1 Lezione del 04-12-24

Avevamo visto l'espressione che risultava da antitrasformate di rapporti di polinomi con radici complesse al denominatore:

$$ke^{-\sigma t}\sin(\omega t + \alpha)$$

Vediamo alcuni casi particolari di questa espressione.

• $\omega = 0$: si hanno poli **reali**, quindi $\sin(\omega t + \alpha)$ diventa $\sin(\alpha) = k'$, quindi un'altra costante moltiplicativa dell'esponenziale:

$$k \, k' \, e^{-\sigma t}$$

A questo punto σ determina la forma funzionale, in particolare:

- $\sigma > 0$, si ha un esponeziale convergente a 0;
- σ < 0, si ha un esponenziale divergente;
- $\sigma = 0$, si ha una funzione costante a k k'.
- $\omega > 0$: si hanno poli **complessi coniugati**. Notiamo che è inutile studiare il caso $\omega < 0$, in quanto questi sono sempre complessi coniugati, quindi compaiono a coppie di entrambi i segni. Prendiamo, per convenzione, l' ω *positivo* come **pulsazione**.

La forma funzionale è quella di un'oscillazione sinusoidale di pulsazione ω e ampiezza compresa fra $ke^{-\sigma t}$ e $-ke^{-\sigma t}$. Si dice che la sinusoide in questo caso è **smorzata**.

• $\omega > 0$, $\sigma = 0$: in questo caso resta solo $k \sin(\omega t + \alpha)$, quindi si ottiene un'oscillazione sinusoidale pura.