[분석 보고서]

과제명		기존 수해대피소 실효성 분석 및 수해대피소 최적 입지 선정
활용	공공	서울시 수해대피소 공간정보 / 서울시 국민기초생활보장수급자 (동별) 통계 / 서울시학교기본정보 / 서울시 경로당 정보
데이터	민간	침수유발 기준강우량 데이터_2021(서울)/ 금천구 주민센터 위치정보 / 금천구 교회 위치정보

과제 개요

지난 2022년 8월, 반지하 주택침수로 인해 4명이 사망하는 등 침수 피해가 심각하여 수도권 집중호우의 대책이 필요한 상황이다. 이에 본 팀은 기존 수해대피소의 실효성 분석 및 수해대피소 최적 입지 선정을 통해침수 피해 발생 시 시민들의 신속한 대피를 돕고자 한다.

활용 데이터 및 분석도구

1. 활용 데이터

이름	보유시스템 (운영기관)	데이터 형태 (형식)	내용	규모	수집 방안
서울시 수해대피소 공간정보	서울 열린데이터 광장	CSV	대피소 명칭, 상세주소, 수용가능최대 인원, 행정동 코드, 명칭 등	서울시 전역	다운로드
침수유발 기준강우량 데이터_2021(서울)	환경 빅데이터 플랫폼	CSV	1차 방정식 형태의 도시 침수 예측 자료 (침수심=a*3시간누적강우량+b)	서울시 전역	다운로드
서울시 국민기초생활보장 수급자 (동별) 통계	서울 열린데이터 광장	CSV	서울시 각 자치구 동별 국민기초생활 보장 수급 가구, 시설, 인원 등	서울시 각 자치구 동별	다운로드
서울시학교기본정보	서울열린데이터 광장	CSV	서울시 내 학교에 대한 학교명, 소재지, 주소 등의 기본정보	서울시 전역	다운로드
금천구 주민센터 위치정보	네이버 지도	csv로 변환	금천구 내 주민센터에 대한 이름, 도로 명 주소, 위치정보 등	금천구	크롤링
금천구 교회 위치정보	네이버 지도	csv로 변환	금천구 내 교회에 대한 이름, 도로명 주 소, 위치정보 등	금천구	크롤링
서울시 경로당 정보	서울 열린데이터 광장	CSV	서울시 내 학교에 대한 학교명, 소재지, 주소 등의 기본정보서울시 소재 경로당 이름, 주소, 위치정보 등	금천구	다운로드

2. 분석도구

Python 3.11.3을 이용하여 jupyter notebook환경에서 분석 실시

창의성

1. 기존 대응체계의 실효성 재고

- 침수 피해 발생 시 민방위 대피소는 대부분 지하에 존재하기에 수해대피소로써의 실효성 부족
- 대피경로 안내가 미흡하여 피해를 키웠다는 지적

2. 다중이용시설 활용

- 민방위 대피소를 추가로 건설하기에는 예산 문제 발생. 따라서 다중이용시설을 활용하기로 함.
- 현재 서울시에서는 학교, 종교시설 등의 다중이용시설 중 일부를 수해대피소로 활용하고 있지만, 각 자치구별 개수는 부족하다고 판단
- 서울시의 지역구별로 수해대피소로 활용할 다중이용시설의 수 선정한 후 선정한 구의 행정동 단위로 수해대피소의 입지를 선정

3. p-median 알고리즘을 통한 문제 해결

- 재난 발생 시 재난 약자의 이동 속도와 대피 골든타임을 고려한 수해대피소의 적정 개수 선정
- 재난 약자와 시설 사이의 거리 고려
- 다중이용시설(수해대피소 후보지) 별 수용 가능 인원을 통한 가중치 부여

적합성

1. 시범분석 자치구 선정

다음 3가지 지표에 모두 해당하는 금천구를 시범 분석 구로 선정

1) 침수심 강우량 : 침수심이 낮을수록 침수피해가 우려되기 때문에 침수심이 낮은 자치구 고려

그림 1-1. 서울시 구 별 20cm 침수심 강우량(그래프)

	SGG_NM	DEPTH_20
0	도봉구	120.766000
1	서초구	142.847600
2	구로구	151.520000
3	금천구	151.520000
4	종로구	152.682222

그림 1-2. 서울시 구 별 20cm 침수심 강우량(도표)

그림 2-1. 서울시 구 별 50cm 침수심 강우량(그래프)

	SGG_NM	DEPTH_50
0	도봉구	371.110000
1	서초구	425.156600
2	종로구	449.004444
3	구로구	452.120000
4	금천구	452.120000

