Metody numeryczne – laboratorium nr 5 Interpolacja funkcji

Zadanie 1 (3 punkty)

1) Napisz skrypt, w którym dokonasz interpolacji podanego kształtu za pomocą wbudowanej funkcji interp1 dla dostępnych metod interpolacji. Wyniki interpolacji przedstaw na wykresie, który będzie zawierał odczytane punkty oznaczone kropkami w kolorze czerwonym oraz wielomian interpolacyjny oznaczony kolorem niebieskim oddzielnie dla każdej z metod (wykorzystaj polecenie subplot).

Tu wstaw wykresy:

Która z metod daje najlepsze, a która najgorsze odwzorowanie zadanego kształtu?

Najlepsza metoda	Najgorsza metoda
makima	spline

Zadanie 2 (3 punkty)

1) Zbadaj jakość interpolacji wielomianowej podanej funkcji f(x) w przedziale <-1,1> dla równoodległych węzłów (użyj polecenia linspace), kolejno dla małej, średniej, dużej i bardzo dużej liczby węzłów.

$$f(x) = \frac{1}{25x^2 + 1}$$

- 2) Współczynniki wielomianu interpolacyjnego W wyznacz za pomocą samodzielnie stworzonej macierzy Vandermonda (porównaj otrzymaną macierz Vandermonda z macierzą uzyskaną za pomocą polecenia vander).
- 3) Wartości wielomianu interpolacyjnego W oblicz z wykorzystaniem schematu Hornera (algorytm napisany samodzielnie).
- 4) Przygotuj 4 wykresy w jednym oknie dla małej, średniej, dużej i bardzo dużej liczby węzłów (zastosuj polecenie subplot), na każdym wykresie zaznacz węzły, funkcję pierwotną f(x) oraz wielomian interpolacyjny.
- 5) Odpowiedz na pytania:

Pytanie	Odpowiedź
Czy zwiększanie liczby węzłów zawsze jest korzystne?	Nie
Co dzieje się z wielomianem przy dużej liczbie węzłów?	Wielomian interpolacyjny staję się "coraz bardziej podobny" do interpolowanej funkcji, natomiast w przypadku węzłów równo odległych może występować efekt Rungego, tj. węzły na krańcach przedziałów nie będą "podobne" do interpolowanej funkcji.
Jak nazywa się to zjawisko?	Efekt Rungego
Jak można mu zapobiegać?	Zagęścić liczbę węzłów na krańcach przedziałów interpolacji

Zadanie 3 (4 punkty)

Napisz skrypt, który po pierwsze pozwoli na znalezienie współczynników wielomianu w postaci Newtona z wykorzystaniem tablicy ilorazów różnicowych, a po drugie umożliwi obliczanie wartości tego wielomianu dla zadanego argumentu. Wszystko należy obliczać "na piechotę", nie wolno korzystać z gotowych funkcji w Matlabie. Prześlij opracowany skrypt.

Wszystko zrealizuj w funkcji, która na wejściu będzie przyjmowała trzy argumenty, a na wyjściu dwa – zgodnie z opisem:

gdzie:

T – tablica ilorazów różnicowych,

Wx - wartość wielomianu dla argumentu arg,

X - wektor poziomy zawierający węzły interpolacji,

Y – wektor poziomy zawierający wartości funkcji w węzłach,

arq – argument (x) dla które ma być obliczona wartość stworzonego wielomianu.

Przykładowe wywołanie: nazwa funkcji ([-2, 1, 2, 4], [3, 1, -3, 8], 3)

Obliczanie tablicy ilorazów

Obliczanie wartość wielomianu na podstawie współczynników zawartych w tablicy ilorazów

Przykład
$$-2$$
 3 $-2/3$ $-5/6$ $2/3$ 1 1 -4 $19/6$ 2 -3 $11/2$ 4 8

$$p_k(x) = 3 + \left(\frac{-2}{3}\right)(x - (-2)) + \left(\frac{-5}{6}\right)(x - (-2))(x - 1) + \frac{2}{3}(x - (-2))(x - 1)(x - 2)$$