Material de Apoyo Docente Universidad de Talca Facultad de Psicología

MODELOS LONGITUDINALES CON VARIABLES LATENTES PARA LA INVESTIGACIÓN EN PSICOLOGÍA

Modelos de Curva de Crecimiento Latente (LGCM) Fabiola Gómez 29 de octubre 2024

Paquetes a utilizar en esta sesión.

- a. lavaan: Un paquete para la estimación de modelos de variables latentes como CFA, además permite realizar path analysis, modelación de ecuaciones estructurales, curvas de crecimiento latente, etc.
- b. psych: Paquete que incluye funciones útiles para la investigación en psicología. ggplot2: Paquete que incluye funciones útiles gráficos
- c. MVN: Paquete que usaremos para evaluar normalidad multivariada.

Durante esta sesión trabajaremos con una base de datos Tallerclase6.csv (extraídos de Hoffman, 2015). Esta contiene los datos de 200 adolescentes (12 a 18 años de edad) en los que se midieron, anualmente, sus conductas de riesgo (Risky12 a Risky18), su percepción de monitoreo materno (Monit12 a Monit18) y la actitud de sus madres hacia el consumo de alcohol y tabaco (Attitude12). El rango de respuesta de las conductas de riesgo va de 10 a 50 puntos y de 1 a 5 para el monitoreo materno (centrada en 3) y para las actitudes maternas (centrada en 4).

Análisis descriptivos e inspección de datos

```
## seteamos ambiente de trabajo
setwd("/Users/fa/Dropbox/Docencia/2024/Doctorado/Optativo Doctorado UTalca/Clases/Clase
## cargamos la base de datos
base<-read.csv("Taller_clase6.csv", header = T, sep = ";")</pre>
names (base)
                     "actitud12" "age12"
                                              "age13"
    [1] "id"
##
                                                           "age14"
                                                                       "age15"
                                              "riesgo12"
                     "age17"
                                 "age18"
                                                          "riesgo13"
                                                                       "riesgo14"
    [7] "age16"
## [13] "riesgo15"
                     "riesgo16"
                                 "riesgo17"
                                              "riesgo18"
                                                           "monit12"
                                                                       "monit13"
## [19] "monit14"
                     "monit15"
                                 "monit16"
                                              "monit17"
                                                           "monit18"
library(psych)
describe(base, skew = F)
```

```
##
                      mean sd median min
            vars
                  n
                                              max range
## id
               1 200 100.50 57.88 100.50 1.0 200.0 199.0 4.09
                                   3.90 2.4
## actitud12
               2 200
                      3.95 0.60
                                               5.0
                                                    2.6 0.04
                     11.99 0.17 12.00 11.5 12.4
## age12
               3 200
                                                    0.9 0.01
## age13
               4 200
                     13.02 0.17
                                  13.00 12.4 13.4
                                                    1.0 0.01
## age14
               5 200
                     14.01 0.18 14.00 13.5 14.8
                                                    1.3 0.01
## age15
               6 200
                     15.01 0.18
                                  15.00 14.5 15.6 1.1 0.01
## age16
               7 200
                     15.96 0.18
                                  16.00 15.4 16.4
                                                    1.0 0.01
## age17
               8 200
                     17.01 0.17
                                  17.00 16.5 17.4
                                                   0.9 0.01
               9 200
                     18.00 0.15
                                  18.00 17.6 18.3
                                                    0.7 0.01
## age18
## riesgo12
              10 200
                     16.72 4.58
                                  16.10 10.0 33.1 23.1 0.32
## riesgo13
              11 200
                     17.18 4.43
                                  17.00 10.0 29.2 19.2 0.31
                     17.86 4.51
                                  17.75 10.0 31.9
## riesgo14
              12 200
                                                   21.9 0.32
## riesgo15
              13 200
                     18.98 4.57
                                  19.20 10.0 29.6 19.6 0.32
              14 200
                     19.78 4.69
                                  19.50 10.0 33.0 23.0 0.33
## riesgo16
## riesgo17
              15 200
                      21.65 5.22
                                  21.95 10.1 32.0 21.9 0.37
## riesgo18
              16 200
                      23.52 5.42
                                  23.85 10.2 36.3 26.1 0.38
## monit12
                      3.08 0.81
                                   3.15 1.0
                                                    4.0 0.06
              17 200
                                               5.0
## monit13
              18 200
                      3.09 0.76
                                   3.20 1.2
                                               5.0
                                                    3.8 0.05
## monit14
              19 200
                      3.07 0.67
                                   3.10 1.0
                                               5.0
                                                    4.0 0.05
              20 200
## monit15
                      3.10 0.61 3.05 1.1
                                               4.6
                                                    3.5 0.04
## monit16
              21 200
                      3.07 0.54
                                   3.10 1.3
                                               4.6
                                                    3.3 0.04
              22 200
## monit17
                      3.06 0.52
                                   3.00 1.1
                                               4.4
                                                    3.3 0.04
## monit18
              23 200
                      3.07 0.56
                                   3.00 1.3
                                               4.4
                                                    3.1 0.04
library(MVN)
#### Normalidad multivariada y outliers
# Conductas de riesgo
mvn(base[10:16], mvnTest = "mardia", multivariatePlot = "qq",
   multivariateOutlierMethod = "adj", desc = F )
```


Adjusted Chi-Square Q-Q Plot


```
## $multivariateNormality
##
                Test
                                                    p value Result
                              Statistic
## 1 Mardia Skewness 124.905208675733 0.00253404475614534
## 2 Mardia Kurtosis -1.86497100927716 0.0621854679296971
                                                                YES
## 3
                 MVN
                                   <NA>
                                                       <NA>
                                                                 NO
##
## $univariateNormality
##
                 Test Variable Statistic
                                             p value Normality
## 1 Anderson-Darling riesgo12
                                    1.4987
                                              0.0007
                                                        NO
## 2 Anderson-Darling riesgo13
                                    1.6361
                                              0.0003
                                                        NO
## 3 Anderson-Darling riesgo14
                                    0.7226
                                              0.0586
                                                        YES
## 4 Anderson-Darling riesgo15
                                    0.7622
                                              0.0467
                                                        NO
## 5 Anderson-Darling riesgo16
                                    0.4396
                                              0.2895
                                                        YES
## 6 Anderson-Darling riesgo17
                                    0.4625
                                              0.2551
                                                        YES
## 7 Anderson-Darling riesgo18
                                    0.2664
                                              0.6866
                                                        YES
# Monitoreo materno
mvn(base[17:23], mvnTest = "mardia", multivariatePlot = "qq",
    multivariateOutlierMethod = "adj", desc = F)
```

