Fault models

Dr. Shubhajit Roy Chowdhury,

Centre for VLSI and Embedded Systems Technology,

IIIT Hyderabad, India

Email: src.vlsi@iiit.ac.in

Fault Modeling

- Fault modeling is the translation of physical defects into a
 mathematical construct that can be operated upon algorithmically
 and understood by a software simulator for the purposes of
 providing a metric for quality measurement.
- The most common fault models supported in modern VLSI and corebased digital design are:
 - Single Stuck-at DC Model
 - <u>Transition-Delay</u> and <u>Path-Delay</u> AC Models
 - <u>Pseudo-Stuck-at</u> and <u>Toggle</u> Current Measurement Models

Open Circuit Fault

Figure 1: Example of a break in a metal line.

Reference: W. Maly, "Realistic Fault Modeling for VLSI Testing", Proceedings of the 24th ACM/IEEE Design Automation Conference, 1987, Miami Beach, Florida, Pages: 173-180

Bridging Defects

Figure 3: Example of a short of 7 metal lines caused by unexposed photo resist.

Reference: W. Maly, "Realistic Fault Modeling for VLSI Testing", Proceedings of the 24th ACM/IEEE Design Automation Conference, 1987, Miami Beach, Florida, Pages: 173-180

Latent Defects

Figure 6: Example of metal line corrosion that eventually may result in breaks.

Reference: W. Maly, "Realistic Fault Modeling for VLSI Testing", Proceedings of the 24th ACM/IEEE Design Automation Conference, 1987, Miami Beach, Florida, Pages: 173-180

Fault Modeling

Single Stuck-at Fault

- Stuck-at Fault is a **DC** (static) approximation whereby all failures are represented as an individual gate-level pin or wire net connection that acts as if it were **shorted to Vdd or Vss**.
- This is a "single-fault assumption".
- This model is applied regardless of frequency or time domain considerations.
- This is the most popular, industry-default method.

Single Stuck-at Fault

- Three properties define a single stuck-at fault
 - Only one line is faulty
 - The faulty line is permanently set to 0 or 1
 - The fault can be at an input or output of a gate
- Example: XOR circuit has 12 fault sites () and 24 single stuck-at faults

Single Stuck-at Fault

- Three properties define a single stuck-at fault
 - Only one line is faulty at a time
 - The faulty line is permanently set to 0 or 1
 - The fault can be at an input or output of a gate
- Example: XOR circuit has 12 fault sites () and 24 single stuck-at faults

Transition-Delay Fault Model

- The application of the Transition-Delay Fault is identical to the Stuckat DC gate-level model, except that the "stuck-at-0" and "stuck-at-1" values are now termed "zero-to-one" and "one-to-zero" transitions.
- It can be viewed as a modified version of the Single Stuck-at DC
 Model to allow it to be used to assess the time domain:
 - the extra step is to force the gate-output to the expected fail value at some time period prior to the observation event, and then apply a transition and conduct the observation or sample event at a defined period of time.
- This is the **simplest timing fault model**, also known as "**Gate-Delay Fault Model**", since the delay can be related directly to a gate in the modeling sense.

Transition-Delay Fault Model

Transition-Delay Fault Model

Path-Delay Fault Model

- This model is similar to the Transition Delay Model, but instead of a single gate pin or a wire net connection being targeted, an entire path made of multiple gate pins and wire net connections is the target of the fault model.
- This model can be viewed as the sum of combinational gate transition delays along an identified circuit path.

Pseudo-Stuck-at Fault Model

- Pseudo-Stuck-at Fault is also largely based on the Stuck-at fault model (except for the observation event).
- Pseudo-Stuck-at Fault is based on current measurement.
- Pseudo-Stuck-at Fault modeling is to only drive the fault effect to the
 output of a gate and then, conduct the observation event by
 performing a current measurement of the supply side (it may be
 measured from the return side of the power supply).

Toggle Fault Model

- Toggle Fault is also based on current measurement.
- Toggle Fault aims at being able to place every node to a logic "1" or logic "0" and then measure the DC current consumption.
- This is a very simple and powerful method.

Explicit and Implicit fault models

Logical fault model can be explicit or implicit.

- Explicit fault model defines a fault universe in which each fault is individually identified
- Implicit fault model defines a fault universe by collectively identifying the faults of interest
- Fault universe set of all possible faults in the design.

Structural and Functional faults

- Structural faults faults defined in conjunction with a structural model
 - Modify the interconnections among the components
- Functional faults faults defined in conjunction with a functional model
 - Modify the truth table of the component or the model in which it is represented

Short and Open Structural faults

- Assumes that the faults are due to interconnects only and the components are fault free.
- Typical structural faults
 - Short by connecting unnecessary nodes
 - Open by breaking of a connection

For example shorting the inputs of a component or breaking the connection to supply or ground.

Stuck-at-faults

- A short between signal and supply or ground will make the node remain at a fixed voltage.
- The node is said to be stuck-at-voltage (v)
- V € {0,1}
- Represented by s-a-v.
- Any line X s-a-v € {0,1} represent following physical faults
 - X open
 - X shorted to ground or supply
 - Any internal fault in the component driving X that keeps its value at 'v'.

Example

- Suppose the line 'W' is unfortunately shorted to ground
- It can be represented as s-a-0
- One can observe the error at the output.

Bridging fault

- During fabrication, some unconnected signal lines may be shorted which can be represented by this fault.
- It is a logical fault representing a short between two signal lines which creates a new logic function.
- Depending on the function created, there are two types of bridging faults
 - AND bridging faults
 - OR bridging faults

Transistor Faults

- MOS transistor can be considered as an ideal switch.
- Two types of transistor faults
 - Stuck-open
 - Stuck-short
- Stuck-open: A transistor is permanently stuck in the open state.

Stuck-short: A transistor is permanently shorted irrespective of its gate voltage.

Bridging Fault

- One of the manufacturing defects that occur frequently in chips and on boards is shortage of two unconnected signals.
- The two signal lines become equipotential because of short.
- Bridging fault is a logical fault representing a short between two normally unconnected signal lines which creates a new logic function.

Representation of a Bridging fault

- Assume Bridging fault between signals X and Y.
- It is denoted by (X.Y) and the function generated by it as Z(X,Y)

Function

- If both the shorted signal lines have the same value, then the response of the function will also be the same.
- If the signal lines have different values, either of the values will be driven, so output of the function can be
 - OR of the two signals OR bridging fault, or
 - AND of the two signals AND bridging fault

OR bridging fault

- If the function generated is OR, then we say, a OR bridging fault between the signal lines.
- OR(X,Y) will be driven to the next signal lines.

Example

Assume OR bridging fault between C & Q.

- Z = {(A+B).(B'.C)}'
- $Z_F = \{(A+B).[(B'+C).(B'+C)]\}' = \{(A+B).(B'+C)\}'$
- Test vector 100 can detect this fault and there can be many such test vectors
- Test vectors like 101, 110 cannot detect this fault

AND bridging fault

- If the function generated is AND, then we say, a AND bridging fault between the signal lines.
- AND(X,Y) will be driven to the next signal lines.

Example

Assume AND bridging fault between signal lines A & B.

- $Z = \{(A+B).(B'.C)\}'$
- $Z_F = \{[(A.B)+(A.B)].(B'.C)\}' = \{(A.B).(B'.C)\}'$
- Test vector 101 can detect this fault.
- Check for vectors 110, 010, 001

Feedback bridging faults

- A bridging fault that creates a feedback loop is referred to as feedback bridging fault (FBF).
- A FBF converts a combinational circuit to sequential circuit.

Example of FBF

Questions?

