3/6/24, 6:09 PM Untitled

```
In [2]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         data=pd.read_csv("heart.csv")
In [3]:
In [4]:
         data
Out[4]:
                age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
             0
                 52
                       1
                           0
                                       212
                                              0
                                                      1
                                                             168
                                                                      0
                                                                              1.0
                                                                                      2
                                                                                          2
                                                                                               3
                                                                                                      0
                                  125
             1
                 53
                                  140
                                       203
                                              1
                                                      0
                                                             155
                                                                      1
                                                                                         0
                                                                                               3
                       1
                           0
                                                                              3.1
                                                                                      0
                                                                                                      0
             2
                 70
                       1
                           0
                                  145
                                       174
                                              0
                                                      1
                                                             125
                                                                      1
                                                                              2.6
                                                                                      0
                                                                                         0
                                                                                               3
                                                                                                      0
             3
                 61
                           0
                                  148
                                       203
                                              0
                                                      1
                                                             161
                                                                      0
                                                                              0.0
                                                                                         1
                                                                                               3
                                                                                                      0
                       1
                                                                                      2
             4
                 62
                       0
                           0
                                  138
                                       294
                                              1
                                                      1
                                                             106
                                                                      0
                                                                              1.9
                                                                                      1
                                                                                         3
                                                                                               2
                                                                                                      0
         1020
                 59
                       1
                          1
                                  140
                                       221
                                              0
                                                      1
                                                             164
                                                                      1
                                                                              0.0
                                                                                      2
                                                                                         0
                                                                                               2
                                                                                                      1
                                       258
         1021
                 60
                       1
                           0
                                  125
                                              0
                                                      0
                                                             141
                                                                      1
                                                                              2.8
                                                                                      1
                                                                                         1
                                                                                               3
                                                                                                      0
         1022
                           0
                                  110
                                       275
                                              0
                                                      0
                                                             118
                                                                      1
                                                                              1.0
                                                                                               2
                                                                                                      0
                 47
                       1
                                                                                      1
                                                                                         1
         1023
                 50
                           0
                                  110
                                       254
                                              0
                                                      0
                                                             159
                                                                      0
                                                                              0.0
                                                                                         0
                                                                                               2
                                                                                                      1
                       0
                                                                                      2
         1024
                 54
                       1
                          0
                                  120
                                       188
                                              0
                                                      1
                                                             113
                                                                      0
                                                                              1.4
                                                                                      1
                                                                                        1
                                                                                               3
                                                                                                      0
         1025 rows × 14 columns
In [5]:
         data.columns
         Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
Out[5]:
                  'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
                dtype='object')
```

```
data.shape
In [6]:
         (1025, 14)
Out[6]:
         data.isnull().sum()
In [9]:
```

3/6/24. 6:09 PM Untitled

```
0
         age
Out[9]:
                      0
         sex
                      0
         ср
         trestbps
                      0
         chol
                      0
         fbs
                      0
                      0
         restecg
         thalach
                      0
         exang
                      0
                      0
         oldpeak
         slope
                      0
                      0
         ca
         thal
                      0
                      0
         target
         dtype: int64
```

In [10]: x=data.drop(["target"],axis=1)
y=data["target"]

In [11]: x

Out[11]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
	0	52	1	0	125	212	0	1	168	0	1.0	2	2	3
	1	53	1	0	140	203	1	0	155	1	3.1	0	0	3
	2	70	1	0	145	174	0	1	125	1	2.6	0	0	3

•	33	•	O	1 10	203	•	Ü	133		5.1	Ü	Ü	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2
•••	•••		•••		•••					•••			•••
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3

1025 rows × 13 columns

```
In [12]: from sklearn.model_selection import train_test_split
    X_train,X_test,Y_train,Y_test=train_test_split(x,y,random_state=42,test_size=0.2)
```

```
In [18]: from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
    from sklearn.svm import SVC
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.naive_bayes import GaussianNB
```

model=DecisionTreeClassifier() model.fit(X_train,Y_train) prediction=model.predict()

