Instituto Superior Técnico - 1º Semestre 2006/2007

Cálculo Diferencial e Integral I

LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

8^a Ficha de exercícios para as aulas práticas: 13 - 24 Novembro de 2006

- 1. Determine os pontos onde a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \frac{1}{5}x^5 \frac{3}{4}x^4 + \frac{2}{3}x^3$ tem máximos ou mínimos locais.
- 2. Determine os pontos onde a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \frac{1}{20}x^5 \frac{1}{12}x^4$ tem pontos de inflexão.
- 3. Escreva cada uma das seguintes funções como soma de potências de x + 2.

(i)
$$x^3 + x^2 + x + 1$$

(ii)
$$x^3 - 2x^2 - 5x - 2$$

4. Estabeleça o desenvolvimento binomial

$$(1+x)^n = 1 + nx + \binom{n}{2} x^2 + \dots + \binom{n}{p} x^p + \dots + x^n =$$

$$= \binom{n}{0} + \binom{n}{1} x + \binom{n}{2} x^2 + \dots + \binom{n}{p} x^p + \dots + \binom{n}{n} x^n = \sum_{k=0}^n \binom{n}{k} x^k,$$

com $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ (combinações de n elementos k a k), usando a fórmula de Taylor.

- 5. (i) Determine o polinómio de Taylor P_2 de ordem 2 relativamente à função $f(x) = 2 \log(\cos x)$ e ao ponto $x_0 = 0$.
 - (ii) Indique um majorante para o erro que se comete ao aproximar f pelo polinómio P_2 (determinado na alínea anterior) no intervalo $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.
- 6. Como se pode obter sen (10°) com erro inferior a 10^{-4} usando a fórmula de Taylor?
- 7. Determine um polinómio que aproxime a função sen no intervalo [-1,1] com um erro inferior a 10^{-3} .
- 8. Seja $f: \mathbb{R} \to \mathbb{R}$ duas vezes diferenciável em \mathbb{R} , tal que f'(0) = 0 e f''(x) > 0 para todo o $x \in \mathbb{R}$. Seja $\varphi: \mathbb{R} \to \mathbb{R}$ definida por $\varphi(x) = f(\sin x)$.
 - (i) Determine os extremos locais de φ .
 - (ii) O que pode dizer sobre o número de soluções da equação $\varphi''(x) = 0$?
- 9. Seja $f: \mathbb{R} \to \mathbb{R}$ duas vezes diferenciável em \mathbb{R} , tal que f' é estritamente crescente em \mathbb{R} e

$$\lim_{x \to -\infty} f'(x) = -\infty, \qquad \lim_{x \to +\infty} f'(x) = +\infty.$$

- (i) Mostre que existe um único $c \in \mathbb{R}$ tal que f'(c) = 0, e que f(c) é o mínimo absoluto de f.
- (ii) Sendo m esse mínimo absoluto, seja $b \in [m, +\infty[$. Verifique que o conjunto

$$f^{-1}(b) = \{x \in \mathbb{R} : f(x) = b\}$$

tem exactamente dois elementos.

10. Seja $f:[0,+\infty[\to \mathbb{R}$ diferenciável em $]0,+\infty[$ tal que

$$\lim_{x \to +\infty} f'(x) = b \in \mathbb{R}, \qquad \qquad \lim_{x \to +\infty} f(x) = a \in \mathbb{R}.$$

Mostre que b = 0.

- 11. Seja $f:[0,2]\to\mathbb{R}$ contínua em [0,2], diferenciável em]0,2[e tal que f(0)=0, f(1)=1 e f(2)=1.
 - (i) Mostre que existe $c_1 \in [0, 1]$ tal que $f'(c_1) = 1$.
 - (ii) Mostre que existe $c_2 \in]1,2[$ tal que $f'(c_2)=0.$
 - (iii) Mostre que existe $c \in]0,2[$ tal que $f'(c) = \frac{1}{5}$.
- 12. Considere as funções $f, g : \mathbb{R} \to \mathbb{R}$ definidas por

