Escaping the Losses from Trade: The Impact of Heterogeneity and Skill Acquisition

Axelle Ferriere¹ Gaston Navarro² Ricardo Reyes-Heroles²

¹Paris School of Economics, CNRS & CEPR

²Federal Reserve Board

April 2023

These views are those of the authors and not necessarily those of the Board of Governors or the Federal Reserve System.

Motivation

o Important distributional consequences of trade

Autor, Dorn & Hanson (2013), Pierce & Schott (2016), Burstein & Vogel (2017),...

- Potential losses from greater import competition
- Current workers' industries, regions, occupations, firms, skills...

Motivation

o Important distributional consequences of trade

Autor, Dorn & Hanson (2013), Pierce & Schott (2016), Burstein & Vogel (2017),...

- Potential losses from greater import competition
- Current workers' industries, regions, occupations, firms, skills...
- Several margins of adjustment to overcome initial losses
 - Regional migration

Caliendo, Dvorkin & Parro (2019), Dix-Carneiro & Kovak (2018), Lyon & Waugh (2019), Rodriguez-Clare, Vazquez & Ulate (2022),...

- Switching industries and/or occupations

Dix-Carneiro (2014), Traiberman (2020), Dix-Carneiro, Pessoa, Reyes-Herles & Traiberman (2022), ...

Motivation

o Important distributional consequences of trade

```
Autor, Dorn & Hanson (2013), Pierce & Schott (2016), Burstein & Vogel (2017),...
```

- Potential losses from greater import competition
- Current workers' industries, regions, occupations, firms, skills...
- Several margins of adjustment to overcome initial losses
 - Regional migration

```
Caliendo, Dvorkin & Parro (2019), Dix-Carneiro & Kovak (2018), Lyon & Waugh (2019), Rodriguez-Clare, Vazquez & Ulate (2022),...
```

Switching industries and/or occupations
 Dix-Carneiro (2014), Traiberman (2020), Dix-Carneiro, Pessoa, Reyes-Herles & Traiberman (2022), . . .

o Margin of adjustment for new generations of workers?

This paper

o Skill acquisition/college as a margin of adjustment

This paper

- o Skill acquisition/college as a margin of adjustment
- o Two questions:
 - + Do trade shocks affect college decisions?
 - + What are the welfare consequences in the short- and long-run?

What we do

- o Evidence: effects of trade shocks on college enrollment
 - + Effects on labor market outcomes for college/non-college
 - + Effects on college enrollment for future workers

What we do

- o Evidence: effects of trade shocks on college enrollment
 - + Effects on labor market outcomes for college/non-college
 - + Effects on college enrollment for future workers
- o Dynamic trade model with heterogeneous households
 - + Incomplete-markets OLG structure with costly education choice & intervivos transfer
 - + Multi-region model with HO-type comparative advantage
 - + Costly switching across local labor markets

What we find

o Evidence:

- F1 Trade shocks are more detrimental for less educated workers ...
- F2 Younger cohorts respond by increasing college enrollment, mostly in wealthier families

What we find

o Evidence:

- F1 Trade shocks are more detrimental for less educated workers ...
- F2 Younger cohorts respond by increasing college enrollment, mostly in wealthier families

o Model:

- + Short-run:
 - Higher wage premium and increased college enrollment . . . for wealthy households
 - Uneven welfare gains/losses determined by region, sector, and wealth.
- + Long-run:
 - All welfare gains and higher college enrollment
 - Endogenous skill acquisitions makes long-run welfare gains more equal

Literature Review

- Trade shocks and labor market adjustment
 - Autor, Dorn & Hanson (2013), Pierce & Schott (2016), Artuc, Chaudhuri, & McLaren (2010), Dix-Carneiro (2014), Traiberman (2020), Caliendo, Dvorkin & Parro (2019),...
- Macroeconomics and skill acquisition
 - Charles, Hurst & Notowidigdo (2016)
 - Abbott, Gallipoli, Meghir & Violante (2019), Daruich (2020)
 - Adao, Beraja & Pandalai-Nayar (2020)
- o Trade, human capital, and inequality
 - Findlay & Kierzkowski (1983), Blanchard & Willmann (2016), Danziger (2017), Ghose (2019)
 - Atkin (2016), Greenland & Lopestri (2016), Blanchard & Olney (2018), Tuhkuri (2021)
 - Katz and Murphy (1992), Autor, Katz and Kearney (2008), Keane and Wolpin (1997), Huggett, Ventura and Yaron (2011), Guner, Ruggieri and Tybout (2022)
 - Helpman et al. (2010, 2017), Antràs et al. (2017), Burstein et al. (2016), Burstein & Vogel (2017)
- o Heterogeneous-agents trade-spatial macro models
 - Lyon & Waugh (2018, 2019), Carroll & Hur (2020,2022), Giannone et al. (2020), Greeney (2020), Waugh (2022)

