1. **Integrating factors and existence/uniqueness theorems:** Consider the following family of first-order differential equations:

$$xy' + Ay = 1 + x^2; \qquad A \in \mathbb{R}.$$

Find all of the solutions which are bounded at x = 0; consider <u>all</u> the possible cases for real A.

Proof. First note the following:

$$xy' + Ay = 1 + x^{2}$$

$$\iff y' + \frac{A}{x}y = \frac{1 + x^{2}}{x}.$$

We know the integrating factor of this linear ODE should then be:

$$\mu(x) = \exp\{\int \frac{A}{x} dx\} = \exp\{\ln(x^A)\} = x^A.$$

That is we'll look at the equation:

$$\frac{d}{dx}(yx^{A}) = x^{A-1}(1+x^{2}).$$

Note then the condition on y(x) being bounded at x=0 is then equivalent to the following: $\left|\lim_{x\to 0^+}y(x)\right|<\infty$ (assuming a positive domain for x). Now we'll examine the cases of A:

(a)
$$(A = 0)$$

$$\int \frac{d}{dx}(yx^0)dx = \int x^{-1}(1+x^2) dx$$
$$y(x) = \int (x^{-1}+x) dx$$
$$y(x) = \ln(x) + \frac{x^2}{2} + C$$

where C is our constant of integration. For this particular y(x) for it to be bounded at x = 0 we must have:

$$\left| \lim_{x \to 0^+} y(x) \right| = \left| \lim_{x \to 0^+} \ln(x) + \frac{x^2}{2} + C \right| = \infty,$$

for whatever choice of C. This implies when A=0, there are no bounded solutions at x=0.

Class: Math 520

(b)
$$(A > 0)$$

$$\int \frac{d}{dx} (yx^A) dx = \int x^{A-1} (1+x^2) dx$$

$$y(x)x^A = \int x^{A-1} + x^{A+1} dx$$

$$y(x) = \frac{1}{x^A} \left(\frac{x^A}{A} + \frac{x^{A+2}}{A+2} + C \right)$$

$$= \frac{1}{A} + \frac{x^2}{A+2} + \frac{C}{x^A}$$

$$= \frac{x^A(A+2) + Ax^{A+2} + C(A+2)(A)}{A(A+2)x^A}.$$

Enforcing the boundedness condition at x = 0 is then bounding the following:

$$\left| \lim_{x \to 0^+} \frac{x^A(A+2) + Ax^{A+2} + C(A+2)(A)}{x^A(A+2)(A)} \right| = \infty.$$

However this is infinite at hence not bounded for whatever choice of A > 0 and C. Hence there are no solutions to the ODE bounded at x = 0 when A > 0.

(c) (A < 0)

$$\int \frac{d}{dx} (yx^A) dx = \int x^{A-1} (1+x^2) dx$$
$$y(x) = x^{-A} \int x^{-1(1-A)} (1+x^2) dx,$$

at this point introduce the dummy variable B=-A, since A<0 we'll have B>0. So that we get:

$$y(x) = x^{B} \int x^{-1(1+B)} (1+x^{2}) dx$$

$$= x^{B} \int x^{-1-B} + x^{1-B} dx$$

$$= x^{B} \left(\frac{x^{-B}}{-B} + \frac{x^{2-B}}{2-B} + C \right)$$

$$= \frac{-1}{B} + \frac{x^{2}}{2-B} + Cx^{B}$$

$$\lim_{x \to 0^{+}} y(x) = \frac{-1}{B} = \frac{1}{A}.$$

This is for whatever choice of C, hence this is bounded at x=0 always when A<0 and $A\neq -2$. Above we assumed that $B\neq 2$, and then analyze that as a separate case.

