ASSIGNMENT 6: LOGISTIC REGRESSION

Markus Holzleitner,
Johannes Kofler,
Angela Bitto-Nemling
Institute for Machine Learning

Copyright statement:

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Logistic Regression

- \blacksquare Given a bunch of data $\mathbf{Z} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_l, \mathbf{y}_l)\}$
 - $\square \ \mathbf{x}_i \dots$ vectors of features
 - \square \mathbf{y}_i ... labels
- Classification: $y_i \in \{1, ..., M\}$
- First (bad) idea: fit a linear regression line $g_{LR}(\mathbf{x}_i) = \mathbf{W}^T \mathbf{x}_i$
- Goal:

$$y_i = \begin{cases} 0 & g_{LR}(\mathbf{x}_i) < 0.5\\ 1 & g_{LR}(\mathbf{x}_i) \ge 0.5 \end{cases}$$

Problem: the resulting $y_i(\mathbf{x}_i)$ would be a step function, i.e. not continuous

Problem with Linear Regression

Logistic Regression

- Instead of predicting directly the class we would like to predict the class probability, which is a regression problem
- Therefore we apply the logistic function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- \mathbf{z} is a linear function of features: $z = \mathbf{W}^T \mathbf{x}$
- Model:

$$g(\mathbf{x}) = \sigma(\mathbf{W}^T \mathbf{x})$$

Also known as **sigmoid function**.

Also known as Fermi function in physics.

Logistic Regression

Likelihood function for a Bernoulli distribution:

$$\mathcal{L}(\{\mathbf{x}, y\}; \mathbf{W}) = \prod_{i=1}^{n} g(\mathbf{x}_i; \mathbf{W})^{y_i} \cdot (1 - g(\mathbf{x}_i; \mathbf{W}))^{1 - y_i}$$

Taking the negative logarithm, we obtain:

$$L = -\log \mathcal{L}(\{\mathbf{x}, y\}; \mathbf{W})$$
$$= -\sum_{i} \left(y_i \log g(\mathbf{x}_i; \mathbf{W}) + (1 - y_i) \log(1 - g(\mathbf{x}_i; \mathbf{W})) \right)$$

- L is known as the Cross Entropy Loss
- The task $\min_{\mathbf{W}} L$ does in general not have a closed-form solution
- Fortunately *L* is a **convex function** for Logistic Regression, therefore, every local minimum is a global minimum.

Convex vs. non-convex

Gradients for Logistic Regression

- Using: $\frac{\partial \sigma(z)}{\partial z} = \sigma(z) \cdot (1 \sigma(z))$
- Using σ_i instead of $\sigma(\mathbf{W}^T\mathbf{x}_i)$

$$L = -\sum_{i} \left(y_{i} \log \sigma(\mathbf{W}^{T} \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - \sigma(\mathbf{W}^{T} \mathbf{x}_{i})) \right)$$

$$\frac{\partial L}{\partial \mathbf{W}} = -\sum_{i} \left(y_{i} \frac{1}{\sigma_{i}} \cdot \sigma_{i} \cdot (1 - \sigma_{i}) \cdot \mathbf{x}_{i} - \frac{1 - y_{i}}{1 - \sigma_{i}} \cdot \sigma_{i} \cdot (1 - \sigma_{i}) \cdot \mathbf{x}_{i} \right)$$

$$= -\sum_{i} \left(y_{i} (1 - \sigma_{i}) \cdot \mathbf{x}_{i} - (1 - y_{i}) \cdot \sigma_{i} \cdot \mathbf{x}_{i} \right)$$

$$= -\sum_{i} (y_{i} - y_{i} \sigma_{i} - \sigma_{i} + \sigma_{i} y_{i}) \mathbf{x}_{i}$$

$$= \sum_{i} (\sigma_{i} - y_{i}) \mathbf{x}_{i}$$

Logistic Regression Problem

Task:

$$\min_{\mathbf{W}} L = \min_{\mathbf{W}} \left[-\sum_{i} \left(y_i \log g(\mathbf{x}^i; \mathbf{W}) + (1 - y_i) \log(1 - g(\mathbf{x}^i; \mathbf{W})) \right) \right]$$

$$\square$$
 $g(\mathbf{x}; \mathbf{W}) = \sigma(\mathbf{W}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{W}^T \mathbf{x}}}$

■ **Note:** no closed-form solution! You have to use methods like Gradient Descent, Newton, BFGS, Conjugate Gradient, ...

Gradient Descent

- **Given:** a function f(x)
- **Task:** find x that maximizes (or minimizes) f(x)
- Idea: start at some value x_0 , and take a small step η in the direction in which the function decreases strongest.

Find derivative $f' = \frac{\partial f}{\partial x}$.

 \Box $-f'(x_0)$ is the direction of steepest descent at x_0 .

Solution:

- \square Iteratively calculate $x_{i+1} = x_i \eta \cdot f'(x_i)$.
- \square Each x_{i+1} should be a better solution than x_i .
- ☐ Eventually you'll reach a (local) minimum.

Gradient descent

Gradient descent for non-convex problems

Gradient Descent in Logistic Regression

The minimization of the loss function $L(.; \mathbf{W})$ can be done by Gradient Descent:

$$\mathbf{W}_{n+1} = \mathbf{W}_n - \eta \frac{\partial L}{\partial \mathbf{W}} ,$$

where η is the learning rate,

and W_0 is some initial guess for W.

Gradient Checking

- Method for checking if the symbolic computation/implementation of the gradient was correct.
- Logistic Regression gradient is easy, but once we get to neural networks, you'll be glad to know this trick.
- Idea: compare your gradient with a numerical approximation of the gradient.

Central difference quotient:

$$\frac{\partial L}{\partial W_{ij}} \approx \frac{L(.; \mathbf{W} + \epsilon \mathbf{e}_{ij}) - L(.; \mathbf{W} - \epsilon \mathbf{e}_{ij})}{2 \epsilon}$$

Central difference quotient for logistic regression (W is a vector):

$$\frac{\partial L}{\partial W_i} \approx \frac{L(.; \mathbf{W} + \epsilon \mathbf{e}_i) - L(.; \mathbf{W} - \epsilon \mathbf{e}_i)}{2 \epsilon}$$

with
$$\mathbf{e}_i = (0 \ 0 \ \dots \ 1 \ \dots \ 0)^T$$
.

■ Good choice is $\epsilon = 10^{-4}$.