PID exercises

Kjartan Halvorsen

2018-02-20

1 A PID controller with anti-windup

The figure below taken from Åström & Wittenmark shows a block-diagram of a PID controller with anti-windup.

Figure 8.10 Controller with antiwindup. A system in which the actuator output is measured is shown in (a) and a system in which the actuator output is estimated from a mathematical model is shown in (b).

Consider the PID controller as having the output signal v(t) and three input signals: The control error $e(t) = y_{ref}(t) - y(t)$, the output feedback signal y(t) and the output signal of the actuator model u(t).

1. Determine the transfer functions in

$$V(s) = F_u(s)Y(s) + F_e(s)E(s) + F_u(s)U(s).$$

- 2. Determine the pole(s) of the controller.
- 3. Determine the steady-state output of the controller for step input signals (all at once) $Y(s) = \frac{\alpha}{s}$, $E(s) = \frac{\beta}{s}$ and $U(s) = \frac{\gamma}{s}$.
- 4. How should we interpret the steady-state value if the actuator is not saturating, so that u(t) = v(t)?

2 The effect of PID controller parameters

Assume a certain system being controlled by a PID regulator, $U(s) = (K_P + K_I \frac{1}{s} +$ $K_D s) E(s)$. In the figure below shows four step responses for the parameter triples

- i) $K_P = 1$ $K_I = 0$ $K_D = 0$
- ii) $K_P = 1$ $K_I = 1$ $K_D = 0$ iii) $K_P = 1$ $K_I = 0$ $K_D = 1$ iv) $K_P = 1$ $K_I = 1$ $K_D = 1$

Match each one of the parameter triples to one of the step responses. Justify your answer!

3 Ziegler-Nichols ultimate gain tuning

Ziegler and Nichols developed their tuning rules for PID regulators given that the system can be approximated as a first order system with time delay: $G(s) = \frac{e^{-sT}}{s+a}$. We perform a resonance test according to Ziegler-Nichols' ultimate gain method and with the proportional gain $K = 5 = K_u$ we get the closed-loop step response seen below

- 1. What is the period T_u and angular frequency ω_u of the oscillations?
- 2. Determine the parameters T and a in the transfer function G(s).
- 3. Tune a PI regulator

$$u(t) = K_p \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau \right)$$

according to Ziegler-Nichols' recipe.

Controller type	K_p	T_i	T_d
Р	$0.5K_u$		
PI	$0.45K_u$	$T_{u}/1.2$	
PD	$0.8K_u$		$T_u/8$
PID	$0.6K_u$	$T_u/2$	$T_u/8$

- 4. The Nyquist plot of the resulting loop gain $G_o(s) = F(s)G(s)$ is shown below. What are the stability margins?
- 5. The cross-over frequency is $\omega_c = 0.39 \text{ rad/s}$ with the tuned PI controller. Determine a sampling period h for a discrete-time implementation of the PI controller, such that the phase margin is reduced by about 10° .