M.PHIL. / Ph.D. CET - JULY 2023 -MATHEMATICS - 22-07-2023

Total points 14/40

0 of 0 points

Subject * Mathematics		
Name of the Applic	cant *	
Application No *		
Key * mat2023		
Register No * CET/j23/MAT070		

!

22/07/23, 16:13 1 of 29

Date of Birth *

DD MM YYYY

08 / 05 / 1997

Registered Email

vibaviruthachalam@gmail.com

Multiple Choice Questions

14 of 40 points

✓ * 1/1

If $f\colon [0,\,\infty)$ be a Lebesgue measurable function and E be a Lebesgue measurable subset of $\mathbb R$ such that $\int_E^{\mathbb H} f\ dm=0$, where m is the Lebesgue on $\mathbb R$. Then

- a. m(E) = 0
- b. $\{x \in \mathbb{R} : f(0) = 0\} = E$
- c. $m({x \in E : f(x) \neq 0}) = 0$
- d. $m({x \in E : f(x) = 0}) = 0$
- Option a
- Option b
- Option c
- Option d

× *

Which one of the following sets is compact?

- a. $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$
- b. $\{(x,y): x+y \le 2\}$
- c. $\{(x,y): x^2 + y^2 \ge 1\}$
- d. $\{(x,y): |x| \le 1, |y| \le 1\}$
- Option a
- Option b
- Option c
- Option d

Correct answer

Option d

H

X * 0/1

Which of the following is a solution of the differential equation $\left(\frac{dy}{dx}\right)^2 + x\frac{dy}{dx} - y = 0$

- a. $x^2 + 4y = 0$
- b. y = x + 1
- c. y = x 1
- d. $y^2 4x = 0$
- Option a
- Option b
- Option c
- Option d

Correct answer

Option a

22/07/23, 16:13

× *

If f(z) is an entire function then

- a. $f(\bar{z})$ is an entire function
- b. $\overline{f(\bar{z})}$ is an entire function
- c. f(z) is an entire function
- d. $f(\bar{z}) + \overline{f(z)}$ is an entire function
- Option a
- Option b
- Option c
- Option d

Correct answer

Option b

H

Let
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x = y = 0 \end{cases}$$
. Then

- a. f(x, y) is discontinuous at origin
- b. f(x, y) is continuous at origin
- c. f(x, y) is differentiable at origin
- d. f(x, y) has removable discontinuity at origin
- Option a
- Option b
- Option c
- Option d

Correct answer

Option a

H

X 0/1

The general solution of the second order differential equation $4u_{xx}-u_{yy}=0$ is of the form u(x, y) is

- a. $f_1(x) + f_2(y)$
- b. $f_1(x+2y) + f_2(x-2y)$
- c. $f_1(x+4y) + f_2(x-4y)$
- d. $f_1(4x + y) + f_2(4x y)$
- Option a
 - X
- Option b
- Option c
- Option d

Correct answer

Option b

X * 0/1

Let V be a vector space of all sequences of real number such that $\sum 2^n |a_n|$ converges, define $\|.\|:V \to \mathbb{R}$ by $\|a\| = \sum_{n=1}^\infty 2^n |a_n|$, which of the following is true

- a. V contains only the sequence (0,0,...)
- b. V is finite dimensional
- c. V has a countable linear basis
- d. V is complete normed space
- Option a
- Option b
- Option c X
- Option d

Correct answer

Option d

✓ *

Let $S_n = \left[\frac{1}{2^n}, 1\right]$ be the given interval. Then $\bigcup_{n=1}^\infty S_n$ is

- a. An open set
- b. A closed set
- c. Neither open nor closed
- d. Null set.
- Option a
- Option b
- Option c
- Option d

✓ *

Let A be a 3×3 matrix with real entries. Which of the following assertion is false?

- a. A must have a real eigenvalue.
- b. If the determinant of A is 0, 0 is an eigenvalue of A.
- c. If the determinant of A is negative and 3 is an eigenvalue of A, then A must have three real eigenvalues.
- d. If the determinant of A is positive and 3 is an eigenvalue of A, then A must have three real eigenvalues.
- Option a
- Option b
- Option c
- Option d

/

H

X * 0/1

The value of the complex integration $\int_{C}^{||\cdot||} \frac{1}{z^{2(e^{Z}-e^{-Z})}} dz$ is

- a. $\frac{\pi i}{6}$
- b. $-\frac{\pi i}{6}$ c. $\frac{\pi i}{2}$
- d. $-\frac{\pi i}{2}$
- Option a
- Option b
- Option c
- Option d

