**27. a.** 31.25 J **b.** 312.5 J **29. a.** 625 J **b.** 391 J **31. a.** 22,050 J **b.** 36,750 J **33.** 3675 J **35.**  $1.15 \times 10^7$  J **37**  $3.94 \times 10^6 \,\mathrm{J}$  **39.** a.  $66,150\pi \,\mathrm{J}$  b. No **41.** a.  $2.10 \times 10^8 \,\mathrm{J}$ **b.**  $3.78 \times 10^8 \,\mathrm{J}$  **43. a.**  $32,667 \,\mathrm{J}$  **b.** Yes **45.**  $7.70 \times 10^3 \,\mathrm{J}$ **47.**  $1.47 \times 10^7 \,\mathrm{N}$  **49.**  $2.94 \times 10^7 \,\mathrm{N}$  **51.** 6533 N **53.** 6737.5 N **55.**  $8 \times 10^5 \,\mathrm{N}$  **57. a.** True **b.** True **c.** True **d.** False **59.** a. Compared to a linear spring, F(x) = 16x, the restoring force is less for large displacements. **b.** 17.87 J **c.** 31.6 J **61.** 1,381,800 J **63.** 0.28 J **65. a.** Yes **b.** 4.296 m **67.** Left: 16,730 N; right: 14,700 N **69. a.**  $8.87 \times 10^9$  J **b.** 500  $GMx/(R(x+R)) = (2 \times 10^{17})x/(R(x+R))$  J

c. GMm/R d.  $v = \sqrt{2GM/R}$ 

# Chapter 6 Review Exercises, pp. 478-482

1. a. True b. True c. True 3. a. Positive direction for  $0 \le t < \frac{1}{2}$  and  $2 < t \le 3$ ; negative direction for  $\frac{1}{2} < t < 2$ 

**b.** 9 m **c.** 22.5 m **d.** 
$$s(t) = 4t^3 - 15t^2 + 12t + 1$$

**5.** 
$$s(t) = 20t - 5t^2$$
; displacement =  $20t - 5t^2$ ;

$$D(t) = \begin{cases} 20t - 5t^2 & \text{if } 0 \le t < 2\\ 5t^2 - 20t + 40 & \text{if } 2 \le t \le 4 \end{cases}$$

$$D(t) = \begin{cases} 20t - 5t^2 & \text{if } 0 \le t < 2\\ 5t^2 - 20t + 40 & \text{if } 2 \le t \le 4 \end{cases}$$
**7. a.**  $v(t) = -\frac{8}{\pi} \cos \frac{\pi t}{4}$ ;  $s(t) = -\frac{32}{\pi^2} \sin \frac{\pi t}{4}$  **b.** Min value  $= -\frac{32}{\pi^2}$ ;

max value = 
$$\frac{32}{\pi^2}$$
 c. 0; 0 9. a.  $R(t) = 3t^{4/3}$ 

**b.** 
$$R(t) = \begin{cases} 3t^{4/3} & \text{if } 0 \le t \le 8 \\ 2t + 32 & \text{if } t > 8 \end{cases}$$
 **c.**  $t = 59 \text{ min}$ 



**c.** 
$$s(t) = 2000(1 - e^{-t/10})$$
 **d.** No



13. a. 
$$s_{\text{Tom}}(t) = -10e^{-2t} + 10$$
  
 $s_{\text{Sue}}(t) = -15e^{-t} + 15$ 



**b.**  $10 \ln 4 \approx 13.86 \text{ s}$ 

**b.** 
$$t = 0$$
 and  $t = \ln 2$  **c.** Sue **15.**  $1 - \frac{\pi}{4}$  **17.**  $e - 2$  **19.**  $\frac{7}{3}$ 

**21.** 8 **23.** 1 **25.** 
$$\frac{1}{3}$$
 **27.**  $R_1$ :  $\frac{7}{6}$ ;  $R_2$ :  $\frac{10}{3}$ ;  $R_3$ :  $4\sqrt{3} - \frac{10}{3}$  **29.**  $\frac{11\pi}{15}$ 

31. 
$$\frac{14\pi}{3}$$
 33.  $\int_{1}^{3} 2\pi (3-x)(2\sqrt{x}-3+x) dx$  35.  $\frac{7}{3}$  37.  $\frac{31\pi}{5}$ 

