lme mods

Jacob Salminen

2024-04-19

Packages & Setup

```
# install.packages(c("tidyverse", "purrr", "R.matlab", "readxl", "dplyr"))
library(readxl);
library(purrr)
library(tidyverse);
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.0
                       v tibble
                                   3.2.1
## v lubridate 1.9.3
                                   1.3.1
                       v tidyr
## -- Conflicts -----
                                          ## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(tibble)
library(knitr);
library(gtsummary)
library(kableExtra)
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
      group_rows
library(lme4)
## Loading required package: Matrix
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
      expand, pack, unpack
##
```

GTSUMMARY THEME

```
# my_theme <-
  list(
#
      "tbl_summary-str:default_con_type" = "continuous2",
      "tbl_summary-str:continuous_stat" = c(
#
#
        "\{median\} (\{p25\} - \{p75\})",
        "{mean} ({sd})",
#
#
        "{min} - {max}"
#
#
     "tbl_summary-str:categorical_stat" = "{n} / {N} ({p}%)",
#
      "style number-arg:big.mark" = "",
#
      "tbl_summary-fn:percent_fun" = function(x) style_percent(x, digits = 3)
   )
#
# my_theme <-
  list()
# qtsummary::set_qtsummary_theme(my_theme)
gtsummary::set_gtsummary_theme(theme_gtsummary_journal("jama"))
## Setting theme 'JAMA'
## Setting theme 'JAMA'
# reset qtsummary theme()
```

load table

get unique entries

```
clusters = unique(eegt$cluster_id);
subjects = unique(eegt$subj_char);
groups = unique(eegt$group_char);
kin_measures = c('mean_APexc_COV', 'mean_APexc_mean', 'mean_MLexc_COV', 'mean_MLexc_mean', 'mean_StepDur','eeg_measures = c('theta_avg_power', 'alpha_avg_power', 'beta_avg_power', 'aperiodic_exp', 'aperiodic_offset
```

get speeds only

```
eegt <- filter_at(eegt,vars('cond_char'), any_vars(. %in% c('0.25','0.5','0.75','1.0')))
flat_speeds = unique(eegt$cond_char)
eegt$cond_char <- as.numeric(eegt$cond_char)
eegt$speed_cond_num <- as.numeric(eegt$cond_char)
eegt <- mutate(eegt,across(c('subj_char'), factor))</pre>
```

```
| The color of the
```

get terrains only (if applicable)

```
# eegt <- filter_at(eegt, vars('cond_char'), any_vars(. %in% c('flat', 'low', 'med', 'high'))) # eegt <- filter_at(eegt, vars('cond_char'), any_vars(. %in% c('high'))) # eegt$terr_ord_speed <- cut(eegt$speed_ms, 4, ordered = TRUE)
```

convert speeds to ordered & groups to factors

```
eegt <- mutate(eegt,across(c('group char'), factor))</pre>
eegt$speed ord <- cut(eegt$cond char, 4, ordered = TRUE)</pre>
eegt <- mutate(eegt,across(c('cond_char'), factor))</pre>
head(eegt)
## # A tibble: 6 x 139
     speed_ms subj_id subj_cl_ind subj_char comp_id design_id cond_id cond_char
        <dbl> <chr> <dbl> <fct>
                                              <dbl> <chr> <chr>
                                                                      <fct>
##
## 1
        1.2 5
                                1 H1011
                                                  4 2
                                                                      0.25
                                                  3 2
## 2
         0.69 8
                                2 H1017
                                                                      0.25
                                                              1
## 3
         0.51 10
                                3 H1019
                                                  4 2
                                                                      0.25
## 4
         0.76 11
                                4 H1020
                                                  6 2
                                                              1
                                                                      0.25
## 5
         0.59 12
                                5 H1022
                                                  6 2
                                                                      0.25
## 6
        0.8 15
                                6 H1027
                                                  3 2
                                                                      0.25
## # i 131 more variables: group_id <chr>, cluster_id <chr>, aperiodic_exp <dbl>,
       aperiodic_offset <dbl>, central_freq_1 <dbl>, central_freq_2 <dbl>,
## #
      central_freq_3 <dbl>, power_1 <dbl>, power_2 <dbl>, power_3 <dbl>,
       r_squared <dbl>, theta_avg_power <dbl>, alpha_avg_power <dbl>,
## #
## #
      beta_avg_power <dbl>, theta_1 <dbl>, theta_2 <dbl>, theta_3 <dbl>,
      theta_4 <dbl>, theta_5 <dbl>, theta_6 <dbl>, theta_7 <dbl>, theta_8 <dbl>,
## #
       'alpha_ 1' <dbl>, 'alpha_ 2' <dbl>, 'alpha_ 3' <dbl>, 'alpha_ 4' <dbl>, ...
## #
eegt$group_speed_code = paste(eegt$group_char,eegt$cond_char,sep="_")
```

