10

CLAIMS

- 1. A method for stimulating or increasing appetite in a patient which comprises administering to the patient an appetite stimulating or increasing effective amount of a compound of the Formula I:
 - HET \mathbb{R}^4 \mathbb{R}^7 \mathbb{R}^7 \mathbb{R}^8

or a stereoisomeric mixture thereof, diastereomerically enriched, diastereomerically pure, enantiomerically enriched or enantiomerically pure isomer thereof, or a prodrug of such compound, mixture or isomer thereof, or a pharmaceutically acceptable salt of the compound, mixture, isomer or prodrug, or a tautomer thereof, wherein:

HET is a heterocyclic moiety selected from the group consisting of

$$G^2$$
 $(CH_2)_d$
 R^2
and

$$R^1$$
 N
 $(CH_2)_d$
 R^2
 $(CH_2)_e$

15 d is 0, 1 or 2; e is 1 or 2; f is 0 or 1; n and w are 0, 1 or 2, provided that n and w cannot both be 0 at the same time; Y^2 is oxygen or sulfur;

A is a divalent radical, where the left hand side of the radical as shown below is connected to C" and the right hand side of the radical as shown below is connected

- to C', selected from the group consisting of -NR²-C(O)-NR²-, -NR²-S(O)₂-NR²-, -O-C(O)-NR²-, -NR²-C(O)-O-, -C(O)-NR²-C(O)-,
 - $-C(O)-NR^2-C(R^9R^{10})-, \ -C(R^9R^{10})-NR^2-C(O)-, \ -C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-, \ -C(R^9R^{10})-R^2-C(O)-, \$
 - $-S(O)_2-C(R^9R^{10})-C(R^9R^{10})-, \ -C(R^9R^{10})-O-C(O)-, \ -C(R^9R^{10})-O-C(R^9R^{10})-, \ -C(R^9R^{10})-C(R^9R^{10})-, \ -C(R^9R^{10})-, \ -C(R^9R^{$
 - -NR²-C(O)-C(R⁹R¹⁰)-, -O-C(O)-C(R⁹R¹⁰)-, -C(R⁹R¹⁰)-C(O)-NR²-,
- $10 \qquad -C(R^9R^{10})-C(O)-O-, \ -C(O)-NR^2-C(R^9R^{10})-C(R^9R^{10})-, \ -C(O)-O-C(R^9R^{10})-,$
 - -C(R⁹R¹⁰)-C(R⁹R¹⁰)-C(R⁹R¹⁰)-C(R⁹R¹⁰)-, -S(O)₂-NR²-C(R⁹R¹⁰)-C(R⁹R¹⁰)-,
 - $-C(R^9R^{10})-C(R^9R^{10})-NR^2-C(O)-$, $-C(R^9R^{10})-C(R^9R^{10})-O-C(O)-$,
 - -NR²-C(O)-C(R⁹R¹⁰)-C(R⁹R¹⁰)-, -NR²-S(O)₂-C(R⁹R¹⁰)-C(R⁹R¹⁰)-,
 - -O-C(O)-C(R⁹R¹⁰)-C(R⁹R¹⁰)-. -C(R⁹R¹⁰)-C(R⁹R¹⁰)-C(O)-NR²-.
- $-C(R^9R^{10}) C(R^9R^{10}) C(O) -, -C(R^9R^{10}) NR^2 C(O) O -, -C(R^9R^{10}) O C(O) NR^2,$
 - $-C(R^9R^{10})-NR^2-C(O)-NR^2-$, $-NR^2-C(O)-O-C(R^9R^{10})-$, $-NR^2-C(O)-NR^2-C(R^9R^{10})-$,
 - $-NR^2-S(O)_2-NR^2-C(R^9R^{10})-$, $-O-C(O)-NR^2-C(R^9R^{10})-$, $-C(O)-N=C(R^{11})-NR^2-$,
 - $-C(O)-NR^2-C(R^{11})=N-$, $-C(R^9R^{10})-NR^{12}-C(R^9R^{10})-$, $-NR^{12}-C(R^9R^{10})-$,
 - $-NR^{12}-C(R^9R^{10})-C(R^9R^{10})-,\ -C(O)-O-C(R^9R^{10})-C(R^9R^{10})-,\ -NR^2-C(R^{11})=N-C(O)-,$
- $20 \qquad -C(R^9R^{10}) C(R^9R^{10}) N(R^{12}) -, \ -C(R^9R^{10}) NR^{12} -, \ -N = C(R^{11}) NR^2 C(O) -,$
 - $-C(R^9R^{10})-C(R^9R^{10})-NR^2-S(O)_{2^-}, -C(R^9R^{10})-C(R^9R^{10})-S(O)_{2^-}NR^2-,$
 - $-C(R^9R^{10})-C(R^9R^{10})-C(O)-O-, -C(R^9R^{10})-S(O)_2-C(R^9R^{10})-, -C(R^9R^{10})-C(R^9R^{10})-S(O)_2-, -C(R^9R^{10})-C(R^9R^{10}$
 - $-O-C(R^9R^{10})-C(R^9R^{10})-, -C(R^9R^{10})-C(R^9R^{10})-O-, -C(R^9R^{10})-C(O)-C(R^9R^{10})-,$
 - $-C(O)-C(R^9R^{10})-C(R^9R^{10})-$ and $-C(R^9R^{10})-NR^2-S(O)_2-NR^2-$;
- 25 Q is a covalent bond or CH₂;

W is CH or N:

X is CR⁹R¹⁰, C=CH₂ or C=O;

Y is CR⁹R¹⁰, O or NR²;

Z is C=O, C=S or $S(O)_2$;

G¹ is hydrogen, halo, hydroxy, nitro, amino, cyano, phenyl, carboxyl, -CONH₂, - (C_1-C_4) alkyl optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, - (C_1-C_4) alkoxy optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, - (C_1-C_4) alkylthio, phenoxy, -COO((C_1-C_4) alkyl, N,N-di-

10

 $(C_1\text{-}C_4)$ alkylamino, - $(C_2\text{-}C_6)$ alkenyl optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, - $(C_2\text{-}C_6)$ alkynyl optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, - $(C_3\text{-}C_6)$ cycloalkyl optionally independently substituted with one or more $(C_1\text{-}C_4)$ alkyl groups, one or more halogens or one or more hydroxy groups, - $(C_1\text{-}C_4)$ alkylamino carbonyl or di- $(C_1\text{-}C_4)$ alkylamino carbonyl;

 G^2 and G^3 are each independently selected from the group consisting of hydrogen, halo, hydroxy, -(C₁-C₄)alkyl optionally independently substituted with one to three halo groups and -(C₁-C₄)alkoxy optionally independently substituted with one to three halo groups;

$$\begin{split} &\text{-(CH_2)_qC(O)OX}^6,\,\text{-(CH_2)_qC(O)O(CH_2)_t-A}^1,\,\text{-(CH_2)_qOX}^6,\,\text{-(CH_2)_qOC(O)X}^6,\\ &\text{-(CH_2)_qOC(O)(CH_2)_t-A}^1,\,\text{-(CH_2)_qOC(O)N(X}^6)(CH_2)_t-A}^1,\,\text{-(CH_2)_qOC(O)N(X}^6)(X^6),\\ &\text{-(CH_2)_qC(O)X}^6,\,\text{-(CH_2)_qC(O)(CH_2)_t-A}^1,\,\text{-(CH_2)_qN(X}^6)C(O)OX}^6,\\ &\text{-(CH_2)_qN(X}^6)S(O)_2N(X^6)(X^6),\,\text{-(CH_2)_qS(O)_mX}^6,\,\text{-(CH_2)_qS(O)_m(CH_2)_t-A}^1,\\ &\text{-(C_1-C_{10})alkyl,\,-(CH_2)_t-A}^1,\,\text{-(CH_2)_q-(C_3-C_7)cycloalkyl,\,-(CH_2)_q-Y}^1-(C_1-C_6)alkyl,} \end{split}$$

said $(CH_2)_q$ group and $(CH_2)_t$ group in the definition of R^1 are optionally independently substituted with hydroxy, (C_1-C_4) alkoxy, carboxyl, -CONH₂, -S(O)_m(C₁-C₆)alkyl, -CO₂(C₁-C₄)alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro groups or 1 or 2 (C_1-C_4) alkyl groups;

amend H 42H S \$5 \$141 Section

The state of summer and a substitute of the summer and the summer

5

10

15

20

25

30

 R^{1A} is selected from the group consisting of hydrogen, F, Cl, Br, I, (C_1-C_6) alkyl, phenyl (C_1-C_3) alkyl, pyridyl (C_1-C_3) alkyl, thiazolyl (C_1-C_3) alkyl and thienyl (C_1-C_3) alkyl, provided that R^{1A} is not F, Cl, Br or I when a heteroatom is vicinal to C^* ;

