ADDIS ABABA EDUCATION BUREAU

2013/2021 GRADE 12 MATHEMATICS MODEL EXAMINATIOS

TIME ALLOWED: 3HOURS

GENERAL DIRECTIONS

THIS BOOKLET CONTAINS MATHEMATICS EXAMINATION FOR THE NATURAL SCIENCE CANDIDATES ONLY. IN THIS EXAMINATION, THERE ARE A TOTAL OF 65MULTIPLE CHOICE QUESTIONS.

THERE IS ONLY ONE BEST ANSWER FOR EACH QUESTION. CHOOSE THE BEST ANSWER FROM THE SUGGESTED OPTIONS AND BLACKEN THE LETTER OF YOUR CHOICE ON THE ANSWER SHEET. USE ONLY PENCILE TO MARK YOUR ANSWERS.

YOU WILL BE ALLOWED TO WORK ON THE EXAM FOR 3 HOURS. WHEN TIME IS CALLED, YOU MUST IMMEDIATELY STOP WORKING, PUT YOUR PENCIL DOWN, AND WAIT FOR FURTHER INSTRUCTIONS.

ANY FORM OF CHEATING OR AN ATTEMT TO CHEAT IN THE EXAMINATION WILL RESULT IN AN AUTOMATIC DISMISSAL FROM THE EXAMINATION HALL AND CANCELLATION OF YOUR SCORE(S).

PLEASE MAKE SURE THAT YOU HAVE WRITTEN ALL THE QEQUIRED INFORMATION ON THE ANSWER SHEET BEFORE YOU START TO WORK ON THE EXAMINATION.

DIRECTIONS: For each of the following problems, choose the best answer from the given alternatives and carefully blacken the letter of your best choice on the separate answer sheet provided.

1.	Which one of the following is true about the sequence $a_n = \frac{4n-3}{n+3}$?					
	A. Its <i>glb</i> is 4		C. Its lub is $\frac{1}{4}$			
	B. It is bounded	monotonic	D. It is a null sequent	uence		
	sequence.					
2.	Let f(x) = 5x + 2x	and $g(x) = 2x - 1$, then what is the value of	k such that		
	f(g(k)) = 17?					
	A. 2	B. 4	C. 5	D. 7		
3.	Let $\{a_n\}$ be a sequen	nce such that $a_1 = a_2$	$a_2 = 1$ and $a_{n+2} = a_n + 3$	$8a_{n+1}$ for		
	$n \ge 1$, then the sixth	n term is equal to:				
	A. 40	B. 43	C. 142	D. 129		
4.		Which one of the following is true about the function $f(x) = x x $?				
	A. $f'(x) = 2x$, $\forall x \in \mathbb{R}$			C. $f'(x) = 2 x , \ \forall x \in \mathbb{R}$		
_	B. f'(x) = -2x		D. $f'(0)$ does not exist			
5.		whole numbers that	are less than 100 and leav	e remainder 2		
	when divided by 5?	D 000	C 002	D 000		
	A. 988	B. 980	C. 992	D. 990		
6.	The simplified form of $\frac{4-3i}{3+4i} + \overline{1-2i}$ is equal to:					
	A. $1 - i$		C. $1 - 3i$			
	B. $1 + i$		D. $1 + 3i$			
7.	Let $f(x) = \frac{x^2}{x^2 + 1}$ and	$1 f^{-1}(2a) = 1$ then	, what is the value of a ?			
		B. $\frac{1}{2}$	C. 1	D. 2		
8.	What is the solution	set of $\frac{1-\frac{1}{x}}{1-\frac{1}{x^2}} = 3x^2$	$-\frac{x}{1+\frac{1}{x}}$?			
	A. $\left\{-1, 0, \frac{1}{3}\right\}$,	C. $\left\{\frac{1}{3}\right\}$			
	B. $\left\{-1, \frac{1}{3}\right\}$		D. $\left\{-\frac{1}{3}\right\}$			
9.	In which interval the function $f(x) = \sqrt{1 - x^2}$ is differentiable?					
	A. $(-\infty, -1) \cup ($		C. (-1, 1)			
	B. [1, ∞)		D. $(-\infty, \infty)$			
				Page 2 of 10		