(d) (A = -2)

$$y(x) = x^{2} \int x^{-(1+2)} (1+x^{2}) dx$$
$$= x^{2} \int x^{-3} + x^{-1} dx$$
$$= x^{2} \left(\frac{x^{-2}}{-2} + \ln(x) + C \right)$$
$$= \frac{-1}{2} + x^{2} \ln(x) + x^{2} C$$

To check to see when this is bounded at x = 0 is a little more complicated here, since we need to evaluate the limit:

$$\lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x^2}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{2x^3}} = \lim_{x \to 0^+} \frac{-x^2}{2} = 0.$$

So this solution is actually bounded at x = 0, that is the solution's:

$$y(x) = \frac{-1}{2} + x^2 \ln(x) + Cx^2.$$

In summary, the only solutions of the problem that are bounded at x=0 are when A<0.

2. **General Solutions for Linear ODEs:** Find the fundamental set (described below) for initial conditions imposed at x = 0 for the real ODE

$$y'' + ay' + by = 0,$$

where a and b are constants.

Examine the three cases: $a^2 > 4b$, $a^2 = 4b$, $a^2 < 4b$. The fundamental set for a linear, second-order IVP are the solutions $y_1(x)$ and $y_2(x)$ where $y_1(x_0) = 1$, $y_1'(x_0) = 0$, and $y_2(x_0) = 0$, $y_2'(x_0) = 1$. Then the unique solution to the IVP for the initial conditions $y(x_0) = \alpha$, $y'(x_0) = \beta$ is $y(x) = \alpha y_1(x) + \beta y_2(x)$.

Proof. We'll assume a fundamental set of solution $\{y_1(x), y_2(x)\}$ such that the solution to the above linear ODE is $y(x) = Ay_1(x) + By_2(x)$. Plugging that into our ODE will give us two systems of equations and applying initial conditions

$$\begin{cases} y_1'' + ay_1' + by_1 = 0 \\ y_1(0) = 1 \\ y_1(0) = 0 \end{cases},$$

and

$$\begin{cases} y_2'' + ay_2' + by_2 = 0 \\ y_2(0) = 0 \\ y_2'(0) = 1 \end{cases}$$

We can solve these with the method of undetermined coefficients, the domain and distinctness of these eigenvalues will determined the basis for each system.

(a) $(a^2 > 4b)$

The first IVP problem with undetermined coefficients (with $e^{\lambda x}$) will give us the auxiliary equation:

$$\lambda^2 + a\lambda + b = 0$$
 \iff $\lambda_1 = \frac{-a + \sqrt{a^2 - 4b}}{2}, \lambda_2 = \frac{-a - \sqrt{a^2 - 4}}{2}.$

With $a^2 - 4b > 0$ both are real and distinct, meaning that:

$$y_1(x) = Ae^{\lambda_1 x} + Be^{\lambda_2 x}.$$

Likewise we'll end up with the solution for the other IVP problem to be:

$$y_2(x) = Ce^{\lambda_1 x} + De^{\lambda_2 x}.$$

Imposing $y_1(0) = 1, y'_1(0) = 0$ so that we have a system of equations:

$$\begin{cases} A + B = 1 \\ A\lambda_1 + B\lambda_2 = 0 \end{cases}.$$

This will give us solutions:

$$\begin{cases} A = \frac{\lambda_2}{\lambda_2 - \lambda_1} \\ B = \frac{\lambda_1}{\lambda_1 - \lambda_2} \end{cases}.$$

So that:

$$y_1(x) = \frac{\lambda_2}{\lambda_2 - \lambda_1} e^{\lambda_1 x} + \frac{\lambda_1}{\lambda_1 - \lambda_2} e^{\lambda_2 x}.$$

Using similar reasoning for $y_2(x) = Ce^{\lambda_1 x} + De^{\lambda_2 x}$ with it's conditions we'll get the equations:

$$\begin{cases} C + D = 0 \\ C\lambda_1 + D\lambda_2 = 1 \end{cases}.$$

Solving this we'll get:

$$\begin{cases} C = \frac{1}{\lambda_1 - \lambda_2} \\ D = \frac{1}{\lambda_2 - \lambda_1} \end{cases}.$$

