作业讲解:

1.略

2.橡胶的热力学方程是 $f = \left(\frac{\partial U}{\partial l}\right)_{T,V} + T\left(\frac{\partial f}{\partial T}\right)_{l,V}$

其物理意义为橡胶的张力是由于形变时内能及熵发生的变化所引起的。

由于橡胶高弹形变是可逆的,根据恒温可逆过程dQ = TdS,拉伸过程中熵减小,熵变是负值,因而dQ < 0,即橡胶拉伸时是放热的。

橡胶在形变过程中的内能及体积变化几乎不变,因此热力学第一定律dU=dQ-dW中,dU=0,有dQ=dW=-fdl。 受热时dQ>0,即有dl<0,即体系受热时,橡胶收缩,因而具有负的膨胀系数。

5.提高抗张强度的途径:

- 1)分子结构上:可在主链引入芳杂环;适度引入极性 基团或可形成氢键基团,以增加分子间相互作用; 适度交联;增加聚合物分子量到临界分子量以上;
- 2)聚集态结构上:提高结晶度;减小球晶尺寸;提高取向程度;
- 3) 织态结构上:添加增强填料;与其它高强度聚合物共混。

提高冲击强度的途径:提高分子量、取向、适度交联、增塑、共混等

4.在 T_g 以下,聚合物的形变主要是由键长、键角变化引起的普弹性变,完全跟得上外力变化,所以内耗很小。随温度的升高向高弹形变过度,分子链段开始运动,但由于体系粘度很大,链段运动的摩擦阻力较大,使得高弹形变显著落后于外力变化,内耗较大。温度进一步升高,链段运动更自由,又能跟得上外力变化,内耗因而减小。所以在玻璃化转变区域会出现内耗的极大值。在黏流转变区,由于分子间相互滑移,内耗也会急剧增加。

类似的, 当频率很低时, 链段运动完全跟得上外力变化, 内耗很小, 聚合物表现出高弹性。频率很高时, 链段运动 完全跟不上外力变化, 内耗也小, 聚合物表现出玻璃态力 学性质。只有在中等频率下, 链段可以运动, 但又跟不上 外力变化时,将出现内耗的极大值, 粘弹性表现显著。

6. 根据橡胶状态方程 $\sigma = N_0 kT(\lambda - \frac{1}{\lambda^2})$

1)
$$N_0 = \frac{\sigma}{kT(\lambda - \frac{1}{\lambda^2})} = \frac{1.5 \times 10^6}{1.38 \times 10^{-23} \times 298.15 \times \left(2.5 - \frac{1}{2.5^2}\right)} = 1.558 \times 10^{26} / \text{m}^3$$

$$2)\frac{\sigma_{2}}{\sigma_{1}} = \frac{N_{0}kT_{2}(\lambda_{2} - \frac{1}{\lambda_{2}^{2}})}{N_{0}kT_{1}(\lambda_{1} - \frac{1}{\lambda_{1}^{2}})} \implies \sigma_{2} = \frac{(\lambda_{2} - \frac{1}{\lambda_{2}^{2}})}{(\lambda_{1} - \frac{1}{\lambda_{1}^{2}})} \cdot \sigma_{1} = \frac{\left(1.5 - \frac{1}{1.5^{2}}\right)}{\left(2.5 - \frac{1}{2.5^{2}}\right)} \times 1.5 \times 10^{6} = 6.67 \times 10^{5} \text{ N/m}^{2}$$

3)
$$\frac{\sigma_2}{\sigma_1} = \frac{N_0 k T_2 (\lambda_2 - \frac{1}{\lambda_2^2})}{N_0 k T_1 (\lambda_1 - \frac{1}{\lambda_1^2})} \Rightarrow \sigma_2 = \frac{T_2}{T_1} \cdot \sigma_1 = \frac{373.15}{298.15} \times 1.5 \times 10^6 = 1.88 \times 10^6 \text{ N/m}^2$$

10.略

15.

