CSE 2331 HOMEWORK 1

BRENDAN WHITAKER

- 1. Write the asymptotic time complexity of the given functions.
 - (a) $\Theta(6^n)$.
 - (b) $\Theta(n^{0.3})$.
 - (c) $\Theta(log_4(n))$.
 - (d) $\Theta(n^{1.1})$.
 - (e) $\Theta(7^{2n})$.
 - (f) $\Theta(n^{0.5})$.
 - (g) $\Theta(n)$.
 - (g) $\Theta(n)$. (h) $\Theta(n)$.
 - (i) $\Theta(n^{0.5})$.
 - (j) $\Theta(n^{0.5}log_2(n))$.
 - (k) $\Theta(n^{0.6}).$
 - (l) $\Theta(n^6)$.
 - (m) $\Theta(1)$.
 - (n) $\Theta(n^{1.5})$.
 - (o) $\Theta(n)$.
 - (p) $\Theta((log_5(n))^3)$.
 - (q) $\Theta(log_3(n))$.
 - (r) $\Theta(5^n)$.
 - (s) $\Theta(((log_2(n))^2).$
 - (t) $\Theta(nlog_7(n))$.
 - (u) $\Theta(n^2)$.
 - (v) $\Theta(8^n)$.
 - (w) $\Theta(log_5(n))$.
 - (x) $\Theta(5^{2n})$.
 - (y) $\Theta(log_5(n))$.
- 2. Let $f(n) = n^2 (\log_2(n))^2$. Then $f(n) \in O(n^3/\log_2(n))$, since $n^2 (\log_2(n))^2 = \frac{n^3 (\log_2(n))^2}{n \log_2(n)}$. So we have

$$f(n) = \frac{n^3}{\log_2(n)} \cdot \frac{(\log_2(n))^2}{n},\tag{1}$$

and since $(log_2(n))^2 \in O(n)$, we know $\frac{(log_2(n))^2}{n} \in O(1)$. Thus $f(n) = \frac{n^3}{log_2(n)}O(1) \in O(\frac{n^3}{log_2(n)})$. Also, we have $f(n) \in \Omega(n^2log_2(n))$, since $log_2(n) \in \Omega(1)$. Now $f(n) \notin \Theta(\frac{n^3}{log_2(n)})$, since $\frac{(log_2(n))^2}{n} \notin \Theta(1)$, and $f(n) \notin \Theta(n^2log_2(n))$ since $log_2(n) \notin \Theta(1)$. Hence f(n) is a function with the desired properties.

- 3. Let $f(n) = n^{0.55}$.
- 4. Prove that $3\sqrt{2n^5-2n^3+23} \in \Theta(n^{2.5})$ using the definition of $\Theta(n^{2.5})$ as functions f(n) such that $c_1n^{2.5} \leq f(n) \leq c_2n^{2.5}$ for constants $c_1, c_2 > 0$ for all large n.

Proof. Note

$$3\sqrt{2n^5 - 2n^3 + 23} \le 3\sqrt{2n^5 - 2n^5 + 23n^5} = 3\sqrt{23n^5} = 3\sqrt{23}n^{2.5}.$$
 (2)

Date: AU17.

And also

$$3\sqrt{2n^5 - 2n^3 + 23} > 3\sqrt{2n^5} = 3\sqrt{2}n^{2.5}. (3)$$

So we have

$$3\sqrt{2}n^{2.5} \le 3\sqrt{2n^5 - 2n^3 + 23} \le 3\sqrt{23}n^{2.5},\tag{4}$$

where $3\sqrt{2} < 3\sqrt{23}$, so we must have that $3\sqrt{2n^5 - 2n^3 + 23} \in \Theta(n^{2.5})$.

5. Observe:

$$\lim_{n \to \infty} \frac{7\sqrt{7n^2 + 8n}(\log_4(3n+2))^3}{6n \log_5(6n^3 + n^2) \cdot \log_9(6n+13)} = \lim_{n \to \infty} \frac{7\sqrt{7n^2 + 8n}(k_1 \log_2(3n+2))^3}{6nk_2 \log_2(6n^3 + n^2) \cdot k_3 \log_2(6n+13)}$$

$$= \lim_{n \to \infty} \frac{7\sqrt{7n^2}(k_1 \log_2(3n))^3}{6nk_2 \log_2(6n^3) \cdot k_3 \log_2(6n)}$$

$$= \lim_{n \to \infty} \frac{7\sqrt{7n^2}(k_1(\log_2(n) + k_4))^3}{6nk_2(\log_2(n^3) + k_5) \cdot k_3(\log_2(n) + k_6)}$$

$$= \lim_{n \to \infty} \frac{7\sqrt{7n}(k_1(\log_2(n)))^3}{18nk_2k_3(\log_2(n))^2}$$

$$= \lim_{n \to \infty} \frac{7\sqrt{7n}k_7(\log_2(n))^3}{18nk_2k_3(\log_2(n))^2}$$

$$= \lim_{n \to \infty} \frac{7\sqrt{7n}k_7(\log_2(n))^3}{18nk_2k_3(\log_2(n))^2}$$

$$= \lim_{n \to \infty} \frac{7\sqrt{7n}k_7(\log_2(n))^3}{18k_2k_3}$$

$$= \lim_{n \to \infty} k_8 \log_2(n) = \infty.$$

Thus $f(n) \in \Omega(g(n))$.

6. Prove that if $f(n) \in O(g(n))$, and $f(n) \in O(h(n))$, then $f(n) \in O(g(n) + h(n))$, where $f, g, h : \mathbb{N} \to \mathbb{R}^{\geq 0}$.

Proof. Since $f(n) \in O(g(n))$ we know that $\exists k \in \mathbb{R}^+$, and $N_k \in \mathbb{N}$ s.t. $f(n) \leq kg(n) \ \forall n \in \mathbb{N}$ s.t. $n \geq N_k$. Similarly, since $f(n) \in O(h(n))$ we know that $\exists l \in \mathbb{R}^+$ and $N_l \in \mathbb{N}$ s.t. $f(n) \leq lh(n)$ $\forall n \in \mathbb{N}$ s.t. $n \geq N_l$. So let m = kl, and let $N_m = \max(N_k, N_l)$. Then $m(g(n) + h(n)) \geq kg(n)$ and $m(g(n) + h(n)) \geq lh(n)$, and $N_m \geq N_k$, N_l , thus $f(n) \leq g(n) + h(n) \ \forall n \in \mathbb{N}$ s.t. $n \geq N_m$.