

深度學習 Pytorch手把手實作 AutoEncoder

黃志勝 (Tommy Huang) 義隆電子 人工智慧研發部 國立陽明交通大學 AI學院 合聘助理教授 國立台北科技大學 電資學院合聘助理教授

Introduction

- AutoEncoder (AE) 和 Generative Adversarial Network(GAN)都屬於unsupervised learning的領域。
- •兩種演算法看似很像,很多人會拿這兩種方法比較資料生成的效能。

訓練AE基本上資料是不需要「標註(Labeling)」。 透過輸入盡量和輸出逼近的方式,讓神經網路架構自行學習中間的權重。

Stacked AutoEncoder (AE)

*輸入和輸出大小是一致即可。

Stacked AE/AE 範例圖片的 Hidden數量可為任意,數量不 一定要比輸入或是輸出少,範 例圖純粹是我不想畫太多。

- ·那AE有什麼用? ANS: 有三個重要功能
- AE用處就是學1. pretrained weighted。

假設我們設計一個神經網路,如右圖,然後假設W1和W2參數有1W個。 我們收集的數據有1W筆。 但標註資料只有100筆。

我們用100筆資料去訓練一個1W筆參數的神經網路,訓練模型前的權重隨機生成,結果一定有問題。 所以可以我們可以善用那1W筆數據。

1W筆數據訓練AE

100筆數據來訓練這個網路

- · 那AE有什麼用? ANS: 有三個重要功能
- AE用處就是學2. Feature representation.

Note: 後續的Stacked AE, VAE(Variational AE), DAE(Denoise AE)都屬於此架構的變形:

紅色那塊就是「編碼後特徵」,所以資料特性(Embedding features)越像的則在此Embedding space會越接近。 讓資料自行進行物以類聚的學習。

- ·那AE有什麼用? ANS: 有三個重要功能
- AE用處就是學 3. Data Generation.

Embedding Features 2

假設Embedding feature只有兩個。右圖為在Embedding Space的數字Decoder回圖片的結果。

Embedding Features 1

只要在輸入圖片的部分加上雜訊,經由AE的處理後,輸出的 \hat{x} 跟原本的x越接近,代表這個AE可以做到去雜訊的功能,這也就是Denoise Auto-encoder

Hand-by-hand pytorch implementation.

- Here I will build a MLP-based AutoEncoder for MNIST.
- A single digit in MNIST is 28*28 8bits Gary image.
- If we flatten 2D image with 1D array, which contains with 784 elements.

2D image flatten to 1D array

1	2	3
4	5	6
7	8	9

1D array

2ch 2D image

1	2	3			
4	5	6	10	11	12
7	8	9	13	14	15
			16	17	18

1 2 3 4 5 6 7 8 9 10 11 12 13 1	14 15	16 17	18
---------------------------------	-------	-------	----

AE model