Evidence

Measuring trade shocks – Autor, Dorn, & Hanson (2013)

o **Import penetration** in region (market) r in period t

$$\Delta IPW_{rt} = \sum_{i} \frac{L_{rit}}{L_{rt}} \frac{\Delta M_{it}}{L_{it}}$$

i: sector, M_{it} : Chinese imports, L_{rit} : workers sector i and region r,

$$L_{rt} = \sum_i L_{rit}$$
, and $L_{it} = \sum_r L_{rit}$

Measuring trade shocks – Autor, Dorn, & Hanson (2013)

o **Import penetration** in region (market) r in period t

$$\Delta IPW_{rt} = \sum_{i} \frac{L_{rit}}{L_{rt}} \frac{\Delta M_{it}}{L_{it}}$$

i: sector, M_{it} : Chinese imports, L_{rit} : workers sector i and region r,

$$L_{rt} = \sum_{i} L_{rit}$$
, and $L_{it} = \sum_{r} L_{rit}$

- o Data overview:
 - + 722 commuting zones (regions)
 - + Two waves
 - Period 1990-2000: ΔIPW_{rt} Median: \$1,000, IQR: \$600
 - Period 2000-2007: ΔIPW_{rt} Median: \$2,000, IQR: \$1,500

$$\Delta y_{rt} = \gamma_t + \beta \Delta IPW_{rt} + \delta X_{rt} + e_{rt}$$

$$\Delta y_{rt} = \gamma_t + \beta \Delta IPW_{rt} + \delta X_{rt} + e_{rt}$$

- $+ y_{rt}$: labor income, employment, and college enrollment
- + effect on different groups
 - working age $30-55 \rightarrow$ by education levels
 - education decisions for ages 18-25

$$\Delta y_{rt} = \gamma_t + \beta \Delta IPW_{rt} + \delta X_{rt} + e_{rt}$$

- $+ y_{rt}$: labor income, employment, and college enrollment
- + effect on different groups
 - working age $30-55 \rightarrow \text{by education levels}$
 - education decisions for ages 18-25
- + Data from American Community Survey (IPUMS)

$$\Delta y_{rt} = \gamma_t + \beta \Delta IPW_{rt} + \delta X_{rt} + e_{rt}$$

- $+ y_{rt}$: labor income, employment, and college enrollment
- + effect on different groups
 - working age $30-55 \rightarrow$ by education levels
 - education decisions for ages 18-25
- + Data from American Community Survey (IPUMS)
- o Instrument ΔIPW_{it} by Chinese imports in other high-income countries

Effect on labor market opportunities: Income

- o A \$1,000 increase in imports per worker
 - + Decreases average labor income by 0.92%

Effect on labor market opportunities: Income

 Δy_{rt} : log change in labor income by education, ages 30-55

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.92**	-1.41^{***}	-0.55^{*}		
	(0.40)	(0.45)	(0.35)		

- o A \$1,000 increase in imports per worker
 - + Decreases average labor income by 0.92%
 - + Larger decline for less educated workers

Effect on labor market opportunities: Income

 Δy_{rt} : log change in labor income by education, ages 30-55

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.92**	-1.41^{***}	-0.55^{*}	-0.45	-0.36
	(0.40)	(0.45)	(0.35)	(0.63)	(0.40)

- o A \$1,000 increase in imports per worker
 - + Decreases average labor income by 0.92%
 - + Larger decline for less educated workers
 - + No effect for workers with bachelor degree or more

Effect on labor market opportunities: Employment

 Δy_{rt} : change in fraction of pop employed by education, ages 30-55

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.73**				
	(0.20)				

- o A \$1,000 increase in imports per worker
 - + Decreases average employment by 73bps

