

Docare

Project 2

Our Team

BANYU

Product Manager and Business Analyst

MELLISA

Data Scientist

ARIFA

Full Stack Developer

Data Engineer

Table of Contents

Business Understanding

Tujuan

Data Understanding

Data Preparation

Modelling

Evaluation

Business Understanding

Docare merupakan sebuah perusahaan yang bergerak dalam bidang kesehatan, dimana saat bidang kesehatan merupakan garda terdepan dalam menanggulangi penyakit. Berfokus pada menganalisis data penyakit, berinovasi dan meningkatkan Docare pelayanan guna memenuhi kebutuhan di bidang kesehatan ini.

Tim Data Science kami akan membantu Anda untuk mengklasifikasikan penyakit dalam mengetahui tingkatan penyakit yang diderita seseorang.

02 Tujuan

Mengetahui tingkatan penyakit yang diderita seorang pasien kanker payudara dengan menggunakan klasifikasi. Hasil klasifikasi ini kemudian akan dianalisa tingkatan kanker tersebut. Kemudian akan dibentuk pengklasifikasian apakah kanker tersebut termasuk kanker payudara jinak atau ganas.

03 Manfaat

Mengetahui penyakit kanker payudara yang diderita seseorang berdasarkan klasifikasi kanker tersebut malignant (ganas) atau benign (jinak). 04

Data Understanding

Menggunakan Breast Cancer Wisconsin (Diagnostic) Data Set untuk dilakukan klasifikasi kanker.

	eindex: 569 entries, 0 to columns (total 33 column		
#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal_dimension_mean	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	fractal_dimension_se	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	fractal_dimension_worst	569 non-null	float64
32	Unnamed: 32	0 non-null	float64
dtype	es: float64(31), int64(1)	, object(1)	

RangeIndex: 569 entries, 0 to 568

Data Preparation

Data yang kami gunakan mencakup semua kolom, kecuali untuk kolom id, diagnosis dan kolom ke-33 tidak kami masukan karena tidak memiliki nama dan datanya juga tidak tersedia.

RangeIndex: 569 entries, 0 to 568 Data columns (total 30 columns): Column Non-Null Count Dtype radius mean 569 non-null float64 569 non-null float64 float64 569 non-null 569 non-null float64 569 non-null float64 569 non-null float64 569 non-null float64 concave points mean float64 569 non-null float64 569 non-null fractal dimension mean 569 non-null float64 float64 569 non-null float64 569 non-null 569 non-null float64 569 non-null float64 float64 569 non-null 569 non-null float64 float64 569 non-null 569 non-null float64 569 non-null float64 fractal dimension se 569 non-null float64 569 non-null float64 float64 569 non-null 569 non-null float64 concave points worst float64 569 non-null float64 569 non-null fractal dimension worst float64 569 non-null

06 Modelling

Menggunakan Metode Supervised Learning

"Algoritma yang kami gunakan adalah KNN (K-Nearest Neighbour)"

"Karena data tersebut bersifat multi-variabel" Input

Proses

Output

Dataset Breast Cancer Wisconsin berlabel Malignant dan Benign

Clasification Malignant

Clasification Benign

Tools

Pengerjaan Project
menggunakan Bahasa Python 3
pada Google Colab, dan Github
untuk media penyimpanan.
Selain itu Menggunakan Library
Python seperti Pandas,
ScikitLearn, Seaborn dan
Matplotlib

Karena metode yang digunakan adalah klasifikasi, maka persebaran data harus diperiksa terlebih dahulu untuk menghindari unbalanced Dataset. Program berikut digunakan untuk memvisualisasi data label.

<matplotlib.axes._subplots.AxesSubplot at 0x7f3b9f29b190>

Grafik menunjukan korelasi setiap atribut terhadap atribut lainnya. Korelasi biasa digunakan untuk pemilihan feature.


```
from sklearn.model selection import train test split
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
X = df.drop(['diagnosis'], axis=1)
v = df['diagnosis']
X train, X test, y train, y test = train test split(X, y,test size = 0.2, random state=40)
scaler = MinMaxScaler()
X train scaled = scaler.fit transform(X train)
X test scaled = scaler.fit transform(X test)
n neighbors = 45
knn = KNeighborsClassifier(n neighbors=n neighbors)
knn.fit(X train scaled, y train)
print('Accuracy of K-NN classifier on training set: {:.4f}'.format(knn.score(X train scaled, y train)))
print('Accuracy of K-NN classifier on test set: {:.4f}'.format(knn.score(X test scaled, y test)))
Accuracy of K-NN classifier on training set: 0.9473
Accuracy of K-NN classifier on test set: 0.9912
```

Proses Modeling diawali dengan melakukan import library, kemudian memisahkan feature dan target. Setelah dipisahkan data dibagi menjadi dua bagian yaitu data train, dan data test. Setiap feature dikonversi untuk penyetaraan bobot menggunakan minmaxscaler. Setelah itu Data Train dilatih dan dibandingkan dengan data test.

07 Evaluation


```
from sklearn.metrics import f1 score
y pred=knn.predict(X test scaled)
from sklearn.metrics import classification report, confusion matrix, accuracy score, mean squared error, r2 score
print(classification report(y test,y pred))
print(confusion matrix(y test,y pred))
print("Training Score: ",knn.score(X_train_scaled,y_train)*100)
print("Test Score: ", knn.score(X test scaled,y test)*100)
             precision recall f1-score support
         0.0
                  0.99
                            1.00
                                      0.99
                                                  75
        1.0
                  1.00
                            0.97
                                      0.99
                                                  39
                                      9.99
                                                 114
    accuracy
                                      0.99
                  0.99
                            0.99
                                                 114
  macro avg
weighted avg
                  0.99
                            0.99
                                      0.99
                                                 114
[[75 0]
[ 1 38]]
Training Score: 94.72527472527472
Test Score: 99.12280701754386
```

Model KNN yang dibuat berhasil memprediksi dengan benar 38 kasus kanker payudara dari total 39 kasus yang ada

Perbandingan dengan Decision Tree

```
from sklearn.tree import DecisionTreeClassifier
dtree = DecisionTreeClassifier(max_depth=8)

dtree.fit(X_train_scaled,y_train)
y_pred=dtree.predict(X_test_scaled)
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score,mean_squared_error
print(classification_report(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
print("Training Score: ",dtree.score(X_train_scaled,y_train)*100)
print("Test Score:",accuracy_score(y_test,y_pred)*100)
```

	precision	recall	f1-score	support
0.0	0.96	0.91	0.93	75
1.0	0.84	0.92	0.88	39
accuracy			0.91	114
macro avg	0.90	0.91	0.90	114
weighted avg	0.92	0.91	0.91	114

[[68 7] [3 36]]

Training Score: 100.0

Test Score: 91.22807017543859

Visualisasi

Kesimpulan

Setelah dilakukan Perbandingan antara metode K-NN dan Decision Tree dapat disimpulkan bahwa hasil dari Model menggunakan K-NN sudah sangat baik dan dapat digunakan untuk actual case, Karena hasil evaluasi menunjukan Model dengan K-NN menghasilkan Klasifikasi yang lebih baik.

• References kaggle.com/uciml/breast-cancer-

wisconsin-data/code

- https://github.com/Kemi41
- https://github.com/prissyyy
- https://github.com/arifanf
- https://github.com/mellisairawan
- https://github.com/ TaufiqHidayatullah528

Thanks

Please give us critics and suggestions ^^