Chi-Square Q-Q Plot

Adjusted Chi-Square Q-Q Plot

##	\$1	multivariateNormal	ity				
##		Test	St	tatistic	р	value 1	Result
##	1	Mardia Skewness	81.97733	32362302 0.	5421117588	29815	YES
##	2	Mardia Kurtosis -	0.34390055	55369817 0.	7309210741	90066	YES
##	3	MVN		<na></na>		<na></na>	YES
##							
##	\$1	univariateNormalit	у				
##		Test	Variable	Statistic	p value	Normal	ity
##	1	Anderson-Darling	monit12	0.5563	0.1493	YES	
##	2	Anderson-Darling	monit13	0.4503	0.2730	YES	
##	3	Anderson-Darling	monit14	0.4013	0.3570	YES	
##	4	Anderson-Darling	monit15	0.6865	0.0720	YES	
##	5	Anderson-Darling	monit16	0.4584	0.2610	YES	
##	6	Anderson-Darling	monit17	1.0053	0.0117	NO	
##	7	Anderson-Darling	monit18	0.6318	0.0983	YES	

Estimación de Modelos

Modelo Nulo

La estimación de un modelo nulo permite evaluar la pertinencia de modelar el cambio

```
library(lavaan)
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
##
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
##
##
       cor2cov
### Especificación del modelo para monitoreo materno
modelo0<- "# Intercepto aleatorio</pre>
           i=~ 1*monit12 + 1*monit13+ 1*monit14 + 1*monit15
           # Interceptos fijos en 0
           monit12 ~ 0*1
           monit13 ~ 0*1
           monit14 ~ 0*1
           monit15 ~ 0*1
## Estimación del modelo
# Usaremos el comando growth() de lavaan
# "fiml" para tratamiento de datos perdidos
fit0<- growth(modelo0, data = base,
              missing="fiml", se="robust", estimator="ml")
summary(fit0, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 30 iterations
##
     Estimator
##
                                                        ML
##
     Optimization method
                                                    NLMINB
     Number of model parameters
##
                                                         6
##
##
    Number of observations
                                                       200
##
     Number of missing patterns
                                                         1
##
```

```
## Model Test User Model:
##
##
     Test statistic
                                                    76.404
##
    Degrees of freedom
                                                         8
##
     P-value (Chi-square)
                                                     0.000
##
## Model Test Baseline Model:
##
    Test statistic
##
                                                   791.167
##
    Degrees of freedom
     P-value
                                                     0.000
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                     0.913
##
     Tucker-Lewis Index (TLI)
                                                     0.935
##
##
     Robust Comparative Fit Index (CFI)
                                                     0.913
##
     Robust Tucker-Lewis Index (TLI)
                                                     0.935
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                 -499.578
##
     Loglikelihood unrestricted model (H1)
                                                  -461.376
##
##
    Akaike (AIC)
                                                  1011.155
##
     Bayesian (BIC)
                                                  1030.945
##
     Sample-size adjusted Bayesian (SABIC)
                                                  1011.936
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                     0.207
##
     90 Percent confidence interval - lower
                                                     0.166
##
     90 Percent confidence interval - upper
                                                     0.250
     P-value H O: RMSEA <= 0.050
##
                                                     0.000
     P-value H 0: RMSEA >= 0.080
##
                                                     1.000
##
##
     Robust RMSEA
                                                     0.207
##
     90 Percent confidence interval - lower
                                                     0.166
##
     90 Percent confidence interval - upper
                                                     0.250
     P-value H O: Robust RMSEA <= 0.050
##
                                                     0.000
##
    P-value H O: Robust RMSEA >= 0.080
                                                     1.000
```

##								
##	Standardized Ro	oot Mean Squar	e Residua	1:				
##								
##	SRMR				0.151			
##								
##	Parameter Estin	mates:						
##								
##	Standard erro	ors			Sandwich			
##	Information 1	bread			Observed			
##	Observed info	ormation based	on		Hessian			
##								
##	Latent Variable	es:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i =~							
##	monit12	1.000				0.638	0.890	
##	monit13	1.000				0.638	0.891	
##	monit14	1.000				0.638	0.910	
##	monit15	1.000				0.638	0.891	
##								
##	Intercepts:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.monit12	0.000				0.000	0.000	
##	.monit13	0.000				0.000	0.000	
##	.monit14	0.000				0.000	0.000	
##	.monit15	0.000				0.000	0.000	
##	i	3.083	0.046	66.446	0.000	4.834	4.834	
##								
##	Variances:							
##		Estimate	Std.Err		P(> z)	Std.lv	Std.all	
##	.monit12	0.107	0.014			0.107	0.208	
##	.monit13	0.105	0.015	7.126		0.105	0.206	
##	.monit14	0.085	0.013	6.744		0.085	0.172	
##	.monit15	0.105	0.014	7.715	0.000	0.105	0.206	
##	i	0.407	0.044	9.194	0.000	1.000	1.000	

Inspección gráfica de trayectorias de un subconjunto de datos

```
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
##
      %+%, alpha
# seleccionamos 50 observaciones
data50 = base[sample(nrow(base),50),]
dim(data50)
## [1] 50 23
# cambiamos el formato de la base de datos de wide a long
# comando reshape()
data50L = reshape(data=data50, # subset de datos
                  idvar='id', # variable de identificación
                  varying=c('monit12','monit13','monit14','monit15'),
                  v.names = 'monitoreo', # nombre que agruará las medidas
                  times = c(12,13,14,15), # eje x
                  direction='long')
dim(data50L) ## revisamos que se haya creado el subset
## [1] 200 21
# Plot con comando ggplot()
plot_obs = ggplot(data=data50L,
                  aes(x=time, y=monitoreo, group=id)) +
 geom line() +
 theme_bw() +
 scale_x_continuous(name = "Edad") +
 scale_y_continuous(name = "Monitoreo") +
 theme(
    plot.background = element_blank()
    ,panel.grid.major = element_blank()
    ,panel.grid.minor = element_blank()
    ,panel.border = element_blank()
    ,axis.line.x = element_line(color="black")
```

```
,axis.line.y = element_line(color="black")
,axis.text=element_text(size=20)
,axis.title=element_text(size=26)
)
```

