Chebyshev Picard Iteration Fixed Point IVP Integration

A.C.

September 22, 2024

Outline

Chebyshev Polynomials

Definition and Recurrence

Integration

Interpolation and Orthogonality

Approximation Error

Picard Iteration

Chebyshev Picard Iteration

Definition and Recurrence

Starting Point

Consider:

 $\cos n\theta$

How does this relate to $\cos \theta$?

$$n+1$$

$$\cos 0 = 1$$

$$\cos \theta = \cos \theta$$

$$\cos 2\theta = 2\cos^2 \theta - 1$$

$$\vdots$$

$$\cos(n+1)\theta = 2\cos \theta \cos n\theta - \cos(n-1)\theta$$

See notes for proof.

Definition and Recurrence

Recurrence

Let $T_n(\cos \theta) := \cos n\theta$ and $x := \cos \theta$ and observe the following recurrence

$$T_0 = 1$$

$$T_1 = x$$

$$T_{n+1} = 2xT_n - T_{n-1}$$

In closed form: $T_n(x) = \cos n \cos^{-1} x$

Polynomial

$$T_{n+1} = 2xT_n - T_{n-1}$$

2x multiplier increases degree of each subsequent T_n by exactly one. Easy to see that $\{T_0, T_1, \ldots, T_n\}$ spans forms a basis set for \mathbb{P}_n .

More directly, we can find coefficients c_0, c_1, \ldots, c_n for any polynomial p_n s.t.

$$p_n = c_0 T_0 + c_1 T_1 + \cdots + c_n T_n$$

Domain

The recurrence form of Chebyshev polynomials (of the first kind) applies across the whole real line.

The cosine form requires we restrict ourselves to the interval [-1,1].

We will take it as a given that we are in the range $\left[-1,1\right]$ throughout.

Integral

$$\int T_k = \frac{1}{k+1} T_{k+1} - \frac{1}{k-1} T_{k-1} + C$$

See notes for proof.

Key Result

If we have a polynomial in Chebyshev-space, then we can integrate it easily without changing basis (e.g. to the "usual" basis $1, x, x^2, \ldots$, where integration is even simpler).

Lagrange Interpolation

Recall: a polynomial of degree n is uniquely determined by n+1 points $(x_0, y_0), \ldots, (x_n, y_n)$.

Langrange interpolation is a standard method for constructing such a polynomial:

$$p_n(x) = \sum_i y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

What if we would like the polynomial in terms of the Chebyshev basis?

System of Equations

Given points $(x_0, y_0), \ldots, (x_n, y_n)$, can write and solve a system of equations

$$c_{0}T_{0}(x_{0}) + c_{1}T_{1}(x_{0}) + \dots + c_{n}T_{n}(x_{0}) = y_{0}$$

$$c_{0}T_{0}(x_{1}) + c_{1}T_{1}(x_{1}) + \dots + c_{n}T_{n}(x_{1}) = y_{1}$$

$$\vdots$$

$$c_{0}T_{0}(x_{n}) + c_{1}T_{1}(x_{n}) + \dots + c_{n}T_{n}(x_{n}) = y_{n}$$

Fairly heavyweight computation, would prefer a cheaper solution.

Interpolation and Orthogonality

Orthogonality

Define

$$\langle f, g \rangle = \int_{-1}^{1} \frac{1}{\sqrt{1 - x^2}} fg \, dx$$

It can be shown that

$$\langle T_j, T_k \rangle = \begin{cases} 0, & \text{if } j \neq k \\ \pi, & \text{if } j = k = 0 \\ \frac{\pi}{2}, & \text{if } j = k > 0 \end{cases}$$

That is, Chebyshev polynomials form an *orthogonal* basis over \mathbb{P}_n . See notes for proof.

Inner Product Interpolation

Consider the equation

$$p_n = c_0 T_0 + c_1 T_1 + \cdots + c_n T_n$$

Take the inner product against T_k on each side to see

$$\langle p_n, T_k \rangle = c_k \langle T_k, T_k \rangle$$

If we can compute $\langle p_n, T_k \rangle$ efficiently, then we have a fast procedure for acquiring the polynomial in Chebyshev form.

Interpolation and Orthogonality

Quadrature

It is far from obvious but Lobatto quadrature at Chebyshev nodes $x_j = \cos \frac{j\pi}{n}$ computes $\langle p_n, T_k \rangle$ exactly, giving us the formula

$$\langle p_n, T_k \rangle = \frac{\pi}{n} \sum_{j}^{"} p_n \left(\cos \frac{j\pi}{n} \right) T_k \left(\cos \frac{j\pi}{n} \right)$$

See notes for proof.

Interpolation and Orthogonality

Key Result

If we choose to interpolate a function f at n+1 Chebyshev nodes, then the Chebyshev form of the resulting polynomial may be efficiently computed through simple sums.

Approximation Error

Weierstrass Approximation Theorem

Given any smooth function f on a compact interval [a,b] and an arbitrary error tolerance ϵ , there exists a polynomial p s.t.

$$||p - f||_{\infty} \le \epsilon$$

That is, we may approximate any smooth function arbitrarily well on a finite interval with *some* polynomial.

It seems a fair guess that interpolating f at a large number of points should yield such a polynomial.

Let us consider the behavior of polynomial interpolants on the following function

$$y = \frac{1}{1 + 25x^2}$$

We'll do the obvious thing, and select equally spaced points for evaluation.

Lagrange Error Formula

Let f be a smooth function on a compact interval, and p_n be the polynomial interpolating it at points x_0, x_1, \ldots, x_n . Then

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\eta_x)}{(n+1)!} \prod (x - x_j)$$

See notes for proof.

Controlling Approximation Error

Our error term has two components – a derivative part, and a product part.

It is difficult to fathom a mechanism to control the former, but the latter should be directly impacted by our choice of interpolating points.

Chebyshev Node Error

Set x_0, \ldots, x_n to the zeros of the *n*-th Chebyshev polynomial. We observe the following bounds on the "product" component of the Lagrange error, which no other choice of nodes can beat.

$$\max_{[-1,1]} \prod (x-x_j) = \frac{1}{2^n}$$

The extrema of the *n*-th Chebyshev polynomial are actually of more practical interest to us, but the result for them is the same, up to a constant factor. See notes for proof.

Key Result

Interpolating through Chebyshev nodes minimizes a key term underpinning L_{∞} error.

We have not shown that Chebyshev nodes are always best (in fact, there exists no choice of nodes with is best for all polynomial-approximable functions), but it is very good, very often.

Outline

Chebyshev Polynomials

Picard Iteration
Picard Iteration

Chebyshev Picard Iteration

Outline

Chebyshev Polynomials

Picard Iteration

Chebyshev Picard Iteration