Effect on labor market opportunities: Employment

 Δy_{rt} : change in fraction of pop employed by education, ages 30-55

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.73**	-1.06***	-0.46***		
	(0.20)	(0.30)	(0.13)		

- o A \$1,000 increase in imports per worker
 - + Decreases average employment by 73bps
 - + Larger decline for less educated workers

Effect on labor market opportunities: Employment

 Δy_{rt} : change in fraction of pop employed by education, ages 30-55

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.73**	-1.06***	-0.46***	-0.45**	-0.31**
	(0.20)	(0.30)	(0.13)	(0.18)	(0.12)

- o A \$1,000 increase in imports per worker
 - + Decreases average employment by 73bps
 - + Larger decline for less educated workers
 - + Smallest effect for workers with bachelor degree or more

Effect on education: Dealing with migration

- o Individuals age 18-25 often migrate to attend college and in response to trade shock
 - ightarrow pprox 50% of freshmen in colleges > 100 mi away from perm home ightharpoonup Migration

Effect on education: Dealing with migration

- o Individuals age 18-25 often migrate to attend college and in response to trade shock
 - $ightarrow \approx 50\%$ of freshmen in colleges > 100 mi away from perm home ightharpoons Migration

- + ACS counts college students as *new* households
 - observe previous commuting zone ightarrow can test migration
 - cannot link to household's characteristics/wealth

Effect on education: Dealing with migration

- o Individuals age 18-25 often migrate to attend college and in response to trade shock
 - ightarrow pprox 50% of freshmen in colleges > 100 mi away from perm home ightharpoonup
- + ACS counts college students as *new* households
 - observe previous commuting zone ightarrow can test migration
 - cannot link to household's characteristics/wealth
- + PSID provides longitudinal data
 - can follow individuals over time
 - can link to family wealth and original CZ (restricted geocode data)
 - small sample but can use individual level regressions

o Strategy 1: Link to previous CZ using ACS data

o Strategy 1: Link to previous CZ using ACS data

 Δy_{rt} : change in enrolled in any year of college ages 18-25

	$EnrolIment_t$	$EnrolIment_{t+1}$
ΔIPW_{rt}	0.88**	
	(0.19)	

Notes: ***p < 1%, **p < 5%, *p < 10%

- o A \$1,000 increase in imports
 - + Increases college enrollment by 88 bps

o Strategy 1: Link to previous CZ using ACS data

 Δy_{rt} : change in enrolled in any year of college ages 18-25

	$EnrolIment_t$	$Enrollment_{t+1}$
ΔIPW_{rt}	0.88**	1.30*
	(0.19)	(0.4)

Notes: ***p < 1%, **p < 5%, *p < 10%

- o A \$1,000 increase in imports
 - + Increases college enrollment by 88 bps
 - + Significantly strong delayed effect on enrollment of 130 bps

Strategy 1: Link to previous CZ using ACS data

 Δy_{rt} : change in enrolled in any year of college ages 18-25

	$EnrolIment_t$	$EnrolIment_{t+1}$
ΔIPW_{rt}	0.88**	1.30*
	(0.19)	(0.4)

Notes: ***p < 1%, **p < 5%, *p < 10%

- o A \$1,000 increase in imports
 - + Increases college enrollment by 88 bps
 - + Significantly strong delayed effect on enrollment of 130 bps
- o Similar results for high school completion in Greenland & Lopresti (2016)

Effect on education: Enrollment by wealth level

o Strategy 2: individual level regressions with PSID data

Effect on education: Enrollment by wealth level

o Strategy 2: individual level regressions with PSID data

Linear prob model on college enrollment, $e_{nrt} \in \{0,1\}$

$$e_{nrt} = \sum_{q} \beta^{q} \mathbb{I}_{\left\{Y_{h(n)rt} \in q\right\}} \Delta IPW_{rt} + \theta_{Y} Y_{h(n)rt} + \theta_{e} e_{h(n)rt}^{p} + \delta X_{rt} + u_{nrt}$$

- + Quartiles by households' wealth Y_{nrt} :
 - groups: <25% , 25%-50% , 50%-75% , >75%
- + controls: family wealth + HH's head education + regional-level

College enrollment increases and wealth matters

College enrollment by wealth quartiles β^q

o Enrollment increases for topwealth households, decreases for bottom-wealth.

