1) Graph Based image segmentation(基於圖論的超像素分割方法)

- Def: Graph based image segmentation is modeled in terms of partitioning a graph into several sub-graphs such that each of them represents a meaningful object of interest in the image.
- Problems : ill-posed nature
- Techniques
 - MST(minimum spanning tree)
 - Given vertices which need to be connected, it is the tree that have min sum of weight.
 - Mini-Cut
 - Minimizing cut(A,B) makes vertices in different sets dissimilar.
 - Problems: Tends to cut small sets of isolated nodes in the graph since its cost function increases with the number of edges going across the two partitioned parts.
 - Normalized-cut
 - Max-Flow

2) Clustering Based Image Segmentation

•

	Time Complexity	Cluster number	initialization	Outliers
K-means	O(NKI)	pre-determined	sensitive	sensitive
SLIC	O(N)	pre-determined	sensitive	sensitive
Mean-Shift	O(N^2)	O.W.	non-sensitive	non-sensitive

Clustering

- intro.(process)
 - pattern
 - representation
 - feature extraction
 - pattern proximity
- Supervise
- Unsupervise
 - K-means
 - FCM(Fuzzy C-Means)
 - Allows one piece of data to belong to two or more clusters.
- Superpixel Segmentation(基於梯度上升的超像素分割方法)
 - Superpixel(超像素)
 - 具有相似紋理、顏色、亮度等特徵的相鄰像素構成的圖像塊。
 - 帶有更多的資訊

- SLIC(Simple Linear Iterative Clustering)
 - adaption of k-means
 - clusters pixels in a 5 dim Euclidean space combining colors and images.
- Mean-shift

3) Image Inpainting

• reconstructing damaged or missing parts of an image or a video clip.

4) Image Watermarking(水印 -> 防偽)

- Application
 - Visible
 - o Invisible
 - Medical image、Copyright

Property

- Intelligibility(可理解性): 對於最終收到該訊號的人來說,浮水印應該是可以被擷取出且確認的
- Protection: 透過加密的方法,只有被允許的人可以更動浮水印的內容
- Sturdiness: 浮水印需要有抵抗攻擊的能力,即使訊號被破壞,隱藏在 其中的浮水印也應該盡可能的保持原貌

Approach

Spatial

■ LSB

 相對簡單的隱藏浮水方法,雖然可以對於剪裁或者加入 一些雜訊還可以抵抗,但像是破壞性的壓縮就可能導致 浮水印也間接被破壞。或者我們甚至就簡單地把 least significant bit 都設成1就可以破壞掉浮水印。

Frequency

- 浮水印技術在隱藏性和堅固性上比較優秀,將圖片轉換到頻率 域,嵌入浮水印。
- 如果嵌在高頻區,則浮水印更加看不見。如果嵌在低頻區,浮水印會更加穩定。
- 講述影像嵌入的流程,先經過三階的小波分解,並在低頻區嵌入浮水印,放回低頻區,之後透過小波合成重建影像,則生成 含浮水印的影像
- DFT、DWT、DCT、DWT+DCT

5) Image stitching and mosaicking

- Intro
 - Stitching = alignment(Geometrical registration) + blending(Photometric registration)
 - Can not work when the scene with depth variations and the camera has movement.

Method

- Image stitching Alg
 - Keypoint detection

- Registration
- Alignment
- Blending
- Application
 - Video stabilization, summarization, compression, matting
 - o Panorama creation
 - Sports broadcasting

6) Image Quality Assessment

- Intro
 - IQA(圖像質量評估)
 - Subjective and Objective Methods
- Methods
 - Subjective
 - Give the score by human eyes
 - Objective
 - FR(Full reference)
 - MSE、PSNR、SSIM、VIF(visual information fidelity)
 - RR(Reduced reference)
 - RR-IQA
 - NR(Non reference)
 - CNN -IQA

7) CNN for image denoising

- Methods
 - Adaptive Thresholding
 - Edge Detection、Dilation、Erosion
 - Median Filtering
 - o CNN Autoencoder & Ensemble Learning
 - Encoder : compress data to feature mapDecoder : reconstruct the representation
 - Cycle GAN

8) Texture Descriptors(紋理描述)

- Concept
 - one of image features provides spatial arrangement information about colors and intensities.
- Approaches
 - o structural
 - Geometry-based texture descriptor
 - statistic
 - LBP(Local Binary Pattern)
 - co-occurence matrix
 - spectral
 - gabor filter

9) Visual Saliency

- Visual saliency
 - 目標就是分析人的視覺注意機制,並設計算法模擬之。
- Saliency map(顯著圖)
 - o Def:

https://zh.wikipedia.org/wiki/%E9%A1%AF%E8%91%97%E5%9C%96

- Method:
 - o Ltti Method
 - FOA(Focus of attention)
 - o DL Method
- Applications x 3
 - Visualizing image classification CNN Models by Saliency Maps
 - Task-driven Webpage saliency
 - Salient Object Detection Driven by Fixation Prediction(Based on DL)

10) Super resolution

- Intro
 - The goal of Super Resolution (SR) methods is to recover a High Resolution (HR) image from one or more Low Resolution (LR) input images
 - Motion compensation, Interpolation, Blur-noise removal
- Application
 - 衛星影像、顯微鏡影像、太空影像、醫學影像、深度圖、臉部影像
- Main approach
 - Traditional methods
 - Non-uniform Interpolation
 - ML methods
 - SR-CNN
 - FSR-CNN

11) HDR(high dynamic range) imaging

- 動態範圍 Dynamic 是指一個拍攝場合下「最亮與最暗明度的比值」比值越大也 代表明暗反差越大,則動態範圍也越高。
- HDR Photography is best used when the contrast of the scene exceeds your camera's range
- It preserves the details in highlights and shadows
- Don't use HDR for every scene

12) Computed Tomography

- App
 - radiology
 - introduce in X-ray and CT that how to reconstruction the image
 - CT (photo by X-ray machine)
 - Industrial tomography