print(plot_obs) ## Para obtener el gráfico

Modelo Lineal

En este modelo el parámetro de cambio lineal es la pendiente o slope

```
modelo1<- "i=~ 1*monit12 + 1*monit13+ 1*monit14 + 1*monit15
           s=~ 0*monit12 + 1*monit13+ 2*monit14 + 3*monit15
           monit12 ~ 0*1
           monit13 ~ 0*1
           monit14 ~ 0*1
           monit15 ~ 0*1"
fit1<- growth(modelo1, data = base,
              missing="fiml", se="robust", estimator="ml")
summary(fit1, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 46 iterations
##
##
     Estimator
                                                        ML
##
     Optimization method
                                                    NLMINB
##
     Number of model parameters
##
##
     Number of observations
                                                       200
##
     Number of missing patterns
                                                         1
##
## Model Test User Model:
##
##
     Test statistic
                                                     1.938
     Degrees of freedom
##
                                                         5
##
     P-value (Chi-square)
                                                     0.858
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                   791.167
     Degrees of freedom
##
                                                         6
##
     P-value
                                                     0.000
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                     1.000
     Tucker-Lewis Index (TLI)
                                                     1.005
##
##
##
     Robust Comparative Fit Index (CFI)
                                                     1.000
    Robust Tucker-Lewis Index (TLI)
                                                     1.005
```

```
##
## Loglikelihood and Information Criteria:
    Loglikelihood user model (HO)
##
                                                -462.345
##
    Loglikelihood unrestricted model (H1)
                                                -461.376
##
##
    Akaike (AIC)
                                                 942.689
##
    Bayesian (BIC)
                                                 972.374
##
    Sample-size adjusted Bayesian (SABIC)
                                                 943.861
##
## Root Mean Square Error of Approximation:
##
##
    RMSEA
                                                   0.000
##
    90 Percent confidence interval - lower
                                                   0.000
##
    90 Percent confidence interval - upper
                                                   0.053
##
    P-value H_0: RMSEA <= 0.050
                                                   0.944
    P-value H 0: RMSEA >= 0.080
##
                                                   0.013
##
##
    Robust RMSEA
                                                   0.000
    90 Percent confidence interval - lower
##
                                                   0.000
    90 Percent confidence interval - upper
##
                                                   0.053
    P-value H_0: Robust RMSEA <= 0.050
##
                                                   0.944
    P-value H O: Robust RMSEA >= 0.080
##
                                                   0.013
##
## Standardized Root Mean Square Residual:
##
##
    SRMR
                                                   0.019
##
## Parameter Estimates:
##
    Standard errors
##
                                                Sandwich
##
    Information bread
                                                Observed
    Observed information based on
                                                 Hessian
##
## Latent Variables:
                    Estimate Std.Err z-value P(>|z|) Std.lv Std.all
##
## i =~
##
                                                            0.783
     monit12
                        1.000
                                                                     0.976
##
      monit13
                        1.000
                                                             0.783
                                                                     1.034
##
     monit14
                        1.000
                                                             0.783
                                                                     1.153
##
      monit15
                        1.000
                                                             0.783 1.294
##
    s =~
```

##	monit12	0.000				0.000	0.000	
##	monit13	1.000				0.126	0.167	
##	monit14	2.000				0.253	0.372	
##	monit15	3.000				0.379	0.627	
##								
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~							
##	S	-0.077	0.013	-6.085	0.000	-0.780	-0.780	
##								
##	Intercepts:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.monit12	0.000				0.000	0.000	
##	.monit13	0.000				0.000	0.000	
##	.monit14	0.000				0.000	0.000	
##	.monit15	0.000				0.000	0.000	
##	i	3.080	0.057	54.419	0.000	3.931	3.931	
##	S	0.003	0.011	0.286	0.775	0.026	0.026	
##								
##	Variances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.monit12	0.031	0.015	2.039	0.041	0.031	0.048	
##	.monit13	0.098	0.012	7.921	0.000	0.098	0.172	
##	.monit14	0.093	0.011	8.126	0.000	0.093	0.201	
##	.monit15	0.072	0.015	4.920	0.000	0.072	0.197	
##	i	0.614	0.066	9.351	0.000	1.000	1.000	
##	S	0.016	0.004	4.191	0.000	1.000	1.000	

Modelo cuadrático

En este modelo el parámetro de cambio cuadrático es el más relevante

```
modelo2<- "i=~ 1*monit12 + 1*monit13+ 1*monit14 + 1*monit15
           s=~ 0*monit12 + 1*monit13+ 2*monit14 + 3*monit15
           q=~ 0*monit12 + 1*monit13+ 4*monit14 + 9*monit15
           monit12 ~ 0*1
           monit13 ~ 0*1
           monit14 ~ 0*1
           monit15 ~ 0*1"
fit2<- growth(modelo2, data = base,</pre>
              missing="fiml", se="robust", estimator="ml")
## Warning: lavaan->lav_object_post_check():
      some estimated ov variances are negative
## Warning: lavaan->lav_object_post_check():
      covariance matrix of latent variables is not positive definite; use
##
      lavInspect(fit, "cov.lv") to investigate.
summary(fit2, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 70 iterations
##
     Estimator
##
                                                        ML
                                                    NLMINB
##
     Optimization method
     Number of model parameters
##
                                                        13
##
##
     Number of observations
                                                       200
##
     Number of missing patterns
                                                         1
## Model Test User Model:
##
                                                     0.836
##
    Test statistic
     Degrees of freedom
##
                                                         1
##
     P-value (Chi-square)
                                                     0.361
## Model Test Baseline Model:
##
##
     Test statistic
                                                   791.167
##
   Degrees of freedom
```

##	P-value	0.000
##		
	User Model versus Baseline Model:	
##	Comparative Fit Index (CFI)	1.000
##	Tucker-Lewis Index (TLI)	1.000
##	Idevel remis indev (IPI)	1.001
##	Robust Comparative Fit Index (CFI)	1.000
##	Robust Tucker-Lewis Index (TLI)	1.001
##		
##	Loglikelihood and Information Criteria:	
##		
##	Loglikelihood user model (HO)	-461.794
##	Loglikelihood unrestricted model (H1)	-461.376
##		
##	Akaike (AIC)	949.588
##	Bayesian (BIC)	992.466
##	Sample-size adjusted Bayesian (SABIC)	951.280
##		
	Root Mean Square Error of Approximation:	
##	RMSEA	0.000
##	90 Percent confidence interval - lower	0.000
##		0.181
##	P-value H_0: RMSEA <= 0.050	0.470
##	P-value H_0: RMSEA >= 0.080	0.394
##		
##	Robust RMSEA	0.000
##	90 Percent confidence interval - lower	0.000
##	90 Percent confidence interval - upper	0.181
##	P-value H_0: Robust RMSEA <= 0.050	0.470
##	P-value H_0: Robust RMSEA >= 0.080	0.394
##		
##	Standardized Root Mean Square Residual:	
##		
##	SRMR	0.008
##	Danier Cational Continue Conti	
	Parameter Estimates:	
##	Standard errors	Sandwich
##	Information bread	Observed
##	Observed information based on	Hessian
., ,,	Carrier and Till of mad I dil out out out	110001411

