

DEM VERTRAGE ER DIE INTERNATIONALE ZUSAWIWIENARDE.

PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

10/510686

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 14. August 2003 (14.08.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/067891 A1

[DE/DE]; Hollmuthstrasse 58, 69151 Neckargmünd (DE).

BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR,

(84) Bestimmungsstaaten (regional): europäisches Patent (AT,

HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

(51) Internationale Patentklassifikation7: 7/26, G02B 21/00

H04N 7/24,

(72) Erfinder; und (75) Erfinder/Anmelder (nur für US): SCHEK, Stefan

(21) Internationales Aktenzeichen:

PCT/EP03/00768

(22) Internationales Anmeldedatum:

25. Januar 2003 (25.01.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

(30) Angaben zur Priorität:

102 04 369.8

Deutsch

2. Februar 2002 (02.02.2002) DE

Veröffentlicht:

mit internationalem Recherchenbericht

(81) Bestimmungsstaaten (national): JP, US.

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): LEICA MICROSYSTEMS HEIDELBERG GMBH [DE/DE]; Am Friedensplatz 3, 68165 Mannheim Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR DATA PROCESSING IN A SCAN MICROSCOPE COMPRISING A FAST SCANNER AND SCAN MICROSCOPE COMPRISING A FAST SCANNER

(54) Bezeichnung: VERFAHREN ZUR DATENVERARBEITUNG IN EINEM SCANMIKROSKOP MIT SCHNELLEM SCAN-NER UND SCANMIKROSKOP MIT SCHNELLEM SCANNER

(57) Abstract: The invention relates to method according to which data blocks are recorded in real time by means of a fast scanner. The recorded data blocks are then transmitted to a data processing system (23) wherein the data blocks are processed depending on a frame burst rate (N). Transmission of the recorded data blocks to the data processing system also depends on the frame burst rate (N). The frame burst rate (N) may be fixed or variable. In any case it has to be made sure that the capacity of the data processing system (23) is utilized optimally. The frame burst rate (N) is selected by the user or by the data processing system (23) itself depending on the processing characteristics of the data processing system (23).

(57) Zusammenfassung: Das Verfahren nimmt Datenblöcke in Echtzeit mit einem schnellen Scanner auf. Übertragen werden die aufgenommenen Datenblöcke dann an ein Rechnersystem (23). Dabei erfolgt das Verarbeiten der Datanblöcke in Abhängigkeit von einem Frame Burst Verhältnis (N). Die Übertragung der aufgenommenen Datenblöcke an das Rechnersystem erfolgt in Abhängigkeit von Frame Burst Verhältnis (N). Das Frame Burst Verhältnis (N) kann fest oder variabel sein. In jedem Fall ist auf eine optimale Ausnutzung der Leistung des Rechnersystems (23) zu achten. Das Frame Burst Verhältnis (N) wird vom Benutzer oder dem Rechnersystem (23) selbst in Abhängigkeit von der Verarbeitungscharakteristik des Rechnersystems (23) gewählt.

20

<u>Verfahren zur Datenverarbeitung in einem Scanmikroskop mit schnellem</u> <u>Scanner und Scanmikroskop mit schnellem Scanner</u>

Die Erfindung betrifft ein Verfahren zur Datenverarbeitung in einem Scanmikroskop mit schnellem Scanner.

Ferner betrifft die Erfindung ein Scanmikroskop mit schnellem Scanner. Im besonderen betrifft die Erfindung ein Scanmikroskop mit einem schnellen Scanner, der aus einem Scanmodul, einem Positionssensor und mindestens einem Detektor besteht, mit einem Rechnersystem, mit mindestens einem dem Rechnersystem zugeordneten Peripheriegerät und mit einem 10 Eingabemittel.

In der noch nicht veröffentlichten Patentanmeldung DE 101 34 328.0 ist ein Verfahren zur Einstellung der Bilderfassung eines Mikroskops offenbart. Es erfolgt die Übertragung der Bilddaten vom einem Bilddatenerfassungselement an ein Speicherelement. An einen Kodierer werden Steuerparameter übergeben. Vor der Übertragung der Bilddaten aus dem Speicherelement an den Computer erfolgt eine Kodierung. Die kodierten und übertragenen Bilddaten werden im Computer verarbeitet. Die Erfindung hat den Nachteil, dass durch die Kodierung ein Teil der Bilddaten und deren Informationsgehalt verloren geht. Diese Daten sind für eine Auswertung unwiederbringlich verloren.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren zu schaffen, mit dem die Datenverarbeitung aller, von einem schnellen Scanner aufgenommenen Daten, möglich ist, ohne dass bei der Verarbeitung Verzögerungen auftreten.

Die objektive Aufgabe wird durch ein Verfahren gelöst, das die Merkmale des kennzeichnenden Teil des Patentanspruchs 1 aufweist.

15

20

25

30

Eine weitere Aufgabe der Erfindung ist es, ein Scanmikroskop zu schaffen, mit dem alle aufgenommenen Daten verarbeitet werden, ohne dass dabei eventuelle Verzögerungen durch das Rechnersystem die Datenverarbeitung aller Daten einschränken.

Obige Aufgabe wird durch ein Scanmikroskop gelöst, dass die Merkmale des kennzeichnenden Teils des Anspruchs 12 aufweist.

