- Gibbs sampling requires that a sample from each full conditional distribution.
- In all the cases we have looked at so far the conditional distributions were conjugate so sampling was straight-forward.
- What if they are not conjugate?
- We could make draws from the conditional distributions using rejection sampling. This works well if there are only a few non-conjugate parameters but can be difficult to tune.
- Other methods have been proposed:
 - 1. Auxiliary variables
 - 2. Slice sampling
 - 3. Metropolis-Hastings sampling
- Metropolis-Hastings sampling is the most widely used.

Auxiliary Variables

- Sometimes the model can be reexpressed so that the full conditionals are conjugate by adding auxiliary variables.
- ullet For example, consider the zero-inflated Poisson model with $Y_1,...,Y_n \sim f(y|\theta,\lambda)$ with

$$f(y|\theta,\lambda) = \theta I(y=0) + (1-\theta) \mathrm{Poisson}(y|\lambda)$$

and priors $\theta \sim \text{Beta}(a, b)$ and $\lambda \sim \text{Gamma}(c, d)$.

- The full conditionals for θ and λ are not conjugate.
- Consider the following model

$$Y_i|Z_i \sim \begin{cases} \delta(0) & Z_i = 1 \\ \text{Poisson}(\lambda) & Z_i = 0 \end{cases}$$

where $\delta(0)$ is the point mass distribution at zero and $Z_i \sim \text{Bernoulli}(\theta)$.

- The Z_i are auxiliary variables.
- After their inclusion, the model is equivalent to the zero-inflated Poisson and conditionally conjugate.
- It is equivalent because:

Auxiliary Variables

The full conditionals are:

•
$$p(Z_i|\theta,\lambda,\mathbf{y}) =$$

•
$$p(\theta|\lambda, Z_1, ..., Z_n, \mathbf{y}) =$$

•
$$p(\lambda|\theta, Z_1, ..., Z_n, \mathbf{y}) =$$

Code

```
#bookkeeping
n <- length(y) sumy <- sum(y)
keepers <- matrix(0,iters,2)</pre>
#initial values
z <- rep(1,n)
theta <- 0.5
lambda <- 1
for(i in 1:iters){
  #update z
   P1 <- ifelse(y==0,1,0) *theta
   PO <- dpois(y, lambda) * (1-theta)
   z \leftarrow rbinom(n, 1, P1/(P1+P0))
  #update theta and lambda
          <- sum (z==1)
   n0
          <- n-n1
   theta <- rbeta(1,a+n1,b+n0)
   lambda <- rgamma(1,c+sumy,d+n0)</pre>
 keepers[i,]<-c(theta,lambda)</pre>
```

Code is online at

http://www4.stat.ncsu.edu/~reich/ST740/code/ZIP.R.

Slice sampling

ST740		_(3) Computing - Part 3	
• It is calle	ed slice sampling becau	ise:	
• How to s	ample from $p(\theta U,\mathbf{y})$?		
• The full	conditional distributior	ns are	
• The marg	ginal distribution of $ heta \mathbf{y}$	v is	
• The joint	distribution is		
• We add a	uxiliary variable $U \theta,\gamma$	$\mathbf{y} \sim \mathrm{U}(0, h(\theta \mathbf{y})).$	
• Say the u	inivariate posterior is p	$p(\theta \mathbf{y}) \propto h(\theta \mathbf{y}).$	
	c way to define auxilia		Shee samping is a
• It is not	obvious how to find	auxiliary variables to give conjugacy.	Slice sampling is a

- Metropolis-Hastings sampling is like Gibbs sampling in that you begin with initial values
 for all parameters, and then update them one at a time conditioned on the current value of all
 other parameters.
- In this algorithm, we do not need to sample from the full conditionals. All we need is to be able to evaluate the posterior up to a normalizing constant.
- Basic plan for each update:
 - 1. Draw a candidate for θ_j
 - 2. Compare the posterior of the candidate and the current value
 - 3. If the candidate looks good, keep it; if not, keep the current value.
- Formally, the algorithm to update θ_j given the current value $\theta_j^* = \theta_j^{(t-1)}$ is:
 - 1. Draw a candidate for $\theta'_j \sim g(\theta_j | \boldsymbol{\theta}^*, \mathbf{y})$.
 - 2. Compute the acceptance ratio

$$R = \frac{p(\mathbf{y}|\boldsymbol{\theta}')p(\boldsymbol{\theta}')}{p(\mathbf{y}|\boldsymbol{\theta}^*)p(\boldsymbol{\theta}^*)} \frac{g(\theta_j^*|\boldsymbol{\theta}')}{g(\theta_j'|\boldsymbol{\theta}^*)}.$$

- 3. Generate $U \sim \text{Uniform}(0,1)$.
- 4. Set

$$\theta_j^{(t)} = \begin{cases} \theta_j' & U < R \\ \theta_j^* & U > R \end{cases}$$

Notation: θ^* and θ' are current parameter vectors with j^{th} element θ_j^* and θ_j' , respectively.

