

1/12

Figure 1

2/	4	~
Z /	Τ	_

Applied Pot.										•
>		Gas Velocities	ocities				Ion+Flow	0	Qvisc+Qgen	_
*	Ion	for Ls=Le	s Ls	Re(Ls)	Re(Ls) ∆p(Ls)	Qohmic	Qvisc	Ogen	Ototal	Qideal
I TOTAL STREET	mol Fraction	cm/s	cm/s		psid	ME.	ME.	Wm	Mm	Αщ
Ton Radius, rion	1.000E-12	0.01	0.00	0.000	0.000010	0.000000.0	1.238E-12	0.00001	1.11E-06	1.238E-12
100	3.162E-12	0.04	0.00	0.000	0.000031	0.0000001	1.238E-11	0.000003	3.51E-06	1.238E-11
* 1.50E-U8	1.000E-11	0.12	0.00	0.000	0.000097	0.0000002	1.238E-10	0.000011	1.11E-05	1.238E-10
Cap.Radius, rc	3.162E-11	0.37	0.01	0.001	0.000307	0.0000005	1.238E-09	0.000035	3.51E-05	1.238E-09
E	1.000E-10	1.18	0.02	0.002	0.000971	0.0000017	1.238E-08	0.000109	1.11E-04	1.238E-08
* 0.005	3.162E-10	3.72	0.07	0.005	0.003072	0.0000053	1.238E-07	0.000346	3.51E-04	1.238E-07
	1.000E-09	11.76	0.24	0.016	0.009715	0.0000168	1.238E-06	0.001095	1.11E-03	1.238E-06
rieia Lengin, Le	3.162E-09	37.20	0.74	0.050	0.030721	0.0000531	1.238E-05	0.003465	3.53E-03	1.238E-05
E5	1.000E-08	117.62	2.35	0.159	0.097147	0.0001684	0.00012	0.010996	0.01	0.0001
*	3.162E-08	371.96	7.44	0.502	0.307206	0.0005383	0.00124	0.035152	0.04	0.0012
Tot.Cap.Length,Ls	1.000E-07	1176.23	23.52	1.586	0.971472	0.0017605	0.01238	0.114973	0.13	0.0124
E5	3.162E-07	3719.57	74.39	5.016	3.072064	0.0061508	0.12379	0.401686	0.53	0.1238
*	1.000E-06	11762.30	235.25	15.863	9.714720	*0.0252860	*1.23797	1.651345	*2.91	*1.2379
) 	3.162E-06	37195.66	743.91	50.163	30.720642	0.1383175	12.37871	9.033049	21.55	12.3787
Eion, Ioniz.Energy	1.000E-05	117623.02	2352.46	158.628	97.147201	1.0209592	123.78713	66.675372	191.48	123.7871
e<										
×	Drift Vel. in	Drift Vel. in cm/s, vd=		4	461.747					
	NA, Avogad	NA, Avogadro Num. in 1/cm3=	1/cm3 =	2.88	2.8830E+19)				
	q, Electronia	nic Charge in Cb=	Cb=	1.6	1.6022E-19	, ¹				

4/12

ins —21				
n Configuratio	Ionization Energies (kJ/mole)	1300 2400	1050	1300
Electron Affinities and Electron Configurations	Electron Configuration	15 ¹ 15 ² [He] 25 ¹ [He] 25 ² [He] 25 ²	[He] 2s 2p [He] 2s ² 2p ² [] 2 2 3	[He] $2s^2 2p^2$ [He] $2s^2 2p^4$ [He] $2s^2 2p^5$ [He] $2s^2 2p^6$
Electron /	Electron Affinity (kJ/mol)	72.8 <0 59.8 <0	27 122.3	< 0141.1328.0< 0
	Element	т н т в в с	o U z	Z О L Z

5/12

Figure 5

Figure 6

Figure 7

8/12

Comparison of	Comparison of Performance Between Pumps Based on Different Technologies	Pumps Based	on Diffe	rent Techr	ologies	
Method	Base Unit Size x N mm3	Frequency Hz	Power mW	Voltage V		∆p psid
Theoretical Ion Drag	$\frac{10 \times 0.25 \times 1 = 2.5}{10 \times 0.25 \times 1}$	22	1.26	1.26 1.41 1.65 401.41	9.7	
MesoPump (elstatic, future) MesoPump (elstatic, today) MesoPump (elstatic, today)	5x5x0.5x15 = 188 10x10x1x50 = 5000 10x10x1x50 = 5000	3333	14 25 25	100 150 150	1.0 1.0 1.0	10 10
Piezo-Electric (fraunhofer)	7x7x1.1x7x14 = 5282	100		86		

723

Temperature Dependence of Ion Concentration

exp(-E/KI)	3.169E-87	2.514E-35	1.123E-26	1.739E-21
exp(-E/KI)	2.239E-09	3.468E-04	2.541E-03	8.395E-03
T in K	900	1500	2000	2500
	exp(-E/RI)	2.239E-09	2.239E-09 3.468E-04	2.239E-09 3.468E-04 2.541E-03

10/12

Fígure 11A

12/12