 R^2 is hydrogen, (C_1-C_8) alkyl, $-(C_0-C_3)$ alkyl- (C_3-C_8) cycloalkyl, $-(C_1-C_4)$ alkyl- A^1 or A^1 ; where the alkyl groups and the cycloalkyl groups in the definition of R^2 are optionally substituted with hydroxy, $-C(O)OX^6$, $-C(O)N(X^6)(X^6)$, $-N(X^6)(X^6)$, $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)A^1$, $-C(O)(X^6)$, CF_3 , CN or 1, 2 or 3 independently selected halo groups;

 R^3 is selected from the group consisting of A^1 , (C_1-C_{10}) alkyl, $-(C_1-C_6)$ alkyl- A^1 , $-(C_1-C_6)$ alkyl- (C_3-C_7) cycloalkyl, $-(C_1-C_5)$ alkyl- (C_1-C_5) alkyl- (C_1-C_5) alkyl- (C_1-C_5) alkyl- (C_3-C_7) cycloalkyl;

where the alkyl groups in the definition of R^3 are optionally substituted with $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^3$, 1, 2, 3, 4 or 5 independently selected halo groups or 1, 2 or 3 independently selected $-OX^3$ groups;

$$\begin{split} X^1 \text{ is O, } S(O)_m, -N(X^2)C(O)\text{--}, -C(O)N(X^2)\text{--}, -OC(O)\text{--}, -C(O)O\text{--}, -CX^2=CX^2\text{--}, \\ -N(X^2)C(O)O\text{--}, -OC(O)N(X^2)\text{--} \text{ or } -C\equiv C\text{--}; \end{split}$$

 R^4 is hydrogen, (C_1-C_6) alkyl or (C_3-C_7) cycloalkyl, or R^4 is taken together with R^3 and the carbon atom to which they are attached and form (C_5-C_7) cycloalkyl, (C_5-C_7) cycloalkenyl, a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, or is a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 X^4 is hydrogen or (C_1-C_6) alkyl or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring;

$$X^5$$
 X^{5a} X^{5a} X^{6} is a bond or is X^{5} $(CH_2)_a$ $(CH_2)_b$;

where a and b are each independently 0, 1, 2 or 3;

 X^5 and X^{5a} are each independently selected from the group consisting of hydrogen, CF_3 , A^1 and optionally substituted (C_1-C_6) alkyl;

10

15

20

25

30

the optionally substituted (C_1 - C_6)alkyl in the definition of X^5 and X^{5a} is optionally substituted with a substituent selected from the group consisting of A^1 , OX^2 , $-S(O)_m(C_1$ - C_6)alkyl, $-C(O)OX^2$, (C_3 - C_7)cycloalkyl, $-N(X^2)(X^2)$ and $-C(O)N(X^2)(X^2)$;

or the carbon bearing X^5 or X^{5a} forms one or two alkylene bridges with the nitrogen atom bearing R^7 and R^8 wherein each alkylene bridge contains 1 to 5 carbon atoms, provided that when one alkylene bridge is formed then only one of X^5 or X^{5a} is on the carbon atom and only one of R^7 or R^8 is on the nitrogen atom and further provided that when two alkylene bridges are formed then X^5 and X^{5a} cannot be on the carbon atom and R^7 and R^8 cannot be on the nitrogen atom;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 Z^1 is a bond, O or N-X², provided that when a and b are both 0 then Z^1 is not N-X² or O;

or R^6 is $-(CR^aR^b)_a$ -E- $(CR^aR^b)_b$ -, where the $-(CR^aR^b)_a$ - group is attached to the carbonyl carbon of the amide group of the compound of formula I and the $-(CR^aR^b)_b$ group is attached to the terminal nitrogen atom of the compound of formula I;

E is -O-, -S-, -CH=CH- or an aromatic moiety selected from

10

15

20

said aromatic moiety in the definition of E optionally substituted with up to three halo, hydroxy, $-N(R^c)(R^c)$, (C_1-C_6) alkyl or (C_1-C_6) alkoxy; R^a and R^b are, for each occurrence, independently hydrogen, (C_1-C_6) alkyl, trifluoromethyl, phenyl or monosubstituted (C_1-C_6) alkyl where the substituents are imidazolyl, naphthyl, phenyl, indolyl, p-hydroxyphenyl, $-OR^c$, $S(O)_mR^c$, $C(O)OR^c$, (C_3-C_7) cycloalkyl, $-N(R^c)(R^c)$, $-C(O)N(R^c)(R^c)$, or R^a or R^b may independently be joined to one or both of R^7 or E (where E is other than O, S or -CH=CH-) to form an alkylene bridge between the terminal nitrogen and the alkyl portion of the R^a or R^b and the R^7 or E group, wherein the bridge contains 1 to 8 carbon atoms; or R^a and R^b may be joined to one another to form a (C_3-C_7) cycloalkyl; R^c , for each occurrence, is independently hydrogen or (C_1-C_6) alkyl; a and b are independently 0, 1, 2 or 3, with the proviso that if E is -O- or -S-, b is other than 0 or 1 and with the further proviso that if E is -CH=CH-, b is other than 0;

 R^7 and R^8 are each independently hydrogen or optionally substituted (C_1 - C_6)alkyl; where the optionally substituted (C_1 - C_6)alkyl in the definition of R^7 and R^8 is optionally independently substituted with A^1 , -C(O)O-(C_1 - C_6)alkyl,

-S(O)_m(C₁-C₆)alkyl, 1 to 5 halo groups, 1 to 3 hydroxy groups, 1 to 3 -O-C(O)(C₁-C₁₀)alkyl groups or 1 to 3 (C₁-C₆)alkoxy groups; or

 R^7 and R^8 can be taken together to form -(CH₂)_r-L-(CH₂)_r-; where L is C(X²)(X²), S(O)_m or N(X²);

R⁹ and R¹⁰ are each independently selected from the group consisting of hydrogen, fluoro, hydroxy and (C₁-C₅)alkyl optionally independently substituted with 1-5 halo groups;

10

15

20

 R^{11} is selected from the group consisting of (C_1-C_5) alkyl and phenyl optionally substituted with 1-3 substitutents each independently selected from the group consisting of (C_1-C_5) alkyl, halo and (C_1-C_5) alkoxy;

 R^{12} is selected from the group consisting of (C_1-C_5) alkylsulfonyl, (C_1-C_5) alkanoyl and (C_1-C_5) alkyl where the alkyl portion is optionally independently substituted by 1-5 halo groups;

 A^1 for each occurrence is independently selected from the group consisting of (C_5 - C_7)cycloalkenyl, phenyl, a partially saturated, fully saturated or fully unsaturated 4-to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen and a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 A^1 for each occurrence is independently optionally substituted, on one or optionally both rings if A^1 is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, -OX⁶,

 $-N(X^6)S(O)_2\text{-phenyl}, \ -N(X^6)S(O)_2X^6, \ -CONX^{11}X^{12}, \ -S(O)_2NX^{11}X^{12}, \ -S(O)_2NX$

 $-NX^6S(O)_2X^{12}$, $-NX^6CONX^{11}X^{12}$, $-NX^6S(O)_2NX^{11}X^{12}$, $-NX^6C(O)X^{12}$, imidazolyl, thiazolyl and tetrazolyl, provided that if A^1 is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy;

where X^{11} is hydrogen or optionally substituted (C_1 - C_6)alkyl;

the optionally substituted (C_1 - C_6)alkyl defined for X^{11} is optionally independently substituted with phenyl, phenoxy, (C_1 - C_6)alkoxycarbonyl, $-S(O)_m(C_1$ - C_6)alkyl, 1 to 5 halo groups, 1 to 3 hydroxy groups, 1 to 3 (C_1 - C_{10})alkanoyloxy groups or 1 to 3 (C_1 - C_6)alkoxy groups;

30

10

20

25

 X^{12} is hydrogen, (C_1-C_6) alkyl, phenyl, thiazolyl, imidazolyl, furyl or thienyl, provided that when X^{12} is not hydrogen, the X^{12} group is optionally substituted with one to three substituents independently selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃ and CF₃:

or X^{11} and X^{12} are taken together to form -(CH₂)_r-L¹-(CH₂)_r-; L¹ is C(X²)(X²), O, S(O)_m or N(X²);

r for each occurrence is independently 1, 2 or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted (C₁-C₆)alkyl or optionally substituted (C₃-C₇)cycloalkyl, where the optionally substituted (C₁-C₆)alkyl and optionally substituted (C₃-C₇)cycloalkyl in the definition of X^2 are optionally independently substituted with $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^3$, 1 to 5 halo groups or 1-3 OX³ groups;

X³ for each occurrence is independently hydrogen or (C₁-C₆)alkyl;

