Введение в машинное обучение

Викулин Всеволод

v.vikulin@corp.mail.ru

30 сентября 2019

Часть 1

Введение в курс

Курс о машинном обучении

Машинное обучение (Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться Искусственный интеллект (Artificial intelligence) — наука и технология создания интеллектуальных машин.

Источник: machinelearning.ru

Вопрос

Что значит способны обучаться? Кто их обучает?

Зачем все это?

- Специалисты по машинному обучению востребованы
- Много красивой математики
- Все применимо в реальных задачах

Знакомимся в с преподавателями

Всеволод Викулин

Дмитрий Меркушов

Дмитрий Парпулов

Сергей Чепарухин

Структура курса

- 11 лекций
- 2 коллоквиума (каждый 20 баллов)
- 4 домашних задания (первое 5 баллов, остальные 10, гибкая система штрафов)
- защита проекта (25 баллов)
- на каждой лекции небольшой тест по прошлой теме (10 бонусных баллов)
- море удовольствия (бесценно)

0—49 неудовлетворительно, 50—79 удовлетворительно, 80—94 хорошо, > 94 отлично Общаемся в слаке, домашние работы отправляем на ml1.sphere@mail.ru Материалы лекций тут www.github.com/VVVikulin/ml1.sphere

Финальный проект

- Реальные данные от Mail.Ru
- Объединяемся в команды (максимум 4 человека)
- Решаем прикладную задачу на соревновательной платформе Kaggle
- Кто лучше решил, тот молодец
- Защищаем свое решение презентацией

Рекомендуемая литература

- Воронцов K.B. www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf
- Bishop C. M. Pattern Recognition and Machine Learning
- Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning
- Skiena S. The Data Science Design Manual
- Pecypc www.machinelearning.ru
- Блог А.Г. Дьяконова www.dyakonov.org

Часть 2

Формальная постановка задачи машинного обучения

Общая постановка

Имеется множество объектов. Каждый объект описывается вектором его наблюдаемых характеристик (признаков) $x \in X$ и скрытых характеристик $y \in Y$ (целевая переменная). Существует некоторая функция $f: X \to Y$ Задача: имея **ограниченный** набор объектов (обучающая выборка), построить функцию $a: X \to Y$, приближающая f на всем множестве объектов (на генеральной совокупности).

Какие бывают признаки?

- Вещественный признак принимает вещественные значения
- Бинарный признак может принимать 2 значения
- ullet Категориальный признак может принимать K значений
- Порядковый признак упорядоченный категориальный признак

Типы задач машинного обучения

Пусть обучающая выборка размера N. Обозначим:

$$\{x_1, \dots, x_N\} = X_{train}, \{y_1, \dots, y_N\} = Y_{train}$$

- ullet Обучение с учителем (supervised learning). Известны X_{train}, Y_{train}
- ullet Обучение без учителя (unsupervised learning). Известно только X_{train}
- Частичное обучение (semi-supervised learning). Известно X_{train} и для некоторых объектов из X_{train} известна целевая переменная

В нашем курсе рассмотрим первые два типа.

Обучение с учителем

По типу целевой переменной обучение с учителем тоже разбивается на классы. В курсе разберем 2 постановки:

- ullet Классификация $Y=\{1,\ldots,M\}$, классы могут пересекаться
- ullet Регрессия $Y=\mathbb{R}$ или $Y=\mathbb{R}^{\mathbb{M}}$

Пример классификации

Источник: medium.com/@b.terryjack

Пример регрессии

Источник: Bishop

Обучение без учителя

Можно выделить следующие типы:

- Кластеризация разбитие объектов на такие группы, что объекты в одних группах похожи, а в разных отличаются
- Поиск аномалий поиск объектов, отличающихся от всех остальных
- Снижение размерности уменьшение числа признаков

Пример кластеризации

Пример поиска аномалий

Пример снижения размерности

Источник: analyticsvidhya.com/blog/2015/07/dimension-reduction-methods

19 / 40

Часть 3

Разбор прикладных задач

Правило разбора

Прежде чем делать прикладную задачу, нужно разобрать ее постановку! Делаем по принципу:

- Что является объектом в задаче?
- Что является целевой переменной?
- С учителем или без?
- Регрессия или классификация? Кластеризация или поиск аномалий?
- Какие данные нам нужны?
- Какие признаки нужно извлечь?

