WO03029424

Publication Title:

NOVEL PROTEINS AND NUCLEIC ACIDS ENCODING SAME

Abstract:

Abstract of WO03029424

The present invention provides novel isolated polynucleotides and small molecule target polypeptides encoded by the polynucleotides. Antibodies that immunospecifically bind to a novel small molecule target polypeptide or any derivative, variant, mutant or fragment of that polypeptide, polynucleotide or antibody are disclosed, as are methods in which the small molecule target polypeptide, polynucleotide and antibody are utilized in the detection and treatment of a broad range of pathological states. More speficically, the present invention discloses methods of using recombinantly expressed and/or endogenously expressed proteins in various screening procedures for the purpose of identifying therapeutic antibodies and therapeutic small molecules associated with diseases. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of e70 disorders involving any one of these novel human nucleic acids and proteins. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 10 April 2003 (10.04.2003)

PCT

(10) International Publication Number WO 03/029424 A2

(51)	International Pat	ent Classification ⁷ :	C12N	(63)	Related by continuous (CIP) to earlier	nuation (CON) or continuation-in-part
(21)	International App	plication Number: PCT/L	JS02/31373		US	60/326,483 (CIP)
	•				Filed on	2 October 2001 (02.10.2001)
(22)	International Fili	ng Date: 2 October 2002 (0	3 10 2002		US	60/373,815 (CIP)
(22)	Anternational Pin	ing Date: 2 October 2002 (t	J2.10.2002)		Filed on	19 April 2002 (19.04.2002)
(25)	-				US	60/327,917 (CIP)
(25)	Filing Language:		English		Filed on	9 October 2001 (09.10.2001)
					US	60/381,642 (CIP)
(26)	Publication Lang	uage:	English		Filed on	17 May 2002 (17.05.2002)
			_		US	60/328,029 (CIP)
(30)	Priority Data:				Filed on	9 October 2001 (09.10.2001)
` ,	60/326,483	2 October 2001 (02.10.2	001) US		US	60/381,038 (CIP)
	60/327,435	5 October 2001 (05.10.2)			Filed on	16 May 2002 (16.05.2002)
	60/327,449	5 October 2001 (05.10.2)			US	60/328,056 (CIP)
	60/327,917	9 October 2001 (09.10.2)			Filed on	9 October 2001 (09.10.2001)
	60/328,044	9 October 2001 (09.10.2)			US	60/373,260 (CIP)
	60/328,029	9 October 2001 (09.10.2)			Filed on	17 April 2002 (17.04.2002)
	60/328,056	9 October 2001 (09.10.2)			US	60/373,826 (CIP)
	60/328,849	12 October 2001 (12.10.20	001) US		Filed on	19 April 2002 (19.04.2002)
	60/329,414	15 October 2001 (15.10.20	001) US		US	60/327,435 (CIP)
	60/330,142	17 October 2001 (17.10.20			Filed on	5 October 2001 (05.10.2001)
	60/330,309	18 October 2001 (18.10.20			US	60/327,449 (CIP)
	60/341,058	22 October 2001 (22.10.20			Filed on	5 October 2001 (05.10.2001)
	60/343,629	24 October 2001 (24.10.20	001) US		US	60/373,884 (CIP)
	60/339,266	24 October 2001 (24.10.20	001) US		Filed on US	19 April 2002 (19.04.2002)
	60/349,575	29 October 2001 (29.10.20	001) US			60/328,044 (CIP)
	60/346,357	1 November 2001 (01.11.20	001) US		Filed on US	9 October 2001 (09.10.2001)
	60/373,260	17 April 2002 (17.04.20			Filed on	60/374,977 (CIP)
	60/373,815	19 April 2002 (19.04.20	002) US		US	22 April 2002 (22.04.2002)
=	60/373,884	19 April 2002 (19.04.20	002) US		Filed on	60/381,042 (CIP)
=	60/373,826	19 April 2002 (19.04.20			US	16 May 2002 (16.05.2002)
	60/373,817	19 April 2002 (19.04.20			Filed on	60/328,849 (CIP)
	60/374,977	22 April 2002 (22.04.20			US	12 October 2001 (12.10.2001)
	60/381,038	16 May 2002 (16.05.20			Filed on	60/329,414 (CIP)
	60/381,042	16 May 2002 (16.05.20	,		US	15 October 2001 (15.10.2001)
	60/381,037	16 May 2002 (16.05.20			Filed on	60/330,142 (CIP) 17 October 2001 (17.10.2001)
	60/381,642	17 May 2002 (17.05.20			US	
-	60/383,656	28 May 2002 (28.05.20			Filed on	60/330,309 (CIP) 18 October 2001 (18.10.2001)
•	60/383,831	29 May 2002 (29.05.20			US	60/341,058 (CIP)
	60/391,335	25 June 2002 (25.06.20	02) US		Filed on	22 October 2001 (22.10.2001)
	10/262,511	1 October 2002 (01.10.20	02) US		U S	60/343,629 (CIP)
					Filed on	24 October 2001 (24.10.2001)
						[Continued on next page]

(54) Title: NOVEL PROTEINS AND NUCLEIC ACIDS ENCODING SAME

(57) Abstract: The present invention provides novel isolated polynucleotides and small molecule target polypeptides encoded by the polynucleotides. Antibodies that immunospecifically bind to a novel small molecule target polypeptide or any derivative, variant, mutant or fragment of that polypeptide, polynucleotide or antibody are disclosed, as are methods in which the small molecule target polypeptide, polynucleotide and antibody are utilized in the detection and treatment of a broad range of pathological states. More speficically, the present invention discloses methods of using recombinantly expressed and/or endogenously expressed proteins in various screening procedures for the purpose of identifying therapeutic antibodies and therapeutic small molecules associated with diseases. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.

US	60/383,831 (CIP)
Filed on	29 May 2002 (29.05.2002)
US	60/339,266 (CIP)
Filed on	24 October 2001 (24.10.2001)
US	60/391,335 (CIP)
Filed on	25 June 2002 (25.06.2002)
US	60/349,575 (CIP)
Filed on	29 October 2001 (29.10.2001)
US	60/383,656 (CIP)
Filed on	28 May 2002 (28.05.2002)
US	60/373,817 (CIP)
Filed on	19 April 2002 (19.04.2002)
US	60/381,037 (CIP)
Filed on	16 May 2002 (16.05.2002)
US	60/346,357 (CIP)
Filed on	1 November 2001 (01.11.2001)
US	Not furnished (CIP)
Filed on	1 October 2002 (01.10.2002)
US	Not furnished (CIP)
Filed on	Not furnished

(71) Applicant (for all designated States except US): CURA-GEN CORPORATION [US/US]; 555 Long Wharf Drive, 11th floor, New Haven, CT 06511 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SMITHSON, Glennda [US/US]; 125 Michael Drive, Guilford, CT 06435 (US). MILLET, Isabelle [FR/US]; 74 Carrington Avenue, Milford, CT 06460 (US). PEYMAN, John, A. [US/US]; 336 West Rock Avenue, New Haven, CT 06515 (US). KEKUDA, Ramesh [IN/US]; 71 Aiken Street, Unit R3, Norwalk, CT 06851 (US). JU, Jingfang [US/US]; 391 Rosebud Lane, Orange, CT 06477 (US). LI, Li [CN/US]; 56 Jerimoth Drive, Branford, CT 06405 (US). GUO, Xiaojia [CN/US]; 713 Robert Frost Drive, Branford, CT 06405 (US). PATTURAJAN, Meera [IN/US]; 45 Harrison Avenue, Apt. 1C, Branford, CT 06405 (US). SPYTEK, Kimberly, A. [US/US]; 28 Court Street #1, New Haven, CT 06511 (US). EDINGER, Shlomit, R. [US/US]; 766 Edgewood Avenue, New Haven, CT 06515 (US). ELLERMAN, Karen [US/US]; 87 Montoya Drive, Branford, CT 06405 (US). MALYANKAR, Uriel, M. [IN/US]; 229 Branford Road, #330, Branford, CT 06405 (US). ORT, Tatiana [-/US]; 85 Viscount Drive, Apartment 61A, Milford, CT 06460 (US). GORMAN, Linda [US/US]; 329 Monticello Drive, Branford, CT 06405 (US). ZERHUSEN, Bryan, D. [US/US]; 337 Monticello Drive, Branford, CT 06405 (US). ANDERSON, David, W. [US/US]; 85 Montoya Drive, Branford, CT 06405 (US). ZHONG, Mei [CA/US]; 45 Harrison Avenue, Apartment 1B, Branford, CT 06405 (US). CATTERTON, Elina [FI/US]; 584, Boston Post Road, Madison, CT 06443 (US). JI, Weizhen [CN/US]; 3 Business Park Drive,

Room 101, Branford, CT 06405 (US). MILLER, Charles, E. [US/US]; 98 Saddle Hill Drive, Guilford, CT 06437 (US). RASTELLI, Luca [IT/US]; 52 Pepperbush Lane, Guilford, CT 06437 (US). STONE, David, J. [US/US]; 223 Whitehorn Drive, Guilford, CN 06437 (US). PENA, Carol, E., A. [US/US]; 604 Orange Street, Number 2, New Haven, CT 06511 (US). SHENOY, Suresh, G. [IN/US]; 15 Millwood Drive, Branford, CT 06405 (US). SHIMKETS, Richard, A. [US/US]: 5 Indian Meadows Drive, Guilford, Connecticut 06437 (US). ROTHEN-BERG, Mark, E. [US/US]; 2 Allen Road, Clinton, CT 06413 (US). LEACH, Martin, D. [GB/US]; 131 Beechwood Drive, Madison, CT 06433 (US). AGEE, Michele, L. [US/US]; 107 Knollwood Road, Wallingford, CT 06492 (US). BERGHS, Constance [NL/US]; 459 Orange Street, New Haven, CT 06511 (US). DIPIPPO, Vincent, A. [US/US]; 156 North Atwater Street, East Haven, CN 06512 (US). EISEN, Andrew, J. [US/US]; 12412 St. James Road, Rockville, MD 20850 (US). GANGOLLI, Esha, A. [IN/US]; 31 Strawberry Hill Road, Madison, CT 06443 (US). RIEGER, Daniel, K. [DE/US]; 10A McKinnel Court, Branford, CT 06405 (US). SPADERNA, Steven, K. [US/US]; 261 Deerfield Drive, Berlin, CT 06037 (US).

- (74) Agents: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C., One Financial Center, Boston, MA 02111 et al. (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

NOVEL PROTEINS AND NUCLEIC ACIDS ENCODING SAME

FIELD OF THE INVENTION

The present invention relates to novel polypeptides that are targets of small molecule drugs and that have properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof. Methods of use encompass diagnostic and prognostic assay procedures as well as methods of treating diverse pathological conditions.

BACKGROUND

Eukaryotic cells are characterized by biochemical and physiological processes which under normal conditions are exquisitely balanced to achieve the preservation and propagation of the cells. When such cells are components of multicellular organisms such as vertebrates, or more particularly organisms such as mammals, the regulation of the biochemical and physiological processes involves intricate signaling pathways. Frequently, such signaling pathways involve extracellular signaling proteins, cellular receptors that bind the signaling proteins and signal transducing components located within the cells.

5

10

15

20

25

30

Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors. Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue. The target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced. Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, for example two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid. The second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect. Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.

Signaling processes may elicit a variety of effects on cells and tissues including by way of nonlimiting example induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.

Many pathological conditions involve dysregulation of expression of important effector proteins. In certain classes of pathologies the dysregulation is manifested as diminished or suppressed level of synthesis and secretion of protein effectors. In other classes of pathologies the dysregulation is manifested as increased or up-regulated level of synthesis and secretion of protein effectors. In a clinical setting a subject may be suspected

of suffering from a condition brought on by altered or mist-regulated levels of a protein effector effector of interest. Therefore there is a need to assay for the level of the protein effector of interest in a biological sample from such a subject, and to compare the level with that characteristic of a nonpathological condition. There also is a need to provide the protein effector as a product of manufacture. Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest. In addition, there is a need for a method of treatment of a pathological condition brought on by a increased or up-regulated levels of the protein effector of interest.

Small molecule targets have been implicated in various disease states or pathologies. These targets may be proteins, and particularly enzymatic proteins, which are acted upon by small molecule drugs for the purpose of altering target function and achieving a desired result. Cellular, animal and clinical studies can be performed to elucidate the genetic contribution to the etiology and pathogenesis of conditions in which small molecule targets are implicated in a variety of physiologic, pharmacologic or native states. These studies utilize the core technologies at CuraGen Corporation to look at differential gene expression, protein-protein interactions, large-scale sequencing of expressed genes and the association of genetic variations such as, but not limited to, single nucleotide polymorphisms (SNPs) or splice variants in and between biological samples from experimental and control groups. The goal of such studies is to identify potential avenues for therapeutic intervention in order to prevent, treat the consequences or cure the conditions.

In order to treat diseases, pathologies and other abnormal states or conditions in which a mammalian organism has been diagnosed as being, or as being at risk for becoming, other than in a normal state or condition, it is important to identify new therapeutic agents. Such a procedure includes at least the steps of identifying a target component within an affected tissue or organ, and identifying a candidate therapeutic agent that modulates the functional attributes of the target. The target component may be any biological macromolecule implicated in the disease or pathology. Commonly the target is a polypeptide or protein with specific functional attributes. Other classes of macromolecule may be a nucleic acid, a polysaccharide, a lipid such as a complex lipid or a glycolipid; in addition a target may be a sub-cellular structure or extra-cellular structure that is comprised

of more than one of these classes of macromolecule. Once such a target has been identified, it may be employed in a screening assay in order to identify favorable candidate therapeutic agents from among a large population of substances or compounds.

In many cases the objective of such screening assays is to identify small molecule candidates; this is commonly approached by the use of combinatorial methodologies to develop the population of substances to be tested. The implementation of high throughput screening methodologies is advantageous when working with large, combinatorial libraries of compounds.

5

10

15

20

25

30

SUMMARY OF THE INVENTION

The invention includes nucleic acid sequences and the novel polypeptides they encode. The novel nucleic acids and polypeptides are referred to herein as NOVX, or NOV1, NOV2, NOV3, etc., nucleic acids and polypeptides. These nucleic acids and polypeptides, as well as derivatives, homologs, analogs and fragments thereof, will hereinafter be collectively designated as "NOVX" nucleic acid, which represents the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 124, or polypeptide sequences, which represents the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 124.

In one aspect, the invention provides an isolated polypeptide comprising a mature form of a NOVX amino acid. One example is a variant of a mature form of a NOVX amino acid sequence, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. The amino acid can be, for example, a NOVX amino acid sequence or a variant of a NOVX amino acid sequence, wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed. The invention also includes fragments of any of these. In another aspect, the invention also includes an isolated nucleic acid that encodes a NOVX polypeptide, or a fragment, homolog, analog or derivative thereof.

Also included in the invention is a NOVX polypeptide that is a naturally occurring allelic variant of a NOVX sequence. In one embodiment, the allelic variant includes an amino acid sequence that is the translation of a nucleic acid sequence differing by a single nucleotide from a NOVX nucleic acid sequence. In another embodiment, the NOVX

polypeptide is a variant polypeptide described therein, wherein any amino acid specified in the chosen sequence is changed to provide a conservative substitution. In one embodiment, the invention discloses a method for determining the presence or amount of the NOVX polypeptide in a sample. The method involves the steps of: providing a sample: introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the NOVX polypeptide, thereby determining the presence or amount of the NOVX polypeptide in the sample. In another embodiment, the invention provides a method for determining the presence of or predisposition to a disease associated with altered levels of a NOVX polypeptide in a mammalian subject. This method involves the steps of: measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in the sample of the first step to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.

5

10

15

20

25

30

In a further embodiment, the invention includes a method of identifying an agent that binds to a NOVX polypeptide. This method involves the steps of: introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. In various embodiments, the agent is a cellular receptor or a downstream effector.

In another aspect, the invention provides a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a NOVX polypeptide. The method involves the steps of: providing a cell expressing the NOVX polypeptide and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent. In another aspect, the invention describes a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with the NOVX polypeptide. This method involves the following steps: administering a test compound to a test animal at increased risk for a pathology associated with the NOVX polypeptide,

wherein the test animal recombinantly expresses the NOVX-polypeptide. If his method involves the steps of measuring the activity of the NOVX polypeptide in the test animal after administering the compound of step; and comparing the activity of the protein in the test animal with the activity of the NOVX polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the NOVX polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the NOVX polypeptide. In one embodiment, the test animal is a recombinant test animal that expresses a test protein transgene or expresses the transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein the promoter is not the native gene promoter of the transgene. In another aspect, the invention includes a method for modulating the activity of the NOVX polypeptide, the method comprising introducing a cell sample expressing the NOVX polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.

The invention also includes an isolated nucleic acid that encodes a NOVX polypeptide, or a fragment, homolog, analog or derivative thereof. In a preferred embodiment, the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant. In another embodiment, the nucleic acid encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant. In another embodiment, the nucleic acid molecule differs by a single nucleotide from a NOVX nucleic acid sequence. In one embodiment, the NOVX nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 124, or a complement of the nucleotide sequence. In another aspect, the invention provides a vector or a cell expressing a NOVX nucleotide sequence.

In one embodiment, the invention discloses a method for modulating the activity of a NOVX polypeptide. The method includes the steps of: introducing a cell sample expressing the NOVX polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide. In another embodiment, the invention includes an isolated NOVX nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising a NOVX amino acid sequence or a variant of a mature form of the NOVX amino acid sequence, wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more

than 15% of the amino acid residues in the sequence of the mature form are so changed. In another embodiment, the invention includes an amino acid sequence that is a variant of the NOVX amino acid sequence, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed.

5

10

15

20

25

30

In one embodiment, the invention discloses a NOVX nucleic acid fragment encoding at least a portion of a NOVX polypeptide or any variant of the polypeptide, wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed. In another embodiment, the invention includes the complement of any of the NOVX nucleic acid molecules or a naturally occurring allelic nucleic acid variant. In another embodiment, the invention discloses a NOVX nucleic acid molecule that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant. In another embodiment, the invention discloses a NOVX nucleic acid, wherein the nucleic acid molecule differs by a single nucleotide from a NOVX nucleic acid sequence.

In another aspect, the invention includes a NOVX nucleic acid, wherein one or more nucleotides in the NOVX nucleotide sequence is changed to a different nucleotide provided that no more than 15% of the nucleotides are so changed. In one embodiment, the invention discloses a nucleic acid fragment of the NOVX nucleotide sequence and a nucleic acid fragment wherein one or more nucleotides in the NOVX nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed. In another embodiment, the invention includes a nucleic acid molecule wherein the nucleic acid molecule hybridizes under stringent conditions to a NOVX nucleotide sequence or a complement of the NOVX nucleotide sequence. In one embodiment, the invention includes a nucleic acid molecule, wherein the sequence is changed such that no more than 15% of the nucleotides in the coding sequence differ from the NOVX nucleotide sequence or a fragment thereof.

In a further aspect, the invention includes a method for determining the presence or amount of the NOVX nucleic acid in a sample. The method involves the steps of: providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the NOVX

nucleic acid molecule, thereby determining the presence or amount of the NOVX hucleic acid molecule in the sample. In one embodiment, the presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.

5

10

15

20

25

30

In another aspect, the invention discloses a method for determining the presence of or predisposition to a disease associated with altered levels of the NOVX nucleic acid molecule of in a first mammalian subject. The method involves the steps of: measuring the amount of NOVX nucleic acid in a sample from the first mammalian subject; and comparing the amount of the nucleic acid in the sample of step (a) to the amount of NOVX nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as "NOVX nucleic acids" or "NOVX polynucleotides" and the corresponding encoded polypeptides are referred to as "NOVX polypeptides" or "NOVX proteins." Unless indicated otherwise, "NOVX" is meant to refer to any of the novel sequences disclosed herein. Table A provides a summary of the NOVX nucleic acids and their encoded polypeptides.

TABLE A. Sequences and Corresponding SEQ In Numbers

NOVX Assignment	Internal Identification	SEQ ID NO (nucleic acid)	SEQ ID NO (amino acid)	Homology
la	CG106764-01	1	2	Citron Kinase
1b	268667493	3	4	RHO/RAC-Interacting Citron Kinase
1c	268667539	5	6	RHO/RAC-Interacting Citron Kinase
1d	268667543	7	8	RHO/RAC-Interacting Citron Kinase
1e	268667555	9	10	RHO/RAC-Interacting Citron Kinase
lf	268667574	11	12	RHO/RAC-Interacting Citron Kinase
1g	CG106764-02	13	14	RHO/RAC-Interacting Citron Kinase
2a	CG117662-01	15	16	Renal Renin Precursor
2b	CG117662-02	17	18	Renal Renin Precursor
3a	CG118051-01	19	20	Aldehyde Dehydrogenase
3b	CG118051-02	21	22	Aldehyde Dehydrogenase
3c	CG118051-03	23	24	Aldehyde Dehydrogenase
4a	CG120277-01	25	26	Aldehyde Dehydrogenase-3
4b	CG120277-02	27	28	Aldehyde Dehydrogenase-3
5a	CG140468-01	29	30	Serine/Threonine-Protein Kinase PAK 1
5b	CG140468-02	31	32	Serine/Threonine-Protein Kinase PAK 1
6a	CG142182-01	33	34	Ubiquitin Carboxyl-terminal Hydrolase 15
7a	CG142564-01	35	36	Carnitine O-Palmitoyltransferase I
8a	CG142797-01	37	38	Cathepsin L
9a	CG143216-01	39	40	Laminin Gamma 3 Chain Precursor
10a	CG143787-01	41	42	Disintegrin Protease
10b	278889162	43	44	Disintegrin Protease
10c	278689868	45	46	Disintegrin Protease
11a ,	CG144112-01	47	48	NEUROPSIN PRECURSOR like homo sapiens
11b	CG144112-04	49	50	Neuropsin Precursor
11c	255501898	51	52	Neuropsin Precursor
11d	255612524	53	54	Neuropsin Precursor
11e	255612566	55	56	Neuropsin Precursor
11f	306434072	57	58	Neuropsin Precursor
11g	CG144112-02	59	60	Neuropsin Precursor
11h	CG144112-03	61	62	Neuropsin Precursor
12a	CG144497-01	63	64	Adenylosuccinate Synthetase Muscle Isozyme
13a	CG144686-01	65	66	Mast Cell Carboxypeptidase A Precursor
13b	278690008	67	68	Mast Cell Carboxypeptidase A Precursor
13c	278690035	69	70	Mast Cell Carboxypeptidase A Precursor
13d	CG144686-02	71	72	Mast Cell Carboxypeptidase A Precursor
14a	CG144906-01	73	74	Testisin Precursor
14b	CG144906-02	75	76	Testisin Precursor
15a	CG144997-01	77	78	RNase H I
15b	278693648	79	80	RNase H I
15c	278480974	81	82	RNase H I
15d	278498047	83	84	RNase H I

15e	CG144997-02	85	86	RNaseHI
16a	CG145494-01	87	88	PRESTIN
17a	CG145722-01	89	90	WEEI
18a	CG145754-01	91	92	Kallikrein 7 Precursor
18b	CG145754-03	93	94	Kallikrein 7 Precursor
18c	CG145754-02	95	96	Kallikrein 7 Precursor
18d	252718128	97	98	Kallikrein
18e	252718152	99	100	Kallikrein
18f	247856668	101	102	Kallikrein 7 Precursor
18g	247856705	103	104	Kallikrein 7 Precursor
19a	CG146279-01	T	106	Novel Potassium Channel Subfamily K
134	00110275 01	105	100	Member 10 (TREK-2)
20a	CG146374-01	107	108	Glycogen Branching Enzyme
21a	CG146403-01	109	110	Diacylglycerol Acyltransferase 2
22a	CG146513-01	111	112	Diacylglycerol Acyltransferase 2
23a	CG146522-01	113	114	Diacylglycerol Acyltransferase 2
24a	CG146531-01	115	116	Diacylglycerol Acyltransferase 2
25a	CG147274-01	117	118	Protease
26a	CG147351-01	119	120	Testis-Development Related NYD-SP27
27a	CG147419-01		122	Glutamine:Fructose-6-Phosphate
2/"	0014741701	121	122	Amidotransferase 1 Muscle Isoform
28a	CG148102-01	123	124	Carnitine O-Palmitoyltransferase
28b	CG148102-02	125	126	Carnitine O-Palmitoyltransferase
29a	CG148431-01	127	128	Class II Aminotransferase
29b	CG148431-02	129	130	Class II Aminotransferase
30a	CG148888-01	131	132	GALNAC 4-Sulfotransferase
31a	CG149008-01	133	134	Sodium/Hydrogen Exchanger
32a	CG149350-01	135	136	Vacuolar ATP Synthase Subunit F
32b	CG149350-02	137	138	Vacuolar ATP Synthase Subunit F
33a	CG149463-01	139	140	Serine/Threonine-Protein Kinase SGK
34a	CG149536-01	T	142	Protein-Tyrosine Phosphatase,
		141		Non-Receptor Type 2
35a	CG149964-01	143	144	Brain Mitochondrial Carrier Protein-1
35b	309326356	145	146	Brain Mitochondrial Carrier Protein-1
35c	309326444	147	148	Brain Mitochondrial Carrier Protein-1
35d	309326473	149	150	Brain Mitochondrial Carrier Protein-1
35e	CG149964-02	151	152	Brain Mitochondrial Carrier Protein-1
36a	CG150306-01	153	154	Dual Specificity Protein Phosphatase 5
37a	CG150510-01	155	156	Human Alpha-2,3-Sialyltransferase
38a	CG150704-01		158	Testis ecto-ADP-Ribosyltransferase
		157	1	Precursor
39a	CG150799-01	159	160	MASS1
39b	CG150799-02	161	162	MASS1
39c	CG150799-03	163	164	MASS1
39d	CG150799-01	165	166	MASS1
40a	CG151014-01	167	168	Metabotropic Glutamate Receptor 3
40b	CG151014-02	169	170	Metabotropic Glutamate Receptor 3
40c	CG151014-03	171	172	Metabotropic Glutamate Receptor 3
41a	CG151297-01		174	Calmodulin-Dependent
		173		Phosphodiesterase
41b	CG151297-02	175	176	Calmodulin-Dependent
			1	Phosphodiesterase

42a	CG151822-01	177	178	Prenylcysteine Carboxyl Methyltransferase
42b	CG151822-02	179	180	Prenylcysteine Carboxyl
43a	CG152256-01	181	182	Methyltransferase Phosphatidylserine Synthase
44a	CG171804-01	T	184	N-Acetylgalactosaminide Alpha 2.
		183		6-Sialyltransferase
45a	CG171841-01	185	186	Iron-Containing Alcohol Dehydrogenase
46a	CG173017-01	187	188	Retinoic Acid Receptor RXR-Beta
47a	CG173347-01	189	190	Serum Paraoxonase/Arylesterase 3
48a	CG56234-01	191	192	Phosphoenolpyruvate Carboxykinase 2 (PCK2)
48b	CG56234-02	193	194	Phosphoenolpyruvate Carboxykinase 2 (PCK2)
49a	CG56836-01	195	196	Cathepsin B
49b	CG56836-02	197	198	Cathepsin B
49c	CG56836-03	199	200	Cathepsin B
49d	CG56836-04	201	202	Cathepsin B
49e	247856403	203	204	Cathepsin B
49f	247856434	205	206	Cathepsin B
49g	247856497	207	208	Cathepsin B
49h	247856493	209	210	Cathepsin B
49i	247856574	211	212	Cathepsin B
49j	247856545	213	214	Cathepsin B
49k	275480714	215	216	Cathepsin B
50a	CG57284-01	217	218	RAS-Related Protein RAB-5C
50b	CG57284-03	219	220	RAS-Related Protein RAB-5C
50c	CG57284-02	221	222	RAS-Related Protein RAB-5C
51a	CG57308-01	223	224	Sulfonylurea Receptor 1
51b	CG57308-02	225	226	Sulfonylurea Receptor 1
52a	CG93659-01	227 .	228	Mitogen-Activated Protein Kinase Kinase Kinase 8
52b	CG93659-03	229	230	Mitogen-Activated Protein Kinase Kinase Kinase 8
· 52c	CG93659-02	231	232	Mitogen-Activated Protein Kinase Kinase Kinase 8
53a	CG94521-01	233	234	Cytoplasmic Glycerol-3-Phosphate Dehydrogenase [NAD+]
53b	CG94521-03	235	236	Cytoplasmic Glycerol-3-Phosphate Dehydrogenase [NAD+]
53c	CG94521-02	237	238	Cytoplasmic Glycerol-3-Phosphate Dehydrogenase [NAD+*]
54a	CG96613-01	239	240	Pyruvate Dehydrogenase Kinase (PDK1)
54b	CG96613-03	241	242	Pyruvate Dehydrogenase Kinase (PDK1)
54c	CG96613-02	243	244	Pyruvate Dehydrogenase Kinase (PDK1)
55a	CG96736-01	245	246	Neutral Amino Acid Transporter B
55b	CG96736-02	247	248	Neutral Amino Acid Transporter B

Table A indicates the homology of NOVX polypeptides to known protein families.

⁵ Thus, the nucleic acids and polypeptides, antibodies and related compounds according to

the invention corresponding to a NOVX as identified in column 1 of Table A will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table A.

5

10

15

20

25

30

Pathologies, diseases, disorders and condition and the like that are associated with NOVX sequences include, but are not limited to: e.g., cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, metabolic disturbances associated with obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, diabetes, metabolic disorders, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease; multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers, as

NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.

well as conditions such as transplantation and fertility.

Consistent with other known members of the family of proteins, identified in column 5 of Table A, the NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Example A.

The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of

small molecules that modulate or inhibit diseases associated with the protein families listed in Table A.

The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example C. Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e.g. detection of a variety of cancers.

Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.

NOVX clones

10

15

20

25

30

NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.

The NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e.g., by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each of the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.

The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration *in vitro* and *in vivo* (vi) a biological defense weapon.

In one specific embodiment, the invention includes an isolated polypertide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 124; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 124, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 124; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 124 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and (e) a fragment of any of (a) through (d).

5

10

15

20

25

30

In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 124; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 124 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 124; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 124, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; (e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 124 or any variant of said polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and (f) the complement of any of said nucleic acid molecules.

In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 124; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 124 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 124; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 124 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.

15 NOVX Nucleic Acids and Polypeptides

5

10

20

25

30

One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.

A NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a "mature" form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length gene product encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein. The product "mature" form arises, by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell (e.g., host

cell) in which the gene product arises. Examples of such processing steps leading to a "mature" form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a "mature" form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.

The term "probe", as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), about 100 nt, or as many as approximately, e.g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single-stranded or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.

The term "isolated" nucleic acid molecule, as used herein, is a nucleic acid that is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (*i.e.*, sequences located at the 5'- and 3'-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (*e.g.*, brain, heart, liver, spleen, *etc.*). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium, or of chemical precursors or other chemicals.

A nucleic acid molecule of the invention, e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, or a complement of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, et al., (eds.), Molecular Cloning: A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, et al., (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1993.)

5

10

15

20

25

30

A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template with appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.

Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

As used herein, the term "oligonucleotide" refers to a series of linked nucleotide residues. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NO:2*n*-1, wherein *n* is an integer between 1 and 124, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.

In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, or a portion of this nucleotide sequence (e.g., a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of a NOVX polypeptide). A nucleic acid molecule that is complementary to the nucleotide sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, is one that is sufficiently complementary to the nucleotide

sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, that it can hydrogen bond with few or no mismatches to the nucleotide sequence shown in SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, thereby forming a stable duplex.

5

10

15

20

25

30

As used herein, the term "complementary" refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term "binding" means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.

A "fragment" provided herein is defined as a sequence of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, and is at most some portion less than a full length sequence. Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.

A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 5' direction of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 3' direction of the disclosed sequence.

A "derivative" is a nucleic acid sequence or amino acid sequence formed from the native compounds either directly, by modification or partial substitution. An "analog" is a nucleic acid sequence or amino acid sequence that has a structure similar to, but not identical to, the native compound, e.g. they differs from it in respect to certain components or side chains. Analogs may be synthetic or derived from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type. A

"homolog" is a nucleic acid sequence or amino acid sequence of a particular gene that is derived from different species.

5

10

15

20

25

30

Derivatives and analogs may be full length or other than full length. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the proteins under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1993, and below.

A "homologous nucleic acid sequence" or "homologous amino acid sequence," or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences include those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for a NOVX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, as well as a polypeptide possessing NOVX biological activity. Various biological activities of the NOVX proteins are described below.

A NOVX polypeptide is encoded by the open reading frame ("ORF") of a NOVX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is

uninterrupted by a stop codon. An ORP that represents the coding sequence for a full protein begins with an ATG "start" codon and terminates with one of the three "stop" codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a *bona fide* cellular protein, a minimum size requirement is often set, *e.g.*, a stretch of DNA that would encode a protein of 50 amino acids or more.

5

10

15

20

25

30

The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124; or an anti-sense strand nucleotide sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124; or of a naturally occurring mutant of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124.

Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe has a detectable label attached, e.g. the label can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express a NOVX protein, such as by measuring a level of a NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.

"A polypeptide having a biologically-active portion of a NOVX polypeptide" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a "biologically-active portion of NOVX" can be prepared by isolating a portion of SEQ ID NO:2*n*-1, wherein *n* is an integer between 1 and 124, that encodes a polypeptide having a NOVX biological activity (the biological activities of the NOVX proteins are described

(B)

below), expressing the encoded portion of NOVX protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX.

NOVX Nucleic Acid and Polypeptide Variants

5

10

15

20

25

30

The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 124.

In addition to the human NOVX nucleotide sequences of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population). Such genetic polymorphism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame (ORF) encoding a NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.

Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from a human SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the

B .

nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO.2n-1, wherein n is an integer between 1 and 124. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least about 65% homologous to each other typically remain hybridized to each other.

5

10

15

20

25

30

Homologs (i.e., nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences (e.g., paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.

As used herein, the phrase "stringent hybridization conditions" refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5 °C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 °C for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60 °C for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.

Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM

o to .

EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/mi denatured salmon sperm."

DNA at 65°C, followed by one or more washes in 0.2X SSC, 0.01% BSA at 50°C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2*n*-1, wherein *n* is an integer between 1 and 124, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6X SSC, 5X Reinhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55 °C, followed by one or more washes in 1X SSC, 0.1% SDS at 37 °C. Other conditions of moderate stringency that may be used are well-known within the art. *See*, *e.g.*, Ausubel, et *al.* (eds.), 1993, Current Protocols IN Molecular Biology, John Wiley & Sons, NY, and Krieger, 1990; GENE TRANSFER AND Expression, A Laboratory Manual, Stockton Press, NY.

In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences of SEQ ID NO:2*n*-1, wherein *n* is an integer between 1 and 124, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are hybridization in 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40°C, followed by one or more washes in 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50°C. Other conditions of low stringency that may be used are well known in the art (*e.g.*, as employed for cross-species hybridizations). See, e.g., Ausubel, et al. (eds.), 1993, Current Protocols in Molecular Biology, John Wiley & Sons, NY, and Kriegler, 1990, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY; Shilo and Weinberg, 1981. *Proc Natl Acad Sci USA* 78: 6789-6792.

Conservative Mutations

5

10

15

20

25

30

In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be

introduced by mutation into the nucleotide sequences of SECTID NO!2n-1, wherein n is an integer between 1 and 124, thereby leading to changes in the amino acid sequences of the encoded NOVX protein, without altering the functional ability of that NOVX protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 124. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an "essential" amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.

5

10

15

20

25

30

Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 40% homologous to the amino acid sequences of SEQ ID NO:2n, wherein n is an integer between 1 and 124. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 124; more preferably at least about 70% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 124; still more preferably at least about 80% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 124; even more preferably at least about 90% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 124; and most preferably at least about 95% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 124.

An isolated nucleic acid molecule encoding a NOVX protein homologous to the protein of SEQ ID NO:2n, wherein n is an integer between 1 and 124, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.

Mutations can be introduced any one of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, by standard techniques, such as site-directed mutagenesis and

PCR-mediated mutagenesis. Preferably, conservative ardino acid substitutions are made at one or more predicted, non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis of a nucleic acid of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.

5

10

15

20

25

30

The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved "strong" residues or fully conserved "weak" residues. The "strong" group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the "weak" group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, HFY, wherein the letters within each group represent the single letter amino acid code.

In one embodiment, a mutant NOVX protein can be assayed for (i) the ability to form protein:protein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and a NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).

In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).

Interfering RNA

5

10

15

20

25

30

In one aspect of the invention, NOVX gene expression can be attenuated by RNA interference. One approach well-known in the art is short interfering RNA (siRNA) mediated gene silencing where expression products of a NOVX gene are targeted by specific double stranded NOVX derived siRNA nucleotide sequences that are complementary to at least a 19-25 nt long segment of the NOVX gene transcript, including the 5' untranslated (UT) region, the ORF, or the 3' UT region. See, e.g., PCT applications WO00/44895, WO99/32619, WO01/75164, WO01/92513, WO 01/29058, WO01/89304, WO02/16620, and WO02/29858, each incorporated by reference herein in their entirety. Targeted genes can be a NOVX gene, or an upstream or downstream modulator of the NOVX gene. Nonlimiting examples of upstream or downstream modulators of a NOVX gene include, e.g., a transcription factor that binds the NOVX gene promoter, a kinase or phosphatase that interacts with a NOVX polypeptide, and polypeptides involved in a NOVX regulatory pathway.

According to the methods of the present invention, NOVX gene expression is silenced using short interfering RNA. A NOVX polynucleotide according to the invention includes a siRNA polynucleotide. Such a NOVX siRNA can be obtained using a NOVX polynucleotide sequence, for example, by processing the NOVX ribopolynucleotide sequence in a cell-free system, such as but not limited to a Drosophila extract, or by transcription of recombinant double stranded NOVX RNA or by chemical synthesis of nucleotide sequences homologous to a NOVX sequence. See, e.g., Tuschl, Zamore, Lehmann, Bartel and Sharp (1999), Genes & Dev. 13: 3191-3197, incorporated herein by reference in its entirety. When synthesized, a typical 0.2 micromolar-scale RNA synthesis provides about 1 milligram of siRNA, which is sufficient for 1000 transfection experiments using a 24-well tissue culture plate format.

The most efficient silencing is generally observed with siRNA duplexes composed of a 21-nt sense strand and a 21-nt antisense strand, paired in a manner to have a 2-nt 3' overhang. The sequence of the 2-nt 3' overhang makes an additional small contribution to the specificity of siRNA target recognition. The contribution to specificity is localized to the unpaired nucleotide adjacent to the first paired bases. In one embodiment, the nucleotides in the 3' overhang are ribonucleotides. In an alternative embodiment, the

nucleotides in the 3' overhang are deoxyribonucleotides. "Using 2'-deoxyribonucleotides in " the 3' overhangs is as efficient as using ribonucleotides, but deoxyribonucleotides are often cheaper to synthesize and are most likely more nuclease resistant.

5

10

15

A contemplated recombinant expression vector of the invention comprises a NOVX DNA molecule cloned into an expression vector comprising operatively-linked regulatory sequences flanking the NOVX sequence in a manner that allows for expression (by transcription of the DNA molecule) of both strands. An RNA molecule that is antisense to NOVX mRNA is transcribed by a first promoter (e.g., a promoter sequence 3' of the cloned DNA) and an RNA molecule that is the sense strand for the NOVX mRNA is transcribed by a second promoter (e.g., a promoter sequence 5' of the cloned DNA). The sense and antisense strands may hybridize in vivo to generate siRNA constructs for silencing of the NOVX gene. Alternatively, two constructs can be utilized to create the sense and anti-sense strands of a siRNA construct. Finally, cloned DNA can encode a construct having secondary structure, wherein a single transcript has both the sense and complementary antisense sequences from the target gene or genes. In an example of this embodiment, a hairpin RNAi product is homologous to all or a portion of the target gene. In another example, a hairpin RNAi product is a siRNA. The regulatory sequences flanking the NOVX sequence may be identical or may be different, such that their expression may be modulated independently, or in a temporal or spatial manner.

In a specific embodiment, siRNAs are transcribed intracellularly by cloning the 20 NOVX gene templates into a vector containing, e.g., a RNA pol III transcription unit from the smaller nuclear RNA (snRNA) U6 or the human RNase P RNA H1. One example of a vector system is the GeneSuppressorTM RNA Interference kit (commercially available from Imgenex). The U6 and H1 promoters are members of the type III class of Pol III promoters. 25 The +1 nucleotide of the U6-like promoters is always guanosine, whereas the +1 for H1 promoters is adenosine. The termination signal for these promoters is defined by five consecutive thymidines. The transcript is typically cleaved after the second uridine. Cleavage at this position generates a 3' UU overhang in the expressed siRNA, which is similar to the 3' overhangs of synthetic siRNAs. Any sequence less than 400 nucleotides in length can be transcribed by these promoter, therefore they are ideally suited for the 30 expression of around 21-nucleotide siRNAs in, e.g., an approximately 50-nucleotide RNA stem-loop transcript.

A siRNA vector appears to have an advantage over synthetic siRNAs where long term knock-down of expression is desired. Cells transfected with a siRNA expression vector would experience steady, long-term mRNA inhibition. In contrast, cells transfected with exogenous synthetic siRNAs typically recover from mRNA suppression within seven days or ten rounds of cell division. The long-term gene silencing ability of siRNA expression vectors may provide for applications in gene therapy.

5

10

15

20

25

30

In general, siRNAs are chopped from longer dsRNA by an ATP-dependent ribonuclease called DICER. DICER is a member of the RNase III family of double-stranded RNA-specific endonucleases. The siRNAs assemble with cellular proteins into an endonuclease complex. *In vitro* studies in Drosophila suggest that the siRNAs/protein complex (siRNP) is then transferred to a second enzyme complex, called an RNA-induced silencing complex (RISC), which contains an endoribonuclease that is distinct from DICER. RISC uses the sequence encoded by the antisense siRNA strand to find and destroy mRNAs of complementary sequence. The siRNA thus acts as a guide, restricting the ribonuclease to cleave only mRNAs complementary to one of the two siRNA strands.

A NOVX mRNA region to be targeted by siRNA is generally selected from a desired NOVX sequence beginning 50 to100 nt downstream of the start codon. Alternatively, 5' or 3' UTRs and regions nearby the start codon can be used but are generally avoided, as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP or RISC endonuclease complex. An initial BLAST homology search for the selected siRNA sequence is done against an available nucleotide sequence library to ensure that only one gene is targeted. Specificity of target recognition by siRNA duplexes indicate that a single point mutation located in the paired region of an siRNA duplex is sufficient to abolish target mRNA degradation. See, Elbashir *et al.* 2001 EMBO J. 20(23):6877-88. Hence, consideration should be taken to accommodate SNPs, polymorphisms, allelic variants or species-specific variations when targeting a desired gene.

In one embodiment, a complete NOVX siRNA experiment includes the proper negative control. A negative control siRNA generally has the same nucleotide composition as the NOVX siRNA but lack significant sequence homology to the genome. Typically, one would scramble the nucleotide sequence of the NOVX siRNA and do a homology search to make sure it lacks homology to any other gene.

Two independent NOVX siRNA duplexes can be used to knock-down a target. NOVX gene. This helps to control for specificity of the silencing effect. In addition, expression of two independent genes can be simultaneously knocked down by using equal concentrations of different NOVX siRNA duplexes, e.g., a NOVX siRNA and an siRNA for a regulator of a NOVX gene or polypeptide. Availability of siRNA-associating proteins is believed to be more limiting than target mRNA accessibility.

5

10

15

20

25

30

A targeted NOVX region is typically a sequence of two adenines (AA) and two thymidines (TT) divided by a spacer region of nineteen (N19) residues (e.g., AA(N19)TT). A desirable spacer region has a G/C-content of approximately 30% to 70%, and more preferably of about 50%. If the sequence AA(N19)TT is not present in the target sequence, an alternative target region would be AA(N21). The sequence of the NOVX sense siRNA corresponds to (N19)TT or N21, respectively. In the latter case, conversion of the 3' end of the sense siRNA to TT can be performed if such a sequence does not naturally occur in the NOVX polynucleotide. The rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3' overhangs. Symmetric 3' overhangs may help to ensure that the siRNPs are formed with approximately equal ratios of sense and antisense target RNA-cleaving siRNPs. See, e.g., Elbashir, Lendeckel and Tuschl (2001). Genes & Dev. 15: 188-200, incorporated by reference herein in its entirely. The modification of the overhang of the sense sequence of the siRNA duplex is not expected to affect targeted mRNA recognition, as the antisense siRNA strand guides target recognition.

Alternatively, if the NOVX target mRNA does not contain a suitable AA(N21) sequence, one may search for the sequence NA(N21). Further, the sequence of the sense strand and antisense strand may still be synthesized as 5' (N19)TT, as it is believed that the sequence of the 3'-most nucleotide of the antisense siRNA does not contribute to specificity. Unlike antisense or ribozyme technology, the secondary structure of the target mRNA does not appear to have a strong effect on silencing. See, Harborth, et al. (2001) J. Cell Science 114: 4557-4565, incorporated by reference in its entirety.

Transfection of NOVX siRNA duplexes can be achieved using standard nucleic acid transfection methods, for example, OLIGOFECTAMINE Reagent (commercially available from Invitrogen). An assay for NOVX gene silencing is generally performed approximately 2 days after transfection. No NOVX gene silencing has been observed in the absence of transfection reagent, allowing for a comparative analysis of the wild-type

and silenced NOVX phenotypes. In a specific embodiment, for one well of a 24-well plate, approximately 0.84 μ g of the siRNA duplex is generally sufficient. Cells are typically seeded the previous day, and are transfected at about 50% confluence. The choice of cell culture media and conditions are routine to those of skill in the art, and will vary with the choice of cell type. The efficiency of transfection may depend on the cell type, but also on the passage number and the confluency of the cells. The time and the manner of formation of siRNA-liposome complexes (e.g. inversion versus vortexing) are also critical. Low transfection efficiencies are the most frequent cause of unsuccessful NOVX silencing. The efficiency of transfection needs to be carefully examined for each new cell line to be used. Preferred cell are derived from a mammal, more preferably from a rodent such as a rat or mouse, and most preferably from a human. Where used for therapeutic treatment, the cells are preferentially autologous, although non-autologous cell sources are also contemplated as within the scope of the present invention.

For a control experiment, transfection of 0.84 μ g single-stranded sense NOVX siRNA will have no effect on NOVX silencing, and 0.84 μ g antisense siRNA has a weak silencing effect when compared to 0.84 μ g of duplex siRNAs. Control experiments again allow for a comparative analysis of the wild-type and silenced NOVX phenotypes. To control for transfection efficiency, targeting of common proteins is typically performed, for example targeting of lamin A/C or transfection of a CMV-driven EGFP-expression plasmid (e.g. commercially available from Clontech). In the above example, a determination of the fraction of lamin A/C knockdown in cells is determined the next day by such techniques as immunofluorescence, Western blot, Northern blot or other similar assays for protein expression or gene expression. Lamin A/C monoclonal antibodies may be obtained from Santa Cruz Biotechnology.

Depending on the abundance and the half life (or turnover) of the targeted NOVX polynucleotide in a cell, a knock-down phenotype may become apparent after 1 to 3 days, or even later. In cases where no NOVX knock-down phenotype is observed, depletion of the NOVX polynucleotide may be observed by immunofluorescence or Western blotting. If the NOVX polynucleotide is still abundant after 3 days, cells need to be split and transferred to a fresh 24-well plate for re-transfection. If no knock-down of the targeted protein is observed, it may be desirable to analyze whether the target mRNA (NOVX or a NOVX upstream or downstream gene) was effectively destroyed by the transfected siRNA duplex. Two days after transfection, total RNA is prepared, reverse transcribed using a

target-specific primer, and PCR-amplified with a primer pair covering at least one exon-exon junction in order to control for amplification of pre-mRNAs. RT/PCR of a non-targeted mRNA is also needed as control. Effective depletion of the mRNA yet undetectable reduction of target protein may indicate that a large reservoir of stable NOVX protein may exist in the cell. Multiple transfection in sufficiently long intervals may be necessary until the target protein is finally depleted to a point where a phenotype may become apparent. If multiple transfection steps are required, cells are split 2 to 3 days after transfection. The cells may be transfected immediately after splitting.

5

10

15

20

25

30

An inventive therapeutic method of the invention contemplates administering a NOVX siRNA construct as therapy to compensate for increased or aberrant NOVX expression or activity. The NOVX ribopolynucleotide is obtained and processed into siRNA fragments, or a NOVX siRNA is synthesized, as described above. The NOVX siRNA is administered to cells or tissues using known nucleic acid transfection techniques, as described above. A NOVX siRNA specific for a NOVX gene will decrease or knockdown NOVX transcription products, which will lead to reduced NOVX polypeptide production, resulting in reduced NOVX polypeptide activity in the cells or tissues.

The present invention also encompasses a method of treating a disease or condition associated with the presence of a NOVX protein in an individual comprising administering to the individual an RNAi construct that targets the mRNA of the protein (the mRNA that encodes the protein) for degradation. A specific RNAi construct includes a siRNA or a double stranded gene transcript that is processed into siRNAs. Upon treatment, the target protein is not produced or is not produced to the extent it would be in the absence of the treatment.

Where the NOVX gene function is not correlated with a known phenotype, a control sample of cells or tissues from healthy individuals provides a reference standard for determining NOVX expression levels. Expression levels are detected using the assays described, e.g., RT-PCR, Northern blotting, Western blotting, ELISA, and the like. A subject sample of cells or tissues is taken from a mammal, preferably a human subject, suffering from a disease state. The NOVX ribopolynucleotide is used to produce siRNA constructs, that are specific for the NOVX gene product. These cells or tissues are treated by administering NOVX siRNA's to the cells or tissues by methods described for the transfection of nucleic acids into a cell or tissue, and a change in NOVX polypeptide or polynucleotide expression is observed in the subject sample relative to the control sample,

using the assays described. This NOVX gene knockdown approach provides a rapid method for determination of a NOVX minus (NOVX) phenotype in the treated subject sample. The NOVX phenotype observed in the treated subject sample thus serves as a marker for monitoring the course of a disease state during treatment.

In specific embodiments, a NOVX siRNA is used in therapy. Methods for the generation and use of a NOVX siRNA are known to those skilled in the art. Example techniques are provided below.

Production of RNAs

5

10

15

20

25

30

Sense RNA (ssRNA) and antisense RNA (asRNA) of NOVX are produced using known methods such as transcription in RNA expression vectors. In the initial experiments, the sense and antisense RNA are about 500 bases in length each. The produced ssRNA and asRNA (0.5 μM) in 10 mM Tris-HCl (pH 7.5) with 20 mM NaCl were heated to 95° C for 1 min then cooled and annealed at room temperature for 12 to 16 h. The RNAs are precipitated and resuspended in lysis buffer (below). To monitor annealing, RNAs are electrophoresed in a 2% agarose gel in TBE buffer and stained with ethidium bromide. See, e.g., Sambrook et al., Molecular Cloning. Cold Spring Harbor Laboratory Press, Plainview, N.Y. (1989).

Lysate Preparation

Untreated rabbit reticulocyte lysate (Ambion) are assembled according to the manufacturer's directions. dsRNA is incubated in the lysate at 30° C for 10 min prior to the addition of mRNAs. Then NOVX mRNAs are added and the incubation continued for an additional 60 min. The molar ratio of double stranded RNA and mRNA is about 200:1. The NOVX mRNA is radiolabeled (using known techniques) and its stability is monitored by gel electrophoresis.

In a parallel experiment made with the same conditions, the double stranded RNA is internally radiolabeled with a ³²P-ATP. Reactions are stopped by the addition of 2 X proteinase K buffer and deproteinized as described previously (Tuschl *et al.*, Genes Dev., 13:3191-3197 (1999)). Products are analyzed by electrophoresis in 15% or 18% polyacrylamide sequencing gels using appropriate RNA standards. By monitoring the gels for radioactivity, the natural production of 10 to 25 nt RNAs from the double stranded RNA can be determined.

The band of double stranded RNA, about 21-23 bps, is eluded. The efficacy of these 21-23 mers for suppressing NOVX transcription is assayed in vitro using the same rabbit reticulocyte assay described above using 50 nanomolar of double stranded 21-23 mer for each assay. The sequence of these 21-23 mers is then determined using standard nucleic acid sequencing techniques.

RNA Preparation

5

10

15

20

25

30

21 nt RNAs, based on the sequence determined above, are chemically synthesized using Expedite RNA phosphoramidites and thymidine phosphoramidite (Proligo, Germany). Synthetic oligonucleotides are deprotected and gel-purified (Elbashir, Lendeckel, & Tuschl, Genes & Dev. 15, 188-200 (2001)), followed by Sep-Pak C18 cartridge (Waters, Milford, Mass., USA) purification (Tuschl, et al., Biochemistry, 32:11658-11668 (1993)).

These RNAs (20 μ M) single strands are incubated in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4, 2 mM magnesium acetate) for 1 min at 90° C followed by 1 h at 37° C.

Cell Culture

A cell culture known in the art to regularly express NOVX is propagated using standard conditions. 24 hours before transfection, at approx. 80% confluency, the cells are trypsinized and diluted 1:5 with fresh medium without antibiotics (1-3 X 105 cells/ml) and transferred to 24-well plates (500 ml/well). Transfection is performed using a commercially available lipofection kit and NOVX expression is monitored using standard techniques with positive and negative control. A positive control is cells that naturally express NOVX while a negative control is cells that do not express NOVX. Base-paired 21 and 22 nt siRNAs with overhanging 3' ends mediate efficient sequence-specific mRNA degradation in lysates and in cell culture. Different concentrations of siRNAs are used. An efficient concentration for suppression in vitro in mammalian culture is between 25 nM to 100 nM final concentration. This indicates that siRNAs are effective at concentrations that are several orders of magnitude below the concentrations applied in conventional antisense or ribozyme gene targeting experiments.

The above method provides a way both for the deduction of NOVX siRNA sequence and the use of such siRNA for in vitro suppression. In vivo suppression may be

performed using the same siRNA using well known in vivo transfection or gene therapy transfection techniques.

Antisense Nucleic Acids

5

10

15

20

25

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a NOVX protein of SEQ ID NO:2n, wherein n is an integer between 1 and 124, or antisense nucleic acids complementary to a NOVX nucleic acid sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding a NOVX protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding the NOVX protein. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (*i.e.*, also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of NOVX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using

chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).

5

25

30

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-carboxymethylaminomethyl-2-thiouridine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyluracil, dihydrouracil, 10 beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 5-methoxyuracil, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, 2-thiouracil, 4-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 15 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into 20 which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a NOVX protein to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense

interest, described further in the following subsection).

molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641. The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (See, e.g., Inoue, et al. 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (See, e.g., Inoue, et al., 1987. FEBS Lett. 215: 327-330.

Ribozymes and PNA Moieties

5

10

15

20

25

30

Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.

In one embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of a NOVX cDNA disclosed herein (i.e., SEQ ID NO:2n-1, wherein n is an integer between 1 and 124). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, e.g., U.S. Patent 4,987,071 to Cech, et al. and U.S. Patent 5,116,742 to Cech, et al. NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease

activity from a pool of RNA molecules. See, e.g., Bartel et dt., (1993) Science 261:1411-1418.

5

10

15

20

25

30

Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, e.g., Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al. 1992. Ann. N.Y. Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.

In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al., 1996. Bioorg Med Chem 4: 5-23. As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleotide bases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomer can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al., 1996. supra; Perry-O'Keefe, et al., 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.

PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S₁ nucleases (See, Hyrup, et al., 1996.supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).

In another embodiment, PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow

DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleotide bases, and orientation (see, Hyrup, et al., 1996. supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al., 1996. supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA. See, e.g., Mag, et al., 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment. See, e.g., Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, e.g., Petersen, et al., 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al., 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al., 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988. Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.

25 NOVX Polypeptides

5

10

15

20

30

A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in any one of SEQ ID NO:2n, wherein n is an integer between 1 and 124. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in any one of SEQ ID NO:2n, wherein n is an integer between 1 and 124, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.

In general, a NOVX variant that preserves NOVX*like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.

5

10

15

20

25

30

One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, NOVX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, a NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.

An "isolated" or "purified" polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the language "substantially free of cellular material" includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins. When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, *i.e.*, culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one

embodiment, the language "substantially free of chemical precursors of other chemicals" includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.

5

10

15

20

25

30

Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 124) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of a NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A biologically-active portion of a NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.

Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein.

In an embodiment, the NOVX protein has an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 124. In other embodiments, the NOVX protein is substantially homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 124, and retains the functional activity of the protein of SEQ ID NO:2n, wherein n is an integer between 1 and 124, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 124, and retains the functional activity of the NOVX proteins of SEQ ID NO:2n, wherein n is an integer between 1 and 124.

Determining Homology Between Two or More Sequences

To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then

compared. When a position in the first sequence is occupied by the same affine action residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity").

The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. J Mol Biol 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124.

The term "sequence identity" refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term "substantial identity" as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.

Chimeric and Fusion Proteins

5

10

15

20

25

30

The invention also provides NOVX chimeric or fusion proteins. As used herein, a NOVX "chimeric protein" or "fusion protein" comprises a NOVX polypeptide operatively-linked to a non-NOVX polypeptide. An "NOVX polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a NOVX protein of SEQ ID NO:2n, wherein n is an integer between 1 and 124, whereas a "non-NOVX polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein that is not

substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within a NOVX fusion protein the NOVX polypeptide can correspond to all or a portion of a NOVX protein. In one embodiment, a NOVX fusion protein comprises at least one biologically-active portion of a NOVX protein. In another embodiment, a NOVX fusion protein comprises at least two biologically-active portions of a NOVX protein. In yet another embodiment, a NOVX fusion protein comprises at least three biologically-active portions of a NOVX protein. Within the fusion protein, the term "operatively-linked" is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another. The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.

5

10

15

20

25

30

In one embodiment, the fusion protein is a GST-NOVX fusion protein in which the NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.

In another embodiment, the fusion protein is a NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.

In yet another embodiment, the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The NOVX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a NOVX ligand and a NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction *in vivo*. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of a NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g. promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to

NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with a NOVX ligand.

A NOVX chimeric or fusion protein of the invention earl be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) Current Protocols in Molecular Biology, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.

NOVX Agonists and Antagonists

5

10

15

20

25

30

The invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (*i.e.*, mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis (*e.g.*, discrete point mutation or truncation of the NOVX protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein. An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the NOVX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.

Variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (e.g., truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is

variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein. There are a variety of methods which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences. Methods for synthesizing degenerate oligonucleotides are well-known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al., 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; Ike, et al., 1983. Nucl. Acids Res. 11: 477.

Polypeptide Libraries

5

10

15

20

. 25

30

In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of a NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S₁ nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.

Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of

vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci. USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.

Anti-NOVX Antibodies

5

10

15

20

25

30

Included in the invention are antibodies to NOVX proteins, or fragments of NOVX proteins. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, *i.e.*, molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , F_{ab} , and $F_{(ab)2}$ fragments, and an F_{ab} expression library. In general, antibody molecules obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG_1 , IgG_2 , and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 124, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes

encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

5

10

15

20

25

30

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

The term "epitope" includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. A NOVX polypeptide or a fragment thereof comprises at least one antigenic epitope. An anti-NOVX antibody of the present invention is said to specifically bind to antigen NOVX when the equilibrium binding constant (K_D) is $\leq 1~\mu M$, preferably $\leq 100~n M$, more preferably $\leq 10~n M$, and most preferably $\leq 100~p M$ to about 1 pM, as measured by assays such as radioligand binding assays or similar assays known to those skilled in the art.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor

Laboratory Press, Cold Spring Harbor, NY, incorporated herein by references. Some of these antibodies are discussed below.

Polyclonal Antibodies

5

10

. 15

20

25

30

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

Monoclonal Antibodies

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular

10 m

species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

5

10

15

20

25

30

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J.

Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). It is an objective, especially important in therapeutic applications of monoclonal antibodies, to identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.

5

10

15

20

25

30

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding,1986). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13

(1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

Humanized Antibodies

5

10

15

20

25

30

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fy, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

Human Antibodies

Fully human antibodies essentially relate to antibody molecules in which the entire sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies"

herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, *e.g.*, mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al,(Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the

XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

5

10

15

20

25

30

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

Fab Fragments and Single Chain Antibodies

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a

protein or derivatives, fragments, analogs or homologs thereof. "Antibody fragments that" contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab)2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab)2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_{v} fragments.

Bispecific Antibodies

5

10

15

20

25

30

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers

which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

5

10

15

20

25

30

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were

reduced at the hinge region to form monomers and then re-oxidized to the the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).

Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

Heteroconjugate Antibodies

5

10

15

20

25

30

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include

iminothiolate and methyl-4-mercaptobutyrimidate and these disclosed, For example, in U.S. Patent No. 4,676,980.

Effector Function Engineering

5

10

15

20

25

30

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

Immunoconjugates

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as

dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

Immunoliposomes

15

20

25

30

The antibodies disclosed herein can also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al·., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon *et al.*, J. National Cancer Inst., 81(19): 1484 (1989).

Diagnostic Applications of Antibodies Directed Against the Proteins of the Invention

In one embodiment, methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme linked immunosorbent assay (ELISA)

and other immunologically mediated techniques known within the art. The a specific embodiment, selection of antibodies that are specific to a particular domain of an NOVX protein is facilitated by generation of hybridomas that bind to the fragment of an NOVX protein possessing such a domain. Thus, antibodies that are specific for a desired domain within an NOVX protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

5

10

30

Antibodies directed against a NOVX protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of a NOVX protein (e.g., for use in measuring levels of the NOVX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies specific to a NOVX protein, or derivative, fragment, analog or homolog thereof, that contain the antibody derived antigen binding domain, are utilized as pharmacologically active compounds (referred to hereinafter as "Therapeutics").

15 An antibody specific for a NOVX protein of the invention (e.g., a monoclonal antibody or a polyclonal antibody) can be used to isolate a NOVX polypeptide by standard techniques, such as immunoaffinity, chromatography or immunoprecipitation. An antibody to a NOVX polypeptide can facilitate the purification of a natural NOVX antigen from cells, or of a recombinantly produced NOVX antigen expressed in host cells. Moreover, such an anti-NOVX antibody can be used to detect the antigenic NOVX protein (e.g., in a 20 cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the antigenic NOVX protein. Antibodies directed against a NOVX protein can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a 25 detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of

bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

Antibody Therapeutics

5

10

15

20

25

30

Antibodies of the invention, including polyclonal, monoclonal, humanized and fully human antibodies, may used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject. An antibody preparation, preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target. Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question. In the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an effector molecule. Thus the receptor mediates a signal transduction pathway for which ligand is responsible.

Alternatively, the effect may be one in which the antibody elicits a physiological result by virtue of binding to an effector binding site on the target molecule. In this case the target, a receptor having an endogenous ligand which may be absent or defective in the disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.

A therapeutically effective amount of an antibody of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response. The amount required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week.

Pharmaceutical Compositions of Antibodies

5

10

15

20

25

30

Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington: The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.

If the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

Sustained-release preparations can be prepared. Suitable examples of solid hydrophobic sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.

ELISA Assay

5

10

15

20

25

30

An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab)2) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term "biological sample", therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting

immunoassays are described, for example in "ELISA: Theory and Practice! Methods in Molecular Biology", Vol. 42, J. R. Crowther (Ed.) Human Press, Totowa, NJ, 1995; "Immunoassay", E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, CA, 1996; and "Practice and Thory of Enzyme Immunoassays", P. Tijssen, Elsevier Science Publishers, Amsterdam, 1985. Furthermore, *in vivo* techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

NOVX Recombinant Expression Vectors and Host Cells

5

10

15

20

25

30

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector,

"operably-linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an *in vitro* transcription/translation system or in a host cell when the vector is introduced into the host cell).

5

10

15

20

25

30

The term "regulatory sequence" is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY:

METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as *Escherichia coli*, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out in *Escherichia coli* with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the

fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

5

10

15

20

25

30

Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amrann *et al.*, (1988) *Gene* 69:301-315) and pET 11d (Studier *et al.*, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).

One strategy to maximize recombinant protein expression in *E. coli* is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. *See, e.g.*, Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in *E. coli* (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the NOVX expression vector is a yeast expression vector. Examples of vectors for expression in yeast *Saccharomyces cerivisae* include pYepSec1 (Baldari, *et al.*, 1987. *EMBO J.* 6: 229-234), pMFa (Kurjan and Herskowitz, 1982. *Cell* 30: 933-943), pJRY88 (Schultz *et al.*, 1987. *Gene* 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).

Alternatively, NOVX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. *Nature* 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly

used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

5

10

15

20

25

30

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) and immunoglobulins (Banerji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379) and the α -fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a

discussion of the regulation of gene expression using antisense génes see, e.g., Weintraub, et al., "Antisense RNA as a molecular tool for genetic analysis," Reviews-Trends in Genetics, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

5

10

15

20

25

30

A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can be expressed in bacterial cells such as *E. coli*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection

(e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.

10 Transgenic NOVX Animals

5

15

20

25

30

The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g., by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant

5

10

15

20

25

30

female foster animal. The human NOVX cDNA sequences, i.e., any one of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: MANIPULATING THE MOUSE EMBRYO, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.

To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene. The NOVX gene can be a human gene (e.g., the cDNA of any one of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).

Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby

alter the expression of the endogenous NOVX protein). In the homologous recombination vector, the altered portion of the NOVX gene is flanked at its 5'- and 3'-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5'- and 3'-termini) are included in the vector. See, e.g., Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected. See, e.g., Li, et al., 1992. Cell 69: 915.

The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras. See, e.g., Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. Curr. Opin. Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.

In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, See, e.g., Lakso, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae. See, O'Gorman, et al., 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic

animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al., 1997. Nature 385: 810-813. In brief, a cell (e.g., a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter G_0 phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (e.g., the somatic cell) is isolated.

Pharmaceutical Compositions

5

10

15

20

25

30

The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also referred to herein as "active compounds") of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration. Solutions or suspensions used for

parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

5

10

15

20

25

30

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required

other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

5

10

15

20

25

30

Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable,

biocompatible polymers can be used, such as ethylene vinyl acetate, polyannydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Patent No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

30 Screening and Detection Methods

5

10

15

20

25

The isolated nucleic acid molecules of the invention can be used to express NOVX protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (e.g., in a biological sample) or a genetic lesion in a

NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (e.g.; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.

The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, *supra*.

Screening Assays

5

10

15

20

25

30

The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, *i.e.*, candidate or test compounds or agents (*e.g.*, peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, *e.g.*, NOVX protein expression or NOVX protein activity. The invention also includes compounds identified in the screening assays described herein.

In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a NOVX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.

A "small molecule" as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.

5

10

15

20

25

30

Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et al., 1994. Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37: 2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2059; Carell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2061; and Gallop, et al., 1994. J. Med. Chem. 37: 1233.

Libraries of compounds may be presented in solution (e.g., Houghten, 1992. Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Patent No. 5,223,409), spores (Ladner, U.S. Patent 5,233,409), plasmids (Cull, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991. J. Mol. Biol. 222: 301-310; Ladner, U.S. Patent No. 5,233,409.).

In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to a NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with ¹²⁵I, ³⁵S, ¹⁴C, or ³H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound

form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.

5

10

15

20

25

30

In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule. As used herein, a "target molecule" is a molecule with which a NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A NOVX target molecule can be a non-NOVX molecule or a NOVX protein or polypeptide of the invention. In one embodiment, a NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g. a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.

Determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e. intracellular Ca²⁺, diacylglycerol, IP₃, etc.), detecting catalytic/enzymatic

activity of the target an appropriate substrate, detecting the induction of a reporter generatively linked to a nucleic acid encoding a NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.

5

10

15

20

25

30

In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting a NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.

In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to a NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate a NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.

In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises

determining the ability of the NOVX protein to preferentially bind to or modulate the activity of a NOVX target molecule.

5

10

15

20

25

30

The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein. In the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylglucoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton[®] X-100, Triton[®] X-114, Thesit[®], Isotridecypoly(ethylene glycol ether). N-dodecyl, N N dimethyl 2 ammonia 1 amenable to use of both the soluble form of the membrane-bound form of NOVX protein.

Isotridecypoly(ethylene glycol ether)_n, N-dodecyl--N,N-dimethyl-3-ammonio-1-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-1-propane sulfonate (CHAPSO).

In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NOVX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.

Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target

molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.

In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (*i.e.*, statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression. Alternatively, when expression of NOVX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression. The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.

In yet another aspect of the invention, the NOVX proteins can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos, et al., 1993. Cell 72: 223-232; Madura, et al., 1993. J. Biol. Chem. 268: 12046-12054; Bartel, et al., 1993. Biotechniques 14: 920-924; Iwabuchi, et al., 1993. Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX ("NOVX-binding proteins" or "NOVX-bp") and modulate NOVX activity. Such NOVX-binding proteins are also involved in the propagation of signals by

the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.

The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.

Detection Assays

10

15

20

25

30

Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.

Chromosome Mapping

Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a

41

5

10

15

20

25

30

chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.

Briefly, NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the NOVX sequences will yield an amplified fragment.

Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, e.g., D'Eustachio, et al., 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.

Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600

bases. However, clones larger than 1,000 bases have a higher likelihood of binding to all unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., Human Chromosomes: A Manual of Basic Techniques (Pergamon Press, New York 1988).

Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, e.g., in McKusick, Mendelian Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland, et al., 1987. Nature, 325: 783-787.

Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.

Tissue Typing

4. **4**°

5

10

15

20

25

30

The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for

RFLP ("restriction fragment length polymorphisms," described in U.S. Patent No. 5,272,057).

Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the 5'- and 3'-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.

Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).

Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If coding sequences, such as those of SEQ ID NO:2*n*-1, wherein *n* is an integer between 1 and 124, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.

Predictive Medicine

5

10

15

20

25

30

The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an

individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in a NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.

Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as "pharmacogenomics"). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)

Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.

These and other agents are described in further detail in the following sections.

Diagnostic Assays

نعر 🙀

5

10

15

20

25

30

An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NO:2n-1, wherein n is an integer between 1 and 124, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or

4- PC

5

10

15

20

25

30

500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.

An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')2) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of NOVX genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.

In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and

comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.

The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.

Prognostic Assays

5

10

15

20

25

30

The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.

Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder. Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e.g., wherein the presence of NOVX protein or nucleic

acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity).

5

10

15

20

25

30

The methods of the invention can also be used to detect genetic lesions in a NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding a NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from a NOVX gene; (ii) an addition of one or more nucleotides to a NOVX gene; (iii) a substitution of one or more nucleotides of a NOVX gene, (iv) a chromosomal rearrangement of a NOVX gene; (v) an alteration in the level of a messenger RNA transcript of a NOVX gene, (vi) aberrant modification of a NOVX gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild-type splicing pattern of a messenger RNA transcript of a NOVX gene, (viii) a non-wild-type level of a NOVX protein, (ix) allelic loss of a NOVX gene, and (x) inappropriate post-translational modification of a NOVX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a NOVX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.

In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al., 1988. Science 241: 1077-1080; and Nakazawa, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (see, Abravaya, et al., 1995. Nucl. Acids Res. 23: 675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to a NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or

detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

5

10

15

20

25

30

Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Qß Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In an alternative embodiment, mutations in a NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Patent No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

In other embodiments, genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g., Cronin, et al., 1996. Human Mutation 7: 244-255; Kozal, et al., 1996. Nat. Med. 2: 753-759. For example, genetic mutations in NOVX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the NOVX gene and detect mutations by comparing the sequence of the sample NOVX with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, e.g., Naeve, et al., 1995. Biotechniques 19: 448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen, et al., 1996. Adv. Chromatography 36: 127-162; and Griffin, et al., 1993. Appl. Biochem. Biotechnol. 38: 147-159).

5

10

15

20

25

30

Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, e.g., Myers, et al., 1985. Science 230: 1242. In general, the art technique of "mismatch cleavage" starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S₁ nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al., 1988. Proc. Natl. Acad. Sci. USA 85: 4397; Saleeba, et al., 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection.

In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of *E. coli* cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. *See, e.g.*, Hsu, *et al.*, 1994. *Carcinogenesis* 15: 1657-1662.

According to an exemplary embodiment, a probe based on a NOVX sequence, e.g., a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Patent No. 5,459,039.

5

10

15

20

25

30

In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, e.g., Orita, et al., 1989. Proc. Natl. Acad. Sci. USA: 86: 2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi, 1992. Genet. Anal. Tech. Appl. 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g., Keen, et al., 1991. Trends Genet. 7: 5.

In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE). See, e.g., Myers, et al., 1985. Nature 313: 495. When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 1987. Biophys. Chem. 265: 12753.

Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki, et al., 1986. Nature 324: 163; Saiki, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 6230. Such allele

specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.

Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; *see*, *e.g.*, Gibbs, *et al.*, 1989. *Nucl. Acids Res.* 17: 2437-2448) or at the extreme 3'-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (*see*, *e.g.*, Prossner, 1993. *Tibtech.* 11: 238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. *See*, *e.g.*, Gasparini, *et al.*, 1992. *Mol. Cell Probes* 6: 1. It is anticipated that in certain embodiments amplification may also be performed using *Taq* ligase for amplification. *See*, *e.g.*, Barany, 1991. *Proc. Natl. Acad. Sci. USA* 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3'-terminus of the 5' sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a NOVX gene.

Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which NOVX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.

Pharmacogenomics

5

10

15

20

25

30

Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity (e.g., NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.

In conjunction with such treatment, the pharmacogenomics (***e**, the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.

Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol., 23: 983-985; Linder, 1997. Clin. Chem., 43: 254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.

As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome pregnancy zone protein precursor enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly

polymorphic and several mutations have been identified in PM, which all-lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.

Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.

Monitoring of Effects During Clinical Trials

5

10

15

20

25

30

Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase NOVX gene expression, protein levels, or upregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a "read out" or markers of the immune responsiveness of a particular cell.

By way of example, and not of limitation, genes, including NOVX, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule)

that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.

In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, i.e., to decrease the effectiveness of the agent.

Methods of Treatment

5

10

15

20

25

The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those

diseases, disorders, or conditions associated with homologistof a NOVX protein, such as those summarized in Table A.

These methods of treatment will be discussed more fully, below.

Diseases and Disorders

5

10

15

20

25

30

Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize (*i.e.*, reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: (*i*) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (*ii*) antibodies to an aforementioned peptide; (*iii*) nucleic acids encoding an aforementioned peptide; (*iv*) administration of antisense nucleic acid and nucleic acids that are "dysfunctional" (*i.e.*, due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to "knockout" endogenous function of an aforementioned peptide by homologous recombination (*see*, *e.g.*, Capecchi, 1989. *Science* 244: 1288-1292); or (*v*) modulators (*i.e.*, inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.

Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase (*i.e.*, are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.

Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, and the like).

Prophylactic Methods

5

10

15

20

25

30

In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity. Subjects at risk for a disease that is caused or contributed to by aberrant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, a NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.

Therapeutic Methods

Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell. An agent that modulates NOVX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of a NOVX protein, a peptide, a NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a NOVX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity. In another

embodiment, the method involves administering a NOVX protein of nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.

Stimulation of NOVX activity is desirable *in situ*ations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation (*e.g.*, cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease (*e.g.*, preclampsia).

Determination of the Biological Effect of the Therapeutic

5

10

15

25

30

In various embodiments of the invention, suitable *in vitro* or *in vivo* assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.

In various specific embodiments, *in vitro* assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for *in vivo* testing, any of the animal model system known in the art may be used prior to administration to human subjects.

20 Prophylactic and Therapeutic Uses of the Compositions of the Invention

The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.

As an example, a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from diseases, disorders, conditions and the like, including but not limited to those listed herein.

Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein

the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule (i.e., some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.

The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

EXAMPLES

Example A: Polynucleotide and Polypeptide Sequences, and Homology Data

10 Example 1.

5

The NOV1 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1A.

Table 1A. NOV	1 Sequence Analysis		The state of the s
	SEQ ID NO: 1	6189 bp	
NOV1a,	ATGTTGAAGTTCAAATATGGAGC	GCGGAATCCTTTGGATGCT	GGTGCTGAACCCATTGCCAGC
CG106764-01	GGCCTCCAGGCTGAATCTGTTCT	TCCAGGGGAAACCACCCTT	ͲϪͲϾϪϹͲϹϪϪϹϪϾϹϪϾϪͲϾͲϹͲϹϾ
	TTTCCCGAGAAGGGATATTAGAT	GCCCTCTTTGTTCTCTTTG	A AGA AጥGC ACTC ACCCTCCTCTC x o
DNA Sequence	AAGATTAAGCACGTGAGCAACTT	TGTCCGGAAGTGTTCCGAC	ACCATACCTCACTTACACCACCTCC
	GCCTTCGGCAAAGGACTTCGAAG	TCAGAAGTCTTGTAGGTTG	ͳĠĠͲϹϷϹͲͲͲĠϹͲĠϷϷϭͲϭϹϷϲϲͲϭ
	TAAGAGAGAAAGCAACCGGGGAC	ATCTATGCTATGAAAGTGA	TGA AGA AGA AGGCTTTT ATTTCCCCCC
	GAGCAGGTTTCATTTTTTGAGGA	AGAGCGGAACATATTATCT	CGAAGCACAAGCCCCGTGGATCCCCC
	ATTACAGTATGCCTTTCAGGACA	AAAATCACCTTTATCTGGT(うみずららみなずみずいないいでんけんはんだん
	TIGCTGTCACTTTTTGAATAGATAT	GAGGACCAGTTAGATGAAA	ることがいった かいりゅう かいりゅう とくりゅう こうりょう
	CTGATTTTGGCTGTTCACAGCGT	TCATCTGATGGGATACGTG	^ጉ ልጥሮርርርልሮልጥሮል ልርሮሮጥር አርነ አ <i>ርነ</i>
	TCTCGTTGACCGCACAGGACACA	TCAAGCTGGTGGATTTTGG <i>1</i>	ATCTGCCGCGA
	AGGTGAATGCCAAACTCCCGATT	GGGACCCCAGATTACATGG(TCCTGAAGTGCTGACTGTGATGA
	GGGGATGGAAAAGGCACCTACGG	CCTGGACTGTGACTGGTGGT	CAGTGGCGTGATTGCCTATGAGA
	GATTTATGGGAGATCCCCCTTCG	CAGAGGGAACCTCTGCCAGA	AACCTTCAATAACATTATGAATTTC
	AGCGGTTTTTGAAATTTCCAGATG	GACCCCAAAGTGAGCAGTGA	\ርጥጥጥርጥጥር <u>እ ጥርጥር እ</u> ጥጥር እ አርርጥባ
	TTGTGCGGCCAGAAAGAGAGAGACT	GAAGTTTGAAGGTCTTTGCT	የርርርር ልጥር ርጥጥጥር የተመረጥር ጥል አ አ መመረ
	CTGGAACAACATTCGTAACGCTC(CTCCCCCCTTCGTTCCCACC	CTCAAGTCTGACCATGACACCCC
	ATTTTGATGAACCAGAGAAGAAT	PCGTGGGTTTCATCCTCTCC	<u> </u>
	TUGGGTGAAGAACTGCCGTTTGT(GGGTTTTCGTACAGCAAGG	CACTGGGGATTCTTGCTAGATCTC
	GTCTGTTGTGTCGGGTCTGGACT(CCCTGCCAAGACTAGCTCC	:AጥGGAAAAGAAACጥጥርጥር አጥር አ አ አ
	GCAAAGAGCTACAAGACTCTCAG(SACAAGTGTCACAAGATGGA	、GCAGGAAATCACCCCCTTTACATCC
	AGAGTGTCAGAGGTGGAGGCTGT(SCTTAGTCAGAAGGAGGTGG	こうしゅうしゅうかつサンコンシスムションスグ
	ATCCCTCCTGGAGCAGGACCTTGG	CTACCTACATCACAGAATGC	AGTAGCTTAAAGCGAAGTTTGGAG
	AAGCACGGATGGAGGTGTCCCAG(SAGGATGACAAAGCACTGCA	$(GC\Psi\PsiC\PsiC\PsiC\Delta\PsiG\Delta\PsiG\Phi\PsiC\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG\DeltaG$
	AGCCGGAAGCTCCAAGAAATCAA	\GAGCAGGAGTACCAGGCTC	AAGTGGAAGAAATGAGGTTGATGA
	GAATCAGTTGGAAGAGGGATCTTG	CTCAGCAAGAAGACGGAGT	プログラン・ストリン・ストリン・ストリン・ストリン・ストリン・ストリン・ストリン・ストリ
	AGTCTCGGCTTGCTGCTGAAGAAT	PTCAAGCGGAAAGCGACAGA	ልጥርጥር እርር እጥል እልርጥር ጥጥር እ እርርር
	JAAGGATCAGGGGAAGCCTGAAGTC	GGAGAATATGCGAAACTGG	AGAAGATCAATGCTCAGCACCACCACC
	CAAAATTCAGGAGCTCCAAGAGA	ACTGGAGAAGGCTGTAAAA	GCCAGCACGGAGGCCACCGAGCTC
	TGCAGAATATCCGCCAGGCAAAGG	AGCGAGCCGAGAGGGAGCT	'GGAGAAGCTGCAGA გCCGAGAGCG A
	TCTTCTGAAGGCATCAGAAAGAAG	CTGGTGGAAGCTGAGGAAC	GCCGCCATTCTCTGGAGAACAACC
	AAAGAGACTAGAGACCATGGAGCG	STAGAGAAAACAGACTGAAG	はみからみにみかたいるのなのなる みんかいいっかん
	AGATCCAGCAGATGGCTGATAAA	TTCTGGAGCTCGAAGAGA	ACATCGGGAGGCCCCAAGTCTCACC
	CAGCACCTAGAAGTGCACCTGAAA	CAGAAAGAGCAGCACTATG	AGGAAAAGA TITA A ACITA TITICA CA
	TCAGATAAAGAAAGACCTGGCTGA	CAAGGAGACACTGGAGAAC	ATGATGCAGAGACACGAGGAGGAC
	CCCATGAGAAGGGCAAAATTCTCA	GCGAACAGAAGGCGATGAT	<u>でるる中にでする中ににる中中ででるるであった。</u>
	TCCCTGGAACAGAGGATTGTGGAA	CTGTCTGAAGCCAATAAAC	ጥጥርር ልርር ል ል ውስርር ልርጥር መመመመካ
	CCAAAGGAACATGAAGGCCCAAGA	AGAGATGATTTCTGAACTC	AGGCAACAGAAATTTTACCTGGAG

CACAGGCTGGGAAGTTGGAGGCCCAGAACCGAAAACTGGAGAGCAGCTGGAGAAGATCAGCTACCAA GACCACAGTGACAAGAATCGGCTGCTGGAACTGGAGACAAGATTGCGGGAGGTGAGTCTAGAGCACGA GGAGCAGAAACTGGAGCTCAAGCGCCAGCTCACAGAGCTACAGCTCTCCCTGCAGGAGCGCGAGTCAC AGTTGACAGCCCTGCAGGCTGCACGGGCGGCCCTGGAGAGCCAGCTTCGCCAGGCGAAGACAGAGCTG GAAGAGACCACAGCAGAAGCTGAAGAGGAGATCCAGGCACTCACGGCACATAGAGATGAAATCCAGCG CAAATTTGATGCTCTTCGTAACAGCTGTACTGTGATCACAGACCTGGAGGAGCAGCTAAACCAGCTGA CCGAGGACAACGCTGAACTCAACAACCAAAACTTCTACTTGTCCAAACAACTCGATGAGGCTTCTGGC GCCAACGACGAGATTGTACAACTGCGAAGTGAAGTGGACCATCTCCGCCGGGAGATCACGGAACGAGA GATGCAGCTTACCAGCCAGAAGCAAACGATGGAGGCTCTGAAGACCACGTGCACCATGCTGGAGGAAC AGGTCATGGATTTGGAGGCCCTAAACGATGAGCTGCTAGAAAAAGAGCGGCAGTGGGAGGCCTGGAGG AGCGTCCTGGGTGATGAGAAATCCCAGTTTGAGTGTCGGGTTCGAGAGCTGCAGAGGATGCTGGACAC CGAGAAACAGAGCAGGGCGAGAGCCGATCAGCGGATCACCGAGTCTCGCCAGGTGGTGGAGCTGGCAG TGAAGGAGCACAAGGCTGAGATTCTCGCTCTGCAGCAGGCTCTCAAAGAGCAGAAGCTGAAGGCCGAG ACAGCAGAAGCTGGAGACTGAACGAGAGCTCAAACAGAGGCTTCTGGAAGAGCAAGCCAAATTACAGC AGCAGATGGACCTGCAGAAAAATCACATTTTCCGTCTGACTCAAGGACTGCAAGAAGCTCTAGATCGG GCTGATCTACTGAAGACAGAAAGAAGTGACTTGGAGTATCAGCTGGAAAACATTCAGGTGCTCTATTC AAATGGACCAACCTGCTAAAAAGAAAAAGGTGCCTCTGCAGTACAATGAGCTGAAGCTGGCCCTGGAG AAGGAGAAAGCTCGCTGTGCAGAGCTAGAGGAAGCCCTTCAGAAGACCCGCATCGAGCTCCGGTCCGC AGCAGATCGCCATGTCTGCCATCGTGCGGTCGCCAGAGCACCAGCCCAGTGCCATGAGCCTGCTGGCC CCGCCATCCAGCCGCAGAAAGGAGTCTTCAACTCCAGAGGAATTTAGTCGGCGTCTTAAGGAACGCAT GCACCACAATATTCCTCACCGATTCAACGTAGGACTGAACATGCGAGCCACAAAGTGTGCTGTGTGTC TGGATACCGTGCACTTTGGACGCCAGGCATCCAAATGTCTAGAATGTCAGGTGATGTGTCACCCCAAG TGCTCCACGTGCTTGCCAGCCACCTGCGGCTTGCCTGAATATGCCACACACTTCACCGAGGCCTT CTGCCGTGACAAAATGAACTCCCCAGGTCTCCAGACCAAGGAGCCCAGCAGCAGCTTGCACCTGGAAG GGTGGATGAAGGTGCCCAGGAATAACAAACGAGGACAGCAAGGCTGGGACAGGAAGTACATTGTCCTG GAGGGATCAAAAGTCCTCATTTATGACAATGAAGCCAGAGAAGCTGGACAGAGGCCGGTGGAAGAATT TGAGCTGTGCCTTCCCGACGGGGATGTATCTATTCATGGTGCCGTTGGTGCTTCCGAACTCGCAAATA CAGCCAAAGCAGATGTCCCATACATACTGAAGATGGAATCTCACCCGCACACCACCTGCTGGCCCGGG AGAACCCTCTACTTGCTAGCTCCCAGCTTCCCTGACAAACAGCGCTGGGTCACCGCCTTAGAATCAGT TGTCGCAGGTGGGAGAGTTTCTAGGGAAAAAGCAGAAGCTGATGCTAAACTGCTTGGAAACTCCCTGC TGAAACTGGAAGGTGATGACCGTCTAGACATGAACTGCACGCTGCCCTTCAGTGACCAGGTAGTGTTG GTGGGCACCGAGGAAGGGCTCTACGCCCTGAATGTCTTGAAAAACTCCCTAACCCATGTCCCAGGAAT TGGAGCAGTCTTCCAAATTTATATTATCAAGGACCTGGAGAAGCTACTCATGATAGCAGGTGAAGAGC GAACGGGCTCTGCATCTGTGCAGCCATGCCCAGCAAAGTCGTCATTCTCCGCTACAACGAAAACCTCA GCAAATACTGCATCCGGAAAGAGATAGAGACCTCAGAGCCCTGCAGCTGTATCCACTTCACCAATTAC AGTATCCTCATTGGAACCAATAAATTCTACGAAATCGACATGAAGCAGTACACGCTCGAGGAATTCCT GGATAAGAATGACCATTCCTTGGCACCTGCTGTGTTTGCCGCCTCTTCCAACAGCTTCCCTGTCTCAA TCGTGCAGGTGAACAGCGCAGGGCAGCGAGAGGAGTACTTGCTGTTTTCCACGAATTTGGAGTGTTC GTGGATTCTTACGGAAGACGTAGCCGCACAGACGATCTCAAGTGGAGTCGCTTACCTTTGGCCTTTGC CCTCAGCAGGGACCCCTGCCCGAGCGTACCTGGACATCCCGAACCCGCGCTACCTGGGCCCTGCCATT TCCTCAGGAGCGATTTACTTGGCGTCCTCATACCAGGATAAATTAAGGGTCATTTGCTGCAAGGGAAA CCTCGTGAAGGAGTCCGGCACTGAACACCACCGGGGCCCGTCCACCTCCCGCAGCAGCCCCAACAAGC GAGGCCCACCCACGTACAACGAGCACATCACCAAGCGCGTGGCCTCCAGCCCAGCGCCGCCCGAAGGC CTGTCCCAGGTGAACAAGGTGTGGGACCAGTCTTCAGTA**TAA**ATCTCAGCCAGAAAAACCAACTCCTC ORF Start: ATG at 1 ORF Stop: TAA at 6160

SEQ ID NO: 2	2053 aa	MW at 234700:1kD
EQVSFFEEERNILSRSTSPWIPE EQVSFFEEERNILSRSTSPWIPE LILAVHSVHLMGYVHRDIKPEN GDGKGTYGLDCDWWSVGVIAYE LCGQKERLKFEGLCCHPFFSKII SGEELPFVGFSYSKALGILGRS RVSEVEAVLSQKEVELKASETQI SRKLQEIKEQEYQAQVEEMRLM KDQGKPEVGEYAKLEKINAEQOI	RASRLNLFFQGKPPFMTQQQ QPSAKDFEVRSLVGCGHFAE QLQYAFQDKNHLYLVMEYQP ILVDRTGHIKLVDFGSAAKM MIYGRSPFAEGTSARTFNNI DWNNIRNAPPPFVPTLKSDD ESVVSGLDSPAKTSSMEKKL RSLLEQDLATYITECSSLKR MVQLEEDLVSARRRSDLYES LKIOELOEKLEKAVKASTEA	MSPLSREGILDALFVLFEECSQPALM VQVVREKATGDIYAMKVMKKKALLAQ GGDLLSLLNRYEDQLDENLIQFYLAE NSNKVNAKLPIGTPDYMAPEVLTVMM MNFQRFLKFPDDPKVSSDFLDLIQSLDTSNFDEPEKNSWVSSSPCQLSPSGFLKKKELQDSQDKCHKMEQEMTRLHR SLEQARMEVSQEDDKALQLLHDIREQ ELRESILLKA
SSEGIRKKLVEAEERRHSLENK	VKRLETMERRENRLKDDIOT:	KSOOIOOMADKILELEEKHREAOVSA

QHLEVHLKQKEQHYEEKIKVLDNQIKKDLADKETLENMMORHEEAHEKGKILSEQKAMINAMDSKIR
SLEQRIVELSEANKLAANSSLFTQRNMKAQEEMISELRQQKFYLETQAGKLEAQNRKLEEQLEKISHQ
DHSDKNRLLELETRLREVSLEHEEQKLELKRQLTELQLSLQERESQLTALQAARAALESQLRQAKTEL
EETTAEAEEEIQALTAHRDEIQRKFDALRNSCTVITDLEEQLNQLTEDNAELNNQNFYLSKQLDEASG
ANDEIVQLRSEVDHLRREITEREMQLTSQKQTMEALKTTCTMLEEQVMDLEALNDELLEKERQMEAWR
SVLGDEKSQFECRVRELQRMLDTEKQSRARADQRITESRQVVELAVKEHKAEILALQQALKEQKLKAE
SLSDKLNDLEKKHAMLEMNARSLQQKLETERELKQRLLEEQAKLQQQMDLQKNHIFRLTQGLQEALDR
ADLLKTERSDLEYQLENIQVLYSHEKVKMEGTISQQTKLIDFLQAKMDQPAKKKKVPLQYNELKLALE
KEKARCAELEEALQKTRIELRSAREEAAHRKATDHPHPSTPATARQQIAMSAIVRSPEHQPSAMSLLA
PPSSRRKESSTPEEFSRRLKERMHNIPHRFNVGLNMRATKCAVCLDTVHFGRQASKCLECQVMCHPK
CSTCLPATCGLPAEYATHFTEAFCRDKMNSPGLQTKEPSSSLHLEGWMKVPRNNKRGQQGWDRKYIVL
EGSKVLIYDNEAREAGQRPVEEFELCLPDGDVSIHGAVGASELANTAKADVPYILKMESHPHTTCWPG
RTLYLLAPSFPDKQRWVTALESVVAGGRVSREKAEADAKLLGNSLLKLEGDDRLDMNCTLPFSDQVVL
VGTEEGLYALNVLKNSLTHVPGIGAVFQIYIIKDLEKLLMIAGEERALCLVDVKKVKQSLAQSHLPAQ
PDISPNIFEAVKGCHLFGAGKIENGLCICAAMPSKVVILRYNENLSKYCIRKEIETSEPCSCIHFTNY
SILIGTNKFYEIDMKQYTLEEFLDKNDHSLAPAVFAASSNSFPVSIVQVNSAGQREEYLLCFHEFGVF
VDSYGRRSRTDDLKWSRLPLAFAYREPYLFVTHFNSLEVIEIQARSSAGTPARAYLDIPNPRYLGPAI
SSGAIYLASSYQDKLRVICCKGNLVKESGTEHHRGPSTSRSSPNKRGPPTYNEHITKRVASSPAPPEG
PSHPREPSTPHRYREGRTELRRDKSPGRPLEREKSPGRMLSTRRERSPGRLFEDSSRGLPAGAVRTP
LSQVNKVWDQSSV

	SEQ ID NO: 3	1870 bp	
NOV1b,	CACCGGTACCACCATGTTGAAGTTCAAATA	PGGAGCGCGGAATCCTTTGGATGCTGG	TGCTGCTGAA
268667493	CCCATTGCCAGCCGGGCCTCCAGGCTGAAT	TGTTCTTCCAGGGGAAACCACCCTTT	ATGACTCAAC
	AGCAGATGTCTCCTCTTTCCCGAGAAGGGA	PATTAGATGCCCTCTTTGTTCTCTTTG	AAGAATGCAG
DNA Sequence	TCAGCCTGCTCTGATGAAGATTAAGCACGT	SAGCAACTTTGTCCGGAAGTATTCCGA	CACCATAGCT
-	GAGTTACAGGAGCTCCAGCCTTCGGCAAAG	SACTTCGAAGTCAGAAGTCTTGTAGGT	ጥርጥርርጥር እርጥ
	TTGCTGAAGTGCAGGTGGTAAGAGAGAAAG(CAACCGGGGACATCTATGCTATGAAAG	TGATGAAGAA
	GAAGGCTTTATTGGCCCAGGAGCAGGTTTC	ATTTTTTGAGGAAGAGCGGAACATATT.	ATCTCGAAGC
	ACAAGCCCGTGGATCCCCCAATTACAGTATC	SCCTTTCAGGACAAAAATCACCTTTAT	CTGGTCATGG
	AATATCAGCCTGGAGGGGACTTGCTGTCAC	TTTGAATAGATATGAGGACCAGTTAG	ATGAAAACCT
	GATACAGTTTTACCTAGCTGAGCTGATTTTC	GCTGTTCACAGCGTTCATCTGATGGG	ATACGTGCAT
	CGAGACATCAAGCCTGAGAACATTCTCGTTC	SACCGCACAGGACACATCAAGCTGGTG	GATTTTCCAT
	CTGCCGCGAAAATGAATTCAAACAAGATGG	GAATGCCAAACTCCCGATTGGGACCC	CAGATTACAT
	GGCTCCTGAAGTGCTGACTGTGATGAACGG	GATGGAAAAGGCACCTACGGCCTGGA	TGTGACTGG
	TGGTCAGTGGGCGTGATTGCCTATGAGATG	TTTATGGGAGATCCCCCTTCGCAGAG	GGAACCTCTG
	CCAGAACCTTCAATAACATTATGAATTTCC	GCGGTTTTTGAAATTTCCAGATGACC	CAAAGTGAG
	CAGTGACTTTCTTGATCTGATTCAAAGCTTC	TTGTGCGGCCAGAAAGAGAGACTGAA	STTTGAAGGT
	CTTTGCTGCCATCCTTTCTTCTCTAAAATTC	ACTGGAACAACATTCGTAACTCTCCT	CCCCCTTCG
	TTCCCACCCTCAAGTCTGACGATGACACCTC	CAATTTTGATGAACCAGAGAAGAATT	CGTGGGGTTTC
	ATCCTCTCCGTGCCAGCTGAGCCCCTCAGG(TTCTCGGGTGAAGAACTGCCGTTTGT	GGGTTTTTCG
	TACAGCAAGGCACTGGGGATTCTTGGTAGAT	CTGAGTCTGTTGTGTCGGGTCTGGACT	PCCCCTGCCA
	AGACTAGCTCCATGGAAAAGAAACTTCTCAT	CAAAAGCAAAGAGCTACAAGACTCTCI	AGGACAAGTG
	TCACAAGATGGAGCAGGAAATGACCCGGTTA	CATCGGAGAGTGTCAGAGGTGGAGGCT	PGTGCTTAGT
	CAGAAGGAGGTGGAGCTGAAGGCCTCTGAGA	CTCAGAGATCCCTCCTGGAGCAGGAC	יחייוכרייים רכייי
	ACATCACAGAATGCAGTAGCTTAAAGCGAAG	TTTGGAGCAAGCACGGATGGAGGTGTC	CCAGGAGGA
	TGACAAAGCACTGCAGCTTCTCCATGATATC	AGAGAGCAGAGCCGGAAGCTCCAAGA	ATCAAAGAG
	CAGGAGTACCAGGCTCAAGTGGAAGAAATGA	GGTTGATGATGAATCAGTTGGAAGAG	ATCTTCTCT
	CAGCAAGAAGACGGAGTGATCTCTACGAATC	TGAGCTGAGAGAGTCTCGGCTTGCTGC	TTGAAGAATT
	CAAGCGGAAAGCGACAGAATGTCAGCATAAA	CTGTTGAAGGCTAAGGATCAGGTCGAC	CGGC
	ORF Start: at 2	ORF Stop: end of sequen	the state of the s

	SEQ ID NO: 4	623 aa	MW at 70970.0kD
268667493 Protein Sequence	QPALMKIKHYSNFVRKYSDTIABI KALLAQEQVSFFEERNILSRSTS IQFYLAELILAVHSVHLMGYVHRI APEVLTVMNGDGKGTYGLDCDWWS SDFLDLIQSLLCGQKERLKFEGLC SSPCQLSPSGFSGEELPFVGFSYS	LQELQPSAKDFEVRSLVGC SFWIPQLQYAFQDKNHLYL DIKPENILVDRTGHIKLVD SVGVIAYEMIYGRSPFAEG CCHPFFSKIDWNNIRNSPP SKALGILGRSESVVSGLDS	TQQQMSPLSREGILDALFVLFEECS GHFAEVQVVREKATGDIYAMKVMKK VMEYQPGGDLLSLLNRYEDQLDENL FGSAAKMNSNKMVNAKLPIGTPDYM TSARTFNNIMNFQRFLKFPDDPKVS PFVPTLKSDDDTSNFDEPEKNSWVS PAKTSSMEKKLLIKSKELQDSQDKC ATYITECSSLKRSLEOARMEVSOED

DKALQLLHDIREQSRKLQEIKEQEYQAQVEEMRLMMNQLBEDLVSARRRSDTYESELRESRLAAFEF KRKATECQHKLLKAKDQVDG

	Icro ID NO. 5	0.407.1
	SEQ ID NO: 5	2497 bp
NOV1c,	<u>C</u> ACCGGTACCCAGGGGAAGCCTGAAGTGGGAGAATAT	GCGAAACTGGAGAAGATCAATGCTGAGCAGC
268667539	[AGCTCAAAATTCAGGAGCTCCAAGAGAAACTGGAGAA	GGCTGTAAAAGCCAGCACGGAGGCCACCGAG
	CTGCTGCAGAATATCCGCCAGGCAAAGGAGCGAGCCG	SAGAGGGAGCTGGAGAAGCTGCAGAACCGAGA
DNA Sequence	GGATTCTTCTGAAGGCATCAGAAAGAAGCTGGTGGAA	GCTGAGGAACGCCGCCATTCTCTGCAGACACA
_	AGGTAAAGAGACTAGAGACCATGGAGCGTAGAGAAAA	CAGACTGAAGGATGACATCCAGACAAAATCC
	CAACAGATCCAGCAGATGGCTGATAAAATTCTGGAGC	TCGAAGAGAAACATCGGGAGGCCCAAGTCTC
	AGCCCAGCACCTAGAAGTGCACCTGAAACAGAAAGAG	CAGCACTATGAGGAAAAGATTAAAGTGTTCC
	ACAATCAGATAAAGAAAGACCTGGCTGACAAGGAGAC	ACTGGAGAACATGATGCAGAGACACGAGGAG
	GAGGCCCATGAGAAGGGCAAAATTCTCAGCGAACAGA	AGGCGATGATCAATGCTATGGATTCCAACAT
	[CAGATCCCTGGAACAGAGGATTGTGGAACTGTCTGAA	GCCAATAAACTTGCAGCAAATAGCAGTCTTT
	TTACCCAAAGGAACATGAAGGCCCAAGAAGAGATGAT	TTCTGAACTCAGGCAACAGAAATTTTACCTG
	GAGACACAGGCTGGGAAGTTGGAGGCCCAGAACCGAA	AACTGGAGGAGCAGCTGGAGAAGATCAGCCA
	CCAAGACCACAGTGACAAGAATCGGCTGCTGGAACTG	GAGACAAGATTGCGGGAGGTCAGTCTAGAGC
	[ACGAGGAGCAGAAACTGGAGCTCAAGCGCCAGCTCAC	AGAGCTACAGCTCTCCCTGCAGGAGCGCGAG
	TCACAGTTGACAGCCCTGCAGGCTGCACGGGCGCCCC	TGGAGAGCCAGCTTCGCCAGGCGAAGACAGA
1	GCTGGAAGAGACCACAGCAGAAGCTGAAGAGAGAGATC	CAGGCACTCACGGCACATAGAGATGAAATCC
	AGCGCAAATTTGATGCTCTTCGTAACAGCTGTACTGT	AATCACAGACCTGGAGGAGCAGCTAAACCAG
	CTGACCGAGGACAACGCTGAACTCAACAACCAAAACT	TCTACTTGTCCAAACAACTCGATGAGGCTTC
	TGGCGCCAACGACGAGATTGTACAACTGCGAAGTGAA	GTGGACCATCTCCGCCGGGAGATCACGGAAC
	GAGAGATGCAGCTTACCAGCCAGAAGCAAACGATGGA	GGCTCTGAAGACCACGTGCACCATGCTGGAG
	GAACAGGTCATGGATTTGGAGGCCCTAAACGATGAGC	TGCTAGAAAAAGAGCGGCAGTGGGAGGCCTG
	GAGGAGCGTCCTGGGTGATGAGAAATCCCAGTTTGAG	TGTCGGGTTCGAGAGCTGCAGAGAATGCTGG
	ACACCGAGAAACAGAGCAGGGCGAGAGCCGATCAGCG	GATCACCGAGTCTCGCCAGGTGGTGGAGCTG
	GCAGTGAAGGACACAAGGCTGAGATTCTCGCTCTGC	AGCAGGCTCTCAAAGAGCAGAAGCTGAAGGC
	CGAGAGCCTCTCTGACAAGCTCAATGACCTGGAGAAG	AAGCATGCTATGCTTGAAATGAATGCCCGAA
	GCTTACAGCAGAAGCTGGAGACTGAACGAGAGCTCAA	ACAGAGGCTTCTGGAAGAGCAAGCCAAATTA
	CAGCAGCAGATGGACCTGCAGAAAAATCACATTTTCC	GTCTGACTCAAGGACTGCAAGAAGCTCTAGA
	TCGGGCTGATCTACTGAAGACAGAAAGAAGTGACTTG	GAGTATCAGCTGGAAAACATTCAGGTTCTCT
ł	ATTCTCATGAAAAGGTGAAAATGGAAGGCACTATTTC	TCAACAAACCAAACTCATTGATTTTCTGCAA
	GCCAAAATGGACCAACCTGCTAAAAAGAAAAAGGTTC	CTCTGCAGTACAATGAGCTGAAGCTGGCCCT
	GGAGAAGGAGAAGCTCGCTGTGCAGAGCTAGAGGAA	GCCCTTCAGAAGACCCGCATCGAGCTCCGGT
	CCGCCCGGGAGGAAGCTGCCCACCGCAAAGCAACGGA	CCACCCACACCCATCCACGCCAGCCACCGCG
	AGGCAGCAGATCGCCATGTCCGCCATCGTGCGGTCGC	CAGAGCACCAGCCCAGTGCCATGAGCCTGCT
	GGCCCCGCCATCCAGCCGCAGAAAGGAGTCTTCAACT	CCAGAGGAATTTAGTCGGCGTCTTAAGGAAC
	GCATGCACCACAATATTCCTCACCGATTCAACGTAGG	ACTGAACATGCGAGCCACAAAGTGTGCTGTG
	TGTCTGGATACCGTGCACTTTGGACGCCAGGCATCCA	AATGTCTCGAATGTCAGGTGATGTGTCACCC
	CAAGTGCTCCACGTGCTTGCCAGCCACCTGCGGCTTG	CCTGTCGACGGC
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 6	832 aa	MW at 96885.8kD
NOV1c, 268667539 Protein Sequence	DSSEGTRKKLVEAEERRHSLENKY AQHLEVHLKQKEQHYEEKIKVLDM RSLEQRIVELSEANKLAANSSLFT QDHSDKNRLLELETRIREVSLEHE LEETTAEAEEEIQALTAHRDEIQF GANDEIVQLRSEVDHLRREITERE RSVLGDEKSQFECRVRELQRMLDT ESLSDKLNDLEKKHAMLEMNARSI RADLLKTERSDLEYQLENIQVLYS EKEKARCAELEEALQKTRIELRSA	/KRLETMERRENRLKDDIQ IQIKKDLADKETLENMMQR IQRNMKAQEEMISELRQQK EEQKLELKRQLTELQLSLQ EKFDALRNSCTVITDLEEQ EMQLTSQKQTMEALKTTCT EKQSRARADQRITESRQV .QQKLETERELKQRLLEEQ .BHEKVKMEGTISQQTKLID EREEAAHRKATDHPHPSTP	ATELLQNIRQAKERAERELEKLQNRE TKSQQIQQMADKILELEEKHREAQVS HEEEAHEKGKILSEQKAMINAMDSKI FYLETQAGKLEAQNRKLEEQLEKISH ERESQLTALQAARAALESQLRQAKTE LNQLTEDNAELNNQNFYLSKQLDEAS MLEEQVMDLEALNDELLEKERQWEAW VELAVKEHKAEILALQQALKEQKLKA AKLQQQMDLQKNHIFRLTQGLQEALD FLQAKMDQPAKKKKVPLQYNELKLAL ATARQQIAMSAIVRSPEHQPSAMSLL CAVCLDTVHFGRQASKCLECQVMCHP

	SEQ ID NO: 7	2542 bp
NOV1d,	CACCGGTACCCAGGGGAAGCCTGAAGTGGGAGAATAT	GCGAAACTGGAGAAGATCAATGCTGAGCAG
268667543	CAGCTCAAAATTCAGGAGCTCCAAGAGAAACTGGAGA	AGGCTGTAAAAGCCAGCACGGAGGCCACCG
	AGCTGCTGCAGAATATCCGCCAGGCAAAGGAGCGAGC	CGAGAGGGAGCTGGAGAACCG
DNA Sequence	AGAGGATTCTTCTGAAGGCATCAGAAAGAAGCTGGTG	GAAGCTGAGGAACGCCGCCATTCTCTGGAG
1	AACAAGGTAAAGAGACTAGAGACCATGGAGCGTAGAG	AAAACAGACTGAAGGATGACATCCAGACAA
1	AATCCCAACAGATCCAGCAGATGGCTGATAAAATTCT	GGAGCTCGAAGAGAAACATCGGGAGGCCCA
1	AGTCTCAGCCCAGCACCTAGAAGTGCACCTGAAACAG	AAAGAGCAGCACTATGAGGAAAAGATTAAA
1	GTGTTGGACAATCAGATAAAGAAAGACCTGGCTGACA	AGGAGACACTGGAGAACATGATGCAGAGAC
	ACGAGGAGGAGGCCCATGAGAAGGGCAAAATTCTCAG	CGAACAGAAGGCGATGATCAATGCTATGGA
	TTCCAAGATCAGATCCCTGGAACAGAGGATTGTGGAA	CTGTCTGAAGCCAATAAACTTGCAGCAAAT
	AGCAGTCTTTTTACCCAAAGGAACATGAAGGCCCAAG	AAGAGATGATTTCTGAACTCAGGCAACAGA
ł	AATTTTACCTGGAGACACAGGCTGGGAAGTTGGAGGC	CCAGAACCGAAAACTGGAGGAGCAGCTGGA
	GAAGATCAGCCACCAAGACCACAGTGACAAGAATCGG	CTGCTGGAACTGGAGACAAGATTGCGGGAG
	GTCAGTCTAGAGCACGAGGAGCAGAAACTGGAGCTCA	AGCGCCAGCTCACAGAGCTACAGCTCTCCC
	TGCAGGAGCGCGAGTCACAGTTGACAGCCCTGCAGGC	TGCACGGGCGCCCTGGAGAGCCAGCTTCG
	CCAGGCGAAGACAGAGCTGGAAGAGACCACAGCAGAA	GCTGAAGAGAGATCCAGGCACTCACGCCA
	CATAGAGATGAAATCCAGCGCAAATTTGATGCTCTTC	GTAACACCTCTACTACTCTAATCACACACCTCCC
	AGGAGCAGCTAAACCAGCTGACCGAGGACAACGCTGA	3CTC 3 2C 3 CC 2 3 3 3 CCCC 2 3 CCCC 2 3 CCCC 2 3 CCCC 2 3 CCC 2 3 3 3 CCCC 2 CCCC 2 3 CCCC 2 CCCCC 2 CCCCC 2 CCCC 2 CCCC 2 CCCC 2 CCCCC 2 CCCC 2 CCCC 2 CCCC 2 C
	ACAACTCGATGAGGCTTCTGGCGCCAACGACGAGATT	GTACAACTGCCAAGTCAAGTCGACCAACTGC
	CGCCGGGAGATCACGGAACGAGATGCAGCTTACCA	CCCACAACCAAACCAACCAACCCAACAACAACAACAACA
[CCACGTGCACCATGCTGGAGGAACAGGTCATGGATTT	CCACACCACAACCAAACCAACCACCCCCCCCCCCCCCC
ļ .	AGAGCGGCAGTGGAGGCCTCCTGGGT	CATCACAAACGATGAGCTGCTAGAAAA
	CGAGAGCTGCAGAGGATGCTGGACACCGAGAAACAGA	GCACCCCACACCCATTIGAGIGICGGGIT
[AGTCTCGCCAGGTGGTGGAGCTGGCAGTGAAGGAGCA	CAACCCTCACACCCCATCACCCCATCACCCC
	TCTCAAAGAGCAGAAGCTGAAGGCCGAGAGCCTCTCT	CAAGGCTGAGATTCTCGCTCTGCAGCAGGC
	GCTATGCTTGAAATGAATGCCCGAAGCCTACAGCAGA	GACAAGCTCAATGACCTGGAGAAGAAGCAT
	CCCUTCUCCA ACACCA ACCCA A AUGA CA COA COA CA	AGCTGGAGACTGAACGAGAGCTCAAACAGA
	GGCTTCTGGAAGAGCAAGCCAAATTACAGCAGCAGAT	GGACCTGCAGAAAAATCACATTTTCCGTCT
	GACTCAAGGACTGCAAGAAGCTCTAGATCGGGCTGAT	CTACTGAAGACAGAAGAAGTGACTTGGAG
	TATCAGCTGGAAAACATTCAGGTTCTCTATTCTCATG	AAAAGGTGAAAATGGAAGGCACTATTTCTC
	AACAAACCAAACTCATTGATTTTCTGCAAGCCAAAAT	GACCAACCTGCTAAAAAGAAAAAGGGTTT
	ATTTAGTCGACGGAAAGAGGACCCTGCTTTACCCACA	CAGGTTCCTCTGCAGTACAATGAGCTGAAG
	CTGGCCCTGGAGAAGGAAAGCTCGCTGTGCAGAGC	PAGAGGAAGCCCTTCAGAAGACCCGCATCG
	AGCTCCGGTCCGCCCGGGAGGAAGCTGCCCACCGCAA	AGCAACGGACCACCCACCCATCCACGCC
	AGCCACCGCGAGGCAGCAGATCGCCATGTCTGCCATC	GTGCGGTCGCCAGAGCACCAGCCCAGTGCC
	ATGAGCCTGCTGGCCCCGCCATCCAGCCGCAGAAAGG	AGTCTTCAACTCCAGAGGAATTTAGTCGGC
	GTCTTAAGGAACGCATGCACCACAATATTCCTCACCG	ATTCAACGTAGGACTGAACATGCGAGCCAC
	AAAGTGTGCTGTGTGTCTGGATACCGTGCACTTTGGA	CGCCAGGCATCCAAATGTCTCGAATGTCAG
	GTGATGTGTCACCCCAAGTGCTCCACGTGCTTGCCAG	CCACCTGCGGCTTGCCTGTCGACGGC
	ORF Start: at 2	ORF Stop: end of sequence

5

	SEQ ID NO: 8	847 aa	MW at 98582.7kD
NOV1d, 268667543 Protein Sequence	TGTQGKPEVGEYAKLEK EDSSEGIRKKLVEAEER VSAQHLEVHLKQKEQHY SKIRSLEQRIVELSEAN KISHQDHSDKNRLLELE QAKTELEETTAEAEEEI QLDEASGANDEIVQLRS ERQWEAWRSVLGDEKSQ	INAEQQLKIQELQEKLEKA RHSLENKVKRLETMERREN EEKIKVLDNQIKKDLADKE KLAANSSLFTQRNMKAQEE TRLREVSLEHEEQKLELKR QALTAHRDEIQRKFDALRN EVDHLRREITEREMQLTSQ FECRVRELQRMLDTEKQSR	WASTEATELLQNIRQAKERAERELEKLQNR RLKDDIQTKSQQIQQMADKILELEEKHREAQ TLENMMQRHEEEAHEKGKILSEQKAMINAMD MISELRQQKFYLETQAGKLEAQNRKLEEQLE QLTELQLSLQERESQLTALQAARAALESQLR SCTVITDLEEQLNQLTEDNAELNNQNFYLSK KQTMEALKTTCTMLEEQVMDLEALNDELLEK ARADQRITESRQVVELAVKEHKAEILALQQA ETERELKQRLLEEQAKLQQQMDLQKNHIFRL
	TQGLQEALDRADLLKTE FSRRKEDPALPTQVPLQ ATARQQIAMSAIVRSPE	RSDLEYQLENIQVLYSHEK YNELKLALEKEKARCAELE	VKMEGTISQQTKLIDFLQAKMDQPAKKKKGL EALQKTRIELRSAREEAAHRKATDHPHPSTP STPEEFSRRLKERMHHNIPHRFNVGLNMRAT

10

SEQ ID NO: 9	1870 bp
	12070 00

CTCCCAGGTCTCCAGACCAAGGAGCCAGCA GGAATAACAAACGAGGACAGGCAAGGCTGGGAC ATTTATGACAATGAAGCCAGAGAAGCTGGGAC CGGGGATGTATCTTTTCATGGTGCCGTTGGTG CATACATACTGAAGATGAAACAGCGCTGGGT TTCTAGGGAAAAGAGCGCTGGGT TTCTAGGGAAAAAGCAGCGCTGGT ACCGTCTAGACATGAACTGCACGCTGCCTTC CTCTACGCCTGAATGTCTTGAAAAACTCCCT TTATATTATCAAGGACCTGGAGAAGCTACTCA' ACGGTGAAAAACTGAACTGCACGTGCCCAGC ATTTTTGAAGCTGTAAAACTCCTGAAAAACTCCCTGCCCAGCAGAAGCTACTCA' ACTTTTTGAAGCTGTCAAGGGCTGCCACTTGTT	CTTCCGAACTCGCAATACAGCCAAAGCAGAT ACCACCTGCTGGCCCGGGGAGACCCTCTACTT CACCGCCTTAGAATCAGTTGTCGCAGGTGGGA TGCTTGGAAACTCCCTGCTGAAACTGGAAGGT AGTGACCAGGTGGTGTTTGGTGGGTACCGAGGA AACCCATGTCCCAGGAATTGGAGCAGTCTTCC TGATAGCAGGAGAAGAGCGGGCACTGTGTCTT TCCCACCTGCCTGCCCACCACTCTCACCA
GGAATAACAAACGAGGACAGCAAGGCTGGGACA ATTTATGACAATGAAGCCAGAGAAAGCTGGACA CGGGGATGTATCTTATTCATGGTGCCGTTGGTG CATACATACTGAAGATGAAACAGCGCTGGGT TTCTAGGGAAAAAGAGCTGATGCT TTCTAGGGAAAAAGAGCTGATGCTTAA ACCGTCTAGACATGAACAGCTGCCCTTC CTCTACGCCCTGAATGTCTTGAAAAACTCCCT. TTATATTATCAAGGACCTGGAGAAGCTACTCA ACGTGAAAAAGTGAAACAGTCCTGGCCCAG ATTTTGAAGCTGTCACAGGCTGCCACTTGTT TGCAGCCATGCCCACGCTGCCACTTGTT	AGGAGTACATTGTCCTGGAGGGATCAAAAGT GAGGCCGGTGGAAGAATTTGAGCTGTGCCTTC CTTCCGAACTCGCAAAACAGAGAT ACCACCTGCTGGCCCAGAGAACCCTCTACTT CACCGCCTTAGAATCAGTTGTCGCAGGTGGA TGCTTGGAAACTCCTGTGAAACTGGAAGGT AGTGACCAGGTGGTTTGTGGGTACCGAGGA AACCCATGTCCCAGGAATTGGAGCAGTCTTCC TGATAGCAGGAGAAGAGCGGCACTTTCT TCCCACCTGCCTGCCCAGCCCGACATCTCACC TGGGGCAGCCAGCATCTCACC GCTACAACAACACCATC
GGAATAACAAACGAGGACAGCAAGGCTGGGACA ATTTATGACAATGAAGCCAGAGAAAGCTGGACA CGGGGATGTATCTTATTCATGGTGCCGTTGGTG CATACATACTGAAGATGAAACAGCGCTGGGT TTCTAGGGAAAAAGAGCTGATGCT TTCTAGGGAAAAAGAGCTGATGCTTAA ACCGTCTAGACATGAACAGCTGCCCTTC CTCTACGCCCTGAATGTCTTGAAAAACTCCCT. TTATATTATCAAGGACCTGGAGAAGCTACTCA ACGTGAAAAAGTGAAACAGTCCTGGCCCAG ATTTTGAAGCTGTCACAGGCTGCCACTTGTT TGCAGCCATGCCCACGCTGCCACTTGTT	AGGAGTACATTGTCCTGGAGGGATCAAAAGT GAGGCCGGTGGAAGAATTTGAGCTGTGCCTTC CTTCCGAACTCGCAAAACAGAGAT ACCACCTGCTGGCCCAGAGAACCCTCTACTT CACCGCCTTAGAATCAGTTGTCGCAGGTGGA TGCTTGGAAACTCCTGTGAAACTGGAAGGT AGTGACCAGGTGGTTTGTGGGTACCGAGGA AACCCATGTCCCAGGAATTGGAGCAGTCTTCC TGATAGCAGGAGAAGAGCGGCACTTTCT TCCCACCTGCCTGCCCAGCCCGACATCTCACC TGGGGCAGCCAGCATCTCACC GCTACAACAACACCATC
ATTTATGACAATGAAGCCAGAGAAGCTGGACA CGGGGATGTATCTATTCATGTGCCGTTGGTC CATACATACTGAAGATGAAATCTCACCGCAC GCTCCCAGCTTCCCTGACAAACAGCGCTGGGT TTCTAGGGAAAAAGCAGAGCTGATGCTAAAC ACCGTCTAGACATGAACTGCACGCTGCCCTTC CTCTACGCCCTGAATGTCTTGAAAAACTCCCT TTATATTATCAAGGACCTGGAGAAGCTACTCAC ACGTGAAGAAGTGAACAGTCCTTGGCCCAC ACTTGAAGAAAGTGAACAGTCCTTGCTTACTTATTTTGAAGCTGTCAGCAGAACTTGCTCAC ACGTGAAGAACTGCACAGTCCTTGCTCTTGTT	GAGGCCGGTGGAAGAATTTGAGCTGTGCCTTC CTTCCGAACTCGCAAATACAGCCAAAGCAGAT ACCACCTGCTGGCCCGGAGAACCCTCTACTT CACCGCCTTAGAATCAGTTGTCGCAGGTGGGA TGCTTGGAAACTCCCTGCTGAAACTGGAAGGT AGTGACCAGGTGGTGTTTGGTGGGTACCGAGGA AACCCATGTCCCAGGAATTGGAGCAGTCTTCC TGATAGCAGGAGAAGAGCGGGCACTGTGTCTT TCCCACCTGCCTGCCCAGCCCGACATCTCACC GCTACAACGAAAACCTCCCAAC
CGGGGATGTATCTATTCATGGTGCCGTTGGTG CATACATACTGAAGATGGAATCTCACCCGCAC GCTCCCAGCTTCCCTGACAACAGCGCTGGGT TTCTAGGGAAAAAGCAGAAGCTGATGCTAAC ACCGTCTAGACATGAACTGCACGCTGCCCTTC. CTCTACGCCCTGAATGTCTTGAAAAACTCCCT. TTATATTATCAAGGACCTGGAGAAGCTACTCA' ACGTGAAGAAAGTGAACAGTCCCTGGCCAGA ACGTGAAGAAAGTGAACAGTCCCTGCTTGTT ATTTTGAAGCTGTCAAGGGCTGCCACTTGTT TGCAGCCATGCCCAGCAAAGTCGTCATTCTCC	CTTCCGAACTCGCAAATACAGCCAAAGCAGAT ACCACCTGCTGGCCCGGGAGACCCTCTACTT CACCGCCTTAGAATCAGTTGTCGCAGGTGGGA TGCTTGGAAACTCCCTGCTGAAACTGGAAGGT AGTGACCAGGTGGTGTTGGTGGGTACCGAGGA AACCCATGTCCCAGGAATTGGAGCAGTCTTCC TGATAGCAGGAGAAGAGCGGCACTTGTCTT TCCCACCTGCCTGCCCAGCCCGACATCTCACC TGGGGCAGGCAGATTGAGAACGGCTCTGCA
CATACATACTGAAGATGGAATCTCACCGCAC GCTCCCAGCTTCCCTGACAAACAGCGCTGGCT TTCTAGGGAAAAAGCGCTGATAAC ACCGTCTAAACATGCACTGACATAC ACCGTCTAGACATGAACTGCACGCTGCCCTTC CTCTACGCCTGAATGTCTTGAAAAACTCCCT TTATATTATCAAGGACCTGGAGAAGCTACTCA ACGTGAAGAAAGTGAAAACAGTCCCTGGCCAAC ATTTTGAAGCTGTCAAGGGCTGCCACTTGTT TGCAGCCATCCCAGCAAAGTCGTCATTCTCC	ACCACCTGCTGGCCCGGGAGAACCCTCTACTT CACCGCCTTAGAATCAGTTGTCGCAGGTGGGA TGCTTGGAAACTCCCTGCTGAAACTGGAAGGT AGTGACCAGGTGGTGTTGGTGGGTACCGAGGA AACCCATGTCCCAGGAATTGGAGCAGTCTTCC TGATAGCAGGAGAAGAGCGGCACTCTCTT TCCCACCTGCCTGCCCAGCCCGACATCTCACC TGGGGCAGGCAAGATTGAGAACGGGTCTTGCA
GCTCCCAGCTTCCCTGACAAACAGCGCTGGGT TTCTAGGGAAAAGCAGAAGCTGATGCTAAAC ACCGTCTAGACATGAACTGCACGCTGCCCTTC. CTCTACGCCCTGAATGTCTTGAAAAACTCCCT. TTATATTATCAAGGACCTGGAGAAGCTACTCA ACGTGAAGAAAGTGAAACAGTCCCTGGCCCAG ACTTTTGAAGCTGTCAAGGGCTGCCACTTGTT TGCAGCCATGCCCAGCAAAGTCGTCATTCTCC	CACCGCTTAGAATCAGTTGTCGCAGGTGGAAGTTGCTTGGAAACTCGAAGGT TGCTTGGAAACTCCCTGCTGAAACTGGAAGGT AGTGACCAGGTGGTGTTGGTGGGTACCGAGGA AACCCATGTCCCAGGAATTGGAGCAGTCTTCC TGATAGCAGGAGAAGAGCGGCACTTGTCTT TCCCACCTGCCTGCCCAGCCCGACATCTCACC TGGGGCAGCAAGATTGAGAACGGGTCTTGCA
TTCTAGGGAAAAAGCAGAAGCTGATGCTAAAC ACCGTCTAGACATGAACTGCACGCTGCCCTTC. CTCTACGCCCTGAATGTCTTGAAAAAACTCCCT. TTATATTATCAAGGACCTGGAGAAGCTACTCA ACGTGAAGAAAGTGAAACAGTCCCTGGCCAGG ATTTTTGAAGCTGTCAAGGGCTGCCACTTGTT TGCAGCCATGCCCAGCAAAGTCGTCATTCTCC	TGCTTGGAAACTCCCTGCTGAAACTGGAAGGT AGTGACCAGGTGGTGTTGGTGGGTACCGAGGA AACCCATGTCCCAGGAATTGGAGCAGTCTTCC TGATAGCAGGAGAAGAGCGGGCACTGTGTCTT TCCCACCTGCCTGCCCAGCCCGACATCTCACC TGGGGCAGGCAAGATTGAGAACGGGCTCTGCA
ACCGTCTAGACATGAACTGCACGCTGCCCTTC CTCTACGCCCTGAATGTCTTGAAAAACTCCCT TTATATTATCAAGGACCTGGAGAAGCTACTCC ACGTGAAGAAAGTGAAACAGTCCCTGGCCCAG ACTTTTGAAGCTGTCAAGGGCTGCCACTTGTT TGCAGCCATGCCCAGCAAAGTCGTCATTCTCC	AGTGACCAGGTGGTGTTTGGTGGGTACCGAGGA AACCCATGTCCCAGGAATTGGAGCAGTCTTCC TGATAGCAGGAGAAGAGCGGGCACTGTGTCTT TCCCACCTGCCTGCCCAGCCCGACATCTCACC TGGGGCAGGCAAGATTGAGAACGGGCTCTGCA GCTACAACGAAAACCTCAGCAAATACCAGC
CTCTACGCCCTGAATGTCTTGAAAAACTCCCT. TTATATTATCAAGGACCTGGAGAAAGCTACTCA ACGTGAAGAAAGTGAAACAGTCCCTGGCCCAG ATTTTTGAAGCTGTCAAGGGCTGCCACTTGTT TGCAGCCATGCCCAGCAAAGTCGTCATTCTCC	AACCCATGTCCCAGGAATTGGAGCAGTCTTCC TGATAGCAGGAGAAGAGCGGGCACTGTGTCTT TCCCACCTGCCTGCCCAGCCCGACATCTCACC TGGGGCAGGCAAGATTGAGAACGGGCTCTGCA GCTACAACGAAAACCTCAGCAAATACCATC
ITIATATTATCAAGGACCTGGAGAAGCTACTCA: ACGTGAAGAAAGTGAAACAGTCCCTGGCCCAC ATTTTTGAAGCTGTCAAGGGCTGCCACTTGTT: TGCAGCCATGCCCAGCAAAGTCGTCATTCTCC	TGATAGCAGGAGAAGAGCGGGCACTGTGTCTT TCCCACCTGCCTGCCCAGCCCGACATCTCACC TGGGGCAGGCAGATTGAGAACGGGCTCTGCA GCTACAACGAGCAAAAACCTCAGCAAAAACGGCTACCAAC
ACGTGAAGAAAGTGAAACAGTCCCTGGCCCAG ATTTTTGAAGCTGTCAAGGGCTGCCACTTGTT TGCAGCCATGCCCAGCAAAGTCGTCATTCTCC	TCCCACCTGCCTGCCCAGCCCGACATCTCACC TGGGGCAGGCAAGATTGAGAACGGGCTCTGCA GCTACAACGAAAACCTCAGCAAATCCATC
ATTTTTGAAGCTGTCAAGGGCTGCCACTTGTT TGCAGCCATGCCCAGCAAAGTCGTCATTCTCC	TGGGGCAGGCAAGATTGAGAACGGGCTCTGCA GCTACAACGAAAACCTCAGCAAATACTGCATC
TGCAGCCATGCCCAGCAAAGTCGTCATTCTCC	GCTACAACGAAAACCTCAGCAAATACTGCATC
	ATTCCACTTCACCA ATTMACACTTA TOCATO
AAGAGATAGAGACCTCAGAGCCCTGCAGCTGT	
AATAAATTCTACGAAATCGACATGAAGCAGTA	CACGCTCGAGGAATTCCTGGATAAGAATCACC
CTTGGCACCTGCTGTGTTTGCCGCCTCTTCCA	ACAGCTTCCCTGTCTCAATCGTGCAGGTGAAC
CAGGGCAGCGAGAGGAGTACTTGCTGTGTTTC(CACGAATTTGGAGTGTTCGTGGATTCTTACCC
LGTAGCCGCACAGACGATCTCAAGTGGAGTCG(CTTACCTTTGGCCTTTGCCTACAGAGAACCCT
GTTTGTGACCCACTTCAACTCACTCGAAGTAA:	TTGAGATCCAGGCACGCTCCTCAGCAGGGACC
CCCGAGCGTACCTGGACATCCCGAACCCGCGC	TACCTGGGCCCTGCCATTTCCTCAGGAGCCAT
TTGGCGTCCTCATACCAGGATAAATTAAGGGT	CATTTGCTGCAAGGGAAACCTCGTGAAGCACT
CACTGAACACCACCGGGGCCCGTCCACCTCCC	GCAGCAGCCCCAACAAGCGAGGCCCACCCACC
ACGAGCACATCACCAAGCGCGTGGCCTCCAGC	COAGCOCCACCACCACCACCACCACCACCACCACCACCACCACC
202200000000000000000000000000000000000	GACCGAGCTGCGCAGGGACAAGTCTCCTCCCGCG
-UAAGUAUAUUUCAUUGCTACCGCGAGGGGCCC	PCAGCACGCGAGAGAGCCCCCCCCCCCCCCCCCCCCCCC
LUAAGCACACUCCACUGCTACCGCGAGGGGCGC CCTGGAGCGAGAGAAGTCCCCCGGCCGGATGC1	GAGCCGTGAGGACCCCCGCTCTCCCCACCTCCCA
CCTGGAGCGAGAGAAGTCCCCCGGCCGGATGC1	
CCAAGCACACCCCACCGCTACCGCGAGGGGCGC CCTGGAGCGAGAGAGTCCCCCGCCCGGATGC7 FTGAAGACAGCAGCAGGGGCCGGCTGCCTGCGC GTGTGGGACCAGTCTTCAGTAGTCGACGGC	
•	:CAAGCACACCCCACCGCTACCGCGAGGGGGCG :CTGGAGCGAGAGAAGTCCCCGGCCGGATGC :TGAAGACAGCAGCAGGGGCCGGCTGCCTGCG

	SEQ ID NO: 10	623 aa	MW at 69278.9kD	
NOV1e, 268667555 Protein Sequence	LAPSFPDKQRWYTALESV GLYALNVLKNSLTHVPGI NIFEAVKGCHLFGAGKIE TNKFYEIDMKQYTLEEFL RRSRTDDLKWSRLPLAFA YLASSYQDKLRVICCKGN	ELCLPDGDVSIHGAVGAS VAGGRVSREKAEADAKLI GAVFQIYIIKDLEKLLMI NGLCICAAMPSKVVILRY DKNDHSLAPAVFAASSNS YREPYLFVTHFNSLEVIE LVKESGTEHHRGPSTSRS	LHLEGWMKVPRNNKRGQQGWDRKYIVLEG ELANTAKADVPYILKMESHPHTTCWPGR GNSLLKLEGDDRLDMNCTLPFSDQVVLVG AGEERALCLVDVKKVKQSLAQSHLPAQPI NENLSKYCIRKEIETSEPCSCIHFTNYSI FPVSIVQVNSAGQREEYLLCFHEFGVFVI IQARSSAGTPARAYLDIPNPRYLGPAISS SPNKRGPPTYNEHITKRVASSPAPPEGPS TRRERSPGRLFEDSSRGRLPAGAVRTPLS	TLYL STEE DISP LIG DSYG GAI

	SEQ ID NO: 11	1915 bp	
NOV1f, 268667574 DNA Sequence	TGACTCCCCAGGTCTCCAGACCAAGGAC CCCAGGAATAACAAACAAGGAC CCCAGGAATAACAAACAAGGACACCAAGGAC CCTCATTTATGACAATGAAGCCAGAGAAC CCGACGGGGATGTATCTATTCATGGTGCC GTCCCATACATACTGAAGATGGAATCTCA GCTAGCTCCCAGCTTCCCTGACAAACAGC GAGTTTCTAGGGAAAAAGCAGAAGCTGAT TGGGTTCAGAAACTGCTTGGAAACTCCCT CACACTGCCCTTCAGTGACCAGGTGGTGT TGAAAAACTCCCTACACGAGAGAAGAG GAGAAGCTACTCATGATAGCAGGAGAAGAG GTCCCTGGCCCAGTCCCACCTGCCTGCCC GCTGCCACTTGTTTGGGGCAGGCAAGATT GTCGTCATTCTCCGCTACAACGAAAACCT GCCCTGCAGCTGTCTCACCAATT	PATGCCACACATTCACCGAGGCCTTCTGCCGTG CCCAGCAGCAGCTTGCACCTGGAAGGGTGGATG CCCAGCAGCAGCTTGCACCTGGAAGGGTGGATG CCTGGACAGGAGGCTGGAACTTGTCCTGGAGGGATC CCTGGACAGAGGCCGGTGGAAGAATTTGAGCTGT CCTGGACACCACCTTGCTGGCCCGGGAGACCCTACACCCGCCTTAGAATCAGTTGTCGAGCTTCTG CCTGGAACTGGAACTGCTTTTCTTACGAGCTTCTG CCTGAAACTGGAAGGTGATGACCGTCTAGACAT CTGAAACTGGAAGGAAGGCTCTACGCCCTGAA CATTGGAGCACCTTCCAAATTTATATTATCAAGC CGCGGCACTGTTCTTGTGGACGTGAAGAAAGT CAGCAGAACTCTCACCCAACATTTTTGAAGCTG CAGCAAATACTGCATCTTGTGCACCATGCCC CAGCAAATACTGCATCTGTGCAGCATACACC CAGCAAATACTGCATCTGAACAAAATTCTACGA CCTGGATAAGAAGACCATTCCTTGGCACCTGCTC CCGGATAAGAAGACCATTCCTTACGACCATCCCTACCACACATTTCCTACGACCATCCCACCAGCAAAAAATTCTACGACCCTGCACCTTTGGAACGACCTGCCCTCCCT	AAGGTC AAAAGT GCCTTC GCAGAT CCTACTT GTGGGA CCTGCC GAACTC G

CTTGCTGTGTTTCCACGAATTTGGAGTGTTCGTGGAT TCAAGTGGAGTCGCTTACCTTTGGCCTTTGCCTACAGA TCACTCGAAGTAATTGAGATCCAGGCACGCTCCTCAGC CCCGAACCCGCGCTACCTGGGCCCTGCCATTTCCTCAGA ATAAATTAAGGGTCATTTGCTGCAAGGAAACCTCGTC CCGTCCACCTCCCGCAGCAGCCCCAACAAGCGCCCCAGCCCCACGCGCGGGGGG	AGAACCCTATCTGTTTGTGACCCACTTCAAC CAGGGACCCCTGCCCGAGCGTACCTGGACAT GGAGCGATTTACTTGGCGTCCTCATACCAGG GAACGAGTCCGGCACTGAACACCACCGGGC CACCCACGTACAACGAGCACATCACCAAGCG CACCCGCGAGAGCCACACCCCACCGCT CCCTGGCCGCCCCTGGAGCGAGAAGTCC
ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 12	638 aa	MW at 71010.8kD
268667574 Protein Sequence	LIYDNEAREAGQRPVEEFELCLPD LAPSFPDKQRWVTALESVVAGGRV TLPFSDQVVLVGTEEGLYALNVLK SLAQSHLPAQPDISPNIFEAVKGC PCSCIHFTNYSILIGTNKFYEIDM LLCFHEFGVFVDSYGRRSRTDDLK	SPGLQTK EPSSSLHLEGWN GDVS I HGAVGASELANTAF SREKAEADAARDCVSYELI NSLTHVPG I GAVFQ I Y I IF HLFGAGK I ENGLC I CAAMF KQYTLEEFLDKNDHSLAPF WSRLPLAFAYREPYLFVIF	MKVPRNNKRGQQGWDRKYIVLEGSKV KADVPYILKMESHPHTTCWPGRTLYL LPAWVQKLLGNSLLKLEGDDRLDMNC KDLEKLLMIAGEERALCLVDVKKVKQ PSKVVILRYNENLSKYCIRKEIETSE AVFAASSNSFPVSIVQVNSAGQREEY HFNSLEVIEIQARSSAGTPARAYLDI IRGPSTSRSSPNKRGPPTYNEHITKR
	VASSPAPPEGPSHPREPSTPHRYR RLPAGAVRTPLSQVNKVWDQSSVV	EGRTELRRDKSPGRPLERE	EKSPGRMLSTRRERSPGRLFEDSSRG

	SEQ ID NO: 13	6201 bp	
NOV1g,	ATGTTGAAGTTCAAATA	TGGAGCGCGGAATCCTTTGGA	TGCTGGTGCTGCAACCCATTGCCAGCC
CG106764-02	GGGCCTCCAGGCTGAAT	CTGTTCTTCCAGGGGAAACCA	CCCTTTATGACTCAACAGCAGATGTCTCC
	TCTTTCCCGAGAAGGGA'	PATTAGATGCCCTCTTTGTTC	TCTTTGAAGAATGCAGTCAGCCTGCTCTG
DNA Sequence	ATGAAGATTAAGCACGT	GAGCAACTTTGTCCGGAAGTG	TTCCGACACCATAGCTGAGTTACAGGAGC
	TCCAGCCTTCGGCAAAG	GACTTCGAAGTCAGAAGTCTT	GTAGGTTGTGGTCACTTTGCTGAAGTGCA
	GGTGGTAAGAGAGAAAG	CAACCGGGGACATCTATGCTA	TGAAAGTGATGAAGAAGAAGGCTTTATTG
	GCCCAGGAGCAGGTTTC	ATTTTTGAGGAAGAGCGGAA	CATATTATCTCGAAGCACAAGCCCGTGGA
	TCCCCCAATTACAGTAT	GCCTTTCAGGACAAAAATCAC	CTTTATCTGGTGATGGAATATCAGCCTGG
	AGGGGACTTGCTGTCAC	ITTTGAATAGATATGAGGACC.	AGTTAGATGAAAACCTGATACAGTTTTAC
	CTAGCTGAGCTGATTTTC	GCTGTTCACAGCGTTCATCT	GATGGGATACGTGCATCGGGACATCAAGC
	CTGAGAACATTCTCGTTC	JACCGCACAGGACACATCAAG	CTGGTGGATTTTGGATCTGCCGCGAAAAT
•	GAATTCAAACAAGGTGA	ATGCCAAACTCCCGATTGGGA	CCCCAGATTACATGGCTCCTGAAGTGCTG
	ACTGTGATGAACGGGGA:	iggaaaaggcacctacggcct	GGACTGTGACTGGTGGTCAGTGGGCGTGA
	TTGCCTATGAGATGATT	PATGGGAGATCCCCCTTCGCA	GAGGGAACCTCTGCCAGAACCTTCAATAA
	CATTATGAATTTCCAGC	GTTTTTGAAATTTCCAGATG.	ACCCCAAAGTGAGCAGTGACTTTCTTGAT
	CTGATTCAAAGCTTGTTC	STGCGGCCAGAAAGAGAGACT(GAAGTTTGAAGGTCTTTGCTGCCATCCTT
	TCTTCTCTAAAATTGACT	fggaacaacattcgtaacgct	CCTCCCCCTTCGTTCCCACCCTCAAGTC
	TGACGATGACACCTCCA	ATTTTGATGAACCAGAGAAGA.	ATTCGTGGGTTTCATCCTCTCCGTGCCAG
	CTGAGCCCCTCAGGCTTC	CTCGGGTGAAGAACTGCCGTT'	TGTGGGGTTTTCGTACAGCAAGGCACTGG
	GGATTCTTGGTAGATCTC	SAGTCTGTTGTGTCGGGTCTG	GACTCCCCTGCCAAGACTAGCTCCATGGA
	AAAGAAACTTCTCATCA!	\AAGCAAAGAGCTACAAGACT	CTCAGGACAAGTGTCACAAGATGGAGCAG
	GAAATGACCCGGTTACAT	l'CGGAGAGTGTCAGAGGTGGA(GGCTGTGCTTAGTCAGAAGGAGGTGGAGC
	TGAAGGCCTCTGAGACTC	CAGAGATCCCTCCTGGAGCAG	GACCTTGCTACCTACATCACAGAATGCAG
	TAGCTTAAAGCGAAGTTT	PGGAGCAAGCACGGATGGAGG!	IGTCCCAGGAGGATGACAAAGCACTGCAG
	CTTCTCCATGATATCAG?	AGAGCAGAGCCGGAAGCTCCA	AGAAATCAAAGAGCAGGAGTACCAGGCTC
	AAGTGGAAGAAATGAGGT	PTGATGATGAATCAGTTGGAA(JAGGATCTTGTCTCAGCAAGAAGACGGAG
	TGATCTCTACGAATCTG	AGCTGAGAGAGTCTCGGCTTG(CTGCTGAAGAATTCAAGCGGAAAGCGACA
	GAATGTCAGCATAAACTC	TTGAAGGCTAAGGATCAGGG	SAAGCCTGAAGTGGGAGAATATGCGAAAC
	TGGAGAAGATCAATGCTG	AGCAGCAGCTCAAAATTCAG	SAGCTCCAAGAGAAACTGGAGAAGGCTGT
	AAAAGCCAGCACGGAGGC	CACCGAGCTGCTGCAGAATA	PCCGCCAGGCAAAGGAGCGAGCCGAGAGG
	GAGCTGGAGAAGCTGCAG	SAACCGAGAGGATTCTTCTGA1	AGGCATCAGAAAGAAGCTGGTGGAAGCTG
	AGGAACGCCGCCATTCTC	TGGAGAACAAGGTAAAGAGA	CTAGAGACCATGGAGCGTAGAGAAAACAG
	ACTGAAGGATGACATCCA	GACAAAATCCCAACAGATCC <i>I</i>	AGCAGATGGCTGATAAAATTCTGGAGCTC
	GAAGAGAAACATCGGGAG	GCCCAAGTCTCAGCCCAGCAG	CTAGAAGTGCACCTGAAACAGAAAGAGC
	AGCACTATGAGGAAAAGA	TTAAAGTATTGGACAATCAG	ATAAAGAAAGACCTGGCTGACAAGGAGAC

WO 03/029424

PCT/US02/31373

ACTGGAGAACATGATGCAGAGACACGAGGAGGGGCCCATGAGAAGGGCAAAATTCTCAGCGAACAG AAGGCGATGATCAATGCTATGGATTCCAAGATCAGATCCCTGGAACAGAGGATTGTGGGAACTGTCTG AAGCCAATAAACTTGCAGCAAATAGCAGTCTTTTTACCCAAAGGAACATGAAGGCCCCAAGAAGAGAT GATTTCTGAACTCAGGCAACAGAAATTTTACCTGGAGACACAGGCTGGGAAGTTGGAGGCCCAGAAC CGAAAACTGGAGGAGCAGCTGGAGAAGATCAGCCACCAAGACCACAGTGACAAGAATCGGCTGCTGG AACTGGAGACAAGATTGCGGGAGGTGAGTCTAGAGCACGAGGAGCAGAAACTGGAGCTCAAGCGCCA GCTCACAGAGCTACAGCTCTCCCTGCAGGAGCGCGAGTCACAGTTGACAGCCCTGCAGGCTGCACGG GCGGCCCTGGAGAGCCAGCTTCGCCAGGCGAAGACAGAGCTGGAAGAGACCACAGCAGAAGCTGAAG AGGAGATCCAGGCACTCACGGCACATAGAGATGAAATCCAGCGCAAATTTGATGCTCTTCGTAACAG CTGTACTGTGATCACAGACCTGGAGGAGCAGCTAAACCAGCTGACCGAGGACAACGCTGAACTCAAC AACCAAAACTTCTACTTGTCCAAACAACTCGATGAGGCTTCTGGCGCCAACGACGAGATTGTACAAC GCAAACGATGGAGGCTCTGAAGACCACGTGCACCATGCTGGAGGAACAGGTCATGGATTTGGAGGCC CTAAACGATGAGCTGCTAGAAAAAGAGCGGCAGTGGGAGGCCTGGAGGAGCGTCCTGGGTGATGAGA AATCCCAGTTTGAGTGTCGGGTTCGAGAGCTGCAGAGGATGCTGGACACCGAGAAACAGAGCAGGGC GAGAGCCGATCAGCGGATCACCGAGTCTCGCCAGGTGGTGGAGCTGGCAGTGAAGGAGCACAAGGCT GAGATTCTCGCTCTGCAGCAGGCTCTCAAAGAGCAGAAGCTGAAGGCCGAGAGCCTCTCTGACAAGC GACTGAACGAGAGCTCAAACAGAGGCTTCTGGAAGAGCAAGCCAAATTACAGCAGCAGATGGACCTG CAGAAAAATCACATTTTCCGTCTGACTCAAGGACTGCAAGAAGCTCTAGATCGGGCTGATCTACTGA AGACAGAAAGAAGTGACTTGGAGTATCAGCTGGAAAACATTCAGGTGCTCTATTCTCATGAAAAGGT GAAAATGGAAGGCACTATTTCTCAACAAACCAAACTCATTGATTTTCTGCAAGCCAAAATGGACCAA CCTGCTAAAAAGAAAAAGGTGCCTCTGCAGTACAATGAGCTGAAGCTGGCCCTGGAGAAGGAAAAG CTCGCTGTGCAGAGCTAGAGGAAGCCCTTCAGAAGACCCGCATCGAGCTCCGGTCCGCCCGGGAGGA GCCATGTCTGCCATCGTGCGGTCGCCAGAGCACCAGCCCAGTGCCATGAGCCTGCTGGCCCCGCCAT CCAGCCGCAGAAAGGAGTCTTCAACTCCAGAGGAATTTAGTCGGCGTCTTAAGGAACGCATGCACCA CAATATTCCTCACCGATTCAACGTAGGACTGAACATGCGAGCCACAAAGTGTGCTGTGTGTCTGGAT ACCGTGCACTTTGGACGCCAGGCATCCAAATGTCTAGAATGTCAGGTGATGTGTCACCCCAAGTGCT CCACGTGCTTGCCAGCCACCTGCGGCTTGCCTGCAGATATGCCACACACTTCACCGAGGCCTTCTG CCGTGACAAAATGAACTCCCCAGGTCTCCAGACCAAGGAGCCCAGCAGCAGCTTGCACCTGGAAGGG TGGATGAAGGTGCCCAGGAATAACAAACGAGGACAGCAAGGCTGGGACAGGAAGTACATTGTCCTGG AGGGATCAAAAGTCCTCATTTATGACAATGAAGCCAGAGAAGCTGGACAGAGGCCGGTGGAAGAATT TGAGCTGTGCCTTCCCGACGGGGATGTATCTATTCATGGTGCCGTTGGTGCTTCCGAACTCGCAAAT ACAGCCAAAGCAGATGTCCCATACATACTGAAGATGGAATCTCACCCGCACACCACCTGCTGGCCCG GGAGAACCCTCTACTTGCTAGCTCCCAGCTTCCCTGACAAACAGCGCTGGGTCACCGCCTTAGAATC AGTTGTCGCAGGTGGGAGAGTTTCTAGGGAAAAAGCAGAAGCTGATGCTAAACTGCTTGGAAACTCC CTGCTGAAACTGGAAGGTGATGACCGTCTAGACATGAACTGCACGCTGCCCTTCAGTGACCAGGTAG TGTTGGTGGGCACCGAGGAAGGGCTCTACGCCCTGAATGTCTTGAAAAACTCCCTAACCCATGTCCC AGGAATTGGAGCAGTCTTCCAAATTTATATTATCAAGGACCTGGAGAAGCTACTCATGATAGCAGGT GAAGAGCGGGCACTGTGTCTTGTGGACGTGAAGAAAGTGAAACAGTCCCTGGCCCAGTCCCACCTGC CTGCCCAGCCCGACATCTCACCCAACATTTTTGAAGCTGTCAAGGGCTGCCACTTGTTTGGGGCAGG CAAGATTGAGAACGGGCTCTGCATCTGTGCAGCCATGCCCAGCAAAGTCGTCATTCTCCGCTACAAC GAAAACCTCAGCAAATACTGCATCCGGAAAGAGATAGAGACCTCAGAGCCCTGCAGCTGTATCCACT TCACCAATTACAGTATCCTCATTGGAACCAATAAATTCTACGAAATCGACATGAAGCAGTACACGCT CGAGGAATTCCTGGATAAGAATGACCATTCCTTGGCACCTGCTGTTTTGCCGCCTCTTCCAACAGC TTCCCTGTCTCAATCGTGCAGGTGAACAGCGCAGGGCAGCGAGAGGAGTACTTGCTGTTTTCCACG AATTTGGAGTGTTCGTGGATTCTTACGGAAGACGTAGCCGCACAGACGATCTCAAGTGGAGTCGCTT GAGATCCAGGCACGCTCCTCAGCAGGGACCCCTGCCCGAGCGTACCTGGACATCCCGAACCCGCGCT ACCTGGGCCCTGCCATTTCCTCAGGAGCGATTTACTTGGCGTCCTCATACCAGGATAAATTAAGGGT CATTTGCTGCAAGGGAAACCTCGTGAAGGAGTCCGGCACTGAACACCACCGGGGCCCGTCCACCTCC CGCAGCAGCCCCAACAAGCGAGGCCCACCCACGTACAACGAGCACATCACCAAGCGCGTGGCCTCCA GCCCAGCGCCGCCGAAGGCCCCAGCCACCCGCGAGAGCCAAGCACCCCCACCGCTACCGCGAGGG ATGCTCAGCACGCGGAGAGAGCGGTCCCCCGGGAGGCTGTTTGAAGACAGCAGCAGGGGCCGGCTGC CTGCGGGAGCCGTGAGGACCCCGCTGTCCCAGGTGAACAAGGTGAGGCAGCATTCCGAGGCCTGTGT GTCTGTTGCGGAGGCCAGGAGTGACTTGGGGAACTGA ORF Start: ATG at 1 ORF Stop: TGA at 6199

	SEQ ID NO: 14	2066 aa	MW at 236008.5kD
NOV1g, CG106764-02 Protein Sequence	MAIKHVSNFVRKCSDTII AQEQVSFFEEERNILSR: LAELILAVHSVHLMGYVI TVMNGDGKGTYGLDCDW LIQSLLCGQKERLKFEGI	AELQELQPSAKDFEVRSLV STSPWIPQLQYAFQDKNHL HRDIKPENILVDRTGHIKL NSVGVIAYEMIYGRSPFAE LCCHPFFSKIDWNNIRNAP	FMTQQMSPLSREGILDALFVLFEECSQPAL GCGHFAEVQVVREKATGDIYAMKVMKKKALL YLVMEYQPGGDLLSLLNRYEDQLDENLIQFY VDFGSAAKMNSNKVNAKLPIGTPDYMAPEVL GTSARTFNNIMNFQRFLKPPDDPKVSSDFLD PPFVPTLKSDDDTSNFDEPEKNSWVSSSPCQ SPAKTSSMEKKLLIKSKELODSODKCHKMEO

emtrlhrrvseveavlsokevelkasetorslleodlätyttecsslkrsleoarmevsoebokalo LLHDIREQSRKLQEIKEQEYQAQVEEMRLMMNQLEEDLVSARRRSDLYESELRESRLAAEEFKRKAT ECQHKLLKAKDQGKPEVGEYAKLEKINAEQQLKIQELQEKLEKAVKASTEATELLQNIRQAKERAER ELEKLQNREDSSEGIRKKLVEAEERRHSLENKVKRLETMERRENRLKDDIQTKSQQIQQMADKILEL EEKHREAQVSAQHLEVHLKQKEQHYEEKIKVLDNQIKKDLADKETLENMMQRHEEEAHEKGKILSEQ KAMINAMDSKIRSLEQRIVELSEANKLAANSSLFTQRNMKAQEEMISELRQQKFYLETQAGKLEAQN RKLEEQLEKISHQDHSDKNRLLELETRLREVSLEHEEQKLELKRQLTELQLSLQERESQLTALQAAR AALESQLRQAKTELEETTAEAEEEIQALTAHRDEIQRKFDALRNSCTVITDLEEQLNQLTEDNAELN NQNFYLSKQLDEASGANDEIVQLRSEVDHLRREITEREMQLTSQKQTMEALKTTCTMLEEQVMDLEA LNDELLEKERQWEAWRSVLGDEKSQFECRVRELQRMLDTEKQSRARADQRITESRQVVELAVKEHKA EILALQQALKEQKLKAESLSDKLNDLEKKHAMLEMNARSLQQKLETERELKQRLLEEQAKLQQQMDL QKNHIFRLTQGLQEALDRADLLKTERSDLEYQLENIQVLYSHEKVKMEGTISQQTKLIDFLQAKMDQ PAKKKKVPLQYNELKLALEKEKARCAELEEALQKTRIELRSAREEAAHRKATDHPHPSTPATARQQI AMSAIVRSPEHQPSAMSLLAPPSSRRKESSTPEEFSRRLKERMHHNIPHRFNVGLNMRATKCAVCLD TVHFGRQASKCLECQVMCHPKCSTCLPATCGLPAEYATHFTEAFCRDKMNSPGLQTKEPSSSLHLEG WMKVPRNNKRGQQGWDRKYIVLEGSKVLIYDNEAREAGQRPVEEFELCLPDGDVSIHGAVGASELAN TAKADVPYILKMESHPHTTCWPGRTLYLLAPSFPDKQRWVTALESVVAGGRVSREKAEADAKLLGNS LLKLEGDDRLDMNCTLPFSDQVVLVGTEEGLYALNVLKNSLTHVPGIGAVFQIYIIKDLEKLLMIAG EERALCLVDVKKVKQSLAQSHLPAQPDISPNIFEAVKGCHLFGAGKIENGLCICAAMPSKVVILRYN ENLSKYCIRKEIETSEPCSCIHFTNYSILIGTNKFYEIDMKQYTLEEFLDKNDHSLAPAVFAASSNS FPVSIVQVNSAGQREEYLLCFHEFGVFVDSYGRRSRTDDLKWSRLPLAFAYREPYLFVTHFNSLEVI EIQARSSAGTPARAYLDIPNPRYLGPAISSGAIYLASSYQDKLRVICCKGNLVKESGTEHHRGPSTS RSSPNKRGPPTYNEHITKRVASSPAPPEGPSHPREPSTPHRYREGRTELRRDKSPGRPLEREKSPGR MLSTRRERSPGRLFEDSSRGRLPAGAVRTPLSQVNKVRQHSEACVSVAEARSDLGN

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 1B.

5

Table 1B. Comparison of NOV1a against NOV1b through NOV1g.			
Protein Sequence	NOV1a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV1b	1615 5620	601/616 (97%) 602/616 (97%)	
NOV1c	6151442 4831	690/828 (83%) 691/828 (83%)	
NOV1d	6151442 4846	690/843 (81%) 691/843 (81%)	
NOV1e	14362053 3620	618/618 (100%) 618/618 (100%)	
NOV1f	14362053 3635	618/633 (97%) 618/633 (97%)	
NOV1g	12051 12051	1900/2051 (92%) 1900/2051 (92%)	

Further analysis of the NOV1a protein yielded the following properties shown in Table 1C.

Table 1C. Protein Sequence Properties NOV1a	
PSort analysis:	0.9800 probability located in nucleus; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV1a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1D.

Table 1D. Ge	neseq Results for NOV1a	- AND PLANE - CONTRACT	***************************************	
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV1a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU03501	Human protein kinase #1 - Homo sapiens, 2053 aa. [WO200138503-A2, 31-MAY-2001]	12051 12053	2044/2053 (99%) 2046/2053 (99%)	0.0
AAB43359	Human ORFX ORF3123 polypeptide sequence SEQ ID NO:6246 - Homo sapiens, 1286 aa. [WO200058473-A2, 05-OCT-2000]	7682053 11286	1286/1286 (100%) 1286/1286 (100%)	0.0
ABB11117	Human RHO/RAC effector homologue, SEQ ID NO:1487 - Homo sapiens, 999 aa. [WO200157188-A2, 09-AUG-2001]	9681947 1980	976/980 (99%) 976/980 (99%)	0.0
AAU31443	Novel human secreted protein #1934 - Homo sapiens, 910 aa. [WO200179449-A2, 25-OCT-2001]	11141982 1869	867/869 (99%) 867/869 (99%)	0.0
AAE16261	Human kinase PKIN-7 protein - Homo sapiens, 497 aa. [WO200196547-A2, 20-DEC-2001]	1467 1468	463/468 (98%) 465/468 (98%)	0.0

In a BLAST search of public sequence datbases, the NOV1a protein was found to have homology to the proteins shown in the BLASTP data in Table 1E.

5

TD		NOV1a		
Protein Accession Number	Protein/Organism/Length	Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
O88938	Rho/rac-interacting citron kinase - Mus musculus (Mouse), 2055 aa.	12053 12055	1974/2055 (96%) 2014/2055 (97%)	0.0
O88528	Citron-K kinase - Mus musculus (Mouse), 1641 aa (fragment).	3732053 ⁻ 11641	1599/1683 (95%) 1616/1683 (96%)	0.0
P49025	Citron protein (Rho-interacting, serine/threonine kinase 21) - Mus musculus (Mouse), 1597 aa.	4672053 91597	1563/1589 (98%) 1578/1589 (98%)	0.0
Q9QX19	Postsynaptic density protein - Rattus norvegicus (Rat), 1618 aa.	4672053 11618	1556/1619 (96%) 1573/1619 (97%)	0.0
O14578	Citron protein (Rho-interacting, serine/threonine kinase 21) - Homo sapiens (Human), 1286 aa (fragment).	7682053 11286	1286/1286 (100%) 1286/1286 (100%)	0.0

PFam analysis predicts that the NOV1a protein contains the domains shown in the Table 1F.

Table 1F. Domain Analysis of NOV1a			
Pfam Domain	NOV1a Match Region	Identities/ Similarities for the Matched Region	Expect Value
pkinase	97359	89/302 (29%) 196/302 (65%)	2.7e-62
pkinase_C	360389	15/32 (47%) 24/32 (75%)	0.00023

DAG_PE-bind	13891437	14/51 (27%) 34/51 (67%)	6.1e-05
PH	14701589	20/121 (17%) 87/121 (72%)	1.8e-11
CNH	16181915	107/378 (28%) 289/378 (76%)	1.5e-110

Example 2.

The NOV2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 2A.

