

BEST AVAILABLE COPY

1461600

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

May 03, 2006

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE.

APPLICATION NUMBER: 60/604,722

FILING DATE: *August 27, 2004*

RELATED PCT APPLICATION NUMBER: *PCT/US04/30397*

THE COUNTRY CODE AND NUMBER OF YOUR PRIORITY
APPLICATION, TO BE USED FOR FILING ABROAD UNDER THE PARIS
CONVENTION, IS **US60/604,722**

Certified by

Under Secretary of Commerce
for Intellectual Property
and Director of the United States
Patent and Trademark Office

PROVISIONAL APPLICATION COVER SHEET

(This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53 (c).)

Docket Number

1579-922

Type a plus sign (+) inside
this box → +

INVENTOR(S)/APPLICANT(S)

LAST NAME	FIRST NAME	MIDDLE INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)
MAYNES	Barton	F.	Durham, North Carolina
GAO	Feng		Durham, North Carolina
KORBER	Bette	T.	Los Almos, New Mexico
HAHN	Beatrice	H.	Birmingham, Alabama
U.S. SHAW	George	M.	
KOTHE	Denise		
LI	Ying Ying		
DECKER	Julie		
LIAO	Hua-Xin		Durham, North Carolina

U.S. PTO
60/604722

TITLE OF THE INVENTION (280 characters)

CONSENSUS/ANCESTRAL IMMUNOGENS

CORRESPONDENCE ADDRESS

Direct all correspondence to:

 Customer Number:

23117

Place Customer
Number Bar Label
Here →

Type Customer Number here

ENCLOSED APPLICATION PARTS (check all that apply)

<input checked="" type="checkbox"/> Specification	Number of Pages	94	<input type="checkbox"/> Applicant claims "small entity" status.
<input checked="" type="checkbox"/> Drawing(s)	Number of Sheets	123	<input type="checkbox"/> "Small entity" statement attached.
			<input checked="" type="checkbox"/> Other (specify)

ABSTRACT (1 page)

METHOD OF PAYMENT (check one)

<input checked="" type="checkbox"/>	A check or money order is enclosed to cover the Provisional filing fees (\$160.00)/(\$80.00)	PROVISIONAL FILING FEE AMOUNT (\$)	160.00
<input checked="" type="checkbox"/>	The Commissioner is hereby authorized to charge any deficiency, or credit any overpayment, in the fee(s) filed, or asserted to be filed, or which should have been filed herewith (or with any paper hereafter filed in this application by this firm) to our Account No. 14-1140. A duplicate copy of this sheet is attached.		

The invention was made by an agency of the United States Government or under a contact with an agency of the United States Government.

 No. Yes, the name of the U.S. Government agency and the Government contract number are:Respectfully submitted,
SIGNATURE*Mary J. Wilson*

DATE

August 27, 2004

TYPED or PRINTED NAME

Mary J. Wilson

REGISTRATION NO.
(if appropriate)

32,955

 Additional inventors are being named on separately numbered sheets attached hereto.**PROVISIONAL APPLICATION FILING ONLY**

Burden Hour Statement: This form is estimated to take .2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Mail Stop Comments - Patents, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, and to the Office of Information and Regulatory Affairs, Office of Management and Budget (Project 0651-0037), Washington, DC 20503. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: , Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

U.S. PROVISIONAL PATENT APPLICATION

Inventor(s): Barton F. HAYNES
Feng GAO
Bette T. KORBER
Beatrice H. HAHN
George M. SHAW
Denise KOTHE
Ying Ying LI
Julie DECKER
Hua-Xin LIAO

Invention: CONSENSUS/ANCESTRAL IMMUNOGENS

*NIXON & VANDERHYE P.C.
ATTORNEYS AT LAW
1100 NORTH GLEBE ROAD, 8TH FLOOR
ARLINGTON, VIRGINIA 22201-4714
(703) 816-4000
Facsimile (703) 816-4100*

SPECIFICATION

CONSENSUS/ANCESTRAL IMMUNOGENS

This application is related to Provisional Application No. 60/503,460, filed September 17, 2003, the entire content of which is incorporated 5 herein by reference.

TECHNICAL FIELD

The present invention relates, in general, to an immunogen and, in particular, to an immunogen for inducing antibodies that neutralize a wide spectrum 10 of HIV primary isolates and/or to an immunogen that induces a T cell immune response. The invention also relates to a method of inducing anti-HIV antibodies, and/or to a method of inducing a T cell immune response, using such an immunogen. The 15 invention further relates to nucleic acid sequences encoding the present immunogens.

BACKGROUND

The high level of genetic variability of HIV-1 has presented a major hurdle for AIDS vaccine 20 development. Genetic differences among HIV-1 groups M, N, and O are extensive, ranging from 30% to 50% in gag and env genes, respectively (Gurtler et al, J. Virol. 68:1581-1585 (1994), Vanden Haesevelde et al, J. Virol. 68:1586-1596 (1994), Simon et al, Nat. 25 Med. 4:1032-1037 (1998), Kuiken et al, Human retroviruses and AIDS 2000: a compilation and

analysis of nucleic acid and amino acid sequences (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico)). Viruses within group M are further 5 classified into nine genetically distinct subtypes (A-D, F-H, J and K) (Kuiken et al, Human retroviruses and AIDS 2000: a compilation and analysis of nucleic acid and amino acid sequences (Theoretical Biology and Biophysics Group, Los 10 Alamos National Laboratory, Los Alamos, New Mexico, Robertson et al, Science 288:55-56 (2000), Robertson et al, Human retroviruses and AIDS 1999: a compilation and analysis of nucleic acid and amino acid sequences, eds. Kuiken et al (Theoretical 15 Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico), pp. 492-505 (2000)). With the genetic variation as high as 30% in env genes among HIV-1 subtypes, it has been difficult to consistently elicit cross-subtype T and 20 B cell immune responses against all HIV-1 subtypes. HIV-1 also frequently recombines among different subtypes to create circulating recombinant forms (CRFs) (Robertson et al, Science 288:55-56 (2000), Robertson et al, Human retroviruses and AIDS 1999: a 25 compilation and analysis of nucleic acid and amino acid sequences, eds. Kuiken et al (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico), pp. 492-505 (2000), Carr et al, Human retroviruses and AIDS 30 1998: a compilation and analysis of nucleic acid and amino acid sequences, eds. Korber et al (Theoretical

Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico), pp. III-10-III-19 (1998)). Over 20% of HIV-1 isolates are recombinant in geographic areas where multiple 5 subtypes are common (Robertson et al, Nature 374:124-126 (1995), Cornelissen et al, J. virol. 70:8209-8212 (1996), Dowling et al, AIDS 16:1809-1820 (2002)), and high prevalence rates of recombinant viruses may further complicate the 10 design of experimental HIV-1 immunogens.

To overcome these challenges in AIDS vaccine development, three computer models (consensus, ancestor and center of the tree) have been used to generate centralized HIV-1 genes to (Gaschen et al, 15 Science 296:2354-2360 (2002), Gao et al, Science 299:1517-1518 (2003), Nickle et al, Science 299:1515-1517 (2003), Novitsky et al, J. Virol. 76:5435-5451 (2002), Ellenberger et al, Virology 302:155-163 (2002), Korber et al, Science 288:1789-20 1796 (2000)). The biology of HIV gives rise to star-like phylogenies, and as a consequence of this, the three kinds of sequences differ from each other by 2 - 5% (Gao et al, Science 299:1517-1518 (2003)). Any of the three centralized gene strategies will 25 reduce the protein distances between immunogens and field virus strains. Consensus sequences minimize the degree of sequence dissimilarity between a vaccine strain and contemporary circulating viruses by creating artificial sequences based on the most 30 common amino acid in each position in an alignment (Gaschen et al, Science 296:2354-2360 (2002)).

Ancestral sequences are similar to consensus sequences but are generated using maximum-likelihood phylogenetic analysis methods (Gaschen et al, Science 296:2354-2360 (2002), Nickle et al, Science 5 299:1515-1517 (2003)) . In doing so, this method recreates the hypothetical ancestral genes of the analyzed current wild-type sequences (Figure 26) . Nickle et al proposed another method to generate centralized HIV-1 sequences, center of the tree 10 (COT), that is similar to ancestral sequences but less influenced by outliers (Science 299:1515-1517 (2003)).

The present invention results, at least in part, from the results of studies designed to 15 determine if centralized immunogens can induce both T and B cell immune responses in animals. These studies involved the generation of an artificial group M consensus env gene (CON6), and construction of DNA plasmids and recombinant vaccinia viruses to 20 express CON6 envelopes as soluble gp120 and gp140CF proteins. The results demonstrate that CON6 Env proteins are biologically functional, possess linear, conformational and glycan-dependent epitopes of wild-type HIV-1, and induce cytokine-producing T 25 cells that recognize T cell epitopes of both HIV subtypes B and C. Importantly, CON6 gp120 and gp140CF proteins induce antibodies that neutralize subsets of subtype B and C HIV-1 primary isolates.

The iterative nature of study of the 30 centralized HIV-1 gene approach is derived from the rapidly expanding evolution of HIV-1 sequences, and

the fact that sequences collected in the HIV sequence database (that is, the Los Alamos National Database) are continually being updated with new sequences each year. The CON6 gp120 envelope gene 5 derives from Year 1999 Los Alamos National Database sequences, and Con-S derives from Year 2000 Los Alamos National Database sequences. In addition, CON6 has Chinese subtype C V1, V2, V4, and V5 Env sequences, while Con-S has all group M consensus Env 10 constant and variable regions, that have been shortened to minimal-length variable loops. Codon-optimized genes for a series of Year 2003 group M and subtype consensus sequences have been designed, as have a corresponding series of wild-type HIV-1 15 Env genes for comparison, for use in inducing broadly reactive T and B cell responses to HIV-1 primary isolates.

SUMMARY OF THE INVENTION

The present invention relates to an immunogen 20 for inducing antibodies that neutralize a wide spectrum of HIV primary isolates and/or to an immunogen that induces a T cell immune response, and to nucleic acid sequences encoding same. The invention also relates to a method of inducing anti- 25 HIV antibodies, and/or to a method of inducing a T cell immune response, using such an immunogen.

Objects and advantages of the present invention will be clear from the description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A-1D: Generation and expression of the group M consensus env gene (CON6). The complete amino acid sequence of CON6 gp160 is shown.

5 (Fig. 1A) The five regions from the wild-type CRF08_BC (98CN006) env gene are indicated by underlined letters. Variable regions are indicated by brackets above the sequences. Potential N-linked glycosylation sites are highlighted with bold-faced letters.

10 (Fig. 1B) Constructs of CON6 gp120 and gp140CF. CON6 gp120 and gp140CF plasmids were engineered by introducing a stop codon after the gp120 cleavage site or before the transmembrane domain, respectively. The gp120/gp41 cleavage site and fusion domain of gp41 were deleted in the gp140CF protein.

15 (Fig. 1C) Expression of CON6 gp120 and gp140CF. CON6 gp120 and gp140CF were purified from the cell culture supernatants of rVV-infected 293T cells with *galanthus Nivalis* agarose lectin columns.

20 Both gp120 and gp140CF were separated on a 10% SDS-polyarylamide gel and stained with Commassie blue.

25 (Fig. 1D.) CON6 env gene optimized based on codon usage for highly expressed human genes.

Figures 2A-2E. Binding of CON6 gp120 gp140 CF to soluble CD4 (sCD4) and anti-Env mAbs. (Figs. 2A-2B) Each of the indicated mabs and sCD4 was covalently immobilized to a CM5 sensor chip (BIAcore) and CON6 gp120 (Fig. 2A) or gp140CF (Fig.

2B) (100 μ g/ml and 300 μ g/ml, respectively) were injected over each surface. Both gp120 and gp140CF proteins reacted with each anti-gp120 mabs tested except for 17b mab, which showed negligible binding
5 to both CON6 gp120 and gp140CF. To determine induction of 17b mab binding to CON6 gp120 and gp140CF, CON6 gp120 (Fig. 2C) or gp140CF (Fig. 2D) proteins were captured (400-580 RU) on individual flow cells immobilized with sCD4 or mabs A32 or T8.
10 Following stabilization of each of the surface, mAb 17b was injected and flowed over each of the immobilized flow cells. Overlay of curves show that the binding of mab 17b to CON6 Env proteins was markedly enhanced on both sCD4 and mab A32 surfaces
15 but not on the T8 surface (Figs. 2C-2D). To determine binding of CON6 gp120 and gp140CF to human mabs in ELISA, stock solutions of 20 μ g/ml of mabs 447, F39F, A32, IgG1b12 and 2F5 on CON6 gp120 and gp140CF were tittered (Fig. 2E). Mabs 447 (V3),
20 F39F (V3) A32 (gp120) and IgG1b12 (CD4 binding site) each bound to both CON6 gp120 and 140 well, while 2F5 (anti-gp41 ELDKWAS) only bound gp140CF. The concentration at endpoint titer on gp120 for mab 447 and F39F binding was <0.003 μ g/ml and 0.006 μ g/ml,
25 respectively; for mab A32 was <0.125 μ g/ml; for IgG1b12 was <0.002 μ g/ml; and for 2F5 was 0.016 μ g/ml.

Figures 3A and 3B. Infectivity and coreceptor usage of CON6 envelope. (Fig. 3A) CON6 and control

env plasmids were cotransfected with HIV-1/SG3Δenv backbone into human 293T cells to generate Env-pseudovirions. Equal amounts of each pseudovirion (5 ng p24) were used to infect JC53-BL cells. The 5 infectivity was determined by counting the number of blue cells (infectious units, IU) per microgram of p24 of pseudovirions (IU/μg p24) after staining the infected cells for β-gal expression. (Fig. 3B) Coreceptor usage of the CON6 env gene was determined 10 on JC53BL cells treated with AMD3100 and/or TAK-799 for 1 hr (37°C) then infected with equal amounts of p24 (5 ng) of each Env-pseudovirion. Infectivity in the control group (no blocking agent) was set as 100%. Blocking efficiency was expressed as the 15 percentage of IU from blocking experiments compared to those from control cultures without blocking agents. Data shown are mean ± SD.

Figure 4. Western blot analysis of multiple subtype Env proteins against multiple subtype 20 antisera. Equal amount of Env proteins (100 ng) were separated on 10% SDS-polyacrylamide gels. Following electrophoresis, proteins were transferred to Hybond ECL nitrocellulose membranes and reacted with sera from HIV-1 infected patients (1:1,000) or 25 guinea pigs immunized with CON6 gp120 DNA prime, rVV boost (1:1,000). Protein-bound antibody was probed with fluorescent-labeled secondary antibodies and the images scanned and recorded on an infrared imager Odyssey (Li-Cor, Lincoln, NE). Subtypes are

indicated by single-letters after Env protein and serum IDs. Four to six sera were tested for each subtype, and reaction patterns were similar among all sera from the same subtype. One representative
5 result for each subtype serum is shown.

Figure 5. T cell immune responses induced by CON6 Env immunogens in mice. Splenocytes were isolated from individual immunized mice (5 mice/group). After splenocytes were stimulated *in vitro* with overlapping Env peptide pools of CON6 (black column), subtype B (hatched column), subtype C (white column), and medium (no peptide; gray column), INF- γ producing cells were determined by the ELISPOT assay. T cell IFN- γ responses induced
10 by either CON6 gp120 or gp140CF were compared to those induced by subtype specific Env immunogens (JRFL and 96ZM651). Total responses for each envelope peptide pool are expressed as SFCs per million splenocytes. The values for each column are
15 the mean \pm SEM of IFN- γ SFCs (n=5 mice/group).

Figures 6A-6E. Construction of codon usage optimized subtype C ancestral and consensus envelope genes (Figs. 6A and 6B, respectively). Ancestral and consensus amino acid sequences (Figs. 6C and 6D, respectively) were transcribed to mirror the codon usage of highly expressed human genes. Paired oligonucleotides (80-mers) overlapping by 20 bp were designed to contain 5' invariant sequences including
25

the restriction enzyme sites EcoRI, BbsI, Bam HI and BsmBI. BbsI and BsmBI are Type II restriction enzymes that cleave outside of their recognition sequences. Paired oligomers were linked
5 individually using PCR and primers complimentary to the 18 bp invariant sequences in a stepwise fashion, yielding 140bp PCR products. These were subcloned into pGEM-T and sequenced to confirm the absence of inadvertant mutations/deletions. Four individual
10 pGEM-T subclones containing the proper inserts were digested and ligated together into pcDNA3.1. Multi-fragment ligations occurred repeatedly amongst groups of fragments in a stepwise manner from the 5' to the 3' end of the gene until the entire gene was
15 reconstructed in pcDNA3.1. (See schematic in Fig. 6E.)

Figure 7. JC53-BL cells are a derivative of HeLa cells that express high levels of CD4 and the HIV-1 coreceptors CCR5 and CXCR4. They also contain
20 the reporter cassettes of luciferase and β -galactosidase that are each expressed from an HIV-1 LTR. Expression of the reporter genes is dependent on production of HIV-1 Tat. Briefly, cells are seeded into 24 or 96-well plates, incubated at 37°C
25 for 24 hours and treated with DEAE-Dextran at 37°C for 30 minutes. Virus is serially diluted in 1% DMEM, added to the cells incubating in DEAE-Dextran, and allowed to incubate for 3 hours at 37°C after which an additional cell media is added to each

well. Following a final 48-hour incubation at 37°C, cells are either fixed, stained using X-Gal to visualize β-galactosidase expressing blue foci or frozen-thawed three times to measure luciferase activity.

Figure 8. Sequence alignment of subtype C ancestral and consensus *env* genes. Alignment of the subtype C ancestral (bottom line) and consensus (top line) *env* sequences showing a 95.5% sequence homology; amino acid sequence differences are indicated. One noted difference is the addition of a glycosylation site in the C ancestral *env* gene at the base of the V1 loop. A plus sign indicates a within-class difference of amino acid at the indicated position; a bar indicates a change in the class of amino acid. Potential N-glycosylation sites are marked in blue. The position of truncation for the gp140 gene is also shown.

Figure 9. Expression of subtype C ancestral and consensus envelopes in 293T cells. Plasmids containing codon-optimized *gp160*, *gp140*, or *gp120* subtype C ancestral and consensus genes were transfected into 293T cells, and protein expression was examined by Western Blot analysis of cell lysates. 48-hours post-transfection, cell lysates were collected, total protein content determined by the BCA protein assay, and 2 µg of total protein was loaded per lane on a 4-20% SDS-PAGE gel. Proteins

were transferred to a PVDF membrane and probed with HIV-1 plasma from a subtype C infected patient.

Figures 10A and 10B. Fig. 10A. Trans complementation of env-deficient HIV-1 with codon-
5 optimized subtype C ancestral and consensus gp160 and gp140. Plasmids containing codon-optimized, subtype C ancestral or consensus *gp160* or *gp140* genes were co-transfected into 293T cells with an HIV-1/SG3Δenv provirus. 48 hours post-transfection
10 cell supernatants containing pseudotyped virus were harvested, clarified by centrifugation, filtered through at 0.2μM filter, and pelleted through a 20% sucrose cushion. Quantification of p24 in each virus pellet was determined using the Coulter HIV-1
15 p24 antigen assay; 25ng of p24 was loaded per lane on a 4-20% SDS-PAGE gel for particles containing a codon-optimized envelope. 250ng of p24 was loaded per lane for particles generated by co-transfection of a rev-dependent wild-type subtype C 96ZAM651env
20 gene. Differences in the amount of p24 loaded per lane were necessary to ensure visualization of the rev-dependent envelopes by Western Blot. Proteins were transferred to a PVDF membrane and probed with pooled plasma from HIV-1 subtype B and subtype C
25 infected individuals. Fig. 10B. Infectivity of virus particles containing subtype C ancestral and consensus envelope glycoproteins. Infectivity of pseudotyped virus containing ancestral or consensus *gp160* or *gp140* envelope was determined using the

JC53-BL assay. Sucrose cushion purified virus particles were assayed by the Coulter p24 antigen assay, and 5-fold serial dilutions of each pellet were incubated with DEAE-Dextran treated JC53-BL 5 cells. Following a 48-hour incubation period, cells were fixed and stained to visualize β -galactosidase expressing cells. Infectivity is represented as infectious units per ng of p24 to normalize for differences in the concentration of the input 10 pseudovirions.

Figure 11. Co-receptor usage of subtype C ancestral and consensus envelopes. Pseudotyped particles containing ancestral or consensus envelope were incubated with DEAE-Dextran treated JC53-BL 15 cells in the presence of AMD3100 (a specific inhibitor of CXCR4), TAK779 (a specific inhibitor of CCR5), or AMD3000+TAK779 to determine co-receptor usage. NL4.3, an isolate known to utilize CXCR4, and YU-2, a known CCR5-using isolate, were included 20 as controls.

Figures 12A-12C. Neutralization sensitivity of subtype C ancestral and consensus envelope glycoproteins. Equivalent amounts of pseudovirions containing the ancestral, consensus or 96ZAM651 25 gp160 envelopes (1,500 infectious units) were pre-incubated with a panel of plasma samples from HIV-1 subtype C infected patients and then added to the JC53-BL cell monolayer in 96-well plates. Plates

were cultured for two days and luciferase activity was measured as an indicator of viral infectivity. Virus infectivity is calculated by dividing the luciferase units (LU) produced at each concentration 5 of antibody by the LU produced by the control infection. The mean 50% inhibitory concentration (IC_{50}) and the actual % neutralization at each antibody dilution are then calculated for each virus. The results of all luciferase experiments 10 are confirmed by direct counting of blue foci in parallel infections.

Figures 13A-13F. Protein expression of consensus subtype C Gag (Fig. 13A) and Nef (Fig. 13B) following transfection into 293T cells.
15 Consensus subtype C Gag and Nef amino acid sequences are set forth in Figs. 13C and 13D, respectively, and encoding sequences are set forth in Figs. 13E and 13F, respectively.

Figures 14A-14C. Figs. 14A and 14B show the 20 Con-S Env amino acid sequence and encoding sequence, respectively. Fig. 14C shows expression of Group M consensus Con-S Env proteins using an *in vitro* transcription and translation system.

Figures 15A and 15B. Expression of Con-S env 25 gene in mammalian cells. (Fig. 15A - cell lysate, Fig. 15B - supernatant.)

Figures 16A and 16B. Infectivity (Fig. 16A) and coreceptor usage (Fig. 16B) of CON6 and Con-S env genes.

Figures 17A-17C. Env protein incorporation in
5 CON6 and Con-S Env-pseudovirions. (Fig. 17A - lysate, Fig. 17B - supernatant, Fig. 17C pellet.)

Figures 18A-18D. Figs. 18A and 18B show subtype A consensus Env amino acid sequence and nucleic acid sequence encoding same, respectively.
10 Figs. 18C and 18D show expression of A.con env gene in mammalian cells (Fig. 18C - cell lysate, Fig. 18D - supernatant).

Figures 19A-19H. M.con.gag (Fig. 19A), M.con.pol (Fig. 19B), M.con.nef (Fig. 19C) and
15 C.con.pol (Fig. 19D) nucleic acid sequences and corresponding encoded amino acid sequences (Figs. 19E-19H, respectively).

Figures 20A-20D. Subtype B consensus gag (Fig. 20A) and env (Fig. 20B) genes. Corresponding amino
20 acid sequences are shown in Figs. 20C and 20D.

Figure 21. Expression of subtype B consensus env and gag genes in 293T cells. Plasmids containing codon-optimized subtype B consensus gp160, gp140, and gag genes were transfected into
25 293T cells, and protein expression was examined by

Western Blot analysis of cell lysates. 48-hours post-transfection, cell lysates were collected, total protein content determined by the BCA protein assay, and 2 µg of total protein was loaded per lane 5 on a 4-20% SDS-PAGE gel. Proteins were transferred to a PVDF membrane and probed with serum from an HIV-1 subtype B infected individual.

Figure 22. Co-receptor usage of subtype B consensus envelopes. Pseudotyped particles 10 containing the subtype B consensus gp160 Env were incubated with DEAE-Dextran treated JC53-BL cells in the presence of AMD3100 (a specific inhibitor of CXCR4), TAK779 (a specific inhibitor of CCR5), and AMD3000+TAK779 to determine co-receptor usage. 15 NL4.3, an isolate known to utilize CXCR4 and YU-2, a known CCR5-using isolate, were included as controls.

Figures 23A and 23B. Trans complementation of env-deficient HIV-1 with codon-optimized subtype B consensus gp160 and gp140 genes. Plasmids 20 containing codon-optimized, subtype B consensus gp160 or gp140 genes were co-transfected into 293T cells with an HIV-1/SG3Δenv provirus. 48-hours post-transfection cell supernatants containing pseudotyped virus were harvested, clarified in a 25 tabletop centrifuge, filtered through a 0.2µM filter, and pellet through a 20% sucrose cushion. Quantification of p24 in each virus pellet was determined using the Coulter HIV-1 p24 antigen

assay; 25 ng of p24 was loaded per lane on a 4-20% SDS-PAGE gel. Proteins were transferred to a PVDF membrane and probed with anti-HIV-1 antibodies from infected HIV-1 subtype B patient serum. Trans
5 complementation with a rev-dependent NL4.3 env was included for control. Figure 23B. Infectivity of virus particles containing the subtype B consensus envelope. Infectivitiy of pseudotyped virus containing consensus B gp160 or gp140 was determined
10 using the JC53-BL assay. Sucrose cushion purified virus particles were assayed by the Coulter p24 antigen assay, and 5-fold serial dilutions of each pellet were incubated with DEAE-Dextran treated JC53-BL cells. Following a 48-hour incubation
15 period, cells were fixed and stained to visualize β -galactosidase expressing cells. Infectivity is expressed as infectious units per ng of p24.

Figures 24A-24D. Neutralization sensitivity of virions containing subtype B consensus gp160
20 envelope. Equivalent amounts of pseudovirions containing the subtype B consensus or NL4.3 Env (gp160) (1,500 infectious units) were preincubated with three different monoclonal neutralizing antibodies and a panel of plasma samples from HIV-1
25 subtype B infected individuals, and then added to the JC53-BL cell monolayer in 96-well plates. Plates were cultured for two days and luciferase activity was measured as an indicator of viral infectivity. Virus infectivity was calculated by

dividing the luciferase units (LU) produced at each concentration of antibody by the LU produced by the control infection. The mean 50% inhibitory concentration (IC_{50}) and the actual % neutralization 5 at each antibody dilution were then calculated for each virus. The results of all luciferase experiments were confirmed by direct counting of blue foci in parallel infections. Fig. 24A.

Neutralization of Pseudovirions containing Subtype B 10 consensus Env (gp160). Fig. 24B. Neutralization of Pseudovirions containing NL4.3 Env (gp160).

Fig. 24C. Neutralization of Pseudovirions containing Subtype B consensus Env (gp160). Fig. 24D.

Neutralization of Pseudovirions containing NL4.3 Env 15 (gp160).

Figures 25A and 25B. Fig. 25A. Density and p24 analysis of sucrose gradient fractions. 0.5ml fractions were collected from a 20-60% sucrose gradient. Fraction number 1 represents the most 20 dense fraction taken from the bottom of the gradient tube. Density was measured with a refractometer and the amount of p24 in each fraction was determined by the Coulter p24 antigen assay. Fractions 6-9, 10-15, 16-21, and 22-25 were pooled together and 25 analyzed by Western Blot. As expected, virions sedimented at a density of 1.16-1.18 g/ml.

Fig. 25B. VLP production by co-transfection of subtype B consensus gag and env genes. 293T cells were co-transfected with subtype B consensus gag and

env genes. Cell supernatants were harvested 48-hours post-transfection, clarified through at 20% sucrose cushion, and further purified through a 20-60% sucrose gradient. Select fractions from the 5 gradient were pooled, added to 20ml of PBS, and centrifuged overnight at 100,000 x g. Resuspended pellets were loaded onto a 4-20% SDS-PAGE gel, proteins were transferred to a PVDF membrane, and probed with plasma from an HIV-1 subtype B infected 10 individual.

Figures 26A and 26B. Fig. 26A. 2000 Con-S 140CFI.ENV. Fig. 26B. Codon-optimized Year 2000 Con-S 140CFI.seq.

Figure 27. Individual C57BL/6 mouse T cell 15 responses to HIV-1 envelope peptides. Comparative immunogenicity of CON6 gp140CFI and Con-S gp140CFI in C57BL/C mice. Mice were immunized with either HIV5305 (Subtype A), 2801 (Subtype B), CON6 or Con-S Envelope genes in DNA prime, rVV boost regimens, 5 20 mice per group. Spleen cells were assayed for IFN- γ spot-forming cells 10 days after rVV boost, using mixtures of overlapping peptides from Envs of HIV-1 UG37 (A), MN (B), Ch19 (C), 89.6 (B) SF162 (B) or no peptide negative control.

25 Figures 28A-28C. Fig. 28A. Con-B 2003 Env. pep (841 a.a.). Amino acid sequence underlined is the fusion domain that is deleted in 140CF design and

the "W" underlined is the last amino acid at the C-terminus, all amino acids after the "W" are deleted in the 140CF design. Fig. 28B. Con-B-140CF.pep (632 a.a.). Amino acids in bold identify 5 the junction of the deleted fusion cleavage site. Fig. 28C. Codon-optimized Con-B 140CF.seq (1927 nt.).

Figures 29A-29C. Fig. 29A. CON_OF_CONS-2003 (829 a.a.). Amino acid sequence underlined is the 10 fusion domain that is deleted in 140CF design and the "W" underlined is the last amino acid at the C-terminus, all amino acids after the "W" are deleted in the 140CF design. Fig. 29B. ConS-2003 140CF.pep (620 a.a.). Amino acids in bold identify 15 the junction of the deleted fusion cleavage site. Fig. 29C. CODON-OPTIMIZED ConS-2003 140CF.seq (1891 nt.).

Figures 30A-30C. Fig. 30A. CONSENSUS_A1-2003 (845 a.a.). Amino acid sequence underlined is the 20 fusion domain that is deleted in 140CF design and the "W" underlined is the last amino acid at the C-terminus, all amino acids after the "W" are deleted in the 140CF design. Fig. 30B. Con-A1-2003 140CF.pep (629 a.a.). Amino acids in bold identify 25 the junction of the deleted fusion cleavage site. Fig. 30C. CODON-OPTIMIZED Con-A1-2003.seq.

Figures 31A-31C. Fig. 31A. CONSENSUS_C-2003 (835 a.a.). Amino acid sequence underlined is the fusion domain that is deleted in 140CF design and the "W" underlined is the last amino acid at the C-terminus, all amino acids after the "W" are deleted in the 140CF design. Fig. 31B. Con-C 2003 140CF.pep (619 a.a.). Amino acids in bold identify the junction of the deleted fusion cleavage site. Fig. 31C. CODON-OPTIMIZED Con-C-2003 (140 CF (1,888 nt.).

Figures 32A-32C. Fig. 32A. CONSENSUS_G-2003 (842 a.a.). Amino acid sequence underlined is the fusion domain that is deleted in 140CF design and the "W" underlined is the last amino acid at the C-terminus, all amino acids after the "W" are deleted in the 140CF design. Fig. 32B. Con-G-2003 140CF.pep (626 a.a.). Amino acids in bold identify the junction of the deleted fusion cleavage site. Fig. 32C. CODON-OPTIMIZED Con-G-2003.seq.

Figures 33A-33C. Fig. 33A. CONSENSUS_01_AE-2003 (854 a.a.). Amino acid sequence underlined is the fusion domain that is deleted in 140CF design and the "W" underlined is the last amino acid at the C-terminus, all amino acids after the "W" are deleted in the 140CF design. Fig. 33B. Con-AE01-2003 140CF.pep (638 a.a.). Amino acids in bold identify the junction of the deleted fusion cleavage

site. Fig. 33C. CODON-OPTIMIZED Con-AE01-2003.seq.
(1945 nt.).

Figures 34A-34C. Fig. 34A. Wild-type subtype A Env. 00KE_MSA4076-A (Subtype A, 891 a.a.). Amino acid sequence underlined is the fusion domain that is deleted in 140CF design and the "W" underlined is the last amino acid at the C-terminus, all amino acids after the "W" are deleted in the 140CF design.
Fig. 34B. 00KE_MSA4076-A 140CF.pep (647 a.a.).
Amino acids in bold identify the junction of the deleted fusion cleavage site. Fig. 34C. CODON-OPTIMIZED 00KE_MSA4076-A 140CF.seq. (1972 nt.).

Figures 35A-35C. Fig. 35A. Wild-type subtype B. QH0515.1g gp160 (861 a.a.). Amino acid sequence underlined is the fusion domain that is deleted in 140CF design and the "W" underlined is the last amino acid at the C-terminus, all amino acids after the "W" are deleted in the 140CF design. Fig. 35B. QH0515.1g 140CF (651 a.a.). Amino acids in bold identify the junction of the deleted fusion cleavage site. Fig. 35C. CODON-OPTIMIZED QH0515.1g 140CF.seq (1984 nt.).

Figures 36A-36C. Fig. 36A. Wild-type subtype C. DU123.6 gp160 (854 a.a.). Amino acid sequence underlined is the fusion domain that is deleted in 140CF design and the "W" underlined is the last amino acid at the C-terminus, all amino acids after

the "W" are deleted in the 140CF design. Fig. 36B.
DU123.6 140CF (638 a.a.). Amino acids in bold
identify the junction of the deleted fusion cleavage
site. Fig. 36C. CODON-OPTIMIZED DU123.6 140CF.seq
5 (1945 nt.).

Figures 37A-37C. Fig. 37A. Wild-type subtype
CRF01_AE. 97CNGX2F-AE (854 a.a.). Amino acid
sequence underlined is the fusion domain that is
deleted in 140CF design and the "W" underlined is
10 the last amino acid at the C-terminus, all amino
acids after the "W" are deleted in the 140CF design.
Fig. 37B. 97CNGX2F-AE 140CF.pep (629 a.a.). Amino
acids in bold identify the junction of the deleted
fusion cleavage site. Fig. 37C. CODON-OPTIMIZED
15 97CNGX2F-AE 140CF.seq (1921 nt.).

Figures 38A-38C. Fig. 38A. Wild-type DRCBL-G
(854 a.a.). Amino acid sequence underlined is the
fusion domain that is deleted in 140CF design and
the "W" underlined is the last amino acid at the
20 C-terminus, all amino acids after the "W" are
deleted in the 140CF design. Fig. 38B. DRCBL-G
140CF.pep (630 a.a.). Amino acids in bold identify
the junction of the deleted fusion cleavage site.
Fig. 38C. CODON-OPTIMIZED DRCBL-G 140CF.seq (1921
25 nt.).

Figures 39A and 39B. Fig. 39A. 2003 Con-S Env. Fig. 39B. 2003 Con-S Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 40A and 40B. Fig. 40A. 2003 M. 5 Group.Anc Env. Fig. 40B. 2003 M. Group.anc Env.seq.opt. (Seq.opt. = codon optimized encoding sequence.)

Figures 41A and 41B. Fig. 41A. 2003 CON_A1 Env. Fig. 41B. 2003 CON_A1 Env.seq.opt.
10 (Seq.opt. = codon optimized encoding sequence.)

Figures 42A and 42B. Fig. 42A. 2003 A1.Anc Env. Figs. 42B. 2003 A1.anc Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 43A and 43B. Fig. 43A. 2003 CON_A2 Env. Fig. 43B. 2003 CON_A2 Env.seq.opt.
15 (Seq.opt. = codon optimized encoding sequence.)

Figures 44A and 44B. Fig. 44A. 2003 CON_B Env. Fig. 44B. 2003 CON_B Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

20 Figures 45A and 45B. Fig. 45A. 2003 B.anc Env. Figs. 45B. 2003 B.anc Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 46A and 46B. Fig. 46A. 2003 CON_C
Env. Fig. 46B. 2003 CON_C Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 47A and 47B. Fig. 47A. 2003 C.anc
Env. Fig. 47B. 2003 C.anc Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 48A and 48B. Fig. 48A. 2003 CON_D
Env. Fig. 48B. 2003 CON_D Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

10 Figures 49A and 49B. Fig. 49A. 2003 CON_F1
Env. Fig. 49B. 2003 CON_F1 Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 50A and 50B. Fig. 50A. 2003 CON_F2
Env. Fig. 50B. 2003 CON_F2 Env.seq.opt.
15 (Seq.opt. = codon optimized encoding sequence.)

Figures 51A and 51B. Fig. 51A. 2003 CON_G
Env. Fig. 51B. 2003 CON_G Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 52A and 52B. Fig. 52A. 2003 CON_H
20 Env. Fig. 52B. 2003 CON_H Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 53A and 53B. Fig. 53A. 2003 CON_01_AE
Env. Fig. 53B. 2003 CON_01_AE Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 54A and 54B. Fig. 54A. 2003 CON_02_AG
5 Env. Fig. 54B. 2003 CON_02_AG Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 55A and 55B. Fig. 55A. 2003 CON_03_AB
Env. Fig. 55B. 2003 CON_03_AB Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

10 Figures 56A and 56B. Fig. 56A. 2003
CON_04_CPX Env. Fig. 56B. 2003 CON_04_CPX
Env.seq.opt. (Seq.opt. = codon optimized encoding
sequence.)

15 Figures 57A and 57B. Fig. 57A. 2003
CON_06_CPX Env. Fig. 57B. 2003 CON_06_CPX
Env.seq.opt. (Seq.opt. = codon optimized encoding
sequence.)

Figures 58A and 58B. Fig. 58A. 2003 CON_08_BC
Env. Fig. 58B. 2003 CON_08_BC Env.seq.opt.
20 (Seq.opt. = codon optimized encoding sequence.)

Figures 59A and 59B. Fig. 59A. 2003 CON_10_CD
Env. Fig. 59B. 2003 CON_10_CD Env.seq.opt.
(Seq.opt. = codon optimized encoding sequence.)

Figures 60A and 60B. Fig. 60A. 2003 CON_11_CPX Env. Fig. 60B. 2003 CON_11_CPX Env.seq.opt. (Seq.opt. = codon optimized encoding sequence.)

5 Figures 61A and 61B. Fig. 61A. 2003 CON_12_BF Env. Fig. 61B. 2003 CON_12_BF Env.seq.opt. (Seq.opt. = codon optimized encoding sequence.)

10 Figures 62A and 62B. Fig. 62A. 2003 CON_14_BG Env. Fig. 62B. 2003 CON_14_BG Env.seq.opt. (Seq.opt. = codon optimized encoding sequence.)

Figures 63A and 63B. Fig. 63A. 2003_CON_S gag.PEP. Fig. 63B. 2003_CON_S gag.OPT. (OPT = codon optimized encoding sequence.)

15 Figures 64A and 64B. Fig. 64A. 2003_M.GROUP.anc gag.PEP. Fig. 64B. 2003_M.GROUP.anc gag.OPT. (OPT = codon optimized encoding sequence.)

20 Figures 65A-65D. Fig. 65A. 2003_CON_A1 gag.PEP. Fig. 65B. 2003_CON_A1 gag.OPT. Fig. 65C. 2003_A1.anc gag.PEP. Fig. 65D. 2003_A1.anc gag.OPT. (OPT = codon optimized encoding sequence.)

Figures 66A and 66B. Fig. 66A. 2003_CON_A2
gag.PEP. Fig. 66B. 2003_CON_A2 gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 67A-67D. Fig. 67A. 2003_CON_B
5 gag.PEP. Fig. 67B. 2003_CON_B gag.OPT. Fig. 67C.
2003_B.anc gag.PEP. Fig. 67D. 2003_B.anc gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 68A-68D. Fig. 68A. 2003_CON_C
gag.PEP. Fig. 68B. 2003_CON_C gag.OPT. Fig. 68C.
10 2003_C.anc.gag.PEP. Fig. 68D. 2003_C.anc.gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 69A and 69B. Fig. 69A. 2003_CON_D
gag.PEP. Fig. 69B. 2003_CON_D gag.OPT.
(OPT = codon optimized encoding sequence.)

15 Figures 70A and 70B. Fig. 70A. 2003_CON_F
gag.PEP. Fig. 70B. 2003_CON_F gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 71A and 71B. Fig. 71A. 2003_CON_G
gag.PEP. Fig. 71B. 2003_CON_G gag.OPT.
20 (OPT = codon optimized encoding sequence.)

Figures 72A and 72B. Fig. 72A. 2003_CON_H
gag.PEP. Fig. 72B. 2003_CON_H gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 73A and 73B. Fig. 73A. 2003_CON_K
gag.PEP. Fig. 73B. 2003_CON_K gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 74A and 74B. Fig. 74A. 2003_CON_01_AE
5 gag.PEP. Fig. 7B. 2003_CON_01_AE gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 75A and 75B. Fig. 75A. 2003_CON_02_AG
gag.PEP. Fig. 75B. 2003_CON_02_AG gag.OPT.
(OPT = codon optimized encoding sequence.)

10 Figures 76A and 76B. Fig. 76A.
2003_CON_03_ABG gag.PEP. Fig. 76B. 2003_CON_03_ABG
gag.OPT. (OPT = codon optimized encoding sequence.)

Figures 77A and 77B. Fig. 77A.
2003_CON_04_CFX gag.PEP. Fig. 77B. 2003 CON_04_CFX
15 gag.OPT. (OPT = codon optimized encoding sequence.)

Figures 78A and 78B. Fig. 78A.
2003_CON_06_CPX gag.PEP. Fig. 78B. 2003_CON_06_CPX
gag.OPT. (OPT = codon optimized encoding sequence.)

Figures 79A and 79B. Fig. 79A. 2003_CON_07_BC
20 gag.PEP. Fig. 79B. 2003_CON_07_BC gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 80A and 80B. Fig. 80A. 2003_CON_08_BC
gag.PEP. Fig. 80B. 2003_CON_08_BC gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 81A and 81B. Fig. 81A. 2003_CON_10_CD
5 gag.PEP. Fig. 81B. 2003_CON_10_CD gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 82A and 82B. Fig. 82A.
2003_CON_11_CPX gag.PEP. Fig. 82B. 2003_CON_11_CPX
gag.OPT. (OPT = codon optimized encoding sequence.)

10 Figures 83A and 83B. Fig. 83A.
2003_CON_12_BF.gag.PEP. Fig. 83B.
2003_CON_12_BF.gag.OPT. (OPT = codon optimized
encoding sequence.)

Figures 84A and 84B. Fig. 84A. 2003_CON_14_BG
15 gag.PEP. Fig. 84B. 2003_CON_14_BG gag.OPT.
(OPT = codon optimized encoding sequence.)

Figures 85A and 85B. Fig. 85A. 2003_CONS
nef.PEP. Fig. 85B. 2003_CONS nef.OPT.
(OPT = codon optimized encoding sequence.)

20 Figures 86A and 86B. Fig. 86A. 2003_M
GROUP.anc nef.PEP. Fig. 86B. 2003_M
GROUP.anc.nef.OPT. (OPT = codon optimized encoding
sequence.)

Figures 87A and 87B. Fig. 87A. 2003_CON_A
nef.PEP. Fig. 87B. 2003_CON_A nef.OPT.
(OPT = codon optimized encoding sequence.)

5 Figures 88A-88D. Fig. 88A. 2003_CON_A1
nef.PEP. Fig. 88B. 2003_CON_A1 nef.OPT. Fig. 88C.
2003_A1.anc nef.PEP. Fig. 88D. 2003_A1.anc
nef.OPT. (OPT = codon optimized encoding sequence.)

10 Figures 89A and 89B. Fig. 89A. 2003_CON_A2
nef.PEP. Fig. 89B. 2003_CON_A2 nef.OPT.
(OPT = codon optimized encoding sequence.)

Figures 90A-90D. Fig. 90A. 2003_CON_B
nef.PEP. Fig. 90B. 2003_CON_B nef.OPT. Fig. 90C.
2003_B.anc nef.PEP. Fig. 90D. 2003_B.anc nef.OPT.
(OPT = codon optimized encoding sequence.)

15 Figures 91A and 91B. Fig. 91A. 2003_CON_02_AG
nef.PEP. Fig. 91B. 2003_CON_02_AG nef.OPT.
(OPT = codon optimized encoding sequence.)

20 Figures 92A-92D. Fig. 92A. 2003_CON_C
nef.PEP. Fig. 92B. 2003_CON_C nef.OPT. Fig. 92C.
2003_C.anc nef.PEP. Fig. 92D. 2003_C.anc nef.OPT.
(OPT = codon optimized encoding sequence.)

Figures 93A and 93B. Fig. 93A. 2003_CON_D
nef.PEP. Fig. 93B. 2003_CON_D nef.OPT.
(OPT = codon optimized encoding sequence.)

Figures 94A and 94B. Fig. 94A. 2003_CON_F1
5 nef.PEP. Fig. 94B. 2003_CON_F1 nef.OPT.
(OPT = codon optimized encoding sequence.)

Figures 95A and 95B. Fig. 95A. 2003_CON_F2
nef.PEP. Fig. 95B. 2003_CON_F2 nef.OPT.
(OPT = codon optimized encoding sequence.)

10 Figures 96A and 96B. Fig. 96A. 2003_CON_G
nef.PEP. Fig. 96B. 2003_CON_G nef.OPT.
(OPT = codon optimized encoding sequence.)

Figures 97A and 97B. Fig. 97A. 2003_CON_H
nef.PEP. Fig. 97B. 2003_CON_H nef.OPT.
15 (OPT = codon optimized encoding sequence.)

Figures 98A and 98B. Fig. 98A. 2003_CON_01_AE
nef.PEP. Fig. 98B. 2003_CON_01_AE nef.OPT.
(OPT = codon optimized encoding sequence.)

Figures 99A and 99B. Fig. 99A. 2003_CON_03_AE
20 nef.PEP. Fig. 99B. 2003_CON_03_AE nef.OPT.
(OPT = codon optimized encoding sequence.)

Figures 100A and 100B. Fig. 100A.
2003_CON_04_CFX nef.PEP. Fig. 100B.
2003_CON_04_CFX nef.OPT. (OPT = codon optimized
encoding sequence.)

5 Figures 101A and 101B. Fig. 101A.
2003_CON_06_CFX nef.PEP. Fig. 101B.
2003_CON_06_CFX nef.OPT. (OPT = codon optimized
encoding sequence.)

10 Figures 102A and 102B. Fig. 102A.
2003_CON_08_BC nef.PEP. Fig. 102B. 2003_CON_08_BC
nef.OPT. (OPT = codon optimized encoding sequence.)

Figures 103A and 103B. Fig. 103A.
2003_CON_10_CD nef.PEP. Fig. 103B. 2003_CON_10_CD
nef.OPT. (OPT = codon optimized encoding sequence.)

15 Figures 104A and 104B. Fig. 104A.
2003_CON_11_CFX nef.PEP. Fig. 104B.
2003_CON_11_CFX nef.OPT. (OPT = codon optimized
encoding sequence.)

20 Figures 105A and 105B. Fig. 105A.
2003_CON_12_BF nef.PEP. Fig. 105B. 2003_CON_12_BF
nef.OPT. (OPT = codon optimized encoding sequence.)

Figures 106A and 106B. Fig. 106A.
2003_CON_14_BG nef.PEP. Fig. 106B. 2003_CON_14_BG
nef.OPT. (OPT = codon optimized encoding sequence.)

Figures 107A and 107B. Fig. 107A. 2003_CON_S
5 pol.PEP. Fig. 107B. 2003_CON_S pol.OPT.
(OPT = codon optimized encoding sequence.)

Figures 108A and 108B. Fig. 108A. 2003_M
GROUP anc pol.PEP. Fig. 108B. 2003_M.GROUP anc
pol.OPT. (OPT = codon optimized encoding sequence.)

10 Figures 109A-109D. Fig. 109A. 2003_CON_A1
pol.PEP. Fig. 109B. 2003_CON_A1 pol.OPT.
Fig. 109C. 2003_A1.anc pol.PEP. Fig. 109D.
2003_A1.anc pol.OPT. (OPT = codon optimized
encoding sequence.)

15 Figures 110A and 110B. Fig. 110A. 2003_CON_A2
pol.PEP. Fig. 110B. 2003_CON_A2 pol.OPT.
(OPT = codon optimized encoding sequence.)

Figures 111A-111D. Fig. 111A. 2003_CON_B
pol.PEP. Fig. 111B. 2003_CON_B pol.OPT. Fig.
20 111C. 2003_B.anc pol.PEP. Fig. 111D. 2003_B.anc
pol.OPT. (OPT = codon optimized encoding sequence.)

Figures 112A-112D. Fig. 112A. 2003_CON_C
pol.PEP. Fig. 112B. 2003_CON_C pol.OPT.

Fig. 112C. 2003_C.anc pol.PEP. Fig. 112D.
2003_C.anc pol.OPT. (OPT = codon optimized encoding sequence.)

5 Figures 113A and 113B. Fig. 113A. 2003_CON_D
pol.PEP. Fig. 113B. 2003_CON_D pol.OPT.
(OPT = codon optimized encoding sequence.)

Figures 114A and 114B. Fig. 114A. 2003_CON_F1
pol.PEP. Fig. 114B. 2003_CON_F1 pol.OPT.
(OPT = codon optimized encoding sequence.)

10 Figures 115A and 115B. Fig. 115A. 2003_CON_F2
pol.PEP. Fig. 115B. 2003_CON_F2 pol.OPT.
(OPT = codon optimized encoding sequence.)

15 Figures 116A and 116B. Fig. 116A. 2003_CON_G
pol.PEP. Fig. 116B. 2003_CON_G pol.OPT.
(OPT = codon optimized encoding sequence.)

Figures 117A and 117B. Fig. 117A. 2003_CON_H
pol.PEP. Fig. 117B. 2003_CON_H pol.OPT.
(OPT = codon optimized encoding sequence.)

20 Figures 118A and 118B. Fig. 118A.
2003_CON_01_AE pol.PEP. Fig. 118B. 2003_CON_01_AE
pol.OPT. (OPT = codon optimized encoding sequence.)

Figures 119A and 119B. Fig. 119A.
2003_CON_02_AG pol.PEP. Fig. 119B. 2003_CON_02_AG
pol.OPT. (OPT = codon optimized encoding sequence.)

Figures 120A and 120B. Fig. 120A.
5 2003_CON_03_AB pol.PEP. Fig. 120B. 2003_CON_03_AB
pol.OPT. (OPT = codon optimized encoding sequence.)

Figures 121A and 121B. Fig. 121A.
2003_CON_04_CPX pol.PEP. Fig. 121B.
2003_CON_04_CPX pol.OPT. (OPT = codon optimized
10 encoding sequence.)

Figures 122A and 122B. Fig. 122A.
2003_CON_06_CPX pol.PEP. Fig. 122B.
2003_CON_06_CPX pol.OPT. (OPT = codon optimized
encoding sequence.)

15 Figures 123A and 123B. Fig. 123A.
2003_CON_08_BC pol.PEP. Fig. 123B. 2003_CON_08_BC
pol.OPT. (OPT = codon optimized encoding sequence.)

Figures 124A and 124B. Fig. 124A.
2003_CON_10_CD pol.PEP. Fig. 124B. 2003_CON_10_CD
20 pol.OPT. (OPT = codon optimized encoding sequence.)

Figures 125A and 125B. Fig. 125A.
2003_CON_11_CPX pol.PEP. Fig. 125B.

2003_CON_11_CPX pol.OPT. (OPT = codon optimized encoding sequence.)

Figures 126A and 126B. Fig. 126A.
2003_CON_12_BF pol.PEP. Fig. 126B. 2003_CON_12_BF
5 pol.OPT. (OPT = codon optimized encoding sequence.)

Figures 127A and 127B. Fig. 127A.
2003_CON_14_BG pol.PEP. Fig. 127B. 2003_CON_14_BG
pol.OPT. (OPT = codon optimized encoding sequence.)

DETAILED DESCRIPTION OF THE INVENTION

10 The present invention relates to an immunogen that induces antibodies that neutralize a wide spectrum of human immunodeficiency virus (HIV) primary isolates and/or that induces a T cell response. The immunogen comprises at least one
15 consensus or ancestral immunogen (e.g., Env, Gag, Nef or Pol), or portion or variant thereof. The invention also relates to nucleic acid sequences encoding the consensus or ancestral immunogen, or portion or variant thereof. The invention further
20 relates to methods of using both the immunogen and the encoding sequences. While the invention is described in detail with reference to specific consensus and ancestral immunogens (for example, to a group M consensus Env), it will be appreciated
25 that the approach described herein can be used to generate a variety of consensus or ancestral

immunogens (for example, envelopes for other HIV-1 groups (e.g., N and O)).

In accordance with one embodiment of the invention, a consensus *env* gene can be constructed by generating consensus sequences of *env* genes for each subtype of a particular HIV-1 group (group M being classified into subtypes A-D, F-H, J and K), for example, from sequences in the Los Alamos HIV Sequence Database (using, for example, MASE (Multiple Aligned Sequence Editor)). A consensus sequence of all subtype consensuses can then be generated to avoid heavily sequenced subtypes (Gaschen et al, Science 296:2354-2360 (2002), Korber et al, Science 288:1789-1796 (2000)). In the case of the group M consensus *env* gene described in Example 1 (designated CON6), five highly variable regions from a CRF08_BC recombinant strain (98CN006) (V1, V2, V4, V5 and a region in cytoplasmic domain of gp41) are used to fill in the missing regions in the sequence (see, however, corresponding regions for Con-S). For high levels of expression, the codons of consensus or ancestral genes can be optimized based on codon usage for highly expressed human genes (Haas et al, Curr. Biol. 6:315-324 (2000), Andre et al, J. Virol. 72:1497-1503 (1998)).

With the Year 1999 consensus group M *env* gene, CON6, it has been possible to demonstrate induction of superior T cell responses by CON6 versus wild-type B and C *env* by the number of ELISPOT γ -interferon spleen spot forming cells and the

number of epitopes recognized in two strains of mice (Tables 1 and 2 show the data in BALB/c mice). The ability of CON6 Env protein to induce neutralizing antibodies to HIV-1 primary isolates has been compared to that of several subtype B Env. The target of neutralizing antibodies induced by CON6 includes several non-B HIV-1 strains.

Table 1. T cell epitope mapping of CON6, JRFL and 96ZM651 Env immunogen in BALB/c mice

Peptide	Immunogen			T cell response
	CON6	JRFL (B)	96ZM651 (C)	
CON 6 (group M consensus)				
16 DTEVHNWATHACVP	+		+	CD4
48 KNSSEYYRLNCNTS	+		+	CD4
49 EYYRLNCNTSAITQ				
53 CPKVSFEPPIHYCA	+			CD4
54 SFEPPIHYCAPAGF				
62 NVSTVQCTHGIKPVV	+			CD4
104 ETITLPCRIKQINM				
105 LPCRIKQINMWQGV	+			CD8
130 GVOQGSNLLRAIEA				
131 VOCSNLLRAIEAQQLL	+			CD4
134 AQCHLLOLTWVGIKOLO	+			CD4
135 LQLTVWGIKQLOARVL				
Subtype B (MN)				
6223 AKAYDTEVHNWATO				
6224 DTEVHNWATOACVP	+			CD4
6261 ACPKVSFEPPIHYC	+			CD4
6262 ISFEPPIHYCAPAG				
6298 RKRHIGPGRAFYTT				
6299 HGPGRAPYTTQII		+		CD8
6346 IVQQONLLRAIEAQ				
6347 QNNLLRAIEAQOQML	+			CD4
Subtype C (Chn19)				
4834 VPWVKEAKTTLFCASDAVSY			+	CD4
4838 GKEVHNWATHACVPTDPNP	+		+	CD4
4848 SSENSEYYRLNCNTSAIT	+		+	CD4
4854 STVQCTHGIKPVVSTOLLLN	+			CD4
4854 QOSNLLRAIEAQCHLLOLT	+			CD4
4855 AQCHLLOLTWVGIKQLOTRV	+			CD4

Table 2. T cell epitope mapping of CON6.gp120 immunogen in C57BL/6 mice

Peptide	Peptide sequence	T cell response
CON 6 (consensus)		
2	GIQRNCQHLWRWGTM	CD8
3	NCQHLWRWGTMILGM	
16	DTEVHNWATHACVP	CD4
53	CPKVSFEPPIPIHYCA	CD4
97	FYCNTSGLFNSTWMF	CD8
99	FNSTWMFNGTYSMFNG	CD8
Subtype B (MN)		
6210	GIRRNYQHWWGWGTM	CD8
6211	NYQHWWGWGTMILLGL	
6232	NMWKNNMVEQMHEDI	CD4
6262	ISFEPPIPIHYCAPAG	CD4
6290	NIIGTIRQAHCNISR	CD4
6291	TIRQAHCNISRAKWN	
Subtype C (Chn 19)		
4830	MRVTGIRKNYQHLWRWGTML	CD8
5446	RWGTMLLGMLMICSAAEN	CD8
4836	GKEVHNWATHACVPTDPNP	CD4
4862	GDIRQAHCNISKDKWNETLQ	CD4
4888	LLGIWGCGSKLICTTTVPWN	CD8

For the Year 2000 consensus group M env gene,
 5 Con-S, the Con-S envelope has been shown to be as
 immunogenic as the CON6 envelope gene in T cell γ
 interferon ELISPOT assays in two strains of mice

(the data for C57BL/6 are shown in Fig. 27). Furthermore, in comparing CON6 and Con-S gp140 Envs as protein immunogens for antibody in guinea pigs (Table 3), both gp140 Envs were found to induce 5 antibodies that neutralized subtype B primary isolates. However, Con-S gp140 also induced robust neutralization of the subtype C isolates TV-1 and DU 123 as well as one subtype A HIV-1 primary isolate, while CON6 did not.

TABLE 3 Ability of Group M Consensus CON6 and Con-S Envs to Induce Neutralization of HIV-1 Primary Isolates

HIV-1 Isolate (Subtype)	CON6 gp140CFI						CON6 gp140 CFI		CONS gp140 CFI			
	770	771	772	775	781	783	784	786	776	777	778	780
BX08(B)	520	257	428	189	218	164	>540	199	>540	>540	>540	>540
QH0692 (B)	46	55	58	77	<20	91	100	76	109	<20	<20	<20
SS1196(B)	398	306	284	222	431	242	>540	351	>540	296	>540	>540
JRFL(B)	<20	<20	<20	<20	<20	169	<20	<20	<20	<20	<20	<20
BG1168(B)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
3988(B)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
6101(B)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
TV-1(C)	<20	<20	<20	<20	<20	<20	<20	<20	356	439	>540	>540
DU123(C)	<20	<20	71	74	<20	72	<20	<20	176	329	387	378
DU172(C)	<20	<20	96	64	<20	<20	<20	<20	<20	235	<20	213
ZM18108.6(C)	ND	ND	ND	ND	<20	<20	<20	<20	84	61	86	43

ZM14654.7(C)	ND	ND	ND	<20	<20	<20	<20	<20	<20	30	<20
DU151(C)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
DU422(C)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
DU156(C)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
92RWO20(A)	<20	<20	<20	<20	<20	<20	<20	116	204	95	177
<u>92UG037(A)</u>	<20	<20	30	<20	<20	44	<20	<20	<20	<20	<20

† 50% Neutralization titers after 4th or 5th immunizations

Year 2000 Con-S 140CF1.ENV sequence is shown in Fig. 26A. Gp140 CF1 refers to an HIV-1 envelope design in which the cleavage-site is deleted (c), the fusion-site is deleted (F) and the gp41 immunodominant region is deleted (l), in addition to the deletion of transmembrane and cytoplasmic domains. The codon-optimized Year 2000 Con-S 140 CF1 sequence is shown in Fig. 26B.

As the next iteration of consensus immunogens, and in recognition of the fact that a practical HIV-1 immunogen can be a polyvalent mixture of either 5 several subtype consensus genes, a mixture of subtype and consensus genes, or a mixture of centralized genes and wild type genes, a series of 11 subtype consensus, and wild type genes have been designed from subtypes A, B, C, CRF AE01, and G as 10 well as a group M consensus gene from Year 2003 Los Alamos National Database sequences. The wild type sequences were chosen either because they were known to come from early transmitted HIV-1 strains (those strains most likely to be necessary to be protected 15 against by a vaccine) or because they were the most recently submitted strains in the database of that subtype. These nucleotide and amino acid sequences are shown in Figures 28-38 (for all 140CF designs shown, 140CF gene can be flanked with the 5' 20 sequence "TTCAGTCGACGGCCACC" that contains a Kozak sequence (GCCACCATGG/A) and SalI site and 3' sequence of TAAAGATCTTACAA containing stop codon and BglII site). Shown in Figures 39-62 are 2003 centralized (consensus and ancestral) HIV-1 envelope 25 proteins and the codon optimized gene sequences.

Major differences between CON6 gp140 (which does not neutralize non-clade B HIV strains) and Con-S gp140 (which does induce antibodies that neutralize non-clade B HIV strains) are in Con-S V1, 30 V2, V4 and V5 regions. For clade B strains, peptides of the V3 region can induce neutralizing

antibodies (Haynes et al, J. Immunol. 151:1646-1653 (1993)). Thus, construction of Th-V1, Th-V2, Th-V4, Th-V5 peptides can be expected to give rise to the desired broadly reactive anti-non-clade B neutralizing antibodies. Therefore, the Th-V peptides set forth in Table 4 are contemplated for use as a peptide immunogen(s) derived from Con-S gp140. The gag Th determinant (GTH, Table 4) or any homologous GTH sequence in other HIV strains, can be used to promote immunogenicity and the C4 region of HIV gp120 can be used as well (KQIINMWQVVGKAMYA) or any homologous C4 sequence from other HIV strains (Haynes et al, J. Immunol. 151:1646-1653 (1993)). Con-S V1, V2, V4, V5 peptides with an N-terminal helper determinant can be used singly or together, when formulated in a suitable adjuvant such as Corixa's RC529 (Baldridge et al, J. Endotoxin Res. 8:453-458 (2002)), to induce broadly cross reactive neutralizing antibodies to non-clade B isolates.

20

Table 4

1)	GTH Con-S V1 132-150	YKRWIILGLNKIVRMYTNVNVNTNNTEEKGEIKN
2)	GTH Con-S V2 157-189	YKRWIILGLNKIVRMYTEIRDKKQKVYALFYRLDVPIDDDNNNNSSNYR
3)	GTH Con-S V3 294-315	YKRWIILGLNKIVRMYTRPNNNTRKSIRIGPGQAFYAT
4)	GTH Con-S V4 381-408	YKRWIILGLNKIVRMYNTSGLFNSTWIGNGTKNNNNTNDTITLP
5)	GTH Con-S V5 447-466	YKRWIILGLNKIVRMYRDGGNNNTNETEIFRPGGGD
6)	GTH Con-6 V1 132-150	YKRWIILGLNKIVRMYNVRNVSSNGTETDNEEIKN
7)	GTH Con-6 V2 157-196	YKRWIILGLNKIVRMYTEL RDKKQKVYALFYRLDVPIDDKNSSEISGKNSSEYYR
8)	GTH-Con6 V3 301-322	YKRWIILGLNKIVRMYTRPNNNTRKSIHIGPGQAFYAT
9)	GTH Con-6 V4 388-418	YKRWIILGLNKIVRMYNTSGLFNSTWMFNGTYMFNGTKDNSETITLP
10)	GTH Con 6 V5 457-477	YKRWIILGLNKIVRMYRDGGNNSNKNKTETFRPGGGD

It will be appreciated that the invention includes portions and variants of the sequences specifically disclosed herein. For example, forms 5 of codon optimized consensus encoding sequences can be constructed as gp140CF, gp140 CFI, gp120 or gp160 forms with either gp120/41 cleaved or uncleaved. For example, and as regards the consensus and ancestral envelope sequences, the invention 10 encompasses envelope sequences devoid of V3. Alternatively, V3 sequences can be selected from preferred sequences, for example, those described in U.S. Application No. 10/431,596 and U.S. Provisional Application No. 60/471,327. In addition, an optimal 15 immunogen for breadth of response can include mixtures of group M consensus *gag*, *pol*, *nef* and *env* encoding sequences, and as well as consist of

mixtures of subtype consensus or ancestral encoding sequences for *gag*, *pol*, *nef* and *env* HIV genes. For dealing with regional differences in virus strains, an efficacious mixture can include mixtures of
5 consensus/ancestral and wild type encoding sequences.

A consensus or ancestral envelope of the invention can be been "activated" to expose intermediate conformations of neutralization
10 epitopes that normally are only transiently or less well exposed on the surface of the HIV virion. The immunogen can be a "frozen" triggered form of a consensus or ancestral envelope that makes available specific epitopes for presentation to B lymphocytes.
15 The result of this epitope presentation is the production of antibodies that broadly neutralize HIV. (Attention is directed to WO 02/024149 and to the activated/triggered envelopes described therein.)

20 The concept of a fusion intermediate immunogen is consistent with observations that the gp41 HR-2 region peptide, DP178, can capture an uncoiled conformation of gp41 (Furata et al, Nature Struct. Biol. 5:276 (1998)), and that formalin-fixed HIV-
25 infected cells can generate broadly neutralizing antibodies (LaCasse et al, Science 283:357 (1997)). Recently a monoclonal antibody against the coiled-coil region bound to a conformational determinant of gp41 in HR1 and HR2 regions of the coiled-coil gp41
30 structure, but did not neutralize HIV (Jiang et al, J. Virol. 10213 (1998)). However, this latter study

proved that the coiled-coil region is available for antibody to bind if the correct antibody is generated.

The immunogen of one aspect of the invention
5 comprises a consensus or ancestral envelope either in soluble form or anchored, for example, in cell vesicles or in liposomes containing translipid bilayer envelope. To make a more native envelope, gp140 or gp160 consensus or ancestral sequences can
10 be configured in lipid bilayers for native trimeric envelope formation. Alternatively, triggered gp160 in aldrithio 1-2 inactivated HIV-1 virions can be used as an immunogen. The gp160 can also exist as a recombinant protein either as gp160 or gp140 (gp140
15 is gp160 with the transmembrane region and possibly other gp41 regions deleted). Bound to gp160 or gp140 can be recombinant CCR5 or CXCR4 co-receptor proteins (or their extracellular domain peptide or protein fragments) or antibodies or other ligands
20 that bind to the CXCR4 or CCR5 binding site on gp120, and/or soluble CD4, or antibodies or other ligands that mimic the binding actions of CD4. Alternatively, vesicles or liposomes containing CD4, CCR5 (or CXCR4), or soluble CD4 and peptides
25 reflective of CCR5 or CXCR4 gp120 binding sites. Alternatively, an optimal CCR5 peptide ligand can be a peptide from the N-terminus of CCR5 wherein specific tyrosines are sulfated (Bormier et al, Proc. Natl. Acad. Sci. USA 97:5762 (2001)). The
30 triggered immunogen may not need to be bound to a membrane but may exist and be triggered in solution.

Alternatively, soluble CD4 (sCD4) can be replaced by an envelope (gp140 or gp160) triggered by CD4 peptide mimetopes (Vitra et al, Proc. Natl. Acad. Sci. USA 96:1301 (1999)). Other HIV co-receptor molecules that "trigger" the gp160 or gp140 to undergo changes associated with a structure of gp160 that induces cell fusion can also be used. Ligation of soluble HIV gp140 primary isolate HIV 89.6 envelope with soluble CD4 (sCD4) induced conformational changes in gp41.

In one embodiment, the invention relates to an immunogen that has the characteristics of a receptor (CD4)-ligated consensus or ancestral envelope with CCR5 binding region exposed but unlike CD4-ligated proteins that have the CD4 binding site blocked, this immunogen has the CD4 binding site exposed (open). Moreover, this immunogen can be devoid of host CD4, which avoids the production of potentially harmful anti-CD4 antibodies upon administration to a host.

The immunogen can comprise consensus or ancestral envelope ligated with a ligand that binds to a site on gp120 recognized by an A32 monoclonal antibodies (mab) (Wyatt et al, J. Virol. 69:5723 (1995), Boots et al, AIDS Res. Hum. Retro. 13:1549 (1997), Moore et al, J. Virol. 68:8350 (1994), Sullivan et al, J. Virol. 72:4694 (1998), Fouts et al, J. Virol. 71:2779 (1997), Ye et al, J. Virol. 74:11955 (2000)). One A32 mab has been shown to mimic CD4 and when bound to gp120, upregulates (exposes) the CCR5 binding site (Wyatt et al, J.

Virol. 69:5723 (1995)). Ligation of gp120 with such a ligand also upregulates the CD4 binding site and does not block CD4 binding to gp120.

Advantageously, such ligands also upregulate the HR-
5 2 binding site of gp41 bound to cleaved gp120, uncleaved gp140 and cleaved gp41, thereby further exposing HR-2 binding sites on these proteins - each of which are potential targets for anti-HIV neutralizing antibodies.

10 In a specific aspect of this embodiment, the immunogen comprises soluble HIV consensus or ancestral gp120 envelope ligated with either an intact A32 mab, a Fab2 fragment of an A32 mab, or a Fab fragment of an A32 mab, with the result that the
15 CD4 binding site, the CCR5 binding site and the HR-2 binding site on the consensus or ancestral envelope are exposed/upregulated. The immunogen can comprise consensus or ancestral envelope with an A32 mab (or fragment thereof) bound or can comprise consensus or
20 ancestral envelope with an A32 mab (or fragment thereof) bound and cross-linked with a cross-linker such as .3% formaldehyde or a heterobifunctional cross-linker such as DTSSP (Pierce Chemical Company). The immunogen can also comprise uncleaved
25 consensus or ancestral gp140 or a mixture of uncleaved gp140, cleaved gp41 and cleaved gp120. An A32 mab (or fragment thereof) bound to consensus or ancestral gp140 and/or gp120 or to gp120 non-covalently bound to gp41, results in upregulation
30 (exposure) of HR-2 binding sites in gp41, gp120 and uncleaved gp140. Binding of an A32 mab (or fragment

thereof) to gp120 or gp140 also results in upregulation of the CD4 binding site and the CCR5 binding site. As with gp120 containing complexes, complexes comprising uncleaved gp140 and an A32 mab 5 (or fragment thereof) can be used as an immunogen uncross-linked or cross-linked with cross-linker such as .3% formaldehyde or DTSSP. In one embodiment, the invention relates to an immunogen comprising soluble uncleaved consensus or ancestral 10 gp140 bound and cross linked to a Fab fragment or whole A32 mab, optionally bound and cross-linked to an HR-2 binding protein.

The consensus or ancestral envelope protein triggered with a ligand that binds to the A32 mab 15 binding site on gp120 can be administered in combination with at least a second immunogen comprising a second envelope, triggered by a ligand that binds to a site distinct from the A32 mab binding site, such as the CCR5 binding site 20 recognized by mab 17b. The 17b mab (Kwong et al, Nature 393:648 (1998) available from the AIDS Reference Repository, NIAID, NIH) augments sCD4 binding to gp120. This second immunogen (which can also be used alone or in combination with triggered 25 immunogens other than that described above) can, for example, comprise soluble HIV consensus or ancestral envelope ligated with either the whole 17b mab, a Fab2 fragment of the 17b mab, or a Fab fragment of the 17b mab. It will be appreciated that other CCR5 30 ligands, including other antibodies (or fragments thereof), that result in the CD4 binding site being

exposed can be used in lieu of the 17b mab. This further immunogen can comprise gp120 with the 17b mab, or fragment thereof, (or other CCR5 ligand as indicated above) bound or can comprise gp120 with
5 the 17b mab, or fragment thereof, (or other CCR5 ligand as indicated above) bound and cross-linked with an agent such as .3% formaldehyde or a heterobifunctional cross-linker, such as DTSSP (Pierce Chemical Company). Alternatively, this
10 further immunogen can comprise uncleaved gp140 present alone or in a mixture of cleaved gp41 and cleaved gp120. Mab 17b, or fragment thereof (or other CCR5 ligand as indicated above) bound to gp140 and/or gp120 in such a mixture results in exposure
15 of the CD4 binding region. The 17b mab, or fragment thereof, (or other CCR5 ligand as indicated above) gp140 complexes can be present uncross-linked or cross-linked with an agent such as .3% formaldehyde or DTSSP.

20 Soluble HR-2 peptides, such as T649Q26L and DP178, can be added to the above-described complexes to stabilize epitopes on consensus gp120 and gp41 as well as uncleaved consensus gp140 molecules, and can be administered either cross-linked or uncross-linked with the complex.
25

A series of monoclonal antibodies (mabs) have been made that neutralize many HIV primary isolates, including, in addition to the 17b mab described above, mab IgG1b12 that binds to the CD4 binding site on gp120(Roben et al, J. Virol. 68:482 (1994),
30 Mo et al, J. Virol. 71:6869 (1997)), mab 2G12 that

binds to a conformational determinant on gp120 (Trkola et al, J. Virol. 70:1100 (1996)), and mab 2F5 that binds to a membrane proximal region of gp41 (Muster et al, J. Virol. 68:4031 (1994)).

5 As indicated above, various approaches can be used to "freeze" fusogenic epitopes in accordance with the invention. For example, "freezing" can be effected by addition of the DP-178 or T-649Q26L peptides that represent portions of the coiled coil 10 region, and that when added to CD4-triggered consensus or ancestral envelope, result in prevention of fusion (Rimsky et al, J. Virol. 72:986-993 (1998)). HR-2 peptide bound consensus or ancestral gp120, gp140, gp41 or gp160 can be used as 15 an immunogen or crosslinked by a reagent such as DTSSP or DSP (Pierce Co.), formaldehyde or other crosslinking agent that has a similar effect.

"Freezing" can also be effected by the addition of 0.1% to 3% formaldehyde or paraformaldehyde, both 20 protein cross-linking agents, to the complex, to stabilize the CD4, CCR5 or CXCR4, HR-2 peptide gp160 complex, or to stabilize the "triggered" gp41 molecule, or both (LaCasse et al, Science 283:357-362 (1999)).

25 Further, "freezing" of consensus or ancestral gp41 or gp120 fusion intermediates can be effected by addition of heterobifunctional agents such as DSP (dithiobis[succimidylpropionate]) (Pierce Co. Rockford, ILL., No. 22585ZZ) or the water soluble 30 DTSSP (Pierce Co.) that use two NHS esters that are reactive with amino groups to cross link and

stabilize the CD4, CCR5 or CXCR4, HR-2 peptide gp160 complex, or to stabilize the "triggered" gp41 molecule, or both.

Analysis of T cell immune responses in

5 immunized or vaccinated animals and humans shows that the envelope protein is normally not a main target for T cell immune response although it is the only gene that induces neutralizing antibodies.

HIV-1 Gag, Pol and Nef proteins induce a potent T

10 cell immune response. Accordingly, the invention includes a repertoire of consensus or ancestral immunogens that can induce both humoral and cellular immune responses. Subunits of consensus or ancestral sequences can be used as T or B cell

15 immunogens. (See Examples 6 and 7, and Figures referenced therein, and Figures 63-127.

The immunogen of the invention can be formulated with a pharmaceutically acceptable carrier and/or adjuvant (such as alum) using

20 techniques well known in the art. Suitable routes of administration of the present immunogen include systemic (e.g. intramuscular or subcutaneous). Alternative routes can be used when an immune response is sought in a mucosal immune system (e.g.,

25 intranasal).

The immunogens of the invention can be chemically synthesized and purified using methods which are well known to the ordinarily skilled artisan. The immunogens can also be synthesized by

30 well-known recombinant DNA techniques. Nucleic acids encoding the immunogens of the invention can

be used as components of, for example, a DNA vaccine wherein the encoding sequence is administered as naked DNA or, for example, a minigene encoding the immunogen can be present in a viral vector. The 5 encoding sequence can be present, for example, in a replicating or non-replicating adenoviral vector, an adeno-associated virus vector, an attenuated mycobacterium tuberculosis vector, a Bacillus Calmette Guerin (BCG) vector, a vaccinia or Modified 10 Vaccinia Ankara (MVA) vector, another pox virus vector, recombinant polio and other enteric virus vector, Salmonella species bacterial vector, Shigella species bacterial vector, Venezuelan Equine Encephalitis Virus (VEE) vector, a Semliki 15 Forest Virus vector, or a Tobacco Mosaic Virus vector. The encoding sequence, can also be expressed as a DNA plasmid with, for example, an active promoter such as a CMV promoter. Other live vectors can also be used to express the sequences of 20 the invention. Expression of the immunogen of the invention can be induced in a patient's own cells, by introduction into those cells of nucleic acids that encode the immunogen, preferably using codons and promoters that optimize expression in human 25 cells. Examples of methods of making and using DNA vaccines are disclosed in U.S. Pat. Nos. 5,580,859, 5,589,466, and 5,703,055.

The composition of the invention comprises an immunologically effective amount of the immunogen of 30 this invention, or nucleic acid sequence encoding same, in a pharmaceutically acceptable delivery

system. The compositions can be used for prevention and/or treatment of immunodeficiency virus infection. The compositions of the invention can be formulated using adjuvants, emulsifiers, 5 pharmaceutically-acceptable carriers or other ingredients routinely provided in vaccine compositions. Optimum formulations can be readily designed by one of ordinary skill in the art and can include formulations for immediate release and/or 10 for sustained release, and for induction of systemic immunity and/or induction of localized mucosal immunity (e.g., the formulation can be designed for intranasal administration). The present compositions can be administered by any convenient 15 route including subcutaneous, intranasal, oral, intramuscular, or other parenteral or enteral route. The immunogens can be administered as a single dose or multiple doses. Optimum immunization schedules can be readily determined by the ordinarily skilled 20 artisan and can vary with the patient, the composition and the effect sought.

The invention contemplates the direct use of both the immunogen of the invention and/or nucleic acids encoding same and/or the immunogen expressed 25 as minigenes in the vectors indicated above. For example, a minigene encoding the immunogen can be used as a prime and/or boost.

Certain aspects of the invention can be described in greater detail in the non-limiting 30 Examples that follows.

EXAMPLE 1

Artificial HIV-1 Group M Consensus Envelope

EXPERIMENTAL DETAILS

5 *Expression of CON6 gp120 and gp140 proteins in recombinant vaccinia viruses (VV).* To express and purify the secreted form of HIV-1 CON6 envelope proteins, CON6 gp120 and gp140CF plasmids were constructed by introducing stop codons after the
10 gp120 cleavage site (REKR) and before the transmembrane domain (YIKIFIMIVGGLIGLRLIVFAVLSIVN), respectively. The gp120/gp41 cleavage site and fusion domain of gp41 were deleted in the gp140CF protein. Both CON6 gp120 and gp140CF DNA constructs
15 were cloned into the pSC65 vector (from Bernard Moss, NIH, Bethesda, MD) at SalI and KpnI restriction enzyme sites. This vector contains the lacZ gene that is controlled by the p7.5 promoter. A back-to-back P E/L promoter was used to express
20 CON6 env genes. BSC-1 cells were seeded at 2×10^5 in each well in a 6-well plate, infected with wild-type vaccinia virus (WR) at a MOI of 0.1 pfu/cell, and 2 hr after infection, pSC65-derived plasmids containing CON6 env genes were transfected into the
25 VV-infected cells and recombinant (r) VV selected as described (Moss and Earl, Current Protocols in Molecular Biology, eds, Ausubel et al (John Wiley & Sons, Inc. Indianapolis, IN) pp. 16.15.1-16.19.9 (1998)). Recombinant VV that contained the CON6 env

genes were confirmed by PCR and sequencing analysis. Expression of the CON6 envelope proteins was confirmed by SDS-PAGE and Western blot assay. Recombinant CON6 gp120 and gp140CF were purified 5 with agarose *galanthus Nivalis* lectin beads (Vector Labs, Burlingame, CA), and stored at -70°C until use. Recombinant VV expressing JRFL (vCB-28) or 96ZM651 (vT241R) gp160 were obtained from the NIH AIDS Research and Reference Reagent Program (Bethesda, 10 MD).

Monoclonal Antibodies and gp120 Wild-type Envelopes. Human mabs against a conformational determinant on gp120 (A32), the gp120 V3 loop (F39F) 15 and the CCR5 binding site (17b) were the gifts of James Robinson (Tulane Medical School, New Orleans, LA) (Wyatt et al, Nature 393;705-711 (1998), Wyatt et al, J. Virol. 69:5723-5733 (1995)). Mabs 2F5, 447, b12, 2G12 and soluble CD4 were obtained from 20 the NIH AIDS Research and Reference Reagent Program (Bethesda, MD) (Gorny et al, J. Immunol. 159:5114-5122 (1997), Nyambi et al, J. Virol. 70:6235-6243 (1996), Purtscher et al, AIDS Res. Hum. Retroviruses 10:1651-1658 (1994), Trkola et al, J. Virol. 70:1100-25 1108 (1996)). T8 is a murine mab that maps to the gp120 C1 region (a gift from P. Earl, NIH, Bethesda, MD). BaL (subtype B), 96ZM651 (subtype C), and 93TH975 (subtype E) gp120s were provided by QBI, Inc. and the Division of AIDS, NIH. CHO cell lines 30 that express 92U037 (subtype A) and 93BR029 (subtype

F) gp140 (secreted and uncleaved) were obtained from NICBS, England.

Surface Plasmon Resonance Biosensor (SPR)

5 Measurements and ELISA. SPR biosensor measurements were determined on a BIACore 3000 instrument (BIACore Inc., Uppsala, Sweden) instrument and data analysis was performed using BIAevaluation 3.0 software (BIACore Inc, Upsaala, Sweden). Anti-gp120
10 mabs (T8, A32, 17b, 2G12) or sCD4 in 10mM Na-acetate buffer, pH 4.5 were directly immobilized to a CM5 sensor chip using a standard amine coupling protocol for protein immobilization. FPLC purified CON6 gp120 monomer or gp140CF oligomer recombinant
15 proteins were flowed over CM5 sensor chips at concentrations of 100 and 300 µg/ml, respectively. A blank in-line reference surface (activated and de-activated for amine coupling) or non-bonding mab controls were used to subtract non-specific or bulk
20 responses. Soluble 89.6 gp120 and irrelevant IgG was used as a positive and negative control respectively and to ensure activity of each mab surface prior to injecting the CON6 Env proteins. Binding of CON6 envelope proteins was monitored in
25 real-time at 25°C with a continuous flow of PBS (150 mM NaCl, 0.005% surfactant P20), pH 7.4 at 10-30 µl/min. Bound proteins were removed and the sensor surfaces were regenerated following each cycle of binding by single or duplicate 5-10 µl pulses of
30 regeneration solution (10 mM glycine-HCl, pH 2.9).

ELISA was performed to determine the reactivity of various mabs to CON6 gp120 and gp140CF proteins as described (Haynes et al, AIDS Res. Hum. Retroviruses 11:211-221 (1995)). For assay of human mab binding 5 to rgp120 or gp140 proteins, end-point titers were defined as the highest titer of mab (beginning at 20 µg/ml) at which the mab bound CON6 gp120 and gp140CF Env proteins \geq 3 fold over background control (non-binding human mab).

10

Infectivity and coreceptor usage assays. HIV-1/SG3Δenv and CON6 or control env plasmids were cotransfected into human 293T cells. Pseudotyped viruses were harvested, filtered and p24 15 concentration was quantitated (DuPont/NEN Life Sciences, Boston, MA). Equal amounts of p24 (5 ng) for each pseudovirion were used to infect JC53-BL cells to determine the infectivity (Derdeyn e al, J. Virol. 74:8358-8367 (2000), Wei et al, Antimicrob Agents Chemother. 46:1896-1905 (2002)). JC53-BL 20 cells express CD4, CCR5 and CXCR4 receptors and contain a β-galactosidase (β-gal) gene stably integrated under the transcriptional control of an HIV-1 long terminal repeat (LTR). These cells can 25 be used to quantify the infectious titers of pseudovirion stocks by staining for β-gal expression and counting the number of blue cells (infectious units) per microgram of p24 of pseudovirions (IU/µg p24) (Derdeyn e al, J. Virol. 74:8358-8367 (2000), 30 Wei et al, Antimicrob Agents Chemother. 46:1896-1905

(2002)). To determine the coreceptor usage of the CON6 env gene, JC53BL cells were treated with 1.2 μ M AMD3100 and 4 μ M TAK-799 for 1 hr at 37°C then infected with equal amounts of p24 (5 ng) of each 5 Env pseudotyped virus. The blockage efficiency was expressed as the percentage of the infectious units from blockage experiments compared to that from control culture without blocking agents. The infectivity from control group (no blocking agent) 10 was arbitrarily set as 100%.

Immunizations. All animals were housed in the Duke University Animal Facility under AALAC guidelines with animal use protocols approved by the 15 Duke University Animal Use and Care Committee. Recombinant CON6 gp120 and gp140CF glycoproteins were formulated in a stable emulsion with RIBI-CWS adjuvant based on the protocol provided by the manufacturer (Sigma Chemical Co., St. Louis, MO). 20 For induction of anti-envelope antibodies, each of four out-bred guinea pigs (Harlan Sprague, Inc., Chicago, IL) was given 100 μ g either purified CON6 gp120 or gp140CF subcutaneously every 3 weeks (total of 5 immunizations). Serum samples were heat- 25 inactivated (56°C, 1 hr), and stored at -20°C until use.

For induction of anti-envelope T cell responses, 6-8 wk old female BALB/c mice (Frederick Cancer Research and Developmental Center, NCI, 30 Frederick, MD) were immunized i.m. in the quadriceps

with 50 µg plasmid DNA three times at a 3-week interval. Three weeks after the last DNA immunization, mice were boosted with 10^7 PFU of rVV expressing Env proteins. Two weeks after the boost,
5 all mice were euthanized and spleens were removed for isolation of splenocytes.

Neutralization assays. Neutralization assays were performed using either a MT-2 assay as
10 described in Bures et al, AIDS Res. Hum. Retroviruses 16:2019-2035 (2000), a luciferase-based multiple replication cycle HIV-1 infectivity assay in 5.25.GFP.Luc.M7 cells using a panel of HIV-1 primary isolates (Bures et al, AIDS Res. Hum.).
15 Retroviruses 16:2019-2035 (2000), Bures et al, J. Virol. 76:2233-2244 (2002)), or a syncytium (fusion from without) inhibition assay using inactivated HIV-1 virions (Rossio et al, J. Virol. 72:7992-8001 (1998)). In the luciferase-based assay,
20 neutralizing antibodies were measured as a function of a reduction in luciferase activity in 5.25.EGFP.Luc.M7 cells provided by Nathaniel R. Landau, Salk Institute, La Jolla, CA (Brandt et al, J. Biol. Chem. 277:17291-17299 (2002)). Five
25 hundred tissue culture infectious dose 50 (TCID₅₀) of cell-free virus was incubated with indicated serum dilutions in 150 µl (1 hr, at 37°C) in triplicate in 96-well flat-bottom culture plates. The 5.25.EGFP.Luc.M7 cells were suspended at a density
30 of 5×10^5 /ml in media containing DEAE dextran (10

$\mu\text{g/ml}$). Cells ($100 \mu\text{l}$) were added and until 10% of cells in control wells (no test serum sample) were positive for GFP expression by fluorescence microscopy. At this time the cells were 5 concentrated 2-fold by removing one-half volume of media. A $50 \mu\text{l}$ suspension of cells was transferred to 96-well white solid plates (Costar, Cambridge, MA) for measurement of luciferase activity using Bright-GloTM substrate (Promega, Madison, WI) on a 10 Wallac 1420 Multilabel Counter (PerkinElmer Life Sciences, Boston, MA). Neutralization titers in the MT-2 and luciferase assays were those where $\geq 50\%$ virus infection was inhibited. Only values that titered beyond 1:20 (i.e. >1:30) were considered 15 significantly positive. The syncytium inhibition "fusion from without" assay utilized HIV-1 aldrithiol-2 (AT-2) inactivated virions from HIV-1 subtype B strains ADA and AD8 (the gift of Larry Arthur and Jeffrey Lifson, Frederick Research Cancer 20 Facility, Frederick, MD) added to SupT1 cells, with syncytium inhibition titers determined as those titers where $\geq 90\%$ of syncytia were inhibited compared to prebleed sera.

25 *Enzyme linked immune spot (ELISPOT) assay.*
Single-cell suspensions of splenocytes from individual immunized mice were prepared by mincing and forcing through a $70 \mu\text{m}$ Nylon cell strainer (BD Labware, Franklin Lakes, NJ). Overlapping Env 30 peptides of CON6 gp140 (159 peptides, 15mers

overlapping by 11) were purchased from Boston Bioscience, Inc (Royal Oak, MI). Overlapping Env peptides of MN gp140 (subtype B; 170 peptides, 15mers overlapping by 11) and Chn19 gp140 (subtype C; 69 peptides, 20mers overlapping by 10) were obtained from the NIH AIDS Research and Reference Reagent Program (Bethesda, MD). Splenocytes (5 mice/group) from each mouse were stimulated *in vitro* with overlapping Env peptides pools from CON6, subtype B and subtype C Env proteins. 96-well PVDF plates (MultiScreen-IP, Millipore, Billerica, MA) were coated with anti-IFN- γ mab (5 μ g/ml, AN18; Mabtech, Stockholm, Sweden). After the plates were blocked at 37°C for 2 hr using complete Hepes buffered RPMI medium, 50 μ l of the pooled overlapping envelope peptides (13 CON6 and MN pools, 13-14 peptides in each pool; 9 Chn19 pool, 7-8 peptide in each pool) at a final concentration of 5 μ g/ml of each were added to the plate. Then 50 μ l of splenocytes at a concentration of 1.0 X 10⁷/ml were added to the wells in duplicate and incubated for 16 hr at 37°C with 5% CO₂. The plates were incubated with 100 μ l of a 1:1000 dilution of streptavidin alkaline phosphatase (Mabtech, Stockholm, Sweden), and purple spots developed using 100 μ l of BCIP/NBT (Plus) Alkaline Phosphatase Substrate (Moss, Pasadena, MD). Spot forming cells (SFC) were measured using an Immunospot counting system (CTL Analyzers, Cleveland, OH). Total responses for each

envelope peptide pool are expressed as SFCs per 10^6 splenocytes.

RESULTS

5

CON6 Envelope Gene Design, Construction and Expression. An artificial group M consensus env gene (CON6) was constructed by generating consensus sequences of env genes for each HIV-1 subtype from sequences in the Los Alamos HIV Sequence Database, and then generating a consensus sequence of all subtype consensuses to avoid heavily sequenced subtypes (Gaschen et al, Science 296:2354-2360 (2002), Korber et al, Science 288:1789-1796 (2000)).

10 15 Five highly variable regions from a CRF08_BC recombinant strain (98CN006) (V1, V2, V4, V5 and a region in cytoplasmic domain of gp41) were then used to fill in the missing regions in CON6 sequence. The CON6 V3 region is group M consensus (Figure 1A).
20 For high levels of expression, the codons of CON6 env gene were optimized based on codon usage for highly expressed human genes (Haas et al, Curr. Biol. 6:315-324 (2000), Andre et al, J. Virol. 72:1497-1503 (1998)). (See Fig. 1D.) The codon
25 optimized CON6 env gene was constructed and subcloned into pcDNA3.1 DNA at EcoR I and BamH I sites (Gao et al, AIDS Res. Hum. Retroviruses, 19:817-823 (2003)). High levels of protein expression were confirmed with Western-blot assays
30 after transfection into 293T cells. To obtain recombinant CON6 Env proteins for characterization

and use as immunogens, rVV was generated to express secreted gp120 and uncleaved gp140CF (Figure 1B). Purity for each protein was >90% as determined by Coomassie blue gels under reducing conditions
5 (Figure 1C).

CD4 Binding Domain and Other Wild-type HIV-1 Epitopes are Preserved on CON6 Proteins. To determine if CON6 proteins can bind to CD4 and express other wild-type HIV-1 epitopes, the ability of CON6 gp120 and gp140CF to bind soluble(s) CD4, to bind several well-characterized anti-gp120 mabs, and to undergo CD4-induced conformational changes was assayed. First, BIACore CM5 sensor chips were coated with either sCD4 or mabs to monitor their binding activity to CON6 Env proteins. It was found that both monomeric CON6 gp120 and oligomeric gp140CF efficiently bound sCD4 and anti-gp120 mabs T8, 2G12 and A32, but did not constitutively bind mab 17b, that recognizes a CD4 inducible epitope in the CCR5 binding site of gp120 (Figures 2A and 2B). Both sCD4 and A32 can expose the 17b binding epitope after binding to wild-type gp120 (Wyatt et al, Nature 393;705-711 (1998), Wyatt et al, J. Virol. 69:5723-5733 (1995)). To determine if the 17b epitope could be induced on CON6 Envs by either sCD4 or A32, sCD4, A32 and T8 were coated on sensor chips, then CON6 gp120 or gp140CF captured, and mab 17b binding activity monitored. After binding sCD4 20 or mab A32, both CON6 gp120 and gp140CF were triggered to undergo conformational changes and

bound mab 17b (Figures 2C and 2D). In contrast, after binding mab T8, the 17b epitope was not exposed (Figures 2C and 2D). ELISA was next used to determine the reactivity of a panel of human mabs
5 against the gp120 V3 loop (447, F39F), the CD4 binding site (b12), and the gp41 neutralizing determinant (2F5) to CON6 gp120 and gp140CF (Figure 2E). Both CON6 rgp120 and rgp140CF proteins bound well to neutralizing V3 mabs 447 and F39F and to the
10 potent neutralizing CD4 binding site mab b12. Mab 2F5, that neutralizes HIV-1 primary isolates by binding to a C-terminal gp41 epitope, also bound well to CON6 gp140CF (Figure 2E).

15 *CON6 env Gene is Biologically Functional and Uses CCR5 as its Coreceptor.* To determine whether CON6 envelope gene is biologically functional, it was co-transfected with the env-defective SG3 proviral clone into 293T cells. The pseudotyped
20 viruses were harvested and JC53BL cells infected. Blue cells were detected in JC53-BL cells infected with the CON6 Env pseudovirions, suggesting that CON6 Env protein is biologically functional (Figure 3A). However, the infectious titers were 1-2 logs
25 lower than that of pseudovirions with either YU2 or NL4-3 wild-type HIV-1 envelopes.

The co-receptor usage for the CON6 env gene was next determined. When treated with CXCR4 blocking agent AMD3100, the infectivity of NL4-3 Env-
30 pseudovirions was blocked while the infectivity of YU2 or CON6 Env-pseudovirions was not inhibited

(Figure 3B). In contrast, when treated with CCR5 blocking agent TAK-779, the infectivity of NL4-3 Env-pseudovirions was not affected, while the infectivity of YU2 or CON6 Env-pseudovirions was inhibited. When treated with both blocking agents, the infectivity of all pseudovirions was inhibited. Taken together, these data show that the CON6 envelope uses the CCR5 co-receptor for its entry into target cells.

10

Reaction of CON6 gp120 With Different Subtype Sera. To determine if multiple subtype linear epitopes are preserved on CON6 gp120, a recombinant Env protein panel (gp120 and gp140) was generated. 15 Equal amounts of each Env protein (100 ng) were loaded on SDS-polyacrylamide gels, transferred to nitrocellulose, and reacted with subtype A through G patient sera as well as anti-CON6 gp120 guinea pig sera (1:1,000 dilution) in Western blot assays. For 20 each HIV-1 subtype, four to six patient sera were tested. One serum representative for each subtype is shown in Figure 4.

It was found that whereas all subtype sera tested showed variable reactivities among Envs in 25 the panel, all group M subtype patient sera reacted equally well with CON6 gp120 Env protein, demonstrating that wild-type HIV-1 Env epitopes recognized by patient sera were well preserved on the CON6 Env protein. A test was next made as to 30 whether CON6 gp120 antiserum raised in guinea pigs could react to different subtype Env proteins. It

was found that the CON6 serum reacted to its own and other subtype Env proteins equally well, with the exception of subtype A Env protein (Figure 4).

5 *Induction of T Cell Responses to CON6, Subtype B and Subtype C Envelope Overlapping Peptides.* To compare T cell immune responses induced by CON6 Env immunogens with those induced by subtype specific immunogens, two additional groups of mice were
10 immunized with subtype B or subtype C DNAs and with corresponding rVV expressing subtype B or C envelope proteins. Mice immunized with subtype B (JRFL) or subtype C (96ZM651) Env immunogen had primarily subtype-specific T cell immune responses (Figure 5).
15 IFN- γ SFCs from mice immunized with JRFL (subtype B) immunogen were detected after stimulation with subtype B (MN) peptide pools, but not with either subtype C (Chn19) or CON6 peptide pools. IFN- γ SFCs from mice immunized with 96ZM651 (subtype C)
20 immunogen were detected after the stimulation with both subtype C (Chn19) and CON6 peptide pools, but not with subtype B (MN) peptide pools. In contrast, IFN- γ SFCs were identified from mice immunized with CON6 Env immunogens when stimulated with either CON6
25 peptide pools as well as by subtype B or C peptide pools (Figure 5). The T cell immune responses induced by CON6 gp140 appeared more robust than those induced by CON6 gp120. Taken together, these data demonstrated that CON6 gp120 and gp140CF
30 immunogens were capable of inducing T cell responses

that recognized T cell epitopes of wild-type subtype B and C envelopes.

Induction of Antibodies by Recombinant CON6

5 *gp120 and gp140CF Envelopes that Neutralize HIV-1 Subtype B and C Primary Isolates.* To determine if the CON6 envelope immunogens can induce antibodies that neutralize HIV-1 primary isolates, guinea pigs were immunized with either CON6 gp120 or gp140CF protein. Sera collected after 4 or 5 immunizations were used for neutralization assays and compared to the corresponding prebleed sera. Two AT-2 inactivated HIV-1 isolates (ADA and AD8) were tested in syncytium inhibition assays (Table 5A). Two 10 subtype B SHIV isolates, eight subtype B primary isolates, four subtype C, and one each subtype A, D, and E primary isolates were tested in either the MT-2 or the luciferase-based assay (Table 5B). In the syncytium inhibition assay, it was found that 15 antibodies induced by both CON 6 gp120 and gp140CF proteins strongly inhibited AT-2 inactivated ADA and AD8-induced syncytia (Table 5A). In the MT-2 assay, weak neutralization of 1 of 2 SHIV isolates (SHIV SF162P3) by two gp120 and one gp140CF sera was found 20 (Table 5B). In the luciferase-based assay, strong neutralization of 4 of 8 subtype B primary isolates (BXO8, SF162, SS1196, and BAL) by all gp120 and gp140CF sera was found, and weak neutralization of 2 25 of 8 subtype B isolates (6101, 0692) by most gp120 and gp140CF sera was found. No neutralization was detected against HIV-1 PAVO (Table 5B). Next, the 30

CON6 anti-gp120 and gp140CF sera were tested against four subtype C HIV-1 isolates, and weak neutralization of 3 of 4 isolates (DU179, DU368, and S080) was found, primarily by anti-CON6 gp120 sera.

5 One gp140CF serum, no. 653, strongly neutralized DU179 and weakly neutralized S080 (Table 5B). Finally, anti-CON6 Env sera strongly neutralized a subtype D isolate (93ZR001), weakly neutralized a subtype E (CM244) isolate, and did not neutralize a
10 subtype A (92RW020) isolate.

Table 5A

Ability of HIV-1 Group M Consensus Envelope CON6 Proteins to Induce Fusion Inhibiting Antibodies

Guinea Pig No.	Immunogen	Syncytium Inhibition antibody titer ¹	
		AD8	ADA
646	gp120	270	270
647	gp120	90	90
648	gp120	90	270
649	gp120	90	90
Geometric Mean Titer		119	156
650	gp140	270	270
651	gp140	90	90
652	gp140	≥810	810
653	gp140	270	90
Geometric Mean Titer		270	207

¹Reciprocal serum dilution at which HIV-induced syncytia of Sup T1 cells was inhibited by >90% compared to pre-immune serum. All prebleed sera were negative (titer <10).

15

Table 5B

Ability of Group M Consensus HIV-1 Envelope CON6 gp120 and gp140CF Proteins to Induce Antibodies that Neutralize HIV Primary Isolates

HIV Isolate (Subtype)	CON6 gp120 Protein Guinea Pig No.						CON6 gp140CF Protein Guinea Pig No.				Controls		
	646	647	648	649	GMT	650	651	652	653	GMT	TriMab ₂ #	CD4-IgG2	HIV+ Serum NT
SHIV 89.6P*(B)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	NT	NT	NT
SHIV SF162P3*(B)	<20	30	48	<20	<20	27	<20	<20	<20	<20	NT	0.2μg/ml	NT
BX08(B)	270	183	254	55	102	199	64	229	150	187	0.7μg/ml	NT	2384
6101(B)	<20	38	35	<20	<20	<20	90	72	73	39	1.1μg/ml	NT	NT
BG1168(B)	<20	<20	<20	<20	<20	40	<20	<20	25	<20	2.7μg/ml	NT	NT
0692(B)	31	32	34	<20	24	28	33	30	45	33	0.8μg/ml	NT	769
PAVO(B)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	2.9μg/ml	NT	NT
SF162(B)	2,146	308	110	282	379	206	5,502	15,098	174	1,313	NT	NT	>540
SSI196(B)	206	26	148	59	83	381	401	333	81	253	NT	NT	301#
BAL(B)	123	90	107	138	113	107	146	136	85	116	NT	NT	3307
92RW020(A)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	NT	NT	693
DU179(C)	<20	43	<20	24	<20	<20	<20	<20	24	515	33	NT	NT
DU368(C)	25	35	62	<20	27	<20	<20	<20	23	<20	NT	2.3μg/ml	NT
S021(C)	<20	<20	33	<20	<20	<20	<20	<20	<20	<20	NT	0.8μg/ml	NT
S089(C)	24	37	70	41	40	<20	<20	<20	52	<20	NT	8.3μg/ml	NT
93ZR001(D)	275	144	126	114	154	306	195	129	173	191	NT	NT	693
CM244(E)	35	43	64	ND	46	31	25	27	25	26	NT	NT	693

*MT-2 Assay: All other HIV isolates were tested in the M7-luciferase assay.

HIV-1 isolates QH0692, SS1196, SF1196, BX08, BG1168, BAL were assayed with post-injection 5 serum; other HIV-1 isolates were assayed with post-injection 4 serum. ND = not done.

HIV+ sera was either HIV-1+ human serum (LEH3) or an anti-gp120 guinea pig serum (#) with known neutralizing activity for HIV-1 isolate SSI196. GMT = geometric mean titer of four animals per group. Neutralizing titers reported are after subtraction of any background neutralization in prebleed sera.

#TriMab₂ = a mixture of human mabs 2F5, b12, 2G12.

CONCLUSIONS

The production of an artificial HIV-1 Group M consensus env genes (encoding sequences) (CON6 and 5 Con-S) have been described that encodes a functional Env protein that is capable of utilizing the CCR5 co-receptor for mediating viral entry. Importantly, these Group M consensus envelope genes could induce T and B cell responses that recognized epitopes of 10 subtype B and C HIV-1 primary isolates. In addition, Con-S induces antibodies that strongly neutralize Subtype-C and A HIV-1 strains (see Table 3).

