1 Independence (undergrad)

Events *A* and *B* are *independent* if $P(A \cap B) = P(A)P(B)$. R.V.s *X*, *Y* independent if $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$. **Idea**: knowing the value of *X* doesn't change the probabilities for *Y*

2 Independence (MT version)

 (Ω, \mathcal{F}, P) a probability space. Consider $\mathcal{B}_1, \mathcal{B}_2$ sub- σ -fields of \mathcal{F} .

Definition 2.1. Call σ -fields \mathcal{B}_1 and \mathcal{B}_2 *independent* if

$$P(B_1 \cap B_2) = P(B_1)P(B_2) \quad \forall B_i \in \mathcal{B}_i$$
 (2.1)

X is measurable $\implies X^{-1}(D) \in \mathcal{F}$ for all $D \in \mathcal{S}$. The collection $\{X^{-1}(D) : D \in \mathcal{S}\}$ is a sub- σ -field of \mathcal{F} , call it $\sigma(X)$ "the σ -field generated by X."

Definition 2.2. Call RVs X_1 and X_2 independent if $\sigma(X_1)$ and $\sigma(X_2)$ are independent.

Theorem 2.3. For RVs X_1 , X_2 with X_i taking values in (S_i, S_i) , the following are equivalent:

- (i) X_1 and X_2 are independent
- (ii) $P(X_1 \in B_1, X_2 \in B_2) = P(X_1 \in B_1)P(X_2 \in B_2)$ for all $B_i \in S_i$
- (iii) $P(X_1 \in B_1, X_2 \in B_2) = P(X_1 \in B_1)P(X_2 \in B_2)$ for all $B_i \in A_i$ where A_i is a π -class, $\sigma(A_i) = S_i$
- (iv) $\mathbb{E}[h_1(X_1)h_2(X_2)] = (\mathbb{E}h_1(X_1))(\mathbb{E}h_2(X_2))$ for all bounded measurable $h_i: \S_i \in \mathbb{R}$

Comments:

- (iv) extends to integrable $h_i(X_i)$
- If X_i are \mathbb{R} -valued, (iii) can be used to show independence is equivalent to $P(X_1 \le x_1, X_2 \le x_2) = P(X_1 \le x_1)P(X_2 \le x_2)$ for all $x_i \in \mathbb{R}$
- The fact:

if X_1 , X_2 are independent, then $g_1(X_1)$, $g_2(X_2)$ independent (arbitrary measurable g_i)

is true because $\sigma(g(X)) \leq \sigma(X)$.

Proof outline. (iv) \Longrightarrow (ii) \Longrightarrow (iii) special cases

(ii) \implies (iv) by "monotone class argument":

(iv) holds for $h_i = 1_{B_i}$ indicator functions

 \therefore holds for h_i simple functions

 \therefore holds for h_i bounded measurable functions

Want to use Dynkin's $\pi - \lambda$ Lemma:

Step 1 Fix $B_2 \in A_2$. Consider the collection

$$\mathcal{L} = \{ A \in \mathcal{S}_1 : P(X_1 \in A, X_2 \in B_2) = P(X_1 \in A) P(X_2 \in B_2)$$
 (2.2)

Check \mathcal{L} is a λ -class.

By hypothesis, $\mathcal{L} \supset \mathcal{A}_1$. Dynkin's lemma implies $\mathcal{L} = \mathcal{S}_1$

Step 2 Consider

$$\mathcal{L}' = \{ B_2 \in \mathcal{S}_2 : P(X_1 \in B_2, X_2 \in B_2) = P(X_1 \in B_1, X_2 \in B_2) \quad \forall B_1 \in \mathcal{S}_1 \}$$
 (2.3)

Check \mathcal{L}' is a λ -class (use linearity property).

By step 1, $\mathcal{L}' \supset \mathcal{A}_2$.

By Dynkin's, $\mathcal{L}' \supset \sigma(A_2) = \mathcal{S}_2 \implies \text{(ii)}$

Definition 2.4. $\mathcal{B}_1, \mathcal{B}_2, \cdots, \mathcal{B}_n$ are (mutually) independent means

$$P(\cap_{i=1}^{n} B_i) = \prod_{i=1}^{n} P(B_i) \quad \forall B_i \in \mathcal{B}_i$$
 (2.4)

This is *stronger* than pairwise independence.

