Promoção de Primeira

Nome do arquivo: "promocao.x", onde x deve ser c, cpp, pas, java, js, py2 ou py3

O reino da Linearlândia possui N cidades espalhadas por seu vasto território, sendo que N-1 pares distintos de cidades estão ligados diretamente por uma rodovia bi-direcional. Esses pares foram escolhidos de forma que existe exatamente um caminho entre qualquer par de cidades, possivelmente passando por outras cidades no meio do caminho. Cada rodovia da Linearlândia é servida por uma linha de ônibus, que faz viagens de ida e volta entre as duas cidades, operada por apenas uma empresa, como manda a lei determinada pelo Rei. O problema é que existem apenas duas empresas de ônibus: a RoyalBus e a ImperialBus.

Cada viagem entre duas cidades ligadas diretamente por uma rodovia custa uma passagem da empresa que opera aquela linha. Ao chegar numa cidade, se o passageiro quiser prosseguir viagem para outra cidade, ele tem que desembarcar, entrar em outro ônibus e pagar outra passagem. Só que o Rei determinou, para o feriadão anual de celebração da Linearidade Real, uma estranha promoção: sempre que o passageiro entrar no ônibus de uma empresa ele não precisa pagar a passagem se sua viagem imediatamente anterior foi pela outra empresa. Quer dizer, se o caminho alterna entre a RoyalBus e a ImperialBus, só é preciso pagar uma passagem, a primeira.

Neste problema, dada a descrição da malha de rodovias da Linearlândia, seu programa deve computar o número máximo de cidades num caminho, começando em qualquer cidade, para o qual é preciso pagar apenas uma passagem para ir da cidade inicial até a cidade final do caminho. O número de cidades no caminho inclui a cidade inicial e a cidade final.

Entrada

A primeira linha da entrada contém um inteiro N, representando o número de cidades da Linearlândia. As cidades são numeradas de 1 até N. As N-1 linhas seguintes contêm, cada uma, três inteiros A, B e E, indicando que existe uma rodovia entre as cidades A e B e que a linha de ônibus entre elas é operado pela empresa E (0 para RoyalBus, 1 para ImperialBus).

Saída

Seu programa deve imprimir uma linha contendo um inteiro representando o número máximo de cidades num caminho para o qual é preciso pagar apenas uma passagem durante a celebração da Linearidade Real.

Restrições

- 2 < N < 50000
- $1 \le A \le N$
- $1 \le B \le N$
- $0 \le E \le 1$

Informações sobre a pontuação

- Em um conjunto de casos de teste somando 20 pontos, o número máximo de rodovias chegando em qualquer cidade é dois. Quer dizer, a malha é um longo caminho passando por todas as cidades.
- Em um conjunto de casos de teste somando 20 pontos, $N \leq 10^3$.
- Em um conjunto de casos de teste somando 20 pontos, $10^3 < N \le 10^4$.
- Em um conjunto de casos de teste somando 40 pontos, nenhuma restrição adicional.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
8	4
3 1 0	-
2 7 0	
6 8 1	
1 4 1	
5 4 1	
471	
7 6 0	

Exemplo de entrada 2	Exemplo de saída 2
2	2
1 2 0	

Exemplo de entrada 3	Exemplo de saída 3
18	6
13 16 0	
16 15 1	
16 12 0	
14 12 0	
12 8 1	
1 18 0	
1 3 0	
2 3 1	
3 8 1	
11 17 1	
17 10 1	
8 17 0	
6 7 0	
9 7 0	
5 7 1	
4 5 0	
8 5 1	