**39.** 
$$R_1$$
:  $\sqrt{3}$ ;  $R_2$ :  $\frac{4\pi}{3} - \sqrt{3}$  **41.**  $\frac{1}{3}$  **43.**  $\frac{5}{6}$  **45.**  $\frac{8}{15}$  **47.**  $\frac{8\pi}{5}$ 

**49.** 
$$\pi(e-1)^2$$
 **51.**  $\pi$  **53.**  $\frac{512\pi}{15}$  **55.** About  $y=-2$ :  $80\pi$ ;

about 
$$x = -2$$
: 112 $\pi$  **57.**  $c = 5$  **59.** 1 **61.**  $2\sqrt{3} - \frac{4}{3}$ 

**63.** 
$$\int_{2}^{4} \sqrt{4x^2 + 8x + 5} \, dx \approx 16.127$$

**65.** 
$$\sqrt{b^2+1} - \sqrt{2} + \ln\left(\frac{(\sqrt{b^2+1}-1)(1+\sqrt{2})}{b}\right); b \approx 2.715$$

**67. a.** 
$$9\pi$$
 **b.**  $\frac{9\pi}{2}$  **69. a.**  $\frac{263,439\pi}{4096}$  **b.**  $\frac{483}{64}$  **c.**  $\frac{\pi}{8}(84 + \ln 2)$ 

**d.** 
$$\frac{264,341\pi}{18,432}$$
 **71.**  $\left(450 - \frac{450}{e}\right)$  g **73. a.** 562.5 J **b.** 56.25 J

**75. a.** 980 J **b.** 627.2 J **77. a.** 1,411,200 J **b.** 940,800 J **79. a.** 1,477,805 J **b.** The work required to pump out the top 3 m of water is 1,015,991 J, and the work required to pump out the bottom 3 m of water is 461,814 J. More work is required to pump out the top 3 m of water. **81.** 4,987,592 J **83.** 5716.7 N **85.**  $5.2 \times 10^7$  N

#### **CHAPTER 7**

## Section 7.1 Exercises, pp. 490-492

1. 
$$D = (0, \infty), R = (-\infty, \infty)$$
 3.  $\frac{4^x}{\ln 4} + C$ 

**5.** 
$$e^{x \ln 3}$$
,  $e^{\pi \ln x}$ ,  $e^{(\sin x)(\ln x)}$  **7.**  $3(\ln x + 1)$  **9.**  $\frac{\cos(\ln x)}{x}$ ,  $x > 0$ 

**11.** 
$$-\frac{5}{x(\ln 2x)^6}$$
 **13.**  $4^{2x+1}x^{4x}(1+\ln 2x)$  **15.**  $(\ln 2) 2^{x^2+1}x$ 

17. 
$$2(x+1)^{2x}\left(\frac{x}{x+1}+\ln(x+1)\right)$$

**19.** 
$$y^{\sin y} \left(\cos y \ln y + \frac{\sin y}{y}\right)$$
 **21.**  $-20xe^{-10x^2}$  **23.**  $x^{2x}(2 \ln x + 2)$ 

**25.** 
$$-(1/x)^x(1 + \ln x)$$
 **27.**  $\left(-\frac{4}{x+4} + \ln\left(\frac{x+4}{x}\right)\right)\left(1 + \frac{4}{x}\right)^x$ 

**29.** 
$$6(1 - \ln 2)$$
 **31.**  $\frac{3}{8}$  **33.**  $\frac{1}{2} \ln (4 + e^{2x}) + C$  **35.**  $\frac{1}{\ln 2} - \frac{1}{\ln 3}$ 

**37.** 
$$4 - \frac{4}{e^2}$$
 **39.**  $2e^{\sqrt{x}} + C$  **41.**  $\ln |e^x - e^{-x}| + C$  **43.**  $\frac{99}{10 \ln 10}$ 

**45.** 3 **47.** 
$$\frac{6^{x^3+8}}{3 \ln 6} + C$$
 **49.**  $\frac{1}{6}e^{3x^2+1} + C$  **51.**  $-\frac{1}{9^x \ln 9} + C$ 

**53.** 
$$\frac{10^{x^3}}{3 \ln 10} + C$$
 **55.**  $\frac{3 \cdot 3^{\ln 2} - 1}{\ln 3}$  **57.**  $\frac{32}{3}$  **59.**  $\frac{1}{3} \ln \frac{65}{16}$ 

