# Setting up a Restaurant in a Multicultural Country

## **Background (Problem Statement)**

Food touches people's soul and the demands of different varieties of cuisine in multicultural cities increase. This leads to business opportunities to appeal the multicultural audience. The aim of this project is to understand the common occurrence of restaurant types and evaluate the decision to open a profitable restaurant that serve cuisines that match with the taste of the city. Here, we focus on two similar size and population density multi-cultural cities – Singapore and Toronto. Singapore has a city area of 728.3km^2 with density population 7804/km^2 from 2019 estimate. Toronto city area, on the other hand, is 630.2 km^2 with density population 4334/km^2.

### **Data Overview**

We obtain the list of neighborhoods in Toronto and Singapore via Wikipedia. Using Geocoder package, we can obtain the geographical location of the neighborhoods. Then, with Foursquare, we can explore the venues in these locations pertaining to restaurants. We filter the restaurants out of the top 10 venues to find out the cuisines offered by these restaurants

### **Data Acquisition**

Step 1: List of Areas in Both Countries via Wikipedia

| Singapore                                              | Toronto                                                                                        |  |  |  |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
| https://en.wikipedia.org/wiki/<br>Regions_of_Singapore | https://en.wikipedia.org/w/index.php?title=List_of _postal_codes_of_Canada:_M&oldid=1011037969 |  |  |  |  |  |
| Table 1: The URL where data is extracted.              |                                                                                                |  |  |  |  |  |

The names of area from each city are extracted from these sources for the respective countries.

Step 2: Geocoder package to Find Geographical Location

| Singapore | Toronto |
|-----------|---------|
|-----------|---------|

| Region      | Latitude | Longitude  | PostalCode | Borough          | Neighborhood                                   | Latitude | Longi   |
|-------------|----------|------------|------------|------------------|------------------------------------------------|----------|---------|
| The City    | 1.333108 | 103.819499 | МЗА        | North York       | Parkwoods                                      | 43.75245 | -79.32  |
| The Oity    | 1.000100 | 103.010400 | M4A        | North York       | Victoria Village                               | 43.73057 | -79.31  |
| Tampines    | 1.333108 | 103.943571 | M5A        | Downtown Toronto | Regent Park, Harbourfront                      | 43.65512 | -79.362 |
| Woodlands   | 1.333108 | 103.786216 | M6A        | North York       | Lawrence Manor, Lawrence Heights               | 43.72327 | -79.450 |
| 0.1.        | 4.000400 | 400 077070 | M7A        | Downtown Toronto | Queen's Park, Ontario Provincial Government    | 43.66253 | -79.391 |
| Seletar     | 1.333108 | 103.877379 |            |                  |                                                |          |         |
| Jurong East | 1.333108 | 103.742294 | M8X        | Etobicoke        | The Kingsway, Montgomery Road, Old Mill North  | 43.65319 | -79.511 |
|             |          |            | M4Y        | Downtown Toronto | Church and Wellesley                           | 43.66659 | -79.381 |
|             |          |            | M7Y        | East Toronto     | Business reply mail Processing Centre, South C | 43.64869 | -79.385 |
|             |          |            | M8Y        | Etobicoke        | Old Mill South, King's Mill Park, Sunnylea, Hu | 43.63278 | -79.489 |
|             |          |            | M8Z        | Etobicoke        | Mimico NW, The Queensway West, South of Bloor, | 43.62513 | -79.526 |

Table 2: Adding latitude and longitude to the data frame

With Geocoder and the data extracted from step 1, we find the latitude and longitude of the geographical locations

Step 3: Foursquare to Extract Venue and Venue Category from Geographical Location

| s Walk F<br>er Hall Concert I | Park 43.666894<br>Hall 43.667983 | -79.395597<br>-79.395962 |
|-------------------------------|----------------------------------|--------------------------|
| er Hall Concert I             | Hall 43.667983                   | 70 205062                |
|                               |                                  | -13.393902               |
| & Co. Jewelry St              | tore 43.669135                   | -79.393484               |
| useum Muse                    | eum 43.668367                    | -79.394813               |
| Store Gift S                  | Shop 43.668514                   | -79.394879               |
|                               |                                  |                          |
|                               |                                  |                          |

Foursquare provides the details of the locations based on the latitude and longitude information obtained in step 2.

### Data Clean up

All the data is extracted and organized into data frames in step 1 (Table 2). The Toronto data frame requires additional data clean up before analyzing the trend.

