Efficiently Detecting Multiple Structural Breaks in Systems of Linear Regression Equations with Integrated and Stationary Regressors — Supplementary Material A

Karsten Schweikert*
University of Hohenheim

[Latest update: January 13, 2022]

1 Group LARS algorithm

We define some notation used in the exposition of the algorithm. Since our system is vectorized and the columns of Z have a specific structure in the change-point setting, we do not need to extend the correlation criterion as in Similä and Tikka (2006) to account for multiple responses. A simple re-partitioning before the most correlated set is computed allows us to use a modified version of the algorithm proposed by Chan et al. (2014) which itself is a specific adaptation of the group LARS algorithm outlined in Yuan and Lin (2006) to the univariate change-point setting.

We define the $Tq \times d$ matrix $\overline{Z} = I \otimes Z$, where the columns of Z contain the identical regressors for all responses. For $j = 1, \ldots, Tq$, we define the d vector

$$oldsymbol{B}_j(
u) = \sum_{l=j}^T ar{Z}_l'
u_l.$$

Moreover, we define the $Tq \times d$ matrix $\boldsymbol{B}(\nu) = (\boldsymbol{B}'_1(\nu), \dots \boldsymbol{B}'_{Tq}(\nu))'$ which has q blocks of dimension $T \times d$. Now, we define the $T \times qd$ matrix $\boldsymbol{B}^*(\nu)$ re-partitioning $\boldsymbol{B}(\nu)$ so that the q blocks are concatenated horizontally. $\boldsymbol{B}_j^*(\nu)$ denotes the j-th row of $\boldsymbol{B}^*(\nu)$. The matrix $\boldsymbol{Z}_{\mathcal{A}}$ consists of all columns of \boldsymbol{Z} that belong to the change-points contained in \mathcal{A} . The implementation of the modified group LARS algorithm on multiple change-points estimation is given below:

^{*}Address: University of Hohenheim, Core Facility Hohenheim & Institute of Economics, Schloss Hohenheim 1 C, 70593 Stuttgart, Germany, e-mail: karsten.schweikert@uni-hohenheim.de

- 1. Initialization: specify K, the maximum number of change-points, and Δ , the minimum distance between change-points. Set $\mu^{[0]} = 0$, k = 1, $\nu^{[0]} = \mathbf{Y}$, $\mathcal{A}_0 = \{\emptyset\}$, and $\mathcal{T} = \{1, \ldots, T\}$.
- 2. Compute the current "most correlated set"

$$\mathcal{A}_k = \underset{j \in \mathcal{T}}{\operatorname{arg\,max}} \|\boldsymbol{B}_j^*(\boldsymbol{\nu}^{[k-1]})\|_2.$$

3. Descent direction computation

$$\gamma_{\mathcal{A}_k} = (\mathbf{Z}'_{\mathcal{A}_k} \mathbf{Z}_{\mathcal{A}_k})^{-1} \mathbf{Z}'_{\mathcal{A}_k} \nu^{[k-1]}.$$

4. Descent step search: For $j \in \mathcal{T} \setminus \mathcal{A}_k$ define

$$a_j = \|\boldsymbol{B}_j(\nu^{[k-1]})\|^2, \qquad b_j = \boldsymbol{B}'_j(\boldsymbol{Z}_{\mathcal{A}_k}\gamma_{\mathcal{A}_k})\boldsymbol{B}_j(\nu^{[k-1]}),$$

$$c_j = \|\boldsymbol{B}_j(\boldsymbol{Z}_{\mathcal{A}_k}\gamma_{\mathcal{A}_k})\|^2, \quad d_j = \max_{j \in \mathcal{T} \setminus \mathcal{A}_k} a_j.$$

Set $\alpha = \min_{j \in \mathcal{T} \setminus \mathcal{A}_k} a_j \equiv \alpha_{j^*}$, where

$$\alpha_j^+ = \frac{(b_j - d_j) + \sqrt{(b_j - d_j)^2 - (a_j - d_j)(c_j - d_j)}}{c_j - d_j},$$

$$\alpha_j^- = \frac{(b_j - d_j) - \sqrt{(b_j - d_j)^2 - (a_j - d_j)(c_j - d_j)}}{c_j - d_j},$$

and

$$\alpha_j = \begin{cases} \alpha_j^+ & \text{if } \alpha_j^+ \in [0, 1], \\ \alpha_j^- & \text{if } \alpha_j^- \in [0, 1]. \end{cases}$$

5. If $\alpha \neq 1$ or k < K, update $\mathcal{A}_{k+1} = \mathcal{A}_k \cup \{j^*\}$, $\mu^{[k]} = \mu^{[k-1]} + \alpha \mathbf{Z}_{\mathcal{A}_k} \gamma_{\mathcal{A}_k}$ and $\nu^{[k]} = Y - \mu^{[k]}$. Set k = k+1 and go back to step 3. Otherwise, return \mathcal{A}_k as the estimated change-points.

