Application No.: 10/590,606

Shifeng Pan, et al.

Response Date: November 20, 2009

Page 2 of 13

The listing of claims will replace all prior versions, and listings of claims in the application:

Listing of claims:

1. (Currently Amended) A compound of Formula I:

$$A \xrightarrow{R_3} R_2 \times X \times W - R_1$$

in which:

n is 0, 1 or 2;

 R_1 is chosen from C_{6-10} aryl and C_{5-10} heteroaryl; wherein any aryl or heteroaryl of R_4 -is-optionally substituted by a radical chosen from C_{6-10} aryl C_{0-4} alkyl, C_{5-6} heteroaryl C_{0-4} alkyl, C_{3-8} cycloalkyl C_{0-4} alkyl, C_{3-8} heterocycloalkyl C_{0-4} alkyl or C_{4-10} alkyl; wherein any aryl, heteroaryl, or cycloalkyl or heterocycloalkyl group of R_1 can be optionally substituted by one to five radicals selected from the group consisting of halo, C_{1-10} alkyl, C_{1-10} alkoxy, halo-substituted- C_{1-10} alkyl and halo-substituted- C_{1-10} alkoxy; and any alkyl group of R_4 can optionally have a methylene replaced by an atom or group chosen from S_{-7} , $S(O)_{-7}$, $S(O)_{2-7}$, NR_4 and O_{-7} ; wherein R_4 is chosen from hydrogen or C_{1-6} alkyl;

 R_2 and R_3 are independently chosen from hydrogen, $C_{1\text{-}6}$ alkyl, halo, hydroxy, $C_{1\text{-}6}$ alkoxy, halo-substituted $C_{1\text{-}6}$ alkyl and halo-substituted $C_{1\text{-}6}$ alkoxy;

A is ehosen from $-X_1C(O)OR_4$, $X_1OP(O)(OR_4)_2$, $X_1P(O)(OR_4)_2$, $X_1P(O)OR_4$, $X_1S(O)_2OR_4$, $X_1P(O)(R_4)OR_4$ and 1H-tetrazol-5-yl; wherein X_1 is a bond or C_{1-6} alkylene and R_4 is chosen from hydrogen and C_{1-6} alkyl;

W is methylene chosen from a bond, C₁₋₆alkylene and C₂₋₆alkenylene;

is chosen from C_{2-4} alkylene and C_{2-4} alkenylene; wherein one methylene group of X can be replaced with an $\underline{-O_{-}}$ atom or group chosen from $\overline{-O_{+}}$, S_{+}

Application No.: 10/590,606

Shifeng Pan, et al.

Response Date: November 20, 2009

Page 3 of 13

Y is chosen from C_{6-10} aryl and C_{5-10} heteroaryl, wherein any aryl or heteroaryl of Y can be optionally substituted with 1 to 3 radicals chosen from halo, hydoxy, nitro, C_{1-10} alkyl, C_{1-10} alkoxy, halo-substituted C_{1-10} alkyl and halo-substituted C_{1-10} alkoxy;

- is C_{1-6} alkylene; wherein up to two methylene groups of Z can be replaced with divalent radicals chosen from $-NR_7$ —, C_{3-8} cycloalkylene, C_{3-8} heterocycloalkylene and phenylene; wherein R_7 is chosen from hydrogen, C_{1-6} alkyl and $(CH_2)_{1-2}COOH$; wherein Z may further be substituted by 1 to 3 radicals chosen from halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substitued- C_{1-6} alkyl and halo-substitued- C_{1-6} alkoxy; or when a $-NR_7$ replaces at least one methylene group of Z, R_7 and Y together with the nitrogen atom to which R_7 is attached, forms C_{8-14} heteroarylene; and the pharmaceutically acceptable salts, hydrates, solvates, isomers and prodrugs thereof.
- 2. (Currently Amended) The compound of claim 2 in which n is 0 or 1 and Z is chosen from:

Application No.: 10/590,606

Shifeng Pan, et al.

Response Date: November 20, 2009

Page 4 of 13

$${}^{*}\underset{R_{7}}{\overset{*}} {\overset{*}} : \quad {}^{*}\underset{N}{\overset{*}} {\overset{*}} {\overset{*}} : \quad \text{and} \quad {}^{*}\underset{N}{\overset{*}} {\overset{*}} {\underset{N}{\overset{*}}} {\overset{*}} :$$

wherein the left and right asterisks of Z indicate the point of attachment between the – $[C(R_2)(R_3)]_n$ – group and A of Formula I, respectively; R_7 is chosen from hydrogen and C_{1-6} alkyl; and J_4 , J_2 and J_3 are independently methylene or a heteroatom selected from the group consisting of S, O and NR_4 ; wherein R_4 is hydrogen or C_{1-6} alkyl; with the proviso that the number of heteroatoms are 2 or less.