The correlates of protection to HIV-1 are not 15 conclusively known. Considerable data from animal models and studies in HIV-1-infected patients suggest the goal of HIV-1 vaccine development should be the induction of broadly-reactive CD4+ and CD8+ anti-HIV-1 T cell responses (Letvin et al, Annu. 20 Rev. Immunol. 20:73-99 (2002)) and high levels of antibodies that neutralize HIV-1 primary isolates of multiple subtypes (Mascola et al, J. Virol. 73:4009-4018 (1999), Mascola et al, Nat. Med. 6:270-210 (2000)).

25 The high level of genetic variability of HIV-1 has made it difficult to design immunogens capable of inducing immune responses of sufficient breadth to be clinically useful. Epitope based vaccines for T and B cell responses (McMichael et al, Vaccine 30 20:1918-1921 (2002), Sbai et al, Curr. Drug Targets Infect, Disord. 1:303-313 (2001), Haynes, Lancet

348:933-937 (1996)), constrained envelopes reflective of fusion intermediates (Fouts et al, Proc. Natl. Acad. Sci. USA 99:11842-22847 (2002)), as well as exposure of conserved high-order
5 structures for induction of anti-HIV-1 neutralizing antibodies have been proposed to overcome HIV-1 variability (Roben et al, J. Virol. 68:4821-4828 (1994), Saphire et al, Science 293:1155-1159 (2001)). However, with the ever-increasing
10 diversity and rapid evolution of HIV-1, the virus is a rapidly moving complex target, and the extent of complexity of HIV-1 variation makes all of these approaches problematic. The current most common approach to HIV-1 immunogen design is to choose a
15 wild-type field HIV-1 isolate that may or may not be from the region in which the vaccine is to be tested. Polyvalent envelope immunogens have been designed incorporating multiple envelope immunogens (Bartlett et al, AIDS 12:1291-1300 (1998), Cho et
20 al, J. Virol. 75:2224-2234 (2001)).

The above-described study tests a new strategy for HIV-1 immunogen design by generating a group M consensus env gene (CON6) with decreased genetic distance between this candidate immunogen and wild-type field virus strains. The CON6 env gene was generated for all subtypes by choosing the most common amino acids at most positions (Gaschen et al, Science 296:2354-2360 (2002), Korber et al, Science 288:1789-1796 (2000)). Since only the most common
25 amino acids were used, the majority of antibody and T cell epitopes were well preserved. Importantly,
30

the genetic distances between the group M consensus env sequence and any subtype env sequences was about 15%, which is only half of that between wild-type subtypes (30%) (Gaschen et al, Science 296:2354-2360 5 (2002)). This distance is approximately the same as that among viruses within the same subtype. Further, the group M consensus env gene was also about 15% divergent from any recombinant viral env gene, as well, since CRFs do not increase the 10 overall genetic divergence among subtypes.

Infectivity of CON6-Env pseudovirions was confirmed using a single-round infection system, although the infectivity was compromised, indicating the artificial envelope was not in an "optimal" 15 functional conformation, but yet was able to mediate virus entry. That the CON6 envelope used CCR5 (R5) as its coreceptor is important, since majority of HIV-1 infected patients are initially infected with R5 viruses.

20 BIAcore analysis showed that both CON6 gp120 and gp140CF bound sCD4 and a number of mabs that bind to wild-type HIV-1 Env proteins. The expression of the CON6 gp120 and 140CF proteins that are similar antigenically to wild-type HIV-1 25 envelopes is an important step in HIV-1 immunogen development. However, many wild-type envelope proteins express the epitopes to which potent neutralizing human mabs bind, yet when used as immunogens themselves, do not induce broadly 30 neutralizing anti-HIV-1 antibodies of the specificity of the neutralizing human mabs.

The neutralizing antibody studies were encouraging in that both CON6 gp120, CON6 gp140CF and Con-S gp140CFI induced antibodies that neutralized select subtype B, C and D HIV-1 primary isolates, with Con-S gp140CFI inducing the most robust neutralization of non-subtype B primary HIV isolates. However, it is clear that the most difficult-to-neutralize primary isolates (PAVO, 6101, BG1168, 92RW020, CM244) were either only weakly or not neutralized by anti-CON6 gp120 or gp140 sera (Table 4b). Nonetheless, the Con-S envelope immunogenicity for induction of neutralizing antibodies is promising, given the breadth of responses generated with the Con-S subunit gp140CFI envelope protein for non-subtype B HIV isolates. Previous studies with poxvirus constructs expressing gp120 and gp160 have not generated high levels of neutralizing antibodies (Evans et al, J. Infect. Dis. 180:290-298 (1999), Polacino et al, J. Virol. 73:618-630 (1999), Ourmanov et al, J. Virol. 74:2960-2965 (2000), Pal et al, J. Virol. 76:292-302 (2002), Excler and Plotkin, AIDS 11(Suppl A):S127-137 (1997). rVV expressing secreted CON6 gp120 and gp140 have been constructed and antibodies that neutralize HIV-1 primary isolates induced. An HIV neutralizing antibody immunogen can be a combination of Con-S gp140CFI, or subunit thereof, with immunogens that neutralize most subtype B isolates.

The structure of an oligomeric gp140 protein is critical when evaluating protein immunogenicity. In this regard, study of purified CON6 gp140CF proteins by fast performance liquid chromatography (FPLC) and 5 analytical ultracentrifugation has demonstrated that the purified gp140 peak consists predominantly of trimers with a small component of dimers.

Thus, centralized envelopes such as CON6, Con-S or 2003 group M or subtype consensus or ancestral 10 encoding sequences described herein, are attractive candidates for preparation of various potentially "enhanced" envelope immunogens including CD4-Env complexes, constrained envelope structures, and trimeric oligomeric forms. The ability of CON6-15 induced T and B cell responses to protect against HIV-1 infection and/or disease in SHIV challenge models will be studied in non-human primates.

The above study has demonstrated that artificial centralized HIV-1 genes such as group M 20 consensus env gene (CON6) and Con-S can also induce T cell responses to T cell epitopes in wild-type subtype B and C Env proteins as well as to those on group M consensus Env proteins (Figure 5). While the DNA prime and rVV boost regimen with CON6 25 gp140CF immunogen clearly induced IFN- γ producing T cells that recognized subtype B and C epitopes, further studies are needed to determine if centralized sequences such as are found in the CON6 envelope are significantly better at inducing cross-30 clade T cell responses than wild-type HIV-1 genes

(Ferrari et al, Proc. Natl. Acad. Sci. USA 94:1396-1401 (1997), Ferrari et al, AIDS Res. Hum. Retroviruses 16:1433-1443 (2000)). However, the fact that CON6 (and Con-S env encoding sequence) prime and boosted splenocyte T cells recognized HIV-1 subtype B and C T cell epitopes is an important step in demonstration that CON6 (and Con-S) can induce T cell responses that might be clinically useful.

10 Three computer models (consensus, ancestor and center of the tree (COT)) have been proposed to generate centralized HIV-1 genes (Gaschen et al, Science 296:2354-2360 (2002), Gao et al, Science 299:1517-1518 (2003), Nickle et al, Science 15 299:1515-1517 (2003), Korber et al, Science 288:1789-1796 (2000). They all tend to locate at the roots of the star-like phylogenetic trees for most HIV-1 sequences within or between subtypes. As experimental vaccines, they all can reduce the 20 genetic distances between immunogens and field virus strains. However, consensus, ancestral and COT sequences each have advantages and disadvantages (Gaschen et al, Science 296:2354-2360 (2002), Gao et al, Science 299:1517-1518 (2003), Nickle et al, 25 Science 299:1515-1517 (2003)). Consensus and COT represent the sequences or epitopes in sampled current wild-type viruses and are less affected by outliers HIV-1 sequences, while ancestor represents ancestral sequences that can be significantly 30 affected by outlier sequences. However, at present, it is not known which centralized sequence can serve

as the best immunogen to elicit broad immune responses against diverse HIV-1 strains, and studies are in progress to test these different strategies.

Taken together, the data have shown that the
5 HIV-1 artificial CON6 and Con-S envelope can induce T cell responses to wild-type HIV-1 epitopes, and can induce antibodies that neutralize HIV-1 primary isolates, thus demonstrating the feasibility and promise of using artificial centralized HIV-1
10 sequences in HIV-1 vaccine design.

EXAMPLE 2

HIV-1 Subtype C Ancestral and Consensus Envelope Glycoproteins

15 EXPERIMENTAL DETAILS

HIV-1 subtype C ancestral and consensus env genes were obtained from the Los Alamos HIV Molecular Immunology Database (<http://hiv-web.lanl.gov/immunology>), codon-usage optimized for
20 mammalian cell expression, and synthesized (Fig. 6). To ensure optimal expression, a Kozak sequence (GCCGCCGCC) was inserted immediately upstream of the initiation codon. In addition to the full-length genes, two truncated env genes were generated by
25 introducing stop codons immediately after the gp41 membrane-spanning domain (IVNR) and the gp120/gp41 cleavage site (REKR), generating gp140 and gp120 form of the glycoproteins, respectively (Fig. 8).

Genes were tested for integrity in an *in vitro* transcription/translation system and expressed in mammalian cells. To determine if the ancestral and consensus subtype C envelopes were capable of mediating fusion and entry, *gp160* and *gp140* genes were co-transfected with an HIV-1/SG3Δenv provirus and the resulting pseudovirions tested for infectivity using the JC53-BL cell assay (Fig. 7). Co-receptor usage and envelope neutralization sensitivity were also determined with slight modifications of the JC53-BL assay. Codon-usage optimized and rev-dependent 96ZAM651 env genes were used as contemporary subtype C controls.

RESULTS

15

Codon-optimized subtype C ancestral and consensus envelope genes (*gp160*, *gp140*, *gp120*) express high levels of env glycoprotein in mammalian cells (Fig. 9).

20

Codon-optimized subtype C *gp160* and *gp140* glycoproteins are efficiently incorporated into virus particles. Western Blot analysis of sucrose-purified pseudovirions reveals ten-fold higher levels of virion incorporation of the codon-optimized envelopes compared to that of a rev-dependent contemporary envelope controls (Fig. 10A).

25

Virions pseudotyped with either the subtype C consensus *gp160* or *gp140* envelope were more infectious than pseudovirions containing the corresponding *gp160* and *gp140* ancestral envelopes.

Additionally, *gp160* envelopes were consistently more infectious than their respective *gp140* counterparts (Fig. 10B).

Both subtype C ancestral and consensus envelopes utilize CCR5 as a co-receptor to mediate virus entry (Fig. 11).

The infectivity of subtype C ancestral and consensus *gp160* containing pseudovirions was neutralized by plasma from subtype C infected patients. This suggests that these artificial envelopes possess a structure that is similar to that of native HIV-1 env glycoproteins and that common neutralization epitopes are conserved. No significant differences in neutralization potential were noted between subtype C ancestral and consensus env glycoproteins (*gp160*) (Fig. 12).

CONCLUSIONS

HIV-1 subtype C viruses are among the most prevalent circulating isolates, representing approximately fifty percent of new infections worldwide. Genetic diversity among globally circulating HIV-1 strains poses a challenge for vaccine design. Although HIV-1 Env protein is highly variable, it can induce both humoral and cellular immune responses in the infected host. By analyzing 70 HIV-1 complete subtype C env sequences, consensus and ancestral subtype C env genes have been generated. Both sequences are roughly equidistant from contemporary subtype C strains and thus

expected to induce better cross-protective immunity. A reconstructed ancestral or consensus sequence derived-immunogen minimizes the extent of genetic differences between the vaccine candidate and 5 contemporary isolates. However, consensus and ancestral subtype C env genes differ by 5% amino acid sequences. Both consensus and ancestral sequences have been synthesized for analyses. Codon-optimized subtype C ancestral and consensus 10 envelope genes have been constructed and the *in vitro* biological properties of the expressed glycoproteins determined. Synthetic subtype C consensus and ancestral env genes express glycoproteins that are similar in their structure, 15 function and antigenicity to contemporary subtype C wild-type envelope glycoproteins.

EXAMPLE 3

20 Codon-Usage Optimization of Consensus of Subtype C
gag and nef Genes (C.con.gag and C.con.nef)

Subtype C viruses have become the most prevalent viruses among all subtypes of Group M viruses in the world. More than 50% of HIV-1 25 infected people are currently carrying HIV-1 subtype C viruses. In addition, there is considerable intra-subtype C variability: different subtype C viruses can differ by as much as 10%, 6%, 17% and

16% of their Gag, Pol, Env and Nef proteins, respectively. Most importantly, the subtype C viruses from one country can vary as much as the viruses isolated from other parts of the world. The 5 only exceptions are HIV-1 strains from India/China, Brazil and Ethiopia/Djibouti where subtype C appears to have been introduced more recently. Due to the high genetic variability of subtype C viruses even within a single country, an immunogen based on a 10 single virus isolate may not elicit protective immunity against other isolates circulating in the same area.

Thus *gag* and *nef* gene sequences of subtype C viruses were gathered to generate consensus 15 sequences for both genes by using a 50% consensus threshold. To avoid a potential bias toward founder viruses, only one sequence was used from India/China, Brazil and Ethiopia/Djibouti, respectively, to generate the subtype C consensus 20 sequences (C.con.gag and C.con.nef). The codons of both C.con.gag and C.con.nef genes were optimized based on the codon usage of highly expressed human genes. The protein expression following transfection into 293T cells is shown in Figure 13. As can be 25 seen, both consensus subtype C Gag and Nef proteins were expressed efficiently and recognized by Gag- and Nef-specific antibodies. The protein expression levels of both C.con.gag and C.con.nef genes are comparable to that of native subtype *env* gene 30 (96ZM651).

EXAMPLE 4

Synthesis of a Full Length "Consensus of the
Consensus env Gene with Consensus Variable Regions"
5 (CON-S)

In the synthesized "consensus of the consensus" env gene (CON6), the variable regions were replaced with the corresponding regions from a contemporary subtype C virus (98CN006). A further con/con gene has been designed that also has consensus variable regions (CON-s). The codons of the Con-S env gene were optimized based on the codon usage of highly expressed human genes. (See Figs. 14A and 14B for 10 amino acid sequences and nucleic acid sequences, respectfully.)

Paired oligonucleotides (80-mers) which overlap by 20 bp at their 3' ends and contain invariant sequences at their 5' and 3' ends, including the 15 restriction enzyme sites EcoRI and BbsI as well as BsmBI and BamHI, respectively, were designed. BbsI and BamHI are Type II restriction enzymes that cleave outside of their recognition sequences. They have been positioned in the oligomers in such a way 20 that they cleave the first four residues adjacent to the 18 bp invariant region, leaving 4 base 5' overhangs at the end of each fragment for the following ligation step. 26 paired oligomers were linked individually using PCR and primers 25 complimentary to the 18 bp invariant sequences.

Each pair was cloned into pGEM-T (Promega) using the T/A cloning method and sequenced to confirm the absence of inadvertent mutations/deletions. pGEM-T subclones containing the proper inserts were then 5 digested, run on a 1% agarose gel, and gel purified (Qiagen). Four individual 108-mers were ligated into pcDNA3.1 (Invitrogen) in a multi-fragment ligation reaction. The four-way ligations occurred among groups of fragments in a stepwise manner from 10 the 5' to the 3' end of the gene. This process was repeated until the entire gene was reconstructed in the pcDNA3.1 vector.

A complete Con-S gene was constructed by ligating the codon usage optimized oligo pairs 15 together. To confirm its open reading frame, an *in vitro* transcription and translation assay was performed. Protein products were labeled by S³⁵-methionine during the translation step, separated on a 10% SDS-PAGE, and detected by radioautography. 20 Expected size of the expressed Con-S gp160 was identified in 4 out of 7 clones (Fig. 14C).

CONs Env protein expression in the mammalian cells after transfected into 293T cells using a Western blot assay (Figure 15). The expression level 25 of Con-S Env protein is very similar to what was observed from the previous CON6 env clone that contains the consensus conservative regions and variable loops from 98CN006 virus isolate.

The Env-pseudovirions was produced by 30 cotransfecting Con-S env clone and env-deficient SG3

proviral clone into 293T cells. Two days after transfection, the pseudovirions were harvested and infected into JC53BL-13 cells. The infectious units (IU) were determined by counting the blue cells 5 after staining with X-gal in three independent experiments. When compared with CON6 env clone, Con-S env clones produce similar number of IU in JC53BL-13 cells (Figure 16). The IU titers for both are about 3 log higher than the SG3 backbone clone 10 control (No Env). However, the titers are also about 2 log lower than the positive control (the native HIV-1 env gene, NL4-3 or YU2). These data suggest that both consensus group M env clones are biologically functional. Their functionality, 15 however, has been compromised. The functional consensus env genes indicate that these Env proteins fold correctly, preserve the basic conformation of the native Env proteins, and are able to be developed as universal Env immunogens.

20 It was next determined what coreceptor Con-S Env uses for its entry into JC53-BL cells. When treated with CXCR4 blocking agent AMD3100, the infectivity of NL4-3 Env-pseudovirions was blocked while the infectivity of YU2, Con-S or CON6 Env- 25 pseudovirions was not inhibited. In contrast, when treated with CCR5 blocking agent TAK779, the infectivity of NL4-3 Env-pseudovirions was not affected, while the infectivity of YU2, Con-S or CON6 Env-pseudovirions was inhibited. When treated 30 with both blocking agents, the infectivity of all pseudovirions was inhibited. Taken together, these

data show that the Con-S as well as CON6 envelope uses the CCR5 but not CXCR4 co-receptor for its entry into target cells.

It was next determined whether CON6 or Con-S Env proteins could be equally efficiently incorporated in to the pseudovirions. To be able precisely compare how much Env proteins were incorporated into the pseudovirions, each pseudovirions is loaded on SDS-PAGE at the same concentraion: 5 μ g total protein for cell lysate, 25ng p24 for cell culture supernatant, or 150ng p24 for purified virus stock (concentrated pseudovirions after super-speed centrifugation). There was no difference in amounts of Env proteins incorporated in CON6 or Con-S Env-pseudovirions in any preparations (cell lysate, cell culture supernatant or purified virus stock) (Figure 17).

EXAMPLE 5

Synthesis of a Consensus Subtype A Full Length env
20 (A.con.env) Gene

Subtype A viruses are the second most prevalent HIV-1 in the African continent where over 70% of HIV-1 infections have been documented. Consensus gag, env and nef genes for subtype C viruses that are the most prevalent viruses in Africa and in the world were previously generated. Since genetic distances between subtype A and C viruses are as high as 30% in the env gene, the cross reactivity or 30 protection between both subtypes will not be

optimal. Two group M consensus env genes for all subtypes were also generated. However, to target any particular subtype viruses, the subtype specific consensus genes will be more effective since the
5 genetic distances between subtype consensus genes and field viruses from the same subtype will be smaller than that between group M consensus genes and these same viruses. Therefore, consensus genes need to be generated for development of subtype A
10 specific immunogens. The codons of the A.con.env gene were optimized based on the codon usage of highly expressed human genes. (See Figs. 18A and 18B for amino acid and nucleic acid sequences, respectively.)

15 Each pair of the oligos has been amplified, cloned, ligated and sequenced. After the open reading frame of the A.con env gene was confirmed by an *in vitro* transcription and translation system, the A.con env gene was transfected into the 293T
20 cells and the protein expression and specificity confirmed with the Western blot assay (Figure 18). It was then determined whether A.con envelope is biologically functional. It was co-transfected with the env-defective SG3 proviral clone into 293T
25 cells. The pseudotyped viruses were harvested and used to infect JC53BL cells. Blue cells were detected in JC53-BL cells infected with the A.con Env-pseudovirions, suggesting that A.con Env protein is biologically functional (Table 6). However, the
30 infectious titer of A.con Env-psuedovirions was about 7-fold lower than that of pseudovirions with

wild-type subtype C envelope (Table 6). Taken together, the biological function A.con Env proteins suggests that it folds correctly and may induce linear and conformational T and B cell epitopes if used as an Env immunogen.

JC53BL13 (IU/uI)			
	3/31/03	4/7/03	4/25/03
	non filtered supt.	0.22µm filtered	0.22µm filtered
A.con +SG3	4	8.5	15.3
96ZM651 +SG3	87	133	104
SG3 backbone	0	0.07	0.03
Neg control	0	0.007	0

Table 6. Infectivity of pseudovirions with A.con env genes

EXAMPLE 6

10 Design of Full Length "Consensus of the Consensus gag, pol and nef Genes" (M.con.gag, M.con.pol and M.con.nef) and a Subtype C Consensus pol Gene (C.con.pol)

15 For the group M consensus genes, two different env genes were constructed, one with virus specific variable regions (CON6) and one with consensus variable regions (Con-S). However, analysis of T cell immune responses in immunized or vaccinated 20 animals and humans shows that the env gene normally is not a main target for T cell immune response

although it is the only gene that will induce neutralizing antibody. Instead, HIV-1 Gag, Pol and Nef proteins are found to be important for inducing potent T cell immune responses. To generate a 5 repertoire of immunogens that can induce both broader humoral and cellular immune responses for all subtypes, it may be necessary to construct other group M consensus genes other than env gene alone. "Consensus of the consensus" gag, pol and nef genes 10 (M.con.gag., M.con.pol and M.con.nef) have been designed. To generate a subtype consensus pol gene, the subtype C consensus pol gene (C.con.pol) was also designed. The codons of the M.con.gag., M.con.pol, M.con.nef and C.con.pol. genes were 15 optimized based on the codon usage of highly expressed human genes. (See Fig. 19 for nucleic acid and amino acid sequences.)

EXAMPLE 7

Synthetic Subtype B Consensus gag and env Genes

EXPERIMENTAL DETAILS

Subtype B consensus gag and env sequences were derived from 37 and 137 contemporary HIV-1 strains, respectively, codon-usage optimized for mammalian cell expression, and synthesized (Figs. 20A and 20B). To ensure optimal expression, a Kozak sequence (GCCGCCGCC) was inserted immediately upstream of the initiation codon. In addition to the full-length env gene, a truncated env gene was generated by introducing a stop codon immediately

after the gp41 membrane-spanning domain (IVNR) to create a *gp145* gene. Genes were tested for integrity in an *in vitro* transcription/translation system and expressed in mammalian cells. (Subtype B consensus Gag and Env sequences are set forth in Figs. 20C and 20D, respectively.)

To determine if the subtype B consensus envelopes were capable of mediating fusion and entry, *gp160* and *gp145* genes were co-transfected with an HIV-1/SG3Δenv provirus and the resulting pseudovirions were tested for infectivity using the JC53-BL cell assay. JC53-BL cells are a derivative of HeLa cells that express high levels of CD4 and the HIV-1 coreceptors CCR5 and CXCR4. They also contain the reporter cassettes of luciferase and β-galactosidase that are each expressed from an HIV-1 LTR. Expression of the reporter genes is dependent on production of HIV-1 Tat. Briefly, cells are seeded into 24-well plates, incubated at 37°C for 24 hours and treated with DEAE-Dextran at 37°C for 30min. Virus is serially diluted in 1% DMEM, added to the cells incubating in DEAE-dextran, and allowed to incubate for 3 hours at 37°C after which an additional 500μL of cell media is added to each well. Following a final 48-hour incubation at 37°C, cells are fixed, stained using X-Gal, and overlaid with PBS for microscopic counting of blue foci. Counts for mock-infected wells, used to determine background, are subtracted from counts for the sample wells. Co-receptor usage and envelope

neutralization sensitivity were also determined with slight modifications of the JC53-BL assay.

To determine whether the subtype B consensus Gag protein was capable of producing virus-like particles (VLPs) that incorporated Env glycoproteins, 293T cells were co-transfected with subtype B consensus gag and env genes. 48-hours post-transfection, cell supernatants containing VLPs were collected, clarified in a tabletop centrifuge, filtered through a 0.2mM filter, and pellet through a 20% sucrose cushion. The VLP pellet was resuspended in PBS and transferred onto a 20-60% continuous sucrose gradient. Following overnight centrifugation at 100,000 x g, 0.5 ml fractions were collected and assayed for p24 content. The refractive index of each fraction was also measured. Fractions with the correct density for VLPs and containing the highest levels of p24 were pooled and pellet a final time. VLP-containing pellets were re-suspended in PBS and loaded on a 4-20% SDS-PAGE gel. Proteins were transferred to a PVDF membrane and probed with serum from a subtype B HIV-1 infected individual.

RESULTS

25

Codon-usage optimized, subtype B consensus envelope (*gp160*, *gp145*) and *gag* genes express high levels of glycoprotein in mammalian cells (Fig. 21).

Subtype B *gp160* and *gp145* glycoproteins are 30 efficiently incorporated into virus particles.

Western Blot analysis of sucrose-purified pseudovirions suggests at least five-fold higher levels of consensus B envelope incorporation compared to incorporation of a rev-dependent

5 contemporary envelope (Fig. 23A). Virions pseudotyped with either the subtype B consensus gp160 or gp145 envelope are more infectious than pseudovirions containing a rev-dependent contemporary envelope (Fig. 23 B).

10 Subtype B consensus envelopes utilize CCR5 as the co-receptor to gain entry into CD4 bearing target cells (Fig. 22).

15 The infectivity of pseudovirions containing the subtype B consensus gp160 envelope was neutralized by plasma from HIV-1 subtype B infected patients (Fig. 24C) and neutralizing monoclonal antibodies (Fig. 24A). This suggests that the subtype B synthetic consensus B envelopes is similar to native HIV-1 Env glycoproteins in its overall structure and 20 that common neutralization epitopes remain intact. Figs. 24B and 24D show neutralization profiles of a subtype B control envelope (NL4.3 Env).

Subtype B consensus Gag proteins are able to bud from the cell membrane and form virus-like 25 particles (Fig. 25A). Co-transfection of the codon-optimized subtype B consensus *gag* and *gp160* genes produces VLPs with incorporated envelope (Fig. 25B).

CONCLUSIONS

The synthetic subtype B consensus env and gag genes express viral proteins that are similar in their structure, function and antigenicity to 5 contemporary subtype B Env and Gag proteins. It is contemplated that immunogens based on subtype B consensus genes will elicit CTL and neutralizing immune responses that are protective against a broad set of HIV-1 isolates.

10

* * *

All documents and other information sources cited above are hereby incorporated in their entirety by reference.

ABSTRACT

The present invention relates, in general, to an immunogen and, in particular, to an immunogen for
5 inducing antibodies that neutralize a wide spectrum of HIV primary isolates and/or to an immunogen that induces a T cell immune response. The invention also relates to a method of inducing anti-HIV antibodies, and/or to a method of inducing a T cell
10 immune response, using such an immunogen. The invention further relates to nucleic acid sequences encoding the present immunogens.

A

MRVMGIQRNCQHLWRWGTMILGMLMICSAAENLWVTVYYGVPVWKEANTTLFCASDAKAYDTEVHNWAT
 V1
 HACVPTDPNPQEIVLENVTENFNMWKNNMVEQMHEDIISLWDQSLSKPCVKLTPLCVTLNCTNVRNVSSNG
 V2
 TETDNEEIKNCSPNITTELRDKKQKVYALFYRLDVVPIDDKNSSEISGKNSSEYYRLINCNTSAITQACP
 KVSFEPPIHYCAPAGFAILKCNDKKFNGTGPCKNVSTVQCTHGIKPVVSTQLLLNGSLAEEEIIIRSEN
 V3
 ITNNAKTIIVQLNESVEINCRPNNNTRKSIHIGPGQAFYATGEIIGDIRQAHCNISRTKWNKTLQQVAK
 V4
 KLREHFNNKTIIFKPSSGGDLEITTHSFNCGGEFFYCNTSGLFNSTWMFNGTYMFNGTKDNSETITLPCR
 V5
 IKQIIINMWQGVGQAMYAPPIEGKITCKSNITGLLLTRDGNNNSNKNTETFRPGGDMRDNRSELYKYK
 VVKIEPLGVAPTKAKRRVVEREKRAVGIGAVFLGFLGAAGSTMGAASITLTQAROLLSGIVQQQSNLLR
 AIEAQHQHLLQLTVWGIKQLQARVLAVERYLKDQQLLGIGWGCSGKLICTTNVPWNSSWSNKSODEIWDNMT
WMEWEREISNYTDI IYRLIEESQNQQEKNEQELLALDKWASLWNWFIDTNWLWYIKIFIMIVGGLIGLRI
 VFAVLSIVNRVRQGYSPLSFQTLIPNPRGPDRPEGIEEEGGEQGRDRSIRLVNGFLALA
 WDDLRSLCLFS
 YHRLRDFILIAARTVELLGRRSLRGLQKGWEALKYLGNLQYWGQELKNSAISLLDTAIAVAEGTDRV
 EIVQRACRAILNIPRRIRQGLERALL

B

C

Figure 1

BEST AVAILABLE COPY

CON8.env (group M env consensus. This one contain five variable regions in env gene from 98CN006 virus, not in the public domain yet)

GCCACCATGCGCGTGTGGCATCCAGCGCAACTGCCCCAGCACCTGTGGCGCTGGGCACCATGATC
CTGGGCATGCTGTGATCTGCTCGCGGCCGAGAACCTGTGGGTGCGTGACTACGGC
GTGCCCCTGTGGAAGGAGGAAACACCACCCCTGTTCTGCGCCCTCCGACGCCAAGGGCTAC
GACACCGAGGTGCAACACGTGTGGGCCACCCACGCCGTGTCGCCACCGACCCCAACCC
CAGGAGATCGTGTGGAGAACGTGACCGAGAACCTCAACATGTGGAGAACAAACATGGTG
GAGGAGATGACGGAGACATCTCCCTGTGGACCGATCTGGTGAAGGCCCTGCGTGAG
CTGACCCCTGTGCGTGTGACCTGACCTGCAACAGTGTGCGCAACGTGTCCCTCAACGGC
ACCGAGAGCACAACGAGGAGATAAGAACCTGCTCCCTAACATCACCAACCGAGCTGCGC
GACAAGGAAGCAGAAGGTGTACGCCCTGTTCTACCGCCCTGGACGTGGTGCCTCATCGACGAC
AAGAACCTCTCGAGATCTCCGCCAAGAACCTCCCGAGTACTACGCCCTGATCAACTGC
AACACCTCCGCCATCACCCAGGCCCTGCCCAAGGTGTCTCGAGGCCATCCCCATCCAC
TAATGCGCCCCCGCCGCTCTGCCATCTGTGGAGATGCAACGACAAGAACAGTTAACGGCACC
GGCCCCCTGCAAGAACGTGTCCACCGTGTGAGTGCACCCACCGGCATCAAGCCCTGGTGTCC
ACCCAGCTGCTGTGAAACGGCTCCCTGGCCGAGGAGGAGATCATCATCGCTCCGAGAAC
ATCACCAACAACGCCAACGACCATCATCGTGCAGCTGAACCGAGTCCGTGGAGATCAACTGC
ACCCGCCCAACGACCATCATCGGCCAACATCGGCCAGGCCACTGCAACATCTCCGCCACC
GCCACCGCCGAGATCATCGGCCAACATCGGCCAGGCCACTGCAACATCTCCGCCACC
TGGAAACAAGACCTCGCAGCAGGTGGCCAAGAACGACTGCGCGAGCACTTCAACAACAAGACC
ATCATCTTCAAGGCCCTCCCTCGGCCGAGCTGGAGATCACCAACCTCTTCAACTGC
GGCGGGAGTTCTTACTGCAACACCTCCGGCTGTGTTCAACTCCACCTGGATGTTCAAC
GGCACCTCATGTTCAACGCCAACAGAACCTCCGGAGACCATCACCTGCCCTGCCGC
ATCAAGCAGATCATCAACATGTGGCAGGGCGTGGGCCAGGCCATGACGCCCTCCATC
GAGGGCAAGAGATCACCTGCAAGTCCAACATCACCGCCCTGTGCGTGAACCGCGACGGCG
AACAACTTCAACAAGAACAGACCGAGACCTTCCGCCGGCGGGCGACATGCGGCAC
AACTGGCGCTCGAGCTGTACAAGTACAAGGTGGTGAAGATGAGGCCCTGGCGTGGCC
CCCACCAAGGCCAACGGCGCGTGGTGGAGCGAGAACGGCGCGTGGCATCGCGCGC
GTGTTCTGGCTTCTGGCGCCGGCTCCACCATGGCGCCCTCATCACCTG
ACCGTGAGGCCCGCAGCTGCTGCCGATCGTGCAGCAGCAGTCCAAACCTGCTGCGC
GCCATCGAGGCCAGCAGCACCTGCTGCAGCTGACCGTGGGAGATCAAGCAGCTGCG
GCCCGCGTGTGGCGTGGAGCGCTACCTGAAGGAGCACGAGCTGCTGGCATCTGGGG
TGCTCCGGCAAGCTGATCTGCAACACCGACCTGCCCCCTGAACTCTCTGGTCAAACAG
TCCCAGGAGCAGATCTGGGACAACATGACCTGGATGGAGTGGAGCGCGAGATCTCAAC
TACACCGACATCATCTACCGCTGTGAGGAGTCCCAAGAACCGAGGAGAACGAG
CAGGAGCTGCTGGCCCTGGACAAGTGGGCCCTCCCTGTGGAACCTGGTTCGACATACCAAC
TGGCTGTGGTACATCAAGATCTTACATGATCGTGGGCCCTGATCGGCCCTGCGCATC
GTGTTCTGGCGTGTGTCATCGAACCGCGTGTGCGCCAGGGCTACTCCCCCTGTCTTC
CAGACCCCTGATCCCCAACCCCCCGGCCGAGGCCCTGAGGGCATCGAGGAGGGGC
GGCGAGCAGGGCCCGACCGCTCCATCGGCCCTGGTGAACCGGCTTCTGGCCCTGG
GACGACCTGCGCTCCCTGTGCTCTCCTACCCACGCCCTGCGCGACTTCATCTGATC
GCCGCCGCCGCTGGAGCTGGGCCCTGCCGAGGCCCTGCGCGAGGCTGAGAACGGCTGG
GAGGCCCTGAAGTACCTGGGCAACCTGCTGCAGTACTGGGCCAGGAGCTGAAGAACCTC
GCCATCTCCCTGCTGGACACCACCGCCATGCCGTGGCCGAGGGCACCGACCGCGTGTGATC
GAGATCGTGCAGGCCCTGCCGCGCCATCTGAACATCCCCGCCATCGGCCAGGGC
CTGGAGCGGCCCTGCTGTAA

Figure 1D

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6 A

C.anc.env (subtype C ancestral env. The amino acid sequence is different from Los Alamos Database August 2002)

```
GCCGCCATCGCGCTGATGGCATCTGCAGCAACTGCGCAGCAGTGGTGGAT  
CTGGGGCATTCTGGCTCTGGATGCTGATGACTGCTCCGTGGTGGCA  
ACCTGTGGGTGACCGTGTACTACGGCGTGCCTGTGGAAGGAGGCCAAG  
ACCACCTGTCTGCCTCCGACGCCAAGGCCATCGAGGCCAGGGTACA  
AAACGTGTGGCACCCACCGCTGCGTGCCTGCCAACCGACCCCCCAGG  
AGATGGTGCTGGAGAACGTGACCGAGAACATGTGGAAGAACGAC  
ATGGTGACCAAGATGACGAGGACATCATCTCCCTGTGGGACCAAGTCCT  
GAAGGCCCTGCCTGAAAGCTGACCCCCCTGTGCGTGCCTGTGAACTGCACCA  
ACGTGACCAAGCCACCAACACCTACAAACGGCGAGATGAAAGAACATGC  
TCCTTAACATCACCAACCGAGCTGCCGACAAGAAGAAGAAGGAGTACGC  
CTGTTCTACCGCCTGGACATCGTGCCTCTGAAAGAACGAACTCCTCCGAGT  
ACCGCCTGATCAACTGCAACACCTCGCCATCACCCAGGCCCTGCCAAG  
GTGTCCTCGACCCCCATCCCCATCAACTACTGCGCCCCCGGCCGCTACCG  
CATCCTGAAGTGAACAACAAGACCTTCAACGGCACCGGCCCTGCAACA  
ACGTGTCCACCGTGCACCCAGGCCATCAAGCCCCGTGGTGTCCACC  
CAGCTGCTGTGTAACGGCTCCCTGGCGAGGAGGAGATCATCATCCGCTC  
CGAGAACCTGACCGACAACGCCAACGACCATCATCGTGCAGCTGAACGAGT  
CCGTGGAGATCGTGTGACCCGCCAACACACCCGCCAACGATCCATG  
CCCATCGGCCCCGCCAGACCTTCACTGCCAACCGGACATCATCGGCGA  
CATCCGCCAGGCCACTGCAACATCTCGAGGACAAGTGGAAACAAGACCC  
TGCAGCAGGTGGCGAGAAGCTGGCAAGCAACTCCCCAACAAAGACCATC  
ACCTTCGAGCCCCCTCCGGCGGGGACCTGGAGATCACCAACCCACTCTT  
CAAATCGCCGGCGAGTTCTACTGCAACACCTCCAAGCTGTTCAACT  
CCACCTACAACAACAACACCAACTTCAACTCCACCATCACCCCTGCC  
CGCATCAAGCAGATCATCAACATGTGGCAGGGCTGGGCCAGGCCATGTA  
CGCCCCCCCCCATCGCCGCCAACATCACCTCGCAAGTCCAACATCACCGGCC  
TGCTGCTGACCCGCACGGCGGCCAGGAGAACACCCAGGAGACCTTCGC  
CCCGCGGGCGGCGACATCGCGCAACTGGCGCTCCGAGCTGTACAAGTA  
CAAGGTGGAGATCAAGGCCCTGGCGTGGCGCCCCAACCGAGGCCAAC  
GCCGCGTGGCGAGCGCGAGAAGCGGCCGTGGGCTGGCGCCGCTGTTC  
CTGGGCTTCCCTGGGCGCCGCCGCTCCACCATGGGCGCCCTCATCAC  
CCTGACCGCAGGGCCCGCAGCTGCTGTCGGCATCGTGCAGCAGCAGT  
CCAAACCTGCTGCGCCCATCGAGGCCAGCAGCACATGCTGCAGCTGACC  
GTGTGGGCATCAAGCAGCTGAGGCCGCTGCTGGCCATGGAGCGCTA  
CCTGAAGGACCAAGCAGCTGCTGGGCATCTGGGCTGCTCCGGCAAGCTGA  
TCTGCACCCACCGCCGTGCCCCCTGGAAACTCTCTGGTCCAACAAGTCC  
GACGACATCTGGGACAACATGACCTGGATGGAGTGGGACCCGCCAGAGTCTC  
CAACTACACCGACACCATCACCCCTGCTGAGGAGTCTCAGAACCAAGC  
AGGAGAAGAACGAGCAGGCCACTGCTGGCCCTGGACTCTGGAGAACCTG  
TGGAACTGGTTGACATCACCAACTGGCTGTGGTACATCAAGATCTTCA  
CATGATCGTGGGCGGGCTGATCGGCCTGCGCATCATCTCGCCGTGCTGT  
CCATCGTGAACCCCGCGCCAGGGCTACTCCCCCTGCTCCAGGAC  
CTGACCCCCAACCCCCCGGCCGCCAGCGCCTGGAGCGCATCGAGGAGGA  
GGGCGGGGAGCAGGAGCCGCGACCGCTCCATCCGCCCTGGTGTCCGGCTTCC  
TGGCCCTGGCTGGGACGACCTGCGCTCCCTGCTGGCTGCTTCTCAC  
CGCCCTGCGCAGCTCATCTGATGCCGCCGCCACCGCTGGAGCTGCTGG  
CCGCTCCCTGGCGCCCTGCGCCAGCGCGGGCTGGAGGGCCCTGAAGTACC  
TGGGCTCCCTGGTGCAGTACTGGGGCCAGGAGCTGAAGAAGTCCGCATC  
TCCCTGCTGGACACCATGCCATGCCGTGGCGAGGGCAGCCGACCGC  
CATCGAGGTGGTGAGCGCGCCCTGCCGCATCCTGAACATCCCCGCC  
GCATCCGCCAGGGCTCGAGGCCGCCCTGCTGTAA
```

Figure 6B

C.con.env (subtype C consensus env. The amino acid sequence is different from Los Alamos Database August 2002)

```
GCCGCCATCGCGTATGGGCATCTGGCAACTGCGCAGCTGGGTGGAT  
CTGGGGCATCTGGGCTTCTGGATGCTGATCTGCAACGTGGTGGGCA  
ACCTGTGGGTGACCGTGTACTACGGCGTGCCTCGTGGAAAGGAGGCCAAG  
ACCACCCCTTCTGCGCCTCCGACGCCAAGGCTACGAGAAGGAGGTGCA  
CAACGTGTGGGCCACCCACGCCCTGCGTGCCTGCCACCCAGCCCCAGG  
AGATGGTGCTGAGAACGTCAGCGAGGACATCATCTCCCTGTGGGACCAAGTCCCT  
ATGGTGACCAAGATGCACGAGGACATCATCTCCCTGTGGGACCAAGTCCCT  
GAAGGCCCTGCGTGAAGCTGACCCCTGTGCAGCCACTGAACTGCGCA  
ACGTGACCAAGCCACCAACACCTACACAGGAGGAGATCAAGAACTGC  
TCCTCAACATCACCAACCCAGCTGCGCAGACAAGAAGAAGAAGGTGTACGC  
CCTGTTTACCGCCTGGACATCGTGCCTCGTAACGAGAACCTCCCGAGT  
ACCGCCTGATCAACTGCAACACCTCCGCCATACCCAGGCCCTGCCCAAG  
GTGTCCTCGACCCCATCCCGCATCTCCACTACTGCGCCCCGCCGGCTACGC  
CATCCCTGAAGTGCAACAAAGACCTCAACGGCACCGGCCCTGCAACA  
ACGTGTCACCGCTGCGTGAAGCTGACCCACGGCATCAAGCCCTGTGGTCCACC  
CAGCTGCTGTCGAACGGCTCCCTGGCCAGGGAGGAGATCATCGCGCTC  
CGAGAACCTGACCAACAAACGCCAAGACCATCATCGTGCACCTGAACGAGT  
CCGTGGAGATCGTGTGACCCGCCAACAAACACCCGCCAAGTCCATC  
CGCATCGGCCCGGCCAGACCTTCTACGCCACCCGCCGACATCATCGCGA  
CATCCGCCAGGCCACTGCAACATCTCCGAGGACAAGTGGAAACAAGACCC  
TGCAGCGCGTGTCCAAGAAGCTGAAGGAGGACTCTCCAAACAGACCATC  
AAGTCGAGCCCTCCCGCGGCCACTGGAGATCACCCCAACTCTT  
CAACTGCGCGGCCGAGTTCTACTGCAACACCTCCAAGCTGTTCAACT  
CCACCTACAACAAACAACACCAACTCCAACCTCCACCATCACCTGCCCTGC  
CGCATCAAGCAGATCATCAACATGTCGAGGAGGTGGGCCGCCCAGTGA  
CGCCCCCCCCCATCGCCGCCAACATCACCTGCAAGTCAAACATCACCGGGC  
TGCTGCTGACCCCGCAGCGCGGGCAAGAAGAACACCACCGAGATCTCCGC  
CCGGCGGGCGGAGACATGCGCGAACACTGGCGCTCGAGCTGTACAAGTA  
CAAGGTGGGGAGATCAAGGCCCTGGCGTGGGCCCTCCAGGAGGCCAAGC  
GCCGCGTGGTGGAGCGCGAGAACGCGGCCGTGGGCATGGCGCCGTGTT  
CTGGGCTTCTGGCGCCGCCGGCTCCACCATGGGCCCTCCAGTCAACATCAC  
CTCTGACCGTGCAGGCCGCCAGCTGCTGTCCGGCATCGCAGCAGCAGT  
CCAACCTGCTGCGGCCATCGAGGGCCAGCAGCACATGCTGAGCTGACC  
GTGTGGGGCATCAAGCAGCTGCAAGACCCCGCTGCTGGCCATCGAGCGCTA  
CTCTGACGGACCGCAGCAGCTGGGACATCTGGGCTGCTGGTACAATCAAGATCTTCAT  
TCTGACCCACCGCGTGGGACTCTGGGACACATGACCTGGATGCAAGTGGGACCCGGAGATCTC  
GAGGACATCTGGGACAAACATGACCTGGATGCAAGTGGGACCCGGAGATCTC  
CAACTACACCGACACCAACTACCGCGTGTGGACTCCAGAACCCAGC  
AGGAGAAGAACGAGAACGGACCTGCTGGGACTCTGGGACTCTGGAAAGAACCTG  
TGGGACTCTGGTCGACATACCAACTGGCTGTGGTACAATCAAGATCTTCAT  
CATGATCGTGGCGGCGCTGATCGGCCCTGCGCATCATCTCGCCGTGCTGT  
CCATCGTGAACCGCGTGCAGGCCAGGGCTACTCCCCCTGTCTTCCAGACC  
CTGACCCCAACCCCGCGGCCGCCAGCGCTGGGCCATCGAGGGAGG  
GGCGGGCGAGCAGGACCGCGACCGCTCCATCGCCCTGGTGTCCGGCTCC  
TGGGCTTGGCGACTCTCATCTGGTGGCCGCCGCCGCGCCGTGGAGCTGCTGG  
CCGCTCTCCCTGCGCCGCTGCAAGCGCGGCTGGGAGGGCTGAAGTAC  
TGGGCTCTGGTGCAGTACTGGGCCCTGGAGGACTGAAAGAACGTCGCCATC  
TCCCTGCTGGACACCATCGCCATCGCCGTGGCGAGGGCACCGACCGCAT  
CATCGAGCTGATCCAGCGCATCTGCCGCGCCATCCGCAACATCCCCCGCC  
GCATCCGCCAGGGCTTCGAGGGCCCTGCACTAA
```

Figure 6c

C.anc.env (subtype C ancestral env)
MRVMGILRNCQQWWIWGILGFWMICSVGNLWVTYYGVPWKEAKTTLFCASDAKAYEREVHNWAT
HACVPTDPNPQEMVLENVTENFMWKNMDMVQMHEDIISLWDQSLKPCVKLTPLCVTLNCTVTNATNNNT
YNGEMIKNCFSFNITTELDRDKKKKEYALFYRLDIVPLNENSSEYRLINCNTSAITQACPKVSFDPPIHYCA
PAGYAIIKCNNKTFNGTGPCNNSTVQCTHGIKPVSTQLLLNGSAAEEIIIRSENLTDNAKTIVQLN
ESVEIVCTRPNNNTRKSMRIGPGQTFYATGDIIGDIRQAHCNISEDKWNKTLQQVAEKLGKHFPNKTITF
EPSSGGDLEITTHSFNCRGEFFYCNTSKLFNSTYNNNTNSNSTITLPCRIKQIINMWQGVGQAMYAPPIA
GNITCKSNITGLLLTRDGGKENTTETFRPGGGDMRDNWRSLEYKYKVVIEKPLGVAPTEAKRRVVVEREKR
AVGLGAVFLGFLGAAGSTMGAASITLTQARQLLSGIVQQQSNIILRAIEAQQHMLQLTVWGIKQLQARVL
AMERYLKDQQQLLGWCGSGKLICTTAWPWNSWSNKSLLDIWDNMTWMEWDREISNYTDITYRLLEESQN
QQEKNEQDLALADSWEWLWNWFDTNWLVYIKFIMIVGGILGLRIIFAVLSIVNRVRQGYSPLSFQTLT
PNPRGPDRLERIEEGGEQDRRSIRLVSGFLALAWDDLRSLCLFSYHRLRDFILIAARTVELLGRSSLR
GLQRGWEALKYLGSLVQYWGQELKKSASISSLDTIAIAVAEGTDRIIEVQRACTAILNIPRRRIQGFEEAA
LL

Figure 6D

C.con.env (subtype C consensus env)
MRVMGILRNCQWWVWGLGFWMILMICNVGNLWVTVYYGVPVWKEAKTTLFCASDAKAYEKEVHNWAT
HACVPTDPNPQEMVLENVTENFMWKNMDMQMHEDIISLWDQSLKPCVKLTPLCVTLNCRNVTNATNNT
YNEEIKNCNSFNITTELRDKKKKVYALFYRLDIVPLNENSSEYRLINCNTSAIQACPKVSFDPIP HYCA
PAGYAILKCNNKTFNGTGPCNNVSTQCTHGIPVUSTQLLLNGSLAEEIIIRSENLTNNAKTIIVHLN
ESVEIVCTRPNNNTRKSIRIGPGOTFYATGDIIGDIRQAHCNISEDKWNKTQQRVSKKLKEHFPNKTIF
EPSSGGDLEITTHSFNCRGEFFYCNTSKLFNSTYNNNTNSNSTTLPCKRIKQIINMWQEVGRAMYAPPIA
GNITCKSNITGLLRTDGGKKNTEFRPGGGDMRDNRSELYKYKVVEIKPLGVAPTKAKRRVVEREKR
AVGIGAVFLGFLGAAGSTMGAASTLTQARQLLSGIVQQQSNLLRAIEAQOQHMLQLTWGIKQLOQTRVL
AIERYLKDDQQLLGWCGSGKLICTTAVPWNSWSNKSQEDIWDMTWMQWDREISNYTDIYRLLEDSCN
QQEKNEDLLADSWKNLWNWFDTNWLYIKIFIMIVGGLIGLRIIFAVLSIVNVRVRQGYPLSFQTLT
PNPRGPDRLGRIEEEGGEQDRDRSIRLVSGFLALAADDLRSCLFSYHRLDFILVAARAVEELLGRSSLR
GLQRGWEALKYLGSLVQYWGLELKSAISLDTIAVAEGTDRIELIQRICRAIRNIPRRIRQGFEAA
LQ

Figure 6E

Synthesize entire gene in 80-mer fragments overlapping by 20 residues at the 3' end with invariant sequences at the 5' end.

Paired 80mer oligos are connected via PCR in a stepwise manner from 5' to 3' using primers complimentary to the invariant seq.

108bp PCR fragments cloned into pGEM-T and sequenced. Clones with the proper sequence will be cut with 2 restriction enzymes. 4 fragments will be ligated together with pcDNA3.1 in a stepwise manner from the 5' to 3' end of gene

Fragments to be ligated with pcDNA3.1 (1-4 are in order from 5' to 3')	Restriction Enzymes Used to Cleave Fragment
Fragment 1	EcoRI/BsmBI
Fragment 2	BbsI/BsmBI
Fragment 3	BbsI/BamHI
Fragment 4	BbsI/BamHI
pcDNA3.1	EcoRI/BamHI

Ligations will be repeated stepwise 5' to 3' until the entire gene has been cloned into pcDNA3.1

Figure 7

8
July

V1 VTIANCRVNTNATNTTNGEMENCSPTNTTELDKIKITETALFIRDLIVPLRHNSEBEIRLINCNTBAITDACPFRVSDPPIPHCAPAYAILKCSNKTQ
 + YQTOPCNAVSYVQCTHQIKPVVSTQI
 +
 V2 VTIANCRVNTNATNTTNGEMENCSPTNTTELDKIKITETALFIRDLIVPLRHNSEBEIRLINCNTBAITDACPFRVSDPPIPHCAPAYAILKCSNKTQ
 + YQTOPCNAVSYVQCTHQIKPVVSTQI
 +
 V3 LLNGSLAMEEIIIGSENLTNAAKTIIVQLESVEIVCPNPNTKSRIGPCQQTIVARTDIIIGDIQRAECHTIEDKWNKTQ
 + QVAERLGKHP
 + PNTTITYPEPSSCDLEIITTHBPNCRGCEPFICN
 +
 LLNGSLAMEEIIIGSENLTNAAKTIIVQLESVEIVCPNPNTKSRIGPCQQTIVARTDIIIGDIQRAECHTIEDKWNKTQ
 +
 V4 TENLUPNSTTENNTNSTTLCRQQLSIVQQSNLRAIAQQLQTLTNGKOLQTRVLAIERYLTDQQLLCITWCSGKLICPAVWNBSMWSKQGDIDHBLTQDREISNTDTIVRL
 +
 +
 TENLUPNSTTENNTNSTTLCRQQLSIVQQSNLRAIAQQLQTLTNGKOLQTRVLAIERYLTDQQLLCITWCSGKLICPAVWNBSMWSKQGDIDHBLTQDREISNTDTIVRL
 +
 PLGLAGSTENGAASTLTVCARQQLSIVQQSNLRAIAQQLQTLTNGKOLQTRVLAIERYLTDQQLLCITWCSGKLICPAVWNBSMWSKQGDIDHBLTQDREISNTDTIVRL
 +
 +
 PLGLAGSTENGAASTLTVCARQQLSIVQQSNLRAIAQQLQTLTNGKOLQTRVLAIERYLTDQQLLCITWCSGKLICPAVWNBSMWSKQGDIDHBLTQDREISNTDTIVRL
 +
 +
 EDSSQVQKEKEDLLADSKKLMNTDITMMMLIKIPIMIVCGCLIGLRIPAYLSIVERYVQQQSPLSFQTLTPPRGPDRGRINEGEPDRDRSTRILVSGLAALANDDLRSCLCYSTHRL
 +
 +
 ESSQVQKEKEDLLADSKKLMNTDITMMMLIKIPIMIVCGCLIGLRIPAYLSIVERYVQQQSPLSFQTLTPPRGPDRGRINEGEPDRDRSTRILVSGLAALANDDLRSCLCYSTHRL
 +
 +
 gp140 †
 gp120 † sp41
 gp110 †
 RDPTLVAAAREVLLGRRSSLRQORGMEALKYLGLSVQRTGELKKAISLDTIAIAVAKGDRJIELIGRICQAIIRMIPRRIRQPEAAALQ 843
 +
 +
 RDPTLVAAAREVLLGRRSSLRQORGMEALKYLGLSVQRTGELKKAISLDTIAIAVAKGDRJIELIGRICQAIIRMIPRRIRQPEAAALQ 843
 +
 +

Figure 10 A

Figure 10B

Figure 11

Figure 12

FIGURE 13

Figure 13 C

C.con.gag (subtype C consensus gag)
MGARASILRGGKLDTWEKIRLRPGGKKRYMIKHLVWASRELERFALNPGILETSEGCKQIMKQLQPA
LQTGTEELRSLYNTVATLYCVHEKIEVRDTKEALDKIEEEQNKSQQKTQQAEEAADGKVSONYPI
VQNLLGGQMVMHQASPRTLNAWVKVIEEKAFSPEVIPMFTALSEGATPQDLNTMLNTVGGHQAAMQMLKDT
INEEAAEWDRLHPVHAGPIAPGQMREPRGSDIAGTTSLQEQAIVMTSNPPVPGDIYKRWILGLNKIV
RMYSPVSILDIKQGPKEPFRDYDRFFKTLRAEQATQDVKNWMTDTLLVQANPDCCKTILRALGPASLE
EMMTACQGVGGPSHKARVLAEAMSQANNTNIMMQRSNFKGPKRIVKCFNCGEGHIAARNCRAPRKKGCK
CGKEGHQMKDCTEROANFLGKIWPSHKGPGNFLQSRPEPTAPPAESFRFEETTPA
PKQEPKDREPLTSKSLFGSDPLSQ

C.con.nef (subtype C consensus nef)
MGGKWSKSSIVGWPAPRERIRRTEPAAEGVGAASQDLDKYGALTSSNTATNNADCAWLEAQEEEEEV
GFPVRPQVPLRPMTYKAADFDSFFLKEKGLEGLIYSKRQEILDWVYHTQGFDPDWQNYTPGPGVRYP
LTFGWCFKLVPVDPREVEEANEGENNCLHPMSQHGMEDEDREVWKWFDSHLARRHMARELHPEYYKDC

Figure 13 D

Figure 13 E

C.con.gag (subtype C consensus gag. Not in the public domain)
GCCGCCGCCATGGCGCCGCCAGCATCTGCCGGCGCAAGCTGGACACCTGGGAGAAGATCCGCC
TGCCTCCCAGGGCAAGAACGCTACATGATCAAGCACCTGGTGTGGGCCAGCCGAGCTGGAGCGCTT
CGCCCTGAACCCGGCCTGCTGGAGACCAGCGAGGGCTGCAAGCAGATCATGAAGCAGCTGCAGCCCC
CTGCAGACCGGCACCGAGGAGCTGCGAGCTGTACAACACCGTGCCACCCCTGACTCGTGCACCGAGA
AGATCGAGGTGCGGACACCAAGGAGGGCTGACAAAGATCGAGGGAGCAGAACAAAGAGCCAGCAGAA
GACCCAGCAGGGCAGGGCCGCCGACGGCAAGGTGAGCCAGAAACTACCCCATCGTGCAGAACCTGCAG
GGCCAGATGGTGCACCGGGCATCAGCCCCCCTGAACGCCCTGGGTGAAGGTGATCGAGGGAGAAGG
CCTTCAGCCCCGAGGTGATCCCCCATGTTACCGCCCTGAGCGAGGGGCCACCCCCCAGGACCTGAACAC
CATGCTGAACACCGTGGCGCCACCAAGGGCCATGCGAGATGCTGAGGACACCATCAACGAGGAGGCC
GCCGAGTGGGACCGCTGCAACCGCTGCAAGCCGCCCCATCGCCGGCCAGATGCGAGGCCCGCG
GCAGCGACATCGCCGGACACCCAGCAGCTGGATCATCTGGGCTGAACAAGATCGTGCATGTACAGCCCC
GCCCGTGGCGACATCTAACAGCGCTGGATCATCTGGGCTGAACAAGATCGTGCATGTACAGCCCC
GTGAGCATCTGGACATCAAGCAGGGCCCCAAGGAGCCCTCGCAGACTACGTGGACCGCTTCTCAAGA
CCCTGCGCGCCGAGCAGGGCACCGAGCTGAAGAACTGGATGACCGACACCTGCTGGTGCAGAACGC
CAACCCCAGCTGCAAGAACCATCTGCCGCCCCCTGGGCCCCGGCCAGCTGGAGGAATGATGACGCC
TGCAGGGCGTGGCGCCCCAGCCACAAGGCCCCGCTGCTGGCCAGGGCATGACCCAGGCCAACACA
CCAACATCATGATGCAAGCGCAGCAACTTCAAGGGCCCCAAGCGCATGTAAGTGCTTCACTGCGCAA
GGAGGGCCACATCGCCGCAACTTGCCTGGCCCCCGCAAGAAGGGCTGTTGAAGTGCGGCAAGGAGGCC
CACAGATGAAGGACTGCAACCGAGGCCAGGCCACTTCTGGCAAGATCTGGCCAGCCACAAGGGCC
GCCCGGCAACTTCTGCAAGGCCGCCCCGAGCCACCGCCCCCCCCCGAGAGCTTCCGCTTCGAGGA
GACCACCCCCCCCCCAAGCAGGAGGCCAAGGACCGCAGGCCCTGACCGCCCTGAAGAGCCTGTCGGC
AGCGACCCCCCTGAGCCAGTAA

C.con.nef (subtype C consensus nef. Not in the public domain)
GCCGCCGCCATGGCGCCAGTGGAGCAAGAGCACGATCTGGGGCTGGCCGTGCGCAGCGCATCC
GCCGCACCGAGCCCCGCCGAGGGCTGGCGCCGCCAGCCAGGACCTGGACAAGTACGGGCCCTGAC
CAGCAGCAACACCGCCACAACACGCCACTGCGCCCTGGCCGGCCAGGAGGGAGGAGGGAGGTG
GGCTTCCCGTGCCTGGCCCCCAGGTGCTGGCCGGCCATGACCTACAAGGGCCCTCGACCTGAGCTCT
TCCGAAAGGAGAAGGGCGCTGGAGGGCTGATCTACAGCAAGAAGGCCAGGAGATCTGGACCTGT
GGTGTACCAACCCAGGGCTCTTCCCGACTGGCAGAACTACACCCCCGGGGCGTGCCTGACCT
CTGACCTTCGGCTGGTGCCTCAAGCTGGCCCCGGAGGAGGAGGAGGAGGAGGCCAACGAGGGCG
AGAACAACTGCTGCTGCAACCCATGAGCCAGCAGGCCATGGAGGGACGAGGACCGCAGGGTGCTGAAGTG
GAAGTTCGACAGCCACCTGGCCCCGCCACATGGCCGGAGCTGACCCGAGTACTACAAGGACTGC
TGA

Figure 13 F

Figure 14A

CONs.env (group M consensus env gene. This one contain the consensus sequence for variable regions in env gene)
MRVRGIQRNCQHLWRWGTLLGMLMCSAAENLVVTVYYGVPVWKEANTTLFCASDAKAYDTEVHN
WATHACVPTDPNPQEIVLENVTENFMWKNNMVEQMHEIDISLWDQSLKPCVKLTPLCVTLNCTNVNVT
TTNNTEEKGEIKNCFSNITTEIRDKKQKVYALFYRLDVPIDDNNNNSSNYRJINCNTSAITOACPKVS
EPIPIHYCAPAGFAILKCNNDKKFNGTGPKCNVSTVQCTHGIKPVVSTQLLLNGSLAEEEIIIRSENITNN
AKTIIVQLNESVEINCTRPNNNTRKSIRIGPGQAFYATGDIIGDIRQAHCNISGTKWNKTLQQVAKKLRE
HFNNKTIIFKPSSGGDLEITTHSFNCRGEFFYCNTSGFNSTWIGNGTKNNNNNTNDTTLPCRICKQIIM
WQGVGQAMYAPPIEGKITCKSNITGLLTDGGNNNTNETEIRPRPGGGDMRDNWRSELYKYKVVKIEPLG
VAPTKAKRRVVEREKRAVGIGAVFLGFLGAAGSTMGAASITLTVOARQLLSGIVQQQSNIIRRAJEAQQHL
LQLTVWGIKOLOARVLAVERYLKDOQLLGWCGSGKICTTVPWNSSWSNKSQDEIWDNMTWMEWERE
NNYTDIISLIESQNQQEKNEQELLAQDKWASLWNWFDTNWLVYIKIFIMIVGGLIGLRIVFAVLSIV
NVRQGYSPLSFQTLPNPRGPDRPEGIEEEGGGEQDRDRSIRLVNGFLALAADDLRSCLFSYHRLRDFI
LIAARTVELLGRKGRLRGWEALKYLWNLLQYWGQELKNSAISLLDTTAIAVAEGTDVIEVQRACRAIL
NIPRRIRQGLERALL

Figure 14 B

CONs.env (group M consensus env gene. This one contain the consensus sequence for variable regions in env gene.
The identical amino acid sequences as in the public domain)

```
GGCGCCGCATGCGCGGCCATCCAGCGCAACTGCACGCCACCTGTG  
GGCTGGCACCCTGATCCTGGCATGCTGATGATCTGCTCCGCCGCC  
AGAACCTGGGTGACCGTGACTACGGCGTCCCCGTGTGAAGGAGGCC  
AACACCAACCTGTTCTGCGCCTCCGACGCCAACGGCTACGACACCAGAGT  
GCACAAACGTGTTGGCACGCCGCTGCGTGGCCACCGACCCCAACCCCC  
AGGAGATCGTGTGGAGAACGTGACCGAGAACTTCACATGTGGAAAGAAC  
AACATGGTGAGCAGATGCACGAGGACATCATCTCCGTGGGACCAAGTC  
CCTGAAGCCCTGCGTAAGCTGACCCCCCTGTGCGTGACCCGTAACTGCA  
CCAACGTGAACGTGACCAACACCAACAAACACCGAGGAGAAGGGCGAG  
ATCAAGAACTGCTCTTAACATCACCACCGAGATCGCGACAAGAACGA  
GAAGGTGTACGCCCTGTTACCGCCTGGACCTGGTGCCATCGACGACA  
ACAACAACAACTCTTCAACTACGGCCTGATCAACTGCAACACCTCCGCC  
ATCACCGGGCCTGCCCAAGGTGCTTCGAGCCCATTCCCACCAACT  
CTGCGCCCCCGCCGGCTGCCATCTGAAAGTCAACGACAAGAACGTTCA  
ACGGCACCGGGCCCTGCAAGAACGTGTCACCGTGAGTGCACCCACGGC  
ATCAAGGCCCTGGTGTCCACCCAGCTGCTGTAACGGCTCCCTGGCGA  
GGAGAGATCATATCCGCTCCGAGAACATACCAACACGCCAACGACCA  
TCATCGTCAGCTGAACGAGTCCGTGGAGATCAACTGCAACCCGCCAAC  
AACAAACACCAACCCATCGCAGCATGGCCCCGGCAGGCTTACCG  
CACCGCGACATCATGGCGACATCCGCCAGGCCACTGCAACATCTCG  
GCACCAAGTGGAAACAAGACCCGTGAGCAGGTGGCCAAGAACGTTGCGAG  
CACTTCAACAAACAAGACCATCATCTCAAGCCTCTCCGGCGCGACCT  
GGAGATCACCAACCAACTCTTCAACTGCGCGGGAGTTCTACTGCA  
ACACCTCCGGCTGTTCAACTCCACCTGGATCGGCAACGGCACCAAGAAC  
AACAAACACCAACCCATCACCCCTGCCATGCCATCAAGCAGAT  
CATCAACATGTGGCAGGGCGTGGCCAGGCCATGTACGCCCTCATCG  
AGGGCAAGATCACCTGCAAGTCAAACATCACCGCCTGCTGTAACCCG  
GACGGCGAACAAACACCAACGGAGACGGAGATCTCCGCCCGGG  
CGCGACATCGCGACAACCTGGCGCTCCGAGCTGTAACAGTACAAGGTGG  
TGAAGATCGAGCCCTGGCGTGGCCCCCACCAAGGCCAGCGCCCGTG  
GTGGAGCGCGAGAGCGCGCCGTGGCATGGCGCCGTGTTCTGGCTT  
CTGGCGCCGCGCTCCACCATGGCGCCGCCATCACCTGACCG  
TGCAGGGCGCCAGCTGCTGCGCATCGTCAGCAGCAGTCAAACCTG  
CTGCGCCCATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGTGGGG  
CATCAAGCAGCTGCGCATCTGGGCTGCTCCGGCAAGCTGATTCGACC  
ACCAGCGACTGCTGGCATCTGGGCTGCTCCGGCAAGCTGATTCGACC  
ACCACCGTCCCTGAACTCTCTGGTCAAACAGTCCAGGACGAGAT  
CTGGGACAACATGACCTGGATGGAGTGGAGGCCAGATCAACAACTACA  
CCGACATCATCTACTGGCATGCGAGGAGTCCCGAGAACACAGCAGGAGAAG  
AACGAGCAGGAGCTGCTGGCCCTGGACAAGTGGCCTCCCTGTGGAACTG  
GTTGACATCACCAACTGGCTGTGGTACATCAAGATCTTACATGATCG  
TGGGCGCCGCTGATCGGCATCGTGTGCGCATCGTGTGCGCTGTCATCGT  
AACCGCGTGCAGGGCTACTCCCCCTGTCTTCAAGACCCGTATCCC  
CAACCCCGCGGCCCGACCGCCCGAGGGCATCGAGGAGGAGGGCGCG  
AGCAGGACCGCGACCCGCTCCATCGGCCCTGGTGAACGGCTTCCGCG  
GCCTGGGACGACTCGCGCTCCCTGTGCGTGTGCTACCTGCG  
CGACTTCATCCCTGATCGCCGCCCGACCGTGGAGCTGCTGGGCCGAAGG  
GCCTGGCGCCGCGCTGGAGGGCCCTGAAGTACCTGTGGAAACCTGCTGCG  
TACTGGGGCAGGAGCTGAAGAACCTCGCAGTCTCCCTGCTGGACACCAC  
CGCCATCGCCGTGGCCGAGGGCACCGACCGCGTGTGAGGTGGTGCAGC  
GCCGCTGCCGCGCCATCTGAACATCCCCCGCCATCCGCCAGGGCTG  
GAGCGCCCTGCTGTAA
```


Figure 14 C

Figure 5

Figure 1b

Env protein incorporation in CON6 and CONs Env-pseudovirions

Fig 07E 17

Figure 18 A

A.con.env (subtype A consensus env)
MRVAGIQRNCQHLWRWGTMLGMIIICSAAEENLWVTYYGVPWWKDAETTLFCASDAKAYDTEVHNW
WATHACVPTDPNPQEINLENVTEEFNMWKNNMVEQMHTDIISLWDQSLKPCVKLTPLCVTLNCNVNVT
NITNTDNMKGEIKNCNSFNMTTELRDKKQKVSLFYKLDVWQINKSNSSSQYRLINCNTSAIQACPKVS
FEPIPIHYCAGAFAILKCKDKKEFNGTGPCKNVSTVQCTHGIKPVVSTQLLLNGSLAEEEVMIRSENITN
NAKNIVQLTKPVKINCTRPNNTTRKSIRIGPGQAFYATGDIIGDIRQAHCNVSRTEWNETLOKVAKQLR
KYFNNKTUFTNSSGGDLEITTHSFNCGEFFYCNTSGLFNSTWNGNGTKKNSTESNDTTLPCRIKQI
INMWQRVGQAMYAPPIQGVIRCESNITGLLTDGGDNNSKNETFRPGGGDMRDNRSELYKYKVVKIEP
LGVAPTKAKRRVVEREKRAVGIGAVFLGFLGAAGSTMGAASITLTQARQLLSGIVQQQSNLRAJEAQO
HLLKLTVVGKQLQARVLVERYLKDDQQLLGWCGSGKLICTTNPWNSSWSNKSQSEIWONMTWLQWDK
EISNYTDIYNLIESQNQQKEQNEDQDLLADKWNLWNWFDISNWLYIIFIMIVGGLIGLRIVFAVLS
VINRVRQGYSPSLSFQHTPNPGGLDRPGRIEEEGGEQGRDRSIRLVSGFLALA WDDLRSLCLFSYHRLRD
FILIAARTVELLGHSSLKGRLRGWEGLKYLWNLLYWGRELKISAINLLDTIAAVAGWTDRVIEIGQRI
CRAILNIPRRIRQGLERALL

Figure 18B

A.con.env (subtype A consensus env. Identical amino acid sequence to that in the public domain)

GCCGCCGCATGCGCGTGTGGCATCCAGCGCACTGCACGACCTGTG
GCGCTGGGGCACCATGATCCTGGCATGATCATCATCTGCTCCGCC
AGAACCTGTGGGTGACCGTGTACTACGGCGTCCCCGTGGAAGGACGCC
GAGACCCTGTGGCTCCGACGCCAAAGGCCATACCGACCCGAGGT
GCACAACGTGTGGCCACCCACGCCGTGCGTCCCCACCGACCCCAACCC
AGGAGATCAACCTGGAGAACGTGACCGAGGAAGTTAACATGTGGAAAGAAC
AACATGGTGAGCAGATGCACCCACATCATCTCCCTGTGGACAGTC
CCTGAAGCCTGTGAGCTGACCCCCCTGTGCGTGACCCGTGACTGCT
CCAACGTGAACGTGACCAACATCACCAACATCACCGACAAACATGAG
GGCGAGATCAAGAACGTGCTCTAACATGACCGACCCGAGCTGCGACAA
GAAGCAGAAGGTGTACTCCTGTCTAACAGCTGGACGTGGTGAGATCA
ACAAGTCAAACCTCTCTCCCAGTACCGCCTGATCAACTGCAACACCTCC
GCCATCACCCAGGCCGTGCGGCAAGGTGTGACGCCATCCCCATCCA
CTACTGCCGCCGCCGCCGTGCGGCAAGAACGTGTCACCGTGACGG
TCAACGGCACCGGCCGTGCAAGAACGTGTCACCGTGACGG
GGCATCAAGCCCGTGTGTCACCCAGCTGCTGCTGACCGCTCCCTGGC
CGAGGAGGAGGTGTGATCGCTCGAGAACATCACCAACAGGCCAAGA
ACATCATCGTCAAGCTGACCAAGGGTGAAGATCAACTGCAACCGGCC
AACAAACACCCGCAAGTCCATCGCATGCCCGGCAAGGCCCTTCA
CGCCACCCGGACATCATCGGCACATCGGCCAGGGCAACTGCAACGTG
CCCGCACCGAGTGGAAAGAACCTGCAAGAGGTGGCAAGCAGCTGCG
AAAGTACTCAACAAAGACCATCATCTCACCAACTCCTCCGGCGCGA
CCTGGAGATCACCAACCTCTCAACTGCGGGCGAGTTCTCTACT
GCAACACCTCCGGCTGTCAACTCCACCTGGAACAGGCAACGGC
ACATCGTCAAGCTGACCAAGGGTGAAGATCAACTGCAACCGGCC
AAGAAGAAACTCCACCGAGTCAACGACACCATCACCTGCCATGCC
CAAGCAGATCATCAACATGTGGCAGCGCGTGGCCAGGGCATGTACGCC
CCCCCATCCGGCGTGTGCGCTGGAGTCCAAACATCACCGCGTGTG
CTGACCCGGCAGCGGGCGACAAACACTCAAGAAGGAGACCTCCGCC
CGGCGGGCGGACATGCGCGACAAACTGGCGCTCGAGCTGTACAAGTACA
AGGTGGTAAGATCGAGCCCTGGCGTGGCCAGGGCAAGGCCAAGCGC
CGCGTGGTGGAGCGCGAGAACCGCGCGTGGGATCGGCCGTGTTCT
GGGCTCTGGCGCCGCCGGCTCCACCATGGCGCCCTCATACCC
TGACCGTGCAGGCCCGCAGCTGCTGTGCGCATCGTGCAGCAGCG
AACCTGCTGCGCCATCGAGGGCCAGCGAGCAGCTGCTGAAGCTGACCGT
GTGGGCATCAAGCAGCTGCGAGGCCCGCGTGTGCTGGCGTGGAGCGTAC
TGAAGGAC CAGCAGCTGCTGGGATCTGGGCTGTGCAACAAAGTCCAGTC
TGCACCAACCGTGGGAAACTCTCTGGGATCTGGGCTGTGCAACAAAGTCCAGTC
CGAGAGATCTGGGACAACATGACCTGGCTGAGTGGGACAAGGAGATCTCA
ACTACACCGACATCATCAACACCTGATCGAGGGAGTCCCGAGACAG
GAGAAGAACGAGCAGGGAGCTGGGCTGGGACAAGTGGCCAACCTGTG
GAACCTGGTTGACATCTCAACTGGCTGTGGTACATCAAGATCTTATCA
TGATCGTGGCGGCTGTGCGCATCGTGTGCGTGTGCGTGTGCG
GTGATCAACCGCGTGCAGGGCTACTCCCCCTGTCTCCAGACCCA
CACCCCCAACCCCGCGGCCCTGGACCGCCCGCGCATCGAGGAGGAGG
GCCGCCAGAGCGAGGCCCGCGACCGCTCCATCCGCCGTGGTGTCCGGCTCC
GCCCTGCCCTGGGACGACCTGCGCTCCCTGTGCGTGTGCTCC
CCTGCGGACTTCATCCTGATCGCCGCCCCGACCGTGGAGCTGCTGGGCC
ACTCTCCCTGAAGGGCTGCCGTGGCTGGGCTGGGAGGGCTGAAGTACCTG
TGGAACTGCTGCTGACTGGGGCCGCGAGCTGAGATCTCCGCCATCAA
CTCTGCGGACACCATCGCCATCGCCGCCCCGCTGGGACCGACCCGCGTGA
TCGAGATCGGCCAGCGCATCTGCCGCGCCATCTGAACATCCCCCGCC
ATCCGCCAGGGCTGGAGCGGCCCTGCTGTAA

Expression of *A.con env* gene in mammalian cells

Figure 18

Figure 19A

M.con.gag (group M consensus gag. Identical amino acid sequence to that in the public domain)

```
GGCGCCGCCATGGGCGCCCGCCTCCGTCTGTCGGCGGAAGCTGGA  
CGCCTGGAGAAAGATCCGCCTGCGCCCCGGCGCAAGAAGAAGTACCGCC  
TGAAGCACCTGGTGTGGGCCTCCCGAGCTGGAGCGCTTCGCCTGAAAC  
CCCGCCTGCTGGAGACCTCGAGGGCTGCAAGCAGATCATCGGCCAGCT  
GCAGCCCCGCCCTGCAAGACCGGCTCCGAGGAGCTGCGCTCCCTGTACAACA  
CCGTGGCCACCCCTGACTCGCTGCAACAGCGCATCGAGGTGAAGGGACACC  
AAGGAGGCCCTGGAGAAAGATCGAGGGAGGAGCAGAACAAAGTCCCAGCAGAA  
GACCCAGCAGGCCGCCGCCGACAAGGGCAACTTCAAGGTGTCCCAGA  
ACTACCCCCTGCAAGGACATCGAGGGCAGATGGTGACCAAGGCCATC  
TCCCCCGCACCCCTGAAACGCCCTGGGTGAAGGTGATCGAGGGAGAGGCC  
CTCCCCCGAGGTGATCCCCATGTTCTCCGCCCTGTCGAGGGGCCACCC  
CCCAGGACCTGAACACCATGCTGAACACCGTGGGGGGCCACCCAGGCC  
ATGCAGATGCTGAAGGACACCATCAACGAGGGAGGCCGAGTGGGACCG  
CCTGCACCCCGTGACGCCGCCCATCCCCCGGCCAGATGCGCAGC  
CCCGGGCTCCGACATCGCCGGCACCACTCCACCCCTGAGGGAGCAGATC  
GCCTGGATGACCTCAACCCCCCATCCCCGTGGCGAGATCTACAAGCG  
CTGGATCATCTGGGCTGAACAAGATGCGCATGTACTCCCCGTGT  
CCATCCTGGACATCCGCCAGGGCCCAAGGAGGCCCTCCGCACTACGTG  
GACCGCTCTTCAGAACCCCTGCTGGTGCAAGACGCCAACCCGACTGAA  
GAACCTGGATGACCGACACCCCTGCTGGTGCAAGACGCCAACCCGACTG  
AGACCATCCTGAAGGCCCTGGGCCCGCCACCCCTGGAGGGAGATGATG  
ACCGCCTGCCAGGGCGTGGCGGCCACCGCAAGGCCCCGGTGTGGC  
CGAGGCCATGCTCCAGGTGACCAACGCCCATCATGATGCGCG  
ACTTCAAGGGCCAGGCCGATCATCAAGTGTCTCAACTGCGGCAAGGAG  
GGCACATGCCGCCGCAACTGCCGCCACCGCAAGAAGGGCTGCTGGAA  
GTGGCGAAGGAGGGCCACCAAGATGAAGGACTGCAACCGAGCGCCAGGCC  
ACTTCTGGCAAGATCTGCCCTCAAACAAGGGCCGCCGCAACTTC  
CTGCACTCCGCCGAGGCCACCGCCCCCCCCCGAGTCCCTGGCTT  
CGCGAGGAGATCACCCCCCTCCCCCAAGCAGGAGGCCAAGGACAAGGAGC  
CCCCCTGACCTCCCTGAAGTCCCTGTCGGCAACGACCCCTGTCCCAG  
TAA
```

Figure 19B

M.con.pol.nuc

GGCGCCGCCatccccagatcacccgtggcagcgccccctggtaccat
caagatcgccgcccagctgaaggaggccctgctggccaccggcgccgacg
acaccgtctggaggagatcaacctggcccaagtggaaaggccaagatg
atcggcgcatcgccggcttcatcaagggtgcgcaggatcgcaccagatcct
gatcgagatctgcggcaagaaggccatcgacccgtctggtggggccca
ccccgtgaacatcatcgccgcaacatcgacccagatcggtgcacc
ctgaactccccatccccatcgagaccgtggccgtgaagctgaagcc
cgcatggacggccccaaggtgaagcagtgccctgaccgaggagaaga
tcaaggccctgaccgagatctgcaccgagatggagaaggaggcaagatc
tccaagatcgcccccagaaccctacaacaccccccatttcgcattcaa
gaagaaggactccaccaagtggcgaagctggacttccgcagctga
acaagcgcacccaggactctggaggtgcagctggcatccccccacccc
gccggccigaagaagaagaagtccgtgaccgtgcgtggcgacgc
ctactctccgtgcccctggacgaggactccgcaagtacaccccttca
ccatccccatcaacaacgagaccccccggatccgttaccagtacaac
gtgctgccccagggtggaaagggtcccccgcatttcgcattccat
gaccaagatccgtggccatccgcacccagaaccccgagatcgtgatct
accagtacatggacgacccgtacgtggctccgacccgtggagatccgc
caccgcaccaagatcgaggagctgcgcagacccgtgcgtgggtt
caccaccccgacaagaaggcaccagaaggagcccccttccgtggatgg
gctacgagctgcaccccgacaagtggaccgtgcagccatccagctgc
gagaaggactccgtggaccgtgaacgacatccagaagctggggcaagct
gaactgggcctcccgatctaccccgcatcaagggtgaagcagctgtca
agctgtgcggcgccaaaggccctgaccgcacatcgtgcctgaccgag
gaggccgagctggagctggcggagaaccgcgagatccgtgaaggagcc
gcacccgtgtactacgaccccttccaaaggacccgtgcgcagatccaga
agcaggccaggaccgtggaccatcccgacatccaggagccctcaag
aacctcaagacccggcaagtacgcacatgcgtccgcaccaaccaacga
cgtgaaggcagctgaccgaggccgtgcagaagatgcgcaccgagatcc
tgatctgggcaagacccccaagttccgcctgcccattccagaaggagacc

Figure 19B

Continued

tgggagacctggtgaccgagttactggcaggccacccgtggattcccgagtg
ggagttctgtgaacaccccccccccgttgcggatctgtgttaccagctggaga
aggagcccatgcgcggccggagacccttctacgtggacggcgcggccaac
cgcgagaccaagctggcaaggccggctacgtgacccgaccggccggccca
gaagggtgtccctgaccgagaccacaaccagaaaaaccgagctgcagg
ccatccacccgtggccctgcaggactccggctccgaggtaacatcgtgacc
gactcccaagtacccctgggcatcatccaggcccagccgacaagtccga
gtcccgagctggtaaccagatcatcgagcagctgatcaagaaggagaagg
tgtacctgtccctgggtgcccggccacaaggcatcgccggcaacgagcag
gtggacaaggctgggtccaccggcatccgcaagggtgttccctggacgg
catcgacaaggcccgaggaggagcacgagaagtaccactccaactggcg
ccatggccctccgactcaacccgtggcccaaggagatcgt
gcctctgcgacaagtgcgcaggactgaaggccgaggccatgcacggccagg
ggactgcctcccgcatctggcagctggactgcaccacccatggagg
agatcatctggccgtgcacgtggccctccggctacatcgaggccgag
gtgatccccggcggagaccggccaggagaccgcctacttcattcctgaa
ggccggccgctggccctgtgaagggtatccacaccgacaacggctccaact
tcacccctccgcccgtgaaggccctgtggggccggcatccagcag
gagttccgcataccctacaacccctactccaggccgtgtggagtc
gaacaaggagctgaagaagatcatcgccagggtgcgcaccaggccgag
acccatcaagaccgcgtgcagatggccgttcatccacaactcaagcgc
aaggccggcatggccgtactccgcggcgcagcgcatacgacatcat
cgccaccgacatcccgaccaaggagctcagaaggatcacaagatcc
agaactccgcgtgtactaccgcactccgcgacccatctggaaagg
ccggccaaaggctgtggaaaggccgaggccgtgtgatccaggacaa
ctccgacatcaagggtggcccccggcaaggccaaagatcatccgcact
acggcaaggcagatggccggcgcacgcactgcgtggccggccaggacgag
gacTAA

Figure 19C

M.con.nef (group M consensus nef. Identical amino acid sequence to that in the public domain)

```
GCCGCCGCCATGGGCGGCAGTGGTCCAAGTCTCCATCGTGGGCTGGC  
CGCCGTGCGCGAGCGCATCCGCCACCCACCCCGCCGCCGAGGGCGTGG  
GCGCCGTGTCGGCAGGACCTGGACAAGCACGGCGCCATCACCTCCTCCAAC  
ACCGCCGCCAACAACCCCCGACTGCGCCTGGCTGGAGGGCCAGGAGGA  
GGAGGAGGTGGGCTTCCCCTGCGCCCCCAGGTGCCCCCTGCGCCCCATGA  
CCTACAAGGCCCGCCCTGGACCTGTCCCCACTTCTGAAGGGAGAAGGGCGGC  
CTGGAGGGCCTGATCTACTCCAAGAAGCGCCAGGAGATCTGGACCTGTG  
GGTGTACCAACACCCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCG  
GCCCCGGCATTCCGCTACCCCCCTGACCTTCGGCTGGTGTGCTTCAGGCTGGT  
CCCGTGGACCCCCGAGGAGGTGGAGGGCCAACCGAGGGCGAGAACAACTC  
CCTGCTGCACCCCATGTGCCAGCACGGCATGGAGGACGAGGAGCGCGAGG  
TGCTGATGTGGAAGTTGACTCCCGCTGGCCCTGCGCCACATGCCCGC  
GAGCTGCACCCCGAGTACTACAAGGACTGCTAA
```

FIGURE 19D

C.con.pol.nuc

GCCGCCGCatccccagatcacccgtggcagcgccccctgggtccat
caagggtggccggccagatcaaggaggccctgtggccacccggcgccacg
acaccgtgtggaggagatcaacctggccggcaagtggaaagcccaagatg
atccggcgcatcgccgcattcatcaagggtgcgcacgtacgaccagatct
gatcgagatctcgccagaaggcatcgccaccgtgtggggccca
ccccctgtgaacatcatcgcccaacatgtgcacccagctggctgcacc
ctgaacttccccatctccccatcgagaccgtgcggtaagctgaagcc
cgccatggacggccccaaggtaagcagtggccctgacccgaggagaaga
tcaaggccctgaccgcattctgcgaggagatggagaaggaggcaagatc
accaagatcgcccccagaacccctacaacaccccccgtttcgccatcaa
gaagaaggactccaccaagtggcgaagctggacttccgcagctga
acaagcgcacccaggactctgggagggtcagctggcatcccccacccc
gccggcctgaagaagaagaagtccgtaccgtgcggactggcagcgc
ctacttctccgtccccctggacgagggtcaccgcacgtggccatcc
ccatccccccatcaacaacgagaccccccggcatccgtaccaggataaac
gtgtgccttccagggtggaaaggctcccccgccatctccgttccat
gaccaagatctggagccctccgcggcagaaccccgagatcgatct
accagtacatggacgaccctgtacgtggctccgcacctggagatcgcc
caccgcgccaagatcgaggagctgcgcgagcacgtgtgaagtgggctt
caccaccccgacaagaaggcaccagaaggagcccccttcgtggatgg
gtacagactgtgcacccgacaagtggaccgtcagccatccagctggcc
gagaaggactctggaccgtgaacgcacatccagaagctggggcaagct
gaactgggcctccagatctaccccgcatcaagggtgcgcagctgt
agctgtgcgcggcacaaggccctgaccgacatcgccctgtggag
gaggccgagctggagctggccgagaaccgcgagatctgttccagg
gcacggcgtgtactacgaccctccaaaggaccgtacgcgcagatcc
agcaggccacgaccagtggacccatccaggatctaccaggagccct
aacctcaagacggcaagtacgcacaagatgcgcacccgcacacca
cgtgaagcagctgaccgaggccgtcagaagatgcgcacccatgg
tgatctgggcaagaccccaagttccgcctgcacccatccagaagg
tggagacctggggaccgactactggcaggccacccatggatcc
ggagttcgtgaacacaccccccctgtgaagctgttgtacc
aggagcccatcgccggccgagacccatccgttccgcacccatgg
cgcgagaccaagatcgcaaggccggactcgfaccgcacccgc
gaagatcggttccctgaccgagaccaccaaccagaaaaacc
ccatcccgatccgcctgtcaggactccgtcccgaggatcc
gactcccgatcgcctggcatcatccaggccacccgaca
gtcccgatccgtgaaccagatcatcgagcagctgt
tgtacccgtccctgggtgcaccccaaggcatccggcg
gtggacaagctgtgtcccgcatccgcacccatgg
catcgacaaggcccgaggaggacacgagaag
ccatggccctcccgatccacccatccgtgg
gctccctgcacaagtgcacccatgg
ggactgctcccccgcacccatccgtgg
agatcatccctggccgtgcacgtgg
tcccgatcatcgaggccg

Figure 19D
continued

gtgatccccggccagacggccaggagaccgcctacttcatccatgaagct
ggccggccgctggcccgtaagggtatccacaccgacaacggctccaact
tcacctccggcccgtaaggccgcctgtggtggccggcatccagcag
gagttcggcatcccatacaaccccccagtcccagggtgtggagtccat
gaacaaggagctgaagaagatcatcggccaggtgcgcgaccaggccgagc
acctaagaccgcgtgcagatggccgtgttcatccacaactcaagcgc
aaggccggcatcggccgtactccgcggcgagcgcatacgacatcat
cgccaccgacatccagaccaaggagctgcagaaggcatacgatcatcaagatcc
agaacttccgcgtgtactaccgcgactcccgcaacccatcttggaaaggcc
ccgcacaagctgtgttggaaaggccgagggccgcgtggatccaggacaa
ctccgcacatcaagggtgttggcccaaggccaaagatcatcaaggact
acgcaagcagatggccggcgccgactgcgtggccggccaggacgag
gacTAA

Figure 19 E

M.con.gag (group M consensus gag)
M GAR A S VL S G G K L D A W E K I R L R P G G K K Y R L K H L V W A S R E L E R F A L N P G L E T S E G C K Q I I G Q I L Q P A
L Q G S E E L R S L Y N T V A T L Y C V H O R I E V K D T K E A L E K I E E E Q N K S Q Q K T Q Q A A D K G N S S K V S Q N Y P I V Q N
E A A E W D R L H P V H A G P I P P G Q M R E P R G S D I A G T T S T L Q E Q I A V M T S N P P I P V G E I Y K R W I I L G L N K I V R M Y
S P V S I L D I R Q G P K E P F R D Y V D R F F K T L R A E Q A T Q D V K N W M T D T L V Q N A N P D C K T I L K A L G P G A T L E E M M
T A C Q G V G G P G H K A R V L A E A M S Q V T N A A I M M Q R G N F K G Q R R I I K C F N C G K E G H I A R N C A P R K K G C W K C G K
E G H Q M K D C T E R Q A N F L G K I W P S N K G R P G N F L Q S R P E T A P P A E S F G F G E E I T P S P K Q E P K D K E P P L T S K
S L F G N D P L S Q

Figure 1S F

M.con.pol (group M consensus pol)
MPQITLWQRPLVTJXIGGQLKEALLTGADDTLEEIINLPCKWKPKMIGGIGGFIKVRQYDQILIEICGK
KAIGTVLVGPTPVNIIGRNLTQIGCTLNFPISIETVPVKKPGMDGPVKQWPLTEEKIKALTEICTE
MEKEGKISKIGPENPYNTPIFAIKKKDSTKWRKLVDRELNKRTQDFWEVQLGIPHAGLKKKKSVTVLD
VGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPGQGWKGSPAIFQSSMTKILEPFRTQNPPEIVI
YQYMDDLVYGSDELIGQHRAKIEELREHLLRWGFTTPDKKHQKEPPFLWMGYELHPDKWTVOPIQLPEKD
SWTVNDIQKLVGLNWAQIYPGIKVKQLCCKLRGAKALTDIVPLTEEAELELAENREILKEPVHGYYD
PSKDLIAEIQKGQQDQWTYQIYQEPFKNLKTGKYAKMRSAAHTNDVKQLTEAVQKATESIVWGKTPKFR
LPIQKETWETWWTEYWQATWPEWEFVNTPPLVKLWYOLEKEPIAGAETFYVDGAANRETKLGKAGYVTD
RGRQKVVSLETENNQKTELQAIHLALQDSGSEVNIVTDSQYALGIIQAQPDKSESELVNQIIEQLIKKEK
VYLSWVPAHKIGGGNEQVDKLVSTGIRKVLFLDGIDKAQEEHEKYHSNWRAMASDFNLPPIVAKEIVASC
DKCQLKGEAMHGQVDCSPGIWQLDCTHLEGKIIIVAVHVASGYIEAEVPAETGQETAYFILKLAGRWPV
KVIHTDNGSNFTSAVKAACWWAGIQQQEFGIPYNPQSQGVVESMNKELKKIGQVRDQAELKTAVQMAV
FIHNFKRKGGIGGYASAGERIIIDIATDQTKELOKQITKIQNFRVYYRDSRDPIWKGPAKLLWKGEGAVV
IQDNSDIKVVPRRKAKIIRDYGKQMGDDCVAGRQDED

Figure 19G

M.con.nef (group M consensus nef)
MGGKWSKSSIVGWPAPVREIRRTPAAEVGAVSQDLDKHAITSSNTAANNPDCAWLEAQEEEEEVGFP
VRPQVPLRPMTYKAALDLHFLKEKGGLEGLIYSKKRQEILDWYHTQGYFPDWQNYTPGPGIRYPLTF
GWCFLVVDPEEEANEGENNSLLHPMCQHGMEDEREVLMWKFDSRLALRHIAELHPEYYKDC

Figure 19 H

C.con.pol (subtype C consensus pol)

MPOITLWQRPLVSIKVGGQIKEALLaTGADDTVLEEINLPGKWKPKMIGGIGGFIKVRQYDQIUEICGK
KAIGTVLVGPTPVNIIGRNMLTQLGCTLNFPISPIETVPVKLPKGMDGPVKQWPLETEEKIKALTACEE
MEKEGKITKIGPENPYNTPVFAIKKKDSTKWRKLVDRELNKRTQDFWEVQLGIPHPAGLKKSVTVLD
VGDAYFSVPLDEGFRKYTAFTIPSINNETPGIRYQYNVLPGWKGSPAIFQSSMTKILEPFRQNPEIVI
YQYMDDLVYGSDEIGQHRAKIEELREHLLKGFTTPDKKHQKEPPFLWMGYELHPDKWTVQPIQLPEKD
SWTVNDIQKLVKGKLNWASQIYPGKVRQLCKLLRGAKALTDIVPLTEAEELAENREILKEPVHGVVYD
PSKDLIAEIQKQGHQWVYQIYQEPFKNLKTGKYAKMRTAHTNDVKOLTEAVOKIAMESIVWGKTPKFR
LPIQKETWETWVTDYWQATWIPEWEFVNTPPLVWLWYQLEKEPIAGAETFYV'DGAANRETIGKAGYVTD
RGRQKIVSLTETTNQKTELQAQLALQDSGSEVNIVTDSQYALGIQAOAPDKSESELVNQIEQLIKKER
VYLSWWPAHKIGGGNEQVDKLVSSGIRKVLFLDGIDKAQEHEKYHSNWRAMASEFNLPPIVAKEVASC
DKCQLKGEAMHGQVDCSPGIWQLDCTHLEGKIIILVAVHVASGYIEAEVIPAETGQETAYFILLAGRWPV
KVIHTDNGSNFTSAAVKAACVWAGIQQEFGIPYNPQSQGVVESMNKELKKIIGQVRDQAEHLKTAVQMAV
FIHFKRKGIGGYSAGERIIDIIATDIQTKELKQKQIIKIONFRVYYRDSRDPIWKGPAKLLWKGEGAVV
IQDNSDIKVPRRKAKIJDYGKQMGADCVAGRQDED

Figure 20 A

B.con.gag (subtype B consensus gag. The amino acid sequence is different from Los Alamos Database August 2002)

```
CCCGCCGCCATGGGCGCCCGCCTCGTGTCTGGCGAGCTGGA  
CCGCTGGAGAAGATCCGCCCTGCGCCCGCGAGCTGGAGCCTCGCCGTGAAC  
TGAAGCACATCGTGTGGGCCCTCCGCCGAGCTGGAGCCTCGCCGTGAAC  
CCCGCCTGCTGGAGACCTCCGAGGGCTGCCGCCAGATCTGGGCCAGCT  
GCAGCCTCCCTGCAAGACCGGCTCCGAGGAGCTGCCTCCCTGTACAACA  
CCGTGGCCACCCCTGACTGCCTGCACCAGCGCATCGAGGTGAAGGACACC  
AAGGAGGCCCTGGAGAAGATCGAGGAGGAGCAGAACAAAGTCCAAGAAGAA  
GGCCCAGCAGGCCGCCGCCGACACCGGCAACTCCTCCAGGTGTCCCAGA  
ACTACCCCATCGTGCAAGAACCTGCAGGGCCAGATGGTGCACCAGGCCATC  
TCCCCCGACCCCTGAACCCCTGGGTGAAGGTGGTGGAGGAGAAAGGCCCTT  
CTCCCCCGAGGTGATCCCCATGTTCTCCGCCCTGTCGGAGGGCGCACCC  
CCCAGGACCTGAACACCATGCTGAACACCGCTGGGCGGGCACCCAGGCC  
ATGCAGATGCTGAAGGAGACCATCAACGAGGAGGCCGCCGAGTGGGACCG  
CCTGCACCCCGTGCACGCCGCCCATGCCGCCGCCAGATGCCGAGC  
CCCGCGCTCCGACATGCCGCCACCACCTCACCTGCAAGGAGCAGATC  
GGCTGGATGACCAAACAACCCCCATCCCGTGGCGAGATCTACAAGCG  
CTGGATCATCTGGGCCCTGAACAAAGATCGTGCCTGACTCTCCCCACCT  
CCATCTGGACATCCGCCAGGGCCCAAGGAGGCCCTCCGCAGTACGTG  
GACCGCTTACAAAGACCCCTGCAGCCGAGCAGGCCCTCCAGGAGGTGAA  
GAACTGGATGACCGAGACCCCTGCTGGTGCAAGAACGCCAACCCGACTGCA  
AGACCATCTGAAGGCCCTGGGCCGCCACCCTGGAGGAGATGATG  
ACCGCCCTGCCAGGGCGTGGGCGCCACAAAGGCCCGCTGCTGGC  
CGAGGCCATGCTCCAGGTGACCAACTCCGCCACCCATGATGCAAGCG  
GCAACTTCCGCAACCGCGCAAGAACCGTGAAGTGTCTCACTGCCGCAAG  
GAGGCCACATGCCAAGAACACTGCCGCCGCCCGCAAGAACGGCTGCTG  
GAAGTGCGGCAAGGAGGGCCACCAAGATGAAGGACTGCCACCGAGGCCAGG  
CCAACCTCTGGCAAGATCTGGCCCTCCCCACAAGGGCCGCCAC  
TTCTGCAGTCCCGCCCGAGGCCACCCGCCCGAGGAGTCTTCG  
CTTCGGCGAGGAGACCAACCCCCCTCCAGAAGCAGGAGGCCATCGACA  
AGGAGCTGTACCCCCCTGGCCCTCCGCTCCCTGTCGGCAACGACCCCC  
TCCTCCAGTAA
```

Figure 20 B

B.con.env (subtype B consensus env. The amino acid sequence is different from Los Alamos Database August 2002)
GCGCCGCCATGCGCGTGAAGGGCATCCGCAAGAACCTACCGCACCTGTG
GCGCTGGGCACCATGCTGCTGGCATGCTGATGATCTGCCGCCGG
AGAAGCTGTGGGTGACCGTGTACTACGGCGTGGCCGTGGAAGGAGGCC
ACCACCAACCTGTCTGCGCTCCGACGCCAAAGGCTACGACACCGAGGT
GCACCAACCTGTGGGGCACCCACGCCGTGCCCCACCGACCCAAACCCCCC
AGGAGGGTGTGGTGTGGAGAACATGACCGAGAACATCTCCCTGTGGGACCAAGTC
AACATGGTGGAGCAGATGCACGAGGACATCATCTCCCTGTGGGACCAAGTC
CCTGAAGCCCTGCGTAAGACTGACCCCCCTGTGCGTGAACCTGAACCTGCA
CCGACCTGAAGAACACCTGCTGAACACCAACTCCCTCCGGCGAGAAG
ATGGAGAAGGGCGAGATCAAGAACTGCTCCCAACATCACACCTCCAT
CCGCGACAAGGTGCGAGAAGGAGTACGCCCTGTCTACAAAGCTGGACGTGG
TGCCTCATCGACAACAAACAACACCTCTACCGCCGTATCTCCTGCAAC
ACCTCCGTGATCACCCAGGCCGCCCCAAGGTGTCTCGAGGCCATCCC
CATCCACTACTGCGCCCCCGCCCGCTTCGCATCCCTGAAGTGCAACCGACA
AGAAGTTCACAGGCCACCCCTGCGACCAACGTTGCCCCACCGTGCAGTGC
ACCCACGGCATCGCCCGGTGGTGTCCCCACCGTGTGCTGAACGGCTC
CCTGGCCGAGGGAGGGAGGTGGTATCCGCTCGAGAACCTCACCGACAACG
CCAAGGACATCATGCGCAGCTGAAGGACTCCGTGGAGATCAACTGCA
CGCCCCAACACAAACACCCCGCAAGTCCATCCACATCGGGCCCGCG
CTTCTACACCACCGGGAGATCATCGGCACATCCGCCAGGCCACTGCA
ACATCTCGCCGCGAACAGTGGAAACAAACCCCTGAGCAGATCTGGAAGAAG
CTGGCGAGCAGTTCGGCAACAAAGACCATCTGTTCAACCAAGTCTCCGG
CGGCGACCCCGAGATCGTGTGCACTCTTAACCTGGCGGGGAGTTCT
TCTACTGCAACACCAACCCAGCTGTCACCTCCACCTGGGAACGACAACGGC
ACCTGGAAACACCAACAGGACAAGAACACCATCACCCCTGCCCCCGCAT
CAAGCAGATCATCACATGTGGCAGGAGGTGGCAAGGCCATGTACGCC
CCCCCATCCGGCCAGATCCGCTGCTCTCCAAACATCACCGGCCGTG
CTGACCCCGCAGCGCCGCGAACAAACAAACGACACCGAGATCTTCCGCC
CGGGCGCCGCGACATGCGCAGCAACTGGCGCTCCGAGCTGTACAAGTACA
AGGTGGTGAAGATCGAGCCCCCTGGCGTGGCCCCCACCAGGCAAGCGC
CGCGTGTGCGAGCGCGAGAACGGCGCCGCTGGGAGTGGCGCCATGTTCT
GGGTTCTCTGGGCCGCCGGCTCCACCATGGGCCGCCCTCATGACCC
TGACCGTGCAGGCCGCCAGCTGCTGTCCGGCATCGTGCAGCAGCAGAAC
AACCTGTGCGCCGACATGAGGCCAGCAGCACCTGCTGAGCTGACCGT
GTGGGCCATCAAGCAGCTGCTGGCATCTGGGCTGCTCCGGCAAGCTGATC
TGAAGGACCAAGCAGCTGCTGGCATCTGGGCTGCTCCGGCAAGCTGATC
TGCACCAACCCAGTGGCCCTGGAACGCCCTCTGGTCAAACAGTCCCTGGA
CGAGATCTGGGACACATGACCTGGATGGAGTGGGAGCGCGAGATCGACA
ACTACACCTCCCTGATCATCACCCCTGATCGAGGAGTCCAGAACAGCAG
GAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCTCCCTGTG
GAAGTGGTTCGACATCACCAACTGGCTGTGATCATCAAGATCTTACATCA
TGATCGTGGGCCGCTGATCGGCTGCGCATCTGTTGCTCCGGTGTG
ATCGTGAACCGCGTGCACGGGCTACTCCCCCTGTCCCTCCAGACCCG
CCTGCCGCCGG
GCCGCGAGCGCAGCGACCGCGACCCGCTCCGGGCCCTGGTGGACGGCTTCTG
GCCCTGATCTGGGACGACCTGCGCTCCCTGTGCTGTTCTACCAACCG
CCTCGCGCGACCTGCTGATCGTGAACCCGATCGTGGAGCTGCTGGG
GCCGCGGGCTGGGGAGGTGCTGAAGTACTGGTGGAAACCTGCTGCA
TCCCAAGGAGCTGAAGAACTCCGCCGTGCTCCCTGCTGAACGCCACCG
CGCGTGGGCCAGGGCACCGACCGCGTGTGAGGTTGGTGCAGCGCG
GCCGCCGACATCTGCACATCCCCCGCCGATCCGCCAGGGCTGGAGGCC
GCCCTGCTGTAA

Figure 20C

B.con.gag (subtype B consensus gag)
MGARASVLSGGELDRWEKIRLRPGGKKYKLKHIVWASRELERFAVNPGILLETSEGCRQILGQLQPSLQT
GSEELRSLYNTVATLYCVHQRIEVKDTKEALEKIEEEQNKSKKAQQAAADTGNSSOVSQNYPIVQNLQG
QMVHQAJSPRTLNAWWKVVEEKAFSPEVPMFSALSEGATPQDLNTMLNTVGGHQAMQMLKETINEEAA
EWDRLHPVHAGPIAPGQMREPGRSDIAGTTSTLQEIQIGWMTNNPPIVGEIYKRWIILGLNKIVRMYSP
SILDIRQGPKEPFRDYVDRFYKTLRAEQASQEVKNWMTELLVQNANPDCKTILKALGPAATLEEMMTAC
QGVGGPGHKARVLAEMSQVTNSATIMMORGNFRNQRKTVKCFNCGKEGHIAKNCRAPRKKGCKWGKCGKEG
HQMKDCTERQANFLGKIPSHKGRPGNFLQSRPEPTAPEESFRFGEETTPSQKQEPIDKELYPLASLR
SLFGNDPSSQ

B.con.env (subtype B consensus env)
MRVKGIRKNYQHLWRWGTMLLGMLMICSAAEKLWWTYYGVPWWEATTLFCASDAKAYDTEVHNWAT
HACVPTDPNPQEVVLENVTENFNMWKNNMVEQMHEDISLWDQSLKPCVKLTPLCVTLNCTDLKNNLLNT
NSSSGEKMEKGEIKNCFSNITTSIRDVKQKEYALFYKLDVVIDPNNNTSYRLISNTSVITOACPKVSF
EPIPIHYCAPAGFAILKCNDKKNGTGPCTNVSTVQCTHGRPVSTQLLNGLAEEEVIRSENFTDN
AKTIVQLNESVEINCTRPNNNTRKSHIIGPGRAYTTGEIIGDIRQAHCNISRANKWNNTLKQIVKKLRE
QFGNKTIVFNQSSGGDPEIVMHSFNCGGEFFYCNTTQLFNSTWNDGTWNNTDKNTITLPCRIKQIINM
WQEVGKAMYAPPIRGQIRCSSNITGLLTQDGNNNNDETEIFRPGGGDMRDNVRSLEYKYKVVKIEPLGV
APTKAKRRVVQREKRAVGIGAMFLGFLGAAGSTMGAASMTLVQARQLLSGIVQQQNNLLRA/EAQQHLL
QLTVWGIKQLQARVLAVERYLKDQQQLLGWCGSGKLICTTVPWNASWSNKSDEIWDNMTWMEWEREID
NYTSIYTLIEESQNQQKEKNEQELLEDKWAISLWNWFDITNWLYIKIFIMIVGGLIGLRLIVFAVLSIVN
RVRQGYSPLSFQTRLPAAPRGDRPREGIEEEGGERDRDRSGRLVDGFLALIWDDLRSCLFSYHRLRDLL
IVTRIVELLGRRGWEVLKYWWNLQYWSQELKNSAVSLLNATAJAVAEGTDRVIEVWQRACRAILHIPRR
IRQGLERALL

Figure 20D

Figure 24. Expression of subtype B consensus env and gag genes in 293T cells. Plasmids containing codon-optimized subtype B consensus gp160, gp140, and gag genes were transfected into 293T cells, and protein expression was examined by Western Blot analysis of cell lysates. 48-hours post-transfection, cell lysates were collected, total protein content determined by the BCA protein assay, and 2 µg of total protein was loaded per lane on a 4-20% SDS-PAGE gel. Proteins were transferred to a PVDF membrane and probed with serum from an HIV-1 subtype B infected individual.

