

Test Report

Test Report Number

EOTEL025

Applied Standard(s)

FCC Part15 Subpart C, ANSI C63.4-2003

Date of Issue

13th, March 2014

Testing Laboratory

Address

e-OHTAMA, Ltd.

Tokyo Laboratory EMC No1.Site

2-8-20 Kuriki, Asao-ku Kawasaki-shi, Kanagawa, 215-0033 Japan

Test Date(s)

13th March, 2014

Product Name

Environmental sensor

Model Number

FS301

Serial Number

Applicant (Client)

GM3 Co.,Ltd.

Address

3-15-1804, Kanda-Neribeicyo, Chiyoda-Ku, Tokyo, 101-0022 Japan

Manufacturer

Address

3-15-1804, Kanda-Neribeicyo, Chiyoda-Ku, Tokyo, 101-0022 Japan

FCC ID

2ABSUES301

Test Result

The test result for the electromagnetic compatibility tests as described in the section 1 to 2 and in this page was:

Pass

Tested by: Katswork Hatanaka

Katsutoshi Hatanaka Test Enginner

Approved by:

Koji Imai **Testing Group Leader**

Checked box (X) indicates that the listed condition, standard or equipment is applicable for this Report. Blank box () indicates that the listed condition, standard or equipment is not applicable for this Report. It is not allowed to copy this report, except in full, without written permission of the test laboratory. Test results of this report refer only to the EUT tested here.

	Page
Cover Page	
Table of Contents	2
1. Summary	
1.1 Terms and definitions	
1.2 Standard(s) and Result	
1.3 Deviations from Standard(s)	
2. Equipment Under Test (EUT)	
2.1 General Descriptions	5
2.2 Detailed Descriptions	
2.3 Worst-Case Configuration and Mode	
2.4 Operation Mode(s) of the EUT for EMC during the Test(s)	5
2.5 Peripheral Devices(*)	5
2.6 Interconnecting Cables ^(*)	5
2.7 System Configuration	
3. Test Data	7
3.1 Test specification	
3.2 6dB Bandwidth	
3.3 Maximum Peak Output Power	
3.4 Band Edge of Compliance of RF Conducted Emissions	
3.5 Radiated emission	
3.6 Peak Power Spectral Density	
4. Test Setup Photographs	14
5. Test facility	17
5.1 Test Instruments	
5.2 Test equipment	
5.3 Normalized Site Attenuation	
Annex A (Miscellaneous Information)	18
A.1 Test Locations	18
Annex B (Description of Test Method)	19
B.1 Conducted Emissions (AC Main and Other Terminals)	
B.2 Radiated Electric-Field Emissions (30 MHz to 1000MHz)	19
B.3 Radiated Electric-Field Emissions above 1000MHz	19
B 4 Radiated Magnetic-Field Emissions	19

1. Summary

1.1 Terms and definitions

ΑV

Average

DoC

Declaration of Conformity

EUT

Equipment Under Test

PΚ

Peak

QΡ

Quasi-peak

1.2 Standard(s) and Result

Applied Standard(s)	Normative Reference(s)	Classification	Result	Note
FCC Part15 Subpart C	20dB Bandwidth(FHSS only)	15.247(a)(1)	N/A	
	6dB Bandwidth(Dagital only)	15.247(a)(2)	Pass	
	Carrier Frequency Separation (FHSS only)	15.247(a)(1)	N/A	
	Number of Hopping Frequencies (FHSS only)	15.247(a)(1)	N/A	
	Time of Occupancy(Dwell Time) (FHSS only)	15.247(a)(1)	N/A	
	Maximum Peak Output Power	15.247(b)(1)(2)FHSS 15.247(b)(3) Dagital	Pass	
	Band Edge of Compliance of RF Conducted Emissions	15.247(d)	Pass	
	Restricted Bands of Operation	15.247(d)	Pass	
	Peak Power Spectral Density (Dagital only)	15.247(e)	Pass	
	Conducted emissions	15.207	N/A	
	Radiated emissions	15.209 15.205	Pass	
	Maximum Permissible Exposure	1.1310 Safety code6, 2.2.1	N/A	

Note1 : This test measured according to the following procedure:FCC publication KDB558074 Measurement of Digital Transmission Systems Operating under Section 15.247 April 9, 2013

1.3 Deviations from Standard(s)

There was no deviation from the standard.

2. Equipment Under Test (EUT)

2.1 General Descriptions

Compact wireless thermo sensor for overhead line, distribution line, substation and others.

