When do delays desynchronize a power grid?

Master stability conditions for inertial oscillator networks

Reyk Börner University of Reading

SIAM UKIE Annual Meeting 2022

Yesterday

Power grid

Yesterday

Power grid

Tomorrow

hierarchical **← topology →** distributed

self-stabilizing **← dynamics →** volatile

Delay differential equations

DDE
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t), x(t-\tau))$$

Delay differential equations

DDE
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t), x(t-\tau))$$

DDE
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t), x(t-\tau))$$

Fixed point
$$f(x^*) = 0$$

DDE
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t), x(t-\tau))$$

Fixed point $f(x^*) = 0$

Linearize near sync state

$$\eta(t) = x(t) - x^*$$

$$\dot{\eta}(t) \approx J_0(x^*) \, \eta(t) + J_\tau(x^*) \, \eta(t - \tau)$$

DDE
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t), x(t-\tau))$$

Fixed point
$$f(x^*) = 0$$

Linearize near
$$\eta(t)=x(t)-x^*$$
 sync state $\dot{\eta}(t)pprox J_0(x^*)\,\eta(t)+J_{ au}(x^*)\,\eta(t- au)$

Characteristic
$$\eta(t)=\eta(0)\,e^{yt}$$
 equation
$$\det\left(-y\mathbb{I}_n+J_0+e^{-y\tau}J_\tau\right)=0$$

DDE
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t), x(t-\tau))$$

Fixed point
$$f(x^*) = 0$$

$$\eta(t) = x(t) - x^*$$

$$\dot{\eta}(t) \approx J_0(x^*) \, \eta(t) + J_\tau(x^*) \, \eta(t - \tau)$$

$$\eta(t) = \eta(0) e^{\mathbf{y}t}$$

$$\det\left(-y\mathbb{I}_n + J_0 + e^{-y\tau}J_\tau\right) = 0$$

- Infinite spectrum!
- Linearly stable if and only if

$$Re(y) < 0 \quad \forall y$$

Schäfer et al. (2015) New J. Phys. $17\,015002$

$$\ddot{\varphi}_i = P_i - \alpha \dot{\varphi}_i - \gamma \dot{\varphi}_i (t - \tau) + \sum_j K_{ij} \sin(\varphi_j - \varphi_i)$$

Phase
$$arphi_i(t)$$
 Frequency $\omega_i(t)=\dot{arphi}_i(t)$ $i=1,\dots,N$

Schäfer et al. (2015) New J. Phys. 17 015002

Frequency change
$$\ddot{\varphi}_i = P_i - \alpha \dot{\varphi}_i - \gamma \dot{\varphi}_i (t-\tau) + \sum_j K_{ij} \sin(\varphi_j - \varphi_i)$$

Phase
$$arphi_i(t)$$
 Frequency $\omega_i(t)=\dot{arphi}_i(t)$ $i=1,\dots,N$

Power

- + production
- consumption

Phase
$$arphi_i(t)$$
 Frequency $\omega_i(t)=\dot{arphi}_i(t)$ $i=1,\dots,N$

Power

- + production
- consumption

Phase
$$arphi_i(t)$$
 Frequency $\omega_i(t)=\dot{arphi}_i(t)$ $i=1,\dots,N$

Phase $arphi_i(t)$ Frequency $\omega_i(t) = \dot{arphi}_i(t)$ $i=1,\dots,N$

$$\ddot{\varphi}_i = P_i - \alpha \dot{\varphi}_i - \gamma \dot{\varphi}_i (t - \tau) + \sum_j K_{ij} \sin(\varphi_j - \varphi_i)$$

$$\ddot{\varphi}_i = P_i - \alpha \dot{\varphi}_i - \gamma \dot{\varphi}_i (t - \tau) + \sum_j K_{ij} \sin(\varphi_j - \varphi_i)$$

$$\ddot{\eta}_i = -\alpha \dot{\eta}_i - \gamma \dot{\eta}_i^{\tau} + \sum_{j=1}^N K_{ij} \cos(\varphi_j^* - \varphi_i^*) (\eta_i - \eta_j)$$

