Polish Japanese Academy of Information Technology

Lab. 2	Pasive elements measu	ıreme	ent Date:		
	name and surname	points	Supervisor		

1. Resistor impedance - observation and measurement of time dependence between current and voltage on resistor.

Draw current and voltage on the resistor (measuring module M2, R1R, frequency f = 100kHz, WE-voltage, WY-current).

Caculate:

A. Phase shift (phase ϕ)) between voltage and current :

Period <i>T</i> : [number of divisions]	Shift <i>tp</i> [Number of divisions]	Phase [$\phi = \frac{tp}{T} 360^{\circ}$]

B. Calculate the impedance module |Z|

<i>Upp</i> number of divisions	Sensitivity	Upp	<i>Ipp</i> lnumber of divisions	Sensitivity	UIpp	$Ipp = \frac{UIpp}{10 \Omega}$	$ Z = \frac{Upp}{Ipp}$
[div]	[V/div]	[V]	[div]	[V/div]	[V]	[A]	[Ω]

Ipp - the current is measured by measuring the voltage drop UIpp on the resistor 10Ω C. Calculate impedance:

$$Z = |Z| e^{j \phi} = \dots = R + jX = \dots + j \dots + j$$

Polish Japanese Academy of Information Technology

2. Determination of capacitor impedance

Draw the currents and voltages on the capacitor.

(measurement module M2 CR switch, frequency f = 100kHz, WE-voltage, WY-current).

Calculate:

A. Phase shift ϕ between voltage and current

Period <i>T</i> : [number of divisions]	Shift <i>tp</i> [Number of divisions]	Phase [$\phi = \frac{tp}{T} 360^{\circ}$]

B. Calculate the impedance module |Z|

Upp num. of div.	Sensitivity	Upp	Ipp num. of div.	Sensitivity	UIpp	$Ipp = \frac{UIpp}{10 \Omega}$	$ Z = \frac{Upp}{Ipp}$
[div]	[V/div]	[V]	[div]	[V/div]	[V]	[A]	[\Q]

C. Calculate the impedance of the capacitor:

$$Z=|Z|e^{j\phi}=\dots=R-jX=\dots-j\dots-j\dots$$

3. Determination of inductor impedance

Draw the currents and voltages on the capacitor.

(measurement module M2 LR switch, frequency f = 100kHz, WE-voltage, WY-current).

Calculate:

A. Phase shift ϕ between voltage and current

Period <i>T</i> : [number of divisions]	Shift <i>tp</i> [Number of divisions]	Phase [$\phi = \frac{tp}{T} 360^{\circ}$]

B. Calculate the impedance module |Z|

B. Calculate the impedance module 2								
	<i>Upp</i> num. of div.	Sensitivity	Upp	<i>Ipp</i> num. of div.	Sensitivity	UIpp	$Ipp = \frac{UIpp}{10\Omega}$	$ Z = \frac{Upp}{Ipp}$
	[div]	[V/div]	[V]	[div]	[V/div]	[V]	[A]	$[\ arOmega\]$

C. Calculate inductor impedance:

$$Z = |Z| e^{j\phi} = \dots = R + jX = \dots + j \dots + j$$