LME KIN \sim 1+speed+group

	APeno	COV		APv	VOSC			sc COV		ML	racc		Step	Dur		UDe	E COV		UI	Nuc		Stano	e Dur			de Dur			Down Vel	
	rta (95% CI)	p-value	q-value				Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		p-value		Beta (95% CI)							p-value		Beta (95% CI)				p-value	
	18 (16 to 20)	< 0.001	<0.001	0.07 (0.07 to 0.05)	< 0.001	< 0.001	11 (8.8 to 13)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001		1.4 (1.3 to 1.4)	< 0.001	< 0.001	22 (29 to 23)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	2.0 (2.0 to 2.1)	< 0.001	< 0.001	2.8 (2.7 to 2.9)	< 0.001	< 0.001	0.00 (-0.02 to 0.02)	0.91	
peed_cond_num -4.2	2 (-6.3 to -2.2)	< 0.001	< 0.001	-0.03 (-0.04 to -0.03)			7.1 (5.2 to 9.0)	< 0.001	< 0.001	-0.08 (-0.09 to -0.08)	< 0.001	< 0.001	-0.74 (-0.81 to -0.68)	< 0.001	< 0.001	-15 (-17 to -14)	< 0.001	< 0.001	(E0.0 oz 20.0) 20.0		< 0.001	-1.3 (-1.4 to -1.1)	< 0.001	< 0.001	-1.5 (-1.6 to -1.4)	< 0.001	< 0.001	0.38 (0.36 to 0.39)	< 0.001	< 0.001
rosp_clasr		< 0.001	<0.001		< 0.001	< 0.001		0.59	0.59		0.10	0.10		< 0.001	< 0.001		0.067	0.067		0.67	0.67		< 0.001	< 0.001		< 0.001	< 0.001		0.14	0.21
H1000.x	_			_			_			_			_			_			_						_			-		-
	.1 (3.6 to 8.7)			-0.01 (-0.01 to 0.00)			-1.2 (-3.7 to 1.3)			0.02 (0.00 to 0.03)			-0.16 (-0.21 to -0.10)			1.4 (-0.21 to 3.1)			0.00 (0.00 to 0.00)			-0.24 (-0.32 to -0.15)			-0.31 (-0.43 to -0.20)			0.02 (0.00 to 0.05)		$\overline{}$
	LS (6.4 to 11)			-0.01 (-0.02 to -0.01)			-0.89 (-3.2 to 1.4)			0.01 (-0.01 to 0.02)			-0.22 (-0.27 to -0.17)			1.7 (0.17 to 3.2)			0.00 (0.00 to 0.00)			-0.30 (-0.35 to -0.23)			-0.44 (-0.55 to -0.34)			0.02 (0.00 to 0.04)		-
	3 (NA to NA)			0.01 (NA to NA)			3.2 (NA to NA)			0.02 (NA to NA)			0.04 (NA to NA)			2.0 (NA to NA)			0.00 (NA to NA)			0.02 (NA to NA)			0.08 (NA to NA)			0.03 (NA to NA)		$\overline{}$
osidual.ed Observation 4.4	4 (NA to NA)			0.01 (NA to NA)			4.1 (NA to NA)			0.02 (NA to NA)			0.15 (NA to NA)			2.9 (NA to NA)			0.00 (NA to NA)			0.25 (NA to NA)			0.29 (NA to NA)			0.63 (NA to NA)		$\overline{}$

Cluster:	6																													
		E COV		AB	irogc			ac COV		ML	esse		Step	Dur		UDe	se COV		U	Desc		Stane	e Dur			de Dur	- 1	Peak Up	Down Vel	
Characteristic	Beta (95% CI)	p-value	q-value			q-value	Beta (95% CI)	p-value		Beta (95% CI)				p-value	q-value	Beta (95% CI)					q-value	Beta (95% CI)			Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	18 (16 to 20)	< 0.001	< 0.001	0.07 (0.07 to 0.08)	< 0.001	< 0.001	9.7 (8.2 to 11)	< 0.001	< 0.001	0.14 (0.13 to 0.14)	< 0.001	< 0.000	1.4 (1.3 to 1.4)	< 0.001	< 0.001	22 (21 to 23)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	2.0 (1.9 to 2.1)	< 0.001	< 0.001	27 (26 to 28)	< 0.001	< 0.001	-0.01 (-0.03 to 0.01)	0.55	0.55
speed_cond_num	-3.7 (-5.5 to -1.8)	< 0.001	< 0.001	-0.03 (-0.03 to -0.03)	< 0.001	< 0.001	7.1 (5.6 to 8.6)	< 0.001	< 0.001	-0.09 (-0.09 to -0.05)	< 0.001	< 0.001	-0.72 (-0.78 to -0.67)	< 0.001	< 0.001	-15 (-16 to -14)	< 0.001	< 0.001	0.03 (0.03 to 0.03)	< 0.001	< 0.001	-1.2 (-1.3 to -1.1)	< 0.001	< 0.001	-1.4 (-1.6 to -1.3)	< 0.001	< 0.001	0.35 (0.37 to 0.40)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.81	0.81		0.27	0.27		< 0.001	< 0.001		0.073	0.073		0.91	0.91		< 0.001	< 0.001		< 0.001	< 0.001		0.003	0.20
H1000's				_			_									_			_											
122000's	6.9 (4.3 to 9.4)			-0.01 (-0.02 to -0.01)			0.52 (-1.3 to 2.3)			0.01 (0.00 to 0.02)			-0.17 (-0.22 to -0.12)			1.1 (-0.30 to 2.5)			0.00 (0.00 to 0.00)			-0.24 (-0.31 to -0.16)			-0.34 (-0.43 to -0.24)			0.03 (0.00 to 0.05)		-
H3000's	9.1 (6.7 to 11)			-0.01 (-0.02 to -0.01)			-0.01 (-1.7 to 1.7)			0.00 (-0.01 to 0.01)			-0.23 (-0.25 to -0.15)			1.5 (0.18 to 2.8)			0.00 (0.00 to 0.00)			-0.32 (-0.39 to -0.25)			-0.46 (-0.55 to -0.37)			0.02 (0.00 to 0.05)		$\overline{}$
	3.8 (NA to NA)			0.01 (NA to NA)			2.6 (NA to NA)			0.02 (NA to NA)			0.05 (NA to NA)			2.0 (NA to NA)			0.00 (NA to NA)			0.04 (NA to NA)			0.09 (NA to NA)			0.04 (NA to NA)		-

