CS306: Introduction to IT Security Assignment Project Exam Help

https://eduassistpro.github.io/ Le shing

Add We Chat edu_assist_pro

October 6, 2020

Assignment Project Exam Help

https://eduassistpro.github.io/ ounce Add WeChat edu_assist_pro

CS306: Other announcements

- HW2 to come by Friday this week
- Road ahead
 - no lecture or Assignment Perpiect Exiam Helphday schedule)
 - regular lecture on Oc https://eduassistpro.github.io/
 - midterm exam on

CS306: Tentative Syllabus

Week	Date	Topics	Reading	Assignment
1	Sep 1	Introduction Project Exercises	Lecture 1	-
2	ASSIGII Sep 8	ment Project Exam	Lecture 2	Lab 1
3	Sep 15 htt	ps://eduassistpro.	Lecture 3.	Lab 2, HW 1
4	Sep 22		Lecture 4	Lab 3, HW 1
5	Sep 29 A (dd Wechatedu_as	Sist <u>ur</u> pto	Lab 4
6	Oct 6	MACs & hashing		
-	Oct 13	No class (Monday schedule)		
7	Oct 20	Public-key cryptography		

CS306: Tentative Syllabus

(continued)

Week	Date	Topics	Reading	Assignment
8	Oct 27 Assign	Midterm ment Project Exam	All materials 1 Hours	
9	Nov 3		•	
10	Nov 10 htt	ps://eduassistpro.o	github.io/	
11	Nov 17	Cloud secu	cict pro	
12	Nov 24	dd WeChat edu_as	SiSt_pro	
13	Dec 1	Economics		
14	Dec 8	Legal & ethical issues		
15	Dec 10 (or later)	Final (closed "books")	All materials covered*	

Last week

- Ciphers in practice
 - Revision
 - the big picture, significant security, steller and the species, PRGs
 - Block ciphers, pseu

https://eduassistpro.github.io/

- Modes of operatio
- DES, AES Add WeChat edu_assist_pro
- Demo
 - The Caesar and Vigenère ciphers and their cryptanalysis (Afternoon)
 - Pseudo-randomness in practice (Evening)

Today

- Message authentication
 - MACs
 - Replay attack Assignment Project Exam Help
 - Constructions

https://eduassistpro.github.io/

- Cryptographic hashi
 - Hash functions

- Constructions
- Demo
 - Hash functions in practice

Assignment Project Exam Help

https://eduassistpro.gitaub.io/

Recall: Integrity

Fundamental security property

- an asset is modified only by authorized parties
- "I" in the CIA triad Assignment Project Exam Help

"computer security viewing (confidentiality) or modificatio https://eduassistpro.giglactesi@vailability)"

Alteration

- main threat against integrity of in-transit data
- e.g., MITM attack

Security problems studied by modern cryptography

- Classical cryptography: message encryption
 - early crypto schemes tried to provide secrecy / confidentiality
 Assignment Project Exam Help
- Modern cryptograp https://eduassistpro.gifnecurity.problems
 - ◆ today we need to st
 ties beyond secrecy

- ◆ The sibling of message encryption: message authentication
 - another cornerstone of any secure system aiming to provide authenticity & integrity

Message authentication: Motivation

Information has value, but only when it is correct

- random, incorrect, inaccurate or maliciously altered data is useless or harmful
 - message authorsolgibing outsage on the grity Examentile p
 - while in transit (
 no outsider can i
 https://eduassistpro.github.io/
 ender (or owner)

- it is often necessary / worth to protect criti
 - message encryption
 - while in transit (or at rest), no message should be leaked to an outsider

Example 1

Secure electronic banking

- a bank receives an electronic request to transfer \$1,000 from Alice to Bob
 Concerns

 Assignment Project Exam Help
- who ordered the transhttps://eduassistpro.github.io/
- is the amount the intended one or was mali while in transit?
 - adversarial Vs. random message-transm
 - standard error-correction is <u>not sufficient</u> to address this concern

Example 2

Web browser cookies

- a user is performing an online purchase at Amazon
- a "cookie" contains seignment Projectier Exercity Paffic is stateless
 - stored at the client
 contains client-spe
 https://eduassistpro.github.io/
 - e.g., the user's shapping wedu_assiste to pooupon

Concern

was such state maliciously altered by the client (possibly harming the server)?

