Chapter 8: Dimensionality Reduction

- Background
 - o Millions of features: slow training
 - Remove unimportant info, merge correlated info
 - Still some info loss
 - Good for data viz
- The Curse of Dimensionality
 - o Probabilities change in higher d: extreme outcomes more likely
 - Two pts in 1e6 cube = sqrt(1e6/6) average distance
 - High d data sets are sparse: lots of space in btwn
 - New instance likely to be far away from training
 - Overfitting goes up with higher d
 - Increasing density intractable solution: amount of data required to reach given level of density grows exponentially
- Main approaches for dimensionality reduction
 - o Projection
 - Most training instances: non-uniform spread
 - Constant or highly-correlated features
 - Training instances will lie in lower d subspace
 - Projection not always best approach if subspace twists and turns; e.g. Swiss roll
 - Manifold Learning
 - 2d manifold: 2d shape that can be bent and twisted in higher dimensions
 - d-dimensional manifold part of n-dimensional space d<n
 - Locally resembles d-dimensional hyperplane
 - Manifold hypothesis: most real-world high-d datasets lie close to lower-d manifold
 - Degrees of freedom to generate data much lower than degrees in which you find that data
 - Assumption: task (classification/regression) simpler if expressed in lower-d space → NOT ALWAYS TRUE
- PCA
 - Background: PCA most popular dimensionality reduction algo
 - Preserving the variance
 - Need to choose right hyperplane before project training set onto lower-d
 - Choose one that preserves max variance: loses less info
 - Choose axis that minimizes mean squared distance btwn original and projection
 - Principal components
 - Identifies axis that accounts for largest amount of variance
 - Finds lines in remaining dimensions perpendicular to that line
 - For each principal component (PC), PCA finds zero-centered unit vector ([0,1]) pointing in direction of PC

- Two opposing unit vectors line on same axis: hence direction returned by PCA is not stable, but will generally lie on same axes and plane
- To find PC: use singular value decomposition: decomposes training matrix into matrix multiplication of three matrices: U Σ V^T
- PCA assumes data centered around origin, sklearn takes care of that
- Projecting down to d Dimensions
 - Once PCs identified → project dataset onto hyperplane defined by 1st d PCs
 - To project: multiply original matrix by first d columns of V: the W_d matrix
- Using scikit-learn
 - Fits PCA transformed to dataset
 - components_ holds W_d transpose
- Explained Variance Ratio
 - Proportion of dataset's variance that lies along each PC
- Choosing the right number of dimensions
 - Choose number of dimensions that add up to large proportion of variance
 - Choose 2 if using PCA for data viz
 - pca = PCA(n_components=0.95)
- o PCA for Compression
 - After dimensionality reduction, training takes up less space
 - Reduction to 20% of original size is reasonable
 - To decompress apply inverse transform
 - Will lose some info since projection dropped 5% of variance
 - Reconstruction error: mean squared distance btwn original and reconstructed
- Randomized PCA
 - Set svd solver to "randomized"
 - Sklearn automatically uses if m or n > 500 & d < 80% of m or n
- o Incremental PCA
 - Split training into mini-batches
- Kernel PCA
 - Background:
 - Kernel trick: mapping to high dimensional space; linear decision boundary in high-dimensional space equivalent to complex non-linear boundary in original space
 - Kernel trick can be applied to Kernel PCA
 - Selecting a Kernel and Tuning hyperparameters
 - kPCA is an unsupervised learning algo → no obvious performance measure
 - Can use grid search to select kernel and hyperparameters with best performance
 - Other approach: select kernel & hyperparameters with lowest reconstruction error
 - Reconstruction not as easy: transformation mapped to infinite dimensional space which means cannot compute reconstruction point and thus reconstruction error

- Solution: find point in original space close to reconstructed point (reconstruction pre-image) → measure preimage squared distance to original instance
- Train supervised regression model with projected instances as training set and original instances as targets
 - Use fit_inverse_transform=True in sklearn

LLE

- Background: locally linear embedding → nonlinear dimensionality reduction
- Manifold learning that does not rely on projections
- Measures how each instance linearly relates to closest neighbor, then looks for lowd representation of training set where local relationships best preserved
- Good at unrolling twisted manifolds
- How it works:
 - For each instance identify closest neighbors
 - Reconstruct instance as linear function of neighbors
 - Map training instances onto d-dimensional space (where d < n) while preserving local relationships
 - Using local relationship to find min of squared distances btwn instance and neighbors in higher d
- Algo doesn't scale well on large datasets
- Other dimensionality reduction techniques
 - Random projections
 - Projects stat to lower-d space using random linear projection
 - Quality of dimensionality reduction depends on number of instances
 - Multidimensional scaling
 - Reduces dimensionality trying to preserve distance btwn instances
 - Isomap
 - Connects each instance to nearest neighbors, reduces dimensionality while trying to preserve geodesic distance (number of nodes on shortest path btwn two nodes)
 - t-Distributed stochastic Neighbor embedding
 - Keep similar instances close, dissimilar instances apart
 - Mostly used for visualization
 - Linear discriminant analysis
 - Learns most discriminative axes btwn classed and then uses axes to define hyperplane on which to project data
 - Keeps classes as far apart as possible