

ME 639 - Introduction to Robotics
Mini Project II

Prof: Harish Palanthandalam Madapusi

Group Members:

Vedant Barde Naman Varshney Pankaj Khatti

Task0:

Side view of OSAKE

Top View of OSAKE

> Essential Parameters:

- \circ Length of link 1(L1) = 10 cm
- \circ Length of link 2(L2) = 11.5 cm
- The interference d = 6.5 cm

> DH Parameters:

d (cm)	θ (degree)	a (cm)	0 (degree)
6.5	q1*	10	0
0	q2*	11.5	0

Where

 $\mbox{\bf d}$ is the translation along the z-axis to reach the common normal.

 $\boldsymbol{\theta}$ is rotation about the z-axis until the x-axis hits the common normal.

 $\ensuremath{\mathfrak{a}}$ is rotation about the x-axis until the z-axis becomes the rotation axis.

a is the translation along the x-axis to hit the common normal.

➤ Resulting Homogeneous Transformation Matrix:

cos (q1+q2) -sin(q1+q2)	0	L2.cos(q1+q2) + L1.cos(q1)
sin(q1+q2) cos(q1+q2)	0	L2.sin(q1+q2) + L1.sin(q1)
0	0	1	d
0	0	0	1

 $H_0^2 = \Box$

> Jacobian Matrix:

-L2.sin(q1+q2)-L1.sin(q1)	-L2.sin(q1+q2)
L2.cos(q1+q2)+L1.cos(q1)	L2.cos(q1+q2)
0	0
0	0
0	0
1	1

J =

➤ Mathematical Calculation for Obtaining Jacobian Matrix:

7				DATE: / /).
R:	= (Cov.	-Say	0	do = (l. ca)	7
	Sav.	Covi	0	l. La	
-	60	10	10.	10 11	
R		1	0	4	
- Ko	= Car		0	di - [D. Ca)2	7
1	Saz	Cays	0	1 2, Sa	
	10	_ 0		0	
1.1	-				
Ho' =		-50, 0	Q. Ca	,	
-	Sau	(0), 0	0,5	Sa).	
	0	0 1	- 0	t l	
	10	0 0			
H,2 =					
H. =		-sa2 0	220	Q ₂	
	Saz	Car o	Q2.	SW2	
	0	0 1			
	0	0 0			
110 =	hi H. 2				
=	Can.	-Sa. 0 0.	(G1,	Tray -say 0	Oca.
030	Sar.	Can. 0 0	. 501.	Sq. (0)	3 2.50
				0 0	
-				00	
		0			
1.2	(^	1000	. 7
Ho c				l. Courses + le (
				la Scortare) + l	San
19.	0	0	1	d	
	0	0	0	1	
		100			
					IN PART OF

1,3750	DATE: / /
do = la Contan + lican	
& s (que an) + l, san	
d	
J	I fee town
For OSAKE, D. 2	olnts (Oxh matrix)
Jo' = Ro (0) X (dx-do) Ro (0	7 × (d°-d°)
O X O	
R° (°)	
Ro O R.	0
Re = identity do matrix	
di = Zero matrix	
Jo = - les (contar) - leson - 1	2 S (quitar)
	(fortan)
0	0
0	0
0	0
	1

> C++ code giving end effector position with respect to the base frame.

```
#include <iostream>
#include <cmath>
#include <vector>
int main() {
    double q1 degrees, q2 degrees;
    int 11, 12;
    std::cout << "Rotation 1: ";</pre>
    std::cin >> q1 degrees;
    std::cout << "Rotation 2: ";</pre>
    std::cin >> q2 degrees;
    std::cout << "Length of Link 01: ";</pre>
    std::cin >> 11;
    std::cout << "Length of Link 02: ";</pre>
    std::cin >> 12;
    double q1 = q1 degrees * M PI / 180.0; // Convert degrees to
radians
    double q2 = q2 degrees * M_PI / 180.0;
    std::vector<std::vector<double>> H01 = {
        \{\cos(q1), -\sin(q1), 0, 11 * \cos(q1)\},\
        \{\sin(q1), \cos(q1), 0, 11 * \sin(q1)\},\
       \{0, 0, 1, 0\},\
        {0, 0, 0, 1}
    };
    std::vector<std::vector<double>> H12 = {
        \{\cos(q2), -\sin(q2), 0, 12 * \cos(q2)\},\
        \{\sin(q2), \cos(q2), 0, 12 * \sin(q2)\},\
        \{0, 0, 1, 0\},\
```

```
std::vector<std::vector<double>> H02(4, std::vector<double>(4));
for (int i = 0; i < 4; ++i) {
            H02[i][j] += H01[i][k] * H12[k][j];
std::vector<std::vector<double>> P1 = {
   {0},
   {0},
   {0},
   {1}
std::vector<std::vector<double>> P00(4, std::vector<double>(1));
for (int i = 0; i < 4; ++i) {
    for (int j = 0; j < 1; ++j) {
            P00[i][j] += H02[i][k] * P1[k][j];
// Print P00
   for (int j = 0; j < 1; ++j) {
       std::cout << P00[i][j] << "\n";
return 0;
```

 \succ C++ code giving resulting end effector velocity using Jacobian Matrix (J).

```
#include <iostream>
#include <cmath>
^\prime/ Define functions {\sf for} desired joint angles {\sf as} a function of time
double thetal desired(double t) {
    // I am considering that the manipulator will rotate by 3 degrees per
second, which gives me the following relation for theta2
    return 3.0 * t;
double theta2 desired(double t) {
    // For tracing the circle, link 2 needs to be at a fixed angle, which
I assumed to be 60 degrees
   return 60.0;
int main() {
   double t = 2.0; // Fixed time value
    // Defining link lengths
    double 11 = 10.0; // length of link 1
    double 12 = 11.5; // length of link 2
    // Small time interval for numerical differentiation
    double delta t = 1e-6;
   // Calculate desired joint angles and their derivatives
    double theta1 = theta1 desired(t);
    double theta2 = theta2 desired(t);
    // Calculate tip position in x-direction
    double px = 11 * cos(theta1) + 12 * cos(theta1 + theta2);
```

```
// Calculate tip position in y-direction
   double py = 11 * sin(theta1) + 12 * sin(theta1 + theta2);
   // Calculate partial derivatives
   double all = -11 * sin(theta1) - 12 * sin(theta1 + theta2);
   double a12 = -12 * sin(theta1 + theta2);
   double a21 = 11 * cos(theta1) + 12 * cos(theta1 + theta2);
   double a22 = 12 * cos(theta1 + theta2);
   // Calculate the Jacobian matrix
   double J[2][2] = \{\{a11, a12\}, \{a21, a22\}\};
   // Define the angular velocity vector [theta1 dot, theta2 dot]
   double angular velocity[2] = {theta1 dot, theta2 dot};
   // Calculate the end-tip linear velocity in x and y
   double linear velocity[2] = {al1 * theta1 dot + al2 * theta2 dot,
   // Calculating the resulting end-tip angular velocity
   double end tip angular velocity = sqrt(linear velocity[0] *
linear velocity[0] + linear velocity[1] * linear velocity[1]);
   // Print the result
   std::cout << "End-tip angular velocity: " << end tip angular velocity</pre>
<< std::endl;</pre>
   return 0;
```

Link for LinkedIn Submission:
https://www.linkedin.com/feed/update/urn:li:ugcPost:71146741503879249
93/