Figure 22

Co-receptor usage of subtype B consensus envelopes.

Pseudotyped particles containing the subtype B consensus gp160 Env were incubated with DAE-Dextran treated JC53-BL cells in the presence of AMD3100 (a specific inhibitor of CXCR4), TAK779 (a specific inhibitor of CCR5), and AMD3000+TAK779 to determine co-receptor usage. NL4.3, an isolate known to utilize CXCR4 and YU-2, a known CCR5-using isolate, were included as controls.

Figure 2.34. Trans complementation of env-deficient HIV-1 with codon-optimized subtype B consensus gp160 and gp140 genes.

Plasmids containing codon-optimized, subtype B consensus *gp160* or *gp140* genes were co-transfected into 293T cells with an HIV-1/SG3 Δ env provirus. 48-hours post-transfection cell supernatants containing pseudotyped virus were harvested, clarified in a tabletop centrifuge, filtered through a 0.2 μ M filter, and pellet through a 20% sucrose cushion. Quantification of p24 in each virus pellet was determined using the Coulter HIV-1 p24 antigen assay; 25 ng of p24 was loaded per lane on a 4-20% SDS-PAGE gel. Proteins were transferred to a PVDF membrane and probed with anti-HIV-1 antibodies from infected HIV-1 subtype B patient serum. Trans complementation with a rev-dependent NL4.3 *env* was included for control.

Figure 23B Infectivity of virus particles containing the subtype B consensus envelope.

Infectivity of pseudotyped virus containing consensus B gp160 or gp140 was determined using the JC53-BL assay. Sucrose cushion purified virus particles were assayed by the Coulter p24 antigen assay, and 5-fold serial dilutions of each pellet were incubated with DEAE-Dextran treated JC53-BL cells. Following a 48-hour incubation period, cells were fixed and stained to visualize β -galactosidase expressing cells. Infectivity is expressed as infectious units per ng of p24.

Figure 24

A

B

**Neutralization of Pseudovirions
containing NL4.3 Env (gp160)
Subtype B consensus Env (gp160)**

**Neutralization of Pseudovirions
containing NL4.3 Env (gp160)**

D
Figure 74

Neutralization of Pseudovirions containing Subtype B consensus Env (gp160)

Neutralization of Pseudovirions containing NL4.3 Env (gp160)

Neutralization sensitivity of virions containing subtype B consensus gp 160 envelope.

Equivalent amounts of pseudovirions containing the subtype B consensus or NL4.3 Env (gp160) (1,500 infectious units) were preincubated with three different monoclonal neutralizing antibodies and a panel of plasma samples from HIV-1 subtype B infected individuals, and then added to the JC53-BL cell monolayer in 96-well plates. Plates were cultured for two days and luciferase activity was measured as an indicator of viral infectivity. Virus infectivity was calculated by dividing the luciferase units (LU) produced at each concentration of antibody by the LU produced by the control infection. The mean 50% inhibitory concentration (IC_{50}) and the actual % neutralization at each antibody dilution were then calculated for each virus. The results of all luciferase experiments were confirmed by direct counting of blue foci in parallel infections.

Figure 25 A

Density and p24 analysis of sucrose gradient fractions.

0.5ml fractions were collected from a 20-60% sucrose gradient. Fraction number 1 represents the most dense fraction taken from the bottom of the gradient tube. Density was measured with a refractometer and the amount of p24 in each fraction was determined by the Coulter p24 antigen assay. Fractions 6-9, 10-15, 16-21, and 22-25 were pooled together and analyzed by Western Blot. As expected, virions sedimented at a density of 1.16-1.18 g/ml.

Figure 25B VLP production by co-transfection of subtype B consensus gag and env genes.

293T cells were co-transfected with subtype B consensus gag and env genes. Cell supernatants were harvested 48-hours post-transfection, clarified through at 20% sucrose cushion, and further purified through a 20-60% sucrose gradient. Select fractions from the gradient were pooled, added to 20ml of PBS, and centrifuged overnight at 100,000 x g. Resuspended pellets were loaded onto a 4-20% SDS-PAGE gel, proteins were transferred to a PVDF membrane, and probed with plasma from an HIV-1 subtype B infected individual.

Figure 26

Year 2000 Con-S 140CFI.Env

MRVRGIQRNCQHLWRWGLTLIGMLMICSAAENLWVTVYYGVPVWKEANTTLFCASDAKAYDTEVN
NWATHACVPTDPNPQEIVLENVTENFMWKNNMVEQMHEDIISLWDQSLKPCVKLTPLCVTLNC
TNVNVTNTTNNTEEKGEIKNCSFNITTEIRDKKQKVYALFYRLDVPIDDNNNNSSNYRLINCNT
SAITQACPVSFEPPIHYCAPAGFAILKCNDKKFNGTGPKNVSTVQCTHGIKPVVSTQLLNG
SLAEEEIIIIRSENITNNAKTIIVQLNESVEINCTRPNNTNRKSIRIGPGQAFYATGDIIGDIRQA
HCNISGTKWNKTLQQVAKLREHFNNKTIFKPSSGGDLEITTHSFNCRGEFFYCNTSGLFNSTW
IGNGTNNNNNTNDTITLPCRIKQIINMWQGVGQAMYAPPIEGKITCKSNITGLLLTRDGGNNNTN
ETEIFRPGGGDMRDNRSELYKYKVVKIEPLGVAPTKAKLTVQARQLLSGIVQQQSNLRAIEAQ
QHLLQLTVWGIKQLQARVLAVERYLKDDQGLEIWDNMTWMWEREINNYTDI IYSLIEESQNQQEK
NEQUELLALDKWASLWNWFDTNWLNW

A gp140 CFI is referred to HIV-1 envelope design with the cleavage-site-deleted (C), fusion-site-deleted (F) and gp41 immunodominant region-deleted (I) in addition to the deletion of transmembrane and cytoplasmic domains.

Codon-optimized Year 2000 Con-S 140CFI. seq

ATGCGCGTGCAGGGCATCCAGCGCACTGCCAGCACCTGTGGCGCTGGGGCACCCGTATCCTGGG
CATGCTGATGATCTGCTCCGCCGAGAACCTGTGGGTGACCGTGACTACGGCGTGCCTGG
GGAAGGAGGCCAACACCACCCCTGTTCTGCCCTGCCAGCCAAGGCCAACGACACCGAGGTGCAC
AACGTGTGGGCCACCCACGCCCTGCGTCCCCACCGACCCCCAACCCCCAGGGAGATCGTGCTGGAGAA
CGTACCGAGAACATTCAACATGTGGAGAACAAACATGGTGAGCAGATGCACGAGGACATCATCT
CCCTGTGGGACCAAGTCCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTGACCCCTGAACACTGC
ACCAAACGTGAACGTGACCAACACCACCAACAACACCGAGGGAGAACGGCGAGATCAAGAACGTGCTC
CTTCAACATCACCACCGAGATCCGCACAGAACAGAAGCAGAACGGTGTACGCCCTGTTCTACCGCCTGG
ACGTGGTGCCCCTCGACGACAACAACAAACAAACTCCTCCAACCTACGCCCTGATCAACTGCAACACC
TCCGCCATCACCCAGGCCCTGCCCTGAAGGTGTCTCGAGGCCATCCCCATCCACTACTGCGCCCC
CGCCGGCTTCGCCATCCCTGAAGTGCAACGACAAGAACGTTCAACGGCACCGGGCCCTGCAAGAACG
TGTCCACCGTGCAGTGACCCACGGCATCAAGCCGTGGTGTCCACCCAGCTGCTGTAACGGG
TCCCTGGCCGAGGGAGGAGATCATCATCCCTCCGAGAACATCACCAACAACGCCAACGACCATCAT
CGTGCAGCTGAACGAGTCCGTGGAGATCAACTGCAACCGCCCCAACAAACAACACCCGCAAGTCCA
TCCGCATCGGCCCGGCCAGGCCCTCTACGCCACGGCAGATCATCGGCAGACATCGGCCAGGGCC
CACTGCAACATCTCCGGCACCAAGTGGAGAACAGACCTGCAGCAGGTGGCCAAGAACGCTGGCGA
GCACTCAACAAACAAGACCATCATCTCAAGCCCTCCGCCGGCACCTGGAGATCACCAACCC
ACTCCTCAACTGCCCGGGGAGTTCTCTACTGCAACACACTCCGCCCTGTTCAACTCCACCTGG
ATCGGCAACGGCACCAAGAACAAACAACACCAACGACACCATCACCTGCCCTGCCGATCAA
GCAGATCATCAACATGTGGCAGGGCGTGGCCAGGCCATGTACGCCCTCCATCGAGGGCAAGA
TCACCTGCAAGTCAACATCACCGGCCCTGCTGCTGACCCCGCACGGCGAACAAACAACACCAAC
GAGACCGAGATCTCCGCCCGGGCGGCGACATGCGCGACAACACTGGCGCTCGAGCTGTACAA
GTACAAGGTGGTGAAGATCGAGCCCCCTGGCGTGGCCCCAACCAAGGCCAACGCTTACCGTGCAGG
CCGCCAGCTGCTGCCGATCGCAGCAGCAGTCAACCTGCTGCCGACATCGAGGGCCAG
CAGCACCTGCTGCAGCTGACCGTGTGGGCATCAAGCAGCTGCAGGCCCGCTGCTGGCCGTGGA
GCGCTACCTGAAGGACCAAGCAGCTCGAGATCTGGGACAACATGACCTGGATGGAGTGGAGCGCG
AGATCAACAAACTACACCGACATCATCTACTCCCTGATCGAGGGAGTCCAGAACCCAGCAGGAGAAG
AACGAGCAGGAGCTGCTGGCCCTGGACAAGTGGGCCTCCCTGTTGAACTGGTCACTCACCAA
CTGGCTGTGGTGGAGGATCC

Figure 27

Individual C57BL/6 Mouse T Cell Responses to HIV-1 Envelope Peptides

Fq. 28

Design of expression-optimized HIV-1 envelope gp140CF

A Con-B-2003 Env.pep (841 a.a.)*

MRVKGIRKNYQHLWRWGTMLLGMLMICSAAEKLWVTVYYGVPVWKEATTLFCASDAKAYDTEVHNWATHACVPTDPNPQEVL
ENVTFNMFNMWKNNMVEQMHEDEIISLWDQSLKPCVKLTPLCVTLNCTDLMNATNTTIIYWRGEIKNCFSNITTSIRDVKQKEY
ALFYKLDVVPIDNDNTSYRLISCNTSVITQACPVSFEPIPIHYCAPAGFAILKCNDKKFNGTGPCTNVSTVQCTHDIRPVVSTQ
LLLNGSLAEEEVIRSENFTDNAKTIIVQLNESVEINCRPNNNTRKSIIHIGPGRAYTTGEIIGDIRQAHCNISRRAKWNNTLKQ
IVKKLREQFGNKTIVFNQSSGGDPEIVMHSFNCGEFFYCNTTQLFNSTWNGTWNNTEGNITLPCRIKQIINMWQEVGKAMYAPP
IRGQIRCSSNITGLLRTDGGNNETEIFRPGGGDMDRNWRSELYKVKVIEPLGVAPTKAKRVRVOREKRAVGIGAMFLGFLGA
AGSTMGASMTLVQARQLLSIVQQQNLLRAIEAQHQHLLQLTVWGIKQLQARVLAVERYLKQDQQLLGIVWCGSKLICTTAVPW
NASWSNKSLSDEIWDNMTWMEWEREIDNYTSЛИYTLIEESQNQKEKNEQELLELDKWAWSLNWFIDTNWLWYIKIFIMIVGGLVGL
RIVFAVLISIVNRVRQGYSPLSFQTRLPAAPRGPDPEGIEEEGGERDRDRSGRLVDGFLALIWDDLRSCLFSYHRLRDLLLIVTR
IVELLGRRGWEVLKYWWNLLQYWSQELKNSAVSLLNATAIAVAEGTDRVIEVVQRACRAILHIPRRIRQGLERALL

*Amino acid sequence underlined is the fusion domain that will be deleted in 140CF design and the "W" underlined with red color is the last amino acid at the C terminus, and all the remaining amino acids after the "W" will be deleted in 140CF design.

3 Con-B-140CF.pep (632 a.a.)

Nick name: 002

MRVKGIRKNYQHLWRWGTMLLGMLMICSAAEKLWVTVYYGVPVWKEATTLFCASDAKAYDTEVHNWATHACVPTDPNPQEVL
ENVTFNMFNMWKNNMVEQMHEDEIISLWDQSLKPCVKLTPLCVTLNCTDLMNATNTTIIYWRGEIKNCFSNITTSIRDVKQKEY
ALFYKLDVVPIDNDNTSYRLISCNTSVITQACPVSFEPIPIHYCAPAGFAILKCNDKKFNGTGPCTNVSTVQCTHDIRPVVSTQ
LLLNGSLAEEEVIRSENFTDNAKTIIVQLNESVEINCRPNNNTRKSIIHIGPGRAYTTGEIIGDIRQAHCNISRRAKWNNTLKQ
IVKKLREQFGNKTIVFNQSSGGDPEIVMHSFNCGEFFYCNTTQLFNSTWNGTWNNTEGNITLPCRIKQIINMWQEVGKAMYAPP
IRGQIRCSSNITGLLRTDGGNNETEIFRPGGGDMDRNWRSELYKVKVIEPLGVAPTKAKRVRVOREKRAVGIGAMFLGFLGA
IEAQHQHLLQLTVWGIKQLQARVLAVERYLKQDQQLLGIVWCGSKLICTTAVPWNAWSNKSLSDEIWDNMTWMEWEREIDNYTSЛИ
TlieESQNQKEKNEQELLELDKWAWSLNWFIDTNWLW*

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site.

Codon-optimized Con-B 140CF.seq (1927 nt.)

Nick name: 002

TTCAGTCGACGGCCACCATGAGGGTGAAGGGTATTGGAAAAATTACCAACACCTGTGGCGCTGGGAACCATGCTCCTGGTAT
GCTGATTTGCACTGCCGCCAGAAACTTTGGTAACTGTACTACGGCTCCTGTCTGGAAAGGAAGCTACAACCACCTTT
TTTGTCATCCGACGCTAAAGCTTACGACACAGAAGTCATAATGTTGGCACCCATGCTGCTCCCTACAGATCCAAACC
CCCAGGAAGTCGCTCTGAGAATGTCACAGAGAATTAAACATGTTGGAAAGAATAATATGGTAGAACAAATGCACGAAGACATTAT
TAGCCTGTGGGACAGTCCTGAGACGGCTGAGAAACTCACTACCTTGCTCACACTTAACACTGACTGATTGATGAACGCA
ACCAACACAAATACTACTATTATATATCGCTGGAGGGGAAATCAAGAACTGCTCTTCACATCACCACCTTCCATAAGGGATA
AGGTCCAGAAAGAATATGCCCTGTTTATAAAACTTGATGTGGTCCCAGACAACTAGCTATCGACTGATCTCTTG
TAACACATCCGTGATTACCAAGCTGCCCCAAGGTCAAGCTTGAACCAATACCACTACTGCGCTCCGCTGGTTTGCC
ATCCTCAACTGTAACGACAAAAATTCAATGGGACCGCTTGACACAAACCTGTCACATGCAATGTAACGACTACCGAATCAGAC
CTGTTGTCAGTACCAAATCCTCTGAAACGGGTCTCGCCGAGAGGGAGGTGATTAGAAGGCAAAACTTAAACGATAACCG
TAAAACATATTGCAACTTAATGAAAGCTGCAAAATTAAACTGCAACAGACAAACAAATAATACCAACAAATCTATTACATA
GGGCCCGCCGCGCATTTATACAACCTGGCAAAATATTGGTGCACATCAGACAAGCTCATTGCAATATCTCCGCGGAATGGA
ACAACACCCCTGAAACAGATCGTAAGAAACTTCGAGAACAAATTGCGTAATAAAACAATCGTATTCAACCAAGCTCCGGAGCGA
CCCTGAGATAGTTATGCACTCATCAACTGTGGCGCGAGTTCTCTATTGTAACACAACCTCAACTTTAAATAGCACTTGAAT
GGAACATGGAACACACAGAAGGGACATCACTGCTGGCTGGGATTAAGCAGATCAATTAAATGTGCGAACAGTGGGAAAG
CTATGTAACGCCCTATTGCGGACAATAAAGATGCTCTAGTAATATTACCGGATTGCTGACACCGCAGGGAGGAATAA
TGAAACAGAGATAATTAGACCTGGCGAGGCAGATGAGAGATAACTGGAGAGCTTACAAATATAAGCTGTAAGGAA
GAACCATGGGGGTAGCACCACCAAAAGCAAAACCTTGACAGTACAGGCTAGGCAGCTGCTGAGCGGAATGTGCAACAAACAA
ATAATCTCTCCGAGCCATAGAACGACAACATCTGTTGCACTGAGCTGACAGTATGGGAATCAAACAGCTTCAGGCAAGAGTGCT
GGCGTCGAGAGAGATAACCTCAAACACTGCTGGGATATGGGATGTCGGTAAACTCATATGCACTACCGCCGTGCC
TGGAACCGCAGCTGGTCAATAAAACTCCCTGGATGAAATTGGGACACATGACTGGATGGAATGGGAACCGGAAATTGACAAC
ATATAGTTGATTATACTCTGATCGAAGAACATCTAGAACACAGGAGAAAACGAAACAGGAACCTGCTGGAACTGGACAAGTG
GGCATCATTGTTGACATTACTAACGGCTGTTGACATTAAAGATCTTACAA

(For all 140CF design shown here and below, 140CF gene will be flanked with the 5' sequence of "TTCAGTCGACGGCCAC" that contains a Kozak" sequence (GCCACCATGG/A) and SalI site and 3' sequence of TAAAGATCTTACAA containing stop codon and BgIII site.)

Fq. 29

CON_OF_CON-S-2003 (829 a.a.)

MRVMGIQRNCQHLWRWGLIFGMLIICSAEENLWVTVYYGVPVWKEANTTLFCASDAKAYDTEVHNWATHACVPTDPNPQEIVL
ENVTFNMFNMWKNNMVEQMHEDEIISLWDQSLKPCVKLTPLCVTLNCTDVNATNNNTNNEEIKNCFSNITTEIRDKKKVYALFYKL
DVPIDDNNSYRLINCNTSAITQACPVSFEPIPIHYCAPAGFAILKCNDKKFNGTGPCKNVSTVQCTHGIKPVYSTQLLNGSL
AEEEIIIRSENITNNAKTIIVQLNESVEINCRPNNTNTRKSIRIGPGQAFYATGDIIGDIRQAHCNISRRTWNKTLQQVAKLRE

HFNKTIIFNPSSGGDLEITTHSFNCGGEFFYCNTSELFNSTWNGTNNTITLPCRIKQIINMWQGVGQAMYAPPIEGKIRCTSNT
GLLLTRDGGNNNTETFRPGGDMRDNRSELYKYKVVKIEPLGVAPTKAKR~~V~~REKRAVGIGAVFLGFLGAAGSTMGAASITL
TVQARQLLSGIVQQSNLLRAIEAQOQHLLQLTVWGIKQLQARVLAVERYLKDKDQQLGIWCGSGKLICTTNVPWNSSWSNKSQDEI
WDNM~~T~~WMEWDKEINNYTDI~~I~~YSLIEESQNQQEKNEQELLALDKWASLWNWFDITNWLYIKIFIMIVGGLIGRLIVFAVL~~S~~IVNR
VRQGYSPLSFQTLIPNPRGPDRPEGIEEGGEQDRDRSIRLVNGFLALAWDDLRSCLFSYHRLRD~~L~~LILIAARTVELLGRRGWEA
LKYLWNLLQYWQELKNSAISLLDTTAAVAEGTDRVIEVVQRC~~R~~AILNI~~P~~RRIRQGFERALL

*Amino acid sequence underlined is the fusion domain that will be deleted in 140CF design and the "W" underlined with red color is the last amino acid at the C terminus, and all the remaining amino acids after the "W" will be deleted in 140CF design.

CON-S-2003 140CF.pep (620 a.a.)

Nick name: 006

MRVMGIQRNCQHLWRWGLILIFGMLIICSAEENLWVTVYYGVPWKEANTTLFCASDAKAYDTEVHNWATHACVPTDPNPQEIVL
ENVTFNFMWKNNMVEQMHD~~E~~IISLWDQSLKPCVKLTPLCVTLNCTDVATNNNTNNEEIKNC~~S~~FNITTEIRDKKVYALFYKL
D~~V~~VPIDDNNSYRLINCNTSAITQACPVSFEP~~I~~PIHYCAPAGFAILKNDKKFNGTPC~~K~~NVSTVQCTHGIKPFV~~S~~Q~~L~~LN~~G~~SL
AEEEEE~~I~~IRSENITNNAKTIIIVQLNESVEINCRPNNNTRKSIR~~I~~GPGQAFYATGDI~~I~~GD~~I~~RQAHCNISRTKWNKTLQ~~V~~AKKLR~~E~~
HFNKTIIFNPSSGGDLEITTHSFNCGGEFFYCNTSELFNSTWNGTNNTITLPCRIKQIINMWQGVGQAMYAPPIEGKIRCTSNT
GLLLTRDGGNNNTETFRPGGDMRDNRSELYKYKVVKIEPLGVAPTKAKLTVQARQLLSGIVQQSNLLRAIEAQOQHLLQLTV
WGIKQLQARVLAVERYLKDKDQ~~L~~GIWCGSGKLICTTNVPWNSSWSNKSQDEI~~W~~DNM~~T~~WMEWDKEINNYTDI~~I~~YSLIEESQNQQEK
NEQELLALDKWASLWNWFDITNWLY*

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site.

C CODON-OPTIMIZED CON-S-2003 140CF.seq (1891 nt.)

Nick name :006

TTCAGTCGACAGCCACCATGCCGGTCATGGGGATACAGAGGAATTGCCAGCACTGTGGAGGTGGGGATTGGATATT~~C~~GGGAT
GCTCAT~~A~~ATCTGCCTGCCCC~~T~~GAGAACCTGTGGGTCACTGTGATTACGGCTTCCCCTGGAAAAGAGCTAATACTACCTG
TTTG~~T~~GAAGCGACGCCAACG~~C~~ATACGACACC~~G~~AGTCCACAATGTC~~G~~GGCTACCCACGCC~~T~~GTACCTACTGATCCAATC
CCCAGGAAATTG~~T~~TCTGAAAACGTAACGGAAAACCTTAAACATGTGGAAGAATAAATATGGTGGAGCAAATGCACGAGGATAATAAT
CAGCCTGTGGGACCAGTCCCTCAAACC~~A~~CATGC~~G~~TAAACTCACTCCACTCTGC~~G~~TACTGTAACTGTACCG~~G~~AC~~G~~CAACC
AATAATACAACAAACAAATGAGGAGATAAAGAATTGTT~~T~~TTAAATATAACCAACTGAGATA~~C~~GGGATAAGAAAAAAAGGTTATG
CACTCTTTACAAGCTGACGTGGT~~G~~CCCATAGACGACAATAATAGCTACCGACTCATTAATGCAATACTAGCGCTATAACCCA
GGCATGCC~~C~~AAAGT~~T~~CC~~T~~CGAGCC~~C~~ATACG~~G~~TTCACTACTGCGCACCCGCCGGAT~~C~~GCCATTCTAAATGCAATGACAAG
AAGTTCACCGCACC~~G~~GGAC~~C~~CTGTAAGAACGTAAGCACTGTTCAATG~~T~~ACACATGGAATTAGCCGGTAGTGTCAACG~~C~~AGC~~T~~
TCCTCAACGGAAAGCCTTG~~G~~CAGAAGAAGAGATCATTACAGGTCAGAAAATATCA~~T~~AAACACG~~C~~AAACATCATTG~~T~~TCAGCT
GAATGAGTCTG~~T~~AGAAATCAATTG~~T~~ACCCGCC~~T~~AAATAATAACACAAAGTCAATTAGGATCGGACCCGGCCAGGCTTCTAC
GCAACCGGAGATATCAGGGGATATA~~C~~AGCACGCC~~T~~ACTGCAACAT~~T~~CTAGA~~T~~ACTAAGTGAATAAAAC~~T~~TG~~C~~AGCAGG~~T~~AG
CCAAGAAACTCGGGGAACATTAAATAAGACAATCATCTCAATCCAAGTAGCGGAGGGAC~~C~~CTGGAAATCACTACACATTCTT
TAAC~~T~~GTGGGGCGAGTTTCTACTG~~T~~AAATACCTCTGA~~T~~ACTGTTCAACATGGAATTGGCA~~T~~AAACAA~~T~~ACTATAACTCTT
CCTTG~~C~~AGAATAAAACAGATTATCAACATGTGGCAGGGTGTGGGGCAAGCAATGTATGCACCACCAATCGAAGGCAAATAAGAT
GCACCT~~C~~AAATATTACCGGACTCC~~T~~CTGACACGGGATGGGGAAACAATAACACGGAGACTT~~T~~AGGCCAGGC~~G~~GGC~~G~~ATAT
GAGAGATAACTGGCGCTCC~~G~~AGCTCTATAAAATACAAAGT~~C~~TTAAGATCGAGGCC~~T~~GGAGTTGCG~~C~~CAACCAAAGCTAAAACC
TTGACCG~~T~~GC~~C~~AGGCCAGG~~C~~AGTTG~~T~~TCAGG~~T~~ATCG~~T~~ACAGCAGCACTAATCTT~~T~~GGAGG~~C~~AT~~T~~GG~~C~~AGCACC
TCTTG~~C~~AGC~~T~~TTACCGTCTGGGGCAT~~A~~ACACTT~~C~~AGG~~C~~ACG~~C~~GTCTGGGGTAGAGC~~G~~CTATT~~T~~GGAAAGACCAACAA~~T~~CT
CGGGATCTGGGGGTGTTCTGGAAAATTG~~T~~ATCTG~~C~~ACGACAAATGTGC~~C~~CTTGG~~A~~ACAGCAGCTGG~~T~~CAAAATAAG~~C~~CAAGACGAA
ATATGGGATAACATGACATGG~~T~~GGATGGATAAAGAAATTAAATTACACTGACATT~~T~~ACTCA~~T~~TATCGAGGAATC~~A~~
AAAATCAACAGGAAAAAAATGAACAGGA~~T~~CTTGGCTCTGGACAAATGGGCTTCA~~T~~GTGG~~A~~ACTGG~~T~~TCAC~~T~~GTGG~~A~~ACTGG~~T~~TCAC~~T~~CAAAATTG
GCTCTGGTAAAGATCTTACAA

Fig. 30

A CONSENSUS_A1-2003 (845 a.a.)

MRVMGIQRNCQHLLRWGTMILGM~~I~~ICSAEENLWVTVYYGVPWKAETTLFCASDAKAYETEMNVWATHACVPTDPNPQE~~I~~HL
ENVTFNFMWKNNMVEQMHTDI~~I~~ISLWDQSLKPCVKLTPLCVTLNCSNVNTNNTNTHEEEIKNC~~S~~FNITTEL~~R~~DKKQKV~~S~~LFY
RLDVVQINENNNSN~~S~~YRLINCNTSAITQACPVS~~F~~EP~~I~~PIHYCAPAGFAILKCKDEFNGT~~G~~PKNVSTVQCTHGIKPV~~V~~STQ~~L~~LL
LNGSLAEE~~E~~VI~~R~~SENITNNAKTIIIVQLTKPVKINCRPNNNTRKSIR~~I~~GPGQAFYATGDI~~I~~GD~~I~~RQAHCNVSRS~~E~~WNKTLQ~~K~~V~~A~~
KQLRYFKNKT~~I~~IFTN~~S~~GGDLEITTHSFNCGGEFFYCNTSGLFNSTWNGTM~~K~~NTITLPCRIKQIINMWQ~~R~~AGQAMYAPPIQGV
IRCESN~~I~~TG~~L~~LLTRDGGNNNTNETFRPGGDMRDNRSELYKYKVVKIEPLGVAPTRAK~~R~~REKRAVGIGAVFLGFLGAAGS
TMGAASITLT~~V~~QARQLLSGIVQQSNLLRAIEAQOQHLLKLT~~V~~WGIKQLQARVLAVERYLKDKDQ~~L~~GIWCGSGKLICTTNVPWNSS
WSNKSQNEIW~~D~~NMTWLQWDKEISNYTHIIYNLIEESQNQQEKNEQDL~~L~~ALDKWANLWNWFDISNWLYIKIFIMIVGGLIGRLIV
FAVL~~S~~VINRVQGYSPLSFQ~~T~~TPNPRGLDRPGR~~E~~EEEGGEQGRDRSIRL~~V~~SGFLALAWDDLRSCLFSYHRLRDFILIAARTVE
LLGHSSLKGLRLGWEGLKYLWNLLLYWGRELKISAINLVD~~T~~IAAVAGWTDRVIEIGQRIGRAILHI~~P~~RRIRQGLERALL

*Amino acid sequence underlined is the fusion domain that will be deleted in 140CF design and the "W" underlined with red color is the last amino acid at the C terminus, and all the remaining amino acids after the "W" will be deleted in 140CF design.

Con-A1-2003 140CF.pep (629 a.a.)

Nick name: 001

MRVMGIQRNCQHLLRWGTMILGMIIICSAEENLWVTVYYGVPVWKDAETTLFCASDAKAYETEMHNWATHACVPTDPNPQEIHL
ENVTEEFNMWKNNMVEQMHTDIISLWDQSLKPCVKLTPLCVTLNCNSNVNTNTNTHEEEIKNCFSNMTTEL RDKKQKVYSLFY
RLDVVQINENNNSNSSYRLINCNTSAITQACPVSFEPIDIHYCAPAGFAILKCKDKEFNGTGPCKNVSTVQCTHGIKPVVSTQLL
LNGSLAEEEVIISENITNNAKTIIVQLTKPVKINCTRPNNNTRKSIRIGPGQAFYATGDIIGDIRQAHCNVSRS EWNKTLQKVA
KQLRKYFKNKTIIIFTNSGGDLEITTHSFNCGGEFFYCNTSGLFNSTWNNGTMKNTITLPCRIKQIINMWQRAQAMYAPPIQGV
IRCESNITRDGGNNNTNETFRPGGDMRDNRSELYKYKVVKIEPLGVAPTRAKTLTVQARQLLSGIVQQQSNLLRAIEA
QHQHLLKLTVWGIRQLQARVLAVERYLKDDQQLLGWCGSKLICTTNVPWNSSWSNKSQNEIWDNMTWLQWDREISNYTHIYLNLI
EESQNQQEKNEQDLLALDKWANLWNWFDISNWNLW*

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site.

C CODON-OPTIMIZED Con-A1-2003.seq

Nick name: 001 (1918 nt)

TTCAGTCGACAGCCACCAGAGGGTATGGGAATCCAACGAACTGCCAGCATCTCTCCGGTGGGGAACGATGATACTGGGAAT
GATAATAATCTGCTCTGCCGCTGAAAACCTCTGGGTACAGTGTACTACGGAGTGCCTGTATGGAAGGACGCTGAAACCACCTCTC
TTTGCTTCCGATGCTAACGCCTACGAAACCCAGATGACAATGTTGGGCCACCCACGCCCTGCGTGCAACTGATCCTAATC
CACAAAGAAATACATCTGGAGAATGTTACTGGAGAATTAAACATGTTGGAAATTAATATGGTAGAGCAATGACACTGACATCAT
TTCACTCTGGGACCAATCACTCAAACCCCTGCTTAAACTTACCCCCCTCTGCGTGACCCCTOAATTGTTAGCAACGTCACAGTCACA
AATAATACAACCAACACTCACGAGGAAGAAATTAAAAATTGCTCTTAATATGACCACTGAACTTCCGACAAAAAACAAAAAG
TCTATTCACTGTTTATAGGCTGGACGTCGCTCAAATCAACGAGAACAAATTCTAACAGTAGCTATCGACTTATCAATTGCAATAC
CTCTGCTATTACCAAGCTTGTCTAAAGTCTTTGAACCAATCCCTATCCACTACTGTGCCCCAGCTGGATTGCAATTCTG
AAAGTCAAGGATAAGGAATTCAACGGAACTGGCCCTTGCAGAACAGCTTAGCAGACTGTGCTTACACTGACACTGGAATCAAACAGTAG
TCAGCAGTCAACTGCTCTGCTACTCGCCGAGAAGAGGGTATTATCGGAAGGAGAACATAACTAACATGCGAAGAC
AATAATGTTCAATTGACGAAACCACTGAGAATGACACTGAACTGACTAGACCAAATAACAAACAAAGAAAAATCTACAGAATTGGCCC
GGACAAGCCTCTACGCAACAGGAGATATCAGGTGACATCAGACAGGCCATTGCAACGTTCAAGAAGCGAGTGGAAATAAA
CACTCCAGAAAGTGGCAAAGCAGTGAGAAAATACTTTAAGAACAGAACATCATATTACTAACCTCCGGAGGTGATCTG
AATAACCACTCATAGCTTTAATTGTTGGGGCGAATTCTTCACTGTAACACATCTGGCTCTTTAATTCTACCTGGAATAACGGC
ACCATGAAAATACATCACCCCTCCCTGAGAAATTAAAGCAATCATTAACATGTTGGCAGAGAGCAGGACAGGCCATGTATGCC
CTCCATTCAAGGTGTATTGATGAGAAGCAACATTACTGGACTTCTCTGACCCGGATGGCGGAAATAATAACATG
GACATTCAAGACCCGGCGCGCGATATGCGAGACAATTGGCGAGTGAACATTATAAAACAAAGTAGTTAGATTGAGCCCTT
GGAGTTGCCCTACTAGAGCAAAACATTGACCGTTAGGCCAGGCAGCTGCTCTCAGGAATCGTCAGCAGCAAAGTAACCTCC
TCCGAGCTATCGAGGCACACAAACATCTTGAAATTGACCGTATGGGAATCAAGCAATTGCAAGGCTAGGGTTTGGCTGTG
ACGCTATCTCAAGGATCAGCAGCTCTGGGAATCTGGGATGCTCTGGGAATTGATATGACTACAAACGTAACCTGGAACACTCA
AGCTGGAGTAATAAAAGCCAGAACGAAATTGGATAATATGACCTGGCTGAGTGGACAAAGAAATTCTAATTACTACATCA
TCATATACAATCTGATCGAACATCACAGAACAGCAGGAAAGAATGAGCAAGACCTCTGGCCTGGACAAAGTGGCTACTT
GTGGAACCTGGTTGACATTAGCAACTGGCTGTGGTAAAGATCTACAA

h931

CONSENSUS_C-2003 (835 a.a.)

A

MRVRGILRNCQQWWIWIWLGFWMILMICNVGNLWVTVYYGVPVWKEAKTTLFCASDAKAYEKEVHNWATHACVPTDPNPQEIVL
ENVTEENFMWKNDMDQHMEDIISLWDQSLKPCVKLTPLCVTLNCTNATNATNTMGEIKNCFSNITTEL RDKKQKVYALFYLDI
VPLNENNSYRLINCNTSAITQACPVSFDPIDIHYCAPAGYAILKCNKTFNGTGPCNNVSTVQCTHGIKPVVSTQLLLNGSLAE
EEIIIRSENLTNNAKTIIVHLNESVEIVCTRPNNNTRKSIRIGPGQTFYATGDIIGDIRQAHCNISEDKWNKTLQKVSKKLKEHF
PNKTIKFEPSSGGDLEITTHSFNCRGEEFYCNTSKLFNSTYNSTNSTITLPCRIKQIINMWQEVGRAMYAPPIAGNITCKSNITG
LLLTRDGKNNNTETFRPGGDMRDNRSELYKYKVVIEKPLGIAPTKAKTLTQARQLLSGIVQQQSNLLRAIEAQQHMLQLTV
VQARQLLSGIVQQQSNLLRAIEAQHMLQLTVWIKQLQTRVLAIERYLKDDQQLLGWCGSKLICTTAVPWNSWSNKSQEDIW
DNMTWMQWDREISNYTDTIYRLLEDQSQQEKNEKDLLALDSWKNLWNWFDITNWLYIKFIMIVGLGLIGLRIIFAVLSIVNR
RQGYSPLSFQTLPNPRGPDRIGRIEEEGGEQDRDRSIRIIVSGFLALAWDDLRSCLFLSYHRLRDFILIAARAVEELLGRSSLRGL
QRGWEALKYLGSLVQYWGLELKKSAISLLTDIAVAEGTDRIIELIQRICRAIRNIPRRIRQGFEAALQ

*Amino acid sequence underlined is the fusion domain that will be deleted in 140CF design and the "W" underlined with red color is the last amino acid at the C terminus, and all the remaining amino acids after the "W" will be deleted in 140CF design..

B

Con-C 2003 140CF.pep (619 a.a.)

Nick name: 003

MRVRGILRNCQQWWIWIWLGFWMILMICNVGNLWVTVYYGVPVWKEAKTTLFCASDAKAYEKEVHNWATHACVPTDPNPQEIVL
ENVTEENFMWKNDMDQHMEDIISLWDQSLKPCVKLTPLCVTLNCTNATNATNTMGEIKNCFSNITTEL RDKKQKVYALFYLDI
VPLNENNSYRLINCNTSAITQACPVSFDPIDIHYCAPAGYAILKCNKTFNGTGPCNNVSTVQCTHGIKPVVSTQLLLNGSLAE
EEIIIRSENLTNNAKTIIVHLNESVEIVCTRPNNNTRKSIRIGPGQTFYATGDIIGDIRQAHCNISEDKWNKTLQKVSKKLKEHF
PNKTIKFEPSSGGDLEITTHSFNCRGEEFYCNTSKLFNSTYNSTNSTITLPCRIKQIINMWQEVGRAMYAPPIAGNITCKSNITG
LLLTRDGKNNNTETFRPGGDMRDNRSELYKYKVVIEKPLGIAPTKAKTLTQARQLLSGIVQQQSNLLRAIEAQQHMLQLTV
VQARQLLSGIVQQQSNLLRAIEAQHMLQLTVWIKQLQTRVLAIERYLKDDQQLLGWCGSKLICTTAVPWNSWSNKSQEDIW
DNMTWMQWDREISNYTDTIYRLLEDQSQQEKNEKDLLALDSWKNLWNWFDITNWLYIKFIMIVGLGLIGLRIIFAVLSIVNR
RQGYSPLSFQTLPNPRGPDRIGRIEEEGGEQDRDRSIRIIVSGFLALAWDDLRSCLFLSYHRLRDFILIAARAVEELLGRSSLRGL
QRGWEALKYLGSLVQYWGLELKKSAISLLTDIAVAEGTDRIIELIQRICRAIRNIPRRIRQGFEAALQ

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site.

C CODON-OPTIMIZED Con-C-2003 140CF (1,888 nt.)

Nick name: 003

TTCAGTCGACAGCCACCATGGAGTGAGAGGCATTCTGGAAATTGTCAAGCAATGGTGGATCTGGGCATACTCGGATTCTGGAT
GCTTATGATATGCAATGTTGGGGAACCTGTGGGTTACCGTATACTATGGGTTCCAGTCTGAAGGAGGCTAAAACAACGCTG
TTCTGTGCAAGTGACGCCAACGCTACAGAGAAAGAATGCAACACGTCTGGCTACCCACGCTTGTCTCAACCGATCCAACC
CCCAGGAAATCGCCTCGAGAACGTGACTGAAACTTAACATGTGGAGAAATGATATGGTAGATCAGATGCACGAAGATATCAT
TTCATTGTTGGGACCAATCATTGAAACCATGCGTAAACTGACCCCCCTCTCGTAACACTTAACATGCAACCAATGCAACTATGCC
ACCAACTATGGCGAAATAAAACTGTAGCTTAAACATACAACGGAACCTCCGGATAAGAAACAAAGGTCTACGCGCTCT
TTTACCGACTCGATATCGTCCCACCTAACGAGAAATAATAGTACCGCTGATTAACATGTAACACATCACGCCATTACGCAAGCTG
CCCCAAAGTTCTTCGACCCATCCCAATTCACTATTGTGCCCCGCTGGATACGCTATACTTAAATGCAACAATAAACATT
AATGGAACCGGACCATGTAACAACGTCACTACCGTACAATGTACGCACGGATTAAACCTGTTGTCTCAACCCAGCTCTCCTTA
ACGGCTCATTGGGGAGGAAGAAATTATTATCAGATCAGAAACTGACCAACAATGCCAAAACCACATCGTGCACCTCAATGA
ATCCGTGAAATTCGCTGACAGACCCATGGCAACATACAGAAAGACAAGTGGATAAGACTCTGCAAGAGTTCTAAGA
GGTAGATAATTGGCGATATTAGACAAGCCCATTGCAACATACAGAAAGACAAGTGGATAAGACTCTGCAAGAGTTCTAAGA
AGCTGAAGGAACACTTCCAATAAACGATTAAGTTGAGCCCTCTCAGGAGGAGACCTTGAGATCACACACACTTTAA
TTGAGAGGGAGTTCTCTATTGTAATACATCAAAGCTTTAACAGTACCTACAACTCCACTAATAGTACCATCACACTCCCC
TGCAGAATAAAAGCAATAATCAACATGTGGCAAGAAGTTGGCGAGCAATGTACGCCCTCCATCGCAGGCAACATTACATGTA
AATCCAATTAATCTGGCTTGTGACACGGCGGGAAAGAATAACACTGAGACCTTCAGGACTGGCGAGGCGATATGCG
CGATAATTGGCGGAGCGCTCTACAAGTATAAAGTCGTTGAAATCAAGGCACTGGCATAGCTCCTACGAAAGCAAGACACTC
ACTGTTAGGCTAGAGCAGCTCTCCGGCATAGTCAACAGCAATCCAACTCTCGCAGGCTATCGAAGGCCAACACATATGC
TCCAGCTTACCGCTGGGAATCAAACATTGAAACACGAGTGCTGGCAGAGAGATATTGAAAGATCAGCAACTCTGGG
GATTGGGCTGTCAGGTAAAGCTCATGTACAACCTGCGGTGCCGTGGAACCTCAAGCTGGAGTAACAAAAGCCAAGAGGATATA
TGGGACAACATGACTGGATGCACTGGGATCGAGAAATAAGCAACTATACAGATACCATTATCGGCTCTGGAGGACTCACAGA
ACCAGCAGGAGAAAATGAGAAAGATTGCTCGCCTTGACAGTTGGAAGAATTGTTGACATTACAAACTGGCT
CTGGTAAAGATCTACAA

Hq.32

CONSENSUS_G-2003 (842 a.a.)

MRVKGIQRNWQHLWKWGLTLILGLVIICASNNLWVTVYYGVPWEDADTTLFCASDAKAYSTERHNWATHACVPTDPNPQEITL
ENVTEFNFMWKNNMVEQMHEDIISLWDESLKPCVKLTPLCVTLNCTDVNTNNNTNNTKKEIKNCFSNITTEIRDKKKEYALFY
RLDVPINDNGNSIYRLINCVSTIKQACPVKTFDPPIHYCAPAGFAILKCRDKKFNGTGPCKNVSTVQCTHGIKPVNSTQLL
LNGSLAEEEEEIRSENITDNTKVIIVQLNETIEINCRPNNNTRKSIRIGPGQAFYATGDIIDIRQAHCVSRKWNEMLQKV
AQLKKIFNKSITFNSSSGGLEITTHSFNCRGEFFYCNTSGFNNSSLNINSTITLPCKIKQIVRMWQRVGQAMYAPPIAGNIT
CRSNITGLLLTRDGGNNNTEFRRPGGGDMRDNWRSLEYKYKIVKIKPLGVAPTRARRVVEREKRAVGLGAVLLGFLGAAGSTMG
AASITLTQVQLQQLSGIVQQSNLLRAIEAQHQHLLQLTVWGKARVLVERYLKDQQLLGICLTTNPWNTWSN
KSYNEIWDMNTWIEWEREISNYTQQIYSLIEESQNQQEKNEQDLLALDKWASLWNWFDTIKWLWYIKIFIMIVGGLIGLRIVFAV
LSIVNRVRQGYSPLSFQTLTHHOREPDRPERIEEGGGEQDKDRSIRLVSGFLALAWDLRSLCLFSYHRLRDFILIAARTVELLG
RSSLKGLRLGWEGLKYLWNLLLYWGQELKNSAINLLDTIAIAVANWDRVIEVAQRACRAILNIPRRIRQGLERALL

*Amino acid sequence underlined is the fusion domain that will be deleted in 140CF design and the "W" underlined with red color is the last amino acid at the C terminus, and all the remaining amino acids after the "W" will be deleted in 140CF design.

B

Con-G-2003 140CF (626 a.a.)

Nick name: 007

MRVKGIQRNWQHLWKWGLTLILGLVIICASNNLWVTVYYGVPWEDADTTLFCASDAKAYSTERHNWATHACVPTDPNPQEITL
ENVTEFNFMWKNNMVEQMHEDIISLWDESLKPCVKLTPLCVTLNCTDVNTNNNTNNTKKEIKNCFSNITTEIRDKKKEYALFY
RLDVPINDNGNSIYRLINCVSTIKQACPVKTFDPPIHYCAPAGFAILKCRDKKFNGTGPCKNVSTVQCTHGIKPVNSTQLL
LNGSLAEEEEEIRSENITDNTKVIIVQLNETIEINCRPNNNTRKSIRIGPGQAFYATGDIIDIRQAHCVSRKWNEMLQKV
AQLKKIFNKSITFNSSSGGLEITTHSFNCRGEFFYCNTSGFNNSSLNINSTITLPCKIKQIVRMWQRVGQAMYAPPIAGNIT
CRSNITGLLLTRDGGNNNTEFRRPGGGDMRDNWRSLEYKYKIVKIKPLGVAPTRARTLTQVRLQQLSGIVQQSNLLRAIEAQHQH
LLQLTVWGKQLQARVLVERYLKDQQLLGICLTTNPWNTWSN
KSYNEIWDMNTWIEWEREISNYTQQIYSLIEESQNQQEKNEQDLLALDKWASLWNWFDTIKWLW*

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site

C

CODON-OPTIMIZED Con-G-2003 140CF.seq

Nick name: 007

TTCAGTCGACAGCCACCATGGAGTGAGAGGAATCCAGAGAAATTGGCAGCACCTTGGAAAGTGGGGCACACTCATCCTCGGCCT
TCTGATCATATGCTCTGCCTCAAATAACCTTGGTCACAGTTATTACGGCGTGCCTGGGAGGACGCAGACACAACTCTT
TTTGTGCCAGCAGCTAAGGCTTATCAACAGAGAGGGCATAACGTTGGCTACACATGCATGCGTGCCTGGGACCGATCTAATC
CCCAGGAAATCACTCTTGAGAAATGTTACAGAGAAATTATGTTGAAAGAACACATGGTGAACAGATGCATGAAGACATAAT
TTCTCTGGGATGAATCTGTAAACCTTGTGAGCTTACCCACTGTGCGTACCCCTGAATTGCACTGACGTCATGTCAACA

AATAATAATACCAACAATACAAAAAGAAAATCAAAATTGTTCTTCAACATAACCACCGAGATA CGCGATAAAAAAGAAAAG
 AATACGCCCTGTTCTACAGACTCGATGGTCCCAATTAAATGACAACGGAAATTCTTCCATCTACCGACTTATCAATTGTAACGT
 GTCTACAATCAAACAGGCCTGCTCAAAGTCACATTGACCCTATTCCCATTACTGTGCCCCGCTGGCTCGTATTCTT
 AAATGCCGAGACAAAAATTAAACGGAACAGGACATGCAAGAATGTCACAGC'TCAATGCACTCATGGAATTAAACCAGTCG
 TTTCTACTCAAACCTCTCAATGGAAGCCTGGCAGAAGAGGAAATCATAAATCCGAGCGAAAAACATAACCGACAACACAAAAGT
 AATCATCGTACAGCTGAACGAGACATTGAAATAATTGACAGACCTAATAACAAAGAAAAGCATACGCATCGGCC
 GGACAGGCTTCTACGCCACAGGAGACATTATGGAGATATGCCAGGCTACTGTAATGTCAGAACAAAATGGAACGAAA
 TGCTTCAGAAGGTCAAAGCTCAGCTAAGAAAATATTCAACAAATCTATTACATTCAACTCATCAGGGGGCATCTGGAGAT
 AACAACTCATTCTCAACTGTCGGGAGAATTTTTACTGTAACACGTCGGCCTGTTCAACAATTCACTCTGAATAGCACT
 AACCTCACCACATCCTCCATGTAAGATCAAACAAATCGTCAGAATGTCGGCAGCGAGTCGTCAGCTATGTCAGGCC
 TCGCGGTAATATCACATGTAAGCAATAATCACAGGGCTTCTGCTTACAAGGGAGCGGGAAACAAACACCAGAACCTTCAG
 ACCAGGAGGAGGAGACATGCGAGAACATTGGCGGAGCAGCTGTATAAAATAAGATCGTAAAATCAAACACATTGGGTGAGCG
 CCAACTAGAGCCGAACACTGACCGTGAGGTGAGGCAACTGCTGAGCGCATTGTCACAAACAATCCAATCTCTTAGAGCAA
 TCGAGGCCAGCAGCATCTGCTCCAGCTACTGTATGGGAATCAAACAACTGCAAGCAAGAGTATTGGCAGTGGAGAGGTATCT
 CAAGGACCAGCAGCTCTGGGAATTGGGTGAGCGGAAAGCTCATATGTAACACCAATGTGCCCTGGAACACTAGTTGGAGT
 AATAAGAGTATCAAATGAAACTCTGGGACATATGACATGGATCGAATGGGAGCGGAAATATCCAACATACTCAGCAAATCTATT
 CCCTCATGAGAGAGCTCAGAACACAGCAGGAAAAAGATGAGCAAGACCTCCTGCCCTGGATAATGGCATCTGTGGAACGT
 GTTGACATAACTAAATGGTGTGGTAAAGATCTTACAA

Fq .33

CONSENSUS_01_AE-2003 (854 a.a.)

A
 MRVKETQMNWPNLWKWGTLLIGLVIICSA SDNLWVTVYYGVPVWRDADTTLFCASDAKAHETEVHNWATHACVPTDPNPQEIH
 ENVTEFNFMWKNNMVEQM QEDVISLWDQSLKPCVKLPLCVTLNCTNANLTNVNNITNVSNIIIGNITNEVRNSFNMTEL RDKK
 QKVHALFYKL DIVQIEDNNSYRLINCNTSVIKQACP KISFDPIPIHYCTPAGYAI LKCNDFNGTGPCKNVSSVQCTHGIKPV
 STQLLNGSLAEEEIIIIRSENLTNNAKTIIVHLNKSVEINCRPSNNRTSITIGPGQVFYRTGDIIGDIRKAYCEINGTKWNEV
 LKVQTEKLKEHFN NKTIIFQOPPSGGDLEITMHFNCRGEFYCNTTKLFNNTCIGNETMECGNGTIIILPKIKQIINMWQGAGQA
 MYAPISGRINCVSNITGILLTRDGGANNTNETFRPGGGNIKDNWRSELYKYKVQIEPLGIAPTRAKRVRVEREKRAVGIGAMI
EGFLGAAGSTMGASITLTTVQARQLLSGIVQQQSNLLRAIEAQQLLQLTVWGKQLQARVLAVERYLKDQKFLGLWGC
SGKIICTAVPNSTWSNRSEEEIWNNTWIEWEREISNYTNQIYEILTESQNQQRNEKDLLELDKWASLWNWF DITNW
LWYIKIFIMIV
 GGLIGLRIIFAVLSIVNRVRQGYSPLSFQTPTHQRREPDRPERIEEGGGEQGRDRS VRLVSGFLALAWDDLRLS LCLFSYHRLRDF
 ILIAARTVELLGHSSLKG LRRGWEGLKYLGNLLYWGQELKISAISLLDATAIAVAGWDRVIEVAQGAWRAILHI PRRIRQGLE
 RALL

*Amino acid sequence underlined is the fusion domain that will be deleted in 140CF design and the "W" underlined with red color is the last amino acid at the C terminus, and all the remaining amino acids after the "W" will be deleted as 140CF.

B Con-AE01-2003 140CF.pep (638 a.a.)

Nick name: 008

MRVKETQMNWPNLWKWGTLLIGLVIICSA SDNLWVTVYYGVPVWRDADTTLFCASDAKAHETEVHNWATHACVPTDPNPQEIH
 ENVTEFNFMWKNNMVEQM QEDVISLWDQSLKPCVKLPLCVTLNCTNANLTNVNNITNVSNIIIGNITNEVRNSFNMTEL RDKK
 QKVHALFYKL DIVQIEDNNSYRLINCNTSVIKQACP KISFDPIPIHYCTPAGYAI LKCNDFNGTGPCKNVSSVQCTHGIKPV
 STQLLNGSLAEEEIIIIRSENLTNNAKTIIVHLNKSVEINCRPSNNRTSITIGPGQVFYRTGDIIGDIRKAYCEINGTKWNEV
 LKVQTEKLKEHFN NKTIIFQOPPSGGDLEITMHFNCRGEFYCNTTKLFNNTCIGNETMECGNGTIIILPKIKQIINMWQGAGQA
 MYAPISGRINCVSNITGILLTRDGGANNTNETFRPGGGNIKDNWRSELYKYKVQIEPLGIAPTRAKLTVQARQLLSGIVQQ
SNLLRAIEAQQLLQLTVWGKQLQARVLAVERYLKDQKFLGLWGC
SGKIICTAVPNSTWSNRSEEEIWNNTWIEWEREISNYTNQIYEILTESQNQQRNEKDLLELDKWASLWNWF DITNW
LWYIKIFIMIV

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site.

C CODON-OPTIMIZED Con-AE01-2003 140CF.seq (1945 nt.)

Nick name: 008

```

ttcagtgcacaggcaccATCGAGTCAAGGAAACACAAATGAACTGGCTAATCTGTGGAAGTGGGGCACCCGTACCTGGTT  

GGTCATTATTGCTCTGCGAGCGACAATCTCTGGTTACTGTCTATTACGGAGTCCCTGGAGAGATGCCGACACTACACTG  

TTCTGCGCTCAGATGCCAAAGCTCATGAAACTGAAAGTCATGCAATATGTTGGCAACCCACGCTGTCTCTACCG  

CCCAAGAAATACACCTGGAAAACGTGACCGAGAACTTTAATATGTTGGAGAAATAACATGGTGAACAGATGCAAGAAGACGTAAT  

CAGCCTGTGGATCAAAGTCGAAACCTTGCCTAAACTGACTCCACCTTGCCTAACACTTAATTGCACCAACGGAACCTGACA  

AACGTTAACACATCACTAACGTCTCAACATCGGCAACATAACGAAAGTGAAGAAATTGCACTTCAATATGACTACAG  

AGCTCCGGACAAGAACAGAAGGTCCATGCTCTTTTACAAACTGACATGCTCCAGATCGAAGACAAATAACAGCTACAGACT  

TATAAATTGTAATACATCCGTATAAACAAAGCATGCCAAATAAGCTTCGATCTTCTATCCACTACTGTTACTCTGCC  

GGCTATGCTATCTGAAATGCAATGATAAGAACCTCAATGGGACGGACCTTGTAAAGAACGTGTCTAGTGTCAATGCACTCAG  

GCATTAACCAGTGGTAAGCACCCAGCTGCTCTGAAACGGCTCTGGCAGAGGAAGAGATTATTATCGAAGTGA  

GAGAACCTCACCAACAGCTAACGACTATCATGTAATCTAATAATCAGTCGAAATTGCAACCAGACCCCTCCAATAACTAGAAC  

ATCACTATCGGCCAGGACAAGTCTTTATAGAACAGGAGATATCATAGGAGATATCAGAAAGGCATATTGCGAGATAACGGGA  

CAAATGGAACGAAGTACTCAAACAAAGTCAGAGAACGCTAAGGAACATTTCACAAATAAAACCAATTATTTCAACCCCC  

TGGCGAGACCTCGAAATCACTATGCACCACTTCACACTGCGCGGAATTTTTATTGCAATACCAACTTTCAACAAAT
  
```

ACGTGCATCGGAAATGAGACCATTGGAGGGCTGCAATGGAACAACTCATACTCCCAGTCAAGATAAAACAAATCATTAAACATGTGGC
AAGGTGCTGGACAAGCTATGTATGCACCCCAATATCCGGTAGAATTAAATTGCGTCAGCAACATCACTGGCATACTGCTCACTAG
AGACGGAGGAGCAAAATAACAAATGAAACATTCGACCGGGCGGCAACATTAAGGACAACACTGGGGTCCGAACTCTATAAG
TACAAAGTCGACAGATCGAACCTCTTGAATAGCACCGACTCGGGCTAAGGACAACACTACAGTACAGGCCCCGACAACACTCTTCG
GAATCGTACAGCAGCAATCAAACCTCTCGCGCAATCGAGGCCAACAAACATCTGCTTCAGCTCACAGTTGGGAATCAAGCA
GCTCCAGGCACCGCGTCTGGAAAGAGATACTGAAGGGATCAGAAATTCTTGCTCTGGGGATGTTCTGGAAAATAATC
TGCAC TAC CG CG GT CC CT GG AAT T CA AC AT GG AG CA ACC CG GAG T TT GA AG AG A T GG A CA AT AT G AC AT GG AT CG CA AC G AAA AG AC CT
CCTCGAGCTTGATAAGTGGGATCCCTTGGAACTGGTTCGACATCACAATTGGCTCTGGtaagatcttacaa

19 34

wild-type subtype A Env

00KE_MSA4076-A (Subtype A, 891 a.a)

A MGAMGIQMNWQNLRWGTMLGMLIICSVAEKSWVTVYYGVPVWRDAETTLFCASDAKAHDKEVHNWATHACVPTDPNPQEMIL
ENVTEDFNMWKNSMVEQMHTDIISLWDQSLKPCVKLTPLCVTLNCSDSNTSNSTSNTKDSATLDMKSEIQNCSFNMTTELDRDK
KQKVYSLFYRLDVQINENSDDYRLINCNTSAITQACPVTPEPIPIHYCAPAGFAILKCNDDKKFNGTPCCTNVSTVQCTHGIKP
VVTQLLLNGSLAEEVMIRSENITENAKNIIVQFKEPVQIICIRPGNNTRKSVHIGPGQAFYATGDIIGDIRQAHCVNSRELWN
KTLQEVA TQLRKHFRRNNTKIIFTNSSGGDVEITTHSFNCGEFFYCDTSGLFNSSWTASNDSMQEAHSTESNITLQCRIKQIINM
WQRAGQAMYAPPIPGIIRCESNITGLI LTRDGGEENNNTNETFRPVGNNMRDNWRSELYKYKVVKVEPLGVAPTKSRRRVVEREK
RAVGLGAVFIGFLGAAGSTMGAASMTLTVQARQLLSGIVQQQSNLLRAIEAQQHLLKLTWVGIKQLQARVLAVERYLRDQQLLGI
WCGSKLICKTNPVWNSSWSNKLDEIWENMTWMQWDKEVSNYTQMIYNLLEESQNQKEKNEQELLALDKWANLWNWFNISNWLNW
YIKIFIMIVGGLIGLRLIVFAVLSVINVRVQGYSPLSFQTHPNPRGLDRPGRIEEEGGEQDRDRSIRLVSGFLALAWDDLRSCL
FSYHRLRDFILIAARTLELLGHNSLKGRLWGELKYLWNLLAYWGRELKISAISLVDIAIAVAGWTDRIIEIVQAIGRAILHI
PRRIHQGLERALI

*Amino acid sequence underlined is the fusion domain that will be deleted in 140CF design and the "W" underlined with red color is the last amino acid at the C terminus, and all the remaining amino acids after the "W" will be deleted in 140CF design.

00KE_MSA4076-A 140CF.pep (647 a.a.)

B Nick name: 011

MGAMGIQMNWQNLRWGTMLGMLIICSVAEKSWVTVYYGVPVWRDAETTLFCASDAKAHDKEVHNWATHACVPTDPNPQEMIL
ENVTEDFNMWKNSMVEQMHTDIISLWDQSLKPCVKLTPLCVTLNCSDSNTSNSTSNTKDSATLDMKSEIQNCSFNMTTELDRDK
KQKVYSLFYRLDVQINENSDDYRLINCNTSAITQACPVTPEPIPIHYCAPAGFAILKCNDDKKFNGTPCCTNVSTVQCTHGIKP
VVTQLLLNGSLAEEVMIRSENITENAKNIIVQFKEPVQIICIRPGNNTRKSVHIGPGQAFYATGDIIGDIRQAHCVNSRELWN
KTLQEVA TQLRKHFRRNNTKIIFTNSSGGDVEITTHSFNCGEFFYCDTSGLFNSSWTASNDSMQEAHSTESNITLQCRIKQIINM
WQRAGQAMYAPPIPGIIRCESNITGLI LTRDGGEENNNTNETFRPVGNNMRDNWRSELYKYKVVKVEPLGVAPTKSRTLTQARQ
LLSGIVQQQSNLLRAIEAQHLLKLTWVGIKQLQARVLAVERYLRDQQLGIWCGSKLICKTNPVWNSSWSNKLDEIWENMTW
MQWDKEVSNYTQMIYNLLEESQNQKEKNEQELLALDKWANLWNWFNISNWLNW*

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site.

C CODON-OPTIMIZED 00KE_MSA4076-A 140CF.seq (1972 nt.)

Nick name: 011

ttagtcgacagccaccATGGGGCAATGGGAATCCAGATGAACGGAGACCTCTGGCGATGGGGCACAATGATCCTGGGTAT
GCTCATCATCTGCTCTGGCAGAAAAGTCATGGTAACAGTCTACTACGGCGTACCGAGTGTGGCGGGACGCCAAACCACTCTC
TTCTGCGCTCCGATGCCAAGCACACGATAAAAGAAGTCCACATGTGGAAAAATTCTATGGTTGAACAGATGCACACCGACATAAT
CACAAGAAATGATACTCGAACCTGTTGAAGACTTCAACATGTGGAAAAATTCTATGGTTGAACAGATGCACACCGACATAAT
ATCACTGTGGGACTGACTCTCAAAACCTGTGTCAAATGACCCCCCTCTGGTACACTGAACTGTCCACTAAATATCACT
TCTAATTCAACGAGCAATAGTACGAAAGACTCCGCAACCCCTGTGATATGAAAAGCGAAATACAGAATCTGTTCATTTAATATGACCA
CCGAACTGAGAGATAAAAGCAGAAGGTTTATTCTCTGTTATCGATTGGACGTGGTTAGATTAACGAAAATAGCAGCGATT
CCGACTCATTAACTGCAATACATCGCAATCACACAGGCTGCCAACGGTAACATTGAGCCAATCCCTATTCACTACTGCGCC
CCTGCAGGATTGCCATCCGTAAATGCAACGATAAGAAGTTAATGGACAGGACCCCTGCACCAACGTCTCCACCGTGCAATGCA
CCCACCGCATAAAACCTGTGTTACACACAAATGCTGCTCAATGGACACTTGTGAAGAGGAAGTCATGATTGGTCTGAAAA
CATCACTGAAAATGCCAAAATATTAGTTCAAGGCTTCAAGGAGCTCCAGATCATTGCAATTGGCTCTGGTAACAAACACTCGC
AAGTCAGTGCACATTGGGCCAGGCTTCTATGCAACCGGAGATATTAGGCGACATCAGACAGGCACATTGCAACGTCA
GCCGGAAATTGTTGAACAAAATTGCAAGGAAGTTGCTACTCAGCTGCCAACATTTGAGAACAAATCAAAGATTATTTCAC
TAATTCACTCAGGGGTGACGTGGAGATCACTACCCATTCAATTAACTGTGGCGGAGAATTCTCTATTGGATACCTCTGGCTC
TTAATTCTCATGGACTGCTAGCAACGATTCAATGCAAGAAGCACATTCCACAGAAAGTAATATCACACTGCACTGCCAATTA
AAACAATCATCAATATGTGGCAGCGGGCGGTCAAGCAATGTACGCACCTCCCATCCCCGGAAATTTCGATGTGAGTCTAATAT
CACTGGCCTCATCTGACCCGAGACGGTGGCGAAGGTAATAATTCTACAAACAGAGACTTTCAAGACCCCTAGGAGGCAATCTGCGA
GACAATTGGCGATCCGAACGTGATAAAATATAAAAGTGGTGAAGGTTAGAACCTCTGGAGTGGCACCCACCAATCACGAACACCTGA
CTGTGCAGGACGCCAACCTCTGAGCGGAATAGTCCAACAGCAATCCAATCTCTGAGAGCTATAGAAGCCCAGCAACACCTGCT
TAAACTTACGGGTGTTGGGAATCAAACAAATTGCAAGGCAAGAGTGTGCTGGCAGTGGAACGATACTTGAGAGACCAACAACTCTGGGA
ATCTGGGGATGTTCCGGTAAGTTGATTTGCAACGACAACGTTCCCTGGAAACTCTTCTGGTCAAACAAAGAGTCTGGACGAATAT
GGGAAAATATGACATGGATGCACTGGGACAAGGAAGTTAGCAACTATACAGATGATCTACAACACTCCTCGAAGAATCTCAGAA

TCAACAGGAAAAAAACGAACAAGAACTGCTGCCCTCGATAAGTGGCTAACCTCTGGAACACTGGTTAATATTCAAACCTGGTTG
TGGtaaagatcttacaa

35 Wild-type subtype B
QH0515.1g gp160 (861a.a)

MRVKEIRRNCQRLRRWGTMLLGMLMICSATEQLWVTVYYGVPVWKEATTLFCASDAKAYVTEKHNVWATHACVPTDPNPQEVL
ENVTFNFMWKNNMVEQMHEIDIISLWEQLKPCVKLTPLCVTLNCTDKLRNDTSGTNSSSWEVKQGEIKNCFSNITTGIRGRVQ
EYSLFYKLDVIPIDSRRNSNNSTEFSSYRLISCNTSVITQACP KISFEP IPIHYCAPAGFAILKCNDKKFNGTGPCKNVSTVQCT
HGIKPVVSTQLLLNGSLAEEEVVIRSENFTNNVKSIIIVQLNKSVINCTRPNNTRKSIHIGAGKALYTGEIIGDIRQAHCNL SR
AQWNNTLQKIVIKLREQFGNKTIVFNQSSGGDVEIVMHSFNCGEFFYCNSTQLFNSTWNGNDTWKDTTNDNITLPCRIK Q
IVNMWQVKVKGAMYAPP IRGQIRCSSKITGLILTRDGGTNGTNETETFRPGGGNMKDNRSELYKYKVVKIEPLGIAPTKAKTRVV
QREKRAVGTIGAMFLGFLGAAGSTMGAASLT TVQARLLSGIVQQQNLLRAIEAQQHLLQLTWVGIKQLQARVLAVERYLRDQ
QLLGIWGCSGRЛИCTTNVPWNTWSNRSLN YIWDNMTWMQWDREINNYTDIYTLL ED A QNQQE KNEQELLELDKWA LWNWF DI
TNWLWYIKIFIMIVGGLIGRIVFAVLSIVNVRQGYSPSLQTHLPARRGPDRPEGIGEEGGERDRDRS VRLVHGFLALWEDL
RSLCLFSYHRLRDLLLIVARTVEILGQRGWEALKYWWNLLYWSLELKNSAVSLVDTIAIAVAEGTDRIIEIARRIFRAFLHIPT
RIRQGLERALL

*Amino acid sequence underlined is the fusion domain that will be deleted in 140CF design and the "W" underlined with red color is the last amino acid at the C terminus, and all the remaining amino acids after the "W" will be deleted in 140CF design

QH0515.1g 140CF (651a.a)

Nick name: 012

MRVKEIRRNCQRLRRWGTMLLGMLMICSATEQLWVTVYYGVPVWKEATTLFCASDAKAYVTEKHNVWATHACVPTDPNPQEVL
ENVTFNFMWKNNMVEQMHEIDIISLWEQLKPCVKLTPLCVTLNCTDKLRNDTSGTNSSSWEVKQGEIKNCFSNITTGIRGRVQ
EYSLFYKLDVIPIDSRRNSNNSTEFSSYRLISCNTSVITQACP KISFEP IPIHYCAPAGFAILKCNDKKFNGTGPCKNVSTVQCT
HGIKPVVSTQLLLNGSLAEEEVVIRSENFTNNVKSIIIVQLNKSVINCTRPNNTRKSIHIGAGKALYTGEIIGDIRQAHCNL SR
AQWNNTLQKIVIKLREQFGNKTIVFNQSSGGDVEIVMHSFNCGEFFYCNSTQLFNSTWNGNDTWKDTTNDNITLPCRIK Q
IVNMWQVKVKGAMYAPP IRGQIRCSSKITGLILTRDGGTNGTNETETFRPGGGNMKDNRSELYKYKVVKIEPLGIAPTKAKTRTV
QARLLLSGIVQQQNLLRAIEAQQHLLQLTWVGIKQLQARVLAVERYLRDQQLLGIWGCSGRЛИCTTNVPWNTWSNRSLN YIW
DMTWMQWDREINNYTDIYTLL ED A QNQQE KNEQELLELDKWA LWNWF DI TNWLW*

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site.

C CODON-OPTIMIZED QH0515.1g 140CF.seq (1984 nt.)

Nick name: 012

ttcagtgcacagcaccATGAGAGTAAAAGAAATCAGACCCA ACT GTCA GAGGGTGAGGAGATGGGAAACGATGCTCTGGGCAT
GCTGATGATTGCA GTGCCACCGAACAGCTTGGCTAACCGTGTACTATGGTGTACCTGTATGGAAAAGAACCCACTACAACCCCTG
TTTGCGCGTCCGACGCAAAGCCTACGTAAACAGAAAAGCACACAGCTGGGCCACACATGCATCGTGCACAGATGCAAGATATCAT
CTCAGGAAGTCGTCTGGAAAATGTAACAGAAAATTTAATATGTGGAAAACAAATATGGTAGAGCAGATGCATGAAGATATCAT
CTCACTGTGGGAAACAATCCTGAAACCTTGTGTCAAAC TGACCCCAC TTGCGTAACACTTAAC TGACTGATAAGCTCGCAAT
GATACGTCGGAAACAAATCAGCAGCTGGGAAAAGTGCAAAAGGGCGAAATCAAAAATGGTCAATTAAACATCACTACCGGTA
TCAGAGGGCGGTCAAGGAATATTCTCTTCTACAAACTCGACGTCACTCCAACTCGACTCAGAAATACTCAAATAATAGCAC
AGAATT TAGTAGTTATCGCCTTATAAGCTGCAACACCAGCGTGTACACAGCGTGGCTAAAGCTCTTGTGAGGCCATTCT
ATTC ACTACTGCGCACCAGCGGCTCGCATCTCAAATGTAACGACAAGAAAATTAA CGGAAACCGGACCCCTGTAAGAATGTGT
CCACCGTTCAATGCACTCATGGAAATCAAGCCCGTGTCTACCCAACTCTCTCAATGGTAGCCTTGCGGAGGAGGAAGTTGT
GATTGCGTCCGAAAATT TACAACAAACAGTCAGTCAATCATGTCAGCTTAATAAATCGTCGTATTAAATTGTACAAGACCC
AAACAATACACCAGAAAATCATTCACTAGGGCGGGAAAGCTCTGTATACCGGGAAATTATGGAGACATCAGACAAGCAC
ACTGTAACCTGAGTCGCGCCCGTGGAAACACACATGAAACAGATCGTGTACGCTCAGAGAGCAGTCGGGAATAAGACAT
CGTGTAACTCAGAGCTCCCGGGTGTGTAATGCAACTCTTTAATTGTGGGGGTGAATT TTTACTGCAATTCT
ACACAATTGTTAACAGCACCTGGAACCGCAATGACACATGGAATGACACCTGGAAAGATACGACAATGATAATTACTCTTC
CGTGCAGAAATAAGCAAATCGTAAATATGTGGCAAAAAGTGGCAAGGCCATGTACGCACCACCTATAAGAGGACAATTGCTG
TTCTTCAAGATCACAGGTGTGATACTCACACGGGACGGAGGACGAACGGGACAAACGAGACCCGAGACCTCCGACCAGGAGG
GGCAACATGAAGGATAACTGGAGAAGTGGAAACTTACAAGTATAAAGTGTCAAGATTGAGCCTCTGGGTATCGCCCTACTAAGG
CTAAACACTCACCGTGCAGGCTAGATTGCTGCTTCAAGGGATAGTCAACACAGAAACACCTCTTAGAGCCATTGAAGCACA
ACAACACTTGCTGCAGTTGACAGTGTGGGAATTAACAGTTGCAGGGCCGGGTCTCGTGTGCAACGGTATCTTAGAGATCAG
CAGCTTGGGTATCTGGGGGTGTTCAAGGCCCTCATATGCACCAAAATGTCCTTGGAAACACTCATGGAGTAACAGGTCTC
TTAATTATATTGGGACAATATGACATGGATGCAATGGGATAGAGAAATTAAACTACACCGACTACATCTACACACTCTGG
GGACGCCAGAATCAGCAGGAGAAGAACGAGCAGGAACCTCTGCAATTGGATAAGTGGCATCACTGTGGATTGGTCGATATA
ACTAATTGGCTTGGtaaagatcttacaa

36 Wild-type subtype C
DU123.6 gp160 (854 a.a)

MRVKGIQRNWPOQWWI W GILGFWM IIICRVVGNLWVTVYYGVPVWTEAKTTLFCASDAKAYEREVHNWATHACVPTDPNPQEIVL
GNVTFNFMWKNDMV DQMHEDIISIWDQSLKPCVKLTPLCVTLNCTDVKNAT SNGTTYNNSIDSMNGEIKNCFSNITTEIRDK
KQKVYALFYRPDVPLNENSSSYILINCNTTTQACPVSFDPIPIHYCAPAGYAILCENNKFNGTGPCHNVSTVQCTHGIKP

VVSTQLLLNGSLAEEEIIIRSENLTNNAKTIIIVHLNESIEIVCTRPNNNTRKSIRIGPGQTVYATNDIIGDIRQAHNCISKTKWN
 TTLEKVKKEKLKEHFPSKAITFQPHSGGDEVTTHSFNCRGEFFYCDTTKLFNESNLNTNTTLPLCRIKQIVNMWQGVGRAMY
 APPVEGNITCNSSITGLLVLDGGNTSNSTPEIFRPGGGNMKDNRSELYKYKVVEIKPLGVAPTKAKRRVVEREKRAVGIGAVL
FGFLGAAGSTMGAASITLTTVQARQLLSGIVQQQSNLLRAIEAQOQHMLQLTVWGIKQLQARVLAIERYLKDQOLLGLWGCSGKLIIC
 PTTVPWNSSWSNKSQTDIWDNMWTMWMQWDREISNYTGTIYKLEESQNQQEKNEKDLLALDSWKNLWSWFDTNWLYIKIFIMIV
 GGLIGLRIIFGVLSIVKVRVQGYSPLSFQTLPNPRGLDRLGRIEEEGGEQDKDRSIRLVNGFLALAWDDLRSCLFSYHRLRDF
 ILVAARAREVELLGRSSLRGLQRGWEALKYLGNLVQYGGELKRRaisLFDTIAIAVAEGTDRILEVILRIIRAINPTRLRQGFE
 AALL

DU123.6 140CF (638 a.a.)

Nick name: 013

MRVKGIQRNWPQWWIwgILGFWMIICRVVGNLWVTVYYGPVWTEAKTTLFCASDAKAYEREVHNWATHACVPTDPNPQEIVL
 GNVTFENFMWKNMDMVQDMHEDIISIWDQSLKPCVKLTPLCVTLNCTDVKNATNSNGTTTYSNNSIDSMNGEIKNCFSNITEIRDK
 KQKFYALFQPDVWPLNENSSYILINCNTSTTQACPVKSFDPPIHYCAPAGYAILCKCNKTFNNGPCHNVSTVQCTHGIKP
 VVSTQLLLNGSLAEEEIIIRSENLTNNAKTIIIVHLNESIEIVCTRPNNNTRKSIRIGPGQTVYATNDIIGDIRQAHNCISKTKWN
 TTLEKVKKEKLKEHFPSKAITFQPHSGGDEVTTHSFNCRGEFFYCDTTKLFNESNLNTNTTLPLCRIKQIVNMWQGVGRAMY
 APPVEGNITCNSSITGLLVLDGGNTSNSTPEIFRPGGGNMKDNRSELYKYKVVEIKPLGVAPTKAKLTTVQARQLLSGIVQQQ
 SNLLRAIEAQOQHMLQLTVWGIKQLQARVLAIERYLKDQOLLGLWGCSGKLIICPTTPWNSWSNKSQTDIWDNMWTMWMQWDREISN
 YTGTIYKLEESQNQQEKNEKDLLALDSWKNLWSWFDTNWLY*

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site.

CODON-OPTIMIZED DU123.6 140CF.seq (1945 nt.)

Nick name: 013

ttcagtcacagccaccATGCGCGTAAAGGGGATTCAAAGAAAATTGGCCGCAATGGTGATTGGGGATTCTGGGCTTTGGAT
 GATAATTATATGCCGCGTTGCGGAAATTGTGGGTGACTGTGACTACGGGTGCCGTGGACTGAGGAAAGACCACCTG
 TTCTGTGCTAGCGATGCCAACGCTATGAAACGCGAAGTCACAATGTTGGCTACTCATGCCGTGTGCCCTACCGACCCAAACC
 CTCAGGAAATAGTGCTCGGCATGTAACGGAAACTTCACATGTGGAAAATGATATGGTGATCAGATGCACGAAGACATTAT
 CTCAATCTGGGACAAAGCCTGAAACCTCGCTTAAACTGACTCCCTCTGCCTACTCTCAATTGCACAGATGTCAAAGTGAAT
 GCCACCTCAAACGGTACGACAACATTCTATTGACTCTATGAAACGGGAAATCAAATTGTTCTTAAACATCACCA
 CCGAGATACGCGACAAAAGCAGAAGGTCTATGCCCTTTTACGCCGACGCTAGTCCCCTCAACGAGAAATTCCAGCTCATA
 CATCCTCATCAACTGCAATACATCAACTACACACAAGCATGCCGAAAGTTAGCTTGATCCAATTCTATACATTACTGC
 CCCGCCGCTACGTATACTGAAATGCAATAAAGACTTTAACGGACCGGCCATGTACAACGTGTCAACCGTGCAATGCA
 CTCATGGCATCAAGCCGTGGTGTCAACCCAGCTGCTGCTCAATGGCTCACTTGAGAAGAAGAAATTATTATCCGCTGAGAA
 TCTTACTAAACATGCAAAACGATTCTGTGCACTTAACTGAAATAGCAACGAGAAATTGTTACGCAACTATGACATCAT
 AAAAGCATTCGCGATCGGACCTGGCAGACAGTTACGCAACTATGACATCATCGGGGACATCCGACAGGCCATTGCAACATT
 CTAAACCAAGTGGAAATACAACCTGGAAAAGTAAAGAAAATCTAAAGAACATTTCTCTAAGCGATCACGTTCAACC
 TCACAGTGGCGGAGACTTGGAAAGTCACAACACATTCTTAACTGCCGGAGAATTTTATTGTGATACAACAAACTTTT
 AATGAATCAAATCTCAACACCACAAATACAACCAACTGACCCCTCCCTGTAGAATCAAACAAATCGTAAACATGTGGCAAGGG
 TTGGAGGGCTATGTACGCTCCCCCGTCAAGGAAATATAACGTGTAACAGCAGCATCACTGGGCTGCTTCTGAGACGG
 AGGCAAAACTCTCAATTCAACTCTGAAATTTTAGGCCTGGCGGTGCAATATGAAAGATAACTGGGCTCAGAACTGTCAAA
 TACAAAGTTGTGAAATTAAAGCCCTGGAGTCGCTCCAACAAAGCTAAACACTCACAGTGAAGCAAGACAGCTCTTTCAG
 GCATCGCCAGCAACAGTCAAATCTCTTAGAGCAATCGAAGCCAAACAGCATATGCTCCAACACTCACAGTCTGGGGATTAAACA
 GCTTCAAGCCCAGCTGCTATCGAACGCTATCTAAAGACCAACAGCTTCTGGGCTCTGGGTTGTAGTGGAAAACATC
 TGCCCCACCAACCGTGCCTGGAAATAGTTCTGGAGTAATAAATCACAGACCGATATTGGGACAACATGACCTGGATGCAATGG
 ATAGGGAAATTCTAATTATACTGGACAATCTACAAACTCTGGAGAAAAGTCAAACATGCAAGAAAAACGAAAAGGACCT
 CCTCGCCCTGGACTCCTGGAGAATCTTGGAGCTGGTGCACATAACTATTGGCTGTGGtaaagatcttacaa

Fig. 37

Wild-type subtype CRF01_AE

97CNGX2F-AE (854 a.a.)

MRVKETQMNWPNLWKWGTLLIGLVIICASDNLWVTVYYGPVWRDADTTLFCASDAKAHETEVHNWATHACVPTDPNPQEIH
 ENVTFENFMWNNMVEQMVEDVISLWDQSLKPCVKLTPLCVTLNCTNANWTSNNTNGPNKIGNITDEVKNTFNMTTELKDKK
 QKVHALFYKLDIVQINSSEYRLINCNTRPSVIKQACPISFDPIPPIHYCTPAGYAILCKNDKNFNGTPCKNVSSVQCTHGIKPVS
 TQLLNGLSLAEEEIIIRSENLTNNAKTIIIVHLNKSVENCTRPSNNTRTSITMGPGQVFYRTGDIIGDIRKAYCEINGIKWNEVL
 VQVTGKLUKEHFNKTIIFQPPSGGDLEIITHHFSCRGEEFYCNTTKLFNNTCIGNTSMEGCNTTILPCKIKOIIINMWQGVGQAMY
 APPISGRINCVSNITGILLRDGGADNNNTNETFRPGGGNIKDNWRSELYKYKVVEIPLGIAPTRAKRRVVEREKRAVGIGAMI
FGFLGAAGSTMGAASITLTTVQARQLLSGIVQQQSNLLRAIEAQOQHLLQLTVWGIKQLQARVLAYERLKDQKFLGLWGCSGKLIIC
 TTAVPWNSWSNKSSEEIWDNMWTIEWEREISNYTSQIYEILTESQNQQDRNEKDLLELDKWASLWNWFDTNWLYIKIFIIV
 GSLIGLRIIFAVLSIVNVRVQGYSPLSFQTPTHHQREPDRPEEIGEGGGEQSKDRSVELVSGFLALAWDDLRSCLFLSYHLLRDF
 ILIAARTVELLGHSSLKGLRRGWEGLKYLGNLLLYWGQEIKISAISLNATAIAVAGWTDVIEVAQRRAWALLHIPRRIQGLE
 RALL

*Amino acid sequence underlined is the fusion domain that will be deleted in 140CF design and the "W" underlined with red color is the last amino acid at the C

terminus, and all the remaining amino acids after the "W" will be deleted in 140CF design.

3 97CNGX2F-AE 140CF.pep (629 a.a.)

Nick name: 018

MRVKETQMNWPNLWKWGTLLILGLVIICSAEKLWVTVYYGVPVWRDADTLFCASDAKAHETEVHNWATHACVPTDPNPQEIH
ENVTFNMWRNNMVEQMVEDVISLWDQSLKPCVKLTPLCVTLNCTANWTNSNNTNGPNKIGNITDEVKNCTFNMTTELKDKK
QKVHALFYKLDIVQINSSEYRLINCNTSVIKQACP KISFDPPIHYCTPAGYAILKCNDFNNGTGPCKNVSSVQCTHGIKPVVS
TQLLNGLSAAEEEEEIRSENLTNNAKTIIVHLNK SVEINCRPSNNTRTSITMGPQVFYRTGDIIGDIRKAYCEINGIKWNVEL
VQVTGKLEAHFNKTIIFQPPSGGDLEIITHHFSRGEFFYCNTTKLFNNTCIGNTSMEGCNNTIILPCKIKQIINMWQGVGQAMY
APPISGRINCVSNITGILLTRDGGADNNTTNETFRPGGGNIKDNRSELYKYKVVIEPLGIAPTRARTLTQARQLLSGIVQQQ
SNLLRAIEAQHQHLLQLTVWGIKQLQARVL AVERYLKQDKFLGLWCGSGKIICTTAVPWNSWSNKSFEIWDNMTIEWEREISN
YTSQIYEILTESQNQQRNEKDLLELDKWASLWNW*

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site.

4 CODON-OPTIMIZED 97CNGX2F-AE 140CF.seq (1921 nt.)

Nick name: 018

tccagtcgacaggcaccATGCGAGTAAAAGAGACACAAATGAATTGGCCCAATTGTGGAAGTGGGGAACATTGATCCTGGGACT
GGTGATAATCTGTAGTCATCCGACAATCTCTGGTGTACCGTTACTATGGTGTACCGATTGGAGAGACGCTGATACCACCTC
TTCTGTGCAAGCGCCAAAGCCCACGAAACTGAGAATCTTAAACATGTGGAGAAATAACATGGTGTACAAATGCAGGAAGACGTTAT
CCCCAGAGATCACCTTGGAGAATGTAACTGAGAATTTAACATGTGGAGAAATAACATGGTGTACAAATGCAGGAAGACGTTAT
TTCCTGTGGGACCAAGGCCCTAAACCTTGTGTCAAATTGACTCCCCTGTGTGACTCTCAATTGTACAAACGCAAATTGGACC
AACAGCAACAAACACTACCAACGGCCCTAACAAAATTGGCAATTACTGATGAAGTCAAGAACTGCACCTTTAACATGACAACAG
AACTGAAGGATAAGAAACAGAAAGTCCATGCTCTGTTCTATAAGCTCGACATAGTACAAATAATAGCTCAGAATATAGACTGAT
AAACTGCAAACTACTCCGTTATC CAAACAGGCCCTGTC CAAAGGATAAGCTCGATCCCATCCTATTCACTACTGCACACCAGCCGG
TACGCTATCCTGAAATGCAACGATAAGAATTAAACGGCACAGGCTCTGCAAAAACGTTCTCTGTCCAGTGACACAGCGTA
TCAAGCTGTAGTATCAACACAACGTCTCTGAAATGGCTCTTGGCGGAAGAAGAGATCATCATTAGAAGT GAGAACCTGACGAA
CAACGCCAAGACTATAATAGTCACCTAACAAATCTGAGAAATCAACTGTACCCGACCCCTAACACACACTGAAAGTATA
ACAATGGCCCTGCCAAGTTTTTACCGGACCGCGACATAATAGCGATATCAGAAAGGCATATTGCGAGATCAATGGCATCA
AGTGGAACGAAAGTACTGGTTCAAGTACTGGAAAACCTCAAAGAACATTAAAGACCATATAATTCCAGGCCCGAGTGGCG
CGAGCTCGAGATTATC ACCCATCTTCTGTAGAGGCCATTTTACTGTAAACACGCCAACAGCTCTCAATAACACGTG
ATCAGGAAACACTCTATGGAGGATGTAATAACATTACTGCTCTGAAAGTCAAGCAGATTATCACATGTGCCAGGGAG
TAGGTCAAGGCAATGTACGACCCACCGATTTCAGGACGGATCAATTGCGTATCAAAATATCACCGCATTCTGCTGACGCCGGAG
AGGCAGACAACAAATACCACTAACAGAGACATTAGACCTGGAGCGCAATATAAAGGATAATTGGAGAAAGTGAGCTGTATAAA
TACAAAGTCGTAGAGATGCAACCCCTCGCATTGCTCCACCGGGACTCTCACCGTACAAGCTAGACAGCTGTTCTG
GCATAGTCCAACAGCAGTCAAACACCTCCCGCGTATTGAAGCACAACACCTGCTCCAGCTGACTGTGTGGGGAAATCAAACA
ATTGCAAGAAGTGTCCGGTGGAACCGTATTGAGAGATCAGAAATTCTGGACTTGGGCTGCAAGCGGAAAATTATT
TGTACAACAGCGGTGCCCTGGAACTCATCCTGGAGTAATAAAAGCTTGGAGAAATCTGGGACAATATGACATGGATTGAGTGG
AGAGAGAGATTCAAACTATACAAGCAAATTACGAAATACTGACAGAAAGTCAAAACAGCAGGACAGAAATGAGAAAGACCT
GCTGAACTGGATAAGTGGCCCTTTGTGGAACTGGtaaagatcttacaa

5 38

wild-type DRCBL-G (854a.a.)

A

MRVKGIQRNWQHLWNWGILILGLVIICSAEKLWVTVYYGVPVWEDANAPLFCASDAKAHSTESHNIWATHACVPTDPSPQEINMR
NVTFNMWRNNMVEQMHE DIISLWDESLKPCVKLTPLCVTLNCTEINNNSTRNITEEYRMTNC SFNMTTEL RDKKKA EYALFYR
TDVVPINEMNNENGTNSTWYRLTNCSVSTIKQACP KVTPEPIPIHYCAPAGFAILKCVDKKFNGTGTCCNVSTVQCTHGIKPV
STQLLNGLS LAEKDIISSENISDNKVIIVHLNRSVEINCRPNNNTRRSVAIGPGQAFYTTGEVIGDIRKAHCNVSWTKWN
LRDVQAKLQEYFINKSIEFNSSSGGDLEITTHSFNCGGEFFYCN TSGLFNNSILKSNI SENNDTITLNCKIKQIIVRMWQRVGQAM
YAPPIAGNITCRSNITGLILTRDGGDNNSTSEIFRPGGGDMKNNWRSELYKYKTVKIKSLGIAPTRARRVVEREKRAVG
VGAIF LGFLGTAGSTMGAASITLT TVQRQLLSGIVQQQSNLLRAIEAQHQHLLQLTVWGIKQLRARVLALERYLK
DQQLLG IWGCSGK LIC TTNPWNTSWSNKS YNEIWE MTIEWEREIDNYTYHIYSLIEQS QIQQEKNEQD LALDQWASLWS
WFS ISNWLWYIRIFVMIV GGLIGL RIVFAVLSIVNVRVQGY SPLSFQ TLH HQREPDRPAGIEEGG
GEQDRDRSIRLVSGFLALAWDDLRLSCLFSYHRLRDF ILIAARTVELLGRNSLKGLRLGWEALKYLWNLLYWARELKNSAINLL
DTIAIAVANWTD RVIEVAQRAGRAV L NIPRR IRQGLE RALL

*Amino acid sequence underlined is the fusion domain that will be deleted in 140CF design and the "W" underlined with red color is the last amino acid at the C terminus, and all the remaining amino acids after the "W" will be deleted in 140CF design.

B DRCBL-G 140CF.pep (630 a.a.)

Nick name: 017

MRVKGIQRNWQHLWNWGILILGLVIICSAEKLWVTVYYGVPVWEDANAPLFCASDAKAHSTESHNIWATHACVPTDPSPQEINMR
NVTFNMWRNNMVEQMHE DIISLWDESLKPCVKLTPLCVTLNCTEINNNSTRNITEEYRMTNC SFNMTTEL RDKKKA EYALFYR

TDVVPINEMNNENNGTNSTWYRLTNCNVSTIKQACPVTPEPIHYCAPAGFAILKCVDKKFNGTGTCCNNVSTVQCTHGIKPVV
STQLLLNGSLAEKDIIISSENISDNAKVIIVHLNRSVEINCTRPNNTRRSVAIGPGQAFYTTGEVIGDIRKAHCNVSWTKWNET
LRDVQAKLQEYFINKSIEFNSSSGDLEITTHSFNCGGEFFYCNTSGLFNNSILKSNISENNDTITLNCKIKOIVRMWQRVGQAM
YAPPIAGNITCRSNITGLILTRDGGDNSTSEIFRPGGDMKNWRSELYKYKTVKIKSLGIAPTRARTLTQVRQQLLSGIVQQQ
SNLLRAIEAQHQHLLQLTVWGIKQLRARVLALERYLKDQQLLGICWCGSKLICTTNPWNTWSNKSYNEIWENMTWIEWEREIDN
YTYYHIYSLIEQSQTQQERNEQDLLALDQWASLWSW*

*Amino acids seen in blue color is for easy identification of the junction of the deleted fusion cleavage site.

CODON-OPTIMIZED DRCBL-G 140CF.seq (1921 nt.)

