Problem Formulation Report – RIYA Program 2023

FLOW PARAMETERS CALCULATION OF HYDRAULIC BUSHINGS

Name: Ayan Kumar

Home Institution: Indian Institute of Technology, Kharagpur

Mentors: Dr. L. Fredette (Cedarville University) & Dr. R. Singh (Ohio State University)

Lab: Acoustics and Dynamics Laboratory (https://mae.osu.edu/adl)

Introduction

Motivation:

- Bushings are suspension devices used for vibration control, noise reduction, and improved ride quality. For optimum performance high damping and stiffness is needed for large-amplitude, low-frequency excitations, and low values at high frequencies to isolate noise. [1]
- Hydraulic bushings meet such requirements but exhibit highly non-linear & loading dependent physics that isn't fully understood. [2]
- The loading on a hydraulic bushing can comprise of 1) A static mean load + 2)
 Dynamic displacement excitations which can be sinusoidal, step-like, etc., & can result in complex highly non-linear responses.

Figure 1. Lumped Parameter model of a Hydraulic bushing [2]

Goal:

- Investigate physics of dynamic flow characterization experiment, described in NOISE-CON 2023 paper [3]
- Evaluation of bushing's inertia track parameters under different flow conditions
- Computation of dynamic properties of leakage path in hydraulic bushings

Literature Review

Paper	Takeaways
Nonlinear fluid damping models for hydraulic bushing under sinusoidal or transient excitation ^[2]	 Flow conditions aren't restricted to one regime Quasi-Linear models unable to capture transient response Incorporating transitional flow resistance improves accuracy Non-linearities arising from inertia track are more dominant than leakage path

Experimental dynamic flow characterization of hydraulic bushings [3]

• Dynamic responses are highly non-linear & less consistent

• Linear model yields good prediction for harmonic, low-amplitude excitations when a single long track is present

bushing with two flow passages [4]

Flow characteristics of bushings is more complex than orifices

Effective damping is highly dependent on excitation amplitude for step-like inputs

Damping properties of bushings are enhanced on inclusion of short-passages

Problem Formulation

Objective 1a: Simulation of dynamic flow characterization experiment of NOISE-CON 2023 paper. [3]

Objective 1b: Polynomial approximation of pressure drop due to fluid resistance.

Objective 1c: Identification of flow nature & calculation of inertance, resistance for experimental data.

Objective 2: Investigate the physics of flow when a leakage path is also present.

Scope & Assumptions:

- a) Bushing elements are to be analyzed one-by-one.
- b) Compliance of system not taken into account.
- c) Bushing fluid is incompressible and viscous in nature.
- d) Only inertia track is present (Disregarded in Objective-2).

Objective 1a

Simulation of dynamic flow characterization experiment:

- Control Volume: Bushing domain between the two pressure transducers $p_1(t) \& p_2(t)$.
- Input: Sinusoid flow, $q(t) = q_m \sin(2\pi f t)$, f- Excitation frequency.
- Pressure drop, Δp , in the bushing's inertia track happens due to fluid

Figure 2: Flow characterization experiment setup [3]

- Resistance (R):
 - $\Delta p_R(t) = R(t)q(t).$
 - Laminar, $R(t) = R_L$.

resistance & inertance.

- Turbulent, $R(t) = R_T = k_T q(t)^{0.75}$.
- Orifice, $R(t) = R_0 = k_0 q(t)$.

- Inertance (*I*):
- \circ Linear formulation, $I = k_I \frac{\rho l}{4}$.

- Here, k_T, k_O, k_I are proportionality constants for turbulent resistance, orifice resistance & inertance, respectively. Their values depend on track geometry & fluid properties. [5]
- Total Pressure drop, $\Delta p(t) = \Delta p_I(t) + \Delta p_R(t)$.

Figure 3a: $\Delta p(t)$ profile for different fluid elements at excitation frequency of 25 Hz.

Figure 3b: Plot for Δp vs. q curve under laminar & turbulent flow conditions.

- 90° phase difference between inertia & resistive effects can be used to calculate approximate value of inertance.
- Difference in pressure profile under different flow conditions can be seen from Fig. 3a.
- Fig. 3b highlights the difference of shape in $\Delta p \ vs. \ q$ curve between laminar & turbulent flow.

Objective 1b

Polynomial approximation of pressure drop due to fluid resistance:

- Turbulent Flow = $\Delta p_R \sim q^{1.75}$, Flow through orifice-like element = $\Delta p_R \sim q^2$.
- Requirement Approximate Δp_R as a polynomial of flow rate, $q \rightarrow \Delta p_R = \Delta p_R(q)$.
- a) Taylor's Expansion at some operating point, q_{ov} -
 - Solution converges for $q \in [0, 2q_{op}]$.