10. Which one of the f	following is not true	about the graph of $f(x) =$	$\frac{3x^2}{x^2-x-2}$?		
	f f crosses its horizon				
B. The range of	B. The range of f is the set of $\mathbb{R}/\{3\}$				
•	dx = 2 are its vertice				
D. As $x \to \infty$,		• 1			
11. What is the equation	on of the tangent line	to the circle $(x+3)^2 + (y+3)^2$	$(v-1)^2 = 29$		
at a point $P(2,3)$?	C	•	ŕ		
A. $2y + 5x = 1$	16	C. $2y - 5x = 4$			
B. $5y + 2x = 1$		D. $5y - 2x = 1$			
•		arabola $y^2 + 8x + 4y - 2$			
A. $(3, -4)$, y	r=0	C. $(5,-2)$, $x =$	= 1		
B. $(1,-2)$, x	= 5	D. $(3, 0), y =$: −4		
13. Which one of the f	ollowing is an asym	ptote of the hyperbola			
y^2 -	$-x^2 + 4x - 5 = 0$?				
A. $y = x + 2$		C. $y = -x - 2$			
B. $y = x - 2$		D. $y = x$			
		re A is 3×3 matrix and I is	s identity		
	then $det(A^T)$ is equa				
A. 1	B. 2	C. 4	D. 8		
15. Which of the follow		e function given by			
(2x-1,	if $x < -1$				
$f(x) = \begin{cases} 2x - 1, \\ x^2 + 1, \\ x + 1, \end{cases}$	$if - 1 \le x \le 1?$				
		,			
-	ous everywhere excep	pt at $x = 1$			
•	ous every where				
-	•	pt at $x = -1$ and $x = 1$			
-	ous everywhere excep				
		in a shape of ellipse. If the l	_		
_		has length $16m$, what is the	e eccentricity		
of this conference		_	_		
A. $\frac{3}{5}$	B. $\frac{4}{5}$	C. $\frac{5}{4}$	D. $\frac{5}{3}$		

B. $p \land q, p \Rightarrow q \vdash q$		D. $\neg p \land \neg q$, $(\neg p \Rightarrow r) \Rightarrow p \vdash r$		
18. The value of $\int_{0}^{1} (x + x)^{2} dx$	1) $e^x dx$ is equal to:			
A. 0	B. 1	C. 2 <i>e</i>	D. <i>e</i>	
19.A group of five stu	idents in mathematics c	lass have a mean avera	ige score of 80.	
If a sixth student v	with score of 74 is added	l to the group, what is	the mean score	
of all students?				
A. 76	B. 79	C. 78	D. 82	
	4), $f^{n}(4) = 2$ then, g			
A. 2^{n+1}	B. 2^{n}	C. 0	D. 2^{n-1}	
_	ed, 5 black and 3 white			
	at is the probability of g	· ·		
	balls in the third draw, i	f the balls are drawn w	rithout	
replacement?	D 4	1	1	
A. $\frac{5}{144}$	B. 1	C. $\frac{1}{22}$	D. $\frac{1}{144}$	
22. In how many way	rs can a committee of 7	students can be selecte	d from 5 boys	
and 5 girls, if the c	committee consists of at	least 3 girls?		
A. 50	B. 120	C. 100	D. 110	
23. If $\lim_{x \to \infty} \left(\frac{x+k}{x-k} \right)^x = 5, t$	then the value of k is eq	ual to:		
A. <i>ln</i> 5	B. $ln(\sqrt{2})$	C. $ln(\sqrt{5})$	D. 2	
24.If the third term of	a geometric progressio	n is 5 and its sixth term	n is -40 , then	
which one of the fe	ollowing is not true ?			
A. The commo	n ratio is −2			
B. The first ter	$m G_1 = \frac{5}{4}$			
	$G_n = 5(-2)^{n-3}$			
	the first five term is $\frac{55}{4}$			
	T	11 amitical numbers of		
	following is the set of a	in critical numbers of		
	$\frac{1}{3}x^3 - 4x - 1 $?		2.5	
A. $\left\{\frac{1}{4}, 2\right\}$	B. $\left\{-2, \frac{1}{4}, 2\right\}$	C. $\{-2, 2\}$	D. $\{\frac{1}{4}\}$	

