Universidad Nacional de Ingeniería

Facultad de Ingeniería Eléctrica y Electrónica

Especialidad de Ingeniería de Telecomunicaciones "Solucionario del 2da Práctica Calificada"

Curso: Análisis de Señales y Sistemas

Código del Curso: EE410-M

Docente: Manuel Arevalo Villanueva

Alumno: Harold Alessander Jhon Zambrano Quispe

Código de Alumno: 20191351B

2021-I

- 2. Sea f[n] = 3, $0 \le n \le 2$, un pulso cuadrado, g[n] = [1, 2, 3, 2, 1] un pulso triangular, sea $h[n] = (\frac{1}{2})^n$, $0 \le n \le 8$ una amortiguación exponencial
 - a) Usando el MATLAB grafique las señales f[n],g[n] y h[n].
 - •Para la grafica f[n] = 3, $0 \le n \le 2$, se utilizo la funcion stem de MATLAB para realizar un pulso cuadrado consideramos en un intervalo de [-8,8].

```
1 - clear clc
2 - n=-8:8;
3 - x=[0 0 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0];
4 - stem (n,x,'filled','-','LineWidth',2);
5 - xlabel('n');
6 - ylabel('f(n)');
7 - title('FULSO CUADRADO','LineWidth',2)
```


Figure 1: Código en Matlab y gráfica de f[n]

•Para la gráfica g[n] = [1, 2, 3, 2, 1], $-2 \le n \le 2$, se utilizo la función stem de MATLAB para realizar un pulso rectangular consideramos en un intervalo de [-8, 8].

```
1 - clear clc
2 - n=-8:8;
3 - x=[0 0 0 0 0 0 1 2 3 2 1 0 0 0 0 0 0];
4 - stem (n,x,'filled','-','LineWidth',2);
5 - xlabel('n');
6 - ylabel('g(n)');
7 - title('PULSO TRIANGULAR','LineWidth',2)
```


Figure 2: Código en Matlab y gráfica de g[n]

•Para la grafica $h[n] = (\frac{1}{2})^n$, se utilizo la funcion stem de MATLAB para realizar la amortiguación exponencial [-8,8] con paso 1.

```
1 - clear clc
2 - n=-8:1:8;
3 - y=(0.5.^n).*stepfun(n,0)-(0.5.^n).*stepfun(n,9);
4 - stem (n,y,'filled','-','LineWidth',2);
5 - axis([-8 8 -4 4]);
6 - xlabel('n');
7 - ylabel('h(n)');
8 - title('AMORTIGUACION EXPONENCIAL','LineWidth',2)
```


Figure 3: Código en Matlab y gráfica de h[n]

b) Encuentre en términos de n y la señal escalón unitario las siguientes convoluciones: Como nos piden la convolución de dos señales discretas por conocimiento previo:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

• Hallamos la convolución de f[n] * g[n] con la formula previa hallada.

$$n < -2 \to y[n] = 0$$

$$n = -2 \to y[n] = \sum_{k = -\infty}^{\infty} f[k]g[n - k] = f[0]g[-2] = (3)(1) = 3$$

$$n = -1 \to y[n] = \sum_{k = -\infty}^{\infty} f[k]g[n - k] = f[0]g[-1] + f[1]g[-2] = 9$$

$$n = 0 \to y[n] = \sum_{k = -\infty}^{\infty} f[k]g[n - k] = f[0]g[n] + f[1]g[-1] + f[2]g[-2] = 18$$

$$n = 1 \to y[n] = \sum_{k = -\infty}^{\infty} f[k]g[n - k] = f[0]g[1] + f[1]g[0] + f[2]g[-1] = 21$$

$$n = 2 \to y[n] = \sum_{k = -\infty}^{\infty} f[k]g[n - k] = f[0]g[2] + f[1]g[1] + f[2]g[0] = 18$$