Evidence - main takeaways

- 1. Trade shocks detrimental labor market outcomes
 - → especially for less educated workers
- 2. Young individuals (HS graduates) adjust by enrolling into college
- 3. Enrollment increase driven by high school graduates in richest households

Model

Trade model with heterogeneous HHs and skill acquisition

→ Multiple regions trading goods and assets within and across borders

Trade model with heterogeneous HHs and skill acquisition

- → Multiple regions trading goods and assets within and across borders
 - + Technologies: two sectors, services and manufacturing
 - o Intermediate goods \rightarrow Tradable
 - Inputs: college workers & non-college workers
 - o Final goods \rightarrow Non-tradable
 - Inputs: domestic region-specific & imported intermediate goods

Trade model with heterogeneous HHs and skill acquisition

- → Multiple regions trading goods and assets within and across borders
 - + Technologies: two sectors, services and manufacturing
 - o Intermediate goods \rightarrow Tradable
 - Inputs: college workers & non-college workers
 - o Final goods \rightarrow Non-tradable
 - Inputs: domestic region-specific & imported intermediate goods
 - + Households/Workers: continuum & finitely-lived
 - o Education: one-time decision at age $j=1 \rightarrow \text{preference shock}$
 - o Sector-Region (LLM): switch at any age \rightarrow utility cost + preference shock
 - o Intervivos transfer to kid at age $j = J_k \rightarrow$ bequest motive
 - o Idiosyncratic labor risk, save in bonds return r^* , retire at J_R

Intermediate goods – tradable – sector i = s, m

$$\max_{L_{cri},L_{nri}} p_{ri} z_{ri} \left(\frac{\gamma_{ri} L_{cri}^{\frac{\sigma-1}{\sigma}} + (1-\gamma_{ri}) L_{nri}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} - w_{cri} L_{cri} - w_{nri} L_{nri}$$

- + L_{cri} and L_{nri} denote college and non-college labor in region r and sector i
- $+\ w_{cri}$ and w_{nri} denote college and non-college wages
- + z_{ri} sector productivity

Intermediate goods – tradable – sector i = s, m

$$\max_{L_{cri},L_{nri}} p_{ri} z_{ri} \left(\gamma_{ri} L_{cri}^{\frac{\sigma-1}{\sigma}} + (1-\gamma_{ri}) L_{nri}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} - w_{cri} L_{cri} - w_{nri} L_{nri}$$

- + L_{cri} and L_{nri} denote college and non-college labor in region r and sector i
- + w_{cri} and w_{nri} denote college and non-college wages
- + z_{ri} sector productivity

Key assumptions:

- o college and non-college workers are substitutes: $\sigma>1$
- o Service is more intensive in college workers: $\gamma_{rs}>\gamma_{rm}$ (Cravino and Sotelo, 2018)

Decline in manufacturing w.r.t. services \rightarrow lower demand for non-college w.r.t. college workers

Final goods – non-tradable – sector i = s, m

$$+ \ \, \text{Technology:} \ \, Q_{ri} = \left[\omega^{\frac{1}{\eta_i}}D_{ri}^{\frac{\eta-1}{\eta}} + (1-\omega)^{\frac{1}{\eta}}(D_{ri}^*)^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}} \\ \rightarrow \text{domestic composite } D_i = \left(\sum_{r' \in \mathcal{R}}\alpha^{\frac{1}{\omega}}_{rr'}d^{\frac{\theta}{\theta-1}}_{rir'}\right)^{\frac{\theta-1}{\theta}}$$

+ Profits
$$\max_{\{d_{rir'}\}_{r'}, D_{ri}^*} \left\{ q_{ri}Q_{ri} - \sum_{r' \in \mathcal{R}} \tau_{rir'} p_{r'i} d_{rir'} - p_i^* \boldsymbol{\tau}_i^* D_{ri}^* \right\}$$

$$\rightarrow \text{ price of final good } q_{ri} = \left[\omega \bar{p}_{ri}^{1-\eta} + (1-\omega)\left(\tau_i^* p_i^*\right)^{1-\eta}\right]^{\frac{1}{1-\eta}}$$

$$ightarrow ar{p}_{ri}$$
 ideal price index for D_i

+ $au_i^* \geq 1$ iceberg cost o control trade openness

ightarrow Dynastic framework with three stages: transfers, education, and working