**61.** 
$$2e^{5+\sqrt{x}} + C$$
 **63.**

| h         | $(1 + 2h)^{1/h}$ | h          | $(1 + 2h)^{1/h}$ |
|-----------|------------------|------------|------------------|
| $10^{-1}$ | 6.1917           | $-10^{-1}$ | 9.3132           |
| $10^{-2}$ | 7.2446           | $-10^{-2}$ | 7.5404           |
| $10^{-3}$ | 7.3743           | $-10^{-3}$ | 7.4039           |
| $10^{-4}$ | 7.3876           | $-10^{-4}$ | 7.3905           |
| $10^{-5}$ | 7.3889           | $-10^{-5}$ | 7.3892           |
| $10^{-6}$ | 7.3890           | $-10^{-6}$ | 7.3891           |

$$\lim_{h \to 0} (1 + 2h)^{1/h} = e^2$$

| 65. | x         | $\frac{2^x-1}{x}$ | x          | $\frac{2^x-1}{x}$ |
|-----|-----------|-------------------|------------|-------------------|
|     | $10^{-1}$ | 0.71773           | $-10^{-1}$ | 0.66967           |
|     | $10^{-2}$ | 0.69556           | $-10^{-2}$ | 0.69075           |
|     | $10^{-3}$ | 0.69339           | $-10^{-3}$ | 0.69291           |
|     | $10^{-4}$ | 0.69317           | $-10^{-4}$ | 0.69312           |
|     | $10^{-5}$ | 0.69315           | $-10^{-5}$ | 0.69314           |
|     | $10^{-6}$ | 0.69315           | $-10^{-6}$ | 0.69315           |
|     | $2^x$     | - 1               |            |                   |

$$\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2$$

67. a. True b. False c. False d. False e. True

**69.** 
$$\frac{\ln p}{p-1}$$
, 0 **71. a.** No **b.** No

75. 
$$\ln 2 = \int_{1}^{2} \frac{dt}{t} < L_{2} = \frac{5}{6} < 1$$

$$\ln 3 = \int_{1}^{3} \frac{dt}{t} > R_{7}$$

$$= 2\left(\frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \frac{1}{17} + \frac{1}{19} + \frac{1}{21}\right) > 1$$

## Section 7.2 Exercises, pp. 499-501

1. The relative growth is constant. 3. The time it takes a function to double in value **5.**  $T_2 = (\ln 2)/k$  **7.**  $\frac{\ln 2}{20} \approx 0.03466$ 

**9.** Compound interest, world population 11.  $\ln 1.11 \approx 0.1044$ .

**13.** 
$$\frac{df}{dt} = 10.5; \frac{dg}{dt} \cdot \frac{1}{g} = \frac{1}{10}$$

**15. a.**  $\ln 1.024 \approx 0.02372$ ;  $y(t) = 90,000 e^{t \ln 1.024}$  **b.** 2028

**17.** a. 
$$\frac{\ln 1.1}{10} \approx 0.009531$$
;  $y(t) = 50,000 e^{t \ln 1.1/10}$  b. 60,500

**19. a.**  $\ln 1.016 \approx 0.01587$ ;  $y(t) = 100 e^{t \ln 1.016}$  **b.** \$126.88

**21.** 3.71% **23. a.** 88.1 years; 423.4 million

**b.** 99.4 years; 412.2 million **25.** 28.7 million **27.** 2026 **29.**  $a(t) = 20e^{(t/36) \ln 0.5}$  mg with t = 0 at midnight; 15.87 mg; 119.6 hr  $\approx 5$  days 31. 1.798 million; the downward turn in the population size may be temporary. 33. 18,928 ft; 125,754 ft

**35.** 1.055 billion yr **37.** 6.2 hours **39.** 2 dollars **41.** 1044 days

**43. a.** False **b.** False **c.** True **d.** True **e.** True **45. a.**  $V_1(t) = 0.495e^{-0.1216t}$  **b.**  $V_2(t) = 0.005e^{0.239t}$ 

**c.**  $V(t) = 0.495e^{-0.1216t} + 0.005e^{0.239t}$ 



The tumor initially shrinks significantly in size but eventually starts growing again. e. 10.9 days; give a second treatment just before the end of the 10th day after the first treatment.