##								
##	Latent Variables:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i =~							
##	monit12	1.000				0.819	1.019	
##	monit13	1.000				0.819	1.073	
##	monit14	1.000				0.819	1.231	
##	monit15	1.000				0.819	1.340	
##	s =~							
##	monit12	0.000				0.000	0.000	
##	monit13	1.000				0.265	0.348	
##	monit14	2.000				0.530	0.798	
##	monit15	3.000				0.796	1.303	
##	q =~							
##	monit12	0.000				0.000	0.000	
##	monit13	1.000				0.013	0.017	
##	monit14	4.000				0.052	0.079	
##	monit15	9.000				0.118	0.193	
##								
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~							
##	S	-0.146	0.090	-1.619	0.105	-0.672	-0.672	
##	q	0.017	0.022	0.780	0.435	1.610	1.610	
##	S ~~							
##	q	-0.009	0.017	-0.529	0.597	-2.629	-2.629	
##								
##	Intercepts:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.monit12	0.000				0.000	0.000	
##	.monit13	0.000				0.000	0.000	
##	.monit14	0.000				0.000	0.000	
##	.monit15	0.000				0.000	0.000	
##	i	3.079	0.057	53.819	0.000	3.761	3.761	
##	S	-0.010	0.030	-0.348	0.728	-0.039	-0.039	
##	q	0.005	0.010	0.509	0.611	0.377	0.377	
##								
##	Variances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.monit12	-0.025	0.077	-0.324	0.746	-0.025	-0.039	
##	.monit13	0.117	0.025	4.644	0.000	0.117	0.201	
##	.monit14	0.080	0.022	3.572	0.000	0.080	0.180	

##	.monit15	0.114	0.061	1.875	0.061	0.114	0.305	
##	i	0.670	0.102	6.546	0.000	1.000	1.000	
##	S	0.070	0.084	0.837	0.403	1.000	1.000	
##	q	0.000	0.003	0.050	0.960	1.000	1.000	

Comparación de modelos

```
anova(fit0, fit1, fit2)
##
## Chi-Squared Difference Test
##
                        Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
##
      Df
             AIC
                    BIC
## fit2 1 949.59 992.47 0.8361
## fit1 5 942.69 972.37 1.9379
                                  1.102 0.00000
                                                     4
                                                            0.894
## fit0 8 1011.16 1030.95 76.4037 74.466 0.34512
                                                    3 4.716e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
# Modelo nulo
modelo0<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 + 1*riesgo15
           riesgo12 ~ 0*1
           riesgo13 ~ 0*1
           riesgo14 ~ 0*1
           riesgo15 ~ 0*1"
fit0<- growth(modelo0, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit0, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 40 iterations
##
     Estimator
##
                                                        ML
     Optimization method
##
                                                    NLMINB
     Number of model parameters
##
                                                         6
##
##
     Number of observations
                                                       200
##
     Number of missing patterns
                                                         1
##
## Model Test User Model:
                                                  Standard
##
                                                                Scaled
##
    Test Statistic
                                                    65.442
                                                                68.478
##
    Degrees of freedom
                                                                     8
     P-value (Chi-square)
                                                     0.000
                                                                 0.000
##
     Scaling correction factor
                                                                 0.956
##
##
       Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                   276.175
                                                               329.034
     Degrees of freedom
                                                                     6
##
                                                         6
##
     P-value
                                                     0.000
                                                                 0.000
     Scaling correction factor
                                                                 0.839
##
##
## User Model versus Baseline Model:
##
                                                     0.787
##
     Comparative Fit Index (CFI)
                                                                 0.813
    Tucker-Lewis Index (TLI)
                                                     0.841
##
                                                                 0.860
##
##
    Robust Comparative Fit Index (CFI)
                                                                 0.786
```

```
Robust Tucker-Lewis Index (TLI)
                                                               0.840
##
## Loglikelihood and Information Criteria:
##
##
    Loglikelihood user model (HO)
                                      -2235.163
                                                           -2235.163
##
    Scaling correction factor
                                                               0.859
##
        for the MLR correction
##
    Loglikelihood unrestricted model (H1) -2202.443
                                                           -2202.443
    Scaling correction factor
##
                                                               0.914
##
        for the MLR correction
##
    Akaike (AIC)
##
                                                4482.327
                                                            4482.327
##
    Bayesian (BIC)
                                                4502.117
                                                            4502.117
##
    Sample-size adjusted Bayesian (SABIC)
                                                4483.108
                                                            4483.108
## Root Mean Square Error of Approximation:
##
##
    RMSEA
                                                   0.189
                                                               0.194
##
    90 Percent confidence interval - lower
                                                   0.149
                                                               0.153
##
    90 Percent confidence interval - upper
                                                   0.233
                                                               0.239
##
    P-value H O: RMSEA <= 0.050
                                                   0.000
                                                               0.000
##
    P-value H_0: RMSEA >= 0.080
                                                   1.000
                                                               1.000
##
##
    Robust RMSEA
                                                               0.190
##
    90 Percent confidence interval - lower
                                                               0.150
    90 Percent confidence interval - upper
##
                                                               0.233
##
    P-value H O: Robust RMSEA <= 0.050
                                                               0.000
##
    P-value H O: Robust RMSEA >= 0.080
                                                               1.000
##
## Standardized Root Mean Square Residual:
##
##
    SRMR
                                                   0.118
                                                               0.118
##
## Parameter Estimates:
##
##
    Standard errors
                                                Sandwich
##
   Information bread
                                                Observed
    Observed information based on
##
                                                Hessian
## Latent Variables:
##
                     Estimate Std.Err z-value P(>|z|)
                                                           Std.lv Std.all
```

##	i =~						
##	riesgo12	1.000				3.277	0.691
##	riesgo13	1.000				3.277	0.736
##	riesgo14	1.000				3.277	0.755
##	riesgo15	1.000				3.277	0.670
##							
##	Intercepts:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.riesgo12	0.000				0.000	0.000
##	.riesgo13	0.000				0.000	0.000
##	.riesgo14	0.000				0.000	0.000
##	.riesgo15	0.000				0.000	0.000
##	i	17.642	0.267	66.169	0.000	5.383	5.383
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.riesgo12	11.785	1.143	10.312	0.000	11.785	0.523
##	.riesgo13	9.076	0.968	9.373	0.000	9.076	0.458
##	.riesgo14	8.119	1.033	7.863	0.000	8.119	0.430
##	.riesgo15	13.176	1.405	9.375	0.000	13.176	0.551
##	i	10.742	1.533	7.008	0.000	1.000	1.000

```
modelo1<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 + 1*riesgo15
           s=~ 0*riesgo12 + 1*riesgo13+ 2*riesgo14 + 3*riesgo15
           riesgo12 ~ 0*1
           riesgo13 ~ 0*1
           riesgo14 ~ 0*1
           riesgo15 ~ 0*1"
fit1<- growth(modelo1, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit1, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 63 iterations
##
##
     Estimator
                                                        ML
     Optimization method
##
                                                    NLMINB
     Number of model parameters
##
                                                         9
##
     Number of observations
##
                                                       200
##
     Number of missing patterns
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
##
    Test Statistic
                                                     4.618
                                                                4.662
##
    Degrees of freedom
                                                                     5
     P-value (Chi-square)
                                                     0.464
                                                                 0.458
##
     Scaling correction factor
                                                                 0.991
##
##
       Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
##
    Test statistic
                                                   276.175
                                                               329.034
##
     Degrees of freedom
                                                                     6
                                                                 0.000
##
     P-value
                                                     0.000
     Scaling correction factor
                                                                 0.839
##
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                     1.000
                                                                 1.000
##
    Tucker-Lewis Index (TLI)
                                                     1.002
                                                                 1.001
##
##
    Robust Comparative Fit Index (CFI)
                                                                 1.000
```

```
Robust Tucker-Lewis Index (TLI)
                                                               1.002
##
## Loglikelihood and Information Criteria:
##
##
    Loglikelihood user model (HO)
                                      -2204.752
                                                           -2204.752
##
    Scaling correction factor
                                                               0.872
        for the MLR correction
##
##
    Loglikelihood unrestricted model (H1) -2202.443
                                                           -2202.443
    Scaling correction factor
##
                                                               0.914
##
        for the MLR correction
##
    Akaike (AIC)
##
                                                4427.503
                                                            4427.503
##
    Bayesian (BIC)
                                                4457.188
                                                            4457.188
##
    Sample-size adjusted Bayesian (SABIC)
                                                4428.675
                                                            4428.675
##
## Root Mean Square Error of Approximation:
##
##
    RMSEA
                                                   0.000
                                                               0.000
##
    90 Percent confidence interval - lower
                                                   0.000
                                                               0.000
##
    90 Percent confidence interval - upper
                                                   0.094
                                                               0.095
##
    P-value H O: RMSEA <= 0.050
                                                   0.706
                                                               0.700
##
    P-value H_0: RMSEA >= 0.080
                                                   0.103
                                                               0.107
##
##
    Robust RMSEA
                                                               0.000
##
    90 Percent confidence interval - lower
                                                               0.000
    90 Percent confidence interval - upper
##
                                                               0.094
##
    P-value H O: Robust RMSEA <= 0.050
                                                               0.704
##
    P-value H O: Robust RMSEA >= 0.080
                                                               0.104
##
## Standardized Root Mean Square Residual:
##
##
    SRMR
                                                   0.030
                                                           0.030
##
## Parameter Estimates:
##
##
    Standard errors
                                                Sandwich
##
   Information bread
                                                Observed
    Observed information based on
##
                                                 Hessian
## Latent Variables:
##
                     Estimate Std.Err z-value P(>|z|) Std.lv Std.all
```

##	i =~							
##	riesgo12	1.000				3.654	0.801	
##	riesgo13	1.000				3.654	0.812	
##	riesgo14	1.000				3.654	0.829	
##	riesgo15	1.000				3.654	0.795	
##	s =~							
##	riesgo12	0.000				0.000	0.000	
##	riesgo13	1.000				1.037	0.231	
##	riesgo14	2.000				2.075	0.471	
##	riesgo15	3.000				3.112	0.677	
##								
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~							
##	S	-1.536	0.621	-2.475	0.013	-0.405	-0.405	
##								
##	Intercepts:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.riesgo12	0.000				0.000	0.000	
##	.riesgo13	0.000				0.000	0.000	
##	.riesgo14	0.000				0.000	0.000	
##	.riesgo15	0.000				0.000	0.000	
##	i	16.576	0.309	53.695	0.000	4.537	4.537	
##	S	0.747	0.114	6.528	0.000	0.720	0.720	
##								
##	Variances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.riesgo12	7.476	1.441	5.188	0.000	7.476	0.359	
##	.riesgo13	8.876	0.932	9.525	0.000	8.876	0.439	
##	.riesgo14	7.913	0.946	8.368	0.000	7.913	0.407	
##	.riesgo15	7.322	1.335	5.485	0.000	7.322	0.346	
##	i	13.350	2.318	5.759	0.000	1.000	1.000	
##	S	1.076	0.318	3.385	0.001	1.000	1.000	

Modelo cuadrático

```
modelo2<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 + 1*riesgo15
           s=~ 0*riesgo12 + 1*riesgo13+ 2*riesgo14 + 3*riesgo15
           q=~ 0*riesgo12 + 1*riesgo13+ 4*riesgo14 + 9*riesgo15
           riesgo12 ~ 0*1
          riesgo13 ~ 0*1
           riesgo14 ~ 0*1
           riesgo15 ~ 0*1"
fit2<- growth(modelo2, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit2, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 89 iterations
##
##
    Estimator
                                                        ML
                                                    NI.MTNB
##
    Optimization method
##
    Number of model parameters
                                                        13
##
    Number of observations
##
                                                       200
##
    Number of missing patterns
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
##
    Test Statistic
                                                     0.059
                                                                0.059
    Degrees of freedom
##
                                                         1
                                                                     1
    P-value (Chi-square)
                                                     0.809
##
                                                                 0.809
##
    Scaling correction factor
                                                                 0.998
      Yuan-Bentler correction (Mplus variant)
##
##
## Model Test Baseline Model:
##
##
    Test statistic
                                                   276.175
                                                               329.034
##
    Degrees of freedom
                                                                     6
                                                         6
                                                     0.000
                                                                 0.000
##
    P-value
    Scaling correction factor
                                                                 0.839
##
##
## User Model versus Baseline Model:
##
##
    Comparative Fit Index (CFI)
                                                     1.000
                                                                 1.000
    Tucker-Lewis Index (TLI)
##
                                                     1.021
                                                                 1.017
##
```

##	±		1.000 1.021	
##	Hobdst Idekel Lewis Hidek (ILI)		1.021	
	Loglikelihood and Information Criteria:			
##	logilholihood and information official.			
##	Loglikelihood user model (HO)	-2202.472	-2202.472	
##	6		0.908	
##				
##		-2202.443	-2202.443	
##	•		0.914	
##	for the MLR correction			
##				
##	Akaike (AIC)	4430.944	4430.944	
##	Bayesian (BIC)	4473.822	4473.822	
##	Sample-size adjusted Bayesian (SABIC)	4432.637	4432.637	
##				
##	Root Mean Square Error of Approximation:			
##				
##		0.000	0.000	
##		0.000		
##	1 1	0.117		
##	-	0.850		
##	-	0.102	0.103	
##			0.000	
##			0.000	
##			0.000	
##	11		0.117	
##	-		0.850 0.102	
##	P-value H_0: Robust RMSEA >= 0.080		0.102	
	Standardized Root Mean Square Residual:			
##	bundaraized 1000 from Equate fiebradar.			
##	SRMR	0.003	0.003	
##	~			
##	Parameter Estimates:			
##				
##	Standard errors	Sandwich		
##	Information bread	Observed		
##	Observed information based on	Hessian		
##				
##	Latent Variables:			

##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i =~							
##	riesgo12	1.000				3.406	0.746	
##	riesgo13	1.000				3.406	0.770	
##	riesgo14	1.000				3.406	0.757	
##	riesgo15	1.000				3.406	0.746	
##	s =~							
##	riesgo12	0.000				0.000	0.000	
##	riesgo13	1.000				0.792	0.179	
##	riesgo14	2.000				1.585	0.352	
##	riesgo15	3.000				2.377	0.521	
##	q =~							
##	riesgo12	0.000				0.000	0.000	
##	riesgo13	1.000				0.561	0.127	
##	riesgo14	4.000				2.244	0.499	
##	riesgo15	9.000				5.050	1.107	
##	O							
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~				- (1-1)			
##	S	0.459	4.457	0.103	0.918	0.170	0.170	
##	q	-0.459	1.107	-0.414	0.679	-0.240	-0.240	
##	S ~~						*	
##	q	-0.348	1.200	-0.290	0.772	-0.783	-0.783	
##	4	0.010		0.200	****	000	01100	
##	Intercepts:							
##	into roop ob.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.riesgo12	0.000	Doardi	Z varao	1 (7 2 7	0.000	0.000	
##	.riesgo13	0.000				0.000	0.000	
##	.riesgo14	0.000				0.000	0.000	
##	.riesgo15	0.000				0.000	0.000	
##	i	16.733	0.319	52.510	0.000	4.913	4.913	
##	S	0.251	0.322	0.779	0.436	0.317	0.317	
##	q	0.166	0.101	1.641	0.101	0.296	0.296	
##	Ч	0.100	0.101	1.041	0.101	0.250	0.200	
	Variances:							
##	var rances.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	rioggo19	9.267	4.067	2.278	0.023	9.267	0.444	
##	.riesgo12				0.023			
	.riesgo13	7.702	1.299	5.927		7.702	0.394	
##	.riesgo14	8.479	1.437	5.899	0.000	8.479	0.419	
##	.riesgo15	2.367	4.189	0.565	0.572	2.367	0.114	

##	i	11.601	4.024	2.883	0.004	1.000	1.000	
##	S	0.628	4.938	0.127	0.899	1.000	1.000	
##	q	0.315	0.354	0.890	0.374	1.000	1.000	

Comparación de modelos

```
anova(fit0, fit1, fit2)
##
## Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001")
## lavaan->lavTestLRT():
     lavaan NOTE: The "Chisq" column contains standard test statistics, not the
     robust test that should be reported per model. A robust difference test is
     a function of two standard (not robust) statistics.
                        Chisq Chisq diff Df diff Pr(>Chisq)
       Df
             AIC
                    BIC
## fit2 1 4430.9 4473.8 0.0585
## fit1 5 4427.5 4457.2 4.6183
                                    4.612
                                                       0.3295
## fit0 8 4482.3 4502.1 65.4416
                                    67.766
                                                3 1.284e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Modelo autorregresivo con intercepto aleatorio

