# Math 325K - Lecture 8 Section 4.2 & 4.3

Bo Lin

September 25th, 2018



## Outline

- Rational numbers.
- Divisibility.
- Unique Factorization Theorem.

## **Definition**

#### Definition

A real number r is **rational** if and only if it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is **irrational**. Formally, if r is a real number, then

$$r$$
 is rational  $\Leftrightarrow \exists a,b \in \mathbb{Z}$  such that  $\left(r=rac{a}{b}
ight) \wedge (b 
eq 0)$  .

The set of rational number is denoted by  $\mathbb{Q}$ .

## **Definition**

#### **Definition**

A real number r is **rational** if and only if it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is **irrational**. Formally, if r is a real number, then

$$r$$
 is rational  $\Leftrightarrow \exists a,b \in \mathbb{Z}$  such that  $\left(r = \frac{a}{b}\right) \wedge (b \neq 0)$  .

The set of rational number is denoted by  $\mathbb{Q}$ .

#### Remark

Since it is an existential statement, in general it's easier to show that a real number is rational than showing that a real number is irrational.

## Example

Are the following numbers rational or irrational?

- **a** 10/3;
- **0**.365;
- **0** 0.12121212....

## Example

Are the following numbers rational or irrational?

```
10/3;
```

```
0.365;
```

**0** 0.12121212....

### Solution

(a) Yes.

## Example

Are the following numbers rational or irrational?

- 10/3;
- **0**.365;
- **a** 4/0;
- **0** 0.12121212....

### Solution

(a) Yes. (b) Yes, because 0.365 = 365/1000.

## Example

Are the following numbers rational or irrational?

- $\bigcirc$  10/3;
- **0**.365;
- **0** 0.12121212....

#### Solution

(a) Yes. (b) Yes, because 0.365=365/1000. (c) No, 4/0 is not a number at all.

## Example

Are the following numbers rational or irrational?

- 10/3;
- **0**.365;
- **0** 0.12121212....

#### Solution

- (a) Yes. (b) Yes, because 0.365 = 365/1000. (c) No, 4/0 is not a number at all.
- (d) Yes. Let x = 0.1212121212..., then 100x = 12.12121212.... So 12 = 100x x = 99x, x = 12/99. In general, all repeating decimal numbers are rational.

#### Theorem

The sum of any two rational numbers is rational.

#### **Theorem**

The sum of any two rational numbers is rational.

We first rewrite the statement formally:

#### **Theorem**

 $\forall r \in \mathbb{Q}, \forall s \in \mathbb{Q}, r+s \in \mathbb{Q}.$ 

#### Proof.

Let r,s be arbitrary rational numbers. Then there exist integers a,b with  $b\neq 0$  such that  $r=\frac{a}{b}$ , and there exist integers c,d with  $d\neq 0$  such that  $s=\frac{c}{d}$ . So

$$r+s = \frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}.$$

#### Proof.

Let r,s be arbitrary rational numbers. Then there exist integers a,b with  $b\neq 0$  such that  $r=\frac{a}{b}$ , and there exist integers c,d with  $d\neq 0$  such that  $s=\frac{c}{d}$ . So

$$r+s = \frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}.$$

Since a,b,c,d are integers, so are ad+bc and bd. In addition, since both b and d are nonzero, so is bd. (This is the **zero product property**). By definition,  $\frac{ad+bc}{bd}$  is rational, in other words r+s is rational.

#### Proof.

Let r,s be arbitrary rational numbers. Then there exist integers a,b with  $b\neq 0$  such that  $r=\frac{a}{b}$ , and there exist integers c,d with  $d\neq 0$  such that  $s=\frac{c}{d}$ . So

$$r+s = \frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}.$$

Since a,b,c,d are integers, so are ad+bc and bd. In addition, since both b and d are nonzero, so is bd. (This is the **zero product property**). By definition,  $\frac{ad+bc}{bd}$  is rational, in other words r+s is rational.

## Product of rational numbers

### **Theorem**

The product of two rational numbers is rational.

## Product of rational numbers

#### **Theorem**

The product of two rational numbers is rational.

#### Proof.

Let r,s be arbitrary rational numbers. Then there exist integers a,b with  $b\neq 0$  such that  $r=\frac{a}{b}$ , and there exist integers c,d with  $d\neq 0$  such that  $s=\frac{c}{d}$ . So

$$r \cdot s = \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

Since a,b,c,d are integers, so are ac and bd. In addition, since both b and d are nonzero, so is bd. By definition,  $r\cdot s$  is rational.



## Quotient of rational numbers

### Theorem

If  $r, s \in \mathbb{Q}$  and  $s \neq 0$ , then  $\frac{r}{s} \in \mathbb{Q}$ .