- X^6 for each occurrence is independently hydrogen, optionally substituted (C₁-C₆)alkyl, (C₂-C₆)halogenated alkyl, optionally substituted (C₃-C₇)cycloalkyl, (C₃-C₇)-halogenated cycloalkyl, where optionally substituted (C₁-C₆)alkyl and optionally substituted (C₃-C₇)cycloalkyl in the definition of X^6 is optionally independently mono- or di-substituted with (C₁-C₄)alkyl, hydroxy, (C₁-C₄)alkoxy, carboxyl, CONH₂,
 - $-S(O)_m(C_1-C_6)$ alkyl, carboxylate (C_1-C_4) alkyl ester or 1H-tetrazol-5-yl; or when there are two X^6 groups on one atom and both X^6 are independently (C_1-C_6) alkyl, the two (C_1-C_6) alkyl groups may be optionally joined and, together with the atom to which the two X^6 groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or NX^7 as a ring member;

 χ^7 is hydrogen or (C₁-C₆)alkyl optionally substituted with hydroxy; m for each occurrence is independently 0, 1 or 2; with the provisos that:

- 1) X^6 and X^{12} cannot be hydrogen when attached to C(O) or S(O)₂ in the form $C(O)X^6$, $C(O)X^{12}$, $S(O)_2X^6$ or $S(O)_2X^{12}$; and
- 30 2) when R^6 is a bond then L is $N(X^2)$ and each r in the definition $-(CH_2)_r$ -L- $(CH_2)_r$ is independently 2 or 3.
 - 2. A method of claim 1 wherein the compound is of Formula I-A

$$Y^{2}$$
 $(CH_{2})_{f}$
 $(CH_{2})_{h}$
 $(CH_{2})_{h}$
 $(CH_{2})_{w}$
 $(CH_{2})_{w$

a racemic-diastereomeric mixture or an optical isomer of said compound or a pharmaceutically-acceptable salt or a prodrug thereof, or a tautomer thereof, wherein

5 f is 0;

n is 0 and w is 2, or n is 1 and w is 1, or n is 2 and w is 0;

Y is oxygen or sulfur;

 $R^1 \ \text{ is hydrogen, -CN, -(CH_2)_qN(X^6)C(O)X}^6, \ \text{-(CH_2)_qN(X^6)C(O)(CH_2)_t-A}^1,$

 $-(CH_2)_qN(X^6)SO_2(CH_2)_t-A^1, -(CH_2)_qN(X^6)SO_2X^6, -(CH_2)_qN(X^6)C(O)N(X^6)(CH_2)_t-A^1,$

 $10 - (CH_2)_q N(X^6) C(O) N(X^6)(X^6), - (CH_2)_q C(O) N(X^6)(X^6), - (CH_2)_q C(O) N(X^6)(CH_2)_{t^-} A^1,$

 $-(CH_2)_qC(O)OX^6, -(CH_2)_qC(O)O(CH_2)_t-A^1, -(CH_2)_qOX^6, -(CH_2)_qOC(O)X^6, -(CH_2$

 $-(CH_2)_qOC(O)(CH_2)_t-A^1, \ -(CH_2)_qOC(O)N(X^6)(CH_2)_t-A^1, \ -(CH_2)_qOC(O)N(X^6)(X^6),$

 $-(CH_2)_qC(O)X^6$, $-(CH_2)_qC(O)(CH_2)_t-A^1$, $-(CH_2)_qN(X^6)C(O)OX^6$,

 $\text{-(CH}_2)_qN(X^6)SO_2N(X^6)(X^6), \text{ -(CH}_2)_qS(O)_mX^6, \text{ -(CH}_2)_qS(O)_m(CH_2)_t\text{-}A^1,$

15 $-(C_1-C_{10})$ alkyl, $-(CH_2)_t-A^1$, $-(CH_2)_q-(C_3-C_7)$ cycloalkyl, $-(CH_2)_q-Y^1-(C_1-C_6)$ alkyl,

 $-(CH_2)_q-Y^1-(CH_2)_t-A^1$ or $-(CH_2)_q-Y^1-(CH_2)_t-(C_3-C_7)$ cycloalkyl;

where the alkyl and cycloalkyl groups in the definition of R^1 are optionally substituted with (C_1-C_4) alkyl, hydroxyl, (C_1-C_4) alkoxy, carboxyl, -CONH₂,

 $-S(O)_m(C_1-C_6) alkyl, \ -CO_2(C_1-C_4) alkyl \ ester, \ 1 \\ H-tetrazol-5-yl \ or \ 1, \ 2 \ or \ 3$

20 fluoro;

 Y^1 is O, $S(O)_m$, $-C(O)NX^6$ -, -CH=CH-, $-C\equiv C-$, $-N(X^6)C(O)-$, -C(O)O-,

 $-OC(O)N(X^6)$ - or -OC(O)-;

q is 0, 1, 2, 3 or 4;

t is 0, 1, 2 or 3;

said (CH₂)_q group and (CH₂)_t group may each be optionally substituted with hydroxyl, (C₁-C₄)alkoxy, carboxyl, -CONH₂, -S(O)_m(C₁-C₆)alkyl,

-CO₂(C₁-C₄)alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro, or 1 or 2 (C₁-C₄)alkyl;

 $R^2 \text{ is hydrogen, } (C_1-C_8)alkyl, -(C_0-C_3)alkyl-(C_3-C_8)cycloalkyl, -(C_1-C_4)alkyl-A^1 \text{ or } A^1;$

15

20

25

30

where the alkyl groups and the cycloalkyl groups in the definition of R^2 are optionally substituted with hydroxyl, $-C(O)OX^6$, $-C(O)N(X^6)(X^6)$, $-N(X^6)(X^6)$, $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)A^1$, $-C(O)(X^6)$, CF_3 , CN or 1, 2 or 3 halogen;

5 R^3 is A^1 , (C_1-C_{10}) alkyl, $-(C_1-C_6)$ alkyl- A^1 , $-(C_1-C_6)$ alkyl- (C_3-C_7) cycloalkyl,

 $-(C_1-C_5)$ alkyl- $X^1-(C_1-C_5)$ alkyl, $-(C_1-C_5)$ alkyl- $X^1-(C_0-C_5)$ alkyl- A^1 or

- (C_1-C_5) alkyl- $X^1-(C_1-C_5)$ alkyl- (C_3-C_7) cycloalkyl;

where the alkyl groups in the definition of R³ are optionally substituted with,

 $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^3$, 1, 2, 3, 4 or 5 halogens, or 1, 2 or 3 OX^3 ;

 X^1 is O, $S(O)_m$, $-N(X^2)C(O)$ -, $-C(O)N(X^2)$ -, -OC(O)-, -C(O)O-, $-CX^2$ = CX^2 -, $-N(X^2)C(O)O$ -, $-OC(O)N(X^2)$ - or -C=C-;

R⁴ is hydrogen, (C₁-C₆)alkyl or (C₃-C₇)cycloalkyl;

 X^4 is hydrogen or (C_1-C_6) alkyl or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring:

$$X^3$$
 X^{3a} X^{3

where a and b are independently 0, 1, 2 or 3;

 X^5 and X^{5a} are each independently selected from the group consisting of hydrogen, trifluoromethyl, A^1 and optionally substituted (C_1 - C_6)alkyl;

the optionally substituted (C_1-C_6) alkyl in the definition of X^5 and X^{5a} is optionally substituted with a substituent selected from the group consisting of A^1 , OX^2 , $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^2$,

 (C_3-C_7) cycloalkyl, $-N(X^2)(X^2)$ and $-C(O)N(X^2)(X^2)$;

 R^7 and R^8 are independently hydrogen or optionally substituted (C₁-C₆)alkyl;

where the optionally substituted (C_1-C_6) alkyl in the definition of R^7 and R^8 is optionally independently substituted with A^1 , $-C(O)O-(C_1-C_6)$ alkyl,

 $-S(O)_m(C_1-C_6)$ alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 $-O-C(O)(C_1-C_{10})$ alkyl or 1 to 3 (C_1-C_6) alkoxy; or

R⁷ and R⁸ can be taken together to form -(CH₂)_r-L-(CH₂)_r-;

where L is $C(X^2)(X^2)$, $S(O)_m$ or $N(X^2)$;

A¹ in the definition of R¹ is a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected

from the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

A¹ in the definition of R², R³, R⁶, Rⁿ and R³ is independently (C₅-C₁)cycloalkenyl, phenyl or a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 A^1 for each occurrence is independently optionally substituted, in one or optionally both rings if A^1 is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, $-OX^6$,

 $-C(O)N(X^6)(X^6), \ -C(O)OX^6, \ oxo, \ (C_1-C_6)alkyl, \ nitro, \ cyano, \ benzyl,$

 $-N(X^6)SO_2-phenyl, \ -N(X^6)SO_2X^6, \ -CONX^{11}X^{12}, \ -SO_2NX^{11}X^{12}, \ -NX^6SO_2X^{12},$

