EXERCICE 1 6 points

Partie A

1.
$$f(0) = 3 - \frac{2}{1 + e^0} = 3 - \frac{2}{2} = 2$$
 donc le point B(0; 2) appartient à \mathscr{C}_f .

2. a. Pour tout réel
$$x$$
, $f'(x) = 0 - \frac{0 - 2e^x}{(1 + e^x)^2} = \frac{2e^x}{(1 + e^x)^2}$

b. L'équation réduite de T est : y = f'(0)(x-0) + f(0)

•
$$f'(x) = \frac{2e^x}{(1+e^x)^2}$$
 donc $f'(0) = \frac{2\times 1}{(1+1)^2} = \frac{1}{2}$

•
$$f(0) = y_B = 2$$

Donc l'équation réduite de T est $y = \frac{x}{2} + 2$.

3. La droite T a pour équation $y = \frac{x}{2} + 2$ soit $\frac{x}{2} - y + 2 = 0$; elle a donc pour vecteur normal $\overrightarrow{n} \left(\frac{1}{2}; -1\right)$. Le vecteur \overrightarrow{AB} a pour coordonnées $\left(0 - \left(-\frac{1}{2}\right); 2 - 3\right)$ soit $\left(\frac{1}{2}; -1\right)$; il est donc normal à la droite T. On en déduit que la droite T est perpendiculaire à la droite (AB).

Partie B

1.
$$g(x) = AM^2 = (x_M - x_A)^2 + (y_M - y_A)^2 = \left(x - \left(-\frac{1}{2}\right)\right)^2 + \left(f(x) - 3\right)^2 = \left(x + \frac{1}{2}\right)^2 + \left(3 - \frac{2}{1 + e^x} - 3\right)^2$$

$$= x^2 + x + \frac{1}{4} + \left(-\frac{2}{1 + e^x}\right)^2 = x^2 + x + \frac{1}{4} + \frac{4}{(1 + e^x)^2}$$

2. On détermine les limites de g en $+\infty$ et en $-\infty$.

$$\lim_{x \to +\infty} x^2 + x + \frac{1}{4} = \lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} e^x = +\infty \implies \lim_{x \to +\infty} (1 + e^x)^2 = +\infty \implies \lim_{x \to +\infty} \frac{4}{(1 + e^x)^2} = 0$$

Donc $\lim_{x \to +\infty} x^2 + x + \frac{1}{4} + \frac{4}{(1+e^x)^2} = +\infty$, c'est-à-dire $\lim_{x \to +\infty} g(x) = +\infty$.

• Limite en $-\infty$

$$\lim_{x \to -\infty} x^2 + x + \frac{1}{4} = \lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x \to -\infty} e^x = 0 \implies \lim_{x \to -\infty} (1 + e^x)^2 = 1 \implies \lim_{x \to -\infty} \frac{4}{(1 + e^x)^2} = 4$$

Donc
$$\lim_{x \to -\infty} x^2 + x + \frac{1}{4} + \frac{4}{(1 + e^x)^2} = +\infty$$
, c'est-à-dire $\lim_{x \to -\infty} g(x) = +\infty$.

- Pour x < 0, comme la fonction g' est strictement croissante, on a g'(x) < g'(0); on sait que g'(0) = 0 donc, pour tout x < 0, on a g'(x) < 0.
 - Pour x > 0, comme la fonction g' est strictement croissante, on a g'(x) > g'(0); on sait que g'(0) = 0 donc, pour tout x > 0, on a g'(x) > 0.
- **4.** On dresse le tableau des variations de la fonction *g* :

5. $AM^2 = g(x)$ et g(x) est minimale pour x = 0; AM est minimale pour x = 0 donc si M a pour abscisse 0, c'est-à-dire est en B.

EXERCICE 2 5 points

Partie A

1.

2. La probabilité qu'un client choisisse une voiture et qu'il ne prenne pas l'assurance tout risque est $P(V \cap \overline{L})$.

$$P\left(V \cap \overline{L}\right) = P(V) \times P_V\left(\overline{L}\right) = 0.6 \times 0.8 = \boxed{0.48}$$

3. Les évènements V et \overline{V} forment une partition de l'univers, donc, d'après la formule des probabilités totales, on a :

$$P(L) = P(V \cap L) + P(\overline{V} \cap L)$$

On a $P(V \cap L) = 0.6 \times 0.2 = 0.12$.

Posons $P(\overline{V} \cap L) = p$. On a:

$$P(L) = 0.12 + p \iff 0.42 = 0.12 + p \iff p = 0.42 - 0.12 = \boxed{0.3}$$

On a donc bien $P(\overline{V} \cap L) = 0.3$.

