Branching Quantifiers, Compositionally

LOGIC SEMINAR, HELSINKI

Fredrik Engström

January 11, 2012

Introduction

Branching in Natural Languages (FO)

Some relative of each villager and some relative of each townsmen hate each other. (Hintikka, 1974)

$$\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix} (V(x) \land T(z) \rightarrow (R(x, y) \land R(z, w) \land H(y, w)))$$

Stenius and Barwise, among others, argued for its formalization being equivalent to a first-order statement, i.e., no **essential** use of branching.

$$\forall x \forall z \exists y \exists w (V(x) \land T(z) \rightarrow (R(x, y) \land R(z, w) \land H(y, w)))$$

Branching in Natural Languages (FO)

The richer the country, the more powerful one of its officials. (Barwise, 1979)

$$\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix} (CO(x, y) \land CO(z, w) \land RT(x, z) \rightarrow MPT(y, w))$$

Branching in Natural Languages (GQ)

Most of the dots and most of the stars are all connected by lines. (Barwise, 1979)

$$\binom{Q_1x}{Q_2y}R(x,y)$$

$$Q_1 x Q_2 y R(x, y)$$
$$Q_2 y Q_1 x R(x, y)$$

Branching in natural languages (GQ)

Two examiners marked six scripts. (Davies, 1989)

$$\begin{pmatrix} \exists \geq 2 x \\ \exists \geq 6 y \end{pmatrix} E(x) \wedge S(y) \wedge M(x, y)$$

- ▶ Two as $\exists^{\geq 2}$ or $\exists^{=2}$.
- ► Different readings.

Conclusion

Even if it is discussable if branching of universal and existential quantifiers occur in natural language, it should be clear that branching of **generalized** quantifiers do occur.

Branching as an operator

For monotone quantifiers the branching of Q_1 and Q_2 as in

$$\begin{pmatrix} Q_1 x \\ Q_2 y \end{pmatrix} R(x, y)$$

can be represented by the quantifier $\mathrm{Br}(Q_1,Q_2)$ as in

$$Br(Q_1, Q_2)xyR(x, y),$$

where

$$Br(Q_1, Q_2)_M$$
 is

$$\{ R \subseteq M^2 \mid \exists A \in Q_{1M} \exists B \in Q_{2M} : A \times B \subseteq R \}.$$

Compositionality

The meaning of a complex expression is determined by its structure and the meanings of its constituents.

Natural languages are compositional:

► Productivity

The possibility of our understanding sentences which we have never heard before rests evidently on this, that we can construct the sense of a sentence out of parts that correspond to words. (Frege 1914)

➤ Systematicity: There are definite and predictable patterns among the sentences we understand.

The goal of this talk is to find a compositional analysis of branching quantifiers.

► Let us start with the familiar compositional analysis of branching of the universal and existential quantifiers.

Branching and dependence in logic

- ► Henkin's partially ordered quantifier prefixes: $\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix}$ (1959)
- ► Hintikka and Sandu's IF-logic: $\forall x \exists y \forall z \exists w/x$ (1989)
- Compositionality: Hodges' semantics for IF-logic: Using sets of assignments. (1997)
- ▶ Vännänen's Dependence Logic: Using dependence as atomic property: D(x, y, z) (2007)

$$\forall x \exists y \forall z \exists w (D(z, w) \land \dots)$$

HODGES' SEMANTICS

- ightharpoonup X is a team, i.e., a set of assignments.
- ▶ $M, X \models \varphi$.
- ► For first-order φ : $M, X \vDash \varphi$ iff for all $s \in X$: $M, s \vDash \varphi$.
- ► $M, X \models D(x, y, z)$ iff there is a function $f: M^2 \to M$ such that for every $s \in X$: s(z) = f(s(x), s(y)); or, equivalently:

$$M, X \models D(x, y, z)$$

iff for all $s, s' \in X$ if s(x) = s'(x) and s(y) = s'(y) then s(z) = s'(z).

x	y	z
1	4	4
1	5	4
2	4	2

 $ightharpoonup M, X \not\vDash x = z$

6

- $ightharpoonup M, X \not\vDash x \neq z$
- $ightharpoonup M, X \models D(x, z)$
- $ightharpoonup M, X \not\vDash D(x, y)$

