Лекции по математическому анализу.

Александр Титилин

Содержание

1	Пре	едел последовательности.	3
	1.1	Окрестность точки	3
	1.2	окрестность	3
	1.3	Определение предела. Геометрическое	3
	1.4	Определение предела. Еще одно	3
	1.5	Определение предела, еще одно с кванторами, нормальное	3
	1.6	Запись предела	3
	1.7	Примеры	3
	1.8	Единственность предела	4
	1.9	Ограниченные последовательности	4
	1.10	Предельный переход в неравенстве	4
	1.11	Теорема о сжатой последовательности	5
	1.12	Арифметические операции над последовательностями	5
		1.12.1 Бесконечно малые последовательности	5
		1.12.2	5
		1.12.3 Сумма бесконечно малых последовательностей	5
		1.12.4 Произведение бесконечно малой на ограниченную	6
		1.12.5 Теорема о пределе суммы последовательности	6
		1.12.6 Теорема о пределе произведения последовательностей	6
		1.12.7 Теорема о пределе частного	6
		1.12.8 Предел квадратного корня	6
2	Под	последовательность	7
	2.1	Определение	7
	2.2		7
	2.3	Теорема Вейерштрасса	7
	2.4	Принцип выбора	7
3	При	меры	7
4	Hep	равенство Бернулли по индукции	9
5			9
J			9
6			10
7			10
8			10

9		10
10		10
11	Задачка	11
12		11
13		11
1 1	T	11
14	Бесконечно большие последовательности 14.1	11 11
	14.2	11
	14.3	11
	14.4	11
15	Расширеннная прямая	12
16	Предел функций.	12
	16.1 Предельная точка	12
	16.2	12
	16.2.1 Пример	12
	16.2.2 Пример	12
	16.3 Определение предела функции	12
	16.4 Запись предела функции	12
	16.5	13
	16.6	13
	16.7 Теорема о предельном переходе в неравенстве	13
	16.8	13 13
17	Композиция функций для вещественных функций	13
	17.1 Примеры	13
10	Предел композиции.	14
10	18.1 Пример	14
	18.1 пример	14
19	Одностронние пределы.	14
20	Вычисление пределов	14
	20.1	14
21	Сравнение роста функций	17
	21.1	17
22	Другое определение предела.	17
		изи
	1 T V 1 T T T T T T T T T T T T T T T T	17
	22.1.1	17
	22.1.2	17
23	Непрерывная функция	17

24 Арифметические действия над непрерывными функциями	18
25 Разрыв первого рода	18
26 Разрыв второго рода	18
27	18
28 Теорема Больцано	19
29 Теорема Вейрештрасса	19

1 Предел последовательности.

1.1 Окрестность точки.

Окрестность точки а - это произвольный открытый промежуток, содержащий точку а.

1.2 окрестность

$$U_{\epsilon}(a) = (e - a; e + a)$$

1.3 Определение предела. Геометрическое

Число а называют пределом последовательности (x_n) если в любой окрестности точки а, содержатся все члены x_n , начиная с некоторого.

1.4 Определение предела. Еще одно

а является пределом x_n , если в любой симметричной последовательности точки а содержатся все члены последовательности начиная с некоторого.

1.5 Определение предела, еще одно с кванторами, нормальное

а является пределом x_n , если

$$\forall \epsilon > 0 \exists n_0 \forall n \ge n_0 : |x_n - a| < \epsilon \Leftrightarrow x_n \in (a - \epsilon, a + \epsilon).$$

1.6 Запись предела

$$\lim_{n \to \infty} x_n = a.$$

1.7 Примеры

- 1. $a_n=1$. Предел 1, так как все члены последовательности лежат в окрестности 1.
- 2. $a_n=\frac{1}{n}$ Предел 0. а,b концы окрестности . $\exists n_0 \forall n \geq n_0: x_n \in (a,b).$ $n_0=$ любое число $>\frac{1}{b}$

3.
$$x_n = \frac{n}{2n^2+1}$$
 (a, b) - окрестность 0.

$$\exists n_0 \forall n \geq n_0.$$

Надо доказать, что $x_n < b$

$$\frac{n}{n^2 + 1} < b.$$

4.
$$x_n = \frac{2n+1}{3n+2}$$
 Предел $\frac{2}{3}$

$$\frac{2n+1}{3n+2} = \frac{2+\frac{1}{n}}{3+\frac{2}{n}}.$$

1.8 Единственность предела

Теорема 1. У сходящийся последовательности есть только 1 предел.

