

States *s*: {Sunny, Cloudy}

Actions *a*: {Go to School, Stay at Home}

Discount $\gamma = 0.9$

Go to School	Stay at Home
+5	-5
+3	+1

$$R_{school} = ?$$
 $R_{stay} = ?$

	0.8	0.2
	0.4	0.6

 s_t

 $P_{school} = \begin{bmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{bmatrix}$

State Transition Matrix

	0.9	0.1
	0.3	0.7

 s_t

 $P_{stay} = \begin{bmatrix} 0.9 & 0.1 \\ 0.3 & 0.7 \end{bmatrix}$

State Transition Matrix

Step 1: Compute state-wise average reward under the policy π

1. Find r_{π} for sunny =?

2. Find r_{π} for cloudy =?

3. Find r_{π} matrix = ?

Step 2: Compute the policy transition matrix

Row 1 (Sunny):

- $P\pi(1,1) = ??$
- $P\pi(1,2) = ??$

Row 2 (Cloudy):

- $P\pi(2,1) = ??$
- $P\pi(2,2) = ??$

$$4. Find P_{\pi} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix}$$

Step 3: Write the Bellman expectation equations $v_{\pi}(sunny)$

General Form:

$$v_{\pi}(s) = r_{\pi}(s) + \gamma \sum P_{\pi}(s, s') v_{\pi}(s')$$

5. $find v_1 = ??$

Step 3: Write the Bellman expectation equations $v_{\pi}(cloudy)$

General Form:

$$v_{\pi}(s) = r_{\pi}(s) + \gamma \sum P_{\pi}(s, s') v_{\pi}(s')$$

6. Find $v_2 = ?$

Step 4: Solve for $v_{\pi}(cloudy)$

7. $v_{\pi}(cloudy) = ??$

Step 4: Solve for $v_{\pi}(sunny)$

8. $v_{\pi}(sunny) = ???$

Step 5: Write the Bellman optimality equations

General Form:

$$v_*(s) = \max_{a} \{R(s, a) + \gamma s' \sum P(s' \mid s, a)v * (s')\}$$

Find Sunny (v_1) using Go to School:

$$9. v_*(sunny) = ???$$

Find Cloudy (v_2) using Go to School:

10.
$$v_*(cloudy) = ???$$

Step 6: Solve for v_* (cloudy)

11. v_* (cloudy) = ???

Step 6: Solve for v_* (sunny)

12. v_* (cloudy) = 21.538

Step 7: Solve for q_*

13. q(1, School) = ??

14.q(1, Home) = ??

15.q(2, School) = ??

16.q(2, Home) = ??