Hello!

Statistics

Ajit Kembhavi

Kaustubh Vaghmare Sheelu Abraham Data Analytics:

Find patterns, correlations, classes, outliers and meaning in data

Domain Knowledge Mathematics Statistics "Of the 76 astronomers indexed in Abell (1982) who flourished from ancient times up to 1850, 49 appear in one or more of the statistical histories of Stiegler, Hald, Pearson and Franklin."

-Virginia

Trimble

Gaussian and Poisson Distributions, Linear and Rank Correlations, Maximum Likelihood, χ^2 , Kolmogorov-Smirnov Test...

Mean, Variance, Covariance

$$\langle x \rangle = \frac{1}{n} \sum_{i} x_{i}$$
 Mean

Varianc

$$\sigma_x^2 = \frac{1}{n} \sum_i (x_i - \langle x \rangle)^2$$

$$cov(x,y) = \frac{1}{n} \sum_{i} (x_i - \langle x \rangle)(y_i - \langle y \rangle)$$
 Covarian ce

Continuous Distributions

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$
 Continuou s Distributio
$$\int_{-\infty}^{\infty} p(x) \, dx = 1$$
 Normalisati

on

$$\langle x \rangle = \int_{-\infty}^{\infty} x \, p(x) \, dx$$
 Mean

$$\sigma_x^2 = \int_{-\infty}^{\infty} (x - \langle x \rangle)^2 p(x) dx$$
 Variance

The Gaussian Distribution

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$

$$\langle x \rangle = \mu$$

$$\sigma_r^2 = \sigma^2$$

$$FWHM = 2(2 \ln 2)^{1/2} \sigma = 2.354 \sigma$$

$$\int_{-\infty}^{\infty} G(x) \, dx = 1$$

The Gaussian Distribution

Distribution of Heights

The Central Limit Theorem

When independent random variables are added, their sum tends towards the Gaussian distribution, regardless of the distribution of the original variable.

The Central Limit Theorem

The Central Limit Theorem Applies to Sampling Distributions from Any Population

Sampling and Sampling Distributions By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

Poisson Distribution

$$P(N) = \frac{e^{-\mu}\mu^N}{N!}$$

Distribution

$$\sum_{0}^{\infty} P(N) = 1$$

Normalised to Unity

$$\langle N \rangle = \sum_{0}^{\infty} NP(N) = \mu$$

Mean

$$\sigma^2(N) = \sum_{0}^{\infty} (N - \langle N \rangle)^2 P(N) = \mu$$

Variance

$$\sigma = \sqrt{\mu} \simeq \sqrt{N}$$

rms Deviation

Poisson Distribution PDF

NGC 661 on ound sky to humanaman ham manaman ha face s of the

Fitting a Straight Line

Least Square Minimisation

$$f = \sum_{i=1}^{n} (y_i - y(x_i))^2 = \sum_{i=1}^{n} (y_i - (a + bx_i))^2$$

$$\frac{\partial f(a,b)}{\partial a} = 0, \quad \frac{\partial f(a,b)}{\partial b} = 0$$

Least Square Fit

$$b = \frac{1}{\Delta} \left(\sum_{i} x_{i} y_{i} - \sum_{i} x_{i} \sum_{i} y_{i} \right)$$

Slope

$$a = \frac{1}{\Delta} \left(\sum_{i} x_i^2 \sum_{i} y_i - \sum_{i} x_i \sum_{i} x_i y_i \right)$$

Interce pt

$$\Delta = N \sum_{i} x_i^2 - \left(\sum_{i} x_i\right)^2$$

<u>Straight Line Fit – Exchanged</u> <u>Variables</u>

$$x = a' + b'y$$

Minimization of the χ^2 function leads to the best fit values

$$b' = \frac{1}{\Delta'} \left(\sum_{i} x_i y_i - \sum_{i} x_i \sum_{i} y_i \right)$$

$$a' = \frac{1}{\Delta'} \left(\sum_{i} y_i^2 \sum_{i} x_i - \sum_{i} y_i \sum_{i} x_i y_i \right)$$

$$\Delta' = N \sum_{i} y_i^2 - \left(\sum_{i} y_i\right)^2$$

Types of Straight Line Fit

Babu & Feigelson 1991

OLS(y|x)

