INTRO TO DATA SCIENCE EVALUATION METRICS AND PROCEDURES

FOR PREDICTION:

I. EVALUATION METRICS
II. EVALUATION PROCEDURES

I. EVALUATION METRICS

EVALUATION METRICS

For categorical labels

- For rankings/scorings
- For numeric predictions

	Predicted Spam	Predicted Ham
Actually Spam	1516	2
Actually Ham	1	855

Confusion Matrix:

What are the labels?

- What are the labels?
- What is "positive"? (Connect to "true positives" etc.)

- What are the labels?
- What is "positive"? (Connect to "true positives" etc.)
- How good is the result?

- What are the labels?
- What is "positive"? (Connect to "true positives" etc.)
- How good is the result?
- How can we quantify how good it is?

- What are the labels?
- What is "positive"? (Connect to "true positives" etc.)
- How good is the result?
- How can we quantify how good it is?
- How can we extend to more than two labels?

	Predicted Spam	Predicted Ham
Actually Spam	1516	2
Actually Ham	1	855

	Predicted Spam	Predicted Ham
Actually Spam	1516	2
Actually Ham	1	855

Accuracy = (blue + green) / total Precision = blue / (blue + red) Recall = blue / (blue + yellow)

Accuracy = (blue + green) / total Precision = blue / (blue + red) Recall = blue / (blue + yellow)

```
True Positive Rate =

blue / (blue + yellow)

False Positive Rate =

red / (red + green)
```

	Predicted Spam	Predicted Ham
Actually Spam	1516	2
Actually Ham	1	855

Accuracy = (blue + green) / total Precision = blue / (blue + red) Recall = blue / (blue + yellow)

True Positive Rate =

blue / (blue + yellow)

False Positive Rate =

red / (red + green)

Also F scores, which combine precision and recall

Accuracy = (blue + green) / total Precision = blue / (blue + red) Recall = blue / (blue + yellow)

True Positive Rate =

blue / (blue + yellow)

False Positive Rate =

red / (red + green)

Also F scores, which combine precision and recall

and kappas

Accuracy = (blue + green) / total Precision = blue / (blue + red) Recall = blue / (blue + yellow)

True Positive Rate =

blue / (blue + yellow)

False Positive Rate =

red / (red + green)

Also F scores, which combine precision and recall

and kappas

There are more methods and many more terms that can be used for many of these!

EVALUATION METRICS – RATINGS/SCORING

Email Number	Score	True Label
5	0.93	Spam
8	0.91	Spam
2	0.84	Spam
1	0.6	Ham
7	0.54	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Every email gets a spamminess score.

Choosing a cut-off, this becomes a classification.

How do we choose a cut-off?
How do we evaluate the ranking without choosing a cut-off?

EVALUATION METRICS – RATINGS/SCORING

Email Number	Score	True Label
5	0.93	Spam
8	0.91	Spam
2	0.84	Spam
1	0.6	Ham
7	0.54	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

EVALUATION METRICS - RATINGS/SCORING

Email Number	Score	True Label
5	0.93	Spam
8	0.91	Spam
2	0.84	Spam
1	0.6	Ham
7	0.54	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Another interpretation of AUC (cf. common language effect size)

For ratings/scoring that aren't for classification, there are other evaluation metrics such as Kendall's tau, types of gain, etc.

Briefly:

- Mean Squared Error
- Mean Absolute Error
- others possible

II. EVALUATION PROCEDURES

TRAINING ERROR

Q: What's wrong with training error?

TRAINING ERROR

Q: What's wrong with training error?

Thought experiment:

Suppose we train our model using the entire dataset.

TRAINING ERROR

Q: What's wrong with training error?

Thought experiment:

Suppose we train our model using the entire dataset.

Q: How low can we push the training error?

Thought experiment:

Suppose we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

Thought experiment:

Suppose we train our model using the entire dataset.

Q: How low can we push the training error?

 We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

Thought experiment:

Suppose we train our model using the entire dataset.

Q: How low can we push the training error?

 We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenon is called overfitting.

OVERFITTING 30

FIGURE 18-1. Overfitting: as a model becomes more complex, it becomes increasingly able to represent the training data. However, such a model is overfitted and will not generalize well to data that was not used during training.

OVERFITTING - EXAMPLE

Underfitting and Overfitting

OVERFITTING - EXAMPLE

Thought experiment:

Suppose we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenor is called overfitting.

A: Training error is not a good estimate of accuracy beyond training data.

Q: How can we make a model that generalizes well?

dataset

Q: How can we make a model that generalizes well?

1) split dataset model

dataset

Q: How can we make a model that generalizes well?

- 1) split dataset
- 2) train model

EVALUATION PROCEDURES

- 1) split dataset
- 2) train model
- 3) test model

- 1) split dataset
- 2) train model
- 3) test model
- 4) iterate

- 1) split dataset
- 2) train model
- 3) test model
- 4) iterate
- 5) choose final model

- 1) split dataset
- 2) train model
- 3) test model
- 4) iterate
- 5) choose final model
- 6) train on all data

- 1) split dataset
- 2) train model
- 3) test model
- 4) iterate
- 5) choose final model
- 6) train on all data
- 7) make predictions

NOTE

EVALUATION PROCEDURES

- 1) split dataset
- 2) train model
- 3) test model
- 4) iterate
- 5) choose final model
- 6) train on all data
- 7) make predictions

EVALUATION PROCEDURES

Q: What types of prediction error will we run into?

1) training error

- 1) training error
- 2) generalization error

EVALUATION PROCEDURES

- 1) training error
- 2) generalization error
- 3) 00S error

NOTE

EVALUATION PROCEDURES

- 1) training error
- 2) generalization error
- 3) 00S error

GENERALIZATION ERROR

Suppose we do the train/test split.

Q: How well does generalization error predict OOS accuracy?

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

A: On its own, not very well.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

A: On its own, not very well.

NOTE

The generalization error gives a high-variance estimate of OOS accuracy.

GENERALIZATION ERROR

Something is still missing!

Q: How can we do better?

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

A: Now you're talking!

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

A: Now you're talking!

A: Cross-validation.

CROSS-VALIDATION

1) Randomly split the dataset into n equal partitions.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2–3 using a different partition as the test set at each iteration.
- 5) Take the average generalization error as the estimate of OOS accuracy.

CROSS-VALIDATION

1) More accurate estimate of 00S prediction error.

- 1) More accurate estimate of 00S prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.

- 1) More accurate estimate of 00S prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split

- 1) More accurate estimate of 00S prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split
- 4) Can be used for model selection.

- 1) More accurate estimate of 00S prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split
- 4) Can be used for model selection.

NOTE

Leave one out crossvalidation is a special case of n-fold crossvalidation.

INTRO TO DATA SCIENCE