$ptsd-project \ / \ (github/Eliabicocca/ptsd-project/tree/master) \ / \ tesi_filippo.ipynb \ (/github/Eliabicocca/ptsd-project/tree/master/tesi_filippo.ipynb) \ / \ tesi_filippo.ipynb \ / \ (github/Eliabicocca/ptsd-project/tree/master/tesi_filippo.ipynb) \ / \ tesi_filippo.ipynb \ / \ tesi_filippo.ipynb \ / \ (github/Eliabicocca/ptsd-project/tree/master/tesi_filippo.ipynb) \ / \ tesi_filippo.ipynb \ / \ (github/Eliabicocca/ptsd-project/tree/master/tesi_filippo.ipynb) \ / \ tesi_filippo.ipynb \ / \ (github/Eliabicocca/ptsd-project/tree/master/tesi_filippo.ipynb) \ / \ tesi_filippo.ipynb \ / \ tesi_filipp$

```
In [104]: # apro il dataset 'definitivo.csv'
import pandas as pd
data=pd.read_csv('./definitivo.csv', sep=';')
data.head(10)
```

Out[104]:

	cod	nome	cognome	age	studM	profM	studP	profP	steril	sterilTer	 F3Beck	F3intrus	F3arous	F3avoid	F3PTSD	F3PTSDpart	F3intrus.1
0	10	laura	bellingeri	38	4.0	2.0	3.0	3.0	0.0	0.0	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	12	francesca	era	41	3.0	2.0	NaN	3.0	1.0	0.0	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	39	elena	sala	26	2.0	2.0	2.0	1.0	0.0	0.0	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	76	silvia	dalla valle	34	4.0	3.0	4.0	3.0	0.0	0.0	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	84	camilla	ricciardi	34	4.0	3.0	4.0	NaN	0.0	0.0	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
5	86	Stefania	Honegger	39	3.0	3.0	4.0	NaN	0.0	0.0	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
6	106	francesca	busio	30	4.0	3.0	NaN	3.0	0.0	0.0	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
7	117	elena	ventura	34	3.0	3.0	3.0	2.0	0.0	0.0	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
8	126	assunta	giammarino	28	3.0	2.0	3.0	2.0	0.0	0.0	 NaN	NaN	NaN	NaN	NaN	NaN	NaN
9	127	anna maria	atzori	33	4.0	3.0	NaN	3.0	0.0	1.0	 NaN	NaN	NaN	NaN	NaN	NaN	NaN

10 rows × 244 columns

Proporzione depresse in F2 (con valore F2Beck>10)

```
In [51]: d=data.groupby('F2Beck').size();
    d2=data('F2Beck'); # 351 osservazioni
    len(d2.dropna()) # 346 osservazioni se levo gli NaN
    sum(d[11:]) # 26 depresse in F2Beck
    sum(d[11:])/len(d2.dropna()) # 0.075 è la proporzione di depresse in F2 (F2Beck > 10)
```

Out[51]: 0.07514450867052024

Proporzione depresse in F1 (con valore F1Beck>10) e proporzione depresse gravi (con valore F1Beck>30)

```
In [63]: sum(d[31:]) # 13 depresse in F2Beck
sum(d[31:])/len(d2.dropna()) # nessuna depressione grave (con F1Beck > 30)
```

Out[63]: 0.0

Statistiche descrittive per F1Beck e F2Beck:

```
In [176]: data['F2STAIS'].mean()  # 45.204 è la media per stais
data['F2STAIS'].var()  # 25.812 è la varianza per stais
data['F2STAIT'].mean()  # 45.034 è la media per stait
data['F2STAIT'].var()  # 20.338 è la varianza per stait
```