C. $p \Rightarrow q, q \Rightarrow r \vdash p \Rightarrow r$

17. Which one of the following is invalid logical argument?

A. $p, p \Rightarrow q, q \Rightarrow r \vdash r$

26.A ball is thrown	•		· ·			
_	na it rebounds u	o.8 <i>n</i> meters. V	What is the total d	iistance traveled		
by the ball?	D 16	0.00	C 40m	D 00		
	B. 16			D. 80 <i>m</i>		
27.If f(x) = (8 - x)	$(\sqrt{2}-x)$, wh	nat is the slop	e of the tangent l	ine to the graph of		
f at x = -2?						
A. 32	B. 0		C16	D. –28		
$28. \text{If } G(x) = f(x^2 + x^2)$	+2x), $f'(-1)$	= 1 and f''(-	1)=-1, then G''(-1) =		
A. 10	B1	10	C2	D. 2		
29. Which of the following	lowing is not tru	ie?				
A. If f is a ra	tional function a	and $a \in dom$	ain of f , then $\lim_{x \to a} f$	$\inf_{a} f(x)$ exist and is		
real numb			$x \rightarrow$	≯u		
		$0 = \lim_{x \to \infty} f(x)$ t	hen the limit of f	at a exists		
			hen the limit of <i>f</i>			
C. If a point i	is an element of	the domain o	f a function f , the	en either $\lim_{x \to a^+} f(x)$		
or $\lim_{x \to a^{-}} f(x)$) exist.					
D. Every fund	ction has a uniqu	ue limit at a p	oint in its domair	n, provided that		
the limit e	_	•				
30. Which one of the	e following is a	true statemen	t on the set of rea	l number?		
A. $(\forall x)(\exists y)(\exists y)$				$(x+y^2+1=0)$		
A. $(\forall x)(\exists y)(x^2 + y^2 = 9)$ B. $(\exists x)(\forall y)(x + y = y)$			D. $(\exists x)(x^2 +$	D. $(\exists x)(x^2 + x + 1 = 0)$		
31. The following is				,		
				25 – 29		
Frequency	7	6	20 - 24 10	1		
What are the me	dian and the ran	ge of the dist	ribution respectiv	rely?		
A. 17.83 and	19		C. 17.83 and	1 20		
B. 18.67 and 20			D. 18.67 and	1 19		
32. If f'(x) = 2x +	1 and $f(1) =$	= -2 , then wh	at is the formula	for $f(x)$?		
A. $x^2 + x$			C. $x^2 + x -$	2		
B. $2x^2 - x +$	- 1		D. $x^2 + x -$	4		
33. Which one of the	e following is eq	$\int_{1}^{1} (x+1)$	$\sqrt{x+2}dx$?			

B. $9\sqrt{3}$

A. $6\sqrt{3}$

D. $\frac{8}{5}\sqrt{3}$

C. $12\sqrt{3}$

- $34. \int \frac{6x}{\left(x^2+1\right)^2} dx \text{ is equal to:} \underline{\hspace{1cm}}$
 - A. $\frac{1}{(x^2+1)^3} + c$
 - B. $\frac{-x}{x^2+1} + c$

- C. $\frac{3}{x^2+1} + c$
- D. $-\frac{3}{x^2+1} + c$

- 35. What is the $\lim_{x\to 0} \left(\frac{1}{x\sqrt{1+x}} \frac{1}{x} \right)$?
 - A. 0
 - B. $-\frac{2}{3}$

- C. $-\frac{1}{2}$
- D. does not exist
- 36. What is the polar form of the complex number $z = \frac{1+\sqrt{3}i}{1+i}$?
 - A. $\sqrt{2}[cos(15^0) + isin(15^0)]$
 - B. $\sqrt{2}[\cos(60^{\circ}) + i\sin(60^{\circ})]$
 - C. $2[cos(30^0) + isin(30^0)]$
 - D. $\sqrt{2}[cos(105^{\circ}) + isin(105^{\circ})]$
- 37.If $\begin{pmatrix} 3 & y \\ x & 2 \end{pmatrix}$ is the inverse of $\begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}$, then the value of x and y respectively
 - A. 5 and 1

C. 5 and 4

B. 8 and 4

- D. -5 and 1
- 38. $\lim_{x \to 1} \left(\frac{x^2 1}{x^2 + 3x 4} \right)$ is equal to:_____
 - A. $\frac{1}{5}$

B. $\frac{2}{5}$

C. $\frac{3}{4}$

- D. $\frac{4}{5}$
- 39. Which one of the following is the solution set of the system of equation

$$\begin{cases} x - 3y + z = -1 \\ 2x + y - 4z = -1 \\ 6x - 7y + 8z = 7 \end{cases}$$

A. {(1, 1, 1)}

 $C. \{(2, 2, 2)\}$

B. $\{(2, 1, 0)\}$

- D. $\{(0, 2, 1)\}$
- 40. Which of the following is an anti-derivative of the function $f(x) = \frac{x+2}{x+1}$?
 - A. $ln\left|\frac{x+1}{x+2}\right|$

C. x + ln|x + 1|

B. 1 + ln|x + 1|

D. x + ln|x + 2|

- 49. What is the area of the region enclosed by the graph of $f(x) = 2 x^2$ and g(x) = x?

 A. $\frac{9}{2}$ sq. units

 B. $\frac{7}{6}$ sq. units

 D. $\frac{27}{2}$ sq. units
- 50. The following grouped data shows marks of 36 students obtained in mathematics examination out of 60

Mark	30 - 34	35 - 39	40 - 44	45 – 49	50 - 54	55 – 60
Number of	7	12	3	5	3	6
students						

If students in the top 25% are able to be awarded certificate of "Best in mathematics", then what is the minimum mark to awarded certificate?