$$f(x) = \begin{cases} x^2 \log x^2 & \text{se } x \neq 0, \\ 0 & \text{se } x = 0, \end{cases}$$

$$g(x) = \lim \frac{1}{1 + x^{2n}}$$

- (i) Estude f e g quanto à continuidade.
- (ii) Justifique que, qualquer que seja a > 0, ambas as funções f e g têm máximo e mínimo no intervalo [-a, a].
- 13. Sejam $a, b \in \mathbb{R}$. Considere a função $f : \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} a \sin x + 1 & \text{se } x \le 0, \\ x^2 \log x + b & \text{se } x > 0. \end{cases}$$

- (i) Determine a e b de modo a que f seja diferenciável no ponto x = 0.
- (ii) Para b=1 determine os valores de a para os quais f não tem extremo no ponto 0. Justifique.
- 14. Mostre que se tem

$$\left| e^{-x} - \left(1 - x + \frac{x^2}{2} \right) \right| \le \frac{1}{6},$$

para qualquer $x \in [0, 1]$.

- 15. Seja $f: \mathbb{R} \to \mathbb{R}$ três vezes diferenciável em \mathbb{R} e tal que f'''(x) > 0, para todo o $x \in \mathbb{R}$.
 - (i) Mostre que f não pode ter mais de dois pontos de extremo local.
 - (ii) Se f tiver extremos locais nos pontos $\alpha, \beta \in \mathbb{R}$, com $\alpha < \beta$, diga se $f(\alpha)$ e $f(\beta)$ são máximos ou mínimos locais de f. Justifique.

2

(iii) Mostre que $f(x) > f(\beta)$, se $x > \beta$.

16. Seja $\alpha \in \mathbb{R}$. Seja $f: \mathbb{R} \to \mathbb{R}$ a função diferenciável em 0 e definida por

$$f(x) = \begin{cases} xe^{-x} & \text{se } x \ge 0, \\ \arctan(\alpha x) & \text{se } x < 0. \end{cases}$$

- (i) Determine α .
- (ii) Calcule $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to -\infty} f(x)$.
- (iii) Estude f quanto à diferenciabilidade e determine a sua função derivada f'.
- (iv) Determine os intervalos de monotonia e os extremos locais (se existirem) de f.
- (v) Estude f quanto à existência de assímptotas.
- (vi) Determine o contradomínio de f.
- 17. Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x \log x & \text{se } x > 0, \\ \frac{e^x - 1}{e} & \text{se } x \le 0. \end{cases}$$

- (i) Estude f quanto à continuidade e quanto à diferenciabilidade, e determine a sua função derivada f'.
- (ii) Determine os intervalos de monotonia e os extremos locais (se existirem) de f.
- (iii) Estude f quanto à existência de assímptotas.
- (iv) Determine o contradomínio de f.
- 18. Sejam $k_1, k_2 \in \mathbb{R}$. Seja $f : \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} k_1 \operatorname{sh}\left(\frac{x}{1-x}\right) & \text{se } x < 0, \\ k_2 + \operatorname{arctg} x & \text{se } x \ge 0. \end{cases}$$

Determine k_1 e k_2 de modo a que f fique contínua e diferenciável em \mathbb{R} , e mostre que, com esses valores, a função f não tem extremos locais.

19. Seja $f:]-1, +\infty[\to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \log \sqrt{1 - x^2} & \text{se } x \in]-1, 0], \\ x^2 e^{1 - x^2} & \text{se } x \in]0, +\infty[. \end{cases}$$

3

- (i) Estude f quanto à continuidade e calcule $\lim_{x \to -1^+} f(x)$ e $\lim_{x \to +\infty} f(x)$.
- (ii) Determine o domínio de diferenciabilidade de f e a função derivada f'.