² False discovery rate correction for multiple testing

Closter	7																													
Cluster:	APV	c COV		AP	Trace		ML	ese COV		ML	rosc.		Step	Dur		UDe	sc COV		U	Desgo		Stano	e Dur		GaltC)	cle Dur		Peak Up	Down Vel	
	Beta (95% CI)	p-value	q-value	Beta (95% CI)				p-value		Beta (95% CI)	p-value	q-value				Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value			p-value	q-value			q-value	Beta (95% CI)	p-value	q-value
(Intercept)	18 (16 to 20)	< 0.001	< 0.001	0.08 (0.07 to 0.08)	< 0.001	< 0.001	9.3 (7.7 to 11)	< 0.001	< 0.001	0.14 (0.13 to 0.15)	< 0.001	< 0.001	1.4 (1.3 to 1.4)	< 0.001	< 0.001	22 (21 to 23)	< 0.001	< 0.001	0.01 (0.01 to 0.01)	< 0.001	< 0.001	2.0 (2.0 to 2.1)	< 0.001	< 0.001	2.8 (2.7 to 2.9)	< 0.001	< 0.001	0.00 (-0.02 to 0.02)	0.92	0.92
speed_cond_num	-3.6 (-5.6 to -1.6)	< 0.001	< 0.001	-0.03 (-0.04 to -0.03)	< 0.001	< 0.001	6.7 (5.1 to 8.3)	< 0.001	< 0.001	-0.09 (-0.09 to -0.08)	< 0.001	< 0.001	-0.76 (-0.82 to -0.70)	< 0.001	< 0.001	-15 (-16 to -14)	< 0.001	< 0.001	0.03 (0.03 to 0.03)	< 0.001	< 0.001	-1.3 (-1.4 to -1.2)	< 0.001	< 0.001	-1.5 (-1.6 to -1.4)	< 0.001	< 0.001	9.37 (0.36 to 0.39)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.61	0.61		0.55	0.55		< 0.001	< 0.001		0.087	0.087		0.95	0.95		< 0.001	< 0.001		< 0.001	< 0.001		0.30	0.45
H1000's				_			_			_			_			_			_			_			_			_		-
H2000's	5.6 (2.8 to 8.4)			-0.01 (-0.01 to 0.00)			0.93 (-1.2 to 3.0)			0.01 (-0.01 to 0.02)			-0.12 (-0.18 to -0.07)			0.76 (-0.92 to 2.5)			0.00 (0.00 to 0.00)			-0.15 (-0.26 to -0.10)			-0.25 (-0.35 to -0.14)			0.02 (-0.01 to 0.04)		
H3000's	8.8 (6.3 to 11)			-0.01 (-0.02 to -0.01)			0.77 (-1.1 to 2.6)			0.00 (-0.01 to 0.01)			-0.21 (-0.26 to -0.16)			1.7 (0.19 to 3.2)			0.00 (0.00 to 0.00)			-0.29 (-0.36 to -0.22)			-0.42 (-0.51 to -0.32)			0.02 (-0.01 to 0.04)		-
	3.7 (NA to NA)			0.01 (NA to NA)			2.7 (NA to NA)			0.02 (NA to NA)			0.05 (NA to NA)			2.3 (NA to NA)			0.00 (NA to NA)			0.04 (NA to NA)			0.10 (NA to NA)			0.04 (NA to NA)		
Residual et Observation	4.6 (NA to NA)			0.01 (NA to NA)			3.6 (NA to NA)			9.92 (NA to NA)			0.14 (NA to NA)						9.00 (NA to NA)			0.24 (NA to NA)			0.27 (NA to NA)			0.63 (NA to NA)		