$$x_n \to a \land x_n \to b \implies a = b.$$

Доказательство. Пусть a < b. Рассмотрим промежутки $(-\infty, \frac{a+b}{2})$ и $(\frac{a+b}{2}, +\infty)$. $a \in (-\infty, \frac{a+b}{2}) \land b \in (\frac{a+b}{2}, +\infty)$ Так как $x_n \to a \; \exists n_0 \forall n \geq n_0 x_n \in (-\infty, \frac{a+b}{2}), \exists x_1 \forall n \geq n_1 x_n \in (\frac{a+b}{2}, +\infty), n_2 = \max(n_0, n_1)$

1.9 Ограниченные последовательности

$$\exists M \forall n \ x_n \leq M.$$

 x_n Ограничена сверху.

Теорема 2. Всякая сходящаяся последовательность ограничена.

Доказательство. $x_n \to a$. Рассмотрим окрестность (a - 1,a + 1) ,точки а.

$$\exists n_0 \forall n \ge n_0 \ x_n \in (a-1, a+1).$$

$$x_{n_0}, x_{n_0+1}, \dots$$
 - ограничена

1.10 Предельный переход в неравенстве

Теорема 3. $(x_n), (y_n)$ - последовательности такие, что

$$\forall n: x_n \leq y_n.$$

$$\lim_{n \to \infty} x_n = a.$$

$$\lim_{n \to \infty} y_n = b.$$

Tогда $a \leq b$

Заметим, что неравенство, выволняется с некоторого п. В условии теоремы нельзя оба знака неравенства заменить на строгие.

Доказательство. От противного. Пусть наши последовательности, такие что $x_n \leq y_n \ \forall n,a>b$ Рассмотрим $(-\infty,\frac{a+b}{2}),(\frac{a+b}{2},+\infty)$. Первый окресность b, второй окрестность точки а. Так как $x_n\to a$,то

$$\exists n_0, \forall n \ge n_0 x_n \in (\frac{a+b}{2}, +\infty).$$

$$\exists n_1, \forall n \ge n_1 y_n \in (-\infty, \frac{a+b}{2}).$$

$$n_2 = \max n_0, n_1.$$

Тогда $n \geq n_2$

1.11 Теорема о сжатой последовательности.

Теорема 4. $(x_n), (y_n), (z_n)$ - последовательности такие, что \forall $nx_n \leq y_n \leq z_n$. Пусть $x_n \to a, z_n \to a$. То $y_n \to a$

Доказательство. Возьмем произвольную окрестность U точки а. Так как $x_n \to a$, то $\exists n_0 \ \forall n > n_0 x_n \in U. \ z_n \to a \ \exists n_1 \forall n > n_1 z_n \in U. n_2 = \max (n_0, n_1) \ \forall n > n_2 x_n \in U z_n \in U.$ Но $x_n \leq y_n \leq z_n$. Значит $y_n \in U$.

1.12 Арифметические операции над последовательностями

1.12.1 Бесконечно малые последовательности

Последовательность называется бесконечно малой, если ее предел равен 0.

1.12.2

Теорема 5.

$$(x_n), a \in \mathbb{R}$$

. Рассмотри последовательность $\alpha_n=x_n-a$. Тогда $x_n\to a\leftrightarrow (\alpha_n)$ бесконечно малая.

Доказательство.

$$\alpha_n \to 0 \leftrightarrow \forall \epsilon \exists n_0 \forall n > n_0 \mid \alpha_n \mid < \epsilon.$$

1.12.3 Сумма бесконечно малых последовательностей

Теорема 6. Сумма бесконечно малых бесконечно малая.

Доказательство.

$$\mid x_n + y_n \mid \leq \mid x_n \mid + \mid y_n \mid .$$

Возьмем $\forall \epsilon > 0$. Рассмотри $\frac{\epsilon}{2}$. Так как $x_n \to 0$, $\exists n_1 \forall n \geq n_1$, $\mid x_n \mid < \frac{\epsilon}{2}$ $y_n \to 0$, $\exists n_2 \forall n > -n_2 \mid y_n \mid < \frac{\epsilon}{2}$

$$|x_n| + |y_n| < \epsilon$$
.

1.12.4 Произведение бесконечно малой на ограниченную

Теорема 7. (x_n) - бесконечно малая, (y_n) ограниченная $\to (x_n y_n)$ бесконечно малая.

