F-09 (ANSYS)

Формулировка задачи:

Дано: Шарнирно опёртая по краям и в центре балка постоянной жёсткости с шарниром врезанным над средней опорой, нагружена распределённой нагрузкой $2 \cdot q$ и моментом $q \cdot l^2/2$.

E – модуль упругости материала;

 I_z – изгибный момент инерции.

Построить: Эпюру внутренней перерезывающей силы Q_Y ; Эпюру внутреннего изгибающего момента M_Z .

Аналитический расчёт (см. F-09) даёт следующие решения:

Puc. 1.

Задача данного примера: при помощи ANSYS Multyphisics получить эти же эпюры методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U M > PlotCtrls > Style > Colors > Reverse Video

Oставить в меню только пункты, относящиеся к прочностным расчётам:

M M > Preferences > Отметить "Structural" > OK

Нумеровать точки и линии твердотельной модели, а также номера узлов модели конечноэлементной:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE, NODE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers" > OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > 
Установить «Размер» на «22» > OK
U_M > PlotCtrls > Font Controls > Entity Font > 
Установить «Размер» на «22» > OK
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

Приравняв E, I_z , q и l к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

No	Действие	Результат		
1	Задаём параметры расчёта— базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1 > Accept > A=1e6 > Accept > Iz=1 > Accept > q=1 > Accept > l=1 > Accept > nu=0.3 > Accept > > Close	Scalar Parameters		
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Connect Types Defined Element Types: USE 1		
3	Первая строчка в таблице параметров («реальных констант») выбранного типа конечного элемента: площадь поперечного сечения = A ; момент инерции = Iz ; высота = $l/100$. С_P> R,1,A,Iz,L/100 > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Defined Real Constant Sets Set 1 Add Edit Delete Close Help		

№	Действие			Результат		
4	Свойства материала стержня – модуль упругости и коэффициент Пуассона:M_M > Preprocessor > Material Props > Material Models >Structural > Linear > Elastic > Isotropic >В окошке ЕХ пишем "Е", в окошке PRXY пишем "nu"> ОКЗакрываем окно «Deine Material Model Behavior».		A Defree Manual Model Bahawin Sangara	d Material Modes Available Material Modes Available Material Modes Available Material Properties for Material Number T 1 On Cered II		
	Твердотельное моделирование					
5	Ключевые точки — границы участков: $A \to I$, $B_{LEFT} \to 2$, $B_{RIGHT} \to 3$ и $C \to 4$: М_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X,Y,Z пишем 0,0,0 > Apply > NPT пишем 2 X,Y,Z пишем l ,0,0 > Apply > NPT пишем 3 X,Y,Z пишем l ,0,0 > Apply > NPT пишем 4 X,Y,Z пишем $2 \to I$,0,0 > OK Прорисовываем всё, что есть: I _M > Plot > Multi-Plots	Y X		2		.4
6	Два участка — две линии: M_M > Preprocessor > Modeling > Create > Lines > Lines > Straight Line > Левой кнопкой мыши последовательно нажать на ключевые точки: 1 и 2 (появится окошко выбора точки «2 или 3 ?») > Apply > 3 и 4 (появится окошко выбора точки «2 или 3 ?») > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	Y LX	I ₁ 1	.3	L2	4

No	Действие		Резу	ультат		
7	Onopы: Левая: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab2 установить "UY" > OK Средняя (шарнир) — закрепляем обе точки (2 и 3), всё равно левая и правая части балки друг друга «не замечают»: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 2 ключевую точку Появится окошко выбора точки «2 или 3 ?», не обращайте на него внимание, снова кликните на том же месте, выберется точка 3 (ибо точка 2 уже выбрана) > OK > Lab2 установить "UX" и "UY" > OK Правая: M_M > Preprocessor > Loads > Define Loads > Apply >	X X	Резу Т.1	ультат	L2	4