Die Erfindung hat den Vorteil, dass das mit den Verfahren das Aufnehmen von Datenblöcken in Echtzeit mit dem schnellen Scanner erfolgt. Übertragen werden die aufgenommenen Datenblöcke dann an ein Rechnersystem. Dabei erfolgt das Verarbeiten der Datenblöcke in Abhängigkeit von einem Frame Burst Verhältnis. Ebenso kann auch die Übertragung der aufgenommenen Datenblöcke an das Rechnersystem in Abhängigkeit von einem Frame Burst Verhältnis erfolgen. Dabei ist das Frame Burst Verhältnis derart gewählt, dass eine optimale Ausnutzung der Leistung des Rechnersystems erfolgt. Das Frame Burst Verhältnis wird vom Benutzer in Abhängigkeit von der Verarbeitungscharakteristik des Rechnersystems gewählt und bleibt während der Aufnahme der Datenblöcke konstant.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist, dass eine adaptive Regelung vorgesehen ist, die das Frame Burst Verhältnis variabel macht. Das Rechnersystem passt dann das Frame Burst Verhältnis an die gerade herrschenden Arbeitsverhältnisse in Rechnersystem oder an die Parametereinstellung des Scanmikroskops an. Zu Beginn der Datenaufnahme kann vom Benutzer ein Startwert für das Frame Burst Verhältnis vorgegeben werden. Ebenso kann das Rechnersystem einen Startwert auswählen und diesen dann entsprechend anpassen.

Das Frame Burst Verhältnis bestimmt die Frequenz der übertragenen Datenblöcke bzw. das Teilerverhältnis. Durch das Frame Burst Verhältnis wird das Rechnersystem an die momentane Leistung angepasst. Im Rechnersystem können zunächst alle Datenblöcke gespeichert werden und nur diejenigen Datenblöcke werden verarbeitet, die durch das variable "Frame Burst" Verhältnis bestimmt sind. Ebenso ist es vorteilhaft, dass an das Rechnersystem nur die Datenblöcke übertragen und vom Rechnersystem

verarbeitet werden, die dem von Benutzer vorgegebenen, festen Frame Burst Verhältnis entsprechen. Die noch nicht übertragenen Datenblöcke werden verzögert an das Rechnersystem übertragen und dort dann verarbeitet.

Weiter vorteilhafte Ausgestaltungen der Erfindung können den Unteransprüchen entnommen werden.

In der Zeichnung ist der Erfindungsgegenstand schematisch dargestellt und wird anhand der Figuren nachfolgend beschrieben. Dabei zeigen:

	Fig. 1	eine schematische Darstellung eines Scanmikroskops mit einem schnellen Scanner;
10	Fig. 2	eine schematische Darstellung der Übertragung der Daten von einem Echtzeitsystem auf ein nicht Echtzeitsystem, wobei die Frequenz der verarbeiteten Datenblöcke vorselektiert ist;
15	Fig. 3	ein Blockdiagramm einer ersten Ausführungsform der Erfindung, wie sie in Fig. 2 schematisch dargestellt ist;
20	Fig. 4	eine schematische Darstellung der Übertragung der Daten von einem Echtzeitsystem auf eine nicht Echtzeitsystem, wobei die Frequenz der verarbeiteten Datenblöcke an die Leistung des Rechnersystems anpassbar ist;
	Fig. 5	ein Blockdiagramm einer zweiten Ausführungsform der Erfindung, wie sie in Fig. 4 schematisch dargestellt ist;
0.5	Fig. 6	eine schematische Darstellung der Übertragung der Daten von einem Echtzeitsystem auf ein nicht
25		Echtzeitsystem, wobei die Frequenz der synchron übertragenen Datenblöcke vorselektiert ist und die nicht übertragenen Daten am Scannende asynchron zum Rechnersystem übertragen werden;
30	Fig. 7	ein Blockdiagramm einer dritten Ausführungsform der Erfindung, wie sie in Fig. 6 schematisch dargestellt ist;

10

15

20

25

30

Fig. 8 eine schematische Darstellung der Übertragung der Daten von einem Echtzeitsystem auf ein nicht Echtzeitsystem, wobei die Frequenz der synchron übertragenen Datenblöcke an das Rechnersystem angepasst ist und die nicht übertragenen Daten am Scannende asynchron zum Rechnersystem übertragen

Fig. 9 ein Blockdiagramm einer vierten Ausführungsform der Erfindung, wie sie in Fig. 8 schematisch dargestellt ist.

werden; und

In Fig. 1 ist das Ausführungsbeispiel eines konfokalen Scanmikroskops 100 schematisch gezeigt. Dies soll jedoch nicht als Beschränkung der Erfindung aufgefasst werden. Es ist dem Fachmann hinlänglich klar, dass die Erfindung konventionellen Mikroskop auch mit einem oder konventionellen Scanmikroskop realisiert werden kann. Der von mindestens einem Beleuchtungssystem 1 kommende Beleuchtungslichtstrahl 3 wird von einem Strahlteiler oder einem geeigneten Umlenkmittel 5 zu einem Scanmodul 7 reflektiert wird. Bevor der Beleuchtungslichtstrahl 3 auf das Umlenkmittel 5 trifft, passiert dieser ein Beleuchtungspinhole 6. Das Scanmodul 7 umfasst kardanisch einen aufgehängten Scanspiegel 9, der den Beleuchtungslichtstrahl 3 durch eine Scanoptik 12 und eine Mikroskopoptik 13 hindurch über bzw. durch ein Objekt 15 führt. Der Beleuchtungslichtstrahl 3 wird bei nicht transparenten Objekten 15 über die Objektoberfläche geführt. Ein Scanner wird als schneller Scanner bezeichnet, der die Daten schneller aufnimmt als sie von einem handelsüblichen Rechnersystem verarbeitet können. Bei biologischen Objekten 15 (Präparaten) oder transparenten Objekten kann der Beleuchtungslichtstrahl 3 auch durch das Objekt 15 geführt werden. Zu diesen Zwecken werden nichtleuchtende Präparate ggf. mit einem geeigneten Farbstoff präpariert (nicht dargestellt, da etablierter Stand der Technik). Dies bedeutet, dass verschiedene Fokusebenen des Objekts nacheinander durch den Beleuchtungslichtstrahl 3 abgetastet werden. Mit den Scanmodul 7 ist ein Positionssensor 11 verbunden, der die Positionsdaten der aufgenommenen Bilddaten bestimmt. Die nachträgliche Zusammensetzung Positionsdaten und der Bilddaten ergibt