→ Dynastic framework with three stages: transfers, education, and working

Value of a worker at age j in labor market $\ell = (r, i)$

$$V_j(a, x, \ell, e) = \max_{c_s, c_m, a'} \left\{ U(c) + \mathbb{E} \left[\max_{\ell'} \left\{ \epsilon_{\ell'} - \psi_{je}(\ell, \ell') + \beta V_{j+1}(a', x', \ell', e) \right\} \right] \right\}$$

$$q_r c + q^a a' \le w_{e\ell} x \bar{h} + (1 + r^*) q^a a, \qquad a' \ge \underline{a}_{j,e}$$

- o consumption $c = \mathcal{C}(c_s, c_m)$, price index $q_r = \mathcal{Q}(q_{rs}, q_{rm})$.
- o $\epsilon_{\ell'}$ realized and ℓ' choice at end of period o after c and a' chosen (Artuc, Chaudhuri, and McLaren, 2010), (Caliendo, Dvorkin, and Parro, 2020)
- education e is fixed

→ Dynastic framework with three stages: transfers, education, and working

Value of a worker at age j in labor market $\ell = (r, i)$

$$V_{j}(a, x, \ell, e) = \max_{c_{s}, c_{m}, a'} \left\{ U(c) + \mathbb{E} \left[\max_{\ell'} \left\{ \epsilon_{\ell'} - \psi_{je}(\ell, \ell') + \beta V_{j+1}(a', x', \ell', e) \right\} \right] \right\}$$

$$q_{r}c + q^{a}a' \leq w_{e\ell}x\bar{h} + (1 + r^{*})q^{a}a, \qquad a' \geq \underline{a}_{j,e}$$

- o consumption $c = \mathcal{C}(c_s, c_m)$, price index $q_r = \mathcal{Q}(q_{rs}, q_{rm})$.
- o $\epsilon_{\ell'}$ realized and ℓ' choice at end of period \to after c and a' chosen (Artuc, Chaudhuri, and McLaren, 2010), (Caliendo, Dvorkin, and Parro, 2020)
- \circ education e is fixed

→ Dynastic framework with three stages: transfers, education, and working

Value of college e = c at age j = 1, 2

$$V_{j}(a, x, \ell, \mathbf{c}) = \max_{c_{s}, c_{m}, a'} \left\{ U(c) + \mathbb{E} \left[\max_{\ell'} \left\{ \epsilon_{\ell'} - \psi_{je}(\ell, \ell') + \beta V_{j+1}(a', x', \ell', \mathbf{c}) \right\} \right] \right\}$$

$$q_{r}c + q^{a}a' + q_{rs}\kappa \leq w_{n\ell}x \frac{\bar{h}}{2} + (1 + r^{*})q^{a}a, \qquad a' \geq \underline{a}_{j,c}$$

- κ cost college
- o work part-time and receive non-college wage
- o looser borrowing limit for college $\underline{a}_{j,c}$

Newborns and Transfers

- → Dynastic framework with three stages: transfers, education, and working
 - + Value to a newborn who receives a transfer Φ

$$\mathcal{V}_0(\Phi, x_p, \ell_p, e_p) = \mathbb{E}\left[\max_e \left\{-\frac{\phi}{\mathbb{I}_{\{e=c\}}} + \max_\ell \left\{\epsilon_\ell - \psi_{0e}(\ell_p, \ell) + V_1(\Phi, \mathbf{x}, \ell, e)\right\}\right\} | x_p\right]$$

 $\phi \sim F_e(e_p)$, $x \sim F_x(x_p)$, for parental states (e_p, x_p) .