№	Действие	Результат
8	Cocpedomoченный внешний момент: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажать на 3 ключевую точку; загорится окошко выбора точки «2 или 3»? Нажмите кнопку «Prev», появится номер «3», тогда нажмите ОК. > OK > Lab установить "MZ" VALUE установить "q*1**2/2" > OK	YX L1 2 4
9	Изометрия: До сих пор модели мы рассматривали, используя фронтальный вид («сбоку»). Вектор изгибающего момента при этом виден плохо, а его направление не определяется вовсе. Меняем угол зрения: справа от рабочего поля нажимаем кнопки - изометрия; автоформат (размер изображения по размеру окна рабочего поля).	L-K U M L1 L2
	Конечноэлементная модель	
10	Указываем материал, реальные константы и тип элементов: M_M > Preprocessor > Meshing > Mesh Attributes > All Lines > MAT установить "1" REAL установить "1" TYPE установить "1 BEAM3" > OK	

N₂	Действие	Результат
11	Левый участок нагружен распределённой поперечной силой, его нужно разбить несколькими конечными элементами; участки без распределённых нагрузок можно бить одним конечным элементом: М_M > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked Lines > Левой кнопкой мыши кликаем на линию L1 > ОК NDIV пишем 10 > Apply > Левой кнопкой мыши кликаем на линию L2 > ОК NDIV пишем 1> ОК Обновляем изображение: U_M > Plot > Multi-Plots	L-K U M L1 L2
12	Указываем, что именно нужно теперь прорисовывать по команде Multi-Plots:U_M > PlotCtrls > Multi-Plot Controls >Появляется первое окно Multi-Plotting> OK >Появляется второе окно Multi-Plotting >Оставляем в нём отметки только напротив Nodes и Elements> OK	
13	Рабиваем линии на элементы:M_M > Preprocessor > Meshing > Mesh > Lines > Pick AllОбновляем изображение:U_M > Plot > Multi-PlotsБирюзовым цветом изображены балочные элементы. Чёрные точки - это их узлы.	1 E-N 2 1 2 1 3 4 5 6 7 8 9 10 1 1 2 2


```
Силовая схема:
    U M > PlotCtrls > Symbols >
    [/PBC] устанавливаем в положение "For Individual"
    Убираем галочку с "Miscellaneous"
    Surface Load Symbols устанавливаем Pressures
    Show pres and convect as устанавливаем Arrows
    > OK >
    В окне "Applied Boundary Conditions"
      U установить "Off"
    Rot установить "Off"
      F установить "Symbol+Value"
                                                                               PRES-NORM
                                                                               -2
      М установить "Symbol+Value"
    > OK >
18
    В окне "Reactions"
    NFOR установить "Off"
    NMOM установить "Off"
    RFOR установить "Symbol+Value"
    RMOM установить "Symbol+Value"
    > OK
    Обновляем изображение: U M > Plot > Elements
    Получаем тот же результат, что и на рис. 1а. (числа, выделенные синим цветом).
    В рабочем поле видим следующее:
    - Красным цветом начерчена распределённая нагрузка;
    - Синим цветом начерчен вектор внешнего момента;
    - Малиновым цветом нарисованы реактивные силы.
    Цветовая шкала будет состоять из десяти цветов:
    U M > PlotCtrls > Style > Contours > Uniform Contours >
19
    NCONT пишем 10
    > OK
```