10

15

20

25

30

dann einen zwei- oder dreidimensionalen Frame (bzw. Bild) des Objekts 15. Der vom Beleuchtungssystem 1 kommende Beleuchtungslichtstrahl 3 ist als durchgezogene Linie dargestellt. Das vom Objekt 15 ausgehende Licht Dieser gelangt durch definiert einen Detektionslichtstrahl **17**. Mikroskopoptik 13, die Scanoptik 12 und über das Scanmodul 7 zum Umlenkmittel 5, passiert dieses und gelangt über ein Detektionspinhole 18 auf mindestens einen Detektor 19, der hier als Photomultiplier ausgeführt ist. Es ist dem Fachmann klar, dass auch andere Detektionskomponenten wie Dioden, Diodenarrays, CCD Chips oder CMOS Bildsensoren eingesetzt werden können. Der vom Objekt 15 ausgehende bzw. definierte Detektionslichtstrahl 17 ist in Fig. 1 als gestrichelte Linie dargestellt. Im Detektor 19 werden elektrische, zur Leistung des vom Objekt ausgehenden Lichtes, proportionale Detektionssignale erzeugt. Das Scanmodul 7, der Positionssensor 11 und der mindestens eine Detektor 19 stellen zusammengefasst einen schnellen Scanner 14 dar. Dem schnellen Scanner 14 ist ein lokaler Speicher 16 zugeordnet, der die Daten vom mindestens einen Detektor 19 und dem Positionssensor 11 empfängt. In geeigneter Wiese werden die Daten vom lokalen Speicher 16 und an ein Rechnersystem 23 weitergegeben. Es ist für einen Fachmann selbstverständlich, dass die Position des Scanspiegels 9 auch über die Verstellsignale ermittelt werden kann. Dem Rechnersystem 23 ist ein mindestens ein Peripheriegerät 27 zugeordnet. Das Peripheriegerät kann z.B. ein Display sein, auf dem der Benutzer Hinweise zur Einstellung des Mikroskopsystems erhält oder den aktuellen Setup und auch die Bilddaten in graphischer Form entnehmen kann. Ferner ist mit dem Rechnersystem 23 mindestens ein Eingabemittel zugeordnet, das z.B. aus einer Tastatur 28, einer Einstellvorrichtung 29 für die Komponenten des Mikroskopsystems und einer Maus 30 besteht. In mindestens einem Peripheriegerät 27 findet die Verarbeitung der Datenblöcke statt. Unter der Verarbeitung kann man die Ausgabe auf einem Drucker, die Komprimierung der Daten, die Darstellung auf einem Display, die Online Auswertung oder die Speicherung in dafür vorgesehene Speichereinheiten verstehen.

10

15

20

25

30

Fig. 2 stellt eine Ausführungsform eines Verfahrens, dem sogenannten. "Frame Burst Ratio" vor, bei dem nur eine bestimmte Zahl von Datenblöcken übertragen wird. Die Darstellung eines Frames auf einmal ("Frame Burst") und nicht "blockweise" ist schon länger bekannt. Diese Maßnahme ist jedoch nicht schnellen Scannern die ausreichend. da bei Verarbeitung aufgenommenen Daten in einem Rechnersystem der Aufnahme der Daten nicht nachkommt. Dem schnellen Scanner, der wie bereits erwähnt aus dem Scanmodul 7, dem Positionssensor 11 und dem mindestens einen Detektor 19 besteht, ist der lokale Speicher 16 zugeordnet. Der schnelle Scanner überträgt die Daten in Echtzeit in seinen eigenen lokalen Speicher 16 und gleichzeitig auch zum Rechnersystem 23. Im Rechnersystem 23 werden alle Datenblöcke 35₁, 35₂, ..., 35_n (Frames) gespeichert. Verarbeitet in einem Peripheriegerät 27 werden hingegen nur die durch das "Frame Burst" Verhältnis N angegebenen. Bei einem "Frame Burst" von beispielsweise N = 10 wird also nur jeder zehnte Datenblock verarbeitet. Die Frequenz der Datenblöcke, die im Rechnersystem 23 verarbeitet werden, ist konstant. In dem in Fig. 2 dargestellten Beispiel ist das Frame Burst Verhältnis N = 3, so dass jeder dritte Datenblock im Rechnersystem 23 einer Verarbeitung zugeführt wird. Diese Datenblöcke (Frames) sind in Fig. 2 schraffiert dargestellt. Der Benutzer hat die Möglichkeit ein beliebiges Frame Burst Verhältnis N (bzw. Frequenz) anzugeben, damit dieser der individuellen Darstellungscharakteristik seines Rechnersystems 23 Rechnung tragen kann. Die Eingabe des Frame Burst Verhältnis N wird vom Benutzer z.B. über die Tastatur 28, die Maus 30 oder die Einstellvorrichtung 28 vorgenommen.