HODGES' SEMANTICS II

- ▶ $M, X \vDash \varphi \land \psi$ iff $M, X \vDash \varphi$ and $M, X \vDash \psi$.
- ▶ $M, X \vDash \varphi \lor \psi$ iff there are Y and Z such that $M, Y \vDash \varphi$ and $M, Z \vDash \psi$ and $X = Y \cup Z$.
- ▶ $M, X \models \exists x \varphi$ iff there is $f: X \to M$ such that $M, X[f/x] \models \varphi$.
- $M, X \vDash \forall x \varphi \text{ iff } M, X[M/x] \vDash \varphi.$

$$X[f/x] = \{ s[f(s)/x] \mid s \in X \}.$$

 $X[M/x] = \{ s[a/x] \mid a \in M, s \in X \}.$

▶ $M \vDash \sigma \text{ iff } M, \{ \epsilon \} \vDash \sigma.$

Branching in Dependence Logic

$$M \models \operatorname{Br}(\forall \exists, \forall \exists) xyzw R(x, y, z, w)$$
iff

$$M \vDash \forall x \exists y \forall z \exists w (D(z, w) \land R(x, y, z, w))$$

What about generalized quantifiers?

$$M \vDash \operatorname{Br}(Q_1, Q_2) x y R(x, y)$$
iff
$$M \vDash Q_1 x Q_2 y \left(\operatorname{D}(y) \wedge R(x, y) \right)$$

Generalized quantifiers in Dependence Logic

LIFTING FUNCTIONS

The **Hodges space** of order ideals on the power set is

$$\mathcal{H}(A) = \mathcal{L}(\mathcal{P}(A)).$$

Given $h : \mathcal{P}(A) \to \mathcal{P}(B)$ we define the **lift**:

$$\mathcal{L}(h):\mathcal{H}(A)\to\mathcal{H}(B),\,\mathscr{X}\mapsto \mathop{\downarrow} \left\{ \right. h(X)\mid X\in\mathscr{X}\left. \right\},$$

where $\downarrow \mathscr{X}$ is the downward closure of \mathscr{X} , i.e.

$$\downarrow \mathscr{X} = \{ X \mid \exists Y \in \mathscr{X}, X \subseteq Y \}.$$

LIFTING QUANTIFERS

- ► Q a monotone type $\langle 1 \rangle$ quantifier.
- $\qquad \qquad P(M^{n+1}) \to \mathcal{P}(M^n)$
- $\blacktriangleright \ \mathcal{L}(Q_M): \mathcal{H}(M^{n+1}) \to \mathcal{H}(M^n)$
- ▶ Gives truth conditions for Q in Hodges semantics:

$$M, X \vDash Qx \varphi$$
 iff there is $F: X \to Q_M$ such that $M, X[F/x] \vDash \varphi$.

where
$$X[F/x] = \{ s[a/x] \mid a \in F(s), s \in X \}.$$

▶ \(\mathcal{L}\) applied to \(\exists \) and \(\forall \) give equivalent truth conditions for \(\exists \) and \(\forall \) as before.

Proposition

For FO(Q) formulas φ :

$$M, X \vDash \varphi$$
 iff for all $s \in X : M, s \vDash \varphi$.

(BACK)SLASHED GENERALIZED QUANTIFIERS

Easy to give a definition of slashed and backslashed generalized quantifiers:

DEFINITION

 $M, X \vDash Qx \setminus \bar{y} \varphi$ iff there is $F: X \to Q_M$ such that $M, X[F/x] \vDash \varphi$ and the value F(s) is determined by $s(\bar{y})$.

Similar for slashed quantifiers Qx/\bar{y} .

Proposition

For any *X* and monotone quantifiers Q_1 and Q_2 :

$$M, X \models Br(Q_1, Q_2)xy\varphi \text{ iff } M, X \models Q_1xQ_2y/x\varphi.$$

GENERALIZED QUANTIFIERS AND DEPENDENCE ATOMS

If Q_M contains no singletons and $X \neq \emptyset$ then $M, X \not\vDash Qx(D(x) \land \varphi)$.

$$M \vDash \operatorname{Br}(Q_1, Q_2) x y R(x, y)$$

$$\operatorname{iff}$$

$$M \vDash Q_1 x Q_2 y \left(\operatorname{D}(y) \wedge R(x, y) \right)$$

Dependence Logic with GQ

Proposition (E, Kontinen)

D(Q) is equivalent to ESO(Q) on the level of sentences.

► Thus

$$D(\operatorname{Br}(Q_1, Q_2)) \le D(Q_1, Q_2)$$

and so branching of generalized quantifiers can be defined with the dependence atom.

▶ Open question: Can this be done compositionally?

Multivalued Dependence

A COURSE DATABASE

Course	Student	Credits	Year
LC1510	Svensson	7.5 hp	2010
LC1510	Johansson	7.5 hp	2011
LC1520	Svensson	15 hp	2011
LC1520	AnderssonJohansson	15 hp	2011

- ► D(Course, Credits)
- ► It is not true that D(Course, Student).
- ► *F*^{Student} takes values for Course and Credits and gives the set of possible values for Student.
- $ightharpoonup F^{Student}(LC1510, 7.5 \text{ hp}) = \{ \text{ Svensson, Johansson } \}$
- $ightharpoonup F^{\text{Student}}$ is determined by the value of Course.
- ► [Course—»Student]
- ▶ $[\rightarrow]$ dependent on context.
- $ightharpoonup F^{Student}(LC1510, 7.5 \text{ hp}, 2010) = \{ \text{ Svensson } \}$
- $ightharpoonup F^{Student}(LC1510, 7.5 \text{ hp}, 2011) = \{ Johansson \}$
- ► [→] **not** closed downwards: **Not** true that [→Student]

MULTIVALUED DEPENDENCE AND TEAMS

► If $s \in X$ then $F_X^y(s) = \{ a \mid s[a/y] \in X \}$.

DEFINITION

 $M,X \vDash [\bar{x} \rightarrow y]$ if F_X^y is determined by the values of \bar{x} . (Only for $y \notin \bar{x}$.)

Proposition

 $M, X \vDash [\bar{x} \rightarrow y]$ iff for all $s, s' \in X$ such that $s(\bar{x}) = s'(\bar{x})$ there exists $s_0 \in X$ such that $s_0(\bar{x}) = s(\bar{x})$, $s_0(y) = s(y)$, and $s_0(\bar{z}) = s'(\bar{z})$, where \bar{z} are the variables in dom $(X) \setminus (\{\bar{x}\} \cup \{y\})$.

- ► $M, X \models [\bar{x} \rightarrow y]$ is dependent on context and not closed downwards.
- ► $M, X \models D(\bar{x}, y)$ iff $M, X \models [\bar{x} \rightarrow y]$ and F_X^y only takes singleton values.

GENERALIZED QUANTIFIERS AND MULTIVALUED DEPENDENCE

Proposition

If Q_1 and Q_2 are monotone then $M \models Br(Q_1, Q_2)xyR(x, y)$ iff

$$M \vDash Q_1 x Q_2 y ([\rightarrow y] \land R(x, y)).$$

Proposition

FOL + multivalued dependencies has the same strength, on the level of sentences, as ESO, and thus as Dependence Logic.

Proposition [Galliani 2011]

The class of teams definable in FOL + multivalued dependencies are exactly the ones definable in ESO (with an extra predicate for the team).

EMBEDDED MULTIVALUED DEPENDENCE

► Multivalued dependence is dependent on context.

Definition

 $M, X \vDash [\bar{x} \rightarrow \bar{y} \mid \bar{z}] \text{ iff } Y \vDash [\bar{x} \rightarrow \bar{y}] \text{ where } Y \text{ is the projection of } X \text{ onto } \{\bar{x}, \bar{y}, \bar{z}\}.$

- ► $[\bar{x} \rightarrow \bar{y} \mid \bar{z}]$ is independent on context.
- ► This is the independence atom introduced by Väänänen and Grädel: $\bar{y} \perp_{\bar{x}} \bar{z}$ iff $[\bar{x} \rightarrow \bar{y} \mid \bar{z}]$
- ► However, embedded multivalued dependence is **not** axiomatizable. [Sagiv Walecka 1982] (Which both functional dependence and multivalued dependence are.)
- ► Embedded multivalued dependence is definable in FOL with multivalued dependencies. [Galliani 2011]

Non monotone quantifiers

Non monotone Quantifiers

Assume *Q* monotone of type $\langle 1 \rangle$. In the Tarskian setting:

$$M, s \vDash Qx \varphi \text{ iff } \varphi^s(M) \in Q_M, \text{ or } M, s \vDash Qx \varphi \text{ iff there is } A \subseteq \varphi^s(M) : A \in Q_M.$$

In the Hodges setting this is translated into:

$$M, X \vDash Qx \varphi$$
 iff there is $F: X \to Q_M$ such that $M, X[F/x] \vDash \varphi$.

Now assume Q is non monotone, then

$$M, s \vDash Qx \varphi$$
 iff there is maximal $A \subseteq \varphi^s(M) : A \in Q_M$, or $M, s \vDash Qx \varphi$ iff there is $A \subseteq \varphi^s(M) : \text{ if } A \subseteq B \subseteq \varphi^s(M) \text{ then } B \in Q_M$.

Non monotone Quantifiers

DEFINITION

Given $F, F': X \to \mathscr{P}(M)$ let $F \leq F'$ if for every $s \in X$: $F(s) \subseteq F'(s)$.

Let *Q* be a type $\langle 1 \rangle$ quantifier. Then $M, X \models Qx \varphi$ if there is $F: X \to \mathscr{P}(M)$ such that

- 1. $M, X[F/x] \vDash \varphi$ and
- 2. for each $F' \ge F$ if $M, X[F'/x] \models \varphi$ then for all $s \in X$: $F'(s) \in Q_M$.

Proposition

- ► For monotone *Q* the two truth conditions are equivalent.
- ▶ For φ in FO(Q): $M, X \vDash \varphi$ iff for all $s \in X : M, s \vDash \varphi$.
- ▶ D(Q) is downwards closed.

SHER'S MAXIMALITY PRINCIPLE

DEFINITION (SHER 1990)

A Cartesian product $A \times B$ is maximal in R if $A \times B \subseteq R$, no $A' \supseteq A$ satisfies $A' \times B \subseteq R$ and no $B' \supseteq B$ satisfies $A \times B' \subseteq R$.

The branching of Q_1 and Q_2 , $\operatorname{Br}^S(Q_1,Q_2)$ is

$$\{ (M,R) \mid R \subseteq M^2, \exists A \in Q_1 \exists B \in Q_2 : A \times B \text{ is maximal in } R \}.$$

For monotone Q_1 and Q_2 : $Br^S(Q_1, Q_2) = Br(Q_1, Q_2)$.

Sher's branching and non monotone GQs

Let Q be a type $\langle 1 \rangle$ quantifier. Then $M, X \models Qx \setminus \bar{y} \varphi$ if there is $F: X \to \mathscr{P}(M)$ such that

- 1. $M, X[F/x] \models \varphi$ and
- 2. for each $F \geq F$ if $M, X[F/x] \models \varphi$ then for all $s \in X$: $F'(s) \in Q_M$.
- 3. F(s) is determined by the values $s(\bar{y})$.

Similar for Qx/\bar{y} .

PROPOSITION

Suppose that φ is closed downwards. If $M, X \models Q_1 x Q_2 y / x \varphi$ then $M, X \models \operatorname{Br}^S(Q_1, Q_2) x y \varphi$.

Sher's branching and non monotone GQs II

Example of a relation *R* satisfying

- ► $Br^{S}(\exists^{=1},\exists)xyR(x,y)$ and
- $\rightarrow \exists y \exists^{=1} x/y R(x, y)$ but
- ► not $\exists^{=1}x\exists y/x R(x, y)$.

This example also shows that in general the two quantifier prefixes Q_1xQ_2y/x and Q_2yQ_1x/y are not equivalent.

ALTERNATIVE BRANCHING PRINCIPLES

► Barwise (and others): Monotone decreasing quantifiers should be analyzed in the same way as monotone increasing.

DEFINITION

When Q_1 and Q_2 are monotone decreasing

$$Br(Q_1, Q_2)_M = \left\{ R \subseteq M^2 \mid \exists A \in Q_{1M} \exists B \in Q_{2M} : R \subseteq A \times B \right\}.$$

- Westerståhl has generalized this idea to a large family of quantifiers.
- ► Can any of these principles be analyzed compositionally?

THANK YOU FOR YOUR ATTENTION.