 $-NX^6CONX^{11}X^{12}, \ -NX^6SO_2NX^{11}X^{12}, \ -NX^6C(O)X^{12}, \ imidazolyl, \ thiazolyl \ or \ tetrazolyl, \ provided \ that \ if \ A^1 \ is \ optionally \ substituted \ with \ methylenedioxy \ then it can only be substituted with one methylenedioxy;$

where X^{11} is hydrogen or optionally substituted ($C_1\text{-}C_6$)alkyl;

the optionally substituted (C_1 - C_6)alkyl defined for X^{11} is optionally independently substituted with phenyl, phenoxy, (C_1 - C_6)alkoxycarbonyl, -S(O)_m(C_1 - C_6)alkyl 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 (C_1 - C_{10})alkanoyloxy or 1 to 3 (C_1 - C_6)alkoxy;

25

20

5

10

15

10

15

20

25

30

 X^{12} is hydrogen, (C_1-C_6) alkyl, phenyl, thiazolyl, imidazolyl, furyl or thienyl, provided that when X^{12} is not hydrogen, X^{12} is optionally substituted with one to three substituents independently selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃ and CF₃; or X^{11} and X^{12} are taken together to form -(CH₂)_r-L¹-(CH₂)_r-;

where L^1 is $C(X^2)(X^2)$, O, $S(O)_m$ or $N(X^2)$;

r for each occurrence is independently 1, 2 or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, or optionally substituted (C_3 - C_7)cycloalkyl, where the optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^2 are optionally independently substituted with $-S(O)_m(C_1$ - C_6)alkyl, $-C(O)OX^3$, 1 to 5 halogens or 1-3 OX^3 ;

X³ for each occurrence is independently hydrogen or (C₁-C₀)alkyl;

 X^6 is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, (C_2 - C_6)halogenated alkyl, optionally substituted (C_3 - C_7)cycloalkyl, (C_3 - C_7)-halogenatedcycloalkyl, where optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^6 is optionally independently substituted by 1 or 2 (C_1 - C_4)alkyl, hydroxyl, (C_1 - C_4)alkoxy, carboxyl, CONH₂, - $S(O)_m(C_1$ - C_6)alkyl, carboxylate (C_1 - C_4)alkyl ester, or 1H-tetrazol-5-yl; or

when there are two X^6 groups on one atom and both X^6 are independently (C_1 - C_6)alkyl, the two (C_1 - C_6)alkyl groups may be optionally joined and, together with the atom to which the two X^6 groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or NX^7 ;

 χ^7 is hydrogen or (C₁-C₆)alkyl optionally substituted with hydroxyl; and m for each occurrence is independently 0, 1 or 2; with the proviso that:

 X^6 and X^{12} cannot be hydrogen when it is attached to C(O) or SO_2 in the form $C(O)X^6$, $C(O)X^{12}$, SO_2X^6 or SO_2X^{12} ; and

when R^6 is a bond then L is $N(X^2)$ and each r in the definition - $(CH_2)_r$ -L- $(CH_2)_r$ - is independently 2 or 3.

3. A method of claim 2 wherein the compound is 2-amino-N-(2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl)-isobutyramide, a prodrug thereof or a pharmaceutically acceptable salt of said compound or said prodrug.

10

15

20

25

- 4. A method of claim 3 wherein the compound is 2-amino-N-[2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide, L-tartrate.
- 5. A method of claim 2 wherein the compound is 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide, a prodrug thereof or a pharmaceutically acceptable salt of said compound or said prodrug.
- 6. A method of claim 5 wherein the compound is the (L)-(+)-tartaric acid salt of 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.
- 7. A method of claim 1 wherein the compound is 2-amino-N-{1(R)-benzyloxymethyl-2-[1,3-dioxo-8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl]-2-oxo-ethyl}-2-methyl-propionamide, a prodrug thereof or a pharmaceutically acceptable salt of said compound or said prodrug.
- 8. A method of claim 7 wherein the compound is the (L)-(+)-tartaric acid salt of 2-amino-N-(1(R)-benzyloxymethyl-2-(1,3-dioxo-8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl)-2-oxo-ethyl)-2-methyl-propionamide.
 - 9. A method of claim 1 wherein the patient is a human.
- 10. A method of claim 9 wherein the human is elderly, acutely ill, chronically ill, immunocompromised, immunosuppressed, receiving cancer chemotherapy or has anorexia nervosa.
- 11. A method of claim 1 which further comprises administering a recombinant growth hormone or a growth hormone secretagogue selected from the group consisting of GHRP-6, GHRP-1, GHRP-2, hexarelin, growth hormone releasing factor, an analog of growth hormone releasing factor, IGF-I and IGF-II.
- 12. A method of claim 1 which further comprises administering an antidepressant, a prodrug thereof or a pharmaceutically acceptable salt of said antidepressant or said prodrug.
 - 13. A method of claim 12 wherein said antidepressant is a norepinephrine reuptake inhibitor (NERI), selective serotonin reuptake inhibitor

10

15

20

25

(SSRI), monoamine oxidase inhibitor (MAO), combined NERI/SSRI, or an atypical antidepressant, a prodrug of said antidepressant or a pharmaceutically acceptable salt of said antidepressant or said prodrug.

- 14. A method of claim 13 wherein said antidepressant is a selective serotonin reuptake inhibitor (SSRI), a prodrug thereof or a pharmaceutically acceptable salt of said SSRI or said prodrug.
- 15. A method of claim 14 wherein said SSRI is citalopram, femoxetine, fluoxetine, fluoxamine, indalpine, indeloxazine, milnacipran, paroxetine, sertraline, sibutramine or zimeldine, a prodrug of said SSRI or a pharmaceutically acceptable salt of said SSRI or said prodrug.
- 16. A method of claim 15 wherein said SSRI is sertraline, a prodrug thereof or a pharmaceutically acceptable salt of sertraline or said prodrug.
- 17. A method of claim 1 which further comprises administering an antiemetic agent, a prodrug thereof or a pharmaceutically acceptable salt of said antiemetic or said prodrug.
- 18. A method of claim 17 wherein the antiemetic agent is meclizine hydrochloride, prochlorperazine, promethazine, trimethobenzamide hydrochloride or ondansetron hydrochloride.
- 19. A method of claim 1 which further comprises administering an antipsychotic agent, a prodrug thereof or a pharmaceutically acceptable salt of said antipsychotic agent or said prodrug.
- 20. A method of claim 19 wherein the antipsychotic agent is chlorpromazine, haloperidol, clozapine, loxapine, molindone hydrochloride, thiothixene, olanzapine, ziprasidone, ziprasidone hydrochloride, prochlorperazine, perphenazine, trifluoperazine hydrochloride or risperidone.
- 21. A method for treating an eating disorder in a patient which comprises administering to the patient an eating disorder treating effective amount of a compound of the Formula I:

HET
$$\mathbb{R}^4$$
 \mathbb{R}^7 \mathbb{R}^8 \mathbb{R}^8

or a stereoisomeric mixture thereof, diastereomerically enriched, diastereomerically pure, enantiomerically enriched or enantiomerically pure isomer thereof, or a prodrug of such compound, mixture or isomer thereof, or a pharmaceutically acceptable salt of the compound, mixture, isomer or prodrug, or a tautomer thereof,

5 wherein:

HET is a heterocyclic moiety selected from the group consisting of

d is 0, 1 or 2;

e is 1 or 2;

10 f is 0 or 1;

n and w are 0, 1 or 2, provided that n and w cannot both be 0 at the same time; Y^2 is oxygen or sulfur;

A is a divalent radical, where the left hand side of the radical as shown below is connected to C" and the right hand side of the radical as shown below is connected

15 to C', selected from the group consisting of

 $-C(O)-NR^2-C(R^9R^{10})-, \ -C(R^9R^{10})-NR^2-C(O)-, \ -C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-, \ -C(R^9R^{10})-R^2-C(O)-, \$

 $-S(O)_2 - C(R^9R^{10}) - C(R^9R^{10}) - , \ -C(R^9R^{10}) - O - C(O) - , \ -C(R^9R^{10}) - O - C(R^9R^{10}) - , \ -C(R^9R^{10}) - O - C(R^9R^{10}) - , \ -C(R^9R^{10}) - O - C(R^9R^{10}) - O - C(R^9R^{1$