- (iii) Determine os intervalos de monotonia e os extremos locais (se existirem) de f.
- (iv) Determine, se existirem, as assímptotas ao gráfico de f.
- (v) Determine f''.
- (vi) Determine o contradomínio de f.
- (vii) Determine as inflexões e o sentido das concavidades do gráfico de f.
- (viii) Esboce o gráfico de f.
- 20. Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{1}{1-x} & \text{se } x < 0, \\ 2e^{-x} \operatorname{ch} x - 1 + \frac{x}{2} & \text{se } x \ge 0. \end{cases}$$

- (i) Mostre que f é contínua em \mathbb{R} .
- (ii) Determine f'.
- (iii) A função f tem extremos locais em \mathbb{R}^+ ?
- (iv) Escreva o polinómio de Taylor de 2^a ordem da função f relativo ao ponto 1.
- (v) Indique um majorante para o erro que se comete ao aproximar f pelo polinómio P_2 (determinado na alínea anterior) no intervalo $\left[\frac{1}{2}, \frac{3}{2}\right]$.
- 21. Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = (x-1)^4 \operatorname{sen} x$.
 - (i) Mostre que 1 é ponto de estacionaridade de f, isto é, f'(1) = 0, e recorra à fórmula de Taylor de f para determinar a sua natureza (máximo, mínimo, ou ponto de inflexão).
 - (ii) Escreva a fórmula de Taylor de ordem 0 da função sen relativa ao ponto 1, e aproveite para resolver o problema da alínea anterior de maneira alternativa.
- 22. Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x^4 \sin \frac{1}{x} & \text{se } x \neq 0, \\ 0 & \text{se } x = 0. \end{cases}$$

- (i) Mostre que f não tem extremo local em 0.
- (ii) Determine f'.
- (iii) Determine f''.
- (iv) Mostre que f não tem um ponto de inflexão em 0.
- 23. Calcule os seguintes limites.

(1)
$$\lim_{x \to +\infty} x^{1/4} \operatorname{sen} \frac{1}{\sqrt{x}}$$
 (2) $\lim_{x \to 0} \frac{\cos x^2 - 1}{x^4 \cos^2 x}$ (3) $\lim_{x \to 0} \frac{e^x - \cos x - \sin x}{x^2}$ (4) $\lim_{x \to 0} \frac{e^{\sin x} - 1 - x - \frac{x^2}{2}}{x^3}$

(5)
$$\lim_{x \to 0^{+}} \frac{x - \sin x}{\sqrt{(x \sin x)^{3}}}$$
 (6) $\lim_{x \to 0} \frac{\log (1 + x^{2})}{\sin x^{2}}$ (7) $\lim_{x \to 0^{+}} \frac{1}{x \log^{2} x}$ (8) $\lim_{x \to 0} \frac{\sin x - \sin x}{\cosh x - \cos x}$

(9)
$$\lim_{x\to 0} \frac{e^x - x - 2}{x^2}$$
 (10) $\lim_{x\to 0} \frac{e^x - x - 1}{x^2}$ (11) $\lim_{x\to +\infty} \frac{x^3}{e^x}$ (12) $\lim_{x\to 0^+} x^3 \log x$

(13)
$$\lim_{x\to 0^+} x \log \operatorname{sen} x$$
 (14) $\lim_{x\to +\infty} \frac{x + \log x}{x \log x}$ (15) $\lim_{x\to 0} \frac{(1-\cos x)^2}{\operatorname{tg} x - x}$ (16) $\lim_{x\to 0} \frac{\operatorname{arcsen} 2x - 2 \operatorname{arcsen} x}{x^3}$

(17)
$$\lim_{x \to +\infty} x^2 \left(\cos \frac{1}{x} - 1\right)$$
 (18) $\lim_{x \to +\infty} \frac{1}{x} \log (x + e^{3x})$ (19) $\lim_{x \to 1} \log x \log \log x$

(20)
$$\lim_{x \to +\infty} \frac{\log x}{e^{1/x}}$$
 (21) $\lim_{x \to +\infty} x \log \frac{x}{x+1}$ (22) $\lim_{x \to 0^+} x \log \frac{x}{x+1}$ (23) $\lim_{x \to 0} \frac{\sinh x - \sin x}{x^3}$

$$(24) \lim_{x \to +\infty} \frac{\arctan \frac{1}{x}}{\arcsin \frac{1}{x}}$$
 (25) $\lim_{x \to 0} \frac{\cos \left(\frac{\pi}{2} \cos x\right)}{\sin^2 x}$ (26) $\lim_{x \to 0} \left(\frac{1}{x \sin x} - \frac{1}{x^2}\right)$ (27) $\lim_{x \to 0} \frac{\sin x + \cos x - e^x}{\log (1 + x^2)}$