Out[176]: 20.33795372785705

Quante presentano ansia di stato (F2STAIS>49) e quante ansia di tratto (F2STAIT>46)

```
In [78]: d=data.groupby('F2STAIS').size();
           sum(d[50:]) # 53 presentano valori di ansia di stato superiori a 49
           d2=data['F2STAIS'];
           len(d2.dropna())
                              # se levo i missing, rimangono 343 osservazioni
           sum(d[50:])/len(d2.dropna()) # 0.155 è la proporzione di quante presentano ansia di stato
 Out[78]: 0.15451895043731778
 In [84]: d=data.groupby('F2STAIT').size();
           sum(d[47:]) # 122 presentano valori di ansia di tratto superiori a 46
           d2=data['F2STAIT'];
len(d2.dropna()) # se levo i missing, rimangono 343 osservazioni
           sum(d[47:])/len(d2.dropna()) # 0.356 è la proporzione di quante presentano ansia di stato
 Out[84]: 0.3556851311953353
           Statistiche descrittive per F2STAIS e F2STAIT:
 In [93]: data['F2STAIS'].mean() # 45.204 è la media per stais
           data['F2STAIS'].var()
data['F2STAIT'].mean()
                                      # 25.812 è la varianza per stais
                                      # 45.034 è la media per stait
           data['F2STAIT'].var()
                                      # 20.338 è la varianza per stait
 Out[93]: 20.33795372785705
           Quante presentano ptsd completo (f2ptsdcompl) e quante presentano ptsd parziale (f2ptsdpart)
In [116]: data.groupby('F2PTSDpart').size() # 254 pazienti su un totale di 346
           len(data[data.F2PTSDpart==1])/346 # la proporzione è di 0.734 per ptsd parziale
Out[116]: 0.7341040462427746
In [114]: data.groupby('F2PTSDcomp').size() # 23 pazienti su un totale di 344
           len(data[data.F2PTSDcomp==1])/344 # la proporzione è di 0.067 per ptsd completo
Out[114]: 0.06686046511627906
           Calcolo frequenze assolute e percentuali di quante hanno sintomi di tipo avoid, intrusion e arousal (1 o più sintomi per avoid, 3 o più sintomi per intrusion e 2 o
           sintomi per arousal). Con la vecchia scala:
In [164]: data2=data[['F2avoid','F2intrusion','F2arousal']]
           data2_a=data2['F2avoid'].dropna(); len(data2_a) # 348 osservazioni se escludo i missing
           len(data2[data2.F2avoid!=0]) # 172 osservazioni presentano diverso pari a zero
           prop_a=172/348; prop_a # 0.494 è la frequenza relativa (49,425%) di f2 arousal
Out[164]: 0.4942528735632184
In [165]: data2_b=data2['F2intrusion'].dropna(); len(data2_b) # 348 osservazioni se escludo i missing
           len(data2[data2.F2intrusion>2]) # 108 osservazioni presentano diverso pari a zero prop_b=108/348; prop_b # 0.310 è la frequenza relativa (31,034%) di f2 intrusion
Out[165]: 0.3103448275862069
In [289]: data2_c=data2['F2arousal'].dropna(); len(data2_c) # 348 osservazioni se escludo i missing
           len(data2[data2.F2arousal>1]) # 64 osservazioni presentano diverso pari a zero
           prop_c=64/348; prop_c # 0.184 è la frequenza relativa (46,839%) di f2 intrusion
Out[289]: 0.1839080459770115
           Con la nuova scala (avoid la proporzione rimane la stessa):
In [290]: len(data2[data2.F2intrusion>0]) # 251 osservazioni presentano diverso pari a zero
           prop_b2=251/348; prop_b2 # 0.721 è la frequenza relativa (31,034%) di f2 intrusion
Out[290]: 0.7212643678160919
In [293]: len(data2[data2.F2arousal>0]) # 148 osservazioni presentano diverso pari a zero
           prop_c2=148/348; prop_c2 # 0.425 è la frequenza relativa (46,839%) di f2 arousal
```

