

A Level · Edexcel · Maths

Q 43 questions

2.4 Inequalities

2.4.1 Linear Inequalities / 2.4.2 Quadratic Inequalities / 2.4.3 Inequalities on Graphs

Total Marks	/197
Very Hard (11 questions)	/57
Hard (10 questions)	/50
Medium (10 questions)	/42
Easy (12 questions)	/48

Scan here to return to the course or visit savemyexams.com

Easy Questions

- 1 Solve the inequalities:
 - (i) $2x \ge 8$
 - (ii) 3 + 2x < 11
 - (iii) 5 + x > 4x 1

(3 marks)

- **2** Solve the inequalities:

 - (i) $2x-9 \ge 5(x-3)$ (ii) 3(5-x) < 2(9-2x)

3 (a) Write down the solutions to $(x - x)$	- 3)(<i>x</i> –	-8) = 0.
--	------------------	----------

(2 marks)

(b) Sketch the graph of y = (x - 3)(x - 8), clearly showing the coordinates of the points where the graph intercepts the *X*-axis.

(2 marks)

(c) Hence, or otherwise, solve the inequality (x-3)(x-8) < 0.

(2 marks)

4 (a) Find the discriminant for the quadratic function $x^2 + 8x + 15$.

(2 marks)

(b) Write down the number of real solutions to the equation $x^2 + 8x + 15 = 0$.

(2 marks)

5 On the axes below, show the region bounded by the inequalities

$$x \ge 0$$

$$y \le 4$$

$$x \le 5$$

$$y \ge 1$$

- **6 (a)** (i) Solve the equation $9 x^2 = 0$.
 - (ii) Use symmetry to write down the coordinates of the turning point on the graph of $y = 9 - x^2$.

(3 marks)

(b) Sketch the graph of $y = 9 - x^2$ and hence solve the inequality $9 - x^2 \ge 0$.

7 (a)	Write down,	in terms	of k , the	discriminant	of $x^2 + 8x + 4k$.
-------	-------------	----------	--------------	--------------	----------------------

(1 mark)

(b) Hence find the values of for k which the equation $x^2 + 8x + 4k = 0$ has two real and distinct solutions.

(2 marks)

8 Write down the three inequalities that define the region R shown in the diagram below.

(3 marks)

9 The total cost to a company manufacturing c cables is (500 + 3c) pence.

The total income from selling all $\it c$ cables is $(5\it c-3500)$ pence.

What is the minimum number of cables the company needs to sell in order to recover their costs?

(4	m	a	r	k	S
----	---	---	---	---	---

10 The equation $x^2 + kx + 4 = 0$, where k is a constant, has no real roots.

Find the possible value(s) of k.

(4 marks)

11 Solve the inequality $6x - 7 \le 35$, giving your answer in set notation.

(4 marks)

12 Solve the inequality $6 \le 8x - 2 \le 22$.

Medium Questions

1 Solve the inequality $3x + 4 \le 5(x - 1)$.

(3 marks)

2 Solve the inequality $x^2 - 5x > 6$.

(4 marks)

3 The equation $kx^2 + 2kx + 4 = 0$, where k is a constant, has two distinct real roots.

Find the possible value(s) of k.

(4 marks)

4 On the axes below show the region satisfied by the inequalities

$$x + 2y > 3$$
$$y \le x + 4$$

$$y + 3x < 8$$

Label this region R.

(5 marks)

5	Find the values	of X	that	satisfy	the	inequalities
---	-----------------	------	------	---------	-----	--------------

$$x^2 + 3x > 4$$

 $4x + 1 > 4$

(5 marks)

6 Solve the inequality $-2 \le 3x - 4 \le 5$, giving your answer in set notation.

7 (a) The cross section of a tunnel is in the shape of the region defined by the inequalities

$$y \le 5 - \frac{x^2}{5} \qquad \qquad y \ge 0$$

On the axes below show the region satisfying the inequalities

(b) Given that x and y are in metres write down the height and the maximum width of the tunnel.

(2 marks)

8 Write down the inequalities that define the region R shown in the diagram below.

(4 marks)

9 The total cost to a company manufacturing c cables is (100 + 5c) pence.

The total income from selling all c cables is $(30c - c^2)$ pence.

What is the minimum number of cables the company needs to sell in order to recover their costs?

(4 marks)

10 A stone is projected vertically upwards from ground level.

The distance above the ground, d m at t seconds after launch, is given by

$$d(t) = 12t - 4.9t^2$$

How long does the stone remain 2 m above the ground?

Hard Questions

1 Solve the inequality $(x+2)^2 > 5$.

(3 marks)

2 Solve the inequality $\frac{5}{3x^2+2} \le 2$.

(4 marks)

3 The equation $(kx)^2 + (k-2)x + 1 = 0$, where k is a constant, has two distinct real roots. Find the possible values of k.