3/6/24, 6:09 PM Untitled

```
model=DecisionTreeClassifier()
In [19]:
         model.fit(X_train,Y_train)
         prediction=model.predict(X test)
         from sklearn.metrics import accuracy score
In [22]:
         accuracy = accuracy_score(Y_test,prediction)
         accuracy
         0.9853658536585366
Out[22]:
In [24]:
         model=RandomForestClassifier()
         model.fit(X train,Y train)
         prediction=model.predict(X test)
In [25]:
         from sklearn.metrics import accuracy score
         accuracy = accuracy_score(Y_test,prediction)
         accuracy
         0.9853658536585366
Out[25]:
In [26]:
         model=KNeighborsClassifier()
         model.fit(X train,Y train)
         prediction=model.predict(X test)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228:
         FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the defaul
         t behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, thi
         s behavior will change: the default value of `keepdims` will become False, the `axis`
         over which the statistic is taken will be eliminated, and the value None will no long
         er be accepted. Set `keepdims` to True or False to avoid this warning.
           mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
In [27]:
         from sklearn.metrics import accuracy score
         accuracy = accuracy_score(Y_test,prediction)
         accuracy
         0.7317073170731707
Out[27]:
 In [ ]:
```

3/6/24, 6:09 PM Untitled

```
In [2]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         data=pd.read_csv("heart.csv")
In [3]:
In [4]:
         data
Out[4]:
                age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
             0
                 52
                       1
                           0
                                       212
                                              0
                                                      1
                                                             168
                                                                      0
                                                                              1.0
                                                                                      2
                                                                                          2
                                                                                               3
                                                                                                      0
                                  125
             1
                 53
                                  140
                                       203
                                              1
                                                      0
                                                             155
                                                                      1
                                                                                         0
                                                                                               3
                       1
                           0
                                                                              3.1
                                                                                      0
                                                                                                      0
             2
                 70
                       1
                           0
                                  145
                                       174
                                              0
                                                      1
                                                             125
                                                                      1
                                                                              2.6
                                                                                      0
                                                                                         0
                                                                                               3
                                                                                                      0
             3
                 61
                           0
                                  148
                                       203
                                              0
                                                      1
                                                             161
                                                                      0
                                                                              0.0
                                                                                         1
                                                                                               3
                                                                                                      0
                       1
                                                                                      2
             4
                 62
                       0
                           0
                                  138
                                       294
                                              1
                                                      1
                                                             106
                                                                      0
                                                                              1.9
                                                                                      1
                                                                                         3
                                                                                               2
                                                                                                      0
         1020
                 59
                       1
                          1
                                  140
                                       221
                                              0
                                                      1
                                                             164
                                                                      1
                                                                              0.0
                                                                                      2
                                                                                         0
                                                                                               2
                                                                                                      1
                                       258
         1021
                 60
                       1
                           0
                                  125
                                              0
                                                      0
                                                             141
                                                                      1
                                                                              2.8
                                                                                      1
                                                                                         1
                                                                                               3
                                                                                                      0
         1022
                           0
                                  110
                                       275
                                              0
                                                      0
                                                             118
                                                                      1
                                                                              1.0
                                                                                               2
                                                                                                      0
                 47
                       1
                                                                                      1
                                                                                         1
         1023
                 50
                           0
                                  110
                                       254
                                              0
                                                      0
                                                             159
                                                                      0
                                                                              0.0
                                                                                         0
                                                                                               2
                                                                                                      1
                       0
                                                                                      2
         1024
                 54
                       1
                          0
                                  120
                                       188
                                              0
                                                      1
                                                             113
                                                                      0
                                                                              1.4
                                                                                      1
                                                                                        1
                                                                                               3
                                                                                                      0
         1025 rows × 14 columns
In [5]:
         data.columns
         Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
Out[5]:
                  'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
                dtype='object')
```

```
data.shape
In [6]:
         (1025, 14)
Out[6]:
         data.isnull().sum()
In [9]:
```