Maxwell模型上施加恒定外力,弹簧会瞬间形变,此后黏壶 被慢慢拉开, 形变随时间变化, 体现的是牛顿流体的粘性流 动。

Voigt模型上施加恒定外力,反映的是交联聚合物的蠕变曲线, 形变随时间指数增加并趋于恒定。

考试题型

A卷

B卷

- 一. 单项选择题(30分, 每题2分)
- 一. 单项选择题(30分, 每题2分)
- 二. 多项选择题(10分, 每题1分)
- 二. 选择填空题(15分, 每题1分)
- 三. 是非题(10分, 每题1分)
- 三. 是非题(10分, 每题1分)
- 四. 名词解释(15分, 每题3分)
- 四. 简答题(共20分, 每题4分)
- 五. 问答题(25分, 2题)
- 五. 图示题(15分, 2题)
- 六. 计算题(10分, 1题)
- 六. 计算题(10分, 1题)

答疑安排

6/23	13:30-21:00	C教休息室
------	-------------	-------

6/24 上课时间 C408

> C教休息室 10:00-15:30

6/30 13:00-21:00 C教休息室

B卷

- 一. 单项选择题 (每题 2 分, 共 20 分)
- ()1. 下列聚合物中内聚能密度最大的是

(A)聚丙烯; (B)聚异丁烯; (C)聚丁二烯;

()2. 如果不考虑键接顺序,线形聚异戊二烯的异构体种类数是

(D) 8 (A) 5; (B) 6; (C) 7;

()3. 下列分子量相同的聚合物,在相同条件下用稀溶液粘度法测得的特性黏 数最大的是

(D)聚氯乙烯

(A)高支化度; (B)中支化度; (C)低支化度; (D)线性

- ()4. 全同聚丙烯的分子链在晶体中所采取的构象与下列哪种聚合物类似
 - (A) 聚乙烯; (B) 聚对苯二甲酸乙二酯; (C) 聚甲醛
- ()5. 下列参数中一般与聚合物溶度参数无关的是

(A)分子量; (B)极性; (C)分子间力; (D) 内聚能密度

	(A)越大; (B)越小; (C)不变; (D) 不确定
()7.可用来描述高聚物等温结晶过程的方程是
	(A) Avrami 方程; (B) Ahrenius 方程; (C) WLF 方程; (D) MHS 方程
()8. 下列聚合物熔体在冰水中淬火,所得固体试样透明度最高的是
	(A)全同聚丙烯; (B)聚乙烯; (C)聚对苯二甲酸乙二酯; (D)ABS
() 9. 下列高聚物中,综合性能(同时具有较高的强度和韧性)最好的是
	(A) ABS 树脂; (B) 聚丙烯腈; (C) 聚丁二烯; (D) 聚苯乙烯
()10. 下列高聚物中,在室温下容易发生屈服冷拉的是
	(A) 天然橡胶; (B)酚醛塑料; (C)聚乙烯; (D) 有机玻璃
() 6. 下列实验方法中能测定高分子溶液θ 温度的是
	(A) 粘度法; (B) GPC 法; (C) 膜渗透压法; (D) 光散射法
() 7.下列橡胶中不能用作轮胎的有
	(A) 氯丁橡胶; (B) 顺丁橡胶; (C) 异戊橡胶; (D) 丁腈橡胶
() 8. 与橡胶高弹形变有关的分子运动单元有
	(A) 链段; (B) 整链; (C) 键长; (D) 键角
() 9. Voigt 模型可用来模拟
	(A) 线形聚合物的蠕变行为; (B) 交联聚合物的蠕变行为;
	(C)线形聚合物的应力松弛行为;(D)交联聚合物的应力松弛行为;
()10. 下列因素中,使聚合物拉伸强度提高的有
	(A) 主链引入芳杂环; (B) 加入增塑剂; (C) 提高支化度;
	(D)提高交联度; (E)增加分子极性

()6. 高分子链的柔顺性越好, 其等效自由结合链的链段长度

- 二. 多项选择题(每题2分,共20分) (下面每题至少有一个答案是正确的,全部答对得2分))1. 根据橡胶热力学方程,与产生橡胶张力有关的热力学参数有 (A) 内能; (B) 熵; (C) 体积: (D) 自由能: (E) 热焓
-) 2. 描述聚合物结晶的结构模型有
 - (A) 无规线团模型; (B) 折叠链模型; (C) 缨状微束模型;
 - (D) 两相球粒模型: (E) 插线板模型
-) 3. 聚合物下列性质随结晶度增加而增大的是
 - (A) 拉伸强度; (B) 密度; (C) 冲击强度; (D) 断裂伸长率; (E)模量
-) 4. 下列哪些因素可提高结晶速率