In Fig. 3 ist ein Blockdiagramm dargestellt, das die erste Ausführungsform des erfindungsgemäßen Verfahrens visualisiert. In einem ersten Schritt 40 werden die vom schnellen Scanner erfassten Datenblöcke 35₁, 35₂, ..., 35_n (Frames) an einen internen Speicher des Rechnersystems 23 übertragen. Anschließend holt sich das Rechnersystem 23 in einem zweiten Schritt 44 gemäß dem Frame Burst Verhältnis N, wie z.B. jeden zehnten Datenblock, aus dem Speicher im Rechnersystem 23. In einem ersten Endscheidungsmodul 45 wird überprüft, ob dies der letzte Datenblock war. Wenn das Ergebnis im Entscheidungsmodul 45 "NEIN" ist, dann läuft das Verfahren in ein zweites

10

15

20

25

30

Entscheidungsmodul 46. Hier wird überprüft on der aktuelle Datenblock ein Vielfaches von N ist. Wenn "JA", dann erfolgt die Verarbeitung oder Darstellung 48 des Datenblocks. War im zweiten Entscheidungsmodul 46 das Ergebnis "NEIN", so wird zum zweiten Schritt 44 zurückgesprungen und ein entsprechender Datenblock aus dem Speicher des Rechnersystems geholt. War im ersten Endscheidungsmodul 45 das Ergebnis "JA" so werden die restlichen Datenblöcke aus dem Speicher des Rechnersystems abgerufen und einer Verarbeitung und/oder Darstellung der restlichen Datenböcke 49 zugeführt. Über ein Eingabemodul 47 kann der Benutzer von sich aus das Frame Burst Verhältnis N bestimmen. Dieses wirkt dann auf das zweite Entscheidungsmodul 46. Je nach Auslastung des Rechnersystems 23 kann der Benutzer entscheiden, ob er das Frame Burst Verhältnis N ändert oder nicht.

Fig. 4 stellt eine weitere Ausführungsform eines Verfahrens dar, bei dem ebenfalls nur eine bestimmte Zahl von Datenblöcken verarbeitet wird. Wie bereits in Fig. 2 erwähnt, ist dem schnellen Scanner 14 der lokale Speicher 16 zugeordnet. Der schnelle Scanner überträgt über eine dafür vorgesehene Übertragungsstrecke 21 die Daten in Echtzeit in seinen eigenen lokalen Speicher 16 und gleichzeitig auch zum Rechnersystem 23. Im Rechnersystem 23 werden alle Datenblöcke 35₁, 35₂, ..., 35_n (Frames) gespeichert. Verarbeitet werden hingegen nur die durch das "Frame Burst" Verhältnis N angegebenen. Es ist eine adaptive Regelung vorgesehen, die das Frame Burst Verhältnis N variabel macht. Dies bedeutet, dass sich die Frequenz der verarbeiteten Datenblöcke bzw. das Teilerverhältnis ändert und an die momentane Leistung des Rechnersystems 23 anpasst. So ist zwischen dem schnellen Scanner und dem Rechnersystem 23 eine Rückkopplung 24 vorgesehen, die Verzögerung oder Beschleunigung durch das Rechnersystem 23 gegenüber dem schnellen Scanner überprüft und gaf, nachregelt, die Frequenz der verarbeiteten Datenblöcke ändert. In Fig. 5 ist ein die zweite Ausführungsform Blockdiagramm dargestellt, dass erfindungsgemäßen Verfahrens visualisiert. Gemäß dem in Fig. dargestellten Verfahren, muss der Benutzer des konfokalen Scanmikroskops 100 die Einstellung des Frame Burst Verhältnisses experimentell bestimmen

10

15

20

25

und daraufhin einstellen. Die Verarbeitungscharakteristik des konfokalen Scanmikroskops 100 wird durch verschiedene Randbedingungen bestimmt und ist nicht deterministisch. Diese können sich zeitlich ändern und zu einer Verlangsamung bzw. Beschleunigung der Verarbeitung mit zunehmender Frameanzahl führen. Deshalb ist eine adaptive Nachregelung des Frame Burst Ratio für eine optimale Darstellung oder Verarbeitung der Scandaten unabdingbar. Dabei wird während der Akquirierung die Verarbeitung auf der Seite des Rechnersystems 23 ständig überprüft. Eine etwaig entstehende Verzögerung/Beschleunigung wird durch Erhöhung/Verminderung des Frame Burst Ratio entgegengewirkt. Ähnlich wie in dem in Fig. 3 dargestellten Verfahren wird in einem ersten Schritt 40 die vom schnellen Scanner erfassten Datenblöcke 35₁, 35₂, ..., 35_n (Frames) an einen internen Speicher 23 übertragen. Anschließend holt sich das Rechnersystem Rechnersystem 23 in einem zweiten Schritt 44 die Frames bzw. Datenblöcke gemäß einem anfänglichen Frame Burst Verhältnis N, wie z.B. jeden zehnten Datenblock, aus dem Speicher im Rechnersystem 23. In einem ersten Endscheidungsmodul 45 wird überprüft, ob dies der letzte Datenblock war. Wenn das Ergebnis im Entscheidungsmodul 45 "NEIN" ist, dann läuft das Verfahren in ein zweites Entscheidungsmodul 46. Hier wird überprüft ob der aktuelle Datenblock ein Vielfaches von N ist. Wenn "JA", dann erfolgt die Verarbeitung 48 des Datenblocks. War im zweiten Entscheidungsmodul 46 das Ergebnis "NEIN", so wird zum zweiten Schritt 44 zurückgesprungen und ein entsprechender Datenblock aus dem Speicher des Rechnersystems geholt. War im ersten Endscheidungsmodul 45 das Ergebnis "JA" so werden die restlichen Datenblöcke aus dem Speicher des Rechnersystems 23 abgerufen und einer Verarbeitung der restlichen Datenböcke 49 zugeführt. Ein Rückkoppelmodul 50 verbindet den ersten Schritt 40 mit dem zweiten Entscheidungsmodul 46. Somit kann das Frame Burst Verhältnis N an die momentane Leistung des Rechnersystems 23 angepasst werden

30 Fig. 6 zeigt eine schematische Darstellung eines Verfahren für eine teilweise synchrone Übertragung, Auswertung sowie Darstellung der akquirierten Daten eines Scanners. Der Unterschied zu der Darstellung aus Fig. 2 ist, dass an das Rechnersystem 23 nur die vom Benutzer ausgewählten Frames gemäß

