What is claimed is:

1. A control packet processing apparatus receiving a control packet used to exchange a variety of information among devices that support a spanning tree protocol, comprising:

a receiving device receiving the control packet;

- a buffer device storing the received control packet; and
- 10 a control device autonomously transferring the control packet stored in the buffer device to a processing unit re-configuring a communication route of a spanning tree protocol in a specific cycle when no control packet is received for a specific period.

15

- 2. A control packet processing apparatus receiving a control packet used to exchange a variety of information among devices that support a spanning tree protocol, comprising:
- 20 a generation device generating a control packet instructing a receiving side device to stop transmitting the control packet to prevent the re-configuration of the communication route of a spanning tree protocol when the receiving side device receives no control packet 25

for a specific period; and

a transmitting device transmitting the generated control packet.

3. A control packet processing apparatus for receiving a control packet used to exchange a variety of information among devices that support a spanning tree protocol, comprising:

an input device inputting an instruction to start an automatic transmission of a control packet; and

a transmitting device autonomously transmitting a control packet for a specific period at specific intervals from when a processing unit outputting a control packet transmit request stops until the processing unit restarts according to the instruction.

15

20

4. The control packet processing apparatus according to claim 3, wherein

said input device inputs stop instruction to stop
the automatic transmission of the control packet, and
said transmitting device stops autonomously
transmitting the control packet according to the stop
instruction.

5. The control packet processing apparatus according25 to claim 3, further comprising

a table processing device, wherein

said transmitting device has a table storing a correspondence relationship between an address and a port of a frame transferred according to the spanning tree protocol, and

the table processing device discards a table flush instruction accompanying the re-configuration of the communication route of a spanning tree protocol while said transmitting device is autonomously transmitting the control packet.

6. The control packet processing apparatus according to claim 3, 4 or 5, which prevents another device from detecting a change in the communication route of a spanning tree protocol, and recovers the communication route just before the stoppage of an operation of the processing unit when the processing unit stops or restarts.

20

25

5

10

7. The control packet processing apparatus according to claim 3, 4 or 5, further comprising

a receiving device normally receiving a control packet transmitted by another device while autonomously transmitting the control packet.

8. The control packet processing apparatus according to claim 7, wherein

said transmitting device monitors a receiving situation of a control packet transmitted from the another device, and stops the transfer of a data frame according to the spanning tree protocol when a change is detected.

10 9. The control packet processing apparatus according to claim 7, wherein

said transmitting device monitors a receiving situation of a control packet transmitted from the another device, and initializes the spanning tree protocol when a change is detected.

10. The control packet processing apparatus according to claim 7, wherein

said transmitting device monitors a receiving situation of a control packet transmitted from the another device, and modifies contents of a control packet autonomously transmitted according to a changed contents when contents of the received control packet change.

11. A storage medium on which is recorded a program for enabling the control packet processing apparatus to receive a control packet used to exchange a variety of information among devices that support a spanning tree protocol, said program comprising:

storing the received control packet in a buffer device; and

5

10

autonomously transferring the control packet stored in the buffer device to a processing unit re-configuring a communication route of a spanning tree protocol in a specific cycle when no control packet is received for a specific period.

- 12. The storage medium according to claim 11, wherein

 15 said transfer process includes generation of a

 pseudo-receiving trigger indicating the reception of
 a control packet in the specific cycle from when an
 instruction to stop generating the pseudo-receiving
 trigger is received until an instruction to stop the

 20 generation of the trigger is received, and transfer of
 the control packet stored in said buffer device to the
 processing unit every time the pseudo-receiving trigger
 is generated.
- 25 13. The storage medium according to claim 11, wherein

said program enables said control packet processing apparatus to start said transfer process when said control packet processing apparatus receives a control packet instructing said control packet processing apparatus to stop transmitting the control packet.