Assumptions in Toronto Data

- 1. Borough with not assigned are omitted in data analysis
- 2. Extract boroughs contain 'Toronto' in it

With the cleaned data from step 1, we use the Geocoder package to obtain the latitude and longitude of the locations in both cities. We add two latitude and longitude columns in each of the data frame and use map folium to display the location of interest on the map (Figure 1).



Next, we use the Foursquare API to provide the local venue and its corresponding categories within 500-meter radius for Toronto (5000-meter radius for Singapore)\*.

\* After this initial investigation, I discover there is another data set that split Singapore into more neighborhood from the initial dataset used. For the interest in time, I shall use the initial data set. This project can be improved later.

#### Data Exploration

After organizing the data, we can analyze it based on the venue category. First, we convert the categorical data to numerical data for Machine Learning purposes using "One hot encoding".

|   | Yoga<br>Studio | American<br>Restaurant | Antique<br>Shop | Aquarium | Art<br>Gallery |   | Arts<br>&<br>Crafts<br>Store | Asian<br>Restaurant | Athletics<br>& Sports | BBQ<br>Joint | <br>Theater | Theme<br>Restaurant | Toy /<br>Game<br>Store | Trail | Train<br>Station | Vegetariar<br>/ Vegar<br>Restauran |
|---|----------------|------------------------|-----------------|----------|----------------|---|------------------------------|---------------------|-----------------------|--------------|-------------|---------------------|------------------------|-------|------------------|------------------------------------|
| 0 | 0              | 0                      | 0               | 0        | 0              | 0 | 0                            | 0                   | 0                     | 0            | <br>0       | 0                   | 0                      | 0     | 0                | (                                  |
| 1 | 0              | 0                      | 0               | 0        | 0              | 0 | 0                            | 0                   | 0                     | 0            | <br>0       | 0                   | 0                      | 0     | 0                | (                                  |
| 2 | 0              | 0                      | 0               | 0        | 0              | 0 | 0                            | 0                   | 0                     | 0            | <br>0       | 0                   | 0                      | 0     | 0                | (                                  |
| 3 | 1              | 0                      | 0               | 0        | 0              | 0 | 0                            | 0                   | 0                     | 0            | <br>0       | 0                   | 0                      | 0     | 0                | (                                  |
| 4 | 0              | 0                      | 0               | 0        | 0              | 0 | 0                            | 0                   | 0                     | 0            | <br>0       | 0                   | 0                      | 0     | 0                | (                                  |

Table 4: A data frame (Toronto example) containing the frequency of the venue corresponding where the index indicates the corresponding row of cleaned data frame as shown in Table 3

|   | Neighborhood                                               | Yoga<br>Studio | American<br>Restaurant | Antique<br>Shop | Aquarium | Art<br>Gallery | Art<br>Museum | Arts &<br>Crafts<br>Store | Asian<br>Restaurant | Athletics<br>& Sports | <br>Theater  | Theme<br>Restaurant | Toy /<br>Game<br>Store |
|---|------------------------------------------------------------|----------------|------------------------|-----------------|----------|----------------|---------------|---------------------------|---------------------|-----------------------|--------------|---------------------|------------------------|
| 0 | Berczy Park                                                | 0.000000       | 0.000000               | 0.000000        | 0.000000 | 0.033333       | 0.000000      | 0.000000                  | 0.000000            | 0.000000              | <br>0.000000 | 0.000000            | 0.000000               |
| 1 | Brockton,<br>Parkdale<br>Village,<br>Exhibition<br>Place   | 0.000000       | 0.000000               | 0.000000        | 0.000000 | 0.000000       | 0.000000      | 0.033333                  | 0.000000            | 0.000000              | <br>0.000000 | 0.000000            | 0.000000               |
| 2 | Business reply<br>mail<br>Processing<br>Centre, South<br>C | 0.000000       | 0.000000               | 0.000000        | 0.000000 | 0.000000       | 0.000000      | 0.000000                  | 0.033333            | 0.000000              | <br>0.066667 | 0.000000            | 0.000000               |
| 3 | CN Tower,<br>King and<br>Spadina,<br>Railway Lands,        | 0.033333       | 0.000000               | 0.000000        | 0.000000 | 0.000000       | 0.000000      | 0.000000                  | 0.033333            | 0.000000              | <br>0.000000 | 0.000000            | 0.000000               |

Table 5: Create a data frame with the neighborhood with its corresponding mean of the number of occurrenc for each category.