Correlazione tra F2Beck e avoid, intrusion e arousal

Out[293]: 0.42528735632183906

```
In [175]: data2['F2Beck']=data['F2Beck']; data2
           d=data2.corr(); d['F2Beck']
                                            # correlazione lineare positiva lieve
           /anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:
           A value is trying to be set on a copy of a slice from a \operatorname{DataFrame}.
           Try using .loc[row_indexer,col_indexer] = value instead
           See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-vers
           us-copy
              """Entry point for launching an IPython kernel.
Out[175]: F2avoid
                            0.265713
           F2intrusion
                            0.242470
           F2arousal
                            0.327280
           F2Beck
                           1.000000
           Name: F2Beck, dtype: float64
In [186]: print(data2.corr(method='spearman')['F2Beck'])
           print(data2.corr(method='kendall')['F2Beck']) # correlazione più scarsa con gli altri metodi
           F2avoid
                            0.240704
           F2intrusion
                            0.235113
           F2arousal
                            0.260044
           F2Beck
                            1.000000
           Name: F2Beck, dtype: float64
                            0.190864
           F2avoid
           F2intrusion
                            0.178834
           F2arousal
                            0.212895
           F2Beck
                            1.000000
           Name: F2Beck, dtype: float64
           Correlazione tra f2beck con f2ptsdpart e con f2ptsdcomp
In [174]: data3=data[['F2Beck','F2PTSDpart','F2PTSDcomp']]
           data3.corr()
                           # correlazione lineare positiva tenue
Out[174]:
                        F2Beck F2PTSDpart F2PTSDcomp
                 F2Beck 1.000000
                                  0.168323
                                              0.293375
             F2PTSDpart 0.168323
                                  1.000000
                                              0.133956
            F2PTSDcomp 0.293375
                                  0.133956
                                              1.000000
           I valori scarsi di correlazione possono essere dovuti alla costruzione delle variabili (che sono di tipo categoriali ordinate); proviamo con il metodo di spearman (d
           default viene utilizzato pearson):
In [181]: data3.corr(method='spearman')
                                                # con spearman è più basso
Out[181]:
                         F2Beck F2PTSDpart F2PTSDcomp
                                  0.161822
                                              0.234041
                 F2Beck 1.000000
             F2PTSDpart 0.161822
                                  1.000000
                                              0.133956
            F2PTSDcomp 0.234041
                                  0.133956
                                              1.000000
In [182]: data3.corr(method='kendall')
                                                # kendall peggio ancora
Out[182]:
                         F2Beck F2PTSDpart F2PTSDcomp
                 F2Beck 1.000000
                                  0.138396
                                              0.200170
             F2PTSDpart 0.138396
                                  1.000000
                                              0.133956
            F2PTSDcomp 0.200170
                                  0.133956
                                              1 000000
           Correlazione tra f2beck con f2stais e con f2stait
In [189]: data4=data[['F2Beck','F2STAIS','F2STAIT']]
           data4.corr()['F2Beck']
Out[189]: F2Beck
                       1.000000
           F2STAIS
                       0.002306
                       0.094572
           F2STAIT
           Name: F2Beck, dtype: float64
```

```
In [190]: data4.corr(method='spearman')['F2Beck']
Out[190]: F2Beck
                      1.000000
          F2STATS
                    -0.060677
          F2STAIT
                    0.094288
          Name: F2Beck, dtype: float64
In [191]: data4.corr(method='kendall')['F2Beck']
           # lieve correlazione negativa per stais, lieve correlazione ma positiva per stait
Out[191]: F2Beck
                     1.000000
          F2STAIS
                    -0.044426
          F2STAIT
                    0.068068
          Name: F2Beck, dtype: float64
          Correlazione tar ptsd (part) con: studiM, studiF, profM, profP, steril, sterilT
In [194]: data5=data[['F2PTSDpart','studM','studP','profM','profP','steril','sterilTer']]
          data5.corr()['F2PTSDpart']
Out[194]: F2PTSDpart
                         1.000000
          studM
                         0.061986
          studP
                        -0.080017
          profM
                         0.050552
          profP
                        -0.099515
           steril
                         0.112852
           sterilTer
                        -0.003597
          Name: F2PTSDpart, dtype: float64
In [195]: data5.corr(method='spearman')['F2PTSDpart']
Out[195]: F2PTSDpart
                         1.000000
           studM
                         0.066965
          studP
                        -0.068089
          profM
                         0.047280
          profP
                        -0.088787
                         0.112852
          steril
          sterilTer
                        -0.003597
          Name: F2PTSDpart, dtype: float64
In [196]: data5.corr(method='kendall')['F2PTSDpart'] # segni uguali, valori di correlazione lievi
Out[196]: F2PTSDpart
                         1.000000
          studM
                         0.065057
          studP
                        -0.065115
          profM
                         0.044672
          profP
                        -0.083954
          steril
                        0.112852
          sterilTer
                        -0.003597
          Name: F2PTSDpart, dtype: float64
          Correlazione tar ptsd (comp) con: studiM, studiF, profM, profP, steril, sterilT
In [197]: data6=data[['F2PTSDcomp','studM','studP','profM','profP','steril','sterilTer']]
          data6.corr()['F2PTSDcomp']
Out[197]: F2PTSDcomp
                        1.000000
          studM
                        -0.008954
          studP
                        -0.008549
          profM
                        0.025156
          profP
                        -0.079560
                        -0.041345
          steril
          sterilTer
                         0.016215
          Name: F2PTSDcomp, dtype: float64
In [199]: data6.corr(method='spearman')['F2PTSDcomp']
Out[199]: F2PTSDcomp
                         1.000000
          studM
                        -0.022721
          studP
                        -0.009654
                        0.018234
          profM
          profP
                        -0.079093
                        -0.041345
          steril
          sterilTer
                        0.016215
          Name: F2PTSDcomp, dtype: float64
```

```
In [200]: data6.corr(method='kendall')['F2PTSDcomp']
Out[200]: F2PTSDcomp
                         1.000000
           studM
                         -0.022071
           studP
                         -0.009231
           profM
                         0.017227
           profP
                         -0.074843
           steril
                         -0.041345
           sterilTer
                         0.016215
           Name: F2PTSDcomp, dtype: float64
          Distribuzioni per le variabili 24h e per tipo di parto, analgesia
In [203]: data7=data[['>24h','parto','analgesia']]
           data7.describe()
Out[203]:
                     >24h
                               parto
                                     analgesia
           count 350.000000 350.000000 350.000000
                   1.254286
                             1.394286
                                      1.411429
           mean
             std
                   0.536273
                            0.737044
                                      0.492797
                   1.000000
                             1.000000
             min
                                      1.000000
            25%
                   1.000000
                             1.000000
                                      1.000000
            50%
                   1.000000
                             1.000000
                                      1.000000
                             1.000000
                                      2.000000
            75%
                   1.000000
                  3.000000
                            3.000000
                                      2.000000
             max
In [208]: data7.groupby('>24h').size()
                                           # valori assoluti
           data7.groupby('>24h').size()/len(data7['>24h']) # frequenze relative
           (data7.groupby('>24h').size()/len(data7['>24h']))*100 # categorie percentuali sul totale
Out[208]: >24h
           1.0
                  79,202279
           2.0
                  15.669516
                   4.843305
           3.0
          dtype: float64
In [209]: data7.groupby('parto').size()
                                            # valori assoluti
           data7.groupby('parto').size()/len(data7['parto']) # frequenze relative
           (data7.groupby('parto').size()/len(data7['parto']))*100 # categorie percentuali sul totale
Out[209]: parto
           1.0
                  75.498575
           2.0
                   9.116809
                  15.099715
           3.0
          dtype: float64
In [211]: data7.groupby('analgesia').size() # valori assoluti
           data7.groupby('analgesia').size()/len(data7['analgesia']) # frequenze relative
           (data7.groupby('analgesia').size()/len(data7['analgesia']))*100 # percentuali sul totale
Out[211]: analgesia
                  58.689459
           1.0
           2.0
                  41.025641
          dtype: float64
          Correlazione tra ptsd e nullipare
In [261]: d3=data[['F2PTSDcomp','para']]
           data8=d3[d3.para==0]; len(data8) # 219 nullipare
           d=data8.dropna(axis=0); d # 1 osservazione ha NaN per Ptsd
           data8 = data8.drop(data8.index[5]); data8
           data8.corr() # proviamo in un altro modo
Out[261]:
                       F2PTSDcomp para
                               1.0 NaN
           F2PTSDcomp
                              NaN NaN
                  para
In [263]: data8=data8[data8.F2PTSDcomp==0]: len(data8)
           # 200 donne su 218 nullipare presentano f2ptsdcomp=0
Out[263]: 200
```

