Amendments to the Claims

Please add new Claims 13-17. The Claim Listing below will replace all prior versions of the claims in the application:

Claim Listing

(Previously Presented) A method for updating a lookup table comprising the steps of:
 providing access to a first set of routes and associated first subtree entry stored in
 a first memory space in the lookup table through a first pointer to the first subtree entry;
 and

storing a second set of routes and associated second subtree entry in a second memory space in the lookup table while access is provided to the first set of routes stored in the first memory space by the first pointer; and

switching access to the second set of routes stored in the second memory by replacing the first pointer stored to the first subtree entry with a second pointer to the second subtree entry.

- 2. (Original) The method as claimed in Claim 1 further comprising the step of: deallocating the first memory space after switching access.
- 3. (Original) The method as claimed in Claim 1 wherein the number of routes in the first set of routes is less than the number of routes in the second set of routes.
- 4. (Original) The method as claimed in Claim 1 wherein the number of routes in the first set of routes is greater than the number of routes in the second set of routes.
- 5. (Original) An apparatus for updating a lookup table comprising:

a first pointer to a first subtree entry, the first subtree entry providing access to a first set of routes stored in a first memory space; and means for storing a second set of routes and associated second subtree entry in a second memory space while access is

provided to the first set of routes stored in the first memory space by the first pointer and switching access to the second set of routes by replacing the first pointer with a second pointer to the second subtree entry, the second subtree entry providing access to the second memory space.

- 6. (Original) The apparatus as claimed in Claim 5 further comprising:

 means for deallocating the first memory space after switching access.
- 7. (Original) The apparatus as claimed in Claim 5 wherein the number of routes in the first set of routes is less than the number of routes in the second set of routes.
- 8. (Original) The apparatus as claimed in Claim 5 wherein the number of routes in the first set of routes is greater than the number of routes in the second set of routes.
- 9. (Previously Presented) An apparatus for updating a lookup table comprising:

a first pointer to a first subtree entry, the first subtree entry providing access to a first set of routes stored in a first memory space;

a second memory space for storing a second set of routes and associated second subtree entry while access is provided to the first set of routes stored in the first memory space by the first pointer; and

logic which provides access to the second set of routes by replacing the first pointer with a second pointer to the second subtree entry, the second subtree entry providing access to the second memory space after the second set of routes are stored in the second memory.

10. (Original) The apparatus as claimed in Claim 9 further comprising:

deallocation logic which deallocates the first memory space after the first pointer is replaced.

- 11. (Original) The apparatus as claimed in Claim 9 wherein the number of routes in the first set of routes is less than the number of routes in the second set of routes.
- 12. (Original) The apparatus as claimed in Claim 9 wherein the number of routes in the first set of routes is greater than the number of routes in the second set of routes.
- 13. (New) A method for updating a lookup table, the lookup table providing a longest prefix match for a destination address, comprising the steps of:

providing access to a first set of routes and associated first subtree entry stored in a first memory space in the lookup table through a first pointer to the first subtree entry; and

storing a second set of routes and associated second subtree entry in a second memory space in the lookup table while access is provided to the first set of routes stored in the first memory space by the first pointer; and

switching access to the second set of routes stored in the second memory by replacing the first pointer stored to the first subtree entry with a second pointer to the second subtree entry.

- 14. (New) The method of claim 13, wherein the first set of routes and the second set of routes include a longest prefix route for the destination address.
- 15. (New) The method of claim 14, wherein the destination address includes an Internet Protocol address.
- 16. (New) The method of claim 14, wherein the second set of routes includes another route corresponding to the longest prefix route for another destination address.
- 17. (New) The method of claim 13, wherein the first set of routes and the second set of routes are associated with nodes at the bottom level of a subtree.