10

15

20

25

30

dem vorbestimmten Frame Burst Verhältnis N synchron übertragen und verarbeitet werden. Der schnelle Scanner überträgt die Daten in Echtzeit in seinen eigenen lokalen Speicher 16 und gleichzeitig werden an das Rechnersystem 23 nur die Frames bzw. Datenblöcke übertragen, die dem von Benutzer vorgegebenen, festen Frame Burst Verhältnis entsprechen. Im Rechnersystem 23 werden die übertragenen Datenblöcke 35_{N-(N-1)}, 35_{2N-(N-1)}, ..., 35_{NN-(N-1)} (Frames) sofort verarbeitet. Die Frequenz der Datenblöcke, die im Rechnersystem 23 verarbeitet werden, ist konstant. Die im Rechnersystem 23 verarbeiteten Datenblöcke (Frames) sind in Fig. 6 schraffiert dargestellt. Der Benutzer hat die Möglichkeit ein beliebiges Frame Burst Verhältnis (bzw. Frequenz) anzugeben, damit dieses der individuellen Verarbeitungscharakteristik seines Rechnersystems 23 Rechnung tragen kann. Zuvor muss der Benutzer die Verarbeitungscharakteristik bestimmen. Die Eingabe des Frame Burst Verhältnis N wird vom Benutzer gemäß der in Fig. 2 beschriebenen Weise durchgeführt. Die asynchron übertragenen Datenblöcke verbleiben in Speicher 16 des Scanners und werden erst verzögert nach Scannende vom Scanner zum Rechnersystem 23 übertragen und somit auch verspätet verarbeitet. Die asynchron übertragenen Datenblöcke sind in Fig. 6 als nicht ausgefüllte Kästchen gekennzeichnet. Die verzögerte Übertragung ist durch die gestrichelten Pfeile auf die schematisch dargestellten Datenblöcke visualisiert. Damit kann eine zu langsame Datenannahme durch den PC, hervorgerufen auf Grund von geringer Übertragungsbandbreite, Speichermangel oder zu starker Systemauslastung durch andere Prozesse, vermieden werden.

Ein Blockdiagramm der dritten Ausführungsform der Erfindung, wie sie in Fig. 6 schematisch dargestellt ist, ist in Fig. 7 wiedergegeben. In Fig. 7 ist ein Blockdiagramm dargestellt, dass die dritte Ausführungsform des erfindungsgemäßen Verfahrens visualisiert. In einem ersten Schritt 40 werden die vom Benutzer nach dem gemäß dem Frame Burst Verhältnis N bestimmten Datenblöcke $35_{N-(N-1)}$, $35_{2N-(N-1)}$, ..., $35_{NN-(N-1)}$ (Frames) an den internen Speicher des Rechnersystems 23 übertragen und im Rechnersystem 23 sofort verarbeitet. In einem ersten Endscheidungsmodul 45 wird überprüft, ob dies der letzte Datenblock gemäß dem konstanten Frame Burst Verhältnis

10

15

20

25

30

war. Wenn das Ergebnis im Entscheidungsmodul 45 "NEIN" ist, dann läuft das Verfahren in ein zweites Entscheidungsmodul 46. Hier wird überprüft, ob der aktuelle Datenblock ein Vielfaches von N ist. Wenn "JA", dann erfolgt die Übertragung 52 an das Rechnersystem 23 und im Rechnersystem 23 die Verarbeitung 54 des Datenblocks. War im zweiten Entscheidungsmodul 46 das Ergebnis "NEIN", so wird zum zweiten Schritt 44 zurückgesprungen und ein entsprechender Datenblock aus dem Speicher an das Rechnersystem 23 übertragen. War im ersten Endscheidungsmodul 45 das Ergebnis "JA" so werden die restlichen, noch nicht an das Rechnersystem übertragenen Datenblöcke, direkt vom schnellen Scanner an das Rechnersystem 23 gesandt. Im Rechnersystem 23 erfolgt dann eine verzögerte Verarbeitung 56 der restlich nicht dem Frame Burst Verhältnis N entsprechenden Datenblöcke.

Fig. 8 zeigt eine schematische Darstellung eines Verfahren, das dem Verfahren aus Fig. 6 sehr ähnlich ist. Das in Fig. 8 dargestellte Verfahren unterscheidet sich dahingehend, dass hier kein festes Frame Burst Verhältnis N vorliegt, sondern ein Frame Burst Verhältnis, dass sich an die aktuellen Leistungsmerkmale des Rechnersystems 23 anpasst. Zunächst kann vom Benutzer ein Frame Burst Verhältnis N vorgegeben werden. Der schnelle Scanner überträgt die Daten in Echtzeit in seinen eigenen lokalen Speicher 16 und gleichzeitig werden an das Rechnersystem 23 nur die Frames bzw. Datenblöcke übertragen, die zunächst dem von Benutzer vorgegebenen, festen Frame Burst Verhältnis N entsprechen. Im Rechnersystem 23 werden die übertragenen Datenblöcke 35_{N-(N-1)}, 35_{2N-(N-1)}, ..., 35_{NN-(N-1)} (Frames) sofort verarbeitet. Es ist eine adaptive Regelung vorgesehen, die das Frame Burst Verhältnis N variabel macht. Dies bedeutet, dass sich die Frequenz der verarbeiteten Datenblöcke bzw. das Teilerverhältnis ändert und an die momentane Leistung des Rechnersystems 23 angepasst ist. So ist zwischen dem schnellen Scanner und dem Rechnersystem 23 eine Rückkopplung 24 vorgesehen, die eine mögliche Verzögerung oder Beschleunigung durch das Rechnersystem 23 gegenüber dem schnellen Scanner überprüft und ggf. nachregelt. Somit ändert sich die Frequenz der synchron übertragenen und verarbeiteten Datenblöcke 35_{N-(N-1)}, 35_{2N-(N-1)}, ..., 35_{NN-(N-1)} (Frames).Ein Blockdiagramm der vierten Ausführungsform der Erfindung, wie sie in Fig. 8