Доказательство.

$$\begin{split} &\exists n_0 \ \forall n \geq n_0 \mid x_n \mid < \frac{\epsilon}{C}. \\ &\exists C > 0 \forall n \mid y_n \mid < C. \\ &\mid x_n y_n \mid = \mid x_n \mid \mid y_n \mid < \epsilon. \end{split}$$

1.12.5 Теорема о пределе суммы последовательности

Теорема 8. Если

$$x_n \to a$$
.

$$y_n \to b$$
.

To

$$x_n + y_n \to a + b$$
.

Доказательство. $\alpha_n=x_n-a,\ \beta_n=y_n-b$ бесконечно малые. Рассмотрим сумму этимх последовательностей $(x_n+y_n)-(a+b)=\alpha_n+\beta_n.$ Вторая сумма бесконечно малая, следовательно $x_n+y_n\to a+b$

1.12.6 Теорема о пределе произведения последовательностей

Теорема 9. Если $x_n \to a, y_n \to b \mod x_n y_n \to ab$

$$x_n y_n = ab + a\beta_n + b\alpha_n + \alpha_n \beta_n.$$

Три последних слагаемых бесконечно малые.

1.12.7 Теорема о пределе частного

Теорема 10. *Если* $y_n \to b, \frac{1}{y_n} - \frac{1}{b} \to 0$

Доказательство.

$$\frac{b-y_n}{y_n-b}=(b-y_n)\frac{1}{b}\frac{1}{y_n}.$$

Достаточно доказать, что $\frac{1}{y_n}$ ограничена.

Теорема 11. Если $x_n \to a, y_n \to b, \forall n \ y_n \neq 0, b \neq_0, \ moe \partial a \ \frac{x_n}{y_n} \to \frac{a}{b}$

1.12.8 Предел квадратного корня

Теорема 12. $x_n \ \forall n \ x_n \geq 0 \\ a \in \mathbb{R} \\ x_n \rightarrow a \ mor \partial a \ \sqrt{x_n} = \sqrt{a}$

2 Подпоследовательность

2.1 Определение

 (x_n) - числовая последовательность. Выбираем любую строго возрастающую последовательность натуральных чисел $(n_1 < n_2 < n_3 \dots)$. Рассматриваем последовательность с элементами $x_{n_1}, x_{n_2}, \dots x_{n_k} \dots$

2.2

Теорема 13. Из всякой последовательности можно выбрать монотонную подпоследовательность.

Доказательность. Пусть x_n последовательность, у которой нет возрастающей подпоследовательности. Тогда докажем, что нее есть убывающая подпоследовательность. Если нет возрастающей подпоследовательность, то есть член, все члены с индексами больше него, строго меньше него. Назовем его x_{n_1} . Рассмотри такую подпоследовательность x_{n+1}, x_{n+2}, \ldots , в ней нет возрастающей подпоследовательности (в противном случае она возрастающая). Раз это так, то в ней есть x_{n_2} , Такой что все члены раньше него меньше него. Мы построили убывающую последовательность.

2.3 Теорема Вейерштрасса

Теорема 14. Всякая монотонная ограниченная последовательность имеет предел.

Доказательство. (x_n) возрастает. Пусть A - это множество значений последовтельности (x_n) . $A \neq \emptyset$. А ограниченно сверху. Пусть $\alpha = \sup A$. По свойству супремума $\forall \epsilon > 0 \exists x_{n_0}$ такой что $\alpha - x_{n_0} < \epsilon$. Тогда $\forall n \geq n_0 \ \alpha - x_n < \epsilon \implies |x_n - \alpha| < \epsilon x_n \to \alpha$ Для убывающей самим надо.

2.4 Принцип выбора

Теорема 15. Из любой ограниченной последовательность, сходящуюся подпоследовательность.

Доказательство. В полслова. Пусть x_n - ограниченная последовательность. По теореме 13 есть монотонная подпоследовательность, по теореме 14 нужная подпоследовательность имеет предел.

Другое

3 Примеры

2.

