Raumkurven

Definiton: Eine parametrisierte Kurve $c: I \to \mathbb{R}^3$ heißt **parametrisierte Raumkurve**. Analog sind Raumkurven, reguläre parametrisierte Raumkurven und orientierte Raumkurven definiert.

Definiton: Sei $c:I\to\mathbb{R}^3$ eine parametrisierte Raumkurve. Sei $t_o\in I$.

Dann heißt

$$v(t_0) := \dot{c}(t_0)$$

der Geschwindigkeitsvektor von c in t_0 .

Definition: Eine nach Bogenlänge parametrisierte Raumkurve ist eine reguläre parametrisierte Kurve $c: I \to \mathbb{R}^3$ mit

$$||v(t_0)|| = 1 \quad \forall t \in I$$

Definition: Sei $c:I\to\mathbb{R}^3$ eine nach Bogenlänge parametrisierte Raumkurve.

Die Funktion

$$\kappa: I \to \mathbb{R} \ \kappa(t) := ||\ddot{c}(t)||$$

heißt die Krümmung von c.

Definiton: Sei $c: I \to \mathbb{R}^3$ eine parametrisierte Raumkurve. Sei $t_o \in I$ und $\kappa(t_0) \neq 0$.

Dann heißt

$$n(t_0) := \frac{\ddot{c}(t_0)}{||\ddot{c}(t_0)||}$$

der **Normalenvektor** von c in t_0 .

Definiton: Sie $c:I\to\mathbb{R}^3$ eine parametrisierte Raumkurve. Sei $t_o\in I$ und $\kappa(t_0)\neq 0$. Dann heißt

$$b(t_0) := v(t_0) \times n(t_0)$$

der **Binormalenvektor** von c in t_0 .

Definition: Sei $c:I\to\mathbb{R}^3$ eine nach Bogenlänge parametrisierte Raumkurve. Sei $\kappa(t)\neq 0$. Die Funktion

$$\tau: I \to \mathbb{R} \ \tau(t) := \langle \dot{n}(t), b(t) \rangle$$

heißt die Torsion oder Windung von c.

Definition: Sei $c:I\to\mathbb{R}^3$ eine nach Bogenlänge parametrisierte Raumkurve. Sei $\kappa(t_0)\neq 0$ Die Orthonormalbasis

$$(v(t_0), n(t_0), b(t_0))$$

heißt Begleitendes Dreibein von c in t_0 .

Hauptsatz der Raumkurventheorie:

Sei I ein Intervall, seien $\kappa, \tau : \to \mathbb{R}$ glatte Funktionen mit $\kappa > 0$.

Dann existiert eine nach Bogenlänge parametriseirte Raumkurve $c:I\to\mathbb{R}^3$

mit Krümmung κ und Torsion τ .

Die Eindeutigkeit ist bis auf Dahinterschaltung von Euklidischen Bewegungen gegeben.

Definition: Sei c eine periodische nach Bogenlänge parametrisierte Raumkurve mit Periode L. Wir definieren die **Totalkrümmung** von c als:

$$\kappa(c) := \int_{0}^{L} \kappa(t) \, dt$$

Definition: Sei c eine periodische parametrisierte Raumkurve mit Periode L.

Sei $e \in \mathbb{R}^3$ ein Einheitsvektor, also $e \in S^2$.

Wir zählen die lokalen Maxima in Richtung e durch

 $\mu(c,e) := \left| \{ lokale \ Maxima \ in \ [0,L) \ der \ Funktion \ t : \mathbb{R} \to \mathbb{R} \ \ t \mapsto < c(t), e > \} \right| \ \in \mathbb{N} \cup \infty$

Wir nennen $\mu(c) := \min_{e \in S^2} \mu(c, e)$ die **Brückenzahl** der Kurve c.

Korrolar: Sei c eine geschlossene Raumkurve.

Dann gilt:

$$\kappa(c) \ge 2\pi\mu(c)$$

Satz von Fenchel:

Sei c eine einfach geschlossene Raumkurve.

Dann gilt:

$$\kappa(c) > 2\pi$$

Gleichheit gilt genau dann wenn c eine konvexe ebene Kurve ist.

Definition: Eine **Isotopie** des \mathbb{R}^3 ist eine stetige Abbildung $\Phi : [0,1] \times \mathbb{R}^3 \to \mathbb{R}^3$ sodass für jedes feste $t \in [0,1]$ die Abbildung ein Homöophismus ist.

Zwei einfach geschlossene Raumkurven c_0 und c_1 heißen **ambient isotop**, falls es eine Isotopie Φ des \mathbb{R}^3 gibt mit

$$\Phi(0, x) = 0 \quad \forall x \in \mathbb{R}^3$$

$$\Phi(1, Spur(c_0)) = Spur(c_1)$$

Definition: Eine einfach geschlossene Raumkurve heißt **unverknotet** falls sie ambient isotop zu einer Einfach geschlossenen ebenen Kurve ist, ansonsten heißt sie **verknotet**.

Satz von Fary-Milnor:

Sei c eine einfach geschlossene verknotete Raumkurve. Dann gilt

$$\kappa(c) > 4\pi$$