10

15

20

25

schematisch dargestellt ist, ist in Fig. 9 wiedergegeben. In Fig. 9 ist ein Blockdiagramm dargestellt, dass die vierte Ausführungsform erfindungsgemäßen Verfahrens visualisiert. In einem ersten Schritt 40 werden die vom Benutzer nach dem gemäß dem zunächst Frame Burst Verhältnis N bestimmen Datenblöcke $35_{N-(N-1)}$, $35_{2N-(N-1)}$, ..., $35_{NN-(N-1)}$ (Frames) an den internen Speicher des Rechnersystems 23 übertragen und im Rechnersystem 23 sofort verarbeitet. In einem ersten Endscheidungsmodul 45 wird überprüft, ob dies der letzte Datenblock gemäß dem anpassbaren Frame Burst Verhältnis N war. Wenn das Ergebnis im Entscheidungsmodul 45 "NEIN" ist, dann läuft das Verfahren in ein zweites Entscheidungsmodul 46. Hier wird überprüft ob der aktuelle Datenblock ein Vielfaches von N ist. Wenn "JA". dann erfolgt die Übertragung 52 an das Rechnersystem 23 und im Rechnersystem 23 dann die Speicherung und Verarbeitung 54 des Datenblocks. Ein Rückkopplungsmodul 60 ist mit dem Rechnersystem 23 verbunden, in dem die Speicherung und Verarbeitung 54 des Datenblocks stattfindet.

War im zweiten Entscheidungsmodul 46 das Ergebnis "NEIN", so wird zum zweiten Schritt 44 zurückgesprungen und ein entsprechender Datenblock aus dem Speicher an das Rechnersystem 23 übertragen. War im ersten Endscheidungsmodul 45 das Ergebnis "JA" so werden die restlichen, noch das Rechnersystem übertragenen Datenblöcke, nicht das Rechnersystem 23 gesandt. Im Rechnersystem 23 erfolgt dann eine asynchrone Verarbeitung 56 der restlich, nicht dem Frame Burst Ratio N entsprechenden, Datenblöcke. Somit kann das Frame Burst Verhältnis N an das aktuelle Leistungsvermögen des Rechnersystems 23 angepasst werden. Damit kann eine zu langsame Datenannahme durch das Rechnersystem 23, hervorgerufen auf Grund Übertragungsbandbreite, von geringer Speichermangel oder zu starker Systemauslastung durch andere Prozesse, vermieden werden.

30 In zweiten und im vierten Ausführungsbeispiel wird das Frame Burst Verhältnis N an die Gegebenheiten des Rechnersystems 23 angepasst. Neben der Möglichkeit der Startwertvorgabe durch den Benutzer kann das Rechnersystem 23 selbst einen Startwert des Frame Burst Verhältnis N

10

15

20

25

30

vorgeben. Dieses wird in Abhängigkeit der eingestellten Scangeschwindigkeit und etwaigen Verarbeitungsroutinen im Rechnersystem 23 während des Datenaufnahmezyklus mittels einem geeignetem Algorithmus automatisch gewählt. Das Rechnersystem 23 überprüft ständig die Differenz der vom Scanner akquirierten Datenblöcke gegenüber der Anzahl der vom Rechnersystem 23 tatsächlich verarbeiteten Datenböcke. Es wird die Differenz zwischen den akquirierten und den verarbeiteten Datenblöcken bestimmt und eine entsprechende, damit verbundene Aktion eingeleitet. Im optimalen Fall beträgt die Differenz bei voll ausgelastetem Rechnersystem 0. Dieser Zustand soll durch adaptive Regelung möglichst beibehalten werden.

Steigt die Differenz an, so ist. das Rechnersystem 23 nicht in der Lage das geforderte Frame Burst Verhältnis N zu erfüllen. Das Frame Burst Verhältnis N wird erhöht. Ist die Differenz nicht Null sowie das Rechnersystem 23 nicht voll ausgelastet, so ist das Rechnersystem 23 in der Lage das geforderte Frame Burst Verhältnis N über das geforderte Maß zu erfüllen. Das Frame Burst Verhältnis N wird in diesem Fall vermindert.

Alle ermittelten Werte für das Frame Burst Verhältnis N des Datenaufnahmezyklus werden zu einem Erfahrungswert im Rechnersystem mit einem geeigneten Algorithmus zusammengefasst (z.B. im einfachsten Fall durch Mittelwertbildung). Dieser Erfahrungswert wird im Rechnersystem gespeichert, um bei späteren vergleichbaren Datenaufnahmezyklen einen optimaleren Startwert vorzugeben.

Das folgende Beispielszenario für einen Datenaufnahmezyklus soll die adaptive Regelung des Frame Burst Verhältnis N verdeutlichen. Zu Begin wird das Frame Burst Verhältnis N auf 10 voreingestellt. Die Differenz steigt auf 50 und das Frame Burst Verhältnis N wird auf 20 erhöht. Während des weiteren Datenaufnahmezyklus fällt die Differenz auf 0 und bei voller Auslastung des Rechnersystems 23 bleibt das Frame Burst Verhältnis N auf den Wert 20 eingestellt. Während der Datenaufnahme ändert der Benutzer die Scanparameter. Differenz steigt auf 100. Als Folge davon wird das Frame Burst Verhältnis N auf 30 erhöht. Die Scanparameter sind geändert und die Differenz fällt bei nicht ausgelastetem Rechnersystem 23 unter Null. Folglich

wird das Frame Burst Verhältnis N auf 20 vermindert. Das Rechnersystem 23 wird durch einen fremden Prozess gestört. Somit steigt die Differenz wieder auf 50. Das Frame Burst Verhältnis N wird auf 25 erhöht. Dieses Ändern des Frame Burst Verhältnis N wird während eines gesamten

