Филиал МИФИ, Ташкент

МОД-КП 06,07: Нестационарное уравнение теплопроводности

Э. Н. Цой

ФТИ АН РУз, Ташкент, Узбекистан

весна, 2022

Пространственно-временная сетка

$$c\rho \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) - \frac{2\alpha}{R} (T - T_{\infty}) + q_{\text{BH}}(x, t), \quad x = [0, 1],$$

Начальные условия: $u(x,0) = u_0(x)$.

Граничные условия: $u(0,t) = T_1, \ u(L,t) = T_2.$ 1-го рода.

Численный метод — частное решение, при данных НУ и ГУ. Пространственная или пространственно-временная сетка.

Определяем $u_i^j = u(x_j, t_k)$.

40 > 40 > 42 > 42 > 2 900

Конечные разности

Первая производная:

$$u'(x) \approx \frac{\Delta u}{\Delta x} = \frac{u(x) - u(x - h)}{h} = \frac{u_j - u_{j-1}}{h}.$$

Вторая производная:

$$u''(x) \approx \frac{\Delta u'}{\Delta x} = \frac{1}{h} \left[\frac{u(x+h) - u(x)}{h} - \frac{u(x) - u(x-h)}{h} \right] = \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2}.$$

4日 → 4個 → 4 厘 → 4 厘 → 1 型 の 9 G G

Конечные разности

Первая производная

$$u'(x_j) \approx \frac{u_j - u_{j-1}}{h} \approx \frac{u_{j+1} - u_j}{h} + O(h) \approx \frac{u_{j+1} - u_{j-1}}{2h} + O(h^2).$$

$$u(x_{j} - h) = u(x_{j}) - u'(x_{j})\frac{h}{1} + u''(x_{j})\frac{h^{2}}{2} - u'''(x_{j})\frac{h^{3}}{6} + \dots$$

$$u(x_{j}) = u(x_{j}).$$

$$u(x_{j} + h) = u(x_{j}) + u'(x_{j})\frac{h}{1} + u''(x_{j})\frac{h^{2}}{2} + u'''(x_{j})\frac{h^{3}}{6} + \dots$$

Три параметра: u_{j-1}, u_j, u_{j+1} , три неизвест. $u(x_i), u'(x_i), u''(x_i)$. $(u'''(x_i))$ определить нельзя, нужно больше точек)

Конечные разности

Первая производная

$$u'(x_j) \approx \frac{u_j - u_{j-1}}{h} \approx \frac{u_{j+1} - u_j}{h} + O(h) \approx \frac{u_{j+1} - u_{j-1}}{2h} + O(h^2).$$

Вторая производная

$$u''(x_j) \approx \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + O(h^2).$$

"Левая"

$$\begin{array}{cccc}
\bigcirc & - & - & - & \bigcirc & & \bigcirc \\
X_{i-1} & X_i & X_{i+1}
\end{array}$$

"Правая"

"Центральная"

Уравнение теплопроводности

$$c\rho\frac{\partial T}{\partial t} = \frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right) - \frac{2\alpha}{R}(T-T_{\infty}) + q_{\text{bH}}(x,t), \quad x = [0,1],$$

Начальные условия: $u(x,0) = u_0(x)$.

Граничные условия: $u(0,t)=T_1,\ u(L,t)=T_2.$ 1-го рода.

Всего N точек по x.

Вычислять: (N-2) точки.

 $u(x_j, t_k) \perp (x, t)$.

 ${\sf C}$ лой t=0 задан. Если найдем слой $t_2= au$, задача решена.

Уравнение теплопроводности

Сетка и неизвестная функция.

Дано: u(x,0) при t=0, и значения на границе.

Найти: u(x,t) на всей сетке.

Уравнение теплопроводности

Найденное решение.

Явная схема

$$u_t = au_{xx} + q_{\text{BH}}(x,t), \quad u(x,0) = u_0(x), \quad u(0,t) = T_1, \ u(L,t) = T_2.$$

Дискретизация по x и t.

$$u_{t}pprox rac{u_{j}^{k+1}-u_{j}^{k}}{ au}, \ u_{xx}pprox rac{u_{j+1}^{k}-2u_{j}^{k}+u_{j-1}^{k}}{h^{2}}.$$

Шаблон. Т

Явная схема для теплопроводности

$$\frac{u_j^{k+1} - u_j^k}{\tau} = a \frac{u_{j+1}^k - 2u_j^k + u_{j-1}^k}{h^2} + q_{\text{вн}}(x_j, t_k).$$

$$j = 2, \dots, N-1, \quad k = 0, M-1. \quad u_1^{k+1} = T_1, \quad u_N^{k+1} = T_2.$$

Явная схема: Реализация

Основной скрипт:

```
Задать начальные условия

Цикл по k = 2, M % цикл по временным слоям unew= he_step(x,t,u,h,dt);
 t = t + dt;
 u = unew; % сделать новый слой текущим Если k кратно nout
 Вывод результатов конец_если конец_цикла
```