- 3. (Currently Amended) The compound of claim 1 in which R_1 is chosen from phenyl, naphthyl and thiophenyl optionally substituted by C_{6-10} aryl C_{0-4} alkyl, C_{5-6} heteroaryl C_{0-4} alkyl, C_{3-8} cycloalkyl C_{0-4} alkyl, C_{3-8} heterocycloalkyl C_{0-4} alkyl or C_{1-10} alkyl; wherein any aryl, heteroaryl, or cycloalkyl or heterocycloalkyl group of R_1 can be optionally substituted by 1 to 5 radicals chosen from halo, C_{1-10} alkyl, C_{1-10} alkyl, C_{1-10} alkoxy, and halo-substituted- C_{1-10} alkyl and halo-substituted- C_{1-10} alkoxy; and any alkyl group of R_1 can optionally have a methylene replaced by an atom or group chosen from S_1 , $S(O)_2$, $S(O)_2$, $S(O)_3$, $S(O)_4$, $S(O)_4$, $S(O)_4$, $S(O)_4$, $S(O)_4$, $S(O)_4$, $S(O)_5$, $S(O)_6$, $S(O)_7$, $S(O)_8$, $S(O)_8$, $S(O)_8$, $S(O)_8$, $S(O)_9$, $S(O)_9$
- 4. (Currently Amended) The compound of claim 1 in which Y is chosen from phenyl, pyridine, pyrimidine, thiophene, furan, thiazole and oxazole; each of which can be optionally substituted with 1 to 3 radicals chosen from halo, hydoxy, nitro, C_{1-10} alkyl, C_{1-10} alkoxy, halosubstituted C_{1-10} alkyl and halo-substituted C_{1-10} alkoxy.
- 5. (Currently Amended) The compound of claim 1 in which R₂ and R₃ are both hydrogen and A is chosen from -C(O)OR₄ and 1*H*-tetrazol-5-yl; wherein R₄ is chosen from hydrogen and C₁₋₆alkyl.
 - 6. (Currently Amended) The compound of claim 1 in which R₁ is ehosen from:

Application No.: 10/590,606

Shifeng Pan, et al.

Response Date: November 20, 2009

Page 5 of 13

wherein the asterisk is the point of attachment of R_1 with W; R_9 is C_{6-10} aryl C_{0-4} alkyl, C_{3-8} cycloalkyl C_{0-4} alkyl, C_{3-8} heterocycloalkyl C_{0-4} alkyl or C_{1-10} alkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl group of R_9 can be optionally substituted by 1 to 3 radicals chosen from halo, C_{1-10} alkyl, C_{1-10} alkoxy, halo-substituted C_{1-10} alkyl and halo-substituted C_{1-10} alkoxy; and any alkyl group of R_9 can optionally have a methylene replaced by an atom or group chosen from S_{-7} , $S(O)_{-7}$, $S(O)_{2-7}$, NR_4 and O_{-7} ; wherein R_4 is hydrogen or C_{1-6} alkyl; and R_{10} is selected from halo, C_{1-10} alkyl, C_{1-10} alkyl, C_{1-10} alkoxy, and halo-substituted C_{1-10} alkyl and halo-substituted C_{1-10} alkoxy.

7. (Original) The compound of claim 1 chosen from: 3-{[5-(4-cyclohexyl-3trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]-amino}-propionic acid; 1-[5-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-naphthalen-2ylmethyl]-azetidine-3-carboxylic acid; 3-{[6-chloro-4-(4-cyclohexyl-3-trifluoromethylbenzyloxyimino)-chroman-7-ylmethyl]-amino}-propionic acid; 3-{[3-chloro-5-(4-cyclohexyl-3trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]-amino}-propionic acid; 1-[3-Chloro-5-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydronaphthalen-2-ylmethyl]-azetidine-3-carboxylic acid; 1-[5-(4-cyclohexyl-3-trifluoromethylbenzyloxyimino)-3-methoxy-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]-azetidine-3-carboxylic acid; 3-{[5-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-3-methoxy-5,6,7,8-tetrahydronaphthalen-2-ylmethyl]-amino}-propionic acid; 3-{[8-(4-cyclohexyl-3-trifluoromethylbenzyloxyimino)-5,6,7,8-tetrahydro-quinolin-3-ylmethyl]-amino}-propionic acid; 1-[8-(4cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-quinolin-3-ylmethyl]azetidine-3-carboxylic acid; 3-{4-[5-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8tetrahydro-naphthalen-2-yl]-piperazin-1-yl}-propionic acid; 3-{[1-(4-cyclohexyl-3trifluoromethyl-benzyloxyimino)-indan-5-ylmethyl]-amino}-propionic acid; 1-[8-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]-azetidine-3carboxylic acid; 3-{[8-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydronaphthalen-2-ylmethyl]-amino}-propionic acid; 3-{[5-(4-cyclohexyl-3-trifluoromethylbenzyloxyimino)-3-ethyl-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]-amino}-propionic acid; 3-{[4-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-chroman-6-ylmethyl]-amino}-propionic acid; 3-{[4-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-chroman-7-ylmethyl]-amino}-

Application No.: 10/590,606

Shifeng Pan, et al.

Response Date: November 20, 2009

amino}-propionic acid.

Page 6 of 13

propionic acid; 1-[4-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-chroman-7-ylmethyl]-azetidine-3-carboxylic acid; 3-{[4-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-3,4-dihydro-2H-pyrano[2,3-b]pyridin-7-ylmethyl]-amino}-propionic acid; 1-[4-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-3,4-dihydro-2H-pyrano[2,3-b]pyridin-7-ylmethyl]-azetidine-3-carboxylic acid; 1-[4-(4-cyclohexyl-3-methyl-benzyloxyimino)-chroman-7-ylmethyl]-azetidine-3-carboxylic acid; and 3-{[4-(4-cyclohexyl-3-methyl-benzyloxyimino)-chroman-7-ylmethyl]-

- 8. (Original) A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.
- 9. (Currently Amended) A method for treating a disease in an animal human in which alteration of EDG/S1P receptor mediated signal transduction can prevent, inhibit or ameliorate the pathology and/or symptomology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.
- 10. (Currently Amended) A method for preventing or treating disorders or diseases mediated by lymphocytes, for treating breast cancer, acute or chronic transplant rejection or T-cell mediated inflammatory or autoimmune diseases, for inhibiting or controlling deregulated angiogenesis, or for treating diseases mediated by a neo-angiogenesis process or associated with deregulated angiogenesis in a subject comprising administering to the subject in need thereof an effective amount of a compound of claim 1, or a pharmaceutically acceptable salt thereof.
 - 11. (Canceled).
 - 12. (Canceled).

.