14. The storage medium according to claim 13, wherein said transfer process includes generation of a pseudo-receiving trigger indicating the reception of a control packet in the specific cycle, and transfer of the control packet stored in said buffer device to the processing unit every time the pseudo-receiving trigger is generated.

15

- 15. The storage medium according to claim 13, wherein said control packet processing apparatus receives a bridge protocol data unit as a control packet to be stored in said buffer device and receives a bridge protocol data unit containing a flag instructing a transmission stoppage as the control packet instructing the transmission stoppage.
- The storage medium according to claim 13, whereinsaid control packet processing apparatus receives

a bridge protocol data unit as a control packet to be stored in said buffer device and receives another control packet other than the bridge protocol data unit as the control packet instructing the transmission stoppage.

5

- 17. The storage medium according to claim 13, wherein when said control packet processing apparatus receives a control packet instructing said control packet processing apparatus to restart transmitting the control packet, said program enables said control packet processing apparatus to stop said transfer process.
- 18. The storage medium according to claim 17, wherein

 15 said control packet processing apparatus receives
 a bridge protocol data unit as the control packet to
 be stored in said buffer device, receives a bridge
 protocol data unit containing a flag instructing
 transmission stoppage as a control packet instructing

 20 transmission stoppage and receives a bridge protocol
 data unit containing a flag instructing transmission
 restart as a control packet instructing transmission
 restart.
- 25 19. The storage medium according to claim 17, wherein

said control packet processing apparatus receives a bridge protocol data unit as the control packet to be stored in said buffer device, and receives another control packet other than the bridge protocol data unit as both a control packet instructing transmission stoppage and a control packet instructing transmission restart.

- 20. The storage medium according to claim 13, wherein
 when said control packet processing apparatus
 receives a subsequent control packet, said program
 enables said control packet processing apparatus to stop
 said transfer process.
- 15 21. A storage medium on which is recorded a program for enabling the control packet processing apparatus to receive a control packet used to exchange a variety of information among devices that support a spanning tree protocol, said program comprising:
- generating a control packet instructing a transmission stoppage for the control packet to prevent a re-configuration of the communication route of a spanning tree protocol when no control packet is received for a specific period in the receiving side device; and

transmitting the generated control packet.

22. The storage medium according to claim 21, wherein said control packet processing apparatus transmits a bridge protocol data unit as a control packet to be transferred among devices, and generates a bridge protocol data unit containing a flag instructing a transmission stoppage as a control packet instructing transmission stoppage.

10

15

- 23. The storage medium according to claim 21, wherein said control packet processing apparatus transmits a bridge protocol data unit as a control packet to be transferred among devices, and generates another control packet other than the bridge protocol data unit as a control packet instructing transmission stoppage.
- 24. The storage medium according to claim 21, wherein when restarting control packet transmission, said said control packet processing 20 enables apparatus to further perform generation of a control instructing packet transmission restart and transmission of the control packet instructing transmission restart.

- 25. The storage medium according to claim 24, wherein said control packet processing apparatus transmits a bridge protocol data unit as a control packet to be transferred among devices, generates a bridge protocol data unit containing a flag instructing transmission stoppage as the control packet instructing transmission stoppage and generates a bridge protocol data unit containing a flag instructing transmission restart as the control packet instructing transmission restart.
- 26. The storage medium according to claim 24, wherein said control packet processing apparatus transmits a bridge protocol data unit as a control packet 15 to be transferred among devices, and generates another control packet other than the bridge protocol data unit as both the control packet instructing transmission stoppage and the control packet instructing transmission restart.

20

25

10

27. The storage medium according to claim 21, wherein said program enables said control packet processing apparatus to further restart the control packet transmission by transmitting a subsequent control packet.

28. A storage medium on which is recorded a program for enabling the control packet processing apparatus to receive a control packet used to exchange a variety of information among devices that support a spanning tree protocol, said program comprising:

inputting an instruction to start an automatic transmission of a control packet; and

instructing a transmitting device to autonomously
transmit a control packet for a specific period at
specific intervals from when a processing unit
outputting a control packet transmit request stops until
the processing unit restarts according to the
instruction.

