SERVO MOTOR

[1] SERVO MOTOR

1. SERVO MOTOR의 개요

Motor에 회전 검출기(Encoder)를 탑재하여, Motor축의 회전위치 / 회전속도를 Amp로 Feedback하고 있습니다.

Amp는 컨트롤러에서의 Pulse신호 (위치지령/속도지령)와 Feedback 신호 (현재위치/속도)의 오차를 연산하고, 이 오차를 0이되도록 Motor 회전을 제어합니다.

Closed Loop 제어 방식

2. SERVO MOTOR의 종류

DC SERVO: BRUSHED DC MOTOR + 앤코더

IM형 서보모터(Induction Type AC Servo Motor)

3. SERVO MOTOR의 종류별 구조

4. SERVO MOTOR의 종류별 특징

종 류	장 점	단 점
DC 서보모 터	기동토크가 크다. 크기에 비해 큰 토크 발생 효율이 높다. 제어성이 좋다. 속도제어범위가 넓다. 비교적 가격이 싸다.	브러시 마찰로 기계적 손실 크다. 나러시의 보수가 필요. 접촉부의 신뢰성이 떨어진다. 정류에 한계가 있다. 사용환경에 제한이 있다. 방열이 나쁘다.
동기기형 AC 서보모 터	브러시가 없어서 보수 용이. 내 환경성이 좋다. 정류에 한계가 없다. 신뢰성이 높다. 고속, 고 토오크 이용 가능. 방열이 좋다.	시스템이 복잡하고 고가. 전기적 시정수가 크다. 회전 검출기가 필요 2-3Kw가 출력한계
유도기형 AC 서보모 터	브러시가 없어서 보수 용이. 내 환경성이 좋다. 정류에 한계가 없다. 자석을 사용치 않는다. 고속, 고 토오크 이용 가능. 방열이 좋다.	시스템이 복잡하고 고가. 전기적 시정수가 크다. 출력은 2-3Kw이하가 거의 없 다

* SM형 SERVO MOTOR의구조

4. SERVO MOTOR의 특성

A. 회전각도, 회전속도제어가 쉽다.

이동량 [°] = 엔코더 분해능[°] × PULSE 수

MOTOR 속도 [rpm] =
$$\frac{분해능}{360 \circ}$$
 × PULSE 속도 [Hz] × 60

B. 고 분해능, 고정도 위치 결정

분해능[°/step]	정지정도	정지상태
엔코더의 분해능	엔코더의 분해능	미진동(Hunting)

C. 응답성

위치결정시간 = PULSE열 신호입력시간 + 정정시간

D. SERVO MOTOR의 토크-속도 특성

5. SERVO MOTOR의 SYSTEM

- SERVO MOTOR의 SYSTEM

- SERVO MOTOR의 SYSTEM 구성

- SERVO MOTOR의 SYSTEM 상세 설명

1. 편차 카운터

입력 PULSE와 FEEDBACK PULSE의 편차를 계산

2. D/A 변조

편차 카운터의 잔여 PULSE수(DIGITAL)를 ANALOG(전압) 신호로 변환

3. F/V 변조

엔코더로부터의 FEEDBACK PULSE 주파수를 ANALOG(전압) 신호로 변환

4. 속도제어부

D/A변조부의 지령과 F/V변조부의 지령속도의 차이 분을 증폭

5. 전류 제어부

전류 지령과 전류 검출부로부터의 FEEDBACK신호의 편차 분을 증폭

6. 컨버터부

전원으로부터 가해진 교류전류를 정류하고 콘덴서로 평활 하여 직류로 변환

7. 인버터부

콘덴서로 평활 시킨 직류전압을 1차측에 가하고 여자시퀀스로부터의 지령으로 제어하여 MOTOR에 3상 전원을 공급

- 전력부(컨버터-인버터부)의 동작 원리

펄스폭 변조 PWM(Pulse Width Modulation) 이해

- SRVO MOTOR의 FEEDBACK LOOP

6. SERVO MOTOR의 입력 신호

DIGITAL 신호: PULSE열에 의한 지령.

PULSE 주파수(속도)에 의해 모터의 속도가 정해진다.

ANALOG신호: ANALOG 지령 전압에 비례하는 속도로 회전한다

위치 제어, 속도 제어

속도 제어, 토크 제어

7. 엔코더

엔코더는 MOTOR의 회전수(속도)와 위치를 드라이버에 알리기 위한 센서입니다.

MOTOR가 회전 하면, SLIT에 빛이 통과 하거나 차단 되는 것 에 따라 회전에 대한 PULSE 가 얻어집니다.

