Introdução aos Métodos Numéricos

Rosaldo Rossetti

Desenho de Algoritmos, L.EIC

A apresentar...

- Introdução
- Representação e análise de erros
- Resolução de equações não lineares
- Sistemas de equações não lineares
- Sistemas de equações lineares
- Outros métodos

Alguns conceitos importantes:

- A Análise Numérica abrange o estudo de métodos e técnicas que permitam obter soluções aproximadas de problemas numéricos de uma forma eficiente. É por natureza uma disciplina que se situa na fronteira entre a Matemática e a Ciência de Computadores.
- Os Métodos Numéricos consistem nos algoritmos que levam à solução de um problema de Análise Numérica.

Importância dos Métodos Numéricos na Engenharia - Exemplos de desastres atribuídos a falhas de computação numérica:

- Falha de um míssil Patriot, Guerra do Golfo, 1991
 - Problemas com arredondamentos de erros
- Explosão do foguete Ariane 5, Guiana Francesa, 1996
 - Problemas com representação numérica (64 bits / 16 bits)
- Afundamento da plataforma Sleipner A, Noruega, 1991
 - Inexatidão da análise de elementos finitos

https://www-users.cse.umn.edu/~arnold/disasters/

Soluções para problemas numéricos:

MODELO MATEMÁTICO

SOLUÇÃO

LEVANTAMENTO DE DADOS

PROBLEMA

CONSTRUÇÃO DO MODELO MATEMÁTICO ESCOLHA DO MÉTODO NUMÉRICO

IMPLEMENTAÇÃO COMPUTACIONAL

ANÁLISE DOS RESULTADOS

Algumas aplicações dos Métodos Numéricos

Raízes de equações Resolva f(x) = 0 determinando x.

Equações algébricas lineares Dados os a's e os c's, resolva

$$a_{11}x_1 + a_{12}x_2 = c_1$$

$$a_{21}x_1 + a_{22}x_2 = c_2$$

para determinar os x's.

Algumas aplicações dos Métodos Numéricos

Algumas aplicações dos Métodos Numéricos

A apresentar...

- Introdução
- Representação e análise de erros
- Resolução de equações não lineares
- Sistemas de equações não lineares
- Sistemas de equações lineares
- Outros métodos

Valores exactos e aproximados

Valor exacto: x

Valor aproximado: x^*

Erro (de aproximação): $\Delta x^* = x - x^*$

Aproximação

• por defeito: $x^* < x \Leftrightarrow \Delta x^* > 0$

• por excesso: $x^* > x \Leftrightarrow \Delta x^* < 0$

Erro absoluto

Erro absoluto: $|\Delta x^*| = |x - x^*|$

Erro máximo absoluto: um majorante do erro absoluto

$$\varepsilon$$
: $|\Delta x^*| \leq \varepsilon$

Notação:

$$x = x^* \pm \varepsilon$$
 \Leftrightarrow $x \in [x^* - \varepsilon, x^* + \varepsilon]$

Exemplo: $\pi = 3.14 \pm 0.002$ \Leftrightarrow $\pi \in [3.138, 3.142]$

Erro relativo

Erro relativo:
$$\frac{|\Delta x^*|}{|x|}$$
 ou aproximadamente $\frac{|\Delta x^*|}{|x^*|}$

→ exprime-se habitualmente em percentagem

Erro máximo relativo: um majorante do erro relativo

$$\varepsilon' = \frac{\varepsilon}{|x|} \simeq \frac{\varepsilon}{|x^*|}$$

Notação: $x = x^* \pm (100\varepsilon')\% \Leftrightarrow x \in [x^*(1-\varepsilon'), x^*(1+\varepsilon')]$

Exemplo: $x = 2.0 \pm 5\%$ \Leftrightarrow $x \in [1.9, 2.1]$

Notação científica

■ Notação científica na base 10 de $x \in \mathbb{R}$

$$x = \pm d_n d_{n-1} \dots d_1 d_0 d_{-1} d_{-2} \dots \times 10^e$$

mantissa: $d_n d_{n-1} \dots d_1 d_0 . d_{-1} d_{-2} d_{-3}$

expoente: $e \in \mathbb{Z}$

Dígitos da mantissa: $d_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Mantissa com *n* algarismos

E se a mantissa for
$$d_1 d_2 \cdots d_n d_{n+1} d_{n+2} \cdots$$
 ?