$$n = 3 \to y[n] = \sum_{k = -\infty}^{\infty} f[k]g[n - k] = f[1]g[2] + f[2]g[1] = 9$$

$$n = 4 \to y[n] = \sum_{k = -\infty}^{\infty} f[k]g[n - k] = f[2]g[2] = 3$$

$$n > 4 \to y[n] = 0$$

$$y[n] = f[n] * g[n] = \begin{cases} 0 & \text{si } n < -2\\ 3 & \text{si } n = -2\\ 9 & \text{si } n = -1\\ 18 & \text{si } n = 0\\ 21 & \text{si } n = 1\\ 18 & \text{si } n = 2\\ 9 & \text{si } n = 3\\ 3 & \text{si } n = 4\\ 0 & \text{si } n > 4 \end{cases}$$

Expresamos en n y escalón unitario la señal:

$$y[n] = 3u[n+2] + 6u[n+1] + 9u[n] + 3u[n-1] - 3u[n-2] - 9u[n-3] - 6u[n-4] - 3u[n-5]$$

• Hallamos la convolución de f[n]*h[n] con la formula previa hallada.

$$f[n] * h[n] = \sum_{k=-\infty}^{\infty} f[k]h[n-k]$$

$$n < 0 \to y[n] = 0$$

$$n = 0 \to y[n] = \sum_{k=-\infty}^{\infty} f[k]h[n-k] = f[0]h[0] = 3$$

$$n = 1 \to y[n] = \sum_{k=-\infty}^{\infty} f[k]h[n-k] = f[0]h[1] + f[1]h[0] = \frac{9}{2}$$

$$n = 2 \to y[n] = \sum_{k=-\infty}^{\infty} f[k]h[n-k] = f[0]h[2] + f[1]h[1] + f[2]h[0] = \frac{21}{4}$$

$$n = 3 \to y[n] = \sum_{k=-\infty}^{\infty} f[k]h[n-k] = f[0]h[3] + f[1]h[2] + f[2]h[1] = \frac{21}{8}$$

$$n = 4 \to y[n] = \sum_{k=-\infty}^{\infty} f[k]h[n-k] = f[0]h[4] + f[1]h[3] + f[2]h[2] = \frac{21}{16}$$

$$n = 5 \to y[n] = \sum_{k=-\infty}^{\infty} f[k]h[n-k] = f[0]h[5] + f[1]h[4] + f[2]h[3] = \frac{21}{32}$$

$$n = 6 \rightarrow y[n] = \sum_{k = -\infty}^{\infty} f[k]h[n - k] = f[0]h[6] + f[1]h[5] + f[2]h[4] = \frac{21}{64}$$

$$n = 7 \rightarrow y[n] = \sum_{k = -\infty}^{\infty} f[k]h[n - k] = f[0]h[7] + f[1]h[6] + f[2]h[5] = \frac{21}{128}$$

$$n = 8 \rightarrow y[n] = \sum_{k = -\infty}^{\infty} f[k]h[n - k] = f[0]h[8] + f[1]h[7] + f[2]h[6] = \frac{21}{256}$$

$$n = 9 \rightarrow y[n] = \sum_{k = -\infty}^{\infty} f[k]h[n - k] = f[1]h[8] + f[2]h[7] = \frac{9}{256}$$

$$n = 10 \rightarrow y[n] = \sum_{k = -\infty}^{\infty} f[k]h[n - k] = f[2]h[8] = \frac{3}{256}$$

$$n > 10 \rightarrow y[n] = \sum_{k = -\infty}^{\infty} f[k]h[n - k] = 0$$

$$\begin{cases} 0 & \text{si } n < 0 \\ 3 & \text{si } n = 0 \\ \frac{9}{2} & \text{si } n = 1 \\ \frac{21}{4} & \text{si } n = 2 \\ \frac{21}{8} & \text{si } n = 3 \end{cases}$$

