Прогнозирование количественного выхода химических реакций с помощью графовых нейронных сетей

Гунаев Руслан Гуламович

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Консультант Ф. Никитин

Курс: Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Группа 774, весна 2020

Прогнозирование количественного выхода химической реакции

Цель

Предложить графовые нейронные сети для решения задачи регрессии на множестве молекулярных графов для прогнозирования количественного выхода химической реакции

Определение

Молекулярный граф — связный неориентированный граф, находящийся во взаимно-однозначном соответствии со структурной формулой химического соединения таким образом, что вершинам графа соответствуют атомы молекулы, а рёбрам графа — химические связи между этими атомами

Прогнозирование количественного выхода химической реакции

Метод решения

Графовая нейронная сеть, допускающая использование экспертных знаний о структуре молекулярного графа.

Справка

Под экспертными знаниями понимается информация о различных химических связях, таких как одинарная, двойная, тройная, ароматическая. Также информация о свойствах атомов, например, степень, явная валентность, гибридизация, неявная валентность, ароматичность, неявность и т.д.

Литература

- Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation for drug discovery. arXiv preprint arXiv:1709.03741, 2017.
- Michael Schlichtkrull, Thomas N Kipf, et al.
 Modeling relational data with graph convolutional networks.

In European Semantic Web Conference, pages 593–607. Springer, 2018.

Описание данных

База реакций

- 1 млн. реакций в формате SMARTS
- 2 Разделены продукты и реагенты
- 3 Известен основной продукт
- Для 20% реакций известен количественный выход основного продукта

Справка

SMILES – язык, позволяющий однозачно закодировать молекурлярный граф строкой символов ASCII, SMARTS – поднастройка SMILES.

Реагент – вещество, участвующее в химической реакции.

Продукт – вещество, которое поменяло свое строение в результате реакции.

Основной продукт – молекула, включающая в себя наибольшее количество атомов среди всех продуктов реакции.

Иллюстрация

На рисунке изображены реагенты и основной продукт реакции.

Архитектура модели

- Инициализация векторных представлений вершин молекулярного графа
- Графовая сверточная нейронная сеть
- Полносвязная нейронная сеть
- Получение выхода реакции

Инициализация вершин

Embeddings

$$h_{ik}^{(0)} = W_i^k,$$

где W^k — матрица эмбеддинга для k-го категориального признака, i — номер столбца матрицы, верхний индекс $h_{ik}^{(0)}$ означает, что вектор на нулевом слое.

Представление атома

$$h_i^{(0)} = \text{concat}[h_{i1}^{(0)}, h_{i2}^{(0)}, \dots, h_{iK}^{(0)}],$$

где K – количество категориальных признаков

Графовая сверточная нейронная сеть

RGCNN

$$\mathbf{h}_{i}^{(l+1)} = \text{ReLU}\left(\mathbf{W}^{(l)}\mathbf{h}_{i}^{(l)} + \sum_{r \in R} \sum_{j \in N_{i}} \frac{1}{c_{i,r}} \mathbf{W}_{r}^{(l)}\mathbf{h}_{j}^{(l)}\right),$$

где R — множество типов ребер графа, типов химических связей. \mathbf{W}, \mathbf{W}_r — параметры модели. $\mathbf{h}_i^{(l)}$ —векторное представление a_i атома на l слое. $c_{i,r}$ — нормировочный коэффициент.

Модель расширенного графа

Обновление векторных представлений вершин

$$\begin{split} \mathbf{h}_i^{(l+1)} &= \text{ReLU}\left(\mathbf{W}^{(l)}\mathbf{h}_i^{(l)} + \mathbf{W}_{ml}^{(l)}\mathbf{h}_{m_k}^{(l)} + \sum_{r \in R} \sum_{j \in N_i} \frac{1}{c_{i,r}} \mathbf{W}_r^{(l)}\mathbf{h}_j^{(l)}\right), \\ \mathbf{h}_{m_k}^{(l+1)} &= \text{ReLU}\left(\mathbf{W}^{(l)}\mathbf{h}_{m_k}^{(l)} + \mathbf{W}_{rl}^{(l)}\mathbf{h}_r^{(l)} + \sum_{j \in m_k} \frac{1}{|m_k|} \mathbf{W}_{ml}^{(l)}\mathbf{h}_j^{(l)}\right), \\ \mathbf{h}_r^{(l+1)} &= \text{ReLU}\left(\mathbf{W}^{(l)}\mathbf{h}_r^{(l)} + \sum_{m_j \in M} \frac{1}{|M|} \mathbf{W}_{rl}^{(l)}\mathbf{h}_{m_j}^{(l)}\right), \end{split}$$

где \mathbf{W}_{rl} – матрица преобразований типа реакция-молекула,

 \mathbf{W}_{ml} — молекула-атом.

 $\mathbf{h}_i^{(l)}$ – векторное представление атома.

 $\mathbf{h}_r^{(l)}$ – векторное представление реакции.

 $\mathbf{h}_{m_k}^{(l)}$ – векторное представление молекулы.

Расширенный молекулярный граф

Расширенный граф с введенными вершинами — представлениями молекул и реакции.

Полносвязная сеть

Агрегация реакции

$$\mathbf{h}_g = \frac{1}{n} \sum_{i=1}^n \mathbf{h}_{i=1}^{(m)},$$

где \mathbf{h}_g — векторное представление расширенного графа, m — число слоев RGCNN.

FCNN

$$egin{aligned} \mathbf{h}_g^{(l+1)} &= \mathrm{ReLU}(\mathrm{linear}(\mathbf{h}_g^{(l)})), \\ \hat{y} &= \mathrm{linear}(\mathbf{h}_g^{(t)}), \ \hat{y} - \mathrm{выход} \ \mathrm{cetu}. \end{aligned}$$

Функция ошибки

$$\mathcal{L} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \|y - \hat{y}\|_2^2}, \ y$$
 – реальный выход реакции.

Вычислительный эксперимент

Цели эксперимента

- Проверить, повышается ли качество модели при последовательном добавлении дополнительной информации о структуре графа.
- Может ли предлагаемая модель давать более высокое качество, чем константная модель.

Эксперименты

- CONST константная модель
- ВАSE базовая модель(RGCNN + FCNN)
- 8 EG модель расширенного графа
- EGB модель с различными типами химической связи
- **6** EGBF модель с дополнительной информацией о свойтсвах атомов

Результаты экспериментов

Ошибка во время обучения

 \mathbb{R}^2 для тестовой выборки

Вывод

Модель	Mined Yield	
	R^2	MAE
CONST	0	0.211 ± 0.004
BASE	0.104 ± 0.002	0.198 ± 0.003
EG	0.125 ± 0.003	0.194 ± 0.002
EGB	0.131 ± 0.006	0.186 ± 0.002
EGBF	0.152 ± 0.005	0.174 ± 0.003

 R^2 — коэффициент детерминации. MAE — среднее абсолютное отклонение между реальными выходами реакций и предсказанными на тестовой выборке.

Заключение

Полученные результаты

- При добавлении дополнительной информации о структуре графа качество модели увеличилось.
- Предложенная модель показала более высокое качество, чем константная модель.

Дальнейшие исследования

- Классификация типов реакций для улучшения качества регрессии.
- Определение влияния свойств атомов на качество предложенной модели.