## Quotient of rational numbers

### Theorem

If  $r, s \in \mathbb{Q}$  and  $s \neq 0$ , then  $\frac{r}{s} \in \mathbb{Q}$ .

### Proof.

Let r,s be arbitrary rational numbers with  $s\neq 0$ . Then there exist integers a,b with  $b\neq 0$  such that  $r=\frac{a}{b}$ , and there exist integers c,d with  $d\neq 0$  such that  $s=\frac{c}{d}$ . So

$$\frac{r}{s} = \frac{a}{b} / \frac{c}{d} = \frac{ad}{bc}.$$

## Quotient of rational numbers

#### **Theorem**

If  $r, s \in \mathbb{Q}$  and  $s \neq 0$ , then  $\frac{r}{s} \in \mathbb{Q}$ .

### Proof.

Let r,s be arbitrary rational numbers with  $s\neq 0$ . Then there exist integers a,b with  $b\neq 0$  such that  $r=\frac{a}{b}$ , and there exist integers c,d with  $d\neq 0$  such that  $s=\frac{c}{d}$ . So

$$\frac{r}{s} = \frac{a}{b} / \frac{c}{d} = \frac{ad}{bc}.$$

Since a,b,c,d are integers, so are ad and bc. Since  $s \neq 0$ , we have that  $c \neq 0$ . Since both b and c are nonzero, so is bc. By definition,  $\frac{r}{s}$  is rational.

## **Definition**

#### Definition

If n and d are integers and  $d \neq 0$  then n is **divisible** by d if and only if n equals d times some integer. Instead of n is divisible by d, we can also say that

- n is a multiple of d;
- d is a factor of n;
- d is a divisor of n;
- d divides n.

The notation d|n is read d divides n. Symbolically, if n and d are integers and  $d \neq 0$ 

$$d|n \Leftrightarrow \exists k \in \mathbb{Z} \text{ such that } n = dk.$$



## Example

- Is 21 divisible by 3?
- Does 4 divide 22?

### Example

- Is 21 divisible by 3?
- Does 4 divide 22?

#### Solution

(a) Since  $21 = 3 \cdot 7$ , yes.

### Example

- Is 21 divisible by 3?
- Does 4 divide 22?

### Solution

- (a) Since  $21 = 3 \cdot 7$ , yes.
- (b) Since  $22/4 = 5.5 \notin \mathbb{Z}$ , no.

## Example

- Is 21 divisible by 3?
- Does 4 divide 22?

### Solution

- (a) Since  $21 = 3 \cdot 7$ , yes.
- (b) Since  $22/4 = 5.5 \notin \mathbb{Z}$ , no.
- (c) Since  $28 = (-7) \cdot (-4)$ , yes.

### Proposition

Any nonzero integer k divides 0.

### Proposition

Any nonzero integer k divides 0.

### Proof.

Because  $0 = k \cdot 0$ .



## Proposition

If a and b are positive integers and a|b, then  $a \leq b$ .

### Proposition

If a and b are positive integers and a|b, then  $a \leq b$ .

#### Proof.

Let a and b be such a pair of integers. Since a|b, there is an integer k such that b=ak. Since both a,b are positive, so is k. Then  $k\geq 1$  and

$$a = a \cdot 1 \le a \cdot k = b.$$



### Proposition

If a and b are positive integers and a|b, then  $a \leq b$ .

#### Proof.

Let a and b be such a pair of integers. Since a|b, there is an integer k such that b=ak. Since both a,b are positive, so is k. Then  $k\geq 1$  and

$$a = a \cdot 1 \le a \cdot k = b.$$

### Corollary

The only divisors of 1 are 1 and -1.



# Examples: divisibility of algebraic expressions

## Example

Let a and b be integers. Is 6a + 9b always divisible by 3?

# Examples: divisibility of algebraic expressions

### Example

Let a and b be integers. Is 6a + 9b always divisible by 3?

### Solution

Note that  $6a + 9b = 3 \cdot (2a + 3b)$ . Since a and b are both integers, so is 2a + 3b. By definition, 6a + 9b is divisible by 3.

## Connection to prime numbers

### Proposition

A positive integer n > 1 is prime if and only if all of its positive divisors are 1 and n.

## Connection to prime numbers

## Proposition

A positive integer n > 1 is prime if and only if all of its positive divisors are 1 and n.

### Proof.

We prove its contrapositive. Suppose n has a positive divisor k other than 1 and n. Then  $\frac{n}{k}$  is also a positive integer and  $n=k\cdot\frac{n}{k}$  is another way to write n as the product of two positive integers. By definition, n is not prime.

## Connection to prime numbers

## Proposition

A positive integer n > 1 is prime if and only if all of its positive divisors are 1 and n.