$$\begin{cases} 0 & \text{si } n < 0 \\ 3 & \text{si } n = 0 \\ \frac{9}{2} & \text{si } n = 1 \\ \frac{21}{128} & \text{si } n = 3 \end{cases}$$

$$\begin{cases} 0 & \text{si } n < 0 \\ 3 & \text{si } n = 0 \\ \frac{9}{2} & \text{si } n = 1 \\ \frac{21}{256} & \text{si } n = 4 \end{cases}$$

$$\begin{cases} 0 & \text{si } n < 0 \\ 3 & \text{si } n = 0 \\ \frac{9}{2} & \text{si } n = 1 \\ \frac{21}{256} & \text{si } n = 6 \\ \frac{21}{128} & \text{si } n = 7 \\ \frac{21}{256} & \text{si } n = 9 \\ \frac{3}{256} & \text{si } n = 10 \\ 0 & \text{si } n > 10 \end{cases}$$

Expresamos en n y escalón unitario la señal:

$$y[n] = (0.5)^{n} (3u[n] + 6u[n-1] + 12u[n-2] - 12u[n-9]) - (0.5)^{8} (6u[n-10] - 3u[n-11])$$

• Hallamos la convolución de g[n] * h[n] con la formula previa hallada.

$$g[n] * h[n] = \sum_{k=-\infty}^{\infty} g[k]h[n-k]$$

$$n < -2 \to y[n] = 0$$

$$n = -2 \to y[n] = \sum_{k=-\infty}^{\infty} g[k]h[n-k] = g[-2]h[0] = 1$$

$$n = -1 \to y[n] = \sum_{k=-\infty}^{\infty} g[k]h[n-k] = g[-1]h[0] + g[-2]h[1] = \frac{5}{2}$$

$$\begin{split} n &= 0 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[-2]h[2] + g[-1]h[1] + g[0]h[0] = \frac{17}{4} \\ n &= 1 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[-2]h[3] + g[-1]h[2] + g[0]h[1] + g[1]h[0] = \frac{33}{8} \\ n &= 2 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[-2]h[4] + g[-1]h[3] + g[0]h[2] + g[1]h[1] + g[2]h[0] = \frac{49}{16} \\ n &= 3 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[-2]h[5] + g[-1]h[4] + g[0]h[3] + g[1]h[2] + g[2]h[1] = \frac{49}{32} \\ n &= 4 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[-2]h[6] + g[-1]h[5] + g[0]h[4] + g[1]h[3] + g[2]h[2] = \frac{49}{64} \\ n &= 5 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[-2]h[7] + g[-1]h[6] + g[0]h[5] + g[1]h[4] + g[2]h[3] = \frac{49}{128} \\ n &= 6 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[-2]h[8] + g[-1]h[7] + g[0]h[6] + g[1]h[5] + g[2]h[4] = \frac{49}{256} \\ n &= 7 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[-1]h[8] + g[0]h[7] + g[1]h[6] + g[2]h[5] = \frac{3}{32} \\ n &= 8 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[0]h[8] + g[1]h[7] + g[2]h[6] = \frac{11}{256} \\ n &= 9 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[1]h[8] + g[2]h[7] = \frac{1}{64} \\ n &= 10 \to y[n] = \sum_{k = -\infty}^{\infty} g[k]h[n - k] = g[1]h[8] + g[2]h[7] = \frac{1}{64} \\ n &= 10 \to y[n] = 0 \\ y[n] &= g[n] * h[n] = \begin{cases} 0 & \text{si } n < -2 \\ \frac{5}{25} & \text{si } n = 1 \\ \frac{19}{16} & \text{si } n = 2 \\ \frac{33}{25} & \text{si } n = 3 \\ \frac{33}{25} & \text{si } n = 3 \\ \frac{33}{25} & \text{si } n = 6 \\ \frac{1}{64} & \text{si } n = 9 \\ \frac{1256}{16} & \text{si } n = 0 \\ 0 & \text{si } n > 10 \\ 0 & \text{si } n >$$

