50.007 Machine Learning

Course Project Brief

Roy Ka-Wei Lee Assistant Professor, DAI/ISTD, SUTD

Self-Introduction

- Call me Roy (Please avoid calling me Dr. Roy)
- Research: Social Al Studio
- Contact:
 - roy lee@sutd.edu.sq
 - @sroylee (telegram)

Happenings in Second Half

Week	Topic	Instructor
8	Guest Lecture (I)	DSO
	Project Briefing	
9	Dimension Reduction	
	Decision Tree & Random Forest	
10	Ensemble Methods & Tricks	Roy
10	Hidden Markov Models (I)	,
11	Hidden Markov Models (II)	
''	Project Consultation	
12	Guest Lecture (III)	Dyson
12	Guest Lecture (IV)	SHIELD
13	Project Presentation	-

Tips to do well in course

- Be curious Ask questions in class!
- Be adventurous Venture beyond class material for your project! Google/YouTube for interesting materials!
- 3. **Be practical** Think about the concepts and write codes to test it out!
- 4. **Be collaborative** Discuss your ideas and doubts with your peers and me!
 - a. I have a lot of respect for students who share and help peers.
 - b. PS: I value non-anonymous engagement because I usually remember the student who asked me questions or illuminated my mind (easier to write recommendation letter).

Project Overview

- Objectives:
 - Consolidate what we have learned in class.
 - Hands-on opportunity Equip with practical ML skills for your future job and internship!
 - Practical assessment!
- Check out: https://www.kaggle.com/competitions/50007-2022/overview

Feature Engineering

- Feature engineering is the process of selecting, manipulating, and transforming raw data into features that can be used in supervised learning.
 - Represent your model's x with features

		label y	attributes/ features							
		Survival	Age	Sex	Fare	Cabin				
		Yes	67	F	Normal	003				
record/ instance <i>x</i>	$\left\{ \left[\right. \right]$	No	32	М	Premium	021				

How do we represent text as features?

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do

How do we represent text as features?

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do

One-Hot Encoding

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Step 1: Identify all unique words in corpus

```
baby the do
im dark
dancing oh
in shark
```


One-Hot Encoding

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Step 1: Identify all unique words in corpus
- Step 2: Represent each lyrics with a binary vector indicating if the word is present

baby	mi	dancing	Ë	the	dark	<i>y</i> o	shark	op
1	0	0	0	0	0	0	1	1
1	0	0	0	0	0	1	0	0
1	1	1	1	1	1	0	0	0

One-Hot Encoding

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Step 1: Identify all unique words in corpus
- Step 2: Represent each lyrics with a binary vector indicating if the word is present

1	1	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	1	1

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Term Frequency (TF) tells you how "important" is the term in the document

$$ext{tf}(t,d) = rac{f_{t,d}}{\sum_{t' \in d} f_{t',d}}$$

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Term Frequency (TF) tells you how "important" is the term in the document

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Term Frequency (TF) tells you how "important" is the term in the document

$$tf(baby, lyric1) = rac{1}{6} = 0.17$$

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Term Frequency (TF) tells you how "important" is the term in the document

$$tf(baby, lyric2) = \frac{3}{4} = 0.75$$

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Term Frequency (TF) tells you how "important" is the term in the document

		Number of times term t
$\operatorname{tf}(t,d) = $	$f_{t,d}$	occur in document d
$\sum_{i=1}^{n} (i, a) = \sum_{i=1}^{n} (i, a)$	$\sum_{t' \in d} f_{t'}$	d Total number of terms
		t' in document d

0.17	0.17	0.17	0.17	0.17	0.17	0	0	0
0.75	0	0	0	0	0	0.25	0	0
0.13	0	0	0	0	0	0	0.13	0.75
baby	im	dancing	ij	the	dark	qo	shark	op

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Term Frequency (TF) tells you how "important" is the term in the document

		Number of times term <i>t</i>
tf(t,d) =	$f_{t,d}$	occur in document <i>d</i>
$\Gamma(\iota, a) = \overline{\Sigma}$	$\sum_{t' \in d} f_{t'}$	d Total number of terms
		t' in document d

0.17	0.17	0.17	0.17	0.17	0.17	0	0	0
0.75	0	0	0	0	0	0.25	0	0
0.13	0	0	0	0	0	0	0.13	0.75

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Inverse Document Frequency (IDF) measures how much information the word provides

$$\operatorname{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Inverse Document Frequency (IDF) measures how much information the word provides

$$\operatorname{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$
 Number of document d with term t

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Inverse Document Frequency (IDF) measures how much information the word provides

$$\operatorname{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$
 Number of document d with term t

$$idf(baby, D) = log \frac{3}{3} = 0$$

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Inverse Document Frequency (IDF) measures how much information the word provides

$$\operatorname{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$
 Total number documents in dataset $idf(baby,D) = \lim_{N ext{ with term } t} idf(baby,D)$

$$idf(baby,D)=lograc{3}{1}=0.48$$

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- Inverse Document Frequency (IDF) measures how much information the word provides

		Total number
idf(t, D) = log	N	documents in dataset
$\operatorname{idf}(t,D) = \log \overline{ }$	$ \{d\in D:t\in$	a a Number of document d
_		with term <i>t</i>

baby	im	dancing	ij	the	dark	qo	shark	op
0	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
0	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
0	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48

TF-TDF

- How do you represent the following texts as features?
 - Lyrics 1: baby, Im dancing in the dark
 - Lyrics 2: baby, baby, baby, oh
 - Lyrics 3: baby shark, do do, do do do
- TF-IDF calculated as:

$$\operatorname{tfidf}(t,d,D) = \operatorname{tf}(t,d) \cdot \operatorname{idf}(t,D)$$

0	0.08	0.08	0.08	0.08	0.08	0	0	0
0	0	0	0	0	0	0.12	0	0
0	0	0	0	0	0	0	0.06	0.36
by	im	ng	ij	he	ž	40	ž	9

Tips to do well in course project

- Read the instructions clearly! Clarify any doubts!
- 2. Read the grading metrics to know how to score well!
- DO NOT spend too much time on the project (especially Task 3!) There is no perfection 100% Macro-F1 score (that's overfitting).
 - a. DO NOT manually label the test set WE WILL KNOW!
- 4. Source out solutions beyond what was taught in class! Understand and be able to explain the solutions clearly!
- 5. DO NOT harass the TAs on the Blue and Red baselines! You are encouraged to ask them questions, but not the baselines.
- 6. Share insights with the class in "Discussion" (I will browse this often)!