그림 2-2. 서울시 구 별 50cm 침수심 강우량(도표)

2) 저지대 지역

경사가 급한 산지에 인접한 저지대 지역 5개의 구(금천구, 관악구, 동작구, 서초구, 강남구)에서 큰 피해

그림 3. 서울지역 소구역별 평균고도(출처 : 서울 인포그래픽스)

3) 구별 수해대피소

구별 수해대피소 수의 하위 5개의 구(중구, 금천구, 은평구, 서초구, 성동구)

중구 2 금천구 4 은평구 5 서초구 11 성동구 18

그림 4. 수해대피소 수 하위 5개 구

2. 시범분석 행정동 선정

금천구 내에서 재난 약자 수(기초생활수급자 수)1)를 기준으로 독산 1동 선정

3. 사용모델 설명

- p-median :

후보입지가 주어져 있다고 가정할 때, 최소의 비용으로 모든 소비자의 수요를 충족시킬 수 있는 p개 시설 입지를 결정하는 방법

Inputs:

 d_{ij} = 수요지 i와 대피소의 입지점 j의 거리

 w_i = 입지점 j의 최대수용인원 가중치

⊅ = 시설물의 수

Decision variables:

 x_i = 1, 만약 노드 j에 시설물이 설치되면,

0, 그렇지 않으면,

 y_{ij} = 1, 만약 노드 j에 시설물이 노드 i의 총 수요를 충족 시키면,

0, 그렇지 않으면,

Subject to $Min\sum_{i}\sum_{i}d_{ij}\;w_{j}\;y_{ij}$ (1-1)

(1-2)

 $\sum_{j}^{i}y_{ij}=1$ (for all i) $\sum_{r.=p}$ (1-3)

 $y_{ij} \le x_i$ (for all i, j) (1-4)

 $y_{ij} \in [0,1]$ (for all i, j) (1-5)

 $x_i \in [0,1]$ (for all j) (1-6)

그림 5-2. p-median algorithm

그림 5-1. p-median algorithm

• 제약조건

(1-1) 목적함수 : 대피소와 수요자간의 총 통행거리의 합을 최소화

(1-2) 수요발생지점은 반드시 하나의 대피소에 의해 서비스를 받음 (중복 서비스 부가지역 존재하지 않음)

(1-3) 수요지의 수는 대피소의 수와 같음

(1-4) 대피소가 설치되었을 경우 $(x_i=1)$, 특정 사람의 수요 만족 여부를 고려 $(y_{ij}=0 \ {
m or} \ 1)$.

대피소가 설치되지 않았을 경우 $(x_i=0)$, 해당 대피소에 대한 수요 만족 여부를 고려하지 않음 $(y_{ij}=0)$.

4. 분석과정

1) 수해대피소 후보지 선정 : 금천구 내 학교, 주민센터, 교회, 경로당

서울시 수해대피소 공간정보 데이터 EDA 결과, 총 715개 서울시 수해대피소 중 '학교, 주민센터, 교회, 경로 당'의 수가 617개를 차지

2) 입지선정할 대피소 수(p) 결정

재난 발생 시 재난 약자의 이동 속도를 1m/s, 대피시간을 5분 내외(혹은 공급 가능 여부에 따라 10분으로 가정²⁾

• 대피시간을 5분 내외로 설정 시

$$p$$
 = 면적 (m^2) ÷ $(5분동안 재난약자가이동할수있는거리 (m^2) × π = $2090000(m^2)$ ÷ $300(m^2)$ × π ≒ $6$$

• 대피시간을 10분 내외로 설정 시

$$p =$$
 동면적 (m^2) ÷ $(10$ 분 동안 재난약자가 이동할수 있는 거리 $(m^2) \times \pi$ = $2090000(m^2)$ ÷ $600(m^2) \times \pi$ ≒ 2

3) 재난 약자 위치 생성

정보의 민감성 이슈로 구체적인 주소 특정이 불가하므로 금천구 독산 1동 면적 내에 균등하게 난수를 생성하여 수요자의 위치(재난 약자의 주소)로 가정