(A) 溶剂;

- (B) 拉伸; (C) 增大相对分子量;
- (D) 成核剂
-) 5. 下列实验方法中可测定聚合物结晶速率的方法有
 - (A) IR 法; (B) 膨胀计法; (C) 解偏振光强度法; (D) DSC 法

- 三. 是非题(每题1分,共15分)
- (\times) 1. 聚合物的 T_g 大小与测定方法无关,是一个衡定值。
- (x)2. 不同聚合物分子链的均方末端距越短,表示分子链的柔顺性越好。
- (×)3. 随聚合物结晶度的增加, 抗张强度和抗冲强度增加。
- (×)4. 短支链可降低结晶度,长支链会改善材料流动性
- (×)5. WLF 方程适用于聚合物的松弛过程。
- (✓) 6. 分子间作用力强的聚合物一般具有较高的强度和模量。
- (×)7. 橡胶形变时有热效应,在拉伸时放热,而压缩时吸热。
- (x)8. 凝胶渗透色谱的淋出体积越大,该级分的相对分子量越大。

- (×)9. 取向与结晶是相同的,都是三维有序。
- (✓) 10. 聚合物熔体的零切粘度大于其表观粘度。
- (×)11. 结晶聚合物都能形成高分子液晶。
- (×)12. 由于拉伸会产生热量使温度上升,因此结晶速率会下降。
- (×)13. 时温等效原理就是指时间可以换算成温度。
- (×)14. 结晶聚合物的熔点高于其粘流温度。
- (✓) 15. 柔性链聚合物并非都具有高弹性。

2. 在同一坐标中画出非晶态线形聚合物及高度结晶聚合物的温度-形变曲线,并标注相应的转变温度,其中结晶聚合物熔点高于黏流温度。(8分)

四. 图示题(共15分)

1. 在同一坐标轴上画出丙烯腈-苯乙烯二元共聚物(AS)和丙烯腈-苯乙烯-丁二烯三元共聚物(ABS)的应力-应变曲线。(7分)

五. 简答题(每题5分,共10分)

1. 在主链碳原子数相同情况下,试比较聚酯、聚乙烯、聚酰胺的熔点大小,并简要说明理由。

熔点顺序:脂肪族聚酰胺>聚乙烯>脂肪族聚酯(1分)。这是因为聚酰胺的分子之间有氢键形成(2分);而聚酯中酯键的存在增加了分子的柔性(2分)。

2. 写出不少于5个能体现聚合物溶液处于θ状态时的相关参数的数值。

 θ 状态下的热力学参数: Huggins参数 $\chi_1 = 1/2$,扩张因子a = 1,过量化学位 $\Delta\mu^E = 0$ 、排斥体积u = 0、第二维里系数 $A_2 = 0$ 、MHS方程中指数 $\alpha = 0.5$ 、溶液温度 $T = \theta$ 。(以上参数写出任意5个,每个1分)

六. 计算题(共20分)

已知 PE 和 PMMA 的黏流活化能分别为 41.8 kJ/mol 和 192.3 kJ/mol, PE 在 190 ℃ 时的黏度为 114 Pa·s, PMMA 在 230 ℃的黏度为 490 Pa·s。R=8.314 Pa·m³/(mol·K) 试求:

- 1) PE 在 250 ℃时的黏度:
- 2) PMMA 在 250 ℃时的黏度:
- 3) 说明链结构对聚合物黏度的影响:
- 4) 说明温度对不同结构聚合物黏度的影响。

A卷

- 一. 单项选择题 (每题 2 分, 共 30 分)
- ()1. 下列条件中适合制备球晶的是
 - (B) 熔体: (A) 稀溶液:
- (C) 高温高压:
- (D) 受剪切力
- ()2. 对同一聚合物样品,下列表征其尺寸的物理量中最大的是
 - (A) 自由结合链均方末端距;
- (B) 自由旋转链均方末端距;

