

100*0.9*0.9*0.9

100*0.9*0.9

100*0.9*0.9*0.9

Factor out 100:

1 (()

This infinite sum of terms equals:

 100 (10)

1,000

$\Delta Spending=$

Government spends 100 and the multiplier process converts that 100 into a total of 1,000 in additional spending

$$100\left(\frac{1}{1-0.9}\right) = 100\left(\frac{1}{0.1}\right) = 100(10)$$

$\Delta Spending=1,000$

Government spends 100 and the multiplier process converts that 100 into a total of 1,000 in additional spending