Table 2A. NOV	2 Sequence Analysis		
-	SEQ ID NO: 15	1238 bp	
	TCTCCGACAGACACCACCACCTT TGAAGGAACGACGACTGTGGACATGC CTTGGCAACACCACCTCCTCCGTG CATCGGCACCCCACCC	TTAAACGGATCTTCCTCAAC \$CCAGGCTTGGTCCCGAGTC \$ATCCTCACCAACTACATGC CAAAGTCGTCTTTGACAC CTCACCTCGCTATTCACA CTCACCCTCGCTATTCACAC CTCACCCTCGCTATTCACAC CTCACCCTCGCTATTCACAC CTCACCCTCGCTATTCAC CTCACCCCCCAAGGGCCCCCAATCCCCCAACCCCCACCCCCACCCCCCCC	CTGCTCTGGGGCTCCTGTACCTTTGG GAGAATGCCCTCAATCCGAGAAAGCC GAGACCAACCCATGAAGAGGCTGACA GACACCCAGTACTATGGCGAGATTGG GAGTTCGTCGATGCTTTGGGTGCCT ACAGGGACAGTCATTGGTTTGGATTCCTCC ACAGGACAGTCATGAGAGGCTTTCTCAG GTTTGGAGAGGTCACGGAGATGCCCG TTAAAAGAGGCATTGACCTCTCTTTCTA GATTGTCTGGGAGGCAGCCACCCCC CTGGTGTCTTGGCAGATTCAAATGAAG GCCTTGGCATTGGTAGACACCGGTGC GGACATCTTGTAGAGAGCC CCGACATCTTTTCCACTGGGAGGC CCCTACAGTAGTAAAAAAGCTGTGCAC CACCTGGGCCTTGGGGGCCACCTCCA
A SECTION OF THE PROPERTY OF T	ORF Start: ATG at 1		ORF Stop: TGA at 1219

	SEQ ID NO: 16	406 aa	MW at 45030.9kD
CG117662-01 Protein	LGMTTSSVILTMYMDTQYYGEIGI SYKHNGTELTLRYSTGTVSGFLSQ RVTPIFDNIISQGVLKEDVFSFYY	GTPPQTFKVVFDTGSSNV DIITVGGITVTQMFGEVT NRDSENSQSLGGQIVLGG YISGSTSSIEKLMEALGA	RESLKERGVDMARLGPEWSQPMKRLT WVPSSKCSRLYTACVYHKLFDASDSS EMPALPFMLAEFDGVVGMGFIEQAIG SDPQHYEGNFHYINLIKTGVWQIQMK KKRLFDYVVKCNEGPTLPDISFHLGG ATFIRKFYTEFDRRNNRIGFASAR

SEQ ID NO: 17	911 bp	Marie Committee Control of the Contr
GTCTCCCGACAGACACCACCACCTTCCTGAAGGAACGAGGTGTGGACATGACACCTCCTCCCCACACCTTGGCATCGGCACCCCAGACCTCTCCTCCAAGTGCAGCCGTCTCTCCTCCAGCTCAAGCACAATGGAATCCTCCAGCCACACCGTCTCCTCCAGCCACAATGGAATCCTCAGCAGACACACAC	FTAAACGGATCTTCCTCA SGCCAGGCTTGGTCCCGA STGATCCTCACCAACTAC CTTCAAAGTCGTCTTTG CTACACTGCCTGTGTGTA ACAGAACTCACCCTCCGC TGTCGTGTGGGGTCATCCA CTACATCTCAGGTTCTAC TTACATTACA	ACACTGGTTCGTCCAATGTTTGGGT TCACAAGCTCTTCGATGCTTCGGAT TCATCAACAGGACAGTCAGTGGCT CCTTACTCTGTGAAGACGGCTGCCT CAGCTCCATAGAGAAGCTCATGGAG TGTAACGAGGCCCTACACTCCCG GCGCGGACTATGTATTTCAGGAATC
ORF Start: ATG at 1		ORF Stop: TGA at 892

5

	SEQ ID NO: 18	297 aa	MW at 33025.3kD
CG117662-02 Protein	TLGNTTSSVILTNYMDTQYYGEIG SSSYKHNGTELTLRYSTGTVSGFL	IGTPPQTFKVVFDTGSSN SQDIITVSVGSSTLLCEDO SFHLGGKEYTLTSADYVFO	RESLKERGVDMARLGPEWSQPMKRL VWVPSSKCSRLYTACVYHKLFDASD GCLALVDTGASYISGSTSSIEKLME DESYSSKKLCTLAIHAMDIPPPTGP

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 2B.

Table 2B. Comparison of NOV2a against NOV2b.		
Protein Sequence	NOV2a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV2b	1165 1165	165/165 (100%) 165/165 (100%)

15

Further analysis of the NOV2a protein yielded the following properties shown in Table 2C.

Table 2C. Protein Sequence Properties NOV2a	
PSort analysis:	0.3700 probability located in outside; 0.2541 probability located in microbody (peroxisome); 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	Cleavage site between residues 24 and 25

A search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 2D.

Table 2D. Geneseq Results for NOV2a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV2a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAW23244	Human renin - Homo sapiens, 406 aa. [WO9728684-A1, 14-AUG-1997]	1406 1406	404/406 (99%) 404/406 (99%)	0.0	
AAP50135	Sequence of pre-pro-renin - Homo sapiens, 406 aa. [EP135347-A, 27-MAR-1985]	1406 1406	404/406 (99%) 404/406 (99%)	0.0	
ABB11781	Human renin homologue, SEQ ID NO:2151 - Homo sapiens, 438 aa. [WO200157188-A2, 09-AUG-2001]	1406 31438	391/408 (95%) 393/408 (95%)	0.0	
AAU72879	Human aspartyl protease partial protein sequence #4 - Homo sapiens, 412 aa. [WO200183782-A2, 08-NOV-2001]	24405 14409	169/400 (42%) 246/400 (61%)	1e-90	
AAY93685	Amino acid sequence of novel polypeptide PRO292 - Homo sapiens, 412 aa. [WO200037640-A2, 29-JUN-2000]	24405 14409	169/400 (42%) 246/400 (61%)	1e-90	

In a BLAST search of public sequence datbases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2E.

Table 2E. Public BLASTP Results for NOV2a

Protein Accession Number	Protein/Organism/Length	NOV2a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P00797	Renin precursor, renal (EC 3.4.23.15) (Angiotensinogenase) - Homo sapiens (Human), 406 aa.	1406 1406	405/406 (99%) 405/406 (99%)	0.0
Q9TSZ1	Preprorenin precursor (EC 3.4.23.15) - Callithrix jacchus (Common marmoset), 400 aa.	1406 1400	381/406 (93%) 389/406 (94%)	0.0
P52115	Renin precursor, renal (EC 3.4.23.15) (Angiotensinogenase) - Ovis aries (Sheep), 400 aa.	7406 1400	292/401 (72%) 338/401 (83%)	e-175
Q15296	Kidney mRNA fragment for renin (Aa 105-401) - Homo sapiens (Human), 300 aa (fragment).	108406 1300	297/300 (99%) 298/300 (99%)	e-172
P06281	Renin precursor, renal (EC 3.4.23.15) (Angiotensinogenase) - Mus musculus (Mouse), 402 aa.	5406 4402	281/403 (69%) 331/403 (81%)	e-167

PFam analysis predicts that the NOV2a protein contains the domains shown in the Table 2F.

5

Table 2F. Domain Analysis of NOV2a				
Pfam Domain	NOV2a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
asp	31405	174/428 (41%) 339/428 (79%)	4.1e-197	

Example 3.

The NOV3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3A.

Table 3A. NOV3 Sequence Analysis

	SEQ ID NO: 19	2827 bp	The lane when there is read then there were
NOV3a,	TGGCGATGCTACTGTTTAATTC	CAGGAGGTGGGGGTGTGTG	STACCATGTACCAGGGCTATTAGAAGC
CG118051-01	AGAAGGAAGGAGGGCAGA	GCGCCCTGCTGAGCAACAZ	AGGACTCCTGCAGCCTTTCTCTCTCTCTC
	CTCTTGGCACAGGCACATGGG	AGGCCTCCCGCAGGTGGGG	GGCCACCAGTCCACCGCCTCCCACCAC
DNA Sequence	ACAGGCACGAGTTGGTTTGG	AGCTGCCAGTCTCCTGGG <i>I</i>	AGGATCGCAGTCAGCAGAGCAGCCCCCCC
•	GGCCTGGGGGTAGGAGCAGAG	CTGCGCATCTGGAGGCAGC	CATGTCCAAGAAAGGGAGTGGAGGTGC
	GCGAAGGACCCAGGGGCAGAGG	CCACGCTGGGGGATGGACCC	CCTTCGAGGACACACTGCGGCGGCTGC
	TGAGGCCTTCAACTGAGGGCGC	ACGCGGCCGGCCGAGTTCC	GGGCTGCGCAGCTCCAGGGCTGCC
	ACTTCCTTCAAGAAAACAAGC	GCTTCTGCCCCACCTCCTC	GCCCAGGACCTGCATAAGCCAGCTTT
	GAGGCAGACATATCTGAGCTC	TCCTTTCCCAGAACGAGCT	TGACTACGCTCTCAAGAACCTTCAGG
	CTGGATGAAGGATGAACCACG	PCCACGA A CCECERECARCA	AGCTACGCTCTCAAGAACCTTCAGG AGCTGGACTCGGTCTTCATCTGGAAG
	AACCCTTTCCCCCTCCTCAT	CARCOAACCIGIICAIGA	CCATTGAACTCGGTCTTCATCTGGAAG CCATTGAACCTGACCCTGGTGCTCCTC
	GTGGGCACCCTCCCCCCACCCA	ATTCCCACCCTGGAACTAC	CCATTGAACCTGACCCTGGTGCTCCTC
	GGTCCTGGCTCACCTCCTGCAGGG	A1 IGCGIGGIGCIGAAGCC	GTCAGAAATCAGCCAGGGCACAGAGA
	ACCACACACCCCACCTCCTCACCTCCTCACCTCCTCACCTCCT	CAGTACCTGGACCAGAGCT	GCTTTGCCGTGGTGCTGGGCGGACCC
	A A CA MINISTRA MORA CITA CARROLL CONTROLL CONTROL	GCACAAGTTGGACTACATC	TTCTTCACAGGGAGCCCTCGTGTGGGG
	CMCCMA CCMCCA CCA CA A CMCC	CAAGCACCTGACGCCTGT	CACCTGGAGCTGGGGGCAAGAACC
	C TGC TACGTGGACGACAACTGC	JACCCCCAGACCGTGGCCA	ACCGCGTGGCCTGGTTCTGCTACTTC
	ATGCCGGCCAGACCTGCGTGGC	CCTGACTACGTCCTGTGC	AGCCCCGAGATGCAGGAGAGGCTGCTC
	CCCGCCCTGCAGAGCACCATCA	CCCGTTTCTATGGCGACGA	CCCCAGAGCTCCCCAAACCTGGGCC
	CATCATCAACCAGAAACAGTTC	CAGCGGCTGCGGGCATTGC	TGGGCTGCGCCGCGTGGCCATTGGGC
	GCCAGAGCAACGAGAGCGATCG	CTACATCGCCCCCACGGTG	CTGGTGGACGTGCAGGAGACGGAGCCC
	IGTGATGCAGGAGGAGATCTTCC	GCCCATCCTGCCCATCGT	GAACGTGCAGAGCGTGGACGACGCCAG
	CAAGTTCATCAACCGGCAGGAC	AAGCCCCTGGCCCTGTACG	CCTTCTCCAACAGCAGACAGGTTGTGT
	ACCAGATGCTGGAGCGGACCAG	CAGCGGCAGCTTTGGAGGC	AATGAGGGCTTCACCTACATATCTCTC
	CTGTCCGTGCCATTCGGGGGAC	PCGGCCACAGTGGGATGGG	CCGGTACCACGGCAAGTTCACCTTCGT
	CACCTTCTCCCACCACCGCACC	FGCCTGCTCGCCCCCTCCG	GCCTGGAGAAATTAAAGGAGATCCCCT
	ACCCACCCTATACCGACTGGAA	CAGCAGCTGTTACGCTGG	GGCATGGGCTCCCAGAGCTGCACCCTC
	CTGTGAGCGTCCCACCCGCCTC	CAACGGGTCACACAGAGAA	ACCTGAGTCTAGCCATGAGGGGCTTAT
	GCTCCCAACTCACATTGTTCCT	CAGACCGCAGGCTCCCCC	AGCCTCAGGTTGCTGGAGCTGTCACAT
	GACTGCATCCTGCCTGCCAGGG	TGCAAAGCAAGGTCTTGC	TTCTATCTGGGGGACGCTGCTCGAGAC
	AGGCCGAGAGGCCGCAGAACAT	CCAGGTGTCCTCACTCAC	CCCACCTCCCCAATTCCAGCCCTTTC
	CCCTCTCGGTCAGGGTTGGCCA	GCCCAGTCACAGGGGCAG	TGTCACCCTGGAAAATACAGTGCCCTC
	CCTTCTTAGGGGCATCAGCCCT	AACGGTTGAGAGCGTCGA	GCCTCCAGGCCTTTGCTCTCCCCTCT
	AGGCACACGCGCACTTCCACCT	TECCCCATCCCAACTCCA	CCAGCACTGCCTCCCCCAGGGATCCTC
	TCACATCCCACACTGGTCTCTC	ACCACCCCTCTCTCCTC	ACCGCACCCTGCACTCACCCACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC
	CTCCATCCACTGGGAAAACTGG	CTTTTCCATCACTCCACTCC	<u>ACCGCACCCTGCACTCACCCACAGCAC</u> CACAGTGTTAGTGGGACCTGGGGGCAA
	GTCCCTTGACTTCTCTGACCCT	ACTURE COMPANDED A A CO	CACAGTGTTAGTGGGACCTGGGGGCAA TTGCTGGAACCAAAATGGAGTCACTTA
	TGCCAAACTCTAATAAAATCCA	MCCCCCCCCCCCC CA MA CA A	TIGCTGGAACCAAAATGGAGTCACTTA GCCCTCACACACACATGCCCGTAACAG
	GATTTATCACCAAGACACCCCC	CAMCHA ACACCA CA CA CA	GCCCTCACACACACATGCCCGTAACAG
	GACTGTACTATTCACCAAGACACGCCT	CALGITAAGACCAGACACAC	GGCGTATGGAAAAGCACGTCCTCAAA
	CAACTCCTAGTATTCCAGATGAGC	GCAGATGCTTACCTACCA	CGGCCGTCTCCACCAGAAAACCATCGC
1	TAAAACCTTCCCGATCAGCTTGTG	CTTACAAACCTTGTTAA	AAGCTGCTTACATGGACTTCTGTCCTT
	TACCA ATTCCCCTTGGCTGTG	CCCTCTGTGTATGCCTGG	GATCCTTCCAAGCACTCATAGCCCAGA
	TAGGAATCCTCTGCTCCTCCCA	ATAAATTCATCTGTTC	
	ORF Start: ATG at 617	1	ORF Stop: TGA at 1772

	SEQ ID NO: 20	385 aa	MW at 42794.8kD
CG118051-01 Protein	LAEVLPQYLDQSCFAVVLGGPQET YVDDNCDPQTVANRVAWFCYFNAG INQKQFQRLRALLGCGRVAIGGQS	GQLLEHKLDYIFFTGSPR\ QTCVAPDYVLCSPEMQERI NESDRYIAPTVLVDVQETF LERTSSGSFGGNEGFTYIS	LLVGTLPAGNCVVLKPSEISQGTEKV /GKIVMTAATKHLTPVTLELGGKNPC LLPALQSTITRFYGDDPQSSPNLGRI EPVMQEEIFGPILPIVNVQSVDEAIK BLLSVPFGGVGHSGMGRYHGKFTFDT

	SEQ ID NO: 21	1586 bp	
DNA Sequence	CACGAGTTGGTTTGGGAGCTGCCA	CTGGAGGCAGCATGTCCA	AGAAAGGGAGTGGAGGTGCAGCGA
	GGGGGTAGGAGCAGAGCCTGCGCA	CGGGGATGGACCCCTTCGA	GGACACACTGCGGCGGCTGCGTGA
	AGGACCCAGGGGCAGAGCCCACGCT	SCCGGCCGAGTTCCGGCC	GCGCAGCTCCAGGGCCTGGGCCAC
	GGCCTTCAACTGAGGGGGCACGCTGC	CTGCGCGACGTGCTGCCC	AGGACCTGCATAAGCCAGCTTTCG
	TTCCTTCAAGAAACAAGCAGCTTCCAGGAGACATATCTGAGCTCATCCT	CTGCCCAGACGAGGTGCTGA	CTACGCTCTCAAGAACCTTCAGGC

GAAGGTCCTGGCTGAGGTGCTGCCCCAGTACCTGGACCAGAGCTGCTTTGCCGTGGTGCTGGGCGGA CCCCAGGAGACAGGCAGCTGCTAGAGCACAAGTTGGACTACATCTTCTTCACAGGGAGCCCTCGTG TGGGCAAGATTGTCATGACTGCTGCCACCAAGCACCTGACGCCTGTCACCCTGGAGCTGGGGGGCAA GAACCCCTGCTACGTGGACGACAACTGCGACCCCCAGACCGTGGCCAACCGCGTGGCCTGGTTCTGC TACTTCAATGCCGGCCAGACCTGCGTGGCCCCTGACTACGTCCTGTGCAGCCCCGAGATGCAGGAGA GGCTGCTGCCGCCCTGCAGAGCACCATCACCCGTTTCTATGGCGACGACCCCCAGAGCTCCCCAAA CCTGGGCCGCATCATCAACCAGAAACAGTTCCAGCGGCTGCGGGCATTGCTGGGCTGCGGCCGTG GCCATTGGGGGCCAGAGCAACGAGAGCGATCGCTACATCGCCCCCACGGTGCTGGTGGACGTGCAGG AGACGGAGCCTGTGATGCAGGAGAGATCTTCGGGCCCATCCTGCCCATCGTGAACGTGCAGAGCGT GGACGAGGCCATCAAGTTCATCAACCGGCAGGAGAAGCCCCTGGCCCTGCACAGTGGGATGGGCCGG TGGAGAAATTAAAGGAGATCCGCTACCCACCCTATACCGACTGGAACCAGCAGCTGTTACGCTGGGG CATGGGCTCCCAGAGCTGCACCCTCTGTGAGCGTCCCACCGCCTCCAACGGGTCACACAGAGAAA ORF Start: ATG at 407 ORF Stop: TGA at 1436

	SEQ ID NO: 22	343 aa	MW at 38350.9kD
CG118051-02 Protein	PCYVDDNCDPQTVANRVAWFCYFN GRIINQKQFQRLRALLGCGRVAIG	TGQLLEHKLDY] AGQTCVAPDYVI GOSNESDRYTAI	PLNLTLVLLVGTLPAGNCVVLKPSEISQGTEK FFTGSPRVGKIVMTAATKHLTPVTLELGGKN CSPEMQERLLPALQSTITRFYGDDPQSSPNL PTVLVDVQETEPVMQEEIFGPILPIVNVQSVD CLLAPSGLEKLKEIRYPPYTDWNQQLLRWGM

	SEQ ID NO: 23	1791 bp	
NOV3c,	TTAAGGAGAATCTTAAAGTGAGGG		CCAGAGCTGAGGACTCTCCTGATCC
CG118051-03	GAGC TGAGGGC TC TCCTGATGGAC	CCCTTCGAGGACACGCTG	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	AGGGCGCACGCCGGCCGAGT"I	CCGGGCTGCGCAGCでCへる	CCCCCTCCCCCCACTTCCTTCAACAACAACAACAACAACA
DNA Sequence	MCMAGCAGCTTC TGCGCGACGTGC	IGGCCCAGGACCTCCなかね:	ACCCACCTTTTCCACCCACACATATATION
	GAGC TCATCCTTTGCCAGAACGAG	GTTGACTACGCTCTCAAG:	ACCTTCACCCCTCCATIONACCATION
	ACCACGGTCCACGAACCTGTTCAT(₿₿₿₿₿₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	$^{\circ}\Delta$ $^{\circ}$
	TCCTCATCATCGCACCCTGGAACT	ACCCACTGAACCTGACCC	PGGTGCTCCTGGTGGGCCCCCCTGGAAA
	GCAGGGAATTGCGTGGTGCTGAAG(CCGTCAGAAATCAGCCAG	3GC
	CCCCCCAGTACCTGGACCAGAG	TGCTTTGCCGTGGTGCT	GGCGGACCCCAGGAGACAGGGCAGC
	CCTCCCACCAAGTTGGACTACA	PCTTCTTCACAGGGAGCCC	CTCGTGTGGGCAGACAGGGCAGC
	CAACTCCCACCCCACACCCCCTC	TCACCCTGGAGCTGGGG	GCAAGAACCCCTGCTACGTGGACGA
	GCGTGGCCCCTGACTACCTGCTGGCC	AACCGCGTGGCCTGGTTC	TGCTACTTCAATGCCGGCCAGACCT
	ACCATCACCCCTGACTACGTCCTGTC	CAGCCCCGAGATGCAGG	AGAGGCTGCTGCCGCCCTGCAGAGC
	ACAGTTCCAGCGGTTTCTATGGCGACC	SACCUCCAGAGCTCCCCA	ACCTGGGCCGCATCAACCAGAA
	GCGATCGCTACATCGCCCCACCCT	CCTCCTCCA CCTCCCCCCTC	GCCATTGGGGGCCAGAGCAACGAGA GACGGAGCCTGTGATGCAGGAGGAG
	ATCTTCGGGCCCATCCTGCCCATCG	TOCA ACCORGA CA COCONGO	GACGGAGCCTGTGATGCAGGAGGAG ACGAGGCCATCAAGTTCATCAACCG
	GCAGGAGAAGCCCCTGGCCCTGTAC	GCCTTCCAAGCGTGC	ACGAGGCCATCAAGTTCATCAACCG CAGGTTGTGAACCAGATGCTGGAGC
	GGACCAGCAGCGCAGCTTTGGAGG	CAATGAGGGCTTTCACAGGAGG	CAGGTTGTGAACCAGATGCTGGAGC CATATCTCTGCTGTCCGTGCCATTC
	GGGGGAGTCGGCCACAGTGGGATGC	GCCGGTACCACCCTA	CATATETETGCTGTCCGTGCCATTC TCACCTTCGACACCTTCTCCCACCA
	CCGCACCTGCCCGCTCGCCCCCTCC	GGCCTGGAGAAATTAAAG	GAGATCCGCTACCCATCTCCCACCA
	ACTGGAACCAGCAGCTGTTACGCTG	iGGGCATGCCCTCCCacac	CTCCACCCTCCTCTCTCACACCCTCCACAC
1	<u>CCGCCTCCAACGGGTCACACAGAGA</u>	AACCTGAGTCTAGCCATG	ACCCCCTTATOCCTCCCAACTCAACT
1	TOT TOUTCOME MENTING TOUTCOME	CAGCCTCAGGTTGCTGGA	CCTCTCACATCACTCCATCCTCCTCCTCCTCCTCCTCCTC
3	GCCAGGGCTGCAAAGCAAGGTCTTG	CTTCTATCTCCCCCCACCC	TCCTCCACACACCCCCCACACACCCCCC
	AGAACAIGCCAGGIGICCICACICA	CCCCACCCTCCCCA ATTC	CAGCCCTTTGCCCTCTCGGTCAGG
	TIGACCAGGCCAAGGGCTAGCAT		<u> </u>
	ORF Start: ATG at 330		ORF Stop: TGA at 1485

	SEQ ID NO: 24	385 aa	MW at 42653.5kD			
CG118051-03	YVDDNCDPOTVANRVAWFCYFNAG	GLVLIIAPWNYPLNLTLVI GQLLEHKLDYIFFTGSPR\ OTCVAPDYVLCSPEMOERI	LLVGALAAGNCVVLKPSEISQGTEKV VGKIVMTAATKHLTPVTLELGGKNPC			
Sequence	FINRQEKPLALYAFSNSSQVVNQM FSHHRTCPLAPSGLEKLKEIRYPP	LEKTSSGSFGGNEGETYTS	EPVMQEEIFGPILPIVNVQSVDEAIK ELLSVPFGGVGHSGMGRYHGKFTFDT FLL			

5

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 3B.

Table 3B. Comparison of NOV3a against NOV3b and NOV3c.				
Protein Sequence	NOV3a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV3b	1385 1343	331/385 (85%) 331/385 (85%)		
NOV3c	1385 1385	363/385 (94%) 363/385 (94%)		

10

Further analysis of the NOV3a protein yielded the following properties shown in Table 3C.

15

Table 3C. Protein Sequence Properties NOV3a				
PSort analysis: 0.7900 probability located in plasma membrane; 0.3000 probability located Golgi body; 0.2000 probability located in endoplasmic reticulum (membra 0.1743 probability located in microbody (peroxisome)				
SignalP analysis:	Cleavage site between residues 54 and 55			

A search of the NOV3a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 3D.

Table 3D. Geneseq Results for NOV3a				
Geneseq	Protein/Organism/Length [Patent #, Date]	NOV3a	Identities/	Expect
Identifier		Residues/	Similarities for	Value

		Match Residues	the Matched Region	و الحاد، المستد معادد، المستدر ال
AAB58156	Lung cancer associated polypeptide sequence SEQ ID 494 - Homo sapiens, 430 aa. [WO200055180-A2, 21-SEP-2000]	1353 62414	325/353 (92%) 337/353 (95%)	0.0
ABB66868	Drosophila melanogaster polypeptide SEQ ID NO 27396 - Drosophila melanogaster, 561 aa. [WO200171042-A2, 27-SEP-2001]	14309 95390	158/296 (53%) 212/296 (71%)	3e-94
ABB65492	Drosophila melanogaster polypeptide SEQ ID NO 23268 - Drosophila melanogaster, 561 aa. [WO200171042-A2, 27-SEP-2001]	14309 95390	158/296 (53%) 212/296 (71%)	3e-94
ABP39856	Staphylococcus epidermidis ORF amino acid sequence SEQ ID NO:4701 - Staphylococcus epidermidis, 464 aa. [US6380370-B1, 30-APR-2002]	2365 88451	157/366 (42%) 235/366 (63%)	1e-85
AAG82730	S. epidermidis open reading frame protein sequence SEQ ID NO:2554 - Staphylococcus epidermidis, 459 aa. [WO200134809-A2, 17-MAY-2001]	2365 83446	157/366 (42%) 235/366 (63%)	1e-85

In a BLAST search of public sequence datbases, the NOV3a protein was found to have homology to the proteins shown in the BLASTP data in Table 3E.

Table 3E. Public BLASTP Results for NOV3a						
Protein Accession Number	Protein/Organism/Length	NOV3a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
P48448	Aldehyde dehydrogenase 8 (EC 1.2.1.5) - Homo sapiens (Human), 385 aa.	1385 1385	385/385 (100%) 385/385 (100%)	0.0		

BAC03897	CDNA FLJ35145 fis, clone PLACE6009853, highly similar to ALDEHYDE DEHYDROGENASE 8 (EC 1.2.1.5) - Homo sapiens (Human), 385 aa.	1385 1385	380/385 (98%) 381/385 (98%)	0.0
P43353	Aldehyde dehydrogenase 7 (EC 1.2.1.5) - Homo sapiens (Human), 468 aa.	1385 82468	321/387 (82%) 345/387 (88%)	0.0
ААН33099	Similar to aldehyde dehydrogenase 3 family, member B1 - Homo sapiens (Human), 431 aa.	13385 57431	315/375 (84%) 339/375 (90%)	0.0
Q8VHW0	Aldehyde dehydrogenase ALDH3B1 (EC 1.2.1.3) - Mus musculus (Mouse), 449 aa (fragment).	1385 63449	295/387 (76%) 336/387 (86%)	e-174

PFam analysis predicts that the NOV3a protein contains the domains shown in the Table 3F.

5

Table 3F. Domain Analysis of NOV3a						
Pfam Domain	NOV3a Match Region	Identities/ Similarities for the Matched Region	Expect Value			
aldedh	1351	129/492 (26%) 299/492 (61%)	1.1e-103			

Example 4.

The NOV4 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 4A.

Table 4A. NOV	lable 4A. NOV4 Sequence Analysis					
	SEQ ID NO: 25	1636 bp				
1	CGCTGCAGCGCCTGATCCAGGAGC AATGAATGGAACGCCTACTATGAG GCTCCCTGAGTGGGCCGCGGATGA TCCACTCGGAGCCACTGGCCTGC CAGCCCATGGTGGCGCCATCGCTG	AGGCTGTGTCAAAGGCGCCATGAGCAAGATCAGCGAGGCCGTGA CGGGCAGGACCCGTCCGCTGCAGTTCCGATTCCAGCAGCTGGAG CAGGAGCAGGAGCTGGTGGGCGCGCAGACCTGCACAA CAGAGCTGGTGTACGTCCTAGAGGAGATCGAGTACATGATCCAGA AGCCCGTGGAGAAAGACGCCCCAGACTCAGCAAGCAACCTCACCACAC CTCCTCGTCATTGGCACCTGGAACTACCCCTTCAACCTCACCATA CGCAGGGAACGCAGTGGTCCTCAAGCCCTCGGAGCTGAGTTGAG CCATCCCCCAGTACCTGGACAAGGATCTGTACCCAGTAATCAAT				

NOV4a, CG120277-01 Protein Sequence MSKISEAVKRARAAFSSGRTRPLQFRFQQLEALQRLIQEQEQELVGALAADLHKNEWNAYYEEVVYV EEIEYMIQKLPEWAADEPVEKTPQTQQDELYIHSEPLGVVLVIGTWNYPFNLTIQPMVGAIAAGNAV LKPSELSENMASLLATIIPQYLDKDLYPVINGGVPETTELLKERFDHILYTGSTGVGKIIMTAAAKH TPVTLELGGKSPCYVDKNCDLDVACRRIAWGKFMNSGQTCVAPDYILCDPSIQNQIVEKLKKSLKEF GEDAKKSRDYGRIISARHFQRVMGLIEGQKVAYGGTGDAATRYIAPTILTDVDPQSPVMQEEIFGPVV PIVCVRSLEEAIQFINOREKPLALYMFSSNDKVIKKMIAETTSSGGVAANDVIJVITHT		SEQ ID NO: 26	453 aa	MW at 50412.5kD
GMGSYHGKKSFETFSHRRSCLVRPLMNDEGLKVRYPPSPAKMTOH	CG120277-01 Protein Sequence	MSKISEAVKRARAAFSSGRTRPLQ BEIEYMIQKLPEWAADEPVEKTPQ LKPSELSENMASLLATIIPQYLDK TPVTLELGGKSPCYVDKNCDLDVA GEDAKKSRDYGRIISARHFQRVMG PIVCVRSLEEAIQFINOREKPLAL	PRFQQLEALORLIQEOEO PRFQQDELYIHSEPLGVVLV DLYPVINGGVPETTELLK CRRIAWGKFMNSGQTCVA LIEGQKVAYGGTGDAATR VMFSSNDKVIKKMIAETS	ELVGALAADLHKNEWNAYYEEVVYVL IGTWNYPFNLTIQPMVGAIAAGNAVV ERFDHILYTGSTGVGKIIMTAAAKHL PDYILCDPSIQNQIVEKLKKSLKEFY YIAPTILTDVDPQSPVMQEEIFGPVL

SEQ ID NO: 27	1554 bp	
GAGCCCCAGTTACCGGAGAGGCT CGCCCGCGCCGCCTTCAGCTCGG CTGCAGCGCCTGATCCAGCAGCAG ATGAATGGAACGCTACTATGAGG GCTCCCTGAGTGGGCCGCATGA ATCCACTCGGAGCCACTGGGCTTC GCACCATGGTGGGCGCATCG GAACATGGCGAGCCTGCTACCACCACGGGGTGCCACCACGGGGGGAGATCATCACGGGGGGAAGATCATCATGAGCGAACATCATCACGGGAGCAAATTCATGAACAGTGGCAACCACAAATTGAACAGTAGCAACCACACAAACCCAAATTGAACAAGACCAAATTGAACAGAACCAAACTATCATGAAAACATCATCA	CAGGACCCGTCCGCTGCAC GAGCAGGAGCTGGTGGCC AGGTGGTGGTGGTGGTGGTGGTGGTGTGGT	BAGGGTGATGGGCCTGATTGAGGGC FACATAGCCCCCACCATCCTCACGG GGCCTGTGCTGCCCATCGTGTGGTGTG
ATGTCATCGTCCACCATCACCTTGCA GCCTCTGATGAATGATGAAGGCCTC TGAGGAGGGGTTGCTCCGTCTGGCC GCTCTCCTGGCCCTGGGAGAATCG GACCTGTGCACACCCCACTCCCACA	ACTCTCTGCCCTTCGGGGG BAAGGTCAGATACCCCCC <u>CTGGCCATACTGTGTCCCA</u> CTCCTGCAGCCCCAGCCCA	CGTGGGGAACAGCGGCATGGTGAG AGCCCGGCCAAGATGACCCAGCAC ATCGGAGTGCGGACCACCCTCACCG ACCCCACTGCTGCTGACCGGACGGGACCCTCAGGG
 ACCAATAAAGAGA ORF Start: ATG at 39		ORF Stop: TGA at 1341

The same of the sa	the deliberation of the second		
	SEQ ID NO: 28	434 aa	MW at 48169.0kD
Protein Sequence	VVLKPSELSENMASLLATI KHLTPVTLELGGKSPCYVD KEFYGEDAKKSRDYCRIIC	IPQYLDKDLYPVINGG KNCDLDVACRRIAWGK ARHFQRVMGLIEGQKV	LIQEQEQELVGALAADLHKNEWNAYYEEVVYV EPLGVVLVIGTWNYPFNLTIQPMVGAIAAGNA VPETTELLKERFDHILYTGSTGVGKIIMTAAA FMNSGQTCVAPDYILCDPSIQNQIVEKLKKSL AYGGTGDAATRYIAPTILTDVDPQSPVMQEEI DKVIKKMIAETSSGGVAANDVIVHITLHSLPF

5

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 4B.

Table 4B. Comparison of NOV4a against NOV4b.					
Protein Sequence	NOV4a Residues/ Match Residues	Identities/ Similarities for the Matched Region			
NOV4b	1453 1434	401/453 (88%) 401/453 (88%)			

10

Further analysis of the NOV4a protein yielded the following properties shown in Table 4C.

15

1 avic 4C. Proteir	n Sequence Properties NOV4a
PSort analysis:	0.7636 probability located in mitochondrial matrix space; 0.4422 probability located in mitochondrial inner membrane; 0.4422 probability located in mitochondrial intermembrane space; 0.4422 probability located in mitochondrial outer membrane
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV4a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 4D.

Table 4D. Geneseq Results for NOV4a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV4a Residues/ Match	Identities/ Similarities for the Matched	Expect Value	

		Residues	Region	and the sale of
AAB58156	Lung cancer associated polypeptide sequence SEQ ID 494 - Homo sapiens, 430 aa. [WO200055180-A2, 21-SEP-2000]	48431 28411	208/384 (54%) 277/384 (71%)	e-124
ABB66868	Drosophila melanogaster polypeptide SEQ ID NO 27396 - Drosophila melanogaster, 561 aa. [WO200171042-A2, 27-SEP-2001]	1394 1394	199/394 (50%) 270/394 (68%)	e-115
ABB65492	Drosophila melanogaster polypeptide SEQ ID NO 23268 - Drosophila melanogaster, 561 aa. [WO200171042-A2, 27-SEP-2001]	1394 1394	199/394 (50%) 270/394 (68%)	e-115
AAG21988	Arabidopsis thaliana protein fragment SEQ ID NO: 24747 - Arabidopsis thaliana, 484 aa. [EP1033405-A2, 06-SEP-2000]	2445 10456	210/449 (46%) 288/449 (63%)	e-112 ·
AAG11789	Arabidopsis thaliana protein fragment SEQ ID NO: 10644 - Arabidopsis thaliana, 484 aa. [EP1033405-A2, 06-SEP-2000]	2445 10456	210/449 (46%) 288/449 (63%)	e-112

In a BLAST search of public sequence datbases, the NOV4a protein was found to have homology to the proteins shown in the BLASTP data in Table 4E.

Protein Accession Number	Protein/Organism/Length	NOV4a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P30838	Aldehyde dehydrogenase, dimeric NADP-preferring (EC 1.2.1.5) (ALDH class 3) (ALDHIII) - Homo sapiens (Human), 453 aa.	1453 1453	453/453 (100%) 453/453 (100%)	0.0

Q9BT37	Aldehyde dehydrogenase 3 (Aldehyde dehydrogenase 3 family, member A1) - Homo sapiens (Human), 453 aa.	1453 1453	452/453 (99%) 452/453 (99%)	0.0
A42584	aldehyde dehydrogenase (NAD(P)+) (EC 1.2.1.5) 3 - human, 453 aa.	1453 1453	450/453 (99%) 451/453 (99%)	0.0
A30149	aldehyde dehydrogenase (NADP+) (EC 1.2.1.4) 3, tumor-associated [similarity] - rat, 453 aa.	1453 1453	370/453 (81%) 415/453 (90%)	0.0
P11883	Aldehyde dehydrogenase, dimeric NADP-preferring (EC 1.2.1.5) (ALDH class 3) (Tumor-associated aldehyde dehydrogenase) (HTC-ALDH) - Rattus norvegicus (Rat), 452 aa.	2453 1452	369/452 (81%) 414/452 (90%)	0.0

PFam analysis predicts that the NOV4a protein contains the domains shown in the Table 4F.

5

Table 4F. Domai	n Analysis of NOV4a		
Pfam Domain	NOV4a Match Region	Identities/ Similarities for the Matched Region	Expect Value
aldedh	1432	182/492 (37%) 401/492 (82%)	7.4e-206

Example 5.

The NOV5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 5A.

Table 5A. NOV	5 Sequence Analysis		
	SEQ ID NO: 29	2316 bp	
	GAGGGAGCCCTCGAGGAACCCCTTCGCAGCACTCCCTTCCCTCGCCCCTTCCCTCGCCCTTCCCTCGCCAAGGAAGTGAAGGTTGAGGAGCTCGAGAGAGCCTCGAGAGAGCCTCGAGAGAGCCTCGCAGAGAGCCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAGCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAGAACCTCGAGAAAACCTCAAAAACCTCAAAAAACCTCAAAAAAACCTCAAAAAA	CTGGTCTCCGCATCCAGTT AGTCCCCCTTGCCCCCCC AGTTCCCCTGTCCTGAGG GGGCGACACTTGGCCTCAC AGCAGCGCGAAGTAGCTCC	ATTCCCTTTTCCACGGAGCCCCGCGTTTC ACCACCTCCTGCCTCAGAGGCCATCTGAGC GCGGAGATCGCCTCGCTCCCTCCCGCCCC GAGCCCCGCCACGGCAGCGACAGCGGGAGAGA TCCCGGCTAGGCGCACCACCGGGAGAGAGA CTGCTGGTGGTGACAATGTCAAATAACGGC AAATACCAGCACTATGATTGAGTCGGCAG

CAAAGATGCTGGAACCCTAAACCATGGTTCTAAACCTCTGCCTCCAAACCCAGAGGAGAACAAAAAGA GAGATTTCTCTCCCTTCAGATTTTGAACACACAATTCATGTCGGTTTTGATGCTGTCACAGGGGAGTT TACGGGAATGCCAGAGCAGTGGGCCCGCTTGCTTCAGACATCAAATATCACTAAGTCGGAGCAGAAGA AAAACCCGCAGGCTGTTCTGGATGTGTTGGAGTTTTACAACTCGAAGAAGACATCCAACAGCCAGAAA TACATGAGCTTTACAGATAAGTCAGCTGAGGATTACAATTCTTCTAATGCCTTGAATGTGAAGGCTGT GTCTGAGACTCCTGCAGTGCCACCAGTTTCAGAAGATGAGGATGATGATGATGATGATGCTACCCCAC CACCAGTGATTGCTCCACGCCCAGAGCACACAAAATCTGTATACACACGGTCTGTGATTGAACCACTT CCTGTCACTCCAACTCGGGACGTGGCTACATCTCCCATTTCACCTACTGAAAATAACACCACTCCACC AGATGCTTTGACCCGGAATACTGAGAAGCAGAAGAAGAAGCCTAAAATGTCTGATGAGGAGATCTTGG AGAAATTACGAAGCATAGTGAGTGTGGGCGATCCTAAGAAGAAATATACACGGTTTGAGAAGATTGGA CAAGGTGCTTCAGGCACCGTGTACACAGCAATGGATGTGGCCACAGGACAGGAGGTGGCCATTAAGCA GATGAATCTTCAGCAGCAGCCCAAGAAAGAGCTGATTATTAATGAGATCCTGGTCATGAGGGAAAACA AGAACCCAAACATTGTGAATTACTTGGACAGTTACCTCGTGGGAGATGAGCTGTGGGTTGTTATGGAA TGTGTGCCGTGAGTGTCTGCAGGCTCTGGAGTTCTTGCATTCGAACCAGGTCATTCACAGAGACATCA AGAGTGACAATATTCTGTTGGGAATGGATGGCTCTGTCAAGCTAACTGACTTTGGATTCTGTGCACAG ATAACCCCAGAGCAGAGCAAACGGAGCACCATGGTAGGAACCCCATACTGGATGGCACCAGAGGTTGT GACACGAAAGGCCTATGGGCCCAAGGTTGACATCTGGTCCCTGGGCATCATGGCCATCGAAATGATTG AAGGGGAGCCTCCATACCTCAATGAAAACCCTCTGAGAGCCTTGTACCTCATTGCCACCAATGGGACC CCAGAACTTCAGAACCCAGAGAAGCTGTCAGCTATCTTCCGGGACTTTCTGAACCGCTGTCTCGATAT GGATGTGGAGAAGAGGGTTCAGCTAAAGAGCTGCTACAGCATCAATTCCTGAAGATTGCCAAGCCCC TCTCCAGCCTCACTCCACTGATTGCTGCAGCTAAGGAGGCAACAAAGAACAATCAC**TAA**AACCACACT CACCCAGCCTCATTGTGCCAAGCTCTGTGAGATAAATGCACATTTCAGAAATTCCAACTCCTGATGCCCTTCTTGCTTTGCCTTGCTTTGCTTTTCTTGATCTTAGCACTCCTCAAGACTTTTGGAAA CCGTGTGTCCAGCATTGAAGAGAACTGCAACTGAATGACTAATCAGATGATGGCCATTTCTAAATAAG GAATTTCCTCCCAATTCATGGATATGAGGGTGGTTTATGATTAAGGGTTTATATAAATAAATGTTTCT ORF Start: ATG at 394 ORF Stop: TAA at 2029

	SEQ ID NO: 30	545 aa	MW at 60660.3kD
CG140468-01 Protein Sequence	SNSQKYMSFTDKSAEDYNS SNSQKYMSFTDKSAEDYNS VIEPLPVTPTRDVATSPIS FEKIGQGASGTVYTAMDVA WVVMEYLAGGSLTDVVTETO GFCAQITPEOSKRSTMYGT	GFDAVTGEFTGMPEQWI SNALNVKAVSETPAVPI PTENNTTPPDALTRNTE IGQEVAIKQMNLQQQPF CMDEGQIAAVCRECLQA PYWMAPEVVYTRKAYGPK PYWMAPEVVYTRKAYGPK	HGSKPLPPNPEEKKKKDRFYRSILPGDKTNKKK ARLLQTSNITKSEQKKNPQAVLDVLEFYNSKKT PVSEDEDDDDDDATPPPVIAPRPEHTKSVYTRS EKQKKKPKMSDEEILEKLRSIVSVGDPKKKYTR KKELIINEILVMRENKNPNIVNYLDSYLVGDEL ALEFLHSNQVIHRDIKSDNILLGMDGSVKLTDF KVDIWSLGIMAIEMIEGEPPYLNENPLRALYLI AKELLQHQFLKIAKPLSSLTPLIAAAKEATKNN

	SEQ ID NO: 31	957 bp	
DNA Sequence	ACTATGATTGGAGCCGGCAGA ACCCAGAGGAGAAAAAAAGGA AAAGAAAG	GATGCTGGAACCCTAAAC ACCGATTTTACCGATCCA GATTTTACCGATCCA GATTTCTCTCCCTTCAGA ACGGGAATGCCAGAGCAG AAACCCGCAGGCTGTTC ATACATGAGCTTTACAGA GTGTCTGAGACTCCTGCA CACCAGTGATTGCTC ACTTCCTGTCACTCCAAC CACCAGATGCTTTGACC CCACCAGATGCTTTGACC CCACCAGATGCTTTGACC CCACCAGATGCTTTGACC CTTTGGAGAATTACAAC SATTGCCAAGCCCCTTCTCAC	GCATAGTGAGTGTGGGCGATCCTAA
	ORF Start: ATG at 5		ORF Stop: TAA at 899

	SEQ ID NO: 32	298 aa	MW at 32989.7kD
CG140468-02 Protein	KTSNSQKYMSFTDKSAEDYNSSNA	GAGSKDAGTLNHGSKPLP VTGEFTGMPEQWARLLQT LNVKAVSETPAVPPVSED ENNTTPPDALTRNTEKOK	PNPEEKKKKDRFYRSILPGDKTNKK SNITKSEQKKNPQAVLDVLEFYNSK EDDDDDDATPPFVIAPRPEHTKSVY KKPKMSDEEILEKLRSIVSVGDPKK

5

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 5B.

10

Table 5B. Comparisor	of NOV5a against NOV5b.	
Protein Sequence	NOV5a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV5b	1281 1281	238/281 (84%) 239/281 (84%)

Further analysis of the NOV5a protein yielded the following properties shown in Table 5C.

15

20

Table 5C. Protein Sequence Properties NOV5a		
PSort analysis:	0.7000 probability located in nucleus; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)	
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5D.

Table 5D. Ge	eneseq Results for NOV5a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV5a Residues/ Match	Identities/ Similarities for the Matched	Expect Value

		Residues	Región	A result of much with
AAB03968	p-21 activated protein kinase (PAK1) - Homo sapiens, 545 aa. [WO200060062-A2, 12-OCT-2000]	1545 1545	544/545 (99%) 545/545 (99%)	0.0
AAY55958	Human STE20-related protein kinase PAK1_h - Homo sapiens, 545 aa. [WO9953036-A2, 21-OCT-1999]	1545 1545	541/545 (99%) 542/545 (99%)	0.0
ABG30251	Novel human diagnostic protein #30242 - Homo sapiens, 587 aa. [WO200175067-A2, 11-OCT-2001]	1542 7557	474/556 (85%) 500/556 (89%)	0.0
AAW72757	Human doublin - Homo sapiens, 544 aa. [WO9840495-A1, 17-SEP-1998]	3544 2542	444/552 (80%) 489/552 (88%)	0.0
ABB57290	Mouse ischaemic condition related protein sequence SEQ ID NO:817 - Mus musculus, 544 aa. [WO200188188-A2, 22-NOV-2001]	3544 2542	441/552 (79%) 483/552 (86%)	0.0

In a BLAST search of public sequence datbases, the NOV5a protein was found to have homology to the proteins shown in the BLASTP data in Table 5E.

Protein Accession Number	Protein/Organism/Length	NOV5a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q13153	Serine/threonine-protein kinase PAK 1 (EC 2.7.1) (p21-activated kinase 1) (PAK-1) (P65-PAK) (Alpha-PAK) - Homo sapiens (Human), 545 aa.	1545 1545	545/545 (100%) 545/545 (100%)	0.0

P35465	Serine/threonine-protein kinase PAK 1 (EC 2.7.1) (p21-activated kinase 1) (PAK-1) (P68-PAK) (Alpha-PAK) (Protein kinase MUK2) - Rattus norvegicus (Rat), 544 aa.	1545 1544	537/545 (98%) 539/545 (98%)	0.0
S40482	serine/threonine-specific protein kinase (EC 2.7.1) - rat, 544 aa.	1545 1544	534/545 (97%) 537/545 (97%)	0.0
O88643	Serine/threonine-protein kinase PAK 1 (EC 2.7.1) (p21-activated kinase 1) (PAK-1) (P65-PAK) (Alpha-PAK) (CDC42/RAC effector kinase PAK-A) - Mus musculus (Mouse), 545 aa.	1545 1545	530/545 (97%) 537/545 (98%)	0.0
O75561	P21 activated kinase 1B - Homo sapiens (Human), 553 aa.	1522 1522	517/522 (99%) 520/522 (99%)	0.0

PFam analysis predicts that the NOV5a protein contains the domains shown in the Table 5F.

5

Table 5F. Domain Analysis of NOV5a					
Pfam Domain	NOV5a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
PBD 75135		37/64 (58%) 59/64 (92%)	3.4e-34		
pkinase	270521	94/291 (32%) 208/291 (71%)	5.7e-90		

Example 6.

10

The NOV6 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 6A.

Table 6A. NOV6 Sequence Analysis		
SEQ ID NO: 33	3255 bp	

GACAGCTTTGGGTGGACCAGTAATGAGGAAATGAGGCAAATGATGTGCAGGAACTGAATCGAATCCT NOV6a. CTTCAGCGCTTTGGAAACTTCTTTAGTTGGGACCTCCGGTCATGACCTCATCTATCGTCTGTACCATG CG142182-01 GAACCATTGTTAACCAGATTGTTTGTAAAGAATGTAAGAACGTTAGCGAGAGGCAGGAAGACTTCTTA DNA Sequence GGAAGTTTTTGATTGTGACAACTTGTACCACTGTGGAACTTGTGACAGGCTGGTTAAAGCAGCAAAGT CGGCCAAATTACGTAAGCTGCCTCCTTTTCTTACTGTTTCATTACTAAGATTTAATTTTGATTTTGTG AAATGCGAACGCTACAAGGAAACTAGCTGTTATACATTCCCTCTCCGGATTAATCTCAAGCCCTTTTG TGAACAGAGTGAATTGGATGACTTAGAATATATATATGACCTCTTCTCAGTTATTATACACAAAGGTG GCTGCTACGGAGGCCATTACCATGTATATATAAAGATGTTGATCATTTGGGAAACTGGCAGTTTCAA GAGGAAAAAAGTAAACCAGATGTGAATCTGAAAGATCTCCAGAGTGAAGAAGAGATTGATCATCCACT GATGATTCTAAAAGCAATCTTATTAGAGGAGGAGAATAATCTAATTCCTGTTGATCAGCTGGGCCAGA AACTTTTGAAAAAGATAGGAATATCTTGGAACAAGAAGTACAGAAAAACAGCATGGACCATTGCGGAAG TTCTTACAGCTCCATTCTCAGATATTTCTACTCAGTTCAGATGAAAGTACAGTTCGTCTCTTGAAGAA TAGTTCTCTCCAGGCTGAGTCTGATTTCCAAAGGAATGACCAGCAAATTTTCAAGATGCTTCCTCCAG AATCCCCAGGTTTAAACAATAGCATCTCCTGTCCCCACTGGTTTGATATAAATGATTCTAAAGTCCAG GAAATCCCAGTTGCAGAGACCCCCTGAAGCTCGAGCTAATCCAAGATATGGGGTTCCATGTCATTTAC TGAATGAAATGGATGCAGCTAACATTGAACTGCAAACCAAAAGGGCAGAATGTGATTCTGCAAACAAT ACTTTTGAATTGCATCTTCACCTGGGCCCTCAGTATCATTTCTTCAATGGGGCTCTGCACCCAGTAGT CTCTCAAACAGAAAGCGTGTGGGATTTGACCTTTGATAAAAGAAAAACTTTAGGAGATCTCCGGCAGT CAATATTTCAGCTGTTAGAATTTTGGGAAGGAGACATGGTTCTTAGTGTTGCAAAGCTTGTACCAGCA GGACTTCACATTTACCAGTCACTTGGCGGGGATGAACTGACACTGTGTGAAACTGAAATTGCTGATGG GGAAGACATCTTTGTGTGGAATGGGGTGGAGGTTGGTGGAGTCCACATTCAAACTGGTATTGACTGCG AACCTCTACTTTTAAATGTTCTTCATCTAGACACAAGCAGTGATGGAGAAAAGTGTTGTCAGGTGATA GAATCTCCACATGTCTTTCCAGCTAATGCAGAAGTGGGCACTGTCCTCACAGCCTTAGCAATCCCAGC AGGTGTCATCTTCATCAACAGTGCTGGATGTCCAGGTGGGGAGGGTTGGACGGCCATCCCCAAGGAAG ACATGAGGAAGACGTTCAGGGAGCAAGGGCTCAGAAATGGAAGCTCAATTTTAATTCAGGATTCTCAT CGTTAAAAATTTATGCCAGTTAGAATCTGAAGAGAAGCAAGTTAAAATATCAGCAACTGTTAACACAA TGGTGTTTGATATTCGAATTAAAGCCATAAAGGAATTAAAATTAATGAAGGAACTAGCTGACAACAGC TGTTTGAGACCTATTGATAGAAATGGGAAGCTTCTTTGTCCAGTGCCGGACAGCTATACTTTGAAGGA AGCAGAATTGAAGATGGGAAGTTCATTGGGACTGTGTCTTGGAAAAGCACCAAGTTCGTCTCAGTTGT TCCTGTTTTTTGCAATGGGGAGTGACGTTCAACCTGGGACAGAAATGGAAATCGTAGTAGAAGAAACA ATATCTGTGAGAGATTGTTTAAAGTTAATGCTGAAGAAATCTGGCCTACAAGACTCCTTTATAGGAGA TGCCTGGCATTTACGAAAAATGGATTGGTGCTATGAAGCTGGAGAGCCTTTATGTGAAGAAGATGCAA CACTGAAAGAACTTCTGATATGTTCTGGAGATACTTTGCTTTTAATTGAAGGACAACTTCCTCCTCTG GGTTTCCTGAAGGTGCCCATCTGGTGGTACCAGCTTCAGGGTCCCTCAGGACACTGGGAGAGTCATCA GGACCAGACCAACTGTACTTCGTCTTGGGGCAGAGTTTGGAGAGCCACTTCCAGCCAAGGTGCTTCTG GGAACGAGCCTGCGCAAGTTTCTCTCCTCTACTTGGGAGACATAGAGATCTCAGAAGATGCCACGCTG GCGGAGCTGAAGTCTCAGGCCATGACCTTGCCTCCTTTCCTGGAGTTCGGTGTCCCGTCCCCAGCCCA GGGAATATAAACTAGGACGGAGAATTGAGATCTGCTTAGAGCCCCTTCAGAAAGGCGAAAACTTGGGC CCTGGTGTGGAACGCGGCCCAGGGTGGGACTGCCGGCTCCCTGAGGCAGAGAGTTGCCGATTTCTATT GTCTTCCCGTGGAGAAGATTGAAATTGCCAAATACTTTCCCGAAAAGTTCGAGTGGCTTCCGATATCT TTACTTGAAAGACGGAGATACTATTGGTGTTAAGGTAAGTTGTTTAACAGCAAATTTACCACTT**TGA**G

	SEQ ID NO: 34	1054 aa	MW at 119613.5kD	
NOV6a, CG142182-01 Protein Sequence	GLEDALWMYVEECYFU YTFPLRINLKPFCEQSE KDLQSEEEIDHPLMILK LSSDESTVRLLKNSSLQ FQGKESAYMLFYRKSQL QYHFFNGALHPVVSQTE: DELTLCETEIADGEDIF EVGTVLTALAIPAGVIF KWVTSMNEIDWLHVKNL LLCPVPDSYTLKEAELKI LKKSGLQDSFIGDAWHLI LKKSGLQDSFIGDAWHLI QLQGPSGHWESHQDQTNO PPFLEFGVPSPAHLRAW	CDNLYHCGTCDRLVKAAKS LDDLEYIYDLFSVIIHKGC AILLEEENNLIPVDQLGQB AESDFQRNDQQIFKMLPPB QRPPEARANPRYGVPCHLI SVWDLTFDKRKTLGDLRQS WMGVEVGGVHIQTGIDCB INSAGCPGGEGWTAIPKED CQLESEEKQVKISATVNTM MGSSLGLCLGKAPSSSQLB RKMDWCYEAGEPLCEEDAT CTSSWGRVWRATSSQGASG TVERKRPGRLLRTDRQPLB AAOGGTAGSLRORVADPYC	GTIVNQIVCKECKNVSERQEDFLDLTVAVK SAKLRKLPPFLTVSLLRFNFDFVKCERYKE GCYGGHYHVYIKDVDHLGNWQFQEEKSKPD KLLKKIGISWNKKYRKQHGPLRKFLQLHSQ SPGLNNSISCPHWFDINDSKVQPIREKDI NEMDANIELQTKRAECDSANNTFELHLH SIFQLLEFWEGDMVLSVAKLVPAGLHIYQS SPLLLNVLHLDTSSDGEKCCQVIESPHVFP MRKTFREQGLRNGSSILIQDSHDDNSLLT TUPFAMGSDVQPGTEMEIVVEETISVRDCL LKELLICSGDTLLLIEGQLPPLGFLKVPT NEPAQVSLLYLGDIEISEDATLAELKSQA EYKLGRRIEICLEPLQKGENLGPQDVLLR LLPVEKIEIAKYFPEKFEWLPISSWNQQIT	TSC VNL IFL EQQ LGP LGG ANA KEE NGK KLM WWY

<u>AAGACACGAGGGTCACATGATTTTATAGAGACGTTTTATTGAATCTTCAAGACACAGAT</u>

ORF Stop: TGA at 3193

ORF Start: ATG at 31

Further analysis of the NOV6a protein yielded the following properties shown in Table 6B.

5

Table 6B. Protein Sequence Properties NOV6a				
PSort analysis:	0.7000 probability located in plasma membrane; 0.3500 probability located in nucleus; 0.3000 probability located in microbody (peroxisome); 0.2000 probability located in endoplasmic reticulum (membrane)			
SignalP analysis: No Known Signal Sequence Predicted				

A search of the NOV6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6C.

Table 6C. Ge	neseq Results for NOV6a	<u>بر پر د داداد استان با </u>		
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV6a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAE14346	Human protease PRTS-11 protein - Homo sapiens, 1108 aa. [WO200183775-A2, 08-NOV-2001]	11044 11040	1037/1044 (99%) 1037/1044 (99%)	0.0
AAU68535	Human novel cytokine encoded by cDNA 790CIP2C_6 #1 - Homo sapiens, 1346 aa. [WO200175093-A1, 11-OCT-2001]	11044 1291167	1037/1044 (99%) 1038/1044 (99%)	0.0
AAB93169	Human protein sequence SEQ ID NO:12102 - Homo sapiens, 1014 aa. [EP1074617-A2, 07-FEB-2001]	11019 11014	1013/1019 (99%) 1013/1019 (99%)	0.0
AAU68534	Human novel cytokine encoded by cDNA 790CIP2C_5 #1 - Homo sapiens, 1324 aa. [WO200175093-A1, 11-OCT-2001]	11044 1291145	1015/1044 (97%) 1015/1044 (97%)	0.0

ABG27066 Novel human diagnostic protein #27057 - Homo sapiens, 674 aa. [WO200175067-A2, 11-OCT-2001]	500666 47214 166/168 (98%) 166/168 (98%)	77
--	---	----

In a BLAST search of public sequence datbases, the NOV6a protein was found to have homology to the proteins shown in the BLASTP data in Table 6D.

5

Table 6D. Public BLASTP Results for NOV6a						
Protein Accession Number	Protein/Organism/Length	NOV6a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q9NVE5	CDNA FLJ10785 fis, clone NT2RP4000457, weakly similar to ubiquitin carboxyl-terminal hydrolase 15 (EC 3.1.2.15) - Homo sapiens (Human), 1014 aa (fragment).	11019 11014	1013/1019 (99%) 1013/1019 (99%)	0.0		
Q95KB6	Hypothetical 102.2 kDa protein - Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey), 907 aa (fragment).	1431024 30907	844/882 (95%) 860/882 (96%)	0.0		
Q8S1J6	Putative ubiquitin carboxyl-terminal hydrolase - Oryza sativa (japonica cultivar-group), 1079 aa.	3342 223568	102/359 (28%) 165/359 (45%)	3e-23		
Q8VZM4	Putative ubiquitin carboxyl-terminal hydrolase - Arabidopsis thaliana (Mouse-ear cress), 683 aa.	3202 278480	72/205 (35%) 105/205 (51%)	3e-23		
Q94ED6	Putative ubiquitin carboxyl-terminal hydrolase - Oryza sativa (Rice), 1108 aa.	3342 273618	102/359 (28%) 165/359 (45%)	3e-23		

PFam analysis predicts that the NOV6a protein contains the domains shown in the 10 Table 6E.

Table 6E. Domain Analysis of NOV6a					
Pfam Domain	NOV6a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
UCH-2	157354	23/203 (11%) 141/203 (69%)	0.00033		

5 Example 7.

The NOV7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 7A.

Table 7A. NOV	Table 7A. NOV7 Sequence Analysis				
	SEQ ID NO: 35	692 bp			
NOV7a, CG142564-01 DNA Sequence	CCAGTTCACGGTGACCCCAGACGGG TGTCTGGGATCAACTCCTGGAAGAA CCTGGCAGCCCCACCAGCTGGCTGG CATCTCCTTGGGGCTGGTCAGTTGC CGCAGACCCGGGCACTTCTCAGCAT TTCCGCCAAACCCTGAAGCTGCTTC CCCCAATCACCTGGGCGCTGGAGGT TGATTGCAGGCGAGAACACGATCTT	GTCGACTTCCGGCTCAG ACGCCTGATCCGCATCA TCGTCATCATGGTAACA ATCCAGAGATGCCTCCC GGCCATCTTCTCCACGG TCTGCTACCAATCCCAG GGCTTTGGCCCTGTAGCA CTTCCACATCCCAGCA	GCGGAAGCTCACCAGGCCGTGGCCTT PCGGGAGGCCCTGAAACACGTCTACC AGAATGGCATCCTCAGGGGCGTGTAC GTGGGTTCCTCCTTCTGCAACGTGGA PCAGGGGTGTGGCCCCTACCAGACCC GCGTCTGGGTGACGGCATCTTCTTC ATCCGCATGTTCGACCAGAGCAGCA AGATGATGGCTATGGAGTTCCTACA AGTTCTCAAGCTCAGAGCAGCC GCTGATCTTTCCAAGCTCAAGTCCAAGCCAGACCAGA		
	ORF Start: ATG at 40		ORF Stop: TGA at 688		

SEQ ID NO: 36 216 aa MW at 23874.3kD

NOV7a, MAEAHQAVAFQFTVTPDGVDFRLSREALKHVYLSGINSWKKRLIRIKNGILRGVYPGSPTSWLVVIMV
TVGSSFCNVDISLGLVSCIQRCLPQGCGPYQTPQTRALLSMAIFSTGVWVTGIFFFRQTIKLLLCYQS
QIRMFDPEQHPNHLGAGGGFGPVADDGYGVSYMIAGENTIFFHISSKFSSSETNAQRFGNHIRKALLD
Protein IADLFQVPQAYS
Sequence

15

10

Further analysis of the NOV7a protein yielded the following properties shown in Table 7B.

20

Table 7B. Protein Sequence Properties NOV7a

	0.7900 probability located in plasma membrane; 0.6400 probability located in microbody (peroxisome); 0.3000 probability located in Golgi body; 0.2000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	Cleavage site between residues 5 and 6

A search of the NOV7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 7C.

Table 7C. Ger	neseq Results for NOV7a			and the state of t
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV7a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAW14438	Type I carnitine palmitoyl transferase-like protein - Homo sapiens, 772 aa. [JP09009969-A, 14-JAN-1997]	1134 1134	131/134 (97%) 131/134 (97%)	4e-72
AAE10322	Human carnitine acyltransferase, 26886 - Homo sapiens, 803 aa. [WO200166759-A2, 13-SEP-2001]	1134 1132	57/134 (42%) 78/134 (57%)	le-21
AAY79220	Human transferase TRNSFS-12 - Homo sapiens, 803 aa. [WO200014251-A2, 16-MAR-2000]	1134 1132	57/134 (42%) 78/134 (57%)	1e-21
ABB67527	Drosophila melanogaster polypeptide SEQ ID NO 29373 - Drosophila melanogaster, 780 aa. [WO200171042-A2, 27-SEP-2001]	137210 688761	43/74 (58%) 55/74 (74%)	6e-19
ABB66942	Drosophila melanogaster polypeptide SEQ ID NO 27618 - Drosophila melanogaster, 782 aa. [WO200171042-A2, 27-SEP-2001]	137210 690763	43/74 (58%) 55/74 (74%)	6e-19

In a BLAST search of public sequence datbases, the NOV7a protein was found to have homology to the proteins shown in the BLASTP data in Table 7D.

Table 7D. Pr	ublic BLASTP Results for NOV7	'a		
Protein Accession Number	Protein/Organism/Length	NOV7a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9BY90	KIAA 1670 protein - Homo sapiens (Human), 598 aa (fragment).	1134 18151	133/134 (99%) 133/134 (99%)	2e-73
Q92523	Carnitine O-palmitoyltransferase I, mitochondrial muscle isoform (EC 2.3.1.21) (CPT I) (CPTI-M) (Carnitine palmitoyltransferase I like protein) - Homo sapiens (Human), 772 aa.	1134 1134	133/134 (99%) 133/134 (99%)	2e-73
Q924X2	Muscle-type carnitine palmitoyltransferase I (EC 2.3.1.21) (Hypothetical 88.2 kDa protein) - Mus musculus (Mouse), 772 aa.	1149 1147	118/149 (79%) 128/149 (85%)	1e-63
O35287	Carnitine palmitoyltransferase I - Mus musculus (Mouse), 772 aa.	1149 1147	118/149 (79%) 128/149 (85%)	1e-63
Q9QYP4	Muscle type carnitine palmitoyltransferase I - Mus musculus (Mouse), 772 aa.	1149 1147	118/149 (79%) 128/149 (85%)	1e-63

5

10

Example 8.

The NOV8 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 8A.

Table 8A. NOV8 Sequence Analysis			
	SEQ ID NO: 37	1122 bp	
CG142797-01 DNA Sequence	TCTAACACGTGACCACAGTCTAGA ACATGGAGAACATGAAGATGACTGA ATGGCCATGAACACCTTTGGAGACA	CGCACAATGGACCAAGTGG AGCAGCACAATCAGGAATA ATGACCACTGAAGAATTCA	TTTTCCTGGGAATTGCCTCAGCTGC AAGGCAAAGCACAAGAGATTATATG CAGCCAAGGGAAACACAGCTTCACA GGCAGGTGATGAATGGTTTTCAATA CTTGAGATCCCCACATCTGTGGACT

	T	11:11:11:11:11:11:11:11:11:11:11:11:11:	The state of the s
1	GGAGAGAGAAAGGCTACATGACTCC	CTGTGAAGGATCAGGGTCA	GTGTGGCTCTTGTTGGGCTTTTAGT
	GCAACTGGTGCTCTGGAAGGGCAG	ATGTTCTGGAAAACAGGCA	AACTTATCTCACTGAATGAGCAGAA
	TCTGGTAGACTGCTCTGGGCCTCA	AGGCAATGAGGGCTGCAAT	GGTGGCTTCATGGATAATCCCTTCC
1	GGTATGTTCAGGAGAACGGAGGCCT	rggactctgaggcatccta	TCCATATGAAAAAACCTGTAGGTAC
]	AATCCCAAGTATTCTGCTGCTAATC	BACACTGGCTTTGTGGACA	TCCCTTCACAGGAGAAGGACCTGGC
	GAAGGCAGTGGCAACTGTGGGGCCC	CATCTCTGTTGCTGCTGGT	GCAAGCCATGTCTCCTTCCAGTTCT
İ	ATAAAAAAGGTATTTATTTTGAGCC	CACGCTGTGACCCCGAAGG	TCTGGATCATGCTATGCTGCTGGTT
	GGCTACAGCTATGAAGGAGCAGACT	PCAGATAACAATAAATATI	GGCTGGTGAAGAACAGGTATGGTAA
	AAACTGGGGCATGGATGGCTACATA	AAAGATGGCCAAAGACCGG	AGGAACAACTGTGGAATTGCCACAG
1	CAGCCAGCTACCCCACTGTGTGAGC	CTGATGGATGGTGATGAGG	AAGAACTTGACTGAGGATGGCACAT
	CCAAAGGAGGAATTTATCTTCAATC	CTACCAGCCCCTGCTGTGT	GGAATGCGCACTTCAATCATTGAAG
	ATCCAAGTGTGATTGGAATTCTGAT	PATTTTCACA	
	ORF Start: ATG at 16		ORF Stop: TGA at 973

	SEQ ID NO: 38	319 aa	MW at 35984.2kD
CG142797-01 Protein	FGDMTTEEFRQVMNGFQYQKHRNG EGQMFWKTGKLISLNEQNLVDCSG	KQFQERLLLEIPTSVDWR PQGNEGCNGGFMDNPFRY GPISVAAGASHVSFQFYK	ENMKMTEQHNQEYSQGKHSFTMAMNT EKGYMTPVKDQGQCGSCWAFSATGAL VQENGGLDSEASYPYEKTCRYNPKYS KGIYFEPRCDPEGLDHAMLLVGYSYE SYPTV

Further analysis of the NOV8a protein yielded the following properties shown in Table 8B.

10

PSort analysis:

0.8200 probability located in endoplasmic reticulum (membrane); 0.5140 probability located in plasma membrane; 0.2423 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (lumen)

SignalP analysis:

Cleavage site between residues 18 and 19

A search of the NOV8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 8C.

Table 8C. Ge	neseq Results for NOV8a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV8a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value

AAU98883	Human protease PRTS1 - Homo sapiens, 334 aa. [WO200238744-A2, 16-MAY-2002]	1319 1334	303/334 (90%) 310/334 (92%)	e-180
ABG61771	Novel cathepsin-L precursor-like protein - Homo sapiens, 333 aa. [WO200229058-A2, 11-APR-2002]	1319 1333	288/333 (86%) 300/333 (89%)	e-171
ABG66692	Human novel polypeptide #27 - Homo sapiens, 333 aa. [WO200244340-A2, 06-JUN-2002]	1319 1333	260/333 (78%) 278/333 (83%)	e-154
ABG66714	Human novel polypeptide #49 - Homo sapiens, 333 aa. [WO200244340-A2, 06-JUN-2002]	1319 1333	259/333 (77%) 277/333 (82%)	e-154
ABB77396	Human cathepsin L - Homo sapiens, 333 aa. [DE10050274-A1, 18-APR-2002]	1319 1333	249/333 (74%) 274/333 (81%)	e-147

In a BLAST search of public sequence datbases, the NOV8a protein was found to have homology to the proteins shown in the BLASTP data in Table 8D.

Table 8D. Pr	Table 8D. Public BLASTP Results for NOV8a				
Protein Accession Number	Protein/Organism/Length	NOV8a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
P07711	Cathepsin L precursor (EC 3.4.22.15) (Major excreted protein) (MEP) - Homo sapiens (Human), 333 aa.	1319 1333	249/333 (74%) 274/333 (81%)	e-147	
Q9GKL8	Cysteine protease - Cercopithecus aethiops (Green monkey) (Grivet), 333 aa.	1319 1333	247/333 (74%) 273/333 (81%)	e-146	
Q9GL24	Cathepsin L (EC 3.4.22.15) - Canis familiaris (Dog), 333 aa.	1319 1333	236/334 (70%) 265/334 (78%)	e-138	
Q28944	Cathepsin L precursor (EC 3.4.22.15) - Sus scrofa (Pig), 334 aa.	1319 1334	228/334 (68%) 263/334 (78%)	e-135	

(Bovine), 334 aa.			Cathepsin L precursor (EC 3.4.22.15) - Bos taurus (Bovine), 334 aa.	1319 1334	222/334 (66%) 261/334 (77%)	e-133	
-------------------	--	--	---	--------------	--------------------------------	-------	--

PFam analysis predicts that the NOV8a protein contains the domains shown in the Table 8E.

5

Table 8E. Domain Analysis of NOV8a			
Pfam Domain	NOV8a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Peptidase_C1	103318	123/337 (36%) 194/337 (58%)	2.4e-111

Example 9.

The NOV9 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 9A.

Table 9A. NOV	9 Sequence Analysis	COMMENSATION OF THE PROPERTY O	
	SEQ ID NO: 39	1740 bp	
NOV9a,	CACGAGGCCGCTAACGGTCCGGCG	CCCCTCGGCGTCCGCGCGC	CCCCAGCCTGGCGGACGAGCCCGGC
CG143216-01	<u>GGCGGAGATG</u> GGGGCGACGGGGC	GGCGGAGCCGCTGCAATCC	GTGCTGTGGGTGAAGCAGCACCCCT
	GCGCCGTGAGCCTGGAGCCCGCGC	GGGCTCTGCTGCGCTGGTG	GCGGAGCCCGGGGCCCGGAGCCGG
DNA Sequence	GCCCCCGGTGCTGATGCCTGCTCT	GTGCCTGTATCTGAGATC	TCGCCGTTGAGGAAACAGACGTTCA
	CGGGAAACATCAAGGCAGTGGAAA	ATGGCAGAAAATGGAAAAG	CCTTACGCTTTTACAGTTCACTGTC
	TAAAGAGAGCACCGCT	GGAAGTGGGCGCAGGTGAC	CTTTCTGGTGTCCAGAGGAGCAGCTG
	GCTA TOTAL CONTROL OF	CGGGAGATGCTGGAGAAGC	TGACGTCCAGACCAAAGCATTTACT
	GGTATTTATCAACCCGTTTGGAGG	AAAAGGACAAGGCAAGCGG	ATATATGAAAGAAAAGTGGCACCAC
	CTCTATCACCTTAGCCTCCATCACCA	CTGACATCATCGTTACTGA	ACATGCTAATCAGGCCAAGGAGACT
	CCTCCTCCACCCTCTCATTCCCACA	TACGACGGCATCGTCTGTG	TCGGCGGAGATGGTATGTTCAGCGA
	TCCTCCTCCCACTACCCTCCCCA	GACGCAGAGGGAGCGCCGGG	GTCGACCAGAACCACCCCGGGCTG
	ACCETEGECACCAGGACCCACAA	ACCHECCOCCOCCACO MARGO	GTCAACGGACTGCGTGTGTTACTCC TTGTTGGGGACTCGCTGGCCATGGA
	TGTGTCCTCAGTCCACCACAACACAC	CACACTCGGCGCTGCATATCG	TTGTTGGGGACTCGCTGGCCATGGA GTGTCCCTGCTGGGCTACGGCTTCT
	ACGGGGACATCATCAAGGACAGTG	AGAAGAAACCCTACTCC	GTGTCCCTGCTGGGCTACGGCTTCT TCTTGCCAGATACGACTTTTCAGGT
	TTAAAGACCTTCCTCTCCCACCAC	TGCTATCAACCGTGGTTGGG	CCTTCCTCCCTGCACAACACACGGT
	GGGATCTCCAAGGGATAGGAAGCC	CTGCCGGCAGGACAGIGI	GTTTGCAGGCAAAGACACACGGT GTTTGCAGGCAAAGCAAGCAGCAGC
	TGGAGGAGGAGCAGAAGCAC	TGTATGGTTTGGA AGCTGC	GGAGGACGTGGAGGAGCAGCAGC
	GTCTGTGGGAAGTTTCTGGCCATC	AATGCCACAAACATGTCCT	GTGCTTGTCGCCGGAGCCCCAGGGG
	CCTCTCCCCGGCTGCCCACTTGGG	AGACGGGTCTTCTGACCTC	ATCCTCATCCGGAAATGCTCCAGGG
	TCAATTTTCTGAGATTTCTCATCA	GGCACACCAACCAGCAGGA	CCAGTTTGACTTCACTTTTGTTGAA
	GTTTATCGCGTCAAGAAATTCCAG	TTTACGTCGAAGCACATGG	AGGATGAGGACAGCGACCTCAAGGA
	GGGGGGAAGAAGCGCTTTGGGCA	CATTTGCAGCAGCCACCCC	TCCTGCTGCTGCACCGTCTCCAACA
	GCTCCTGGAACTGCGACGGGGAGG	TCCTGCACAGCCCTGCCAT	CGAGGTCAGAGTCCACTGCCAGCTG
	GTTCGACTCTTTGCACGAGGAATT	GAAGAGAATCCGAAGCCAG	ACTCACACAGCTGAGAAGCCGGCGT
	CCTGCTCTCGAACTGGGAAAGTGTC	GAAAACTATTTAAGAT	
	ORF Start: ATG at 76		ORF Stop: TGA at 1687

	SEQ ID NO: 40	537 aa	MW at 59976.9kD
CG143216-01 Protein Sequence	INDESGRWORMERPYAFTV INDEGREGGGKRIYERKV HGLIGRTQRSAGVDQNHP SVHHNSTLLRYSVSLLGY PRDRKPCRAGCFVCRQSK PAAHLGDGSSDLILIRKC	HCVKRARRHRWKWAQVT APLFTLASITTDIIVTE RAVLVPSSLRIGIIPAG SFYGDIIKDSEKKRWLG QQLEEEQKKALYGLEAA SRFNFLRFLIRHTNOOD SRFNFLRFLIRHTNOOD	RSPGPGAGAPGADACSVPVSEIIAVEETDVHGK FWCPEEQLCHLWLQTLREMLEKLTSRPKHLLVF HANQAKETLYEINIDKYDGIVCVGGDGMFSEVL STDCVCYSTVGTSDAETSALHIVVGDSLAMDVS LARYDFSGLKTFLSHHCYEGTVSFLPAQHTVGS EDVEEWQVVCGKFLAINATNMSCACRRSPRGLS QFDFTFVEVYRVKKFQFTSKHMEDEDSDLKEGG EVRVHCQLVRLFARGIEENPKPDSHS

5

Further analysis of the NOV9a protein yielded the following properties shown in Table 9B.

Table 9B. Protein Sequence Properties NOV9a	
PSort analysis:	0.5121 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)
SignalP analysis:	No Known Signal Sequence Predicted

10

A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 9C.

Table 9C. Ge	Table 9C. Geneseq Results for NOV9a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV9a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
ABB07857	Human sphingosine kinase-like protein - Homo sapiens, 562 aa. [WO200228906-A2, 11-APR-2002]	1537 26562	537/537 (100%) 537/537 (100%)	0.0	
ABB07856	Human sphingosine kinase-like protein - Homo sapiens, 537 aa. [WO200228906-A2, 11-APR-2002]	1537 1537	537/537 (100%) 537/537 (100%)	0.0	

AAM49115	Human ceramide kinase hCERK1 - Homo sapiens, 537 aa. [WO200196575-A1, 20-DEC-2001]	1537 1537	535/537 (99%) 536/537 (99%)	0.0
AAY96059	Human sphingosine kinase C - Homo sapiens, 460 aa. [WO200052173-A2, 08-SEP-2000]	78537 1460	458/460 (99%) 459/460 (99%)	0.0
AAE07884	Human sphingosine kinase (SphK) protein #2 - Homo sapiens, 471 aa. [WO200160990-A2, 23-AUG-2001]	78537 1471	459/471 (97%) 460/471 (97%)	0.0

In a BLAST search of public sequence datbases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9D.

5

Table 9D. Pu	Table 9D. Public BLASTP Results for NOV9a				
Protein Accession Number	Protein/Organism/Length	NOV9a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q8TCT0	Putative lipid kinase - Homo sapiens (Human), 537 aa.	1537 1537	537/537 (100%) 537/537 (100%)	0.0	
Q9BYB3	KIAA1646 protein - Homo sapiens (Human), 481 aa (fragment).	57537 1481	481/481 (100%) 481/481 (100%)	0.0	
BAC01155	Ceramide kinases - Mus musculus (Mouse), 531 aa.	1529 1529	450/529 (85%) 483/529 (91%)	0.0	
Q9UGE5	DA59H18.2 (Novel protein similar to human, mouse, yeast, worm and plant (Predicted) proteins) - Homo sapiens (Human), 326 aa (fragment).	130444 1326	314/326 (96%) 315/326 (96%)	0.0	
Q9TZI1	T10B11.2 protein - Caenorhabditis elegans, 549 aa.	79525 115526	141/458 (30%) 230/458 (49%)	1e-52	

PFam analysis predicts that the NOV9a protein contains the domains shown in the 10 Table 9E.

Table 9E. Domain Analysis of NOV9a					
Pfam Domain	NOV9a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
РН	32124	9/93 (10%) 64/93 (69%)	0.38		
DAGKc	132278	32/165 (19%) 100/165 (61%)	0.00015		

5 Example 10.

The NOV10 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 10A.

Table 10A. NOV	Table 10A. NOV10 Sequence Analysis					
	SEQ ID NO: 41	772 bp				
NOV10a, CG143787-01 DNA Sequence	GTCCTGCTGCCTGTACTTTGGCTCATAACGCTCCATGAAATAGTTTGTCCCCAGACAGA	ATTGTTCAAACTCAAGCA TTAAAAAACTTCACATTI SGAAAGGTATGAACCTGA LAAAAACCAAGCACCTC TTACCACGAAACCTGAGA CGTTGCCAGAAACCTGAGA CTTTCTCAGAAACCAAAG TTATCTCAGAAACCTTCAG TTGGGAACCACCTTCTAG TTGGTGAAGCCCTTAC CTGCTGTGAAGCCCTAAC CCACAGAGTGAATCCAA	PACCTGCAGTGGCCACCATGTCTTGG ATAGCCATAAAGCAAACACCTGAAT TACACAAAAGAGAGATCAAGAACAA AGTTCAATATCAGATGATCTTAAAT CTGGGGCCAGACTACACTGAAACAT ACATGGAACACTGTACTATAAAGG TTGTGACGGGTTGAGAGATACTTC TGCCTGCTGCAAGCACCTATTCCTA AAGTGGAAGAACACTGATTGTGG GTGTAAACTGAAGCCTGGAACTGAT AAGTCTGCTTCACTGAGATGCTACC			
	ORF Start: ATG at 20		ORF Stop: TGA at 704			

SEQ ID NO: 42

228 aa

MW at 25718.4kD

NOV10a,

MLRGISQLPAVATMSWVLLPVLWLIVQTQAIAIKQTPELTLHEIVCPKKLHILHKREIKNNQTEKHG
KEERYEPEVQYQMILNGEEIILSLQKTKHLLGPDYTETLYSPRGEEITTKPENMEHCYYKGNILNEK
NSVASISTCDGLRGYFTHHHQRYLLSQKPKCLLQAPIPTNIMTTPVCGNHLLEVGEDCDCGSLKECT
Protein Sequence
NLCCEALTCKLKPGTDCGGDAPNHTTE

SEQ ID NO: 43

NOV10b,
278889162 DNA
Sequence

SEQ ID NO: 43

706 bp

Caccggatccaccatgctgcgtgggatctcccaactacctgcagtggccaccatgtcttgggtcctg
Catgctgtacttttggctcattgttcaaactcaagcaatagccataaagcaaacacctgaattaacgc
Tccatgaaatagtttgtcctaaaaaaacattcacattttacaaaaaagagagatcaagaacaaccagac
Agaaaagcatggcaaagagaaaggtatgaacctgaagttcaatatcagatgatcttaaataggagaa

15

GAAATCATTCTCTCCCTACAAAAAACCAAGCACCTCCT CACCCAGAGGAGAGG	ATGGAACACTGTTACTATAAAGGAAACAT GTGACGGGTTGAGAGGATACTTCACACAT CCTGCTGCAAGCACCTATTCCTACAAATA GTGGGAGA AGACTGTGA TTGTCCCTG	
ORF Start: at 2	ORF Stop: end of sequence	

	SEQ ID NO: 44	235 aa	MW at 26364.1kD
278889162	EVHCKEEK XELEA Ő Å ŐWIT VÜE É I	ILSLQKTKHLLGPDYTET ORYLLSOKPKCLLOAPTE	LUTLHEIVCPKKLHILHKREIKNNQT LYSPRGEEITTKPENMEHCYYKGNI TNIMTTPVCGNHLLEVGEDCDCGSL

	SEQ ID NO: 45	118 bp	\Box
NOV10c, 278689868 DNA Sequence	CACCGGATCCGAAGTGGGAGAAGACTGTC GAAGCCCTAACGTGTAAACTGAAGCCTGC	SATTGTGGCTCTCTTAAGGAGTGTACCAATCTCTGCT SAACTGATTGCGGACTCGAGGC	GT.
	ORF Start: at 2	ORF Stop: end of sequence	

	SEQ ID NO: 46	. 39 aa	MW at 3983.4kD
NOV10c, TGSEVGEDCDCGSLKECTNLCCEALTCKLKPGTDCGLEG 278689868 Protein Sequence		RPGTDCGLEG	

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 10B.

Table 10B. Comparison of NOV10a against NOV10b and NOV10c.				
Protein Sequence NOV10a Residues/ Identities/ Similarities for the Matched				
NOV10b	1228 5232	228/228 (100%) 228/228 (100%)		
NOV10c	187219 436	33/33 (100%) 33/33 (100%)		

Further analysis of the NOV10a protein yielded the following properties shown in Table 10C.

5

Table 10C. Protein Sequence Properties NOV10a			
PSort analysis: 0.8200 probability located in outside; 0.1900 probability located in lysosom (lumen); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)			
SignalP analysis: Cleavage site between residues 33 and 34			

A search of the NOV10a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 10D.

Table 10D. Ge	Table 10D. Geneseq Results for NOV10a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV10a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value		
AAW75769	Human metalloproteinase BS10.55 - Homo sapiens, 470 aa. [WO9839421-A2, 11-SEP-1998]	1157 1157	157/157 (100%) 157/157 (100%)	7e-90		
AAW28509	Product of clone J5 - Homo sapiens, 470 aa. [WO9707198-A2, 27-FEB-1997]	1157 1157	157/157 (100%) 157/157 (100%)	7e-90		
AAB53240	Human colon cancer antigen protein sequence SEQ ID NO:780 - Homo sapiens, 110 aa. [WO200055351-A1, 21-SEP-2000]	153228 35110	73/76 (96%) 74/76 (97%)	7e-41		
ABB11929	Human eMDC II protein homologue, SEQ ID NO:2299 - Homo sapiens, 788 aa. [WO200157188-A2, 09-AUG-2001]	18159 18153	71/142 (50%) 99/142 (69%)	2e-32		
AAW90865	Human ADAM protein #4 - Homo sapiens, 775 aa. [WO200014227-A1, 16-MAR-2000]	18159 5140	71/142 (50%) 99/142 (69%)	2e-32		

In a BLAST search of public sequence datbases, the NOV10a protein was found to have homology to the proteins shown in the BLASTP data in Table 10E.

5

Table 10E. Public BLASTP Results for NOV10a				
Protein Accession Number	Protein/Organism/Length	NOV10a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
O15204	Disintegrin-protease - Homo sapiens (Human), 470 aa.	1157 1157	157/157 (100%) 157/157 (100%)	2e-89
Q9R0X2	Disintegrin metalloprotease precursor - Mus musculus (Mouse), 467 aa.	1157 1157	104/157 (66%) 124/157 (78%)	8e-56
Q9XSL6	ADAM 28 precursor (EC 3.4.24) (A disintegrin and metalloproteinase domain 28) (eMDC II) - Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey), 776 aa.	14159 1141	70/146 (47%) 101/146 (68%)	1e-32
E1262181	SEQUENCE 3 FROM PATENT WO9709430 - unidentified, 530 aa.	18159 5140	71/142 (50%) 99/142 (69%)	5e-32
Q9UKQ2	ADAM 28 precursor (EC 3.4.24) (A disintegrin and metalloproteinase domain 28) (Metalloproteinase-like, disintegrin-like, and cysteinerich protein-L) (MDC-L) (eMDC II) (ADAM23) - Homo sapiens (Human), 775 aa.	18159 5140	71/142 (50%) 99/142 (69%)	5e-32

PFam analysis predicts that the NOV10a protein contains the domains shown in the 10 Table 10F.

Table 10F. Domain Analysis of NOV10a

Pfam Domain	NOV10a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Pep_M12B_propep	90201	32/119 (27%) 79/119 (66%)	1.8e-20
disintegrin	187219	20/33 (61%) 26/33 (79%)	4e-14

Example 11.

The NOV11 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 11A.

Table 11A. NOV11 Sequence Analysis			
	SEQ ID NO: 47	484 bp	
NOV11a, CG144112-01 DNA Sequence	ACTGGGTCCGAATCAGTAGGTGACCCCGCCCCTGGATTCTGGAAGACCTCACCATGGGACGCCCCCGACCTCGTCCGGACGCCAAGACATCCCCCCGACCAAGACGTGGATGTTCCTGCTCTTGCTGGGGAGACCTTCGCCAGAAAATACACAGACCTCGGGAGAACCACAGACTTTTCCCCAGAAGAAGTGCAGTCCCCGAGAGAATTTTCCCTGACACTCTCAACTGTGCAGAAGTAAAAATCTTTCCCCAGAAGAAGTGCACGTGCCAGGGCGATTCTGCAGACCCCTGGTGTGTGCAGGCAG		
	ORF Start: ATG at 54	ORF Stop: TGA at 480	

10

	SEQ ID NO: 48	142 aa	MW at 15404.5kD
CG1//112 01	KKIIGSKG	NTQYAWETTAYRIKMAÇ	OKCSPRENFPDTLNCAEVKIFPQKKCE
	KKIIGSKG	GDSGGPLVCDGALQGI	TSWGSDPCGRSDKPGVYTNICRYLDWI

	SEQ ID NO: 49	288 bp	
NOV11b, CG144112-04 DNA Sequence	TGTTCCTGCTCTTGCTGGGGGGAGC	CTGGGCAGGGCAGGGCG CTGGGGCTCAGACCCCTG	CGACCTCGTGCGCCAAGACGTGGA ATTCTGGAGGCCCCCTGGTGTGTGA TGGGAGGTCCGACAAACCTGGCGTC ATAGGCAGCAAGGGCTGA <u>TTCTAG</u>
	ORF Start: ATG at 31		ORF Stop: TGA at 259

A STATE OF THE PARTY OF THE PAR				
	SEQ ID NO: 50	76 aa	MW at 8110.3kD	
NOV11b, CG144112-04	MGRPRPRAAKTWMFLLLLGGAWAGQ IKKIIGSKG	QGDSGGPLVCDGALQGI	PSWGSDPCGRSDKPGVYTNICRYLDW	
Protein Sequence				

	SEQ ID NO: 51	445 bp
255501898 DNA Sequence	CACCAAGCTTATGGGACGCCCCGACCTCGTGCGGCCA GGAGCCTGGGCAGGAAATACACAGTACGCCTGGGAGACA AGTGCAGTCCCCGAGAGAATTTTCCTGACACTCTCAAC* GAAGTGTGAGGATGCTTACCCGGGGCAGATCACAGATGG GCTGACACGTGCCAGGGCGATTCTGGAGCCCCCTGGTC CCTGGGGCTCAGACCCCTGTGGAGGTCCGACAAACCTC GGACTGGATCAAGAAGACCTCGACAAGGGCCTCGA	CACAGCCTACAGAATAAAGATGGCCCAGA FGTGCAGAAGTAAAAATCTTTCCCCAGAA GCATGGTCTGTGCAGGCAGCAAAGGG GTGATGGTGCACTCCAGGGCATCACAT GCCGTCTATACCCAAAGG
1		ORF Stop: end of sequence

	SEQ ID NO: 52	148 aa	MW at 16046.2kD
255501898	NCEDAYPGQITDGMVCAGSSKGAD DWIKKIIGSKGLEG	WAGNTOYAWETTAYRIKM	IAQKCSPRENFPDTLNCAEVKIFPQK ITSWGSDPCGRSDKPGVYTNICRYL

	SEQ ID NO: 53	358 bp
255612524 DNA Sequence	CACCAAGCTTGGAAATACACAGTACGCCTGGGAGACCA TGCAGTCCCCGAGAGAATTTTCCTGACACTCTCAACTG AGTGTGAGGATGCTTACCCGGGGCAGATCACAGATGGC TGACACGTGCCAGGGCGATTCTGGAGGCCCCTTGGTGT TGGGGCTCAGACCCCTGTGGGAGGTCCGACAAACCTGGGAGCTCAGATCAAACCTGGGACTCAGATCAAGAAGCTCGAGGCC	TGCAGAAGTAAAAATCTTTCCCCAGAAGA ATGGTCTGTGCAGGCAGCAAAGGGGC TTGATGGTGCACTCACGCCATCACATGA
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 54	119 aa	MW at 12908.4kD
NOV11d, 255612524 Protein Sequence	DICOGDEGGETACDGATOGIASMO	SPRENFPDTLNO SSDPCGRSDKPO	CAEVKIFPOKKCEDAVPGOTTDGMUCAGGGVCA

	SEQ ID NO: 55	307 bp
255612566 DNA Sequence	CACCAAGCTTCAGAAGTGCAGTCCCCGAGAGAATTTTCC ATCTTTCCCCAGAAGAAGTGTGAGGATGCTTACCCGGG GCAGCAGCAAAGGGGCTGACACGTGCCAGGGCGATTCTC CCAGGGCATCACATCCTGGGGCTCAGACCCCTGTGGGACACTGCCAGACCCCTGTGGGACACTGGCCTGCCGAGAGCTCGAGGGG	GCAGATCACAGATGGCATGGTCTGCAG GGAGGCCCCCTGGTGTGTGATGGTGCACT GGTCCGACAAACCTGGCGTCTATACCAAC
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 56	102 aa	MW at 10922.2kD
NOV11e, 255612566	TKLQKCSPRENFPDTLNCAEVKIF QGITSWGSDPCGRSDKPGVYTNIC	PQKKCEDAYPGQITDGM RYLDWIKKLEG	/CAGSSKGADTCQGDSGGPLVCDGAL
Protein Sequence			

SEQ ID NO: 57	178 bp
<u>CACC</u> GGATCCGGGCAGGGCGATTCTGGAGGCCCCCTGG' TCCTGGGGCTCAGACCCCTGTGGGAGGTCCGACAAACC' TGGACTGGATCAAGAAGATCATAGGCAGCAAGGGCCTCC	
ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 58	59 aa	MW at 6072.7kD
NOV11f,	TGSGQGDSGGPLVCDGALQG	ITSWGSDPCGRSDKP	GVYTNICRYLDWIKKIIGSKGLEG
306434072			
Protein Sequence			

	SEQ ID NO: 59	436 bp	
NOV11g, CG144112-02 DNA Sequence	CCTCACCATGGGACGCCCCCGACC GCTGGGCAGAAATTTCCTGAC GTGAGGATGCTTACCCGGGGCAGA CACGTGCCAGGGCGATTCTGGAGG CACGTGCCAGGGCGATTCTGGAGG	TCGTGCGGCCAAGACGT(ACTCTCAACTGTGCAGA! TCACAGATGGCATGGTCT CCCCCTGGTGTGTGATGC GACAAACCTGGCGTCTAT	TGACCCCGCCCCTGGATTCTTGAAGA GATGTTCCTGCTCTTGCTGGGGGGA GTAAAAATCTTTCCCCAGAAGAAGT GTGCAGGCAGCAGCAAAGGGGCTGA FTGCACTCCAGGGCATCACATCCTGG PACCAACATCTGCCGCTACCTGGACT
	ORF Start: ATG at 75		ORF Stop: TGA at 432

The second secon	A CONTRACT OF THE PARTY OF THE			
	SEQ ID NO: 60	119 aa	MW at 12718.4kD	
NOV11g, CG144112-02 Protein Sequence	Denzee Prochest Get Lands DE	ENFPDTLNCAEVKIFPQKK CGRSDKPGVYTNICRYLD	CEDAYPGOITDGMVCAGSSKGADTC WIKKIIGSKG	
rotem bequence				

·	SEQ ID NO: 61	845 bp	
NOV11h, CG144112-03 DNA Sequence	GCCCCCGACTCGTGCGGCCAAGAC CTCCAGGGCACAGGACAGACAGACCAGCAGACAGACAGAGACAGACAGACAGACAGACAGACAGACAGACAGACAGACAGACAGACAGACAGACAGACAGAAAAAA	CTGGATGTTCCTGCTCT CTGGGGGGTCATGAGTG CTACTCTGTGGCGGTGTC ATACACAGTACGCCTGG GTTCAGTCCATCCACCA CTTCTCAACTGCGTGAC CCTGACCCTGGCCAGA CCTGACACTCTCAACTG GGGCAGATCGCCTGGTGC CTGGCAGATGGC TTGGAGGCCCCTGGTGT AGGGCCCCTGGTGT AGGGCCCCTGGTCT AGGTCCGACAAACCTG	ATTCTGGAAGACCTCACCATGGAC TGCTGGGAGGACCTGGCAGGACA CCAACCCCATTCGCAGCCTTGGCAG CCTACCCATTCGCAGCCTTGGCAG CCTACCCATTCGCACCCTTGTAGGAGCAACTGAGATAAAGA CCCCCTGCTACAAACAGCAGCAGCATGTG CAGGCATCCCTGGGGTCCAAAGTGA AGTGCACCGTCTCAGGCTGGGGCAC TGCAGAAGTAAAAATCTTTCCCCAG ATGGTCTGTGCAGCAGCAAAG GTGATGGTCCACCACCACCACCCACCCCCCCCCC
	ORF Start: ATG at 61		ORF Stop: TGA at 841

	SEQ ID NO: 62	260 aa	MW at 28047.6kD
CG144112-03	AD THURCH VENT LAKE COHPLONE	LDGPEQEIPVVQSIPHPCY TVTSPRENEPDTIMCAEV	SQPWQAALFQGQQLLCGGVLVGGNW NSSDVEDHNHDLMLLQLRDQASLGS KIFPQKKCEDAYPGQITDGMVCAGS NICRYLDWIKKIIGSKG

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 11B.

Table 11B. Comparison of NOV11a against NOV11b through NOV11h.			
Protein Sequence	NOV11a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV11b	97142 3176	46/46 (100%) 46/46 (100%)	
NOV11c	1142 4145	142/142 (100%) 142/142 (100%)	
NOV11d	24139 4119	114/116 (98%) 115/116 (98%)	

NOV11e	41139 4102	97/99 (97%) 98/99 (98%)
NOV11f	91142 556	52/52 (100%) 52/52 (100%)
NOV11g	1142 1119	119/142 (83%) 119/142 (83%)
NOV11h	44142 162260	99/99 (100%) 99/99 (100%)

Further analysis of the NOV11a protein yielded the following properties shown in Table 11C.

5

Table 11C. Prote	Table 11C. Protein Sequence Properties NOV11a	
PSort analysis:	0.3700 probability located in outside; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in lysosome (lumen)	
SignalP analysis:	Cleavage site between residues 24 and 25	

A search of the NOV11a protein against the Geneseq database, a proprietary
database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 11D.

Table 11D. G	Table 11D. Geneseq Results for NOV11a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV11a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
ABP41332	Human ovarian antigen HCOQP78, SEQ ID NO:2464 - Homo sapiens, 315 aa. [WO200200677-A1, 03-JAN-2002]	44142 217315	99/99 (100%) 99/99 (100%)	3e-57	
AAU81959	Human PRO322 - Homo sapiens, 260 aa. [WO200109327-A2, 08-FEB-2001]	44142 162260	99/99 (100%) 99/99 (100%)	3e-57	
ABB84852	Human PRO322 protein sequence SEQ ID NO:72 - Homo sapiens, 260 aa. [WO200200690-A2, 03-JAN-2002]	44142 162260	99/99 (100%) 99/99 (100%)	3e-57	
ABB95458	Human angiogenesis related protein PRO322 SEQ ID NO: 72 - Homo sapiens, 260 aa. [WO200208284-A2, 31-JAN-2002]	44142 162260	99/99 (100%) 99/99 (100%)	3e-57	
AAB53087	Human angiogenesis-associated protein PRO322, SEQ ID NO:127 - Homo sapiens, 260 aa. [WO200053753-A2, 14-SEP-2000]	44142 162260	99/99 (100%) 99/99 (100%)	3e-57	

In a BLAST search of public sequence datbases, the NOV11a protein was found to have homology to the proteins shown in the BLASTP data in Table 11E.

Table 11E. Public BLASTP Results for NOV11a				
Protein Accession Number	Protein/Organism/Length	NOV11a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9NR68	Serine protease kallikrein/ovasin/neuropsin type 3 - Homo sapiens (Human), 119 aa.	1142 1119	119/142 (83%) 119/142 (83%)	9e-66

O60259	Neuropsin precursor (EC 3.4.21) (NP) (Kallikrein 8) (Ovasin) (Serine protease TADG-14) (Tumor-associated differentially expressed gene-14 protein) - Homo sapiens (Human), 260 aa.	44142 162260	99/99 (100%) 99/99 (100%)	
O88780	Neuropsin precursor (EC 3.4.21) (NP) (Kallikrein 8) (Brain serine protease 1) - Rattus norvegicus (Rat), 260 aa.	38141 147259	80/113 (70%) 93/113 (81%)	8e-45
BAB92021	Neuropsin - Mus musculus (Mouse), 176 aa (fragment).	38141 63175	81/113 (71%) 92/113 (80%)	1e-44
Q61955	Neuropsin precursor (EC 3.4.21) (NP) (Kallikrein 8) - Mus musculus (Mouse), 260 aa.	38141 147259	81/113 (71%) 92/113 (80%)	1e-44

PFam analysis predicts that the NOV11a protein contains the domains shown in the Table 11F.

5

Table 11F. Domain Analysis of NOV11a			
Pfam Domain	NOV11a Match Region	Identities/ Similarities for the Matched Region	Expect Value
trypsin	49134	47/101 (47%) 76/101 (75%)	5.5e-40

Example 12.

The NOV12 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 12A.

Table 12A. NO	V12 Sequence Analysis	
	SEQ ID NO: 63	1536 bp
NOV12a, CG144497-01 DNA Sequence	GTGGGGGGACGACAACGGCACAACGGGGGGGGAACAACGGGGGG	CGGGGACCCGAGCCTCCAACGACCGGCCCCCGGCGCAGGCGGCGG AGGAGGCGGCGGCGCCCCCCGCGTGACGGTGGTGCTGGGCGCGC AGGCAAGGTGGTGGACCTGCTGGCCACGGACGCCGACATCATCAGCC AGCCACACGCTGGTGGTGGATGGGAAAGAGTACGACTTCCACCT ACACCAAGGCCGTGTCCTTCATTGGTAACGGGTGGTCATCCACTTC AGGAAGAATGAAAAGAAAGGTCTGAAGGACTGGGAGAAGAGGCTCA

		free part with	
<u> </u>	ATCTCTGACAGAGCCCACCTTGTG	TTTGATTTTCAC@A@GCT	gpcgacegae ticaggaaetgeagc
1	GCCAGGCACAAGAGGGGAAGAGTA	TAGGCACCACCAAGAAGG	GAATCGGACCAACCTACTCTTCCAA
i	AGCTGCCCGGACAGGCCTCCGCAT	CTGCGACCTCCTGTCAGA	TTTTGATGAGTTTTCCTCCAGATTC
1	AAGAACCTGGCCCACCAGCACCAG	TCGATGTTCCCCACCCTG	GAAATAGACATTGAAGGCCAACTCA
	AAAGGCTCAAGGGCTTTGCTGAGC	GGATCAGACCCATGGTCC	GAGATGGTGTTTACTTTATGTATGA
	GGCACTCCACGGCCCCCCAAGAA	GATCCTGGTGGAGGGTGC	CAACGCCGCCCTCCTCGACATTGAC
	TTCGGTACCTACCCCTTTGTGACT	TCATCCAACTGCACCGTG	GGCGGTGTGTGCACGGGCCTGGGCA
İ			CCTATACCACACGTGTGGGCATCGG
			GCAGACCCGCGGCCACGAGTGGGGA
i e			ATGATTCTAAGATATGCTCACATGG
1	1		TGGACGTACTGGGTGAGGTTAAAGT
1	1		CCCAGCTAACCAGGAGATGCTTCAG
1			GACACCACAGGCGCCAGGAGGTGGG
			AGAATCACGTGGGAGTCGCAGTCAA
	•		GTTTTAGTCACAGACTGAGCTGATC
	4 .		
1			AGTCACGTTCCTCGGCCGCCACAAC
	CAACACCAAAGCAGGAAAACCATT	TTCTGTACTTTTATATTT	CTGTTCAACCTGTTGGTTTC
	ORF Start: ATG at 16		ORF Stop: TAG at 1387

	SEQ ID NO: 64	457 aa	MW at 50181.0kD
CG144497-01 Protein Sequence	NAGHTVVVDGKEYDFHLLPSGIIN HLVFDFHQAVDGLQEVQRQAQEGK QHQSMFPTLEIDIEGQLKRLKGFA FVTSSNCTVGGVCTGLGIPPQNIG	TKAVSFIGNGVVIHLPGL SIGTTKKGIGPTYSSKAA ERIRPMVRDGVYFMYEAL DVYGVVKAYTTRVGIGAF ALTKLDILDVLGEVKVGV	DEGKGKVVDLLATDADIISRCQGGN FEEAEKNEKKGLKDWEKRLIISDRA RTGLRICDLLSDFDEFSSRFKNLAH HGPPKKILVEGANAALLDIDFGTYP PTEQINEIGGLLQTRGHEWGVTTGR SYKLNGKRIPYFPANQEMLQKVEVE GVGKSBESMIOLE

Further analysis of the NOV12a protein yielded the following properties shown in Table 12B.

10

15

Table 12B. Protein Sequence Properties NOV12a	
PSort analysis:	0.5946 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.2377 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 12C.

Table 12C. Geneseq Results for NOV12a				
Geneseq	Protein/Organism/Length [Patent #, Date]	NOV12a	Identities/	Expect
Identifier		Residues/	Similarities for	Value

		Match Residues	the Matched Region	
AAB41627	Human ORFX ORF1391 polypeptide sequence SEQ ID NO:2782 - Homo sapiens, 314 aa. [WO200058473-A2, 05-OCT-2000]	144457 1314	313/314 (99%) 314/314 (99%)	0.0
ABB70971	Drosophila melanogaster polypeptide SEQ ID NO 39705 - Drosophila melanogaster, 447 aa. [WO200171042-A2, 27-SEP-2001]	31456 24446	270/427 (63%) 338/427 (78%)	e-161
AAY95049	Candida albicans polypeptide sequence # 17 - Candida albicans, 412 aa. [EP982401-A2, 01-MAR-2000]	35455 4409	227/425 (53%) 306/425 (71%)	e-130
AAU23499	Novel human enzyme polypeptide #585 - Homo sapiens, 209 aa. [WO200155301-A2, 02-AUG-2001]	249457 1209	208/209 (99%) 209/209 (99%)	e-121
AAW99455	Maize adenylosuccinate synthetase - Zea mays, 484 aa. [US5882869-A, 16-MAR-1999]	24454 53482	217/436 (49%) 310/436 (70%)	e-119

In a BLAST search of public sequence datbases, the NOV12a protein was found to have homology to the proteins shown in the BLASTP data in Table 12D.

Protein Accession Number	Protein/Organism/Length	NOV12a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
BAC04649	CDNA FLJ38602 fis, clone HEART2003836, highly similar to ADENYLOSUCCINATE SYNTHETASE, MUSCLE ISOZYME (EC 6.3.4.4) - Homo sapiens (Human), 457 aa.	1457 1457	456/457 (99%) 457/457 (99%)	0.0

P28650	Adenylosuccinate synthetase, muscle isozyme (EC 6.3.4.4) (IMP aspartate ligase) (ADSS) (AMPSASE) - Mus musculus (Mouse), 457 aa.	1457 1457	441/457 (96%) 453/457 (98%)	0.0
AJMSDS	adenylosuccinate synthase (EC 6.3.4.4), muscle - mouse, 452 aa.	1425 1425	411/425 (96%) 421/425 (98%)	0.0
ААН32039	Similar to ADENYLOSUCCINATE SYNTHETASE, MUSCLE ISOZYME (IMPASPARTATE LIGASE) (ADSS) (AMPSASE) - Homo sapiens (Human), 502 aa (fragment).	64457 109502	392/394 (99%) 394/394 (99%)	0.0
Q9CQL9	Adenylosuccinate synthetase (EC 6.3.4.4) (IMPaspartate ligase) (ADSS) (AMPSase) - Mus musculus (Mouse), 456 aa.	8457 4456	345/453 (76%) 399/453 (87%)	0.0

PFam analysis predicts that the NOV12a protein contains the domains shown in the Table 12E.

5

Table 12E. Domain Analysis of NOV12a				
Pfam Domain	NOV12a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Ald_Xan_dh_C	396411	8/16 (50%) 14/16 (88%)	0.43	
Adenylsucc_synt	32455	261/431 (61%) 417/431 (97%)	0	

Example 13.

10

The NOV13 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 13A.

Table 13A. NOV13 Sequence Analysis

	SEQ ID NO: 65	278 bp	!
CG144686-01	CCGCGTGAAGCCTCAGGATGAAA CGAGATAAAGGCAAATTTGGTTT	AACAAGCAGACATCATAI TCTCCTTCCAGAATCCC	TGTCCGCTTTGACAGGGAGAAGGTGTT AAGGACTTGGCCAAAACCAGTGAGCTC GGATAAAGCCAACGTGCAGAGAGACCA PACTTCC TAA AGAACTGCCCTCTGTTT
	ORF Start: at 3		ORF Stop: TAA at 249

	SEQ ID NO: 66	82 aa	MW at 9327.9kD
NOV13a, CG144686-01	PVGLIATTLAIAPVRFDREKVFRVK LAVKFIAKYILKHTS	PQDEKQADIIKDLAKTS	ELRDKGKFGFLLPESRIKPTCRETM
Protein Sequence		•	

	SEQ ID NO: 67	268 bp
278690008 DNA	CACCGGATCCACCCCTGTGGGTTTGATTGCTACCACTC GAGAAGGTGTTCCGCGTGAAGCCTCAGGATGAAAAACA CCAGTGAGCTCCGAGATAAAGGCAAATTTGGTTTTCTCC CAGAGAGACCATGCTAGCTAAATTTATTGCCAAGT	AGCAGACATCATAAAGGACTTGGCCAAAA CTTCCAGAATCCCGGATAAAGCCAACGTG
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 68	89 aa	MW at 9973.6kD
NOV13b, 278690008 Protein Sequence	RETMLAVKFIAKYILKHTSLEG	FRVKPQDEKQADIIKDI	AKTSELRDKGKFGFLLPESRIKPTC

	SEQ ID NO: 69	94 bp
NOV13c, 278690035 DNA Sequence		GCAAATTTGGTTTTCTCCTTCCAGAATCCCGGATA
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 70	31 aa	MW at 3452.9kD
NOV13c,	TGSTSELRDKGKFGFLLPESR	IKPTCRELEG	

278690035 Protein Sequence

	SEQ ID NO: 72	417 aa	MW at 48699.4kD
CG144686-02 Protein Sequence	FRVSEKESQAIQSALDQNKMHYEI KYPEMVSRIKIGSTVEDNPLYVLK IMTKLLDRMNFYILPVFNVDGYIW ADNYRGSAPESEKETKAVTNFIRS	ILIHDLQEEIEKQFDVKEI KIGEKNERRKAIFMDCGIH NSWTKNRMWRKNRSKNQNS BHLNEIKVYITFHSYSOMI	DLAKTNELDFWYPGATHHVAANMWYD DIPGRHSYAKYNNWEKIVAWTEKMMD HAREWVSPAFCQWFVYQATKTYGRNK KCIGTDLMRNFNASWMSIPNTNDPC LFPYGYTSKLPPNHEDLAKVAKIGT ELRDKGKFGFILPESRIKPTCRETM

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 13B.

Table 13B. Comparison of NOV13a against NOV13b through NOV13d.			
Protein Sequence NOV13a Residues/ Match Residues Identities/ Similarities for the Matched Region		Identities/ Similarities for the Matched Region	
NOV13b 182 82/82 (100%) 586 82/82 (100%)			

NOV13c	4165 428	25/25 (100%) 25/25 (100%)
NOV13d	144 649	43/44 (97%) 44/44 (99%)

Further analysis of the NOV13a protein yielded the following properties shown in Table 13C.

5

Table 13C. Protein Sequence Properties NOV13a		
PSort analysis: 0.5500 probability located in endoplasmic reticulum (membrane); 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in outside		
SignalP analysis:	nalysis: No Known Signal Sequence Predicted	

A search of the NOV13a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 13D.

Table 13D. Geneseq Results for NOV13a NOV13a Identities/ Genesea Protein/Organism/Length Residues/ Similarities for Expect Identifier [Patent #, Date] Match the Matched Value Residues Region AAU84325 Protein CPA3 differentially 1..44 43/44 (97%) 2e-17 expressed in breast cancer 6..49 44/44 (99%) tissue - Homo sapiens, 417 aa. [WO200210436-A2, 07-FEB-2002] AAG75369 Human colon cancer antigen 43..82 40/40 (100%) 9e-17 protein SEQ ID NO:6133 -141..180 40/40 (100%) Homo sapiens, 180 aa. [WO200122920-A2, 05-APR-2001] **AAU04477** Porcine carboxypeptidase B 41..80 25/40 (62%) 4e-10 (CpB) protein - Sus scrofa, 266..305 34/40 (84%) 306 aa. [WO200151624-A2, 19-JUL-2001] AAR75132 41..80 Porcine carboxypeptidase B -4e-10 25/40 (62%) Sus scrofa. 306 aa. 266..305 34/40 (84%)

	[WO9514096-A1, 26-MAY-1995]		**************************************	The state of the s
AAR75131	Porcine Tyr-His-Met Procarboxypeptidase B - Sus scrofa, 404 aa. [WO9514096-A1, 26-MAY-1995]	4180 364403	25/40 (62%) 34/40 (84%)	4e-10

In a BLAST search of public sequence datbases, the NOV13a protein was found to have homology to the proteins shown in the BLASTP data in Table 13E.

5

Table 13E.	Public BLASTP Results for NOV	13a		
Protein Accession Number	Protein/Organism/Length	NOV13a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P15088	Mast cell carboxypeptidase A precursor (EC 3.4.17.1) (MC-CPA) (Carboxypeptidase A3) - Homo sapiens (Human), 417 aa.	144 649	43/44 (97%) 44/44 (99%)	5e-17
P97597	Mast cell carboxypeptidase A precursor - Rattus norvegicus (Rat), 412 aa (fragment).	4382 373412	37/40 (92%) 39/40 (97%)	le-14
P21961	Mast cell carboxypeptidase (EC 3.4.17.1) (RMC-CP) (Carboxypeptidase A3) - Rattus norvegicus (Rat), 309 aa.	4382 270309	37/40 (92%) 39/40 (97%)	1e-14
P15089	Mast cell carboxypeptidase A precursor (EC 3.4.17.1) (MC-CPA) (Carboxypeptidase A3) - Mus musculus (Mouse), 417 aa.	4382 378417	36/40 (90%) 39/40 (97%)	7e-14
P00732	Carboxypeptidase B (EC 3.4.17.2) - Bos taurus (Bovine), 306 aa.	4180 266305	26/40 (65%) 36/40 (90%)	7e-11

PFam analysis predicts that the NOV13a protein contains the domains shown in the 10 Table 13F.

Table 13F. Domain Analysis of NOV13a				
Pfam Domain	NOV13a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Zn_carbOpept	4165	16/30 (53%) 24/30 (80%)	5.6e-08	

5 Example 14.

The NOV14 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 14A.

Table 14A. NOV	Гable 14A. NOV14 Sequence Analysis			
	SEQ ID NO: 73	829 bp		
NOV14a, CG144906-01 DNA Sequence	GCCTTCGCGGGAGAGGAGGCCATC GCTGGACTCAGGAAGCCGGAGTCGC TCACGTCGCGATTCCCACGTATGCGGA TCCTGTGGGATTCCCACGTATGCGGA TGCTTTGAAACCTATAGTGACCTTT CCATGCCATCCTCCACATTTGAGTT CAAAGAGGATGAGCACTCTTCCTCA TCTATGTGCAACCACCTCTTCCTCA CTGCAATGCCACCCAAGGCGGAAGGA GAATGACTGTGGTATCAGATTGGA GGTGTCTACACCACCCCCCCACCACCCCCCACCACCCACC	AGGAGGCGGCCCTTA AGGACGCCGAACTCGGC AGTGAGCCTGCTCAGCCA AGTGAGCCTCCGGGTGG TGAGAACCGGACAGACT CCCCACACACCTCCAGA AGTACAGACTTCCGCAAG AGTACAGTTCCGCAAG AGTACAGTTCGGTGACT AGTCGTGAGCTGGTGACT AGTCGTGAGCTGGATCAGCTAGCTAGCTAGCTGCTTCGTTAGCTAGC	CCGCTGGGCACTCACGGCGGCGCAC ATGGTCCAGTTTGGCCAGCTGACTT GCTGGGTGACTGGCTGGGGGTACAT AGTTCAGGTCGCCATCATAAACAAC GACATCTTTGGAGACATGGTTTGTG CAGGTGGACCCTTGGCCTGTAACAA GGCTGTGGTCGCCCCAATCGGCCC GGCTGATGGCCCAATCGGCCC	
	ORF Start: ATG at 23		ORF Stop: TGA at 809	

	1		
	SEQ ID NO: 74	262 aa	MW at 28826.7kD
CG144906-01	GASPPSHKMWPLLWWHCLELLASDF2	SDPSGWMVQFGQLTSMPSS CVSFRKDTFGDM/CACNAC	YGGEDAELGRWPWOGSLRLWDSHVC TFFEFENRTDCWVTGWGYIKEDEALP GGKDACFGDSGGPLACNKNGLWYQI SWPLLFFPLLWAIPILGPV

	SEQ ID NO: 75	989 bp	
DNA Sequence	TCGGGCTGGACTCAGGAAGG GTCATCACGTCGCGCATCG TGCGCCTGTGGGATTCCCA	CCGGAGTCGCAGGAGGCGG TGGGTGGAGAGGACGCCGA CTATGCGGAGTGAGACTTG	GGGGCGCTGCTGCTGGCGCCGCGCGCGCGCCGCCGCGCGCGCGCGACGGACCCACGGGGGG

CTACACTAAACACATCCAGCCCATCT CTACACTAAACACATCCAGCCCATCT TGCTGGGTGACTGGCTGGGGTACAT AAGTTCAGGTCGCCATCATAAACAAC GGACATCTTTGGAGACATGGTTTGTC TCAGGTGGACCCTTGGCCTGTAACAC TCGGCTGTGGTCGGCCCAATCGGCCC	GCAGGCCTACTACACCGTTACTTCGTATCGAATATCTATC
ORF Start: ATG at 27	ORF Stop: TGA at 969

	SEQ ID NO: 76	314 aa	MW at 34911.6kD
Protein Sequence	PYDIALVKI SA PUTVTKUTODICI	DPSGWMVQFGQL QASTFEFENRTD NAOGGKDACFGD	VITSRIVGGEDAELGRWPWQGSLRLWDSHVC TSMPSFWSLQAYYTRYFVSNIYLSPRYLGNS CWVTGWGYIKEDEALPSPHTLQEVQVAIINN

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 14B.

10

15

Table 14B. Comparison of NOV14a against NOV14b.			
Protein Sequence	NOV14a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV14b	20240 20292	219/273 (80%) 221/273 (80%)	

Further analysis of the NOV14a protein yielded the following properties shown in Table 14C.

Table 14C. Protein Sequence Properties NOV14a	
PSort analysis:	0.5422 probability located in outside; 0.4639 probability located in lysosome (lumen); 0.2779 probability located in microbody (peroxisome); 0.1900 probability located in plasma membrane
SignalP analysis:	Cleavage site between residues 20 and 21

A search of the NOV14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 14D.

5

Table 14D. G	eneseq Results for NOV14a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV14a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAE17010	Human eosinophil serine protease-1 (esp-1) like enzyme #2 - Homo sapiens, 314 aa. [WO200198503-A2, 27-DEC-2001]	1262 1314	262/314 (83%) 262/314 (83%)	e-154
AAB80256	Human PRO303 protein - Homo sapiens, 314 aa. [WO200104311-A1, 18-JAN-2001]	1262 1314	262/314 (83%) 262/314 (83%)	e-154
AAU01569	Human secreted protein immunogenic epitope encoded by gene #9 - Homo sapiens, 315 aa. [WO200123547-A1, 05-APR-2001]	1262 1314	262/314 (83%) 262/314 (83%)	e-154
AAU02223	Human extracellular serine protease TADG-16 - Homo sapiens, 314 aa. [WO200127257-A1, 19-APR-2001]	1262 1314	262/314 (83%) 262/314 (83%)	e-154
AAY91871	Human cancer-specific gene protein, Pro104 - Homo sapiens, 327 aa. [WO200016805-A1, 30-MAR-2000]	1262 14327	262/314 (83%) 262/314 (83%)	e-154

In a BLAST search of public sequence datbases, the NOV14a protein was found to have homology to the proteins shown in the BLASTP data in Table 14E.

10

Table 14E. Public BLASTP Results for NOV14a

Protein Accession Number	Protein/Organism/Length	NOV14a Residues/ Match Residues	Identities/" Similarities for the Matched Portion	Expect Value
Q9Y6M0	Testisin precursor (EC 3.4.21) (Eosinophil serine protease 1) (ESP- 1) - Homo sapiens (Human), 314 aa.	1262 1314	262/314 (83%) 262/314 (83%)	e-154
Q9ЈНЈ7	Testisin precursor (EC 3.4.21) (Tryptase 4) - Mus musculus (Mouse), 324 aa.	1261 1323	179/326 (54%) 210/326 (63%)	1e-98
Q920S2	Testis serine protease-1 - Mus musculus (Mouse), 322 aa.	1261 1321	150/325 (46%) 180/325 (55%)	2e-69
Q9D4I3	4931440B09Rik protein - Mus musculus (Mouse), 282 aa.	32261 2281	135/283 (47%) 161/283 (56%)	1e-66
Q9PVX7	Epidermis specific serine protease - Xenopus laevis (African clawed frog), 389 aa.	33244 17277	100/264 (37%) 136/264 (50%)	3e-45

PFam analysis predicts that the NOV14a protein contains the domains shown in the Table 14F.

5

Table 14F. Domain Analysis of NOV14a				
Pfam Domain	NOV14a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
trypsin	4285	24/51 (47%) 36/51 (71%)	2.3e-13	
trypsin	119229	52/121 (43%) 92/121 (76%)	9e-43	

Example 15.

10

The NOV15 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 15A.

Table 15A. NOV15 Sequence Analysis		
SEQ ID NO: 77	716 bp	

NOV15a, CG144997-01 DNA Sequence	GCGGCTCTCGCGGGTTCGGGATGTT CTGGAATGAGTGCAGAGACGCTT TGCTCCAGTAATGGCGTAGAAGGC TAAATGTAGGCATTAGACTTCCTGC AGCCATTGAACAAGCAAAGACTCAA ATAAATGGTATAAACTAACTGGGTTC AGGTGATCAACAAGAGGACTTTGT GCATGTTCCTGGTCATTCGGGATTT	TCCTGGCCCACAGAGTGGCCTTGGCCTGCCGCCCCCCCCC
	AAACAATCGGAAGACTGA <u>GCCATGT</u> TGCCTGTACTTACTGGTGTGGAAAA	GACTTTAGTCCTTGGGAGAACTTGAGCCAGCCGCTGTCTTCC
	ORF Start: ATG at 10	ORF Stop: TGA at 619

	SEQ ID NO: 78	203 aa	MW at 22889.0kD
CC144007.01	NGKRKPRAGIGVYWGPGHPLNVG] ITNWVQGWKKNGWKTSAGKEVINK	IRLPGROTNORA	KTGVFLTWNECRDTFSYMGDFVVVYTDGCCSS EIHAACKAIEQAKTQNINKLVLYTDSMFTING GMDIQWMHVPGHSGFIGNEEADRLAREGAKQS

SEQ ID NO: 79	631 bp
CACCGGATCCACCATGAGCTGGTTTCTGTTCCTGGCCC CGCCGCGGCTCTCGCGGGTTCGGGATGTTCTATGCCGTT TGACCTGGAATGAGTGCAGAGACACGTTTTCCTACATG CTGCTGCAGTAATGGGCGTAGAAGGCCGCGGCAGAC CCTTTAAATGTAGGCATTAGACTTCCTGGGCGGCAGAC GCAAAGCCATTGAACAAGCAAAGACTCAAAACATCAAT TACGATAAATGGTATAACTAACTGGGTTCAAGGTTGGAAAAAGAGACTTGATCACAAAAAGACTCAACACAAAAGACATTGGAACACAAAGAGACTTTGTGGCACTGGAAGATCAATCA	GAGGAGGGCCCCAAGACCGGGGTCTTTC GGAGACTTCGTCGTCTACACTGATGG GAATCGGGTTTACTGGGGCCGGCCAT AAACCAAAGAGCGGAAATTCATGCAGCCT AAACTGGTTCTGTATACAGACAGTATGTT AGAAAAATGGGTGGAAGACAAGTGCAGGG GAGCTTACCAAGGGTGGAAGACAA
ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 80	210 aa	MW at 23534.6kD
279602649	TINGITNWVOGWKKNGWKTSAGK	NVGIRLPGROTNORAETI	GVFLTWNECRDTFSYMGDFVVVYTDG HAACKAIEQAKTQNINKLVLYTDSMF DIQWMHVPGHSGFIGNEEADRLAREG

	SEQ ID NO: 81	586 bp
278480974 DNA Sequence	GGCGCAAGACCGGGGTCTTTCTGA TCGTCGTCGTCTACACTGATGGCTG CGTTTACTGGGGCCGGGCC	CGCGGCTCTCGCGGGTTCGGGATGTTCTATGCCGTGAGGAGC CCTGGAATGAGTGCAGAGACACCTTTTCCTACATGGGAGACACTTGCTACATGGGAGACACTTGCTCCAGGAGACACCCTTGCTCCAGGAATCGC ITAAATGTAGGCATTAGACTTCCTGGGCGCAGACAAACCAAAACCCAAAAACATCAAATAAACTGCAAGAAAAAAACATCAAATAAACTGCGAAGAAAAACATCAAATAAACTGGATTGAAGAAAAAAACACCAAGAGAGAAAAAACACCAAGAAGAA

	ACCCAGGGGATGGACATTCAGTGGATGCATGTTCC #GE CTGACAGATTAGCCAGAGAAGGAGCTAAACAATCGGAA	GACCTCGAGGGC	
L	ODE G	ORF Stop: end of sequence	

Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which is the Owner, which is the Owner, where the Owner, where the Owner, where the Owner, where the Owner, which is the					
	SEQ ID NO: 82	195 aa	MW at 21789.5kD		
1278480074	GWKTSAGKEVINKEDFVALERLTC	KTGVFLTWNECRDTFSYM EIHAACKAIEQAKTQNIN GMDIQWMHVPGHSGFIGN	GDFVVVYTDGCCSSNGRRRPRAGIG KLVLYTDSMFTINGITNWVQGWKKN EEADRLAREGAKQSEDLEG		

	SEQ ID NO: 83	457 bp
278498047 DNA Sequence	CACCGGATCCGGAGACTTCGTCGTCGTCTACACTGATG CCGCGAGCAGGAATCGGCGTTTACTGGGGGCCGGCCA GCCGCAGACAAACCAAAGAGCGGAAATTCATGCAGCC AAACATCAATAAACTGGTTCTGTATACAGACAGTATGC CAAGGTTGGAAGAAAAATGGGTGGAAGACAAGTGCAGG TGGCACTGGAGAGGACATTCAG TATAGGCAATGAAGAAGAAGCTGACAGTTAGCCAGAGAAAG	TCCTTTAAATGTAGGCATTAGACTTCCTC TGCAAAGCCATTGAACAAGCAAAGACTCA TTACGATAAATGGTATAACTAACTGGGTT GAAAGAGAGTGATCAACAAAGAGGACTTTC
	ODEO	ORF Stop: end of sequence

THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED I					
	SEQ ID NO: 84	152 aa	MW at 16753.8kD		
1278498047	IGNEEADRLAREGAKLEG	RAGIGVYWGPGHPLMVGTP	LPGRQTNQRAEIHAACKAIEQAKTQ DFVALERLTQGMDIQWMHVPGHSGF		

	SEQ ID NO: 85	965 bp	T
NOV15e, CG144997-02 DNA Sequence	CTGAATGAGTGCAGAGCACAGGTC GATGAGGCCTGGGCCTTTGTCAGGA ATGAGCCTGGGCCTTTGTCAGGA ATGGACAAGAATCGGAGGCGAAAGCACAGACCCTATGCAAAGCACACACA	ITTCTGGCCCACAGAGT ICTATGCCGTGAGGAGG GACCGGTTTCCTGCTG AAATCTGCAAGCCCGGA CCAGCAAGCCACTCCGT ATGAAGCCGACTCCGT ATGAAGCCGACCTGACCT	CGCCTTGCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	ORF Start: ATG at 10		ORF Stop: TGA at 868

	SEQ ID NO: 86	286 aa	MW at 32098.0kD
CG144997-02 Protein Sequence	YMGDFVVVYTDGCCSSNG	QHGQESEAKASKRLREF RRRPRAGIGVYWGPGHF NWVQGWKKNGWKTSAGK	KTGVFLTWNECRAQVDRFPAARFKKFATEDEA PLDGDGHESAEPYAKHMKPSVEPAPPVSRDTFS PLNVGIRLPGRQTNQRAEIHAACKAIEQAKTQN EVINKEDFVALERLTQGMDIQWMHVPGHSGFI

5

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 15B.

10

Table 15B. Comparison of NOV15a against NOV15b through NOV15e.			
Protein Sequence	NOV15a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV15b	1203 5207	203/203 (100%) 203/203 (100%)	
NOV15c	14203 3192	189/190 (99%) 190/190 (99%)	
NOV15d	54199 4149	146/146 (100%) 146/146 (100%)	
NOV15e	47203 130286	157/157 (100%) 157/157 (100%)	

Further analysis of the NOV15a protein yielded the following properties shown in Table 15C.

15

20

Table 15C. Protein Sequence Properties NOV15a		
PSort analysis:	0.3700 probability located in outside; 0.1805 probability located in microbody (peroxisome); 0.1080 probability located in nucleus; 0.1000 probability located in endoplasmic reticulum (membrane)	
SignalP analysis:	Cleavage site between residues 15 and 16	

A search of the NOV15a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 15D.

Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV15a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAY70235	Human RNA-associated protein-16 (RNAAP-16) - Homo sapiens, 286 aa. [WO200011171-A2, 02-MAR-2000]	47203 130286	157/157 (100%) 157/157 (100%)	6e-92
AAB97508	Human type II RNase H protein - Homo sapiens, 286 aa. [WO200123613-A1, 05-APR-2001]	47203 130286	156/157 (99%) 157/157 (99%)	1e-91
AAY25094	Human type 2 RNase H protein - Homo sapiens, 286 aa. [WO9928447-A1, 10-JUN-1999]	47203 130286	156/157 (99%) 157/157 (99%)	1e-91
ABB83371	Human wild-type RNase H1 - Homo sapiens, 286 aa. [WO200240635-A2, 23-MAY-2002]	47203 130286	156/157 (99%) 156/157 (99%)	2e-90
ABB83374	Mutant RNase H1, E186Q - Homo sapiens, 286 aa. [WO200240635-A2, 23-MAY-2002]	47203 130286	155/157 (98%) 156/157 (98%)	5e-90

In a BLAST search of public sequence datbases, the NOV15a protein was found to have homology to the proteins shown in the BLASTP data in Table 15E.

Protein Accession Number	Protein/Organism/Length	NOV15a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
O60930	Ribonuclease H1 (EC 3.1.26.4) (RNase H1) (Ribonuclease H type II) - Homo sapiens (Human), 286 aa.	47203 130286	157/157 (100%) 157/157 (100%)	2e-91

Q8VCR6	Ribonuclease H1 - Mus musculus (Mouse), 285 aa.	47203 129285	139/157 (88%) 150/157 (95%)	5e-83
O70338	Ribonuclease H1 (EC 3.1.26.4) (RNase H1) - Mus musculus (Mouse), 285 aa.	47203 129285	139/157 (88%) 150/157 (95%)	5e-83
Q91953	mRNA, complete cds, clone CLFEST65 - Gallus gallus (Chicken), 293 aa.	50202 140292	117/153 (76%) 135/153 (87%)	4e-70
Q21024 ·	F59A6.6 protein - Caenorhabditis elegans, 369 aa.	58199 222363	65/142 (45%) 93/142 (64%)	3e-32

PFam analysis predicts that the NOV15a protein contains the domains shown in the Table 15F.

5

Table 15F. Domain Analysis of NOV15a				
Pfam Domain	NOV15a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
rnaseH	54199	65/176 (37%) 125/176 (71%)	2.8e-54	

Example 16.

The NOV16 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 16A.

Table 16A. NOV16 Sequence Analysis				
	SEQ ID NO: 87	2274 bp		
NOV16a, CG145494-01 DNA Sequence	ATGCTGAAGAAAATGAAATCCTTC TCCGGTCCTCCAGGAAAGACTACA CAGGCATTCACATGTACTCCTAAA GGCTGCCAGCATACAAATTCAAGG GCTTCAGCTTCCTCAAGGCTTAGC TCTTCATTTTACCCTGTTATCATG TTGCTGTTATTAGCCTGATGATTG AGGAGGAGTAAATGCAACCAATGG GTGACCTTACTTCAGGAATCATT ATCTCACAGAGCCTCTGGTCCGTG AAAATATCTGTTTTGGAGTTAAAAAC GCTGTGTTGCAGAATGTTAAAAAC GCTGTTTGCGGTGGCAAGGAGTTTA	GCAGCAACCCAGAGGTACT ACACAAAGGACAAGGTTCC AAAAATAAGAAATATCATT AAATATGTGTTTGGGTGACT CTTTGCAATGCTGGCAGC TATTGTTTTCTTGGAACC GCACAGAGGCCAGAGATGCCAGC CCACAGAGGCCAGAGATGCC CAGTTTTGCCTAGGTGTC CAGTTTTGCCTAGGTGTC CAGTTTACCACCGCAGCAG CAAAGCGGTACAGTGCCAGCAG CAAAGCGGTACAGTGCAAC CTCAACGTGTGTTCCAAC ATGAGAGATTTAAAGAGAI TTGGCATTTCACCTGCGGTT GGGCTTCCACCCCAGCCI GGGCTGCTACCCTCCAGCCI GGGCTGCTACCCTCCAGCCI GGGCTGCTACCTCCAGCCI GGGCTGCTACCTCCAGCCI GGGCTGCTACCTCCAGCCI	GAATAATTCAGAGTACTATGGATC ATGTGGAAAGGCCTATCTTTAGTCA ATGTGGAAAGGCCTATCTTTAGTCA TGATTCCATTGCGGATAAGCTGAAA TATATGTTCCTACCCATAACTAAAT TGGTCTCAGGCATAAGCACAAGGGGT TGGTCCCAATATTTGGCCTGTAC TCCAGACACATATCCATAGGTCCTT TAGTACCAGATGATATAGTCATTCC CTTGAGAGTGAAAGTCGCCATGTCT TGTAGGTTTGGATTATGTCCCATGTT CTGTGCATGTCTTCACCTCCATGTT CTTTTCCGTGGTGTATAGTACAGTT GGCGTCGGGCTGATGTTTTTGGTT AATTGCCGGCCCTATTCCTTTAGA TAACTTGAAAGAATCATACAATGTG AATCCGGACACCAGCCTCTTCCACC LAGTGACCATCTCCCATGGCCAAGAC	

ORF Start: ATG at 61	ORF Stop: TAG at 2215
	GATGGGGTTATAAGCCTCTCATGAAGTTCATAATTTACA
	CCAGGAGGACTTGGAGCCCAATGCCACTCCTGCCACTCCTGAG
	ATGATGCAGTTTTAGGCAGCCAACTTAGAGAGGCACTTGCTGA
	AATGACCTCACTCGGAATAGACTTTTTTGAAAATCCTGCCCTAT
TTATGCCCCCAGGGATAACGTCCA	ACACTGTCATTTTGGATTTCACTCAAGTCAATTTTATTGATTC GATTGTAAAAGAATATGGAGACGTCGGTATATATGTATACTTA
	CCAATAGTGATCAAAAGCACATTTCCTGAGGAAATGCAAAGAT
GGCCAACGCAACTGTTGTCAAAGC	AGATGCAGAAGTAGATGGAGAGGATGCTACCAAGCCTGAAGAA
CAGTCATCATGGGAGCAAGGAGAA	AGGCCATGCGGAAGTACGCTAAGGAAGTCGGAAATGCAAATAT
CCAATTTACTATGCAAATAGCGAC	TTGTATAGCAATGCATTAAAACGAAAGACTGGAGTGAACCCAG
	GGTGAAAGAAATTCCTGGAATAAAAATATTTCAAATAAAT
CTGTGATTTACAGAACACAGAGTC	CAAGCTACAAAGTCCTTGGAAAGCTTCCTGAAACTGATGTGTA
TTTGTCTCCTCCTTGTTCCTCGGA	TTGGACTATGCTTTGATCACTGCTGACCATCTGCTTACCACT
	TGCTGTCGGCCATTGTGATTGTCAACCTGAAGGGAATGTTTAT CTGGAGAACCAGCAAAATAGAGCTGACCATCTGGCTTACCACT
CARCCCOMCCARCACTCTTCCAGACC	TTTTCAATTTCATGCTCCTTGTCTCGAAGCCTTGTTCAGGAGG
CTTAGCAAATAAACATGGCTACCA	ggttgacggcaaftlaggagetlaftpelletigegatitetglaat

	SEQ ID NO: 88	718 aa	MW at 78546.4kD
CG145494-01 Protein Sequence	TKWLPAYKFKEYVLGDLVSG GPFAVISLMIGGVAVRLVPD AIYLTEPLVRGFTTAAAVHV FGLLLGGKEFNERFKEKLPA FHLVYVDAIAIAIVUGFSVTI QEGTGGKTQAVLSAIVIVNI LLTVIYRTQSPSYKVLGKLP NPAVIMGARRKAMRKYAKEV	ISTGVLQLPQGLAFAN DIVIPGGVNATNGTEX FTSMLKYLFGVKTKRY PIPLEFFAVVMGTGIS SMAKTLANKHGYQVDC KGMFMQFSDLPFFWRI ETDVYIDIDAYEEVK GNANMANATVVKADAE NFIDSVGVKTLAGIVK	DKVPDSIADKLKQAFTCTPKKIRNIIYMFLP ALAAVPPIFGLYSSFYPVIMYCFLGTSRHIS ARDALRVKVAMSVTLLSGIIQFCLGVCRFGF (SGIFSVVYSTVAVLQNVKNLNVCSLGVGLM SAGFNLKESYNVDVVGTLPLGLLPPANPDTS: SNQELIALGLCNSIGSLFQTFSISCSLSRSL PSKIELTIWLTTFVSSLFLGLDYGLITAVII EIPGIKIFQINAPIYYANSDLYSNALKRKTG EVDGEDATKPEEEDGEVKYPPIVIKSTFPEEI (EYGDVGIVYLAGCSAQVVNDLTRNRFFEN)

Further analysis of the NOV16a protein yielded the following properties shown in Table 16B.

10

Table 16B. Protein Sequence Properties NOV16a		
PSort analysis: 0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3200 probability located in nucleus; 0.3000 probability located in endoplasmic reticulum (membrane)		
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV16a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 16C.

Table 16C. Geneseq Results for NOV16a

Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV16a Residues/ Match Residues	Tdentities/ Similarities for the Matched Region	Expect Value
AAY71067	Human membrane transport protein, MTRP-12 - Homo sapiens, 758 aa. [WO200026245-A2, 11-MAY-2000]	9684 15738	291/741 (39%) 433/741 (58%)	e-148
AAG67162	Amino acid sequence of a human 32613 transporter polypeptide - Homo sapiens, 751 aa. [WO200164875-A2, 07-SEP-2001]	9684 15731	289/734 (39%) 432/734 (58%)	e-147
ABG61914	Prostate cancer-associated protein #115 - Mammalia, 790 aa. [WO200230268-A2, 18-APR-2002]	16699 20.:741	268/723 (37%) 419/723 (57%)	e-144
AAM51696	Human pendrin SEQ ID NO 2 - Homo sapiens, 780 aa. [JP2001228146-A, 24-AUG-2001]	16699 20741	268/723 (37%) 419/723 (57%)	e-144
AAM51695	Mouse pendrin SEQ ID NO 1 - Mus sp, 780 aa. [JP2001228146-A, 24-AUG-2001]	16688 20730	270/713 (37%) 414/713 (57%)	e-142

In a BLAST search of public sequence datbases, the NOV16a protein was found to have homology to the proteins shown in the BLASTP data in Table 16D.

Protein Accession Number	Protein/Organism/Length	NOV16a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P58743	Prestin - Homo sapiens (Human), 744 aa.	1718 1744	718/744 (96%) 718/744 (96%)	0.0
Q9JKQ2	Prestin - Meriones unguiculatus (Mongolian jird) (Mongolian gerbil), 744 aa.	1718 1744	679/744 (91%) 699/744 (93%)	0.0
Q99NH7	Prestin - Mus musculus (Mouse), 744 aa.	1718 1744	680/744 (91%) 700/744 (93%)	0.0

Q9ЕРН0	Prestin - Rattus norvegicus (Rat), 744 aa.	1718 1744	677/744 (90%) 699/744 (92%)	0.0
AAH28856	Solute carrier family 26, member 6 - Mus musculus (Mouse), 735 aa.	16684 8715	282/718 (39%) 432/718 (59%)	e-148

PFam analysis predicts that the NOV16a protein contains the domains shown in the Table 16E.

5

Table 16E. Domain Analysis of NOV16a				
Pfam Domain	NOV16a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
COX3	334458	31/266 (12%) 80/266 (30%)	0.7	
Sulfate_transp	193477	111/328 (34%) 234/328 (71%)	7e-78	
STAS	500683	34/188 (18%) 124/188 (66%)	1.4e-12	

Example 17.

10

The NOV17 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 17A.

Table 17A. NOV	V17 Sequence Analysis		
	SEQ ID NO: 89	2124 bp	
NOV17a, CG145722-01 DNA Sequence	CTGTAGGTTCACAGCGTTCCCTTGAGATGACAAAAATTCAGGCTTCTGTAGGTTCACAAAAAATTTGACAAAGATAATTGACAAAGATAGAGAAAGATAGAGAAAAGATAGAGAAAAACAAAAACAAAAAACAAAAAAAA	TGGTACTTAAGGCAGAAAAT ACCGTCGCGAAACCTGCAGG TCTGATAGAGCTTTTTGTCTA AGAACTAAGGCAGAAATTAAL GAAGAAAGCAGGAGGCTTCCCC GTACACCACCTTGGACTCCCC AAGTCCAGATCAGACTTTTGAC CCAGACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGAGCAGC	TAACACCGTGTTTTGTAGCTGTTAG TTAAGTTATTTTCTCCTCCTGCTT TTAAGTTATTTTTCTCCTCCTGCTT GTGTTGTAAAGCTCTTTGGCTGAGA ACTTTTCCTATTGTGAGAGAGCTGA SAGCCAAACCCCAGAGAAGGGTGAA CTTAGCAACGTGCATGAGCCCTCTCAC GGCTCCAGTGTCACACCCCTCTACT AGCTTCCTTCCAGAGGCCCTAAGC ATTGGCTCTTCCAGAGGCCCTAAGC ATTTGGCTTCTTCAAAAAATTTGGG ATTTGGAGGTTGAAAAAATTGGGG ATGGATGTTTATGCAATAAAGCG ATGGATGTTTATGCAATAAAGCG ATGGATGTTTATGCAATAAACCA ATCTGAAAACATAAGCACATGATCA ATCTGAAAACACTAAGTCTGCCAA TCCCTTGGCCTTAATTACATCCAC TCCATTTGTCACAAGATGCAAAGTG GGTTTCTCTCTCCCAATGATGATGATGA TCCATTTGTCACAAGATGCAAAGTG GGTTTCTCTCTCCCCAATGATGATGATGATGAAAAGTGAAAGAGGAGAAGATGCACCC

	The state of the s
TTCCTGGCTAATGAGATTTTGCAA	GAGGATTACCGGCAGCTTCCCAGAGCAGATATTTCCCTTGG
[GATTAACAATTGCAGTGGCTGCAG	SAGCAGAGTCATTGCCCACCAATGGTGCTGCATGGCACCATAT
CCGCAAGGGTAACTTTCCGGACGT	CCTCAGGAGCTCTCAGAAAGCTTTTCCAGTCTCCTCAACAAC
ATGATCCAACCTGATGCCGAACAG	AGACCTTCTGCAGCAGCTCTGGCCAGAAATACAGTTCTCCGGC
CTTCCCTGGGAAAACAGAAGAGC	CCAACAGCAGCTGAATTTGGAAAAGTTCAAGACTGCCACACT
GGAAAGGGAACTGAGAGAAGCCCAC	CAGGCCCAGTCACCCCAGGGATATACCCATCATGGTGACACT
GGGGTCTCTGGGACCCACACAGGA	CAAGAAGCACAAAACGCCTGGTGGGAGGAAAGAGTGCAAGGT
CTTCAAGCTTTACCTGTGAGTAATC	CTTCCCCTTAAGAACTCATTTTGCAGCCGGGCGTGGTGGCTCA
CGCCTGTAATCCCAACACTTTGGGG	AGGCCAAGGCAGGTGGATCATGAGGTCAGGAGATCGAAACCAT
CCTGGCTAACACGGTGAAACCCCAA	CTCTACTAAAAATACAAAAAATTAGCAGGGCGAGGTGGCAGG
CCCCTATAATCCCACCTACTCACCCA	ACCOMO COLA COLA COLA CALAMANATTAGCAGGGCGAGGTGGCAGG
CCACCCACCCACCACCACCACCACCACCACCACCACCAC	AGGCTGAGGAAGGAGATCGCTTGAACCCGGGAGGTGGAGCTT
GCAGTGAGCTGAGATCACACCACTG	CACTCCAGCCTGGGCAACAGAG
ORF Start: ATG at 201	ORF Stop: TAA at 1830

	SEQ ID NO: 90	543 aa	MW at 60514.5kD
CG145722-01 Protein Sequence	TSSEKOKESPDQILERTPYS HLKLTPAPLKDEMTSLALV VGEFGTVYKCIKRLDGCVY IQNEYCNGGSLQAAISENT ESSGVIEBVENEADWFLSA GLTIAVAAGAESLPTNGAA	HPLKCPETPAQPDSRS NINPFTPESYKKLFLQ AIKRSMKTFTELSNEN KSGNHFEEPKLKDILL NVMYKIGDLGHATSIN WHHIRKGNFPDVPOEL	ASSQTPEKGEVQDSEAKGTPPWTPLSNVHEIKLLPSDSPSTPKTMLSRLVISPTGKLPSRGI KLLPSDSPSTPKTMLSRLVISPTGKLPSRGI SGGKRKIRRCVLRETNMASRYEKEFLEVEK SGALHEVYAHAVLGHHPHVVRYYSSWAEDDHI QISLGLNYIHNSSMVHLDIKPSNIFICHKM KPKVEEGDSRFLANEILQEDYRHLPKADIFI SESFSSLLKNMIQPDAEQRPSAAALARNTVI PQGYTHHGDTGVSGTHTGSRSTKRLVGGKSI

Further analysis of the NOV17a protein yielded the following properties shown in Table 17B.

10

15

Table 17B. Protein Sequence Properties NOV17a			
PSort analysis: 0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)			
SignalP analysis: No Known Signal Sequence Predicted			

A search of the NOV17a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 17C.

Table 17C. Geneseq Results for NOV17a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV17a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value

AAB62519	Xenopus Wee1 protein catalytic domain (residues 210-443) - Xenopus sp, 240 aa. [US6225101-B1, 01-MAY-2001]	188431 1240	170/244 (69%) 191/244 (77%)	1e-94
AAY51401	Xenopus sp. Wee1 catalytic domain protein fragment - Xenopus sp, 240 aa. [US6020194-A, 01-FEB-2000]	188431 1240	170/244 (69%) 191/244 (77%)	1e-94
ABB60693	Drosophila melanogaster polypeptide SEQ ID NO 8871 - Drosophila melanogaster, 609 aa. [WO200171042-A2, 27-SEP-2001]	109501 101551	180/464 (38%) 257/464 (54%)	9e-78
AAY96776	Z. mays partial weel kinase - Zea mays, 525 aa. [WO200037645-A2, 29-JUN-2000]	185465 264513	103/282 (36%) 153/282 (53%)	3e-45
AAY96770	Z. mays partial weel kinase - Zea mays, 403 aa. [WO200037645-A2, 29-JUN-2000]	185465 142391	103/282 (36%) 153/282 (53%)	3e-45

In a BLAST search of public sequence datbases, the NOV17a protein was found to have homology to the proteins shown in the BLASTP data in Table 17D.

Table 17D. Public BLASTP Results for NOV17a					
Protein Accession Number	Protein/Organism/Length	NOV17a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
O95017	WUGSC:H_DJ0894A10.2 protein - Homo sapiens (Human), 541 aa (fragment).	1541 1541	541/541 (100%) 541/541 (100%)	0.0	
P47817	Wee1-like protein kinase (EC 2.7.1.112) - Xenopus laevis (African clawed frog), 555 aa.	10542 11552	291/560 (51%) 352/560 (61%)	e-143	
O57473	Wee1 homolog - Xenopus laevis (African clawed frog), 554 aa.	10542 11551	294/566 (51%) 357/566 (62%)	e-143	

Q8QGV2	Wee1B kinase - Xenopus laevis (African clawed frog), 595 aa.	10541 20593	263/579 (45%) 350/579 (60%)	e-122
Q63802	Wee1-like protein kinase (EC 2.7.1.112) - Rattus norvegicus (Rat), 646 aa.	92541 168644	236/484 (48%) 308/484 (62%)	e-118

PFam analysis predicts that the NOV17a protein contains the domains shown in the Table 17E.

5

Table 17E. Domain Analysis of NOV17a				
Pfam Domain	NOV17a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
pkinase	194462	73/310 (24%) 193/310 (62%)	6.4e-45	

Example 18.

The NOV18 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 18A.

Table 18A. NOV18 Sequence Analysis				
	SEQ ID NO: 91	753 bp		
	AGGTGACAAGATTATTGATGGC CAGTGGCAATCAGCTCCACTGCG TGCAAGATGAATGAGTACACCGT TCAAGGCCTCGAAGTCATTCCGC CGTGAAGCTCAATAGCCAGGCCA GAACCCCCTGGAACCACCTGTAC CCTCTGACCTCATGCGTGGAT CTTACTGGAAAATTCCATGCTGGT TCAGGGGGACCGTTGGTGCAG	CGCCCATGTGCAAGAGGCGGAGAGGCGTCCTGGTCAATGGGCACTGGCACACACA	CCTTGGAAACTGCAGGAGAAGAAGCCC CTCCCACCCATGGCAGGTGGCCCTGCT GAGCGCTGGGTGCTCACTGCCGCCCAC CGCTGGGCGACAGGAGAGCTCAGAGGA ACAGACCCATGTTAATGACCTCATGCT AAGAAAGTCAGGCTGCCCTCCCGCTGC CTACCACGAGCCCAGATGTGACCTTTC CCAGGACTGCACAGAGGTTACAAGGA ICCAAGAAAAACGCCTGCAATGGTGAC ICGAGAAAAACGCCTGCAATGGTGAC ICGGTGTCCTGGGGAACTTTCCCTTGCG GTTCACCAAGTGGAAAATGACACCAT	
	ORF Start: at 1		ORF Stop: TAA at 751	

	SEQ ID NO: 92	250 aa	MW at 27166.0kD
CC145754 01	CKMNEYTVHLGSDTLGDR	RAQRIKASKSFRHPGYS1	SHPWQVALLSGNQLHCGGVLVNERWVLTAAH QTHVNDLMLVKLNSQARLSSMVKKVRLPSRC ODCTKVYKDLLENSMLCAGIPDSKKNACNGD

Protein Sequence SGGPLVCRGTLQGLVSWGTFPCGQPNDPGVYTQVCKFTKWINDTMKKHR

	SEQ ID NO: 93	862 bp	
NOV18b, CG145754-03 DNA Sequence	ACCTCGTGCGGCCAAGACGTGGATG AAGATTATTGATGGCGCCCCATGTG AACAGCTCCACTGCGGAGGCGTCCT GAATGAGTACACCGTGCACCCGGCT TCGAAGTCATTCCGCCACCCCGGCT TCGAACACCACCTGTACTGTCTCCGGC CTCATGTGCGTGACTCATGCTCAAGCTCA AAAATTCCATGCTGGATGCAAGCTCA AAAATTCCATGCTGTGCAAGCTAAAAACTTCCATGCTGAAGCAAGC	STTCCTGCTCTTACTGGGGCAAGAGGCTCCACCACAGAGACAGAC	EAAGACCTCACCATGGGACGCCCCCG GGGGAGCCTGGCCAGGGGTGAC ATGGCAGGTGGCCCTGCTCAGTGGCA GTGCTCACTGCCGCCCACTGCAAGAT ACAGGAGAGCTCAGAGGCCCTGCTAAGACCCC GTTAATGACCTCATGCTGGAACCCC GCCCAGATGTGACCTTTCCCTCTGAC ACGAAGGTTACAGGCCTTACTGG ACGCAGGTTACTGGGCCAACCCCC
	AATGACCCAGGAGTCTACACTCAAG ATCGC TAA CGCCACACTGAGTTAAT		TGGATAAATGACACCATGAAAAAGC CAGAAAATGCACAGGA
	ORF Start: ATG at 54		ORF Stop: TAA at 810

	SEQ ID NO: 94	252 aa	MW at 27557.6kD
CG145754-03	AHCKMNEYTVHLGSDTLGDRRAQF	RIKASKSFRHPGYSTQTHV PPSDLMCVDVKLISPQDCT	QVALLSGNQLHCGGVLVNERWVLTA NDLMLVKLNSQARLSSMVKKVRLPS KVYKDLLENSMLCAGIPDSKKNACN INDTMKKHR

	SEQ ID NO: 95	804 bp	
NOV18c, CG145754-02 DNA Sequence	TGGAAACTGCAGGAGAAGAAGCCCACCACCCATGGCAGGTGGCCCTGCTCCGCTGGGTGGCCACTGGGTGGCGCAGAGAGAAATTCCATGCTGTGCGCTGGCAAGAAATTCCATGGTGCAAGAGTACACTCAATGACCCAGAGAGTACACTCAATGACCCAGAGAGTACACTCAATGACCCAGAGTTAAATTTAATGACTCAATGACTTAA	AGGGTGACAAGATTATTC LAGTGGCAATCAGCTCCA PGCAAGATGAATGAGTAC PCAAGGCCTCGAAGTAC LATCTCCCCCAGGACTCA ATCCCCGACTCAAGAAA PGCAAGGTCTGGTGTCCT AGTGTGCAAGTTCACCAA ATTAACTGTGTGCTTCCCAAGAAA LTTAACTGTGTGCTTCCCAAGACACAACTTCACCAA	GAGATCCTACTGCTATCCTTAGCCT GATGGCGCCCCATGTGCAAGAGGCTC CTGCGGAGGCGCTCTGGTCAATGAG CACCGTGCACCTGGCAGTGATACGC TCCGCCACCCCGGCTACTCACACA CACGAAGGTTTACAAGGACTTACTG AACGCCTGCAATGGTGACTCAGGG CGGGAACTTTCCCTTGCGGCCAACC GTGGATAAATGACACCATGAAAAAG ACAGAAAATGCACAGAGTGAGGAC AAAATATATTAAACCTCATGCCCT AAATAAAGAAACACAAAAACCCTCAA
	ORF Start: ATG at 16		ORF Stop: TAA at 610

	SEQ ID NO: 96	198 aa	MW at 21613.6kD
00145754 00	AAHCKMNEYTVHLGSDTLGDRRAQ CAGIPDSKKNACNGDSGGPLVCRG	RIKASKSFRHPGYSTQTH	WQVALLSGNQLHCGGVLVNERWVLT NVNDLKLISPQDCTKVYKDLLENSML PGVYTQVCKFTKWINDTMKKHR

	SEQ ID NO: 97	544 bp
Sequence	CACCGGATCCGAAGAAGCCCAGGGTGACAAGATTATTG. CCATGGCAGGTGGCCCTGCTCAGTGGCAATCAGCTCCAC GGGTGCTCACTGCCGCCCACTGCAAGATGAATGAGTAC. CGACAGGAGAGCTCAGAGGATCAAGGCCTCGAAGTCAT. CATGTTAATGACCTCAAGCTCATCCCCCCAGGACTGC ATTCCATGCTGTGCGCTGGCATCCCGACTCCAAGAAA. GTTGGTGTGCAGAGGTACCCTGCAAGGTCTGGTGTCCTC GACCCAGGAGTCTACACTCAAGTGTGCAAGTTCACCAAC TCGAGGGC	CTGCGGAGGCGTCCTGGTCAATGAGCGCT ACCGTGCACCTGGGCAGTGATACGCTGGG ICCGCCACCCCGGCTACTCCACACAGACC CACGAAGGTTTACAAGGACTTACTGGAAA AACGCCTGCAATGGTGACTCAGGGGGACC GGGGAACTTTCCCTTGCGGCCAA
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 98	181 aa	MW at 19683.2kD
252710120	DRRAQRIKASKSFRHPGYSTQTHV LVCRGTLQGLVSWGTFPCGQPNDF	$\mathtt{NDLKLISPODCTKVYKDL}$	ERWVLTAAHCKMNEYTVHLGSDTLG LENSMLCAGIPDSKKNACNGDSGGP KHLEG

	SEQ ID NO: 99	292 bp
252718152 DNA Sequence	CACCGGATCCGAAGAAGCCCAGGGTGACAAGATTATTGA CCATGGCAGGTGGCCTGCTCAGTGGCAATCAGCTCCAC GGGTGCTCACTGCCGCCCACTGCAAGATGAATGAGTACA CGACAGGAGAGCTCAGAGGATCAAGGCCTCGAAGTCATT CATGTTAATGACCTCCTCGAGGGC	CTGCGGAGGCGTCCTGGTCAATGAGCGCT ACCGTGCACCTGGGCAGTGATACGCTGCG
·	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 100	97 aa	MW at 10551.7kD
NOV18e, 252718152 Protein Sequence	DRRAQRIKASKSFRHPGYSTQTHVN	VALLSGNQ DLLEG	LHCGGVLVNERWVLTAAHCKMNEYTVHLGSDTLG

	SEQ ID NO: 101	742 bp	T
NOV18f, 247856668 DNA Sequence	GCARGAGGCTCCCACCATGGCAGGTC TGGTCAATGAGCGCTGGGTGCTCACTG CAGTGATACGCTGGGCGACAGGAGAG TACTCCACACAGACCCATGTTAATGAC CCATGGTGAAGAAAGTCAGGCTGCCCT	ATCCGCCAGGGTGACAAGATTATTGATGGCGCCCGCCCCCCCC	CCGTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

1	ATCTCCCCCAGGACTGCACGAAGGTTTACAAGGACTTA TCCCCGACTCCAAGAAAAACGCCTGCAATGGTGACTCAG GCAAGGTCTGGTGTCCTGGGGAACTTTCCCTTGCGGCCA GTGTGCAAGTTCACCAAGTGGATAAATGACACCATGAAA GCGCC	GGGGACCGTTGGTGTGCAGAGGTACCCT ACCCAATGACCCAGGAGTCTACACTCAA
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 102		MW at 26591.2kD
247856668	SDTLGDRRAQRIKASKSFRHPGYS	GSHPWQVALLSGNQLHCG FQTHVNDLMLVKLNSQARI PODCTKVYKDLLENSMLC	GVLVNERWVLTAAHCKMNEYTVHLG LSSMVKKVRLPSRCEPPGTTCTVSG AGIPDSKKNACNGDSGGPLVCRGTL GGRA

	SEQ ID NO: 103	673 bp
NOV18g, 247856705 DNA Sequence	AGCTTCGCGGCCGCCCCTTCACCGGATCCGCCAGGGGGCAAGAGGCTCCCACCCA	GGCAATCAGCTCCACTGCGGAGGCGTCC AGATGAATGAGTACACCCGTGCACCCGGC AGGCCTCGAAGTCATTCCGCCACCCGGC AAGCTCAATAGCCAGGCCAG
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 104	224 aa	MW at 23813.0kD
247856705	SDTLGDRRAQRIKASKSFRHPGYS	TQTHVNDLMLVKLNSQAR	GVLVNERWVLTAAHCKMNEYTVHLG LSSMVKKVRLPSRCEPPGTTCTVSG AGIPDSKKNACNGDSGGPLVCRGTL

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 18B.

Table 18B. Comparison of NOV18a against NOV18b through NOV18g.		
Protein Sequence NOV18a Residues/ Identities/ Similarities for the Matched 1		Identities/ Similarities for the Matched Region
NOV18b	25250 27252	213/226 (94%) 213/226 (94%)

NOV18c	16250 19198	176/235 (74%) 177/235 (74%)		
NOV18d	17249 1178	172/233 (73%) 173/233 (73%)		
NOV18e	17111 195	92/95 (96%) 93/95 (97%)		
NOV18f	22250 11239	215/229 (93%) 216/229 (93%)		
NOV18g	22230 11219	193/209 (92%) 194/209 (92%)		

Further analysis of the NOV18a protein yielded the following properties shown in Table 18C.

5

Table 18C. Protein Sequence Properties NOV18a		
PSort analysis:	0.6233 probability located in outside; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in microbody (peroxisome)	
SignalP analysis:	Cleavage site between residues 20 and 21	

A search of the NOV18a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 18D.

Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV18a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU82740	Amino acid sequence of novel human protease #39 - Homo sapiens, 253 aa. [WO200200860-A2, 03-JAN-2002]	1250 4253	250/250 (100%) 250/250 (100%)	e-150

AAW05383	Human amyloid precursor protein protease - Homo sapiens, 253 aa. [WO9631122-A1, 10-OCT-1996]	1250 4253	250/250 (100%) 250/250 (100%)	e-150
AAR67888	Human stratum corneum chymotrophic recombinant enzyme (SCCE) - Homo sapiens, 253 aa. [WO9500651-A, 05-JAN-1995]	1250 4253	250/250 (100%) 250/250 (100%)	e-150
AAB21326	Human HSCEE - Homo sapiens, 257 aa. [WO200053776-A2, 14-SEP-2000]	1250 4257	249/255 (97%) 249/255 (97%)	e-146
AAB98502	Human Stratum Corneum Chymotryptic Enzyme, SCCE, catalytic domain - Homo sapiens, 225 aa. [WO200129056-A1, 26-APR-2001]	26250 1225	225/225 (100%) 225/225 (100%)	e-136

In a BLAST search of public sequence datbases, the NOV18a protein was found to have homology to the proteins shown in the BLASTP data in Table 18E.

Protein Accession Number	Protein/Organism/Length	NOV18a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P49862	Kallikrein 7 precursor (EC 3.4.21) (Stratum corneum chymotryptic enzyme) (hSCCE) - Homo sapiens (Human), 253 aa.	1250 4253	250/250 (100%) 250/250 (100%)	e-149
AAH32005	Kallikrein 7 (chymotryptic, stratum corneum) - Homo sapiens (Human), 253 aa.	1250 4253	249/250 (99%) 249/250 (99%)	e-148
Q91VE3	Thymopsin (Stratum corneum chymotryptic enzyme) - Mus musculus (Mouse), 249 aa.	3250 5249	185/248 (74%) 212/248 (84%)	e-111

AAN03663	Kallikrein 7 short variant protein - Homo sapiens (Human), 181 aa.	70250 1181	181/181 (100%) 181/181 (100%)	e-107
Q9R048	Stratum corneum chymotryptic enzyme - Mus musculus (Mouse), 234 aa (fragment).	3235 5234	175/233 (75%) 198/233 (84%)	e-102

PFam analysis predicts that the NOV18a protein contains the domains shown in the Table 18F.