Nick name: 017

ttcagtcgacagccaccATGAGAGTTAAAGGAATCCAACGCAATTGGCAACACCTTGAACTGGGCATATTGATTCTTGGACT
GGTGATAATTGTAGCGCTGAAAACCTCTGGTAACTGTCTATTACGGCGTGCCTGTCTGGGAGGATGCCAACGCCCTGGTTC
TGGCGAAGTGTGCAAAGGCACAGCACTGAATCTCACACACATTGGGCCACCGCCTGTGTGCCAACCGACCCCTAGTCCTC
AGGAGATCAACATGAGAAACGTTACCGAAAATTAAATATGTGAAGAATAATATGGTGGAGCAAATGACGAAGACATAATTTC
ACTCTGGGACGAGTCTGTGAAACCATGTGTGAAACTTACCCCCCTGTGCGTCACCCCTGAACGTGACCGAAATCAACAAACTCA
ACGAGAAATATCACAGAAGAATACCGAATGACTAATGTTCTTTAATATGACAACCGAATGCGAGACAAAAAGAAGGCTGAAT
ACGCACCTTCTACCGAACAGATGTTGACCAATCAACGAGATGAACAAATGGAACGAACCTCACCTGGTATAGACT
GACAAACTGTAACGTTAGCACAATCAAGCAGGCCCTAAAGTCACATTGCAACCAATACCAATTCTACTGCGCACCGCC
GGATTGCGTATTCTTAAGTGGCTGGATAAGAAGTTAACGGAACCTGCAATAATGTATCTACAGTACAATGACGACATG
GAATTAGCCTGTCGTTCAACCCAGTTGCTGTAATGGGATCACTCGCAGAAAAGGATATTATTATCTCAAGCAGAAACATATC
TGATAATGCAAAGGTATCATCGTCCACCTCAACCGCTCAGTTGAAATAACTGCACTCGGCCATAATAACACAAGACGCTCT
GTCGCAATCGGCCAGGACAAGCTTTACACTACCGGGAAAGTTATCGGCACATACGGAAAGCCCAC TGCAACGTTAGCTGGA
CCAAGTGGAAATGAAACACTGCGCAGTTCAAGCCAACTTCAGAAATACTTCATAAAACAAATCAATTGAGTTCAATTCTAGCTC
TGGCGGCCACCTCGAGATTACAACCTCCTTAAACTCGGGCGGAATTCTTTATTGTAAATACCTCCGGTCTTCAACAAAC
TCTATCTCAAAAGTAACATTCTGAAAATAATGACACAATCACAGTGAATTGCAAGATCAAGCAGATTGTTAGGATGTGGCAAC
GAGTCGGACAAGCTATGTACGCCACCCATGCCGAAATATAACGTGTCGATCAAAATACTGGCCTCATCTTACTAGAGA
TGGCGGAGACAATAATGACACCAGCAGGATATTGACAGCAGGGCGGAGGCATATGAAAAACAACTGGAGGTACAGCTCTACAAG
TACAAAACAGTCAAATTTAAAGCCTGGCATTGCTCCCACCTGGGCCGACACTGACTGTCACGTCAGCTCTGTCCG
GAATCGCCAACACAGTCCAACCTTGCTGGCGCTATAGAGGCTCAACAAACATCTCTCAACTGACTGTTGGGGTATCAAACA
ATTGAGAGAGAGTGGCTGGCGCTGGAACGGTATCTAAGGACCAACAAACTCCTGGCATATGGGGTGTCCGGCAAACGTGATC
TGCACACAAATGTACCCCTGGAACACCAGCTGGTCAAATAAAAGTTATAATGAGATATGGGGAAACATGACATGGATTGAATGGG
AAAGGGAAATTGACAATTATACATACCATATATACTCTCATCGAACAAATCTCAGATAACACAGGAAAAGAATGAAACAGATT
GTTGGCTCTTGACCAATGGGCTTCTTGTGGAGTTGGtaaagatcttacaa

39
A

2003 Cons Env

MRVMGIQRNCQHLWRWGLIIFGMLIICSAAEENLWVTVVYGVPVWEANTTLFCASDAKAYDTEVHNWATHACVPTDPNPQE
 IVLENVTENFMWKNNMVEQMHEDIISLWDQSLKPCVKLTPLCVTLNCTDVNATNNNTNNEEIKNCFSNITTEIRDKKKVY
 ALFYKLDVVPIDDDNSYRLINCNTSAITQACPVSFEPPIHYCAPAGFAILKCNDFKNGTGPCKNVSTVQCTHGIKPVVS
 TQLLLNGSLAEEEIIIRSENITNNAKTIIVQLNESVEINCTRPNNNTRKSIRIGPGQAFYATGDIIGDIRQAHCNISRTKWN
 KTLQQVAKKLREHFNNKTIIFNPSSGGDLEITTHSFNCGGEFFYCNTSELFNSTWNGTNNTITLPCRIKQIINMWQGVGQAMY
 APPIEGKIRCTSNTGLLTRDGGNNNTETFRPGGDMRDNRSELYKYKVVKIEPLGVAPTKAKRRVEREKRAVGIGAVF
 LGFLGAAGSTMGAASITLTVQARQLLSGIVQQQSNNLLRAIEAQHLLQLTVWGIKQLQARVLAVERYLKQQLLGIVGCSKG
 LICITTPWNSSWSNKSQDEIWDNMTWMEWDKEINNYTDIIYSLIEESQNQOEKNEQELLALDKWASLWNWFIDTNWLWYIK
 IFIMIVGGLIGLIRIVFAVLSIVNVRVQGYSPSFQTLIPNPRGPDRPEGIEEEEGGEQDRDRSIRLVNGFLALAWDDLRSCL
 FSYHRLRDLILIAARTVELLGRRGWEALKLWNLLQYWQKELKNSAISLDDTTAIAVAEGTDRVIEVVQRCRAILNIPRRI
 RQGFERALL\$

B

2003 CON-S Env. seq. opt

ATGCGCGTGTGATGGGCATCCAGCGCAACTGCCAGCACCTGTGGCGCTGGGCATCCTGATCTTCGGCATGCTGATCATCTGCT
 CCGCCGCCGAGAACCTGTGGGTGACCGTGACTACGGCGTGCCCGTGTGGAAAGGAGGCCAACACCACCCCTGTCGCGCCTC
 CGACGCCAAGGCCACGACACCGAGGTGACAACAGTGTGGCCACCCACGCCCTGCGTGCACCGACCCCCAACCCCCCAGGAG
 ATCGTGTGGAGAACGTGACCGAGAACCTCAACATGTGGAAAGAACACATGGTGGAGCAGATGCACGAGGACATCATCTCCC
 TGTGGGACCAGTCCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTGACCCCTGAACTGCACCGACGTGAACGCCACCAA
 CAACACCACCAACAACGAGGAGATCAAGAACTGCTCCTTAACATCACCCACCGAGATCCCGGACAAGAAGAAGAAGGTGTAC
 GCCCTGTTCTACAAGCTGGACGTGGTGCCTCATCGACGACAACAACCTCTACCGCCTGATCAACTGCAACACCTCCGCCATCA
 CCCAGGCCCTGCCCAAGGTGTCCCTCGAGCCATCCCAACTACTGCGCCCGCCGCTTCGCCATCCTGAAGTGCAA
 CGACAAGAAGTCAACGGCACCGGCCCTGCAAGAACGAGTGTCCACCGTGCAGTGCACCCACGGCATCAAGCCCTGGTGTCC
 ACCCAGCTGCTGCTGAACGGCTCCCTGGCCGAGGAGATCAACTGCACCCGCCAACAAACAACACCCGCAAGTCCATCCGATGGCC
 TCATCGTGCAGCTGAACGAGTCCCGTGGAGATCAACTGCACCCGCCAACAAACAACACCCGCAAGTCCATCCGATGGCC
 CGGCCAGGCCCTCTACGCCAACCGGCCACATCGCGACATCGCCACAGGCCACTGCAACATCTCCGCACCAAGTGGAA
 AAGACCCCTGAGCAGGTGGCCAAGAACGACTGCGCAGCACCTCAACAAAGACCATCATCTCAACCCCTCCTGGCGGAGC
 TGGAGATCACCACCAACTCCTCAACTGCAGGCGAGTCTTCTACTGCAACACCTCCGAGCTGTCACACTCCACCTGGAA
 CGGCACCAACAACACCATCACCCCTGCCCTGCCATCAAGCAGATCATCAACATGTGGCAGGGCGTGGGCAGGCCATGTAC
 GCCCCCCCCATCGAGGGCAAGATCCGCTGCACCTCCAACATCACCGCCCTGCTGCTGACCCGCGACGGCGAACACAACA
 CCGAGACCTTCCGCCCGGGCGGCGACATCGCGACAACACTGGCGCTCCGAGCTGTACAAGTACAAGTGGTAAGATCGA
 GCCCCGGCGTGGCCCCACCAAGCCAAGGCCGCGTGGTGGAGCGCGAGAACGCCGCGTGGGCATCGGCCGTGTC
 CTGGGCTTCTGGCGCCGCCGCTCCACCATGGCGCCCTCCATCACCCCTGACCGTGCAGGCCAGCTGCTGTGTC
 GCATCGTGCAGCAGCTAACCTGCTGCGGCCATCGAGGCCAGCAGCACCTGCTGAGCTGCTGGCATTGCCCCGTGCTCCGCAAG
 GCAGCTGCAGGGCCGCGTGGCCGAGCGCTACCTGAAGGACCGAGCAGCTGCTGGCATTGCCCCGTGCTCCGCAAG
 CTGATCTGCACCAACCGTCCCTGGAACTCTCTCTGGTCAACAAAGTCCCAGGACGAGATCTGGACAACATGACCTGGA
 TGGAGTGGGACAAGGAGATCAACAAACTACACCGACATCATCTACTCCCTGATCGAGGAGTCCCAGAACAGCAGGAGAAGAA
 CGAGCAGGAGCTGCTGGCCCTGGACAAGTGGGCTCCCTGTGGAAACTGGTTCGACATCACCAAACATGGCTGTTGACATCAAG
 ATCTCATCATGATCGTGGCGCCCTGATCGGCCCTGCGCATCGTGTGCGCTGTCATCGTAACCGCGTGCCTGGCAG
 GCTACTCCCCCTGCTCTTCCAGACCCCTGATCCCCAACCCCCCGGGCCCCGACCGGCCCTGGGAGGGCATCGAGGAGGAGGGCG
 CGAGCAGGACCGCGACCGCTCATCGCCCTGGTAACGGCTTCTGGCCCTGGGACACTGCGCTCCCTGTC
 TTCTCTTACCAACCGCCATCGCGACCTGATCTGATCGCCGCCGACCGTGGAGCTGCTGGGCCGCGCTGGAGGCC
 TGAAGTACCTGTGGAACCTGCTGCAGTACTGGGCCAGGAGCTGAAGAACCTCCGCATCTCCCTGCTGGACACCACCGCAT
 CGCCGTGGCCGAGGGCACCGACCGCGTGAATCGAGGTGGTGCAGCGCGTGTGCCCGCCATCTGAACATCCCCCGCCATC
 CGCCAGGGCTTCGAGCGGCCCTGCTGTAA

ig. 40
A

2003 M. Group.AnC Env

MRVMGIQRNCQHLWRWGLIIFGMLMICSAAEENLWVTVVYGVPVWEANTTLFCASDAKAYDTEVHNWATHACVPTDPNPQE
 IVLENVTENFMWKNNMVEQMHEDIISLWDQSLKPCVKLTPLCVTLNCTDVNATNNSTMGEIKNCFSNITTEIRDKKQKVY
 ALFYRLDVVPIDDDNSYRLINCNTSAITQACPVSFEPPIHYCAPAGFAILKCNDFKNGTGPCKNVSTVQCTHGIKPVVS
 TQLLLNGSLAEEEIIIRSENITDNAKTIIVQLNESVEINCTRPNNNTRKSIRIGPGQAFYATGDIIGDIRQAHCNISGAEWN
 KTLQQVAKKLREHFNNKTIIFKPSSGGDLEITTHSFNCGGEFFYCNTSGLNSTWNGTNNTITLPCRIKQIVNMWQRVGQAM
 YAPPAGNITCKSNITGLLTRDGGTNNTETFRPGGDMRDNRSELYKYKVVKIEPLGVAPTKAKRRVEREKRAVGIGAV
 FLGFLGAAGSTMGAASITLTVQARQLLSGIVQQQSNNLLRAIEAQHLLQLTVWGIKQLQARVLAVERYLKQQLLGIVGCSG
 KLICITTPWNSSWSNKSQDEIWDNMTWMOWEREISNYTDIIYSLIEESQNQOEKNEQDLLALDKWASLWNWFIDTNWLWYIK
 KIFIMIVGGLIGLIRIVFAVLSIVNVRVQGYSPSFQTLIPNPRGPDRPGGIEEEGGGEQDRDRSIRLVSGFLALAWDDLRSCL

LFSYHRLRDFILIAARTVELLGRGWEALKYLWNLLQYWQELKNSAISLLDTAIAVAEGTDRVIEVVQRACRAILHIPR
IRQGFERALL\$

B

2003 M. Group.anc Env.seq.opt

ATGCGCGTGATGGCATCCAGCGAACTGCCAGCACCTGTGGCCTGGGCATCCTGATCTCGCATGCTGATCTGCT
CCGCGCCGAGAACCTGTGGGTGACCGTGTACTACGGCGTCCCCGTGGAAGGAGGCCAACACCACCCCTGTTCTGCGCTC
CGACGCCAAGGCCCTACGACACCGAGGTGACAACAGTGTGGCCACCCACGCCCTGCGTGCCACCGACCCCAACCCCCAGGAG
ATCGTGTGGAGAACGTGACCGAGAACCTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGCACGAGGACATCATCTCCC
TGTGGGACCAGTCCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTGAACCTGAACTGCACCGACGTGAACGCCACCA
CAACTCCACCAAATGGGGAGATCAAGAACACTGCTCTAACATCACCAACGCCAGATCCGGACAAGAACAGAGGTGAC
GCCCTGTTCTACCGCCTGGACGTGGTGCCTAACGACAACAACTCTACCGCCTGATCAACTGCACAAACCTCCGCCATCA
CCCAGGCCCTGCCCAAGGTGCTCTTCGAGGCCATCCACACTCCACTACGCCCTGCAACGACAACACCTCCGCCATCA
CGACAAGAACGTTCAACGCCACGGCCCTGCAAGAACGTGTCCACCGCAGTGCACCCACGGCATCAAGGCCGTGGTGTCC
ACCCAGCTGCTGTGAACGGCTCCCTGGCGAGGAGGAGATCATCATCCGCTCCGAGAACATCACCGACAAGACCA
TCATCGTGCAGCTGAACGAGTCCGTGAGATCAACTGCACCCGCCAACAAACAAACACCCGCAAGTCATCCGATCGGCC
CGGCCAGGCCCTACGCCACGGCAGATCATCGCGACATCCGCGAGGCCACTGCAACATCTCCGGCGAGTGGAAAC
AAGACCCCTGCAGCGAGGTGGCGCCAAGCTGCGCGAGCACTCAACAAACAGACCATCATCTCAAGCCCTCCTCCGGCG
ACCTGGAGATCACCAACCCACTCTCAACTGCCCGGGAGTTCTTACTGCAACACCTCCGGCCTGTTCAACTCCACCTG
GAACGGCACCAACGAGAACATCACCTGCCGCATCAAGCAGATCGTAACATGTGGCAGCGCTGGGCCAGGCCATG
TACGCCCTCCATGCCGGAACATCACCTGCAAGTCAAACATCACCGGCTGCTGCTGACCCGCAGGGCGGCCATCA
ACACCGAGACCTCCGCCCGGGCGACATGCGCAGAACACTGGCGCTCCGAGCTGACAAGTACAAGGTGTAAGAT
CGAGCCCTGGCGTGGCCCCACCAAGGCCAACGCGCGCTGGTGGAGCGCAGAACGCGCCGTGGCATGGCGCGTIG
TCCCTGGCTTCTGGCGCCGCCGCTCCACCATGGCGCCGCTCCATCACCTGACCGTGCAGGGCCGCCAGCTGCTGT
CCGGCATCGTGCAGCAGTCAAACCTGCTCGCGCCATCGAGGCCAGCAGCACCTGCTGCTGAGCTGACCGTGTGGGCAT
CAAGCACCTGCAGGCCCGCGTGGCGCTGGAGCGTACCTGAGGACAGCAGCTGCTGGGATCTGGGCTGCTCCGGC
AAGCTGATCTGACCAACACGTGCCCTGGAACCTCTCTGGTCAAACAGTCCACCGAGGAGATCTGGGACAACATGACCT
GGATGCACTGGGAGCGAGATCTCAAACACTACCCGACATCATCTACTCCCTGATCGAGGAGTCCAGAACACCAGGAGAA
GAACGAGCAGGACCTGCTGGCCCTGGACAAGTGGCCTCCCTGTTGAACTGGTTCGACATACCAACTGGCTGGTACATC
AAGATCTTCATCATGATCGTGGCGGCTGATCGGCTGCGCATCGTGTGCGCTGTCATCGAACCCTGCGTGC
AGGGCTACTCCCCCTGCTTCCAGACCCGTATCCCAACCCCGGGCCCGACCGCCCGGGCATCGAGGAGGAGGG
CGGCGAGCAGGACCGCAGCGTCCATCCGCTGGTGTCCGCTCTGGCCCTGGGACGACCTGCGCTCCCTGTC
CTGTTCTCCCTACCACCGCTGCGGACTTCATCTGATCGCCGCCCCGACCGTGGAGCTGCTGGGCCCGCGCTGGAGG
CCCTGAAGTACCTGTGGAACCTGCTGCAAGTACTGGGCCAGGAGCTGAAGAACCTCCGCATCTCCCTGCTGGACACCACCGC
CATCGCCGTGGCGAGGGACCGACCCGCGTATCGAGGTGGTGCAGCGCCCTGCCGCATCTGCAACATCCCCCGCC
ATCCGCCAGGGCTTCGAGCGGCCCTGCTGTAA

Fig. 41

A

2003 CON_A1 Env

MRVMGIQRNCQHLLRWGTMILGMI ICSAAENLWVTVYYGVPVWKDAETTLFCASDAKAYETEMHNWATHACVPTDPNPQE
IHLENVTTEEFNMWKNNMVEQMHTDIISLWDQSLKPCVKLTPLCVTLNCNSNVNTNNTNTHEEEIKNCFSNMTTELRDKKQK
VYSLFYRLDVQINENNNSSYRLINCNTSAITQACPKVSFEPPIHYCAPAGFAILKCKDKEFNGTPCKNVSTVQCTHGI
KPVVSTQLLLNGSLAEVEVIIRSENITNNAKTIIVQLTKPVKINTRPNNTRKSIRIGPGQAFYATGDIIGDIRQAHCNVS
RSEWNKTLQVKAKQLRKYFKNKTIIFTNSSGGDLEITTHSFNCGEFFYCNTSGLFNSTWNNGTMNTITLPCRRIKQIINMW
QRAGQAMYAPPIQGVIRCESNITGLLLTRDGGNNNTNETFRPGGGDMRDNRSELYKYKVVKIEPLGVAPTRAKRRVEREK
RAVGIGAVFLGFLGAAGSTMGAASITLTQARQLLSGIVQQQSNLLRAIEAQHQHLLKLTWGIQLQARVLAVERYLKQQL
LGIWGCGSKLICITTNVPWNSSWSNKSQNEIWDNMTWLQWDKEISNYTHIIYNLIEESQNQEQNEQDLLALDKWANLWNWFD
ISNWLYIKIFIMIVGGLIGLRIVFAVLSPNVRQGYSPLSFQTHTPNPRGLRPGRIEEEGGEQGRDRSIRLVSGFLALA
WDDLRSLCLFSYHRLRDFILIAARTVELLGHSSLKGLRLGWEGLKYLWNLLYWGRELKISAINLVDTIAAVAGWTDRVIE
IGQRIGRAILHIPRRIQGLERALL\$

B

2003 CON_A1 Env.seq.opt

ATGCGCGTGATGGCATCCAGCGAACTGCCAGCACCTGTGGCCTGGGCACCATGATCCTGGCATGATCATCATCTGCT
CCGCGCCGAGAACCTGTGGGTGACCGTGTACTACGGCGTCCCCGTGGAAGGAGGCCAACACCACCCCTGTTCTGCGCTC
CGACGCCAAGGCCCTACGAGACCGAGATGCACAACAGTGTGGAGAACAAACATGGTGGAGCAGATGCACACCGACATCATCTCCC
ATCCACCTGGAGAACGTGACCGAGGAGTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGCACACCGACATCATCTCCC
TGTGGGACCAGTCCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTGAACCTGCTCAAACATGACCGAGCTGCCGACAAGAACAG
CAACACCAACACCCACCGAGGAGGAGATCAAGAACACTGCTCTTCAACATGACCGAGCTGCCGACAAGAACAG
GTGTACTCCCTGTTCTACCGCTGGACGTGGCAGATCAACGAGAACAACTCCAACCTCTCTACCGCTGATCAACTGCA
ACACCTCCGCCATCACCCAGGCCCTGCCCAAGGTGTCTCGAGCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTCCG
CATCCTGAAGTGAAGGACAAGGAGTTCAACGGACCGCCCTGCAAGAACGTGTCCACCGTGCAGTGCACCCACGGCATC

AAGCCCGTGGTCCACCCAGCTGCTGAACGGCTCCCTGGCCGAGGAGGAGGTGATCATCCGCTCCGAGAACATCACCA
 ACAACGCCAAGACCATCATCGTCAGCTGACCAAGCCCCTGAAAGATAACTGCACCCGCCAACAAACAACACCCGCAAGTC
 CATCCGCATCGGCCCCGGCCAGGCCTCTACGCCACCGGCACATCATCGGCACATCCGCCAGGCCACTGCAACAGTGTC
 CGCTCCGAGTGGAAACAAGACCCCTGAGAAGGTGGCAAGCAGCTGCCAAGTACTTCAAGAACAAAGACCATCATCTTCA
 ACTCCTCCGGCGGCACCTGGAGATCACCAACCCACTCCTCAACTGCCGGCGAGTTCTACTGCAACACCTCCGGCC
 GTTCAACTCCACCTGAAACAACGGCACCATGAAGAACACCATCACCCCTGCCCATCAAGCAGATCATCAACATGTGG
 CAGCGCGCCGGCCAGGCCATGTACGCCCTCCATCCAGGGCGTATCCGCTGCCAGTCAAGAACATCACGGCCGTGCTG
 CCCGCCAGGGCGCAACAACAACACCAACGAGACCTCCGCCCGGCCGGCGACATGCCGACAACACTGGCGCTCCGAGCT
 GTACAAGTACAAGGTGGTAAGATCGAGCCCTGGCGTGGCCCCACCGCGCAAGGCCGCGTGGAGCGAGAAC
 CGCGCCGTGGGATCGGCCGTGTTCTGGCTTCCCTGGCGCCGGCTCCACCATGGCGCCCTCCATCACCTGA
 CCGTCAGGCCAGCTGCTGTGGGATCAAGCAGCTGCAGGCCCGCGTGTGGCGTGGAGCGTACCTGAAGGACAGCAGCTG
 GCTGAAGCTGACCGTGTGGGATCAAGCAGCTGCAGGCCCGCGTGTGGCGTGGAGCGTACCTGAAGGACAGCAGCTG
 CTGGGCATCTGGGCTGCTCCGCAAGCTGATCTGCACCAACCGTGCACCTGGCGTGAACCTCCCTGGTCCAACAAGTCCCAGA
 ACGAGATCTGGGACAACATGACCTGGCTGCAGTGGACAAGGAGATCTCAACTACACCCACATCATCTACAACCTGATCGA
 GGAGTCCCAGAACCGAGCAGGAGAAGAACGAGCAGGACCTGCTGGCCCTGGACAAGTGGGCAACCTGTGGAACTGGTTC
 ATCTCCAACCTGGCTGGTACATCAAGATCTTACATGATCGTGGGCCCTGTATGGCCTGCGCATCGTGTGCG
 TGTCCTGATCACCGCGTGGCCAGGGCTACTCCCCCTGCTCTTCCAGACCCACACCCCCCGGGCTGGACCG
 CCCCGCCGATCGAGGAGGAGGGCGAGCAGGGCCGCGACGGCCTCCATCCGCTGGTCTCCGCGCTGGCC
 TGGGACGACCTGCGCTCCCTGTGCTCTTCAACCCGCTGCGACTTACATCTGATCGCCCGCCGACCGTGGAGC
 TGCTGGCCACTCCCTGAAAGGGCTGCGCTGGCTGGAGGGCTGAAGTACCTGTGGAACCTGCTGTTACTGGG
 CGCGAGCTGAAGATCTCCGCCATCAACCTGGTGGACACCATGCCATGCCGCGTGGACCGACCGTGTGAG
 ATCGGCCAGCGCATGGCCGCCATCTGCACATCCCCGCCGATCCGCAAGGGCCCTGGAGCGCC
 3.42

2003 A1.Anc Env

MRVMGIQRNCQHLLWRWGTMIFGMIIICSAAENLWVTVYYGVPVWKDAETTLFCASDAKAYDTEVHNWATHACVPTDPNPQE
 IDLENTEEFNMWKNNMVEQMHDIIISLWDQSLKPCVKLPLCVTLNCNSNVNTNNTNTHEEEIKNCSFNMTTELRDKKQK
 VYSLFYRLDVPINENNNSNSSYRLINCNTSAITQACPKVSFEPPIPHYCAPAGFAILKCKDKEFNGTPCKNVSTVQCTHGI
 KPVVSTQLLLNGSLAEEEVMIRSENITDNAKTIIIVQLTEPVKINCTRPNNNTRKSIRIGPGQAFYATGDIIGDIRQAHCNVS
 RTEWNKTLQKVAALQRKHFNNTKTIIFNSSSGDLEITTHSFNCGGEFFYCNSTSGLFNSTWNNGTMKDTITLPCRIKOIINMW
 QRVGQAMYAPPILQGVIRCESNITGLLTDGGNNNTNETFRPGGGDMRDNWRSELYKVVIEPLGVAPTRAKRVRVEREK
 RAVGLGAVFLGFLGAAGSTMGAASITLTQARQLLSGIVQQSNLLRAIEAQHLLKLTVWGKQLQARVLAVERYLKQDQL
 LGIWGCSKGKLICTTNVPWNSSWSNKSQDEIWDNMTWLQWDKEISNYTDIINYNLIEESQNQOEKNEQDLLALDKWANLNWFD
 ISNWLYIKIPIMIVGLIGLRLIVFAVLSPVIRVQGYSPLSFQTLPNPEGPDRPGRIEEEEGGEQGRDRSIRLVSGFLALA
 WDDLRSLCLFSYHRLDFILIAARTVELLGRSSLKGLRGWEGLKYLWNLLYWGRELKISAINLLDTIAIAVAGWTDRVIE
 IGQRICRAILNIPRRIRQGLERALL\$
 B

2003 A1.anc Env.seq.opt

ATGCGCGTGTGGCATCCAGCGCACTGCCAGCACCTGTGGCGCTGGGCCACATGATCTCGGCATGATCATCATCTGCT
 CGCCCGCGAGAACCTGTGGGTGACCGTGACTACGGCGTGGGCCACCGACATCGTGTGGGCCACCCACGCCCTGCGCCTC
 CGACGCCAAGGCCACCGACACCGAGGTGACCAACACGTGTGGAGAAGAACAAACATGGTGGAGCAGATGCCACGCCGACATCATCTCC
 ATCGACCTGGAGAACCTGGACCGAGGAGTCAACATGTGGAGAAGAACAAACATGGTGGAGCAGATGCCACGCCGACATCATCTCC
 TGTCGGGACAGTCCCTGAAGCCCTGGCTGAAGCTGACCCCTGTGCGTGAACCTGGCCCTGCGACTGCTCCAACGTGAACGTGACCAA
 CAACACCAACACCCACGAGGAGGAGATCAAGAACCTGCTCTTCAACATGCCACCGAGCTGCCGACAAAGAACAGAGAAC
 GTGTACTCCCTGTTCTACGCCCTGGACGTGGTGCCTCAACGAGAACAAACTCCAACCTCCCTACCGCTGATCAACTGCA
 ACACCTCCGCCATCACCCAGGCCCTGCCCAAGGTGTCTCGAGCCCCTCCACTACTGCCCTGGCTGCGACTGCAACCCACGCCATC
 CATCCTGAAGTGAAGGACAAGGAGTTCAACGGCACCGGCCCTGCAAGAACCGTGTCCACCGTGCAGTGACCCACGCCATC
 AAGCCCGTGGTCCACCCAGCTGCTGTAACGGCTCCCTGGCCAGGAGGAGGTGATGATGCCCTGGAGAACACATCACCG
 ACAACGCCAAGACCATCATCGCAGCTGACCGAGCCCGTGAAGATCAACTGCCACCCGCCAACAAACAACACCCGCAAGTC
 CATCCGCATGCCCGGCCAGGCCCTACGCCACCGGCACATCATGCCGACATCCGCCAGGCCACTGCAACGTGTC
 CGCACCGAGTGAACAAGACCCCTGCAAGAGTGGCCGCCAGCTGCCAAGCACACTTCAACAAAGACCATCATCTCAACT
 CCTCCTCCGGCGGCCAGCTGGAGATCACCAACCTCAACTGCCGGCGAGTTCTACTGCAACACCTCCGGCC
 GTTCAACTCCACCTGGAAACAACGGCACCATGAAGGACACCATGCCCTGCCGCATCAAGCAGATCATCAACATGTGG
 CAGCGCGTGGGCCAGGCCATGTACGCCCTGGCCACCAACACGCCATCCAGGGCGTATCCGCTGCCAGTCAACATGCCCTGCTGCTGA
 CCCGCCACGGCGGCCAACAAACAACACCAACAGAGACCTTCCGCCCGGCCAGCGCGACATGCCGACAACTGCCCTCCGAGCT
 GTACAAGTACAAGGTGGTGAAGATCGAGCCCTGGCGTGGCCCCACCCGCCCAAGGCCGCGTGGTGGAGCGCGAGAAC
 CGCGCGTGGGCCCTGGCGCCGTCTCTGGCTTCCCTGGCGCCGGCTCCACCATGGCGCCCTCCATCACCTGA
 CCGTCAGGCCGCCAGCTGCTGCCATCGCAGCAGTCAACCTGCTGCCGACATGCCGAGGCCAGCAGCACCT
 GCTGAAGCTGACCGTGTGGGCATCAAGCAGCTGCAAGGCCCGCGTGTGGCCGTGGAGCGCTACCTGAAGGACCAAGCAGCTG
 CTGGCATCTGGGCTGCTCCGGCAAGCTGATCGCACCACCAACGTGCCCTGGAACTCCTCTGGTCCAACAAGTCCCAGG

ACGAGATCTGGGACAACATGACCTGGCTGCAGTGGGACAAGGAGATCTCAAACATACCCGACATCATCTACAACCTGATCGA
GGAGTCCCAGAACCAACGAGGAGAACGAGCAGGACCTGCTGGGCCCTGGACAAGTGGCCAACCTGTGAACTGGTTGAC
ATCTCCAACACTGGCTGTGGTACATCAAGATCTTCATCATGATCGTGGCGGCCGATCGGCATCGTGTCGCCGTGC
TGTCCGTGATCAACCCGGTGCCTCAGGGCTACTCCCCCTGTCCCTTCCAGACCCCTGACCCCCAACCCCGAGGGCCCGACCG
CCCCGGCCGCATCGAGGAGGGCGAGCAGGGCCGCACCGCTCCATCGGCCTGGGTGTCGGCTTCCCTGGCCCTGGCC
TGGGACGACCTGCGCTCCCTGTGCCTGTTCTACCACCGCCTGCGCAGCTTCATCCTGATCGCCGCCGACCGTGGAGC
TGCTGGGCCGCTCTCCCTGAAGGGCCTGCGCTGGGCTGGAGGGCTGAAGTACCTGTGGAACCTGCTGACTGGG
CCCGAGCTGAAGATCTCGCCATCAACCTGCTGGACACCACCGCCATCGCCATCGCCGGCTGGACCACCGCGTATCGAG
ATCGGCCAGCGCATCTGCCGCCATCCTGAACATCCCCGCCATCCGCCAGGGCTGGAGCGGCCCTGCTGTAA

19.43

2003 CON_A2 Env

A
MRVMGTQRNYQHLWRWGILILGMLIMCKATDLWVTVYYGVPVWKDADTLFCASDAKAYDTEVHNWATHACVPTDPNPQE
NLENVTEDFNWMKNNMVEQMHEIDIISLWDQSLKPCVKLTPLCVTLNCNSNANTNNSTMEEIKNCFSYNTTELRLDKTQKVYSL
FYKLDVVQLDESNKSEYYYLINCNTSAITQACPVSFEPPIHYCAPGFAILKCKDPRFNGTGSCNNVSSVQCTHGIKP
ASTQLLLNGSLAEGKVMIRSENITNAKNIIVQFNKPVPITCIRPNNNTRKSIRFGPGQAFYTNDIIGDIRQAHCNINKTKW
NATLQKVAEQLREHFPNKTIFTNSSGGDLEITTSHSFNCGGEFFYFCNTTGLFNSTWKNQTTNNTEQMITLPCRIKQIINMWQ
RVGRMAGYAPPIAGVIKTSNITGILITRDGGNNETETPRPGGDMRDNWRSLEYKVKVVKIEPLGVAPTRAKRVEREKA
VGMGAVFLGFLGAAGSTMAASITLTQARQLLSGIVQQQSNLKIAEAQQLLKLTVWGIKQLQARVLALERLYLQDQQLLG
IWGCSGKLICATTVPWNSSWSNKTQEEIWNNMTWLQWDKEIISNYNTIIYKLLEESQNQQEKNEQDLLALDKWANLWNWFNIT
NWLYWIRIFIMIVGLIGLRIVIAIISVNRVRQGYSPLSFQIPTPNPEGLDRPGRIEEGGGBEQGRDRSIRLVSGFLALAWD
DLRSLCLFSYHRLRDCILIAARTVELLGHSSLKGLRLGWEGLKYLWNLLLYWGRELKNSAISLLDTIAAVAETDRVIEIG
QRACRAILNIPRRIRQGFERALL\$

3

2003 CON_A2 Env.seq.opt

ATGCCGTGATGGCACCCAGCGCAACTACCAGCACCTGTGGCGCTGGGATCCTGATCTGGCATGCTGATGTGCA
AGGCCACCGACCTGTGGGTGACCGTGACTACGGCGTGGCCGACACCACCCCTGTTCTGCCCTCCGA
CGCCAAGGCCTACGACACCCAGGGTGCACAACGCTGACCTCAACATGTGGAAGAACACATGGTGGAGCAGATGCACGAGACATCATCTCCCTGT
AACCTGGAGAACGTGACCGAGGACTCAACATGTGGAAGAACACATGGTGGAGCAGATGCACGAGACATCATCTCCCTGT
GGGACCAGTCCCTGAAGCCCTCGTGAGGCTGACCCCTGTGCGTACCTGTAACGCTCCACCGCAAGACCCAGAAGGTGACTCCCTG
CTCCACCATGGAGGAGATCAAGAACATGCTCTAACACATCACCACCGAGCTGGCGACAAAGACCCAGAAGGTGACTCCCTG
TTCTACAAGCTGGAGCTGGTGAGCTGGACGAGTCCAACAAGTCCGAGTACTACTACCGCTGATCAACTGCAACACCTCCG
CCATCACCCAGGCTGCCCCAAGGTGCTTCAGGCCATCCCAACTCTGCGCCATCCACTACTGCGCCCCCGCCGCTTCGCCATCTGAA
GTGCAAGGACCCCCGCTTCAACGGCACCGGCTCCGTCAACACGTGTCCTCCGTGAGTCACCCACGGCATCAAGCCGTG
GCCTCCACCCAGCTGCTGTAACGGCTCCCTGGCCAGGGCAAGGTGATGATCCGCTCCGAGAACATCACCAACAAGCCA
AGAACATCATCGTCAGTCAACAAGCCGTGCCATCACCTGATCCGCCCCAACAACACACCCGAAGTCCATCGCTT
CGGCCCGGCCAGGCCTCTACACCAACGACATCATCGCGACATCCGCCAGGCCACTGCAACATCAACAAGACCAAGTGG
AACGCCACCTGCAAGAGTGGCCAGCAGCTGCGGAGCAGCTTCCCAACAAGACCATCATCTTACCAACTCTCCGGCG
GCGACCTGGAGATCACCAACCTCTCAACTGCGGCCGGAGTTCTACTGCAACACCACGGCTGTTCAACTCAC
CTGGAGAACGGCACCAACAACACCGAGCAGATGATCACCTGCGCATCAAGCAGATCATCAACATGTGGCAG
CGCGTGGGCCGCGCATGTACGCCCTGGCGATCAAGTGCACCTCCAACATCACCCGCTCATCTGACCC
GCGACCGGGCAACACAGAGACCGAGACCTTCCGCCGGCGGAGCAGTGCAGCTGGCGACTGGCGCTCCGAGCTGTACAA
GTCAAGGTGTAAGATCGAGCCCCCTGGCGTGGGCCCCACCCGGCGCAAGCGCCGCTGGTGGAGCGCGAGAACGGCC
GTGGGATGGGCCGTGCTCTGGCTTCTGGGCCGGCGCTCCACCATGGGCCGCTCCATCACCTGACCGTGC
AGGCCCGCCAGCTGCTGCGCATCGTCAGCAGCTGCAAGGCCACCTGCTGAAGGCCATCGAGGCCAGCAGCAGCTGCTGAA
GCTGACCGTGTGGGCATCAAGCAGCTGCAAGGCCGCTGGGCCACTCTCTGGTCCAACAAGACCCAGGAGGAGA
TCTGGAACAACATGACCTGGCTGCACTGGGACAAGGAGATCTCAAACATCACCATCTACAAGCTGCTGGAGGAGTC
CCAGAACCGCAGGAGAACACGAGCAGGACCTGCTGGCCCTGGACAAGTGGCCAACCTGTTCAACATCAC
AACTGGCTGTGGTACATCCGCATCTCATCATGATCGTGGCGGCCGATCGGCCTGCGCATCGTGATCGCCATCATCTCCG
TGGTGAACCGCGTGCAGCCAGGGCTACTCCCCCTGTCCCTCCAGATCCCCACCCCAACCCGAGGGCTGGACCAGCCGG
CCGCATCGAGGAGGGCGGGCGAGCAGGGCGCGACCGCTCCATCGGCCTGGTGTCCGGCTTGGCCCTGGCCTGGGAC
GACCTGCGCTCCCTGTGCTTCTACCAACCGCCTGCGGACTGCATCTGATCGCCGCCCGACCGTGGAGCTGCTGG
GCCACTCCCTCCCTGAAGGGCCTGCGCTGGGAGGGCTGAAGTACCTGTGGAACCTGCTGACTGGGCCGGA
GCTGAAGAACCTCCGCCATCTCCCTGCTGGACACCATCGCCGTGGCCGAGTGGGACCGACCGCGTATCGAGATCGGC
CAGCGCGCTGCCGCCATCCTGAACATCCCCGCCATCCGCCAGGGCTCGAGCGGCCCTGCTGTAA

-18.44

2003 CON_B Env

A
MRVKGIRKNYQHLWRWTMILLGMLIMCSAAEKLWVTVYYGVPVWEATTLFCASDAKAYDTEVHNWATHACVPTDPNPQE
VVLENVTEFNWMKNNMVEQMHEIDIISLWDQSLKPCVKLTPLCVTLNCNDLMNATNTNTTIIYWRGEIKNCFSNITTSIRD

KVQKEYALFYKLDVVPIDNNTSYRLISNTSVITQACPKVSFEPPIHYCAPAGFAILKCNDKKFNGTGPCTNVSTVQCTH
GIRPVVSTQLLNGSLAEEEVIRSENFTDNAKTIIVQLNESVEINCRPNNNTRKSIHIGPRAFYTTGEIIGDIRQAHCN
ISRAKWNNTLKQIVKLRQFGNKTIVFNQSSGGDPEIVMHSFNCGEFFYCNITQLFNSTWNGTWNNTENGNITLPCRIKQI
INMWQEVGKAMYAPPIRGQIRCSSNITGLLTDGGNNETEIFRPGGGDMRDNRSELYKYKVVKIEPLGVAPTKAKRRVQ
REKRAVGIGAMFLGFLGAAGSTMGAASMTLVQARQLLSIVQQQNLLRAIEAQQHLLQLTWVGIKQLQARVLAVERYLKD
QLLGIWGCSGKLICTTVPWNASWSNKLDEIWDNMTEWEREIDNYTSЛИYTLIEESQNQQEKNEQELLELDKWAISLN
WFIDTNWLWYIKIFIMIVGGLVGLRIVFAVLSIVNVRVRQGYSPLSFQTRLPAAPRGPDREPIEEEGGERDRDRSGRLVNGFL
ALIWDDLRSLCLFSYHRLRDLIIVARIVELLGRRGWEALKYWWNLLQYWSQELKNSAVSLLNATAIAVAEGTDRVIEVVQR
ACRAILHIPRRIQGLERALL\$

3

• 2003 CON_B Env.seq.opt

ATGCGCGTGAAGGGCATCCGCAAGAACTACCAGCACCTGTGGCGCTGGGCACCATGCTGCTGGGCATGCTGATGATCTGCT
CCGCCGCCAGAGAAGCTGTGGGTGACCGCTGACTACGGCGTGCCCCGTGGAAGGAGGCCACCAACCCCTGTTCTGCGCCCTC
CGACGCCAAGGCTACGACACCAGGGTGACAACAGTGTGGAAAGAACAAACATGGTGGAGCAGATGACGAGGACATCATCTCCC
GTGGTGTGGAGAACGTGACCGAGAACATTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGACGAGGACATCATCTCCC
TGIGGAGGACTCCCTGAAGGCCGTGAAGCTGACCCCCCTGTGCGTGACCCCTGAACCTGACTGCACCGACCTGATGAAACGCCAC
CAACACCAACACACCATCATCTACCGCTGGCGGGAGATCAAGAACTGCTCTCAACATCACACACCTCCATCCGCGAC
AAGGTGAGAAGGAGTACGCCCTGTTCTACAAGCTGGACGTGGTGCCTACGACAACGACAACACCTCTACGCCCTGATCT
CCTGAAACACCTCCGTATCACCCAGGCCGTGCCCCAAGGTGTCCCTCGAGCCCATCCCCATCCACTACTGCGCCCCCGCCGG
CTTCGCCATCCTGAAGTGAACGACAAGAACGACTCAACGGCACCGGCCCTGCACCAACGTGTCCACCGTGCAGTGCACCCAC
GGCATCCGCCCCGTGGTGTCCACCCAGCTGCTGTAACGGCTCCCTGGCGAGGGAGGAGGTGGTGTACCGCTCCGAGAAC
TCACCGACAACGCCAAGACCATCATCGTCAGCTGAACGAGTCCGGAGATCAACTGCACCCGCCAACAAACAACACCCG
CAAGTCCATCCACATCGGCCCCGGCCGCTTCTACACCACGGCGAGATCATGGCGACATCGGCCAGGCCACTGCAAC
ATCTCCCGGCCAAGTGGAAACAACACCTGAAGCAGATCGTAAGAACAGCTGCGCGAGCAGTTCGGCAACAAGACCATCGTGT
TCAACCAGTCCCTCCGGCGGCGACCCCGAGATCGTGTACTCCCTCAACTGCGGCGGCCAGTCTTCTACTGCAACACCCAC
CCAGCTGTTCAACTCCACCTGGAACGGCACCTGGAAACAACACCGAGGGCACATCACCCCTGGCCATCAAGCAGATC
ATCAACATGTGGCAGGGAGTGGCAAGGCCATGTACGCCCTGGGACATCCGGCGCCATCGCGCAGATCCGCTGCTCTCCAAACATCACCG
GCCTGCTGCTGACCCGCGACGGCGAACAAACAGAGACCGAGATCTTCCGCCCCGGCGGGCGACATGCGCGACAACACTGGCG
CTCCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCTGGCGTGGCCCCCACCAGGCCAACGCGCGTGGTGCAG
CGCGAGAAGGCCCGTGGCATCGGCCATGTTCTGGCTTCTGGCGCCGGTCCACCATGGCGCCGCTCCA
TGACCTGACCGTGCAGGCCAGCTGCTGCGCATCGCAGCAGAACACCTGCTGCCGCATCGAGGCC
GCAGCACCTGCTGAGCTGACCGTGTGGGCATCAAGCAGCTGCGAGGCCCGCGTGTGGCGTGGAGCGCTACCTGAAGGAC
CAGCAGCTGCTGGCATTGGGCTGCTCCGGCAAGCTGATCTGCACCAACCGCCGTGCCCTGGAACGCCCTGGTCAAACA
AGTCCTGGAGAGATCTGGACAACATGACCTGGATGGAGTGGAGGCCAGGAGATCGACAACACTACACCTCCCTGATCTACAC
CCTGATCGAGGAGTCCCAGAACACAGCAGGAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCCTCCCTGTTGAAC
TGGTTGACATCACCAACTGGCTGTTACATCAAGATCTCATCATGATGTCGGCGGCCCTGGTGGGCCATCGTGT
TCGCGCTGCTGTCATCGTAACCGCGTGCGCCAGGGCTACTCCCCCTGTCTCCAGACCCGCCCTGGCCGCCGG
CCCCGACCGCCCCGAGGGCATCGAGGAGGGCGGAGCGCAGCGCAGCGTCCGGCCCTGGTGGAGCGCTTCC
GCCCTGATCTGGGACGACTCGCTCCCTGTGCTGCTTCTCTACACCCGCCCTGGCGACCTGCTGCTGATCGTGAACCCGCA
TCGTTGAGCTGCTGGGCCCGCGCTGGGAGGTGCTGAAGTACTGGTGGAACTGCTGAGTACTGGTCCCAGGAGCTGAA
GAACCTCCGCCGTGCTCCCTGCTGAACGCCACCCCATCGCCGTGGCGAGGGCACCGACCGCGTACGGTGGTGCAGCGC
GCCCTGGCGCCATCGACATCCCCCGCCGATCGGCCAGGGCTGGAGCGGCCCTGCTGTA
ACRAILHIPRRIQGLERALL\$

4S

2003 B.anc Env

A MRVKGIRKNCQHLWRWTMLLGMLMICSAAENLWVTYYGVPVWEATTLCASDAKAYETEVHNWATHACVPTDPNPQE
VVLENVTENPNWKNNMVEQMHEDIISLWDQSLKPCVKTPLCVTLNCTDLLNATNTNSTNMYRWRGEIKNCFSNITTISIRD
KMKEYALFYKLDVVPIDNNTSYRLINCNTSVITQACPKVSFEPPIHYCTPAGFAILKCNDKKFNGTGPCKNVSTVQCTH
IRPVVSTQLLNGSLAEEEVIRSENFTDNAKTIIVQLNESVEINCRPNNNTRKSIHIGPRAFYATGEIIGDIRQAHCNL
SRAKWNNTLKQVVTKLREQFDNKTIIVFNQSSGGDPEIVMHSFNCGEFFYCNITQLFNSTWNGTWNNTENGNITLPCRIKQII
NMWQEVGKAMYAPPIRGQIRCSSNITGLLTDGGNNETEIFRPGGGDMRDNRSELYKYKVVKIEPLGVAPTKAKRRVQ
EKRAVGIGAMFLGFLGAAGSTMGAASMTLVQARQLLSIVQQQNLLRAIEAQHLLQLTWVGIKQLQARVLAVERYLKD
QLLGIWGCSGKLICTTVPWNASWSNKLDEIWDNMTEWEREIDNYTGLIYTLLIEESQNQQEKNEQELLELDKWAISLN
WFIDTNWLWYIKIFIMIVGGLVGLRIVFAVLSIVNVRVRQGYSPLSFQTRLPAAPRGPDREPIEEEGGERDRDRSGRLVNGFL
LIWDDLRSLCLFSYHRLRDLIIVARIVELLGRRGWEALKYWWNLLQYWSQELKNSAVSLLNATAIAVAEGTDRVIEVVQR
ACRAILHIPRRIQGLERALL\$

B

2003 B.anc Env.seq.opt

ATGCGCGTGAAGGGCATCCGCAAGAACTGCCAGCACCTGTGGCGCTGGGCACCATGCTGCTGGGCATGCTGATGATCTGCT
CCGCCGCCAGAACCTGTGGGTGACCGTGTACTACGGCGTGCCCGTGTGGAGGCCACCAACCCCTGTTCTGCGCCCTC

CGACGCCAAGGCTACGAGACCGAGGTGCACAACGTGTGGGCCACCCACGCCCTGCGTGCACCAGCCCCAACCCCAGGAG
 GTGGTGTGGAGAACGTGACCGAGAACCTCAACATGTGGAAGAACAAACATGGTGGAGCAGATGCACGAGGACATCATCTCCC
 TGTGGGACCAACTGCTGGCCCTGCGTGAAGCTGACCCCCCTGTGCGTGACCTGAACTGCACCGACCTGTAACGCCAC
 CAACACCAACTCACCACATGTACCGCTGGCGGGAGATCAAGAACACTGCTCTTCACCATCACCAACCTCCATCCGCGAC
 AAGATGCAGAAGGAGTACGCCCTGTTCTACAAGACTGGACGTGGTGCCTCATGACAACAAACACTCCCTACCGCCTGATCAACT
 GCAACACCTCCGTATCACCCAGGCCCTGCCCAAGGTGTCTTCAGGCCATCCCCATCCACTACTGCACCCCGCCGGCTT
 CGCCATCCTGAAGTGCAACGACAAGAACGTTCAACGGCACGGCCCTGCAAGAACGTGTCCACCGTGCAAGTGACCCACGGC
 ATCCGGCCCTGTTGTCACCCAGCTGCTGTAACGGCTCCCTGGCGAGGAGGAGGTGATCCGCTCCGAGAACACTTCA
 CCGACAACGCCAAGACCATCATGTGCAAGCTGAGTCCGTGGAGATCAACTGCACCCGCCAACAAACAAACACCCGCAA
 GTCCATCCACATCGGCCCCGGCGCCCTTCTACGCCACGGCGAGATCATGGCGACATCCGCCAGGCCACTGCAACCTG
 - TCCCGGCCAAGTGAACAACACCCCTGAAGCAGGTGGTGACCAAGCTGCGGAGCAGTGTGACAACAAAGACCATCGTGTCA
 ACCCCCTCCGGCGGCGACCCGAGATCGTGATGCACTCTTCAACTGCGGGCGAGTTCTTACTGCAACACCACCA
 GCTGTCACCTCACCTGGAACGGCACCTGGAACAACACCCGAGGGCACATCACCCCTGCCGATCAAGCAGATCATC
 AACATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCTCCATCCGCCAGATCCGCTGCTCCATCCAACATCACCGGCC
 TGCTGCTGACCGCGACGGCGAACACAGAGACCGAGATCTTCCGCCCGGCGGAGATCGCGGAGAACACTGGCGCTC
 CGAGCTGTACAAGTACAAGGTGGTGAGATCGAGGCCCTGGCGTGGCCCCACCAAGGCCAACGCCCGCGTGGTGCAGCGC
 GAGAAGCGCGCCGTGGGATCGGCCCATGTTCTGGGCTTCTGGCGCCCGGCTCCACCATGGGCCGCGCCATGA
 CCCTGACCGTGAGGCCCGCAGCTGCTGCGGATCGCAGCAGAACAAACCTGTCGCGCCATCGAGGCCGAGCA
 GCACCTGCTGCGACTGACCGTGAGGCCGAGGAGGCCGAGGCCGACCGCTCCGCCCTGGTGAACGCCCTGGTCAACAAGT
 CCCTGGACGAGATCTGGAACAACATGACCTGGATGGAGTGGAGCGCGAGATGACAACACTACACCGCCTGATCTACACCT
 GATCGAGGAGTCCCAGAACAGCAGGAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCCTCCCTGTTGAACTGG
 TTGACATCACCAACTGGTGTGGTACATCAAGATCTCATCATGATCGTGGGCCCTGGTGGCCATCGCAGTCGTTG
 CCGTGTGTCATCGTAACCGCGCGCCAGGGCTACTCCCCCTGTCCTTCAAGACCCGCTGCCGCCGCCCCCGGCC
 CGACCGCCCCGAGGGCATCGAGGAGGGCGAGGCCGACCGCTCCGCCCTGGTGAACGCCCTGGGCCATCG
 CTGATCTGGACGACCTGCGCTCCCTGTCCTTCAACCCGCTGCCGACCTGCTGATCGTGGCCGATCGTGGCCGATCG
 TGGAGCTGCTGGCCGCCGCTGGAGGCCCTGAAGTACTGGTGGAACCTGCTGCACTGGTCCAGGAGCTGAAGAA
 CTCCGCGTGTCCCTGTAACGCCACGCCATGCCGTGGCGAGGGCACCGCGTGATCGAGGTGGTGCAGCGGCC
 TGCCGCCATCTGCAACATCCCCCGCCGATCCGCCAGGGCCTGGAGCGGCCCTGCTGTAA

2003 CON_C Env

MRVRGILRNQWQWIWGLFWMLMICNVVGNLWVTVYYGPVWKEAKTTLFCASDAKAYEKEVHNWATHACVPTDPNPQE
 IYLENTENFNMWKNDMDVQMHEDIISLWDQSLKPCVKTPLCVLNCTNATNATNTMGEIKNSFNITTELRDKKQKVYAL
 FYRLDIVPLNEENNYSRILINCNTSAITQACPKVSFDPIPIHYCAPAGYAILKCNKTFNGTGPCNNVSTVQCTHGIKPVVSTQ
 LLLNGSLAEIIIIRSENLTNNAKTIIVHLNESVEIVCTRPNNTRKSIRIGPGQTFYATGDIIGDIRQAHCNISEDKWNKT
 LQKVSKKLKEHFPNKTIFEPSSGGDLEITTHSFNCRGEFFYCNTSKLFNSTYNSTNSTITLPCRICKQIINMWQEVRGRAMYA
 PPIAGNITCKSNITGLLLTDGGKNNTETFRPGGGDMRDNRSELKYKVVEIKPLGIAPTKAKRRVEREKRAVGIGAVFL
 GFLGAAGSTMGAASITLTQARQLLSIVQQQNLLRAIEAQHQMLQLTVWGIKQLQTRVLAIERYLKDQQLGIWGCGSKL
 ICTTAVPWNSWSNSQEDIWDNMTWMQWDREISNYTDITYRLLEDSQNQKEKNDLLALDSWKNLWNWFIDTNWLWYIKI
 FIMIVGGLIGLRIIFAVLSIVNVRVRQGYSPSFQTLTPNPRGPDRLGRIEEEGGEQDRDRSIRLVSGLALA
 WDDLRLSCLF
 SYHRLRDFILIAARAVELLGRSSLRGLQRGWEALKYLSLVQYWGLELKSAISLLDTIAIAVAEGTDRIIELIQCRAIR
 NIPRIRQGFEALQ\$
 46

2003 CON_C Env.seq.opt

ATGCCGCGTCGCCGCATCCTGCCAACCTGCCAGCAGTGGTGGATCTGGGCATCCTGGGCTTCTGGATGCTGATGATCTGCA
 ACCTGGTGGCAACCTGTGGGTGACCGTGTACTACGGCGTCCCCGTGTGGAAGGAGGCCAACCCATCTGCGCCTC
 CGACGCCAACGCCAACGGAGATGACAACACTGCGAACATGTGGAAGAACGACATGGTGGACAGATGCACGAGGACATCATCTCC
 ATCGTGTGGAGAACGTGACCGAGAACACTCAACATGTGGAAGAACGACATGGTGGACAGATGCACGAGGACATCATCTCC
 TGTGGGACCAGTCCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTGACCTGAACTGCACCAACGCCAACGCCAC
 CAACACCATGGCGAGATCAAGAACACTGCTCCTCAACATCACCCAGCTGCCGACAAAGAACGAGAACGGTGTACGCCCTG
 TTCTACCGCCTGGACATCGTGCCCTGAACGAGAACAACTCCTACCGCCTGATCAACTGCAACACCTCCGCCATCACCAAG
 CCTGCCCAAGGTGTCCCTGACCCCATCCCCATCCACTACTGCCCTGGCGCTACGCCATCCTGAAGTGCACAAACAA
 GACCTCAACGGCACCGGCCCTGCAACACGGTGTCCACCGCGTGCAGTGCACCCACGGCATCAAGCCCGTGGTGTCCACCCAG
 CTGCTGCTGAACGGCTCCCTGGCCAGGGAGGAGATCATCATCGCTCCGAGAACCTGACCAACAAACGCCAACGCCAC
 TGCACTGCAACGGAGTCCGTGGAGATCGTGTGACCCGCCAACAAACACCCGCAAGTCCCATCGGCCATCGGCC
 GACCTCTACGCCACCGGCCACATCGCGACATCCCCCAGGCCACTGCAACATCTCGAGGAGAACGTGAAACAGACC
 CTGCAAGGTGTCCAAGAACGACTTCCCAACAAAGACCATCAAGTGTGAGCCCTCCGGCGGCGACCTGG
 AGATCACCAACCCACTCCTCAACTGCCGCCAGTTCTACTGCAACACCTCAAGCTGTTCAACTCCACCTACAAC
 CACCAACTCCACCATCACCCCTGCCGATCAAGCAGATCATCAACATGTGGCAGGAGGTGGCCGCGCATGACGCC

CCCCCCATCGCCGGCAACATCACCTGCAAGTCCAACATCACCGGCCTGCTGCTGACCCGCACGGCGCAAGAACAAACACCG
AGACCTTCGCCCGGGCGCGACATGCGCACAATGGCGCTCGAGCTGTACAAGTACAAGGTTGGAGATCAAGCC
CCTGGCATGCCCGGCAAGGCCAGCGCCGCGTCCACCATGGGCCGCTCCATCACCGTGACCGTGAGGCCAGCTGCTGTCGGCA
GGCTTCTGGGCCGCCGGCTCCACCATGGGCCGCTCCATCACCGTGACCGTGAGGCCAGCTGCTGTCGGCA
TCGTGAGCAGCAGTCCAACCTGCTGCGCCATCGAGGCCAGCAGCACATGTCAGCTGACCGTGCTGGGATCTGGGCTGTCGGCA
GCTGAGCAGGCCAGTCCAGCTGCTGCCATCGAGCGCTACCTGAAGGACCAGCAGCAGCTGCTGGGATCTGGGCTGTCGGCA
ATCTGACCACCGCCGTGCCCTGGAACCTCTCTGGTCCAACAAGTCCAGGAGGACATCTGGACAACATGACCTGGATGC
AGTGGACCGCGAGATCTCAACTACACCGACACCATCTACCGCTGCTGGAGGACTCCAGAACAGCAGGAGAACAGA
GAAGGACCTGTCGGCCCTGGACTCTGGAAAGAACCTGTGGAACTGGTCGACATCACCAACTGGCTGTTGACATCAAGATC
TTCATCATGATCGTGGCGGCGCTGATCGGCTGCGCATCATCTCGCGTGTGTCGATCGGCGCTGGGCGCATCGAGGAGGAGGGCGA
GCAGGACCGCGACCGCGTCCATCGGCCGCTGGTGTCCGCTCTGGCCCTGGCGTGGGACGACCTGCGCTCCCTGTC
TCCTACCAACCGCTGCGCACTTCATCTGATCGGCCGCGCGTGGAGCTGCTGGGCGCTCTCCCTGCGCGCCCTG
AGCGGGCTGGAGGCCCTGAAGTACCTGGGCTCCCTGGTCAGTACTGGGCTGGAGCTGAAGAACGTCGCGCATCTCC
GCTGGACACCATCGCATCGCCGTGGCGAGGGCACCGACCGCATCATCGAGCTGATCCAGCGCATCTGCGCGCCATCCGC
AACATCCCCCGCCGATCCGCAGGGCTCGAGGCCGCGCTGAGTAA

19. 4/

A

2003 C.anc Env

MVRMGILRNQQQWIWGLGFWMILMICNVVGNLWVTVYYGVPVWKEAKTTLFCASDAKAYEREVHNWATHACVPTDPNPQE
MVLENVTFNWKNDMDQHMEDIISLWDQSLKPCVKLTPLCVTLNCTNATNATNTMGECKNCFSNITTELDRKKQKVYAL
FYRLDIVPLNDNNNSYRLINCNTSAITQACPKVSDPPIHYCAPAGYAILKCNKTFNGTGPCNNVSTVQCTHGIKPVNSTQ
LLLNGSLAEEEIIIRSENLTNAKTIIVHLNESVEIVCTRPNNNTRKSIRIGPGQTFYATGDIIGDIRQAHCNISEEKWNKT
LQRVGELKEHFPNKTIKFAPSSGGDLEITTHSFNCRFFYCNTSLFNSTYN SKNSTIILPCRIKQIINMWQGVGRAMYA
PPIAGNITCSNITGLLTRDGGKNNTETFRPGGDMRDNRSELYKYKVVIEKPLGIAPTEAKRRVVEREKRAVGIGAVFL
GFLGAAGSTMGAASITLTQARQLLSGIVQQQSNLLRAIEAQQHMLQLTWGIKOLOTRVLAIERYILKDQQLGIWGCSGKL
ICTTAVPNSSWSNKSQEEIWDNMTWMQWDREISNYTDIYRLLEDSQNQQEKENQDLLALDSWENLNWFDTNWLVYIKI
FIMIVGGGLIGLRIIFAVLSIVNRVRQGYSPLSFQTLTPNPRGPDRLGRIEEEEGGEQDRDRSIRLVSGFLALAWDDLRSLCLF
SYHRLRDFILIAARAVELLGRSSLRGLQRGWEALKYLGSLVQYWGLELKSAISLLDTIAVAEGTDRIELIQRICRAIR
NIPRRIORGFEAALL\$

B

2003 C.anc Env.seq.opt

ATGCGCGTGTGGCATCCTGCGCAACTGCCAGCAGTGGGGATCTGGGCATCCTGGGCTCTGGATGCTGATGATCTGCA
ACGTGGTGGCAACCTGTCGGTGACCGTGTACTACCGCGTGGCCGTGGAGGCCAGACCACCCCTGTTCTGCGCCTC
CGACGCCAAGGCCAACGAGCGCGAGGTGACAACACGTGTGGGCCACCCACGCCCTGCGTGCACCCACGCCA
ATGGTGTGGAGAACGTGACCGAGAACCTCAACATGTGGAAGAACGACATGGTGGACAGATGCAAGGAGACATCTCCC
TGTGGGACCACTCCCTGAAGCCCTGCGTAAGCTGACCCCTGTGCGTACCCCTGAACCTGCAACGCCAACGCCAC
CAACACCATGGCGAGATGAAGAACCTGCTCCTCAACATCACCAACGGAGCTGCGGACAAGAACAGAAGGTGTACGCCCTG
TTCTACCGCTGGACATCGTGCCTTGACGACAACAACCTCCTACCGCTGATCAACTGCAACACCCCTGCCATCACCCAGG
CTGCCCCAAGGGTGTCTCGACCCCATCCACTACTGCGCCCCCGCCGCTACGCCATCTGAAGTCAACAA
GACCTTCAACGGCACGGCCCTGCAACACGTGTCCACCGTGCACTGCAACGCCATCTGAAGTCAACAA
CTGCTGCTGAACGGCTCCCTGGCGAGGAGGAGATCATCATCGCCGAGAACCTGACCGACAACGCCAACGACATCATCG
TGCACCTGAACGGAGTCTGGAGATCTGTGCAACCCGCCAACAAACAACACCCGCAAGTCCATCCGATCGGCCCCGGCCA
GACCTTCAACGGCACGGCGACATCATCGCGACATCCGCCAGGCCACTGCAACATCTCGAGGAGAACGTGAAAGAACACC
CTGCGCGTGGCGAGAACGCTGAAGGAGCACTCCCAACAAGACCATCAAGTTCGCCCCCTCTCCGGCGGACCTGG
AGATCACCACCACTCCTCAACTGCCCGCGAGTTCTACTGCAACACCTCCGCTGTTCAACTCCACCTACAAC
CAAGAACCTCACCACCATCACCTGCCGATCAAGCAGATCATCAACATGTGGCAGGGCGTGGGCCGATGTACGCC
CCCCCATCGCCGGAACATCACCTGCAAGTCAACATCACCGCCGCTGCTGACCCCGGACGGCGAACGAAACACCCG
AGACCTCCGCCGGCGCGGACATCGCGACAACCTGGCGTCCGAGCTGACAAGTACAAGGTTGGAGATCAAGCC
CCTGGCATGCCCGGACCGAGGCCAAGCGCCGCGTGGAGCGCGAGAACGCCGCGCCGATCGCGCCGATCTGG
GGCTTCTGGGCCGCCGCTCCACCATGGCGCCGCTCCATCACCGTGACCGTGAGGCCAGCTGCTGTCGGCA
TCGTGAGCAGCAGTCCAACCTGCTGCGCCATCGAGGCCAGCAGCACATGCTGCAAGCTGACCGTGCTGGGATCAAGCA
GCTGAGACCCCGCGTGGCCATCGAGCGTACCTGAGGCCAGCAGCTGCTGGGATCTGGGCTGCTCCGGCAAGCTG
ATCTGCAACCCGCGAGATCTCAACTACACCGACACCATCTACCGCTGCTGGAGGAGATCTGGGACAACATGACCTGGATGC
AGTGGGACCGCGAGATCTCAACTACACCGACACCATCTACCGCTGCTGGAGGAGACTCCAGAACCCAGCAGGAGAACAGA
GCAGGACCTGCTGGCCCTGGACTCTGGAGAACCTGTTGGAACCTGTTGACATCACCAACTGGCTGTTGACATCAAGATC
TTCATCATGATCGTGGCGGCCATCGGCCATCATCTTCCGCGTGTCCATCTGTAACCGCGTGCACCGTGCTGGGATCTGG
ACTCCCCCTGTCCTCCAGACCCCTGACCCCAACCCCGCGCCCGACCGCTGGGCCATCGAGGAGGAGGGCGGCA
GCAGGACCGCGACCGCTCCATCGCCGTGGTGCCGGCTCCCTGGGCCATGGGACGACCTGCGCTCCCTGTC
TCCTACCAACCGCCCTGCGGACTTCATCTGATCGCCGCCGCGCCGAGCTGCTGGGCCGCTCCCTGCGCGCCCTGC

J. 48
A

AGCGGGCTGGGAGGCCCTGAAGTACCTGGGCTCCCTGGTCAGTACTGGGCCTGGAGCTGAAGAAGTCCGCCATCTCCCT
GCTGGACACCATGCCATGCCGTGGCGAGGGCACCGCATCATCGAGCTGATCCAGGCATCTGCCGCCATCCCG
AACATCCCCCGCCGATCCGCCAGGGCTTCGAGGCCCTGCTGTAA

2003 CON_D Env

MRVRGIQRNYQHLWRWGIMLLGMLMICSVAENLWVTVYYGVPVWEATTLCASDAKSYKTEAHNIWATHACVPTDPNPQE
IELENVTENFNWKNNMVEQMHDIIISLWDQSLKPCVKLTPLCVTLNCTDVKNNTSNDTNEGEMKNCSFNITTEIRDKKQ
VHALFYKLDVVPIDDNSNTSYRLINCNTSAITQACPVTPEPIHYCAPAGFAILKCKDKFNGTGPCKNVSTVQCTHGI
RPVUSTQLLLNGSLAEEEIIIRSENLTNAKIIIVQLNESVTINCTRPNRTPIGPGQALYTRIKGDIRQAHCNISR
AEWNKTLQQVAKKLGDLLNKTTIFKPSSGGDPEITTHSFNCGGEFYFCNTSRLFNSTWNNTKWNSTGKITLPCRIKQIINM
- WQGVGKAMYAPPIEGLIKCSSNITGLLTRDGGANNSHNETFRPGGDMRDNRSELYKYKVVKIEPLGVAPTRAKRRVER
EKRAIGLGAMFLGFLGAAGSTMGAASMTLTVQARQLLSGIVQQQNLLRAIEAQHQHLLQLTVWGIKQLQARI LAVERYLKQD
QLLGIWGCSKGKHICTTTVPWNSSWSNKS LDEIWNNMTWMEWEREIDNYTGLIYSLIEESQNQQEKNQEELLEDKWASLWNW
FSITQWLWYIKIFIMIVGGLIGLRIVFAVLSQLVNRVRQGYSPLSFQTLLPAPRGPDPEGIEEEEGGEQGRGRSIRLVNGFSA
LIWDDLRNLCLFSYHRLDLILIAARIVELLGRRGWEALKYLWNLLQYWIQELKNSAISLFDTTAIAVAEGTDRVIEIVQRA
CRAILNIPTRIRQGLERALL\$

B
2003 CON_D Env.seq.opt

ATGCCGCGTCGCCGCATCCAGCGCAACTACCAGCACCTGGCGCTGGGCATCATGCTGTGGCATGCTGATGATCTGCT
CCGGCCGAGAACCTGTGGGTGACCGTGACTACGGCGTGGCGTGGAAAGGAGGCCACCACCCCTGTTCTGCCCT
CGACGCCAAGTCTACAAGACCGAGGCCAACACATCTGGCCACCCACGCCCTGCGTGCACCGACCCCAACCCCCAGGAG
ATCGAGCTGGAGAACGTGACCGAGAACCTCAACATGTGGAGAACAAACATGGTGGAGCAGATGCACCGAGGACATCATCTCC
TGTGGGACCAGTCCCTGAAGCCCTGGTGAAGCTGACCCCTGTGCGTGCACCTGAACTGCACCGACGTGAAGCGCAACAA
CACCTCCAACGACACCAACGAGGGCAGATGAAGAACCTGCTCCTCAACATCACCACCGAGATCCGGACAAGAAGAAGCAG
GTGCAACCGCCCTGTTCTACAAGCTGGACGTGGTGCACGACAACAACTCCAACACCCCTTACCGCTGATCAACTGCA
ACACCTCCGCCATACCCAGGCTGCCAACGGTGAACCTCGAGCCATCCCCATCCACTACTGCCCCCCGCCGCTTCG
CATCCTGAAGTCAAGGACAAGAACAGTTCAACGGCACCGGCCCTGCAAGAACGGTGTCCACCGTGCAGTGCACCCACGGCATC
CGCCCCGTGGTGTCCACCCAGCTGCTGAAACGGCTCCCTGGCCAGGAGGAGATCATCATCCGCTCCGAGAACCTGACCA
ACAACGCCAAGATCATCATCGTGCAGCTGAACGAGTCCCTGACCATCAACTGCACCCGCCCCATACAAACACCCGGCAGCG
CACCCCCATCGCCCCGGCCAGGCCCTGTACACCAACCCGATCAAGGGCAGATCCGCCAGGCCACTGCAACATCTCCG
GCCGAGTGGAAACAGACCTGCAACGGTGGCAAGAACAGTGGGACCTGCTGAACAAAGACCCATCATCTCAAGCCCT
CCTCCGGCGGCCACCCAGATCACACCCACTCTTCAACTCGCGCGAGTTCTCTACTGCAACACCTCCGCTGTT
CAACTCCACCTGAACAAACACCAAGTGGAACTCCACCGCAAGATCACCTGCCCTGCCATCAAGCAGATCATCAACATG
TGGCAACGGCGTGGCAAGGCCATGACGCCCTTACCGTGCAGGGCCTGATCAAGTGTCTCCAAACATCACCGCCCTGCTGC
TGACCCCGACGGCGGCCAACAACTCCCACAAACGAGACCTCCGCCGGCGGACATGCGCAGAACACTGGCGCT
CGAGCTGTACAAGTACAAGGTGGTGAAGAACGAGCCCTGGCGTGGCCCCACCGCGCCAAGCGCCGCGTGGTGGAGCG
GAGAACGCGCCATCGGCCCTGGCGCCATGTTCTGGCTTCTGGCGCCGGCTCCACCATGGCGCCCTCCATGA
CCCTGACCGTGCAAGGCCAGCTGCTGCTGCCATCGCAGCAGAACAAACCTGCTGCGGCCATCGAGGCCAGCA
GCACCTGCTGACGTGACCGTGAGGGCATCAAGCAGCTGCAGGCCGACATCTGGCGTGGAGCGTACCTGAAGGACCAAG
CAGCTGTGGGCATCTGGGCTGCTCCGGCAAGCACATCTGCACCAACCGTGCACCTGGAAACTCCCTGTGGCAACAAAGT
CCCTGGACGAGATCTGAAACAAACATGACCTGGATGGAGTGGGAGCCGAGATCGACAACATACCCGGCTGATCTACTCCCT
GATCGAGGAGTCCCGAGAACGAGCAGGAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCTCCCTGTGGAAACTGG
TTCTCCATCACCCAGTGGCTGTTACATCAAGATCTTCATCATGATCGTGGCGCCCTGATCGGCCCTGCGCATCGTGTG
CCGTGCTGTCCTGGTGAACCGCGTGCGCCAGGGCTACTCCCCCTGTCCTTCCAGACCCCTGCTGCCGCCCGCGGCC
CGACCGCCCCGGGGCATCGAGGAGGAGGGCGGCCAGCAGGGCGGCCCTCCATCCGCTGGTGAACGGCTTCTCCGCC
CTGATCTGGGACGACCTGCGCAACCTGTGCTTCTACTACCACCGCTGCGCACCTGATCTGATCGCCGCCATCG
TGGAGCTGCTGGGCCGCCGGCTGGAGGCCCTGAAGTACCTGTGGAACCTGCTGCACTGAGTACTGGATCCAGGAGCTGAAGAA
CTCCGCCATCTCCCTGTCACACCACCGCCATGCCGTGGCGAGGGCACCGACCGCTGATCGAGATCGCAGCGGCC
TGCCCGCCATCTGAACATCCCCACCGCATCCGCCAGGGCTGGAGCGGCCCTGCTGTAA

2003 CON_F1 Env

J. 49
A

MRVRGMQRNWQHLGKWLFLGILIICNAAENLWVTVYYGVPVWEATTLCASDAKSYEKEVHNWATHACVPTDPNPQE
VVLENVTENFDWKNNMVEQMHTDIISLWDQSLKPCVKLTPLCVTLNCTDVNATNNDTNDNKTGAIQNCSFNMTTEVRDKKL
KVHALFYKLDIVPISNNMSKYRLINCNTSTIQACPVKWSDPPIHYCAPAGYAILKCNDRFNGTGPCKNVSTVQCTHGI
PVVSTQLLLNGSLAEDIIIRSQNISDNAKTIIVHLNESVQINCTRPNNTRSIHLPQFQAFYATGEIIIGDIRKAHCNISG
TQWNKTLQVKAKLKSHFPNKTIFNNSGGDLEITMHFSNCRGEFFYCNSTSGLFNDTGSNGTITLPCRIKQIVNMWQEVR
AMYAAPIAGNITCNSNITGLLTRDGGQNNETFRPGGGNMKDNRSELYKYVVEIEPLGVAPTKAKRQVVKRERRAVGIG
AVFLGFLGAAGSTMGAASITLTQARQLLSGIVQQQNLLRAIEAQHQHLLQLTVWGIKQLQARVLAVERYLKQQLLGWGC
SGKLICTNVPWNSSWSNKS QDEIWNNMTWMEWEKEISNSNIIYRLIEESQNQQEKNQEELLALDKWASLWNWFDISNWLW

YIKIFIMIVGGILIGLRIVFAVLSIVNVRKGYSPSLQTLIPSPREPDRPEGIEEGGGEQGKDRSVRLVNGFLALVWDDLRN
LCLFSYRHLRDFILIAARIVDRLRGWEALKYLGNLTQWSQELKNSAISLLNTTAIVVAEGTDRVIEALQRAGRAVLNIP
RRIRQGLERALLS

3

2003 CON_F1 Env.seq.opt

ATGCGCGTGCAGCGCAACTGGCAGCACCTGGCAAGTGGGCTGCTGTTCTGGCATCCTGATCATCTGCA
ACGCCGCCAGAACCTGTGGGTGACCGTGTACTACGGCGTCCCCGTGGAAGGAGGCCACCACCCCTGTCGCGCCTC
CGACGCCAACGCTTACGAGAAGGAGGTGACAACGTGTGGCCACCCACGCCCTGCGTCCCCACGCCAACCCCCAGGAG
GTGGTGTGGAGAACGTGACCGAGAACATTGACATGTGGAAGAACACATGGTGAGCAGATGCACACCGACATCATCTCC
TGTGGGACAGTCCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTGAACCTGACCGACGTGAACGCCACCAA
· CAACGACACCAACGACAACAAGACCGGCCATCCAGAACTGCTCCCTCAACATGACCCAGGTGCGGACAAGAAGCTG
AAGGTGACGCCCTGTTACAAGCTGGACATCGTGCACCCATCTCAACACAACACTCCAAGTACCGCCGTATCAACTGCAACA
CCTCCACCATACCCAGGCCATGGGACCCATCCCCATCCACTACTGCGCCCCGCCGCTACGCCAT
CCTGAAGTGCACGCCCTGTTACAAGCTGGACATCGTGCACCCATCTCAACACAACACTCCAAGTACCGCCGTATCAACTGCAACA
CCCGTGGTGTCCACCCAGCTGCTGCTGACGGCTCCCTGGCCGAGGAGGACATCATCCTCGCTCCAGAACATCTCCGACA
ACGCCAACGACCATCATCGTGCACCTGAAACGAGTCCGTGCGATCAACTGACCCGCCAACAAACACACCCGCAAGTCCAT
CCACCTGGGCCCCGGCAGGCCCTTCTACGCCACCGCGAGATCATCGGCGACATCCGCAAGGCCACTGCAACATCTCCGCA
ACCCAGTGGAAACAAGACCTGGAGCAGGTGAAGGCCAAGCTGAAGTCCCACCTCCCAACAAGACCATCAAGTCAACTCCT
CCTCCGGCGCGACCTGGAGATCACCCTGACTGCGCCGAGGTTCTTACTGCAACACCTCCGGCTGTT
CAACGACACCGGCTCCAACGGCACCATCACCCCTGCCCATCAAGCAGATCGTGAACATGTGGCAGGAGGTGGGCC
GCCATGTACGCCGCCCATGCCGCAACATCACCTGCAACTCCAACATCACCGGCCCTGCTGACCCGCGACGGCGGCC
AGAACAAACACCGAGACCTCCGCCCCGGCGCAACATGAAGGACAACCTGGCGCTCCGAGCTGTACAAGTACAAGTGG
GGAGATCGAGCCCCCTGGCGTGGGCCCCACCAAGGCCAAGCGCAGGTGGTGAAGCGCGAGCGCCGCGTGGGCATCGGC
GCCGTGTTCTGGGCTTCTGGCGCCGGCTCCACCATGGCGCCGCTCCATCACCTGACCGTGCAGGCCGAGGCGCCAGC
TGCTGTCCGGCATCGTGCAGCAGAACACTGCTGCGCGCATCGAGGCCAGCACCTGCGCAGCTGACCGTGTG
GGGCATCAAGCAGCTGCAGGCCGCGTGGAGCGTACCTGAAGGACCAGCAGCTGCTGGGCTGTGGGCTG
TCCCGCAAGCTGATCTGCCACCAACGTGCCCTGGAACTCCTCTGGTCCAACAAGTCCCAGGAGGAGATCTGGAAACAACA
TGACCTGGATGGAGTGGAGAAGGAGATCTCCAACACTACTCCAACATCATCACCGCCCTGGAAACTGGTTCGACATCTCCAACTGGCTG
GGAGAAGAACGAGCAGGAGCTGCTGCCCTGGACAAGTGGGCTCCCTGTGGAACATGGTTCGACATCTCCAACTGGCTG
TACATCAAGATCTCATCATGATCGTGGCGCCCTGATCGGCGCATCGTGTTCGCGTGTCCATCGTAACCG
TGCAGAAGGCTACTCCCCCTGTCCTGCAAGACCCCTGATCCCCCTCCCCCGCGAGCCGACCGCCCGAGGGCATCGAGGA
GGGGCGCGCGAGCAGGCAAGGACCGCTCCGTGCGCTGGTGAACGGCTTCTGGCCCTGGTGTGGACGACTGCGCAAC
CTGTGCTGTTCTCCATCGCCACCTGCGGACTTCATCCTGATGCCGCCCATCGTGGACCGCGGCCCTGCCGCC
GGGAGGCCCTGAAGTACCTGGCAACCTGACCCAGTACTGGTCCCAGGAGCTGAAGAACCTGCCATCTCCCTGTAACAC
CACCGCCATCGTGGTGGCCAGGGCACCGACCGCGTGATCGAGGCCCTGCAAGCGCGCCGCCGTGCTGAACATCCCC
CGCCGATCCGCCAGGCCCTGGAGCGCGCCCTGCTGTAA

ig.50

A

2003 CON_F2 Env

MRVREMQRNWQHLGKWLFLGILICNAADNLWVTVYYGVPUWEATTLFCASDAKAYEREVNVWATYACVPTDPSPQE
LVGNVTENFNMWKNMVDQMHEIDIISLWDQSLKPCVKLTPLCVTLNCTDVNTINTNVTLEIKNCFSFNITTEIKDKKKK
EYALFYRLDVPPINNSIVYRLISCNSTVTQACPVSPEPIHYCAPAGFAILKNDKFKNGTGLCRNVSTVQCTHGRPV
VSTQLLNGSLAEDIIIRSENISDNTKTIIVQFNRSVEINTRPNNNTRKSIRIGPGRFYATGDIIDIRKAYCNINRTL
WNETLKKVAEEFKNFNITVTNPSSGGDLEITTHSFNCRGEFFYCNDSLNFNTEVNNTKTITLPCRIRQFVNWMQRVGRA
MYAPIAQIQCNSNITGLLLTDGGKGSETLRPGGDMRDNRSELYKYKVVKIEPLGVAPTKAKRQVVQREKRAVGIGA
VLLGFLGAAGSTMGAASITLTQARQLLSGIVQQQSNLLKAEAQHLLQLTVWGIKQLQARI
LAVERYLKQDQQLLGIWCS
GKLICTTNPWNSSWSNKSQDEIWDMNTWMQWEKEISNYTDIYRLIEDAQNQQEKNEQDLLALDKWDNLWSWFTITNWLWY
IKIFIMIVGGILIGLRIVFAVLSVNVVRQGYSPSLQTLIPNPRGPERPGGIEEEGGEQDRDRSIRLVSGFLALAWDDLRS
CLFSYRHLRDFILIAARTVDMGLKRGWEALKYLWNLQPQYWGQELKNSAISLLDTTAIVVAEGTDRIEVLQRAGRAVLHIPR
RIRQGFERALLS

B

2003 CON_F2 Env.seq.opt

ATGCGCGTGCAGCGAGATGCAGCGCAACTGGCAGCACCTGGCAAGTGGGCTGCTGTTCTGGCATCCTGATCATCTGCA
ACGCCGCCAGAACCTGTGGGTGACCGTGTACTACGGCGTCCCCGTGGAAGGAGGCCACCACCCCTGTCGCGCCTC
CGACGCCAACGCTTACGAGCGAGGTGACAACGTGTGGGCAACCTACGCCCTGCGTCCCCACGCCAACCCCCCTCCCCCAGGAG
CTGGTGTGGCAAGCTGACCGAGAACATTCAACATGTGGAAGAACACATGGTGAGCAGATGCACGAGGACATCATCTCC
TGTGGGACAGTCCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTACCCCTGACACTGACCCAGCTGACCGTGAACGTGACCAT
CAACACCACCAACGTGACCCCTGGCGAGATCAAGAACTGCTCCCTCAACATCACCCACCGAGATCAAGGACAAGAAGAAG
GAGTACGCCCTGTTTACCGCCCTGGACGTGGTGCCTGACACTCGTGTACCCCTGATCTCTGCCAACACCTCCA
CCGTGACCCAGGCCCTGCCCAAGGTGTCCCTCGAGGCCATCCCCATCCACTACTGCGCCCCCGCCGCCATCTGAA

GTGCAACGACAAGAAGTCAACGGCACCGGCCTGTGCCGAACTGTCCACCGTGCACTGCACCCACGGCATCCGCCCGTG
GTGTCCACCCAGCTGCTGAACGGCTCCCTGGCGAGGAGGACATCATCATCCGCTCCGAGAACATCTCCGACAACACCA
AGACCATCATCGTCAGTTCAACCGCTCCGTGGAGATCAACTGCACCCGCCCCAACAAACACACCCGCAAGTCCATCCGAT
CGGCCCCGGCCGCCCTACGCCACCGCAGACATCATCGGCACATCCCAAGGCTACTGCAACATCAACCCGACCCCTG
TGGACAGAGACCTGAAGAAGGTGGCGAGGAGTCAAGAACCAACTCAACATCACCGTGAACCTTCAACCCCTCCGGCG
GCGACTGGAGATCACCACCACTCCCTCAACTGCCGCGAGTTCTACTGCAACACCTCCGACCTGTTCAACAACAC
CGAGGTGAACAACACCAAGACCATCACCCCTGCCCATCCGCACTGCCAGTTGTGAACATGTGGCAGCGTGCGGCC
ATGTACGCCCCCCCATGCCGGCAGATCCAGTCAACTCAAACATCACCGGCTGCTGCTGACCCCGACGGCGAAGA
ACGGCTCCGAGACCCCTGCCGGCGGACATGCCGACAACCTGCCGCTCCGAGCTGTACAAGTACAAGGTGGTGA
GATCGAGCCCCCTGGCGTGGCCCCACCAAGGCAAGGCCAGGTGGTGAGCGCGAGAACGCGCCGTGGCATCGGCC
GTGCTGCTGGCTTCCCTGGCGCCGGCTCACCAGGGCGCCGCCATCACCGTGAACGGCATCGAGGCCAGCAGCTGC
TGTCCGGCATCGTCAGCAGTCCAACCTGTGAAGGCCATCGAGGCCAGCAGCACCTGCTGCACTGACCGTGTGGG
CATCAAGCAGCTGCCAGGCCATGCCGTTGGAGCGTACCTGAAGGACAGCAGCTGCTGGCATCTGGGCTGCTCC
GGCAAGCTGATCTGACCAACGTGCCCTGAACTCCCTGGTCAACAAAGTCCAGGACGAGATCTGGACAACATGA
CCTGGATGAGTGGGAGAAGGAGATCTCAACTACACCGACACCACATCACCGCTGATGAGGACGCCAGAACAGCAGGA
GAAGAACGAGCAGGCCATGCCGTTGGACAACCTGTGGCTCTGGTCAACCATCACCAACTGGCTGTGGTAC
ATCAAGATCTTCACTCATGATCGGGGGCTGATGCCCTGCGCATCGTGTGGCTCTGGTGAACCCGCTG
GCCAGGGCTACTCCCCCTGTCAGACCTGTCCATGCCCTGGTCTGGCTCTGGCTGGACGACCTGCGCTCC
GGCGCGAGCAGGACCGCAGCGTCCATGCCCTGGTCTGGCTCTGGCTGGACGACCTGCGCTCC
TGCCTGTTCTCCCTACCGCACCTGCCGACTTCATCCTGATGCCGCCGCAACCGTGGACATGGGCTTGAAGCGCGCTGG
AGGCCCTGAAGTACCTGTGGAACCTGCCAGTACTGGGCCAGGAGCTGAAGAACCTGCCATCTCCCTGCTGGACACAC
CGCCATGCCGTGGCGAGGGCACCGACCGCATCGAGGTGCTGAGCGGCCGCGCTGCTGACATCCCCCG
CGCATCCGCCAGGGCTTCGAGCGGCCCTGCTGAA

g.5.

A

2003 CON_G Env

MRVKGIQRNWQHLWKWGLILGLVIICSASNNLWVTVYYGVVWEDADTTLFCASDAKAYSTERHNWATHACVPTDPNPQE
ITLENVTENFNMWKNNMVEQMHEIDIISLWDESLKPCVKLTPLCVTLNCTDVNTNNNTNNTKEIKNCFSNITTEIRDKKKK
EYALFYRLDVVPINDNGNSSIYRLINCNVSTIKQACPKVTFDPPIPIHYCAPAGFAILKCRDKKFNGTGPCKNVSTVQCTHGI
KPVVSTQLLLNGSLABEEIIIRSENITDNTKVIIQVNETIEINCRPNNTNTRKSIRIGPQAFYATGDIIGDIIQAHCVNS
RTKWNEMLQKVKAQLKIFNKSITFNSSSGDLEITTHSFNCRGEFFYCNTSGFNNNSLNSTNSTITLPCKIKQIVRMWQR
VGQAMYAPPAGNITCRSNITGLLLTDGGNNNTETFRPGGDMDRNWRSELYKYKIVKIKPLGVAPTRARRVVEREKR
GLGAVLLGFLGAAGSTTMGAASITLTQVQRQLLSIVQQQSNLLRAIEAQQHLLQLTWGIKQLQARVLAVERYLKQDQLLGI
WGCSDKLICTTNVPWNTWSNSKSYNEIWDNMTWIEWEREISNYTQOIQYSLIESQNQZEKNEQDLLALDKWASLWNWFIDTK
WLWYIKIFIMIVGGLIGLRIVPAVLISIVNRVRQYSPLSFTLTHIQREPDRPERIEEGGGEQDKDRSIRLVSGFLALA
LRSCLFLSYHRLRDFILIAARTVELLGRSSLKGLRLGWEGLKYLWNLLLYWGQELKNSAINLLDTIAIAVANWTDRVIEVAQ
RACRAILNIPRIRQGLERALL\$

B

2003 CON_G Env.seq.opt

ATGCCGTGAAGGGCATCCAGCGAACTGGCAGCACCTGTGGAGTGGGCCACCCGTACCTGGCTGGTACATCTGCT
CCGCTCCAACAAACCTGTGGGTGACCGTGACTACGGCGGCCGACACCACCCCTGCTGCC
CGACGCCAAGGCCACTCCACCGAGGCCACACGTGTGGGCCACCCACGCCCTGCTGCCACCGACCCCAACCCAGGAG
ATCACCTGGAGAACGTGACCGAGAACACTCAACATGTGGAGAACAAACATGGTGGAGCAGATGCCAGGACATCATCTCC
TGTGGGAGGAGTCCCTGAAGCCCTGGTGAAGCTGACCCCTGTGGTGAACCTGACCGAGCTGAAGCTGACCGAGTGA
CAACAAACCAACAAACACCAAGAAGGAGATCAAGAACATGCTCCCTCAACATCACCGAGATCCGGACAAGAACAGAAG
GAGTACGCCCTGTTCTACCGCTGGAGCTGGCCATCAACGACAACGGCAACTCCCATCTACCGCTGATCAACTGCA
ACGTGTCCACCATCAAGCAGGCTGCCCAAGGTGACCTCGACCCCATCCACTACTGCCCTGCAAGTGTCCACCGTGCAGTGCACCC
CATCTGAAGTGCCGCGACAAGAACGTTCAACGGCACCGGCCCTGCAAGAACAGTGTCCACCGTGCAGTGCACCC
AAGCCGTGGTCCACCCAGCTGCTGAACGGCTCCCTGGCCAGGAGGAGATCATCATCGCTCCGAGAACATCACCG
ACAACACCAAGGTGATCATCGTCAGCTGAACGAGACCATCGAGATCAACTGCCACCCGCCAACAAACACCCGCAAGTC
CATCCGATCGCCCCGGCCAGGCCCTACGCCACCGCGACATCATCGGCACATCCGACGCCACTGCAACGTGTCC
CGCACCAAGTGAACGAGATGCTGAGAAGGTGAAGGCCAGCTGAAGAACAGTCTCAACAGTCCATCACCTCAACTCCT
CCTCCGGCGGCCACCTGGAGATCACCAACTCCTCAACTGCCGGCGAGTTCTACTGCAACACCTCCGCTGTT
CAACAACTCCCTGCTGAACCTCCACCATCACCTGGCCCTGCAAGAACATGCGAGATCGTGCAGTGGCAGCGC
GTGGGCCAGGCCATGTACGCCCTGGCCAGACATCACCTGGCCCTCAACATCACCGGCCCTGCTGACCCCG
ACGGCGGCAACAAACACCGAGAACCTTCCGCCGGCGCGACATGCCGAGAACACTGGCGCTCCGAGCTGTACAAGTA
CAAGATCGTGAAGATCAAGCCCCCTGGCGTGGCCCCCAGCCCGCCGGCGCCGAGAACAGGCGCC
GGCCTGGCGCCGTGCTGGCTCTCTGGCGCCGGCTCCACCATGGCGCCGCTCCATCACCTGAGCGCAGCAGC
TGCGCCAGCTGCTGTCGGCATCGTCAGCAGTCAACCTGCTGCGCCATCGAGGCCAGCAGCACCTGCTGAGCT
GACCGTGTGGGCATCAAGCAGCTGAGGCCGCGTGGAGCGTACCTGAAGGACCAGCAGCTGCTGGCAGC

TGGGGCTGCCGGCAAGCTGATCTGCACCAACGTGCCCTGGAACACCTCTGGTCAAACAAGTCTACAAAGGAGATCT
GGGACAACATGACTGGATCGAGTGGGAGCGCGAGATCTCAAACACTACACCCAGCAGATCTACTCCCTGATCGAGGAGTCCC
GAACCAGCAGGAGAAGAACGAGCAGGCCCTGTCGGCCCTGGACAAGTGGGCTCCCTGTTGAACTGGTCGACATACCAAG
TGGCTGTGGTACATCAAGATCTTCATCATGATCGTGGCCGCTGATCGGCCTGCGCATCGTGTTCGCCGTGCTGTCCATCG
TGAACCGCGTGCGCCAGGGCTACTCCCCCTGTCCTTCCAGACCCCTGACCCACCACAGCCGAGGCCGACCGCCCCGAGCG
CATCGAGGAGGGCGGCGGCAGGACAAGGACCGCTCCATCCGCCTGGTGTCCGGCTTCTGGCCCTGGCCTGGGACGAC
CTGCGCTCCCTGTCCTGTTCTACCAACCGCTGCGCAGCTCATCTGATCGCCGCCCGACCGTGGAGCTGCTGGCC
GCTCCTCCCTGAAGGGCCTGCGCCTGGCTGGGAGGGCCTGAAGTACCTGTTGAAACCTGCTGTA
CTGGGGCCAGGAGCT
GAAGAACTCCGCCATCAACCTGCTGGACACCATGCCATGCCGTGCCA
CTGGACCGACCGCGTGTGATCGAGGTGGCCAG
CGCGCCTGCCGCCATCCTGAACATCCCCCGCCGATCGGCCAGGGCTGGAGCGCGCC
TGCTGTAA

2003 CON_H Env

TRVMETQRNYPSSLWRWGLTLIGMLLICSAAGNLWVTVYYGVPWKEAKTTLFCASDAKAYETEKHNWATHACVPTDPNPQEMVLENVTENFNMWENDMVEQMHTDIISLWDQSLKPCVKLTPLCVTLDCSNVNTTNATNSRFNMQEELTNCSFNVTTVIRDKQPKVHALFYRLDVPIPDDNNSYQYRLINCNTSVITQACPVSFEPIPIHYCAPAGFAILKCNNKTNGTCPCTNVSTVQCTHGI RPVVSTQLLLNGLAEEQVIIRSKNISDNTKNIIVQLNKPVEITCTRPNNNTRKSILHGPQAFYATGDIIGDIRQAHCNISGKKWNKTLHQVVTQLGKYFDNRTIIFKPHSGGDMEVTHSFNCRGEFFYCNTSGLFNSSWTNSTNDTKNIITLPCRIKQIVNMWQRVGQAMYAPPKGNITCVSNITGLLTFDEGNNTVTFRPGGGMDRDNWRSELYKYKVVKIEPLGVAPTEARRRVVERE KRAVGMGAFFFLGFLGAAGSTMGAASTITLTQARQLLSGIVQQQSNNLLRAIQAQQHMLTWGKIQQLQARVRLAVERYLKDOQQLLGIGWCGSKLICTTNPWNSSWSNKSLDIWEIDNMTWMEWDKQINNYTEEYIRLLEVSQTOQEKENEQDLALLDKWASLNWF SITNWLYIKIFIMIVGGGLIGLRIIFAVLSIVNRVRQGYSPLSFQTLIPNPRGPDRPEGIEEEGGEQDRDRSVRLVNGFLPLVWDDLRSCLFSYRLRDLLIVVRTVELLGRRGREALKYLWNLLQYWGQELKNSAINLLNTTAIAVAEGTDRIIEIVQRAW RAILHIPRRIQGFERTLL\$

2003 CON_H Env.seq.opt

ACCCGGCGTGTGGAGACCCAGGCCAACTACCCCTCCGTGGCGCTGGGCACTGATCTGGCATGCTGCTGATCTGCT
CCGCCGCCGGCAACCTGTGGGTGACCGTGACTACGGCGTCCCCTGGAAGGAGGCAAGACCACCCCTGTTCTGCGCCTC
CGACGCCAAGGCCTACGAGACCGAGAACGACAACGTGTGGCCACCCACGCCGTGCCCACCGACCCCCAACCCCCAGGAG
ATGGTGCTGGAGAACGTGACCGAGAACATTCAACATGTGGGAGAACGACATGGTGAGCAGATGCACACCGACATCATCTCC
TGTGGGACCACTGGCTGAAGCCCTGCGTGAAGCTGACCCCTGTGCGTGAACCTGGACTGCTCCAACGTGAACACCACCAA
CGCCACCAACTCCCGCTTCAACATGCAGGAGGAGCTGACCAACTGCTCTTCAACGTGACCACCGTGATCCGCACAAGCAG
CAGAAGGTGCACGCCCTGTTCTACGCCCTGGACGGTGGTGCCATCGACGACAACACTCCTACCACTGACGCCCTGATCAACT
GCAACACCTCCGTGATCACCCAGGCCCTGGCCAAAGGTGTCCTCGAGGCCATCCCCATCCACTACTGCGCCCCCGCCGGCTT
CGCCATCTGAAAGTCAACACAAGACCTCAACGGCACCGGCCCTGACCCAACGTGTCCACCGTGAGTGCACCCACCGC
ATCCGGCCCCGTGGTGTCCACCCAGCTGCTGCTGAACGGCTCCCTGGCGAGGAGCAGGTGATCATCCGCTCCAAGAACATCT
CCGACACACCAAGAACATCATCGTGAGCTGAAACAGGCCCTGGAGATCACCTGACCCGCCAACAAACACCCCGCA
GTCCATCACCTGGCCCCGGCCAGGCCCTACGCCACCCGGGACATCATGGCGACATCCGCGAGGCCACTGCAACATC
TCCGGCAAGAAGTGGAAACAAGACCTGACCAAGGGTGGTGAACCAAGCTGGCAAGTACTTCAACACCCGACCATCATCTCA
AGCCCCACTCCGGCGCGACATGGAGGTGACCAACCCACTCTCAACTGCCGGCGAGTTCTTACTGCAACACCCCTCCGG
CCTGTTCAACTCTCCTGGACCAACTCCACCAACGACACCAAGAACATCATCACCTGCCGCGCATCAAGCAGATCGTG
AACATGTGGCAGCCGTGGGCCAGGCCATGTACGCCCTCATCAAGGGCAACATCACCTGCGTGTCCAACATCACCGGCC
TGATCTGACCTTCGACGAGGGCAACACCGTGACCTTCCGCCCCGGCGCGCGACATGCGGACAACACTGGCGTCCGA
GCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCTGGCGTGGCCCCCACCAGGGCCCGCCGCGTGGTGGAGCGCGAG
AAGCGCCGTGGCATGGCGCCTTCTCTGGCTTCTGGCGCCGGCTCCACCATGGCGCCGCTCCATCACCC
TGACCGTGCAAGGCCGCCAGCTGCTGTCGGCATCGCAGCAGCAGTCAACCTGCTGCCGCATCCAGGCCAGCAGCA
CATGCTCAGCTGACCGTGTTGGGCATCAAGCAGCTGCAAGGCCCGCGTGTGGCCGTGGAGCGTACCTGAAGGACCAAGCAG
CTGCTGGCATCTGGGCTGCTCCGGCAAGCTGATCTGACCAACCGTGCCCTGGAACCTCTCTGGTCCAACAAGTCCC
TGGACGAGATCTGGGACAACATGACCTGGATGGAGTGGACAAGCAGATCAACAAACTACACCGAGGAGATCTACCGCTGCT
GGAGGTGCTCCAGACCCAGCAGGAGGAGAACGAGCAGCAGGACCTGCTGGCCCTGGACAAGTGGGCTCCCTGTGGAACCTGGTTC
TCCATCACCAACTGGCTGTTACATCAAGATCTTACATGATCGTGGCGGGCTGATCGGCCATCATCTTCCGG
TGCTGTCATCGTGAACCGCGTGGCCAGGGCTACTCCCCCTGTCTTCCAGACCGTGTACCCCAACCCCCCGGGGGGG
CCGCCCCGAGGGCATCGAGGAGGAGGGCGCGAGCAGGACCGCGACCCGCTCGTGCCTGGTAACGGCTTCTCTGCCCTG
GTGTGGGACGACCTGCGCTCCCTGTGCTGTCTTACCGCCTGCTGCGCACCTGCTGCTGATCGTGGTGCACCGTGG
AGCTGCTGGGCCCGCGCGGAGGCCCTGAAGTACCTGCTGGAACCTGCTGCACTGAGTACTGGGCCAGGGAGCTGAAGAACCTC
CGCCATCAACCTGCTGAACACCAACGCCATGCCGTGGCCAGGGCACCGACCGCATCATGAGATCGCAGCGCCTG
CGGCCATCTGACATCCCCCGCCGATCCGCCAGGGCTTCGAGCGCACCCCTGCTGTAA

2003 CON 01 AE Env

MRVKETQMNWPNLWKWGTLLGLVIICASDNLWVTVYYGVPVWRDADTLFCASDAKAEDEVHNWATHACVPTDPNPQE
IHLENVTENFMWKNNMVEQMVEDVISLWDQSLKPCVKLTPLCVTLNCTNANLTNVNNITVNSNIIGNITNEVRNCFSNMTT
ELRDKKKQVHALFYKL DIVQIEDNNSYRLINCNTSVIKQACP KISFDPIPIHYCTPAGYAILKCNDFNGTPCKNVSSVQ
CTHGIKPVVSTOLLNGSLAEEEIIIRSENLTNAKTIIVHLMKSVEINCRPSNNTRTSITIGPGQVFYRTGDIIGDIRKA
YCEINGTKWNEVLKVQTEKLEHFNNTKIIIFQPPSGGDLEITMHFPNCRGEFFYCNTTKLFNNTCIGNETMEGCNGTIIILPC
KIKQIINMWQGAGQAMYAPPISGRINCVSNITGILLRDGGANNTNETFRPGGGNIKDNWRSELYKYKVVQIEPLGIAPTRA
KRRVVEREKRAVGIGAMIFGFLGAAGSTMGAASITLTQARQLLSIVQQSNLLRAIEAQHLLQTVWGIKQLQARVLA
ERYLKDKQFGLWGCSGKICCTAVPNSTWSNRSFEEIWNNMTWIEWEREISNYTNQIYEILTESQNQQRNEKDLELDK
WASLWNWFIDITNWLYIKIFIMIVGGLIGLRIIFAVLSIVNRVRQGYSPLSFQTPTHHQREPRPERIEEGGGEQGRDRSRV
LVSGFLALAWDDLRSLCLFSYHRLDFILIAARTVELLGHSSLKGLRGWEGLKYLGNLLYWQELKISAISLLDATAIAV
AGWTDRVIEVAQGAWRAILHIPRRIQGLERALL\$

2003 CON_01_AE Env.seq.opt

ATGCGCGTGAAGGAGACCCAGATGAACCTGGCCCAACCTGTGGAAGTGGGCCACCTGTATCTGGGCTGGTATCATCTGCT
CCGCCTCCGACAACCTGTGGGTGACCGTGACTACGGCGTGCCCGTGACGCCGACACCCTGTTCTGCGCCTC
CGACGCCAAGGCCACGAGACCGAGGTGACAACTGTGCGCCGACCCACGCCGCTGCGTGCCGACCCCAACCCCCAGGAG
ATCCACCTGGAGAACGTGACCGAGAACTTCACATGTGGAAGAACACATGGTGGAGCAGATGAGGAGGACGTGATCTCCC
TGTGGGACAGTCCCTGAAGCCCTGCGTAAGCTGACCCCCCTGTGCGTGACCTGAACTGACCAACGCCAACCTGACCAA
CGTGAACAAACATCACCAACAGTGTCCAACATCATCGGCAACATCACCAACGAGGTGCGCAACTGCTCCTCAACATGACC
GAGCTGCGCACAAGAAGCAGAAGGGTGCACGCCCTGTTCTACAAGCTGGACATCGTGCAGATGAGGACAACAACCTTAC
GCCTGATCAACTGCAACACCTCCGTATCAAGCAGGCCGCCCCAAGATCTCCCTCGACCCCATCCCCATCCACTACTGCAC
CCCCGCCGGCTACGCCATCCTGAAGTGAACGACAAGAACCTCAACGGCACCGGCCCTGCAAGAACGTGTCCTCCGTGCA
TGCACCCACGGCATCAAGCCGTGGTCCACCCAGCTGCTGCTGAAACGGCTCCCTGGCCGAGGAGGAGATCATCATCCGCT
CCGAGAACCTGACCAACAAGCCAAGACCATCATCGTGCACCTGAAACAAGTCCGTGGAGATCAACTGACCCGCCCTCAA
CAACACCCGCACCTCCATCACCATGGCCCCGCCAGGTGTTCTACCGCACCGGCACATCATGGCGACATCCGCAAGGCC
TACTGCGAGATCAACGGCACCAAGTGAACGAGGTGCTGAAAGCAGGTGACCGAGAACGACTGAAAGGAGCACTTCAACAAACAAGA
CCATCATCTTCCAGCCCCCTCCGGCGCGACCTGGAGATCACCATGACCACTTCAACTGCGCGGAGTTCTTCTACTG
CAACACCAAGCTGTTCAACAACACCTGCATCGGAAACGAGACCATGGAGGGCTGCAACGGCACCATCATCTGCGCCTGC
AAGATCAAGCAGATCATCAACATGTGGCAGGGGCCGGCAGGCCATGTACGCCCTCCATCTCCGGCGCATCAACTGCG
TGTCAACATCACGGCATCTGCTGACCCGCCAGGGGCCAACAAACACCAAGAGACCTTCCGGCCGGGGCGCG
CATCAAGGACAACACTGGCGTCCGAGCTGATAAGTACAAGTGGTGCAGATGAGGCCCTGGGCATCGCCCTGGCG
AAGCGCCGCGTGGTGGAGCGAGAACGCGCGCCATGATCTTGGCTCTGGCGCCGGCTCCA
CCATGGCGCCCTCCATCACCTGACCGTGAGGCCAGCTGCTGAGCGTGTGGGCATCAAGCAGCTGAGGCCCGCG
GCGGCCATCGAGGCCAGCAGCACCTGCTGAGCTGACCGTGAGGCCATCAAGCAGCTGAGGCCCGCG
GAGCGCTACCTGAAGGACAGAACGTTCTGGGCTGTGGGCTGCTCCGGCAAGATCATCTGACCAACGCCGTGCC
ACTCCACCTGGTCCAACCGCTCTTGAGGAGATCTGGAACAAACATGACCTGGATCGAGTGGAGCCGAGATCTCAACTA
CACCAACCAAGATCTACGAGATCCTGACCGAGTCCAGAACAGCAGGCCAACGAGAACGGACCTGCTGGAGCTGGACAAG
TGGGCTCCCTGTGGAACTGGTTGACATCACCAACTGGCTGTGGTACATCAAGATCTTACATGATCGTGGCGGCTGA
TCGGCCTGCGCATCATCTGCGCTGTCCATCGTGAACCGCGCAGGGCTACTCCCCCTGTCCCTCCAGACCC
CACCAACCAAGCGCGAGGCCGACGCCCGAGCGCATCGAGGAGGGCGGCCGAGCACGGCCGACCGCTCCGTGCG
CTGGTGTCCGGCTCTGCCCCCTGGGCTGGACGACCTGCGCTCCCTGTGCTTCTCTACCACCGCTGCGCAGTCA
TCCCTGATCGCCGCCGACCGTGAGCTGCTGGGCACTCTCCCTGAAGGGGCTGCGCCGGCTGGAGGGCTGAAGTA
CCTGGGCAACCTGCTGCTGTACTGGGGCAGGGAGCTGAAGATCTCCGCCATCTCCCTGCTGGACGCCACGCCATGCCGTG
GCCGGCTGGGACCGACCGCGTATCGAGGTGGGCCAGGGGCCCTGGCGCCATCTGCACATCCCCGCCATCCGCCAGG
GCCCTGGAGCGGCCCTGCTGTAA

ig. 54

2003 CON_02_AG Env

A
MRVMGIQKNYPPLLWRWGMIIFWIMIICNAENLWVTVYYGVPVWRDAETTLFCASDAKAYDEVHNWATHACVPTDPNPQE
HLENVTENFMWKNNMVEQMHEDIISLWDQSLKPCVKLTPLCVLDCHNNITNSNTNNAGEIKNCFSNMTTEL RDKKQKV
YALFYRLDVVQINKNSQYRLINCNTSAITQACP KVS FEP IPIHYCAPAGFAILKCNDFNGTPCKNVSTVQCTHGIKP
VSTQLLLNGSLAEEEIVIRSENITNNAKTIIVQLVKPVKINCTRPNNNTRKSVRIGPGQTFYATGDIIGDIRQAHCNVSRTK
WNNTLQQVATQLRKYFNKTIIFANPSGGDLEITTHSFNCGGEFFYCNTELFNSTWNSTWNNTKCIITLQCRIKQIVNMWQK
VGQAMYAPPISGRINCVSNITGLLTRDGGNNNNTNETFRPGGGDMRDNWRSELYKYKVVKIEPLGVAPTRAKRVEER
AVGLGAVFLGFLGAAGSTMGAASITLTQARQLLSIVQQSNLLRAIEAQHLLKLTWGIKQLQARVLA
GIWGCGSKLICCTTVPWNSSWSNKTYNDIWDNMTWLQWDKEISNYTDIINYLIEESQNQQEKENQDLLALDKWASLWNWFDI
TNWLWYIKIFIMIVGGLIGLRIIVFAVLTIIINVRQGYSPLSFQTLTHHQREPRPERIEEGGGEQDRDRSRVRLVSGFLALAW
DDLRSLCLFSYHRLDFVILIAARTVELLGHSSLKGLRGWEALKYLGNNLSYWGQELKNSAINLLDTIAIAVANWDRVIEI
GQRAGRAILNIPRRIQGLERALL\$