```
mod2<- [1522 chars quoted with ''']</pre>
fit2 <- sem(mod2, data = base,
               estimator="mlr", mimic = "mplus")
summary(fit2, fit.measures = TRUE, standardized = T)
## lavaan 0.6-19 ended normally after 153 iterations
##
##
    Estimator
                                                       ML
    Optimization method
                                                    NLMINB
##
     Number of model parameters
                                                        39
##
    Number of equality constraints
                                                         2
##
##
    Number of observations
                                                       200
##
    Number of missing patterns
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
    Test Statistic
                                                    16.325
                                                               16.987
##
##
    Degrees of freedom
   P-value (Chi-square)
                                                     0.022
                                                               0.017
##
    Scaling correction factor
                                                                 0.961
      Yuan-Bentler correction (Mplus variant)
##
##
## Model Test Baseline Model:
##
##
    Test statistic
                                                  1151.344 1203.763
                                                                    28
##
    Degrees of freedom
                                                        28
    P-value
                                                     0.000
                                                                 0.000
##
    Scaling correction factor
##
                                                                 0.956
##
## User Model versus Baseline Model:
##
                                                                 0.992
##
     Comparative Fit Index (CFI)
                                                     0.992
    Tucker-Lewis Index (TLI)
##
                                                     0.967
                                                                 0.966
##
    Robust Comparative Fit Index (CFI)
##
                                                                 0.992
##
    Robust Tucker-Lewis Index (TLI)
                                                                 0.966
##
## Loglikelihood and Information Criteria:
##
```

##	Scaling correction factor	-2629.980	-2629.980 0.920	
##		-2621.817	-2621.817	
##	0		0.969	
##				
##		5333.960	5333.960	
##		5455.998		
##	•	5338.778		
##	3			
	Root Mean Square Error of Approximation:			
##	DVGTA	0.000	0.004	
##		0.082	0.084	
##		0.029 0.134		
##	11	0.135		
##	-	0.572		
##				
##			0.082	
##			0.030	
##	11		0.134	
##	-		0.130 0.578	
##	r varae n_o. Nobabo nabhr > 0.000		0.010	
	Standardized Root Mean Square Residual:			
##				
##	SRMR	0.047	0.047	
##				
##	Parameter Estimates:			
##	Standard errors	Sandwich		
##	Information bread	Observed		
##	Observed information based on	Hessian		
##				
	Latent Variables:		a	
##		value P(> z)	Std.lv Std.all	
##	RI_monit =~ monit12 1.000		0.583 0.726	
##	monit13 1.000		0.583 0.767	
##	monit14 1.000		0.583 0.909	

##	monit15	1.000				0.583	0.919	
##	RI_riesgo =~							
##	riesgo12	1.000				3.000	0.657	
##	riesgo13	1.000				3.000	0.677	
##	riesgo14	1.000				3.000	0.680	
##	riesgo15	1.000				3.000	0.651	
##	Wmonit12 =~							
##	monit12	1.000				0.387	0.482	
##	Wmonit13 =~							
##	monit13	1.000				0.391	0.514	
##	Wmonit14 =~							
##	monit14	1.000				0.263	0.410	
##	Wmonit15 =~							
##	monit15	1.000				0.257	0.405	
##	Wriesgo12 =~							
##	riesgo12	1.000				3.351	0.734	
##	Wriesgo13 =~							
##	riesgo13	1.000				3.227	0.728	
##	Wriesgo14 =~							
##	riesgo14	1.000				3.187	0.722	
##	Wriesgo15 =~							
##	riesgo15	1.000				3.483	0.755	
##	O							
##	Regressions:							
##	O	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	Wmonit13 ~							
##	Wmonit12	0.532	0.078	6.812	0.000	0.527	0.527	
##	Wriesgo12	0.005	0.010	0.479	0.632	0.041	0.041	
##	Wmonit14 ~							
##	Wmonit13	0.028	0.087	0.323	0.747	0.042	0.042	
##	Wriesgo13	0.002	0.010	0.243	0.808	0.029	0.029	
##	Wmonit15 ~							
##	Wmonit14	-0.354	0.530	-0.668	0.504	-0.362	-0.362	
##	Wriesgo14	0.017	0.022	0.810	0.418	0.216	0.216	
##	Wriesgo13 ~							
##	Wriesgo12	0.201	0.114	1.765	0.078	0.209	0.209	
##	Wmonit12	-0.293	0.988	-0.297	0.766	-0.035	-0.035	
##	Wriesgo14 ~	0.200	0.000	0.20.		0.000	0.000	
##	Wriesgo13	0.185	0.150	1.231	0.218	0.187	0.187	
##	Wmonit13	-1.837	0.899	-2.044	0.041	-0.225	-0.225	
##	Wriesgo15 ~	1.001	0.000	2.011	0.011	0.220	0.220	
##	Wriesgo14	0.353	0.149	2.375	0.018	0.323	0.323	
11 11	"11008011	0.000	0.110	2.010	0.010	0.020	0.020	

## ##	Wmonit14	-1.777	1.390	-1.278	0.201	-0.134	-0.134	
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	RI_monit ~~							
##	RI_riesg	-0.865	0.201	-4.313	0.000	-0.494	-0.494	
##	Wmonit12 ~~							
##	Wriesg12	0.026	0.176	0.149	0.881	0.020	0.020	
##	.Wmonit13 ~~							
##	.Wriesg13 (cov)	0.230	0.078	2.928	0.003	0.219	0.219	
##	.Wmonit14 ~~							
##	.Wriesg14 (cov)	0.230	0.078	2.928	0.003	0.284	0.284	
##	.Wmonit15 ~~							
##	.Wriesg15 (cov)	0.230	0.078	2.928	0.003	0.290	0.290	
##	RI_monit ~~							
##	Wmonit12	0.078	0.030	2.577	0.010	0.344	0.344	
##	Wriesg12	0.280	0.192	1.461	0.144	0.143	0.143	
##	RI_riesgo ~~							
##	Wmonit12	-0.153	0.169	-0.904	0.366	-0.131	-0.131	
##	Wriesg12	0.317	1.921	0.165	0.869	0.032	0.032	
##								
##	Intercepts:							
##	•	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.monit12	3.081	0.057	54.229	0.000	3.081	3.835	
##	.monit13	3.090	0.054	57.307	0.000	3.090	4.064	
##	.monit14	3.067	0.047	65.232	0.000	3.067	4.777	
##	.monit15	3.098	0.043	71.728	0.000	3.098	4.880	
##	.riesgo12	16.720	0.323	51.762	0.000	16.720	3.660	
##	.riesgo13	17.181	0.313	54.955	0.000	17.181	3.878	
##	.riesgo14	17.864	0.318	56.177	0.000	17.864	4.046	
##	.riesgo15	18.982	0.323	58.834	0.000	18.982	4.117	
##	8.40							
##	Variances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.monit12	0.000			- (1-1)	0.000	0.000	
##	.monit13	0.000				0.000	0.000	
##	.monit14	0.000				0.000	0.000	
##	.monit15	0.000				0.000	0.000	
##	.riesgo12	0.000				0.000	0.000	
##	riesgo13	0.000				0.000	0.000	
##	riesgo14	0.000				0.000	0.000	
##	riesgo14	0.000				0.000	0.000	
11.11	.11008010	0.000				0.000	0.000	

##	RI_monit	0.340	0.045	7.563	0.000	1.000	1.000
##	RI_riesgo	9.003	2.350	3.832	0.000	1.000	1.000
##	Wmonit12	0.150	0.029	5.163	0.000	1.000	1.000
##	.Wmonit13	0.110	0.011	9.679	0.000	0.720	0.720
##	.Wmonit14	0.069	0.026	2.615	0.009	0.997	0.997
##	.Wmonit15	0.057	0.050	1.139	0.255	0.864	0.864
##	Wriesgo12	11.231	2.110	5.322	0.000	1.000	1.000
##	.Wriesgo13	9.946	1.386	7.177	0.000	0.955	0.955
##	.Wriesgo14	9.433	1.753	5.382	0.000	0.929	0.929
##	.Wriesgo15	10.928	1.269	8.609	0.000	0.901	0.901

Modelo con restricciones

