		:									
	für $x \in \mathbb{R}$	für $x \in \mathbb{R}$	für $x \in \mathbb{R}$	für $x \in \mathbb{R}$	für $x \in \mathbb{R}$.	für. $ x < 1$	für $-1 < x \le 1$	für $-1 \le x < 1$	für $ x \le 1$	x < 1	And the same and t
Potenzreihen	$= \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{1}{1!} x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \cdots$	$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 + \cdots$	$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - + \cdots$	$= \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} = x + \frac{1}{3!} x^3 + \frac{1}{6!} x^5 + \cdots$	$= \sum_{n=-0}^{\infty} \frac{1}{(2n)!} x^{2n} = 1 + \frac{1}{2!} x^2 + \frac{1}{4!} x^4 + \cdots$	$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^{2n+1} = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \cdots$		$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n = -\left(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots\right) $ f	$\sqrt{1+x} \; = \; \sum_{n=0}^{\infty} \left(\frac{1}{n}\right) x^n = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \cdots$	$\frac{1}{\sqrt{1+x}} \ = \ \sum_{n \ = \ 0}^{\infty} \ \left(\frac{-\frac{1}{2}}{n^2} \right) x^n = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - + \cdots \ \text{für}$	The state of the s
	e e	sin x	cos x	$\sinh x$	cosh x	arctan	ln(1+	$\ln(1 -$	√1+.	$\sqrt{1+}$	

geometrische
$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots = \frac{1}{1-x}, \quad \text{für } |x| < 1$$
Reihe $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots + x^k = \frac{1-x^{k+1}}{1-x}, \quad \text{für } x \neq 1$
geom. Reihe $\sum_{n=0}^{\infty} \frac{1}{n^x} = 1 + \frac{1}{2^x} + \frac{1}{3^x} + \cdots \quad \text{konvergent} \iff x > 1$
Reihe $\sum_{n=0}^{\infty} \binom{r}{n} x^n = 1 + rx + \binom{r}{2} x^2 + \binom{r}{3} x^3 + \cdots = (1+x)^r, \quad |x| \leq 1, \quad r > 0$
Reihe

	$\binom{a}{n} \to 0, \ a > -1$	$\frac{a^n}{n!} \to 0$ $\frac{n^n}{n!} \to \infty$	$\frac{a^n}{n^k} \to \infty \begin{cases} a > 1 \\ k \text{ fest} \end{cases}$	$a^n n^k o 0 \; \left\{ egin{array}{l} a < 1 \\ k \; \mathrm{fest} \end{array} ight.$
	$= \infty$ wichtige Grenzwerte $(n \to \infty)$	$= \frac{1}{e} \qquad \sqrt[n]{a} \rightarrow 1 \qquad \left(\frac{n+1}{n}\right)^n \rightarrow e$ $= \frac{1}{e} \qquad \sqrt[n]{n} \rightarrow 1 \qquad \left(1 + \frac{1}{n}\right)^n \rightarrow e$	$= \frac{\pi}{4} \qquad \sqrt[n-1]{1+\frac{x}{n}} \rightarrow e^x$ $= \frac{\pi}{6}$	$= \frac{\pi^2}{12} \frac{1}{n} \sqrt{n!} \to \frac{1}{e} \left[(1 - \frac{x}{n})^n \to e^{-x} \right]$ $= \frac{\pi^2}{8}$
n=0	:	:::	$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ $1 + \frac{1}{92} + \frac{1}{32} + \frac{1}{42} + \dots$	$1 - \frac{1}{2^3} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$ $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$

 $\frac{1}{2} \left(x \sqrt{x^2 + \dot{a}^2} + a^2 \operatorname{arsinh} \frac{x}{a} \right) = \frac{1}{2} \left(x \sqrt{x^2 + \dot{a}^2} + a^2 \ln(x + \sqrt{x^2 + a^2}) \right)$ $\frac{1}{2} \left(x \sqrt{x^2 - a^2} - a^2 \operatorname{arcosh} \frac{x}{a} \right) = \frac{1}{2} \left(x \sqrt{x^2 - a^2} - a^2 \ln(x + \sqrt{x^2 - a^2}) \right)$ $\frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \operatorname{arcsin} \frac{x}{a} \right)$