 $-NR^2-C(O)-C(R^9R^{10})-,\ -O-C(O)-C(R^9R^{10})-,\ -C(R^9R^{10})-C(O)-NR^2-,$

```
-C(R^9R^{10})-C(O)-O-, \ -C(O)-NR^2-C(R^9R^{10})-C(R^9R^{10})-, \ -C(O)-O-C(R^9R^{10})-, \ -C(O)-C(C)-C(C)-C(C)-, \ -C(O)-C(C)-C(C)-C(C)-, \ -C(O)-C(C)-C(C)-C(C)-, \ -C(
                                      -C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-, -S(O)_2-NR^2-C(R^9R^{10})-C(R^9R^{10})-, -S(O)_2-NR^2-C(R^9R^{10})-, -S(O)_2-C(R^9R^{10})-, -S(O)_2-C(R^9R^{10})-, -S(O)_2-C(R^9R^{10})-, -S(O)_2-C(R^9R^{10})-, -S(O)_2-C(R^9R^{10})-, -S(O)_2-C(R^9R^{10})-, -S(O)_2-C(R^{
                                      -C(R^9R^{10})-C(R^9R^{10})-NR^2-C(O)-, -C(R^9R^{10})-C(R^9R^{10})-O-C(O)-,
                                      -NR^2-C(O)-C(R^9R^{10})-C(R^9R^{10})-, \ -NR^2-S(O)_2-C(R^9R^{10})-C(R^9R^{10})-, \ -NR^2-S(O)_2-C(R^9R^{10})-, \ -NR
                                      -O-C(O)-C(R^9R^{10})-C(R^9R^{10})-, \ -C(R^9R^{10})-C(R^9R^{10})-C(O)-NR^2-,
     5
                                        -C(R^9R^{10})-C(R^9R^{10})-C(O)-, \ -C(R^9R^{10})-NR^2-C(O)-O-, \ -C(R^9R^{10})-O-C(O)-NR^2,
                                         -C(R^9R^{10})-NR^2-C(O)-NR^2-, \ -NR^2-C(O)-O-C(R^9R^{10})-, \ -NR^2-C(O)-NR^2-C(R^9R^{10})-, \ -NR^2-C(O)-NR^2-C(R^9R^{10})-, \ -NR^2-C(O)-NR^2-C(R^9R^{10})-, \ -NR^2-C(O)-NR^2-C(R^9R^{10})-, \ -NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O)-NR^2-C(O
                                         -NR^2-S(O)_2-NR^2-C(R^9R^{10})-, \ -O-C(O)-NR^2-C(R^9R^{10})-, \ -C(O)-N=C(R^{11})-NR^2-, \ -C(O)-N-
                                          -C(O)-NR^2-C(R^{11})=N-, -C(R^9R^{10})-NR^{12}-C(R^9R^{10})-, -NR^{12}-C(R^9R^{10})-,
                                          -NR^{12}-C(R^9R^{10})-C(R^9R^{10})-,\ -C(O)-O-C(R^9R^{10})-C(R^9R^{10})-,\ -NR^2-C(R^{11})=N-C(O)-,
10
                                            -C(R^9R^{10})-C(R^9R^{10})-N(R^{12})-,\ -C(R^9R^{10})-NR^{12}-,\ -N=C(R^{11})-NR^2-C(O)-,
                                            -C(R^9R^{10})-C(R^9R^{10})-NR^2-S(O)_2-, \ -C(R^9R^{10})-C(R^9R^{10})-S(O)_2-NR^2-,
                                            -C(R^9R^{10})-C(R^9R^{10})-C(O)-O-, \ -C(R^9R^{10})-S(O)_2-C(R^9R^{10})-, \ -C(R^9R^{10})-C(R^9R^{10})-S(O)_2-, \ -C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9
                                            -C(O)-C(R^9R^{10})-C(R^9R^{10})- and -C(R^9R^{10})-NR^2-S(O)_2-NR^2-;
  15
                                              Q is a covalent bond or CH<sub>2</sub>;
                                               W is CH or N;
                                                X is CR9R10, C=CH2 or C=O;
                                               Y is CR<sup>9</sup>R<sup>10</sup>, O or NR<sup>2</sup>;
                                               Z is C=O, C=S or S(O)_2;
     20
                                                  G¹ is hydrogen, halo, hydroxy, nitro, amino, cyano, phenyl, carboxyl, -CONH₂, -(C₁-
                                                  C<sub>4</sub>)alkyl optionally independently substituted with one or more phenyl, one or more
                                                   halogens or one or more hydroxy groups, -(C1-C4)alkoxy optionally independently
                                                   substituted with one or more phenyl, one or more halogens or one or more hydroxy
                                                    groups, -(C_1-C_4)alkylthio, phenoxy, -COO(C_1-C_4)alkyl, N,N-di-(C_1-C_4)alkylamino, -
       25
                                                     (C2-C6)alkenyl optionally independently substituted with one or more phenyl, one or
                                                     more halogens or one or more hydroxy groups, -(C2-C6)alkynyl optionally
                                                     independently substituted with one or more phenyl, one or more halogens or one or
                                                     more hydroxy groups, -(C<sub>3</sub>-C<sub>6</sub>)cycloalkyl optionally independently substituted with
```

groups, $-(C_1-C_4)$ alkylamino carbonyl or di- (C_1-C_4) alkylamino carbonyl; G^2 and G^3 are each independently selected from the group consisting of hydrogen, halo, hydroxy, $-(C_1-C_4)$ alkyl optionally independently substituted with one to three

one or more $(C_1\text{-}C_4)$ alkyl groups, one or more halogens or one or more hydroxy

```
halo groups and -(C1-C4)alkoxy optionally independently substituted with one to
                  three halo groups;
                  R^1 is hydrogen, -CN, -(CH<sub>2</sub>)<sub>0</sub>N(X<sup>6</sup>)C(O)X<sup>6</sup>, -(CH<sub>2</sub>)<sub>0</sub>N(X<sup>6</sup>)C(O)(CH<sub>2</sub>)<sub>t</sub>-A<sup>1</sup>,
                  -(CH_2)_qN(X^6)S(O)_2(CH_2)_t-A^1, \ -(CH_2)_qN(X^6)S(O)_2X^6, \ -(CH_2)_qN(X^6)C(O)N(X^6)(CH_2)_t-A^1, \ -(CH_2)_qN(X^6)S(O)_2X^6, \ -(CH_2
                  -(CH_2)_qN(X^6)C(O)N(X^6)(X^6), \ -(CH_2)_qC(O)N(X^6)(X^6), \ -(CH_2)_qC(O)N(X^6)(CH_2)_t-A^1,
  5
                  \hbox{-(CH$_2)$_q$C(O)OX$^6$, -(CH$_2)$_q$C(O)O(CH$_2)$_t$-$A$^1$, -(CH$_2)$_q$OX$^6$, -(CH$_2)$_q$OC(O)X$^6$,}
                  -(CH_2)_qOC(O)(CH_2)_t-A^1, \ -(CH_2)_qOC(O)N(X^6)(CH_2)_t-A^1, \ -(CH_2)_qOC(O)N(X^6)(X^6),
                  -(CH_2)_{\sigma}C(O)X^6, -(CH_2)_{\sigma}C(O)(CH_2)_{t}-A^1, -(CH_2)_{\sigma}N(X^6)C(O)OX^6,
                  -(CH_2)_{\sigma}N(X^6)S(O)_2N(X^6)(X^6), \ -(CH_2)_{\sigma}S(O)_{m}X^6, \ -(CH_2)_{\sigma}S(O)_{m}(CH_2)_{t}-A^1,
                  -(C_1-C_{10})alkyl, \ -(CH_2)_t-A^1, \ -(CH_2)_q-(C_3-C_7)cycloalkyl, \ -(CH_2)_q-Y^1-(C_1-C_6)alkyl, \ -(CH_2)_q-Y^1-(C_1-C
10
                  \hbox{-(CH$_2$)$_q$-Y$^1$-(CH$_2$)$_t$-A$^1 or \hbox{-(CH$_2$)$_q$-Y$^1$-(CH$_2$)$_t$-(C$_3$-C$_7$)cycloalkyl;}
                                          where the alkyl and cycloalkyl groups in the definition of R1 are optionally
                                          substituted with (C<sub>1</sub>-C<sub>4</sub>)alkyl, hydroxy, (C<sub>1</sub>-C<sub>4</sub>)alkoxy, carboxyl, -CONH<sub>2</sub>,
                                          -S(O)_m(C_1-C_6)alkyl, -CO_2(C_1-C_4)alkyl ester, 1H-tetrazol-5-yl or 1, 2 or 3
15
                                          fluoro groups;
                                          Y^1 is O, S(O)_m, -C(O)NX^6-, -CH=CH-, -C\equiv C-, -N(X^6)C(O)-, -C(O)NX^6-,
                                          -C(O)O-, -OC(O)N(X^6)- or -OC(O)-;
                                          q is 0, 1, 2, 3 or 4;
                                          t is 0, 1, 2 or 3;
                                          said (CH_2)_q group and (CH_2)_t group in the definition of R^1 are optionally
20
                                          independently substituted with hydroxy, (C<sub>1</sub>-C<sub>4</sub>)alkoxy, carboxyl, -CONH<sub>2</sub>,
                                          -S(O)_m(C_1-C_6)alkyl, -CO_2(C_1-C_4)alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro
                                           groups or 1 or 2 (C<sub>1</sub>-C<sub>4</sub>)alkyl groups;
                   R^{1A} is selected from the group consisting of hydrogen, F, Cl, Br, I, (C_1\text{-}C_6)alkyl,
                   phenyl(C_1-C_3)alkyl,\ pyridyl(C_1-C_3)alkyl,\ thiazolyl(C_1-C_3)alkyl\ and\ thienyl(C_1-C_3)alkyl,
25
                   provided that R<sup>1A</sup> is not F, Cl, Br or I when a heteroatom is vicinal to C";
                   R^2 \text{ is hydrogen, } (C_1 - C_8) \\ \text{alkyl, } -(C_0 - C_3) \\ \text{alkyl-} (C_3 - C_8) \\ \text{cycloalkyl, } -(C_1 - C_4) \\ \text{alkyl-} \\ A^1 \text{ or } A^1;
                                           where the alkyl groups and the cycloalkyl groups in the definition of R2 are
                                           S(O)_m(C_1-C_6)alkyl, -C(O)A^1, -C(O)(X^6), CF_3, CN or 1, 2 or 3 independently
30
                                           selected halo groups;
                    R^3 is selected from the group consisting of A^1, (C_1-C_{10}) alkyl, -(C_1-C_6) alkyl-A^1, -(C_1-C_6)
```