### Proof.

We prove its contrapositive. Suppose n has a positive divisor k other than 1 and n. Then  $\frac{n}{k}$  is also a positive integer and  $n=k\cdot\frac{n}{k}$  is another way to write n as the product of two positive integers. By definition, n is not prime.

Conversely, suppose n is not prime, then there is another way to write n as the product of two positive integers, say  $n=a\cdot b$ . Then a|n and 1< a< n, so n has a positive divisor a other than 1 and n.

# Transitivity of divisibility

#### **Theorem**

For integers a, b, c, if a|b and b|c, then a|c.

# Transitivity of divisibility

#### **Theorem**

For integers a, b, c, if a|b and b|c, then a|c.

### Proof.

First, since a|b, by definition  $a\neq 0$  and there is an integer r such that b=ar. Next, since b|c, there is an integer s such that c=bs. So

$$c = bs = ars = a \cdot (rs).$$

Since both r and s are integers, so is rs. By definition, a|c.



## Prime divisors

#### **Theorem**

Every integer n > 1 has at least a prime divisor.

## Prime divisors

#### Theorem

Every integer n > 1 has at least a prime divisor.

#### Proof.

If n itself is prime, we are done. Otherwise it must be composite, by definition there are integers 1 < a&b < n such that n = ab. Now we repeat the procedure for a. a is either prime or composite, if a is prime, then it is a prime divisor of n; if a is composite, we can further decompose a as the product of two positive integers strictly between a and a. Since there are only finitely many positive integers upto a, the process must terminate after finitely many steps, and we are done.

## The theorem

## Theorem (Fundamental Theorem of Arithmetic)

Given any integer n > 1, there exist a positive integer k and distinct prime numbers  $p_1, p_2, \ldots, p_k$ , and positive integers  $e_1, e_2, \ldots, e_k$  such that

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}.$$

And any other expression for n as a product of prime numbers is identical to this one, up to a change of order of the factors  $p_i^{e_i}$ .

## The theorem

## Theorem (Fundamental Theorem of Arithmetic)

Given any integer n > 1, there exist a positive integer k and distinct prime numbers  $p_1, p_2, \ldots, p_k$ , and positive integers  $e_1, e_2, \ldots, e_k$  such that

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}.$$

And any other expression for n as a product of prime numbers is identical to this one, up to a change of order of the factors  $p_i^{e_i}$ .

#### Remark

We postpone the proof to future sections.



## Standard factored form

#### Definition

Given any integer n>1, the standard factored form of n is an expression of the form

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k},$$

where k is a positive integer;  $p_1, p_2, \ldots, p_k$  are prime numbers;  $e_1, e_2, \ldots, e_k$  are positive integers; and  $p_1 < p_2 < \ldots < p_k$ .

## Standard factored form

#### Definition

Given any integer n > 1, the standard factored form of n is an expression of the form

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k},$$

where k is a positive integer;  $p_1, p_2, \ldots, p_k$  are prime numbers;  $e_1, e_2, \ldots, e_k$  are positive integers; and  $p_1 < p_2 < \ldots < p_k$ .

#### Remark

In the standard factored form, since the order of prime numbers is fixed, the form is unique.

## Example

Find the standard factored form of the following positive integers:

- **1**6;
- **1** 30;
- $\circ$  35<sup>3</sup>.

## Example

Find the standard factored form of the following positive integers:

- **1**6;
- **1** 30;
- $\bigcirc$  35<sup>3</sup>.

### Solution

(a)  $16 = 2^4$ . Since 2 is prime,  $2^4$  is the answer.

## Example

Find the standard factored form of the following positive integers:

- **1**6;
- **1** 30;
- $\bigcirc$  35<sup>3</sup>.

### Solution

- (a)  $16 = 2^4$ . Since 2 is prime,  $2^4$  is the answer.
- (b)  $30 = 2 \cdot 3 \cdot 5$ . Since 2, 3, 5 are all prime,  $2 \cdot 3 \cdot 5$  is the answer.

## Example

Find the standard factored form of the following positive integers:

- **1**6;
- **1** 30;
- $\bigcirc$  35<sup>3</sup>.

#### Solution

- (a)  $16 = 2^4$ . Since 2 is prime,  $2^4$  is the answer.
- (b)  $30 = 2 \cdot 3 \cdot 5$ . Since 2, 3, 5 are all prime,  $2 \cdot 3 \cdot 5$  is the answer.
- (c) First  $35 = 5 \cdot 7$  and both 5 and 7 are prime numbers. So

$$35^3 = (5 \cdot 7)^3 = 5^3 \cdot 7^3$$

is the answer.

## HW# 4of these sections

Section 4.2 Exercise 5, 14, 25, 30. Section 4.3 Exercise 5, 13, 28, 29, 39, 45.