- (C) 均方旋转半径
- ()3. 下列聚合物的结构中属于二级结构的是
- (A)构型; (B)构象; (C)支化; (D)晶态结构
- ()4. 非极性结晶聚合物在下列哪种溶剂中可以溶解
 - (A)热的强极性溶剂; (B))热的非极性溶剂;
 - (C)高沸点极性溶剂; (D)能与之形成氢键的溶剂
- ()5. 高分子良溶液的过量化学位
 - (A) 大于零; (B)等于零; (C) 小于零; (D)不确定

解:由于所求黏度均在黏流温度以上,故用 Arrhenius 方程

$$\eta = Ae^{\Delta E_{\eta}/RT} \stackrel{\text{def}}{=} \ln \Lambda + \frac{E_{\eta}}{RT}$$

$$(4 \%)$$

有 $\ln \frac{\eta_{T_i}}{\eta_T} = \frac{E_{\eta}}{R} \left(\frac{1}{T_i} - \frac{1}{T_2} \right)$

1) 对 PE 有
$$\ln \frac{\eta_{250}}{114} = \frac{41.8 \times 10^3}{8.314} \left(\frac{1}{273.15 + 250} - \frac{1}{273.15 + 190} \right)$$
 (2 分)

得
$$\eta_{250}^{PE} = 32.9 \,\mathrm{Pa} \cdot \mathrm{s}$$
 (2分)

2) 对 PMMA 有
$$\ln \frac{\eta_{250}}{490} = \frac{192.3 \times 10^3}{8.314} \left(\frac{1}{273.15 + 250} - \frac{1}{273.15 + 230} \right)$$
 (2 分)

得
$$\eta_{250}^{PMMA} = 84.5 \,\mathrm{Pa} \cdot \mathrm{s}$$
 (2分)

- 3) 相同温度下, 刚性 PMMA 链的黏度比柔性链大。 (4分)
- 4) 刚性连熔体黏度比柔性链对温度更敏感。 (4分)
- ()6. 膜渗透压法测定聚合物相对分子量,以 $\frac{\pi}{pTc}$ 对 c 作图,得到的直线截距

随温度升高而

- (A) 增大; (B) 不变; (C) 减小; (D) 不确定

- ()7. 下列高聚物中,使用温度下限为 T₂的是
 - (A) 聚乙烯; (B) 聚四氟乙烯; (C) 聚二甲基硅氧烷; (D) 环氧塑料
- ()8. 交联橡胶的模量随温度升高
 - (A)升高;
- (B)下降: (C)不变:
- (D)不确定
- ()9. 下列方法中不能测定聚合物熔体粘度的是
 - (A)毛细管粘度计; (B 旋转粘度计; (C)乌氏粘度计; (D)落球粘度计
- ()10. 高聚物发生强迫高弹形变的条件是
 - (A) 断裂应力小于屈服应力; (B) 断裂应力大于屈服应力;
 - (C) 断裂应力等于屈服应力

()11. 在适当外力作用以下,在以下哪个温度区有明显粘弹性现象	
(A)T _g 以下很多; (B) T _g 附近; (C) T _g 以上很多; (D) T _f 以上	
()12. 实际橡胶网络中存在自由链端,导致其弹性模量比理想网络	
(A)偏大; (B)偏小; (C)不变; (D)不确定	
()13. 利用时温等效原理做叠合曲线时,计算移动因子的方程是	
(A) Avrami 方程: (B) Ahrenius 方程: (C) WLF 方程	
()14. 在光散射实验中,若入射光是非偏振光,分别在90°~180°的散射角范	î,
围测定小粒子散射光强,所测得的散射光强随散射角增大而	
(A) 增大; (B) 不变; (C) 减小; (D) 不确定	
()15. 提高高分子材料拉伸强度的有效途径是	
(A)提高拉伸速度; (B))取向; (C)增塑; (D)加入碳酸钙	
(A) JAC PROPERTY OF THE PROPER	
()4. 下列有关应力松弛现象的描述,不正确的是	
(A) 在温度和形变保持不变的情况下, 高聚物内部的应力随时间增	
加而逐渐衰减的现象;	
(B) 交联聚合物的应力可以松弛到零;	
(C) 线形聚合物的应力可以松弛到零;	
(D) 在远低于 $T_{\rm g}$ 的温度下,应力松弛很慢	
()5. 下列有关橡胶高弹性的描述,正确的是	
(A)弹性模量较小; (B)形变量较小; (C)伸长时会放热;	
	1
(D) 回缩时会放热; (E) 形变是一个松弛过程	
2	
()7. 理想溶液的热力学性质是	
(A) $\Delta H_{\rm m}$ =0; (B) $\Delta S_{\rm m}$ =0; (C) $\Delta V_{\rm m}$ =0; (D) χ_1 =0.5; (E) χ_1 =0	

