MODELES LOG-LINEAIRES SOUS

La variable dépendante n'est plus une variable binaire, mais une variable de comptage. Pour effectuer une régression de Poisson, on utilise toujours la commande glm, avec l'argument family=poisson.

OBJECTIF

Nous allons analyser le jeu de données sur le comptage de crises épileptiques traité initialement par Thall et Vail (1990) et contenu dans le package « MASS ».

La variable à expliquer est le nombre de crises épileptiques compté sur une période de deux semaines et ceci quatre fois (quatre périodes de deux semaines = période 1, période 2, période 3 et période 4) pour chacun des 59 patients de l'étude.

Les patients sont divisés en deux groupes : un groupe de patient recevant le traitement Progabide et un groupe de patient recevant un Placebo. Le nombre de crises épileptiques sur une période de 8 semaines avant la prise du médicament/placebo (période de référence) est également connu et reflète le comptage de référence.

Notre étude visera à expliquer l'effet du médicament Progabide (par rapport à un Placebo) contre la survenue de crises partielles d'épilepsie.

CHARGEMENT PACKAGE « MASS »

Chargement du package (à chaque utilisation) :

library (MASS)

PRESENTATION / LECTURE DES DONNEES

Les données à analyser (epil) contiennent les informations sur une cohorte de 59 patientes.

head(epil)
tail(epil)
names(epil)

Les variables sont définies ci-dessous :

y nombre de crises épileptiques (comptage) sur une période de 2 semaines

trt traitement : placebo ou progabide

base nombre de crises épileptiques sur une période de 8 semaines précédant l'inclusion

(= pendant la période de référence)

age **âge du sujet (en année)**

```
variable indicatrice de la période 4 : 0 ou 1
V4
               numéro du sujet de 1 à 59
subject
               période 1 à période 4
period
               log (nombre de crises épileptiques) pour la période « baseline » (centré pour avoir une
lbase
               moyenne 0)
               log (âge) (centré pour avoir une moyenne 0)
lage
```

OBJECTIF DE MODELISATION

On souhaite modéliser le nombre de crises épileptiques (y) compte tenu des covariables démographiques (age), cliniques (base) et du traitement administré (trt) sur les 59 patients de la cohorte étudiée.

ANALYSE EXPLORATOIRE

```
str(epil)
summary(epil)
data=epil
Les données dichotomiques ne sont pas traitées comme des variables qualitatives. On les transforme
donc en type facteur:
data col = c(5,6,7)
for (i in 1:3) {
data[,data_col[i]] = factor(data[,data_col[i]])}
str(data)
summary(data)
Description des données qualitatives (exemple) :
table(data[,2])
table(data[,2],data[,7])
Description des données quantitatives (exemple) :
V4=data[,5]
data2=data[V4==1,]
Variable base = nombre de crises épileptiques pdt la période de référence
median(data2[,3])
min(data2[,3])
max(data2[,3])
Variable age = age
median(data2[,4])
min(data2[,4])
max(data2[,4])
Discrétisation de la variable base :
borne = c(0,22,max(epil[,3]))
base_cl = cut(epil[,3], breaks = borne, include.lowest = TRUE)
```

```
table(base_cl)
Discrétisation de la variable age :
borne = c(0,28,max(epil[,4]))
age_cl = cut(epil[,4], breaks = borne, include.lowest = TRUE)
table(age_cl)
Représentation graphique / exemple 1 :
y=epil[,1]
trt=epil[,2]
base=epil[,3]
age=epil[,4]
V4=epil[,5]
subject=epil[,6]
periode=epil[,7]
plot(periode,y,col = "black", xlab = "",ylab = "")
Représentation graphique / exemple 2 :
y1=epil[trt=="progabide",1]
periodel=epil[trt=="progabide",7]
y2=epil[trt=="placebo",1]
periode2=epil[trt=="placebo",7]
plot(periode1,y1,col = "red", xlab = "",ylab = "")
points(periode2,y2,col = "blue", xlab = "",ylab = "")
MODELE LOG-LINEAIRE
Modèle log-linéaire sans interaction :
modele1 = glm(y~periode+age_cl+trt+base,family=poisson,data=epil)
summary(modele1)
exp(cbind(RR1 = coef(modele1), confint(modele1)))
AIC (modele1)
BIC (modele1)
Modèle log-linéaire avec interaction :
modele2 = glm(y~periode+age cl+trt+base+base:trt,family=poisson,data=epil)
summary (modele2)
AIC (modele2)
BIC (modele2)
Test de l'ajout d'une interaction dans le modèle :
```

EXERCICE 1

lrtest(modele1, modele2)

1/ Réfléchir à l'interprétation des coefficients (en terme de ratio rate = rapport de taux)

2/ Réfléchir à l'interprétation de la modélisation

MODELE LOG-LINEAIRE POUR TABLES DE CONTINGENCE

Table de contingence pour les variables :

- traitement
- nombre de crises épileptiques (en classe) pdt la période de référence
- âge (en classe)

```
mytable=xtabs(~trt+base_cl+age_cl)
ftable(mytable)
freqdata=data.frame(mytable)
freqdata

Modèle log-linéaire pour tables de contingences:
modele=glm(Freq~trt*base_cl*age_cl,family=poisson,data=freqdata)
modele

Analyse des interactions entre les variables:
anova(modele, test="Chisq")
```

EXERCICE 2

1/ Quelles sont les interactions significatives ?

2/ Relancer les commandes précédentes avec seulement les variables traitement et âge (en 3 classes : <25, [25, 30[et ≥30) et comparer les résultats obtenus entre le test du chi2 d'indépendance et le test du paramètre d'interaction dans le modèle log-linéaire.