Final Review BBC4941_

	Prob	Stoc.	
Q1 填空	10~12	3~5	3/x15=45'
Qz-Q6	Q2~4	Q5, Q6	55'

prob $Ch2. X, F(x) = P(X \le x)$ $Ch3. (X, Y) \quad f_{Y|X}(y|x)$ $Ch4 \quad \frac{S_n - n\mu}{\sqrt{n\sigma}} \sim N(0,1)$

Event = Set: AB, AUB, A, ANB = AUB Prob: P(AUB)=P(A)+P(B)-P(AB)

A,B independent
P(AB) = P(A) P(B), P(A|B)=P(A) $P(\overline{A}) = 1 - P(A)$ $f_{Y|X}(y|x) = f_{X|X}$ $f_{X|X}(y|x) = f_{X|X}(x)$ $f_{X|X}(x) = f_{X|X}(x)$ (2) P(AB)=PLA)PLBIA) formulars $P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$ 3 $P(B_i|A) = by Q_{n}$

Table 2.9

$$= F_X(\square)$$

Typical distributions and their <u>NC</u>

distribution	P.f. / P.d.f	E(x)	Var(X)
b(1, p)	ph (+p) -k	þ	p(1-p)
b(n,p)	Ch pk (+p) k k=0,1,,n	n-p	n. p(1-p)
Pois (λ) $\pi(\lambda)$	$\frac{\lambda^{k}}{k!} e^{-\lambda} k = 0,1,$	λ	λ
Geom (p)	(+p) - p k=1,2,	1	1-1-
((a,b)	b-a, acxcb Z=X+Y	atb >	$\frac{(b-a)^2}{12}$
Exp(x)	λε-λχ χ>0	1 >	$\frac{1}{\lambda^2}$

Memory lessness: X~ Exp(2)

 $F(x)=(1-e^{-\lambda x}, x>0)$

 $S(x)=P(X>x)=Q^{-\lambda x}, x>0$

Symetry: X~ N/MIO2)

$$\underline{\underline{\Phi}}(x) = -\underline{\underline{\Phi}}(x)$$

discrete: Ch3 (χ,χ) Continuous. Z=X+Y, $J_{z}^{(z)}=($ Z=X/Y: $F_{Z}(z)=[-(1-F(z))^{2}]$ Numerical Characteristics Small letter: Cont. $d=1. \quad E(X) = \begin{cases} \sum_{v} \pi_{v} \cdot f(x) dx \end{cases} (d.)$ $\int_{0}^{\infty} \pi_{v} \cdot f(x) dx \qquad (c.)$

 $Var(X) = E((X-EX)^2)$

 $= \underbrace{E(\chi^{2})}_{E(g(x))} - \underbrace{E(\chi)}_{Z}$ $= \underbrace{E(\chi^{2})}_{Z} - \underbrace{E(\chi)}_{Z}$ $= \underbrace{E(\chi^{2})}_{Z}$ $= \underbrace{E(\chi^{2})}_{Z}$ $= \underbrace{E(\chi^{2})}_{Z} - \underbrace{E(\chi^$

 $E(aX\pm bY) = aE(X)\pm bE(Y)$ Var (axtby) (a±6)2

$$= Var(\underline{a}x) + Var(by) \pm 2Cov(\underline{a}x, \underline{b}y)$$

$$= Q^2 Var(x) + b^2 Var(y) \pm 2ab Gar(x,y)$$

$$Con(x,\lambda) = E(x,\lambda) - Ex Ex$$

$$E(g(x,y)) = \int \int g(x,y) \cdot f(x,y) dxdy$$

$$Cov(ex+b), CU+dv)$$

$$= acCov(X,U) + adCov(X,V)$$
+ bcCov(Y,U) + bdCov(Y,V)

un correlated:
$$\beta = 0 = \frac{Cor(X,Y)}{\sigma_{X'}}$$

$$(=)$$
 $E(XX) = EX : EX$

$$Cov(X,X) = Vov(X)$$

$$\int_{X} \mu_{\chi}(t) = E(\chi(t))$$

$$\mathcal{X}(t)$$

$$d=\int_{\mathcal{X}(t)} \mathcal{X}(t) = E(X(t)) \qquad \text{if } E(-)$$

$$E(g(x))$$

$$\bigcap aX : (cost) \Theta$$

$$g(\theta), g. cos(t\theta)$$

d=2

$$R_{\chi}(s,t)=E(\chi(s)\chi(t))$$

Rx(t, t+t)

depends only on t.

$$\begin{aligned}
&(E(XY) = U_X^2 + \mu_X^2 \\
&= V_{OM}(X) + E(X) \\
&E(XY) = C_{OM}(XY) + \mu_X \mu_Y
\end{aligned}$$

Ch	15: X(t): F(x; t) = P(1)Xt; =xi)	
Stoc C15-8	$\mathcal{L}_{x}(t)$ $\mathcal{R}_{x}(s,t)$ $\mathcal{C}_{x}(s,t)$	
	def. $SUX(t) = constant.$ $RX(t) = RX(t,t+t): depends only on t.$ $Ch6.$ $Q = RX(0)(t=0) = E(Xt^2)$ Finanty $RX(t) \Leftrightarrow SX(w), Ae^{-\beta t } \xrightarrow{2A\beta}$ $CX(S,t) = VarX(S/t)$	
$X_{0}=0$ $N_{t} \sim TC(\lambda t)$ $W_{t} \sim M(0, 0^{2}t)$		

$$S = \{0, 1, 2\} \text{ or } S = \{1, 2, 3\}$$

$$P(x) = \{1, 2, 3\}$$

$$X_{0} \sim P(x_{0} = 0), (x_{0} = 1), (x_{0} = 2)$$

$$X_{0} \sim P(x_{0} = 0)$$

$$Y_{0} \sim P(x_{0} = 0)$$

$$2. \quad \chi_n \sim 1$$

$$\frac{1}{2}(n) = \frac{1}{2}(0) \cdot p^n$$

3.
$$P(X_{n_1} = \tilde{u}_1, X_{n_2} = \tilde{c}_1, X_{n_3} = \tilde{c}_3)$$

$$= P(P) \cdot P(P) \cdot$$

4. | imit | invariant | Stationary distr?

$$\pi = \pi P$$

$$\pi = 1$$

$$\begin{cases} (t_0 t_1 t_2) = (t_0 t_1 t_2) \\ t_0 + t_4 + t_2 = (t_0 t_1 t_2) \end{cases}$$