

# State Space Methods Lecture 1: State space models

Jakob Stoustrup

jakob@control.aau.dk
www.control.aau.dk/~jakob/

**Automation & Control** 

Department of Electronic Systems

**Aalborg University** 

Denmark



#### Contents

- One slide course summary
- State space models
  - Example: mass-spring-damper
- State space models and transfer functions
- Poles and zeros of state space models
- State space transformations



State space models

- 2/



- State space models
- Controllability



- State space models
- Controllability
- State feedback design (pole assignment)



- State space models
- Controllability
- State feedback design (pole assignment)
- Observability



- State space models
- Controllability
- State feedback design (pole assignment)
- Observability
- Observer gain design (pole assignment)



- State space models
- Controllability
- State feedback design (pole assignment)
- Observability
- Observer gain design (pole assignment)
- Observer based control (separation theorem)



- State space models
- Controllability
- State feedback design (pole assignment)
- Observability
- Observer gain design (pole assignment)
- Observer based control (separation theorem)
- Reduced order observers



- State space models
- Controllability
- State feedback design (pole assignment)
- Observability
- Observer gain design (pole assignment)
- Observer based control (separation theorem)
- Reduced order observers
- Integral state space control



- State space models
- Controllability
- State feedback design (pole assignment)
- Observability
- Observer gain design (pole assignment)
- Observer based control (separation theorem)
- Reduced order observers
- Integral state space control
- Zero assignment



- State space models
- Controllability
- State feedback design (pole assignment)
- Observability
- Observer gain design (pole assignment)
- Observer based control (separation theorem)
- Reduced order observers
- Integral state space control
- Zero assignment
- Anti-windup



- State space models
- Controllability
- State feedback design (pole assignment)
- Observability
- Observer gain design (pole assignment)
- Observer based control (separation theorem)
- Reduced order observers
- Integral state space control
- Zero assignment
- Anti-windup
- Optimal control



#### Contents

- One slide course summary
- State space models
  - Example: mass-spring-damper
- State space models and transfer functions
- Poles and zeros of state space models
- State space transformations



A linear third order system in continuous time with two inputs and two outputs has a state space model of the following form:

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + b_{11}u_1 + b_{12}u_2$$

$$\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + b_{21}u_1 + b_{22}u_2$$

$$\dot{x}_3 = a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + b_{31}u_1 + b_{32}u_2$$

where  $x_1, x_2, x_3$  are called the *states*,  $u_1, u_2$  are called the *inputs*, and  $y_1, y_2$  are called the *outputs*.

~ F



A linear third order system in continuous time with two inputs and two outputs has a state space model of the following form:

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + b_{11}u_1 + b_{12}u_2$$

$$\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + b_{21}u_1 + b_{22}u_2$$

$$\dot{x}_3 = a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + b_{31}u_1 + b_{32}u_2$$

System equations

~ F



A linear third order system in continuous time with two inputs and two outputs has a state space model of the following form:

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + b_{11}u_1 + b_{12}u_2$$

$$\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + b_{21}u_1 + b_{22}u_2$$

$$\dot{x}_3 = a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + b_{31}u_1 + b_{32}u_2$$

$$y_1 = c_{11}x_1 + c_{12}x_2 + c_{13}x_3 + d_{11}u_1 + d_{12}u_2$$

$$y_2 = c_{21}x_1 + c_{22}x_2 + c_{23}x_3 + d_{21}u_1 + d_{22}u_2$$

~ F



A linear third order system in continuous time with two inputs and two outputs has a state space model of the following form:

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + b_{11}u_1 + b_{12}u_2$$

$$\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + b_{21}u_1 + b_{22}u_2$$

$$\dot{x}_3 = a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + b_{31}u_1 + b_{32}u_2$$

$$y_1 = c_{11}x_1 + c_{12}x_2 + c_{13}x_3 + d_{11}u_1 + d_{12}u_2$$

$$y_2 = c_{21}x_1 + c_{22}x_2 + c_{23}x_3 + d_{21}u_1 + d_{22}u_2$$

Output equations

~ F/



In matrix form, a continuous time state space model can be written as:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

where:

$$egin{aligned} oldsymbol{x} & oldsymbol{x} & oldsymbol{x} & oldsymbol{u} & oldsymbol{x} & oldsymbol{u} & oldsymbol{u} & oldsymbol{u} & oldsymbol{u} & oldsymbol{y} & oldsymbol{y}$$

~ C/S



In matrix form, a continuous time state space model can be written as:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t) + Du(t)$ 

where:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 ,  $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix}$ 

