

Fracciones Parciales

Marcelo PAZ Calculo Integral 25 de noviembre de 2023

1. Teoria

Las fracciones parciales permiten descomponer expresiones racionales complejas (en palabras mas simples fraciones irreducibles) en la suma de expresiones más simples. Para esto se deben seguir los siguientes pasos:

1.1. Division Sintetica (Ruffini)

La division sintetica es un metodo para dividir polinomios de la forma $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ por un polinomio de la forma x - r. Para esto se debe seguir los siguientes pasos:

Ejemplo:

$$\frac{x^3 + 2x^2 - 5x + 6}{x - 2} = ?$$
 Aplicamos la division sintetica
$$\frac{x^3 + 2x^2 - 5x + 6}{1 - 2 - 5 - 6} = ?$$
 Aplicamos la division sintetica
$$\frac{x^3 - 2x - 5x - 6}{1 - 4 - 3} = ?$$
 Aplicamos la division sintetica
$$\frac{x^3 - 2x - 5x - 6}{1 - 4 - 3x - 2} = ?$$
 Aplicamos la division sintetica
$$\frac{x^3 - 2x - 5x - 6}{1 - 4x - 3} = ?$$
 Aplicamos la division sintetica
$$\frac{x^3 - 2x - 5x - 6}{1 - 4x - 3x - 2} = ?$$

1.2. Descomposicion en fracciones simples

1.2.1. Pasos generales

1. Comprobar que el grado del numerador es menor que el grado del denominador.

$$\frac{f(x)}{g(x)}$$
 , donde $f(x)$ y $g(x)$ son polinomios y $\operatorname{grado}(f(x)) < \operatorname{grado}(g(x))$

2. Factorizar el denominador.

$$\frac{f(x)}{g(x)} = \frac{f(x)}{(ax+b)(cx^2+d)} \quad , \text{ donde } a, b, c, d \in \mathbb{R}$$

3. Escribir la función racional como una suma de fracciones con denominadores lineales y cuadráticos irreducibles.

$$\frac{f(x)}{(ax+b)(cx^2+d)} = \frac{A}{ax+b} + \frac{Bx+C}{cx^2+d} \quad \text{, donde } A, B \in \mathbb{R}$$

4. Determinar las constantes desconocidas en las fracciones parciales.

$$\frac{f(x)}{(ax+b)(cx^2+d)} = \frac{i}{ax+b} + \frac{jx+k}{cx^2+d} \quad , \text{ donde } i, j, k \in \mathbb{R}$$

5. Escribir la función racional como una suma de fracciones parciales.

$$\frac{f(x)}{g(x)} = \frac{f(x)}{(ax+b)(cx^2+d)} = \frac{i}{ax+b} + \frac{jx+k}{cx^2+d} \quad , \text{ donde } i, j, k \in \mathbb{R}$$

Existen 4 casos dentro de las fracciones parciales a la hora de tener factorizados los denominadores, que son:

1.2.2. Caso 1: Factores lineales diferentes e irreducibles (ax + b)

La fracción parcial toma la forma:

$$\frac{A}{ax+b} \quad \text{, donde A} \in \mathbb{R}$$

Ejemplo:

$$\frac{3}{(x)(x+1)} = \frac{A}{x} + \frac{B}{x+1}$$
 Multiplicamos por el denominador
$$3 = A(x+1) + B(x)$$

Para A tenemos que:

$$3 = A(x+1) + B(x)$$
 Evaluamos en $x = 0$
 $3 = A(0+1) + B(0)$ Resolvemos el sistema de ecuaciones
 $3 = A$
 $A = 3$

Para B tenemos que:

$$3 = A(x+1) + B(x)$$
 Evaluamos en $x = -1$
 $3 = A(-1+1) + B(-1)$
 $3 = A(0) + B(-1)$
 $3 = -B$
 $B = -3$

Así:
$$\frac{3}{(x)(x+1)} = \frac{3}{x} - \frac{3}{x+1}$$

Remplazamos los valores de A y B

1.2.3. Caso 2: Factores lineales repetidos e irreducibles $(ax + b)^n$

Cada término en la expansión toma la forma:

$$\frac{A_i}{(ax+b)^i}$$
 , donde i varía de 1 a n y cada A_i es una constante.

