

MWA ASVO

2018 ICRAR/CASS RADIO SCHOOL, Geraldton, Western Australia October 1, 2018

Greg Sleap MWA Data Manager Curtin University

About the MWA

- MWA has been operating since mid 2013
- Built by a international collaboration led by Curtin University
- 256 tiles (128 at a time) each having 16 dipoles ==

2,048 dipoles

• 80-300 MHz, 30.72 MHz

bandwidth

False colour image showing the nearby radio galaxy Cen A. Credit: Randal Wayth and the MWA team.

Partner Institutions

- 256 tiles (128 at a time- compact/long)
- 16 dipoles per tile.
- Each tile has a beamformer. Delays allows pointing
- Sends analog signal to closest receiver via coax*

- 16 receivers (8 tiles each)
- Analog to digital conversion
- FPGA-based PFB (creates 256 1.28 MHz "coarse" channels and keeps the selected 24)
- Sent to Fine PFBs in MRO control room over fibre

- 4 Polyphase Filter Banks
 - FPGA-based fine channelisation- each of the 24 1.28 MHz is split into 128 10 kHz channels
 - Sent to VCS boxes using a custom Xilinx protocol
 - Performs F part of FX correlator
- 16 voltage capture/media conversion servers (vcs boxes)
 - Convert the Xilinx protocol into ethernet
 - Send to correlator boxes via corner turn done by network switch
 - Each server processes one-quarter of the frequency channels, from one-quarter of the tiles in the whole array (all channels for subset of tiles => one channel from all tiles)
 - Can run in voltage capture mode ~28 TB/hr

- 24 correlator servers (gpu boxes)
 - Each has 2 NVidia Telsa M2040 GPUs (active/backup)
 - Performs cross-multiply (X part of FX) of 1 coarse channel
 - Performs frequency and time averaging
 - Produces compressed gpubox FITS files
- 6 online archive servers (arch boxes)
 - Local NGAS instance
 - Each has 64TB buffer at MRO for 4 coarse channels (~7 days)
 - Sends to Pawsey via 10Gbps link

- 2 front-end servers (Pawsey)
 - NGAS stores files as they arrive.
 - Data gets written to disk cache and tape immediately
 - 1.5 PB of front end disk cache (Pawsey)
- Robotic tape library (Pawsey)
 - ~50 PB of tape storage (x2 for redundancy)

MWA Archive

- MWA started taking science data ~mid 2013
- Volume
 - As at Aug 2018 ~28 PB*
 - (* we are in the process of purging unneeded data)
- Growth
 - Compact array mode: up to 3.2 Gb/s = 400 MB/s
 - ~3 PB / year
 - Long baseline mode: $^{6.4}$ 9.6 Gb/s = 800-1,200 MB/s
 - ~6-9 PB /year

- Raw voltages (not in scope)
- Raw visibilities (gpubox files)
- Flag files (precomputed RFI)
- Metafits & ppds files (metadata)
- "Observation" is a single pointing and data capture of the telescope with specific frequency & time averaging settings

A "ppd" plot. Integrated power for all channels for a tile (post PFB). No one knows what ppd stands for!

Raw Visibilities post correlator

24 coarse channels fi 1 coarse channel per gpubox file

Accessing MWA Data

- MWA All Sky Virtual Observatory (ASVO)
 - Launched late last year as a pilot
 - Website, VO service and Client/API
 - Allows access to public data (& non-public)
 - Provide uncalibrated raw visibilities
- Future
 - Produce images
 - Serve out MWA survey data

All Sky Virtual Observatory

- The All-Sky Virtual Observatory (ASVO) is enabling researchers to access data across a federated network of datasets, from all types of astronomical facilities in Australia.
- http://www.asvo.org.au
- TAO
- Skymapper
- AAO Data Central
- CASDA
- MWA

What Is the MWA ASVO?

- Download raw or converted un-calibrated visibilities from the MWA Archive
- Developed by Curtin, UWA and Pawsey with federal funding from AAL
- Website
 - Web front end
 - Cone search
- VO TAP Service
 - IVOA compliant Table Access Protocol (TAP) to discover MWA public data (courtesy CSIRO/CASDA)
 - Extract standardised "obscore" metadata for public observations using TopCat, etc
- Python 2 & 3 API (manta-ray-client on github)
 - Can perform similar functions as web front end
 - Replaces obsdownload
- Backend
 - Throttled queue system to ensure Pawsey's systems cannot be overloaded
 - Uses André Offringa's cotter preprocessing tool

- https://asvo.mwatelescope.org
- Fill in registration
- Verify your email address
- Await activation email from admin (me!)

Searching for observations

- Produces a zip file of data products which are stored for 7 days on our servers at Pawsey
- Download
 - Just stage and download raw visibilities
 - Output is gpubox files, metafits, ppds and flags
 - Equivalent to obsdownload
- Conversion
 - Uses cotter to convert and time/frequency average
 - Tile and RFI flagging
 - Corrections (e.g. passband, etc)
 - Output is CASA Measurement Set or uvfits

Conversion Job Options

Download Job Options

Downloading Job Results

- All successful job results are in a single .zip
- Download using wget (browser is ok for small files)
 - wget "URL" -O file.zip
- All files show an SHA1 checksum
- Check it matches with:
 - shalsum file.zip

Image: xkcd

Python client & API

- Known as: manta-ray-client
- On github https://github.com/ICRAR/manta-ray-client
- Python 2.7 / 3.6 compatible
- Can be used "all-in-one" (submit job(s), wait for them to finish then download data)
 Or
- Submit job(s), then exit
- List my jobs, then exit
- Download all my jobs (or one), then exit

Example csv file contents

```
# Do a conversion job
obs_id=1110103576, job_type=c, timeres=8, freqres=40, edgewidth=80, conversion=ms, allowmissing=true
# Do a download job
obs_id=1110103576, job_type=d, download_type=vis
```

Example usages

mwa_client -c csvfile -d destdir	Submit jobs in the csv file, monitor them, then download the files, then exit
mwa_client -c csvfile -s	Submit jobs in the csv file, then exit
mwa_client -d destdir -w JOBID	Download the job id (assuming it is ready to download), then exit
mwa_client -d destdir -w all	Download any ready to download jobs, then exit
<pre>mwa_client -d destdir -w all -e error_file</pre>	Download any ready to download jobs, then exit, writing any errors to error_file
mwa_client -l	List all of your jobs and their status, then exit

IVOA TAP service

- TAP = Table Access Protocol
- http://vo.mwatelescope.org:8000/mwa_asvo/tap
- Supports "obscore" schema
- Basic metadata for observations:
 - Obs_id
 - RA
 - Dec
 - Duration
 - etc
- More comprehensive metadata will be added in the future
- Rich application support:
 - Aladin
 - CDS
 - Skyview
 - SPLAT
 - TOPCAT
 - Etc
- For more info see: http://www.ivoa.net/astronomers/index.html

Observation Summary Website

http://mro.mwa128t.org/observation/obs/?obsid=obsid

• In the future, will be merged into the MWA ASVO

Observation Summary Website (cont...)

• Sky map, beam area & schedule map

Observation Summary Website (cont...)

- Status of the array at the time of the observation
- Number of bad tiles

Observation Summary Website (cont...)

PPD showing power of all tiles averaged and scaled

Greg Sleap

MWA Data Manager

greg.sleap@curtin.edu.au

asvo support@mwatelescope.org

Image credit: John Goldsmith, 2012