Спам-фильтр

Источник: technicallyeasy.net

Спам-фильтр

- Письмо
- Является ли письмо спамом
- О С учителем
- Бинарная классификация
- 🧿 Письма, которые сами пользователи разметили, что это спам
- Почта отправителя, содержит ли письмо маркерные фразы («скачать», «бесплатно», «без смс» и т.д.)

Рекламные объявления

Источник: edison.bz/blog/mytarget-sekrety-nastroek-v-2018-godu.html

Рекламные объявления

- Пара (пользователь, объявление)
- Кликнет ли пользователь на объявление
- С учителем
- Бинарная классификация
- Пользовательская история взаимодействия с рекламой
- Пол, возраст, город, интересы (интересуется ли он спортом, политикой и т.д.)

Предсказание объема продаж товара в магазине

Источник: assignmentpoint.com/business/finance/

Предсказание объема продаж товара в магазине

- Тройка (товар, магазин, день)
- 2 Сколько мы за этот день продадим данного продукта в этом магазине?
- О С учителем
- Регрессия
- История продаж
- 🧿 Прошлые продажи, день недели, стоимость товара, есть ли скидка

Сегментация пользователей телеком компании

Источник: medium.com/analytics-for-humans

Сегментация пользователей телеком компании

- Пользователь
- Кластер пользователя
- Без учителя
- Кластеризация
- История пользователя
- Среднее время выхода пользователя в интернет, время звонков, сколько тратит в месяц, город

Детектирование поломок на заводе

Источник: strellagroup.com/industry-manufacturing-software

Детектирование поломок на заводе

- Интервал времени
- Есть ли поломка завода?
- Без учителя
- Поиск аномалий
- История работы приборов на заводе
- Отличие измерений от прошлых замеров на всех приборах

Часть 4

Как строить алгоритмы

Сравниваем алгоритмы

Далее рассматриваем обучение с учителем.

Функция потерь (loss function) L(a, x, y) – неотрицательная функция, показывающая величину ошибки алгоритма a на объекте x с ответом y.

Функционал качества $Q(a,X,Y) = \frac{1}{N} \sum_{i=1}^N L(a,x_i,y_i), x_i \in X, y_i \in Y$

Принцип минимизации эмпирического риска:

 $a^* = \operatorname*{argmin}_A Q(a, X_{train}, Y_{train})$, где A – семейство алгоритмов.

Примеры функций потерь:

- ullet Классификация L(a,x,y)=[a(x)=y]
- Регрессия L(a, x, y) = |a(x) y|

Сравниваем алгоритмы

Самый важный вопрос: открыли ли мы закон природы или просто подогнали наш алгоритм a(x) под обучающую выборку? Не обязательно, что $\mathop{\rm argmin}_{} Q(a, X_{train}, Y_{train})$ – полезный алгоритм.

Вопрос

Можете придумать пример алгоритма, у которого ошибка на обучении 0, но он совершенно бесполезен?

Финальный алгоритм проверяем на контрольной выборке X_{test}, Y_{test} , которую он раньше не видел.

Вопрос

Как соотносятся $Q(a, X_{train}, Y_{train})$ и $Q(a, X_{test}, Y_{test})$

Переобучение и обобщающая способность

Проблема переобучения — значения $Q(a,X_{train},Y_{train})$ значительно меньше, чем значение $Q(a,X_{test},Y_{test})$ на контрольной выборке.

Если $Q(a,X_{test},Y_{test})$ примерно равна $Q(a,X_{train},Y_{train})$, то говорят, что алгоритм обладает обобщающей способностью

Переобучение есть всегда из-за индуктивной постановки задачи – нахождение закона природы по неполной выборке!

Но еще она может быть из-за излишней сложности модели.

Пример переобучения

Источник: en.wikipedia.org/wiki/Overfitting

Пример переобучения

Источник: en.wikipedia.org/wiki/Overfitting

Как обнаружить переобучение?

Было несколько подходов:

- Структурная минимизация риска (В. Вапник, А. Червоненкис, 1974)
- Информационный критерий Акаике (Акаике, 1974))
- Минимизация длины описания (Риссанен, 1978)
- Максимизация обоснованности (Маккай, 1992)

Надежно можно только эмпирически, посчитав разницу

$$Q(a, X_{test}, Y_{test}) - Q(a, X_{train}, Y_{train})$$

Как бороться с переобучением?

- Искать больше данных
- ullet Упрощать семейство A, используя экспертные знания о структуре решения.

Важно

Без знания предметной области невозможно решать прикладную задачу. Нет идеального алгоритма, решающего все задачи лучше других.

The No Free Lunch Theorem, Wolpert, 1996

Заключение

Спасибо за внимание!