- 독산 1동 경계 표 선정
- 경계점 좌표 생성
 - 가산파출소 (126.888030, 37.4798994)
 - 가산센트럴푸르지오시티 (126.890874, 37.4754512)
 - 가산초등학교 (126.896422, 37.4779520)
 - 현대오일뱅크 (126.907464, 37.4801868)
 - 자은사 (126.910454, 37.4766211)
 - 라임스빌 (126.906136, 37.4758879)
 - 금천구립독산도서관 (126.908057, 37.4674831)
 - 해강하우스3 (126.908874, 37.4555544)
 - 벽산5단지경로당 (126.919031, 37.4483989)
 - 국립전통예술고등학교 (126.906682, 37.4459119)
 - 삼미연립 (126.905680, 37.4340988)
 - 투썸플레이스 (126.903488, 37.4346106)
 - 시흥성지아파트 (126.897906, 37.4508961)
 - 팔공커피 (126.889709, 37.4532493)
 - 독산주공 14단지아파트 (126.886557, 37.4601029)
- 세븐일레븐 금천제일점 (126.886411, 37.4741315)

그림 6. 독산 1동 경계점 좌표 생성

• 경계 좌표 내 수요자의 위치 생성 난수 생성 함수를 이용하여 난수 좌표 생성

```
import random
from shapely geometry import Point, Polygon
boundary_coords = [ (126.888030, 37.4798994), (126.890874, 37.4754512), (126.896422, 37.4779520),
      (126.907464, 37.4801868), (126.890874, 37.4754212), (126.908136, 37.475820), (126.906057, 37.4674831), (126.906067, 37.4674831), (126.908674, 37.455544), (126.918031, 37.4458398), (126.906682, 37.4459119), (126.905680, 37.4340988), (126.903488, 37.4346106), (126.886708, 37.45082493), (126.886557, 37.4501029),
boundary_polygon = Polygon(boundary_coords)
# 난수 좌표 생성
num_points = 1307
points = []
while len(points) < num_points:
      x = random.uniform(126.886411, 126.919031)
y = random.uniform(37.4340988, 37.4801868)
     point = Point(x, y)
     if boundary_polygon.contains(point):
            points.append((x, y))
 # 생성되 자꾸 충력
for point in points:
    print(point)
```

그림 7. 독산 1동 재난 약자 위치 생성

4) cost matrix 생성

- '수요자와 대피소 사이의 거리'와 대피소 유형별 '수용가능최대인원의 중앙값'을 고려하여 선정
- cost = (haversine distance) * weight
 - haversine distance(하버사인 거리): 수요자와 대피소 사이의 거리 각 대피소와 예상 수요자의 위치를 경도, 위도로 표현하였기 때문에 하버사인 거리 사용
 - weight : 대피소 유형별 수용가능최대인원의 중앙값을 고려하여 계산
 - i) 서울시 수해대피소 공간정보 데이터에서 수용가능최대인원이 0인 데이터 제외 후 중앙값 계산
 - (학교: 1000명, 주민센터 90명, 교회 190명, 경로당 36명)
 - ii) 학교의 수용인원수가 가장 많으므로 이를 기준, 1로 설정
 - iii) 나머지 유형의 대피소 가중치 = 학교 수용인원수 / 해당 유형의 대피소의 수용인원수
 - iv) set 1 <= weight <= 1.5
 - 정규화를 위해 minmaxscaling 후 이를 2로 나누고 1을 더하기 (weight의 범위를 1 ~ 1.5로 설정 해야 distance의 영향을 미치는 정도가 적절하다고 판단)

```
from sklearn.preprocessing import MinMaxScaler

mm = MinMaxScaler()
shelter["weight"] = mm.fit_transform(shelter[["weight"]])

for j in range(shelter.shape[0]):
    shelter["weight"][j] = shelter["weight"][j]/2 + 1

c = []
for i in range(people.shape[0]):
    list_ = []
    for j in range(shelter.shape[0]):
        start = (float(people_lat[i]), float(people_long[i]))
        goal = (float(shelter_lat[j]), float(shelter_long[j]))
        list_.append(haversine(start, goal) * (shelter["weight"][j]))
        c.append(list_)
```

그림 8. MinMaxScaler()을 활용한 weight의 정규화 진행 및 cost matrix 생성

5) p-median 알고리즘 실행

- 아래 과정으로 금천구 독산1동에 대해 대피소 입지 선정을 실시하였으며 타 지역에도 아래 모델을 기반으로, 각각의 상황에 맞는 제약조건 수정 및 구현 시 유의미한 결과가 나올 것이라 기대됨
- 재난 약자 수, 대피소 후보지 수, p값 생성 후 문제 및 결정변수 정의

```
m = 1307
n = 155
p = 2
# 문제 정의
prob = LpProblem("p-median", LpMinimize)
# 결정 변수 정의
x = LpVariable.dicts("x", [(i,j) for i in range(m) for j in range(n)], 0, 1, LpBinary)
y = LpVariable.dicts("y", [j for j in range(n)], 0, 1, LpBinary)
```