Table 18F. Doma	in Analysis of NOV18a		
Pfam Domain	NOV18a Match Region	Identities/ Similarities for the Matched Region	Expect Value
trypsin	27242	93/262 (35%) 182/262 (69%)	3.8e-87

Example 19.

10

The NOV19 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 19A.

Table 19A. NOV	V19 Sequence Analysis		
	SEQ ID NO: 105	2028 bp	
NOV19a, CG146279-01 DNA Sequence	TTGAGGACTTTATTATTATTT TTCCAATCGAGACGCCAAGAA GGTGTGCCAGCCCAAGAGCC CTGTCCATTTCCTCCGAGCC CTGTCCATTTCCTCCGAGCC CTGTCCATTTCCTGCGCATTGGA GCGGAATTCCTGCGGGATCAT TTGATGCTGACAATGCGGGAG CGGCAGTGCCTTTTTCTTTGCTGCACAAAAAAGCAAATCTTT TGGCTGGAATTGGAGACCAAC TCGAAAAAAAGCAAGTGAGTCAC TGGCATTACTTTTGTTGGTGTCATTACTTTTGCAGCATCACTTTTTTTT	GGGTTCTTTCATTCTTCC AACAGGTGAACTGGATCCT CACTAACGGCAACCCCCGG ACAGTGGTAGCCAGGATGGA CGGTTGCCATTTTGTGGTT GCAGCCCTTTGAGAGCAGCAGCC GTCTGTGTGAGACCCCCAGA FCAGTCCAATAGGAAACTCT TGGAACTGTCATTACGACCA GACTGTCATTATGGCATCTT FTGGAACCACTTTTTGGGAA GACCAAGATCCGGGTCATCTT CTGCTGTCATCTTTTAAGTA CTTGTCATCATCTTTAAGTA CTGCTGTCATCTTTAAGTA CTGCAGAGATCCGGGTTGTGTT ACCACGGTGGGCTTT CGCAGAGTTGGCAACCCACGGGT CCCACGAGATTAGCCACACGGGT CCCACGAGATTCGCACACCACGGGCCACTCCCACGCGGCCCACTCACCGCGGCCCACTCACCCACGACATCCCACGACATCCCACGCCGCCCCCCCC	CCTTCTGGGCAACGAAGCATGAAAT AAAGTGGCCGTTCCCGCAGCAGCACC CCTCCGGCTCCGACTCCAACTCCGCGC AGGCACCTCCCAAGCGGGGTTGCAGA GGCACCTCCCAAGGGGGCTTGCAGA GTGGTGGTCTACCTTGTCACTGGAGAAG GCTGGAGACGTTGATCCAGCATGCTC TCCAACAACAAGCAGCCACTGGGACCT TAGGGTATGGGAATATTGCTCCGAGC TGGAATTCCACTCTTTGGTTTCTTAT AGCATTGCAAGAGTGGAAGGTCTT CAACCATCCTGTTCATCTTGGCTGGGC CATCGAGGCTGGACGGCCTTGGAGT TTTGGATCCTTGTTGGCCTTGCCTAC TCTGTCCAAAAAGACAAAGAAGAG GTCACCTGTTCGCTTCCTAC TCTGTCCAAAAAGACAAAGACACG CGGCCACCATCCGGGAGACCG CGGCCACCATCCGGAGACCCC CAGGAGCCTCAACAA AGGGTGGTCCGAGGACACATCCTC CAAGGACCTCAAAAAGACAACATCATC
	GACGGAAAAGATGTGTAACTC	GACAACTCCAGCACAGCCA	CTGGACGAGGAGAAGAAGAGGAGGA IGCTGACGGACTGTATCCAGCAGCAC

ITGAAGACAGAAACTAAATGTGAA GTTTTTAATATTCACACTGAGACA AAGAATATATTTCACTGTGCCATA AACTTCATTTCAGATAGCAAACGC	CCCACGGACACCAAAGACCGGAGGACGACACACTCATTAC GGACATTGGTCTTGGACTGAGCGTTGTGTGTGTGTGTGTTGTT TGTGCCTTAAACAGACTTTTTAGTCCAAAATTACATAGCATTG AACAACTGAAAGCTTGCTCTGCCAAAAGGAATCAGAGAACAAG AGGACACCAAGAGTGTCCGTGCACGTAGCCGGTTCTGGCCG CAGTGCTGTACCCCTGGCAGTGCTGGCACACACGTAG
ORF Start: ATG at 61	ORF Stop: TAA at 1690

	SEQ ID NO: 106	543 aa	MW at 60334.6kD
CG146279-01 Protein Sequence	HALDADNAGVSPIGNSSNN FLLAGIGDQLGTIFGKSIA LESIYFVVVTLTTVGFGDF EEVGEIKAHAAEWKANVTA SVFAALDTGRFKASSOESI	YLVYGGLVFRALEQPF. ISSHWDLGSAFFFAGTV. RVEKVFRKKQVSQTKII VAGGNAGINYREWYKPI LEFRETRRRLSVEIHDKI MNRPNNLRLKGPEOLM NNRPNNLRLKGPEOLM	OPPAPAPTPTPRLSISSRATVVARMEGTSQGG ESSQKNTIALEKAEFLRDHVCVSPQELETLIQ ITTIGYGNIAPSTEGGKIFCILYAIFGIPLFG RVISTILFILAGCIVFVTIPAVIFKYIEGWTA LVWFWILVGLAYFAAVLSMIGDWLRVLSKKTK LQRAATIRSMERRRLGLDQRAHSLDMLSPEKR KHGQGASEDNIINKFGSTSRLTKRKNKDLKKT STAMLTDCIQQHAELENGMIPTDTKDREPENN

Further analysis of the NOV19a protein yielded the following properties shown in Table 19B.

10

Table 19B. Protei	n Sequence Properties NOV19a
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.3000 probability located in microbody (peroxisome)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV19a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 19C.

Table 19C. Ge	neseq Results for NOV19a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV19a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value

AAU81354	Novel human ion channel protein #34 - Homo sapiens, 543 aa. [WO200185788-A2, 15-NOV-2001]	1543 1543	543/543 (100%) 543/543 (100%)	0.0"
AAU79472	Human novel transporter protein - Homo sapiens, 543 aa. [WO200224748-A2, 28-MAR-2002]	1543 1543	543/543 (100%) 543/543 (100%)	0.0
AAU79473	Human novel transporter protein variant - Homo sapiens, 543 aa. [WO200224748-A2, 28-MAR-2002]	1543 1543	542/543 (99%) 543/543 (99%)	0.0
AAE16596	Human TWIK-Related K+ channel-2 (TREK-2) protein - Homo sapiens, 538 aa. [WO200200715-A2, 03-JAN-2002]	18543 13538	526/526 (100%) 526/526 (100%)	0.0
AAB47930	Human TREK2 - Homo sapiens, 538 aa. [WO200200715-A2, 03-JAN-2002]	18543 13538	526/526 (100%) 526/526 (100%)	0.0

In a BLAST search of public sequence datbases, the NOV19a protein was found to have homology to the proteins shown in the BLASTP data in Table 19D.

		Ī		

Table 19D.	Public BLASTP Results for NO	V19a		
Protein Accession Number	Protein/Organism/Length	NOV19a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q8TDK7	Potassium channel TREK2 splice variant b - Homo sapiens (Human), 543 aa.	1543 1543	542/543 (99%) 542/543 (99%)	0.0
P57789	Potassium channel subfamily K member 10 (Outward rectifying potassium channel protein TREK-2) (TREK-2 K+ channel subunit) - Homo sapiens (Human), 538 aa.	18543 13538	526/526 (100%) 526/526 (100%)	0.0
Q8TDK8	Potassium channel TREK2 splice variant a - Homo sapiens (Human), 543 aa.	18543 18543	525/526 (99%) 525/526 (99%)	0.0

Q9ЛS4	Potassium channel subfamily K member 10 (Outward rectifying potassium channel protein TREK-2) (TREK-2 K+ channel subunit) - Rattus norvegicus (Rat), 538 aa.	1543 1538	520/544 (95%) 529/544 (96%)	0.0
P97438	Potassium channel subfamily K member 2 (Outward rectifying potassium channel protein TREK-1) (Two-pore potassium channel TPKC1) (TREK-1 K+ channel subunit) - Mus musculus (Mouse), 411 aa.	22404 2369	247/384 (64%) 301/384 (78%)	e-136

PFam analysis predicts that the NOV19a protein contains the domains shown in the Table 19E.

5

Table 19E. Domain Analysis of NOV19a				
Pfam Domain	NOV19a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
ion_trans	158323	41/231 (18%) 119/231 (52%)	0.046	

Example 20.

The NOV20 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 20A.

	SEQ ID NO: 107	2958 bp	
NOV20a, CG146374-01 DNA Sequence	GTCCAGCTAGAGCTCCAG GGCCCAGCTAGAGCTCCAG TGCGGCGCATATATGCGGGC TGCCGCCCTGGCTGACGTG GCCGTGACTTCCAGCGCA ATACTGCAAAGAATGGGCC CCATTTTCGTACCCATACA ATAAATCTGTACTCGTGCC CTTGTATTCGTATTCACCG ATACACTGGATTCAAGA GAATTTATGAATCATGTG GAATTTATGAATCCATGTG	ETTGCTCGACACGCTA CGCCCGCTCAGGCCCCAC CGCCCGCTCAGGCCCCCCC CCCGATGACTCCCGGGC CCCGAACTGGCCAGACTC GGTATAAGCAGTTTAGCC CAGAGGCTATAGAATCATT CCGGGAGCAGAAGAGTTAGGAA TCATGGATCCAAATTAAA TCATGGATACAATTAAAC TCGCAAAGTATGGTT AGCCCAAATTAAGC GGGAATTTCTTCCCATGA	CCTTCCGTCCCGGCTATAAAGGCCCCG GGCGCCCTCCGGCTCCGCCTAGCCGCC TCGACCCTCTCGGCCTCGGCTACTTGG TCGACCCGAGACTCGAGCCGCC TCGAGATCGAGACCCGTACTTGAAGCCCT AAATTTTGAAGAACATTGGAGAAAATGA TGGCGTCCACAGATGTGCTGATGGTGGT TTTCTTACTGGAGATTTTAATGGTTGGA AATGGGAGCTGTATATCCCACCAAAGCA CGTAGTTATTACTAGTAAAAGCGAGAG CGTGAAGTTATTACTAGTAAAAGCGAGAG ATTCCAGACCAAAGCACACAGAGTTATACACATTTA

	The first man the first that the first is the first the
CATGCTTACTATGCCAGCTTTGGT	TACCAAATCACAAGETTETTTGCAGCTTEGAGCEGTTATGGA
CACCTGAAGAGCTACAAGAACTGG	TAGACACAGCTCATTCCATGGGTATCATAGTCCTCTTAGATGT
GGTACACAGCCATGCTTCAAAAA	TTCAGCAGATGGATTGAATATGTTTGATGGGACAGATTCCTCT
TATTTTCATTCTGGACCTAGAGGG	ACTCATGATCTTTGGGATAGCAGATTGTTTGCCTACTCCAGC
TGAATATTTCAGACATCTAAGCCA	ATTAGAATCATGATTGTTTTGATTGCCAGAAATCCTTAAATC
GGGAAGTTTTAAGATTCCTTCTGT	CAAACATAAGATGGTGGTTGGAAGAATATCGCTTTGATGGATT
TCGTTTTGATGGTGTTACGTCCAT	GCTTTATCATCACCATGGAGTGGGTCAAGGTTTCTCAGGTGAT
TACAGTGAATATTTCGGACTACAA	GTAGATGAAGATGCCTTGACTTACCTCATGTTGGCAAATCATT
TGGTTCACACGCTGTGTCCCGATT	CTATAACAATAGCTGAGGATGTATCAGGAATGCCAGCTCTGTG
CTCTCCAATTTCCCAGGGAGGGGG	TGGTTTTGACTATCGACTAGCCATGGCAATTCCAGATAAGTGC
ATTCAGCTACTTAAAGAGTTTAAA	GATGAAGACTGGAACATGGGCGATATAGTATACACGCTCACAA
ACAGGCGCTACCTTGAAAAGTGCA	TTGCTTATGCAGAGAGCCATGATCAGGCATTGGTTGGGGATA
GTCGCTGGCATTTTGGTTGATGGA	TGCCGAAATGTATACAAACATGAGTGTCCTGACTCCTTTTACT
CCAGTTATTGATCGTGGAATACAG	CTTCATAAAATGATTCGACTCATTACGCATGGGCTTGGTGGAC
AAGGCTATCTCAATTTCATGGGTA	ATGAATTTGGGCATCCTGAATGGTTAGACTTCCCAAGAAAAGC
AAATAATGAGAGTTACCATTATGC	CAGGCGGCAGTTTCATTTAACTGACGACGACCTTCTTCGCTAC
AAGTTCCTAAATAATTTTGACAGG	GATATGAATAGATTGGAAGAAAGATATGGTTGGCTTGCAGCTC
CACAGGCCTACGTGAGTGAAAAAC	ATGAAGGCAATAAGATCATTGCTTTTGAAAGAGCAGGTCTTCT
TTTCATTTTCAACTTCCATCCAAG	CAAGAGCTACACTGACTACCGAGTTGGAACAGCATTGCCAGGC
AAATTCAAAATTGTGCTAGATTCA	GATGCAGCGGAATATGGAGGGCATCAGAGACTGGACCACAGCA
CTGACTTTTTTTCTGAGGCTTTTG	AACATAATGGGCGTCCCTATTCTCTTTTGGTGTACATTCCAAC
CAGAGTGGCCCTCATCCTTCAGAA	TGTGGATCTGCCGAATTGAAGAGGCCTGATTCAGCTCCACCA
GATGCAGATTTGTGTTTTTGTTTTC	TTGTTATCACTGTCACACAGCTTATAACATGTATGCTTTTCAG
AATACAGTTGTCTAGCCAAGCCAT	CAAGTGTCTGAAATTCAATATTGGTTTATGCAAATACAGCAAA
CTTTTATTTAAGTAGATAGGAGAA	TATGTTTAAAATATTAGGAATCCTAGACCATATTTTCAAGTCA
TCTTAGCAGCTAGGATTCTCAAAT	GGAAGTGTTATATATATATGTTAAAAAACATTTTGCTTTCCTC
GCTAATTATTTGATCCTTTTAAAT	TCAAATTTGAATCATTTGTCATGTATGATTATTTCTGTTAAAT
GTACACAGTATTTAAGATGGATAT	TTGGTGGCTCTATTTGTTCTGATATCTTTTGGTCTAAATTATC
AGGTACCAAGATTGTTTCTTTGTT	PCTTTTTTCAAATTGTGTTTAGAAATACTGTAATAAATATG
AGTAGTGATATAAAGAATTATATC	CAAGGTAATATAAAAGCCATTACGTATGAACTCAAAAAAAA
ΑΑΑΑΑΑΑΑΑ	
OPE Stort: ATC at 212	ODY C. BANK 100
OKT Statt: ATG at 213	ORF Stop: TAA at 1224
	CACCTGAAGAGCTACAAGAACTGG GGTACACAGCATGCTTCAAAAAA TATTTTCATTCTGACCTTCAAAAAA TATTTTCATTCTGACCTTCAGAGGG TGAATATTTCAGACATCTTAGCCA GGGAAGTTTTAAGATTCCTTCTGT TCGTTTTGATGGTGTTACGTCCAT TACAGTGAATATTTCGGACTACAA TGGTTCACACGCTGTGTCCCGATT CTCCCAATTTCCCAGGGAGGGG ATTCAGCTACTTAAAGAGTTTAAA ACAGGCGCTACCTTGAAAAGTGCA GTCGTGGCATTTTGGTTGATGGA AAGGCTACTTAAATTTCAAGAGTCA AAGGCTACTCAATTTCATGGGAAAAAC CACAGGCTACGTAGATTTTGACAGG CACAGGCTACGTAGATTTCAAGAAAAC CACAGGCTACGTAGATTCCAAG AAATTCAAAATTGTGCTAGATTCA CTGACTTTTTCAACTTCCAAG AAATTCAAAATTGTGCTAGATTCA CTGACTTTTTTTCAGAGCCTTTTG CAGAGTGGCCCTCATCCTCAGA CATTCAAAATTGTGTTTTTTCTTTTC

	SEQ ID NO: 108	337 aa	MW at 38247.8kD
CG146374-01 Protein Sequence	KFSRGYESFGVHRCADGGLYCKEW LVPHGSKLKVVITSKSGEILYRIS SHVGISSHEGKVASYKHFTCNVLP	APGAEGVFLTGDFNGWNP PWAKYVVREGDNVNYDWI RIKGLGYNCIOLMAIMEH	VDFQRRYKQFSQILKNIGENEGGID FSYPYKKLDYGKWELYIPPKQNKSV HWDPEHSYEFKHSRPKKPRSLRIYE AYYASFGYQITSFFAASSRYGSPEE FHSGPRGTHDLWDSRLFAYSRLNIS

Further analysis of the NOV20a protein yielded the following properties shown in Table 20B.

Table 20B. Protein Sequence Properties NOV20a		
PSort analysis: 0.7480 probability located in microbody (peroxisome); 0.6000 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space 0.1000 probability located in lysosome (lumen)		
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV20a protein against the Genessed database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 20C.

5

Table 20C. G	Table 20C. Geneseq Results for NOV20a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV20a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB90803	Human shear stress-response protein SEQ ID NO: 106 - Homo sapiens, 702 aa. [WO200125427-A1, 12-APR-2001]	1330 1330	328/330 (99%) 329/330 (99%)	0.0	
ABB60350	Drosophila melanogaster polypeptide SEQ ID NO 7842 - Drosophila melanogaster, 865 aa. [WO200171042-A2, 27-SEP-2001]	22329 1314	170/314 (54%) 227/314 (72%)	e-102	
AAB49603	Glycogen branching enzyme amino acid sequence - Aspergillus nidulans, 686 aa. [JP2000279180-A, 10-OCT-2000]	31329 12314	175/305 (57%) 228/305 (74%)	le-98	
AAG39093	Arabidopsis thaliana protein fragment SEQ ID NO: 48322 - Arabidopsis thaliana, 721 aa. [EP1033405-A2, 06-SEP-2000]	30329 22321	161/302 (53%) 214/302 (70%)	3e-92	
AAG39092	Arabidopsis thaliana protein fragment SEQ ID NO: 48321 - Arabidopsis thaliana, 858 aa. [EP1033405-A2, 06-SEP-2000]	30329 159458	161/302 (53%) 214/302 (70%)	3e-92	

In a BLAST search of public sequence datbases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table 20D.

10

Table 20D. Public BLASTP Results for NOV20a

Protein Accession Number	Protein/Organism/Length	NOV20a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96EN0	Similar to glucan (1,4-alpha-), branching enzyme 1 (glycogen branching enzyme, Andersen disease, glycogen storage disease type IV) - Homo sapiens (Human), 702 aa.	1330 1330	330/330 (100%) 330/330 (100%)	0.0
Q04446	1,4-alpha-glucan branching enzyme (EC 2.4.1.18) (Glycogen branching enzyme) (Brancher enzyme) - Homo sapiens (Human), 702 aa.	1330 1330	328/330 (99%) 329/330 (99%)	0.0
Q9D6Y9	2310045H19Rik protein (RIKEN cDNA 2310045H19 gene) - Mus musculus (Mouse), 702 aa.	1330 1330	291/330 (88%) 310/330 (93%)	e-179
AAF58416	CG4023-PA - Drosophila melanogaster (Fruit fly), 685 aa.	22329 1314	170/314 (54%) 227/314 (72%)	e-102
Q9V6K7	CG4023 protein - Drosophila melanogaster (Fruit fly), 865 aa.	22329 1314	170/314 (54%) 227/314 (72%)	e-102

PFam analysis predicts that the NOV20a protein contains the domains shown in the Table 20E.

Table 20E. Domain Analysis of NOV20a				
Pfam Domain	NOV20a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
isoamylase_N	73168	31/123 (25%) 64/123 (52%)	5.1e-11	

Example 21.

The NOV21 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 21A.

5

Table 21A. NOV	Гable 21A. NOV21 Sequence Analysis			
	SEQ ID NO: 109	885 bp		
NOV21a, CG146403-01 DNA Sequence	GGCGTTCGGAGTGGATAAGGAACC GGTGAAAACAGCAGGCTGCCCCC TGTACAGGCTTCCTTGATATTTC GGCCCTGGTTAGCCGTGCTGGCCCA TGGTCTCTGTCCGGTGAGCCGCCA GTGGTCATCATGGTGGGGGGTGCG TCCAGAAGCGCAAAGGCTTCGTGC CTTTGGGGAGAATGACATCTTTAG CTCACCTTCAAGAAGCTCATGGGC CCTCCTGGGGCCTGCTGCCCTTTTGGGCACCTCACCGAGGCCCCACCGAGGAGGAGA	GGGCAATTTGGAGACAA(GGATCGGAACTACGTGC' TCCACCGAGAGCAATGGG GCCTCTTCTACCTCCCGC GAGCCTGGACTTCATCC' CACGAGGCCCTGTATTC' GCCTGGCGCTGAGGCACCACTTAAGGCTTTTGCCAC TTCTTCTTCCTTGCATCTC' CTGTGCCCATCACCACCACCCACCACCCACCCACCCACCC	FAGAAACATACCCAGGCTGGTGAA CTAAGGGATTATTATCCTGTCAAGCT FGGGCGCCCACCCTCATGGGATCATG CTTCTCCCAGCTCTTCCCGGGCTCC ETCTATCGCGACTATCATGTCCTT FGTCCCAGCCCCAGCTCGGGCAGCC AGTCCCCGGGGAGCACTGCCTTACGC EGGGCTCCTGGCAGCTCTGACTC CAGGCTCCTGGCAGCATTGGTGCCAG CTGGGTGAGCCCACCCCAC	
	ORF Start: ATG at 4		ORF Stop: TAG at 865	

	SEQ ID NO: 110	287 aa	MW at 32641.7kD
CG146403-01	TGFLCNFSTESNGFSQLFPGLRPW VIMVGGAHEALYSVPGEHCLTLOK	LAVLAGLFYLPVYRDYIM RKGFVRLALRHGASLVPV	KLVKTAELPPDRNYVLGAHPHGIMC SFGLCPVSRQSLDFILSQPQLGQAV YSFGENDIFRLKAFATGSWQHWCQL PQRLHPTEEEVNHYHALYMTALEQL

Further analysis of the NOV21a protein yielded the following properties shown in Table 21B.

15

20

Table 21B. Protein Sequence Properties NOV21a		
PSort analysis:	0.5500 probability located in endoplasmic reticulum (membrane); 0.3814 probability located in lysosome (lumen); 0.3200 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (lumen)	
SignalP analysis:	Cleavage site between residues 22 and 23	

A search of the NOV21a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 21C.

Table 21C. Geneseq Results for NOV21a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV21a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAM80262	Human protein SEQ ID NO 3908 - Homo sapiens, 223 aa. [WO200157190-A2, 09-AUG-2001]	43237 29223	195/195 (100%) 195/195 (100%)	e-115
ABB75677	Breast protein-eukaryotic conserved gene 1 (BSTP-ECG1) protein - Homo sapiens, 388 aa. [WO200208260-A2, 31-JAN-2002]	1284 101385	158/285 (55%) 218/285 (76%)	1e-97
AAB66170	Protein of the invention #82 - Unidentified, 388 aa. [WO200078961-A1, 28-DEC-2000]	1284 101385	158/285 (55%) 218/285 (76%)	1e-97
AAU29191	Human PRO polypeptide sequence #168 - Homo sapiens, 388 aa. [WO200168848-A2, 20-SEP-2001]	1284 101385	158/285 (55%) 218/285 (76%)	1e-97
AAY99421	Human PRO1433 (UNQ738) amino acid sequence SEQ ID NO:292 - Homo sapiens, 388 aa. [WO200012708-A2, 09-MAR-2000]	1284 101385	158/285 (55%) 218/285 (76%)	1e-97

In a BLAST search of public sequence datbases, the NOV21a protein was found to have homology to the proteins shown in the BLASTP data in Table 21D.

Table 21D. Public BLASTP Results for NOV21a					
Protein Accession Number	Protein/Organism/Length	NOV21a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9UDW7	WUGSC:H_DJ0747G18.5 protein - Homo sapiens (Human), 261 aa (fragment).	43287 16261	244/246 (99%) 244/246 (99%)	e-145	

CAD38961	Hypothetical protein - Homo sapiens (Human), 434 aa (fragment).	1284 147431	158/285 (55%) 218/285 (76%)	3e-97
Q96PD7	Diacylglycerol acyltransferase 2 (Hypothetical 43.8 kDa protein) - Homo sapiens (Human), 388 aa.	1284 101385	158/285 (55%) 218/285 (76%)	3e-97
Q9BYE5	GS1999full protein - Homo sapiens (Human), 297 aa.	1284 10294	158/285 (55%) 218/285 (76%)	3e-97
Q9DCV3	0610010B06Rik protein (Diacylglycerol acyltransferase 2) - Mus musculus (Mouse), 388 aa.	1284 101385	159/285 (55%) 217/285 (75%)	8e-97

Example 22.

The NOV22 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 22A.

Table 22A. NOV22 Sequence Analysis			
	SEQ ID NO: 111	1135 bp	
NOV22a, CG146513-01 DNA Sequence	GCTTCTTGCCACAACAGAACAGC GCCTCCAAACCTTCTTTTTTTGC CCTTATACCCTACTTTTTTTTTT	ACCATAACCATGGCTTTC AATGGATCCAGTCTATA CAGTAAGTTCTGGCCTT CAAGGTGGCAGTCGAGA CAGTACAGCTGGTGAAGA TGGCATTCTTTTTGG CCATCCATCACTCCTTT TGATGTCAATGGTGTGT AGGCATTCTCTCTTTTGG TGATGTCAATGGTGTGT ACGCAATGCCTGTTACCCTTTCTTCTCAAGCAG CTTCATATTCCTCAAGCAG CTTCATATTCCTTTGGTG GTTGTTCCAAAAAACCTT GGCCGGGGCTTCACTCGC AACCCCTTCCCAATTCCCA CATCAGTGCCCTGCCAA CATCAGTGCCCTGCCC	TTAAGAAGTTTTGACCTTCTGGTTA TTCTCCCGACTGAATCTCCAGGAGG TATTTTAGGAGCTATTCCCATTCT GGCTGTGCTCTCCTTAGCCTTGGCTC GCTTGGGTACGAAACTGGACCTAT CTCATGATCTTTCTCCCAAACACAA TGTCTTCATCAACTTTGCCACTGAG GTAGGGACCTTAGAAAGGATATTTT GCCCTGTGAGTAGCTTCAGCCTTGAA TGTGGTGGGTGGAGCTGAGCT
	ORF Start: ATG at 101		ORF Stop: TAA at 1109

	SEQ ID NO: 112	336 aa	MW at 38493.6kD
CG146513-01 Protein Sequence	RRSAWVRNWTLWKYFRNYFPVQLV TPFVGTLERIFWIPIVREYVMSMG LKQRKGFVKMALOTGAYLVPSYSF	KTHDLSPKHNYIIANHPH VCPVSSSALKYLLTQKGS GENEVFNOETFPEGTWLR	SKFWPLAVLSLAWLTYDWNTHSQGG GILSFGVFINFATEATGIARIFPSI GNAVVIVVGGAAEALLCRPGASTLF LFQKTFQDTFKKILGLMPCTFHGRG ISALRKLFDQHKVEYGLPETQELTI

Further analysis of the NOV22a protein yielded the following properties shown in Table 22B.

5

Table 22B. Protein Sequence Properties NOV22a			
PSort analysis:	0.6850 probability located in plasma membrane; 0.6400 probability located in endoplasmic reticulum (membrane); 0.3880 probability located in microbody (peroxisome); 0.3700 probability located in Golgi body		
SignalP analysis:	Cleavage site between residues 65 and 66		

A search of the NOV22a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 22C.

Table 22C. Go	Table 22C. Geneseq Results for NOV22a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV22a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM06866	Human foetal protein, SEQ ID NO: 1074 - Homo sapiens, 225 aa. [WO200155339-A2, 02-AUG-2001]	1216 1216	211/216 (97%) 214/216 (98%)	e-124	
ABB75677	Breast protein-eukaryotic conserved gene 1 (BSTP-ECG1) protein - Homo sapiens, 388 aa. [WO200208260-A2, 31-JAN-2002]	1335 56387	171/337 (50%) 237/337 (69%)	e-101	
AAB66170	Protein of the invention #82 - Unidentified, 388 aa. [WO200078961-A1, 28-DEC-2000]	1335 56387	171/337 (50%) 237/337 (69%)	e-101	
AAU29191	Human PRO polypeptide sequence #168 - Homo sapiens, 388 aa. [WO200168848-A2, 20-SEP-2001]	1335 56387	171/337 (50%) 237/337 (69%)	e-101	

a N a	Human PRO1433 (UNQ738) amino acid sequence SEQ ID NO:292 - Homo sapiens, 388 aa. [WO200012708-A2, 09-MAR-2000]		171/337 (50%) 237/337 (69%)	e-101	19
-------------	--	--	--------------------------------	-------	----

In a BLAST search of public sequence datbases, the NOV22a protein was found to have homology to the proteins shown in the BLASTP data in Table 22D.

5

Table 22D. Public BLASTP Results for NOV22a				
Protein Accession Number	Protein/Organism/Length	NOV22a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9DCV3	0610010B06Rik protein (Diacylglycerol acyltransferase 2) - Mus musculus (Mouse), 388 aa.	1335 56387	172/337 (51%) 238/337 (70%)	e-101
CAD38961	Hypothetical protein - Homo sapiens (Human), 434 aa (fragment).	1335 102433	171/337 (50%) 237/337 (69%)	e-100
Q96PD7	Diacylglycerol acyltransferase 2 (Hypothetical 43.8 kDa protein) - Homo sapiens (Human), 388 aa.	1335 56387	171/337 (50%) 237/337 (69%)	e-100
Q8TAB1	BA351K23.5 (Novel protein) - Homo sapiens (Human), 296 aa (fragment).	38335 1295	161/299 (53%) 221/299 (73%)	2e-98
Q9BYE5	GS1999full protein - Homo sapiens (Human), 297 aa.	39335 2296	161/299 (53%) 217/299 (71%)	4e-96

10 Example 23.

The NOV23 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 23A.

Table 23A. NOV23 Sequence Analysis		
SEQ ID NO: 113	1022 bp	

NOV23a, CG146522-01 DNA Sequence	CTTCCAGAGTCTGATGCTTCTGCA TTTACATCCTTGTGGCCGCTACCA AGCGAGGTGGCAGCGTTCGGCCT CCCCATTATCCTGAAGACAAAGGA GGCCTCCTGACCTTTGGCGCCTTC CAGGCATCACTCCTCACTTGGCCA CATGGCCAAAGGTGTGTGCTCTGT AACCTCGTGGCATTGTAGTGGGA TCATCCTCCAGAAGCGCAAGGGT TTCACTTTTGGGGAAACTGAGGT TTCCAGAGCTGCTTCCGCCGTATC AAGGCTCCACTGGGCTCCTGCCAT CCAAATTGAAAAGCCAAGCC	TCAGGCTCCCGACATTCATTGCTCATTCOAACCATCCTAGTCA GTGGCCTTTGAGCTACCTTGCTCATTGTTCGTCTACCTGCTG GTGCTTTTACTTTGCCTGGTTGTTCCTGGACTGGA
	TGAAGGTACTGCATGCC ORF Start: ATG at 42	ORF Stop: TGA at 1002

	SEQ ID NO: 114	320 aa	MW at 36773.5kD
CG146522-01	VWTHIRDYFPIILKTKDLSPEHNY KIPFVREYLMAKGVCSVSOPAINY	LMGVHPHGLLTFGAFCNF LLSHGTGNLVGIVVGGVG	FAWLFLDWKTPERGGRRSAWVRNWC CTEATGFSKTFPGITPHLATLSWFF EALQSVPNTTTLILQKRKGFVRTAL YCCVFYGQSFCQGSTGLLPYSRPIV
<u></u>	TVGEPLPLPQIEKPSQEMVDKYHA	LYMDALHKLFDQHKTHYG	CSETQKLFFL

Further analysis of the NOV23a protein yielded the following properties shown in Table 23B.

10

Table 23B. Protein Sequence Properties NOV23a				
PSort analysis:	PSort analysis: 0.7284 probability located in outside; 0.3880 probability located in microbod (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)			
SignalP analysis: Cleavage site between residues 43 and 44				

A search of the NOV23a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 23C.

Table 23C. Geneseq Results for NOV23a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV23a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	

ABB75677	Breast protein-eukaryotic conserved gene 1 (BSTP-ECG1) protein - Homo sapiens, 388 aa. [WO200208260-A2, 31-JAN-2002]	4317 62385	165/324 (50%) 224/324 (68%)	1e-93
AAB66170	Protein of the invention #82 - Unidentified, 388 aa. [WO200078961-A1, 28-DEC-2000]	4317 62385	165/324 (50%) 224/324 (68%)	1e-93
AAU29191	Human PRO polypeptide sequence #168 - Homo sapiens, 388 aa. [WO200168848-A2, 20-SEP-2001]	4317 62385	165/324 (50%) 224/324 (68%)	1e-93
AAY99421	Human PRO1433 (UNQ738) amino acid sequence SEQ ID NO:292 - Homo sapiens, 388 aa. [WO200012708-A2, 09-MAR-2000]	4317 62385	165/324 (50%) 224/324 (68%)	1e-93
AAY94889	Human protein clone HP02485 - Homo sapiens, 334 aa. [WO200005367-A2, 03-FEB-2000]	11319 16333	144/318 (45%) 200/318 (62%)	3e-74

In a BLAST search of public sequence datbases, the NOV23a protein was found to have homology to the proteins shown in the BLASTP data in Table 23D.

Protein Accession Number	Protein/Organism/Length	NOV23a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q8TAB1	BA351K23.5 (Novel protein) - Homo sapiens (Human), 296 aa (fragment).	30317 3293	163/291 (56%) 214/291 (73%)	5e-96
Q9DCV3	0610010B06Rik protein (Diacylglycerol acyltransferase 2) - Mus musculus (Mouse), 388 aa.	4317 62385	166/324 (51%) 225/324 (69%)	2e-93
CAD38961	Hypothetical protein - Homo sapiens (Human), 434 aa (fragment).	4317 108431	165/324 (50%) 224/324 (68%)	3e-93

Q96PD7	Diacylglycerol acyltransferase 2 (Hypothetical 43.8 kDa protein) - Homo sapiens (Human), 388 aa.	4317 62385	165/324 (50%) 224/324 (68%)	3e-93
Q9BYE5	GS1999full protein - Homo sapiens (Human), 297 aa.	28317 1294	156/294 (53%) 210/294 (71%)	1e-89

Example 24.

The NOV24 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 24A.

Table 24A. NOV	Table 24A. NOV24 Sequence Analysis					
	SEQ ID NO: 115	1056 bp	A COLUMN TO THE PARTY OF THE PA			
NOV24a, CG146531-01 DNA Sequence	TCTTCTCCCGACTGAATCTCCAGG TATATTTTAGGTTTGTTCGTCTA GCCTGGTTGTTCCTGGACGGACG GGTGTGTCTGGACCCACATCAGGG TGAGCACAACTACCTCATGGGGT TGCACTGAGGCCACAGGCTTCTCG GGTTCTTCAAGATCCCCTTTGTTA AGCCATCAACTATCTGCTGAGCCA GAGGCCTCCAGCATGGGGTTCATC CAGCCCTCCAGCATGGGGTAACCAG TACTGTTTCCATAAGGATAGCAG TACTGTTGTGTCTTTTATGGACAA CTATTGTCACTGTTGGGGAGCCAC	AGGGCCTCCAAACCTTCT ACCTGCTGTTTACATCCTC ACCTGCTGTTTACATCCTC ACCCCAGAGCGAGCGAGC ACCACCCCATGCCTCCT AAGACCTTCCCAGCCATC AGGAGTACCTCATGGCCA AGCACTGGCAACCTCGTC ACCACCACCTCATCCTC ACCACCACCTCACCT	ACTGGGAGCCAGGTCACCATGGCTT TTGTTTTGCAATGGATCCAGTCTA GTGGCCGCTACCAGTGCTTACTTT AGGCGTTCGGCCTGGGTAAGGAACT TCCTGAAGACAACACTC GACCTTTGGCCCACGCTGTCCT ACTCCTCACTTGGCCACGCTGTCCT AAGGTGTGTGCTCTGTAGCCAGCC GGCATTGTAGTGGGAGGTTCGTCGCA LTGGGGAAACCCAAGGGTTCTTGGTATCA CTGCTTCCGCCAACGGTTATGATCA CTGCTTCCGCCGTATCTTTGGTTTC ACTGGGCTCCTGCCATACTCCAGC AAAAGCCAAGCC			
	ORF Start: ATG at 61		ORF Stop: TGA at 1036			

10

	SEQ ID NO: 116	325 aa	MW at 37453.3kD	
CG146531-01 Protein Sequence	RNWCVWTHIRDYFPIQILK LSWFFKIPFVREYLMAKGV VRTALQHGAHLVPTFTFGE	TKDLSPEHNYLMGVHPI CSVSQPAINYLLSHGTO TEVYDQVLFHKDSRMYI	TTSLWPLPVLYFAWLFLDWKTPERGGRRSA GLLTFGAFCNFCTEATGFSKTFPGITPHL SNLVGIVVGGVGEALQSVPNTTTLILQKRK (FQSCFRRIFGFYCCVFYGQSFCQGSTGLL IKLFDOHKTHYGCSETOKLPFL	AT

Further analysis of the NOV24a protein yielded the following properties shown in Table 24B.

Table 24B.	Protein	Sequence	Properties	NOV24a
------------	---------	----------	-------------------	--------

PSort analysis:	0.8200 probability located in outside; 0.3880 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)
SignalP analysis:	Cleavage site between residues 47 and 48

A search of the NOV24a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 24C.

Table 24C. G	eneseq Results for NOV24a	4.00	ing distribution of the contract of the contra	Control of the contro
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV24a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
ABB75677	Breast protein-eukaryotic conserved gene 1 (BSTP-ECG1) protein - Homo sapiens, 388 aa. [WO200208260-A2, 31-JAN-2002]	1322 56385	166/330 (50%) 230/330 (69%)	2e-96
AAB66170	Protein of the invention #82 - Unidentified, 388 aa. [WO200078961-A1, 28-DEC-2000]	1322 56385	166/330 (50%) 230/330 (69%)	2e-96
AAU29191	Human PRO polypeptide sequence #168 - Homo sapiens, 388 aa. [WO200168848-A2, 20-SEP-2001]	1322 56385	166/330 (50%) 230/330 (69%)	2e-96
AAY99421	Human PRO1433 (UNQ738) amino acid sequence SEQ ID NO:292 - Homo sapiens, 388 aa. [WO200012708-A2, 09-MAR-2000]	1322 56385	166/330 (50%) 230/330 (69%)	2e-96
AAY94889	Human protein clone HP02485 - Homo sapiens, 334 aa. [WO200005367-A2, 03-FEB-2000]	13324 15333	147/321 (45%) 200/321 (61%)	2e-75

In a BLAST search of public sequence datbases, the NOV24a protein was found to have homology to the proteins shown in the BLASTP data in Table 24D.

Table 24D. Public BLASTP Results for NOV24a					
Protein Accession Number	Protein/Organism/Length	NOV24a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q8TAB1	BA351K23.5 (Novel protein) - Homo sapiens (Human), 296 aa (fragment).	34322 3293	163/291 (56%) 215/291 (73%)	1e-97	
CAD38961	Hypothetical protein - Homo sapiens (Human), 434 aa (fragment).	1322 102431	166/330 (50%) 230/330 (69%)	6e-96	
Q9DCV3	0610010B06Rik protein (Diacylglycerol acyltransferase 2) - Mus musculus (Mouse), 388 aa.	1322 56385	167/330 (50%) 230/330 (69%)	6e-96	
Q96PD7	Diacylglycerol acyltransferase 2 (Hypothetical 43.8 kDa protein) - Homo sapiens (Human), 388 aa.	1322 56385	166/330 (50%) 230/330 (69%)	6e-96	
Q9BYE5	GS1999full protein - Homo sapiens (Human), 297 aa.	32322 1294	157/294 (53%) 211/294 (71%)	1e-91	

5 Example 25.

The NOV25 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 25A.

Table 25A. NO	V25 Sequence Analysis		
	SEQ ID NO: 117	951 bp	
NOV25a, CG147274-01 DNA Sequence	TGCTGCCTTCAGAATGCGGCCACT AGGACGCTGGCCGTGGCAGGTTGG ATCACCCACGCTGGGTGCTCACA ATGTTAAAGTCGGAGGGCTGACAC GCTCCTGGTCCACTCCTCATACCA TCCCCCTTGCAGGCCTCCCAGTTC GGACCGTGTGCTGGGTAAACGGGC GGTGGCTGTGCCCCTCCTGGACTC GCTGGCCAGCGCTCATCCAGGAC GCCAGGGTGACTCCGGGGGCCGC GAGCTGGGATTCAGGAGACCCTGGCTG	CCAAGGAGGCCGGGAGGA CCTGTGGTTGACTCCTC CCTCACTTTCAGAGCCCC TGGGACCACCAGCAGCAGCAGCAGCACAGCA	SCTGCTGCCAGGGGCCCATTGGGATG ATTGTGGGAGGCCCAAGACACCCAGGA TGGGGCATGTATGTGGGGGCTCCCTC SACGTCTGAGGATCCCGGCTCTACC CACTCGGCCTTGGTGGAGCTGGAC GGACATTGCCCTGATGGAGCTGGAC AGGACCCCAGGCCCTCGCCATTG CAGACCCTAGGAGTGCCTTCAGGA AGTACCACCTAGGAGAGACCCCAGCCTC SATACGTGGATCCAGGCATTGT CTACACCCAGGTGCTAAGCTTACACA STCTGGGGCCCCCAGGTGCCCAGCTTGCTTACGACCCCAGGTGCTAAGCTTACACA STCTGGGGCCCCCCAGGTGCCCAGCTTGCT
	ORF Start: ATG at 1		ORF Stop: TGA at 949

	SEQ ID NO: 118	316 aa	MW at 33574.2kD
1 '	MGLRAGPILLLLLWLLPGAHWE IHPRWVLTAAHCFLRSEDPGLY	VLPSECGHSKEAGRIVGGQD	TQEGRWPWQVGLWLTSVGHVCGGSL VRRLLVHSSYHGTTTSGDIALMELD
CO14/2/4-01	SPLQASQFSPICLPGPQTPLAI	GTVCWVNGLGPTSHPALASV	LQEVAVPLLDSNMCELMYHLGEPSI.
1 Totem Sequence	DWIQRTLAESHSGMSGARPGAF	GSHSGTSRSHPVLLLELLTV	GIVSWGFGCARPFRPGVYTQVLSYT

5

Further analysis of the NOV25a protein yielded the following properties shown in Table 25B.

10

15

Table 25B. Protein Sequence Properties NOV25a				
PSort analysis: 0.9190 probability located in plasma membrane; 0.3000 probability located lysosome (membrane); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)				
SignalP analysis: Cleavage site between residues 22 and 23				

A search of the NOV25a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 25C.

Table 25C. Ge	Table 25C. Geneseq Results for NOV25a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV25a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU98887	Human protease PRTS5 - Homo sapiens, 304 aa. [WO200238744-A2, 16-MAY-2002]	1316 1304	304/316 (96%) 304/316 (96%)	0.0	
AAW77303	Amino acid sequence of SP002LA, a homologue of HELA2 - Homo sapiens, 289 aa. [WO9836054-A1, 20-AUG-1998]	28316 1289	285/289 (98%) 285/289 (98%)	e-171	
ABG64545	Human albumin fusion protein #1220 - Homo sapiens, 290 aa. [WO200177137-A1, 18-OCT-2001]	5275 6276	121/275 (44%) 168/275 (61%)	1e-63	
AAB73945	Human protease T - Homo sapiens, 290 aa. [WO200116293-A2, 08-MAR-2001]	5275 6276	121/275 (44%) 168/275 (61%)	le-63	
AAE03821	Human gene 4 encoded secreted protein HWHIH10, SEQ ID NO: 67 - Homo sapiens, 290 aa. [WO200136440-A1, 25-MAY-2001]	5275 6276	121/275 (44%) 168/275 (61%)	1e-63	

In a BLAST search of public sequence datbases, the NOV25a protein was found to have homology to the proteins shown in the BLASTP data in Table 25D.

Table 25D. Public BLASTP Results for NOV25a					
Protein Accession Number	Protein/Organism/Length	NOV25a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q91XC4	Similar to distal intestinal serine protease - Mus musculus (Mouse), 310 aa.	1316 1310	202/317 (63%) 235/317 (73%)	e-114	

Q9QYZ9	Distal intestinal serine protease - Mus musculus (Mouse), 310 aa.	1316 1310	201/317 (63%) 233/317 (73%)	e-113
Q9BQR3	Marapsin precursor (EC 3.4.21) - Homo sapiens (Human), 290 aa.	5275 6276	121/275 (44%) 168/275 (61%)	3e-63
Q8R1A6	RIKEN cDNA 2010001P08 gene - Mus musculus (Mouse), 331 aa.	24305 41329	142/293 (48%) 174/293 (58%)	5e-62
Q9DGR3	Embryonic serine protease-1 - Xenopus laevis (African clawed frog), 317 aa.	25304 29308	123/288 (42%) 165/288 (56%)	1e-59

PFam analysis predicts that the NOV25a protein contains the domains shown in the Table 25E.

5

Table 25E. Domain Analysis of NOV25a				
Pfam Domain	NOV25a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
trypsin	37271	109/266 (41%) 176/266 (66%)	1.7e-79	

Example 26.

The NOV26 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 26A.

Table 26A. NO	able 26A. NOV26 Sequence Analysis					
	SEQ ID NO: 119	970 bp				
NOV26a, CG147351-01 DNA Sequence	TATCGAAGAAGTTAGGAAAGCACAC GAATGTCTACTGTTTAAAATGAAT ATTTTATTCATCTTCACATAACAC GGGATATGTAAGTGCCCTTGTGAAI AATGAACCTGTTGTATATCATGGCT CTATACACAAGTATGCATTCATGGT AAATGGGAAATTTTTGGATAATGGT AAATCATACTTTAACCCAAGTAACI GTGGTATCCAGTTGCCTCTTACTCI TTTTGGTGTGTCCAAATGATCAAATC AGATGGAATGAACAGTTAACACTTTAACACAGGAAT	CCAAATGTCATTAGAAGG IGTAGAAAAGTTTATCAA CATATTTGGTATCTGATC AGGATGCCGTTGTTTGGAA IGCACACACAAAGCAAA IGGCTTTAAATTTCCAGA IGTAAAAGAGGATATTTT ATAAAAGAGGGTATGCCA ATTCATCATCATAACAAAG BAAGCAGCAGACTCGTGT ATTAATTCATGTCCAGAA ATTGATTCTTGGCAAT ATGAATTCCTGGCAAT ITGAATTCCTAGAAA ATTGATTCTTGGCCAAT ATGAATTCCTAGAAA ATTGAATTCCTAGGCAAT	TTGAGATCATTCAGAAATACGAGCC TTTTACAAGATACATGGATTCACGT GATATGACTCATCATTAAATGATT CAATTATTGGGACCAAGTGACCTTTC GGATTGACTGCTGGGATGACCTTTC GGATTGACTGTTAAAACTGTTATCCAAG CCTCTGTTTAAAACTGTTATCCAAG CCCCTGGTCTGCCCATGGATCTGCA GAAACCACATTTCTTAAGAGAGAGT AATTACACTTACAATAAGGCTCATCA GTGATTCATTAGTAAAGGT AATTAAAAAAAATGCTTTTAGTCCA CTGGCATTGATACGTTTTGTTCTA CAGGCCTTGAGCCTCTATGAAGA GAGCCTTGAGCCTCTATGCATGAA GAGCCTTGAGCCTGCTTCACTGTTT			

ORF Start: ATG at 24	ORF Stop: TAA at 960

	SEQ ID NO: 120	312 aa	MW at 35720.0kD
NOV26a,	MSKAIAFEIIQKYEPIEEVRKAHQ	MSLEGFTRYMDSRECLLF	KNECRKVYQDMTHPLNDYFISSSHN
CG147351-01	TYLVSDQLLGPSDLWGYVSALVKG VALNFOTPGLPMDLONGKFLDNGG	CRCLEIDCWDGAQNEPVV SCVII KRHEI BECKEVEN	YHGYTLTSKLLFKTVIQAIHKYAFM PSNIKEGMPITLTIRLISGIQLPLT
Protein Sequence	HSSSNKGDSLVIIEVFGVPNDQMK	QQTRVIKKNAFSPRWNET:	FTFIIHVPELALIRFVVEGOGLTAG
	NEFLGQYTLPLLCMNKGYRRIPLF	SRMGESLEPASLFVYVWY	VR

Further analysis of the NOV26a protein yielded the following properties shown in Table 26B.

10

Table 26B. Protein Sequence Properties NOV26a				
PSort analysis: 0.5844 probability located in microbody (peroxisome); 0.1814 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space; 0.0000 probability located in endoplasmic reticulum (membrane)				
SignalP analysis: No Known Signal Sequence Predicted				

A search of the NOV26a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 26C.

Table 26C. G	Table 26C. Geneseq Results for NOV26a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV26a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU76817	Human phospholipase C 16839 polypeptide - Homo sapiens, 608 aa. [WO200206302-A2, 24-JAN-2002]	134312 430608	179/179 (100%) 179/179 (100%)	e-101	
ABB90425	Human polypeptide SEQ ID NO 2801 - Homo sapiens, 179 aa. [WO200190304-A2, 29-NOV-2001]	134312 1179	179/179 (100%) 179/179 (100%)	e-101	

AAU87271	Novel central nervous system protein #181 - Homo sapiens, 254 aa. [WO200155318-A2, 02-AUG-2001]	134312 76254	179/179 (100%) 179/179 (100%)	e-101
AAM95867	Human reproductive system related antigen SEQ ID NO: 4525 - Homo sapiens, 254 aa. [WO200155320-A2, 02-AUG-2001]	134312 76254	178/179 (99%) 178/179 (99%)	e-100
AAU22938	Novel human enzyme polypeptide #24 - Homo sapiens, 254 aa. [WO200155301-A2, 02-AUG-2001]	134312 76254	178/179 (99%) 178/179 (99%)	e-100

In a BLAST search of public sequence datbases, the NOV26a protein was found to have homology to the proteins shown in the BLASTP data in Table 26D.

Table 26D. Public BLASTP Results for NOV26a				
Protein Accession Number	Protein/Organism/Length	NOV26a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
BAC05152	CDNA FLJ40406 fis, clone TESTI2037534, weakly similar to 1-PHOSPHATIDYLINOSITOL-4,5-B ISPHOSPHATE PHOSPHODIESTERASE DELTA 1 (EC 3.1.4.11) - Homo sapiens (Human), 390 aa.	134312 212390	179/179 (100%) 179/179 (100%)	e-101
Q96J70	Testis-development related NYD-SP27 - Homo sapiens (Human), 504 aa.	134312 326504	178/179 (99%) 178/179 (99%)	e-100
Q95JS0	Hypothetical 74.4 kDa protein - Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey), 640 aa.	134312 462640	172/179 (96%) 177/179 (98%)	2e-97
Q95JS1	Hypothetical 74.6 kDa protein - Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey), 641 aa.	134312 463641	172/179 (96%) 177/179 (98%)	2e-97
AAM95914	PLC-zeta - Mus musculus (Mouse), 647 aa.	134312 467646	135/181 (74%) 158/181 (86%)	7e-73

PFam analysis predicts that the NOV26a protein contains the domains shown in the Table 26E.

5

10

Table 26E. Domain Analysis of NOV26a				
Pfam Domain	NOV26a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
PI-PLC-X	52133	45/83 (54%) 66/83 (80%)	4.3e-36	
PI-PLC-Y	134169	25/43 (58%) 33/43 (77%)	2.9e-17	
C2	188276	33/97 (34%) 73/97 (75%)	4.9e-20	

Example 27.

The NOV27 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 27A.

Table 27A. NOV	727 Sequence Analysis		
	SEQ ID NO: 121	3136 bp	A STATE OF THE STA
NOV27a,	AGGGAGTCGTGTCGGCGCCACCCC	GGCCCCGAGCCCGCAGA	TTGCCCACCGAAGCTCGTGTGCA
CG147419-01	CCCCGATCCCGCCAGCCACTCGC	CCCTGGCCTCGCGGGCCG'	TGTCTCCGGCATCATGTGTGGTATA
DNA Sequence	TTCAGAGACTGGAGTACAGAGGAT	CCTCGAACGAGACGAGAA. ATGATTCTGCTGGTGTGG	ATCCTGGAGACCCTAATCAAAGGCC GATTTGATGGAGGCAATGATAAAGA
•	TTGGGAAGCCAATGCCTGCAAAAC	CCAGCTTATTAAGAAGAA	AGGAAAAGTTAAGGCACTGGATGAA
			GATGTACACCTTGGAATAGCTCATA
			ACCCCAGCGCTCTGATAAAAATAA AGACTTGAAAAAGTTTTTGGAAAGC
	AAAGGCTATGACTTCGAATCTGAA	ACAGACACAGAGACAATT	GCCAAGCTCGTTAAGTATATGTATG
	ACAATCGGGAAAGTCAAGATACCA	GCTTTACTACCTTGGTGG	AGAGAGTTATCCAACAATTGGAAGG
	TGCTTTTGCACTTGTGTTTAAAAG'	IGTTCATTTTCCCGGGCA	AGCAGTTGGCACAAGGCGAGGTAGC
			GATCACATTCCTATACTCTACAGAA
	CAGCTAGGACTCAGATTGGATCAA	AATTCACACGGTGGGGAT(CACAGGGAGAAAGAGGCAAAGACAA CCTTTTCCCGGTGGAAGAAAAAGCA
			CACACCAATCGCGTCATCTTTCTGG
			PCCATCGAATTAAACGAACTGCAGG
	AGATCACCCCGGACGAGCTGTGCA	AACACTCCAGATGGAACT(CCAGCAGATCATGAAGGGCAACTTC
	AGTTCATTTATGCAGAAGGAAATA	PTTGAGCAGCCAGAGTCTC	GTCGTGAACACAATGAGAGGAAGAG
			ATCACATAAAGGAGATCCAGAGATG
	GAGGAGCTGACTGAGTTGCCTGTG	IGGAACAAGTTACCATGCT	rggtgtagcaacacgtcaagttctt Gacttcctggacagaaacacaccag
			AGACAGCAGACAGAAACACACCAG AGACAGCAGATACTTTGATGGGTCT
	TCGTTACTGTAAGGAGAGAGGAGC'	PTTAACTGTGGGGATCAC	AAACACAGTTGGCAGTTCCATATCA
	CGGGAGACAGATTGTGGAGTTCAT	ATTAATGCTGGTCCTGAG <i>I</i>	ATTGGTGTGGCCAGTACAAAGGCTT
	ATACCAGCCAGTTTGTATCCCTTG	rgatgtttgcccttatgat	rgtgtgatgatcggatctccatgca
	AGAAAGACGCAAAGAGATCATGCTT	rggattgaaacggctgcc1	GATTTGATTAAGGAAGTACTGAGC
	ATGGATGACGAAATTCAGAAACTAC GAGGCTATCATTATGCTACTTGTC		
	TGAAGGCATCCTTGCTGGTGAATTC	SAAACATGGCCCTCTGGCT	PTTGGTGGATAAATTACTTATATGCACTC

ATCATGATCATGAGAGATCAC	ACTTATGCCAAGTGTCAGAATGCTCTTCAGCAAGTGGTTGCTC
GGCAGGGCGGCCTGTGGTAATTT	GTGATAAGGAGGATACTGAGACCATTAAGAACACAAAAAGAAC
GATCAAGGTGCCCCACTCAGTGGA	CTGCTTGCAGGGCATTCTCAGCGTGATCCCTTTACAGTTGCTG
GCTTTCCACCTTGCTGTGCTGAGAG	GCTATGATGTTGATTTCCCACGGAATCTTGCCAAATCTGTGA
CTGTAGAGTGAGGAATATCTATAC	AAAATGTACGAAACTGTATGATTAAGCAACACAAGACACCTTT
TGTATTTAAAACCTTGATTTAAAA	PATCACCCTTGAAGCCTTTTTTTAGTAAATCCTTATTTATAT
ATCAGTTATAATTATTCCACTCAA'	PATGTGATTTTTGTGAAGTTACCTCTTACATTTTCCCAGTAAT
TTGTGGAGGACTTTGAATAATGGA	ATCTATATTGGAATCTGTATCAGAAAGATTCTAGCTATTATTT
TCTTTAAAGAATGCTGGGTGTTGC	ATTTCTGGACCCTCCACTTCAATCTGAGAAGACAATATGTTTC
TAAAAATTGGTACTTGTTTCACCA	PACTTCATTCAGACCAGTGAAAGAGTAGTGCATTTAATTGGAG
TATCTAAAGCCAGTGGCAGTGTATC	GCTCATACTTGGACAGTTAGGGAAGGGTTTGCCAAGTTTTAAG
AGAAGATGTGATTTATTTTGAAAT	TTGTTTCTGTTTTGTTTTTAAATCAAACTGTAAAACTTAAAAC
TGAAAAATTTTATTGGTAGGATTT	ATATCTAAGTTTGGTTAGCCTTAGTTTCTCAGACTTGTTGTCT
ATTATCTGTAGGTGGAAGAATTTT	AGGAAGCGAAATATTACAGTAGTGCATTGGTGGGTCTCAATCC
TTAACATATTTGCACAATTTTATAC	GCACAAACTTTAAATTCAAGCTGCTTTGGACAACTGACAATAT
GATTTTAAATTTGAAGATGGGATG	GTACATGTTGGGTATCCTACTACTTTGTGTTTTCATCTCCTA
AAAGTGTTTTTTATTCCTTGTATC	TGTAGTCTTTATTTTTAAATGACTGCTGAATGACATATTT
TATCTTGTTCTTTAAAATCACAACA	ACAGAGCTGCTATTAAATTAATATTGATAT
	TOTOGOCIOCIALIMALIANIALIGATAT
ORF Start: ATG at 123	ORF Stop: TGA at 2220

	SEQ ID NO: 122	699 aa	MW at 78793.6kD
CG147419-01 Protein Sequence	ALDEEVHKQQDMDLDIEFDVI- FLESKGYDFESETDTETIAKI RRGSPLLIGVRSEHKLSTDHI EEKAVEYYFASDASAVIEHTN KGNFSSFMQKEIFEQPESVVN RQVLEELTELPVMVELASDFI SSISRETDCGVHINAGPEIGV EVLSMDDEIQKLATELYHQKS	ILGIAHTRWATHGEPS VKYMYDNRESQDTSF PILYRTARTQIGSKF RVIFLEDDDVAAVVD FTMRGRVNFDDYTVNL DRNTPVFRDDVCFFL VASTKAYTSQFVSLVE VQUVARQGRPVVICD	SAGVGFDGGNDKDWEANACKTQLIKKKGKVI PVNSHPQRSDKNNEFIVIHNGIITNYKDLKI TTLVERVIQQLEGAFALVFKSVHFPGQAVG TRWGSQGERGKDKKGSCNLSRVDSTTCLFP GRLSIHRIKRTAGDHPGRAVQTLQMELQQIN GGLKDHIKEIQRCRRLILIACGTSYHAGVAT SQSGETADTLMGLRYCKERGALTVGITNTV FALMMCDDRISMQERRKEIMLGLKRLPDLII GALKIKEITYMHSEGILAGELKHGPLALVDI KEDTETIKNTKRTIKVPHSVDCLQGILSVII

Further analysis of the NOV27a protein yielded the following properties shown in Table 27B.

10

15

Table 27B. Protein Sequence Properties NOV27a			
PSort analysis:	0.4902 probability located in mitochondrial inner membrane; 0.4400 probability located in plasma membrane; 0.3000 probability located in microbody (peroxisome); 0.2000 probability located in endoplasmic reticulum (membrane)		
SignalP analysis:	analysis: No Known Signal Sequence Predicted		

A search of the NOV27a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 27C.

Table 27C. G	Table 27C. Geneseq Results for NOV27a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV27a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
ABB05747	Human GFAT1L protein SEQ ID NO:1 - Homo sapiens, 699 aa. [WO200196574-A1, 20-DEC-2001]	1699 1699	698/699 (99%) 698/699 (99%)	0.0	
AAY90260	Human GFAT protein sequence - Homo sapiens, 681 aa. [WO200037617-A1, 29-JUN-2000]	1699 1681	681/699 (97%) 681/699 (97%)	0.0	
AAR43348	Human GFAT - Homo sapiens, 681 aa. [WO9321330-A, 28-OCT-1993]	1699 1681	680/699 (97%) 680/699 (97%)	0.0	
AAY90261	Human GFAT II protein sequence - Homo sapiens, 682 aa. [WO200037617-A1, 29-JUN-2000]	1699 1682	541/701 (77%) 618/701 (87%)	0.0	
AAW37772	Huma glutamine:fructose-6-phosph ate amidotransferase TGC028-4 - Homo sapiens, 682 aa. [EP824149-A2, 18-FEB-1998]	1699 1682	541/701 (77%) 618/701 (87%)	0.0	

In a BLAST search of public sequence datbases, the NOV27a protein was found to have homology to the proteins shown in the BLASTP data in Table 27D.

Table 27D. I	Public BLASTP Results for NOV27a	1		
Protein Accession Number	Protein/Organism/Length	NOV27a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q99MJ4	Glutamine: fructose-6-phosphate amidotransferase 1 muscle isoform GFAT1M - Mus musculus (Mouse), 697 aa.	1699 1697	688/699 (98%) 690/699 (98%)	0.0

			o many of the state of the state of	c n en i n may
A45055	glutaminefructose-6-phosphate transaminase (isomerizing) (EC 2.6.1.16) - human, 681 aa.	1699 1681	681/699 (97%) 681/699 (97%)	0.0
Q06210	Glucosaminefructose-6-phospha te aminotransferase [isomerizing] 1 (EC 2.6.1.16) (Hexosephosphate aminotransferase 1) (D-fructose-6- phosphate amidotransferase 1) (GFAT 1) (GFAT1) - Homo sapiens (Human), 680 aa.	2699 1680	680/698 (97%) 680/698 (97%)	0.0
BAB31882	Gfpt1 protein - Mus musculus (Mouse), 681 aa.	1699 1681	674/699 (96%) 676/699 (96%)	0.0
P47856	Glucosaminefructose-6-phospha te aminotransferase [isomerizing] 1 (EC 2.6.1.16) (Hexosephosphate aminotransferase 1) (D-fructose-6- phosphate amidotransferase 1) (GFAT 1) (GFAT1) - Mus musculus (Mouse), 680 aa.	2699 1680	673/698 (96%) 675/698 (96%)	0.0

PFam analysis predicts that the NOV27a protein contains the domains shown in the Table 27E.

5

Table 27E. Domain Analysis of NOV27a				
Pfam Domain	NOV27a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
GATase_2	2210	91/219 (42%) 202/219 (92%)	4.6e-127	
SIS	378512	52/156 (33%) 118/156 (76%)	2.2e-48	
SIS	549685	52/156 (33%) 124/156 (79%)	3.3e-46	

Example 28.

The NOV28 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 28A.

Table 28A. NOV	⁷ 28 Sequence Analysis		
	SEQ ID NO: 123	2521 bp	
NOV28a, CG148102-01 DNA Sequence	ACTCTGCCGACTCAGGGCCGCTGACTCGGACAGGGCCCTTGACTTTAGGACTGGACTGGACTGGACTGGACTGGACTGGACTGGACTGGACTGGACTGGACTGGACTGCCTCCTGACTTTAGGACTGATTTCCTTTAGGACTGGACTGCACTTCTTTAGGACTGCTGACTGA	CTCCAGCGTGACATGCTGACTGAAGTGGAACTCAGTGCTGAAGTGGAACTCAGTGCTGAAGTGCTGACTTCTCAGTGCTGAGAGAGA	AAGCGCACCAGGCGTGGGCTTCCGACCCT CCCTGTGCTGCAGGAGATCTACCTCTCTGG GTGCAGAATGACTTTCTCACCGGTGTGTTT CCATCCAGCTTGCCTGGCAGCCGCGCTGTT CCATCCAGCTTGCCTGGCAGCCGCGCGTGTT CCATCCAGCTTGCCTGGCAGCCGCGCTGTT CCACCAGAGCCTGGCAGCCGGTGTC CCCCCACCAGAGCCTGCCAGCCAGCCGTGCC CCCCCACCAGACCTGCCAGCCAGGCCGTGCC CCCCCACCAGACCTGCCAGCCAGGCCGTGCC CCCCCACCAGACCTGCCAGCCAGGCCGTGCC CCCCCACCAGAGACTTCTCCCACGCAGGAGACTTC CCAGCGCTCCTGCAGCCAGGCGTGCCCCCCACCAGCCCTTTATGCTCGCTC
	TGTGTGGTGTCTGCTATGC	TCTTGGGCAGGGCAGGGGT	TCCAGGCCAATAAAGATGTGTGAGCTGGG PAGAAGAGGTAAGGACCAGGGTGGAGGAGG
	The state of the s	CCCAGGCCCAGCCAGGGAT	
	ORF Start: ATG at 31		ORF Stop: TGA at 2284

5

	SEQ ID NO: 124	751 aa	MW at 84918.2kD
CG148102-01 Protein Sequence	FSAIQLAWFLQLDPSLGLMEKIKE MSSPTKTWLALVRIFSGRHPMLFS: LRLQASLLQWYLRLKSWWASNYVSI HALLLYRHRLNRQEIPPVRLMGMRI RMGTHSRNSLLSPRALEQQFQRILI GAAFFVSLDAEPAGLTREDPAASLI ISGHMWEFTLATECFQLGYSTDGHG HVVPFSLFGKSFIRRCHLSSDSFI ALYIVSRFLHLQSPFLTQVHSEQWG	LLRGVLAAALFASCLWGA YQRSLPRQPVPSVQDTVR DWWEEFVYLRSRNPLMVN PLCSAQYEKIFNTTRIPG DDPSPACPHEEHLAALTA DAYAHALLAGRGHDRWFD CKGHPDPTLPQPQRLQWD QIALQLAHFRDPQCLALF QLSTSQIPVQQMHLFDVH	LISRFWVQNDFLTGVFPASPLSWLFL LISRFWVQNDFLTGVFPASPLSWLFL LIFTLHVALRLLLSYHGWLLEPHGA KYLESVRPILSDEDFDWTAVLAQEF SNYYMMDFLYVTPTPLQAARAGNAV VQKGETIRHLHDSQHVAVFHRGRFF APRGTWAQVRTSLKTQAAEALEAVE KSFTLIVFSNGKLGLSVEHSWADCP LPDQVRLGISLALRGAKILSENVDC RVAVDKHQALLKAAMSGQGVDRHLF NYPDYVSSGGGFGPADDHGYGVSYI GQHFKRRFRGSGKENSRHRCGFLSR

SEQ ID NO: 125	2748 bp
02 2 3 4 4 4 4	2740 OP

NOV28b, <u>CGAGAGACAGGAATCGGGGTTTTCTGGGTGACGGTGÄTCŤČGGGGTĞĞGČÄĞĞÄČŤCCÄÄÄĞĞ</u> CGACCCGGTGGTGGACTCCTTGCACTGGGATTGGACATATGCAAGCGGGAGATTTGGGGCCGGCGC CG148102-02 <u>CAAAATCGGGGGGGGGGGGGTGGACTCGGGTTTGGACCCCAGGATCCGATCAGCGGACCCTTGATTCA</u> DNA Sequence ACGTGGGCTCCAGCGTGACATGGCTGAAGCGCACCAGGCCGTGGGCTTCCGACCCTCGCTGACCTCG GACGGGGCTGAAGTGGAACTCAGTGCCCCTGTGCTGCAGGAGATCTACCTCTCTGGCCTGCGCTCCT GGAAAAGGCATCTCTCACGTTTCTGGAATGACTTTCTCACCGGTGTGTTTCCTGCCAGCCCCCTCAG ATGGAGAAGATCAAAGAGTTGCTGCCTGACTGGGGTGGACAACACCACGGGCTCCGGGGGGTCCTGG CAGCCGCGCTGTTTGCCTCGTGTTTGTGGGGAGCCCTGATCTTCACACTGCACGTGGCCCTGAGGCT GCTTCTGTCCTACCACGGCTGGCTTCTTGAGCCCCACGGAGCCATGTCCTCCCCCACCAAGACCTGG CTGGCCCTGGTCCGCATCTTCTCTGGCCGCCACCCGATGCTGTTCAGTTACCAGCGCTCCCTGCCAC GCCAGCCCGTGCCCTCTGTGCAGGACACCGTGCGCAAGTACCTGGAGTCGGTCCGGCCCATCCTCTC CGACGAGGACTTCGACTGGACCGCGGTCCTGGCGCAGGAATTCCTGAGGCTGCAGGCGTCACTGCTG CAGTGGTACCTGCGGCTCAAGTCCTGGTGGGCGTCCAATTATGTCAGTGACTGGTGGGAGGAATTTG TGTACCTGCGCTCCCGAAATCCGCTGATGGTGAACAGCAACTATTACATGATGGACTTCCTGTATGT CACACCCACGCCTCTGCAGGCAGCTCGCGCTGGGAATGCCGTCCATGCCCTCCTCTGTACCGCCAC CGCCTGAACCGCCAGGAGATACCCCCGACTTTGCTGATGGGAATGCGCCCCTTATGCTCTGCCCAGT ACGAGAAGATCTTCAACACCACGCGGATTCCAGGGGTCCAAAAAGACTACATCCGCCACCTCCATGA CAGCCAACACGTGGCTGTCTTCCACCGGGGCCGATTCTTCCGCATGGGGACCCACTCCCGAAACAGC CTGCTTTCCCCGAGAGCCCTGGAGCAGCAGTTTCAGAGAATCCTGGATGATCCCTCACCGGCCTGCC CCCACGAGGAACATCTGGCAGCTCTGACAGCTGCTCCCAGGGGCACGTGGGCCCAGGTGCGGACATC GCTGAGCCCGCGGGGCTCACCAGGGAGGACCCGGCAGCGTCGTTGGATGCCTACGCCCATGCTCTGC TGGCTGGCCGGGCCATGATCGCTGGTTTGACAAATCCTTCACCCTAATCGTCTTCTCTAACGGGAA GCTGGGCCTCAGCGTGGAGCACTCCTGGGCCGACTGCCCCATCTCAGGACACATGTGGGAGTTCACT CTGGCTACAGAATGCTTTCAGCTGGGCTACTCAACAGATGGCCACTGCAAGGGGCACCCGGACCCCA CACTACCCCAGCCCCAGCGGCTGCAATGGGACCTTCCAGACCAGATCCACTCCTCCATCTCTCTAGC AAGAGCTTCATCCGACGCTGCCACCTCTCTTCAGACAGCTTCATCCAGATCGCCTTGCAACTGGCCC ACTTCCGGGACAGGGGTCAATTCTGCCTGACTTATGAGTCGGCCATGACTCGCTTATTCCTGGAAGG CCGGACGGAGACGGTGCGGTCTTGCACGAGGGAGGCCTGCAACTTTGTCAGGGCCATGGAGGACAAA GAGAAGACGGACCACAGTGCCTCGCCCTGTTCCGCGTGGCAGTGGACAAGCACCAGGCTCTGCTGA AGGCAGCCATGAGCGGGCAGGGAGTTGACCGCCACCTGTTTGCGCTGTACATCGTGTCCCGATTCCT CCTGTTCAGCAAATGCATCTGTTTGACGTCCACAATTACCCGGACTATGTTTCCTCAGGCGGTGGAT ${ t TCGGGCCTGCTGATGACCATGGTTATGGTGTTTCTTATATCTTCATGGGGGATGGCATGATCACCTT}$ CCACATCTCCAGCAAAAAATCAAGCACAAAAACGGATTCCCACAGGCTGGGGCAGCACATTGAGGAC GCACTGCTGGATGTGGCCTCCCTGTTCCAGGCGGGACAGCATTTTAAGCGCCCGGTTCAGAGGGTCAG GGAAGGAGAACTCCAGGCACAGGTGTGGATTTCTCTCCCGCCAGACTGGGGCCTCCAAGGCCTCAAT GACATCCACCGACTTCTGACTCCTTCCAGCAGCAGCTGGCCTCTCCAAGGAATAAGGGTGAAATTG CCACAGCTGGCTGACACAGGACAGGGCAACTGGTTTGGCAACCCCACATCCAGGCAAATAAAGATG ORF Start: ATG at 221 ORF Stop: TGA at 2630

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 28B.

Table 28B. Comparison of NOV28a against NOV28b.				
Protein Sequence	NOV28a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV28b	1751 1803	717/806 (88%) 719/806 (88%)		

Further analysis of the NOV28a protein yielded the following properties shown in Table 28C.

Table 28C. Protein Sequence Properties NOV28a		
PSort analysis: 0.7900 probability located in plasma membrane; 0.6400 probability located microbody (peroxisome); 0.3000 probability located in Golgi body; 0.2000 probability located in endoplasmic reticulum (membrane)		
SignalP analysis: Cleavage site between residues 5 and 6		

10

A search of the NOV28a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 28D.

Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV28a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAY79220	Human transferase TRNSFS-12 - Homo sapiens, 803 aa. [WO200014251-A2, 16-MAR-2000]	1751 1803	740/806 (91%) 742/806 (91%)	0.0
AAE10322	Human carnitine acyltransferase, 26886 - Homo sapiens, 803 aa. [WO200166759-A2, 13-SEP-2001]	1751 1803	739/806 (91%) 742/806 (91%)	0.0

AAW14438	Type I carnitine palmitoyl transferase-like protein - Homo sapiens, 772 aa. [JP09009969-A, 14-JAN-1997]	1711 1766	375/770 (48%) 495/770 (63%)	0.0
ABG04960	Novel human diagnostic protein #4951 - Homo sapiens, 521 aa. [WO200175067-A2, 11-OCT-2001]	224571 92471	337/381 (88%) 339/381 (88%)	0.0
ABB67527	Drosophila melanogaster polypeptide SEQ ID NO 29373 - Drosophila melanogaster, 780 aa. [WO200171042-A2, 27-SEP-2001]	1717 1765	315/775 (40%) 447/775 (57%)	e-161

In a BLAST search of public sequence datbases, the NOV28a protein was found to have homology to the proteins shown in the BLASTP data in Table 28E.

Table 28E. Public BLASTP Results for NOV28a				
Protein Accession Number	Protein/Organism/Length	NOV28a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q8TCG5	Carnitine palmitoyltransferase IC - Homo sapiens (Human), 803 aa.	1751 1803	740/806 (91%) 742/806 (91%)	0.0
CAC88591	Sequence 1 from Patent WO0166759 - Homo sapiens (Human), 803 aa.	1751 1803	739/806 (91%) 742/806 (91%)	0.0
AAH29104	Similar to carnitine palmitoyltransferase IC - Homo sapiens (Human), 792 aa.	1751 1792	729/806 (90%) 731/806 (90%)	0.0
P32198	Carnitine O-palmitoyltransferase I, mitochondrial liver isoform (EC 2.3.1.21) (CPT I) (CPTI-L) - Rattus norvegicus (Rat), 773 aa.	1710 1765	394/768 (51%) 524/768 (67%)	0.0

1	Similar to carnitine palmitoyltransferase I, liver - Homo sapiens (Human), 756	1690 1745	381/748 (50%) 510/748 (67%)	0.0	ī.*
	aa.				`

PFam analysis predicts that the NOV28a protein contains the domains shown in the Table 28F.

Table 28F. Domain Analysis of NOV28a				
Pfam Domain	NOV28a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Carn_acyltransf	162708	208/680 (31%) 437/680 (64%)	1.5e-167	

Example 29.

The NOV29 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 29A.

Table 29A. NO	NOV29 Sequence Analysis			
	SEQ ID NO: 127	1776 bp		
NOV29a, CG148431-01 DNA Sequence	ACTAAAGCCTGCAGAGACCTCTGAACCTGGAGAGTGTGTTTGCAAAGCAGAAACTGCACAAAGAATGCGATAAAGCTGTTTGGATTGGATTGGATTGGATTGGAATCGTTTGGAATCGTTTGGAATCGTTTGGAATCGTTTGGAATCGAATTGGAATCGTTTGGAATCTGAATCGAAAGAAA	AAGGAAAACCTGTCCCGGG ACGGAAACTTCACAATC AATAGTGAAGGAAGCCCA AATAGTGAAGGAAGCCCA AATAGTGAAGCACCCTTCAT ATCTCAGAGACTTTTAA AAAAGATTTTGTGCCACT CAGAGACAACTGGAACCGG CAGACGACTATAACTGGACTTTATAGTATAACTTCATTGGCTATGGAACCTTGTATAGCTAGGACCTTGTGGTCTTGGGGCC ACCTAGAGAGACTCCTGGAGCCCTGAAGAGAAAAAAAAAA	ICTCTGTCACTTCACACCCATGCTA CCTCTGTCACTTCACACCCATGGCTA CACAGAAACAGAGCAATGGCTACACA GCAAAATGGGAAGCCACATTTTTAT GTTATGGTTTTCACTTACATGGGAT GAAACTGGGGATAGAAAAATGCAA GTATCAAGACTTTGAAAATTTTAT CCCATCTGCAGTGCCCCAGGGCCTC CGTTTAGGTTTACTGGAAGAGTCAT TGCAGCCAAGTATGATGAGAGTCAT TGCAGCCAAGTATGATGAGTCTATG GCCAGCACCAGGGCATGAAATGGGCA ATTAGTTGGAAAGGGATGCCTCATT CGACTCTCAGGTGCAACCATAAGAA GAGATGCTGTCATTATGGCCAGCC GGGTGTCTACAGCATGAAGGTTCC AAGGCTTACCTTAC	
	TAAAGACTTTGCGAGAAAGACCTC ORF Start: ATG at 61		ORF Stop: TAA at 1717	

	SEQ ID NO: 128	552 aa	MW at 62048.9kD
CG148431-01 Protein Sequence	MGTGTGTLFGTLKNWE GPLFDLMERVSDDYNWTFRF MGTLDKHKELEDLVAKFLNV IRIFKHNNTQSLEKLLRDAV DEAHSIGAVGPTGRGVTEFF MSPPIAEQIIRSLKLIMGLD	ILEKCNAAVERKEQKD TGRVIKDVINMGSYN EAAMVFGMGFATNSM TYGQPRTRAWKKIL, GLDPHEVDVLMGTFT GTTOGLORVOOLAKN	KEAQQNGKPHFYDKLIVESFEEAPLHVMVFTY FVPLYQDFENFYTRNLYMRIRDNWNRPICSAF FLGLAAKYDESMRTIKDVLEVYGTGVASTRHE NIPALVGKGCLILSDELNHTSLVLGARLSGAT ILVEGVYSMEGSIVHLPQIIALKKKYKAYLYI KSFGASGGYIAGRKDLVDYLRVHSHSAVYASS TRYFRQRLQEMGFIIYGNENASVVPLLLYMPG SAAHTREMLDTVLEALDEMGDLLQLKYSRHKK

	SEQ ID NO: 129	1492 bp	
NOV29b, CG148431-02 DNA Sequence	CACCGGATCCACCATGGCTAACCCT AAACAGAGCAATGGCTCACAAAGCA TTGTGCCACTGTATCAAGACTTTGA CTGGAACCGGCCCATCTGCAGTGCC TATAACTGGACGTTTAGGTTTACTG TCCTTGGTCTTGCAGCCAAGTATGA CACAGGCGTGGCCAGCACCAGGCAT ATATCCCAGCATTAGTTGGAAG ATATCCCAGCATTAGTTGGAAGGC GCTTGGGGCCAGACTCTCAGGTGCA AAGCTCCTGAGAGATGTTGACTCT TCCTGGTGAGGGTTCTCAGCAT TCCTGGTGAGGGTTCTTTTGGAC AAACTTTTGGAGGTTTATCCTTCA CAGCGTTTCATGGACTTTATGCTTCA AAACTTATCATGGACTTTTATGCTTCA CAAGATACTTCAGCACATGATGATGATCATCTTTTGGACCAAGATGTTCATCGACTGATGCATCCCCAAGATACTTCAGCACAAGACTCCA CCACCTGCACTCTCTCTCTTTTATATCCCT ATTGGACTGGTGGTCCTCGGGATTTC CAGCGCACATACCCGGGAAGTGTT CAGCGCACATACCCGGGAAGATGTT CCCAACTGAAATATTCCCGGCACACAC CCAACTGAAATATTCCCGGCACACAC CCCAACTGAAATATTCCCGGCACCACAC CCCAACTGAAATATTCCCGGCACCACAC CCCAACTGAAATATTCCCGGCACCACAC CCCAACTGAAATATTCCCGGCACCACAC CCCAACTGAAATATTCCCGGCACCACAC CTCGAAGATCTCCGAGGGCC	AGAAACTGCACAAAGAATGCAAAAGAATGCAAAAACTTTTATACAAGAAACGCACAGAAGAGTTTTTATACAAGAAACGCACAGAAGAATTTTTATACAAGAAACGCACAGAAGAATTTTAGAGGACAATAGAATGCACAGAAGAACCGGAAAGAACCAGAAGAACCACAGAAGA	SANTAGTGAAGGAAGCCCAGGATT CCTTTACATGCGAATCAGAGACA TGATGGAGAGGGATTCGGAGACAA TGATGAACATGGGCTATCAGACAC CCATCAACATGGGCTCCTATAACT AAAGGATGTTTTAGAGGTCTATAGC AGGATTCGCAACACACACTCAATGA TGGGATTCGCAACACACACTCAATGA TACAACACACACAAAGCCTAGAG CCAGAGCTTGGAATCACTCAATGA TGGGCCCAGATCATAGCTCTAAA TGTGCCCCAGATCATAGCTCTAAA CCTGCCCAAGAGCATACCACACCGC TGTGCTCATGGGACACATTCACCA CTCGTGGATTATTTACGGGTTCA CAGAGCAAATCATCACATA AGTACAGAACATCACTA TATGGCAATAGATCACTA AGTACAGCAACTTGCGAAAAACA TATGGCAATGAGAAAAACA TATGGCAATGCAGATCACTT CAAGGCAATTGCTAGAAAAAAA AGCTCGGGCTCGGTTTTTTTTTT
****	ORF Start: ATG at 14		ORF Stop: at 1484

	SEQ ID NO: 130	490 aa	MW at 54766.5kD
CG148431-02 Protein Sequence	STRHEMGTLDKHKELEDLVAKFLN STRHEMGTLDKHKELEDLVAKFLN LSGATIRIFKHNNTQSLEKLLRDA AYLYIDEAHSIGAVGPTGRGVTEF VYASSMSPPIAEQIIRSLKLIMGLJ	FTGRVIKDVINMGSYNFL VEAAMVFGMGFATNSMNI VIYGQPRTRRAWKKILIL FGLDPHEVDVLMGTFTKS DGTTOGLORVOOLAKNTR	PLYODFENFYTRNLYMRIRDNWNRP GLAAKYDESMRTIKDVLEVYGTGVA PALVGKGCLILSDELNHTSLVLGAR VEGVYSMEGSIVHLPOIIALKKKYK FGASGGYIAGRKDLVDYLRVHSHSA YFRORLOEMGFIIYGNENASVVFLL AHTREMLDTVLEALDEMGDLLOLKY

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 29B.

Table 29B. Comparison of NOV29a against NOV29b.		
Protein Sequence	NOV29a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV29b	98552 36490	438/455 (96%) 440/455 (96%)

Further analysis of the NOV29a protein yielded the following properties shown in Table 29C.

Table 29C. Protein Sequence Properties NOV29a	
PSort analysis:	0.4761 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.2077 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space
SignalP analysis:	No Known Signal Sequence Predicted

10

A search of the NOV29a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 29D.

Table 29D. Geneseq Results for NOV29a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV29a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAE22153	Human TRNFR-15 protein - Homo sapiens, 552 aa. [WO200226950-A2, 04-APR-2002]	1552 1552	551/552 (99%) 552/552 (99%)	0.0
AAG73598	Human colon cancer antigen protein SEQ ID NO:4362 - Homo sapiens, 391 aa. [WO200122920-A2, 05-APR-2001]	201549 38387	269/352 (76%) 316/352 (89%)	e-158
ABB60160	Drosophila melanogaster polypeptide SEQ ID NO 7272 - Drosophila melanogaster. 597 aa.	54543 114597	256/491 (52%) 350/491 (71%)	e-151

	[WO200171042-A2, 27-SEP-2001]		The first that the thing	pe () treas makes away 1 1 and a
AAE21820	Human serine palmitoyltransferase (SPT)-like enzyme #2 - Homo sapiens, 230 aa. [WO200224884-A2, 28-MAR-2002]	47276 1230	228/230 (99%) 230/230 (99%)	e-133
AAY32003	Rice serine palmitoyltransferase Lcb2 subunit - Oryza sativa, 489 aa. [WO9949021-A1, 30-SEP-1999]	59541 5483	237/485 (48%) 333/485 (67%)	e-133

In a BLAST search of public sequence datbases, the NOV29a protein was found to have homology to the proteins shown in the BLASTP data in Table 29E.

	Public BLASTP Results for NO	7		
Protein Accession Number	Protein/Organism/Length	NOV29a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9UGB6	DJ718P11.1.1 (Novel class II aminotransferase similar to serine palmotyltransferase (Isoform 1)) - Homo sapiens (Human), 414 aa (fragment).	102515 1414	414/414 (100%) 414/414 (100%)	0.0
O15270	Serine palmitoyltransferase 2 (EC 2.3.1.50) (Long chain base biosynthesis protein 2) (LCB 2) (Serine-palmitoyl-CoA transferase 2) (SPT 2) - Homo sapiens (Human), 562 aa.	7549 18558	383/546 (70%) 449/546 (82%)	0.0
P97363	Serine palmitoyltransferase 2 (EC 2.3.1.50) (Long chain base biosynthesis protein 2) (LCB 2) (Serine-palmitoyl-CoA transferase 2) (SPT 2) - Mus musculus (Mouse), 560 aa.	7549 18556	379/546 (69%) 449/546 (81%)	0.0
JC5180	serine C-palmitoyltransferase (EC 2.3.1.50) Lcb2 chain - mouse, 560 aa.	7549 18556	378/546 (69%) 449/546 (82%)	0.0

O54694 Serine palmitoyltransferase 2 (EC 2.3.1.50) (Long chain base biosynthesis protein 2) (LCB 2) (Serine-palmitoyl-CoA transferase 2) (SPT 2) - Cricetulus griseus (Chinese hamster), 560 aa.	7549 18556	377/546 (69%) 446/546 (81%)	0.0
---	---------------	--------------------------------	-----

PFam analysis predicts that the NOV29a protein contains the domains shown in the Table 29F.

Table 29F. Domain Analysis of NOV29a			
Pfam Domain	NOV29a Match Region	Identities/ Similarities for the Matched Region	Expect Value
aminotran_1_2	193521	71/363 (20%) 237/363 (65%)	2.6e-29

Example 30.

The NOV30 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 30A.

Table 30A. NO	Table 30A. NOV30 Sequence Analysis		
	SEQ ID NO: 131	576 bp	
NOV30a, CG148888-01 DNA Sequence	GCTGTTCGGAGCTGCAGGCCTCCTC CAGGTGCCAGGAATAAAGTTCAACA CTGGGGTGCGTTTTCCCGAGTTCG TCACTGGGACCATGTCAGCCGGCTC GAGAGCATGGAGGACGATGCCAACT CCCGGTTCAAGGACCGGCACTCGCA	CTCTTCATCAGCCTGC; LTCAGGCCAAGGCAGCCC TCCAGTACCTGCTGACG TGCAGCCCTCAT TCTTCCTGAGCCTCAT LGGAGGCGCGGACCACAG CGCACCTACGACTTCTA	TTGGCCTGCATGTTCTTTCCATCCT AGGACCTACGGAGCTCGCCCCCAG CACCACGACCTCCCACCAGGCGGCT TGCACCACGGCCCGTGGGGATGGACAT TCGACTACGATTTCGTAGGCAAGTTC CGCGCGCGCGGAACCTGACCTTCC CGAGGATCGCCCACCAGTACTTCGC ACGAGATCGATTACCTACGTTCAAC
	ORF Start: ATG at 15		ORF Stop: TGA at 564

	SEQ ID NO: 132	183 aa	MW at 21347.3kD	
CC140000 A1	RHSQEARTTARIAHQYFAQ	WDHVSRLCSPCLIDYI	ELAPQQVPGIKFNIRPRQPHHDLPPGGS FVGKFESMEDDANFFLSLIRAPRNLTFI YLMFNYSKPFTDLY	GVRF PRFKD

Further analysis of the NOV30a protein yielded the following properties shown in Table 30B.

Table 30B. Protein Sequence Properties NOV30a	
PSort analysis:	0.8650 probability located in lysosome (lumen); 0.8200 probability located in outside; 0.3657 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	Cleavage site between residues 38 and 39

10

A search of the NOV30a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 30C.

Table 30C. Geneseq Results for NOV30a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV30a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
ABB53266	Human polypeptide #6 - Homo sapiens, 424 aa. [WO200181363-A1, 01-NOV-2001]	62183 303424	121/122 (99%) 121/122 (99%)	4e-69
ABB53265	Human polypeptide #5 - Homo sapiens, 628 aa. [WO200181363-A1, 01-NOV-2001]	62183 507628	121/122 (99%) 121/122 (99%)	4e-69
AAE15437	Human drug metabolising enzyme (DME)-4 - Homo sapiens, 396 aa. [WO200179468-A2, 25-OCT-2001]	62183 275396	121/122 (99%) 121/122 (99%)	4e-69
AAB85083	Human interleukin-6 (IL-6) like polypeptide - Homo sapiens, 171 aa. [WO200142484-A1, 14-JUN-2001]	62183 50171	121/122 (99%) 121/122 (99%)	4e-69
AAM24429	Murine EST encoded protein SEQ ID NO: 1954 - Mus musculus, 424 aa. [WO200154477-A2, 02-AUG-2001]	62183 303424	121/122 (99%) 121/122 (99%)	4e-69

In a BLAST search of public sequence datbases, the NOV30a protein was found to have homology to the proteins shown in the BLASTP data in Table 30D.

Table 30D. Public BLASTP Results for NOV30a				
Protein Accession Number	Protein/Organism/Length	NOV30a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9H3N2	GalNAc 4-sulfotransferase (GalNAc-4-O-sulfotransferase 1) (Carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 8) (Hypothetical 48.8 kDa protein) - Homo sapiens (Human), 424 aa.	62183 303424	121/122 (99%) 121/122 (99%)	1e-68

Q9H2A9	N-acetylgalactosamine-4-O-sulfotrans ferase - Homo sapiens (Human), 424 aa.	62183 303424	120/122 (98%) 120/122 (98%)	4e-68
Q9BXH4	GalNAc-4-sulfotransferase 2 - Homo sapiens (Human), 443 aa.	62179 325442	77/118 (65%) 95/118 (80%)	1e-44
Q9BXH3	GalNAc-4-sulfotransferase 2 - Homo sapiens (Human), 358 aa.	62179 240357	77/118 (65%) 95/118 (80%)	1e-44
Q9BZW9	N-acetylgalactosamine 4-O-sulfotransferase 2 GalNAc4ST-2 - Homo sapiens (Human), 438 aa.	62179 320437	77/118 (65%) 95/118 (80%)	1e-44

Example 31.

The NOV31 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 31A.

	V31 Sequence Analysis SEQ ID NO: 133	2325 bp		
NOV31a.			AGAAGCAATCCTCCCACGCGCTTTC	
	CCCACCCTCGGGCCACTGAGAC	GAGGGACAGAGAGACTA	CCTCGCGCGGCCGAGGCCCCGCCTCCC	
CG149008-01	GCTCGCCCGCCCCCCCCTCCAG	CCA ACCCCCA ACCA A A A	CCGGGTCCTGCTAGCCCCGCGCCTCC	
DNA Sequence	AACTCGGTGGTCCTGGAAGCTC	CCAGGATGGGGGAGAAA	ATCCCCCA A CACCACACACCOTTICCCA A CACCACACACACCOTTICCCA A CACCACACACACCOTTICCCA A CACCACACACACACACACACACACACACACAC	
	AACTCGGTGGTCCTGGAAGCTCCGCAGGATGGGGGAGAGATGGCGGAAGAGGAGAGGTTCCCCAA' ACAACTCATGAGGGTTTCAATGTCACCCCTCCACACCCCTGGTTGTCACGACGAAACTGGTGCTCC			
	CGACCCCTGGCAAGCCCATCCTCCCCGTGCAGACAGGGGGAGCAGGCCCAGCAAGAGGAGCAGTCCA			
	CGGCATGACCATTTTCTTCAGCCTCCTTGTCCTAGCTATCTGCATCATATTGGTGCATTTACTGAT			
	CGATACAGATTACATTTCTTGCCAGAGAGTGTTGCTGTTGTTTCTTTAGGTATTCTCATGGGAGCA			
	TTATAAAAATTATAGAGTTTAAA	AAACTGCCGAATTGGAAG	GAAGAAGAAATGTTTCGTCCAAACA	
	GTTTTTCCTCCTCCTGCTTCCCC	CTATTATCTCCCTTTTTCACTCTC	GATATTCATTACACAAGGTGAGACT	
	AGGCACACATTGGGTAACTTCTT	PTCAAAATATTCTTTGGGTCTG	CACCTGTTTGCTGTTTTTGGGACGC	
	CAATCTCCGCTTTTGTAGTAGG	CGAGGA A TOO I ICCAI	GGTCAGGCTGATGTAATCTCTAAACT	
	CAACATGACAGACAGTTTTTGCGT	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	CTGTCGATCCAGTGGCCACTATTGCC	
	ATTTTCAATGCACTTCATGTGG	CCCCGTGCTCD ACATGCTG	GGTCTTTGGAGAAAGTATTCTCAAC	
	ATGCAGTCTCCATTGTTCTGACC	72 2 C C C C C C C C C C C C C C C C C C	ACAAGAAAAATATGTCAGATGTCAG ACAAGAAAAAATATGTCAGATGTCAG	
	TGGGTGGCAAACATTTTTTACAAC	CCCTTC ACTACATION TO THE	ACAAGAAAAAATATGTCAGATGTCAG AAATGTTCTTTGGCTCTGCAGCGCTC	
	GGCACTCTCACTGCCTTTAATTTC	TOCCITORCIACTICCICA	AAATGTTCTTTGGCTCTGCAGCGCTC TATTGACTTGAGGAAAACGCCTTCCT	
	TGGAGTTTGGCATGATGATCATG	™AMMACACATRACTACTACATACATA	GGGCTTGCAGAAAACGCCTTCCT GGGCTTGCAGAAGGAATCTCACTCTC	
	AGGCATCATGGCCATCCTGTTCT	CACCCAMCCMCAMCMCCC	ACTACACGCACCATAACCTCTCCCCA	
	GTCACCCAGATCCTCATGCAGCA	GACCCTCCCCACCCTCCC	ACTACACGCACCATAACCTCTCCCCA CTTCTTATGTGAAACATGTGTGTTTG	
	CATTTCTTCCCCTCTCCATTTTT	ACTION OF A COMME	CTTCTTATGTGAAACATGTGTGTTTC GAAATTTCCTTTGTCATCTGGTGCAT	
	AGTGCTTGTACTATTTTGGCACAC	CCCTAAACACAAGTTT	GAAATTTCCTTTGTCATCTGGTGCAT TTTCCTACCTCCTGAATTTCTTCCGG	
	GATCATAAATCACACCCAACAG	CAMCOMICA MCA MCMCCOM	TTTCCTACCTCCTGAATTTCTTCCGG TAGTGGCCTGCGGGGAGCCATCCCCT	
	ATCCCCTCACCCTACACCCTCCAC	CUCCACCCCACCACCACCACCACCACCACCACCACCACCA	TAGTGGCCTGCGGGGGGCCATCCCCT	
	CGTCATCGTGCTTCATCACCATGGAC	CTGGAGCCCATGGAGAAG	CGGCAGCTCATCGGCACCACCAT	
	ATCCACCACCCCA ACCCACACCC	CACCARCA	CCATGCCCCTCATTCGCCTCATGGAC	
	GCA A CACTROTTOCA CTCCCA CCA	CAGGAACAAGAAGGACGT	CAACCTCAGCAAGACTGAGAAGATGG	
	GCGCCACCACCERTA A CCCCETTO	CTGTCGGAGCTCACGGAG	GAGGAGTACGAGGCCCACTACATCAG	
	CTCA CCCA CCA CCA CCTCCA	TGTGGCTGGACGCCAAGT.	ACCTGAACCCCTTCTTCACTCGGAGG	
	ACCURACCCCA CCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGGGCGCATCCAGATGAA	AACTCTCACCAACAAGTGGTACGAGG	
	AGGTACGCCAGGGCCCCTCCGGC	TCCGAGGACGACGAGCAG	GAGCTGCTC TGA CGCCAGGTGCCAAG	
	A TOCCOTTON TO CONTROL OF THE CONTRO	TGGGCGTTTGCTGCGCAC	AGACACTCAGCAGGGGCCTCGCAGAG	
	ATGCGTGCATCCAGCAGCCCCTT	CAAGACATAAGAGGGCGG	GGCGAGGTACTGGCTGCAGAGTCGCC	
	TTAGTCCAGAACCTGACAGGCCT	CTGGAGCCAGGCGACTTC:	TTGGGAAACTGTCATCTCCCGACTCC	
	TCCCTGAGCCAGCCTCCGCTCAG	TGTGGCTCCTCAGCCCAC	AGAGGGGAGGAGCATGGGGCCAGGT	
	GCCAGTCATCTGTGAAGCTAGGG	CGCCTACCCCCCCACCCG	GAGGAC	
	ORF Start: ATG at 230	1	ORF Stop: TGA at 1994	

	SEQ ID NO: 134	588 aa	MW at 66297.1kD
CC140009 01	VLAICIILVHLLIRYRLHFLPESV.	AVVSLGILMGAVIKIIEF	LPVQTGEQAQQEEQSSGMTIFFSLL KKLANWKEEEMFRPNMFFLLLLPPI
Protein Sequence	SLISAVDPVATIAIFNALHVDPVL	NMLVFGESILNDAVSIVL'	GGGIYFLGQADVISKLNMTDSFAFG TNTAEGLTRKNMSDVSGWQTFLQAL
	IVMSHYTHHNLSPVTQILMQQTLR:	TVAFLCETCVFAFLGLSI	IFAYLPYGLAEGISLSGIMAILFSG FSFPHKFEISFVIWCIVLVLFGRAV
	LGGSTMPLIRLMDIEDAKAHRRNK LDAKYLNPFFTRRLTQEDLHHGRI	KDVNLSKTEKMGNTVESEI	DLEPMEKRQLIGTTTIVIVLFTILL HLSELTEEEYEAHYIRRQDLKGFVW GSEDDEOELL

5

Further analysis of the NOV31a protein yielded the following properties shown in Table 31B.

Table 31B. Protein Sequence Properties NOV31a	
PSort analysis:	0.8000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.3000 probability located in microbody (peroxisome)
SignalP analysis:	Cleavage site between residues 40 and 41

10

A search of the NOV31a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 31C.

Table 31C. Geneseq Results for NOV31a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV31a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
ABG61535	Human transporter and ion channel, TRICH5, Incyte ID 7476938CD1 - Homo sapiens, 671 aa. [WO200240541-A2, 23-MAY-2002]	1588 91671	581/588 (98%) 581/588 (98%)	0.0
AAM24062	Human EST encoded protein SEQ ID NO: 1587 - Homo sapiens, 315 aa. [WO200154477-A2, 02-AUG-2001]	274588 1315	315/315 (100%) 315/315 (100%)	0.0

AAB29621	Cat flea HMT Na/H transporter, SEQ ID NO:1868 - Ctenocephalides felis, 608 aa. [WO200061621-A2, 19-OCT-2000]	8584 33602	329/585 (56%) 416/585 (70%)	e-175
ABB59364	Drosophila melanogaster polypeptide SEQ ID NO 4884 - Drosophila melanogaster, 649 aa. [WO200171042-A2, 27-SEP-2001]	44587 86635	310/562 (55%) 399/562 (70%)	e-170
AAO14196	Human transporter and ion channel TRICH-13 - Homo sapiens, 631 aa. [WO200204520-A2, 17-JAN-2002]	117547 125542	166/439 (37%) 253/439 (56%)	2e-72

In a BLAST search of public sequence datbases, the NOV31a protein was found to have homology to the proteins shown in the BLASTP data in Table 31D.

Table 31D. Pt	Table 31D. Public BLASTP Results for NOV31a				
Protein Accession Number	Protein/Organism/Length	NOV31a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
BAA76783	KIAA0939 protein - Homo sapiens (Human), 595 aa (fragment).	1588 15595	581/588 (98%) 581/588 (98%)	0.0	
Q8R4D1	Na-H exchanger isoform NHE8 - Mus musculus (Mouse), 576 aa.	5587 1575	556/583 (95%) 565/583 (96%)	0.0	
Q9Y507	DJ963K23.4 (Continues in dJ1041C10 (AL162615)) - Homo sapiens (Human), 437 aa (fragment).	152588 1437	437/437 (100%) 437/437 (100%)	0.0	
Q9Y2E8	KIAA0939 protein - Homo sapiens (Human), 411 aa (fragment).	182588 5411	405/407 (99%) 406/407 (99%)	0.0	
ААН34508	Hypothetical protein - Mus musculus (Mouse), 388 aa (fragment).	209587 9387	366/379 (96%) 374/379 (98%)	0.0	

PFam analysis predicts that the NOV31a protein contains the domains shown in the Table 31E.

Table 31E. Domain A	nalysis of NOV31a		
Pfam Domain	NOV31a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Na_H_Exchanger	62485	141/465 (30%) 345/465 (74%)	3.1e-98

Example 32.

The NOV32 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 32A.

10

5

Table 32A. NOV	/32 Sequence Analysis	**************************************		
	SEQ ID NO: 135	367 bp		
NOV32a, CG149350-01 DNA Sequence	ATGCCGGGGAGAAGGAAGCTCATCGCAGTGATCAGAGACAAGGACACGGTGACTGGTTTCCTC GCAGCATAGGGGAGCTTAACAAGAACTGCCACCCCAATTTCCTGGTGGTGGAGAAGGATACGA CAATGAGATCGAAGACACTTTCCGGCAATTTCTAAACCGGGATGACACCATCATCCTCAA			
	ORF Start: ATG at 1		ORF Stop: TAG at 358	

15

	SEQ ID NO: 136	119 aa	MW at 13566.3kD
NOV32a, CG149350-01 Protein Sequence	QYIAEMVQHALDTHQHSIPTVLEI	IGELNKNCHPNFLVVEKD PSKEHPYEDAKDSTLRRA	TTINEIEDTFRQFLNRDDTGIILIN RGMFTAEDLC

	SEQ ID NO: 137	367 bp	CONTRACTOR OF THE PROPERTY OF
NOV32b, CG149350-02 DNA Sequence	GCAGCATAGGGGAGCTTAACAAGA CAATGAGATCGAAGACACTTTCCG CAGTACATCGCAGAGATGGTGCAG	ACTGCCACCCAATTTC GCAATTTCTAAACCGGG CATGCCCTGGACACCCA ATGAGGACGCCAAGGAC	GACACGGTGACTGGTTTCCTGCTGG TGGTGGTGGAGAAGGATACGACCAT ATGACACTGGCATCATCCTCATCAAC CCACCACTCTATCCCTACTGTCCTGG CCACCTGCGGAGGGCCAGGGGCAT
	ORF Start: ATG at 1		ORF Stop: TAG at 358

	SEQ ID NO: 138	119 aa	MW at 13566.3kD
NOV32b, CG149350-02 Protein Sequence	QYIAEMVQHALDTHQHSIPTVLEI:	IGELNKNCHPNFLVVEKD PSKEHPYEDAKDSTLRRA	TTINEIEDTFRQFLNRDDTGIILIN RGMFTAEDLC

5

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 32B.

10

Table 32B. Compariso	Table 32B. Comparison of NOV32a against NOV32b.			
Protein Sequence	NOV32a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV32b	1119 1119	119/119 (100%) 119/119 (100%)		

Further analysis of the NOV32a protein yielded the following properties shown in Table 32C.

15

Table 32C. Protein Sequence Properties NOV32a		
PSort analysis:	0.4852 probability located in mitochondrial matrix space; 0.4500 probability located in cytoplasm; 0.1957 probability located in mitochondrial inner membrane; 0.1957 probability located in mitochondrial intermembrane space	
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV32a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 32D.

Table 32D. G	eneseq Results for NOV32a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV32a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value

r		1 m	the will be the state of the st	
AAW27337	Human vacuolar ATPase 14 kDa subunit hV-14B - Homo sapiens, 119 aa. [JP09168390-A, 30-JUN-1997]	1118 1118	105/118 (88%) 108/118 (90%)	2e-54
AAW27336	Human vacuolar ATPase 14 kDa subunit hV-14A - Homo sapiens, 119 aa. [JP09168390-A, 30-JUN-1997]	1118 1118	104/118 (88%) 107/118 (90%)	8e-54
ABB62928	Drosophila melanogaster polypeptide SEQ ID NO 15576 - Drosophila melanogaster, 124 aa. [WO200171042-A2, 27-SEP-2001]	6118 10122	71/113 (62%) 91/113 (79%)	2e-38
ABB57798	Drosophila melanogaster polypeptide SEQ ID NO 186 - Drosophila melanogaster, 124 aa. [WO200171042-A2, 27-SEP-2001]	6114 10118	58/109 (53%) 84/109 (76%)	7e-29
AAG35989	Zea mays protein fragment SEQ ID NO: 44042 - Zea mays subsp. mays, 130 aa. [EP1033405-A2, 06-SEP-2000]	1118 1125	56/125 (44%) 85/125 (67%)	1e-27

In a BLAST search of public sequence datbases, the NOV32a protein was found to have homology to the proteins shown in the BLASTP data in Table 32E.

Protein Accession Number	Protein/Organism/Length	NOV32a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P50408	Vacuolar ATP synthase subunit F (EC 3.6.3.14) (V-ATPase F subunit) (Vacuolar proton pump F subunit) (V-ATPase 14 kDa subunit) - Rattus norvegicus (Rat), 119 aa.	1118 1118	104/118 (88%) 108/118 (91%)	1e-53

Q16864	Vacuolar ATP synthase subunit F (EC 3.6.3.14) (V-ATPase F subunit) (Vacuolar proton pump F subunit) (V-ATPase 14 kDa subunit) - Homo sapiens (Human), 119 aa.	1118 1118	104/118 (88%) 107/118 (90%)	2e-53
Q9D1K2	1110004G16Rik protein - Mus musculus (Mouse), 119 aa.	1118 1118	103/118 (87%) 108/118 (91%)	5e-53
Q28029	Vacuolar ATP synthase subunit F (EC 3.6.3.14) (V-ATPase F subunit) (Vacuolar proton pump F subunit) (V-ATPase 14 kDa subunit) - Bos taurus (Bovine), 110 aa (fragment).	10118 1109	97/109 (88%) 100/109 (90%)	7e-50
Q9I8H3	Vacuolar ATP synthase subunit F (EC 3.6.3.14) (V-ATPase F subunit) (Vacuolar proton pump F subunit) (V-ATPase 14 kDa subunit) - Xenopus laevis (African clawed frog), 110 aa (fragment).	10118 1109	83/109 (76%) 94/109 (86%)	7e-43

PFam analysis predicts that the NOV32a protein contains the domains shown in the Table 32F.

5

Table 32F. Domai	n Analysis of NOV32a		
Pfam Domain	NOV32a Match Region	Identities/ Similarities for the Matched Region	Expect Value
ATP-synt_F	8108	51/107 (48%) 90/107 (84%)	9.2e-43

Example 33.

The NOV33 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 33A.

Table 33A. NOV33 Sequence Analysis			
MANAGEMENT AND AND AND AND AND AND AND AND AND AND	SEQ ID NO: 139	1510 bp	
NOV33a, CG149463-01 DNA Sequence	CCTGGCTCACAGGGGTCTTGTTGC CCACACCCTGACCATCCCCCTTTA TCATTTCTTGTTCCATCCATGCAG GCACAGCTAGGGGAGGATGGAGAG AACACCAACTCTATCATGCCTGCT AACTCTAGCCCAGCTGGGACCCCA CCTCCAGCCAACCCAAATGCCCAGC CGGGAAGGTCCTACTGGCCAAGCG AAGTCCATCTTAAAGAAGAAAGAG TGCGGCACCCCTTCCTCGTGGGCC CGACTATGTCAACGGGGAGACTTCCAGCTGAACCTAAGACAACCATTCCAGCTGAACCAGACTTCAAGCAGACATTCCCCGACTTATGATCAAGCAGAGACATTCCCCGACCTTCTACAGCCAAGATGTACCAGAGACATTCTTACAGCCAAGAACATTCTACCAGAGCAGTGCCCCTTCTACAGCAGACTTTCTTACCCAGAGCTAACTTCTAATTTTGACCAGAGTTCACCAGAGCTAACTGACTG	AAAGATCCTTCCAGCCCT CCTGGGTGTCCCAGTTC CCTGGGTTGCCCAGTTC TCCCTTCTGAGATGTTTG GGGTTGCTTACCTCGGGT GGCAGTGGTGCCTCCAGAGC CCTCCCTGTCCCCAGA AGTCCACAGCCCTCCAGG CCACGGACTTCGACTTCC CAAGTCTGATGGGGCGTT CAGAGCCACATCATGCA TGCGCTACTCCTTCCAGA CTTCTTCCACCTGCAGCG GCCAGCGCCATTGGCTACT TCTTGGACTGCCAGTACT TCTTGGACTTCCAGACC GTGGTCTTTGGGCAGTC TCCCAGATGTATGAGAAC GTGACCTCCTGCAAAGC TGAGATTAAGAACCATGT CCACCCTTCAACCAAAT AAGCTGTGTCCAGTTCTTA	GGCCATCTTGGACTTCTGGAGCTAC TTGAAAAGAATCAGCCTGGGAGGGG TTAGGAAGCCTCAGGCGGTTCCAGGGGATA AGGAAACCCTCAGGCGATGCCAGGCAGTCCTGGATGGGCGAGTCATGGATCATTGCTACAGAATCGCCAAACCTGGGGC GCTGCCTGATCATTGCTACAGAAACCTAGGAACATCAAGCAAAACCTAGAAAACCTAGAAAACCTAGAAAACCTAGAAAACCTAGAAAACCTAGAAAACCTAAGAAAACCTAAAGAACACAACATGAAAAACCTAAAGAACACAACATCAATCA
	ORF Start: ATG at 220		ORF Stop: TAG at 1414

5

	SEQ ID NO: 140	398 aa	MW at 44552.5kD
CG149463-01 Protein Sequence	TPSPQPSRANGNINLGPSANPNAQ KEQSHIMAERSVLLKNVRHPFLVG EVASAIGYLHSLNIIYRDLKPENI	PTDFDFLKVIGKGNYGKV LRYSFQTPEKLYFVLDYV LLDCQYLAPEVLRKEPYD CDLLQSLLHKDORORLGS	LSCLLLPVPPELPDHCYRMNSSPAG LLAKRKSDGAFYAVKVLQKKSILKK NGGELFFHLQRERRFLEPRARFYAA RAVDWWCLGAVLYEMLHGLPPFYSQ KADFLEIKNHVFFSPINWDDLYHKR GASSAFIGESYA BEDDDLLDC

Further analysis of the NOV33a protein yielded the following properties shown in Table 33B.

Table 33B. Protein Sequence Properties NOV33a		
PSort analysis:	0.4500 probability located in cytoplasm; 0.2677 probability located in microbody (peroxisome); 0.1859 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space	
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV33a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 33C.

5

Table 33C. Ge	Table 33C. Geneseq Results for NOV33a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV33a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value		
AAY95276	Human serum and glucocorticoid-induced protein kinase 2-beta - Homo sapiens, 427 aa. [WO200035946-A1, 22-JUN-2000]	1398 1427	398/427 (93%) 398/427 (93%)	0.0		
AAM25594	Human protein sequence SEQ ID NO:1109 - Homo sapiens, 382 aa. [WO200153455-A2, 26-JUL-2001]	53398 8382	346/375 (92%) 346/375 (92%)	0.0		
AAE22765	Human serum and glucocoticoid-induced protein kinase, SGK2-alpha - Homo sapiens, 367 aa. [WO200224947-A2, 28-MAR-2002]	61398 1367	338/367 (92%) 338/367 (92%)	0.0		
AAB65708	Novel protein kinase, SEQ ID NO: 237 - Homo sapiens, 367 aa. [WO200073469-A2, 07-DEC-2000]	61398 1367	337/367 (91%) 338/367 (91%)	0.0		
AAB65615	Novel protein kinase, SEQ ID NO: 141 - Mus musculus, 244 aa. [WO200073469-A2, 07-DEC-2000]	184398 1244	215/244 (88%) 215/244 (88%)	e-122		

In a BLAST search of public sequence datbases, the NOV33a protein was found to have homology to the proteins shown in the BLASTP data in Table 33D.

10

Table 33D. Public BLASTP Results for NOV33a

Protein Accession Number	Protein/Organism/Length	NOV33a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9HBY8	Protein kinase - Homo sapiens (Human), 427 aa.	1398 1427	398/427 (93%) 398/427 (93%)	0.0
Q9UKG6	Protein kinase (DJ138B7.2) (Serum/glucocorticoid regulated kinase 2) (Similar to serum/glucocorticoid regulated kinase 2) - Homo sapiens (Human), 367 aa.	61398 1367	338/367 (92%) 338/367 (92%)	0.0
Q8R0P6	Serum/glucocorticoid regulated kinase 2 - Mus musculus (Mouse), 366 aa.	61397 1365	317/366 (86%) 326/366 (88%)	0.0
O73927	S-sgk2 - Squalus acanthias (Spiny dogfish), 594 aa.	70396 236594	235/359 (65%) 277/359 (76%)	e-133
O73926	S-sgk1 - Squalus acanthias (Spiny dogfish), 433 aa.	61396 60433	239/374 (63%) 282/374 (74%)	e-132

PFam analysis predicts that the NOV33a protein contains the domains shown in the Table 33E.

Table 33E. Domain Analysis of NOV33a				
Pfam Domain	NOV33a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
pkinase	95228	54/135 (40%) 116/135 (86%)	5e-39	
pkinase	231323	35/128 (27%) 69/128 (54%)	1.5e-21	
pkinase_C	324393	25/73 (34%) 47/73 (64%)	3.1e-15	

Example 34.

5

The NOV34 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 34A.

Table 34A. NOV34 Sequence Analysis			
	SEQ ID NO: 141	2152 bp	
NOV34a,			CAGCTCGCTCCCGCAGCCATGCCCA
CG149536-01			GCTGGCAGCCGCTGTACTTGGAAAT TCCAGAAAACAGAAATCGAAACAGA
DNA Sequence			CAAAATGCTGAGAATGATTATATTA
			TCTTAACACAGGGACCACTTCCTAA
			CAAAGCAGTTGTCATGCTGAACCGC
			CACTTTCATTATACTACCTGGCCAG
	ATTTTGGAGTCCCTGAATCACCAG	CTTCATTTCTCAATTTCT	TGTTTAAAGTGAGAGAATCTGGCTC
			AGGCATTGGGCGCTCTGGCACCTTC
l	TCTCTGGTAGACACTTGTCTTGTT	'TTGATGGAAAAAGGAGAT	GATATTAACATAAAACAAGTGTTAC
	TGAACATGAGAAAATACCGAATGG	GTCTTATTCAGACCCCAG	ATCAACTGAGATTCTCATACATGGC
			ACAGAAACGATGGAAAGAACTTTCT
			ATAATGACTGAAAAATACAATGGGA
			GTACAGGACTTTCCTCTAAAATGCA
	AGATACAATGGAGGAGAACAGTGA	GAGTGCTCTACGGAAACG	TATTCGAGAGGCCACC
	ACAGCTCAGAAGGTGCAGCAGATG	BAAACAGAGGCTAAATGAG	AATGAACGAAAAAGAAAAAGGTGGT
1			TCATTTTGGTTGGCGCTTTTGTTGG
			TTTTGCCCAGCAAGCTTCTGCACTA
			CAAACGCCTCATATCCCAAAAACGG
			CACAAGCCCAACATCTCAGGACTCT
			TAAAATAAAGACATTCATGTTTGTT
			ACAGTATTTCACCTGACCAACATTG
	AGATATCCTTTATCACAGGATTTG	TTTTTGGAGGCTATCTGG	ATTTTAACCTGCACTTGATATAAGC
			ACATTTAAATAATGTGTGTAATGTA
			<u>CATTTCAGGGTAAATATATTTTATA</u>
			GCTCAATTTGAAAAATCTGTTACTA
	AAAAAAAAATTGTATGTCGATTG	AATTGTACTGGATACATT	TTCCATTTTTCTAAAAAGAAGTTTG
ł			ATTGCATTTCTTTTATGTTTTACAG
			TTTTTCCTAAAAATATCTTTGAAGG
			GACTTTGTAAAGAAATTGGTTTCTG
	TAAATCCCATTATTGATATGTTTA	<u>,TTTTTCATGAAAATTTCA</u>	ATGTAGTTGGGGTAGATTATGATTT
		<u>TTTTATGATTCATAATTT</u>	<u>CAGTTTACTAGACTGAAGTTTTGAA</u>
	GTAAACCC		
	ORF Start: ATG at 61	197	ORF Stop: TAA at 1171

5

	SEQ ID NO: 142	370 aa	MW at 43248.9kD	
CG149536-01 Protein Sequence	YINASLVDIEEAQRSYILT WPDFGVPESPASFLNFLFK VLLNMRKYRMGLIQTPDQI	'QGPLPNTCCHFWLMVW VRESGSLNPDHGPAVI RFSYMAIIEGAKCIKG LSSKMQDTMEENSESA	VAKFPENRNRNRYRDVSPYDHSRVKLQNA QQKTKAVVMLNRIVERESSGETRTISHFH HCSAGIGRSGTFSLVDTCLVLMEKGDDIN DSSIQKRWKELSKEDLSPAFDHSPNKIMT LRKRIREDRKATTAQKVQQMKQRLNENER	IYTT IKQ EKY

Further analysis of the NOV34a protein yielded the following properties shown in Table 34B.

Table 34B. Protein Sequence Properties NOV34a		
PSort analysis:	0.8500 probability located in endoplasmic reticulum (membrane); 0.4400 probability located in plasma membrane; 0.3000 probability located in nucleus; 0.1000 probability located in mitochondrial inner membrane	

	The state of the s	
SignalP analysis:	No Known Signal Sequence Predicted	T
	1	•

A search of the NOV34a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 34C.

Table 34C. Ge	Table 34C. Geneseq Results for NOV34a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV34a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAR14114	Non-receptor linked protein tyrosine phosphatase - Homo sapiens, 415 aa. [WO9113989-A, 19-SEP-1991]	1370 1415	368/415 (88%) 369/415 (88%)	0.0	
AAU91293	Human NOV8 protein - Homo sapiens, 415 aa. [WO200216600-A2, 28-FEB-2002]	1370 1415	337/415 (81%) 345/415 (82%)	0.0	
ABP41882	Human ovarian antigen HOCPJ87, SEQ ID NO:3014 - Homo sapiens, 368 aa. [WO200200677-A1, 03-JAN-2002]	24336 5362	312/358 (87%) 313/358 (87%)	e-178	
AAM25250	Human protein sequence SEQ ID NO:765 - Homo sapiens, 168 aa. [WO200153455-A2, 26-JUL-2001]	116269 14167	137/154 (88%) 145/154 (93%)	1e-77	
AAB56662	Human prostate cancer antigen protein sequence SEQ ID NO:1240 - Homo sapiens, 180 aa. [WO200055174-A1, 21-SEP-2000]	1124 29152	123/124 (99%) 124/124 (99%)	1e-69	

In a BLAST search of public sequence datbases, the NOV34a protein was found to have homology to the proteins shown in the BLASTP data in Table 34D.

Table 34D.	Table 34D. Public BLASTP Results for NOV34a				
Protein Accession Number	Protein/Organism/Length	NOV34a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
P17706	Protein-tyrosine phosphatase, non-receptor type 2 (EC 3.1.3.48) (T- cell protein-tyrosine phosphatase) (TCPTP) - Homo sapiens (Human), 415 aa.	1370 1415	369/415 (88%) 370/415 (88%)	0.0	
A33899	protein-tyrosine-phosphatase (EC 3.1.3.48), nonreceptor type 2 - human, 415 aa.	1370 1415	368/415 (88%) 369/415 (88%)	0.0	
A60345	protein-tyrosine-phosphatase (EC 3.1.3.48) 11A - human, 387 aa.	1336 1381	334/381 (87%) 335/381 (87%)	0.0	
Q922E7	Protein tyrosine phosphatase, non-receptor type 2 - Mus musculus (Mouse), 406 aa.	1365 1405	323/410 (78%) 338/410 (81%)	0.0	
Q06180	Protein-tyrosine phosphatase, non-receptor type 2 (EC 3.1.3.48) (Protein-tyrosine phosphatase PTP-2) (MPTP) - Mus musculus (Mouse), 382 aa.	1336 1376	298/381 (78%) 312/381 (81%)	e-168	

5 PFam analysis predicts that the NOV34a protein contains the domains shown in the Table 34E.

Table 34E. Domain Analysis of NOV34a				
Pfam Domain	NOV34a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Y_phosphatase	42229	99/272 (36%) 163/272 (60%)	5.5e-88	

Example 35.

The NOV35 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 35A.

Table 35A. NOV	l'able 35A. NOV35 Sequence Analysis			
	SEQ ID NO: 143	908 bp		
NOV35a, CG149964-01 DNA Sequence	TGCAACGGCGGCCGTGACTGTAAGCCTGAATTGGAAACCCTTTGTATATCTGGACCTTACCAAAACACGACTTCAATAGAGGGATGTTCCATGGCTTGCGTAGAACGCTTTGTATAGACGCTTTGCTAGAACGCTTTGAAGACGTTTGAAGACGTTTTCACTATAGAGAGCTTGTTCCAAGGAAGCATGAACGTTGGAAGGTTGTTCCAAGGAAGCATGATCTTGTGGAGGGGTTGGTT	GGACACCAGAAAAGTAC GGCGGCCTTGCCTCTATC AGGTTCAAGGCCAAAGC FTTTCGCATCTGTAAAGA FAAGCATCATATGGCACC FAGAAGATGAAACTCTTT AGCCAATCCCACCGATG1 ATTGGAAGCTTTATCGA1 TTGGAAGCTTTATCGA1 TTGCTCAGCGTCCCA AATATTGTCAGGAATGA1 FGGAAACATGTTTTTTTTF	ATCCTAATTTTTCTAAGGGTGAAGTT CCACTGTAAGTCATGAGATGTCTGGT CTACTGATGCCCGTTTCGAAGACTTTCCCTG ATTGATGCCCGTTTCAAAGAGATAAA AGGAAGGTGTATTTGGCTCTCTATTCA CATTAAAATTGGGATTTACCAAAGCT TTAATTAATATGATCTGTGGGTAGT TTCTAAAGATTCGAATGCAGGCTCAA TATATACCAACAAGAAGGCACCAGGG ATCGTTGTAGGAGTAGAGCTACCAGT CGGACATGTGGATCTCTATAAGGGC TTTGCACTCTATAAAGGATTTTGGC ATTACATACGAGCCAGGTAAAGAGGCT	
	ORF Start: ATG at 21		ORF Stop: TAA at 879	

	SEQ ID NO: 144	286 aa	MW at 32043.5kD
CG149964-01	LQVQGQSIDARFKEIKYRGMFHALI RLEDETLLINMICGVVSGVISSTI	FRICKEEGVLALYSGIAP. ANPTDVLKIRMQAQGSLF	PFVYGGLASIVAEFGTFPVDLTKTR ALLRQASYGTIKIGIYQSLKRLFVE QGSMIGSFIDIYQQEGTRGLWRGVV ILKMWKHEGFFALYKGFWPNWLRLG

	SEQ ID NO: 145	871 bp
NOV35b, 309326356 DNA Sequence	CACCGGATCCACCATGGGTATCTTTCCCGGAATAATCCT GCGGCCGTGATTCACCAGAAAAGTACCACTGTAAGTCAT TTGTATATGGCGGCCTTGCCTCTATCGTGGCTGAGTTTG ACGACTTCAGGTTCAAGGCCAAAGCATTGATGCCCGTTT CATGCGCTGTTTCGCATCTGTAAAGAGGAAGGTGTATTG TGCTAAGACAAGCATCATAAAGAGGAACATTAAAATTGGGA AGAACGTTTAGAAGATGAAACTCTTTTAATTAATATGAT TCCACTATAGCCAATCCCACCGATGTTCTAAAGATTCGA GGAGCATGATTGGAAGCTTTATCGATATATACCAACAAG GGTTCCAACTGCTCAGCGTGCTTCTTGAGGAGT AAAGATTTAATATTTGTCAGGAATGATGGGACATGTTGTAGGAGT TAAAGATGTGGAAACATGATGGGCTTTTTTTGCACTCTTATA TGGACCCTGGAACATCATTTTTTTTTT	GAGATGTCTGGTCTGAATTGGAAACCCT GGACTTTCCCTGTGGACCTTACCAAAAC CAAAGAGATAAAATATAGAGGGATGTTC GCTCTCTATTCAGGAATTGCTCCTGCGT TTTACCAAAGCTTGAAGCGCTTATTCGT CTGTGGGGTAGTGTCAGGAGTGATATCT ATGCAGGCTCAAGGAGCTTTCCAAG AAGGCACCAGGGTCTGTGGAGGGTGT AGAGCTACCAGTCTATGATATTACTAAG CTCTATAAGGGCACTGTTGATGGTATTTC AAGGATTTTGGCCAAACTGGCTTCGGCT
	ORF Start: at 2	ORF Stop: end of sequence

WO 03/029424

	SEQ ID NO: 146	290 aa	MW at 32429.9kD
309326356 Protein Sequence	RLQVQGQSIDARFKEIKYR ERLEDETLLINMICGVVSG	GMFHALFRICKEEGVI VISSTIANPTDVLKIR ITKKHLILSGMMGHVD	IEMSGLNWKPFVYGGLASIVAEFGTFPVDLTKT LALYSGIAPALLRQASYGTIKIGIYQSLKRLFV LMQAQGSLFQGSMIGSFIDIYQQEGTRGLWRGV DLYKGTVDGILKMWKHEGFFALYKGFWPNWLRL

	SEQ ID NO: 147	811 bp
NOV35c, 309326444 DNA Sequence	CACCGGATCCGCCGTGATTCACCAGAAAAGTACCACTGT AAACCCTTTGTATATGGCGGCCTTGCCTCTATCGTGGCT CCAAAACACGACTTCAGGTTCAAGGCCAAAGCATTGATG GATGTTCCATGCGCTTTTCGCATCTGTAAAGAGAAAGCATTAAA CCTGCGTTGCTAAGACAAGCATCATATGGCACCATTAAA TATTCGTAGAACGTTTAGAAGATGAAACTCTTTTAAATTA GATATCTTCCACTATAGCCAATCCCACCGATGTTCTAAA TTCCAAGGGAGCATGATTGGAAGCTTTATCGATATATAC GGGGTGTGGTTCCAACTGCTCAGCGTGCTGCCATCGTTG TACTAAGAAGCATTTAATATTTGTCAGGAATGATGGGACA GGTATTTTAAAGATGTAGAGACTTTTTTTTACAT TTCGGCTTGGAACCCTGGAACATCATTTTTTTTTT	GAGTTTGGGACTTTCCCTGTGGACCTTA CCGTTTCAAAGAGATAAAATATAGAGG TGTATTGGCTCTTATTCAGGAATTGCT ATTGGGATTACCAAAGCTTGAAGCGCT ATATGATCTGTGGGTAGTGTCAGGAGT GATTCGAATGCAGCTCAAGGAAGCTTG GATTCGAATGCAGGCTCAAGGAAGCTTG CAACAAGAAGGCACCAGGGTCTGTGGA TAGGAGTAGAGCTACCAGTCTATGATAT TGTGGATCTCTATAAAGGCACTGTTGAT CTCTATAAAAGGATTTTGGCCAAACTGGC
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 148	270 aa	MW at 30239.1kD
309326444	MFHALFRICKEEGVLALYSGIAPA ISSTIANPTDVLKIRMOAOGSLFO	LLRQASYGTIKIGIYQSLI GSMIGSFIDIYOOFGTRGI	DLTKTRLQVQGQSIDARFKEIKYRG KRLFVERLEDETLLINMICGVVSGV LWRGVVPTAQRAAIVVGVELPVYDI NWLRLGPWNIIFFITYEQVKRLQIV

	SEQ ID NO: 149	761 bp
NOV35d, 309326473 DNA Sequence	CACCGGATCCCTGAATTGGAAACCCTTTGTATATGGCGGACTTTCCCTGTGGACCTTACCAAAACACGACTTCAGGTTAACAGACAAAAAAAA	CAAGGCCAAAGCATTGATGCCCGTTTCA GCATCTGTAAAGAGGAAGGTGTATTGGC ATCATATGGCACCATTAAAATTGGGATT GATGAAACTCTTTTAATTAATATGATCT ATCCCACCGATGTTCTAAAGATTCGAAT AAGCTTTATCGATATATCCAACAAGAA CAGCGTGCTGCCATCGTTGTAGGAGTAG TGTCAGGAATGATGGACTCT ACATGAGGGCTTTTTTTGCACCTCTATA
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 150	254 aa	MW at 28488.2kD	
309326473	TISGIAPALLKQASYGTIKI(GIYQSLKRLFVERL: DEGTRGLWRGVVPT:	VQGQSIDARFKEIKYRGMFHALFRICKEEG EDETLLINMICGVVSGVISSTIANPTDVLK AQRAAIVVGVELPVYDITKKHLILSGMMGH NIIFFITYEQVKRLQIVDX	TDM

	SEQ ID NO: 151	1019 bp	
NOV35e, CG149964-02 DNA Sequence	CGGCGGCCGTGACTGTAAGCGGAC TTTGGAAACCCTTTGTATATGGCGG CTTACCAAAACACGACTTCAGGTT GAGGGATGTTCCATGCGCTGTTTC TGCTCCTGCGTTGCTAAGACAGC CGCTTATTCGTAGAACGTTTAGAA GAGTGATATCTTCCACTATAGCCA CTTGTTCCAAGGGAGCATGATTGG TGGAGGGGTGTGTTCCAACTGCT ATATTACTAAGAAGCATTTAATAT ATATTACTAAGAGGATTTGGCTGG ATGAACCAGAGGGCATTTTTTG	ACCAGAAAAGTACCACTG CCTTGCCTCTATCGTGGC CCAGGCCAAAGCATTGATC GCATCTGTAAAGAGGAAGCATTAAI GATGAAACCATTAAI GATGAAACCATTTAATTI ATCCCACCGATGTTCTAAI AAGCTTTATCGATATATAAC CAGCGTGCTGCCATCGTTC TGTCAGGAATGTCCACCC CCATGTGTTAACCCC CATGTGTTAACCCC CATGTGGATCTTAAAGCGCTT	ATTTTTCTAAGGGTGAAGTTTGCAA TAAGTCATGAGATGTCTGGACTGAGACTTTCCCTGTGGAC TGAGTTTGGGACTTTCCCTGTGGAC GCCCGTTTCAAAGAGATAAAATATA GTGATATTGGCTCTCTATTCAGGAAT AATTGGGATTACCAAAGCTTGAAG AATTGGATTACCAGGGTCAG AGATTCGAATGCAGGCTCAAGGAAG CCAGCAAGAAGGCTACCAGTCTATG ATACGATTTAACACACTTCGTTTC GTTGATGTGGTTCACATTTCATGACACTTCGATG GCCACAACTGGTTCGACTCGCATG GCCAAACTGGCTTCGGCTTGGACC GCCTTCAAATCTAAGAACTGAATTAT
	ORF Start: ATG at 16		ORF Stop: TAA at 991

	SEQ ID NO: 152	325 aa	MW at 36175.2kD
CG149964-02 Protein Sequence	LQVQGQSIDARFKEIKYRG RLEDETLLINMICGVVSGV PTAQRAAIVVGVELPVYDI	MFHALFRICKEEGVLA 'ISSTIANPTDVLKIRM TKKHLILSGMMGDTIL	MSGLNWKPFVYGGLASIVAEFGTFPVDLTKTR LYSGIAPALLRQASYGTIKIGIYQSLKRLFVE QAQGSLFQGSMIGSFIDIYQQEGTRGLWRGVV THFVSSFTCGLAGALASNPVDVVRTRMMNQRA LRLGPWNIIFFITYEQVKRLQI

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 35B.

Table 35B. Comparison of NOV35a against NOV35b through NOV35e.			
Protein Sequence	NOV35a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV35b	1286 5287	282/286 (98%) 282/286 (98%)	
NOV35c	26286 7267	261/261 (100%) 261/261 (100%)	

NOV35d	39286 4251	248/248 (100%) 248/248 (100%)
NOV35e	1286 1325	286/325 (88%) 286/325 (88%)

Further analysis of the NOV35a protein yielded the following properties shown in Table 35C.

5

10

Table 35C. Protein Sequence Properties NOV35a		
PSort analysis:	0.4600 probability located in plasma membrane; 0.2648 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)	
SignalP analysis:	Cleavage site between residues 20 and 21	

A search of the NOV35a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 35D.

Table 35D. Geneseq Results for NOV35a NOV35a Identities/ Geneseq Protein/Organism/Length Residues/ Similarities for Expect **Identifier** [Patent #, Date] Match the Matched Value Residues Region AAY94665 Human uncoupling protein 1..286 284/325 (87%) e-158 (UCP5) amino acid sequence 1..325 285/325 (87%) - Homo sapiens, 325 aa. [WO200032624-A2, 08-JUN-2000] ABG33878 Human secreted protein 1..286 284/334 (85%) e-155 encoded by gene 16 - Homo 1..334 285/334 (85%) sapiens, 334 aa. ſŴO200226931-A2, 04-APR-2002] AAE06056 Human gene 16 encoded 1..286 284/334 (85%) e-155 secreted protein HMIAP86, 1..334 285/334 (85%) SEQ ID NO:118 - Homo sapiens, 334 aa. [WO200151504-A1, 19-JUL-2001]

AAY87079	Human secreted protein sequence SEQ ID NO:118 - Homo sapiens, 335 aa. [WO200004140-A1, 27-JAN-2000]	1286 1334	284/334 (85%) 285/334 (85%)	e-155
AAY94666	Human uncoupling protein isoform hUCP5S amino acid sequence - Homo sapiens, 322 aa. [WO200032624-A2, 08-JUN-2000]	1286 1322	281/325 (86%) 282/325 (86%)	e-154

In a BLAST search of public sequence datbases, the NOV35a protein was found to have homology to the proteins shown in the BLASTP data in Table 35E.

Table 35E. Public BLASTP Results for NOV35a					
Protein Accession Number	Protein/Organism/Length	NOV35a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
O95258	Brain mitochondrial carrier protein-1 (BMCP-1) (Mitochondrial uncoupling protein 5) (UCP 5) (Solute carrier family 25, member 14) - Homo sapiens (Human), 325 aa.	1286 1325	284/325 (87%) 285/325 (87%)	e-157	
Q9Z2B2	Brain mitochondrial carrier protein-1 (BMCP-1) (Mitochondrial uncoupling protein 5) (UCP 5) (Solute carrier family 25, member 14) - Mus musculus (Mouse), 325 aa.	1286 1325	276/325 (84%) 283/325 (86%)	e-154	
Q9EP88	Brain mitochondrial carrier protein BMCP1 (Brain mitochondrial carrier protein-1) - Rattus norvegicus (Rat), 325 aa.	1286 1325	274/325 (84%) 282/325 (86%)	e-153	
Q9ЛМН 0	Brain mitochondrial carrier protein-1 - Rattus norvegicus (Rat), 322 aa.	1286 1322	271/325 (83%) 279/325 (85%)	e-149	
Q8R206	Similar to RIKEN cDNA 4933433D23 gene - Mus musculus (Mouse), 210 aa.	36232 1197	160/197 (81%) 176/197 (89%)	1e-87	

PFam analysis predicts that the NOV35a protein contains the domains shown in the Table 35F.

5

Table 35F. Domain Analysis of NOV35a				
Pfam Domain	NOV35a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
mito_carr	39138	39/126 (31%) 78/126 (62%)	5.7e-24	
mito_carr	140231	29/125 (23%) 76/125 (61%)	4.4e-27	
mito_carr	233286	24/125 (19%) 46/125 (37%)	0.0072	

Example 36.

The NOV36 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 36A.

D. L. J. C.A. NONZOCO						
Lable SoA. NOV	Table 36A. NOV36 Sequence Analysis					
	SEQ ID NO: 153	1144 bp	THE PARTY OF THE P			
NOV36a, CG150306-01 DNA Sequence	GGGCGCAGCTGCGCAAGATGCTCCCTATCTGGCCTTCGCTGCCTGC	CGCAAGGAGGCGCGCGCGCGCAACGTGCGCGCGCGCTCAACGTGCGCGGCTCACTCCCCACTCACT	CGGCATGAAGGTCACGTCGCTCGAC CGCTGCGTGGTGCTCGACTGCCGGC ACGTCAACCTCAACTCGGTGGTGCT CGCCGCGCGGTGTCGTCCTCACCTCG AAAGGGGGATATGAGACTTTCTACT AAGAGAAGATTGAGAGTGAGAGAGC CAGGCCAGCTTATGACCAGGGTGGC CATGCATCCAAGTGACCACCT CATTAGCTCCACTTTCAAGAAGCA CTGGTCCACTGTGAGCCTGCGATCT TGGCTCCATGGGCCTGCAGGACCTTTCAGGACCTTTCAGGTCCACTTCAGGTCCACTTCAGAAGCA CTGGTCCACTGCAGGCCTCCTGCAG CCCTCCTGCAAGGGGAGCCACAG TGCAGGGTGCCTACTGCAGCTCCTTCAG CCCTCCTGCCAAGGGGAGCCACTACCCAGGAGCCTCCTGCAG			
	ORF Start: ATG at 47		ORF Stop: TAA at 1088			

	SEQ ID NO: 154	347 aa	MW at 38362.6kD
NOV36a,	MKVTSLDGRQLRKMLRKEAAARCV	VLDCRPYLAFAASNVRGS	LNVNLNSVVLDQGSRHWQKLREESA

55.45.44	
ICG150306-01	ARVVLTSLLACLPAGPRVYFLKGGYETFYSEYPECCVDVKPISQEKIESERALISQCGKPVVNVSYK
1	DAIDOCONIETI DELLE CONTENT OFFICE CONTENT OF
Protein Sequence	PAIDQGGPVEILPF LYLGSAYHASKCEFLANLHITALLNVSRRTSEACMTHLHYKWIPVEDSHTADI SSHFQEAIDFIDCVREKGGKVLVHCEAGISRSPTICMKKTKQFRLKEAFDYIKQRRSMVSPNFG
1	SSHFQEAIDFIDCVREKGGKVLVHCEAGISRSPTICMAYLMKTKQFRLKEAFDYIKQRRSMVSPNFG
1	FMGQLLQYESEILPSTPNPQPPSCQGEAAGSSLIGHLQTLSPDMQGAYCTFPASVLAPVPTHSTVSE
1 1	LSRSPVATATSC
<u> </u>	

Further analysis of the NOV36a protein yielded the following properties shown in Table 36B.

5

Table 36B. Protein Sequence Properties NOV36a		
PSort analysis:	0.4811 probability located in mitochondrial matrix space; 0.4500 probability located in cytoplasm; 0.1892 probability located in mitochondrial inner membrane; 0.1892 probability located in mitochondrial intermembrane space	
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV36a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 36C.

Table 36C. Geneseq Results for NOV36a NOV36a Identities/ Geneseq Protein/Organism/Length Residues/ Expect Similarities for the Identifier [Patent #, Date] Match Value **Matched Region** Residues ABB07842 Amino acid sequence of 1..347 347/384 (90%) 0.0 protein identified by 1..384 347/384 (90%) Swissprot Accn No. Q16690 - Homo sapiens, 384 aa. [WO200220732-A2, 14-MAR-2002] AAB66440 Human MAP-kinase 116..286 171/171 (100%) 1e-97 phosphatase MKP-5 - Homo 1..171 171/171 (100%) sapiens, 171 aa. [WO200102582-A1, 11-JAN-2001] AAE06784 Human dual-specificity 116..286 171/171 (100%) 1e-97 phosphatase (DSP) protein, 1..171 171/171 (100%) MKP-5 - Homo sapiens, 171 aa. [WO200157221-A2, 09-AUG-2001]

AAR63602	MAP-kinase-phosphatase CL100 - Homo sapiens, 367 aa. [WO9423039-A, 13-OCT-1994]	1347 3367	168/388 (43%) 220/388 (56%)	5e-72
AAU84270	Human endometrial cancer related protein, DUSP1 - Homo sapiens, 367 aa. [WO200209573-A2, 07-FEB-2002]	1347 3367	167/388 (43%) 219/388 (56%)	1e-70

In a BLAST search of public sequence datbases, the NOV36a protein was found to have homology to the proteins shown in the BLASTP data in Table 36D.

Protein Accession Number	Protein/Organism/Length	NOV36a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q16690	Dual specificity protein phosphatase 5 (EC 3.1.3.48) (EC 3.1.3.16) (Dual specificity protein phosphatase hVH3) - Homo sapiens (Human), 384 aa.	1347 1384	347/384 (90%) 347/384 (90%)	0.0
O54838	Dual specificity protein phosphatase 5 (EC 3.1.3.48) (EC 3.1.3.16) (MAP-kinase phosphatase CPG21) - Rattus norvegicus (Rat), 384 aa.	1347 1384	320/384 (83%) 336/384 (87%)	0.0
Q90W58	MAP kinase phosphatase XCL100(beta) protein - Xenopus laevis (African clawed frog), 369 aa.	13347 15369	164/378 (43%) 217/378 (57%)	9e-72
P28562	Dual specificity protein phosphatase 1 (EC 3.1.3.48) (EC 3.1.3.16) (MAP kinase phosphatase-1) (MKP-1) (Protein-tyrosine phosphatase CL100) (Dual specificity protein phosphatase hVH1) - Homo sapiens (Human), 367 aa.	1347 3367	167/388 (43%) 219/388 (56%)	3e-70

O42253	Dual specificity protein phosphatase 1 (EC 3.1.3.48) (EC 3.1.3.16) (MAP kinase phosphatase-1) (MPK-1) (MAP kinase phosphatase-1) - Gallus gallus (Chicken), 353 aa (fragment).	15344 4353	166/366 (45%) 213/366 (57%)	1e-68	3 114
--------	--	---------------	--------------------------------	-------	-------

PFam analysis predicts that the NOV36a protein contains the domains shown in the Table 36E.

5

Table 36E. Domain Analysis of NOV36a				
Pfam Domain	NOV36a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Rhodanese	798	23/134 (17%) 66/134 (49%)	0.0052	
DSPc	141279	76/172 (44%) 132/172 (77%)	1.8e-70	
Y_phosphatase	44279	39/336 (12%) 144/336 (43%)	0.54	

Example 37.

The NOV37 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 37A.

Table 37A. NOV	V37 Sequence Analysis		
	SEQ ID NO: 155	2277 bp	
NOV37a, CG150510-01 DNA Sequence	CUTGCCCGGGTCGGCCGGCCGC TCGTAAATCATGTGAAGATGGAC TCTGGTACTAGGGATTTTTGTATTA AGTAAGTATAGTCACTCTAGCTCA ACTCCGCTGGACAAACACTAGGCT ACTGCCTGCATGAATTAGCCACCAA TCAGCCTTGATGACGGCCATCTTC TTCGCAAGTGGGCTAGAATCCGGG CAAAGCCATCTTGTCAGTCACCAA CGCTGCATCATCGTGGGCAATGGA ATGACATTGTGGTGAGACTGAATTG GACACTGCGCATCACCCCGA TTTGTCCTCGCCGGCTTCAAGTGG	CACCTCCCCCTGCCTCC CACCTCCCCCCCCCCCCCCCCC	CCGCCTACGCCGCTGCCTCCGCCTT CTCTCCGCTGTGGTCATTTAGGAAA ATCTGCTGCTAGCCCTCTGCCTCT CTTACTCCAGTGGAGGAGGACTCC GCAGATTCAGTGGAGCTCTTTCCTTTAG GCAGATTCAGTGGATCTGGACTCTAA 3GGAGCTTGCAAGCCTGGCTATGCT GCACCCATGTTCCTGGATGACTCCT 3GATCAAAGGTCAAGACAATCTGAT GCCTTGGACAGCCTCCGCTGCCG TCTCTGGGCTCACGAATTGACGACT TTGAGAAGGACGTGGGCAGCAAAAC GAGCAGTACGAGCGCGATTCTCTC AAATACATCGTCTACAAGGAGAGAG IGCCCAAGGAGCCCCCTGAGATTCG

		the state of the s
	CTCATGGGCCGGGGGAACATCCCTI	ACCCTTGGCAGTGTGEGAGTGAGGAGTACACGGCTGTG
1		GCTATGACATGAGCACACCCAACGCACCCCTGCACTACTATGA
	GACCGTTCGCATGGCAGCCATCAA	AGAGTCCTGGACGCACAATATCCAGCGAGAGAAAGAGTTTCTG
l	CGGAAGCTGGTGAAAGCTCGCGTC	ATCACTGATCTAAGCAGTGGCATCTGAGTGGGCCCAGCACATG
•	GCCATAGAGGCCCAGGCACCACCAC	GGAGCAGCAGCACCACCTACACAGGAGTCTTCAGACCCA
	GAGAAGGACGGTGCCAAGGGCCCC7	AGGGCCAGCAAGGCCTTGGTGGAGCAGCCAGAGCTGTGCCTGC
	TCAGCAGCCAGTCTCAGAGACCAG	CACTCAGCCTCATTCAGCATGGGTCCTTGATGCCAGAGGGCCA
	GCAGGCTCCTGGCTGTGCCCAGCAC	GGCCCAGCATGCAGGTGGTGGGACACTGGGCAGCAAGGCTGCT
1	GCCGGAATCACTTCTCCAATCAGT	GTTTGGTGTATTATCATTTTGTGAATTTGGGTAGGGGGGAGG
	TAGGGATAATTTATTTTTAAATAA	GGTTGGAGATGTCAAGTTGGGTTCACTTGCCATGCAGGAAGAG
	GCCCACTAGAGGGCCCATCAGGCAC	GTGTTACCTGTTAGCTCCCTGTGGGGCAGGAGTGCCAGGACCA
	GCCTGTACCTTGCTGTGGGGCTAC/	AGGATGGTGGGCAGGATCTCAAGCCAGCCCCCTCCAGCTCATG
	ACACTGTTTGGCCTTTCTTGGGGA	GAAGGCGGGTATTCCCACTCACCAGCCCTAGCTGTCCCATGG
	GGAAACCCTGGAGCCATCCCTTCG	GAGCCAACAAGACCGCCCCAGGGCTATAGCAGAAAGAACTTTA
	AAGCTCAGGAGGGTGACGCCCAGC	TCCGCCTGCTGGGAAGAGCTCCCCTCCACAGCTGCAGCTGATC
	CATAGGACTACCGCAGGCCCGGAC	TCACCAACTTGCCACATGTTCTAGGTTTCAGCAACAAGACTGC
	CAGGTGGTTGGGTTCTGCCTTTAGC	CCTGGACCAAAGGGAAGTGAGGCCCAAGGAGCTTACCCAAGCT
	GTGGCAGCCGTCCCAGGCCACCCC	CATGGAAGCAATAAAGCTCTTCCCTGTAAAAAAAAAAAA
	ORF Start: ATG at 152	ORF Stop: TGA at 1322

	SEQ ID NO: 156	390 aa	MW at 43785.1kD
CG150510-01 Protein Sequence	LGSEYDRLGFLLNLDSKLPAELAT IREFVPPFGIKGQDNLIKAILSVT LNSAPVKGFEKDVGSKTTLRITYP	KYANFSEGACKPGYASAL KEYRLTPALDSLRCRRCI EGAMQRPEQYERDSLFVL QEAAFTLIGLPFNNGLMG	SHSSSPQEKPVADSVVLSFDSAGQT MTAIFPRFSKPAPMFLDDSFRKWAR IVGNGGVLANKSLGSRIDDYDIVVR AGFKWQDFKWLKYIVYKERVSASDG RGNIPTLGSVAVTMALHGCDEVAVA VKARVITDLSSGI

Further analysis of the NOV37a protein yielded the following properties shown in Table 37B.

10

15

Table 37B. Protein Sequence Properties NOV37a				
PSort analysis:	0.8200 probability located in outside; 0.2360 probability located in microbody (peroxisome); 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane)			
SignalP analysis:	Cleavage site between residues 22 and 23			

A search of the NOV37a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 37C.

Table 37C. Geneseq Results for NOV37a

Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV37a Residues/ Match Residues	Tdentities/ Similarities for the Matched Region	Expect Value
AAY39960	Human alpha2-3 sialate transferase protein sequence - Homo sapiens, 375 aa. [JP11253163-A, 21-SEP-1999]	1390 1375	374/390 (95%) 375/390 (95%)	0.0
AAR65242	Human ST3N sialyltransferase - Homo sapiens, 375 aa. [WO9504816-A, 16-FEB-1995]	1390 1375	374/390 (95%) 375/390 (95%)	0.0
AAR63217	Human alpha-2,3-sialyltransferase (WM16) - Homo sapiens (melanoma WM266-4 cells), 375 aa. [WO9423021-A, 13-OCT-1994]	1390 1375	374/390 (95%) 375/390 (95%)	0.0
AAR62808	Alpha 2, 3-sialyl transferase - Homo sapiens, 375 aa. [JP06277052-A, 04-OCT-1994]	1390 1375	374/390 (95%) 375/390 (95%)	0.0
AAR41671	Rat sialyltransferase - Rattus rattus, 374 aa. [WO9318157-A, 16-SEP-1993]	1390 1374	361/390 (92%) 370/390 (94%)	0.0

In a BLAST search of public sequence datbases, the NOV37a protein was found to have homology to the proteins shown in the BLASTP data in Table 37D.

Protein Accession Number	Protein/Organism/Length	NOV37a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q11203	CMP-N-acetylneuraminate-beta-1,4-gal actoside alpha-2,3- sialyltransferase (EC 2.4.99.6) (N-acetyllactosaminide alpha-2,3- sialyltransferase) (Gal beta-1,3(4) GlcNAc alpha-2,3 sialyltransferase) (ST3N) (Sialyltransferase 6) - Homo sapiens (Human), 375 aa.	1390 1375	374/390 (95%) 375/390 (95%)	0.0

Q922X5	Sialyltransferase (N-acetyllacosaminide alpha 2,3-sialyltransferase) - Mus musculus (Mouse), 374 aa.	1390 1374	3617390 (92%) 371/390 (94%)	0.0
Q9DBB6	Sialyltransferase (N-acetyllacosaminide alpha 2,3- sialyltransferase) - Mus musculus (Mouse), 374 aa.	1390 1374	360/390 (92%) 371/390 (94%)	0.0
Q02734	CMP-N-acetylneuraminate-beta-1,4-gal actoside alpha-2,3- sialyltransferase (EC 2.4.99.6) (N-acetyllactosaminide alpha-2,3- sialyltransferase) (Gal beta-1,3(4) GlcNAc alpha-2,3 sialyltransferase) (ST3N) (Sialyltransferase 6) - Rattus norvegicus (Rat), 374 aa.	1390 1374	361/390 (92%) 370/390 (94%)	0.0
P97325	CMP-N-acetylneuraminate-beta-1,4-gal actoside alpha-2,3- sialyltransferase (EC 2.4.99.6) (N-acetyllactosaminide alpha-2,3- sialyltransferase) (Gal beta-1,3(4) GlcNAc alpha-2,3 sialyltransferase) (ST3N) (Sialyltransferase 6) - Mus musculus (Mouse), 374 aa.	1390 1374	359/390 (92%) 370/390 (94%)	0.0

PFam analysis predicts that the NOV37a protein contains the domains shown in the Table 37E.

Table 37E. Domain Analysis of NOV37a			
Pfam Domain	NOV37a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Glyco_transf_29	101389	108/324 (33%) 270/324 (83%)	3.2e-116

Example 38.

5

The NOV38 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 38A.

Table 38A. N	OV38 Sequence Analysis	
	SEQ ID NO: 157	1076 bp
NOV38a,	CCCTTATGAAGACGGGACA	TTTTGAAATAGTCACCATGCTGCTGGCAACCATGATTCTAGTGGACAT

CG150704-01	TTTCCAGGTGAAGGCTGAAGTGTT	AGACATGGCAGATAATGCATTTGATGATGAATACCTGAAATGT
DNA Sequence	ACGGACAGGATGGAAATTAAATAG	CGTTCCCCAACTGCTAAAGGAGGAAAAAGCAAGCCACCAGCAAT
DIVA Sequence		AAGCCAAATGGGCAGCCCGAAAGACTCAAATCTTTCTCCCTAT
1		AGCCCTGATGGCATATATTTCCGAAGCTCAAGAGCAAACTCCC
1		GTGAAGATGGCTGGCCAATCTCGAGAAGATTATATCTATGGCT
1	TCCAGTTCAAAGCTTTCCACTTTT	'ACCTCACAAGAGCCCTGCAGTTGCTGAGAAAACCTTGTGAGGC
		AACAAGCCAGGGCACTTCATTTACATTTGGAGGGCTAAACCAA
		GCATATTCAGCCAAACCTCAGGCTGCTAATGACCAGCTCACTG
1		GAGTTGACATTGAAAATTTTCTTGATAAAGAAAGTGAAAGAAT
		TTTTCAAGTGTCACAGGAGGGGGCTGGCAATAACCTTATCCTT
I	CAAAGCATAAACAAGACCTGCAGC	CATTATGAGTGTGCATTTCTAGGTGGACTAAAAACCGAAAACT
į .		AACCCATCTATGTCTACAACCCTGGTGAGAAAAACCAGAAGCT
		GAAGCTTGAAGACCATGGTGAGAAAAACCAGAAGCTTGAAGAC
		CCAGGTCCCAAAAGCCATCCTTCTGCATCCTCGGGCAAACTGC
		TCATTTTAATCAGTGTTTCTGCTATAAATCTCTTTGTTGCTCT
	GTAG	
	ORF Start: ATG at 6	ORF Stop: TAG at 1074

	SEQ ID NO: 158	356 aa	MW at 40311.7kD
CG150704-01 Protein Sequence	TVWENAKAKWAARKTQIFLPMNFK FKAFHFYLTRALQLLRKPCEASSK SIYTCLGVDIENFLDKESERITLI	DNHGIALMAYISEAQEQT TVVYRTSQGTSFTFGGLN PLNEVFQVSQEGAGNNLI	CTDRMEIKYVPQLLKEEKASHQQLD PFYHLFSEAVKMAGQSREDYIYGFQ QARFGHFTLAYSAKPQAANDQLTVL LQSINKTCSHYECAFLGGLKTENCI DHAPGPVPVPGPKSHPSASSGKLLL

Further analysis of the NOV38a protein yielded the following properties shown in Table 38B.

10

Table 38B. Protein Sequence Properties NOV38a		
PSort analysis:	0.6850 probability located in endoplasmic reticulum (membrane); 0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.1000 probability located in endoplasmic reticulum (lumen)	
SignalP analysis:	Cleavage site between residues 27 and 28	

A search of the NOV38a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 38C.

Table 38C. Geneseq Results for NOV38a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV38a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value

AAR41876	Human HT6 - Homo sapiens, 230 aa. [DE4209216-A, 23-SEP-1993]	29256 7227	82/238 (34%) 120/238 (49%)	1e-21
AAW76806	Human ADP-ribosyltransferase protein - Homo sapiens, 327 aa. [US5834310-A, 10-NOV-1998]	20266 31287	83/266 (31%) 123/266 (46%)	6e-21
AAW76804	Rabbit skeletal muscle ADP-ribosyltransferase protein - Oryctolagus cuniculus, 327 aa. [US5834310-A, 10-NOV-1998]	8259 6280	88/282 (31%) 130/282 (45%)	1e-2 0
AAR37572	Rabbit skeletal muscle ADP-ribosyltransferase - Oryctolagus cuniculus, 327 aa. [USN7985698-N, 01-MAY-1993]	8259 6280	88/282 (31%) 130/282 (45%)	le-20
ABB97573	Novel human protein SEQ ID NO: 841 - Homo sapiens, 229 aa. [WO200222660-A2, 21-MAR-2002]	29163 29161	59/137 (43%) 76/137 (55%)	1e-20

In a BLAST search of public sequence datbases, the NOV38a protein was found to have homology to the proteins shown in the BLASTP data in Table 38D.

Table 38D. 1	Table 38D. Public BLASTP Results for NOV38a				
Protein Accession Number	Protein/Organism/Length	NOV38a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
S62906	mono-ADP-ribosyltransferase - human, 367 aa.	1356 1367	356/367 (97%) 356/367 (97%)	0.0	
Q8WVJ7	Hypothetical 42.7 kDa protein - Homo sapiens (Human), 378 aa.	1356 1378	355/378 (93%) 355/378 (93%)	0.0	
Q13508	Ecto-ADP-ribosyltransferase 3 precursor (EC 2.4.2.31) (NAD(P)(+) arginine ADP-ribosyltransferase 3) (Mono(ADP-ribosyl)transferase 3) - Homo sapiens (Human), 389 aa.	1356 1389	355/389 (91%) 355/389 (91%)	0.0	

Q96HL1	Unknown (protein for MGC: 14489) - Homo sapiens (Human), 389 aa.	1356 1389	354/389 (91%) 354/389 (91%)	المن بالمن بالمن المن المن المن المن المن المن المن
Q9GKV6	Hypothetical 38.2 kDa protein - Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey), 338 aa.	31356 1338	300/338 (88%) 312/338 (91%)	e-174

PFam analysis predicts that the NOV38a protein contains the domains shown in the Table 38E.

5

Table 38E. Domain Analysis of NOV38a			
Pfam Domain	NOV38a Match Region	Identities/ Similarities for the Matched Region	Expect Value
ART	1312	164/340 (48%) 312/340 (92%)	1.5e-200

Example 39.

10

The NOV39 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 39A.