1. $x_n = \frac{2n+5}{3n-7} = \frac{2+\frac{5}{n}}{3-\frac{7}{n}} \to \frac{2}{3}.$

 $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = \lim_{n \to \infty} \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$

3.

$$\lim_{n\to\infty}(\sqrt{n^2+n}-n)=\lim_{n\to\infty}\frac{n}{\sqrt{n^2+n}+n}=\lim_{n\to\infty}\frac{1}{\sqrt{1+\frac{1}{n}}+1}=\frac{1}{2}.$$

4.

$$x_1 = \sqrt{2}, x_{n+1} = \sqrt{2 + x_n}.$$

Пусть $x_n \to a$.

$$x_{n+1} = \sqrt{2 + x_n} \to a.$$

$$a = \sqrt{2 + a}.$$

$$a = 2.$$

Доказываем существание предела. Последовательность строго возрастает. Ограничена по теореме 14.

5.

$$x_n = \frac{1}{1*2} + \frac{1}{2*3} + \frac{1}{3*4} + \dots + \frac{1}{n(n+1)} = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n_1} = 1 - \frac{1}{n+1}.$$

6. $x_n=q^n$, если | q |< 1, то $x_n\to 0$. Нужно доказать, что $\forall \epsilon>0 \exists n_0 \forall n\geq n_0 \mid x_n\mid <\epsilon$

$$|q|^n < \epsilon.$$

$$n > \log_{|q|} \epsilon.$$

7. (x_n) последовательнось положительных чисел. Пусть $\frac{x_{n+1}}{x_n} \to c < 1$. Тогда $x_n \to 0$

Следствие 15.1.

$$\mid q \mid <1, q^n \to 0.$$

$$x_n = \mid q \mid^n \frac{x_{n+1}}{x_n} = \mid q \mid \to \mid q \mid <1.$$

$$\mid q \mid^n \to 0.$$

Следствие 15.2.

$$x_n = \frac{a^n}{n!}.$$
$$\frac{x_{n+1}}{x_n} = \frac{a}{n+1}.$$

Следствие 15.3. a > 1

$$x_n = \frac{n^k}{a^n}.$$

$$\frac{x_{n+1}}{x_n} = \frac{\left(1 + \frac{1}{n}\right)^k}{a} < 1.$$

$$c < 1$$
.

Рассмотри произвольное q, такое что c < q < 1. Рассмотрим промежуток $(-\infty,q)$, это окрстность точки c. Так как отношение стремится к c, то $\exists n_0 \forall n \geq n \frac{x_{n+1}}{x_n} \in (-\infty,q)$

$$\begin{split} \frac{x_{n_0+1}}{x_{n_0}} &< q. \\ \frac{x_{n_0+2}}{x_{n_0+1}} &< q. \\ \frac{x_{n_0+k}}{x_{n_0+k+1}} &< q. \end{split}$$

Перемножили все.

$$\frac{x_{n_0+k}}{x_{n_0}} < q^k.$$

$$0 < x_{n_0+k} < x_{n_0} * q^k.$$

По 1.11

$$x_{n_0+k} \to 0.$$

4 Неравенство Бернулли по индукции

$$(1+a)^n(1+a) \ge (1+na)(1+a).$$

 $(1+a)^{n+1} \ge 1+a+na+na^2.$
 $1+a+na+na^2 > 1+a+na.$

5

Теорема 16. $x_n = (1 + \frac{1}{n})^n$ имеет предел.

 $\ensuremath{\mathcal{A}}$ оказательство. Докажем, что (x_n) возрастает.

$$\frac{x_{n+1}}{x_n} = \frac{(n+2)^{n+1}}{(n+1)^{n+1}} \frac{n^n}{(n+1)^n} = \frac{(n^2+2n)^{n+1}}{((n+1)^2)^{n+1}} * \frac{n+1}{n}.$$

$$(\frac{n^2+2n}{n^2+2n+1})^{n+1} * \frac{n+1}{n} = (1-\frac{1}{n^2+2n+1}) * \frac{n+1}{n} > 1-(n+1)\frac{1}{n^2+2n+1} * \frac{n+1}{n}.$$

$$= (1-\frac{1}{n+1}) * \frac{n+1}{n} = \frac{n}{n+1} * \frac{n+1}{n} = 1.$$

Докажем, что последовательность ограниченна сверху

$$x_n = (1 + \frac{1}{n})^n = \sum_{k=0}^n C_n^k * 1 + \frac{1}{n}^k = \sum_{k=0}^n \frac{n(n-1)(n-2)\dots(n-(n-k))}{n^k} * \frac{1}{k!}.$$

$$\sum_{k=0}^n (1 - \frac{1}{n})(1 - \frac{2}{n})\dots * (1 - \frac{k-1}{n}) * \frac{1}{k!} < \sum_{k=1}^n \frac{1}{k}.$$

$$= 1 + 1 + \frac{1}{2!} + \frac{1}{3!} \dots \frac{1}{n!} < .$$

$$< 1 + \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{n}\right)^{n-1}\right) < 3.$$

По 14 последовательность имеет предел, назовем его e.