Truncatura

ignoram-se algarismos a partir do índice n+1

Arredondamento

- se $0.d_{n+1}d_{n+2}... > 0.5$ soma-se uma unidade à casa n para (arredondar para cima)
- se $0.d_{n+1}d_{n+2}...<0.5$ mantém-se a casa n (arredondar para baixo)
- se $0.d_{n+1}d_{n+2}... = 0.5$ arredonda-se para cima ou para baixo ficando a casa n par (por vezes também se arredonda para cima)

Notação compacta para aproximações

Como simplificar a notação $x = x^* \pm \varepsilon$?

Majorar erros absolutos por 0.5×10^n e representar a aproximação até à casa decimal 10^n .

Os algarismos da mantissa (com excepção dos zeros à esquerda) designam-se algarismos significativos.

Procedimento

- **1** majoração de ε por um número da forma 0.5×10^n
- 2 arredondar x^* para a casa 10^n

Algarismos significativos e erro relativo

Exemplos

<i>x</i> *	ε	Intervalo	Alg. significativos	ε'
2.24	0.005	[2.235, 2.245]	3	2.2×10^{-3}
2.240	0.0005	[2.2395, 2.2405]	4	2.2×10^{-4}
$1.5 imes 10^2$	5	[145, 155]	2	3.3×10^{-2}
$0.1 imes 10^3$	50	[50, 150]	1	$5 imes 10^{-1}$
$1.00 imes 10^k$	0.005×10^{k}	$[0.995 \times 10^k, 1.005 \times 10^k]$	3	5×10^{-3}

Teorema

Seja $x \neq 0$. Uma aproximação de x com n algarismos significativos tem um erro relativo inferior a 5×10^{-n} .

Sistemas de vírgula flutuante $FP(\beta, n, m, M)$

Números representáveis: $x = \pm (0.d_1d_2 \cdots d_n) \times \beta^e$

```
    β base de representação
    n número de dígitos da mantissa (precisão)
    m, M expoentes mínimo e máximo (gama representável)
```

Sistema normalizado: $x = 0 \lor d_1 \neq 0$

Vírgula flutuante: números representáveis

Vírgula flutuante: algumas limitações

- aproximação de números não representáveis
 - \rightarrow arredondamento
 - → truncatura
 - ⇒ erros de representação
- $x, y \in FP \implies x \circ y \in FP$ \Rightarrow erros de representação
- underflow e overflow
 - ⇒ impossibilidade de representação

Vírgula flutuante: algumas limitações (cont.)

Versões do mesmo sistema $FP(\beta, n, m, M)$ podem diferir

- aproximação de números não representáveis
- tratamento de excepções
- algoritmos de cálculo
-

Desvantajoso em termos de

- repetibilidade de resultados
- portabilidade de código
- validação de resultados

Norma IEEE 754

Aritmética em representações finitas

• ordem de realização de operações associativas pode influenciar resultado: $(a \circ b) \circ c \stackrel{?}{=} a \circ (b \circ c)$

Ex: 1 + 0.24 + 0.14 com 2 dígitos.

- cancelamento aditivo: a + b com $a \ll b$ ou $a \gg b$
 - → problemas com somas de muitas parcelas
- cancelamento subtractivo: a b com $a \approx b$
 - → podem perder-se algarismos significativos
 - → podem conduzir a erros elevados
 - → possível minorar rearranjando cálculos

Ex: 1.16 - 1.04 com 2 dígitos.

Propagação de erros no cálculo de y = f(x)

 x^* valor aproximado de x. Como aproximar y = f(x)?

Será $y^* = f(x^*)$ uma boa aproximação?

f contínua: x^* próximo de $x \Rightarrow y^*$ próximo de y

Estimação do erro de $y^* = f(x^*)$

$$\Delta y^* = y - y^* = f(x) - f(x^*) = f(x^* + \Delta x^*) - f(x^*)$$

A apresentar...

- Introdução
- Representação e análise de erros
- Resolução de equações não lineares
 - Método das bissecções sucessivas
 - Método da falsa posição (regula falsi)
 - Método iterativo simples (ou do ponto fixo)
 - Método de Newton
- Sistemas de equações não lineares
- Outros métodos

Problema: como resolver equações algébricas não lineares, i.e. escritas na forma f(x) = 0, onde f é uma função real de variável real.

Todo valor s que anula f, i.e. tal que f(s) = 0, designa-se por zero da função f ou solução da equação f(x) = 0.

