This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

#### 001 10.0 points

When f, g, F and G are functions such that

$$\lim_{x \to 1} f(x) = 0, \qquad \lim_{x \to 1} g(x) = 0,$$
$$\lim_{x \to 1} F(x) = 2, \qquad \lim_{x \to 1} G(x) = \infty,$$

which, if any, of

A. 
$$\lim_{x \to 1} \frac{f(x)}{g(x)}$$
,

B. 
$$\lim_{x \to 1} \frac{g(x)}{G(x)}$$
,

C. 
$$\lim_{x \to 1} f(x)^{g(x)}$$
,

are indeterminate forms?

- 1. A and B only
- 2. A and C only
- 3. B and C only
- 4. none of them
- **5.** C only
- 6. all of them
- **7.** B only
- 8. A only

## 002 10.0 points

Determine if

$$\lim_{x \to -1} \left( \frac{4x^2 + 5}{x^2 + 1} \right)$$

exists, and if it does, find its value.

- 1. limit does not exist
- **2.** limit =  $\frac{9}{2}$
- 3.  $\lim_{\to} = 9$
- **4.**  $\lim_{x \to a} 1 = 4$
- 5.  $\lim_{\to} 5$

## 003 10.0 points

Determine if

$$\lim_{x \to 0} \frac{e^{3x} - 1}{\sin(2x)}$$

exists, and if it does, find its value.

- 1. none of the other answers
- **2.** limit =  $\frac{2}{3}$
- 3.  $\lim_{n \to \infty} 1$
- 4.  $\lim_{n \to \infty} 1$
- **5.** limit =  $\frac{3}{2}$
- 6.  $\lim_{\to} 1 = 0$

#### 004 10.0 points

Find the value of

$$\lim_{x \to 1} \frac{\ln(3x^2 + 6x - 8)}{x^2 - 1}.$$

- 1.  $\lim_{x \to 0} 14$
- **2.**  $\lim_{x \to 0} f(x) = 6$
- **3.**  $\lim_{x \to 0} 12$
- **4.** limit =  $\frac{13}{2}$
- 5.  $\lim_{\to} 1 = 0$

6. limit does not exist

## 005 10.0 points

Find the value of

$$\lim_{x \to 3} \frac{\ln(x^2 - 8)}{7x - 21} \,.$$

- 1.  $\lim_{x \to 0} \frac{3}{14}$
- **2.**  $\lim_{t \to 0} t = 1$
- 3.  $\lim_{\to} \frac{3}{7}$
- **4.** limit =  $\frac{6}{7}$
- **5.** limit =  $\frac{8}{7}$
- **6.** limit does not exist

#### 006 10.0 points

Find the value of

$$\lim_{x \to 0} \frac{1 - \cos(3x)}{5\sin^2(x)}.$$

- 1.  $\lim_{\to} \frac{11}{10}$
- **2.** limit =  $\frac{6}{5}$
- 3.  $\lim_{x \to 0} 1$
- 4. limit does not exist
- **5.**  $\lim_{\to} \frac{9}{10}$

## 007 10.0 points

Determine

$$\lim_{x \to 0} \left( \frac{e^{7x} - 7x - 1}{3x^2} \right).$$

1. limit doesn't exist

**2.** limit = 
$$\frac{55}{6}$$

- 3.  $\lim_{x \to 0} \frac{23}{3}$
- 4. limit =  $\frac{49}{6}$
- **5.** limit =  $\frac{26}{3}$

## 008 10.0 points

Find the value of

$$\lim_{x \to \infty} \frac{x^7}{7^x}.$$

- 1. none of the other answers
- 2. limit  $= -\infty$
- 3.  $\lim_{n \to \infty} 1$
- **4.**  $\lim_{x \to 0} 1 = 7$
- 5.  $\lim_{\to} 1 = 0$
- **6.** limit =  $\frac{1}{7}$

#### 009 10.0 points

Determine if

$$\lim_{x \to 4} \left( \frac{1}{\ln(x-3)} - \frac{1}{x-4} \right)$$

exists, and if it does, find its value.

- **1.**  $\lim_{x \to 0} 1$
- **2.** limit  $= -\infty$
- 3.  $\lim_{n \to \infty} 1 + \infty$
- 4. none of the other answers
- 5.  $\lim_{\to} 1 = 0$

**6.** limit = 
$$\frac{1}{2}$$

## 010 10.0 points

Determine if

$$\lim_{x \to 0} \left( \frac{4}{x} - \frac{8}{e^{2x} - 1} \right)$$

exists, and if it does, find its value.

