Universidade Federal de Viçosa - UFV

Trabalho 2 - Séries Infinitas

INF 110 Programação 1

Professor: André Santos

Alunos: Vinícius Zopelar - 108202

Yuri Bragine - 108199

1. Serie infinita para cálculo de e:

- Código:

```
trabalho > 6 euler.cpp > @ main()
    #include <iostream>
    #include <i
```

```
:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
2.66666666666666666673894681149903362893383018672466278076171875
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
2.7083333333333333347789362299806725786766037344932556152343750
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
2.716666666666666666691241915909671433837502263486385345458984375
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
2.71825396825396825421262969602054226925247348845005035400390625
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
2.71828180114638447996931736039272209382033906877040863037109375
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
2.71828182845904523542816810799394033892895095050334930419921875
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
100
2.71828182845904523542816810799394033892895095050334930419921875
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>
```

- Análise dos resultados:

n	Saída				
1	2,000000000				
2	2,5000000000				
3	2,6666666667				
4	2,7083333333				
5	2,7166666667				
7	2,7182539683				
10	2,7182818011				
50	2,7182818285				
100	2,7182818285				

- Considerações:

O programa para calcular o número de Euler é bem simples, contendo apenas um for que faz a conta do fatorial e soma o termo atual ao Euler.

Esse programa começa a ficar bem próximo do resultado exato a partir dos 10 termos aumentando poucas casas decimais de precisão quando a conta é feita com 100 termos.

Sendo assim, percebe-se que o resultado já é consideravelmente confiável com relativamente poucos termos, nesse caso 10.

2. Series infinitas para cálculo de seno e cosseno:

- Código:

```
int main()(

long double ntermos, sen, cos, fatorial, angulo, rad;

long double pi = 3.14532653589;

cin > ntermos > angulo;

//calulando o aeno
sen = rad; //primetro termo da série
fatorial = (1*2)*3;

for(int i = 3; i<=\frac{1}{1000} (fatorial*(1*1))*(1+2)*(1+3)*(1+4); //calculando o fatorial inicial que vai ser utilizado na próxima conta deste for.

//calculando o coseno

for(int u = 3; i<=\frac{1}{1000} (fatorial*(1+1))*(1+2)*(1+3)*(1+4); //calculando o fatorial inicial que vai ser utilizado na próxima conta deste for.

//calculando o coseno

//calculando o coseno

//calculando o coseno

//calculando o coseno

//calculando o costeno

//calculando o fatorial inicial que vai ser utilizado na próxima conta deste for.

//calculando o fatorial inicial que vai ser utilizado na próxima conta deste for.

//calculando o fatorial inicial que vai ser utilizado na próxima conta deste for.

//calculando o fatorial inicial que vai ser utilizado na próxima conta deste for.

//calculando o fatorial inicial que vai ser utilizado na próxima conta deste for.

//calculando o fatorial inicial que vai ser utilizado na próxima conta deste for.

//calculando o fatorial inicial que vai ser utilizado na próxima conta deste for.

//calculando o fatorial inicial que vai ser utiliza
```

```
O seno de 60 e: 0.86629528378670215974302615258295645617181435227394104003906250
O cosseno de 60 e: 0.50179620150040721141861121967764347573393024504184722900390625
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
2 60
O seno de 60 e: 0.8660254450996490350089991594462190960257430560886859<u>8</u>937988281
O cosseno de 60 e: 0.50000043343314388554626814809012103069107979536056518554687500
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
5 60
O seno de 60 e: 0.86602540378430643581292303068153159983921796083450317382812500
O cosseno de 60 e: 0.50000000000022899612978424799258903021836<u>886182427406311035156</u>
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
10 60
O seno de 60 e: 0.86602540378430643581292303068153159983921796083450317382812500
O cosseno de 60 e: 0.50000000000022899612978424799258903021836886182427406311035156
C:\Users\vinic\OneDrive\Documentos\programas\trabalho>a
100 60
O seno de 60 e: 0.86602540378430643581292303068153159983921796083450317382812500
O cosseno de 60 e: 0.500000000000228996129784247992589030218368<u>8618242740631103515</u>6
```

- Análise dos resultados:

n	60°				
1	sen	0,866295283787			
	cos	0,501796201500			
2	sen	0,866025445100			
	cos	0,500000433433			
5	sen	0,866025403784			
	cos	0,50000000000			
10	sen	0,866025403784			
	cos	0,50000000000			
100	sen	0,866025403784			
	cos	0,500000000000			

- Considerações:

Esse programa é mais complexo quando comparado com o cálculo do número de Euler, já que alterna o sinal da conta entre subtração e adição, fazendo com que dois termos fiquem incluídos em somente um for.

O resultado do cálculo começa a ficar preciso cedo nesse caso, já aos 5 termos temos uma precisão considerável, que aumenta cada vez mais de acordo com o número de termos.

Nesse caso, o resultado também já é preciso com poucos termos, atingindo a precisão mais cedo ainda do que o programa do número de Euler, sendo, nesse caso 5 termos suficientes.

