Topology and Groupoids Exercises Chapter 2, Section 5 Continuity

David Melendez

October 5, 2018

Problem 5.3. Let $X = A \cup B, Y$ be topological spaces and let $f: X \to Y$ be a function such that f|A, f|B are continuous Prove that f is continuous if

$$\overline{(A \setminus B)} \cap (B \setminus A) = \emptyset$$
$$(A \setminus B) \cap \overline{(B \setminus A)} = \emptyset.$$

Proof. First, note that

$$X \setminus B = (A \cap B) \setminus B$$
$$= A \setminus B,$$

and so we have that $x \in \overline{(A \setminus B)} = \overline{(X \setminus B)}$ if and only if every neighborhood of x meets $X \setminus B$; that is, if and only if no neighborhood of x is entirely contained within B, if and only if $x \notin \text{Int}B$, if and only if $x \in (X \setminus \text{Int}B)$. Hence, $\overline{(A \setminus B)} = X \setminus \text{Int}B$. Consequently, we have

$$\emptyset = \overline{(A \setminus B)} \cap (B \setminus A)$$
$$= (X \setminus \text{Int}B) \cap (B \setminus A).$$

It then follows that if $x \in (B \setminus A)$, then $x \notin (X \setminus IntB)$; that is, $x \in IntB$. Therefore, $(B \setminus A) \subseteq IntB$. A similar argument shows that $(A \setminus B) \subseteq IntA$.

It then follows from the "gluing rule" (2.5.11) that f is continuous.

Problem 5.4. Let X be a topological space and let $f, g : X \to \mathbb{R}$. Prove that the following functions $x \to \mathbb{R}$ are maps.

- (a) $x \mapsto |f(x)|$
- (b) $x \mapsto f(x)/g(x)$ (if g(x) is never 0)
- (c) $x \mapsto \max\{f(x), g(x)\}, x \mapsto \min\{f(x), g(x)\}$

Solution.

- (a) First, consider the function $h: \mathbb{R} \to \mathbb{R}$ that maps $x \mapsto |x|$. Let $A = (-\infty, 0]$ and $B = [0, \infty)$. Then note that A and B are both closed, $\mathbb{R} = A \cap B$, and the restrictions of h to A and B ($h|_A(x) = -x, h|_B(x) = x$) are continuous. It then follows from the "gluing rule" that h is continuous. Note, then, that the function $x \mapsto |f(x)|$ is just the composition hf, and so the function is continuous since h and f are continuous.
- (b) Note that the function $x \mapsto 1/x$ is continuous on $\mathbb{R} \setminus \{0\}$, and so the function $x \mapsto f(x)/g(x)$ is continuous since it can be written as a composition of continuous maps

$$x \mapsto (f(x), g(x))$$

$$\mapsto \left(f(x), \frac{1}{g(x)}\right)$$

$$\mapsto (f(x))\left(\frac{1}{g(x)}\right)$$

$$= \frac{f(x)}{g(x)}.$$

2