So the fundamental set is then:

$$\left\{ \frac{\lambda_2}{\lambda_2 - \lambda_1} e^{\lambda_1 x} + \frac{\lambda_1}{\lambda_1 - \lambda_2} e^{\lambda_2 x}, \frac{1}{\lambda_1 - \lambda_2} e^{\lambda_1 x} + \frac{1}{\lambda_2 - \lambda_1} e^{\lambda_2 x} \right\}$$

(b) $(a^2 = 4b)$ In the auxiliary equation for both IVP problems will lead to a repeated real root. In this case, we'll have $y_1(x) = Ae^{\lambda x} + xBe^{\lambda x}$ where $\lambda \equiv \lambda_1 = \lambda_2$. So imposing are initial conditions of $y_1(0) = 1, y_1'(0) = 0$: 1 = A and $A\lambda e^{\lambda 0} +$ $B(e^{\lambda 0} + \lambda 0e^{\lambda 0}) = 0 \iff \lambda + B = 0 \iff B = -\lambda$. So the solution to this IVP problem is $y_1(x) = e^{\lambda x} - \lambda x e^{\lambda x}$. For y_2 we'll end up with $y_2(x) = Ce^{\lambda x} + Dxe^{\lambda x}$ then imposing $y_2(0) = 0$ and $y_2'(0) = 1$:

$$C = 0$$
 $D = 1$.

Hence the fundamental set of solutions is then:

$$\left\{e^{\lambda x} - \lambda x e^{\lambda x}, x e^{\lambda x}\right\}.$$

(c) $(a^2 < 4b)$ In the auxiliary equation for both IVP problems will end up with a complex conjugate pair. So that: $y_1(x) = A\cos(\lambda_1 x) + B\sin(\lambda_2 x)$ and $y_2(x) =$ $C\cos(\lambda_1 x) + D\sin(\lambda_2 x)$. Now imposing $y_1(0) = 1, y_1'(0) = 0$ gives us:

$$1 = A$$
 $0 = \lambda_2 B \implies B = 0$

and imposing $y_2(0) = 0, y_2'(0) = 1$ gives us:

$$C = 0$$
 $1 = \lambda_2 D \implies D = \lambda_2$.

Notice that $\lambda_2 \neq 0$, since that would imply $\lambda_1 = 0$ and that would land us in the previous case. This gives us a fundamental set of solutions:

$$\left\{\cos(\lambda_1 x), \frac{1}{\lambda_2}\sin(\lambda_2 x)\right\}.$$

3. Patching: Find two linearly independent solutions of

$$y'' + \operatorname{sgn}(x)y = 0, \qquad -\infty < x < \infty$$

where $\operatorname{sgn}(x) = \pm 1$ according to whether x is positive or negative and $\operatorname{sgn}(0) = 0$. Since the ODE is 2nd-order, the solution should be continuous and have a continuous first derivative for all x including x = 0. Solve for x > 0 and x < 0 separately and match at x = 0. This is a simpler precursor to asymptotic matching; a core concept we will develop later.

Proof. (a) (x < 0) This will be the problem

$$y'' - y = 0$$

using the method of undetermined coefficients with $e^{\lambda x}$ will give us the equation:

$$\lambda^2 - 1 = 0.$$

This implies that we'll have a solution for this of the form:

$$y(x) = Ae^x + Be^{-x},$$

when x < 0.

(b) (x > 0) Using the same method as in the previous case we'll end up with the equation:

$$\lambda^2 + 1 = 0,$$

this time $\lambda = \pm i$. That implies, through Euler's formula, solutions of the form:

$$y(x) = C\cos(x) + D\sin(x),$$

where C, D are arbitrary complex coefficients when x > 0.