- 1.  $\lim_{x \to 0} 1 = 8$
- **2.** limit =  $\frac{8}{3}$
- **3.**  $\lim_{x \to 0} 1 = 2$
- 4.  $\lim_{x \to a} 1 = 4$
- **5.**  $\lim_{t \to 0} t = 0$
- **6.** limit does not exist

## 011 10.0 points

Determine if

$$\lim_{x \to \infty} \frac{x}{5} \ln \left( \frac{x+2}{x} \right)$$

exists, and if it does, find its value.

- 1.  $\lim_{x \to 0} \frac{5}{2}$
- 2. limit does not exist
- 3.  $\lim_{\to} 1 = 0$
- 4. limit =  $-\frac{5}{2}$
- **5.** limit =  $\frac{2}{5}$
- **6.** limit =  $-\frac{2}{5}$

# 012 10.0 points

Determine if

$$\lim_{x \to \infty} \frac{x}{8} \sin\left(\frac{3}{x}\right)$$

exists, and if it does, find its value.

- 1. limit = 3
- **2.** limit =  $\frac{3}{8}$
- 3.  $\lim_{x \to 0} 1 = 8$
- **4.** limit =  $\frac{8}{3}$
- 5. limit does not exist
- **6.**  $\lim_{x \to 0} 1$

#### 013 10.0 points

If f is a continuous function on (-5, 3) whose graph is



which of the following properties are satisfied?

- A. f has exactly 3 local extrema,
- B. f''(x) > 0 on (-5, -3),
- C. f has exactly 4 critical points.
- 1. B and C only
- 2. A and B only
- **3.** B only
- **4.** A only

4

- **5.** C only
- **6.** A and C only
- 7. all of them
- 8. none of them

## 014 10.0 points

If f is a continuous function on (-4, 4) whose graph is



which one of the following properties is NOT satisfied?

- 1. (0, 1) is an inflection point
- 2. f''(x) < 0 on (0, 2)
- **3.** f has exactly 1 local maximum
- 4. f'(x) < 0 on (2, 4)
- 5. f''(x) > 0 on (-4, -2)
- **6.** f has exactly 3 critical points

# 015 10.0 points

If f is a function on (-4, 4) having exactly one critical point and the sign of f', f'' are given in



decide which of the following could be the graph of f.











# 1.



**5.** 



2.





3.



016

If f is a function on (-4, 4) having exactly one critical point and the sign of f', f'' are given in



**4.** 



decide which of the following could be the graph of f.

**5.** 





10.0 points 017

If f is a continuous function on (-4, 4) such that

- f has 3 critical points,
- (ii) f has 1 local maximum,
- f''(x) > 0 on (-4, -2),(iii)
- (iv) f''(x) < 0 on (0, 2),
- (v) (0, 1) is an inflection point,
- (vi) f'(x) < 0 on (2, 4),

which one of the following could be the graph of f?

1.



2.



**3.** 



4.



**5.** 



6.



10.0 points018

Which function could have



as its graph on  $[0, 2\pi]$ ?

$$\mathbf{1.} \ f(x) = \sin x$$

**2.** 
$$f(x) = \frac{\sin x}{\cos x - 2}$$

$$3. f(x) = -\frac{\sin x}{2 + \cos x}$$

$$4. f(x) = \frac{\sin x}{2 + \cos x}$$

$$5. f(x) = -\sin x$$

**6.** 
$$f(x) = \frac{\sin x}{2 - \cos x}$$

## 019 10.0 points

A certain function f is known to have



as its graph on (-8, 12). Based on this graph, which of the following is a true statement about the critical and inflection points of f?

1. f has exactly three critical points and two inflection points

**2.** f has exactly one critical point and two inflection points

**3.** f has exactly one critical point and one inflection points

4. f has exactly two critical points and one inflection point

 ${f 5.}$  f has exactly two critical points and two inflection points

# 020 10.0 points

A function f is continuous and twicedifferentiable for all  $x \neq 1$ . Its derivatives have the properties

(i) 
$$f'(-1) = 0$$
,

(ii) 
$$f'' > 0$$
 on  $(-\infty, -2) \bigcup (1, \infty)$ ,

(iii) 
$$f'' < 0$$
 on  $(-2, 1)$ .

If the lines x = 1 and y = 2 are asymptotes of the graph of f, which of the following could be the graph of f?