Calcolo frequenze assolute, relative e percentuali di: para, pre-tc, aborti, grav

```
In [269]: data9=data[['para','grav','pre-tc','aborti']];
                                              # frequenze assolute
            data9.groupby('para').size()
           data9.groupby('para').size()/len(data9['para']) # frequenze relative
           (data9.groupby('para').size()/len(data9['para']))*100 # categorie percentuali sul totale
Out[269]: para
           0.0
                   62,393162
           1.0
                   37.321937
           dtype: float64
In [270]: data9.groupby('grav').size() # frequenze assolute
    data9.groupby('grav').size()/len(data9['grav']) # frequenze relative
           (data9.groupby('grav').size()/len(data9['grav']))*100 # categorie percentuali sul totale
Out[270]: grav
           1.0
                   44.44444
           2.0
                   55,270655
           dtype: float64
In [271]: data9.groupby('pre-tc').size()
                                                  # frequenze assolute
           data9.groupby('pre-tc').size()/len(data9['pre-tc']) # frequenze relative
           (data9.groupby('pre-tc').size()/len(data9['pre-tc']))*100 # categorie percentuali sul totale
Out[271]: pre-tc
           0.0
                   91.168091
           1.0
                   8.547009
           dtype: float64
In [272]: data9.groupby('aborti').size()
                                                 # frequenze assolute
           data9.groupby('aborti').size()/len(data9['aborti']) # frequenze relative (data9.groupby('aborti').size()/len(data9['aborti']))*100 # categorie percentuali sul totale
Out[272]: aborti
           0.0
                   80.626781
                   19.088319
           1.0
           dtype: float64
           Calcolo quante hanno ptsd molto gravi (variabile 'f2ptsd>33')
In [281]: d4=data.groupby('F2Tptsd').size()
           sum(d4[34:])
                             # 47 pazienti presentano ptsd grave
           \verb|sum|(d4[34:])/sum|(d4[0:])| \# 0.135 \`{e} la frequenza relativa di chi presenta ptsd grave
           sum(d4[34:])/sum(d4[0:])*100 # 13.584 è la percentuale di colore che presentano ptsd grave
Out[281]: 13.583815028901732
           Correlazione PPO con f2stais e f2stait
In [295]: | data9=data[['PPO', 'F2STAIT', 'F2STAIS']]
           data9.corr()
Out[295]:
                       PPO F2STAIT F2STAIS
               PPO 1.000000 0.084594 0.011985
            F2STAIT 0.084594 1.000000 0.430778
            F2STAIS 0.011985 0.430778 1.000000
In [299]: data9.corr(method='spearman')
Out[299]:
                       PPO F2STAIT F2STAIS
               PPO 1.000000 0.087810 0.043371
            F2STAIT 0.087810 1.000000 0.410559
            F2STAIS 0.043371 0.410559 1.000000
```

https://nbviewer.jupyter.org/github/Eliabicocca/ptsd-project/blob/master/tesi_filippo.ipynb

Correlazione ptsd con: episio, perditaem, LA, second

```
In [352]: data10=data[['F2Tptsd','perditaem','LA','second','episio']]
    data10.corr()
```

Out[352]:

	F2Tptsd	perditaem	LA	second	episio
F2Tptsd	1.000000	0.060161	-0.024849	0.043557	0.147706
perditaem	0.060161	1.000000	0.035261	0.311368	0.190789
LA	-0.024849	0.035261	1.000000	0.068198	0.091271
second	0.043557	0.311368	0.068198	1.000000	-0.012635
episio	0.147706	0.190789	0.091271	-0.012635	1.000000

Correlazione f2beck e ptsd (part) e alto/basso rischio (calcolato come: - alto rischio: più di due valori diversi da zero tra vomito, altritmi, problgrav, ricgrav, abort PPO, minaccab e basso rischio altrimenti)

0 48 1 222 dtype: int64

In [504]: data11.head(20)

data11bis=data11[['F2PTSDpart','F2Beck','F2STAIS','F2STAIT','rischio']]; data11bis.head()

Out[504]:

	F2PTSDpart	F2Beck	F2STAIS	F2STAIT	rischio
0	1.0	2.0	49.0	47.0	1
1	1.0	17.0	49.0	43.0	1
2	0.0	5.0	45.0	46.0	0
3	1.0	9.0	44.0	48.0	1
4	1.0	4.0	38.0	44.0	1

In [342]: data1lbis.corr()
 data1lbis.corr(method='spearman')
 data1lbis.corr(method='kendall')

Out[342]:

	F2PTSDpart	F2Beck	rischio
F2PTSDpart	1.000000	0.139735	0.029162
F2Beck	0.139735	1.000000	0.042821
rischio	0.029162	0.042821	1.000000

F3ptsd come correla con i vari sintomi

```
In [338]: data12=data[['F3Tptsd','vomito','altritmi','problgrav','ricgrav','aborti','PPO','minaccab']]
data12=data12.dropna(); len(data12)
```