二. 多项选择题(每题1分,共10分) (下面每题至少有一个答案是正确的,全部答对得1分)) 1. 下列因素中,使 T_{g} 升高的有 (A) 主链引入刚性基团; (B) 主链引入孤立双键; (C)增加分子极性; (D)加入增塑剂; (E) 引入氢键) 2. 下列物理量中,可以用来表示聚合物流动性的有 (A) 表观黏度; (B) 黏流活化能; (C) 熔融指数; (D) 剪切速率) 3. 下列能作为塑料使用的聚丁二烯有 (B) 间同聚 1,2-丁二烯; (A) 全同聚 1,2-丁二烯; (C) 顺式聚 1,4-丁二烯; (D) 反式聚 1,4-丁二烯

) 8. Maxwell 模型可用来模拟

(A) 线形聚合物的蠕变行为; (B) 交联聚合物的蠕变行为;

(C) 线形聚合物的应力松弛行为; (D) 交联聚合物的应力松弛行为;

(E) 牛顿流体的蠕变行为

)9. 下列因素与高分子在溶液中的特性粘数有关的是

(A) 溶液浓度; (B) 高分子相对分子量; (C) 溶剂; (D) 温度

)10. 产生高弹性的分子结构特征为

(A) 分子链有一定柔性; (B) 分子间相互作用强;

(C) 分子间化学键连接;

(D) 足够大的相对分子量;

(E) 常温下能结晶

三. 是非题(每题1分,共10分)

- (×)1. 玻璃化温度是热塑性塑料使用温度的上限,橡胶使用温度的下限。
- (\times) 2. 聚合物的 $T_{\mathbf{e}}$ 随升温速率的增大而提高,随降温速率的增加而降低。
- (x)3. 分子在晶体中是规整排列的,所以只有全同立构或间同立构的高分子才能结晶,无规立构高分子不能结晶。
- (\times) 4. 当温度高于 T_f 后整个分子链开始运动。
- (✓) 5. 高分子溶液的第二维利系数与排斥体积的变化趋势一致。
- (×)6. 聚合物与溶剂的溶度参数越接近,其在溶液中的特性粘数越小。
- (×)7. 尼龙可在常温下溶于甲酸,表明结晶聚合物可直接溶于极性溶剂中。
- (×)8. 在聚合物晶体的熔点以下,随结晶温度的降低,结晶速率减小。
- (✓) 9. 高分子溶液的特性黏数在不良溶剂中随温度升高而升高。
- (✓) 10. 聚丁二烯中顺式结构比反式结构熔点更低。
- 2. 画出聚合物相对分子质量分布曲线,并标明气相渗透法、光散射法、黏度法测得同一聚合物样品的相对分子量大小。(5分)

四. 图示题 (共15分)

1. 画出聚合物结晶速度与结晶温度之间的关系曲线,并标出玻璃化转变温度 (T_g 和熔点 (T_m) 的大致位置。解释为什么聚合物的结晶温度在 T_g 和 T_m 之间,且有一最大结晶速率温度。(10 分)

在 T_g 以下,链段运动被冻结(1分), T_m 以上晶体将被熔融(1分),因此,通常只有在 $T_g \sim T_m$ 之间,高聚物的本体结晶才能发生。高聚物的结晶速度对温度的依赖性是晶核生长速度对温度依赖性和晶粒生长速度对温度依赖性共同作用的结果(2分)。当晶核形成和晶粒增长都有较大速率时,结晶速率出现极大值(1分)。