6

$$x_n \to b.$$

 $a > 0, a \neq 1.$
 $a^{x_n} \to a^b.$

7

$$x_n > 0.$$

$$x_n \to b > 0.$$

$$\log_a x_n \to \log_a b.$$

8

$$\alpha > 0.$$

$$x_n \to b \implies x_n^{\alpha} \to b^{\alpha}.$$

9

Теорема 17.

$$|\sin x| = |x|$$
.

Доказательство. При $0 < x < \frac{\pi}{2}$ Картинку потом нарисую.

10

Теорема 18.

$$x_n \to b \implies \sin x_n \to \sin a$$
.

Доказательство.

$$\sin x_n - \sin a \to 0.$$

$$|\sin x_n - \sin a| = |\sin \frac{x_n - a}{2} \cos \frac{x_n + a}{2}| \le 2 |\frac{x_n - a}{2}| = |x_n - a|.$$

 $0 \le |\sin x_n - \sin a| \le |x_n - a|.$

 $\Pi_0 1.11 \sin x_n \to \sin a$

11 Задачка

$$\lim_{n\to\infty}(\frac{n+3}{n+1})^n=\lim_{n\to\infty}(1-\frac{2}{n+1})^n=\lim_{n\to\infty}((1+\frac{2}{n+1})^{\frac{n+1}{2}})^{\frac{2n}{n+1}}.$$

Тупо 1 добавили и вычли.

12

$$(1 + \frac{1}{n})^n \to e.$$

$$x_n = \frac{1}{n} \to 0.$$

$$(1 + x_n)^{\frac{1}{x_n}} \to e.$$

13

$$\lim_{n \to \infty} \frac{\log_a n}{n^k} = 0.$$

14 Бесконечно большие последовательности

Попробуем дать точный смысл записи $x_n \to +\infty, x_n \to -\infty, x_n \to \infty.$

14.1

$$x_n \to +\infty \iff \forall C \; \exists n_0 \; \forall n \ge n_0 x_n > C.$$

14.2

$$x_n \to -\infty \iff \forall C \exists n_0 \ \forall n > n_0 \ x_n < C.$$

14.3

$$x_n \to \infty \iff |x_n| \to +\infty.$$

14.4

Теорема 19. Пусть (x_n) такова, что $\forall x_n \neq 0$, тогда (x_n) - бесконечно большая $\iff \frac{1}{x_n}$ бесконечно малая.

Доказательство.

$$x_n \to +\infty \iff \forall C \ \exists n_0 \ \forall n \ge n_0 \ | \ x_n \ | > C.$$

$$\frac{1}{x_n} \to 0 \iff \forall \epsilon \exists n_0 \ \forall n \ge n_0 \frac{1}{|x_n|} < \epsilon.$$

$$|x_n| > \frac{1}{\epsilon}.$$

15 Расширеннная прямая

 $\overline{\mathbb{R}}$ - это $\mathbb{R} \cup \{+\infty, -\infty\}$

$$-\infty < \infty$$
.

$$a \in \mathbb{R}, -\infty < a < +\infty.$$

16 Предел функций.

16.1 Предельная точка

 $X \subset \mathbb{R}, a \in X$. Точка а называется предельной точкой множества X, если в любой окрестности точки a, есть хотя бы одно число из X, отличное от a.

16.2

Теорема 20. a - предельная точка множества $D \iff E$ сли существует (x_n) точек множества D отличных от a, такая что $x_n \to a$

Доказательство. 1. Пусть а предельная точка D. Смотрим промежуток (a-1;a+1). Рассмотрим $x_1 \in (a-1;a+1), x_1 \neq a, x_1 \in D.$ $x_2 \in (a-\frac{1}{2},a+\frac{1}{2}), x_2 \neq a, x_2 \in D$. И так далее, мы построили последовательность такую, что $\forall x_n \in D, xx_n \neq a, a-\frac{1}{n} < x_n < a+\frac{1}{n}$. По 1.11 $x_n \to a$

2. Пусть (x_n) такова, что $x_n \in D, x_n \neq a, x_n \to a$. Взяли произвольну окрестность а $\exists n_0 \ x_{n_0} \in U(a)$

