Obliczenia naukowe

Lista nr 2 (Laboratorium)

Veranika Krymchak

Wstep.

Celem tego laboratorium jest zrozumienie pojęc uwarunkowanie zadań i stabilność algorytmów.

Zadanie 1.

W tym zadaniu musimy wrócić do zadania 5 z poprzedniej listy i zmienic dane. W zadaniu 5 poprzedniej listy mielismy dwa wektory x i y i liczylismy ich iloczyn skalarny na różne sposoby. Dostalismy następne wyniki:

	Typ	Metoda a	Metoda b	Metoda c	Metoda d
Ì	Float32	-0.4999443	-0.4543457	-0.5	-0.5
Ì	Float64	$1.0251881368296672e^{-10}$	$-1.5643308870494366e^{-10}$	0.0	0.0

W tym zadaniu musimy policzyc iloczyn skalarny na te same sposoby, ale najpierw musimy nieznacznie zmienic dane. Obcinamy ostatnie liczby w x_4 i x_5 i ponownie liczymy wyniki.

Typ	Metoda a	Metoda b	Metoda c	Metoda d
Float32	-0.4999443	-0.4543457	-0.5	-0.5
Float64	-0.004296342739891585	-0.004296342998713953	-0.004296342842280865	-0.004296342842280865

W przypadku Float32 wyniki nie zmienily sie, bo precyzja jest bardzo mala. Ale widzimy, ze w przypadku Float64 wyniki bardzo sie zmienily. Niewielkie względne zmiany danych zadania powodują duże względne zmiany jego wyniku. Z tego mozemy wywnioskowac, ze to zadanie jest źle uwarunkowanym.

Zadanie 2.

Celem tego zadania jest narysowanie wykresu funkcji $f(x) = e^x ln(1 + e^{-x})$ w dwóch dowolnych programach wizualizacji, a nastepnie policzenie granicy $\lim_{x\to\infty} f(x)$.

Dostajemy nastepujące wykresy:

$$\lim_{x\to\infty} f(x) = 1.$$

Na wykresach rowniez widzimy, że wykres funkcji f(x) na asymptote pozioma rowna 1 (czyli wykres funkcji "przybliża się" do 1). Stąd możemy wywnioaskować, że asymptote pozioma wykresu funkcji jest równa granice tej funkcji.

Zadanie 3.

W tym zadaniu musimy rozwiązac układ równań.

Ax=b

Dla danej macierzy współczynników $\mathbf{A} \in \mathbb{R}^{n \times n}$ i wektora $\mathbf{b} \in \mathbb{R}^n$. Macierz \mathbf{A} generujemy na dwa sposoby: jako macierz Hilberta H_n dla kolejnych stopni n>1 (generujemy macierz za pomocą funkcji hilb(n)) i jako macierz R_n , ktora jest losową macierzą stopnia n z zadanym wskaźnikiem uwarunkowania c dla n = 5, 10, 20 z rosnącym wskaźnikiem uwarunkowania c = 1, 10, 10^3 , 10^7 , 10^{12} , 10^{16} (generujemy macierz za pomocą funkcji \mathbf{A} =matcond(n,c)). Wektor b jest zadany następująco $\mathbf{b} = \mathbf{A}\mathbf{x}$, gdzie \mathbf{A} jest wygenerowaną macierzą, a $x = (1, ..., 1)^T$.

Musimy rozwiązać otrzymany układ równań za pomocą dwóch algorytmów: eliminacji Gaussa (x = A/b) oraz $x = A^{-1}b$. Porównujemy otrzymany \tilde{x} z poprawną odpowidzia $x = (1, ..., 1)^T$ i wyliczamy błędy względne.

Otrymane dane dla macierzy Hilberta:

n	bląd przy eliminacji Gaussa	bląd przy $x = A^{-1}b$	cond(A)
1	[0.0]	[0.0]	1
2	$[-4.44089e^{-16}, 6.66134e^{-16}]$	$[-8.88178e^{-16}, 1.77636e^{-16}]$	19.28147006790397
3	$[1.44329e^{-15}, -9.54792e^{-15}, 9.99201e^{-15}]$	[0.0, 0.0, 0.0]	524.0567775860644
4	$[-1.55431e^{-15}, 2.53131e^{-14}, -6.55032e^{-14}, 4.37428e^{-14}]$	[0.0, 0.0, 0.0, 0.0]	15513.73873892924
5	$[4.21885e^{-14}, -6.08402e^{-13}, 2.15949e^{-12}, -2.77822e^{-12}, 1.18572e^{-12}]$	$[1.13687e^{-13}, -1.81899e^{-12}, 0.0, 0.0, -7.27596e^{-12}]$	476607.25024259434