Residual.ed_Observation 4.5 (NA to NA)

1 CI = Confidence Interval

2 False discovery rate correction for multiple testing

Cluster:	- 5																													
		E COV		AB	irogc			oc COV		ML	1900		Step	Dur		UDe	se COV		UE	Nosc		Stano	e Dur		GaitCy	cle Dur		Prok Upl		
Characteristic	Beta (95% CI)				p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	19 (16 to 21)	< 0.001	< 0.001	0.07 (0.07 to 0.08)	< 0.001	< 0.001	10 (8.4 to 12)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.001	1.4 (1.3 to 1.4)	< 0.001	< 0.001	22 (21 to 24)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	2.0 (1.9 to 2.1)	< 0.001	< 0.001	27 (26 to 28)	< 0.001	< 0.001	-0.01 (-0.03 to 0.01)	0.43	0.43
speed_cond_num	-4.5 (-6.6 to -2.4)	< 0.001	< 0.001	-0.03 (-0.03 to -0.02)	< 0.001	< 0.001	7.1 (5.3 to 8.8)	< 0.001	< 0.001	-0.09 (-0.10 to -0.08)	< 0.001	< 0.001	-0.71 (-0.78 to -0.64)	< 0.001	< 0.001	-16 (-17 to -15)	< 0.001	< 0.001	0.03 (0.03 to 0.03)	< 0.001	< 0.001	-1.2 (-1.3 to -1.1)	< 0.001	< 0.001	-1.4 (-1.6 to -1.3)	< 0.000	< 0.001	0.39 (0.37 to 0.40)	< 0.001	< 0.001
group_clast		< 0.001	< 0.001		< 0.001	< 0.001		0.45	0.45		0.21	0.21		< 0.001	< 0.001		0.017	0.017		0.057	0.067		< 0.001	< 0.001		< 0.001	< 0.001		0.003	0.004
H1000's	_			_			_			_			_			_			_			_			_			_		$\overline{}$
H2000's	5.6 (3.1 to 8.2)			-0.01 (-0.02 to -0.01)			-0.67 (-2.4 to 1.1)			0.01 (0.00 to 0.02)			-0.16 (-0.21 to -0.10)			1.0 (-0.27 to 2.3)			0.00 (0.00 to 0.00)			-0.23 (-0.31 to -0.15)			-0.31 (-0.42 to -0.21)			0.02 (-0.01 to 0.05)		$\overline{}$
H20000's	10 (7.7 to 13)			-0.01 (-0.02 to -0.01)			0.51 (-1.3 to 2.3)			0.01 (-0.01 to 0.02)			-0.24 (-0.29 to -0.18)			1.9 (0.60 to 3.3)			0.00 (0.00 to 0.01)			-0.32 (-0.41 to -0.24)			-0.47 (-0.58 to -0.36)			0.05 (0.02 to 0.05)		$\overline{}$
	3.2 (NA to NA)			0.01 (NA to NA)			2.0 (NA to NA)			0.02 (NA to NA)			0.04 (NA to NA)			1.6 (NA to NA)			0.00 (NA to NA)			0.04 (NA to NA)			0.08 (NA to NA)			0.04 (NA to NA)		$\overline{}$
Residual ed Observation	4.4 (NA to NA)			0.01 (NA to NA)			3.7 (NA to NA)			0.02 (NA to NA)			0.14 (NA to NA)			2.4 (NA to NA)			0.00 (NA to NA)			0.24 (NA to NA)			0.29 (NA to NA)			0.03 (NA to NA)		$\overline{}$

Residual.ed Observation 4.4 (NA to NA)

