Analyse II

Résumé: Limites et continuité des fonctions de plusieurs variables.

Définitions et résultats.

- 1. Soit $E \subset \mathbb{R}^n$ et $f: E \to \mathbb{R}$ une fonction définie au voisinage de \bar{x}_0 (mais pas nécessairement en x_0). Alors f admet pour limite le nombre réel l lorsque \bar{x} tend vers \bar{x}_0 si pour tout $\varepsilon > 0$ on peut trouver $\delta > 0$ tel que pour tout $\bar{x} \in E: 0 < ||\bar{x} \bar{x}_0|| \le \delta$, on a $|f(\bar{x}) l| \le \varepsilon$. Alors on écrit $\lim_{\bar{x} \to \bar{x}_0} f(\bar{x}) = l$.
- 2. Soit $E \subset \mathbb{R}^n$ et $\bar{x}_0 \in E$ un point intérieur. Alors $f: E \to \mathbb{R}$ est continue en \bar{x}_0 si

$$\lim_{\bar{x}\to\bar{x}_0} f(\bar{x}) = f(\bar{x}_0).$$

- 3. (Caractérisation de la limite). Une fonction $f: E \to \mathbb{R}$ définie au voisinage de \bar{x}_0 (mais pas nécessairement en x_0) admet pour limite le nombre réel l lorsque \bar{x} tend vers \bar{x}_0 si et seulement si pour toute suite (\bar{a}_k) d'éléments de $\{\bar{x} \in E : \bar{x} \neq \bar{x}_0\}$, qui converge vers \bar{x}_0 , la suite $f(\bar{a}_k)$ converge vers l.
- 4. (Opérations sur les limites). Soit $E \subset \mathbb{R}^n$ et $f, g : E \to \mathbb{R}$ deux fonctions telles que $\lim_{\bar{x}\to\bar{x}_0} f(\bar{x}) = l_l$ et $\lim_{\bar{x}\to\bar{x}_0} g(\bar{x}) = l_2$. Alors
 - (a) $\lim_{\bar{x}\to\bar{x}_0} (\alpha f + \beta g)(\bar{x}) = \alpha l_1 + \beta l_2$ pour tout $\alpha, \beta \in \mathbb{R}$.
 - (b) $\lim_{\bar{x}\to\bar{x}_0} (f\cdot g)(\bar{x}) = l_1 \cdot l_2$.
 - (c) Si $l_2 \neq 0$, alors $\lim_{\bar{x} \to \bar{x}_0} \left(\frac{f}{g}\right) (\bar{x}) = \frac{l_1}{l_2}$.
- 5. Toutes les fonctions rationnelles et trigonométriques sont continues sur leurs domaines.
- 6. (Deux gendarmes). Soit $E \subset \mathbb{R}^n$ et $f, g, h : E \to \mathbb{R}$ trois fonctions telles que (1) $\lim_{\bar{x} \to \bar{x}_0} f(\bar{x}) = \lim_{\bar{x} \to \bar{x}_0} g(\bar{x}) = l$ et (2) il existe un nombre $\alpha > 0$ tel que pour tout $\bar{x} \in \{\bar{x} \in E : 0 < ||\bar{x} \bar{x}_0|| \le \alpha\}$, on a $f(\bar{x}) \le h(\bar{x}) \le g(\bar{x})$. Alors $\lim_{\bar{x} \to \bar{x}_0} h(\bar{x}) = l$.
- 7. Une fonction continue sur un sous-ensemble compact $D \subset \mathbb{R}^n$ atteint son maximum et son minimum.