2003 CON_02_AB Env.seq.opt

ATGCGCGTGATGGGCATCCAGAAGAACCTCCCTGCTGTGGCGCTGGGCATGATCATCTTCTGGATCATGATCATCTGCA
ACGCCAGAGAACCTGTGGGTGACCGTGTACTACGGCGTCCCCGTGTGGCGCAGCCGAGACCACCCCTGTTCTGCGCCTCCGA
CGCCAAGGCCTACGACACCGAGGTGACAACAGTGTGGGCCACCCACCCCTGCGTCCCCACCGACCCCCAACCCCCAGGAGATC
CACCTGGAGAACGTGACCGAGAACACTTCACATGTGGAGAACAAACATGGTGGAGCAGATGACGAGGACATCATCTCCCTGT
GGGACCAAGTCCCTGAAGCCCTGCGTGAGACTGACCCCCCTGTGCGTGACCCCTGAGACTGCCACAACAACATGCCAAC
CACCAACAAACAACGCCGGGAGATCAAGAACACTGCTCCCTCAACATGACCAACCGAGCTGCGGACAAGAAGCAGAAGGTG
TACGCCCTGTTTACCGCCCTGACGTGGTGAGATCAACAAGAACAAACTCCCAGTACCGCCTGATCAACTGCAACACCTCCG
CCATCACCCAGGCCAGGTGCTTCCAGGCCATCCCCATCCACTACTGCGCCCCCGCCGCTCGCCATCCCTGAA
GTGCAACGACAAGGAGTTCAACGGCACCGGCCCTGCAAGAACGTGTCACCCTGCGAGATGACCCACGGCATCAAGCCCGTG
• GTGTCCACCCAGCTGCTGACCGCTCCCTGGCGAGGAGATCGTGTACCGCTCCGAGAACATGCCAAC
AGACCATCATCGTGACGTGGTGAGCCGTGAAGATCAACTGACCCGCCAACACAACACCCGCAAGTCCGTGCGCAT
CGGCCCGGCCAGACCTCTACGCCACCGCGACATCATCGCGACATCCGCCAGGCCACTGCAACGTGTCCTGCCACCAAG
TGGAAACAACACCCCTGCAACGGCAGGTGGCCACCCAGCTGCGCAAGTACTTCACAAAGACCATCATCTCGCCAAACCCCTCCGGCG
GCGACTCGAGGAGATCACCACCCACTCCCTCAACTGCGCGGCGAGTTCTCTACTGCAACACCTCCGAGCTGTTCAACTCCAC
CTGGAACCTCACCTGGAACAAACACCAGAGAAGTGCATCACCTGCGAGTGCAGTCAGCAGATCGTGAACATGTGGCAGAAG
GTGGGGCAGGCCATGTACGCCCCCCCCATCCAGGGCGTGTACCGCTGGAGTCAACATCACCGCCCTGCGTGTGACCCCG
ACGGCGCAACAAACAACCTCACCAACAGAGACCTTCCAGGGCGGCGACATGCGCAACATGGCGCTCCGAGCTGTA
CAAGTACAAGGTGGTGAGATCGAGCCCCCTGGCGTGGCCCCCACCCCGGCCAACGCGCGTGGAGCGAGAACGCG
GCCGTGGCCTGGCGCCGTGTTCTGGCTTCTGGCGCCGCGCTCCACCATGGCGCCCTCCATCACCCCTGACCG
TGCAGGCCCGCCAGCTGCTGCGCATCGCAGCAGTCCAACCTGCTGCGGCCATCGAGGCCAGCAGCACCTGCT
GAAGCTGACCGTGTGGGCATCAAGCAGCTGCAAGGCCCGTGTGGCCCTGGAGCGCTACCTGAAGGACCACAGCTGCTG
GGCATCTGGGGCTGCTCCGGCAAGCTGATCTGACCAACCCCGTGCCTGGAACCTCCCTGGTCCAACAAGACCTACAACG
ACATCTGGGACAACATGACCTGGCTGCAAGTGGACAAGGAGATCTCAACTACACCGACATCATCTACAACCTGATCGAGGA
GTCCCAGAACAGCAGGAGAACAGAGCAGGACCTGCTGGCCCTGGACAAGTGGGCCTCCCTGTTGAACTGGTCGACATC
ACCAACTGGCTGTGGTACATCAAGATCTTCATGATCGTGGCGCCTGATCGGCTGCGCATCGTGTGCGTGTG
CCATCATCAACCGCGTGCGCCAGGGTACTCCCCCTGTCCTCCAGACCCACCAAGCGCGAGGCCGACCGCC
CGAGCGCATCGAGGAGGGCGGCGAGCAGGACCCGAGCCGCTCCGTGCGCCTGGTGTCCGCTTCTGGCCCTGGCGTGG
GACGACCTCGCGTCCCTGCTCTCTACACCACCGCTGCGGACTCTCGTGTGATCGCGGCCGACCGTGGAGCTGC
TGGGCAACTCTCCCTGAGGGCGCTGGCGCTGGAGGCGCTGAAGTACCTGGGCAACCTGCTGTCTACTGGGCA
GGAGCTGAAGAACCTCGCCATCAACCTGCTGGACACCATGCCATGCCGTGGCCAACGGACCGACCGTGTGAGATC
GGCGCGGCCGGCGGCCATCCTGAACATCCCCCGCCGATCCGCCAGGGCGTGGAGCGGCCCTGCTGTAA

g. SS

2003 CON_03_AB Env

A
MRVKEIRKHLWRWGLTLFLGMLMICSATENLWVTVYYGVPVWKEATTIIFCASDAKAYSKEVHNWATYACVPTDPSPQEIP
ENVTFNMGKNNMVEQMHEDIISLWDQSLKPCVKLTPLCVTLNCTDLKKNTSTNTSSIKMMEMKNCSFNITTDLRDKVKK
EYALFYKLDVVQIDNDSYRLISNTSVTQACPKISFEPPIHYCAPAGFAILKCNDFNGTGPCTNVSTVQCTHGIKPVV
STQLLLNGSLAEEEVIRSVNFTDNTKTIIIVQLKEPVEINCRPNNNTRKGHIHGPGRAYATGDIIGDIRQAHCNISITKW
NNTLKQIVIKLRKQFGNKTIVFNQSSGDPEIVMHSFNCGEFFYCTTFLNFNSTWNGTEELNNTEGDIVTLPCRIKQIINM
WQEVGKAMYAPPPIAGQIRCSSNITGLLRTDGGNQSNVTEIFRPGGGDMRDNRSELYKYKVVKIEPLGVAPTKAKRRVVQR
EKRAVGIGAVFLGFLGAAGGSTMGAAISITLTQARQLLSGIVQQQNLLRAIEAQQHLLQLTVWGIKOLOQARVLVERYLKQ
QLLGIGCGSGKLICCTTAVPWNTWSNKSLSDEIWNNTMWEMEREINNYTGLIYNLIEESQNQQEKNEQEILALDKWASLWNW
FDISKWLWYIKIFIMIVGLVGLRIIFAVLSIVNRVRQGYSPLSFQTRLPTQRGPDRPEGIEEEEGGERDRDTSI
RLVNGFLA
LIWDDLRSLCLFIYHHLRLLLIAARIVELLGRRGWEALKYWWNLLQYWIQELKSSAINLIDTIAIAVAGWTDRVIBIGQRF
CRAIRNIPRRIRQGAEKALQS

B

2003 CON_03_AB Env.seq.opt

ATGCGCGTGAGGGAGATCCGCAAGCACCTGTGGCGCTGGGCACCCCTGTTCTGGCATGCTGATGATCTGCCACCG
AGAACCTGTGGGTGACCGTGTACTACGGCGTCCCCGTGTGGAGGAGGCCACCCACCCCTGTTCTGCGCCTCCGACGCCAA
GCCCTACTCCAAGGAGGTGACAACAGTGTGGGCCACCTACGCCCTGCGTCCCCACCGACCCCTCCCCCAGGAGATCCCCCTG
GAGAACGTGACCGAGAACACTCAACATGGCAAGAACACATGGTGGAGCAGATGACGAGGACATCATCTCCCTGTTG
AGTCCCTGAAGGCCCTGCGTGAAGCTGACCCCCCTGCGCTGACCTGACTGACCGACCTGAAGAACAGTGACCTCCAC
CAACACCTCTCCATCAAGATGATGGAGATGAAGAACACTGCTCTTCAACATCACCGACCTGCGGACAAGGTGAAGAAG
GAGTACGCCCTGTTCTACAAGCTGGACGTGGTGAGATGACACCGACTCTACCGCCTGATCTCTGCAACACCTCCGTGG
TGACCCAGGCCCTGCCCCAGATCTCTCGAGGCCACCCATCCCCACTACTGCGCCCCCGGGCTCGCCATCTGAAAGTG
CAACGACAAGAACGTTCAACGGCACCGGCCCTGACCAACGTGTCCACCGTGCAGTGCACCCACGGCATCAAGCCGTGGTG
TCCACCCAGCTGCTGTAACGGCTCCCTGGCGAGGAGGAGGTGGTGTACCGCTCCGTGAACCTCACCGACAAACACCAAGA
CCATCATCGTGACGTGAAGGAGCCGTGGAGATCAACTGACCCGCCAACAAACACCCGCAAGGGCATCCACATCGG

CCCCGGCGCGCCTTCTACGCCACGGCGACATCATCGGCACATCGCCAGGGCCACTGCAACATCTCCATCACCAAGTGG
AACAAACACCCCTGAAGCAGATCGTGATCAAGCTCGCAAGCAGTTCGCAACAAGACCATCGTGTCAACCAGTCTCCGGCG
GCGACCCCGAGATCGTGATCCCTCAACTCGGGCGAGTTCTACTGCAACACCACCAAGCTGTTCAACTCCAC
CTGGAAACGGCACCGAGGAGCTGAACAAACCGAGGGCGACATCGTGAACCTCGCCATCAAGCAGATCAACATG
TGGCAGGAGGTGGCAAGGCCATGTACGCCCCCCCCTCGCCGGCAGATCCGCTGCTCCCTCAACATCACCGGCTGTC
TGACCCCGACGGCGCAACCAGTCCAACGTGACCGAGATCTCCGCCCCGGCGGCGACATCGCGACAACACTGGCGCTC
CGAGCTGACAAAGTACAAGGTGGTGAAGATCGAGCCCCGGCGTGGCCCCACCAAGGCGAAGCAGCGTGGTGCAGCG
GAGAAGCGCGCCGGGGCATCGGCGCGTGTCCCTGGGCTTCTGGCGCCGGCTCCACCATGGCGCCGCTCCATCA
CCCTGACCGTGCAGGCCAGCTGTCCTGGCATCGCAGCAGCAGAACACCTGTCGCGCCATCGAGGCCAGCA
GCACCTGCTGCAGCTGACCGTGTGGGCAAGCTGATCTGCACCAACCGCGTGCCTGGAACACCTCTGGTCAACAAGT
CCCTGGAGAGATCTGAAACAACATGACCTGGATGGAGTGGAGCGAGATCAACAACTACACCGGCTGATCTACAACCT
GATCGAGGAGTCCAGAACCGCAGGAGAACAGCAGCAGGAGATCTGGCCCTGGACAAGTGGGCTCCCTGTTGAACCTGG
TTCGACATCTCCAAGTGGCTGTTGATCAAGATCTCATCATGATCGTGGGCGGCTGGTGGGCTGCGCATCTTCG
CCGTGCTGTCATCGAACCGCGTGCAGGCCAGGGCTACTCCCCCTGTCCTCCAGACCCGCTGCCACCCAGCGGCC
CGACCCCGGAGGGCATCGAGGAGGGCGAGCGCAGACCTCCATCCGCTGGTGAACGGCTTCTGGCC
CTGACTGGGACGACTGGCTCCCTGTCATCTACCAACCTGCGGACCTGCTGATCGCCGCCCCGATCG
TGGAGCTGCTGGGCCGGCTGGAGGCTGAAGTACTGGTGAACCTGCTGAGTACTGGATCCAGGAGCTGAAGTC
CTCCGCCATCAACCTGACACCATCGCCATGCCGTGGCGCTGGACCGACCGGTGATCGAGATCGGCCAGCGCTTC
TGCGGCCATCCGAAACATCCCCCGCATCCGCCAGGGCGGAGAAGGCCCTGCACTAA

19.54

A

2003 CON_04_CPX Env

MRVMGIQRNYPHLWEWGLILGLVIICSAKNLWVTVYYGVPWRDAETTPFCASDAKAYDKEVHNIWATHACVPTDPNPQE
IAKVNTEFNWKNNMVEQMHEDIISLWDEGLKPCVKLPLCVALNCSENINNSTKTNEEIKNCFSNITEIRDKKKK
EYALFYRLDIVPINDSANNSINSEYMLINCNASTIKQACPKVTFEPPIHYCAPAGFAILKNDKNFTGLGPCTNVSSVQC
THGIKPVVSTQLLNGLATEGVVIRSKNFTDNTKNIIIVQLAKAVKINCTRPNNTRKSVHIGPGQTWYATGEIIGDIRQAH
CNISGNDWNETLQKIVEELRKHFNPNTKIIIFAPSAGGDLEITTHSFNCGEFFYCNTSELFNSTYMNSTTINKTITLPCR
IKQIVSMWQEVGQAMYAPIAGSINCSSDITGIIILTRDGNNNTNETFRPGGGDMRDNRSELYKYKVVKIEPVGVAPTRA
RRRVVQREKRAVGIGAVFLGFLGAAGSTMGAASITLTQARQLLSGIVQQQSNLLRAIEAQHQHLLRLTVWGIKQLQARVLAL
ESYLDQQLLGWIWCGSGKLICTTNPWNSWSNKSYNDIWDNMTWLQWDKEINNYTQIIFYELLESQNQOEKNEQDLLALDK
WANLWNWFNISNWLYIKIFIMIVGLIGLRIIFAVLSIVNRVRQGYSPSLQLTLIPTTQRGPDRPEGTEEEGGEQDRSRSI
RLVNGFLPLIWDDLRNLCLFSYRHLRNLLLIVARTVELLIGIRGWEALKYLWNLLYWGQELRNSAINLLDTTAIAVAEGTDR
IIEAVQRACRAIRNIPRRIRQGLERALL\$

B

2003 CON_04_CPX Env.seq.opt

ATGCGCGTGTGGCATCCAGCGCAACTACCCCCACCTGTGGAGTGGGACCCCTGATCCTGGCTGGTATCATCTGCT
CCGCTCCAAGAACCTGTGGGTGACCGTGTACTACGGCGTCCCGTGGCGACGCCAGACCCCCCTCTGCGCCTC
CGACGCCAAGGCCATCGACAAGGAGGTGACAACATCTGGCCACCCACGCCCTGCGCCACGCCAGACCCCCAGGAG
ATCGCCCTGAAGAACGTGACCGAGAACTTCAACATGTGGAAGAACACATGGTGGAGCAGATGCACGAGGACATCATCTCC
TGTGGGACGAGGGCTGAAGCCCTGCGTGAAGCTGACCCCCCTGCGTGGCCCTGAACATGCTCCAACGCCACCATCAACAA
CTCCACCAAGACCAACTCCACCGAGGAGATCAAGAACACTGCTCTTCAACATCACCCAGAGATCCCGGACAAGAACAG
GAGTAGCCCTGTTACCCCTGGACATCGTCCCCATCAACGACTCCGCAACAAACTCCATCAACTCCGAGTACATGC
TGATCAACTGCAACGCCCTCACCATCAAGCAGGCCCTGCCCCAACGGTGAACCTTCGAGCCCATCCCCACTACTGCGCCC
CGCCGGCTTCGCCATCCTGAAGTGAACGACAAGAACACTCACCGCCCTGGCCCTGCAACCGTGTCCCTGGTGCAGTGC
ACCCACGGCATCAAGCCGTGGTCCACCCAGCTGCTGCTGAACGGCTCCCTGGCACCGAGGGCTGGTATCGCTCCA
AGAACCTCACCGACAACACCAAGAACATCATCGTCAGCTGGCAAGCCGTGAAGATCAACACTGCAACCCGCCCCAACAA
CACCCGCAAGTCCGTGCACATCGGCCCCGGCAGACCTGGTACGCCACCGGAGATCATCGGCACATCGGCCAGGGCC
TGCAACATCTCCGCAACGACTGGAACGAGACCTGCGAGAACAGATCGTGGAGGAGCTGCGAAGCAGTCCCAACAAAGACCA
TCATCTCGCCCCCTCCGCCGGCGACCTGGAGATCACCAACCCACTCCTCAACTGCGCGGGAGTTCTTACTGCAA
CACCTCGAGCTGTTCAACTCCACCTACATGAACCTCACCAACTCACCACCATCAACAAAGACCATCACCCCTGCCCTGCC
ATCAAGCAGATCGTGTCCATGTGGCAGGAGGTGGCAGGCCATGTACGCCACCCCGGAGATCATCGGCACATCGGCCAGGGCC
CCGACATCACCGGCATCATCTGACCCCGCACGGCGAACAAACACCAACAAACAGAGACCTCCGCCGGCGGGCG
CATGCGCGACAACACTGGCGCTCCGAGCTGTACAAGTACAAGGTGGTAAGAGATCGAGCCCGTGGGCTGGCCCCCACCAGGCC
CGCCGGCGCTGGTGCAGCGCGAGAACGGCGCCGAGCTGGAGATCACCAACCCACTCCTCAACTGCGCGGGAGTTCTTACTGCAA
CCATGGGCGCCCTCCATCACCGTGCAGGCCCTGGGATCGGCCCGTGTCCCTGGGCTTCTGGCGCCGGCTCCA
GCGGCCATCGAGGCCAGCAGCACCTGCTGCCCTGACCGTGTGGGATCAAGCAGCTGCAAGGCCCGTGTGGCCCTG
GAGTCTACCTGAAGGACCAAGCAGCTGCTGGCATCTGGGCTGCTCCGGCAAGCTGATCTGCACCAACAGTCC
ACTCCTCTGGTCAACAAGTCTACACGACATCTGGACAACATGACCTGGCTGCAGTGGACAAGGAGATCAACAA

CACCCAGATCATCTACGAGCTGGAGGAGTCCCAGAACCGAGCAGGAGAAGAACGAGCAGGACCTGCTGGCCCTGGACAAG
TGGGCCAACCTGTGGAACTGGTCAACATCTCCAACCTGGCTGTGGTACATCAAGATCTTCATCATGATCGTGGGCCCTGAT
TCGGCCTGCGCATCATCTTCGCCGTGCTGTCCATCGTAACCGCGTGCGCCAGGGCTACTCCCCCTGTCCCTGCAGACCC
GATCCCCACCACCCAGCGCGCCCCGACCGCCCCGAGGGCACCGAGGAGGAGGGCGCGAGCAGGACCGCTCCCGCTCCATC
CGCCTGGTGAACGGCTTCTGCCCTGATCTGGGACGACCTGCGAACCTGTGCCCTGTTCTCCCTACCGCCACCTGCGAAC
TGCTGCTGATCGTGGCCCGCACCGTGGAGCTGCTGGGATCCCGCGTGCGGCCCTGAAGTACCTGTGGAACCTGCTGCT
GTACTGGGCCAGGAGCTGCGCAACTCCGCCATCAACCTGCTGGACACCACCGCCATGCCGTGGCCAGGGCACCGACCGC
ATCATCGAGGCCGTGAGCGCGCTGCCGCCATCGCAACATCCCCGCCATCGGCCAGGGCTGGAGCGCGCCCTGCT
TGTAA

g.57
A 2003 CON_06_CPX Env
MRVKGIQKWNWQHLWKGTLILGLVIICASNNMWTVYYGVPAWEDADTILFCASDAKAYSAEKHNVWA THACVPTDPNPQE
IALENVTENFNMWKNHMVEQMHEDIISLWDES LKPCVKLTPCVLNCTNVTKNNNTKIMGREEIKNCFSNVTTEIRDKKKK
EYALFYRLDVVPIDDDNNNSYRIINCNASTIKQACPVSFEPPIHYCAPAGFAILKCRDKNFNGTGPCKNVSTVQCTHGIKP
VVSTQLLLNGSLAEEEIIKSENLTNDNTKTIIVQLNKSVEIRCTRPNNNTRKSISFGPGQAFYATGDIIGDIRQAHCVSRT
DWNNMLQNVTAKLKEFLNKNTITFNSSAGGDLEITTHSFNCGGEFFYCNTSQLFNSTRPNE TNTITLPCIKQIVRMWQRVGQ
AMYAPPIAGNITCTSNITGLLLTRDGNNNSETFRPGGDMRDNWRSELYKYKVVVKIKPLGIAPTRARRRVVGREKRAVGLG
AVFLGFLGTAGSTMGAASITLTQVQRQLLSGIVQQQSNLRAIEAQQLHLQLTWGKIQQLQARVL AVERYLKDQQLLGWIWG
SGKLICPTNVPWNASWSNKTYNEIWDNMTWIEWDREINNNYTQIYSLIESQNQQEKNEQDLLALDKWASLWSWFDISNWLN
YIKIFIMIVGGLIGLRIVFAVLISIVNRVRQGYSPLSLQTLIPNPTGADRGEIEEGGGEQGRTRSIRLVNGFLALAWDDLRS
LCLFSYHRLRDFVLIAARTVETLGHRGWEILKYLGNLVCYWGQELKNSAISLLDTTAIAVANWTDRVIEVVQRVFRAFLNIP
RRIRQGFERALL\$

B
2003 CON_06_CPX Env.seq.opt
ATGCGCGTGAAGGGCATCCAGAAGAACTGGCAGCACCTGTGGAAGTGGGGCACCCCTGATCCTGGGCTGGTATCATCTGCT
CCGCCTCCAACAACATGTGGGTGACCGTGACTACGGCGTCCCCCTGGGAGGACGCCGACACCCTCTGCTGGCCTC
CGACGCCAAGGCCACTCCGCCAGAAGCACAAACGTGTGGGCCACCCACGCCGTGCCACCAGACCCCAACCCCCAGGAG
ATCGCCCTGGAGAACGTGACCGAGAACCTCAACATGTGGAAGAACACATGGTGGAGCAGATGCAGGAGACATCATCTCCC
TGTGGGACGAGTCCCTGAAGCCCTGCGTGAGCTGACCCCCCTGTGCGTGAACCTGACACTGCACCAACGTGACCAAGAACAA
CAACACCAAGATCATGGGCCGCGAGGAGATCAAGAACACTGCTCTTCAACGTGACCAACCGAGATCCCGACAAAGAACAAAG
GAGTACGCCCTGTTCTACCGCCTGGACGTGGTGCCCATCGACGACAAACAACACTCCTACCCGCTGATCAACTGCAACGCC
CCACCATCAAGCAGGCCCTGCCCAAGGTGCTCTCGAGGCCATCCCCATCCACTACTGCGCCCCCGCCGCTTCGCCATCCT
GAAGTGCCCGACAAAGAACCTCAACGGCACCGGCCCCCTGCAAGAACAGTGTCCACCCCTGCAAGTGCACCCACGGCATCAAGGCC
GTGGTGTCCACCCAGCTGCTGTGAAACGGCTCCCTGGCCGAGGAGGAGATCATCATCAAGTCCGAGAACCTGACCGACAA
CCAAGACCATCATCGTCAAGAACAGTCCGAGATCCGCTGACCCGCCAACAAACAACACCCGCAAGTCCATCTC
CTTCGGCCCCGGCAGGCCATTCTACGCCACCGCGACATCATCGCGACATCCGCCAGGCCACTGCAACGTGCTCCGCACC
GACTGGAACAACATGTGCAAGAACGTGACCGCAAGCTGAAGGAGCTGTTCAACAAAGAACATCACCTCAACTCTCCGCC
GCCGCGACCTGGAGATCACCAACCCACTCCTCAACTGCGGCCGAGTTCTTCTACTGCAACACCTCCAGCTGTTCAACTC
CACCCGCCAACGAGACCAACACCATCACCTGCCCTGCAAGATCAAGCAGATCGTGCCTGACGGCAGCGTGGCCAG
GCCATGTACGCCCTCCATCGCCGCAACATCACCTGCACTTCAACATCACCGCCCTGCTGACCCCGACGGCAACA
ACAACGACTCCGAGACCTCCGCCGGCGGCGACATGCGGACAACACTGGCGCTCCGAGCTGTACAAGTACAAGGTGGT
GAAGATCAAGCCCCCTGGCATCGCCCCCACCGCGCCCGCGTGGTGGGCCGAGAACAGCGCCGTGGCCTGGGC
GCCGTGTCCCTGGGCTTCCGTGGCACCGCCGGCTCCACCATGGGCCGCCCTCCATCACCTGACCGTGCAGGTGCCAGC
TGCTGTCCGGCATCGTCAAGCAGCACCTGCTGCCCATCGAGGCCAGCAGCACCTGCTGCAAGCTGACCGTGTG
GGGCATCAAGCAGCTGCAGGCCGCGTGGCCGGCTGGAGCGCTACCTGAAGGACCAAGCAGCTGCTGGGATCTGGGCTGC
TCCGGCAAGCTGATCTGCCCTGGAACGCCCTGGTCAAACAGACCTACGGTCCAAACAAGAACCTACAACGAGATCTGGGACAACA
TGACCTGGATCGAGTGGGACCGCGAGATCAACAAACTACACCCAGCAGATCTACCTGGTCTGAGGAGTCCCAAGAACAGCA
GGAGAAGAACGAGCAGGACCTGCTGCCCTGGACAAAGTGGGCTTCTGGTCTGACATCTCAACTGGCTGTGG
TACATCAAGATCTTCACTCATGATCGTGGGGCCCTGATCGGCCGATCGTGTGCGCTGCTGCTGACATCGTGAACCGCG
TGCGCCAGGGCTACTCCCCCTGTCAGACCCCTGATCCCCAACCCCAACCGGCCGACGCCCTGGGAGATCGAGGA
GGCGGCCGGCGAGCAGGGCCGACCCGCTCCATCGGCCGTGGTAAACGGCTTCTGCCCTGGGCTGGGAGACCTGCGCTCC
CTGTGCTGTTCTCTTACCAACCGCCGTGCCGACTTCGTGCTGATCGCCGCCGACCGTGGAGAACCTGGGCCACCCGGGCT
GGGAGATCTGAGTACCTGGCAACCTGGTGTGACTGGGCCAGGAGCTGAAGAACCTCCGCCATCTCCCTGCTGGACAC
CACCGCCATCGCCGTGGCAACTGGACCGACCGCGTGTGAGGAGTGGTGCAGCGCGTGTGTTCCGCCCTTCTGAACATCCCC
CGCCGATCCGCCAGGGCTTGCAGCGGCCCTGCTGTAA

Fig. 58

MRVRGTRRNYQQWWIwgVLFWMILMICNVEGNLWVTVYYGPVWKEAKTTLFCASDAKAYETEVNVWATHACVPTDPNPQE
IVMENVTENFNMWNNDMVNQMHEDVISLWDQSLKPCVKLTPLCVTLCTNVSSNGNTYNETYNESVKEIKNCFSNATTLLR
DRKKTVYALFYLDIVPLNDENSGKSSEYYRLINCNTSAITQACPVTDFPIP1HYCTPAGYAILKCNDKFNGTGQCHNV
STVQCTHGIKPVNSTQLLNGSLAEREIIIIRSENLTNNVKTIVHLNQSIEVCTRPNNTNTRKSIRIGPGQTFYATGDIIGD
IRQAHCNISKDKWYETLQRVSKLAEHFPNKTIFASSGGDLEITTHSFNCRGEFFYCNTSGLFNGTYMNGTNSSSIITI
PCRIKQIINMWQEVGRAMYAPPLEGNIITCKSNITGLLLVRDGGRTESNNTEIFRPGGDMRNNWRNELKYKVVEIKPLGVA
PTAAKRRVVEREKRAVGLGAVFLGFLGAAGSTMGAASITLTQARQLLSGIVQQQSNLLRAIEAQOHLQLTVWGIKQLQTR
VLAIEYRLKDQQLGIWCGSKLICTTAVPWNSWSNKSQOEIWDNMTWMQWDKEISNYNTNTIYRLEDSONQQERNEKDLL
ALDSWKNLWSWFDTNWLYIKIFIMIVGGLIGLRIIFAVLSIVNRVRQGYSPLSFQILTNPNGPGPGLRGRIEEEGGEQDKT
RSIRLVNGFLALAADDLRNLCFLSYHRLRDFILLTARGVELLGRNSLRGLQRGWEALKYLGSLVQYWGLELKSTISLVDTI
• AIAVAEGTDRIINIVQGICRAIHNIIPRRIRQGFEALQ\$

B

2003 CON_08_BC Env seq.opt

ATGCCGTGCGCCGACCGCCGCAACTACCAGCAGTGGTGGATCTGGGGCTCTGGATGCTGATGATCTGCA
ACGTGGAGGGCAACCTGTGGGTGACCGTGTACTACGGCGTCCGTGGAAAGGAGGCCAACACCCTGTTCTGCGCCCTC
CGACGCCAAGGCCAACGAGGAGTCGACAACAGTGTGGCCACCCACGCCCTGCCTGCCACCGACCCCACCCCCAGGAG
ATCGTGATGGAAACGTGACCGAGAACCTTCAACATGGAAACAGCATGGTGAACAGATGTCAGCAGGAGCTGATCTCC
TGTGGGACAGCCTGAAGCCCTGCGTGAAGCTGACCCCTGTGCGTGAACCTGGAGTGCACCAACGTGTCCTCCAACGG
CAACGGCACCTAACAGAGACCTAACACAGTGTGGAGGAGATCAAGAACCTGCTCTCAACGCCACCCCTGCTGCGC
GACCGCAAGAAGACCGTGTACGCCCTGTTCTACCGCCTGGACATCGTGCCTGAAACGACGAGAACACTCCGGCAAGAACCT
CCGAGTACTACCGCCTGATCAACTGCAACACCCCGCCATCACCAGGCTGCCAACGGTGAACCTGACCCATCCCCAT
CCACTACTGACCCCCCGCCGGCTACGCCATCTGAAGTCAACGACAAGAAGTCAACGGCACCGGGCAGTGCACACCGT
TCCACCGTGCAGTGCACCCACGGCATCAAGCCGTGGTCCACCCAGCTGCTGCTGAACGGCTCCCTGGCCAGCGCAGA
TCATCATCCGCTCCGAGAACCTGACCAACAACGTGAAGACCATCATCGTGCACCTGAAACAGTCCGTGGAGATCGTGTGAC
CCGCCCAACAACAACACCCGCAAGTCCATCCGATCGGCCCCGGCAGACCTTCTACGCCACCGGGCACATCATGGCGAC
ATCCGCCAGGCCACTGCAACATCTCAAGGACAAGTGGTACGAGACCCCTGCAAGCGTGTCCAAGAAGCTGGCCAGCAG
TCCCCAACAGACCATCAAGTTCGCTCTCCCTCCGGCGACCTGGAGATCACCAACTCCCTCAACTGCCGCGGCGA
GTTCTCTACTGCAACACCTCCGGCTGTTCAACGGCACCTACATGAACCGCACCAACAACACTCCCTCCATCATCACCAC
CCCTGCGCATCAAGCAGATCATCAACATGTGGCAGGAGGTGGCCCGCCATGTACGCCCTGGAGATCGAGGCCAACATCA
CTCTGCAAGTCCACCATACCGGCTGCTGCTGGTGGCGCAGCCGAGCTTCAACACCGAGATCTTCCGGCC
CGGGCGCCGACATGCGCAACACTGGCGCAACAGCTGAGCTACAAGTACAAGGTGGAGATCAAGCCCTGGCGTGGCC
CCCACCGGCGCAAGCGCCGCGTGGGGAGCGCAGAAGCGCCGTGGCGCCATGTACGCCCTGGCGTGGAGATCTTCCGG
CCGCGGCTCCACCATGGCGCCCTCCATCACCGTGCAGGCCAGCTGCTGTGGAGATCGAGCCATCGTGCAGCAGCA
GTCCAACCTGCTGCGCCATCGAGGCCAGCAGCACATGCTGCACTGAGCTGTGGGAGATCTTCCGGCC
GTGCTGCCATCGAGCGTACCTGAAGGACCAAGCAGCTGCTGGGAGATCTGGGAGATCTTCCGGCC
CCGTGCCCTGGAACCTCCCTGGCCAACAAGTCCAGCAGGAGATCTGGGACAACATGACCTGGATGCACTGGGACAAGGA
GATCTCAACTACACCAACACCATCTACCGCCTGCTGGAGGACTCCAGAACAGCAGGAGCGCAACGAGAACGGACTGCTG
GCCCTGGACTCTGGAAGAACCTGTGGTCTGGTTCGACATACCAACTGGCTGTGGTACATCAAGATCTTCAATGATCG
TGGGCGGCTGATCGGCCGTCGCATCATCTCGCCGTGCTGCCATCGAACCGCGTGCAGGCCAGGGCTACTCCCCCTGTC
CTTCCAGATCTGACCCCCAACCCCGGCCCTGGGCCATCGAGGAGGGCGCGAGCAGGACAAGAC
CGCTCCATCCGCTGGTAACGGCTTCTGGCCCTGGCTGGACACTGCGCAACCTGTCCTGTTCTCCATACCGGCC
TGCGCGACTTCATCTGCGTACCGCCCGCGGGCTGGAGCTGCTGGCCGCAACTCCCTGCGCCCTGCAAGCGGGCTGG
GGCCCTGAAAGTACCTGGCTCCCTGGTGCAGTACTGGGCCCTGGAGCTGAAGAAGTCCACCATCTCCCTGGGACACCATC
GCCATCGCCGGCCAGGGCACCAGCGCATCATCAACATCGTGCAGGCCATCTGCCCGCCATCCACAACATCCCCGCC
GCATCCGCCAGGGCTTCGAGGCCGCCCTGCAAGTAA

ig.59
A

2003 CON_10_CD Env

MRVMGIQRNCOOWWIwgVLFWMILMICNATGNLWVTVYYGPVWKEETTTLFCASDAKAYKAEEHNIWATHACVPTDPNPQE
IVLENVTENFNMWKNGMVDQMHEIIISLWDQGLKPCVKLTPLCVTLNCSDVNATNSATNTVVAGMKNCFSNITTEIRDKKQ
EYALFYKLDVVQIDGSNTSYRLINCNTSAITQACPVTFEP1PIHYCAPAGFAILKCNDKFNGTGPCKNVSTVQCTHGIKP
VVSTQLLNGSLAEEEIIIIRSENLTDNAKTIIVQLNESVTINCTRPNNTNTRKSIRIGPGQTFYATGDIIGNIRQAYCNISGT
EWNKTLQQVAKKLGDLLNKTTIIFKPSGGDPEITTHTFNCGGEFFYCNTSKLFNSSWTSNNTGNTSTITLPCRIKQIINMW
QGVGKAIYAPPIAGLINCSSNITGLLTRDGGANNSETFRPGGGDMRDNRSELYKVVKIEPLGLAPTKAKRVRVEREKR
AIGLGAVFLGFLGAAGSTMGAASLTLTQARQLLSGIVQQQNLLRAIEAQHLLQLTVWGIKQLQARVLAVESYLDQQL
GIWGCSKGKHICTTNVPWNSSWSNKSLEEIWDNMTWMEWEREIDNYTGLIYSLIESQNQEQNEQELLQLDKWASLWNWFSI
TNWLWYIKIFIMIVGGLIGLRIIVFAVLSLVNRVRQGYSPLSFOTLLPAPRGPDPRPEGIEEGGEQGRGRSIRLVNGFSALIW
DDLRNLCFLSYHRLRDLILIATRIVELLGRRGWEAIKYLNLLQYWIQELNSAISLLDTTIAVAEGTDRAIEIVQRAVRA
VLNIPTRIRQGLERALL\$

3
2003 CON_10_CD Env.seq.opt

ATGCGGTGATGGCATCCAGCGCAACTGCCAGCAGTGGTGGATCTGGGCATCTGGCTCTGGATGCTGATGATCTGCA
ACGCCACCGCAACCTGTGGGTGACCGTGACTACGGCGTGGCCGAGAAGGAGACCACCCACCGACCCCACCCAGGAG
CGACCCAAGGCCCTACAAGGCCAGGCCAACACATCTGGCCACCCACGCCCTGCGTCCCCACCGACCCCACCCAGGAG
ATCGTGTGGAGAACGTGACCGAGAACATTCAACATGTGGAAAGAACGGCATGGTGGACAGATGCACGAGGACATCATCTCC
TGTGGGACCAAGGGCTGAAGCCCTGCGTGAGCTGACCCCCCTGTGCGTGACCTGAACTGCTCCGACGTGAACGCCACAA
CTCCGCCACCAACACCGTGGTGGCCGATGAAGAACACTGTCCTCAACATCACCAACCGAGATCCGCGACAAGAAGAAGCAG
GAGTACGCCCTGTCTACAAGCTGGACGTGGTGCAGATCGACGGCTCAACACTCTACCGCTGATCAACTGCAACACCT
CCGCCATCACCCAGGCTGCCCAAGGTGACCTCGAGCCCATCCCCATCCACTACTGCGCCCCGCCGTTGCCATCCT
GAAGTGAACGACAAGAACGTTCAACCCGACCGGCCCTGCAAGAACGTGTCACCGTGCAGTGCACCCACGGCATCAAGCCC
GTGGTGTCCACCCAGCTGCTGAACGGCTCCCTGGCCAGGAGGAGATCATCATCGCTCCGAGAACCTGACCGACAACG
CCAAGACCATCATCGTGAGCTGAACGAGTCCGTGACCATCAACTGCAACCGCCCAACAACAACACCCGCAAGTCCATCCG
CATCGGCCCCGGCCAGACCTTCTACGCCACCGGCACATCATCGGCAACATCCGCCAGGCTACTGCAACATCTCCGGCACC
GAGTGGAAACAAGACCCCTGAGCAGGTGGCCAAGAACGCTGGCGACCTGCTGAAACAAGACCACCATCATCTCAAGCCCTCCT
CCGGCGCGACCCGAGATCACCAACCCACACCTCAACTGCGGCCGGAGTTCTTCTACTGCAACACCTCCAAGCTGTTCAA
CTCCTCTGGACCTCCAACAAACACCGCAACACCTCCACCATCACCCCTGCCGCGATCAAGCAGATCATCAACATGTGG
CAGGGCGTGGGCAAGGCCATCTACGCCACCCCATCGCCGGCTGATCAACTGCTCTCCACATCACCGGCCGCTGCTGTA
CCCGCGACGGCGGCCAACAAACTCCGAGACCTTCCGCCCGGGCGGCGACATCGCGCAGAACACTCGGCCGCTCGAGCTGTA
CAAGTACAAGGTGGTGAAGATCGAGCCCCCTGGGCTTCTGGGCTTCTGGGCCCGCGCTCCACCATGGGCGCCCTCCCTGACCC
GCCATCGGCTGGGCCGGTGTCTCTGGGCTTCTGGGCTTCTGGGCCCGCGCTCCACCATGGGCGCCCTCCCTGACCC
TGCAGGCCGCGACTGCTGCTGGGCGATCGCAGCAGCAGAACAAACCTGCTGCGCCATCGAGGGCCAGCAGCACCTGCT
GCAGCTGACCGTGTGGGCGATCAAGCAGCTGCAAGGCCGCGTGTGGCGTGGAGTCTACCTGAAGGACCAAGCAGCTGCTG
GGCATCTGGGGCTGCTCCGGCAAGCACATCTGCAACCACCAACGTGCCCTGGAACCTCCTCTGGTCAACAAGTCCCTGGAGG
AGATCTGGGACAACATGACCTGGATGGACTGGGAGCGCGAGATCGACAACACTACACCGCCGATCTACTCCCTGAGGAGA
GTCCCAGAACACAGCAGGAGAAGAACGAGCAGGAGCTGCTGAGCTGGACAAGTGGGCTCCCTGTAACACTGTTCTCCATC
ACCAACTGGCTGTTGATCATCAAGATCTTCACTCATGATCGTGGGCGGCTGATCGGCCGCGCATCGTGTGCTGCTG
CCCTGGTGAACCGCGTGCGCCAGGGCTACTCCCCCTGTCCTTCAAGACCCCTGCTGCCGCCCCCGCGCCGACCGGCC
CGAGGGCATCGAGGAGGGCGCGAGCAGGGCGCGCTCCATCGCCCTGGTGAACGGCTTCTGCCGCTGATCTGG
GACGACCTGCGCAACCTGTCCTGTCCTTCAACCACCGCTGCGCACCTGATCTGATCGCCACCCGATCGTGGAGCTG
TGGGCCGCCGGCTGGAGGCCATCAAGTACCTGTTGCACTGAGCTGAGTCAAGGAGCTGAGAACACTCCGCAAT
CTCCCTGCTGGACACCACCGCATCGCCGTGGCCAGGGCACCGACCGCGCCATCGAGATCGTGCAGCGGCCGTGCGGCC
GTGCTGAACATCCCCACCGCATCGCCAGGGCTGGAGCGGCCGTGTAAC

ig 60
A
2003 CON_11_CPX Env

MRVKETQRNWHNLWRGLMIFGMLMICNATENLWVTVYYGPVWKDADTTLFCASDAKAYSTEKHNVWATHACVPDNPQE
IPLENVTEFNMWKNMVEQMHEIDIISLWDESLKPCVKLTPLCVTLNCDVKNATNTTVEAAEIKNCSFNITTEIKDKKKKE
YALFYKLDVVPINDNNNSIYRLINCNVSTVKQACPKVTFEPPIHYCAPAGFAILKCNDDKFNGTPCKNVSTQCTHGIKP
VVSTQLLNGLS LAEGEVIRSENFTNNAKTIIVQLNSSVRINCRPNNTRKSIHIGPGQAFYATGDIIGDIRQAHCNISRA
EWNNTLQQVAKQLRENFKTIIFNPNSSGGDLEITTHSFNCNGEFFYCNTSRLFNSTWNNDTRNDTKQMHIITLPCRIKQIVNM
WQRVGQAMYAPPIQKGKIRCNSNITGLLTRDGGNNNTNETFRPTGGDMRDNRWSELYKYVVEIKPLGVAPTRAKRRVVERE
KRAVGIGAVLLGFLGAAGSTMGAASITLTVOARQLLSIVQQQSNIILKAIEAQQHLLKLTWVGIKQLQARVLAVERYLKDQQ
LLGIWGCSKGKLICTTNVPWNFSWSNKSYDEIWDMNTWIEWEREINNYTQTITYTLLAESQNQQEKNEQDILLALDKWASLWNWF
DISNWLYI KIFIMIVGGLIGLRIIFAVLSIVNRCRQGYSPLSFQTLTPNHKEADRPGGIEEGGGEQDRTRSIRLVSGFLAL
AWDDLRNLCLFSYHRLRDFILIAARIIVETLGRRGWEILKLYGNLAQYWQGQELKNSAISLLNATAIAVAEGTDRIIEVVHRVL
RAILHIPRRIQGFERALL\$

B
2003 CON_11_CPX Env.seq.opt

ATGCGGTGAGGGAGACCCAGCGCAACTGGCACAACCTGTGGCGCTGGGCCCTGATGATCTCGGATGCTGATGATCTGCA
ACGCCACCGAGAACCTGTGGGTGACCGTGACTACGGCGTGGCCGAGAACGCGCACCCACCGACCCCACCCAGGAG
CGACCCAAGGCCACTCCACCGAGAACGACAACAGTGTGGAGAACACATGGTGGAGCAGATGCACGAGGACATCATCTCC
ATCCCCCTGGAGAACGTGACCGAGAACCTCAACATGTGGAGAACACATGGTGGAGCAGATGCACGAGGACATCATCTCC
TGTGGGACGAGTCCCTGAGGCCCTGCGTGAAGCTGACCCCCCTGCGTGTGACCTGAACTGCAACCGACGTGAAGAACGCCAC
CAACACCCAGCTGGAGGCCGAGATCAAGAACGCTCTTCAACATCACCAACCGAGATCAAGGACAAGAACGAG
TACGCCCTGTTCTACAAGCTGGACCTGGTGCCTCATCAACGACAACAACTCCATCTACCGCCCTGATCAACTGCAACGCTG
CCACCGTGAGCAGGCCCTGCCCAAGGTGACCTTGCAGGCCCATCCACTACTGCGCCCCCGGCCGTTGCCATCCT
GAAGTGAACGACAAGAACGTTCAACGGCACCCGGCCCTGCAAGAACGTGTCCACCGTGCAGTGCACCCACGGCATCAAGCCC
GTGGTGTCCACCCAGCTGCTGTAACGGCTCCCTGGCCAGGGCGAGGGTGCAGTGCACCCACGGCATCAAGCCC
CCAAGACCATCATCGTGAGCTGAACCTCTCCGTGCGCATCAACTGCAACCCGCCAACAACACACCGCAAGTCCATCCA
CATCGGCCCCGGCCAGGCCCTTACGCCACCGCGACATCATCGGCCAGGCCACTGCAACATCTCCGGCC

GAGTGGAAACAACACCTGCAAGCAGGGCAAGCAGCTGCGGAGAACTTCACAAGACCATCATCTCAACAACCCCTCCG
CGGGCAGCTGGAGATCACCAACCCACTCCTCAACTGCGCGGAGTTCTACTGCAACACCTCCGCCTGTTCAACTC
CACCTGGAACAACGACACCCGCAACGACACCAAGCAGATGCACTCACCCCTGCCCTGCCGCATCAAGCAGATCGAACATG
TGGCAGCGCGTGGCCAGGCCATGTACGCCCCCCCATTCAAGGGCAAGGATCCGCTGCAACTCAACATCACCGGCCTGTC
TGACCGCGACGGCGCAACAACAACCAACGAGACCTTCCGCCACCAGGGCGACATGCGCACAACCTGGCGCTCCGA
GCTGTACAAGTACAAGGTGGAGATCAAGGCCCTGGCGTGGCCCTCTGGGCCGCGGGCTCCACCATGGGCCGCTCCATCACCC
AAGCGCGCCGTGGCATGGCGCGTGTGTGGCTGGCCGCGGGCTCAAGGCGCCGCTGAGGCGCATCGAGGCCAGCAGCA
TGACCGTGCAGGCCGCGCAGCTGTGTGGCATCGCAGCAGTCCAACCTGCTGAAGGCCATCGAGGCCAGCAGCA
CCTGCTGAAGCTGACCGTGTGGGATCAAGCAGCTGCAAGGCCGCGTGTGGCGCTACCTGAAGGCCAGCAG
CTGCTGGCATCTGGGCTGCTCCGGCAAGCTGATCTGCAACCAACGATGCTGCCCTGGAACCTCTCTGGTCAACAAGTCT
ACGACGAGATCTGGACAACATGACCTGGATCGAGTGGAGCGAGATCAACAACTACACCCAGACCATCTACACCCCTGCT
GGAGGAGTCCCAGAACGAGCAGGAGAAGAACGAGCAGGACCTGCTGCCCTGGACAAGTGGCTCCGTGGAACTGGTTC
GACATCTCCAACGGCTGTGGTACATCAAGATCTCATCATGATCGTGGCGGCCCTGATGCCCTGCGCATCATCTCGCG
TGCTGTCCATCTGTAACCGCCAGGGCTACTCCCCCTGTCTTCCAGACCCCTGACCCCAACCAAGGAGGCCGA
CCGCCCCCGCGCATCGAGGAGGGCGCGAGCAGGACCGCACCCTGCTCCATCCGCTGGTGTGGCTTCTGGCT
GCCTGGGACGACCTGCGCAACCTGTGCTGTCTTCCATACCGCCCTGCGGACTTCATCTGATGCCCGCCGATCGTGG
AGACCCCTGGGCCCGCGCTGGAGATCTGAGTACCTGGCAACCTGGCCAGTACTGGGCCAGGAGCTGAAGAACCT
CGCCATCTCCCTGCTGAACGCCACGCCATGCCGTGGCGAGGGACCGGACATCATCGAGGTGGTGCACCGCGTGTG
CGGCCATCTGACATCCCCGCCAGGCCATCGGCCAGGGCTGAGGCCCTGCTGAGGCCCTGCTGTAA

g.61
A

2003 CON_12_BF Env

MRVRGMQRNWQHLGKWLFLGILICNATENLWVTVYYGPVWKEATTLFCASDAKSYEREVHNWATHACVPTDPNPQE
VDLENVTENFDMWKNMVEQMHTDIIISLWDQSLKPCVKLPLCVTLNCTDANATANATKEHPEGRAGAIQNCSFNMTTEVRD
KQMKVQALFYRLIDIVPISDNNSNERYLINCNTSTITQACPVSWDPIPITHCAPAGYAILKCNDFKNGTGPCKNVSTVQCT
HGIKPVVSTQLLNGLAEEEIIIIRSQNISDNAKTIIIVHLNESVQINCRPNNNTRKSIHIGPGRAYATGDIIGDIRKAHC
NVSGTQWNKTLEQVKKKLRSYFNTTIKFNSSSGDPEITMHSFNCRGEFFYCMTSKLFNDTVSNDTIIILPCRIKQIVNMWQE
VGRAMYAAPIAGNITCTSINITGLLLTDGHHNETNKTEFRPGGGNMKDNRSELYKYKVVIEPLGVAPTRAKRQVVREK
RAVGIGALFLGLGAAGSTMGAASITLTQARQLLSGIVQQQSNLLRAIEAQHLLQLTVWGIKQLQARVLVERYLKQDQL
LGLWGCSGKLICTTNVPWNSSWSNKSQEEIWEWEMEKEINNNYNEIYRLEIESQNQOEKNEQELLALDKWASLWNWFD
ISNWLYIRIFIMIVGGIIGLIRIVFAVLSIVNRVRKGYSPLSLOTHIPSPREPDRPEGIEEGGGEQGKDRSVRLVNGFLALI
WDDLRSLCLFSYHRLRDLLIVTRIVELLRRGWEVLKYWWNLLQYWSQELKNSAISLLNTTAIVVAEGTDRVIEALQRVGR
A1LNIPRRIRQGLERALLS

B

2003 CON_12_BF Env.seq.opt

ATGCGCGTGCAGGCCATGCAAGCAGCACCTGGCACAGTGGGCCAGTGGCTGTTCTGGCATCCTGATCATCTGCA
ACGCCACCGAGAACCTGTGGGTGACCGTGTACTACGGCGTGCCGTGGAAGGAGGCCACCCACCCACGAGCACCCAGGAG
GTGGACCTGGAGAACGTGACCGAGAACCTGACATGTGGAAGAACACATGGTGGAGCAGATGCAACCCGACATCATCTCC
TGTGGACCAGTCCCTGAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTGAACCTGACCCGACGCCAACGCCACCG
CAACGCCACCAAGGAGCACCCCGAGGGCGGCCCATCCAGAACACTGCTCCATCCGACACATGACCCGAGGTGGCGAC
AAGCAGATGAAGGTGAGGCCCTGTCTACCCGCTGGACATCTGGCCCATCTCCGACACAACTCCAACGAGTACCGCCTGA
TCAACTGCAACACCTCCACCATCACCCAGGCCCTGCCCCAAGGTGCTCTGGGACCCCATCCACTACTGCGCCCCCG
CGGCTACGCCATCTGAGTGCAACGACAAGAACAGTCAACGGCACCGCCCTGCAAGAACGTGTCACCGTGCACTGCA
CACGGCATCAAGCCGTGGTCCACCCAGCTGCTGTAACGGCTCCCTGGCGAGGAGGAGATCATCATCGCTCCAGA
ACATCTCCGACAACGCCAACACATCATGTCACCTGACAGTCCGTGAGATCAACTGCAACCCGCCAACACAC
CCGCAAGTCCATCCACATCGGCCCCGGCCCTCTACGCCACGGCGACATCATGGCGACATCCGCAAGGCCACTGC
AACGTGTCGGCACCCAGTGGAAACAAGACCTGGAGCAGGTGAAGAACAGTGTGCTCTACTTCAACACACCAC
TCAACTCCCTCCGGCGGAGACCCGAGATCACCATGCACTCTCAACTGCCGGGAGTTCTTACTGCAACACCTC
CAAGCTGTTCAACGACACCGTGTCAAACGACACCATCATCTGCCCTGCCCATCAAGCAGATCGTAACATGTGGCAGGAG
GTGGCCGCGCCATGTACGCCGCCCATGCCGGCAACATCACCTGCACTTCAACATCACGGCCCTGCTGTCACCCCG
ACGGCGGCCAACACGAGACCAACAAGACCGAGACCTTCCGCCGGCGGCAACATGAAGGACAACACTGGCGCTCCGAGCT
GTACAAGTACAAGGTGGAGATCGAGCCCCCTGGCGTGGCCCCCAGCCGCGCCAAGGCCAGGTGGTGAAGCGCGAGAAG
CGCGCCGTGGCATGGCGCCCTGTCCCTGGCTTCCCTGGCGCCGCCGCTCCACCATGGCGCCCTCCATACCCCTGA
CCGTGAGGCCGCCAGCTGCTGCGGATCGTGCAGCAGCAGTCCAAACCTGCTGCGCCATGGAGGCCAGCAGCACCT
GCTGCAGCTGACCGTGTGGGCTGCTCCGGCAAGCTGATCTGCAACCAACGATGCTGCCCTGGACTCTCTGTCCA
CTGGGCCCTGTGGGCTGCTCCGGCAAGCTGATCTGCAACCAACGATGCTGCCCTGGACTCTCTGTCCAACAA
AGGAGATCTGGGAGAACATGACCTGGATGGAGTGGAGAACGGAGATCAACAACTACTCCAACGAGATCTACCGC
GGAGTCCCAGAACCGAGCAGGAGAACGAGCAGGAGCTGCTGGCCCTGGACAAGTGGGCCCTGGAACTGGTTC
ATCTCCAACGAGTGGCTGTGGTACATCCGATCTCATGATGCTGGCGGCCCTGATGCCCTGCGCATCGTGTG
CGCCGTG

TGTCCATCGTGAACCGCGTGCAGAAGGGCTACTCCCCCTGTCCCTGCAGACCCACATCCCCCTCCCCCGGAGGCCGACCG
CCCCGAGGGCATCGAGGAGGGCGCGAGCAGGGCAAGGACCGCTCCGTGCCTGGTGAACGGCTTCCTGGCCCTGATC
TGGGACGACCTCGCTCCCTGTGCCTGTTCTCCCTACCACCGCTGCGCACCTGCTGATCGTACCCGATCGTGGAGC
TGCTGGGCCGCGCGGCTGGAGGTGCTGAAGTACTGGTGAACCTGCTGCAGTACTGGTCCCAGGAGCTGAAGAACTCCGC
CATCTCCCTGCTGAACACCACCGCCATCGTGGTGGCCAGGGCACCGACCGCTGATCGAGGCCCTGAGCGCTGGGCC
GCCATCCTGAACATCCCCCGCATCCGCCAGGGCTGGAGCGCCCTGCTGTAA

g.62
A

2003 CON_14_BG Env

MKAKGQRNWOSLWKWGLILGLVIICASNDLWVTVYYGVPVWEATTLFCASDAKAYDAEVHNWATHACVPTDPNPQE
VALENVTENFNMWENNMDQMQUEIIISLWDQSLKPCVELTPLCVTLNCTDFNNNTNNTRNDGEGEIKNCSPNITSLRD
• KIKKEYALFYNLDDVQMDNDNSSYRLTSNTSIIITQACPKVSFTPPIHYCAPAGFVILKCNKTFNGTGPCTNVSTVQCTH
GIRPVSTQLLLNGSLAEEEIVIRSKNFTDNAKTIIVQLKDPIEINCTRPNNNTRKRITMGPGRVLYTTGQIIGDIRKAHCN
ISKTWNNTLGQIVKKLREQFMNKTIIVQRSSGGDPEIVMHSFNCGEFFYCNTTQLFNSTWRSNSTWNDTETNNTDLITL
PCRIKQIVNMWQVKVGKAMYAPPISGQIRCSSNITGLLLIRDGGSNNTETFRPGGGNMKDNRSELKYKVVKIEPLGVAPTR
AKRRVVQREKRAVGIGALLFGFLGAACSTMGAASMTLVQARQLLSGIVQQQNLLRAIEAQQHMLQLTVWGIKQLQARVLA
VERYLKQDQQLLGIWCGSGKLICTTVWPNAWSNKSLLDIWNNMTWMEWEREIDNYTGLITYTLEQSQNQQERNEQELLED
Kwaslwnwfnitnwlykifimiiggliglrvfavlslinrvrkgyplsftltthorepdrgprieeggeqdksri
rlvsgflalaawddllrsclfsyhlrlrdfiliaartvelli grsslkglrlgweglkylwnlllywgrelksainlldtvaia
vanwtdraievvqrvgavlnipvriqglerall\$

B

2003 CON_14_BG Env.seq.opt

ATGAAGGCCAAGGGACCCAGCGCAACTGGCAGTCCCTGTGGAGTGGGGCACCTGATCCTGGGCCGGTACATCTGCT
CCGCCCTCCAACGACCTGTGGGTGACCGTGACTACGGCGTGGCCAGGGCACCCACGCCCTGCGTGCACCCACCCACCC
CGACGCCAAGGCCACGACGCCAGGGTGCACAACGTGTGGGAGAACACATGGTGGACCAGATGCAGGAGGACATCTC
GTGGCCCTGGAGAACGTGACCGAGAACATTCAACATGTGGGAGAACACATGGTGGACCAGATGCAGGAGGACATCTC
TGTGGGACAGTCCCTGAAGCCCTGCGTGGAGCTGACCCCTGTGCGTGAACCTGACCTGAGATCAAGAACACTGCT
CAACACACCACCAACACCGCAACGACGGCGAGGGCGAGATCAAGAACACTGCTCTTCAACATCACCCACCTGCGC
AAGATCAAGAACGGAGTACGCCCTGTTCTACAACTGGACGTGAGATGGACAACGACAACACTCCTCTACCGC
CTGGCAACACCTCCATCATCACCCAGGGCTGCCCCAAGGGTGTCTTACACCCATCCCCACTTACACTGCG
CTTCTGATCTGAAGTGAACAAAGACTTCAACGGCACCGGCCCCCTGCAACAGTGTCCACCGTGCAGTGACCC
GGCATCGCCCCGGTGTGGTCCACCCAGCTGCTGTGAACCGCTCCCTGGCCAGGGAGATCGTGTACCC
TCACCGACAACGCCAAGACCATCATCGTGCAGTGAAGGACCCCATCGAGATCAACTGCACCCGCCAACAACACCC
CAAGCGCATCACCATGGGCCGGCGTGTGTACACCCAGGGCAGATCATGGCGACATCCGAAGGCCACTGCAAC
ATCTCAAGACCAAGTGAACAAACACCTGGGCCAGATCGTGAAGAACAGTGCACGGAGCAGTTCATGAACAAGAC
ATCGTGTCCCTCCGGCGGAGATCGTGTACCTCAACTGCGCGGAGTTCTACTGCAACACCC
CCAGCTGTTCAACTCCACCTGGCGCTCAAACCTCCACCTGGACACGACACCACCGAGACCAACACCC
CCCTGGCGCATCAAGCAGATCGTGAACATGTGGCAGAAGGTGGCAAGGCCATGTACCCCCCCCCATCTCC
GCTGCTCTCCAACATCACCGGCTGCTGTGATCCGCGACGGCGCTCAAACACCC
CAACATGAAGGACAACCTGGCGCTCCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCTGGCGTGG
GCCAGCGCCGCGTGGTGCAGCGCGAGAGCGCGCCGTGGCAGTGGCGCCCTGCTGTTGGCTTCTCTGGCG
CCACCATGGGCCGCCCTCCATGACCCCTGACCGTGCAGGCCAGCTGCTGTCGGGACATCGTGCAGCAGCA
GCTGCGGCCATCGAGGCCAGCAGCACATGTGCAGCTGACCGTGTGGGCAAGCTGATCTGCAC
GTGGAGCGCTACCTGAAGGACCGAGCGAGCTGCTGGGACATCTGGGCTGCTCCGGCAAGCTGATCTGCAC
GGAACCGCTCTGGTCAAACAGTCCCTGGACGACATCTGGAAACACATGACCTGGATGGAGTGGAGCG
CTACACCGGCTGATCTACACCCGTATCGAGCAGTCCAGAACCGAGCAGGAGCGCAACGAGCAG
AAGTGGGCTCCCTGTGAACTGGTCAACATCACCAACTGGCTGTGGTACATCAAGATCTT
CATGATCATCGCGGCC
TGATCGGCTGCGCATCGTGTGCGTGTGCTCCATCATCACCGCGTGCAGGAGCTACTCCCC
CCTGACCCACCAACAGCGCGAGGCCCGACCGCCCGCATCGAGGAGGAGGGCGGAGCAGGACAAGGAC
CGCCCTGGTGTCCGGCTTCTGGCCCTGGCGTGGAGCTGCTGGGCCCTCTGGGCTGGGAGGGC
TCATCCTGATCGCCGCCCGACCGTGGAGCTGCTGGGCCCTGAAGGGCCTGCGCTGGGCTGG
GTACCTGTGGAACCTGCTGTACTGGGCCAGCTGAAGAACCTCGCCATCAACCTGCTGG
GTGGCCAACCTGGACCGACCGGCCATCGAGGTGGTGCAGCGCTGGGCCGTGCTGAAC
AGGGCCTGGAGCGCGCCCTGCTGTAA

Centralized HIV-1 gag/nef/pol Protein and the Codon-optimized Gene Sequences

Fig. 63

A
1. 2003_CON_S gag.PEP
MGARASVLSGGKLDWEKIRLRPGGKKYRLKHLVWASRELERFALNPLLETSEGCQQIIEQLQPALQTGSEELRSLYNTV
ATLYCVHQRIEVKDTKEALDKIEEEQNKSQKTTQAAADTGNSSKVSQNYPIVQNLQGQMVHOAISPTLNAWVKVVEEKAF
- SPEVIPMFSALSEGATPQDLNTMLNTVGHQAMQMLKDTINEEAAEWDRLHPVHAGPIPQMRPGRSDIAGTTSTLQE
IGWMTSNPPIPVGEIYKRWIILGLNKIVRMSPSILDIRQGPKEFRDYVDRFFKTLRAEQATQDVKNWMTDILLVQNANP
DCKTILKALGPATLEEMMTACQGVGGPSHKARVLAEAMSQVTNTIMMQRGNFKGQKRIIKCFNCGKEGHIAARNCRAPRKK
GCWKCGKEGHQMKDCTERQANFLGKIWPSNKGRPGNFLQSRPEPTAPPAESFGFEEITPSPKQEPKDELYPLASLKSIFG
NDPLSQ\$

B
2003_CON_S gag.OPT

ATGGGCGCCCGGCCCTCCGTCTGTCCGGCGCAAGCTGGACGCCCTGGAGAAGATCCGCCCTGCCGCCGGCGCAAGAAGA
AGTACCGCCTGAAGCACCTGGTGTGGGCCCTCCCGGAGCTGGAGCGCTTCGCCCTGAACCCCGGCCCTGGAGACCTCCGA
GGGCTGCCAGCAGATCATCGAGCAGCTGCAGCCGCCCTGAGACCCGCTCCGAGGAGCTGCCTCCCTGTACAACACCGTG
GCCACCCGTACTCGCTGACCAGGCATCGAGGTGAAGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGGAGCAGAAC
AGTCCAAGCAGAAGACCCAGCAGGCCGCCACCGGCAACTCTCAAGGTGTCCCAGAACTACCCCATCGTCAGAA
CCTGCAGGGCCAGATGGTGCACCAGGCCATCTCCCCCGCACCCCTGAACGCCCTGGTGAAGGTGGAGGAGAAGGCCCTTC
TCCCCGAGGTGATCCCCATGTTCTCGCCCTGTCCGAGGGGCCACCCCGAGGACCTGAACACCCATGCTGAACACCGTG
GCCGGCCACCAGGCCATGCAGATGGTGTGAGGGAGGCCCTGGAGGAGGAGCTGGAGGCCCTGCACCCCTGGAGGAGCAG
ATCGGCTGGATGACCTCAACCCCGGAGATCTCCCGGAGGAGATCTACAAGCGCTGGATCATCTGGCCCTGAACAGATCG
TGGCATGTTACTCCCCGTGTCCATCTGGACATCCGCCAGGGGCCACCCCGAGGACCTGCAGACCCCTGGTGAACACCGTG
CAAGACCCGTGCCGAGCAGGCCACCCAGGACGTGAAGGAACTGGATGACCGACACCCCTGCTGGTGCAGAACGCCAAC
GAUTGCAAGACCATCCTGAAGGCCCTGGGCCACCCCTGGAGGAGGAGATGATGACCGCCTGCCAGGGCTGGCGGG
CCTCCCACAAGGCCGCTGGCCAGGCCATGTCCCAGGTGACCAACACCAACATGATGCAAGCGCCGAACCTCAA
GGGCCAGAAGGCCATCATCAAGTGTCAACTGCCAGGGGCCACATGCCCGCAACTGCCGCCGGCAAGAAC
GGCTGCTGGAAGTGGCAAGGAGGGCCACCGAGATGAAGGACTGCACCGAGGCCACCCCTGGCAAGATCTGG
CCTCCAACAAGGCCGCCCCGGCAACTCCTGCACTCCCGGAGGCCACCCGCCGGAGTCCCTGGCTTGGCTTGG
CGAGGAGATCCCCCTCCCCAAGCAGGAGGCCACCGAGCTGTACCCCTGGCCCTGAAGTCCCTGGCTTGGCTTGG
AACGACCCCTGTCCCAGTAA

Fig. 64

A
2. 2003_M.GROUP.anc gag.PEP
MGARASVLSGGKLDWEKIRLRPGGKKYRLKHLVWASRELERFALNPLLETAEGCQQIMQLQPALQTGTEELRSLYNTV
ATLYCVHQRIEVKDTKEALDKIEEEQNKSQKTTQAAADKGDSQSVCNYPPIVQNLQGQMVHOAISPTLNAWVKVVEEKAF
- SPEVIPMFSALSEGATPQDLNTMLNTVGHQAMQMLKDTINEEAAEWDRLHPVHAGPIPQMRPGRSDIAGTTSTLQE
IGWMTSNPPIPVGEIYKRWIILGLNKIVRMSPSILDIRQGPKEFRDYVDRFFKTLRAEQATQDVKNWMTDILLVQNANP
DCKTILKALGPATLEEMMTACQGVGGPSHKARVLAEAMSQVTNANIMMQRGNFKGPRRIVKCFNCGKEGHIAARNCRAPRKK
GCWKCGKEGHQMKDCTERQANFLGKIWPSNKGRPGNFLQSRPEPTAPPAESFGFEEITPSPKQEPKDELYPLASLKSIFG
SDPLSQ\$

B
2003_M.GROUP.anc gag.OPT

ATGGGCGCCCGGCCCTCCGTCTGTCCGGCGCAAGCTGGACGCCCTGGAGAAGATCCGCCCTGCCGCCGGCGCAAGAAGA
AGTACCGCCTGAAGCACCTGGTGTGGGCCCTCCCGGAGCTGGAGCGCTTCGCCCTGAACCCCGGCCCTGGAGACCCGCGA
GGGCTGCCAGCAGATCATGGGCCAGCTGCAGCCGCCCTGCAGACCCGACCCGAGGAGCTGCCTCCCTGTACAACACCGTG
GCCACCCGTACTCGCTGACCAGCGCATCGAGGTGAAGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGGAGCAGAAC
AGTCCCAGCAGAAGACCCAGCAGGCCGCCACAAAGGGCGACTCTCCCGAGGTGCCCCAGAACTACCCCATCGTCAGAA
CCTGCAGGGCCAGATGGTGTCCAGGCCATCTCCCCCGCACCCCTGAACGCCCTGGTGAAGGTGGTGGAGGAGAAGGCCCTC
TCCCCGAGGTGATCCCCATGTTCTCGCCCTGTCCGAGGGGCCACCCCGAGGACCTGAACACCATGCTGAACACCGTG
GCCGGCCACCAGGCCCATGCAGATGCTGAAGGACACCATCAACGAGGAGGCCGAGTGGGACCGCCTGCACCCCTGTCA
CGCCGGCCCCATCCCCCGGCCAGATGCGCAGGCCGGCTCCGACATGCCGGCACCCCTGCCAGGAGCAG
ATCGGCTGGATGACCTCAACCCCGGAGATCTCCCGGAGGAGATCTACAAGCGCTGGATCATCTGGCCCTGAACAAGATCG
TGGCATGTTACTCCCCGTGTCCATCTGGACATCCGCCAGGGGCCACCGAGGAGCCCTCCGCACTACGTGGACCGCTTCTT
CAAGACCCGTGCCGAGCAGGCCACCCAGGAGCTGAAGAACCTGGATGACCGACACCCCTGCTGGTGCAGAACGCCAAC
GAUTGCAAGACCATCCTGAAGGCCCTGGGCCGGCCACCCCTGGAGGAGGAGATGATGACCGCCTGCCAGGGCTGGCGGCC
CCGGCCACAAGGCCGCGTGTGGCCAGGGCCATGTCCCAGGTGACCAACGCCAACATCATGATGCAAGCGCCGAACCTCAA
GGGCCCGGCCCATCGTAAGTGTCAACTGCCAGGGCCACATGCCGCCACTGCCGCCGGCAACTGCCGCCGGCAAGAAC

GGCTGCTGGAAGTGGCGCAAGGAGGGCCACCAAGATGAAGGACTGCACCGAGGCCAAGTCCCTGGCAAGATCTGGC
CCTCCAACAAGGCGCCCGCAACTTCCTGCAGTCCCAGGCCACGGCCCCCGCCAGTCCTCGCTTCGGCTTCGG
CGAGGAGATCACCCCTCCCCAAGCAGGAGCCAAGGACAAGGAGCTGTACCCCTGGCTCCCTGAAGTCCCTGGC
TCCGACCCCTGTCCCAGTAA

i.g. 65

A 3. 2003_CON_A1_gag.PEP
MGARASVLSGGKLDWEKIRLRPGKKYRLKHLVWASRELERFALNPSLLETTEGCOQIMEOLOPALKTGTTEELRSLYNTV
ATLYCVHQRIDVKDTKEALDKIEEIQNKSQKTQQAAADTGNSSKVSQNYPIVQNAQGQMVMQSLSPRTLNawanVKEEKA
SPEVIPMFSALSEGATPQDLNMMLNIVGGHQAMQMLKDTINEEEAEWDRLHPVHAGPIPPGQMREPRGSDIAGTTSTPQE
IGWMTGNPPIPVGDIYKRWIILGLNKIVRMYSVSIILDIKQGPKEPFRDYVDRFFKTLRAEQATQEVKNWMTETLLVQ
DCKSILRALGPAGTLEEMMTACQGVGGPGHKARVLAEAMSQVQHTNIMMQRGNFRGPKRIKCFNCGKEGHLARNCRAPRK
CWKGKEGHQMKDTERQANFLGKIWPSSKGRPGNFPQSRPEPTAPPAEIFGMGEITSPPKQEOKDREQDPPLVSLKSLFG
NDPLSQ\$

B 3. 2003_CON_A1_gag.OPT
ATGGGCGCCCGGCCCTCCGTCTGTCGGCGCAAGCTGGACGCCCTGGAGAACAGATCCGCCCTGGCCGCCGGCAAGAAGA
AGTACCGCCTGAAGCACCTGGTGTGGCCTCCCGCGCTGGAGCGCTTCGCCCTGAACCCCTCCCTGCTGGAGACCACCGA
GGGCTGCCAGCAGATCATGGAGCAGCTGCAGCCCTGAAGACCGGGCACCAGGAGCTGCCTCCCTGTAACACACCGTG
GCCACCCCTGTACTGCCTGCACAGCCATGACGTGAAGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGATCCAGAAC
AGTCCAAGCAGAACAGGCCAGCAGGCCGCCACACCGCAACTCTCCAAGGTGTCCCAGAACTACCCCATCGTCAGAA
CGCCCAGGGCCAGATGGTCACAGCTCCCTGTCACCGGCCACCTGAACGCCCTGGTGAAGGTGATCGAGGAGAACGGCTTC
TCCCCCGAGGTGATCCCCATGTTCTCGCCCTGTCCGAGGGCGCCACCCCGAGGACCTGAACATGATGCTGAACATCGTGG
GCGGCCACCCAGGCCATGCAGATGCTGAAGGACACCATCAACGAGGAGGCCCGAGTGGGACCCCTGCACCCCGTGC
CGCCGGCCCCATCCCCCGCCAGATGCGCAGGCCACACCGCAACTCTCCAAGGTGTCCCAGAACTACCCCATCGTCAGAA
ATCGGCTGGATGACCGCAACCCCCCATCCCCGTGGCGACATCTACAAGCGCTGGATCATCTGGCCCTGAACAAGATCG
TGCATGTACTCCCCGTGTCCATCCTGGACATCAAGCAGGGCCACCGGCCAGGAGCTGCACCGCCCTGGTGAAGGTGATCG
CAAGACCCCTGCCGCCAGCAGGCCACCCAGGAGGTGAAGAAACTGGATGACCGAGACCCCTGGTGAAGGTGATCG
GACTGCAAGTCCATCCTGCCTGCCACCCAGGAGGTGAAGGAGACCCATGACCGCCCTGCCACCCAGGAGCTGC
CCGGCCACAGGCCCGTGTGGCGAGGCCATGTCAGGCCACCCAGGAGCTGCACCCAGGCCACCCAGGAGCTGC
CGGCCAGGCCATCAAGTGTCAACTGCCACCCAGGAGGTGAAGGAGACTGGATGACCGCCCTGCCACCCAGGAGCTGC
TGCTGGAAGTGGCGCAAGGAGGCCACCCAGGAGGTGAAGGAGACTGCACCCAGGAGGCCACCCAGGAGCTGC
CCTCCAAGGCCCCGGCAACTTCCCCAGTCCGCCCGAGCCCACGCCACCCAGGAGCTGCACCCAGGAGCTGC
GGAGATCACCTCCCCCAAGCAGGAGCAGAACAGGAGCCGAGCAGGAGCCCCCTGGTGTCCCAGAAGTCCCTG
AACGACCCCTGTCCCAGTAA

C 4. 2003_A1.anc_gag.PEP
MGARASVLSGGKLDWEKIRLRPGKKYRLKHLVWASRELERFALNPGLETAEGCQQIMQLQPALKTGTTEELRSLYNTV
ATLYCVHQRIEVKDTKEALDKIEEIQNKSQKTQQAAADTGNSSKVSQNYPIVQNAQGQMVMQSLSPRTLNawanVKEEKA
SPEVIPMFSALSEGATPQDLNMMLNIVGGHQAMQMLKDTINEEEAEWDRLHPVHAGPIPPGQMREPRGSDIAGTTSTPQE
IGWMTGNPPIPVGDIYKRWIILGLNKIVRMYSVSIILDIKQGPKEPFRDYVDRFFKTLRAEQATQEVKNWMTETLLVQ
DCKSILRALGPAGTLEEMMTACQGVGGPGHKARVLAEAMSQVQNTDIMMQRGNFRGPKRIKCFNCGKEGHLARNCRAPRK
CWKGKEGHQMKDTERQANFLGKIWPSSKGRPGNFPQSRPEPTAPPAEIFGMGEEMISSPKQEOKDREQYPLVSLKSLFG
NDPLSQ\$

D 2003_A1.anc_gag.OPT
ATGGGCGCCCGGCCCTCCGTCTGTCGGCGCAAGCTGGACGCCCTGGAGAACAGATCCGCCCTGGCCGCCGGCAAGAAGA
AGTACCGCCTGAAGCACCTGGTGTGGCCTCCCGCGCTGGAGCGCTTCGCCCTGAACCCCGGCCCTGCTGGAGACCACCGA
GGGCTGCCAGCAGATCATGGGCCAGCTGCAGCCCGCCCTGAAGACCGGGCACCAGGAGCTGCCTCCCTGTAACACACCGTG
GCCACCCCTGTACTGCCTGCACAGCCATGAGGTGAAGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGATCCAGAAC
AGTCCAAGCAGAACAGGCCAGCAGGCCGCCACACCGCAACTCTCCAAGGTGTCCCAGAACTACCCCATCGTCAGAA
CGCCCAGGGCCAGATGGTCACCAAGTCCCTGTCACCGGCCACCCCTGAACGCCCTGGTGAAGGTGATCGAGGAGAACGGCTTC
TCCCCCGAGGTGATCCCCATGTTCTCGCCCTGTCCGAGGGCGCCACCCCGAGGACCTGAACATGATGCTGAACATCGTGG
GCGGCCACCCAGGCCATGCAGATGCTGAAGGACACCATCAACGAGGAGGCCCGAGTGGGACCCCTGCACCCCTGCA
CGCCGGCCCCATCCCCCGCCAGATGCGCAGGCCACCCCGAGGAGCTGCACCCAGGCCACCCCTGCAGGAGCAG
ATCGGCTGGATGACCGGAACCCCCCATCCCCGTGGCGACATCTACAAGCGCTGGATCATCTGGCCCTGAACAAAGATCG
TGCCATGTACTCCCCGTGTCCATCCTGGACATCCGCCAGGGCCCAAGGAGCCCTCCGAGACTACGTGGACCGCTTCTT
CAAGACCCCTGCCGCCAGCAGGCCACCCAGGAGGTGAAGAAGTGGATGACCGAGACCCCTGCTGGTGCAGAACGCCAAC
GACTGCAAGTCCATCCTGCCACCCAGGCCACCCAGGAGATGACCGCTGCCAGGGCGTGGCCAGGGCGTGGCG

CCGGCCACAAGGCCCCGGCTGGCCGAGGCCATGTCCCAGGTGCAGAACACCGACATCATGATGCAGCGCGGCAACTTCCG
CGGCCCAAGGCATCAAGTCTCACTGGCGAAGGAGGCCACCTGGCCGCAACTGGCGGCCGGCAAGAAGGGC
TGCTGGAAAGTGGCGAAGGAGGCCACCGAGATGAAGGACTGCACCGAGCGCCAGGCCACTTCCGAGAAGATCTGGCC
CCTCCAAGGGCCGCCCCGGCAACTTCCCCAGTCCGCCCCGAGCCACGCCGGGGGGGGAGAAGTCCGATGGCGA
GGAGATGATCTCTCCCCAAGCAGGAGCAGAAGGACCGCGAGCAGTACCCCCCTGGTGTCCCTGAAGTCCCTGTCGG
AACGACCCCTGTCCCAGTAA

Fig. 6.6

5. 2003_CON_A2 gag.PEP

A MGARASILSGGKLDWEKIRLRPGGKKYRLKHLVWASRELEKFSINPSLLETSEGCRQIIRQLQPALQTGTEELKSLYNTV
AVLYCVHQRIDVKDTKEALDKIEEEEQNKCQKTQHAAADTGNSSSSQNYPIVQNAQGQMVHQAIISPTLNawanVvveekaf
SPEVIPMFTALSEGATPQDLNTMLNTVGGHQAAMQMLKDTINEEAEWDRLHPVHAGPIPPGQMREPRGSDIAGTTSTLQEQ
IGWMTSNPPIPVGEIYKRWIILGLNKIVRMYSPTSILDIRQGPKEPFRDYVDRFFKTLRAEQAQEQEVKNWMTDTLLVQANP
DCKSILRALGPATLEEMMTACQGVGGPSHKARVLAEAMSQVQNTNTNIMMQRGNFRGQKRICKFCNCGKEGHLARNCRAPRK
KGCWKGKEGHQMKDTERQANFLGKIWPSONKGRPGNFPQSRTPEPTAPPENLRMGEETSSLQKELKTRPYNPASIPLKSL
FGNDPLSQ\$

B

2003_CON_A2 gag.OPT

ATGGCGCCCGCGCCTCCATCCTGTCGGCGCAAGCTGGACGCCCTGGGAGAAGATCCGCCCTGCCGCCGGCGCAAGAAGA
AGTACCGCCTGAAGCACCTGGTGTGGGCCCTCCCGAGCTGGAGAAGTCTCCATCAACCCCTCCCTGCTGGAGACCTCCGA
GGGCTGCCGCCAGATCATCCGCCAGCTGCAGCCGCCCTGCAGACCGGACCCGAGCTGAAGTCCCTGTACAACACCGTG
GCCGTGCTGTACTGCGTCACCAGCGATCGACGTGAAGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGGAGCAGAAC
AGTCAAGCAGAAGACCCAGCACGCCGCCACCCGGCAACTCCCTCCCTCCAGAACTACCCATCGTGAGAA
CGCCCAGGGCAGATGGTGCACCAGGCCATCTCCCCCGCACCTGTAACGCCCTGGTGAAGGTGGTGGAGGAGAAGGCC
TCCCCCGAGGTGATCCCCATGTTACCGCCCTGTCCAGGGGCCACCCGGACCTGAACACCAGTCTGTAACACC
GCGGCCACCGGCCATCGAGATGCTGAAGGACACCATCAACGAGGAGGCCCTGCAGTGGGACCCGCTGCACCCCGTGCA
CGCGGGCCCATCCCCCGGAGATGCGCAGGCCGAGCCACCCGGCACCTCCACCCCTGCAGGAGCAG
ATCGGCTGGATGACCTCCAACCCCCCATCTGGAGATCTACAGCCCTGGGCTGGATCATCTGGGCTGTGAAAGATCG
TGCATGATGACTCCCCGTGTCCATCCTGGACATCCGCCAGGGGCCACCTCCCGACTACGTGGACCGCTTCT
CAAGACCTGCGCGCCAGCAGGCCACCCAGGGTGAAGAACTGGATGACCCACCCCTGTTGAGGAGAAGACCGCAAC
GACTGCAAGTCCATCTGCGCCCTGGGCCGGCGCACCCCTGGAGGAGATGATGACCGCCTGCCAGGGCTGGCG
CCTCCCACAAGGCCCGGTGTGGCGAGGCCATGTCAGGGTCAAGAACACCAACATCATGATGCA
CTTCCCGGCCAGAAGGCCATCAAGTGTCTCAACTGCGCAAGGAGGCCACCTGGGCCACTGCGCGCCCCCGCAAG
AAGGGCTGTGGAAAGTGGCGAAGGAGGCCACCGAGATGAAGGACTGCACCGAGGCCAACCTCTGGCAAGATCT
GGCCCTCCAACAAGGCCGCCCGCAACTTCCCCAGTCCGACCCGCCACCGCCCCCGGAGAACCTGCGCAT
GGCGAGGAGATCACCTCTCCCTGAAGCAGGAGCTGAAGACCCCGCAGGCCACCAACCCGCCATCTCCCTGAAGTCC
TTCGGCAACGACCCCTGTCCCAGTAA

Fig. 6.7

6. 2003_CON_B gag.PEP

A MGARASVLSGGELDRWEKIRLRPGGKKYKLKHIVWASRELERFAVNPGLLETSEGCRQILQPLQPSLQTSSEELRSLYNTV
ATLYCVHQRIEVKDTKEALEKIEEEEQNKSKKQQAAADTGNSQVSQNYPIVQNLQGMVHQAIISPTLNawanVvveekaf
SPEVIPMFSALSEGATPQDLNTMLNTVGGHQAAMQMLKETINEEAEWDRLHPVHAGPIAPGQMREPRGSDIAGTTSTLQEQ
IGWMTNNPPIPVGEIYKRWIILGLNKIVRMYSPTSILDIRQGPKEPFRDYVDRFYKTLRAEQAQSEVKNWMTDTLLVQANP
DCKTILKALGPATLEEMMTACQGVGGPSHKARVLAEAMSQVNTSATIMMQRGNFRNQRTVKCFNCGKEGHIAKNCRAPRK
KGCWKGKEGHQMKDTERQANFLGKIWPSONKGRPGNFLQSRPEPTAPPESFRFGEETTPSQKQEPIKELYPLAS\$

B

2003_CON_B gag.OPT

ATGGCGCCCGCGCCTCCGTGCTGCCGGCGAGCTGGACGCCCTGGGAGAAGATCCGCCCTGCCGCCGGCGCAAGAAGA
AGTACAAGCTGAAGCACATCGTGTGGCCCTCCCGAGCTGGAGCGCTGCCGTGAACCCCGGCCCTGCTGGAGACCTCCGA
GGGCTGCCGCCAGATCTGGCCAGCTGCAGCCCTCCCGAGACCCGGCTCCGAGGAGCTGCCTCCCTGTACAACACCGTG
GCCACCCCTGTACTGCGTCACCAGCGCATCGAGGTGAAGGACACCAAGGAGGCCCTGGAGAAGATCGAGGAGGAGCAGAAC
AGTCCAAGAAGGCCAGCAGGCCGCCGACACCCGGCAACTCCCTCCAGGTGTCCAGAAGTACCCATCGTGAGAA
CTTGCAGGGCCAGATGGTGCACCGGCCATCTCCCCCGCACCTGTAACGCCCTGGTGAAGGTGGTGGAGGAGAACGGCC
TCCCCCGAGGTGATCCCCATGTTCTCCGCCCTGTCCAGGGGCCACCCGGACCTGAACACCATGCTGAACACCGCTGG
GCGGCCACCGGCCCATGCAAGATGCTGAAGGAGACCATCAACGAGGAGGCCGAGTGGGACCCGCTGCACCCCGTGCA
CGCCGGCCCCATCGCCCCCGGCCAGATGCGCGAGCCCGCGCTCCGACATGCCGGCACCCCTCACCCCTGAGGAGCAG
ATCGGCTGGATGACCAACAACCCCCCATCTGGAGATCTACAGCGCTGGATCATCTGGGCTGAAAGATCG
TGCATGATGACTCCCCCACCTCCATCTGGACATCCGCCAGGGCCCAAGGAGGCCCTCCCGACTACGTGGACCGCTTCTA
CAAGACCCCTGCGCGCCGAGCAGGCCCTCCAGGAGGTGAAGAAGTGGATGACCGAGACCCCTGCTGGTGCAGAACGCCAAC
GACTGCAAGACCATCTGAAGGCCCTGGGCCACCGGCCAGGAGATGATGACCGCCTGCCAGGGCTGGCG

CCGGCCACAAGGCCGCTGGCCGAGGCCATGTCCCAGGTGACCAACTCCGCCACCATCATGATGCAGCGCGGCAACTT
CCGCAACCAGCGCAAGACCGTGAAGTCCTCAACTGCGGCAAGGAGGGCCACATGCCAAGAACTGCGCGCCCCCGCAAG
AAGGGCTGCTGGAAGTGCAGCAAGGAGGGCCACCATGAGGACTGCACCGAGCGCCAGGCCACTCCTGGGCAAGATCT
GGCCCTCCCACAAGGGCCGCCCCGGCAACTCTTGCACTGCCGCCCCGAGGCCACGCCCCCCCGAGGAGTCTTCCGTT
CGGCGAGGAGGACCAACCCCCCTCCAGAACGAGGAGGCCATGACAAGGAGCTGTACCCCCCTGGCCTCTAA

7. 2003_B.anc gag.PEP

MGARASVLSGGKLDKWEKIRLRPGGKKYKLKHIVWASRELERFAVNPGLLTSEGCRCQILGQLQPALQTGSEELRSLYNTV
ATLYCVHQRIEVKOTKEALDKIEEEEQNKSKKQQAAADTGNSSQSVNYPIVQNLQGQMVMHQAISPTLNAWVKVVEEKAF
SPEVIPMFSALSEGATPQDLNTMLNTVGGHQAAMQMLKETINEEAAEWDRLLHPVHAGPIAPGQMREPRGSIDIAGTTSTLQEIQ
IGWMTNNPPIPVGEIYKRWIILGLNKIVRMYSPIISILDIRQGPKEPFRDYVDRFYKTLLRABQASQDVKNWMTETLVQNANP
DCKTILKALGPAATLEEMMTACQGVGGPGHKARVLAEAMSQVTNSTIMMQRGNF RDQRKIVKCFNCKGEGHIARNCRAPRK
KGCWKCGKEGHQMKDCTERQANFLGKIWPSPHKGRPGNFLQSRPEPTAPPEESFRFGEETTPSQKQEPIDKELYPLASLKSL
FGNDPSSQ\$

2003_B.anc gag.OPT

ATGGGCGCCCGCGCCTCCGTCTGTCCGGCGCAAGCTGGACAAGTGGGAGAAGATCCGCCCTGCGCCCGGCGGAAGAAGA
AGTACAAGCTGAAGCACATCGTGTGGGCCCTCCCGAGCTGGAGCGCTTCGCCGTGAACCCCGGCCCTGCTGGAGACCTCCGA
GGGCTGCCGCCAGATCTGGCCAGCTGCAGCCCCCTGCCAGACCGGCTCGAGGAGGCTGCCTCCCTGTACAACACCGTG
GCCACCTGTACTCGTGCACCAGCGCATCGAGGTGAAGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGGAGCAGAACAA
AGTCCAAGAAGAAGGCCAGGCCAGGCCAGACACCGCAACTCCCTCCAGGTGTCCTTCAAACACTACCCCATCGTGCAGAA
CTCTGCAGGGCCAGATGGTGCACCAGGCCATCTCCCCCGCACCCCTGAAACGCCCTGGTGAAGGTTGGTGGAGGAGAACGGCTTC
TCCCCCGAGGTGATCCCCATGTTCTCCGCCCTGTCGAGGGGCCACCCCGAGGACCTGAAACACCATGCTGAACACCGTGG
GGGGCCACCCAGGCCATCGAGATGTCAGAGGAGACATCAACAGGAGGCCCGAGTGGGACCCGCTGCACCCCGTGC
CGCCGGCCCCCATGCCCGGCCAGATCGCGAGGCCCCCGGCTCCGACATCGCCGCCACCACTCCACCGTGCAGGAGCAG
ATCGGCTGGATGACCAACAAACCCCCCATCTCCCGTGGCGAGATCTACAAGCGCTGGATCATCTGGCCTGAACAAGATCG
TGCCTGCATGTACTCCCCCATCTCCATCTGGACATCCGCCAGGGCCCAAGGAGCCCTCCGACTACGTGGACCGCTTCTA
CAAGACCTCTGCCGCCAGCAGGCCCTCCAGGACGTGAAGAACTGGATGACCGAGACCCCTGCTGGTGCAGAACGCCAACCCC
GACTGCAAGACCATCTGAAGGCCCTGGGCCCGGCCACCCCTGGAGGAGATGATGACCCGCTGCCAGGGCGTGGCGGCC
CCGGCCACAAGGCCCGCTGGCCAGGCCATGTCCTCCAGGTGACCAACTCCACCACTCATGATGCAAGCGCGCAACTT
CCGCGACCAAGCGCAAGATCGTGAAGTGTCTCAACTGCCGAAGGAGGGCCACATGCCCGCAACTGCCGCCCCCCCGCAAG
AAGGGCTGCTGGAAGTGCAGCAAGGAGGGCCACAGATGAAGGACTGCCACCGAGGCCAGGCCACTTCTGGGCAAGATCT
GGCCCTCCCACAAGGCCGCCGCCAGCTGGACAATTCTCGAGTCCGCCAGGCCACCGCCCCCGAGGAGTCTCCCGCTT
CGGCCAGGAGGACCAACCCCCCTCCAGAAGCAGGAGGCCATCGACAAGGAGCTGTACCCCTGGCCTCCCTGAAGTCCCTG
TTCGGCAACGACCCCTCTCCAGTAA

Fig. 68.