A. 35.3

B. 36.08

C. 59.5

D. 49.5

51. What is the exact value of $tan\left(cos^{-1}\left(\frac{3}{5}\right)\right)$?

A. $\frac{3}{4}$

B. $\frac{4}{5}$

C. $\frac{4}{3}$

D. $\frac{3}{5}$

52. Which one of the following is false about the graph of the function

$$f(x) = -3\sin\left(\frac{1}{2}x - \frac{\pi}{3}\right) + 4?$$

A. $[0, 2\pi]$ is its one complete cycle.

B. $\theta = \frac{2}{3}\pi$ is the phase shift.

C. Its amplitude is 3

D. Its period is 4π

53. Given vectors $\vec{v} = -i + j$ and $\vec{u} = 2i + j$, then the unit vector in the direction of $\vec{z} = \vec{u} + 2\vec{v} - 3i + j$ is equal to:

A. $\left(\frac{3}{5}, -\frac{4}{5}\right)$

C. $\left(-\frac{3}{5}, \frac{4}{5}\right)$

B. $\left(-\frac{3}{5}, -\frac{4}{5}\right)$

D. $\left(\frac{3}{5}, \frac{4}{5}\right)$

54. If a translation takes $x^2 + (y - 5)^2 = 4$ to $x^2 + y^2 - 2x - 2y - 2 = 0$, then what is the image of the point (3, -1) under this transformation?

A. (-1,3)

B. (2,3)

C. (1,6)

D. (4, -5)

55. Which one of the following is the simplified form of $cos\left(x-\frac{\pi}{2}\right)cotx$?

A. - sinx

B. cosx

C. sinx

D. -cosx

56.In the interval $[0,\pi]$		et of the equation	
$2sin^2(x)$	$-\cos x - 1 = 0?$		
A. $\{0, \pi\}$	B. $\left\{\frac{\pi}{3}, \pi\right\}$	C. $\left\{\frac{\pi}{3}, \frac{2}{3}\pi\right\}$	D. $\{\pi\}$
57. What is the image of	f the point $P(-1, 5)$, w	hen reflected about the l	ine $y - x = 2$?
A. (3,1)	B. $(1,-5)$	C. (2,3)	D. $(-2,5)$
58.Let \vec{a} and \vec{b} be vector	ors such that $\ \vec{a}\ = 4$ a	$\operatorname{nd} \ 2\vec{a} - \vec{b}\ = \ \vec{a} + \bar{b}\ $. Which of
the following is equa	al to $ec{a}$. $ec{b}$?		
A. 24	B. 10	C. 12	D. 8
59. Suppose that the equ	$ation x^2 + y^2 + z^2 -$	2x + 4y + 4 = 0 repres	sents a sphere.
Where is the point A	(1,-2,-1) located rel	lative to the sphere?	
A. Inside the sph	ere	C. Outside the sp	ohere
B. On the sphere		D. At the center of	of the sphere
60. To prove $p \Rightarrow q$, ye	ou can prove $\neg q \Rightarrow \neg p$	this type of proof is cal	lled:
A. Direct proof		C. Proof by exh	naustion
B. Proof by cont		D. proof by cont	-
61. Vectors U and V ma	tkes an angle $\theta = \pi/6$.	If $ U = \sqrt{3}$ and $ V = \sqrt{3}$	= 2, then the
value of $ U + V $ is			
A. 27	B. 7	C. $\sqrt{7}$	D. $3\sqrt{3}$
62. An observer on a lev	vel of ground is at a dis	tance $10\sqrt{3}m$ from a bu	ilding. The
angle of elevation to	the bottom of the wind	dows on the second and	third floors
are 30° and 60° , res	pectively. What is the	distance between the bot	ttoms of the
windows?			
A. 20 <i>m</i>		C. 32m	
B. 15 <i>m</i>		D. $15\sqrt{3}m$	
63. Which one of the fo	llowing is the image of	the point $P(-3,2)$ rotat	ted through
180 ^o about the original		, ,	_
A. $(-3,2)$		C. $(3,-2)$	
B. $(-4,3)$		D. $(3, -4)$	
64. The parametric vec	tor equation of a line l i	is given by $(x, y) = (2, 5)$	(5) + t(1, -2)
the rectangular equa			
A. $3y - 4x = 3$		C. $y = 3x + 5$	
B. $y = -2x + 9$		D. $x - 3y = 3$	
•		~	

65. What is the value of k for which the two vectors $\vec{u} = (1, k, -3)$ and

 $\vec{v} = (2k, -5, 4)$ are perpendicular?

A. 4

B. -4

C. 3

D. -3