2 Backward elimination algorithm

The Backward elimination algorithm (BEA) successively eliminates breakpoints until no improvement in terms of the chosen criterion can be reached. For this purpose, we define

$$IC(m, \mathbf{t}) = S_T(t_1, \dots, t_m) + m\omega_T,$$

where $S_T(t_1, ..., t_m)$ is the least squares objective function for the pre-selected set of breakpoints and ω_T is the penalty function. The implementation of the BEA is given below:

1. Set
$$K = |A_T|$$
, $t_K = (t_{K,1}, \dots, t_{K,K}) = A_T$ and $V_K^* = IC(K, A_T)$.

2. For
$$i = 1, ..., K$$
, compute $V_{K,i} = IC(K - 1, \mathbf{t}_K \setminus \{t_{K,i}\})$. Set $V_{K-1}^* = \min_i V_{K,i}$.

- 3. If $V_{K-1}^* > V_K^*$, then the estimated changepoints are $\mathcal{A}_T^* = \boldsymbol{t}_K$.
 - If $V_{K-1}^* \ge V_K^*$ and K = 1, then $\mathcal{A}_T^* = \emptyset$
 - If $V_{K-1}^* \geq V_K^*$ and K > 1, then set $j = \underset{i}{\operatorname{arg\,min}} V_{K,i}$, $\boldsymbol{t}_{K-1} = \boldsymbol{t}_K \setminus \{t_{K-1,j}\}$) and K = K 1. Go to step 2.

3 Additional simulation results

Table S1: Estimation of (multiple) structural breaks in the full model (c = 0.5)

	Panel A: Group LASSO with BEA					
	SB1: (τ =	= 0.5)				
T	pce	au				
100	67.9	0.502 (0.023)				
200	99.4	0.500 (0.012)				
400	99.9	0.500 (0.008)				
	SB2: $(\tau_1$	$= 0.33, \tau_2 = 0.67)$				
T	pce	$ au_1$	$ au_2$			
150	79.6	0.338 (0.034)	0.661 (0.026)			
300	97.2	0.335(0.019)	0.666 (0.016)			
600	99.9	0.332 (0.010)	0.667 (0.008)			
	SB4: $(\tau_1 = 0.2, \tau_2 = 0.4, \tau_3 = 0.6, \tau_4 = 0.8)$					
T	pce	$ au_1$	$ au_2$	$ au_3$	$ au_4$	
250	64.7	0.213 (0.034)	0.407 (0.031)	0.597 (0.030)	0.792 (0.028)	
500	88.2	$0.201\ (0.016)$	$0.403 \; (0.012)$	$0.598 \; (0.010)$	0.801 (0.014)	
1000	99.7	$0.200\ (0.008)$	$0.401\ (0.007)$	$0.598 \; (0.005)$	0.800 (0.007)	
	Panel B: Likelihood-based approach					
	SB1: (τ =	= 0.5)				
T	pce	au				
100	90.9	0.500 (0.030)				
200	93.2	0.500 (0.010)				
400	95.7	0.500 (0.005)				
	SB2: $(\tau_1 = 0.33, \tau_2 = 0.67)$					
T	pce	hd/T	$ au_1$	$ au_2$		
150	94.1	0.326 (0.023)	0.667 (0.016)			
300	93.4	$0.330\ (0.009)$	0.670 (0.007)			
600	95.8	$0.330\ (0.004)$	$0.670 \ (0.003)$			
	SB4: $(\tau_1$	$= 0.2, \tau_2 = 0.4, \tau_3$	$\tau_4 = 0.6, \ \tau_4 = 0.8$			
T	pce	$ au_1$	$ au_2$	$ au_3$	$ au_4$	
250	94.9	0.200 (0.012)	0.401 (0.012)	0.600 (0.011)	0.800 (0.009)	
	100	0.200 (0.006)	0.400 (0.005)	0.600 (0.004)	0.800 (0.004)	
500	100	0.200 (0.000)	0.100 (0.000)	0.000 (0.001)	0.000 (0.001)	

