Алгоритмы компьютерной алгебры

Конспект лекций

2019

Содержание

1	Лекция 1.	
	1.1 Основные факты из теории многочленов	•

1. Лекция 1.

Предмет изучения компьютерной алгебры - точные вычисления. Рассматриваются именно алгоритмы точного, а не приближенного вычисления, как в вычислительной математике. Эти алгоритмы лежат в основе математических пакетов MATLAB, Mathematica.

1.1. Основные факты из теории многочленов

Определение 1. *Числовым полем* называется множество $F \subset \mathbb{C}$, если:

- 1. $0, 1 \in F$
- 2. $|F| \ge 2$
- 3. $\forall a, b \in F : a \pm b, ab \in F; b \neq 0, \frac{a}{b} \in F$.

Пример 1. Числовые поля - \mathbb{C} , \mathbb{R} , \mathbb{Q} , $\{a+b\sqrt{2}, a,b\in\mathbb{Q}\}$

Множество многочленов над полем рациональных чисел обозначается как $\mathbb{Q}[x]$, над целыми — $\mathbb{Z}[x]$, над произвольным числовым полем F - F[x].

Определение 2. Многочлен $f(x) \in F[x]$, отличный от константы, называют приводимым над полем F, если он допускает представление вида $f(x) = \varphi(x)\psi(x)$, где $\varphi(x), \psi(x) \in F[x]$ и $\deg \varphi, \deg \psi < \deg f$, и неприводимым, если он не допускает такого разложения (то есть один из многочленов φ, ψ является константой).

1. deg f=1. Пусть f допускает разложение: $f(x)=\varphi(x)\psi(x)$.

$$\deg_{=0} \varphi, \deg_{=0} \psi < \deg_{f} \Rightarrow \deg_{f} = 0.$$

Полученное противоречие доказывает неприводимость любого многочлена первой степени.

2. Пусть deg f > 1 и $f(\alpha) = 0, \alpha \in F$.

$$(x - \alpha)|f(x) \Rightarrow \exists g(x) : f(x) = (x - \alpha)g(x).$$
$$\deg(x - \alpha) = 1 < \deg f.$$
$$\deg g = \deg f - 1 < \deg f.$$

Если многочлен f имеет корень в поле F, то f приводим над полем F.

Обратное утверждение. Если многочлен $f \in F[x]$ степени 2 или 3 приводим над полем F, то он имеет в этом поле корень.

Доказательство. Допустим, многочлен приводим, следовательно, $f(x) = \varphi(x)\psi(x)$.

$$\deg \varphi, \deg \psi < \deg f \Rightarrow \deg \varphi = 1$$
или $\deg \psi = 1.$

Допустим,
$$\varphi(x) = ax + b, a \neq 0 \Rightarrow \alpha = -\frac{b}{a}, \alpha \in F.$$

Пример 2.

1. $f(x) = x^2 - 1 = (x - 1)(x + 1)$. Многочлен приводим над полями $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.