PROBLEM SET #6 Due Thursday, November 3 (Problems are from $Vector\ Calculus$ by Marsden and Tromba, sixth edition.)

1

Let S be the entire surface of the solid hall ball $x^2+y^2+z^2\leq 1$ with $z\geq 0$ (i.e., S is the union of the top hemisphere of the unit sphere and the unit disk in the xy-plane), and orient S by the outward-pointing normal. Let $F(x,y,z)=(x+3y^5)\vec{i}+(y+10xz)\vec{j}+(z-xy)\vec{k}$. Calculate $\iint_S \vec{F}\cdot d\vec{S}$.

$\mathbf{2}$

Let $D = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right]$, $P(x, y) = \sin x$, and $Q(x, y) = \cos y$. Compute (without using Green's theorem) both $\int_{\partial D} P \, dx + Q \, dy$ and $\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, dx \, dy$.

3

Let C be the closed curve formed by the quadrilateral with vertices (-2,1), (-2,-3), (1,-1), and (1,5). Use Green's theorem to compute $\int_{C^+} 2xy \, dx + xy^2 \, dy$.