2.2 Detailed Descriptions

Product Name Environmental sensor

Model Number ES301

Serial Number -

Power Supply 3.0V (Coin Battery CR2450)
Dimension 40.0mm x 45.1mm x 12.6 mm

Operating Frequency 926.8MHz

Normal Placement Convenience store

Condition of the EUT Prototype

2.3 WORST-CASE CONFIGURATION AND MODE

(a) EUT axes

The fundamental was measured in three different orientations X, Y and Z to find worst-case orientation, and it was found that Y orientation is worst-case; therefore final testing for radiated emissions was performed with EUT in X orientation with Cable.

2.4 Operation Mode(s) of the EUT for EMC during the Test(s)

Operation Mode Name	Description
TX mode	Normal operation TX mode

2.5 Peripheral Devices

Mark	Description	Model Number	Serial Number	FCC ID Code or Manufacturer
				DoC status
NI/A				

2.6 Interconnecting Cables

Mark	Description	Length	Shielded		Tested Port	t(s) (Note:1)
		(m)	Cable	Connector	Applicable	Interface
N/A						

e-OHTAMA, Ltd., Tokyo Laboratory 2-8-20 Kurigi, Asao-ku Kawasaki-shi, Kanagawa, Japan TEL: +81-44-980-2052 Test Report Number EOTEL025

Form Rev. 1.00

2.7 System Configuration

Unless otherwise specified in the following sections, the test configuration described here is applied for the tests. The configuration was choice by the applicant.

EUT

3. Test Data

3.1 Test specification

Standard FCC Part15 Subpart C 15.205 15.207 15.209 15.247, ANSI C63.4-2003

Frequency Range 926.8MHz

Test Date 13th February, 2014
Test Location Tokyo Laboratory
Anechoic chamber No.1

Test Engineer Katsutoshi Hatanaka

Temperature 17.5 °C Humidity 56% RH Pressure 1005 hPa

Power Supply 3.0V (Coin Battery CR2450)

Operation Mode Name TX mode (Normal operation TX mode)

Tested TX modulation F1D

Tested channel 926.8MHz

Remark: *1 : Equivalent isotropic radiated power and Frequency Range only.

3.2 6dB Bandwidth

3.2.1 Test Result

Center Frequency	6dB Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
926.8	560.0	500	60.0

Pass

3.2.2 Test Detail

EUT was tested based on FCC 15.247(a)(2) with temporally antenna port.

The RBW is set to 100kHz and the VBW is set to 100kHz. The sweep time is coupled.

3.2.3 Test data

Figure 1 6dB Bandwidth(926.80MHz)

3.3 Maximum Peak Output Power

3.3.1 Test Result

Frequency	S/A Reading	Factor	Result	Limit	Margin
(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
926.598	-13.16	20.58	7.42	30	22.58

Pass

3.3.2 Test Detail

EUT was tested based on FCC 15.247(b)(1)(2)FHSS 15.247(b)(3)DHSS with temporally antenna port. The bandwidth of the RF frequency is measured with the spectrum analyzer using 1MHz RBW and 3MHz VBW.

3.3.3 Test data

Figure 2 Maximum Peak Output Power(926.8MHz)

3.4 Band Edge of Compliance of RF Conducted Emissions

3.4.1 Test Result

Table1 Band Edge of Compliance of RF Conducted Emissions(926.8MHz)

Edge	Frequency	Deference Limit		Margin
	(MHz)	(dB)	(dB)	(dB)
Lower	926.043	50.10	>20	30.10
Higher	927.691	54.75	>20	34.75

Pass

3.4.2 Test Detail

EUT was tested based on FCC 15.247(d) with temporally antenna port. The spectrum analyzer is set to RBW=100kHz, VBW=100kHz, Detector function=Peak.

3.4.3 Test data

Figure 3 Band Edge of Compliance of RF Conducted Emissions (926.8MHz/Lower)

Figure 4 Band Edge of Compliance of RF Conducted Emissions (926.8MHz/Higher)

3.5 Radiated emission

3.5.1 Test Result

Pass

3.5.2 Test Detail

EUT was tested based on FCC 15.209 with antenna. See Annex B.