**47. a.** Bob; Abe **b.**  $y = 4 \ln (t + 1)$  and  $y = 8 - 8e^{-t/2}$ ; Bob



**49.** 10.034%; no **51.** 1.3 s

**53.** 
$$k = \ln(1 + r); r = 2^{1/T_2} - 1; T_2 = (\ln 2)/k$$

## Section 7.3 Exercises, pp. 513-517

**1.**  $\cosh x = \frac{e^x + e^{-x}}{2}$ ;  $\sinh x = \frac{e^x - e^{-x}}{2}$  **3.**  $\cosh^2 x - \sinh^2 x = 1$ 

**5.**  $\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$  **7.** Evaluate  $\sinh^{-1} \frac{1}{5}$ .

9.  $\int \frac{dx}{16 - x^2} = \frac{1}{4} \coth^{-1} \frac{x}{4} + C \text{ when } |x| > 4$ ; the values

in the interval of integration  $6 \le x \le 8$  satisfy |x| > 4.

**23.**  $2 \cosh x \sinh x$  **25.**  $2 \tanh x \operatorname{sech}^2 x$  **27.**  $-2 \tanh 2x$ 

**29.**  $2x (3x \sinh 3x + \cosh 3x) \cosh 3x$  **31.**  $4/\sqrt{16x^2 - 1}$ 

**33.**  $2v/\sqrt{v^4+1}$  **35.**  $\sinh^{-1} x$  **37.**  $(\sinh 2x)/2 + C$ 

**39.**  $\ln (1 + \cosh x) + C$  **41.**  $x - \tanh x + C$ 

**43.**  $(\cosh^4 3 - 1)/12 \approx 856$  **45.**  $\ln (5/4)$ 

**47.**  $\frac{1}{2\sqrt{2}} \coth^{-1}\left(\frac{x}{2\sqrt{2}}\right) + C$  **49.**  $\tanh^{-1}\left(e^{x}/6\right)/6 + C$ 

**51.**  $-\mathrm{sech}^{-1}(x^4/2)/8 + C$  **53.**  $-\mathrm{csch} z + C$ 

**55.**  $\ln \sqrt{3} \cdot \ln (4/3) \approx 0.158$  **57.**  $\frac{x^2 + 1}{2x} + C$ 

**59.** a. The values of  $y = \coth x$  are close to 1 on [5, 10].

**b.**  $\ln (\sinh 10) - \ln (\sinh 5) \approx 5.0000454$ ;  $|error| \approx 0.0000454$ 



**a.**  $x = \sinh^{-1} 1 = \ln (1 + \sqrt{2})$ 

**b.**  $\pi/4 - \ln \sqrt{2} \approx 0.44$ 

**63.**  $\sinh^{-1} 2 = \ln (2 + \sqrt{5})$  **65.**  $-(\ln 5)/3 \approx -0.54$ 

**67.** 
$$3 \ln \left( \frac{\sqrt{5} + 2}{\sqrt{2} + 1} \right) = 3(\sinh^{-1} 2 - \sinh^{-1} 1)$$

**69.** 
$$\frac{1}{15} \left( 17 - \frac{8}{\ln{(5/3)}} \right) \approx 0.09$$

**71.** a. Sag =  $f(50) - f(0) = a(\cosh(50/a) - 1) = 10$ ; now divide by *a*. **b.**  $t \approx 0.08$  **c.**  $a = 10/t \approx 125$ ;

 $L = 250 \sinh{(2/5)} \approx 102.7 \text{ ft}$  73.  $\lambda \approx 32.81 \text{ m}$ 

**75. b.** When  $d/\lambda < 0.05$ ,  $2\pi d/\lambda$  is small. Because  $\tanh x \approx x$  for small values of x, tanh  $(2\pi d/\lambda) \approx 2\pi d/\lambda$ ; therefore,

$$v = \sqrt{\frac{g\lambda}{2\pi} \tanh\left(\frac{2\pi d}{\lambda}\right)} \approx \sqrt{\frac{g\lambda}{2\pi} \cdot \frac{2\pi d}{\lambda}} = \sqrt{gd}.$$

**c.**  $v = \sqrt{gd}$  is a function of depth alone; when depth d decreases, v also decreases. 77. a. False b. False c. True d. False

**79. a.** 1 **b.** 0 **c.** Undefined **d.** 1 **e.** 13/12 **f.** 40/9

**g.** 
$$\left(\frac{e^2+1}{2e}\right)^2$$
 **h.** Undefined **i.** ln 4 **j.** 1 **81.**  $x=0$ 

83. 
$$x = \pm \tanh^{-1}(1/\sqrt{3}) = \pm \ln(2 + \sqrt{3})/2 \approx \pm 0.658$$

85.  $tan^{-1} (sinh 1) - \pi/4 \approx 0.08$  87. Applying l'Hôpital's Rule twice brings you back to the initial limit;  $\lim \tanh x = 1$ .

