
Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: markspencer

Timestamp: Wed May 30 12:29:45 EDT 2007

Reviewer Comments:

For SEQ ID # 1 and SEQ ID # 2 numeric identifier <213> can only be one of three choices " Scientific name, i.e. Genus/ species, Unknown or Artificial Sequence."

Validated By CRFValidator v 1.0.2

Application No: 10590001 Version No: 1.0

Input Set:

Output Set:

Started: 2007-05-25 20:46:06.542

Finished: 2007-05-25 20:46:06.642

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 100 ms

Total Warnings: 0

Total Errors: 0

No. of SeqIDs Defined: 2

Actual SeqID Count: 2

SEQUENCE LISTING

<110>	ACADIA PHARMACEUTICALS INC.											
<120>	Use of the Lipoxin Receptor, FPRL1, as a Tool for Identifying Compounds Effective in the Treatment of Pain adn Inflammation											
<130>	65167.00023											
<140>	10590001											
<141>	2007-05-25											
<150>	10/590,001											
<151>	2006-08-17											
<150>	PCT/US2004/036952											
<151>	2004-11-04											
<160>	2											
<170> PatentIn version 3.3												
<210>	.0> 1											
<211>	2631											
<212>	DNA											
<213>												
<400>	1											
ggcacga	agga	acaacctatt	tgcaaagttg	gcgcaaacat	tcctgcctga	caggaccatg	60					
gacacaç	ggtt	gtagagatag	agatggctct	ggctgtgcat	tcagcagatt	ctgtagatag	120					
aattaat	tag	gacttggatg	ggattgtggt	gagagaaagt	gaaatgaaag	ataagttcta	180					
gtttgga	aagt	tttaacaact	gaatgtttaa	actcaaatag	acacaaaata	ttggaagagt	240					
ggcaggt	ttg	ggaggatgag	acaatcaact	gtttggttga	gccacgttag	gtttgaaatg	300					
tctacgo	ggat	cccgtgggga	gaggttatat	cagactggag	caccagagag	aggccaaggc	360					
tgatagt	tta	gatgaaaaga	gagcatgata	ttttaagccc	tgagactgga	taatatcacc	420					
tatagaa	aaga	ctatatagag	ataagagagg	tggggaacaa	gtaaaagctg	cgggacactc	480					
ctaaatt	tag	agtcaaattt	agagcagaaa	atactagcaa	aggggactga	aaagcggtgg	540					
ccaatto	gagc	ttcaaatgca	agtgaaagtg	tgttgtgtgt	acatttatca	tctcatggca	600					
caggaaa	aaac	gtgatttaag	gagaaggaag	cgatccaatg	ggaagaagag	atccaatgga	660					
tcctcta	atca	cgaagatatt	gagataagaa	ccaatatgga	tttgcaccca	ctgcatttgc	720					
ageette	gagg	tcataagcat	cctcaggaaa	atgcaccagg	tgctgctggc	aagatggaaa	780					
ccaactt	ctc	cactcctctg	aatgaatatg	aagaagtgtc	cttgagtctg	ctggctacac	840					

tgttctgcgg atcctcccat tggtggtgct tggggtcacc tttgtcctcg gggtcctggg 900

caatgggctt gtgatctggg	tggctggatt	ccggatgaca	cgcacagtca	ccaccatctg	960
ttacctgaac ctggccctgg	ctgacttttc	tttcacggcc	acattaccat	tcctcattgt	1020
ctccatggcc atgggagaaa	aatggccttt	tggctggttc	ctgtgtaagt	taattcacat	1080
cgtggtggac atcaacctct	ttggaagtgt	cttcttgatt	ggtttcattg	cactggaccg	1140
ctgcatttgt gtcctgcatc	cagtctgggc	ccagaaccac	cgcactgtga	gtctggccat	1200
gaaggtgatc gtcggacctt	ggattcttgc	tctagtcctt	accttgccag	ttttcctctt	1260
tttgactaca gtaactatta	caaatgggga	cacatcatgt	actttcaact	ttgcatcctg	1320
gggtggcacc cctgaggaga	ggctgaaggt	ggccattacc	atgctgacag	ccagagggat	1380
tatccggttt gtcattggct	ttagcttgcc	gatgtccatt	gttgccatct	gctatgggct	1440
cattgcagcc aagatccaca	aaaagggcat	gattaaatcc	agccgtccct	tacgggtcct	1500
cactgctgtg gtggcttctt	tetteatetg	ttggtttccc	tttcaactgg	ttgcccttct	1560
gggcaccgtc tggctcaaag	agatgttgtt	ctatggcaag	tacaaaatca	ttgacatcct	1620
ggttaaccca acgagctccc	tggccttctt	caacagctgc	ctcaacccca	tgctttacgt	1680
ctttgtgggc caagacttcc	gagagagact	gatecaetee	ctgcccacca	gtctggagag	1740
ggccctgtct gaggactcag	ccccaactaa	tgacacggct	gccaattctg	cttcacctcc	1800
tgcagagact gagttacagg	caatgtgagg	atggggtcag	ggatattttg	agttctgttc	1860
atcctaccct aatgccagtt	ccagcttcat	ctacccttga	gtcatattga	ggcattcaag	1920
gatgcacagc tcaagtattt	attcaggaaa	aatgcttttg	tgtccctgat	ttggggctaa	1980
gaaatagaca gtcaggctac	taaaatatta	gtgttatttt	ttgttttttg	acttctgcct	2040
ataccctggg gtaagtggag	ttgggaaata	caagaagaga	aagaccagtg	gggatttgta	2100
agacttagat gagatagcgc	ataataaggg	gaagacttta	aagtataaag	taaaatgttt	2160
gctgtaggtt ttttatagct	attaaaaaaa	atcagattat	ggaagttttc	ttctattttt	2220
agtttgctaa gagttttctg	tttcttttc	ttacatcatg	atgtgacttt	gcattttatc	2280
aaatgcattt tctacatgta	ttaagatggt	catattattc	ttcttcttt	atgtaaatca	2340
ttataaataa tgttcattaa	gttctgaatg	ttaaactact	cttgaattcc	tggaataaac	2400
cacacttagt cctgatgtac	tttaaatatt	tatatctcac	aggagttggt	tagaatttct	2460
gtgtttatgt ttatatactg	ttatttcact	ttttctacta	tccttgctaa	gttttcatag	2520
aaaataagga acaaagagaa	acttgtaatg	gtctctgaaa	aggaattgag	aagtaattcc	2580