OLS(x|y)

Bisector

Orthogonal Minimization

$$b_{bis} = \frac{b_1 b_2 - 1 + \sqrt{(1 + b_1^2)(1 + b_2^2)}}{b_1 + b_2}$$

$$a_{bis} = \langle y \rangle - b_{bis} \langle x \rangle$$

FIG. 2.—Example of a data set with large scatter obtained from Schechter's (1980) measurements of the Faber-Jackson relation in elliptical galaxies. The luminosity is in solar luminosity units. The two solid lines present OLS(Y|X) (shallowest line) and OLS(X|Y) (steepest line). The dot-dashed line, dashed line, and dotted line represent the OLS bisector, OR, and RMA, respectively.

Correlation Coefficient

The correlation coefficient r is defined as

$$r = \sqrt{bb'} = \frac{1}{\sqrt{\Delta\Delta'}} \left(N \sum_{i} x_i y_i - \sum_{i} x_i \sum_{i} y_i \right)$$

For points along a perfect straight line,

$$r = 1, \quad b' = \frac{1}{b}, \quad a' = -\frac{a}{b}$$

The statistical significance of the correlation can be assessed using the parameter

$$t = r\sqrt{\frac{N-2}{1-r^2}}.$$

For an uncorrelated parent population, the statistic t has Student's distribution.

Student's t - Distribution

Maximum Likelihood Method

$$y = a + bx$$

 $y_{im} = a + bx$
 bx_{i}

Maximum Likelihood Method

Suppose we are fitting N data points (x_i, y_i) , i = 1, ..., N to a model with M adjustable parameters.

The model predicts a functional relationship between measured independent and dependent variables:

$$y(x_i) = y(x_i; a_1, a_2, \dots, a_N)$$

Given a particular set of parameters, what is the probability that the data could have occurred?

Maximum Likelihood Method

For Gaussian deviations the probability of obtaining deviations y_i from model values y_{im} =

$$y(\mathbf{x}: \mathbf{a}_i) \text{ is}$$

$$P(y_i; a_k) = \prod_{i=1}^{n} \frac{1}{\left(\sigma_i \sqrt{2\pi}\right)^N} \exp\left[\frac{-(y_i - y(x_i; a_k))^2}{2\sigma_i^2}\right]$$

$$\ln P(y_i; a_k) = -\sum_i \frac{(y_i - y(x_i; a_k))^2}{2\sigma_i^2} - N \ln \sum_i \sigma_i \sqrt{2\pi}$$

$$\ln P(y_i; a_k) = -\frac{\chi^2}{2} - N \ln \sum_i \sigma_i \sqrt{2\pi}$$

Minimising χ^2 therefore maximises the probability of obtaining the observed deviations, given the model

$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - y(x_{i}))^{2}}{\sigma_{i}^{2}}$$

$$y(x_i) = y(x_i; a_1, a_2, \dots, a_m)$$

$$f(\chi^2; \nu) = \frac{(\chi^2)^{(\nu-2)/2} \exp(-\chi^2/2)}{2^{\nu/2} \Gamma(\nu/2)} \quad \nu = \mathbf{n} - \mathbf{m}$$

$$\int_0^\infty f(\chi^2, \nu) d(\chi^2) = 1$$

$$\left\langle \chi^2 \right\rangle = \nu, \quad \sigma_{\chi^2}^2 = 2\nu$$

The Gamma Function

$$\Gamma(n+1) = n\Gamma(n), \quad \Gamma(1) = 1, \quad \Gamma(1/2) = \sqrt{\pi}$$

$$\Gamma(n+1) = n!, \quad n = 0, 1, 2, ...$$

$$\Gamma(n+1) = n(n-1)(n-2)...\frac{3}{2}.\frac{1}{2}\sqrt{\pi}, \quad n = 1/2, 3/2...$$