Integrity of communications / computations

Highly important

- any unprotected system cannot be assumed to be trustworthy w.r.t.
 - origin/source of signaturate Projects Fax and the phishing, etc.)
 - contents of informa tacks, email spam, etc.)

 https://eduassistpro.github.io/
 - overall system func

Prevention Vs. detection Add WeChat edu_assist_pro

- unless system is "closed," adversarial tampering with its integrity cannot be avoided!
- goal: identify system components that are not trustworthy
 - detect tampering or prevent undetected tampering
 - e.g., avoid "consuming" falsified information

Encryption does not imply authentication

A common misconception

"since ciphertext c hides message m, Mallory cannot meaningfully modify m via c" Why is this incorrect Ssignment Project Exam Help

- all encryption schemes (https://eduassistpro.github.io/
 consider flipping a single
- consider flipping a single
 - such property of one-three all deschat edu_assisted property of one-th

Generally, secrecy and integrity are distinct properties

encrypted traffic generally provides **no integrity** guarantees

Assignment Project Exam Help

https://eduassistpro.gitfleb.io/ication

Add WeChat edu_assist_pro

Problem setting: Reliable communication

Two parties wish to communicate over a channel

- Alice (sender/source) wants to send a message m to Bob (recipient/destination)
 Underlying channel ssignment Project Exam Help
- Mallory (attacker/adv https://eduassistpro.github.io/
- e.g., message transmis

Solution concept: Symmetric-key message authentication

Main idea

- secretly annotate or "sign" message so that it is unforgeable while in transit
 - Alice tags her mesige month tag to wheat i Escalborg with plaintext m
 - Bob verifies authen https://eduassistpro.github.io/
 Mallory can manip e verifiable pair m', t'
 - Alice and Bob share Asteletwee Cthat is edu_assiste patrions

Security tool: Symmetric Message Authentication Code

Abstract cryptographic primitive, a.k.a. MAC, defined by

- a message space \mathcal{M} ; and
- a triplet of algorithms: Gen, Mac are probabilistic algorithms, whereas Vrf is deterministic
- Gen outputs a unif https://eduassistpro.ghthub.10/ dd WeChat edu_assist_pro \mathcal{M} : set of possible messages REJECT **Mallory** m', t' m, t Bob Alice Vrf Mac 19

ACCEPT

Desired properties for MACs

By design, any MAC should satisfy the following

key generation & message transformations "are fast" efficiency: Assignmenth Protiet triffmanne, Intellipaccept correctness: one " security: r m', t' https://eduassistpro.github.io/ dd WeChat edu_assist_pro M: set of possible messages REJECT **Mallory** m', t m, t Bob Alice Vrf Mac 20

ACCEPT

Main application areas

Secure communication

Secure storage

- verify authenticity of messages sent among parties signment Projectured letter loud
- assumption
 - Alice and Bob secure https://eduassistpro.gethgeneretes and stores distribute and stores
 - * attacker does not learn keld WeChat edu_assistopern key k

Conventions

Random key selection

• typically, Gen selects key k uniformly at random from the key space \mathcal{K} Canonical verifications ignment Project Exam Help

- but conceptually the folding westimat edu_assist_pro
 - authenticating m (i.e., running Mac) Vs. verifying authenticity of m (i.e., running Vrf)

MAC security

The MAC scheme is **secure** if any PPT \mathcal{A} wins the game only negligibly often.

Assignment Project Exam Help

https://eduassistpro.github.io/lay att

Recall: MAC

Abstract cryptographic primitive, a.k.a. MAC, defined by

- lacktriangle a message space \mathcal{M} ; and
- a triplet of algorithms (Gen Mac typ) roject Exam Help

Recall: MAC security

The MAC scheme is **secure** if any PPT \mathcal{A} wins the game only negligibly often.

Real-life attacker

In practice, an attacker may

- observe a traffic of authenticated (and successfully verified) messages
- manipulate (or oftensignment influencest terram Help
 - aims at inserting an https://eduassistpro.github.io/ interesting case:
 - trivial case: forged message is a like to edu_assiste, production. a replay attack
- launch a **brute-force attack** (given that $Mac_k(m) \rightarrow t$ is publicly known)
 - given any observed pair m, t, exhaustively search key space to find the used key k

Threat model

In the security game, Mallory is an adversary $\mathcal A$ who is

- "active" (on the wire)
 - we allow A the sign and manipolic set of the spage Help
- "well-informed"
 - we allow A to regultips://eduassistpro.github.io/
- "replay-attack safe"
 - $\bullet \ \ \text{we restrict } \mathcal{A} \text{ to } \underbrace{ \text{Add WeChat edu_assist_pro} }_{\text{we messag}}$
- "PPT"
 - \bullet we restrict \mathcal{A} to be computationally bounded
 - new messages may be forged undetectably only **negligibly** often

Notes on security definition

Is it a rather strong security definition?