X

Correct answer

Option a

22/07/23, 16:13

× *	0/1
Let A be a 3×3 real matrix whose characteristic polynomial $p(T)$ is divisible be which of the following statements is true? a. The eigenspace of A for the eigenvalue 0 is two dimensional b. All the eigenvalues of A sre real c. $A^3=0$ d. A is diagonalizable	y T ² .
Option a	
Option b	
Option c	
Option d	×
Correct answer	
Option b	
× *	0/1
Let $X=\mathbb{R}$ with cofinite topology $\tau_f=\{A\subseteq X\colon A^c \ is \ finite \ or \ A=\emptyset\}.$ Then (X,τ)	
Let $X=\mathbb{R}$ with cofinite topology $\tau_f=\{A\subseteq X\colon A^c\ is\ finite\ or\ A=\emptyset\}.$ Then (X,τ) a a. first countable space	
Let $X=\mathbb{R}$ with cofinite topology $\tau_f=\{A\subseteq X: A^c \ is \ finite \ or \ A=\emptyset\}.$ Then (X,τ) a a. first countable space b. T_1 - space c. regular space	
Let $X=\mathbb{R}$ with cofinite topology $\tau_f=\{A\subseteq X\colon A^c\ is\ finite\ or\ A=\emptyset\}.$ Then (X,τ) a a. first countable space b. T_1 - space	
Let $X=\mathbb{R}$ with cofinite topology $\tau_f=\{A\subseteq X: A^c \ is \ finite \ or \ A=\emptyset\}.$ Then (X,τ) a a. first countable space b. T_1 - space c. regular space	
Let $X=\mathbb{R}$ with cofinite topology $\tau_f=\{A\subseteq X: A^c \ is \ finite \ or \ A=\emptyset\}$. Then (X,τ) a a. first countable space b. T_1 - space c. regular space d. normal space	
Let $X=\mathbb{R}$ with cofinite topology $\tau_f=\{A\subseteq X\colon A^c \text{ is finite or } A=\emptyset\}$. Then (X,τ) a a. first countable space b. T_1 - space c. regular space d. normal space	
Let $X=\mathbb{R}$ with cofinite topology $\tau_f=\{A\subseteq X: A^c \text{ is finite or } A=\emptyset\}$. Then (X,τ) a a. first countable space b. T_1 - space c. regular space d. normal space	f) is
Let $X=\mathbb{R}$ with cofinite topology $\tau_f=\{A\subseteq X\colon A^c \text{ is finite or } A=\emptyset\}$. Then (X,τ) a a. first countable space b. T_1 - space c. regular space d. normal space Option a Option b	f) is
Let $X=\mathbb{R}$ with cofinite topology $\tau_f=\{A\subseteq X: A^c \text{ is finite or } A=\emptyset\}$. Then (X,τ) a a. first countable space b. T_1 - space c. regular space d. normal space Option a Option b Option c Option d	f) is

×	*	0/1
The	e number of conjugacy classes in the permutation group S_6 a. 12 b. 11 c. 10 d. 6	is
Corr	Option a Option b Option c Option d Tect answer Option b	×

1/1 . The number of group homomorphism from \mathbb{Z}_{10} to \mathbb{Z}_{20} is 0 a. 1 b. 5 C. d. 10 Option a Option b Option c Option d

22/07/23, 16:13

Į:

✓ *

Which of the following is a class equation of a finite group?

- a. 1+1+2+3+3+3+13+13=39
- b. 1+1+2+2+2+2+2+2=14
- c. 1+3+3+7+7=21
- d. 1+1+1+2+5+5+5+=15
- Option a
- Option b
- Option c
- Option d

× *

The second order PDE $u_{yy}-yu_{xx}+x^3u=0$ is

- a. Elliptic for all $x, y \in \mathbb{R}$
- b. Parabolic for all $x, y \in \mathbb{R}$
- c. Elliptic for all $x \in \mathbb{R}$, y < 0
- d. Hyperbolic for all $x \in \mathbb{R}$, y < 0
- Option a
- Option b

X

- Option c
- Option d

Correct answer

Option c

H

✓ *

Consider the following quadratic forms over ${\mathbb R}$

I.
$$6x^2 - 13xy + 6y^2$$
,

II.
$$x^2 - xy + 2y^2$$
,

III.
$$x^2 - xy - 2y^2$$
.

Which of the following statements is true?

- a. Quadratic forms (I) and (II) are equivalent
- b. Quadratic forms (I) and (III) are not equivalent
- c. Quadratic forms (II) is positive definite
- d. Quadratic forms (III) is positive definite
- Option a
- Option b
- Option c
- Option d

H

× *

The number of subgroups of a cyclic group of order $100\ \mathrm{is}$

- a. 10
- b. 25
- c. 9
- d. 4
- Option a
- Option b
- Option c
- Option d

Correct answer

Option c

14 of 29 22/07/23, 16:13

X

/

1/1

Let u(x, y) be the solution of the Cauchy problem

$$uu_x + u_y = 0, x \in \mathbb{R}, y > 0, u(x, 0) = x, x \in \mathbb{R}.$$

Which of the following is the value of u(2,3)?