Reduced χ2

$$\chi_{\nu}^2 = \frac{\chi^2}{\nu}, \quad \langle \chi_{\nu}^2 \rangle = 1, \quad \sigma_{\chi_{\nu}^2}^2 = \frac{2}{\nu}$$

Magnitude of χ^2

•For a good
$$\chi^2=\sum_{i=1}^n\frac{(y_i-y(x_i))^2}{\sigma_i^2} \ \ y_i\sim\sigma_i \text{, we}$$
 get $\chi^2{\sim}N.$

- •Incorrect models can lead to large values of χ^2 .
- •When values $\chi^2_{\nu} << 1$ are obtained, it is likely that the errors are overestimated, rather than the fit being extremely good.
- •Large values of χ^2 could result from underestimated values of the errors, even

Integral Probability Distribution

$$P(>\chi^2,\nu) = \int_{\chi^2}^{\infty} f(\chi^2,\nu) \, d(\chi^2)$$

of ould

1 of

id the

Straight Line Fit

IL y=a+bx

Minimization of the function

$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - a - bx_{i})^{2}}{\sigma_{i}^{2}}$$

leads to the best fit values

$$y = a + bx$$
 $b =$

$$b = \frac{1}{\Delta} \left(\sum_{i} \frac{1}{\sigma_i^2} \sum_{i} \frac{x_i y_i}{\sigma_i^2} - \sum_{i} \frac{x_i}{\sigma_i^2} \sum_{i} \frac{y_i}{\sigma_i^2} \right)$$

$$a = \frac{1}{\Delta} \left(\sum_{i} \frac{x_i^2}{\sigma_i^2} \sum_{i} \frac{y_i}{\sigma_i^2} - \sum_{i} \frac{x_i}{\sigma_i^2} \sum_{i} \frac{x_i y_i}{\sigma_i^2} \right)$$

$$\Delta = \sum_{i} \frac{1}{\sigma_i^2} \sum_{i} \frac{x_i}{\sigma_i^2} - \left(\sum_{i} \frac{x_i}{\sigma_i^2}\right)^2$$

Straight Line Fit

Variance and Covariance in parameter

$$\sigma_a^2 = \sum_i \left(\frac{\partial a}{\partial y_i}\right)^2 \sigma_i^2 = \frac{1}{\Delta} \sum_i \frac{x_i^2}{\sigma_i^2}$$

$$\sigma_b^2 = \sum_i \left(\frac{\partial b}{\partial y_i}\right)^2 \sigma_i^2 = \frac{1}{\Delta} \sum_i \frac{1}{\sigma_i^2}$$

$$\sigma_{ab}^2 = \sum_{i} \left(\frac{\partial a}{\partial y_i} \right) \left(\frac{\partial b}{\partial y_i} \right) \sigma_i^2 = -\frac{1}{\Delta} \sum_{i} \frac{x_i}{\sigma_i^2}$$

Coma Cluster Galaxies Size-**Velocity Dispersion** y=ax+ba = 0.23, $\sigma^2 = 0.04$ b=2.17 $\sigma_{\rm b}^2 = 0.04$ $\chi^2 = 53.54$ $\nu = 40$ $\chi^2_{y} = 1.34$ P = 0.05

General Linear Models

The model function, linear in the model parameters, but not necessarily in x, is

$$y(x) = \sum_{k=1}^{m} a_k f_k(x)$$

The χ^2 function is

$$\chi^{2} = \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \left[y_{i} - \sum_{k=1}^{m} a_{k} f_{k}(x_{i}) \right]^{2}$$

Multivariate Correlations

Coma
Cluster
Galaxies
Fundament
al Plane

Rank Correlations

Spearman Rank Correlation

This is a non-parametric test, used to see whether there is a correlation between the data points.