 $\int \sqrt{x^2 - a^2} \ dx =$ $\int \sqrt{x^2 + a^2} \ dx =$

 $\sqrt{a^2-x^2} dx$

FORMELSAMMLUNG

Differ	Differentiations- und Integrationsregeln	ionsregeln
Produktregel:	$(u \cdot v)' = u' \cdot v + u \cdot v'$	Vektorfunktionen
	(uvw)' = u'vw + uv'w + uvw'	$(\lambda \vec{u})' = \lambda' \vec{u} + \lambda \vec{u}'$
partielle Integration:	$\int u'vdx = uv - \int uv'dx$	$(\mathbf{d} \cdot \mathbf{d})' = \mathbf{d}' \cdot \mathbf{d} + \mathbf{d} \cdot \mathbf{d}'$
Quotientenregel:	$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$	$ (\vec{u} \times \vec{v}) = \vec{u}' \times \vec{v} + \vec{u} \times \vec{v} \cdot \vec{v} $ $ (\vec{u}(\lambda(t)))' = \vec{u}'(\lambda(t)) \cdot \lambda'(t) $
Kettenregel:	$(y(x(t)))' = \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = y'(x(t)) \cdot x'(t)$	
Substitutionsregel:	Substitutions regel: $\int f(x)dx = \int f(g(t))g'(t)dt$, dabei ist	labei ist $\begin{cases} x = g(t) \\ dx = g'(t) dt \end{cases}$
	or the second se	

$\int x^n dx = \frac{1}{n+1} x^{n+1}, (n \neq -1) \qquad \int \frac{f'}{f} dx = \ln f $	$\int \frac{1}{x} dx = \ln x $ $\int \frac{dx}{\sqrt{x}} dx = 2\sqrt{x}$ $\int \frac{dx}{\sqrt{x}} = \ln x+a $ $\int \frac{1}{\sqrt[3]{x}} dx = \frac{3}{2} \sqrt[3]{x^2}$ $\int \frac{dx}{\sqrt{x}} dx = \frac{3}{2} \sqrt[3]{x^2}$ $\int \frac{dx}{\sqrt{x}} dx = \frac{1}{2} e^{ax}$ $\int \tan x dx = -\ln \cos x $ $\int \sin^2 ax dx = \frac{1}{2} x - \frac{1}{4a} \sin 2ax$ $\int \sin^2 ax dx = \frac{1}{2} x + \frac{1}{4a} \sin 2ax$ $\int \ln x dx = x \ln x - x$ $\int \cos^2 ax dx = \frac{1}{2} x + \frac{1}{4a} \sin 2ax$ $\int \ln x dx = x \ln x - x$ $\int \sin ax \cos ax dx = \frac{1}{2a} \sin^2 ax$ $\int \sin ax \cos ax dx = \frac{1}{2a} \sin^2 ax$ $\int \sin ax \cos ax dx = \frac{1}{2a} \sin^2 ax$ $\int e^{ax} \cos bx dx = \frac{1}{a^2 + b^2} (a \sin bx - b \cos bx)$ $\int e^{ax} \cos bx dx = \frac{1}{a^2 + b^2} (a \cos bx + b \sin bx)$ $\int x \cos ax dx = \frac{1}{a^2} \sin ax - \frac{x}{a} \sin ax$	Bezeichnungen: $X = ax^2 + bx + c$, $\Delta = 4ac - b^2$, $a \neq 0$ $ \sqrt{\Delta} \arctan \frac{2ax + b}{\sqrt{\Delta}} \qquad (\Delta > 0) $ $ \sqrt{\frac{2}{X}} = \begin{cases} \frac{2}{\sqrt{\Delta}} \arctan \frac{2ax + b}{\sqrt{\Delta}} \\ \sqrt{-\Delta} \arctan \frac{2ax + b}{\sqrt{-\Delta}} \end{cases} $ $ \begin{pmatrix} \frac{4x}{\sqrt{\Delta}} = \frac{1}{\sqrt{\Delta}} \ln \frac{2ax + b - \sqrt{-\Delta}}{2ax + b + \sqrt{-\Delta}} \end{cases} $ $ \begin{pmatrix} \frac{dx}{\sqrt{\Delta}} = \frac{2ax + b}{\Delta X} + \frac{2a}{\Delta} \int \frac{dx}{X} \end{cases} $ $ \begin{pmatrix} \frac{dx}{X^2} = \frac{2ax + b}{\Delta X} + \frac{2a}{\Delta} \int \frac{dx}{X} \end{cases} $ $ (\Delta = 0) $
f,	$ \begin{array}{c c} nx^{n-1} \\ & -n \\ \hline & -n \\ \hline & x^{n+1} \\ \hline & x^{n+1} \\ & 2\sqrt{x} \\ & 1 \\ \hline & 2\sqrt{x} \\ & 1 \\ \hline & 2\sqrt{x} \\ & 1 \\ \hline & x^{n} \\ & x^{n}$	$\frac{-1}{1+x^2}$ $\frac{-1}{1-x^2}, x < 1$ $\frac{-1}{x}$ $\sinh x$ $\sinh x$ $\cosh^2 x$ $\sinh^2 x$ $\sinh^2 x$ $\sinh^2 x$ $\frac{-1}{x^2+1}$ $\sqrt{x^2+1}$ $\sqrt{x^2+1}$ $\sqrt{x^2-1}$
£	$\begin{array}{c c} n & n \\ \hline 1 & 1 \\ \hline x & x \\ \hline x & 1 \\ \hline x & x \\ x & x \\ \hline x & x \\ x & x \\ \hline x & x \\ \hline x & x \\ x & x \\ \hline x & x \\ x &$	sinh x cosh x tanh x coth x arsinh x arcosh x arcosh x arcosh x

