**Embedded Vision Design** 

# EVD1 - Week 5 Morphological Filters

By Hugo Arends



# Morphological filters

- Are used prior to pattern recognition and object classification
- Changes the geometrical shape of the objects
- The goal is to smooth the object's contours and to decompose objects in their fundamental shapes
- Remove border blobs
- Fill holes
- Dilation & Erosion
- Closing & Opening
- Hit-miss
- Outline
- Skeleton

### Remove border BLOBs

Removes all objects that are 4/8-connected to a border

# Remove border BLOBs - example





4-connected



8-connected

## Remove border BLOBs

|       | 1 |   |   |   |   |  |
|-------|---|---|---|---|---|--|
| 1     |   |   |   |   | 1 |  |
|       |   |   |   | 1 | 1 |  |
| 1     |   | 1 |   |   | 1 |  |
| 1     | 1 | 1 |   |   | 1 |  |
| 1     |   |   |   |   |   |  |
| <br>1 |   |   |   | 1 | 1 |  |
| 1     |   | 1 | 1 | 1 | 1 |  |



|   |   | 1   |  |
|---|---|-----|--|
| 1 |   | 1 1 |  |
|   |   | 1   |  |
|   |   | 1   |  |
|   |   |     |  |
|   |   |     |  |
|   |   |     |  |
|   | - |     |  |

Source

**Destination 8-connected** 

|   | 1 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 1 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 1 |   | 1 | 1 | 1 | 1 |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 1 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

Mark border object pixels

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 2 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 2 | _ |   | _ | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 2 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 2 | 1 | 1 |   |   | 1 |  |
| 2 |   |   |   |   |   |  |
| 2 | _ | _ | _ | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 2 | 2 | 1 |   |   | 1 |  |
| 2 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 2 | 2 | 2 |   |   | 1 |  |
| 2 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 2 |   | 1 |   |   | 1 |  |
| 2 | 2 | 2 |   |   | 1 |  |
| 2 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 2 |   | 2 |   |   | 1 |  |
| 2 | 2 | 2 |   |   | 1 |  |
| 2 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked



- Mark border object pixels
- While changes
  - Loop entire image and assign marker value if a neighbor is also marked
- Set marked pixels to background value (0)

#### Advantage

Easy implementation

#### Disadvantage

 Very slow, especially if the image is scanned in a single direction and the object happens the point towards the opposite direction



```
uint32_t removeBorderBlobsIterative(
    const image_t *src, image_t *dst,
    const eConnected connected);
```

#### See file EVDK\_Operators\morphological\_filters.c

```
// Threshold the image
threshold2Means(src, tmp, BRIGHTNESS_DARK);

// Remove the border BLOBs
removeBorderBlobsIterative(tmp, dst, CONNECTED_EIGHT);
```

|   | 1 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 1 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 1 |   | 1 | 1 | 1 | 1 |  |

| Equivalence LUT |  |  |  |  |  |  |  |  |
|-----------------|--|--|--|--|--|--|--|--|
| 1               |  |  |  |  |  |  |  |  |
| 1               |  |  |  |  |  |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 1 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT

|   | Equivalence LUT |  |  |  |  |  |  |  |  |
|---|-----------------|--|--|--|--|--|--|--|--|
| 1 | 2               |  |  |  |  |  |  |  |  |
| 1 | 2               |  |  |  |  |  |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 1 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value

| Equivalence LUT |   |  |  |  |  |  |  |  |
|-----------------|---|--|--|--|--|--|--|--|
| 1               | 2 |  |  |  |  |  |  |  |
| 1               | 2 |  |  |  |  |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value
    - No: mark this pixel with a new value

|   | Equivalence LUT |  |  |  |  |  |  |  |  |
|---|-----------------|--|--|--|--|--|--|--|--|
| 1 | 2               |  |  |  |  |  |  |  |  |
| 1 | 2               |  |  |  |  |  |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 1 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 | _ | _ |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value
    - No: mark this pixel with a new value
      - Add to equivalence LUT

|   | Equivalence LUT |   |  |  |  |  |  |  |  |
|---|-----------------|---|--|--|--|--|--|--|--|
| 1 | 2               | 3 |  |  |  |  |  |  |  |
| 1 | 2               | 3 |  |  |  |  |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 1 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value
    - No: mark this pixel with a new value Add to equivalence LUT