Явная схема: Реализация

Явная схема для теплопроводности

$$u_j^{k+1} = u_j^k + \tau \left[a \frac{u_{j+1}^k - 2u_j^k + u_{j-1}^k}{h^2} + q_{\text{BH}}(x_j, t_k) \right].$$

```
function unew = he_step(x,t,u,h,dt)

p = dt*a/h^2;

Цикл по j = 2, N-1 % по внутр.точкам х

unew(j)= u(j)+p*(u(j+1)-2*u(j)+u(j-1))+tau*q(x_j,t_k);
конец_цикла

unew(1) = T1; unew(N) = T2;
конец_функции
```

Аппроксимация и устойчивость

Погрешность аппроксимации (невязка) показывает насколько хорошо разностное уравнение аппроксимирует исходное уравнение в ЧП.

$$\delta_A = \left(-\frac{\tau}{2}y_{tt} + \frac{ah^2}{12}y_{xxxx}\right)_j = O(\tau + h^2).$$

Условие устойчивости явной схемы

$$p = a \frac{\tau}{h^2} < \frac{1}{2}.$$

Неявная схема

$$\dfrac{u_j^{k+1}-u_j^k}{ au}=a\dfrac{u_{j+1}^k-2u_j^k+u_{j-1}^k}{h^2}+q_{ ext{\tiny BH}}(x_j,t_k).$$
 (явная схема)

$$u_tpprox rac{u_j^{k+1}-u_j^k}{ au_{j+1}}, \ u_{xx}pprox rac{u_{j+1}^{k+1}-2u_j^{k+1}+u_{j-1}^{k+1}}{h^2}.$$
Шаблон: au

Неявная схема для теплопроводности

$$\frac{u_j^{k+1} - u_j^k}{\tau} = a \frac{u_{j+1}^{k+1} - 2u_j^{k+1} + u_{j-1}^{k+1}}{h^2} + q_{\text{BH}}(x_j, t_k).$$

$$i=2,\ldots,N-1, \quad k=0,M-1, \quad u_1^{k+1}=T_1, \quad u_N^{k+1}=T_2.$$

Значения функции на границах

Граничные условия

2-го рода:
$$u_x(0,t)=q(t)$$
, 3-го рода: $au_x(0,t)+bu(0,t)=q_L(t)$.

Аппроксимация ГУ 3-го рода

$$a\frac{u_2 - u_1}{h} + bu_1 = q_L,$$

Значение функции на левой границе

$$u_1^{k+1} = \frac{au_2^{k+1} - h \, q_L}{a - hh} + O(h).$$

Самостоятельно: Значение функции на правой границе.

Проблема: аппроксимация ГУ = O(h), аппроксимация уравнения = $O(h^2)$.

- (□) (個) (E) (E) (E) (O)

Неявная схема

Проблема:

При нахождении (k+1)-го слоя, исп. точки на этом слое.

Решение:

Сводится к решению системы линейных уравнений (N,N).

Аппроксимация – та же, что и у явной схемы.

Безусловная устойчивость – при любом соотношении au и h.

Неявная схема

Другая неявная схема для теплопроводности

$$\begin{split} \frac{u_{j}^{k+1}-u_{j}^{k}}{\tau} &= a\left[\sigma\left(u_{j+1}^{k}-2u_{j}^{k}+u_{j-1}^{k}\right)/h^{2}+\right.\\ &\left.\left(1-\sigma\right)\left(u_{j+1}^{k+1}-2u_{j}^{k+1}+u_{j-1}^{k+1}\right)/h^{2}\right] + q_{\text{\tiny BH}}(x_{j},t_{k}). \end{split}$$

$$i = 2, \dots, N-1, \quad k = 0, M-1. \quad u_1^{k+1} = T_1, \quad u_N^{k+1} = T_2.$$

При $\sigma=1$ – явная схема, при $\sigma=0$ – неявная схема, при $\sigma=0.5$ – схема Кранка-Николсона.

Методы построения разностных схем

- Метод разностной аппроксимации (рассмотренный).
- Интегро-интерполяционный метод (метод баланса).
- Метод неопределенных коэффициентов.

Для любой построенной схемы надо проверять порядок аппроксимации и условие устойчивости.

Также необходимо выполнять различные законы сохранения и условия согласования.

Вопросы для самопроверки

- 1. Что такое пространственно-временная сетка?
- 2. Запишите приближенные формулы для первой и второй производной через конечные разности.
- 3. Выведите приближенные формулы для первой и второй производной, используя разложения возле точки x_i .
- 4. Каков порядок погрешности при аппроксимации первой производной с помощью левой, правой, и центральной конечной разностью.
- 5. Запишите явную схему для уравнения теплопроводности с ГУ 1-го рода. Каков шаблон явной схемы?
- 6. Как определять значения функции на границах для граничных условий 2-го и 3-го родов?
- 7. Запишите схему Кранка-Николсона для уравнения теплопроводности с ГУ 1-го рода. Каков шаблон этой схемы?