5 Datenaufnahmezyklus fortgesetzt.

<u>Patentansprüche</u>

- 1. Verfahren zur Datenverarbeitung in einem Scanmikroskop mit schnellem Scanner, gekennzeichnet durch die folgenden Schritte:
 - Aufnehmen von Datenblöcken in Echtzeit mit dem schnellen Scanner,
- 5 Übertragen von aufgenommenen Datenblöcken an ein Rechnersystem (23), und
 - Verarbeiten der Datenblöcke in Abhängigkeit von einem Frame Burst Verhältnis (N).
- Verfahren nach Anspruch 1, dadurch gekennzeichnet,
 dass die Übertragung der aufgenommenen Datenblöcke in Abhängigkeit von Frame Burst Verhältnis (N) erfolgt, wobei das Frame Burst Verhältnis (N) derart gewählt ist, dass eine optimale Ausnutzung der Leistung des Rechnersystems (23) erfolgt.
 - 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Frame Burst Verhältnis (N) vom Benutzer in Abhängigkeit von der Verarbeitungscharakteristik des Rechnersystems (23) gewählt wird und während der Aufnahme der Datenblöcke konstant ist.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass im Rechnersystem (23) alle Datenblöcke (35₁, 35₂, ..., 35_n) gespeichert werden und dass diejenigen Datenblöcke verarbeitet werden Datenblöcke, die durch das konstante "Frame Burst" Verhältnis (N) bestimmt sind.
 - 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine adaptive Regelung vorgesehen ist, die das Frame Burst Verhältnis (N) variabel macht.

15

20

10

15

20

25

30

- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass ein Startwert für das Frame Burst Verhältnis (N) zu Beginn der Datenaufnahme vorgegeben wird.
- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Frame Burst Verhältnis (N) die Frequenz der übertragenen Datenblöcke bzw. das Teilerverhältnis bestimmt und an die momentane Leistung des Rechnersystems (23) anpasst, dass im Rechnersystem (23) alle Datenblöcke (35₁, 35₂, ..., 35_n) gespeichert werden, und dass diejenigen Datenblöcke verarbeitet werden, die durch das variable "Frame Burst" Verhältnis (N) bestimmt sind.
 - 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Frame Burst Verhältnis (N) vom Benutzer in Abhängigkeit von der Verarbeitungscharakteristik des Rechnersystems (23) gewählt wird und während der Aufnahme der Datenblöcke konstant ist, und dass gleichzeitig an das Rechnersystem (23) nur die Datenblöcke übertragen und vom Rechnersystem (23) verarbeitet werden, die dem vom Benutzer vorgegebenen, festen Frame Burst Verhältnis (N) entsprechen.
- 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das die noch nicht übertragenen Datenblöcke verzögert an das Rechnersystem (23) übertragen und verarbeitet werden.
- 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Frame Burst Verhältnis (N) in Abhängigkeit von der Verarbeitungscharakteristik des Rechnersystems (23) gewählt wird und während der Aufnahme der Datenblöcke vom Rechnersystem angepasst wird, und dass gleichzeitig an das Rechnersystem (23) nur die Datenblöcke übertragen werden, die dem variablen Frame Burst Verhältnis (N) entsprechen und gleichzeitig verarbeitet werden.
- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die nicht dem variablen Frame Burst Verhältnis (N) entsprechenden Datenblöcke verzögert an das Rechnersystem (23) übertragen und/oder verarbeitet werden.

10

- einem Scanmodul (7), einem Positionssensor (11) und mindestens einem Detektor (19) besteht, mit einem Rechnersystem (23), mit mindestens einem dem Rechnersystem (23) zugeordneten Peripheriegerät (27) und mit einem Eingabemittel (25), dadurch gekennzeichnet, dass dem schnellen Scanner ein lokaler Speicher (16) zugeordnet ist, vom lokalen Speicher (16) des schnellen Scanners an das Rechnersystem (23) Datenblöcke übertragbar sind, wobei ein Frame Burst Verhältnis (N) derart gewählt ist, dass eine optimale Ausnutzung der Leistung des Rechnersystems (23) erzielbar ist, und dass die übertragenen Datenblöcke in Abhängigkeit von Frame Burst Verhältnis (N) in einem Peripheriegerät (27) verarbeitbar sind.
- 13. Scanmikroskop nach Anspruch 12, dadurch gekennzeichnet, dass in Abhängigkeit von Frame Burst Verhältnis (N) Datenblöcke an das Rechnersystem (23) übertragbar sind.
- 15 14. Scanmikroskop nach Anspruch 12, dadurch gekennzeichnet, dass das Frame Burst Verhältnis (N) während eines Datenaufnahmezyklus konstant ist und die Verarbeitungscharakteristik des Rechnersystems (23) wiederspiegelt.
- 15. Scanmikroskop nach Anspruch 12, dadurch
 20 gekennzeichnet, dass eine adaptive Regelung des Rechnersystems (23)
 vorgesehen ist, die das Frame Burst Verhältnis (N) während eines
 Datenaufnahmezyklus anpasst.
- Scanmikroskop nach Anspruch 12, dadurch gekennzeichnet, dass das Frame Burst Verhältnis (N) während eines
 Datenaufnahmezyklus konstant ist und die Verarbeitungscharakteristik des Rechnersystems (23) wiederspiegelt und dass das Rechnersystem (23) zuerst die Datenblöcke empfängt, die einem festen Frame Burst Verhältnis (N) entsprechen.

17. Scanmikroskop nach Anspruch 12, dadurch gekennzeichnet, dass eine adaptive Regelung vorgesehen ist, die das Frame Burst Verhältnis (N) während eines Datenaufnahmezyklus anpasst, und dass das Rechnersystem (23) zuerst die Datenblöcke empfängt, die dem variablen Frame Burst Verhältnis (N) entsprechen.