(Abbott, Gallipoli, Meghir, and Violante, 2019), (Daruich, 2020)

+ Transfer at age $j = J_k$

$$\max_{\Phi>0} \left\{ V_{J_k}(a - \Phi, x_p, \ell_p, e_p) + \hat{\beta} \mathcal{V}_0(\Phi, x_p, \ell_p, e_p) \right\}$$

Education Policy

Education Policy

Calibration

Calibration - key nationwide parameters

o Household: period = 2 years,
$$J_k = 15$$
, $J_R = 25$ + $\beta = 0.98 \rightarrow$ wealth/income ≈ 3.5 -4 + $\hat{\beta} = 0.85 \rightarrow$ transfer/income ≈ 0.5

- College decision
 - $+~\kappa
 ightarrow$ college pprox 36% of workers
 - + $\ln \phi \sim \mathcal{N}(m_{e_p}, \sigma^2)$, for $e_p = c, n$
 - inter-generational education persistence $\approx 77\%$
 - + $\underline{a}_c \rightarrow$ borrow 50% of college (for 14 years)

o Sectors:
$$\psi_{je}(\ell,\ell') = \psi_r + \psi_i$$

 $+ \ \varepsilon_i \sim Gumbel(-\rho\gamma,\gamma)$
 $+ \ \psi_i$: sector persistence $\approx 94\%$
 (Artuc, Chaudhuri, and McLaren, 2010)
 $+ \ \psi_r$: migration rate $\approx 0.50\%$
 $+ \ \psi_r^{j=0} = 0$: newborn college

Consumption bundle:

$$\begin{array}{l} + \ c = \left(\sum_{i} \nu_{i}^{\frac{1}{\rho}} c_{i}^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}} \\ + \ \rho = 0.5 \\ + \ \nu_{s} = 0.81 \ \text{and} \ \nu_{m} = 0.19 \\ + \ \text{match aggregate labor share} \\ \text{by sector} \end{array}$$

Calibration - Three regions

- + Three regions
 - differ only in productivities, z_{rs} and z_{rm} , same factor intensities, γ_s and γ_m
- + Match employment share + skill compensation by regions in 1990
 - West → low exposure (low manufacturing labor share)
 - Midwest → high exposure (high manufacturing labor share)
 - North-East → mid exposure (average manufacturing labor share)
 - ightarrow choose z_{rs} and z_{rm} keeping income per-worker across regions approx constant
- + Choose domestic trade costs, $\tau_{rmr'}$, to match domestic trade shares (CFS for 1993)

Modeling trade openness - nationwide

Main Exercise:

- o At t=0 the economy is at a steady state with high τ_m^* , and τ_s^*
 - + "Closed economy" calibrated to 1990
 - + home-bias: services \approx 98%, and manuf \approx 90%
- o At t=1, au_m^* unexpectedly decrease $(au_s^*$ as well)
 - + Large decline in the cost of importing manufacturing goods
 - + A sudden and permanent shock
 - + The economy slowly converges to the new steady-state
 - + "Open economy" calibrated to the 2010s \rightarrow manuf h-b $\approx 75\%$

The dynamic effects of trade openness

The dynamic effects of trade openness

- 1. Cross-regional differences
- 2. Who goes to college more?
- 3. The welfare consequences of trade openness
- 4. Skill acquisition as margin of adjustment

Real wages: winners and losers

- o Services expand and manufacturing contracts
- Wages respond accordingly

Real wages: winners and losers

- o Services expand and manufacturing contracts
- Wages respond accordingly
- Effect depends on exposure to the shock

Real wages: winners and losers

- o Services expand and manufacturing contracts
- Wages respond accordingly
- Effect depends on exposure to the shock
- Persistent effects

Wage premium increases ...

 Expansion in services leads to higher wage premium

Wage premium increases ...

- Expansion in services leads to higher wage premium
- o Effect is larger for the highly exposed region

Wage premium increases ...

- Expansion in services leads to higher wage premium
- Effect is larger for the highly exposed region
- Larger increase on impact than in the longrun

... and college enrollment increases as well

o Increased wage premium leads to higher college enrollment

... and college enrollment increases as well

- Increased wage premium leads to higher college enrollment
- Effect is larger for the highly exposed region

Cross-Regional Regression: model vs data

- Model matches college enrollment regression
- o \ldots small variation in ΔIPW

The dynamic effects of trade openness

- 1. Cross-regional differences
- 2. Who goes to college more?
- 3. The welfare consequences of trade openness
- 4. Skill acquisition as margin of adjustment

Who goes more to college?

- College enrollment increases mostly in the high exposure region.
- As in data, the increase is concentrated in wealthy household.

Who goes to college more?

College enrollment by sector - Midwest (high exposure) region

- Decline in wealth-poor manufacturing households.
- Sectoral differences as in data.

Who goes to college more?

College enrollment by sector - Midwest (high exposure) region

- Decline in wealth-poor manufacturing households.
- Sectoral differences as in data.
- More than reverts after a generation.

