate – 正式な微分

 $ext{differentiate(self)} o polynomial$

多項式の正式な微分を返す.

1.1.1.2 downshift degree – 多項式の次数を下げる

 $ext{downshift} \quad ext{degree(self, slide: } integer)
ightarrow polynomial$

次数 slide を持つ全ての項を下にシフトして得られた多項式を返す.

最も次数が小さい項が slide より小さいとき, 結果は数ガキ的でない多項式だということに注意してください. このような場合でも, このメソッドは例外を起こさない.

†f.downshift_degree(slide) はf.upshift_degree(-slide) と同等のものです.

1.1.1.3 upshift degree – 多項式の次数を上げる

 $ext{upshift} \quad ext{degree(self, slide: } integer)
ightarrow polynomial$

次数 slide を持つ全ての項を上にシフトして得られた多項式を返す.
†f.upshift_degree(slide) は f.term_mul((slide, 1)) と同等のものである.

1.1.1.4 ring mul – 環上の乗法

 $ext{ring mul(self, other: } polynomial)
ightarrow polynomial$

多項式 other との乗法の結果を返す.

1.1.1.5 scalar mul – スカラーの乗法

 $scalar_mul(self, scale: scalar) \rightarrow polynomial$

スカラー scale による乗法の結果を返す.

1.1.1.6 term mul – 項の乗法

 $ext{term} \quad ext{mul(self, term: } term)
ightarrow polynomial$

与えられた term の乗法の結果を返す. term はタプル (degree, coeff) として与えられるか,polynomial として与えられる.

1.1.1.7 square – 自身との乗法

square(self) → polynomial この多項式の平方を返す.

1.1.2 BasicPolynomial – 多項式の基本的実装

基本的な多項式の型 変数名や環のようなコンセプトはない.

Initialize (Constructor)

 $\begin{aligned} \textbf{BasicPolynomial}(\texttt{coefficients:} \ terminit, \ \texttt{**keywords:} \ dict) \\ &\rightarrow BasicPolynomial \end{aligned}$

このクラスは PolynomialInterface を継承し実装する. coefficients の型は terminit です.

1.1.3 SortedPolynomial - ソートされた項を維持する多項式

Initialize (Constructor)

 $\rightarrow SortedPolynomial$

このクラスは PolynomialInterface から派生される.

coefficients の型は terminit です. 任意的に もし係数がすでにソートされた項のリストなら, sorted は True になり得る.

Methods

1.1.3.1 degree - 次数

 $ext{degree(self)}
ightarrow integer$

この多項式の次数を返す. もし零多項式なら, 次数は -1 となる.

1.1.3.2 leading_coefficient - 主係数

 $ext{leading coefficient(self)} o object$

最も次数が高い項の係数を返す

1.1.3.3 leading term - 主項

 $\text{leading } \text{term(self)} \rightarrow \textit{tuple}$

タプル (degree, coefficient) として主項を返す.

1.1.3.4 †ring mul karatsuba – the leading term

 $\mathbf{ring} \quad \mathbf{mul} \quad \mathbf{karatsuba}(\mathtt{self}, \, \mathtt{other} \colon \mathit{polynomial}) \, \rightarrow \, \mathit{polynomial}$

同じ環上での二つの多項式の乗法. 計算は Karatsuba 法によって実行される. これはだいたい次数が 100 くらいより上のとき早く動くだろう. もしこれをあなた自身で使う必要があるなら, 初期設定によりそれはなしです.