Out[338]: 81

```
In [339]: data12['somma sintomi']=data12['vomito']+data12['altritmi']+data12['problgrav']+data12['ricgrav']+data12['aborti']+data12['altritmi']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito']+data12['nomito'
                            ['PPO']+data12['minaccab']
                            data12.head(10)
                            12=[]
                            for i in data12['somma sintomi']:
                                      if i>2:
                                                12.append(1)
                                      else:
                                                 12.append(0)
                            data12['rischio']=12
                           data12.corr()['F3Tptsd']
Out[339]: F3Tptsd
                                                                       1.000000
                                                                     -0.029313
                           vomito
                           altritmi
                                                                       0.262897
                           problgrav
                                                                    -0.128114
                           ricgrav
                                                                      0.216813
                                                                     -0.052633
                           aborti
                           PPO
                                                                        0.218504
                           minaccab
                                                                       0.146592
                           somma sintomi
                                                                     0.240040
                           rischio
                                                                       0.240996
                           Name: F3Tptsd, dtype: float64
                           Verifica se alzando la soglia a 3 la correlazione tra somma di sintomi e f2ptsd e f3ptsd si alza:
                           Quanti hanno ptsd molto gravi (variabile 'f3ptsd>33').
In [351]: d5=data.groupby('F3Tptsd').size(); # totale pazienti con f3ptsd rilevato è 85
                            sum(d5[34:])
                                                                    # 21 pazienti presentano ptsd grave
                            sum(d5[34:])/sum(d5[0:]) # 0.247 è la frequenza relativa di chi presenta ptsd grave
                            sum(d5[34:])/sum(d5[0:])*100 # 24,706 è la percentuale di colore che presentano ptsd grave
Out[351]: 24.705882352941178
                           Età media delle donne
In [354]: data['age'].mean()
Out[354]: 33.267806267806264
                           Correlazione f2stait e f2 stait
In [357]: data.corr()['F2STAIS']['F2STAIT']
Out[357]: 0.4307783434533827
                           Correlazione f1beck e f2beck
In [358]: data.corr()['F1Beck']['F2Beck']
```

Out[358]: 0.4929296733362172

Conteggio depresse e ansiose

```
In [385]: 1=[]
           for i in data['F2STAIS']:
               if i>49:
                   l.append(1)
               else:
                   1.append(0)
           data['stais']=l
           12=[]
           for i in data['F2STAIT']:
               if i>46:
                   12.append(1)
               else:
                   12.append(0)
           data['stait']=12
           data12=data[['stais','stait','F2Beck']]; data12.head()
           data12a=data12[data12.stais==1];
           data12a
           d12a=data12a.groupby('F2Beck').size(); d12a
           sum(d12a[11:])
                                # sono 4 depresse e ansiose stais
Out[385]: F2Beck
           0.0
                   11
           1.0
                    5
           2.0
                    7
           3.0
                    9
           4.0
                    8
           5.0
                    1
           6.0
                    3
           8.0
                    1
           9.0
                    3
           12.0
                    2
           14.0
                    1
           15.0
          dtype: int64
In [388]: data12b=data12[data12.stait==1];
           data12b
           d12b=data12b.groupby('F2Beck').size(); d12b
           sum(d12b[11:])
                                # sono 11 depresse e ansiose stait
Out[388]: 11
          Correlazione f2beck, f2stais e f2stait con PPO=2
In [397]: data13=data[['F2Beck','F2STAIS','F2STAIT','PPO']]
           data13=data13.dropna()
           data13=data13[data13.PPO==2]; data13
           data13.corr() # NaN le corr con PPO, dato che PPO=2 è degenere (assume sempre lo stesso valore)
Out[397]:
                    F2Beck F2STAIS F2STAIT PPO
            F2Beck 1.000000 0.003153 0.182596
           F2STAIS 0.003153 1.000000 0.306651 NaN
           F2STAIT 0.182596 0.306651 1.000000 NaN
              PPO
                      NaN
                              NaN
                                      NaN NaN
          Correlazione f2beck, f2stais e f2stait con PPO=2
In [398]: data14=data[['F3Beck','F3STAIS','F3STAIT','PPO']]
           data14=data14.dropna()
           data14=data14[data14.PPO==2]; data13
           datal4.corr() # NaN le corr con PPO, dato che PPO=2 è degenere (assume sempre lo stesso valore)
Out[398]:
                    F3Beck
                            F3STAIS F3STAIT PPO
            F3Beck
                   1.000000 -0.217810 0.286316 NaN
           F3STAIS -0.217810 1.000000 0.286488 NaN
           F3STAIT 0.286316 0.286488 1.000000 NaN
```

NaN

NaN NaN

PPO

NaN

Correlazione Temozsèpos, Temozsèneg, Temozsèmist, Tnoemozsè con: f2ptsdpart f2ptsdcomp e f3ptsdpart e f3ptsdcomp

Out[402]:

