Recommender Systems

Data Science Dojo

Overview

- Introduction
 - Collaborative vs Content-based
- How do they work?
 - Data structure
 - Ranking by similarity
 - Predicting
 - Evaluation
- Advantages/Disadvantages
- Example using Azure ML

INTRODUCTION

Recommendation Systems

What are Recommendation Systems?

 Automated systems to filter and recommend products based on users' interest and taste.

Designed to solve the information overload problem

Why recommendation systems?

- For Customers
 - Narrow down the set of choices
 - Discover new, interesting things
 - Save time
- For Business
 - Increase the number of items sold
 - Sell more diverse items
 - Better understand what the user wants

Two Types of Recommenders

Two Types of Recommenders

Collaborative

- 'Give me items that people like me enjoy'
- Wisdom of the crowds
- Widely applicable

Content-Based

- 'Give me items similar to items I like'
- Content analysis based
- Related to Information Retrieval

Two Types of Recommenders

Collaborative

- Users, Items, & Ratings
- Use Ratings of similar Users to recommend unseen Items

Content-Based

- User & Item profiles
- Use overlap of User and Item characteristics to recommend unseen items

Example: Netflix

Mind-bending Movies

STANLEY KUBRICK'S

Example: Social Media & Search

Example: Pandora

Example: Amazon

data science for everyone —

DATA STRUCTURE

Data Structure

- What kind of data?
 - Collaborative
 - Ratings of Items by Users
 - Content-based
 - Characteristic profiles of Users and Items

Data Structure - Collaborative

Alice	5	3	4	4	(5)
Bob	3	1	2	3	3
Chris	4	3	4	3	5
Donna	3	3	1	5	4
Evi	1	5	5	2	1

Data Structure – Content-based

item/User	Dramar	Comeays	Adventure?	Romances
The Godfather	5	1	2	1
Titanic	4	3	2	5
Lord of the Rings	4	2	5	1
Dumb & Dumber	1	5	2	2
Spirited Away	5	3	5	2
Alice	5	4	1	4
Bob	3	1	1	1
Chris	4	2	5	2

Content-based: User Profiles

User Provided

- Ask for preferences
- Needs accounts
- Often low completion rates

Automated Generation

- Cookies follow behavior
- No user persistence (often)
- Loss in translation

Content-based: Item Profiles

Expert Labeling

- Assign keywords based on content
- May be provided by creators/distributors
- Crowd sourcing?

Automated Indexing

- Used for text documents
- Based on word content of document set
- No expert knowledge involved

SIMILARITY

Similarity Measurements

- Given two vectors \vec{x} and \vec{y} with n components each
 - Ratings of User x and User y
 - Ratings for Item x and Item y
 - Profiles of User x and Item y
- How similar are the Users/Items?

Similarity Measurements

Pearson's Correlation

$$sim(\vec{x}, \vec{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Cosine Similarity

$$sim(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| * |\vec{y}|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

Collaborative: User-Based

- Goal: Predict User u's rating on a movie m they haven't seen
 - Find the N most similar Users to u who have seen m
 - Use their ratings to predict u's rating

Collaborative: User-based

Which metric should we use?

Alice	5	3	4	4	?	
Bob	3	1	2	3	3	•
Chris	4	3	4	3	5	•
Donna	3	3	1	5	4	•
Evi	1	5	5	2	1	

Collaborative: User-based

Collaborative: User-based

Pearson's correlation corrects for varied baselines

Alice	5	3	4	4	?
Bob	3	1	2	3	3
Chris	4	3	4	3	5
Donna	3	3	1	5	4
Evi	1	5	5	2	1

sim=0.85 sim=0.90 sim=0.70 sim=0.79

Collaborative: Item-based

- Alternate approach:
 - Use the similarity between items (and not users) to make predictions
 - Look for movies that are similar to movie m
 - Take **Alice**'s ratings for these items to predict the rating for movie m

Collaborative: Item-based

Which metric should we use?

Alice	5	3	4	4	?
Bob	3	1	2	3	3
Chris	4	3	4	3	5
Donna	3	3	1	5	4
Evi	1	5	5	2	1

sim = ?

sim = ?

sim = ?

sim = ?

Collaborative: Item-based

Cosine similarity allows for objective good/bad

Alice	5	3	4	4	?
Bob	3	1	2	3	3
Chris	4	3	4	3	5
Donna	3	3	1	5	4
Evi	1	5	5	2	1

sim=0.99

sim=0.74

sim=0.72

sim=0.93

Content-based: Similarity

- Goal: Return a recommendation list of items for each user
 - Find similarity of each User to each Item
 - Order Items by similarity

Content-based: Similarity

Item/User	Drama?	Comedy?	Adventure?	Romance?	
The Godfather	5	1	2	1	
Titanic	4	3	2	5	
Lord of the Rings	4	2	5	1	
Dumb & Dumber	1	5	2	2	
Spirited Away	5	3	5	2	
Alice	5	4	1	4	4
Bob	3	1	1	1	
Chris	4	2	5	2	

Content-based: Similarity

Alice	0.83	0.96	0.72	0.79	0.83
Bob	0.99	0.86	0.85	0.59	0.91
Chris	0.87	0.82	0.99	0.69	0.99

- Cosine similarity doesn't erase baselines
- Predict order, not exact rating

PREDICTIONS

Collaborative: Predictions

- Use "Aggregation Function"
- Choose N nearest neighbors to User u
- Combine each neighbor j's rating on Item i $(r_{j,i})$
- Simple

•
$$r_{u,i} = \frac{1}{N} \sum_{j=1}^{N} r_{j,i}$$

- Weighted & Centered
 - $r_{u,i} = \overline{r_u} + \alpha \sum_{j=1}^{N} sim(j, u)(r_{j,i} \overline{r_j})$

Content-based: Predictions

- Simple
 - Rank in order of similarity
- Information retrieval techniques
 - Well studied, wide diversity of models
 - Classification algorithms

EVALUATION

Evaluating Recommendation

Mean Absolute Error (MAE)
 computes the deviation between predicted ratings and actual ratings

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

 Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2}$$

Metrics

- Order matters, not exact rating value
- Graded Relevance
 - Have humans assign scores to possible results
 - Ideal results will be ordered by relevance, high to low
- Discounted cumulative gain (DCG)
 - Logarithmic reduction factor

$$DCG_N = rel_1 + \sum_{i=2}^{N} \frac{rel_i}{\log_2 i}$$

Where:

- *N* is the length of the recommendation list
- rel; returns the relevance of recommendation at position i datascreencedoio

Metrics

- Ideal discounted cumulative gain (IDCG)
 - DCG value when items are ordered perfectly

$$IDCG_N = rel_1 + \sum_{i=2}^{N} \frac{rel_i}{\log_2 i}$$

Normalized discounted cumulative gain (nDCG)

$$nDCG_{pos} = \frac{DCG_{pos}}{IDCG_{pos}}$$

Normalized to the interval [0..1]

ADVANTAGES/DISADVANTAGES

Advantages

Collaborative

- Wide applicability
- Serendipity
- Simple

Content-based

- No community needed
- Transparency
- Good cold start

Disadvantages

Collaborative

- Poor cold start
- Grey Sheep
 - Shared accounts
- Shilling
- Poor scaling

Content-based

- Limited profiles
 - New users
 - Cost of expert labeling
- Over-specialization
 - Lack of diversity

Back to Netflix

QUESTIONS

EXAMPLE USING AZURE ML