FI

Quadratische Gleichung

 $x^2 + px + q = 0$

			_						_		=
	24		200	0	0	-	4	0	,	-	3
	11	3300	000	410		2/3		3		-1/3	
	7	3150		1/2	2	2	2	ī		-1	
	roje.	300		1/3	7		9	-13		3	m
ц	13	2700		ī		0		100		.0	
nktionen	41c	1 5		3	7	-10	9	£3		×3	2
IIKU	10 4	_		5	9	77	q	-		,-	
r r	718	1-)c	4	23	a l	23	2	×3	
ECIT BCIT	#	180°		0		T	1	0		H00	
rr gomomentiscile	10100 F			-10	Q L	133	1	3		-V3	
TOT	ω 4 _κ	1360		3	1	7/2		T		ī	
760	312	1200	I	2/3	,	100		-43	2	2	
1.3	-1)C	900		-		0		100		0].
	us k	₀ 09	1	2/3	+	4) (9	L	~3	10	2 6	
	4.4	460	L	2 2	Le	7 2			L	_	
	± 9	30°		-1) (%	2	2 ~	10) E		±001/3	
	0	00		0		ĭ		0		100	
•				ain x		വേള മ		tan x	,	cot a	
		-		`							•

 $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $tan(x \pm y) = \frac{tan x \pm tan y}{1 \mp tan x tan y}$ Additionstheoreme

 $1 - 2\sin^3 x = 2\cos^3 x - 1$ cos x - sin x $= 2 \sin x \cos x$ 2 tan x cota m-1 doppelter Winkel II $\cos 2x$ ein 2w $\tan 2x$ cot 2m

2 cot a halber Winkel

sing 1-cosg cos z sin z $\pm \sqrt{\frac{1}{2}(1+\cos x)}$ $\pm\sqrt{\frac{1}{2}(1-\cos x)}$ 1+cos x -COB 2 1-cos m 1-cos x *|| COB 3 sin @ BICA 3 0 tan cot

Vorzeichen je nach Quadranteni

Hyperbelfunktionen

sinh 0	cosh
$\cosh 0 = 1$	
e ^{2w} -1.	1
sinh w	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
П	II
22	BICS
tanh x	$\tanh \frac{x}{2}$
1	R
, an	0
+	B D
B	B
710	778
П	11
	12
l o	p,
$\cosh x = \frac{1}{2}(e^x + e^{-t}$	$\sinh x = \frac{1}{2}(e^2$

 $x^2 x - \sinh^2 x = 1$ $\cosh(-x) = \cosh x \ , \ \sinh(-x) = -\sinh x \ , \ \tanh(-x) = -\tanh x \ , \ \coth(-x) = -\coth x$