**89.** 
$$2/\pi$$
 **91.** 1 **93.**  $12(3 \ln (3 + \sqrt{8}) - \sqrt{8}) \approx 29.5$ 

**89.**  $2/\pi$  **91.** 1 **93.**  $12(3 \ln (3 + \sqrt{8}) - \sqrt{8}) \approx 29.5$  **95. a.** Approx. 360.8 m **b.** First 100 m:  $t \approx 4.72$  s,  $v_{av} \approx 21.2$  m/s; second 100 m:  $t \approx 2.25 \text{ s}, v_{\text{av}} \approx 44.5 \text{ m/s}$  **97. a.**  $\sqrt{mg/k}$ 

**b.** 
$$35\sqrt{3} \approx 60.6 \text{ m/s}$$
 **c.**  $t = \sqrt{\frac{m}{kg}} \tanh^{-1} 0.95 = \frac{\ln 39}{2} \sqrt{\frac{m}{kg}}$ 

**d.** Approx. 736.5 m **109.**  $\ln (21/4) \approx 1.66$ 

# Chapter 7 Review Exercises, pp. 518-519

1. a. False b. False c. False d. True 3. ln 4

5. 
$$\frac{1}{2} \ln (x^2 + 8x + 25) + C$$

7. 
$$\cosh^{-1}(x/3) + C = \ln(x + \sqrt{x^2 - 9}) + C$$

9. 
$$\tanh^{-1}(1/3)/9 = (\ln 2)/18 \approx 0.0385$$

**11.** 
$$x^{3x^2+1} \left( 6x \ln x + 3x + \frac{1}{x} \right)$$
 **13.**  $\sinh^2 t + \cosh^2 t$ 

**15.** 
$$3 \sinh(6x-2)$$
 **17.**  $-\csc x$  **19.**  $\frac{2x}{\sqrt{x^4-1}}$ 

**21.** Approx. 7.3 hours **23. a.**  $y(t) = 29,000e^{(t \ln 2)/2}$ 

**b.** Approx. 41,996,486 transistors (which closely approximates the actual number of transistors) 25. 48.37 yr

**27.** Local max at  $x = -\frac{1}{2}(\sqrt{5} + 1)$ ; local min at  $x = \frac{1}{2}(\sqrt{5} - 1)$ ; inflection points at x = -3 and x = 0;  $\lim_{x \to 0} f(x) = 0$ ;

$$\lim_{x \to \infty} f(x) = \infty$$



 $\mathbf{d.} \ f(x^*) = \frac{1}{\sqrt{2\pi}} \frac{e^{\sigma^2/2}}{\sigma}$ 

29. a.



**31.**  $L(x) = \frac{5}{3} + \frac{4}{3}(x - \ln 3)$ ;  $\cosh 1 \approx 1.535$ 

**33. a.**  $\cosh x$  **b.**  $(1 - x \tanh x) \operatorname{sech} x$ 

#### **CHAPTER 8**

#### Section 8.1 Exercises, pp. 523-525

**1.** u = 4 - 7x **3.**  $\sin^2 x = \frac{1 - \cos 2x}{2}$  **5.** Complete the square in

$$x^2 - 4x - 9$$
. 7.  $\frac{1}{15(3 - 5x)^3} + C$  9.  $\frac{\sqrt{2}}{4}$  11.  $\frac{1}{2} \ln^2 2x + C$ 

**13.**  $\ln(e^x + 1) + C$  **15.**  $\frac{32}{3}$  **17.**  $\frac{21}{110}$ 

19. 
$$\frac{(\ln w - 1)^9}{9} + \frac{(\ln w - 1)^8}{8} + C$$

**21.** 
$$\frac{1}{2} \ln (x^2 + 4) + \tan^{-1} \frac{x}{2} + C$$

**23.** 
$$-\frac{1}{3}\ln\left|\csc\left(3e^x+4\right)+\cot\left(3e^x+4\right)\right|+C$$
 **25.** 1

**27.** 
$$3\sqrt{1-x^2}+2\sin^{-1}x+C$$
 **29.**  $\ln(\sqrt{2}+1)$ 

31. 
$$\frac{1}{3} \tan^{-1} \left( \frac{x-1}{3} \right) + C$$
 33.  $\frac{x^2}{2} + x + \ln(x^2 + x + 2) + C$ 