1 CI = Confidence Interval

2 False discovery rate correction for multiple testing

Cluster:	9																													
	APe:	se COV		AP	VODE		MLe	sec COV		ML	1000		Step	Dur		UDes	c COV		U	Desc		Stano	e Dur		GazeCy	cle Dur		Peak Up	Down Vel	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	b-zagne	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	19 (17 to 20)	< 0.001	< 0.001	0.05 (0.07 to 0.05)	< 0.000	< 0.001	10 (8.7 to 12)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.001	1.4 (1.3 to 1.4)	< 0.001	< 0.001	23 (21 to 24)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	2.1 (2.0 to 2.1)	< 0.001	< 0.001	2.8 (2.7 to 2.9)	< 0.001	< 0.001	-0.01 (-0.03 to 0.01)	0.52	0.52
speed_cond_num	-4.3 (-6.0 to -2.5)	< 0.001	< 0.001	-0.03 (-0.04 to -0.03)	< 0.001	< 0.001	7.1 (5.5 to 8.8)	< 0.001	< 0.001	-0.08 (-0.09 to -0.08)	< 0.001	< 0.001	-0.75 (-0.82 to -0.68)	< 0.001	< 0.001	-16 (-17 to -15)	< 0.001	< 0.001	0.03 (0.03 to 0.03)	< 0.001	< 0.001	-1.3 (-1.4 to -1.2)	< 0.001	< 0.001	-1.5 (-1.6 to -1.4)	< 0.001	< 0.001	0.35 (0.37 to 0.40)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.000	< 0.001		0.58	0.58		0.00	0.90		< 0.001	< 0.001		0.040	0.040		0.48	0.48		< 0.001	< 0.001		< 0.001	< 0.001		0.011	0.006
H1000's	_			_			_			_			_			_			-			_			_			_		
H2000's	6.6 (4.5 to 8.7)			-0.01 (-0.02 to -0.01)			-1.0 (-3.1 to 1.0)			0.01 (-0.01 to 0.02)			-0.17 (-0.21 to -0.12)			0.96 (-0.32 to 2.2)			0.00 (0.00 to 0.00)			-0.24 (-0.31 to -0.16)			-0.33 (-0.43 to -0.23)			0.02 (0.00 to 0.05)		$\overline{}$
H3000's	8.5 (6.3 to 11)			-0.01 (-0.02 to -0.01)			-0.84 (-3.0 to 1.3)			0.00 (-0.01 to 0.01)			-0.23 (-0.28 to -0.18)			1.7 (0.36 to 3.0)			0.00 (0.00 to 0.00)			-0.32 (-0.40 to -0.24)			-0.46 (-0.56 to -0.36)			0.04 (0.01 to 0.07)		
subj_char.ed(Intercept)	2.8 (NA to NA)			0.01 (NA to NA)			2.8 (NA to NA)			0.02 (NA to NA)			0.03 (NA to NA)			1.6 (NA to NA)			0.00 (NA to NA)			0.00 (NA to NA)			0.06 (NA to NA)			0.04 (NA to NA)		$\overline{}$
Residual.ed Observation	3.8 (NA to NA)			0.01 (NA to NA)			3.5 (NA to NA)			0.01 (NA to NA)			0.15 (NA to NA)			2.6 (NA to NA)			0.00 (NA to NA)			0.25 (NA to NA)			0.30 (NA to NA)			0.03 (NA to NA)		

Residual.sd_Observation 3.8 (NA to NA)

1 CI = Confidence Interval

2 False discovery rate correction for multiple testing

Cluster:	10																													
		se COV		AP	rosc		MLe	oc COV		ML	easc		Step	Dur		UDe	c COV		U	Desc		Stano	e Dur		GazeC;	rcle Dur		Peak Up	Down Vel	
Characteristic	Beta (95% CI)		q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	d-zagre		p-value			p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	15 (16 to 20)		< 0.001	0.07 (0.07 to 0.05)	< 0.001	< 0.001	9.6 (7.9 to 11)	< 0.001	< 0.001	0.14 (0.13 to 0.15)	< 0.001		1.4 (1.3 to 1.4)	< 0.001	< 0.001	22 (20 to 23)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	2.0 (2.0 to 2.1)	< 0.001	< 0.001	2.8 (2.7 to 2.9)	< 0.001	< 0.001	-0.01 (-0.03 to 0.01)	0.22	0.33
speed_cond_num	-4.2 (-6.2 to -2.2)		< 0.001	-0.03 (-0.04 to -0.03)		< 0.001	7.5 (5.9 to 9.1)	< 0.001	< 0.001	-0.09 (-0.10 to -0.08)	< 0.001	< 0.001	-0.75 (-0.81 to -0.68)	< 0.001	< 0.001	-15 (-16 to -14)	< 0.001	< 0.001	0.02 (0.02 to 0.02)	< 0.001	< 0.001	-1.3 (-1.4 to -1.2)	< 0.001	< 0.001	-1.5 (-1.6 to -1.4)	< 0.001	< 0.001	0.39 (0.37 to 0.40)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.89	0.89		0.26	0.26		< 0.001	< 0.001		0.24	0.24		0.41	0.41		< 0.001	< 0.001		< 0.001	< 0.001		0.008	0.012
H1000's	_			_			_			_			_			_			_			_			_			_		$\overline{}$
H2000's	6.6 (4.3 to 8.9)			-0.01 (-0.01 to 0.00)			-0.37 (-2.4 to 1.7)			0.01 (0.00 to 0.02)			-0.15 (-0.21 to -0.10)			1.2 (-0.25 to 2.7)			0.00 (0.00 to 0.00)			-0.21 (-0.29 to -0.13)			-0.30 (-0.41 to -0.20)			0.03 (0.01 to 0.05)		_
H3000's	9.4 (6.9 to 12)			-0.02 (-0.02 to -0.01)			-0.50 (-2.7 to 1.7)			0.00 (-0.01 to 0.01)			-0.25 (-0.31 to -0.19)			0.92 (-0.65 to 2.5)			0.00 (0.00 to 0.00)			-0.35 (-0.43 to -0.26)			-0.50 (-0.61 to -0.39)			0.03 (0.01 to 0.05)		$\overline{}$
subj_char.sd(Intercept)	3.2 (NA to NA)			0.01 (NA to NA)			3.0 (NA to NA)			0.02 (NA to NA)			0.05 (NA to NA)			2.2 (NA to NA)			0.00 (NA to NA)			0.06 (NA to NA)			0.11 (NA to NA)			0.03 (NA to NA)		_
Residual ed Observation	4.4 (NA to NA)			0.01 (NA to NA)			3.5 (NA to NA)			0.02 (NA to NA)			0.14 (NA to NA)			2.5 (NA to NA)			0.00 (NA to NA)			0.25 (NA to NA)			0.29 (NA to NA)			0.03 (NA to NA)		$\overline{}$