Perante f(x) = 0, antes da aplicação de qq método, importa saber:

- A função f tem solução, i.e. existe um real f tal que f(f) = 0?
- A solução é única, ou existem diferentes soluções ?
- Se houver várias soluções, quais importam determinar?

Métodos de solução:

- Métodos diretos (resolução exata): ex. fórmula resolvente p/ 2º grau
- Métodos iterativos (resolução aproximada): importa saber propriedades gerais de f, e.g. continuidade, monotonia, diferenciabilidade, limites inferiores e superiores de derivadas, etc.

Método iterativo geral:

• Critério de paragem: x_k próximo de s ou $f(x_k)$ próximo de 0

Método das bissecções sucessivas:

Descrição

Parte-se de um intervalo tal que a função tenha sinais contrários nos seus extremos.

Divide-se o intervalo a meio, escolhe-se o subintervalo onde a função tem sinais contrários nos extremos e assim sucessivamente.

Método das bissecções sucessivas:

Algoritmo:

Inicialização	$[a_0, b_0] = [a, b]$	
	1. $x_{n+1} = \frac{a_n + b_n}{2}$;	
Repetir	2. Se $f(x_{n+1})f(a_n) < 0$ Então $a_{n+1} = a_n$; $b_{n+1} = x_{n+1}$;	
	Senão $a_{n+1} = x_{n+1}$; $b_{n+1} = b_n$;	
Até	verificar critério de paragem	

Método da falsa posição (regula falsi):

Semelhante ao método das bissecções sucessivas, mas com o cálculo de x_{n+1} dado por

$$x_{n+1} = \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)}$$

Este ponto corresponde à intersecção com o eixo dos xx da recta que une os pontos $(a_n, f(a_n))$ e $(b_n, f(b_n))$.

Método da falsa posição (regula falsi):

Algoritmo:

Inicialização	$[a_0, b_0] = [a, b]$	
	1. $x_{n+1} = \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)};$	
Repetir	2. Se $f(x_{n+1})f(a_n) < 0$	
Перет	Então $a_{n+1} = a_n$; $b_{n+1} = x_{n+1}$;	
	Senão $a_{n+1} = x_{n+1}$; $b_{n+1} = b_n$;	
Até	verificar critério de paragem	

Método iterativo simples (ou do ponto fixo):

Para aplicar o método à resolução de uma função do tipo f(x) = 0, será necessário:

- 1. Reescrever f(x) = 0 da forma equivalente x = F(x)
- 2. Escolher uma estimativa inicial x_0
- 3. Gerar a sucessão $x_{n+1} = F(x_n), n = 0, 1, ...$

F designa-se função de recorrência

s: F(s) = s designa-se ponto fixo de F

Método iterativo simples (ou do ponto fixo):

F é obtida por manipulação algébrica da equação f(x) = 0

Por exemplo, para $f(x) = x - e^{-x} = 0$, poder-se-ia ter:

 $x = e^{-x}$, equivalente a $F(x) = e^{-x}$, ou

x = -ln(x), equivalente a F(x) = -ln(x), para x > 0

... ou seja, para uma função f(x) = 0 pode-se obter diferentes funções de recorrência $F(x_n)$

Método iterativo simples (ou do ponto fixo):

Uma vez que, por hipótese, se tem $f(x) = 0 \Leftrightarrow x = F(x)$,

conclui-se que
$$f(s) = 0$$
, pois $s = F(s)$.

Ou seja, o método iterativo simples, quando convergente, produz sucessões que convergem para zeros da função *f*.

Método iterativo simples (ou do ponto fixo):

Algoritmo:

Inicialização	Escolher x ₀	
Repetir	$x_{n+1} = F(x_n)$	
Até	verificar critério de paragem	

Método iterativo simples (ou do ponto fixo):

Diferentes comportamentos do método:

Convergência monótona

Convergência "alternada"

Divergência

Resolução de equações não lineares

Método de Newton:

Cada novo valor da sucessão, x_{n+1} , é determinado como sendo a abcissa do ponto de intersecção com o eixo dos xx da reta tangente ao gráfico da função no ponto $(x_n, (f(x_n)).$

A expressão de recorrência será

$$x_{n+1} = x_n - \frac{f(x)}{f'(x)}$$

Resolução de equações não lineares

Método de Newton:

Algoritmo:

Inicialização	Escolher x ₀		
Repetir	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$		
Até verificar critério de parag			

Resolução de equações não lineares

Método de Newton:

Alguns comportamentos indesejáveis do método:

Anulamento da derivada

Mudança de concavidade

A apresentar...