 $-(C_1-C_5)$ alkyl- $X^1-(C_1-C_5)$ alkyl,

 C_5)alkyl- A^1 and - $(C_1$ - C_5)alkyl- X^1 - $(C_1$ - C_5)alkyl- $(C_3$ - C_7)cycloalkyl;

C₆)alkyl-(C₃-C₇)cycloalkyl,

 $-(C_1-C_5)$ alkyl- $X^1-(C_0-$

where the alkyl groups in the definition of R^3 are optionally substituted with $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^3$, 1, 2, 3, 4 or 5 independently selected halo groups or 1, 2 or 3 independently selected $-OX^3$ groups;

 X^1 is O, $S(O)_m$, $-N(X^2)C(O)$ -, $-C(O)N(X^2)$ -, -OC(O)-, -C(O)O-, $-CX^2$ = CX^2 -, $-N(X^2)C(O)O$ -, $-OC(O)N(X^2)$ - or -C=C-;

 R^4 is hydrogen, (C_1-C_6) alkyl or (C_3-C_7) cycloalkyl, or R^4 is taken together with R^3 and the carbon atom to which they are attached and form (C_5-C_7) cycloalkyl, (C_5-C_7) cycloalkenyl, a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, or is a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 X^4 is hydrogen or (C_1-C_6) alkyl or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring;

$$X^5$$
 X^{5a} X^{5a} X^{6} is a bond or is X^5 $(CH_2)_b$;

where a and b are each independently 0, 1, 2 or 3;

 X^5 and X^{5a} are each independently selected from the group consisting of hydrogen, CF_3 , A^1 and optionally substituted (C_1-C_6) alkyl;

the optionally substituted (C_1 - C_6)alkyl in the definition of X^5 and X^{5a} is optionally substituted with a substituent selected from the group consisting of A^1 , OX^2 , $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^2$, (C_3-C_7) cycloalkyl, $-N(X^2)(X^2)$ and $-C(O)N(X^2)(X^2)$;

or the carbon bearing X^5 or X^{5a} forms one or two alkylene bridges with the nitrogen atom bearing R^7 and R^8 wherein each alkylene bridge contains 1 to 5 carbon atoms, provided that when one alkylene bridge is formed then only one of X^5 or X^{5a} is on the carbon atom and only one of R^7 or R^8 is on the nitrogen atom and further provided that when two alkylene bridges are formed then X^5 and X^{5a} cannot be on the carbon atom and R^7 and R^8 cannot be on the nitrogen atom;

25

20

5

10

15

10

15

20

25

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen;

or X^5 is taken together with X^{5a} and the carbon atom to which they are attached and form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 Z^1 is a bond, O or N-X², provided that when a and b are both 0 then Z^1 is not N-X² or O:

or R^6 is -(CR^aR^b)_a-E-(CR^aR^b)_b-, where the -(CR^aR^b)_a- group is attached to the carbonyl carbon of the amide group of the compound of formula I and the -(CR^aR^b)_b group is attached to the terminal nitrogen atom of the compound of formula I;

E is -O-, -S-, -CH=CH- or an aromatic moiety selected from

said aromatic moiety in the definition of E optionally substituted with up to three halo, hydroxy, $-N(R^c)(R^c)$, (C_1-C_6) alkyl or (C_1-C_6) alkoxy; R^a and R^b are, for each occurrence, independently hydrogen, (C_1-C_6) alkyl, trifluoromethyl, phenyl or monosubstituted (C_1-C_6) alkyl where the substituents are imidazolyl, naphthyl, phenyl, indolyl, p-hydroxyphenyl, $-OR^c$, $S(O)_mR^c$, $C(O)OR^c$, (C_3-C_7) cycloalkyl, $-N(R^c)(R^c)$, $-C(O)N(R^c)(R^c)$, or R^a or R^b may independently be joined to one or both of R^7 or E (where E is

10

15

20

25

30

other than O, S or -CH=CH-) to form an alkylene bridge between the terminal nitrogen and the alkyl portion of the R^a or R^b and the R^7 or E group, wherein the bridge contains 1 to 8 carbon atoms; or R^a and R^b may be joined to one another to form a (C_3-C_7) cycloalkyl;

 R^{c} , for each occurrence, is independently hydrogen or $(C_{1}\text{-}C_{6})$ alkyl; a and b are independently 0, 1, 2 or 3, with the proviso that if E is -O- or -S-, b is other than 0 or 1 and with the further proviso that if E is -CH=CH-, b is other than 0;

 R^7 and R^8 are each independently hydrogen or optionally substituted (C_1-C_6) alkyl; where the optionally substituted (C_1-C_6) alkyl in the definition of R^7 and R^8 is optionally independently substituted with A^1 , $-C(O)O-(C_1-C_6)$ alkyl, $-S(O)_m(C_1-C_6)$ alkyl, 1 to 5 halo groups, 1 to 3 hydroxy groups, 1 to 3 $-O-C(O)(C_1-C_{10})$ alkyl groups or 1 to 3 $-O-C(O)(C_1-C_1-C_1)$

R⁷ and R⁸ can be taken together to form -(CH₂)_r-L-(CH₂)_r-;

where L is $C(X^2)(X^2)$, $S(O)_m$ or $N(X^2)$;

 R^9 and R^{10} are each independently selected from the group consisting of hydrogen, fluoro, hydroxy and (C_1-C_5) alkyl optionally independently substituted with 1-5 halo groups;

 R^{11} is selected from the group consisting of (C_1-C_5) alkyl and phenyl optionally substituted with 1-3 substitutents each independently selected from the group consisting of (C_1-C_5) alkyl, halo and (C_1-C_5) alkoxy;

 R^{12} is selected from the group consisting of (C_1-C_5) alkylsulfonyl, (C_1-C_5) alkanoyl and (C_1-C_5) alkyl where the alkyl portion is optionally independently substituted by 1-5 halo groups;

 A^1 for each occurrence is independently selected from the group consisting of (C_{5^-} C₇)cycloalkenyl, phenyl, a partially saturated, fully saturated or fully unsaturated 4-to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen and a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

10

15

20

30

A¹ for each occurrence is independently optionally substituted, on one or optionally both rings if A¹ is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, $-OX^6$, $-C(O)N(X^6)(X^6) - -C(O)OX^6 - OXO - (Co-Ca)alkyl - pitro - Cyano - benzyl - a$

 $-C(O)N(X^6)(X^6), \quad -C(O)OX^6, \quad \text{oxo,} \quad (C_1-C_6)\text{alkyl,} \quad \text{nitro,} \quad \text{cyano,} \quad \text{benzyl,} \quad -S(O)_m(C_1-C_6)\text{alkyl,} \quad 1\text{H-tetrazol-5-yl,} \quad \text{phenyl,} \quad \text{phenoxy,} \quad \text{phenylalkyloxy,} \quad \text{halophenyl,} \quad \text{methylenedioxy,} \quad -N(X^6)(X^6), \quad -N(X^6)C(O)(X^6), \quad -S(O)_2N(X^6)(X^6), \quad -N(X^6)S(O)_2-\text{phenyl,} \quad -N(X^6)S(O)_2X^6, \quad -CONX^{11}X^{12}, \quad -S(O)_2NX^{11}X^{12}, \quad -$

 $-NX^6S(O)_2X^{12}$, $-NX^6CONX^{11}X^{12}$, $-NX^6S(O)_2NX^{11}X^{12}$, $-NX^6C(O)X^{12}$, imidazolyl, thiazolyl and tetrazolyl, provided that if A^1 is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy;

where X¹¹ is hydrogen or optionally substituted (C₁-C₆)alkyl;

the optionally substituted (C_1 - C_6)alkyl defined for X^{11} is optionally independently substituted with phenyl, phenoxy, (C_1 - C_6)alkoxycarbonyl, $-S(O)_m(C_1$ - C_6)alkyl, 1 to 5 halo groups, 1 to 3 hydroxy groups, 1 to 3 (C_1 - C_{10})alkanoyloxy groups or 1 to 3 (C_1 - C_6)alkoxy groups;