Otrymane dane dla macierzy losowej:

n	c	bląd przy eliminacji Gaussa	bląd przy $x = A^{-1}b$
5	1.0	$[1.11022e^{-16}, -2.22045e^{-16},$	$[0.0, -2.22045e^{-16}, 0.0,$
5	1.0	$1.11022e^{-16}$, $-2.22045e^{-16}$, 0.0]	$-2.22045e^{-16}, 0.0$
5	10.0	$[0.0, -2.22045e^{-16}, -2.22045e^{-16},$	$[-2.22045e^{-16}, 0.0, -4.44089e^{-16},$
5	10.0	$0.0, -2.22045e^{-16}$	$-2.22045e^{-16}, -4.44089e^{-16}$
5	1000.0	$[3.40838e^{-14}, 4.20775e^{-14},$	$[2.84217e^{-14}, 4.26326e^{-14},$
5	1000.0	$4.25215e^{-14}, 4.4742e^{-14}, 4.86278e^{-14}$	$4.26326e^{-14}, 4.26326e^{-14}, 5.68434e^{-14}$
5	1.0e7	$[1.19312e^{-10}, 6.81273e^{-11},$	$[2.91038e^{-10}, 1.45519e^{-10},$
"	1.067	$9.81266e^{-11}, 1.31638e^{-10}, 1.01883e^{-10}$	$1.74623e^{-10}, 2.32831e^{-10}, 1.74623e^{-10}$
5	1.0e12	$[3.69242e^{-6}, 2.02316e^{-6},$	$[-4.76837e^{-7}, 8.58307e^{-6}, 0.0,$
	1.0612	$4.29072e^{-6}, 2.24093e^{-6}, 3.42142e^{-6}$	$8.10623e^{-6}, 5.72205e^{-6}$
		$[-2.22045e^{-16}, -2.22045e^{-16}, 3.33067e^{-16},$	$[-2.22045e^{-16}, 1.11022e^{-16}, -4.44089e^{-16},$
10	1.0	$-2.22045e^{-16}$, 0.0, 0.0, 2.22045 e^{-16} ,	$-2.22045ee^{-16}$, $-2.22045e^{-16}$, $1.11022e^{-16}$,
		$0.0, 1.11022e^{-16}, 1.11022e^{-16}$	$2.22045e^{-16}$, 0.0 , $4.44089e^{-16}$, $1.11022e^{-16}$]
		$[-2.22045e^{-16}, 1.11022e^{-16}, 0.0,$	$[-4.44089e^{-16}, 0.0, 0.0,]$
10	10.0	$0.0, -2.22045e^{-16}, -2.22045e^{-16},$	$-4.44089e^{-16}$, $-2.22045e^{-16}$,
10	10.0	$-4.44089e^{-16}$, $-2.22045e^{-16}$,	$-4.44089e^{-16}$, 0.0, $-2.22045e^{-16}$,
		$-2.22045e^{-16}, -2.22045e^{-16}$	$-2.22045e^{-16}, -4.44089e^{-16}$
	1000.0	$[-2.79776e^{-14}, -2.55351e^{-14},$	$[-2.84217e^{-14}, -2.13163e^{-14},$
10		$-2.86438e^{-14}$, $-1.33227e^{-14}$, $-2.66454e^{-14}$,	$-3.19744e^{-14}$, $-1.42109e^{-14}$, $-3.19744e^{-14}$,
10	1000.0	$-1.57652e^{-14}$, $-2.22045e^{-14}$, $-2.15383e^{-14}$,	$-1.59872e^{-14}$, $-2.84217e^{-14}$, $-1.77636e^{-14}$,
		$-2.39808e^{-14}, -3.06422e^{-14}$	$-2.13163e^{-14}, -3.90799e^{-14}$
	0 1.0e7	$[-2.9877e^{-11}, -4.5302e^{-11}, -4.45881e^{-11},$	$[-2.91038e^{-11}, -8.73115e^{-11},$
10		$-2.97322e^{-11}$, $-3.31979e^{-11}$, $-3.89369e^{-11}$,	$-5.82077e^{-11}$, 0.0, $-2.91038e^{-11}$,
10		$-3.45688e^{-11}$, $-3.42841e^{-11}$, $-5.26204e^{-11}$,	$-5.82077e^{-11}$, $-2.91038e^{-11}$, $-5.82077e^{-11}$,
		$-4.8999e^{-11}$]	$-2.91038e^{-11}, -1.16415e^{-10}$

Widzimy, że wskaznik uwarnkowania macierzy Hilberta rosnie wraz z wzrostem n. Istotnie, $cond(H_n)=ce^{3.5n}$. Stad wskaznik bardzo szybko rosnie wraz z n, a razem z nim rosnie też bląd obliczeń. W przypadku macierzy losowej wskaznik uwarnkowania rosnie wraz ze wzrostem c i jest mało zależny od n. Widzimy, że dla duzych n przy małym c, błąd obliczen jest względnie mały.