- 독산1동의 재난 약자 수(m) : 1307
- 금천구 전체 대피소 후보지 수(n) (학교 / 주민센터 / 교회 / 경로당) : 155
- 찾을 시설의 수(p)
 - 5분 기준 : 6
 - 10분 기준 : 2
- 목적함수 정의

```
# 목적할수 정의
_ prob += lpSum([c[i][j] * x[(i,j)] for i in range(m) for j in range(n)])
```

- c[i][j] : i번째 사람에 대한 i번째 시설에 대한 cost
- x[(i,j)] : i번째 사람이 j번째 facility에 영향을 받고 있는지 여부
- 제약조건 추가 및 문제 해결

```
for i in range(m):
    prob += lpSum([x[(i,j)] for j in range(n)]) == 1
# 한 사람은(1번째 사람) 한 시설(]번째 시설)에만 영향을 받아야 함

for i in range(m):
    for j in range(n):
        prob += x[(i,j)] <= y[j]
# 시설이 열려 있어야지 영향을 받고 있는지 여부를 0과 1로 결정할 수 있음

prob += lpSum([y[j] for j in range(n)]) == p
# 시설이 열려있는 수는 우리가 원하는 시설의 수와 같아야됨
```

```
# branch-and-bound algorithm을 이용해 문제 해결하기
prob.solve(PULP_CBC_OMD(gapRel=0.0, threads=1, timeLimit=600))
```

1

6) 분석결과 도출

• p = 6 설정 시

	shelter	X	Y	weight
12	안천중학교	126.887711	37.459185	1.000000
19	가산중학교	126.894412	37.468445	1.000000
30	서울두산초등학교	126.890988	37.467144	1.000000
118	신광교회	126.895501	37.473302	1.079567
122	금천반석교회	126.895694	37.464571	1.079567
134	이야기침례교회	126.893691	37.458208	1.079567

그림 9-1. 최종입지선정 결과(p=6, 도표)

그림 9-2. 최종입지선정 결과(p=6, 지도)

• p = 2 설정 시

	shelter	X	Y	weight
19	가산중학교	126.894412	37.468445	1.0
23	서울안천초등학교	126.888492	37.458168	1.0

그림 10-1. 최종입지선정 결과(p=2, 도표)

그림 10-2. 최종입지선정 결과(p=2, 지도)

활용성

1. 활용 확장

- 본 분석은 금천구 독산1동에 한정하여 진행되었지만, 서울시 전체로 확장 가능
- 재난 약자(기초생활수급자)의 주소 데이터를 수집할 수 있다면, 보다 정밀한 최적 입지 선정 가능

2. 활용 대상

• 재난 약자(기초생활수급자)

3. 소요 예산

- 기존의 다중이용시설을 수해대피소로써 활용하기 때문에 대피소 설치에 따른 예산은 발생하지 않음
- 식수, 의약품, 구호물품 등 수해대피소로써 인프라를 갖추기 위한 예산 발생

4. 절차

- 제시한 분석 프로세스를 통해 행정동 별 수해대피소 선정
- 선정된 다중이용시설을 수해대피소로써 활용하기 위해 인프라 구축
- 침수피해 발생 시 시민들이 적극 활용할 수 있도록 사전에 안내

활용 가능성

1. 환경부 대책 발표

- ① 환경부는 올해 여름철 선제적이고 체계적인 홍수피해 대응을 위해 홍수피해대책을 발표하였다. 이 대책의 일환으로 5월부터 서울 도림천 유역에 도시침수예보를 시범 운영하고 2025년부터는 인공지능 홍수예보를 전국 223개 지점에 시행할 예정이다.
- ② 이에 따라 예보를 받은 시민들이 대피할 수 있는 공간의 필요성이 요구되며, 적절한 위치에 수해대피소를 지정함으로써 시민들에게 상세한 대피요령 제공으로 실질적 침수 피해 감소에 도움을 줄 수 있다.

2. 국민재난안전포털 대피요령

① 국민재난안전포털에서 제시한 호우 발생 시 상세 행동요령에 따르면, 호우 발생 시 지역의 대피장소와 안전한 이동 방법, 대피 요령을 미리 숙지하고, 이를 국민재난 안전포털이나 안전디딤돌 앱 등을 통해 확인해야한다. 그러나 현재 국민재난안전포털이나 안전디딤돌 앱에서 제공하는 대피소 정보는 민방위 대피소의 정보이며, 민방위 대피소는 상당 수가 지하에 위치해있기 때문에 수해대피소로 이용하기에 적절하지않다.