Residual.ed Observation 4.4 (NA to NA)

¹ CI = Confidence Interval

² False discovery rate correction for multiple testing

Claster:	11						1 10	er COV									ov. COV												Down Vel	
Characteristic	Alve	z cov	-	AP	esc					No. 1 County Com	esc		Beta (95% CI)	Diff					W . 1997 CO.	LAUGE.		State	e Diff		Gaztey	cse Dur	-	Beta (95% CI)		
Characteristic		p-value	d-same	Beta (95% CI)	p-value	q-value	11 (5.9 to 13)	p-varue	q-vame	Beta (95% CI)	p-value	q-vacue	Bita (95% C1)	p-vanue	q-variso	Beta (95% CI)	p-varue	q-value	Beta (95% CI)	p-value	q-value		p-value	q-varue		p-varue	q-vane	Deta (95% CI)	p-vanue	q-varse
(mitercept)	18 (15 to 20)	< 0.001	< 0.001	0.07 (0.07 to 0.08)	<0.001	< 0.001		< 0.004	< 0.001	0.13 (0.12 to 0.14)	< 0.001	<0.001	1.4 (1.3 to 1.5)	<0.001	< 0.004	21 (29 to 23)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	<0.001	2.0 (1.9 to 2.1)	< 0.004	<0.001	2.8 (2.7 to 2.9)	< 0.001	< 0.001	0.00 (-0.02 to 0.02)	0.59	0.89
speed_cond_num	-3.8 (-6.1 to -1.4)	0.002	0.002	-0.03 (-0.04 to -0.03)	< 0.001	< 0.001	6.2 (4.3 to 8.2)	< 0.001	< 0.001	-0.09 (-0.09 to -0.08)	< 0.001	< 0.001	-0.75 (-0.82 to -0.67)	< 0.001	< 0.001	-15 (-16 to -14)	< 0.001	< 0.001	0.03 (0.03 to 0.03)	< 0.001	< 0.001	-1.2 (-1.4 to -1.1)	< 0.001	< 0.001	-1.5 (-1.6 to -1.3)	< 0.001		0.35 (0.35 to 0.40)	< 0.001	< 0.001
group_clur		< 0.001	< 0.001		0.002	0.002		0.53	0.53		0.023	0.023		< 0.001	< 0.001		0.065	0.063		0.55	0.88		< 0.001	< 0.001		< 0.001	< 0.001		0.22	0.33
H1000's	_			_						_			_						_			_			_			_		
H2000's	6.0 (3.1 to 9.0)			-0.01 (-0.01 to 0.00)			-1.5 (-4.1 to 1.1)			0.02 (0.00 to 0.03)			-0.16 (-0.22 to -0.10)			1.1 (-0.61 to 2.9)			0.00 (0.00 to 0.00)			-0.23 (-0.31 to -0.14)			-0.32 (-0.44 to -0.20)			0.02 (-0.01 to 0.05)		
H3000's	11 (8.2 to 14)			-0.01 (-0.02 to 0.00)			-0.33 (-2.8 to 2.2)			0.02 (0.00 to 0.03)			-0.22 (-0.25 to -0.16)			2.0 (0.31 to 3.7)			0.00 (0.00 to 0.00)			-0.31 (-0.39 to -0.22)			-0.44 (-0.56 to -0.33)			0.02 (0.00 to 0.05)		
	3.5 (NA to NA)			0.01 (NA to NA)			3.1 (NA to NA)			0.02 (NA to NA)			0.04 (NA to NA)			2.0 (NA to NA)			0.00 (NA to NA)			0.03 (NA to NA)			0.08 (NA to NA)			0.04 (NA to NA)		
Residual.ed Observation	4.5 (NA to NA)			0.01 (NA to NA)			3.7 (NA to NA)			0.01 (NA to NA)			0.14 (NA to NA)			2.7 (NA to NA)			0.00 (NA to NA)			0.24 (NA to NA)			0.29 (NA to NA)			0.03 (NA to NA)		$\overline{}$

RosiduaLed Observation 4.5 (NA to NA)