Zadanie 4.

Celem tego zadania jest zapoznanie sie z wielomianem Wilkinsona w postaci naturalnej:

```
\begin{split} P(x) &= x^{20} - 210x^{19} + 20615x^{18} - 1256850x^{17} + 53327946x^{16} - \\ &1672280820x^{15} + 40171771630x^{14} - 756111184500x^{13} + \\ &11310276995381x^{12} - 135585182899530x^{11} + 1307535010540395x^{10} - \\ &10142299865511450x^9 + 63030812099294896x^8 - 311333643161390640x^7 + \\ &1206647803780373360x^6 - 3599979517947607200x^5 + \end{split}
```

 $8037811822645051776x^4 - 12870931245150988800x^3 + \\ 13803759753640704000x^2 - 8752948036761600000x + 2432902008176640000$

Zwarta postac tego wielomianu to:

$$p(x) = (x-20)(x-19)(x-18)(x-17)(x-16)(x-15)(x-14)(x-13)(x-12)(x-11)(x-10)(x-9)(x-8)(x-7)(x-6)(x-5)(x-4)(x-3)(x-2)(x-1)$$

Musimy policzyc zera tego wielomianu, używając funkcji roots z pakietu **Polynomials**, a następnie sprawdzić obliczone pierwiastki z_k , 1 < k > 20, obliczając $|P(z_k)|$, $|p(z_k)|$ i $|z_k - k|$.

Otrzymane wyniki:

Z	P(z)	p(z)	z-k
19.999809291236637	$2.7462952745472e^{13}$	$1.4019117414364248e^{23}$	18.999809291236637
19.00190981829944	$1.0278376162816e^{-13}$	$1.1990376202486947e^{23}$	17.00190981829944
17.99092135271648	$7.199554861056e^{12}$	$1.0144799361089491e^{23}$	14.99092135271648
17.025427146237412	$3.777623778304e^{12}$	$8.568905825727875e^{22}$	13.025427146237412
15.946286716607972	$1.555027751936e^{12}$	$7.01087410689741e^{22}$	10.946286716607972
15.075493799699476	$6.13987753472e^{11}$	$5.901011420239329e^{22}$	9.075493799699476
13.914755591802127	$3.65383250944e^{11}$	$4.612719853149547e^{22}$	6.914755591802127
13.07431403244734	$2.15723629056e^{11}$	$3.807325552825022e^{22}$	5.07431403244734
11.953283253846857	$7.216771584e^{10}$	$2.8869446884129956e^{22}$	2.953283253846857
11.025022932909318	$3.5759895552e^{10}$	$2.2478332979247994e^{22}$	1.0250229329093177
9.990413042481725	$1.2707126784e^{10}$	$1.6552601335207813e^{22}$	1.009586957518275
9.002915294362053	$4.465326592e^9$	$1.196559421646318e^{22}$	2.9970847056379473
7.999355829607762	$1.682691072e^9$	$8.26205014011023e^{21}$	5.000644170392238
7.000102002793008	$4.80398336e^8$	$5.423593016891272e^{21}$	6.999897997206992
5.999989245824773	$1.20152064e^8$	$3.320394888870126e^{21}$	9.000010754175227
5.000000665769791	$2.4114688e^7$	$1.8446752056545675e^{21}$	10.999999334230209
3.9999999837375317	$3.106816e^6$	$8.854437035384718e^{20}$	13.000000016262469
2.9999999995920965	209408.0	$3.320413931687578e^{20}$	15.000000000407903
2.0000000000283182	181760.0	$7.378697629901744e^{19}$	16.9999999997168
0.9999999999999999	36352.0	$5.517824e^6$	19.0000000000000302

Widzimy, że dostalismy zera wielomianu z małą niedokladnoscią, ale w wyniku podstawienia tych zer do wielomianu, dostajemy bardzo niedokladne wyniki, ponieważ wielomian Wilkinsona jest zle uwarunkowany. W przypadku podstawienia zer wielomianu do zwartej postaci wielomianu, dostajemy jeszcze wieksze blędy, poniważ program najpierw doprowadza wielomian do naturalnej postaci (z małym zaburzeniem), a pózniej oblicza

wynik.