№	Действие	Результат
20	Фронтальный вид: - вид спереди; - автоформат (размер изображения по размеру окна рабочего поля).	1
21	Cocmaвление эпюры внутренней перерезывающей силы: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "2" > Apply > "By sequence num", "SMISC,", "8" > OK > > OK > Close	
22	Инвертирование эпюры внутренней перерезывающей силы: Строчку SMISC2 умножаем на -1, получаем строчку QYI: M_M > General Postproc > Element Table > Multiply LabR пишем QYI FACT1 пишем -1 Lab1 устанавливаем SMIS2 Lab2 устанавливаем -none- > Apply Строчку SMISC8 умножаем на -1, получаем строчку QYJ: M_M > General Postproc > Element Table > Multiply LabR пишем QYJ FACT1 пишем -1 Lab1 устанавливаем SMIS8 Lab2 устанавливаем SMIS8 Lab2 устанавливаем -none- > OK Смотрим таблицу результатов: M_M > General Postproc > Element Table > Define Table > Close	Currenty Defined Data and Status: Label tem Comp Time-Stamp Status SMIS2 SMIS 2 Time-1 1,0000 (Current) SMIS8 SMIS 8 Time-1 1,0000 (Current) CMI CALC SMUL Time-1 1,0000 (Current) CMI CALC SMUL Time-1 1,0000 (Current) CMI CALC SMUL Times 1,0000 (Current) Add Update Delete Close Help

№	Действие	Результат
23	Прорисовка эпюры внутренней перерезывающей силы: М_М > General Postproc > Plot Results > Contour Plot > Line Elem Res > Установить LabI в положение "QYI" Установить LabJ в положение "QYJ" > ОК Получаем тот же результат, что и на puc . 1δ (только числа, выделенные синим цветом). Высоту прямоугольника можно приблизительно определить по цвету (жёлтый интервал - между $0.4 \cdot q \cdot l$ и $0.6 \cdot q \cdot l$) или точно, выделив правый элемент и перерисовав эпюру (см. действие №26). Можете рисунок эпюры сделать крупнее: коэффициент Fact установите 2 или 3.	LINE STRESS STEP=1 SUB =1 TIME=1 OYI MIN =-1 ELEM=1 VEX.=1 ELEM=10 1 3 4 5 6 7 H 9 100 17
24	Для того, чтобы лучше понимать, каким точкам стержня какое значение эпюры соответствует, повторите действие №18. Увидите, совмещённые с эпюрой внешние силы (кроме распределённых, увы) и реакции.	I LINE STRESS STEE=1 SUB =1 TIME=1 QYI QYJ MIN =-1 ELEM=1 MAX =1 ELEM=10 M RFOR 1 3 4 5 6 2 8 9 10 3 5 2 1 3 4 5 6 2 8 9 10 3 5 2 1 3 4 5 6 2 8 9 10 3 5 2 1 3 5 6 2 8 9 10 3 5 2 1 3 6 5 7 8 9 10 3 5 2 1 3 7 7 8 7 8 9 10 3 5 2 1 3 8 9 10 5 2 1 3 8 9 10 5 2
25	Cocmaвление эпюры внутреннего изгибающего момента: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "6" > Apply > "By sequence num", "SMISC,", "12" > OK > > Close Смотрим таблицу результатов: M_M > General Postproc > Element Table > Define Table > Close	A femoral factor December D

Прорисовка эпюры внутреннего изгибающего момента:

 ${\tt M_M}$ > General Postproc > Plot Results > Contour Plot

> Line Elem Res >

LabI установить "SMIS6"

LabJ установить "SMIS12"

Fact пишем 1

> OK

26

Получаем тот же результат, что и на *рис. 1в.* (только числа, выделенные синим цветом). Значения показывает цветовая шкала.

Можете рисунок эпюры сделать крупнее: коэффициент Fact установите 2 или 3.

LINE STRESS STEP=1 SUB = 1 TOTAL TO

Величина экстремума параболы:

U M > Select > Entities... >

В окошке Select Entities установить в окошках

"Elements"

"By Num/Pick"

Точку селектора установить на «From Full»

> OK >

Левой кнопкой мыши кликнуть на элемент, визуально содержащий вершину (пятый слева)

> OK

27

Перерисовываем эпюру. Теперь на одном только этом элементе:

U M > Plot > Replot

Виден минимум: $-0.25 \cdot q \cdot l^2$, что полностью совпадает с данными *puc. 1в.* Узел, в котором экстремум наблюдается, располагается ровно посередине участка (длины всех элементов одинаковы), значит координата экстремума:

$$x^* = \frac{1}{2} \cdot l .$$

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.