4. D'après la formule des probabilités conditionnelles :

$$P_{\overline{V}}(L) = \frac{P(\overline{V} \cap L)}{P(\overline{V})} = \frac{0.3}{0.4} = \boxed{\frac{3}{4} = 0.75}$$

5. La probabilité qu'un client ait choisi une voiture, sachant qu'il a pris l'assurance tout risque est, d'après la formule des probabilités conditionnelles :

$$P_L(V) = \frac{P(V \cap L)}{P(L)} = \frac{0.12}{0.42} = \boxed{\frac{2}{7} \approx 0.29}$$

Partie B

1.

$$P(L \cap A) = P(L) \times P_L(A) = 0.42 \times 0.005 = \boxed{0.0021}$$

$$P\left(\overline{L}\cap A\right) = P\left(\overline{L}\right) \times P_{\overline{V}}(A) = (1-0.42) \times 0.12 = \boxed{0.0696}$$

2. Les évènements L et \overline{L} forment une partition de l'univers, donc, d'après la formule des probabilités totales, on a :

$$P(A) = P(L \cap A) + P(\overline{L} \cap A) = 0,0021 + 0,0696 = 0,0717$$

La probabilité que le véhicule loué par un client choisi au hasard ait un accident est donc 0,0717. Puisque l'entreprise loue 1 000 véhicules, elle peut s'attendre 72 avaries.

Partie C

- 1. Les paramètres de la loi binomiale suivie par X sont n = 40 et p = 0.42
- **2.** À l'aide de la calculatrice, on calcule $P(X \ge 15)$:

$$P(X \geqslant 15) \approx 0.768$$

EXERCICE 3 5 points

1. a.

$$u_1 = 5u_0 - 4 \times 0 - 3 = 5 \times 3 - 4 - 3 = 15 - 7 = \boxed{12}$$

b.

$$u_2 = 5u_1 - 4 \times 1 - 3 = 5 \times 12 - 4 - 3 = 60 - 7 = \boxed{53}$$

- **c.** Il semble que la suite (u_n) soit croissante et tende vers $+\infty$.
- **2. a.** Soit P_n la proposition $u_n \ge n+1$.

Initialisation: $u_0 = 3$ et 0 + 1 = 1.

 $3 \ge 1$. La proposition est donc vraie au rang n = 0.

Hrdit: on suppose la proposition vraie au rang $n \in \mathbb{N}$, $u_n \ge n+1$ (hypothèse de récurrence). On va vérifier qu'alors elle est vraie au rang suivant.

$$u_n \geqslant n+1 \iff 5u_n \geqslant 5(n+1)$$
 $\iff 5u_n - 4n - 3 \geqslant 5n + 5 - 4n - 3$
 $\iff u_{n+1} \geqslant n+2 = (n+1)+1$

La proposition est donc héréditaire.

Conclusion : la proposition P_n est vérifiée au rang n=0 et est héréditaire, donc, d'après le principe de récurrence, elle est vraie pour tout entier naturel $n: u_n \ge n+1$.

b. On a : $\lim_{n \to +\infty} (n+1) = +\infty$. Puisque $u_n \ge n+1$, par comparaison, on a :

$$\lim_{n \to +\infty} u_n = +\infty$$

3. a.

$$v_{n+1} = u_{n+1} - (n+1) - 1$$

$$= 5u_n - 4n - 3 - n - 1 - 1$$

$$= 5u_n - 5n - 5$$

$$= 5(u_n - n - 1)$$

$$= 5v_n$$

La suite (v_n) est donc une suite géométrique de raison q = 5 et de premier terme $v_0 = u_0 - 0 - 1 = 2$.

b. Puisque (v_n) est une suite géométrique de raison 5 et de premier terme $v_0 = 2$, on a :

$$v_n = 2 \times 5^n$$

c. $v_n = u_n - n - 1 \iff u_n = v_n + n + 1$. Donc:

$$u_n = 2 \times 5^n + n + 1$$

d. Puisque 5 > 1, la suite de terme général 5^n est strictement croissante, donc $5^{n+1} \ge 5^n$.

$$5^{n+1} \geqslant 5^{n} \iff 2 \times 5^{n+1} \geqslant 2 \times 5^{n}$$

$$\iff 2 \times 5^{n+1} + (n+1) + 1 \geqslant 2 \times 5^{n} + (n+1) + 1$$

$$\iff u_{n+1} \geqslant 2 \times 5^{n} + n + 2$$

$$\iff u_{n+1} \geqslant 2 \times 5^{n} + n + 1$$

$$\iff u_{n+1} \geqslant u_{n}$$

La suite (u_n) est donc croissante.

4. a.

```
def suite():
    u=3
    n=0
    while u<10**7:
        u= 5*u-4*n-3
        n=n+1
    return n</pre>
```

b.

u	n	u < 10 ⁷
3	0	VRAI
12	1	VRAI
53	2	VRAI
254	3	VRAI
1 255	4	VRAI
6 2 5 6	5	VRAI
31 257	6	VRAI
156 258	7	VRAI
781 259	8	VRAI
3 906 260	9	VRAI
19 531 261	10	FAUX

La valeur renvoyée par cette fonction est n = 10. C'est le rang à partir duquel $u_n \ge 10^7$.

EXERCICE 4 4 points