W następnej częsci zadania musimy powtórzyć eksperyment Wilkinsona, tj. zmienić współczynnik -210 na $210-2^{-23}$.

Wtedy dostajemy następne wyniki:

 $\begin{array}{l} [1.0+0.0\mathrm{im},\ 0.5+0.0\mathrm{im},\ 0.333333+0.0\mathrm{im},\ 0.250001+0.0\mathrm{im},\ 0.199969+0.0\mathrm{im}, \\ 0.16724+0.0\mathrm{im},\ 0.139021+0.00774152\mathrm{im},\ 0.139021-0.00774152\mathrm{im}, \\ 0.112142+0.0193572\mathrm{im},\ 0.112142-0.0193572\mathrm{im},\ 0.0891147+0.0216815\mathrm{im}, \\ 0.0891147-0.0216815\mathrm{im},\ 0.0717429+0.0183212\mathrm{im},\ 0.0717429-0.0183212\mathrm{im}, \\ 0.0602027+0.0127922\mathrm{im},\ 0.0602027-0.0127922\mathrm{im},\ 0.0528827+0.007497\mathrm{im}, \\ 0.0528827-0.007497\mathrm{im},\ 0.0484921+0.00243962\mathrm{im},\ 0.0484921-0.00243962\mathrm{im} \end{array}$

W przypadku zaburzenia $\delta_k = 2^{-23}$ dostajemy zaburzenie wyniku równe

$$\epsilon = \frac{10^{-7} * 20^{19}}{19!} \approx 4.4$$

Zaburzenie miejsca zerowego jest siedem rzedów wielkości wieksze od zaburzenia pojedynczego współczynnika! (wiec w rzeczywistości miejsca zerowe tak zaburzonego wielomianu staja sie nawet zespolone.)

Zadanie 5.

Celem tego zadania jest rozważenie następującego y równania rekurencyjnego:

$$p_{n+1} = p_n + rp_n(1 - p_n) \text{ dla } n = 0, 1, \dots,$$

gdzie r jest pewną daną stałą, r(1-pn) jest czynnikiem wzrostu populacji, a p_0 jest wielkością populacji stanowiąca procent maksymalnej wielkości populacji dla danego stanu środowiska.

Musimy przeprowadzie dwa eksperymenty:

a) Dla danych $p_0 = 0.01$ i r = 3 wykonać 40 iteracji wyrażenia, a następnie wykonać ponownie 40 iteracji wyrażenia z niewielką modyfikacją tj. wykonać 10 iteracji, zatrzymać, zastosować obcięcie wyniku odrzucając

cyfry po trzecim miejscu po przecinku i kontynuować dalej obliczenia.

Dostajemy nastepujace wyniki:

metoda 1	metoda 2
0.01	0.01
0.0397	0.0397
0.15407173	0.15407173
0.5450726	0.5450726
1.2889781	1.2889781
0.1715188	0.1715188
0.5978191	0.5978191
1.3191134	1.3191134
0.056273222	0.056273222
0.21559286	0.21559286
0.7229306	0.722
1.3238364	1.3241479
0.037716985	0.036488414
0.14660022	0.14195944
0.521926	0.50738037
1.2704837	1.2572169
0.2395482	0.28708452
0.7860428	0.9010855
1.2905813	1.1684768
0.16552472	0.577893
0.5799036	1.3096911
1.3107498	0.09289217
0.088804245	0.34568182
0.3315584	1.0242395
0.9964407	0.94975823
1.0070806	1.0929108
0.9856885	0.7882812
1.0280086	1.2889631
0.9416294	0.17157483
1.1065198	0.59798557
0.7529209	1.3191822
1.3110139	0.05600393

0.0877831	0.21460639
0.3280148	0.7202578
0.9892781	1.3247173
1.021099	0.034241438
0.95646656	0.13344833
1.0813814	0.48036796
0.81736827	1.2292118
1.2652004	0.3839622

Możemy zobaczyc, że zadanie jest zle uwarunkowane, bo przy małej zmianie danych (w naszym przypadku obcięciu kilku liczb) nastepuje duża zmiana wyników.

b) Dla danych $p_0=0.01$ i r=3 wykonać 40 iteracji wyrażenia w arytmetyce Float32 i Float64.