| Equivalence LUT |   |   |  |  |  |  |  |
|-----------------|---|---|--|--|--|--|--|
| 1               | 2 | 3 |  |  |  |  |  |
| 1               | 2 | 3 |  |  |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 1 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value
    - No: mark this pixel with a new value Add to equivalence LUT

|   | Equivalence LUT |   |  |  |  |  |  |  |
|---|-----------------|---|--|--|--|--|--|--|
| 1 | 2               | 3 |  |  |  |  |  |  |
| 1 | 2               | 3 |  |  |  |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 1 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value
    - No: mark this pixel with a new value Add to equivalence LUT

| Equivalence LUT |   |   |   |  |  |  |
|-----------------|---|---|---|--|--|--|
| 1               | 2 | 3 | 4 |  |  |  |
| 1               | 2 | 3 | 4 |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 1 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value
    - No: mark this pixel with a new value Add to equivalence LUT

| Equivalence LUT |   |   |   |   |  |  |  |
|-----------------|---|---|---|---|--|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |  |
| 1               | 2 | 3 | 4 | 5 |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 1 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value
    - No: mark this pixel with a new value Add to equivalence LUT

| Equivalence LUT |   |   |   |   |  |  |  |
|-----------------|---|---|---|---|--|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |  |
| 1               | 2 | 3 | 4 | 5 |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 1 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value
    - No: mark this pixel with a new value Add to equivalence LUT

| Equivalence LUT |   |   |   |   |  |  |  |
|-----------------|---|---|---|---|--|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |  |
| 1               | 2 | 3 | 4 | 5 |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value
    - No: mark this pixel with a new value Add to equivalence LUT

| Equivalence LUT |   |   |   |   |  |  |  |
|-----------------|---|---|---|---|--|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |  |
| 1               | 2 | 3 | 4 | 5 |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 1 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

| • | Mark | bord | ler ol | bject | pixel | S |
|---|------|------|--------|-------|-------|---|
|   |      |      |        |       |       |   |

- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value and
       Update the LUT to the lowest neighbor value
    - No: mark this pixel with a new value Add to equivalence LUT

| Equivalence LUT |   |   |   |   |  |  |
|-----------------|---|---|---|---|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |
| 1               | 2 | 3 | 4 | 4 |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 1 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

| <ul> <li>Mark border ol</li> </ul> | pject pixels |
|------------------------------------|--------------|
|------------------------------------|--------------|

- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value and Update the LUT to the lowest neighbor value
    - No: mark this pixel with a new value Add to equivalence LUT

| Equivalence LUT |   |   |   |   |  |  |
|-----------------|---|---|---|---|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |
| 1               | 2 | 3 | 4 | 4 |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 3 |  |
| 1 |   |   |   |   |   |  |
| 1 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

| • | Mark | border | object | pixels |
|---|------|--------|--------|--------|
|   |      |        |        |        |

- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value and Update the LUT to the lowest neighbor value
    - No: mark this pixel with a new value Add to equivalence LUT

|   | Equivalence LUT |   |   |   |  |  |  |
|---|-----------------|---|---|---|--|--|--|
| 1 | 2               | 3 | 4 | 5 |  |  |  |
| 1 | 2               | 3 | 4 | 4 |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 3 |  |
| 4 |   |   |   |   |   |  |
| 1 | _ |   | _ | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

| • | Mark | k bord | ler ol | oject | pixe | S |
|---|------|--------|--------|-------|------|---|
|---|------|--------|--------|-------|------|---|

- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value and Update the LUT to the lowest neighbor value
    - No: mark this pixel with a new value Add to equivalence LUT

| Equivalence LUT |   |   |   |   |  |  |  |  |
|-----------------|---|---|---|---|--|--|--|--|
| 1               | 2 | თ | 4 | 5 |  |  |  |  |
| 1               | 2 | 3 | 4 | 4 |  |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 3 |  |
| 4 |   |   |   |   |   |  |
| 2 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

| <ul> <li>Mark border object pixels</li> </ul> | • | Mark | border | objec | t pixel: | S |
|-----------------------------------------------|---|------|--------|-------|----------|---|
|-----------------------------------------------|---|------|--------|-------|----------|---|

- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value and Update the LUT to the lowest neighbor value
    - No: mark this pixel with a new value Add to equivalence LUT

| Equivalence LUT |   |   |   |   |  |  |  |  |
|-----------------|---|---|---|---|--|--|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |  |  |
| 1               | 2 | 3 | 4 | 4 |  |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 3 |  |
| 4 |   |   |   |   |   |  |
| 2 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

| • | Mark | border | object | pixels |
|---|------|--------|--------|--------|
|---|------|--------|--------|--------|

- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value and Update the LUT to the
    - No: mark this pixel with a new value
       Add to equivalence LUT

|           | Equivalence LUT |   |   |   |   |  |  |  |  |
|-----------|-----------------|---|---|---|---|--|--|--|--|
| 1 2 3 4 5 |                 |   |   |   |   |  |  |  |  |
|           | 1               | 2 | 3 | 2 | 4 |  |  |  |  |

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 3 |  |
| 4 |   |   |   |   |   |  |
| 2 |   |   |   | 1 | 1 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

| Equivalence LUT |  |  |  |  |  |  |  |
|-----------------|--|--|--|--|--|--|--|
| 1 2 3 4 5       |  |  |  |  |  |  |  |
| 1 2 3 2 2       |  |  |  |  |  |  |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value and Update the LUT to the lowest neighbor value and

Search the LUT for other equivalence updates

 No: mark this pixel with a new value Add to equivalence LUT

HAN\_UNIVERSITY
OF APPLIED SCIENCES

|   | 2 |   |   |   |   |   |
|---|---|---|---|---|---|---|
| 2 |   |   |   |   | 3 |   |
|   |   |   |   | 3 | 3 |   |
| 4 |   | 5 |   |   | 3 |   |
| 4 | 4 | 4 |   |   | 3 |   |
| 4 |   |   |   |   |   |   |
| 2 |   |   |   | 2 | 1 |   |
| 2 |   | 2 | 2 | 2 | 2 | _ |

| Equivalence LUT |   |   |   |   |  |  |  |  |
|-----------------|---|---|---|---|--|--|--|--|
| 1 2 3 4 5       |   |   |   |   |  |  |  |  |
| 1               | 2 | 3 | 2 | 2 |  |  |  |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value and Update the LUT to the lowest neighbor value and Search the LUT for other equivalence updates
    - No: mark this pixel with a new value Add to equivalence LUT

HAN\_UNIVERSITY
OF APPLIED SCIENCES

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 3 |  |
| 4 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

| Equivalence LUT |   |   |   |   |  |  |  |  |
|-----------------|---|---|---|---|--|--|--|--|
| 1 2 3 4 5       |   |   |   |   |  |  |  |  |
| 1               | 2 | 3 | 2 | 2 |  |  |  |  |

- Mark border object pixels
- Update equivalence LUT
- Loop entire image
  - Is it an object pixel?
  - Is a neighbor already marked?
    - Yes: mark this pixel with the same value and Update the LUT to the lowest neighbor value and Search the LUT for other equivalence updates
    - No: mark this pixel with a new value Add to equivalence LUT

HAN\_UNIVERSITY
OF APPLIED SCIENCES

|   | 2 |   |   |   |   |  |
|---|---|---|---|---|---|--|
| 2 |   |   |   |   | 3 |  |
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 3 |  |
| 4 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

Loop entire image

| Equivalence LUT |   |   |   |   |  |  |  |  |  |
|-----------------|---|---|---|---|--|--|--|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |  |  |  |
| 1               | 2 | 3 | 2 | 2 |  |  |  |  |  |

| 2 |   |   |   |   | 3 |  |
|---|---|---|---|---|---|--|
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 3 |  |
| 4 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Loop entire image
  - Is it an object pixel?
    - Is the corresponding LUT value set to 2?
      - Yes: assign background(0)

| Equivalence LUT |   |   |   |   |  |  |  |  |
|-----------------|---|---|---|---|--|--|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |  |  |
| 1               | 2 | 3 | 2 | 2 |  |  |  |  |

|   |   |   |   |   | 3 |  |
|---|---|---|---|---|---|--|
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 3 |  |
| 4 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

- Loop entire image
  - Is it an object pixel?
    - Is the corresponding LUT value set to 2?
      - Yes: assign background(0)

| Equivalence LUT |   |   |   |   |  |  |  |  |
|-----------------|---|---|---|---|--|--|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |  |  |
| 1               | 2 | 3 | 2 | 2 |  |  |  |  |

|   |   |   |   |   | 1 |  |
|---|---|---|---|---|---|--|
|   |   |   |   | 3 | 3 |  |
| 4 |   | 5 |   |   | 3 |  |
| 4 | 4 | 4 |   |   | 3 |  |
| 4 |   |   |   |   |   |  |
| 2 |   |   |   | 2 | 2 |  |
| 2 |   | 2 | 2 | 2 | 2 |  |

Loop entire image

Is it an object pixel?