8. 2003_CON_C gag.PEP

MGARASILRGKGDKWKEIRLRRPGKKHYMLKHLVWASRELERFALNPGLLETSEGCKQIICKLQPALQTGTEELRSLYNTV
ATLYCVHEKIEVRDTKEALDKIEEEQNKSQQKTQQAKAADGKVSNQYPIVQVNLLQGMVHQAIISPRTLNAWVKVIEEKAFSPE
VIIPMFTALSEGATPQDLNTMLNTVGHHQAAMQMQLKDTINEEAAEWDRLHPVHAGPIAPGQMREPRGSDIAGTTSTLQEIQIAW
MTSNPPIPVGDIYKRWIILGLNKIVRMYSPVSIIDIKQGPKEPFRDYVDRFFKTLRAEQATQDVKNWMTDTLLVQNANPDCK
TILRALGPGATLEEMMTACQGVGGPSHKARVLAEAMSQANNTNIMMQRSNFKGPKRIVKCFNCGKEGHIAARNCRAPRKKGWC
KCGKEGHQMKDCTERQANFLGKIWPSSHKGRPNFLQRNPEPTAPPAESFRFEETTPAPKQEPKDREPLTSLSLFGSDPLSQ
\$

2003_CON_C gag.OPT

ATGGGCGCCCGCGCCTCCATCTGCGGGCGGCAAGCTGGACAAGTGGAGAAGATCCGCCCGGCCGGCAAGAACG
ACTACATGCTGAAGCACCTGGTGTGGGCTCCCGGAGCTGGAGCGCTTCGCCCTGAACCCGGCTGCTGGAGACCTCCGA
GGGCTGCAAGCAGATCATCAAGCAGCTGCAGCCCCGCTGAGACCCGGCACCGAGGAGCTGCCTCCCTGTACAACACCGTG
GCCACCTGTACTGCGTGCACGAGAAGATCGAGGTGCGGCACACCAAGGAGGCCCTGGACAAGATCGAGGAGGAGCAGAAC
AGTCCCAGCAGAAGACCCAGCAGGCCAAGGCCGACGCCAAGGTGTCCCAAAGTACCCCCATCTGCGAACACTGCCAGGG
CCAGATGGTGCACCAGGCCATCTCCCCCGCACCTGAAAGCCTGGGTGAAGGTGATCGAGGAGAAGGCCCTCTCCCCGAG
GTGATCCCCATGTTACCGCCCTGTCCGGAGGGCCACCCCCAGGACCTGAACACCATGCTGAACACCGTGGGGCCACC
AGGCCGCATGCAAGTGTCAAGGACACCATCAACAGGAGGCCGAGTGGGACCGCTGCACCCGTGCACGCCGGCCC
CATGCCCGGGCAGATTCGGAGCCCCCGGGCTCCGACATCGCCGGCACCACTCCACCCGTGCAGGAGCAGATCGCTGG
ATGACCTCCAACCCCCCATCCCCGTGGCGACATCTACAAGCGCTGGATCATCTGGGCTGAACAAAGATCGCGCATGT
ACTCCCCCGTGTCCATCCTGGACATCAAGCAGGGCCCAAGGAGCCCTCGGCAACTACGTGGGACCGCTTCAAGACCC
GCGGCCGAGCAGGCCACCCAGGACGTGAAGAACTGGATGACCGACACCCCTGCTGGTGAGAACGCCAACCCGACTGCAAG
ACCATCTGCGGCCCTGGGCCCCGGGCCACCCGGAGGAGATGATGACCGCTGCCAGGGCGTGGCGGCCAAC

AGGCCCGCGTGTGGCGAGGCCATGTCAGGCCAACACCAACATCATGATGCAGCGCTCAACTTCAGGGCCCCAA
GCGCATCGTAAGTGTTCACTGCGCAAGGAGGGCCACATGCCCGCAACTGCCGCCGGCAAGAAGGGCTGCTGG
AAGTGCAGGCCAAGGAGGGCCACCAGATGAAGGACTGCACCGAGCGCAGGCCAACCTCTGGCAAGATCTGCCCTCCCACA
AGGCCGCCGGCAACTTCTGCAGAACCGCCCCGAGGCCACCGCCCCCGAGTCCTCCGAGGAGACAC
CCCCGCCCAAGCAGGAGCCAAGGACCGCGAGCCCTGACCTCCCTGAAGTCCCTGTCGGCTCCGACCCCTGTCCCAG
TAA

C 9. 2003_C.anc.gag.PEP

MGARASILRGKLDWTWEKIRLRPGKKHYMIKHLVWASRELERFALNPGLLETSEGCKQIMKQLQPALQTGTEELRSLYNTV
ATLYCVHERIEVRDTKEALDKIEEEQNKSQQKTQQAEADGDNGKVSNYPIVQNLQGQMVHQAIISPTLNAWKVVEEKAF
SPEVIPMFTALSEGATPQDLNTMLNTVGGHQAAMQMLKDTINEEEAEDRHLHPVHAGPVAPGQMREPRGSDIAGTTSTLQEQQ
IAWMTSNPPIPVGDIYKRWIILGLNKIVRMSPVSILDIKQGPKEPFRDYVDRFFKTLRAEQTQDVKNWMTDTLLVQNANP
DCKTILRALGPATLEEMMTACQGVGGPGHKARVLAEAMSQANNTNIMMQRSNFKGPKRIVKCFNCGKEGHIAKNCRAPRK
GCWKGKGEGHQMKDTERQANFLGKIWPSHKGRPGNFLQSRPEPTAPPAESFRFEETTPAKQEPKDREPLTSKSLFGSDP
LSQ\$

D 2003_C.anc.gag.OPT

ATGGCGCCCGCGCCTCCATCCTGCGCGCGCAAGCTGGACACCTGGAGAAGATCCGCTGCGGCCGGCGCAAGAAC
ACTACATGATCAAGCACCTGGTGTGGGCCCTCCCGGAGCTGGAGGCCCTGCGCTCCCTGAACCCCGGCCCTGCTGGAGACCTCCGA
GGGCTGCAAGCAGATCATGAAGCAGCTGCAGCCGCCCTGCGAGACCCAGGGCACCCAGGAGGCCCTGGACAAGATCGAGGAGGAGCAGAAC
GCCACCTGTACTGCGTCAGGCCATCGAGGTGCGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGGAGCAGAAC
AGTCCCAGCAGAACAGACCAGCAGGCCAGGCCAGGCCACGGCAAGGTGCTCCAGAAGACTACCCCATCGTCAGAAC
CCTGCAGGGCCAGATGGTGCACCAGGCCATCTCCCCCGCACCTGCGAGGGGCCACCCAGGACCTGAACACCATGCTGAACACCGTGG
TCCCCCGAGGTGATCCCCATGTTACCGCCCTGTCGAGGGGCCACCCAGGACCTGAACACCATGCTGAACACCGTGG
GCCGCCACCGGCCATGCGATGCTGAAGGACACCAGTGAAGAACCTGGATGACCGACACCTGCTGGTGCAGAACGCCAAC
CGCCGGCCCCGTGGCCCCCGCAGATGCGCAGCCGCCACCTGGAGGCCACCCCTGCCAGGAGCAG
ATCGCCTGGATGACCTCAACCCCCCATCCCCGTGGCGACATCTACAAGGCGCTGGATCATCTGGCCCTGAACAAGATCG
TGCATGTACTCCCCGTGTCCATCTGGACATCAAGCAGGGCCAAGGAGGCCCTCCGCGACTACGTGGACCGCTTCT
CAAGACCTCGCGCCAGCAGGCCACCCAGGACGTGAAGAACCTGGATGACCGACACCTGCTGGTGCAGAACGCCAAC
GAECTGCAAGACCATCCTGCGCCCTGGCCCCGGCAGATGCGCAGCCGCCACCTGGAGGCCACCCCTGCCAGGAGCAG
CCGGCCACAAGGCCCGCTGGCCAGGCCATGTCAGGCCACCAACACCATGATGCGCTCCAACTTCAA
GGGCCCCAAGCGCATGTTCAACTGCGCAAGGAGGCCACATGCCCGCAACTGCCGCCAGGCCAAC
GGCTGCTGAAGTGCAGGCCAAGGAGGCCACAGATGAAGGACTGCACCGAGGCCAGGCCACTTCTGGCAAGATCTGC
CCTCCCACAAGGGGCCCGCCCGCAACTTCTGCAGTCCCCCGAGGCCACCCCGCCAGTCTCCGCTTGA
GGAGACCACCCGCCCGCAAGCAGGAGGCCAAGGACCGCGAGCCCTGACCTCCCTGAAGTCCCTGTTGGCTCCGACCC
CTGCTCCAGTAA

Eg. 69

A 10. 2003_CON_D_gag.PEP

MGARASVLSGGKLDWEKIRLRPGKKYRLKHIVWASRELERFALNPGLLETSEGCKQIIGQLQPAIQTGSEELRSLYNTV
ATLYCVHERIEVKDTKEALEKIEEEQNKSKKQQAAADGNSSQVSQNPIVQNLQGQMVHQAIISPTLNAWKVIEEKAF
SPEVIPMFSALESEGATPQDLNTMLNTVGGHQAAMQMLKETINEEEAEDRHLHPVHAGPVAPGQMREPRGSDIAGTTSTLQEQQ
IGWMTSNPPIPVGDIYKRWIILGLNKIVRMSPVSILDIKQGPKEPFRDYVDRFYKTLRAEQAOSDVKNWMTETLLVQNANP
DCKTILKALGPATLEEMMTACQGVGGPGHKARVLAEAMSQATNSAAVMQRFNKGPKRIVKCFNCGKEGHIAKNCRAPRK
KGCGWKGKGEGHQMKDTERQANFLGKIWPSHKGRPGNFLQSRPEPTAPPAESPGFGEETPSQKQEOKDKEPLYPLTSKSLF
GNDPLSQ\$

B 2003_CON_D_gag.OPT

ATGGCGCCCGCGCCTCCGTGTCCGGCGCAAGCTGGACGCCCTGGAGAAGATCCGCTGCGGCCGGCGCAAGAAC
AGTACCGCCTGAAGCACATCGTGTGGGCCCTCCCGGAGCTGGAGGCCCTGCGCTCCCTGAACCCCGGCCCTGCTGGAGACCTCCGA
GGGCTGCAAGCAGATCATGCCAGCTGCAGCCGCCATCCAGACCCGCTCCGAGGAGCTGCCTCCCTGTACAACACCGTGG
GCCACCTGTACTGCGTCACGCCATCGAGGTGAAGGACACCAAGGAGGCCCTGGAGAACATCGAGGAGGAGCAGAAC
AGTCCAAGAAGAACGCCAGCAGGCCGCCACCCGCCACCTCCAGGTGCTCCAGAACCTCCATCGTCAGAAC
CCTGCAGGGCCAGATGGTGCACCCAGGCCATCTCCCCCGCACCTGAAACGCCCTGGGTGAAGGTGATGCGAGGAGAACGGCTTC
TCCCCCGAGGTGATCCCCATGTTCTCCGCCCTGTCGAGGGGCCACCCCGAGGACCTGAACACCATGCTGAACACCCGTGG
GCCGCCACCGGCCCATGCAAGATGCTGAAGGAGACCATCAACCGAGGAGGCCAGTGGACCGCCTGCACCCCGTGC
CGCCGGCCCCGTGGCCCCGGCAGATGCCGAGGCCGCCAGTCCGACATGCCGCCACCCCTCCACCCCTGAGGAGCAG
ATCGGCTGGATGACCTCAAACCCCCCATCCCCGTGGCGAGATCTACAAGGCGCTGGATCATCTGGCCCTGAACAGATCG
TGCATGTACTCCCCGTGTCCATCTGGACATGCCGCCAGGCCACAGGAGCCCTCCGCAACTACGTGGACCGCTTCTA
CAAGACCTCGCGCCAGCAGGCCCTCCAGGTGAAGAACCTGGATGACCGAGACCCCTGCTGGTGCAGAACGCCAAC

g. 70
11. 2003_CON_F gag.PEP
MGARASVLSGGKLDWEKIRLRPGGKKYRMKHLVWASRELERFALDPGLLETSEGCQKIIQLQPSLQTGSEELRSLNTV
AVLYCVHQKEVKDTKEALEKLEEEQNKSQQKTQQAADKGVSQNYPIVQNLQGMVHQAIISPTLNAWVKVIEKA
IPMFSALESEGATPQDLNTMLNTVGGHQAAMQMLKDTINEEAAEWDRLHPVHAGPIPQMRPEPRGSDIAGTTSTLQEIQWM
TSNPPVPVGDIYKRWIILGLNKIVRMSPVSILDIRQGPKEPFRDYVDRFFKTLRAEQATQEVKGWMTDTLLVQNA
NPDCKT
ILKALGPATGLEEMMTACQGVGGPGHKARVLAEMSQA
TNTAIMMQKSNFKGQRRIVKCFNCGKEGHIAKNCRAPRKKGCK
CGREGHQMKDTERQANFLGKIWPSNKGRPNFLQSRPEPTAPP
AESFGFREEITPSPKQEOKDEGLYPLASLKFNDP\$

2003_CON_F gag.OPT

B
ATGGGCGCCCGGCCCTCCGTGCTGTCGGCGGAAGCTGGACGCCCTGGAGAAGATCCGCC
CTGCGCCCCGGCGCAAGAAC
AGTACCGCATGAAGCACCTGGTGTGGCCTCCCGCAGCTGGAGCGCTTCGCC
CTGGAGACCTCCGGCTGCTGGAGACCTCCGG
GGGCTGCCAGAACAGATCATCGGCCAGCTGCAGGCC
CTCCCTGCAGACCCGGCTCCGAGGAGCTGC
GCCGCTGTACTCGCGTGCACCAGAACGGTGGAGGTGAAGG
ACACCAAGGAGGCCCTGGAGAAGCTGGAGGAGGAGCAGAAC
AGTCCCAGCAGAACAGACCCAGCAGGCC
CGCCAGAACAGGGCAGCAGGCC
GATGGTGACCAGGCCATCTCCCCCGCACCC
CTGAACGCC
CTGGGTGAAGGTGATCGAGGAGAACGG
GAGGCC
CTCTCCCCGAGGTG
ATCCCCATGTTCTCGGCC
CTGTCCGAGGGCGCACCC
CCAGGACCTGAACACCATGCTGA
ACACCGTGGCGGCC
ACCCAG
CCGCATGCAGATGCTGAAGG
ACACCATCAACGAGGAGGCC
GAGTGGAGGCC
CTGCACCC
CGCC
CCCCCGGCCAGATGCGCGAGGCC
CTCGACATCGCC
GAGGCC
ACCTCC
AGGAGCAG
ACATCTACAAGCGCTGG
GATCATCTGG
GCC
CTGGAG
GAGGCC
ACCTCC
AGGAGCAG
ACATCTACAAGCGCTGG
GAGGCC
CTGCACCC
CGCC
CCCCGGCCAGGGCTGG
GATGACCG
GAGGCC
ACCC
CTGCTGG
GCC
AGGCC
ACACCC
GACTGCAAGAAC
ATCC
GAGGCC
CTGGG
CCCCGGCG
CACCC
CTGGAGGAG
GAGGAG
GATGACCG
GAGGCC
ACCC
CTGCTGG
GCC
AGGCC
ACACCC
GACTGCAAGAAC
ACCTCC
AGGAGCAG
ACATCG
GAGGCC
ACCTCC
AGGAG
GAGGCC
ACCC
CTGCTGG
GCC
AGGCC
ACACCC
GACTGCAAGAAC
GAGGCC
ACCC
CTGCTGG
GCC
AGGCC
ACACCC
GACTGCAAGAAC
TAA

12. 2003_CON_G gag.PEP

A
MGARASVLSGGKLDWEKIRLRPGGKKYRMKHLVWASRELERFALNPDLLETAE
GCQIMQQLQPA
LTGTEELRSLFNTV
ATLYCVHQRIEVKDTKEALEEVEKIQKKSQQKTQQAAMDEGNSSQVSQNYPIVQNAQGMVHQAIISPTLNAWVKV
VEEKAF
SPEVIPMFSALESEGATPQDLNTMLNTVGGHQAAMQMLKDTINEEAAEWDRMHPQQAGPIPQGI
REPRGSDIAGTTSTLQEIQWM
IRWMTSNPPVPGDIYKRWIILGLNKIVRMSPVSILD
IRQGPKEPFRDYVDRFFKTLRAEQATQEVKGWMTDTLLVQNA
NP
DCKTILRALGPATGLEEMMTACQGVGGPGHKARVLAEMSQA
SGAAA
IMMQKSNFKG
PRTIKCFNCGKEGHIA
LNCRAPRK
KGCGWKGCKEGHQMKDTERQANFLGKIWPSNKGRPNFLQ
SRPEPTAPP
AESFGFREEITPSPKQEOKDEGLYPLASLKFNDP\$

2003_CON_G gag.OPT

B
ATGGGCGCCCGGCCCTCCGTGCTGTCGGCGGAAGCTGGACGCC
CTGGAGAAC
AGTACCGCATGAAGCACCTGGTGTGGCCTCCCGCAGCTGGAGCGCTTCGCC
CTGAACCC
GAGCTGC
GCC
CTCC
GGAGGAGCTGC
GCC
CTCC
GGAGGAGCTGGAGAAGATCCAGAAC
AGTCCCAGCAGAACAGACCCAGCAGGCC
GAGGCC
ACCTCC
AGGAGCAG
ACATCT
GCC
AGGCC
ACACCC
GACTGCAAGAAC
CGCC
AGGCC
ACATCT
GCC
AGGCC
ACACCC
GACTGCAAGAAC
TCCCC
GAGGTGAT
CCCC
CATGTT
CTCC
GCC
CTGTCC
GAGGG
GCC
ACCCCC
GAGC
CTGAAC
ACCC
GACTGCAAGAAC
GCC
AGGCC
ACATCG
GCC
AGGCC
ACACCC
GACTGCAAGAAC
GCC
AGGCC
ACACCC
GACTGCAAGAAC
ATCC
GCTGG
GATGAC
CTCA
AC
AGCGCTGG
GATCAT
CT
GCC
CT
GAG
AT
TACA
AGCGCTGG
GATCAT
CT
GCC
CT
GAG
AT
TACA
AGCGCTGG
GATCAT
CT
GCC
CT
GAG
AT
TACA
AGCGCTGG
GACTAC
GTGG
ACCG
CT
TCC

g. 72
CAAGACCCCTGCGCGCCGAGCAGGCCACCCAGGGAGGTGAAGGGCTGGATGACCGACACCCCTGCTGGTCAGAACGCCAACCC
GACTGCAAGACCATTCTGCGCCCTGGGCCCGCCACCCCTGGAGGAGATGATGACCGCTGCCAGGGCGTGGCGGCC
CCTCCACAAGGGCCCGCTGGCCGAGGCCATGTCCACGCCCTCCGGCGCCGCCATCATGATGAGAAGTCCAA
CTTCAGGGCCCCCGGCCACCATCAAGTCTCAACTGGGCAAGGAGGGCACCTGGCCGCAACTGCGCGCCCCCGC
AAGAAGGGCTGCTGGAAGTGCAGGCCAGAGGACTGCACCGAGGCCACTTCCCTGGCAAGA
TCTGGCCCTCCAACAAGGGCCCGCCGCAACTTCTGAGAACCGCCGAGGCCACCGCCCCCGCCAGTCCTTCGG
CTCGGCAGGGAGATGCCCTCCCCAAGCAGGAGCAGAAGGAGAGCTGTACCCCTGGCCTCCCTGAAGTCCCTG
TCGGCTCCGACCCCTAA

13. 2003_CON_H gag.PEP

MGARASVLSGGKLDWEKIRLRPGGKKYRLKHLVWASRELERFALNPLLETAEGCLQIEQLQPAIKTGTEELQSLFNTV
AVLYCVHQRIDVKDTKEALGKIEEIQNKSQQKTQQAADKEKDNLVSQNYPIVQNAQGQMVHQAI PRTLNawanvkvvekaf
SPEVI PMFSALSEGATPQDLNAMLNTVGGHQAAMQMLDTINEEEAEWDRLHPVHAGPIPPGQMREPRGSDIAGTTSTLQE
IAWMGNPPIPVGDIYKRWIILGLNKIVRMYSPVSILDIKQGPKEPRDYVDRFFKTLRAEQATQDVKNWMTDTLLVQNA
DCKTILRALGQGASIEEMMTACQGVGGPSHKARVLA EAMSQVTNAAAIMMQKGNFKGPRKIVKCFNCKGEGHIARNCRAPR
KKGCWKCGREGHQMKDTERQANFLGKIWPSSKGRPGNFLQSRPEPTAPPAESFGFEEITPSPKQELKDKEPLASLRSLF
GNDPLSQ\$

2003_CON_H gag.OPT

B
ATGGGCGCCCGCCTCCGTCTGTCGGCGGAAGCTGGACGCCCTGGAGAACGATCCGCTGCCGCCCCGGCGCAAGAAC
AGTACCGCCTGAAGCACCTGGTGTGGCCTCCCGCAGCTGGAGCGCTTCGCCCTGAACCCCGGCCCTGCTGGAGACCGCCGA
GGGCTGCCATGAGATCATCGAGCTGCAGCCGCCATCAAGACCGGCCACCGAGGAGCTGCAGTCCTGTTCAACACCGTG
GCCGTGCTGACTCGCTGCACCAGCGCATCGACGTGAAGGACACCAAGGAGGCCCTGGCAAGATCGAGGAGATCCAGAAC
AGTCCCAGCAGAACGACCCAGCAGGCCGCCACAAGGAGAACAGGAGAACAGGAGTGTCCAGAACTACCCATCGTGAGAA
CGCCCGAGGCCAGATGGTCAACCCCTGGAGGCCATCTCCCGCAGGAGCTGGTGAAGGAGTGTCCAGAACTACCCATCGTGAGAA
TCCCCCAGGGCCAGATGGTCAACCCCTGGAGGCCATCTCCCGCAGGAGCTGGTGAAGGAGTGTCCAGAACTACCCATCGTGAGAA
GCCGTGCTGACTCCCGTGTCCATCTGGACATCAAGCAGGGCCCAAGGAGGCCCTCCCGCAGACTACGTGGAGCCGTTCT
GCGGCCACCAGGCCATGAGATGCTGAAGGACACCATCAACGAGGAGGCCCTGGAGCTGGACCCCTGCTGGAGCCCTGCA
CGCCCGCCCATCCCCCGCCAGATGCGCGAGGCCCTGGAGGCCATGAGATGCTGGAGCCCTGCAACCCCTGCTGGAGCC
ATCGCCTGGATGACCGCAACCCCCCATCCCCGTGGGAGACATCTACAAGGCTGGATCATCTGGGCTGAACAAGATCG
TGCAGTGTACTCCCCGTGTCCATCTGGACATCAAGCAGGGCCCAAGGAGGCCCTCCCGCAGACTACGTGGAGCCGTTCT
CAAGACCCCTGCGCCGAGCAGGCCACCCAGGAGCTGAAGAACACTGGATGACCGACACCCCTGCTGGAGCCAGAACGCCAAC
GACTGCAAGACCCATCTGCGCCCTGGGAGGCCCTCCATGAGGAGATGATGACCGCTGCAAGGGCTGGCG
CCTCCCACAAGGCCCGCTGCTGGCGAGGCCATGTCCAGGTGACCAACGCCAACGCCCATCATGATGAGAACGGCAA
CTTCAGGGCCCCCGCAAGATGTGAAGTGCTCAACTGGGCAAGGAGGCCACATGCCCGCAACTGCCGCCAACCTCTGGGCAA
AAGAAGGGCTGCTGGAAGTGCAGGCCGAGGCCACCAAGATGAAGGACTGCACCGAGCAGGCCAGGCCAACCTCTGGGCAA
TCTGGCCCTCCTCCAAGGGCCGCCGCAACTTCTGAGTCCCGCCGAGGCCACCGCCCCCGCCAGTCCTGGGCTCCCTGCGCTCC
CTCGCGAGGAGATGACCCCTCCCCAAGCAGGAGCTGAAGGACAAGGAGCCCCCTGGCCTCCCTGCGCTCCCTGTT
GGCAACGACCCCTGTCCAGTAA

14. 2003_CON_K gag.PEP

A
MGARASVLSGGKLDWEKIRLRPGGKKYRLKHLVWASRELERFALNPLLETTGCRQIIROQLQPSLQTGSEELKSLFNTV
ATLYCVHQRIEVRDTKEALDKLEEONKSQQKTQQAETADKGVSQNYPIVQNLQGQMVHQALSPRTLNawanvkvvekaf
IPMFALSEGATPQDLNMLNTVGGHQAAMQMLDTINEEEAEWDRLHPVHAGPIPPGQMREPRGSDIAGTTSTLQE
TSNPVPVGEIYKRWIILGLNKIVRMYSPVSILDIRQGPKEPRDYVDRFFKTLRAEQATQEVKNWMTDTLLVQNA
DCKTILRALGQGASIEEMMTACQGVGGPSHKARVLA EAMSQVTNTAVMMQRGNFKGQRKIIKCFNCKGEGHIARNCRAPRKKG
CGKEGHQMKDTERQANFLGKIWPSSKGRPGNFLQSRPEPTAPPAESFGFEEITPSPKQELKDKEQGPPLTSKSLFGNDP
LSQ\$

2003_CON_K gag.OPT

B
ATGGGCGCCCGCCTCCGTCTGTCGGCGGAAGCTGGACACCTGGAGAACGATCCGCTGCCGCCCCGGCGCAAGAAC
AGTACCGCCTGAAGCACCTGGTGTGGCCTCCCGCAGCTGGAGCGCTTCGCCCTGAACCCCTCCCTGCTGGAGACCGCC
GGGCTGCCAGATCATCCGCCAGCTGCAGCCCTCCCTGCAGACCGGCCCTGGAGCTGAAGTCCCTGTTCAACACCGTG
GCCACCCCTGACTCGCTGCACCAGCGCATCGAGGTGCGCGACACCAAGGAGGCCCTGGACAAGCTGGAGGAGGCC
AGTCCCAGCAGAACGACCCAGCAGGAGACCGCGACAAGGGCTGTCCAGAACACTACCCATCGTGAGAACCTGCA
GATGGTGCACCCAGGCCCTGCCCCCGCACCCTGAACGCCCTGGGAGGGACTGAACACCATGCTGAAGGCCCT
ATCCCCATGTTCTCCGCCCTGTCAGGGGCCACCCCGAGGACTGAACACCATGCTGAACACCGTGGGCC
CCGCGCATGCTGAAGGAGACCCATCAACGAGGAGGCCGAGTGGGAGGCCCTGCAACCCCGTGCACGCCGCC
CCCCCGGCCAGATGCGCGAGGCCGCCGAGGCCACCCATGCTGAACACCGTGGGCC
ACCTCCAACCCCCCGTGGCAGATCTACAAGGCTGGATCATCTGGCCTGAACAAAGATCGTGCGCATGACT

CCCCCGTGTCCATCCTGGACATCCGCCAGGGCCCCAAGGAGCCCTCCGCACTACGTGGACCGCTTCTTCAGAACGCCCTGCG
CGCCGAGCAGGCCACCCAGGAGGTGAAGAACTGGATGACCGACACCCCTGCTGGTGCAGAACGCCAACCCGACTGCAAGAC
ATCCTGAAGGCCCTGGCCCCGGCCTCCCTGGAGGAGATGATGACCGCCTGCCAGGGCGTGGCGCCCCGGCACAAAGG
CCCGCATCCTGGCGAGGCCATGTCCCAGGTGACCAACACCGCCGTATGATGACGCCAGCGCGCAACTTCAAGGGCCAGCGCA
GATCATCAAGTGTCTCAACTGCGCAAGGAGGGCCACATCGCCGAACTTGCCGGCCCCCGCAAGAAGGGCTGCTGGAAG
TGCGGCAAGGAGGGCCACCAGATGAAGGACTGCACCGAGGCCAGGGCAACTTCTGGCAAGATCTGGCCCTCCAACAAGG
GCCGCCCGCAACTTCTGCAGTCCCCGAGCCCACCGCCCCCGCCAGTCTGGCTTCGGCAGGGAGATCAC
CCCCCTCCCCGCCAGGAGACCAAGGACAAGGAGCAGGGCCCCCTGACCTCCCTGAAGTCCCTGTCGGCACAGACCCC
CTGTCCCAGTAA

g. 74
A 15. 2003_CON_01_AE_gag.PEP
MGARASVLSGGKLDaweKIRLRPGKKYRMKHLVWASRELERFALNPGLETAEGCQQIIEQLQSTLKTGSEELKSLFNTV
ATLWCVHQRIEVKDTKEALDKIEEVQNKSQQKTQAAAATGSSSKVSQNPIVQNAQGQMVPQLSPRTLNAWVKEEKGF
NPEVIPMFSALSEGATPQDLNMMLNIVGGHQAMQMLKETINEEEAEDRVRPVHAGPIPPGQMREPRGSDIAGTTSTLQEIQ
IGWMTNPPIPVGDIYKRWIILGLNKIVRMYSPVSIIDIRQGPKEPFRDYVDRFYKTLRAEQAQEVKNWMTETLLVQNANP
DCKSILKALGTGATLEEMMTACQGVGGPSHKARVLAEAMSQAQHANIMMRQGNFKQKRIKCFNCGKEGHLARNCRAPRKKG
CWKCGKEGHQMKDCTERQANFLGKIWPSSKGRPNFPQSRPEPTAPPAAENWMGEEITSLPKQEKDKEHPPPLVSLKSLFG
NDPLSQ\$

B 2003_CON_01_AE_gag.OPT
ATGGGCGCCCGGCCCTCCGTGTCCGGCGCAAGCTGGACGCCCTGGGAGAAAGATCCGCCTGCCGCCGGCGCAAGAAC
AGTACCGCATGAAGCACCTGGTGTGGCCTCCCGCAGCTGGAGCGCTTCGCCCTGAACCCCGGCCCTGCTGGAGACCGCCGA
GGGCTGCCAGCAGATCATCGAGCAGCTGCAGTCCACCGTGAAGACCGGCTCCGAGGAGCTGAAGTCCCTGTTCAACACCGTG
GCCACCCCTGTGGTGCACCGCGCATCGAGGTGAAGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGGTGCAGAAC
AGTCCCAGCAGAACAGACCCAGCAGGCCGCCGGCACCGCTCCTCCAAGGTGTCCCAGAACTACCCATCGTGAGAAC
CGCCCAGGGCCAGATGGTGCACCAAGCCCTGTCCCCCGCACCGTGAACGCCCTGGGTGAAGGTGGAGGAGAACGGCTTC
AACCCCGAGGTGATCCCCATGTTCTCGCCCTGTCCGAGGGGCCACCCCGCAGGACCTGAACATGATGCTGAACATCGTG
GCGGCCACCAGGCCCATGCAGATGCTGAAGGAGACCATCAACGAGGAGGCCGAGTGGGACCGCGTGCACCCCGTGC
CGCCGGCCCCATCCCCCGGCCAGATGCGCAGGCCCGGGCTCCGACATGCCGGCACCCCTGCAGGAGCAG
ATCGGCTGGATGACCAACAACCCCCCATCCCGTGGGAGACATCTACAAGGCCCTGGATCATCTGGCCCTGAAACAGATCG
TGCGCATGTACTCCCCGTGTCCATCCTGGACATCCGCCAGGGGCCACCCCGCAGGAGCCCTCCGCACTACGTGGACCGCTTCTA
CAAGACCCCTGCCGCCAGCAGGCCACCCAGGAGGTGAAGAACATGGATGACCCCTGCTGGTGCAGAACGCCAACCCCC
GACTGCAAGTCCATCCTGAAGGCCCTGGGACCCGGGCCACCCCTGGAGGAGATGATGACCCCTGCCAGGGCTGGCGGGC
CCTCCCCACAAGGCCCGTGTGGCCAGGGCCATGTTCTCCAGGCCACCGCAGCACGCCAACATCATGATGCGCAGGCCAAC
GGGCCAGAACGCCATCAAGTGTCAACTGCCAGGAGGCCACCTGGCCCACTGCCAGGCCAACCTGGCAAGAACGGC
TGCTGGAAGTGCAGGCCAGGAGGCCACCGAGATGAAGGACTGCCAGGCCAGGCCAACCTGGCAAGAACATGGCCCT
CCAACAAGGCCGCCGGCAACTTCCCCCAGTCCGCCAGGCCACGCCACCGCCCCCGCAGAACACTGGGCATGGCGA
GGAGATCACCTCCCTGCCAACGAGGAGCAGAACAGGAGCACCCCCCCCCCTGGTGTCCCTGAAGTCCCTGTTGCC
AACGACCCCTGTCCCAGTAA

g. 75
A 16. 2003_CON_02_AG_gag.PEP
MGARASVLSGGKLDaweKIRLRPGKKYRLKHLVWASRELERFALNPGLETAEGCQQIMEQLQSALRTGSEELKSLYNTV
ATLWCVHQRIDIKDTKEALDKIEEVQNKSQOKTQAAAATGSSQNPIVQNAQGQMTHQSMSPRTLNAWVKEEKAFSPE
NPEVIPMFSALSEGATPQDLNMMLNIVGGHQAMQMLKDTINEEEAEDRVRPVHAGPIPPGQMREPRGSDIAGTTSTLQEIQ
MTSNPPIPVGDIYKRWIVLGLNKIVRMYSPVSIIDIRQGPKEPFRDYVDRFFKTLRAEQAQEVKNWMTETLLVQNANPDCK
SILRALGPATLEEMMTACQGVGGPSHKARVLAEAMSQVQNSNIMMRQGNFRQRTIKCFNCGKEGHLARNCKAPRKKG
CGKEGHQMKDCTERQANFLGKIWPSSKGRPNFPQSRPEPTAPPAAESFGMEEITSSPKQEPRDKGLYPPLTSKSLFGNDP
\$

B 2003_CON_02_AG_gag.OPT
ATGGGCGCCCGGCCCTCCGTGTCCGGCGCAAGCTGGACGCCCTGGGAGAAAGATCCGCCTGCCGCCGGCGCAAGAAC
AGTACCGCCTGAAGCACCTGGTGTGGCCTCCCGCAGCTGGAGCGCTTCGCCCTGAACCCCGGCCCTGCTGGAGACCGCCGA
GGGCTGCCAGCAGATCATGGAGCAGCTGCAGTCCGCCCTGCCAGCCACCGGCTCCGAGGAGCTGAAGTCCCTGACACACCGTG
GCCACCCCTGTGGTGCACCGCGCATCGACATCAAGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGGTGCAGAAC
AGTCCAAGCAGAACAGACCCAGCAGGCCGCCACCCGCTCCCTCCAGAACACTACCCATCGCAGAACGCCAGGG
CCAGATGACCCACCGAGTCCATGTCCTCCCGCACCGTGAACGCCCTGGTAAGGTGAGGCCAGGAGAACAGGCCCTTCTCCCC
GTGATCCCCATGTTCTCCGCCCTGTCCGAGGGGCCACCCCGCAGGACCTGAACATGATGCTGAACATCGTGGCGGCC
AGGCCGCATGCGAGATGCTGAAGGACACCATAACGAGGAGGCCGAGTGGGACCGCGTGCACCCCGTGCAGGCC
CATCCCCCGGCCAGATGCCGAGCCCCGGCTCCGACATGCCGGCACCCCTGCCAGGAGCAGATCGGCTGG

ATGACCTCCAACCCCCCATCCCCGTGGCGAGATCTACAAGCGCTGGATCGTGTGGCCTGAACAAAGATCGTCGCATGT
ACTCCCCCGTGTCCATCCTGGACATCCGCCAGGGCCCCAAGGAGCCTTCCGCAGACTACGTGGACCCTTCAAGACCC
GCCGCCGAGCAGGCCACCCAGGAGGTGAAGAAGTGGATGACCGAGACCTGCTGGTGAGAACGCCAAGGGACTGCAAG
TCCATCCTGGCCGCCCTGGGCCCCGGCCACCCCTGGAGGAGATGATGACCGCTGCCAGGGCTGGCGGCCAGCG
AGGCCCCGTGTGGCCAGGCCATGTCCCAGGTGCAGCAGTCAAACATCATGATGCAGCGCGAACCTCCGCCAGCG
CACCATCAAGTGTCTCAACTCGGGCAAGGAGGCCACCTGGCCCAACTGCAAGGCCCCCGCAAGAACGGCTGCTGGAAG
TGC GGCAAGGAGGCCACCAAGATGAAGGACTGCACCGAGGCCAGGCCACCTCCCTGGCAAGATCTGGCCCTCCCAAGG
GCCGCCCGGCCACCTCCCCAGTCCCAGGCCACCGGCCAGGCCAGTCCCTGGCATGGCGAGGAGATCAC
CTCCTCCCCAACGAGGCCAGCAAGGCCCTGTACCCCCCTGACCTCCCTGAAGTCCCTGGCAACGACCC
TAA

g. 76

17. 2003_CON_03_ABG gag.PEP

MGARASVLSGGKLDaweKIRLRPGKKYR1KHLVWASRELERFALNPSLLETSEGQQILEQLQPTLKTSSEELKSLNTV
ATLYCVHQRIEKDTKEALDKIEEIQNKSQKTTQQAATGTGSSSKVSQNYPIVQNAQGQMTHQSMSPRTLNAWVKVIEEKAF
SPEVIPMFSALESEGATPQDLNMMNLNIVGGHQAMQMLKDTINEEEAEWDRLHPAQAGPFPFGQMREPRGSDIAGTTSTLQE
IGWMTSNPPIPVGDIYKRWIILGLNKIVRMSPVSILDIRQGPKEFRDYVDRFFKTLRAEQATQDVKNWMTETLLVQNANP
DCKTILRALGSGATLEEMMTACQGVGGPGHKARVLAEAMSQVQNANIMMQKSNFGRPKR1KCFNCGDGHLARNCRAPRKKG
CWKCGKEGHQMKDTERQANFLGRIWPSKGRPGNFQPSRPEPSAPPAEFGMGEITPSLKQEQKDREQHPPSISLKLFG
NDPLSQ\$

A

2003_CON_03_ABG gag.OPT

ATGGGCGCCGCCCTCGTGTCCGGCGCAAGCTGGACGCCCTGGAGAACGATCCGCCCTGCCGCCGGCAAGAAC
AGTACCGCATCAAGCACCTGGTGAGCAGCTGCAGCCCACCCCTGAAGACCAGCTCCAGGAGCTGAAGTCCTGTACACACCC
GGCTGCCAGCAGATCCTGGAGCAGCTGCAGCCCACCCCTGAAGACCAGCTCCAGGAGCTGAAGTCCTGTACACACCC
GCCACCCGTACTCGTGACCCAGGCATCGAGATCAAGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGATCCAGAAC
AGTCCAAGCAGAACGACCCAGCAGGCCACCCAGCTCCAGGAGCTCCAGGAGCTCCAGGAGCTGAACCCATCGTGAGAA
CGCCCAAGGGCCAGATGACCCACCAAGTCCATGTCCCCCAGCTCCAGGAGCTCCAGGAGCTGAAGGAGCTGAAGGAGAAC
TCCCCCAGGTGATCCCCATGTTCTCCGCCCTGTCCAGGGGCCACCCAGGAGCTGAAGGAGCTGAACATGATGCTGAACATCGTG
GCCGCCACAGGCCCATGCAGATGCTGAAGGACACCATCAACGAGGAGGCCCTGGAGTGGAGCCCTGCAACCCGCC
GGCCGCCACCCCTCCCCCGCCAGATGCGGAGGCCCCGGCTCCAGGAGCTGAACATCGGCCACCCCTGCAACCC
ATCGCTGGATGACCTCAACCCCCATCCCCGTGGCGACATCTACAAGCGCTGGATCATCTGGCCTGAACAAGATCG
TGCGCATGTACTCCCCGTGTCCATCCTGGACATCCGCCAGGGCCCAAGGAGCCCTCCGCAGACTACGTGGACCGCTTCT
CAAGACCCCTGCGCGCCAGCAGGCCACCCAGGAGCTGAAGGAGCTGAAGGAGACCCCTGCTGGTGAGAACGCCAAC
GAATGCAAGACCATCCTGCGGCCCTGGCTCCGGCCACCCCTGGAGGAGATGATGACCGCTGCCAGGGCGTGGCGGCC
CCGCCACAAGGCCCGCTGGCGAGGCCATGTCCAGGTGCAGAACGCCAACATCATGATGAGAACGCAACTTCC
CGGCCCAAGCGCATCAAGTGTCAACTGCCAGGAGCCACCTGGCCCAACTGCCGCCAGGCCAAC
TGCTGGAGTGCAGGCCAGGAGGGCACCAGATGAAGGAGCTGCACCGAGCGCAGGCCAAC
CCTCCAAGGGCCGCCCGCAACTCCCCAGTCCGCCCGAGCCCTGCCGCCAGGCCAGAAC
GGAGATCACCCCCCTCCGTGAAGCAGGAGCAGAACGCCAGGCCAGCACCCCCCTCCATCTCCCTGAAGTCCCTGTTCCGC
AACGACCCCTGTCCCAGTAA

B

18. 2003_CON_04_CFX gag.PEP

MGARASVLSGGKLDaweIRLRPGKKYR1KHLVWASRELERFALNPGLLETAEGCQQLMEQLQSTLKTSSEELKSLFTNTI
ATLWCVHQRIDVKDTKEALDKVEEMQNSQKTTQQAADTGGSSNVSQNYPIVQNAQGQMTHQSISPRTLNAWVKVIEEKAF
SPEVIPMFSALESEGATPQDLNMMNLNIVGGHQAMQMLKDTINEEEAEWDRAHPVHAGPIPFGQMREPRGSDIAGTTSTLQE
IGWMTSNPPIPVGDIYKRWIILGLNKIVRMSPVSILDIRQGPKEFRDYVDRFFKTLRAEQATQEVKNWMTETLLVQNANP
DCKSILKALGTGATLEEMMTACQGVGGPGHKARVLAEAMSQASAAAIMMQKSNFKGQRR1KCFNCGKEGHLARNCRAPR
KKGCWKGKEGHQMKDTERQANFLGRIWPSKGRPGNFQPSRPEPTAPPAESLEMKEETTSSPKQEPRDKELYPLTSKLF
FGSDPLSQ\$

A

2003 CON_04_CFX gag.OPT

ATGGGCGCCGCCCTCGTGTCCGGCGCAAGCTGGACGCCCTGGAGGCCATCCGCCCTGCCGCCGGCAAGAAC
AGTACCGCATCAAGCACCTGGTGAGCAGCTGCAGTCCACCCCTGAAGACCAGCTCCAGGAGCTGAAGTCCCTGTTCAACACCC
GGCTGCCAGCAGCTGATGGAGCAGCTGCAGTCCACCCCTGAAGACCAGCTCCAGGAGCTGAAGTCCCTGTTCAACACCC
GCCACCCCTGTGGTGTGCGTGCACCCAGGAGCTGAAGGACACCAAGGAGGCCCTGGACAAGGTGGAGGAGATGCAAGAAC
AGTCCAAGCAGAACGCCAGCAGGCCACCCAGGAGCTGAAGGAGCCACCTGGCCAGGCCAAC
CGCCCAAGGGCCAGATGGTGACCCAGTCCATCTCCCCCGACCCCTGAACGCCCTGGGTGAAGGTGATGAGGAGAAC
TCCCCCAGGTGATCCCCATGTTCTCCGCCCTGTCCAGGGGCCACCCAGGACCTGAACATGATGCTGAACATCGTG
GCCGCCACAGGCCCATGCAGATGCTGAAGGACACCATCAACGAGGAGGCCAGTGGAGCCACCCCTGTGCA

B

9. 78
A

CGCCGGCCCCATCCCCCCCAGATGCGCGAGCCCCGGGCTCCGACATGCCGGCACCACTCCACCTGCAGGAGCAG
ATCGGTGGATGACCTCCAACCCCCCATCCCCGTGGCAGATCTACAAGCGTGGATCATCCTGGGCTGAACAAGATCG
TGCATGTACTCCCCGTGTCATCCTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGACTACGTGGACCGCTTCTT
CAAGTGCCTGCGCCGAGCAGGCCACCAGGAGGTGAAGAACTGGATGACCGAGACCCCTGCTGGTGCAGAACGCCAACCC
GACTGCAAGTCCATCCTGAAGGCCCTGGGCACCCGGCCACCCCTGGAGGAGATGATGACCCCTGCCAGGGCGTGGCGGCC
CCTCCACAAGGCCCGCTGGCCAGGCCATGTCCAGGCCCTCAACGCCGCCCATCATGATGAGAACGAGTCCAA
CTTCAAGGCCAGCGCCGATCATCAAGTGTCAACTGGGCAAGGAGGGCACCTGGCCGCAACTGCCGCCGGCAACTTCC
AAGAAGGGCTGTGGAAGTGGGCAAGGAGGGCACAGATGAAGGACTGCACCGAGCGCAGGCCACTTCC
TGTGGCCCTCTCAAGGCCGCCGGCAACTTCTGCAGTCCCAGGCCAGGCCGCCGGAGTCC
GATGAAGGAGGAGACCACCTCTCCCCAAGCAGGAGGCCGACAAGGAGCTGTACCCCTGACCTCCCTGAAGTCCCTG
TTCGGCTCCGACCCCTGTCCAGTAA

19. 2003_CON_06_Cpx gag.PEP

B

MGARASVLSGGKLDWEKIRLRPGGKKYRLKHLVWASRELERFALNPGLLETAEQCQIIEQLQSALKTGSEELKSLYNTV
ATLYCVHQRIVDTKEALDKIEEIQNKSQKQAQAAAATGNSSNLSONYPIVONAQMVMHQAIISPTLNAWVKVIEEKAF
SPEVIPMFSALSEGATPQDLNMMLNIVGGHQAMQMLDTINEEAAEDRVRPVHAGPIPQGMREPRGSDIAGTTSTLQEIQ
IGWMTSNPPIPVGEIYKRWIILGLNKIVRMYSPTVSILDIRQGPKEFRDYVDRFFKTLRAEQATQEVKNWMTDTLLVQNANP
DCKTILKALGPAGTLEEMMTACQGVGGPGHKARVLAEAMSQASGTEAAIMMQKSNFKGPKRSIKCFNCGKEGHILARNCRAPR
KGCGWKGKEGHQMKDCTERQANFLGKIWPNSKGRPGNFLQNRPEPTAPPAESFGFEETAPS PKQEPKEKELYPLASLKL
FGNDPS

2003_CON_06_Cpx gag.OPT

B

ATGGGGCCCGCGCCTCCGTGTCGGCGCAAGCTGGACGAGTGGAGAACGATCCGCTGCCGCCGGCAAGAAC
AGTACCGCCTGAAGCACCTGGTGTGGGCCTCCCGCAGCTGGAGCGCTTCGCCCTGAACCCCGGCCCTGGAGACCGCCGA
GGGCTGCCAGCAGATCATCGAGCAGCTGCAAGTCCGCCCTGAAGACCGGCCCTGGAGAACGATCGAGGAGATCC
GCCACCTGTACTCGTGACCCAGCGCATCAAGGTGACCGAACCAAGGAGGCCCTGGAGAACGATCGAGGAGATCC
AGTCCAAGCAGAACGGCCAGCAGGCCGCCACCGCAACTCCCAACCTGTCCAGAACACTACCCATCGTGAGAA
CGCCCCAGGCCAGATGGTGCACCAGGCCATCTCCCCCGCACCCCTGAACGCCCTGGAGAGGTGATCGAGGAGAACGCC
TCCCCCAGGGTATCCCCATGTTCTCCGCCCTGTCCGAGGGGCCACCCCCCAGGAGACCTGAACATGATGCTGA
GGGGGCCCCCAGGCCATCCCCCGGCCAGATGCGCAGGCCCTGGAGATCTAACAGGCTGGATCATCCTGGCC
CGCCCCCCCCATCCCCCGGCCAGATGCGCAGGCCCTGGAGATCTAACAGGCTGGATCATCCTGGCC
ATCGGCTGGATGACCTCAACCCCCCATCCCCGTGGAGATCTAACAGGCTGGATCATCCTGGCC
TGCATGTACTCCCCGTGTCATCCTGGACATCCGCCAGGCCAACAGGAGCCCTCCGC
CAAGACCCCTGCCGCCAGGCCAACCCAGGAGGTGAAGAACGATGGATGACCGAACCC
GACTGCAAGACCATCCTGAAGGCCCTGGGCCACCCCTGGAGGAGATGATGACCGCTGCCAGGGCGTGGCGGCC
CCGGCCACAAGGCCCGTGCTGGCGAGGCCATGTTCCAGGCCCTCCGCCACCGAGGCC
CTTCAAGGGCCCAAGCGCTCCATCAAGTGTCAACTGCCAGGAGGCCACCTGGCC
AAGAAGGGCTGTAAGTGGCAAGGAGGCCACAGATGAAGGACTGCACCGAGGCCAGGCC
TCTGCCCTCCAACAAGGCCGCCGGCAACTTCTGCAGAACGCC
CTTCCGGAGGGAGACGCC
TTCCGGCAACGACCCCTAA

19. 79
A

20. 2003_CON_07_BC gag.PEP

MGARASILRGKLDKWEKIRLRPGGKKYMLKHLVWASRELERFALNPGLLETSEGCKQIICKLQPALQTGTEELRSLFNTV
ATLYCVHTEIDVRDTKEALDKIEEIQNKIQQKTQQAKEADGKVSNYPIVQNLQGMVHQPIISPTLNAWVKVVEEKAFSPE
VIPMFSALSEGATPQDLNMLNTVGGHQAMQILKDTINEEAAEDRVRPVHAGPIAPQGMREPRGSDIAGTSNLQEIQIAW
MTSNPPVPVGDIYKRWIILGLNKIVRMYSPTVSILDIKOGPKEFRDYVDRFFKTLRAEQATQDVKNWMTDTLLVQNANPDCK
TILRALGPAGTLEEMMTACQGVGGPGHKARVLAEAMSQINSTILMQRSNFKGSKIVKCFNCGKEGHILARNCRAPRKKG
KGKEGHQMKDCTERQANFLGKIWPNSKGRPGNFLQSRPEPTAPPESFRFGEETTPSQKQEPIDKELYPLTSKSLFGNDP
SSQ\$

2003_CON_07_BC gag.OPT

B

ATGGGGCCCGCGCCTCCATCCTGCCGCCAGCTGGACAGTGGAGAACGATCCGCTGCCGCCGGCAAGAAC
ACTACATGCTGAAGCACCTGGTGTGGGCCTCCCGCAGCTGGAGGCCCTTCGCCCTGAACCCCGGCCCTGGAGACCTCCGA
GGGCTGCCAGCAGATCATCAAGCAGCTGCAAGGCCCTGCAGACCGGCCACCGAGGAGCTGCCTCCCTGTTCAACACCGTG
GCCACCCCTGTACTGCCGACACCGAGATCGAGCTGGGCCACCAAGGAGGCCCTGGAGAACGATCGAGGAGGCC
AGATCCAGCAGAACGCCAGCAGGCCAGGAGGCCACGGCAAGGTGTC
CCAGATGGTGCACCAGCCATCTCCCCCGCACCC
GTGATCCCCATGTTCTCCGCCGTCCGAGGGGCCACCC
10

AGGCCGCCATGCAGATCCTGAAGGACACCATCAACGAGGAGGCCCGAGTGGGACCGCTGCACCCCGTCACGCCGGCCC
CATGCCCGGCCAGATGCGCAGGCCCGCGCTCCGACATGCCGCCACCACTCCAACCTGCAGGAGCAGATCGCCTGG
ATGACTCCAACCCCCCGTGCCCGACATCTACAAGCGCTGGATCATCTGGCCTGAACAAAGATCGCCTGG
ACTCCCCCACCTCCATCTGGACATCAAGCAGGGCCCAAGGAGCCCTTCCGACTACGTGGACCGCTTCTCAAGACCT
GCGGCCGAGCAGGCCACCCAGGACGTGAAGAAGCTGGATGACCGACACCCCTGCTGGCAGAACGCCAACCCGACTGCAAG
ACCATCCTGCCGCCCTGGGCCCTCCATCGAGGAGATGATGACCGCTGCCAGGGCGTGGCGGCCCTCCCACA
AGGCCCGCGTGTGGCCAGGCCATGTCCCAGACCAACTCCACCATCTGATGCAGCGCTCCAACCTCAAGGGCTCCAAGCG
CATCGTAAGTGTCAACTCGGCCAGGAGGCCATCGCCGCAACTGCGCTCCGCCAGGGCAAGAAGGGCTGCTGGAAAG
TGCGGCAAGGAGGGCCACCAAGATGAAGGACTGCACCGAGGCCACCTCTGGCAAGATCTGGCCCTCCCACAAGG
GCCGCCCGGCCACCTCTGAGTCCGCCAGGCCACCGCCCCCGAGGGAGTCCTCCGCTGGCGAGGAGACCAAC
CACCCCCCTCCAGAAGCAGGAGGCCATCGACAAGGAGCTGTACCCCTGACCTCCCTGAAGTCCCTGTTGGCAACGACCC
TCCTCCAGTAA

21. 2003_CON_08_BC gag.PEP

MGARASILRGKLDKWEKIRLRPGKKHYMLKHLVWASRELERFALNPLLETSEGCKQIIKQLQPALQTGTBEELRSLFNTV
ATLYCVHAEIEVRDTKEALDKIEEEQNQIQQKTTQQAKEADEKVQSQNYPIVQNLQGMVHQPLSPRTLNAWVKVVEEKAFSPE
VIPMFTALSEGATPQDLNTMLNTVGHHQAAMQMLDTINEEAAEWDRLLHPVHAGPVAPGQMREPRGSDIAGTTSTLQEIQIW
MTNNPPIPVGEIYKRWIILGLNKIVRMYSPSTSILDIKQGPKEPFRDYVDRFFKTLRAEQATQDVKNWMTDLLVQNANPDCK
TILRALGPgasLEEMMTACQGVGGPSHKARVLAEAMSQTNNTILMQRSNFKGSKRIVKCFNGKEGHIAKNCRAPRKKGW
CGKEGHQMKDCTERQANFLGKIWPSHKGPGNFLQSRPEPTAPPAESFRFEETTPAPKQEPKDREPLTSRLSLFGSDPLSQ\$

2003_CON_08_BC gag.OPT

ATGGCGCCCGCGCCTCCATCTGCCGGCGCAAGCTGGACAAGTGGAGAAGATCCGCCCTGCCGCCGGCGCAAGAAC
ACTACATGCTGAAGCACCTGGTGTGGGCCCTCCCGCAGCTGGAGCCCTTGCCCTGAACCCCGGCCCTGCTGGAGACCTCCGA
GGGCTGCAAGCAGATCATCAACGAGCTGCAGCCGCCCTGCAGACCCGGCACCGAGGAGCTGCCTCCCTGTTCAACACCGTG
GCCACCCCTGACTGCGTGACGCCAGATCGAGGTGCGCACCCAAGGAGGCCCTGGACAAGATCGAGGAGGAGCAGAAC
AGATCCAGCAGAAGACCCAGCAGGCCAAGGAGGCCAGGAGAAGGTGCTCCAGAACTACCCATGTCAGAACCTGCAGGG
CCAGATGGTGCACCAGCCCTGTCCCCCGCACCCCTGAACGCCCTGGTGAGGTGGAGGAGAAGGCCCTCTCCCCGAG
GTGATCCCCATGTTCACCGCCCTGTCCGAGGGGCCACCCCGAGACCTGAACACCATGCTGAACACCCTGTCAGAACACC
AGGCCGCATGCAGATGTCAGGACACCATCAACGAGGAGGCCCGAGTGGGACCGCTGCAACCCCTGTCAGGCCGG
CGTGGCCCCCGGCCAGATGCGCGAGGCCCGCCCTCGACATGCCGGCACCACTCCACCTGCAAGGAGCAGATCGCCTGG
ATGACCAACAAACCCCCCATCCCCGTGGACATCAACGAGGCCCAAGGAGCCCTCCGACTACGTGGACCGCTTCAAGACCT
ACTCCCCACCTCCATCTGGACATCAACGAGGCCCAAGGAGCCCTCCGACTACGTGGACCGCTTCAAGACCT
GCCGCCGAGCAGGCCACCCAGGAGCTGAAGAACCTGGATGACCGACACCCCTGCTGGTGCAAGGCCAACCCGACTGCAAG
ACCATCTGCCGCCCTGGCCCCGGCCCTCCCTGGAGGAGATGATGACCGCTGCCAGGGCTGGCGGCCCTCCACA
AGGCCCGCTGGCCAGGCCATGTCCCAGACCAACACCCATCCTGATGCAGCGCTCCAACCTCAAGGCTCCAAGCG
CATCGTAAGTGTCAACTCGGCCAGGAGGCCACATGCCAAAGAACCTGCCGCCACCCCGCAAGAAGGGCTGCTGGAAG
TGCGCAAGGAGGCCACCGAGATGAAGGACTGCACCGAGGCCACCTCCGAGTCCCTGGCAAGATCTGGCCCTCCCACAAGG
GCCGCCCGGCCACCTCTGAGTCCGCCAGGCCACCGCCCCCGCCAGTCCCTGGCTTGAGGAGACCACCC
CGCCCCCAAGCAGGAGGCCACCGAGGCCACCCCTGACCTCCCTGCGCTCCCTGTCGGCTCCGACCCCTGTCAGTAA

22. 2003_CON_10_CD gag.PEP

MGARASVLSGGKLDEWEKIRLRPGKKKYRLKHLVWASRELERFALNPLLETSEGCKQIIGQLQPAIQTGSEEIKSLYNTV
ATLYCVHERIKVTDTKEALDKIEEEQTKSKKKAQQATADTGNSQVSQNYPIVQNLQGMVHQPLSPRTLNAWVKVIEEKAF
SPEVIPMFSALESEGATPQDLNTMLNTVGHHQAAMQMLKETINEEAAEWDRLLHPVQAGPVAPGQIREPRGSDIAGTTSTLQEIQ
IRWMTSNPPIPVGEIYKRWIILGLNKIVRMYSPVSILDIRQGPKEPFRDYVDRFYKTLRAEQASQDVKNWMTDLLVQNANP
DCKTILKALGPAAATLEEMMTACQGVGGPSHKARVLAEAMSQATSGNAIMORGNFKGPKKIICKFCNGKEGHIAKNCRAPRK
KGWKGREGHQMKTTERQANFLGKIWPSNKGPGNFLQSRPEPTAPPAESFGFEEITPSQKQEOKDKEHPLASLKS
GNDPLSQ\$

2003_CON_10_CD gag.OPT

ATGGCGCCCGCGCCTCCGTGCTGCCGGCGCAAGCTGGACGAGTGGAGAAGATCCGCCCTGCCGCCGGCGCAAGAAC
AGTACCGCTGAAGCACCTGGTGTGGGCCCTCCCGCAGCTGGAGCCCTGCCCTGAACCCCGGCCCTGCTGGAGACCTCCGA
GGGCTGCAAGCAGATCATCGGCCAGCTGCAGCCGCCATCCAGACCCGGCTCCGAGGAGATCAAGTCCCTGTAACACCCGT
GCCACCCCTGACTGCGTGACGAGCGCATCAAGGTGACCGACACCAAGGAGGCCCTGGACAAGATCGAGGAGGAGCAGACCA
AGTCCAAGAACAGGCCAGGCCACCCGGCAACTCCCTCCAGGTGTCCAGAACCTACCCATGTCAGAAC
CCTGCAGGGCCAGATGGTGCACCGCCCTGTCCCCCGCACCCCTGAACGCCCTGGTGAGGTGATCGAGGAGAAGGCCCTTC
TCCCCCGAGGTGATCCCCATGTTCTCCGCCCTGTCCGAGGGGCCACCCCGAGGACCTGAACACCATGCTGAACACCCGTGG
GCCGCCACCCAGGCCATGCAAGGAGACCATCAACGAGGAGGCCAGTGGACCGCCCTGCAACCCCGTGCA

GGCGGGCCCCGTGGCCCCGGCCAGATCCCGCAGCCCCGGCTCCGACATGCCGGCACCACTCCACCCCTGCAGGAGCAG
ATCCGCTGGATGACCTCCAACCCCCCATCCCCTGGAGATCTACAAGCGCTGGATCATCCTGGGCTGAACAAGATCG
TGCATGTACTCCCCGTGTCATCTGGACATCCGCCAGGGCCCAAGGAGCCCTCGCAGACTACGTGGACCGCTCTA
CAAGACCTGCGCGAGCAGGCCATCCCAGGACGTGAAGAACTGGATGACCGAGACCCCTGCTGGCAGAACGCCAACCC
GAACGCAAGACCATCCTGAAGGCCCTGGGCCACCCCTGGAGGAGATGATGACCGCCCTGCCAGGGCTGGCGGCC
CCTCCCACAAGGCCCTGGCTGGCCAGGCCATGTCAGGCCACCTCCGGCACCGCCATCATGATGCAAGCGGGCAACTT
CAAGGGCCCCAAGAAGATCATCAAGTGTCAACTCGGCCAGGGGCCACAGATGAAGGACTGCACCGAGGCCAACCTGGCAAGATCT
AAGGGCTGCTGGAAGTGGCCGGAGGGCCACCCAGATGAAGGACTGCACCGAGGCCAACCTGGCAAGGAGATCT
GGCCCTCAACAAGGGCCGGCAACTCCTGCACTCCGCCAGGCCACCGGCCGGAGTCTGGCTGGCAAGATCT
CGGAGGAGATCACCCCTCCAGAACGAGGAGCAAGGACAAGGAGCTGCACCCCTGGCTCCCTGAAGTCCCTGTT
GGCAACGACCCCTGTCCAGTAA

3.82
A

23. 2003_CON_11_Cpx gag.PEP

gag .PEPMGARASVLSGGKLDWEKIRLRPGGKKYRLKHLVWASRELERFALNPSLLETAEQCQQIMQQLQPALGTGTEEL
RSLYNTVATLYCVHHRIEVKDTKEALDKIEEIQNKSKQQAAADTGNSKVSQNPIVQNAQGQMVHQAIISPRTLNAWVK
VVEEKAFSPEVIPMFSALESEGATPQDLNMMLNIVGGHQAAMQMLKDTINEEEAEWDRVHPVHAGPIPPGQMREPRGSDIAGT
TSTLQEIQIGWMTGNPPVPVGEIYRRIILGLNKIVRMYS PVSILDITRQGPKEPFRDYVDRFFKTLRAEQATQEVKSWMTEL
LIQNANPDCKSILRALGPATLEEMMTACQGVGGPGHKARVLAEAMSQVQQTNIMMQRSNFKGQKRICKFCNGKEGHLARN
RAPRKKGWCWKCGKEGHQMKDTERQANFLGKIWPSSKGRPGNFLQSRPEPTAPPAESFGFGEETAPSPKQEPKEKELYPLTS
LKSLFGSDPLSQ\$

B

2003_CON_11_Cpx gag.OPT

ATGGCGCCCGCCTCCGTGCTGGCCGGCAAGCTGGACGCCCTGGGAGAAGATCCGCCCTGCCGCCGGCAAGAAGA
AGTACCGCCTGAAGCACCTGGTGTGGGCCCTCCGCCAGCTGGAGGCCCTGCCCTGAACCCCTCCCTGCTGGAGACGCCGA
GGGCTGCCAGCAGATCATGGGCCAGCTGCAGCCGCCCTGGCACCGGACCGAGCTGCCCTCCGTACAACACCGTG
GCCACCCCTGTACTCGTGACCCACCGCATCGAGGTGAAGGACACCAAGGAGGCCCTGGACAAGATCGAGGAGATCCAGAAC
AGTCCAAGCAGAAGAACGAGCAGGCCAGCCACCCGGCAACTCTCAAGGTGTCAGAACACTACCCATCGTGAGAA
CGCCCGAGGCCAGATGGTGCACCAGGCCATCTCCCCCGCACCTGTAACGCCCTGGTGAAGGTGGAGGAGAACGCCCTC
TCCCCCGAGGTGATCCCCATGTTCTCCGCCCTGTCGAGGGGCCACCCCGAGGACCTGAAACATGATGCTGAACATCGTG
GCGGCCACCAGGCCATGCAGATGCTGAAGGACACCATCAACGAGGAGGCCCGAGTGGGACCGCGTGCACCCCGTGA
CGCCGGCCCCATCCCCCGGCCAGATGCGCAGGCCCGCTCCGACATCCCGCACCCCTGCAAGGAGCACCTCCGAGGAGCAG
ATCCGCTGGATGACCGGCAACCCCCCGTGCCTGGCGAGATCTACCGCCCTGGATCATCTGGGCCCTGAACAGATCG
TGCCATGTACTCCCCCGTGCATCTGGACATCCGCCAGGGCCCAAGGAGCCCTCCGCACTACGTGGACCGCTTCT
CAAGACCCCTGCCGCCAGCAGGCCACCCAGGAGGTGAAGTCTGGATGACCGAGACCCCTGCTGATCCAGAACGCCAACCC
GACTGCAAGTCCATCTGCCTGGGCCCGCCACCCCTGGAGGAGATGATGACCGCCTGCCAGGGCGTGGCGGCC
CCGCCACAAGGCCCGTGTGGCGAGGCCATGTCCAGGTGCAAGACCAACATCATGATGCAAGCGCTCCAACTTCAA
GGGCCAGAAGCGCATCAAGTGTCAACTGCGCAAGGAGGCCACCTGGCCCACTGCCGCCAGGCCAACAGAAGGGC
TGCTGGAAGTGGCAAGGAGGCCACAGATGAAGGACTGCACCGAGGCCAGGCCACCTCTGGCAAGATCTGGCC
CCTCAAGGGCGCCCGCAACTCCTGCACTCCGCCAGGCCACCGGCCGGAGTCCCTGGCTTCGGCTCC
GGAGATGCCCTCCCCAAGCAGGAGGCCAGGAGAAGGAGCTGTACCCCTGAAGTCCCTGAACTCCCTGTC
GACCCCTGTCCAGTAA

Fig.83
A

24. 2003_CON_12_BF.gag.PEP

MGARASVLSGGELDRWEKIRLRPGGKKYRLKHWASRELERFAVNPGLLETSEGRKIIQQLQPSLQTGSEELRSLYNTI
AVLYFVHQKVEVKDTKEALDKLEEEQNKSQQKTQQAADKGVSQNPIVQNLQGQMVHQALSPRTLNWVKVVEEKAFSPEV
IPMFSALESEGATPQDLNLMNTVGGHQAAMQMLKDTINEEEAEWDRVHPVHAGPIPPGQMREPRGSDIAGTTSTLQEIQWM
TSNPPVPVGEIYRRIILGLNKIVRMYS PVSILDITRQGPKEPFRDYVDRFFKTLRAEQATQEVKGWMTDTLLVQNANPDCKT
ILKALGPATLEEMMTACQGVGGPGHKARVLAEAMSQVNTTVMMQSKNSFKGQRRIVKCFNGKEGHIAKNCRAPRKKGWC
CGREGHQMKDTERQANFLGKIWPSSKGRPGNFLQSRPEPTAPPAESFGFGEETAPSPKQEQKDEGLYPLASLKS
LKSLFGNDP \$

B

2003_CON_12_BF.gag.OPT

ATGGCGCCCGCCTCCGTGCTGGCCGGCAAGCTGGACGCCCTGGGAGAAGATCCGCCCTGCCGCCGGCAAGAAGA
AGTACCGCCTGAAGCACATCGTGCTGGGCCCTCCGCCAGCTGGAGGCCCTGCCCTGAACCCCGGCCCTGCTGGAGACCCATC
GGGCTGCCAGCAGATCATGGGCCAGCTGCAGCCCTCCCTGCAGACCCGGCTCGAGGAGCTGCCCTGTAACACCCATC
GCCGTGCTGACTTCGTGACCCAGGAGGTGAAGGACACCAAGGAGGCCCTGGACAAGCTGGAGGAGGAGCAGAAC
AGTCCCAGCAGAAGACCCAGCAGGCCGCCGACAAGGGCGTGTCCAGAACACTACCCATCGTGCAAGAACCTGCAGGCC
GATGGTGCACCAGGCCCTGTCCTCCGCCACCCCTGAACCCCTGGGTGAAGGTGGAGGAGAAGGCCCTCTCCCCGAGGTG
ATCCCCATGTTCTCCGCCCTGTCGAGGGGCCACCCCGAGGACCTGAACACCATGCTGAACACCGTGGGCCACCAGG

CCGCCATGCAGATGCTGAAGGACACCATCAACGAGGAGGCCCGAGTGGGACCGCCTGCACCCGTGACGCCGGCCCCAT
CCCCCCCCGGCCAGATGCGCGAGCCCCCGGGCTCCGACATCGCCGGCACCCCTCCACCCCTGCAGGAGCAGATCCAGTGGATG
ACCTCCAACCCCCCGTCCCCTGGCGAGATCTACAAGCGCTGGATCATCCTGGGCTGAACAAGATCGTCGCATGTACT
CCCCCGTGTCCATCTGGACATCCCGCAGGGCCCCAAGGGAGCCCTTCCCGGACTACGTGGACCCGCTTCTTAAGACCTGCG
CGCCGAGCAGGCCACCCAGGAGGTGAAGGGCTGGATGACCGACACCCCTGCTGGAGGAGATGATGACCGCCTGCCAGGGCGTGG
ATCCTGAAGGCCCCCTGGGCCCCGGCGCACCCCTGGAGGAGATGATGACCGCCTGCCAGGGCGTGGGCGCCCCGGCCACAAGG
CCCCCGTGTGGCGAGGCCATGTCCCAGGTGACCAACACCACCGTGTATGATGACGAAGTCAAACCTCAAGGGCCAGCGCCG
CATCGTAAGTGTTCAACTCGGCAGGAGGGCACATCGCAAGAACACTGCCGCCCCCCCGCAAGAAGGGCTGCTGGAAAG
TGCGGCGCGAGGGCACCAAGATGAAGGACTGACCGAGCGCCAGGCCACCTCTGGGCAAGATCTGGCCCTCCAACAAGG
GCCGCCCGGCAACTTCTGACGAACCGCCCCGAGCCCACCGCCCCCCCCCGCCAGTCCTCGGCTTCGGGAGGAGATCAC
CCCCCTCCCCAAGCAGGAGCAGAAGGACGAGGGCCTGTACCCCCCTGGCCTCCCTGAAGTCCCTGTTGGCAACGACCCC
TAA

1,84
P

25. 2003_CON_14_BG gag.PEP

MGARASVLSGGKLDWEKIRLRPGKKYRMKHLVWASRELERFALNPDLLETAEGCQQIMQLQPALQTGTEBIRSLFNTV
ATLYCVHQKIEVKDTKEALEEVEKAQKKSQKKQQAAMDEGNNSQASQNYPIVQNAQGQMVMQHQAISPRTLNAWVKVVEEKAFS
PEVIPMFALSEGATPQDNLNTMLNTVGGHQAMQMLKDTINEEEAEWDRMHPQAGPIPQGIREPRGSDIAGTTSTLQEIQI
RWMTSNPPIPVGEIYKRWIILGLNKIVRMYS PVSILDIRQGPKEPFRDYVDRFFKTLRAEQATQEVKGWMTDTLLVQNANPD
CKTILRALPGPATLEEMMTACQGVGGPSHKARVLAEMSQASGATIMMQKSNFKGPRRNICKFCNGKEGHLARNCRAPRKKG
DP\$SQ\$

B

2003_CON_14_BG gag.OPT

ATGGGCGCCCGCCCTCCGTGTCCGGCGCAAGCTGGACGCCTGGAGAACAGATCCGCTGCGCCCGGCCAGAACAGAAGA
AGTACCGCATGAAGCACCTGGTGTGGGCTCCCGCAGCTGGAGGCTTCGCCCTGAACCCGACCTGCTGGAGACCGCCGA
GGGCTGCCAGCAGATCATGGCCAGCTGCAGCCGCCCTGCAGACCGGCACCGAGGAGATCCGCTCCCTGTTAACACCGTG
GCCACCTGTACTCGTGACCAAGAGATCGAGGTGAAGGACACCAAGGAGGCCCTGGAGGAGGTGGAGAACGGCCAGAAGA
AGTCCCAGAAGAACGAGCAGGCCCATGGACGGCAACAACCTCCAGGCCCTCCAGAACACTACCCATCGTCAGAACGC
CCAGGGCCAGATGGTGACCCAGGCCATCTCCCCCGCACCCCTGAACGCCCTGGGTGAAGGTGGAGGAGAACGGCTCTCC
CCCGAGGTGATCCCCATGTTCTCCGCTGAGGGGCCACCCCGAGGACCTGAACACCATGTCACCCGTGGGGCG
GCCACCCAGGCCCATGCAAGATGCTGAAGGACACCATCAACGAGGAGGCCGAGTGGACCGCATGCACCCCGAGCAGGC
CGGCCCATCCCCCGGCCAGATCCGAGGCCCTCCGACATCGCCGCCACCCCTGCAGGAGCAGATC
CGCTGGATGACCTCAACCCCCCATCCCCGTGGACATCCGCCAGGGCCCAAGGAGCCCTCCGGACTACGTGGACCGCTTCTCAA
GACCTCGCGCCGAGCAGGCCACCCAGGAGGTGAAGGGCTGGATGACCGACACCCCTGCTGGTCAGAACGCCAACCCGAC
TGCAAGACCATCCTCGCGCCCTGGGCCACCCCTGGAGGAGATGATGACCGCTGCCAGGGCTGGGGCC
CCCACAAGGCCCGCTGCTGGCGAGGCCATGTCACGGCCCTCCGCCACCATCATGATGCAAGATCAAACCTCAAGGG
CCCCCGCCCAACATCAAGTGCTTCAACTCGGGCAAGGAGGGCACCTGGCCCAACTGCCGCCCCCCGCCAGAACAGGGC
TGCTGGAAGTGCGGCAAGGAGGGCACCAAGATGAAGGACTGACCGAGTCAAAGGCCACCTCTGGGCAAGATCTGGCC
CCAACAAGGGCCGCCCGCAACTTCTGACGAACGCCCGAGGCCACCGCCCCCGCCAGTCCTTCGGCTTCGGCGA
GGAGATCGCCCCCTCCCCAAGCAGGAGCCCAAGGAGAAGGAGATCTACCCCTGGCCTCCCTGAAGTCCCTGTTGGCTCC
GACCCCTAACCTCCAGTAA

1g. 85

A 31. 2003_cons nef.PEP
GGKWSKSSIVGWPRAVRERIRRTPPAEGVGAVSQDLDKHGAITSSNTAATNADCAWLEAQEEEEVGFVVRPQVPLRPMTYK
GAFDLHFLKEKGGLDGLIYSKKRQEILDLWVYHTQGYFPDWQNYTPGPGIRYPLTFGWCFLVPVDPEEVEANEENNCL
LHPCMHQHGMEDEDREVLMWKFDRLALRHIARELHPEFYKDC\$

B 2003_cons nef.OPT
- ATGGCGGCAAGTGGTCCAAGTCCTCATCGTGGCTGGCCGCCGTGCGAGCGCATCCGCCACCCCCCGCCGCG
AGGGCGTGGCGCCGTGTCAGGACCTGGACAAGCACGGGCCATCACCTCTCAACACCGCCGCCACCAACGCCGACTG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCCTGCGCCCCCAGGTGCCCCATGACCTACAAG
GGCGCCTTCGACCTGTCCCCTGAAGGAGAAGGGGGCTGGACGGCTGATCTACTCCAAGAACGCCAGGAGATCC
TGGACCTGTGGGTGTACCAACACCCAGGGCTACTTCCCCACTGGCAGAACTACACCCCCGGCCATCCGCTACCCCT
GACCTCGGCTGGTGTCAAGCTGGTCCCCGGACGGAGGTGGAGGAGGCCAACGAGGGCGAGAACAACTGCCG
CTGCACCCATGTGCCAGCACGGCATGGAGGACGAGGAGCGCAGGGTGTGATGTGAAGTTGACTCCGCCTGGCCCTGC
GCCACATCGCCCGAGCTGCACCCGAGTTCTACAAGGACTGCTAA

g. 86 A 32. 2003_M. GROUP.anc nef.PEP
GGKWSKSSIVGWPRAVRERMRRTAPAAEGVGAVSQDLDKHGAITSSNTAATNADCAWLEAQEEEEVGFVVRPQVPLRPMTYK
AAFDLHFLKEKGGLDGLIYSKKRQEILDLWVYHTQGYFPDWQNYTPGPGIRYPLTFGWCFLVPVDPEEVEANEENNCL
LHPCMHQHGMEDDEEREVLMWKFDRLALRHIARELHPEFYKDC\$

B 2003_M GROUP.anc nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCATCGTGGCTGGCCGCCGTGCGAGCGCATGCCGCCACCGCCACCCCCCGCCGCG
AGGGCGTGGCGCCGTGTCAGGACCTGGACAAGCACGGGCCATCACCTCTCAACACCGCCGCCACCAACGCCGACTG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCCTGCGCCCCCAGGTGCCCCATGACCTACAAG
GCCGCTTCGACCTGTCCCCTGAAGGAGAACGGGGCTGGACGGCTGATCTACTCCAAGAACGCCAGGAGATCC
TGGACCTGTGGGTGTACCAACACCCAGGGCTACTTCCCCACTGGCAGAACTACACCCCCGGCCATCCGCTACCCCT
GACCTCGGCTGGTGTCAAGCTGGTCCCCGGACGGAGGTGGAGGAGGCCAACGAGGGCGAGAACAACTGCCG
CTGCACCCATGTGCCAGCACGGCATGGAGGACGAGGAGCGCAGGGTGTGATGTGAAGTTGACTCCGCCTGGCCCTGC
GCCACATCGCCCGAGCTGCACCCGAGTTCTACAAGGACTGCTAA

1g. 87 A 33. 2003_CON_A nef.PEP
GGKWSKSSIVGPDIRERIRRTPPAAGVGAVSQDLDKYGAVTINNTAATQASCAWLEAQEEEEVGFVVRPQVPLRPMTF
KGAFDLSSFLKEKGGLDGLIYSQRQEILDLWVYNTQGYFPDWQNYTPGPGTRFPLTFGWCFLVPVDPEVEATEGENNC
LLHPICQHGMDDDEKEVLMWKFDRLARRHIALEMHPEFYKDC\$

B 2003_CON_A nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCATCGTGGCTGGCCGACATCCGCCAGGCCACCCCCCGCCGCG
AGGGCGTGGCGCCGTGTCAGGACCTGGACAAGTACGGGCCGTGACCATCAACAAACACCGCCGCCACCCAGGCCCTCTG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCCTGCGCCCCCAGGTGCCCCATGACCTTC
AAGGGCGCTTCGACCTGTCTTCTCTGAAGGAGAACGGGGCTGGACGGCCCTGATCTACTCCAGAACGCCAGGAGA
TCCTGGACCTGTGGGTGTACAACACCCAGGGCTACTTCCCCACTGGCAGAACTACACCCCCGGCCCGCAGGCCCTTCCC
CCTGACCTTCGGCTGGTGTCAAGCTGGTCCCCGGACGGAGGTGGAGGAGGCCACCGAGGGCGAGAACAACTGCC
CTGCTGCACCCATCTGCCAGCACGGCATGGACGACGAGGAGAACGGAGGTGTGATGTGAAGTTGACTCCGCCTGGCC
GCCGCACATCGCCCTGGAGATGCACCCGAGTTCTACAAGGACTGCTAA

1g. 88 A 34. 2003_CON_A1 nef.PEP
GGKWSKSSIVGPPEVRERMRRTPPAATGVGAVSQDLDKHGAVTSSNINHPSVWLEAQEEEEVGFVVRPQVPLRPMTYKGA
LDLHFLKEKGGLDGLIYSRKRQEILDLWVYHTQGYFPDWQNYTPGPGIRYPLTFGWCFLVPVDPEVEKATEGENNSLLH
PICQHGMDDDEEREVLWKFDRLALKHRAQELHPEFYKDC\$

B 2003_CON_A1 nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCATCGTGGCTGGCCGAGGTGCGAGCGCATGCCGCCACCCCCCGCCGCG
CCGGCGTGGCGCCGTGTCAGGACCTGGACAAGCACGGGCCGTGACCTCTCAACATCAACCCCTCTGCGTGTG
GCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCCTGCGCCCCCAGGTGCCCCATGACCTACAAGGGCGCC
CTGGACCTGTCCCCTGAAGGAGAACGGGGCTGGACGGCCCTGATCTACTCCCAAGGCCAGGAGATCTGCC
TGIGGGTGTACCCACACCCAGGGCTACTTCCCCACTGGCAGAACTACACCCCCGGCCATCCGCTACCCCTGACCTT
CGGCTGGTGTCAAGCTGGTCCCCGGACGGAGGTGGAGAACGGCCACCGAGGGCGAGAACAACTCCCTGTCAC
CCCATCTGCCAGCACGGCATGGACGACGAGGAGCGCAGGGTGTGATGTGAAGTTGACTCCGCCTGGCCCTGAAGCACC
GCCGCACAGGAGCTGCACCCGAGTTCTACAAGGACTGCTAA

C 35. 2003_A1.anc nef.PEP

MGGKWSKSSIVGWPEVRERMRRTPPAAKGVGAVSQDLDKHGAVTSSNTAANNPGCAWLEAQEEEEVGFPVRPQVPLRPMTYK
GAFDLSHFLKEKGGLDGLIYSKKRQEILDLWVYHTQGYFPDWQNYTPGPGIRYPLTFGWFKLVPVDPAEVEEATEGENNSL
LHPICQHGMDDEREVLMWKFDSSLALKHRARELHPEFYKDC\$

D 2003_A1.anc nef.OPT

ATGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGCTGGCCGAGGTGCGCAGCGCATGCGCCGACCCCCCGCCGCCA
AGGGCGTGGCGCCGTGTCCCAGGACCTGGACAAGCACGGCGCGTGCCTCCAAACACCAGGCCAACACCCCGCTG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCGTGCGCCCCCAGGTGCCCCCTGCGCCCCATGACCTACAAG
GGCGCCTCGACCTGTCCCCTGAAGGAGAAGGGCGGCCCTGGACGGCCTGATCTACTCCAAGAAGGCCAGGAGATCC
TGGACCTGTGGGTGTACCAACACCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCGGCCGATCCGTA
GACCTCGGCTGGTGTCAAGCTGGTGCCTGGAGCCCGAGGTGGAGGAGGCCACCGAGGGCGAGAACAACCTCC
CTGCACCCATCTGCCAGCACGGCATGGACGACGAGGAGCGAGGTGCTGATGTGGAAGTTCGACTCCGCTGGCC
AGCACCGCGCCCGAGCTGCACCCGAGTTCTACAAGGACTGCTAA

A 36. 2003_CON_A2 nef.PEP

MGGKWSKSSIVGWPAIREMRKRTPPAEGVGAVSQDLATRGAVTSSNTAATNPDCAWLEAQEEEEVGFPVRPQVPLRPMTF
KGAFDLSHFLKEKGGLDGLIYSQRQDILDLWVYHTQGYFPDWQNYTPGPGTRYPLTFGWFKLVPVDPEVEEATEGENNS
LHPICQHGIEDPEREVLWKFDSSLALKHRARELHPEFYKDC\$

B 2003_CON_A2 nef.OPT

ATGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGCTGGCCGACCGCGAGCGCATGCGCAAGGCCACCCCCCGCCG
CCGAGGGCGTGGCGCCGTGTCCCAGGACCTGGCACCCCGCGCGTGCCTCCAAACACCAGGCCAACACCCCGA
CTGCCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCGTGCGCCCCCAGGTGCCCCCTGCGCCCCATGACCTTC
AAGGGCGCCTCGACCTGTCCCCTGAAGGAGAAGGGCGGCCCTGGACGGCCTGATCTACTCCAGAAGGCCAGGACA
TCCTGGACCTGTGGGTGTACCAACACCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCGGCCGACCGCTACCC
CCTGACCTCGCTGGTGTCAAGCTGGTGCCTGGAGCCCGAGGTGGAGGAGGCCACCGAGGGCGAGAACAACCTCC
CTGCTGCACCCATCTGCCAGCACGGCATCGAGGACCCCGAGGCCAGGTGCTGCGCTGGAAGTTCGACTCCGCTGGCC
TGCGCACCCGCGCCCGAGCTGCACCCGAGTTCTACAAGGACTGCTAA

A 37. 2003_CON_B nef.PEP

MGGKWSKRSVVGWPTRERMRRAEPAADGVGAVSRDLEKHGAITSNTAANNADCWLEAQEEEEVGFPVRPQVPLRPMTYK
GALDLSHFLKEKGGLEGLIYSQRQDILDLWVYHTQGYFPDWQNYTPGPGIRYPLTFGWFKLVPVEPEKVEEANEGENSL
LHPMSLHGMDPEREVLWKFDSSLAFHHMARELHPEYYKDC\$

B 2003_CON_B nef.OPT

ATGGCGGCAAGTGGTCCAAGCGCTCCGTGGTGGCTGGCCGACCGTGCAGCGCATGCGCCGCGAGGCCGCGCCG
ACGGCGTGGCGCCGTGTCCCAGGAGGAGGAGGAGGTGGCTTCCCGTGCGCCCCCAGGTGCCCCCTGCGCCCCATGACCTACAAG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGAGGTGGCTTCCCGTGAGGGCCTGATCTACTCCAGAAGGCCAGGACATCC
GGCGCCCTGGACCTGTCCCCTGAAGGAGAAGGGCGGCCCTGGAGGGCCTGATCTACTCCAGAAGGCCAGGACATCC
TGGACCTGTGGGTGTACCAACACCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCGGCCGATCCGCTACCCCT
GACCTTCGGCTGGTGTCAAGCTGGTGCCTGGAGCCCGAGAAGGTGGAGGAGGCCACCGAGGGCGAGAACAACCTCC
CTGCACCCATGTCCCTGCCAGGCATGGACGACCCCGAGCGCGAGGTGCTGGTGTGGAAGTTCGACTCCGCTGGCC
ACACATGGCCCGAGCTGCACCCGAGTACTACAAGGACTGCTAA

C 38. 2003_B.anc nef.PEP

MGGKWSKSSMGGWPTRERMRRAEPAADGVGAVSRDLEKHGAITSNTAATNADCWLEAQEEEEVGFPVRPQVPLRPMTYK
AALDLSHFLKEKGGLEGLIYSQRQDILDLWVYHTQGYFPDWQNYTPGPGIRYPLTFGWFKLVPVEPEKVEEATEGENNSL
LHPMCQHGMDDPEKEVLWKFDSSLAFHHMARELHPEYYKDC\$

D 2003_B.anc nef.OPT

ATGGCGGCAAGTGGTCCAAGTCCTCCATGGCGGCTGGCCGCGAGCGCATGCGCCGCGAGGCCGCGCCG
ACGGCGTGGCGCCGTGTCCCAGGAGGAGGAGGAGGTGGCTTCCCGTGCGCCCCCAGGTGCCCCCTGCGCCCCATGACCTACAAG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCGTGAGGGCCTGATCTACTCCAGAAGGCCAGGACATCC
GGCGCCCTGGACCTGTCCCCTGAAGGAGAAGGGCGGCCCTGGAGGGCCTGATCTACTCCAGAAGGCCAGGACATCC
TGGACCTGTGGGTGTACCAACACCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCGGCCGATCCGCTACCCCT
GACCTTCGGCTGGTGTCAAGCTGGTGCCTGGAGCCCGAGAAGGTGGAGGAGGCCACCGAGGGCGAGAACAACCTCC

CTGCACCCCATGTGCCAGCACGGCATGGACGACCCGAGAAGGAGGTGCTGGTGTGAAGTTGACTCCGCCTGGCCTTC
ACCACATGGCCCGAGCTCACCCCCAGTACTACAAGGACTGCTAA

7.91
A 39. 2003_CON_02_AG nef.PEP
MGGKWSKSSIVGWPKVRRERIRQTTPAATGVGAASQDLDKRGAIITSSNTAATNADCAWLEAQEEEEEVGFVVRPQVPLRPMTYK
AAVDLSHFLKEKGLEGGLIYSKKRQEILDLWVYHTQGFFPDWQNYTPGPGRPLTFGWCFLVPMMDPAEVEEANEGENNSL
-LHPICQHGMEDEDREVLVWRFDSSLAFKHARELHPEFYKDC\$

B 2003_CON_02_AG nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGCTGGCCCAAGGTGCGCAGCGCATCCGCCAGCCCCCGCCG
CCGGCGTGGCCCGCCTCCAGGACCTGGACGCCACGGCGCATCACCTCTCAACACCGCCGCCACCAACGCCGACTG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCCTGGCGCCCCCAGGTGCCCCATGACCTACAAG
GCCGCCGTGGACCTGTCCCACCTCTGAAGGAGAAGGGCGGCTGGAGGGCCTGATCTACTCCAAGAACGCCAGGAGATCC
TGGACCTGTGGGTGTACACACCCAGGGCTTCTCCCCGACTGGCAGAACTACACCCCCCGCCGACCCGCTTCCCT
GACCTCGGCTGGTGCTCAAGCTGGTCCCAGTGGACCCCGAGGTGGAGGAGGCAACGAGGGCGAGAACAACTCCCTG
CTGCACCCATCTGCCAGCACGGCATGGAGGACGAGGACCGCGAGGTGCTGGTGTGGCGCTTCGACTCCCTGGCCTTC
AGCACCGCGCCCGAGCTGCACCCCGAGTTCTACAAGGACTGCTAA

ig.92
A 40. 2003_CON_C nef.PEP
MGGKWSKSSIVGWPAVRERIRRTEPAAEVGVAASQDLDKHGALTSSNTAATNNADCAWLEAQEEEEEVGFVVRPQVPLRPMTY
KAAFDLSFFLKEKGLEGGLIYSKKRQEILDLWVYHTQGYFPDWQNYTPGPGRPLTFGWCFLVPMVDPREVEEANEGENNC
LLHPMSQHGMEDEDREVLWKFDSHLARRHMARELHPEYYKDC\$

B 2003_CON_C nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGCTGGCCCGCCGTGCGCAGCGCATCCGCCACCGAGCCCCGCCG
AGGGCGTGGCCCGCCTCCAGGACCTGGACAAGCACGGCGCCCTGACCTCTCAACACCGCCGCCACAAACGCCGACTG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCCTGGCGCCCCCAGGTGCCCCATGACCTAC
AAGGCCGCTTCGACCTGTCTTCTCTGAAGGAGAAGGGCGGCTGGAGGGCCTGATCTACTCCAAGAACGCCAGGAGA
TCCTGGACCTGTGGGTGTACACACCCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCGGCCGCTGCGTACCC
CCTGACCTTCGCGCTGGTGTCAAGCTGGTCCCCTGGACCCCGAGGTGGAGGAGGCAACGAGGGCGAGAACAACTGC
CTGCTGCACCCATGTCCCAGCACGGCATGGAGGACGAGGACCGCGAGGTGCTGAAGTGGAAAGTTGACTCCACCTGGCCC
GCCGCCACATGGCCCGAGCTGCACCCCGAGTACTACAAGGACTGCTAA

C 41. 2003_C.anc nef.PEP
MGGKWSKSSIVGWPAVRERMRRTPEPAAEVGVAASQDLDKHGALTSSNTAANNADCAWLEAQEEEEEVGFVVRPQVPLRPMTY
KAAFDLSFFLKEKGGLDGLIYSKKRQEILDLWVYHTQGYFPDWQNYTPGPGRPLTFGWCFLVPMVDPREVEEANEGENNC
LLHPMSQHGMEDEDREVLWKFDSHLARRHMARELHPEYYKDC\$

D 2003_C.anc nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGCTGGCCCGCCGTGCGCAGCGCATCGCCGACCGAGCCCCGCCG
AGGGCGTGGCCCGCCTCCAGGACCTGGACAAGCACGGCGCCCTGACCTCTCAACACCGCCGCCACAAACGCCGACTG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCCTGGCGCCCCCAGGTGCCCCATGACCTAC
AAGGCCGCTTCGACCTGTCTTCTCTGAAGGAGAAGGGCGGCTGGACGCCCTGATCTACTCCAAGAACGCCAGGAGA
TCCTGGACCTGTGGGTGTACACACCCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCGGCCGCTGCGTACCC
CCTGACCTTCGGCTGGTGTCAAGCTGGTCCCCTGGACCCCGAGGTGGAGGAGGCAACGAGGGCGAGAACAACTGC
CTGCTGCACCCATGTCCCAGCACGGCATGGAGGACGAGGACCGCGAGGTGCTGAAGTGGAAAGTTGACTCCACCTGGCCC
GCCGCCACATGGCCCGAGCTGCACCCCGAGTACTACAAGGACTGCTAA

ig.93
A 42. 2003_CON_D nef.PEP
MGGKWSKSSIVGWPPAIRERIRRTEPAADGVGAWSRDLEKHGAITSSNTAATNADCAWLEAQEEDEEVGFVVRPQVPLRPMTY
KAALDSHFLKEKGLEGGLVWSQKRQEILDLWVYNTQGFFPDWQNYTPGPGRPLTFGWCFLVPMVDPEEEATEGENNC
LLHPMCQHGMEDPEREVLWMWFNSRLAFEHKARVLHPEFYKDC\$

B 2003_CON_D nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGCTGGCCCGCCATCCGCCAGCGCATCCGCCGACCGAGCCCCGCCG
ACGGCGTGGCCCGCCGTGCCCCGCCACCTGGAGAAGCACGGCGCCATCACCTCTCAACACCGCCGCCACCAACGCCGACTG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGAGGTGGCTTCCCCTGGCGCCCCCAGGTGCCCCATGACCTAC
AAGGCCGCCCCCTGGACCTGTCCCACCTCTGAAGGAGAAGGGCGCCCTGGAGGGCCTGGTGTGGTCCCAGAACGCCAGGAGA
TCCTGGACCTGTGGGTGTACAACACCCAGGGCTTCTCCCCGACTGGCAGAACTACACCCCCGGCCGATCCGCTACCC

CCTGACCTTCGGCTGGTCTCGAGCTGGTGCCCCGTGGAGGGAGGCCACCGAGGGCGAGAACAACTGCG
CTGCTGCACCCATGTGCCAGCACGCCATGGAGGACCCCGAGCGCAGGTGCTGATGTGGCCTCAACTCCGCCTGGCCT
TCGAGGACAAGGCCCGCTGCTCACCCGAGTTCTACAAGGACTGCTAA

1.94

43. 2003_CON_F1 nef.PEP

MGKWSKSSIVGWPAPRERRMRPTPPAEGVGAVSQDLERRGAITSNTGATNPDLAWLEAQEEEVGFVVPQVPLRPMTYK
AAFDLSHFLKEKGLEGLIYSKKRQEILDLWVYHTQGYFPDWQNYTPGPGRYPLTFGWCFLVLPVDPEEVEKANEENNCL
LHPMSQHGMEDEDREVLIWKFDRLALRHIAERHPEFYKD\$

B

2003_CON_F1 nef.OPT

ATGGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGCTGGCCGCCGTGCGCAGCGCATGCGCCCCACCCCCCGCCGCCG
AGGGCGTGGGCCGCGTCCCAGGACCTGGAGCGCCGCCATCACCTCCAAACACCGGCCACCAACCCGACCT
GGCCTGGCTGGAGGCCCAGGAGGAGGTGGCTTCCCCTGCGCCCCCAGGTGCGCCCCATGACCTACAAG
GGCCTGGCTGGAGGCCCAGGAGGAGGTGGCTTCCCCTGCGAGGGCCTGATCTACTCCAAGAAGCGCCAGGAGATCC
TGGACCTGTGGGTGTACACACCCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCGGCCGATCCGCTACCCCT
GACCTTCGGCTGGTCTCAAGCTGGTGCCTGGACCCGAGGAGGTGGAGAAGGCCAACGAGGGCGAGAACAACTGCG
CTGCACCCATGTCCCAGGACGGCATGGAGGACGAGGACCGCGAGGTGCTGATCTGGAAGTTCGACTCCGCCTGGCCCTGC
GCCACATCGCCCGAGGCCACCCGAGTTCTACCAGGACTAA

2.95

44. 2003_CON_F2 nef.PEP

MGKWSKSSIVGWPAPRERRMRPTPPAEGVGAVSQDLKHGAITSNTRATNADLAWLEAQEDEEVGFVVPQVPLRPMTYK
AAFDLSHFLKEKGLEGLIYSKKRQEILDLWVYHTQGYFPDWQNYTPGPGRYPLTFGWCFLVLPVDPEEVEKANEENNCL
LHPMSLHGMEDEDREVWKFDRLALRHIAERHPEYYKD\$

B

2003_CON_F2 nef.OPT

ATGGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGCTGGCCACCACCGCGAGCGCATCCGCCACCCCCCGCCGCCG
AGGGCGTGGGCCGCGTCCCAGGACCTGGACAAGCACGGCGCCATCACCTCCAAACACCGGCCACCAACCCGACCT
GGCCTGGCTGGAGGCCCAGGAGGAGGTGGCTTCCCCTGCGCCCCCAGGTGCGCCCCATGACCTACAAG
GCCGCTTCGACCTGTCCCACCTTCTGAGGAGAAGGGGGCTGAGGGCCTGATCTACTCCAAGAAGCGCCAGGAGATCC
TGGACCTGTGGGTGTACACACCCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCGGCCGGACCCGCTACCCCT
GACCTTCGGCTGGTCTCAAGCTGGTGCCTGGACCCGAGGAGGTGGAGAAGGCCAACGAGGGCGAGAACAACTGCG
CTGCACCCATGTCCCCTGACGGCATGGAGGACGAGGACCGCGAGGTGCTGAAGTGGAACTCCGACTCCGCCTGGCCCTGC
GCCACATCGCCCGAGGCCACCCGAGTACTACAAGGACTAA

3.96

45. 2003_CON_G nef.PEP

MGKWSKSSIVGWPAPRERRMRPTPPAEGVGAVSQDLARHGAITSNTAANNPDCAWLEAQEEDSEVGFVVPQVPLRPMTY
KGAFDLSFFLKEKGLDGLIYSKKRQDILDLWVYNTQGYFPDWQNYTPGPGRYPLTFGWCFLVPMDAEVEEANKGENNS
LLHPICQHGMEDEDREVLVWRFDSSLARRHIARELHPEYYKD\$

B

2003_CON_G nef.OPT

ATGGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGCTGGCCGAGGTGCGCAGCGCATCCGCCAGACCCCCCGCCGCCG
AGGGCGTGGGCCGCGTCCCAGGACCTGGCCGCCACGGCGCCATCACCTCCAAACACCGGCCACCAACCCGACTG
CGCCTGGCTGGAGGCCCAGGAGGACTCCGAGGTGGCTTCCCCTGCGCCCCCAGGTGCGCCCCATGACCTAC
AAGGGCGCTTCGACCTGTCTTCTCTGAAGGAGAAGGGGGCTGGACGGCCTGATCTACTCCAAGAAGCGCCAGGACA
TCCGGACCTGTGGGTGTACAACACCCAGGGCTTCTTCCCCTGAGGAGAAGGGCCGGACCCGCTTCCC
CCTGACCTTCGGCTGGTCTCAAGCTGGTGCCTGGACCCGAGGTGGAGGAGGCCAACAAGGGCGAGAACAACTCC
CTGCTGCACCCATCTGCCAGCAGGGCATGGAGGACGAGGACCGCGAGGTGCTGGTGTGGCGCTTCGACTCCCTGGCC
GCCGCCACATCGCCCGAGCTGACCCGAGTACTACAAGGACTGCTAA

4.97

46. 2003_CON_H nef.PEP

MGKWSKSSIVGWPAPRERRIRRAEPAEGVGAVSRDLDRRGAVTINNTASTNPDSAWLEAQEEEVGFVVPQVPLRPMTY
KGAFDLSHFLKEKGLEGLIYSKKRQEILDLWVYNTQGYFPDWQNYTPGPGRYPLTFGWCFLVPMDAEVEEANKGENNS
LLHPICQHGMEDEREVLMWKFDRLAFRHIARELHPEFYKD\$

B

2003_CON_H nef.OPT

ATGGGCGGCAAGTGGTCCAAGTCCTCCATCGGCGCTGGCCGCATCCCGAGGCCATCCGCCGCCAGGCCGCCGCC
AGGGCGTGGGCCGCGTCCCAGGACCTGGAGGCCGCCGGCGCCGTGACCATCAACAACACCGCCCTCCACCAACCCGACTC
GGCCTGGCTGGAGGCCCAGGAGGAGGAGGAGGTGGCTTCCCCTGCGCCCCCAGGTGCGCCCCATGACCTAC
AAGGGCGCTTCGACCTGTCCCACCTTCTGAGGAGAAGGGCGCCATGGAGGGCGAGGTGCTGGTGTGGCGCTTCGACTCC
CTGCTGCACCCATCTGCCAGCAGGGCATGGAGGACGAGGACCGCGAGGTGCTGGTGTGGCGCTTCGACTCCCTGGCC

TCCGGACCTGCGGTACAACACCCCAGGGCTACTTCCCCACTGGCAGAACTACACCCCCGGCCCCGGCGAGCGCTACCC
CCTGACCTTCGGCTGGTCTCAAGCTGGTCCCCGTGGACCCCCAGGAGGTGGAGAAGGCCAACGAGGGCGAGAACAACTCC
CTGCTGCACCCCATCTGCCAGCACGGCATGGAGGACGAGGAGCGCAGGTGCTGATGTGGAAGTTCACTCCGCCTGGCCT
TCCGCCACATGCCCGCGAGCTGCACCCGAGTTCTACAAGGACTGCTAA

47. 2003_CON_01_AE nef.PEP

MGKGWSKSSIVGWPQVRERIKQTTPATEGVGAVSQDLDKHGAVTSSNMNNADCVLRAQEEEEVGFPVRPQVPLRPMTYKGAFDLSFFLKEKGGLDGLIYSKRQEILDLWVNTQGFFPDWQNYTPGPGLRYPLCFGWCFLVVPVDPREVEEDNKGENNCLHPMSQHGIEDEREVLMWKFDALSARAKHIARELHPEYYKDC\$

2003 CON_01_AF nef.OPT

ATGGGCGGCAAGTGGTCCAAGTCTCCATCGTGGGCTGGCCCCAGGTGCGCGAGCGCATCAAGCAGACCCCCCCCACCG
AGGGCGTGGGCGCCGTGTCAGGACCTGGACAAGCACGGCGCCGTGACCTCTCCAAACATGAACAAACGCCGACTGCGTGTG
GCTGCGGCCAGGAGGAGGAGGTGGCTTCCCCGTGCGCCCCCAGGTGCCCTGCGCCCATGACCTACAGGGCGC
TTGACCTGTGCTTCTTGAGGAGGAAAGGGGCCCTGGACGGGCTGATCTACTCCAAGAAGGCCAGGAGATCTGGACC
TGTGGGTGACAAACACCCAGGGCTTCTCCCCGATGGCAGAACATACACCCCCGGCCCCGGCATCGCTACCCCTGTGCTT
CGGCTGGTGTCTCAAGCTGGTGCCTGGACCCCCCGCAGGGTGGAGGAGGACAACAAGGGCGAGAACAACTGCCCTGCTGCAC
CCCATGTCCCAGCACGGCATCGAGGACGAGGAGCGCGAGGTGCTGATGTGGAGTTGACTCCGCCCTGGCCCCGAAGCACA
TCGCCCCGAGCTGACCCCCAGTACTACAAGGACTGCTAA

48. 2003 CON 03 AE nef.PEP

MGKGWSKSSIVGWPQVRERIRRAPAPAARGVGPVSQDLDKYGAVTSSNTAANNADCAWLEAQKEEEVGFPUVPQVPLRPMTY
KGAFDLHFLKEKGGLDGLIYSKKRQEILDLWVYHTQGYFPDWQNYTPGPGIRFPLTFGWCYKLVPVDPDEVEEATEGENN
LLHPICQHGMDDEEKVLMWKFDSSLALTHRARELHPEFYKDC\$

2003 CON 03 AE nef.OPT

ATGGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGCTGGCCCCAGGTGCGCGAGCGCATCCGCCGCCCGCCCCCGCG
CCCGCGGCGTGGGCCCGTGTCCCAGGACCTGGACAAGTACGGCGCCGTGACCTCTCAACACCGCCAAACACGCCGA
CTGCGCTGCTGGAGGCCAGAAGGAGGAGGAGGAGGCTTCCCGTGCAGCCCGCAGGTGCCCCATGACCTAC
AAGGGCGCTTCGACCTGTCCCACTTCTGAGGAGAAGGGCGGCCAGGTGATCTACTCCAAGAACGCCAGGAGA
TCCCTGGACCTGTGGGTGTACACACCCAGGGCTACTTCCCCACTGGCAGAACTACACCCCCGGCCCGGCATCCGCTTCCC
CCTGACCTCGGCTGGTGTACAAGCTGGTCCCCGGACGAGGTGGAGGAGGCCACCGAGGGCGAGAACAACTCC
CTGCGCACCCCATGCGGACGAGGAGGAGGAGGTGCTGATGTGAAAGTTGACTCCGCCCTGGCCC
TGACCCCCACCGCGCCCGAGCTGACCCCCGAGTTCTACAAGGACTGCTAA

49. 2003 CON 04 CFX nef.PEP

49. 2005_001_01_01_01_01_01
MGGKWSKSSIVGWPAlRERMRQRGPAQAEPAAGVGAVSQDDKHKGAITSSNTAATNPDKAWLEAQEEEEEVGFVPRPQVPL
RPMTFKAALDLSSHFLKEKGGLDGLIYSKKRQEILDLWVNTQGYFPDWQNYTPGPGERFPLCFGWCFKLVPVDPQEVEEATE
GENNCLIIHPIOSHGMEDEREVLWKWFDSRLAYKHIARELHPEFYKD\$

2003 CON 04 CFX nef.OPT

ATGGGCGCAAGTGGTCCAAGTCCTCCATCGGGCTGGCCGCGCATCCGCAGCGCATGCCAGCGCGCCCCGCCAGG
CCGAGCCCGCCGCCGGCGTGGCGCCGTGTCACAGGACCTGGACAAGCACGGCGCATCACCTCCTCAAACACCGCCGC
CACCAACCCGACAAGGCTGGCTGGAGGCCAGGAGGAGGAGGAGGAGGAGGCTTCCCCGTGCGCCCCCAGGTGCCCCCTG
CGCCCCATGACCTTCAAGGCCGCCCTGGACCTGTCCCACCTTCTGAAGGAGAAGGGCGCTGGACGGCTGTATCTACTCCA
AGAACGCCAGGAGATCTGGACCTGTGGGTGTAACAAACACCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCGGCCCC
CGGCGAGCGCTCCCCCTGTGCTTCGGCTGGCTTCAAGCTGGTGCCTGGACCCCCAGGGAGGTGGAGGAGGCCACCGAG
GGCAGAGAACAACTGCGTGTGACCCCATCTCCAGCACGGCATGGAGGAGCAGGAGCGCAGGTGCTGAAGTGGAAAGTTCG
ACTTCCCCTGGCTACAAGCACATCGCCCGAGCTGCACCCCGAGTTCTACAAGGACTGCTAA

50 2003 CON 06 CEX ref-PEP

50. 2003_COU_06_CFA_HGT.FLT
MGGKWSKSSIVGWPQVRMRNPPTEGAAEGVGAVSQDLDKHGAIITSSNTATTNAACAWLEAQTEDEVGFPVRPQVPLRPM
YKGAFDLSFFLKEKGGLIYSKKRQEILDLWVYHTQGFPDPDWQNYTPGPGIRYPLTFGWCYKLVPVDPKEVEEDTKGENN
CLLHPMCOHGVDEEEREVLMWKFDSSLARRHIAREMHPEFYKDC\$

2003 CON 06 CFX nef.OPT

ATGGGCGCAAGTGGTCCAAGTCCTCCATCGGGCTGGCCCCAGGTGGCGAGCGCATGCGAACCCCCCACCAGGGCG
CCGCGGAGGGCGTGGGCGCCGTGTCACAGGACCTGGACAAGCACGGCGCATCACCTCCTCAAACACCGCCACCACCAACGC
CGCTGCGCTGGCTGGAGGCCAGACCGAGGAGGAGGTGGCTTCCCCGTGCGCCCCAGGTGCCCCATGACC

TACAAGGGCGCCTCGACCTGTCCTCTTCCCTGAAGGAGAACGGCGGCCCTGGACGGCTGATCTACTCCAAGAACGCCAGG
AGATCTGGACCTGTGGGTGACCAACCCAGGGCTTCTCCCCGACTGGCAGAACTACACCCCCGCCGCATCCGCTA
CCCCCTGACCTTCGGCTGGTGTACAAGCTGGTGGACCCCAAGGAGGTGGAGGAGGACACCAAGGGCGAGAACAC
TGCCCTGCTGACCCCATGTGCCAGCACGGCTGGAGGACGGAGGAGGCGAGGTGCTGATGTGAAAGTCGACTCCCTGG
CCCAGGCCACATGCCCGAGATGCACCCAGTTCTACAAGGACTGCTAA

g.102
B 51. 2003_CON_08_BC nef.PEP
MGKWSKSSIVGWPAIRERIRRTEPAADGVAVSRDLEKHGAITSSNTADTNADCAWLETQEEEEEVGFPVRPQVPLRPMFK
GALDLSSLKEKGLEGLIYSKKRQEILDLWVYHTQGYFPDWNYTPGPGVRFPLTFGWCFLVPVDPREVEEANEGETNCL
LHPVCQHGMEDEHREVLWKFDSQLAHRHRARELHPEFYKDC\$

B 2003_CON_08_BC nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGGCTGGCCGCCATCCGCGAGCGCATCCGCCGACCGAGCCGCCGG
ACGGCGTGGCGCCGTGTCCTCGACCTGGAGAACGACGGCGCATCACCTCTCCAACACCGCCGACACCAACGCCGACTG
CGCCTGGCTGGAGACCCAGGAGGAGGAGGTGGCTTCCCGTGCGCCCGCAGGTGCCCCATGACCTTCAG
GGCAGGCCCTGGACCTGTCCCTCTTGAGGAGAACGGCGGCCCTGAGGTGATCTACTCCAAGAACGCCAGGAGATCC
TGGACCTGTGGGTGACACACCCAGGGCTACTTCCCCGACTGGCACAACTACACCCCCGGCCGCTGCGCTTCCCC
GACCTTCGGCTGGTGTCAAGCTGGTGGCCCGAGGGCGAGGTGGAGGAGGCCAACGAGGGCGAGGACAACGCTG
CTGCACCCCGTGTGCCAGCACGGCATGGAGGACGGCAGCGAGGTGCTGAAGTGGAAAGTCGACTCCAGCTGGCCACC
GCCACCGCGCCCGAGCTGACCCAGTTCTACAAGGACTGCTAA

g.103
A 52. 2003_CON_10_CD nef.PEP
MGKWSKSSIVGWPAVREIRRTDPAEGVGAAASRDLEKYGAITSSNTAQTNPDCAWLEAQEEEEEVGFPVRPQVPLRPMY
KGAFDLSLKEKGLEGLIYSKKRQDILDLWVYNTQGFFPDWQNYTPGPGIRYPLTFGWCYKLVPVDPREVEEANEGENNS
LLHPMSLHGMEDPHGEVLMWKFDSNLAKHMARELHPEYYKDC\$

B 2003_CON_10_CD nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGGCTGGCCGCCGCGAGCGCATCCGCCGACCGAGCCGCCGG
AGGGCGTGGCGCCGCCCTCCCGACCTGGAGAACGACGGCGCATCACCTCTCCAACACCGCCGACACCAACCCGACTG
CGCCTGGCTGGAGGCCAGGAGGAGGAGGAGGTGGCTTCCCGTGCGCCCGCAGGTGCCCCATGACCTAC
AAGGGCGCTTCGACCTGTCCTCTTGAGGAGAACGGCGGCCCTGGAGGGCTGATCTACTCCAAGGCCGCCAGGACA
TCCCTGGACCTGTGGGTGACACACCCAGGGCTTCTCCCCGACTGGCAGAACTACACCCCCGGCCGCCATCCGCTACCC
CCTGACCTTCGGCTGGTGTACAAGCTGGTGGCCCGTGGACCCCGCAGGTGGAGGAGGCCAACGAGGGCGAGAACACTCC
CTGCTGCACCCCATGTCCCTGCACGGCATGGAGGACCCCGACGGCGAGGTGCTGATGTGGAAAGTCGACTCCAACCTGGCC
ACAAGCACATGGCCCGAGCTGACCCAGTACTACAAGGACTGCTAA

g.104
A 53. 2003_CON_11_CFX nef.PEP
MGKWSKSSIVGWPEIRERIRRPTAAAEGVGAVSKDLEKHGAVTSSNTAQTNAAACAWLEAQEEEEEVGFPVRPQVPLRPMT
YKGAFDLSLKEKGLEGLIYSKKRQEILDLWVYHTQGYFPDWQNYTPGPGIRYPLTFGWCFLVPVDPREVEEANEGENN
CLLHPMSQHGMDEDEREVLMWKFDSLARRHIARELHPDFYKDC\$