3.14... Series infinitas para cálculo do π :

3.1 Série de Leibniz:

- Código:

```
MINGW64:/c/Users/iubra/Desktop/Yuri/Faculdade/Git/INF110/trab2
                            ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
$ g++ seriesInfPiLeibniz.cpp
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
ri na série de Leibniz com 5 termos: 3.33968253968253968246189533619627809457597322762012481689453125
ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
Pi na série de Leibniz com 10 termos: 3.04183961892940221086872876199436177557799965143203735351562500
 ubra@DE5KTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
Pi na série de Leibniz com 25 termos: <u>3.18157668543503121486720752741916840022895485162734985351562500</u>
ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
$ a.exe
100
Pi na série de Leibniz com 100 termos: 3.13159290355855276372087914182884560432285070419311523437500000
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
$ a.exe
155
 i na série de Leibniz com 155 termos: 3.14804419936214210430126814177498317803838290274143218994140625
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
 i na série de Leibniz com 200 termos: 3.13659268483881675023544621794258091540541499853134155273437500
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
$ a.exe
555
 i na série de Leibniz com 555 termos: 3.14339445392921821198668752561644623710890300571918487548828125
                          W64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
 a. exe
 i na série de Leibniz com 1000 termos: 3.14059265383979292567649677092589399762800894677639007568359375
                           N64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
 a. exe
 i na série de Leibniz com 10000 termos: 3.14149265359004323445481221543928995743044652044773101806640625
```

3.2 Série de Wallis:

- Código:

```
MINGW64:/c/Users/iubra/Desktop/Yuri/Faculdade/Git/INF110/trab2
 bra@DESKTOP-8ED2HPT MI
                            4 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
 g++ seriesInfPiWallis.cpp
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
Pi na série de Wallis com 5 termos: 3.413333333333333340850468395899497409118339419364929199218750
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
$ a.exe
10
Pi na série de Wallis com 10 termos: 3.00217595455690693779203515045850281239836476743221282958984375
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
$ a.exe
Pi na série de Wallis com 25 termos: 3.2025773968946017310893692453532821673<u>43422770500183105</u>46875000
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
$ a.exe
100
Pi na série de Wallis com 100 termos: 3.12607890021541119261391794559301615663571283221244812011718750
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
$ a.exe
155
 i na série de Wallis com 155 termos: 3.15167794543901823821341334763701524934731423854827880859375000
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
ri na série de Wallis com 200 termos: 3.13378749062816224098780570894717811825103126466274261474609375
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
$ a.exe
555
Pi na série de Wallis com 555 termos: 3.1444190960074918433572732645586711441<u>8651908636093139648437500</u>
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
$ a. exe
Pi na série de Wallis com 1000 termos: 3.14002381860059726049159978256142267127870582044124603271484375
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
10000
 i na série de Wallis com 10000 termos: 3.14143559358990819788820525459982491156551986932754516601562500
```

3.3 Série de Euler:

- Código:

```
MINGW64:/c/Users/iubra/Desktop/Yuri/Faculdade/Git/INF110/trab2
ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
    @DESKTOP-8ED2HPI MIN
                           64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
i na série de Euler com 5 termos: 2.96338770103857093458216143133654441044200211763381958007812500
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
 a.exe
i na série de Euler com 10 termos: 3.04936163598206963184014672840760340477572754025459289550781250
 ubra@DE5KTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
i na série de Euler com 25 termos: 3.10392339170057564474991540492965214070864021778106689453125000
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
i na série de Euler com 100 termos: 3.1320765318091059047252155966845066359383054077625274658<u>203125</u>0
ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
i na série de Euler com 155 termos: 3.13544563420607257206614015832002451134030707180500030517578125
ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
 i na série de Euler com 200 termos: 3.13682630633096795483641394675089486554497852921485900878906250
ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
 i na série de Euler com 555 termos: 3.13987313818539800678274198642014880533679388463497161865234375
ubra@DESKTOP-8ED2HPI MINGw64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
1000
 i na série de Euler com 1000 termos: 3.14063805620599312252126666944462840547203086316585540771484375
 ubra@DESKTOP-8ED2HPI MINGW64 ~/Desktop/Yuri/Faculdade/Git/INF110/trab2
 a. exe
 i na série de Euler com 10000 termos: 3.14149716394720919803058845065635296123218722641468048095703125
```

- Comparação dos resultados:

n	Leibniz	Wallis	Euler	Variação	pi
5	3,3396825	3,4133333	2,9633877	0,1782049	3,1415927
10	3,0418396	3,0021760	3,0493616	0,0922310	
25	3,1815767	3,2025774	3,1039234	0,0376693	
100	3,1315929	3,1260789	3,1320765	0,0095161	
155	3,1480442	3,1516779	3,1354456	0,0061470	
200	3,1365927	3,1337875	3,1368263	0,0047663	
555	3,1433945	3,1444191	3,1398731	0,0017195	
1000	3,1405927	3,1400238	3,1406381	0,0009546	
10000	3,1414927	3,1414356	3,1414972	0,0000955	

- Considerações:

Após realizar as séries de cálculos para pi, a partir do método de Leibniz, Wallis e Euler pode-se perceber que todos foram se tornando mais precisos conforme o número de termos aumentava. E além disso, o método de Euler mesmo com poucos termos, em todos os casos, se aproximou mais do valor real de pi em comparação a Leibniz e Wallis. E mesmo assim, a variação entre o valor de pi em relação ao método de Euler é demasiadamente grande, chegando a 0,0000955 com 10.000 termos na série. É interessante perceber que, para Leibniz e Wallis, com uma quantidade par de termos a série resulta em um valor menor que pi e uma quantidade ímpar de termos resulta em um valor maior, diferentemente de Euler que é um valor crescente.

- Vinícius (Exercícios 1 e 2)
- Yuri (Exercício 3)