- 1. (bg222:deriv1) Define $f(x) = x \ln(x) + \sin(x^2 + 1)$. Compute f'(x).
- 2. (bg222:deriv2) Define $f(x) = \ln(x)\sin(x) + \sqrt{x^4 + x^2}$. Compute f'(x).
- 3. (bg222:deriv3)
 Compute each of the following derivatives.
 - (a) Compute y' if $y = x^3 \left(x^2 \frac{1}{x}\right)$
 - (b) $\frac{d}{dx}\sin(x^2+5)$
 - (c) $\frac{d}{dx} \left(x^2 \cdot \cos x \right)$
 - (d) $\frac{d}{dx} \left(x^2 \cdot \ln x \cdot \cos x \right)$
- 4. (bg222:ftoc1) Define $f(x) = \int_x^{x^2} e^{t^3} dt$. Compute f'(x). Hint: split the integral into \int_x^1 and $\int_1^{x^2}$ and use the Fundamental Theorem of Calculus.
- 5. (bg222:ftoc2) Compute $\frac{d}{dx}\int_x^1 \ln z \ dz$. (Hint: remember the "Fundamental Theorem of Calculus".)

6. (bg222:int1) Compute

$$\int \frac{\ln(\pi x)}{x} dx$$

- 7. (bg222:int2) Compute $\int_e^{e^3} \frac{1}{x \ln(x)} dx$.
- 8. (bg222:int3)Compute $\int_0^{\frac{\pi}{2}} \cos(t) e^{\sin(t)} dt$.

- 9. (bg222:int4) Compute $\int e^x \sin(2\pi e^x) dx$
- 10. (bg222:int5) Compute $\int_0^x \left(\int_0^t \cos(s) ds \right) dt$.
- 11. (bg222:int6)
 Compute each of the following integrals.
 - (a) $\int x^2 \sin(x^3) dx$
 - (b) $\int \frac{x^3 + \sqrt{x} + \sqrt{\pi}}{\sqrt{x}} dx$
 - (c) $\int_{-2}^{3} (x^2 + x + 1) dx$
- 12. (bg222:tf1) $\frac{d}{dx}(\frac{1}{x}) = \ln x.$
- 13. (background:TF)
 True or False:
 - (a) $\frac{d}{dx}(\frac{1}{x}) = \ln x$
 - (b) $\frac{d}{dt} \int_0^t \frac{dx}{1+x^2} = \frac{1}{1+t^2}$
 - (c) $\sqrt{x^2+9} = x+3$
 - (d) The function $f(x) = \frac{1}{x+4}$ is defined for all values of x except for x = -4
 - (e) $\int e^{(x^3)} = e^{(x^3)} + C$
 - (f) If $f(x) = x^2 \cdot g(x)$ then $f'(x) = 2x \cdot g'(x)$
- 14. (bg222:optimization)

Which rectangle has the largest area, among all those rectangles for which the total length of the sides is 1?