No model, like a straight line, is assumed, so there no parameters.

It is applied to N pairs of measurements (x_i, y_i) , i=1,N.

Obtain the ranks $R(x_i)$ amongst the x_i , and $R(y_i)$ amongst the y_i .

Spearman Rank Correlation

Obtain the ranks $R(x_i)$ amongst the x_i , and $R(y_i)$ amongst the y_i . The Spearman rank corre

$$r_s = \frac{\text{cov}(R(x), R(y))}{\sigma_{R(x)}\sigma_{R(y)}}$$

$$r_s = 1 - \frac{6 \sum_i (R(x_i) - R(y_i))^2}{N^3 - N}$$

No Ties

$$t = r_s \sqrt{\frac{N-2}{1-r_s^2}}$$

Student' s t

Parameter Distributions

Kolmogorov-Smirnov Test

$$N(< x) = \sum_{x_i < x} N(x_i)$$

$$p(< x) = \int_{-\infty}^{x} p(x) \, dx$$

$$D = \max |N(< x) - p(< x)|$$

$$D = \max |N_1(< x) - N_2(< x)|$$

Cumulati

ve

Distributi

Eumulati

ve

Probabilit

y

1-

SampleTtest

2-SampleTtest

Kolmogorov-Smirnov 1-Sample Test

Kolmogorov-Smirnov 2-Samples Test

Kolmogorov-Smirnov 2-Sample Test

Galaxies: Sample 1, 140; Sample 2, 143

Parameters	D	P (> D)
$\log r_{_{e}}$	0.414	2.701 x 10 ⁻¹¹
log n	0.207	0.004
$<\mu_{\rm b} (< r_{\rm e})>$	0.189	0.010
B/T	0.131	0.162

Parameter Distributions With KS Test

Figure 15.6.1. A statistical universe of data sets from an underlying model. True parameters a true are realized in a data set, from which fitted (observed) parameters a o are obtained. If the experiment were repeated many times, new data sets and new values of the fitted parameters would be obtained.

Figure 15.6.2. Monte Carlo simulation of an experiment. The fitted parameters from an actual experiment are used as surrogates for the true parameters. Computer-generated random numbers are used to simulate many synthetic data sets. Each of these is analyzed to obtain its fitted parameters. The distribution of these fitted parameters around the (known) surrogate true parameters is thus studied.

Kaustuh & Straight Line Model Simulations

- Choose some values of 'x'. Since we have assumed it to be error free these will be same for all the data sets.
- Choose some true values for 'a' and 'b'. (2 and 3, in our case.)
- For each value of 'x', compute the true value of 'y'.
- 4. From a Gaussian centered on y_{true}, with a σ of √y, we draw a random variable. This becomes the measured 'y'. We choose √y to approximate a Poissonian distribution but this is not necessary. We might have as well have chosen a constant σ.
- 5. This way we have a synthetic data set. For this set, we can fit a straight line and determine 'a' and 'b' and their standard deviations. We can compute χ² and χ²_ν and their respective standard deviations as well. The goal will be to study these distributions and verify the theory.
- Steps 3 5 can be repeated as many times as the number of synthetic data sets we need to construct.

Table 1: Parameters, their means and standard deviations

Parameter	Mean	Mean	Std Dev	Std Dev
	(theory)	(simulations)	(theory)	(simulations)
a	2.0	2.0061	0.470	0.468
<u>b</u>	3.0	2.9986	0.119	0.119
χ^2_{min}	98	98.259	14.0	14.007
$\chi^2_{ u}$	1	1.002	0.143	0.143
		'	11	'

Table 1: The errors in parameters b and c of a straight line $y=b+c\times x$ obtained in 5 different ways. The realisations were obtained using a dispersion $\sigma=y_{true}^{1/2}$.