3/6/24. 6:09 PM Untitled

```
0
         age
Out[9]:
                      0
         sex
                      0
         ср
         trestbps
                      0
         chol
                      0
         fbs
                      0
                      0
         restecg
         thalach
                      0
         exang
                      0
                      0
         oldpeak
         slope
                      0
                      0
         ca
         thal
                      0
                      0
         target
         dtype: int64
```

In [10]: x=data.drop(["target"],axis=1)
y=data["target"]

In [11]: x

Out[11]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
	0	52	1	0	125	212	0	1	168	0	1.0	2	2	3
	1	53	1	0	140	203	1	0	155	1	3.1	0	0	3
	2	70	1	0	145	174	0	1	125	1	2.6	0	0	3

•	33	•	O	1 10	203	•	Ü	133		5.1	Ü	Ü	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2
•••	•••		•••		•••					•••			•••
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3

1025 rows × 13 columns

```
In [12]: from sklearn.model_selection import train_test_split
    X_train,X_test,Y_train,Y_test=train_test_split(x,y,random_state=42,test_size=0.2)
```

```
In [18]: from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
    from sklearn.svm import SVC
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.naive_bayes import GaussianNB
```

model=DecisionTreeClassifier() model.fit(X_train,Y_train) prediction=model.predict()

3/6/24, 6:09 PM Untitled

```
model=DecisionTreeClassifier()
In [19]:
         model.fit(X_train,Y_train)
         prediction=model.predict(X test)
         from sklearn.metrics import accuracy score
In [22]:
         accuracy = accuracy_score(Y_test,prediction)
         accuracy
         0.9853658536585366
Out[22]:
In [24]:
         model=RandomForestClassifier()
         model.fit(X train,Y train)
         prediction=model.predict(X test)
In [25]:
         from sklearn.metrics import accuracy score
         accuracy = accuracy_score(Y_test,prediction)
         accuracy
         0.9853658536585366
Out[25]:
In [26]:
         model=KNeighborsClassifier()
         model.fit(X train,Y train)
         prediction=model.predict(X test)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228:
         FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the defaul
         t behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, thi
         s behavior will change: the default value of `keepdims` will become False, the `axis`
         over which the statistic is taken will be eliminated, and the value None will no long
         er be accepted. Set `keepdims` to True or False to avoid this warning.
           mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
In [27]:
         from sklearn.metrics import accuracy score
         accuracy = accuracy_score(Y_test,prediction)
         accuracy
         0.7317073170731707
Out[27]:
 In [ ]:
```