	Temozsèpos	Temozsèneg	Temozsèmist	Tnoemozsè	F2PTSDpart	F2PTSDcomp	F3PTSDpart	F3Tptsd
Temozsèpos	1.000000	0.127818	0.004269	-0.582931	0.009774	-0.087482	0.021855	0.126152
Temozsèneg	0.127818	1.000000	0.057125	-0.554591	0.051875	0.130767	0.226525	0.310968
Temozsèmist	0.004269	0.057125	1.000000	-0.109421	0.041283	0.048830	-0.123432	-0.178340
Tnoemozsè	-0.582931	-0.554591	-0.109421	1.000000	-0.011350	-0.029836	-0.063036	-0.109892
F2PTSDpart	0.009774	0.051875	0.041283	-0.011350	1.000000	0.133956	-0.013675	0.046622
F2PTSDcomp	-0.087482	0.130767	0.048830	-0.029836	0.133956	1.000000	0.079017	0.135390
F3PTSDpart	0.021855	0.226525	-0.123432	-0.063036	-0.013675	0.079017	1.000000	0.610378
F3Tptsd	0.126152	0.310968	-0.178340	-0.109892	0.046622	0.135390	0.610378	1.000000

Correlazione Temozsèpos, Temozsèneg, Temozsèmist, Tnoemozsè e emozpos, emozneg, emozmiste, noemoz (+ bimbo e bimbomio) con: f2ptsdpart, f2ptsdcorf3ptsdpart, f3ptsdcomp, f2avoid, f2intrusion, f3arousal, f3avoid, f3intrusion, f2beck, f2stait, f3beck, f3stait.

Out[409]:

	Temozsèpos	Temozsèneg	Temozsèmist	Tnoemozsè	emozpos	emozneg	emozmiste	bimbo	bimbomio	F2PTSDpart	. F3Tptsd	F2avoid
Temozsèpos	1.000	0.128	0.004	-0.583	0.528	0.074	-0.078	-0.014	0.039	0.010	. 0.126	-0.099
Temozsèneg	0.128	1.000	0.057	-0.555	-0.087	0.659	-0.032	0.071	-0.008	0.052	. 0.311	0.082
Temozsèmist	0.004	0.057	1.000	-0.109	0.086	0.035	0.207	0.085	-0.021	0.041	0.178	0.066
Tnoemozsè	-0.583	-0.555	-0.109	1.000	-0.362	-0.355	0.066	0.005	0.004	-0.011	0.110	0.048
emozpos	0.528	-0.087	0.086	-0.362	1.000	-0.244	-0.049	0.030	0.072	-0.049	. 0.107	-0.042
emozneg	0.074	0.659	0.035	-0.355	-0.244	1.000	-0.048	0.087	0.034	0.107	. 0.016	0.072
emozmiste	-0.078	-0.032	0.207	0.066	-0.049	-0.048	1.000	0.345	-0.014	-0.090	. NaN	-0.067
bimbo	-0.014	0.071	0.085	0.005	0.030	0.087	0.345	1.000	-0.039	-0.100	. 0.222	-0.065
bimbomio	0.039	-0.008	-0.021	0.004	0.072	0.034	-0.014	-0.039	1.000	0.097	0.177	0.052
F2PTSDpart	0.010	0.052	0.041	-0.011	-0.049	0.107	-0.090	-0.100	0.097	1.000	. 0.047	0.189
F2PTSDcomp	-0.087	0.131	0.049	-0.030	-0.059	0.181	-0.025	-0.059	-0.042	0.134	. 0.135	0.540
F2Beck	-0.042	0.177	0.009	-0.059	0.016	0.079	-0.033	0.009	-0.134	0.168	. 0.281	0.266
F2STAIS	0.054	0.063	0.053	-0.053	0.059	0.065	-0.015	-0.025	0.009	0.090	. 0.019	0.159
F2STAIT	0.007	0.006	0.004	0.034	-0.012	-0.008	-0.003	-0.077	-0.047	0.177	. 0.122	0.188
F3PTSDpart	0.022	0.227	-0.123	-0.063	0.062	-0.109	NaN	0.177	-0.102	-0.014	. 0.610	0.177
F3Tptsd	0.126	0.311	-0.178	-0.110	0.107	0.016	NaN	0.222	-0.177	0.047	. 1.000	0.298
F2avoid	-0.099	0.082	0.066	0.048	-0.042	0.072	-0.067	-0.065	0.052	0.189	. 0.298	1.000
F2arousal	-0.003	0.172	0.039	-0.057	0.000	0.153	-0.064	-0.090	-0.014	0.315	. 0.128	0.393
F2intrusion	0.038	0.106	0.104	-0.060	-0.012	0.110	-0.084	-0.122	0.156	0.593	0.015	0.354
F3avoid	-0.084	-0.080	-0.022	0.149	NaN	NaN	NaN	-0.023	-0.019	0.070	. 0.372	0.266
F3arous	-0.056	0.117	-0.112	0.002	0.061	-0.149	NaN	0.205	-0.092	0.054	. 0.635	0.133
F3intrus	0.079	0.212	-0.057	-0.020	0.105	0.033	NaN	0.191	-0.048	-0.024	. 0.442	0.423
F3Beck	0.061	0.099	-0.149	-0.077	0.163	0.011	NaN	0.192	-0.118	0.139	. 0.528	0.234
F3STAIS	-0.143	0.025	-0.067	-0.005	-0.097	0.019	NaN	-0.106	-0.067	-0.074	0.064	0.060
F3STAIT	0.073	0.251	-0.146	-0.101	0.028	0.224	NaN	-0.128	-0.147	0.033	. 0.174	0.217

25 rows × 25 columns

Per ogni modalità di partoid correlazione con: f2ptsdpart, f2ptsdcomp, f3ptsdpart, f3ptsdcomp, f2avoid, f2intrusion, f3arousal, f3avoid, f3intrusion, f3arousal, f2beck, f2stais, f2stait, f3beck, f3stais, f3stait.