B 2003_CON_11_CFX nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGGCTGGCCGCCGAGATCCCCGAGCGCTGCGCCGCCACCCCCCCCACGGCCG
CCGGCGAGGGCGTGGCGCCGTGTCAGGACCTGGAGAACGACGGCGCCGTGACCTCTCCAACACCGCCGACACCAACGC
CGCCTGCGCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCGTGCGCCCGCAGGTGCCCCATGACCC
TACAAGGGCGCTTCGACCTGGCTTCTTGAGGAGAACGGCGGCCCTGGACGGCTGATCTACTCCAAGAACGCCAGG
AGATCTGGACCTGTGGGTGACACACCCAGGGCTACTTCCCCGACTGGCAGAACTACACCCCCGGCCGCCATCCGCTA
CCCCCTGTGCTTCGGCTGGTGTCAAGCTGGTGGCCCGTGGAGGCCCGCAGGTGGAGGAGGCCAACGAGGGCGAGAACAC
TGCCTGCTGCACCCCATGTCCCAGCACGGCATGGACGAGGAGCGCGAGGTGCTGATGTGGAAAGTCGACTCCCTGG
CCCAGGCCACATGCCCGAGCTGACCCAGTTCTACAAGGACTGCTAA

g.105
A 54. 2003_CON_12_BF nef.PEP
MGKWSKSSIVGWPDIREMRRAAPPAAEGVGAVSQDLENRGAITSSNTRANNPDLAWEAQEEEEEVGFPVRPQVPLRPMYK
GALDLSSLKEKGLEGLIYSKKRQEILDLWVYHTQGYFPDWQNYTPGPGIRYPLTFGWCFLVPVDPEEEVANEGENNCL
LHPMSQHGMEDEDREVLMWKFDSLARRHIARELHPEFYQDC\$

B 2003_CON_12_BF nef.OPT
ATGGCGGCAAGTGGTCCAAGTCCTCCATCGTGGGCTGGCCGCCGAGATCCGCGAGCGCATGCCGCCGCCACCCCCCCCACGGCCG
AGGGCGTGGCGCCGTGTCAGGACCTGGAGAACGACGGCGCCGTGACCTCTCCAACACCGCCGACACCAACCC
AGGTGCCCCATGACCC

GGCCTGGCTGGAGGCCAGGAGGAGGAGGTGGCTTCCCCTGGCCCCCAGGTGCCCTGC
GGCCTGGACTGTCCCACCTCCCTGAAGGAGAAGGGCGGCTGGAGGGCTGATCTACT
TGGACTGTGGGTGTACCAACCCAGGGCTACTTCCCCTGAAGTGGCAGAACTACAC
CCCCCGGCCATCGCTACCCCTGAGGAGGTGGAGAAGGCCAACGAGGGCGAGAAC
ACTGCCTGAGGAGGTGGCTGATGTGGAAGTTGACTCCGCCTGGCCCTGC
GCCACATCGCCCGAGAACGACCCCCGAGTTCTACCAAGGACTGCTAA

7/10b 55. 2003_CON_14_BG nef.PEP
A MGGKWSKCSIVGWPEVRERIRRTPPAVGVGAVSQDLAKHGAITSSNTAANNPDCAWLEAQEEDSEVGFPVRPQVPLRPMTY
KGAFDLSFFLKEKGGLDGLIYSKQRQDILDLWVYNTQGFPPDWQNYTPGPTRYPLTFGWCFLKEPVDPAEVEEATKGENNS
LLHPICQHGMEDADNEVLIWRFDSSLARRHIARELHPDFYKDC\$

B 2003_CON_14_BG nef.OPT
ATGGCGCGCAAGTGGTCCAAGTGCTCCATCGTGGCTGGCCCGAGGTGCGCGAGCGCATCGCCGCACCCCCCGCCGCG
TGGCGTGGCGCCGTGTCCTCAGGACCTGGCCAAGCACGGCGCATCACCTCCAAACACCGCCGCCAACAAACCCGACTG
CGCCTGGCTGGAGGCCAGGAGGAGGACTCCGAGGTGGCTTCCCCTGCGCCCCCAGGTGCCCCCTGCGCCCATGACCTAC
AAGGGCGCCTCGACCTGTCTCTGAAGGAGAAGGGCGGCTGGACGGCTGATCTACTCCAAGCAGCGCCAGGACA
TCCTGGACCTGTGGGTGTACAACACCCAGGGCTTCTCCCCTGACTGGCAGAACTACACCCCCGGCCGGCACCCGCTACCC
CCTGACCTCGGCTGGTGTCAAGCTGGAGGCCGTGGACCCCCGCCAGGTGGAGGAGGCCACCAAGGGCGAGAACAACTCC
CTGCTGCACCCCCATCTGCCAGCACGGCATGGAGGAGGCCGACAACGAGGTGCTGATCTGGCGCTCGACTCCCTGGCCCC
GCCACATCGCCCGAGCTGCACCCCCGACTTCTACAAGGACTGCTAA

Fig. 107

61. 2003_2003_CON_S pol.PEP

FFRENLAQQGEAREFSSEQTRANSPTSRELRVRGGDNPLSEAGAERQGTVSLSFPQITLWQRPLVTVKIGGQLKEALLDTG
 ADDTVLEEINLPKGKPKMIGGIGGFIKVRQYDQILIEICGKKAIGTVLVGPPTVNIIGRNMLTOIGCTLNFPISPIETVPV
 KLKGMDGPVKQWPLTEEKIKALTEICTEMEMEKEGKISKIGPENPYNTPFAIKKDSTKWRKLVDRELNKRTQDFWEVQL
 GIPHAGLKKKSVTLDVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPGCWKGSPAIFQSSMTKILEPFRTQ
 NPEIVIYQYMDDLYVGSDELEIGQHRTKIEELREHLLRWGPTTPDKHQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWTVND
 IOKLVGKLNWASQIYPGIKVKQLCKLRLGAKALTDIVPLTEEAELAENREILKEPVHGYYDPSKDLIAEIQKQGQDQWT
 YQIYQEPFKNLKTGKYAKMRSAAHTNDVKQLTEAVQKIATESIVIWGKTPKFRLPIQKETWETWWTEYQATWIPEWEFVNTP
 PLVKLWYQLEKEPIVGAETFYVDGAANRETKLKGAGYVTDRGRQKVSLTETNQKTELQAIHLALQDSGSEVNIVTDSQYA
 LGIIQAQPDKSESELVNQIIEQLIKKEKVYLSWPRAKGIGGNEQVDKLVTGIRKVLFLDGIDKAQEEHEKYHSNWRAMAS
 DFNLPPIVAKEIVASCDKCQLKGEAMHGQVDCSPGIWQLDTHLEGKIILVAVHVASYIEAEVIPAETGQETAYFILKLAG
 RWPVKVIHTDNGSNFTSAAVKAACWAGIQQEFGIPYNPQSQGVVESMNKELKKIIGQVRDQAEHLKTAQVMAFVIFHNFKRK
 GGIGGYSAGERIIDIIATDIQTKELQKQITKIQNFRVYRSDPFIWGPALKLWKGEAGAVIQDNSEIKVVPRRKAKIIRD
 YGKQMGDDCVAGRQDED\$

2003_CON_S pol.OPT

B
 TTCTCCGCAGAACCTGGCCTTCCAGCAGGGCGAGGCCCGCGAGTTCTCCGAGCAGACCCGCCAACCTCCCCCACCT
 CCCGCAGCTGCCGTGCCGGCGACAACCCCCCTGTCCGAGGCCCGCGAGCGCAGGGCACCGTGTCCCTGTCCCT
 CCCCCAGATCACCCGTGGCAGCGCCCCCTGGTACCGTGAAAGATCGCCGGCAAGTGGAAAGCCCAGATGATCGCCGGCATCGCCGGCTTCATCA
 AGGTGCGCCAGTACGACCAGATCTGATCGAGATCTGCCGCAAGAAGGCCATCGCACCGTGTGGGGCCCCACCCCGT
 GAACATCATCGCCGCAACATGCTGACCCAGATCGCTGACCCCTGAACCTCCCATCTCCCCATCGAGACCGTGCCTGT
 AAGCTGAAGCCCGCATGGACGGCCCAAAGGTGAAGCAGTGGCCCTGTGACCGAGGAGAAAGATCAAGGCCCTGACCGAGATCT
 GCACCGAGATGGAGAAGGAGGGCAAGATCTCCAAGATCGGCCCGAGAACCCCTACAACACCCCCATCTGCCCATCAAGAA
 GAAGGACTCCACCAAGTGGCGCAAGCTGGTGAATTCCCGAGCTGAACAAGCGCACCCAGGACTCTGGGAGGTGAGCTG
 GGCATCCCCACCCCGCCGCTGAAGAAGAAGTCCTGTGACCCGTCTGGACGTGGGAGGTGAGCTTCTCCGTGCCCC
 TGGACGAGGACTTCCGCAAGTACACCGCCTTACCATCCCCCTCATCTCCAGTCTCCATGACCAAGATCTGGGAGGTGAGCTG
 CGTCTGCCAGGGCTCGGAAGGGCTCCACCATCCCCCTCATCTCCAGTCTCCATGACCAAGATCTGGGAGGTGAGCTG
 AACCCCGAGATCTGATCTACAGTACATGGACGACCTGTACGTGGGCTCCGACCTGGAGATCGCCAGCCGACCAAGA
 TCGGAGGACTCGCGAGCACCTGCTGCGCTGGGCTTACCAACCCCCGACAAGAAGCACCAGAAGGAGCCCCCTCTGTG
 GATGGGCTACGAGCTGCACCCGACAAGTGGACCGTGCAGCCCATCCAGTGTGACCCAGAAGGACTCTGGACCGTGAACGAC
 ATCCAGAAGCTGGTGGCAAGCTGAACACTGGGCTCCAGATCTACCCGGCATCAAGGTGAAGCAGCTGTGCAAGCTGCTG
 GCGCGCCAAGGCCCTGACCGACATCGTCCCCGTGACCGAGGAGGGCGAGCTGGAGCTGGCGAGAACCGCGAGATCTGAA
 GGACCCGTGACGGCTGTACTACGACCCCTCAAGGACCTGATCGCCGAGATCCAGAAGCAGGCCAGGACCAGTGGACC
 TACCAAGATCTACCAAGGAGCCCTCAAGAACCTGAAGACGGCAAGTACGCCAAGATGCCCTCCGCCACACCAACGACGTGA
 AGCAGCTGACCGAGGCCGTGACCGAGATCGCCACCGAGTCCATCGTATCTGGGCAAGACCCCCAAGTTCGCTGCCAT
 CCAGAAGGAGACCTGGGAGACCTGGTGGACCGAGTACTGGCAGGCCACCTGGATCCCCAGTGGAGCTGGCGAGAACCGCG
 CCCCTGGTGAAGCTGTGGTACCAAGCTGGAGAAGGAGGCCATCGTGGGCGCCAGACCTTCTACGTGGACGGGCCGCAACC
 GCGAGACCAAGCTGGCAAGGCCGTACGTGACCGACCGGCCGAGAACGGTGTCTGGACCGAGAACCCAGA
 GAAGACCGAGCTGCAGGCCATCCACCTGGCCCTGAGGACTCCGGCTCCGGAGAACATCGTACCGACTCCAGTACGCC
 CTGGGCTACATCGAGGCCAGGGCAAGTCCGAGTCCGAGCTGGTGAACCATCGAGCAGCTGATCAAGAAGGAGA
 AGGTGACCTGTCTGGTGGCCGCCAACAGGGCATCGCGCAACGAGCAGGTGGACAAGCTGGTGTCCACCGGCATCCG
 CAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCACGAGAAGTACCAACTGGCGGCCATGGCTCC
 GACTTCAACCTGCCCTCATCGTGGCAAGGAGATCGTGGCTCTGCGACAAGTGGCAGCTGAAGGGCGAGGCCATGACG
 GCCAGGTGGACTGCTCCCCGGCATCGTGGAGCTGGACCTGCCACCTGGAGGGCAAGATCATCTGGTGGCGTGCACGT
 GGCTCCGGTACATCGAGGCCAGGTGATCCCCGCCAGACCGGCCAGGAGACCGCCACTTCTACCTGTGAAAGCTGGCCGG
 CGCTGGCCCGTGAAGGTGATCCACCCGACAACGGCTTCAACTTACCTCCGCCGTGAAGGCCGCTGTGGTGGCC
 GCATCCAGCAGGAGTCTGGCATCCCCTACAACCCCCAGTCCAGGGCGTGGAGTCCATGAACAAAGGAGCTGAAGAAGAT
 CATCGGCCAGGTGCGGACAGGCCAGACCTGAAGACCGCCGTGACGATGGCCGTGTTCATCCACAATTCAAGCGCAAG
 GGCGGCATCGCGGCTACTCCGCCGGAGGCCATCGACATCATGCCACCGACATCCAGACCAAGGAGCTGAGAAC
 AGATCACCAAGATCCAGAACCTCCCGTGTACTACCGCGACTCCCGGACCCCATCTGGAAGGGCCGCCAACGCTGCTG
 GAAGGGCGAGGGCGCCGTGGTGAATCCAGGACAACCTCCGAGATCAAGGTGGTGGCCGCCAGGACGAGGACTAA
 TACGGCAAGCAGATGGCCGGCGACGACTCGCTGGCGGCCAGGACGAGGACTAA

Fig. 108

62 2003_M GROUP anc pol.PEP

A
 FFRENLAQQGEAREFSSEQTRANSPTSRELRVRGGDNPLSEAGAERQGTVSFSFPQITLWQRPLVTIKIGGQLREALLDTG
 ADDTVLEEINLPKGKPKMIGGIGGFIKVRQYDQILIEICGKKAIGTVLVGPPTVNIIGRNMLTOIGCTLNFPISPIETVPV
 KLKGMDGPVKQWPLTEEKIKALTEICTEMEMEKEGKISKIGPENPYNTPFAIKKDSTKWRKLVDRELNKRTQDFWEVQL

GIPHPAGLKKKSVTLDVGAYFSVPLDEDFRKYTAFTIIPSINNETPGIRYQYNVLPGWKGSPAIFQSSMTKILEPFRKT
NPEIVIYQYMDLYVGSDELIGQHRAKIEELREHLLRWGFTTPDKHKQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWTVD
IQKLGVGLNWASQIYPGIKVKQLCKLLRGAKALTDIVPLTEEALELAENREILKEPVHGYYDPSKDLIAEIQKQGQDQWT
YQIYQEPFKNLTKYAKMRSANTNDVKQLTEAVQKIAVESIVIWGKTPKFRPLIQKETWETWWTEYQATWIPEWEFVNTP
PLVKLWYQLEKEPIVGAETFYVWDGAANRETKLGKAGYVTDRGRQKVSLTETTNQKTELQAIHLALQDSGSEVNIVTDSQYA
LGIIQAQPDKSESELVNQIEQLIKKEKVYLWVPAHKGIGGNEQVDKLVSSGIRKVLFLDGIDKAQEHEKYSNWRAMAS
DFNLPVVAAKEIVASCDKQCLKGEAMHGQVDCSPGIWQLDCTHLEGKVLVAVHVASGYIEAEVIPAETGOETAYFILKLAG
RWPVKVIHTDNGSNFTSAAVKAACWAGIQQEFGIPYNPQSOGVVESMNKELKKIIGOVRDQAEHLKTAVQMAVFHNPKRK
GGIGGYSAGERIIDIIATDIQTKELQKQITKIQNFRVYRDSRDPIWKGPAKLLWKGEAGAVVIQDNSEIKVVPRRKAKIIRD
YGKQMAQDDCVAGRQDED\$

2003 M. GROUP anc pol.OPT

TTCTTCGGAGAACCTGGCTTCCAGCAGGGCGAGGCCCGAGTTCTCCTCCAGCAGACCCCGGCCAACTCCCCCACCT
CCCGCGAGCTGCGCGTGCGCGGCCGACAACCCCTGTCCGAGGCCGAGCGCAGGGCACCCTGTGTCCTCTCCTT
CCCCCAGATCACCTGTGCAGCGCCCCCTGGTACCATCAAGATCGGCGGCCAGCTGCGCGAGGCCCTGTGACACCAGGC
GCCGACGACACCAGTGGAGGAGATCAACCTGCCGGCAAGTGGAAAGGCCAAGATGATCGGCGGCCATGGCGCTTATCA
AGGTGCGCCAGTACGACCAAGATCTGAGATCTGGCGCAAGAAGGCCATCGGCACCGTGTGGGGCCCCACCCCGT
GAACATCATCGGCCGCAACATGCTGACCGAGATCGGCTGCACCCCTGAACCTTCCCATCTCCCCCATCGAGACCGTCCCCTG
AAGCTGAAGGCCCGCATGGACGGCCCAAGGTGAAGCAGTGGGGCTGACCGAGGAGAAGATCAAGGCCCTGACCGAGATCT
GCACCCAGATGGAGAAGGAGGGCAAGATCTCCAAGATCGGCCCCGAGAACCCCTACAAACACCCCGTGTGCGCATCAAGAA
GAAGGACTCACCAGTGGCGCAAGCTGGTGGACTTCCCGAGCTGAACAAGCGCACCCAGGACTTCTGGAGGGTGCAGCTG
GGCATCCCCACCCCGCCGCTGAAGAAGAAGTCCGTGACCGTGGGACTTCCCGAGCTGGGGGAGCCTACTTCTCCGTGCCCC
TGGACGAGGACTTCCGCAAGTACACCGCTTCAACATCCCCCATCAACAAACGAGACCCCGGATCCGCTACCAAGTACAA
CGTGTGCCCCAGGGCTGGAAGGGCTCCCCCGCATCTTCCAGTCCCATGACCAAGATCTGGAGGCCCTCCGACCAAG
AACCCCGAGATCGTACATACAGTACATGGACGACCTGTACGTGGGCTCCGACCTGGAGATCGGCCAGCGACCCGCAAGA
TCGAGGAGCTGCGCGAGCACCTGCTGGCTGGGCTTCAACACCCCGACAAGAAGCACCAGAAGGAGCCCCCTTCTGTG
GATGGGCTACGAGCTGCAACCCCGACAAGTGGACCGTGCAGCCCATCCAGCTGGGGACTCTGGACCGTGAACGAC
ATCCAGAAGCTGGTGGGCAAGCTGAACCTGGGCTCCAGATCTACCCGGCATCAAGGTGAAGCAGCTGTGCAAGCTGCTGC
GCGCGCCAAGGCCCTGACCGACATCGTGGGGCTGACCGAGGAGGGAGCTGGAGCTGGGGAGAAGCCGAGATCTGTGAA
GGAGGCCGTGACGGCGTGTACTACGACCCCTCAAGGACCTGATCGGAGATCCAGAACGAGGCCAGGAGCTGGG
TACCAAGATCTACCAAGGAGCCCTCAAGAACCTGAAGAACCGGCAAGTACGCGACCCCTGCGCCACACCAACGACGTGA
AGCAGCTGACCGAGCCGTGCAAGAAGATGCCACCGAGTCCATCGTGTGATCTGGGGCAAGACCCCAAGTCCGCTGCCAT
CCAGAAGGAGACCTGGAGACCTGGTGGACCGAGTACTGGCAGGCCACTGGATCCCCGAGTGGAGTTCTGTGAAACACCC
CCCCCTGGTGAAGCTGTGTGACCGTGGAGAAGGAGGCCATCGTGGGGCGCCAGACCTTCTACGTGGACGGGCCGCAACC
GCGAGACCAAGCTGGCAAGGCCGTACGTGACCGACCGGCCAGAGCTGGTGTCCCTGACCGAGACCAACCA
GAAGACCGAGCTGCAGGCCATCCACCTGGGGCTGAGGACTCCGGTCCGAGGTGAACATCGTGTGACCGACTCCAGTACGCC
CTGGGCATCATCCAGGCCAGCCGACAAGTCCGAGTCCGAGCTGGTGAACAGATCATCGAGCAGCTGTGAAAGAAGGAGA
AGGTGTACCTGTCTGGGTGCCGCCACAAGGGCATCGGCGCAACGAGCAGGTGGACAAGCTGGTGTCTCCGGCATCCG
CAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCACGAGAAGTACCAACTCCAACGGCGCCATGGCCCTC
GACTTCAACCTGCCCCCGTGGTGGCAAGGAGATCGTGGCTCTCGGACAAGTGCAGCTGAAGGGCGAGGCCATGCA
GCCAGGTGGACTGCTCCCCCGCATCTGGGACTGCAACCCACCGTGGAGGAGACCTGGCCACTTCTGAAAGCTGGGG
GGCTCCGGTACATCGAGGCCAGGTGATCCCCCGGAGACCCGGCAGGAGACCCCTACTTCTCATCTGAAGCTGGGG
CGCTGGGGCGTGAAGGTGATCCCCACCGACAAGGCTCCAACTTCACTCCGGCGCTGAAGGCCCTGCTGGTGGGG
GCATCCAGCAGGAGTCTGGCATCCCCACAACCCCGACTCCAGGGCGTGGAGTCCATGAACAAGGAGCTGAAGAAGAT
CATCGGCCAGGTGCGCGACCGAGGCCAGCTGAAGACCGCCGTGCAAGTGGCGTGTGTTCATCCACAATTCAAGCGCAAG
GGCGGCATCGGGCTACTCCGCCGGAGCGCATCTGCCACCGACATCCAGACCAAGGAGCTGCAGAAC
AGATCACCAAGATCCAGAACCTCCCGTGTACTACCGCGACTCCCCGACCCCATCTGGAAGGGCCCCGCCAAGCTGCTGTG
GAAGGGCGAGGGCGCCGGTGTACTACCGGACAACCTCGAGATCAAGGTGGCCCGCAAGGCCAAGATCATCCGCC
TACCGCAAGCAGATGGCCGGCGACCGACTCGGTGGCCGGCCAGGAGCAGGACTAA

63. 2003_CON_A1 pol.PEP

FFRENLAFFQGEARKFSSEQTGANSPSRDLWDGGRDSLPEAGAERQGTGPTFSFPQITLWQRPLVTVRIGGQLKEALLDT
GADDTVLEDINLPGKWKPKMIGGIGGFIKVQYDQILIEICGKKAIGTVLVGPPTVNIIGRNMLTQIGCTLNFPISPIETVP
VKLKPGMDGPVKQWPLTEEKIKALTEICTEMEKEGKISKIGPENPYNTPIFAIKKDKSTKWRKLVDRELNKRTQDFWEVQ
LGIPHPAGLKKKSVTLDVGAYFSVPLDESFRKYTAFTIPTSTNNETPGIRYQYNVLPGWKGSPAIFQSSMTKILEPFRS
KNPEIIYQYMDLYVGSDELIGQHRTKIEELRAHLLSWGFTTPDKHQKEPPFLWMGYELHPDKWTVQPIELPEKESWTVN
DIQKLGVGLNWASQIYAGIKVKQLCKLLRGAKALTDIVLTTEEAELELAENREILKDPVHGYYDPSKDLIAEIQKQGQDQW
TYQIYQEPFKNLTKYARKRSAHTNDVKQLAEVVQKVMESIVIWGKTPFKLPIQKETWETWWMDYQATWIPEWEFVNTP
PPLVKLWYQLEKDPIVGAETFYVDDGAANRETKLGKAGYVTDRGRQKVSLTETTNQKTELHAIHLALQDSGSEVNIVTDSQY

ALGI I QAQPDRSESELVNQIIEKLIGKDVYLSWPAHKIGGGNEQVDKLVSSGIRKVLFLDGIDKAQEEHERYHSNWRAMA
SDFNLPPIVAKEIVASCDKCQLKGEAMHGQVDCSPGIWQLDCTHLEGKVLVAVHVASYIEAEVIPAETGQETAYFLLKLA
GRWPVKVVHTDNGSNFTSAAVKAACWANIQQEFGIPYNPQSQGVVESMNKELKKIIGQVREQAELKTAQVMAVFIHNFKR
KGGIGGYSAGERIIDIIATDIQTKELOKQITKIQNFRVYYRDSRDPIWKGPAKLLWKGEAVVIQDNSDIKVVPRRKAKIIR
DYGKQMAGDDCVAGRQDED\$

2003_CON_A1 pol.OPT

TTCTTCCCGAGAACCTGGCCTTCCAGCAGGGCGAGGCCCGCAAGTTCTCCTCCAGCAGACCGGCCAACTCCCCCACCTCTC
CCCAGACCTGTGGACGGCGCGACTCCCTGCCCTCCAGGCCCGCCAGGCCAGGGCACCGGCCACCTCTC
CTTCCCCCAGATCACCTGTGGAGCGCCCGGCTGGTGCACCGTGCATCGGCCAGCTGAAGGAGGCCCTGCTGGACACC
GGCGCCAGCACCGTGCTGGAGGACATCAACCTGCCCGCAAGTGAAGGCCAAGATGATCGGCCATCGGCCGCTTC
TCAAGGTGAAGCAGTACGACCAGATCCTGATCGAGATCTGGCAAGAAGGCCATCGGCCACCGTGTGGGGCCACCC
CGTGAACATCATCGGCCGAAACATGTCAGGCCAGATCGCTGACCCAGCTGCCAGCTGAACCTCCCATCTCCCCATCGAGACCGTGC
GTGAAGCTGAAGCCGGCATGGACGGCCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGAGA
TCTGCACCGAGATGGAGAAGGAGGGCAAGATCTCAAGATCGGCCCGAGAACCCCTACAACACCCCATCTCGCCATCAA
GAAGAAGGACTCCACCAAGTGGCGAAGCTGGACTTCCCGAGCTGAACAAGCGCACCCAGGACTTCTGGAGGTGAG
CTGGCATCCCCACCCCGGCCGTGAAGAAGAAGAAGTCCGTGACCGTGTGGACGGCCACGCTACTCTCGTGC
CCCTGGAGACTCCTCCGAAGTACACCGCCCTCACCATCCCCATCCACCAACAGAGACCCCGCATCCGCTACCAAG
CAACGTGCCCCAGGGCTGGAGGGCTCCCCGCGATCTCCAGTCTCCATGACCAAGATCTGGAGGCCCTCGCTCC
AAGAACCCCGAGATCATCTACCGTACATGGACGACCTGTACGTGGCTCGACCTGGAGATCGGCCAGCACCA
AGATCGAGGAGCTGCCGCCCCACCTGCTGTCTGGGCTTCACCAAGGCCGACAAGAAGCACCAGAAGGAGCCCCCTC
GTGGATGGCTACGAGCTGACCCGACAAGTGGACCGTGCAGCCCATCGAGCTGCCAGAGGAGTCTGGACCGTGAAC
GACATCCAGAAGCTGGTGGCAAGCTGAACACTGGCCCTCCAGATCTACGCCGCATCAAGGTGAAGCAGCTGTGCAAGCTGC
TGC CGGCCAGGCTGGAGGCTGGACATCGTACCGTACGTGGCTCGACCGAGGAGGCGAGCTGGAGCTGGCCAGAACCGAGATCCT
GAAGGACCCCGTGCACGGCGTGTACTACGACCCCTCAAGGACCTGATCGCCAGATCCAGAAGCAGGGCAGGACAGTGG
ACCTACAGATCTACAGGAGCCCTCAAGAACCTGAAGACCGGCAAGTACGCCGCAAGCGCTCCGCCACACCAACGAG
TGAAGCAGCTGCCGAGGGTGTGAGAAGGTGGTGTGGAGTGGACTCTGGCAAGACCCCAAGTCAAGCTGCC
CATCCAGAAGGAGACCTGGAGACCTGGTGGAGTGGACTACTGGCAGGCCACCTGGATCCCGAGTGGAGTGGACTCTG
CCCCCCTGGTGAAGCTGTGGTACCAAGCTGGAGGCCATCGTGGCCAGAACCTCTACGTGGAGCTGGCCAGAACCG
ACCGCGAGACCAAGCTGGCAAGGCCGCTACGTGACCCGACCGGCCAGAAGGTGGTGTGGAGCTGGCCAGAAC
CCAGAAGACCGAGCTGCCACCCATCGTGGCCAGGCCAGGCCACCGCTCCAGACTCCGGCTCCGAGTGGAGTGGAC
GCCCTGGCATCATCCAGGCCAGGCCACCGCTCCAGACTCCGGCTACATCGAGGCCAGGTGATCCCGAGGCC
ACAAGGTGTACCTGTCTGGTGTGGCCCAAGGGCATCGCGAACAGAGCAGGTGGAGACAGCTGGTGTCTCCGG
CCGCAAGGTGTCTGGACGGCATCGACAAGGCCAGGAGGAGCAGCGCTACCAACTCCAACCTGGCGCCATGGCC
TCCGACTTCAACCTGCCCATCGGCCAGGAGATCGTGGCTCTCGCGACAAGTGGCAGCTGAAGGGCAGGCCATGC
ACGGCCAGGTGGACTGCTCCCCGGCATCTGGCAGCTGGACTGCACCCACTGGAGGGCAAGGTGATCTGGCCGTGCA
CGTGGCCTCCGGCTACATCGAGGCCAGGTGATCCCGCCAGACCGCCAGGAGACGCC
GGCCGCTGGCCCGTGAAGGTGGTGCACACCGACAACGGCTCAACTTCACTCCGCCGTGAAGGCCCTGCTGGGG
CCAACATCCAGCAGGAGTTGGCATCCCTACAACCCCAAGTCCAGGGCGTGGAGTCCATGAACAAGGAGCTGAAGAA
GATCATCGGCCAGGTGGCGAGCAGGCCAGGCCAGTGAAGACGCCGTGCAAGATGGCCGTGTTCATCCACAACCTCAAGCGC
AAGGGCGCATCGCGGCTACTCCGCCGGAGCGCATCATCGACATCATGCCACCGACATCCAGACCAAGGAGCTGAGA
AGCAGATACCAAGATCCAGAACTTCCGCTGTACTACCGCGACTCCCGCAACTTCAAGGTGGTGTCCCCCG
GTGGAAGGGCGAGGGCGCCGTGTGATCCAGGACAACCTCGACATCAAGGTGGTGTCCCCCGCCAAGGCCAAGATCATCCGC
GACTACGGCAAGCAGATGGCGGCCAGCAGTGCCTGGCCGCCAGGACGAGGACTAA

64. 2003_A1.anc pol.PEP

FFRENLAFOQQGEARKFSSEQTRANSPTSRELWDGGRDSLLEAGAERQGTVPFSFPQITLWQRPLVTVKIGGQLKEALLDT
GADDTVLEDINLPKGKPKMIGGIGGFIVKRQYDQILIEICGKKAIGTVLVGPTPVNIIGRNMLTQIGCTLNFPISPIETVP
VKLKPGMDGPVKQWPLTEEKIKALTEICTEMEKEGKISKIGPENPYNTPVFAIKKDSTKWRKLVDRELNKRTQDFWEVQ
LGIPHAGLKKKSVTLDVGDAYFSVPLDESFRKYTAFTIPSINNETPGIYQYNVLPGWKGSPAIFQSSMTKILEPFRS
KNPEIVIYQYMDLYVGSDLEIGQHRAKIEELRAHLLSWGFTTPDKKHQKEPPFLWMGYELHPDKWTQVPIKPEKDSWTVN
DIQKLVGKLNWASQIYAGIKVQLCKLRLGAKALTDIVLTTEEAELEAENREILKDPVHGTVYDPSKDLVAEIQKQGDQW
TYQIYQEPFKNLKTGKYAKRSAHTNDVKQLTEVVQKVATESIVIWGKTPKFRLPIQKETWETWWMEYWQATWIPEWEFVNT
PPLVKLWYQLEKEPIAGAETFYVDDGAANRETKLKGAGYVTDGRQKVVSLETNNQKTELHAIHLALQDGSSEVNIVTDSQY
ALGI I QAQPDRSESELVNQIIEKLIEKEKVYLSWPAHKIGGGNEQVDKLVSSGIRKVLFLDGIDKAQEHEHYHSNWRAMA
SDFNLPPIVAKEIVASCDKCQLKGEAMHGQVDCSPGIWQLDCTHLEGKVLVAVHVASYIEAEVIPAETGQETAYFLLKLA
GRWPVKVVHTDNGSNFTSAAVKAACWANIQQEFGIPYNPQSQGVVESMNKELKKIIGQVREQAELKTAQVMAVFIHNFKR
KGGIGGYSAGERIIDIIATDIQTKELOKQITKIQNFRVYYRDSRDPIWKGPAKLLWKGEAVVIQDNSDIKVVPRRKAKIIR
DYGKQMAGDDCVAGRQDED\$

D
2003_A1.anc pol.OPT

TTCTTCCCGAGAACCTGGCCTTCAGCAGGGCGAGGCCGCAAGTTCTCCTCCAGCAGACCCGCCAACTCCCCCACCT
CCCAGCTGGGACGGCGGCCGACTCCCTGCTGTCGAGGCCGCGAGGCCAGGGCACCGTGCCTCCCTCTC
CTTCCCCAGATCACCTGTGGCAGGCCCTGGTGAACGTGAAGATCGGCCAGCTGAAGGAGGCCAGCTGGACACC
GGGCCGACGACACCGTGTGGAGGACATCAACCTGCCCGCAAGTGGAAAGCCAAGATGATCGGCCGATGCCGCTTCA
TCAAGGTGCGCCAGTACGACCAAGATCTGATCGAGATCTGCCAAGAAGGCCATCGGACCCGTGCTGGGGCCCCACCC
CGTGAACATCATCGGCCAACATGTCAGCCAGATCGCTGCCACCTGAACCTCCATCTCCCCATCGAGACCGTGC
GTGAAGCTGAAGCCGGCATGGACGCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGAGA
TCTGCACCGAGATGGAGAAGGAGGCCAAGATCTCAAGATCGGCCAGAACCCCTACAACACCCCGTGTTCGCCATCAA
GAAGAAGGACTCCACCAAGTGGCGCAAGCTGGACTTCCCGAGCTGAACAAGCGCACCCAGGACTCTGGAGGTGC
CTGGCATCCCCACCCCGGCCGTGAAGAAGAAGTCCGTGACCGTGTGGACGTGGCGACGCCACTCTCGCTGC
CCCTGGACGACTCCCTGCCAAGTACACCGCCCTCACCATCCCATCAACACCGAGACCCCGCATCCGTACCAAGTA
CAACGTGCTGCCCAAGGGCTGGAGGGCTCCCGCCATCTCCAGTCCCATGACCAAGATCTGGAGGCCCTCCGCTCC
AAGAACCCCGAGATCGTATCACCTGTACCGAGCTGTACCTGGAGATCGGCCAGCACCGAGAAGGAGCCCCCTCC
AGATCGGAGGAGCTGCCACCTGTCTGGCTTACCCACCGAGAAGAAGCACCAGAAGGAGCCCCCTCC
GTGGATGGGCTAACAGCTGGCACCCGAGAAGCTGGACCGTGCAGCCATCAAGCTGCCAGAAGGACTCTGGACCGTGA
GACATCCAGAACGCTGGCAAGCTGAACCTGGCCCTCCAGATCTACGCCGCATCAAGGTGAAGCAGCTGTGAAGCTGC
TGCGGGGCCAAAGCCCTGACCGACATCGTACCGTACCGAGGAGCTGGAGGCCAGACCTCTACGTGGACGGCGCC
GAAGGACCCCGTGCACGGCGTGTACTACGACCCCTCAAGGACCTGGTGGCCAGATCCAAGAGCAGGGCAGGACAGTGG
ACCTACCAAGATCTACCAAGGAGCCCTCAAGAACCTGAAGACCGGCAAGTACGCCAAGAAGCGCTCCGCCACACCAACGAC
TGAAGCAGCTGACCGAGGTGGTGCAGAAGGTGGCACCGAGTCCATCGTATCTGGGCAAGACCCCAAGTCCGCTGCC
CATCCAGAACGGAGACCTGGGAGACCTGGGATGGAGTACTGGCAGGCCACCTGGATCCCGAGTGGAGTTCTGTGAACACC
CCCCCCTGGTGAAGCTGGTACCAAGCTGGAGAACGGAGCCATGCCGCCGGAGACCTCTACGTGGACGGCGCC
ACCGCAGACCAAGCTGGCAAGGCCGCTACGTGACCGACCGCGCCAGAACGGTGGTGTCCCTGACCGAGACCCAA
CCAGAACGGAGCTGCACGCCATCACCTGGCCCTGCAGGACTCCGCTCCAGGTGAACATCGTACCGACTCCAGTAC
GCCCTGGCATCATCCAGGCCAGGCCACCGCCTCCGAGCTGGTGAACAGATCATCGAGAACGCTGTGAGAAGG
AGAAGGTGTACTCTGCTGGGTGCCGCCACAAGGGCATCGGCCAACGGAGCAGGTGGACAAGCTGGTGTCTCCGGCAT
CCGCAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCACAGAGAACGGTACCAACTGGCGCCATGCC
TCCGACTTCAACCTGCCCTACCGTGGCCAAGGAGATCGTGGCCCTCTGCGACAAGTGCAGCTGAAGGGCAGGCCATGC
ACGGCAGGTGGACTGCTCCCCGGCATCTGGCAGCTGGACTGCAACCCACCTGGAGGGCAAGGTGATCTGGTGGCGTGC
CGTGGCTCCGGTACATCGAGGCCAGGTGATCCCGAGACCGCCACTTCTCTGCTGAAGCTGGCC
GGCGCTGGCCGTGAAGGTGGTGCACACCGACAACGGCTCAACTTCACTCCGCCCGTGAAGGCCCTGCTGGTGG
CCAACATCCAGCAGGAGTTGGCATCCCCATAACCCCCAGTCCACGGCGTGGTGGAGTCCATGAACAAGGAGCTGAAGAA
GATCATCGGCCAGGTGGCGAGCAGGCCAGCCTGAAGACCGCCGTGAGATGGCGTGTTCATCCACAACCTCAAGGCC
AAGGGCGCATCGCGGCTACTCCCGGGAGCGCATATCGACATCATGCCACCGACATCCAGACCAAGGAGCTGAGA
AGCAGATACCAAGATCCAGAACTTCCCGTGTACTACCGGACTCCCGGACCCATCTGAAGGCCCAAGCTGCT
GTGGAGGGCGAGGGCGCCGTGGTATCCAGGACAACCTCCGACATCAAGGTGGTGCCTGCCGCAAGGCCAGATCATCCG
GACTACGGCAAGCAGATGGCGGCCAGACTGCAGTGGCGGCCAGGAGCAGGACTAA

ig.110
A

65. 2003_CON_A2 pol.PEP

FFRENLAFFQREARKFSSEQNTRANSPTSRELNRNGGRDNLLSEAGAEEQGTVHSCNFPQITLWQRPLVTVKIEQLREALLD
GADDTVLEDINLPWKPKMIGGIIGGFIVKVRQYDQIAIEICGKRAIGTVLVGPTPVNIIGRNMVLQVLGCTLNFPISPIETVP
VKLKGMDGPVKQWPPLTEEKIKALTEICKEMEKEGKISKIGPENPYNTPVFAIKKDSTKWRKLVDRELNKRTQDFWEVQ
LGIPHAGLKKKSVTLDVGDAYFSVPLHEDFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTKILEPFRS
KNPEMVIYQYMDLYVGSDELIGQHAKIEELRAHLLRWGFTTPDKKHQKEPPFLWMGYELHPDKWTQPILPEKDSWTVN
DIOKLVGKLNWASQIYAGIKVQLCKLRLGTKALTDIVLTKEAELELEENREILKNPVHGYYDPSKDLIAEIQKQGDQW
TYQIYQEPFKNLTKGYAKRKSTHTNDVKQLTEAVQKIAIESIVIWGKTPKFLRPIQKETWETWWTEYWQATWIPEWEFVNT
PPLVKLWYQLETEPIAGAETFYVDDGAANRETKLGKAGYVTDGRQKIVSLTETTNQKTELHAIYLALQDSGLEVNIVTDSQY
ALGIQAQPDRESESELVNQIIEKLIIEKERVYLSWVPAHKGIGGNEQVDKLVSSGIRKVLFLDGIDKAQEEHERYHSNWRAMA
HDFNLPPIVAKEIVASCDKCQKLGEAMHGQVDCSPGIWQLDCTHLEGKVLVAVHVASYIEAEVIPAETGQETAYFILKLA
GRWPVKVIHTDNGPNFTSATVKAACWWAGVQQEFGIPYNPQSOGVVESMNKELKKIIGQVRDQAEHLKTAQVMAVFIHNFKR
KGGIGGYSAGERIIDIIATDIQTKELQKIIKIQNFRVYYRDSRDPIWKGPAKLLWKGEGAVVIQDNSDIKVVPRRKAKIIR
DYGKQMAGDDCVAGRQDED\$

B
2003_CON_A2 pol.OPT

TTCTTCCCGAGAACCTGGCCTTCAGCAGCGAGGCCGCAAGTTCTCCTCCAGCAGACCCGCCAACTCCCCCACCT
CCCAGCTGGCGCAACGGCGGCCGACAACCTGCTGTCGAGGCCGCCAGGGCACCGTGCACCTCTGCAA
CTTCCCCAGATCACCTGTGGCAGGCCCTGGTGAAGATCGAGGCCAGCTGCCGAGGCCCTGCTGGACACC

GGCGCCGACGACACCGTGTGGAGGACATCAACCTGCCCGCAAGTGGAAAGCCTAACATGATCGGCGGCATCGGCCGCTTCA
TCAAGGTGCGCCAGTACGACCAGATGCCATCGAGATCTGCGCAAGCGGCCATCGCACCGTGTGGGCCCCACCCCC
CGTGAACATCATCGGCCAACATGCTGGTGCAGCTGGGCTGCACCTGAACCTCCCCATCTCCCCCATCGAGACCGTGC
GTGAAGCTGAAGCCGGCATGGACGGCCCCAAGGTGAAGCAGTGGCCCCGTGACCGAGGAGAAGATCAAGGCCGTACCGAGA
TCTGCAAGGAGATGGAGAAGGGCAAGATCTCAAGATCGGCCCCGAGAACCCCTACAAACACCCCGTGTTCGCCATCAA
GAAGAAGGACTCCACCAAGTGGCGCAAGCTGGACTTCGGAGCTGAACAAGCGCACCCAGGACTCTGGGAGGTGCAG
CTGGGCATCCCCCACCCGGCGCTGAAGAAGAAGAAGTCCGTGACCGTGCTGGACGTGGCGACGCCACTTCTCCGTGC
CCCTGCACTGGAGGACTCCGCAAGTACACCGCCTCACCATCCCCATCAACAAACAGAGACCCCGGATCCGCTACCGATA
CAACGTGCTGCCCAAGGGCTGGAGGGCTCCCCCGCATCTTCAAGTCTCTCATGACCAAGATCTGGAGGCCCCCTCCGTCC
AAGAACCCCGAGATGGTGTACCATGACGACCTGTACGTGGGCTCCGACCTGGAGATCGGCCAGCACCGGCCA
AGATCGAGGAGCTGCCACCTGCTGCGCTGGGCTTCACCAACCCCGACAAGAAGCACCGAGAAGGAGCCCCCTTC
GTGGATGGCTACGAGCTGACCCCCGACAAGTGGACCGTGAGCCATCAAGCTGCCGAGAAGGACTCTGGACCGTGAAC
GACATCCAGAAGCTGGTGGGAGGCTGAAGCTGAACCTGGCCTCCAGATCTACGCCGATCAAGGTGAAGCAGCTGTGCAAGCTGC
TGC CGGCCACCAAGGCCCTGACCGACATCGTACCCCTGACCAAGGAGGCCAGCTGGAGCTGGAGGAGAACCGGAGATCCT
GAAGAACCCCGTGCACGGCGTGTACTACGACCCCTCAAGGACCTGTACGCCGAGATCCAGAAGCACGGCCAGGACCGTGG
ACCTACAGATCTACCAAGGAGCCCTCAAGAACCTGAAGACCGGCAAGTACGCCAAGCGCAAGTCCACCCACACCAACGAGC
TGAAGCAGCTGACCGAGGCCGTGCAGAAGATGCCATCGAGTCCATCGTGTACCTGGGCAAGACCCCCAAGTTCGCGCTGCC
CATCCAGAAGGAGACCTGGAGACCTGGTGGACCGAGACTGGCAGGCCACCTGGATCCCCAGTGGAGTTGTGAAACACC
CCCCCCCCTGGTGAAGCTGTGGTACCAAGCTGGAGACCGAGGCCATCGCCGGCGAGACCTTCTACGTGGACGGCGCCGCCA
ACCGCGAGACCAAGCTGGCAAGGCCGCTACGTGACCGACCGCGGCCAGAAGATCGTGTCCCTGACCGAGACCAAA
CCAGAAGACCGAGCTGCACGCCATCTACCTGGCCTGCAAGGACTCCGGCTGGAGGTGAACATCGTACCGACTCCAGTAC
GCCCTGGCATCATCCAGGCCAGGCCGACCGCTCCGAGTCCGAGCTGGTAACCGAGATCGAGAAGCTGTACCGAGAAGG
AGCGCGTGTACCTGTCTGGTGGCCGCCACAAGGGCATCGCGGCCACCGAGCAGGTGGACAAGCTGGTGTCCCTCCGGCAT
CCGCAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCACGAGGCCCTACCACTCCAACTGGCGCCCATGGCC
CACGACTTCAACCTGCCCTCCGATCGTGGCAAGGAGATCGTGGCTCTGCGACAAGTGCAGCTGAAGGGCGAGGCCATG
ACGGCCAGGTGGACTCGTCTCCCCGGCATCTGGCAGCTGGACCGACCCACCTGGAGGGCAAGGTGATCTGTGGCCGTGCA
CGTGGCTCCGGTACATCGAGGCCAGGTGATCTGGACCGAGACCGCCAGGAGACCGCCTACTTCATCTGAAGCTGGCC
GGCGCTGGCCGGTGAAGGTGATCCACACCGACAACGGCCCCACTTCACCTCCGCCACCGTGAAGGGCGCTGTGGTGG
CCGGCGTGCAGCAGGAGTTGGCATCCCTACAAACCCCAAGTCCAGGGCGTGGAGTCCATGAACAAGGAGCTGAAGAA
GATCATCGGCCAGGTGCGGCCAGGGCGAGCACCTGAAGACCGCCGTGAGATGGCGTGTTCATCCACAACCTCAAGCGC
AAGGGCGCATCGCGCTACTCCGCGGCCAGCGCATCGACATCGACATCGCCACCGACATCCAGACCAAGGAGCTGCAGA
AGCAGATCATCAAGATCCAGAACCTCCGCGTGTACTACCGCAGTCCCGCAGCCCCATCTGGAGGGCCCCGCCAGCTGCT
GTGGAGGGCGAGGGCGCCGTGGTACCCAGGACAACCTCGACATCAAGGTGGTGTGGCCCGCAAGGCCAGATCATCCG
GACTACGGCAAGCAGATGGCGGCCAGCGACTCGCGTGGCCGGCGCAGGACGAGGACTAA

g. III

66. 2003_CON_B pol.PEP

FFREDLAFFPGKAREFSSEQTRANSPTRRELQVWGRDNNSLSEAGADRQGTVSFSFPQITLWQRPLVTIKIGGQLKEALLDT
GADDTVLEEMNLPGRKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPISPIETVP
VKLPGMDGPVKQWPLETEEKIKALVEICTEMEKEGKISKIGPENPYNTPVFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQ
LGIPHAGLKKKKSVTVDVGDAYFSVPLDKDFRKYTAFTIPSINNETPGIRYQYNVLPGQWKGSAPAIFQSSMTKILEPFRK
QNPDIVIYQYMDDLYVGSDLEIGQHRTKIEELRQHLLRWGFTTPDKHQKEPPFLWMGYEYLHPDKWTVPQIVLPPEKDSWTVN
DIQKLVGKLNWASQIYAGIKVKQLCKLRLGTTKALTEVIPLTSEEAELEAENRILKEPVHGVPYDPSKDLIAEIQKGQGQW
TYQIYQEFPFKNLTKGYARMGQAHTNDVKQLTEAVQKIAITESIVIWGKTPKFKLPIQKETWEAWHTEWYQATWIPEWEFVN
PPLVKLWYQLEKEPIVGAETFYVDAANRETKLGKAGYVTDRGRQKVVSLLDTTNQKTELQAIHLALQDSGLEVNIVTDSQY
ALGI1IQAQPDKSESELVSQIEQLIKKEKVYLAWVPAHKIGGGNEQVDKLVSAHIRKVLFLDGINIDKAQEEEHEKYHSNWRAMA
SDFNLPPVVAKEIVASCDKCKLKGEMHGQVDCSPGIWQLDCTHLEGKII1LVAVHVASYGIEAEVIPAETGQETAYFLKLA
GRWPVKT1HTDNGSNFTSTTVKAACWWAGIKQEFGIPYNPQSQGVVESMNKELKKI1GQVRDQAEHLKTAVQMAVF1HNFKR
KGGIGGYSAGERIVDI1IATDIQTKELOQK1T1QNFRRVYYRDSRDPLWKGPAKLLWKGEGAVVIQNSDIKVVPRRKAKI1R
DYGKQMAGDDCVASRQDED\$

A

2003 CON B pol.OPT

B TTCTTCCGCGAGGACCTGGCCTTCCCCCAGGGCAAGGCCCGAGCTTCTCTCCGAGCAGACCCGCACACTCCCCCACCGCCGAGCTGCAGGTGTGGGGCCGCGACAACAACCTCCCTGTCCGAGGCCGGCGCCGACCGCCAGGGCACCGTGTCCCTCTCCTTCCCCCAGATCACCTGTGGCAGCGCCCCCTGGTGAACCATCAAGATCGCGGCCAGCTGAAGGAGGCCCTGCTGGACACC GGCGCCGACGACACCCTGGAGGAGATGAACCTGGCCGGCTGGAAAGGCCCAAGATGATCGCGGCCATCGGCCGGCTTCATCAAGGTGGCCCACTGGAGAGATCTCTGAGATCTGGGGCCACAAAGGCCATCGGCCACCGTGTGGGGCCCACTCCCCCGTGAACCATCTGGCCGCAACCTGTGACCCAGATCGCTGAACCTGGCCGGCTGAACCTCCCCCATCTGGGGCCACAAAGGCCATCGGCCACCGTGTGGGGCCCACTCCCCCGTGAACCATCTGGCCGCAACCTGTGACCCAGATCGCTGAACCTGGCCGGCTGAACCTCCCCCATCTGGGGCCACAAAGGCCATCGGCCACCGTGTGGGGCCCACTCCCCCGTGAAGGAGCTGAAGGCCGGCATGGACGGCCCCAAGGTGAAGCAGTGGCCCCCTGACCGAGGGAGAAGATCAAGGCCCTGGTGAGATCTGCCACCGAGATGGAGAAGGAGGGCAAGATCTCCAAGATCGGGCCCAGAGAACCCCTACAACACCCCCCGTTCGCCCCATCAA

GAAGAAGGACTCACCACCAAGTGGCGAAGCTGGTGGACTTCCGCAGCTGAACAAGCGCACCCAGGACTCTGGGAGGTGCAAG
 CTGGGCATCCCCAACCCGCCGGCTGAAGAAGAAGAAGTCCGTGACCGTGTGGACGCCACTTCTCCGTG
 CCCTGGACAAGGACTTCCGAAGTACACCGCCTTCAACATCCCCTCATCAACAAACGAGACCCCGGCATCCGTACCGTA
 CAACGTGCTGCCCAAGGGCTGGAAAGGGCTCCCGCATCTCCAGTACCAAGATCTGGAGCCCTCCGCAAG
 CAGAACCCCGACATCGTGATCTACCAAGTACATGGACGACTGTACGTGGCTCCGACCTGGAGATCGGCCAGCACCGACCA
 AGATCGAGGAGGCTGCGCACCTGCTGCGCTGGGCTTCACCACCCCGACAAGAAGCACCAGAAGGAGCCCCCTCCT
 GTGGATGGGCTACGAGCTGCAACCCGACAAGTGGACCGTGCAGCCATCGTGTGCCCAGAAGGACTCTGGACCGTGAAC
 GACATCCAGAAGCTGGTGGCAAGCTGAACCTGGGCTCCAGATCTACGCCGCATCAAGGTGAAGCAGCTGTGCAAGCTGC
 TGC CGGCACCAAGGCCCTGACCGAGGTGATCCCCCTGACCGAGGAGGCCAGCTGGAGCTGGCGAGAACCGCGAGATCCT
 GAAGGAGCCGCTGCACGGCGTGTACTACGACCCCTCAAGGACCTGATCGCCGAGATCCAGAAGCAGGGCCAGGGCCAGTGG
 ACCTACAGATCTACCAAGGAGGCCCTCAAGAACCTGAAGACCGGCAAGTACGCCGCATGCGGGCCACACCAACGACG
 TGAACGAGCTGACCGAGGGCGTGCAGAAGATGCCACCGAGTCCATCGTGATCTGGGCAAGACCCCCAAGTTCAAGCTGCC
 CATCCAGAAGGAGACCTGGGAGGCCGAGTACTGGCAGGCCACCTGGATCCCCGAGTGGAGCTTCGTGAACACC
 CCCCCCTGGTGAAGCTGGTACCAAGCTGGAGAAGGAGCCATCGTGGCCGAGACCTTCTACGTGGACGGCCGCC
 ACCCGAGACCAAGCTGGCAAGGCCGGTACCGTGAACCCACCGCCGCCAGAAGGTGGTGTGACCGACACCACCAA
 CCAGAAGACCGAGCTGACGGCCATCACCTGGCCCTGAGGACTCCGGGCTGGAGGTGAACATCGTGACCGACTCCAGTAC
 GCCCTGGGCATCATCCAGGCCAGCCGACAAGTCCAGTGGTGTCCAGATCATCGAGCAGCTGTGATCAAGAAG
 AGAAGGTGTACCTGGCCTGGGCTGGCGCCACAGGGCATCGCGGCAACGAGCAGGTGGACAAGCTGGTGTCCGCC
 CCGCAAGGTGTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCAGGAGAAGTACCAACTGGCGCCATGGCC
 TCCGACTTCAACCTGCCCCCGTGGCAAGGAGATCGTGGCCTCTGCAGCAAGTGGCAGCTGAAGGGCGAGGCCATGC
 ACGCCAGGTGACTGCTCCCCGGCATCTGGCAGCTGACTGCACCCACCTGGAGGGCAAGATCATCCTGGTGGCCGTGCA
 CGTGGCCTCCGGCTACATCGAGGCCAGGGTGAATCCCCGGCAGACCGGCCAGGAGACCCGCTACTTCTGCTGAAGCTGGCC
 GGCGCCTGGCCCGTGAAGACCATCCACACCAGACAACGGCTCAACTCACCCTCACCGTGAAGGCCGCTGCTGGTGG
 CGGCATCAAGCAGGAGTTGGCATCCCCCTACAACCCCCAGTCCAGGGCGTGGAGTCCATGAACAAGGAGCTGAAGAA
 GATCATGGCCAGGTGCGGACCCAGGGCGAGCACCTGAAGACGCCGTGCAAGATGGCGTGTATCCACAACCTCAAGCGC
 AAGGGCGCATGGCGCTACTCCGCGGCGAGCGCATCGGGACATCGCCACCGACATCCAGACCAAGGAGCTGCAGA
 AGCAGATACCAAGATCCAGAACTTCCGCGTGTACTACCGGCACTCCCGGACCCCCCTGTGGAAGGGCCCGCAAGCTGCT
 GTGGAAGGGCGAGGGCGCCGTGGTATCCAGGACAACCTCCGACATCAAGGTGGTGTGCCCCCGCGCAAGGCCAAGATCATCCGC
 GACTACGGCAAGCAGATGGCGGCCACGACTGCGTGGCCTCCCGCAGGACGAGGACTAA

67. 2003_B.anc pol.PEP

FFRENLAFPQGKAREFSSEQTRANSPTRRELQVWGRDNNPLSEAGADRQGTVSFSFPQITLWQRPLVTIKIGQLKEALLDT
 GADDTVLEEMNLPGWKPKMIGGIGGFVKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPISPIETVP
 VKLKPGMDGPVKQWPLETEEKIKALVEICTEMEKEGKISKIGPENPYNTPFAIKKDSTKWRKLVDRELNKRTQDFWEVQ
 LGIPHAGLKKKSVTLDVGDAYFSVPLDKFRKYTAFTIPSINNETPGIRYQYNVLPGWKGSPAIFQSSMTKILEPFRK
 QNPETIVIYQYMDDLYVGSDLEIQCQHRTKIEELREHLLRWGFTTPDKKHQKEPPFLWMGYELHPDKWTVPPIVLPKEDSWTVN
 DIQKLVGKLNWASQIYAGIKVQLCKLRLGTKALTEVVLTEEAELELAENREILKEPVHGVVYDPSKDLIAEIQKQGQGQW
 TYQIYQEPFKNLKTGKYARMRGAHTNDVKQLTEAVQKIATESIVIWGKTPKFKLPIQKETWEAWWTEYWQATWIPEWEFVNT
 PPLVKLWYQLEKEPIVGAETFYVDSAANRETKLKGAGYVTDRGRQKVVSLTDTTNQKTELQAIHLALQDSGLEVNIVTDSQY
 ALGI IQAQPDKSESELVSQIIEQLIKKEKVYLAWVPAHKGIGGNEQVDKLVLVSAGIRKVLFLDGIDKAQEHEKYHSNWRAMA
 SDFNLPPVVAKEIVASCDKCOLKGEAMHGQVDCSPGIWQLDCTHLEGKIIILVAVHVASYIEAEVIPAETGQETAYFILKLA
 GRWPVKVIHTDNGSNFTSTTVKAACWWAGIKQEFGIPYNPQSQGVVESMNKELKKIIGQVRDQAELKTAQVMAFIHNFKR
 KGGIGGYSAGERIVDIIATDIQTKELQKQITKIQNFRVYYRDSRPLWKGPAKLLWKGEGAVVIQNSDIKVVPRRKAKIIR
 DYKQMAGDDCVASRQDED\$
C

2003_B.anc pol.OPT

TTCTTCCGCAGAACCTGGCCTCCCCCAGGGCAAGGCCCGCAGTTCTCCCTCGAGCAGACCCGCCAACCTCCCCACCC
 GCCGCAGCTGCAGGTGTGGGCCGCACACAAACCCCTGTCCAGGCCGCCAGGGCACCCTGTCC
 CTTCCCCCAGATCACCTGTGGCAGCGCCCTGGTGACCATCAAGATCGGCCGCCAGCTGAAGGAGGCCCTGCTGCC
 GGCGCCAGCACCCGTGCTGGAGGAGATGAACCTGCCGCCAGTGGAGGCCATCGGCC
 TCAAGGTGCCAGTACGACAGATCTGAGATCTGCCACCGTGCACCCATCGGCC
 CGTGAACATCATCGGCCAACCTGCTGACCCAGATCGCTGCCACCTGAACTTCCCCATCTCCCCCATCGAGACCGTGC
 GTGAAGCTGAAGGCCGCATGGACGGCCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGGTGGAGA
 TCTGCACCGAGATGGAGAAGGAGGGCAAGATCTCCAAGATCGGCCGCCAGAAGACCCCTACACACCCCGTGTG
 GAAGAAGGACTCCACCAAGTGGCGCAAGCTGGTGGACTTCCGCGAGCTGAACAAGCGCACCCAGGACTCTGGGAGGTGCA
 CTGGGCATCCCCACCCGCCGGCTGAAGAAGAAGAAGTCCGTCACCGCCTTCACATCCCCCATCAACACGAGACCCCG
 CCTGGACAAGGACTTCCGCAAGTACACCGCCTTCACATCCCCCATCAACACGAGACCCCG
 CAACTGCTGCCCAAGGGCTGGAGGGCTCCCCGCCATCTCCAGTCTCCATGACCAAGATCTGGAGGCCCTCCGCAAG
 CAGAACCCGAGATCGTGATCTACAGTACATGGACGACCTGTACGTGGCTCCGACCTGGAGATCGGCCAGCACCGACCA
D

AGATCGAGGGAGCTGCGCGACCCCTGCTGCGCTGGGCTTCACCAACCCCCGACAAGAACCGAGCAGAGGAGCCCCCTTCCCTGGA
GTGGATGGGCTACGAGCTGCACCCCGACAAGTGGACCGTGAGCCCCTCGCTGCCAGAAGGACTCTGGACCGTGAC
GACATCCAGAAGCTGGTGGCAAGCTGAACCTGGGCTCCAGATCTACGCCGCATCAAGGTGAAGCAGCTGTCAAGCTGC
TGCGGCCACCAAGGGCTGACCGAGGTGGTCCCCCTGACCGAGGGCCGAGCTGGAGCTGGCCAGAACCGCGAGATCCT
GAAGGAGCCCCTGACCGCGTGTACTACGACCCCTCAAGGACCTGATGCCAGATCCAGAACAGCAGGGCCAGGGCCAGTGG
ACCTACAGATCTACAGGAGCCCTCAAGAACCTGAAGAACGGCAAGTACGCCGCATGCCGGCCACACCAACGACG
TGAAGCAGCTGACCGAGGCCGTGACGAAGAACGATGCCACCGAGTCCATCGTATCTGGGCAAGACCCCCAAGTTCAAGCTGCC
CATCCAGAAGGAGACCTGGGAGGCCCTGGTGGACCGAGTACTGGCAGGCCACCTGGATCCCCGAGTGGAGTTCTGTAACACC
CCCCCTGGTGAAGCTGGTACCAAGCTGGAGAAGGAGCCCATCGTGGGCCAGACCTCTACGTGGACGCCGCGCCA
ACCGCGAGACCAAGCTGGCAAGGCCGCTACGTGACCGACCGCGGCCAGAACGGTGGTCCCTGACCGACACCACCAA
CCAGAACGGAGCTGCAGGCCATCCACCTGGCCCTGAGGACTCCGGCTGGAGGTGAACATCGTACCGACTCCCAGTAC
GCCCTGGGATCATCCAGGCCAGCCGACAAGTCCGAGTCCGAGCTGGTGTCCAGATCATCGAGCACGTGATCAAGAAGG
AGAAGGTGTACCTGGCTGGTCCCCACAAGGGCATCGGCGCAACGAGCAGGTGGACAAGCTGGTGTCCGCCGAT
CCGCAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCACGAGAACAGTACCAACTCCAACGCCGCGCCA
TCCGACTTCAACCTGCCCGCTGGCCAAGGAGATCGTGGCCTCTGCGACAAGTGGCAGCTGAAGGGCGAGGGCATGC
ACGGCCAGGTGACTGCTCCCCCGCATCTGGCAGCTGGACTGCCACCCCTGGAGGGCAAGGATCATCTGGTGT
CGTGGCCTCCGGTACATCGAGGCCAGGGTGAAGGTGATCCCCGGAGGAGCACCGCCACTTCATCCTGAAAGCTGGC
GGCCGCTGGCCCGTGAAGGTGATCCACCGACAACGGCTCCAACCTCACCTCCACCCCGTGAAGGCCGCTGCTGG
CCGGCATCAAGCAGGAGTTCGGCATCCCCCTACAACCCCGAGGGCTGGTGGAGTCCATGAACAAGGAGCTGAAGAA
GATCATGGCCAGGTGCGCGACCAGGCCAGCCTGAAGACCGCCGTGAGATGGCCGTGTTCATCCACAACTTCAAGCGC
AAGGGCGCATGGCGCTACTCCGCCGGCGAGCGATCGTGGACATCATGCCACCGACATCCAGACCAAGGAGCTGCAGA
AGCAGATCACCAGAACGACTTCCCGTGTACTACCCGCACTCCGACCCCCCTGTGGAAGGGCCGCAAGGCAAGATCATCCGC
GTGGAAGGGCGAGGGCGCCGTGGTATCCAGGACAACCTCGACATCAAGGTGGTCCCCCGCAAGGCAAGATCATCCGC
GACTACGGCAAGCAGATGGCCGGCGACGACTGCGTGGCCTCCCGCAGGACGAGGACTAA.

7. 11²
A

68. 2003_CON_C pol.PEP

FFRENLAFPQGEAREFPSEQTRANSPTSRELQRGDNPSEAGAERQGTLNFPQITLWQRPLVS1KVGGQIKEALLDTGADD
TVLEEINLPKGWKPKMIGGIGGF1KVRQYDQILIE1CGKKA1GTVLVGPTPVNI1GRNMLTQLGCTLNFP1SPIETVPVCLK
PGMDGPVKQWPLETEEKIKALTAICEEMEKEGKITK1GPPENPYNTPVFA1KKKDSTKWRKLVDFRELNKRTQDFWEVQLGIP
HPAGLK1KKKS1VLDVGDAYFSVPLDEGFRKYTAFTIPISSNETPG1RQYQNVLPQGWKGSP1FQSSMTK1LEPFRANQPE
IVIYQYMDLYVGSDLE1QHRAKIEELREHLLKGFTPDKKHQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWTVD1IQK
LVGKLNWASQ1YPG1KVRQLCKLLRGAKALT1DIVPLTEAEELAENREILKEPVHGVVYDPSKDLIAEI1QKQGHDOWTYQI
YQEPFKNLKTGKYAKMRTAHTNDVKQ1TEAVQK1AMES1VIWGKTPKFR1P1QKETWETWWTDYWQATWI1PEWEFVNTPPLV
KLWYQLEKEPIAGAETFYVDGAANRET1K1GKAGYV1DGRQK1VSLTETTNQKTELQ1Q1ALQDSGSEVN1VTD5QYALGI
1QAQPDKSESELVNQ1IEQLIKKERVYLSWVPAHK1GIGGNEQV1DVLVSSGIRKVLFLD1D1KAQEEHEKYHSNWRAMASEFN
LPP1VAKEIVASC1DKC1Q1KGEAIHGQVDCSP1IWQ1DCTHLEGK11LVAVHVASGY1EAEV1PAETQ1ETAY1LKLAGRWP
VKV1HTDNGSNFTSAAVKAACWWAG1QQEF1GIPYNPQS1QV1VESMN1K111GQVRDQAEHLKTAVQMAVF1HNFKRK1GGI
GGYSAGERI1DI1IATD1Q1K1Q1NFRVY1RDSRDP1WKGPAK1LWKGEGAVV1QDN1D1K1V1P1RRAK111KDY1GK
QMAGADC1VAGRQDED\$

2003_CON_C pol.OPT

B
TTCTTCCCGAGAACCTGGCTTCCCCCAGGGCGAGGGCCGAGTTCCCCCTCCGAGCAGACCCCGGCCAACTCCCCCACCT
CCCGCGAGCTGCAGGTGGCCGCCACAACCCCCCTCCGAGGGCCGCCAGCGCCAGGGCACCTGAACCTCCCCAGAT
CACCCCTGTCGGAGCGCCCCCTGGTGTCCATCAAGGTGGCGCCAGATCAAGGAGGCCCTGCTGGACACCGGCCGCCAGAC
ACCGTGTGGAGGAGATCAACCTGCCCGCAAGTGGAGGCCAGATCGTGGCAGGCCACCCCTGCTGGTGGGCCACCCCGTGAACATCAT
AGTACGACCAAGATCCTGATCGAGATCTGCCAGCTGGCTGACCCCTGAACCTCCCCATCTCCCCATCGAGACCGTGCCCGTGAAGCTGAAG
CGGCCGAACATGTCAGCCAGCTGGCTGACCCCTGAACCTCCCCATCTCCCCATCGAGACCGTGCCCGTGAAGCTGAAG
CCCCGATGGACGGCCCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGCCATCTGCAGGAGA
TGGAGAAGGAGGGCAAGATACCAAGATCGGCCCCGAGAACCCCTACAACACCCCCCTGTTCGCCATCAAGAGAGAGACTC
CACCAAGTGGCGCAAGCTGGACTTCCCGAGCTGAACAAGCCACCCAGGACTCTGGAGGTGCAGCTGGCATCCCC
CACCCCGCCGCTGAAGAAGAAGTCCGTGACCGTGTGGACCTGCTGGACGCTGGCCACTCTCCGTGCCCTGGACCGAGG
GCTCCGCAAGTACACCGCCCTTACCATCCCCATCAACAACGAGACCCCCGGCATCCGCTACAGTACAACGTGCTGCC
CCAGGGCTGGAGGGCTCCCCCGCATCTCCAGTCCCTGACCAAGATCTGGAGGCCCTCCGCGCCAGCACCGGCCAAGATCGAGGAGC
ATCGTGTATCACCAGTACATGGACGACCTGACGGTGGCTTCCACCAACCCCCGACAAGAAGCAGGAGAACGGCCCCCTTCC
TGCGCGAGCACCTGCTGAAGTGGGCTTCCACCAACCCCCGACAAGAAGCAGGAGAACGGACTCTGGACCGTGAACGACATCCAGAAG
CGAGCTGCACCCCGACAAGTGGACCGTGCAGGCCATCCAGCTGCCAGAGAACGGACTCTGGACCGTGAACGACATCCAGAAG
CTGGTGGCAAGCTGAACCTGGGCTCCAGATCTACCCCGCATCAAGGTGGCCAGCTGTGCAAGCTGCTGCCGGGCCA
AGGCCCTGACCGACATCGTCCCCCTGACCGAGGAGGCCAGCTGGAGCTGGCCAGAACCGCGAGATCTGAAGGAGCCG
GCACGGCGTGTACTACGACCCCTCAAGGACCTGATGCCGAGATCCAGAAGCAGGGCCACGACCAGTGGACCTACCAAGATC

TACCAGGAGCCCTTCAAGAACCTGAAGACCGGCAAGTACGCCAAGATGCGCACGCCACACCAACGACGTGAAGCAGCTGA
 CCGAGGCCGTGAGAACGATGCCATGGAGTCCATCGTATCTGGGCAAGACCCCCAAGTCCGCTGCCATCCAGAAGGA
 GACCTGGAGACTCTGGGACCGACTACTGGCAGGCCACCTGGATCCCCGAGTGGGAGTTCGTGAACACCCCCCCCCTGGTG
 AAGCTGTGGTACCGCTGGAGAAGGAGCCATGCCGGCGCCAGACCTTCTACGTGGACGGCGCCAAACCGCAGACCA
 AGATCGGCAAGGCCGGCTACGTGACCGACCGCCGGCCAGAACGATCGTCCCTGACCAGACCAACCAAGAACGACCGA
 GCTGCAGGCCATCCAGCTGGCCCTGCAGGACTCCGGCTCCGAGGTGAACATCGTACCGACTCCAGTACGCCCTGGCATC
 ATCCAGGCCAGCCACAAGTCCGAGTCCGAGCTGGTAACCAGATCATCGAGCAGCTGATCAAGAAGGAGCGCTGTACC
 TGTCCTGGTGCCTGCCACAAGGGCATCGGCCAACGAGCAGGTGGACAAGCTGGTGTCCCTCCGGCATCCGAAGGTGCT
 GTTCCTGGACGCCATCGACAAGGCCAGGAGGAGCACGAGAACGACTCCAACTGGCGCCATGGCCTCCGAGTCAAC
 CTGCCCTCCATCGTGGCCAAGGAGATCGTGGCCTCTGCAGAACGACTCCGGCTCCGAGGTGAACATCATCTGGCCTCCGG
 ACTGCTCCCCCGGCATCTGGCAGCTGGACTGCACCCACCTGGAGGGCAAGAACGATCATCTGGCCTCCGAGTCAAC
 CTACATCGAGGCCAGGTGATCCCCCGCAGACGCCCTACTACATCTGGAGGGCAAGAACGACTCCACATCTGGCCTCCGG
 GTGAAGGTGATCCACACCACAACGGCTCAAACCTCCACCTCCGCCGCTGGAGGGCCATCCGAGTGGCCCTGCTGGGGCCGATC
 AGGAGTTCGGCATCCCTACAACCCCCAGTCCAGGGCGCTGGAGGGCATGAAACAGGAGCTGAAGAACGAGATCATCGGCC
 GGTGCGCAGGCCGAGCAGCCTGAAGACGCCGTGAGATGGCCGTGTTCATCCACAACTTCAAGCGCAAGGCCAGCATC
 GCGGCTACTCCGCCGGCAGCGCATCATCGACATCATGCCACCGACATCCAGACCAAGGAGCTGAGAACGAGATCATCA
 AGATCCAGAACCTCCCGTGTACTACCGCAGCTCCGCCACCCATCTGGAGGGCCCAAGCTGCTGTGAGGGCA
 GGGCGCGTGGTGATCCAGGACAACCTCGACATCAAGGTGGTGCCTGCCAGGACGAGGACTAA

69. 2003_C.anc pol.PEP

FFRENLAFPQGEAREFPSEQTRANSPTSRELQVGRDNPRSEAGAERQGTLTLNFPQITLWQRPLVSIVGGQIKEALLDTGA
 DDTVLEEINLPGKWKPKMIGGIGGFIKVRYDQILIEICGKKAIGTVLVGPTPVNIIGRMLTQLGCTLNFPISPIETVPVK
 LKPGMDGPVKQWPLTEEKIKALTAICEEMEKEGKITKIGPENPYNTPVFAIKKKDSTKWRKLVDRELNKRTQDFWEVQLG
 IIPHAGLKKKKSVTVLDVGDAYFSVPLDEGFRKYTAFTIPSINNETPGIRYQYNVLPOGWKGSPAIFQSSMTKILEPFRANQ
 PEIVIYQYMDDLVGSDELQHRAKIEELREHLLKGWFTTDPKKHQKEPPFLWMGYELHPDKWTVPQIQLPEKDSWTVNDI
 QKLVKGKLNWASQIYPGIKVRQLCKLRLGAKALTDIVPLTEEALEAENREILKEPVHGYYDPSKDLIAEIQKQGHQDWTY
 QIYQEPPKNLKTGKYAKMRTAHTNDVKQLTEAVQKIAMESIVIWGKTPKFRRLPIQKETWETWWTDYWQATWIPEWEFVNTPP
 LVKLWYQLEKEPIAGAETFYVDGAANRETKitKAGYVTDRGRQKIVSLTETTNQKTELQAIQLALQDSGSEVNIVTDSQYAL
 GIQAQPDKSESELVNQIIEQLIKKEKVYLSWPAHKIGGGNEQVDKLVSSGIRKVLFLDGINDKAQEEHEKYHSNWRAMASE
 FNLPIVAKEIVASCDKQCLKGEMHGQVDCSPGIWQLDCTHLEGKIIILVAVHVASYIEAEVIPAETGQETAYFILKAGR
 WPVKVIHTDNGSNFTSAAVKAACWWAGIQQEFGIPYNPQSQGVVESMNKEKKIIGQVRDQAEHLKTAQVMAVIFIHNFKRKG
 GIGGYSAGERIIDIIATDIQTKELQKIIKIQNFRVYYRDSRDPIWKGPAKLLWKGEHAVVIQDNSDIKVVPRRKAKIIRDY
 GKQMAGADCVAGRQDED\$

2003_C.anc pol.OPT

TTCTCCCGCAGAACCTGGCTTCCCCAGGGCGAGGCCGAGTCTCCGAGCAGACCCGCCAACTCCCCACCT
 CCCGCCAGCTGCAGGTGGCCGCACAACCCCCGCTCCGAGGCCGAGCGCCAGGGCACCTGACCTGAACTTCCC
 CCAGATCACCCCTGGCAGGCCCTGGTGTCCATCAAGGTGGCCGAGATCAAGGAGGCCCTGCTGGACACCGGCC
 GACGACACCGTGTGGAGGAGATCAACCTGCCGGCAAGTGGAGGCCAGATGATCGGGCATCGGCCCTTCATCAAGG
 TGCGCAGTAGCAGGAGATCCTGATCGAGATCTGGCGCAAGAAGGCCATCGGCCACCGTGTGGTGGGCCACCCCGTGA
 CATCATCGGCCAACATGCTGACCCAGCTGGCTGCACCTGAACTTCCCATCTCCCCATCGAGACCGTGGCGTGAAG
 CTGAAGCCGGCATGGACGGCCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAACGATCAAGGCCCTGACGCCATCTGCG
 AGGAGATGGAGAAGGAGGCCAGATCACCAAGATCGGCCCGAGAACCCCTACAACACCCCGTGTGCCATCAAGAACAA
 GGACTCCACCAAGTGGCGCAAGCTGGGACTTCCCGAGCTGAACAAGCGCACCCAGGACTTCTGGGAGGTGCAGCTGGGC
 ATCCCCCACCCGCCGGCTGAAGAAGAACGAGTCCGTGACCGTGTGGACGTGGCGACGCCACTTCTCCGTGCCCTGG
 ACGAGGGCTCCGCAAGTACACCGCCTTACCATCCCCCATCAACAACGAGACCCCGCATCCGCTACCAACGT
 GCTGCCCAAGGGCTGGAGGGCTCCCCGCATCTTCAAGTCTCCATGACCAAGATCTGGAGCCCTCCGGCCAGAAC
 CCCGAGATCGTGTACTACCAAGTACATGGACGACCTGTACGTGGCTCCGACCTGGAGATCGGCCAGCAGCGCCAAAGATCG
 AGGAGCTGCGCGAGCACCTGCTGAAGTGGGGCTTCAACCAAGGCCAGAACAGCAGGAGGCCCTCTGTGGAT
 GGGCTACGAGCTGCACCCGACAAGTGGACCGTGCAGCCATCCAGCTGCCAGAGAAGGACTCTGGACCGTGAACGACATC
 CAGAACGCTGGTGGCAAGCTGAACGCTGGCCCTCCAGATCTACCCCGCATCAAGGTGCCAGCTGCAAGCTGCTGCC
 GCGCCAAGGCCCTGACCGACATCGGCCCTGACCGAGGAGGCCAGCTGGGAGATCCAGAACGAGGCCACGACCGTGGACCTAC
 GCCCGTGCACGGCGTGTACTACGACCCCTCAAGGACCTGATCGCCAGATCCAGAACGAGGCCACGACCGTGGACCTAC
 CAGATCTACCAAGGAGCCCTCAAGAACCTGAAGACCGGCAAGTACGCCAACGATGCGCACGCCACACCAACGACGTGAAGC
 AGCTGACCGAGGCCGTGAGAACGATGCCATGGAGTCCATCGTATCTGGGCAAGACCCCCAAGTTCCGCTGCCATCCA
 GAAGGAGACCTGGAGACCTGGTACCGTGGAGAACGGAGCCATGCCGGCGCCAGACCTTCTACGTGGACGGCGCCAAACCGCG
 CTGGTGAAGCTGTGGTACCGTGGAGAACGGAGCCATGCCGGCGCCAGACCTTCTACGTGGACGGCGCCAAACCGCG
 AGACCAAGATCGGCAAGGCCGGTACGTGACCGACCGCGCCAGAACGATCGTGTCCCTGACCGAGACCAACCAAGGAA

GACCGAGCTGCAGGCCATCCAGCTGGCCCTGCAGGACTCCGGCTCCGAGGTGAACATCGTGA
CCGACTCCCAGTGACCTGGCAGCTGGTGAACCAGATCATCGAGCAGCTGA
TCAGAAGGAGAAGG
GGCATCATCCAGGGCCAGCCCCACAAGGGCATCGGCGCAACGAGCAGGTGGACAAG
CTGGTGTCTCCGGCATCCGCAA
GGTGTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCACGAGAAGTACCA
CTCCAAGTGGCGCCATGGCCTCCGAG
TTCAACCTGCCCCCCATCGTGGCCAAGGAGATCGTGGCTCTCGCAG
ACAAGTGCAGCTGAAGGGCGAGGCCATGCACGGC
AGGTGGACTGCTCCCCGGCATCTGGCAGCTGGACTGC
ACCCACCTGGAGGGCAAGATCATCTGGTGGCGTGCACGTGGC
CTCCGGCTACATCGAGGCCAGGTGATCCCCGGAGACGGC
CAGGAGACGGCCTACTTCATCCTGAAGGCTGGCGGCC
TGGCCCGTGAAGGTGATCCACACCGACAACGGCT
CCAACCTGGCCTGAAGGCCCTGCTGGTGGCGGCC
TCCAGCAGGAGTTCGGCATCCCCATAACCCCC
CAGTCCCAAGGGCGTGGTGGAGTCTCATGA
ACAAGGAGCTGAAGAAGATCAT
CGGCAAGGAGTGGCGCAGGCCAGGG
GAGCACCTGAAGACCGCGTGCAGATGGCGTGT
TTCATCCACAACTTCAGCGCAAGGAGCTGCAGAAGCAGA
GGCATCGGCGGCTACTCCGCGGCGAGCGCAT
CATCGACATCATCGC
CAGACATCCAGACCAAGGAGCTGCAGAAGCAGA
TCATCAAGATCCAGAACCTCCGCGTGTACTACCGC
GACTCCCGGACCCCATCTGG
AAGGGCCCCGCCAAGCTGCTGTGGAA
GGCGAGGGCGCCGTGGTGA
CTCCAGGACAAC
CTCCGACATCAAGGTGGT
GCCCCGCCAAGGCCAAGATCATCCGCA
ACTAC
GGCAAGCAGATGGCGGCCGACTGCGTGGCGGCCAGGAGCAGGAGACTAA

70. 2003 CON D pol.PEP

FFRENLAFPQKGAKELSSEQTRANSPTSRELRVWGGDNPLSETGAERQGTVSFNFPQITLWQRPLVTIKIGGQLKEALLDTG
ADDTVLEEEINLPKGKPKMIGGIGGFIKVQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPISPIETVPV
KLKPGMDGPVKQWPLETEEKIKALTEICTEMEKEGKISRIGPENPYNTPIFAIKKDSTKWRKLVDRELNKRTQDFWEVQL
GIPHPAGLKKKSVTVLVDGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPGQWKGSPIAFQSMTKILEPFRKQ
NPEIVIYQYMDDLYVGSDLEIGQHRTKIEELREHLLRWGFTTPDKKHQKEPPFLWMGYELHPDKWTVQPIKLPKESESWTND
IQKLVGKLNWASQIYPGIKVRQLCKLLRGTKALTEVIPILTSEEAELEAENREIKEEPVHGVVYDPSKDLIAEIQKQGQGW
YQIYQEPFKNLKTKYARMGAHTNDVKQLTEAVQKIAIESIVIWGKTPKFRLPIQKETWTWTEYWQATWIPEWEFVNTP
PLVKLWYQLEKEPIIGAFTFYVDGAANRETKLKGAGYVTDRGRQKVPLDTTNQKTELQAINLALQDSGLEVNIVTDSQYA
LGIIQAOQPDKSESELVSQIIEQLIKKEKVYLAWSWAHKGIGGNEQVDKLVSNGIRKVLFLGDIDKAQEEHEKYHNNWRAMAS
DFNLPPVVAKEIVASCDKCKQLKGEAMHGQVDCSPGIWQLDCTHLEGKVLILVAVHVASYIEAEVIPAETGQETAYFLLKLAG
RWPVKVVTNDNSNFTSAAVKAACWWAGIKQEFGIPYNPQSQGVVESMNKELKKIIGQVRDQAELHLKTAQVMAVFIHNFKRK
GGIGGYSAGERIIDLIATDIQTKELQKQIIKIQNFRVYRSDPWIWKGPAKLLWKGEHAVVIQDNSDIKVPRRKVKIIRD
YGKQMGDDCVASRQDED\$

2003_CON_D pol.OPT

TCTCTCCCGAGAACCTGGCCTTCCCCAGGGCAAGGCCGGAGCTGTCCTCCGAGCAGACCCCGCGCCAACCTCCCCCACCT
CCCCCGAGCTGCGCGTGTGGGGCGGCACAACCCCTGTCAGCAGACCCCTGGTGACCATCAAGATCGGCGGCCAGCTGAAGGAGGCCCTGCTGGACACCGGC
GCCGACGACACCGTGCTGGAGGAGATCAACCTGCCCAGCAAGTGGAAAGCCAAGATGATCGGCGGCATCGGCGGCCATCA
AGGTGCGCCAGTACGACCAGATCTGAGATCTGCGGCACAAGGCCATCGGCACCGTGTGGTGGGCCCAACCCCGT
GAACATCATCGGCCGCAACCTGTCAGCAGATCGGCTGCACCCCTGAACTTCCCATCTCCCCCATCGAGACCGTGGCGT
AAGCTGAAGCCCGCATGGACGGCCCCAAGGTGAAGCAGTGGCCCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGAGATCT
GCACCGAGATGGAGAAGGAGGGCAAGATCTCCCGCATCGGCCCCGAGAACCCCTAACACCCCCATTCGCCCCATCAAGAA
GAAGGACTCCACCAAGTGGCGCAAGCTGTGGACTTCCCGAGCTGAACAAAGCGCACCCAGGACTTCTGGAGGTGAGCTG
GGCATCCCCCACC CGGGCTGAGAAGAAGAAGTCCGTGACCGTGTGGAGCTGGCGACGCCATCTTCTCCGTGCC
TGGAGGAGACTTCGCAAGTACACCGCTTCAACATCCCCATCAACAAACGAGACCCCGGCATCGCTACCAAGTACAA
CGTGTGCCCAAGGGCTGGAGGGCTCCCCGCCATCTTCCAGTCTCATGACCAAGATCTGGAGGCCCTCCGAAGCAG
AACCCCGAGATGTGATCTACCAAGTACATGGACGACCTGTACGTGGCTCCGACCTGGAGATCGGCCAGCACCGACCAAGA
TCGAGGAGCTGCCAGCACCTGCTGCCGTGGGCTTCAACACCCCCGACAAGAAGCAGAGAAGGCCCTTCTGTG
GATGGGCTACGAGCTGCACCCGACAAGTGGACCGTGAGCCCATCAAGCTGCCAGAGAAGGAGTCTGGACCGTGAACGAC
ATCCAGAAGCTGGTGGCAAGCTGAACTGGGCTCCAGATCTACCCGGCATCAAGGTGCCAGCTGTGCAAGCTGTG
GCCGCACCAAGGCCCTGACCGAGGTGATCCCCCTGACCGAGGAGGCCAGCTGGAGCTGGCCAGAACCGCAGATCTGAA
GGAGCCCGTGCACGGCGTGTACTACGACCCCTCCAAGGACCTGTACGCCAGAGATCCAGAACGCCAGGGCCAGGCCAGTGGAC
TACCAAGATCTACCAAGGAGCCCTCAAGAACCTGAAGACCGCAAGTACGCCAGTGCAGGAGCTGGCCAGGCCACACCAACGAC
AGCAGCTGACCGAGGCCGTGAGAAGATGCCATCGAGTCCATCGTGTACTGGCAGGCCACTGGATCCCCAGTGGAGCTGTG
CCAGAAGGAGACCTGGAGACCTGGTGACCGAGACTGGCAGGCCACTGGATCCCCAGTGGAGCTGTGAAACACCCCC
CCCCCTGGTAAGCTGTGGTACCAAGCTGGAGAACGGCCATCATCGGCCAGAGACCTCTACGTGGAGCGGCCAGGCC
GCCAGAACCAAGCTGGCAAGGCCGTACGTGACGCCAGGCCAGGCCAGAGACCTCTACGTGGAGCGGCCAGGCC
GAAGACCGAGCTGCAAGGCCATCAACCTGGCCCTGACCGAGTCCGAGCTGGTGACCATCGAGCAGCTGATCAAGAAGGAGA
AGGTGTAACCTGGCTGGGTGCCCAAGGGCATCGGCCAGGCCAGGCCAGAGACCTCTACGTGGAGCGGCCAGGCC
CAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCACGAGAACGGAGTACCAACAACACTGGCGGCC
GACTTCAACCTGCCCCCGTGGTGCCAGGAGATCGTGGCTCTGCGACAAGTGCAGCTGAAGGGCAGGCCATCGCAG

114
A

GCCAGGTGGACTGCTCCCCGGCATCTGGCAGCTGGACTGCACCCACCTGGAGGGCAAGGTGATCTGGTGGCCGTGCACGT
GCCCTCGGCTACATCGAGGGCAGGTGATCCCCGGCAGACCGGCCTACTTCCTGCTGAAGCTGGCCGGC
CGCTGGCCCGTGAGGTGGCACACCGACAACGGCTCCAACCTCACCTCCGGCGCGTGAGAGGCCCTGCTGGTGGGGCCG
GCATCAAGCAGGAGTCGGCATCCCCATAACCCCCAGTCCCAGGGCGTGGTGAGTCATGAACAAGGAGCTGAAGAAGAT
CATGGCCAGGGCGCGACAGGCCAGCCTGAAGACCGCCGTGCAGATGGCGTGTTCATCCACAACCTCAAGCGCAAG
GGCGCATCGGGCTACTCCGCCGGAGCGCATCATGCCACCGACATCCAGACCAAGGAGCTGCAGAAC
AGATCATCAAGATCCAGAACCTCCGCGTGTACTACCGCAGTCCCAGCCACATCTGGAAGGGCCCCGCAAGCTGCTGTG
GAAGGGCGAGGGCGCCGTGGTGATCCAGGACAACCTCGACATCAAGTGGTCCCCGCCAGGACGAGGACTAA

71. 2003_CON_F1 pol.PEP

FFRENLAFAQGEARKFPSEQTRANSFASRELVRVQRGDNPULSEAGAERRGTVPSLSFPQITLWQRPLVTIKIGGQLKEALLDT
GADDITVLEDINLPWKWPKMIGGIGGF1KVQYDHILIEICGHKAIGTVLVGPTVNIIGRNLTOIGCTLNFPISPIETVP
VKLKPGMDGPVKWQPLTEEKIALTEICTEMEKEKGKISKIGPENPYNTPVFAIKKDSTKWRKLVDRELNKRTQDFWEVQ
LGIIPHAGLKKKSVTVLDVGAYFSVPLDKDPRKYTAFTIIPSVNNEPTPGIRYQNVLPQGWKGSPIAFQCSMTKILEPFRT
KNPDIYQYQMDDLVYGSDELIGQHRTKIEELREHLLKGWFTTPDKHHQKEPPFLWMGYELHPDKWTVQPIQLPDKDSTVN
DIQKLVGLNWASQIYPGIKVKQLCKLLRGAKALTDIVPLTAEAELEAENREILKEPVHGYYDPSKDLIAEIQKQGQGW
TYQIYQEPFKNLKTGKYAKMRSAAHNDVKQLTEAVQKIALESIVIWGKTPKFRLPILKETWDTWTDYWOATWIPEWEFVNT
PPLVWLWYQLETEPIVGAETFYVDGASNRETKGKGAGYVTDGRGRQKVVSLETNNQKAELQAIHLALQDSGEVNIVTDQY
ALGIIQAQPDKSESELVNQIIIEQLIQLKEKVYLSWPAHKIGGGNEQVDKLVSAGIRKILFLDGIDKAQEHEKYHNNWRAMA
SDFNLPPVVAKEIVASCDKCQLKGEAMHGQVDCSPGIWOLDCTHLEGKIIILVAHVASYIEAEVIPAETQETAYFILKLA
GRWPVKIIHTDNGSNFTSAAVKAACWWAGIQQEFGIPYNPQSQGVVESMNKELKKIIGQVRDQAEHLKTAQVMAVFIHNFKR
KGGIGGYSAGERIIDIIATDIQTRLOKQITKIQNFRVYYRDSRDPVWKGPAKLLWKGEGAVVIQDNSEIKVVPRRKAKIIR
DYGKQMAGDDCVAGRQDED\$

2003_CON_F1 pol.OPT

3

TTCTTCGGAGAACCTGGCTTCCAGCAGGGCGAGGGCCCGCAAGTTCCCTCCAGCAGCACCCGCCAACCTCCCCGCCT
CCCGCGAGCTGGCGGTGAGCGCGGGGACAACCCCCCTGTCCAGGGCCGGCGAGCGCCGGCACCGTGCCTCCCTGTC
CTTCCCCCAGATCACCTGTGGCAGGCCCCCTGGTACCATCAAGATCGGCGGCCAGCTGAAGGGCCCTGCTGGACACC
GGCGCCAGACACCGTGTGGAGGACATCAACCTGCCCGCAAGTGGAAAGCCAAGATGATCGGCGGCCATCGGCGCTTCA
TCAAGGTGAAGCAGTACGACCAACATCTGATCGAGATCTGCGGCCACAAGGCCATCGCACCGTGTGGTGGGCCCCACCC
CGTGAACATCATCGGCCAACATGTCACCGAGATCGCTGCACCCCTGAACCTCCCCATCTCCCCATCGAGACCGTGC
GTGAAGCTGAAGCCCCGGCATGGACGGCCCAAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGAGA
TCTGCACCGAGATGGAGAAGGAGGGCAAGATCTCAAGATCGGCCCCGAGAACCCCTACAACACCCCCGTGTCGCCATCAA
GAAGAAGGACTCCACCAAGTGGCGCAAGCTGGACTTCCCGAGCTGAACAAGCGCACCCAGGACTTCTGGGAGGTGAG
CTGGGCATCCCCACCCCGCCGGCTGAAGAAGAAGAAGTCCGTGACCGTGTGGACGTGGCGACGCCCTACTTCTCGTGC
CCCTGGACAAGGACTTCCGCAAGTACACCGCTTCACCATCCCCCTCGTAACAACGAGACCCCGGCATCCGCTACCAGTA
CAACGTGCTGCCCAAGGGCTGGAGGGCTCCCCGCCATCTTCAAGTGTCCATGACCAAGATCTGGAGGCCCTCCGCACC
AAGAACCCCGACATCGTGAATCACCAAGTACATGGACGACCTGTACCGTGGACTTCCCGAGCTGGAGATCGGCCAGGCCACCA
AGATCGAGGAGCTGCGGAGCACCTGCTGAAGTGGGCTTCACCAACCCCGACAAGAACGACCGAGAACAGGAGCCCCCTTCT
GTGGATGGGCTACGAGCTGCACCCCGACAAGTGGACCGTGCAGCCCATCCAGCTGGCCGACAAGGACTCTGGACCGTGAAC
GACATCCAGAAGCTGTGGCAAGCTGAAGTGGCCCTCCAGATCTACCCGGCATCAAGGTGAAGCAGCTGTGCAAGCTGC
TGC CGGCCCAAGGGCTGACCGACATCGTCCCCCTGACCGCCAGGGCGAGCTGGAGCTGGCCAGAACCGCAGATCCT
GAAGGAGCCCGTGCACGGCGTGTACTACGACCCCTCAAGAACCTGAAGACCGGGCAAGTACGCCAAGATCGCTCCGCCACACCAACGACG
TGAAGCAGCTGACCGAGGGCGTGCAGAAGATGCCCTGGAGTCCATCGTGAATCTGGGGCAAGACCCCCAAGTCCGCTGCC
CATCCTGAAGGAGACCTGGACACCTGGGACCGACTACTGGCAGGCCACCTGGATCCCCGAGTGGAGTTCTGTGAACACC
CCCCCCTGGTGAAGCTGGTACCAAGCTGGAGACCGAGGCCATCGTGGGCGCCGAGACCTTCTACGTGGACGGCGCTCCA
ACCGCGAGACCAAGAAGGGCAAGGCCGCTACGTGACCGACCGCGGCCAGAACGGTGGTGCCTGACCGAGACCAAA
CCAGAAGGCCGAGCTGCAGGCCATCCACCTGCCCTGCAAGGACTCCGGCTCCGAGGTGAACATCGTACCGACTCCAGTAC
GCCCTGGGCATCATCCAGGCCAGGGCAACAGTCCGAGTCCGAGCTGGTGAACCGAGATCATCGACGCTGATCCAGAAG
AGAAGGTGTACCTGTCCTGGTGCAGGCCACAAGGGCATCGGCGCAACGAGCAGGTGGACAAGCTGGTCCCGCCGGCAT
CCGCAAGATCTGTTCTGGACGGCATCGACAAGGCCAGGGAGGAGCAGGAGAACAGTACCAACAAACTGGCGCCGACATGCC
TCCGACTCAACCTGCCCTGGCATCTGGCAGCTGGACTCGCACCCACCTGGAGGGCAAGATCATCTGGTGGCGCTGCA
ACGGCAGGTGGACTGCTCCCCCGCATCTGGCAGCTGGACTCGCACCCACCTGGAGGGCAAGATCATCTGGTGGCGCTGCA
CGTGGCCTCCGGCATCTGGCAGGGTGAATCCCCGGAGACCGGCCAGGGAGACCGCCTACTTCATCTGAAGCTGGCC
GGCGCTGGCCCGTGAAGATCATCCACACCGACAACGGCTCCAACCTCACCTCCGCCCGTGAAGGCGCCTGCTGGGG
CCGGCATCCAGCAGGAGTTGGCATTCCCTACAACCCCCAGTCCCAGGGCGTGGTGGAGTCCATGAACAAGGAGCTGAAGAA
GATCATCGGCCAGGTGGCGACCAGGCCAGCTGAAGACCGCCGTGCAGATGGCCGTGTTCATCCACAACTTCAGCGC

AAGGGCGGATCGGCGGCTACTCCGCCGGCAGCGCATCATGACATCATGCCACCGACATCCAGACCCGCGAGCTGCAGA
ACCAGATCACCAAGATCCAGAACCTCCCGTGTACTACCGCAGTCCCGCACCCGTGTTGAAGGGCCCCGCCAAGCTGCT
GTGGAAGGGCGAGGGCGCCGTGGTATCCAGGACAACCTCGAGATCAAGGTGGTCCCCGCCAAGGCCAAGATCATCCGC
GACTACGGCAAGCAGATGGCCGGCAGCAGACTCGTGGCCGGCCAGGACGAGGACTAA

3.115
A
72. 2003_CON_F2.pol.PEP

FFRENLAFFQGEARKFSSEQTRANSFASRELVRVRRGDNSLPEAGAERQGTGSSLDFPQITLWQRPLVTIKVGGQLREALLDT
GADDTVLEDINLPWKPKMIGGIGGFIKVHQYDQIPIEICQKAIGTVLVGPTPVNIIGRNMLTQIGCTLNFPISPIETVP
VKLKPGMDGPVKQWPLTEEKIKALTEICTEMKEKGKISKIGPENPYNTPVFAIKKDSTKWRKLVDFRELNKRTQDFWEVQ
LGIPHPAGLKKKSVTVDVGAYFSVPLDEFRKYTAFTIPSINNETPGIRYQYNVLPGWKGSPAIFQSSMTKILEPFR
KNPEIVIYQYMDLYVGSDLEIGQHRTKIEELREHLLRWGFTTPDKHHQKEPPFLWMGYELHPDKWTQAIQLPDKSSWTVN
DIQKLVKGKLNWASQIYYPGIRVKHLCKLLRGAKALTDVVPATAEAELEAENREILKEPVHGYYDPSKDLIAETIQKQGDQW
TYQIYQEPHKNLTKYARRSAHTNDVQLTEVVKQIAATEGIVIWGKVPKFLRPIQKETWEIWWTEYWQATWIPEWEFVNT
PPLVKLWYQLETEPIVGAETFYVDAANRETQLGKAGYVTDRGRQKVVPLETNNQKTELQAIHLALQDSGSEVNIVTDSQY
ALGIQAHPKSESELVNQIEQLIQKERVYLSWPVPAHKIGGGNEQVDKLVSSTGIRKVLFLDGIDKAQEHEKYSNWRAMA
SDFNLPPVVAKEIVASCDKCQLKGEMHGQVDCSPVGIWQLDCTHLEGKIIIVLVAVHVASYIEAEVIPAETGQETAYFILKLA
GRWPVKIIHTDNGSNTSTVVKAACWWAGIQQEFGIPYNPQSQGVVBSMNKEKKIIIGQVRDQAELHKTAVQMAVFIIHNFKR
KGGIGGYSAGERIIDIATDQTKELQKQITKIQNFRVYFRDSRDPVWKPAKLLWKGEAVVIQDNNEIKVVPRRKAKIIR
DYGKQMGADCVAGRQDED\$