(c) (Imposing Conditions) Since both the solution and its first derivative must be continuous at x = 0, we have the two conditions $Ae^0 + Be^{-0} = C\cos(0) + D\sin(0)$ and $Ae^0 - Be^{-0} = -C\sin(0) + D\cos(0)$. So this is an linear system of 2 equations with 4 unknowns, meaning we'll just be able to solve 2 unknowns in terms of the other 2:

$$\begin{cases} A+B &= C \\ A-B &= D \end{cases}.$$

Hence the solutions to this equation will be:

$$y(x) = \begin{cases} Ae^{x} + Be^{-x} & \text{if } x \le 0\\ (A+B)\cos(x) + (A-B)\sin(x) & \text{if } x \ge 0 \end{cases},$$

Class: Math 520

and the coefficients A, B must be determined by 2 more restrictions being imposed on the system.

4. A transformation of a nonlinear ODE:

The non-linear first-order differential equation

$$y' + p(x)y = q(x)y^n, \qquad n \neq 1$$

is called Bernoulli's equation. Show that the transformation $u=y^{1-n}$ reduces the equation to a first-order linear equation. Use this transformation to find the general solution(s) to

(i)
$$y' - y = xy^{1/2}$$
 and $(ii)y' + 2xy + y^2 = 0$.

Proof. (i) $(y'-y=xy^{1/2})$ With $n=\frac{1}{2}$ this will gives us a transformation of $u=y^{1/2}$ and $y=u^2$ with $u'=y'\frac{1}{2y^{1/2}}$; that is 2uu'=y'. So that we'll get:

$$2uu' - u^2 = xu$$

$$\iff 2u' - u = x$$

$$\iff u' - \frac{1}{2}u = \frac{x}{2}.$$

Now this is an equation solvable with integrating factors: $\mu(x) = \exp\left\{\int -\frac{dx}{2}\right\} = e^{-x/2}$. So that:

$$\frac{d}{dx} \left(e^{-x/2} u \right) = \frac{x}{2} e^{-x/2}$$

$$\iff e^{-x/2} u(x) + C = \int \frac{x e^{-x/2}}{2} dx$$

make a u-sub of $u = \frac{x}{2}$ with $du = \frac{dx}{2} \iff dx = 2du \ (u(x) \text{ is still our dependent variable in the equation}). We now have$

$$e^{-x/2}u(x) + C = 2\int ue^{-u} du$$

Class: Math 520

integration by parts with u = u, du = du and $dv = e^{-u}du$, $v = -e^{-u}$ will give us:

$$e^{-x/2}u(x) + C = 2\left(-ue^{-u} + \int e^{-u}du\right)$$

$$e^{-x/2}u(x) = 2\left(-\frac{x}{2}e^{-x/2} - e^{-x/2} - D\right)$$

$$u(x) = 2\left(-\frac{x}{2} - 1 - De^{x/2}\right)$$

$$y^{1/2}(x) = \left(-x - 2 - Ee^{x/2}\right)$$

$$y(x) = (-x - 2 - Ee^{x/2})^2$$

$$= (x + 2 + Ee^{x/2})^2.$$

Where C, D, E were all changes in constants of integration. That is our solution!

(ii) $(y' + (2x)y = -y^2)$ Here n = 2 so that we'll use the transformation $u = y1 - 2 = y^{-1}, y = u^{-1}$ with $u' = -1y'y^{-2} \iff u' = -y'u^2 \iff \frac{-u'}{u^2} = y'$:

$$\frac{-u'}{u^2} + 2x\frac{1}{u} = -\frac{1}{u^2}$$

$$\iff u' - 2xu = 1.$$

This again is a much easier problem of integrating factors, namely $\mu(x) = \exp\{\int -2x \ dx\} = \exp\{-x^2\}$. So that we'll have the equation:

$$\frac{d}{dx}\left(ue^{-x^2}\right) = e^{-x^2}.$$

Let a be an arbitrary lower bound of integration so that:

$$u(x)e^{-x^2} = \int_a^x e^{-t^2} dt$$

$$u(x) = \int_a^x e^{x^2 - t^2} dt$$

$$\frac{1}{y(x)} = \int_a^x e^{x^2 - t^2} dt$$

$$y(x) = \left(\int_a^x e^{x^2 - t^2} dt\right)^{-1}$$

Since this integral has no elementary antiderivative, we'll leave the solution in an un-integrated form as seen above.

