Concevez une application au service de la santé publique

Concevez une application au service de la santé publique

- Agence "Santé publique France"
- Appel à projets
- Idées innovantes d'applications en lien avec l'alimentation.

Concevez une application au service de la santé publique

Livrables

- Un notebook du nettoyage et un notebook d'exploration réunis dans un seul fichier .ipynb
- Une **présentation**

Concevez une application au service de la santé publique

- Mise en place
- La donnée brute
- Idée d'application
- Les variables pertinentes
- Nettoyage du dataset
- Analyse univariée
- Analyse multivariée
- ACP
- k-NN
- Conclusion

Les données brutes

- Les informations générales sur la fiche du produit : nom, date de modification
- Un ensemble de tags : catégorie du produit, localisation, origine,
- Les ingrédients composant les produits et leurs additifs éventuels
- Des informations nutritionnelles : quantité en grammes d'un nutriment pour 100 grammes du produit

Les données brutes

Le dataset a 320772 individus et 162 variables.

Il y a 160 colonnes avec des valeurs manquantes.

Il y a 76.2% de valeurs manquantes dans le dataset brute.

Il y a 21 colonnes dans le dataset avec une unique valeur ou toute manquante.

Idée d'application

Foodscan

- Scanner avec un unique code barre le produit en magasin

Choisir un ingrédient spécifique ou critère diététique précis (une composante ACP) et proposer en fonction du nutrition_score le meilleur produit possible

Les données pertinentes

Elimination des colonnes 100% NaN et des variables pour avoir au moins 70% de valeurs présentes.

y a 34.6% de valeurs manquantes dans le dataset pop. Nous observons aussi une nette amélioration du % des valeurs manquantes dans notre jeu de données.

Au final, nous nous intéresserons qu'aux variables quantitatives suivantes :'energy_100g', 'fat_100g', 'saturated-fat_100g', 'trans-fat_100g', 'cholesterol_100g', 'carbohydrates_100g', 'sugars_100g', 'fiber_100g', 'proteins_100g', 'salt_100g', 'sodium_100g', 'vitamin-a_100g', 'vitamin-c_100g', 'calcium_100g', 'iron_100g', 'nutrition-score-fr_100g'

2207

Nettoyage du dataset

Suppressions des duplicatas de 'code'

Pour la variable energy_100g nous utiliserons la méthode IQR, max= Q3 + 1.5 * IQR = 3700

Pour les autres variables, nous les bornerons à >=0 & <=100

Nettoyage du dataset

- energy_100g, carbohydrates_100g et nutrition-score sont de forme bimodale
- sodium_100g, salt_100g, sugar_100g, saturated_100g, trans_fat_100g et proteins_100g sont de forme unimodale et asymétrique, "tail" étalées à gauche

Analyse multivariée

Nous étudierons ici les relations de corrélation linéaires possibles entre nos variables quantitatives

Analyse multivariée, corrélations

corrélation faible:

- fat_100g, energy_100g, saturated fat 100g et nutri-score
- sugars_100g, carbohydrates_100g et energy 100g
- iron_100g et calcium_100g

corrélation forte :

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

salt_100g et sodium_100g (évidente)

Projection sur des axes décorrélés entre fat_100g, energy_100g, saturated_fat_100g et nutri-score

- 1. Testons saturated_fat_100g avec energy_100g = 0.546374
- 2. Testons saturated_fat_100g avec fat_100g = 0.687112

Analyse multivariée, ACP

Analyse des composantes principales afin de projeter notre jeu de donnée sur plusieurs axes, qui peuvent être visualisées graphiquement, en perdant le moins possible d'information.

- energy_100g et le nutrion-score_100g = caractérise les ingrédients générique sain
- salt_100g et sodium_100g = caractérise les ingrédients en surplus de sel à éviter
- saturated_fat_100g, proteins_100g et calcium_100g = caractérise un régimes prise de masse musculaire
- vitamin_a_100g et vitamin_c_100g = caractérise un régime pour booster son métabolisme en vitamine

4 nouvelles variables synthétiques pourraient réduire ainsi le nombre de colonne finale

Analyse multivariée, ACP

Représentation après imputation kNN

violinplot = diagrammes en boîte + estimations de densité qui représentent la distribution des données

Conclusion

- Axes ACP et proposition du meilleur ingrédient selon le nutrition score
- Imputation kNN