<210> 2

<211> 351

<212> PRT

<213> human neutrophils and monocytes

<400> 2

Met Glu Thr Asn Phe Ser Thr Pro Leu Asn Glu Tyr Glu Glu Val Ser 5 10 15

Tyr Glu Ser Ala Gly Tyr Thr Val Leu Arg Ile Leu Pro Leu Val Val 20 25 30

Leu Gly Val Thr Phe Val Leu Gly Gly Val Leu Gly Asn Gly Leu Val 40

Ile Trp Val Ala Gly Phe Arg Met Thr Arg Thr Val Thr Thr Ile Cys 55

Tyr Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Ala Thr Leu Pro 65 70 75

Phe Leu Ile Val Ser Met Ala Met Gly Glu Lys Trp Pro Phe Gly Trp 90 8.5

Phe Leu Cys Lys Leu Ile His Ile Val Val Asp Ile Asn Leu Phe Gly 100 105 110

Ser Val Phe Leu Ile Gly Phe Ala Leu Asp Arg Cys Ile Cys Val Leu 115 120

His Pro Val Trp Ala Gln Asn His Arg Thr Val Ser Leu Ala Met Lys 130 135 140

Val Ile Val Gly Pro Trp Ile Leu Ala Leu Val Leu Thr Leu Pro Val 155 145 150

Phe Leu Phe Leu Thr Thr Val Thr Ile Pro Asn Gly Asp Thr Tyr Cys 165 170 175

Thr Phe Asn Phe Ala Ser Trp Gly Gly Thr Pro Glu Glu Arg Leu Lys 180 185 190

Val	Ala	Ile 195	Thr	Met	Leu	Thr	Ala 200	Arg	Gly	Ile	Ile	Arg 205	Phe	Val	Ile
Gly	Phe 210	Ser	Leu	Pro	Met	Ser 215	Ile	Val	Ala	Ile	Cys 220	Tyr	Gly	Leu	Ile
Ala 225	Ala	Lys	Ile	His	Lys 230	Lys	Gly	Met	Ile	Lys 235	Ser	Ser	Arg	Pro	Leu 240
Arg	Val	Leu	Thr	Ala 245	Val	Val	Ala	Ser	Phe 250	Phe	Ile	Суз	Trp	Phe 255	Pro
Phe	Gln	Leu	Val 260	Ala	Leu	Leu	Gly	Thr 265	Val	Trp	Leu	Lys	Glu 270	Met	Leu
Phe	Tyr	Gly 275	Lys	Tyr	Lys	Ile	Ile 280	Asp	Ile	Leu	Val	Asn 285	Pro	Thr	Ser
Ser	Leu 290	Ala	Phe	Phe	Asn	Ser 295	Cys	Leu	Asn	Pro	Met 300	Leu	Tyr	Val	Phe
Val 305	Gly	Gln	Asp	Phe	Arg 310	Glu	Arg	Leu	Ile	His 315	Ser	Leu	Pro	Thr	Ser 320
Leu	Glu	Arg	Ala	Leu 325	Ser	Glu	Asp	Ser	Ala 330	Pro	Thr	Asn	Asp	Thr 335	Ala
Ala	Asn	Ser	Ala 340	Ser	Pro	Pro	Ala	Glu 345	Thr	Glu	Leu	Gln	Ala 350	Met	