Additionstheoreme

 $\operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1}),$ $\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$ $\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$ $\cosh 2x = \cosh^2 x + \sinh^2 x$ $\sinh 2x = 2\sinh x \cosh x$

ungerade Funktion ungerade Funktion ungerade Funktion gerade Funktion - sin x COBIX - tan w -cot x 11 Symmetrie $\cos(-x)$ $\sin(-x)$ $\tan(-x)$ $\cot(-x)$

	tana	+ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	sin &	sin w ten w	-y
11	sin x ==	# III # 800	tan x ==	cot m ==	8
n. x =			T .		w+v
$\cos^2 x + \sin^2 x = 1$	$\cos^2 x = \frac{1}{2} (1 + \cos 2x)$	$\sin^2 w = \frac{1}{2} (1 - \cos 2x)$	$=\sin(\frac{\pi}{2}\pm x)$	$=\cos(\frac{\pi}{2}-x)$	una min una con min min
	11.	110	118	11	+ sin s
	cos 3	sin ³ a	COBT	sin x	Bin #

 $= 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$ 2 008 2 $\sin x - \sin y$

 $\frac{1}{2} \left(\cos(x-y) - \cos(x+y) \right)$ sin a · sin y

 $-2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$ = 2 cos x+y cos x-y 11 COB x + COB y COS x - COS y

 $= \frac{1}{2} \left(\cos(x-y) + \cos(x+y) \right)$ $\frac{1}{2} \left(\sin(x-y) + \sin(x+y) \right)$ Il COB W · COB y sin x · cos y

0 = 0, tanh 0 = 0

ы н VI V für $n \ge 1$ für $\sinh \frac{x}{2} = \pm \sqrt{\frac{1}{2}(\cosh x - 1)},$ $\operatorname{Arsinh} x = \ln(x + \sqrt{x^2 + 1})$ $\cosh \frac{x}{2} = \sqrt{\frac{1}{2}}(\cosh x + 1)$

FORMELSAMMLUNG

 $A_1\sin(\omega t + \varphi_1) + A_2\sin(\omega t + \varphi_2) = A\sin(\omega t + \varphi)$ Überlagerung von Schwingungen

 $\tan \varphi = \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2}$ (Quadranten beachten!) $= \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos(\varphi_1 - \varphi_2)}$

Binomialkoeffizienten

allgemeine

- g -

 $x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4}}$

 $r \in \mathbb{R}$ und $k = 1, 2, \dots$

 $\binom{k}{k} = \frac{i(r-1)\cdots(r-k+1)}{i}$

Quadranten beachten! $B \cos \omega t + C \sin \omega t = A \sin(\omega t + \varphi)$ $=\sqrt{B^2+C^2}$ OIR $\tan \varphi =$ $C = A \cos \varphi$ $B = A \sin \varphi$ Spezialfall:

Rechnen mit Potenzen und Logarithmen $\binom{r}{0} = \binom{r}{r} = 1, \quad \binom{r}{1} = r$

 $\log_a xy = \log_a x + \log_a y$ = - loga x a: Basis, mit $0 < a \neq 1$ $\log_a 1 = 0$ loga 1 $a^{x+y} = a^x a^y$ $a^{-n} = \frac{1}{a^n}$ $a^0 = 1$

 $\tan \varphi = \frac{y}{x}$ Quadranten

 $r = \sqrt{x^2 + y^2}$

 $= r \cos \varphi$ = $r \sin \varphi$

 $dF = r dr d\varphi$

Polarkoordinaten

 $x = x + iy = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}$

1y

Logarithmen zu verschiedenen Basen: $\log_a x = \frac{\log_b x}{\log_b a}$, speziell: $\log_a x = \frac{\ln x}{\ln a}$ loga x = r loga x $(a^{x})^{r} = a^{xr}$

 $=a^2+b^2$, falls $\gamma=90^0$.

Pythagoras

Kugelkoordinaten

 $= a^2 + b^2 - 2ab \cos \gamma$

Cosinussatz

 $\sin \gamma$ 11 Sinussatz $=\frac{\sin \beta}{b}$ sin a a

Zylinderkoordinaten

 $dV = \rho^2 \cos\theta \, d\rho \, d\theta \, d\varphi$

 $dV = \rho^2 \sin\theta \, d\rho \, d\theta \, d\varphi$

 $= \rho \cos \theta$

= $\rho \sin \theta \cos \varphi$ = $\rho \sin \theta \sin \varphi$

 $x = \rho \cos \theta \cos \varphi$ $y = \rho \cos \theta \sin \varphi$ $z = \rho \sin \theta$