- we allow \mathcal{A} to query MAC tags for any message
 - but real-worlasendernwillenthenticate on Finannin file pessages
- we allow ${\mathcal A}$ to break t

- sage
- but real-world attachttps://eduassistpro.githuesio/

Yes, it is the right approach... WeChat edu_assist_pro

- message "meaningfulness" depends on hig
 - text messaging apps require authentication of English-text messages
 - other apps may require authentication of binary files
 - security definition should better be **agnostic** of the specific higher application

Notes on security definition (II)

Are replay attacks important in practice?

- absolutely yes: a very realistic & serious threat!
 - e.g., what if a Arosignament Perojecto a Texam Help

Yet, a "replay-attack sa

https://eduassistpro.github.io/

- again, whether replay
- better to delegate to this and two specificat edu_assists_pro
 - e.g., semantics on traffic or validity chec before they're "consumed"

Eliminating replay attacks

- use of counters (i.e., common shared state) between sender & receiver
- use of timestamps along with a (relaxed) authentication window for validation

Assignment Project Exam Help

https://eduassistpro.github.io/

Three generic MAC constructions

- fixed-length MAC
 - direct application of a PRF for tagging
 - limited applications ignment Project Exam Help
- domain extension fo https://eduassistpro.github.io/
 - straightforward secu
 - inefficient
 Add WeChat edu_assist_pro
- CBC-MAC
 - resembles CBC-mode encryption
 - efficient

1. Fixed-length MAC

- based on use of a PRF
 - employ a PRF F_k in the obvious way
 to compute a comp
 - ◆ set tag t to be the p
 derived by evaluati https://eduassistpro.githບໍ່ວົ້.ໄດ້/
- secure, provided that F_k is a secure PRF

 Add WeChat edu_assist property.

 $Mac_k(m)$: set t = $F_k(m)$

 $Vrfy_k(m,t)$: return 1 iff $t = F_k(m)$

2. Domain extension for MACs (I)

- suppose we have the previous fix-length MAC scheme
- how can we authenticate a message m of arbitrary length?
- naïve approach Assignment Project Exam Help m₂
 pad m and view it a https://eduassistpro.github.ip/
 separately apply M
 Add WeChat edu_assist_pro

 $t = t_1 = F_k(m_1)$ $t_2 = F_k(m_2)$

 $t_d = F_k(m_d)$

- security issues
 - reordering attack; verify block index, t = F_k(m_i | |i)
 - truncation attack; verify message length δ = |m|, t = F_k(m_i||i||δ)
 - mix-and-match attack; randomize tags (using message-specific fresh nonce)

2. Domain extension for MACs (II)

Final scheme

- assumes a secure MAC scheme for messages of size n
- set tag of message m of size of at most 2 as follows
 - choose fresh rando https://eduassistpro.github.fo/fo/fe n/4 each
 - separately apply M
 lso its index, δ and nonce r

Security

extension is secure, if F_k is a secure PRF

3. CBC-MAC

Idea

• employ a PRF in a manner similar to CBC-madesing in prime Project Exam Help

Security

- extension is secure, if https://eduassistpro.github.io/
 - F_k is a secure PRF; and dd WeChat edu_assist_pro
 - only fixed-length messages are authenti
- messages of length equal to any multiple of n can be authenticated
 - but this length need be fixed in advance
 - insecure, otherwise

3. CBC-MAC Vs. previous schemes

 can authenticate longer messages than basic PRF-based scheme (1)

Assignment Project Exam Help^F_k

- 11-- - - // - -|- - - - - |- 1-

https://eduassistpro.github.