Table 39A. NOV	able 39A. NOV39 Sequence Analysis			
	SEQ ID NO: 159	8350 bp		
NOV39a, CG150799-01 DNA Sequence	GATGAAGATTTGAGTCCAGTTAAA ACTTGACAGTACTCGATGACGAGC AGAAGGAGGAGCTCGAGGATTAACAC CCCGTGAGATTCCTTCAGAGTATT TTCGTGGAAACGAGCACAACAATGGAA TGTCACAACTGGTATTTTCCACCTTTT CACCGGAGATTGCTGAATCGTTTC AATAAGCCCTTCTGTTGTACAAGAACACGGAGATTTGTTTG	GGAAATATCACCTTTCCC STACCAGAAATGATGAAA CTCTAGGAATTCCATTGA TATTTGGTTCCTGAGGAA ATCTGATTGGATCTGATGATGATGATGATGATGATGATGATGATGATGATCATGATGATGATGATGATGATGATGATGATGATGATGATGA	GGTAGAGGGTGGCCCAAATCCCCCT CCTGGCAGAGCAACAGTAATTTATA TATTTTTAATTCAACTGAAAAGTGT GATCATCATTAAGAAAAATGCTG GACCACATACTCATAATTCCAGTAG AATATGAGGTTTCAATCAGTTATGC GGACTTCATTGATCATCAGCCAAC AAATTTCAAATAGTTGATGACACCA AAATTTCAAATAGTTGATGACACCA AAATTTCAAATAGTTGATGACACCAC ATACCTTACAGGGAGATGCTGTGCT TAAACCTTATGGGGTGATCATTCATTC AGAATATCAAGATATCAAGGAAATCA ATTGGGTGTTGACACGGAACAGCAC AGTTCTCCATTTTGCACAAGGGCAG CCAGAAGAGGCAGGAGACACAC GCGAGCCAGCGGAGGATAGTGATGA GATTGAAGGTTGCTTTATTCTGTAC GAAGGCTTCTTAAATATCAAGGAG AAAGTTACCAATAAGAAATTACCTC TTTGTTACCATTTGTACCAATGCATTTCCTT TTTGCATGAACAAGAAGATTTTGCT TTTTGCATGAACAACAAGAATTTTCCT GGCCAGGCTACTTTAATCCAGTGTTTTTCTTCCATTTCCATTCCATTTTCCATTCCATTTCCATTCCATCCAGCTTCTACTGGAGTT	

TTTGTTTTTATCTGGGCAAAGTGACACAACAATCAACATTACTATCAAAGGTGATGACATACCGGAA ATGAATGAAACTGTAACACTTTCTCTAGACAGGGTTAACGTGGAAAACCAAGTGCTGAAATCTGGAT TTCCAGAGGACCCTATGTTATAAAAGAAGGAGAATCTGTAGAGCTCCACATCATCCGATCAAGGGGG TCCCTTGTTAAGCAGTTTCTACACTACCGAGTAGAGCCAAGAGATAGCAATGAATTCTATGGAAACA CGGGAGTACTAGAATTTAAACCTGGAGAAAGGGAGATAGTGATCACCTTGCTAGCAAGATTGGATGG GATACCAGAGTTGGATGAACACTACTGGGTGGTCCTCAGCAGCCACGGAGAACGGGAAAGCAAGTTG GGAAGTGCCACCATTGTCAATATAACGATTCTGAAAAATGATGATCCTCATGGCATTATAGAATTTG TGTAGTAAGAAATCGAGGCAACTTTGGTGATGTTAGTGTATCATGGGTGGTTAGTCCAGACTTTACA CAAGATGTATTTCCTGTACAAGGGACTGTTGTCTTTGGAGATCAGGAATTTTCAAAAAATATCACCA ${ t TTACTCCCTTCCAGATGAGATTCCAGAAGAAATGGAAGAATTTACCGTTATCCTACTGAATGGCAC$ TGGAGGAGCTAAAGTGGGAAATAGAACAACTGCAACTCTGAGGATTAGAAGAAATGATGACCCCATT TATTTTGCAGAACCTCGTGTAGTGAGGGTTCAGGAAGGTGAGACTGCCAACTTTACAGTTCTCAGAA ATGGATCTGTTGATGTGACTTGCATGGTCCAGTATGCTACCAAGGATGGGAAGGCTACTGCAAGAGA GAGAGATTTCATTCCTGTTGAAAAAGGAGAAACGCTCATTTTTGAGGTTGGAAGTAGACAGCAGAGC ATATCCATATTTGTTAATGAAGATGGTATCCCGGAAACAGATGAGCCCTTTTATATAATCCTCTTGA ATTCAACAGGTGATACAGTAGTATATCAATATGGAGTAGCTACAGTAATAATTGAAGCTAATGATGA CCCAAATGGCATTTTTCTCTGGAGCCCATAGACAAGCAGTGGAAGAAGGAAAGACTAATGCATTT TGGATTTTGAGGCACCGAGGATACTTTGGTAGTGTTTCTGTATCTTTGGCAGCTCTTTCAGAATGATT AGAAGATGTCCTGTCTGAAGATGATATGTCTTATATTACCAACTTCACCATTTTGAGGCAGCAGGGT GTGTTTGGTGATGTACAACTGGGCTGGGAAATACTGTCCAGTGAGTTCCCTGCTGGTTTGCCACCAA TGATAGATTTTTTACTGGTTGGAATTTTCCCCACCACCGTGCATTTACAACAGCACATGCGGCGTCA CCACAGTGGAACGGATGCTTTGTACTTTACCGGACTAGAGGGTGCATTTGGGACTGTTAATCCAAAA TACCATCCCTCCAGGAATAATACAATTGCCAACTTTACATTCTCAGCTTGGGTAATGCCCAATGCCA ATACGAATGGATTCATTATAGCGAAGGATGACGGTAATGGAAGCATCTACTACGGGGTAAAAATACA GCCAAGACAACAGTCATGAAATATTTAGAAGAAAGTGTTTGGCTTCATCTACTAATTATCCTGGAGG AGCCATTACTGACGGTCCTGGGATACTGAGAATTGGAGCAGGGATAAATGGCAATGACAGATTTACA GGTCTGATGCAGGATGTGAGGTCCTATGAGCGGAAACTGACGCTTGAAGAAATTTATGAACTTCATG CCATGCCCGCAAAAAGTGATTTACACCCAATTTCTGGATATCTGGAGTTCAGACAGGGAGAAACTAA CTAGTTTCTGTATATGGAGGAGCTCGTATTTCGGAAGAAAATACTACTGCAAGATTAACAATACAAA AAAGTGACAATGCAAATGGCTTGTTTGGTTTCACAGGAGCTTGTATACCAGAGATTGCAGAGGAGGG ATCAACCATTTCTTGTGTGGTTGAGAGAACCAGAGGAGCTCTGGATTATGTGCATGTTTTTTACACC ATTTCACAGATTGAAACTGATGGCATTAATTACCTTGTTGATGACTTTGCTAATGCCAGTGGAACTA ${ t ACTTAATGAGTATTTCCGTGTGACATTGGTTTCTGCAATTCCTGGAGATGGGAAGCTAGGCTCAACT$ CCTACCAGTGGTGCAAGCATAGATCCTGAAAAGGAAACGACTGATATCACCATCAAAGCTAGTGATC ATCCATATGGCTTGCTGCAGTTCTCCACAGGGCTGCCTCCTCAGCCTAAGGACGCAATGACCCTGCC TGCAAGCAGCGTTCCACATATCACTGTGGAGGAGGAAGATGGAGAAATCAGGTTATTGGTCATCCGT GCACAGGGACTTCTGGGAAGGGTGACTGCGGAATTTAGAACAGTGTCCTTGACAGCATTCAGTCCTG AGGATTACCAGAATGTTGCTGGCACATTAGAATTTCAACCAGGAGAAAGATATAAATACATTTTCAT AAACATCACTGATAATTCTATTCCTGAACTGGAAAAATCTTTTAAAGTTGAGTTGTTAAACTTGGAA GGAGGAGTAGCTGAACTCTTTAGGGTTGATGGAAGTGGTAGTGCCAGTCTAGGAGTGGCTTCCCAAA TTCTAGTGACAATTGCAGCCTCTGACCACGCTCATGGCGTATTTGAATTTAGCCCTGAGTCACTCTT TGTCAGTGGAACTGAACCAGAAGATGGGTATAGCACTGTTACATTAAATGTTATAAGACATCATGGA ACTCTGTCTCCAGTGACTTTGCATTGGAACATAGACTCTGATCCTGATGGTGATCTCGCCTTCACCT CTGGCAACATCACATTTGAGATTGGGCAGACGAGCGCCAATATCACTGTGGAGATATTGCCTGACGA AGACCCAGAACTGGATAAGGCATTCTCTGTGTCAGTCCTCAGTGTTTCCAGTGGTTCTTTGGGAGCT CATATTAATGCCACGTTAACAGTTTTGGCTAGTGATGATCCATATGGGATATTCATTTTTTCTGAGA AAAACAGACCTGTTAAAGTTGAGGAAGCAACCCAGAACATCACACTATCAATAATAAGGTTGAAAGG CCTCATGGGAAAAGTCCTTGTCTCATATGCAACACTAGATGATATGGAAAAACCACCTTATTTTCCA CCTAATTTAGCGAGAGCAACTCAAGGAAGAGACTATATACCAGCTTCTGGATTTGCTCTTTTTTGGAG CTAATCAGAGTGAGGCAACAATAGCTATTTCAATTTTGGATGATGATGAGGCCAGAAAGGTCCGAATC TGTCTTTATCGAACTACTCAACTCTACTTTAGTAGCGAAAGTACAGAGTCGTTCAATTCCAAATTCT CCACGTCTTGGGCCTAAGGTAGAAACTATTGCGCAACTAATTATCATTGCCAATGATGATGCATTTG GAACTCTTCAGCTCTCAGCACCAATTGTCCGAGTGGCAGAAAATCATGTTGGACCCATTATCAATGT GACTAGAACAGGAGGAGCATTTGCAGATGTCTCTGTGAAGTTTAAAGCTGTGCCAATAACTGCAATA GCTGGTGAAGATTATAGTATAGCTTCATCAGATGTGGTCTTGCTAGAAGGGGAAACCAGTAAAGCCG TGCCAATATATGTCATTAATGATATCTATCCTGAACTGGAAGAATCTTTTCTTGTGCAACTGATGAA TGAAACAACAGGAGGAGCCAGACTAGGGGCTTTAACAGAGGCAGTCATTATTATTGAGGCCTCTGAT GACCCCTATGGATTATTTGGTTTTCAGATTACTAAACTTATTGTAGAGGAACCTGAGTTTAACTCAG TGAAGGTAAACCTGCCAATAATTCGAAATTCTGGGACACTCGGCAATGTTACTGTTCAGTGGGTTGC CACCATTAATGGACAGCTTGCTACTGGCGACCTGCGAGTTGTCTCAGGTAATGTGACCTTTGCCCCT GGGGAAACCATTCAAACCTTGTTGTTAGAGGTCCTGGCTGACGACGTTCCGGAGATTGAAGAGGTTA TCCAAGTGCAACTAACTGATGCCTCTGGTGGAGGTACTATTGGGTTAGATCGAATTGCAAATATTAT TATTCCTGCCAATGATGATCCTTATGGTACAGTAGCCTTTGCTCAGATGGTTTATCGTGTTCAAGAG CCTCTGGAAAGAAGTTCCTGTGCTAATATAACTGTCAGGCGAAGCGGAGGGCACTTTGGTCGGCTGT TGTTGTTCTACAGTACTTCCGACATTGATGTAGTGGCTCTGGCAATGGAGGAAGGTCAAGATTTACT GTCCTACTATGAATCTCCAATTCAAGGGGTGCCTGACCCACTTTGGAGAACTTGGATGAATGTCTCT

CATTTTTCAGTGCTTCTGAGGGTCCCCAGTGTTTCTGGATGACATCATGGATCAGCCCAGCTGTCAA CAATTCAGACTTCTGGACCTACAGGAAAAACATGACCAGGGTAGCATCTCTTTTTAGTGGTCAGGCT GTGGCTGGGAGTGACTATGAGCCTGTGACAAGGCAATGGGCCATAATGCAGGAAGGTGATGAATTCG CCTTGAAGTTCACCTCATGAACATTTCAGCCAGTTTGAAAAATCAGCCAACCATAGGACAGCCAAAT ATTTCTACAGTTGTCATAGCACTAAATGGTGATGCCTTTGGAGTGTTTGTGATCTACAATATTAGTC CCAATACTTCCGAAGATGGCTTATTTGTTGAAGTTCAGGAGCAGCCCCAAACCTTGGTGGAGCTGAT GATACACAGGACAGGGGGCAGCTTAGGTCAAGTGGCAGTCGAATGGCGTGTTGTTGGTGGAACAGCT ACTGAAGGTTTAGATTTTATAGGTGCTGGAGAGATTCTGACCTTTGCTGAAGGTGAAACCAAAAAGA GTACACTGAAGGTGGAAGTAGAATTTTGCCAAGCTCCGACACTGTTAGAGTGAACATTTTGGCCAAT GACAATGTGGCAGGAATTGTTAGCTTTCAGACAGCTTCCAGATCTGTCATAGGTCATGAAGGAGAAA TTTTACAATTCCATGTGATAAGAACTTTCCCTGGTCGAGGAAATGTTACTGTTAACTGGAAAATTAT TTCTGTATGATGTCAGGACACAAGGAGTTCCACCAGCCGGAATCGCCCTGCTTGATGCTCAAGGATA TGCAGCTGTCCTCACAGTAGAAGCCAGTGATGAACCACATGGAGTTTTAAATTTTGCTCTTTCATCA AGATTTGTGTTACTACAAGAGGCTAACATAACAATTCAGCTTTTCATCAACAGAGAATTTGGATCTC TAGGAGCTATCAATGTCACATATACCACGGTTCCTGGAATGCTGAGTCTGAAGAACCAAACAGTAGG AAACCTAGCAGAGCCAGAAGTTGATTTTGTCCCTATCATTGGCTTTCTGATTTTAGAAGAAGGGGAA ACAGCAGCAGCATCAACATTACCATTCTTGAGGATGATGTACCAGAGCTAGAAGAATATTTCCTGG TGAATTTAACTTACGTTGGACTTACCATGGCTGCTTCAACTTCATTTCCTCCCAGACTAGGTATGAG GGGTTTCTTGTTTGTTTTTTTTGCTCACTTCAAATGAAA**TGA**AAC<u>TTCAT</u>TTTTTGAATCAGAA <u>GTGATCATTGTGCTGTTTTGTTAATCTTAGCTATGTGTTAAA</u>

ORF Start: ATG at 23 ORF Stop: TGA at 8282

MW at 301743.8kD

2753 aa

NOV39a, CG150799-01 Protein Sequence

SEQ ID NO: 160

MVMVTFEVEGGPNPPDEDLSPVKGNITFPPGRATVIYNLTVLDDEVPENDEIFLIQLKSVEGGAEIN TSRNSIEIIIKKNDSPVRFLQSIYLVPEEDHILIIPVVRGKDNNGNLIGSDEYEVSISYAVTTGNST ${ t AHAQQNLDFIDLQPNTTVVFPPFIHESHLKFQIVDDTTPEIAESFHIMLLKDTLQGDAVLISPSVVQ}$ VTIKPNDKPYGVLSFNSVLFERTVIIDEDRISRYEEITVVRNGGTHGNVSANWVLTRNSTDPSPVTA DIRPSSGVLHFAQGQMLATIPLTVVDDDLPEEAEAYLLQILPHTIRGGAEVSEPAEDSDDVYGLITF FPMENQKIESSPGERYLSLSFTRLGGTKGDVRLLYSVLYIPAGAVDPLQAKEGILNISRRNDLIFPE QKTQVTTKLPIRNDAFFQNGAHFLVQLETVELLNIIPLIPPISPRFGEICNISLLVTPAIANGEIGF ${ t LSNLPIIL}$ HEPEDFAAEVVYIPLHRDGTDGQATVYWSLKPSGFNSKAVTPDDIGPFNGSVLFLSGQS DTTINITIKGDDIPEMNETVTLSLDRVNVENQVLKSGYTSRDLIILENDDPGGVFEFSPASRGPYVI KEGESVELHIIRSRGSLVKQFLHYRVEPRDSNEFYGNTGVLEFKPGEREIVITLLARLDGIPELDEH ywvvlsshgeresklgsativnitilknddphgiiefvsdglivmineskgdaiysavydvvrnrgn FGDVSVSWVVSPDFTQDVFPVQGTVVFGDQEFSKNITIYSLPDEIPEEMEEFTVILLNGTGGAKVGN RTTATLRIRRNDDPIYFAEPRVVRVQEGETANFTVLRNGSVDVTCMVQYATKDGKATARERDFIPVE KGETLIFEVGSRQQSISIFVNEDGIPETDEPFYIILLNSTGDTVVYQYGVATVIIEANDDPNGIFSL EPIDKAVEEGKTNAFWILRHRGYFGSVSVSWQLFQNDSALQPGQEFYETSGTVNFMDGEEAKPIILH AFPDKIPEFNEFYFLKLVNISGPGGQLAETNLQVTVMVPFNDDPFGVFILDPECLEREVAEDVLSED DMSYITNFTILRQQGVFGDVQLGWEILSSEFPAGLPPMIDFLLVGIFPTTVHLQQHMRRHHSGTDAL YFTGLEGAFGTVNPKYHPSRNNTIANFTFSAWVMPNANTNGFIIAKDDGNGSIYYGVKIQTNESHVT lslhyktlgsnatyiakttvmkylbesvwlhlliiledgiiefyldgnamprgikslkg<u>ë</u>aitdgpg ILRIGAGINGNDRFTGLMQDVRSYERKLTLEEIYELHAMPAKSDLHPISGYLEFRQGETNKSFIISA RDDNDEEGEELFILKLVSVYGGARISEENTTARLTIQKSDNANGLFGFTGACIPEIAEEGSTISCVV ERTRGALDYVHVFYTISQIETDGINYLVDDFANASGTITFLPWQRSEVLNIYVLDDDIPELNEYFRV TLVSAI PGDGKLGSTPTSGASIDPEKETTDITIKASDHPYGLLQFSTGLPPQPKDAMTLPASSVPHI TVEEEDGEIRLLVIRAQGLLGRVTAEFRTVSLTAFSPEDYQNVAGTLEFQPGERYKY1FINITDNSI PELEKSFKVELLNLEGGVAELFRVDGSGSASLGVASQILVTIAASDHAHGVFEFSPESLFVSGTEPE $\mathtt{DGYSTVTLNVIRHHGTLSPVTLHWNIDSDPDGDLAFTSGNITFEIGQTSANITVEILPDEDPELDKA}$ FSVSVLSVSSGSLGAHINATLTVLASDDPYGIFIFSEKNRPVKVEEATONITLSIIRLKGLMGKVLV SYATLDDMEKPPYFPPNLARATQGRDY1PASGFALFGANQSEATIAISILDDDEPERSESVFIELLN STLVAKVQSRSIPNSPRLGPKVETIAQLIIIANDDAFGTLOLSAPIVRVAENHVGPIINVTRTGGAF ADVSVKFKAVPITAIAGEDYSIASSDVVLLEGETSKAVPIYVINDIYPELEESFLVQLMNETTGGAR LGALTEAVIIIEASDDPYGLFGFQITKLIVEEPEFNSVKVNLPIIRNSGTLGNVTVQWVATINGQLA TGDLRVVSGNVTFAPGETIQTLLLEVLADDVPEIEEVIQVQLTDASGGGTIGLDRIANIIIPANDDP YGTVAFAQMVYRVQEPLERSSCANITVRRSGGHFGRLLLFYSTSDIDVVALAMEEGQDLLSYYESPI QGVPDPLWRTWMNVSAVGEPLYTCATLCLKEQACSAFSFFSASEGPQCFWMTSWISPAVNNSDFWTY RKNMTRVASLFSGQAVAGSDYEPVTRQWAIMQEGDEFANLTVSILPDDFPEMDESFLISLLEVHLMN ISASLKNQPTIGQPNISTVVIALNGDAFGVFVIYNISPNTSEDGLFVEVQEQPQTLVELMIHRTGGS LGQVAVEWRVVGGTATEGLDFIGAGEILTFAEGETKKTVILTILDDSEPEDDESIIVSLVYTEGGSR ILPSSDTVRVNILANDNVAGIVSFQTASRSVIGHEGBILQFHVIRTFPGRGNVTVNWKIIGQNLELN FANFSGQLFFPEGSLNTTLFVHLLDDNIPEEKEVYQVILYDVRTQGVPPAGIALLDAQGYAAVLTVE ASDEPHGVLNFALSSRFVLLOEANITIOLFINREFGSLGAINVTYTTVPGMLSLKNOTVGNLAEPEV

WO 03/029424

dfvpiigflileegetaaainitileddvpeleeyflynutyvgltmaastsfpprlgmrgflfvsf Cslomk

CAGGGAAAAGGGAACCTATGGA**ATG**GTCATGGTGACTTTTGAGGTAGAGGGTGGCCCAAATCCCCCT

SEQ ID NO: 161

11925 bp

NOV39b, CG150799-02 DNA Sequence

GATGAAGATTTGAGTCCAGTTAAAGGAAATATCACCTTTCCCCCTGGCAGAGCAACAGTAATTTATA ACTTGACAGTACTCGATGACGAGGTACCAGAAAATGATGAAAATATTTTTAATTCAACTGAAAAGTGT AGAAGGAGGAGCTGAGATTAACACCTCTAGGAATTCCATTGAGATCATCATTAAGAAAAATGATAGT CCCGTGAGATTCCTTCAGAGTATTTATTTGGTTCCTGAGGAAGACCACATACTCATAATTCCAGTAG TTCGTGGAAAGGACAACAATGGAAATCTGATTGGATCTGATGAATATGAGGTTTCAATCAGTTATGC TGTCACAACTGGGAATTCCACAGCACATGCCCAGCAAAATCTGGACTTCATTGATCTTCAGCCAAAC ACAACTGTTGTTTTTCCACCTTTTATTCATGAATCTCACTTGAAATTTCAAATAGTTGATGACACCA CACCGGAGATTGCTGAATCGTTTCACATTATGTTACTAAAAGATACCTTACAGGGAGATGCTGTGCT AATAAGCCCTTCTGTTGTACAAGTCACCATTAAGCCAAATGATAAACCTTATGGAGTCCTTTCATTC AACAGTGTTTTGTTTGAAAGGACAGTTATAATTGATGAAGATAGAATATCAAGATATGAAGAAATCA ${ t CAGTGGTTAGAAATGGAGGAACCCATGGGAATGTCTCTGCGAATTGGGTGTTGACACGGAACAGCAC}$ TGATCCCTCACCAGTAACAGCAGATATCAGACCGAGCTCTGGAGTTCTCCATTTTGCACAAGGGCAG ATGTTGGCAACAATTCCTCTTACTGTGGTTGATGATGATCTTCCAGAAGAGGCAGAAGCTTATCTAC TGTCTATGGCCTAATAACATTTTTTCCTATGGAAAACCAGAAGATTGAAAGCAGCCCAGGTGAACGA TACTTATCCTTGAGTTTTACAAGACTAGGAGGGACTAAAGGAGATGTGAGGTTGCTTTATTCTGTAC TTTACATTCCTGCTGGAGCTGTGGACCCCTTGCAAGCAAAAGAAGGCATCTTAAATATATCAAGGAG AAATGACCTCATTTTTCCAGAGCAAAAAACTCAAGTCACTACAAAATTACCAATAAGAAATGATGCA TTCTTTCAAAATGGAGCTCACTTTCTAGTACAGTTGGAAACTGTGGAGTTGTTAAACATAATTCCTC TAATCCCACCCATAAGCCCTAGATTTGGGGAAATCTGCAATATTTCTTTACTGGTTACTCCAGCCAT TGCAAATGGAGAAATTGGCTTTCTCAGCAATCTTCCAATTATTTTGCATGAACCAGAAGATTTTGCT GCTGAAGTGGTATACATTCCCTTACATCGGGATGGAACTGATGGCCAGGCTACTGTCTACTGGAGTT TGAAGCCCTCTGGCTTTAATTCAAAAGCAGTGACCCCGGATGATATAGGCCCCTTTAATGGCTCTGT TTTGTTTTTATCTGGGCAAAGTGACACAACAATCAACATTACTATCAAAGGTGATGACATACCGGAA ATGAATGAAACTGTAACACTTTCTCTAGACAGGGTTAACGTGGAAAACCAAGTGCTGAAATCTGGAT TTCCAGAGGACCCTATGTTATAAAAGAAGGAGAATCTGTAGAGCTCCACATCATCCGATCAAGGGGG TCCCTTGTTAAGCAGTTTCTACACTACCGAGTAGAGCCAAGAGATAGCAATGAATTCTATGGAAACA CGGGAGTACTAGAATTTAAACCTGGAGAAAGGGAGATAGTGATCACCTTGCTAGCAAGATTGGATGG GATACCAGAGTTGGATGAACACTACTGGGTGGTCCTCAGCAGCCACGGAGAACGGGAAAGCAAGTTG GGAAGTGCCACCATTGTCAATATAACGATTCTGAAAAATGATGATCCTCATGGCATTATAGAATTTG TGTAGTAAGAAATCGAGGCAACTTTGGTGATGTTAGTGTATCATGGGTGGTTAGTCCAGACTTTACA CAAGATGTATTTCCTGTACAAGGGACTGTTGTCTTTGGAGATCAGGAATTTTCAAAAAATATCACCA TTTACTCCCTTCCAGATGAGATTCCAGAAGAAATGGAAGAATTTACCGTTATCCTACTGAATGGCAC TGGAGGAGCTAAAGTGGGAAATAGAACAACTGCAACTCTGAGGATTAGAAGAAATGATGACCCCATT TATTTTGCAGAACCTCGTGTAGTGAGGGTTCAGGAAGGTGAGACTGCCAACTTTACAGTTCTCAGAA ATGGATCTGTTGATGTGACTTGCATGGTCCAGTATGCTACCAAGGATGGGAAGGCTACTGCAAGAGA GAGAGATTTCATTCCTGTTGAAAAAGGAGAAACGCTCATTTTTGAGGTTGGAAGTAGACAGCAGAGC ATATCCATATTTGTTAATGAAGATGGTATCCCGGAAACAGATGAGCCCTTTTATATAATCCTCTTGA ATTCAACAGGTGATACAGTAGTATATCAATATGGAGTAGCTACAGTAATAATTGAAGCTAATGATGA CCCAAATGGCATTTTTTCTCTGGAGCCCATAGACAAAGCAGTGGAAGAAGGAAAGACTAATGCATTT TGGATTTTGAGGCACCGAGGATACTTTGGTAGTGTTTCTGTATCTTGGCAGCTCTTTCAGAATGATT AGCAAAACCAATCATTCTCCATGCTTTTCCAGATAAAATTCCTGAATTCAATGAATTTTATTTCCTA AGAAGATGTCCTGTCTGAAGATGATATGTCTTATATTACCAACTTCACCATTTTGAGGCAGCAGGGT GTGTTTGGTGATGTACAACTGGGCTGGGAAATACTGTCCAGTGAGTTCCCTGCTGGTTTGCCACCAA TGATAGATTTTTTACTGGTTGGAATTTTCCCCACCACCGTGCATTTACAACAGCACATGCGGCGTCA CCACAGTGGAACGGATGCTTTGTACTTTACCGGACTAGAGGGTGCATTTGGGACTGTTAATCCAAAA TACCATCCCTCCAGGAATAATACAATTGCCAACTTTACATTCTCAGCTTGGGTAATGCCCAATGCCA ATACGAATGGATTCATTATAGCGAAGGATGACGGTAATGGAAGCATCTACTACGGGGTAAAAATACA GCCAAGACAACAGTCATGAAATATTTAGAAGAAAGTGTTTGGCTTCATCTACTAATTATCCTGGAGG AGCCATTACTGACGGTCCTGGGATACTGAGAATTGGAGCAGGGATAAATGGCAATGACAGATTTACA GGTCTGATGCAGGATGTGAGGTCCTATGAGCGGAAACTGACGCTTGAAGAAATTTATGAACTTCATG CCATGCCCGCAAAAAGTGATTTACACCCAATTTCTGGATATCTGGAGTTCAGACAGGGAGAAACTAA CTAGTTTCTGTATATGGAGGAGCTCGTATTTCGGAAGAAAATACTACTGCAAGATTAACAATACAAA AAAGTGACAATGCAAATGGCTTGTTTGGTTTCACAGGAGCTTGTATACCAGAGATTGCAGAGGAGGG ATCAACCATTTCTTGTGTGGTTGAGAGAACCAGAGGAGCTCTGGATTATGTGCATGTTTTTTACACC ATTTCACAGATTGAAACTGATGGCATTAATTACCTTGTTGATGACTTTGCTAATGCCAGTGGAACTA

ACTTAATGAGTATTTCCGTGTGACATTGGTTTCTGCAATTCCTGGAGATGGGAAGCTAGGCTCAACT CCTACCAGTGGTGCAAGCATAGATCCTGAAAAGGAAACGACTGATATCACCATCAAAGCTAGTGATC ATCCATATGGCTTGCTGCAGTTCTCCACAGGGGCTGCCTCCTCAGCCTAAGGACGCAATGACCCTGCC TGCAAGCAGCGTTCCACATATCACTGTGGAGGAGGAAGATGGAGAAATCAGGTTATTGGTCATCCGT GCACAGGGACTTCTGGGAAGGGTGACTGCGGAATTTAGAACAGTGTCCTTGACAGCATTCAGTCCTG AGGATTACCAGAATGTTGCTGGCACATTAGAATTTCAACCAGGAGAAAGATATAAATACATTTTCAT AAACATCACTGATAATTCTATTCCTGAACTGGAAAAATCTTTTAAAGTTGAGTTGTTAAACTTGGAA GGAGGAGTAGCTGAACTCTTTAGGGTTGATGGAAGTGGTAGTGCCAGTCTAGGAGTGGCTTCCCAAA TTCTAGTGACAATTGCAGCCTCTGACCACGCTCATGGCGTATTTGAATTTAGCCCTGAGTCACTCTT TGTCAGTGGAACTGAACCAGAAGATGGGTATAGCACTGTTACATTAAATGTTATAAGACATCATGGA ACTCTGTCTCCAGTGACTTTGCATTGGAACATAGACTCTGATCCTGATGGTGATCTCGCCTTCACCT AGACCCAGAACTGGATAAGGCATTCTCTGTGTCAGTCCTCAGTGTTTCCAGTGGTTCTTTGGGAGCT CATATTAATGCCACGTTAACAGTTTTGGCTAGTGATGATCCATATGGGATATTCATTTTTTCTGAGA AAAACAGACCTGTTAAAGTTGAGGAAGCAACCCAGAACATCACACTATCAATAATAAGGTTGAAAGG CCTCATGGGAAAAGTCCTTGTCTCATATGCAACACTAGATGATATGGAAAAACCACCTTATTTTCCA CTAATCAGAGTGAGGCAACAATAGCTATTTCAATTTTGGATGATGATGAGGCCAGAAAGGTCCGAATC TGTCTTTATCGAACTACTCAACTCTACTTTAGTAGCGAAAGTACAGAGTCGTTCAATTCCAAATTCT CCACGTCTTGGGCCTAAGGTAGAAACTATTGCGCAACTAATTATCATTGCCAATGATGATGCATTTG GAACTCTTCAGCTCTCAGCACCAATTGTCCGAGTGGCAGAAAATCATGTTGGACCCATTATCAATGT GACTAGAACAGGAGGAGCATTTGCAGATGTCTCTGTGAAGTTTAAAGCTGTGCCAATAACTGCAATA GCTGGTGAAGATTATAGTATAGCTTCATCAGATGTGGTCTTGCTAGAAGGGGAAACCAGTAAAGCCG TGCCAATATATGTCATTAATGATATCTATCCTGAACTGGAAGAATCTTTTCTTGTGCAACTGATGAA TGAAACAACAGGAGGAGCCAGACTAGGGGCTTTAACAGAGGCAGTCATTATTATTGAGGCCTCTGAT GACCCCTATGGATTATTTGGTTTTCAGATTACTAAACTTATTGTAGAGGAACCTGAGTTTAACTCAG TGAAGGTAAACCTGCCAATAATTCGAAATTCTGGGACACTCGGCAATGTTACTGTTCAGTGGGTTGC CACCATTAATGGACAGCTTGCTACTGGCGACCTGCGAGTTGTCTCAGGTAATGTGACCTTTGCCCCT GGGGAAACCATTCAAACCTTGTTGTTAGAGGTCCTGGCTGACGACGTTCCGGAGATTGAAGAGGTTA TCCAAGTGCAACTAACTGATGCCTCTGGTGGAGGTACTATTGGGTTAGATCGAATTGCAAATATTAT TATTCCTGCCAATGATGATCCTTATGGTACAGTAGCCTTTGCTCAGATGGTTTATCGTGTTCAAGAG CCTCTGGAAAGAAGTTCCTGTGCTAATATAACTGTCAGGCGAAGCGGAGGGCACTTTGGTCGGCTGT TGTTGTTCTACAGTACTTCCGACATTGATGTAGTGGCTCTGGCAATGGAGGAAGGTCAAGATTTACT GTCCTACTATGAATCTCCAATTCAAGGGGTGCCTGACCCACTTTGGAGAACTTGGATGAATGTCTCT GCCGTGGGGGAGCCCCTGTATACCTGTGCCACTTTGTGCCTTAAGGAACAAGCTTGCTCAGCGTTTT CATTTTTCAGTGCTTCTGAGGGTCCCCAGTGTTTCTGGATGACATCATGGATCAGCCCAGCTGTCAA CAATTCAGACTTCTGGACCTACAGGAAAAACATGACCAGGGTAGCATCTCTTTTTAGTGGTCAGGCT GTGGCTGGGAGTGACTATGAGCCTGTGACAAGGCAATGGGCCATAATGCAGGAAGGTGATGAATTCG CCTTGAAGTTCACCTCATGAACATTTCAGCCAGTTTGAAAAATCAGCCAACCATAGGACAGCCAAAT ATTTCTACAGTTGTCATAGCACTAAATGGTGATGCCTTTGGAGTGTTTGTGATCTACAGTATTAGTC CCAATACTTCCGAAGATGGCTTATTTGTTGAAGTTCAGGAGCAGCCCCAAACCTTGGTGGAGCTGAT GATACACAGGACAGGGGGCAGCTTAGGTCAAGTGGCAGTCGAATGGCGTGTTGTTGGTGGAACAGCT ACTGAAGGTTTAGATTTTATAGGTGCTGGAGAGATTCTGACCTTTGCTGAAGGTGAAACCAAAAAGA GTACACTGAAGGTGGAAGTAGAATTTTGCCAAGCTCCGACACTGTTAGAGTGAACATTTTGGCCAAT GACAATGTGGCAGGAATTGTTAGCTTTCAGACAGCTTCCAGATCTGTCATAGGTCATGAAGGAGAAA TTTTACAATTCCATGTGATAAGAACTTTCCCTGGTCGAGGAAATGTTACTGTTAACTGGAAAATTAT TTCTGTATGATGTCAGGACACAAGGAGTTCCACCAGCCGGAATCGCCCTGCTTGATGCTCAAGGATA TGCAGCTGTCCTCACAGTAGAAGCCAGTGATGAACCACATGGAGTTTTAAATTTTGCTCTTTCATCA AGATTTGTGTTACTACAAGAGGCTAACATAACAATTCAGCTTTTCATCAACAGAGAATTTGGATCTC TAGGAGCTATCAATGTCACATATACCACGGTTCCTGGAATGCTGAGTCTGAAGAACCAAACAGTAGG AAACCTAGCAGAGCCAGAAGTTGATTTTGTCCCTATCATTGGCTTTCTGATTTTAGAAGAAGGGGAA ACAGCAGCAGCCATCAACATTACCATTCTTGAGGATGATGTACCAGAGCTAGAAGAATATTTCCTGG TGAATTTAACTTACGTTGGACTTACCATGGCTGCTTCAACTTCATTTCCTCCCAGACTAGATTCAGA AGGTTTGACTGCACAAGTTATTATTGATGCCAATGATGGGGCCCGAGGTGTAATTGAATGGCAACAA AGCAGGTTTGAAGTAAATGAAACCCATGGAAGTTTAACATTGGTAGCCCAGAGGAGCAGAAACCTC TTGGCCATGTTTCCTTATTTGTGTATGCTCAGAATTTGGAAGCACAAGTGGGGCTGGATTATATCTT CACCCCAATGATTCTTCATTTTGCTGATGGAGAAAGGTATAAAAATGTCAATATCATGATTCTTGAT GATGACATTCCAGAAGGAGATGAAAAATTTCAGCTGATTTTAACAAATCCTTCTCCTGGACTAGAGC TAGGGAAAAATACAATAGCCTTAATTATTGTCCTTGCTAATGATGACGGCCCTGGAGTTCTATCATT TAACAACAGTGAGCACTTTTTCCTAAGAGAGCCAACAGCTCTCTACGTCCAGGAGAGTGTTGCAGTA TTGTACATTGTTCGGGAACCTGCACAAGGATTGTTTGGAACAGTGACAGTTCAGTTCATTGTGACAG AAGTGAATTCCTCAAATGAATCTAAAGATCTGACTCCTTCCAAAGGCTATATTGTTTTAGAAGAAGG TGTTCGATTCAAGGCCCTACAAATATCTGCCATATTAGACACGGAACCAGAAATGGATGAGTATTTT GTTTGCACCTTGTTTAATCCAACTGGAGGTGCTAGACTAGGGGTGCATGTTCAAACCCTGATAACAG TTTTGCAAAACCAGGCCCCTTTGGGGCTATTCAGTATCTCTGCAGTTGAAAATAGAGCCACCTCCAT AGACATCGAAGAAGCCAATAGGACCGTGTATTTAAATGTATCTCGAACTAATGGCATTGATTTGGCT GTGAGTGTGCAGTGGGAGACAGTATCTGAAACAGCCTTTGGCATGAGGGGGAATGGATGTTGTGTTTT ATATGGTATAATGTTAAGAAAATCATCTGTTACTGTTTACCGATGGCAGGGGATTTTTATTCCAGTT GAGGATTTAAATATAGAAAATCCTAAAACTTGTGAGGCCTTTAATATTGGTTTTTCTCCCTACTTTG TGATTACTCATGAAGAAAGAAATGAAGAAAAGCCTTCTCTTAACAGTGTGTTTACATTCACATCTGG

ATTTAAATTATTCCTGGTACAAACAATCATTATTCTGGAAAGTTCTCAAGTAAGATATTTTACTTCA GACAGCCAAGATTATTTAATCATTGCAAGTCAAAGAGATGATTCCGAATTAACTCAGGTCTTCAGGT GGAATGGAGGAAGCTTCGTGTTGCATCAAAAACTCCCTGTCCGAGGTGTGCTGACCGTGGCCTTGTT CAACAAGGGAGGCTCTGTGTTCTTAGCCATTTCCCAGGCTAATGCCAGGCTAAACTCCCTTTTATTC AGATGGTCTGGCAGTGGGTTTATTAACTTTCAAGAGGTGCCTGTCAGTGGGACAACAGAAGTTGAGG CTTTGTCTTCAGCCAATGATATTTACCTAATATTTGCCAAAAATGTCTTTCTAGGAGATCAGAATTC AATTGATATTTCATCTGGGAGATGGGACAGTCTTCCTTCAGGTATTTTCAGTCTGTAGATTTTGCT GCTGTTAACAGAATCCACTCCTTCACACCAGCCTCAGGAATAGCCCACATACTTCTTATTGGCCAAG GGAGCTCATTCACATATATATGAGCTAGCCTACATTTCCAGCCATTCTGACTTTATTCCTAGTTCAG GTGAACTGATATTTGAACCTGGTGAGAGAGAGCTACAATAGCAGTAAATATCCTTGATGATACAGT TCCAGAAAAAGAAGCATCCTTCAAAGTTCAACTTAAAAATCCCAAAGGAGGAGCAGAGATTGGCATT AATGATTCTGTAACAATAACCATTCTGTCTAATGATGATGCCTATGGAATTGTTGCATTTGCTCAGA ATTCATTATATAAGCAAGTGGAAGAAATGGAGCAAGATAGCCTAGTAACCTTGAACGTTGAACGCTT AAAAGGAACATATGGCCGTATAACCATAGCATGGGAAGCTGATGGAAGTATTAGTGATATATTTCCT ACCTCAGGAGTGATTTTATTTACTGAAGGCCAGGTACTGTCAACAATCACTCTAACTATTCTTGCTG ATAATATACCAGAGTTATCAGAGGTTGTGATTGTAACCCTCACCCGTATCACCACAGAAGGGGTTGA GGACTCATACAAAGGTGCTACTATTGATCAGGACAGAAGCAAGTCTGTTATAACAACTTTGCCCAAT GACTCACCTTTTGGCTTGGTGGGCTGGCGTGCTGCGTCTTCATTAGAGTAGCAGAGCCTAAAG AAAACACCACCACTCTTCAGTTACAAATAGCTCGAGATAAAGGACTACTTGGGGATATTGCCATTCA CTTGAGAGCTCAACCCAATTTCTTACTGCATGTCGATAATCAAGCTACTGAGAATGAAGATTATGTA TTGCAAGAAACAATAATAATAATGAAAGAAAACATAAAAGAAGCTCATGCCGAAGTTTCCATTTTTGC CGGATGACCTTCCTGAATTGGAGGAAGGATTTATTGTCACTATCACTGAGGTGAACCTGGTGAACTC TGACTTCTCTACAGGACAGCCAAGTGTGCGGAGGCCCGGAATGGAAATAGCTGAGATAATGATAGAA GAAAATGACGATCCCAGAGGAATTTTTATGTTTCATGTTACTAGAGGCGCTGGGGAAGTTATTACTG GGCAGTAAATGTTTATTGGAAAGCATCACCAGACAGTGCTGGCCTGGAAGACTTTAAACCATCTCAT GGGATTCTTGAATTTGCAGATAAACAGGTTACTGCAATGATAGAAATCACCATAATTGATGATGCTG AATTTGAATTGACAGAGACGTTCAATATTTCCTTGATCAGTGTTGCTGGAGGTTGCAGACTTGGTTG TGATGTTGTGGTAACTGTTGTTATTCCACAAAATGATTCTCCATTTGGAGTATTTGGATTTGAAGAA AAGACTGTAAGTTAA<u>ACATATCAGGGGAAAGCCTTGTTTCAGGCTAGCGTTTCATGTAATTTTGAG</u> AGAAAGTGTCTCACATTTTTGTTTTGGAAGTCTTGGCCAGGCATGGTGGCTCATGCCAGTAATCCCA GCACTTTGGGAGGCCGCAGCGGGCAGATCACGAGGTCAGGAGATTGACACCATCCTGGCCAATATGG TTGAATTCCCGTCTCTACTGAAAGTACAAAAATTAGCTGGGCGTGGTGGCACATGCCTGTATTCCCA <u>GATACTTGGGAGGCTGAGGCAGGAGACTCGCTTGAACCCAGGAGGCAGAGGTTGCAGTGAGCTGAGA</u> ORF Start: ATG at 23 ORF Stop: TAA at 11537

SEO ID NO: 162 3838 aa MW at 421384.3kD NOV39b. MVMVTFEVEGGPNPPDEDLSPVKGNITFPPGRATVIYNLTVLDDEVPENDEIFLIOLKSVEGGAEIN TSRNSIEIIIKKNDSPVRFLQSIYLVPEEDHILIIPVVRGKDNNGNLIGSDEYEVŠISYAVTTGNST CG150799-02 AHAQQNLDF1DLQPNTTVVFPPF1HESHLKFQ1VDDTTPE1AESFH1MLLKDTLQGDAVL1SPSVVQ VTIKPNDKPYGVLSFNSVLFERTVIIDEDRIŠRYEEITVVRNGGTHGNVSANWVLTRNSTDPSPVTA Protein Sequence DIRPSSGVLHFAQGQMLATIPLTVVDDDLPEEAEAYLLQILPHTIRGGAEVSEPAEDSDDVYGLITF FPMENQKIESSPGERYLSLSFTRLGGTKGDVRLLYSVLYIPAGAVDPLQAKEGILNISRRNDLIFPE QKTQVTTKLP1RNDAFFQNGAHFLVQLETVELLN11PL1PP1SPRFGEICN1SLLVTPA1ANGE1GF LSNLPIILHEPEDFAAEVVYIPLHRDGTDGQATVYWSLKPSGFNSKAVTPDDIGPFNGSVLFLSGOS DTTINITIKGDDIPEMNETVTLSLDRVNVENQVLKSGYTSRDLIILENDDPGGVFEFSPASRGPYVI KEGESVELHIIRSRGSLVKQFLHYRVEPRDSNEFYGNTGVLEFKPGEREIVITLLARLDGIPELDEH YWVVLSSHGERESKLGSATIVNITILKNDDPHGIIEFVSDGLIVMINESKGDAIYSAVYDVVRNRGN FGDVSVSWVVSPDFTQDVFPVQGTVVFGDQEFSKNITIYSLPDEIPEEMEEFTVILLNGTGGAKVGN RTTATLRIRRNDDPIYFAEPRVVRVQEGETANFTVLRNGSVDVTCMVQYATKDGKATARERDFIPVE KGETLIFEVGSRQQSISIFVNEDGIPETDEPFYIILLNSTGDTVVYQYGVATVIIEANDDPNGIFSL EPIDKAVEEGKTNAFWILRHRGYFGSVSVSWQLFONDSALOPGOEFYETSGTVNFMDGEEAKPIILH afpdkipefnefyflklvnisgpggolaetnlovtvmvpfnddpfgvfildpeclerevaedvlsed $exttt{DMSYITNFTILRQQGVFGDVQLGWEILSSEFPAGLPPMIDFLLVGIFPTTVHLQQHMRRHHSGTDAL}$ YFTGLEGAFGTVNPKYHPSRNNTIANFTFSAWVMPNANTNGFIIAKDDGNGSIYYGVKIQTNESHVT LSLHYKTLGSNATY1AKTTVMKYLEESVWLHLL11LEDG11EFYLDGNAMPRG1KSLKGEA1TDGPG ILRIGAGINGNDRFTGLMQDVRSYERKLTLEEIYELHAMPAKSDLHPISGYLEFRQGETNKSFIISA RDDNDEEGEELFILKLVSVYGGARISEENTTARLTIQKSDNANGLFGFTGACIPEIAEEGSTISCVV ERTRGALDYVHVFYTISQIETDGINYLVDDFANASGTITFLPWQRSEVLNIYVLDDDIPELNEYFRV TLVSAI PGDGKLGSTPTSGASIDPEKETTDITIKASDHPYGLLQFSTGLPPQPKDAMTLPASSVPHI ${ t TVEEEDGEIRLLVIRAQGLLGRV { t TAFSPEDYQN { t VAGTLEFQPGERYKYIFINIT { t DNSI}}}$ PELEKSFKVELLNLEGGVAELFRVDGSGSASLGVASQILVTIAASDHAHGVFEFSPESLFVSGTEPE DGYSTVTLNVIRHHGTLSPVTLHWNIDSDPDGDLAFTSGNITPEIGQTSANITVEILPDEDPELDKA FSVSVLSVSSGSLGAHINATLTVLASDDPYGIFIFSEKNRPVKVEEATQNITLSIIRLKGLMGKVLV SYATLDDMEKPPYFPPNLARATOGRDYIPASGFALFGANOSEATIAISILDDDEPERSESVFIELLN

STLVAKVQSRSIPNSPRLGPKVETIAQLIIIANDDAFETIQLSAFIVNVAENHVGPIINVTRTGGAF ADVSVKFKAVPITAIAGEDYSIASSDVVLLEGETSKAVPIYVINDIYPELEESFLVQLMNETTGGAR LGALTEAVIIIEASDDPYGLFGFQITKLIVEEPEFNSVKVNLPIIRNSGTLGNVTVQWVATINGOLA TGDLRVVSGNVTFAPGETIQTLLLEVLADDVPEIEEVIQVQLTDASGGGTIGLDRIANIIIPANDDP YGTVAFAQMVYRVQEPLERSSCANITVRRSGGHFGRLLLFYSTSDIDVVALAMEEGQDLLSYYESPI QGVPDPLWRTWMNVSAVGEPLYTCATLCLKEQACSAFSFFSASEGPQCFWMTSWISPAVNNSDFWTY RKNMTRVASLFSGQAVAGSDYEPVTRQWAIMQEGDEFANLTVSILPDDFPEMDESFLISLLEVHLMN ISASLKNQPTIGQPNISTVVIALNGDAFGVFVIYSISPNTSEDGLFVEVQEQPQTLVELMIHRTGGS LGQVAVEWRVVGGTATEGLDFIGAGEILTFAEGETKKTVILTILDDSEPEDDESIIVSLVYTEGGSR ILPSSDTVRVNILANDNVAGIVSFQTASRSVIGHEGEILQFHVIRTFPGRGNVTVNWKIIGQNLELN FANFSGQLFFPEGSLNTTLFVHLLDDNIPEEKEVYQVILYDVRTQGVPPAGIALLDAQGYAAVLTVE ASDEPHGVLNFALSSRFVLLQEANITIQLFINREFGSLGAINVTYTTVPGMLSLKNQTVGNLAEPEV DFVPIIGFLILEEGETAAAINITILEDDVPELEEYFLVNLTYVGLTMAASTSFPPRLDSEGLTAQVI IDANDGARGVIEWQQSRFEVNETHGSLTLVAQRSREPLGHVSLFVYAQNLEAQVGLDYIFTPMILHF $ext{ADGERYKNVNIMILDDDIPEGDEKFQLILTNPSPGLELGKNTIALIIVLANDDGPGVLSFNNSEHFF}$ LREPTALYVQESVAVLYIVREPAQGLFGTVTVQFIVTEVNSSNESKDLTPSKGYIVLEEGVRFKALQ ISAILDTEPEMDEYFVCTLFNPTGGARLGVHVQTLITVLQNQAPLGLFSISAVENRATSIDIEEANR TVYLNVSRTNGIDLAVSVQWETVSETAFGMRGMDVVFSVFQSFLDESASGWCFFTLENLIYGIMLRK SSVTVYRWQGIFIPVEDLNIENPKTCEAFNIGFSPYFVITHEERNEEKPSLNSVFTFTSGFKLFLVQ TIIILESSQVRYFTSDSQDYLIIASQRDDSELTQVFRWNGGSFVLHQKLPVRGVLTVALFNKGGSVF LAISQANARLNSLLFRWSGSGFINFQEVPVSGTTEVEALSSANDIYLIFAKNVFLGDQNSIDIFIWE MGQSSFRYFQSVDFAAVNRIHSFTPASGIAHILLIGQDMSALYCWNSERNQFSFVLEVPSAYDVASV TVKSLNSSKNLIALVGAHSHIYELAYISSHSDFIPSSGELIFEPGEREATIAVNILDDTVPEKEESF KVQLKNPKGGAEIGINDSVTITILSNDDAYGIVAFAQNSLYKQVEEMEQDSLVTLNVERLKGTYGRI TIAWEADGSISDIFPTSGVILFTEGQVLSTITLTILADNIPELSEVVIVTLTRITTEGVEDSYKGAT IDQDRSKSVITTLPNDSPFGLVGWRAASVFIRVAEPKENTTTLQLQIARDKGLLGDIAIHLRAQPNF LLHVDNQATENEDYVLQETIIIMKENIKEAHAEVSILPDDLPELEEGFIVTITEVNLVNSDFSTGOP SVRRPGMEIAEIMIEENDDPRGIFMFHVTRGAGEVITAYEVPPPLNVLQVPVVRLAGSFGAVNVYWK ASPDSAGLEDFKPSHGILEFADKQVTAMIEITIIDDAEFELTETFNISLISVAGGGRLGDDVVVTVV IPONDSPFGVFGFEEKTVS

SEQ ID NO: 163 5102 bp <u>CAGGGAAAAGGGAACCTATGGA</u>AT**G**GTCATGGTGACTTTTGAGGTAGAGGGTGGCCCAAATCCCCCT GATGAAGATTTGAGTCCAGTTAAAGGAAATATCACCTTTCCCCCTGGCAGAGCAACAGTAATTTATA NOV39c, CG150799-03 ACTTGACAGTACTCGATGACGAGGTACCAGAAAATGATGAAAATGTTTTAATTCAACTGAAAAGTGT DNA Sequence AGAAGGAGGAGCTGAGATTAACACCTCTAGGAATTCCATTGAGATCATCATTAAGAAAAATGATAGT CCCGTGAGATTCCTTCAGAGTATTTATTTGGTTCCTGAGGAAGACCACATACTCATAATTCCAGTAG TTCGTGGAAAGGACAATGGAAATCTGATTGGATCTGATGAATATGAGGTTTCAATCAGTTATGC TGTCACAACTGGGAATTCCACAGCACATGCCCAGCAAAATCTGGACTTCATTGATCTTCAGCCAAAC ACAACTGTTGTTTTTCCACCTTTTATTCATGAATCTCACTTGAAATTTCAAATAGTTGATGACACCA CACCGGAGATTGCTGAATCGTTTCACATTATGTTACTAAAAGATACCTTACAGGGAGATGCTGTGCT AATAAGCCCTTCTGTTGTACAAGTCACCATTAAGCCAAATGATAAACCTTATGGAGTCCTTTCATTC AACAGTGTTTTGTTTGAAAGGACAGTTATAATTGATGAAGATAGAATATCAAGATATGAAGAAATCA CAGTGGTTAGAAATGGAGGAACCCATGGGAATGTCTCTGCGAATTGGGTGTTGACACGGAACAGCAC TGATCCCTCACCAGTAACAGCAGATATCAGACCGAGCTCTGGAGTTCTCCATTTTGCACAAGGGCAG ATGTTGGCAACAATTCCTCTTACTGTGGTTGATGATGATCTTCCAGAAGAGGCAGAAGCTTATCTAC TACTTATCCTTGAGTTTTACAAGACTAGGAGGGACTAAAGGAGATGTGAGGTTGCTTTATTCTGTAC TTTACATTCCTGCTGGAGCTGTGGACCCCTTGCAAGCAAAAGAAGGCATCTTAAATATATCAAGGAG AAATGACCTCATTTTTCCAGAGCAAAAAACTCAAGTCACTACAAAATTACCAATAAGAAATGATGCA TTCTTTCAAAATGGAGCTCACTTTCTAGTACAGTTGGAAACTGTGGAGTTGTTAAACATAATTCCTC TAATCCCACCCATAAGCCCTAGATTTGGGGAAATCTGCAATATTTCTTTACTGGTTACTCCAGCCAT TGCAAATGGAGAAATTGGCTTTCTCAGCAATCTTCCAATTATTTTGCATGAACCAGAAGATTTTGCT GCTGAAGTGGTATACATTCCCTTACATCGGGATGGAACTGATGGCCAGGCTACTGTCTACTGGAGTT TGAAGCCCTCTGGCTTTAATTCAAAAGCAGTGACCCCGGATGATATAGGCCCCTTTAATGGCTCTGT TTTGTTTTTATCTGGGCAAAGTGACACAACAATCAACATTACTATCAAAGGTGATGACATACCGGAA ATGAATGAAACTGTAACACTTTCTCTAGACAGGGTTAACGTGGAAAACCAAGTGCTGAAATCTGGAT ATACTAGCCGTGACCTAATTATTTTGGAAAATGATGACCCTGGGGGAGTTTTTGAATTTTCTCCTGC TTCCAGAGGACCCTATGTTATAAAAGAAGGAGAATCTGTAGAGCTCCACATCATCCGATCAAGGGGG TCCCTTGTTAAGCAGTTTCTACACTACCGAGTAGAGCCAAGAGATAGCAATGAATTCTATGGAAACA CGGGAGTACTAGAATTTAAACCTGGAGAAAGGGAGATAGTGATCACCTTGCTAGCAAGATTGGATGG GATACCAGAGTTGGATGAACACTACTGGGTGGTCCTCAGCAGCCACGGAGAACGGGAAAGCAAGTTG GGAAGTGCCACCATTGTCAATATAACGATTCTGAAAAATGATGATCCTCATGGCATTATAGAATTTG TGTAGTAAGAAATCGAGGCAACTTTGGTGATGTTAGTGTATCATGGGTGGTTAGTCCAGACTTTACA CAAGATGTATTTCCTGTACAAGGGACTGTTGTCTTTGGAGATCAGGAATTTTCAAAAAATATCACCA TTTACTCCCTTCCAGATGAGATTCCAGAAGAAATGGAAGAATTTACCGTTATCCTACTGAATGGCAC TGGAGGAGCTAAAGTGGGAAATAGAACAACTGCAACTCTGAGGATTAGAAGAAATGATGACCCCATT

TATTTTGCAGAACCTCGTGTAGTGAGGGTTCAGGAACGTGAGACTGCCAACTTTACAGTTCTCACAA ATGGATCTGTTGATGTGACTTGCATGGTCCAGTATGCTACCAAGGATGGGAAGGCTACTGCAAGAGA GAGAGATTTCATTCCTGTTGAAAAAGGAGAAACGCTCATTTTTGAGGTTGGAAGTAGACAGCAGAGC ATATCCATATTTGTTAATGAAGATGGTATCCCGGAAACAGATGAGCCCTTTTATATAATCCTCTTGA ATTCAACAGGTGATACAGTAGTATATCAATATGGAGTAGCTACAGTAATAATTGAAGCTAATGATGA CCCAAATGGCATTTTTCTCTGGAGCCCATAGACAAAGCAGTGGAAGAAGGAAAGACTAATGCATTT TGGATTTTGAGGCACCGAGGATACTTTGGTAGTGTTTCTGTATCTTGGCAGCTCTTTCAGAATGATT AGCAAAACCAATCATTCTCCATGCTTTTCCAGATAAAATTCCTGAATTCAATGAATTTTATTTCCTA AGAAGATGTCCTGTCTGAAGATGATATGTCTTATATTACCAACTTCACCATTTTGAGGCAGCAGGGT GTGTTTGGTGATGTACAACTGGGCTGGGAAATACTGTCCAGTGAGTTCCCTGCTGGTTTGCCACCAA TGATAGATTTTTTACTGGTTGGAATTTTCCCCACCACCGTGCATTTACAACAGCACATGCGGCGTCA ${\tt CCACAGTGGAACGGATGCTTTGTACTTTACCGGACTAGAGGGTGCATTTGGGACTGTTAATCCAAAA}$ TACCATCCCTCCAGGAATAATACAATTGCCAACTTTACATTCTCAGCTTGGGTAATGCCCAATGCCA ATACGAATGGATTCATTATAGCGAAGGATGACGGTAATGGAAGCATCTACTACGGGGTAAAAATACA GCCAAGACAACAGTCATGAAATATTTAGAAGAAAGTGTTTGGCTTCATCTACTAATTATCCTGGAGG AGCCATTACTGACGGTCCTGGGATACTGAGAATTGGAGCAGGGATAAATGGCAATGACAGATTTACA GGTCTGATGCAGGATGTGAGGTCCTATGAGCGGAAACTGACGCTTGAAGAAATTTATGAACTTCATG CCATGCCCGCAAAAAGTGATTTACACCCAATTTCTGGATATCTGGAGTTCAGACAGGGAGAAACTAA CTAGTTTCTGTATATGGAGGAGCTCGTATTTCGGAAGAAAATACTACTGCAAGATTAACAATACAAA AAAGTGACAATGCAAATGGCTTGTTTGGTTTCACAGGAGCTTGTATACCAGAGATTGCAGAGGAGGG ATCAACCATTTCTTGTGTGGTTGAGAGAACCAGAGGAGCTCTGGATTATGTGCATGTTTTTTACACC ATTTCACAGATTGAAACTGATGGCATTAATTACCTTGTTGATGACTTTGCTAATGCCAGTGGAACTA CTGTAACT**GA**TACATTAGAATTTGCTTCAAACATGTCTGCTGTAAAACCTTTATCAGGTTCTGAATA TATATGTTCTTGATGATATTCCTGAACTTAATGAGTATTTCCGTGTGACATTGGTTTCTGCAAT TCCTGGAGATGGGAAGCTAGGCTCAACTCCTACCAGTGGTGCAAGCATAGATCCTGAAAAGGAAACG ACTGATATCACCATCAAAGCTAGTGATCATCCATATGGCTTGCTGCAGTTCTCCACAGGGCTGCCTC CTCAGCCTAAGGACGCAATGACCCTGCCTGCAAGCAGCGTTCCACATATCACTGTGGAGGAGGAAGA TGGAGAAATCAGGTTATTGGTCATCCGTGCACAGGGACTTCTGGGAAGGGTGACTGCGGAATTTAGA ACAGTGTCCTTGACAGCATTCAGTCCTGAGGATTACCAGAATGTTGCTGGCACATTAGAATTTCAAC CAGGAGAAAGATATAAATACATTTTCATAAACATCACTGATAATTCTATTCCTGAACTGGAAAAATC TAAAATCTGGTCCTTTTGGATGATCTATAATGAGTTGATTATTAATAAAAGAAGTCAACAATACCTT <u>AAAAAAAAA</u> ORF Start: ATG at 23 ORF Stop: TGA at 4430

	SEQ ID NO: 164	1469 aa	MW at 162809.6kD
NOV39c,	MVMVTFEVEGGPNPPDEDLSPVK	GNITFPPGRATVIYNLTV	LDDEVPENDEIFLIQLKSVEGGAEIN
CG150799-03	TSRNSIEIIIKKNDSPVRFLQSI	YLVPEEDHILIIPVVRGK	DNNGNLIGSDEYEVSISYAVTTGNST AESFHIMLLKDTLQGDAVLISPSVVQ
Protein Sequence	VIII KPNDKPYGVLSFNSVLFERT	/IIDEDRI <i>S</i> RYEEITVVR	NGGTHGNVSANWVI.TRNSTDPSPUTA
	DIRPSSGVLHFAQGQMLATIPLT FPMENOKIESSPGERYLSLSFTR	/VDDDLPEEAEAYLLQIL	PHTIRGGAEVSEPAEDSDDVYGLITF AGAVDPLQAKEGILNISRRNDLIFPE
	QKTQVTTKLPIRNDAFFQNGAHFI	LVQLETVELLNIIPLIPP	ISPREGEICNISLLVTPAIANGETGE
	LSNLPIILHEPEDFAAEVVYIPLI DTTINTTIKGDDIPEMNETVTI.SI	HRDGTDGQATVYWSLKPS	GFNSKAVTPDDIGPFNGSVLFLSGQS DLIILENDDPGGVFEFSPASRGPYVI
	KEGESVELHIIRSRGSLVKQFLH	RVEPRDSNEFYGNTGVL	EFKPGEREIVITLLARLDGTPELDEH
	YWVVLSSHGERESKLGSATIVNIT	"ILKNDDPHGIIEFVSDG	LIVMINESKGDAIYSAVYDVVRNRCN
	RTTATLRIRRNDDPIYFAEPRVVI	RV V FGDQEFSKNITI YSL. RVQEGETANFTVLRNGSV	PDEIPEEMEEFTVILLNGTGGAKVGN DVTCMVQYATKDGKATARERDFIPVE
	KGETLIFEVGSRQQSISIFVNEDO	SIPETDEPFYIILLNSTG:	DTVVYOYGVATVIIEANDDPNGTFSL
	AFPDKIPEFNEFYFLKLVNISGPO	GSVSVSWQLFQNDSALQ GOLAETNT.OVTVMVPFN	PGQEFYETSGTVNFMDGEEAKPIILH DDPFGVFILDPECLEREVAEDVLSED
	DMSYITNFTILRQQGVFGDVQLGV	/EILSSEFPAGLPPMIDF	LLVGIFPTTVHLOOHMRRHHSGTDAL
	YFTGLEGAFGTVNPKYHPSRNNT] LSLHYKTLGSNATVTAKTTMKVT	ANFTFSAWVMPNANTNG	FIIAKDDGNGSIYYGVKIQTNESHVT EFYLDGNAMPRGIKSLKGEAITDGPG
	ILRIGAGINGNDRFTGLMQDVRSY	ERKLTLEEIYELHAMPAI	KSDLHPISGYLEFROGETNKSPITSA
	RDDNDEEGEELFILKLVSVYGGAF	RISEENTTARLTIOKSON	ANGLEGETGACIPEIAEEGSTTSCVA
	ERTRGALDYVHVFYTISQIETDGI	.MILVUUFANASGTITFL	FMÖK2FTTTRA2Tb111AMCM

SEQ ID NO: 165 8350 bp

NOV39d, CG150799-01 DNA Sequence

<u>CAGGGAAAAGGGAACCTATGGA</u>AT**G**GTCATGGTGACTTTTGAGGTAGAGGGTGGCCCAAATCCCCCT GATGAAGATTTGAGTCCAGTTAAAGGAAATATCACCTTTCCCCCTGGCAGAGCAACAGTAATTTATA ACTTGACAGTACTCGATGACGAGGTACCAGAAAATGATGAAAATATTTTTAATTCAACTGAAAAGTGT AGAAGGAGGAGCTGAGATTAACACCTCTAGGAATTCCATTGAGATCATCATTAAGAAAAATGATAGT CCCGTGAGATTCCTTCAGAGTATTTATTTGGTTCCTGAGGAAGACCACATACTCATAATTCCAGTAG TTCGTGGAAAGGACAACAATGGAAATCTGATTGGATCTGATGAATATGAGGTTTCAATCAGTTATGC TGTCACAACTGGGAATTCCACAGCACATGCCCAGCAAAATCTGGACTTCATTGATCTTCAGCCAAAC ACAACTGTTGTTTTTCCACCTTTTATTCATGAATCTCACTTGAAATTTCAAATAGTTGATGACACCA CACCGGAGATTGCTGAATCGTTTCACATTATGTTACTAAAAGATACCTTACAGGGAGATGCTGTGCT AATAAGCCCTTCTGTTGTACAAGTCACCATTAAGCCAAATGATAAACCTTATGGAGTCCTTTCATTC AACAGTGTTTTGTTTGAAAGGACAGTTATAATTGATGAAGATAGAATATCAAGATATGAAGAAATCA CAGTGGTTAGAAATGGAGGAACCCATGGGAATGTCTCTGCGAATTGGGTGTTGACACGGAACAGCAC TGATCCCTCACCAGTAACAGCAGATATCAGACCGAGCTCTGGAGTTCTCCATTTTGCACAAGGGCAG ATGTTGGCAACAATTCCTCTTACTGTGGTTGATGATGATCTTCCAGAAGAGGCAGAAGCTTATCTAC TGTCTATGGCCTAATAACATTTTTTCCTATGGAAAACCAGAAGATTGAAAGCAGCCCAGGTGAACGA TACTTATCCTTGAGTTTTACAAGACTAGGAGGGACTAAAGGAGATGTGAGGTTGCTTTATTCTGTAC TTTACATTCCTGCTGGAGCTGTGGACCCCTTGCAAGCAAAAGAAGGCATCTTAAATATATCAAGGAG AAATGACCTCATTTTTCCAGAGCAAAAAACTCAAGTCACTACAAAATTACCAATAAGAAATGATGCA TTCTTTCAAAATGGAGCTCACTTTCTAGTACAGTTGGAAACTGTGGAGTTGTTAAACATAATTCCTC TAATCCCACCCATAAGCCCTAGATTTGGGGAAATCTGCAATATTTCTTTACTGGTTACTCCAGCCAT TGCAAATGGAGAAATTGGCTTTCTCAGCAATCTTCCAATTATTTTGCATGAACCAGAAGATTTTGCT GCTGAAGTGGTATACATTCCCTTACATCGGGATGGAACTGATGGCCAGGCTACTGTCTACTGGAGTT TGAAGCCCTCTGGCTTTAATTCAAAAGCAGTGACCCCGGATGATATAGGCCCCTTTAATGGCTCTGT TTTGTTTTTATCTGGGCAAAGTGACACAACAATCAACATTACTATCAAAGGTGATGACATACCGGAA ATGAATGAAACTGTAACACTTTCTCTAGACAGGGTTAACGTGGAAAACCAAGTGCTGAAATCTGGAT ATACTAGCCGTGACCTAATTATTTTGGAAAATGATGACCCTGGGGGAGTTTTTGAATTTTCTCCTGC TTCCAGAGGACCCTATGTTATAAAAGAAGGAGAATCTGTAGAGCTCCACATCATCCGATCAAGGGGG TCCCTTGTTAAGCAGTTTCTACACTACCGAGTAGAGCCAAGAGATAGCAATGAATTCTATGGAAACA CGGGAGTACTAGAATTTAAACCTGGAGAAAGGGAGATAGTGATCACCTTGCTAGCAAGATTGGATGG GATACCAGAGTTGGATGAACACTACTGGGTGGTCCTCAGCAGCCACGGAGAACGGGAAAGCAAGTTG GGAAGTGCCACCATTGTCAATATAACGATTCTGAAAAATGATGATCCTCATGGCATTATAGAATTTG TGTAGTAAGAAATCGAGGCAACTTTGGTGATGTTAGTGTATCATGGGTGGTTAGTCCAGACTTTACA CAAGATGTATTTCCTGTACAAGGGACTGTTGTCTTTGGAGATCAGGAATTTTCAAAAAATATCACCA TTTACTCCCTTCCAGATGAGATTCCAGAAGAAATGGAAGAATTTACCGTTATCCTACTGAATGGCAC TGGAGGAGCTAAAGTGGGAAATAGAACAACTGCAACTCTGAGGATTAGAAGAAATGATGACCCCATT TATTTTGCAGAACCTCGTGTAGTGAGGGTTCAGGAAGGTGAGACTGCCAACTTTACAGTTCTCAGAA ATGGATCTGTTGATGTGACTTGCATGGTCCAGTATGCTACCAAGGATGGGAAGGCTACTGCAAGAGA GAGAGATTTCATTCCTGTTGAAAAAGGAGAAACGCTCATTTTTGAGGTTGGAAGTAGACAGCAGAGC ATATCCATATTTGTTAATGAAGATGGTATCCCGGAAACAGATGAGCCCTTTTATATAATCCTCTTGA ATTCAACAGGTGATACAGTAGTATATCAATATGGAGTAGCTACAGTAATAATTGAAGCTAATGATGA CCCAAATGGCATTTTTCTCTGGAGCCCATAGACAAAGCAGTGGAAGAAGGAAAGACTAATGCATTT TGGATTTTGAGGCACCGAGGATACTTTGGTAGTGTTTCTGTATCTTGGCAGCTCTTTCAGAATGATT AGCAAAACCAATCATTCTCCATGCTTTTCCAGATAAAATTCCTGAATTCAATGAATTTTATTTCCTA AGAAGATGTCCTGTCTGAAGATGATATGTCTTATATTACCAACTTCACCATTTTGAGGCAGCAGGGT GTGTTTGGTGATGTACAACTGGGCTGGGAAATACTGTCCAGTGAGTTCCCTGCTGGTTTGCCACCAA TGATAGATTTTTTACTGGTTGGAATTTTCCCCACCACCGTGCATTTACAACAGCACATGCGGCGTCA CCACAGTGGAACGGATGCTTTGTACTTTACCGGACTAGAGGGTGCATTTGGGACTGTTAATCCAAAA TACCATCCCTCCAGGAATAATACAATTGCCAACTTTACATTCTCAGCTTGGGTAATGCCCAATGCCA ATACGAATGGATTCATTATAGCGAAGGATGACGGTAATGGAAGCATCTACTACGGGGTAAAAATACA GCCAAGACAACAGTCATGAAATATTTAGAAGAAAGTGTTTGGCTTCATCTACTAATTATCCTGGAGG AGCCATTACTGACGGTCCTGGGATACTGAGAATTGGAGCAGGGATAAATGGCAATGACAGATTTACA GGTCTGATGCAGGATGTGAGGTCCTATGAGCGGAAACTGACGCTTGAAGAAATTTATGAACTTCATG CCATGCCCGCAAAAAGTGATTTACACCCAATTTCTGGATATCTGGAGTTCAGACAGGGAGAAACTAA CTAGTTTCTGTATATGGAGGAGCTCGTATTTCGGAAGAAAATACTACTGCAAGATTAACAATACAAA AAAGTGACAATGCAAATGGCTTGTTTGGTTTCACAGGAGCTTGTATACCAGAGATTGCAGAGGAGGG ATCAACCATTTCTTGTGTGGTTGAGAGAACCAGAGGAGCTCTGGATTATGTGCATGTTTTTTACACC ATTTCACAGATTGAAACTGATGGCATTAATTACCTTGTTGATGACTTTGCTAATGCCAGTGGAACTA ACTTAATGAGTATTTCCGTGTGACATTGGTTTCTGCAATTCCTGGAGATGGGAAGCTAGGCTCAACT CCTACCAGTGGTGCAAGCATAGATCCTGAAAAGGAAACGACTGATATCACCATCAAAGCTAGTGATC ATCCATATGGCTTGCTGCAGTTCTCCACAGGGCTGCCTCCTCAGCCTAAGGACGCAATGACCCTGCC TGCAAGCAGCGTTCCACATATCACTGTGGAGGAGGAAGATGGAGAAATCAGGTTATTGGTCATCCGT GCACAGGGACTTCTGGGAAGGGTGACTGCGGAATTTAGAACAGTGTCCTTGACAGCATTCAGTCCTG AGGATTACCAGAATGTTGCTGGCACATTAGAATTTCAACCAGGAGAAAGATATAAATACATTTTCAT

GGAGGAGTAGCTGAACTCTTTAGGGTTGATGGAAGTGGTAGTGCCAGTCTAGGAGTGGCTTCCCAAA TTCTAGTGACAATTGCAGCCTCTGACCACGCTCATGGCGTATTTGAATTTAGCCCTGAGTCACTCTT TGTCAGTGGAACTGAACCAGAAGATGGGTATAGCACTGTTACATTAAATGTTATAAGACATCATGGA ACTCTGTCTCCAGTGACTTTGCATTGGAACATAGACTCTGATCCTGATGGTGATCTCGCCTTCACCT CTGGCAACATCACATTTGAGATTGGGCAGACGAGCGCCAATATCACTGTGGAGATATTGCCTGACGA AGACCCAGAACTGGATAAGGCATTCTCTGTGTCAGTCCTCAGTGTTTCCAGTGGTTCTTTGGGAGCT CATATTAATGCCACGTTAACAGTTTTGGCTAGTGATGATCCATATGGGATATTCATTTTTTCTGAGA AAAACAGACCTGTTAAAGTTGAGGAAGCAACCCAGAACATCACACTATCAATAATAAGGTTGAAAGG CCTCATGGGAAAAGTCCTTGTCTCATATGCAACACTAGATGATATGGAAAAACCACCTTATTTTCCA CCTAATTTAGCGAGAGCAACTCAAGGAAGAGACTATATACCAGCTTCTGGATTTGCTCTTTTTGGAG CTAATCAGAGTGAGGCAACAATAGCTATTTCAATTTTGGATGATGATGAGGCCAGAAAGGTCCGAATC TGTCTTTATCGAACTACTCAACTCTACTTTAGTAGCGAAAGTACAGAGTCGTTCAATTCCAAATTCT CCACGTCTTGGGCCTAAGGTAGAAACTATTGCGCAACTAATTATCATTGCCAATGATGATGCATTTG GAACTCTTCAGCTCTCAGCACCAATTGTCCGAGTGGCAGAAAATCATGTTGGACCCATTATCAATGT GACTAGAACAGGAGGAGCATTTGCAGATGTCTCTGTGAAGTTTAAAGCTGTGCCAATAACTGCAATA GCTGGTGAAGATTATAGTATAGCTTCATCAGATGTGGTCTTGCTAGAAGGGGAAACCAGTAAAGCCG TGCCAATATATGTCATTAATGATATCTATCCTGAACTGGAAGAATCTTTTCTTGTGCAACTGATGAA TGAAACAACAGGAGGAGCCAGACTAGGGGCTTTAACAGAGGCAGTCATTATTATTGAGGCCTCTGAT GACCCCTATGGATTATTTGGTTTTCAGATTACTAAACTTATTGTAGAGGAACCTGAGTTTAACTCAG CACCATTAATGGACAGCTTGCTACTGGCGACCTGCGAGTTGTCTCAGGTAATGTGACCTTTGCCCCT GGGGAAACCATTCAAACCTTGTTGTTAGAGGTCCTGGCTGACGACGTTCCGGAGATTGAAGAGGTTA TCCAAGTGCAACTAACTGATGCCTCTGGTGGAGGTACTATTGGGTTAGATCGAATTGCAAATATTAT TATTCCTGCCAATGATGATCCTTATGGTACAGTAGCCTTTGCTCAGATGGTTTATCGTGTTCAAGAG ${\tt CCTCTGGAAAGAAGTTCCTGTGCTAATATAACTGTCAGGCGAAGCGGAGGGCACTTTGGTCGGCTGT}$ TGTTGTTCTACAGTACTTCCGACATTGATGTAGTGGCTCTGGCAATGGAGGAAGGTCAAGATTTACT GTCCTACTATGAATCTCCAATTCAAGGGGTGCCTGACCCACTTTGGAGAACTTGGATGAATGTCTCT GCCGTGGGGGAGCCCCTGTATACCTGTGCCACTTTGTGCCTTAAGGAACAAGCTTGCTCAGCGTTTT CATTTTTCAGTGCTTCTGAGGGTCCCCAGTGTTTCTGGATGACATCATGGATCAGCCCAGCTGTCAA CAATTCAGACTTCTGGACCTACAGGAAAAACATGACCAGGGTAGCATCTCTTTTTAGTGGTCAGGCT GTGGCTGGGAGTGACTATGAGCCTGTGACAAGGCAATGGGCCATAATGCAGGAAGGTGATGAATTCG CCTTGAAGTTCACCTCATGAACATTTCAGCCAGTTTGAAAAATCAGCCAACCATAGGACAGCCAAAT ATTTCTACAGTTGTCATAGCACTAAATGGTGATGCCTTTGGAGTGTTTGTGATCTACAATATTAGTC CCAATACTTCCGAAGATGGCTTATTTGTTGAAGTTCAGGAGCAGCCCCAAACCTTGGTGGAGCTGAT GATACACAGGACAGGGGGCAGCTTAGGTCAAGTGGCAGTCGAATGGCGTGTTGTTGGTGGAACAGCT ACTGAAGGTTTAGATTTTATAGGTGCTGGAGAGATTCTGACCTTTGCTGAAGGTGAAACCAAAAAGA GTACACTGAAGGTGGAAGTAGAATTTTGCCAAGCTCCGACACTGTTAGAGTGAACATTTTGGCCAAT GACAATGTGGCAGGAATTGTTAGCTTTCAGACAGCTTCCAGATCTGTCATAGGTCATGAAGGAGAAA TTTTACAATTCCATGTGATAAGAACTTTCCCTGGTCGAGGAAATGTTACTGTTAACTGGAAAATTAT TTCTGTATGATGTCAGGACACAAGGAGTTCCACCAGCCGGAATCGCCCTGCTTGATGCTCAAGGATA TGCAGCTGTCCTCACAGTAGAAGCCAGTGATGAACCACATGGAGTTTTAAATTTTGCTCTTTCATCA AGATTTGTGTTACTACAAGAGGCTAACATAACAATTCAGCTTTTCATCAACAGAGAATTTGGATCTC TAGGAGCTATCAATGTCACATATACCACGGTTCCTGGAATGCTGAGTCTGAAGAACCAAACAGTAGG AAACCTAGCAGAGCCAGAAGTTGATTTTGTCCCTATCATTGGCTTTCTGATTTTAGAAGAAGGGGAA ACAGCAGCAGCCATCAACATTACCATTCTTGAGGATGATGTACCAGAGCTAGAAGAATATTTCCTGG TGAATTTAACTTACGTTGGACTTACCATGGCTGCTTCAACTTCATTTCCTCCCAGACTAGGTATGAG GGGTTTCTTGTTTGTTTCTTTTTGCTCACTTCAAATGAAA**TGA**AGAAACTTCATTTTTGAATCAGAI <u>GTGATCATTGTGCTGTTTTGTTAATCTTAGCTATGTGTTAAA</u> ORF Start: ATG at 23 ORF Stop: TGA at 8282

	SEQ ID NO: 166	2753 aa	MW at 301743.8kD
Protein Sequence	TSRNSIEIIIKKNDSPVRFLQSI' AHAQQNLDFIDLQPNTTVVFPPP; VTIKPNDKPYGVLSFNSVLFERT DIRPSSGVLHFAQGQMLATIPLT FPMENQKIESSPGERYLSLSFTRI QKTQVTTKLPIRNDAFFQNGAHFI LSNLPIILHEPEDFAAEVVYIPLI DTTINITIKGDDIPEMNETVTLSI KEGESVELHIIRSRGSLVKQFLH' YWVVLSSHGERESKLGSATIVNI	GNITFPPGRATVIYNLTVL YLVPEEDHILIIPVVRGKD IHESHLKFQIVDDTTPEIA VIIDEDRISRYEBITVVRN VVDDDLPEAEAYLLQILP LGGTKGDVRLLYSVLYIPA LVQLETVELLNIIPLIPPI HRDGTDGQATVYWSLKPSG LDGVNVENQVLKSGYTSRD YRVEPRDSNEFYGNTGVLE	DDEVPENDEIFLIQLKSVEGGAEIN NNGNLIGSDEYEVSISYAVTTGNST ESFHIMLLKDTLQGDAVLISPSVVQ GGTHGNVSANWVLTRNSTDPSPVTA HTIRGGAEVSEPAEDSDDVYGLITF GAVDPLQAKEGILNISRRNDLIFPE SPRFGEICNISLLVTPAIANGEIGF FNSKAVTPDDIGFFNGSVLFLSQQS LIILENDDPGGVFEFSPASRGPYVI IVMINESKGDAIYSAVYDVVRNRGN
L	FGDVSVSWVVSPDFTODVFPVOG	LAALGDOELSKULLIXSPE	DEIPEEMEEFTVILLNGTGGAKVGN

RTTATLRIRRNDDPIYFAEPRVVRVQEGETANFTVLRNGSVDVTCMVQYATKDGKATARERDF1PVE KGETLIFEVGSRQQSISIFVNEDGIPETDEPFYIILLNSTGDTVVYQYGVATVIIEANDDPNGIFSI EPIDKAVEEGKTNAFWILRHRGYFGSVSVSWQLFQNDSALQPGQEFYETSGTVNFMDGEEAKPIILH AFPDKIPEFNEFYFLKLVNISGPGGQLAETNLQVTVMVPFNDDPFGVFILDPECLEREVAEDVLSED DMSYITNFTILRQQGVFGDVQLGWEILSSEFPAGLPPMIDFLLVGIFPTTVHLQQHMRRHHSGTDAI YFTGLEGAFGTVNPKYHPSRNNTIANFTFSAWVMPNANTNGFIIAKDDGNGSIYYGVKIQTNESHVT LSLHYKTLGSNATYIAKTTVMKYLEESVWLHLLIILEDGIIEFYLDGNAMPRGIKSLKGEAITDGPG ILRIGAGINGNDRFTGLMQDVRSYERKLTLEEIYELHAMPAKSDLHPISGYLEFRQGETNKSFIISA RDDNDEEGEELFILKLVSVYGGARISEENTTARLTIQKSDNANGLFGFTGACIPEIAEEGSTISCVV ERTRGALDYVHVFYTISQIETDGINYLVDDFANASGTITFLPWQRSEVLNIYVLDDDIPELNEYFRV TLVSAIPGDGKLGSTPTSGASIDPEKETTDITIKASDHPYGLLQFSTGLPPQPKDAMTLPASSVPHI TVEEEDGEIRLLVIRAQGLLGRVTAEFRTVSLTAFSPEDYQNVAGTLEFQPGERYKYIFINITDNSI PELEKSFKVELLNLEGGVAELFRVDGSGSASLGVASQILVTIAASDHAHGVFEFSPESLFVSGTEPE DGYSTVTLNVIRHHGTLSPVTLHWNIDSDPDGDLAFTSGNITFEIGQTSANITVEILPDEDPELDKA FSVSVLSVSSGSLGAHINATLTVLASDDPYGIFIFSEKNRPVKVEEATQNITLSIIRLKGLMGKVLV SYATLDDMEKPPYFPPNLARATQGRDYIPASGFALFGANQSEATIAISILDDDEPERSESVFIELLN STLVAKVQSRSIPNSPRLGPKVETIAQLIIIANDDAFGTLQLSAPIVRVAENHVGPIINVTRTGGAF ADVSVKFKAVPITAIAGEDYSIASSDVVLLEGETSKAVPIYVINDIYPELEESFLVQLMNETTGGAR LGALTEAVIIIEASDDPYGLFGFQITKLIVEEPEFNSVKVNLPIIRNSGTLGNVTVQWVATINGQLA TGDLRVVSGNVTFAPGETIQTLLLEVLADDVPEIEEVIQVQLTDASGGGTIGLDRIANIIIPANDDP ygtvafaqmvyrvqeplersscanitvrrsgghfgrlllfystsdidvvalameegqdllsyyespi QGVPDPLWRTWMNVSAVGEPLYTCATLCLKEQACSAFSFFSASEGPQCFWMTSWISPAVNNSDFWTY RKNMTRVASLFSGQAVAGSDYEPVTRQWAIMQEGDEFANLTVSILPDDFPEMDESFLISLLEVHLMN ISASLKNQPTIGQPNISTVVIALNGDAFGVFVIYNISPNTSEDGLFVEVQEQPQTLVELMIHRTGGS LGQVAVEWRVVGGTATEGLDFIGAGEILTFAEGETKKTVILTILDDSEPEDDESIIVSLVYTEGGSR ILPSSDTVRVNILANDNVAGIVSFQTASRSVIGHEGEILQFHVIRTFPGRGNVTVNWKIIGQNLELN FANFSGQLFFPEGSLNTTLFVHLLDDN1PEEKEVYQV1LYDVRTQGVPPAG1ALLDAQGYAAVLTVE ASDEPHGVLNFALSSRFVLLQEANITIQLFINREFGSLGAINVTYTTVPGMLSLKNQTVGNLAEPEV DFVPIIGFLILEEGETAAAINITILEDDVPELEEYFLVNLTYVGLTMAASTSFPPRLGMRGFLFVSF CSLQMK

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 39B.

5

Table 39B. Comparison of NOV39a against NOV39b through NOV39d.			
Protein Sequence	NOV39a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV39b	12741 12741	2684/2741 (97%) 2685/2741 (97%)	
NOV39c	11456 11456	1442/1456 (99%) 1443/1456 (99%)	
NOV39d	12753 12753	2700/2753 (98%) 2700/2753 (98%)	

Further analysis of the NOV39a protein yielded the following properties shown in Table 39C.

Table 39C. Protein Sequence Properties NOV39a

PSort analysis:	0.5050 probability located in cytoplasm; 0.3836 probability located in microbody (peroxisome); 0.1851 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV39a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 39D.

Table 39D. G	eneseq Results for NOV39a	Commence of the Commence of th		
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV39a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAE10925	Human monogenic audiogenic seizure-susceptible-1 (mass1) protein - Homo sapiens, 2777 aa. [WO200165927-A1, 13-SEP-2001]	12753 12777	2736/2778 (98%) 2739/2778 (98%)	0.0
AAE10924	Mouse monogenic audiogenic seizure-susceptible-1 (mass1) protein - Mus musculus, 2780 aa. [WO200165927-A1, 13-SEP-2001]	12739 12761	2295/2762 (83%) 2516/2762 (91%)	0.0
AAE10949	Mouse mass 1 protein mutant (7009deltaG) - Mus musculus, 2071 aa. [WO200165927-A1, 13-SEP-2001]	12049 12071	1710/2072 (82%) 1878/2072 (90%)	0.0
ABG61545	Human transporter and ion channel, TRICH15, Incyte ID 7476089CD1 - Homo sapiens, 759 aa. [WO200240541-A2, 23-MAY-2002]	15312288 1746	740/758 (97%) 740/758 (97%)	0.0
ABB05663	Human signal transduction protein clone amy2_10p7 - Homo sapiens, 1615 aa. [WO200198454-A2, 27-DEC-2001]	22322741 9518	506/510 (99%) 507/510 (99%)	0.0

In a BLAST search of public sequence datbases, the NOV39a protein was found to have homology to the proteins shown in the BLASTP data in Table 39E.

5

Table 39E. P	bublic BLASTP Results for NO	V39a	And the state of t	
Protein Accession Number	Protein/Organism/Length	NOV39a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q8WXG9	Very large G protein-coupled receptor 1b - Homo sapiens (Human), 6307 aa.	12741 1802945	2721/2766 (98%) 2723/2766 (98%)	0.0
Q91ZS2	MASS1 - Mus musculus (Mouse), 2780 aa.	12739 12761	2293/2762 (83%) 2515/2762 (91%)	0.0
Q8VHN7	Very large G protein-coupled receptor 1 - Mus musculus (Mouse), 6298 aa.	12741 1792941	2293/2764 (82%) 2514/2764 (89%)	0.0
Q91ZS1	MASS1.2 - Mus musculus (Mouse), 2238 aa.	5632739 292219	1838/2192 (83%) 2004/2192 (90%)	0.0
Q8TF58	KIAA1943 protein - Homo sapiens (Human), 1054 aa (fragment).	2341273 11050	1037/1050 (98%) 1037/1050 (98%)	0.0

Example 40.

The NOV40 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 40A.

Table 40A. NOV	V40 Sequence Analysis		
	SEQ ID NO: 167	2833 bp	
NOV40a, CG151014-01 DNA Sequence	GAGGTACAGAAACAGGATTCATGA AAAGGGATTTTTACTTTTTAGG CTTGTTTTAGGGGGCCTGTTTCCT ATGAAGACCGAGGGATTCAACGCC TTACTTGCTACCAGGAGTGAAGTT TTGGAGCAATCACTGGAGTTTTGAC CTGATGGATCCTATGCCATTCAAG TAGCAGTGTTTCCATACAGGTGGC TCCACCAGCGCCAAACTCAGTGAT TCTACCAGGCGAGACCATGGCTG CTCCGAGGGTGATTACGGGAGAC CTCCGAGGGTGATTACGGGAGAC CTCCGATGCTACGCCGAGAAGGTGAACTCCAACGCTGAACCCCAACGCTGAACGCTGAACGCTGAACGCTGAACGCTGAACGCTGCACGCCCAACGCGCC	AGATGTTGACAAGACTGC GGACCATAACTTTCTAAG GGACCATAACTTTCTAAG TTGAAAGCACTTTGGACACTTTTGGACACACTTTCTCACACACTTCTCACACACTTCTCACACACTTCTCACACACTTCTCACACACTTCTCACACACACTTCTCACACACACCTCTTCACACACACCTCTCACACACCTCTCACACACCTCCACACATCCACACACCCCCACGCCTCCTCACACACCCCCCCC	TTGGCTCCACCATTGATATCTCCCA AAGTTCTTACCTTAGCTTTGTTTTC GAGAGAGATTAAAATAGAAGGTGAC GGAACTGAAGAATCAACAAAGATCA CTATTGATGAAATCAACAAAGATGA CTATTGATGAAATCAACAAAGATGA CTATTGATGAAATCAACAAAGATGA CTAGTTCAAGGGATACCTATGCA GTGGATGAAGCTGAGTATATGTGTC CTAGATCCCTCAGATCAGCTAACGCA CTAGATCCCTCAGATCACCCA CCAGATCCCTCAGATCACCCA ACTGGACCTACGCACATCACGCA CTAGGACCTACGCGCACACATC CAGGAAGCCCGCCTGCGCAACATC CAGGAAGCCCGCCTGCGCAACATC CAGGCAGCGACGACTCGCGGAGCT GGCCAGCGACGACTGGCCCGCGAGCATCCCCAGCACACCCCCCCC

CTGTCCGCCAGTTCGACCGCTACTTCCAGAGCCTCAACCGCTACAACAACAACCACGCAACCCCTGGTT CCGGGACTTCTGGGAGCAAAAGTTTCAGTGCAGCCTCCAGAACAAACGCAACCACAGGCGCGTCTGC GACAAGCACCTGGCCATCGACAGCAGCAACTACGAGCAAGAGTCCAAGATCATGTTTGTGGTGAACG CGGTGTATGCCATGGCCCACGCTTTGCACAAAATGCAGCGCACCCTCTGTCCCAACACTACCAAGCT TTGTGATGCTATGAAGATCCTGGATGGGAAGAAGTTGTACAAGGATTACTTGCTGAAAATCAACTTC ACGGCTCCATTCAACCCAAATAAAGATGCAGATAGCATAGTCAAGTTTGACACTTTTGGAGATGGAA TGGGGCGATACAACGTGTTCAATTTCCAAAATGTAGGTGGAAAGTATTCCTACTTGAAAGTTGGTCA $\mathtt{CTGGGCAGAAACCTTATCGCTAGATGTCAACTCTATCCACTGGTCCCGGAACTCAGTCCCCACTTCC}$ CAGTGCAGCGACCCCTGTGCCCCCAATGAAATGAAGAATATGCAACCAGGGGATGTCTGCTGCTGGA TTTGCATCCCCTGTGAACCCTACGAATACCTGGCTGATGAGTTTACCTGTATGGATTGTGGGTCTGG ACAGTGGCCCACTGCAGACCTAACTGGATGCTATGACCTTCCTGAGGACTACATCAGGTGGGAAGAC TTTTTATCAAGCACAACAACACCCTTGGTCAAAGCATCGGGCCGAGAACTCTGCTACATCTTATT GTTTGGGGTTGGCCTGTCATACTGCATGACATTCTTCTTCATTGCCAAGCCATCACCAGTCATCTGT GCATTGCGCCGACTCGGGCTGGGGAGTTCCTTCGCTATCTGTTACTCAGCCCTGCTGACCAAGACAA ACTGCATTGCCCGCATCTTCGATGGGGTCAAGAATGGCGCTCAGAGGCCCAAAATTCATCAGCCCCAG TTCTCAGGTTTTCATCTGCCTGGGTCTGATCCTGGTGCAAATTGTGATGGTGTCTGTGTGGCTCATC CTGGAGGCCCCAGGCACCAGGAGGTATACCCTTACAGAGAAGCGGGAAACAGTCATCCTAAAATGCA ATGTCAAAGATTCCAGCATGTTGATCTCTCTTACCTACGATGTGATCCTGGTGATCTTATGCACTGT GTACGCCTTCAAAACGCGGAAGTGCCCAGAAAATTTCAACGAAGCTAAGTTCATAGGTTTTACCATG TACACCACGTGCATCATCTGGTTGGCCTTCCTCCCTATATTTTATGTGACATCAAGTGACTACAGAC CTCTGCAAGCACGTATGTGTCAACGGTGTGCAATGGGCGGGAAGTCCTCGACTCCACCACCTCATCT CTCCAGAATATGGAAACAGAGCAAAAGAACAACCCTAGTACCTTTT**TTAG**AAACAGTACGATAAAT TATTTTTGAGGACTGTATATAGTGATGTGCTAGAACTTTCTAGGCTGAGTCTAGTGCCCCTATTATT AACAATTCCCCCAGAACATGGAAATAACCATTGTTTACAGAGCTGAGCATTGGTGACAGGGTCTGAC ATGGTCAGTCTACTTCAAG ORF Start: ATG at 88 ORF Stop: TAG at 2662

SEQ ID NO: 168	858 aa	MW at 96975.6kD
RLEAMLFAIDEINKDDYLLPGVKL QENIPLLIAGVIGGSYSSVSIQVA AEILRFFNWTYVSTVASEGDYGET ARVVVLFMRSDDSRELIAAASRAN YFQSLNPYNNHRNPWFRDFWEQKF ALHKMQRTLCPNTTKLCDAMKILD NFQNVGGKYSYLKVGHWAETLSLD YEYLADEFTCMDCGSQWPTADLT TPLVKASGRELCYILLFGVGLSYC DGVKNGAQRPKFISPSQVFICLG	GVHILDTCSRDTYALEQS NLLRLFQIPQISYASTSA GIEAFEQEARLRNICIAT ASFTWVASDGWGAQESII QCSLQNKRNHRRVCDKHL GKKLYKDYLLKINFTAPF VNSIHWSRNSVPTSQCSD GCYDLPEDYIRWEDAWAI MTFFFIAKPSPVICALRR LILVQIVMVSVWLILEAP PENFNEAKFIGFTMYTTC	GLFPINEKGTGTEECGRINEDRGIQ LEFVRASLTKVDEAEYMCPDGSYAI KLSDKSRYDYFARTVPPDFYQAKAM AEKVGRSNIRKSYDSVIRELLQKPN KGSEHVAYGAITLELASQPVRQFDR AIDSSNYEQESKIMFVVNAVYAMAH NPNKDADSIVKFDTFGDGMGRYNVF PCAPNEMKNMQPGDVCCWICIPCEP GPVTIACLGFMCTCMVVTVFIKHNN LGLGSSFAICYSALLTKTNCIARIF GTRRYTLTEKRETVILKCNVKDSSM IIWLAFLPIFYVTSSDYRPLQARMC

	SEQ ID NO: 169	1758 bp	
NOV40b, CG151014-02 DNA Sequence	GAGTTACAGAAACAGGATTCATGA AAAGGATTTTTACTCTTTTAGG CTTGTTTTAGGGGGCCTGTTTCCT ATGAAGACCGAGGGATTCAACGCC TTACTTGCTACCAGGAGTTGAAGTT TTGGAGCAATCACTGGAGTTTGTC CTGATGGATCCTATGCCATTCAAC TAGCAGTGTTTCCATACAGGTGGC TCCACCAGCGCCAAACTCAGTGAT TCTACCAGGCCAAACTCAGTGAT TCTACCAGGCCAAACTCAGTGAT TCTACCAGGTGATTACGGGAGAC CTCCGAGGGTGATTACGGGGAGAC TGCATCGCTACGGCGACACGCG	AGATGTTGACAAGACTGC GGACCATAACTTTCTAAG TATTAACGAAAAAGCACT TGGAAGCCATGTTTTGCA GGGTGTTCACATTTTGGA AAACATCCACTTCTCA AAACATCCCACTTCTCA AAACTGCTGCGGCTCTT AAGTCGCGCTATGATTAC AGATCTTGCGCTTCTCA GGCCGCTCCACACATCCGC GGCCGCTCCAACATCCGC GGCTCCTGCGGTCTTCA AGTCGCGTCTCACACATCCGC GCGTCGTGGTCCTCCACTCCA	ATTGGCTCCACCATTGATATCTCCCA AGTTCTTACCTTAGCTTTGTTTTC GAGAGAGATTAAAATAGAAGGTGAC GGAACTGAAGAATGTGGGCGAATCA CTATTGATGAAATCAACAAAGATGA ATACATGTTCAAGGGATACCTATGCA GTGGATGAAGCTGAGTATATGTGTC ATGCAGGGGTCATTGGTGGCTCTTA CCAGATCCCTCAGATCAGCTACGCA TTTGCCAGGACCTGCCCCGACT ACTGGACCTACGTGCCACAGTAGC GCAGGAAGCCCGCCTGCGCAACATC AAGTCCTACGACGTGTCCCGGGAGCT TGCCAGGAGCCGCCTGCCGCGCACCACACCCCACCTACCCCCACCTACCCCCCACCTACCCCCC

7		AFF
	CTGTCCGCCAGTTCGACCGCTACT	TCCAGAGCCTCAACCCCTACAACAACCACCGCAACCCCTGGTT
	CCGGGACTTCTGGGAGCAAAAGTT	TCAGTGCAGCCTCCAGAACAAACGCAACCACAGGCGCGTCTGC
ł	GACAAGCACCTGGCCATCGACAGC	AGCAACTACGAGCAAGAGTCCAAGATCATGTTTGTGGTGAACG
1	CGGTGTATGCCATGGCCCACGCTT	TGCACAAAATGCAGCGCACCCTCTGTCCCAACACTACCAAGCT
		TGGGAAGAAGTTGTACAAGGATTACTTGCTGAAAATCAACTTC
		CATCTCCGTCAGCCTGAGTGGCTTTGTGGTCTTGGGCTGTTTG
		CTGTTTCAACCCCAGAAGAATGTTGTCACACACAGACTGCACC
		CTGGGACCACATACTCTCAGTCCTCTGCAAGCACGTATGTGCC
		CCTCGACTCCACCACCTCATCTCTGTGATTGTGAATTGCAGTT
Ì		AGACAAAAGTGCTCACGTGCAGCTCCAGAATATGGAAACAGAG
	CAAAAGAACAACCCTA	TO TO THE TOTAL OF
The second secon		
L	ORF Start: ATG at 88	ORF Stop: TAG at 1699

	SEQ ID NO: 170	537 aa	MW at 60801.8kD	
CG151014-02 Protein Sequence	RLEAMLFAIDEINKDDYLL QENIPLLIAGVIGGSYSSV AEILRFFNWTYVSTVASEG ARVVVLFMRSDDSRELIAA YFQSLNPYNNHRNPWFRDF ALHKMQRTLCPNTTKLCDA	PGVKLGVHILDTCSRE SIQVANLLRLFQIPQI DYGETGIEAFEQEARL ASRANASFTWVASDG WEQKFQCSLQNKRNHR MKILDGKKLYKDYLLK	EGDLVLGGLFPINEKGTGTEECGRINEDF TYALEQSLEFVRASLTKVDEAEYMCPDGS SYASTSAKLSDKSRYDYFARTVPPDFYQF RNICIATAEKVGRSNIRKSYDSVIRELLQ GAQESIIKGSEHVAYGAITLELASQPVRQ RVCDKHLAIDSSNYEQESKIMFVVNAVYF INFTGADDNHVHLRQPEWLCGLGLFVCTQ VCANGVQWAGSPRLHHLISVIVNCSSVLV	YAI KAM KPN FDR MAH

	OFO TO NO. 151	15501	
	SEQ ID NO: 171	1758 bp	
NOV40c.	CCTTGATCCAGTTTGGAAATGAGA	GAGGACTAGCATGACACA	TTGGCTCCACCATTGATATCTCCCA
CG151014-03	GAGGTACAGAAACAGGATTCATGA	AGATGTTGACAAGACTGC	AAGTTCTTACCTTAGCTTTGTTTTC
			GAGAGAGATTAAAATAGAAGGTGAC
DNA Sequence			GGAACTGAAGAATGTGGGCGAATCA
			CTATTGATGAAATCAACAAAGATGA
}			TACATGTTCAAGGGATACCTATGCA
			GTGGATGAAGCTGAGTATATGTGTC
	CTGATGGATCCTATGCCATTCAAG	AAAACATCCCACTTCTCA	TTGCAGGGGTCATTGGTGGCTCTTA
i			CCAGATCCCTCAGATCAGCTACGCA
,			TTTGCCAGGACCGTGCCCCCCGACT
			ACTGGACCTACGTGTCCACAGTAGC
l			GCAGGAAGCCCGCCTGCGCAACATC
l	AACTGTTGCAGAAGCCCAACCCCA	CCCTCCTCCTCCTCCTCCTCCTC	AAGTCCTACGACAGCGTGATCCGAG TGCGCAGCGACGACTCGCGGGAGCT
			TGCGCAGCGACGACTCGCGGGAGCT GGCCAGCGACGGCTGGGGGCGCGCAG
•			ATCACCCTGGAGCTGGGGCGCGCAG ATCACCCTGGAGCTGGCCTCCCAGC
	CTGTCCGCCAGTTCGACCGCTACT	TCCAGAGCCTACGGCGCCCT	ACAACAACCACGCAACCCCTGGTT
			CAAACGCAACCACAGGCGCGTCTGC
	GACAAGCACCTGGCCATCGACAGC	AGCAACTACGAGCAAGAG	PCCAAGATCATGTTTGTGGTGAACG
. ~	CGGTGTATGCCATGGCCCACGCTT	TGCACAAAATGCAGCGCAG	CCTCTGTCCCAACACTACCAAGCT
			GGATTACTTGCTGAAAATCAACTTC
			PGGCTTTGTGGTCTTGGGCTGTTTG
			AATGTTGTCACACACAGACTGCACC
			AGTCCTCTGCAAGCACGTATGTGCC
			ATCTCTGTGATTGTGAATTGCAGTT
			GCAGCTCCAGAATATGGAAACAGAG
	CAAAAGAACAACCCTA		
	ORF Start: ATG at 88		ORF Stop: TAG at 1699

	SEQ ID NO: 172	537 aa	MW at 60801.8kD
CG151014-03 Protein Sequence	RLEAMLFAIDEINKDDYLI QENIPLLIAGVIGGSYSSV AEILRFFNWTYVSTVASEG ARVVVLFMRSDDSRELIAA YFQSLNPYNNHRNPWFRDF ALHKMQRTLCPNTTKLCDA	PGVKLGVHILDTCSRD: SIQVANLLRLFQIPQIS DYGETGIEAFEQEARLI ASRANASFTWVASDGWC WEQKFQCSLQNKRNHRE MKILDGKKLYKDYLLKI	EGDLVLGGLFPINEKGTGTEECGRINEDRGIQ TYALEQSLEFVRASLTKVDEAEYMCPDGSYAI SYASTSAKLSDKSRYDYFARTVPPDFYQAKAM RNICIATAEKVGRSNIRKSYDSVIRELLQKPN BAQESIIKGSEHVAYGAITLELASQPVRQFDR KVCDKHLAIDSSNYEQESKIMFVVNAVYAMAH INFTGADDNHVHLRQPEWLCGLGLFVCTQGSH VCANGVQWAGSPRLHHLISVIVNCSSVLVFLD

5

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 40B.

Table 40B. Comparison of NOV40a against NOV40b and NOV40c.		
Protein Sequence NOV40a Residues/ Identities/ Similarities for the I		Identities/ Similarities for the Matched Region
NOV40b	1441 1441	409/441 (92%) 409/441 (92%)
NOV40c	1441 1441	409/441 (92%) 409/441 (92%)

10

Further analysis of the NOV40a protein yielded the following properties shown in Table 40C.

15

20

Table 40C. Protein Sequence Properties NOV40a	
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)
SignalP analysis:	Cleavage site between residues 25 and 26

A search of the NOV40a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 40D.

Table 40D. Geneseq Results for NOV40a

Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV40a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAE15990	Human glutamate receptor, metabotrophic 3 (GRM3) protein - Homo sapiens, 877 aa. [WO200196350-A2, 20-DEC-2001]	3811 1809	797/809 (98%) 799/809 (98%)	0.0
AAR82657	Human mGluR3 - Homo sapiens, 877 aa. [WO9522609-A2, 24-AUG-1995]	3811 1809	797/809 (98%) 799/809 (98%)	0.0
AAM23698	Human EST encoded protein SEQ ID NO: 1223 - Homo sapiens, 857 aa. [WO200154477-A2, 02-AUG-2001]	1811 1811	796/811 (98%) 798/811 (98%)	0.0
AAR64252	Human mGluR3 - Homo sapiens, 879 aa. [WO9429449-A, 22-DEC-1994]	1811 1811	796/811 (98%) 799/811 (98%)	0.0
AAO15105	Human ph2SPMGluR3-CaR*AAA* Gqi5 fusion construct protein sequence - Chimeric - Homo sapiens, 1402 aa. [WO200229033-A2, 11-APR-2002]	21811 17807	777/791 (98%) 781/791 (98%)	0.0

In a BLAST search of public sequence datbases, the NOV40a protein was found to have homology to the proteins shown in the BLASTP data in Table 40E.

Protein Accession Number	Protein/Organism/Length	NOV40a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q14832	Metabotropic glutamate receptor 3 precursor (mGluR3) - Homo sapiens (Human), 877 aa.	3811 1809	797/809 (98%) 799/809 (98%)	0.0

Q8ТВН9	Glutamate receptor, metabotropic 3 - Homo sapiens (Human), 877 aa.	3811 1809	795/809 (98%) 797/809 (98%)	0.0
Q9QYS2	Metabotropic glutamate receptor 3 protein - Mus musculus (Mouse), 879 aa.	1811 1811	773/811 (95%) 792/811 (97%)	0.0
P31422	Metabotropic glutamate receptor 3 precursor - Rattus norvegicus (Rat), 879 aa.	1811 1811	772/811 (95%) 790/811 (97%)	0.0
JC7160	metabotropic glutamate receptor subtype 3 precursor - mouse, 879 aa.	1811 1811	771/811 (95%) 790/811 (97%)	0.0

PFam analysis predicts that the NOV40a protein contains the domains shown in the Table 40F.

5

Table 40F. Domain Analysis of NOV40a					
Pfam Domain NOV40a Match Region Identities/ Similarities for the Matched Region Expect					
ANF_receptor	F_receptor 58489 194/473 (41%) 399/473 (84%)		3.2e-173		
7tm_3	576820	109/283 (39%) 217/283 (77%)	3.1e-104		

Example 41.

The NOV41 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 41A.

Table 41A. NO	/41 Sequence Analysis SEQ ID NO: 173	880 bp	
NOV41a, CG151297-01 DNA Sequence	GAATTCTGATGTGCTTCAGTGCACA TCAGTCGGAGCATCATCATGGGGTC GTATCTTACAGGAGAACAGACTGAA AAGCAGCTGGAAAGAGGTGATGTTA TGCTGGAAGCAGTTTATATCGATGA	AGAACAGTAACAGATGAC TAGTGCCACAGAGATTGAC TAGTGCCACAGAGATTGAAAC AACGTCGTCGACTTAAAC AACCACAGAGACTTCTGC AGTCCGGGACTGGTTGGAC AACCAAACTTTTCGGAGC AAACCATTTTTCTCTTCTGA AGCCGAAACTTCTTCTA TAAGACGATCAAATACA	EAAGAATTGGAAAACACCACTTTTAA GAAAGGAATACTAAGATGCTGGTG BAAGAATATTGAATATGCGGCATCTG BATACTGAAGATGAGCTCAGTGACAT ETTCTACCTTTACACGGAAAATGGGG CATTGTGCATGCTGTTCAAGCTGGAA ACAGACTCAACAGAAAATTGTTATA ATGTGGCAAGCAGCTCAACCACATT AAAAGGCTCCATGAGTGATGGGTCCT TCAAGAACAACCTGGTGGACATCAT

GAGTTTATTCATCAG TAA ACACCTTTAAGTAAAACCTCETGEATGETGETE	ATTPOACCAA!
ORF Start: ATG at 85 ORF Stop: TAA a	t 820

	SEQ ID NO: 174	245 aa	MW at 27787.2kD
CG151297-01	THEIRKPUDIEDEPSOIOLDZABS	EVRDWLASTFTRKMGMTK KARTSSVVASSSTTTVCI	ERGDVNVVDLKKNIEYAASVLEAVY KKPEEKPKFRSIVHAVQAGIFVERM HIADALRRSNTKGSMSDGSYSPDYS HQ

	SEQ ID NO: 175	1817 bp	
NOV41b,	TCAGTGCACAGAACAGTAACAGAT		GCTTGAGTACTCAGTCGGTCAGTAG
	TACAGTAGCAGGCTCACATGTACG	GATTGTTCTTGTGAGGAG	CATCATCATGGGGTCAGTAG CATCATCATGGGGTCTAGTGCCACA
CG151297-02	GAGATTGAAGAATTGGAAAACACC	ACTTTTAAGTATCTTACA	GGAGAACAGACTGAAAAAATGTGGC
DNA Sequence	AGCGCCTGAAAGGAATACTAAGAT	GCTTGGTGAAGCAGCTGG	AAAGAGGTGATGTTAACGTCGTCGA
•	CTTAAAGAAGAATATTGAATATGC	GGCATCTGTGCTGGAAGC	AGTTTATATCGATGAAACAAGAAGA
	CTTCTGGATACTGAAGATGAGCTC	AGTGACATTCAGACTGAC	TCAGTCCATCTGAAGTCCGGGACT
	GGTTGGCTTCTACCTTTACACGGA	AAATGGGGATGACAAAAA	AGAAACCTGAGGAAAAACCAAAATT
	TCGGAGCATTGTGCATGCTGTTCA	AGCTGGAATTTTTCTCCA	AAGAATGTACCGAAAAACATATCAT
	ATGGTTGGTTTGGCATATCCAGCA	GCTGTCATCGTAACATTA	AAGGATGTTGATAAATGGTCTTTCG
	ATGTATTTGCCCTAAATGAAGCAA	GTGGAGAGCATAGTCTGA	AGTTTATGATTATGAACTGTTTAC
	CAGATATGATCTTATCAACCGTTT	CAAGATTCCTGTTTCTTC	CCTAATCACCTTTGCAGAAGCTTTA
	GAAGTTGGTTACGGCAAGTACAAA	AATCCATATCACAATTTC	ATTCATCACCTTTGCAGAAGCTTTA ATTCATGCAGCTGATGTCACTCAAA
	CTGTGCATTACATAATGCTTCATA	CAGGTATCATGCACTGCC	TCACTGAACTGAAATTTTAGCAAT
	GGTCTTTGCTGCTGCCATTCATGA	TTATGAGCATACAGGGAC	AACAAACAACTTTCACATTCAGAAT
	AGGTCAGATGTTGCCATTTTGTAT	AATGATCGCTCTGTCCTT	GAGAATCACCACGTGAGTGCAGCTT
	ATCGACTTATGCAAGAAGAAGAAA	TGAATATCTTGATAAATT	TATCCAAAGATGACTGGAGGGATCT
	TCGGAACCTAGTGATTGAAATGGT	TTTATCTACAGACATGTC	AGGTCACTTCCAGCAAATTAAAAAT
	ATAAGAAACAGTTTGCAGCAGCCT	GAAGGGATTGACAGAGCC	AAAACCATGTCCCTGATTCTCCACG
	CAGCAGACATCAGCCACCCAGCCA	AATCCTGGAAGCTGCATT	ATCGGTGGACCATGGCCCTAATGGA
	GGAGTTTTTCCTGCAGGGAGATAA	AGAAGCTGAATTAGGGCT	TCCATTTTCCCCACTTTGTGATCGG
	AAGTCAACCATGGTGGCCCAGTCA	CAAATAGGTTTCATCGAT	TTCATAGTAGAGCCAACATTTTCTC
	TTCTGACAGACTCAACAGAGAAAA	PTGTTATTCCTCTTATAG	AGGAAGCCTCAAAAGCCGAAACTTC
	TTCCTATGTGGCAAGCAGCTCAACC	CACCATTGTGGGGTTACA	CATTGCTGATGCACTAAGACGATCA
	AATACAAAAGGCTCCATGAGTGATC	GGTCCTATTCCCCAGAC	FACTCCCTTGCAGCAGTGGACCTGA
	AGAGTTTCAAGAACAACCTGGTGG	ACATCATTCAGCAGAACA	AGAGAGGTGCA AAGAGTGGACCTGA
	ACAAGAAGCAAGAACCAGTTCACAC	SAAGTGTGAGTTTATTCA	TCAGTAAACACCTTTAAGTAAAACC
	TCGTGCATGGTGGCAGCTCTAATTT	GACCAAAAGACTTGGAG	ATTITUTE ATT
	TATTCTGT		SITITION INTECTIGET GENERAL CONTROL OF THE STATE OF THE S
	ORF Start: ATG at 117		
	ORGINATO at 117		ORF Stop: TAA at 1722

	SEQ ID NO: 176	535 aa	MW at 61249.3kD
CG151297-02 Protein Sequence	TDETARLEDTEDEESDIQTDS YRKTYHMVGLAYPAAVIVTLIK TFAEALEVGYGKYKNPYHNLI NFHIQTRSDVAILYNDRSVLIF FQQIKNIRNSLQQPEGIDRAR SPLCDRKSTMVAQSQIGFIDE	SVPSEVRDWLASTFT KDVDKWSFDVFALNE LHAADVTQTVHYIML ENHHVSAAYRLMQEE KTMSLILHAADISHP FIVEPTFSLLTDSTE	RCLVKQLERGDVNVVDLKKNIEYAASVLEAVY RKMGMTKKKPEEKPKFRSIVHAVQAGIFVERM ASGEHSLKFMIYELFTRYDLINRFKIPVSCLI HTGIMHWLTELEILAMVFAAAIHDYEHTGTTN EMNILINLSKDDWRDLRNLVIEMVLSTDMSGH AKSWKLHYRWTMALMEEFFLQGDKEAELGLPF KIVIPLIEEASKAETSSYVASSSTTIVGLHIA VDIIQQNKERWKELVAQEARTSSQKCEFIHQ

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 41B.

Table 41B. Comparison of NOV41a against NOV41b.				
Protein Sequence NOV41a Residues/ Match Residues		Identities/ Similarities for the Matched Region		
NOV41b	1159 1159	141/159 (88%) 148/159 (92%)		

Further analysis of the NOV41a protein yielded the following properties shown in Table 41C.

10

15

5

Table 41C. Protein Sequence Properties NOV41a				
PSort analysis: 0.8800 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (0.1000 probability located in plasma membrane				
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV41a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 41D.

Table 41D. G	Table 41D. Geneseq Results for NOV41a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV41a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB85116	Human 3', 5' cyclic nucleotide phosphodiesterase (HSPDE1A3A) - Homo sapiens, 535 aa. [EP1097707-A1, 09-MAY-2001]	1159 1159	141/159 (88%) 148/159 (92%)	5e-75	
AAB85105	Human 3', 5' cyclic nucleotide phosphodiesterase (HSPDE1A3A) - Homo sapiens. 535 aa.	1159 1159	141/159 (88%) 148/159 (92%)	5e-75	

	[EP1097706-A1, 09-MAY-2001]	<u>I</u>		out there seems there
AAE07953	Human phosphodiesterase (PDE) type 1 protein - Homo sapiens, 535 aa. [EP1097719-A1, 09-MAY-2001]	1159 1159	141/159 (88%) 148/159 (92%)	5e-75
AAE07917	Human phosphodiesterase (PDE) type 1 protein - Homo sapiens, 535 aa. [EP1097718-A1, 09-MAY-2001]	1159 1159	141/159 (88%) 148/159 (92%)	5e-75
AAY80988	Human 61 kD CaM-PDE (clone pHcam61-6N-7), SEQ ID NO:49 - Homo sapiens, 535 aa. [US6015677-A, 18-JAN-2000]	1159 1159	141/159 (88%) 148/159 (92%)	5e-75

In a BLAST search of public sequence datbases, the NOV41a protein was found to have homology to the proteins shown in the BLASTP data in Table 41E.

5

Table 41E. Public BLASTP Results for NOV41a NOV41a Identities/ **Protein** Residues/ Similarities for Expect Accession Protein/Organism/Length Match the Matched Value Number Residues Portion AAH22480 Hypothetical 62.3 kDa protein -1..159 141/159 (88%) 1e-74 Homo sapiens (Human), 545 1..159 148/159 (92%) P54750 Calcium/calmodulin-dependent 2..159 140/158 (88%) 6e-74 3',5'-cyclic nucleotide 1..158 147/158 (92%) phosphodiesterase 1A (EC 3.1.4.17) (Cam-PDE 1A) (61 kDa Cam-PDE) (hCam-1) -Homo sapiens (Human), 534 Q9EPR9 Phosphodiesterase 1A - Rattus 1..159 134/159 (84%) 6e-71 norvegicus (Rat), 542 aa. 1..159 144/159 (90%) Q61481 Calcium/calmodulin-dependent 1..159 133/159 (83%) 3e-70 3',5'-cyclic nucleotide 21..179 143/159 (89%) phosphodiesterase 1A (EC 3.1.4.17) (Cam-PDE 1A) (61 kDa Cam-PDE) - Mus musculus (Mouse), 565 aa.

	3',5'-cyclic-nucleotide phosphodiesterase (EC 3.1.4.17) 1A, calmodulin-dependent, 61K brain form - bovine, 530 aa.	1159 1159	129/159 (81%) 144/159 (90%)	6e-69	

PFam analysis predicts that the NOV41a protein contains the domains shown in the Table 41F.

5

Table 41F. Doma	in Analysis of NOV41a		
Pfam Domain	NOV41a Match Region	Identities/ Similarities for the Matched Region	Expect Value
PDEase	138159	9/49 (18%) 22/49 (45%)	0.11

Example 42.

The NOV42 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 42A.

Table 42A. NOV42 Sequence Analysis					
	SEQ ID NO: 177	512 bp			
NOV42a, CG151822-01 DNA Sequence	GCGCTCTACGTGGCCGGGCTCAAC CCATCCGAGCTTGTTTCCTGGGGT TTGGAGTCACTTTGGCTGAACTGA CTTCGGGAGAATGTCTGAGGAAGGCC AATGAAAAATCAGATACACATACTC ACGTCGGGTGGTTTTACTGGAGTA	SCCCCTGCTCACGCGCGCG SCCCTGCTGCTGCTGCTC PTGTGTTCGGCTGCGCC AGCAGATTACCTGGCTCA SGCCATGTNTACAGCTGC	CCGCGTCTCAGCCTCGCACCTTCCT CCGGCCTGCAGGGCCGCCTG CTATCGGCCGCCTCGCTACCAGATAG TATCGGCCGCCTCGCTACCAGTCTTC CGCTGCTAAGTTTTAGCCAGTCTTC CGTGTCACAGGGCTGCTGATGGTGGT CCTCCAATTTCAACCACGTGGTACAG TACGCTTGGTTTCGGCATCCTTCTT		
	ORF Start: ATG at 3		ORF Stop: TGA at 285		

	SEQ ID NO: 178	94 aa	MW at 9871.5kD
NOV42a, CG151822-01	MAGCAARAPPGSEARLSLATFI IRACFLGFVFGCGTLLSFSQSS	LLGASVLALPLLT SWSHFG	RAGLQGRTGLALYVAGLNALLLLLYRPPRYQIA
Protein Sequence			

	SEQ ID NO: 179	3597 bp				
NOV42b,	GGCACGAGCGGCGCCGCCG	CCCGCTAGTCCGCCGCCCGGC	GCCATGCCGGCCGCGCGCCCC			
CG151822-02	CCGCCGGGCTCTGAGGCGCGTCTCAGCCTCGCCACCTTCCTGCTGCCGCCCTCCCT					
	JCGCTGCTCACGCGCGCCGG	CCTGCAGGGCCGCACCGGCCT	ᢅᢗᢗᢗᢗᢗᡎᢗ᠇ᠯ᠘ᢗᢗᡎᢗᢗᢗᢗᢗᢗᢗᢗᢗᢗᡢᢋ᠉ᡒᡒ			
DNA Sequence	GCTGCTGCTGCTCTAT	CGGCCGCCTCGCTACCAGATA	(GCC)			
	IG 1 G 1 T C G G C T G C G C A C G C	TGCTAAGTTTTAGCCAGTCTT	'Cサポにになにずにないサポートとしていることの			
	IGCTCCCTGTCATTGTTCCA	CTATTCTGAATACTTGGTGAC	'ልርር ልርጥር ል ልጥል ልጥር ርር እ አ አ እርመርመርሙና			
	TTTCACACTTTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	AATCACAGCCTGGAGTATACA	GTAGCTGCTCTTTCTTCTTGGTTAGAC			
	TGATGGTGGTCTTCGGAGA	TTTGGCCAGAACTGAAGCAGA	TTACCTGCTCAGTGTCACAGGCCTGC			
	CGTGGTACAGAATGAAAAA	MCACATACACAMACUCUCCUAT	GTTTACAGCTCAGTGTCACAGGGCTGC GTTTACAGCTGGCTCCAATTTCAACCA ACCAGTGGAGTGTACGCTTGGTTTCGG			
	CATCCTTCTTACGTCGGGT	GGTTTTACTCACATACTCTGGTG	ACCAGTGGAGTGTACGCTTGGTTTCGG CTCAGGTGATGCTGTGTAACCCCATCT			
	GCGGCGTCAGCTATGCCCT	GACAGTGTGGCGATTCTTCC	CCCAGGTGATGCTGTGTAACCCCATCT CGATCGAACAGAAGAAGAAATCTC			
	IACTAATTCACTTTTTTGGA	GAGGAGTACCTGGAGTATAAG	AAGAGGGTCCCCACCCCCCCCCCCCCCCCCCCCCCCCCC			
	MINANGGGGGTCAAGGTGG	AUUTGTGAUGGGCAGTGCCCC	CGGTGACCTTCGCCCCTCCCACCCTTC			
	GCAGCC I GGGACAAAAC I G	TTTCCGGTTGGCCGCTGCCAC	$\Delta \Psi CC \Delta \Psi \Psi \Psi \Psi C \Psi \Psi \Delta A \Psi C \Psi C \Psi \Delta A \Psi C \Psi C \Psi \Delta A \Psi C \Psi C \Psi C \Psi C \Psi C \Psi C \Psi C \Psi C \Psi C \Psi$			
	TTAGTCACTCTTCTGGAAT	GTCACTCAAGACCAAGCGGTC	AGAAGGCCTCACCACCCAACCCCAA			
	TIGGAGCAGTCTGTCCTTAT	GCCGAATCAAGGCGGAACATG	GGTGA A AGACCACTA A CCCCCCA A A HOA			
	CAGCAATATTCCACAGCGC	CCTCCAGAGTTACCTGGGGAG	CACCCACCCCACACCCCCACCCCCCC			
	AGGCCAGAGTGTAAGTAAA	GGATAACCAGGACTCGCTGGG	AGAGATGGA CTCTCTCTCTCTCACCA AGAGA			
	TCCACAGCAGAAAGGGGGTA	GCAGGTACCCCTTCTTATCAG	CGGTAAAAATGCATTTACAACCTTTCA			
	A TUTTER A A A A A A A COMPOSITION	CCGCTTTAACCTCTTTATTTC	TGTCCCCACTGCATGAACATCTATAC			
•	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CATAGGATGCTTTGGCCCTTC	ATCTATTTAATCATAGCTACATACCTA			
	ACTTTTATCCTCCACCAAC	TA ACCOMA CAMA A CHICHAGA CACO	TAGCTCAATGCTTAGCTACATACCTA TAGCTCAATGCTTGGTGTTCTAGTTCA GATTTGGCTGAGTGGCTTTGTGTGACC			
	GTGGCCCAGGCCAAGGGG	ACCATGCCCCTGCCTGCCTTTTT	<u>GATTTGGCTGAGTGGCTTTGTGTGACC</u> CCCCGGGGGTCTCAGCTCCTGTTGTC			
	AGTGATAGGCGGCTCAAAG	GAGCATCAGTTTCTTTCATC	CAAGAAGTGCTTACTGAATGCCTGCCC			
	TGTGCGTGGCCTTAAACAT	I'GAGAAGTGCTGCTCTCCCTTT	TATTTCCCATTTCATTCTCATTTCATTCTCATTTCATT			
	ATAGCTTATATTCTCAATT	I'CAATGCCAGTCTCAGAACTC'	$T^{\mu}C^{\mu}C^{\mu}C^{\mu}C^{\mu}C^{\mu}C^{\mu}C^{\mu}C$			
	TACATTGTCCCTCATGTCA	L'TTCAAACTGTTTTCCAAAGG	CATTTCACCATATACAACTACAAAAACAAATCC			
	IAAGCAGATTGACTCTCAAA	ΑΑΥΑΑΨϹΨΨΑΑΑΨΑΟΨΩΓΑΑΑ	PACTCCCAACOAACAMOCACOCACOA			
	GITIGITITIGCAAGTTTGGG	₿AGAGTAAGTTGGCTTTGAGT(TACACATCCA ACCTETA ACACCTICACA			
	CGC TGGC TTCATTC TGGAC	L'AGACAGGAACTTGGCCTCAG	CTGAGATCCTCCCATCCACTCTACTC			
	CACCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AATGTGAAGGCGGCGTCGGCGC	CGGGCCAGAGCACCACTCTGCTGCCC			
	TCAATACCACCTACCTCAC	AGCCACTAAACCTTTCCGTGC	TAGACCTCCCCATCTGTGGAATGGGG			
	TCAGATGTGGGAGCGACATO	AGGGGTGTTGTGAGGACTGAGA	AAGAACAATGTCAAATGTTTTTAATAC AAAGCTACACAAAAATGGGCAGACATT			
	TGGTTAATTGTGCCAGATAC	CTAAAATCIGIACIGIAIGA	AAGCTACACAAAAATGGGCAGACATT AGCATTTTATCAACTCAGAAATATGAC			
	TTATTTCTAGATTCATGGCT	TAATGAATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ATATATACCAAAGAGGCTTACGGGTTC			
	ATTGATTGGTTTGAAAACCA	∖GAUAGAUGGCUGGCACGCC1	CTAATCCCAAACTCCTCCCATTCCAAC			
	CGTGAGCCACCACGCCCAGC	CAAGATGAACTCCTTA &CG&C	ACCA TTTCCTTA ACTC A TTTCA CTTTCTTT			
	TITAGTTCCATGATCTTGAC	ΑΊΤΑΓΤΤΤΑΓ ΟΤΤΡΑΓΑΔΑ	TTTAGCAGTCCCAGCCCCCCCCCCAAAA			
	TCAGGTTAATGAGGTAAAGC	3CTTTCTGGGTATTTCCTCCC	ACCCCACATCACCAATTTTTTTTTTTTTTTTTTTTTTTT			
	TAAAAACTGTCAAGAGATT	"I'ATTTTTCCATTGCAGGTTTT	$^{1}\Delta\Delta\Delta CTCC\DeltaC\DeltaTTTCTCTATCTCTATATCTCTCTATATCTCTCTATATCTCTCTATATCTCTCTATATCTCTCTCTATATCTCTCTCTCTCTATATC$			
	AGG TACTG TCAGAACAAAGC	TACCTGGAAACAGCATAGACT	GAAGCCTTTCCTCACCCCTTCACCACCC			
·	CGC 1GC 1GAG 1GGCAG 1"1"1"A	LCAGAAGAGGTCGCGGGGTCAG	CCTCTTACCACACACAAAACAACCA			
	MCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TTCACGAGCTGCTCCTTGAGC	CTAAAAAGTAGGCTTTATTCATCCCT			
	TTACCCATCATCTACCTC	GGGGATTGATACGACCGGGGA	AAATGTTCCTAAACCAGGAAGCTGCG			
	CACCACACCACTCTCCCCTTTGTA	AGATCTCGCCAACAGCTAGCT	GCTTAGGAGTACCCCCACGATACGCA			
	TTGCTTTTGTACTCCTTT	CAACCTTTCTTCCTGCCTT	AGGTAGTTGGGCTTGCCACCGTAGT TCTCTGTCATGCTGGGAAGTGCCTAC			
	TCTCTGGGCCACTGCTGCAG	AGGCCGTCGCACTTCGCCC	TCTCTGTCATGCTGGGAAGTGCCTAC GTTTGGAAGACCCAGCCATCTGCAGC			
	AGAGGCAGCCTATCCCATTG	CAAGGAGAGGAACTGAACGCA	CTA A TOTA TOTOTA COCOMO COMPONENTA CA			
	TAMATGTTTATTTAAATATT	CTAAATTGGATTTTCATTCAT	ACAMA CACAMMA AMACAMMACA AMACAM			
	TAAATAAAACTGCACTTGAT	ТТСАСТСААААААААААА	AAAAA			
	ORF Start: ATG at 44					
	Old Statt. ATG at 44		ORF Stop: TGA at 896			

	SEQ ID NO: 180	284 aa	MW at 31937.7kD
CG151822-02 Protein Sequence	AALSSWLEFTLENTFWPRTKOTTW	ASVLALPLLTRAGLOGRT HFGWYMCSLSLFHYSEYL	GLALYVAGLNALLLLLYRPPRYQIA VTAVNNPKSLSLDSFLLNHSLEYTV AMFTAGSNFNHVVQNEKSDTHTLVT FRDRTEBEEISLIHFFGEEYLEYKK

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 42B.

5

Table 42B. Comparison of NOV42a against NOV42b.					
Protein Sequence	NOV42a Residues/ Match Residues	Identities/ Similarities for the Matched Region			
NOV42b	194 194	67/94 (71%) 67/94 (71%)			

Further analysis of the NOV42a protein yielded the following properties shown in Table 42C.

10

Table 42C. Protein	Table 42C. Protein Sequence Properties NOV42a					
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3174 probability located in mitochondrial intermembrane space; 0.3000 probability located in endoplasmic reticulum (membrane)					
SignalP analysis:						

A search of the NOV42a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 42D.

Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV42a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAY32299	Farnesyl-directed cysteine carboxymethyltransferase STE14 - Homo sapiens, 284 aa. [WO9955878-A1, 04-NOV-1999]	194 194	94/94 (100%) 94/94 (100%)	2e-48
AAW67730	Human prenylcysteine carboxyl methyltransferase - Homo sapiens, 284 aa.	194 194	94/94 (100%) 94/94 (100%)	2e-48

	[WO9856924-A1, 17-DEC-1998]			The Ham with their terms
AAB32052	Human secreted protein BLAST search protein SEQ ID NO: 110 - Homo sapiens, 223 aa. [WO200058350-A1, 05-OCT-2000]	1294 183	83/83 (100%) 83/83 (100%)	3e-41
AAB32051	Human secreted protein BLAST search protein SEQ ID NO: 109 - Homo sapiens, 223 aa. [WO200058350-A1, 05-OCT-2000]	1294 183	83/83 (100%) 83/83 (100%)	3e-41
AAY32300	Mouse farnesyl-directed cysteine carboxymethyltransferase - Mus musculus, 153 aa. [WO9955878-A1, 04-NOV-1999]	594 493	82/90 (91%) 83/90 (92%)	2e-40

In a BLAST search of public sequence datbases, the NOV42a protein was found to have homology to the proteins shown in the BLASTP data in Table 42E.

Table 42E. Public BLASTP Results for NOV42a				
Protein Accession Number	Protein/Organism/Length	NOV42a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
O60725	Protein-S isoprenylcysteine O-methyltransferase (EC 2.1.1.100) (Isoprenylcysteine carboxylmethyltransferase) (Prenylcysteine carboxyl methyltransferase) (pcCMT) (Prenylated protein carboxyl methyltransferase) (PPMT) - Homo sapiens (Human), 284 aa.	194 194	94/94 (100%) 94/94 (100%)	5e-48

Q9EQK7	Protein-S isoprenylcysteine O-methyltransferase (EC 2.1.1.100) (Isoprenylcysteine carboxylmethyltransferase) (Prenylcysteine carboxyl methyltransferase) (pcCMT) (Prenylated protein carboxyl methyltransferase) (PPMT) - Mus musculus (Mouse), 283 aa.	594 493	84/90 (93%) 85/90 (94%)	2e-41
O12947	Protein-S isoprenylcysteine O-methyltransferase (EC 2.1.1.100) (Isoprenylcysteine carboxylmethyltransferase) (Prenylcysteine carboxyl methyltransferase) (pcCMT) (Prenylated protein carboxyl methyltransferase) (PPMT) (Farnesyl cysteine carboxyl methyltransferase) (FCMT) - Xenopus laevis (African clawed frog), 288 aa.	1394 998	49/90 (54%) 59/90 (65%)	2e-19
Q9WVM4	Protein-S isoprenylcysteine O-methyltransferase (EC 2.1.1.100) (Isoprenylcysteine carboxylmethyltransferase) (Prenylcysteine carboxyl methyltransferase) (pcCMT) (Prenylated protein carboxyl methyltransferase) (PPMT) (Farnesyl cysteine carboxyl methyltransferase) (FCMT) - Rattus norvegicus (Rat), 232 aa (fragment).	5394 142	39/42 (92%) 40/42 (94%)	8e-17
Q9R1L8	Farnesyl cysteine carboxyl methyltransferase - Rattus norvegicus (Rat), 33 aa (fragment).	6594 130	28/30 (93%) 29/30 (96%)	4e-10

Example 43.

The NOV43 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 43A.

Table 43A. NOV	743 Sequence Analysis		
	SEQ ID NO: 181	2306 bp	
NOV43a,	GCCATGGGGTCCTGCGTGGGG	AGCCGGACCCTAAGCAAGGAT	GATGTGAACTACAAAATGCATTTCC

CG152256-01	GGATGATCAACGAGCAGCAAGTGGAGGACATCACCATTGACTTCTTCTACOGGGCCATAGCATCACCATTGACTCTTCTTCTTCTTCTTCTTCTTTCT
	CCTGCTCAGCTTCACCATCGTCAGCCTCATGTACTTCGCCTTTACCAGGGATGACTCTGTTCCAGAA
DNA Sequence	GACAACATCTGGAGAGGCATCCTCTCTTATTTTCTTCTTCTTATCATCAGTGTGTTAGCTTTCC
	CCAATGGTCCGTTCACTCGACCTCATCCAGCCTTATGGCGAATGGTTTTTGGACTCAGTGTGCTCTA
	CTTCCTGTTCCTGGTATTCCTACTCTTCCTGAATTTCGAGCAGGTTAAATCTCTAATGTATTGGCTA
	GATCCAAATCTTCGATACGCCACAAGGGAAGCAGATGTCATGGAGTATGCTGTGAACTGCCATGTGA
	TCACCTGGGAGAGGATTATCAGCCACTTTGATATTTTTGCATTTTGGACATTTCTGGGGCTGGGCCAT
	GAAGGCCTTGCTGATCCGTAGTTACGGTCTCTGCTGGACAATCAGTATTACCTGGGAGCTGACTGA
	CTCTTCTTCATGCATCTCCTCCCCAATTTTGCCGAGTGCTGGGGATCAAGTCATTCTGGACATCC
	TGTTGTGCAATGGCGGTGGCATTTGGCTGGGCATGGTCGTTTTGCCGGTTTTTAGAGATGAGGACTTA
	CCACTGGGCAAGCTTCAAGGACATTCATACCACCACCGGGAAGATCAAGAGACTGTTCTGCAGTTC
	ACTCCTGCTAGCTGGACCTATGTTCGATGGTTTGACCCCAAATCTTCTTTTCAGAGAGTAGCTGGAG
	TGTACCTTTTCATGATCATCTGGCAGCTGACTGAGTTGAATACCTTCTTCTTGAAGCATATCTTTGT
	GTTCCAAGCCAGTCATCCATTAAGTTGGGGTAGAATTCTCTTTATTGGTGGCATCACAGCTCCCACA
	#GTGAGACAGTACTACGCTTACCTCACCGACACACAGTGCAAGCGCGTAGGAACACAATGCTTCCCTCCT
	TTGGGGCTTTCACCACTTTCCTCTGTCTGTACGGCATGATTTGGTATGCAGAACACTATGGTCACCG
	AGAAAAGACCTACTCGGAGTGTGAAGATGGCACCTACAGTCCAGAGATCTCCTGGCATCACACAAAA
	GGGACAAAAGGTTCTGAAGACAGCCCACCCAAGCATGCAGGCAACAACGAAAGCCATTCTTCCACGA
	GAAGGAATCGGCATTCCAAGTCAAAAGTCACCAATGGCGTTGGAAAGAATGAAAAACCCTGCTTAA
	TCAAAGATGTTCCAGAGTGCCTAGAACTGAGAGGGAAATGGAACTCATTTGGAACTCCCCGTGAGGA
	GGTCGAGGCGCACAGGCAAGCAGGAAGAGGCGAGGGCACTTGGGGGGTCATTATTTGACATCGTAAC
	TCTTGTTTCCCACAGACCTGGCCGCGTCAGGCAGATCATCGCCTGGGGGGCCCTTTTGCCAACGTCCCC
	TCTCTTCTAACTTCAGCACTTGACATGCGGTCACCGGTGCGCGCGC
	AGCTATTCATTCACAGTTGCCAAGAGCAGCTCCGCGCCTGCTGGATCCACCCTAAACATC
	TTCCTTCAGACGAGGCATTAACCCCATGGTTAATGGACTGGTCACCAGTTTTTATTTTATTTTATTTTATTTTATTC
	AATCTACCTTTCCATIGATTGATTTAAGTTCAGGCCACTTTTCTGTCTTTTATTTA
	TATTTGTTTTTAAGTTAGGATGCTTTTTAACAGCCTTTAGAAGCCCCCTGCTGAAATTCATACTCCCC
	GAAGGGTTCCCCTTCCTAGAGCAGAAAAGGGAGAGAGTGTTGTATTCCTCTTTCCTAACCTCA
	GTCTCCTGTAAGACCTCCTACCACATGGCGAGTATACACCAATCAGGAGAGGCGTAGCTGCCTCCATA
,	IGGAGCCTCGCTTCCGATTATTCCCTTCCCAATATTATTCATCCAGACTTAGCCACACACA
	CAAACCTGCTAGAGAGGCAGTGAACACCACAGCTTCTCCCCAGCTTCGTCCCTTTTTACATCCCCTTTTT
	GTTCTCCTTCCATGGTGTGTTGCTGACATTGTCACTGAGTCCCATGTGAGCTGCTCCTCCTCACTATTTAG
	CTTTCATCTGTGCCATGCTCTAGAACCTTGACCTTGATAGTTCACCACGTCTCATCCATC
	IAAATAAAACGATTCACTTTAAAGCCT
	ORF Start: ATG at 4 ORF Stop: TGA at 1324

	SEQ ID NO: 182	440 aa	MW at 51772.5kD
CG152256-01 Protein Sequence	NIWRGILSVIFFFLIISVL PNLRYATREADVMEYAVNCI FFMHLLPNFAECWWDQVILI PASWTYVRWFDPKSSFQRVI	AFPNGPFTRPHPALWRI HVITWERIISHFDIFAI DILLCNGGGIWLGMVVC AGVYLFMIIWQLTELNT WFGAFTTFLCLYGMIV	FFYRPHTITLLSFTIVSLMYFAFTRDDSVPET AVFGLSVLYFLFLVFLLFLNFEQVKSLMYWLI FGHFWGWAMKALLIRSYGLCWTISITWELTEI CRFLEMRTYHWASFKDIHTTTGKIKRAVLQFT FFFLKHIFVFQASHPLSWGRILFIGGITAPTV WYAEHYGHREKTYSECEDGTYSPEISWHHRKG

Further analysis of the NOV43a protein yielded the following properties shown in Table 43B.

Table 43B. Protein Sequence Properties NOV43a		
PSort analysis:	PSort analysis: 0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane 0.0300 probability located in mitochondrial inner membrane	
SignalP analysis: No Known Signal Sequence Predicted		

A search of the NOV43a protein against the Genesseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 43C.

5

Table 43C. Geneseq Results for NOV43a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV43a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
ABB89640	Human polypeptide SEQ ID NO 2016 - Homo sapiens, 473 aa. [WO200190304-A2, 29-NOV-2001]	1440 1473	440/473 (93%) 440/473 (93%)	0.0
AAB58945	Breast and ovarian cancer associated antigen protein sequence SEQ ID 653 - Homo sapiens, 516 aa. [WO200055173-A1, 21-SEP-2000]	1440 44516	439/473 (92%) 439/473 (92%)	0.0
ABB71324	Drosophila melanogaster polypeptide SEQ ID NO 40764 - Drosophila melanogaster, 498 aa. [WO200171042-A2, 27-SEP-2001]	3359 59412	206/357 (57%) 276/357 (76%)	e-133
AAB73515	Human transferase HTFS-22, SEQ ID NO:22 - Homo sapiens, 487 aa. [WO200132888-A2, 10-MAY-2001]	22361 45389	128/351 (36%) 185/351 (52%)	2e-60
AAM79907	Human protein SEQ ID NO 3553 - Homo sapiens, 529 aa. [WO200157190-A2, 09-AUG-2001]	22361 63407	128/351 (36%) 185/351 (52%)	2e-60

In a BLAST search of public sequence datbases, the NOV43a protein was found to have homology to the proteins shown in the BLASTP data in Table 43D.

10

Table 43D. Public BLASTP Results for NOV43a

Protein Accession Number	Protein/Organism/Length	NOV43a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P48651	Phosphatidylserine synthase I (Serine-exchange enzyme I) (EC 2.7.8) - Homo sapiens (Human), 473 aa.	1440 1473	440/473 (93%) 440/473 (93%)	0.0
Q99LH2	Similar to phosphatidylserine synthase 1 - Mus musculus (Mouse), 473 aa.	1440 1473	428/473 (90%) 437/473 (91%)	0.0
Q00576	Phosphatidylserine synthase I (Serine-exchange enzyme I) (EC 2.7.8) - Cricetulus longicaudatus (Long-tailed hamster) (Chinese hamster), 471 aa.	1440 1471	428/473 (90%) 434/473 (91%)	0.0
O55024	Phosphatidylserine synthase-1 - Mus musculus (Mouse), 473 aa.	1440 1473	421/473 (89%) 432/473 (91%)	0.0
Q9BSY0	Similar to phosphatidylserine synthase 1 - Homo sapiens (Human), 334 aa (fragment).	145440 6334	292/329 (88%) 293/329 (88%)	e-178

PFam analysis predicts that the NOV43a protein contains the domains shown in the Table 43E.

5

Table 43E. Domain Analysis of NOV43a				
Pfam Domain	NOV43a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
COLFI	119137	10/19 (53%) 14/19 (74%)	0.12	
PSS	96370	179/310 (58%) 267/310 (86%)	1.1e-206	

Example 44.

The NOV44 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 44A.

Table 44A. NOV	Table 44A. NOV44 Sequence Analysis			
	SEQ ID NO: 183	1151 bp		
NOV44a, CG171804-01 DNA Sequence	TGCACGCCCGGTTAGCATTCGGCC CGTCTCCCCCGCTCTC CTGTCCTCCCTCGCCCGCC	GGGAGATGCGGCAGTGGA CATTCGTCCCCCGGGTAG. GTCTACATCCTCCTGTGC TCCCCACAGGCTCCAGGC TGGGAAGCCGCTGGTCCG GGCTCAGGCCTGGTCCG GGCTCAGGCCTGGTCCT TGGGAAGCCGCAACTATTC; GGCAGCCACTGGACCGG ACCCCGGCCTGCAGGTGT CGAGACGGCAAGAACCG GCGCTGGAGCTGTTGAG CGCTGGAGCTGTTGAG ACCCGGCTCAGTGTCAG	AGAGGGTCGCTCGTGCTCATCATC TGCTGGCCGGCCCCCCTCTGCC TCCACTGCCGGCCCCCCTCTGCC TCACTGCCGGACCCCTCCACTG TGAGCCCTGCCGCAGCTGTGCCGTG TGGGCCAGCGCAGCACCCCGCAGAC TGCGCCAGCCGCAGCACCACCACCACCACCACCACCACCAC	
	ORF Start: ATG at 421		ORF Stop: TAG at 1075	

5

	SEQ ID NO: 184	218 aa	MW at 25333.8kD
CG171804-01	#GQGRHMDRVLGGRTYRTLLQLTRM	YPGLQVYTFTERMMAYCD	TSVPLLLRNYSHYFQKARDTLYMVW QIFQDETGKNRRQSGSFLSTGWFTM QMYLAHEQAPRSAHRFITEKAVFSR

Further analysis of the NOV44a protein yielded the following properties shown in Table 44B.

Table 44B. Protein Sequence Properties NOV44a		
PSort analysis:	0.6400 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.2068 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space	
SignalP analysis:	No Known Signal Sequence Predicted	

15

A search of the NOV44a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 44C.

Table 44C. Geneseq Results for NOV44a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV44a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAB75350	Human secreted protein #9 - Homo sapiens, 302 aa. [WO200100806-A2, 04-JAN-2001]	1218 85302	218/218 (100%) 218/218 (100%)	e-128
AAB61614	Human protein HP03380 - Homo sapiens, 302 aa. [WO200102563-A2, 11-JAN-2001]	1218 85302	218/218 (100%) 218/218 (100%)	e-128 ·-
AAB25764	Human secreted protein SEQ ID #76 - Homo sapiens, 302 aa. [WO200037491-A2, 29-JUN-2000]	1218 85302	218/218 (100%) 218/218 (100%)	e-128
AAB28674	Human carbohydrate-modifying enzyme Incyte ID No: 983984CD1 - Homo sapiens, 302 aa. [WO200063351-A2, 26-OCT-2000]	1218 85302	218/218 (100%) 218/218 (100%)	e-128
AAB24495	Human secreted protein sequence encoded by gene 5 SEQ ID NO:120 - Homo sapiens, 345 aa. [WO200035937-A1, 22-JUN-2000]	1218 128345	217/218 (99%) 217/218 (99%)	e-128

In a BLAST search of public sequence datbases, the NOV44a protein was found to have homology to the proteins shown in the BLASTP data in Table 44D.

Table 44D.	Public BLASTP Results for NOV44	la		
Protein Accession Number	Protein/Organism/Length	NOV44a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value

Q9H4F1	Alpha-N-acetyl-neuraminyl-2,3-beta-gala ctosyl-1,3-N- acetylgalactosaminide alpha-2,6-sialyltransferase (EC 2.4.99.7) (NeuAc-alpha-2,3-Gal-beta-1,3-GalNAc-alpha-2, 6-sialyltransferase) (ST6GalNAc IV) (Sialyltransferase 7D) - Homo sapiens (Human), 302 aa.	1218 85302	218/218 (100%) 218/218 (100%)	e-128
Q9H4F1	Alpha2,6-sialyltransferase - Homo sapiens (Human), 302 aa.	1218 85302	217/218 (99%) 218/218 (99%)	e-128
Q9NWU6	CDNA FLJ20593 fis, clone KAT08984 - Homo sapiens (Human), 302 aa.	1218 85302	217/218 (99%) 217/218 (99%)	e-127
Q9UKU1	NeuAc-alpha-2,3-Gal-beta-1,3-GalNAc-alpha-2, 6-sialyltransferase alpha2,6-sialyltransferase - Homo sapiens (Human), 302 aa.	1218 85302	216/218 (99%) 216/218 (99%)	e-127
Q9R2B6	Alpha-N-acetyl-neuraminyl-2,3-beta-gala ctosyl-1,3-N- acetylgalactosaminide alpha-2,6-sialyltransferase (EC 2.4.99.7) (NeuAc-alpha-2,3-Gal-beta-1,3-GalNAc-alpha-2, 6-sialyltransferase) (ST6GalNAc IV) (Sialyltransferase 7D) - Mus musculus (Mouse), 360 aa.	1218 143360	202/218 (92%) 207/218 (94%)	e-118

PFam analysis predicts that the NOV44a protein contains the domains shown in the Table 44E.

5

Table 44E. Domain A	Analysis of NOV44a		
Pfam Domain	NOV44a Match Region	Identities/ Similarities for the Matched Region	Expect Value
Glyco_transf_29	1202	65/324 (20%) 184/324 (57%)	6e-43

Example 45.

The NOV45 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 45A.

Table 45A. NOV45 Sequence Analysis

<u>, , , , , , , , , , , , , , , , , , , </u>	Igro m No. 105	1 475 1	har fam. unti		and the state of the state of
	SEQ ID NO: 185	1475 bp			
NOV45a,	AGGACTCCAAGCGCCATGGCCGCT	GCCGCCGAGC	CCGGGTC	CGTACTTGCT	GAGGCAACTGCAAC
i . '	GCGCAGCATGCTGTTTCAAATAT	TAGATATGGAC	CAGCAGT	TACAAAGGAAG	TAGGAATGGCAGAC
CG171841-01	CTAAAAAACATGGGTGCTAAAAAT	GTGTGCTTGAT	GACAGAC	AAGAACCTCTC	CAAGCTCCCTCCTG
DNA Sequence	TGCAAGTAGCTATGGATTCCCTAG	TGAAGAATGGC	ATCCCCT	TTACGGTTTAT	GATAATGTGAGAGT
-	GGAACCAACGGATAGCTTCATGGA	AGCTATTGAGT	TTGCCCA	AAAGGGAGCTT	TTGATGCCTATGTT
	GCTGTCGGTGGTGGCTCTACCATG	GACACCTGTA	GGCTGCT	AATCTGTATGC	ATCCAGCCCTCATT
ĺ	CTGATTTCCTAGATTATGTCAGTG	CCCCCATTGGC	CAAGGGAA	AGCCTGTGTCT	GTGCCTCTTAAGCC
	TCTGATTGCAGTGCCAACTACCTC	AGGAACCGGG	GTGAAAC	PACTGGGGTTG	CCATTTTTGACTAT
·	GAACACTTGAAAGTAAAAATTGGC	ATCACTTCGAG	SAGCCATC	AAACCCACACT	GGGACTGATTGATC
l e	CTCTGCACACCCTCCACATGCCTG	CCCGAGTGGTC	GCCAACA	GTGGCTTTGAT	GTGTTTAGCCATGC
	CCTGGAGTCATACACCACCCTGCC	CTACCACCTGC	GGAGCCC	CTGCCCTTCAA	ATCCCATCACACGG
	CCTGCGTACCAGGGCAGCAACCCA	ATCAGTGACAT	TTGGGCT	ATCCACGCGCT	GCGGATCGTGGCTA
	AGTATCTGAAGGCTGTCAGAAATC	CCGATGATCTT	'GAAGCAA	GGTCTCATATG	CACTTGGCAAGTGC
l	TTTTGCTGGCATCGGCTTTGGAAA	TGCTGGTGTTC	CATCTGCA	IGGAATGTCTT	ACCCAATTTCAGGT
ł	TTAGTGAAGATGTATAAAGCAAAG	GATTACAATGT	GGATCAC	CCACTGGTGCC	CCATGGCCTTTCTG
	TGGTGCTCACGTCCCCAGCGGTGT	TCACTTTCACC	GCCCAGA!	IGTTTCCAGAG	CGACACCTGGAGAT
ł	GGCAGAACTTCTAGGAGCCGACAC	CCGCACTGCCA	GGATCCA	AGATGCAGGGC	TGGTGTTGGCAGAC
	ACGCTCCGGAAATTCTTATTCGAT	CTGGATGTTG	TGATGGC	CTAGCAGCTGT	TGGTTACTCCAAAG
	CTGATATCCCCGCACTAGTGAAAG	GAACGCTGCCC	CAGGAAA	GGTCACCAAG	CTTGCACCCTGTCC
	CCAGTCAGAAGAGGATCTGGCTGC	TCTGTTTGAAC	CTTCAATO	GAAACTGTAT T	AATTGTCATTTTAA
ł	CTGAAAGAATTACCGCTGGCCATT	GTAGTGCTGAG	AGCAAGA	GCTGATCTAGC	TAGGGCTTTGTCTT
1	TTCATCTTTGCGCATAACTTACCT	GTTACCAGTAT	AGGTGGG	ATATACATTTA	TCTTGCAGGAAATT
	<u>IC</u>				
	ORF Start: ATG at 75			ORF Stop: T	AA at 1326

	SEQ ID NO: 186	417 aa	MW at 44871.2kD
CG171841-01 Protein Sequence	TDSFMEAIEFAQKGAFDAYVAVGG AVPTTSGTGSETTGVAIFDYEHLK SYTTLPYHLRSPCPSNPITRPAYQ GIGFGNAGVHLHGMSYPISGLVKM	GSTMDTCKAANLYASSPH VKIGITSRAIKPTLGLID GSNPISDIWAIHALRIVA YKAKDYNVDHPLVPHGLS	VQVAMDSLVKNGIPFTVYDNVRVEP SDFLDYVSAPIGKGKPVSVPLKPLI PLHTLHMPARVVANSGFDVFSHALE KYLKAVRNPDDLEARSHMHLASAFA VVLTSPAVFTFTAQMFPERHLEMAE ADIPALVKGTLPQERVTKLAPCPQS
1	DEDUNANT ENSUIT I		

Further analysis of the NOV45a protein yielded the following properties shown in Table 45B.

10

Table 45B. Protein Sequence Properties NOV45a				
PSort analysis:	0.4500 probability located in cytoplasm; 0.3188 probability located in microbody (peroxisome); 0.2355 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space			
SignalP analysis: No Known Signal Sequence Predicted				

A search of the NOV45a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 45C.

Table 45C. Ge	eneseq Results for NOV45a	**************************************		ALL SALES AND AND ASSESSMENT OF THE SALES AND ASSESSMENT O
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV45a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAE21522	Human dehydrogenase DHDR-6 protein - Homo sapiens, 467 aa. [WO200216562-A2, 28-FEB-2002]	1417 49467	413/420 (98%) 414/420 (98%)	0.0
AAB73686	Human oxidoreductase protein ORP-19 - Homo sapiens, 467 aa. [WO200144448-A2, 21-JUN-2001]	1417 49467	412/420 (98%) 413/420 (98%)	0.0
ABB59876	Drosophila melanogaster polypeptide SEQ ID NO 6420 - Drosophila melanogaster, 464 aa. [WO200171042-A2, 27-SEP-2001]	1417 46464	254/420 (60%) 327/420 (77%)	e-146
ABG08093	Novel human diagnostic protein #8084 - Homo sapiens, 268 aa. [WO200175067-A2, 11-OCT-2001]	62322 1268	240/268 (89%) 243/268 (90%)	e-131
AAB42855	Human ORFX ORF2619 polypeptide sequence SEQ ID NO:5238 - Homo sapiens, 212 aa. [WO200058473-A2, 05-OCT-2000]	247417 41212	168/172 (97%) 170/172 (98%)	7e-91

In a BLAST search of public sequence datbases, the NOV45a protein was found to have homology to the proteins shown in the BLASTP data in Table 45D.

Table 45D. Public BLASTP Results for NOV45a					
Protein Accession Number	Protein/Organism/Length	NOV45a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	

CAD28993	Sequence 4 from Patent WO0216562 - Homo sapiens (Human), 467 aa.	1417 49467	413/420 (98%) 414/420 (98%)	0.0
Q96MF9	CDNA FLJ32430 fis, clone SKMUS2001129, weakly similar to NAD-dependent methanol dehydrogenase (EC 1.1.1.244) - Homo sapiens (Human), 419 aa.	1417 1419	412/420 (98%) 413/420 (98%)	0.0
Q8R0N6	Hypothetical 45.0 kDa protein - Mus musculus (Mouse), 419 aa.	1417 1419	372/420 (88%) 394/420 (93%)	0.0
Q9W265	T3DH protein - Drosophila melanogaster (Fruit fly), 464 aa.	1417 46464	254/420 (60%) 327/420 (77%)	e-145
Q95S86	GM05887p - Drosophila melanogaster (Fruit fly), 425 aa.	1417 7425	254/420 (60%) 327/420 (77%)	e-145

PFam analysis predicts that the NOV45a protein contains the domains shown in the Table 45E.

5

Table 45E. Domain Analysis of NOV45a				
Pfam Domain	NOV45a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Fe-ADH	4205	68/216 (31%) 143/216 (66%)	5.6e-28	
Fe-ADH	228288	30/68 (44%) 51/68 (75%)	2.5e-10	

Example 46.

The NOV46 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 46A.

Table 46A. NOV46 Sequence Analysis				
	SEQ ID NO: 187	1310 bp		
NOV46a, CG173017-01 DNA Sequence	GGGCAGTGTGGGCCGGTGGGGGTGGAGCCCCTGGCTGGATCCCGCAGGGCAGCCCAGGGGAGCCTGGGGCAACCGGCAACCGCAACCACACACA	CGARAAGAATGCATTGT CGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG	CTTCCTCCCTCAGCGGCATGCCGCA GGGGTCGCGTCCCGGTGGCGGCGC GGGGTCGCGTCCCGGTGGCGGCGC TGGCAGCGGGGGGGTGGCCCTGGGGCT AAACACTACGGGGTTTACAGCTGTG TTACATACTCTTGCCGGGACAACAA CTGCCGCTATCAGAAGTGCCTGGCC GGAAAGGACAGGATTGGGGATGGGG TCCTGGAGCCAGACTTGCTTGTAGA GGTTACGGGAGCAGCCCAAATGAC ACGCTTGTTGAGTGGGCAAGAGAG TGCTGCGGGCAGGCTGGAATGAACT TGGCATCCTTCTTGCCACAGGTCTT ATCTTTGATCGGTTGTACAGACC TTGGCTGCCTGAGGGCAATCATCT GGAGGTCCTGCGGAGAAAGTGTAT CAGGGACGGTTTGCCAAAGTGTAT CAGGGACGGTTTGCCAAAGCTGCTGC AGCATCTGTTTTTCTTCAAGCTCCTA GGCTCCCCATCAACTGGCCTGACAGCT GCTCCCCATCAACTGGCCTGACGCT CAGGCTCCCCATCAACTGGCCTGACGCT CAGGCTCCCCATCAACTGGCCTGACGCT CAGGCTCCCCATCAACTGGCCTGACGCT CAGGCTCCCCATCAACTGGCCTGACGCT CAGGCTCCCCATCAACTGGCCTGACGCT CAGGCTCCCCATCAACTGGCCTGACGCT CAGGCTCCCCATCAACTGGCCTGACGCT CAGGCTCCCCATCAACTGGCCTGACCT CAGGCTCCCCATCAACTGGCCTGACCT CAGGCTCCCCATCAACTGGCCTGACCT CAGGCATCTGTTTTCTTCAACTGCCTGC CAGCATCTGTTTTCTTCAACTGCCTGCCTGC CAGCATCTGTTTTCTTCAACTGCCTGCCTGC CAGCATCTGTTTTTCTTCAACTGCCTGCCTGC CAGCATCTGTTTTCTTCAACTGCCTGCCTGC CAGCATCTGTTTTTCTTCAACTGCCTGCCTGACCTGCCTG	

5

	SEQ ID NO: 188	416 aa	MW at 45778.7kD
CG173017-01 Protein Sequence	AGRDGMGDSGRGGPGAGKI RQRNRCQYCRYQKCLATGI VEGPGGTGGSGSSPNDPV	RLCAICGDRSSGKHYGVY MKREAVQEERQRGKDRDC FNICOAADKOLFTLVEWA	JRRRRPWLDPAAAAAAVAGGEQQTPEPEPGR ZSCEGCKGFFKRTIRKDLTYSCRDNKDCTVDR GDGEGAGGAPEEMPVDRILEAELAVEQKSDQC LKRIPHFSSLPLDDQVILLRAGWNELLIASFS
	HKSIDAKOGIPPVIGPHA	IRNSAHSAGVGAIFDRVI	.TELVSKMRDMRMDKTELGCLRAIILFNPDAK LLLRLPALRSIGLKCLEHLFFFKLIGDTPII

Further analysis of the NOV46a protein yielded the following properties shown in Table 46B.

Table 46B. Protein Sequence Properties NOV46a			
PSort analysis: 0.9700 probability located in nucleus; 0.3000 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial mai space; 0.1000 probability located in lysosome (lumen)			
SignalP analysis:	No Known Signal Sequence Predicted		

15

A search of the NOV46a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 46C.

Table 46C. Geneseq Results for NOV46a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV46a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU78297	Human Retinoid X Receptor beta (RXRbeta) protein - Homo sapiens, 533 aa. [WO200218420-A2, 07-MAR-2002]	41416 156533	346/378 (91%) 352/378 (92%)	0.0
AAR72483	Human H-2RIIBP - Homo sapiens, 533 aa. [US5403925-A, 04-APR-1995]	41416 156533	346/378 (91%) 352/378 (92%)	0.0
AAR39468	hRXR-beta1 - Homo sapiens, 533 aa. [WO9315216-A, 05-AUG-1993]	41416 156533	346/378 (91%) 352/378 (92%)	0.0
AAR39469	hRXR-beta2 - Homo sapiens, 510 aa. [WO9315216-A, 05-AUG-1993]	41416 133510	345/378 (91%) 351/378 (92%)	0.0
AAY21625	Ligand binding domain of nuclear receptor hRXRbeta - Homo sapiens, 525 aa. [WO9926966-A2, 03-JUN-1999]	41416 148525	345/378 (91%) 351/378 (92%)	0.0

In a BLAST search of public sequence datbases, the NOV46a protein was found to have homology to the proteins shown in the BLASTP data in Table 46D.

Protein Accession Number	Protein/Organism/Length	NOV46a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
S37781	retinoid X receptor beta - human, 533 aa.	41416 156533	346/378 (91%) 352/378 (92%)	0.0
Q95L53	Retinoid X receptor beta - Mustela vison (American mink), 525 aa (fragment).	41416 148525	346/378 (91%) 352/378 (92%)	0.0

P28702	Retinoic acid receptor RXR-beta - Homo sapiens (Human), 533 aa.	41416 156533	346/378 (91%) 352/378 (92%)	0.0
A41651	retinoic acid receptor coregulator - rat, 451 aa.	41416 74451	341/378 (90%) 349/378 (92%)	0.0
D41727	retinoid X receptor beta - mouse, 448 aa.	41416 71448	341/378 (90%) 349/378 (92%)	0.0

PFam analysis predicts that the NOV46a protein contains the domains shown in the Table 46E.

5

Table 46E. Domain Analysis of NOV46a					
Pfam Domain NOV46a Match Region Identities/ Similarities for the Matched Region Expect V					
zf-C4	86161	49/77 (64%) 73/77 (95%)	1.5e-54		
hormone_rec	227409	74/207 (36%) 157/207 (76%)	3.3e-68		

Example 47.

