Лабораторная работа № 7

Модель СМО

Демидова Екатерина Алексеевна

Содержание

1	Введение	4
	1.1 Цели и задачи	4
2	Выполнение лабораторной работы 2.1 Реализация модели в xcos	5
3	Выводы	10

Список иллюстраций

2.1	Переменное окружение	5
2.2	Суперблок, моделирующий поступление заявок	6
2.3	Суперблок, моделирующий обработку заявок	7
2.4	Модель $M M 1 \infty$ в хсоз	8
2.5	Поступление(зеленым) и обработка(черным) заявок	9
2.6	Динамика размера очереди	9

1 Введение

1.1 Цели и задачи

Цель работы

Реализовать модель $M|M|1|\infty$ с помощью xcos.

Задание

- Реализовать в хсо
ѕ модель системы массового обслуживания типа $M|M|1|\infty.$
- Построить график, описывающий динамику размера очереди
- Построить график, описывающий поступление и обработку заявок.

2 Выполнение лабораторной работы

2.1 Реализация модели в хсоз

В нашей модели одна очереди, поступление заявок описывается пуассоновским процессом.

Зададим переменное окружение(рис. [2.1]).

Рис. 2.1: Переменное окружение

Далее приведены блоки и их связь для моделирования рассматриваемой системы.

В нашей модели есть суперблок для описания поступления заявок(рис. [2.2]):

Рис. 2.2: Суперблок, моделирующий поступление заявок

- RAND M генератор случайных чисел по равномерному распределению.
- LOGBLCK_f взятие логарифма от потока выхода случайных чисел, чтобы получить Пуассоновское распределение.
- GAINBLCK_f умножает сгенерированный поток по Пуассоновскому распределению на $-\frac{1}{\lambda}$
- EVTGEN_f обработчик событий, так как для моделирования заявок будут использованы события.
- CLKSOMV f синхронизация выходных и входных сигналов.
- CLKINV f порт входа в суперблок.
- CLKOUTV f порт выхода из суперблок.

Также есть суперблок, описывающий обработку заявок(рис. [2.3]):

Рис. 2.3: Суперблок, моделирующий обработку заявок

- RAND_M генератор случайных чисел по равномерному распределению. $sci_funk_m_block$ задает математическое выражение y1 = -log(u1)/mu, которое ранее мы задавали блоками.
- EVTGEN_f обработчик событий, так как для моделирования заявок будут использованы события.
- CLKSOMV_f синхронизация выходных и входных сигналов. В этом суперблоке их два.
- IFHEL_f два блока для определения длины очереди, если значение больше нуля, то сигнал подается.
- CLKINV_f входы для запуска и для сообщения о том, что сообщение пришло в очередь, чтобы по разному обрабатывать пустую и не пустую очередь.
- IN_f, CONST_M проверка на длину очереди

Вся модель выглядит следующим образом(рис. [2.4]):

Рис. 2.4: Модель $M|M|1|\infty$ в хсоѕ

- SELECTOR_M берёт входные сигналы и с помощью управляющих сигналов будет добавлять вход к очереди, либо считывать. У него три входа для поступления заявок, обработки заявок и начальной синхронизации.
- CONST_M поступление заявки выражается 1, обслуживание заявки -1, первоначальная синхронизация 0.
- EVTGEN f запуск первоначального события в нулевой момент времени.
- DOLLAR_f блок для иммитации очереди, на него приходит управление, которое синхронизируется с источника и с обработчика.
- CSCOPE для отрисовки длины очереди.
- CEVEBTSCOPE обработка событий.

В результате получим два графика: один показывает поступление и обработку заявок, а второй изменение длины очереди(рис. [2.5], [2.6]).

Рис. 2.5: Поступление(зеленым) и обработка(черным) заявок

Рис. 2.6: Динамика размера очереди

3 Выводы

В результате выполнения работы была реализована модель $M|M|1|\infty$ с помощью xcos.