Scheme (1)

 more efficient than domain-extension MAC scheme (2)

m

3. CBC-MAC Vs. CBC-mode encryption

- crucially for their security
 - ◆ CBC-MAC uses no IV (or uses an IV set to 0) and only the last PRF output
 - CBC-mode en arystigning rear and an it ento alk PR frout but so
 - "simple", innocent

CBC-MA https://eduassistpro.github.in/ryption

Assignment Project Exam Help

https://eduassistpro.github.io/ h func Add WeChat edu_assist_pro

Cryptographic hash functions

Basic cryptographic primitive

- maps "objects" to a fixed-length binary strings
- core security property in applied Brojects Exam Help
- input arbitrarily long string

Н

output short digest, fingerprint, "secure" description

- collision: distinct ob https://eduassistpro.github.io/
- although collisions ______ to find

Important role in moder Adjust of the ship at edu_assist_pro

- lie between symmetric- and asymmetric-key cryptography
- capture different security properties of "idealized random functions"
- qualitative stronger assumption than PRF

Hash & compression functions

Map messages to short digests

- a general hash fassignment Project Exam Help
 - a message of an ar https://eduassistpro.githubstros

H output /(n)-bit string

Add WeChat edu_assist_pro

- a compression (hash) function h() maps
 - a <u>long</u> binary string to a <u>shorter</u> binary string
 - an l'(n)-bit string to a l(n)-bit string, with l'(n) > l(n)

input /'(n)-bit string h output /(n)-bit string

Collision resistance (CR)

Attacker wins the game if $x \neq x' \& H(x) = H(x')$

H is collision-resistant if any PPT ${\mathcal A}$ wins the game only negligibly often.

Weaker security notions

Given a hash function H: $X \rightarrow Y$, then we say that H is

- preimage resistant (or one-way)
 - if given $y \in Y$, finding a value $x \in X$ s.i. H(x) = y happens he gligibly often
- ◆ 2-nd preimage resistan https://eduassistpro.github.io/
 - if given a <u>uniform</u> x x and H(x') = H(x) happens negligibly of tend WeChat edu_assist_pro
- cf. collision resistant (or strong collision resistant)
 - if finding two distinct values x', $x \in X$, s.t. H(x') = H(x) happens negligibly often

Assignment Project Exam Help

https://eduassistpro.github.io/ ign fr Add WeChat edu_assist_pro

Domain extension via the Merkle-Damgård transform

General design pattern for cryptographic hash functions

reduces CR of general hash functions to CR of compression functions

compressing by 1 single bit is a least as hard as compressing by any number of bits!

Merkle-Damgård transform: Design

Suppose that h: $\{0,1\}^{2n} \rightarrow \{0,1\}^n$ is a collision-resistant compression function

Consider the general hash function H: $\mathcal{M} = \{x : |x| < 2^n\} \rightarrow \{0,1\}^n$, defined as Assignment Project Exam Help Merkle-Damgård desig

- ♦ H(x) is computed by a https://eduassistpro.github.io/ h() in a "chained" manner over n-bit message blocksdd WeChat edu_assist_pro
 - pad x to define a number, say B, message blocks $x_1, ..., x_B$, with $|x_i| = n$
 - ◆ set extra, final, message block x_{B+1} as an n-bit encoding L of |x|
 - starting by initial digest $z_0 = IV = 0^n$, output $H(x) = z_{B+1}$, where $z_i = h^s(z_{i-1} | x_i)$

Merkle-Damgård transform: Security

If the compression function h is CR, then the derived hash function H is also CR!

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Compression function design: The Davies-Meyer scheme

Employs PRF w/ key length m & block length n

♦ define h: $\{0,1\}^{n+m} \rightarrow \{0,1\}^n$ as $h(x||k) = F_k(x) XOR x$ Assignment Project Exam Help

https://eduassistpro.github.io/

Security

• h is CR, if F is an idea Acade We Chat edu_assist_pro

Well known hash functions

- MD5 (designed in 1991)
 - output 128 bits, collision resistance completely broken by researchers in 2004
 - today (controlled) collisions can be found in tess than a minute on a desktop PC
- ◆ SHA1 the Secure H hms standardized by NIST)
 - output 160 bits, co https://eduassistpro.gitff的.io/
 - broken in 2017 by r
- ◆ SHA2 (SHA-224, SHAA5tdsW664hsH edu_assist_pro
 - outputs 224, 256, 384, and 512 bits, respectively, no real security concerns yet
 - based on Merkle-Damgård + Davies-Meyer generic transforms
- SHA3 (Kessac)
 - completely new philosophy (sponge construction + unkeyed permutations)

SHA-2-512 overview

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Current hash standards

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro