# Acesso e controle do armazenamento

#### Gerenciamento do Espaço de Armazenamento em Disco

- A camada mais baixa de um SGBD faz o gerenciamento de espaço em disco junto com o SO
- As camadas ou níveis mais elevados acessam esta camada para:
- alocar/desalocar um bloco e ler/escrever um bloco
- Melhor seria se os pedidos por uma sequência de blocos fossem satisfeitos pelos blocos armazenados sequencialmente no disco!
- Níveis superiores não sabem como isto é feito, ou como o espaço livre é gerido.
- Embora eles possam assumir acesso sequencial a arquivos!
- Daí que o gestor de espaço em disco deve fazer um trabalho bem feito.

#### Gerenciamento de Buffer

- Buffer parte da memória principal disponível para armazenamento de cópias dos blocos de discos
- O subsistema responsável pela alocação do espaço disponível em buffer é chamado Gerenciador de Buffer



#### Gerenciamento de Buffer



## Quando um bloco de dados é requisitado

- Se o bloco requisitado não está no pool
- Escolhe-se um bloco no buffer para substituição
- Se este bloco estiver ocupado, escreve seus dados no disco
- Lê o bloco de dados requisitado e coloca-o dentre deste bloco que acabou de ser desocupado.

#### Políticas de Substituição em Buffer

- Um bloco é selecionado para substituição com base numa política de substituição:
- Least recently used (LRU)

Most recently used (MRU)

#### Política de Substituição LRU

- Least Recently Used (Menos Recentemente Utilizado)
  - para cada bloco no pool do buffer, registrar o tempo da última substituição
  - substituir o bloco com o tempo mais antigo
  - política muito comum: intuitiva e simples
  - funciona bem para acessos repetidos a páginas populares

#### Política de Substituição MRU

- Most Recently Used (Mais Recentemente Utilizado)
  - oposto da estratégia LRU
    - para cada bloco no buffer, registrar o tempo da última substituição
  - substituir o bloco com o tempo mais recente

#### Estratégia Ideal

- Requer conhecimento das operações de banco de dados em cada aplicação específica
- Não uma estratégia que seja boa para todos os cenários...
- Outros fatores que influenciam
- Acesso concorrente ao dado
- Recuperação de falhas, etc
- A política pode ter um enorme impacto na quantidade de operações de E/S

# Organização de Arquivos



#### Arquivos

- Blocos constituem a interface para E/S, mas...
- As camadas superiores do SGBD operam sobre registros e arquivos de registros.
- ARQUIVO = uma coleção de blocos, cada um contendo uma coleção de registros. Deve suportar operações de:
- inserir/apagar/modificar registros
- pesquisar um registro particular
- ler todos os registros (possivelmente com algumas condições sobre os registros a ser devolvidos)

### Registros

- Os dados são armazenados na forma de <u>registros</u>
- Cada <u>registro</u> possui um conjunto de valores de dados onde cada valor é formado por um ou mais bytes e corresponde a um <u>campo</u> do registro

```
struct funcionario{
    char nome[30];
    char cpf[9];
    int salario;
    int cod_cargo;
    char departamento[20];
}
```

#### Registros

#### 1. Tamanho fixo:

 Todos os registros possuem o mesmo tamanho exatamente; mesma quantidade de bytes

- 2. Tamanho variável (formato ou tamanho):
- Um ou mais campos tem tamanho variável
- Campos com múltiplos valores (campos repetidos)
- Campos opcionais

#### Registros de tamanho fixo

Ci = campo i Ti = tamanho do campo i

### Registro de tamanho fixo



#### Registro de formato variável

Campos <u>opcionais</u>



 Campos <u>tamanho variável</u>, onde não se sabe ao certo o tamanho do campo, usa-se separadores especiais

| Nome        | Cpf         | Salario | Cod_cargo | Departamento |                        |
|-------------|-------------|---------|-----------|--------------|------------------------|
| Silva, João | 12345678966 | XXXX    | XXXX      | Computação   | Caracteres separadores |
|             | 12 2        | 1 2     | 5 2       | 9            | 77                     |

#### Exercício

• Quais os motivos para a existência de registros de tamanho variáveis?

## Alocação de registros

Não espalhada - quando o registro cabe num bloco

Espalhada - quando o registro NÃO cabe num bloco



#### Alocação de blocos no d<mark>isco</mark>

- <u>Contígua</u> blocos de arquivos são alojados em blocos consecutivos do disco
- <u>Ligada</u> cada bloco de arquivo contém um ponteiro para o próximo bloco de arquivo

## Cabeçalhos de Arquivo

 Contém informações sobre um arquivo para determinar os endereços de disco dos blocos, registra descrição de formato de registro, como tamanho e a ordem dos campos nos registros, entre outras.

#### Questão

• Quais são e como funcionam as técnicas para alocar blocos de arquivo nos discos?

# Organização de registros em <u>arquivos</u>

O objetivo de uma boa organização de arquivos é localizar o bloco desejado com um número mínimo de transferências de bloco entre o <u>disco</u> e a <u>memória principal</u>

## Organização de Arquivos

Arquivo Heap

Arquivo Sequencial

Arquivo Hashing

Arquivo Clustering

#### Arquivos Heap

- A estrutura mais simples de um arquivo é aquela que contém os registros sem qualquer ordem em particular. Estes arquivos são conhecidos por heap files.
- Quando o arquivo aumenta ou diminui de tamanho, blocos em disco são alocados e desalocados.
- Normalmente, há um único arquivo para cada relação.

#### Arquivos Sequenciais

- Registros fisicamente ordenados por uma chave primária ou chave de ordenação
- Indicação de uso
  - Memória de acesso sequencial
  - Indicado para arquivos que sofrem recuperações/atualizações por lotes (em batch)
- Contra-indicação
  - Quando há mais do que uma chave
  - Quando exige-se respostas em tempo real
  - Aplicações com inserções/exclusões arbitrárias

#### Operações Sequenciais

#### Acesso

- Registros fisicamente armazenados de acordo com a sequência na qual são solicitados
- Na maioria dos acessos o registro solicitado estará em memória por pertencer ao mesmo bloco do seu antecessor

#### Inserção

- Localizar registro anterior ao que será incluído pela ordem da chave primária
- Se há espaço dentro do mesmo bloco desse registro, insere o novo registro. Senão, inserir o novo registro em um bloco de overflow.

#### Deleção

Cadeias de ponteiros (marcação para remoção física)

|           | Nome                                         | Cpf | Data_nascimento | Cargo | Salario | Sexo |
|-----------|----------------------------------------------|-----|-----------------|-------|---------|------|
| Bloco 1   | Aaron, Eduardo                               |     |                 |       |         |      |
|           | Abilio, Diana                                |     |                 |       |         |      |
|           |                                              |     | :               |       |         |      |
|           | Acosta, Marcos                               |     |                 |       |         |      |
| Bloco 2   | Adams, João                                  |     |                 |       |         |      |
|           | Adams, Roberto                               |     |                 |       |         |      |
|           |                                              |     | :               |       |         |      |
|           | Akers, Janele                                |     |                 |       |         |      |
| Bloco 3   | Alexandre, Eduardo                           |     |                 |       |         |      |
|           | Alfredo, Roberto                             |     |                 |       |         |      |
|           |                                              |     | :               |       |         |      |
|           | Allen, Samuel                                |     |                 |       |         |      |
|           |                                              |     |                 |       |         |      |
| Bloca 4   | Allen, Tiago                                 |     |                 |       |         |      |
|           | Anderson, Kely                               |     |                 |       |         |      |
|           |                                              |     | :               |       |         |      |
|           | Anderson, Joel                               |     |                 |       |         |      |
| Bloco 5   | Anderson, Isaac                              |     |                 |       |         |      |
|           | Angeli, José                                 |     |                 |       |         |      |
|           |                                              |     | :               |       |         |      |
|           | Anita, Sueli                                 |     |                 |       |         |      |
| Bloco 6   | Arnoldo, Marcelo                             |     |                 |       |         |      |
|           | Arnoldo, Estevan                             |     |                 |       |         |      |
|           |                                              |     | ÷               |       |         |      |
|           | Atilio, Timóteo                              |     | 17              |       |         |      |
|           |                                              |     | :               |       |         |      |
| Bloco n-1 | Wanderley, Jaime                             |     | •               |       |         |      |
|           | Wesley, Ronaldo                              |     |                 |       |         |      |
|           |                                              |     | :               |       |         |      |
|           | Wong, Manuel                                 |     |                 |       |         |      |
| Bloco n   | Wong, Pámela                                 |     |                 |       |         |      |
|           | Wuang, Charles                               |     |                 |       |         |      |
|           | g. J. S. |     | :               |       |         |      |
|           | Zimmer, André                                |     |                 |       |         |      |
|           |                                              |     |                 |       |         |      |

#### Exercício

• Em uma organização de arquivo sequencial, por que um bloco de *overflow* é utilizado mesmo se houver apenas um registro de *overflow*?