- a. 2
- b. 3
- c. $\frac{1}{2}$
- d. $\frac{1}{3}$
- Option a
- Option b
- Option c
- Option d

X

0/1

Which of the following is an example of a norm that satisfies the parallelogram law?

- a. $||x|| = \sum_{i=1}^{n} |x_i|$ on \mathbb{R}^n
- b. $||x|| = \sup_{i \in \mathbb{N}} |x_i|$ where $x = (x_i)$ satisfies $\sup_{i \in \mathbb{N}} |x_i| < \infty$
- c. $||z|| = \sqrt{x^2 + y^2}$ on \mathbb{C} where z = x + iy
- d. $||x|| = (x_1^3 + x_2^3)^{1/3}$ on \mathbb{R}^2
- Option a
- Option b
- Option c
- Option d

X

Correct answer

Option c

/

1/1

Let H be a Hilbert space and $K \subseteq H$ be a closed linear space. Let $x \in H - K$. Let $x_0 \in K$ be such that $||x - x_0|| = \inf\{||x - y|| : y \in K\}$. Then

- a. Such a x_0 is not unique
- b. $x \perp K$
- c. $x_0 \perp K$
- d. $x x_0 \perp K$
- Option a
- Option b
- Option c
- Option d

/

X

0/1

Let C be the counter-clockwise oriented circle of radius 1/2 centered at $i=\sqrt{-1}$. Then the value of the contour integral $\int_C^{\square} \frac{dz}{z^4-1}$ is

- a. $\frac{-\pi}{2}$
- b. $\frac{\pi}{2}$
- c. $-\pi$
- d. π
- Option a
- Option b

X

- Option c
- Option d

Correct answer

Option a

H

× *

Let \mathbb{R} , \mathbb{R}_{l} , \mathbb{R}_{d} be denote the set of all real numbers with usual topology, lower limit topology and discrete topology respectively. Then which one of the following identity functions is not continuous?

- a. $f: \mathbb{R} \to \mathbb{R}_l$ by f(x) = x for all $x \in \mathbb{R}$
- b. $f: \mathbb{R}_l \to \mathbb{R}$ by f(x) = x for all $x \in \mathbb{R}$
- c. $f: \mathbb{R}_d \to \mathbb{R}$ by f(x) = x for all $x \in \mathbb{R}$
- d. $f: \mathbb{R}_d \to \mathbb{R}_l$ by f(x) = x for all $x \in \mathbb{R}$
- Option a
- Option b
- Option c
- Option d

Correct answer

Option a

H

Consider a function $f(x) = x|x|, x \in \mathbb{R}$. Then the function f(x) is a. Continuous and differentiable only at x = 0 b. Differentiable for all $x \in \mathbb{R}$ except at x = 0 c. Differentiable for all $x \in \mathbb{R}$ d. Continuous but not differentiable

Option a

Option b

Option c

Option c

Option c

18 of 29 22/07/23, 16:13

H

H

× *	0/1
The order of element 3 in (\mathbb{Z}_4, \otimes) is a. 2 b. 3 c. 4 d. 6	
 Option a Option b Option c Option d Correct answer Option a 	×

Let u=u(x,y) be the solution of the following Cauchy problem $u_x+u_y=e^u$ for $(x,y)\in\mathbb{R}\times\left(0,\frac{1}{e}\right)$ and u(x,0)=1 for $\in\mathbb{R}$. Which of the following statements is true?

- a. $u\left(\frac{1}{2e}, \frac{1}{2e}\right) = 1$
- b. $u_x\left(\frac{1}{2e}, \frac{1}{2e}\right) = 0$
- c. $u_y\left(\frac{1}{4e}, \frac{1}{4e}\right) = \log 4$
- d. $u_y\left(0,\frac{1}{4e}\right)=0$
- Option a
- Option b
- Option c
- Option d

H

X * 0/1

For $z \in \mathbb{C}$, define $f(z) = e^z/(e^z - 1)$. Then

- a. f is entire
- b. the only singularities of f are poles
- f has finitely poles on the imaginary axis
- d. Each pole of f is simple
- Option a
- Option b
- Option c
- Option d

Correct answer

Option d

22/07/23, 16:13

Let V be an inner product space and S be a subset of V. Let \bar{S} be the closure of S in V with respect to the topology induced by the inner product. Which of the following statement are true