Then, we group the rows by neighborhood and take the mean of the number of occurrences for each category (Table 5)

|    | Neighborhood                                         | 1st Most<br>Common<br>Venue | 2nd Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue | 6th Most<br>Common<br>Venue | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue | 9th Most<br>Common<br>Venue | 10th Most<br>Common<br>Venue |
|----|------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|
| 0  | Berczy Park                                          | Seafood<br>Restaurant       | Farmers<br>Market           | Cocktail Bar                | Beer Bar                    | Coffee Shop                 | Café                        | Bistro                      | Restaurant                  | Jazz Club                   | Pharmacy                     |
| 1  | Brockton, Parkdale<br>Village, Exhibition Place      | Gift Shop                   | Coffee Shop                 | Italian<br>Restaurant       | Furniture /<br>Home Store   | Restaurant                  | Bakery                      | Sandwich<br>Place           | Japanese<br>Restaurant      | Breakfast<br>Spot           | Café                         |
| 2  | Business reply mail<br>Processing Centre,<br>South C | Coffee Shop                 | Café                        | Concert Hall                | Theater                     | Restaurant                  | Sushi<br>Restaurant         | Mediterranean<br>Restaurant | Lounge                      | Opera<br>House              | Japanese<br>Restaurant       |
| 3  | CN Tower, King and<br>Spadina, Railway Lands,<br>Har | Italian<br>Restaurant       | Park                        | Gym /<br>Fitness<br>Center  | Restaurant                  | Yoga Studio                 | Sandwich<br>Place           | Brewery                     | Ramen<br>Restaurant         | Café                        | Caribbean<br>Restaurant      |
| 4  | Central Bay Street                                   | Coffee Shop                 | Clothing<br>Store           | Plaza                       | Pizza Place                 | Park                        | Sandwich<br>Place           | Bubble Tea<br>Shop          | Ramen<br>Restaurant         | Poke Place                  | Café                         |
| Та | ble 6: A data f                                      | rame w                      |                             | 0 top-m                     | ost com                     | mon ve                      |                             | •                           |                             | ood                         |                              |

Finally, we look at the types of venues for the top 10 most common venue for each neighborhood

## Methodology

#### k-means clustering

With the sorted data frame (Table 6), we are using the k-means clustering to cluster neighborhoods in 5 cluster for Toronto and 3 clusters for Singapore. Then, we examine the occurrence of restaurants types from the top 10 most common venues.

| Cluster       |               |
|---------------|---------------|
| Singapore     | Toronto       |
| 3 clusters    | 5 clusters    |
| Red- Cluster0 | Red- Cluster0 |



## **Data Analysis**

Before we delve into the analysis of the cluster, let's look at the counts of the restaurant type in both cities. (Figure 3). In Singapore, there are 21 different types of restaurants with the Chinese cuisine as the highest occurrences, follow by Japanese cuisine. Toronto, on the other hand, has 37 different types of restaurant with Italian as the highest occurrences (although "Restaurant" is the highest. Here, we omit this part of the data as it has no cuisine type).



Next, we shall look the occurrence of restaurant types within the top 10 most common venues in their clusters.

#### Singapore



We can see the cluster0 for Singapore has the highest occurrence of restaurant. Among this cluster, the fast-food chain is the most common, follow by Chinese and Indian cuisine.

#### Toronto







We can see the cluster3 for Toronto has the highest occurrence of restaurant. Among this cluster, the Japanese cuisine is the most common, followed by Korean cuisine.

### **Discussion**

Here, we have identified the clusters of areas where restaurants are common in both cities.

Cluster 0 from Singapore contains the most restaurants. The most common restaurant occurrence among the top 10 list is fast food although the total number of Chinese cuisine restaurant is the most for the whole Singapore.

For Toronto, cluster3 has the most types of restaurants from top 10 most common occurrence venues. List. Within this top-10 list, Japanese cuisine is the most common although the number of Italian cuisine venues is the highest for Toronto as a whole.

Now, we have identified the most common occurrence of restaurants types in both cities. We can choose not to open these most common restaurants types to avoid competitive and open a different restaurant type.

However, this analysis does have some drawbacks where we did not consider the demographic of the population of both cities. A suggestion for future model is taking the demographic into consideration

## **Conclusion**

In conclusion, this project works on a business problem which uses data science to find a solution. We use python to extract information from the Wikipedia and obtain the coordinate of a location via Geocoder. Finally, we utilize Foursquare to extract information of venues. To further categorize the data set, we use machine learning, specifically k-means clustering to break the cities into different parts for future analysis.