The NOV47 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 47A.

Table 47A. NOV47 Sequence Analysis				
	SEQ ID NO: 189	1229 bp		
NOV47a, CG173347-01 DNA Sequence	GTTTCTGGCGTTTAGAGAAAGGGTCACCTTATTGAGGAACTTGAAAGTTCTCAGTCTGCAGGTCTGTAGAGGATCCCAGTGCGAGACCGCAAGGCATCGAGACGCCAGAACGCCCTGTATGAGGGATTAAATCTTCTTGATGATTAATCCACATTATGTTGTAATCACACATATAACCACACATATCTGGTATACCTCACATACCTCAGAACACTCTCAGATCCACACACA	GAATGCCTCTCGAGAAGT GGCTCTGAAGATATTGAT AGTTTGCTGGAAGTCCACT AATATTGCTGCCTGATTTT AAATATCCAGGCATGCCACACACACACACACACACACACA	TCGGCCTGTCCTTAGTCGGGAGAT GGAGCCAGTAGAACCTGAAAACTGC 'ATACTTCCTAGTGGGCTGGCTTTTA 'CCAGACCCTGTTTGCCTGGCTATCA 'CCAGACCCTGTTTGCCTGGCTTTTA 'CCAGACCCTGTTTGCCTCAGAGG 'AACTTTGCGCCAGATGAACCAGGAA 'AAGCACTAGAAATCAGTGGTGATCTT 'CGACAAAGACAATACTGTGTATCTT 'CTTAAATTTGAGGAACAACACTT GTGTGAATGACATTGTGTTTTTGAGATG AGCGAGGTTAAAGTGGTGGCCAAAG 'AGTATGTCTATGTAGCTGATGTAGC 'AGCAGACATTTTGGAGTGATGCCATC CAGGACATTTTTGAGATGTAGC CAGGATCAAAGATACTCCACC CAACAATGGCTCTGTCCTTCAGGGC CAACAATGGCTCTGTGCTTCAGGGC 'ACCGTATTTCNCAAAACTCTGTACT	

GTGAGCTC TAG ACTCTAGATAGT	
ORF Start: ATG at 9	ORF Stop: TAG at 1215

	SEQ ID NO: 190	402 aa	MW at 45160.5kD
CG173347-01 Protein Sequence	LQVCWSLLEVHSRPCLPGYHQWRL LMDLNEQNPRAQALEISGGFDKEL YLKTIKHELLKSVNDIVVLGPEQF SANGITVSADQKYVYVADVAAKNI	QNGKYCCLIFLLEASSQR FNPHGISIFIDKDNTVYL YATRDHYFTNSLLSFFEM HIMEKHDNWDLTQLKVIQ	HLIEELESGSEDIDILPSGLAFISS GIRLYEGLKYPGMPNFAPDEPGKIF YVVNHPHMKSTVEIFKFEEQORSLV ILDLRWTYVLFYSPREVKVVAKGFC LGTLVDNLTVDPATGDILAGCHPNP TSVASVYHGKILIGTVFXKTLYCEL

Further analysis of the NOV47a protein yielded the following properties shown in Table 47B.

10

Table 47B. Protein Sequence Properties NOV47a			
PSort analysis:	0.8200 probability located in outside; 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)		
SignalP analysis:	Cleavage site between residues 31 and 32		

A search of the NOV47a protein against the Geneseq database, a proprietary

database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 47C.

Table 47C. Go	Table 47C. Geneseq Results for NOV47a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV47a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
ABB97287	Novel human protein SEQ ID NO: 555 - Homo sapiens, 354 aa. [WO200222660-A2, 21-MAR-2002]	1402 1354	352/402 (87%) 352/402 (87%)	0.0	
AAG75494	Human colon cancer antigen protein SEQ ID NO:6258 - Homo sapiens, 370 aa. [WO200122920-A2, 05-APR-2001]	2402 18370	352/401 (87%) 352/401 (87%)	0.0	

ABG08350	Novel human diagnostic protein #8341 - Homo sapiens, 382 aa. [WO200175067-A2, 11-OCT-2001]	1402 24382	330/407 (81%) 333/407 (81%)	e-178
AAU11925	Protein sequence of rabbit paraoxonase-3 (PON3) mutant D324N - Oryctolagus cuniculus, 355 aa. [WO200190336-A2, 29-NOV-2001]	1402 1355	294/403 (72%) 318/403 (77%)	e-164
AAU11922	Protein sequence of rabbit paraoxonase-3 (PON3) mutant N169D - Oryctolagus cuniculus, 355 aa. [WO200190336-A2, 29-NOV-2001]	1402 1355	294/403 (72%) 318/403 (77%)	e-164

In a BLAST search of public sequence datbases, the NOV47a protein was found to have homology to the proteins shown in the BLASTP data in Table 47D.

Table 47D. F	Table 47D. Public BLASTP Results for NOV47a				
Protein Accession Number	Protein/Organism/Length	NOV47a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q15166	Serum paraoxonase/arylesterase 3 (EC 3.1.1.2) (EC 3.1.8.1) (PON 3) (Serum aryldiakylphosphatase 3) (A-esterase 3) (Aromatic esterase 3) - Homo sapiens (Human), 354 aa.	1402 1354	354/402 (88%) 354/402 (88%)	0.0	
Q9BZH9	Paraoxanase-3 - Homo sapiens (Human), 354 aa (fragment).	1402 1354	351/402 (87%) 351/402 (87%)	0.0	
Q9BGN0	Paraoxonase 3 - Oryctolagus cuniculus (Rabbit), 354 aa.	1402 1354	293/402 (72%) 318/402 (78%)	e-164	

Q62087	Serum paraoxonase/arylesterase 3 (EC 3.1.1.2) (EC 3.1.8.1) (PON 3) (Serum aryldiakylphosphatase 3) (A-esterase 3) (Aromatic esterase 3) - Mus musculus (Mouse), 354 aa.	1402 1354	283/402 (70%) 314/402 (77%)	e-158
Q90952	Serum paraoxonase/arylesterase 2 (EC 3.1.1.2) (EC 3.1.8.1) (PON 2) (Serum aryldiakylphosphatase 2) (A-esterase 2) (Aromatic esterase 2) - Gallus gallus (Chicken), 354 aa.	1402 1354	230/402 (57%) 287/402 (71%)	e-131

PFam analysis predicts that the NOV47a protein contains the domains shown in the Table 47E.

5

Table 47E. Domain Analysis of NOV47a				
Pfam Domain	NOV47a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Arylesterase	2402	230/422 (55%) 348/422 (82%)	1.2e-190	

Example 48.

The NOV48 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 48A.

Table 48A. NOV	Table 48A. NOV48 Sequence Analysis				
	SEQ ID NO: 191	2109 bp			
NOV48a, CG56234-01 DNA Sequence	CGCATTGTACCGCCTGGCCTGCCCGCGTAGCATCCCGAGTCCCGAGTCCCGAGTCCTGTAGAGCACACCTGCCCGCACAGACCCCCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	GCTTAACTGGCATGGGCT CTTAGTGGAGATCTGGGC CGCCACCAGCAGGGCCTCAT AGGAGCAGCAGGGCCTCAT AAGGATGTGGCACGAGTA TCCCGCCTGGTGGGGCCC CGATGAGAGGTTTCCAGG CGTGGGGCTCCCGCTGTCC CGTATTATGACCGACTGGC	GCAGCCCTGCCCAGGTGCCATGGC GAGCCCCTTGGGCTGCCATCATGC CAGCTTCCCACTGGCATTCAGAGATT ACATCTGTGATGGAACTGAGGCTGA CCGAAAGCTCCCCAAGTACAATAAC GAGAGCAAGACGGTGATTGTAACTC GTGGGCAGCTGGGCACCATGTAT CCGCATGCAGGGCGCACCATGTAT CGCATCGGGGTGAGCTCACTGACT GGACACCTGTGCTCAGGCCCTCAGGGCCCTCGGG		

	<u> AACATCTTCAATGTGCCATAGACC</u>	TTCCCACA
	3 3 C 3 M C M M C M C M C C C C C C C C	
	ACATAGCACCCTCATCTGGGAATA	GGGAAGGCACCTTGCAGAAAATATGAGCAATTTGATATTAACT
	GCTGAGCTTGAGGCCCTGGAGAGA	CGTGTGCACAAATG TGA<u>CCTGAGGCCCTAGTCTAGCAAGAGG</u>
	GGAGGTTCGTGACATTCGGAGCTA	CCTGACAGAGCAGGTCAACCAGGATCTGCCCAAAGAGGTGTTG
9	ATCTCAGCGGCCTCAGAGCTATAG	ACACCACTCAGCTGTTCTCCCTCCCCAAGGACTTCTGGGAACA
	CGGTTAGAGGGGGGGGGACAGTGCC	CGAGAGACACCCATTGGGCTGGTACCAAAGGAAGGACCCTTGG
1	CGAGGCAGGCACTTCCTGTGGCC	AGGCTTTGGGGAGAATGCTCGGGTGCTAGACTGGATCTCCCCC
	TGAGCATGGAAGGGCGCAAGGGGG	CCCAGCTGCCCCGTATCTTCCATGTCAACTGGTTCCGGCGTGA
	ATGCACGACCCATTTGCCATGCGG	CCCTTTTTTGGCTACAACTTCGGGCACTACCTGGAACACTGGC
	GGTGTTTGTGGGCAGCGCCATGCG	CTCTGAGTCCACTGCTGCAGCAGAACACAAAGGGAAGATCATC
	TCATCTTTGGTGGCCGCAGACCCA	AAACCCAGCCTGGGAGGCCCCAGAGGGTGTCCCCATTGACGCCA AAAGGGGTACCCCTGGTATACGAGGCCTTCAACTGGCGTCATGG
	CCGGCTCGCCAGTGCCCCATCATC	GACCCAGCCTGGGAGGCCCCAGAGGGTGTCCCCATTGACGCCA
	GCTGGCAAACCGTGTACTGGGAGG	GCATTGACCAGCCTCTTCCACCTGGTGTTACTGTGACCTCCTG FTGACAAGGAGCCCTGTGCACATCCCAACTCTCGATTTTGTGCC
	GTCATCCAATCCCAACGCCATGGCT	ACAATCCAGAGTAACACTATTTTTACCAATGTGGCTGAGACCA
	TGAAGGTCGACTCCGGGCCATCAA	CCCTGAGAACGGCTTCTTTGGGGTTGCCCCTGGTACCTCTGCC
	GGCCTGCACTGCCAGGCTGGAAAG	FTGGAGTGTGTGGGGGATGATATTGCTTGGATGAGGTTTGACAC
	GGGAAGAAGCGCTATGTGGCAGCC	CGCCTTCCCTAGTGCCTGTGGCAAGACCAACCTGGCTATGATGC
	TCGGCTGGCCCGGGATGAGGGCTG	GCTGGCAGAGCACATGCTGATCCTGGGCATCACCAGCCCTGCA
	CCTTCGGCAGCGGCTATGGTGGC	ACTCCCTGCTGGGCAAGAAGTGCTTTGCCCTACGCATCCCCTC
	AGCCAGTGGCCGTGCAACCCAGAG	AAAACCCTGATTGGGGAGGTGGGGGAGATGATCT

	SEQ ID NO: 192	640 aa	MW at 70688.2kD	
CG56234-01 Protein Sequence	AENTATITILEQQGLIRKL MSPADFQRAVDERFPGCMQ LGDGDFVKCLHSVGQPLTG ASRLARDEGWLAEHMLILG DSEGRLRAINPENGFFGVA SWLGKPWKSGDKEPCAHPN: HGVFVGSAMRSESTAAAEH	PKYNNCWLARTDPKDVA GRTMYVLPFSMGPVGSI QGEPVSQWPCNPEKTLI ITSPAGKKRYVAAAFPS PGTSATTNPNAMATIQS SRFCAPARQCPIMDPAW KGKIIMHDPFAMRPFFC DWICRRLEGEDSARETE	LIGQLPTGIRDFVEHSARLCQPEGIHICI RVESKTVIVTPSQRDTVPLPPGGARGQI LISRIGVQLTDSAYVVASMRIMTRLGTPV GHVPDQREIISFGSGYGGNSLLGKKCF ACGKTNLAMMRPALPGWKVECVGDDIAW NTIFTNVAETSDGGVYWEGIDQPLPPGV LEAPEGVPIDAIIFGGRRPKGVPLVYEAF YNFGHYLEHWLSMEGRKGAQLPRIFHVN YGLVPKEGAIDISGIRAIDTTOLFSLDK	GNW /LQA /LRI /MRF /TVT /NWR

SEQ ID NO: 193 2069 bp CCCGCCTTCCATACCTCCCCGGCTCCGCTCGGTTCCTGGCCACCCCGCAGCCCCTGCCCAGGTGCCA NOV48b, CG56234-02 ATGCCGTAGCATCCAGACCCTGCGAGTGCTTAGTGGAGATCTGGGCCAGCTTCCCACTGGCATTCGA DNA Sequence GATTTTGTAGAGCACAGTGCCCGCCTGTGCCAACCAGAGGGCATCCACATCTGTGATGGAACTGAGG CTGAGAATACTGCCACACTGACCCTGCTGGAGCAGCAGGGCCTCATCCGAAAGCTCCCCAAGTACAA TAACTGCTGGCTGGCCCGCACAGACCCCAAGGATGTGGCACGAGTAGAGAGCAAGACGGTGATTGTA ACTCCTTCTCAGCGGGACACGGTACCACTCCCGCCTGGTGGGGCCTGTGGGCAGCTGGGCAACTGGA GTATGTGCTTCCATTCAGCATGGGTCCTGTGGGCTCCCCGCTGTCCCGCATCGGGGTGCAGCTCACT GACTCAGCCTATGTGGTGGCAAGCATGCGTATTATGACCCGACTGGGGACACCTGTGCTTCAGGCCC TGGGAGATGGTGACTTTGTCAAGTGTCTGCACTCCGTGGGCCAGCCCCTGACAGGACAAGGGGAGCC AGTGAGCCAGTGGCCGTGCAACCCAGAGAAAACCCTGATTGGCCACGTGCCCGACCAGCGGGAGATC ATCTCCTTCGGCAGCGGCTATGGTGGCAACTCCCTGCTGGGCAAGAAGTGCTTTGCCCTACGCATCG CCTCTCGGCTGGCCCGGGATGAGGGCTGGCTGGCAGAGCACATGCTGATCCTGGGCATCACCAGCCC TGCAGGGAAGAAGGCGCTATGTGCAGCCGCCTTCCCTAGTGCCTGTGGCAAGACCAACCTGGCTATG ATGCGGCCTGCACTGCCAGGCTGGAAAGTGGAGTGTGTGGGGGGATGATATTGCTTGGATGAGGTTTG ACAGTGAAGGTCGACTCCGGGCCATCAACCCTGAGAACGGCTTCTTTGGGGTTGCCCCTGGTACCTC TGCCACCACCAATCCCAACGCCATGGCTACAATCCAGAGTAACACTATTTTTACCAATGTGGCTGAG ACCAGTGATGGTGGCGTGTACTGGGAGGGCATTGACCAGCCTCTTCCACCTGGTGTTACTGTGACCT CCTGGCTGGGCAAACCCTGGAAACCTGGTGACAAGGAGCCCTGTGCACATCCCAACTCTCGATTTTG TGCCCCGGCTCGCCAGTGCCCCATCATGGACCCAGCCTGGGAGGCCCCAGAGGGTGTCCCCATTGAC GCCATCATCTTTGGTGGCCGCAGACCCAAAGGGAAGATCATCATGCACGACCCATTTGCCATGCGGC CCTTTTTTGGCTACAACTTCGGGCACTACCTGGAACACTGGCTGAGCATGGAAGGGCGCAAGGGGGC CCAGCTGCCCCGTATCTTCCATGTCAACTGGTTCCGGCGTGACGAGGCAGGGCACTTCCTGTGGCCA GGCTTTGGGGAGAATGCTCGGGTGCTAGACTGGATCTGCCGGCGGTTAGAGGGGGAGGACAGTGCCC

CACCACTCAGCTGTTCTCCCTCCC CTGACAGAGCAGGTCAACCAGGAT GTGTGCACAAAATG TGA<u>CCTGAGG</u> GAAGGCACCTTGCAGAAAATATGA	CAAAGGAAGGACCCTTGGATCTGAGCGGGTCAGAGGTATAGA CAAGGACTTCTGGGACAGGAGGTTGTGACATTCGGAGCTAC CTGCCCAAAGAGGTGTTGGCTGAGCTTGAGGCCCTGGAGAC CCTAGTCTAGCAAGAGGACATAGCACCCTCATCTGGGAATAGG GCAATTGATATTAACTAACATCTTCAATGTGCCATAGACCTTC AGATGCTTATCTATTTTAAAAAAAAAA
ORF Start: ATG at 67	ORF Stop: TGA at 1891

	SEQ ID NO: 194	608 aa	MW at 67027.1kD
CG56234-02 Protein Sequence	AENTATLTLLEQQGLIRKLPKYNN MSPADFQRAVDERFPGCMQGRTMY LGDGDFVKCLHSVGQPLTGQGEFV; ASRLARDEGWLAEHMLILGITSPA DSEGRLRAINPENGFFGVAPGTSA; SWLGKPWKPGDKEPCAHPNSRFCAI PFFGYNFGHYLEHWLSMEGRKGAQI	RSIQTLRVLSGDLGQLPT CWLARTDPKDVARVESKT VLPFSMGPVGSPLSRIGV SQWPCNPEKTLIGHVPDQ JKKALCAAAFPSACGKTN TTNPNAMATIQSNTIFTN PARQCPIMDPAWEAPEGV LPRIFHVNWFRRDEAGHF	GIRDFVEHSARLCQPEGIHICDGTE VIVTPSQRDTVPLPPGGACGQLGNW QLTDSAYVVASMRIMTRLGTPVLQA REIISFGSGYGGNSLLGKKCFALRI LAMMRPALPGWKVECVGDDIAWMRF VAETSDGGVYWEGIDQPLPPGVTVT PIDAIIFGGRRPKGKIIMHDPFAMR LWPGFGENARVLDWICRRLEGEDSA RSYLTEQVNQDLPKEVLAELEALER

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 48B.

10

Table 48B. Comparison of NOV48a against NOV48b.				
Protein Sequence	NOV48a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV48b	1640 1608	577/640 (90%) 577/640 (90%)		

Further analysis of the NOV48a protein yielded the following properties shown in Table 48C.

Table 48C. Protein Sequence Properties NOV48a				
PSort analysis:	PSort analysis: 0.6402 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.2412 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space			
SignalP analysis: No Known Signal Sequence Predicted				

A search of the NOV48a protein against the Genesed database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 48D.

5

Table 48D. G	Table 48D. Geneseq Results for NOV48a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV48a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAY80296	Human mitochondrial phosphoenolpyruvate carboxykinase SEQ ID NO:1 - Homo sapiens, 640 aa. [US6030837-A, 29-FEB-2000]	1640 1640	634/640 (99%) 634/640 (99%)	0.0	
AAB71890	Mouse PEPCK-cytosolic protein - Mus musculus, 622 aa. [US6187545-B1, 13-FEB-2001]	31640 14622	440/610 (72%) 519/610 (84%)	0.0	
AAB71880	Human PEPCK-cytosolic protein - Homo sapiens, 622 aa. [US6187545-B1, 13-FEB-2001]	31640 14622	438/610 (71%) 517/610 (83%)	0.0	
ABB65318	Drosophila melanogaster polypeptide SEQ ID NO 22746 - Drosophila melanogaster, 647 aa. [WO200171042-A2, 27-SEP-2001]	27640 35647	394/616 (63%) 480/616 (76%)	0.0	
ABB65322	Drosophila melanogaster polypeptide SEQ ID NO 22758 - Drosophila melanogaster, 638 aa. [WO200171042-A2, 27-SEP-2001]	30640 29638	402/613 (65%) 469/613 (75%)	0.0	

In a BLAST search of public sequence datbases, the NOV48a protein was found to have homology to the proteins shown in the BLASTP data in Table 48E.

10

Table 48E. Public BLASTP Results for NOV48a

Protein Accession Number	Protein/Organism/Length	NOV48a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q16822	Phosphoenolpyruvate carboxykinase, mitochondrial precursor [GTP] (EC 4.1.1.32) (Phosphoenolpyruvate carboxylase) (PEPCK-M) - Homo sapiens (Human), 640 aa.	1640 1640	635/640 (99%) 635/640 (99%)	0.0
S69546	phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) precursor, mitochondrial - human, 640 aa.	1640 1640	634/640 (99%) 634/640 (99%)	0.0
Q91Z10	Similar to phosphoenolpyruvate carboxykinase 2 (mitochondrial) - Mus musculus (Mouse), 640 aa.	1640 1640	590/640 (92%) 609/640 (94%)	0.0
Q8R3X7	Similar to RIKEN cDNA 9130022B02 gene - Mus musculus (Mouse), 535 aa (fragment).	106640 1535	504/535 (94%) 518/535 (96%)	0.0
P07379	Phosphoenolpyruvate carboxykinase, cytosolic [GTP] (EC 4.1.1.32) (Phosphoenolpyruvate carboxylase) (PEPCK-C) - Rattus norvegicus (Rat), 622 aa.	31640 14622	441/610 (72%) 520/610 (84%)	0.0

PFam analysis predicts that the NOV48a protein contains the domains shown in the Table 48F.

Table 48F. Domain Analysis of NOV48a			
Pfam Domain	NOV48a Match Region	Identities/ Similarities for the Matched Region	Expect Value
PEPCK	46640	445/608 (73%) 591/608 (97%)	0

Example 49.

The NOV49 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 49A.

Table 49A. NOV49 Sequence Analysis				
	SEQ ID NO: 195	1202 bp		
NOV49a, CG56836-01 DNA Sequence	ACACCCTACCAGTACCTGG ACATGTGGCAGTACCTGGCCTCCC TTTCCATCCCTGTCGGATGAGCT CACAACTTCTACAACGTGGACATG AGCCACCCCAGAGAGTTATGTTTA ATGCCACCCAGAGAGTTATGTTTA CGGGCTGTGGAAGCCATCACATGAC CGGCGGAGGACCTTCTGAC CGGCGAGGACCTTCTGACAAG TGCAGCTTGGAACTTCTGGACAAG TGCAGACCTTACTCCTCCC AGGGAGATACCCCCAAGTGTAGCA GCACTACGGATACAATTCCTACAG AACGCCCCGTGGAGGGAGCTTTCTACAG AACACGTCACCGGAGAGATGATGCCAACACCGTCACCGGAGAGATGATGCCACACCCTACTGCTTGCCAA	AGCCTCCCGAGTAGTGTC TTTGCATAGATGATTGC TTTGCATAGATGATTGC TCTGCTGCTGCTGTGT TGGTCAACTATGTCAACAA AGCTACTTGAAGAGGCTA CCGAGGACCTGAAGCTGC AGAGATCAGAGACCAGGG GTGCAGCATCTGCATCCACACC GTGGCAGCACTGGTTTCTGG TGTGAGCACCACGTCAACC AGATCTGTAGCCTGCT. CGTCTCCAATAGCGAGAA TCTGTGATTTCGGACTTCCGTGTTCTGGTTCTGGTTCTGGTTCTGGTTCTGGTTCTGGTTCTGGTTCTGTGTTCTGGACTTCCGACCACCACCACCACCACCACCACCACCACCACCACCA	PCCTGGGCTGGGGGAGAATGG GGTGACAATGGCTTCTTAAAATA GCTGAATTCCAAGGGAGAGAGAGAGAGAGAGAGAGAGAGA	
	ORF Start: ATG at 137		ORF Stop: TAA at 1154	

	SEQ ID NO: 196	339 aa	MW at 37821.3kD
CG56836-01 Protein Sequence	PPORVMFTEDLKLPASFDAREQWP AEDLLTCCGSMCGDGCNGGYPAEA GDTPKCSKICEPGYSPTYKODKHY	PLSDELVNYVNKRNTTWQ QCPTIKEIRDQGSCGSCW WNFWTRKGLVSGGLYESH GYNSYSVSNSEKDIMARI	AGHNFYNVDMSYLKRLCGTFLGGPK AFGAVEAISDRICIHTNAHVSVEVS VGCRPYSIPPCEHHVNGSRPPCTGE YKNGPVEGAFSVYSDFLLYKSGVYQ KILRGQDHCGIESEVVAGIPRTDQY

	SEQ ID NO: 197	723 bp	
NOV49b, CG56836-02 DNA Sequence	CAAACGGAATACCCGAGCAGCCCCAAACGGAATACCACGGCCCCTATGTGGTACCTTCCTGGGTGGG	CTCTTTCCATCCCCTG ZGGGCACAACTTCTACA CCCAAGCCACCCCAGAG ACAATGGCCACAGTGT TTCGGGGCTGTGGAAG GTGTCGGCGAGAGCCT GATGATGATGAGAG GATGATGATGAGAG GTTGCCAACTCTGGA ACTTGCCAACTCTGGA ACTTGTGGAACTCCTGGAI ACTTGTGGAACTCCTGGAI ACTTGTGGAACTCCTGGAI ACTTGTGGAACTCCTAGAI ACTTGTGGAACTCCTGGAI	CTGGGCCTCCCTCTGCTGCTGCTGCTGCTGGCTGGATGAGCTGGTCAACTATGTCAA ACGTGGACATGAGCTACTTGAAGAGG ACGTTATGTTTACCGAGGACCTGAAGC CCCACCATCAAAGAGATCAGAGACCA CCATCTCTGACCGGATCTGCATCAG GCTCACCTGCCTGCTTCTACAAGTCAG GCCATCCGCATCCTGGGTTGGGGAGT ACACTGACTGGGTGACAATGGCTTC ACACTGACTGGGTGACAATTCCACGCA ACGCTAACGCAAACGCAAACTGGCTAGAATTCCACGCA
	ORF Start: ATG at 31		ORF Stop: TAA at 694

The state of the s				
	SEQ ID NO: 198	221 aa	MW at 24974.2kD	
CG56836-02	IT E OVARIGHT TOPPUPARED!	CEMMCCH'S TRIL CHOLD	KRNTTWOAGHNFYNVDMSYLKRLCGTFLGGPK GSCGSCWAFGAVEAISDRICIHTNAHVSVEVS ENGTPYWLVANSWNTDWGDNGFFKILRGQDHC	

	SEQ ID NO: 199	1028 bp	
NOV49c, CG56836-03 DNA Sequence	ACATGTGGCCCCCAGTACTTGG ACATGTGGCCCTCCC TTTCCATCCCCTGTCGGATGAGCT CACAACTTCTACAACGTGGACATG AGCCACCCCAGAGAGTTATGTTTA ATGGCCACAGTGTCCACCATCAA GGGGCTGTGGAAGCCATCTCTGAC CGGGCGGAGGACCTGCTCACATGCT	AGCCTCCCGAGTAGTGTCT TTTGCATAGATGATTGGCA TCTGCTGCTGCTGCTGTGTTGCACAAAGAGAGACTAAAGAGACTAAAGAGACTAAAGAGACTAAGAGACTCACACAGAGACTCACACACA	GGCCTCTATGAATCCAATAGCGAG GAGCTTTCTCTGTGTATTCGGACT GATGATGGGGCATGCCATCCG GGTTGCCAACTCCTGGACACTGCAC ACTGGGAACACTGAC
	ORF Start: ATG at 137		ORF Stop: TAA at 980

	SEQ ID NO: 200	281 aa	MW at 31423.2kD
CG56836-03 Protein Sequence	AEDLLTCCGSMCGDCCNGGVDA RAI	QCPTIKEIRDQG	RNTTWOAGHNFYNVDMSYLKRLCGTFLGGPK SCGSCWAFGAVEAISDRICIHTNAHVSVEVS GLYESNSEKDIMAETYKNGPVEGAFSVYSDF VANSWNTDWGDNGFFKILRGODHCGIESEVV

	SEQ ID NO: 201	1028 bp	T
NOV49d, CG56836-04 DNA Sequence	ACATOTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACACTICAGACACTICAGACACTICAGACTICATICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTICAGACTAGACT	CAGCCTCCGAGTAGTGTC GTTTGCATAGATGATTGGC CTCTGCTGCCTGCTGGTGT TCGTCAACAG FAGCTACTTGAAGAGCTAC ACGAGGACCTGAAGCTGC AGGAGTCAGAGACCAGCGC AGGAGATCAGAGACCACCAC ACAAGCACTACTCC ACAAGCACTACCGAGACACACCACCAC CAAAAACGGCCCCTACTGCTC ATGGCACACCCTACTGCTC ATGGCACACACCACAC	TTCAGGCCTATGGAGAGCAGCTTGC AGGTGGATCTAGGATCCGGCTTCCZ TGGCCAATGCCCGGAGCAGGCCCTC ACGGAATACCACGTGGCAGGCCGGC TGTGGTACCTTCCTAGGTGGCCCA CTGCAAGCTTCGATGCACGGGAACA CTCCTGTGGCTCCTGCTGGGTTTCT ATCCCTCCTGTGAGCACACGTCA AGTGTAGCAAGATCTGTGAGCCTGG TCCTACAGCGTCTCAATAGCGAG AGAGTTTCTCTGTGTATTCGGACT AGATGATGGGTGGCCATCGG AGATGATGGGTGCCATCGG AGATGATGGGTGCCATCGGACACTGCATCGGATGCATCGGATGCAACACTGAC ACTGTGGAATCGAATC

WO 03/029424

i	ORF Start: ATG at 137	ORF Stop: TAA at 980
ı		"IORF Stop: TAA at 980 "" The
1	Interest the same of the same	101d 5top: 1111 til 760
		The state of the s

	SEQ ID NO: 202	281 aa	MW at 31732.5kD
CG56836-04 Protein Sequence	GSRPPCTGEGDTPKCSKICEPGVS	QCPTIKEIRDQGSCGSCW PTVKODKHVGVNGVCVCN	AGHNFYNVDMSYLKRLCGTFLGGPK VSGGLYESHVGCRPYSIPPCEHHVN SEKDIMAEIYKNGPVEGAFSVYSDF FDWGDNGFFKILRGQDHCGIESEVV

	SEQ ID NO: 203	340 bp
247856403 DNA Sequence	AGGCTCCGCGGCCGCCCCTTCACCGGATCCCTGCCTGCCAGTGTCCCACCATCAAAGAGATCAGAGACCAGGGCTCCAGAGAACCCAACCAA	TGTGGCTCCTGCTGGGCCTTCGGGGCTG CGCACGTCAGCGTGGAGGTGTCGGCGGA
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 204	113 aa	MW at 11834.0kD
	GSAAAPFTGSLPASFDAREQWPQC	PTIKEIRDQGSCGSCWAF	GAVEAISDRICIHTNAHVSVEVSAE
247856403	DLLTCCGSMCGDGCNGGYPAEAWN	FWTRKGLVSGGLYLEGKG	GRAD
Protein Sequence			

	SEQ ID NO: 205	376 bp
247856434 DNA Sequence	AGCTCCGCGGCCGCCCCTTCACCGGATCCTCCAATAGAAAAACGGCCCCGTGGAGGGAG	GACTTCCTGCTCTACAAGTCAGGAGTGT TCGCATCCTGGGCTGGG
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 206	125 aa	MW at 13666.1kD
NOV49f, 247856434	gsaaapftgssnsekdimae gtpywlvanswntdwgdnge	IYKNGPVEGAFSVYS FKILRGQDHCGIESE	DFLLYKSGVYQHVTGEMMGGHAIRILGWGVEN VVAGIPRTDQYWEKILEGKGGRA
Protein Sequence			

	SEQ ID NO: 207	574 bp
Sequence	AGGCTCCGCGCCGCCCCTTCACCGGATCCATGTGGCTGTTGGCCAATGCCCGGAGCAGGCCCTCTTTCCATCGTGTGTGGCCAAACGGAATACCACCTGCCAGGCCCAAGCACCCGCAAACGCACCTCCTGCTGCAGCAACTCCTGCCTG	GCAGCTCTGGGCCTCCCTCTGCTGCTGCTGCTGCTGCTGCTGC
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 208	191 aa	MW at 20877.5kD	
	TNAHVSVEVSAEDLITCCCCMCCD	ANARSRPSFHPLSDELVN	YVNKRNTTWQAGHNFYNVDMSYLKR	

A STATE OF THE STA		
SEQ ID NO: 209	590 bp	_
ACAAACGGAATACCACGTGGCAGGCCCGCTATGTGGTACCTTCCTGGGTGGCCCTGCCAAGCTTCGATGCACGGGAAAGGCCCTGCTGGGCCTGACCAATGCGCACGAATGCGCACGTGAGGTAATGCTGGCTAATCCTGCTGGGCTAATGCTGGCTAATCCTGGTGGCCAAGGCTCTATCCTCGAGGGCAAGG	GATCATGTGGCAGCTTTGGGCCTCCTCTGCTGCCTC GTCTTTCCATCCGTGTCGGATGAGCTGGTCAACTATC GGGCACAACTTCTACAACGTGGACATGGGCTACTTGAA CCAAGCCACCCCAGAGAGTTATGTTTACCGAGGACCTC ACAATGGCCACAGTGTCCCACCATCAAAGAGATCAGAC TTCGGGGCTGTGGAAGCCTTCTCGACCGGATCTGCAA TGTCGGCGGAGACCTGCTTCACCTGTTGTGCAGCATC GCTGAAGCTTGGAACTTCTGGACAAGAAAAGGCCTGC GGTGGGCGCCCGACCCACCTTCTTTA	GTC. AGA GAA GAC FCC
ORF Start: at 2	ORF Stop: end of sequence	-

SEQ ID NO: 210	197 aa	MW at 21367.0kD
TNAHVSVEVSAEDLITTCCCCMCC	LANARSRPSFHPVSDELVN	YVNKRNTTWQAGHNFYNVDMGYLKR

	SEQ ID NO: 211	551 bp
NOV49i,	AGGCTCCGCGGCCGCCCCTTCACCGGAT	CCCGGAGCAGGCCCTCTTTCCATCCCTGTCGGATGAG
		- CCC IGICGGAIGAG

Soquenee	CTGGTCAACTATGTCAACAAACGGAATACCACGTGGCAG TGAGCTACTTGAAGAGGCTATGTGGTACCTCCTGGGTG TACCGAGGACCTGAAGCTGCCTGCAGCTTCCATGCACG AAAGAGATCAGAGACCAACACAATGCGCACGTCAGCGTGG CTGTGGCAGCATGTGGGCAGCTTAATGGTGGCTAAGAAAAAGGCCTGGTTCTGGTGGCTAAAAAAAGGCCTGGTTCTCGAGGGCCCTCTATCTCGAGGGCCCTAAAAAAAGGCCTGGTTTCTCGAGGGCCCCTAAAAAAAGGCCTGGTTTCTCGAGGGCCCCTAAAAAAAGGCCTGGCCA	GGCCCAAGCCACCCCAGAGAGTTATGTT GGAACAATGGCCACCATC GCCTTCGGGGCTGTGGAAGCCATCTCTG AGGTGTCGGCGGAGGACCTGCTCACATG ACGTGCTGAAGCTTCTGCACACA
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 212	184 aa	MW at 19933.2kD
247856574	GSAAAPFTGSRSRPSFHPLSDELVI TEDLKLPASFDAREQWPQCPTIKE CGSMCGDGCNGGYPAEAWNFWTRK(IRDQGSCGSCWAFGAVEA:	VDMSYLKRLCGTFLGGPKPPQRVMF ISDRICIHTNAHVSVEVSAEDLLTC AFPYKAGX

	SEQ ID NO: 213	523 bp
247856545 DNA Sequence	AGCTCCGCGCCCCCCTTCACCGGATCCCGAGCAGCAGCTGCTAACTATGTCAACAAACGGAATACCACGTGGCAGCTGCAGCTACTTGAACAGACTACTTGCATGCA	GCCGGGCACAACTTCTACAACGTGGACA GGCCCAAGCCACCCCTGAGAGTTATGTT GGAACAATGGCCACAGTGTCCCACCATC GCCTTCGGGGCTGTGGAAGCATCTCA GAGGTGTCGGCGGAGGACCTGCTCACATG ATCCTGCTGAAGCTTGGAACTTCTGGACA
	ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 214	174 aa	MW at 18915.1kD
NOV49j, 247856545 Protein Sequence	GSAAAPFTGSRSRPSFHPL TEDLKLPASFDAREQWPQCI CGGMCGDGCNGGYPAEAWNI	PTIKEIRDOGSCGSCWA	AGHNFYNVDMSYLKRLCGTFLGGPKPPLRVMF AFGAVEAISDRICIHTNAHVSVEVSAEDLLTC KGGRA

	SEQ ID NO: 215	1036 bp
Sequence	CACCTCGAGATGTGGCAGCTCTGGGCCTCCTCTGCTAGCTCAGCTCCTCTGGCCTCTTTCCATCCCTGTCGGATGAGCTAGCT	ACTATGTCAACAAACGGAATACCACGTGGC TTTGAAGAGGCTATTGTGGTACCTTCCTGGG BACCTGAAGCTGCCTGCAAGCTTCGATGCA TCAGAGACCAGGGCTCCTGGCTCCTGCT TGCATCCACACCAATGCGCACGTCAGCGT AGCATGTGTGGGGACGCCTGTAATGGTGGC BCCTGGTTTCTTGTGGCCTCTTATTAATCCCC

CAGGACAAGCACTACGGATACAATTCCTACA TCTACAAAACGGCCCCGTGGAGGGCTTT AGTGTACCAACACGTCACCGGAGAGATGATC GAGAATGGCACACCCTACTGGCTGGTTGCCA	CARGATCTGTGAGCCTGGTACAGCCCGACCTACAAA AGCGTCTCCAATAGCGAGAAGGACATCATGGCCGAGA CTCTGTGTATTCGGACTTCCTGCTTTACAAGTCAGG GGGTGGCCATGCCAT
ORF Start: at 2	ORF Stop: end of sequence

	SEQ ID NO: 216	345 aa	MW at 38435.9kD
275480714 Protein Sequence	GPRPPQRVMFTEDLKLPASFDARE EVSAEDLLTCCGSMCGDGCNGGYP TGEGDTPKCSKICEPGYSPTYKQDD	QWPQCPTIKEIRDQGSCG; AEAWNFWTRKGLVSGGLY; KHYGYNSYSVSNSEKDIM	TWQAGHNFYNVDMSYLKRLCGTFLG SCWAFGAVEAISDRICIHTNAHVSV ESHVGCRPYSIPPCEHHVNGSRPPC AEIYKNGPVEGAPSVYSDFLLYKSG GFFKILRGQDHCGIESEVVAGIPRT

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 49B.

Table 49B. Compariso	Table 49B. Comparison of NOV49a against NOV49b through NOV49k.				
Protein Sequence	NOV49a Residues/ Match Residues	Identities/ Similarities for the Matched Region			
NOV49b	1141 1141	141/141 (100%) 141/141 (100%)			
NOV49c	1176 1176	175/176 (99%) 176/176 (99%)			
NOV49d	1339 1281	279/339 (82%) 280/339 (82%)			
NOV49e	80180 11111	96/101 (95%) 96/101 (95%)			
NOV49f	233339 11117	107/107 (100%) 107/107 (100%)			
NOV49g	1180 11190	175/180 (97%) 175/180 (97%)			
NOV49h	1180 11190	173/180 (96%) 174/180 (96%)			
NOV49i	17181 10174	159/165 (96%) 160/165 (96%)			
NOV49j	17180 10173	144/164 (87%) 145/164 (87%)			

1			then't first tailing by it it there there would be trained the trained there is the trained to the training to
	NOV49k	1339	339/339 (100%)
		4342	339/339 (100%)
		The same of the sa	

Further analysis of the NOV49a protein yielded the following properties shown in Table 49C.

5

Table 49C. Protein Sequence Properties NOV49a	
PSort analysis: 0.3700 probability located in outside; 0.1900 probability located in lyso (lumen); 0.1376 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane)	
SignalP analysis:	Cleavage site between residues 18 and 19

A search of the NOV49a protein against the Geneseq database, a proprietary
database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 49D.

Table 49D. G	eneseg Results for NOV49a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV49a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAR90616	Anti-procathepsin B monoclonal antibody - Homo sapiens, 339 aa. [JP07309900-A, 28-NOV-1995]	1339 1339	338/339 (99%) 339/339 (99%)	0.0
AAB53470	Human colon cancer antigen protein sequence SEQ ID NO:1010 - Homo sapiens, 344 aa. [WO200055351-A1, 21-SEP-2000]	1339 6344	338/339 (99%) 338/339 (99%)	0.0
ABP41147	Human ovarian antigen HOFMP73, SEQ ID NO:2279 - Homo sapiens, 346 aa. [WO200200677-A1, 03-JAN-2002]	1339 8346	290/339 (85%) 317/339 (92%)	0.0
ABB06116	Human NS protein sequence SEQ ID NO:208 - Homo sapiens, 273 aa. [WO200206315-A2, 24-JAN-2002]	1267 1267	266/267 (99%) 266/267 (99%)	e-167
ABB65378	Drosophila melanogaster polypeptide SEQ ID NO 22926 - Drosophila melanogaster, 340 aa. [WO200171042-A2, 27-SEP-2001]	13331 13339	190/330 (57%) 232/330 (69%)	e-113

In a BLAST search of public sequence datbases, the NOV49a protein was found to have homology to the proteins shown in the BLASTP data in Table 49E.

Table 49E. I	Public BLASTP Results for NO	V49a		
Protein Accession Number	Protein/Organism/Length	NOV49a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value

P07858	Cathepsin B precursor (EC 3.4.22.1) (Cathepsin B1) (APP secretase) - Homo sapiens (Human), 339 aa.	1339 1339	338/339 (99%) 339/339 (99%)	0.0
КНВОВ	cathepsin B (EC 3.4.22.1) precursor - bovine, 335 aa.	1335 1335	280/335 (83%) 307/335 (91%)	e-180
P07688	Cathepsin B precursor (EC 3.4.22.1) - Bos taurus (Bovine), 335 aa.	1335 1335	279/335 (83%) 307/335 (91%)	e-180
P00787	Cathepsin B precursor (EC 3.4.22.1) (Cathepsin B1) (RSG-2) - Rattus norvegicus (Rat), 339 aa.	1336 1336	265/336 (78%) 299/336 (88%)	e-175
P10605	Cathepsin B precursor (EC 3.4.22.1) (Cathepsin B1) - Mus musculus (Mouse), 339 aa.	1336 1336	267/336 (79%) 297/336 (87%)	e-174

PFam analysis predicts that the NOV49a protein contains the domains shown in the Table 49F.

5

Table 49F. Domain	n Analysis of NOV49a		
Pfam Domain		Identities/ Similarities for the Matched Region	Expect Value
Peptidase_C1	80329	112/344 (33%) 218/344 (63%)	1.3e-117

Example 50.

The NOV50 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 50A.

Table 50A. NO	V50 Sequence Analysis	
	SEQ ID NO: 217	960 bp
NOV50a, CG57284-01 DNA Sequence	ATGGCGGTCGGGAGGCC AAGCTGGTTCTGCTGGGGA AGTTTCACGAGTACCAGGAC CACAACAGTCAAGTTTGAGA TACTATCGGGGGCCCAGGC	AAGTAACGCCGCCGCCCGAGCCGCCTTGGAGGTCCCCCCAA CACCAGTCCCACCCGCACGCTCTTGGACCACTACAGCTGGACGGG CACGACGACCCAATGGACCAGCTGCTGGGAACAAGATCTGTCAATT AGTCTGCGGTAGGCAAATCCAGCCTCGTCCTCCGCTTTGTCAAGGGAC AAGCACAATTGGAGGGGCTTCCTCACACAGACTGTCTGCCTGGATGA ATCTGGGACACAGCTGGACGGGGGGTATCACAGCCTGGCCCCCATC TGCCATCGTGGTCTATGACATCACCAACACAGATACATTTGCACGG CTACAGAGGCAGGCCAGCCCCAACACCACTTGCACTCGCGGGTAA

WO 03/029424

		have the color of the transfer of many of many and many
1	CAAGGCAGACCTGGCCAGCAAGAGA	GCCGTGGAATTCCAGGAAGCACAAGCCTATGCAGACGACAAC
	AGTTTGCTGTTCATGGAGACATCAG	CAAAGACTGCAATGAACGTGAACGAAATCTTCATGGCAATAG
		CCAGAATGCAACTGGTGCTCCAGGCCGAAACCGAGGTGTGGA
		CGGAGCCAGTGCTGCAGCAACTGAGCCCCCCTTGCCTGCC
		GACCCGACTGGAATCCACTCTAACCAATCGCACTTAACGACT
[GAGGGGTCCACCATGATTTCTCCATATAATTTTGATCATAGG
	CCGGAGTGAGTCATTCCACCTG -	
	ORF Start: ATG at 136	ORF Stop: TGA at 784

	SEQ ID NO: 218	216 aa	MW at 23567.4kD
CG57284-01	TTVKFEIWDTAGQERYHSLAPMYY	RGAQAAIVVYDITNTDTF	KGQFHEYQESTIGAAFLTQTVCLDD ARAKNWVKBLQRQASPNIVIALAGN AIAKKLPKNEPQNATGAPGRNRGVD

	SEQ ID NO: 219	747 bp	
NOV50b, CG57284-03 DNA Sequence	GGCCAATGCCGGGTCGGGAGGCGCATTTAAGCTGGTTCTGCTGGGGAGAGGGACAGTTCAAGGAGACAGCCAGGCCAGGCAGACAGA	CAGCACGACCCAATGGAC STCTGCGGTAGGCAATC STCTGCGGTAGGCAGCC STCTGGACACACCCACCCACCCACCCCACCCCACCCCACC	GCTCTCTGGACCACTACAGCTGGAC CAGCTGCTGGACCACAGATCTGTCA CAGCCTCGTCCTCCGCTTTGTCAAG CAGCCTCGTCCTCCGCTTTGTCAAG CAGCACAGACTGTCTGCCCC CATCACCAACATCGTCATTGCGCTC CATCACCAACATCGTCATTGCAG CAATGACGTGAACAAATCTTCAT CAACTGGTGCTCCAGGCCGAAACCGA TGCTGCAGCAACTCGAGCCCCCTTG CGGAATCCACCTATACCACT
	ORF Start: ATG at 73		ORF Stop: TGA at 658

	SEQ ID NO: 220	195 aa	MW at 21039.6kD
CC57284 03	TTVKFEIWDTAGQERYHSLA NSLLFMETSAKTAMNVNEIF	PMYYRGAQAA IVVY	SSLVLRFVKGQFHEYQESTIGAAFLTQTVCLD DITNIVIALAGNKADLASKRAVEFQEAQAYAD ATGAPGRNRGVDLQENNPASRSQCCSN

	SEQ ID NO: 221	819 bp	
NOV50c, CG57284-02 DNA Sequence	CAGCTGGACGGGCAATGGCGGGTCG GATCTGTCAAITTAAGCTGGTTCTG TTTGTCAAGGGACAGTTTCACGAGT TCTGCCTGGATGACACAACAGTCAA CCTGGCCCCCATGTACTATCGGGGG ACATTGCACGGGCCAAGAACTGGG CACTCGCGGGTAACAAGGCAGACCT	GGGAGGCGCAGCACGACGGCACGACGGCGCGCGCGCACAATTACGACAAGGCCCACGGCCCACGGCCGCGCGCG	CACCGCACGCTCTTGGACCACTA CCAATGGACCAGCTGCTGGGAACAA AGGCAAATCCAGCCTCGTCCTCCGC GGAGCGGCCTTCCTCACACAGACTG CAGCTGGACAGGAGCGGTATCACAG GGTCTATGACATCACCAACACACAGAT CAGGCCAGCCCCAACACACACCCTA TGGAATTCCAGGAACCACAAGCCTA GACTGCAATGAACGAAATC GACTGCAATGAACGAAATC

ACCGAGGTGTGGACCTCCAGGAGAA	CCAAGAACGAGCCCAGAATGCAGTGCTGCAGCCGAA CAACCCAGCCAGCCGGAGCCAGTGCTGCAGCAACTGAGCCCC CCTCCGCCTGAATGACCCGACTGAACCAATC
ORF Start: ATG at 82	ORF Stop: TGA at 730

	SEQ ID NO: 222	216 aa	MW at 23482.3kD
CG57284-02	T.TAVE PTMD.I.WCOFKAH2TV SWAXA	RGAOAAIVVYDITNTDTF	KGQFHEYQESTIGAAFLTQTVCLDD ARAKNWVKELQRQASPNIVIALAGN AIAKKLPKNEPQNATGAPGRNRGVD

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 50B.

10

20

Table 50B. Comparison of NOV50a against NOV50b and NOV50c.		
Protein Sequence	NOV50a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV50b	18216 18195	178/199 (89%) 178/199 (89%)
NOV50c	18216 18216	199/199 (100%) 199/199 (100%)

Further analysis of the NOV50a protein yielded the following properties shown in Table 50C.

Table 50C. Protei	n Sequence Properties NOV50a
PSort analysis:	0.6500 probability located in cytoplasm; 0.2189 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space; 0.0000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV50a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 50D.

Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV50a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAM79225	Human protein SEQ ID NO 1887 - Homo sapiens, 215 aa. [WO200157190-A2, 09-AUG-2001]	9216 8215	179/208 (86%) 194/208 (93%)	e-101
AAY56173	Human Wnt-1 amino acid sequence - Homo sapiens, 215 aa. [CA2200794-A, 24-SEP-1998]	9216 8215	179/208 (86%) 194/208 (93%)	e-101
AAB28187	Human RAS-relates protein RAB-5A - Homo sapiens, 193 aa. [WO200052165-A2, 08-SEP-2000]	1197 1192	178/197 (90%) 186/197 (94%)	9e-97
AAM80209	Human protein SEQ ID NO 3855 - Homo sapiens, 255 aa. [WO200157190-A2, 09-AUG-2001]	9216 47255	172/209 (82%) 189/209 (90%)	1e-95
ABB60036	Drosophila melanogaster polypeptide SEQ ID NO 6900 - Drosophila melanogaster, 219 aa. [WO200171042-A2, 27-SEP-2001]	2214 11218	159/213 (74%) 177/213 (82%)	8e-85

In a BLAST search of public sequence datbases, the NOV50a protein was found to have homology to the proteins shown in the BLASTP data in Table 50E.

Table 50E. P	ublic BLASTP Results for NOV	750a		
Protein Accession Number	Protein/Organism/Length	NOV50a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P51148	Ras-related protein Rab-5C (RAB5L) (L1880) - Homo sapiens (Human), 216 aa.	1216 1216	216/216 (100%) 216/216 (100%)	e-122

AAM21086	Small GTP binding protein RAB5C - Homo sapiens (Human), 216 aa.	1216 1216	215/216 (99%) 215/216 (99%)	e-121
Q8R1V8	Hypothetical 23.4 kDa protein - Mus musculus (Mouse), 216 aa.	1216 1216	212/216 (98%) 213/216 (98%)	e-119
P51147	Ras-related protein Rab-5C - Canis familiaris (Dog), 216 aa.	1216 1216	212/216 (98%) 213/216 (98%)	e-119
Q98932	Rab5C-like protein - Gallus gallus (Chicken), 216 aa.	1216 1216	203/216 (93%) 208/216 (95%)	e-114

PFam analysis predicts that the NOV50a protein contains the domains shown in the Table 50F.

5

Table 50F. Doma	in Analysis of NOV50a		
Pfam Domain	NOV50a Match Region	Identities/ Similarities for the Matched Region	Expect Value
arf	4185	40/198 (20%) 105/198 (53%)	0.0018
ras	23216	90/209 (43%) 181/209 (87%)	3.1e-104

Example 51.

10

The NOV51 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 51A.

Table 51A. NOV	Table 51A. NOV51 Sequence Analysis				
	SEQ ID NO: 223	4826 bp			
NOV51a, CG57308-01 DNA Sequence	CTCGGCGCCTACCGGGTGGACCA GTGCCGCCGCCGCTCTTCCTACTCTTC CCAAGGTGCACATCACCACACACACACACACACACACACA	GGGGTCCTCAACACGG ATCACCTTCCCCATCCTC CATGCCTTCATTTCCCTG CATGCCTTCATTTCCCTGC GTGTGAGATTGCAGAGGG CCAGCCGGGATGGCGTTC ACTTCCCCAAGCTGCTAA GTTTGTCAAGTTCTTGGA GTGATCCTCTATGGGATGC TCAAGACACCGAGGAGGG CTTCGTGAATCTGCTGTCA AAGCCCATCGACTTGCCA AAGCCCATCGACTTGCCA	TGGCCTTCTGCGGCAGCAGAACCA CTGCTTTGTGGACGCGCTCAACGTG TTCATTGGATGGGCAAGTCAGAGCT GGCACAACCTGCGTGGATCCTGAC CATCCTGTCTGATGGGTGACCGAA ATGGCTGCTGTTCTCACCTCGTGGTCT TTGCCCTCGTGGTCTTTTGGACCCT CCACGCCATCGGTTTTTGGACCTA CTGCTCCTCGTGGATCTAATGTCA TGAAGCCTCCGAGGACCATGCAAGA CAAAGGCACCTACTGGTGATGAAC GCCATCGGGAAGCTCCCCA ACGCCCAGGACCATCGCCA		

GGGCACTCAAGGTGCCCGGGCCATCTGGCAGCCATGCCTTCGGGAGGCGCCTGGTCCTC AGCAGCACTTTCCGCATCTTGGCCGACCTGCTGGGCTTCGCCGGGCCACTGTGCATCTTTGGGATCG TGGACCACCTTGGGAAGGAGAACGACGTCTTCCAGCCCAAGACACAATTTCTCGGGGTTTACTTTGT TGGACCACCTTGGGAAGGAGACGCGTCTTCCAGCCCAAGACACAATTTCTCGGGGTTTACTTTGT CTCATCCCAAGAGTTCCTTGCCAATGCCTACGTCTTAGCTGTGCTTCTGTTCCTTGCCCTCCTACTG CAAAGGACATTTCTGCAAGCATCCTACTATGTGGCCATTGAAACTGGAATTAACTTGAGAGGAGCAA TACAGACCAAGATTTACAATAAAATTATGCACCTGTCCACCTCCAACCTGTCCATGGGAGAAATGAC TGCTGGACAGATCTGTAATCTGGTTGCCATCGACACCAATCAGCTCATGTGGTTTTTCTTCTTGTGC CCAAACCTCTGGGCTATGCCAGTACAGATCATTGTGGGTGTGATTCTCCTCTACTACATACTCGGAG TCAGTGCCTTAATTGGAGCAGCTGTCATCATTCTACTGGCTCCTGTCCAGTACTTCGTGGCCACCAA GCTGTCTCAGGCCCAGCGGAGCACACTGGAGTATTCCAATGAGCGGCTGAAGCAGACCAACGAGATG CTCCGCGGCATCAAGCTGCTGAAGCTGTACGCCTGGGAGAACATCTTCCGCACGCGGGTGGAGACGA CCCGCAGGAAGGAGATGACCAGCCTCAGGGCCTTTGCCATCTATACCTCCATCTCCATTTTCATGAA CACGGCCATCCCCATTGCAGCTGTCCTCATAACTTTCGTGGGCCATGTCAGCTTCTTCAAAGAGGCC GACTTCTCGCCCTCCGTGGCCTTTGCCTCCCTCTCCCTCTTCCATATCTTGGTCACACCGCTGTTCC TGCTGTCCAGTGTGGTCCGATCTACCGTCAAAGCTCTAGTGAGCGTGCAAAAGCTAAGCGAGTTCCT AAGTACCAGGCGGTGCCCCTCAGGGTTGTGAACCGCAAGCGTCCAGCCCGGGAGGATTGTCGGGGCC TATGCTTCGCAGAAACCATGGCTGCTAAATGCCACTGTGGAGGAGAACATCATCTTTGAGAGTCCCT TCAACAAACAACGGTACAAGATGGTCATTGAAGCCTGCTCTCTGCAGCCAGACATCGACATCCTGCC CCATGGAGACCAGACCCAGATTGGGGAACGGGGCATCAACCTGTCTGGTGGTCAACGCCAGCGAATC AGTGTGGCCCGAGCCCTCTACCAGCACGCCAACGTTGTCTTCTTGGATGACCCCTTCTCAGCTCTGG ATATCCATCTGAGTGACCACTTAATGCAGGCCGGCATCCTTGAGCTGCTCCGGGACGACAAGAGGAC ATATCCATCTOAGTACCACTACAGTACCTGCCCCATGCAGACTGGATCATTGCCATGAAGGAT GGCACCATCCAGAGGGAGGGTACCCTCAAGGACTTCCAGAGGTCTGAATGCCAGCTCTTTGAGCACT GGAAGACCCTCATGAACCGACAGGACCAAGAGCTGGAGAAGGGAGACTGTCACAGAGAGAAAAGCCAC AGAGCCACCCAGGGCCTATCTCGTGCCATGTCCTCGAGGGATGGCCTTCTGCAGGATGAGGAAGAG GAGGAAGAGGAGGCAGCTGAGAGCGAGGAGGATGACAACCTGTCGTCCATGCTGCACCAGCGTGCTG CCCAGCTTCCACTTCTCACACTTTGCCGAAACCGTAGAAGGACTCACCACCATCCGGGCCTTCAG GTATGAGGCCCGGTTCCAGCAGAAGCTTCTCGAATACACAGACTCCAACAACATTGCTTCCCTCTTC TGGCACCATCGCTGATCCCAAAGAACTGGCCAGACCAAGGGAAGATCCAGATCCAGAACCTGAGCGT GCGCTACGACAGCTCCCTGAAGCCGGTGCTGAAGCACGTCAATGCCCTCATCTCCCCTGGACAGAAG ATCGGGATCTGCGGCCGCACCGGCAGTGGGAAGTCCTCCTTCTCTCTTTGCCTTCTTCCGCATGGTGGACGGTTCGAAGGGCACATCATCATTGATGGCATTGACATCGCCAAACTGCCGCTGCACACCCTGCG CTCACGCCTCTCCATCATCCTGCAGGACCCCGTCCTCTTCAGCGGCACCATCCGATTTAACCTGGACCCTGAGAGGAAGTGCTCAGATAGCACACTGTGGGAGGCCCTGGAAATCGCCCAGCTGAAGCTGGTGG TGAAGGCACTGCCAGGAGGCCTCGATGCCATCATCACAGAAGGCGGGGAGAATTTCAGCCAGGGACA GAGGCAGCTGTTCTGCCTGGCCCGGGCCTTCGTGAGGAAGACCAGCATCTTCATCATGGACGAGGCC ACGCCTTCCATTGACATGCCACGGAAAACATCCTCCAAAAGGTGGTGATGACAGCCTTCGCAGACC GCACTGTGGTCACCATCGCGCATCGAGTGCACACCATCCTGAGTGCAGACCTGGTGATCGTCCTGAA GCGGGGTGCCATCCTTGAGTTCGATAAGCCAGAGAAGCTGCTCAGCCGGAAGGACAGCGTCTTCGCC TCCTTCGTCCGTGCAGACAAGTGA<u>CCTGCCAGAGCCCAAGTGCCATCCCACATTCGGACCCTGCCCA</u> ORF Start: ATG at 36 ORF Stop: TGA at 4779

	SEQ ID NO: 224	1581 aa	MW at 177005.9kD
CG57308-01 Protein Sequence	LLIALLVYWTLAFITKTIKFVKF REVKPPEDLQDLGVRFLOPFVNI.	NGCFVDALNVVPHVFLLFI' EGILSDGVTESHHLHLYMP LDHAIGFSQLRFCLTGLLV	TFPILFIGWGSQSSKVHIHHSTWLH AGMAFMAAVTSVVYYHNIETSNFPK ILYGMLLLVEVNVIRVRRYIFFKTP PIDLRAIGKLPIAMRALTNYQRLCE LLGFAGPLCIFGIVDHLGKENDVFO

PKTOFLGVYFVSSQEFLANAYVLAVLLFLALLLQRTFLQASYYVAIETGINLRGAIQTKIYNKIMHL
STSNLSMGEMTAGQICNLVAIDTNOLMWFFFLCPNLWAMPVQIIVGVILLYYILGVSALIGAAVIIL
LAPVQYFVATKLSQAQRSTLEYSNERLKQTNEMLRGIKLLKLYAWENIFRTRVETTRRKEMTSLRAF
AIYTSISIFMNTAIPIAAVLITFVGHVSFFKEADFSPSVAFASLSIFHILVTPLFLLSSVVRSTVKA
LVSVQKLSEFLSSAEIREEQCAPHEPTPQGPASKYQAVPLRVVNRKRPAREDCRGLTGPLQSLVPSA
DGDADNCCVQIMGGYFTWTPDGIFTLSNITIRIPRQQLTMIVGQVGCGKSSLLLAALGEMQKVSGAV
FWSSLPDSEIGEDPSPERETATDLDIRKRGPVAYASQKPWLLNATVEENIIPESPFNKQRYKMVIEA
CSLQPDIDILPHGDQTQIGERGINLSGGQRQRISVARALYQHANVVPLDDPFSALDIHLSDHLMQAG
ILELLRDDKRTVVLVTHKLQYLPHADWIIAMKDGTIQREGTLKDFQRSECQLFEHWKTLMNRQDQEL
EKETVTERKATEPPQGLSRAMSSRDGLLQDEEEEEAAESEEDDNLSSMLHQRAEIPWRACAKYLS
SAGILLLSLLVFSQLKHMVLVAIDYWLAKWTDSALTLTPAARNCSLSQECTLDQTVYAMVFTVLCS
LGIVLCLVTSVTVEWTGLKVAKRLHRSLLNRIILAPMRFFETTPLGSILNRFSSDCNTIDDHIPSTL
ECLSRSTLLCVSALAVISYVTPVFLVALLPLAIVCYFIQKYFRVASRDLQQLDDTTQLPLLSHFAET
VGGLTTIRAFRYEARFQQKLLEYTDSNNIASLFLTAANRWLEVRMEYIGACVVLIAAVTSISNSLHR
ELSAGLVGLGLTYALMVSNYLNWMVRNLADMELQLGAVKRIHGLLKTEAESYEGLLAPSLIPKNWPD
QGKIQIQNLSVRYDSSLKPVLKHVNALISPGQKIGICGRTGSGKSSFSLAFFRNVDTFEGHIIDGI
DIAKLPLHTLRSRLSIILQDPVLFSGTIRFNLDPERKCSDSTLWEALBIAQLKLVVKALPGGLDAII
TEGGENFSQGQRQLFCLARAFVRKTSIFIMDEATASIDMATENILQKVVMTAFADRTVVTIAHRVHT
ILSADLVIVLKRGAILEFDKPEKLLSRKDSVFASFVRADK

SEQ ID NO: 225 4745 bp CGGGGCCCGGGGGGGGGGGCCTGACGGCCGGGCCGGGCGGAGCTGCAAGGGGACAGAGGCGCGC NOV51b. CG57308-02 DNA Sequence GCACAACCTGCGGTGGATCCTGACCTTCATGCTGCTCTTCGTCCTGGTGTGTGAGATTGCAGAGGG ATCCTGTCTGATGGGGTGACCGAATCCCACCATCTGCACCTGTACATGCCAGCCGGGATGGCGTTCA TGGCTGCTGCTGCTGCTGCTTACTACTACAACTTCCAACTTCCAACTTCCCAAGCTGCTAAT TGCCCTGCTGGTGTATTGGACCCTGGCCTTCATCACCAAGACCATCAAGCTTGTCAAGCTGCTGTGGAC CACGCCATCGGCTTCTCGCAGCTACGCTTCTGCCTCACAGGCCTGCTGGTGATCCTCTATGGGATGC AAAGGCACCTACTGGTGGATGAACGCCTTCATCAAGACTGCCCACAAGAAGCCCATCGACTTGCGAG GGCCACTGTGCATCTTTGGGATCGTGGACCACCTTGGGAAGGAGAACGACGTCTTCCAGCCCAAGAC ACAATTTCTCGGGGTTTACTTTGTCTCATCCCAAGAGTTCCTTGCCAATGCCTACGTCTTAGCTGTG CTTCTGTTCCTTGCCCTCCTACTGCAAAGGACATTTCTGCAAGCATCCTACTATGTGGCCATTGAAA CTGGAATTAACTTGAGAGGAGCAATACAGACCAAGATTTACAATAAAATTATGCACCTGTCCACCTC CAACCTGTCCATGGGAGAAATGACTGCTGGACAGATCTGTAATCTGGTTGCCATCGACACCAATCAG CHACTOTIC ATGGRAMM TOM TOCTOCIONAL ACTUATION TO THE TOTAL ACTUAL TGTCCAGTACTTCGTGGCCACCAAGCTGTCTCAGGCCCAGCGGAGCACACTGGAGTATTCCAATGAG CGCTGAAGCAGACCAACGAGATGCTCCGCGGCATCAAGCTGCTGAAGCTGTACGCCTGGGAGAACA TCTTCCGCACGCGGGTGGAGACGACCCGCAGGAAGGAGATGACCAGCCTCAGGGCCTTTGCCATCTA TACCTCCATCTCCATTTTCATGAACACGGCCATCCCCATTGCAGCTGTCCTCATAACTTTCGTGGGC CCCACACCTCAGGGCCCAGCCAGCAAGTACCAGGCGGTGCCCCTCAGGGTTGTGAACCGCAAGCGTC CAGCCCGGGAGGATTGTCGGGGCCTCACCGGCCCACTGCAGAGCCTGGTCCCCAGTGCAGATGGCGA TGCTGACAACTGCTGTGTCCAGATCATGGGAGGCTACTTCACGTGGACCCCAGATGGAATCCCCACA CTGTCCAACATCACCATTCGTATCCCCCGAGGCCAGCTGACTATGATCGTGGGGCAGGTGGGCTGCG ATCAGGAAGAGAGGCCCCGTGGCCTATGCTTCGCAGAAACCATGGCTGCTAAATGCCACTGTGGAGG AGAACATCATCTTTGAGAGTCCCTTCAACAAACAACGGTACAAGATGGTCATTGAAGCCTGCTCTCT GCAGCCAGACATCGACATCCTGCCCCATGGAGACCAGACCCAGATTGGGGAACGGGGCATCAACCTG TCTGGTGGTCAACGCCAGCGAATCAGTGTGGCCCGAGCCCTCTACCAGCACGCCAACGTTGTCTTCT TGGATGACCCCTTCTCAGCTCTGGATATCCATCTGAGTGACCACTTAATGCAGGCCGGCATCCTTGA GCTGCTCCGGGACGACAAGAGGACAGTGGTCTTAGTGACCCACAAGCTACAGTACCTGCCCCATGCA CTGAATGCCAGCTCTTTGAGCACTGGAAGACCCTCATGAACCGACAGGACCAAGAGCTGGAGAAGGA GACTGTCACAGAGAGAAAAGCCACAGAGCCACCCCAGGGCCTATCTCGTGCCATGTCCTCGAGGGAT CATCCTGCTCCTGTCGTTGCTGGTCTTCTCACAGCTGCTCAAGCACATGGTCCTGGTGGCCATCGAC

1	Property of the state of the st
TACTGGCTGGCCAAGTGGACCGA	CAGCGCCTGACCTGACCTGCTACCTACCTACCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
GCCAGGAGTGCACCCTCGACCAG	ACTGTCTATGCCATGGTGTTCACGGTGCTCTCTCCAGCCTGCCCATT
TIGTGCTGTGCCTCGTCACGTCTG	TCACTGTGGAGTGGACAGGGCTGAAGGTCCCCAAGACACTCCAAG
CGCAGCCTGCTAAACCGGATCAT	CCTAGCCCCATGAGGTTTTTTGAGACCACGCCCCTTTCCCACGA
ICCTGAACAGATTTTCATCTGAC	TGTAACACCATCGACCAGCACATCCCATCCACGCTCCACTCCACTCCT
GAGCCGCTCCACCCTGCTCTGTG	TCTCAGCCCTGGCCGTCATCTCCTATGTCACACCTCTCTCT
GTGGCCCTCTTGCCCCCTGGCCAT	CGTGTGCTACTTCATCCAGAAGTACTTCCGGGTGGCCCTCCAAGGA
ACCIGCAGCAGCIGGATGACACC	ACCCAGCTTCCACTTCTCTCACACTTTCCCCCAAACCCCTACAAACC
ACTCACCACCATCCGGGCCTTCA	GGTATGAGGCCCGGTTCCAGCAGAACCTTCCCCAATACACACAC
ITCCAACAACATTGCTTCCCTCTT	CCTCACAGCTGCCAACAGATCCCTCGAACTCCGAATCCACTACTA
TCGGTGCATGTGTGGTGCTCATC	GCAGCGGTGACCTCCATCTCCAACTCCCTGCACAGGGAGCTCTC
11GC1GGCCTGGTGGGCCTGGGCCC	TTACCTACGCCCTAATGGTCTCCAACTACCTCAACTCCAGCCTCA
AGGAACCTGGCAGACATGGAGCT	CCAGCTGGGGGCTGTGAAGCGCATCCATGGGCTCCTGAAAACCG
AGGCAGAGAGCTACGAGGGGCTC	CTGGCACCATCGCTGATCCCAAAGAACTGCCCAGACCAAACGAA
GATCCAGATCCAGAACCTGAGCG'	TGCGCTACGACAGCTCCCTGAAGCCGGTGCTGAAGCACCTGAAT
GCCCTCATCTCCCCTGGACAGAA	GATCGGGATCTGCGGCCGCACCGGCAGTGGGAAGTCCTCCTTCCT
CTCTTGCCTTCTTCCGCATGGTG(GACACGTTCGAAGGGCACATCATCACACAAGCCCCCCACAA mmm
CAGCCAGGGACAGAGGCAGCTGT	PCTGCCTGGCCCGGCCTTCGTGAGGAAGACCACCATCTTCATC
ATGCACGCCACGCCTTCCAT	IGACATGGCCACGGAAAACATCCTCCAAAACGTCCTCATCATCACAC
CCTTCGCAGACCGCACTGTGGTC	ACCATCGCGCATCGAGTGCACACCATCCTGAGTGCACACCTTCTT
GATCGTCCTGAAGCGGGGTGCCAT	CCTTGAGTTCGATAAGCCAGAGAAGCTGCTCAGCCCCAACCAG
AGCGTCTTCGCCTCCTTCGTCCGT	FGCAGACAAGTGACCTGCCAGAGCCCAAGTGCCCATCCCACATTTTTC
GGACCCTGCCCATACCCCTGCCTC	GGTTTTCTAACTGTAAATCACTTGTAAATAA
ORF Start: ATG at 127	
jord State ATO at 127	ORF Stop: TGA at 4657

	SEQ ID NO: 226	1510 aa	MW at 169179.9kD
CG57308-02 Protein Sequence	LIJALLVYWILAFITKTIKFYKLI REVKPPEDLQDLGVRFLQPFVNLI REVKPPEDLQDLGVRFLQPFVNLI REVKPPEDLQDLGVRFLQPFVNLI RFVARGEMTAGQICNLVAIDTM RFVARGEMTAGQICNLVAIDTM STSNLSMGEMTAGQICNLVAIDTM LAPVQYFVATKLSQAQRSTLEYSN AIYTSISIFMITAIPIAAVLITFV LVSVQKLSEFLSSAEIREEQCAPE DGDADNCCVQIMGGYFTWTPDGIF FWSSLPDSEIGEDPSPERETATDL CSLQPDIDILPHGDQTQIGERIN ILELLRDDKRTVVLVTHKLQYLPH EKETVTERKATEPPQGLSRAMSSR SAGILLSLLVFSQLLKHMVLVAI LGIVLCLVTSVTVEWTGLKVAKRL ECLSRSTLLCVSALAVISYVTPVF VEGLTTIRAFRYEARFQQKLLEYT VEGLTTIRAFRYEARFQQKLLEYT ELSAGLVGLGLTYALMVSNYLNWM QGKIQIQNLSVRYDSSLKPVLKHV	NGCFVDALNVVPHVFLLFT GGILSDCVTESHHLHLYMP LDHAIGFSQLRFCLTGLLV PSKGTYWMNAFIKTAHKK, CHAFGRRLVLSSTFRILADI VVLLFLALLLQRTFLQASY NGLMWFFFLCPNLWAMPVQ MERLKQTNEMLRGIKLLKL GHVSFFKEADFSPSVAFAS MEPTPQGPASKYQAVELRV TLSNITIRIPRGQLTMIVC LDIRKRGPVAYASQKPWLLM LSGGQRQRISVARALYQHE LADWIIAMKDGTIQREGTLK LDGLLQDEEEEEEAABSEE DYWLAKWTDSALTLTPAAR HRSLLNRIILAPMRFFETT LVALLPLAIVCYFIQKYFR DSNNIASLFLTAANRWLEV VRNLADMELQLGAVKRIHG NALISPGQKIGICGRTGSG	TFPILFIGWGSQSKVHIHHSTWLE AGMAFMAAVTSVVYYHNIETSMFPE ILYGMLLLVEVNVIRVRRYIFFKTE ILYGMLLLVEVNVIRVRRYIFFKTE ILYGMLLLVEVNVIRVRRYIFFKTE PIDLRAIGKLPIVMRALTNYQRLCE LLGFAGPLCIFGIVDHLGKENDVFQ VVAIETGINLRGAIQTKIYNKIMHI IIVGVILLYYILGYSALIGAAVIII VAWENIFRTRVETTRKEMTSLRAF SLSLFHILVTPLFLLSSVVRSTVKA VNRKRPAREDCRGLTGPLQSLVPSA SQVGCGKSSLLLAALGEMQKVSGAV VATVEENIIFESPFNKQRYKMVIEA LNVVFLDDPFSALDIHLSDHLMQAG DFQRSBCQLFEHWKTLMNRQDQEL DDNLSSMLHQRAEIPWRACAKYLS LYCSLSQECTLDQTVYAMVFTVLCS PLGSILNRFSSDCNTIDQHIPSTL VASSTLQLDDTTQLPLLSHFAET RMEYIGACVVLIAAVTSISNSLHR LILKTEAESYEGLLAPSLIPKNWPD LKSSFSLAFFRMVDTFEGHIITEGG LVVMTAFADRTVVTIAHRVHTILSA

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 51B.

Table 51B. Comparison of NOV51a against NOV51b.				
٠	Protein Sequence		Identities/ Similarities for the Matched Region	

		But her alle a little hall been and all and and	ung
NOV51b	11406	21 Short 22 of Sant Street Street Brance of santh cauter santh Illians	
1101310		1285/1406 (91%)	l
	11406	1286/1406 (91%)	ĺ
			1

Further analysis of the NOV51a protein yielded the following properties shown in Table 51C.

5

Table 51C. Protein Sequence Properties NOV51a				
PSort analysis:	0.8000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.3000 probability located in microbody (peroxisome)			
SignalP analysis:	Cleavage site between residues 56 and 57			

A search of the NOV51a protein against the Geneseq database, a proprietary
database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 51D.

Table 51D. G	Table 51D. Geneseq Results for NOV51a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV51a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAW57412	Homo sapiens sulphonylurea receptor - Homo sapiens, 1580 aa. [WO9814571-A1, 09-APR-1998]	11581 11580	1530/1582 (96%) 1540/1582 (96%)	0.0	
AAR77087	Rat sulphonylurea receptor - Rattus sp, 1582 aa. [WO9528411-A1, 26-OCT-1995]	11581 11582	1477/1582 (93%) 1509/1582 (95%)	0.0	
AAR77088	Hamster sulphonylurea receptor - Cricetus sp, 1582 aa. [WO9528411-A1, 26-OCT-1995]	11581 11582	1469/1582 (92%) 1506/1582 (94%)	0.0	
AAR77084	Rat sulphonylurea receptor - Rattus sp, 1498 aa. [WO9528411-A1, 26-OCT-1995]	11290 11291	1195/1291 (92%) 1223/1291 (94%)	0.0	

AAR77085 Hamster sulphonylurea receptor - Cricetus sp, 1498 aa. [WO9528411-A1, 26-OCT-1995]	11290 11291	1186/1291 (91%) 1220/1291 (93%)	0.0	
---	----------------	------------------------------------	-----	--

In a BLAST search of public sequence datbases, the NOV51a protein was found to have homology to the proteins shown in the BLASTP data in Table 51E.

5

Table 51E.	Table 51E. Public BLASTP Results for NOV51a				
Protein Accession Number	Protein/Organism/Length	NOV51a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q09428	Sulfonylurea receptor 1 - Homo sapiens (Human), 1580 aa.	21581 11580	1579/1580 (99%) 1579/1580 (99%)	0.0	
Q09429	Sulfonylurea receptor 1 - Rattus norvegicus (Rat), 1581 aa.	21581 11581	1512/1582 (95%) 1536/1582 (96%)	0.0	
Q09427	Sulfonylurea receptor 1 - Cricetus cricetus (Black-bellied hamster), 1581 aa.	21581 11581	1498/1582 (94%) 1530/1582 (96%)	0.0	
A56248	sulfonylurea receptor - golden hamster, 1582 aa.	11581 11582	1469/1582 (92%) 1506/1582 (94%)	0.0	
Q95J92	Sulphonylurea receptor 2B - Oryctolagus cuniculus (Rabbit), 1549 aa.	11580 11548	1076/1581 (68%) 1277/1581 (80%)	0.0	

PFam analysis predicts that the NOV51a protein contains the domains shown in the 10 Table 51F.

Table 51F. Domain Analysis of NOV51a			
Pfam Domain	NOV51a Match Region	Identities/ Similarities for the Matched Region	Expect Value
ABC_membrane	318590	53/287 (18%) 212/287 (74%)	3.6e-46

ABC_tran	706905	55/214 (26%) 154/214 (72%)	1.3e-34
ABC_membrane	10111298	58/292 (20%) 222/292 (76%)	2.7e-51
PRK	13741391	6/19 (32%) 15/19 (79%)	0.21
ĄBC_tran	13711554	54/199 (27%) 129/199 (65%)	5.7e-36

Example 52.

The NOV52 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 52A.

Table 52A. NO	V52 Sequence Analysis		
	SEQ ID NO: 227	1404 bp	
NOV52a, CG93659-01 DNA Sequence	TGTCTGATGTAATAGACATTATGTCTCAATGCACATCAATGCACAAGACACATCATCAATGACACACAC	TGACAATAAAGAAGAGATT GAAAATCTTTATGCAAGTG GTAATCAAAACGATGAGCG GTAATCAAAACGATGAGCG GTAACAGATATGGAACTGTG TTTTATGGACAACGACCAC GTTACCAAATAGATTCCGA TTTTATTCCTCGGGCGCCC GCGTTAAACTGATCCCAG ACGAGAACATCGCAGAGCT TGGGTGACAAAGCATGTT TGGGTGACAAAGCATGTT ATGACCGAAGAGTTAT ATCCTGTGCAGGGCCATT ACCGAGAGACATCCTAT ACCGAGAGACATCCTAT ACCGAGAGACCCACCTG CCACAGCGCCACCCACCTG CCACAGCAGAGAAGAACACCTCCAGAAGCAAACACCTCCCACCTCCCACAGAGAGAAACACCCCCCCC	GATTTATTAATTAAACATTTAAATG GATTTATTAATTAAACATTTAAATG GAGGCCAGCAGTTTATGAACCCAG GAGGATTTGCTTGCTTATGAACC GAGGATTTGCTTGCTTTTTTGCAAACC AGGAATCTGGAATTTTATAAACAT TGTTCTCCTGATCCCCTGGAAGCTG TTTGGAAAGGTATTACTTGGCTCAAG TAGATCAATTTAAGCCATCTGATGT GTATGCCGCAGTCCTGTGGGGTGAA CTGAAGAAACTGGAGAGCTGTTAGACT TCAAGGGACTTGATTTTCTACACTC TTTCATGTCCACAAAAGCTGTTTTG TTTCCTAAGGACCTCCGAGGACAG CAACCAAAGCAGCTTCACAGCC GGTGAAGCATTCCAGAAGACGCC CTGGAAGACATTCCAGAAGACCGC CTGGAAGACATTCCAAAAGCCGC CTGGAAGACATTCCAAAAGCCGC TCAGCCCCAATCACCGCCAAGAGCCGC TCAGCCACCGCTTTACGATCTGAA CCCAACCACCGCTTTACGAGTCTTGAA
	ORF Start: ATG at 1		ORF Stop: TGA at 1402

10

CG93659-01 QEVPWLSSVRYGTVEDLLAFANHISNTAKHFYGQRPQESGILLNMVITPQNGRYQIDSDVLLIPWETYRNIGSDFIPRGAFGKVYLAQDIKTKKRMACKLIPVDQFKPSDVEIQACFRHENIAELYGAVLWG Protein Sequence TVHLFMEAGEGGSVLEKLESCGPMREFEIIWVTKHVLKGLDFLHSKKVIHHDIKPSNIVFMSTKAV VDFGLSVQMTEDVYFPKDLRGTEIYMSPEVILCRGHSTKADIYSLGATLIHMQTGTPPWVKRYPRS YPSYLYIIHKQAPPLEDIADDCSPGMRELIEASLERNPNHRPRAADILKHEALNDPREDODENGT	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED	SEQ ID NO: 228		MW at 52896.9kD
SALLERKRILSRKELELPENIADSSCTGSTEESEMLKRQRSLYIDLGALAGYFNLVRGPPTLEYG	CG93659-01 Protein Sequence	QEVFMLSSVRYGTVEDLLAFANHI TYRNIGSDFIPRGAFGKVYLAQDI TVHLFMEAGEGGSVLEKLESCGPM VDFGLSVQMTEDVYFPKDLRGTEI YPSYLYIIHKQAPPLEDIADDCSP	SNTAKHFYGQRPQESGIL KTKKRMACKLIPVDQFKP REFEIIWVTKHVLKGLDF YMSPEVILCRGHSTKADI GMRELIEASLERNPNHRP	LNMVITPQNGRYQIDSDVLLIPWKL SDVEIQACFRHENIAELYGAVLWGE LHSKKVIHHDIKPSNIVFMSTKAVL YSLGATLIHMQTGTPPWVKRYPRSA RAADLIKHEALNDDBENODDCOGI

WO 03/029424

	SEQ ID NO: 229	1430 bp	
NOV52b, CG93659-03 DNA Sequence	CTGACACTGCACTGAGCACTTTAT TCCAGAAAGAGCACACTGATATGA TTAATTAAACATTTAATGTGTCT CACCAGTTTATGAACCCAGTCTAA GTCTCTGCTGCTTAGTGGCCAAGA GTCTCTGCTGCTTAGTGGCCAAGA TTGCTTGCTTTTTGCAAACCATATA CTGGAATTTTATTAAACATGGTCA CCTGATCCCCTGGAGCTGAACTTA AAGTATACTTGGCACAAGATATA AATTTAAGCCATCTGATGTGGAAA CGCAGTCCTGTGGGGTGAAACTGT AAACTGGAGAGCTGTGAGACTATA CATCCTGTGCAGGGCCATTCAAC CATCCTGTGCAGGGGCCATTCAAC CAGACGGGACCCCCCTGGGTG TCCACAAGCAACCCCTCCACTGG AGAAGCTTCCTGGAGAGAAACCC CTGAACCCGCCCAGAGAGATCAG CGCTGCTGAGTAGAACCCGCCAGAGGGTCAGGGCCCCCAGAGAGGATCAG CGCTGCTGAGTAGGAAGGAGCTGG	GAGCTTGAACTCTGTTAA GTACATGAGCACTGGAGG GATGTAATAGACATTATG TGACCATGGTTGTCATC. TCCACCACACACACACACACACACACACACACACACACA	TCCTCACGACCACCTCATGAGACTC TGACAATAAAGAAGAGACTC TGACAATAAAGAAGAGACTC GAAAATCTTTATGCAAGTGAAGAGG GTAATCAAAACGATGAGCGTTCTAA AGTCAGATACGGAACTGTGGAGGAT TTTTATGGACAACGACCACAGGAAT GTTACCAAAATAGATTCCGATGTTCT TTTTATTTCTCGGGCGCCTTTGGA GCGTGTAAACTGATCCCAGTAGATC ACGAGAACATCGCAGAGCTGTATGG ACGAGGACAAGCGTCTTTTTGAAG TGGGTGACAAAGCATGTTCTCAAGG TGAGTAACTTACATAAGCCCAGAGGT CCTGGGGGCCACGCTCATCCACATG GCCTATCCCTCCTACCTGTACATAA CCAGACCTACCTCTACATAA CCAGACCTACCTCTACATAA CCAGACCTACCTCTTGAAGCCCAGAGGT CCGAGACCTCTCTCTACATAA CCGAGACCTACCTCTGAGAGCAC CGCCTCTCCCCTCTGAGGAAGCAC CGACCTCCCCCTCTTGGAGGAAGCAC CGACCTCCGCCGCTCTGCTGGCTAC CGACCTCCGCCGCTCTGCTGGCTACAAAGCAC CGACCTCCGCCGCTCTGCTGGCTACAAAGCAC
	ORF Start: ATG at 87		ORF Stop: TGA at 1380

5

	SEQ ID NO: 230	431 aa	MW at 48882.2kD
CG93659-03 Protein Sequence	QEVPWLSSVRYGTVEDLLAFANHI TYRNIGSDFISRGAFGKVYLAQDI TVHLFMEAGEGGSVLEKLESCGPM STKADIYSLGATLIHMQTGTPPWV	SNTAKHFYGOR POESGIL KTKKRMACKLI PVDOFK P REFEI IWVTKHVLKGLDF KRYPRSAYPSYLYI IHKO PRCOSLDSALLERKRLLS	EPSLMTMCQDSNQNDERSKSLLLSG LNMVITPQNGRYQIDSDVLLIPWKL SDVEIQACFRHENTAELYGAVLWGE LHSKKVIHHDINIYMSPEVILCRGH APPLEDIADDCSPGMRELIEASLER RKELELPENIADSSCTGSTEESEML

	SEQ ID NO: 231	1538 bp	
NOV52c, CG93659-02 DNA Sequence	TCAGAAAGAGCAACAGT TTAATTAAACATTTAAAT TAATTAAACATTTAAACA CAGCAGTTTATGAACCCA GTCTCTCCTGCTTAGTGG TTGCTTGCTTTTGCAAAC CTGGAATTTTATTAAACA AAGTATACTTGGCACAA AATTTAAGCCATCTGGTGGATCCCCTGGAGTGGTGACTTTTTTTACACT GTCCACAAAAGCTGTTTTTAAGACTGGACACAAAAGCTGTTTTTAAGGACCTCCGAGAACAA AAGCAGACATCTACAGCC GCGCTACCCTCGCTCAGCC GACATTGCAGATGACTAGCCCAACAGACCAGAC	CTTTATGAGCTTGAACTCTGT AATGGAGTACATGAGCATTG GTGTCTGATGTAATGACATTGTGTCAAG CCAAGAGGTACCATGGTGTCAAG CCAAGAGGTACCATGGTGTTGTC CATATATCCAACACTGCAAAAC TGGTCATCAGGAATATTGGTTG GACTTACAGGAATATTGGTTC GATATAAAGACGAAGAAAAGA TGGAAATCCAGGCTTGCTTC GAACTGTCCATCTCTTTATGGA CCAATGAGAGAATTTGGAATT CAAGAAAGTGACCACCATG GGTGGATTTTGGCCTCACGAG GGGGGCCACGCTCATCCCACA CTATCCCTTCTTACAT AGTCCACTGTACATGAGCCCAGG CGGGGCCACGCTCATCCACA CTATCCCTTCTACATGAGCCT CAGGACCTACTAAAACATGAGG CAGCTCCTTAAAAGAAGTGT CAGCCTCCTTACATGAGGCTC CAGCACCTACTTACAT	TTAATCCTCACGACCACCTCATGAGACT GAAGTGACAATAAAGAAGAGATTGATTT IATGGAAAATCTTTATGCAAGTGAAGAG GACGTCACAAAACGATGAGCGTTCTAT CATCAGTCAAAACGATGAGCGTTCTAC GACGTTACTAAAACGACCACCAGGAAA GCATTTTTATGGACAACGACCACCAGGAAA GCATTTTTATTGGACAACGACCCCTTTGGAC AATGGCGTGTAAAACTGATCCCAGTAGATA CAGCAGGCGAGGGAGGGTCTGTTCTCAAGCACACATGATTTTCCAAGCAGCAGTTTTCCAAGCATTATATAAACCAAGAATGTTTTCCAAGACATTGTTTCCAAGACATGTTTTCCAAGACATCTTATTTCCT GGTCATCCTGTGCAGAGATGTTTTCCAACAACAACATCTTTTCCAAATGACCAAACACATCTTTTCCT GGTCATCCTGTGCAGAGAGATCATCCACCAGACGTGAAACACCCCACCCTGGGTAAA CACTACCAAACCACCCCACC

GCTTGAATATGGCTGAAGGATGCC	ATGTTTGCTCTAÄATTAAGACAGCATTGATCTCCTGGAGG."
ORF Start: ATG at 87	ORF Stop: TGA at 1488

SEQ ID NO: 232	467 aa	MW at 52844.7kD
MEYMSTGSDNKEEIDLLIKHLNVS OEVPWLSSVRYGTVEDLLAFANHT	DVIDIMENLYASEEPAVY	EPSLMTMCQDSNQNDERSKSLLLSG
TYRNIGSDFISRGAFGKVYLAODI	KTKKRMACKLIPVDOFKP	SDUETOACERHENTAELVGAULNGE
ADECT SAGMLEDA A E EKDPKGLET.	YMSPEVILCSGHSTKADI	YSLGATLIHMQTGTPPWVKRYPRSA
YPSYLYIIHKQAPPLEDIADDCSP	GMRELIEASLERNPNHRP	RAADLLKHEALNPPREDOPROOSTAD
	MEYMSTGSDNKEEIDLLIKHLNVS QEVPWLSSVRYGTVEDLLAFANHI TYRNIGSDFISRGAFGKVYLAQDI TVHLFMEAGEGGSVLEKLESCGPM VDFGLSVQMTEDVYFPKDLRGTEI YPSYLYIIHKQAPPLEDIADDCSP	SEQ ID NO: 232 MEYMSTGSDNKEEIDLLIKHLNVSDVIDIMENLVASEEPAVY QEVPWLSSVRYGTVEDLLAFANHISNTAKHFYGQRPQESGIL TYRNIGSDFISRGAFGKVYLAQDIKTKKRMACKLIPVDQFKP TVHLFMEAGEGSVLEKLESCGPMREFEIIWVTKHVLKGLDF TVDFGLSVQMTEDVYFPKDLRGTEIYMSPEVILCSGHSTKADI YPSYLYIIHKQAPPLEDIADDCSPGMRELIEASLERNPNHRP SALLERKRLLSRKELELPENIADSSCTGSTEESEMLKRQRSL

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 52B.

10

Table 52B. Comparison of NOV52a against NOV52b and NOV52c.		
Protein Sequence NOV52a Residues/ Identities/ Similarities for the Matche		Identities/ Similarities for the Matched Region
NOV52b	1467 1431	413/467 (88%) 413/467 (88%)
NOV52c	1467 1467	449/467 (96%) 449/467 (96%)

Further analysis of the NOV52a protein yielded the following properties shown in Table 52C.

Table 52C. Protein Sequence Properties NOV52a	
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)
SignalP analysis: No Known Signal Sequence Predicted	

A search of the NOV52a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 52D.

Table 52D. Geneseq Results for NOV52a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV52a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAE05951	Human cot oncoprotein encoded by D14497 oncogene - Homo sapiens, 467 aa. [US6265216-B1, 24-JUL-2001]	1467 1467	467/467 (100%) 467/467 (100%)	0.0	
AAY79244	Human COT - Homo sapiens, 467 aa. [WO200011191-A2, 02-MAR-2000]	1467 1467	467/467 (100%) 467/467 (100%)	0.0	
AAE10313	Human Tp12 protein - Homo sapiens, 467 aa. [WO200166559-A1, 13-SEP-2001]	1467 1467	466/467 (99%) 466/467 (99%)	0.0	
AAE10314	Rat Tp12 protein - Rattus sp, 467 aa. [WO200166559-A1, 13-SEP-2001]	1467 1467	439/467 (94%) 454/467 (97%)	0.0	
AAY79243	Rat TPL-2 - Rattus norvegicus, 467 aa. [WO200011191-A2, 02-MAR-2000]	1467 1467	438/467 (93%) 453/467 (96%)	0.0	

In a BLAST search of public sequence datbases, the NOV52a protein was found to have homology to the proteins shown in the BLASTP data in Table 52E.

Protein Accession Number	Public BLASTP Results for NO Protein/Organism/Length	NOV52a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P41279	Mitogen-activated protein kinase kinase 8 (EC 2.7.1) (COT proto-oncogene serine/threonine-protein kinase) (C-COT) (Cancer Osaka thyroid oncogene) - Homo sapiens (Human), 467 aa.	1467 1467	467/467 (100%) 467/467 (100%)	0.0

A48713	serine/threonine-specific protein kinase cot, 58K form - human, 467 aa.	1467 1467	466/467 (99%) 466/467 (99%)	0.0
Q63562	Mitogen-activated protein kinase kinase kinase 8 (EC 2.7.1) (Tumor progression locus 2) (TPL-2) - Rattus norvegicus (Rat), 467 aa.	1467 1467	438/467 (93%) 453/467 (96%)	0.0
Q07174	Mitogen-activated protein kinase kinase kinase 8 (EC 2.7.1) (COT proto-oncogene serine/threonine-protein kinase) (C-COT) (Cancer Osaka thyroid oncogene) - Mus musculus (Mouse), 467 aa.	1467 1467	435/467 (93%) 454/467 (97%)	0.0
A41253	kinase-related transforming protein (EC 2.7.1) - human, 415 aa.	1397 1397	379/397 (95%) 379/397 (95%)	0.0

PFam analysis predicts that the NOV52a protein contains the domains shown in the Table 52F.

5

Table 52F. Domain Analysis of NOV52a					
Pfam Domain	NOV52a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
pkinase	146388	74/279 (27%) 187/279 (67%)	4.7e-54		

Example 53.

The NOV53 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 53A.

Table 53A. NOV53 Sequence Analysis				
	SEQ ID NO: 233	1078 bp		
NOV53a, CG94521-01 DNA Sequence	CAAGATGTGGGTCTTTGAAG GAAAATGTAAAATATCTTCC AGGCTGTGCAGGATGCAGAC	MTAATIGGTAATAACGTCAA AAACAGTGAATGGCAGAAAA TTGGACACAAGCTGCCAGAAA CTGCTCGTCTTTTTTTATTATTA	AAGTGTGCATCGTGGGCTCGGGGAACT GAAACTTCAGAAATTTGCCTCCACAGT CTGACAGACATCATAAATAATGACCAT ATGTGGTTGCCATGTCAAATCTTAGCG CCACCAGTTCATTCACAGAATCTGTGA ACCCTCATCAAGGCATAGACGACGGC	

WO 03/029424

AATGGAGAACGCCTTCTCTTCAA GATGCAGACACTGTTGAACTCTGT ACGGCCTCCGCTGTGGAGACAACA TTTTGCCAGGATCTTCTGCAAAGG GACCTGATCACCACCTGTTACGG AGACCATTGAAGAGTTGGAGAAGG TGAAGTGTACCGCATCCTCAAACA	GACATCATCCGTGAGAAGATGGTATTGACATCAGTGTGCTGATGGACATCATCCGTGAGAGAAGATGGTATTGACATCAGTGTGCTGATGGACACCACCATCGCAGAAGTAGGACTCCCAAAGTTCTGAATTACGAATTACGAATTACGAATTACGAACTCGAAACCATCGAAACCATCGAAACCATCGAACTGGAACTGGAACTGCCCAAAACCGCCACCTTCCTAGAGAGCTGCGGGTGGCCCCAAAACCGCAGACTGCGAACTGGGAACTGCGAAACTGCGAACTGCGAACTGCGAACTGCGAACTGCGAACTGCGAACTGCGAAACGACTCTCGCAGAACTGCGAAACTGCGAAACGACTCTCGCAAAACGACCTCTCTGCAAACGACCTCTCTGCAAACGACCTCTCTGCAAACAGACTACTCTCCAAACAGACCACACTTCTTCCAAACAGACCACACTCTCTCCAAACAGAACTACTCTCAAACAGAACTACTCAAACAGAACTACTCAAACAGAACTACTCAAACAGAACTACTCAAACAACAACATCAACAACAACAACAACAACA
 ORF Start: ATG at 22	ORF Stop: TAA at 1075

SEQ ID NO: 234 351 aa MW at 38418.3kD NOV53a, MAAAPLKVCIVGSGNWGSAVAKIIGNNVKKLQKFASTVKMWVFEETVNGRKLTDIINNDHENVK GHKLPENVVAMSNLSEAVQDADLLVFVIPHQFIHRICDEITGRVPKKALGITLIKGIDEGPEGLI SDIIRBKMGIDISU MGANLANUA NIVARIAN BANLANUA NIVARIAN BANLANUK NIVARIA	The same of the sa			
NOV53a, MAAAPLKVCIVGSGNWGSAVAKIIGNNVKKLQKFASTVKMWVFEETVNGRKLTDIINNDHENVK		SEQ ID NO: 234	351 aa	MW at 38418.3kD
Protein Sequence CGALKNIVAVGAGFCDGLRCGDNTKAAVIRLGLMEMIAFARIFCKGQVSTATFLESCGVADLITT GGRNRRVAEAFARTGKTIEELEKEMLNGQKLQGPQTSAEVYRILKQKGLLDKFPLFTAVYQICYI	CG94521-01 Protein Sequence	SDITREKMGIDISVLMGANIANEV CGALKNIVAVGAGFCDGLRCGDNTI GGRNRRVAEAFARTGKTIEELEKE	GNNVKKLQKFASTVKMWV VFVIPHQFIHRICDEITG AAEKFCETTIGSKVMENG	FEETVNGRKLTDIINNDHENVKYLP RVPKKALGITLIKGIDEGPEGLKLI LLFKELLQTPNFRITVVDDADTVEL

	SEQ ID NO: 235	936 bp	
NOV53b, CG94521-03 DNA Sequence	TGTGGGTCTTTGAAGAACATATTGTT TGTGGGTCTTTGAAGAACAGTGA TGTAAAATATCTTCCTGGACACAA AAGCTCATTTCTGACATCATCCGT TTGCCAATGAGGTGGCTGCAGAGA CCTTCTCTTCAAAGAACTCTCGCA GTTGAACTCTGTGGTGGGCTTAAGG GTGGAGACAACACCAAAGCGGCCGC CTTCTGCAAAGGCCAAGTGTCTACI ACCTGTTACGGAGGGCGGAACCGCA ACTTGGAGAAGGAGATGCTGAATGG	AATHATETCAGAAACTIA ATGGCAGAAAACTGACA GCTGCCAGAAAACTGACA GAGAAGATGGCTATTGAC GAGTCTGTGAGACACACACACACACACACACACACACACA	GCATCGTGGGCTCGGGAACTGGGGT CCAGAAATTTGCCTCCACAGTCAAGA ACATCATAAATAATGACCATGAAAA ACATCATAAATAATGACCATGAAAA CATAGACGAGGGCCCCGAGGGGCTG CATCAGTGTGCTGATGGAGCACAA ATCGGCAGCAAAGTAATGGAGAACG TACCGTGGTTCTGCGACGGCCTCCGCT ATGGAAATGATTGCTTTTGCCAGGAT CTGCGGGTGCCGACCTGATCACC CCCAGAACTGCGAAGACCATTGAAG CCCAGAACTTCTCTGAAGTGTACCG
	ORF Start: ATG at 17		ORF Stop: TAA at 929

200	SEQ ID NO: 236	304 aa	MW at 33235.2kD
Protein Sequence	LLOTPNER TEXTOD A DESCRIPTION	GNNVKKLQKFASTVKMWV REKMGIDISVLMGANIAN KNIVAVGAGFCDGLRCGD	FEETVNGRKLTDIINNDHENVKYLP EVAAEKFCETTIGSKVMENGLLFKE NTKAAVIRLGLMEMIAFARIFCKGQ KEMLNGQKLQGPQTSAEVYRILKQK

SEQ ID NO: 237	
	1077 bp
	1077 00

NOV53c, CG94521-02 DNA Sequence	TGTGGGTCTTTGAAGAAACAGTGA TGTAAAATATCTTCCTGGACACAA GTGCAGGATGCAGACCTGCTGGTG TCACTGGGAGAGTGCCCAAGAAAG GGGGCTGAAGCTCATTTCTGACAT GCCAACATTGCCAATGAGGTGGCT AGAACGGCCTTCTCTTCAAAGAAC AGACACTGTTGAAGACTCTCCGCTGGTGGAGACACCAAA CCAGGATCTTCTGTAAGACACAAA GATCACCACCTGTTACGAAGGCCAAG GATCACCACCTGTTACGAAGGAGATGATGAAGACTCTCAAAGAACACAAGA	CGGCGCCCTGAAAGTGTCATCTGGCTCGGGGAACTGGGTTAATAATGTCAAGAAACTTCAGAAAATTTGCCTCCACAGTCAAGAAATTGCCACACAGTCAAGAAATTGCCACACAGAAAACTGCAGAAAATTGCCACACAGAAAACTGCAGAAAACTGCAGAAAACTGCAGAAAACTGCAGAAAACTGCAGAAAACTGCCAGAAAACTGCCAGAAAACTGCAGAAACTCATGAAGAACTGTGATGAGAACCCTCGCAACAACACCACCAGAAACTAAAGAACTAGAAGGCCCCGAACACGGAAAACTCATGGGAAAGAAA
	ORF Start: ATG at 17	ORF Stop: TAA at 1070

	SEQ ID NO: 238	351 aa	MW at 38418.3kD
CG94521-02 Protein Sequence	SDIIREKMGIDISVLMGANIANEV CGALKNIVAVGAGFCDGLRCGDNT	VFVIPHOFIHRICDEITG AAEKFCETTIGSKVMENG KAAVIRIGIMEMTARARI	FEBTVNGRKLTDIINNDHENVKYLP RVPKKALGITLIKGIDEGPEGLKLI LLPKELLQTPNFRITVVDDADTVEL FCKGQVSTATFLESCGVADLITTCY ILKQKGLLDKFPLFTAVYQICYESR

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 53B.

10

Table 53B. Comparison of NOV53a against NOV53b and NOV53c.				
Protein Sequence NOV53a Residues/ Identities/ Similarities for the		Identities/ Similarities for the Matched Region		
NOV53b	1351 1304	304/351 (86%) 304/351 (86%)		
NOV53c	1351 1351	351/351 (100%) 351/351 (100%)		

Further analysis of the NOV53a protein yielded the following properties shown in Table 53C.

Table 53C. Protein Sequence Properties NOV53a

PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	Cleavage site between residues 22 and 23

A search of the NOV53a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 53D.

Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV53a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
ABB64184	Drosophila melanogaster polypeptide SEQ ID NO 19344 - Drosophila melanogaster, 360 aa. [WO200171042-A2, 27-SEP-2001]	3350 2349	212/349 (60%) 263/349 (74%)	e-120
AAG08446	Arabidopsis thaliana protein fragment SEQ ID NO: 5988 - Arabidopsis thaliana, 366 aa. [EP1033405-A2, 06-SEP-2000]	7331 22349	180/329 (54%) 233/329 (70%)	8e-95
AAG08445	Arabidopsis thaliana protein fragment SEQ ID NO: 5987 - Arabidopsis thaliana, 400 aa. [EP1033405-A2, 06-SEP-2000]	7331 56383	180/329 (54%) 233/329 (70%)	8e-95
AAG08444	Arabidopsis thaliana protein fragment SEQ ID NO: 5986 - Arabidopsis thaliana, 421 aa. [EP1033405-A2, 06-SEP-2000]	7331 77404	180/329 (54%) 233/329 (70%)	8e-95
AAG39422	Arabidopsis thaliana protein fragment SEQ ID NO: 48774 - Arabidopsis thaliana, 366 aa. [EP1033405-A2, 06-SEP-2000]	7331 22349	180/329 (54%) 232/329 (69%)	1e-94

In a BLAST search of public sequence datbases, the NOV53a protein was found to have homology to the proteins shown in the BLASTP data in Table 53E.

Table 53E. P	ublic BLASTP Results for NOV	753a		
Protein Accession Number	Protein/Organism/Length	NOV53a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
AAH28726	KIAA0089 protein - Homo sapiens (Human), 351 aa.	1351 1351	351/351 (100%) 351/351 (100%)	0.0
Q14702	KIAA0089 protein - Homo sapiens (Human), 411 aa (fragment).	1351 61411	351/351 (100%) 351/351 (100%)	0.0
O57656	Glycerol-3-phosphate dehydrogenase [NAD+], cytoplasmic (EC 1.1.1.8) (GPD-C) (GPDH-C) - Fugu rubripes (Japanese pufferfish) (Takifugu rubripes), 351 aa.	3350 2350	265/349 (75%) 306/349 (86%)	e-155
Q98SJ9	Glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) - Salmo salar (Atlantic salmon), 350 aa.	7350 5349	258/345 (74%) 301/345 (86%)	e-152
AAH32234	Glycerol-3-phosphate dehydrogenase 1 (soluble) - Homo sapiens (Human), 349 aa.	4350 2348	249/347 (71%) 297/347 (84%)	e-149

PFam analysis predicts that the NOV53a protein contains the domains shown in the Table 53F.

10

Table 53F. Domain Analysis of NOV53a				
Pfam Domain	NOV53a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
NAD_Gly3P_dh	5344	167/365 (46%) 307/365 (84%)	2.1e-184	

Example 54.

The NOV54 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 54A.

	•

Table 54A. NOV	754 Sequence Analysis		
in the second se	SEQ ID NO: 239	1552 bp	
NOV54a, CG96613-01 DNA Sequence	AACCTGGCGTACTGGCTGTGGAGCCCGGAGCCCGGCTCCCGCCTCCAAGAGGTTCTCTCAAGAACACAAAAACACAAAAACACACAAAAACACACAAAAACAC	GCTTCTCTAGCGGGACTCG GCCCGGGCTTCGCGCCCGC CCGAGCCGGCGTTCCGGGC CAGTTCCTGGACTTCGGAT IGCCTCTCAGACTGGCAAA ATCGTTCAATTGGTACAA ATGATTCATTCCCACAAT CACAGCCAGAATGTTCAG CTCAATCAGCACTTTTAT CACCAGCCAGAATCTTTAT CACCAGCCAGAATCTTTAT CAGCCAATACAACTG GTGTATTTGTATTATATT CAGCCAATACAAGTGGTTT. CAATCAGAGCCACTATGGA CCTGGTAATGAGAGTTTC SACCAACTTTTCACTTCACTGCACATTTTCACTTCACTTC	AGCTTCATCCAGGAACATTGGCGCGGG GCATGAGGCTTCAGCGCGCATGCATCAGCTCGCAGCTTCAGCTCGCAGCTTCAGCTCGCAGCTTCAGCTCAGCAGCTTCAGCAGCTTCAGCAGCTTCAGCAGCTTCAGCAGCTTCAGCAGCTTTCAGCAGCTTTCAGAAGAAATAAGTCTCCTTCCAAGCTGTTAAAAGAAAAAAAA
	ORF Start: ATG at 109		ORF Stop: TAG at 1417

	SEQ ID NO: 240	436 aa	MW at 49243.6kD
CG96613-01 Protein Sequence	VNACEKTSFMFLRQELPVRLANIM IYDFTDTVIRIRNFHNDVIPTMAQ FGGKGKGSPSHRKHIGSINPNCNVI VPSHLYHMVPELFKNAMRATMEHHI	KEISLLPDNLLRTPSVQL' GVIEYKESFGVDPVTSQN' LEVIKDGYENARRLCDLY ANRGVYPPIQVHVTLGNBI PISRLYAOYFOGDLKLYSI	PGQVDFYARFSPSPLSMKQFLDFGS VQSWYIQSLQELLDFKDKSAEDAKA VQYFLDRFYMSRISIRMLLNQHSLL YINSPELELEELNAKSPGQPIQVVY DLTVKMSDRGGGVPLRKIDRLFNYM LEGYGTDAVIYIKALSTDSIERLPV

<u>.</u>	SEQ ID NO: 241	1612 bp	
NOV54b, CG96613-03 DNA Sequence	AACCTGGCGTACTGCTGTGC AGCCGCCTTGGCCGGCCCCGGCGTCC CGTCCCCGCTCTCCATGAAGC TATGTTTCTGCGGCAAGAGTT GATAATCTTCTCAGGACACACA TTCTTGATTTTAAGGACAAAA GGTTGCAGGTCTCTAGTTTATC AGAAACCGACACAATGATGTC	TAATTGAAGTGTAACAAAAGCTTCA CTTCTCTAGCGGGACTCGGCATGAG CCCGGGGCTGCGCGCCGCCTTC GAGCGCGGCGTTCCGGACAGTGA AGTTCCTGGACTTCGGATCAGTGAA GCCTGTCAGACTGGCAAATATAATA GCCTGTCAATTGGTACAAAGCTGGT CTGCTGAGGATGCTAAAGCTATTTA CTGTTATGGCCTGCAAGATGATCTTT ATTCCCACAATGGCCCAGGGTGTGA AGAATGTTCAGTACTTTTTGGATCG	GCTGGCGCGGCTGCTTCGCGG CAGCCGCAGCTTCAGCTCGGAC SACTTCTAGCGCGGCTTCTCGC ATGCTTGTGAAAAGACCTCATT SAAAGAAATAAGTCTCCTTCCA PATATCCAGAGTCTTCAGGAGC ATGAAAGGCCTAGAAGAACATG PACAAAGGCCTAGAAGAACATG PACAAAAGGCCTAGAAGAACATG PACAAAAGGCCTAGAAGAACATG PACAAAAGGCCTAGATACGGATC

ATGCTAGGCGTCTGAAGCATAAAT ATGCTAGGCGTCTGTGATTTGT AAAATCACCAGGACAGCCAATACA CTTTTCAAGAATGCAATGAGAGCC AAGTTCATGTCACGCTGGGTAATG	CTCTTTATTGTTGGTGGAAAAGGCAAGTCCATCTCAT CCAAACTGCAATGTACTCAAT CCAAACTGCAATGTACTTGAAGTTATTAAAGATGGCTATGAAA ATTATATTAACTCTCCCGAACTAGAACTTGAAGAACTAAATGC AGTGGTTTATGTACCATCCCATC
TCCGGGAGTGCTCTGGCTGGT TCCAAGGAGACCTGAAGCTGTATT TCTGTCAACAGACTCAATAGAAAG AACCACAGGCTGATGACTGGTGC CCTAGACACTGGGGACATCGGA TTCAGAACTATATTATACCAAGTAG	CAACTACATGTATTCAACTGCACCAAGACCTCGTGTTGAGACC TTTGGTTATGGATTGCCCATATCACGTCTTTACGCACAATACT CCCTAGAGGGTTACGGGACAGATGCAGTTATCTACATTAAGGC ACTCCCAGTGTATAACAAAGCTGCCTGGAAGCATTACAACACC GTCCCAGCAGAAACCCAAAGACATGACGACGTTCCGCAGTG AAATCCAAATGTGGCTTTTGTATTAAATTTGGAAGGTATGGTG CTTTATTTATCGTTTTCACAAAACTATTTGAGTAGAATAAATG
ORF Start: ATG at 109	ORF Stop: TAG at 1477

	SEQ ID NO: 242	456 aa	MW at 51622.6kD
CG96613-03 Protein Sequence	IYERPRITULQUSSLCCMACKMIF DRFYMSRISIRMLLNQHSLLFGGK ELELEELNAKSPGOPIOVVYVPSH	SRSFSSDSGSSPASERGV KEISLLPDNLLRTPSVQL TDTVIRIRNRHNDVIPTM GKGSPSHRKHIGSINPNC LYHMVFELFKNAMRATME PRPRVETSRAVPLAGEGY	PGQVDFYARFSPSPLSMKQFLDFGS VQSWYIQSLQELLDFKDKSAEDAKA AQGVIEYKESFGVDPVTSQNVQYFL NVLEVIKDGYENARRLCDLYYINSP HHANRGVYPPIQVHYTLGNEDLTVK

	SEQ ID NO: 243	967 bp	
NOV54c, CG96613-02 DNA Sequence	AGCCGCTTGGCTGCCTTCGCTGCCTTCGGCCCCGCCCCG	TCTAGCGGACTCGCA GGGCTGCCGCCCGG GCGGCCTTCCGGCCAG CCTGGACTTCCGATCAG CTCAGACTGGCAAAGC TTCAGACTGCAAAGCTA ATGCCTGCAAGACTAAGCTA ATGCCTGCAAGATGAT TCACAATGCCTAAAGCTA CCACAATGCCTCCAGGGT TGTCAGTACTTATTT TTGTCCCGTTAAACCT TGAACATATTTTAAACCT TGAACATATTTTAAACCT GAAACATATTTCGGCTTTCTT	GTGGACTTCTACGCGCGCTTCTCGC TGAATGCTTGTGAAAAGACCTCATT AATGAAAGAAATAAGTCTCCTTCCA TGGTATATCCAGAGTCTTCAGGAGC TTTATGAAAGGCCTAGAAGAACATG CTTTACAGATACTGTATACAGAGAC GTGATTGAATACTAGAGAGAGCTTTG GTGATTGAATACAAGAGAGCTTTG ATCGTTTTCACAAAACTATTTGAGT CCTAAAGGATGAAATTGCACCTATT AACTGTAGTTGTACCACAAGT
	ORF Start: ATG at 109		ORF Stop: TGA at 733

	SEQ ID NO: 244	208 aa	MW at 23483.8kD
3C/C06612 02 1	IYERPRRTWLOVSSLCCMACKM	TWKEISLPDM.	SPASERGVPGQVDFYARFSPSPLSMKQFLDFGS LRTESVQLVQSWYIQSLQELLDFKDKSAEDAKA HNDVIPTMAQGVIEYKESFGVDPVTSQNVQYFI

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 54B.

Table 54B. Comparison of NOV54a against NOV54b and NOV54c.				
Protein Sequence	NOV54a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV54b	42436 42456	394/415 (94%) 395/415 (94%)		
NOV54c	42185 42205	140/164 (85%) 143/164 (86%)		

Further analysis of the NOV54a protein yielded the following properties shown in Table 54C.

10

5

Table 54C. Protein Sequence Properties NOV54a		
PSort analysis:	0.4251 probability located in mitochondrial matrix space; 0.3802 probability located in microbody (peroxisome); 0.1914 probability located in lysosome (lumen); 0.1017 probability located in mitochondrial inner membrane	
SignalP analysis:	Cleavage site between residues 22 and 23	

A search of the NOV54a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 54D.

Table 54D. Geneseq Results for NOV54a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV54a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
ABG16621	Novel human diagnostic protein #16612 - Homo sapiens, 415 aa. [WO200175067-A2, 11-OCT-2001]	42435 21413	269/395 (68%) 331/395 (83%)	e-162

ABB58044	Drosophila melanogaster polypeptide SEQ ID NO 924 - Drosophila melanogaster, 413 aa. [WO200171042-A2, 27-SEP-2001]	26420 2396	219/401 (54%) 288/401 (71%)	e-121
AAE07838	Maize pyruvate dehydrogenase kinase (PDK)-2 - Zea mays, 364 aa. [US6265636-B1, 24-JUL-2001]	40401 8364	144/374 (38%) 211/374 (55%)	2e-60
AAW64724	A. thaliana PDHK protein from clone YA5 - Arabidopsis thaliana, 366 aa. [WO9835044-A1, 13-AUG-1998]	57401 29366	142/357 (39%) 209/357 (57%)	3e-58
AAE07837	Maize pyruvate dehydrogenase kinase (PDK)-1 - Zea mays, 347 aa. [US6265636-B1, 24-JUL-2001]	40401 8347	135/371 (36%) 205/371 (54%)	4e-56

In a BLAST search of public sequence datbases, the NOV54a protein was found to have homology to the proteins shown in the BLASTP data in Table 54E.

Protein Accession Number	Protein/Organism/Length	NOV54a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q15118	[Pyruvate dehydrogenase [lipoamide]] kinase isozyme 1, mitochondrial precursor (EC 2.7.1.99) (Pyruvate dehydrogenase kinase isoform 1) - Homo sapiens (Human), 436 aa.	1436 1436	436/436 (100%) 436/436 (100%)	0.0
Q63065	[Pyruvate dehydrogenase [lipoamide]] kinase isozyme 1, mitochondrial precursor (EC 2.7.1.99) (Pyruvate dehydrogenase kinase isoform 1) (PDK P48) - Rattus norvegicus (Rat), 434 aa.	1436 1434	402/436 (92%) 412/436 (94%)	0.0

Q8R2U8	Similar to pyruvate dehydrogenase kinase, isoenzyme 1 - Mus musculus (Mouse), 432 aa.	1436 1432	401/436 (91%) 412/436 (93%)	0.0
Q15119	[Pyruvate dehydrogenase [lipoamide]] kinase isozyme 2, mitochondrial precursor (EC 2.7.1.99) (Pyruvate dehydrogenase kinase isoform 2) - Homo sapiens (Human), 407 aa.	37434 11405	277/398 (69%) 340/398 (84%)	e-168
70159	[pyruvate dehydrogenase (lipoamide)] kinase (EC 2.7.1.99) 2 - human, 407 aa.	37434 11405	276/398 (69%) 340/398 (85%)	e-168

PFam analysis predicts that the NOV54a protein contains the domains shown in the Table 54F.

5

Table 54F. Domain Analysis of NOV54a				
Pfam Domain	NOV54a Match Region	Identities/ - Similarities for the Matched Region	Expect Value	
HATPase_c	268393	32/134 (24%) 84/134 (63%)	8.5e-20	

Example 55.

The NOV55 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 55A.

	SEQ ID NO: 245	2885 bp	
NOV55a, CG96736-01 DNA Sequence	TCCCGGCCCCAGATTCTGGC TCCCGGATCCAGGCGTCCGGGCCCTAACCTCCTGGAGC CTAGGGCCAAGGACCCAGCC GAGAAGCCTCAGCGCCCAGCC GCTGTGAACTCACACTCTAA TCCTAGGAACGTCGGGTCCTG CCCGGTGCTTCCCATCATGGTCCCCCCCCCACCCCCCCCC	TCTGGCTGGTAACCGC: ACCCTCCCGGACCTAAGA ATCCCAGCCCTCAGTG: ATCTGCGCCACCAGAC CAAGGGCCCCACGCTCC GCTCCGAACTCCCAGCT TGGGGAATTTAAACACT GGAAGCCCTCCAAGTTC GGAAGCCCTCCAAGTTC GGAAGCCCTCCAAGCTC CGCACCCCACCTCCCACCCCCCCCCC	PACTCCGGACACCAGACCACCGCCTTC AGCCTGGGTCCCCTGTTTCCGGAGTCCG AGCCTGGGTCCCCGGTCCCCGCCTAGCCCAGGCAGCCCGGTCCCCGCCATCT CACCCAGAGAAACTCTCGTATTCCCAGC TTTCGGACATCTGCCACCGGGCAGAC CCAGCTTCCAAGAGCCAAGGAACTTCA CCAGCTTCCAGGTGCTATCCAACTC CCAGCTCCAGGTTCCAGGCGCTAAGAA ACTCCAAGGGCTCGCAGCGGGGGAGC ACTCCAAGGCGCAGCAGGCGCGAGCC CCAAGGCGCGCAGCAGCAGGCGCTACTGC CCAAGGCGCGCAGCAGCGCGCGAGCCCCCCAAGGCGCGCAGCGCCACGGGGGCCCCCC

Getegccgcgtgccctgcgactgcggtgcgcgcgcggggtgcgctgcccttgcccttgccctggga GCGCTTGAGGCCTTCGTCTTCCCGGGCGAGCTGCTGCTGCGGCTGCTGCGGGATGATCATCTTGCCGC TGGTGGTGTGCAGCTTGATCGGCGGCGCCGCCAGCCTGGACCCCGGCGCGCCGCCGTCTGGGCGC TGAGGCCACCATGGTTCTGGTCTCCTGGATCATGTGGT'ACGCCCCTGTGGGCATCATGTTCCTGGTG GCTGGCAAGATCGTGGAGATGGAGATGTGGGTTTACTCTTTGCCCGCCTTGGCAAGTACATTCTGT GCTGCCTGCTGGGTCACGCCATCCATGGGCTCCTGGTACTGCCCCTCATCTACTTCCTCTTCACCCG CAAAAACCCCTACCGCTTCCTGTGGGGCATCGTGACGCCGCTGGCCACTGCCTTTGGGACCTCTTCC AGTTCCGCCACGCTGCCGCTGATGATGAAGTGCGTGGAGAGAATAATGGCGTGGCCAAGCACATCA GCCGTTTCATCCTGCCCATCGGCGCCACCGTCAACATGGACGGTGCCGCGCTCTTCCAGTGCGTGGC CGCAGTGTTCATTGCACAGCTCAGCCAGCAGTCCTTGGACTTCGTAAAGATCATCACCATCCTGGTC ACGCCACAGCGTCCAGCGTGGGGCAGCGGCATCCCTGCTGGAGGTGTCCTCACTCTGGCCATCA ${\tt CCGGTCCTGTACCGTCCTCAATGTAGAAGGTGACGCTCTGGGGGCAGGACTCCTCCAAAATTATGTG}$ GACCGTACGGAGTCGAGAAGCACAGAGCCTGAGTTGATACAAGTGAAGAGTGAGCTGCCCCTGGATC TGTCTCAGGGAGCAGGTCACAGGTCACCATGGGGAATTCTAGCCCCCACTGGGGGGATGTTACAACA GTGTGTGTGTGTGTGTGTCTGTGACCTCCTGTCCCCATGGTACGTCCCACCCTGTCCCCAGATCCCCATGTTCCCTACACAAAAAACACTCCCAGGGACTCTGGGGAGAGGCTGAGGACAAATACCT ORF Start: ATG at 620 ORF Stop: TAA at 2243

	SEQ ID NO: 246	541 aa	MW at 56620.6kD
CG96736-01 Protein Sequence	IGLISYSGAGGALIALGPGALE FLVTTLLASALGVGLALALQ RSYSTTYEERNITGTRVKVP LVSWIMWYAPVGIMFLVAGK FLWGIVTPLATAFGTSSSA QLSQQSLDFVKIITILVTAT	AFVFFGELLLRLIRM PGAASAAINASVGAA VGQEVEGMNILGLVV IVEMEDVGLLFARLG TLPLMMKCVEENNGV ASSVGAAGIPAGGVI.	GGYCGSRDLVRRCLRANLLVLLTVVAVVAG IILPLVVCSLIGGAASLDPGALGRLGAWAL GSAENAPSKEVLDSFLDLARNIFPSNLVSA FAIVFGVALRKLGPEGELLIRFFNSFNEAT KYILCCLLGHAIHGLLVLPLIYFLFTRKNP AKHISRFILPIGATVNMDGAALFQCVAAVF FLAIILEAVNLPVDHISLILAVDWLVDRSC LPLDPLPVPTEEGNPLLKHYRGPAGDATVA

	SEQ ID NO: 247	2017 bp	
NOV55b, CG96736-02 DNA Sequence	GAGCCCAAGCAGGCTCCCCCCCCAGCCTTTCCCCCAGGCCCCCCCC	CCCACTGCTTACTGGCTTA TTAAACTTAAGCTTGGTACC GATCCTCCTCGAGACCTCCA CCTCCATCGAGGCCAACCTGCTT GCGCGCCCGGGGGCCCGGGG GCGAGCTGCTGCTTGCTGCCCTGCTCCCCCAGCCCCCCACCCCC ACCACGCTGCTGCTCGGCCCCCCTCGTTCGCCCCCCCCCC	TOTAL CONTROL OF THE

GGCAAGATCGTGGAGATGGAGC GCCTGCTGGGTCACGCCATCCI AAACCCCTACCGCTTCCTGTGC	TEGENT CATEGORY OF THE PROPERTY
GTTTCATCCTGCCCATCGGCGC AGTGTTCATTGCACAGCTCAGC GCCACAGCGTCCAGCGTGGGGC TCGAAGCAGTCAACCTCCCGGGGTCCACCTCAATGTA	CCACCGTCAACATGGACGGTGCCGCCTCTTCCAGTGCCGCCCCCCCC
TGCCAGTCCCCACTGAGGAAGG GGTCGCCTCTGAGAAGGAATCA CTGATCAGCCTCGACTGTGCCT	GANACCCCTCCTCAAACACTATCGGGGGCCCGCAGGGGATGCCAC AGTCATGTAAGCGGCCCTCGAGTCTAGAGGGCCCGTTTAAACCCG PTCTAGTTGCCAGCCATCTGTTTGTTTGCCCCTCCCCGTGCCTTCC CCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTC
ORF Start: at 134	ORF Stop: TAA at 1838

	SEQ ID NO: 248	568 aa	MW at 59557.8kD
Protein Sequence	SRDQVRRCLRANLLVLLTV VVCSLIGGAASLDPGALGI APSKEVLDSFLDLARNIFI GVALRKLGPEGELLIRFFN CLLGHAIHGLLVLPLIYFI RFILPIGATVNMDGAALFQ	/VAVVAGVALGLGVSGA RLGAWALLFFLVTTLLA PSNLVSAAFRSYSTTYE NSFNEATMVLVSWIMWY JFTRKNPYRFLWGIVTP JCVAAVFIAQLSQQSLD ULVDRSCTVLNVEGDAL	SKGLAAAEPTANGGLALAS I EDQGAAAGGYCG GGALALGPERLSAFVFPGELLLRLLRMI I LPI SALGVGLALALQPGAASAA I NASVGAAGSAEN ERNI TGTRVKVPVGQEVEGMNILGLVYA I VF APVGIMPLVAGKIVEMEDVGLLFARLGKYI LC LATAFGTSSSSATLPLMMKCVEENNGVAKHI S FVKI I TILVTATASSVGAAGI PAGGVLTLA I I GAGLLQNYVDRTESRSTEPELI QVKSELPLDF

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 55B.

10

15

Table 55B. Comparison of NOV55a against NOV55b.				
Protein Sequence NOV55a Residues/ Match Residues		Identities/ Similarities for the Matched Region		
NOV55b	1541 28568	423/541 (78%) 423/541 (78%)		

Further analysis of the NOV55a protein yielded the following properties shown in Table 55C.

Table 55C. Protein Sequence Properties NOV55a			
PSort analysis: 0.6000 probability located in plasma membrane; 0.4000 probability located in endoplasmic reticulum (meml 0.3000 probability located in microbody (peroxisome)			

SignalP analysis: Cleavage site between residues 70 and 71

A search of the NOV55a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 55D.

5

10

Table 55D. Geneseq Results for NOV55a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV55a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
ABG61858	Prostate cancer-associated protein #59 - Mammalia, 541 aa. [WO200230268-A2, 18-APR-2002]	1541 1541	531/541 (98%) 531/541 (98%)	0.0
AAR95044	Apoptosis participating protein - Homo sapiens, 514 aa. [JP08089257-A, 09-APR-1996]	1513 1513	499/513 (97%) 499/513 (97%)	0.0
AAY78144	Human neutral amino acid transporter ASCT1 - Homo sapiens, 532 aa. [US6020479-A, 01-FEB-2000]	32541 21532	314/521 (60%) 378/521 (72%)	e-161
AAY99961	Human amino acid transporter ASCT1 protein - Homo sapiens, 532 aa. [US6074828-A, 13-JUN-2000]	32541 21532	314/521 (60%) 378/521 (72%)	e-161
AAY97139	ASCT1 human neutral amino acid transporter protein - Homo sapiens, 532 aa. [US6100085-A, 08-AUG-2000]	32541 21532	314/521 (60%) 378/521 (72%)	e-161

In a BLAST search of public sequence datbases, the NOV55a protein was found to have homology to the proteins shown in the BLASTP data in Table 55E.

Table 55E. Public BLASTP Results for NOV55a

Protein Accession Number	Protein/Organism/Length	NOV55a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
AAD09814	Neutral amino acid transporter - Homo sapiens (Human), 541 aa.	1541 1541	532/541 (98%) 532/541 (98%)	0.0
Q15758	Neutral amino acid transporter B(0) (ATB(0)) (Sodium-dependent neutral amino acid transporter type 2) (RD114/simian type D retrovirus receptor) (Baboon M7 virus receptor) - Homo sapiens (Human), 541 aa.	1541 1541	531/541 (98%) 531/541 (98%)	0.0
O19105	Neutral amino acid transporter B(0) (ATB(0)) (Sodium-dependent neutral amino acid transporter type 2) - Oryctolagus cuniculus (Rabbit), 541 aa.	1541 1541	459/542 (84%) 485/542 (88%)	0.0
Q95JC7	Neutral amino acid transporter B(0) (ATB(0)) (Sodium-dependent neutral amino acid transporter type 2) - Bos taurus (Bovine), 539 aa.	1541 1539	465/542 (85%) 486/542 (88%)	0.0
AAM94351	Na+-dependent amino acid transporter ASCT2 - Rattus norvegicus (Rat), 551 aa.	1541 1551	445/553 (80%) 471/553 (84%)	0.0

PFam analysis predicts that the NOV55a protein contains the domains shown in the Table 55F.

Table 55F. Domain Analysis of NOV55a				
Pfam Domain	NOV55a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
SDF	54485	195/465 (42%) 373/465 (80%)	1.5e-178	

Example B: Sequencing Methodology and Identification of NOVX Clones

5

10

15

20

25

- GeneCallingTM Technology: This is a proprietary method of performing 1. differential gene expression profiling between two or more samples developed at CuraGen and described by Shimkets, et al., "Gene expression analysis by transcript profiling coupled to a gene database query" Nature Biotechnology 17:198-803 (1999). cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then digested with up to as many as 120 pairs of restriction enzymes and pairs of linker-adaptors specific for each pair of restriction enzymes were ligated to the appropriate end. The restriction digestion generates a mixture of unique cDNA gene fragments. Limited PCR amplification is performed with primers homologous to the linker adapter sequence where one primer is biotinylated and the other is fluorescently labeled. The doubly labeled material is isolated and the fluorescently labeled single strand is resolved by capillary gel electrophoresis. A computer algorithm compares the electropherograms from an experimental and control group for each of the restriction digestions. This and additional sequence-derived information is used to predict the identity of each differentially expressed gene fragment using a variety of genetic databases. The identity of the gene fragment is confirmed by additional, gene-specific competitive PCR or by isolation and sequencing of the gene fragment.
- 2. SeqCallingTM Technology: cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then sequenced using CuraGen's proprietary SeqCalling technology. Sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly

when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.

3. PathCallingTM Technology: The NOVX nucleic acid sequences are derived by laboratory screening of cDNA library by the two-hybrid approach. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, are sequenced. In silico prediction was based on sequences available in CuraGen Corporation's proprietary sequence databases or in the public human sequence databases, and provided either the full length DNA sequence, or some portion thereof.

5

10

15

20

25

30

The laboratory screening was performed using the methods summarized below: cDNA libraries were derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then directionally cloned into the appropriate two-hybrid vector (Gal4-activation domain (Gal4-AD) fusion). Such cDNA libraries as well as commercially available cDNA libraries from Clontech (Palo Alto, CA) were then transferred from E.coli into a CuraGen Corporation proprietary yeast strain (disclosed in U. S. Patents 6,057,101 and 6,083,693, incorporated herein by reference in their entireties).

Gal4-binding domain (Gal4-BD) fusions of a CuraGen Corportion proprietary library of human sequences was used to screen multiple Gal4-AD fusion cDNA libraries resulting in the selection of yeast hybrid diploids in each of which the Gal4-AD fusion contains an individual cDNA. Each sample was amplified using the polymerase chain reaction (PCR) using non-specific primers at the cDNA insert boundaries. Such PCR product was sequenced; sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly

represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.

Physical clone: the cDNA fragment derived by the screening procedure, covering the entire open reading frame is, as a recombinant DNA, cloned into pACT2 plasmid (Clontech) used to make the cDNA library. The recombinant plasmid is inserted into the host and selected by the yeast hybrid diploid generated during the screening procedure by the mating of both CuraGen Corporation proprietary yeast strains N106' and YULH (U. Ş. Patents 6,057,101 and 6,083,693).

5

10

15

20

25

- 4. RACE: Techniques based on the polymerase chain reaction such as rapid amplification of cDNA ends (RACE), were used to isolate or complete the predicted sequence of the cDNA of the invention. Usually multiple clones were sequenced from one or more human samples to derive the sequences for fragments. Various human tissue samples from different donors were used for the RACE reaction. The sequences derived from these procedures were included in the SeqCalling Assembly process described in preceding paragraphs.
- 5. Exon Linking: The NOVX target sequences identified in the present invention were subjected to the exon linking process to confirm the sequence. PCR primers were designed by starting at the most upstream sequence available, for the forward primer, and at the most downstream sequence available for the reverse primer. In each case, the sequence was examined, walking inward from the respective termini toward the coding sequence, until a suitable sequence that is either unique or highly selective was encountered, or, in the case of the reverse primer, until the stop codon was reached. Such primers were designed based on in silico predictions for the full length cDNA, part (one or more exons) of the DNA or protein sequence of the target sequence, or by translated homology of the predicted exons to closely related human sequences from other species. These primers were then employed in PCR amplification based on the following pool of human cDNAs: adrenal gland, bone marrow, brain - amygdala, brain - cerebellum, brain hippocampus, brain - substantia nigra, brain - thalamus, brain -whole, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, lymphoma - Raji, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thyroid, trachea, uterus. Usually the resulting amplicons were gel purified, cloned and sequenced to high redundancy. The PCR product derived from

exon linking was cloned into the pCR2.1 vector from Invitrogen. The resulting bacterial reclone has an insert covering the entire open reading frame cloned into the pCR2.1 vector. The resulting sequences from all clones were assembled with themselves, with other fragments in CuraGen Corporation's database and with public ESTs. Fragments and ESTs were included as components for an assembly when the extent of their identity with another component of the assembly was at least 95% over 50 bp. In addition, sequence traces were evaluated manually and edited for corrections if appropriate. These procedures provide the sequence reported herein.

6. Physical Clone: Exons were predicted by homology and the intron/exon boundaries were determined using standard genetic rules. Exons were further selected and refined by means of similarity determination using multiple BLAST (for example, tBlastN, BlastX, and BlastN) searches, and, in some instances, GeneScan and Grail. Expressed sequences from both public and proprietary databases were also added when available to further define and complete the gene sequence. The DNA sequence was then manually corrected for apparent inconsistencies thereby obtaining the sequences encoding the full-length protein.

10

15

25

30

The PCR product derived by exon linking, covering the entire open reading frame, was cloned into the pCR2.1 vector from Invitrogen to provide clones used for expression and screening purposes.

20 Example C: Quantitative expression analysis of clones in various cells and tissues

The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISM® 7700 or an ABI PRISM® 7900 HT Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 (containing cells and cell lines from normal tissues and cells related to inflammatory conditions), Panel 5D/5I (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoinflammatory diseases), Panel CNSD.01 (containing samples from normal and diseased brains) and CNS_neurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).

RNA integrity from all samples is controlled for quality by visual assessment of a garose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.

5

10

15

20

25

30

First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, β-actin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No. 4309169) and gene-specific primers according to the manufacturer's instructions.

In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript II (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to $10~\mu g$ of total RNA were performed in a volume of $20~\mu l$ and incubated for 60 minutes at 42° C. This reaction can be scaled up to $50~\mu g$ of total RNA in a final volume of $100~\mu l$. sscDNA samples are then normalized to reference nucleic acids as described previously, using 1X TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions.

Probes and primers were designed for each assay according to Applied Biosystems Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration = 250 nM, primer melting temperature (Tm) range = 58°-60°C, primer optimal Tm = 59°C, maximum primer difference = 2°C, probe does not have 5'G, probe Tm must be 10°C greater than primer Tm, amplicon size 75bp to 100bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, TX, USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5' and 3' ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900nM each, and probe, 200nM.

PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384-well PCR

plate (Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another gene-specific set multiplexed with the target probe). PCR reactions were set up using TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog No. 4313803) following manufacturer's instructions. Reverse transcription was performed at 48°C for 30 minutes followed by amplification/PCR cycles as follows: 95°C 10 min, then 40 cycles of 95°C for 15 seconds, 60°C for 1 minute. Results were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100.

When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using 1X TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95°C 10 min, then 40 cycles of 95°C for 15 seconds, 60°C for 1 minute. Results were analyzed and processed as described previously.

Panels 1, 1.1, 1.2, and 1.3D

10

15

20

25

30

The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord,

thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta. prostate, testis and adipose.

In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used: ca. = carcinoma, 5 * = established from metastasis, met = metastasis, s cell var = small cell variant, non-s = non-sm = non-small, squam = squamous, 10 pl. eff = pl effusion = pleural effusion. glio = glioma, astro = astrocytoma, and neuro = neuroblastoma.

General_screening_panel_v1.4, v1.5 and v1.6

15 The plates for Panels 1.4, 1.5, and 1.6 include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in Panels 1.4, 1.5, and 1.6 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, 20 prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panels 1.4, 1.5, and 1.6 are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panels 1.4, 1.5, and 1.6 are comprised of pools of samples derived 25 from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations are as described for Panels 1, 1.1, 1.2, and 1.3D.

Panels 2D, 2.2, 2.3 and 2.4

The plates for Panels 2D, 2.2, 2.3 and 2.4 generally include 2 control wells and 94" test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI) or from Ardais or Clinomics). The tissues are derived from human malignancies and in cases where indicated many malignant tissues have "matched margins" obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted "NAT" in the results below. The tumor tissue and the "matched margins" are evaluated by two independent pathologists (the surgical pathologists and again by a pathologist at NDRI/ CHTN/Ardais/Clinomics). Unmatched RNA samples from tissues without malignancy (normal tissues) were also obtained from Ardais or Clinomics. This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated "NAT", for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, CA), Research Genetics, and Invitrogen.

HASS Panel v 1.0

10

15

20

25

30

The HASS panel v 1.0 plates are comprised of 93 cDNA samples and two controls. Specifically, 81 of these samples are derived from cultured human cancer cell lines that had been subjected to serum starvation, acidosis and anoxia for different time periods as well as controls for these treatments, 3 samples of human primary cells, 9 samples of malignant brain cancer (4 medulloblastomas and 5 glioblastomas) and 2 controls. The human cancer cell lines are obtained from ATCC (American Type Culture Collection) and fall into the following tissue groups: breast cancer, prostate cancer, bladder carcinomas, pancreatic cancers and CNS cancer cell lines. These cancer cells are all cultured under standard recommended conditions. The treatments used (serum starvation, acidosis and anoxia) have been previously published in the scientific literature. The primary human cells were obtained from Clonetics (Walkersville, MD) and were grown in the media and conditions recommended by Clonetics. The malignant brain cancer samples are obtained as part of a

collaboration (Henry Ford Cancer Center) and are evaluated by a pathologist prior to CuraGen receiving the samples. RNA was prepared from these samples using the standard procedures. The genomic and chemistry control wells have been described previously.

ARDAIS Panel v 1.0

5

10

15

20

25

30

The plates for ARDAIS panel v 1.0 generally include 2 control wells and 22 test samples composed of RNA isolated from human tissue procured by surgeons working in close cooperation with Ardais Corporation. The tissues are derived from human lung malignancies (lung adenocarcinoma or lung squamous cell carcinoma) and in cases where indicated many malignant samples have "matched margins" obtained from noncancerous lung tissue just adjacent to the tumor. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated "NAT", for normal adjacent tissue) in the results below. The tumor tissue and the "matched margins" are evaluated by independent pathologists (the surgical pathologists and again by a pathologist at Ardais). Unmatched malignant and non-malignant RNA samples from lungs were also obtained from Ardais. Additional information from Ardais provides a gross histopathological assessment of tumor differentiation grade and stage. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical state of the patient.

Panel 3D, 3.1 and 3.2

The plates of Panel 3D, 3.1, and 3.2 are comprised of 94 cDNA samples and two control samples. Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines are generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancer cell lines. In addition, there are two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D, 3.1, 3.2, 1, 1.1., 1.2, 1.3D, 1.4, 1.5, and 1.6 are of the most common cell lines used in the scientific literature.

Panels 4D, 4R, and 4.1D

Panel 4 includes samples on a 96 well plate (2 control wells, 54 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, CA) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, CA). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, PA).

Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, MD) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5ng/ml, TNF alpha at approximately 5-10ng/ml, IFN gamma at approximately 20-50ng/ml, IL-4 at approximately 5-10ng/ml, IL-9 at approximately 5-10ng/ml, IL-13 at approximately 5-10ng/ml. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.

Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100μM non essential amino acids (Gibco/Life Technologies, Rockville, MD), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20ng/ml PMA and 1-2μg/ml ionomycin, IL-12 at 5-10ng/ml, IFN gamma at 20-50ng/ml and IL-18 at 5-10ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100μM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5μg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final

concentration of approximately $2x10^6$ cells/ml in DMEM 5% FCS (Hyclone), 100μ M non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol (5.5x10⁻⁵M) (Gibco), and 10mM Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1-7 days for RNA preparation.

5

10

15

20

25

30

Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions. Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, UT), 100μM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco), 50ng/ml GMCSF and 5ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100μM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), 10mM Hepes (Gibco) and 10% AB Human Serum or MCSF at approximately 50ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 100ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at 10μg/ml for 6 and 12-14 hours.

CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection. CD45RO beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 µM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco) and plated at 10⁶cells/ml onto Falcon 6 well tissue culture plates that had been coated overnight with $0.5\mu g/ml$ anti-CD28 (Pharmingen) and 3ug/ml anti-CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), $100\mu M$ non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with

plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100 μ M non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.

5

10

15

20

25

30

To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 10^6 cells/ml in DMEM 5% FCS (Hyclone), 100μ M non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10^{-5} M (Gibco), and 10mM Hepes (Gibco). To activate the cells, we used PWM at 5μ g/ml or anti-CD40 (Pharmingen) at approximately 10μ g/ml and IL-4 at 5-10ng/ml. Cells were harvested for RNA preparation at 24,48 and 72 hours.

To prepare the primary and secondary Th1/Th2 and Tr1 cells, six-well Falcon plates were coated overnight with $10\mu g/ml$ anti-CD28 (Pharmingen) and $2\mu g/ml$ OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, German Town, MD) were cultured at 105-106 cells/ml in DMEM 5% FCS (Hyclone), 100μM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), 10mM Hepes (Gibco) and IL-2 (4ng/ml). IL-12 (5ng/ml) and anti-IL4 (1 μ g/ml) were used to direct to Th1, while IL-4 (5ng/ml) and anti-IFN gamma (1 μ g/ml) were used to direct to Th2 and IL-10 at 5ng/ml was used to direct to Tr1. After 4-5 days, the activated Th1, Th2 and Tr1 lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), $100\mu M$ non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol $5.5 \times 10^{-5} M$ (Gibco), 10mM Hepes (Gibco) and IL-2 (1ng/ml). Following this, the activated Th1, Th2 and Tr1 lymphocytes were re-stimulated for 5 days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti-CD95L ($1\mu g/ml$) to prevent apoptosis. After 4-5 days, the Th1, Th2 and Tr1 lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Th1 and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Th1, Th2 and Tr1 after 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.

de 4

The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, — KU-812. EOL cells were further differentiated by culture in 0.1mM dbcAMP at 5x10⁵cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5x10⁵cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100µM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), 10mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10ng/ml and ionomycin at 1µg/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100µM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco). CCD1106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1ng/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5ng/ml IL-4, 5ng/ml IL-9, 5ng/ml IL-13 and 25ng/ml IFN gamma.

For these cell lines and blood cells, RNA was prepared by lysing approximately 10^7 cells/ml using Trizol (Gibco BRL). Briefly, 1/10 volume of bromochloropropane (Molecular Research Corporation) was added to the RNA sample, vortexed and after 10 minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15ml Falcon Tube. An equal volume of isopropanol was added and left at -20°C overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300 μ l of RNAse-free water and 35 μ l buffer (Promega) 5 μ l DTT, 7 μ l RNAsin and 8 μ l DNAse were added. The tube was incubated at 37°C for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with 1/10 volume of 3M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at -80°C.

AI_comprehensive panel v1.0

5

10

15

20

25

30

The plates for AI_comprehensive panel_v1.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, MD). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.

Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital.

Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.

Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.

Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.

Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-1anti-trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 35-80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.

In the labels employed to identify tissues in the AI_comprehensive panel_v1.0 panel, the following abbreviations are used:

AI = Autoimmunity

Syn = Synovial

5

10

15

20

25

Normal = No apparent disease

Rep22 /Rep20 = individual patients

RA = Rheumatoid arthritis

Backus = From Backus Hospital

OA = Osteoarthritis

(SS)(BA)(MF) = Individual patients

Adj = Adjacent tissue

Match control = adjacent tissues

-M = Male

-F = Female

COPD = Chronic obstructive pulmonary disease

AI.05 chondrosarcoma

10

15

20

25

30

5

The AI.05 chondrosarcoma plates are comprised of SW1353 cells that had been subjected to serum starvation, and treatment with cytokines that are known to induce MMP (1, 3 and 13) synthesis (eg. IL1beta). These treatments include: IL-1 β (10 ng/ml), IL-1 β + TNF- α (50 ng/ml), IL-1 β + Oncostatin (50 ng/ml) and PMA (100 ng/ml). The SW1353 cells were obtained from ATCC (American Type Culture Collection) and were all cultured under standard recommended conditions. The SW1353 cells were plated at 3 x10⁵ cells/ml (in DMEM medium-10 % FBS) in 6-well plate. The treatment was done in triplicate, for 6 and 18 h. The supernatants were collected for analysis of MMP 1, 3 and 13 production and for RNA extraction. RNA was prepared from these samples using the standard procedures.

Panels 5D and 51

The plates for Panel 5D and 5I include two control wells and a variety of cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.

In the Gestational Diabetes study subjects are young (18 - 40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<1 cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of

interest include uterine wall (smooth muscle), visceral ad pose, skeletar muscle (rectus) and subcutaneous adipose. Patient descriptions are as follows:

Patient 2: Diabetic Hispanic, overweight, not on insulin

Patient 7-9: Nondiabetic Caucasian and obese (BMI>30)

Patient 10: Diabetic Hispanic, overweight, on insulin

Patient 11: Nondiabetic African American and overweight

Patient 12: Diabetic Hispanic on insulin

5

10

15

20

25

30

Adiocyte differentiation was induced in donor progenitor cells obtained from Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stem cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr 2 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows:

Donor 2 and 3 U: Mesenchymal Stem cells, Undifferentiated Adipose

Donor 2 and 3 AM: Adipose, AdiposeMidway Differentiated

Donor 2 and 3 AD: Adipose, Adipose Differentiated

Human cell lines were generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. All samples were processed at CuraGen to produce single stranded cDNA.

Panel 5I contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 5I.

In the labels employed to identify tissues in the 5D and 5I panels, the following abbreviations are used:

GO Adipose = Greater Omentum Adipose

SK = Skeletal Muscle

UT = Uterus

PL = Placenta

5

10

15

20

25

AD = Adipose Differentiated

AM = Adipose Midway Differentiated

U = Undifferentiated Stem Cells

Panel CNSD.01

The plates for Panel CNSD.01 include two control wells and 94 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at -80°C in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.

Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supernuclear Palsy, Depression, and "Normal controls". Within each of these brains, the following regions are represented: cingulate gyrus, temporal pole, globus palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; e.g., Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.

In the labels employed to identify tissues in the CNS panel, the following abbreviations are used:

PSP = Progressive supranuclear palsy

Sub Nigra = Substantia nigra

Glob Palladus= Globus palladus

Temp Pole = Temporal pole

Cing Gyr = Cingulate gyrus

BA 4 = Brodman Area 4

5

10

15

20

25

30

Panel CNS_Neurodegeneration_V1.0

The plates for Panel CNS_Neurodegeneration_V1.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at -80°C in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.

Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from "Normal controls" who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0 = no evidence of plaques, 3 = severe AD senile plaque load). Within each of these brains, the following regions are represented: hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area 7), and occipital cortex (Brodman area 17). These regions were chosen to encompass all levels of neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital cortex is spared in AD and therefore acts as a "control" region within AD patients. Not all brain regions are represented in all cases.

In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used:

AD = Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy

Control = Control brains; patient not demented, showing no neuropathology

Control (Path) = Control brains; pateint not demented but showing sever AD-like pathology

SupTemporal Ctx = Superior Temporal Cortex
Inf Temporal Ctx = Inferior Temporal Cortex

A. CG106764-01: RHO/RAC-INTERACTING CITRON KINASE.

Expression of gene CG106764-01 was assessed using the primer-probe set Ag2100, described in Table AA. Results of the RTQ-PCR runs are shown in Tables AB, AC, AD, AE, AF, AG, AH and AI.