16.2.1 Пример

Возьмем D=[0;1). Найдем все его предельные точки. Это все точки из [0;1)

16.2.2 Пример

Возьмем за $D = [0; 1) \cup \{2\}.$

16.3 Определение предела функции

Пусть $f: D \to \mathbb{R}$, а - предельная точка множества D. Число A называется пределом функции f в точке a, если $\forall (x_n)$

$$\begin{cases} \forall x_n \neq a \\ \forall x_n \in D \\ x_n \to a \end{cases} \implies f(x_n) \to A.$$

16.4 Запись предела функции

$$\lim_{x \to a} f(x) = A.$$

16.5

Пусть $\lim_{x\to a} f(x) = A \wedge \lim_{x\to a} f(x) = B$

16.6

Теорема 21. $f: D \to \mathbb{R}$, а предельная точка множества D. U - окрестность точки a, тогда предел функции b точке существует b существует предел на сужении b b b b

16.7 Теорема о предельном переходе в неравенстве

Теорема 22. $f,g:D\to\mathbb{R}$, а предельная точка множества D.

$$\forall x \in Df(x) \le f(x).$$

 $\exists \lim_{x \to a} f(x), \lim_{n \to a} g(x).$

Тогда $\lim_{x\to a} f(x) \le \lim_{x\to a} g(x)$

16.8

Теорема 1.11, но про пределы функции.

16.9 Теорема о пределе суммы, произведения и частного

Пусть $f,g:D\to\mathbb{R}$,а предельна точка множества D. Пусть $\lim_{x\to a}f(x)=A,\lim_{x\to a}g(x)=b$ Тогда

- 1. $\lim_{x\to a} f(x) + g(x) = A + B$
- 2. $\lim_{x\to a} f(x) * g(x) = A * B$
- 3. $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{A}{B}, g(x) \neq 0, B \neq 0$

17 Композиция функций для вещественных функций

$$\begin{split} f:D&\to\mathbb{R}.\\ g:E&\to\mathbb{R}.\\ f(D)&\subset E.\\ g\circ f&=g(f(x)). \end{split}$$

17.1 Примеры

$$F(x) = \sin^2 x.$$

$$f(x) = \sin x.$$

$$g(x) = x^2.$$

$$g \circ f = F.$$

$$f \circ g = \sin x^2.$$

18 Предел композиции.

Теорема 23. $f: D \to \mathbb{R}, g: E \to \mathbb{R}$. Пусть $f(D) \subset E$. пределеная точка множества D и $\lim_{x\to a} f(x) = b$. Пусть b предельная точка множества E и $\lim_{t\to b} g(t) = c$. Пусть выполняется одно из двух условий.

- 1. $\exists U$ точки a, такая что $\forall x \neq a \in U \cap D, f(x) \neq b$
- 2. $\lim_{t\to b} g(t) = g(b)$.

Tог $\partial a \lim_{x \to a} g(f(x)) = c$

Доказательство. Пусть 1 верно, мы хотим доказать, что $\lim_{x\to a}g(f(x))=c$ Возьмем $\forall (x_n)$ такую что $x_n\in D, x_a\neq ax_n\to a$

$$t_n = f(x_n).$$

$$t_n \to b$$
.

. . . .

Нужно проверить, что $g(f(x_n)) \to c$.

18.1 Пример

$$\lim_{x \to 0} \frac{\sin 3x}{x}.$$

$$3x = t.$$

$$\frac{\sin x}{x} = \frac{\sin t}{t/3} = 3\frac{\sin t}{t}.$$

19 Одностронние пределы.

Теорема 24. D - промежуток, $f: D \to \mathbb{R}$, а предельная точка. $\lim_{x \to a} f(x)$ сущесьтует \iff оба односторонних предела существуют и они равны друг другу.