 X^{12} is hydrogen, (C₁-C₆)alkyl, phenyl, thiazolyl, imidazolyl, furyl or thienyl, provided that when X^{12} is not hydrogen, the X^{12} group is optionally substituted with one to three substituents independently selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃ and CF₃;

or X^{11} and X^{12} are taken together to form -(CH₂)_r-L¹-(CH₂)_r-; L¹ is C(X²)(X²), O, S(O)_m or N(X²);

25 r for each occurrence is independently 1, 2 or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted (C₁-C₆)alkyl or optionally substituted (C₃-C₇)cycloalkyl, where the optionally substituted (C₁-C₆)alkyl and optionally substituted (C₃-C₇)cycloalkyl in the definition of X^2 are optionally independently substituted with $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^3$, 1 to 5 halo groups or 1-3 OX^3 groups;

 X^3 for each occurrence is independently hydrogen or (C_1-C_6) alkyl; X^6 for each occurrence is independently hydrogen, optionally substituted (C_1-C_6) alkyl, (C_2-C_6) halogenated alkyl, optionally substituted (C_3-C_7) -cycloalkyl, (C_3-C_7) -cycloalkyl

halogenated cycloalkyl, where optionally substituted (C1-C6)alkyl and optionally

substituted (C_3 - C_7)cycloalkyl in the definition of X^6 is optionally independently mono- or di-substituted with (C_1 - C_4)alkyl, hydroxy, (C_1 - C_4)alkoxy, carboxyl, CONH₂, $-S(O)_m(C_1$ - C_6)alkyl, carboxylate (C_1 - C_4)alkyl ester or 1H-tetrazol-5-yl; or when there are two X^6 groups on one atom and both X^6 are independently (C_1 - C_6)alkyl, the two (C_1 - C_6)alkyl groups may be optionally joined and, together with the atom to which the two X^6 groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or NX⁷ as a ring member;

 X^7 is hydrogen or (C₁-C₆)alkyl optionally substituted with hydroxy; m for each occurrence is independently 0, 1 or 2;

10 with the provisos that:

5

15

- 1) X^6 and X^{12} cannot be hydrogen when attached to C(O) or S(O)₂ in the form C(O) X^6 , C(O) X^{12} , S(O)₂ X^6 or S(O)₂ X^{12} ; and
- 2) when R^6 is a bond then L is $N(X^2)$ and each r in the definition - $(CH_2)_r$ -L- $(CH_2)_r$ is independently 2 or 3.
 - 22. A method of claim 21 wherein the compound is of Formula I-A

a racemic-diastereomeric mixture or an optical isomer of said compound or a pharmaceutically-acceptable salt or a prodrug thereof, or a tautomer thereof, wherein

20 f is 0;

n is 0 and w is 2, or n is 1 and w is 1, or n is 2 and w is 0;

Y is oxygen or sulfur;

R¹ is hydrogen, -CN, -(CH₂)_qN(X⁶)C(O)X⁶, -(CH₂)_qN(X⁶)C(O)(CH₂)_t-A¹, -(CH₂)_qN(X⁶)SO₂(CH₂)_t-A¹, -(CH₂)_qN(X⁶)SO₂X⁶, -(CH₂)_qN(X⁶)C(O)N(X⁶)(CH₂)_t-A¹,

25 $-(CH_2)_qN(X^6)C(O)N(X^6)(X^6)$, $-(CH_2)_qC(O)N(X^6)(X^6)$, $-(CH_2)_qC(O)N(X^6)(CH_2)_t-A^1$,

 $-(CH_2)_qC(O)OX^6, -(CH_2)_qC(O)O(CH_2)_t-A^1, -(CH_2)_qOX^6, -(CH_2)_qOC(O)X^6,$

 $-(CH_2)_qOC(O)(CH_2)_t-A^1, \ -(CH_2)_qOC(O)N(X^6)(CH_2)_t-A^1, \ -(CH_2)_qOC(O)N(X^6)(X^6), \\$

 $-(CH_2)_qC(O)X^6, \ -(CH_2)_qC(O)(CH_2)_t-A^1, \ -(CH_2)_qN(X^6)C(O)OX^6,$

 $-(CH_2)_qN(X^6)SO_2N(X^6)(X^6), \ -(CH_2)_qS(O)_mX^6, \ -(CH_2)_qS(O)_m(CH_2)_t-A^1,$

30 - (C_1-C_{10}) alkyl, - $(CH_2)_t-A^1$, - $(CH_2)_0-(C_3-C_7)$ cycloalkyl, - $(CH_2)_0-Y^1-(C_1-C_6)$ alkyl,

15

20

25

```
-(CH_2)_q-Y^1-(CH_2)_t-A^1 or -(CH_2)_q-Y^1-(CH_2)_t-(C_3-C_7)cycloalkyl;
```

where the alkyl and cycloalkyl groups in the definition of R^1 are optionally substituted with (C_1-C_4) alkyl, hydroxyl, (C_1-C_4) alkoxy, carboxyl, -CONH₂,

 $-S(O)_m(C_1-C_6)$ alkyl, $-CO_2(C_1-C_4)$ alkyl ester, 1H-tetrazol-5-yl or 1, 2 or 3 fluoro:

 Y^1 is O, $S(O)_m$, $-C(O)NX^6$ -, -CH=CH-, -C=C-, $-N(X^6)C(O)$ -, -C(O)O-,

 $-OC(O)N(X^6)$ - or -OC(O)-;

q is 0, 1, 2, 3 or 4;

t is 0, 1, 2 or 3;

said $(CH_2)_q$ group and $(CH_2)_t$ group may each be optionally substituted with hydroxyl, (C_1-C_4) alkoxy, carboxyl, $-CONH_2$, $-S(O)_m(C_1-C_6)$ alkyl,

-CO $_2$ (C $_1$ -C $_4$)alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro, or 1 or 2 (C $_1$ -C $_4$)alkyl;

 R^2 is hydrogen, (C_1-C_8) alkyl, $-(C_0-C_3)$ alkyl- (C_3-C_8) cycloalkyl, $-(C_1-C_4)$ alkyl- A^1 or A^1 ; where the alkyl groups and the cycloalkyl groups in the definition of R^2 are optionally substituted with hydroxyl, $-C(O)OX^6$, $-C(O)N(X^6)(X^6)$.

 $-N(X^6)(X^6)$, $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)A^1$, $-C(O)(X^6)$, CF_3 , CN or 1, 2 or 3 halogen;

 R^3 is A^1 , (C_1-C_{10}) alkyl, $-(C_1-C_6)$ alkyl- A^1 , $-(C_1-C_6)$ alkyl- (C_3-C_7) cycloalkyl,

 $-(C_1-C_5)alkyl-X^1-(C_1-C_5)alkyl, -(C_1-C_5)alkyl-X^1-(C_0-C_5)alkyl-A^1$ or

 $-(C_1-C_5)$ alkyl- $X^1-(C_1-C_5)$ alkyl- (C_3-C_7) cycloalkyl;

where the alkyl groups in the definition of R³ are optionally substituted with,

-S(O)_m(C₁-C₆)alkyl, -C(O)OX³, 1, 2, 3, 4 or 5 halogens, or 1, 2 or 3 OX³;

 X^1 is O, $S(O)_m$, $-N(X^2)C(O)$ -, $-C(O)N(X^2)$ -, -OC(O)-, -C(O)O-, $-CX^2$ = CX^2 -,

 $-N(X^2)C(O)O-, -OC(O)N(X^2)- or -C=C-;$

 R^4 is hydrogen, (C_1-C_6) alkyl or (C_3-C_7) cycloalkyl;

 X^4 is hydrogen or (C_1-C_6) alkyl or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring;

where a and b are independently 0, 1, 2 or 3;

10

15

20

25

30

 X^5 and X^{5a} are each independently selected from the group consisting of hydrogen, trifluoromethyl, A^1 and optionally substituted (C₁-C₆)alkyl;

the optionally substituted (C_1 - C_6)alkyl in the definition of X^5 and X^{5a} is optionally substituted with a substituent selected from the group consisting of A^1 , OX^2 , $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^2$,

 $(C_3\text{-}C_7)$ cycloalkyl, $\text{-N}(X^2)(X^2)$ and $\text{-C}(O)N(X^2)(X^2)$;

 R^7 and R^8 are independently hydrogen or optionally substituted (C₁-C₆)alkyl;

where the optionally substituted (C_1 - C_6)alkyl in the definition of R^7 and R^8 is optionally independently substituted with A^1 , -C(O)O-(C_1 - C_6)alkyl,