五. 问答题(共15分)

- 1. 比较下列聚合物玻璃化转变温度的大小,并解释其原因。(8分)
 - (1) 聚二甲基硅氧烷、聚甲醛和聚乙烯;
 - (2) 聚乙烯、聚丙烯和聚苯乙烯;
 - (3) 聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯和聚甲基丙烯酸丙酯;
 - (4) 尼龙 6 和尼龙 10。

玻璃化温度顺序依次为:

- (1) 聚二甲基硅氧烷<聚甲醛<聚乙烯(1分); 因为主链柔顺性 Si-O>C-O>C-C(1分)
- (2) 聚乙烯<聚丙烯<聚苯乙烯 (1分); 因为侧基体积越大,链段刚性越大, T_g 越高,PE 的 H< PP 的甲基<PS 苯环 (1分)
- (3)聚甲基丙烯酸甲酯>聚甲基丙烯酸乙酯>聚甲基丙烯酸丙酯 (1分);因为聚甲基丙烯酸酯带有柔性侧基,具有内增塑效应,侧链越长,T₂越低 (1分)。
- (4) 尼龙 6>尼龙 10 (1 分); 聚酰胺形成分子间氢键,结构单元碳原子数约大,氢键密度越低, T_g 越低 (1 分)。

2. 试解释为何聚四氟乙烯(PTFE)不能通过熔融或溶解的方式进行加工? (7 分)

PTFE 由于高度对称,结晶能力很强(1分),又由于 F 的电负性很强,相互间斥力大,导致 碳链骨架被 F 原子包围起来,形成螺旋硬棒状结构(1分),使 PTFE 熔点高于其分解温度 (1分),因而不能通过熔融进行加工。

此外,PTFE 是非极性结晶聚合物(1分),且由于结晶度大,熔点高,溶解时要经历结晶熔融和与溶剂混合两个吸热过程(1分),导致 $\Delta H_{\rm m}$ 较大,溶度参数相近的非极性溶剂很难满足 $\Delta H_{\rm m}$ </br>
《 $T\Delta S_{\rm m}$ 的条件(1分),而包在碳链外的氟原子又具有极好的耐化学品能力(1分),因而找不到合适的溶剂溶解 PTFE。

2.25℃的 θ 溶剂中,测得浓度为 7.36×10^{-3} g/mL 的 PVC 溶液渗透压为 0.248 g/cm²,求此试样的相对分子质量和第二维里系数,并指出所得是何种平均分子量。 $R=8.48\times10^4$ g·cm/(mol·K)

$$\mathbf{M}$$
: 因处于 θ 溶剂, 故 $A_2=0$ (3分)

膜渗透压方程简化为
$$\frac{\pi}{c} = RT \frac{1}{M}$$
 (3分)

$$M = RT \frac{c}{\pi}$$
= 8.48×10⁴×298.15× $\frac{7.36\times10^{-3}}{0.248}$

$$=7.5\times10^{5}\tag{3}$$

六. 计算题 (每题 10 分, 共 20 分)

1. PS 试样有工作曲线 $\lg[\eta]M=-0.2352V_e+12.7072$ 。相同条件下,测定 PMMA 试样,已知 PMMA 的 $K=6.27\times10^5$, $\alpha=0.76$,试导出 PMMA 的 $M-V_e$ 关系式。

解:根据普适标定方程有
$$[\eta]_{PS}M_{PS} = [\eta]_{PMM}M_{PMM}$$
 (2分)

又因
$$[\eta]_{PMMA} = KM_{PMMA}^{\alpha}$$
 (2分)

故有
$$[\eta]_{PS}M_{PS} = [\eta]_{PMMA}M_{PMMA} = KM_{PMMA}^{\alpha+1}$$
 (2分)

$$\lg M_{PMMA} = \frac{1}{\alpha + 1} (\lg[\eta]_{PS} M_{PS} - \lg K) \qquad (2 \, \text{$\frac{1}{1}$})$$

$$= \frac{1}{0.76 + 1} (-0.2352V_e + 12.7072 - \lg 6.27 \times 10^5)$$

$$= 3.926 - 0.1336V_e \qquad (2 \, \text{$\frac{1}{1}$})$$