- b) Polynomial Fit -
 - Using least-squares method.

Figure 4: Plots comparing accuracy of Taylor's expansion of order 'n' at different operating points, **a)** $q_{op} = \frac{q_m}{10}$ **b)** $q_{op} = \frac{q_m}{1.5}$

- Fig. 4a & 4b demonstrate the dependence of accuracy of Taylor's expansion on q_{op} .
- For q_{op} close to zero, region with error < 1% is very small.

Figure 5: Plots comparing accuracy of least-square polynomial fit of order in for **a)** Positive values of flow, q **b)** complete domain of flow, q

- Polynomial fitting better than Taylor's expansion but problem of low accuracy near $q \sim 0$ region remains
- Fig. 5a formulation requires variable transformation during flow reversal.

Objective 1c

Identification of flow nature & calculation of inertance, resistance for experimental data:

Figure 6a: Comparison of FFT of observed & analytical $\Delta p(t)$ for excitation frequency of 10 Hz.

Figure 6b: Plot comparing Δp vs. q curves for observed & fitted data for excitation frequency of 10 Hz.

- Presence of peaks at odd-harmonics in Fig. 6a suggests that turbulent flow conditions exist.
- Fit-1: Turbulent formulation, Fit-2: Turbulent formulation + Extra harmonic terms.
- Fit-2 represents the experimental data more accurately than Fit-1.

Objective 2

Investigate the physics of flow when a leakage path is also present in addition to inertia track

- Presence of a leakage path affects the dynamic characteristics of a bushing.
- Leakage path can be a short passage (or) orifice-like.
- Source of non-linearity in the system.
- Influence of a leakage path in conjunction with inertia track on bushing's damping properties is unknown
- Approach:
 - o Incorporate a leakage path in simulation model for various configurations.
 - o Analyze pressure data with leakage path unblocked & compare it to the blocked case.

Problems Faced

- Range of accurate polynomial approximation for turbulent flow is limited.
- Exact flow conditions & source of non-linearities unknown in hydraulic bushing.
- Experimental data not falling under specific regime, laminar or turbulent.
- Restricted access / lack of literature on dynamic oscillatory flows.

Plans

- Recheck FFT procedure for numerical artifacts (if any).
- Investigate why additional harmonic terms improves accuracy.
- Perform similar parameter identification analysis for more data.
- Incorporate a transitional flow resistance model for the fluid-parameters estimation.
- Getting started with studying the physics of including short leakage pathways.

Appendix

<u>Notation</u>	<u>Subscripts</u>
p = Pressure	<i>m</i> = Amplitude (zero-to-peak)
q = Volumetric Flow Rate	<i>I</i> = Inertance
f = Excitation Frequency	R = Resistance
t = Time	L = Laminar
<i>I</i> = Fluid Inertance	T = Turbulent
R = Fluid Resistance	0 = Orifice
k = Proportionality Constant	op = Operating Point
ρ = Bushing fluid density	
l = Length of bushing's inertia track	<u>Abbreviations</u>
A = Area of bushing's inertia track	FFT = Fast-Fourier Transform

Lessons Learned:

- Delivering talk/presentations skills.
- Preparing for non-technical topics & engaging in group discussions.
- Modelling mechanical systems through a lumped parameter approach.
- Approach towards non-linear problems & analyzing data in different domains.

Bibliography

- [1] Sauer, W. and Guy, Y., "Hydro Bushings Innovative NVH Solutions in Chassis Technology," SAE Technical Paper 2003-01-1475, 2003, https://doi.org/10.4271/2003-01-1475.
- [2] Fredette L, Rath S, Singh R., "Nonlinear fluid damping models for hydraulic bushing under sinusoidal or transient excitation". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2019;233(3):595-604. doi:10.1177/0954407017751787
- [3] DeGarmo B, Kennedy M, Fredette L., "Experimental dynamic flow characterization of hydraulic bushings," NOISE-CON, 2023
- [4] Chai T, Dreyer J, Singh R., "Time domain responses of hydraulic bushing with two flow passages," Journal of Sound and Vibration, Volume 333, Issue 3, 2014, https://doi.org/10.1016/j.jsv.2013.09.037.
- [5] Doebelin, E. (1998). System Dynamics: Modeling, Analysis, Simulation, Design (1st ed.). CRC Press. https://doi.org/10.1201/9781482269895