-S(O)_m(C₁-C₆)alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 -O-C(O)(C₁-C₁₀)alkyl or 1 to 3 (C₁-C₆)alkoxy; or

R⁷ and R⁸ can be taken together to form -(CH₂)_r-L-(CH₂)_r-;

where L is $C(X^2)(X^2)$, $S(O)_m$ or $N(X^2)$;

A¹ in the definition of R¹ is a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 A^1 in the definition of R^2 , R^3 , R^6 , R^7 and R^8 is independently (C_5 - C_7)cycloalkenyl, phenyl or a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

A¹ for each occurrence is independently optionally substituted, in one or optionally both rings if A¹ is a bicyclic ring system, with up to three

substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, -OX⁶, $-C(O)N(X^6)(X^6)$, $-C(O)OX^6$, oxo, (C_1-C_6) alkyl, nitro, cyano, benzyl, $-S(O)_m(C_1-C_6)$ alkyl, 1H-tetrazol-5-yl, phenyl, phenoxy, phenylalkyloxy, halophenyl, methylenedioxy, $-N(X^6)(X^6)$, $-N(X^6)C(O)(X^6)$, $-SO_2N(X^6)(X^6)$, $-N(X^6)SO_2-phenyl, -N(X^6)SO_2X^6, -CONX^{11}X^{12}, -SO_2NX^{11}X^{12}, -NX^6SO_2X^{12}, -NX^6SO_2X^{12}$ $-NX^6CONX^{11}X^{12}, \quad -NX^6SO_2NX^{11}X^{12}, \quad -NX^6C(O)X^{12}, \quad imidazolyl, \quad thiazolyl \quad or \quad -NX^6CONX^{11}X^{12}, \quad -NX^6SO_2NX^{11}X^{12}, \quad -NX^6CONX^{11}X^{12}, \quad -NX^6SO_2NX^{11}X^{12}, \quad -NX^6CONX^{11}X^{12}, \quad -NX^6CONX^{11}X^{12}X^{12}, \quad -NX^6CONX^{11}X^{12}X^{12}X^{12}X^{12}, \quad -NX^6CONX^{11}X^{12}X^{12}X^{12}X^{12}X^{12}X^{12}X^{12}X^{12}X^{12}$ tetrazolyl, provided that if A1 is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy;

> where X^{11} is hydrogen or optionally substituted (C₁-C₆)alkyl; the optionally substituted (C_1-C_6) alkyl defined for X^{11} is

> > optionally independently substituted with phenyl, phenoxy, (C_1-C_6) alkoxycarbonyl, $-S(O)_m(C_1-C_6)$ alkyl 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 (C_1-C_{10}) alkanoyloxy or 1 to 3 (C_1-C_{10})

C₆)alkoxy:

 X^{12} is hydrogen, (C₁-C₆)alkyl, phenyl, thiazolyl, imidazolyl, furyl or thienyl, provided that when X12 is not hydrogen, X12 is optionally substituted with one to three substituents independently selected from the group consisting of CI, F, CH₃, OCH₃, OCF₃ and CF₃; or X^{11} and X^{12} are taken together to form -(CH₂)_r-L¹-(CH₂)_r-;

where L^1 is $C(X^2)(X^2)$, O, $S(O)_m$ or $N(X^2)$;

r for each occurrence is independently 1, 2 or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted (C₁- C_6)alkyl, or optionally substituted (C_3 - C_7)cycloalkyl, where the optionally substituted (C₁-C₆)alkyl and optionally substituted (C₃-C₇)cycloalkyl in the definition of X² are optionally independently substituted with $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^3$, 1 to 5 halogens or 1-3 OX³:

 X^3 for each occurrence is independently hydrogen or $(C_1\text{-}C_6)$ alkyl;

X⁶ is independently hydrogen, optionally substituted (C₁-C₆)alkyl, (C₂-C₆)halogenated alkyl, optionally substituted (C₃-C₇)cycloalkyl, (C_3-C_7) halogenatedcycloalkyl, where optionally substituted (C1-C6)alkyl and optionally substituted (C₃-C₇)cycloalkyl in the definition of X⁶ is optionally independently substituted by 1 or 2 (C₁-C₄)alkyl, hydroxyl, (C₁-C₄)alkoxy, carboxyl, CONH₂, -S(O)_m(C₁-C₆)alkyl, carboxylate (C₁-C₄)alkyl ester, or 1H-tetrazol-5-yl; or

15

10

5

20

25

15

20

25

30

when there are two X^6 groups on one atom and both X^6 are independently (C_1 - C_6)alkyl, the two (C_1 - C_6)alkyl groups may be optionally joined and, together with the atom to which the two X^6 groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or NX^7 ;

 χ^7 is hydrogen or (C₁-C₆)alkyl optionally substituted with hydroxyl; and m for each occurrence is independently 0, 1 or 2; with the proviso that:

 X^6 and X^{12} cannot be hydrogen when it is attached to C(O) or SO₂ in the form C(O) X^6 , C(O) X^{12} , SO₂ X^6 or SO₂ X^{12} ; and

- when R^6 is a bond then L is $N(X^2)$ and each r in the definition $-(CH_2)_r$ -L- $(CH_2)_r$ is independently 2 or 3.
 - 23. A method of claim 22 wherein the compound is 2-amino-N-(2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl)-isobutyramide, a prodrug thereof or a pharmaceutically acceptable salt of said compound or said prodrug.
 - 24. A method of claim 23 wherein the compound is 2-amino-N-[2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide, L-tartrate.
 - 25. A method of claim 22 wherein the compound is 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide, a prodrug thereof or a pharmaceutically acceptable salt of said compound or said prodrug.
 - 26. A method of claim 25 wherein the compound is the (L)-(+)-tartaric acid salt of 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.
 - 27. A method of claim 21 wherein the compound is 2-amino-N-{1(R)-benzyloxymethyl-2-[1,3-dioxo-8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl]-2-oxo-ethyl}-2-methyl-propionamide, a prodrug thereof or a pharmaceutically acceptable salt of said compound or said prodrug.
 - 28. A method of claim 27 wherein the compound is the (L)-(+)-tartaric acid salt of 2-amino-N-(1(R)-benzyloxymethyl-2-(1,3-dioxo-8a(S)-pyridin-2-ylmethyl-

10

15

20

25

2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl)-2-oxo-ethyl)-2-methyl-propionamide.

- 29. A method of claim 21 wherein the eating disorder is anorexia nervosa.
 - 30. A method of claim 21 wherein the patient is a human.
- 31. A method of claim 30 wherein the human is elderly, acutely ill, chronically ill, immunocompromised, immunosuppressed or receiving cancer chemotherapy.
- 32. A method of claim 21 which further comprises administering recombinant growth hormone or a growth hormone secretagogue selected from the group consisting of GHRP-6, GHRP-1, GHRP-2, hexarelin, growth hormone releasing factor, an analog of growth hormone releasing factor, IGF-I and IGF-II.
- 33. A method of claim 21 which further comprises administering an antidepressant, a prodrug thereof or a pharmaceutically acceptable salt of said antidepressant or said prodrug.
- 34. A method of claim 33 wherein said antidepressant is a norepinephrine reuptake inhibitor (NERI), selective serotonin reuptake inhibitor (SSRI), monoamine oxidase inhibitor (MAO), combined NERI/SSRI, or an atypical antidepressant, a prodrug of said antidepressant or a pharmaceutically acceptable salt of said antidepressant or said prodrug.
- 35. A method of claim 34 wherein said antidepressant is a selective serotonin reuptake inhibitor (SSRI), a prodrug thereof or a pharmaceutically acceptable salt of said SSRI or said prodrug.
- 36. A method of claim 35 wherein said SSRI is citalopram, femoxetine, fluoxetine, fluoxetine, indalpine, indeloxazine, milnacipran, paroxetine, sertraline, sibutramine or zimeldine, a prodrug of said SSRI or a pharmaceutically acceptable salt of said SSRI or said prodrug.
 - 37. A method of claim 36 wherein said SSRI is sertraline, a prodrug thereof or a pharmaceutically acceptable salt of sertraline or said prodrug.
- 30 38. A method of claim 21 which further comprises administering an antiemetic agent, a prodrug thereof or a pharmaceutically acceptable salt of said antiemetic or said prodrug.

- 39. A method of claim 38 wherein the antiemetic agent is meclizine hydrochloride, prochlorperazine, promethazine, trimethobenzamide hydrochloride or ondansetron hydrochloride.
- 40. A method of claim 21 which further comprises administering an antipsychotic agent, a prodrug thereof or a pharmaceutically acceptable salt of said antipsychotic agent or said prodrug.
- 41. A method of claim 40 wherein the antipsychotic agent is chlorpromazine, haloperidol, clozapine, loxapine, molindone hydrochloride, thiothixene, olanzapine, ziprasidone, ziprasidone hydrochloride, prochlorperazine, perphenazine, trifluoperazine hydrochloride or risperidone.