| Criterion | Estimators | Average Score |
|-----------|------------|---------------|
| gini      | 10         | 0.9603        |
| gini      | 25         | 0.9887        |
| gini      | 50         | 0.9832        |
| entropy   | 10         | 0.983         |
| entropy   | 25         | 0.9832        |
| entropy   | 50         | 0.9887        |

## Random Forest Performance



# Histogram Gradient Boosting Performance



### Part 4

### 1. Convert Speeds to Time per km

We first convert the rover's speed over different terrains into time per kilometer:

• Rocky Terrain (2 km/h):

Time per km = 60 / 2 = 30 minutes/km

• Sandy Terrain (3 km/h):

Time per km = 60 / 3 = 20 minutes/km

• Smooth Terrain (5 km/h):

Time per km = 60 / 5 = 12 minutes/km

### 2. Expected Travel Time for Each Route

- Route 1 (5 km):
  - $\circ$  20% chance sandy  $\rightarrow$  20 minutes/km
  - o 30% chance smooth → 12 minutes/km
  - o 50% chance rocky → 30 minutes/km

The expected time is:

Expected Time =  $(0.2 \times 20 \times 5) + (0.3 \times 12 \times 5) + (0.5 \times 30 \times 5) = 20 + 18 + 75 = 113$  minutes

- Route 2 (7 km):
  - $\circ$  40% chance sandy  $\rightarrow$  20 minutes/km
  - $\circ$  20% chance smooth  $\rightarrow$  12 minutes/km
  - o 40% chance rocky → 30 minutes/km

The expected time is:

Expected Time =  $(0.4 \times 20 \times 7) + (0.2 \times 12 \times 7) + (0.4 \times 30 \times 7) = 56 + (0.4 \times 30 \times 7) = 56 + (0.4 \times 20 \times 7) = 56 + (0.4 \times 30 \times 7)$ 

16.8 + 84 = **156.8** minutes

- Route 3 (6 km):
  - $\circ$  50% chance sandy  $\rightarrow$  20 minutes/km
  - 40% chance smooth → 12 minutes/km
  - o 10% chance rocky → 30 minutes/km

The expected time is:

Expected Time =  $(0.5 \times 20 \times 6) + (0.4 \times 12 \times 6) + (0.1 \times 30 \times 6) = 60 + (0.1 \times$ 

28.8 + 18 = **106.8** minutes

# 3. Updated Travel Time with Special Conditions

- Route 1 (crater with a 30% chance of damage):
  - $\circ$  30% chance the wall is damaged  $\rightarrow$  adds 15 minutes
  - 70% chance the wall is intact → saves 20 minutes
    The expected time is:

Expected Time = 
$$(0.3 \times (113 + 15)) + (0.7 \times (113 - 20)) = (0.3 \times 128) + (0.7 \times 93) = 38.4 + 65.1 = 103.5 minutes$$

- Route 3 (bridge with a 60% chance of damage):
  - $\circ$  60% chance the bridge is damaged  $\rightarrow$  adds 40 minutes
  - o 40% chance the bridge is intact → no added time
    The expected time is:

    Expected Time =  $(0.6 \times (106.8 + 40)) + (0.4 \times 106.8) = (0.6 \times 146.8) + (0.4 \times 106.8) = 88.08 + 42.72 = 130.8$  minutes

#### 4. Best Route Decision

- **Route 1**: 103.5 minutes
- **Route 2**: 156.8 minutes
- **Route 3**: 130.8 minutes

Route 1 is the best choice with an expected time of 103.5 minutes.

### 5. Satellite Information (Route 2)

The satellite can tell us if Route 2 is rocky, which will change the expected time.

- If Route 2 is not rocky:
  - 40% chance sandy → 20 minutes/km
  - 20% chance smooth → 12 minutes/km
     The expected time is:
     Expected Time = (0.4 × 20 × 7) + (0.2 × 12 × 7) = 56 + 16.8 = 72.8 minutes
- Probability that Route 2 is not rocky:
  40% sandy + 20% smooth = 60% (60% chance Route 2 is not rocky).
- If Route 2 is rocky:
  The expected time is the original 156.8 minutes.

# 6. Should We Wait for the Satellite?

- If Route 2 is not rocky: The travel time would be 72.8 minutes.
- If Route 2 is rocky: The travel time would be 156.8 minutes.

#### Wait Time Decision:

You should wait for the satellite if you think the chance of a quicker journey (72.8 minutes) is worth the risk of the route being rocky (156.8 minutes). The satellite has a 60% chance of confirming a non-rocky route.