Errors obtained using:	σ_b (mean b=2)	σ_c (mean c= 3)	σ_{bc} (covariance)
Theoretical calculation	0.47	0.11	-0.04
Simulations	0.47	0.11	
Minimising over the other parameter(Analytic)	0.46	0.105	
Minimising over the other parameter (Fitted)	0.465	0.115	
Error ellipse projections	0.57	0.17	

Thank You!

Galaxies

Elliptical Galaxy M 87

Largest and brightest galaxy in the Virgo Cluster, distance 55 Mlyr

© Anglo-Australian Observatory by David Malin Photo

Hubble's Tuning Fork

Surface Brightness Distribution

NGC 661 V

Surface Brightness

Galaxy Surface Brightness

Surface Brightness

$$I(r) = \delta(r) + I_{\rm b}(r) + I_{\rm d}(r)$$

de Vaucouleurs' law:

$$I_{\rm b}(r) = I_{\rm b}(0)10^{-3.33(r/r_{\rm e})^{1/4}}$$

Sersic law:

$$I_{\mathrm{b}}(r) = I_{\mathrm{b}}(0)10^{-c_{n}\left(\frac{r}{r_{\mathrm{e}}}\right)^{1/n}}$$

$$I_{\rm d}(r) = I_{\rm d}(0)e^{-(r/r_{\rm d})}$$

<u>Bulge –Disk</u> <u>Decompositi</u> <u>on</u>

$$\chi^2 = \Sigma (O_i - m_i)^2 / \sigma_i^2$$

Iteration Number: 910

BULGE DISK Intensity: 899380 5681.56 Scale: 12.8185 14.9379 Ellipticity: 0.52 0.67 N: 3.35107

P. Intensity: 2.66454e-15 D/B: 1.51527

Reduced χ^2 0.900344

Bulge-Disk
Decompositi
on

The Photometric Plane

<u>Photomet</u> ric Plane

Ellipticals and Early Type Bulges

A Mass Fundamental Plane for SuperMassive Black Holes

Table II. Complete List of SBH Mass Detection Based on Resolved Dynamical Studies