Table AA. Probe Name Ag2100

10

Primers	Sequence	Length	Start Position	SEQ ID No
Forward	5'-agatccctggaacagaggatt-3'	21	2446	249
Probe	TET-5'-tgtctgaagccaataaacttgcagca -3'-TAMRA	26	2474	250
Reverse	5'-ccttcatgttcctttgggtaa-3'	21	2513	251

Table AB. AI.05 chondrosarcoma

Tissue Name	Rel. Exp.(%) g2100, Run 306913849	Tissue Name	Rel. Exp.(%) Ag2100, Run 306913849
138353_PMA (18hrs)	9.3	138346_IL-1beta + Oncostatin M (6hrs)	64.2
138352_IL-1beta + Oncostatin M (18hrs)	5.5	138345_IL-1beta+TNFa (6hrs)	44.8
138351_IL-1beta+TNFa (18hrs)	12.5	138344_IL-1beta (6hrs)	25.5
138350_IL-1beta (18hrs)	12.5	138349_Untreated-serum starved (6hrs)	100.0
138354_Untreated-complete medium (18hrs)	13.2	138348_Untreated-complete medium (6hrs)	41.2
138347_PMA (6hrs)	34.9		

Table AC. AI comprehensive panel v1.0

Tissue Name	Rel. Exp.(%) Ag2100, Run 211059880	Rel. Exp.(%) Ag2100, Run 212328504	issue Name	Rel. Exp.(%) Ag2100, Run 211059880	Rel. Exp.(%) Ag2100, Run 212328504
110967 COPD-F	0.5	0.8	112427 Match Control Psoriasis-F	2.9	1.8
110980 COPD-F	1.5	1.2	112418 Psoriasis-M	0.8	0.8
110968 COPD-M	0.4	0.6	112723 Match Control Psoriasis-M	6.1	7.4
110977 COPD-M	1.5	1.9	112419 Psoriasis-M	1.0	1.3
110989 Emphysema-F	4.2	6.0	112424 Match Control Psoriasis-M	0.4	1.2
110992 Emphysema-F	2.8	2.9	112420 Psoriasis-M	1.8	2.4
110993 Emphysema-F	0.9	0.8	112425 Match Control Psoriasis-M	2.2	2.7
110994 Emphysema-F	0.7	0.4	104689 (MF) OA Bone-Backus	12.1	13.2
110995 Етрhysema-F	2.0	5.4	104690 (MF) Adj "Normal" Bone-Backus	5.4	4.2
110996 Emphysema-F	2.2	2.4	104691 (MF) OA Synovium-Backus	43.2	35.6
110997 Asthma-M	1.9	3.1	104692 (BA) OA Cartilage-Backus	0.9	0.4
111001 Asthma-F	1.4	2.7	104694 (BA) OA Bone-Backus	16.8	16.7
111002 Asthma-F	1.0	1.0	104695 (BA) Adj "Normal" Bone-Backus	6.5	6.1
111003 Atopic Asthma-F	4.0	2.2	104696 (ВА) ОА Synovium-Backus	24.0	24.1
111004 Atopic Asthma-F	16.6	17.0	104700 (SS) OA Bone-Backus	12.2	35.1
111005 Atopic Asthma-F	7.2	5.5	104701 (SS) Adj "Normal" Bone-Backus	7.9	9.5
l I 1006 Atopic Asthma-F	0.9		104702 (SS) OA Synovium-Backus	8.2	7.9
111417 Allergy-M			117093 OA Cartilage Rep7	2.0	2.3
12347 Allergy-M	0.0	0.1	112672 OA Bone5	1.9	0.8
12349 Normal Lung-F	0.0		112673 OA Synovium5	0.3	1.2

112357 Normal	1		112674 OA Synoviäl		T and all and a de
Lung-F	6.1	6.0	112674 OA Syñovial Fluid cells5	0.5	0.4
l 12354 Normal Lung-M	1.5	2.3	117100 OA Cartilage Rep14	0.4	0.3
112374 Crohns-F	2.9	5.2	112756 OA Bone9	100.0	100.0
112389 Match Control Crohns-F	9.0	6.8	112757 OA Synovium9	0.5	0.2
112375 Crohns-F	2.5	3.8	112758 OA Synovial Fluid Cells9	0.8	1.5
112732 Match Control Crohns-F	3.8	5.4	117125 RA Cartilage Rep2	1.0	0.6
112725 Crohns-M	0.1	0.7	113492 Bone2 RA	2.8	3.6
l 12387 Match Control Crohns-M	1.0	1.4	113493 Synovium2 RA	1.7	0.7
112378 Crohns-M	0.0	0.0	113494 Syn Fluid Cells RA	0.9	2.1
112390 Match Control Crohns-M	2.5	1.8	113499 Cartilage4 RA	2.1	1.8
112726 Crohns-M	3.8	5.9	113500 Bone4 RA	1.8	2.5
1 12731 Match Control Crohns-M	3.6	6.7	113501 Synovium4 RA	2.1	2.3
l 12380 Ulcer Col-F	4.9	4.9	113502 Syn Fluid Cells4 RA	1.0	0.8
l 12734 Match Control Ulcer Col-F	12.6	12.0	113495 Cartilage3 RA	2.5	2.6
l 12384 Ulcer Col-F	6.6	10.2	113496 Bone3 RA	2.0	2.1
l 12737 Match Control Ulcer Col-F	4.2	6.1	113497 Synovium3 RA	1.4	1.4
l 12386 Ulcer Col-F	0.5	1.2	113498 Syn Fluid Cells3 RA	2.9	3.2
12738 Match Control Ulcer Col-F	7.5	7.9	117106 Normal Cartilage Rep20	0.1	0.7
12381 Ulcer Col-M	0.1	0.1	113663 Bone3 Normal	0.3	0.1
12735 Match Control Ulcer Col-M	2.9	2.3	113664 Synovium3 Normal	0.0	0.0
12382 Ulcer Col-M	6.7	8.4	113665 Syn Fluid Cells3 Normal	0.1	0.2
12394 Match Control Ulcer Col-M	0.5	0.5	117107 Normal Cartilage Rep22	0.9	0.3
12383 Ulcer Col-M	12.1	14.6	113667 Bone4 Normal	0.4	0.7

112736 Match Control Ulcer Col-M	3.5	5.3	113668 Synovium4 Normal	1.0	1.1
112423 Psoriasis-F	1.4	11.1	113669 Syn Fluid Cells4 Normal	1.0	0.7

Table AD. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag2100, Run 207929343	issue Name	Rel. Exp.(%) Ag2100, Run 207929343
AD I Hippo	5.2	Control (Path) 3 Temporal Ctx	8.5
AD 2 Hippo	9.3	Control (Path) 4 Temporal Ctx	55.5
AD 3 Hippo	6.7	AD 1 Occipital Ctx	31.6
AD 4 Hippo	7.2	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	100.0	AD 3 Occipital Ctx	8.4
AD 6 Hippo	16.5	AD 4 Occipital Ctx	28.7
Control 2 Hippo	17.7	AD 5 Occipital Ctx	52.5
Control 4 Hippo	3.4	AD 6 Occipital Ctx	22.8
Control (Path) 3 Hippo	4.4	Control 1 Occipital Ctx	3.9
AD 1 Temporal Ctx	15.7	Control 2 Occipital Ctx	64.6
AD 2 Temporal Ctx	26.4	Control 3 Occipital Ctx	40.6
AD 3 Temporal Ctx	12.3	Control 4 Occipital Ctx	6.4
AD 4 Temporal Ctx	24.3	Control (Path) 1 Occipital Ctx	77.9
AD 5 Inf Temporal Ctx	65.5	Control (Path) 2 Occipital Ctx	28.5
AD 5 Sup Temporal Ctx	20.9	Control (Path) 3 Occipital Ctx	1.5
AD 6 Inf Temporal Ctx	44.1	Control (Path) 4 Occipital Ctx	40.9
AD 6 Sup Temporal Ctx	59.0	Control 1 Parietal Ctx	7.8
Control 1 Temporal Ctx	9.5	Control 2 Parietal Ctx	34.4
Control 2 Temporal Ctx	34.6	Control 3 Parietal Ctx	15.8
Control 3 Temporal Ctx	0.0	Control (Path) I Parietal Ctx	68.8
Control 3 Temporal Ctx	10.4	Control (Path) 2 Parietal Ctx	32.3
Control (Path) 1 Temporal Ctx	68.8	Control (Path) 3 Parietal Ctx	4.9
Control (Path) 2 Temporal Ctx	49.7	Control (Path) 4 Parietal Ctx	58.6

Table AE. Panel 1.3D

Tissue Name	Rel. Exp. %) Ag2100, Run 152517508	Tissue Name	Rel. Exp.(%) Ag2100, Run 152517508
Liver adenocarcinoma	11.7	Kidney (fetal)	1.8
Pancreas	0.0	Renal ca. 786-0	7.1
Pancreatic ca. CAPAN 2	3.2	Renal ca. A498	3.7
Adrenal gland	1.4	Renal ca. RXF 393	3.1
Thyroid	0.1	Renal ca. ACHN	4.4
Salivary gland	0.1	Renal ca. UO-31	6.3
Pituitary gland	2.1	Renal ca. TK-10	3.2
Brain (fetal)	2.1	Liver	0.0
Brain (whole)	24.7	Liver (fetal)	3.8
Brain (amygdala)	11.2	Liver ca. (hepatoblast) HepG2	3.2
Brain (cerebellum)	2.7	Lung	0.3
Brain (hippocampus)	36.3	Lung (fetal)	0.9
Brain (substantia nigra)	1.5	Lung ca. (small cell) LX-1	6.6
Brain (thalamus)	30.4	Lung ca. (small cell) NCI-H69	8.5
Cerebral Cortex	100.0	Lung ca. (s.cell var.) SHP-77	7.5
Spinal cord	2.5	Lung ca. (large cell)NCI-H460	0.0
glio/astro U87-MG	6.4	Lung ca. (non-sm. cell) A549	0.2
glio/astro U-118-MG	33.7	Lung ca. (non-s.cell) NCI-H23	10.4
astrocytoma SW1783	5.9	Lung ca. (non-s.cell) HOP-62	1.4
neuro*; met SK-N-AS	14.5	Lung ca. (non-s.cl) NCI-H522	5.3
astrocytoma SF-539	7.4	Lung ca. (squam.) SW 900	3.2
astrocytoma SNB-75	5.8	Lung ca. (squam.) NCI-H596	7.2
glioma SNB-19	1.0	Mammary gland	0.2
glioma·U251	2.4	Breast ca.* (pl.ef) MCF-7	5.6
glioma SF-295	0.9	Breast ca.* (pl.ef) MDA-MB-231	14.5
Heart (fetal)	0.4	Breast ca.* (pl.ef) T47D	2.4
Heart	0.1	Breast ca. BT-549	6.8
Skeletal muscle (fetal)	3.4	Breast ca. MDA-N	14.0
Skeletal muscle	0.1	Ovary	2.2
Bone marrow	5.4		2.5
Chymus	2.1	Ovarian ca. OVCAR-4	0.8
Spleen	0.6	Ovarian ca. OVCAR-5	2.7
ymph node	0.4	Ovarian ca. OVCAR-8	3.2
Colorectal	1.8		2.0
Stomach	1.0	The same of the sa	7.4
Small intestine	1.6		0.0
Colon ca. SW480	13.1		0.2

Colon ca.* SW620(SW480 met)	4.5	Prostate	0.2
Colon ca. HT29	4.1	Prostate ca.* (bone met)PC-3	2.0
Colon ca. HCT-116	5.0	Testis	4.0
Colon ca. CaCo-2	5.9	Melanoma Hs688(A).T	0.7
Colon ca. tissue(ODO3866)	2.8	Melanoma* (met) Hs688(B).T	0.3
Colon ca. HCC-2998	3.7	Melanoma UACC-62	0.5
Gastric ca.* (liver met) NCI-N87	2.3	Melanoma M14	7.2
Bladder	0.9	Melanoma LOX IMVI	2.8
Trachea	0.7	Melanoma* (met) SK-MEL-5	5.8
Kidney	0.7	Adipose	0.2

Table AF. Panel 2.2

Tissue Name	Rel. Ep.(%) Ag2100, Run 174166901	Tissue Name	Rel. Exp.(%) Ag2100, Run 174166901
Normal Colon	6.3	Kidney Margin (OD04348)	30.4
Colon cancer (OD06064)	13.4	Kidney malignant cancer (OD06204B)	3.6
Colon Margin (OD06064)	9.0	Kidney normal adjacent tissue (OD06204E)	10.5
Colon cancer (OD06159)	4.5	Kidney Cancer (OD04450-01)	2.4
Colon Margin (OD06159)	5.9	Kidney Margin (OD04450-03)	13.3
Colon cancer (OD06297-04)	3.8	Kidney Cancer 8120613	6.7
Colon Margin (OD06297-05)	9.9	Kidney Margin 8120614	1.2
CC Gr.2 ascend colon (ODO3921)	4.4	Kidney Cancer 9010320	1.7
CC Margin (ODO3921)	2.8	Kidney Margin 9010321	4.5
Colon cancer metastasis (OD06104)	1.7	Kidney Cancer 8120607	0.5
Lung Margin (OD06104)	3.1	Kidney Margin 8120608	1.7
Colon mets to lung (OD04451-01)	9.6	Normal Uterus	1.1
Lung Margin (OD04451-02)	3.2	Uterine Cancer 064011	1.5
Normal Prostate	1.2	Normal Thyroid	0.0
Prostate Cancer (OD04410)	0.0	Thyroid Cancer 064010	0.6
Prostate Margin (OD04410)	0.7	Thyroid Cancer A302152	5.3
Normal Ovary	2.8	Thyroid Margin A302153	0.0
Ovarian cancer (OD06283-03)	11.7	Normal Breast	3.0
Ovarian Margin (OD06283-07)	3.0	Breast Cancer (OD04566)	8.1
Ovarian Cancer 064008	1.1	Breast Cancer 1024	2.9
Ovarian cancer (OD06145)	0.9	Breast Cancer (OD04590-01)	14.8
Ovarian Margin (OD06145)	0.0	Breast Cancer Mets (OD04590-03)	3.2

Ovarian cancer (OD06455-03)	15.8	Breast Cancer Metastasis (OD04655-05)	5.4
Ovarian Margin (OD06455-07)	1.8	Breast Cancer 064006	3.1
Normal Lung	1.2	Breast Cancer 9100266	2.6
Invasive poor diff. lung adeno (ODO4945-01	8.4	Breast Margin 9100265	2.3
Lung Margin (ODO4945-03)	1.2	Breast Cancer A209073	1.8
Lung Malignant Cancer (OD03126)	5.0	Breast Margin A2090734	2.5
Lung Margin (OD03126)	0.6	Breast cancer (OD06083)	17.1
Lung Cancer (OD05014A)	10.2	Breast cancer node metastasis (OD06083)	14.7
Lung Margin (OD05014B)	9.0	Normal Liver	0.4
Lung cancer (OD06081)	10.1	Liver Cancer 1026	0.0
Lung Margin (OD06081)	4.0	Liver Cancer 1025	1.8
Lung Cancer (OD04237-01)	4.1	Liver Cancer 6004-T	11.1
Lung Margin (OD04237-02)	2.0	Liver Tissue 6004-N	2.5
Ocular Melanoma Metastasis	0.9	Liver Cancer 6005-T	1.6
Ocular Melanoma Margin (Liver)	0.4	Liver Tissue 6005-N	0.0
Melanoma Metastasis	10.4	Liver Cancer 064003	0.7
Melanoma Margin (Lung)	2.0	Normal Bladder	2.9
Vormal Kidney	5.0	Bladder Cancer 1023	1.5
Kidney Ca, Nuclear grade 2 OD04338)	15.4	Bladder Cancer A302173	17.8
idney Margin (OD04338)	5.0	Normal Stomach	10.4
Gidney Ca Nuclear grade 1/2 OD04339)	100.0	Gastric Cancer 9060397	1.1
idney Margin (OD04339)	9.3	Stomach Margin 9060396	0.7
idney Ca, Clear cell type DD04340)	14.0	Gastric Cancer 9060395	2.8
idney Margin (OD04340)	11.3	Stomach Margin 9060394	2.8
idney Ca, Nuclear grade 3 DD04348)	9.0	Gastric Cancer 064005	6.0

Table AG. Panel 3D

Tissue Name	Rel. Exp (%) Ag2100, Run 164796104	Tissue Name	Rel. Exp.(%) Ag2100, Run 164796104
Daoy- Medulloblastoma	7.3	Ca Ski- Cervical epidermoid carcinoma (metastasis)	21.0
TE671- Medulloblastoma	3.8	ES-2- Ovarian clear cell carcinoma	11.7

D283 Med- Medulloblastoma	15.7	Ramos-Stimulated with PMA/ionomycin 6h	10.8
PFSK-1- Primitive Neuroectodermal	11.2	Ramos- Stimulated with PMA/ionomycin 14h	6.2
XF-498- CNS	21.2	MEG-01- Chronic myelogenous leukemia (megokaryoblast)	5.8
SNB-78- Glioma	11.3	Raji- Burkitt's lymphoma	6.7
SF-268- Glioblastoma	7.6	Daudi-Burkitt's lymphoma	14.8
T98G- Glioblastoma	12.0	U266- B-cell plasmacytoma	5.1
SK-N-SH- Neuroblastoma (metastasis)	5.6	CA46- Burkitt's lymphoma	5.0
SF-295- Glioblastoma	12.4	RL- non-Hodgkin's B-cell lymphoma	3.8
Cerebellum	16.2	JM1- pre-B-cell lymphoma	11.5
Cerebellum	3.6	Jurkat- T cell leukemia	12.5
NCI-H292- Mucoepidermoid lung carcinoma	14.0	TF-1- Erythroleukemia	9.9
DMS-114- Small cell lung cancer	10.4	HUT 78- T-cell lymphoma	14.7
DMS-79- Small cell lung cancer	100.0	U937- Histiocytic lymphoma	8.1
NCI-H146- Small cell lung cancer	14.3	KU-812- Myelogenous leukemia	17.7
NCI-H526- Small cell lung cancer	19.8	769-P- Clear cell renal carcinoma	6.3
NCI-N417- Small cell lung ancer	5.8	Caki-2- Clear cell renal carcinoma	9.5
NCI-H82- Small cell lung cancer	10.2	SW 839- Clear cell renal carcinoma	5.2
NCI-H157- Squamous cell lung ancer (metastasis)	13.8	G401- Wilms' tumor	6.3
NCI-H1155- Large cell lung ancer	36.1	Hs766T- Pancreatic carcinoma (LN metastasis)	15.7
ICI-H1299- Large cell lung ancer	22.7	CAPAN-1- Pancreatic	8.6
ICI-H727- Lung carcinoid	14.4	SU86 86- Pancreatic carcinome	14.1
0.00	25.9	BxPC-3- Pancreatic adenocarcinoma	9.4
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAM	11.0 .	HPAC- Pancreatic adenocarcinoma	14.5
olo-205- Colon cancer	12.7		2.6
M12- Colon cancer	17.2	CFPAC-1- Pancreatic ductal	38.7
M20L2- Colon cancer	7.0	PANC-1- Pancreatic enithelioid	19.5
	19.5	T24- Bladder carcinma (transitional	9.0
	0.6	5637- Bladder carcinoma	10.5
W1116- Colon adenocarcinoma	7.7		1.8

LS 174T- Colon adenocarcinoma	<u> </u>	UM-UC-3- Bladder carcinna (transitional cell)	13.3
SW-948- Colon adenocarcinoma	.t	A204- Rhabdomyosarcoma	15.2
SW-480- Colon adenocarcinoma	7.6	HT-1080- Fibrosarcoma	11.9
NCI-SNU-5- Gastric carcinoma	14.9	MG-63- Osteosarcoma	7.3
KATO III- Gastric carcinoma	18.8	SK-LMS-1- Leiomyosarcoma (vulva)	48.0
NCI-SNU-16- Gastric carcinoma	12.6	SJRH30- Rhabdomyosarcoma (met to bone marrow)	10.2
	12.3	A431- Epidermoid carcinoma	12.2
RF-1- Gastric adenocarcinoma	5.3	WM266-4- Melanoma	21.9
RF-48- Gastric adenocarcinoma	7.6	DU 145- Prostate carcinoma (brain metastasis)	0.2
MKN-45- Gastric carcinoma	11.7	MDA-MB-468- Breast adenocarcinoma	5.6
NCI-N87- Gastric carcinoma	9.3	SCC-4- Squamous cell carcinoma of tongue	0.3
OVCAR-5- Ovarian carcinoma	3.0	SCC-9- Squamous cell carcinoma of tongue	0.3
	4.5	SCC-15- Squamous cell carcinoma of tongue	0.2
IelaS3- Cervical denocarcinoma	9.0	CAL 27- Squamous cell carcinoma of tongue	19.9

Table AH. Panel 4D

Tissue Name	Rel. Exp (%) Ag2100, Run 152800279	Tissue Name	Rel. Exp.(%) Ag2100, Run 152800279
Secondary Th1 act	15.4	HUVEC IL-1beta	12.2
Secondary Th2 act	11.9	HUVEC IFN gamma	16.6
Secondary Trl act	15.6	HUVEC TNF alpha + IFN gamma	11.8
Secondary Th1 rest	4.9	HUVEC TNF alpha + IL4	11.4
Secondary Th2 rest	3.3	HUVEC IL-11	8.2
Secondary Trl rest	6.0	Lung Microvascular EC none	7.3
Primary Th1 act	13.6	Lung Microvascular EC TNFalpha + IL-1beta	6.3
Primary Th2 act	12.0	Microvascular Dermal EC none	23.3
Primary Trl act	22.2	Microsvasular Dermal EC TNFalpha + IL-1beta	10.5
Primary Th1 rest	100.0	Bronchial epithelium TNFalpha +	0.6
Primary Th2 rest	37.9	Small airway epithelium none	1.6

		- hell a call two littles	THE RESERVE
Primary Tr1 rest	29.3	Small airwäy epithelium TNFalph + IL-1beta	a 7.4
CD45RA CD4 lymphocyte act	13.6	Coronery artery SMC rest	4.4
CD45RO CD4 lymphocyte act	15.4	Coronery artery SMC TNFalpha + IL-1beta	2.0
CD8 lymphocyte act	10.6	Astrocytes rest	1.3
Secondary CD8 lymphocyte rest	7.9	Astrocytes TNFalpha + IL-1beta	0.5
Secondary CD8 lymphocyte act	17.3	KU-812 (Basophil) rest	22.4
CD4 lymphocyte none	0.5	KU-812 (Basophil) PMA/ionomycin	28.5
2ry Th1/Th2/Tr1_anti-CD95 CH11	17.1	CCD1106 (Keratinocytes) none	14.3
LAK cells rest	3.6	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	18.4
LAK cells IL-2	16.8	Liver cirrhosis	0.5
LAK cells IL-2+IL-12	8.4	Lupus kidney	3.3
LAK cells IL-2+IFN gamma	16.4	NCI-H292 none	29.5
LAK cells IL-2+ IL-18	16.8	NCI-H292 IL-4	27.7
LAK cells PMA/ionomycin	0.6	NCI-H292 IL-9	32.3
NK Cells IL-2 rest	15.3	NCI-H292 IL-13	13.4
Two Way MLR 3 day	1.8	NCI-H292 IFN gamma	11.0
Two Way MLR 5 day	6.1	HPAEC none	8.5
Two Way MLR 7 day	10.1	HPAEC TNF alpha + IL-1 beta	7.7
PBMC rest	0.1	Lung fibroblast none	6.3
PBMC PWM	25.5	Lung fibroblast TNF alpha + IL-1 beta	9.0
PBMC PHA-L	24.0	Lung fibroblast IL-4	3.7
Ramos (B cell) none	17.7	Lung fibroblast IL-9	5.0
Ramos (B cell) ionomycin	92.0	Lung fibroblast IL-13	1.7
B lymphocytes PWM	48.6	Lung fibroblast IFN gamma	3.4
B lymphocytes CD40L and IL-4	16.4	Dermal fibroblast CCD1070 rest	57.4
EOL-1 dbcAMP	10.5	Dermal fibroblast CCD1070 TNF alpha	79.0
EOL-1 dbcAMP PMA/ionomycin	7.0	Dermal fibroblast CCD1070 IL-1 beta	21.8
Dendritic cells none	0.5	Dermal fibroblast IFN gamma	22.2
Dendritic cells LPS	0.0	Dermal fibroblast IL-4	45.7
Dendritic cells anti-CD40	0.0	IBD Colitis 2	0.9
Monocytes rest	0.2	IBD Crohn's	1.0
Monocytes LPS	0.0	Colon	3.7
Macrophages rest	4.4	Lung	1.5
Macrophages LPS	0.6	Thymus	13.0
HUVEC none	24.7	Kidney	31.2
HUVEC starved	43.5		***************************************

Table AI. Panel CNS 1

Tissue Name	Rel Exp.(%) Ag2100, Run 171649357	Tissue Name	Rel. Exp.(%) Ag2100, Run 171649357
BA4 Control	23.8	BA17 PSP	35.4
BA4 Control2	19.1	BA17 PSP2	18.3
BA4 Alzheimer's2	7.3	Sub Nigra Control	11.6
BA4 Parkinson's	43.8	Sub Nigra Control2	5.0
BA4 Parkinson's2	60.7	Sub Nigra Alzheimer's2	4.6
BA4 Huntington's	23.3	Sub Nigra Parkinson's2	11.8
BA4 Huntington's2	14.7	Sub Nigra Huntington's	16.0
BA4 PSP	13.8	Sub Nigra Huntington's2	8.8
BA4 PSP2	26.2	Sub Nigra PSP2	1.7
BA4 Depression	15.4	Sub Nigra Depression	2.7
BA4 Depression2	17.0	Sub Nigra Depression2	8.0
BA7 Control	36.6	Glob Palladus Control	8.4
BA7 Control2	17.4	Glob Palladus Control2	10.8
BA7 Alzheimer's2	11.3	Glob Palladus Alzheimer's	1.8
BA7 Parkinson's	21.9	Glob Palladus Alzheimer's2	8.3
BA7 Parkinson's2	36.1	Glob Palladus Parkinson's	51.1
BA7 Huntington's	56.3	Glob Palladus Parkinson's2	12.9
BA7 Huntington's2	45.1	Glob Palladus PSP	9.3
BA7 PSP	44.4	Glob Palladus PSP2	9.9
BA7 PSP2	17.6	Glob Palladus Depression	6.0
BA7 Depression	8.5	Temp Pole Control	9.8
BA9 Control	31.9	Temp Pole Control2	21.5
BA9 Control2	34.4	Temp Pole Alzheimer's	6.6
3A9 Alzheimer's	8.0	Temp Pole Alzheimer's2	8.1
3A9 Alzheimer's2	20.0	Temp Pole Parkinson's	33.0
BA9 Parkinson's	40.6	Temp Pole Parkinson's2	24.8
BA9 Parkinson's2	31.4	Temp Pole Huntington's	33.2
A9 Huntington's	41.5	Temp Pole PSP	8.8
A9 Huntington's2	21.8	Temp Pole PSP2	6.0
A9 PSP	17.8	Temp Pole Depression2	17.0
A9 PSP2	8.2	Cing Gyr Control	23.3
A9 Depression	10.5	Cing Gyr Control2	17.8
A9 Depression2	16.2	Cing Gyr Alzheimer's	7.3
A17 Control	58.2	Cing Gyr Alzheimer's2	10.4
A17 Control2	41.8	Cing Gyr Parkinson's	13.4
A17 Alzheimer's2	27.0	Cing Gyr Parkinson's2	17.0
A17 Parkinson's	58.6	Cing Gyr Huntington's	28.3

BA17 Parkinson's2	69.3	Cing Gyr Huntington's 2	110.6
BA17 Huntington's	44.4	Cing Gyr PSP	7.2
BA17 Huntington's2	31.9	Cing Gyr PSP2	4.0
BA17 Depression	13.6	Cing Gyr Depression	6.9
BA17 Depression2	100.0	Cing Gyr Depression2	10.4

AI.05 chondrosarcoma Summary: Ag2100 Highest expression of this gene is detected in untreated serum starved chondrosarcoma cell line (SW1353) (CT=27). Interestingly, expression of this gene appears to be somewhat down regulated upon IL-1 treatment, a potent activator of pro-inflammatory cytokines and matrix metalloproteinases which participate in the destruction of cartilage observed in Osteoarthritis (OA). Modulation of the expression of this transcript in chondrocytes by either small molecules or antisense might be important for preventing the degeneration of cartilage observed in OA

AI_comprehensive panel_v1.0 Summary: Ag2100 Highest expression of this gene is detected in osteoarthritis (OA) bone (CTs=27-28). This gene is highly expressed in bone isolated from 5 different osteoarthritic (OA) patients, synovium in 3 out of 5 OA patients, but not in cartilege from OA patients nor in any tissues from rheumatoid arthritis (RA) patients or control samples. Thus, small molecule therapeutics designed against the protein encoded for by this gene could reduce or inhibit inflammation. Anti-sense therapeutics that would block the translation of the transcript and protein production could also inhibit inflammatory processes. These types of therapeutics could be important in the treatment of diseases such as osteoarthritis

10

15

20

25

30

CNS_neurodegeneration_v1.0 Summary: Ag2100 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.3D for a discussion of this gene in treatment of central nervous system disorders.

Panel 1.3D Summary: Ag2100 Expression of this gene is highest in cerebral cortex (CT = 26.3). This gene is expressed at moderate levels in all the regions of the CNS including amygdala, cerebellum, hippocampus, substantia nigra, thalamus, spinal cord, and fetal brain. This gene encodes a protein with homology to citron-kinase. Citron-kinase (Citron-K) has been proposed by in vitro studies to be a crucial effector of Rho in regulation of cytokinesis. Citron-K is essential for cytokinesis in vivo in specific neuronal

the CNS (Di Cunto et al., 2000, Neuron 28:115-127, PMID: 11086988). General inhibitors of the RHO/RAC-INTERACTING CITRON KINASE family disrupt endothelial tight junctions, suggesting that specific modulators of this brain-preferential family member could be useful in delivery of therapeutics across the blood brain barrier. These general inhibitors also influence intracellular calcium flux, which is a central component of many important neuronal processes, such as apoptosis, neurotransmitter release and signal transduction (Jezior et al., 2001, Br. J. Pharmacol. 134:78-87, PMID: 11522599; Walsh et al., 2001, Gastroenterology 121:566-579, PMID: 11522741). Thus, modulators of the function of the protein encoded by this gene may prove useful in the treatment of neurodegenerative disorders involving apoptosis, such as spinal muscular atrophy, Alzheimer's disease, Huntington's disease, Parkinson's disease, and others. Diseases involving neurotransmitters or signal transduction, such as schizophrenia, mania, stroke, epilepsy and depression may also benefit from agents that modulate the function of the this gene product.

5

10

15

20

25

30

This gene also shows moderate to low expression in several metabolic tissues including adrenal gland, pituitary gland, gastrointestinal tract, fetal heart, fetal skeletal muscle and fetal liver. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

Interestingly, expression of this gene is higher in fetal tissues (CTs=31) as compared to the corresponding adult liver, and skeletal muscle (CTs=37-40). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver and skeletal muscle. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance liver and muscle growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver and skeletal muscle related diseases.

Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers. Thus, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers.

Panel 2.2 Summary: Ag2100 Expression of this gene is highest in a kidney cancer sample (CT=28). In addition, significant expression of this gene is also seen in a number of normal and cancer tissues including colon, lung, ovary, breast, kidney, thyroid, liver, bladder, and stomach. Interestingly, this gene is expressed at slightly higher levels in most of the tumors than in the normal matched tissue. Thus, expression of this gene could be used to distinguish between cancerous tissue and normal tissue. In addition, therapeutic modulation of this gene product, through the use of small molecule drugs or antibodies, might be of benefit in the treatment of cancer.

5

10

15

20

25

30

Panel 3D Summary: Ag2100 Expression of this gene is highest in a lung cancer cell line (CT = 26). However, low to moderate expression is also seen in the majority of cancer cell lines on this panel, suggesting that this gene may play an important role in many cell types.

Panel 4D Summary: Ag2100 Highest expression of this gene is detected in resting primary Th1 cells (CT=24.5). Moderate to low levels of expression of this gene is seen in members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. Interestingly, this gene is highly induced in Ramos B cells treated with PMA and ionomycin, in non-transformed B cells and PBMC treated with PWM. All three of these observations are consistent with this gene being induced in B cells after activation. This gene product has homology to the RHO/RAC-interacting citron kinase. Thus citron kinase encoded by this gene may play an important role in T cell activation, by regulating TCR-mediated T cell spreading, chemotaxis and other chemokine responses and in apoptosis. Likewise, this putative kinase may also be important in B cell motility, antigen receptor mediated activation and apoptosis.

Small molecule therapeutics designed against the protein encoded for by this gene could reduce or inhibit inflammation. Anti-sense therapeutics that would block the translation of the transcript and protein production could also inhibit inflammatory processes. These types of therapeutics could be important in the treatment of diseases such as osteoarthritis. Likewise, these therapeutics could be important in the treatment of asthma, psoriasis, diabetes, and IBD, which require activated T cells, as well as diseases that involve B cell activation such as systemic lupus erythematosus.

Panel CNS_1 Summary: Ag2100 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. Please see Panel 1.3D for a discussion of this gene in treatment of central nervous system disorders.

B. CG117662-02: Renal renin precursor like.

Expression of gene CG117662-02 was assessed using the primer-probe sets Ag2078 and Ag5185, described in Tables BA and BB. Results of the RTQ-PCR runs are shown in Tables BC, BD, BE, BF and BG.

Table BA. Probe Name Ag2078

1	•	7
1	٠,	,

Primers	Sequence	Length	Start Position	SEQ ID No
Forward	5'-accttcaaagtcgtctttgaca-3'	22	292	252
Probe	TET-5'-ctccaagtgcagccgtctctacactg -3'-TAMRA	26	342	253
Reverse	5'-cgaagagcttgtgatacacaca-3'	22	370	254

Table BB. Probe Name Ag5185

15

Primers	Sequence	Length	3	SEQ ID No
Forward	5'-ccgtgtctgtggggtcat-3'	18	491	255
Probe	TET-5'-attggtagacaccggtgcatcctaca -3'-TAMRA	26	540	256
Reverse	5'-tggagctggtagaacctgaga-3'	21	566	257

Table BC. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag5185, Run 226559655	issue Name	Rel. Exp.(%) Ag5185, Run 226559655
AD 1 Hippo	5.7	Control (Path) 3 Temporal Ctx	48.6
AD 2 Hippo	82.4	Control (Path) 4 Temporal Ctx	54.3
AD 3 Hippo	11.4	AD 1 Occipital Ctx	12.2
AD 4 Hippo	50.0	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	22.5	AD 3 Occipital Ctx	18.8

AD 6 Hippo	15.2	AD 4 Occipital Ctx	7 119.8 TIP. 8
Control 2 Hippo	9.6	AD 5 Occipital Ctx	12.1
Control 4 Hippo	18.3	AD 6 Occipital Ctx	25.0
Control (Path) 3 Hippo	85.3	Control 1 Occipital Ctx	26.2
AD 1 Temporal Ctx	38.4	Control 2 Occipital Ctx	3.6
AD 2 Temporal Ctx	74.7	Control 3 Occipital Ctx	40.6
AD 3 Temporal Ctx	0.0	Control 4 Occipital Ctx	20.9
AD 4 Temporal Ctx	49.0	Control (Path) 1 Occipital Ctx	39.2
AD 5 Inf Temporal Ctx	31.6	Control (Path) 2 Occipital Ctx	18.3
AD 5 Sup Temporal Ctx	36.3	Control (Path) 3 Occipital Ctx	0.0
AD 6 Inf Temporal Ctx	55.5	Control (Path) 4 Occipital Ctx	0.0
AD 6 Sup Temporal Ctx	63.3	Control 1 Parietal Ctx	46.7
Control 1 Temporal Ctx	100.0	Control 2 Parietal Ctx	0.0
Control 2 Temporal Ctx	40.6	Control 3 Parietal Ctx	12.2
Control 3 Temporal Ctx	47.0	Control (Path) 1 Parietal Ctx	65.5
Control 3 Temporal Ctx	24.7	Control (Path) 2 Parietal Ctx	23.8
Control (Path) 1 Temporal Ctx	50.7	Control (Path) 3 Parietal Ctx	0.0
Control (Path) 2 Temporal Ctx	65.5	Control (Path) 4 Parietal Ctx	57.4

Table BD. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag5185, Run 228757766	issue Name	Rel. Exp.(%) Ag5185, Run 228757766	
Adipose	1.0	Renal ca. TK-10	0.0	
Melanoma* Hs688(A).T	0.2	Bladder	0.5	
Melanoma* Hs688(B).T	0.1	Gastric ca. (liver met.) NCI-N87	1.1	
Melanoma* M14	0.1	Gastric ca. KATO III	0.3	
Melanoma* LOXIMVI	0.1	Colon ca. SW-948	18.2	
Melanoma* SK-MEL-5	0.2	Colon ca. SW480	0.6	
Squamous cell carcinoma SCC-4	0.4	Colon ca.* (SW480 met) SW620	0.5	
Testis Pool	8.4	Colon ca. HT29	1.6	
Prostate ca.* (bone met) PC-3	1.5	Colon ca. HCT-116	0.5	
Prostate Pool	0.6	Colon ca. CaCo-2	0.2	
Placenta	3.0	Colon cancer tissue	2.6	
Uterus Pool	1.5	Colon ca. SW1116	0.1	
Ovarian ca. OVCAR-3	0.9	Colon ca. Colo-205	0.0	
Ovarian ca. SK-OV-3	0.2	Colon ca. SW-48	0.8	
Ovarian ca. OVCAR-4	0.7	Colon Pool	4.7	
Ovarian ca. OVCAR-5	4.7	Small Intestine Pool	4.0	
Ovarian ca. IGROV-1	0.0	Stomach Pool	2.3	

Ovarian ca. OVCAR-8	0.2	Bone Marrow Pool	2.5
Ovary	6.7	Fetal Heart	0.2
Breast ca. MCF-7	0.5	Heart Pool	1.6
Breast ca. MDA-MB-231	0.6	Lymph Node Pool	12.6
Breast ca. BT 549	0.2	Fetal Skeletal Muscle	0.3
Breast ca. T47D	2.1	Skeletal Muscle Pool	0.4
Breast ca. MDA-N	0.0	Spleen Pool	0.1
Breast Pool	5.0	Thymus Pool	3.8
Trachea	1.0	CNS cancer (glio/astro) U87-MG	0.0
Lung	22.1	CNS cancer (glio/astro) U-118-MG	0.1
Fetal Lung	0.6		0.0
Lung ca. NCI-N417	0.4	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	0.3	CNS cancer (astro) SNB-75	0.0
Lung ca. NCI-H146	0.0	CNS cancer (glio) SNB-19	0.3
Lung ca. SHP-77	0.1	CNS cancer (glio) SF-295	0.5
Lung ca. A549	0.0	Brain (Amygdala) Pool	0.4
Lung ca. NCI-H526	0.5	Brain (cerebellum)	0.5
Lung ca. NCI-H23	1.4	Brain (fetal)	0.0
Lung ca. NCI-H460	2.0	Brain (Hippocampus) Pool	0.2
Lung ca. HOP-62	0.1	Cerebral Cortex Pool	0.3
Lung ca. NCI-H522	0.6	Brain (Substantia nigra) Pool	0.3
Liver	1.0	Brain (Thalamus) Pool	0.6
Fetal Liver	1.0	Brain (whole)	0.8
Liver ca. HepG2	0.0	Spinal Cord Pool	0.5
Kidney Pool	4.2	Adrenal Gland	2.6
Fetal Kidney	100.0	Pituitary gland Pool	0.6
Renal ca. 786-0	0.0	Salivary Gland	0.5
Renal ca. A498	0.0	Thyroid (female)	0.1
Renal ca. ACHN	0.2	Pancreatic ca. CAPAN2	0.2
Renal ca. UO-31	0.3	Pancreas Pool	4.9

Table BE. Panel 1.3D

Tissue Name	Exp.(%) g2078, Run	Exp.(%) Ag2078, Run 16562749	Rel. Exp.(%) Ag2078, Run 1656781 22	Tissue Name	Rel. Exp.(%) Ag2078, Run 16562668	Rel. Exp.(%) Ag2078, Run 16562749	Rel. Exp.(%) Ag2078, Run 16567812
Liver adenocarcinoma	0.0	0.1	0.1	Kidney (fetal)	100.0	100.0	100.0
Pancreas	0.0	0.0	0.0	Renal ca. 786-0	0.0	0.0	0.0
Pancreatic ca. CAPAN 2	0.0	0.0	0.2	Renal ca. A498	0.0		0.1

ı	т				tine tiller		the distance of the same in
Adrenal gland	0.5	0.5	0.3	Renal ca. RXF	0.0	0.0	0.0
Thyroid	0.0	0.0	0.0	Renal ca. ACHN	0.0	0.0	0.0
Salivary gland	0.0	0.1	0.0	Renal ca. UO-31	0.0	0.0	0.1
Pituitary gland	0.0	0.2	0.0	Renal ca. TK-10	0.0	0.1	0.0
Brain (fetal)	0.0	0.0	0.0	Liver	0.3	0.3	0.0
Brain (whole)	0.0	0.0	0.1	Liver (fetal)	0.6	0.7	0.5
Brain (amygdala)	0.1	0.0	0.0	Liver ca. (hepatoblast) HepG2	0.0	0.0	0.0
Brain (cerebellum)	0.1	0.0	0.1	Lung	0.0	0.0	0.1
Brain (hippocampus)	0.0	0.3	0.0	Lung (fetal)	0.1	0.1	0.0
Brain (substantia nigra)	0.0	0.0	0.1	Lung ca. (small cell) LX-1	0.0	0.0	0.0
Brain (thalamus)	0.1	0.0	0.1	Lung ca. (small cell) NCI-H69	0.0	0.0	0.0
Cerebral Cortex	0.0	0.0	0.2	Lung ca. (s.cell var.) SHP-77	0.0	0.1	0.0
Spinal cord	0.0	0.0	0.0	Lung ca. (large cell)NCI-H460	0.0	0.0	0.0
glio/astro U 87-MG	0.0	0.0	0.0	Lung ca. (non-sm. cell) A549	0.0	0.0	0.0
glio/astro J-118-MG	0.0	0.0	0.0	Lung ca. (non-s.cell) NCI-H23	0.0	0.0	0.0
strocytoma SW1783	0.0	0.0	0.1	Lung ca. (non-s.cell) HOP-62	0.1	0.0	0.0
euro*; met SK-N-AS	0.0	0.1	0.0	Lung ca. (non-s.cl) NCI-H522	0.0	0.0	0.0
strocytoma F-539	0.0	0.0	0.0	Lung ca. (squam.) SW 900	0.1	0.1	0.0
strocytoma SNB-75	0.0	0.0	0.2	Lung ca. (squam.) NCI-H596	0.0	0.0	0.0
lioma SNB-19	0.0	0.0	0.0	Mammary gland	0.2	0.2	0.1
lioma U251	0.0	0.0	0.0	Breast ca.* (pl.ef) MCF-7	0.0	0.0	0.1

idney	1.2	10.8	8.7		0.0	0.2	0.0
rachea (0.1	0.0	0.0	Melanoma* (met) SK-MEL-5	0.0	0.0	0.0
ladder (0.0	0.0	0.0	Melanoma LOX IMVI	0.0	0.0	0.1
Gastric ca.* liver met) VCI-N87	0.0	0.1	0.0	Melanoma M14	0.0	0.0	0.0
1CC-2998	0.1	0.3	0.1	Melanoma UACC-62	0.0	0.0	0.0
Colon ca. issue(ODO386	0.2	0.1	0.5	Hs688(B).T	0.0	0.0	0.0
Jaco-2	0.0	0.0	0.0	Melanoma Hs688(A).T	0.0	0.0	0.0
1C1-110	0.0	0.0	0.0	Testis	0.2	0.1	0.2
Colon ca. HT29	0.2	0.3	0.3	Prostate ca.* (bone met)PC-3	0.2	0.2	0.0
Colon ca.* SW620(SW480 net)	0.0	0.0	0.0	Prostate	0.1	0.0	0.1
Colon ca. SW480	0.0	0.0	0.0	Placenta	0.7	1.2	0.7
-	0.1	0.0	0.0	Uterus	1.7	1.1	1.1
Stomach	0.0	0.0	0.1	Ovarian ca.* (ascites) SK-OV-3	0.0	0.0	0.0
Colorectal	0.0	0.0	0.0	Ovarian ca. IGROV-1	0.0	0.0	0.0
Lymph node	0.0	0.1	0.0	Ovarian ca. OVCAR-8	0.0	0.0	0.0
Spleen	0.0	0.0	0.0	Ovarian ca. OVCAR-5	0.2	0.2	0.1
Thymus	0.0	0.0	0.0	Ovarian ca. OVCAR-4	0.0	0.1	0.0
Bone marrow	0.0	0.0	0.0	Ovarian ca. OVCAR-3	0.1	0.1	0.0
Skeletal muscle	0.0	0.0	0.0	Ovary	0.6	0.8	0.6
Skeletal muscle (fetal)	0.0	0.0	0.0	Breast ca. MDA-N	0.0	0.0	0.0
Heart	0.0	0.0	0.0	Breast ca. BT-549	0.0	0.0	0.0
Heart (fetal)	0.0	0.0	0.0	Breast ca.* (pl.ef) T47D	0.1	0.0	0.0
glioma SF-295	0.0	0.0	0.0	Breast ca.* (pl.ef) MDA-MB-231	0.1	0.0	0.0

Table BF. Panel 4D

Tissue Name	Rel. xp.(%) Ag2078, Run 161905846	Tissue Name	Rel. Exp.(%) Ag2078, Run 161905846	
Secondary Th1 act	0.0	HUVEC IL-1 beta	0.0	
Secondary Th2 act	0.0	HUVEC IFN gamma	0.0	
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	0.0	
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0	
Secondary Th2 rest	0.0	HUVEC IL-11	0.0	
Secondary Trl rest	0.0	Lung Microvascular EC none	0.2	
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	0.2	
Primary Th2 act	0.0	Microvascular Dermal EC none	0.3	
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1 beta	0.1	
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1beta	0.1	
Primary Th2 rest	0.0	Small airway epithelium none	0.0	
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1 beta	0.5	
CD45RA CD4 lymphocyte act	0.8	Coronery artery SMC rest	0.1	
CD45RO CD4 lymphocyte act	0.0	Coronery artery SMC TNFalpha + IL-1beta	0.1	
CD8 lymphocyte act	0.0	Astrocytes rest	0.0	
Secondary CD8 lymphocyte rest	0.0	Astrocytes TNFalpha + IL-1beta	0.1	
Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	0.0	
CD4 lymphocyte none	KIL-812 (Rasonbil)		0.0	
2ry Th1/Th2/Tr1_anti-CD95 CH11	0.0	CCD1106 (Keratinocytes) none	0.0	
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0	
LAK cells IL-2	0.0	Liver cirrhosis	0.4	
LAK cells IL-2+IL-12	0.0		3.9	
LAK cells IL-2+IFN gamma	0.0		1.3	
_AK cells IL-2+ IL-18	0.0	NCI-H292 IL-4	0.5	
AK cells PMA/ionomycin	0.1		1.9	
NK Cells IL-2 rest	0.0		0.3	
Two Way MLR 3 day	0.0		1.0	
Two Way MLR 5 day	0.0		0.0	
Two Way MLR 7 day	0.0		0.0	

PBMC rest	0.1	Lung fibroblast none	10:0
РВМС РWМ	0.0	Lung fibroblast TNF alpha + IL-1 beta	0.0
PBMC PHA-L	0.0	Lung fibroblast IL-4	0.0
Ramos (B cell) none	0.0	Lung fibroblast IL-9	0.0
Ramos (B cell) ionomycin	0.0	Lung fibroblast IL-13	0.0
B lymphocytes PWM	0.0	Lung fibroblast IFN gamma	0.0
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 rest	5.9
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 TNF alpha	4.5
EOL-1 dbcAMP PMA/ionomycin	0.2	Dermal fibroblast CCD1070 IL-1 beta	3.1
Dendritic cells none	0.0	Dermal fibroblast IFN gamma	0.0
Dendritic cells LPS	0.0	Dermal fibroblast IL-4	0.0
Dendritic cells anti-CD40	0.0	IBD Colitis 2	0.0
Monocytes rest	0.0	IBD Crohn's	0.0
Monocytes LPS	0.0	Colon	0.0
Macrophages rest	0.0	Lung	0.2
Macrophages LPS	0.0	Thymus	100.0
HUVEC none	0.4	Kidney	0.4
HUVEC starved	0.2		

Table BG. Panel 5D

5

Tissue Name	Rel. Ex.(%) Ag2078, Run 168095527	Tissue Name	Rel. Exp.(%) Ag2078, Run 168095527
97457_Patient-02go_adipose	11.7	94709_Donor 2 AM - A_adipose	0.0
97476_Patient-07sk_skeletal muscle	0.0	94710_Donor 2 AM - B_adipose	0.0
97477_Patient-07ut_uterus	2.8	94711_Donor 2 AM - C_adipose	0.0
97478_Patient-07pl_placenta	12.9	94712_Donor 2 AD - A_adipose	1.0
97481_Patient-08sk_skeletal muscle	0.0	94713_Donor 2 AD - B_adipose	0.0
97482_Patient-08ut_uterus	22.8	94714_Donor 2 AD - C_adipose	0.0
97483_Patient-08pl_placenta	4.5	94742_Donor 3 U - A_Mesenchymal Stem Cells	0.0
97486_Patient-09sk_skeletal muscle	0.0	94743_Donor 3 U - B_Mesenchymal Stem Cells	0.0
97487_Patient-09ut_uterus	0.0	94730_Donor 3 AM - A_adipose	0.9
97488_Patient-09pl_placenta	2.7		0.0
97492_Patient-10ut_uterus	100.0		0.0

94732_Donor 3 AM - C_adipose

97493_Patient-10pl_placenta	5.4	94733_Donor 3 AD - A_adipose	10.0
97495_Patient-11go_adipose	6.0	94734_Donor 3 AD - B_adipose	0.0
97496_Patient-11sk_skeletal muscle	0.0	94735_Donor 3 AD - C_adipose	0.0
97497_Patient-11ut_uterus	12.8	77138_Liver_HepG2untreated	0.0
97498_Patient-11pl_placenta	8.5	73556_Heart_Cardiac stromal cells (primary)	0.0
97500_Patient-12go_adipose	87.1	81735_Small Intestine	0.0
97501_Patient-12sk_skeletal muscle	0.0	72409_Kidney_Proximal Convoluted Tubule	0.0
97502_Patient-12ut_uterus	4.6	82685_Small intestine_Duodenum	0.0
97503_Patient-12pl_placenta	8.0	90650_Adrenal_Adrenocortical adenoma	0.0
94721_Donor 2 U - A_Mesenchymal Stem Cells	0.0	72410_Kidney_HRCE	1.1
94722_Donor 2 U - B_Mesenchymal Stem Cells	0.0	72411_Kidney_HRE	5.3
94723_Donor 2 U - C_Mesenchymal Stem Cells	0.0	73139_Uterus_Uterine smooth muscle cells	2.4

CNS_neurodegeneration_v1.0 Summary: Ag5185 Low levels of expression of this gene is seen in control temporal cortex and in a hippocampus sample from an Alzheimer patient (CTs=34.6-34.9). Therefore, therapeutic modulation of this gene may be useful in the neurological disorders including seizure and memory related diseases.

5

10

15

20

General_screening_panel_v1.5 Summary: Ag5185 Highest expression of this gene is detected in fetal kidney (CT=26.7). Interestingly, expression of this gene is higher in fetal as compared to adult kidney (CT=31). This observation suggests that expression of this gene can be used to distinguish fetal from adult kidney and also from other samples in this panel. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance kidney growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of kidney related diseases including lupus and glomerulonephritis.

Moderate to low levels of expression of this gene is also seen in tissues with metabolic/endocrine functions such as pancreas, adiposes, adrenal and pituitary glands, heart, skeletal muscle, and gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

Moderate to low levels of expression of this gene is also seen in a number of cancer cell lines derived from colon, lung, and ovarian cancer. Therefore, therapeutic modulation of this gene may be useful in the treatment of colon, lung and ovarian cancers.

Panel 1.3D Summary: Ag2078 Three experiments with same probe-primer sets are in excellent agreement. Highest expression of this gene is seen in fetal kidney (CTs=26-27.8), with lower expression in the adult lung. This pattern correlates to the expression seen in panel 1.5. Please see panel 1.5 for further discussion of this gene.

Panel 4D Summary: Ag2078 Highest expression of this gene is detected in thymus (CT=27.3). This gene or its protein product may thus play an important role in T cell development. Small molecule therapeutics, or antibody therapeutics designed against the protein encoded for by this gene could be utilized to modulate immune function (T cell development) and be important for organ transplant, AIDS treatment or post chemotherapy immune reconstitution.

Moderate to low levels of expression of this gene is also seen in lupus kidney, resting and cytokine activated mucoepidermoid NCI-H292 cells and dermal fibroblasts. Therefore, therapeutic modulation of this gene may be useful in the treatment of chronic obstructive pulmonary disease, asthma, allergy, emphysema, lupus kidney and skin disorders, including psoriasis.

Panel 5D Summary: Ag2078 Highest expression of this gene is detected in uterus and adipose of diabetic patients on insulin (CT=30.9-31). In addition, moderate to low levels of expression of this gene is also seen in uterus and placenta. Therefore, therapeutic modulation of this gene may be useful in the treatment of obesity and diabetes.

C. CG118051-02: ALDH8 splice variant, submitted to study DDSMT on 09/26/01 by saguo; classification type=Finished In-silico; novelty=Update-Variants; ORF start=407, ORF stop=1436, frame=2; 1586 bp.

Expression of gene CG118051-02 was assessed using the primer-probe set Ag3729, described in Table CA. Results of the RTQ-PCR runs are shown in Tables CB and CC.

Table CA. Probe Name Ag3729

5

10

15

20

25

		#=#===================================	
Primers	Length	Start Position	SEQ ID No

Forward	5'-ttcaagaaaacaagcagcttct-3'	22	273	258
Probe	TET-5'-cccaggacctgcataagccagct-3 '-TAMRA	23	309	259
Reverse	5'-ctcagatatgtctgcctcgaa-3'	21	332	260

Table CB. Panel 2.2

Tissue Name	Rel. Exp.(%) Ag3729, Run 174441818	Rel. Exp.(%) Ag3729, Run 259034396	Tissue Name	Rel. Exp.(%) Ag3729, Run 174441818	Rel. Exp.(%) Ag3729, Run 259034396
Normal Colon	0.4	0.3	Kidney Margin (OD04348)	0.0	0.0
Colon cancer (OD06064)	1.4	1.0	Kidney malignant cancer (OD06204B)	0.0	0.0
Colon Margin (OD06064)	0.0	0.0	Kidney normal adjacent tissue (OD06204E)	0.0	0.0
Colon cancer (OD06159)	0.2	0.1	Kidney Cancer (OD04450-01)	0.0	0.0
Colon Margin (OD06159)	0.0	0.0	Kidney Margin (OD04450-03)	1.3	0.9
Colon cancer (OD06297-04)	0.0	0.0	Kidney Cancer 8120613	0.0	0.0
Colon Margin (OD06297-05)	0.0	0.0	Kidney Margin 8120614	0.0	0.0
CC Gr.2 ascend colon (ODO3921)	1.1	0.8	Kidney Cancer 9010320	0.5	0.3
CC Margin (ODO3921)	0.0	0.0	Kidney Margin 9010321	1.8	1.4
Colon cancer metastasis (OD06104)	0.2	0.1	Kidney Cancer 8120607	0.0	0.0
Lung Margin (OD06104)	0.0	0.0	Kidney Margin 8120608	1.0	0.8
Colon mets to lung (OD04451-01)	0.2	0.2	Normal Uterus	0.0	0.0
Lung Margin (OD04451-02)	0.0	0.0	Uterine Cancer 064011	1.8	1.2
Normal Prostate	2.3	1.8	Normal Thyroid	0.0	0.0
Prostate Cancer (OD04410)	2.2		Thyroid Cancer 064010	0.0	0.0
Prostate Margin (OD04410)	5.1	3.8	Thyroid Cancer A302152	0.0	0.0

			["N ["" "]	" - " II H 1122: 11"	
Normal Ovary	0.7	0.3	Thyroid Margin "A302153	0.0	0.0
Ovarian cancer (OD06283-03)	2.5	1.7	Normal Breast	9.2	6.5
Ovarian Margin (OD06283-07)	0.0	0.0	Breast Cancer (OD04566)	17.4	12.9
Ovarian Cancer 064008	1.0	0.6	Breast Cancer 1024	100.0	100.0
Ovarian cancer (OD06145)	0.4	0.3	Breast Cancer (OD04590-01)	3.9	2.5
Ovarian Margin (OD06145)	0.5	0.3	Breast Cancer Mets (OD04590-03)	1.2	0.9
Ovarian cancer (OD06455-03)	0.9	0.5	Breast Cancer Metastasis (OD04655-05)	48.6	34.4
Ovarian Margin (OD06455-07)	0.0	0.0	Breast Cancer 064006	2.4	2.1
Normal Lung	0.0	0.0	Breast Cancer 9100266	55.1	43.8
Invasive poor diff. lung adeno (ODO4945-01	9.2	7.5	Breast Margin 9100265	14.7	10.8
Lung Margin (ODO4945-03)	0.0	0.0	Breast Cancer A209073	32.1	24.5
Lung Malignant Cancer (OD03126)	0.5	0.4	Breast Margin A2090734	9.1	6.4
Lung Margin (OD03126)	0.4	0.3	Breast cancer (OD06083)	69.7	61.6
Lung Cancer (OD05014A)	0.0	0.0	Breast cancer node metastasis (OD06083)	28.5	23.3
Lung Margin (OD05014B)	0.8	0.6	Normal Liver	0.0	0.0
Lung cancer (OD06081)	44.8	0.3	Liver Cancer 1026	0.0	0.0
Lung Margin (OD06081)	0.0	0.0	Liver Cancer 1025	0.8	0.6
Lung Cancer (OD04237-01)	3.1	2.6	Liver Cancer 6004-T	0.2	0.1
Lung Margin OD04237-02)	0.4	0.3	Liver Tissue 6004-N	0.4	0.3
Ocular Melanoma Metastasis	0.0	0.0	Liver Cancer 6005-T	0.0	0.0
Ocular Melanoma Margin (Liver)	0.0	0.0	Liver Tissue 6005-N	0.0	0.0
Melanoma Metastasis	0.0	0.0	Liver Cancer 064003	0.0	0.0
Melanoma Margin Lung)	0.3	0.2		0.0	0.0

			limb lime will	1 H 0 - + -	The state of the s
Normal Kidney	0.0	0.0	Bladder Cancer 1023	3.2	2.3
Kidney Ca, Nuclear grade 2 (OD04338)	1.5	1.2	Bladder Cancer A302173	4.5	3.2
Kidney Margin (OD04338)	0.4	0.3	Normal Stomach	0.0	0.0
Kidney Ca Nuclear grade 1/2 (OD04339)	0.0	0.0	Gastric Cancer 9060397	0.5	0.3
Kidney Margin (OD04339)	0.0	0.0	Stomach Margin 9060396	2.1	1.4
Kidney Ca, Clear cell type (OD04340)	0.0	0.0	Gastric Cancer 9060395	2.5	1.7
Kidney Margin (OD04340)	0.4	0.3	Stomach Margin 9060394	1.8	1.1
Kidney Ca, Nuclear grade 3 (OD04348)	0.0	0.0	Gastric Cancer 064005	0.0	0.0

Table CC. Panel 4.1D

5

Tissue Name	Rel. Ep.(%) Ag3729, Run 170222887	Tissue Name	Rel. Exp.(%) Ag3729, Run 170222887
Secondary Th1 act	0.0	HUVEC IL-1beta	0.0
Secondary Th2 act	0.0	HUVEC IFN gamma	0.0
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	0.0
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0
Secondary Th2 rest	0.0	HUVEC IL-11	0.0
Secondary Tr1 rest	0.0	Lung Microvascular EC none	0.0
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1 beta	0.0
Primary Th2 act	0.0	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1beta	0.0
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1beta	26.8
Primary Th2 rest	0.0	Small airway epithelium none	25.5
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1beta	46.7
CD45RA CD4 lymphocyte act	0.0	Coronery artery SMC rest	0.0
CD45RO CD4 lymphocyte act	0.0	Coronary artery CMC TMEalaha	0.0
CD8 lymphocyte act	0.0	Astrocytes rest	0.0
Secondary CD8 lymphocyte rest	0.0		0.0

Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	0.0
2ry Th1/Th2/Tr1_anti-CD95 CH11	0.0	CCD1106 (Keratinocytes) none	0.0
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	6.7
LAK cells IL-2	0.0	Liver cirrhosis	0.0
LAK cells IL-2+IL-12	0.0	NCI-H292 none	100.0
LAK cells IL-2+IFN gamma	0.0	NCI-H292 IL-4	55.9
LAK cells IL-2+ IL-18	0.0	NCI-H292 IL-9	82.9
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-13	58.2
NK Cells IL-2 rest	0.0	NCI-H292 IFN gamma	60.3
Two Way MLR 3 day	0.0	HPAEC none	0.0
Two Way MLR 5 day	0.0	HPAEC TNF alpha + IL-1 beta	0.0
Two Way MLR 7 day	0.0	Lung fibroblast none	0.0
PBMC rest	0.0	Lung fibroblast TNF alpha + IL-1 beta	0.0
PBMC PWM	0.0	Lung fibroblast IL-4	0.0
PBMC PHA-L	0.0	Lung fibroblast IL-9	0.0
Ramos (B cell) none	7.4	Lung fibroblast IL-13	0.0
Ramos (B cell) ionomycin	3.1 _p	Lung fibroblast IFN gamma	0.0
B lymphocytes PWM	0.0	Dermal fibroblast CCD1070 rest	0.0
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 TNF alpha	0.0
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 IL-1 beta	0.0
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast IFN gamma	0.0
Dendritic cells none	0.0	Dermal fibroblast IL-4	0.0
Dendritic cells LPS	0.0	Dermal Fibroblasts rest	0.0
Dendritic cells anti-CD40	0.0	Neutrophils TNFa+LPS	0.0
Monocytes rest	0.0	Neutrophils rest	0.0
Monocytes LPS	0.0	Colon	0.0
Macrophages rest	0.0	Lung	6.3
Macrophages LPS	0.0	Thymus	7.8
HUVEC none	0.0	Kidney	2.6
HUVEC starved	0.0		<u> </u>

CNS_neurodegeneration_v1.0 Summary: Ag3729 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

Panel 2.2 Summary: Ag3729 Two experiments with same probe-primer sets are in good agreement. Highest expression of this gene is seen in breast cancer (CTs=27-29).

Thus, expression of this gene could be used to differentiate between the breast cancer samples and other samples on this panel.

In addition, moderate expression of this gene is also seen in cancer samples derived from colon, breast, ovarian, lung, bladder, kidney and uterine cancers. Interestingly, expression of gene higher cancer compared to the corresponding normal adjacent tissue. Thus, expression of this gene may be used as diagnostic marker to detect the presence of colon, breast, ovarian, lung, bladder, kidney and uterine cancers and also, therapeutic modulation of the expression or function of this gene may be effective in the treatment of these cancers.

Panel 4.1D Summary: Ag3729 Expression of this gene is restricted to a few samples, with highest expression is seen in untreated NCI-H292 cells (CT=31.4). The gene is also expressed in a cluster of treated and untreated samples derived from the NCI-H292 cell line, a human airway epithelial cell line that produces mucins. Mucus overproduction is an important feature of bronchial asthma and chronic obstructive pulmonary disease samples. Interestingly, the transcript is also expressed at lower but still significant levels in small airway and bronchial epithelium treated with IL-1 beta and TNF-alpha and untreated small airway epithelium. The expression of the transcript in this mucoepidermoid cell line that is often used as a model for airway epithelium (NCI-H292 cells) suggests that this transcript may be important in the proliferation or activation of airway epithelium. Therefore, therapeutics designed with the protein encoded by the transcript may reduce or eliminate symptoms caused by inflammation in lung epithelia in chronic obstructive pulmonary disease, asthma, allergy, and emphysema.

D. CG140468-02: SERINE/THREONINE-PROTEIN KINASE PAK 1.

Expression of gene CG140468-02 was assessed using the primer-probe set Ag7054, described in Table DA. Results of the RTQ-PCR runs are shown in Table DB. Please note that CG140468-02 represents a full-length physical clone.

Table DA. Probe Name Ag7054

30

25

5

10

15

Primers	Sequence	il Anoth	1	SEQ ID No
Forward	5'-ggtttgagaagattgccaagc-3'	21	819	261

Probe	TET-5'-cctcactccactgattgctgcagcta a-3'-TAMRA	27	850	262
Reverse	5'-ctggggtgagtgtgtgttttag-3'	21	898	263

Table DB. General screening panel v1.6

Adipose 3.6	Renal ca. TK-10 Bladder Gastric ca. (liver met.) NCI-N87 Gastric ca. KATO III	282273878 10.7 9.0
The second secon	Gastric ca. (liver met.) NCI-N87	9.0
Melanoma* Hs688(A).T 7.3		
Melanoma* Hs688(B).T	C	30.6
Melanoma* M14 13.3	Gasine ca. KATO III	49.3
Melanoma* LOXIMVI 21.6	Colon ca. SW-948	7.8
Melanoma* SK-MEL-5 8.1	Colon ca. SW480	2.5
Squamous cell carcinoma SCC-4 7.7	Colon ca.* (SW480 met) SW620	11.8
Testis Pool 5.6	Colon ca. HT29	22.2
Prostate ca.* (bone met) PC-3 3.3	Colon ca. HCT-116	19.1
Prostate Pool 8.0	Colon ca. CaCo-2	34.6
Placenta 9.5	Colon cancer tissue	9.0
Uterus Pool 2.4	Colon ca. SW1116	4.5
Ovarian ca. OVCAR-3 100.0	Colon ca. Colo-205	10.2
Ovarian ca. SK-OV-3 16.4	Colon ca. SW-48	8.0
Ovarian ca. OVCAR-4 3.3	Colon Pool	9.1
Ovarian ca. OVCAR-5 35.1	Small Intestine Pool	8.9
Ovarian ca. IGROV-1 5.3	Stomach Pool	5.1
Ovarian ca. OVCAR-8 8.4	Bone Marrow Pool	3.4
Ovary 5.1	Fetal Heart	1.5
Breast ca. MCF-7 2.2	Heart Pool	3.7
Breast ca. MDA-MB-231 11.8	Lymph Node Pool	8.3
Breast ca. BT 549 4.2	Fetal Skeletal Muscle	8.1
Breast ca. T47D 7.7	Skeletal Muscle Pool	4.3
Breast ca. MDA-N 5.8	Spleen Pool	5.1
Breast Pool 8.8	Thymus Pool	7.6
Trachea 7.7	CNS cancer (glio/astro) U87-MG	6.3
Lung 4.1	CNS cancer (glio/astro) U-118-MG	
Fetal Lung 7.9		6.2
Lung ca. NCI-N417 7.9	CNS cancer (astro) SF-539	7.4
Lung ca. LX-1 19.9	CNS cancer (astro) SNB-75	14.1
Lung ca. NCI-H146 3.5	CNS cancer (glio) SNB-19	5.5
Lung ca. SHP-77 5.8	CNS cancer (glio) SF-295	5.8

		- Ilan bar andar a Il Il Ilan tank in	The street of the street of
Lung ca. A549	8.8	Brain (Amygdala) Pool	24.8
Lung ca. NCI-H526	3.5	Brain (cerebellum)	85.9
Lung ca. NCI-H23	11.0	Brain (fetal)	16.4
Lung ca. NCI-H460	1.0	Brain (Hippocampus) Pool	21.2
Lung ca. HOP-62	3.5	Cerebral Cortex Pool	64.6
Lung ca. NCI-H522	20.7	Brain (Substantia nigra) Pool	27.9
Liver	0.7	Brain (Thalamus) Pool	51.8
Fetal Liver	9.1	Brain (whole)	55.5
Liver ca. HepG2	0.5	Spinal Cord Pool	5.0
Kidney Pool	11.3	Adrenal Gland	4.9
Fetal Kidney	16.0	Pituitary gland Pool	4.9
Renal ca. 786-0	9.9	Salivary Gland	2.7
Renal ca. A498	4.4	Thyroid (female)	5.8
Renal ca. ACHN	6.9	Pancreatic ca. CAPAN2	9.7
Renal ca. UO-31	13.5	Pancreas Pool	5.5

General_screening_panel_v1.6 Summary: Ag7054 Highest expression of this gene is detected in a ovarian cancer cell line (CT=25.4). Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.

5

10

15

20

Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Interestingly, this gene is expressed at much higher levels in feral (CT=28.9) when compared to adult liver (CT=32.7). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver related diseases.

E. CG142564-01: CARNITINE O-PALMITOYLTRANSFERASE I.

Expression of gene CG142564-01 was assessed using the primer-probe set Ag6952, described in Table EA. Results of the RTQ-PCR runs are shown in Table EB. Please note that CG142564-02 represents a full-length physical clone.

Table EA. Probe Name Ag6952

15

5

Primers		ll enoth	Start Position	SEQ ID No
Forward	5'-tctgctaccaatcccagatcc-3'	21	434	264
Probe	TET-5'-tcgacccagagcagcacccca-3' -TAMRA	21	461	265
Reverse	5'-catctgctacagggccaaag-3'	20	504	266

Table EB. General_screening_panel_v1.6

Tissue Name	Rel. Exp.(%) Ag6952, Run 278388893	issue Name	Rel. Exp.(%) Ag6952, Run 278388893
Adipose	4.1	Renal ca. TK-10	20.0
Melanoma* Hs688(A).T	0.8	Bladder	33.4
Melanoma* Hs688(B).T	1.2	Gastric ca. (liver met.) NCI-N87	81.2
Melanoma* M14	21.8	Gastric ca. KATO III	8.2
Melanoma* LOXIMVI	4.6	Colon ca. SW-948	5.4
Melanoma* SK-MEL-5	8.5	Colon ca. SW480	14.8
Squamous cell carcinoma SCC-4	1.6	Colon ca.* (SW480 met) SW620	17.1
Testis Pool	31.6	Colon ca. HT29	1.3
Prostate ca.* (bone met) PC-3	9.3	Colon ca. HCT-116	14.3

Prostate Pool	5.8	Colon ca. CaCo-2	16.7
Placenta	8.5	Colon cancer tissue	7.6
Uterus Pool	0.7	Colon ca. SW1116	4.4
Ovarian ca. OVCAR-3	5.0	Colon ca. Colo-205	4.7
Ovarian ca. SK-OV-3	50.7	Colon ca. SW-48	2.6
Ovarian ca. OVCAR-4	1.9	Colon Pool	3.4
Ovarian ca. OVCAR-5	25.3	Small Intestine Pool	2.9
Ovarian ca. IGROV-1	6.9	Stomach Pool	2.9
Ovarian ca. OVCAR-8	4.7	Bone Marrow Pool	1.5
Ovary	3.0	Fetal Heart	100.0
Breast ca. MCF-7	9.7	Heart Pool	42.6
Breast ca. MDA-MB-231	9.1	Lymph Node Pool	2.9
Breast ca. BT 549	14.3	Fetal Skeletal Muscle	17.9
Breast ca. T47D	3.3	Skeletal Muscle Pool	21.8
Breast ca. MDA-N	0.8	Spleen Pool	10.4
Breast Pool	3.1	Thymus Pool	17.9
Trachea	3.8	CNS cancer (glio/astro) U87-MG	12.3
Lung	3.0	CNS cancer (glio/astro) U-118-MG	25.3
Fetal Lung	7.3	CNS cancer (neuro;met) SK-N-AS	21.0
Lung ca. NCI-N417	1.2	CNS cancer (astro) SF-539	2.6
Lung ca. LX-1	22.8	CNS cancer (astro) SNB-75	16.5
Lung ca. NCI-H146	3.6	CNS cancer (glio) SNB-19	10.1
Lung ca. SHP-77	26.4	CNS cancer (glio) SF-295	61.1
Lung ca. A549	13.4	Brain (Amygdala) Pool	4.5
Lung ca. NCI-H526	0.8	Brain (cerebellum)	39.0
Lung ca. NCI-H23	13.8	Brain (fetal)	13.2
Lung ca. NCI-H460	13.9	Brain (Hippocampus) Pool	3.6
Lung ca. HOP-62	32.8	Cerebral Cortex Pool	3.4
Lung ca. NCI-H522	21.6	Brain (Substantia nigra) Pool	5.3
Liver	0.4	Brain (Thalamus) Pool	5.6
Fetal Liver	2.2	Brain (whole)	3.3
Liver ca. HepG2	5.0	Spinal Cord Pool	4.8
Kidney Pool	2.7	Adrenal Gland	6.9
Fetal Kidney	4.6	Pituitary gland Pool	3.2
Renal ca. 786-0	14.6	Salivary Gland	4.9
Renal ca. A498	1.8	Thyroid (female)	1.1
Renal ca. ACHN	7.6	Pancreatic ca. CAPAN2	12.1
Renal ca. UO-31	11.9	Pancreas Pool	5.0

General_screening_panel_v1.6 Summary: Ag6952 Highest expression of this gene is detected in fetal heart (CT=26.7). Moderate to high levels of expression of this gene is also seen in tissues with metabolic/endocrine functions such as pancreas, adipose,

adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.

In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

F. CG142797-01: Cathepsin L like.

Expression of gene CG142797-01 was assessed using the primer-probe set Ag7539, described in Table FA.

20 <u>Table FA. Probe Name Ag7539</u>

5

10

15

25

Primers	Sequencs	Length	Start Position	SEQ ID No
Forward	5'-ctctaacacgtgaccacagtctaga-3'	25	68	267
	TET-5'-tcttgtgctttgccttccacttggt- 3'-TAMRA	23	103	268
Reverse	5'-atcttcatgttctccatgtcatataatc-3	28	128	269

CNS_neurodegeneration_v1.0 Summary: Ag7539 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

Panel 4.1D Summary: Ag7539 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

G. CG143216-01: Diacylglycerol Kinase.

Expression of gene CG143216-01 was assessed using the primer-probe sets Ag4554 and Ag7230, described in Tables GA and GB. Results of the RTQ-PCR runs are shown in Tables GC, GD, GE and GF.

5 Table GA. Probe Name Ag4554

Primers	Sequence	it.enoth	ł	SEQ ID No
	5'-aatgctccaggttcaattttct-3'	22	1349	270
Probe	TET-5'-accaaccagcaggaccagtttgactt -3'-TAMRA	26	1390	271
Reverse	5'-gacgcgataaacttcaacaaaa-3'	22	1419	272

10 <u>Table GB. Probe Name Ag7230</u>

15

Primers	Sequence	Length	Start Position	SEQ ID No
	5'-gcatatcgttgttggggact-3'	20	852	273
Probe	TET-5'-atggatgtgtcctcagtccaccaca -3'-TAMRA	26	880	274
Reverse	5'-cacggagtagcgaaggagtg-3'	20	911	275

Table GC. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag4554, Run 224721290	Rel. Exp.(%) Ag7230, Run 288742189	issue Name	Rel. Exp.(%) Ag4554, Run 224721290	Rel. Exp.(%) Ag7230, Run 288742189
AD 1 Hippo	9.3	14.1	Control (Path) 3 Temporal Ctx	5.7	5.3
AD 2 Hippo	22.2	20.2	Control (Path) 4 Temporal Ctx	20.0	19.2
AD 3 Hippo	10.6	9.7	AD 1 Occipital Ctx	7.3	18.6
AD 4 Hippo	7.1	5.3	AD 2 Occipital Ctx (Missing)	0.0	0.0
AD 5 hippo	100.0	100.0	AD 3 Occipital Ctx	11.3	8.0
AD 6 Hippo	36.9	42.0	AD 4 Occipital Ctx	19.8	13.4
Control 2 Hippo	22.7	23.8	AD 5 Occipital Ctx	15.9	18.0
Control 4 Hippo	7.7	10.2	AD 6 Occipital Ctx	53.2	54.3

Control (Path) 3 Hippo	6.9	5.2	Control 1 Occipital Ctx	4.5	3.9
AD 1 Temporal Ctx	15.7	18.2	Control 2 Occipital Ctx	81.8	90.8
AD 2 Temporal Ctx	20.2	20.0	Control 3 Occipital Ctx	14.4	14.7
AD 3 Temporal Ctx	9.9	8.0	Control 4 Occipital Ctx	6.4	6.8
AD 4 Temporal Ctx	18.8	9.8	Control (Path) 1 Occipital Ctx	45.4	57.8
AD 5 Inf Temporal Ctx	97.9	81.2	Control (Path) 2 Occipital Ctx	6.1	6.1
AD 5 SupTemporal Ctx	31.6	36.3	Control (Path) 3 Occipital Ctx	5.1	5.2
AD 6 Inf Temporal Ctx	26.2	28.9	Control (Path) 4 Occipital Ctx	12.6	12.8
AD 6 Sup Temporal Ctx	29.1	33.7	Control 1 Parietal Ctx	6.4	5.7
Control 1 Temporal Ctx	9.5	5.1	Control 2 Parietal Ctx	26.4	26.4
Control 2 Temporal Ctx	39.0	43.2	Control 3 Parietal Ctx	18.0	19.6
Control 3 Temporal Ctx	10.1	11.4	Control (Path) 1 Parietal Ctx	56.3	70.7
Control 4 Temporal Ctx	6.6	6.7	Control (Path) 2 Parietal Ctx	15.7	15.2
Control (Path) 1 Femporal Ctx	32.8	35.1	Control (Path) 3 Parietal Ctx	5.5	5.1
Control (Path) 2 Femporal Ctx	20.4	22.8	Control (Path) 4 Parietal Ctx	41.5	36.3

Table GD. General screening panel v1.4

Tissue Name	Rel. Exp.(%) Ag4554, Run 222809973	issue Name	Rel. Exp.(%) Ag4554, Run 222809973	
Adipose	5.4	Renal ca. TK-10	34.6	
Melanoma* Hs688(A).T	45.1	Bladder	15.8	
Melanoma* Hs688(B).T	45.1	Gastric ca. (liver met.) NCI-N87	21.3	
Melanoma* M14	85.9	Gastric ca. KATO III	84.1	
Melanoma* LOXIMVI	21.9	Colon ca. SW-948	0.7	
Melanoma* SK-MEL-5	69.7	Colon ca. SW480	52.5	
Squamous cell carcinoma SCC-4	26.8	Colon ca.* (SW480 met) SW620	27.0	
Testis Pool	6.8	Colon ca. HT29	12.5	

Prostate ca.* (bone met) PC-3	29.9	Colon ca. HCT-116	من عادمة والمن عالية المرادم
Prostate Pool	6.9	Colon ca. CaCo-2	25.5
Placenta	5.7	Colon cancer tissue	24.1
Uterus Pool	4.8	Colon ca. SW1116	8.5
Ovarian ca. OVCAR-3	14.9	Colon ca. Colo-205	12.9
Ovarian ca. SK-OV-3	100.0	Colon ca. SW-48	
Ovarian ca. OVCAR-4	10.2	Colon Pool	6.5
Ovarian ca. OVCAR-5	36.1	Small Intestine Pool	15.0
Ovarian ca. IGROV-1	20.3	Stomach Pool	17.8
Ovarian ca. OVCAR-8	16.0		9.0
THE RESERVE OF THE PARTY OF THE	15.0	Bone Marrow Pool	5.0
Ovary	16.5	Fetal Heart	23.5
Breast ca. MCF-7		Heart Pool	12.2
Breast ca. MDA-MB-231	51.1	Lymph Node Pool	15.1
Breast ca. BT 549	47.3	Fetal Skeletal Muscle	4.6
Breast ca. T47D	62.0	Skeletal Muscle Pool	12.0
Breast ca. MDA-N	17.8	Spleen Pool	10.7
Breast Pool	12.5	Thymus Pool	26.2
Trachea	12.3	CNS cancer (glio/astro) U87-MG	65.1
Lung	1.2	CNS cancer (glio/astro) U-118-MG	
Fetal Lung	27.4		48.6
Lung ca. NCI-N417	8.0	CNS cancer (astro) SF-539	23.3
Lung ca. LX-1	52.1	CNS cancer (astro) SNB-75	89.5
Lung ca. NCI-H146	22.5	CNS cancer (glio) SNB-19	21.8
Lung ca. SHP-77	97.9	CNS cancer (glio) SF-295	63.7
Lung ca. A549	25.0	Brain (Amygdala) Pool	14.8
Lung ca. NCI-H526	0.0	Brain (cerebellum)	90.8
Lung ca. NCI-H23	45.1	Brain (fetal)	30.4
Lung ca. NCI-H460	15.9	Brain (Hippocampus) Pool	15.0
Lung ca. HOP-62	27.4	Cerebral Cortex Pool	29.3
Lung ca. NCI-H522	27.9	Brain (Substantia nigra) Pool	31.2
Liver	3.7	Brain (Thalamus) Pool	27.7
Fetal Liver	12.0	Brain (whole)	29.3
Liver ca. HepG2	28.1	Spinal Cord Pool	11.8
Kidney Pool	25.0	Adrenal Gland	29.1
Fetal Kidney	13.7	Pituitary gland Pool	24.8
Renal ca. 786-0	24.0	Salivary Gland	11.6
Renal ca. A498	4.5	Thyroid (female)	11.5
Renal ca. ACHN	6.3	Pancreatic ca. CAPAN2	10.4
Renal ca. UO-31	18.8		21.8

Table GE. Panel 4.1D

Tissue Name	Rel. Exp.(%) Ag4554, Run 199319739	Rel. Exp.(%) Ag7230, Run 288211134	Tissue Name	Rel. Exp.(%) Ag4554, Run 199319739	Rel. Exp.(%) Ag7230, Run 288211134
Secondary Th1 act	70.2	48.3	HUVEC IL-1beta	62.9	38.4
Secondary Th2 act	44.8	30.4	HUVEC IFN gamma	50.3	35.1
Secondary Trl act	64.2	17.8	HUVEC TNF alpha IFN gamma		14.0
Secondary Th1 rest	17.7	6.7	HUVEC TNF alpha - IL4	43.2	13.1
Secondary Th2 rest	22.4	6.6	HUVEC IL-11	38.2	16.7
Secondary Tr1 rest	17.0	6.0	Lung Microvascular EC none	100.0	100.0
Primary Th1 act	27.7	6.0	Lung Microvascular EC TNFalpha + IL-1 beta	82.4	42.0
Primary Th2 act	42.3	24.8	Microvascular Dermal EC none	40.3	9.7
Primary Tr1 act	39.5	31.4	Microsvasular Dermal EC TNFalpha + IL-1 beta	28.3	7.1
Primary Th1 rest	17.2	12.2	Bronchial epithelium TNFalpha + IL1beta	17.7	5.6
Primary Th2 rest	11.0	10.1	Small airway epithelium none	4.5	3.6
Primary Trl rest	39.2	1.2	Small airway epithelium TNFalpha + IL-1beta		6.6
CD45RA CD4 ymphocyte act	39.8	18.7	Coronery artery SMC rest	24.8	14.1
CD45RO CD4 ymphocyte act	11	31.4	Coronery artery SMC TNFalpha + IL-1 beta	24.7	19.8
CD8 lymphocyte act	41.2	10.8	Astrocytes rest	11.7	10.2
Secondary CD8 ymphocyte rest	43.5		Astrocytes TNFalpha + IL-1beta	7.8	3.8
econdary CD8 ymphocyte act	11.2		KU-812 (Basophil) rest	5.8	4.3
CD4 lymphocyte none	19.2		KU-812 (Basophil) PMA/ionomycin	7.9	5.7
ry h1/Th2/Tr1_anti-CD95 H11	40.9		CCD1106 (Keratinocytes) none	14.6	13.4
AK cells rest	21.0	3.0	CCD1106 (Keratinocytes) (NFalpha + IL-1beta	5.7	2.1

LAK cells IL-2	23.0	13.0	Liver cirrhosis	3.0	4.0
LAK cells IL-2+IL-12	12.7	1.5	NCI-H292 none	3.4	7.5
LAK cells IL-2+IFN gamma	14.6	5.6	NCI-H292 IL-4	7.1	8.0
LAK cells IL-2+ IL-18	18.7	7.7	NCI-H292 IL-9	9.7	6.6
LAK cells PMA/ionomycin	23.8	14.3	NCI-H292 IL-13	10.7	6.3
NK Cells IL-2 rest	42.9	35.8	NCI-H292 IFN gamma	3.2	1.5
Two Way MLR 3 day	22.5	9.9	HPAEC none	31.0	13.9
Two Way MLR 5 day	20.9	3.3	HPAEC TNF alpha + IL-1 beta	52.5	31.9
Two Way MLR 7 day	21.2	10.2	Lung fibroblast none	16.0	7.7
PBMC rest	12.0	6.8	Lung fibroblast TNF alpha + IL-1 beta	16.8	9.6
PBMC PWM	19.3	5.1	Lung fibroblast IL-4	16.3	7.6
PBMC PHA-L	29.9	14.4	Lung fibroblast IL-9	23.2	11.4
Ramos (B cell) none	19.3	6.5	Lung fibroblast IL-13		7.0
Ramos (B cell) ionomycin	21.3	13.7	Lung fibroblast IFN gamma	7.1	6.1
B lymphocytes PWM	18.2	9.9	Dermal fibroblast CCD1070 rest	22.7	36.6
B lymphocytes CD40L and IL-4	26.4	25.7	Dermal fibroblast CCD1070 TNF alpha	63.7	59.5
EOL-1 dbcAMP	29.3	26.2	Dermal fibroblast CCD1070 IL-1 beta	29.9	19.3
EOL-1 dbcAMP PMA/ionomycin	23.0	7.5	Dermal fibroblast IFN gamma	7.0	5.6
Dendritic cells none	28.9	17.6	Dermal fibroblast IL-4	20.6	12.9
Dendritic cells LPS	9.0	2.8	Dermal Fibroblasts rest	15.2	20.7
Dendritic cells anti-CD40	40.6	8.3	Neutrophils TNFa+LPS	18.4	16.0
Monocytes rest	20.7	7.6	Neutrophils rest	16.3	20.6
Monocytes LPS	18.2	15.7	THE RESERVE THE PERSON NAMED IN COLUMN 2 I	14.1	3.9
Aacrophages rest	20.0	8.2	Lung	9.9	2.6
Macrophages LPS	4.0	2.0		39.2	7.4
IUVEC none	57.8	31.9	The same of the sa	18.8	11.6
HUVEC starved	64.2	50.0			

Table GF. Panel 5 Islet

	in a	7	
Tissue Name	Rel. Exp.() Ag4554, Run 306350410	Tissue Name	Rel. Exp.(%) Ag4554, Run 306350410
97457_Patient-02go_adipose	5.0	94709_Donor 2 AM - A_adipose	20.3
97476_Patient-07sk_skeletal muscle	0.0	94710_Donor 2 AM - B_adipose	12.8
97477_Patient-07ut_uterus	5.4	94711_Donor 2 AM - C_adipose	9.5
97478_Patient-07pl_placenta	2.6	94712_Donor 2 AD - A_adipose	18.0
99167_Bayer Patient 1	100.0	94713_Donor 2 AD - B_adipose	34.4
97482_Patient-08ut_uterus	2.4	94714_Donor 2 AD - C_adipose	17.3
97483_Patient-08pl_placenta	1.9	94742_Donor 3 U - A_Mesenchymal Stem Cells	10.0
97486_Patient-09sk_skeletal muscle	3.4	94743_Donor 3 U - B_Mesenchymal Stem Cells	9.7
97487_Patient-09ut_uterus	3.4	94730_Donor 3 AM - A_adipose	29.1
97488_Patient-09pl_placenta	0.9	94731_Donor 3 AM - B_adipose	47.0
97492_Patient-10ut_uterus	5.6	94732_Donor 3 AM - C_adipose	33.9
97493_Patient-10pl_placenta	6.0	94733_Donor 3 AD - A_adipose	46.3
97495_Patient-11go_adipose	4.7	94734_Donor 3 AD - B_adipose	72.7
97496_Patient-11sk_skeletal muscle	3.4	94735_Donor 3 AD - C_adipose	13.7
97497_Patient-11ut_uterus	6.0	77138_Liver_HepG2untreated	41.5
97498_Patient-11pl_placenta	2.0	73556_Heart_Cardiac stromal cells (primary)	8.5
97500_Patient-12go_adipose	8.7	81735_Small Intestine	18.0
97501_Patient-12sk_skeletal muscle	14.2	72409_Kidney_Proximal Convoluted Tubule	9.3
97502_Patient-12ut_uterus	12.3	82685_Small intestine_Duodenum	20.2
97503_Patient-12pl_placenta	3.5	90650_Adrenal_Adrenocortical adenoma	10.1
94721_Donor 2 U - A_Mesenchymal Stem Cells	21.6	72410_Kidney_HRCE	16.8
94722_Donor 2 U - B_Mesenchymal Stem Cells	6.3	72411_Kidney_HRE	6.8
94723_Donor 2 U - C_Mesenchymal Stem Cells	20.2	73139_Uterus_Uterine smooth muscle cells	19.5

5

CNS_neurodegeneration_v1.0 Summary: Ag4554/Ag7230 Two experiments with different probe-primer sets are in excellent agreement. This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals.

However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of this gene in treatment of central nervous system disorders.

General_screening_panel_v1.4 Summary: Ag4554 Highest expression of this gene is detected in a ovarian cancer cell line (CT=25.4). Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.

5

10

15

20

25

30

Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Interestingly, this gene is expressed at much higher levels in fetal (CT=27.3) when compared to adult lung (CT=31.8). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance lung growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of lung related diseases.

Panel 4.1D Summary: Ag4554/Ag7230 Two experiments with different probe-primer sets are in excellent agreement. Highest expression of this gene is detected in lung microvascular endothelial cells (CTs=28-29). This gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in

health and disease. These cells include members of the T-cell, B-cell, endothelial cell, amacrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

Panel 5 Islet Summary: Ag4554 Highest expression of this gene is detected in islet cells (CT=29.8). This gene shows a widespread expression pattern which correlates with the pattern seen in panel 1.4. Please see panel 1.4 for further discussion of this gene.

H. CG143787-01: Disintegrin Protease.

Expression of gene CG143787-01 was assessed using the primer-probe sets Ag6532, Ag6655 and Ag7048, described in Tables HA, HB and HC. Please note that CG143787-01 represents a full-length physical clone.

Table HA. Probe Name Ag6532

10

15

20

25

Primers	Sequencs	Length	Start Position	SEQ ID No
Forward	5'-atcatcaccaaagataccttttatctc-3'	27	474	276
Probe	TET-5'-agaaaccaaagtgcctgctgcaagc- 3'-TAMRA	25 ·	501	277
Reverse	5'-gtgttgtcattatatttgtaggaataggt- 3'	29	526	278

Table HB. Probe Name Ag6655

Primers	Sequenes	il enoth		SEQ ID No
Forward	5'-atcatcaccaaagataccttttatctc-3'	27	474	279

	TET-5'-agaaaccaaagtgcctgctgcaagc- 3'-TAMRA	رسا	501	280	į,
Reverse	5'-gtgttgtcattatatttgtaggaataggt- 3'	29	526	281	

Table HC. Probe Name Ag7048

5

10

20

Primers	Sequence	lLength	Start Position	SEQ ID No
Forward	5'-acatcatcaccaaagatacctttta-3'	25	472	282
Probe	TET-5'-caaagtgcctgctgcaagcacctatt -3'-TAMRA	26	507	283
Reverse	5'-gttcccacactggtgttg-3'	20	549	284

General_screening_panel_v1.6 Summary: Ag6655/Ag7048 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

Panel 4.1D Summary: Ag6655 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

I. CG144112-01: NEUROPSIN PRECURSOR.

Expression of gene CG144112-01 was assessed using the primer-probe set Ag7123, described in Table IA. Please note that CG56663-01 represents a full-length physical clone.

15 <u>Table IA. Probe Name Ag7123</u>

Primers	Sequencs	Length	Start Position	SEQ ID
Forward	5'-gcctgggcaggaaatacac-3'	19	353	285
Probe	TET-5'-tacgcctgggagaccacagcctacag	26	325	286
Reverse	5'-tctcggggactgcacttct-3'	19	292	287

CNS_neurodegeneration_v1.0 Summary: Ag7123 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

Panel 4.1D Summary: Ag7123 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

J. CG144112-04: Kallikrein-8.

Expression of gene CG144112-04 was assessed using the primer-probe set Ag5271, described in Table JA.

Table JA. Probe Name Ag5271

5

	Primers	Sequence	Length	Start Position	SEQ ID No
ļ	Forward	5'-gcagggcagggcgattct-3'	18	97	288
	Probe	TET-5'-cacatcctggggctcagacccctgtg -3'-TAMRA	26	153	289
	Reverse	5'-ctagaatcagecettgetgeeta-3'	23	245	290

CNS_neurodegeneration_v1.0 Summary: Ag5271 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

Panel 4.1D Summary: Ag5271 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

K. CG144686-01: MAST CELL CARBOXYPEPTIDASE A PRECURSOR.

Expression of gene CG144686-01 was assessed using the primer-probe set Ag6864, described in Table KA. Results of the RTQ-PCR runs are shown in Tables KB and KC. Please note that CG144686-01 represents a full-length physical clone.

Table KA. Probe Name Ag6864

Primers	Sequencs	Length	Start Position	SEQ ID No
Forward	5'-aaccagtgagctccgaga-3'	18	122	291
Probe	TET-5'-caaatttggttttctccttccagaatcc-3'-TAMRA	28	146	292
Reverse	5'-tctgcacgttggctttat-3'	18	177	293

Table KB. General screening panel v1.6

Tissue Name	Rel. Exp.(%) Ag6864, Run 278387547	issue Name	Rel. Exp.(%) Ag6864, Run 278387547
Adipose	15.0	Renal ca. TK-10	0.0
Melanoma* Hs688(A).T	0.3	Bladder	0.0
Melanoma* Hs688(B).T	0.7	Gastric ca. (liver met.) NCI-N87	0.0
Melanoma* M14	0.0	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	0.0
Melanoma* SK-MEL-5	0.0	Colon ca. SW480	0.0
Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	0.0
Testis Pool	7.6	Colon ca. HT29	0.0
Prostate ca.* (bone met) PC-3	0.0	Colon ca. HCT-116	0.0
Prostate Pool	16.4	Colon ca. CaCo-2	0.0
Placenta	0.1	Colon cancer tissue	70.7
Uterus Pool	15.8	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	0.0	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	0.0	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.0	Colon Pool	78.5
Ovarian ca. OVCAR-5	0.0	Small Intestine Pool	0.0
Ovarian ca. IGROV-1	0.0	Stomach Pool	20.0
Ovarian ca. OVCAR-8	0.0	Bone Marrow Pool	23.2
Ovary	2.5	Fetal Heart	4.6
Breast ca. MCF-7	0.0	Heart Pool	20.0
Breast ca. MDA-MB-231	0.0	Lymph Node Pool	100.0
Breast ca. BT 549	0.7	Fetal Skeletal Muscle	5.5
Breast ca. T47D	0.0	Skeletal Muscle Pool	1.5
Breast ca. MDA-N	0.0	Spleen Pool	3.0
Breast Pool	0.0	Thymus Pool	18.2
rachea rachea	2.5	CNS cancer (glio/astro) U87-MG	0.0
Lung	2.7	CNS cancer (glio/astro) U-118-MG	1.8
Fetal Lung	5.3	CNS cancer (neuro;met) SK-N-AS	0.0
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	0.0	CNS cancer (astro) SNB-75	0.0
Lung ca. NCI-H146	0.0		0.0
Lung ca. SHP-77	4.5		0.0
Lung ca. A549	0.0		0.0
Lung ca. NCI-H526	0.0		0.0
Lung ca. NCI-H23	0.0		0.0
Lung ca. NCI-H460	0.0		0.0
Lung ca. HOP-62	0.9		0.0

		100 100 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hard manuft by something manuft remails of
Lung ca. NCI-H522	0.0	Brain (Substantia nigra) Pool	10.0 g ang mag ag
Liver	0.0	Brain (Thalamus) Pool	0.0
Fetal Liver	6.0	Brain (whole)	0.0
Liver ca. HepG2	0.0	Spinal Cord Pool	0.0
Kidney Pool	51.4	Adrenal Gland	0.7
Fetal Kidney	1.1	Pituitary gland Pool	1.0
Renal ca. 786-0	0.2	Salivary Gland	0.0
Renal ca. A498	0.0	Thyroid (female)	0.2
Renal ca. ACHN	0.0	Pancreatic ca. CAPAN2	0.0
Renal ca. UO-31	0.2	Pancreas Pool	10.4

Table KC. Panel 5 Islet

Tissue Name	Ag6864 Run	Rel. Exp.(%) Ag6864, Run 30765049	Tissue Name	Ag6864, Run 3054248	Rel. Exp.(%) Ag6864, Run 3076504
97457_Patient-02go_adipos e	5.5	34.9	94709_Donor 2 AM - A_adipose	0.0	0.0
97476_Patient-07sk_skeleta l muscle	0.0	0.0	94710_Donor 2 AM - B_adipose	0.0	0.0
97477_Patient-07ut_uterus	1.4	32.1	94711_Donor 2 AM - C_adipose	0.0	0.0
97478_Patient-07pl_placent a	0.0	4.7	94712_Donor 2 AD - A_adipose	0.0	0.0
99167_Bayer Patient 1	0.0	0.0	94713_Donor 2 AD - B_adipose	0.0	0.0
97482_Patient-08ut_uterus	0.0	0.0	94714_Donor 2 AD - C_adipose	2.3	0.0
97483_Patient-08pl_placent a	0.0	0.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	0.0	0.0
97486_Patient-09sk_skeleta l muscle	7.6	15.5	94743_Donor 3 U - B_Mesenchymal Stem Cells	0.0	0.0
97487_Patient-09ut_uterus	28.7	11.2	94730_Donor 3 AM - A_adipose	0.0	0.0
97488_Patient-09pl_placent a	1.4	1/1/	94731_Donor 3 AM - B_adipose	0.0	1.9
97492_Patient-10ut_uterus			94732_Donor 3 AM - C_adipose	0.0	0.0
97493_Patient-10pl_placent a		7 Y	94733_Donor 3 AD - A_adipose	0.0	0.0
97495_Patient-11go_adipos e	20.0	71) 1	94734_Donor 3 AD - B_adipose	0.0	0.0

97496_Patient-11sk_skeleta l muscle	6.0	8.7	94735_Donor 3 AD -	0.0	0.0
-	45.1	65.1	77138_Liver_HepG2untreate	0.0	0.0
97498_Patient-11pl_placent a	0.0	0.0	73556_Heart_Cardiac stromal cells (primary)	5.1	3.2
	39.9	59.9	81735_Small Intestine	73.2	65.1
97501_Patient-12sk_skeleta I muscle	100.0	100.0	72409_Kidney_Proximal Convoluted Tubule	0.0	0.0
_ · ;	29.1	97.3	82685_Small intestine_Duodenum	59.0	67.4
97503_Patient-12pl_placent a	5.0	2.3	90650_Adrenal_Adrenocortic al adenoma	0.0	0.0
94721_Donor 2 U - A_Mesenchymal Stem Cells	0.0	0.0	72410_Kidney_HRCE	0.0	0.0
94722_Donor 2 U - B_Mesenchymal Stem Cells	0.0	0.0	72411_Kidney_HRE	0.0	0.0
4723_Donor 2 U - C_Mesenchymal Stem Cells	1.5	0.0	73139_Uterus_Uterine smooth muscle cells	0.0	0.0

General_screening_panel_v1.6 Summary: Ag6864 Highest expression of this gene is seen in lymph node (CT=29). Moderate levels of expression are also seen predominantly in normal tissue, including adipose, colon, heart, thymus, prostate, and kidney, as well as in colon cancer tissue. Thus, expression of this gene could be used to identify these samples and tissues. Modulation of the expression of this gene may also be effective in the treatment of diseases of these tissues, including cancer, obesity and diabetes.

Panel 5 Islet Summary: Ag6864 Two experiments with the same probe and primer produce results that are in excellent agreement. Highest expression of this gene is seen in skeletal muscle (CTs=33.5). Please see Panel 1.6 for discussion of this gene.

L. CG144906-01: TESTISIN PRECURSOR.

5

Expression of gene CG144906-01 was assessed using the primer-probe set Ag6915,
described in Table LA. Please note that CG144906-01 represents a full-length physical clone.

Table LA. Probe Name Ag6915

Primers	Sequence	ll enoth	Start Position	SEQ ID No
	5'-catgccatcctccacattt-3'	19	337	294
Probe	TET-5'-cagcagtctgtccggttctcaaactc -3'-TAMRA	26	356	295
Reverse	5'-gtgcctcatcctctttgatgta-3'	22	398	296

5

10

General_screening_panel_v1.6 Summary: Ag6915 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

M. CG144997-01: RNase H I.

Expression of gene CG144997-01 was assessed using the primer-probe set Ag7057, described in Table MA. Results of the RTQ-PCR runs are shown in Table MB. Please note that CG144997-01 represents a full-length physical clone.

Table MA. Probe Name Ag7057

Primers	·	ii enoth	Start Position	SEQ ID No
Forward	5'-gtaaacgccgattcctgct-3'	19	468	297
Probe	TET-5'-cttctacgcccattactggagcagca -3'-TAMRA	26	493	298
Reverse	5'-gaatgagtgcagagacacgttt-3'	22	558	299

Table MB. General screening panel v1.6

Tissue Name	Rel. Exp.(%) Ag7057, Run 282273884	issue Name	Rel. Exp.(%) Ag7057, Run 282273884
Adipose	3.9	Renal ca. TK-10	33.9
Melanoma* Hs688(A).T	23.8	Bladder	15.7
Melanoma* Hs688(B).T	28.3	Gastric ca. (liver met.) NCI-N87	49.0
Melanoma* M14	50.7	Gastric ca. KATO III	100.0
Melanoma* LOXIMVI	57.8	Colon ca. SW-948	11.4
Melanoma* SK-MEL-5	51.4	Colon ca. SW480	76.3
Squamous cell carcinoma SCC-4	22.5	Colon ca.* (SW480 met) SW620	34.9

Testis Pool	9.0	Colon ca. HT29	115.8
Prostate ca.* (bone met) PC-3	60.3	Colon ca. HCT-116	36.6
Prostate Pool	5.4	Colon ca. CaCo-2	42.0
Placenta	4.5	Colon cancer tissue	17.6
Uterus Pool	1.9	Colon ca. SW1116	5.4
Ovarian ca. OVCAR-3	31.2	Colon ca. Colo-205	10.4
Ovarian ca. SK-OV-3	31.4	Colon ca. SW-48	6.8
Ovarian ca. OVCAR-4	17.1	Colon Pool	9.5
Ovarian ca. OVCAR-5	39.0	Small Intestine Pool	5.7
Ovarian ca. IGROV-1	13.3	Stomach Pool	5.1
Ovarian ca. OVCAR-8	15.0	Bone Marrow Pool	3.3
Ovary	4.9	Fetal Heart	4.7
Breast ca. MCF-7	21.8	Heart Pool	4.5
Breast ca. MDA-MB-231	17.3	Lymph Node Pool	8.9
Breast ca. BT 549	24.8	Fetal Skeletal Muscle	4.0
Breast ca. T47D	9.5	Skeletal Muscle Pool	2.3
Breast ca. MDA-N	22.7	Spleen Pool	4.1
Breast Pool	12.3	Thymus Pool	8.2
Trachea	7.3	CNS cancer (glio/astro) U87-MG	55.5
Lung	1.9	CNS cancer (glio/astro) U-118-MG	49.7
Fetal Lung	8.6	CNS cancer (neuro;met) SK-N-AS	49.7
Lung ca. NCI-N417	10.1	CNS cancer (astro) SF-539	22.1
Lung ca. LX-1	22.4	CNS cancer (astro) SNB-75	45.1
Lung ca. NCI-H146	11.9	CNS cancer (glio) SNB-19	16.7
Lung ca. SHP-77	82.9	CNS cancer (glio) SF-295	56.6
Lung ca. A549	54.0	Brain (Amygdala) Pool	7.3
Lung ca. NCI-H526	8.9	Brain (cerebellum)	20.0
Lung ca. NCI-H23	37.9	Brain (fetal)	8.0
Lung ca. NCI-H460	37.1	Brain (Hippocampus) Pool	8.1
Lung ca. HOP-62	12.1	Cerebral Cortex Pool	12.0
Lung ca. NCI-H522	56.6	Brain (Substantia nigra) Pool	6.7
Liver	0.8	Brain (Thalamus) Pool	12.1
Fetal Liver	6.7	Brain (whole)	7.1
Liver ca. HepG2	18.6	Spinal Cord Pool	6.7
Kidney Pool	10.8	Adrenal Gland	6.9
Fetal Kidney	5.8	Pituitary gland Pool	2.9
Renal ca. 786-0	21.6	Salivary Gland	2.6
Renal ca. A498	17.1	Thyroid (female)	2.5
Renal ca. ACHN	17.6	Pancreatic ca. CAPAN2	23.3
Renal ca. UO-31	18.0	Pancreas Pool	6.0

General_screening_panel_v1.6 Summary: Ag7057 Highest expression of this gene is detected in a gastric cancer cell line (CT=27). Moderate levels of expression of this

gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colori, hung, in liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.

Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

N. CG145494-01: PRESTIN.

Expression of gene CG145494-01 was assessed using the primer-probe sets 20 Ag6694, Ag7803 and Ag7797, described in Tables NA, NB and NC. Results of the RTQ-PCR runs are shown in Table ND.

Table NA. Probe Name Ag6694

Primers	Sequeces	II.enoth		SEQ ID No
Forward	5'-ggcacagaggccagagat-3'	18	559	300
Probe	TET-5'-gtgaccttactttcaggaatcattcagt tttgc-3'-TAMRA	33	604	301
Reverse	5'-ggctctgtgagatatatggcc-3'	21	663	302

5

10

Table NB. Probe Name Ag7803

Primers	Sequencs	llenath	Start Position	SEQ ID No
Forward	5'-ggagaaccagcaaaatagagct-3'	22	1367	303
	TET-5'-ccaatcccaggaacaaggaggacaca a-3'-TAMRA	27	1409	304
Reverse	5'-atcacagcagtgatcaaacca-3'	21	1440	305

5

Table NC. Probe Name Ag7797

Primers	Sequenes	Length	Start Position	SEQ ID No
Forward	5'-ccatctggcttaccacttttg-3'	21	1391	306
Probe	TET-5'-cacagcagtgatcaaaccatagtccaa tcc-3'-TAMRA	30	1429	307
Reverse	5'-aaatcacagtcagcagagcaat-3'	22	1462	308

Table ND. General_screening_panel_v1.6

Tissue Name	Rel. Exp.(%) Ag6694, Run 277223811	issue Name	Rel. Exp.(%) Ag6694, Run 277223811
Adipose	0.0	Renal ca. TK-10	0.0
Melanoma* Hs688(A).T	0.0	Bladder	0.0
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	0.0
Melanoma* M14	0.0	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	0.0
Melanoma* SK-MEL-5	0.0	Colon ca. SW480	0.0
Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	0.0
Testis Pool	0.0	Colon ca. HT29	0.0
Prostate ca.* (bone met) PC-3	100.0	Colon ca. HCT-116	0.0
Prostate Pool	0.9	Colon ca. CaCo-2	0.0
Placenta	0.0	Colon cancer tissue	0.0
Uterus Pool	0.0	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	0.0	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	0.0	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.0	Colon Pool	0.0
Ovarian ca. OVCAR-5	0.0	Small Intestine Pool	0.0

Ovarian ca. IGROV-1	0.0	Stomach Pool	0.0
Ovarian ca. OVCAR-8	0.0	Bone Marrow Pool	0.0
Ovary	0.0	Fetal Heart	0.0
Breast ca. MCF-7	0.0	Heart Pool	0.0
Breast ca. MDA-MB-231	0.0	Lymph Node Pool	0.0
Breast ca. BT 549	0.0	Fetal Skeletal Muscle	0.0
Breast ca. T47D	0.0	Skeletal Muscle Pool	0.0
Breast ca. MDA-N	0.0	Spleen Pool	0.0
Breast Pool	0.0	Thymus Pool	0.0
Trachea	1.0	CNS cancer (glio/astro) U87-MG	0.0
Lung	0.0	CNS cancer (glio/astro) U-118-MG	0.0
Fetal Lung	2.9	CNS cancer (neuro;met) SK-N-AS	0.0
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	0.0	CNS cancer (astro) SNB-75	0.0
Lung ca. NCI-H146	0.0	CNS cancer (glio) SNB-19	0.0
Lung ca. SHP-77	0.0	CNS cancer (glio) SF-295	0.0
Lung ca. A549	0.0	Brain (Amygdala) Pool	0.0
Lung ca. NCI-H526	0.0	Brain (cerebellum)	14.6
Lung ca. NCI-H23	0.0	Brain (fetal)	0.0
Lung ca. NCI-H460	0.0	Brain (Hippocampus) Pool	0.0
Lung ca. HOP-62	0.0	Cerebral Cortex Pool	0.0
Lung ca. NCI-H522	0.0	Brain (Substantia nigra) Pool	0.0
Liver	0.0	Brain (Thalamus) Pool	0.0
Fetal Liver	0.0	Brain (whole)	0.0
Liver ca. HepG2	0.0	Spinal Cord Pool	0.0
Kidney Pool	0.0	Adrenal Gland	0.0
Fetal Kidney	0.0	Pituitary gland Pool	0.0
Renal ca. 786-0	0.0	Salivary Gland	0.0
Renal ca. A498	0.0	Thyroid (female)	0.0
Renal ca. ACHN	0.0	Pancreatic ca. CAPAN2	0.0
Renal ca. UO-31	0.0	Pancreas Pool	0.0

CNS_neurodegeneration_v1.0 Summary: Ag7797 Expression of this gene is low/undetectable (CTs > 34.7) across all of the samples on this panel.

5

General_screening_panel_v1.6 Summary: Ag6694 Moderate level of expression of this gene is restricted to prostate cancer cell line (CT=32.6). Therefore, expression of this gene may be used to distinguish this sample from other samples in this panel and also as diagnostic marker to detect the presence of prostate cancer. In addition, therapeutic modulation of this gene may be useful in the treatment of prostate cancer.

Panel 4.1D Summary: Ag7803 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

O. CG145722-01: WEE1-like protein kinase.

Expression of gene CG145722-01 was assessed using the primer-probe set Ag6231, described in Table OA. Results of the RTQ-PCR runs are shown in Table OB.

Table OA. Probe Name Ag6231

Primers	Sequence	Length	Start Position	SEQ ID No
Forward	5'-gcttcctggctaatgagatttt-3'	22	1339	309
Probe	TET-5'-agaggattaccggcaccttcccaaag -3'-TAMRA	26	1364	310
Reverse	5'-tgttaatcccaaggcaaatatg-3'	22	1394	311

Table OB. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag6231, Run 259211049	issue Name	Rel. Exp.(%) Ag6231, Run 259211049
Adipose	0.0	Renal ca. TK-10	0.0
Melanoma* Hs688(A).T	0.0	Bladder	0.0
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	0.0
Melanoma* M14	0.0	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	0.0
Melanoma* SK-MEL-5	0.0	Colon ca. SW480	0.0
Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	0.0
Testis Pool	0.0	Colon ca. HT29	0.0
Prostate ca.* (bone met) PC-3	0.0	Colon ca. HCT-116	0.0
Prostate Pool	0.0	Colon ca. CaCo-2	97.3
Placenta	0.0	Colon cancer tissue	0.0
Uterus Pool	0.0	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	0.0	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	0.0	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.0	Colon Pool	0.0
Ovarian ca. OVCAR-5	0.0	Small Intestine Pool	0.0
Ovarian ca. IGROV-1	0.0	Stomach Pool	0.0
Ovarian ca. OVCAR-8	0.0	Bone Marrow Pool	0.0

Ovary	0.0	Fetal Heart	10:0.1.35
Breast ca. MCF-7	0.0	Heart Pool	0.0
Breast ca. MDA-MB-231	0.0	Lymph Node Pool	0.0
Bréast ca. BT 549	0.0	Fetal Skeletal Muscle	0.0
Breast ca. T47D	0.0	Skeletal Muscle Pool	0.0
Breast ca. MDA-N	0.0	Spleen Pool	0.0
Breast Pool	0.0	Thymus Pool	0.0
Trachea	0.0	CNS cancer (glio/astro) U87-MG	0.0
Lung	0.0	CNS cancer (glio/astro) U-118-MG	0.0
Fetal Lung	0.0	CNS cancer (neuro; met) SK-N-AS	0.0
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	0.0	CNS cancer (astro) SNB-75	4.2
Lung ca. NCI-H146	100.0	CNS cancer (glio) SNB-19	0.0
Lung ca. SHP-77	2.3	CNS cancer (glio) SF-295	0.0
Lung ca. A549	0.0	Brain (Amygdala) Pool	2.3
Lung ca. NCI-H526	0.0	Brain (cerebellum)	5.6
Lung ca. NCI-H23	0.0	Brain (fetal)	2.6
Lung ca. NCI-H460	0.0	Brain (Hippocampus) Pool	0.0
Lung ca. HOP-62	0.0	Cerebral Cortex Pool	0.0
Lung ca. NCI-H522	0.0	Brain (Substantia nigra) Pool	0.0
Liver	0.0	Brain (Thalamus) Pool	0.0
Fetal Liver	0.0	Brain (whole)	3.7
Liver ca. HepG2	0.0	Spinal Cord Pool	0.0
Kidney Pool	1.8	Adrenal Gland	0.0
Fetal Kidney	2.2	Pituitary gland Pool	0.0
Renal ca. 786-0	0.0	Salivary Gland	0.0
Renal ca. A498	0.0	Thyroid (female)	0.0
Renal ca. ACHN	0.0	Pancreatic ca. CAPAN2	4.6
Renal ca. UO-31	6.0	Pancreas Pool	0.0

CNS_neurodegeneration_v1.0 Summary: Ag6231 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

5

10

General_screening_panel_v1.5 Summary: Ag6231 Low levels of expression of this gene is restricted to a lung cancer and a colon cancer cell lines (CTs=32.2). Therefore, expression of this gene may be used to distinguish these cell lines from other samples in this panel and also as diagnostic marker to detect the presence of colon and lung cancers. In addition, therapeutic modulation of this gene may be useful in the treatment of these cancers.

Panel 4.1D Summary: Ag6231 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

P. CG145754-02: KALLIKREIN 7 PRECURSOR. SOR. SIES FINANCE FOR THE PROPERTY OF

Expression of gene CG145754-02 was assessed using the primer-probe set Ag7038, described in Table PA. Results of the RTQ-PCR runs are shown in Tables PB and PC. Please note that CG145754-02 represents a full-length physical clone.

5 <u>Table PA. Probe Name Ag7038</u>

10

Primers	Sequence	Length	Start Position	SEQ ID
Forward	5'-tgttaatgacctcaagctcatctc-3'	24	342	312
Probe	TET-5'-ccccaggactgcacgaaggtttacaa	26	367	313
Reverse	5'-tttcttggagtcggggatg-3'	19	426	314

Table PB. General screening panel v1.6

6 0 0 0 0	Renal ca. TK-10 Bladder Gastric ca. (liver met.) NCI-N87 Gastric ca. KATO III	282273672 0.0 0.0 100.0
0	Bladder Gastric ca. (liver met.) NCI-N87	0.0
0		
0	1040HIC CA. KAIU III	22.1
	Colon ca. SW-948	4.4
)	Colon ca. SW480	10.5
)	Colon ca.* (SW480 met) SW620	0.0
)	Colon ca. HT29	0.0
)	Colon ca. HCT-116	9.7
)	Colon ca. CaCo-2	0.0
)	Colon cancer tissue	0.6
		38.7
	The state of the s	
		0.0
		0.0
		0.0
		0.0
		0.0
		0.0
		0.0 0.0
		Colon ca. Colo-205 Colon ca. SW-48 Colon Pool Small Intestine Pool Stomach Pool Bone Marrow Pool Fetal Heart

Breast ca. MDA-MB-231	0.0	Lymph Node Pool	10.0
Breast ca. BT 549	0.0	Fetal Skeletal Muscle	0.0
Breast ca. T47D	0.0	Skeletal Muscle Pool	0.0
Breast ca. MDA-N	0.0	Spleen Pool	0.0
Breast Pool	0.0	Thymus Pool	0.0
Trachea	0.0	CNS cancer (glio/astro) U87-MG	0.0
Lung	0.0	CNS cancer (glio/astro) U-118-MG	_f
Fetal Lung	0.0	CNS cancer (neuro;met) SK-N-AS	0.0
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	0.5	CNS cancer (astro) SNB-75	2.0
Lung ca. NCI-H146	0.0	CNS cancer (glio) SNB-19	0.0
Lung ca. SHP-77	0.0	CNS cancer (glio) SF-295	0.0
Lung ca. A549	0.0	Brain (Amygdala) Pool	1.5
Lung ca. NCI-H526	0.0	Brain (cerebellum)	5.6
Lung ca. NCI-H23	4.2	Brain (fetal)	0.0
Lung ca. NCI-H460	0.0	Brain (Hippocampus) Pool	4.0
Lung ca. HOP-62	0.0	Cerebral Cortex Pool	3.1
Lung ca. NCI-H522	0.0	Brain (Substantia nigra) Pool	1.4
Liver	0.0	Brain (Thalamus) Pool	3.9
Fetal Liver	0.0	Brain (whole)	0.2
Liver ca. HepG2	0.0		0.3
Kidney Pool	0.0		0.0
Fetal Kidney	1.3		0.0
Renal ca. 786-0	0.0	0.1:	0.0
Renal ca. A498	0.6	(m) : 1 / 6	0.0
Renal ca. ACHN	0.0		2.2
Renal ca. UO-31	0.0		0.0

Table PC. Panel 5 Islet

Tissue Name	Rel. Exp.(%) Ag703, Run 305424861	Tissue Name	Rel. Exp.(%) Ag7038, Run 305424861	
97457_Patient-02go_adipose	3.0	94709_Donor 2 AM - A_adipose	0.0	
97476_Patient-07sk_skeletal muscle	1	94710_Donor 2 AM - B_adipose	100.0	
97477_Patient-07ut_uterus	0.0	94711_Donor 2 AM - C_adipose		
97478_Patient-07pl_placenta			0.0	
99167_Bayer Patient 1		94712_Donor 2 AD - A_adipose	0.0	
		94713_Donor 2 AD - B_adipose	0.0	
97482_Patient-08ut_uterus	0.0	94714_Donor 2 AD - C_adipose	0.0	

		good they bell It is some with the best that they	is minds the till though an
97483_Patient-08pl_placenta	0.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	13.0
97486_Patient-09sk_skeletal muscle	0.0	94743_Donor 3 U - B_Mesenchymal Stem Cells	5.5
97487_Patient-09ut_uterus	0.0	94730_Donor 3 AM - A_adipose	0.0
97488_Patient-09pl_placenta	0.0	94731_Donor 3 AM - B_adipose	0.0
97492_Patient-10ut_uterus	0.0	94732_Donor 3 AM - C_adipose	0.0
97493_Patient-10pl_placenta	0.0	94733_Donor 3 AD - A_adipose	0.0
97495_Patient-11go_adipose	2.7	94734_Donor 3 AD - B_adipose	0.0
97496_Patient-11sk_skeletal muscle	0.0	94735_Donor 3 AD - C_adipose	0.0
97497_Patient-11ut_uterus	0.0	77138_Liver_HepG2untreated	0.0
97498_Patient-11pl_placenta	0.0	73556_Heart_Cardiac stromal cells (primary)	0.0
97500_Patient-12go_adipose	1.5	81735_Small Intestine	0.0
97501_Patient-12sk_skeletal muscle	0.0	72409_Kidney_Proximal Convoluted Tubule	2.4
97502_Patient-12ut_uterus	1.0	82685_Small intestine_Duodenum	0.0
97503_Patient-12pl_placenta	0.0	90650_Adrenal_Adrenocortical adenoma	0.0
94721_Donor 2 U - A_Mesenchymal Stem Cells	0.0	72410_Kidney_HRCE	5.7
94722_Donor 2 U - B_Mesenchymal Stem Cells	0.0	72411_Kidney_HRE	10.2
94723_Donor 2 U - C_Mesenchymal Stem Cells	0.0	73139_Uterus_Uterine smooth muscle cells	0.0

General_screening_panel_v1.6 Summary: Ag7038 Highest expression of this gene is detected in a gastric cancer NCI-N87 cell line (CT=31.3). Expression of this gene seems to be restricted to number of colon and gastric cancer cell lines. Therefore, expression of this gene may be used to distinguish colon and gastric cancer cell lines from other samples in this panel and also as a diagnostic marker to detect the presence of colon and gastric cancers. In addition, therapeutic modulation of this gene may be useful in the treatment of colon and gastric cancer.

5

10

Panel 5 Islet Summary: Ag7038 Low levels of expression of this gene is restricted to adipose tissue (CT=33). Therefore, expression of this gene may be used to distinguish this adipose sample from other samples in this panel. In addition, therapeutic modulation of this gene may be useful in the treatment of metabolic diseases such as obesity and diabetes.

Another experiment (Run 307650500) with this probe-primer set showed 1 3 7 3 low/undetectable (CTs > 35) across all of the samples on this panel.

Q. CG145754-03: Kallikrein-7.

Expression of gene CG145754-03 was assessed using the primer-probe set Ag5272, described in Table QA. Results of the RTQ-PCR runs are shown in Table QB.

Table QA. Probe Name Ag5272

Primers		Length	Start Position	SEQ ID
Forward	5'-ggcagccaggggtgacaa-3'	18	1119	315
Probe	TET-5'-cgccccatgtgcaagaggctccc-3	23	149	316
Reverse	5'-cctccgcagtggagctgatt-3'	20	201	317

Table QB. Panel 4.1D

Tissue Name	Rel. Ep.(%) Ag5272, Run 230500478	Tissue Name	Rel. Exp.(%) Ag5272, Run 230500478
Secondary Th1 act	0.0	HUVEC IL-1beta	0.0
Secondary Th2 act	0.0	HUVEC IFN gamma	0.0
Secondary Trl act	0.0	HUVEC TNF alpha + IFN gamma	0.0
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0
Secondary Th2 rest	0.0	HUVEC IL-11	0.0
Secondary Tr1 rest	0.0	Lung Microvascular EC none	0.0
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	0.0
Primary Th2 act	0.0	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1 beta	0.0
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1 beta	1.3
Primary Th2 rest	0.0	Small airway epithelium none	100.0
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha	46.7
CD45RA CD4 lymphocyte act	0.6	Coronery artery SMC rest	0.0
D45RO CD4 lymphocyte act	0.0	Coronery artery SMC TNFalnha +	0.0

CD8 lymphocyte act	0.0	Astrocytes rest	0.0
Secondary CD8 lymphocyte rest	0.0	Astrocytes TNFalpha + IL-1beta	0.0
Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	1.2
2ry Th1/Th2/Tr1_anti-CD95 CH11	0.0	CCD1106 (Keratinocytes) none	14.2
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	4.5
LAK cells IL-2	0.0	Liver cirrhosis	0.0
LAK cells IL-2+IL-12	0.0	NCI-H292 none	0.0
LAK cells IL-2+IFN gamma	0.0	NCI-H292 IL-4	0.0
LAK cells IL-2+ IL-18	0.0	NCI-H292 IL-9	0.0
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-13	0.6
NK Cells IL-2 rest	0.0	NCI-H292 IFN gamma	0.0
Two Way MLR 3 day	0.0	HPAEC none	0.0
Two Way MLR 5 day	0.0	HPAEC TNF alpha + IL-1 beta	0.0
Two Way MLR 7 day	0.0	Lung fibroblast none	0.0
PBMC rest	0.0	Lung fibroblast TNF alpha + IL-1 beta	0.0
PBMC PWM	0.0	Lung fibroblast IL-4	0.0
PBMC PHA-L	0.0	Lung fibroblast IL-9	0.0
Ramos (B cell) none	0.0	Lung fibroblast IL-13	0.0
Ramos (B cell) ionomycin	0.0	Lung fibroblast IFN gamma	0.0
B lymphocytes PWM	0.0	Dermal fibroblast CCD1070 rest	0.0
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 TNF alpha	0.0
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 IL-1 beta	0.0
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast IFN gamma	0.0
Dendritic cells none	0.0	Dermal fibroblast IL-4	0.0
Dendritic cells LPS	0.5	Dermal Fibroblasts rest	0.0
Dendritic cells anti-CD40	0.0	Neutrophils TNFa+LPS	0.0
Monocytes rest	0.0	Neutrophils rest	0.0
Monocytes LPS	0.0	Colon	0.0
Macrophages rest	0.0	Lung	0.0
Macrophages LPS	0.0	Thymus	0.0
HUVEC none	0.0	Kidney	11.2
HUVEC starved	0.0		

Panel 4.1D Summary: Ag5272 Highest expression of this gene is seen in resting small airway epithelium (CT=32). Significant expression of this gene is also seen in cytokines TNF-a and IL-1b treated small airway epithelium. Therefore, modulation of the

expression or activity of the protein encoded by this transcript through the application of small molecule therapeutics may be useful in the treatment of asthma, COPD, and emphysema.

R. CG146279-01: Potassium channel subfamily K member 10.

Expression of gene CG146279-01 was assessed using the primer-probe set Ag6035, described in Table RA. Results of the RTQ-PCR runs are shown in Tables RB, RC, RD and RE.

Table RA. Probe Name Ag6035

10

Primers		II.enoth	Start Position	SEQ ID No
Forward	5'-atgaaatttccaatcgagacg-3'	21	61	318
Probe	TET-5'-ctaaagtggccgttcccgcagc-3' -TAMRA	22	107	319
Reverse	5'-ggggttgcccgttagtg-3'	17	156	320

Table RB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag6035, Run 225246892	issue Name	Rel. Exp.(%) Ag6035, Run 225246892
AD 1 Hippo	22.5	Control (Path) 3 Temporal Ctx	9.9
AD 2 Hippo	25.9	Control (Path) 4 Temporal Ctx	38.2
AD 3 Hippo	12.4	AD 1 Occipital Ctx	22.2
AD 4 Hippo	13.5	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	82.9	AD 3 Occipital Ctx	5.3
AD 6 Hippo	74.2	AD 4 Occipital Ctx	35.4
Control 2 Hippo	21.5	AD 5 Occipital Ctx	40.9
Control 4 Hippo	19.3	AD 6 Occipital Ctx	17.7
Control (Path) 3 Hippo	8.2	Control 1 Occipital Ctx	4.8
AD 1 Temporal Ctx	24.3	Control 2 Occipital Ctx	53.2
AD 2 Temporal Ctx	43.8	Control 3 Occipital Ctx	39.2
AD 3 Temporal Ctx	4.5	Control 4 Occipital Ctx	8.2
AD 4 Temporal Ctx	36.6	Control (Path) 1 Occipital Ctx	88.3
AD 5 Inf Temporal Ctx	100.0	Control (Path) 2 Occipital Ctx	7.1
AD 5 Sup Temporal Ctx	62.0	Control (Path) 3 Occipital Ctx	2.5

AD 6 Inf Temporal Ctx	74.7	Control (Path) 4 Occipital Cix	37.1
AD 6 Sup Temporal Ctx	65.1	Control 1 Parietal Ctx	8.9
Control 1 Temporal Ctx	5.8	Control 2 Parietal Ctx	77.4
Control 2 Temporal Ctx	29.5	Control 3 Parietal Ctx	17.1
Control 3 Temporal Ctx	22.7	Control (Path) 1 Parietal Ctx	77.9
Control 3 Temporal Ctx	22.7	Control (Path) 2 Parietal Ctx	22.4
Control (Path) 1 Temporal Ctx	74.2	Control (Path) 3 Parietal Ctx	6.3
Control (Path) 2 Temporal Ctx	47.0	Control (Path) 4 Parietal Ctx	51.4

Table RC. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag6035, Run 228763481	issue Name	Rel. Exp.(%) Ag6035, Run 228763481
Adipose	0.5	Renal ca. TK-10	9.3
Melanoma* Hs688(A).T	0.0	Bladder	2.6
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	8.2
Melanoma* M14	0.0	Gastric ca. KATO III	12.8
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	1.0
Melanoma* SK-MEL-5	0.0	Colon ca. SW480	14.8
Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	29.1
Testis Pool	1.3	Colon ca. HT29	1.7
Prostate ca.* (bone met) PC-3	0.0	Colon ca. HCT-116	12.7
Prostate Pool	4.7	Colon ca. CaCo-2	12.3
Placenta	2.0	Colon cancer tissue	5.3
Uterus Pool	2.5	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	3.3	Colon ca. Colo-205	3.7
Ovarian ca. SK-OV-3	2.8	Colon ca. SW-48	3.4
Ovarian ca. OVCAR-4	3.8	Colon Pool	0.9
Ovarian ca. OVCAR-5	7.0	Small Intestine Pool	1.5
Ovarian ca. IGROV-1	10.4	Stomach Pool	2.1
Ovarian ca. OVCAR-8	3.1	Bone Marrow Pool	0.5
Ovary	1.1	Fetal Heart	1.3
Breast ca. MCF-7	3.7	Heart Pool	0.2
Breast ca. MDA-MB-231	6.9	Lymph Node Pool	0.9
Breast ca. BT 549	2.0	Fetal Skeletal Muscle	1.4
Breast ca. T47D	1.1	Skeletal Muscle Pool	2.3
Breast ca. MDA-N	4.3	Spleen Pool	0.6
Breast Pool	4.9	Thymus Pool	2.8
rachea	0.2		0.0
Lung	1.1		2.8

Fetal Lung	4.1	CNS cancer (neuro; met) SK-N-A	AS 12.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lung ca. NCI-N417	3.9	CNS cancer (astro) SF-539	2.2
Lung ca. LX-1	30.1	CNS cancer (astro) SNB-75	4.6
Lung ca. NCI-H146	8.4	CNS cancer (glio) SNB-19	4.4
Lung ca. SHP-77	33.4	CNS cancer (glio) SF-295	11.4
Lung ca. A549	15.3	Brain (Amygdala) Pool	15.1
Lung ca. NCI-H526	4.8	Brain (cerebellum)	100.0
Lung ca. NCI-H23	5.1	Brain (fetal)	92.7
Lung ca. NCI-H460	7.9	Brain (Hippocampus) Pool	32.1
Lung ca. HOP-62	0.0	Cerebral Cortex Pool	21.8
Lung ca. NCI-H522	0.0	Brain (Substantia nigra) Pool	18.4
Liver	0.5	Brain (Thalamus) Pool	24.8
Fetal Liver	2.0	Brain (whole)	29.9
Liver ca. HepG2	7.4	Spinal Cord Pool	16.3
Kidney Pool	1.6	Adrenal Gland	2.2
Fetal Kidney	3.5	Pituitary gland Pool	3.7
Renal ca. 786-0	2.4	Salivary Gland	1.0
Renal ca. A498	2.4	Thyroid (female)	2.0
Renal ca. ACHN	11.8	Pancreatic ca. CAPAN2	0.0
Renal ca. UO-31	6.2	Pancreas Pool	0.6

Table RD. Panel 4.1D

Tissue Name	Rel. Exp.() Ag6035, Run 225157775	Tissue Name	Rel. Exp.(%) Ag6035, Run 225157775
Secondary Th1 act	0.0	HUVEC IL-1beta	0.0
Secondary Th2 act	0.0	HUVEC IFN gamma	0.0
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	0.0
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0
Secondary Th2 rest	0.0	HUVEC IL-11	0.0
Secondary Tr1 rest	0.0	Lung Microvascular EC none	0.0
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	0.0
Primary Th2 act	0.0	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1beta	0.0
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1beta	0.0
Primary Th2 rest	0.0	Small airway epithelium none	0.0
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1beta	0.0

CD45RA CD4 lymphocyte act	0.0	Coronery artery SMC rest	0.0
CD45RO CD4 lymphocyte act	0.0	Coronery artery SMC TNFalpha + IL-1 beta	0.0
CD8 lymphocyte act	0.0	Astrocytes rest	0.0
Secondary CD8 lymphocyte rest	0.0	Astrocytes TNFalpha + IL-1beta	0.0
Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	0.0
2ry Th1/Th2/Tr1_anti-CD95 CH11	0.0	CCD1106 (Keratinocytes) none	0.0
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0
LAK cells IL-2	0.0	Liver cimhosis	0.0
LAK cells IL-2+IL-12	0.0	NCI-H292 none	0.0
LAK cells IL-2+IFN gamma	0.0	NCI-H292 IL-4	0.0
LAK cells IL-2+ IL-18	0.0	NCI-H292 IL-9	0.0
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-13	0.0
NK Cells IL-2 rest	0.0	NCI-H292 IFN gamma	0.0
Two Way MLR 3 day	10.1	HPAEC none	0.0
Two Way MLR 5 day	0.0	HPAEC TNF alpha + IL-1 beta	0.0
Two Way MLR 7 day	0.0	Lung fibroblast none	0.0
PBMC rest	5.5	Lung fibroblast TNF alpha + IL-1 beta	0.0
PBMC PWM	0.0	Lung fibroblast IL-4	0.0
PBMC PHA-L	0.0	Lung fibroblast IL-9	0.0
Ramos (B cell) none	0.0	Lung fibroblast IL-13	0.0
Ramos (B cell) ionomycin	0.0	Lung fibroblast IFN gamma	0.0
B lymphocytes PWM	0.0	Dermal fibroblast CCD1070 rest	0.0
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 TNF alpha	0.0
EOL-1 dbcAMP	100.0	Dermal fibroblast CCD1070 IL-1 beta	0.0
EOL-1 dbcAMP PMA/ionomycin	36.1	Dermal fibroblast IFN gamma	0.0
Dendritic cells none	0.0	Dermal fibroblast IL-4	0.0
Dendritic cells LPS	0.0	Dermal Fibroblasts rest	0.0
Dendritic cells anti-CD40	0.0	Neutrophils TNFa+LPS	0.0
Monocytes rest	9.9	Neutrophils rest	0.0
Monocytes LPS	0.0	Colon	0.0
Macrophages rest	0.0	Lung	0.0
Macrophages LPS	0.0	Thymus	8.5
HUVEC none	0.0	Kidney	7.7
HUVEC starved	0.0		

Table RE. Panel 5 Islet

Tissue Name	Ag6035 Run	Rel. Exp.(%) Ag6035, Run 30641400 3	Tissue Name	Ag6035, Run	Rel. Exp.(%) Ag6035, Run 3064140
97457_Patient-02go_adipos e	0.0	0.0	94709_Donor 2 AM - A_adipose	0.0	0.0
97476_Patient-07sk_skeleta l muscle	0.0	0.0	94710_Donor 2 AM - B_adipose	0.0	0.0
97477_Patient-07ut_uterus	0.0	0.0	94711_Donor 2 AM - C_adipose	0.0	0.0
97478_Patient-07pl_placent a	0.0	0.0	94712_Donor 2 AD - A_adipose	0.0	0.0
99167_Bayer Patient 1	100.0	100.0	94713_Donor 2 AD - B_adipose	0.0	0.0
97482_Patient-08ut_uterus	0.0	0.0	94714_Donor 2 AD - C_adipose	0.0	0.0
97483_Patient-08pl_placent a	0.0	0.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	0.0	0.0
97486_Patient-09sk_skeleta I muscle	0.0	0.0	94743_Donor 3 U - B_Mesenchymal Stem Cells	0.0	0.0
97487_Patient-09ut_uterus	0.0	0.0	94730_Donor 3 AM - A_adipose	0.0	0.0
97488_Patient-09pl_placent a	0.0	0.0	94731_Donor 3 AM - B_adipose	0.0	0.0
	0.0	0.0	94732_Donor 3 AM - C_adipose	0.0	0.0
97493_Patient-10pl_placent a		0.0	94733_Donor 3 AD - A_adipose	0.0	0.0
97495_Patient-11go_adipos e	0.0	0.0	94734_Donor 3 AD - B_adipose	0.0	0.0
97496_Patient-11sk_skeleta 1 muscle	0.0	0.0	94735_Donor 3 AD - C_adipose	0.0	0.0
		0.0	77138_Liver_HepG2untreate d	0.0	0.0
97498_Patient-11pl_placent a	0.0	0.0	73556_Heart_Cardiac stromal cells (primary)	0.0	0.0
97500_Patient-12go_adipos e	0.0	0.0		0.0	0.0
97501_Patient-12sk_skeleta l muscle	0.0		72409_Kidney_Proximal Convoluted Tubule	0.0	0.0
97502_Patient-12ut_uterus	0.0		82685_Small intestine_Duodenum	0.0	0.0
97503_Patient-12pl_placent a	0.0		90650_Adrenal_Adrenocortic al adenoma	0.0	16.2

94721_Donor 2 U - A_Mesenchymal Stem Cells	0.0	0.0	72410_Kidney_HRCE	0.0	0.0
94722_Donor 2 U - B_Mesenchymal Stem Cells	0.0	0.0	72411_Kidney_HRE	0.0	0.0
94723_Donor 2 U - C_Mesenchymal Stem Cells	0.0		73139_Uterus_Uterine smooth muscle cells	0.0	0.0

CNS_neurodegeneration_v1.0 Summary: Ag6035 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.5 for a discussion of this gene in treatment of central nervous system disorders.

5

10

15

20

25

General_screening_panel_v1.5 Summary: Ag6035 Highest expression of this gene is detected in cerebellum (CT=27). This gene codes for a splice variant of potassium channel TREK2. As reported in literature (Bang et al., 2000, J Biol Chem 275(23):17412-9, PMID: 10747911), this gene shows expression preferentially in all the regions of brain. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Moderate to low levels of expression of this gene is also seen in number of cancer cell lines derived from brain, colon, gastric, renal, lung, breast and ovarian cancer. Therefore, therapeutic modulation of this gene may be useful in the treatment of these cancers.

In addition, low levels of expression of this gene is also seen in tissues with metabolic/endocrine functions, including pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

Panel 4.1D Summary: Ag6035 Highest expression of this gene is detected in eosinophils (CT=32.5). Low levels of expression of this gene is also seen in PMA/ionomycin treated eosinophils. Therefore, therapeutic modulation of this gene or its protein product may useful in the treatment of hematopoietic disorders involving

eosinophils, parasitic infections, autoimmune and inflammatory diseases including allergy and asthma.

Panel 5 Islet Summary: Ag6035 Two experiments with same probe-primer sets are in excellent agreement. Low levels of expression of this gene are restricted to islet cells (CTs=33-34). This gene codes for a splice variant of potassium channel TREK2. Potassium channels play an important role in insulin secretion by islet beta cells upon stimulation by glucose. Alteration in the insulin secretion pathway through the use of sulfonylureas or genetic inactivation of K(ATP) channels may lead to inappropriate insulin secretion at low glucose (Henquin JC., 2000, Diabetes 49(11):1751-60, PMID: 11078440). Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment type 2 diabetes.

S. CG146403-01: Diacylglycerol acyltransferase 2.

Expression of gene CG146403-01 was assessed using the primer-probe set Ag6034, described in Table SA. Results of the RTQ-PCR runs are shown in Tables SB, SC and SD.

15 <u>Table SA. Probe Name Ag6034</u>

10

Primers	Sequence	Length	Start Position	SEQ ID
Forward	5'-tggggagaatgacatctttaga-3'	22	540	321
Probe	TET-5'-cttaaggcttttgccacaggctcctg	26	562	322
Reverse	5'-agagaagcccatgagcttctt-3'	21	613	323

20 <u>Table SB. General screening panel v1.5</u>

Tissue Name	Rel. Exp.(%) Ag6034, Run 228763480	issue Name	Rel. Exp.(%) Ag6034, Run 228763480
Adipose	0.2	Renal ca. TK-10	27.9
Melanoma* Hs688(A).T	0.0	Bladder	1.2
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	0.5
Melanoma* M14	0.1	Gastric ca. KATO III	7.9
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	3.6
Melanoma* SK-MEL-5	0.2	Colon ca. SW480	12.5

Testis Pool 0.2	Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	7 W
Prostate Ca.* (bone met) PC-3 0.4 Colon ca. HCT-116 0.0	The state of the s	0.2	Colon ca. HT29	
Prostate Pool 0.0 Colon ca. CaCo-2 100.0 Placenta 0.0 Colon cancer tissue 63.3 Ulerus Pool 0.0 Colon ca. SW1116 0.0 Ovarian ca. OVCAR-3 0.0 Colon ca. SW1116 0.0 Ovarian ca. SK-OV-3 0.2 Colon ca. SW-48 50.0 Ovarian ca. SK-OV-3 0.2 Colon ca. SW-48 50.0 Ovarian ca. OVCAR-4 0.0 Colon Pool 0.2 Ovarian ca. OVCAR-5 0.1 Small Intestine Pool 0.4 Ovarian ca. OVCAR-6 0.1 Stomach Pool 0.0 Ovarian ca. OVCAR-7 0.1 Stomach Pool 0.0 Ovarian ca. OVCAR-8 0.2 Bone Marrow Pool 0.0 Ovarian ca. OVCAR-8 0.2 Bone Marrow Pool 0.0 Ovary 0.0 Fetal Heart 0.2 Breast ca. MCF-7 0.0 Heart Pool 0.1 Breast ca. MDA-MB-231 0.0 Lymph Node Pool 0.0 Breast ca. MDA-MB-231 0.0 Lymph Node Pool 0.0 Breast ca. T47D 0.0 Skeletal Muscle 0.1 Breast ca. T47D 0.0 Skeletal Muscle 0.1 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 Thymus Pool 0.1 Breast Pool 0.0 Thymus Pool 0.1 Trachea 0.0 CNS cancer (glio/astro) U87-MG 0.0 CNS cancer (glio/astro) U-118-MG 0.0 CNS cancer (neuro;met) SK-N-AS 0.0 Lung ca. NCI-N417 0.1 CNS cancer (astro) SNB-75 0.0 Lung ca. NCI-N416 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. NCI-H26 0.0 Brain (ferrebellum) 0.1 Lung ca. NCI-H26 0.0 Brain (ferrebellum) 0.1 Lung ca. NCI-H26 0.0 Brain (ferrebellum) 0.1 Lung ca. NCI-H26 0.0 Brain (filp) compus) Pool 0.0 Lung ca. NCI-H36 0.0 Crebral Cortex Pool 0.0 Lung ca. NCI-H36 0.0 Crebral Cortex Pool 0.0 Lung ca. NCI-H36 0.0 Crebral Cortex Pool 0.0 Lung ca. NCI-H36 0.0 Crebral Cortex Pool 0.0 Lung ca. NCI-H36 0.0 Crebral Cortex Pool 0.0 Lung ca. NCI-H36 0.0 Crebral Cortex Pool 0.0 Lung ca. ACHM 0.0 Crebral Cortex Pool 0.0 Lung ca. ACHM 0.0 Crebral Cortex Pool 0.0 Lung ca. ACHM 0.0 Crebral Cortex Pool 0.0 Crebral Cort	Prostate ca.* (bone met) PC-3			THE RESERVE TO STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,
Placenta				The same of the sa
Uterus Pool 0.0 Colon ca. SW1116 0.0 Ovarian ca. OVCAR-3 0.0 Colon ca. Colo-205 2.1 Ovarian ca. SK-OV-3 0.2 Colon ca. SW-48 50.0 Ovarian ca. OVCAR-4 0.0 Colon Pool 0.2 Ovarian ca. OVCAR-5 0.1 Small Intestine Pool 0.4 Ovarian ca. OVCAR-5 0.1 Small Intestine Pool 0.0 Ovarian ca. OVCAR-8 0.2 Bone Marrow Pool 0.0 Ovarian ca. OVCAR-8 0.2 Bone Marrow Pool 0.0 Ovarian ca. OVCAR-8 0.2 Bone Marrow Pool 0.0 Ovary 0.0 Fetal Heart 0.2 Breast ca. MCF-7 0.0 Heart Pool 0.1 Breast ca. MDA-MB-231 0.0 Lymph Node Pool 0.0 Breast ca. MDA-MB-231 0.0 Lymph Node Pool 0.0 Breast ca. MDA-MB-231 0.0 Skeletal Muscle 0.1 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 Thymus Pool 0.1 Trachea 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U-118-MG 0.0 Fetal Lung 0.4 CNS cancer (neuro;met) SK-N-AS 0.0 Lung ca. NCI-N417 0.1 CNS cancer (neuro;met) SK-N-AS 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. A549 CNS cancer (glio) SNB-19 0.0 Lung ca. A549 O.7 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H260 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. NCI-H520 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H521 0.2 Brain (Substantia nigra) Pool 0.0 Chell Liver 1.7 Brain (Tholme) 0.0 Fetal Liver 55.9 Brain (Indiana) Pool 0.0 Chell Liver 1.7 Brain (Tholme) 0.0 CRISCARD Out Adread Gland 0.0 CRISCARD Out Adread Gland 0.0 CRISCARD Out Pancreatic ca. CAPAN2 0.0	Placenta			
Ovarian ca. OVCAR-3	Uterus Pool	-		
Ovarian ca. SK-OV-3	Ovarian ca. OVCAR-3			The same of the sa
Ovarian ca. OVCAR-4			State Control of the	
Ovarian ca. OVCAR-5	NAME OF TAXABLE PARTY OF THE PA	Name and Address of the Owner, where	the property of the second second second second second second second second second second second second second	Contraction of the contraction
Ovarian ca. IGROV-1 0.1 Stomach Pool 0.0 Ovarian ca. OVCAR-8 0.2 Bone Marrow Pool 0.0 Ovary 0.0 Fetal Heart 0.2 Breast ca. MCF-7 0.0 Heart Pool 0.1 Breast ca. MDA-MB-231 0.0 Lymph Node Pool 0.0 Breast ca. BT 549 0.1 Fetal Skeletal Muscle 0.1 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 Thymus Pool 0.1 Trachea 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U-118-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U-118-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U-118-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung ca. NCI-N17 0.1 CNS cancer (glio/astro) U87-MG 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio/astr	The same of the sa	**		
Ovarian ca. OVCAR-8 0.2 Bone Marrow Pool 0.0 Ovary 0.0 Fetal Heart 0.2 Breast ca. MCF-7 0.0 Heart Pool 0.1 Breast ca. MDA-MB-231 0.0 Lymph Node Pool 0.0 Breast ca. BT 549 0.1 Fetal Skeletal Muscle 0.1 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 CNS cancer (glio/astro) U87-MG 0.0 Breast Pool 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung ca. NCI-H17 0.1 CNS cancer (glio/astro) U87-MG 0.0 Lung ca. NCI-H17 0.1 CN		·		
Ovary 0.0 Fetal Heart 0.2 Breast ca. MCF-7 0.0 Heart Pool 0.1 Breast ca. MDA-MB-231 0.0 Lymph Node Pool 0.0 Breast ca. BT 549 0.1 Fetal Skeletal Muscle 0.1 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 Thymus Pool 0.1 Trachea 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung 0.4 CNS cancer (glio/astro) U87-MG 0.0 Lung ca. NCI-H417 0.1 CNS cancer (glio/astro) U87-MG 0.0 Lung ca. NCI-H417 0.1 CNS cancer (astro) SF-539 0.2 Lung ca. NCI-H416 0.0 CNS cancer (glio/astro) U87-S9 0.0 Lung ca. NCI-H526 0.0 Bra	Ovarian ca. OVCAR-8	0.2		-}
Breast ca. MCF-7 0.0 Heart Pool 0.1 Breast ca. MDA-MB-231 0.0 Lymph Node Pool 0.0 Breast ca. BT 549 0.1 Fetal Skeletal Muscle 0.1 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 Thymus Pool 0.1 Trachea 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung ca. NCI-N417 0.1 CNS cancer (astro) SF-S99 0.2 Lung ca. NCI-H416 0.0 CNS cancer (glio) SNB-75 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SR-295 0.0 Lung ca. NCI-H256 0.0 <				
Breast ca. MDA-MB-231 0.0 Lymph Node Pool 0.0	Breast ca. MCF-7			
Breast ca. BT 549 0.1 Fetal Skeletal Muscle 0.1 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 Thymus Pool 0.1 Trachea 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U-118-MG 0.0 Fetal Lung 0.4 CNS cancer (neuro;met) SK-N-AS 0.0 Lung ca. NCI-N417 0.1 CNS cancer (neuro;met) SK-N-AS 0.0 Lung ca. NCI-N417 0.1 CNS cancer (astro) SNB-75 0.0 Lung ca. NCI-H416 0.0 CNS cancer (glio) SNB-75 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. SHP-77 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. NCI-H23 0.0 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (fetal) 0.2 Lung ca. NCI-H522	Breast ca. MDA-MB-231			
Breast ca. T47D 0.0 Skeletal Muscle Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 Thymus Pool 0.1 Trachea 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U-118-MG 0.0 Fetal Lung 0.4 CNS cancer (glio/astro) U-118-MG 0.0 Lung ca. NCI-H417 0.1 CNS cancer (glio/astro) U-118-MG 0.0 Lung ca. NCI-H417 0.1 CNS cancer (glio/astro) U-118-MG 0.0 Lung ca. NCI-H417 0.1 CNS cancer (glio/astro) U-118-MG 0.0 Lung ca. NCI-H417 0.1 CNS cancer (glio/astro) U-118-MG 0.0 Lung ca. NCI-H416 0.0 CNS cancer (astro) SNB-75 0.0 Lung ca. NCI-H416 0.0 CNS cancer (glio) SNB-75 0.0 Lung ca. NCI-H416 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. NCI-H426 0.0 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain ((fetal) 0.2	Breast ca. BT 549	0.1		
Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 Thymus Pool 0.1 Trachea 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U-118-MG 0.0 Fetal Lung 0.4 CNS cancer (neuro;met) SK-N-AS 0.0 Lung ca. NCI-N417 0.1 CNS cancer (astro) SF-539 0.2 Lung ca. NCI-N417 0.1 CNS cancer (astro) SNB-75 0.0 Lung ca. LX-1 28.1 CNS cancer (astro) SNB-75 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. A549 0.7 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.1 Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Lung ca. NCI-H52	Breast ca. T47D	0.0		
Breast Pool 0.0 Thymus Pool 0.1	Breast ca. MDA-N	0.0		
Trachea 0.0 CNS cancer (glio/astro) U87-MG 0.0 Lung 0.0 CNS cancer (glio/astro) U-118-MG 0.0 Fetal Lung 0.4 CNS cancer (neuro;met) SK-N-AS 0.0 Lung ca. NCI-N417 0.1 CNS cancer (astro) SF-539 0.2 Lung ca. LX-1 28.1 CNS cancer (astro) SNB-75 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. SHP-77 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. A549 0.7 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.1 Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Whole) 1.1 Liver	Breast Pool	0.0	Thymus Pool	
Lung 0.0 CNS cancer (glio/astro) U-118-MG 0.0 Fetal Lung 0.4 CNS cancer (neuro;met) SK-N-AS 0.0 Lung ca. NCI-N417 0.1 CNS cancer (astro) SF-539 0.2 Lung ca. LX-1 28.1 CNS cancer (astro) SNB-75 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. SHP-77 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. A549 0.7 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.1 Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (whole) 1.1 Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2	Trachea	0.0	CNS cancer (glio/astro) U87-MG	CONTRACTOR OF THE PARTY OF THE
Lung ca. NCI-N417 0.1 CNS cancer (astro) SF-539 0.2 Lung ca. LX-1 28.1 CNS cancer (astro) SNB-75 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. SHP-77 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. A549 0.7 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.1 Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Whole) 1.1 Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. A498 0.1 Thyroid (Lung	0.0		
Lung ca. LX-1 28.1 CNS cancer (astro) SNB-75 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. SHP-77 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. A549 0.7 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.1 Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Thalamus) Pool 0.0 Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0	Fetal Lung	0.4		
Lung ca. NCI-H146 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. SHP-77 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. A549 0.7 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.1 Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Thalamus) Pool 0.0 Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CA	Lung ca. NCI-N417	0.1	CNS cancer (astro) SF-539	0.2
Lung ca. SHP-77 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. A549 0.7 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.1 Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Thalamus) Pool 0.0 Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0	Lung ca. LX-1	28.1	CNS cancer (astro) SNB-75	0.0
Lung ca. A549 0.7 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.1 Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Thalamus) Pool 0.0 Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0	Lung ca. NCI-H146	0.0	CNS cancer (glio) SNB-19	0.0
Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.1 Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Thalamus) Pool 0.0 Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0	Lung ca. SHP-77	0.0	CNS cancer (glio) SF-295	0.0
Lung ca. NCI-H23 0.0 Brain (fetal) 0.2 Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Thalamus) Pool 0.0 Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0	Lung ca. A549	0.7	Brain (Amygdala) Pool	0.0
Lung ca. NCI-H460 4.2 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Thalamus) Pool 0.0 Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0	Lung ca. NCI-H526	0.0	Brain (cerebellum)	0.1
Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.1 Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Thalamus) Pool 0.0 Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0	Lung ca. NCI-H23	0.0	Brain (fetal)	0.2
Lung ca. NCI-H522 0.2 Brain (Substantia nigra) Pool 0.0 Liver 1.7 Brain (Thalamus) Pool 0.0 Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0		4.2	Brain (Hippocampus) Pool	0.0
Liver 1.7 Brain (Thalamus) Pool 0.0 Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0	ومرور والمرور والمراجع والمرور والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	0.0	Cerebral Cortex Pool	0.1
Fetal Liver 55.9 Brain (whole) 1.1 Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0	Lung ca. NCI-H522	0.2	Brain (Substantia nigra) Pool	0.0
Liver ca. HepG2 62.9 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0	Liver	<u> </u>	Brain (Thalamus) Pool	0.0
Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0		55.9	Brain (whole)	1.1
Fetal Kidney 5.1 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0		62.9	Spinal Cord Pool	0.0
Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0			Adrenal Gland	0.0
Renal ca. A498 0.1 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0		5.1	Pituitary gland Pool	0.0
Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0		0.0	Salivary Gland	0.0
		0.1	Thyroid (female)	0.0
Renal ca. UO-31 0.0 Pancreas Pool 0.0		0.0	Pancreatic ca. CAPAN2	0.0
	Renal ca. UO-31	0.0	Pancreas Pool	0.0

Table SC. Panel 4.1D

Tissue Name	Rel. Ep.(%) Ag6034, Run 225245213	Tissue Name	Rel. Exp.(%) Ag6034, Run 225245213
Secondary Th1 act	0.0	HUVEC IL-1 beta	0.0
Secondary Th2 act	0.0	HUVEC IFN gamma	0.0
Secondary Trl act	0.4	HUVEC TNF alpha + IFN gamma	0.0
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0
Secondary Th2 rest	0.0	HUVEC IL-11	0.0
Secondary Tr1 rest	0.0	Lung Microvascular EC none	0.0
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	0.0
Primary Th2 act	0.0	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1 beta	0.0
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1beta	0.0
Primary Th2 rest	0.0	Small airway epithelium none	0.0
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1beta	0.0
CD45RA CD4 lymphocyte act	0.0	Coronery artery SMC rest	0.0
CD45RO CD4 lymphocyte act	0.0	Coronery artery SMC TNFalpha + IL-1beta	0.6
CD8 lymphocyte act	0.0	Astrocytes rest	0.0
	0.0	Astrocytes TNFalpha + IL-1beta	0.0
Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	0.0
2ry Th1/Th2/Tr1_anti-CD95 CH11	0.0	CCD1106 (Keratinocytes) none	0.0
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0
LAK cells IL-2	0.0	Liver cirrhosis	17.0
LAK cells IL-2+IL-12	0.0		0.0
LAK cells IL-2+IFN gamma	0.0		0.0
LAK cells IL-2+ IL-18	0.0	2101	0.0
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-13	0.0
NK Cells IL-2 rest	0.0	NCI-H292 IFN gamma	0.0
Two Way MLR 3 day	0.0	HPAEC none	0.0
	0.0	HPAEC TNF alpha + IL-1 beta	0.0
Two Way MLR 7 day	0.0).0
PBMC rest	0.0	Lung fibroblast TNF alpha + IL-1 beta	0.0

PBMC PWM	0.9	Lung fibroblast IL 4	10.0
РВМС РНА-L	0.0	Lung fibroblast IL-9	0.0
Ramos (B cell) none	0.0	Lung fibroblast IL-13	0.0
Ramos (B cell) ionomycin	0.0	Lung fibroblast IFN gamma	0.0
B lymphocytes PWM	0.0	Dermal fibroblast CCD1070 rest	0.0
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 TNF alpha	0.0
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 IL-1 beta	0.0
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast IFN gamma	0.0
Dendritic cells none	0.0	Dermal fibroblast IL-4	0.0
Dendritic cells LPS	0.0	Dermal Fibroblasts rest	0.3
Dendritic cells anti-CD40	0.5	Neutrophils TNFa+LPS	4.0
Monocytes rest	0.0	Neutrophils rest	0.0
Monocytes LPS	0.0	Colon	81.2
Macrophages rest	0.0	Lung	4.7
Macrophages LPS	0.0	Thymus	18.0
HUVEC none	0.0	Kidney	100.0
HUVEC starved	0.0		

Table SD. Panel 5 Islet

97487_Patient-09ut_uterus

97492_Patient-10ut_uterus

97488_Patient-09pl_placenta

97493_Patient-10pl_placenta

97495_Patient-11go_adipose

5

Tissue Name	Ag603, Run 256791126	Tissue Name	Ag6034, Run 256791126
97457_Patient-02go_adipose	0.0	94709_Donor 2 AM - A_adipose	0.0
97476_Patient-07sk_skeletal muscle	0.0	94710_Donor 2 AM - B_adipose	0.0
97477_Patient-07ut_uterus	0.0	94711_Donor 2 AM - C_adipose	0.0
97478_Patient-07pl_placenta	0.0	94712_Donor 2 AD - A_adipose	0.0
99167_Bayer Patient 1	0.0	94713_Donor 2 AD - B_adipose	0.0
97482_Patient-08ut_uterus	0.0	94714_Donor 2 AD - C_adipose	0.0
97483_Patient-08pl_placenta	0.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	0.0
97486_Patient-09sk_skeletal muscle	0.0	94743_Donor 3 U - B_Mesenchymal Stem Cells	0.0

Rel.

0.0

0.0

0.0

0.0

0.0

Exp.(%)

Rel.

0.0

0.0

0.0

0.0

0.0

Exp.(%)

94730_Donor 3 AM - A_adipose

94731_Donor 3 AM - B_adipose

94732_Donor 3 AM - C_adipose

94733_Donor 3 AD - A_adipose

94734_Donor 3 AD - B_adipose

97496_Patient-11sk_skeletal muscle	0.0	94735_Donor 3 AD - C_adipose	0.0
97497_Patient-11ut_uterus	0.0	77138_Liver_HepG2untreated	100.0
97498_Patient-11pl_placenta	0.0	73556_Heart_Cardiac stromal cells (primary)	0.0
97500_Patient-12go_adipose	0.0	81735_Small Intestine	25.5
97501_Patient-12sk_skeletal muscle	0.0	72409_Kidney_Proximal Convoluted Tubule	0.0
97502_Patient-12ut_uterus	0.0	82685_Small intestine_Duodenum	31.2
97503_Patient-12pl_placenta	0.0	90650_Adrenal_Adrenocortical adenoma	0.0
94721_Donor 2 U - A_Mesenchymal Stem Cells	0.0	72410_Kidney_HRCE	0.0
94722_Donor 2 U - B_Mesenchymal Stem Cells	0.0	72411_Kidney_HRE	0.0
94723_Donor 2 U - C_Mesenchymal Stem Cells	0.0	73139_Uterus_Uterine smooth muscle cells	0.0

CNS_neurodegeneration_v1.0 Summary: Ag6034 Expression of this gene is low/undetectable in all samples on this panel (CTs>35). (Data not shown.)

5

10

15

General_screening_panel_v1.5 Summary: Ag6034 Highest expression of this gene is seen in colon cancer (CT=26.3). High to moderate levels of expression are also seen in colon, renal, liver and lung cancer cell lines, as well as in fetal lung. This expression suggests that this gene may be involved in these cancers. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker of these cancers. Therapeutic modulation of the expression or function of this gene may also be useful in the treatment of these cancers.

Panel 4.1D Summary: Ag6034 Expression of this gene is highest in colon and kidney (CTs=30). Thus, expression of this gene could be used as a marker of these tissues.

Panel 5 Islet Summary: Ag6034 Highest expression of this gene is seen in a liver cell line (CT=30.6). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel.

T. CG146513-01: Diacylglycerol acyltransferase 2.

Expression of gene CG146513-01 was assessed using the primer-probe set Ag6036, described in Table TA. Results of the RTQ-PCR runs are shown in Table TB.

Table TA. Probe Name Ag6036

Primers	Sequence	Length	Start Position	SEQ ID
Forward	5'-tggaccctatggaagtatttcc-3'	22	326	324
Probe	TET-5'-ttcccagtacagctggtgaagactca -3'-TAMRA	26	356	325
Reverse	5'-gttgtgtttgggagaaagatca-3'	22	382	326

5

Table TB. Panel 5 Islet

Tissue Name	Rel. Exp.(%) Ag603, Run 279370869	Tissue Name	Rel. Exp.(%) Ag6036, Run 279370869
97457_Patient-02go_adipose	10.5	94709_Donor 2 AM - A_adipose	11.4
97476_Patient-07sk_skeletal muscle	0.0	94710_Donor 2 AM - B_adipose	6.7
97477_Patient-07ut_uterus	3.3	94711_Donor 2 AM - C_adipose	4.2
97478_Patient-07pl_placenta	6.0	94712_Donor 2 AD - A_adipose	23.8
99167_Bayer Patient 1	3.3	94713_Donor 2 AD - B_adipose	32.8
97482_Patient-08ut_uterus	2.6	94714_Donor 2 AD - C_adipose	22.2
97483_Patient-08pl_placenta	1.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	
97486_Patient-09sk_skeletal muscle	8.4	94743_Donor 3 U - B_Mesenchymal Stem Cells	2.5
97487_Patient-09ut_uterus	5.8	94730_Donor 3 AM - A_adipose	12.9
97488_Patient-09pl_placenta	2.2	94731_Donor 3 AM - B_adipose	21.0
97492_Patient-10ut_uterus	4.0	94732_Donor 3 AM - C_adipose	20.4
97493_Patient-10pl_placenta	3.2	94733_Donor 3 AD - A_adipose	26.4
97495_Patient-11go_adipose	6.0	94734_Donor 3 AD - B_adipose	25.5
97496_Patient-11sk_skeletal nuscle	20.2	94735_Donor 3 AD - C_adipose	6.5
7497_Patient-llut_uterus	8.7	77138_Liver_HepG2untreated	41.5
7498_Patient-11pl_placenta	1.9	73556_Heart_Cardiac stromal cells (primary)	1.6
7500_Patient-12go_adipose		81735_Small Intestine	10.7
7501_Patient-12sk_skeletal nuscle	22.2	72409_Kidney_Proximal Convoluted Tubule	100.0
7502_Patient-12ut_uterus	7.1	82685_Small intestine_Duodenum	15.7
7503_Patient-12pl_placenta	1.3	90650 Adrenal Adrenocatical	5.0

94721_Donor 2 U - A_Mesenchymal Stem Cells	12.8	72410_Kidney_HRCE	31.2
94722_Donor 2 U - B_Mesenchymal Stem Cells	6.8	72411_Kidney_HRE	9.1
94723_Donor 2 U - C_Mesenchymal Stem Cells	11.2	73139_Uterus_Uterine smooth muscle cells	13.3

CNS_neurodegeneration_v1.0 Summary: Ag6036 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

General_screening_panel_v1.5 Summary: Ag6036 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

Panel 4.1D Summary: Ag6036 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

Panel 5 Islet Summary: Ag6036 Highest expression of this gene is seen in a

kidney derived sample (CT=29.5). Moderate levels of expression are seen in many samples
on this panel, including samples from uterus, placenta, adipose, and skeletal muscle. Thus,
this gene may be involved in diseases of these tissues, including obesity and diabetes.

U. CG146522-01: Diacylglycerol acyltransferase 2.

Expression of gene CG146522-01 was assessed using the primer-probe set Ag6037, described in Table UA. Results of the RTQ-PCR runs are shown in Table UB.

Table UA. Probe Name Ag6037

Primers	Sequence	Length	Start Position	SEQ ID
Forward	5'-attccaagcagcctagtcactt-3'	22	49	327
Probe	TET-5'-ttctgcagtggggthtman		85	328
Reverse	5'-cagcaggtagacgaacaagatg-3'	22	113	329

Table UB. Panel 5 Islet

5

Tissue Name	Rel. Exp.() Ag6037, Run 279370870	Tissue Name	Rel. Exp.(%) Ag6037, Run 279370870
97457_Patient-02go_adipose	0.0	94709_Donor 2 AM - A_adipose	0.0
97476_Patient-07sk_skeletal muscle	0.0	94710_Donor 2 AM - B_adipose	0.0
97477_Patient-07ut_uterus	0.0	94711_Donor 2 AM - C_adipose	0.0
97478_Patient-07pl_placenta	0.0	94712_Donor 2 AD - A_adipose	0.0
99167_Bayer Patient 1	0.9	94713_Donor 2 AD - B_adipose	0.0
97482_Patient-08ut_uterus	0.8	94714_Donor 2 AD - C_adipose	0.0
97483_Patient-08pl_placenta	0.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	0.0
97486_Patient-09sk_skeletal muscle	9.0	94743_Donor 3 U - B_Mesenchymal Stem Cells	0.0
97487_Patient-09ut_uterus	2.2	94730_Donor 3 AM - A_adipose	0.0
97488_Patient-09pl_placenta	0.0	94731_Donor 3 AM - B_adipose	0.0
97492_Patient-10ut_uterus	0.5	94732_Donor 3 AM - C_adipose	0.0
97493_Patient-10pl_placenta	3.5	94733_Donor 3 AD - A_adipose	0.0
97495_Patient-11go_adipose	1.2	94734_Donor 3 AD - B_adipose	0.9
97496_Patient-11sk_skeletal muscle	39.2	94735_Donor 3 AD - C_adipose	0.0
97497_Patient-11ut_uterus	0.0	77138_Liver_HepG2untreated	0.0
97498_Patient-11pl_placenta	0.0	73556_Heart_Cardiac stromal cells (primary)	0.0
97500_Patient-12go_adipose	1.7	81735_Small Intestine	1.0
97501_Patient-12sk_skeletal muscle	100.0	72409_Kidney_Proximal Convoluted Tubule	0.0
97502_Patient-12ut_uterus	0.0	82685_Small intestine_Duodenum	0.0
97503_Patient-12pl_placenta	1.0	90650_Adrenal_Adrenocortical adenoma	0.0
94721_Donor 2 U - A_Mesenchymal Stem Cells	0.0	72410_Kidney_HRCE	0.0
94722_Donor 2 U - B_Mesenchymal Stem Cells	0.0	72411_Kidney_HRE	0.0
94723_Donor 2 U - C_Mesenchymal Stem Cells		73139_Uterus_Uterine smooth muscle cells	0.0

CNS_neurodegeneration_v1.0 Summary: Ag6037 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

General_screening_panel_v1.5 Summary: Ag@U5# Expression of this gene is all low/undetectable in all samples on this panel (CTs>35).

Panel 4.1D Summary: Ag6037 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

Panel 5 Islet Summary: Ag6037 Expression of this gene is limited to skeletal muscle (CTs=30-31). Thus, expression of this gene could be used to differentiate these samples from other samples on this panel and as a marker of this tissue. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of metabolic disorders, including obesity and diabetes.

V. CG146531-01: DIACYLGLYCEROL ACYLTRANSFERASE

2.

Expression of gene CG146531-01 was assessed using the primer-probe set Ag6038, described in Table VA.

Table VA. Probe Name Ag6038

15

20

10

5

Primers		Length	Start Position	SEQ ID
Forward	5'-aaggtgtcacaggaagagcat-3'	21	10	330
Probe	TET-5'-agccaggtcaccatggctttcttct-3'-TAMRA	25	49	331
Reverse	5'-gccctcctggagattcagt-3'	19	78	332

CNS_neurodegeneration_v1.0 Summary: Ag6038 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

General_screening_panel_v1.5 Summary: Ag6038 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

Panel 4.1D Summary: Ag6038 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

Panel 5 Islet Summary: Ag6038 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

W. CG147274-01: Protease.

Expression of gene CG147274-01 was assessed using the primer-probe set Ag5623, described in Table WA.

Table WA. Probe Name Ag5623

5

Primers		Length	Start Position	SEQ ID
Forward	5'-gatgtgctgccttcagaatg-3'	20	64	333
Probe	TET-5'-aatcctcccggcctccttggagt-3	23	89	334
Reverse	5'-gtccttcctgggtgtcttg-3'	19	121	335

CNS_neurodegeneration_v1.0 Summary: Ag5623 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

General_screening_panel_v1.5 Summary: Ag5623 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

Panel 4.1D Summary: Ag5623 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

X. CG147419-01: GLUTAMINE: FRUCTOSE-6-PHOSPHATE AMIDOTRANSFERASE 1 MUSCLE.

Expression of gene CG147419-01 was assessed using the primer-probe set Ag5207, described in Table XA. Results of the RTQ-PCR runs are shown in Tables XB, XC, XD and XE.

