Requirements Specification Document for Ratatouille

1 Introduction

Purpose: This document outlines the requirements for the development of the Ratatouille application.

Scope: Ratatouille is aimed at helping dorm students to cook healthier meals by generating recipes based on the ingredients they have on hand.

2 Functional Requirements

2.1 User Registration and Authentication:

Users should be able to register for an account and log in securely.

2.2 Ingredient Input:

Users should be able to input the ingredients available in their kitchen.

2.3 Recipe Generation:

The application should generate recipes based on the input ingredients.

2.4 Filtering Options:

Users should be able to filter recipes based on dietary preferences (e.g., vegetarian, gluten-free) and cuisine type.

2.5 Recipe Details:

Each recipe should display detailed instructions, ingredients, and nutritional information.

2.6 Save and Favorite Recipes:

Users should be able to save and favorite recipes for future reference.

2.7 Search Functionality:

Users should be able to search for specific recipes or ingredients.

3 Non-functional Requirements

3.1 Performance:

The application should be responsive and capable of handling concurrent user requests.

3.2 Usability:

The user interface should be intuitive and user-friendly.

3.3 Security:

User data should be securely stored and transmitted.

3.4 Scalability:

The application should be designed to accommodate a growing user base.

3.5 Compatibility:

The application should be compatible with various devices and screen sizes.

4 Constraints and Assumptions

Constraints: Limited development timeline due to semester deadlines. **Assumptions:** Users will have access to internet connectivity for using the application.

5 Acceptance Criteria

User Acceptance:

- ♦ Users can successfully register, log in, and input ingredients.
- \diamond Users receive recipe suggestions based on input ingredients.
- ♦ Users can filter and view detailed recipe information.
- ♦ Users can save and favorite recipes.

Functional Acceptance:

- ♦ The application meets specified performance benchmarks.
- ♦ The application's user interface is intuitive and easy to navigate.
- ♦ User data remains secure throughout the application's usage.

6 Dependencies

APIs and Libraries: Dependency on external APIs for recipe generation and nutritional information.

Development Tools: Dependency on specific programming languages and frameworks.

7 Conclusion

Ratatouille aims to address the challenges faced by dorm students in making healthy cooking choices. By providing a user-friendly platform for generating recipes, the application seeks to promote balanced living and self-sufficiency among dorm communities.

Ratatouille Application Design Specification

1. Introduction

1.1 Problem Identification

Dorm students face challenges in preparing healthy meals due to limited time and cooking experience, leading to unhealthy eating habits and unbalanced diets.

1.2 Background

Dorm students often struggle to decide what to cook with the ingredients on hand, given time constraints and limited cooking experience.

1.3 Stakeholders

The primary stakeholders are individuals living alone, especially dorm students.

1.4 Current Impact

The current impact involves significant spending on unhealthy restaurant food, time wasted searching for recipes, and the adverse effects of unbalanced diets.

1.5 Existing Attempts

While solutions like "SuperCook - Recipe Generator" exist, they lack advanced features and fail to fully address the problem.

2. Define the Solution

2.1 Brainstormed Solution

Introducing "Ratatouille," an application allowing users to input available ingredients, generating recipes with filtering options based on preferences.

2.2 Feasibility Criteria

Selection criteria include impact, innovation, and technical feasibility. The application must be user-friendly, efficient, and capable of generating diverse recipes.

2.3 Demo Plan

A demo of "Ratatouille" will be presented by the end of the semester, featuring a working prototype, user feedback, and future development plans.

3. System Architecture

3.1 Components

- User Interface: Responsive and intuitive interface for seamless user interaction.
- Recipe Database: A comprehensive database with diverse recipes and nutritional information.
- Algorithm: Advanced algorithm for recipe generation based on user-input ingredients and preferences.
- User Profile: Secure user profiles for personalized experiences and saved preferences.

3.2 Technologies

- Frontend: React.js for a dynamic and responsive UI.
- Backend: Node.js for server-side development.
- Database: Database Source for storing recipes and user data.
- Algorithm: Machine learning algorithms for recipe recommendations.

4. Features

4.1 Ingredient Input

Users can input available ingredients through text or image recognition.

4.2 Recipe Generation

The application generates diverse recipes based on input ingredients, considering user preferences.

4.3 Filtering Options

Users can filter recipes based on dietary restrictions, cuisine preferences, or cooking time.

4.4 Nutritional Information

Each recipe displays nutritional information to help users make informed choices.

4.5 User Profiles

Secure user profiles to save preferences, favorite recipes, and track cooking journey.

5. Development Plan

5.1 Milestones

- Milestone 1: Frontend development and basic backend setup.
- Milestone 2: Recipe database integration and algorithm implementation.
- Milestone 3: User profile functionality and additional features.
- Milestone 4: Beta testing and bug fixing.
- Milestone 5: Final demo and launch.

5.2 Team Roles

- Project Manager
- Frontend Developer
- Backend Developer
- Database Administrator
- Algorithm Specialist

6. Conclusion

"Ratatouille" aims to enhance dorm students' well-being by promoting healthy cooking choices. The application strives to address time and experience limitations, fostering a culture of self-sufficiency and balanced living within dorm communities.