Lacturo 19 - Taylor-Wilso prups on modulo founs 3

Recall we have C: Gos > Gle (It) obs inviduo m C T s, mr non- Eis (Q, sovsveq) o Toyler-Wilsodofin was Ap $m_Q = m_A = (m, \{U_v - \widetilde{\alpha}_J\}_{v \in G}) \subset \mathcal{T}_Q^{SUG, mv}, \widetilde{\alpha}_v \in \mathcal{O} \text{ (iffing } \alpha_v$ To < To(G) < T, Y= Y(T), Yo(G) = Y(TOG), Y= Y(TG) $H'(\Gamma, IP)_m \neq 0$, $\Gamma_{\alpha}(G)/\Gamma_{\alpha} \cong \Lambda_{G}$, and Pop 1 The natural map $H, (Y_{\circ}(G), O) \longrightarrow H, (Y, O)$ Induces an iso $H, (Y_{\circ}(G), O)_{m_{\circ}} \cong H, (Y, O)_{m}$ Now we provo Proposition of mo is a free O[Do]-noclule and the natural wap H, (Ya, O) ma > H, (Ya(Q), O) ma

includes on iro from the Da comus of Hilla, O) ma to Hilla, O) m.

Cambinning Prop 1 + Prop 2, W8 yst
Propos H, (Ya, O) ma is a shop O[AG]-noclule and the natural was
$H,(Y_{Q},O)_{m_{Q}} \rightarrow H,(Y_{o}(Q),O)_{m_{Q}}$
includes on its from the Da comvs of Hilly, O) ma
To prous Prop 1, first recall that if i # 1, His (Ya, IF) me = Hen (H'(Ya, O) ma, IF) = 0
and as a consequence $H_{\bar{q}}(Y_{Q}, O)_{M_{Q}} = \begin{cases} O & \text{if } \bar{1} \neq 1 \\ O - f_{PQ} & f = 1 \end{cases}$
Proch of Prop 2 (W) switch to crown handogy for the process,
The Hochschild-Spre spectral sequence gives $H_1(\Delta_Q, H_1(\Gamma_Q, O)) = H_{10}(\Gamma_Q(Q), O)$ Localizing at m and using above we get $H_0(\Delta_Q, H_1(\Gamma_Q, O)_m) \cong H_1(\Gamma_Q(Q), O)_m$
It remains to prove that H, (To, O) ma is free /O[Ag]
Foot from Com Alg: 5me O[Da], on O[Da]-module M is from Go it is flat (=) Too [Aa] (M, IF) = O.

with $Ce_{\mathfrak{S}}= aug$ idsol.

We also hows Goloss rops $C_{\mathfrak{m}}: G_{\mathfrak{S}}, s \to GL_2(T(\Gamma)_{\mathfrak{m}})$ col $C_{\mathfrak{m}}: G_{\mathfrak{S}}, s \to GL_2(T_{\mathfrak{S}})$ If they as I type S and $S_{\mathfrak{G}}$, resp., the vishous red $Ce_{\mathfrak{S}}$ Note that $Ce_{\mathfrak{S}}$ Note tha