기대효과

1. 재난 시 빠른 대피 가능

- 독산1동의 재난약자 수 1307명에 대한 cost(optimal objective value) 비교
- 기존 수해대피소의 cost : n = 4, p = 4로 p-median 알고리즘 사용

	기존 수해대피소 입지	선정된 수해대피소 입지	cost 이득
p=2	974	543	431
p=6	374	326	648

그림 11. 기존 수해대피소와 선정된 수해대피소의 cost 비교

- 기존 수해대피소의 cost값 974에 비해, p = 2, p = 6일 때 산출된 cost는 각각 431, 648의 이득이 생김
- 기존 수해대피소 입지에 비해 p =2, p=6일 때 재난약자에게 거리상으로 더 가까운 대피소가 됨을 직관적으로 확인할 수 있음

기존 수해대피소 cost: 974

```
# Print results
print("Optimal objective value:", value(prob_new.objective))
for j in range(n):
    if y[i].value() > 0.5:
        print("Facility", j, "is located.")
# for i in range(n):
# if x[(1,)].value() > 0.5:
        print("- Customer", j, "is served.")

Optimal objective value: 974.1046229031792
Facility 0 is located.
Facility 1 is located.
Facility 2 is located.
Facility 3 is located.
Facility 3 is located.
```

	shelter	x	Y	weight
0	가산중학교	126.894456	37.468760	1.0
1	가산초등학교	126.896308	37.478150	1.0
2	시흥초등학교	126.904625	37.455326	1.0
3	안천중학교	126.887484	37.459509	1.0

새롭게 선정한 수해대피소(p=2) cost: 543

```
# Print results
print("Optimal objective value:", value(prob.objective))
for j in range(n):
    if y[j].value() > 0.5:
        print("Facility", j, "is located.")
# for j in range(n):
# for j in range(n):
# if x[(1,j)].value() > 0.5:
        print("- Customer", j, "is served.")

Optimal objective value: 543.2997979232922
Facility 19 is located.
Facility 23 is located.
```

	shelter	x	Υ	weight
19	가산중학교	126.894412	37.468445	1.0
23	서울안천초등학교	126.888492	37.458168	1.0

새롭게 선정한 수해대피소(p=6) cost: 326

	shelter	X	Υ	weight
12	안천중학교	126.887711	37.459185	1.000000
19	가산중학교	126.894412	37.468445	1.000000
30	서울두산초등학교	126.890988	37.467144	1.000000
118	신광교회	126.895501	37.473302	1.079567
122	금천반석교회	126.895694	37.464571	1.079567
134	이야기침례교회	126.893691	37.458208	1.079567

2. 재난대응 정책에 기여

- 침수 발생 시 기존에는 확실한 대피소의 안내 부족에 의해 민방위 대피소, 주민센터 등 시민들의 분산 적인 대피가 발생
- 수해대피소로 선정된 시설물이 아닌 곳일 경우에도 해당 재난 발생 시 시민들에게 적합한 조치가 가능 하고 지자체에서도 원활한 시민 통솔을 진행하기 어려움
- 최적 수해대피소 입지 선정을 통해 수해대피소의 확정 및 정책 체계화가 이루어지면 각 담당 부처에서 신속하고 원활한 지원이 가능

¹⁾ 우리나라의 경우 특수한 경우를 제외하고 경제적 취약성을 지닌 계층이 신체적 및 정보적 취약성을 지니는 특성을 보인다. 이에 취약성에 대한 접근방식이 다양할지라도 결국 한 집단으로 귀결되는 형태를 보이고, 보편적으로 경제적 취약성을 기준으로 사회취약계층을 정의하고 있다(유가영, 2008) - 박한나, 2016, "도시지역과 비도시지역의 침수 취약성 비교분석을 통한 환경정의 실증연구"

²⁾ 노약자의 경우 통상적으로 보행권의 거리를 최소 300 m로 보고 있어 느린걸음(1 m/s)으로 300 m를 가는데 5분이 소요된다. 국립재난 안전포털에 따르면 국민의 안전을 위해 국내에 설치 또는 지정된 대피소는 주변 반경 5분 이내에 도착할 수 있는 대피소가 1개 이상 지정되어 있다고 한다. - 김정옥, 이재강, 2018, "보행자 중심의 풍수해 대피시설에 대한 안전범위 분석"