TEST	SERIES	CONVERGES IF	DIVERGES IF	COMMENTS
nth Term Test for Divergence	$\sum_{n=1}^{\infty} a_n$	n/a	$\lim_{n\to\infty}\neq 0$	should be first test used. Inconclusive if limit = 0.
Geometric Series Test	$\sum_{n=1}^{\infty} a_n r^{n-1}$	r < 1	$ r \ge 1$	use if there is a "common ratio" $S_n = \frac{a}{1-r}$
P-Series Test	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	<i>p</i> > 1	$p \le 1$	harmonic series when p=1. Useful for comparison tests.
Integral Test	$\sum_{n=1}^{\infty} a_n$ $a_n = f(x)$	$\int_{1}^{\infty} f(x) dx$ converges	$\int_{1}^{\infty} f(x) dx$ diverges	f(x) must be continuous, positive, and decreasing
Direct Comparison Test	$\sum_{n=1}^{\infty} a_n$	$0 \le a_n \le b_n$, $\sum_{n=1}^{\infty} b_n$ converges	$0 \le b_n \le a_n$, $\sum_{n=1}^{\infty} b_n$ diverges	to show convergence, find a larger series. to show divergence, find a smaller series.
Limit Comparison Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n o\infty}rac{a_n}{b_n}>0,$ $\sum_{n=1}^{\infty}b_n$ converges	$\lim_{n\to\infty} \frac{a_n}{b_n} > 0,$ $\sum_{n=1}^{\infty} b_n$ diverges	apply l'hospital's rule if necessary; inconclusive if limit equals 0 or ∞
Alternating Series Test	$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$	$\mu \rightarrow \omega$	$\lim_{n\to\infty}a_n\neq 0$	must prove that the limit equals 0 and that terms are decreasing
Ratio Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right >1$	test fails if: $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1$
Root Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$	$\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$	test fails if: $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1$