PCT, L. J3/00768

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04N7/24 H04N7/26

G02B21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 - H04N - G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Y	SATO J ET AL: "Compressed video transmission protocol considering dynamic QoS control" ARCHITECTURAL AND OS SUPPORT FOR MULTIMEDIA APPLICATIONS/FLEXIBLE COMMUNICATION SYSTEMS/WIRELESS NETWORKS AND MOBILE COMPUTING., 1998 PROCEEDINGS OF THE 1998 ICPP WORKSHOPS ON MINNEAPOLIS, MN, USA 14 AUG. 1998, LOS ALAMITOS, CA, USA, IEEE COMPUT. SOC,, 1998, pages 95-104, XP010307559 ISBN: 0-8186-8657-X page 95, right-hand column, line 18 -page 99, right-hand column, last line	1-6,9, 12-17	

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filling date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filling date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 15 April 2003	Date of mailing of the international search report 25/04/2003
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Authorized officer Schoeyer, M

Interna ention No PCT, ___ 03/00768

		rci, 03/00/08
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to ctalm No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	resevant to denin rec.
Y	RAMANUJAN R S ET AL: "Adaptive streaming of MPEG video over IP networks" LOCAL COMPUTER NETWORKS, 1997. PROCEEDINGS., 22ND ANNUAL CONFERENCE ON MINNEAPOLIS, MN, USA 2-5 NOV. 1997, LOS ALAMITOS, CA, USA, IEEE COMPUT. SOC, US, 2 November 1997 (1997-11-02), pages 398-409, XP010252445 ISBN: 0-8186-8141-1 page 398, left-hand column, line 1 -page 400, left-hand column, paragraph 2	1-17
Υ	EP 1 120 675 A (LEICA MICROSYS HEIDELBERG GMBH) 1 August 2001 (2001-08-01) page 2, 11ne 3 -page 3, 1ine 35	1–17
A	SATA T ET AL: "Confocal laser scanning microscope" OPTICS AND LASER TECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS BV., AMSTERDAM, NL, vol. 29, no. 3, 1 April 1997 (1997-04-01), page vii XP004074776 ISSN: 0030-3992 the whole document	1-17

Intern: pplication No PCT/EP 03/00768

Patent document	Publication	Patent family member(s)	Publication
cited in search report	date		date
EP 1120675 A	01-08-2001	EP 1120675 A2 US 2002027193 A1	01-08-2001 07-03-2002

PCT, _. 3/00768

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 H04N7/24 H04N7/26 G02B21/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprütstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \ H04N \ G02B$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

Y SATO J ET AL: "Compressed video transmission protocol considering dynamic QoS control" ARCHITECTURAL AND OS SUPPORT FOR MULTIMEDIA APPLICATIONS/FLEXIBLE COMMUNICATION SYSTEMS/WIRELESS NETWORKS AND MOBILE COMPUTING., 1998 PROCEEDINGS OF THE 1998 ICPP WORKSHOPS ON MINNEAPOLIS, MN, USA 14 AUG. 1998, LOS ALAMITOS, CA, USA, IEEE COMPUT. SOC,, 1998, Seiten 95-104, XP010307559 ISBN: 0-8186-8657-X Seite 95, rechte Spalte, Zeile 18 -Seite	eit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr.
transmission protocol considering dynamic QoS control" ARCHITECTURAL AND OS SUPPORT FOR MULTIMEDIA APPLICATIONS/FLEXIBLE COMMUNICATION SYSTEMS/WIRELESS NETWORKS AND MOBILE COMPUTING., 1998 PROCEEDINGS OF THE 1998 ICPP WORKSHOPS ON MINNEAPOLIS, MN, USA 14 AUG. 1998, LOS ALAMITOS, CA, USA,IEEE COMPUT. SOC,, 1998, Seiten 95-104, XP010307559 ISBN: 0-8186-8657-X	
99, rechte Spalte, letzte Zeile -/	S SUPPORT FOR TIONS/FLEXIBLE TMS/WIRELESS NETWORKS US., 1998 PROCEEDINGS OF SHOPS ON MINNEAPOLIS, US., LOS ALAMITOS, CA, UC., UA, XP010307559 To alte, Zeile 18 -Seite Letzte Zeile

Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
 Besondere Kategorien von angegebenen Veröffentlichungen : 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifefnaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie Ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
15. April 2003	25/04/2003
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Bevollmächtigter Bedlensteter
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Schoeyer, M

Interna ktenzelchen PCT/ L. 3/00768

	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Revelehense der Veröffentlichung soweit erfordedich unter Angebe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Arisprucii Nr.
Y	RAMANUJAN R S ET AL: "Adaptive streaming of MPEG video over IP networks" LOCAL COMPUTER NETWORKS, 1997. PROCEEDINGS., 22ND ANNUAL CONFERENCE ON MINNEAPOLIS, MN, USA 2-5 NOV. 1997, LOS ALAMITOS, CA, USA, IEEE COMPUT. SOC, US, 2. November 1997 (1997-11-02), Seiten 398-409, XP010252445 ISBN: 0-8186-8141-1 Seite 398, linke Spalte, Zeile 1 -Seite 400, linke Spalte, Absatz 2	1–17
Y	EP 1 120 675 A (LEICA MICROSYS HEIDELBERG GMBH) 1. August 2001 (2001-08-01) Seite 2, Zeile 3 -Seite 3, Zeile 35	1–17
A .	SATA T ET AL: "Confocal laser scanning microscope" OPTICS AND LASER TECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS BV., AMSTERDAM, NL, Bd. 29, Nr. 3, 1. April 1997 (1997-04-01), Seite vii XP004074776 ISSN: 0030-3992 das ganze Dokument	1-17

Internation denzetchen
PCT/ Er v3/00768

					PCT/ cr -03/00768	
lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 1120675	A	01-08-2001	EP US	1120675 2002027193	A2 A1	01-08-2001 07-03-2002