3.5.3 Test data

Table2 Radiated Emission (9kHz-1000MHz)

	Table2 Tadiated Efficient (office Toodin 12)							
Frequency	Reading	Correction factor	Noise level	Ant height	Ant Pol	Turn table angle	Limit	Margin
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(m)	(H/V)	(digree)	(dBµV/m)	(dB)
25.046	10.5	17.1	27.6	115	Н	120	29.5	1.9
283.537	19.3	-9.7	9.6	267	V	275	46.0	36.4
618.282	26.7	-2.5	24.2	291	V	101	46.0	21.8
823.804	43.5	1.6	45.1	120	Н	200	46.0	0.9

Figure 5 Radiated Emission (9kHz-1000MHz)

Table3 Radiated Emission (1GHz-25GHz)

	Tables Radiated Emission (Total 2001)							
Frequency	Reading	Correction factor	Noise level	Ant height	Ant Pol	Turn table angle	Limit	Margin
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(m)	(H/V)	(digree)	(dBµV/m)	(dB)
1529.964	45.6	-1.1	44.5	150	V	188	54.0	9.5
5014.861	31.6	18.8	50.4	210	Н	1	54.0	3.6
21927.860	23.2	29.7	52.9	170	Н	65	54.0	1.1

Figure 6 Radiated Emission (1GHz-25GHz)

e-OHTAMA, Ltd., Tokyo Laboratory 2-8-20 Kurigi, Asao-ku Kawasaki-shi, Kanagawa, Japan TEL: +81-44-980-2052 Test Report Number EOTEL025

Form Rev. 1.00

3.6 Peak Power Spectral Density

3.6.1 Test Result

Table4 Peak Power Spectral Density (926.8MHz)

Frequency	Deference	Limit	Margin
(MHz)	(dBm)	(dBm)	(dB)
926.596	1.09	<8	6.94

Pass

3.6.1 Test Detail

EUT was tested based on FCC 15.247(e) with temporally antenna port. The spectrum analyzer is set to RBW=3kHz, VBW=10kHz, Detector function=Peak.

3.6.2 Test data

Figure 7 Peak Power Spectral Density (926.8MHz)

4. Test Setup Photographs

Photo1 EUT setup

Photo2 Test setup for radiated

Photo3 Test setup for radiated

Photo4 Test setup for radiated

Photo5 Test setup for conducted

5. Test facility

5.1 Test Instruments

5.1.1 Conducted Emissions

Product Name	Manufacturer	Model Number	Serial Number	Calibration Date	Due Date
Spectrum Analyzer	Anritsu	MS8609A	6200684960	2013/09/13	2014/09/30
Cable	Pasternack	PE315-24	-	2013/06/25	2014/06/30
Attenuator(20dB)	Anritsu	41KC20	-	2013/06/19	2014/06/30

5.1.2 Radiated Electric-Field Emissions

Product Name	Manufacturer	Model Number	Serial Number	Calibration Date	Due Date
EMI Test Receiver	Rohde & Schwarz	ESIB40	100263	2013/09/17	2014/0930
Pre amplifier	Hewlett Packard	8447F	2805A03194	2013/07/29	2014/07/31
Pre amplifier	Hewlett Packard	8449B	3008A0079	2013/07/1	2014/07/31
Cable	Mini-Circuits	CBL-25FT-NMNM+	83148	2013/12/20	2014/12/31
Cable	Mini-Circuits	CBL-25FT-NMNM+	83145	2013/12/20	2014/12/31
Cable	Mini-Circuits	CBL-2M-NMNM+	71548	2013/12/20	2014/12/31
Cable	Mini-Circuits	CBL-1M-NMNM+	104547/4	2013/12/20	2014/12/31
Loop Antenna	EMCO	6507	9108-1268	2013/04/03	2014/04/30
Biconical Log Antenna	Schwarzbeck	VULB9160	9160-3189	2013/06/10	2014/06/30
Horn Antenna	ETS-LINDGREN	3117	00146463	2013/05/01	2014/05/31
Horn Antenna	ETS-LINDGREN	3116C	00146359	2014/01/28	2015/01/31

5.2 Test equipment

Dimension	Material	Measurement
1.5m(W) X 0.8m(H) X 1.0m(D)	Polystyrene	Conducted Emissions
0.4m(W) X 0.7m(H) X 0.4m(D)	Polystyrene	Radiated Emissions

5.3 Normalized Site Attenuation

Site Name	Laboratory	Calibration Due Date Date
	Tokyo Laboratory	2013/10/23 2014/10/31
No.1 EMC test room		

e-OHTAMA, Ltd., Tokyo Laboratory 2-8-20 Kurigi, Asao-ku Kawasaki-shi, Kanagawa, Japan TEL: +81-44-980-2052