Large changes in transfers for households in manufacturing

Transfers by sector - Midwest (high exposure) region

- Transfers decline sharply in manufacturing
- Explains the differential in college enrollments

Large changes in transfers for households in manufacturing

Transfers by sector - Midwest (high exposure) region

- Transfers decline sharply in manufacturing
- Explains the differential in college enrollments
- More than reverts after a generation.

The dynamic effects of trade openness

- 1. Cross-regional differences
- 2. Who goes to college more?
- 3. The welfare consequences of trade openness
- 4. Skill acquisition as margin of adjustment

Uneven welfare gains of trade

Consumption Equivalents by region

 Welfare gains: small for low-exposure large for high-exposure.

- Welfare gains: small for low-exposure large for high-exposure.
- Gains in high exposure region are very heterogeneous
- Short run effects largely driven by sector.

- Welfare gains: small for low-exposure large for high-exposure.
- Gains in high exposure region are very heterogeneous
- Short run effects largely driven by sector.

- Welfare gains: small for low-exposure large for high-exposure.
- Gains in high exposure region are very heterogeneous
- Short run effects largely driven by sector.

- Welfare gains: small for low-exposure large for high-exposure.
- Gains in high exposure region are very heterogeneous
- Short run effects largely driven by sector.
- o Welfare differentials disappear after a generation

The dynamic effects of trade openness

- 1. Cross-regional differences
- 2. Who goes to college more?
- 3. The welfare consequences of trade openness
- 4. Skill acquisition as margin of adjustment

A Fixed Education Model

- o Education is a type inherited from parents
 - + Constant over a life-time
 - + Still have to pay for college
 - + Parents choose transfers optimally
 - + Sectoral choice as before
- ightarrow education is not a margin of adjustment any more

Fixed Education induces larger wage premium

- Wage premium permanently higher
- Part of wage of premium comes form sectoral composition

Welfare gains differences persist with Fixed Education

Consumption Equivalent with Endogenous and Fixed education

+ Welfare gain differentials lessen with endogenous education after a generation ...

Welfare gains differences persist with Fixed Education

Consumption Equivalent with Endogenous and Fixed education

- + Welfare gain differentials lessen with endogenous education after a generation ...
- + but they persist with fixed education.

Welfare gains differences persist with Fixed Education

Newborn's CEV with Endogenous and Fixed education

- + Welfare gain differentials lessen with endogenous education after a generation ...
- but they persist with fixed education.
- For new generations, the redistributive effects of endogenous education are key on impact.

Model - main takeaways

- Trade openness has very different effects across regions
- o Services expand \rightarrow wage premium increases \rightarrow college enrollment increases
 - + Effect concentrated in wealthier households and/or in services
- o Welfare implications:
 - + Short-run: uneven gains and losses driven by region and sector
 - + Long-run: only gains, more even due to endogenous skill acquisiton

Conclusions

Conclusions:

- o Evidence: trade shocks
 - + more detrimental for less educated workers
 - + increase college enrollment, especially for wealthier families.
- o Model: Consistent with evidence.
 - + Endogenous education alters the long-run distribution of welfare gains

Conclusions

Conclusions:

- o Evidence: trade shocks
 - + more detrimental for less educated workers
 - + increase college enrollment, especially for wealthier families.
- Model: Consistent with evidence.
 - + Endogenous education alters the long-run distribution of welfare gains

Next steps:

- o Model:
 - + Improve calibration: target changes over time, regressions,...
 - + Policy exercises: college subsidies, transfers,...

Conclusions

Conclusions:

- o Evidence: trade shocks
 - + more detrimental for less educated workers
 - + increase college enrollment, especially for wealthier families.
- o Model: Consistent with evidence.
 - + Endogenous education alters the long-run distribution of welfare gains

Next steps:

- o Model:
 - + Improve calibration: target changes over time, regressions,...
 - + Policy exercises: college subsidies, transfers,...

Thank you!!

