Applied Machine Learning for Educational Data Scientists

EDLD 610

Joe Nese

Daniel Anderson

An introduction to the course

Week 1, Class 1

Agenda

- Introductions
- Changes to the course
- About the course
- Syllabus
- Kaggle

ML Modeling Process

6

Housekeeping

- Course website: https://uo-datasci-specialization.github.io/c4-ml-2020/
 - Syllabus: https://uo-datasci-specialization.github.io/c4-ml-2020/site-syllabus.html
 - Schedule: https://uo-datasci-specialization.github.io/c4-ml-2020/schedule.html
 - Assignments: https://uo-datasci-specialization.github.io/c4-ml-2020/assignments.html
- Course github: https://github.com/uo-datasci-specialization/c4-ml-2020
- Course Kaggle: https://www.kaggle.com/c/edld-654-spring-2020

About Me

- BA: UC Santa Barbara
- PhD, School Psychology: University of Maryland
- Behavioral Research & Teaching (BRT) 2009
- Research Associate Professor
 - Research
 - Advanced statistical methods to measure and monitor student growth
 - Inform the applied research methodologies used by researchers
 - Developing and improving systems that support data-based decision making using advanced technologies to Influence teachers' instructional practices and increase student achievement
 - Teaching

whoami

- Research Assistant Professor:
 Behavioral Research and Teaching
- Dad (two daughters: 7 and 5)
- Pronouns: he/him/his
- Primary areas of interest
 - ♥♥R♥♥, computational research, and open science
 - Achievement gaps, systemic inequities, and variance between educational institutions

About You

- Please introduce yourself
 - Name and program/year of study
 - How are you doing?

How the COVID-19 pandemic affects this course

Remote instruction

- In-person format
 - Present new content
 - Lab applying learned content
- Remote format
 - Present new content in a Zoom meeting
 - two instructors to help field questions
 - Zoom will be recorded, and posted to Canvas to view at a later time if need be
 - Labs held via zoom
 - two instructors available to help and answer questions
 - screen shares
 - breakout rooms to facilitate individual help as necessary
 - attendance is enouraged

Practical changes

Attendance points

Expectation is that you still engage with each week's materials

Communication

- Please be open with your communication regarding unexpected interruptions or uncertainties so that we can help
 - illness
 - caring for family
 - technology

Accessibility

 students with disabilities or medical conditions that encounter barriers with remote instruction should contact the <u>Accessible Education Center</u> as soon as possible so that appropriate accommodations can be determined

How we can help each other

- Patience
- Grace
- Empathy
- Understanding
- Open communication

COVID-19 and ML

- Predicting the spread of the disease (<u>Blue Dot</u>)
- Novel Corona Virus 2019 Dataset: Day level information on covid-19 affected cases (<u>kaggle</u>)
 - Predict the spreading of coronavirus
 - Predict how the epidemic will end
 - Correlation between growth rate and types of mitigation across countries
 - Can We Correlate weather conditions and Corona virus Spread through Data?
- Novel antibody discovered using deep learning (<u>Cell</u>; <u>more</u>)
- Doctors using AI and social media to track coronavirus

About the course

ENGINEERING TIP: WHEN YOU DO A TASK BY HAND, YOU CAN TECHNICALLY SAY YOU TRAINED A NEURAL NET TO DO IT.

This class

- This class is
 - an introduction to applied machine learning techniques
 - experimental
 - utilizing R
 - delivered remotely
- This class is not
 - all encompassing
 - perfectly polished (at this time)
 - an online course

Why R?

- R has cutting edge ML models
 - Some ML developers use R as their primary computing environment and their work often results in R packages
- R and R packages are built by people who do data analysis
- It is easy to link to other applications
 - You can implement python, C, C++, tensorflow, keras, stan, or Weka without leaving R
- You already know R!

Why not R?

- R is a data analysis language, and is not C or Java
 - If a high-performance deployment is required, R can be a prototyping language
- R is mostly memory-bound
 - But there are plenty of exceptions to this
- The interfacing functions are inconsistent
 - There are two methods for specifying what a model
 - formula (y ~ x)
 - x = x , y = y
 - Nearly all model functions auto-generate dummy variables
 - Some packages have an argument for resampling

Function	Package	Code
lda	MASS	predict(obj)
glm	stats	<pre>predict(obj, type = "response")</pre>
gbm	gbm	<pre>predict(obj, type = "response", n.trees)</pre>
mda	mda	<pre>predict(obj, type = "posterior")</pre>
rpart	rpart	<pre>predict(obj, type = "prob")</pre>
Weka	RWeka	<pre>predict(obj, type = "probability")</pre>
logitboost	LogitBoost	<pre>predict(obj, type = "raw", nIter)</pre>
pamr.train	pamr	<pre>pamr.predict(obj, type = "posterior", threshold)</pre>