(4 marks)

4 On the axes below show the region satisfied by the inequalities

$$y+x>x^2$$
$$5y<20-4x$$
$$y-1\ge 0$$

Label this region R.

5 Find the values of *x* that satisfy the inequalities

$$x^2 + x < 2$$

$$x^2 < 4$$

(5 marks)

6 (a) Solve the inequality $-2 \le x^2 - 4 \le 5$.

(4 marks)

(b) Find the values of *x* that satisfy the inequalities

$$x^{2} + 4x - 3 \le 2 - x^{2} - 5x$$
$$8 - 2x^{2} \le 2x(2x + 1)$$

Give your answer in set notation.

7 (a) The cross section of a tunnel is in the shape of the region defined by the inequalities

$$x^2 + y^2 \le 25 \qquad \qquad y \ge 0$$

On the axes below show the region satisfying the inequalities

(b) Given that x and y are in metres, write down the height and the maximum width of the tunnel.

(2 marks)

(c) Find the area of the cross-section of the tunnel.

(2 marks)

8 Write down the inequalities that define the region R shown in the diagram below.

9 (a)	An electronics company can produce c cables at a total cost of $(200 + 10c)$ pence.
	The cables can be sold for $(40-c)$ pence each.

Show that the total income from selling c cables is $(40c-c^2)$ pence

(2 marks)

(b) What is the minimum number of cables the company needs to sell in order to make a profit?

(4 marks)

10 A stone is projected vertically upwards from a height of 1.5 m. It's height, above its starting position, d m at time t seconds after launch, is given by

$$d(t) = 16t - 4.9t^2$$

How long does the stone remain 3 m above the ground?

Very Hard Questions

1 Solve the simultaneous inequalities

$$t^2 - 2t - 15 < 0$$
 and $t^2 + 14 \le 9t$.

(4 marks)

2 Solve the inequality
$$\frac{4x^2-11}{(x+1)^2} \ge 4$$
.

(4 marks)

3 The equation $(k+1)t^2 + 2(k+2)t = 3(k+3)$ has real roots.

Find the possible values of k.

4 (a) On the axes below show the region satisfied by the inequalities

$$x^2 - 9 \le y$$
$$y \le (2+x)(2-x)$$

Label this region R.

(b)	Write down the equation(s) of any line(s) of symmetry of the region R.	
5	$ \mbox{(1 math)} $ Solve the inequality $-6 \le x^2 + 3x - 4 \le 6$, giving your answer in set notation.	rk)
	(6 mar	ks)
6	Solve the inequality $2x^2 + 1 \le x^2 + 10x - 8 < 2x^2 - 7x + 52$, giving your answer in interval notation.	
	(5 mar	ks)

7 (a) The cross section of a tunnel is in the shape of the region defined by the inequalities

$$y \le 6 - \frac{x^2}{6} \qquad \qquad y \ge 0$$

On the axes below show the region satisfying the inequalities

(2 marks)

arks) eed
eed
arks)

9 (a)	An electronics company can produce c cables at a total cost of $(160 + 12c)$ pence.
	The cables can then be sold for $(38-c)$ pence each.

Find the minimum and maximum number of cables the company needs to sell in order to make a profit?

(5 marks)

(b) How many cables does the company need to sell to make the maximum profit?

(1 mark)

10 A stone is projected vertically upwards from a height of 2 m. It's height, above it's starting position, $d_1^{}$ m, at time t seconds after launch, is given by

$$d_1(t) = 13.2t - 4.9t^2$$

At the same time a second stone is projected upwards from a height of $2.3\,\mathrm{m}$. It's height, above its starting position, is given by

$$d_2(t) = 13t - 4.9t^2$$

For how long are both stones simultaneously at least $4\,\mathrm{m}$ above the ground?

(5 marks)

11 (a) A company produces x chairs and y tables in a day. They sell every chair and every table they produce. Due to the manufacturing processes involved the number of chairs and tables they can make in a day are limited by the following inequalities:

$$y \le x + 20$$

$$y \ge 3x - 45$$

$$y \le -2x + 80$$

$$x \ge 0, y \ge 0$$

Briefly explain why the inequalities $x \ge 0$ and $y \ge 0$ are appropriate.

(1 mark)

(b) On the axes below show the region within which the company can produce *X* chairs and *y* tables per day.

(4 marks)

(c) The company's profit, £ P, per day, is given by the formula P = 3x + 2y. Given that the maximum profit lies on a vertex of the region found in part (b), find the number of chairs and tables the company should make in order to maximise its daily profit.