2003_CON_F2.pol.OPT

TTCTCCGCGAGAACCTGGCCTTCCAGCAGGGCAGGGCCGCAAGTTCTCCGAGCAGACCCGCCAACCTCCCCGCCT
CCCGCGAGCTGGCGTGCGCCGGCAGAACACTCCCTGCCAGGGCCGAGCGCCAGGGCACCCGGCTCTCCCTGG
CTTCCCCCAGATCACCTGTGGCAGCGCCCCCTGGTACCATCAAGGTGGCGGCCAGCTGCGCAGGGCCCTGCTGGACACC
GGCGCCGACGACACCCTGGAGGACATCAACCTGCCGGCAAGTGGAAAGGCCAACATGGCAGGCCATCGGCCACCGTGTGG
TCAAGGTGCGCAGTACGACAGATCCCCATCGAGATCTGGGCCAGAAGGCCATCGGCCACCGTGTGGGGCCCCACCCC
CGTGAACATCATGGCCGAAACATGCTGACCCAGATCGCTGACCCCTGAACCTTCCCATCTCCCCATCGAGACCCGTGCCC
GTGAAGCTGAAGGCCGGCATGGACGGCCCAAGGGTGAAGCAGTGGCCCTGACCGAGGGAAAGATCAAGGCCCTGACCGAGA
TCTGCACCGAGATGGAGAAGGGCAAGATCTCAAGATCTGGGACTCTGGCGAGCTGAACAAAGCGCACCCAGGACTTCTGG
GAAGAAGGACTCCACCAAGTGGCGCAAGCTGGGACTCTGGCGAGCTGAACAAAGCGCACCCAGGACTTCTGGAGGTGAG
CTGGGCATCCCCACCCCGCCCTGAAGAACAGAACATCTGGCGACCTGCTGGACGGCTCCGACCTGGAGATCGCCAGACCG
AGATCGAGGAGCTGCGCAGCACCTGCTGCGTGGGCTTCACCACCCCGACAAGAACGACCAAGAACGAGCCCCCTTCT
GTGGATGGGCTACGAGCTGACCCGACAAGTGGACCGTGCAGGCCATCCAGCTGCCGACAAGTCCTCTGGACCGTGAA
GACATCCAGAACAGCTGGGGCAAGCTGAACCTGGGCTCCAGATCTACCCGGCATCCCGTGAAAGCACCTGTGCAAGCTGC
TGCGCGCGCCAAGGCCCTGACCGACGTGGTCCCCCTGACCGCCAGGGCAGCTGGAGCTGGCCAGAACCGCAGATCCT
GAAGGAGCCCGTGCACGGCGTGTACTACGACCCCTCCAAGGACCTGATCGCCGAGATCCAAGCAGGGCACGACCGAGTGG
ACCTACCAAGATCTACCAAGGAGCCCACAAGAACCTGAAGACCCGGCAAGTACGCCGCCAGGCCAACACCAACCGAGC
TGAAGCAGCTGACCGAGGGTGTGCAAGAACATCGCCACCGAGGGCATCGTGATCTGGGCAAGGTGCCCAAGTCTGG
CATCCAGAACAGGAGACCTGGGAGATCTGGGACCGAGTACTGGGACGGCCACCTGGGATCCCCAGTGGGAGTTCTGT
CCCCCCTGGTGAAGCTGTGTACCAAGCTGGGAGACCGAGGCCATCGTGGGCCAGACCTTCTACGTGGACGGCGCC
ACCGCGAGACAAGCTGGGCAAGGGCGTACGTGACCGACCCGGCCAGAACGGTGGTCCCTGACCGAGACCAAA
CCAGAAGACCGAGCTGACGGCCATCCACCTGGCCCTGCAGGACTCCGGCTCCGAGGTGAACATCGTACCGACTCCAGTAC
GCCCTGGGCATCATCCAGGCCACCCGACAAGTCCGAGCTGGTGAAACCAGATCATCGAGCAGCTGATCCAGAAC
AGCGCGTGTACCTGTCTGGTCCCCGCCCACAAGGGCATCGGCCAGAACGAGCAGGGTGGACAAGCTGGTGTCCACCG
CCGAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCACGAGAACGACCAACTTCAACTGGCGGCCATGG
TCCGACTTCAACCTGCCCGTGGTGGCCAAGGAGATCGTGGCTCTGCCACAAGTGCAGCTGAAGGGCGAGGCCATGC
ACGGCCAGGTGGACTGCTCCCCCGCATCTGGCAGCTGGACTGCAACCCACCTGGAGGGCAAGATCATCTGGCGCTG
CGTGGCCTCCGGCTACATCGAGGCCAGGTGATCCCCCGAGACCGGCCAGGGAGACCGCCTACTTCATCTGAAGCTGCC
GGCCGCTGGCCCGTGAAGATCATCCACCCGACAACCGACAACGGCTCCACCTCCACCGTGGTGAAAGGCCCTGCTGG
CCGGCATCCAGCAGGAGTTGGCATCCCTACAACCCCGACTCCAGGGCGTGGTGGAGTCCATGAAACAAGGAGCTGAAGAA
GATCATCGGCCAGGTGCGCGACCAGGCCAGCTGAAGACCCGGCTGCAAGTGGCCCTGTTCATCCACACATTCAAGCG
AAGGGCGGCATCGCGGCTACTCCGCCGGAGCGCATCTGACATCATCGGCAACCGACATCCAGACCAAGGAGCTG
AGCAGATCACCAAGATCCAGAACACTCCCGTGTACTCCCGCAGACTCCCGCACCCCGTGTGGAGGGCCCCGCCAAG
GTGGAAGGGCGAGGGCGCCGTGGTATCCAGGACAACAAAGAGATCAAGGTGGTCCCCGCCAGGACGAGGACTAA
GACTACGGCAAGCAGATGGCCGGCGACGACTCGTGGCCGGCCAGGACGAGGACTAA

ig. 116

A

73. 2003_CON_G pol.PEP

FFRENLAFFQQGEAREFSSEQARANSPTRRELVRVRGDSPLPEAGAEGKGAISLSFPQITLWQRPLVTVKIGGQLIEALLDTG
ADDTVLEEINLPGKWKPMIGGIGGFIVRQYDQILIEISGKKAIGTVLVGPTPINIIGRNMLTQIGCTLNFPISPIETVPV
KLKPGMDGPVKVQWPLTEEKIKALTEICTEMEMEKEGKISKIGPENPYNTPIFAIKKDSTKWRKLVDRELNKRTQDFWEVQL
GIPHAGLKKKSVTLDVGDAYFSVPLDENFRKYTAFTIIPSTNNETPGIRYQYNVLPGWKGSPAIFQSSMTKILEPFRK
NPEIVIYQYMDDLVGSDEIGQHRAKIEELREHLLRGFTTPDKHQKEPPFLWMGYELHPDKWTVQPQLPDKESWTVND
• IQLVGLNWAQIYPGIKVKQLCKLLRGAKALTDIVPLTAEABLEAENREILKEPVHGYYDPSKELIAEVQKQGLDQWT
YQIYQEPYKNLKTGKYAKRGSAAHTNDVQQLTEVVQKIATESIVIWGKTPFKLPIRKETWEVWWTEYQWATWIPEWEFVNTP
PLVKLWYRLETEPIPGAETYVVDGAANRETKLGKAGYTDKGKQKIIITLTETTNQKAELOQAIHLALQDSGSEVNIVTDSQYA
LGIIQAQPDRSESELVNQIIEQLIKKEKVYLSWPVPAHKGIGGNEQVDKLVSSGIRKVLFLDGIDKAQEEHERYHSNWRAMAS
DFNLPPIVAKEIVASCDKCQLKGEAMHGQVDCSPGIWQLDCTHLEGKIIIVAVHVASYIEAEVIPAETGQETAYFILKLAG
RWPVKVIHTDNGSNFTSAAVKAACWWANITQEFGIPYNPQSQGVVESMNKELKKIIIGQVRDQAEHLKTAQVMAVPIHNFKRK
GGIGGYSAGERIIDIASDIQTKEQKQITKIQNFRVYRSDRPIWKGPAKLLWKGEGAVVIQDNNEIKVVPRRKAKIIRD
YGKQMGDDCVAGRQDED\$

2003_CON_G pol.OPT

B

TCTCTCCCGAGAACCTGGCCTTCCAGCAGGGCGAGGCCCGCAGTTCTCTCCAGCAGGCCCGGCCACTCCCCCACCC
GCCCGAGCTCGCGCTGCCGCCGACTCCCCCTGCCAGGCCAGGGCGCCAGGGCAAGGGGCCATCTCCCTGTCCCT
CCCCAGATCACCTGTGCAGCAGGCCCTGGTACCGTGAAAGATCGCGGCCAGCTGATCGAGGCCCTGCTGGACACC
GCCGACGACACCGTGTGGAGGAGATCAACCTGCCAGCAAGTGGAAGGCCAAGATGATCGCGGCCATCGCGGCCCTCATCA
AGGTGCGCCAGTACGACCAAGATCTGAGATCTCCCGCAAGAAGGCCATCGCACCGTGCTGGGGCCCCACCC
CAACATCATCGGCCAACATGCTGACCCAGATCGGCTGCACCCATCTCCCCATCTCCCCATCGAGACCCTGCCGTG
AAGCTGAAGCCCGCATGGACGGCCCAAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGAGATCT
GCACCGAGATGGAGAAGGAGGCCAAGATCTCCAAGATCGGCCCGAGAACCCCTACAACACCCCCATCTGCCATCAAGAA
GAAGGACTCCACCAAGTGGCGCAAGCTGGTGGACTTCCCGAGCTGAACAAGCGCACCCAGGACTTCTGGGAGGTGAGCTG
GGCATCCCCACCCGCCCTGAAGAAGAAGTCCTGACCGTGACCGTGCTGGACGTGGCGACGCCACTTCTCCGTGCCCC
TGGACGAGAACTTCCGCAAGTACCCGCTTACCATCCCTCCACCAACAACGAGACCCCCGGCATCCGCTACCGATACAA
CGTGTGCCCCAGGGCTGGAAGGGCTCCCCCCCACATCTCCAGTCCTCCATGACCAAGATCTGGGAGCTGGCGACCC
AACCCCGAGATCGTGTACCTACAGTACATGGACGACCTGTACGTGGCTCCGACCTGGAGATCGGCCAGCGCC
TCGAGGAGCTCGCGAGCACCTGCTGCCCTGGGCTTCAACACCCCCGACAAGAACGACCCAGAAGGAGCCCCCTTCTGTG
GATGGGCTACAGCTGCAACCCGACAAGTGGACCGTGACGCCATTCCAGCTGCCGACAAGGAGTCTGGACCGTGACCGAC
ATCCAGAAGCTGGTGGCAAGCTGAACCTGGGCTCCCAGATCTACCCGGCATCAAGTGAAGCAGCTGTGCAAGCTGCTGC
GGCGCGCCAAGGCCCTGACCGACATCGTCCCCCTGACCGCCGAGGGCGAGCTGGAGCTGGCCGAGAACCGCGAGATCTGAA
GGAGCCCGTGACGGCGTGTACTACGACCCCTCCAAGGAGCTGATCGCCGAGGTGCAAGAAGCAGGCCCTGGACCGAGTGGACC
TACCAAGATCTACCAAGGAGCCCTACAAGAACCTGAAGACCGCAAGTACGCCAACGCCGGCTCCGCCACACCAACGACGTGA
AGCAGCTGACCGAGGTGGTGCAAGAAGATGCCACCGAGTCCATCGTGTACCTGGGCAAGACCCCCAAGTTCAAGCTGCCAT
CCGCAAGGAGACCTGGGAGGTGTGGGACCGAGTACTGGCAGGCCACCTGGATCCCCGAGTGGAGTCTGGTAACACCCCC
CCCCCTGGTGAAGCTGTGGTACCGCCTGGAGACCGAGCCATCCCCGGCGCCGAGACCTACTACGTTGACGGCGCCGCCAAC
GCGAGACCAAGCTGGCAAGGCCGCTACGTGACCGACAAGGGCAAGCAGAACATCACCTGACCGAGACCC
GAAGGCGAGCTGCAGGCCATCCACCTGCCCTGCAGGACTCCGGCTCGAGGTGAACATCGTGTGACCGACTCCAGTACGCC
CTGGGCATCATCCAGGCCAGGCCAGGCCCTCGAGTCAGCTGGTGAACACAGATCATCGAGCAGCTGATCAAGAAGGAGA
AGGTGTACCTGTCTGGTGGCCCAAGGGCATCGGCCAACGAGCAGCAGGTGGACAAGCTGGTGTCTCCGGCATCCG
CAAGGTGCTGGTCTGGAGGGCATCGACAAGGCCAGGGAGGAGCACGAGCGCTACCAACTTCAACCTGGCGCCATGGCTCC
GACTTCAACCTGCCCTCATCGTGGCCAAGGAGATCGTGGCTCTGCGACAAGTGCAGCTGAAGGGCGAGGCCATGACCG
GCCAGGTGGACTGCTCCCCGGCATCTGGCAGCTGGACTGCACCCACCTGGAGGGCAAGATCATCTGGTGGCGTGCACGT
GGCCTCCGGCTACATCGAGGCCAGGTGATCCCCGGAGACCGGCCAGGAGACCGCCACTTCACTGGTGAAGCTGGCCGG
CGTGGCCCGTGAGGGTGTACCCACACCGACAACGGCTCCAACCTCACCTCCCGCCGTGAAGGCCGCTGCTGGTGGGCC
ACATCACCCAGGAGTCCGCATCCCCATCAACCCCCAGTCCAGGGCGTGGAGTCATGAACAAGGAGCTGAAGAAGAT
CATCGGCCAGGTGCGCGACCGCCGAGCACCTGAAGACCGCCGTGACATGGCGTGTTCATCCACAACCTCAAGCGCAAG
GGCGGCATCGCGCGTACTCCGCCGGAGCGCATCATCGACATCATCGCCTCCGACATCCAGACCAAGGAGCTGCGAGAAGC
AGATCACCAAGATCCAGAACCTCCCGTGTACTACCGCGACTCCCGGACCCATCTGGAAGGGCCCGCCAAGGCCAAGATCATCGCGAC
GAAGGGCGAGGGCGCCGTGGTGATCCAGGACAACAACGGAGATCAAGGTGGTGCCTGGCCAAGGCCAAGATCATCGCGAC
TACGGCAAGCAGATGGCGCGACGACTCGTGGCGCCGCCAGGACGAGGACTAA

ig. 117

A

74. 2003_CON_H pol.PEP

FFRENLAFFQQREARKFSPEQARANSPTSRELVRVRGDDPLSEAGAEGQGTSLSFQITLWQRPLVTVKIEQLREALLDTG
DDTVLEEINLPGKWKPMIGGIGGFIVRQYEQVAIEICGKKAIGTVLVGPTPVNIIGRNILTQIGCTLNFPISPIETVPV
LKPGMDGPVKVQWPLTEEKIKALTEICEMEMEKEGKISKIGPENPYNTPIFAIKKDSTKWRKLVDRELNKRTQDFWEVQLG
IPHPAGLKKKSVSVDVGDAYFSVPLDKDFRKYTAFTIPSINNETPGIRYQYNVLPGWKGSPAIFQSSMTKILEPFRKQN

PEMIIYQYMDLYVGSDLEIGQHRAKIEELRAHLLRWGFTTPDKKHQEPPFLWMGYELHPDKWTVPVQLPEKDSWTVDI
 QKLVKGKLNWASQIYPGIKVKQLCKLRLGAKALTDIVPLTEAELEAENREILREPVGVYDPSKDLIAEIQKQGPQDWTY
 QIYQEPFKNLKTGKYAKMRTAHTNDVKQLTEAVQKIATESIVIWGKIPKFRLPIQKETWETWWTEHWQATWIPEWEFVNTPH
 LVKLWYQLETEPIAGAETYVYDGAANRET KIGKAGYVTDRGKQKVSLTETTNQKTELQAIYLALQDSGLEVNIVTDSQYAL
 GIIQAQPDKSESELVNQIEELIKKEKVYLSWVPAHKIGGGNEQVDKLVSSGIRKVLFLDGIDKAQEEHERYHNNWRAMASD
 FNLPPIVAKEIVASCDKCQLKGEAMHGQVDCSPGIWQLDCTHLEGKVLVAVHVASYIEAEVIPAETGQETAYFILLAGR
 WPVKMIHTDNGSNFTSAAVKAACWWADIQOEGFIPYNPQSQGVVESMNKELKKIIGQVRDQAEHLRTAVQMAVFIHNFKRKG
 GIGGYSAGERIIDIIATDIQTKELQKQISKIQLFRVYYRDSRDPIWKGPAKLLWKGEHAVVIQDNSEIKVVPRKAKIRDY
 GKQMAGDDCVAGRQDED\$
 3

2003_CON_H pol.OPT

TTCTCCCGAGAACCTGGCCTTCCAGCAGCGAGGCCGCAAGTTCTCCCCCGAGCAGGCCGAGGCCAACCTCCCCCACCT
 CCCCGAGCTGCGCGTGCAGCGACGACCCCTGTCCGAGGCCGCGAGGCCAGGGCACCTCCCTGTCCTTCCC
 CCAGATCACCTGTGGCAGCGCCCTGGTACCGTGAAAGATCGAGGCCAGCTGCCGAGGCCCTGCTGGACACCGCGGCC
 GACGACACCGTGTGGAGAGATCACCTGCCGAGGCCAGCTGCCGAGGCCAGATGATCGGCCGAGGCCCTGCTGGACACCGCGGCC
 TGCCAGTAGCAGCAGGCTGGCATCGAGATCTGCCGAGGCCATGGCACCCCTGAACCTCCCATCTCCCCCATCGAGACCGTGCCTGAAAG
 CATCATGGCCGAAACATCTGACCCAGATCGGCTGCACCCCTGAACCTCCCATCTCCCCCATCGAGACCGTGCCTGAAAG
 CTGAAGCCGGCATGGACGGCCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGAGATCTGCA
 TCGAGATGGAGAAGGGAGGCAAGATCTCAAGATCGGCCCGAGAACCCCTACAACACCCCCATCTCGCCATCAAGAAGAA
 GGACTCCACCAAGTGGCGCAAGCTGGTGGACTTCCCGAGCTGAACAAGCGACCCAGGACTTCTGGGAGGTGCAAGCTGGC
 ATCCCCACCCGCCGGCTGAAGAAGAAGAAGTCCGTGTCCGTGTGGACGTGGCAGCCTACTTCTCCGTGCCCTGG
 ACAAGGACTTCCGAAGTACACCGCCTTCAACCATCCCCCATCAACAACGAGACCCCGCATCCGCTACCAGTACAACGT
 GCTGCCCAAGGGCTGGAGGGCTCCCCGCCATCTTCAAGTGGCCCTGACCAAGAGATCTGGAGGCCCTTCCGCAAGCAGAAC
 CCCAGATGATCATCTACCAAGTACATGGACGACCTGTACGTGGCTCCGACCTGGAGATCGGCCAGCACCAGCCAAGATCG
 AGGAGCTGCGCCACCTGCTGCCGTGGGCTTACCAACCCCCGACAAGAAGCACCAGAAGGAGGCCCTTCTGTGGAT
 GGGCTACGAGCTGACCCGACAAGTGGACCGTGCAGCCGTGAAGCTGCCAGAAGGACTCTGGACCGTGAAGCTGCG
 CAGAAGCTGGTGGCAAGCTGAACCTGGCCCTCCAGATCTACCCCGCATCAAGGTGAAGCAGCTGGAGGCCCTTCCGCAAGCAGAAC
 GCGCCAAGGCCCTGACCCGACATCGGCCCTGACCAAGGAGGCCAGCTGGAGATCCAGAAGCAGGGCCCGACAGTGGACCTAC
 GCCGTGCACGGCGTGTACTACGACCCCTCCAAGGACCTGTACGGAGGCCATCGCCGGCGAGACCTACTACGTGGACGGCGCC
 CAGATCTACCAAGGAGGCCCTCAAGAACCTGAAGACCCGACAAGTACGCCAAGATGCGCACCGCCCACACCAACGACGTGAACC
 AGCTGACCGAGGCCGTGACAGATGCCACCGAGTCCATCGTACCTGGGCAAGATCCCCAAGTTCCGCTGCCATCCA
 GAAGGAGACCTGGGAGACCTGGTGGACCGAGCACTGGCAGGCCACCTGGATCCCGAGTGGAGTTCTGTGAACACCCCCAC
 CTGGTGAAGCTGTGGTACCAAGCTGGAGACCGAGGCCATCGCCGGCGAGACCTACTACGTGGACGGCGCCCAACCGCG
 AGACCAAGATCGGAAGGCCGTACGTGACCGACCGCGGCAAGCAGAAGTGGTGTCCCTGACCGAGACCAACCAAGAA
 GACCGAGCTGAGGCCATCTACCTGGCCCTGCAGGACTCCGGCTGGAGGTGAACATCGTACCGACTCCAGTACGCCCTG
 GGCATCATCCAGGCCAGCCGACAAGTCCGAGTCCGAGCTGGTAACAGATCATCGAGGAGCTGATCAAGAAGGAGAAGG
 TGTACCTGTCTGGGTGCCGCCACAAGGCATCGCCGACAAGCAGCAGGTGGACAAGCTGGTGTCCCTCCGGCATCCGCAA
 GGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCAGCAGCGCTACCAACAAACTGGCGCCATGGCCTCCGAC
 TTCAACCTGCCCTCATCGTGGCAAGGAGATCGTGGCTCTGGACAAGTGGCCAGCTGAAGGGCGAGGCCATCGCACGGCC
 AGGTGGACTGCTCCCCCGCATCTGGCAGCTGGACTGCACCCACCTGGAGGGCAAGGTGATCTGGTGGCCGTGCACGTGGC
 CTCCGGCTACATCGAGGCCAGGTGATCCCCGGAGACCCGCCAGGAGGCCACTTCACCTGCCCGCGTGAAGGCGCC
 TGGCCCGTGAAGATGATCCACACCCGACAACGGCTTCAACTCCAGGGCGTGGAGTCCATGAACAAGGAGCTGAAGAAGATCAT
 TCCAGCAGGAGTTGGCATCCCCCTACAACCCCGACTCCAGGGCGTGGAGTCCATCCACAACCTCAAGCGCAAGGGC
 CGGCCAGGTGCGCGACCCAGGCCAGCACCTGCGACCGCCGTGCAAGATGGCGTGTTCATCCACAACCTCAAGCG
 GGCATCGGCCGCTACTCCGCCGGAGCGCATCGACATCGCCACCGACATCCAGACCAAGGAGCTGCAAGCAGA
 TCTCCAAGATCCAGAAGTTCCCGCGTGTACTACCGGACTCCCGGACCCCATCTGAAGGGCCCGCAAGCTGCTGGAA
 GGGCAGGGCGCCGTGGTACCGAGACAACCTCGAGATCAAGGTGGTGCCTGCCGCAAGGCCAAGATCATCCGCAACTAC
 GGCAGAGATGGCCGGGACGACTCGTGTGGCCGCCAGGAGGACTAA

75. 2003_CON_01_AE pol.PEP

FFRENLAQQKGAGEFSSEQTRANSPTSRKLGDGRDNLLTEAGAERQGTSSFSFPQITLWQRPLTVKIGGQLKEALLDT
 GADDTVLEDINLPGKWKPKMIGGIGGFIKVRQYDQILIEICGKKAIGTVLVGPTPVNIIGRNMLTQIGCTLNFFPISPIDTV
 VTLKPGMDGPVKQWPLETEEKIKALTEICKEMEEEGKISKIGPENPYNTPVFAIKKDSTKWRKLVDRELNKRTQDFWEVQ
 LGIPHPAGLKKKSVTLDVGDAYFSVPLDESFRKYTAFTTIPSINNETPGIRYQYNVLPQGWKGS PAIFQSMTKILEPFRI
 KNPEMVIYQYMDLYVGSDLEIGQHRTKIEELRAHLLSWGFTTPDKKHQKEPPFLWMGYELHPDRWTVPVQPIELPEKDSWTVN
 DIQKLVKGKLNWASQIYAGIKVKQLCKLRLGAKALTDIVPLTEAELEAENREILKTPVHGVYDPSKDLVAEVQKQGQDW
 TYQIYQEPFKNLKTGKYARKRSAHTNDVRQLTEVVQKIATESIVIWGKTPKFRLPIQRETWETWWMEYWQATWIPEWEFVN
 PPLVKLWYQLEKDPIVGAETFYVDGAASRET KLGKAGYVTDRGRQKVSLTETTNQKTELHAIHLALQDSGSEVNIVTDSQY
 ALGIQQAQPDRSESEVNQIEELIKKEKVYLSWVPAHKIGGGNEQVDKLVSSGIRKVLFLDGIDKAQEEHERYHSNWRTMA

SDFNLPPIVAKEIVANCDKCOLKGEAMHGQVDCSPGIWQLDCTHLEGKVLVAVHVASGYIEAEVIPAETGQETAYFLKLA
GRWPVKVIHTDNGSNFTSAAVKAACWWANVRQEFGIPYNPQSQGVVESMNKEKKIIGQVREQAEHLKTAVQMAVFIIHNFKR
KGGIGGYSAGERIIDIIATDIQTKELQKQITKIQNFRVYYRDSRDPIWKGPAKLLWKGEGAVVIQDNSDIKVVPRRKAKIIR
DYGKQMGDDCVAGRQDED\$

2003_CON_01_AE pol.OPT

TTCTTCGGAGAACCTGGCTTCCAGCAGGGCAAGGCCGGGAGTTCTCTCCGAGCAGACCCGCCAACTCCCCCACCT
CCCAGCTGGCGACGGCGCCCGACAACCTGCTGACCGAGGCCGGCCAGCGCCAGGGCACCTCCTCCTCTC
CTTCCCCAGATCACCTGTGGCAGCGCCCCCTGGTGAAGATCGGCCAGCTGAAGGAGGCCCTGCTGGACACC
GGCGCCAGCACCCGTGCTGGAGGACATCAACCTGCCGGCAAGTGAAGATCGGCCAGGCCATCGCACCGTCTCA
TCAAGGTGCCAGTACGACCAGATCTGATCGAGATCTGCCAGAAGAGGCCATCGCACCGTCTGGTGGGCCACCC
CGTGAACATCATCGGCCAACATGCTGACCCAGATCGCTGCACCCCTGAACCTCCCCATCTCCCCATCGACACC
GTGACCTGAAGGCCGGCATGGACGCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGAGA
TCTGCAAGGAGATGGAGGAGGGCAAGATCTCAAGATCGGCCAGCTGGTGAACACCCCCCTAACACCCCCCTGTC
GAAGAAGGACTCCACCAAGTGGCGCAAGCTGGTGAACAGCACCAGGACTCTGGAGGTCAG
CTGGCATTCCCCACCCGCCGGCTGAAGAAGAAGAAGTCCGTGACCGTCTGGCGACGCCCTACTCTCGTGC
CCCTGGACGAGTCTTCCCAGTACACGCCCTCACCATCAACACCGAGACCCGGCATCCGCTACCAAGTA
CAACCGTCTGCCAGGGCTGGACGCCAAGGTGAAGCAGTGGCCCTCCAGATCTACGCCGCATCAAGGTGAAGCAGTGT
TGCGCCGCGCAAGGCCCTGACCGACATCGGCCCTGACCGAGGAGGCCAGCTGGAGCTGGCCAGAACCGCAGATCT
GAAGACCCCCGTGCACGGCGTACTACGACCCCTCAAGGACCTGGTGGCCAGGGTGCAGAACAGCAGGCCAGGAC
ACCTACCAAGATCTACCAAGGAGCCCTCAAGAACCTGAAGACCGGCAAGTACGCCGCAGCGCTCCGCCACAC
TGCAGCTGACCGAGGTGGTGCAGAACATCGCCACCGAGTCCATCGTGAATCTGGGCAAGACCCCCAAGTCTGGCT
CATCCAGCGAGACCTGGAGACCTGGTGGATGGAGTACTGGCAGGCCACCTGGATCCCCGAGTGGAGTCTGT
CCCCCCTGGTGAAGCTGTGTACAGCTGGAGAACGGACCCATCGTGGGCCAGAGGACCTTCTACGTGG
CCCGCAGACCAAGCTGGCAAGGCCGCTACGTGACCGACCGGCCAGGCCAGAACGGTGGTCCCTGACCGAG
CCAGAAGACCCAGCTGCACGCCATCCAGGGCTCCAGGACTCGGCCAGGACTGGGCTCCAGGGTGAACATCGT
GCCAGGGCATCCAGGGCAGCCGACCGCTCCAGGACTCGGCCAGGACTGGGCTCCAGGGTGAACATCGT
AGAAGGTGTACCTGTCTGGTGCACGGCATCGACAGGCCCAGGAGGAGCACGAGCGCTACACTCCA
CCGCAAGGTGTTCTGGACGGCATCGACAGGAGATCGTGGCCAAGGAGATCGTGGCCAAGTGCAGCTGA
TCCGACTTCAACCTGCCCTCATCGTGGCCAAGGAGATCGTGGCCAAGTGCAGCTGAAGGGCGAGGCCATGC
ACGCCAGGTGGACTGCTCCCCGGCATCTGGCAGCTGACCCACCTGGAGGGCAAGGTGATCTGG
CGTGGCTCCGGCTACATCGAGGCCAGGTGATCCCCGGCAGACCGGCCAGGAGACCC
GGCCGCTGGCCCGTGAAGGTGATCCACACCGACAACGGCTCCA
CCAACGTGCCAGGAGTCCGACCCAGTCCAGGGCGTGGTGGAGTCCATGAACAA
GATCATCGGCCAGGTGGCGAGCAGGCCAGCAGTGAAGACCGCCGTGAGATGGCGTGT
AAGGGCGCATCGGCCAGTCCCGCGTACTCCGCCAGGCCAGCAGACCC
AGCAGATCACAAGATCAGAACTCCCGCGTACTACCGGCACTCCGCCAGGCC
GTGGAAGGGCGAGGGCGCCGGTGAACAGGAGAACACTCCGACATCAAGGTGG
GACTACGGCAAGCAGATGGCCGGCGACCGACTCGTGGCCGGCCAGGACGAGGACTAA

Fig. 19

76. 2003_CON_02_AG pol.PEP

FFRENLAQQGEARKFSSEQTGNTSPTSRELWDGGRDNLLSEAGTEGQGTISSFNFPQITLWQRPLVTVRIGGQLIEALLDT
GADDTVLEEINLPWKPKMIGGIGGFIKVRYDQILIEICGKKAIGTVLVGPTPVNIIGRNMLTQIGCTLNFPISPIETVP
VKLPGMDGPVKQWPLTEEKIKALTDICTEMEKEGKISKIGPENPYNTPVFAIKKDSTKWRKLVDFRELNKRTQDFWEVQ
LGIPHAGLKKKSVTVLDVGDAYFSVPLDKDFRKYTAFTIIPSVNNETPGIRYQYNVLPGWKGSPAIFQASMTKILEPFRT
KNPEIVIYQYMDLYVGSDLEIGQHRAKIEELREHLLRWGFTTPDKHHQKEPPFLWMGYELHPDKWTVQPIQLPEKDSWTVN
DIQKLVGKLNWASQIYAGIKVKQLCKLLRGAKALTIVTLTEEAELELAENREILKEPVHGVVYDPTKDLIAEIQKQGDQW
TYQIYQEPFKNLKTGKYAKMRSHTNDVKQLTEVVQKVATESIVIWGKTPKFRLPIQRETWEAWMEWQATWIPEWEFVNT
PPLVKLWYQLEKDPIVGAETFYVVDGAANRETKLGKAGYVTDGRGRQKVVSLETENNQKTELHAIHLALQDSGEVNVITDSQY
ALGIIQAQPDRSESELVNQIEKLIKEKDVYLWSWPAHKGIGGNEQVDLVSNGIRKVLFLDGIDKAQEHEERYHSNWRAMA
SDFNLPPIVAKEIVASCDKCOLKGEAMHGQVDCSPGIWQLDCTHLEGKIIIVAVHVASGYIEAEVIPAETGQETAYFLKLA
GRWPVKVIHTDNGSNFTSAAVKAACWWANVTQEFGIPYNPQSQGVVESMNKEKKIIGQVRDQAEHLKTAVQMAVFIIHNFKR
KGGIGGYSAGERIIDIIASDIQTKELQKQITKIQNFRVYYRDSRDPIWKGPAKLLWKGEGAVVIQDNSDIKVVPRRKAKIIR
DYGKQMGDDCVAGRQDED\$

2003_CON_02_AB pol.OPT

TTCTTCCCGAGAACCTGGCCTTCCAGCAGGGCGAGGCCGCAAGTTCTCCTCCAGCAGACGGCACCAACTCCCCCACCT
CCCGCGAGCTGTGGACGGCGGCCGACAACCTGCTGTCCAGGCCGACCGAGGGCAGGGCACCATCTCCCTTCAA
CTTCCCCCAGATCACCCGTGGCAGCGCCCCCTGGTGACCGTGCATCGCGGCCAGCTGATCGAGGCCCTGCTGGACACC
GGCGCCGACGACCGTGTGGAGGAGATCAACCTGCCCGCAAGTGAAGGCCAAGATGATCGGCGCATCGCGGCTTC
TCAAGGTGCGCCAGTACGACCAGATCTGATCGAGATCTGCGCAAGAAGGCCATCGGCACCGTGTGGGGCCACCCC
CGTGAACATCATCGGCCAACATGTCAGCAGATCGGCCAGATCGGCTGCACCCATGAACTTCCCCATCTCCCCATCGAGACCGTGC
GTGAAGCTGAAGCCGGCATGGACGCCAACGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGACA
TCTGCACCGAGATGGAGAAGGGCAAGATCTCAAGATCGGCCCGAGAACCCCTACAAACACCCCGTGTGGCCATCAA
GAAGAAGGACTCCACCAAGTGGCGCAAGCTGGACTTCGCGAGCTGAACAAGCGCACCCAGGACTCTGGAGGTGCAG
CTGGCATCCCCACCCCGGCCCTGAAGAAGAAGAAGTCCGTCACCGTGTGGGGCTTCAACATCCCCCTCGTAAGAAC
CCCTGGACAAGGACTTCCGCAAGTACACCGCCTTCAACATCCCCCTCGTAAGAACACGAGACCCCCGGCATCCGCT
CAACGTGTGCCCAAGGGCTCCCCCGCCATCTTCCAGGCCATCGGAGATCGGCCAGCACCGC
AAGAACCCCAGAGATCGTATCTACCAAGTACGGACCTGTCGCTGGGCTTCAACACCCCGACAAGAAGCACCAGAAGGAG
AGATCGAGGAGCTGCGCAGACCTGTCGCTGGGCTTCAACACCCCGACAAGAAGCACCAGAAGGAGCTCTGGACCGTGAAC
GTGGATGGGCTAGAGCTGTCACCCGACAAGTGGACCGTGCAGCCCACAGTGTGCCAGAGAAGGACTCTGGACCGTGAAC
GACATCCAGAAAGCTGGTGGCAAGCTGAACGGCCCTCCAGATCTACGCCGCATCAAGGTGAAGCAGCTGTGAAGCTGC
TGCACCGCAGAACCTGGAGGCCCTGGATGGAGTACTGGCAGGCCACCTGGATCCCCGAGTGGAGCTGGCCAGAACCGCAGATC
GAAGGAGCCCGTGCACGGCGTGTACTACGACCCCCACCAAGGACCTGATCGCCAGATCCAGAACGAGGCCAGGACAGTGG
ACCTACAGATCTACCAAGGAGCCCTCAAGAACCTGAAGACCGGCAAGTACCCAAGATGCGCTCCGCCACACCAACGACG
TGAAGCAGCTGACCGAGGTGGTGCAGAAGGTGGCACCGAGTCCATCGTATCTGGGCAAGACCCCCAAGTCCGCTGCC
CATCCAGCGCAGACCTGGAGGCCCTGGATGGAGTACTGGCAGGCCACCTGGATCCCCGAGTGGAGTTCGTGAACACC
CCCCCCCTGGTGAAGCTGTGGTACAGCTGGAGAAGGACCCCATCGTGGCGCCAGACCTCTACGTGGACGGCGCC
ACCGCGAGACCAAGCTGGCAAGGCCGCTACGTGACCGGCCGCGCCAGAACGGTGTGTCCCTGACCGAGACCAAC
CCAGAAGACCGAGCTGCACGCCATCCACCTGCCCTGAGGACTCCGGCTCCGGAGGTGAACATCGTGAACCGACTCCAGTAC
GCCCTGGCATCCAGGCCAGGCCCTCCGAGTCCGAGCTGGAGGAGACATCGAGAACGAGCTGAGAAGGAGCTGAGAAGG
ACAAGGTGTACCTGTCCCTGGTGCACGGCATCGACAAGGCCACAGGAGATCGTGGCTTCTCGGACAAGTGGTGT
CCGCAAGGTGTGTCCCTGGCAAGGCCATCGTGGCAAGGAGATCGTGGCTTCTCGGACAAGTGGCAGCTGAAGGGCAGGCC
TCCGACTCAACCTGCCCTCCATCGTGGCAAGGAGATCGTGGCTTCTCGGACAAGTGGCAGCTGAAGGGCAGGCC
ACGGCCAGGTGGACTGTCCTCCCGCATCTGGCAGCTGGACTGCAACCCACCTGGAGGGCAAGATCATCTGGTGGCC
CGTGGCTCCGGTACATCGAGGCCAGGTGATCCCCGCCAGGCCAGGAGACCCCTACTTCATCTGAAGCTGCC
GGCCGCTGGCCCGTGAAGGTGATCCACACCGACAACGGCTCCAACCTCCGCCCGTGAAGGCCGCTGTGGGG
CCAACGTGACCCAGGAGTTGGCATCCCTACAACCCCCAGTCCAGGGCGTGGTGGAGTCCATGAACAAGGAGCTGAAGAA
GATCATCGGCCAGGTGCGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC
AAGGGCGGATCGGCCGCTACTCCGCCGAGCGCATCTCGACATCATCGCTCCGACATCCAGACCAAGGAGCTGCGAG
AGCAGATCACAAGATCCAGAACTCCGCGTGTACTACCGCAGTCCCGACCCCCATCTGGAGGGCCAGGCCAGGCC
GTGGAGGGCGAGGGCGCCGTGGTGTCCAGGACAACCTCGACATCAAGGTGGTGCCTCCGCCGCAAGGCCAGATCATCCGC
GACTACGGCAAGCAGATGGCGGCCGACGACTGCGTGGCCGCCAGGAGCAGGACTAA

Fig. 120

77. 2003_CON_03_AB pol.PEP

FPRENLAFFQREARKFSSEQTRAISPTSRKLWDGGRDNPLPETGTERQGTASSFNFPQITLWQRPLVTVRIGQLKEALLDT
GADDTVLEDINLPKGWKPKMIGGIGGFIVRQYDQILIEICGKKAIGTVLVGPTPVNIGRNMLTQLGCTLNFPISPETVP
VTLKPGMDGPVKWQPLTEEKIKALTDICKEMEKEGKISKIGPENPYNTPVFAIKKDSTKWRKLVDFRELNKRTQDFWEVQ
LGIPHAGLKKKSVTLDVGDAYFSVPLDQDFRKYTAFTIPSTNNETPGIRYQYNVLPGWKGSPAIFQSSMTKILEPFRK
QNPEIVIYQYMDLYVGSDELIGQHRTKIEELREHLLRWGFTTPDKKHQKEPPFLWMGYELHPDKWTQPIVLP
EKSFTVNDIQKLVGKLNWASQIYAGIKVRQLCKLLRGAKALTEVIPLTAEAELELAENREILKEPVHGYYDPSKDLVA
EIQKQGQGWTYQIYQEPFKNLKTGKYARLRAHTNDVKQLTEAVQKIATESIVIWGKTPFKLPIQKETWETWW
TEYQWATWIPEWEFVNT
PPLVKLWYQLEKEPIVGAETFYV DGAANRET KSGKAGYV TDRGRQKVVS LTDTNQKTELQAIHLALQDS
GLEVNIVTDSQY ALGI IQAQPDKSESELV S QII EQLIKKEKVYLA WPAHK GIGGNEQV DKLVSAGIRKVLFLDG
IDKAQEAEHEKYHSNWRAMA SDFNLPPVVAKEIVASCDKCQLKG EAMHGQVDCSPGIWLDCTHLEGKII
ILVAHVVASGYIEAEVIPAETGQETAYFVLKLA GRWPVKI IHTDNGSNFISTAVKAACWWAGIKQEFGIPYN
PQS QGVVESMNQLKQIIGQVRDQAELKTA VQMAVFIHNFKR KGGIGGYSAGERIIDIIATDIQTKELQK
OIIKIQNF R VY YRDSRDP IWKGPAKLLWKGEGAVVIQDNNDIKVVPRRKAKIIR DY GKQMAGDDCVASRQDED\$

2003_CON_03_AB pol.OPT

TTCTTCCCGAGAACCTGGCCTTCCAGCAGCGCAGGCCGCAAGTTCTCCTCCAGCAGACCCGCCACATCTCCCCCACCT
CCCGCAAGCTGTGGACGGCGGCCGACAACCCCTGCCAGGCCAGACCGGCCACCGGCCAGGGCACCGCCTCTTCAA
CTTCCCCCAGATCACCCGTGGCAGCGCCCCCTGGTGACCGTGCATCGCGGCCAGCTGAAGGAGGCCCTGCTGGACACC
GGCGCCGACGACCCGTGTGGAGGACATCAACCTGCCGCCAGTGAAGGCCAAGATGATCGGCCGACATCGCGGCC

TCAAGGTGCGCCAGTACGACCAGATCTGATCGAGATCTGGCGAAGAAGGCCATCGGCACCGTGCTGGTGGCCCCACCCC
 CGTGAACATCATCGGCCGAAACATGTCGACCCAGCTGGCGCACCCCTGAACCTCCCCATCTCCCCATCGAGACCGTGCCC
 GTGACCTCTGAAGCCGGCATGGACGGCCCCAAGGTGAAGCAGTGGCCCGACCGAGGAGAAGATCAAGGCCCTGACCGACA
 TCTGAAGGAGATGGAGAAGGGAGGGCAAGATCTCAAGATCGGCCCGAGAACCCCTACAAACACCCCCGTGTCGCCATCAA
 GAAGAAGGACTCCACCAAGTGGCGCAAGCTGGGACTTCGCGAGCTGAACAAGCGCACCCAGGACTCTGGAGGTGCAAG
 CTGGGCATCCCCACCCCGCCGCTGAAGAAGAAGAAGTCCGTGACCGTGCTGGACGTGGCGACGCCACTCTCTCCGTGC
 CCCTGGACCAGGACTCCGCAAGTACACCGCCTTCACCATCCCCCTCACCAACAACAGAGACCCCCGGCATCCGTACCAAG
 CAACGTGCTGCCCAAGGGCTGGAAGGGCTCCCCGCCATCTTCAGTCCTCCATGACCAAGATCTGGAGGCCCTCCGCAAG
 CAGAACCCCGAGATCGTGAATCACCAGTACATGGACGACCTGTACGTGGGCTCCGACCTGGAGATCGGCCAGCACCGACCA
 AGATCGAGGAGCTGCGCGAGCACCTGCTGCGCTGGGCTTCACCACCCCGACAAGAAGCACCAGAAGGAGGCCCTTCCT
 GTGGATGGGCTACGAGCTGCAACCCGACAAGTGGACCGTGAGCCCATCGTGTGCCCAGAAGGACTCTGGACCGTGAC
 GACATCCAGAAGCTGGTGGGCAAGCTGAACATGGGCTCCAGATCTACGCCGGCATCAAGGTGCGCAGCTGTCAGCTGC
 TCGCGGCCAAGGCCCTGACCGAGGTGATCCCCCTGACCGCGAGGCCAGCTGGAGCTGGCGAGAACCGCGAGATCT
 GAAGGAGGCCCTGACGGCGTGTACTACGACCCCTCAAGGACCTGCAAGGACCGGCAAGTACGCCCGCTGCGGCCACACCAAC
 ACCTACAGATCTACAGGAGGCCCTCAAGAACCTGAAAGGACCGGCAAGTACGCCCGCTGCGGCCACACCAAC
 TGAACCAGCTGACCGAGGCCGTGCAAGAAGATGCCACCGAGTCCATCGTGTGATGGGCAAGACCCCCAAGTTCAAGCTGCC
 CATCCAGAAGGAGACCTGGGAGACCTGGTGGGAGCTGAGTACCGCAGGCCACCTGGATCCCCGAGTGGAGTTCTGTA
 ACCCGAGAGCCAAGTCGGCAAGGCCGCTACGTGACCGACCGCGCCAGAAGGTGGTGTCCCTGACCGACACCACCA
 CCAGAAGACCGAGCTGACGGCCATCCACCTGGCCCTGCAAGGACTCCGGCTGGAGGTGAACATCGTACCGACTCCAGTAC
 GCCCTGGGATCATCCAGGCCAGCCGACAAGTCCGAGCTCGAGCTGGTGTCCAGATCATCGAGCAGCTGATCAAGAAG
 AGAAGGTGTACCTGGCTGGGCCCCACAAGGGCATGGCGCAACGAGCAGGTGACAAGCTGGTGTCCCCGGCAT
 CCGCAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGCCACAGAGAAGTACCAACTCCAACCTGGCGCCATGGCC
 TCCGACTTCACACTGCCCGTGGCCAAGGAGATCGTGGCCTCCTGCGACAAGTGGCAGCTGAAAGGGGAGGCCATGC
 ACGGCCAGGTGACTGCTCCCCGGCATCTGGCAGCTGACTGACCCACCTGGAGGGCAAGATCATCTGGTGGCGTGC
 CGTGCCTCCGCTACATCGAGGCCAGGTGATCCCCGGAGACCGGCCAGGAGACCGCCTACTCTGTGCTGAAAGCTGGC
 GGCGCTGGCCCGTGAAGATCATCACACCGACAACGGCTCAACTTCATCTCCACCGCGTGAAGGCCGCTCTGGTGG
 CCGGCATCAAGCAGGAGTTCGGCATCCCTACAACCCCGAGTCCAGGGCGTGGTGGAGTCCATGAAACAGCTGAAAGCA
 GATCATCGCCAGGTGCGGACCAGGCCAGGAGCACCTGAAAGACGCCGTGAGATGCCGTGTTCATCCACAACTTCAGCG
 AAGGGCGCATCGGGGCTACTCCGCCGGAGCCATCGACATCATCGACATCATCCAGACATCCAGACCAAGGAGCTGCGA
 AGCAGATCATCAAGATCCAGAAGACTCCCGCTGTACTACCGCAGTCCCGCACCCCATCTGAAGGGCCGCAAGCTGCT
 GTGGAAGGGCGAGGGCGCCGTGGTGTCCAGGACAACAAGCACATCAAGGTGGTGGCCCGCAAGGCCAGATCATCCGC
 GACTACGGCAAGCAGATGGCGCGACGACTGCGTGGCTCCCGCAGGACGAGGACTAA

ig.12

78. 2003_CON_04_CPX pol.PEP

FFRENVAFQQREARKFSSEQARANSPARRELDERGDNLLEAGTEGQGTISFNFPQITLWQRPLVTIKGGQIREALLDTG
 ADDTVLEEINLPWKPKMIGGIGGFIVRQYDQIPIEICGKKAIGTVLVGPTPVNIIGRNMLTQLGCTLNFPISPETVVP
 KLKPMDGPVKQWPLTEEKIKALTEICTEMEKEGKISKIGPENPYNTPIFAICKKNSTRWRKLVDFRELNKRTQDFWEVQL
 GIPHAGLKKKSVTVDVGDAYFSVPLDPERKYTAFTIPSTNNETPGIRYQNVLPQGWKGSPAIFQCSMTKILEPFRTK
 NPEIVIYQYMDLYVGSDEIGQHRAKIEELREHLLRWGFSTPDKKHQKEPPFLWGMGYELHPDKWTQVQPIOLAEKDSWTVND
 IOKLVGKLNWASQIYPGIKVKQLCKLRLGAKALTIDIVPLTTEAELELAENREILKEPVHGAYYDPSKDLIAEIQKQGQW
 YQIYQEPYKNLKTGKYAKTRSAHTNDVRQLTEAVQKIAMECIVWGKTPKFRLPQIKETWDTWWTEYWQATWIPEWEFVNTP
 PLVVLWYQLETDPDIAGAETPYVDAASRETQKGKAGYVTDGRQKVWVSLSETTNQKTELQAIYLALQDSGSEVNIVTDSQYA
 IGIQAQPDRSESDLVNQIIEQLIQKDVKVLSWVPAHKIGGNEQVDKLVNSNGIRKVLFLDGIDKAQEHEKYHNNWRAMAS
 DFNLPPVVAKEIVASCNKCQLKGEAMHGQVDCSPGIWQLDCTHLEGKIIILVAHVASYIEAEVIPAETGQETAYFILKLAG
 RWPVKIIHTDNGPNFTSAAVKAACWWADIQQEFGIPYNPQSQGVVESMNKELKIIQGVRDQAEHLKTAQVMAVFIHNFKRK
 GGIGGYSAGERIIDIASDIQTKELQKQITKIQNFRRVYRDSRDPWKGPAKLLWKGEAVVIQDNSDIKVVPRRKAKIIRD
 YGKQMGDDCVAGRQDED\$
B

2003_CON_04_CPX pol.OPT

TTCTTCGCGAGAACGTTGGCTTCAGCAGCGCGAGGCCGCAAGTTCTCCGAGCAGGCCCGGCCAACTCCCCCGCCC
 GCCCGCAGCTGCGCGAGCGCGGCCAACCTGCTGCTGCCAGGCCAGGCCACCATCTCCCTCAACTT
 CCCCCAGATCACCTGTTGGCAGCGGCCCTGGTGCACCATCAAGATCGCGGCCAGATCGCGAGGCCATCGGCCGCT
 GCCGACGACACCGTGTGGAGGAGATCAACCTGCCAGGAGTGAAGGCCAGATGATCGCGGCCATCGGCCGCTTCACTCA
 AGGTGCGCCAGTACGACAGATCCCCATCGAGATCTGCCAGAAGAGGCCATCGGCCACCGTGCTGGTGGCCCGACCCCCGT
 GAAACATCATCGGCCAGACATGCTGACCCAGCTGGCTGCACCCCTGAACATCTCCCCATCTCCCCATCGAGACCGTGCCCC
 AAGCTGAAGCCGGCATGGACGGCCCAAGGTGAAGCAGTGGCCCGTACCGAGGAGAAGATCAAGGCCCTGACCGAGATCT
 GCACCGAGATGGAGAAGGGAGGAGATCTCAAGATCGGCCCGAGAACCCCTACAAACACCCCCATCTCGCCATCAAGAA
 GAAGAACTCCACCCGCTGGCGCAAGCTGGACTTCCCGAGCTGAACAGCGCACCCAGGACTCTGGAGGTGCAAGCTG

GGCATCCCCACCCGGCCTGAAGAAGAAGTCCGTGACCGTGCTGGACGTGGCGACGCCACTTCTCCGTGCC
 TGGACCCCAGTTCCCAAGTACACCCGCTTCACCATCCCATGACCAACAACGAGACCCCGGCATCCGCTACCAGTACAA
 CGTGTGCCCCAGGGCTGGAAGGGCTCCCCGCCATCTCCAGTGTGACCAAGATCTGGAGGCCCTTCCGACCAAG
 AACCCCGAGATCGTGTACCTACAGTACATGGACGACCTGTACGTGGCTCCGACCTGGAGATCGGCCAGCACCGCGCAAGA
 TCGAGGAGCTGCGGAGCACCTGTGCTGGCTTCTCCACCCCCGACAAGAACAGCAGAACAGAGGGAGCCCCCTTCTGTG
 GATGGGCTACGAGCTGACCCGACAAGTGGACCGTGAGCCCATCCAGTGGCCGAGAACGGACTCTGGACCGTGAAACGAC
 ATCCAGAAGCTGGTGGGCAAGCTGAACGGGGCTCCAGATCTACCCGGCATCAAGGTGAAGCAGCTGTGCAAGCTGTG
 GCGCGCCAAGGCCCTGACCGACATCGTCCCCGTGACCCGAGCTGGAGCTGGCCGAGAACCGCGAGATCCGAGCTGGACC
 GGAGCCCGTGACGGCGCTACTACGACCCCTCAAGGACCTGTGAGATCCAGAAGCAGGCCAGGGCCAGGGCAGTGGACC
 TACAGATCTACCAAGGAGCCCTACAAGAACCTGAAGAACCGCAAGTACGCCAAGACCCGCTCCGCCACACCCAACGACGTG
 GCCAGCTGACCGAGGCCGTGAGAACATGCCATGGAGTGCATCGTGAATCTGGGCAAGAACCCCAAGTTCGGCTGCCAT
 CCAGAAGGAGACCTGGGACACCTGGTGGACCGAGTACTGGCAGGCCACCTGGATCCCGAGTGGAGTGGAGTGTGAAACACCC
 CCCCTGGTGAAGCTGTGGTACCGAGCTGGAGACCGACCCCATCGCCGGCCAGAACCTTCTACGTGGACGGCCGCTTCC
 GCGAGACCAAGCAGGGCAAGGCCGCTACGTGACCGACCCGCCAGAACGGTGGTGTCCGTGAGAACATCGTACCGACTCCAGTACGCC
 GAAGACCGAGCTGACGGCATCTACCTGGCAGGACTCCGGTCCGAGTGTGAACCAAGATCATCGAGCAGCTGATCCAGAACGACA
 ATCGCATCATCCAGGGCCAGCCGACCGCTCCGAGTCCGACCTGGTGAACCAAGATCATCGAGCAGCTGATCCAGAACGACA
 AGGTGTACCTGCTCTGGTGGCCACAAGGGCATCGCGCAACGAGCAGGTGGACAAGCTGGTGTCAAACGGCATCCG
 CAAGGTGTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCACGAGAACAGTACCAACAACCTGGCGCCATGGCTCC
 GACTTCACCTGCCCCCGTGGTGGCAAGGAGATCGTGGCTCTGCAACAAGTGCAGCTGAAGGGCAGGCCATGCAAG
 GCCAGGTGGACTGCTCCCCCGCATCTGGCAGCTGGACTGCACCCACCTGGAGGGCAAGATCATCTGGTGGCGTGCACGT
 GGCTCCGGTACATCGAGGCCAGGTGATCCCCGCCAGACCGGCCAGGAGAACGCCACTTCTCATCTGAAGCTGGCCG
 CGCTGGCCCGTGAAGATCATCCACACCGACAACGCCAACCTCACCTCCGCGCGTGAAGGCCGCTGCTGGTGGCCG
 ACATCCAGCAGGAGTTCGGCATCCCTACAACCCCGAGTCCCAGGGCGTGGAGTCCATGAACAAGGAGCTGAAGAACGAT
 CATCGCCAGGTGCGCGACCAGGCCAGCACCTGAAGACCGCCGTCAGATGGCGTGTTCATCCACAACCTCAAGCGCAAG
 GGCGGCATCGGGCTACTCGCCGGCGAGCGCATATCGACATCATCGCCTCCGACATCCAGAACAGGAGCTGCGAGAC
 AGATCACCAAGATCCAGAACTCCCGGTGACTACCGGACTCCCGGACCCCATCTGGAGGGCCCCGCAAGCTGTG
 GAAGGGCGAGGGCGCCGTGGTGTACCCAGGACAACCTCCGACATCAAGGTGGTGGCCCGCAAGGCCAGATCATCCGCGAC
 TACGGCAAGCAGATGCCCGCGACGACTGCGTGGCCGGCGCAGGAGCAGGACTAA

ig. 122

79. 2003_CON_06_CPX pol.PEP

FFRENLAFFQGEAREFSSEQARANSPTRRELVRRGDSPLPEAGAEQGQAISLSFPQITLWQRLPLTVRIGGQLIEALLDTG
 ADDTVLEDINLPWKPKMIGGIGGFIKVQRQYDQILIBICGKKAIGTVLVGPTPVNIIGRNMLTQIGCTLNFPISPIETVPV
 KLKGMDGPVKQWPPLTEEKIKALTEICTEMEKEGKISKIGPENPYNTPIFAIAKKDSTKWRKLVDRELNKRTQDFWEVQL
 GIPHPAGLKKKSVTLDVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLQPQGWKGSPAIFQSSMIKILEPFRIK
 NPEIVIYQYMDLYVGSDLEIGQHRAKIEELREHLLKGFTTPDKHQKEPPFLWMGYELHPDKWTVQPIQLPDKDSDWTVND
 IQKLVKGKLNWASQIYPGIKVQLCKLLRGAKALTDIVPLTAEEALEAENREILKEPVHGYYDPFSKDLIAEIQKQGQGQWT
 YQIYQEPhKNLKTGKYARIKSAHTNDVKQLTEAVQKIALESIVIWGKTPKFLRP1I0KETWETWWTEYQWATWIPEWEFVNTP
 PLVKLWYQLETEPIVGAETFYVDGAANRETKKKGKAGYVTDGRGRQKVSLTETTNQKTELQAINLALQDSGSEVNIVTDSQYA
 LGIQAQPDKSESELVNQITEQLIKKEKVYLWVPAHKIGGGNEQVDKLVSTGIRKVLFLDGIDKAQEDHERYHSNWRAMAS
 DFNLPPIVAKEIVASCDKCOLKGEAMHGQVDCSPGIWQLDCTHLEGKIIIVAHVASGYIEAEVIPAETGQETAYFILLAG
 RWPVKVIHTDNGSNFTSAAVKAACWWANITQEFGIPYNPQSQGVVESMNKEKKIIQVQRDQAEHLKTAQMAVFHNFKRK
 GGIGGYSAGERIDIIASDIQTKELOQKQITKIQNFRVYRDSRDP1WKGPALKWKGEGAVVIQDNSEIKVVPRRKAKIIRD
 YGKQMGDDCVAGRQDED\$

B

2003_CON_06_CPX pol.OPT

TTCTTCCGCGAGAACCTGGCTTCCAGCAGGGCGAGGGCCCGAGTTCTCCCTCGAGCAGGCCAACCTCCCCACCC
 GCCCGAGCTGCGCGTGCAGGCCGCGACTCCCCCTGCCAGGCCAGGCCAGGGCCAGGCCATCTCCCTGCTCC
 CCCCCAGATCACCTGTGGCAGGCCCTGGTACCGTGCATCGCGCAGCTGATCGAGGCCCTGCTGGACACCGC
 GCCGACACCGTGTGGAGGACATCAACCTGCCGCAAGTGGAAAGGCCAGATGATCGCGCAGCTGCCGCTTCTCATCA
 AGGTGCGCCAGTACGACCAAGATCTGAGATCTGCGCAAGAACGCCATGGCACCGTGTGGTGGCCCCACCCCGT
 GAACATCATCGCCGCAACATGCTGACCCAGATCGCGTGCACCTGAACCTCCCATCTCCCGATCGAGACCGTCCGTG
 AAGCTGAAGGCCGGCATGGACGGCCCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAACATCAAGGCCCTGACCGAGATCT
 GCACCGAGATGGAGAAGGAGGGCAAGATCTCAAGATCGGCCCCCTGAGAACCCCCATCTCGCCATCAAGAA
 GAAGGACTCCACCAAGTGGCGCAAGCTGGACTTCCGCGAGCTGAACAAGCGCACCCAGGACTCTGGGAGGTGCACTG
 GGATCCCCACCCCGCCGCTGAAGAAGAAGAAGTCCGTGACCGTGTGGACGTGGCGACGCCACTTCTCCGTGCC
 TGAGGAGGACTTCCGCAAGTACACCGCCTTCACCATCCCCCTCCATCAACACGAGACCCCGGCATCGCTACAGTACAA
 CGTGTGCCCCAGGGCTGGAAGGGCTCCCCGCCATCTCCAGTCCCTCATGATCAAGATCTGGAGCCCTTCCGACATCAAG
 AACCCCGAGATCGTGTACCTACAGTACATGGACGACCTGTACGTGGCTCCGACCTGGAGATCGGCCAGCACCGCGCAAGA
 TCGAGGAGCTGCGGAGCACCTGCTGAAGTGGGCTTCACCAACCCCGACAAGAACGACCAAGAACAGGAGCCCCCTTCTGTG

GATGGGCTACGAGCTGCACCCCGACAAGTGGACCGTGAGCCCCATCCAGCTGCCCGACAAGGACTCCTGGACCGTGAACGAC
 ATCCAGAAGCTGGTGGCAAGCTGAACCTGGCTCCAGATCTACCCCGCATCAAGGTGAAGCAGCTGTCAAGCTGCTG
 GCGGCCCAAGGCCCTGACCGACATCGGCCCTGACCGCCGAGGCCGAGCTGGAGCTGGCGAGAACCGCGAGATCCCTGAA
 GGAGCCCGTGCACGGCGTGTACTACGACCCCTCAAGGACCTGATGCCAGATCCAGAACGAGGGCCAGGCCAGTGGACC
 TACAGATCTACCAAGGAGCCCACAAGAACCTGAAGACCGCAAGTACGCCGCATCAAGTCCGCCACACCAACGACGTGA
 AGCAGCTGACCGAGGCCGTGCAGAACGATCGCCCTGGAGTCCATCGTGTACTGGGAGCTGGAGCTGGAGTTCGTGAACACCCC
 CCAGAAGGAGACCTGGGAGACCTGGTGGACCGAGTACTGGCAGGCCACCTGGATCCCGAGACCTCTACGTGGACGGCGCCAA
 CGAGACCAAGAAGGGCAAGGCCGTACGTGACCGACCGAGGCCATCGTGGCGAGACCTGACCGAGACCAACCA
 GCGAGACCAAGAAGGGCAAGGCCGTACGTGACCGACCGAGGCCATCGTGGCGAGACCTGACCGAGACCAACCA
 GAAGACCGAGCTGCAGGCCATCAACCTGGCCCTGAGGACTCCGGCTCGAGGTGAACATCGTACCGACTCCAGTACGCC
 CTGGCATCATCCAGGCCAGGCCACAAGTCCGAGTCCGAGCTGGTGAACAGATCATCGAGCAGCTGATCAAGAAGGAGA
 AGGTGTACCTGCTGGTGGCCACAAGGGCATTGGCGAACAGAGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGGAGCTGCC
 CAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGACCGAGCGAGCTACCAACTGCGGCCATGGCTCC
 GACTCAACCTGCCCCCATCGTGGCAAGGAGATCGTGGCTCTCGAGCAACTGCGAGCTGGAGCTGGAGGCCATGGCTCC
 GCCAGGTGGACTGCTCCCCGGCATCTGGCAGCTGGAGCTGCAACCTGGAGGGCAAGATCATCTGGTGGCGTGCACGT
 GCCCTCCGGTACATCGAGGCCAGGGTATCCCGCGAGACGCCAGGAGACCGCTACTTCATCTGAAGCTGGCCGC
 CGCTGGCCCGTGAAGGTATCCACACCGACAACGGCTCCAACCTCACCTCCGCCGTGAAGGCCGCTGCTGGTGGCCA
 ACATCACCCAGGAGTTGGCATCCCCATCACACCCCCAGTCCCAGGGCGTGGAGTCCATGAACAAAGGAGCTGAAGAAGAT
 CATCGGCCAGGTGGCGACAGGCCAGCCTGAAGACGCCGTGCAGATGGCCGTGTCATCCACAACCTCAAGCGCAAG
 GCGGCATCGCGGCTACTCCGCGCGACATCGACATCATCGCTCCGACATCCAGACCAAGGAGCTGCAGAAC
 AGATCACCAAGATCCAGAACCTCCGCGTGTACTACCGGACTCCCGGACCCATCTGGAGGGCCGCCAGGAGCTGCTGTG
 GAAGGGCGAGGGCGCCGTGGTATCCAGGACAACCTCCGAGATCAAGGTGGTGGCCGCCAGGAGATCATCCGCGAC
 TACGGCAAGCAGATGGCCGGCGACGACTGCGTGGCCGCCAGGAGCAGGACTAA

Fig. 123

A

80. 2003_CON_08_BC pol.PEP

FFREILAFPQGEAREFPPEQTRANSPTSRELQVRGDNPSEAGTERQGTLNFPQITLWQPLVSIKVGGQIKEALLDTGADD
 TVLEEVNLPGKWKPKMIGGIGGF1KVRQYEQIPIEICGKAIGTVLVGPTPVNIIGRNMLTQLGCTLNFPISPETVPVKL
 PGMDGPVKQWPLTEEKIKALTAICDEMEKEGKITKIGPDNPYNTPIFAIRKKDSSKWRKLVDFRELNKRTQDFWEVQLGIP
 HPAGLKKKSVTLDVGAYFSVPLDKFRKYTAFTIIPSVNNETPGIRYQYNVLPGWKGSPAIFQCSMTKILEPFRKQNPD
 IVIVQYMDLYVGSDLEIGQHRTKIEELREHLLKGWFTTPDKKHQKEPPFLWMGYELHPDKWTVQPIOLPEKDSWTVDI
 LVGKLNWASQIYPG1KVRQLCKLLRGAKALTDIVPLTEAELELAENREILKEPVHGAYYDPSKELIAEIQKQGQDW
 YQEPFKNLKTGKYAKMRTAHTNDVKQLTEAVOKIAMESIVIWGKIPKFRLP1QKETWETWWTDYQWATWIPEWEFVNT
 PPLV
 KLWYQLEKDPIAGVETFYVDGAANRET KIGKAGYVTDGRRKIVSLTDTTNQKTELQAIYIALQDSGSEVNIV
 TDSQYALGI
 IQAQPDKSESELVNQIIQOLIKKERVYLSWVPAHKIGCGNEQVDKLVSNNGIRKVLFLDGIDKAQEHEKYHSN
 WRAMASDFN
 LPPIVAKEIVASCDQCQLKGEAMHGQVDCSPGIWQLDCTHLEGKII
 LVAVHVASGYIEAEVIPAETGQETAYFILKLAGRWP
 VKVIHTDNGSNFTSAAVKAACWWAGIQQEFGIPYNPQSQGVVESMN
 KELKKLIGQVRDQAELKTAVQMAVF1HNFKRKGGI
 GGYSAGERIVDIIATDIQTRELQKIIKIONFRVYYRDSRDI
 WKGP
 A
 LLWKGEGAVVIQDNSDIKVVPRRAKIIKDYGK
 QMAGADCVAGRQDED\$
 B

2003_CON_08_BC pol.OPT

TTCTCCCGCAGATCTGGCTTCCCCAGGGCGAGGCCGAGTTCCCCCGAGCAGACCCCGGCCACTCCCCACCT
 CCCCGCAGCTGCAGGTGGCGGCCACAACCCCTCTCCGAGGCCGACCGAGCGCCAGGGCACCTGAACCTCCCCAGAT
 CACCTCTGGCAGGCCCTGGTGTCCATCAAGGTGGCGAGATCAAGGAGGCCCTGCTGGACACCGGCCGCCAGAC
 ACCGTGCTGGAGGAGGTGAACCTGCCGGCAAGTGGAGGCCAAGATGATCGGCCGATCGGCCGCTTCATCAAGGTGCC
 AGTACGAGCAGATCCCCATCGAGATCTCGCGCAAGAAGGCCATCGGCCACCCTGCTGGTGGGCCACCCCGTGAACATCAT
 CGGCCAGATGCCAGGCCAGCTGGCTGCCCTGAACCTCCCCATCTCCCCATCGAGACCGTGCCGTGAAGCTGAAG
 CCCGGCATGGACGCCAGGCCAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGCCATCTGC
 GACAGA
 TGGAGAAGGAGGGCAAGATCACCAAGATCGCCCCGACAACCCCTACAACACCCCCATCTCGCCATCCGAAGAAGGACTC
 CTCCAAGTGGCGCAAGCTGGACTTCCCGAGCTGAACAAGCGCACCCAGGACTCTGGAGGTGCAGCTGGCATCCCC
 CACCCCGCCGCTGAAGAAGAAGAAGTCCGTGACCGTGTGGACGTGGCGACGCCACTCTCCGTGCCCTGGACAAGG
 ACTTCCGCAAGTACACCGCTTCACCATCCCCCTCGTAACAAACAGACGCCCTGACCGCCATCTCG
 CCAGGGCTGGAAGGGCTCCCCGCCATCTCCAGTGTCCATGACCAAGATCTCGAGGCCCTTCCGCAAGCAGAACCCGAC
 ATCGTGTACCTACCAAGTACATGGACGACCTGTACGTGGCTCCGACCTGGAGATCGGCCAGCAGGCCACCAAGATCG
 AGGAGC
 TGCGCAGCACCTGCTGAAGTGGGCTTCCACACCCCCGACAAGAAGCAGCAGAGGCCCTCTGTGGATGGGCTA
 CGAGCTGCACCCCGACAAGTGGACCGTGCAGGCCATCCAGTGGCCGAGAAGGACTCTGGACCGTGAACGACATCC
 AGAAG
 CTGGTGGGCAAGCTGAAGTGGCTCTCCAGATCTACCCGGCATCAAGGTGGCCAGCTGTGCAAGCTGCTGCC
 AGGCCCTGACCGACATCGTGGCCATGACCGAGGAGGCCAGCTGGAGCTGGCGAGAACCGCGAGATCCTGAAGGAG
 CCCGT
 GCACGGCGCTACTACGACCCCTCAAGGAGCTGATCGCCGAGATCCAGAACGAGGGCCAGGACCAAGTGGAC
 CCTACCAAGTACGCCAAGATGCGCACCGCCACACCAACGACGTGAAGCAGCTGA
 TACCAAGGAGCCCTCAAGAACCTGAAGACCGCAAGTACGCCAAGATGCGCACCGCCACACCAACGACGTGAAGCAGCTGA

CCGAGGCCGTGCAGAAGATGCCATGGAGTCCATCGTATCTGGGCAAGATCCCAAGTTCGCCCTGCCCATCCAGAAC
 GACCTGGGAGACTGGTGGACCGACTACTGGCAGGCCACCTGGATCCCGAGCTGGAGACCTTCTACGTGGACGGCGCCAAACCGCAGACCA
 AAGCTGTGGTACAGCTGGAGAACGGACCCCCTGCCGGCGCTGGAGACCTTCTACGTGGACGGCGCCAAACCGCAGACCA
 AGATCGGCAAGGCCGGCTACGTGACCGACCGCCGGCAAGAACAGATCGTGTCCCTGACCGACACCACCAACCAGAAC
 GCTGCAGGCCATCTACATCGCCCTGACCGACTCCGGCTCCGGAGGTGAACATCGTACCGACTCCCAGTACGCCCTGGGCATC
 ATCCAGGCCAGCCCCACAAGGGCATCGGCGCAACGAGCAGGGACAAGTGGTGAACAGATCATCGAGCAGCTGATCAAGAAGGAGCG
 TGCTGGACGGCATCGACAAAGGCCAGGAGGAGCACGAGAACAGTACCAACTGGCGCCATGGCTCCGACTTCAC
 GTTCTGGACGGCATCGACAAAGGCCAGGAGGAGCACGAGAACAGTACCAACTGGCGCCATGGCTCCGACTTCAC
 CTGCCCTCATCGTGGCAAGGAGATCGTGGCTCTGCGACCGAGCTGAAGGGCAAGATCATCTGGTGGCGTGACGTGGCTCCG
 ACTCGTCCCCCGGCATCGGAGCTGGACTGCACCCACCTGGAGGGCAAGATCATCTGGTGGCGTGACGTGGCTCCG
 CTACATCGAGGCCAGGTGATCCCCCGAGACCGGCCAGGAGACCCGCTACTTCATCTGAAGCTGGCGGCCGCTGG
 GTGAAGGTGATCCACACCGACAACGGCTCCAACCTCCACCTCCGCCGTGAAGGCCGCTGCTGGTGGGCCGATCCAGC
 AGGAGTCGGCATCCCTACAACCCCCAGTCCAGGGCGTGGAGTCCATGAACAAGGAGCTGAAGAACAGTGTGG
 GGTGCGCAGGCCAGCAGCACCTGAAGAACGCCGTGACGATGGCGTGTTCATCCACAACCTCAAGCGCAAGGGCGGCATC
 GGGGCTACTCCGCCGGAGCGCATCGTGGACATCATGCCACCGACATCCAGACCCGGAGCTGAGAACAGATCATCA
 AGATCCAGAACTTCCGCGTGTACTACCGCGACTCCGCCACCCATCTGGAGGGCCCCCAAGCTGCTGTGGAGGGCGA
 GGGCGCCGTGGTGATCCAGGACAACCTCGACATCAAGGTGGTGGCCCGCAAGGCCAGATCATCAAGGACTACGGCAAG
 CAGATGGCCGGCGCGACTCGTGGCCGGCCAGGACGAGGACTAA

g.124

81. 2003_CON_10_CD pol.PEP
 FFRENLAFQORKARELPSSEQTRANSPTSRELRVWGDNLTSETGAERQAVSLSFPQITLWQRPLVTVKIGGOLKEALLDTG
 ADDTVLEEMNLPGWKPKMIGGIGGFIKVRQYDQILIEICGYKAIGTVLVGPTVNIIGRNLLTOIGCTLNFPISPIETVPV
 KLPKGMDGPVKWQWLTEEKIALTEICTEMKEKGKISRIGPENPYNTPIFAIKKKDSTKWRKLVDRELNKRTQDFWEVQL
 GIPHAGLKKKSNTVLDVGDAYFSVPLYEDFRKYTAFTIPSINNETPGIRYQYNVLPGQWKGSPAIIFQSSMTKILEPFRKQ
 NPEMVIYQYMDLYVGSDEIEQHRIKIEELRGHLKWGFTTPDKHQKEPPFLWMGYELHPDKWTVPQIQLPEKDSWTVND
 IQKLVGKLNWASQIYPGIKVRQLCKLRLGAKALTIDIVPLTEEAELAENREILKEPVHGYYDPSKDLIAEIQKQGQDQWT
 YQIYQEPHKNLKTGKYAKRRTAHTNDVKQLTEAVQKIAQESIVIWGKTPKFRLPIQKETWETWWTDYWQATWIPEWEFVNTP
 PLVKLWYQLEKEPIVGAETFYVDGAANRETKLKGAGYVTDRGRQKVISITDTTNQKTELQAINLAQDSDGSEVNIVTDSQYA
 LGIIQAQPDKSESELVNQIIEQLIKEKVYLSWVPAHKGIGGNEQVDKLVSSGIRKVLFLDGIDKAQEEHEKYHNNWRAMAS
 DFNLPPVVAKEIVASCDKCOLKGEALHGQVDCSPGIWQLDCTHLEGKVLVAHVVASGYIEAEVIPAETGQETAYFLLKLAG
 RWPVKVVHTDNGSNFTSAAVKAACWAGIJKQEFGIPYNPQSQGVVESMNKEKKIIGQVRDQAEHLKTAQVMAFIHNFKRK
 GGIGGYSAGERIIDIIATDIQTKELOQKQIICKIQNFRVYRDSRP_IWKGPAKLLWKGEGAVVIQDNSDIKVVPRRKVKI
 YGKQMGADCVASRQDEDQ

B

2003_CON_10_CD pol.OPT
 TTCTCCGCGAGAACCTGGCCTCCAGCAGCGCAAGGCCCGCGAGCTGCCCTCCGAGCAGACCCGCCAACCTCCCCACCT
 CCCCGAGCTGGCGTGTGGGGCGCGACAAACCCCTGTCCGAGACCGGCCAGCGCCAGGGGCCGTGCTCCCTGTCCT
 CCCCCAGATCACCCGTGGCAGCGCCCCCTGGTACCGTGAAGATCGCGGCCAGCTGAAGGAGGCCCTGCTGGACACCGGC
 GCCGACGACACCGTGTGGAGGAGATGAACCTGCCCGCAAGTGGAGGCCAGATGATCGCGGCATCGGCCGCTTCATCA
 AGGTGCGCAGTACGACCAAGATCTGATCGAGATCTGCCGTACAAGGCCATCGGCCGCTGGGCCACCCCGT
 GAACATCATCGCCGCAACCTGCTGACCCAGATCGCTGCCGTACCGTGAAGCAGTGGCCCTGACCAGGAGAAC
 AAGCTGAAGCCGGATGGACGCCCAAGGTGAAGCAGTGGCCCTGACCAGGAGAACATCAAGGCCCTGACCAGAAC
 GCACCGAGATGGAGAACGGAGGGCAAGATCTCCGACCGCCCGAGAACCCCTAACACCCCCCATCTCCCATCAAGAA
 GAAGGACTCCACCAAGTGGCGCAAGCTGGACTCTCCGAGCTGAACAAGCGCACCCAGGACTCTGGGAGGTGAGCTG
 GGCATCCCCCCCCCGCCGCTGAAGAAGAAGAACAGTCCGTGACCGTGTGGACGTGGCTACTCTCCGTGCCCC
 TGTACGAGGACTTCCGCAAGTACACCGCTTCACCATCCCCCTCCATCAACACGAGACCCCGGACATCGCTACCA
 CGTGTGCCCCAGGGCTGGAGGGCTCCCCCGCATCTCCAGTCCATGACCAAGATCTGGAGGCCCTCCGCAAGCAG
 AACCCCGAGATGGTACCATCGACGACCTGTACGTGGCTCCGACCTGGAGATCGGCCAGCACCCATCAAGA
 TCGAGGAGCTCGCGGCCACCTGCTGAAGTGGGCTTCACCAACCCCCGACAAGAACAGCACCAGAACGGAG
 GATGGGCTACCGAGCTGCACCCGACAAGTGGACCGTGCACCCATCCAGCTGCCGAGAACGGACTCTGGAC
 ATCCAGAAGCTGGTGGCAAGCTGAACCTGGGCTCCAGATCACCCCGACATCAAGGTGCGCAGCTGTGCAAGCTG
 GCGGCCCAAGGCCCTGACCGACATCGTCCCCCTGACCGAGGAGGCCAGTGGAGCTGGCGAGAACCGCGAGATCTGAA
 GGAGCCCGTGCACGGCGTGTACTACGACCCCTCAAGGACCTGATCGCCGAGATCCAGAACGAGGCCAGCTGGACC
 TACCAAGATCTACCAAGGAGGCCACAAGAACCTGAAGAACGCCAGACTACGCCAACGCCACCCACACCA
 AGCAGCTGACCGAGGCCGTGACGAAGAACATGCCAGGACTCCATCGTGTGGGCAAGAACCCCCAAC
 CCAGAAGGAGACCTGGGAGACCTGGGACCCGACTACTGGCAGGGCCACCTGGATCCCCAGTGGGAGTT
 CCCCTGGTGAAGCTGTGGTACCAAGCTGGAGAACGGAGGCCATCGTGGCGCCAGACCTTCTACGTGGAC
 GCGAGACCAAGCTGGCAAGGCCGGCTACGTGACCGACCGCCGGCCAGAACGGTACATCCATCACCG
 AACACCACCAACCA
 GAAGACCGAGCTGCAGGCCATCACCTGGCCCTGCAGGACTCCGGCTCCGAGGTGAACATCGTACCGACT
 CCCAGTACGCC

CTGGGCATCATCCAGGCCAGCCCCGACAAGTCCGAGTCGGAGCTGGTAACCAGATCATCGAGCAGCTGATCAAGAAGGAGA
AGGTGTACCTGTCTGGTGGCCACAAAGGGCATCGCAGGAGCTGGACAACGAGCAGGTGGACAAGCTGGTGTCTCCGGCATCCG
CAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCACCGAGAAGTACCCACAACAAACTGGCGCCATGGCCTCC
GACTTCACCTCCCCCGTGGTGGCCAAGGGAGATCGTGGCTCTGGACAAGTGCCAGCTGAAGGGCGAGGCCCTGCAAGC
GCCAGGTGGACTGCTCCCCGGCATCGCAGCTGGACTGCACCCACCTGGAGGGCAAGGGTATCTGGTGGCCGTGACGT
GGCCTCCGGCTACATCGAGGCCAGGGTATCTGGCAGACCGCCAGGAGACCGCCTACTTCCTGCTGAAGCTGGCCGGC
CGCTGGCCGTGAAGGGTGGCAGACCGACAACGGCTCCAACCTCACCTCCGCCGTGAAGGCCCTGCTGGTGGCCG
GCATCAAGCAGGAGTCGGCATCCCTACAAACCCCCAGTCCCAGGGCGTGGTGAGTCATGAACAAGGAGCTGAAGAAGAT
CATGGCCAGGGTGCAGCAGGCCAGCCTGAAGACGCCGTGAGATGGCGTGTTCATCCACAACCTCAAGCGCAAG
GGCGCATGGCCGGCTACTCCGCCGGCAGCGCATCGACATCATGCCACCGACATCCAGACCAAGGAGCTGCAGAAC
AGATCATCAAGATCCAGAACCTCCGCGTGTACTACCGCAGCTCCGCCACCCATCTGGAAGGGCCCAAGCTGCTGTG
GAAGGGCGAGGGCCGCGTGGTGTACCGAGACAACCTCGACATCAAGGTGGTCCCCGCCAGGACGAGGACCAAG
TACGGCAAGCAGATGGCCGGCGCAGTCGTGGCTCCGCCAGGACGAGGACCAAG

1.125
82. 2003_CON_11_CPX pol.PEP

FFRENLAFFQQGEAREFSPEQARANSPSRELVRGGDSPLPETGAEGEGAISFNFPQITLWORPLVTKVAGQLKEALLDTG
ADDTVLEEDLPLGRWKPKMIGGIGGFIKVRQYEEIIIEIEGKKAIGTVLVGPTPVNIIGRNMLTOIGCTLNFPISPIDTVPV
KLKPGMDGPVKVQWPTEEKIKALTEICTEMEKEGKISKIGPENPYNTPVFAIKKKDSTKWRKLVDRELNKRQDFWEVQL
GIPHPAGLKKKSVTVLDVGDAYFSVPLDESFRKYTAFTIPSINNETPGIRYQNVLPQWGKSPAIFIQSSMTKILEPFRTO
NPEIVIYQYMDLYVGSDEIYGQHREKVEELRKHLLKGWFTTPDKHKHQKEPPFLWMGYELHPDKWTVQPPIQLPDKECWTVND
IQKLVKGKLNWASQIYPGIKVKQLCLLRGTAKLTIDIVPLTAEAELELAENREILKEPVHGVDPSKDLIAEVQKQGLDQWT
YQIYQEPFKNLKTGKYAKRRTAHTNDVRQLAEVVQKISMESIVIWGKIPKFRLPIQRETWTWWTDYWQATWIPEWEFVNTP
PLVKLWYQLEKEPIIGAETFYVDGAANRETKLGKAGYVTDKGRQKVTLTETTNQKTELEAIHLALQDSGLEVINIVTDSQYA
LGIIQAQPDKSESELVSQIEQLIKEKVYLSWVPAHKGIGGNEQVDKLVSSGIRKVLFLDGDIDKAQEEHERYHSNWRAMAS
DFNLPPIVAKEIVASCDKQLKGEAMHGQVDCSPGIWQLDCTHLEGKIIILVAHVVASGYIEAEVIPAETGQETAYFILKLAG
RWPVKVIHTDNGSNFTSAAVKAACWANIQQEFGIPYNPQSQGVVESMNKELKKIIGQVREQAHLKTAQMAVFIHNFKRK
GGIGGYSAGERIVDIIATDLQTKELOQKQITKIQNFRVYYRSDPWIWGPALKLWKGEGAVVIQDNSDIKVVPRRKAKIIRD
YGKQMGDDCVAGRODED\$

2003_CON_11_CPX pol.OPT

B
TTCTCCCGAGAACCTGGCTTCCAGCAGGGCGAGGCCCGAGTTCTCCCCCGAGCAGGCCGCCAACCTCCCCCACCT
CCCGCGAGCTGGCGTGGCGGGCGACTCCCCCTGGCCAGACCGCCGCCAGGGCGAGGCCCATCTCCTCAACT
CCCCAGATCACCTGTGGCAGGCCCTGGTACCATCAAGGTGGCCGCCAGCTGAAGGAGGCCCTGCTGGACACCAGG
GCCGACGACACCGTGTGGAGGAGATCGACCTGCCGCCGTGGAAAGCCCAAGATGATCGGCCATCGGCCCTCATCA
AGGTGGCCAGTACGAGGAGATCATCGAGATCGAGGGCAAGAACGCCATCGGCCACCGTGTGGGCCAACCCCCGT
GAACATCATGGCCGCAACATGCTGACCCAGATCGGCTGACCCCTGAACCTCCCCTATCTCCCCATCGACACCGTGGCCGT
AAGCTGAAGCCGGCATGGACGGCCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAAGATCAAGGCCCTGACCGAGATCT
GCACCGAGATGGAGAAGGAGGGCAAGATCTCAAAGATCGGCCCAAGAACCCCTACAACACCCCGTGTGGCCATCAAGAA
GAAGGACTCCACCAAGTGGCGCAAGCTGGGACTTCCCGAGCTGAACAAGCGCACCCAGGACTTCTGGGAGGTGCAGCTG
GGCATCCCCACCCGCCCTGAAGAAGAACAGTCCGTGACCGTGTGGACGCTGGGCCACGCCACTTCTCCGTGCC
TGGACGAGTCCTTCCGCAAGTACACCGCTTACCATCCCCATCAACAAACGAGACCCCGGATCCGCTACAGTACAA
CGTGTGCCCCAGGGCTGGAGGGCTCCCCCATCTTCCAGTCCTCCATGACCAAGATCTGGAGGCCCTTCCGACCCAG
AACCCCGAGATCGTACACCGTACATGGACGACTGTACGTGGGCTCCGACCTGGAGATCGGCCAGCACCCGAGAAGG
TGGAGGAGCTGGCAAGCACCTGTGAAGTGGGGCTTCACCCACCCCGACAAGAACGACCCAGAAGGAGGCCCTTCTGTG
GATGGGCTACGAGCTGCACCCCGACAAGTGGGACCGTGCAGCCCATCCAGCTGGCCGACAAGGAGTGTGGACCGTGAACGAC
ATCCAGAAGCTGGTGGCAAGCTGAACCTGGGCTCCAGATCTACCCCGGATCAAGGTGAAGCAGTGTGCAAGCTGCTG
GCCAGCTGGCCGAGGTGGTGCAGAAGATCTCATGGAGCTCCAGCTGGGACCGTGGAGCTGGGAGAAGCCGAGATCTGAA
CCAGCGCAGACCTGGGAGACCTGGTGGACCGACTACTGGCAGGCCACCTGGATCCCCAGTGGAGTTCTGTGAACACCC
CCCCGGTGAAGCTGGTACCGAGCTGGAGAAGGAGCCATCATCGCGCCGAGACCTCTACGTGGACGGCCGCCAAC
GCGAGACCAAGCTGGCAAGGCCGCTACGTGACCGACAAGGCCAGAAGGTGGGACCCCTGACCGAGACCCACCAACCA
GAAGACCGAGCTGGAGGCCATCCACCTGGCCCTGCAGGGACTCCGGAGCTGGTCCAGATCATCGAGCAGTGTGATCAAGAAGGAGA
CTGGGCTACCCAGGGCCAGGCCACAAGGGCATCGGCCAGGAGGAGCACGAGCAGGTGGACAAGCTGGTGTCTCCGGCATCCG
AGGTGTACCTGTCTGGGCCCCACAAGGGCATCGGCCAGGAGGAGCACGAGCAGGTGGACAAGCTGGTGTCTCCGGCATCCG
CAAGGTGCTGTCCTGGACGGCATCGACAAGGCCAGGAGGAGCACGAGCAGGTGGACAAGCTGGCCTCTGCAAGTGGCAGCTGAAGGGCGAGGCCATGCAAG
GACTTCACCTGCCCTCATCGTGGCCAAGGAGATCGTGGCCTCTGCAAGTGGCAGCTGAAGGGCGAGGCCATGCAAG
GCCAGGTGGACTGCTCCCCGGCATCGCAGCTGGACTGCACCCACCTGGAGGGCAAGATCATCTGGTGGCCGTGACGT

GGCCTCCGGCTACATCGAGGCCGAGGTGATCCCCGCCAGACCGGCCAGGAGACCCCTACTTCATCCTGAAGCTGGCCGC
CGCTGCCCGTGAAGGTGATCCACACCGACAACCGCTCCAACCTTCACCTCCGCCCGTGAAGGCCGCTGCTGGGGCCA
ACATCAGCAGGAGTCGGCATCCCCATAACCCCCAGTCCCAGGGCGTGGTGGACTCCATGAACAAGGAGCTGAAGAAGAT
CATCGGCCAGGTGCGGAGCAGGCCACTGAAAGACCCGCTGAGATGGCGTGGACTCCACAACTTCAGCGCAAG
GCCGCATCGCCGCTACTCCGCCAGCGCATCGTGACATCATGCCACCGACTCGAGACCAAGGAGCTGCAGAAC
AGATCACCAAGATCCAGAACTTCCCGTGTACTACCGCAGTCCCGACCCCATCTGGAAGGGCCCAAGCTGCTGTG
GAAGGGCAGGGCGCCGTGGTGAATCCAGGACAATCCGACATCAAGGTGGTGCCTGCCAGGACGAGGACTAA

3. 126

83. 2003_CON_12_BF pol.PEP

FFRENLAQQGEARKFPSEQRANSASRELWVRRGDNPULSEAGERRGTVPSLSFPQITLWQRLVTIKVGGQLKEALLDT
GADDTVLEDINLPWKPKMIGGIGGFIKVQYDNILIEICGHKAIGTVLVGPTPVNIIGRNLTLQGCTLNFPPIETVP
VKLKPGMDGPVKQWPLTEEKIKALTEICTEMEKEGKISKIGPENPYNTPVFAIKKDSTKWRKLVDRELNKRTQDFWEQ
LGIPHAGLKKKSVTVLVDGDAYFSVPLDKDRKYTAFTIPSVNNEPTPGIRYQYNVLPGWKGSPAIFQSSMTKILEPFRK
QNPDIYQYMDLYVGSDLEIGQHRTKIEELRHLLRWGFTTPDKKHQKEPPFLWGMYELHPDKWTQPIVLPPEKDSWTVN
DIQKLVGKLNWASQIYPGIKVKQLCRLLRGTKALTEVIPLTKEAELELAENREILKEPVHGYYDPSKDLIAEIQOKQGQW
TYQIYQEPFKNLKTGKYARMGAHTNDVKOLTEAVQKITESIVHGKTPKFLPILKETWDTWWTQYQATWIPEWEFVNT
PPLVWLWYQLETEPIAGAETFYVTDGASNRETKGKAGYVTDGRQKAVSLTTENQKAELHAIQLALQDSGEVNIVTDSQY
ALGIIQAOPDKSESELVNQIIEQLIKKEKVYLSWVPAHKIGGGNEQVDKLVSAGIRKILFLDGIDKAQEHEKYHNNWRAMA
SDFNLPPVVAKEIVASCDKQCLKGEMHGQVDCSPGIWQLDCTHLEGKIILVAHVVASGYLEAEPVPAETGQETAYFILKLA
GRWPVKTIHTDNGPNFSSAAVKAACWWAGIQQEFGIPYNPQSQGVVESMNELKKIIRQVRDQAEHLKTAQMAVFIHNFKR
KGGIGGYSAGERIIDIISTDITQRELQKIIKIQNFRVYYRDSRDPWKPAKLLWKGEAVVIQDNSEIKVVPRRKAKIIR
DYGKQMGDDCVAGRQDED\$

2003 CON_12_BF pol.OPT

TTCTCCGGAGAACCTGCCCTCCAGCAGGGCGAGGCCAGTCCCGAGCAGGCCGCCAACCTCCGAGCAGGCCGCCAACCTCCG
CCCGCGAGCTGGGTGCGCCGCGACAACCCCTGTCCGAGGCCGCCAGCTGAGCCATCAAGGTGGCCAGCTGAAGGAGGCCCTGCTGG
CTTCCCCCAGATCACCTGTGGCAGCGCCCCCTGGTGAACCATCAACCTGCCCGCAAGTGGAAAGCCAAGATGATCGGCCGCATCGCCGCC
GGCGCGACGACACCGTGTGGAGGACATCAACCTGCCCGCAAGTGGAAAGCCAAGATGATCGGCCGCATCGCCGCC
TCAAGGTGAAGCAGTACGACAACATCCTGATCGAGATCTCGGCCACAAGGCCATCGGCCACCGTGTGGTGGGGCCCC
CGTGAACATCATCGGCCACAACCTGCTGACCCAGCTGGCTGCACCCCTGAACACTCCCCATCTCCCCATCGAGACCCTG
GTGAAGCTGAAGCCCCGATGGACGCCCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGACCGAGA
TCTGACCGAGATGGAGAAGGAGGGCAAGATCTCAAGATCGGCCCGAGAACCCCTAACACACCCCGTGTGCCATCAA
GAAGAAGGACTCCACCAAGTGGCGCAAGCTGGGACTTCCCGCAGCTGAACAAGCGCACCCAGGACTTCTGGAGGTGAG
CTGGCATTCCCCACCCCGGCCCTGAAGAAGAAGTCCGTGACCGTGTGGACGCTGACCGTGTGGAGGCC
CCCTGGACAAGGACTTCCCAAGTACACCGCCCTCACCATCCCCCTCGTAACAACCGAGACCCCGCATCCCTACCA
CAACGTGCTGCCAGGGCTGGAAAGGGCTCCCCCGCATCTCCAGTCCCTCATGACCAAGATCTGGAGGCCCTCCGCAAG
CAGAACCCGACATCGTATCTACCAAGTACATGGACGACCTGTACGTGGCTCCGACCTGGAGATCGCCAGACCGACCA
AGATCGAGGAGCTGCCAGCACCTGCTGCCCTGGGCTTCAACACCCCGACAAGAAGCACCAGAAGGAGCCCCCTTCT
GTGGATGGCTACGAGCTGCACCCGACAAGTGGACCGTGCAGCCATCGTGTGCCCCAGAAGGACTCTGACCGTGAAC
GACATCCAGAAGCTGGGGCAAGCTGAACTGGGCTCCAGATCTACCCCGCATCAAGGTGAAGCAGCTGCGCCCTGC
TGC CGGCACCAAGGCCCTGACCGAGGTGATCCCCCTGACCAAGGAGGCCAGCTGGAGCTGGCCAGAAGCCCGAGATCT
GAAGGAGCCCCGTGACCGCGTGTACGACCCCTTCAAGAACCTGAAGACCCGCAAGTACGCCCGCATCGCGGCC
ACCTACAGATCTACCAAGGAGCCCCCTCAAGAACCTGAAGACCCGCAAGTACGCCCGCATCGCGGCC
TGAAGCAGCTGACCGAGCCGTGACAGAACATCCACCGAGTCCATCGTGTACCTGGGCAAGACCCCAAGTCCGCTGCC
CATCCTGAAGGAGACCTGGGACACCTGGTGGACCGAGTACTGGCAGGCCACCTGGATCCCCGAGTGGAGITCGTGAACACC
CCCCCCTGGTGAAGCTGTGGTACAGCTGGAGACCGAGGCCATCGCCGGCCGAGACCTTCTACGTGGACGGCGCTCCA
ACCGCAGACCAAGAAGGGCAAGGCCGCTACGTGACCGACCGCGGCCAGAGGCCGTGTCCCTGACCGAGACCACAA
CCAGAAGGCCAGCTGCAGCCATCCAGCTGCCCTGCAGGACTCCGCTCCGAGGTGAACATCGTACCGACTCCAGTAC
GCCCTGGCATATCCAGGCCAGCCGACAAGTCCGAGTCCGAGCTGGTAACCGAGATCATCGAGCAGCTGATCAAGAAG
AGAAGGTGTACCTGTCTGGTGCCTGCCGCCACAAGGGCATCGCCGGCAACGAGCAGGTGGACAAGCTGGTGTCCGCC
CCGAAGATCCTGTTCTGGACGGCATCGACAAGGCCAGGAGGACCGAGAAGTACCAACACTGGCGGCCATGCC
TCCGACTTCAACCTGCCCTGGTGGCCAAGGAGATCGTGGCTCTGCGACAAGTGCAGCTGAAGGGCGAGGCCATGC
ACGCCAGGTGGACTGCTCCCCCGCATCTGGCAGCTGGACTGCAACCCACCTGGAGGGCAAGATCATCTGGTGGCGTGC
CGTGGCTCCGGTACCTGGAGGCCAGGTGATCCCCCGAGACCCGCCAGGAGACCCCTACTCTCATCTGTGAAGCTGG
GCCCGCTGGCCCGTGAAGACCATCCACACCGACAAGGCCCAACTTCTCTCCCGCCCGTGAAGGGCGCTGCTGGTGG
CCGGCATCCAGCAGGAGTTCGGCATCCCCATAACACCCCAAGTCCAGGGCGTGGAGTCCATGAACACAAGGAGCTGAAGAA
GATCATCCGCCAGGTGCGCGACCAGGCCAGACCTGAAGACCGCCGTGCAGATGGCGTGTACCCACAACCTCAAGCGC
AAGGGCGCATCGCCGGTACTCCGCCGGCAGCGCATCATCGACATCATCCACCGACATCCAGACCCGCCAGCTGCAGA

G. 127

AGCAGATCATCAAGATCCAGAACCTCCCGTGACTACCGCGACTCCCGGACCCCGTGGAAAGGGCCCCGCCAAGCTGCT
GTGGAAGGGCGAGGGCGCCGTGGTATCCAGGACAACCTCCGAGATCAAGGTGGTCCCCGCCGCAAGGCCAAGATCATCCGC
GACTACGGCAAGCAGATGGCCGGGACGACTGGCGACTGGCCGGCCAGGACGAGGACTAA

84. 2003_CON_14_BG pol.PEP

A , FFRENLAFOQGEAREFSPEQARANSPTRELWVRRGDSPLPEARAEKGDIPLSLPQITLWQRPLVTVRIGGOLIEALLDTG
ADDTVLEDINLPKGWKPKMIGGIGGFIKVRQYDQILIEICGKKAIGTVLVGPTPINIIGRNMLTQIGCTLNFPISPIETVPV
, KLPKGMDGPVKVQWPLTEEKIKALTDICTEMEREGKISKIGPENPYNTPIFAIKKKDSTKWRKLVDRELNKRTQDFWEVQL
GIPHPSGLKKKKSVTLDVGDAYFSPVLDGESFRKYTAFTTIPSTNNETPGIRYQYNVLPGQWKGSPAIFQSSMTKILEPFRIK
NPEIVIYQYMDDLVGSDELEIGQHRAKIEELRKHLLSWGFTTPDKKHQKEPPFLWMGYELHPDKWTVQPIQLPDKESWTVND
IQKLVGKLNWASQIYPGIVKVKQLCKLRLGAKALTDIVPLTAAEAELEAENREIKEPVHGVVYEPSKELIAEVVKQGLDQWT
YQIYQEPRYKLNLTGKYAKRGSANTNDVKQLTEVVQKIATSIWKGTPKFKLPIRKETWEVWWTEYWQATWI PDWEFVNTP
PLVWLWYRLETEPIAGAETYVTDVGAAANRETKLKGAGYVTDKGKQKIIITLTETTNQAKELQAIHIALQDSGSEVNIVTDSQYA
LGIIQAQPDRSESEVNVQIIEQLIKKEVYLSWVPAHKIGGNEQVDKLVSSGIRKVLFLDGIDKAQEEHEKYHSNWRAMAS
DFNLPPVVAKEIVASCDKQCLKGEMHGQVDCSPGIWQLDTHLEGKIIILVAHVVASGYIEAEVIPAETGQETAYFILKLAG
RWPVKI IHTDNGSNFTSAAVKAACWWANITQEFGIPYNPQSQGVVESMNKELKKIIGQVRDQAEHLKTAQVMAFIHNFKRK
GGIGGYSAGERIIDIIASDIQTKELQKQITKIQNFRVYFRDSRDPIWKGPAKLLWKGEHAVVIQDNNEIKVVPRRKAKIIRD
YGKQMGDDCVAGRQDED\$

2003_CON_14_BG pol.OPT

B , TTCTCCCGAGAACCTGGCCTTCCAGCAGGGCGAGGCCCGGAGTTCTCCCCCGAGCAGGCCCGCCAACCTCCCCCACCC
GCCCGCAGCTGGGGTGCAGCCGAGCTCCCCCTGCCAGGGCCAGCTGATCGAGGCCATCGGCCCTGCTGGACACCCGGC
GCCCGAGATCACCTGTGGCAGCGCCCTGGTACCGTGCATCGCCGGCAGCTGATCGAGGCCATCGGCCCTGCTGGACACCCGGC
GCCGACGACACCGTCTGGAGGACATCAACCTGCCCGAAGTGGAAAGGCCAAGATGATCGGCCCTGCTGGACACCCGGC
AGGTGCGCAGTACGACCAGATCTGATCGAGATCTGCGGCAAGAAGGCCATCGGCCCTGCTGGACACCCGGC
CAACATCATCGCCGCAACATGCTGACCCAGATCGCTGCACCCCTGAACCTCCCATCTCCCCATCTGAGACCGTGCCTGG
AAGCTGAAGCCGGCATGGACGGCCCAAGGTGAAGCAGTGGCCCTGACCGAGGAGAAGATCAAGGCCCTGAGACGACATCT
GCACCGAGATGGAGCGAGGGCAAGATCTCAAGATCGGCCCTGAGAAGCCCTACAAACACCCCATCTCGCCATCAAGAA
GAAGGACTCCACCAAGTGGCGCAAGCTGGACTTCGGCGAGCTGAACAAGCAGCACCAGGACTCTGGAGGTGCAAGCTG
GGCATCCCCACCCCTCCGGCCTGAAGAAGAAGAAGTCCGTGACCGTGTGGACGTGGCAGCCTACTTCTCCGTGCCCC
TGGACGAGTCTTCCGCAAGTACACCGCCTTCAACATCCCTCCACCAACAAGAGACCCCGGATCCGCTACCAAGTACAA
CGTGTGCCCCAGGGCTGGAAGGGCTCCCCGGCATCTCCAGTCCTCCATGACCAAGATCTGGAGGCCCTCCGATCAAG
AACCCCGAGATCGTACCATCGACGACCTGTACGTGGCTCCGACCTGGAGATCGGCCAGCACCGGCCAAGA
TCGAGGAGCTGCGCAAGCACCTGCTGTGCTGGGCTTCACCACCCCGACAAGAAGCACCAGAAGGAGCCCTCTGTG
GATGGGCTACCGAGCTGCAACCCGACAAGTGGACCGTGAGCCCCTCCAGCTGCCCAGAAGGAGTCTGGACCGTGAACGAC
ATCCAGAAGCTGGTGGGAAGCTGAACACTGGGCTCCACAGATCACCCCGGATCAAGGTGAAGCAGCTGTGCAAGCTGCTG
GCCGCCAAGGCCCTGACCGACATCGTGCCTGACCGCCAGGCGAGCTGGAGCTGGCGAGAAGCCCGAGATCTGAA
GGAGCCCGTGACGGCGTGTACTACGAGCCCTCAAGGAGCTGATCGCCGAGGTGCAAGAACAGCAGGAGCTGGACCGTGA
TACCAAGATCTACCAAGGAGCCCTACAAGAACCTGAAGGACCGGCAAGTACGCCAAGCGCCTGGGCCCCACACCAAGCAGCTG
AGCAGCTGACCGAGGTGGTGCAGAAGATCGCACCGACTGGCCATCTGGAGTCCTCCACCGAGCTGGGCTACCCGG
CGGCCAGGAGACCTGGGAGGTGTGGTGGAGGAGTACTGGCAGGCCACCTGGATCTGGAGCTGGGCTACCCGG
CCCGAAGGAGACCTGGGAGGTGTGGTGGAGGAGTACTGGCAGGCCACCTGGATCTGGAGCTGGGCTACCCGG
CCCCTGGTGAAGCTGGTACCGCCTGGAGACCGAGCCCTACGCCGGCAGGAGCTGAGACATCACCCGG
GCGAGACCAAGCTGGCAAGGCCGGCTACGTGACCGACAAGGGCAAGCAGAAGATCATCACCGAGACCC
GAAGGGCGAGCTGCAAGGCCATCCACATGCCCTGCAAGGACTCCGGCTGGAGGTGAACATCGTGAACCGACTCCAGTACGCC
CTGGGACATCACCCGGCAGGCCACCGCTCCAGTGGAGTCCTGGAGGTGAACACAGATCATCGAGCAGCTGATCAAGAAGGAGA
AGGTGTACCTGTCTGGTGGCCACAGGGCATGGCCGACCGAGCAGGTGGACAAGCTGGTGTCTCCGGCATCCG
CAAGGTGCTGTTCTGGACGGCATCGACAAGGCCAGGAGGAGCAGAGAAGTACCAACTCCAACTGGCGCCATGGCCTCC
GACTTCACCTGCCCTGGTGGCCAAGGAGATCGTGGCTCTGCAAGTGCAGCTGAAGGGCGAGGCCATGCACG
GCCAGGTGGACTGCTCCCCGGCATCTGGCAGTGGACTGCACCCACCTGGAGGGCAAGATCATCTGGTGGCCGTGACGT
GGCCTCCGGCTACATCGAGGCCAGGTGATCCCCGGAGACCGGCCAGGAGACCGCCACTTCACTCTGAGCTGGCTGGCC
CGCTGGCCCGTGAGATCATCCACCCGACAACCGACAAGGCCAGGAGCTGGTGGAGTCCATGAACAAGGAGCTGAAGAAGAT
ACATCACCCAGGAGTTCGGCATCCCTACAACCCCGACTCCAGGGCCAGGAGCTGGTGGAGTCCATGCACCAACTTCAAGCGCAAG
CATCGGCCAGGTGCGGACCCAGGGCAGCACCTGAAGGACCCGAGCAGATGGCCCTGAGATGGCCCTGCTGGTGGGCC
GGCGGCATCCGGGCTACCCGGGAGGAGCTGGTGGAGGAGCTGGTGGAGTCCATGCACCAACTTCAAGCGCAAG
AGATCACCAAGAGATCCAGAACCTCCCGTGACTTCCCGGACTCCCGGACCCCGATCTGGAGGGCCAGGAGCTGCTGTG
GAAGGGCGAGGGCGCCGTGGTACCGAGAACACAGAGATCAAGGTGGTCCCCGGCAAGGCCAAGATCATCCGCGAC
TACGGCAAGCAGATGGCCGGGACGACTGGCGGCCAGGACGAGGACTAA

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US2004/030397

International filing date: 17 September 2004 (17.09.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 60/604,722
Filing date: 27 August 2004 (27.08.2004)

Date of receipt at the International Bureau: 24 April 2006 (24.04.2006)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.