- Introdução
- Representação e análise de erros
- Resolução de equações não lineares
- Sistemas de equações não lineares
 - Representação
 - Método iterativo simples
 - Método de Newton
- Sistemas de equações lineares
- Outros métodos

Representação

Um sistema de n equações nas n variáveis $x_1, x_2, ..., x_n$, pode ser escrito na forma

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ f_2(x_1, x_2, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

onde f_1, f_2, \ldots, f_n são funções de \mathbb{R}^n em \mathbb{R} .

Representação

Notação mais compacta: $x = (x_1, x_2, \dots, x_n)^T$

A função $F: \mathbb{R}^n \to \mathbb{R}^n$ passa a ser definida como:

$$F(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{bmatrix} = \begin{bmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) \end{bmatrix}$$

O sistema de equações pode então ser escrito como:

$$F(x) = 0$$

Representação

Por exemplo, o sistema de equações

$$\begin{cases} 4x_1x_2^2 - 2x_1^2x_2 + 2 = 0\\ 2x_1 - 4x_2 + \sqrt{x_1x_2} - 3 = 0 \end{cases}$$

pode ser escrito na forma F(x) = 0, definindo a função $F: \mathbb{R}^n \to \mathbb{R}^n$

$$x \mapsto \begin{bmatrix} 4x_1x_2^2 - 2x_1^2x_2 + 2\\ 2x_1 - 4x_2 + \sqrt{x_1x_2} - 3 \end{bmatrix}$$

Método iterativo simples

Análogo ao método usado para resolução de equações não lineares.

Reescrever o sistema de equações F(x) = 0 na forma

$$x = G(x), \qquad G: \mathbb{R}^n \to \mathbb{R}^n$$

ou seja

$$\begin{cases} x_1 = g_1(x_1, x_2, \dots, x_n) \\ x_2 = g_2(x_1, x_2, \dots, x_n) \\ \vdots \\ x_n = g_n(x_1, x_2, \dots, x_n) \end{cases}$$

Método iterativo simples

Procedimento:

- Escolher um ponto inicial $x_{(0)}$
- 2 Determinar os termos da sucessão $\{x_{(k)}\}$ pela expressão de recorrência

$$x_{(k+1)} = G(x_{(k)})$$

 $x_{(k)} \to s$ tal que s = G(s) (ponto fixo de G) $\Leftrightarrow F(s) = 0$

Método iterativo simples

Exemplo:

Considere o sistema de equações

$$\begin{cases} 4x_1 - \ln(x_1x_2) - 8 = 0 \\ 2x_1 - 4x_2 + \sqrt{x_1x_2} - 3 = 0 \end{cases}$$

- (a) Reescreva-o numa forma apropriada para aplicação do método iterativo simples.
- (b) Efectue 11 iterações deste método partindo do ponto (1.5, 1).

Método iterativo simples

Exemplo (com 11 iterações):

$$\begin{cases} x_1 = [\ln(x_1x_2) + 8]/4 = 0 \\ x_2 = [2x_1 + \sqrt{x_1x_2} - 3]/4 \end{cases}$$

k	$x_{1,(k)}$	$x_{2,(k)}$	$g_{1}(x_{1,(k)}, x_{2,(k)})$	$g_2(x_{1,(k)}, x_{2,(k)})$
0	1.50000	1.00000	2.10137	0.30619
1	2.10137	0.30619	1.88976	0.50122
2	1.88976	0.50122	1.98643	0.43819
3	1.98643	0.43819	1.96531	0.47646
4	1.96531	0.47646	1.98357	0.47457
5	1.98357	0.47457	1.98489	0.48434
6	1.98489	0.48434	1.99015	0.48757
7	1.99015	0.48757	1.99247	0.49134
8	1.99247	0.49134	1.99469	0.49359
9	1.99469	0.49359	1.99611	0.49541
10	1.99611	0.49541	1.99721	0.49666

Método de Newton

Igualmente análogo ao método já apresentado para a solução de quações não lineares.

