Practice Final

Exercise 1 [3+2=5 points]

Suppose that X_1, \ldots, X_n is a random sample from a distribution probability mass function

$$f(x \mid \theta) = (1 - \theta)^{x - 1}\theta$$

for $x = 1, \ldots$ Suppose that the prior for θ is a Beta(a, b) distribution.

- (a) Find the posterior distribution of θ .
- (b) Find the Bayes estimator of θ .

Exercise 2 [5+2=7 points]

Assume that X_1, \ldots, X_n are a random sample from the a distribution with probability density function

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

We want to test

$$H_0: \lambda = 1$$
 vs. $H_1: \lambda = 3$.

- (a) Fix $\alpha_0 \in (0,1)$. Find the test which minimises $\beta(\delta)$ among all test procedures for which $\alpha(\delta) \leq \alpha_0$.
- (b) For $\alpha_0 = 0.1$ and n = 10 specify the rejection region of the test. Hint: The sum of n i.i.d. exponential random variables follows a Gamma(n, $1/\lambda$) distribution and you might need the quantile $F_{\text{Gamma}(10.1)}^{-1}(0.1) = 6.22$.

Exercise 3 [3+3+5=11 points]

Suppose that we have one sample X_1, \ldots, X_5 of a normal distribution with unknown mean μ_1 and unknown σ_1^2 and another sample Y_1, \ldots, Y_{10} of a normal distribution with unknown mean μ_2 and variance σ_2^2 .

- (a) Describe how to test the hypothesis that the variances are the same.
- (b) You are given the numbers $\bar{X}_5 = 3$, $\bar{Y}_{10} = 2.8$, $S_X^2 = 32$, $S_Y^2 = 71$. Carry out the test with $\alpha_0 = 0.05$.

Hint: you might need the quantiles of the F-distribution: $G_{4,9}^{-1}(0.025) = 0.112$, $G_{4,9}^{-1}(0.975) = 4.718$.

(c) What is the distribution of $(S_X^2 + S_Y^2)/\sigma_1^2$ under the null hypothesis?

Exercise 4 [2+2+5=9 points]

Consider the simple linear regression model of Chapter 10. In particular $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ for i = 1, ..., n.

(a) Is the estimator

$$\hat{\gamma}_1 = \frac{1}{\bar{x}^3} \sum_{i=1}^n (Y_i - a_i \bar{Y})$$

linear in Y_i ? Determine its value if $a_i = 1$ for all i = 1, ..., n.

- (b) Compute $Cov(Y_1 + 4Y_2, Y_2 + 5Y_3)$.
- (c) In a normal simple linear regression model, determine the distribution of $Y_1 + 4Y_2$.

Exercise 5 [3+1+3+4=11 points] Assume the normal simple linear regression model. You are given the following data:

\overline{i}	1	2	3	4	5
$\overline{x_i}$	1	5	9	11	13
$\overline{Y_i}$	9	4	10	3	2

- (a) Fit a least-squares line to the data.
- (b) Use the least-squares line to estimate the mean value of Y for $x_h=5$.
- (c) Determine the 90% CI for β_1 . Hint: you might need the quantile $t_3(0.95) = 2.35$.
- (d) Test the null hypothesis $\beta_0 = 0$ for $\alpha_0 = 0.05$. Hint: you might need the quantile $t_3(0.975) = 3.18$.