3/6/24, 6:09 PM Untitled

```
In [2]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         data=pd.read_csv("heart.csv")
In [3]:
In [4]:
         data
Out[4]:
                age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
             0
                 52
                       1
                           0
                                       212
                                              0
                                                      1
                                                             168
                                                                      0
                                                                              1.0
                                                                                      2
                                                                                          2
                                                                                               3
                                                                                                      0
                                  125
             1
                 53
                                  140
                                       203
                                              1
                                                      0
                                                             155
                                                                      1
                                                                                         0
                                                                                               3
                       1
                           0
                                                                              3.1
                                                                                      0
                                                                                                      0
             2
                 70
                       1
                           0
                                  145
                                       174
                                              0
                                                      1
                                                             125
                                                                      1
                                                                              2.6
                                                                                      0
                                                                                         0
                                                                                               3
                                                                                                      0
             3
                 61
                           0
                                  148
                                       203
                                              0
                                                      1
                                                             161
                                                                      0
                                                                              0.0
                                                                                         1
                                                                                               3
                                                                                                      0
                       1
                                                                                      2
             4
                 62
                       0
                           0
                                  138
                                       294
                                              1
                                                      1
                                                             106
                                                                      0
                                                                              1.9
                                                                                      1
                                                                                         3
                                                                                               2
                                                                                                      0
         1020
                 59
                       1
                          1
                                  140
                                       221
                                              0
                                                      1
                                                             164
                                                                      1
                                                                              0.0
                                                                                      2
                                                                                         0
                                                                                               2
                                                                                                      1
                                       258
         1021
                 60
                       1
                           0
                                  125
                                              0
                                                      0
                                                             141
                                                                      1
                                                                              2.8
                                                                                      1
                                                                                         1
                                                                                               3
                                                                                                      0
         1022
                           0
                                  110
                                       275
                                              0
                                                      0
                                                             118
                                                                      1
                                                                              1.0
                                                                                               2
                                                                                                      0
                 47
                       1
                                                                                      1
                                                                                         1
         1023
                 50
                           0
                                  110
                                       254
                                              0
                                                      0
                                                             159
                                                                      0
                                                                              0.0
                                                                                         0
                                                                                               2
                                                                                                      1
                       0
                                                                                      2
         1024
                 54
                       1
                          0
                                  120
                                       188
                                              0
                                                      1
                                                             113
                                                                      0
                                                                              1.4
                                                                                      1
                                                                                        1
                                                                                               3
                                                                                                      0
         1025 rows × 14 columns
In [5]:
         data.columns
         Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
Out[5]:
                  'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
                dtype='object')
```

```
data.shape
In [6]:
         (1025, 14)
Out[6]:
         data.isnull().sum()
In [9]:
```

3/6/24. 6:09 PM Untitled

```
0
         age
Out[9]:
                      0
         sex
                      0
         ср
         trestbps
                      0
         chol
                      0
         fbs
                      0
                      0
         restecg
         thalach
                      0
         exang
                      0
                      0
         oldpeak
         slope
                      0
                      0
         ca
         thal
                      0
                      0
         target
         dtype: int64
```

In [10]: x=data.drop(["target"],axis=1)
y=data["target"]

In [11]: x

Out[11]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
	0	52	1	0	125	212	0	1	168	0	1.0	2	2	3
	1	53	1	0	140	203	1	0	155	1	3.1	0	0	3
	2	70	1	0	145	174	0	1	125	1	2.6	0	0	3

•	33	•	O	1 10	203	•	Ü	133		5.1	Ü	Ü	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2
•••	•••		•••		•••					•••			•••
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3

1025 rows × 13 columns

```
In [12]: from sklearn.model_selection import train_test_split
    X_train,X_test,Y_train,Y_test=train_test_split(x,y,random_state=42,test_size=0.2)
```

```
In [18]: from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
    from sklearn.svm import SVC
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.naive_bayes import GaussianNB
```

model=DecisionTreeClassifier() model.fit(X_train,Y_train) prediction=model.predict()

3/6/24, 6:09 PM Untitled

```
model=DecisionTreeClassifier()
In [19]:
         model.fit(X_train,Y_train)
         prediction=model.predict(X test)
         from sklearn.metrics import accuracy score
In [22]:
         accuracy = accuracy_score(Y_test,prediction)
         accuracy
         0.9853658536585366
Out[22]:
In [24]:
         model=RandomForestClassifier()
         model.fit(X train,Y train)
         prediction=model.predict(X test)
In [25]:
         from sklearn.metrics import accuracy score
         accuracy = accuracy_score(Y_test,prediction)
         accuracy
         0.9853658536585366
Out[25]:
In [26]:
         model=KNeighborsClassifier()
         model.fit(X train,Y train)
         prediction=model.predict(X test)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228:
         FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the defaul
         t behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, thi
         s behavior will change: the default value of `keepdims` will become False, the `axis`
         over which the statistic is taken will be eliminated, and the value None will no long
         er be accepted. Set `keepdims` to True or False to avoid this warning.
           mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
In [27]:
         from sklearn.metrics import accuracy score
         accuracy = accuracy_score(Y_test,prediction)
         accuracy
         0.7317073170731707
Out[27]:
 In [ ]:
```