Table XA. Probe Name Ag5207

20

Primers	Sequenes	Length	Start Position	SEQ ID
Forward	5'-gccctctgttgattggtgta-3'	20	736	336
Probe	TET-5'-cggagtgaacataaactttctactgat ca-3'-TAMRA	29	756	337
Reverse	5'-ccaatctgagtcctagctgttc-3'	22	802	338

Table XB. CNS neurodegeneration v1.0

Tissue Name	Rel. Exp.(%) Ag5207, Run 226559656	issue Name	Rel. Exp.(%) Ag5207, Run 226559656
AD 1 Hippo	11.3	Control (Path) 3 Temporal Ctx	2.3
AD 2 Hippo	14.6	Control (Path) 4 Temporal Ctx	54.7
AD 3 Hippo	0.0	AD 1 Occipital Ctx	1.8
AD 4 Hippo	6.3	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	100.0	AD 3 Occipital Ctx	1.7
AD 6 Hippo	29.3	AD 4 Occipital Ctx	11.5
Control 2 Hippo	59.0	AD 5 Occipital Ctx	21.0
Control 4 Hippo	0.0	AD 6 Occipital Ctx	97.9
Control (Path) 3 Hippo	1.8	Control 1 Occipital Ctx	0.0
AD 1 Temporal Ctx	12.5	Control 2 Occipital Ctx	100.0
AD 2 Temporal Ctx	41.5	Control 3 Occipital Ctx	13.3
AD 3 Temporal Ctx	2.2	Control 4 Occipital Ctx	2.2
AD 4 Temporal Ctx	24.1	Control (Path) 1 Occipital Ctx	100.0
AD 5 Inf Temporal Ctx	65.5	Control (Path) 2 Occipital Ctx	7.2
AD 5 SupTemporal Ctx	29.1	Control (Path) 3 Occipital Ctx	0.0
AD 6 Inf Temporal Ctx	26.2	Control (Path) 4 Occipital Ctx	18.9
AD 6 Sup Temporal Ctx	49.3	Control 1 Parietal Ctx	2.5
Control 1 Temporal Ctx	0.0	Control 2 Parietal Ctx	53.2
Control 2 Temporal Ctx	88.3	Control 3 Parietal Ctx	21.6
Control 3 Temporal Ctx	19.5	Control (Path) 1 Parietal Ctx	94.6
Control 4 Temporal Ctx	4.9	Control (Path) 2 Parietal Ctx	16.8
Control (Path) 1 Temporal Ctx	97.3	Control (Path) 3 Parietal Ctx	4.0
Control (Path) 2 Temporal Ctx	48.0	Control (Path) 4 Parietal Ctx	50.3

Table XC. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag5207, Run 228757767	issue Name	Rel. Exp.(%) Ag5207, Run 228757767
Adipose	9.9	Renal ca. TK-10	2.9
Melanoma* Hs688(A).T	4.0	Bladder	2.2
Melanoma* Hs688(B).T	12.1	Gastric ca. (liver met.) NCI-N87	23.2
Melanoma* M14	4.1	Gastric ca. KATO III	17.4
Melanoma* LOXIMVI	0.7	Colon ca. SW-948	0.4

Melanoma* SK-MEL-5	1.8	Colon ca. SW480	11.3
Squamous cell carcinoma SCC-4	0.7	Colon ca.* (SW480 met) SW620	0.1
Testis Pool	2.8	Colon ca. HT29	0.3
Prostate ca.* (bone met) PC-3	6.3	Colon ca. HCT-116	0.2
Prostate Pool	4.1	Colon ca. CaCo-2	1.6
Placenta	0.2	Colon cancer tissue	1.3
Uterus Pool	5.6	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	0.2	Colon ca. Colo-205	2.6
Ovarian ca. SK-OV-3	5.9	Colon ca. SW-48	0.8
Ovarian ca. OVCAR-4	1.2	Colon Pool	11.3
Ovarian ca. OVCAR-5	1.6	Small Intestine Pool	4.2
Ovarian ca. IGROV-1	0.8	Stomach Pool	2.9
Ovarian ca. OVCAR-8	1.7	Bone Marrow Pool	2.1
Ovary	0.7	Fetal Heart	45.7
Breast ca. MCF-7	0.3	Heart Pool	38.2
Breast ca. MDA-MB-231	3.8	Lymph Node Pool	11.3
Breast ca. BT 549	1.3	Fetal Skeletal Muscle	19.3
Breast ca. T47D	0.0	Skeletal Muscle Pool	100.0
Breast ca. MDA-N	0.2	Spleen Pool	0.5
Breast Pool	6.4	Thymus Pool	4.0
Trachea	1.0	CNS cancer (glio/astro) U87-MG	11.0
Lung	1.5	CNS cancer (glio/astro) U-118-MG	
Fetal Lung	1.2	CNS cancer (neuro;met) SK-N-AS	3.4
Lung ca. NCI-N417	0.7	CNS cancer (astro) SF-539	1.0
Lung ca. LX-1	0.6	CNS cancer (astro) SNB-75	1.4
Lung ca. NCI-H146	0.5	CNS cancer (glio) SNB-19	1.2
Lung ca. SHP-77	0.4	CNS cancer (glio) SF-295	18.6
	4.8	Brain (Amygdala) Pool	3.7
	0.6	Brain (cerebellum)	4.6
	0.2	Brain (fetal)	0.2
	3.2	Brain (Hippocampus) Pool	3.1
	4.3	Cerebral Cortex Pool	6.7
	2.0	D : (2 :	4.3
iver	0.1	Brain (Thalamus) Pool	8.2
	0.4		4.4
	0.4		1.2
	14.4		2.6
	0.2		1.5
enal ca. 786-0	1.2	C	0.4
	1.2		0.4
enal ca. ACHN	1.6	Pancreatic ca. CAPAN2	2.8

Table XD. Panel 4.1D

Tissue Name	Rel. Ep.(%) Ag5207, Run 229739304	Tissue Name	Rel. Exp.(%) Ag5207, Run 229739304
Secondary Th1 act	0.0	HUVEC IL-1beta	16.0
Secondary Th2 act	4.2	HUVEC IFN gamma	9.6
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	3.5
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0
Secondary Th2 rest	0.0	HUVEC IL-11	5.5
Secondary Tr1 rest	0.0	Lung Microvascular EC none	7.1
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	0.0
Primary Th2 act	5.6	Microvascular Dermal EC none	0.0
Primary Tr1 act	5.6	Microsvasular Dermal EC TNFalpha + IL-1beta	0.0
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1beta	0.0
Primary Th2 rest	0.0	Small airway epithelium none	5.8
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1beta	3.6
CD45RA CD4 lymphocyte act	35.6	Coronery artery SMC rest	7.4
CD45RO CD4 lymphocyte act	0.0	Coronery artery SMC TNFalpha + IL-1 beta	13.6
CD8 lymphocyte act	7.8	Astrocytes rest	0.0
Secondary CD8 lymphocyte rest	0.0	Astrocytes TNFalpha + IL-1beta	12.9
Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	10.7	KU-812 (Basophil) PMA/ionomycin	0.0
2ry Th1/Th2/Tr1_anti-CD95 CH11	0.0	CCD1106 (Keratinocytes) none	18.6
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0
LAK cells IL-2	0.0	Liver cirrhosis	0.0
LAK cells IL-2+IL-12	0.0	NCI-H292 none	0.0
LAK cells IL-2+IFN gamma	0.0	NCI-H292 IL-4	0.0
LAK cells IL-2+ IL-18	0.0	NCI-H292 IL-9	0.0
LAK cells PMA/ionomycin	6.0	NCI-H292 IL-13	0.0
NK Cells IL-2 rest	4.8	NCI-H292 IFN gamma	0.0
Two Way MLR 3 day	0.0	HPAEC none	4.7
Two Way MLR 5 day	0.0	HPAEC TNF alpha + IL-1 beta	20.9
Гwo Way MLR 7 day	0.0		17.7
PBMC rest	7.0	Lung fibroblast TNF alpha + IL-1 beta	23.0

PBMC PWM	0.0	Lung fibroblast IL-4	71000
PBMC PHA-L	0.0	Lung fibroblast IL-9	11.3
Ramos (B cell) none	0.0	Lung fibroblast IL-13	9.2
Ramos (B cell) ionomycin	0.0	Lung fibroblast IFN gamma	33.0
B lymphocytes PWM	0.0	Dermal fibroblast CCD1070 rest	41.8
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 TNF alpha	100.0
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 IL-1 beta	77.9
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast IFN gamma	7.6
Dendritic cells none	5.1	Dermal fibroblast IL-4	15.3
Dendritic cells LPS	0.0	Dermal Fibroblasts rest	34.6
Dendritic cells anti-CD40	0.0	Neutrophils TNFa+LPS	4.8
Monocytes rest	6.6	Neutrophils rest	0.0
Monocytes LPS	0.0	Colon	0.0
Macrophages rest	0.0	Lung	12.3
Macrophages LPS	0.0	TI	}
HUVEC none	6.0	77:1	0.0
	29.5		0.0

Table XE. Panel 5 Islet

Tissue Name	Rel. Exp.() Ag5207, Run 263594763	Tissue Name	Rel. Exp.(%) Ag5207, Run 263594763
97457_Patient-02go_adipose	2.0	94709_Donor 2 AM - A_adipose	4.6
97476_Patient-07sk_skeletal muscle	3.1	94710_Donor 2 AM - B_adipose	1.1
97477_Patient-07ut_uterus	3.2	94711_Donor 2 AM - C_adipose	0.8
97478_Patient-07pl_placenta	2.0	94712_Donor 2 AD - A_adipose	1.0
99167_Bayer Patient 1	1.0	94713_Donor 2 AD - B_adipose	8.1
97482_Patient-08ut_uterus	6.7	94714_Donor 2 AD - C_adipose	5.3
97483_Patient-08pl_placenta	0.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	1.2
97486_Patient-09sk_skeletal nuscle	27.4	94743_Donor 3 U - B_Mesenchymal Stem Cells	3.7
7487_Patient-09ut_uterus	12.4	94730_Donor 3 AM - A_adipose	4.6
7488_Patient-09pl_placenta		94731_Donor 3 AM - B_adipose	2.1
7492_Patient-10ut_uterus		04720 70 0 13.5	1.0
7493_Patient-10pl_placenta		04722 D	6.9
7495_Patient-11go_adipose		04724 D 0 4 D -	3.2

97496_Patient-11sk_skeletal muscle	50.3	94735_Donor 3 AD - C_adipose	4.4
97497_Patient-11ut_uterus	7.1	77138_Liver_HepG2untreated	3.4
97498_Patient-11pl_placenta	0.0	73556_Heart_Cardiac stromal cells (primary)	2.2
97500_Patient-12go_adipose	10.7	81735_Small Intestine	7.1
97501_Patient-12sk_skeletal muscle	100.0	72409_Kidney_Proximal Convoluted Tubule	0.0
97502_Patient-12ut_uterus	10.9	20005 0 11	0.0
97503_Patient-12pl_placenta	0.0	90650_Adrenal Adrenocortical	0.0
94721_Donor 2 U - A_Mesenchymal Stem Cells	1.8	72410 V: L ITD CD	4.9
94722_Donor 2 U - B_Mesenchymal Stem Cells	1.0	72411_Kidney_HRE	0.0
94723_Donor 2 U - C_Mesenchymal Stem Cells	3.5	73139_Uterus_Uterine smooth	4.0

CNS_neurodegeneration_v1.0 Summary: Ag5207 This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at moderate levels in the brain. Please see Panel 1.5 for discussion of this gene in the central nervous system.

5

10

15

20

General_screening_panel_v1.5 Summary: Ag5207 Highest expression of this gene is seen in skeletal muscle (CT=28). Low but significant expression is also seen in pancreas, adrenal, pituitary, adipose, adult and fetal heart, and fetal skeletal muscle. This gene encodes a protein that is homologous to Glutamine:fructose-6-phosphate amidotransferase (GFAT) which catalyzes the formation of glucosamine 6-phosphate and is the first and rate-limiting enzyme of the hexosamine biosynthetic pathway. Enhanced glucose flux via the hexosamine biosynthetic pathway has been implicated in in the induction of insulin resistance. Buse et al. showed in a mouse model that glucose flux via the hexosamine pathway is selectively increased in muscle and may contribute to muscle insulin resistance in non-insulin-dependent diabetes mellitus. (Am J Physiol 1997 Jun;272(6 Pt 1):E1080-8). Thus, based on the homology of this enzyme to GFAT and the high expression in muscle, modulation of the expression or function of this gene may be useful in the treatment of type II diabetes.

This gene is widely expressed on this panel with moderate to low expression seen throughout the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or

function of this gene may be useful in the treatment of neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.

Moderate to low levels of expression are also seen in many cancer cell lines on this panel, including gastric cancer and melanoma cell lines. Thus, modulation of this gene product may be useful in the treatment of cancer.

Panel 4.1D Summary: Ag5207 Detectable levels of expression appear to be restricted to TNF-alpha treated dermal fibroblasts (CT=33.3). This expression suggests that this gene product may be involved in skin disorders, including psoriasis.

Panel 5 Islet Summary: Ag5207 Highest expression is seen in skeletal muscle (CT=30.2), in agreement with panel 1.5. Moderate to low levels of expression are also seen in other metabolic tissues, including uterus and adipose. Please see Panel 1.5 for discussion of this gene in metabolic disease.

Y. CG148102-01: CARNITINE O-PALMITOYLTRANSFERASE I.

10

15

20

25

Expression of gene CG148102-01 was assessed using the primer-probe set Ag5274, described in Table YA. Results of the RTQ-PCR runs are shown in Tables YB, YC, YD and YE.

Table YA. Probe Name Ag5274

Primers		Length	Start Position	SEQ ID No
Forward	5'-cacttccgggacccacagt-3'	19	1732	339
Probe	TET-5'-caccaggctctgctgaaggcagcc-3'-TAMRA	24	1783	340
Reverse	5'-caaacaggtggcggtcaact-3'	20	1821	341 <

Table YB. CNS neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag5274, Run 230512893	issue Name	Rel. Exp.(%) Ag5274, Run
<u> </u>	230312893		230512893

AD 1 Hippo	19.3	Control (Path) 3 Temporal Ctx	7.7
AD 2 Hippo	33.2	Control (Path) 4 Temporal Ctx	29.7
AD 3 Hippo	. 11.7	AD 1 Occipital Ctx	18.3
AD 4 Hippo	9.9	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	95.9	AD 3 Occipital Ctx	7.5
AD 6 Hippo	43.5	AD 4 Occipital Ctx	15.1
Control 2 Hippo	57.0	AD 5 Occipital Ctx	66.4
Control 4 Hippo	11.9	AD 6 Occipital Ctx	13.1
Control (Path) 3 Hippo	8.5	Control 1 Occipital Ctx	3.7
AD 1 Temporal Ctx	17.0	Control 2 Occipital Ctx	98.6
AD 2 Temporal Ctx	29.5	Control 3 Occipital Ctx	27.5
AD 3 Temporal Ctx	8.3	Control 4 Occipital Ctx	4.5
AD 4 Temporal Ctx	19.6	Control (Path) 1 Occipital Ctx	100.0
AD 5 Inf Temporal Ctx	95.9	Control (Path) 2 Occipital Ctx	17.1
AD 5 Sup Temporal Ctx	53.6	Control (Path) 3 Occipital Ctx	3.8
AD 6 Inf Temporal Ctx	29.9	Control (Path) 4 Occipital Ctx	20.0
AD 6 Sup Temporal Ctx	33.2	Control 1 Parietal Ctx	10.5
Control 1 Temporal Ctx	8.4	Control 2 Parietal Ctx	49.3
Control 2 Temporal Ctx	70.2	Control 3 Parietal Ctx	19.2
Control 3 Temporal Ctx	25.0	Control (Path) 1 Parietal Ctx	94.6
Control 3 Temporal Ctx	11.3	Control (Path) 2 Parietal Ctx	25.0
Control (Path) 1 Temporal Ctx	74.2	Control (Path) 3 Parietal Ctx	6.0
Control (Path) 2 Temporal Ctx	44.4	Control (Path) 4 Parietal Ctx	50.7

Table YC. General_screening_panel_v1.5

Tissue Name	Rel. Exp.(%) Ag5274, Run 230762793	issue Name	Rel. Exp.(%) Ag5274, Run 230762793
Adipose	1.2	Renal ca. TK-10	0.0
Melanoma* Hs688(A).T	7.4	Bladder	1.7
Melanoma* Hs688(B).T	13.0	Gastric ca. (liver met.) NCI-N87	1.0
Melanoma* M14	0.1	Gastric ca. KATO III	0.2
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	1.4
Melanoma* SK-MEL-5	0.0	Colon ca. SW480	0.7
Squamous cell carcinoma SCC-4	1.5	Colon ca.* (SW480 met) SW620	0.0
Testis Pool	2.1	Colon ca. HT29	0.2
Prostate ca.* (bone met) PC-3	21.8	Colon ca. HCT-116	2.1
Prostate Pool	0.8	Colon ca. CaCo-2	0.3
Placenta	0.7	Colon cancer tissue	2.4
Uterus Pool	0.7	Colon ca. SW1116	0.0

Ovarian ca. SK-OV-3 0.2 Colon ca. SW-48 0.0 Ovarian ca. OVCAR-4 0.1 Colon Pool 3.5 Ovarian ca. OVCAR-5 2.8 Small Intestinc Pool 2.1 Ovarian ca. GVCAR-8 3.9 Bone Marrow Pool 0.8 Ovary 6.3 Fetal Heart 1.7 Breast ca. MCF-7 0.2 Heart Pool 1.5 Breast ca. MDA-MB-231 4.9 Lymph Node Pool 5.3 Breast ca. BT 549 88.3 Fetal Skeletal Muscle 1.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.8 Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 7.2 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 7.2 CNS cancer (glio/astro) U-118-MG 27.4 Lung ca. NCI-N417 8.2 CNS cancer (s	Ovarian ca. OVCAR-3	12.2	Colon ca. Colo-205	10 n
Ovarian ca. OVCAR-4 0.1 Colon Pool 3.5 Ovarian ca. OVCAR-5 2.8 Small Intestine Pool 2.1 Ovarian ca. IGROV-1 7.2 Stomach Pool 1.8 Ovarian ca. OVCAR-8 3.9 Bone Marrow Pool 0.8 Ovary 6.3 Fetal Heart 1.7 Breast ca. MCF-7 0.2 Heart Pool 1.5 Breast ca. MDA-MB-231 4.9 Lymph Node Pool 5.3 Breast ca. MDA-MB-231 4.9 Lymph Node Pool 5.3 Breast ca. BT 549 88.3 Fetal Skeletal Muscle 1.0 Breast ca. MDA-NB 0.0 Skeletal Muscle Pool 0.8 Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U87-MG 27.7 Fetal Lung 7.2 CNS cancer (astro) SF-539 0.0 Lung ca. NCI-N417 8.2 CNS cancer (glio) SNB-19	بيبي كالمن ويشروه من في المن المن المن المن المن المن المن المن	Marine Contract Contr	A property of the second secon	
Ovarian ca. OVCAR-5 2.8 Small Intestinc Pool 2.1 Ovarian ca. IGROV-1 7.2 Stomach Pool 1.8 Ovarian ca. OVCAR-8 3.9 Bone Marrow Pool 0.8 Ovary 6.3 Fetal Heart 1.7 Breast ca. MCF-7 0.2 Heart Pool 1.5 Breast ca. MDA-MB-231 4.9 Lymph Node Pool 5.3 Breast ca. BT 549 88.3 Fetal Skeletal Muscle 1.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.8 Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U87-MG 27.7 Fetal Lung 7.2 CNS cancer (glio/astro) U87-MG 27.7 Fetal Lung ca. NCI-N417 8.2 CNS cancer (astro) SF-539 0.0 Lung ca. NCI-H416 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. NCI-H146 16.2 C	Ovarian ca. OVCAR-4		ALCOHOLD THE REPORT OF THE PARTY OF THE PART	
Ovarian ca. IGROV-1 7.2 Stomach Pool 1.8 Ovarian ca. OVCAR-8 3.9 Bone Marrow Pool 0.8 Ovary 6.3 Fetal Heart 1.7 Breast ca. MCF-7 0.2 Heart Pool 1.5 Breast ca. MDA-MB-231 4.9 Lymph Node Pool 5.3 Breast ca. BT 549 38.3 Fetal Skeletal Muscle 1.0 Breast ca. BT 549 38.3 Fetal Skeletal Muscle 1.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.8 Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U18-MG 27.4 Fetal Lung 7.2 CNS cancer (glio/astro) U18-MG 27.7 Lung ca. NCI-N417 8.2 CNS cancer (glio/astro) U18-MG 27.4 Lung ca. NCI-H417 8.2 CNS cancer (gstro) SF-539 0.0 Lung ca. NCI-H446 16.2 C	Ovarian ca. OVCAR-5	2.8	The state of the s	
Ovarian ca. OVCAR-8 3.9 Bone Marrow Pool 0.8 Ovary 6.3 Fetal Heart 1.7 Breast ca. MCF-7 0.2 Heart Pool 1.5 Breast ca. MCA-MB-231 4.9 Lymph Node Pool 5.3 Breast ca. BT 549 88.3 Fetal Skeletal Muscle 1.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.8 Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U87-MG 27.7 Fetal Lung 7.2 CNS cancer (glio/astro) U87-MG 27.7 Fetal Lung 7.2 CNS cancer (glio/astro) U97-MG 27.7 Lung ca. NCI-N417 8.2 CNS cancer (glio/astro) U97-MG 27.7 Lung ca. NCI-N417 8.2 CNS cancer (glio) SNB-NAS 86.5 Lung ca. NCI-H416 16.2 CNS cancer (glio) SNB-75 0.5 Lung ca. NCI-H526 3.6	Ovarian ca. IGROV-1	7.2		
Ovary 6.3 Fetal Heart 1.7 Breast ca. MCF-7 0.2 Heart Pool 1.5 Breast ca. MDA-MB-231 4.9 Lymph Node Pool 5.3 Breast ca. BT 549 88.3 Fetal Skeletal Muscle 1.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.8 Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.0 CNS cancer (glio/astro) U87-MG 27.4 Lung ca. NCI-N417 8.2 CNS cancer (glio/sisro) U87-	Ovarian ca. OVCAR-8	3.9		
Breast ca. MCF-7 0.2 Heart Pool 1.5 Breast ca. MDA-MB-231 4.9 Lymph Node Pool 5.3 Breast ca. BT 549 88.3 Fetal Skeletal Muscle 1.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.8 Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U87-MG 27.4 Fetal Lung 7.2 CNS cancer (glio/astro) U87-MG 27.4 Lung ca. NCI-N417 8.2 CNS cancer (astro) SNB-MG 0.0 Lung ca. NCI-H416 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. NCI-H36 16.2 CNS cancer (glio) SP-295 17.3 Lung ca. NCI-H526 3.6	Ovary	6.3		The second second second second
Breast ca. MDA-MB-231 4.9 Lymph Node Pool 5.3 Breast ca. BT 549 88.3 Fetal Skeletal Muscle 1.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.8 Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U87-MG 27.4 Fetal Lung 7.2 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 7.2 CNS cancer (neuro;met) SK-N-AS 86.5 Lung ca. NCI-M417 8.2 CNS cancer (astro) SF-539 0.0 Lung ca. NCI-H416 16.2 CNS cancer (astro) SNB-75 0.5 Lung ca. NCI-H146 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. NCI-H256 3.6 Brain (Amygdala) Pool 19.9 Lung ca. NCI-H32	Breast ca. MCF-7	0.2	Heart Pool	****
Breast ca. BT 549 88.3 Fetal Skeletal Muscle 1.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.8 Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 7.2 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 7.2 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung ca. NCI-N417 8.2 CNS cancer (astro) SF-339 0.0 Lung ca. NCI-N417 8.2 CNS cancer (astro) SNB-75 0.5 Lung ca. NCI-H146 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. NCI-H146 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. NCI-H26 3.6 Brain (Amygdala) Pool 19.9 Lung ca. NCI-H526 3.6 Brain (erebellum) 100.0 Lung ca. NCI-H23 40.9 Brain (fetal) 44.8 Lung	Breast ca. MDA-MB-231	4.9	Lymph Node Pool	
Breast ca. T47D 0.0 Skeletal Muscle Pool 0.8 Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 7.2 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 7.2 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 7.2 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 0.9 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung ca. NCI-W17 8.2 CNS cancer (glio/astro) U-118-MG 27.4 Lung ca. NCI-W17 8.2 CNS cancer (astro) SNB-75 0.5 Lung ca. NCI-W146 16.2 CNS cancer (astro) SNB-75 0.5 Lung ca. NCI-W146 16.2 CNS cancer (glio/ SNB-19 7.2 Lung ca. NCI-W166 3.6 Brain (Amygdala) Pool 19.9 Lung ca. NCI-W1526 3.6 Brain (fetal) 44.8 <t< td=""><td>Breast ca. BT 549</td><td>88.3</td><td></td><td>· Commence of the commence of</td></t<>	Breast ca. BT 549	88.3		· Commence of the commence of
Breast ca. MDA-N 0.0 Spleen Pool 3.0 Breast Pool 4.9 Thymus Pool 2.7 Trachea 1.0 CNS cancer (glio/astro) U87-MG 27.7 Lung 0.9 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 7.2 CNS cancer (neuro;met) SK-N-AS 86.5 Lung ca. NCI-N417 8.2 CNS cancer (astro) SF-539 0.0 Lung ca. NCI-N417 8.2 CNS cancer (astro) SNB-75 0.5 Lung ca. NCI-N416 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. NCI-H146 16.2 CNS cancer (glio) SF-295 17.3 Lung ca. SHP-77 53.6 CNS cancer (glio) SF-295 17.3 Lung ca. NCI-H526 3.6 Brain (Amygdala) Pool 19.9 Lung ca. NCI-H526 3.6 Brain (cerebellum) 100.0 Lung ca. NCI-H23 40.9 Brain (fetal) 44.8 Lung ca. NCI-H460 0.6 Brain (Hippocampus) Pool 16.8 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4	Breast ca. T47D	0.0	Skeletal Muscle Pool	
Breast Pool 4.9 Thymus Pool 2.7	Breast ca. MDA-N	0.0		
Trachea	Breast Pool	4.9	Thymus Pool	January 1981
Lung 0.9 CNS cancer (glio/astro) U-118-MG 27.4 Fetal Lung 7.2 CNS cancer (neuro;met) SK-N-AS 86.5 Lung ca. NCI-N417 8.2 CNS cancer (astro) SF-339 0.0 Lung ca. LX-1 0.5 CNS cancer (astro) SNB-75 0.5 Lung ca. NCI-H146 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. NCI-H146 16.2 CNS cancer (glio) SF-295 17.3 Lung ca. SHP-77 53.6 CNS cancer (glio) SF-295 17.3 Lung ca. A549 0.0 Brain (Amygdala) Pool 19.9 Lung ca. NCI-H526 3.6 Brain (cerebellum) 100.0 Lung ca. NCI-H526 3.6 Brain (fetal) 44.8 Lung ca. NCI-H430 0.6 Brain (Hippocampus) Pool 16.8 Lung ca. NCI-H460 0.6 Brain (Hippocampus) Pool 24.0 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Thalamus) Pool 34.2 Fetal Liver 0.9 Brain (whole) 42.0 <	Trachea	1.0		
Fetal Lung 7.2 CNS cancer (neuro;met) SK-N-AS 86.5 Lung ca. NCI-N417 8.2 CNS cancer (astro) SF-539 0.0 Lung ca. LX-1 0.5 CNS cancer (astro) SNB-75 0.5 Lung ca. NCI-H146 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. NCI-H146 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. SHP-77 53.6 CNS cancer (glio) SF-295 17.3 Lung ca. A549 0.0 Brain (Amygdala) Pool 19.9 Lung ca. NCI-H526 3.6 Brain (cerebellum) 100.0 Lung ca. NCI-H524 3.6 Brain (fetal) 44.8 Lung ca. NCI-H460 0.6 Brain (Hippocampus) Pool 16.8 Lung ca. HOP-62 1.6 Cerebral Cortex Pool 24.0 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Whole) 42.0 Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool	Lung	0.9	CNS cancer (glio/astro) U-118-MG	2 The second second second
Lung ca. LX-1 0.5 CNS cancer (astro) SNB-75 0.5 Lung ca. NCI-H146 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. SHP-77 53.6 CNS cancer (glio) SF-295 17.3 Lung ca. A549 0.0 Brain (Amygdala) Pool 19.9 Lung ca. NCI-H526 3.6 Brain (cerebellum) 100.0 Lung ca. NCI-H23 40.9 Brain (fetal) 44.8 Lung ca. NCI-H460 0.6 Brain (Hippocampus) Pool 16.8 Lung ca. NCI-H460 0.6 Brain (Substantia nigra) Pool 27.4 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Thalamus) Pool 34.2 Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 <td>Fetal Lung</td> <td>7.2</td> <td></td> <td></td>	Fetal Lung	7.2		
Lung ca. LX-1 0.5 CNS cancer (astro) SNB-75 0.5 Lung ca. NCI-H146 16.2 CNS cancer (glio) SNB-19 7.2 Lung ca. SHP-77 53.6 CNS cancer (glio) SF-295 17.3 Lung ca. A549 0.0 Brain (Amygdala) Pool 19.9 Lung ca. NCI-H526 3.6 Brain (cerebellum) 100.0 Lung ca. NCI-H23 40.9 Brain (fetal) 44.8 Lung ca. NCI-H460 0.6 Brain (Hippocampus) Pool 16.8 Lung ca. HOP-62 1.6 Cerebral Cortex Pool 24.0 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Thalamus) Pool 34.2 Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0	Lung ca. NCI-N417	8.2	CNS cancer (astro) SF-539	0.0
Lung ca. SHP-77 53.6 CNS cancer (glio) SF-295 17.3 Lung ca. A549 0.0 Brain (Amygdala) Pool 19.9 Lung ca. NCI-H526 3.6 Brain (cerebellum) 100.0 Lung ca. NCI-H23 40.9 Brain (fetal) 44.8 Lung ca. NCI-H460 0.6 Brain (Hippocampus) Pool 16.8 Lung ca. HOP-62 1.6 Cerebral Cortex Pool 24.0 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Lung ca. LX-1	0.5	CNS cancer (astro) SNB-75	The same of the sa
Lung ca. A549 0.0 Brain (Amygdala) Pool 19.9 Lung ca. NCI-H526 3.6 Brain (cerebellum) 100.0 Lung ca. NCI-H23 40.9 Brain (fetal) 44.8 Lung ca. NCI-H460 0.6 Brain (Hippocampus) Pool 16.8 Lung ca. HOP-62 1.6 Cerebral Cortex Pool 24.0 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Thalamus) Pool 34.2 Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Lung ca. NCI-H146	16.2	CNS cancer (glio) SNB-19	7.2
Lung ca. A549 0.0 Brain (Amygdala) Pool 19.9 Lung ca. NCI-H526 3.6 Brain (cerebellum) 100.0 Lung ca. NCI-H23 40.9 Brain (fetal) 44.8 Lung ca. NCI-H460 0.6 Brain (Hippocampus) Pool 16.8 Lung ca. HOP-62 1.6 Cerebral Cortex Pool 24.0 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Thalamus) Pool 34.2 Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Lung ca. SHP-77	53.6	CNS cancer (glio) SF-295	17.3
Lung ca. NCI-H23 40.9 Brain (fetal) 44.8 Lung ca. NCI-H460 0.6 Brain (Hippocampus) Pool 16.8 Lung ca. HOP-62 1.6 Cerebral Cortex Pool 24.0 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Thalamus) Pool 34.2 Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Lung ca. A549	0.0		19.9
Lung ca. NCI-H460 0.6 Brain (Hippocampus) Pool 16.8 Lung ca. HOP-62 1.6 Cerebral Cortex Pool 24.0 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Thalamus) Pool 34.2 Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Lung ca. NCI-H526	3.6	Brain (cerebellum)	100.0
Lung ca. HOP-62 1.6 Cerebral Cortex Pool 24.0 Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Thalamus) Pool 34.2 Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Lung ca. NCI-H23	40.9	Brain (fetal)	44.8
Lung ca. NCI-H522 57.8 Brain (Substantia nigra) Pool 27.4 Liver 0.3 Brain (Thalamus) Pool 34.2 Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Lung ca. NCI-H460	0.6	Brain (Hippocampus) Pool	16.8
Liver 0.3 Brain (Thalamus) Pool 34.2 Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Lung ca. HOP-62	1.6	Cerebral Cortex Pool	24.0
Fetal Liver 0.9 Brain (whole) 42.0 Liver ca. HepG2 0.0 Spinal Cord Pool 10.5 Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Lung ca. NCI-H522	57.8	Brain (Substantia nigra) Pool	27.4
Liver ca. HepG2	Liver	0.3	Brain (Thalamus) Pool	34.2
Kidney Pool 4.2 Adrenal Gland 1.0 Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Fetal Liver	0.9	Brain (whole)	42.0
Fetal Kidney 3.6 Pituitary gland Pool 4.9 Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Liver ca. HepG2	0.0	Spinal Cord Pool	10.5
Renal ca. 786-0 0.0 Salivary Gland 0.1 Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Kidney Pool	4.2	Adrenal Gland	1.0
Renal ca. A498 0.0 Thyroid (female) 0.6 Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Fetal Kidney	3.6	Pituitary gland Pool	4.9
Renal ca. ACHN 0.5 Pancreatic ca. CAPAN2 0.0	Renal ca. 786-0	0.0	Salivary Gland	0.1
The state of the s	Renal ca. A498	0.0	Thyroid (female)	0.6
Renal ca. UO-31 0.3 Pancreas Pool 4.8	Renal ca. ACHN	0.5	Pancreatic ca. CAPAN2	0.0
	Renal ca. UO-31	0.3	Pancreas Pool	4.8

Table YD. Panel 4.1D

Run	Tissue Name	Rel. Exp.(%) Ag5274, Run
230472159		230472159

Secondary Th2 act 1.6	Secondary Th1 act	2.3	HUVEC IL-1bera	45.1
Secondary Tr1 act				
Secondary Th1 rest	The state of the s			
Secondary Th2 rest 2.3			HUVECTNF alpha + IFN gamma	
Secondary Tr1 rest				
Primary Th1 act			The state of the s	and the same of th
Frimary Th2 act		0.0		
Primary Tr1 act			Lung Microvascular EC TNFalpha + IL-1beta	9.2
TNFalpha + IL-1beta 9.0 Bronchial epithelium TNFalpha + 1L 1beta 1L 1beta 1.0 1.0 1.0	Primary Th2 act	0.0	Microvascular Dermal EC none	26.2
Primary Th1 rest	Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1 beta	
Primary Tr1 rest		0.0	Bronchial epithelium TNFalpha +	0.0
Primary Tr1 rest	Primary Th2 rest	4.6	Small airway epithelium none	00
CD45RA CD4 lymphocyte act 7.8 Coronery artery SMC rest 56.6	Primary Tr1 rest	0.0	Small airway epithelium TNFalpha	
CD45RO CD4 lymphocyte act	CD45RA CD4 lymphocyte act	7.8	THE COURT OF THE C	56.6
III-1beta III-1beta 14.8 23.2	CD45RO CD4 lymphocyte act	0.0		150.0
Secondary CD8 lymphocyte rest 0.0 Astrocytes TNFalpha + IL-1beta 14.8		0.0	IL-1beta	66.9
Secondary CD8 lymphocyte rest 0.0 Astrocytes TNFalpha + IL-Ibeta 14.8			Astrocytes rest	23.2
Secondary CD8 lymphocyte act 0.0 KU-812 (Basophil) rest 0.0		0.0	Astrocytes TNFalpha + IL-1beta	Commence of the last series
CD4 lymphocyte none	Secondary CD8 lymphocyte act	0.0		
CCD1106 (Keratinocytes) none 31.9	CD4 lymphocyte none	0.0	KU-812 (Basophil)	
TNFalpha + IL-1beta 9.4	2ry Th1/Th2/Tr1_anti-CD95 CH11	0.0		31.9
LAK cells IL-2 LAK cells IL-2+IL-12 LAK cells IL-2+IL-12 LAK cells IL-2+IFN gamma O.0 NCI-H292 none O.0 LAK cells IL-2+IFN gamma O.0 NCI-H292 IL-4 O.0 LAK cells IL-2+ IL-18 O.0 NCI-H292 IL-9 O.0 LAK cells PMA/ionomycin O.0 NCI-H292 IL-13 O.0 NCI-H292 II-13 O.0 NCI-H292 IFN gamma 8.6 Iwo Way MLR 3 day O.0 HPAEC none Iwo Way MLR 5 day O.0 HPAEC TNF alpha + IL-1 beta 27.9 Iwo Way MLR 7 day O.0 Lung fibroblast none Debata BMC PWM 2.2 Lung fibroblast II-4 2.2 BMC PHA-L Lamos (B cell) none O.0 Lung fibroblast IL-9 47.6 Lung fibroblast IL-13 Il.8 Lung fibroblast IFN gamma O.0 O.0 Dermal fibroblast CCD1070 rest Dermal fibroblast CCD1070 TNF	LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	9.4
LAK cells IL-2+IL-12 0.0 NCI-H292 none 0.0 LAK cells IL-2+IFN gamma 0.0 NCI-H292 IL-4 0.0 LAK cells IL-2+ IL-18 0.0 NCI-H292 IL-9 0.0 LAK cells PMA/ionomycin 0.0 NCI-H292 IL-13 0.0 NK Cells IL-2 rest 2.5 NCI-H292 IFN gamma 8.6 I'wo Way MLR 3 day 0.0 HPAEC none 45.4 I'wo Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 27.9 I'wo Way MLR 7 day 0.0 Lung fibroblast none 100.0 PBMC rest 0.0 Lung fibroblast TNF alpha + IL-1 beta 90.8 PBMC PWM 2.2 Lung fibroblast IL-4 22.2 BMC PHA-L 10.1 Lung fibroblast IL-9 47.6 Camos (B cell) none 0.0 Lung fibroblast IFN gamma 61.1 Camos (B cell) ionomycin 0.0 Dermal fibroblast CCD1070 TNF Lymphocytes CD40L and IL-4 2.2 Dermal fibroblast CCD1070 TNF	_AK cells IL-2	0.0		5 1
LAK cells IL-2+IFN gamma 0.0 NCI-H292 IL-4 0.0 LAK cells IL-2+ IL-18 0.0 NCI-H292 IL-9 0.0 LAK cells PMA/ionomycin 0.0 NCI-H292 IL-13 0.0 NK Cells IL-2 rest 2.5 NCI-H292 IFN gamma 8.6 Iwo Way MLR 3 day 0.0 HPAEC none 45.4 Iwo Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 27.9 Iwo Way MLR 7 day 0.0 Lung fibroblast none 100.0 BMC rest 0.0 Lung fibroblast TNF alpha + IL-1 beta 90.8 BMC PWM 2.2 Lung fibroblast IL-4 22.2 BMC PHA-L 10.1 Lung fibroblast IL-9 47.6 amos (B cell) none 0.0 Lung fibroblast IL-13 11.8 amos (B cell) ionomycin 0.0 Lung fibroblast IFN gamma 61.1 lymphocytes PWM 0.0 Dermal fibroblast CCD1070 TNF	∠AK cells IL-2+IL-12	0.0	NICH YYOO	
LAK cells IL-2+ IL-18 0.0 NCI-H292 IL-9 0.0 LAK cells PMA/ionomycin 0.0 NCI-H292 IL-13 0.0 NK Cells IL-2 rest 2.5 NCI-H292 IFN gamma 8.6 Iwo Way MLR 3 day 0.0 HPAEC none 45.4 Iwo Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 27.9 Iwo Way MLR 7 day 0.0 Lung fibroblast none 100.0 BMC rest 0.0 Lung fibroblast TNF alpha + IL-1 beta 90.8 BMC PWM 2.2 Lung fibroblast IL-4 22.2 BMC PHA-L 10.1 Lung fibroblast IL-9 47.6 amos (B cell) none 0.0 Lung fibroblast IL-13 11.8 amos (B cell) ionomycin 0.0 Lung fibroblast IFN gamma 61.1 lymphocytes PWM 0.0 Dermal fibroblast CCD1070 TNF 28.7 lymphocytes CD40L and IL-4 2.2 Dermal fibroblast CCD1070 TNF 28.7	AK cells IL-2+IFN gamma	0.0	NICH TIOCO II	
NCI-H292 IL-13 0.0 NCI-H292 IL-13 0.0 NCI-H292 IFN gamma 8.6 NCI-H292 III-13 1.1 Land (Way MLR 7 day 0.0 Land (Ibroblast III-14 10.1 Land (Ibroblast III-14 11.8 Land (Ibroblast III-15 11.8 Land (Ibroblast III-16 11.8 Land (Ibroblast III-17 11.8 Land (Ibroblast III-18 11.8 Land (Ibroblast III-19 11.8	AK cells IL-2+ IL-18	0.0	NICT TYPES TO	
NK Cells IL-2 rest 2.5 NCI-H292 IFN gamma 8.6		0.0	NICH TIOCO TO A S	THE RESERVE AND ADDRESS OF THE PARTY OF THE
HPAEC none 45.4 10.0 HPAEC TNF alpha + IL-1 beta 27.9 10.0 Lung fibroblast none 100.0 100.0 Lung fibroblast TNF alpha + IL-1 10.1 Lung fibroblast IL-4 22.2 10.1 Lung fibroblast IL-9 47.6 11.8 11.8 11.8 11.8 11.8 11.8 11.9 11.1 11.8 11.8 11.9 11.1 11.8	K Cells IL-2 rest	2.5		
Two Way MLR 5 day	wo Way MLR 3 day	0.0	1770	
PBMC rest O.0 Lung fibroblast none O.0 Lung fibroblast TNF alpha + IL-1 beta BMC PWM 2.2 Lung fibroblast IL-4 22.2 BMC PHA-L Lung fibroblast IL-9 47.6 Lung fibroblast IL-13 Ill.8 Lung fibroblast IL-13 Ill.8 Lung fibroblast III-13 Ill.8 Lung fibroblast III-14 Ill.8 Lung fibroblast III-13 Ill.8 Lung fibroblast III-14 Ill.8 Ill.8 Lung fibroblast III-14 Ill.8 Lung fibroblast III-14 Ill.8 Lung fibroblast III-14 Ill.8 Lung fibroblast III-14 Ill.8 Ill.8 Lung fibroblast III-14 Ill.8 Lung fibrob	wo Way MLR 5 day	0.0		
PBMC rest 0.0 Lung fibroblast TNF alpha + IL-1 beta 90.8 PBMC PWM 2.2 Lung fibroblast IL-4 22.2 PBMC PHA-L 10.1 Lung fibroblast IL-9 47.6 Lung fibroblast IL-13 11.8 Lung fibroblast IL-13 11.8 Lung fibroblast IFN gamma 61.1 Lung fibroblast CCD1070 rest 28.7 Lung fibroblast CCD1070 TNF 28.7	wo Way MLR 7 day	0.0	IT	
BMC PWM 2.2 Lung fibroblast IL-4 22.2 BMC PHA-L 10.1 Lung fibroblast IL-9 47.6 Lamos (B cell) none 0.0 Lung fibroblast IL-13 11.8 Lamos (B cell) ionomycin 0.0 Lung fibroblast IFN gamma 61.1 Lymphocytes PWM 0.0 Dermal fibroblast CCD1070 rest 28.7 Lymphocytes CD40L and IL-4 2.2 Dermal fibroblast CCD1070 TNF	BMC rest	0.0	Lung fibroblast TNF alpha + IL-1	
BMC PHA-L 10.1 Lung fibroblast IL-9 47.6 Lamos (B cell) none 0.0 Lung fibroblast IL-13 11.8 Lung fibroblast IFN gamma 61.1 Lymphocytes PWM 0.0 Dermal fibroblast CCD1070 rest 1 lymphocytes CD40L and IL-4 2 2 Dermal fibroblast CCD1070 TNF	BMC PWM	2.2		
amos (B cell) none 0.0 Lung fibroblast IL-13 11.8 amos (B cell) ionomycin 0.0 Lung fibroblast IFN gamma 61.1 lymphocytes PWM 0.0 Dermal fibroblast CCD1070 rest 28.7 lymphocytes CD40L and IL-4 2.2 Dermal fibroblast CCD1070 TNF	22.50.225.		7 (-)	
amos (B cell) ionomycin O.0 Lung fibroblast IFN gamma 61.1 lymphocytes PWM O.0 Dermal fibroblast CCD1070 rest 28.7 lymphocytes CD40L and IL-4 2.2 Dermal fibroblast CCD1070 TNF				
lymphocytes PWM 0.0 Dermal fibroblast CCD1070 rest 28.7 lymphocytes CD40L and IL-4 2.2 Dermal fibroblast CCD1070 TNF			T	-
lymphocytes CD40L and IL-4 2.2 Dermal fibroblast CCD1070 TNF	1 1 2222			
lalpha 23.3		2.2	Dermal fibroblast CCD1070 TNE	3.3

EOL-1 dbcAMP	9.2	Dermal fibroblast CCD 1070 IL-1	28.7
EOL-1 dbcAMP PMA/ionomycin	2.7	Dermal fibroblast IFN gamma	16.7
Dendritic cells none	0.0	Dermal fibroblast IL-4	13.1
Dendritic cells LPS	0.0	Dermal Fibroblasts rest	58.6
Dendritic cells anti-CD40	0.0	Neutrophils TNFa+LPS	0.0
Monocytes rest	0.0	Neutrophils rest	0.0
Monocytes LPS	0.0	Colon	0.0
Macrophages rest	0.0	Lung	1.7
Macrophages LPS	0.0	Thymus	0.0
HUVEC none	48.3	Kidney	5.5
HUVEC starved	61.1		

Table YE. Panel 5 Islet

Tissue Name	Rel. Exp.() Ag5274, Run 307720339	Tissue Name	Rel. Exp.(%) Ag5274, Run 307720339
97457_Patient-02go_adipose	15.3	94709_Donor 2 AM - A_adipose	13.9
97476_Patient-07sk_skeletal muscle	0.0	94710_Donor 2 AM - B_adipose	15.2
97477_Patient-07ut_uterus	13.7	94711_Donor 2 AM - C_adipose	19.8
97478_Patient-07pl_placenta	9.0	94712_Donor 2 AD - A_adipose	58.2
99167_Bayer Patient 1	51.8	94713_Donor 2 AD - B_adipose	29.7
97482_Patient-08ut_uterus	24.3	94714_Donor 2 AD - C_adipose	34.9
97483_Patient-08pl_placenta	0.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	62.9
97486_Patient-09sk_skeletal muscle	0.0	94743_Donor 3 U - B_Mesenchymal Stem Cells	39.5
97487_Patient-09ut_uterus	7.3	94730_Donor 3 AM - A_adipose	31.4
97488_Patient-09pl_placenta	11.9	94731_Donor 3 AM - B_adipose	35.1
97492_Patient-10ut_uterus	12.8	94732_Donor 3 AM - C_adipose	49.3
97493_Patient-10pl_placenta	5.3	94733_Donor 3 AD - A_adipose	28.9
97495_Patient-11go_adipose	5.3	94734_Donor 3 AD - B_adipose	44.8
97496_Patient-11sk_skeletal muscle	3.8	94735_Donor 3 AD - C_adipose	17.7
97497_Patient-11ut_uterus	20.9	77138_Liver_HepG2untreated	6.0
97498_Patient-11pl_placenta	5.4	73556 Heart Cardiac etromal calls	55.5
97500_Patient-12go_adipose	27.0	81735_Small Intestine	39.0

97501_Patient-12sk_skeletal muscle	12.5	72409_Kidney_Proximal Convolute Tubule	15.2
97502_Patient-12ut_uterus	10.2	82685_Small intestine_Duodenum	0.0
97503_Patient-12pl_placenta	2.4	90650_Adrenal_Adrenocortical adenoma	12.2
94721_Donor 2 U - A_Mesenchymal Stem Cells	100.0	72410_Kidney_HRCE	0.0
94722_Donor 2 U - B_Mesenchymal Stem Cells	43.2	72411_Kidney_HRE	25.7
94723_Donor 2 U - C_Mesenchymal Stem Cells	63.7	73139_Uterus_Uterine smooth muscle cells	97.9

CNS_neurodegeneration_v1.0 Summary: Ag5274 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene appears to be slightly down-regulated in the temporal cortex of Alzheimer's disease patients. Therefore, up-regulation of this gene or its protein product, or treatment with specific agonists for this receptor may be of use in reversing the dementia, memory loss, and neuronal death associated with this disease.

5

10

15

20

25

General_screening_panel_v1.5 Summary: Ag5274 Highest expression of this gene is seen in the cerebellum (CT=29.3). Moderate expression of this gene is seen throughout the brain. Thus, this gene would be useful for distinguishing brain tissue from non-neural tissue, and may be beneficial as a drug target in neurodegenerative disease, and specifically disorders that have this brain region as the site of pathology, such as autism and the ataxias. Please see Panel_CNS_neurodegeneration for further discussion of potential utility in the central nervous system.

Low but significant expression is also seen in pancreas. This gene encodes a protein with homology to carnitine palmitoyltransferase. Giannessi et al has shown that inhibition of this enzyme produces a significant reduction in serum glucose levels (J Med Chem 2001 Jul 19;44(15):2383-6). Thus, modulation of this enzyme may also be useful in the treatment of obesity and/or diabetes.

Panel 4.1D Summary: Ag5274 Highest expression of this gene is seen in untreated lung fibroblasts. Low, but significant expression is also seen in a cluster of treated and untreated lung and dermal fibroblasts. Low levels of expression are also seen in coronary artery SMCs, and HUVECs. This profile suggests that this gene could be used to differentiate between these cells and other cells samples. In addition, this gene product may be involved in inflammatory conditions of the lung and skin.

Panel 5 Islet Summary: Ag5274 Expression is limited to a sample derived from mesenchymal stem cells (CTs=34.5).

Z. CG148431-01 and CG148431-02: AMINOTRANSFERASE SIMILAR TO SERINE PALMOTYLTRANSFERASE.

Expression of gene CG148431-01 and CG148431-02 was assessed using the primer-probe set Ag5627, described in Table ZA. Results of the RTQ-PCR runs are shown in Tables ZB, ZC, ZD and ZE. Please note that CG148431-02 represents a full-length physical clone of the CG148431-01 gene, validating the prediction of the gene sequence.

Table ZA. Probe Name Ag5627

10

Primers	Sequenes	Length	Start Position	SEQ ID No
Forward	5'-gggctcctataacttccttggt-3'	22	555	342
Probe	TET-5'-tcctcatagactcatcatacttggctgca-3'-TAMRA	29	579	343
Reverse	5'-cctgtgccatacacctctaaaa-3'	22	620	311

Table ZB. CNS neurodegeneration v1.0

Tissue Name	Rel. Exp.(%) Ag5627, Run 246956910	Rel. Exp.(%) Ag5627, Run 264979289	issue Name	Rel. Exp.(%) Ag5627, Run 246956910	Rel. Exp.(%) Ag5627, Run 264979289
AD 1 Hippo	17.4	57.0	Control (Path) 3 Temporal Ctx	6.4	8.2
AD 2 Hippo	67.8	4.8	Control (Path) 4 Temporal Ctx	10.3	24.0
AD 3 Hippo	50.0	62.4	AD 1 Occipital Ctx	11.8	26.8
AD 4 Hippo	19.1	30.8	AD 2 Occipital Ctx (Missing)	0.0	0.0
AD 5 Hippo	17.0	31.2	AD 3 Occipital Ctx	4.2	25.9
AD 6 Hippo	100.0	86.5	AD 4 Occipital Ctx	20.0	27.9
Control 2 Hippo	24.1	31.6	AD 5 Occipital Ctx	37.4	17.0
Control 4 Hippo	50.7	70.7	AD 6 Occipital Ctx	29.1	22.4
Control (Path) 3 Hippo	21.0	24.3	Control 1 Occipital Ctx	3.9	12.1
AD 1 Temporal Ctx	43.8	65.5	Control 2 Occipital Ctx	20.6	29.9

		·	lent the ville	II II Ilma Ilma und	in the first will be
AD 2 Temporal Ctx	47.6	100.0	Control 3 Occipital	9.3	19.9
AD 3 Temporal Ctx	11.0	23.0	Control 4 Occipital Ctx	16.3	44.1
AD 4 Temporal Ctx	20.4	33.9	Control (Path) 1 Occipital Ctx	49.0	58.2
AD 5 Inf Temporal Ctx	31.0	31.2	Control (Path) 2 Occipital Ctx	6.6	15.2
AD 5 Sup Temporal Ctx	51.1	63.3	Control (Path) 3 Occipital Ctx	0.0	1.6
AD 6 Inf Temporal Ctx	68.8	87.7	Control (Path) 4 Occipital Ctx	23.3	14.3
AD 6 Sup Temporal Ctx	56.3	97.3	Control I Parietal Ctx	13.1	18.3
Control 1 Temporal Ctx	7.3	4.5	Control 2 Parietal Ctx	31.6	68.8
Control 2 Temporal Ctx	12.9	31.6	Control 3 Parietal Ctx	7.9	19.8
Control 3 Temporal Ctx	7.9 ·	15.0	Control (Path) 1 Parietal Ctx	63.7	87.1
Control 3 Temporal Ctx	13.8	15.6	Control (Path) 2 Parietal Ctx	51.1	57.4
Control (Path) 1 Temporal Ctx	30.1	46.0	Control (Path) 3 Parietal Ctx	3.1	6.1
Control (Path) 2 Temporal Ctx	28.7	39.5	Control (Path) 4 Parietal Ctx	54.7	59.5

Table ZC. Panel 4.1D

Tissue Name	Rel. Ep.(%) Ag5627, Run 246490777	Tissue Name	Rel. Exp.(%) Ag5627, Run 246490777
Secondary Th1 act	0.0	HUVEC IL-1beta	0.0
Secondary Th2 act	0.4	HUVEC IFN gamma	16.7
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	0.3
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0
Secondary Th2 rest	0.0	HUVEC IL-11	1.2
Secondary Tr1 rest	0.0	Lung Microvascular EC none	0.4
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1 beta	0.0
Primary Th2 act	0.2	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.2	Microsvasular Dermal EC TNFalpha + IL-1beta	0.0

Primary Th1 rest	0.0	Bronchial epithelium TNF alpha + IL Ibeta	8.4
Primary Th2 rest	0.0	Small airway epithelium none	18.7
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1beta	24.3
CD45RA CD4 lymphocyte act	2.7	Coronery artery SMC rest	3.3
CD45RO CD4 lymphocyte act	6.8	Coronery artery SMC TNFalpha + IL-1beta	2.8
CD8 lymphocyte act	0.0	Astrocytes rest	3.9
Secondary CD8 lymphocyte rest	0.8	Astrocytes TNFalpha + IL-1beta	1.4
Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	8.0
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	14.2
2ry Th1/Th2/Tr1_anti-CD95 CH11	0.4	CCD1106 (Keratinocytes) none	17.4
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	24.3
LAK cells IL-2	0.0	Liver cirrhosis	13.3
LAK cells IL-2+IL-12	0.2	NCI-H292 none	10.2
LAK cells IL-2+IFN gamma	0.0	NCI-H292 IL-4	36.3
LAK cells IL-2+ IL-18	0.0	NCI-H292 IL-9	21.5
LAK cells PMA/ionomycin	0.2	NCI-H292 IL-13	27.7
NK Cells IL-2 rest	11.8	NCI-H292 IFN gamma	18.3
Гwo Way MLR 3 day	0.4	HPAEC none	0.8
ľwo Way MLR 5 day	0.0	HPAEC TNF alpha + IL-1 beta	0.3
Гwo Way MLR 7 day	0.0	Lung fibroblast none	21.5
PBMC rest	0.0	Lung fibroblast TNF alpha + IL-1 beta	2.7
PBMC PWM	0.0	Lung fibroblast IL-4	10.2
PBMC PHA-L	1.3	Lung fibroblast IL-9	6.2
Ramos (B cell) none	0.0	Lung fibroblast IL-13	1.3
Ramos (B cell) ionomycin	0.0	Lung fibroblast IFN gamma	43.5
3 lymphocytes PWM	0.0		0.0
3 lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 TNE	1.1
	3.5	Dermal fibroblast CCD1070 IL-1 beta	1.6
OL-1 dbcAMP MA/ionomycin	0.0	Dermal fibroblast IFN gamma	39.5
Dendritic cells none	1.1	Dermal fibroblast IL-4	12.0
Pendritic cells LPS	0.0		16.0
Pendritic cells anti-CD40	0.0 '		0.0
Ionocytes rest	0.0		0.0
Monocytes LPS	0.0		3.0
lacrophages rest	0.0		1.6
facrophages LPS	0.0		3.5

HUVEC none		Kidney Kidney	100.0
HUVEC starved	2.9	The second secon	

Table ZD. Panel 5 Islet

Tissue Name	3	Rel. Exp.(%) Ag5627, Run 31285250	Tissue Name	Ag5627, Run	Rel. Exp.(%) Ag5627, Run 3128525
97457_Patient-02go_adipos e	1	1.7	94709_Donor 2 AM - A_adipose	1.2	1.6
97476_Patient-07sk_skeleta l muscle	0.0	0.0	94710_Donor 2 AM - B_adipose	1.1	1.7
97477_Patient-07ut_uterus	0.4	0.5	94711_Donor 2 AM - C_adipose	0.8	1.4
97478_Patient-07pl_placen a	40.3	46.0	94712_Donor 2 AD - A_adipose	2.7	2.0
99167_Bayer Patient 1	0.1	0.1	94713_Donor 2 AD - B_adipose	4.0	3.0
97482_Patient-08ut_uterus	0.2	0.2	94714_Donor 2 AD - C_adipose	3.0	3.0
97483_Patient-08pl_placent a	82.9	100.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	0.4	0.4
97486_Patient-09sk_skeleta l muscle	0.2	0.1	94743_Donor 3 U - B_Mesenchymal Stem Cells	0.3	0.6
97487_Patient-09ut_uterus	: :		94730_Donor 3 AM - A_adipose	3.5	3.7
97488_Patient-09pl_placent a	29.9		94731_Donor 3 AM - B_adipose	5.3	5.6
			94732_Donor 3 AM - C_adipose	3.9	1.8
97493_Patient-10pl_placent a	100.0		94733_Donor 3 AD - A_adipose	2.6	3.5
5		0.9	94734_Donor 3 AD - B_adipose	2.8	3.6
77496_Patient-11sk_skeleta muscle	0.2		94735_Donor 3 AD - C_adipose	0.5	.8
- 1	1).8	77138_Liver_HepG2untreate	39.5 4	3.2
7498_Patient-11pl_placent			73556_Heart_Cardiac stromal cells (primary)	0.1 0	.0
7500_Patient-12go_adipos	1	I		1.8	.9
7501_Patient-12sk_skeleta muscle	0.5	0.6	2409_Kidney_Proximal Convoluted Tubule	18.2	9.1

97502_Patient-12ut_uterus	3	0.4	82685_Small intestine_Duodenum	1.3	1.1
97503_Patient-12pl_placent a	85.9	88.3	90650_Adrenal_Adrenocortic al adenoma	0.6	0.4
94721_Donor 2 U - A_Mesenchymal Stem Cells	1.2	1.3	72410_Kidney_HRCE	3.7	4.9
94722_Donor 2 U - B_Mesenchymal Stem Cells	0.6	0.8	72411_Kidney_HRE	1.6	1.7
94723_Donor 2 U - C_Mesenchymal Stem Cells	1.0	1.3	73139_Uterus_Uterine smooth muscle cells	1.0	0.7

Table ZE. general oncology screening panel v 2.4

Tissue Name	Rel. Exp.(%) Ag5627, Run 268787222	Tissue ame	Rel. Exp.(%) Ag5627, Run 268787222
Colon cancer 1	2.8	Bladder NAT 2	0.3
Colon NAT 1	2.7	Bladder NAT 3	0.2
Colon cancer 2	7.8	Bladder NAT 4	1.1
Colon NAT 2	3.1	Prostate adenocarcinoma 1	11.8
Colon cancer 3	5.7	Prostate adenocarcinoma 2	1.0
Colon NAT 3	6.4	Prostate adenocarcinoma 3	8.6
Colon malignant cancer 4	3.0	Prostate adenocarcinoma 4	1.7
Colon NAT 4	2.4	Prostate NAT 5	11.1
Lung cancer 1	2.9	Prostate adenocarcinoma 6	2.6
Lung NAT 1	1.1	Prostate adenocarcinoma 7	3.3
ung cancer 2	16.2	Prostate adenocarcinoma 8	0.6
Lung NAT 2	2.3	Prostate adenocarcinoma 9	6.5
quamous cell carcinoma 3	4.8	Prostate NAT 10	1.4
Jung NAT 3	0.5	Kidney cancer 1	14.2
Metastatic melanoma 1	8.7	Kidney NAT 1	7.6
/Ielanoma 2	3.7	Kidney cancer 2	100.0
Ielanoma 3	9.2	Kidney NAT 2	15.6
letastatic melanoma 4	16.3	Kidney cancer 3	38.7
letastatic melanoma 5	20.2	Kidney NAT 3	6.5
ladder cancer 1	1.3	Kidney cancer 4	
ladder NAT 1	0.0	Kidney NAT 4	11.8
ladder cancer 2	3.9	J MALI 4	6.9

CNS_neurodegeneration_v1.0 Summary: Ag5627 Two experiments with same probe-primer sets are in good agreements. This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene is found to be upregulated in the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of the expression or function of this gene may decrease neuronal death and be of use in the treatment of this disease.

5

10

15

20

25

30

Panel 4.1D Summary: Ag5627 Highest expression of this gene is detected in kidney. Moderate to low levels of expression of this gene is also seen in activated naive and memory T cells, IL-2 treated NK cells, IFN gamma activated HUVEC cells, cytokine activated bronchial epithelial cells, astrocytes, resting and activated small airway epithelial cells, coronery artery SMC cells, basophils, keratinocytes, mucoepidermoid NCI-H292 cells, lung and dermal fibroblast, liver cirrhosis sample and normal tissues such as colon, lung, and thymus. Therefore, therapeutic modulation of this gene or its protein product through the use of small molecule drug may be useful in the treatment of autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

Panel 5 Islet Summary: Ag5627 Two experiments with same probe and primer sets are in good agreements. Highest expression of this gene is detected in placenta of diabetic and nondiabetic patients (CTs=26.4-26.7). Moderate to high levels of expression of this gene is also seen in liver HepG2 cell line, adipose, small intestine and kidney. This gene codes for a homolog of Serine palmitoyltransferase 2. Serine palmitoyltransferase catalyzes the first, rate limiting step in de novo ceramide biosynthesis. C2-ceramide inhibits GLUT4 translocation by inhibiting Akt phosphorylation and activation in 3T3-L1 adipocytes, independently of effects on IRS-1 (Summers et al., 1998, Mol Cell Biol 18:5457-64, PMID: 9710629). Ceramide downregulates PDE3B and induces lipolysis in 3T3-L1 cells. Ceramide effects are reversed by troglitazone (Mei et al., 2002, Diabetes 51: 631-7, PMID: 11872660). Palmitate-induced insulin resistance involves elevation of de novo ceramide synthesis in C2C12 myotubes (Schmitz-Peiffer et al., 1999, J Biol Chem 274:24202, PMID: 10446195). Therefore, inhibition of the novel serine palmitoyltransferase through the use of small molecule drug may be beneficial in the treatment of diabetes.

general oncology screening panel_v_2.4 Summary: Ag5627 Highest expression of this gene is detected in kidney cancer (CT=27.5). Moderate to high expression of this

gene is also seen in normal and cancer samples derived from colon, lung, bladder, prostate and kidney. Moderate levels of expression of this gene is also seen in melanoma and metastatic melanoma samples. Expression of this gene is strongly associated with kidney, lung and bladder cancers as compared to the corresponding normal tissues. Therefore, expression of this gene may be used as diagnostic marker for detection of these cancers and also, therapeutic modulation of this gene or its protein product may be useful in the treatment of melanoma, colon, lung, bladder, prostate and kidney cancers.

AA. CG148888-01: GALNAC 4-SULFOTRANSFERASE.

Expression of gene CG148888-01 was assessed using the primer-probe set Ag6854,
described in Table AAA. Results of the RTQ-PCR runs are shown in Table AAB. Please
note that CG148888-01 represents a full-length physical clone.

Table AAA. Probe Name Ag6854

Primers	Sequenes	Length	Start Position	SEQ ID No
	5'-accccagagccgcctggt-3'	18	369	345
Probe	TET-5'-cttggcctgatgttgaactttattcctg gcacc-3'-TAMRA	33	408	346
Reverse	5'-cagcctgcaggaccctacg-3'	19	458	347

Table AAB. General screening panel v1.6

Tissue Name	Rel. Exp.(%) Ag6854, Run 278020603	issue Name	Rel. Exp.(%) Ag6854, Run 278020603
Adipose	0.0	Renal ca. TK-10	0.0
Melanoma* Hs688(A).T	0.0	Bladder	0.1
Melanoma* Hs688(B).T	0.2	Gastric ca. (liver met.) NCI-N87	0.0
Melanoma* M14	0.0	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	0.0
Melanoma* SK-MEL-5	0.3	Colon ca. SW480	0.1
Squamous cell carcinoma SCC-4	0.1	Colon ca.* (SW480 met) SW620	0.0
Testis Pool	0.2	Colon ca. HT29	0.0
Prostate ca.* (bone met) PC-3	0.0	Colon ca. HCT-116	0.0
Prostate Pool	0.0	Colon ca. CaCo-2	0.0

Placenta	0.0	Colon cancer tissue	
Uterus Pool	0.0	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	0.0	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	0.0	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.0	Colon Pool	0.2
Ovarian ca. OVCAR-5	0.1	Small Intestine Pool	0.1
Ovarian ca. IGROV-1	0.0	Stomach Pool	0.3
Ovarian ca. OVCAR-8	0.0	Bone Marrow Pool	0.1
Ovary	0.2	Fetal Heart	0.3
Breast ca. MCF-7	0.7	Heart Pool	0.0
Breast ca. MDA-MB-231	0.0	Lymph Node Pool	0.5
Breast ca. BT 549	0.0	Fetal Skeletal Muscle	0.0
Breast ca. T47D	0.0	Skeletal Muscle Pool	0.0
Breast ca. MDA-N	0.0	Spleen Pool	0.6
Breast Pool	0.2	Thymus Pool	0.5
Trachea	0.3	CNS cancer (glio/astro) U87-M	
Lung .	0.2	CNS cancer (glio/astro) U-118-	
Fetal Lung	0.0	CNS cancer (neuro; met) SK-N-	
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	0.0	CNS cancer (astro) SNB-75	0.7
Lung ca. NCI-H146	0.0	CNS cancer (glio) SNB-19	0.0
Lung ca. SHP-77	100.0	CNS cancer (glio) SF-295	0.1
Lung ca. A549	0.0	Brain (Amygdala) Pool	3.7
Jung ca. NCI-H526	0.4	Brain (cerebellum)	8.8
ung ca. NCI-H23	0.2	Brain (fetal)	16.2
ung ca. NCI-H460	0.1	Brain (Hippocampus) Pool	3.6
ung ca. HOP-62	0.0	Cerebral Cortex Pool	3.7
ung ca. NCI-H522	1.4	Brain (Substantia nigra) Pool	4.6
iver	0.0	Brain (Thalamus) Pool	5.0
etal Liver	0.0	Brain (whole)	4.5
iver ca. HepG2	0.0	Spinal Cord Pool	4.7
idney Pool	0.0	Adrenal Gland	0.2
etal Kidney	0.0	Pituitary gland Pool	8.0
enal ca. 786-0	0.0	Salivary Gland	0.0
enal ca. A498	0.0	Thyroid (female)	0.2
enal ca. ACHN	0.0	Pancreatic ca. CAPAN2	0.1
enal ca. UO-31	0.0	Pancreas Pool	0.2

General_screening_panel_v1.6 Summary: Ag6854 Highest expression of this gene is seen in a lung cancer cell line (CT=27.8). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to

5

detect the presence of lung cancer. Furthermore, therapetitie modulation of the expression or function of this gene may be effective in the treatment of lung cancer.

This gene is also expressed at moderate to low levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.

AB. CG149008-01: NOVEL SODIUM/HYDROGEN EXCHANGER FAMILY MEMBER.

Expression of gene CG149008-01 was assessed using the primer-probe set Ag5630, described in Table ABA. Results of the RTQ-PCR runs are shown in Tables ABB, ABC, ABD and ABE.

Table ABA. Probe Name Ag5630

5

15

20

Reverse

Primers	Sequencs	Length	Start Position	SEQ ID					
Forward	5'-tattttctgggtcaggctgat-3'	121	770	348					
Probe	TET-5'-tctctaaactcaacatgacagacagtt ttg-3'-TAMRA	30	795	349					

21

825

350

Table ABB. CNS neurodegeneration v1.0

5'-cagatattagggagccaaacg-3'

Tissue Name	Rel. Exp.(%) Ag5630, Run 246956911	issue Name	Rel. Exp.(%) Ag5630, Run 246956911
AD 1 Hippo	9.3	Control (Path) 3 Temporal Ctx	9.3
AD 2 Hippo	31.4	Control (Path) 4 Temporal Ctx	14.5
AD 3 Hippo	5.5	AD 1 Occipital Ctx	7.5
AD 4 Hippo	8.4	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	62.0	AD 3 Occipital Ctx	4.5
AD 6 Hippo	46.0	AD 4 Occipital Ctx	18.9
Control 2 Hippo	31.4	AD 5 Occipital Ctx	13.9
Control 4 Hippo	15.9	AD 6 Occipital Ctx	46.3
Control (Path) 3 Hippo	10.4	Control 1 Occipital Ctx	3.8

AD 1 Temporal Ctx	12.0	Control 2 Occipital Cix	61.6
AD 2 Temporal Ctx	41.8	Control 3 Occipital Ctx	6.1
AD 3 Temporal Ctx	2.3	Control 4 Occipital Ctx	13.2
AD 4 Temporal Ctx	25.7	Control (Path) 1 Occipital Ctx	62.0
AD 5 Inf Temporal Ctx	100.0	Control (Path) 2 Occipital Ctx	10.5
AD 5 SupTemporal Ctx	48.6	Control (Path) 3 Occipital Ctx	8.4
AD 6 Inf Temporal Ctx	36.9	Control (Path) 4 Occipital Ctx	11.8
AD 6 Sup Temporal Ctx	45.7	Control 1 Parietal Ctx	10.4
Control 1 Temporal Ctx	14.3	Control 2 Parietal Ctx	49.0
Control 2 Temporal Ctx	48.6	Control 3 Parietal Ctx	20.3
Control 3 Temporal Ctx	12.8	Control (Path) 1 Parietal Ctx	44.1
Control 4 Temporal Ctx	14.1	Control (Path) 2 Parietal Ctx	22.7
Control (Path) 1 Temporal Ctx	52.5	Control (Path) 3 Parietal Ctx	8.2
Control (Path) 2 Temporal Ctx	33.9	Control (Path) 4 Parietal Ctx	35.1

Table ABC. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag5630, Run 245065625	issue Name	Rel. Exp.(%) Ag5630, Run 245065625
Adipose	4.2	Renal ca. TK-10	32.8
Melanoma* Hs688(A).T	21.9	Bladder	9.5
Melanoma* Hs688(B).T	19.2	Gastric ca. (liver met.) NCI-N87	100.0
Melanoma* M14	41.2	Gastric ca. KATO III	52.1
Melanoma* LOXIMVI	25.2	Colon ca. SW-948	5.1
Melanoma* SK-MEL-5	20.0	Colon ca. SW480	27.2
Squamous cell carcinoma SCC-4	8.4	Colon ca.* (SW480 met) SW620	22.2
Testis Pool	9.1	Colon ca. HT29	10.5
Prostate ca.* (bone met) PC-3	5.8	Colon ca. HCT-116	15.6
Prostate Pool	3.0	Colon ca. CaCo-2	25.9
Placenta	16.7	Colon cancer tissue	12.9
Uterus Pool	4.3	Colon ca. SW1116	3.4
Ovarian ca. OVCAR-3	35.6	Colon ca. Colo-205	19.8
Ovarian ca. SK-OV-3	15.4	Colon ca. SW-48	12.6
Ovarian ca. OVCAR-4	9.5	Colon Pool	6.4
Ovarian ca. OVCAR-5	44.8	Small Intestine Pool	4.0
Ovarian ca. IGROV-1	13.9	Stomach Pool	3.7
Ovarian ca. OVCAR-8	8.0	Bone Marrow Pool	2.9
Ovary	3.8	Fetal Heart	4.1
Breast ca. MCF-7	14.9	Heart Pool	3.3
Breast ca. MDA-MB-231	25.2	Lymph Node Pool	6.8

Breast ca. BT 549	32.1	Fetal Skeletal Muscle	2.5
Breast ca. T47D	18.7	Skeletal Muscle Pool	15.6
Breast ca. MDA-N	9.3	Spleen Pool	5.4
Breast Pool	1.7	Thymus Pool	7.6
Trachea	18.4	CNS cancer (glio/astro) U87-MG	74.2
Lung	1.7		J
Fetal Lung	9.2	CNS cancer (neuro; met) SK-N-AS	8.5
Lung ca. NCI-N417	4.8	CNS cancer (astro) SF-539	11.9
Lung ca. LX-1	24.1	CNS cancer (astro) SNB-75	43.2
Lung ca. NCI-H146	3.6	CNS cancer (glio) SNB-19	12.9
Lung ca. SHP-77	14.0	CNS cancer (glio) SF-295	30.8
Lung ca. A549	35.4	Brain (Amygdala) Pool	4.9
Lung ca. NCI-H526	3.5	Brain (cerebellum)	23.7
Lung ca. NCI-H23	23.5	Brain (fetal)	6.5
Lung ca. NCI-H460	6.7	Brain (Hippocampus) Pool	7.5
Lung ca. HOP-62	7.6		5.3
Lung ca. NCI-H522	8.5	Brain (Substantia nigra) Pool	4.3
Liver	4.2	Brain (Thalamus) Pool	7.4
Fetal Liver	15.8		5.4
Liver ca. HepG2	5.7	Spinal Cord Pool	6.4
Kidney Pool	7.7		24.1
Fetal Kidney	5.0		3.1
Renal ca. 786-0	19.9		13.2
Renal ca. A498	14.3		8.1
Renal ca. ACHN	8.9		26.1
Renal ca. UO-31	32.1		9.3

Table ABD. Panel 4.1D

5

Tissue Name	Rel. Exp.(% Ag5630, Tissue Name Run 246490808		Rel. Exp.(%) Ag5630, Run 246490808
Secondary Th1 act	52.9	HUVEC IL-1beta	21.9
Secondary Th2 act	86.5	HUVEC IFN gamma	20.2
Secondary Trl act	14.5	HUVEC TNF alpha + IFN gamma	6.7
Secondary Th1 rest	2.2	HUVEC TNF alpha + IL4	4.6
Secondary Th2 rest	1.7	HUVEC IL-11	12.6
Secondary Tr1 rest	0.0	Lung Microvascular EC none	31.6
Primary Th1 act	0.8	Lung Microvascular EC TNFalpha + IL-1 beta	9.4
Primary Th2 act	42.6	Microvascular Dermal EC none	0.7

Primary Tr1 act	35.4	Microsvasular Derma E	The state of the state of
	33.4	TNFalpha + IL-1 beta	7.2
Primary Th1 rest	1.9	Bronchial epithelium TNFalpha + IL1 beta	4.2
Primary Th2 rest	3.4	Small airway epithelium none	4.5
Primary Tr1 rest	0.3	Small airway epithelium TNFalph + IL-1beta	
CD45RA CD4 lymphocyte act	30.6	Coronery artery SMC rest	9.9
CD45RO CD4 lymphocyte act	49.3	Coronery artery SMC TNFalpha + IL-1beta	13.3
CD8 lymphocyte act	4.6	Astrocytes rest	2.6
Secondary CD8 lymphocyte rest	29.9	Astrocytes TNFalpha + IL-1beta	4.2
Secondary CD8 lymphocyte act	6.6	KU-812 (Basophil) rest	4.9
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	11.9
2ry Th1/Th2/Tr1_anti-CD95 CH11	2.5	CCD1106 (Keratinocytes) none	28.3
LAK cells rest	11.1	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	18.6
LAK cells IL-2	9.7	Liver cirrhosis	4.6
LAK cells IL-2+IL-12	2.3	NCI-H292 none	46.3
LAK cells IL-2+IFN gamma	17.3	NCI-H292 IL-4	46.0
LAK cells IL-2+ IL-18	9.5	NCI-H292 IL-9	69.3
LAK cells PMA/ionomycin	36.3	NCI-H292 IL-13	59.0
NK Cells IL-2 rest	17.0	NCI-H292 IFN gamma	33.9
Two Way MLR 3 day	9.4	HPAEC none	12.9
I'wo Way MLR 5 day	1.0	HPAEC TNF alpha + IL-1 beta	70.2
Гwo Way MLR 7 day	7.0	Lung fibroblast none	14.2
PBMC rest	0.9	Lung fibroblast TNF alpha + IL-1 beta	20.0
	9.9	Lung fibroblast IL-4	12.4
	8.4		4.8
	1.4		2.7
	28.5		27.7
Ilymphocytes PWM	19.6		33.9
lymphocytes CD40L and IL-4	28.1	Dermal fibroblast CCD1070 TNE	52.4
	3.8	Dermal fibroblast CCD1070 IL-1 beta	18.3
MAD IOIOINYCIII).4	Dermal fibroblast IFN gamma	9.3
	0.2	Dermal fibroblast IL-4	7.4
			5.8
		LT	7.6
			1.2
onocytes LPS 1			.5

Macrophages rest	6.0	Lung	0.9
Macrophages LPS	10.6	Thymus	2.4
HUVEC none	12.6	Kidney	17.2
HUVEC starved	21.5		

Table ABE. Panel 5 Islet

.5

Tissue Name	Rel. Exp.(% Ag5630,	Tissue Name	Rel. Exp.(%)
	Run 279370866		Ag5630, Run 279370866
97457_Patient-02go_adipose	15.5	94709_Donor 2 AM - A_adipose	26.6
97476_Patient-07sk_skeletal muscle	0.0	94710_Donor 2 AM - B_adipose	21.0
97477_Patient-07ut_uterus	5.0	94711_Donor 2 AM - C_adipose	16.7
97478_Patient-07pl_placenta	9.3	94712_Donor 2 AD - A_adipose	55.9
99167_Bayer Patient 1	100.0	94713_Donor 2 AD - B_adipose	74.7
97482_Patient-08ut_uterus	11.0	94714_Donor 2 AD - C_adipose	54.7
97483_Patient-08pl_placenta	7.9	94742_Donor 3 U - A_Mesenchymal Stem Cells	5.7
97486_Patient-09sk_skeletal muscle	9.9	94743_Donor 3 U - B_Mesenchymal Stem Cells	8.0
97487_Patient-09ut_uterus	4.1	94730_Donor 3 AM - A_adipose	8.3
97488_Patient-09pl_placenta	10.3	94731_Donor 3 AM - B_adipose	14.3
97492_Patient-10ut_uterus	10.2	94732_Donor 3 AM - C_adipose	11.3
97493_Patient-10pl_placenta	20.9	94733_Donor 3 AD - A_adipose	30.1
97495_Patient-11go_adipose	5.8	94734_Donor 3 AD - B_adipose	22.5
97496_Patient-11sk_skeletal muscle	4.4	94735_Donor 3 AD - C_adipose	7.5
97497_Patient-11ut_uterus	13.5	77138_Liver_HepG2untreated	2.5
97498_Patient-11pl_placenta	3.4	73556_Heart_Cardiac stromal cells (primary)	2.7
97500_Patient-12go_adipose	37.1	81735_Small Intestine	12.6
97501_Patient-12sk_skeletal muscle	20.2	72409_Kidney_Proximal Convoluted Tubule	28.1
97502_Patient-12ut_uterus	22.8	82685_Small intestine_Duodenum	24.0
97503_Patient-12pl_placenta	13.1	90650_Adrenal_Adrenocortical adenoma	7.3
94721_Donor 2 U - A_Mesenchymal Stem Cells	87.7	72410_Kidney_HRCE	33.0
94722_Donor 2 U - B_Mesenchymal Stem Cells	75.8	72411_Kidney_HRE	10.4
94723_Donor 2 U - C_Mesenchymal Stem Cells	77.9	73139_Uterus_Uterine smooth muscle cells	11.8

CNS_neurodegeneration_v1.0 Summary: Ag5630 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.5 for a discussion of this gene in treatment of central nervous system disorders.

5

10

15

20

25

30

General_screening_panel_v1.5 Summary: Ag5630 Higest expression of this gene is detected in a gastric cancer NCI-N87 cell line (CT=27.6). Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.

Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Panel 4.1D Summary: Ag5630 Higest expression of this gene is detected in LPS treated monocytes (CT=29.7). Interestingly, this gene is expressed at much higher levels in LPS activated when compared to resting monocytes (CT=40). This observation suggests that expression of this gene can be used to distinguish activated from resting monocytes. In addition, upon activation monocytes contribute to the innate and specific immunity by migrating to the site of tissue injury and releasing inflammatory cytokines. This release

contributes to the inflammation process. Therefore, modulation of the expression of the protein encoded by this gene may prevent the recruitment of monocytes and the initiation of the inflammatory process.

In addition, this gene is also expressed at moderate to low levels in activated polarized T cells, naive and memory T cells, resting and activated LAK cells, resting IL-2 treated NK cells, two way MLR, activated PBMC cells and B lymphocytes, dendritic cells, macrophage, different endothelial cells, bronchial and small airway epithelium, astrocytes, basophils, keratinocytes, mucoepidermoid cells, lung and dermal fibroblasts, neutrophils and kidney. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

Panel 5 Islet Summary: Ag5630 Higest expression of this gene is detected in beta islet cells (CT=26.7). In addition, this gene shows widespread expression in this panel, with moderate to low expressions in adipose, placenta, uterus, skeletal muscle, kidney, and small intestine samples. Therefore, therapeutic modulation of this gene may be useful in the treatment of metabolic/endocrine disorders including, obesity, Type I and II diabetes.

AC. CG149350-01 and CG149350-02: Vacuolar ATP synthase subunit \mathbf{F} .

Expression of gene CG149350-01 and CG149350-02 was assessed using the primer-probe set Ag7581, described in Table ACA. Results of the RTQ-PCR runs are shown in Table ACB. Please note that CG149350-02 represents a full-length physical clone of the CG149350-01 gene, validating the prediction of the gene sequence.

Table ACA. Probe Name Ag7581

5

10

15

20

25

Primers		Length	Start Position	SEQ ID
Forward	5'-aagaactgccaccccaatt-3'	19	88	351
Probe	TET-5'-cattgatggtcgtatccttctccacca-3'-TAMRA	27	113	352
Reverse	5'-aaattgccggaaagtgtctt-3'	20	146	353

Table ACB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag7581, Run 308752174	issue Name	Rel. Exp.(%) Ag7581, Run 308752174
AD 1 Hippo	19.9	Control (Path) 3 Temporal Ctx	7.3
AD 2 Hippo	21.3	Control (Path) 4 Temporal Ctx	62.9
AD 3 Hippo	14.9	AD 1 Occipital Ctx	19.1
AD 4 Hippo	6.4	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	65.5	AD 3 Occipital Ctx	22.4
AD 6 Hippo	44.4	AD 4 Occipital Ctx	32.3
Control 2 Hippo	21.9	AD 5 Occipital Ctx	4.4
Control 4 Hippo	30.6	AD 6 Occipital Ctx	20.2
Control (Path) 3 Hippo	10.7	Control 1 Occipital Ctx	3.0
AD 1 Temporal Ctx	23.0	Control 2 Occipital Ctx	35.6
AD 2 Temporal Ctx	27.5	Control 3 Occipital Ctx	53.2
AD 3 Temporal Ctx	19.8	Control 4 Occipital Ctx	6.8
AD 4 Temporal Ctx	21.3	Control (Path) 1 Occipital Ctx	70.7
AD 5 Inf Temporal Ctx	46.3	Control (Path) 2 Occipital Ctx	17.9
AD 5 SupTemporal Ctx	55.9	Control (Path) 3 Occipital Ctx	4.2
AD 6 Inf Temporal Ctx	52.9	Control (Path) 4 Occipital Ctx	32.5
AD 6 Sup Temporal Ctx	47.3	Control 1 Parietal Ctx	8.7
Control 1 Temporal Ctx	23.5	Control 2 Parietal Ctx	56.3
Control 2 Temporal Ctx	28.9	Control 3 Parietal Ctx	32.5
Control 3 Temporal Ctx	22.2	Control (Path) 1 Parietal Ctx	100.0
Control 4 Temporal Ctx	9.1	Control (Path) 2 Parietal Ctx	38.4
Control (Path) 1 Temporal Ctx	45.7	Control (Path) 3 Parietal Ctx	17.6
Control (Path) 2 Temporal Ctx	62.0	Control (Path) 4 Parietal Ctx	64.2

5

10

CNS_neurodegeneration_v1.0 Summary: Ag7581 No differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. However, this panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

AD. CG149536-01: PROTEIN-TYROSINE PHOSPHATASE,

Expression of gene CG149536-01 was assessed using the primer-probe sets Ag5255 and Ag6844, described in Tables ADA and ADB. Results of the RTQ-PCR runs are shown in Tables ADC, ADD and ADE.

Table ADA. Probe Name Ag5255

Primers	·	Length	Start Position	SEQ ID No
Forward	5'-cttatggtttggcagcagaa-3'	20	355	354
Probe	TET-5'-ccaaagcagttgtcatgctgaaccgc -3'-TAMRA	26	377	355
Reverse	5'-tggtttcaccactcgattct-3'	20	414	356

10

5

Table ADB. Probe Name Ag6844

Primers		Length	Start Position	SEQ ID No
Forward	5'-agagaatcgagtggtgaaacc-3'	21	412	357
Probe	TET-5'-actacctggccagattttggagtccc -3'-TAMRA	26	457	358
Reverse	5'-aggagccagattctctcacttta-3'	23	516	359

15

Table ADC. CNS neurodegeneration v1.0

Tissue Name	Rel. Exp.(%) Ag5255, Run 229929883	issue Name	Rel. Exp.(%) Ag5255, Run 229929883
AD l Hippo	28.9	Control (Path) 3 Temporal Ctx	21.0
AD 2 Hippo	42.3	Control (Path) 4 Temporal Ctx	38.7
AD 3 Hippo	42.0	AD 1 Occipital Ctx	45.4
AD 4 Hippo	5.9	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	92.7	AD 3 Occipital Ctx	36.9
AD 6 Hippo	29.7	AD 4 Occipital Ctx	23.5
Control 2 Hippo	52.5	AD 5 Occipital Ctx	13.6
Control 4 Hippo	22.4	AD 6 Occipital Ctx	47.6
Control (Path) 3 Hippo	17.9	Control 1 Occipital Ctx	3.2

31.2 5.0
CONTRACTOR OF THE PARTY OF THE
5.0
99.3
40.3
Marian
24.0
20.6
68.3
29.5
46.3
31.2
6.9
45.1

Table ADD. General screening panel v1.5

Breast ca. MCF-7

Breast ca. MDA-MB-231

Rel.

Tissue Name	Rel. Exp.(%) Ag5255, Run 230218532	issue Name	Rel. Exp.(%) Ag5255, Run 230218532
Adipose	6.4	Renal ca. TK-10	18.8
Melanoma* Hs688(A).T	9.5	Bladder	10.8
Melanoma* Hs688(B).T	8.7	Gastric ca. (liver met.) NCI-N87	50.3
Melanoma* M14	19.1	Gastric ca. KATO III	60.3
Melanoma* LOXIMVI	25.5	Colon ca. SW-948	5.8
Melanoma* SK-MEL-5	18.8	Colon ca. SW480	100.0
Squamous cell carcinoma SCC-4	24.0	Colon ca.* (SW480 met) SW620	23.3
Testis Pool	2.2	Colon ca. HT29	19.2
Prostate ca.* (bone met) PC-3	33.9	Colon ca. HCT-116	46.7
Prostate Pool	4.1	Colon ca. CaCo-2	49.3
Placenta	1.9	Colon cancer tissue	5.7
Uterus Pool	2.3	Colon ca. SW1116	3.5
Ovarian ca. OVCAR-3	19.6	Colon ca. Colo-205	3.3
Ovarian ca. SK-OV-3	55.5	Colon ca. SW-48	0.5
Ovarian ca. OVCAR-4	8.5	Colon Pool	5.9
Ovarian ca. OVCAR-5	44.4	Small Intestine Pool	5.7
Ovarian ca. IGROV-1	5.7	Stomach Pool	3.2
Ovarian ca. OVCAR-8	7.8	Bone Marrow Pool	2.8
Ovary	8.0	Fetal Heart	3.7
			<u> </u>

Heart Pool

Lymph Node Pool

38.2

13.4

Breast ca. BT 549	51.8	Fetal Skeletal Müscle	5.8
Breast ca. T47D	5.4	Skeletal Muscle Pool	2.6
Breast ca. MDA-N	7.0	Spleen Pool	0.4
Breast Pool	9.0	Thymus Pool	19.2
Trachea	1.0	CNS cancer (glio/astro) U87-MG	26.4
Lung	5.7	CNS cancer (glio/astro) U-118-MG	
Fetal Lung	17.1	CNS cancer (neuro; met) SK-N-AS	18.9
Lung ca. NCI-N417	1.0	CNS cancer (astro) SF-539	17.1
Lung ca. LX-1	12.6	CNS cancer (astro) SNB-75	12.2
Lung ca. NCI-H146	16.6	CNS cancer (glio) SNB-19	6.4
Lung ca. SHP-77	34.6	CNS cancer (glio) SF-295	16.0
Lung ca. A549	15.1	Brain (Amygdala) Pool	4.0
Lung ca. NCI-H526	6.7	Brain (cerebellum)	33.2
Lung ca. NCI-H23	33.0	Brain (fetal)	54.0
Lung ca. NCI-H460	7.2	Brain (Hippocampus) Pool	4.7
Lung ca. HOP-62	26.2	Cerebral Cortex Pool	5.3
Lung ca. NCI-H522	35.1	Brain (Substantia nigra) Pool	4.0
Liver	0.9		6.8
Fetal Liver	7.2	Brain (whole)	4.9
Liver ca. HepG2	9.7		7.0
Kidney Pool	7.3		2.4
Fetal Kidney	16.3		2.1
Renal ca. 786-0	7.1	0.1: 01 1	1.5
Renal ca. A498	2.2		1.1
Renal ca. ACHN .	9.2		66.4
Renal ca. UO-31	6.5		7.2

Table ADE. Panel 4.1D

5

Tissue Name	Rel. Exp.(%) g5255, Run 229851730	Rel. Exp.(%) Ag6844, Run 279029113	Tissue Name	Rel. Exp.(%) Ag5255, Run 229851730	Rel. Exp.(%) Ag6844, Run 279029113
Secondary Th1 act	39.0	38.7	HUVEC IL-1beta	39.8	9.6
Secondary Th2 act	46.7	55.9	HUVEC IFN gamma	12.5	15.9
Secondary Tr1 act	15.7	18.9	HUVEC TNF alpha + IFN gamma	21.0	8.4
Secondary Th1 rest	12.0	3.9	HUVEC TNF alpha + IL4	12.1	11.0
Secondary Th2 rest	0.0	5.3	HUVEC IL-11	13.6	4.4
Secondary Tr1 rest	0.0	9.2	Lung Microvascular EC none	25.2	18.4

				The state of the state of	- 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15
Primary Th1 act	17.9	6.0	Lung Microväscular EC TNFalpha + IL-1beta	2.6	9.4
Primary Th2 act	15.0	33.7	Microvascular Dermal EC none	6.0	3.8
Primary Tr1 act	18.2	22.7	Microsvasular Dermal EC TNFalpha + IL-1beta	0.0	3.7
Primary Th1 rest	0.0	1.9	Bronchial epithelium TNFalpha + IL1beta	9.3	10.2
Primary Th2 rest	5.0	1.5	Small airway epithelium none	0.0	10.0
Primary Tr1 rest	0.0	0.0	Small airway epithelium TNFalpha + IL-1beta		14.1
CD45RA CD4 lymphocyte act	32.1	13.9	Coronery artery SMC rest	11.1	5.5
CD45RO CD4 lymphocyte act	58.6	42.9	Coronery artery SMC TNFalpha + IL-1beta	11.3	4.0
CD8 lymphocyte act	5.2	18.7	Astrocytes rest	0.0	1.1
Secondary CD8 lymphocyte rest	10.9	5.5	Astrocytes TNFalpha + IL-1beta	0.0	1.8
Secondary CD8 lymphocyte act	0.0	4.4	KU-812 (Basophil) rest	38.4	17.2
CD4 lymphocyte none	6.7	3.4	KU-812 (Basophil) PMA/ionomycin	33.2	38.7
2ry Th1/Th2/Tr1_anti-CD95 CH11	0.0	26.4	CCD1106 (Keratinocytes) none	76.3	40.1
LAK cells rest	19.1	14.7	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	13.1	14.9
LAK cells IL-2	5.4	7.3	Liver cirrhosis	15.8	7.0
LAK cells IL-2+IL-12	7.9	1.0	NCI-H292 none	35.1	20.2
LAK cells IL-2+IFN gamma	16.2	7.7	NCI-H292 IL-4	45.4	25.5
LAK cells IL-2+ IL-18	5.1	8.0	NCI-H292 IL-9	60.7	31.2
LAK cells PMA/ionomycin	27.9			45.4	38.4
NK Cells IL-2 rest	27.9	14V.3 I	NCI-H292 IFN gamma	26.2	16.7
Two Way MLR 3 day	18.2		A 100 100 100 100 100 100 100 100 100 10	5.6	6.3
Two Way MLR 5 day	23.3	21	HDAEC TME alaba		12.1
Two Way MLR 7 day	4.5			22.5	12.2
PBMC rest	3.2	5.4	I was Chroblest TATE		8.2
PBMC PWM	20.6			16.0	13.5

Inn. sq pre-	1		Built flore value on the	II des desp esta	the then the the sea
PBMC PHA-L	21.6	12.1	Lung fibroblast IL-9	13.9	11.9
Ramos (B cell) none	40.3	4.8	Lung fibroblast IL-13	0.0	5.8
Ramos (B cell) ionomycin	31.6	17.7	Lung fibroblast IFN gamma	37.6	19.9
B lymphocytes PWM	26.6	6.0	Dermal fibroblast CCD1070 rest	32.3	17.2
B lymphocytes CD40L and IL-4	4.8	37.6	Dermal fibroblast CCD1070 TNF alpha	100.0	54.7
EOL-1 dbcAMP	62.9	74.2	Dermal fibroblast CCD1070 IL-1 beta	34.6	18.7
EOL-1 dbcAMP PMA/ionomycin	45.4	15.1	Dermal fibroblast IFN gamma	17.1	12.7
Dendritic cells none	33.7	57.0	Dermal fibroblast IL-4	5.3	15.0
Dendritic cells LPS	21.0	15.2	Dermal Fibroblasts rest	0.0	6.9
Dendritic cells anti-CD40	10.2	7.3	Neutrophils TNFa+LPS	0.0	2.7
Monocytes rest	4.3	32.1	Neutrophils rest	5.6	6.1
Monocytes LPS	69.7	100.0	Colon	0.0	0.9
Macrophages rest	17.0	3.8	Lung	0.0	1.7
Macrophages LPS	0.0	9.3	Thymus	15.2	18.2
HUVEC none	5.9	28.7		6.3	8.7
HUVEC starved	28.1	8.5			

AI_comprehensive panel_v1.0 Summary: Ag5255 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

5

10

15

CNS_neurodegeneration_v1.0 Summary: Ag5255 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.5 for a discussion of this gene in treatment of central nervous system disorders.

General_screening_panel_v1.5 Summary: Ag5255 Highest expression of this gene is detected in a colon cancer SW480 cell line (CT=31.6). Moderate to low levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung,

liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.

In addition, this gene is expressed at moderate levels in cerebellum and fetal brain. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such ataxia and autism.

Panel 4.1D Summary: Ag5255/Ag6844 Two experiments with different probe and primer sets are in good agreement. The highest expression of this gene is detected in TNF alpha activated dermal fibroblast and LPS activated monocytes (CTs=32.7-32.9). Moderate to low levels of expression of this gene is detected in activated polarized T cells, naive and memory T cells, PMA/ionomycin activated LAK cells, resting IL-2 treated NK cells, eosinophils, resting dendritic cells, activated basophils, resting keratinocyte, and activated mucoepidermoid NCI-H292 cells. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

AE. CG149964-01: Brain mitochondrial carrier protein-1.

Expression of gene CG149964-01 was assessed using the primer-probe set Ag7056, described in Table AEA.

Table AEA. Probe Name Ag7056

20

5

10

15

Primers	Sequencs	Length	Start Position	SEQ ID No
Forward	5'-tgtggttccaactgctcag-3'	19	617	360
Probe	TET-5'-ctggtagetetaeteetacaacgatgg cag-3'-TAMRA	30	640	361
Reverse	5'-agatccacatgtcccatcatt-3'	21	707	362

General_screening_panel_v1.6 Summary: Ag7056 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

AF. CG150799-01, CG150799-02 and CG150799-03: MASS1.

Expression of gene CG150799-01, CG150799-02 and CG150799-03 was assessed using the primer-probe sets Ag5242, Ag5243, Ag5244, Ag5245, Ag5247 and Ag5248,

described in Tables AFA, AFB and AFC. Results of the RTQ-PCR runs are shown in Tables AFD, AFE, AFF, AFG, AFH and AFI. Please note that probe-primer sets Ag5243 is specific for CG150799-02 and probe-primer sets Ag5244 and Ag5245 are specific for CG150799-03.

Table AFA. Probe Name Ag5242

Primers		#Lenoth	Start Position	SEQ ID No
Forward	5'-acgaatcccatgtgacacttt-3'	21	3624	363
	TET-5'-cccttcattataaaaccttgggttcc a-3'-TAMRA	27	3645	364
Reverse	5'-tgactgttgtcttggcaatgt-3'	21	3681	365

Table AFB. Probe Name Ag5243

Primers	Sequence	II enoth	Start Position	SEQ ID No
	5'-gactccttccaaaggctatattgt-3'	24	8809	366
Probe	TET-5'-cgattcaaggccctacaaatatctgcc a-3'-TAMRA	28	8849	367
Reverse	5'-ccatttctggttccgtgtcta-3'	21	8880	368

15 <u>Table AFC.</u>

5

10

Probe Name g5244

Primers	Sequences		Start Position	SEQ ID No
Forward	5'-actgataattctattcctgaactgga-3'	26	4927	369
	TET-5'-agctctgctagatctatctacagatataac gctgtaaaatc-3'-TAMRA	41	4992	370
Reverse	5'-aactcattatagatcatccaaaagga-3'	26	5036	371

Table AFD.

20

Probe Name g5245

Primers	Sequences	II.enoth	SEQ ID No

Forward	5'-accttgttgatgactttgctaatg-3'	24	4320	372
Probe	TET-5'-cagtggaactattacattccttccttgg caga-3'-TAMRA	32	4345	373
Reverse	5'-ggaagcgacacttcaatcaaa-3'	21	4387	374

Table AFE. Probe Name Ag5247

5

Primers	Sequenes	ii enath	8	SEQ ID No
Forward	5'-acttacgttggacttaccatgg-3'	22	8183	375
	TET-5'-caacttcatttcctcccagactaggtat gagg-3'-TAMRA	32	8211	376
Reverse	5'-tcatttcatttgaagtgagcaa-3'	22	8263	3 7 7

Table AFF. Probe Name Ag5248

10

Primers	Sequenes	u enam	1	SEQ ID No
Forward	5'-accttgttgatgactttgctaatg-3'	24	4320	378
1 1000	TET-5'-cagtggaactattacattecttecttgg caga-3'-TAMRA	72	4345	379
Reverse	5'-caagaacatatatattcagaacctctgatc-3	30	4377	380

Table AFG. AI comprehensive panel v1.0

15

Tissue Name	Rel. Exp.(%) Ag5242, Run 305464510	issue Name	Rel. Exp.(%) Ag5242, Run 305464510
110967 COPD-F	0.1	112427 Match Control Psoriasis-F	2.3
110980 COPD-F	1.1	112418 Psoriasis-M	0.1
110968 COPD-M	0.1	112723 Match Control Psoriasis-M	0.5
110977 COPD-M	4.4	112419 Psoriasis-M	0.0
110989 Emphysema-F	0.2	112424 Match Control Psoriasis-M	0.2
110992 Emphysema-F	2.7	112420 Psoriasis-M	1.8
110993 Emphysema-F	0.1	112425 Match Control Psoriasis-M	3.7
110994 Emphysema-F	0.1	104689 (MF) OA Bone-Backus	0.2
110995 Emphysema-F	6.8	104690 (MF) Adj "Normal" Bone-Backus	0.6

110996 Emphysema-F	2.0	104691 (MF) OA Synovium-Backus	0.1
110997 Asthma-M	0.1	104692 (BA) OA Cartilage-Backus	0.0
111001 Asthma-F	0.5	104694 (BA) OA Bone-Backus	0.2
111002 Asthma-F	0.9	104695 (BA) Adj "Normal" Bone-Backus	0.4
111003 Atopic Asthma-F	1.5	104696 (BA) OA Synovium-Backus	0.1
111004 Atopic Asthma-F	6.1	104700 (SS) OA Bone-Backus	0.9
111005 Atopic Asthma-F	2.5	104701 (SS) Adj "Normal" Bone-Backus	0.6
111006 Atopic Asthma-F	0.9	104702 (SS) OA Synovium-Backus	0.2
111417 Allergy-M	0.8	117093 OA Cartilage Rep7	0.9
112347 Allergy-M	0.0	112672 OA Bone5	0.0
112349 Normal Lung-F	0.0	112673 OA Synovium5	0.1
112357 Normal Lung-F	1.0	112674 OA Synovial Fluid cells5	0.2
112354 Normal Lung-M	0.7	117100 OA Cartilage Rep14	0.0
112374 Crohns-F	0.5	112756 OA Bone9	100.0
112389 Match Control Crohns-H	0.2	112757 OA Synovium9	6.4
112375 Crohns-F	0.1	112758 OA Synovial Fluid Cells9	0.1
112732 Match Control Crohns-F	0.3	117125 RA Cartilage Rep2	0.0
112725 Crohns-M	0.1	113492 Bone2 RA	31.6
112387 Match Control Crohns-M	0.1	113493 Synovium2 RA	11.8
112378 Crohns-M	0.0	113494 Syn Fluid Cells RA	22.2
112390 Match Control Crohns-M	1.5	113499 Cartilage4 RA	22.7
112726 Crohns-M	1.2	113500 Bone4 RA	28.1
112731 Match Control Crohns-M	0.9	113501 Synovium4 RA	20.2
112380 Ulcer Col-F	1.0	113502 Syn Fluid Cells4 RA	16.4
112734 Match Control Ulcer Col-F	0.8	113495 Cartilage3 RA	22.7
112384 Ulcer Col-F	3.7	113496 Bone3 RA	24.5
112737 Match Control Ulcer Col-F	0.8	110.407.0	14.7
112386 Ulcer Col-F	0.2	113498 Syn Fluid Cells3 RA	33.0
112738 Match Control Ulcer Col-F	0.5	14510633	0.0
112381 Ulcer Col-M	0.0	113663 Bone3 Normal	0.0
112735 Match Control Ulcer Col-M	0.0		0.0
12382 Ulcer Col-M	0.3	113665 Syn Fluid Cells3 Normal	0.0
l 12394 Match Control Ulcer Col-M	0.1		0.1
12383 Ulcer Col-M	4.5	113667 Bone4 Normal).4
12726 Match Control Illians	0.3		0.1

112423 Psoriasis-F 0.2 113669 Syn Fluid Cells 4 Normal 0.8

Table AFH. CNS neurodegeneration v1.0

	Rel.	Rel.	Rel.	Rel.	Rel.		Pal	(Da)	ln.	Jn . 1	D .1	Jp. 1		7	1
	Exp.(1	Exp.	Rel.	Rel. Exp.	Rel. Exp.	Rel. Exp.	Rel. Exp.	Rel. Exp.	Rel. Exp.	Rel. Exp.	Rel. Exp.	Rel.
	07	(%)	(%)	(%)	(%)	Exp.((%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	Exp.(%)
Tiss	Ag52	1''	Ag52		Ag52	%)	14.75		Ag5	1 '	Ag5	Ag52		• •	Ag52
ue Na	42,	242,	43,	243,	43,	Ag524	244.	44.	245.	45,	247,	47,	248.	48.	48,
	Run	Run	Run	Run	Run	4,	Run	Run	Run		Run	Run	Run	Run	Run
me	2296	2336	2296	2768	2777	Run 22966	2336	2777	4	2305		2768	2296		2777
	6154	0987	6154	6356	3146	1548	1076	3146	6154	1032			6155		3146
	6	6	7	6	0	1340	2	1	9	0	0	0	1	2	6
AD 1 Hip po	22.4	21.6	29.3	31.6	27.5	9.1	0.0	3.1	16.0	0.0	9.0	6.7	14.9	13.7	17.9
AD	1				1		1		1	_	-	 	-	 	
2	47.2	40.0	C 4 C	co o]	
Hip	47.3	42.0	54.7	53.2	44.8	0.0	2.9	4.0	16.2	4.6	41.8	21.8	44.4	32.8	32.5
ро					i				l						
AD							 -		1						
3	12.2	13.5	17.8	13.6	10.9	0.0					-				
Hip	12.2	15.5	17.0	15.0	10.9	0.0	0.0	0.0	0.0	0.0	5.8	0.0	9.8	4.8	6.8
ро									İ						
AD															
4	14.8	14.4	16.6	17.7	20.6	0.0	0.0	0.0	23.2	7.6	17.3	8.6	12.8	6.4	70
Hip		- ,	20.0		20.0	0.0	0.0	0.0	25.2	7.0	17.5	0.0	12.0	0.4	7.0
ро															
AD				l											
5	65.5	84.1	61.6	63.7	57.4	6.7	0.0	4.3	11.6	5.3	84.7	31.0	85.3	61.1	62.0
Hip							0.0		11.0	3.3	04.7	31.0	03.5	01.1	02.0
po															
AD	j		i	•									1	1	
6	56.3	59.5	82.4	84.7	90.1	74.2	57.8	51.8	58.6	30.8	100.	92.0	69.3	48.3	55.5
Hip			ı	i	1						0	2.0	٠,.٥	10.5)
po															
Con		1	1	ı	- 1							- 1	1	1	1
trol 2	29.5	25.7	29.3	31.6	31.9	0.0	ا م		, , ,				I		
Hip	47.3	ر ,روع	ر 2.5	0.10	31.9	U.U	0.0	5.5	15.1	29.1	42.0	29.9	27.7	25.0	26.1
ро	[Ì	- 1	- 1	- 1	Į	- 1	I		1	1	- 1	1	i	
Con															
trol		ı	- 1	- 1	1	- 1			ı	- 1		- 1	ĺ	1	
	32.8	29.7	35.6	31.2	37.1	8.1	,, ,	0.0	<u>, , </u>	ا م	,,, [,, ,	, ,	, I	
Hip	2.0	٠,٠٠١		71.2	5/.1	0.1	11.3	v.v	0.0	0.0	27.0	23.7	25.2	20.9	16.5
ро				1		- 1	I			1	1	1	ł	1	
لــــــا					1	1								L	

										The House	ru				mil mil m
Con trol (Pat h) 3 Hip po	33.9	33.9	24.7	24.0	30.8	0.0	4.5	0.0	8.2		13.0		13.1		22.1
AD 1 Te mp oral Ctx	32.3	33.9	32.3	34.6	35.4	2.0	5.4	2.9	9.3	19.5	29.9	21.9	26.2	17.9	26.1
AD 2 Te mp oral Ctx	35.8	42.3	39.5	51.1	46.3	3.3	5.4	0.0	14.2	0.0	28.7	32.5	38.2	37.6	100.0
AD 3 Te mp oral Ctx	28.3	21.2	20.4	23.5	20.7	0.0	0.0	0.0	0.0	0.0	4.4	4.5	12.2	9.5	11.3
AD 4 Te mp oral Ctx	47.3	44.8	36.6	39.0	45.4	10.3	0.0	8.3	39.0	19.2	43.5	25.3	33.0	25.9	29.5
AD 5 Inf Te mp oral Ctx	73.7	100. 0	100.0	100. 0	100.0	0.0	11.4	17.6	24.5	0.0	43.5	74.7	76.8	100.0	79.6
AD 5 Sup Te mp oral Ctx	93.3	77.4	87.7	82.4	88.3	7.3	10.7	8.9	29.1	3.3	45.7	59.0	82.4	70.7	64.2
AD 6 Inf		58.2	62.0	0.0	58.2	55.9	94.0	49.0	55.5	100.0	87.1	87.7	71.7	46.3	65.1

AD 6 Sup Te mp oral Ctx Con	85.	3 99	9.3	74.2	2 74	.7	90.	1	0.00	10	0.	100	.0	99.3	73	.7	95.9	97	.3	97.3	3 60.	3 94.
trol 1 Te mp oral Ctx	47.6	5 46	.3	27.4	28.	5	29.1	1.	.7	0.0		0.0	4)	58.2	27.	7	25.3	19.	1 4	14.4	25.2	2 32.3
Con trol 2 Te mp oral Ctx	37.6	37	.4	30.6	27.5	5 3	32.8	2.	7	11.0	0	4.5	3	1.4	48.	3 8	3.9	15.4	1 5	0.0	34.4	29.1
Con trol 3 Te mp oral Ctx	27.5	24.	1	27.4	32.8	3	7.6	7.1		5.4		2.6	5.	1	6.3	1	6.6	5.8	35	5.6	21.3	27.7
Con trol 3 Te mp oral Ctx	38.2	39.0) 3	4.6	30.6	31	1.9	8.7		2.6	4	.9	8.4	4 ().0	31	.4	13.7	22	.4	26.1	31.4
np ral tx	6.0	81.2	54	4.0	58.6	52	.5	2.5	0	.0	3.	2	78.	.5 3	7.9	72	.7 7	2.7	75.	8 6	53.3	69.7
Con Pat) 2 e e p ral	3.5	50.0	40). 1 4	11.8	41.	5 2	2.0	10).9	0.0	8	30.1	1 20).9	42.	6 31	1.9	42.9	3:	3.9	12.0

C	on													11.11		4
tro (P h) Te m or Ct	ol at 3 23.	3 24	.5 19	9.9	21.5	22.4	2.9	2.3	7.7	0.0	4.1	5.8			0 14.	
tro (P) h) Te mp ora Ct	ol at 4 52.5	5 48.	0 33	3.7	39.8	39.0	0.0	4.7	4.3	49.3	3 43.2	2 73.	7 49.3	3 40.0	5 32.5	47.6
AI Oc ipit al Ct	c 18.0	18.	8 22	8	25.7	24.3	0.0	3.0	0.0	0.0	0.0	10.2	2 13.8	19.9	12.8	14.3
AE 2 Occipit al Ctx (Mi ssin g)	0.0	0.0	0.0) 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AD 3 Occipit al Ctx		14.0	17.	8 1	7.8	18.0	0.0	0.0	0.0	3.2	0.0	10.2	0.0	10.3	5.2	5.5
al Ctx	17.3	23.7	25.3	3 27	7.5	24.3	3.3	3.1	3.3	28.7	6.7	22.2	23.0	8.6	17.0	21.5
AD 5 Occ ipit al Ctx	22.4	26.1	21.3	15	5.2 2	22.5	2.0	3.1	5.3	25.7	5.1	16.7	8.7	3.3	20.9	18.4

										The Later		1. JEJEST 1	1211 2221	전 ''''라 ㅋ	
AD 6 Occi ipit al Ctx	28.9	21.6	19.1	20.4	18.9	11.7	15.6	2.8	0.0	18.2				18.0	
Control 1 Occipit al Ctx	3	10.2	6.8	6.1	7.4	0.0	0.0	0.0	4.3	7.8	5.6	0.0	4.8	3.7	3.3
ipit al Ctx	34.9	33.0	24.7	28.7	31.6	0.0	5.1	7.4	31.2	17.9	7.9	4.6	39.5	20.2	28.3
ipit al Ctx	27.2	24.1	27.5	25.2	24.5	2.4	9.2	4.2	7.0	0.0	13.8	0.0	14.5	17.6	16.8
ipit al Ctx		20.3	18.0	26.8	21.2	0.0	1.6	0.0	0.0	0.0	12.5	5.6	15.4	8.8	12.9
Con trol (Pat h) 1 Occ ipit al Ctx	56.6	64.6	48.6	58.6	57.8	9.1 _.	5.1	7.8	66.4	30.6	69.7	57.0	76.3	42.6	55.5
Con trol (Pat h) 2 Occ pit il Ctx	5.7	6.1	9.0	7.1	8.5	2.0	0.0	0.0	5.6	0.0	1.6	0.0	16.3	3.8	4.1

-	.,									[["]+ [!""b		LRICER	''J}	2 mm - 41	med positive
Control (Pa h) 3 Occor ipit al Ctx	2.6	3.1	4.1	1.9	4.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	1.8	1.7
Con trol (Pa h) 4 Occ ipit al Ctx	9.9	11.2	5.4	9.2	8.2	0.0	0.0	0.0	11.7	15.7	5.1	7.2	2.1	0.3	5.0
Control 1 Parietal Ctx	28.9	32.5	19.6	21.8	22.4	0.0	0.0	0.0	0.0	3.6	9.8	16.4	23.8	16.3	17.1
Con trol 2 Pari etal Ctx	100.0	90.8	79.0	83.5	76.3	7.9	23.8	9.7	26.8	12.2	39.0	37.9	100. 0	44.1	63.3
Con trol 3 Pari etal Ctx		11.9	17.3	15.3	17.0	0.0	9.8	0.0	0.0	0.0	1.7	7.2	12.9	8.5	11.3
Pari etal Ctx	62.4	68.3	57.8	70.2	63.7	4.2	3.8	0.0	100. 0	55.9	41.5	100.0	99.3	53.2	71.2
Con trol (Pat h) 2 Pari etal Ctx	17.1	19.8	22.1	21.0	25.9	1.9	10.4	0.0	30.8	0.0	17.9	18.0	6.3	10.2	15.8

Con trol (Pat h) 3 Pari etal Ctx	12.0	10.2	11.7	8.4	13.9	2.8	5.3	0.0		0.0				4.9	4.2
Con trol (Pat h) 4 Pari etal Ctx	30.1	25.5	26.1	25.7	29.1	1.5	0.0	0.0	59.0	40.9	23.7	30.1	25.9	26.4	17.8

Table AFI. General screening panel v1.5

5

Tissue Name	2, Run	%) Ag52 43, Run 22966	(%) Ag524 5, Run	Rel. Exp.(%) Ag524 7, Run 229665 052	Rel. Exp.(%) Ag524 8, Run 22966 5053	Tissue Name	Rel. Exp.(%) Ag524 2, Run 229665 046	3, Run	Rel. Exp.(%) Ag524 5, Run 22966 5049	Rel. Exp.(%) Ag524 7, Run 22966 5052	Rel. Exp.(%) Ag52 48, Run 22966 5053
Adipose	0.1	0.0	0.0	0.0	0.0	Renal ca. TK-10	0.0	0.1	0.0	0.0	0.0
Melanoma * Hs688(A). T	0.8	0.5	0.0	0.0	1.2	Bladder	2.6	1.8	0.0	2.5	3.7
Melanoma * Hs688(B). Г	0.1	0.0	0.0	0.0	0.0	Gastric ca. (liver met.) NCI-N87	0.0	0.0	0.0	0.0	0.0
Melanoma * M14	0.2	0.3	0.0	0.0	0.1	Gastric ca. KATO III	0.0	0.0	0.0	0.0	0.1
Melanoma LOXIMV	0.9	0.2	0.0	0.0	0.1	Colon ca. SW-948	5.2	4.6	0.4	0.6	3.7
Melanoma SK-MEL-	0.6	1.6	0.0	1.2		Colon ca. SW480	4.6	3.7	0.0	1.1	5.9
quamous ell arcinoma CC-4	0.0	0.0	0.0	0.0	0.0	Colon ca.* (SW480 net) SW620	0.1	0.0	0.0	0.0	0.0

Testis									1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Pool	2.9	3.4	0.0	3.3	3.8	Colon ca HT29	0.0	0.0	0.0	0.0	0.0
Prostate ca.* (bor met) PC-	,	86.	5 5.8	18.2	100.0	Colon ca		11.9	0.4	4.4	14.2
Prostate Pool	10.7	8.5	0.7	2.4	7.0	Colon ca CaCo-2	13.8	14.0	8.9	6.6	16.4
Placenta	0.0	0.1	0.0	1.0	0.1	Colon cancer tissue	0.0	0.0	0.0	0.0	0.0
Uterus Pool	0.0	0.1	0.0	0.0	0.1	Colon ca SW1116	0.1	0.0	0.0	0.0	0.0
Ovarian ca. OVCAR- 3	10.5	18.7	12.1	1.7	16.7	Colon ca. Colo-205		0.0	0.0	0.0	1.2
Ovarian ca. SK-OV-3	0.2	0.1	0.0	0.2	0.0	Colon ca. SW-48	0.0	0.0	0.0	0.0	0.0
Ovarian ca. OVCAR- 4	0.1	0.0	0.0	0.0	0.1	Colon Pool	0.1	0.0	0.0	0.6	0.1
Ovarian ca. OVCAR- 5	7.3	7.1	0.0	3.7	12.1	Small Intestine Pool	3.7	1.6	1.6	1.0	4.1
Ovarian ca. IGROV-1	1.4	3.5	0.0	0.0	0.5	Stomach Pool	1.6	0.7	0.0	0.4	0.9
Ovarian ca. OVCAR- B	8.5	13.0	0.9	0.5	10.7	Bone Marrow Pool	0.1	0.0	0.0	0.0	0.1
Ovary	0.1	0.4	0.0	0.0	1.0	Fetal Heart	0.0	0.0	0.0	0.3	0.0
Breast ca. MCF-7	11.1	10.2	0.0	3.6	16.4	Heart Pool	0.1	0.0	0.0	0.7	0.1
Breast ca. MDA-MB 231	3.7	4.8	3.2	0.6		Lymph Node Pool	0.5	0.0	0.0	0.6	0.1
Breast ca. BT 549	0.0	0.0	0.0	0.0	0.0	Fetal Skeletal Muscle	0.2	0.0	0.0	1.1	0.0
reast ca. 47D	10.2	4.4	0.0	3.1	9.9	Skeletal	0.0	0.1	0.0	0.8	0.1
reast ca. IDA-N	0.1	0.2	0.0	0.0	0.5	Spleen	1.5	0.1	0.5	2.3	0.6

Breast	Т		1			(70)	In Italia	T		1 4 3	100 p 100
Pool	0.8	1.9	0.0	0.9	1.5	Thymus Pool	3.2	1.7	1.9	0.7	2.9
Trachea	7.4	6.4	0.9	20.3	9.5	CNS cancer (glio/astro U87-MG	4.4	2.6	0.3	1.2	3.2
Lung	0.3	0.0	0.0	0.0	0.1	CNS cancer (glio/astro U-118-M G	0.1	0.0	0.0	0.0	0.0
Fetal Lung	25.7	20.9	1.7	6.7	22.2	CNS cancer (neuro;me) SK-N-AS	0.0	0.0	0.0	0.0	0.0
Lung ca. NCI-N417	3.4	3.6	0.0	0.7	11.6	CNS cancer (astro) SF-539	0.2	0.0	0.0	0.0	0.1
Lung ca. LX-1	0.1	0.0	0.0	0.0	0.0	CNS cancer (astro) SNB-75	0.1	0.1	0.0	0.0	0.2
Lung ca. NCI-H146	26.1	28.9	27.9	7.7	24.7	CNS cancer (glio) SNB-19	2.0	4.1	0.0	0.6	3.4
Lung ca. SHP-77	100.0	100.0	100.0	42.9	98.6	CNS cancer (glio) SF-295	2.4	3.3	0.4	0.3	4.1
Lung ca. A549	0.9	1.3	0.0	0.0	1.1	Brain (Amygdal a) Pool	13.4	29.1	1.8	4.2	14.6
Lung ca. NCI-H526	1.8	1.1	0.0	0.0	1.9	Brain (cerebellu m)	14.2	13.4	0.8	6.1	15.6
ung ca. VCI-H23	0.0	0.0	0.0	0.0	0.2	Brain (fetal)	89.5	100.0	15.1	100.0	93.3
Jung ca. NCI-H460	5.4	3.3	9.3	48.3	23.5	Brain (Hippoca mpus) Pool	35.4	47.3	6.6	13.7	31.9
ung ca. IOP-62	7.0	8.8	0.0	0.0	8.4	Cerebral Cortex Pool	40.1	53.2	8.9	35.1	39.0
ung ca. ICI-H522	0.0	0.0	0.0	0.0	0.0	Brain (Substanti a nigra) Pool	14.2	33.7	4.7	2.2	16.7

47. 1

Liver	0.0	0.0	0.0	0.0	0.0	Brain (Thalamus) Pool	37.9	43.2	0.8	25.5	45.1
Fetal Liver	0.0	0.0	0.0	0.6	0.2	Brain (whole)	13.9	25.7	2.1	13.4	18.6
Liver ca. HepG2	0.0	0.1	0.0	0.0	0.0	Spinal Cord Pool	2.2	2.6	1.7	1.4	2.4
Kidney Pool	1.0	1.0	0.0	0.4	1.6	Adrenal Gland	0.7	0.7	0.8	1.9	0.3
Fetal Kidney	8.5	6.9	1.0	6.5	9.2	Pituitary gland Pool	18.6	16.3	5.0	3.2	36.6
Renal ca. 786-0	0.0	0.0	0.0	0.0	0.0	Salivary Gland	0.1	0.5	0.0	0.0	0.1
Renal ca. A498	0.1	0.0	0.0	0.0	0.0	Thyroid (female)	11.6	12.2	0.2	0.7	9.4
Renal ca. ACHN	0.4	0.1	0.0	0.0	0.5	Pancreatic ca. CAPAN2	0.1	0.0	0.0	0.0	0.1
Renal ca. JO-31	0.0	0.1	0.0	0.0	0.0	Pancreas Pool	3.6	2.3	0.0	1.7	2.0

Table AFJ. General screening panel v1.6

5

Tissue Name	Kun	Ag5243, Run	Rel. Exp.(%) Ag5245, Run 27721969	Ag5245, Run	Rel. Exp.(%) Ag5247, Run '27721969	Rel. Exp.(%) Ag5247, Run 27772993	Rel. Exp.(%) Ag5248, Run 27721970	Rel. Exp.(%) Ag5248, Run 27773088
Adipose	0.1	0.2	0.0	0.0	0.0	0.0	0.1	0.1
Melanoma* Hs688(A).T	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Melanoma* Hs688(B).T	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
Melanoma* M14	0.2	0.0	0.7	0.0	0.0	0.0	0.0	0.3
Melanoma* LOXIMVI	0.2	0.1	0.0	0.0	0.0	0.0	0.1	0.2
Melanoma* SK-MEL-5	2.5	1.3	0.0	0.0	0.0	0.9	0.1	0.4
Squamous cell carcinoma SCC-4	0.0	0.0	0.0	0.0	0.0	D.0	0.0	0.1
Testis Pool	2.2	3.4	3.1	2.3	7.1	3.5	2.7	2.8
Prostate ca.* (bone met) PC-3	95.3	76.8					Î	63.3

Prostate Pool	6.8	7.5	0.0	0.0	6.3		6.1	
Placenta	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
Uterus Pool	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Ovarian ca. OVCAR-3	13.2	11.7	9.5	4.0	3.3	5.2	11.6	14.5
Ovarian ca. SK-OV-3	0.2	0.3	0.0	0.0	0.0	0.0	0.1	0.3
Ovarian ca. OVCAR-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ovarian ca. OVCAR-5	6.6	7.4	2.3	0.0	4.7	0.8	4.7	5.1
Ovarian ca. IGROV-1	2.0	2.8	0.7	0.0	0.0	0.0	1.1	3.3
Ovarian ca. OVCAR-8	14.2	8.1	3.6	0.0	7.5	8.1	8.2	13.4
Ovary	0.1	0.6	0.0	0.0	0.0	0.0	0.7	0.2
Breast ca. MCF-7	7.4	8.0	0.0	0.0	3.5	9.4	8.0	9.2
Breast ca. MDA-MB-23 1	6.5	3.0	2.4	2.5	0.4	0.7	4.1	6.4
Breast ca. BT 549	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
Breast ca. T47D	6.7	3.8	0.8	0.0	5.5	1.5	4.7	8.0
Breast ca. MDA-N	0.0	0.2	0.5	0.0	0.0	0.5	0.1	0.3
Breast Pool	0.2	0.1	0.9	0.0	0.0	0.0	0.5	0.3
Trachea	18.6	15.6	3.9	0.0	14.6	18.0	5.5	7.6
Lung	0.2	0.0	0.0	0.0	0.0	1.2	0.0	0.1
Fetal Lung	21.3	21.0	0.0	0.7	10.3	5.1	19.3	23.7
Lung ca. NCI-N417	6.3	3.2	0.0	0.0	1.7	4.2	2.4	2.0
Lung ca. LX-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lung ca. NCI-H146	23.3	20.4	17.0	100.0	7.1	9.8	16.8	16.4
Lung ca. SHP-77	95.9	77.9	100.0	35.6	24.7	31.9	100.0	76.3
Lung ca. A549	1.0	0.4	0.0	0.0	0.0	0.0	0.3	1.1
Lung ca. NCI-H526	1.4	1.9	0.0	0.0	0.0	0.0	0.7	0.5
Lung ca. NCI-H23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Lung ca. NCI-H460	2.8	2.1	0.0	0.0	0.9	0.9	3.1	3.4
Lung ca. HOP-62	12.4	6.5	0.0	0.0	0.6	0.0	9.4	11.6

IT.						The second second	15 m, 11 m 1 m 1	on the same of
Lung ca. NCI-H522	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Liver	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fetal Liver	0.0	0.0	0.0	0.0	0.0	0.9	0.2	0.0
Liver ca. HepG2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Kidney Pool	0.5	0.9	0.0	0.0	1.0	0.0	0.6	1.8
Fetal Kidney	5.8	6.8	0.0	0.0	11.4	6.6	4.3	7.9
Renal ca. 786-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Renal ca. A498	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Renal ca. ACHN	0.0	0.2	0.0	0.0	0.0	0.0	0.2	0.1
Renal ca. UO-31	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.1
Renal ca. TK-10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bladder	1.2	1.5	0.0	0.0	3.8	1.4	3.3	3.2
Gastric ca. (liver met.) NCI-N87	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Gastric ca. KATO III	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Colon ca. SW-948	4.0	4.4	0.7	0.0	2.8	0.6	3.6	3.8
Colon ca. SW480	3.6	4.0	0.5	0.0	0.0	2.3	2.7	4.2
Colon ca.* (SW480 met) SW620	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Colon ca. HT29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Colon ca. HCT-116	13.8	12.7	1.0	0.0	6.8	3.1	5.6	14.7
Colon ca. CaCo-2	18.8	14.9	10.8	4.7	10.2	10.1	2.4	11.6
Colon cancer issue	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Colon ca. SW1116	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Colon ca. Colo-205	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Colon ca. SW-48	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Colon Pool	0.1	0.0	0.0	0.0	0.9	0.0	0.4	0.1
Small Intestine Pool	0.7	1.4	1.6	1.6	0.7	3.0	8.9	1.7
001								

Stomach Pool	0.6	1.0	0.0	0.0	0.0	## TI		The state of the s
Bone Marrow Pool	0.0	0.1	0.0	0.0	0.0	0.6	0.0	0.6
Fetal Heart	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Heart Pool	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lymph Node Pool	0.0	0.7	0.0	0.0	0.8	0.0	0.5	0.4
Fetal Skeletal Muscle	0.4	0.1	0.0	0.0	0.0	0.0	0.1	0.2
Skeletal Muscle Pool	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Spleen Pool	0.0	0.1	0.6	0.0	1.4	0.0	0.6	0.5
Thymus Pool	2.0	2.1	1.0	0.7	1.4	2.6	1.9	3.2
CNS cancer (glio/astro) U87-MG	2.6	2.5	0.8	0.0	0.7	0.6	3.7	4.3
CNS cancer (glio/astro) U-118-MG	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0
CNS cancer (neuro;met) SK-N-AS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CNS cancer (astro) SF-539	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
CNS cancer (astro) SNB-75	0.2	0.3	0.0	0.0	0.0	0.0	0.5	0.3
CNS cancer (glio) SNB-19	3.1	2.4	0.0	0.0	0.0	1.1	1.9	3.4
CNS cancer (glio) SF-295	2.8	2.2	0.5	0.6	0.9	2.6	3.1	2.8
Brain (Amygdala) Pool	23.2	18.7	1.0	2.6	7.1	2.2	12.2	14.0
Brain (cerebellum)	13.8	11.7	3.1	1.0	10.2	11.3	13.3	14.1
Brain (fetal)	100.0	100.0	20.6	14.8	100.0	100.0	73.2	100.0
Brain (Hippocampus) Pool	51.1	40.3	6.9	5.3	25.9	14.3	26.8	35.8
Cerebral Cortex Pool	52.5	52.5	8.2	0.0	27.0	20.9	31.9	31.0
nigra) Pool	29.5	29.1	1.1	1.7	5.5	2.9	9.7	12.2
Pool	48.3	51.1	2.2	2.5	21.9	25.2	17.4	31.0
Brain (whole)	28.7	30.6	6.0	4.2	15.2	13.3	9.2	14.7

		1.3	0.0	1.0	0.0	1.6	2.2
).4	0.8	1.5	0.0	- 100	0.0		
				0.0		0.3	0.4
7.9	13.7	2.6	7.4	0.0	11.1	13.4	15.8
.2	0.3	0.0	0.0	0.0	0.0	10.2	
2.9	10.0	1.4	0.0	1.5	0.8		13.9
.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
6	3.2	0.0	0.0	0.6	3.6		3.7
	7.9 2 2.9	7.9 13.7 2 0.3 2.9 10.0 0 0.0	7.9 13.7 2.6 2 0.3 0.0 2.9 10.0 1.4 0 0.0 0.0	7.9 13.7 2.6 7.4 2 0.3 0.0 0	7.9 13.7 2.6 7.4 0.0 2.9 10.0 1.4 0.0 1.5 0.0	7.9 13.7 2.6 7.4 0.0 11.1 2 0.3 0.0 0.0 0.0 0.0 0.0 2.9 10.0 1.4 0.0 1.5 0.8 0 0.0 0	7.9 13.7 2.6 7.4 0.0 11.1 13.4 13.4 2 0.3 0.0 0.0 0.0 0.0 0.3 2.9 10.0 1.4 0.0 1.5 0.8 8.5 0 0.0 0.0 0.0 0.0 0.1 6 3.3 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0

Table AFK. Panel 4.1D

:	1	1	
1			

Tissue Name	Rel. Exp.() Ag524 2, Run 22981	%) Ag52 45, Run	Rel. (Exp.(%) 2 Ag52 7, Run 1 22981 9792	%) 4 Ag52 48, Run	Tissue Name	%) Ag5: 42, Run	5, Run 1 22981	%) 4 Ag52 47, Run	Exp.(%) 2 Ag524 8, Run 1 22981
Secondary Th1	0.0	0.0	0.0	0.0	HUVEC IL-1beta	0.2	0.0	0.0	0.1
Secondary Th2 act	0.6	4.1	0.7	0.5	HUVEC IFN gamm	a 0.0	0.0	0.0	0.0
Secondary Tr1 ac	t 2.3	1.2	0.6	2.3	HUVEC TNF alpha + IFN gamma	6.0	0.0	2.4	7.7
Secondary Th1 rest	0.0	0.0	0.0	0.1	HUVEC TNF alpha + IL4	1.0	0.0	0.6	4.2
Secondary Th2 rest	13.7	0.6	5.1	12.2	HUVEC IL-11	9.6	1.6	6.4	9.2
Secondary Tr1 est	15.5	1.9	8.7	14.0	Lung Microvascular EC none	3.6	0.9	1.0	2.4
Primary Th1 act	100.0	71.7	100.0	85.3	Lung Microvascular EC TNFalpha + IL-1 beta	0.0	0.0	0.0	0.0
rimary Th2 act	27.9	12.6	20.4		Microvascular Dermal EC none	0.1	0.0	0.0	0.3
rimary Tr1 act	36.6	9.4	24.3	28.9	Microsvasular Dermal EC FNFalpha + IL-1beta	0.0	0.0	0.0	0.0
rimary Th1 rest	15.9	2.9	5.1	46	Bronchial epithelium FNFalpha + IL1beta	0.1	0.0	0.0	0.0
rimary Th2 rest	34.2	3.4	23.3 2	01	mall airway	0.2	0.0	0.0	0.2

		<u></u>			Small circus	" , " 	Alme Hart an	المُنْ المراجعة	and the first
Primary Tr1 rest	12.0	5.0	12.7	12.9	Small airway epithelium TNFalph + IL-1beta	,	0.0	0.7	3.7
CD45RA CD4 lymphocyte act	0.6	0.0	0.0	0.0	Coronery artery SMC rest	4.1	0.0	0.6	3.6
CD45RO CD4 lymphocyte act	0.0	0.0	0.0	0.2	Coronery artery SMC TNFalpha + IL-1beta	3.1	0.0	0.0	2.6
CD8 lymphocyte act	5.6	2.9	0.7	7.3	Astrocytes rest	3.8	0.9	0.6	4.0
Secondary CD8 lymphocyte rest	0.0	0.0	0.0	0.0	Astrocytes TNFalpha + IL-1beta	0.0	0.0	0.0	0.0
Secondary CD8 lymphocyte act	2.1	0.0	0.0	1.9	KU-812 (Basophil) rest	0.0	0.0	0.0	0.0
CD4 lymphocyte none	8.1	1.2	5.8	7.4	KU-812 (Basophil) PMA/ionomycin	12.6	1.0	4.5	15.4
2ry Th1/Th2/Tr1_anti -CD95 CH11	0.0	0.0	0.0	0.0	CCD1106 (Keratinocytes) none	15.7	15.5	4.3	15.8
LAK cells rest	0.1	0.0	0.6	0.1	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0	0.0	0.0	0.0
LAK cells IL-2	0.3	0.0	0.0	0.3	Liver cirrhosis	0.1	0.0	0.0	0.0
LAK cells IL-2+IL-12	25.2	3.1	4.8	24.0	NCI-H292 none	0.0	0.0	0.0	0.0
LAK cells IL-2+IFN gamma	0.2	0.0	0.0	1.1	NCI-H292 IL-4	0.0	0.0	0.0	0.0
LAK cells IL-2+ IL-18	0.5	0.0	0.7	0.7	NCI-H292 IL-9	0.0	0.0	0.0	0.0
LAK cells PMA/ionomycin	0.2	0.0	0.6	0.0	NCI-H292 IL-13	0.2	0.0	0.0	0.0
NK Cells IL-2 rest	0.5	1.9	0.0	0.5	NCI-H292 IFN gamma	0.0	0.0	0.0	0.0
Two Way MLR 3 Jay	4.5	5.1	0.7	2.3	HPAEC none	0.0	0.0	0.0	0.0
lay	6.7	14.9	9.5	15.0	HPAEC TNF alpha + IL-1 beta	0.1	0.0	0.0	0.0
I'wo Way MLR 7 lay	0.2	0.0	0.0	0.1	Lung fibroblast none	0.0	0.0	0.0	0.0
PBMC rest	8.7	0.0	2.3	6.0	Lung fibroblast TNF alpha + IL-1 beta	19.9	25.7	4.4	22.8
PBMC PWM	0.2	0.0	0.0	0.4	Lung fibroblast IL-4	72.2	100.0	32.8	49.7
PBMC PHA-L	0.2	0.0	0.0	0.1	THE RESERVE AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	1.2	0.0	0.4	0.6
Ramos (B cell) ione	3.6	2.2	1.1	1 0	Lung fibroblast		0.0	1.5	1.2
опошусш	1.8	3.6	1.5	2.2	Lung fibroblast IFN gamma	0.0	0.0	0.0	0.0
3 lymphocytes PWM	1.3	0.0	2.0	1.1	Dermal fibroblast CCD1070 rest	0.1	0.0	0.0	0.0

B lymphocytes CD40L and IL-4	0.8	0.7	1.2	1.5	Dermal fibroblast CCD1070 TNF alpha	100	0.0	1.3	5.3
EOL-1 dbcAMP	3.7	6.7	3.3	2.0	Dermal fibroblast CCD1070 IL-1 beta	6.3	0.0	1.7	7.7
EOL-1 dbcAMP PMA/ionomycin	3.0	0.0	2.3	2.0	Dermal fibroblast IFN gamma	0.0	0.0	0.0	0.0
Dendritic cells none	10.7	1.9	3.8	13.6	Dermal fibroblast IL-4	0.0	0.0	0.0	0.0
Dendritic cells LPS	4.7	6.2	11.7	8.2	Dermal Fibroblasts rest	0.0	0.0	0.0	0.0
Dendritic cells anti-CD40	0.1	0.0	0.0	0.0	Neutrophils TNFa+LPS	0.1	0.0	0.0	0.0
Monocytes rest	11.6	0.6	2.8	16.4	Neutrophils rest	87.7	11.7	28.3	100.0
Monocytes LPS	4.6	5.6	1.4	5.4	Colon	0.0	0.0	0.0	0.0
Macrophages rest	0.2	0.0	0.0	0.1	Lung	0.2		0.0	0.3
Macrophages LPS	11.5	0.0	0.9	9.2	-	0.1	-		0.6
HUVEC none	0.3	0.0	0.0	0.5			0.0		0.6
HUVEC starved	15.9	8.4	2.4	15.5	The second secon		1	47	10.0

Table AFL. general oncology screening panel v 2.4

Tissue Name	Ag5242, Run	Rel. Exp.(%) Ag5247, Run 26026913	Rel. Exp.(%) Ag5248, Run 26026913	issue Name	Rel. Exp.(%) Ag5242, Run 26026908	Ag5247, Run	Rel. Exp.(%) Ag5248, Run 26026913
Colon cancer 1	0.0	0.0	3.5	Bladder cancer NAT 2	0.0	0.0	0.0
Colon cancer NAT 1	7.2	0.0	11.0	Bladder cancer NAT 3	0.0	0.0	0.0
Colon cancer 2	0.0	0.0	0.0	Bladder cancer NAT 4	0.0	0.0	0.0
Colon cancer NAT 2	17.6	16.6	15.7	Prostate adenocarcinoma 1	2.4	20.9	5.8
Colon cancer 3	4.5	0.0	3.8	Prostate adenocarcinoma 2	0.0	0.0	2.0
Colon cancer NAT 3	37.1	0.0		Prostate adenocarcinoma 3	71.7	55.9	54.3
Colon malignant cancer 4	6.1	0.0	1.0	Prostate adenocarcinoma 4	1.0	0.0	7.2

Colon normal	1		1.		and the second	dank and he	평 네 ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~
colon normal adjacent tissue 4	0.0	0.0	2.4	Prostate cancer NAT 5	4.5	0.0	0.0
Lung cancer 1	25.0	17.9	4.2	Prostate adenocarcinoma 6	30.6	4.5	11.1
Lung NAT 1	2.3	3.9	12.9	Prostate adenocarcinoma 7	14.4	6.3	23.0
Lung cancer 2	40.1	100.0	100.0	Prostate adenocarcinoma 8	9.1	5.0	6.8
Lung NAT 2	32.3	18.2	48.6	Prostate adenocarcinoma 9	75.3	10.7	31.0
Squamous cell carcinoma 3	73.2	47.0	82.4	Prostate cancer NAT 10	0.0	0.0	7.1
Lung NAT 3	13.3	3.5	5.8	Kidney cancer 1	0.0	0.0	0.0
metastatic melanoma 1	4.4	0.0	1.5	KidneyNAT 1	33.7	11.7	10.7
Melanoma 2	0.0	0.0	1.4	Kidney cancer 2	10.7	7.4	2.8
Melanoma 3	9.8	0.0	4.2	Kidney NAT 2	100.0	42.9	51.4
metastatic melanoma 4	2.1	0.0	1.0	Kidney cancer 3	61.1	8.6	24.8
metastatic melanoma 5	6.4	9.3	2.2	Kidney NAT 3	63.3	16.0	29.9
Bladder cancer l	0.0	0.0	0.0	Kidney cancer 4	8.8	0.0	1.9
NATI	0.0	0.0	0.0	Kidney NAT 4	5.3	0.0	9.2
Bladder cancer 2	2.1	0.0	0.0				

AI_comprehensive panel_v1.0 Summary: Ag5242 Highest expression is seen in osteoarthritic bone sample (CT=27.5). Prominenet levels of expression are seen in a cluster of samples derived from RA. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker of rheumatoid arthritis. In addition, modulation of the expression or function of this gene may be useful in the treatment of RA.

5

CNS_neurodegeneration_v1.0 Summary: Ag5242/Ag5243/Ag5247/Ag5248

Multiple experiments with four different probe and primer sets produce results that are in reasonable agreement. These panels do not show differential expression of this gene in Alzheimer's disease. However, these profiles confirm the expression of this gene at

moderate levels in the brain. Please see Panel 1.5 for discussion of this general the central nervous system.

Ag5244 Three experiments with Ag5244, which is specific for CG150799-03, detect expression of this gene at low but significant levels in the hippocampus and temporal cortex of Alzheimer's patients. This expression may suggest an involvement of this gene product in the etiology of this disease.

One experiment with Ag5244 (Run 276863567) and two experiments with Ag5245 (Run 276863569 and Run 277731463), also specific for CG150799-03, show low/undetectable levels of expression (CTs>35). (Data not shown). Two additional experiments with Ag5245 show low expression in samples from the parietal cortex of a normal patient and the inferior temporal cortex of an Alzheimer's patient.

General_screening_panel_v1.5

5

10

15

20

25

30

Summary: Ag5242/Ag5243/Ag5245/Ag5247/Ag5248 Multiple experiments with five different probe and primer sets produce results that are in reasonable agreement. Highest expression is seen in cell lines from lung and prostate cancers and the fetal brain (CTs=28-30). This gene, which encodes a MASS1 homolog, appears be preferentially expressed in the brain, with prominent levels of expression in all regions of the CNS examined. MASS1 is a large, calcium-binding GPCR expressed in the central nervous system that may play a fundamental role in its development (MacMillan, J Biol Chem 2002 Jan 4;277(1):785-92). In addition, this gene has been associated with some nonsymptomatic epilepsies (Skardski, Neuron, Vol 31, 537-544, August 2001). Thus, based on the homology of this protein to MASS1 and the preferential expression in the brain, expression of this gene could be used to differentiate between brain and non-neural tissue. In addition, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.

Moderate levels of expression are also seen in samples from lung, colon, ovarian and prostate cancer cell lines. This suggests that expression of this gene could be used as a marker of these cancers. Futhermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of these cancers.

Ag5244 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

General_screening_panel_v1.6 Summary: Ag5243/Ag5248/Ag524/Ag

Ag5244 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

Panel 4.1D Summary: Ag5242/Ag5243/Ag5247/Ag5248 Multiple experiments with four different probe and primers sets show highest expression of this gene in primary activated Th1 cells and resting neutrophils (CTs=27-31). Since this gene is expressed predominantly in activated Th-1 vs Th-2 cells, regulation of the expression of this gene might also be important for autoimmune disease such as rheumatoid arthritis (please see also AI panel). Moderate levels of expression are also seen in IL-4 treated lung fibroblasts and resting neutrophils. Thus, therapeutic regulation of the transcript or the protein encoded by the transcript could be important in immune modulation and in the treatment of T cell-mediated diseases such as asthma, arthritis, psoriasis, IBD, and lupus.

Ag5245 Highest expression of this gene is seen in IL-4 treated lung fibroblasts (CT=32). Low but significant expression is also seen in TNF-a/IL1-b treated lung fibroblasts and primary activated Th1 cells. Three experiments with the probe and primer set Ag5244 show low/undetectable levels of results (CTs>35).

general oncology screening panel_v_2.4

5

10

15

20

25

Summary: Ag5242/Ag5243/Ag5247/Ag5248 Four experiments with the different probe and primer sets show highest expression in a lung cancers and normal kidney tissue adjacent to a tumor (CTs=31-34). Overall, this gene is expressed at low but significant levels in prostate cancer, normal kidney and kidney cancer, squamous cell carcinoma and normal colon. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of lung, prostate and kidney cancers.

Ag5244/Ag5245 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

AG. CG151014-01: Metabotropic glutamate receptor 3-variant

Expression of gene CG151014-01 was assessed using the primer probe set Ag5219, and described in Table AGA. Results of the RTQ-PCR runs are shown in Tables AGB, AGC and AGD.

Table AGA. Probe Name Ag5219

5

10

Primers		Length	Start Position	SEQ ID No
Forward	5'-tgattgtgaattgcagttcagt-3'	22	2550	381
Probe	TET-5'-aagtgctcacgtgcagctccagaata -3'-TAMRA	26	2598	382
Reverse	5'-gtactagggttgttcttttgctct-3'	24	2631	383

Table AGB. CNS neurodegeneration v1.0

Tissue Name	Rel. Exp.(%) Ag5219, Run 228020421	issue Name	Rel. Exp.(%) Ag5219, Run 228020421
AD 1 Hippo	9.4	Control (Path) 3 Temporal Ctx	6.5
AD 2 Hippo	24.8	Control (Path) 4 Temporal Ctx	25.0
AD 3 Hippo	6.3	AD 1 Occipital Ctx	15.7
AD 4 Hippo	7.6	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	53.2	AD 3 Occipital Ctx	6.8
AD 6 Hippo	24.1	AD 4 Occipital Ctx	33.2
Control 2 Hippo	40.9	AD 5 Occipital Ctx	51.8
Control 4 Hippo	6.7	AD 6 Occipital Ctx	15.3
Control (Path) 3 Hippo	5.6	Control 1 Occipital Ctx	7.6
AD 1 Temporal Ctx	19.1	Control 2 Occipital Ctx	46.0
AD 2 Temporal Ctx	34.9	Control 3 Occipital Ctx	16.6
AD 3 Temporal Ctx	5.6	Control 4 Occipital Ctx	8.5
AD 4 Temporal Ctx	25.3	Control (Path) 1 Occipital Ctx	90.1
AD 5 Inf Temporal Ctx	100.0	Control (Path) 2 Occipital Ctx	11.5
AD 5 Sup Temporal Ctx	32.5	Control (Path) 3 Occipital Ctx	3.8
AD 6 Inf Temporal Ctx	44.1	Control (Path) 4 Occipital Ctx	11.9
AD 6 Sup Temporal Ctx	32.5	Control 1 Parietal Ctx	9.5
Control 1 Temporal Ctx	10.5	Control 2 Parietal Ctx	40.6
Control 2 Temporal Ctx	45.4	Control 3 Parietal Ctx	18.3
Control 3 Temporal Ctx	28.9	Control (Path) 1 Parietal Ctx	74.2
Control 3 Temporal Ctx	10.1	Control (Path) 2 Parietal Ctx	27.5
Control (Path) 1 Temporal Ctx	65.1	Control (Path) 3 Parietal Ctx	5.0
Control (Path) 2 Temporal Ctx	36.1	Control (Path) 4 Parietal Ctx	36.3

Table AGC. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag5219, Run 228758224	issue Name	Rel. Exp.(%) Ag5219, Run 228758224
Adipose	0.3	Renal ca. TK-10	0.4
Melanoma* Hs688(A).T	0.0	Bladder	0.4
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	6.6
Melanoma* M14	0.0	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	0.5	Colon ca. SW-948	0.0
Melanoma* SK-MEL-5	0.8	Colon ca. SW480	0.6
Squamous cell carcinoma SCC-4	0.8	Colon ca.* (SW480 met) SW620	1.1
Testis Pool	0.4	Colon ca. HT29	0.0
Prostate ca.* (bone met) PC-3	2.1	Colon ca. HCT-116	1.7
Prostate Pool	0.5	Colon ca. CaCo-2	0.7
Placenta	0.0	Colon cancer tissue	0.0
Uterus Pool	0.2	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	1.0	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	0.9	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.0	Colon Pool	0.7
Ovarian ca. OVCAR-5	0.2	Small Intestine Pool	0.7
Ovarian ca. IGROV-1	0.0	Stomach Pool	1.4
Ovarian ca. OVCAR-8	0.1	Bone Marrow Pool	0.1
Ovary	0.1	Fetal Heart	0.6
reast ca. MCF-7	0.0	Heart Pool	0.3
reast ca. MDA-MB-231	0.5	Lymph Node Pool	1.1
reast ca. BT 549	0.0	Fetal Skeletal Muscle	0.1
reast ca. T47D	0.0	Skeletal Muscle Pool	0.7
reast ca. MDA-N	0.0	Spleen Pool	1.4
reast Pool	2.6	Thymus Pool	0.4
rachea	0.4	CNS cancer (glio/astro) U87-MG	1.0
ung	0.2	CNS cancer (glio/astro) U-118-MG	
etal Lung	0.8	CNS cancer (neuro;met) SK-N-AS	1.4
ung ca. NCI-N417	0.1	CNS cancer (astro) SF-539	0.0
ung ca. LX-1	4.5	Contract of the second	0.0
\ T. C. V		ON TO	
			0.0
	-		0.0
) TOY TYPE			60.3
g ca. 1 C1 11520	U.J .		100.0

Lung ca. NCI-H460	0.9	Brain (Hippocampus) Pool	43.5
Lung ca. HOP-62	0.0	Cerebral Cortex Pool	80.1
Lung ca. NCI-H522	0.7	Brain (Substantia nigra) Pool	54.0
Liver	0.0	Brain (Thalamus) Pool	94.6
Fetal Liver	0.4	Brain (whole)	65.1
Liver ca. HepG2	0.9	Spinal Cord Pool	36.6
Kidney Pool	1.5	Adrenal Gland	0.6
Fetal Kidney	0.7	Pituitary gland Pool	0.9
Renal ca. 786-0	0.0	Salivary Gland	0.2
Renal ca. A498	0.0	Thyroid (female)	0.0
Renal ca. ACHN	1,0	Pancreatic ca. CAPAN2	0.1
Renal ca. UO-31	0.5	Pancreas Pool	0.9

Table AGD. Panel 4.1D

Tissue Name	Rel. Exp (%) Ag5219, Run 229739298	Tissue Name	Rel. Exp.(%) Ag5219, Run 229739298
Secondary Th1 act	0.0	HUVEC IL-1beta	3.3
Secondary Th2 act	3.2	HUVEC IFN gamma	14.0
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	2.9
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	1.8
Secondary Th2 rest	0.0	HUVEC IL-11	21.8
Secondary Tr1 rest	2.9	Lung Microvascular EC none	100.0
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	31.9
Primary Th2 act	5.8	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1beta	15.5
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1beta	0.0
Primary Th2 rest	1.8	Small airway epithelium none	0.0
Primary Tr1 rest	4.7	Small airway epithelium TNFalpha + IL-1beta	3.4
CD45RA CD4 lymphocyte act	0.0	Coronery artery SMC rest	2.3
CD45RO CD4 lymphocyte act	11.1	Coronery artery SMC TNFalpha + IL-1beta	0.0
CD8 lymphocyte act	6.7	Astrocytes rest	0.0
Secondary CD8 lymphocyte rest	5.9	The state of the s	3.4
Secondary CD8 lymphocyte act	0.0		4.1
CD4 lymphocyte none	3.3	KU-812 (Basophil)	26.1

2ry Th1/Th2/Tr1_anti-CD95 CH11	5.9	CCD1106 (Keratinocytes) none	4.5
LAK cells rest	3.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0
LAK cells IL-2	2.0	Liver cirrhosis	0.0
LAK cells IL-2+IL-12	0.0	NCI-H292 none	18.2
LAK cells IL-2+IFN gamma	3.0	NCI-H292 IL-4	16.7
LAK cells IL-2+ IL-18	2.7	NCI-H292 IL-9	25.0
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-13	48.3
NK Cells IL-2 rest	24.1	NCI-H292 IFN gamma	19.9
Two Way MLR 3 day	3.5	HPAEC none	8.1
Two Way MLR 5 day	1.5	HPAEC TNF alpha + IL-1 beta	7.8
Two Way MLR 7 day	0.0	Lung fibroblast none	0.0
PBMC rest	0.0	Lung fibroblast TNF alpha + IL-1 beta	2.0
PBMC PWM	1.0	Lung fibroblast IL-4	7.9
PBMC PHA-L	0.0	Lung fibroblast IL-9	0.0
Ramos (B cell) none	18.2	Lung fibroblast IL-13	0.0
Ramos (B cell) ionomycin	59.9	Lung fibroblast IFN gamma	2.8
B lymphocytes PWM	4.2	Dermal fibroblast CCD1070 rest	0.0
3 lymphocytes CD40L and IL-4	13.2	Dermal fibroblast CCD1070 TNF	0.0
OL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 IL-1 beta	6.7
OL-1 dbcAMP MA/ionomycin	4.8	Dermal fibroblast IFN gamma	40.6
Pendritic cells none	4.4	Dermal fibroblast IL-4	25.0
endritic cells LPS	0.0	Dermal Fibroblasts rest	2.1
endritic cells anti-CD40	0.0	Neutrophils TNFa+LPS	0.0
	0.0	Neutrophils rest	0.0
	0.0	Colon	0.0
	0.0	Lung	0.0
	0.0		0.0
	1.7	177.	11.3
UVEC starved	28.1		11.7

CNS_neurodegeneration_v1.0 Summary: Ag5219 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals.

This gene is found to be slightly down-regulated in the temporal cortex of Alzheimer's disease patients. Therefore, up-regulation of this gene or its protein product, or treatment with specific agonists for this receptor may be of use in reversing the dementia, memory loss, and neuronal death associated with this disease.

General_screening_panel_v1.5 Summary: Ag5219 Highest expression of this gene is deted in cerebellum (CT=27). High expression of this gene is mainly seen in all the region of central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

5

10

15

20

30

In addition, moderate to low levels of expression of this gene is also seen in a number of cancer cell lines derived from brain, colon, gastric, lung, ovarian, and prostate cancers, squamous cell carcinoma and melanoma. Therefore, therapeutic modulation of this gene may be useful in the treatment of these cancers.

Low levels of expression of this gene is also seen in tissues with metabolic/endocrine functions including pancreas, adrenal and pituitary cancers, fetal heart, skeletal muscle and gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

Panel 4.1D Summary: Ag5219 Highest expression of this gene is detected in lung microvascular endothelial cells (CT=32.4). This gene is expressed at lower levels in cytokine activated lung microvascular cells, activated dermal fibroblasts, resting and activated mucoepidermoid NCI-H292, activated basophils, starved and IL-11 stimulated HUVEC cells, Ramos B cells, and resting IL-2 treated NK cells. Therefore, therapeutic modulation of this gene may be useful in the treatment of autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

AH. CG151014-02 and CG151014-03: Metabotropic glutamate receptor 3.

Expression of gene CG151014-02 and CG151014-02 was assessed using the primer-probe set Ag5220, described in Table AHA. Results of the RTQ-PCR runs are shown in Tables AHB and AHC. Please note that CG151014-03 represents a full-length physical clone.

Table AHA. Probe Name Ag5220

Primers		Length	Start Position	SEQ ID
Forward	5'-atcaacttcacgggtgcag-3'	19	1399	384
Probe	TET-5'-ctttgtggtcttgggctgtttgtttg -3'-TAMRA	26	1453	385
Reverse	5'-caggatgatgtgaaccttgg-3'	20	1482	386

Table AHB. CNS neurodegeneration v1.0

Tissue Name	Rel. Exp.(%) Ag5220, Run 228020422	issue Name	Rel. Exp.(%) Ag5220, Run 228020422
AD 1 Hippo	2.0	Control (Path) 3 Temporal Ctx	5.8
AD 2 Hippo	49.0	Control (Path) 4 Temporal Ctx	25.2
AD 3 Hippo	1.0	AD 1 Occipital Ctx	5.6
AD 4 Hippo	13.5	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	35.4	AD 3 Occipital Ctx	3.1
AD 6 Hippo	59.9	AD 4 Occipital Ctx	24.7
Control 2 Hippo	34.2	AD 5 Occipital Ctx	17.2
Control 4 Hippo	7.0	AD 6 Occipital Ctx	61.6
Control (Path) 3 Hippo	4.4	Control 1 Occipital Ctx	2.6
AD 1 Temporal Ctx	6.0	Control 2 Occipital Ctx	43.2
AD 2 Temporal Ctx	39.2	Control 3 Occipital Ctx	10.2
AD 3 Temporal Ctx	2.4	Control 4 Occipital Ctx	9.0
AD 4 Temporal Ctx	29.9	Control (Path) I Occipital Ctx	100.0
AD 5 Inf Temporal Ctx	76.3	Control (Path) 2 Occipital Ctx	7.7
AD 5 SupTemporal Ctx	29.9	Control (Path) 3 Occipital Ctx	2.1
D 6 Inf Temporal Ctx	60.3	Control (Path) 4 Occipital Ctx	14.2
D 6 Sup Temporal Ctx	69.3	Control 1 Parietal Ctx	7.0
ontrol 1 Temporal Ctx	13.2	Control 2 Parietal Ctx	24.3
ontrol 2 Temporal Ctx	52.9	Control 3 Parietal Ctx	15.4
ontrol 3 Temporal Ctx	23.3	Control (Path) 1 Parietal Ctx	89.5
ontrol 4 Temporal Ctx		Control (Path) 2 Parietal Ctx	15.2
ontrol (Path) 1 Temporal Ctx		Control (Path) 3 Parietal Ctx	6.4
ontrol (Path) 2 Temporal Ctx		Control (Path) 4 Parietal Ctx	33.0

Table AHC. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag5220, Run 228758228	issue Name	Rel. Exp.(%) Ag5220, Run 228758228
Adipose	0.0	Renal ca. TK-10	0.0
Melanoma* Hs688(A).T	0.0	Bladder	0.0
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	0.0
Melanoma* M14	0.0	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	0.0
Melanoma* SK-MEL-5	0.0	Colon ca. SW480	0.0
Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	0.0
Testis Pool	0.0	Colon ca. HT29	0.0
Prostate ca.* (bone met) PC-3	0.0	Colon ca. HCT-116	0.0
Prostate Pool	0.0	Colon ca. CaCo-2	0.0
Placenta	0.0	Colon cancer tissue	0.0
Uterus Pool	0.0	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	0.0	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	0.0	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.0	Colon Pool	0.0
Ovarian ca. OVCAR-5	0.0	Small Intestine Pool	0.0
Ovarian ca. IGROV-1	0.0	Stomach Pool	1.6
Ovarian ca. OVCAR-8	0.0	Bone Marrow Pool	0.0
Ovary	0.0	Fetal Heart	0.0
Breast ca. MCF-7	0.0	Heart Pool	0.0
Breast ca. MDA-MB-231	0.0	Lymph Node Pool	0.7
Breast ca. BT 549	0.0	Fetal Skeletal Muscle	0.0
Breast ca. T47D	0.0	Skeletal Muscle Pool	0.0
Breast ca. MDA-N	0.0	Spleen Pool	0.0
Breast Pool	2.3	Thymus Pool	0.0
Trachea	0.0	CNS cancer (glio/astro) U87-MG	0.0
Lung	0.0	CNS cancer (glio/astro) U-118-MG	0.0
Fetal Lung	0.0	CNS cancer (neuro; met) SK-N-AS	0.0
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	0.0	CNS cancer (astro) SNB-75	0.0
Lung ca. NCI-H146	0.0		0.0
Lung ca. SHP-77	0.0		0.0
Lung ca. A549	0.0	بيون ويورون الرواق المساول والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	75.8
Lung ca. NCI-H526	0.0		100.0
Lung ca. NCI-H23		_	69.3
Lung ca. NCI-H460	0.2		53.2
Lung ca. HOP-62	0.0		72.2

Lung ca. NCI-H522	0.0	Brain (Substantia nigra) Pool	80.7
Liver	0.0	Brain (Thalamus) Pool	96.6
Fetal Liver	0.0	Brain (whole)	78.5
Liver ca. HepG2	0.0	Spinal Cord Pool	25.0
Kidney Pool	0.0	Adrenal Gland	4.3
Fetal Kidney	0.5	Pituitary gland Pool	0.0
Renal ca. 786-0	0.0	Salivary Gland	0.0
Renal ca. A498	0.0	Thyroid (female)	0.0
Renal ca. ACHN	0.0	Pancreatic ca. CAPAN2	0.0
Renal ca. UO-31	0.0	Pancreas Pool	0.0

CNS_neurodegeneration_v1.0 Summary: Ag5220 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.5 for a discussion of this gene in treatment of central nervous system disorders.

General_screening_panel_v1.5 Summary: Ag5220 Highest expression of this gene is deted in cerebellum (CT=27). High expression of this gene is mainly seen in all the region of central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Panel 4.1D Summary: Ag5220 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

AI. CG151297-01: CALMODULIN-DEPENDENT PHOSPHODIESTERASE.

Expression of gene CG151297-01 was assessed using the primer-probe set Ag7165, described in Table AIA. Results of the RTQ-PCR runs are shown in Table AIB. Please note that CG151297-01 represents a full-length physical clone.

Table AIA. Probe Name Ag7165

5

10

Primers	Sequencs	II onoth		SEQ ID	1
L		Cengin	Position	No	ı

Forward	5'-agaatgtaccgaaaaacattttctct-3'	26	481	387
Probe	TET-5'-ttcctcttatagaggaagcctcaaaag ccg-3'-TAMRA	30	536	388
Reverse	5'-tgcttgccacataggaagaa-3'	20	570	389

Table AIB. Panel 4.1D

5

Tissue Name	Rel. Ex.(%) Ag7165, Run 307719896	Tissue Name	Rel. Exp.(%) Ag7165, Run 307719896
Secondary Th1 act	0.0	HUVEC IL-1beta	0.0
Secondary Th2 act	0.0	HUVEC IFN gamma	0.0
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	0.0
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0
Secondary Th2 rest	0.0	HUVEC IL-11	0.0
Secondary Tr1 rest	0.0	Lung Microvascular EC none	0.0
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	0.0
Primary Th2 act	0.0	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1 beta	0.0
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1beta	0.0
Primary Th2 rest	0.0	Small airway epithelium none	0.0
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1beta	0.0
CD45RA CD4 lymphocyte act	0.0	Coronery artery SMC rest	0.0
CD45RO CD4 lymphocyte act	0.0	Coronery artery SMC TNFalpha + IL-1beta	0.0
CD8 lymphocyte act	0.0	Astrocytes rest	0.0
	0.0		0.0
econdary CD8 lymphocyte act	0.0	7777 01-	0.0
D4 lymphocyte none	0.0	KU-812 (Basophil)	0.0
ry Th1/Th2/Tr1_anti-CD95 H11	0.0	CCD 110 6 67	0.0
AK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0
AK cells IL-2	0.0		100.0
AK cells IL-2+IL-12	0.0		0.0
	0.0		0.0
	0.0		0.0
AK cells PMA/ionomycin	0.0		0.0

NK Cells IL-2 rest	0.0	NCI-H292 IFN gamma	lo:0
Two Way MLR 3 day	0.0	HPAEC none	0.0
Two Way MLR 5 day	0.0	HPAEC TNF alpha + IL-1 beta	0.0
Two Way MLR 7 day	0.0	Lung fibroblast none	0.0
PBMC rest	0.0	Lung fibroblast TNF alpha + IL-1 beta	0.0
PBMC PWM	0.0	Lung fibroblast IL-4	0.0
PBMC PHA-L	0.0	Lung fibroblast IL-9	0.0
Ramos (B cell) none	0.0	Lung fibroblast IL-13	0.0
Ramos (B cell) ionomycin	0.0	Lung fibroblast IFN gamma	0.0
B lymphocytes PWM	0.0	Dermal fibroblast CCD1070 rest	0.0
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 TNF alpha	0.0
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 IL-1 beta	0.0
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast IFN gamma	0.0
Dendritic cells none	0.0	Dermal fibroblast IL-4	0.0
Dendritic cells LPS	0.0	Dermal Fibroblasts rest	0.0
Dendritic cells anti-CD40	0.0	Neutrophils TNFa+LPS	0.0
Monocytes rest	0.0	Neutrophils rest	0.0
Monocytes LPS	0.0	Colon	0.0
Macrophages rest	0.0	Lung	0.0
	0.0		0.0
	0.0	The same of the sa	0.0
IUVEC starved	0.0		

CNS_neurodegeneration_v1.0 Summary: Ag7165 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

5

10

Panel 4.1D Summary: Ag7165 Moderate level of expression of this gene is detected mainly in the liver cirrhosis sample (CT=31.5). The presence of this gene in liver cirrhosis (a component of which involves liver inflammation and fibrosis) suggests that antibodies to the protein encoded by this gene could also be used for the diagnosis of liver cirrhosis. Furthermore, therapeutic agents involving this gene may be useful in reducing or inhibiting the inflammation associated with fibrotic and inflammatory diseases.

AJ. CG152256-01: Phosphatidylserine synthase.

Expression of gene CG152256-01 was assessed using the printer-probe set Ag6718, described in Table AJA. Results of the RTQ-PCR runs are shown in Tables AJB, AJC and AJD.