Example 2.5. X, Y for die throws, events $\{X = 3\}$, $\{Y = 6\}$, $\{X = Y\}$. These events are only pairwise independent, not mutually independent.

Example 2.6. X_1, X_2 independent uniform on $\{0, 1, \dots, n-1\}$. Define $X_3 = X_1 + X_2$ modulo n. Then (X_1, X_2, X_3) are pairwise independent, not mutually independent.

Claim. If $X_1, \dots, X_k, \dots, X_n$ independent, then $f(X_1, \dots, X_k)$ and $g(X_{k+1}, \dots, X_n)$ are independent for arbitrary measurable functions f and g.

Exercise 2.7. Formalize and verify. "Hereditary property of independence."

Exercise 2.8. To show that events $\{A_i\}_{i=1}^n$ are independent, suffices to show

$$P(\cap_{i\in\mathcal{I}}A_i) = \prod_{i\in\mathcal{I}}P(A_i) \quad \forall \mathcal{I}\subset\{1,2,\cdots,n\}$$
 (2.5)

3 Real-valued Random Variabls

Let X_i , Y_i be real-valued random variables.

Know that $X_n \to X$ a.s. means $P(\{\omega : X_n(\omega) \to X(\omega) \text{ a.s.} n \to \infty\}) = 1$.

Definition 3.1 (Convergence in probability). $X_n \rightarrow_p X$ means

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0, \quad \forall \epsilon > 0$$
(3.1)

Definition 3.2 (Convergence in L^p). For $l \le p < \infty$, say $X_n \to X$ in L^p or $X_n \to^{L_p} X$ to mean

$$\mathbb{E}|X_n - X|^p = \|X_n - X\|_p \to 0 \text{ as } n \to \infty$$
(3.2)

(and $\mathbb{E}|X_n|^p < \infty$ for all n).

Lemma 3.3. If $X_n \to X$ in L^p , then $X_n \to_p X$.

Proof. Use general form of Markov's inequality $\phi(x) = |x|^p$ applied to $X_n - X$.

$$\implies P(\|X_n - X\| > \epsilon) \le \frac{\mathbb{E}|X_n - X|^p}{\epsilon^p} \to 0 \text{ as } n \to \infty$$
 (3.3)

Definition 3.4 (Variance). If $\mathbb{E}X^2 < \infty$, define the *variance*

$$Var(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2 = \mathbb{E}(X - \mathbb{E}X)^2$$
(3.4)

Proposition 3.5. If $(X_i)_{i=1}^n$ independent, then $Var(\sum_i X_i) = \sum_i Var(X_i)$

Definition 3.6. If $\mathbb{E}X_i^2 \leq \infty$, $\mathbb{E}X_1X_2 = (\mathbb{E}X_1)(\mathbb{E}_2)$, say X_1 and X_2 are uncorrelated

Independence \implies pairwise independent \implies uncorrelated

Theorem 3.7 (L^2 weak law of large numbers). Given X_i , $i \ge 1$, suppose $\sup \mathbb{E} X_i^2 \le c$ for some constant c and suppose uncorrelatd. Write $\mu_i = \mathbb{E} X_i$, $S_n = \sum_{i=1}^n X_i$, $\bar{\mu}_i = \frac{1}{n} \sum_{i=1}^n \mu_i$. Then $\frac{S_n}{n} - \bar{\mu}_n \to 0$ in L^2 as $n \to \infty$.

3

Proof.

$$\frac{1}{n}\mathbb{E}S_n = \bar{\mu}_n \tag{3.5}$$

$$Var(S_n) = \sum_{i=1}^{n} Var(X_i) \le cn$$
(3.6)

$$\operatorname{Var}(\frac{1}{n}S_n) \le \frac{c}{n} \tag{3.7}$$

$$\mathbb{E}\left(\frac{S_n}{n} - \bar{\mu}_n\right)^2 = \operatorname{Var}\left(\frac{S_n}{n}\right) \le \frac{c}{n} \to 0 \text{ as } n \to \infty$$
 (3.8)