Object	Hubble Type	Distance (Mpc)	M_{ullet} $(10^8 { m M}_{\odot})$	M∗ Ref. & Method	$^{\sigma}_{(\mathrm{km\ s^{-1}})}$	$M_{B,T}^0$ (mag)	$L_{B,bulge}/$ $L_{B,total}$	$r_h/$ r_{res}
MW	SbI-II	0.008	0.040+0.003	1,PM	100±20	-20.08±0.50	0.34	1700
N4258	SAB(s)bc	7.2	0.390+0.034	2, MM	138 ± 18	-20.76 ± 0.15	0.16	880
N4486	E0pec	16.1	$35.7^{+10.2}_{-10.2}$	3,GD	345 ± 45	-21.54 ± 0.16	1.0	34.6
N3115	S0	9.7	9.2+3.0	4,SD	278 ± 36	-20.19 ± 0.20	0.64	22.8
I1459	E3	29.2	26.0 + 11.0	5,SD	312 ± 41	-21.50 ± 0.32	1.0	17.0
N4374	E1	18.7	$17^{+12}_{-6.7}$	6,GD	286 ± 37	-21.31 ± 0.13	1.0	10.3
N4697	E6	11.7	$1.7^{+0.2}_{-0.2}$	7,SD	163 ± 21	-20.34 ± 0.18	1.0	10.2
N4649	E2	16.8	20.0+4.0	7,SD	331 ± 43	-21.43 ± 0.16	1.0	10.1
N221	cE2	0.8	0.025 + 0.005	8,SD	76 ± 10	-15.76 ± 0.18	1.0	10.1
N5128	S0pec	4.2	2.0+3.0	9,GD	145 ± 25	-20.78 ± 0.15	0.64	8.41
M81	SA(s)ab	3.9	$0.70^{+0.2}_{-0.1}$	10,GD	174 ± 17	-20.42 ± 0.26	0.33	5.50
N4261	E2	31.6	$5.4^{+1.2}_{-1.2}$	11,GD	290 ± 38	-21.14 ± 0.20	1.0	3.77
N4564	E6	15.0	$0.56^{+0.08}_{-0.08}$	7,SD	153 ± 20	-19.00 ± 0.18	1.0	2.96
CygA	E	240	25.0 ^{+7.0}	12,GD	270 ± 87	-20.03 ± 0.27	1.0	2.65
N2787	SB(r)0	7.5	$0.90^{+6.89}_{-0.69}$	13,GD	210 ± 23	-18.12 ± 0.39	0.64	2.53
N3379	E1	10.6	$1.35_{-0.78}^{+0.78}$	14,SD	201 ± 26	-19.94 ± 0.20	1.0	2.34
N5845	E*	25.9	$2.4^{+0.4}_{-1.4}$	7,SD	275 ± 36	-18.80 ± 0.25	1.0	2.28
N3245	SB(s)b	20.9	$2.1_{-0.5}^{+0.5}$	15, GD	211 ± 19	-20.01 ± 0.25	0.33	2.10
N4473	E5	15.7	$1.1^{+0.5}_{-0.8}$	7,SD	188 ± 25	-19.94 ± 0.14	1.0	1.84
N3608	E2	22.9	$1.9^{+1.0}_{-0.6}$	7,SD	206 ± 27	-20.11 ± 0.17	1.0	1.82
N4342	S0	16.7	3.3+1.9	16,GD	261 ± 34	-17.74 ± 0.20	0.64	1.79
N7052	E	66.1	$3.7^{+2.6}$	17,GD	261 ± 34	-21.33 ± 0.38	1.0	1.53
N4291	E3	26.2	$3.1^{+0.8}_{-2.3}$	7,SD	269 ± 35	-19.82 ± 0.35	1.0	1.52
N6251	E	104	5.9+2.0	18,GD	297 ± 39	-21.94 ± 0.28	1.0	1.19
N3384	SB(s)0-	11.6	$0.16^{+0.01}_{-0.02}$	7,SD	151 ± 20	-19.59 ± 0.15	0.64	1.12
N7457	SA(rs)0-	13.2	0.035+0.011	7,SD	73 ± 10	-18.74 ± 0.24	0.64	0.92
N1023	S0	11.4	0.44 + 0.06	7,SD	201 ± 14	-20.20 ± 0.17	0.64	0.89
N821	E6	24.1	$0.37^{+0.24}_{-0.08}$	7.SD	196 ± 26	-20.50 ± 0.21	1.0	0.74
N3377	E5	11.2	1.00+0.9	7,SD	131 ± 17	-19.16 ± 0.13	1.0	0.74
N2778	E	22.9	$0.14^{+0.08}_{-0.09}$	7,SD	171 ± 22	-18.54 ± 0.33	1.0	0.39

SMBH Systematics

All nearby galaxies with a significant bulge contain super-massive black holes

The black hole mass is proportional to the bulge mass, and to the fourth power of the central velocity dispersion

The relation has been extended to lower masses, as in globular clusters

SuperMassive Black Hole Systematics Ferrarese et al

SMBH Host Galaxies

Table 1. Basic parameters for elliptical galaxies with measured black hole mass.