- Selecting the candidate distribution is crucial.
- The most common is the Gaussian random walk $\theta_j \sim N(\theta_j^*, c_j^2)$.
- \bullet In this case g is symmetric, i.e., $g(\theta_j^*|\pmb{\theta}') = g(\theta_j'|\pmb{\theta}^*)$ and

$$R = \frac{p(\mathbf{y}|\boldsymbol{\theta}')p(\boldsymbol{\theta}')}{p(\mathbf{y}|\boldsymbol{\theta}^*)p(\boldsymbol{\theta}^*)}.$$

- When the candidate distribution is symmetric, the algorithm is the Metropolis algorithm.
- The algorithm has tuning parameter c_j .
- ullet For a random walk candidate, c_j is tuned so that the acceptance probability is 30-50%.
- If c is too large, the acceptance ratio becomes:

• If c is too small, the acceptance ratio becomes:

• Both are bad. Why?

ullet Consider the logistic regression for binary data $Y_i \in \{0,1\}$ and covariate vector $\mathbf{X}_i =$ $(X_{i1},...,X_{jp})^T$

$$Prob(Y_i = 1|\boldsymbol{\beta}) = \frac{\exp(\mathbf{X}_i^T \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i^T \boldsymbol{\beta})}$$

$$\beta_j \sim \mathbf{N}(\mu_j, \sigma_j^2).$$
(1)

$$\beta_j \sim N(\mu_j, \sigma_j^2).$$
 (2)

• The full posterior is:

Code

```
#full joint log posterior of beta|y for the logistic regression model:
log_post<-function(y, X, beta, prior.mn, prior.sd) {</pre>
    xbeta <- X%*%beta
    xbeta <- ifelse(xbeta>10,10,xbeta)
    like <- sum(dbinom(y,1,expit(xbeta),log=TRUE))</pre>
    prior <- sum(dnorm(beta,prior.mn,prior.sd,log=TRUE))</pre>
like+prior}
logit < -function(x) \{log(x/(1-x))\}
expit < -function(x) \{exp(x) / (1+exp(x))\}
# Start sampling
p < -ncol(X)
#Initial values:
beta <- \operatorname{rnorm}(p, 0, 1)
keep.beta <- matrix(0, n.samples, p)</pre>
              \leftarrow rep(0,p)
cur_log_post <- log_post(y, X, beta, prior.mn, prior.sd)</pre>
for(i in 1:n.samples) {
   #Update beta using MH sampling:
   for(j in 1:p){
       # Draw candidate:
       canbeta <- beta
       canbeta[j] <- rnorm(1,beta[j],can.sd)</pre>
       can_log_post <- log_post(y, X, canbeta, prior.mn, prior.sd)</pre>
       # Compute acceptance ratio:
       R <- exp(can_log_post-cur_log_post)</pre>
       U <- runif(1)</pre>
       if(U<R){
                       <- canbeta
         beta
          cur_log_post <- can_log_post</pre>
          acc[j] <- acc[j]+1
   }
   keep.beta[i,]<-beta
}
```

Code is online at

http://www4.stat.ncsu.edu/~reich/ST740/code/Logistic.R.

• What is the ideal candidate distribution?
• If the candidate distribution is the full conditional, $g(\theta \boldsymbol{\theta}_j) = p(\theta_j \mathbf{y}, \theta_l \text{ for all } l \neq j)$, what is the acceptance ratio?
• Is this a good candidate?
• What does this say about the relationship between Gibbs and Metropolis-Hastings sampling

- Even when the full conditional is not available, with some effort you can find a better candidate distribution than a random walk.
- For example, the Langevin-Hasting algorithm tries to match the candidate to the full conditional using a first-order Taylor approximation,

$$\theta'_j \sim N\left(\theta_j^* + \frac{c}{2} \frac{\partial f(\mathbf{y}|\boldsymbol{\theta}^*)p(\boldsymbol{\theta}^*)}{\partial \theta_j^*}, c^2\right).$$

- This candidate distribution is not symmetric.
- Hamiltonian MCMC involves an even more elaborate candidate distribution. Gelman et al favor this method and discuss it extensively in their book.

Comments:

•	How to handle	bounded	parameters,	say σ	$x^{2} \in ($	$(0, \infty)$)?
•	110W to Hallale	bounded	parameters,	say o	\sim (∞	

- Blocked Metropolis is possible. This requires a high-dimensional candidate distribution which is hard to tune.
- Adaptive Metropolis-Hastings tries to match the candidate distribution to the full conditional using past samples. This is performed in the ARMS package in R.
- You can also keep sampling each parameter until you get a success. This requires a complicated acceptance ratio.
- Combining Metropolis-Hastings and Gibbs sampling:
 - Since Gibbs is a special case of Metropolis-Hastings we can easily combine the two.
 - If some parameters have conjugate full conditionals then they can be updated from their full conditional as in Gibbs; for other parameters you can use an Metropolis step.
 - This is really one large Metropolis sampler, but with the full conditional as the candidate when possible.
 - In the logistic regression example we had prior $\beta_j \sim N(0, \sigma^2)$ where σ^2 was fixed. What if instead $\sigma^2 \sim \text{InvGamma}(a, b)$?
 - The full conditions for β_i remain unknown, but σ^2 has a conjugate prior.
 - Example code given on the next page.

Code

```
for(i in 1:n.samples){
   #Update beta using MH sampling:
   for(j in 1:p){
      # Draw candidate:
       canbeta <- beta
       canbeta[j] <- rnorm(1,beta[j],can.sd)</pre>
       can_log_post <- log_post(y, X, canbeta, 0, sqrt(sigma2))</pre>
      # Compute acceptance ratio:
       R <- exp(can_log_post-cur_log_post)</pre>
       U <- runif(1)
       if(U<R){
                 <- canbeta
         beta
         cur_log_post <- can_log_post</pre>
   }
   # Update sigma^2 using Gibbs
    sigma2 < -1/rgamma(1,p/2+a,sum(beta^2)/2+b)
}
```