16/09/19, 10:08 Jupyter Notebook Viewer

In [420]: # Partoid codificato con valori da 1 a 6

data16.dropna()

Out[420]:

	F1Partold	F2PTSDpart	F2PTSDcomp	F3PTSDpart	F3Tptsd	F2avoid	F2intrusion	F2arousal	F3avoid	F3intrus	F3arous	F2Beck	F2STAIS	F3STAIT	F
12	3.0	1.0	1.0	0.0	60.0	5.0	3.0	2.0	1.0	1.0	1.0	5.0	49.0	52.0	_
21	3.0	1.0	0.0	0.0	26.0	0.0	5.0	0.0	0.0	0.0	0.0	8.0	48.0	46.0	
22	3.0	1.0	0.0	0.0	22.0	8.0	5.0	1.0	0.0	0.0	0.0	1.0	61.0	43.0	
31	2.0	1.0	0.0	0.0	40.0	2.0	2.0	0.0	0.0	0.0	0.0	4.0	42.0	47.0	
32	3.0	1.0	0.0	0.0	31.0	1.0	2.0	1.0	0.0	0.0	0.0	2.0	51.0	48.0	
33	3.0	0.0	0.0	0.0	33.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	43.0	41.0	
36	1.0	1.0	1.0	1.0	28.0	3.0	3.0	4.0	0.0	0.0	1.0	7.0	40.0	48.0	
58	2.0	1.0	0.0	1.0	39.0	4.0	5.0	1.0	0.0	0.0	1.0	6.0	46.0	46.0	
62	1.0	0.0	0.0	1.0	29.0	1.0	0.0	0.0	0.0	1.0	0.0	3.0	49.0	45.0	
70	2.0	0.0	0.0	0.0	35.0	1.0	0.0	0.0	0.0	0.0	0.0	4.0	43.0	49.0	

In [421]: data16 = pd.get_dummies(data16, columns=['F1PartoId'])
round(data16.corr(), 3)

Out[421]:

	F2PTSDpart	F2PTSDcomp	F3PTSDpart	F3Tptsd	F2avoid	F2intrusion	F2arousal	F3avoid	F3intrus	F3arous	 F3STAIT	F3Beck	F3STAIS
F2PTSDpart	1.000	0.134	-0.014	0.047	0.189	0.593	0.315	0.070	-0.024	0.054	 0.033	0.139	-0.074
F2PTSDcomp	0.134	1.000	0.079	0.135	0.540	0.313	0.559	0.436	0.321	0.105	 0.246	0.256	-0.007
F3PTSDpart	-0.014	0.079	1.000	0.610	0.177	-0.034	0.229	-0.066	0.349	0.848	 -0.063	0.260	-0.062
F3Tptsd	0.047	0.135	0.610	1.000	0.298	-0.015	0.128	0.372	0.442	0.635	 0.174	0.528	-0.064
F2avoid	0.189	0.540	0.177	0.298	1.000	0.354	0.393	0.266	0.423	0.133	 0.217	0.234	0.060
F2intrusion	0.593	0.313	-0.034	-0.015	0.354	1.000	0.518	0.079	0.171	-0.095	 0.038	0.026	-0.048
F2arousal	0.315	0.559	0.229	0.128	0.393	0.518	1.000	0.134	0.380	0.061	 0.188	0.133	-0.021
F3avoid	0.070	0.436	-0.066	0.372	0.266	0.079	0.134	1.000	0.396	0.197	 0.225	0.421	0.062
F3intrus	-0.024	0.321	0.349	0.442	0.423	0.171	0.380	0.396	1.000	0.064	 0.247	0.261	0.001
F3arous	0.054	0.105	0.848	0.635	0.133	-0.095	0.061	0.197	0.064	1.000	 -0.065	0.358	-0.045
F2Beck	0.168	0.293	0.254	0.281	0.266	0.242	0.327	0.021	0.264	0.151	 0.081	0.490	0.027
F2STAIS	0.090	-0.021	0.027	0.019	0.159	0.155	0.022	0.076	0.087	0.028	 0.080	0.103	0.016
F3STAIT	0.033	0.246	-0.063	0.174	0.217	0.038	0.188	0.225	0.247	-0.065	 1.000	0.036	0.236
F3Beck	0.139	0.256	0.260	0.528	0.234	0.026	0.133	0.421	0.261	0.358	 0.036	1.000	-0.034
F3STAIS	-0.074	-0.007	-0.062	-0.064	0.060	-0.048	-0.021	0.062	0.001	-0.045	 0.236	-0.034	1.000
F3STAIT	0.033	0.246	-0.063	0.174	0.217	0.038	0.188	0.225	0.247	-0.065	 1.000	0.036	0.236
F1Partold_1.0	-0.052	0.029	0.171	0.031	0.083	-0.038	0.010	-0.021	0.196	0.044	 0.093	-0.031	-0.043
F1Partold_2.0	-0.045	-0.004	0.027	0.192	0.042	-0.075	-0.042	-0.021	-0.053	0.044	 0.156	0.074	0.008
F1Partold_3.0	0.053	0.042	-0.152	0.152	0.127	0.003	-0.014	0.436	0.126	-0.021	 0.119	0.183	0.033
F1Partold_4.0	0.006	-0.036	0.179	0.145	-0.010	0.118	0.037	-0.012	-0.030	0.197	 -0.170	0.162	-0.083
F1Partold_5.0	0.046	-0.020	NaN	NaN	0.111	-0.017	-0.050	NaN	NaN	NaN	 NaN	NaN	NaN
F1Partold_6.0	0.032	-0.014	NaN	NaN	-0.036	0.002	0.158	NaN	NaN	NaN	 NaN	NaN	NaN