Ejemplo:

$$\frac{2x}{(x+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2}$$
 Multiplicamos por el denominador
$$2x = A(x+1) + B$$
 Agrupamos los terminos segun su grado
$$2x = Ax + (A+B)$$

Por Coeficientes Equivalentes tenemos:

$$\begin{cases} Ax = 2x & (1a) \\ A + B = 0 & (1b) \end{cases}$$

Para la ecuación (1a) tenemos que:

$$Ax = 2x$$
 Dividimos por x
 $A = 2$

Para la ecuación (1b) tenemos que:

$$A+B=0 \qquad \text{Remplazamos el valor de A}$$

$$2+B=0 \qquad \text{Despejamos B}$$

$$B=-2 \qquad \text{Asi:}$$

$$\frac{2x}{(x+1)^2}=\frac{A}{x+1}+\frac{B}{(x+1)^2} \quad \text{Remplazamos los valores de A y B}$$

$$\frac{2x}{(x+1)^2}=\frac{2}{x+1}-\frac{2}{(x+1)^2}$$

1.2.4. Caso 3: Denominador cuadrático diferentes e irreducible $(ax^2 + bx + c)$

La fracción parcial toma la forma:

$$\frac{(Ax+B)}{(ax^2+bx+c)}$$
 , donde A y B son constantes.

Ejemplo:

$$\frac{5x+1}{(x^2+1)(x^2+3)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{x^2+3}$$
 Multiplicamos por el denominador
$$5x+1 = (Ax+B)(x^2+3) + (Cx+D)(x^2+1)$$
 Agrupamos segun su grado
$$5x+1 = (A+C)x^3 + (B+D)x^2 + (C+3A)x + (3B+D)$$

Por C. E. tenemos:

$$\begin{cases}
0x^3 = (A+C)x^3 & \text{(2a)} \\
0x^2 = (B+D)x^2 & \text{(2b)} \\
5x = (C+3A)x & \text{(2c)} \\
1 = (3B+D) & \text{(2d)}
\end{cases}$$

Para la ecuación (2a) tenemos que:

$$0 = A + C$$
 Restamos C
 $A = -C$

Para la ecuación (2b) tenemos que:

$$0 = B + D$$
 Restamos D
 $B = -D$

Para la ecuación (2c) tenemos que:

$$5=C+3A$$
 Remplazamos el valor de A
$$5=C-3C$$

$$5=-2C$$

$$C=\frac{-5}{2}$$
 Así:
$$A=-C$$

$$A=\frac{5}{2}$$

Para la ecuación (2d) tenemos que:

$$1 = 3B + D$$

$$1 = 3(-D) + D$$

$$1 = -2D$$

$$D = \frac{-1}{2}$$
Así:
$$B = -D$$

$$B = \frac{1}{2}$$

Luego:

$$\frac{5x+1}{(x^2+1)(x^2+3)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{x^2+3}$$
$$\frac{5x+1}{(x^2+1)(x^2+3)} = \frac{\frac{5}{2}x+\frac{1}{2}}{x^2+1} + \frac{\frac{-5}{2}x-\frac{1}{2}}{x^2+3}$$
$$\frac{5x+1}{(x^2+1)(x^2+3)} = \frac{1}{2}\left(\frac{5x+1}{x^2+1}\right) - \frac{1}{2}\left(\frac{5x+1}{x^2+3}\right)$$

Remplazamos el valor de B

Remplazamos los valores

1.2.5. Caso 4: Denominador cuadrático repetidos e irreducible $(ax^2 + bx + c)$

La fracción parcial toma la forma:

$$\frac{(A_ix+B_i)}{(ax^2+bx+c)^i}$$
 , donde i varía de 1 a n y cada A_i,B_i es una constante.

Ejemplo:

$$\frac{2x-4}{(x^2+1)^2} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)}$$
 Multiplicamos por el denominador
$$2x-4 = (Ax+B)(x^2+1) + (Cx+D)$$
 Agrupamos segun su grado
$$2x-4 = Ax^3 + Bx^2 + (C+A)x + (B+D)$$

Por C. E. tenemos:

$$\begin{cases}
0x^3 = Ax^3 & \text{(3a)} \\
0x^2 = Bx^2 & \text{(3b)} \\
2x = (C+A)x & \text{(3c)} \\
-4 = (B+D) & \text{(3d)}
\end{cases}$$

Para la ecuación (3a) tenemos que:

$$0 = A$$

Para la ecuación (3b) tenemos que:

$$0 = B$$

Para la ecuación (3c) tenemos que:

$$2 = C + A$$
 Remplazamos el valor de A
$$2 = C$$

Para la ecuación (3d) tenemos que:

$$-4 = B + D$$
 Remplazamos el valor de B
$$-4 = D$$

Luego:

$$\begin{split} \frac{2x-4}{(x^2+1)^2} &= \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2} \quad \text{Remplazamos los valores} \\ \frac{2x-4}{(x^2+1)^2} &= \frac{0x+0}{x^2+1} + \frac{2x+(-4)}{(x^2+1)^2} \\ \frac{2x-4}{(x^2+1)^2} &= \frac{2x-4}{(x^2+1)^2} \end{split}$$

∴ No se puede descomponer