RESPONSE UNDER 37 C.F.R. § 1.111

Application No.: 10/809,519

H(OCH₂CH₂)₁C

wall applications.

$$O(CH_2CH_2O)_nH$$
 $O(CH_2CH_2O)_nH$
 $O(CH_2CH_2$

O(CH₂CH₂O)_mH

Referring to pages 2 to 3 of the Office Action, the Examiner concedes that Hergenrother '118 is deficient in that it fails to disclose using the rubber compositions thereof for side wall applications. The Examiner attempts to alleviate this deficiency by asserting that a person of ordinary skill in the art would have motivated to apply the rubber compositions thereof for side

Attorney Docket No.: Q80709

Applicants respectfully submit that Hergenrother '118 is also deficient in that it fails to disclose or suggest the claimed non-ionic surfactant. Hergenrother '118 discloses a polyoxyethylene derivative represented by the following formula:

$$CH_{2}-O(CH_{2}CH_{2}O)_{\overline{w}}-C--R$$

$$CH_{2}O(CH_{2}CH_{2}O)_{x}H$$

$$H(OCH_{2}CH_{2})_{z}O O(CH_{2}CH_{2}O)_{y}H$$

See col. 7, line 59, to col. 8, line 16. The polyoxyethylene derivative disclosed in Hergenrother '118 is different from the claimed non-ionic surfactant. For example, the polyoxyethylene derivative thereof possesses the substituent $-O(CH_2CH_2O)_wCOR$. In contrast, corresponding substituent in the claimed non-ionic surfactant represented by formula (II) is $-OCOR^1$. The polyoxyethylene derivative disclosed in Hergenrother '118 possesses an additional group

RESPONSE UNDER 37 C.F.R. § 1.111 Attorney Docket No.: O80709

Application No.: 10/809,519

represented by (CH₂CH₂O)_w. In this regard, Hergenrother '118 is also deficient in that it fails to teach or suggest a nonionic surfactant represented by formula (I) or (II).

Further, there is no motivation to modify the polyoxyethylene derivate disclosed in Hergenrother '118 to the claimed non-ionic surfactant represented by formula (II). Hergenrother '118 discloses that the polyoxyethylene derivative is added as a processing aid to a silica-filled rubber composition for a tire tread portion. Hergenrother '118 discloses that the polyoxyethylene derivative is added for the purpose of improving the processability of the rubber composition thereof. In this regard, Hergenrother '118 would not have motivated a person of ordinary skill in the art to modify the polyoxyethylene derivate thereof into the claimed non-ionic surfactant represented by formula (II). Hergenrother '118 is entirely different from the claimed tire in that the technical field, objective, construction, and effects cannot be easily be conceived from Hergenrother '118.

In view of the above, reconsideration and allowance of this application are now believed to be in order, and such actions are hereby solicited. If any points remain in issue which the Examiner feels may be best resolved through a personal or telephone interview, the Examiner is kindly requested to contact the undersigned at the telephone number listed below.

RESPONSE UNDER 37 C.F.R. § 1.111

Application No.: 10/809,519

Attorney Docket No.: Q80709

The USPTO is directed and authorized to charge all required fees, except for the Issue Fee and the Publication Fee, to Deposit Account No. 19-4880. Please also credit any overpayments to said Deposit Account.

Respectfully submitted,

Registration No. 58,490

SUGHRUE MION, PLLC

Telephone: (202) 293-7060

Facsimile: (202) 293-7860

WASHINGTON OFFICE

23373

CUSTOMER NUMBER

Date: September 26, 2007