20 Вычисление пределов

20.1

$$\lim_{x \to c} a^x = a^c$$

Доказательство. 1. a > 1

$$a^{x} - a^{c} = a^{c}(a^{x-c} - 1).$$

Докажем, что $a^{x-c} - 1 \to 0, x \to c$

$$t = x - c$$
.

$$\lim_{t \to 0} (a^t - 1) = 0?.$$

$$\lim_{t\to 0}(a^t-1)=0?.$$
 Докажем, что $a^{t_n}-1\to 0$
$$\forall \epsilon>0 \exists o \forall n\geq n_0 1-\epsilon< a^{t_n}<1+\epsilon.$$

$$\log_a (1 - \epsilon) < t_n < \log_a (1 + \epsilon).$$

Расссмотрим промежуток $(\log_a{(1-\epsilon)}; \log_a{(1+\epsilon)})$

Теорема 25. $\lim_{x\to c} \log_a x = \log_a c$

Теорема 26. $\lim_{x\to c} x^a = c^a$

Доказательство.

$$x^{a} = e^{\ln x^{a}} = e^{a \ln x}.$$
$$\lim_{x \to c} e^{a \ln x}.$$
$$g(x) = e^{x}.$$
$$f(x) = a \ln x.$$

По теореме 18 $\lim_{x\to c} f(x) = a \ln c$. $\lim_{x\to a \ln c} g(x) = g(a \ln c) = e^{a \ln c} = c^a$

Теорема 27. $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$

Доказательство. $\lim_{x\to 0^+} (1+x)^{\frac{1}{x}}$

$$x_n = \frac{1}{t_n}, t_n \to +\infty.$$

$$(1 + \frac{1}{t_n})^{t_n} \to e??.$$

Докажем, что это справедливо для последовательностей, где t_n состоит из натуральных чисел, по 28. Теперь в общем случае.

 (t_n) - любая последовательность $\rightarrow +\infty$. Нужно доказать, что (1+ $(\frac{1}{t_n})^{t_n} \to e$

$$\begin{aligned} [t_n] &\leq t_n < [t_n] + 1. \\ \frac{1}{[t_n] + 1} &< \frac{1}{t_n} \leq 1 \frac{1}{[t_n]}. \\ 1 + \frac{1}{[t_n] + 1} &< 1 + \frac{1}{t_n} \leq 1 + \frac{1}{[t_n]}. \\ (1 + \frac{1}{[t_n] + 1})^{t_n} &< 1 + (\frac{1}{t_n})^{t_n} \leq (1 + \frac{1}{[t_n]})^{t_n}. \end{aligned}$$

Докажем, что левый предел тоже e.

$$\forall (x_n)$$
 Такой что
$$\begin{cases} x_n > -1 \\ x_n < 0 \\ x_n \to 0 \end{cases}$$

Рассмотрим последовательность $t_n = -\frac{1}{x_n} > 0, t_n \to 0$

$$(1+x_n)^{\frac{1}{x_n}} = (1-\frac{1}{t_n})^{-t_n} = (\frac{t_n}{t_n-1})^{t_n} = (1+\frac{1}{t_n-1})^{t_n-1}(1+\frac{1}{t_n-1}).$$

Лемма 28. $f:(a,+\infty]\to\mathbb{R}$. Пусть $f(n)\to A$. Тогда для \forall последовательность натуральных чисел $t_n\to+\infty$ выполняется $f(t_n)\to A$.

Доказательство. $\forall \epsilon>0$ неравенство $|f(n)=a|<\epsilon$ для почти всех натуральных чисел. Тогда $\forall \epsilon>0 \mid f(t_n)\to A\mid$

Теорема 29. $\lim_{x\to 0} \frac{\ln{(1+x)}}{x} = 1$

Доказательство.

$$\frac{\ln(1+x)}{x} = \ln(1+x)^{\frac{1}{x}}.$$

Теорема 30. $\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$

Доказательство.

$$t = a^{x} + 1.$$

$$x = \log_{a} (1 + t).$$

$$\frac{a^{x} - 1}{x} = \frac{t}{\log_{a} 1 + t}.$$

Теорема 31. $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x}$

Доказательство.

$$(1+x)^{\alpha} - 1 = t.$$

$$\frac{t}{x} = \frac{t}{\ln(1+t)} * \frac{\ln(1+t)}{x} = \alpha.$$

Теорема 32. $\lim_{x\to a} \sin x = \sin a$

Теорема 33. $\lim_{x\to 0} \frac{\sin x}{x} = 1$

Доказательство. Пусть $0 < x < \frac{\pi}{2}$

$$\sin x < x < \operatorname{tg} x$$
.

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}.$$

21 Сравнение роста функций

21.1

Теорема 34.

$$\lim_{x \to +\infty} \frac{\log_a x}{x^{\alpha}} = 0.$$

Доказательство. Досточно доказать для натурального логорифма, так как $\log_a x = \frac{\ln x}{\ln a}$

Мы знаем, что
$$\lim_{n\to\infty}\frac{\log_a n}{n^\alpha}=0$$

Теорема 35. | $a < 1, \lim_{x \to +\infty} a^x = 0$

22 Другое определение предела.