Linearize around synchronous state $\varphi \rightarrow \eta = \varphi^* - \varphi$

$$\ddot{\varphi}_i = P_i - \alpha \dot{\varphi}_i - \gamma \dot{\varphi}_i (t - \tau) + \sum_j K_{ij} \sin(\varphi_j - \varphi_i)$$

$$\ddot{\eta}_i = -\alpha \dot{\eta}_i - \gamma \dot{\eta}_i^{\tau} + \sum_{j=1}^N K_{ij} \cos(\varphi_j^* - \varphi_i^*) (\eta_i - \eta_j)$$

$$\ddot{\eta}_i = -\alpha \dot{\eta}_i - \gamma \dot{\eta}_i^{\tau} + \sum_{j=1}^N \mathcal{L}_{ij} \eta_j$$

Linearize around synchronous state

$$\varphi \to \eta = \varphi^* - \varphi$$

Graph Laplacian
$$\mathcal{L} \equiv -\mathcal{K}_{ij} + \delta_{ij} \sum_j \mathcal{K}_{ij}$$

$$\ddot{\varphi}_i = P_i - \alpha \dot{\varphi}_i - \gamma \dot{\varphi}_i (t - \tau) + \sum_j K_{ij} \sin(\varphi_j - \varphi_i)$$

$$\ddot{\eta}_i = -\alpha \dot{\eta}_i - \gamma \dot{\eta}_i^{\tau} + \sum_{j=1}^N K_{ij} \cos(\varphi_j^* - \varphi_i^*) (\eta_i - \eta_j)$$

$$\ddot{\eta}_i = -\alpha \dot{\eta}_i - \gamma \dot{\eta}_i^{\tau} + \sum_{j=1}^{N} \mathcal{L}_{ij} \eta_j$$

$$\ddot{\xi}_k = -\alpha \dot{\xi}_k - \gamma \dot{\xi}_k^{\tau} - \lambda_k \xi_k$$
 N equations!

Linearize around synchronous state

$$\varphi \to \eta = \varphi^* - \varphi$$

Graph Laplacian
$$\mathcal{L} \equiv -\mathcal{K}_{ij} + \delta_{ij} \sum_j \mathcal{K}_{ij}$$

Linear transformation

$$\eta \to \xi = T\eta$$

$$T\mathcal{L}T^{-1} = diag(\lambda_1, \dots, \lambda_N)$$

$$\ddot{\varphi}_i = P_i - \alpha \dot{\varphi}_i - \gamma \dot{\varphi}_i (t - \tau) + \sum_j K_{ij} \sin(\varphi_j - \varphi_i)$$

$$\ddot{\eta}_i = -\alpha \dot{\eta}_i - \gamma \dot{\eta}_i^{\tau} + \sum_{j=1}^N K_{ij} \cos(\varphi_j^* - \varphi_i^*) (\eta_i - \eta_j)$$

$$\ddot{\eta}_i = -\alpha \dot{\eta}_i - \gamma \dot{\eta}_i^{\tau} + \sum_{j=1}^N \mathcal{L}_{ij} \eta_j$$

$$\ddot{\xi}_k = -\alpha \dot{\xi}_k - \gamma \dot{\xi}_k^{\tau} - \lambda_k \xi_k$$
 N equations!

ightharpoonup Critical characteristic roots y_k^*

Delay master stability function

$$\sigma_k(\tau, \lambda_k, y_k^*, \alpha, \gamma)$$

Stable if and only if

$$\sigma_k < 0 \quad \forall k = 1, \dots, N$$

$$K = \begin{bmatrix} 0 & K_0 & K_0 & K_0 \\ K_0 & 0 & 0 & 0 \\ K_0 & 0 & 0 & 0 \\ K_0 & 0 & 0 & 0 \end{bmatrix}$$

Conclusion

- necessary and sufficient delay master stability conditions
- any weighted, undirected graph
- **inertial oscillators** with nonlinear diffusive coupling

References

- Börner et al. (2020) Phys. Rev. Research 2, 023409
- more on github.com/reykboerner/delay-networks