Expresamos en n y escalón unitario la señal:

$$y[n] = (0.5)^{n}(u[n+2] + 4u[n+1] + 12u[n] + 16u[n-1] + 16u[n-2] - 49u[n-7])$$

$$+ (0.5)^{5}(3u[n-7] - 3u[n-8]) + (0.5)^{8}(11u[n-8] - 11u[n-9])$$

$$+ (0.5)^{6}(u[n-9] - u[n-10]) + (0.5)^{8}(u[n-10] - u[n-11])$$

2 (a)El esquema del diagrama de bloques, en el dominio de frecuencia compleja, que relaciona la entrada y salida de un sistema LTI causa, es el siguiente

Determinar:

- La función de transferencia H(z) del mencionado sistema
- La ecuación de diferencias de coeficientes constantes que representa al sistema
- La respuesta al impulso h[n]

Solución:

1er paso: Encontrando las ecuaciones a partir del diagrama de bloques

(a)

$$0.63Y_1(z) - 1.6Y_1(z) = X(z) - Y_1(z)Z^2$$

$$Y_1(z) = \frac{X(z)}{Z^2 - 1.6Z + 0.63} \tag{1}$$

(b)

$$Y(z) = 4Y(z) - 4Y_1(z)$$

De (1)

$$Y(z) = \frac{4X(z)(Z-1)}{Z^2 - 1.6Z + 0.63}$$

Función transferencia:

$$\therefore H(z) = \frac{Y(z)}{X(z)} = \frac{4(Z-1)}{Z^2 - 1.6Z + 0.63}$$

2do paso:

Hallando la ecuación de diferencias de coeficientes constantes del sistema, a partir de la función de transferencia

$$\frac{Y(z)}{X(z)} = \frac{4(Z-1)}{Z^2 - 1.6Z + 0.63}$$
$$Z^2 Y(z) - 1.6Z Y(z) + 0.63 Y(z) = 4(Z-1)X(z)$$

Dividiendo entre Z^2 , para realizar la transformada inversa:

$$Y(z) - 1.6Z^{-1}Y(z) + 0.63Z^{-2}Y(z) = 4Z^{-1}X(z) - 4Z^{-2}X(z)$$

Aplicamos la siguiente transformada inversa $x[n-a] = Z^{-1}\{Z^{-a}X(z)\}$ Ecuación de diferencias

$$\therefore y[n] - 1.6y[n-1] + 0.63y[n-2] = 4x[n] - 4x[n-2]$$

3er paso:

Calculando la respuesta al impulso del sistema: Como la entrada es el impulso unitario, entonces $x[n] = \delta[n]$; por lo tanto, como $Z\{\delta[n]\} = X(z) = 1$. Además, trabajaremos con la transformada Z.

$$Y(z) = H(z)X(z)$$

A partir de la función de transferencia, obtenemos H(z).

$$Y(z) = H(z)X(z)$$

$$Y(z) = \frac{4(Z-1)}{Z^2 - 1.6Z + 0.63}(1)$$

$$Y(z) = 2(\frac{-1}{Z - 0.9} + \frac{3}{Z - 0.7})$$

Aplicando transformada inversa

$$Z^{-1}\{Y(z)\} = 2(-Z^{-1}\{\frac{1}{Z-0.9}\} + 3Z^{-1}\{\frac{1}{z-0.7}\})$$

La respuesta al impulso al impulso unitario

$$\therefore h[n] = 2(-(0.9)^{n-1}u_{(n-1)} + 3(0.7)^{n-1}u_{(n-1)})$$

Importante: Colocando como entrada la función impulso en el sistema Por medio del osciloscopio, se muestra la salida de la función impulso, en Y(z)

b) El sistema global que se muestra en la siguiente figura, es el resultado de la combinación de 5 sistemas interconectados

$$\therefore h[n] = 2(\delta[n] - \delta[n-1] + u[n-1] + (\frac{1}{2})^{n-1}u[n-1])$$