Considere novamente o sistema de equações F(x) = 0

Considere que a matriz jacobiana $J_F(x)$ é não singular

O sistema de equações é então equivalente a:

$$J_F(x)^{-1}F(x) = 0$$

ou ainda, a:

$$x = x - [J_F(x)]^{-1}F(x)$$

Método de Newton

Procedimento:

Expressão de recorrência

$$J_F(x_{(k)}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}_{T_{(k)}}$$

$$x_{(k+1)} = x_{(k)} - [J_F(x_{(k)})]^{-1} F(x_{(k)}), \qquad k = 0, 1, \dots$$

$$v_{(k)} = [J_F(x_{(k)})]^{-1} F(x_{(k)})$$

Determinação de $x_{(k+1)}$

- calcular $F(x_{(k)})$
- 2 calcular $J_F(x_{(k)})$
- 3 calcular $v_{(k)}$ resolvendo o SEL $J_F(x_{(k)})$ $v_{(k)} = F(x_{(k)})$
- **o** calcular $x_{(k+1)} = x_{(k)} v_{(k)}$

Método de Newton

No caso particular de sistemas de equações em \mathbb{R}^2

Para o sistema de equações
$$\begin{cases} f_1(x_1, x_2) &= 0 \\ f_2(x_1, x_2) &= 0 \end{cases}$$
 a matriz jacobiana $J_F(x_1, x_2) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}$

tem como inversa $J_F^{-1}(x_1, x_2) = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Logo

$$\begin{bmatrix} x_{1,(k+1)} \\ x_{2,(k+1)} \end{bmatrix} = \begin{bmatrix} x_{1,(k)} \\ x_{2,(k)} \end{bmatrix} - J_F^{-1} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} (x_{1,(k)}, x_{2,(k)})$$

$$\begin{bmatrix} x_{1,(k+1)} \\ x_{2,(k+1)} \end{bmatrix} = \begin{bmatrix} x_{1,(k)} \\ x_{2,(k)} \end{bmatrix} - \frac{1}{ad - bc} \begin{bmatrix} df_1 - bf_2 \\ -cf_1 + af_2 \end{bmatrix} (x_{1,(k)}, x_{2,(k)})$$

A apresentar...

- Introdução
- Representação e análise de erros
- Resolução de equações não lineares
- Sistemas de equações não lineares
- Sistemas de equações lineares
 - Método de Gauss-Seidel
- Outros métodos

Representação

Um sistema de n equações nas n variáveis $x_1, x_2, ..., x_n$, pode ser escrito na forma $A\mathbf{x} = \mathbf{b}$. As componentes de A, x e b são:

$$A=egin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\ a_{21}&a_{22}&\cdots&a_{2n}\ dots&dots&\ddots&dots\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{bmatrix}, \qquad \mathbf{x}=egin{bmatrix} x_1\ x_2\ dots\ x_n \end{bmatrix}, \qquad \mathbf{b}=egin{bmatrix} b_1\ b_2\ dots\ b_n \end{bmatrix}.$$

Método de Gauss-Seidel

Método iterativo para resolver sistemas de equações lineares: Ax = b.

Utiliza fórmula de recorrência: $L_*\mathbf{x}^{(k+1)} = \mathbf{b} - U\mathbf{x}^{(k)}$, onde

$$A = L_* + U$$

$$L_* = egin{bmatrix} a_{11} & 0 & \cdots & 0 \ a_{21} & a_{22} & \cdots & 0 \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad U = egin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \ 0 & 0 & \cdots & a_{2n} \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Método de Gauss-Seidel

O sistema de equações $A\mathbf{x} = \mathbf{b}$, pode ser reescrito como $L_*\mathbf{x} = \mathbf{b} - U\mathbf{x}$ Isolando-se x no lado esquerdo, tem-se:

$$\mathbf{x}^{(k+1)} = L_*^{-1} \left(\mathbf{b} - U \mathbf{x}^{(k)}
ight).$$

Tirando-se partido da forma triangular de L_* , pode-se calcular $x^{(k+1)}$:

$$x_i^{(k+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}
ight), \quad i = 1, 2, \dots, n.$$

A apresentar...

- Introdução
- Representação e análise de erros
- Resolução de equações não lineares
- Sistemas de equações não lineares
- Sistemas de equações lineares
- Outros métodos
 - Determinação de mínimos locais (Método da descida de gradiente)

Referências e mais informação

- Steven C. Chapra and Raymond Canale. 2005. Numerical Methods for Engineers (5th. ed.). McGraw-Hill, Inc., USA.
- Aníbal C. C. Matos. 2005. Apontamentos de Análise Numérica.
 DEEC, FEUP, Portugal.
- Fernando Fontes. 2008. Métodos Numéricos. [handouts] DEEC,
 FEUP, Portugal.
- Outras fontes na Web