Table AJA. Probe Name Ag6718

5

10

Primers		Length	Start Position	SEQ ID No
Forward	5'-gagectegetteegattat-3'	19	2012	390
Probe	TET-5'-tcccttcccaatattattcatccaga -3'-TAMRA	26	2031	391
Reverse	5'-ctctagcaggtttgcttttgtg-3'	22	2070	392

Table AJB. CNS neurodegeneration v1.0

Tissue Name	Rel. Exp.(%) Ag6718, Run 276596848	issue Name	Rel. Exp.(%) Ag6718, Run 276596848
AD 1 Hippo	19.8	Control (Path) 3 Temporal Ctx	2.6
AD 2 Hippo	26.6	Control (Path) 4 Temporal Ctx	15.3
AD 3 Hippo	4.3	AD 1 Occipital Ctx	9.9
AD 4 Hippo	3.7	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	58.6	AD 3 Occipital Ctx	7.1
AD 6 Hippo	45.4	AD 4 Occipital Ctx	15.9
Control 2 Hippo	28.5	AD 5 Occipital Ctx	26.6
Control 4 Hippo	8.4	AD 6 Occipital Ctx	15.1
Control (Path) 3 Hippo	3.1	Control 1 Occipital Ctx	3.6
AD 1 Temporal Ctx	4.8	Control 2 Occipital Ctx	67.4
AD 2 Temporal Ctx	24.7	Control 3 Occipital Ctx	31.2
AD 3 Temporal Ctx	7.5 ·	Control 4 Occipital Ctx	1.8
AD 4 Temporal Ctx	10.5	Control (Path) 1 Occipital Ctx	100.0
AD 5 Inf Temporal Ctx	62.9	Control (Path) 2 Occipital Ctx	9.5
AD 5 Sup Temporal Ctx	46.3	Control (Path) 3 Occipital Ctx	5.3
AD 6 Inf Temporal Ctx	43.5	Control (Path) 4 Occipital Ctx	10.0
AD 6 Sup Temporal Ctx	43.2	Control 1 Parietal Ctx	3.8
Control 1 Temporal Ctx	4.1	Control 2 Parietal Ctx	27.9
Control 2 Temporal Ctx	59.0	Control 3 Parietal Ctx	15.0
Control 3 Temporal Ctx	17.6	Control (Path) 1 Parietal Ctx	89.5
Control 3 Temporal Ctx	5.0	Control (Path) 2 Parietal Ctx	10.2
Control (Path) 1 Temporal Ctx	57.0	Control (Path) 3 Parietal Ctx	7.0
Control (Path) 2 Temporal Ctx	30.4	Control (Path) 4 Parietal Ctx	27.9

Tissue Name	Rel. Exp.(%) Ag6718, Run 277223813	issue Name	Rel. Exp.(%) Ag6718, Run 277223813
Adipose	2.3	Renal ca, TK-10	34.4
Melanoma* Hs688(A).T	16.4	Bladder	22.2
Melanoma* Hs688(B).T	20.0	Gastric ca. (liver met.) NCI-N87	
Melanoma* M14	30.6	Gastric ca. KATO III	54.0 48.3
Melanoma* LOXIMVI	55.1	Colon ca. SW-948	
Melanoma* SK-MEL-5	81.8	Colon ca. SW480	31.0 87.1
Squamous cell carcinoma SCC-4	23.5	Colon ca.* (SW480 met) SW620	THE RESERVE THE PERSON NAMED IN
Testis Pool	5.2	Colon ca. HT29	69.7
Prostate ca.* (bone met) PC-3	100.0	Colon ca. HCT-116	0.0
Prostate Pool	1.8	Colon ca. CaCo-2	51.4
Placenta	2.6	Colon cancer tissue	15.9
Uterus Pool	0.8	Colon ca. SW1116	23.5
Ovarian ca. OVCAR-3	27.4	Colon ca. Colo-205	25.0
Ovarian ca. SK-OV-3	29.9	Colon ca. SW-48	21.9
Ovarian ca. OVCAR-4	33.0	Colon Pool	24.1
Ovarian ca. OVCAR-5	59.9	Small Intestine Pool	12.4
Ovarian ca. IGROV-1	47.6	Stomach Pool	4.8 1.8
Ovarian ca. OVCAR-8	32.8	Bone Marrow Pool	0.0
Ovary	11.7	Fetal Heart	14.2
Breast ca. MCF-7	18.9	Heart Pool	11.6
Breast ca. MDA-MB-231	48.0	Lymph Node Pool	3.8
Breast ca. BT 549	31.6	Fetal Skeletal Muscle	3.3
Breast ca. T47D	3.6	Skeletal Muscle Pool	0.0
Breast ca. MDA-N	17.9	Spleen Pool	2.0
reast Pool	7.0	Thymus Pool	11.7
rachea	9.2	CNS cancer (glio/astro) U87-MG	<u> </u>
ung	2.4	CNS cancer (glio/astro) U-118-MG	32.3
etal Lung	4.9		
ung ca. NCI-N417	15.0	CNS cancer (astro) SF-539	25.9
T	17.6	CNS cancer (astro) SNB-75	29.5
	23.7	CNS cancer (glio) SNB-19	59.0
	53.2		29.7
	28.3	Brain (Amygdala) Pool	59.5
			10.4
			34.4 17.3

		Hant's Christ con to it I I benee Hant were	de termide off mouth mothers
Lung ca. NCI-H460	14.2	Brain (Hippocampus) Pool	9.4
Lung ca. HOP-62	32.3	Cerebral Cortex Pool	7.4
Lung ca. NCI-H522	16.4	Brain (Substantia nigra) Pool	3.9
Liver	1.0	Brain (Thalamus) Pool	6.9
Fetal Liver	2.3	Brain (whole)	6.5
Liver ca. HepG2	19.2	Spinal Cord Pool	5.6
Kidney Pool	15.2	Adrenal Gland	10.3
Fetal Kidney	4.1	Pituitary gland Pool	1.1
Renal ca. 786-0	61.6	Salivary Gland	3.2
Renal ca. A498	5.6	Thyroid (female)	11.5
Renal ca. ACHN	24.7	Pancreatic ca. CAPAN2	28.1
Renal ca. UO-31	33.9	Pancreas Pool	8.3

Table AJD. Panel 4.1D

Tissue Name	Rel. Ex.(%) Ag6718, Run 276596888	Tissue Name	Rel. Exp.(%) Ag6718, Run 276596888
Secondary Th1 act	51.4	HUVEC IL-1beta	18.0
Secondary Th2 act	39.5	HUVEC IFN gamma	16.5
Secondary Trl act	19.3	HUVEC TNF alpha + IFN gamma	4.5
Secondary Th1 rest	5.3	HUVEC TNF alpha + IL4	3.1
Secondary Th2 rest	4.5	HUVEC IL-11	0.0
Secondary Tr1 rest	5.9	Lung Microvascular EC none	13.9
Primary Th1 act	3.5	Lung Microvascular EC TNFalpha + IL-1 beta	0.7
Primary Th2 act	20.7	Microvascular Dermal EC none	3.0
Primary Tr1 act	12.8	Microsvasular Dermal EC TNFalpha + IL-1beta	1.2
Primary Th1 rest	1.6	Bronchial epithelium TNFalpha + IL1beta	5.8
Primary Th2 rest	5.8	Small airway epithelium none	6.3
Primary Tr1 rest	0.7	Small airway epithelium TNFalpha + IL-1beta	9.7
CD45RA CD4 lymphocyte act	26.4	Coronery artery SMC rest	7.1
CD45RO CD4 lymphocyte act	30.8	Coronery artery SMC TNFalpha + IL-1beta	8.4
CD8 lymphocyte act	7.6	Astrocytes rest	3.3
Secondary CD8 lymphocyte rest	6.3	Astrocytes TNFalpha + IL-1beta	2.9
Secondary CD8 lymphocyte act	1.5		44.8
CD4 lymphocyte none	3.6	KIL-812 (Basanbil)	28.1

2ry Th1/Th2/Tr1_anti-CD95	T		The same of the same of
CH11	2.9	CCD1106 (Keratinocytes) none	27.5
LAK cells rest	4.5	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	5.1
LAK cells IL-2	9.9	Liver cirrhosis	0.8
LAK cells IL-2+IL-12	0.7	NCI-H292 none	8.0
LAK cells IL-2+IFN gamma	4.2	NCI-H292 IL-4	10.2
LAK cells IL-2+ IL-18	1.4	NCI-H292 IL-9	19.2
LAK cells PMA/ionomycin	18.7	NCI-H292 IL-13	14.8
NK Cells IL-2 rest	21.0	NCI-H292 IFN gamma	6.8
Two Way MLR 3 day	7.6	HPAEC none	3.7
Two Way MLR 5 day	5.2	HPAEC TNF alpha + IL-1 beta	8.5
Two Way MLR 7 day	4.3	Lung fibroblast none	6.8
PBMC rest	1.4	Lung fibroblast TNF alpha + IL-1 beta	1.9
PBMC PWM	3.0	Lung fibroblast IL-4	6.1
PBMC PHA-L	4.1	Lung fibroblast IL-9	10.0
Ramos (B cell) none	42.9	Lung fibroblast IL-13	7.7
Ramos (B cell) ionomycin	22.1	Lung fibroblast IFN gamma	16.4
B lymphocytes PWM	10.8	Dermal fibroblast CCD1070 rest	33.9
B lymphocytes CD40L and IL-4	12.2	Dermal fibroblast CCD1070 TNF alpha	100.0
EOL-1 dbcAMP	39.0	Dermal fibroblast CCD1070 IL-1 beta	17.4
EOL-1 dbcAMP PMA/ionomycin	14.1	Dermal fibroblast IFN gamma	6.7
Dendritic cells none	13.5	Dermal fibroblast IL-4	10.4
Dendritic cells LPS	2.5	Dermal Fibroblasts rest	6.9
Dendritic cells anti-CD40	4.5	Neutrophils TNFa+LPS	0.4
Monocytes rest	0.6	Neutrophils rest	0.7
Monocytes LPS	3.9	Colon	0.8
Macrophages rest	1.4	Lung	0.6
Macrophages LPS	3.8	Thymus	2.9
HUVEC none	11.1	Kidney	8.1
HUVEC starved	6.4		

CNS_neurodegeneration_v1.0 Summary: Ag6718 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.6 for a discussion of this gene in treatment of central nervous system disorders.

General_screening_panel_v1.6 Summary: Ag6718 Highest expression of this gene is detected in prostate cancer PC3 cell line (CT=31.9). Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.

In addition, this gene is expressed at low levels in cerebellum and fetal brain. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as ataxia and autism.

Panel 4.1D Summary: Ag6718 Highest expression of this gene is detected in TNF alpha treated dermal fibroblasts (CT=32). Moderate to low levels of expression of this gene is detected in activated polarized, naive and memory T cells, PMA/ionomycin treated LAK cells, resting IL-2 treated NK cells, Ramos B cells, eosinophils, activated HUVEC cells, lung microvascular endothelial cells, basophils and activated mucoepidermoid NCI-H292 cells. Therefore, therapeutic modulation of this gene or its protein product may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

AK. CG173017-01: RETINOIC ACID RECEPTOR RXR-BETA.

Expression of gene CG173017-01 was assessed using the primer-probe set Ag7565, described in Table AKA.

Table AKA. Probe Name Ag7565

10

15

Primers		Length	Start Position	SEQ ID No
Forward	5'-ctggacgggacgggat-3'	16	222	393
Probe	TET-5'-acatagccgtttgccagccccag-3'-TAMRA	23	261	394

		AUGUS ANTHE ANTHER	11 It It strong things south	an merely and relation broader comme
Daviorea	IEI obtobotos	alone I	1 1 1 m 11 12 14 11 mm	395
lReverse	5'-cttctgtccccgcagatt-3'	11/52	The rate of the same of	and Topic until it reality
		110	1200	1595 1
		والمنابع وال		1

CNS_neurodegeneration_v1.0 Summary: Ag7565 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

5 Panel 4.1D Summary: Ag7565 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

AL. CG173347-01: Novel Serum paraoxonase/arylesterase 3.

Expression of gene CG173347-01 was assessed using the primer-probe set Ag7564, described in Table ALA.

Table ALA. Probe Name Ag7564

10

25

Primers		Length	Start Position	SEQ ID No
Forward	5'-gaaagtggctctgaagatattgatatact- 3'	~~	153	396
Probe	TET-5'-tcctagtgggctggcttttatctcc- 3'-TAMRA	25	182	397
Reverse	5'-actccaacagacctgcagact-3'	21	207	398

15 CNS_neurodegeneration_v1.0 Summary: Ag7564 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

Panel 4.1D Summary: Ag7564 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

AM. CG56234-02: Splice variant of PCK2.

Expression of gene CG56234-02 was assessed using the primer-probe set Ag5111, described in Table AMA. Results of the RTQ-PCR runs are shown in Tables AMB, AMC, AMD and AME.

Table AMA. Probe Name Ag5111

Primers Length Start SEQ ID Position No No 15'-ctgggaggcccaga-3' 15 1377 399

Probe	TET-5'-tgtccccattgacgccatcatc-3	22	1395	400
Reverse	5'-gatgatetteeetttgggtet-3'	21	1429	401

Table AMB. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag5111, Run 228980587	issue Name	Rel. Exp.(%) Ag5111, Run 22898058
Adipose	2.0	Renal ca. TK-10	29.1
Melanoma* Hs688(A).T	31.9	Bladder	12.1
Melanoma* Hs688(B).T	28.3	Gastric ca. (liver met.) NCI-N87	31.4
Melanoma* M14	9.9	Gastric ca. KATO III	28.1
Melanoma* LOXIMVI	4.5	Colon ca. SW-948	17.9
Melanoma* SK-MEL-5	39.8	Colon ca. SW480	14.9
Squamous cell carcinoma SCC-4	4.7	Colon ca.* (SW480 met) SW620	29.5
Testis Pool	1.6	Colon ca. HT29	8.6
Prostate ca.* (bone met) PC-3	55.1	Colon ca. HCT-116	11.0
Prostate Pool	0.5	Colon ca. CaCo-2	44.4
Placenta	0.3	Colon cancer tissue	9.7
Uterus Pool	0.6	Colon ca. SW1116	1.4
Ovarian ca. OVCAR-3	13.6	Colon ca. Colo-205	6.6
Ovarian ca. SK-OV-3	5.3	Colon ca. SW-48	14.4
Ovarian ca. OVCAR-4	7.1	Colon Pool	0.1
Ovarian ca. OVCAR-5	34.6	Small Intestine Pool	0.6
Ovarian ca. IGROV-1	22.5	Stomach Pool	1.1
Ovarian ca. OVCAR-8	100.0	Bone Marrow Pool	0.5
Ovary	0.0	Fetal Heart	0.0
Breast ca. MCF-7	87.7	Heart Pool	0.0
Breast ca. MDA-MB-231	12.6	Lymph Node Pool	10.0 10.8
reast ca. BT 549	75.8	Fetal Skeletal Muscle	0.6
reast ca. T47D	10.1	Skeletal Muscle Pool	0.6
reast ca. MDA-N	16.4	Spleen Pool	1.7
reast Pool	0.5	Thymus Pool	
rachea	4.3	CNS cancer (glio/astro) U87-MG	0.4
ung	0.0	CNS cancer (glio/astro) U-118-MG	18.8
etal Lung	2.0	CNS cancer (neuro; met) SK-N-AS	
ung ca. NCI-N417	1.8	CNS cancer (astro) SF-539	7.5
بعديد والمناب والمناز	8.2		11.3
	11.1		48.6
	11.3		31.0
3	11.3	CNS cancer (glio) SF-295	32.5

Lung ca. A549	11.4	Brain (Amygdala) Pool	10.4
Lung ca. NCI-H526	1.8	Brain (cerebellum)	0.3
Lung ca. NCI-H23	83.5	Brain (fetal)	0.3
Lung ca. NCI-H460	27.0	Brain (Hippocampus) Pool	2.5
Lung ca. HOP-62	1.0	Cerebral Cortex Pool	0.4
Lung ca. NCI-H522	67.4	Brain (Substantia nigra) Pool	0.0
Liver	6.3	Brain (Thalamus) Pool	1.0
Fetal Liver	6.7	Brain (whole)	0.7
Liver ca. HepG2	24.7	Spinal Cord Pool	1.1
Kidney Pool	0.8	Adrenal Gland	1.6
Fetal Kidney	1.0	Pituitary gland Pool	0.4
Renal ca. 786-0	8.7	Salivary Gland	0.9
Renal ca. A498	1.5	Thyroid (female)	0.7
Renal ca. ACHN	9.3	Pancreatic ca. CAPAN2	12.8
Renal ca. UO-31	1.9	Pancreas Pool	0.8

Table AMC. General screening panel v1.6

Tissue Name	Rel. Exp.(%) Ag5111, Run 27721871	Rel. Exp.(%) Ag5111, Run 27773124	Rel. Exp.() Ag5111, Run 27836861	Tissue Name	Rel. Exp.(%) Ag5111, Run 27721871	Rel. Exp.(%) Ag5111, Run 27773124	Rel. Exp.(%) Ag5111, Run 27836861
Adipose	0.5	0.0	1.5	Renal ca. TK-10	24.7	20.2	33.0
Melanoma* Hs688(A).T	26.1	29.5	31.6	Bladder	6.7	6.1	11.6
Melanoma* Hs688(B).T	25.2	32.1	31.9	Gastric ca. (liver met.) NCI-N87	21.3	22.5	36.1
Melanoma* M14	5.6	9.7	7.5	Gastric ca. KATO III	14.6	12.2	19.2
Melanoma* LOXIMVI	3.0	0.0	4.2	Colon ca. SW-948	18.8	16.5	23.5
Melanoma* SK-MEL-5	28.7	57.0	39.8	Colon ca. SW480	11.8	7.3	19.5
Squamous cell carcinoma SCC-4	4.8	4.2	5.1	Colon ca.* (SW480 met) SW620	23.0	19.9	35.6
Testis Pool	2.0	0.0	1.4	Colon ca. HT29	10.2	4.2	8.2
Prostate ca.* (bone met) PC-3	33.2	44.4	57.8	Colon ca. HCT-116	9.6	7.6	19.9

Prostate Pool	0.3	0.0	0.6	Colon ca. CaCo-2	9.4	25.0	36.9
Placenta	0.3	0.0	1.1	Colon cancer tissue	6.0	0.0	6.6
Uterus Pool	0.0	0.0	0.6	Colon ca. SW1116	2.3	0.0	1.7
Ovarian ca. OVCAR-3	12.7	8.2	18.2	Colon ca. Colo-205	5.1	4.7	5.9
Ovarian ca. SK-OV-3	5.3	6.5	12.2	Colon ca. SW-48	9.0	0.0	11.6
Ovarian ca. OVCAR-4	4.0	5.2	5.8	Colon Pool	0.7	0.0	0.7
Ovarian ca. OVCAR-5	31.6	24.8	34.2	Small Intestine	0.3	0.0	0.8
Ovarian ca. IGROV-1	19.2	12.8	27.2	Stomach Pool	1.2	0.0	2.3
Ovarian ca. OVCAR-8	100.0	100.0	100.0	Bone Marrow Pool	0.0	0.0	0.0
Оvагу	0.0	0.0	0.2	Fetal Heart	0.0	0.0	0.3
Breast ca. MCF-7	54.0	51.4	77.9	Heart Pool	0.4	0.0	0.0
Breast ca, MDA-MB-231	8.5	7.6	7.7	Lymph Node Pool	1.2	0.0	0.0
Breast ca. BT 549	47.0	30.4	49.0	Fetal Skeletal Muscle	0.0	0.0	0.0
Breast ca. T47D	5.1	6.5	7.1	Skeletal Muscle Pool	0.0	0.0	0.0
Breast ca. MDA-N	6.1	6.0	24.5	Spleen Pool	0.7	0.0	2.5
Breast Pool	0.3	0.0	0.3	Thymus Pool	0.5	0.0	1.8
`rachea	3.3	0.0	8.3	CNS cancer (glio/astro) U87-MG	12.9	7.9	13.8
ung	0.0	0.0	0.0	CNS cancer (glio/astro) U-118-MG	5.9	4.4	8.1
	0.9	0.0	2.1	CNS cancer (neuro;met) SK-N-AS	6.4	4.9	6.7
ung ca. CI-N417	1.3	0.0	3.8	CNS cancer (astro) SF-539	5.8	6.4	8.5
	5.5	7.8	9.5	CNS cancer	25.0	29.9	26.8
CI-II140	3.0	8.5	11.5	CNS cancer (glio) SNB-19	23.8	20.7	29.5
ing ca. IP-77	12.2	14.3	21.3	CNS cancer (glio) SF-295	8.2	28.7	46.7

	1			The same			and other facts and the
Lung ca. A549	11.5	11.7	15.9	Brain (Amygdala) Pool	0.8	0.0	1.1
Lung ca. NCI-H526	1.8	0.0	1.7	Brain (cerebellum)	1.0	0.0	1.1
Lung ca. NCI-H23	42.6	68.8	55.1	Brain (fetal)	0.0	0.0	0.4
Lung ca. NCI-H460	16.7	23.5	38.4	Brain (Hippocampus) Pool	0.4	0.0	1.2
Lung ca. HOP-62	2.0	0.0	3.0	Cerebral Cortex Pool	0.0	0.0	0.6
Lung ca. NCI-H522	41.5	64.2	87.1	Brain (Substantia nigra) Pool	0.0	0.0	0.4
Liver	4.4	4.6	7.1	Brain (Thalamus) Pool	0.0	0.0	0.0
Fetal Liver	5.8	3.3	8.7	Brain (whole)	6.7	0.0	2.8
Liver ca. HepG2	15.7	16.3	18.8	Spinal Cord Pool	0.6	0.0	0.5
Kidney Pool	0.7	0.0	0.3	Adrenal Gland	1.4	0.0	1.4
Fetal Kidney	0.9	0.0	1.0	Pituitary gland Pool	0.0	0.0	0.7
Renal ca. 786-0	9.3	8.1	13.8	Salivary Gland	0.8	0.0	1.8
Renal ca. A498	1.1	0.0	2.0	Thyroid (female)	1.0	0.0	2.1
Renal ca. ACHN	5.8	6.0	10.8	Pancreatic ca. CAPAN2	13.1	9.6	19.9
Renal ca. UO-31	2.4	0.0	3.3	Pancreas Pool	4.8	0.0	7.3

Table AMD. Panel 4.1D

5

Rel. Rel. Rel. Rel. Exp.(%) Exp.(%) Exp.(%) Exp.(%) Tissue Name g5111, Ag5111, Tissue Name Ag5111, Ag5111, Run Run Run Run 226444761 276596864 226444761 276596864 Secondary Th1 act 90.8 58.6 HUVEC IL-1beta 18.7 10.7 Secondary Th2 act 40.9 57.8 HUVEC IFN gamma 2.8 6.2 HUVEC TNF alpha + Secondary Trl act 57.4 16.5 5.0 6.2 IFN gamma HUVEC TNF alpha + 23.2 Secondary Th1 rest 27.2 8.4 8.8 11.4 Secondary Th2 rest 6.0 0.0 HUVEC IL-11 2.3 0.0

C	T		Lung Microvascular		
Secondary Trl rest	7.2	4.0	EC none	3.2	15.4
Primary Th1 act	32.8	5.0	Lung Microvascular EC TNFalpha + IL-1beta	6.4	0.0
Primary Th2 act	49.0	19.9	Microvascular Dermal EC none	6.6	0.0
Primary Tr1 act	50.0	38.4	Microsvasular Dermal EC TNFalpha + IL-1beta	0.0	0.0
Primary Th1 rest	6.0	8.5	Bronchial epithelium TNFalpha + IL1beta	8.7	6.9
Primary Th2 rest	6.4	6.3	Small airway epithelium none	2.2	0.0
Primary Tr1 rest	18.0	0.0	Small airway epithelium TNFalpha + IL-1beta	i	0.0
CD45RA CD4 lymphocyte act	95.9	76.8	Coronery artery SMC rest	18.3	10.2
CD45RO CD4 lymphocyte act	95.3	100.0	Coronery artery SMC TNFalpha + IL-1beta	9.4	8.8
CD8 lymphocyte act	77.4	4.5	Astrocytes rest	2.1	0.0
Secondary CD8 lymphocyte rest	90.1	17.3	Astrocytes TNFalpha + IL-1beta	0.0	0.0
Secondary CD8 lymphocyte act	21.0	7.7	KU-812 (Basophil) rest	25.9	10.2
CD4 lymphocyte none	0.0	0.0	KU-812 (Basophil) PMA/ionomycin	26.8	21.2
2ry Th1/Th2/Tr1_anti-CD95 CH11	5.4	0.0	CCD1106 (Keratinocytes) none	15.2	4.9
LAK cells rest	43.5	19.9	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	9.0	12.3
AK cells IL-2	52.1	18.4	Liver cirrhosis	8.3	0.0
AK cells IL-2+IL-12	33.7	0.0	NCI-H292 none	15.3	3.4
AK cells IL-2+IFN amma	57.0	6.6	NCI-H292 IL-4	13.5	17.2
AK cells IL-2+ IL-18	46.0	9.5	NCI-H292 IL-9	14.2	14.1
AK cells MA/ionomycin	43.5	24.5		29.1	11.3
	60.7	37.4	NCI-H292 IFN gamma	44.8	7.2
wo Way MLR 3 day	32.1	10.3	HPAEC none	2.0	0.0
wo Way MLR 5 day	53.2	3.6	HDARC TAIR alaba	7.2	7.0
wo Way MLR 7 day	23.5	9.6		21.2	15.9

	1		Lung fibroblast TNF		t of dust call many using
PBMC rest	6.1	0.0	alpha + IL-1 beta	11.5	0.0
PBMC PWM	23.5	9.1	Lung fibroblast IL-4	2.4	0.0
PBMC PHA-L	35.8	12.2	Lung fibroblast IL-9	17.6	5.4
Ramos (B cell) none	58.6	16.7	Lung fibroblast IL-13	13.4	0.0
Ramos (B cell) ionomycin	71.7	92.7	Lung fibroblast IFN gamma	11.6	3.1
B lymphocytes PWM	21.6	14.8	Dermal fibroblast CCD1070 rest	99.3	64.6
B lymphocytes CD40L and IL-4	29.7	23.2	Dermal fibroblast CCD1070 TNF alpha	74.7	88.9
EOL-1 dbcAMP	32.3	32.8	Dermal fibroblast CCD1070 IL-1 beta	29.9	50.0
EOL-1 dbcAMP PMA/ionomycin	10.6	3.2	Dermal fibroblast IFN gamma	13.3	0.0
Dendritic cells none	66.0	24.5	Dermal fibroblast IL-4	12.2	0.0
Dendritic cells LPS	31.4	0.0	Dermal Fibroblasts rest	0.0	0.0
Dendritic cells anti-CD40	48.3	28.1	Neutrophils TNFa+LPS	0.0	0.0
Monocytes rest	29.1	0.0	Neutrophils rest	0.0	0.0
Monocytes LPS	37.6	18.0	Colon	32.3	8.2
Macrophages rest	100.0	12.9	Lung	3.5	0.0
Macrophages LPS	28.1	16.2	Thymus	12.1	0.0
HUVEC none	7.9	5.7	Kidney	83.5	31.9
HUVEC starved	17.4	8.4			

Table AME. general oncology screening panel v 2.4

Tissue Name	Rel. Exp.(%) Ag5111, Run 260280403	Tissue Nme	Rel. Exp.(%) Ag5111, Run 260280403
Colon cancer 1	49.0	Bladder cancer NAT 2	0.0
Colon cancer NAT 1	2.5	Bladder cancer NAT 3	0.0
Colon cancer 2	11.7	Bladder cancer NAT 4	0.0
Colon cancer NAT 2	28.5	Prostate adenocarcinoma 1	5.0
Colon cancer 3	43.5	Prostate adenocarcinoma 2	0.0
Colon cancer NAT 3	53.2	Prostate adenocarcinoma 3	0.0
Colon malignant cancer 4	100.0	Prostate adenocarcinoma 4	0.0
Colon normal adjacent tissue 4	8.4	Prostate cancer NAT 5	0.0
Lung cancer 1	12.2	Prostate adenocarcinoma 6	0.0
Lung NAT 1	0.0	Prostate adenocarcinoma 7	0.0

Lung cancer 2	72.2	Prostate adenocarcinoma 8	To long and and
Lung NAT 2	0.0	Prostate adenocarcinoma 9	4.0
Squamous cell carcinoma 3	18.8	Prostate cancer NAT 10	0.0
Lung NAT 3	0.0	Kidney cancer 1	7.5
metastatic melanoma 1	0.0	KidneyNAT 1	0.0
Melanoma 2	6.3	Kidney cancer 2	73.2
Melanoma 3	0.0	Kidney NAT 2	9.2
metastatic melanoma 4	0.0	Kidney cancer 3	6.3
metastatic melanoma 5	2.0	Kidney NAT 3	0.0
Bladder cancer 1	0.0	Kidney cancer 4	7.6
Bladder cancer NAT 1	0.0	Kidney NAT 4	17.0 84.1
Bladder cancer 2	0.0	(1000) 1111 7	104.1

CNS_neurodegeneration_v1.0 Summary: Ag5111 Expression of the CG56234-02 gene is low/undetectable in all samples on this panel (CTs>35).

5

10

15

20

General_screening_panel_v1.5 Summary: Ag5111 Highest expression of the CG56234-02 gene is seen in an ovarian cancer cell line (CT=30). This gene encodes a splice variant of PEPCK2, the rate-limiting enzyme for gluconeogenesis that has been shown to be regulated in response to hormones and environmental stress. In addition, to the ovarian cancer cell line, this gene is expressed at a moderate level in most of the cancer cell lines used in this panel. Therefore, modulation of the gene product using small molecule drugs may affect the growth and survival of cancer cells. Expression of this gene could potentially be used as a diagnostic marker of the metabolic status of cells and inhibition of activity of this gene product might be used for therapeutic treatment of cancers.

This gene is also moderately expressed (CT values = 34) in adult and fetal liver. Inhibition of this enzyme could potentially decrease hepatic glucose production and thus serve as an effective treatment for Type 2 diabetes, which is characterized by excess hepatic glucose production.

General_screening_panel_v1.6 Summary: Ag5111 Three experiments with the same probe and primer produce results that are in excellent agreement. Highest expression is seen in an ovarian cancer cell line (CTs=31-34) and overall, expression of this gene appears to be more highly associated with cancer cell line samples than with normal tissue samples. These results are also in agreement with results in Panel 1.5. Please see that panel for discussion of this gene.

Panel 4.1D Summary: Ag 5111 This gene is expressed at low levels in a wide range of cell across this panel (CTs=33.3-34.4), including CD4 T cells (naive and memory T cells), CD8 T cells, B cells and macrophages. Expression of this transcript is also found in dermal fibroblasts and kidney. This transcript encodes a homolog of a key enzyme in glucogenesis and therefore may be important for the metabolic status of all these cell types which contribute to the inflammatory response. Therefore, modulation of the activity or expression of this putative protein by small molecules could affect the activity of these cells and be useful for the treatment of autoimmune diseases such as inflammatory bowel diseases, rheumatoid arthritis, asthma, COPD, psoriasis and lupus.

general oncology screening panel_v_2.4 Summary: Ag5111 Low but significant expression is seen in a colon cancer, a kidney cancer, and a lung cancer (CTs=34-35). This is in agreement with the preferential expression in cancer cell lines seen in Panels 1.5 and 1.6. Please see Panel 1.5 for discussion of this gene in oncology.

AN. CG56836-03: Cathepsin B.

Expression of gene CG56836-03 was assessed using the primer-probe sets Ag2052 and Ag5278, described in Tables ANA, ANB and ANC. Results of the RTQ-PCR runs are shown in Tables AND, ANE, ANF, ANG, ANH, ANI, ANI and ANK.

Table ANA. Probe Name Ag2052

-	и	1	
_			

5

10

Primers		Length	Start Position	SEQ ID
Forward	5'-gtcccaccatcaaagagatca-3'	21	414	402
Probe	TET-5'-agaccagggctcctgtggctcct-3	23	436	403
Reverse	5'-atgcagatccggtcagagat-3'	20	485	404

Table ANB. Probe Name Ag5277

Primers		Length	Start Position	SEQ ID
Forward	5'-gatctgcatccacaccaat-3'	19	390	405
Probe	TET-5'-cctgctcacctgcctgctctacaagt -3'-TAMRA	26	441	406
Reverse	5'-cagtcagtgttccaggagtt-3'	20	568	407

Table ANC. Probe Name Ag5278

Primers		il ength	Start Position	SEQ ID No
Forward	5'-tatgaatccaatagcgaga-3'	19	653	408
Probe	TET-5'-agctttctctgtgtattcggacttcc -3'-TAMRA	26	715	409
Reverse	5'-tgttggtacactcctgactt-3'	20	749	410

Table AND. AI comprehensive panel_v1.0

Tissue Name	Rel. Exp.(%) Ag2052, Run 275804031	issue Name	Rel. Exp.(%) Ag2052, Run 275804031
110967 COPD-F	10.2	112427 Match Control Psoriasis-F	15.4
110980 COPD-F	6.4	112418 Psoriasis-M	10.4
110968 COPD-M	12.0	112723 Match Control Psoriasis-M	5.9
110977 COPD-M	14.0	112419 Psoriasis-M	12.9
110989 Emphysema-F	15.6	112424 Match Control Psoriasis-M	4.3
110992 Emphysema-F	20.0	112420 Psoriasis-M	29.7
110993 Emphysema-F	13.8	112425 Match Control Psoriasis-M	14.8
110994 Emphysema-F	6.0	104689 (MF) OA Bone-Backus	29.9
110995 Emphysema-F	33.2	104690 (MF) Adj "Normal" Bone-Backus	15.4
110996 Emphysema-F	8.5	104691 (MF) OA Synovium-Backus	55.9
110997 Asthma-M	6.1	104692 (BA) OA Cartilage-Backus	27.9
111001 Asthma-F	6.7	104694 (BA) OA Bone-Backus	39.5
111002 Asthma-F	11.2	104695 (BA) Adj "Normal" Bone-Backus	23.0
111003 Atopic Asthma-F	9.7	104696 (BA) OA Synovium-Backus	100.0
111004 Atopic Asthma-F	12.2	104700 (SS) OA Bone-Backus	12.2
111005 Atopic Asthma-F	7.4	104701 (SS) Adj "Normal" Bone-Backus	24.3
	1.7	104702 (SS) OA Synovium-Backus	43.8
111417 Allergy-M	9.0	117093 OA Cartilage Rep7	18.4
		112672 OA Bone5	17.3
112349 Normal Lung-F	0.0	112673 OA Synovium5	6.6
112357 Normal Lung-F			8.4
112354 Normal Lung-M			8.4
112374 Crohns-F			13.4

112389 Match Control Crohns-F	14.1	112757 OA Synovium9	4 91 1 11 11
112375 Crohns-F	9.9	112758 OA Synovial Fluid Cells9	5.0
112732 Match Control Crohns-F	6.6	117125 RA Cartilage Rep2	19.5
112725 Crohns-M	1.3	113492 Bone2 RA	11.7
112387 Match Control Crohns-M	11.7	113493 Synovium2 RA	3.6
112378 Crohns-M	0.0	113494 Syn Fluid Cells RA	6.7
112390 Match Control Crohns-M	14.5	113499 Cartilage4 RA	6.7
112726 Crohns-M	11.5	113500 Bone4 RA	6.3
112731 Match Control Crohns-M	7.5	113501 Synovium4 RA	5.1
112380 Ulcer Col-F	8.7	113502 Syn Fluid Cells4 RA	3.4
112734 Match Control Ulcer Col-F	15.4	113495 Cartilage3 RA	7.2
112384 Ulcer Col-F	25.7	113496 Bone3 RA	7.0
112737 Match Control Ulcer Col-F	4.1	113497 Synovium3 RA	4.4
112386 Ulcer Col-F	7.1	113498 Syn Fluid Cells3 RA	9.7
112738 Match Control Ulcer Col-F	13.1		8.1
	0.1	113663 Bone3 Normal	0.0
112735 Match Control Ulcer Col-M	0.4	113664 Synovium3 Normal	0.0
· · · · · · · · · · · · · · · · · · ·	12.9	113665 Syn Fluid Cells3 Normal	0.0
112394 Match Control Ulcer Col-M	3.3		3.2
	30.4	113667 Bone4 Normal	5.3
112736 Match Control Ulcer Col-M	11.0		3.1
112423 Psoriasis-F	5.5	113669 Syn Fluid Cells4 Normal	2.9

Table ANE. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag5278, Run 230509757	issue Name	Rel. Exp.(%) Ag5278, Run 230509757
Adipose	0.2	Renal ca. TK-10	6.2
Melanoma* Hs688(A).T	24.0	Bladder	5.1
Melanoma* Hs688(B).T	12.9	Gastric ca. (liver met.) NCI-N87	9.7
Melanoma* M14	51.8	Gastric ca. KATO III	5.7
Melanoma* LOXIMVI	26.6	Colon ca. SW-948	2.1
Melanoma* SK-MEL-5	17.0	Colon ca. SW480	7.0

Squamous cell carcinoma SCC-4	3.2	Colon ca.* (SW480 met) SW620	13.2
Testis Pool	0.5	Colon ca. HT29	0.7
Prostate ca.* (bone met) PC-3	0.6	Colon ca. HCT-116	2.6
Prostate Pool	0.2	Colon ca. CaCo-2	5.3
Placenta	5.4	Colon cancer tissue	14.5
Uterus Pool	0.0	Colon ca. SW1116	2.3
Ovarian ca. OVCAR-3	16.3	Colon ca. Colo-205	7.9
Ovarian ca. SK-OV-3	18.7	Colon ca. SW-48	2.7
Ovarian ca. OVCAR-4	3.9	Colon Pool	1.8
Ovarian ca. OVCAR-5	5.7	Small Intestine Pool	0.7
Ovarian ca. IGROV-1	0.3	Stomach Pool	1.2
Ovarian ca. OVCAR-8	1.3	Bone Marrow Pool	0.3
Ovary	3.2	Fetal Heart	0.5
Breast ca. MCF-7	3.0	Heart Pool	11.2
Breast ca. MDA-MB-231	4.1	Lymph Node Pool	2.9
Breast ca. BT 549	100.0	Fetal Skeletal Muscle	0.3
Breast ca. T47D	2.0	Skeletal Muscle Pool	1.0
Breast ca. MDA-N	1.6	Spleen Pool	2.1
Breast Pool	2.0	Thymus Pool	1.4
Trachea	2.3	CNS cancer (glio/astro) U87-MG	8.1
Lung	0.5	CNS cancer (glio/astro) U-118-MG	·
Fetal Lung	2.2	CNS cancer (neuro;met) SK-N-AS	2.0
Lung ca. NCI-N417	0.1	CNS cancer (astro) SP-539	3.4
Lung ca. LX-1	6.1	CNS cancer (astro) SNB-75	27.4
Lung ca. NCI-H146	0.4	CNS cancer (glio) SNB-19	2.4
Lung ca. SHP-77	1.8	CNS cancer (glio) SF-295	26.8
Lung ca. A549	4.1	Brain (Amygdala) Pool	2.1
Lung ca. NCI-H526	0.1	Brain (cerebellum)	6.9
Lung ca. NCI-H23	3.0	Brain (fetal)	1.2
Lung ca. NCI-H460	2.6	Brain (Hippocampus) Pool	1.9
Lung ca. HOP-62	4.0	Cerebral Cortex Pool	3.8
Lung ca. NCI-H522	1.0	Brain (Substantia nigra) Pool	2.6
Liver	1.4	Brain (Thalamus) Pool	2.8
Fetal Liver	10.4	Brain (whole)	5.3
Liver ca. HepG2	8.3		2.4
Kidney Pool	0.0		3.2
Fetal Kidney	0.7		0.6
Renal ca. 786-0	5.3		2.5
Renal ca. A498	4.0		25.3
	3.0		5.7
Renal ca. UO-31	15.2		3.0

Table ANF. HASS Panel v1.0

Tissue Name	Rel. Exp.(%) Ag2052, Run 247736616	Rel. Exp.(% Ag2052, Run 248455625	Tissue Name	Rel. Exp.(%) Ag2052, Run 247736616	Rel. Exp.(%) Ag2052, Run 248455625
MCF-7 C1	12.6	7.1	U87-MG F1 (B)	40.3	22.4
MCF-7 C2	12.7	8.6	U87-MG F2	11.1	6.7
MCF-7 C3	10.2	5.6	U87-MG F3	12.2	8.0
MCF-7 C4	16.2	19.5	U87-MG F4	27.0	17.8
MCF-7 C5	13.2	11.0	U87-MG F5	59.0	38.2
MCF-7 C6	13.2	14.6	U87-MG F6	61.1	44.4
MCF-7 C7	12.7	10.4	U87-MG F7	72.7	50.7
MCF-7 C9	9.7	12.9	U87-MG F8	75.3	54.7
MCF-7 C10	15.8	17.1	U87-MG F9	29.9	28.1
MCF-7 C11	2.5	1.8	U87-MG F10	65.1	50.0
MCF-7 C12	9.9	8.0	U87-MG F11	58.2	48.3
MCF-7 C13	12.5	17.1	U87-MG F12	47.0	42.6
MCF-7 C15	5.6	6.5	U87-MG F13	95.3	77.9
MCF-7 C16	14.0	21.5	U87-MG F14	96.6	80.1
MCF-7 C17	10.2	6.9	U87-MG F15	64.6	54.7
T24 D1	25.0	14.4	U87-MG F16	51.8	47.6
T24 D2	33.0	42.0	U87-MG F17	62.0	49.0
T24 D3	29.3	19.1	LnCAP A1	9.4	6.0
T24 D4	39.8	30.6	LnCAP A2	8.1	5.5
T24 D5	28.5	19.5	LnCAP A3	6.3	3.4
T24 D6	32.8	27.2	LnCAP A4	10.4	6.9
T24 D7	18.3	25.9	LnCAP A5	10.0	6.0
T24 D9	12.1	8.5	LnCAP A6	10.0	6.3
T24 D10	23.5	19.2	LnCAP A7	9.2	6.6
T24 D11	13.2	11.7	LnCAP A8	11.5	8.8
T24 D12	24.0	19.2	LnCAP A9	10.8	7.2
T24 D13	8.5	5.8	LnCAP A10	11.0	8.0
T24 D15	10.7	8.0	LnCAP A11	15.7	10.7
T24 D16	6.6	4.7	LnCAP A12	3.5	2.3
T24 D17	12.0	7.4	LnCAP A13	5.7	3.3
CAPaN B1	64.6	52.1	LnCAP A14	3.3	1.7
CAPaN B2	46.3	33.2	LnCAP A15	2.5	1.3
CAPaN B3	13.0	10.7	LnCAP A16	12.5	8.6
CAPaN B4	39.8	30.4	LnCAP A17	12.2	2.5
CAPaN B5	39.5	28.7	Primary Astrocytes	47.3	27.9

CAPaN B6	27.5	25.7	Primary Renal Proximal Tubule Epithelial cell A2	100.0	100.0
CAPaN B7	30.1	31.2	Primary melanocytes A5	40.1	21.8
CAPaN B8	33.2	26.8	126443 - 341 medullo	0.7	0.4
CAPaN B9	38.7	50.0	126444 - 487 medullo	2.2	1.8
CAPaN B10	57.4	51.4	126445 - 425 medullo	1.6	1.0
CAPaN B11	45.1	28.5	126446 - 690 medullo	4.4	2.6
CAPaN B12	31.4	22.7	126447 - 54 adult glioma	33.4	22.2
CAPaN B13	38.7	29.7	126448 - 245 adult glioma	9.4	6.3
CAPaN B14	29.9	22.1	126449 - 317 adult glioma	10.4	6.0
CAPaN B15	32.8	20.7	126450 - 212 glioma	41.5	22.8
CAPaN B16	29.7	16.4	126451 - 456 glioma	17.4	11.3
CAPaN B17	42.3	24.3			

Table ANG. Panel 1.3D

Tissue Name	Rel. Exp.(% Ag2052, Run 166004256	Tissue Name	Rel. Exp.(%) Ag2052, Run 166004256
Liver adenocarcinoma	21.8	Kidney (fetal)	19.2
Pancreas	4.2	Renal ca. 786-0	8.4
Pancreatic ca. CAPAN 2	24.5	Renal ca. A498	26.4
Adrenal gland	11.7	Renal ca. RXF 393	34.4
Thyroid	37.6	Renal ca. ACHN	9.3
Salivary gland	25.3	Renal ca. UO-31	33.7
Pituitary gland	13.8	Renal ca. TK-10	2.8
Brain (fetal)	11.7	Liver	14.0
Brain (whole)	51.4	Liver (fetal)	16.2
Brain (amygdala)	29.5	Liver ca. (hepatoblast) HepG2	33.9
Brain (cerebellum)	24.3	Lung	22.8
Brain (hippocampus)	24.5	Lung (fetal)	10.7
Brain (substantia nigra)	17.8	Lung ca. (small cell) LX-1	25.2
Brain (thalamus)	27.5	Lung ca. (small cell) NCI-H69	2.1
Cerebral Cortex	45.4	Lung ca. (s.cell var.) SHP-77	6.9
pinal cord	30.4	Lung ca. (large cell)NCI-H460	2.1
lio/astro U87-MG	42.6	Lung ca. (non-sm. cell) A549	4.4
lio/astro U-118-MG	23.5	Lung ca. (non-s.cell) NCI-H23	4.4

astrocytoma SW1783	24.3	Lung ca. (non-s.cell) HOP-62	30.4
neuro*; met SK-N-AS	5.4	Lung ca. (non-s.cl) NCI-H522	3.4
astrocytoma SF-539	43.8	Lung ca. (squam.) SW 900	18.4
astrocytoma SNB-75	21.9	Lung ca. (squam.) NCI-H596	1.9
glioma SNB-19	20.7	Mammary gland	15.5
glioma U251	43.2	Breast ca.* (pl.ef) MCF-7	10.7
glioma SF-295	25.5	Breast ca.* (pl.ef) MDA-MB-231	_1
Heart (fetal)	15.2	Breast ca.* (pl.ef) T47D	6.0
Heart	13.7	Breast ca. BT-549	100.0
Skeletal muscle (fetal)	8.2	Breast ca. MDA-N	3.7
Skeletal muscle	11.8	Ovary	23.5
Bone marrow	19.5	Ovarian ca. OVCAR-3	14.1
Thymus	7.7	Ovarian ca. OVCAR-4	20.7
Spleen	34.6	Ovarian ca. OVCAR-5	23.5
Lymph node	17.4	Ovarian ca. OVCAR-8	7.8
Colorectal	12.5	Ovarian ca. IGROV-1	5.1
Stomach	8.0	Ovarian ca.* (ascites) SK-OV-3	27.9
Small intestine	12.2	Uterus	11.0
Colon ca. SW480	9.7	Placenta	40.3
Colon ca.* SW620(SW480 met)	5.9	Prostate	8.0
Colon ca. HT29	1.2	Prostate ca.* (bone met)PC-3	8.4
Colon ca. HCT-116	4.8		4.3
Colon ca. CaCo-2	15.7		22.7
Colon ca. tissue(ODO3866)	62.4	Melanoma* (met) Hs688(B).T	21.8
Colon ca. HCC-2998	12.9	3.6.3	23.0
	21.9	Melanoma M14	43.2
Bladder	11.4		11.2
	13.1		22.8
Kidney	31.0		12.8

Table ANH. Panel 2.2

Tissue Name	Rel. Exp. %) Ag2052, Run 174244470	Tissue Name	Rel. Exp.(%) Ag2052, Run 174244470
Normal Colon	3.3	Kidney Margin (OD04348)	13.1
Colon cancer (OD06064)	23.3	Kidney malignant cancer (OD06204B)	1.0
Colon Margin (OD06064)	3.6	Kidney normal adjacent tissue (OD06204E)	9.5
Colon cancer (OD06159)	1.5	Kidney Cancer (OD04450-01)	22.2

Colon Margin (OD06159)	3.6	Kidney Margin (OD04450-03)	4.52 1
Colon cancer (OD06297-04)	1.3	1.3 Kidney Cancer 8120613	
Colon Margin (OD06297-05)	4.7	4.7 Kidney Margin 8120614	
CC Gr.2 ascend colon (ODO3921) 1.5	Kidney Cancer 9010320	10.7
CC Margin (ODO3921)	2.6	Kidney Margin 9010321	6.6
Colon cancer metastasis (OD06104)	6.7	Kidney Cancer 8120607	9.7
Lung Margin (OD06104)	6.0	Kidney Margin 8120608	11.4
Colon mets to lung (OD04451-01)	12.8	Normal Uterus	3.1
Lung Margin (OD04451-02)	6.0	Uterine Cancer 064011	3.5
Normal Prostate	2.3	Normal Thyroid	7.2
Prostate Cancer (OD04410)	0.7	Thyroid Cancer 064010	44.8
Prostate Margin (OD04410)	1.2	Thyroid Cancer A302152	100.0
Normal Ovary	6.1	Thyroid Margin A302153	7.6
Ovarian cancer (OD06283-03)	4.1	Normal Breast	2.2
Ovarian Margin (OD06283-07)	2.0	Breast Cancer (OD04566)	2.5
Ovarian Cancer 064008	9.2	Breast Cancer 1024	6.3
Ovarian cancer (OD06145)	8.9	Breast Cancer (OD04590-01)	8.5
Ovarian Margin (OD06145)	3.8	Percet Course Make	
Ovarian cancer (OD06455-03)	6.1	Proces Community	
Ovarian Margin (OD06455-07)	1.0	Breast Cancer 064006	4.9
Normal Lung	4.9	Breast Cancer 9100266	2.7
nvasive poor diff. lung adeno ODO4945-01	2.9	Breast Margin 9100265	1.7
Lung Margin (ODO4945-03)	3.2	Breast Cancer A209073	1.5
Lung Malignant Cancer (OD03126)	11.1	Breast Margin A2090734	2.3
Lung Margin (OD03126)	5.1	Breast cancer (OD06083)	4.4
Lung Cancer (OD05014A)	19.6	Breast cancer node metastasis (OD06083)	5.6
Lung Margin (OD05014B)	15.3	Normal Liver	6.9
ung cancer (OD06081)	3.4	Liver Cancer 1026	8.0
ung Margin (OD06081)	1.3	Liver Cancer 1025	22.2
Lung Cancer (OD04237-01)	4.6	Liver Cancer 6004-T	13.8
ung Margin (OD04237-02)	11.1	1	4.1
Ocular Melanoma Metastasis	3.5		21.5
Ocular Melanoma Margin (Liver)	9.8		51.1
Ielanoma Metastasis	5.4		13.6
Melanoma Margin (Lung)	5.1		2.8
	3.3		4.8
Iormal Kidney	J.J		
idney Ca Nuclear grada 2	5.0		6.1

Kidney Ca Nuclear grade 1/2 (OD04339)	15.0	Gastric Cancer 9060397	6.3
Kidney Margin (OD04339)	11.3	Stomach Margin 9060396	5.0
Kidney Ca, Clear cell type (OD04340)	4.2	Gastric Cancer 9060395	4.6
Kidney Margin (OD04340)	7.2	Stomach Margin 9060394	7.7
Kidney Ca, Nuclear grade 3 (OD04348)	3.1	Gastric Cancer 064005	3.8

Table ANI. Panel 4.1D

Tissue Name	Rel. Exp.(% Ag5278, Run 230472911	Tissue Name	Rel. Exp.(%) Ag5278, Run 230472911
Secondary Th1 act	3.4	HUVEC IL-1beta	13.0
Secondary Th2 act	3.3	HUVEC IFN gamma	9.0
Secondary Tr1 act	1.2	HUVEC TNF alpha + IFN gamma	7.4
Secondary Th1 rest	0.4	HUVEC TNF alpha + IL4	2.1
Secondary Th2 rest	0.0	HUVEC IL-11	3.6
Secondary Tr1 rest	0.0	Lung Microvascular EC none	27.7
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	8.2
Primary Th2 act	1.1	Microvascular Dermal EC none	4.2
Primary Tr1 act	1.4	Microsvasular Dermal EC TNFalpha + IL-1 beta	
Primary Th1 rest	0.5	Bronchial epithelium TNFalpha + IL1 beta	9.1
Primary Th2 rest	0.5	Small airway epithelium none	22.1
Primary Tr1 rest	0.9	Small airway epithelium TNFalpha + IL-1beta	33.9
CD45RA CD4 lymphocyte act	5.0	Coronery artery SMC rest	6.2
CD45RO CD4 lymphocyte act	1.6	Coronery artery SMC TNFalpha + IL-1beta	11.3
CD8 lymphocyte act	0.4	Astrocytes rest	2.3
	1.3		3.1
Secondary CD8 lymphocyte act	0.0	TZTT O10 CD	1.9
D4 lymphocyte none	0.0	KU-812 (Basophil)	10.9
ry Th1/Th2/Tr1_anti-CD95 CH11	0.0	CCD	5.8
AK cells rest	18.6	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	4.8
AK cells IL-2	0.6		1.9

LAK cells IL-2+IL-12	0.0	NCI-H292 none	7.7
LAK cells IL-2+IFN gamma	0.7	NCI-H292 IL-4	8.4
LAK cells IL-2+ IL-18	0.9	NCI-H292 IL-9	7.0
LAK cells PMA/ionomycin	62.4	NCI-H292 IL-13	5.6
NK Cells IL-2 rest	1.0	NCI-H292 IFN gamma	3.6
Two Way MLR 3 day	9.4	HPAEC none	9.1
Two Way MLR 5 day	3.9	HPAEC TNF alpha + IL-1 beta	28.3
Two Way MLR 7 day	2.3	Lung fibroblast none	9.3
PBMC rest	0.6	Lung fibroblast TNF alpha + IL-1 beta	12.2
PBMC PWM	1.1	Lung fibroblast IL-4	3.9
PBMC PHA-L	2.2	Lung fibroblast IL-9	11.8
Ramos (B cell) none	0.0	Lung fibroblast IL-13	5.4
Ramos (B cell) ionomycin	0.0	Lung fibroblast IFN gamma	19.5
B lymphocytes PWM	0.0	Dermal fibroblast CCD1070 rest	32.1
B lymphocytes CD40L and IL-4	1.4	Dermal fibroblast CCD1070 TNF alpha	66.0
EOL-1 dbcAMP	1.4	Dermal fibroblast CCD1070 IL-1 beta	21.8
EOL-1 dbcAMP PMA/ionomycin	1.4	Dermal fibroblast IFN gamma	42.3
Dendritic cells none	100.0	Dermal fibroblast IL-4	45.1
Dendritic cells LPS	34.9	Dermal Fibroblasts rest	15.7
Dendritic cells anti-CD40	44.8	Neutrophils TNFa+LPS	0.0
Monocytes rest	1.4	Neutrophils rest	0.6
Monocytes LPS	19.9	Colon	0.0
Macrophages rest	12.5	Lung	1.4
Macrophages LPS	11.2	Thymus	0.0
HUVEC none	5.9	Kidney	12.8
HUVEC starved	11.7		

Table ANJ. Panel 4D

Tissue Name	Rel. Exp.() Ag2052, Run 161706487	Tissue Name	Rel. Exp.(%) Ag2052, Run 161706487
Secondary Th1 act	2.6	HUVEC IL-1beta	2.1
Secondary Th2 act	1.7	HUVEC IFN gamma	5.2
Secondary Trl act	1.9	HUVEC TNF alpha + IFN gamma	5.7
Secondary Th1 rest	0.3	HUVEC TNF alpha + IL4	4.5
Secondary Th2 rest	0.5	HUVEC IL-11	2.6
Secondary Tr1 rest	0.6	Lung Microvascular EC none	9.9

		CILL SAIL LIGHT	
Primary Th1 act	1.4	Lung Microvasoular EC INFaiphar + IL-1beta	
Primary Th2 act	0.7	Microvascular Dermal EC none	16.6
Primary Tr1 act	1.2	Microsvasular Dermal EC TNFalpha + IL-1beta	9.2
Primary Th1 rest	2.2	Bronchial epithelium TNFalpha + IL1beta	3.1
Primary Th2 rest	1.4	Small airway epithelium none	12.5
Primary Tr1 rest	0.2	Small airway epithelium TNFalph: + IL-1beta	
CD45RA CD4 lymphocyte act	4.2	Coronery artery SMC rest	5.4
CD45RO CD4 lymphocyte act	1.4	Coronery artery SMC TNFalpha + IL-1beta	4.3
CD8 lymphocyte act	0.3	Astrocytes rest	2.2
Secondary CD8 lymphocyte rest	1.4	Astrocytes TNFalpha + IL-1beta	2.0
Secondary CD8 lymphocyte act	0.4	KU-812 (Basophil) rest	1.5
CD4 lymphocyte none	0.4	KU-812 (Basophil) PMA/ionomycin	11.0
2ry Th1/Th2/Tr1_anti-CD95 CH11	0.8	CCD1106 (Keratinocytes) none	3.1
AK cells rest	43.2	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.8
LAK cells IL-2	0.8	Liver cirrhosis	1.5
LAK cells IL-2+IL-12	1.8	Lupus kidney	0.7
AK cells IL-2+IFN gamma	3.2	NCI-H292 none	5.8
AK cells IL-2+ IL-18	2.1	NCI-H292 IL-4	5.5
AK cells PMA/ionomycin	26.2	NCI-H292 IL-9	7.4
IK Cells IL-2 rest	0.3	NCI-H292 IL-13	2.7
wo Way MLR 3 day	9.2	NCI-H292 IFN gamma	3.3
wo Way MLR 5 day	9.3	HPAEC none	5.6
wo Way MLR 7 day	2.0	HPAEC TNF alpha + IL-1 beta 1	
BMC rest	1.0	Lung fibroblast none	6.3
BMC PWM	5.3	Lung fibroblast TNF alpha + IL-1 beta	6.3
BMC PHA-L	5.0	Lung fibroblast IL-4	10.4
amos (B cell) none	0.0	7	8.1
amos (B cell) ionomycin	0.0	T. (7) 13 T. (6)	5.6
lymphocytes PWM	2.2	Taxan Cl. 11 . TTD T	15.4
lymphocytes CD40L and IL-4	1.2	D. 161 11 66	15.5
	0.7	Dermal fibroblast CCD1070 TNE	18.9
IAMONOMYCIII	1.5	Dermal fibroblast CCD1070 IL-1 beta	11.1
	66.9	Dermal fibroblast IFN gamma	9.6
	37.6		1.2
endritic cells anti-CD40	77.9	mm and a second	0.2

Monocytes rest	5.1	IBD Crohn's	
Monocytes LPS	17.2	Colon	3.9
Macrophages rest	100.0	Lung	19.8
Macrophages LPS	40.9	Thymus	12.9
HUVEC none	5.3	Kidney	2.4
HUVEC starved	10.6		

Table ANK. Panel 5 Islet

	٦	ŀ	
٠		,	

Tissue Name	Rel. Exp.(%) Ag2052, un 279370795		Rel. Exp.(%) Ag2052, Run 279370795
97457_Patient-02go_adipose	15.6	94709_Donor 2 AM - A_adipose	24.7
97476_Patient-07sk_skeletal muscle	0.0	94710_Donor 2 AM - B_adipose	24.7
97477_Patient-07ut_uterus	22.1	94711_Donor 2 AM - C_adipose	14.7
97478_Patient-07pl_placenta	13.1	94712_Donor 2 AD - A_adipose	64.2
99167_Bayer Patient 1	17.6	94713_Donor 2 AD - B_adipose	89.5
97482_Patient-08ut_uterus	15.3	94714_Donor 2 AD - C_adipose	66.4
97483_Patient-08pl_placenta	11.6	94742_Donor 3 U - A_Mesenchymal Stem Cells	17.3
97486_Patient-09sk_skeletal muscle	4.8	94743_Donor 3 U - B_Mesenchymal Stem Cells	23.2
97487_Patient-09ut_uterus	15.5	94730_Donor 3 AM - A_adipose	54.0
97488_Patient-09pl_placenta	7.9	94731_Donor 3 AM - B_adipose	76.3
97492_Patient-10ut_uterus	14.5	94732_Donor 3 AM - C_adipose	59.9
97493_Patient-10pl_placenta	23.8	94733_Donor 3 AD - A_adipose	100.0
97495_Patient-11go_adipose	11.9	94734_Donor 3 AD - B_adipose	92.0
97496_Patient-11sk_skeletal muscle	3.2	94735_Donor 3 AD - C_adipose	32.1
97497_Patient-11ut_uterus	36.9	77138_Liver_HepG2untreated	62.9
97498_Patient-11pl_placenta	7.0	73556_Heart_Cardiac stromal cells (primary)	0.3
97500_Patient-12go_adipose	17.2	81735_Small Intestine	10.9
97501_Patient-12sk_skeletal muscle	8.4	72409_Kidney_Proximal Convoluted Tubule	23.7
97502_Patient-12ut_uterus	25.2	82685_Small intestine_Duodenum	9.3
97503_Patient-12pl_placenta	23.8	90650 Adrenal Adrenocortical	8.4
94721_Donor 2 U - A_Mesenchymal Stem Cells	61.6	72410_Kidney_HRCE	40.1
94722_Donor 2 U - B_Mesenchymal Stem Cells	45.1	72411_Kidney_HRE	13.5

94723_Donor 2 U - C_Mesenchymal Stem Cells	53.2	73139_Uterus_Uterine smooth	61.1	ļ
		Control of the contro		

AI_comprehensive panel_v1.0 Summary: Ag2052 Highest expression of this gene is detected in synovium from an orthoarthritis (OA) patient (CT=20.3). High levels of expression of this gene are detected in samples derived from normal and orthoarthitis/ rheumatoid arthritis bone and adjacent bone, cartilage, synovium and synovial fluid samples, from normal lung, COPD lung, emphysema, atopic asthma, asthma, allergy, Crohn's disease (normal matched control and diseased), ulcerative colitis(normal matched control and diseased), and psoriasis (normal matched control and diseased). Therefore, therapeutic modulation of this gene product may ameliorate symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, allergy, asthma, inflammatory bowel disease, rheumatoid arthritis and osteoarthritis.

5

10

15

20

25

30

CNS_neurodegeneration_v1.0 Summary: Ag5277/Ag5278 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

General_screening_panel_v1.5 Summary: Ag5278 Highest expression of this gene is detected in breast cancer BT-549 cell line (CT=29). Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, melanoma and brain cancers. In addition, moderate to low levels of expression of this gene is also seen in all the regions of brain, in tissues with metabolic/endocrine functions such as pancreas, adrenal gland, thyroid, fetal liver and colon. Please see panel 1.3D for further discussion of this gene.

Ag5277 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

HASS Panel v1.0 Summary: Ag2052 Two experiments with same probe and primer sets are in excellent agreement. This gene shows wide spread expression in this panel, with highest expression in primary renal proximal tubular epithelial cells cultured in vitro (CTs=20-22). The expression of this gene is also higher in the glioblastoma type of brain cancer compared to the medulloblastoma suggesting that it may play a role in glioblastoma development than medulloblastomas. Expression is also induced in the U87-MG (cells when they are deprived of nutrients, oxygen and exposed to an acidic pH than in the control population (comparing the control U87-MG F4 with U87-MG F5, F7, F10). This suggests that the serum-starved, hypoxic and acidotic regions of brain cancers

may express this gene at a higher level and that this may be used as a marker for these it is regions.

Panel 1.3D Summary: Ag2052 This gene shows a widespread expression in this panel. Highest expression of this gene is detected in breast cancer BT-549 cell line (CT=24.9). High levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers.

5

10

15

20

25

30

Among tissues with metabolic or endocrine function, this gene is expressed at high levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Panel 2.2 Summary: Ag2052 Highest expression of this gene is detected in thyroid cancer (CT=23.9). High to moderate levels of expression of this gene is also seen in normal and cancer samples derived from melanoma, colon, gastric, bladder, liver, breast, thyroid, uterine, kidney, lung, ovarian and prostate cancers. Interestingly, higher levels of expression of this gene is associated with kidney and thyroid cancers as compared to corresponding normal tissue. Therefore, expression of this gene may bay used as diagnostic marker to detect the presence of these cancers. Furthermore, therapeutic modulation of this gene may be useful in the treatment of melanoma, colon, gastric, bladder, liver, breast, thyroid, uterine, kidney, lung, ovarian and prostate cancers.

Panel 4.1D Summary: Ag5278 Highest levels of expression of this gene is detected in resting dendritic cells (CT=32). Moderate to low levels of expression of this gene is also seen in activated dendrict cells, PMA/ionomycin stimulated LAK cells, LPS

activated macrophage, lung microvascular endothelial cells, activated HPAEC cells, small airway epithelium, and dermal fibroblasts. Therefore, therapeutic modulation of this gene or its protein product may alter the functions associated with these cell types and would be beneficial in the treatment of autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

Ag5277 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

5

10

15

20

25

Panel 4D Summary: Ag2052 Highest expression of this gene is detected in resting macrophage (CT=21). This gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, dendritic cells, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.3 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

Panel 5 Islet Summary: Ag2052 Highest expression of this gene is detected in a differentiated adipose tissue (CT=24.4). Moderate to high levels of expression is seen in placenta, uterus, adipose, skeletal muscle, small intestine, heart and kidney. This gene shows a ubiquitous expression which correlates to the expression in panel 1.3D. Please see panel 1.3D for further discussion of this gene.

AO. CG56836-04: Cathepsin B.

Expression of gene CG56836-04 was assessed using the primer-probe set Ag5264, described in Table AOA. Results of the RTQ-PCR runs are shown in Tables AOB, AOC and AOD.

Table AOA. Probe Name Ag5264

Primers	•	Length	Start Position	SEQ ID No
Forward	5'-tcctgctgggtttctggt-3'	18	455	411
Probe	TET-5'-ccgtactccatccctccctgtgagc- 3'-TAMRA	25	503	412
Reverse	5'-tgtttgtaggtcgggctgta-3'	20	605	413

Table AOB. CNS neurodegeneration v1.0

Tissue Name	Rel. Exp.(%) Ag5264, Run 230512807	issue Name	Rel. Exp.(%) Ag5264, Run 230512807
AD 1 Hippo	10.2	Control (Path) 3 Temporal Ctx	3.6
AD 2 Hippo	32.5	Control (Path) 4 Temporal Ctx	18.4
AD 3 Hippo	9.3	AD 1 Occipital Ctx	14.7
AD 4 Hippo	3.8	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	94.0	AD 3 Occipital Ctx	7.3
AD 6 Hippo	66.9	AD 4 Occipital Ctx	13.4
Control 2 Hippo	25.0	AD 5 Occipital Ctx	15.3
Control 4 Hippo	13.0	AD 6 Occipital Ctx	39.0
Control (Path) 3 Hippo	4.0	Control 1 Occipital Ctx	5.9
AD 1 Temporal Ctx	9.8	Control 2 Occipital Ctx	53.6
AD 2 Temporal Ctx	25.2	Control 3 Occipital Ctx	8.4
AD 3 Temporal Ctx	3.9	Control 4 Occipital Ctx	6.3
AD 4 Temporal Ctx	7.5	Control (Path) 1 Occipital Ctx	83.5
AD 5 Inf Temporal Ctx	74.7	Control (Path) 2 Occipital Ctx	6.0
AD 5 SupTemporal Ctx	43.8	Control (Path) 3 Occipital Ctx	1.7
AD 6 Inf Temporal Ctx	71.2	Control (Path) 4 Occipital Ctx	13.1
AD 6 Sup Temporal Ctx	41.8	Control 1 Parietal Ctx	2.9
Control 1 Temporal Ctx	5.9	Control 2 Parietal Ctx	30.1
Control 2 Temporal Ctx	45.1	Control 3 Parietal Ctx	12.3
Control 3 Temporal Ctx	12.0	Control (Path) 1 Parietal Ctx	100.0
Control 4 Temporal Ctx	6.7	Control (Path) 2 Parietal Ctx	12.6
Control (Path) 1 Temporal Ctx	47.3	Control (Path) 3 Parietal Ctx	2.5
Control (Path) 2 Temporal Ctx	15.9	Control (Path) 4 Parietal Ctx	44.1

Table AOC. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag5264, Run 232936651	issue Name	Rel. Exp.(%) Ag5264, Run 232936651
Adipose	0.7	Renal ca. TK-10	3.6
Melanoma* Hs688(A).T	19.5	Bladder	3.8
Melanoma* Hs688(B).T	9.0	Gastric ca. (liver met.) NCI-N87	10.2
Melanoma* M14	24.7	Gastric ca. KATO III	5.5
Melanoma* LOXIMVI	15.6	Colon ca. SW-948	1.2
Melanoma* SK-MEL-5	9.7	Colon ca. SW480	7.0
Squamous cell carcinoma SCC-4	3.1	Colon ca.* (SW480 met) SW620	2.0
Testis Pool	0.4	Colon ca. HT29	0.6
Prostate ca.* (bone met) PC-3	2.0	Colon ca. HCT-116	3.1
Prostate Pool	0.6	Colon ca. CaCo-2	5.2
Placenta	3.7	Colon cancer tissue	8.6
Uterus Pool	0.2	Colon ca. SW1116	2.4
Ovarian ca. OVCAR-3	6.7	Colon ca. Colo-205	4.1
Ovarian ca. SK-OV-3	7.2	Colon ca. SW-48	1.3
Ovarian ca. OVCAR-4	4.2	Colon Pool	1.2
Ovarian ca. OVCAR-5	6.2	Small Intestine Pool	0.7
Ovarian ca. IGROV-1	1.5	Stomach Pool	1.3
Ovarian ca. OVCAR-8	2.2	Bone Marrow Pool	0.7
Ovary	1.4	Fetal Heart	0.5
Breast ca. MCF-7	2.7	Heart Pool	1.3
Breast ca. MDA-MB-231	4.9	Lymph Node Pool	2.2
Breast ca. BT 549	100.0	Fetal Skeletal Muscle	0.3
Breast ca. T47D	1.3	Skeletal Muscle Pool	1.3
Breast ca. MDA-N	1.1	Spleen Pool	1.2
Breast Pool	1.7	Thymus Pool	0.9
Trachea	3.0	CNS cancer (glio/astro) U87-MG	12.6
Lung	0.2	CNS cancer (glio/astro) U-118-MG	9.0
Fetal Lung	1.6	CNS cancer (neuro;met) SK-N-AS	2.1
Lung ca. NCI-N417	0.2	CNS cancer (astro) SF-539	7.4
Lung ca. LX-1	4.5	CNS cancer (astro) SNB-75	22.5
Lung ca. NCI-H146	0.2	CNS cancer (glio) SNB-19	1.7
Lung ca. SHP-77	1.6	CNS cancer (glio) SF-295	15.6
Lung ca. A549	4.1	Brain (Amygdala) Pool	1.4
Lung ca. NCI-H526	0.2		5.6
Lung ca. NCI-H23	2.2		1.0
Lung ca. NCI-H460	1.2	The same of the sa	1.3
Lung ca. HOP-62	5.6		1.6

Lung ca. NCI-H522	1.4	Brain (Substantia nigra) Pool	1.5
Liver	1.7	Brain (Thalamus) Pool	2.1
Fetal Liver	4.9	Brain (whole)	3.1
Liver ca. HepG2	4.9	Spinal Cord Pool	1.6
Kidney Pool	2.4	Adrenal Gland	2.1
Fetal Kidney	1.0	Pituitary gland Pool	0.4
Renal ca. 786-0	1.0	Salivary Gland	1.6
Renal ca. A498	1.7	Thyroid (female)	16.7
Renal ca. ACHN	4.0	Pancreatic ca. CAPAN2	5.6
Renal ca. UO-31	11.2	Pancreas Pool	2.8

Table AOD. Panel 4.1D

4		1	
٠			

Tissue Name	Rel. Exp.(% Ag5264, Run 230472870	Tissue Name	Rel. Exp.(%) Ag5264, Run 230472870
Secondary Th1 act	4.0	HUVEC IL-1beta	9.2
Secondary Th2 act	3.3	HUVEC IFN gamma	7.2
Secondary Tr1 act	1.2	HUVEC TNF alpha + IFN gamma	4.6
Secondary Th1 rest	0.3	HUVEC TNF alpha + IL4	5.1
Secondary Th2 rest	0.2	HUVEC IL-11	4.5
Secondary Tr1 rest	0.2	Lung Microvascular EC none	32.5
Primary Th1 act	0.5	Lung Microvascular EC TNFalpha + IL-1beta	10.3
Primary Th2 act	0.7	Microvascular Dermal EC none	4.2
Primary Tr1 act	1.0	Microsvasular Dermal EC TNFalpha + IL-1beta	2.8
Primary Th1 rest	0.2	Bronchial epithelium TNFalpha + IL l beta	11.5
Primary Th2 rest	0.3	Small airway epithelium none	15.8
Primary Tr1 rest	0.2	Small airway epithelium TNFalpha + IL-1beta	20.2
CD45RA CD4 lymphocyte act	4.6	Coronery artery SMC rest	6.0
CD45RO CD4 lymphocyte act	1.7	Coronery artery SMC TNFalpha + IL-1beta	5.1
CD8 lymphocyte act	0.3	Astrocytes rest	1.5
Secondary CD8 lymphocyte rest	1.1	Astrocytes TNFalpha + IL-1beta	1.9
Secondary CD8 lymphocyte act	0.3	KU-812 (Basophil) rest	1.7
CD4 lymphocyte none	0.1	KU-812 (Basophil) PMA/ionomycin	8.9
2ry Th1/Th2/Tr1_anti-CD95 CH11	0.8	CCD1106 (Keratinocytes) none	6.8

LAK cells rest	39.2	CCD1106 (Keratinocytes)	5.0
LAK cells IL-2	0.6	Liver cirrhosis	3.8
LAK cells IL-2+IL-12	0.1	NCI-H292 none	3.6
LAK cells IL-2+IFN gamma	0.3	NCI-H292 IL-4	4.7
LAK cells IL-2+ IL-18	0.3	NCI-H292 IL-9	5.4
LAK cells PMA/ionomycin	54.3	NCI-H292 IL-13	3.3
NK Cells IL-2 rest	0.6	NCI-H292 IFN gamma	2.4
Two Way MLR 3 day	9.0	HPAEC none	3.7
Two Way MLR 5 day	3.4	HPAEC TNF alpha + IL-1 beta	27.0
Two Way MLR 7 day	1.3	Lung fibroblast none	10.7
PBMC rest	0.4	Lung fibroblast TNF alpha + IL-1 beta	10.4
PBMC PWM	0.7	Lung fibroblast IL-4	4.5
PBMC PHA-L	2.7	Lung fibroblast IL-9	8.2
Ramos (B cell) none	0.0	Lung fibroblast IL-13	2.2
Ramos (B cell) ionomycin	0.0	Lung fibroblast IFN gamma	16.0
B lymphocytes PWM	0.5	Dermal fibroblast CCD1070 rest	17.6
B lymphocytes CD40L and IL-4	1.3	Dermal fibroblast CCD1070 TNF alpha	16.6
EOL-1 dbcAMP	1.0	Dermal fibroblast CCD1070 IL-1 beta	16.7
EOL-1 dbcAMP PMA/ionomycin	0.9	Dermal fibroblast IFN gamma	31.6
Dendritic cells none	100.0	Dermal fibroblast IL-4	20.3
Dendritic cells LPS	31.9	Dermal Fibroblasts rest	14.6
Dendritic cells anti-CD40	36.3	Neutrophils TNFa+LPS	0.2
Monocytes rest	1.4	Neutrophils rest	0.2
Monocytes LPS	40.9	Colon	0.0
Macrophages rest	26.1	Lung	1.4
Macrophages LPS	16.7	Thymus	0.2
HUVEC none	4.7	Kidney	9.7
HUVEC starved	5.8		

CNS_neurodegeneration_v1.0 Summary: Ag5264 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals.
However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.5 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

General_screening_panel_v1.5 Summary: Ag5264 Highest expression of this
gene is detected in breast cancer BT-549 cell line (CT=25). Moderate levels of expression

of this gene is also seen in cluster of cancer cell lines derived from paneledite, gastrie, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers.

5

10

15

20

25

30

Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Panel 4.1D Summary: Ag5264 Highest levels of expression of this gene is detected in resting dendritic cells (CT=28.7). Moderate to low levels of expression of this gene is also seen in activated dendritic cells, resting and PMA/ionomycin stimulated LAK cells, monocytes, macrophage, different types of endothelial cells, small airway epithelium, lung and dermal fibroblasts and normal tissue represent by lung and kidney. This gene is upregulated in LPS treated monocytes, cytokine treated HPAEC, and activated secondary Th1, Th2 cells. Therefore, therapeutic modulation of this gene or its protein product may alter the functions associated with these cell types and would be beneficial in the treatment of autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

AP. CG57284-03: RAS-RELATED PROTEIN RAB-5C.

Expression of gene CG57284-03 was assessed using the primer-probe set Ag6892, described in Table APA. Results of the RTQ-PCR runs are shown in Tables APB and APC. Please note that this sequence represents a full-length physical clone.

Table APA. Probe Name Ag6892

Primers		il enoth	Start Position	SEQ ID No
Forward	5'-gtgtcatccaggcagacagtct-3'	22	473	414
Probe	TET-5'-ccgctccaattgtgctctcctggtact-3'-TAMRA	27	507	415
Reverse	5'-cgctttgtcaagggacagttt-3'	21	538	416

Table APB. General screening panel v1.6

Tissue Name	Rel. Exp.(%) Ag6892, Run 278388295	issue Name	Rel. Exp.(%) Ag6892, Run 278388295
Adipose	11.0	Renal ca. TK-10	41.5
Melanoma* Hs688(A).T	37.4	Bladder	19.1
Melanoma* Hs688(B).T	33.0	Gastric ca. (liver met.) NCI-N87	26.4
Melanoma* M14	85.3	Gastric ca. KATO III	93.3
Melanoma* LOXIMVI	48.6	Colon ca. SW-948	15.7
Melanoma* SK-MEL-5	49.7	Colon ca. SW480	62.4
Squamous cell carcinoma SCC-4	28.5	Colon ca.* (SW480 met) SW620	9.5
Testis Pool	10.1	Colon ca. HT29	20.7
Prostate ca.* (bone met) PC-3	0.0	Colon ca. HCT-116	48.0
Prostate Pool	10.6	Colon ca. CaCo-2	49.7
Placenta	22.4	Colon cancer tissue	19.3
Uterus Pool	4.8	Colon ca. SW1116	6.7
Ovarian ca. OVCAR-3	18.9	Colon ca. Colo-205	13.3
Ovarian ca. SK-OV-3	63.3	Colon ca. SW-48	16.5
Ovarian ca. OVCAR-4	17.4	Colon Pool	15.5
Ovarian ca. OVCAR-5	41.5	Small Intestine Pool	8.7
Ovarian ca. IGROV-1	18.4	Stomach Pool	8.0
Ovarian ca. OVCAR-8	13.8	Bone Marrow Pool	8.5
Ovary	10.6	Fetal Heart	5.9
Breast ca. MCF-7	33.2	Heart Pool	6.3
Breast ca. MDA-MB-231	46.0	Lymph Node Pool	16.4
Breast ca. BT 549	37.4	Fetal Skeletal Muscle	5.4
Breast ca. T47D	35.1	Skeletal Muscle Pool	1.6
Breast ca. MDA-N	22.2		8.8
Breast Pool	12.7		8.7
Frachea	12.0		35.4
Lung	2.5	CNS cancer (glio/astro) U-118-MG	

Fetal Lung	32.5	CNS cancer (neuro, met) SK-N-	\$ 52
Lung ca. NCI-N417	5.4	CNS cancer (astro) SF-539	28.9
Lung ca. LX-1	20.2	CNS cancer (astro) SNB-75	52.9
Lung ca. NCI-H146	8.6	CNS cancer (glio) SNB-19	21.2
Lung ca. SHP-77	20.2	CNS cancer (glio) SF-295	100.0
Lung ca. A549	51.1	Brain (Amygdala) Pool	10.6
Lung ca. NCI-H526	5.6	Brain (cerebellum)	49.0
Lung ca. NCI-H23	23.7	Brain (fetal)	25.9
Lung ca. NCI-H460	19.1	Brain (Hippocampus) Pool	13.0
Lung ca. HOP-62	21.0	Cerebral Cortex Pool	17.3
Lung ca. NCI-H522	31.4	Brain (Substantia nigra) Pool	11.2
Liver	5.7	Brain (Thalamus) Pool	19.6
Fetal Liver	19.8	Brain (whole)	23.0
Liver ca. HepG2	10.3	Spinal Cord Pool	12.5
Kidney Pool	15.9	Adrenal Gland	24.8
Fetal Kidney	14.0	Pituitary gland Pool	2.7
Renal ca. 786-0	24.3	Salivary Gland	11.3
Renal ca. A498	21.9	Thyroid (female)	9.8
Renal ca. ACHN	22.2	Pancreatic ca. CAPAN2	24.8
Renal ca. UO-31	35.4	Pancreas Pool	8.1

Table APC. Panel 5 Islet

Tissue Name	Rel. Exp.(%) Ag6892, Run 305424859	Tissue Name	Rel. Exp.(%) Ag6892, Run 305424859
97457_Patient-02go_adipose	4.5	94709_Donor 2 AM - A_adipose	44.1
97476_Patient-07sk_skeletal muscle	0.0	94710_Donor 2 AM - B_adipose	30.8
97477_Patient-07ut_uterus	8.2	94711_Donor 2 AM - C_adipose	21.0
97478_Patient-07pl_placenta	13.1	94712_Donor 2 AD - A_adipose	48.0
99167_Bayer Patient 1	23.2	94713_Donor 2 AD - B_adipose	54.0
97482_Patient-08ut_uterus	7.7	94714_Donor 2 AD - C_adipose	50.3
97483_Patient-08pl_placenta	18.9	94742_Donor 3 U - A_Mesenchymal Stem Cells	14.7
97486_Patient-09sk_skeletal muscle	4.4	94743_Donor 3 U - B_Mesenchymal Stem Cells	10.4
97487_Patient-09ut_uterus	19.6	94730_Donor 3 AM - A_adipose	53.2
97488_Patient-09pl_placenta		94731_Donor 3 AM - B_adipose	74.2
97492_Patient-10ut_uterus		94732_Donor 3 AM - C_adipose	58.6
97493_Patient-10pl_placenta		94733_Donor 3 AD - A_adipose	64.6
97495_Patient-11go_adipose		94734_Donor 3 AD - B_adipose	100.0

97496_Patient-11sk_skeletal muscle	3.8	94735_Donor 3 AD - C_adipose	20.4
97497_Patient-11ut_uterus	25.0	77138_Liver_HepG2untreated	71.2
97498_Patient-11pl_placenta	8.8	73556_Heart_Cardiac stromal cells (primary)	18.6
97500_Patient-12go_adipose	10.4	81735_Small Intestine	12.4
97501_Patient-12sk_skeletal muscle	12.7	72409 Kidney Proximal Convoluted	81.2
97502_Patient-12ut_uterus	18.9	82685_Small intestine_Duodenum	8.1
97503_Patient-12pl_placenta	17.8	90650 Adrenal Adrenocortical	4.8
94721_Donor 2 U - A_Mesenchymal Stem Cells	27.9	72410_Kidney_HRCE	37.9
94722_Donor 2 U - B_Mesenchymal Stern Cells	25.7	72411_Kidney_HRE	18.8
94723_Donor 2 U - C_Mesenchymal Stem Cells	30.4	73139_Uterus_Uterine smooth muscle cells	48.0

General_screening_panel_v1.6 Summary: Ag6892 Highest expression of this gene is seen in a brain cancer cell line (CT=24.1). This gene is ubiquitously expressed in this panel, with high levels of expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.

5

10

15

20

Among tissues with metabolic function, this gene is expressed at high levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.

This gene is also expressed at high levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.

In addition, this gene is expressed at much higher levels in fetal lung tissue (CT=25.7) when compared to expression in the adult counterpart (CT=29.4). Thus,

expression of this gene may be used to differentiate between the fetal and adult source of this tissue.

Panel 5 Islet Summary: Ag6892 Highest expression is seen in adipose (CT=26), with nearly ubiquitous expression seen across the samples on this panel. High to moderate levels of expression are seen in metabolic tissues, including skeletal muscle, adipose, and placenta, in agreement with Panel 1.6. Please see that panel for discussion of this gene in metabolic disease.

AQ. CG57308-02: Sulfonylurea Receptor 1 Splice Variant.

Expression of gene CG57308-02 was assessed using the primer-probe set Ag7558, described in Table AQA. Results of the RTQ-PCR runs are shown in Tables AQB and AQC.

Table AQA. Probe Name Ag7558

5

Primers		(Length	1	SEQ ID No
Forward	5'-tcgaagggcacatcatca-3'	18	4319	417
Probe	TET-5'-tgcctctgtccctggctgaaattctc -3'-TAMRA	26		418
Reverse	5'-tgaagatgctggtcttcctca-3'	21		419

Table AQB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag7558, Run 308750599	issue Name	Rel. Exp.(%) Ag7558, Run 308750599
AD 1 Hippo	4.2	Control (Path) 3 Temporal Ctx	3.3
AD 2 Hippo	16.4	Control (Path) 4 Temporal Ctx	50.3
AD 3 Hippo	1.7	AD 1 Occipital Ctx	11.1
AD 4 Hippo	11.3	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	76.3	AD 3 Occipital Ctx	2.3
AD 6 Hippo	38.7	AD 4 Occipital Ctx	19.8
Control 2 Hippo	17.8	AD 5 Occipital Ctx	45.4
Control 4 Hippo	3.9	AD 6 Occipital Ctx	21.2
Control (Path) 3 Hippo	1.0	Control 1 Occipital Ctx	0.9
AD 1 Temporal Ctx	7.6	Control 2 Occipital Ctx	82.4

AD 2 Temporal Ctx	24.5	Control 3 Occipital Ctx	113.4
AD 3 Temporal Ctx	4.0	Control 4 Occipital Ctx	0.0
AD 4 Temporal Ctx	32.3	Control (Path) 1 Occipital Ctx	100.0
AD 5 Inf Temporal Ctx	78.5	Control (Path) 2 Occipital Ctx	17.1
AD 5 Sup Temporal Ctx	25.3	Control (Path) 3 Occipital Ctx	0.0
AD 6 Inf Temporal Ctx	39.2	Control (Path) 4 Occipital Ctx	31.9
AD 6 Sup Temporal Ctx	71.7	Control 1 Parietal Ctx	1.8
Control 1 Temporal Ctx	4.3	Control 2 Parietal Ctx	36.9
Control 2 Temporal Ctx	33.2	Control 3 Parietal Ctx	21.5
Control 3 Temporal Ctx	13.8	Control (Path) 1 Parietal Ctx	87.1
Control 3 Temporal Ctx	2.5	Control (Path) 2 Parietal Ctx	41.5
Control (Path) 1 Temporal Ctx	55.9	Control (Path) 3 Parietal Ctx	3.7
Control (Path) 2 Temporal Ctx	65.1	Control (Path) 4 Parietal Ctx	79.0

Table AQC. Panel 5 Islet

Tissue Name	Rel. Exp.(%) Ag7558, Run 312000203	Tissue Name	Rel. Exp.(%) Ag7558, Run 312000203
97457_Patient-02go_adipose	0.0	94709_Donor 2 AM - A_adipose	0.0
97476_Patient-07sk_skeletal muscle	0.0	94710_Donor 2 AM - B_adipose	0.0
97477_Patient-07ut_uterus	0.0	94711_Donor 2 AM - C_adipose	0.0
97478_Patient-07pl_placenta	0.0	94712_Donor 2 AD - A_adipose	0.0
99167_Bayer Patient 1	100.0	94713_Donor 2 AD - B_adipose	0.0
97482_Patient-08ut_uterus	0.0	94714_Donor 2 AD - C_adipose	0.0
97483_Patient-08pl_placenta	0.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	0.0
97486_Patient-09sk_skeletal muscle	0.0	94743_Donor 3 U - B_Mesenchymal Stem Cells	0.0
97487_Patient-09ut_uterus	0.0	94730_Donor 3 AM - A_adipose	0.0
97488_Patient-09pl_placenta	0.0		0.0
97492_Patient-10ut_uterus	0.0	94732_Donor 3 AM - C_adipose	0.0
97493_Patient-10pl_placenta	0.0	94733_Donor 3 AD - A_adipose	0.0
97495_Patient-11go_adipose	0.0	94734_Donor 3 AD - B_adipose	0.0
97496_Patient-11sk_skeletal muscle	0.0	94735_Donor 3 AD - C_adipose	0.0
97497_Patient-11ut_uterus	0.0	77138_Liver_HepG2untreated	0.0
97498_Patient-11pl_placenta 0.0		73556 Heart Cardiac stromal cells	0.0
97500_Patient-12go_adipose	0.0	81735_Small Intestine	0.0

97501_Patient-12sk_skeletal muscle	0.0	72409_Kidney_Proximar Convoluted	0.0
97502_Patient-12ut_uterus	0.0	82685_Small intestine_Duodenum	0.0
97503_Patient-12pl_placenta	0.0	90650_Adrenal_Adrenocortical adenoma	0.0
94721_Donor 2 U - A_Mesenchymal Stem Cells	0.0	72410_Kidney_HRCE	0.0
94722_Donor 2 U - B_Mesenchymal Stem Cells	0.0	72411_Kidney_HRE	0.0
94723_Donor 2 U - C_Mesenchymal Stem Cells	0.0	73139_Uterus_Uterine smooth muscle cells	0.0

CNS_neurodegeneration_v1.0 Summary: Ag7558 Highest expression of this gene is seen in the occipital cortex of a control patient (CT=33). This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile does show the expression of this gene at low levels in the brain. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.

Panel 4.1D Summary: Ag7558 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).

Panel 5 Islet Summary: Ag7558 Expression of this gene is limited to pancreatic islet cells (CT=34.6). This gene codes for a variant of SUR1. SUR1 is a subunit of the pancreatic beta cell K+ channel that regulates insulin release in glucose-stimulated cells. Thus, therapeutic modulation of SUR1 variant encoded by this gene may be used as a treatment for the enhancement of insulin secretion in Type 2 diabetes.

AR. CG93659-03: MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 9.

Expression of gene CG93659-03 was assessed using the primer-probe set Ag4828,

described in Table ARA. Results of the RTQ-PCR runs are shown in Tables ARB and
ARC.

Table ARA. Probe Name Ag4828

5

Primers	Length Start S Position	EQ ID

Forward	5'-gaggaatctgagatgctcaaga-3'	22	1275	420
Probe	TET-5'-caacgctctctctacatcgacctcgg -3'-TAMRA	26	1299	421
Reverse	5'-tccccgaacaagattgaagt-3'	20	1339	422

Table ARB. General screening panel v1.4

4	ī
	۱

	Rel. Exp.(%)		Rel. Exp.(%)
Tissue Name	Ag4828, Run 217081802	issue Name	Ag4828, Run 217081802
Adipose	53.6	Renal ca. TK-10	10.6
Melanoma* Hs688(A).T	15.5	Bladder	31.9
Melanoma* Hs688(B).T	17.4	Gastric ca. (liver met.) NCI-N87	36.3
Melanoma* M14	3.5	Gastric ca. KATO III	12.2
Melanoma* LOXIMVI	3.2	Colon ca. SW-948	5.4
Melanoma* SK-MEL-5	0.9	Colon ca. SW480	25.0
Squamous cell carcinoma SCC-4	7.0	Colon ca.* (SW480 met) SW620	2.5
Testis Pool	4.7	Colon ca. HT29	14.3
Prostate ca.* (bone met) PC-3	6.3	Colon ca. HCT-116	2.1
Prostate Pool	3.9	Colon ca. CaCo-2	15.9
Placenta	39.0	Colon cancer tissue	39.8
Uterus Pool	9.0	Colon ca. SW1116	3.4
Ovarian ca. OVCAR-3	15.7	Colon ca. Colo-205	8.8
Ovarian ca. SK-OV-3	46.3	Colon ca. SW-48	5.4
Ovarian ca. OVCAR-4	7.1	Colon Pool	16.2
Ovarian ca. OVCAR-5	30.6	Small Intestine Pool	9.3
Ovarian ca. IGROV-1	14.1	Stomach Pool	17.3
Ovarian ca. OVCAR-8	2.7	Bone Marrow Pool	7.0
Ovary	4.5	Fetal Heart	2.9
Breast ca. MCF-7	100.0	Heart Pool	7.9
Breast ca. MDA-MB-231	9.2	Lymph Node Pool	15.2
Breast ca. BT 549	73.2	Fetal Skeletal Muscle	1.7
Breast ca. T47D	66.0	Skeletal Muscle Pool	9.8
Breast ca. MDA-N	0.9	Spleen Pool	45.7
Breast Pool	24.1	Thymus Pool	15.9
Trachea	18.0	CNS cancer (glio/astro) U87-MG	7.6
Lung	6.7		7.9
Fetal Lung	68.3	CNS cancer (neuro;met) SK-N-AS	2.6
Lung ca. NCI-N417	0.2	CNS cancer (astro) SF-539	2.3
Lung ca. LX-1	11.8	CNS cancer (astro) SNB-75	14.1
Lung ca. NCI-H146	0.0	CNS cancer (glio) SNB-19	11.1

Lung ca. SHP-77	0.1	CNS cancer (glio) SF-295 CM	2 3 1 9 1 1
Lung ca. A549	36.6	Brain (Amygdala) Pool	2.7
Lung ca. NCI-H526	0.0	Brain (cerebellum)	1.4
Lung ca. NCI-H23	13.4	Brain (fetal)	4.9
Lung ca. NCI-H460	17.6	Brain (Hippocampus) Pool	3.7
Lung ca. HOP-62	13.2	Cerebral Cortex Pool	3.5
Lung ca. NCI-H522	2.1	Brain (Substantia nigra) Pool	2.7
Liver	1.0	Brain (Thalamus) Pool	4.5
Fetal Liver	2.8	Brain (whole)	4.5
Liver ca. HepG2	8.1	Spinal Cord Pool	3.8
Kidney Pool	31.4	Adrenal Gland	9.5
Fetal Kidney	7.7	Pituitary gland Pool	1.4
Renal ca. 786-0	10.9	Salivary Gland	2.5
Renal ca. A498	5.2	Thyroid (female)	7.7
Renal ca. ACHN	2.5	Pancreatic ca. CAPAN2	34.4
Renal ca. UO-31	14.9	Pancreas Pool	19.6

Table ARC. Panel 5D

Tissue Name	Rel. Exp. %) Ag4828, Run 219436967	Tissue Name	Rel. Exp.(%) Ag4828, Run 219436967
97457_Patient-02go_adipose	33.9	94709_Donor 2 AM - A_adipose	10.8
97476_Patient-07sk_skeletal muscle	33.4	94710_Donor 2 AM - B_adipose	9.3
97477_Patient-07ut_uterus	59.5	94711_Donor 2 AM - C_adipose	3.0
97478_Patient-07pl_placenta	39.8	94712_Donor 2 AD - A_adipose	13.7
97481_Patient-08sk_skeletal muscle	25.9	94713_Donor 2 AD - B_adipose	10.0
97482_Patient-08ut_uterus	19.8	94714_Donor 2 AD - C_adipose	6.7
97483_Patient-08pl_placenta	41.5	94742_Donor 3 U - A_Mesenchymal Stem Cells	4.7
97486_Patient-09sk_skeletal muscle	6.5	94743_Donor 3 U - B_Mesenchymal Stem Cells	2.8
97487_Patient-09ut_uterus	8.1	94730_Donor 3 AM - A_adipose	6.3
97488_Patient-09pl_placenta	38.4	94731_Donor 3 AM - B_adipose	2.4
97492_Patient-10ut_uterus	30.6	94732_Donor 3 AM - C_adipose	2.2
97493_Patient-10pl_placenta	72.7	94733_Donor 3 AD - A_adipose	10.2
97495_Patient-11go_adipose	100.0	94734_Donor 3 AD - B_adipose	5.5
97496_Patient-11sk_skeletal muscle	5.8	94735_Donor 3 AD - C_adipose	4.7
97497_Patient-11ut_uterus	20.6	77138_Liver_HepG2untreated	14.4

97498_Patient-11pl_placenta	50.0	73556_Heart_Cardiac stromal cells (primary)	1.9
97500_Patient-12go_adipose	82.4	81735_Small Intestine	17.2
97501_Patient-12sk_skeletal muscle	19.2	72409 Kidney Proximal Convoluted	0.9
97502_Patient-12ut_uterus	23.7	82685_Small intestine_Duodenum	19.1
97503_Patient-12pl_placenta	57.0	90650_Adrenal_Adrenocortical adenoma	8.8
94721_Donor 2 U - A_Mesenchymal Stem Cells	1.6	72410_Kidney_HRCE	7.6
94722_Donor 2 U - B_Mesenchymal Stem Cells	3.0	72411_Kidney_HRE	13.5
94723_Donor 2 U - C_Mesenchymal Stem Cells	2.1	73139_Uterus_Uterine smooth	2.0

General_screening_panel_v1.4 Summary: Ag4828 Highest expression of this gene is detected in a breast cancer MCF-7 cell line(CT=27.6). Interestingly, this gene is expressed at much higher levels in fetal (CT=28) when compared to adult lung (CT=31). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung. In addition, the relative overexpression of this gene in fetal lung suggests that the protein product may enhance lung growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of lung related diseases.

5

10

15

20

In addition significant expression of this gene is found in a number of cancer (pancreatic, CNS, colon, lung, breast, ovary, prostate, melanoma) cell lines. Therefore, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, might be beneficial in the treatment of these cancers.

Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, skeletal muscle, heart, fetal liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

This gene encodes a protein that is homologous to mitogen-activated protein kinase kinase kinase 8 (MAP3K8)(COT proto-oncogene serine/threonine-protein kinase) (C-COT) (Cancer osaka thyroid oncogene). COT is able to enhance the TNF alpha production and to activate NF-kB. Both events are connected with insulin resistance and type II diabetes (1,

2, 3). Inhibition of COT kinase would prevent overproduction of TNF alpha and activation of NF-kB, thus improving insulin resistance and diabetes.

In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Recently, MKK6, a related protein, has been shown to associated with Alzheimer's disease (4). Therefore, based on the homology of this protein to MKK6 and the presence of this gene in the brain, we predict that this putative MAP3K8 may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

10 References:

5

- 1. Ballester A, Velasco A, Tobena R, Alemany S. Cot kinase activates tumor necrosis factor-alpha gene expression in a cyclosporin A-resistant manner. J. Biol. Chem. 1998. 273, 14099-106. PMID: 9603908.
- Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J,
 Hong M, Luther T, Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B,
 Kasper M, Smith M, Perry G, Schmidt AM, Stern DM, Haring HU, Schleicher E, Nawroth PP. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes, 2001 50, 2792-808. PMID: 11723063.
- Belich MP, Salmeron A, Johnston LH, Ley SC. TPL-2 kinase regulates the
 proteolysis of the NF-kappaB-inhibitory protein NF-kappaB1 p105. Nature. 1999 397,
 363-8.PMID: 9950430.
 - 4. Zhu X, Rottkamp CA, Hartzler A, Sun Z, Takeda A, Boux H, Shimohama S, Perry G, Smith MA. (2001) Activation of MKK6, an upstream activator of p38, in Alzheimer's disease. J Neurochem 79(2):311-8
- Panel 5D Summary: Ag4828 Highest expression of this gene is detected in adipose tissue (CT=29). Low to moderate expression of this gene is seen in wide range of samples used in this panel including adipose, skeletal muscle, uterus, and placenta. This wide spread expression of this gene in tissues with metabolic or endocrine function, suggests that this gene plays a role in endocrine/metabolically related diseases, such as obesity and diabetes.

This gene encodes a MAP3K8-like protein. Recently, activation of MAP kinase, ERK, a related protein, by modified LDL in vascular smooth muscle cells has been

implicated in the development of atherosclerosis in diabetes (Ref. 1). Therefore, this putative MAP3K8 may also play a role in the development of this disease. Therefore, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, might be beneficial in the treatment of artherosclerosis and diabetes.

References:

5

15

20

1. Velarde V, Jenkins AJ, Christopher J, Lyons TJ, Jaffa AA. (2001) Activation of MAPK by modified low-density lipoproteins in vascular smooth muscle cells. J Appl Physiol 91(3):1412-20

AS. CG94521-02 and CG94521-03: CYTOPLASMIC GLYCEROL-3-PHOSPHATE DEHYDROGENASE [NAD+].

Expression of gene CG94521-02 and CG94521-03 was assessed using the primer-probe set Ag3924, described in Table ASA. Results of the RTQ-PCR runs are shown in Tables ASB, ASC, ASD, ASE and ASF. Please note that these sequences represent full-length physical clones.

Table ASA. Probe Name Ag3924

Primers		Length	Start Position	SEQ ID No
Forward	5'-actgggaagaccattgaagagt-3'	22	197	423
Probe	TET-5'-aaaagctccaaggaccgcagacttct -3'-TAMRA	26	147	424
Reverse	5'-gtttgaggatgcggtacactt-3'	21	122	425

Table ASB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3924, Run 212343350	issue Name	Rel. Exp.(%) Ag3924, Run 212343350
AD 1 Hippo	8.4	Control (Path) 3 Temporal Ctx	6.0
AD 2 Hippo	21.9	Control (Path) 4 Temporal Ctx	2.8
AD 3 Hippo	8.4	AD 1 Occipital Ctx	14.4
AD 4 Hippo	7.5	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	92.7	AD 3 Occipital Ctx	4.8
AD 6 Hippo	24.5	AD 4 Occipital Ctx	14.0

Control 2 Hippo	25.7	AD 5 Occipital Cix	14.0
Control 4 Hippo	7.3	AD 6 Occipital Ctx	55.5
Control (Path) 3 Hippo	8.8	Control 1 Occipital Ctx	6.1
AD 1 Temporal Ctx	8.3	Control 2 Occipital Ctx	47.3
AD 2 Temporal Ctx	23.8	Control 3 Occipital Ctx	9.8
AD 3 Temporal Ctx	4.2	Control 4 Occipital Ctx	4.5
AD 4 Temporal Ctx	15.1	Control (Path) 1 Occipital Ctx	64.6
AD 5 Inf Temporal Ctx	100.0	Control (Path) 2 Occipital Ctx	8.6
AD 5 SupTemporal Ctx	32.3	Control (Path) 3 Occipital Ctx	3.9
AD 6 Inf Temporal Ctx	39.0	Control (Path) 4 Occipital Ctx	15.8
AD 6 Sup Temporal Ctx	33.2	Control 1 Parietal Ctx	5.0
Control 1 Temporal Ctx	4.5	Control 2 Parietal Ctx	40.3
Control 2 Temporal Ctx	44.4	Control 3 Parietal Ctx	14.6
Control 3 Temporal Ctx	11.1	Control (Path) 1 Parietal Ctx	70.7
Control 4 Temporal Ctx	4.4	Control (Path) 2 Parietal Ctx	15.5
Control (Path) 1 Temporal Ctx	49.0	Control (Path) 3 Parietal Ctx	4.9
Control (Path) 2 Temporal Ctx	29.9	Control (Path) 4 Parietal Ctx	39.5

Table ASC. General screening panel v1.4

Tissue Name	Rel. Exp.(%) Ag3924, Run 219515221	issue Name	Rel. Exp.(%) Ag3924, Run 219515221
Adipose	14.0	Renal ca. TK-10	7.1
Melanoma* Hs688(A).T	3.6	Bladder	8.1
Melanoma* Hs688(B).T	4.9	Gastric ca. (liver met.) NCI-N87	7.7
Melanoma* M14	15.1	Gastric ca. KATO III	17.4
Melanoma* LOXIMVI	6.2	Colon ca. SW-948	25.5
Melanoma* SK-MEL-5	37.6	Colon ca. SW480	28.3
Squamous cell carcinoma SCC-4	1.1	Colon ca.* (SW480 met) SW620	6.6
Testis Pool	6.3	Colon ca. HT29	4.1
Prostate ca.* (bone met) PC-3	47.0	Colon ca. HCT-116	25.0
Prostate Pool	18.6	Colon ca. CaCo-2	6.9
Placenta	6.3	Colon cancer tissue	7.6
Uterus Pool	5.1	Colon ca. SW1116	5.2
Ovarian ca. OVCAR-3	11.3	Colon ca. Colo-205	2.6
Ovarian ca. SK-OV-3	6.8	Colon ca. SW-48	4.4
Ovarian ca. OVCAR-4	12.2	Colon Pool	9.9
Ovarian ca. OVCAR-5	17.9	Small Intestine Pool	9.3
Ovarian ca. IGROV-1	8.2	Stomach Pool	5.2
Ovarian ca. OVCAR-8	3.5	Bone Marrow Pool	4.9

Ovary	9.6	Fetal Heart	26.1
Breast ca. MCF-7	100.0	Heart Pool	23.7
Breast ca. MDA-MB-231	11.4	Lymph Node Pool	8.7
Breast ca. BT 549	11.4	Fetal Skeletal Muscle	11.2
Breast ca. T47D	40.9	Skeletal Muscle Pool	62.0
Breast ca. MDA-N	11.7	Spleen Pool	9.7
Breast Pool	8.3	Thymus Pool	5.8
Trachea	15.4	CNS cancer (glio/astro) U87-MG	18.2
Lung	2.8	CNS cancer (glio/astro) U-118-MG	11.3
Fetal Lung	21.8	CNS cancer (neuro;met) SK-N-AS	6.6
Lung ca. NCI-N417	13.4	CNS cancer (astro) SF-539	4.0
Lung ca. LX-1	8.2	CNS cancer (astro) SNB-75	21.9
Lung ca. NCI-H146	4.5	CNS cancer (glio) SNB-19	7.6
Lung ca. SHP-77	13.3	CNS cancer (glio) SF-295	24.0
Lung ca. A549	16.6	Brain (Amygdala) Pool	11.4
Lung ca. NCI-H526	2.4	Brain (cerebellum)	10.2
Lung ca. NCI-H23	2.0	Brain (fetal)	27.2
Lung ca. NCI-H460	2.9	Brain (Hippocampus) Pool	11.6
Lung ca. HOP-62	6.6	Cerebral Cortex Pool	17.2
Lung ca. NCI-H522	14.3	Brain (Substantia nigra) Pool	10.4
Liver	0.3	Brain (Thalamus) Pool	18.9
Fetal Liver	1.1	Brain (whole)	17.7
Liver ca. HepG2	3.4	Spinal Cord Pool	14.3
Kidney Pool	26.4	Adrenal Gland	37.9
Petal Kidney	6.7	Pituitary gland Pool	5.0
Renal ca. 786-0	3.0	Salivary Gland	11.1
Renal ca. A498	1.4	Thyroid (female)	17.0
Renal ca. ACHN	2.5	Pancreatic ca. CAPAN2	2.8
Renal ca. UO-31	10.1	Pancreas Pool	13.3

Table ASD. Panel 4.1D

Tissue Name	Rel. Exp.(% Ag3924, Run 170552351	Tissue Name	Rel. Exp.(%) Ag3924, Run 170552351
Secondary Th1 act	33.9	HUVEC IL-1beta	19.6
Secondary Th2 act	35.4	HUVEC IFN gamma	32.3
Secondary Tr1 act	29.3	HUVEC TNF alpha + IFN gamma	8.6
Secondary Th1 rest	14.8	HUVEC TNF alpha + IL4	19.1
Secondary Th2 rest	23.7	HUVEC IL-11	17.2
Secondary Tr1 rest	15.8	Lung Microvascular EC none	16.8

Primary Th1 act	31.0	Lung Microvascular ÉC TNFaipha + IL-1beta	11.0
Primary Th2 act	33.7	Microvascular Dermal EC none	27.7
Primary Tr1 act	33.9	Microsvasular Dermal EC TNFalpha + IL-1beta	8.6
Primary Th1 rest	27.4	Bronchial epithelium TNFalpha + IL1beta	6.7
Primary Th2 rest	15.3	Small airway epithelium none	4.7
Primary Tr1 rest	34.2	Small airway epithelium TNFalpha + IL-1beta	
CD45RA CD4 lymphocyte act	17.4	Coronery artery SMC rest	8.1
CD45RO CD4 lymphocyte act	28.3	Coronery artery SMC TNFalpha + IL-1beta	4.4
CD8 lymphocyte act	24.1	Astrocytes rest	16.4
Secondary CD8 lymphocyte rest	18.2	Astrocytes TNFalpha + IL-1beta	11.9
Secondary CD8 lymphocyte act	15.2	KU-812 (Basophil) rest	37.1
CD4 lymphocyte none	12.8	KU-812 (Basophil) PMA/ionomycin	35.6
2ry Th1/Th2/Tr1_anti-CD95 CH11	21.0	CCD1106 (Keratinocytes) none	9.5
LAK cells rest	17.8	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	4.8
LAK cells IL-2	26.6	Liver cirrhosis	14.4
LAK cells IL-2+IL-12	17.8	NCI-H292 none	42.9
LAK cells IL-2+IFN gamma	17.8	NCI-H292 IL-4	57.0
_AK cells IL-2+ IL-18	32.5	NCI-H292 IL-9	81.2
AK cells PMA/ionomycin	7.9	NCI-H292 IL-13	60.7
NK Cells IL-2 rest	35.6	NCI-H292 IFN gamma	39.0
Two Way MLR 3 day	17.3		21.2
Two Way MLR 5 day	17.1	HPAEC TNF alpha + IL-1 beta	13.4
Wo Way MLR 7 day	100.0	Lung fibroblast none	18.0
	15.6	Lung fibroblest TNE alpha . TL 1	6.0
	16.5	Lung fibroblast IL-4	19.5
BMC PHA-L	13.8	Lung fibroblast IL-9	30.8
	64 .6	-	22.2
	70.2		20.0
lymphocytes PWM	23.8		12.5
lymphocytes CD40L and IL-4	17.0	Dermal fibroblast CCD1070 TNE	30.1
	10.8	Dermal fibroblast CCD1070 IL-1 beta	i.4
VIA TOROLLYCIA	2.2	Dermal fibroblast IFN gamma 8	5.2
	3.6	Dermal fibroblast IL-4	7.8
endritic cells LPS	.5		0.0

Dendritic cells anti-CD40	21.6	Neutrophils TNFa+LPS	12.1 1 3 7 4
Monocytes rest	19.8	Neutrophils rest	3.6
Monocytes LPS	3.0	Colon	35.6
Macrophages rest	14.9	Lung	27.7
Macrophages LPS	1.7	Thymus	27.7
HUVEC none	16.7	Kidney	66.4
HUVEC starved	17.7		

Table ASE. Panel 5 Islet

Tissue Name	Rel. Exp.(% Ag3924, Run 268363571	Tissue Name	Rel. Exp.(%) Ag3924, Run 268363571
97457_Patient-02go_adipose	18.2	94709_Donor 2 AM - A_adipose	19.6
97476_Patient-07sk_skeletal muscle	10.6	94710_Donor 2 AM - B_adipose	13.3
97477_Patient-07ut_uterus	10.2	94711_Donor 2 AM - C_adipose	11.0
97478_Patient-07pl_placenta	17.0	94712_Donor 2 AD - A_adipose	9.5
99167_Bayer Patient 1	6.5	94713_Donor 2 AD - B_adipose	21.9
97482_Patient-08ut_uterus	6.8	94714_Donor 2 AD - C_adipose	16.7
97483_Patient-08pl_placenta	11.7	94742_Donor 3 U - A_Mesenchymal Stem Cells	1.8
97486_Patient-09sk_skeletal muscle	10.6	94743_Donor 3 U - B_Mesenchymal Stem Cells	1.7
97487_Patient-09ut_uterus	12.0	94730_Donor 3 AM - A_adipose	19.6
97488_Patient-09pl_placenta	15.4	94731_Donor 3 AM - B_adipose	12.5
97492_Patient-10ut_uterus	12.9	94732_Donor 3 AM - C_adipose	12.2
97493_Patient-10pl_placenta	29.5	94733_Donor 3 AD - A_adipose	10.2
97495_Patient-11go_adipose	17.9	94734_Donor 3 AD - B_adipose	9.2
97496_Patient-11sk_skeletal muscle	70.7	94735_Donor 3 AD - C_adipose	8.9
97497_Patient-11ut_uterus	18.8	77138_Liver_HepG2untreated	11.1
97498_Patient-11pl_placenta	10.3	73556_Heart_Cardiac stromal cells (primary)	5.2
97500_Patient-12go_adipose	31.9	81735_Small Intestine	15.9
97501_Patient-12sk_skeletal muscle	100.0	72409_Kidney_Proximal Convoluted Tubule	6.5
97502_Patient-12ut_uterus	23.8	82685_Small intestine_Duodenum	17.0
97503_Patient-12pl_placenta	8.7	90650_Adrenal_Adrenocortical adenoma	14.4
94721_Donor 2 U - A_Mesenchymal Stem Cells	3.9	72410_Kidney_HRCE	11.5

94722_Donor 2 U - B_Mesenchymal Stem Cells	2.8	72411_Kidney_HRE	3.4	¥
94723_Donor 2 U - C_Mesenchymal Stem Cells	14 X	73139_Uterus_Uterine smooth muscle cells	2.1	

Table ASF. general oncology screening panel v 2.4

5

10

Tissue Name	Rel. Exp.(%) Ag3924, Run 268143856	Tissue Nme	Rel. Exp.(%) Ag3924, Run 268143856	
Colon cancer 1	60.3	Bladder NAT 2	3.3	
Colon NAT 1	29.7	Bladder NAT 3	2.4	
Colon cancer 2	26.1	Bladder NAT 4	25.7	
Colon NAT 2	60.7	Prostate adenocarcinoma 1	100.0	
Colon cancer 3	88.9	Prostate adenocarcinoma 2	14.6	
Colon NAT 3	88.9	Prostate adenocarcinoma 3	86.5	
Colon malignant cancer 4	98.6	Prostate adenocarcinoma 4	34.9	
Colon NAT 4	29.5	Prostate NAT 5	26.2	
Lung cancer 1	17.3	Prostate adenocarcinoma 6	24.5	
Lung NAT 1	7.9	Prostate adenocarcinoma 7	39.5	
Lung cancer 2	31.9	Prostate adenocarcinoma 8	15.2	
Lung NAT 2	14.8	Prostate adenocarcinoma 9	53.6	
Squamous cell carcinoma 3	34.2	Prostate NAT 10	12.6	
Lung NAT 3	5.0	Kidney cancer 1	12.0	
Metastatic melanoma 1	28.3	Kidney NAT 1	25.9	
Melanoma 2	4.8	Kidney cancer 2	53.6	
Melanoma 3	12.9	Kidney NAT 2	64.6	
Metastatic melanoma 4	42.6	Kidney cancer 3	12.5	
Metastatic melanoma 5	70.7	Kidney NAT 3	26.6	
Bladder cancer 1	9.3	Kidney cancer 4	15.0	
Bladder NAT 1	0.0	Kidney NAT 4	14.6	
Bladder cancer 2	17.7			

CNS_neurodegeneration_v1.0 Summary: Ag3924 This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at moderate levels in the brain. Please see Panel 1.4 for discussion of this gene in the central nervous system.

General_screening_panel_v1.4 Summary: Ag3924 Highest expression of this gene is seen in a breast cancer cell line (CT=25.3). This gene is ubiquitously expressed in

this panel, with high to moderate expression seen in brain, colon, gastric, rung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.

5

10

15

20

25

30

Among tissues with metabolic function, this gene is expressed at moderate to high levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes. This gene encodes a novel glycerol 3-phosphate dehydrogenase (G3PD).

Similar to known cytosolic glycerol 3-phosphate dehydrogenase, this putative G3PD may contribute to glycerol synthesis and link glycolysis with TG production. This gene is highly expressed in skeletal muscle and diabetic skeletal muscle on Panel 5I. Diabetic skeletal muscle has increased glycolytic activity and increased lipid content that interfere with insulin sensitivity. Inhibition of G3PD may balance disproportionate glycolysis and impair accumulation of TG in skeletal muscle. Thus, an antagonist of this novel G3PD may be beneficial for the treatment of diabetes.

This gene is also expressed at high to moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.

In addition, this gene is expressed at much higher levels in fetal lung tissue (CT=27.5) when compared to expression in the adult counterpart (CT=30.5). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue.

Panel 4.1D Summary: Ag3924 Highest expression is seen in a sample derived from an MLR, where the sample was take 7 days after the reaction (CT=27.6). This gene is also expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues

represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

Panel 5 Islet Summary: Ag3924 Highest expression is seen in skeletal muscle from a diabetic patient (patient 12) (CT=28). This panel confirms expression of this gene in metabolic tissues including adipose, skeletal muscle and placenta. Please see Panel 1.4 for discussion of this gene in metabolic disease.

general oncology screening panel_v_2.4 Summary: Ag3924 Highest expression is seen in a prostate cancer sample (CT=28.2). Prominent expression is also seen in melanoma samples, as well as in normal and malignant kidney, colon and lung. Thus, modulation of this gene may be useful in the treatment of prostate cancer and melanoma.

AT. CG96613-02 and CG96613-03: Splice variant of PDK1.

Expression of gene CG96613-02 and CG96613-03 was assessed using the primer-probe sets Ag1778 and Ag5110, described in Tables ATA and ATB. Results of the RTQ-PCR runs are shown in Tables ATC, ATD, ATE, ATF, ATG and ATH. Please note that probe-primer set Ag1778 is specific for CG96613-03.

Table ATA. Probe Name Ag1778

^	_
	J

20

5

10

Primers		ll Anoth		SEQ ID No
Forward	5'-gattgcccatatcacgtcttta-3'	22	1241	426
Probe	TET-5'-cgcacaatacttccaaggagacctga -3'-TAMRA	26	1263	427
Reverse	5'-gataactgcatctgtcccgtaa-3'	22	1308	428

Table ATB. Probe Name Ag5110

Primers		H.enoth	Start Position	SEQ ID No
Forward	5'-tgtatggcctgcaagatgat-3'	20	559	429
Probe	TET-5'-tcattcccacaatggcccagg-3' -TAMRA	21	623	430
Reverse	5'-agctctccttgtattcaatcaca-3'	23	645	431

Table ATC. CNS neurodegeneration v1.0

Tissue Name	Run	Rel. Exp.(%) Ag5110, Run 226442922	Rel. Exp.(%) Ag5110, Run 276596798	Tissue Name	Rel. Exp.(%) Ag1778, Run 27659679	Rel. Exp.(%) Ag5110, Run 22644292	Rel. Exp.(%) Ag5110, Run 27659679
AD 1 Hippo	11.7	6.2	5.3	Control (Path) 3 Temporal Ctx	6.6	12.2	17.7
AD 2 Hippo	31.4	, 7.4	20.3	Control (Path) 4 Temporal Ctx	33.4	15.8	13.3
AD 3 Hippo	12.5	5.3	4.9	AD 1 Occipital Ctx	23.0	7.7	8.0
AD 4 Hippo	5.4	9.4	0.0	AD 2 Occipital Ctx (Missing)	0.0	0.0	0.0
AD 5 Hippo	82.4	79.0	45.4	AD 3 Occipital Ctx	12.2	6.2	5.8
AD 6 Hippo	54.3	88.3	70.2	AD 4 Occipital Ctx	16.3	18.0	7.0
Control 2 Hippo	17.9	18.8	19.5	AD 5 Occipital Ctx	77.9	29.9	26.2
Control 4 Hippo	13.0-	19.3	13.3	AD 6 Occipital Ctx	36.9	18.9	18.8
Control (Path) 3 Hippo	11.0	7.5	16.3	Control 1 Occipital Ctx	6.2	6.8	5.4
AD 1 Temporal Ctx	20.3	14.6	11.0	Control 2 Occipital Ctx	54.0	44.8	51.4
AD 2 Temporal Ctx	29.9	16.6	/ L X 1	Control 3 Occipital Ctx	32.3	4.9	26.8

1450				1	N. 11		· 10 30 0
AD 3 Temporal Ctx	11.7	8.4	17.7	Control 4 Occipital Ctx	7.5	9.2	5.3
AD 4 Temporal Ctx	20.2	5.6	19.6	Control (Path) 1 Occipital Ctx	60.3	24.7	41.8
AD 5 Inf Temporal Ctx	72.2	47.0	46.3	Control (Path) 2 Occipital Ctx	12.8	9.2	6.3
AD 5 Sup Temporal Ctx	39.5	51.1	44.1	Control (Path) 3 Occipital Ctx	5.5	0.9	0.0
AD 6 Inf Temporal Ctx	75.3	84.1	84.1	Control (Path) 4 Occipital Ctx	16.6	15.5	12.3
AD 6 Sup Temporal Ctx	100.0	100.0	100.0	Control 1 Parietal Ctx	10.0	10.0	3.6
Control 1 Temporal Ctx	11.2	10.4	3.9	Control 2 Parietal Ctx	46.0	57.0	27.5
Control 2 Temporal Ctx	25.3	21.6	36.3	Control 3 Parietal Ctx	23.5	18.3	16.6
Control 3 Temporal Ctx	31.2	37.9	38.2	Control (Path) 1 Parietal Ctx	78.5	39.2	52.5
Control 3 Temporal Ctx	11.7	8.4	8.8	Control (Path) 2 Parietal Ctx	23.5	12.5	14.9
Control (Path) 1 Temporal Ctx	36.6	53.6	46.7	Control (Path) 3 Parietal Ctx	9.5	13.9	5.8
Control (Path) 2 Temporal Ctx	46.0	29.7	32.5	Control (Path) 4 Parietal Ctx	46.0	58.6	39.2

Table ATD. General screening panel v1.5

Rel. Rel. Exp.(%) Exp.(%) Ag5110, Run Ag5110, Run Tissue Name issue Name 228980585 228980585 5.4 Adipose Renal ca. TK-10 11.7 Melanoma* Hs688(A).T 10.7 Bladder 12.2

Melanoma* Hs688(B).T	5.8	Gastric ca. (liver met.) NCI-N87	3.8
Melanoma* M14	19.5	Gastric ca. KATO III	10.6
Melanoma* LOXIMVI	17.3	Colon ca. SW-948	2.6
Melanoma* SK-MEL-5	29.9	Colon ca. SW480	16.6
Squamous cell carcinoma SCC-4	4.2	Colon ca.* (SW480 met) SW620	10.8
Testis Pool	9.2	Colon ca. HT29	17.0
Prostate ca.* (bone met) PC-3	48.0	Colon ca. HCT-116	6.7
Prostate Pool	0.6	Colon ca. CaCo-2	9.8
Placenta	0.5	Colon cancer tissue	7.1
Uterus Pool	2.3	Colon ca. SW1116	2.5
Ovarian ca. OVCAR-3	5.5	Colon ca. Colo-205	3.5
Ovarian ca. SK-OV-3	11.8	Colon ca. SW-48	4.7
Ovarian ca. OVCAR-4	7.9	Colon Pool	0.8
Ovarian ca. OVCAR-5	17.4	Small Intestine Pool	1.2
Ovarian ca. IGROV-1	8.7	Stomach Pool	2.2
Ovarian ca. OVCAR-8	8.2	Bone Marrow Pool	1.2
Ovary	0.3	Fetal Heart	13.0
Breast ca. MCF-7	4.3	Heart Pool	4.0
Breast ca. MDA-MB-231	25.0	Lymph Node Pool	0.9
Breast ca. BT 549	21.3	Fetal Skeletal Muscle	0.6
Breast ca. T47D	2.7	Skeletal Muscle Pool	1.7
Breast ca. MDA-N	17.2	Spleen Pool	7.5
Breast Pool	0.7	Thymus Pool	11.6
Trachea	21.9	CNS cancer (glio/astro) U87-MG	48.3
Lung	1.2	CNS cancer (glio/astro) U-118-MG	71.7
Fetal Lung	4.0	CNS cancer (neuro;met) SK-N-AS	7.2
Lung ca. NCI-N417	11.3	CNS cancer (astro) SF-539	16.6
Lung ca. LX-1	20.3	CNS cancer (astro) SNB-75	24.7
Lung ca. NCI-H146	5.5	CNS cancer (glio) SNB-19	11.0
Lung ca. SHP-77	17.7	CNS cancer (glio) SF-295	27.5
Lung ca. A549	6.9	Brain (Amygdala) Pool	2.0
Lung ca. NCI-H526	11.9	Brain (cerebellum)	5.2
Lung ca. NCI-H23	4.7	Brain (fetal)	1.0
Lung ca. NCI-H460	32.3	Brain (Hippocampus) Pool	2.0
Lung ca. HOP-62	9.7	Cerebral Cortex Pool	1.9
Lung ca. NCI-H522	12.8	Brain (Substantia nigra) Pool	1.6
Liver	0.4	Brain (Thalamus) Pool	1.7
Fetal Liver	100.0	Brain (whole)	3.0
Liver ca. HepG2	15.4	Spinal Cord Pool	1.0
Kidney Pool	1.6	Adrenal Gland	14.9
Fetal Kidney	2.2	Pituitary gland Pool	0.4
Renal ca. 786-0	10.5	Salivary Gland	6.1
Renal ca. A498	0.2	Thyroid (female)	0.5
Renal ca. ACHN	8.4	Pancreatic ca. CAPAN2	2.6

	W		
Renal ca. UO-31	37	Pancreas Pool	1.02
	3.7	i ancicas i coi	 1.3

Table ATE. General screening panel v1.6

Tissue Name	Rel. Exp.(%) Ag1778, Run 277218713	Rel. Exp.(%) Ag5110, Run 277218715	issue Name	Rel. Exp.(%) Ag1778, Run 277218713	Rel. Exp.(%) Ag5110, Run 277218715
Adipose	8.8	8.7	Renal ca. TK-10	31.6	13.5
Melanoma* Hs688(A).T	45.1	15.5	Bladder	23.3	14.5
Melanoma* Hs688(B).T	34.6	11.7	Gastric ca. (liver met.) NCI-N87	22.1	5.0
Melanoma* M14	29.3	11.6	Gastric ca. KATO	9.0	15.3
Melanoma* LOXIMVI	16.6	32.1	Colon ca. SW-948	9.2	4.4
Melanoma* SK-MEL-5	23.0	36.9	Colon ca. SW480	35.8	22.5
Squamous cell carcinoma SCC-4	16.6	7.2	Colon ca.* (SW480 met) SW620	24.0	11.9
Testis Pool	8.9	8.5	Colon ca. HT29	32.1	21.5
Prostate ca.* (bone met) PC-3	100.0	50.7	Colon ca. HCT-116		9.3
Prostate Pool	5.7	1.7	Colon ca. CaCo-2	21.6	13.5
Placenta	1.6	0.3	Colon cancer tissue	3.2	10.5
Uterus Pool	3.5	3.1	Colon ca. SW1116	3.8	2.7
Ovarian ca. OVCAR-3	11.6	9.5		######################################	4.5

20.3

10.7

24.8

12.7

0.1

1.6

3.6

34.4

15.9

12.1

6.6

5.6

5.2

1.8

3.0

4.5

2.4

Colon ca. SW-48

Small Intestine Pool 9.0

Bone Marrow Pool 5.1

Colon Pool

Stomach Pool

5

Ovarian ca. SK-OV-3 33.0

11.4

28.1

29.1

15.9

4.4

5.9

79.0

35.6

Ovarian ca.

OVCAR-4
Ovarian ca.

OVCAR-5 Ovarian ca.

IGROV-1 Ovarian ca.

OVCAR-8 Ovary

Breast ca.

Breast ca. MCF-7

Breast ca. BT 549

MDA-MB-231

Breast ca. T47D	3.0	3.4	Skeletal Muscle Pool	0.9	0.7
Breast ca. MDA-N	20.7	20.9	Spleen Pool	19.2	13.0
Breast Pool	7.4	1.9	Thymus Pool	20.2	12.6
Trachea	23.8	33.7	CNS cancer (glio/astro) U87-MG	47.0	51.1
Lung	4.6	1.0	CNS cancer (glio/astro) U-118-MG	43.2	100.0
Fetal Lung	17.4	8.1	CNS cancer (neuro;met) SK-N-AS	14.1	7.7
Lung ca. NCI-N417	16.2	16.0	CNS cancer (astro) SF-539	35.1	28.3
Lung ca. LX-1	38.7	8.8	CNS cancer (astro) SNB-75	50.3	30.8
Lung ca. NCI-H146	16.7	5.9	CNS cancer (glio) SNB-19	34.4	13.1
Lung ca. SHP-77	53.2	25.9	CNS cancer (glio) SF-295	93.3	46.0
Lung ca. A549	10.9	9.9	Brain (Amygdala) Pool	7.7	2.3
Lung ca. NCI-H526	10.1	10.9	Brain (cerebellum)	24.7	5.3
Lung ca. NCI-H23	12.2	9.2	Brain (fetal)	9.7	1.3
Lung ca. NCI-H460	57.4	57.8	Brain (Hippocampus) Pool	9.7	2.8
Lung ca. HOP-62	39.0	9.7	Cerebral Cortex Pool	9.6	3.3
Lung ca. NCI-H522	19.5	13.3	Brain (Substantia nigra) Pool	6.0	2.8
Liver	1.5	0.6	Brain (Thalamus) Pool	15.3	1.9
Fetal Liver	15.1	6.0	Brain (whole)	9.5	3.3
Liver ca. HepG2	41.5	18.2	Spinal Cord Pool	5.8	2.1
Kidney Pool	9.6	2.0	Adrenal Gland	27.5	23.3
Fetal Kidney	14.7	2.6	Pituitary gland Pool	2.5	1:0
Renal ca. 786-0	14.5	11.0	Salivary Gland	9.8	10.4
Renal ca. A498	2.2	0.9	Thyroid (female)	1.5	1.9
Renal ca. ACHN	9.5	10.8	Pancreatic ca. CAPAN2	9.7	5.3
Renal ca. UO-31	13.4	4.6	Pancreas Pool	18.0	7.2

Table ATF. Panel 1.3D

Tissue Name	Rel. Exp.(% Ag1778, Run 157790405	Tissue Name	Rel. Exp.(%) Ag1778, Run 157790405
Liver adenocarcinoma	6.7	Kidney (fetal)	12.1
Pancreas	1.3	Renal ca. 786-0	6.8
Pancreatic ca. CAPAN 2	2.1	Renal ca. A498	12.2
Adrenal gland	18.7	Renal ca. RXF 393	15.0
Thyroid	2.9	Renal ca. ACHN	3.2
Salivary gland	6.2	Renal ca. UO-31	8.4
Pituitary gland	5.7	Renal ca. TK-10	3.6
Brain (fetal)	2.5	Liver	3.0
Brain (whole)	4.8	Liver (fetal)	14.7
Brain (amygdala)	6.3	Liver ca. (hepatoblast) HepG2	25.5
Brain (cerebellum)	5.4	Lung	13.7
Brain (hippocampus)	22.8	Lung (fetal)	5.3
Brain (substantia nigra)	1.1	Lung ca. (small cell) LX-1	14.5
Brain (thalamus)	3.3	Lung ca. (small cell) NCI-H69	4.9
Cerebral Cortex	14.7	Lung ca. (s.cell var.) SHP-77	36.1
Spinal cord	2.3	Lung ca. (large cell)NCI-H460	12.9
glio/astro U87-MG	21.6	Lung ca. (non-sm. cell) A549	8.1
glio/astro U-118-MG	56.3	Lung ca. (non-s.cell) NCI-H23	7.3
astrocytoma SW1783	31.2	Lung ca. (non-s.cell) HOP-62	12.8
neuro*; met SK-N-AS	30.4	Lung ca. (non-s.cl) NCI-H522	4.5
astrocytoma SF-539	22.2	Lung ca. (squam.) SW 900	1.5
astrocytoma SNB-75	12.6	Lung ca. (squam.) NCI-H596	0.7
glioma SNB-19	29.9	Mammary gland	9.7
glioma U251	22.2	Breast ca.* (pl.ef) MCF-7	4.6
glioma SF-295	20.3	Breast ca.* (pl.ef) MDA-MB-231	100.0
Heart (fetal)	35.4	Breast ca.* (pl.ef) T47D	5.1
Heart	4.5	Breast ca. BT-549	45.1
Skeletal muscle (fetal)	26.1	Breast ca. MDA-N	28.9
Skeletal muscle	3.1	Ovary	4.0
Bone marrow	13.1	Ovarian ca. OVCAR-3	4.5
Thymus	6.2	Ovarian ca. OVCAR-4	3.5
Spleen	15.5	Ovarian ca. OVCAR-5	13.4
Lymph node	16.3	Ovarian ca. OVCAR-8	3.1
Colorectal	7.9	Ovarian ca. IGROV-1	4.2
Stomach	14.5	Ovarian ca.* (ascites) SK-OV-3	13.2
Small intestine	15.5	Uterus	3.1
Colon ca. SW480	9.7		4.3

Colon ca.* SW620(SW480 met)	10.7	Prostate	2.2
Colon ca. HT29	25.5	Prostate ca.* (bone met)PC-3	16.7
Colon ca. HCT-116	5.1	Testis	20.2
Colon ca. CaCo-2	8.1	Melanoma Hs688(A).T	7.1
Colon ca. tissue(ODO3866)	8.4	Melanoma* (met) Hs688(B).T	3.8
Colon ca. HCC-2998	12.2	Melanoma UACC-62	2.0
Gastric ca.* (liver met) NCI-N87	11.1	Melanoma M14	11.4
Bladder	8.0	Melanoma LOX IMVI	10.8
Trachea	17.7	Melanoma* (met) SK-MEL-5	5.2
Kidney	0.7	Adipose	4.9

Table ATG. Panel 4.1D

Tissue Name	Rel. Exp.(%) Ag1778, Run 276596860	Rel. Exp.(%) Ag1778, Run 276686878	Rel. Exp.(%) Ag5110, Run 226444095	Rel. Exp.(%) Ag5110, Run 276596862	Rel. Exp.(%) Ag5110, Run 276686880
Secondary Th1 act	23.5	26.8	13.9	14.9	9.0
Secondary Th2 act	28.7	28.1	11.4	14.8	17.9
Secondary Trl act	5.4	8.4	7.9	1.9	4.5
Secondary Th1 rest	2.9	3.8	6.3	1.0	1.5
Secondary Th2 rest	7.4	4.3	11.3	4.3	2.7
Secondary Tr1 rest	4.3	4.9	6.6	4.8	1.4
Primary Th1 act	4.5	5.6	13.9	5.0	1.8
Primary Th2 act	23.2	16.8	14.4	14.4	16.5
Primary Tr1 act	22.2	23.3	13.9	11.1	12.3
Primary Th I rest	3.1	3.3	2.2	0.0	0.0
Primary Th2 rest	6.8	4.2	5.6	0.0	0.0
Primary Trl rest	2.6	3.6	10.3	0.7	0.0
CD45RA CD4 lymphocyte act	25.5	26.4	9.5	18.3	16.2
CD45RO CD4 lymphocyte act	40.1	27.2	22.1	27.9	22.4
CD8 lymphocyte act	5.1	7.4	13.1	8.1	2.4
Secondary CD8 lymphocyte rest	3.3	5.1	20.9	32.3	5.1
Secondary CD8 lymphocyte act	4.3	3.7	3.3	1.3	0.0
CD4 lymphocyte none	13.3	8.6	13.7	4.3	4.9
2ry Th1/Th2/Tr1_anti-CD95 CH11	3.2	5.2	8.1	3.1	2.4
LAK cells rest	13.2	6.7	10.1	5.6	4.6

LAK cells IL-2	9.1	8.0	11.1	6.2	3.5
LAK cells IL-2+IL-12	0.8	1.3	11.0	1.7	0.0
LAK cells IL-2+IFN gamma	9.2	8.5	12.2	4.8	7.6
LAK cells IL-2+ IL-18	6.4	5.1	15.6	3.7	12.2
LAK cells PMA/ionomycin	100.0	100.0	100.0	100.0	100.0
NK Cells IL-2 rest	27.5	17.8	8.7	7.1	14.7
Two Way MILR 3 day	16.8	21.2	16.3	5.1	10.7
Two Way MLR 5 day	2.9	2.7	4.2	1.7	0.0
Two Way MILR 7 day	6.2	2.6	3.4	1.9	2.6
PBMC rest	3.6	3.7	5.9	2.3	3.2
PBMC PWM	9.5	6.9	4.5	1.7	1.6
PBMC PHA-L	6.9	8.0	8.7	5.0	3.4
Ramos (B cell) none	7.7	4.2	4.7	0.6	1.4
Ramos (B cell) ionomycin	\$1000 person recommendation	32.1	11.9	9.2	6.0
B lymphocytes PWM	11.7	4.9	6.7	4.4	4.3
B lymphocytes CD40L and IL-4	34.2	21.0	13.2	15.2	19.8
EOL-1 dbcAMP	52.1	34.4	11.0	10.8	15.6
EOL-1 dbcAMP PMA/ionomycin	9.8	6.0	3.5	1.4	5.8
Dendritic cells none	9.5	7.7	7.3	6.3	5.4
Dendritic cells LPS	5.6	5.0	6.6	1.1	2.0
	3.6	4.2	7.0	1.3	1.5
Monocytes rest	4.9	3.1	6.9	1.2	0.0
Monocytes LPS	11.3	8.4	6.8	2.9	0.0
Macrophages rest	5.7	10.2	5.7	1.9	0.0
Macrophages LPS	3.2	3.0	5.2	0.7	3.6
HUVEC none	6.0	4.2	1.8	1.3	5.2
HUVEC starved	11.0	9.5	4.4	5.9	2.3
HUVEC IL-1beta	11.9	10.1	4.9	8.1	9.0
HUVEC IFN gamma	9.2	9.4	5.5	2.7	6.5
INDUCTATE ALL TON	3.8	3.6	4.1	3.5	1.8
HUVEC TNF alpha + IL4	2.7	2.8	5.5	0.0	0.0
	4.3	5.3	3.5	3.4	0.0
ung Microvacoular EC	25.3	23.3			6.2
Lung Microvecouler EC	9.2	7.0	7.9	2.6	2.2
Microvescular Dormal EC	1.8	2.1	3.8	0.0	0.0
Microsyasular Darmal PC	2.0	2.6	1.9	1.3	0.0

Bronchial epithelium	T		Int Carry		The flam who was
TNFalpha + IL1beta	8.8	14.0	10.6	3.3	3.3
Small airway epithelium none	10.7	3.0	2.4	3.4	6.0
Small airway epithelium TNFalpha + IL-1beta	31.9	31.0	21.9	30.4	15.8
Coronery artery SMC rest	25.2	19.6	9.1	13.3	13.4
Coronery artery SMC TNFalpha + IL-1 beta	27.5	19.6	5.5	7.8	15.2
Astrocytes rest	8.2	15.3	2.4	1.9	2.8
Astrocytes TNFalpha + IL-1beta	5.2	2.7	3.4	0.0	5.3
KU-812 (Basophil) rest	10.7	8.1	3.5	2.0	0.0
KU-812 (Basophil) PMA/ionomycin	37.1	25.5	11.6	8.9	5.2
CCD1106 (Keratinocytes) none	1	20.9	13.2	4.5	6.9
CCD1106 (Keratinocytes) TNFalpha + IL-1beta	14.1	22.7	17.8	7.7	2.3
Liver cirrhosis	11.4	8.5	7.4	1.4	1.4
NCI-H292 none	12.9	7.6	7.1	5.5	7.5
NCI-H292 IL-4	11.9	12.2	4.3	4.8	5.8
NCI-H292 IL-9	16.8	12.7	7.0	3.7	11.4
NCI-H292 IL-13	12.5	10.0	6.5	4.2	7.3
NCI-H292 IFN gamma	3.9	4.1	7.6	2.6	4.2
HPAEC none	1.7	2.9	2.6	0.0	0.0
HPAEC TNF alpha + IL-1 beta	10.6	7.2	2.9	2.7	3.3
Lung fibroblast none	31.2	24.1	4.5	8.7	5.8
Lung fibroblast TNF alpha + IL-1 beta	24.3	21.6	6.6	7.5	11.2
	6.5	1.1	1.8	3.2	4.0
	19.2	28.3	8.2	6.7	7.7
	8.2	5.1	2.9	0.0	3.6
ganimia	15.3	14.9	5.5	3.8	12.9
CD1070 rest	25.0	23.3	7.8	4.6	11.0
CD1070 TNF alpha	74.2	45.1	14.1	23.2	36.3
CD1070 IL-1 beta	23.3	22.4	4.3	3.9	5.7
Dermal fibroblast IFN gamma	3.4	3.9	2.0	0.9	0.0
	6.8	8.2	3.3	2.6	3.0
	11.2	7.8	2.8	2.7	3.8
Neutrophils TNFa+LPS	4.5			1.8	0.0

Neutrophils rest	28.9	31.2	12.1	"" [1 <i>5</i> :9 - ""	20.2
Colon	2.3	1.5	2.3	0.0	2.3
Lung	2.0	2.4	3.7	0.9	1.6
Thymus	13.0	14.6	6.6	0.0	5.1
Kidney	7.9	7.5	1.7	1.1	2.8

Table ATH. general oncology screening panel v 2.4

5

Tissue Name	Rel. Exp.(%) Ag5110, Run 259939210	Tissue Nme	Rel. Exp.(%) Ag5110, Run 259939210
Colon cancer 1	6.5	Bladder NAT 2	0.0
Colon NAT 1	5.9	Bladder NAT 3	0.0
Colon cancer 2	6.0	Bladder NAT 4	0.0
Colon NAT 2	14.2	Prostate adenocarcinoma 1	1.2
Colon cancer 3	23.7	Prostate adenocarcinoma 2	0.0
Colon NAT 3	15.7	Prostate adenocarcinoma 3	1.6
Colon malignant cancer 4	41.5	Prostate adenocarcinoma 4	14.2
Colon NAT 4	4.2	Prostate NAT 5	0.9
Lung cancer 1	7.5	Prostate adenocarcinoma 6	0.0
Lung NAT 1	0.0	Prostate adenocarcinoma 7	0.7
Lung cancer 2	28.5	Prostate adenocarcinoma 8	0.0
Lung NAT 2	1.2	Prostate adenocarcinoma 9	3.0
Squamous cell carcinoma 3	42.3	Prostate NAT 10	0.0
Lung NAT 3	0.0	Kidney cancer 1	34.2
Metastatic melanoma 1	1.4	Kidney NAT 1	4.5
Melanoma 2	10.4	Kidney cancer 2	100.0
Melanoma 3	2.1	Kidney NAT 2	3.2
Metastatic melanoma 4	2.2	Kidney cancer 3	19.6
Metastatic melanoma 5	4.5	Kidney NAT 3	1.1
Bladder cancer 1	0.0	Kidney cancer 4	37.1
Bladder NAT 1	0.0	Kidney NAT 4	1.0
Bladder cancer 2	2.3		

CNS_neurodegeneration_v1.0 Summary: Ag1778/Ag5110 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this

experiment. Please see Panel 1.5 for a discussion of this gene in treatment of central I is nervous system disorders.

General_screening_panel_v1.5 Summary: Ag5110 Highest expression of this gene is detected in fetal liver (CT=29.4). Interestingly, this gene is expressed at much higher levels in fetal when compared to adult liver (CT=37). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver related diseases.

10

15

20

25

30

Among tissues with metabolic or endocrine function, this gene is expressed at low levels in adipose, adrenal gland, heart, fetal liver and stomach. This gene codes for a splice variant of pyruvate dehydrogenase [lipoamide] kinase (PDK). Pyruvate dehydrogenase kinase (PDK) catalyzes phosphorylation and inactivation of the pyruvate dehydrogenase complex (PDC). Inactivation of PDC by increased PDK activity promotes gluconeogenesis by conserving three-carbon substrates. This helps maintain glucose levels during starvation, but is detrimental in diabetes (Huang et al., 2002, Diabetes 51(2):276-83, PMID: 11812733). Therefore, therapeutic modulation of the activity of PKD encoded by gene may be useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

In addition, this gene is expressed at low levels in cerebellum and whole brain. Therefore, therapeutic modulation of this gene product may be useful in the treatment of neurological disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Moderate to low levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.

General_screening_panel_v1.6 Summary: Ag1778/Ag5110 Two experiments with different probe and primer sets are in good agreement. Highest expression of this gene

is detected in a prostate cancer PC3 and a brain cancer UT18-MG cell lines (CTs=25-29.8). Expression in this panel correlates with pattern seen in panel 1.5. Moderate to low levels of expression of this gene is detected in tissues with metabolic/endocrine functions such as pancreas, adipose, adrenal gland, heart, fetal liver and gastrointestinal tract, in brain including cerebellum, cerebral cortex, substantia nigra and the whole brain and also in number of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Please see panel 1.5 for further discussion on the utility of this gene.

5

10

15

20

25

30

Panel 1.3D Summary: Ag1778 Highest expression of this gene is detected in a breast cancer cell line (CT=27.4). Expression in this panel correlates with pattern seen in panel 1.5. Moderate to low levels of expression of this gene is detected in tissues with metabolic/endocrine functions such as pancreas, adrenal gland, heart, fetal liver and gastrointestinal tract, in brain including cerebellum, cerebral cortex, substantia nigra and the whole brain and also in number of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Please see panel 1.5 for further discussion of this gene.

Panel 4.1D Summary: Ag1778/Ag5110 Five experiments with the two different probe-primer sets are in good agreement. Highest expression of this gene is detected in PMA/ionomycin treated LAK cells. These cells are involved in tumor immunology and cell clearance of virally and bacterial infected cells as well as tumors. Therefore, modulation of the function of the protein encoded by this gene through the application of a small molecule drug or antibody may alter the functions of these cells and lead to improvement of symptoms associated with these conditions.

Low levels of expression of this gene is also seen in naive and memory T cells, resting secondary CD8 lymphocytes, cytokine activated small airway epithelium, and resting neutrophils. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of Therefore, therapeutic modulation of this gene product may ameliorate symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, allergy, asthma, inflammatory bowel disease, rheumatoid arthritis and osteoarthritis

general oncology screening panel_v_2.4 Summary: Ag5110 Highest expression of this gene is detected in kidney cancer (CT=32). Low levels of expression of this gene is also seen in colon, lung, prostate and kidney cancer. Higher levels of expression of this

gene is associated with cancer as compared to corresponding normal tissue. Therefore, expression of this gene may be used as diagnostic marker for the detection of these cancers. Furthermore, therapeutic modulation of this gene or its protein product may be useful in the treatment of colon, lung, prostate and kidney cancers.

AU. CG96736-01: Neutral amino acid transporter B.

Expression of gene CG96736-01 was assessed using the primer-probe sets Ag3788 and Ag4075, described in Tables AUA and AUB. Results of the RTQ-PCR runs are shown in Tables AUC, AUD, AUE, AUF, AUG, AUH, AUI, AUI and AUK.

Table AUA. Probe Name Ag3788

5

10

15

20

Primers		Length	Start Position	SEQ ID
Forward	5'-cgagaaatatcttcccttccaa-3'	22	1182	432
Probe	TET-5'-tgtcagcagcctttcgctcatactct -3'-TAMRA	26	1209	433
Reverse	5'-ttccggtgatattcctctctc-3'	22	1244	434

Table AUB. Probe Name Ag4075

Primers		Length	Start Position	SEQ ID
Forward	5'-cgagaaatatcttcccttccaa-3'	22	1182	435
Probe	TET-5'-tgtcagcagcctttcgctcatactct -3'-TAMRA	26	1209	436
Reverse	5'-ttccggtgatattcctctcttc-3'	22	1244	437

Table AUC. AI comprehensive panel_v1.0

Tissue Name	Rel. Exp.(%) Ag4075, Run 226203371	issue Name	Rel. Exp.(%) Ag4075, Run 226203371
110967 COPD-F	6.0	112427 Match Control Psoriasis-F	12.3
110980 COPD-F	9.9	112418 Psoriasis-M	
110968 COPD-M	6.6	112723 Match Control Psoriasis-M	3.6 6.3
110977 COPD-M	0.0	112419 Psoriasis-M	6.5

110989 Emphysema-F	8.7	112424 Match Control Psoriasis M	2.7
110992 Emphysema-F	12.3	112420 Psoriasis-M	14.1
110993 Emphysema-F	7.2	112425 Match Control Psoriasis-M	6.7
110994 Emphysema-F	4.6	104689 (MF) OA Bone-Backus	21.6
110995 Emphysema-F	20.3	104690 (MF) Adj "Normal" Bone-Backus	21.8
110996 Emphysema-F	7.1	104691 (MF) OA Synovium-Backus	14.1
110997 Asthma-M	2.5	104692 (BA) OA Cartilage-Backus	53.6
111001 Asthma-F	6.7	104694 (BA) OA Bone-Backus	14.8
111002 Asthma-F	5.7	104695 (BA) Adj "Normal" Bone-Backus	28.7
111003 Atopic Asthma-F	11.0	104696 (BA) OA Synovium-Backus	15.8
111004 Atopic Asthma-F	13.3	104700 (SS) OA Bone-Backus	11.6
111005 Atopic Asthma-F	12.2	104701 (SS) Adj "Normal" Bone-Backus	12.7
111006 Atopic Asthma-F	2.6	104702 (SS) OA Synovium-Backus	27.5
111417 Allergy-M	7.6	117093 OA Cartilage Rep7	6.3
112347 Allergy-M	0.0	112672 OA Bone5	6.0
112349 Normal Lung-F	0.0	112673 OA Synovium5	1.4
112357 Normal Lung-F	19.9	112674 OA Synovial Fluid cells5	3.0
112354 Normal Lung-M	4.0	117100 OA Cartilage Rep14	4.0
112374 Crohns-F	2.7	112756 OA Bone9	100.0
112389 Match Control Crohns-F	9.3	112757 OA Synovium9	0.9
112375 Crohns-F	2.0	112758 OA Synovial Fluid Cells9	3.8
112732 Match Control Crohns-F	12.6	117125 RA Cartilage Rep2	9.0
112725 Crohns-M	0.3	113492 Bone2 RA	8.1
112387 Match Control Crohns-M	5.0	113493 Synovium2 RA	2.5
112378 Crohns-M	0.0	113494 Syn Fluid Cells RA	5.3
l 12390 Match Control Crohns-M	6.0	113499 Cartilage4 RA	6.7
12726 Crohns-M	9.9	113500 Bone4 RA	7.0
112731 Match Control Crohns-M	8.1		4.4
12380 Ulcer Col-F	6.0	113502 Syn Fluid Cells4 RA	3.2
12734 Match Control Ulcer Col-F	21.0		6.3
12384 Ulcer Col-F	14.1	113496 Bone3 RA	8.4
12737 Match Control Ulcer Col-F	3.4		5.1
12386 Ulcer Col-F	3.4	113498 Syn Fluid Cells3 RA	7.9
12738 Match Control Ulcer Col-F			8.7
12381 Ulcer Col-M	0.0	113663 Bone3 Normal	0.0
12735 Match Control Ulcer Col-M			0.0

112382 Ulcer Col-M	7.1	113665 Syn Fluid Cells3 Normal	10.0
112394 Match Control Ulcer Col-M	1.6	117107 Normal Cartilage Rep22	1.8
112383 Ulcer Col-M	13.1	113667 Bone4 Normal	2.4
112736 Match Control Ulcer Col-M	3.8	113668 Synovium4 Normal	1.7
112423 Psoriasis-F	6.3	113669 Syn Fluid Cells4 Normal	3.9

Table AUD. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag4075, Run 214294982	issue Name	Rel. Exp.(%) Ag4075, Run 214294982
AD 1 Hippo	11.0	Control (Path) 3 Temporal Ctx	1.0
AD 2 Hippo	8.4	Control (Path) 4 Temporal Ctx	1.7
AD 3 Hippo	8.0	AD 1 Occipital Ctx	6.5
AD 4 Hippo	2.9	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	16.8	AD 3 Occipital Ctx	1.3
AD 6 Hippo	100.0	AD 4 Occipital Ctx	3.6
Control 2 Hippo	19.6	AD 5 Occipital Ctx	11.9
Control 4 Hippo	17.6	AD 6 Occipital Ctx	6.5
Control (Path) 3 Hippo	3.0	Control 1 Occipital Ctx	5.6
AD 1 Temporal Ctx	6.3	Control 2 Occipital Ctx	10.4
AD 2 Temporal Ctx	14.1	Control 3 Occipital Ctx	6.0
AD 3 Temporal Ctx	4.2	Control 4 Occipital Ctx	2.9
AD 4 Temporal Ctx	7.5	Control (Path) 1 Occipital Ctx	3.3
AD 5 Inf Temporal Ctx	8.9	Control (Path) 2 Occipital Ctx	0.5
AD 5 Sup Temporal Ctx	24.5	Control (Path) 3 Occipital Ctx	1.6
AD 6 Inf Temporal Ctx	78.5	Control (Path) 4 Occipital Ctx	0.4
AD 6 Sup Temporal Ctx	56.6	Control 1 Parietal Ctx	5.9
Control 1 Temporal Ctx	2.3	Control 2 Parietal Ctx	9.9
Control 2 Temporal Ctx	12.1	Control 3 Parietal Ctx	6.0
Control 3 Temporal Ctx	7.7	Control (Path) 1 Parietal Ctx	3.6
Control 3 Temporal Ctx	3.1	Control (Path) 2 Parietal Ctx	1.1
Control (Path) 1 Temporal Ctx	4.6	Control (Path) 3 Parietal Ctx	2.2
Control (Path) 2 Temporal Ctx	1.8	Control (Path) 4 Parietal Ctx	3.4

Table AUE. General screening panel v1.4

Tissue Name	Rel. Exp.(%) Ag4075, Run 212696066	Rel. Exp.(%) Ag4075, Run 218525356	issue Name	Rel. Exp.(%) Ag4075, Run 212696066	Rel. Exp.(%) Ag4075, Run 218525356
Adipose	0.0	1.3	Renal ca. TK-10	9.7	14.8
Melanoma* Hs688(A).T	14.4	23.2	Bladder	1.0	1.8
Melanoma* Hs688(B).T	19.1	29.9	Gastric ca. (liver met.) NCI-N87	41.5	42.0
Melanoma* M14	9.5	12.7	Gastric ca. KATO	25.5	22.8
Melanoma* LOXIMVI	8.1	12.9	Colon ca. SW-948	4.4	5.6
Melanoma* SK-MEL-5	5.9	14.2	Colon ca. SW480	100.0	100.0
Squamous cell carcinoma SCC-4	5.1	10.2	Colon ca.* (SW480 met) SW620	41.5	50.0
Testis Pool	1.4	1.9	Colon ca. HT29	10.2	13.6
Prostate ca.* (bone met) PC-3	9.5	13.6	Colon ca. HCT-116	13.0	20.9
Prostate Pool	1.1	1.5	Colon ca. CaCo-2	12.0	14.5
Placenta	1.1	1.3	Colon cancer tissue	5.0	8.4
Uterus Pool	0.1	0.2	Colon ca. SW1116	14.7	15.9
Ovarian ca. OVCAR-3	6.5	8.0	Colon ca. Colo-205	24.7	29.5
Ovarian ca. SK-OV-3	8.1	9.9	Colon ca. SW-48	3.6	4.7
Ovarian ca. OVCAR-4	9.2	16.4	Colon Pool	0.7	1.1
Ovarian ca. OVCAR-5	28.1	32.1	Small Intestine Pool	0.5	0.6
Ovarian ca. IGROV-1	23.0	33.2	Stomach Pool	0.8	0.8
Ovarian ca. OVCAR-8	10.3	16.4	Bone Marrow Pool	0.2	0.4
Ovary	0.5	0.8	Fetal Heart	0.1	0.1
	15.7	17.2	Heart Pool	0.2	0.3
Breast ca. MDA-MB-231	10.4			1.2	1.0
Breast ca. BT 549	9.9		Fetal Skeletal Muscle	0.2	0.2
Breast ca. T47D	53.2		Skeletal Muscle Pool	0.2	0.3
Breast ca. MDA-N	4.7	6.3	Spleen Pool	0.7	0.5
Breast Pool	0.6				0.9

enal ca. UO-31	2.6	4.2	Pancreas Pool	1.3	1.2
	5.1	5.9	CAPAINZ	7.9	12.2
enal ca. A498	3.1	5.0		0.1	0.1
	5.1	9.5		3.0	2.8
etal Kidney	0.3	0.5	Pituitary gland Pool	0.1	0.3
idney Pool	1.1	1.2	Adrenal Gland	0.3	0.6
iver ca. HepG2	6.7	7.9	Spinal Cord Pool	0.2	0.3
etal Liver	2.9	4.3	Brain (whole)	0.2	0.2
iver	0.0	0.1	Brain (Thalamus) Pool	0.0	0.1
ung ca. NCI-H522	9.5	10.0	Brain (Substantia nigra) Pool	0.1	0.1
Lung ca. HOP-62	4.4	4.5	Cerebral Cortex Pool	0.0	0.1
Lung ca. NCI-H460	9.2	16.2	Brain (Hippocampus) Pool	0.1	0.1
Lung ca. NCI-H23	4.3	4.2	Brain (fetal)	0.2	0.3
Lung ca. NCI-H526	2.1	2.5	Brain (cerebellum)	0.1	0.2
Lung ca. A549	9.8	15.8	Brain (Amygdala) Pool	0.0	0.1
Lung ca. SHP-77	6.8	8.5	CNS cancer (glio) SF-295	58.6	60.7
Lung ca. NCI-H146	0.4	0.8	CNS cancer (glio) SNB-19	30.1	37.6
Lung ca. LX-1	81.8	82.4	CNS cancer (astro) SNB-75	36.1	55.5
Lung ca. NCI-N417	1.6	0.0	CNS cancer (astro) SF-539	9.3	12.0
Fetal Lung	2.4	4.0	CNS cancer (neuro;met) SK-N-AS	6.9	8.9
Lung	0.1	0.1	CNS cancer (glio/astro) U-118-MG	11.2	12.9
Trachea	3.6	5.3	CNS cancer (glio/astro) U87-MG	20.0	20.3

Table AUF. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag4075, Run 228714883	issue Name	Rel. Exp.(%) Ag4075, Run 228714883
Adipose	1.0	Renal ca. TK-10	9.8
Melanoma* Hs688(A).T	18.0	Bladder	1.4
Melanoma* Hs688(B).T	17.4	Gastric ca. (liver met.) NCI-N87	35.4
Melanoma* M14	9.5	Gastric ca. KATO III	19.9
Melanoma* LOXIMVI	9.0	Colon ca. SW-948	4.4
Melanoma* SK-MEL-5	8.7	Colon ca. SW480	100.0
Squamous cell carcinoma SCC-4	5.8	Colon ca.* (SW480 met) SW620	32.8
Testis Pool	1.2	Colon ca. HT29	9.9
Prostate ca.* (bone met) PC-3	10.8	Colon ca. HCT-116	15.2
Prostate Pool	1.5	Colon ca. CaCo-2	11.1
Placenta	1.1	Colon cancer tissue	5.1
Uterus Pool	0.3	Colon ca. SW1116	7.2
Ovarian ca. OVCAR-3	6.2	Colon ca. Colo-205	23.7
Ovarian ca. SK-OV-3	7.5	Colon ca. SW-48	3.2
Ovarian ca. OVCAR-4	12.5	Colon Pool	0.7
Ovarian ca. OVCAR-5	20.2	Small Intestine Pool	0.4
Ovarian ca. IGROV-1	23.8	Stomach Pool	0.7
Ovarian ca. OVCAR-8	11.2	Bone Marrow Pool	0.2
Ovary	0.6	Fetal Heart	0.1
Breast ca. MCF-7	14.4	Heart Pool	0.2
Breast ca. MDA-MB-231	14.1	Lymph Node Pool	0.7
Breast ca. BT 549	8.4	Fetal Skeletal Muscle	0.2
Breast ca. T47D	2.1	Skeletal Muscle Pool	0.4
Breast ca. MDA-N	3.6	Spleen Pool	0.3
Breast Pool	0.5	Thymus Pool	0.5
Trachea	4.6	CNS cancer (glio/astro) U87-MG	12.5
Lung	0.1	CNS cancer (glio/astro) U-118-MG	8.5
Fetal Lung	2.6	CNS cancer (neuro;met) SK-N-AS	5.5
Lung ca. NCI-N417	1.9	CNS cancer (astro) SF-539	8.4
Lung ca. LX-1	81.8	CNS cancer (astro) SNB-75	13.1
Lung ca. NCI-H146	0.6	CNS cancer (glio) SNB-19	27.2
Lung ca. SHP-77	7.7	CNS cancer (glio) SF-295	53.2
Lung ca. A549	11.8		0.0
Lung ca. NCI-H526	2.1		0.1
Lung ca. NCI-H23	3.5		0.2
Lung ca. NCI-H460	8.8	ومعهم جورون المستخدم والمراب المستخدم والمراب المراب المراب المراب والمراب والمستخدم والمستخدم والمستخدم والمستخدم	0.0
Lung ca. HOP-62	3.5		0.1

		The tens with the transfer	Il would be brief to be truck truck to
Lung ca. NCI-H522	7.5	Brain (Substantia nigra) Pool	0.1
Liver	0.0	Brain (Thalamus) Pool	0.1
Fetal Liver	2.9 🔩	Brain (whole)	0.2
Liver ca. HepG2	6.2	Spinal Cord Pool	0.1
Kidney Pool	0.8	Adrenal Gland	0.4
Fetal Kidney	0.3	Pituitary gland Pool	0.2
Renal ca. 786-0	5.6	Salivary Gland	2.7
Renal ca. A498	3.4	Thyroid (female)	0.1
Renal ca. ACHN	4.9	Pancreatic ca. CAPAN2	9.7
Renal ca. UO-31	2.4	Pancreas Pool	0.8

Table AUG. Panel 3D

Tissue Name	Rel. Exp.() Ag4075, Run 186579982	Tissue Name	Rel. Exp.(%) Ag4075, Run 186579982
Daoy- Medulloblastoma	1.7	Ca Ski- Cervical epidermoid carcinoma (metastasis)	9.3
TE671 - Medulloblastoma	1.3	ES-2- Ovarian clear cell carcinoma	4.2
D283 Med- Medulloblastoma	13.6	Ramos- Stimulated with PMA/ionomycin 6h	12.2
PFSK-1- Primitive Neuroectodermal	8.0	Ramos- Stimulated with PMA/ionomycin 14h	12.2
XF-498- CNS	5.1	MEG-01- Chronic myelogenous leukemia (megokaryoblast)	25.0
SNB-78- Glioma	12.9	Raji- Burkitt's lymphoma	2.4
SF-268- Glioblastoma	5.4	Daudi- Burkitt's lymphoma	5.0
T98G- Glioblastoma	7.9	U266- B-cell plasmacytoma	9.3
SK-N-SH- Neuroblastoma (metastasis)	4.4	CA46- Burkitt's lymphoma	2.6
SF-295- Glioblastoma	8.2	RL- non-Hodgkin's B-cell lymphoma	6.5
Cerebellum	0.1	JM1- pre-B-cell lymphoma	6.0
Cerebellum	0.1	Jurkat- T cell leukemia	7.6
NCI-H292- Mucoepidermoid lung carcinoma	12.0	TF-1- Erythroleukemia	17.6
DMS-114- Small cell lung cancer	3.0	HUT 78- T-cell lymphoma	4.9
DMS-79- Small cell lung cancer	92.0	U937- Histiocytic lymphoma	17.9
NCI-H146- Small cell lung cancer	1.6	KU-812- Myelogenous leukemia	15.4
NCI-H526- Small cell lung cancer	10.7	769-P- Clear cell renal carcinoma	5.8