Curvas e Superticies

As superfícies cúbicas são uma generalização das curvas cúbicas. A equação da superfície é obtida a partir da equação da curva:

 $Q(t) = T \cdot M \cdot G$ sendo G constante

Mudar para a variável s: $Q(s) = S \cdot M \cdot G$

Fazendo variar os pontos do vector Geométrico em 3D ao longo de um percurso parametrizado por t obtém-se:

$$Q(s,t) = S.M.G(t) = S.M \begin{cases} G_1(t) \\ G_2(t) \\ G_3(t) \\ G_4(t) \end{cases}$$

A matriz geométrica é composta por 16 pontos

Sperficie de Hemite

 $\begin{bmatrix} P_1(t) \\ P_4(t) \\ R_1(t) \end{bmatrix}$ $x(s,t) = S.M_H.G_{Hx}(t) = S.M_H.$

$$P_{1s}(t) = TM_{H}\begin{bmatrix} g_{11} \\ g_{12} \\ g_{31} \\ g_{44} \end{bmatrix} P_{4s}(t) = TM_{H}\begin{bmatrix} g_{21} \\ g_{22} \\ g_{23} \\ g_{34} \end{bmatrix} R_{1s}(t) = TM_{H}\begin{bmatrix} g_{31} \\ g_{32} \\ g_{33} \\ g_{34} \end{bmatrix}$$

 $\begin{bmatrix} P_4(t) \\ R_1(t) \\ R_4(t) \end{bmatrix}_x = \begin{bmatrix} S_{11} & S_{12} & S_{23} & S_{34} \\ S_{21} & S_{22} & S_{23} & S_{34} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{24} \end{bmatrix} M_H^T T^T = G_{Ih}.M_H^T T^T$

Conclui-se que: $x(s,t) = S.M_H.G_{Hx}.M_H^T.T^T$

Superificie de Bézier
As equações para a superfície de Bézier podem ser obtidas da mesma forma
que as de Hermite, resultando:

 $x(s,t) = S.M_B.G_{Bx}.M_B^T.T^T$ $y(s,t) = S.M_B.G_{Bv}.M_B^T.T^T$

 $z(s,t) = S.M_B.G_{Bz}.M_B^T.T^T$

Continuidade Co e Go é obtida fazendo coincidir os quatro pontos de controlo de fronteira: P₁₄, P₂₄, P₃₄, P₄₄

Para obter G1 devem ser

colineares: P₁₃, P₁₄ e P₁₅

 $\begin{bmatrix} P_1(t) \\ P_4(t) \end{bmatrix}$

P₂₃, P₂₄e P₂₅ P₃₃, P₃₄e P₃₅

P₄₃, P₄₄ e P₄₅

 $(P_{14}-P_{13})/(P_{15}-P_{14}) = K$

 $(P_{24}-P_{23})/(P_{25}-P_{24}) = K$ $(P_{34}-P_{33})/(P_{35}-P_{34}) = K$ $(P_{44}-P_{43})/(P_{45}-P_{44}) = K$

A matriz geométrica tem 16 pontos de controlo.

Curvas de Hermite

3. Seja a sucessão C1,C2,C3,C4 de curvas de Hermite representadas pelos vectores geométricos juntos. Complete estes com os valores em falta, de C1=0.2forma a obter continuidade do tipo C^1 em todos os pontos de junção e justifique os casos em que isso

- a)- Analiticamente.
- b)- Usando métodos baseados no algoritmo de Casteljou