Appendix

Measuring trade shocks – Autor, Dorn, & Hanson (2013)

Effect on labor market opportunities: Employment

 Δy_{rt} : change in fraction of pop employed by education, ages 30-55

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.73**				
	(0.20)				

Notes: "Some Coll" are all individuals with some college, "2-y program" are those who graduated from a 2 year program, and "Bachelor" are those with a bachelor degree or more; ***p < 1%, ***p < 5%, **p < 10%

- o A \$1,000 increase in imports
 - + Decreases average employment by 73bps

Effect on labor market opportunities: Employment

 Δy_{rt} : change in fraction of pop employed by education, ages 30-55

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.73**	-1.06***	-0.46***		
	(0.20)	(0.30)	(0.13)		

Notes: "Some Coll" are all individuals with some college, "2-y program" are those who graduated from a 2 year program, and "Bachelor" are those with a bachelor degree or more; *** p < 1%, *** p < 5%, ** p < 10%

- o A \$1,000 increase in imports
 - + Decreases average labor income by 73bps
 - + Larger decline for less educated workers

Effect on labor market opportunities: Employment

 Δy_{rt} : change in fraction of pop employed by education, ages 30-55

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.73**	-1.06***	-0.46***	-0.45**	-0.31**
	(0.20)	(0.30)	(0.13)	(0.18)	(0.12)

Notes: "Some Coll" are all individuals with some college, "2-y program" are those who graduated from a 2 year program, and "Bachelor" are those with a bachelor degree or more; *** p < 1%, *** p < 5%, ** p < 10%

- o A \$1,000 increase in imports
 - + Decreases average labor income by 73bps
 - + Larger decline for less educated workers
 - + Smallest effect for workers with bachelor degree or more

Effect on migration

 Δy_{rt} : change in migration number

	•	•	
	ages 18-25	ages 18-25	ages 30-55
	college	no college	
ΔIPW_{rt}	0.026**	0.008	0.012
	(0.01)	(0.02)	(0.01)

Notes: ***p < 1%, **p < 5%, *p < 10%

- o A \$1,000 increase in imports per worker
 - + Increases migration for ages 18-25 if enrolled in college by 2.6%
 - + Migration doesn't respond for other groups

Foreign Economy (W) and market clearing

o Linear preferences and endowments Y_{it}^{W}

$$\begin{split} & \sum_{t} (\beta^{W})^{t} C_{t}^{W}, \qquad C_{t}^{W} = \mathbb{C}(Q_{mt}^{W}, Q_{st}^{W}) \\ & \sum_{i} q_{it}^{W} Q_{it}^{W} + q_{t}^{a} A_{t+1}^{W} \leq \sum_{i} p_{it}^{*} Y_{it}^{W} + q_{t}^{a} (1 + r^{*}) A_{t}^{W} \end{split}$$

Final goods

$$\begin{split} Q_i^W &= \left[\left(\omega^W \right)^{\frac{1}{\eta^W}} \left(D_i^W \right)^{\frac{\eta^W - 1}{\eta^W}} + \left(1 - \omega^W \right)^{\frac{1}{\eta^W}} \left(D_i^{W,US} \right)^{\frac{\eta^W - 1}{\eta^W}} \right]^{\frac{\eta^W - 1}{\eta^W - 1}} \\ D_i^{W,US} &= \prod_r \left(D_{r,i}^{W,US} \right)^{\alpha_r^W} \end{split}$$

Market clearing

$$Y_{rit} = \sum_{\tilde{r}} d_{\tilde{r}ir} + D_{ir}^{W,US}, \quad Y_{it}^{W} = \sum_{r} D_{rit}^* \tau_{rit}^* + D_{it}^{W}, \quad A_t^{W} + A_t = 0$$

Effect on education by income level

College enrollment by income quartiles β^q

o Enrollment increases for topincome households

 Results by income quartile similar to wealth quartile

Effect on education by income level

College enrollment by income quartiles β^q : effect by sector

o Enrollment increases for topincome households

- Results by income quartile similar to wealth quartile
- Effect is larger for households working

 Workers with and without a college education gain on impact

- Workers with and without a college education gain on impact
- Poor households with a college education gain the most.

Fixed Education induces larger wage premium

Higher wage premium with fixed education in both sectors

 No decline for manufacturing

Migration responds to trade shocks, only for the young

 Δy_{rt} : change in migration by age group

	$Age\ 18-25$	Age $30 - 55$
ΔIPW_{rt}	0.021***	0.001
	(0.01)	(0.01)

Notes: *** p < 1%, ** p < 5%, * p < 10%

