9.1 Outline

- Lewis symbols and valence electrons
- Ionic bonding electrostatic attractions between ions of opposite charge
- Covalent bonding sharing of one or more electron pairs between atoms
- Bond polarity and electronegativity
- Drawing Lewis structures
- Resonances structures, exceptions to the octet rule, and strengths of covalent bonds

9.2 Chemical Bonds

Chemical bond – a strong attractive fource that exists between atoms in a molecule. The three types of chemical bonds are as follows:

ionic bond a bond between oppositely charged ions. The ions are formed from atoms by transfer of one or more electrons.

covalent bond

9.3 Lewis Symbols

- The valence electrons, those that reside in the outermost shell of an atom, are responsible for chemical bonding.
- Lewis symbol (electron dot symbol) The chemical symbol for an element, with a dot for each valence electron.
- Dots are placed on the four sides of the chemical symbol, where each side can accommodate up to two electrons.

9.4 Ionic Bonding

 $\bullet\,$ The combination of sodium metal and chlorine gas results in a violent $\dot{\rm Li}$

9.5 Lattice Energy

The energy associated with electrostatic interactions is governed by Coulomb's Law:

$$E_{el} = \frac{\kappa Q_1 Q_2}{d} \tag{9.1}$$

• Lattice energy increases with the charge on the ions.

- It also increases with decreasing size of ions.
- See the worked example entitled Magnitudes of Lattice Energies.

9.6 Magnitudes of Lattice Energies

Which substance would you expect to have the greatest lattice energy, MgF₂, CaF₂, or ZrO₂?

$$MgF_2(s) \longrightarrow Mg^{2+}(g) + 2F^{-}(g)$$

Because the product of the charge, Q_1Q_2 , appears in the numerator of the equation above, the lattice energy will increase dramatically when the charges of the ions increase. Thus,

$$MgF_2$$
 $Q_1 = ^+2$ Q_2 $= -1$
 CaF_2 $Q_1 = ^+2$ Q_2 $= -1$
 ZrO_2 $Q_1 = ^+4$ Q_2 $= -2$

$$\mathsf{CaF}_2\!<\!\mathsf{MgF}_2\!<\!\mathsf{ZrO}_2$$

Table 9.1: Lattice Energies for Some Ionic Compounds

Compound	Lattice Energy (kJ/mol)	Compound	Lattice Energy (kJ/mol)
LiF	1030	MgCl ₂	2326
LiCl	834	SrCl ₂	2127
Lil	730		
NaF	910	MgO	3795
		3414	
		3217	
		7547	

9.7 Covalent Bonding

- In covalent bonds, atoms share electrons.
- There are several electrostatic interactions in these bonds:
 - Attractions between electrons and positive nuclei.
 - Repulsions between electrons
 - Repulsions between nuclei
 - Attractive forces must outweigh the repulsive ones

9.8 Lewis Structures

• Consider two Hydrogen atoms coming together to form a covalently bonded H₂ molecule:

- ullet The H_2 molecule on the right, with its two electrons, exhibits the noble-gas configuration
- Consider two chlorine atoms coming together to form a covalently bonded Cl₂ molecule:

• Each chlorine atom on the right now has a *complete octet* of electrons by sharing the bonding electron pair. It achieves the noble gas configuration of argon (Ar). Again, the shared pair of electrons can be represented by a single bond, as shown below.

9.9 Typical Bonding Motifs

Typical bonding motifs above

9.10 Bond Polarity and Electronegativity

- Molecules such as H_2 , N_2 , Cl_2 , etc are said to be **nonpolar**.
- A nonpolar covalent bond is one in which the electrons are shared equally between two atoms.
- On the other hand, a polar covalent bond is one in which one of the atoms exerts a greater attraction for the bonding electrons than the other.
- In other words, there exists a bond between atoms of different electronegativities.

9.11 Electronegativity

- Electronegativity the ability of atoms
- On the periodic table

Table 9.2: Electronegativity and Bond Polarity

Compound	F ₂	HF	LiF
Electronegativity	4.0 - 4.0 = 0	4.0 - 2.1 = 1.9	4.0 - 1.0 = 3.0
Type of bond	Nonpolar covalent	Polar covalent	Ionic

Table 9.3: Polar Covalent Bonds

Compound	Bond Length (Å)	Electronegativity	Dipole Moment (D)
HF	0.92	1.9	1.82
HCI	1.27	0.9	1.08
HBr	1.41	0.7	0.82
HI	1.61	0.4	0.44

9.12 Writing Lewis Structures

1.

- 2. The central atom is the least electronegative element that isn't Hydrogen. Connect the other atoms to it by single bonds.
- 3. Fill the octets of the outer atoms.
 - How many electrons have you accounted for in the above structure? 24
 - How many do you have left? 2
 - Fill in the octet of the central atom.
 - If you run out of electrons before the central atom has an octet: form multiple bonds until it does

$$H \longrightarrow C \longrightarrow \ddot{N} : \longrightarrow H \longrightarrow C \Longrightarrow N$$
:

9.13 Lewis Structures for Polyatomic Ions

Draw the Lewis structures for:

- (a) CIO_2^-
- (b) $SO_4^{2-} 6 + 4(6) + 2 = 32$ valence electrons

(c) $CO_3^{2-} 4 + 3(6) + 2 = 24$ valence electrons

9.14 Resonance

9.15 Exceptions to the Octet Rule

- The three types of systems that don't follow the octet rule are as follows:
 - Ions or molecules with an odd number of electrons
 - Ions or molecules with less than an octet
 - Ions or molecules with more than eight valence electrons (an expanded octet)