Dostajemy nastepujace wyniki:

Float32	Float64
0.01	0.01
0.0397	0.0397
0.15407173	0.15407173000000002
0.5450726	0.5450726260444213
1.2889781	1.2889780011888006
0.1715188	0.17151914210917552
0.5978191	0.5978201201070994
1.3191134	1.3191137924137974
0.056273222	0.056271577646256565
0.21559286	0.21558683923263022
0.7229306	0.722914301179573
1.3238364	1.3238419441684408
0.037716985	0.03769529725473175
0.14660022	0.14651838271355924
0.521926	0.521670621435246
1.2704837	1.2702617739350768
0.2395482	0.24035217277824272
0.7860428	0.7881011902353041
1.2905813	1.2890943027903075
0.16552472	0.17108484670194324

0.5799036	0.5965293124946907
1.3107498	1.3185755879825978
0.088804245	0.058377608259430724
0.3315584	0.22328659759944824
0.9964407	0.7435756763951792
1.0070806	1.315588346001072
0.9856885	0.07003529560277899
1.0280086	0.26542635452061003
0.9416294	0.8503519690601384
1.1065198	1.2321124623871897
0.7529209	0.37414648963928676
1.3110139	1.0766291714289444
0.0877831	0.8291255674004515
0.3280148	1.2541546500504441
0.9892781	0.29790694147232066
1.021099	0.9253821285571046
0.95646656	1.1325322626697856
1.0813814	0.6822410727153098
0.81736827	1.3326056469620293
1.2652004	0.0029091569028512065

Float32 ma mniejszą przecyzje, więc przy każdej kolej iteracji tracimy kilka liczb na koncu i dla tego jak w punkcie a) dostajemy niedokladny wynik.

Zadanie 6.

Celem tego zadania jest rozważenie następującego y równania rekurencyjnego:

$$x_{n+1} := x_n^2 + c \text{ dla } n = 0, 1, \dots,$$

gdzie c jest pewną daną stałą.

Musimy przeprowadzie eksperymenty dla podanych danych robiąc40iteracji.

Wyniki działanie programu: 1. $c=-2, x_0=1$

Otrymany ciag:

$$1.0, -1.0$$

$$2. c = -2, x_0 = 2$$

Otrymany ciag:

 $2.0, \ 2.0, \$

Otrymany ciag:

 $\begin{array}{c} 1.9999999999999, \ 1.9999999999999, \ 1.999999999998401, \\ 1.999999999993605, \ 1.999999999997442, \ 1.9999999999897682, \\ 1.999999999590727, \ 1.99999999836291, \ 1.9999999993451638, \\ 1.99999993294477814, \ 1.99999973177915749, \\ 1.999998323619383, \ 1.9999993294477814, \ 1.9999973177915749, \\ 1.9999892711734937, \ 1.9999570848090826, \ 1.999828341078044, \\ 1.9993133937789613, \ 1.9972540465439481, \ 1.9890237264361752, \\ 1.9562153843260486, \ 1.82677862987391, \ 1.3371201625639997, \\ -0.21210967086482313, \ -1.9550094875256163, \ 1.822062096315173, \\ 1.319910282828443, \ -0.2578368452837396, \ -1.9335201612141288, \\ 1.7385002138215109, \ 1.0223829934574389, \ -0.9547330146890065, \\ -1.0884848706628412, \ -0.8152006863380978, \ -1.3354478409938944, \\ -0.21657906398474625, \ -1.953093509043491, \ 1.8145742550678174, \\ 1.2926797271549244 \end{array}$

4.
$$c = -1$$
, $x_0 = 1$

Otrymany ciag:

 $1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0,\ -1.0,\ 0.0$

5.
$$c = -1$$
, $x_0 = -1$

Otrymany ciag:

6.
$$c = -1$$
, $x_0 = 0.75$

Otrymany ciag:

7.
$$c = -1$$
, $x_0 = 0.25$

Otrymany ciag:

Rysujemy wykres dla $f(x) = x^2 - 2$ i f(x)=x.

Możemy zobaczyc na tym wykresie, że dla $x_0=-1,1$ f(x) stale będzie równe równe -1, a dla $x_0=-2,2$ f(x)=2. Dla pozostalych x_0 ciąg będzie rozbieżny.

W analogiczny sposob rysujemy wykres dla c=-1.

Widzimy, ze dla $x_0=-1$, $x_0=0$ lub $x_0=1$ ciąg jest rozbiezny i "skacze" pomiędzy 0 i -1. Dla $x_0<1$ ciąg zbiega do 0 i w pewnym momecie wpadamy znowu w petle z 0 i -1.