Kuhn (2020)

Function	Package	Code
lda	MASS	predict(obj)
glm	stats	<pre>predict(obj, type = "response")</pre>
gbm	gbm	<pre>predict(obj, type = "response", n.trees)</pre>
mda	mda	<pre>predict(obj, type = "posterior")</pre>
rpart	rpart	<pre>predict(obj, type = "prob")</pre>
Weka	RWeka	<pre>predict(obj, type = "probability")</pre>
logitboost	LogitBoost	predict(obj, type = "raw", nIter)
pamr.train	pamr	<pre>pamr.predict(obj, type = "posterior", threshold)</pre>

Function	Package	Code
lda	MASS	predict(obj)
glm	stats	<pre>predict(obj, type = "response")</pre>
gbm	gbm	<pre>predict(obj, type = "response", n.trees)</pre>
mda	mda	<pre>predict(obj, type = "posterior")</pre>
rpart	rpart	<pre>predict(obj, type = "prob")</pre>
Weka	RWeka	<pre>predict(obj, type = "probability")</pre>
logitboost	LogitBoost	<pre>predict(obj, type = "raw", nIter)</pre>
pamr.train	pamr	<pre>pamr.predict(obj, type = "posterior", threshold)</pre>

Function	Package	Code
lda	MASS	predict(obj)
glm	stats	<pre>predict(obj, type = "response")</pre>
gbm	gbm	<pre>predict(obj, type = "response", n.trees)</pre>
mda	mda	<pre>predict(obj, type = "posterior")</pre>
rpart	rpart	<pre>predict(obj, type = "prob")</pre>
Weka	RWeka	<pre>predict(obj, type = "probability")</pre>
logitboost	LogitBoost	<pre>predict(obj, type = "raw", nIter)</pre>
pamr.train	pamr	<pre>pamr.predict(obj, type = "posterior", threshold)</pre>

Function	Package	Code
lda	MASS	predict(obj)
glm	stats	<pre>predict(obj, type = "response")</pre>
gbm	gbm	<pre>predict(obj, type = "response", n.trees)</pre>
mda	mda	<pre>predict(obj, type = "posterior")</pre>
rpart	rpart	<pre>predict(obj, type = "prob")</pre>
Weka	RWeka	<pre>predict(obj, type = "probability")</pre>
logitboost	LogitBoost	predict(obj, type = "raw", nIter)
pamr.train	pamr	<pre>pamr.predict(obj, type = "posterior", threshold)</pre>

Why tidymodels?

- Consistent interface functions and language
 - Irrespective of modeling package
 - This makes your workflow consistent across models and projects
- RStudio generally makes good products
 - You are already familiar with the tidyverse
- tidymodels has the support of a respected development team
- Cutting edge!
 - taking the place of the well-known and widely-used carat package

Why not tidymodels?

- Cutting edge!
 - currently in development
 - stable/durable code?
 - documentation non-existent (at this time)
 - makes it challenging both to learn and to teach
- Not the tidyverse
 - but it is tackling something much larger and more complex
 - all the packages

Why not tidymodels?

- Cutting edge!
 - currently in development
 - stable/durable code?
 - documentation non-existent (at this time)

makes it challenging both to learn and to teach
 Not the tidyv
 rsan
 parsr

tidymodels

- This is a lot of packages
 - Some of these packages work in the background
 - Others perform specific tasks, small, important tasks in the modeling process
- Can be overwhelming, but
 - we will not be calling all of these directly
 - you will learn how each of the major packages fit into your ML workflow

Some Resources

- <u>Learning to Teach Machines to Learn</u> (Allison Hill)
- Intro to Tidy ML (Allison Hill)
- Applied ML (Max Kuhn)
- Julia Silge blog
 - screencasts and blogs using {tidymodels} and #TidyTuesday data
- Your peers
- Your instructors
- RStudio Community

Syllabus

Course learning objectives

- Describe the framework of machine learning (i.e. supervised vs. unsupervised learning) and how it differs from standard inferential statistics
- Discuss the bias-variance tradeoff in supervised learning and apply the concept in making decisions about model selection
- Construct various supervised learning models, including linear regression (for prediction rather than inference), penalized regression (ridge/lasso), various decision tree models (including bagged and boosted trees, and random forests), and k-nearest neighbor models
- Measure and contrast the performance of various models
- Construct models for both classification- and regression-based problems
- Conduct feature engineering, including dimension reduction, to increase model performance (and quantify the degree to which model performance changed)