Annex A (Miscellaneous Information)

A.1 Test Locations

Unless otherwise described in this report, the tests were carried out at the following locations:

e-OHTAMA, LTD. Tokyo Laboratory 294 Noborito, Tama-ku Kawasaki-shi, Kanagawa, Japan TEL: +81-44-980-2090

FAX: +81-44-980-2052

VLAC Attestation No.: VLAC-018-1

A.2 Uncertainty

Emissions

Measurement	Uncertainty (k = 2) Ulab
RF Conducted Emissions (150kHz-30MHz)	
AMN	3.5dB
Radiated Electromagnetic Field	
30-1000MHz	5.0dB
1-18GHz	5.3dB

Tests not listed above

Uncertainty for other tests which are reported in this test report, if any, would be available on request. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Annex B (Description of Test Method)

Unless otherwise described in this report, tests are carried out using the methods which are described in the applied standards and summarized in this section.

B.1Radiated Electric-Field Emissions (25MHz to 1000MHz)

EUT is placed on a turn-table in a test site, on a wooden table 1.5 m height or on the floor unless otherwise specified in the standard.

Receiving antenna ---usually biconical, log-periodic or biconical/log-periodic hybrid---is positioned at the specified distance from the EUT.

For each polarization (horizontal and vertical), a spectrum analyzer is used to pre-scan the emissions while rotating the turn-table.

For each of the significant electromagnetic field detected, the test personnel discriminates EUT's emissions from the ambient noises.

For each of the significant emissions, maximum level of the emission is searched while rotating the turn-table and varying the antenna height between 1 m and 4 m, and the maximum signal level is read using a measuring receiver having CISPR 16 quasi-peak (QP) detector function and 120 kHz nominal bandwidth.

Then, appropriate correction factor —consists of antenna factor, amplifier gain and transmission loss (due to the attenuator and the cable loss) in the system— is applied to the receiver reading to calculate the corresponding field strength.

For example, if reading on the receiver is 33.0 dB μ V, the antenna factor is 9.4 dB (1/m), the amplifier gain is 25.6 dB, and transmission loss (attenuation) in the coaxial cable and the attenuator is 6.5 dB, the field strength is calculated as: 33.0 dB μ V + 9.4 dB (1/m) - 25.6 dB + 6.5 dB = 23.3 dB μ V/m.

Finally, the calculated field strength is compared with the upper limit specified in the standard.

Actual measurement will be carried out according to the appropriate edition of CISPR 16-2-3, CISPR 22.

B.2Radiated Electric-Field Emissions above 1000MHz

EUT is placed on a turn-table in a test site, on a wooden table 1.5 m height or on the floor unless otherwise specified in the standard.

Receiving antenna ---usually double ridge waveguide horn or standard horn--- is positioned at the specified distance from the EUT.

For each polarization (horizontal and vertical), a spectrum analyzer is used to pre-scan the emissions while rotating the turn-table.

For each of the significant electromagnetic field detected, the test personnel discriminates EUT's emissions from the ambient noises.

For each of the significant emissions, maximum level of the emission is searched while rotating the turn-table and varying the antenna height if it is required, and the maximum signal level is read using a spectrum analyzer or a measuring receiver having peak detector function and 1 MHz nominal bandwidth, unless otherwise specified in the standard. To obtain average readings with spectrum analyzers, video averaging (usually with VBW = 10 Hz)

As specified in the applicable standard, the antenna height would be (1) varied between 1 m and 4 m, or (2) varied so that the whole height of the EUT is covered by the main lobe of the receiving antenna, or (3) fixed to the approximate radiation center of the EUT.

Then, appropriate correction factor ---consists of antenna factor, amplifier gain and transmission loss (due to the attenuator and the cable loss) in the system--- is applied to the spectrum analyzer/receiver reading to calculate the corresponding field strength, and the result is compared with the upper limit specified in the standard.

Actual measurement will be carried out according to the appropriate edition of CISPR 16-2-3, CISPR 22, ANSI C63.4 and/or other standards whichever applicable.

Specifically for 47 CFR 15 Subpart B, section 6 of ANSI C63.4-2003 is to be used for EUT arrangements and operations, and section 8 of the standard is to be used for radiated emissions measurement procedures.

e-OHTAMA, Ltd., Tokyo Laboratory 2-8-20 Kurigi, Asao-ku Kawasaki-shi, Kanagawa, Japan TEL: +81-44-980-2052 Test Report Number EOTEL025

Form Rev. 1.00