(28)
$$\lim_{x\to 0} \frac{\operatorname{tg} x}{x+1}$$
 (29) $\lim_{x\to 0^+} \frac{\log x}{x^2 e^{\log^2 x}}$ (30) $\lim_{x\to +\infty} \log x \log \left(1-\frac{1}{x}\right)$ (31) $\lim_{x\to a} \frac{\sqrt{x}-\sqrt{a}+\sqrt{x-a}}{\sqrt{x^2-a^2}}$, $\cos a \in \mathbb{R}$.

(32)
$$\lim_{x\to 0^+} \frac{\log \operatorname{tg}(ax)}{\log \operatorname{tg}(bx)}$$
, com $a, b \in \mathbb{R}^+$. (33) $\lim_{x\to +\infty} \left(\frac{a^{1/x} + b^{1/x}}{2}\right)^x$, com $a, b \in \mathbb{R}^+$.

(34)
$$\lim_{x\to 0} \frac{a^x - b^x}{x}$$
, com $a, b \in \mathbb{R}^+$. (35) $\lim_{x\to 0^+} \frac{x^2 \sin\frac{1}{x}}{\sin x}$ (36) $\lim_{x\to +\infty} \log \frac{e^x + (e^x)^2}{e^{2x} + x^2}$

(37)
$$\lim_{x\to 0} \frac{a^{\arctan x} - b^{\arctan x}}{x}$$
, com $a, b \in \mathbb{R}^+$. (38) $\lim_{x\to 0^-} \frac{e^{-\frac{1}{x}}}{x}$ (39) $\lim_{x\to 0^+} \frac{e^{-\frac{1}{x}}}{x}$ (40) $\lim_{x\to +\infty} \frac{1}{x}e^{-x}$

(41)
$$\lim_{x \to +\infty} x^{\frac{1}{x-1}}$$
 (42) $\lim_{x \to 1} x^{\frac{1}{1-x}}$ (43) $\lim_{x \to +\infty} \frac{2^x}{x^2}$ (44) $\lim_{x \to -\infty} \frac{2^x}{x^2}$ (45) $\lim_{x \to 1^+} x^{\log \log x}$

(46)
$$\lim n^{\sin \frac{1}{n}}$$
 (47) $\lim \left(\frac{1}{n}\right)^{\sin \frac{1}{n}}$ (48) $\lim_{x \to 0^{+}} (\operatorname{tg} x)^{\sin x}$ (49) $\lim_{x \to \frac{\pi}{4}} (\operatorname{tg} x)^{\operatorname{tg} 2x}$

(50)
$$\lim_{x \to 1} \left(\operatorname{tg} \frac{\pi x}{4} \right)^{\frac{1}{1-x}}$$
 (51) $\lim_{x \to 0} \left(\frac{\operatorname{sen} x}{x} \right)^{1/x^2}$ (52) $\lim_{x \to 0} \left(x^2 + 1 \right)^{1/x^2}$ (53) $\lim_{x \to 0^+} \left(\log \frac{1}{x} \right)^x$

(54)
$$\lim_{x \to +\infty} \left(\frac{1}{x}\right)^x$$
 (55) $\lim_{x \to 0^+} \left(\frac{1}{x}\right)^{x^2}$ (56) $\lim_{x \to 0^+} \left(\frac{\arctan x}{x}\right)^{\frac{1}{x}}$ (57) $\lim_{x \to 0^+} x^{1/\log x}$

(58)
$$\lim_{x \to +\infty} (\log x)^{1/x}$$
 (59) $\lim_{x \to 0^+} x^{(x^x)} - 1$ (60) $\lim_{x \to 0^+} x^{(x^x - 1)}$ (61) $\lim_{x \to 0^+} x^{x^2}$

(62)
$$\lim_{x\to 0} (\operatorname{ch} x)^{\operatorname{cotgh} x}$$
 (63) $\lim_{x\to 0^{-}} (1-2^{x})^{\operatorname{sen} x}$ (64) $\lim_{x\to a} \left(2-\frac{x}{a}\right)^{\operatorname{tg}\frac{\pi x}{2a}}$, $\operatorname{com} a \in \mathbb{R}\setminus\{0\}$.

- 24. Faça um estudo tão completo quanto possível das seguintes funções, tendo em conta os seguintes aspectos.
 - (i) Continuidade.
 - (ii) Diferenciabilidade. Cálculo da função derivada.
 - (iii) Intervalos de monotonia e extremos locais.

- (iv) Assímptotas.
- (v) Contradomínio.
- (vi) Cálculo da derivada de 2^a ordem.
- (vii) Inflexões e sentido das concavidades do gráfico de f.
- (viii) Esboço do gráfico de f.

(1)
$$\sin^2 x$$
 (2) $x(x^2-4)$ (3) $x^2(x-6)+9x+5$ (4) $x-\sin x$ (5) $\arctan \frac{1}{x^2}$

(6)
$$\frac{x^3+1}{x^2}$$
 (7) $\frac{x^2-2}{x^2-4}$ (8) $\frac{1}{(x-1)(x-3)}$ (9) $\sqrt{\frac{x^3}{x-1}}$ (10) $xe^{1/x}$ (11) $\frac{x}{1+x^2}$

(12)
$$|x^2 - 5x + 6|$$
 (13) $\frac{1}{x} + \frac{1}{x^2}$ (14) $\frac{x^2 - 2x + 2}{x - 1}$ (15) $\sqrt{x(x - 2)}$ (16) xe^{-x}

(17)
$$\frac{2x^3 - x^2 + 1}{x^2 + 1}$$
 (18) $\frac{1 - |x|}{1 + |x|}$ (19) $\frac{|x|}{1 + |x|}$ (20) $\frac{|x|}{1 - |x|}$ (21) e^{-x^2} (22) $\frac{e^x}{x}$

(23)
$$e^{1/(x^2-1)}$$
 (24) xe^x (25) $(x-1)^2 e^{-x}$ (26) $xe^{-x^2/2}$ (27) $|x| e^{1-x^2}$

(28)
$$xe^{-\left|1-x^2\right|}$$
 (29) $e^{-\log^2 x}$ (30) $x\log x$ (31) $\frac{x}{1+\log x}$ (32) $\frac{x^2}{2+\log x^2}$

(33)
$$\frac{x}{\log|x|}$$
 (34) $\frac{\log|x|}{x}$ (35) $\frac{\log|x|}{x^2}$ (36) $\frac{1 - \log|x|}{1 + \log|x|}$ (37) $x^2 \log x^2$ continua em 0.

(38)
$$x \log \frac{1}{x^2}$$
 contínua em 0. (39) $x + 2 \arctan \frac{1}{x}$ (40) $2 \arctan x - x$ (41) $\arctan \left| \frac{1+x}{1-x} \right|$

(42)
$$\arctan |2x^2 - x|$$
 (43) $\arctan \left(\frac{1 + e^{-x}}{1 - e^{-x}}\right)$ (44) $\arctan \left(\frac{1 + e^{-x}}{1 - e^{-x}}\right)^2$

(45)
$$f(x) = \operatorname{arctg}\left(\frac{1+x}{x}\right) \text{ se } x \neq 0, f(0) = 0.$$
 (46) $\frac{1}{x}e^{-\frac{1}{x}}$ (47) $e^{\frac{|x-1|}{|x+2|}}$ (48) $\frac{e^{x-2}}{x-1}$

(49)
$$\frac{2x^2 + \log|x|}{x}$$
 (50) $|x|e^{-|x-1|}$ (51) $\arctan x - \log \sqrt{1+x^2}$