1 CI = Confidence Interval

2 False discovery rate correction for multiple testing

Cluster:	12																													
	APer	c COV		AP:	lose			oc COV		ML	1000		Step	Dur			c COV		U	Desc		Stane	e Dur		GazeCy	cle Dur		Peak Up		
haracteristic	Heta (95% CI)									Beta (95% CI)												Beta (95% CI)								
ntercept)	20 (17 to 22)	< 0.001	< 0.001	0.07 (0.07 to 0.08)	< 0.001	< 0.001	11 (8.8 to 13)	< 0.001	< 0.001	0.13 (0.12 to 0.15)	< 0.001	< 0.001	1.4 (1.3 to 1.4)	< 0.001	< 0.001	22 (21 to 24)	< 0.001	< 0.001	0.00 (0.00 to 0.01)		< 0.001			< 0.001	2.7 (2.6 to 2.8)	< 0.001	< 0.001	-0.02 (-0.04 to 0.01)	0.14	0.7
seed cond num	-5.0 (-7.5 to -2.6)	< 0.001	< 0.001	-0.03 (-0.04 to -0.02)	< 0.001	< 0.001	6.0 (4.0 to 7.9)	< 0.001	< 0.001	(80.0-cd 60.0-) 60.0-	< 0.001	< 0.001	-0.72 (-0.79 to -0.65)	< 0.001	< 0.001	-15 (-17 to -14)	< 0.001	< 0.001	0.03 (0.03 to 0.03)	< 0.001	< 0.001	-1.2 (-1.3 to -1.1)	< 0.001	< 0.001	-1.4 (-1.6 to -1.3)	< 0.001	< 0.001	0.40 (0.38 to 0.42)	< 0.000	1 < 0.4
oup_char		< 0.001	< 0.001		< 0.001	< 0.001		0.36	0.36		0.59	0.59		< 0.001	< 0.001		0.71	0.71		0.078	0.078		< 0.001	< 0.001		< 0.001	< 0.001		0.015	0.0
H1000's	_			_												_			_			_			_			_		$\overline{}$
H2000's	5.1 (2.0 to 5.2)			-0.01 (-0.02 to -0.01)			-1.7 (-4.0 to 0.70)			0.01 (-0.01 to 0.02)			-0.16 (-0.22 to -0.10)			0.56 (-1.2 to 2.3)			0.00 (0.00 to 0.01)			-0.23 (-0.32 to -0.15)			-0.33 (-0.44 to -0.21)			0.03 (0.00 to 0.07)		-
H3000's	8.7 (6.0 to 12)			-0.01 (-0.02 to -0.01)			-0.33 (-2.5 to 1.8)			0.01 (-0.01 to 0.02)			-0.21 (-0.26 to -0.16)			0.59 (-0.98 to 2.2)			0.00 (0.00 to 0.01)			-0.30 (-0.38 to -0.22)			-0.42 (-0.53 to -0.32)			0.05 (0.01 to 0.08)		$\overline{}$
char.sd (Intercept)	3.4 (NA to NA)			0.00 (NA to NA)			2.5 (NA to NA)			0.02 (NA to NA)			0.04 (NA to NA)			1.8 (NA to NA)			0.00 (NA to NA)			0.00 (NA to NA)			0.07 (NA to NA)			0.04 (NA to NA)	-	-
eddualed Observation	4.7 (NA to NA)			0.01 (NA to NA)			3.7 (NA to NA)			0.02 (NA to NA)			0.14 (NA to NA)			2.8 (NA to NA)			0.00 (NA to NA)			0.23 (NA to NA)			0.25 (NA to NA)			0.04 (NA to NA)		-

C1 = Confidence Interval
 False discovery rate correction for multiple testing

Claster:	13																													
		sc COV		AP	ESC			sc COV		ML	racc		Step	Dur			se COV		U				e Dur		GaitCy	de Dur		Prak U	Down Vel	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		p-value	d-zapse		p-value	q-value	Beta (95% CI)	p-value	q-value		p-value	d-zapas		p-value	q-value	Beta (95% CI)	p-value	d-rapre	Beta (95% CI)	p-value	q-value
(Intercept)	19 (17 to 21)	< 0.001	< 0.001	0.07 (0.07 to 0.08)	< 0.001	< 0.001	11 (9.1 to 13)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.001	1.4 (1.3 to 1.4)	< 0.001	< 0.001	23 (22 to 25)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	2.0 (1.9 to 2.1)	< 0.001	< 0.001	2.8 (2.6 to 2.9)	< 0.001	< 0.001	0.00 (-0.02 to 0.02)	0.96	0.96
speed_cond_num	-3.8 (-6.0 to -1.6)	< 0.001	< 0.001	-0.03 (-0.04 to -0.03)	< 0.001	< 0.001	6.6 (4.8 to 8.3)	< 0.001	< 0.001	-0.08 (-0.09 to -0.08)	< 0.001	< 0.001	-0.76 (-0.84 to -0.68)	< 0.001	< 0.001	-16 (-18 to -15)	< 0.001	< 0.001	0.03 (0.02 to 0.03)	< 0.001	< 0.001	-1.3 (-1.4 to -1.2)	< 0.001	< 0.001	-1.5 (-1.7 to -1.4)		< 0.001	0.37 (0.36 to 0.39)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.73	0.73		0.58	0.58		< 0.001	< 0.001		0.14	0.14		0.87	0.87		< 0.001	< 0.001		< 0.001	< 0.001		0.008	0.013
H1000's	_			_			_			_			_			_			_						_			_		-
H2000's	5.7 (2.2 to 9.3)			-0.01 (-0.02 to 0.00)			-0.66 (-3.8 to 2.5)			0.01 (-0.01 to 0.03)			-0.13 (-0.21 to -0.06)			1.5 (-0.43 to 3.3)			(0.00 (0.00 to 0.00)			-0.17 (-0.29 to -0.05)			-0.27 (-0.42 to -0.12)			0.02 (-0.02 to 0.05)		$\overline{}$
H3000's	10 (7.2 to 13)			-0.02 (-0.02 to -0.01)			-0.99 (-3.5 to 1.5)			0.01 (-0.01 to 0.02)			-0.24 (-0.30 to -0.18)			1.3 (-0.22 to 2.8)			0.00 (0.00 to 0.00)			-0.32 (-0.41 to -0.23)			-0.47 (-0.59 to -0.36)			0.04 (0.02 to 0.07)		-
subj_char.sd_(Intercept)	3.6 (NA to NA)			0.01 (NA to NA)			3.4 (NA to NA)			0.02 (NA to NA)			0.05 (NA to NA)			1.7 (NA to NA)			0.00 (NA to NA)			0.06 (NA to NA)			0.10 (NA to NA)			0.04 (NA to NA)		$\overline{}$
Residual.ed Observation	4.1 (NA to NA)			0.01 (NA to NA)			3.3 (NA to NA)			0.01 (NA to NA)			0.14 (NA to NA)			2.7 (NA to NA)			0.00 (NA to NA)			0.25 (NA to NA)			0.29 (NA to NA)			0.63 (NA to NA)		-