• Is the corresponding LUT value set to 2?

• Yes: assign background (0)

No: assign foreground (1)

|   | Equivalence LUT |   |   |   |  |  |  |  |  |
|---|-----------------|---|---|---|--|--|--|--|--|
| 1 | 2               | 3 | 4 | 5 |  |  |  |  |  |
| 1 | 2               | 3 | 2 | 2 |  |  |  |  |  |

|  |  |   | 1 |  |
|--|--|---|---|--|
|  |  | 1 | 1 |  |
|  |  |   | 1 |  |
|  |  |   | 1 |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |

- Loop entire image
  - Is it an object pixel?
    - Is the corresponding LUT value set to 2?
      - Yes: assign background (0)
      - No: assign foreground (1)

| Equivalence LUT |   |   |   |   |  |  |  |  |
|-----------------|---|---|---|---|--|--|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |  |  |
| 1               | 2 | 3 | 2 | 2 |  |  |  |  |

|  |  |   | 1 |  |
|--|--|---|---|--|
|  |  | 1 | 1 |  |
|  |  |   | 1 |  |
|  |  |   | 1 |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |

- The size of the equivalence LUT decides the number of labels that can be used
- The number of required labels is application depended, so we let the application decide by providing an argument

| Equivalence LUT |   |   |   |   |  |  |  |  |
|-----------------|---|---|---|---|--|--|--|--|
| 1               | 2 | 3 | 4 | 5 |  |  |  |  |
| 1               | 2 | 3 | 2 | 2 |  |  |  |  |

#### See file EVDK\_Operators\morphological\_filters.c

```
// Threshold the image
threshold2Means(src, tmp, BRIGHTNESS_DARK);

// Remove the border BLOBs
removeBorderBlobsTwoPass(tmp, dst, CONNECTED_EIGHT, 128);
```

# EVD1 – Assignment



Study guide Week 5

1 Morphological filters – removeBorderBlobsTwoPass()

• Fills the 4/8-connected holes in binary objects

# Fill holes - example





4-connected



8-connected

|   | 1 | 1 |   |   |   |   |
|---|---|---|---|---|---|---|
| 1 |   |   | 1 |   |   |   |
| 1 |   |   | 1 |   |   |   |
|   | 1 | 1 | 1 | 1 | 1 | 1 |
|   |   |   | 1 |   |   | 1 |
|   |   |   | 1 |   |   | 1 |
|   |   |   | 1 | 1 | 1 | 1 |

Where to start?

|   | 1 | 1 |   |   |   |   |
|---|---|---|---|---|---|---|
| 1 |   |   | 1 |   |   |   |
| 1 |   |   | 1 |   |   |   |
|   | 1 | 1 | 1 | 1 | 1 | 1 |
|   |   |   | 1 |   |   | 1 |
|   |   |   | 1 |   |   | 1 |
|   |   |   | 1 | 1 | 1 | 1 |

- Where to start?
- However, the algorithm is very similar to removing border BLOBs, if:
  - we define a hole as not being connected to the background

|   | 1 | 1 |   |   |   |   |
|---|---|---|---|---|---|---|
| 1 |   |   | 1 |   |   |   |
| 1 |   |   | 1 |   |   |   |
|   | 1 | 1 | 1 | 1 | 1 | 1 |
|   |   |   | 1 |   |   | 1 |
|   |   |   | 1 |   |   | 1 |
|   |   |   | 1 | 1 | 1 | 1 |

- Where to start?
- However, the algorithm is very similar to removing border BLOBs, if:
  - we define a hole as not being connected to the background
  - And the background has all 0 pixels connected to the border of the image

| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
|---|---|---|---|---|---|---|---|
| 2 |   | 1 | 1 |   |   |   | 2 |
| 2 | 1 |   |   | 1 |   |   | 2 |
| 2 | 1 |   |   | 1 |   |   | 2 |
| 2 |   | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 |   |   |   | 1 |   |   | 1 |
| 2 |   |   |   | 1 |   |   | 1 |
| 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |

Mark background border pixels

| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
|---|---|---|---|---|---|---|---|
| 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 |
| 2 | 1 |   |   | 1 | 2 | 2 | 2 |
| 2 | 1 |   |   | 1 | 2 | 2 | 2 |
| 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 1 |   |   | 1 |
| 2 | 2 | 2 | 2 | 1 |   |   | 1 |
| 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |

- Mark background border pixels
- Mark all adjacent pixels

| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
|---|---|---|---|---|---|---|---|
| 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 |
| 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |

- Mark background border pixels
- Mark all adjacent pixels
- Set background pixels to foreground pixels

|   | 1 | 1 |   |   |   |   |
|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 |   |   |   |
| 1 | 1 | 1 | 1 |   |   |   |
|   | 1 | 1 | 1 | 1 | 1 | 1 |
|   |   |   | 1 | 1 | 1 | 1 |
|   |   |   | 1 | 1 | 1 | 1 |
|   |   |   | 1 | 1 | 1 | 1 |

- Mark background border pixels
- Mark all adjacent pixels
- Set background pixels to foreground
- Set marked pixels to background

|   | 1 | 1 |   |   |   |   |
|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 |   |   |   |
| 1 | 1 | 1 | 1 |   |   |   |
|   | 1 | 1 | 1 | 1 | 1 | 1 |
|   |   |   | 1 | 1 | 1 | 1 |
|   |   |   | 1 | 1 | 1 | 1 |
|   |   |   | 1 | 1 | 1 | 1 |

- Two implementations
  - Iterative algorithm
  - Two-pass algorithm

# Fill holes – Iterative algorithm

uint32\_t **fillHolesIterative**( const image\_t \***src**, image\_t \***dst**, const eConnected **connected**);

See file EVDK\_Operators\morphological\_filters.c

```
// Threshold the image
threshold2Means(src, tmp, BRIGHTNESS_DARK);

// Remove the border BLOBs
fillHolesIterative(tmp, dst, CONNECTED_EIGHT);
```

# Fill holes – Two-pass algorithm

```
uint32_t fillHolesTwoPass( const image_t *src, image_t *dst, const eConnected connected, const uint32_t lutSize);
```

#### See file EVDK\_Operators\morphological\_filters.c

```
// Threshold the image
threshold2Means(src, tmp, BRIGHTNESS_DARK);

// Remove the border BLOBs
fillHolesTwoPass(tmp, dst, CONNECTED_EIGHT, 128);
```

# EVD1 – Assignment



Study guide

Week 5

2 Morphological filters – fillHolesTwoPass()

#### Dilation and erosion

- Dilation of an object increases its geometrical area
- Dilation is defined as the union of all vector additions of all pixels a in object A with all pixels b in the structuring function B:

$$A \bigoplus B = \{t \in Z^2 : t = a + b, a \in A, b \in B\}$$

where t is an element of the image space  $Z^2$ 

- Erosion of an object decreases its geometrical area
- Erosion is defined as the complement of the resulting dilation of the complement of object *A* with structuring function *B*:

$$A \ominus B = (A^c \oplus B)^c$$

# Closing and opening

- All other morphological filters are derived from dilation and erosion
- Closing
- Reduces inward bumps and (small) holes
- Is defined as the dilation followed by an erosion of the dilated object

$$close(A, B) = (A \oplus B) \ominus B$$

- Opening
- Reduces outward bumps
- Is defined as the erosion followed by a dilation of the eroded object

$$open(A, B) = (A \ominus B) \oplus B$$

# **Examples**

Α







В

| 1 | 1 | 1 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |





# **Examples**

 $\boldsymbol{A}$ 



В

| 1 | 1 | 1 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Dilation



Closing



Erosion



Opening





# **Examples**

 $\boldsymbol{A}$ 



В

| 0 | 1 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 1 | 0 |

Dilation



Closing



Erosion



Opening





# Binary skeleton

- Defines a unique compressed geometrical representation of an object
- Does not necessarily produce a fully connected object
- Is defined as the union of the set of pixels computed from the difference of the  $n-1_{th}$  eroded image and the opening of the  $n_{th}$  eroded image:

$$K_n(A) = erode_{n-1}(A) - open(erode_n(A), B)$$

#### where

 $erode_n(A) = A \ominus B_n$  is the  $n_{th}$  erosion of the original image A with structuring function B