Note: We use 1,000 replications of the data-generating process given in Equation (10) of the main text with c=0.5. The variance of the error terms is $\sigma_\xi^2 = \sigma_e^2 = \sigma_u^2 = 1$. The first panel reports the results for one active breakpoint at $\tau=0.5$, the second panel considers two active breakpoints at $\tau_1=0.3$ and $\tau_2=0.67$ and the third panel has four active breakpoints at $\tau_1=0.2$, $\tau_2=0.4$, $\tau_3=0.6$, and $\tau_4=0.8$. Standard deviations are given in parentheses. We conduct the $\sup(l+1|l)$ test at the 5% level to determine the number of breaks.

Table S2: Estimation of (multiple) structural breaks in the full model (c = 1.5)

	Panel A: Group LASSO with BEA					
	SB1: (τ =	= 0.5)				
T	pce	au				
100	99.9	0.501 (0.010)				
200	99.9	0.500 (0.004)				
400	100	0.500 (0.002)				
	SB2: $(\tau_1$	$= 0.33, \tau_2 = 0.67$				
T	pce	$ au_1$	$ au_2$			
150	93.7	0.338 (0.030)	0.660 (0.024)			
300	97.9	0.332(0.016)	0.667 (0.014)			
600	99.9	$0.332\ (0.009)$	0.668 (0.007)			
	SB4: $(\tau_1$	$= 0.2, \tau_2 = 0.4, \tau_3$	$\tau_4 = 0.6, \tau_4 = 0.8$			
T	pce	$ au_1$	$ au_2$	$ au_3$	$ au_4$	
250	89.0	0.217 (0.031)	0.404 (0.020)	0.597 (0.017)	0.788 (0.028)	
500	98.1	0.203(0.017)	0.402 (0.012)	0.598 (0.009)	0.803 (0.012)	
1000	99.8	0.199 (0.008)	0.401 (0.005)	$0.599 \ (0.005)$	0.800 (0.008)	
	Panel B: Likelihood-based approach					
	SB1: (τ =	= 0.5)				
T	pce	au				
100	90.0	0.500 (0.003)				
200	93.0	0.500 (0.002)				
400	95.7	0.500 (0.001)				
	SB2: $(\tau_1$	$= 0.33, \tau_2 = 0.67$				
T	pce	$ au_1$	$ au_2$			
150	94.0	0.327 (0.003)	0.667 (0.002)			
300	92.9	0.331 (0.001)	0.670 (0.001)			
600	95.8	0.330 (0.001)	0.670 (0.001)			
	SB4: $(\tau_1$	$= 0.2, \tau_2 = 0.4, \tau_3$	$\tau_4 = 0.6, \tau_4 = 0.8$			
T	pce	$ au_1$	$ au_2$	$ au_3$	$ au_4$	
250	99.9	0.200 (0.008)	0.400 (0.013)	0.601 (0.032)	0.801 (0.038)	
500	100	0.200 (0.001)	0.400 (0.001)	0.600 (0.001)	0.800 (0.001)	
1000	97.8	0.200 (0.001)	0.400 (0.001)	0.600 (0.001)	0.800 (0.001)	

Note: We use 1,000 replications of the data-generating process given in Equation (10) of the main text with c=1.5. The variance of the error terms is $\sigma_{\xi}^2 = \sigma_e^2 = \sigma_u^2 = 1$. The first panel reports the results for one active breakpoint at $\tau=0.5$, the second panel considers two active breakpoints at $\tau_1=0.33$ and $\tau_2=0.67$ and the third panel has four active breakpoints at $\tau_1=0.2$, $\tau_2=0.4$, $\tau_3=0.6$, and $\tau_4=0.8$. Standard deviations are given in parentheses. We conduct the $\sup(l+1|l)$ test at the 5% level to determine the number of breaks.

References

- Chan, N.H., Yau, C.Y., Zhang, R.M., 2014. Group LASSO for Structural Break Time Series. Journal of the American Statistical Association 109, 590–599. doi:10.1080/01621459. 2013.866566.
- Similä, T., Tikka, J., 2006. Common subset selection of inputs in multiresponse regression. Proceedings of the 2006 International Joint Conference on Neural Networks, 1908–1915.
- Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society. Series B: Statistical Methodology 68, 49–67. doi:10.1111/j.1467-9868.2005.00532.x.