		x COV						sc COV									z COV									de Dur			Down Vel	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Entercept)	19 (17 to 21)	< 0.001	< 0.001	0.08 (0.07 to 0.08)	< 0.001	< 0.001	11 (9.0 to 12)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.001	1.4 (1.3 to 1.4)	< 0.001	< 0.001	22 (21 to 24)	< 0.001	< 0.001	0.01 (0.01 to 0.01)	< 0.001	< 0.001	2.0 (1.9 to 2.1)	< 0.001	< 0.001	2.8 (2.6 to 2.9)	< 0.001	< 0.001	0.00 (-0.02 to 0.01)	0.65	0.65
speed_cond_num	-4.8 (-6.9 to -2.8)	< 0.001	< 0.001	-0.03 (-0.04 to -0.03)	< 0.001	< 0.001	6.3 (4.6 to 8.1)	< 0.001	< 0.001	-0.08 (-0.09 to -0.08)	< 0.001	< 0.001	-0.74 (-0.51 to -0.65)	< 0.001	< 0.001	-16 (-17 to -15)	< 0.001	< 0.001	0.03 (0.03 to 0.03)	< 0.001	< 0.001	-1.3 (-1.4 to -1.2)	< 0.001	< 0.001	-1.5 (-1.6 to -1.4)	< 0.001	< 0.001	0.39 (0.37 to 0.40)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.64	0.64		0.45	0.45		< 0.001	< 0.001		0.15	0.15		0.97	0.97		< 0.001	< 0.001		< 0.001	< 0.001		0.11	0.17
H1000's	_			_			_			_			_			_			_			_			_			_		$\overline{}$
H2000's	5.8 (3.4 to 8.2)			-0.01 (-0.02 to 0.00)			-1.0 (-3.2 to 1.1)			0.01 (0.00 to 0.02)			-0.15 (-0.20 to -0.10)			1.1 (-0.35 to 2.6)			0.00 (0.00 to 0.00)			-0.22 (-0.30 to -0.14)			-0.30 (-0.40 to -0.19)			0.02 (-0.01 to 0.04)		-
H23000's	8.9 (6.6 to 11)			-0.01 (-0.02 to -0.01)			-0.33 (-2.4 to 1.8)			0.00 (-0.01 to 0.01)			-0.23 (-0.25 to -0.15)			1.3 (-0.16 to 2.7)			0.00 (0.00 to 0.00)			-0.32 (-0.39 to -0.24)			-0.45 (-0.55 to -0.35)			0.02 (0.00 to 0.05)		$\overline{}$
subj_char.ed(Intercept)	3.2 (NA to NA)			0.01 (NA to NA)			3.0 (NA to NA)			0.02 (NA to NA)			0.05 (NA to NA)			2.1 (NA to NA)			0.00 (NA to NA)			0.04 (NA to NA)			0.10 (NA to NA)			0.03 (NA to NA)		-
Residual.ed Observation	4.6 (NA to NA)			0.01 (NA to NA)			3.9 (NA to NA)			0.02 (NA to NA)			0.15 (NA to NA)			2.7 (NA to NA)			0.00 (NA to NA)			0.25 (NA to NA)			0.29 (NA to NA)			0.03 (NA to NA)		$\overline{}$

[|] Roidual.st | Observation | 4.6 (NA to NA) |

1 CI = Confidence Interval |

2 False discovery rate correction for multiple testing