**35.** 
$$\frac{3\pi + 10}{12}$$
 **37.**  $\sin^{-1}\left(\frac{\theta + 3}{6}\right) + C$  **39.**  $\tan \theta - \sec \theta + C$ 

**41.** 
$$-x - \cot x - \csc x + C$$
 **43.**  $\frac{1}{3} \ln (1 + \sinh 3x) + C$ 

**45.** 
$$\frac{1}{2} \ln |e^{2x} - 2| + C$$
 **47.**  $x - \ln |x + 1| + C$ 

**49.** 
$$\frac{4}{5}(9+\sqrt{t+1})^{3/2}(\sqrt{t+1}-6)+C$$
 **51.**  $\frac{\ln 4-\pi}{4}$ 

**53.** 
$$\ln |\sec (e^x + 1) + \tan (e^x + 1)| + C$$

**55.** 
$$\frac{2\sin^3 x}{3} + C$$
 **57.**  $2\tan^{-1}\sqrt{x} + C$ 

**59.** 
$$\frac{1}{2} \ln (x^2 + 6x + 13) - \frac{5}{2} \tan^{-1} \left( \frac{x+3}{2} \right) + C$$

**61.** 
$$-\frac{1}{e^x + 1} + C$$
 **63.**  $\frac{1}{2}$  **65. a.** False **b.** False **c.** False

**d.** False **69. a.**  $\frac{\tan^2 x}{2} + C$  **b.**  $\frac{\sec^2 x}{2} + C$  **c.** The antiderivatives differ by a constant. **71. a.**  $\frac{1}{2}(x+1)^2 - 2(x+1) + \ln|x+1| + C$ 

**b.**  $\frac{x^2}{2} - x + \ln|x + 1| + C$  **c.** The antiderivatives differ by a

constant. 73.  $\frac{\ln 26}{3}$  75.  $\frac{2}{3}(5\sqrt{5}-1)\pi$ 

77. 
$$\pi\left(\frac{9}{2} - \frac{5\sqrt{5}}{6}\right)$$
 79.  $\frac{2048 + 1763\sqrt{41}}{9375}$ 

## Section 8.2 Exercises, pp. 529-532

**1.** Product Rule **3.**  $\frac{x^2(2 \ln x - 1)}{4} + C$  **5.** Products for which the

choice for dv is easily integrated and when the resulting new integral is no more difficult than the original integral

7.  $(\tan x + 2) \ln (\tan x + 2) - \tan x + C$ 

9. 
$$\frac{1}{5}x\sin 5x + \frac{1}{25}\cos 5x + C$$
 11.  $\frac{e^{6t}}{36}(6t-1) + C$ 

**13.** 
$$\frac{x^2}{4}(2 \ln 10x - 1) + C$$
 **15.**  $(w + 2) \sin 2w + \frac{1}{2} \cos 2w + C$ 

17. 
$$\frac{3^x}{\ln 3} \left( x - \frac{1}{\ln 3} \right) + C$$
 19.  $-\frac{1}{9x^9} \left( \ln x + \frac{1}{9} \right) + C$ 

**21.** 
$$\frac{1}{8}\sin 2x - \frac{x}{4}\cos 2x + C$$
 **23.**  $\frac{1}{4}(1-2x^2)\cos 2x + \frac{x}{2}\sin 2x + C$ 

**25.** 
$$-e^{-t}(t^2+2t+2)+C$$
 **27.**  $\frac{e^x}{2}(\sin x+\cos x)+C$ 

**29.** 
$$-\frac{e^{-x}}{17}(\sin 4x + 4\cos 4x) + C$$

**31.** 
$$-e^{2x}\cos e^x + 2e^x\sin e^x + 2\cos e^x + C$$
 **33.**  $\pi$  **35.**  $-\frac{1}{2}$ 

37. 
$$\frac{1}{9}(5e^6+1)$$
 39.  $\frac{\pi-2}{2}$  41. a.  $x \tan^{-1} x - \frac{1}{2} \ln(1+x^2) + C$