```
mod3<- [1530 chars quoted with ''']</pre>
fit3 <- sem(mod3, data = base,
               estimator="mlr", mimic = "mplus")
summary(fit3, fit.measures = TRUE, standardized = T)
## lavaan 0.6-19 ended normally after 101 iterations
##
##
     Estimator
                                                        ML
    Optimization method
                                                    NLMINB
##
     Number of model parameters
                                                        35
##
     Number of equality constraints
                                                         6
##
##
     Number of observations
                                                       200
##
     Number of missing patterns
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
    Test Statistic
                                                    74.087
                                                                83.843
##
##
    Degrees of freedom
                                                        15
                                                                    15
    P-value (Chi-square)
                                                     0.000
                                                                0.000
##
     Scaling correction factor
                                                                 0.884
##
       Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
##
    Test statistic
                                                  1151.344 1203.763
                                                                    28
##
    Degrees of freedom
                                                        28
    P-value
                                                     0.000
                                                                 0.000
##
     Scaling correction factor
##
                                                                 0.956
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                     0.947
                                                                 0.941
     Tucker-Lewis Index (TLI)
##
                                                     0.902
                                                                 0.891
##
     Robust Comparative Fit Index (CFI)
##
                                                                 0.947
##
     Robust Tucker-Lewis Index (TLI)
                                                                 0.901
##
## Loglikelihood and Information Criteria:
##
```

##	Scaling correction factor	-2658.861	-2658.861 0.839	
##		-2621.817	-2621.817	
##		2021.011	0.969	
##	3			
##				
##		5375.722		
##	3	5471.373		
##	Sample-size adjusted Bayesian (SABIC)	5379.498	5379.498	
##	Doot Many Courses Every of Assessmention.			
##	Root Mean Square Error of Approximation:			
##	RMSEA	0.140	0.151	
##		0.109		
##		0.173		
##		0.000	0.000	
##	P-value H_0: RMSEA >= 0.080	0.999	1.000	
##				
##			0.141	
##			0.111	
##	11		0.173	
##	-		0.000 0.999	
##	r-value n_0. Robust Rriber >- 0.000		0.999	
	Standardized Root Mean Square Residual:			
##				
##	SRMR	0.161	0.161	
##				
##	Parameter Estimates:			
##				
##	Standard errors	Sandwich		
##	Information bread	Observed		
##	Observed information based on	Hessian		
	Latent Variables:			
##		value P(> z)	Std.lv Std.all	
##	RI_monit =~			
##	monit12 1.000		0.622 0.866	
##	monit13 1.000		0.622 0.880	
##	monit14 1.000		0.622 0.874	

##	monit15		1.000				0.622	0.880	
##	RI_riesgo =~								
##	riesgo12		1.000				3.027	0.654	
##	riesgo13		1.000				3.027	0.675	
##	riesgo14		1.000				3.027	0.691	
##	riesgo15		1.000				3.027	0.672	
##	Wmonit12 =~								
##	monit12		1.000				0.360	0.501	
##	Wmonit13 =~								
##	monit13		1.000				0.336	0.475	
##	Wmonit14 =~								
##	monit14		1.000				0.345	0.485	
##	Wmonit15 =~								
##	monit15		1.000				0.336	0.475	
##	Wriesgo12 =~								
##	riesgo12		1.000				3.497	0.756	
##	Wriesgo13 =~								
##	riesgo13		1.000				3.305	0.737	
##	Wriesgo14 =~								
##	riesgo14		1.000				3.168	0.723	
##	Wriesgo15 =~								
##	riesgo15		1.000				3.332	0.740	
##									
##	Regressions:								
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	Wmonit13 ~								
##	Wmonit12	(a)	0.246	0.096	2.560	0.010	0.264	0.264	
##	Wriesgo12		0.015	0.015	0.999	0.318	0.157	0.157	
##	Wmonit14 ~								
##	Wmonit13	(a)	0.246	0.096	2.560	0.010	0.239	0.239	
##	Wriesgo13		-0.011	0.011	-1.074	0.283	-0.108	-0.108	
##	Wmonit15 ~								
##	Wmonit14	(a)	0.246	0.096	2.560	0.010	0.253	0.253	
##	Wriesgo14		0.002	0.012	0.214	0.830	0.023	0.023	
##	Wriesgo13 ~								
##	Wriesgo12	(b)	0.243	0.076	3.222	0.001	0.258	0.258	
##	Wmonit12		-0.749	1.022	-0.733	0.464	-0.082	-0.082	
##	Wriesgo14 ~								
##	Wriesgo13	(b)	0.243	0.076	3.222	0.001	0.254	0.254	
##	Wmonit13		-1.403	0.969	-1.449	0.147	-0.149	-0.149	
##	Wriesgo15 ~								
##	Wriesgo14	(b)	0.243	0.076	3.222	0.001	0.231	0.231	
	0								

##	Wmonit14	-1.847	1.136	-1.626	0.104	-0.191	-0.191
##	WIIIOIII	1.047	1.100	1.020	0.104	0.131	0.191
##	Covariances:						
##	oovariances.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	RI monit ~~	LD 0 I M C 0 C	Doardi	Z varao	1 (121)	DOG. IV	Dou. all
##	RI_riesg	-0.862	0.227	-3.795	0.000	-0.458	-0.458
##	Wmonit12 ~~	0.00=	0.22.	0.,00		0.1200	0.100
##	Wriesg12	0.173	0.215	0.804	0.422	0.137	0.137
##	.Wmonit13 ~~						
##	.Wriesg13 (cov)	0.225	0.055	4.130	0.000	0.222	0.222
##	.Wmonit14 ~~						
##	.Wriesg14 (cov)	0.225	0.055	4.130	0.000	0.220	0.220
##	.Wmonit15 ~~						
##	.Wriesg15 (cov)	0.225	0.055	4.130	0.000	0.217	0.217
##	RI_monit ~~						
##	Wmonit12	0.000				0.000	0.000
##	Wriesg12	0.000				0.000	0.000
##	RI_riesgo ~~						
##	Wmonit12	0.000				0.000	0.000
##	Wriesg12	0.000				0.000	0.000
##							
##	Intercepts:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.monit12	3.081	0.057	54.229	0.000	3.081	4.289
##	.monit13	3.090	0.054	57.307	0.000	3.090	4.374
##	.monit14	3.067	0.047	65.232	0.000	3.067	4.313
##	.monit15	3.098	0.043	71.728	0.000	3.098	4.385
##	.riesgo12	16.720	0.323	51.762	0.000	16.720	3.615
##	.riesgo13	17.181	0.313	54.955	0.000	17.181	3.834
##	.riesgo14	17.864	0.318	56.177	0.000	17.864	4.077
##	.riesgo15	18.982	0.323	58.834	0.000	18.982	4.217
##	Variances:						
##	variances.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.monit12	0.000	род. шт	Z varuo	1 (> 2)	0.000	0.000
##	.monit13	0.000				0.000	0.000
##	.monit14	0.000				0.000	0.000
##	.monit15	0.000				0.000	0.000
##	.riesgo12	0.000				0.000	0.000
##	.riesgo13	0.000				0.000	0.000
##	.riesgo14	0.000				0.000	0.000
##	.riesgo15	0.000				0.000	0.000

##	RI_monit	0.387	0.045	8.579	0.000	1.000	1.000
##	RI_riesgo	9.162	1.648	5.559	0.000	1.000	1.000
##	Wmonit12	0.129	0.028	4.679	0.000	1.000	1.000
##	.Wmonit13	0.101	0.014	7.257	0.000	0.895	0.895
##	.Wmonit14	0.112	0.017	6.608	0.000	0.943	0.943
##	.Wmonit15	0.105	0.015	7.225	0.000	0.933	0.933
##	Wriesgo12	12.229	1.310	9.332	0.000	1.000	1.000
##	.Wriesgo13	10.186	0.983	10.366	0.000	0.933	0.933
##	.Wriesgo14	9.340	1.184	7.890	0.000	0.931	0.931
##	.Wriesgo15	10.260	1.066	9.623	0.000	0.924	0.924

Comparación de modelos

```
anova(fit2, fit3)

##

## Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001")

##

## lavaan->lavTestLRT():

## lavaan NOTE: The "Chisq" column contains standard test statistics, not the

## robust test that should be reported per model. A robust difference test is

## a function of two standard (not robust) statistics.

## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

## fit2 7 5334.0 5456.0 16.325

## fit3 15 5375.7 5471.4 74.087 70.794 8 3.415e-12 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```