## Binary skeleton

- The skeleton image is then given by the union of all  $K_n(A)$  over all erosions
- The number of erosions n required by the skeleton algorithm is the number of erosions of the original image A by the structuring function B that yields the null image:

$$erode_n(A) = A \ominus B_n = \bigcirc$$

# Binary skeleton - example

|   | 0 | 1 | 0 |
|---|---|---|---|
| В | 1 | 1 | 1 |
|   | 0 | 1 | 0 |

$$A = erode_0(A, B)$$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

# Binary skeleton - example

|   | 0 | 1 | 0 |  |
|---|---|---|---|--|
| В | 1 | 1 | 1 |  |
|   | 0 | 1 | 0 |  |

$$A = erode_0(A, B)$$

#### 

#### $erode_1(A, B)$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

# Binary skeleton - example



 $open(erode_0(A,B),B)$ 

 $A = erode_0(A, B)$ 

 $erode_1(A, B)$ 

  $dilate(erode_1(A, B), B)$ 

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$$K_1(A) = erode_0(A, B) - open(erode_0(A, B), B)$$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

|   | 0 | 1 | 0 |  |
|---|---|---|---|--|
| В | 1 | 1 | 1 |  |
|   | 0 | 1 | 0 |  |

 $erode_1(A, B)$ 

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

|   | 0 | 1 | 0 |
|---|---|---|---|
| B | 1 | 1 | 1 |
|   | 0 | 1 | 0 |

 $erode_1(A, B)$ 

 $erode_2(A, B)$ 

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |



 $open(erode_1(A,B),B) \\$ 

 $erode_1(A, B)$ 

 $erode_2(A, B)$ 

 $dilate(erode_2(A, B), B)$ 

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$$K_2(A) = erode_1(A, B) - open(erode_1(A, B), B)$$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$$K_1(A) \cup K_2(A)$$

|   | 0 | 1 | 0 |
|---|---|---|---|
| В | 1 | 1 | 1 |
|   | 0 | 1 | 0 |

 $erode_2(A, B)$ 

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

|   | 0 | 1 | 0 |
|---|---|---|---|
| B | 1 | 1 | 1 |
|   | 0 | 1 | 0 |

 $erode_2(A, B)$ 

 $erode_3(A, B)$ 

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Done! Nothing left to erode.



 $open(erode_2(A, B), B)$ 

 $erode_2(A, B)$ 

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

 $erode_3(A, B)$ 



 $dilate(erode_3(A, B), B)$ 

|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ī | - |   |   |   |   | · | · | - |

Done! Nothing left to erode.

$$K_3(A) = erode_2(A, B) - open(erode_2(A, B), B)$$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$$K_1(A) \cup K_2(A) \cup K_3(A)$$









#### Binary skeleton - algorithm

#### See file EVDK\_Operators\morphological\_filters.c

```
// Threshold the image
threshold2Means(src, tmp, BRIGHTNESS_DARK);
removeBorderBlobsTwoPass(tmp, rbb, CONNECTED_FOUR, 256);

uint8_t mask[9] =
{
    1,0,1,
    0,1,0,
    1,0,1,
};

skeleton(rbb, dst, mask, 3);
```

#### Binary hit-miss

- Use to find geometrical features
- Is defines as:

$$hitmiss(A, B, C) = (A \ominus B) \cap (A^c \ominus C)$$

where

B and C are structuring masks with the requirement:

$$B \cap C = \emptyset$$

because all 1s in B are considered object pixels and all 1s in C are considered background pixels

# Binary hit-miss - example





Alternative representation

| ı | ı | ı |
|---|---|---|
| 1 | 1 | 0 |
| - | - | - |

 $\boldsymbol{A}$ 



hitmiss(A, B, C)



## Binary hit-miss - example





Alternative representation

| - | 1 | - |
|---|---|---|
| 0 | 1 | 1 |
| - | - | - |

 $\boldsymbol{A}$ 



hitmiss(A, B, C)



#### Binary hit-miss - algorithm

See file EVDK\_Operators\morphological\_filters.c

#### Binary outline

- Change all of the object's pixels to the background value, except those pixels that lie on the object's contour
- The contour width is determined by the structuring element
- The result is the eroded image subtracted from the original image, or the original image subtracted from the dilated image
- Is defined as

$$outline(A, B) = A - (A \ominus B)$$
  
or  
 $outline(A, B) = (A \oplus B) - A$ 

where

*B* is the structuring mask



 $\boldsymbol{A}$ 



 $outline(A, B) = A - (A \ominus B)$ 





 $\boldsymbol{A}$ 



 $outline(A, B) = (A \oplus B) - A$ 



В

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 $\boldsymbol{A}$ 



outline(A, B)





 $\boldsymbol{A}$ 



outline(A, B)



#### Binary outline - algorithm

See file EVDK\_Operators\morphological\_filters.c

#### References

 Myler, H. R., & Weeks, A. R. (2009). The pocket handbook of image processing algorithms in C. Prentice Hall Press.