22 rows × 22 columns

Conteggi e statistiche descrittive per: peso medio, apgar1, apgar5 e correlazione con f2ptsd, f3ptsd

```
In [432]: data17=data[['peso','apgar 1','apgar 5','F2Tptsd','F3Tptsd']]
    data17.dropna()
    data17.describe()
```

Out[432]:

	peso	apgar 1	apgar 5	F2Tptsd	F3Tptsd
count	350.000000	350.000000	350.000000	346.000000	85.000000
mean	3302.648571	9.048571	9.877143	19.661850	28.858824
std	484.799317	0.710491	0.459591	12.921327	9.175735
min	910.000000	3.000000	5.000000	0.000000	17.000000
25%	3050.000000	9.000000	10.000000	10.000000	22.000000
50%	3330.000000	9.000000	10.000000	17.000000	28.000000
75%	3640.000000	9.000000	10.000000	26.750000	33.000000
max	4400.000000	10.000000	10.000000	71.000000	60.000000

In [435]: round(data17.corr(), 3)

Out[435]:

	peso	apgar 1	apgar 5	F2Tptsd	F3Tptsd
peso	1.000	0.109	0.240	0.021	0.084
apgar 1	0.109	1.000	0.597	-0.088	-0.026
apgar 5	0.240	0.597	1.000	-0.146	0.032
F2Tptsd	0.021	-0.088	-0.146	1.000	0.369
F3Tptsd	0.084	-0.026	0.032	0.369	1.000

Istogramma delle età

```
In [564]: import matplotlib.pyplot as plt import numpy as np
```

```
fig = plt.figure(figsize=(8,6))
ax = fig.gca()
plt.hist(data['age'], ec='black')
plt.xlabel('age')
plt.ylabel('count')
plt.ylim((0,110))
plt.xlim((18,47))
plt.title('Age groups')
plt.grid(color='lightgrey', linestyle='-', linewidth=2)
ax.set_yticks(np.arange(0, 120, 5))
ax.set_axisbelow(True)
ax.set_xticks(np.arange(15, 47, 1))
plt.show()
```



```
In [548]: fig = plt.figure(figsize=(8,6))
   plt.scatter(datal1['F2STAIS'], datal1['F2STAIT'], c=datal1['rischio'])
   plt.xlabel('F2STAIS')
   plt.ylabel('F2STAIT') # in viola gli alto rischio, in giallo i basso rischio
   plt.grid(color='lightgrey', linestyle=':', linewidth=2)
```



```
In [550]: fig = plt.figure(figsize=(6,5))
    plt.scatter(data11['F2Tptsd'], data11['F2STAIT'], c=data11['rischio'], cmap='Wistia')
    plt.xlabel('F2Tptsd')
    plt.ylabel('F2STAIT')
    plt.grid(color='lightgrey', linestyle=':', linewidth=2)
```



```
In [551]: fig = plt.figure(figsize=(6,5))
    plt.scatter(data11['F2Tptsd'], data11['peso'], c=data11['rischio'], cmap='PiYG')
    plt.xlabel('F2Tptsd')
    plt.ylabel('peso')
    plt.grid(color='lightgrey', linestyle=':', linewidth=2)
```



```
In [552]: fig = plt.figure(figsize=(6,5))
   plt.scatter(datal1['age'], datal1['peso'], c=datal1['rischio'], cmap='winter')
   plt.xlabel('age')
   plt.ylabel('peso')
   plt.grid(color='lightgrey', linestyle=':', linewidth=2)
```



```
In [554]: fig = plt.figure(figsize=(6,5))
    plt.scatter(datal1['F2Tptsd'], datal1['age'], c=datal1['rischio'], cmap='spring')
    plt.ylabel('age')
    plt.xlabel('F2Tptsd')
    plt.grid(color='lightgrey', linestyle=':', linewidth=2)
```



```
In [565]: fig = plt.figure(figsize=(8,6))
    ax = fig.gca()
    plt.hist(data11['peso'], ec='black', color='red')
    plt.xlabel('peso')
    plt.ylabel('count')
    plt.ylim((0,75))
    plt.xlim((2000,4750))
    plt.title('Weight groups')
    plt.grid(color='lightgrey', linestyle='-', linewidth=2)
    ax.set_yticks(np.arange(0, 75, 5))
    ax.set_axisbelow(True)
    ax.set_xticks(np.arange(2000, 5000, 200))
    plt.show()
```



```
In [616]: from pandas import DataFrame
    d=data.groupby('episio').size()
    l=[11,58,51,94,81,1]
    l2=[1,2,3,4,5,6]
    df={'categoria':1, 'conteggio':12}
    df=DataFrame(df, columns= ['categoria','conteggio'])
    df
```

Out[616]:

	categoria	conteggio
0	11	1
1	58	2
2	51	3
3	94	4
4	81	5
5	1	6

In []: