30.203 Design and Fabrication Microelectromechanical Systems

Indoor Positioning System Design

Outline

- Introduction of Indoor Positioning System (IPS)
- Tasks
- IPS Design Example

Indoor Positioning System (IPS)

- An indoor positioning system (IPS) is a solution to locate objects or people inside a building
- Wireless technologies, WIFI, Bluetooth, RFID, etc.
 - Many different systems take advantage of existing wireless infrastructure for indoor positioning.
- Magnetic position
 - □ Based on the iron inside buildings that create local variations in the Earth's magnetic field.
- Inertial Measurement Unit (IMU)
 - □ Pedestrian Dead Reckoning (PDR) and other approaches for positioning of pedestrians propose an inertial measurement unit carried by the pedestrian by measuring steps and step length.

IPS Design

- Objectives of the IPS project:
 - ☐ Detect the position by using MEMS sensors.
 - ☐ Estimate the walking distance between the initial point and the final point.
 - ☐ Estimate the level in the building.

IPS Design

- Hardware:
 - Microcontroller: Arduino UNO V3
 - ☐ MEMS sensors: altIMU-10 V4
 - ST L3GD20H (Gyroscope)
 - ST LSM303D (Accelerometer and magnetometer)
 - ST LPS25H (Pressure and temperature sensors)

SCL SDA GND VIN (2.6–5.5V) VDD

altIMU-10 V4

10 degree of freedom IMU (altIMU10-V4)

- Sensors Introduction
 - □ https://www.pololu.com/product/1269
- 3-axis Accelerometer + 3-axis Magnetometer (LSM303D)
 - ±2/±4/±8/±12 gauss dynamically selectable magnetic full-scale
- 3-axis Gyroscope (L3GD20H)
 - \Box a full scale of $\pm 245/\pm 500/\pm 2000$ dps
- Pressure sensor + temperature sensor (LPS25H)
 - ☐ 260 to 1260 hPa absolute pressure range
 - High-resolution mode: 1 Pa RMS
 - Absolute accuracy temperature: 2 °C

Block Diagrams of the INS and PDR

http://gpsworld.com/innovation-getting-closer-to-everywhere-accurately-tracking-smartphones-indoors/

Inertial Navigation System (INS)

Pedestrian deadreckoning (PDR)

- PDR scheme accumulates error more slowly than the INS scheme
- Magnetometer based heading systems do not drift with time
- Barometer based floor change detection system do not drift with time

Block Diagram of the IPS

- The system is designed based on existing compass code and DCM code.
- Three sub-blocks have to be developed step detection, step length estimation and level detection.

Euler Angles

- Euler angles provide a way to represent the 3D orientation of an object using a combination of three rotations about different axes.
- The inertial frame
 - ☐ The "inertial frame" is an Earth-fixed set of axes that is used as an unmoving reference.
- The body frame

☐ The body frame is the coordinate system that is aligned with the body of the sensor. **x**______

Step Detection

- Gyroscope
 - □ Foot mounted
- Accelerometer
 - □ Handheld
- Foot mounted
 - □ Bag, pocket, etc.
 - □ Euler Angles
 - Foot mounted
- Step Detection Methods
 - Peaking detection
 - ☐ Threshold crossing detection

Step Detection Methods

■ Step threshold

- □ Deterministic, i.e., zero crossing
- □ Adaptive, i.e., max and min average

Peak detection

- ☐ If sample k minus sample k 1 is positive it means that is the rising edge of the data norm;
- ☐ If the result is negative it means that a falling edge of the data norm is detected.
- ☐ Formula for Detection of Peaks on Norm
- \Box if($N_k N_{k-1} >= 0 \&\& N_{k+1} N_k < 0$) then: Step is detected

■ Filtering – low pass filter

 Local peak or local spur may cause unintended step detection

Foot Mounted Step Detection

Gyroscope, accelerometer and Euler Angles can be used to detect the steps

Step Length Computation

Reference Model

S. Miyazaki, "Long-Term Unrestrained Measurement of Stride Length and Walking Velocity Utilizing a Piezoelectric Gyroscope"

Other Models of Step Length Estimation

Frequency based step length model 1 [1]

$$s = h * (a * f_{step} + b) + c$$

h is the user's height, f_{step} is the step frequency, a, b, c are the parameters.

Frequency based step length model 2 [2]

$$s = \alpha * f_{step} + \beta * \nu + \gamma$$

 α,β,γ are the parameters, v is the difference between the accelerometer signal at time t, the average of accelerometer signals during one step.

Swing speed based step length model [3]

$$s = K_1 \overline{z_t} + K_2$$

 K_1 , K_2 are subject-specific coefficients, $\overline{z_t}$ is the average swing rate

[1]. Renaudin, et al. "Step length estimation using handheld inertial sensors." 2012

3.003 MEMS 2015 Week 6

- [2] Shin, S. H., et al. "Adaptive step length estimation algorithm using low-cost MEMS inertial sensors." 2007
- [3]. Zhang, Zhiqiang, et al. "A Simple and Robust Stride Length Estimation Method using Foot-mounted Micro Gyroscopes." 2014

Use Pressure Sensor to Measure Altitude/Barometer

Weather Conditions (up to 11 km)

$$h = h_b + \frac{T_b}{L_b} \left[\left(\frac{P}{P_b} \right)^{\frac{-RL_b}{g_0 M}} - 1 \right]$$

$$P = P_b [1 + \frac{L_b}{T_b} (h - h_b)]^{\frac{-g_0 M}{RL_b}}$$

where,

P_b= static pressure (pressure at sea level) [Pa]

 T_b = standard temperature (temperature at sea level) [K]

 $L_{b=}$ standard temperature lapse rate [K/m] = -0.0065 [K/m]

h = height about sea level [m]

 h_b = height at the bottom of atmospheric layer [m]

R = universal gas constant = 8.31432 $\left[\frac{N \cdot m}{mol \cdot K}\right]$

 g_0 = gravitational acceleration constant = 9.80665 $\left[\frac{m}{s^2}\right]$

M = molar mass of Earth's air = 0.0289644 [kg/mol]

Earth's Atmosphere (from 11km to 20km)

$$h = h_b + \frac{RT_b \ln\left(\frac{P}{P_b}\right)}{-g_0 M}$$

$$P = P_b exp\left[\frac{-g_0 M(h - h_b)}{RT_b}\right]$$

Useful Resources

■ AltIMU 10 resources □ https://github.com/pololu/minimu-9-ahrs-arduino ■ Filter (smoothing) http://playground.arduino.cc/Main/Smooth ■ FFT http://wiki.openmusiclabs.com/wiki/ArduinoFFT Peak Detection http://www.tigoe.com/pcomp/code/arduinowiring/46/ Frequency Detection http://interface.khm.de/index.php/lab/interfaces-advanced/arduinofrequency-counter-library/ Rotation Matrix Conversion http://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions Simplot http://www.negtronics.com/simplot

Tasks To Be Done

Design IPS

Design methods and algorithms

Arduino coding

- □ Program the codes
- ☐ Code to be submitted with the project

Presentation

Present the IPS design including methods and algorithms, 10 minutes for each group (Thursday, week 9)

Measurement

☐ Track the walking, and measure the distance and level. For example, start at the entrance of one stop center, and end at the classroom.

Demonstration

☐ Demo the final IPS, 20 minutes for each group (Monday, week 13)

■ Final Report

☐ Include the IPS design and the measurement results (week 13)

Project Marking (40%)

- Introduction of the IPS project (Thursday, Week 6).
- Group presentation on the IPS design (Thursday, Week 9).
- Submission of final report (Week 13).
- Demo/presentation of the IPS (Monday, Week 13).
- Marking is based on the **novelty** and **accuracy** of the IPS.

Project	Mark
Level detection	10
Gait detection	10
Step length evaluation	5
Final system	15

Step Counter and Step Length Estimation

- Averaged step speed: 0.8 step/s
- Averaged step length: 1.14 m (With first and last steps),
 1.25 m (without first and last steps)

19/25

Gait Tracking

- Total walking distance: 12.54 m
- Straight line distance: 10.38 m

Gait Tracking GUI

Each step is tracked and plotted in a window by a python program

P and T changes in 50 hours

- Both temperature and pressure may change at different conditions
- Assume the conditions do not change when measuring the system

PT Changes in 20 levels@10 AM

- Pressure = 1015 @ LV1, 1007 @ LV20
- Indoor and outdoor pressures different
- Sunlight affects the pressure

PT Changes in 20 levels@15 PM

- Pressure = 1013 @ LV1, 1005 @ LV20
- Pressure at different time is different
- Relative pressure difference can be used to detect the level