Required Texts (free)

Books not required (but possibly helpful)

Weekly Schedule

- Class time M & W 12-1:20
- Readings do before class
- New content presented via Zoom
 - attend to ask questions
 - recordings will be posted to Canvas
- Labs conducted via Zoom
 - to provide you with practice and time with the instructors to help you puzzle through your problems
 - what you do not complete in Zoom labs must be completed on your own time

Assignments (200 points total)

- Labs (70 points)
 - 1) Resampling (11 points)
 - 2) Variable Selection & Model Performance (11 points)
 - 3) Penalized Regression (12 points)
 - 4) Feature Engineering (12 points)
 - 5) K Nearest Neighbors (12 points)
 - 6) Ensemble Methods (12 points)
- Final Project (130 points)
 - Preliminary fit 1 (10 points)
 - Preliminary fit 2 (10 points)
 - Blog post (110 points)
 - Data description (30 points)
 - Model fit description (35 points)
 - Model fits (25 points)
 - Data visualization (10 points)
 - Reproducibility (10 points)

Labs

- Scored on a "best honest effort" basis
 - generally, zero or full credit
- If you find yourself stuck and unable to proceed, please contact the instructors for help rather than submitting incomplete work
 - Contacting the instructor is part of the "best honest effort" and can result in full credit for an assignment even if the work is not fully complete.
- If the assignment is not complete, and the student has not contacted the instructor for help, it is likely to result is a partial credit score or a zero.
- Labs submitted late will be docked by 3 points
 - Labs are due a week after they are assigned, before class starts

Final Project

- We will be using the <u>kaggle</u> platform to host a local competition (link to come this week)
- Work as a team to build, tune, evaluate a predictive model based on the training data
- Make predictions on the test data that has all the same features (variables)
 except the outcome
- Upload predictions to kaggle, which will provide you with an estimate of your model performance on a portion of the test data (but not the full test data)
- At the end of the course, each team's most performant model will be evaluated against the full test data
 - this final test regularly leads to changes in the leaderboard ranking for real kaggle competitions
 - the team with the best model will be awarded five points extra credit.
- Link to outside data to help increase the performance of your model (e.g., NCES)

Final Project – Preliminary fits

- At the end of Week 5 and Week 8 each team will be required to submit preliminary predictions to kaggle
- You may submit predictions at any time, but you must submit your first predictions by Week 5, and predictions from a new model by Week 8
- A quantitative indicator of prediction accuracy will automatically be provided
- Submissions will be scored on an "all or nothing" basis
 - If your group provides a set of predictions, you will all receive credit, regardless of the performance of the model

Final Project

Group project, 3 to 4 people

Blog post (or a series of blog posts)

- Data description
 - Describe core features of the data, any additional data you joined in and why, basic descriptives, feature engineering, and data splitting
- Model fit description
 - At least three models must be fit to the data. Describe each model, hyperparameters, assumptions, and a description of what the model is doing and why it is appropriate
- Model fits
 - Describe model fitting procedure(s) and the results of your model evaluation. Compare and contrast the different fits, including a discussion of model performance
- Data visualization
 - Include at least two plots (you may include more) to help communicate your findings
- Reproducibility
 - All code should be housed in a GitHub repository and be fully reproducible

Final Project – Dates

- Week 5b (4/29): Preliminary Fit 1
- Week bb (5/20): Preliminary Fit 2
- Week 11 (6/10): Final Fits, Blog post (final product) due

Final Project – Scoring Rubric

Criteria	Points possible
Preliminary Fit 1	10
Preliminary Fit 2	10
Blog Post(s)	
Description of the data	30
Description of the model fits	35
Model fits	25
Data visualization	10
Reproducibility	10
Total	130

Grading

Lower	Lower point		Upper point	Upper
percent	range	Grade	range	percent
97	(194 pts)	A+		
93	(186 pts)	A	(194 pts)	97
90	(180 pts)	A-	(186 pts)	93
87	(174 pts)	B+	(180 pts)	90
83	(166 pts)	В	(174 pts)	87
80	(160 pts)	В-	(166 pts)	83
77	(154 pts)	C+	(160 pts)	80
73	(146 pts)	С	(154 pts)	77
70	(140 pts)	C-	(146 pts)	73
		F	(140 pts)	70

Kaggle