### Arquivo Hashing

- Uma função hash é calculada sobre algum atributo de cada registro
  - Função hash h(k) = é uma função que transforma uma chave k num endereço. Este endereço é usado como a base para o armazenamento e recuperação de registros
- O resultado da função especifica em qual bloco do arquivo o registro deve ser colocado.

#### Exemplo

h(nome\_agencia) = soma
das representações binárias
dos caracteres de uma
chave e então retorna o
módulo (MOD) da soma pelo
número de blocos











| Bucket 7 |       |     |
|----------|-------|-----|
| Mianus   | A-215 | 700 |
|          |       |     |
|          |       |     |
|          |       |     |
|          | ı     |     |

| Organização de <i>hash</i> do arquivo |
|---------------------------------------|
| conta                                 |

| Brighton   | A-217 | 750 |
|------------|-------|-----|
| Round Hill | A-305 | 350 |
|            |       |     |
|            |       |     |

| Bucket 8 |       |     |
|----------|-------|-----|
| Downtown | A-101 | 500 |
| Downtown | A-110 | 600 |
|          |       |     |
|          | Ì     |     |

| Redwood | A-222 | 700 |
|---------|-------|-----|
|         |       |     |
|         |       |     |
|         |       |     |

Bucket 4

| Bucket 9 |  |
|----------|--|
|          |  |
|          |  |
|          |  |
|          |  |

#### Arquivo Clustering/Multitabela

- Registros de diferentes relações podem estar armazenados em um mesmo arquivo.
- Registros relacionados de diferentes relações são armazenados no mesmo bloco para que operações de E/S busquem registros relacionados de todas as relações.

| nome_cliente | número_conta |  |
|--------------|--------------|--|
| Hayes        | A-102        |  |
| Hayes        | A-220        |  |
| Hayes        | A-503        |  |
| Turner       | A-305        |  |

| nome_cliente | rua_cliente | cidade_cliente |
|--------------|-------------|----------------|
| Hayes        | Main        | Brooklyn       |
| Turner       | Putnam      | Stamford       |

Relação depositante

Relação cliente

#### Arquivo Clustering Multitabela

| Hayes  | Main   | Brooklyn |
|--------|--------|----------|
| Hayes  | A-102  |          |
| Hayes  | A-220  | 100      |
| Hayes  | A-503  |          |
| Turner | Putnam | Stamford |
| Turner | A-305  |          |

Clustering de arquivo

| Hayes  | Main   | Brooklyn       | 1   |
|--------|--------|----------------|-----|
| Hayes  | A-102  |                | 1   |
| Hayes  | A-220  |                |     |
| Hayes  | A-503  |                | /   |
| Turner | Putnam | Stamford       | - 1 |
| Turner | A-305  | e numer relati |     |

Clustering de arquivo com cadeias de ponteiros

## CATALOGO DO SISTEMA ou dicionário de dados

- Para cada relação:
  - nome, localização do arquivo, estrutura do arquivo(p.ex. heap file)
  - nome e tipo de cada atributo
  - nome de cada índice
  - restrições de integridade
- Para cada índice:
  - estrutura (p.ex. B+ tree) e campos-chave de pesquisa
- Para cada visão:
  - nome e definição
  - + estatística, autorização, tamanho da buffer pool, etc.
- Catálogos são eles próprios armazenados como relações!

## CATALOGO DO SISTEMA ou dicionário de dados

- Catálogos são eles próprios armazenados como relações!
  - Esquema\_catalogo\_sistema = (nome\_relação, nome\_atributos)
  - Esquema\_atributo = (nome\_atributo, nome\_relacao, tipo\_dominio, posição, tamanho)
  - Esquema\_usuario = (nome\_usuario, senha, grupo)
  - Esquema\_indice = (nome\_indice,nome\_relacao, tipo\_indice,atributos\_indice)

#### Exercício

- Considere um banco de dados relacional com duas relações:
- 1. Curso (nome\_curso,sala, instrutor)
- 2. Matrícula (nome\_curso, nome\_estudante, período)

Defina instâncias para essas relações para três cursos, cada qual com dois estudantes matriculados. Dê uma estrutura de arquivos para essas relações utilizando:

- a) Arquivo Sequencial
- b) Arquivo Clustering

#### Dúvidas???

Capítulo 17 do livro do Navathe