15

20

25

29. A storage medium on which is recorded a program for enabling the control packet processing apparatus to receive a control packet used to exchange a variety of information among devices that support a spanning tree protocol, said program comprising

autonomously transmitting a control packet for a specific period at specific intervals from when a processing unit outputting a control packet transmit request stops until the processing unit restarts according to an instruction to start automatic

transmission of the control packet.

5

25

30. A carrier signal for carrying a program for enabling a control packet processing apparatus to receive a control packet used to exchange a variety of information among devices that support a spanning tree protocol, said program comprising:

storing the received control packet; and
autonomously transferring the control packet

10 stored in the buffer device to a processing unit
re-configuring a communication route of a spanning tree
protocol in a specific cycle when no control packet is
received for a specific period.

- 15 31. A carrier signal for carrying a program for enabling a control packet processing apparatus to receive a control packet used to exchange a variety of information among devices that support a spanning tree protocol, said program comprising:
- generating a control packet instructing a transmission stoppage of the control packet to prevent the re-configuration of the communication route of a spanning tree protocol when a receiving side device receives no control packet for a specific period; and

transmitting the generated control packet.

32. A carrier signal for carrying a program for enabling a control packet processing apparatus to receive a control packet used to exchange a variety of information among devices that support a spanning tree protocol, said program comprising:

inputting an instruction to start an automatic transmission of a control packet; and

instructing a transmitting device to autonomously
transmit a control packet for a specific period at specific intervals from when a processing unit outputting a control packet transmit request stops until the processing unit restarts according to the instruction to start the automatic transmission of the control packet.

33. A carrier signal for carrying a program for enabling a control packet processing apparatus to receive a control packet used to exchange a variety of information among devices that support a spanning tree protocol, said program comprising

20

25

autonomously transmitting a control packet for a specific period at specific intervals from when a processing unit outputting a control packet transmit request stops until the processing unit restarts

according to an instruction to start automatic transmission of the control packet.

34. A control packet processing method for receiving a control packet used to exchange a variety of information among devices that support a spanning tree protocol, comprising:

receiving the control packet;

15

20

25

storing the received control packet in a buffer 10 device; and

autonomously transferring the control packet stored in the buffer device to a processing unit re-configuration a communication route of a spanning tree protocol in a specific cycle when no control packet is received for a specific period.

35. A control packet processing method for receiving a control packet used to exchange a variety of information among devices that support a spanning tree protocol, comprising:

inputting an instruction to start an automatic transmission of a control packet; and

autonomously transmitting a control packet for a specific period at specific intervals from when a processing unit outputting a control packet transmit

request stops until the processing unit restarts according to the instruction to start the automatic transmission of the control packet.

5 36. A control packet processing apparatus for receiving a control packet used to exchange a variety of information among devices that support a spanning tree protocol, comprising:

receiving means for receiving the control packet;

buffer means for storing the received control packet; and

control means for autonomously transferring the control packet stored in the buffer device to a processing unit re-configuring a communication route of a spanning tree protocol in a specific cycle when no control packet is received for a specific period.

15

20

25

37. A control packet processing apparatus for receiving a control packet used to exchange a variety of information among devices that support a spanning tree protocol, comprising:

generation means for generating a control packet instructing a transmission stoppage of the control packet to prevent the re-configuration of a communication route of a spanning tree protocol when

a receiving side device receives no control packet for a specific period; and

transmitting means for transmitting the generated control packet.

5

15

38. A control packet processing apparatus for receiving a control packet used to exchange a variety of information among devices that support a spanning tree protocol, comprising:

input means for inputting an instruction to start an automatic transmission of a control packet; and

transmitting means for autonomously transmitting a control packet for a specific period at specific intervals from when a processing unit outputting a control packet transmit request stops until the processing unit restarts according to the instruction to start automatic transmission of the control packet.