5. Another transformation of a nonlinear ODE:

The non-linear first-order differential equation

$$y' + p(x)y = q(x)y^2 + r(x)$$

is called Riccatti's equation (note: this is a slightly different definition of the terms from our definition in class.) Show that the transformations

$$y = \frac{v(x)}{q}$$
 and $v(x) = -\frac{u'(x)}{u(x)}$

transform it into a second-order linear ODE with variable coefficients

$$\frac{d^2u}{dx^2} + P(x)\frac{du}{dx} + Q(x)u = 0.$$

Proof. With the transformation $y = \frac{v}{q}$ and $v = -\frac{u'}{u}$; that is $y = \frac{-u'}{qu}$ we'll end up with $y' = \frac{-u''(qu) + u'(q'u + u'q)}{(qu)^2} = \frac{-u''(qu) + u'q'u + (u')^2q}{(qu)^2}$ so that the transformed equation will be:

$$\frac{-u''(qu) + u'q'u + (u')^2q}{(qu)^2} + p\frac{-u'}{qu} = q\frac{(u')^2}{q^2u^2} + r$$

$$-u''(qu) + u'q'u + (u')^2q + -pqu(u') = q(u')^2 + r(q^2u^2)$$

$$-(q)u'' + u'q' - (pq)u' = r(q^2)u$$

$$u'' + u'\left(p - \frac{q'}{q}\right) + (-rq)u = 0.$$

With r = r(x), q(x) = q, p(x) = p, this is our second-order linear ODE!

6. Variation of Parameters and Green's Functions:

Show, using the method variation-of-parameters, that the solution to the initial value problem

$$y'' + y = g(t),$$
 $y(0) = 0, y'(0) = 0$

is

$$y(t) = \int_0^t g(\tau) \sin(t - \tau) d\tau.$$

Note: we can define the "kernel" of this integral as the Green's function for the IVP:

$$G(t|\tau) = \begin{cases} 0 & \text{for } t < \tau \\ \sin(t - \tau) & \text{for } t > \tau; \end{cases}$$

in which case we can write the solution as the product of this Green's function and the non-homogeneous forcing term integrated over the entire domain:

$$y(t) = \int_0^\infty g(\tau)G(t|\tau) d\tau.$$

The Green's function is the response of the system to an idealized impulse at $t = \tau$. We'll discuss Green's functions more later.

Proof. First, we'll find the solution to the associated homogeneous problem:

$$y'' + y = 0.$$

Using the method of undetermined coefficients, with $e^{\lambda t}$, gives us $\lambda^2 + 1 = 0$. This implies $\lambda = \pm i$ and gives us the general solution for the homogeneous problem is:

$$y_H(t) = A\cos(t) + B\sin(t).$$

The variation of parameters method then tells us a particular solution to inhomogeneous problem is then

$$y_P(t) = -\cos(t) \int_0^t \frac{\sin(\tau)}{\cos^2(\tau) + \sin^2(\tau)} d\tau + \sin(t) \int_0^t \frac{\cos(\tau)}{\cos^2(\tau) + \sin^2(\tau)} d\tau.$$

Where the denominator comes from the fact that $(\cos(t))' = -\sin(t)$ and $(\sin(t))' = \cos(t)$. Hence we'll have:

$$y_P(t) = \int_0^t \sin(t)\cos(\tau) - \sin(\tau)\cos(t) d\tau = \int_0^t \sin(t-\tau) d\tau,$$

using the sine angle subtraction identity. Now finally imposing our initial conditions to the solution:

$$y(t) = y_H(t) + y_P(t) = A\cos(t) + B\sin(t) + y_P(t)$$

gives us:

$$0 = A + 0 + 0 \iff A = 0$$

and

$$0 = -A\sin(0) + B\cos(0) + y_P'(0) = B.$$

That is the solution to this initial value problem is just:

$$y(x) = y_P(x) = \int_0^t \sin(t - \tau) d\tau.$$