Object	Туре	Distance (Mpc)	$M_{\rm EH}$ $(10^8~{ m M}_{\odot})$	(km s ⁻¹)	L _S (mag)	log t _e (kpc)	$(\mu_{f 5}(< r_{f e})) \ ({ m mag} \ { m ot} \ { m cmsc}^{-2})$	
19GC 221/M32	-6.0	0.30	$2.5_{-0.5}^{+0.5} \times 10^6$	76±10	-16.80±0.18	-0.83	18.00	
NGC 221	-6.0	24.1	$3.7_{-0.8}^{+2.4} \times 10^7$	209±25	-20.42 ± 0.21	0.72	21.85	
19GC 2778	-6.0	22.9	$1.4^{+0.8}_{-0.9} \times 10^7$	176 ± 22	-18.68 ± 0.33	0.25	21.38	
19GC 3377	-6.0	11.2	1 0 40 2 100	145 ± 17	-19.18 ± 0.13	0.25	20.76	
19GC 3379	-6.0	10.6	10 +8½ × 10°	205±25	-19.81 ± 0.20	0.25	20.16	
19GC 3508	-5.0	22.9	$1.9^{+1.5}_{-0.6} \times 10^{8}$	182 ± 27	-20.07 ± 0.17	0.59	21.41	
19GC 4261	-6.0	31.6	$5.2_{-1.1}^{+1.0} \times 10^{8}$	315 ± 38	-21.23±0.20	0.77	21.25	
19GC 4291	-6.0	26.2	$3.1_{-2.5}^{+0.8} \times 10^8$	242±35	-19.72 ± 0.35	0.27	20.25	
193C 4374/1984	-6.0	18.4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	296±37	-21.40 ± 0.31	0.68	20.81	
NGC 4473	-6.0	16.7	$1.0^{+8.4}_{-0.8} \times 10^{4}$ $1.1^{+8.4}_{-0.8} \times 10^{8}$	190 ± 26	-19.86 ± 0.14	0.28	20.19	
19GC 4486/1487	-4.0	16.1	$3.4_{-1.0}^{+1.0} \times 10^{9}$	375±45	-21.71 ± 0.16	0.91	21.60	
NGC 4564	-6.0	15.0	$5.6_{-0.8}^{+0.3} \times 10^7$	162 ± 20	-18.94 ± 0.18	0.19	20.64	
19GC 4697	-6.0	11.7	$1.7_{-0.1}^{+0.2} \times 10^{6}$	177 ± 10	-20.20 ± 0.18	0.63	21.41	
19GC 4549/1450	-6.0	16.8	-6.0404 - 1.02	386±43	-21.30 ± 0.16	0.78	21.10	
193C 4742	-6.0	15.6	1.4 +8.4 × 10 ⁷	90±05	-19.03 ± 0.10	-0.05	19.35	
19GC 5845	-5.0	26.9	$2.4_{-1.4}^{+0.3} \times 10^{8}$	234 ± 36	-18.92 ± 0.25	-0.30	18.38	
1903 7062	-6.0	71.4	$4.0^{+2.6}_{-1.6} \times 10^{8}$	266±34	-21.43±0.38	0.39	22.01	
IC 1469	-6.0	29.2	$1.5^{+1.0}_{-1.0} \times 10^{9}$	340 ± 41	-21.46 ± 0.32	0.73	20.81	
19GC 6261	-6.0	107.0	$6.1_{-2.1}^{+2.5} \times 10^{8}$	290±39	-21.95 ± 0.28	1.31		
CygA	-5.0	240.0	$2.9_{-0.7}^{+0.7} \times 10^{9}$	270±90	-20.03±0.27		0.00	

The
Fundamental
Plane for SMBH
Galaxies

The Mass Fundamental Plane for SMBH

Black Hole
Mass from the
Mass

Mass
Fundamental
Plane

The Fundamental Plane

The Fundamental Plane

Observed global properties of elliptical galaxies form a two-dimensional family.

The best representation of this surface is:

The distribution is a plane in log space.

Thickness of observed plane is due to measurement errors.

Other global galaxy parameter correlations follow from this fundamental plane.

I_e + const

The Gaussian Distribution

The Gaussian Distribution

Maximum Likelihood Method

For very small probabilities, the chosen parameter values are probably not right. Coversely, the given data set should not be too improbable for the correct set of parameters.

The probability of obtaining the data, given the parameters, is identified with the *likelihood* of the parameters, given the data.

The best fit parameters are accepted as those values which maximise the likelihood of the parameters, given the data.

This is the Maximum Likelihood Method.