FMI, Info, 2018/2019, Anul I Logică matematică și computațională

Exerciții suplimentare

- (S.1) Fie A, B mulțimi a.î. există $f: B \to A$ injectivă. Arătați, pe rând, următoarele:
 - (i) Dacă B este infinită, atunci și A este infinită.
 - (ii) Dacă B este infinită şi A este numărabilă, atunci B este numărabilă. În particular, orice submulțime infinită a unei mulțimi numărabile este numărabilă.

Demonstrație:

(i) Presupunem prin absurd că A este finită. Atunci există n astfel încât A are n elemente. Vom demonstra că există m astfel încât B are m elemente, ceea ce va contrazice ipoteza noastră.

Demonstrăm prin inducție după n.

Pentru n = 0, avem $A = \emptyset$. Dacă am avea un $x \in B$, atunci $f(x) \in A = \emptyset$, contradicție. Rămâne că $B = \emptyset$. Prin urmare B are 0 elemente, deci putem lua m := 0.

Presupunem că am arătat propoziția pentru mulțimi cu n elemente și considerăm acum că A are n+1 elemente. Luăm $g:\{1,...,n+1\}\to A$ bijecție. Notăm $C:=g(\{1,...,n\})$ și $D:=\{x\in B\mid f(x)\in C\}$.

Cum $f(D) \subseteq C$, putem atât restricționa cât și corestricționa pe f la o funcție $f': D \to C$ ce ia aceleași valori ca f și este deci tot injectivă. Facem același lucru pornind de la $g(\{1,...,n\}) = C$ și obținem o bijecție $g': \{1,...,n\} \to C$. Rezultă că C are n elemente. Aplicând ipoteza de inducție pentru f', obținem că există p astfel încât D are p elemente și deci există o bijecție $h: \{1,...,p\} \to D$.

Distingem două cazuri. Dacă nu există $a \in B$ cu f(a) = g(n+1), atunci B = D şi deci B are p elemente. Luăm aşadar m := p. În celălalt caz, dacă există $a \in B$ cu f(a) = g(n+1), avem că $B = D \cup \{a\}$, iar reuniunea este disjunctă. Luăm acum funcția $h' : \{1, 2, ..., p+1\} \to B$, definită, pentru orice j, prin:

$$h'(j) := \begin{cases} h(j), & \text{dacă } j \leq p \\ a, & \text{dacă } j = p + 1. \end{cases}$$

Cum h' este bijectivă, B are p+1 elemente. Luăm, aşadar, în acest caz, m:=p+1.

(ii) Demonstrăm prima dată că orice submulțime infinită a lui \mathbb{N} este numărabilă. Fie $B \subseteq \mathbb{N}$ infinită, deci nevidă. Construim inductiv o enumerare a sa

$$B = \{b_0, b_1, b_2, \ldots\},\$$

unde pentru orice n avem $b_n < b_{n+1}$ şi $b_n \ge n$.

Fie b_0 cel mai mic element al ei. Clar, $b_0 \ge 0$. Atunci, B fiind infinită, $B \setminus \{b_0\}$ rămâne infinită şi deci nevidă. Punem b_1 ca fiind minimul acelei mulţimi. Clar, $b_1 \ne b_0$ şi cum b_0 este minimul lui B, avem că $b_0 < b_1$. Rezultă şi că $b_1 > b_0 \ge 0$, deci $b_1 \ge 1$.

Presupunem că am fixat pe b_0, \ldots, b_n (pentru un $n \ge 1$) și vrem să îl alegem pe b_{n+1} , Îl punem ca fiind minimul lui $B \setminus \{b_0, \ldots, b_n\}$ și deci $b_{n+1} \ne b_n$. Dat fiind că b_n fusese ales ca minimul lui $B \setminus \{b_0, \ldots, b_{n-1}\}$, avem că $b_n < b_{n+1}$ și deci $b_{n+1} \ge n+1$.

Luăm funcția $g: \mathbb{N} \to B$, $g(n) = b_n$, pentru orice $n \in \mathbb{N}$. Funcția fiind strict crescătoare, este injectivă. Fie acum $m \in B$. Atunci $b_{m+1} \geq m+1 > m$. Cum b_{m+1} este minimul lui $B \setminus \{b_0, \ldots, b_m\}$, rezultă că $m \in \{b_0, \ldots, b_m\}$. Deci există $i \in \mathbb{N}$, $i \leq m$ cu $m = b_i = g(i)$. Am arătat așadar că g este surjectivă.

Demonstrăm acum enunțul principal. Fie $h:A\to\mathbb{N}$ o bijecție. Atunci $B\sim g(B)\sim h(g(B))$, deci h(g(B)) e infinită și este submulțime a lui \mathbb{N} , deci numărabilă, din cele anterioare. Rezultă că și B este numărabilă.

(S.2) Arătați, pe rând, următoarele:

- (i) Dacă I este o mulțime numărabilă și $(A_i)_{i\in I}$ este o familie de mulțimi numărabile, atunci $\bigcup_{i\in I}A_i$ este numărabilă.
- (ii) \mathbb{Q} este numărabilă.

Demonstraţie:

(i) Oferim mai întâi demonstrația pentru $I = \mathbb{N}$.

Fie $A'_n := \{n\} \times A_n$. Atunci, conform (S2.5), $(A'_n)_{n \in \mathbb{N}}$ este o familie disjunctă de mulţimi numărabile. Aplicăm (S4.2), (ii), pentru a concluziona că $\bigcup_{n \in \mathbb{N}} A'_n$ este numărabilă. Definim

$$f: \bigcup_{n\in\mathbb{N}} A_n \to \bigcup_{n\in\mathbb{N}} A'_n, \quad f(a) = (n_a, a),$$

unde $n_a = \min\{n \in \mathbb{N} \mid a \in A_n\}$. Este evident că f este bine definită (din faptul că $a \in \bigcup_{n \in \mathbb{N}} A_n$, rezultă că există $n \in \mathbb{N}$ cu $a \in A_n$, deci mulţimea căreia îi căutăm

minimul este nevidă) și injectivă. De asemenea, din (S.1),(i), $\bigcup_{n\in\mathbb{N}} A_n$ este infinită, deoarece A_0 este infinită și incluziunea

$$j: A_0 \to \bigcup_{n \in \mathbb{N}} A_n, \quad j(a) = a$$

este injecție. În sfârșit, putem aplica (S.1),(ii) pentru a conchide că $\bigcup_{n\in\mathbb{N}} A_n$ este numărabilă.

Considerăm acum cazul general, când I este o mulțime numărabilă arbitrară și fie $F: \mathbb{N} \to I$ o bijecție. Considerăm familia $(B_n)_{n \in \mathbb{N}}$ definită, pentru orice $n \in \mathbb{N}$, prin:

$$B_n := A_{F(n)}$$

Atunci $\bigcup_{i \in I} A_i = \bigcup_{n \in \mathbb{N}} B_n$ și deci $\bigcup_{i \in I} A_i \sim \bigcup_{n \in \mathbb{N}} B_n \sim \mathbb{N}$.

(ii) Notăm, pentru orice $n \in \mathbb{N}$, $A_n := \{\frac{m}{n+1} \mid m \in \mathbb{Z}\}$. Arătăm că mulțimile ce compun această familie numărabilă sunt și ele numărabile. Luăm pentru orice $n \in \mathbb{N}$, bijecția $f_n : \mathbb{Z} \to A_n$, definită, pentru orice m, prin $f_n(m) = \frac{m}{n+1}$. Observăm acum că \mathbb{Q} este reuniunea familiei, deci este și ea numărabilă, aplicând (??).