Stock Price Price Prediction

Using Machine Learning

Presented by Group 23, ECO723

Over view

- INTRODUCTION
- MOTIVATION
- OBJECTIVES
- RESEARCH METHODS
- DATA SOURCE
- GRAPHICAL DATA STORY
- EMPIRICAL FINDINGS
- CONCLUSIONS
- LIMITATIONS
- RESOURCES
- REFERENCES

Introduction

- The prediction of stock prices using machine learning has emerged as a cutting-edge approach that leverages advanced computational techniques to analyze and forecast market trends.
- By employing algorithms capable of processing vast amounts of financial data, machine learning models can identify patterns and insights that might be missed by traditional methods.
- These models, ranging from linear regression to more complex neural networks, are trained on historical stock data, enabling them to predict future price movements with increasing accuracy.
- This innovative application not only enhances decision-making for investors and traders but also contributes to the development of automated trading systems.

Motivation

- In financial markets, traditional techniques often struggle with the complex challenge of nonlinearity, where variable relationships aren't straightforward.
- This is where machine learning (ML) models like Long Short-Term Memory (LSTM) networks, random forest, linear regression come into play.
- LSTM is particularly skilled at capturing long-term dependencies in noisy financial series, characterized by unpredictable fluctuations and intricate patterns.
- By modeling these dependencies, machine learning models can help stakeholsers to take imformed desicions.

Objectives

- Apply an LSTM-based model to predict a company's future stock prices, aiming for higher accuracy and reliability than traditional approaches.
- Compare LSTM forecasts with one classical machine-learning technique to demonstrate the accuracy gains achieved by the novel model.
- Assess the impact of training-data volume on prediction quality by envisioning tests with a much larger dataset than the one currently used.
- Identify promising research extensions, including sentiment analysis of news headlines and experimentation with other emerging deep-learning architectures.

Research Methods

Preprocessing Pipeline:

- Normalization: StandardScaler implementation for feature scaling
- Train-Test Split: 95% training (5,136 obs) / 5% testing (270 obs)
- Sequence Creation: 60-day lookback windows for temporal pattern recognition
- Data Reshaping: 3D tensor preparation for LSTM input requirements

Feature engineering:

- Log return: To measure the volatility on the day.
- Seven days moving average: To take account of short term disruptions.

LSTM

- Definition: Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) architecture specialized in learning and retaining long-range dependencies in sequential data.
- Structure: Comprising memory cells and three key gates—input, output, and forget—LSTMs regulate information flow to maintain and update memory over time.
- Architecture: The model has 6 layers—2 LSTM layers (each with 50 units), 2 Dropout layers (0.01 rate), and 2 Dense layers designed for sequence-to-one regression in time-series forecasting.
- Error Function: Mean Squared error
- Opitmiser : Adam

Randomforest

- Defination: Random Forest is an ensemble machine learning algorithm used for classification and regression tasks.
- Mechanism: It creates multiple decision trees during training and merges their results to improve accuracy and prevent overfitting.
- Feature Selection: Each tree is built using a random subset of features, which enhances model robustness
- Voting System: For classification, it uses majority voting from the decision trees, while for regression, it averages the output.
- Error function: MAPE
- Artitechture: Has employed 100 desicion tree for training.

Linear Regression

- Fundamental Concept: Linear regression models the relationship between a dependent variable and independent variables by fitting a linear equation to observed data. Simple linear regression involves one independent variable, while multiple linear regression includes two or more.
- Equation and Components: The basic equation is $Y = \beta O + \beta 1X + \epsilon$, where (Y) is the dependent variable, βO is the y-intercept, $\beta 1$ is the slope, (X) is the independent variable, and ϵ is the error term.
- Assumptions: Key assumptions include linearity, independence, homoscedasticity, normality of errors, and no multicollinearity. Violating these can lead to biased results.
- Applications: It is widely used in fields like economics, biology, engineering, and social sciences for predictive modeling and analysis, aiding in understanding trends and relationships between variables.

Data Source

We Used the Yahoo Finance Library (yfinance) on Python for getting of daily Microsoft Co. stock prices and volume data from 01-01-04 to 30-06-25

PREDICTIONS USING THE BASIC 4 LAYERED LSTM MODEL

PREDICTIONS USING LSTM MODEL

MEAN ABSOLUTE PERCENTAGE ERROR (MAPE): 0.01%

R² SCORE: **0.9364**

LSTM ROOT MEAN SQUARED ERROR (RMSE): 6.751001

PREDICTIONS AFTER USING RANDOM FOREST REGRESSION

MEAN ABSOLUTE PERCENTAGE ERROR (MAPE): 3.66% LSTM ROOT MEAN SQUARED ERROR (RMSE): 23.23

PREDICTIONS AFTER INCORPORATING LINEAR REGRESSION

MEAN ABSOLUTE PERCENTAGE ERROR (MAPE): 0.01%

R² SCORE: **0.9381**

LSTM ROOT MEAN SQUARED ERROR (RMSE): 6.66

Empirical Findings

Model comparision

- Linear regression showed superior performance as well as computation.
- LSTM performed reasonably but was computationally expensive.
- Random Forest had decent performance but was outperformed by Linear Regression.

Visual insights

- Time-series plots of opening price insicate clear trends and seasonality.
- Log returns distribution highlights volatality clustering in price movements.

Conclusions

- Q Key Takeaways:
- Linear Regression is the most effective model for predicting stock returns in this context—simple yet accurate.
- Random Forest offers flexibility but does not outperform the baseline linear model.
- LSTM captures temporal dependencies, but its computational cost outweighs marginal gains in accuracy.
- Practical Implications:
 - For real-time or low-latency prediction tasks, linear models are preferable.
 - Deep learning models like LSTM may be better suited for high-frequency trading or long-term forecasting, where patterns are more complex.

Limitations

Data limitations

- Only one stock (MSFT) considered limits generalizability across sectors or market conditions.
- Daily frequency ignores intraday dynamics important for short-term traders
- External macroeconomic or sentiment data not incorporated

Model limitations

- No hyperparameter tuning applied could affect performance of Random Forest and LSTM.
- Assumes stationarity in returns for Linear Regression, which may not always hold,

Technical

- LSTM overfitting risk due to limited input features and data preprocessing.
- LSTM training was computationally expensive, affecting scalability.
- Evaluation metrics focused on point prediction accuracy, not risk or

uncertainty.

Resources

Github link: https://github.com/premsanthosh23/Stock-Market-Prediction

#