- a. $S = (S^{\perp})^{\perp}$
- b. $\bar{S} = (S^{\perp})^{\perp}$
- c. $\overline{span(S)} = (S^{\perp})$
- d. $S^{\perp} = S^{\perp \perp \perp}$
- Option a
- Option b
- Option c
- Option d

Correct answer

Option d

✓ *

The integrating factor of the differential equation $xp - y = x \cos x$ is

- a. $e^{1/x}$
- b. *x*
- c. 1/x
- d. e^{-1/x^2}
- Option a
- Option b
- Option c
- Option d

H

✓ *

Let f be a rational function of a complex variable z given by $f(z)=\frac{z^3+2z-4}{z}$. The radius of convergence of the Taylor series of f at z=1 is

- a. 0
- b. 1
- c. 2
- d. ∞
- Option a
- Option b
- Option c
- Option d

× *

Consider the set of sequences $X = \{(x_n): x_n \in \{0,1\}, n \in \mathbb{N}\}$. Then

- a. X is finite and countable
- b. *X* is infinite and countable
- c. X is infinite and uncountable
- d. None of these
- Option a
- Ontion b
- Option b
- Option c
- Option d

Correct answer

Option c

X * 0/1

Consider the initial value problem $\frac{\partial u}{\partial x}+2\frac{\partial u}{\partial y}=0, u(0,y)=4e^{-2y}$. Then the value of u(1,1) is

- a. $4e^{-2}$
- b. $4e^2$
- c. $2e^{-4}$
- d. $4e^4$
- Option a X
- Option b
- Option c
- Option d

Correct answer

Option b

22/07/23, 16:13

× *	0/1
In a group $(G, *)$, a is an element of order 30 , then the order of a^{18} a. 5 b. 6 c. 18 d. 30	³ is
Option a	
Option b	
Option c	×
Option d	
Correct answer	
Option a	
× *	0/1
The number of solution of the equation $x^2=1$ in the ring $\mathbb{Z}/105$ a. 0 b. 2 c. 4 d. 8	$\mathbb Z$ is
Option a	
Option b	
Option c	
Option d	×
Correct answer	
Option c	
Option c	

× *

Consider the system of ordinary differential equation $\frac{dy}{dx} + Ay$, $y(0) = \binom{2}{-1}$, where $A = \binom{2}{-1}$

 $\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$ and $y = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}$. Then which of the following is correct?

- a. $y_1(x) \to 0$ and $y_2(x) \to \infty$ as $x \to \infty$
- b. $y_1(x) \to 0$ and $y_2(x) \to 0$ as $x \to \infty$
- c. $y_1(x) \rightarrow -\infty$, $y_2(x) \rightarrow -\infty$ as $x \rightarrow -\infty$
- d. $y_1(x) \to \infty$ and $y_2(x) \to -\infty$ as $x \to -\infty$
- Option a
- Option b
- Option c
- Option d

Correct answer

Option d

Ŀ

×

0/1

Which of the following is not an integrating factor of the equation xdy - ydx = 0.

- a. $\frac{1}{x}$
- b. $\frac{1}{xy}$
- c. $\frac{1}{x^2}$
- d. $\frac{1}{(x^2+y^2)}$
- Option a
- Option b
- Option c
- Option d

Correct answer

Option a

*

1/1

X

If $A = \begin{pmatrix} \alpha & 2 \\ 2 & \alpha \end{pmatrix}$ and $|A|^3 = 125$, then the value of α is _____.

- a. $\neq 1$
- b. $\neq 2$
- c. $\neq 3$
- d. $\neq 5$
- Option a
- Option b
- Option c
- Option d

:

0/1

Which of the following subsets of \mathbb{R}^2 is a convex set?

- a. $\{(x,y)|y < x^2\}$
- b. $\{(x,y)|x^2 + \frac{y^2}{4} < 1\}$
- c. $\{(x,y)|y=x^2\}$
- d. $\{(x,y)|x^2 + \frac{y^2}{4} = 1\}$
- Option a
- Option b
- Option c
- Option d

X

Correct answer

Option b

/ :

1/1

The number of generator of a cyclic group of order 3^n , where $n \in \mathbb{Z}^+$ is

- a. 3^{n-1}
- b. 3^n
- c. $2 \cdot 3^{n-1}$
- d. $2 \cdot 3^n$
- Option a
- Option b
- Option c

/

Option d

H

Examination Venue Details	0 of 0 points
System No *	
33	
Exam Venue *	
Science block II	
Hall No. *	
127	

This content is neither created nor endorsed by Google. - <u>Terms of Service</u> - <u>Privacy Policy</u>

Google Forms