Определение 1. $f: D \to \mathbb{R}$, а предельная точка множества D. А называется пределом f точке a, если

$$\forall \epsilon > 0 |f(x) - A| < \epsilon.$$

Выполняется в некоторой проколотой окрестности точки а $(m.e\ omkpecm-$ ноть точки $a\ без\ a).$

22.1 Примеры употребления термина "вблизи"

22.1.1

Неравенство x < 1 выполняется вблизи 0.

22.1.2

Неравенство $\frac{x^2}{x} < 1$ выполняется вблизи 0.

23 Непрерывная функция

f называется непрерывной в точке а.

- 1. Если а предельная точка множества D $\lim_{x\to a} f(x) = f(a)$
- 2. иначе f непрерывна в точке а

 $f:D\to\mathbb{R}$ непрерывна в точке а, если

$$\forall x_n \begin{cases} x_n \in D \\ x_n \to a \end{cases} .$$

выполняется $f(x_n) \to f(a)$

$$\forall \epsilon > 0 \exists \delta > 0 \forall x |x-a| < \delta \implies |f(x) - f(a)| < \epsilon.$$

$$|f(x) - A| < \epsilon \iff f(x) \in (A - \epsilon; A + \epsilon).$$

f непрерывна в а, если \forall окрестность V точки f(a) Найдется такая окрестность U точки а, такая что множество значений f на U лежит в V.

24 Арифметические действия над непрерывными функциями

Теорема 36.

$$f, g: D \to \mathbb{R}, a \in D.$$

f и g непрерывны в точке а. Тогда

- 1. f + g непрерывна в точке a.
- 2. fg непрерывна в точке а.
- 3. $\forall x \in Dg(x) \neq 0$ то $\frac{f}{g}$ непрерывны в точке a.

Теорема 37.

$$f:D\to\mathbb{R}.$$

$$g:E\to\mathbb{R}.$$

$$f(D) \subset E$$
.

Пусть $a \in D$, f непрерывна в точке a, g непрерывна в точке f(a). Тогда $f \circ g$ непрерывна в точке a.

Доказательство. Если а изолированная точка, то по определению. Если а предельная точка вычисляем предел композиции.

$$\lim_{x \to a} g(f(x)) = g(f(a)).$$

$$x_n \to a$$
.

f непрерывна в а, $f(x_n) \to f(a)$ g непрерывна в $f(a), g(f(x_n)) \to f(a)$

25 Разрыв первого рода

Если односторонниие пределы конечные числа и не равны друг другу - функция имеет разрыв первого рода.

26 Разрыв второго рода

Если один из односторонних пределов бесконечность или не существует, то функция имеет разрыв второго рода.

27

Теорема 38. Если функция задана на промежутке и непрерывна в каждой точке промежутка, то и обратная функция непрерывна.

28 Теорема Больцано

Теорема 39 (О промежуточном значении). Пусть функция f задана на промежутке и непрерывна, тогда множеством значений функции является промедуток.

$$\forall a, b \in D \ \forall C.$$

C лежит между f(a) и f(b) Тогда $\exists c \in [a,b],$ что f(c) = C

Доказательство. Достаточно доказать, что $\forall a,b \in D$ таких, что a < b и $f(a) \neq f(b) \ \forall C$ строго между f(a),f(b). $\exists c$, таких , что a < c < b и f(c) = C. Начнем с частного случая.

- 1. Пусть f(a) < 0, f(b) > 0, тогда $\exists c \in (a,b)$, такой, что f(c) = 0 f принимает на разных концах, разных знаков, на левом отрцательное на правом положительное. Обозначим их A_1, B_1 . Делим промежуток пополам, либо значение в середине ноль, либо делим снова и так далее.
- 2. Пусть f(a) < f(b), f(a) < c < f(b) Рассмотрим новую функцию, g(x) = f(x) C

$$g(a) = f(a) - C < 0.$$

$$g(b) = f(b) - C > 0.$$

По пункту 1, $\exists c \ a < c < b \ g(c) = 0 f(c) = c$

29 Теорема Вейрештрасса

Теорема 40 (о наименьшем и наибольшем значении.). Пусть функции f задана на ограниченном замкнутом промежутке и непрерывна, тогда функция принимает на этом промежутке наибольшее и наименьшее значение.

Доказательство. Докажем, что функция f ограничення,