Matemática Discreta y Lógica Matemática

Doble Grado Ingeniería Informática - Ciencias Matemáticas

Hoja 3.1. - Ejercicios básicos sobre Conjuntos

Curso 2018/2019

1. Razona cuáles de las afirmaciones que siguen son verdaderas y cuáles falsas:

a) $1 \in \{1\}$

b) $\{1\} \subseteq \{1\}$

c) $\{1\} \in \{1\}$

 $d) \emptyset \in \emptyset$

e) $\{1\} \subseteq \{\{1\}\}$

f) $\{1\} \in \{\{1\}\}\$ j) $\emptyset \in \{1\}$

g) $\emptyset \subseteq \emptyset$

h) $\emptyset \subseteq \{\emptyset\}$

i) $\emptyset \subseteq \{1\}$

 $k) \{\emptyset\} = \emptyset$

1) $\emptyset \in \{\emptyset\}$

2. Sean a, b objetos cualesquiera. Razona que si $a \in \{\{b\}\}\$, entonces $b \in a$.

3. Construye dos conjuntos A, B tales que $A \in B$ y $A \subseteq B$.

4. De las cuatro afirmaciones que se presentan, para A, B y C conjuntos cualesquiera no vacíos, demuestra que únicamente una es cierta y pon contraejemplos para las otras tres, que son falsas:

a) Si $A \in B$ y $B \subseteq C$, entonces $A \in C$.

b) Si $A \in B$ y $B \subseteq C$, entonces $A \subseteq C$.

c) Si $A \subseteq B$ y $B \in C$, entonces $A \in C$.

d) Si $A \subseteq B$ y $B \in C$, entonces $A \subseteq C$.

5. A partir de un conjunto cualquiera A, definimos $A' = A \cup \{A\}$. Enumera los elementos de los siguientes conjuntos \emptyset' , \emptyset'' y \emptyset''' .

6. Utilizando la operación introducida en el ejercicio anterior, definimos $A^{(n)}$ con $n \in \mathbb{N}$ mediante $A^{(0)} = A$; $A^{(n+1)} = A^{(n)'}$. Indica cuántos elementos tiene $\emptyset^{(n)}$ y pruebalo por inducción.

7. Siendo A, B dos conjuntos, demuestra que si dos cualesquiera de los enunciados siguientes son verdaderos, también lo será forzosamente el tercero.

a) A y B son disjuntos

b) $A \subseteq B$

c) $A = \emptyset$

8. Dados los conjuntos $A = \{1, \{2\}\}, B = \{1, 2, \{1, 2\}\},$ enumera cada uno de los conjuntos siguientes:

d) $B \setminus A$

a) $A \cup B$ b) $A \cap B$ c) $A \setminus B$ e) $\mathcal{P}(A)$ f) $B \cap \mathcal{P}(A)$ g) $A \times B$

h) $(A \times B) \cap (B \times A)$

9. Sean $X,\,Y$ y Z tres conjuntos disjuntos entre sí. Demuestra que si los conjuntos A y B cumplen que $A \subseteq X \cup Y$ y $B \subseteq X \cup Z$, entonces $A \cap B \subseteq X$.

10. Sean A, B, X tres conjuntos. Demuestra que las tres condiciones siguientes son equivalentes:

a) $X \subseteq A \cup B$

b) $(X \setminus A) \cap (X \setminus B) = \emptyset$ c) $(X \setminus A) \subseteq B$

11. Enumera los conjuntos: $\mathcal{P}(\emptyset)$, $\mathcal{P}(\mathcal{P}(\emptyset))$ y $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.

12. Definimos la sucesión de conjuntos

 $A_k = \{ \{ m \in \mathbb{N} \mid m < n \} \mid n \in \mathbb{N}, n \le k \}$ (con $k \in \mathbb{N}$)

y el conjunto $B = \{ \{ m \in \mathbb{N} \mid m < n \} \mid n \in \mathbb{N} \}$

a) Enumera A_0 , A_1 y A_2 .

b) Demuestra que $A_k \subseteq B$ para todo $k \in \mathbb{N}$.

c) Demuestra que $\emptyset \in A_k$ para todo $k \in \mathbb{N}$.

13. Para cada $k \in \mathbb{N}$, consideraremos los conjuntos

$$A_k = \{ n \in \mathbb{N} \mid n \le k \}$$

$$B_k = \{ n \in \mathbb{N} \mid n > k \}$$

Determina la unión e intersección de las siguientes familias:

$$\bigcup \{A_k \mid k \in \mathbb{N}\} \qquad \qquad \bigcap \{A_k \mid k \in \mathbb{N}\} \\
\bigcup \{B_k \mid k \in \mathbb{N}\} \qquad \qquad \bigcap \{B_k \mid k \in \mathbb{N}\}$$

- 14. Sea $\mathcal C$ una familia no vacía de conjuntos. Demuestra:
 - a) Para todo $A \in \mathcal{C}, A \subseteq \bigcup \mathcal{C}$.
 - b) Si B es un conjunto tal que $A \subseteq B$ para todo $A \in \mathcal{C}$, entonces $\bigcup \mathcal{C} \subseteq B$.
 - c) Para todo $A \in \mathcal{C}, \bigcap \mathcal{C} \subseteq A$.
 - d) Si B es un conjunto tal que $B \subseteq A$ para todo $A \in \mathcal{C}$, entonces $B \subseteq \bigcap \mathcal{C}$.
- 15. Demuestra que, para todo $A, B, C \neq \emptyset$, se cumple que

$$((A \cap C) \subseteq (B \cap C)) \ \land \ (A \cap \backslash C) \subseteq (B \cap \backslash C)) \implies A \subseteq B$$

- 16. Prueba o refuta mediante un contraejemplo, según proceda, cada una de las siguientes afirmaciones:
 - a) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$
 - b) $A \setminus (B \setminus C) = (A \setminus B) \setminus C$. Indica si se verifica algún contenido.
 - $c) \ A \setminus (B \cup C) = (A \setminus B) \setminus C$
 - $d) \ (A \cap B) \setminus C = A \cap (B \setminus C) = (A \setminus C) \cap B$
 - $e) \ (A \times B) \setminus (C \times D) = ((A \setminus C) \times B) \cup (A \times (B \setminus D))$
 - f) $A \oplus (B \cap C) = (A \oplus B) \cap (A \oplus C)$
 - g) $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
 - $h) \ A \subseteq B \implies A \oplus C \subseteq B \oplus C$