- 엔코더의 종류

광학식 엔코더

INCREMENTAL TYPE

ABSOLUTE TYPE

* 전원을 OFF한 후 다시 ON하여도 현재의 위치 값을 기억

자기식 엔코더

■ RESOLVER 구조

* ROTOR의 작은 돌극과 STATOR의 작은 돌극의 공간변화에 따른 INDUCTANCE의 변화를 이용 ROTOR의 위치를 검출

* 특징

- * 소형,SLIM화 가능
- * 고 분해능이 가능
- * 내환경성이 강함(특히 열에 강함.)

- 엔코더의 신호

* A. B상

A상과 B상 출력신호의 위상차 90°로 이루어진 Digital신호로서 회전방향(정, 역회전)을 판별하고 위치값을 카운트하는 신호임.

* Z상(Zero신호)

1회전에 1개만 출력되는 신호로서 원점신호라 한다. 즉, 외부 카운터의 리세트나 원점 위치 검출용이다.

* 일반적으로 많이 사용하는 출력 신호

- A. OPEN COLLECTOR 출력: 엔코더 출력단에 NPN 트랜지스터를 사용하여 트랜지스터의 EMITTER단자를 0V와 연결하고 COLLECTOR 단자를 Vcc와 개방하고, COLLECTOR 를 출력하는 출력 방식이며 주로 엔코더의 전원전압과 COLLECTOR 의 전원전압이 일치하지 않을 경우 많이 사용함.
- B. LINE DRIVER 출력: 엔코더 출력화로에 LINE DRIVER 전용 IC를 사용하는 출력방식이다. 고속응답 특성, 내노이즈 특성이 강하며, 장거리 전송에 적합하다.

8. SERVO MOTOR의 정지 상태

A 위치 : 이상적인 경지 위치 B 위치 : 1PULSE 지난 위치 C 위치 : 1PULSE 앞의 위치

* 엔코더의 1PULSE 사이를 왕복하면서 위치를 찾음 -> HUNTING현상이 발생함.

9. SERVO MOTOR의 마찰부하에 대한 영향

10. SERVO MOTOR의 입출력 신호 일람

11. SERVO MOTOR의 GAIN 조정

- 속도 루프 GAIN(Kv)
- 속도 루프 게인이 너무 낮으면 속도 응답이 저하된다.
- 속도 루프 게인이 너무 높으면 동작이 불안정한 시스템이 된다.

- 적분 시정수(Ki)

- 적분 시정수가 너무 작으면 진동이나 오버슈트가 커지는 원인이 된다.
- 적분 시정수가 너무 크면 실제의 속 도는 좀처럼 지령 속도에 도달하지 않 는다.

- 위치 루프 GAIN(Kp)
- 위치 루프 게인(Kp)이 낮으면 시스템 응답이 저하된다. 위치 결정 시간이 길어진다.
- 위치 루프 게인이 높으면 속도와 위치에 대해서 오버슈트의 결과가 된다.

[2] FEEDBACK STEPPING MOTOR(α – STEP)

1. FEEDBACK STEPPING MOTOR(α - STEP)의 원리

- STEPPING MOTOR의 장점과 SERVO MOTOR의 장점을 동시에 만족하는 차세대 STEPPING MOTOR
- 2. FEEDBACK STEPPING MOTOR(α STEP)의 동작 원리

- 입력 PULSE값과 FEEDBACK PULSE의 편차가 1.8 ° 를 넘어서면 탈조로 판단하고 CLOSED LOOP 제어를 실시하려 탈조를 방지함. 1.8 ° 를 벗어나지 않으면 STEPPING MOTOR와 마찬가지로 OPEN LOOP제어를 하여 STEPPING MOTOR의 장점을 유지함

3. FEEDBACK STEPPING MOTOR(α - STEP)의 특징

- STEPPING MOTOR의 성능향상
 - * 고속영역의 TORQUE특성 활용이 쉽다.
 - * 속도 FEEDBACK에 의해 기동/정지 시 응답성 조정
 - * 보호기능 및 ALARM신호 출력
 - * 위치결정완료(END) 신호 출력
- AC SERVO MOTOR보다 사용하기 쉽다.
 - * HUNTINGLESS
 - * GAIN 조정이 필요 없다.
 - * 동기성 / 응답성이 우수하다.

- FEEDBACK STEPPING MOTOR(α - STEP)의 속도 FILTER

* WORK에서의 충격을 작게 하거나, 저속운전시의 진동을 저감하는 목적으로 사용

- * 낮은 분해능에서도 저속으로 부드러운 운전가능
- * 기동, 정지 시에 원활한 운전가능

4. FEEDBACK STEPPING MOTOR(α - STEP)의 입출력 신호 일람