- 0/0



In matrix form, a continuous time state space model can be written as:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t) + Du(t)$ 

where:

$$C = egin{pmatrix} c_{11} & c_{12} & c_{13} \ c_{21} & c_{22} & c_{23} \end{pmatrix} \quad , \quad D = egin{pmatrix} d_{11} & d_{12} \ d_{21} & d_{22} \end{pmatrix}$$

~ C/C



In matrix form, a continuous time state space model can be written as:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 $y(t) = Cx(t) + Du(t)$ 

Similarly, a discrete time state space model can be written as:

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

~ C/C



#### **Choosing state variables**

For a physical system, the number of states required is typically equal to the number of 'energy storages', and a possible choice of state variables is often those variables, that 'represent' energy storage.

- 7/



## Choosing state variables

| Linear component | Recommended variable |
|------------------|----------------------|
| condensator      | voltage              |
| electrical coil  | current              |
| spring           | length               |
| mass (kinetic)   | velocity             |
| mass (potential) | elevation            |
| inertia wheel    | angular velocity     |
| plane spring     | winding angle        |
| heat storage     | temperature          |
| gas accumulator  | pressure             |



#### Contents

- One slide course summary
- State space models
  - Example: mass-spring-damper
- State space models and transfer functions
- Poles and zeros of state space models
- State space transformations





The force F is considered as input, and the mass velocity v is considered as output of this system. The system is of second order, since it has one mass which can contain both kinetic and potential energy.



A possible selection of states are the position p and the velocity v.

- 40/



A possible selection of states are the position p and the velocity v. The derivative of v is given by Newton's second law:

$$m\dot{v} = -k \cdot p - c \cdot v + F \implies$$

$$\dot{v} = -\frac{k}{m} \cdot p - \frac{c}{m} \cdot v + \frac{1}{m} \cdot F$$

- 40/



A possible selection of states are the position p and the velocity v. The derivative of v is given by Newton's second law:

$$m\dot{v} = -k \cdot p - c \cdot v + F \implies$$

$$\dot{v} = -\frac{k}{m} \cdot p - \frac{c}{m} \cdot v + \frac{1}{m} \cdot F$$

The derivative of p is simply given by:

$$\dot{p} = v$$

404



Thus, we have the following state space model:

$$\begin{pmatrix} \mathbf{p} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ \mathbf{v} \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{m} \end{pmatrix} F$$

$$\mathbf{v} = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ \mathbf{v} \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix} F$$

which is indeed of the form:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t) + Du(t)$ 

- 44/



#### Contents

- One slide course summary
- State space models
  - Example: mass-spring-damper
- State space models and transfer functions
- Poles and zeros of state space models
- State space transformations



#### State space model $\rightarrow$ transfer fct.

#### Taking Laplace transforms of the system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

yields

- 40/



#### State space model $\rightarrow$ transfer fct.

#### Taking Laplace transforms of the system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t) + Du(t)$ 

yields

$$sx(s) = Ax(s) + Bu(s)$$
  
 $y(s) = Cx(s) + Du(s)$ 

rearranging, we obtain:



#### State space model — transfer fct.

#### Taking Laplace transforms of the system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t) + Du(t)$ 

yields

$$sx(s) = Ax(s) + Bu(s)$$
  
 $y(s) = Cx(s) + Du(s)$ 

rearranging, we obtain:

$$(sI - A) x(s) = Bu(s)$$
$$y(s) = Cx(s) + Du(s)$$

40



#### State space model -- transfer fct.

$$sx(s) = Ax(s) + Bu(s)$$
  
 $y(s) = Cx(s) + Du(s)$ 

rearranging, we obtain:

$$(sI - A) x(s) = Bu(s)$$
  
 $y(s) = Cx(s) + Du(s)$ 

Premultiplying with  $(sI - A)^{-1}$  on either side of the system equation, results in

$$x(s) = (sI - A)^{-1}Bu(s)$$
  
$$y(s) = Cx(s) + Du(s)$$

. . . .



#### State space model -- transfer fct.

$$(sI - A) x(s) = Bu(s)$$
$$y(s) = Cx(s) + Du(s)$$

Premultiplying with  $(sI - A)^{-1}$  on either side of the system equation, results in

$$x(s) = (sI - A)^{-1}Bu(s)$$
  
$$y(s) = Cx(s) + Du(s)$$

Finally, we obtain:

$$x(s) = (sI - A)^{-1} Bu(s)$$

$$y(s) = C (sI - A)^{-1} Bu(s) + Du(s)$$



#### State space model — transfer fct.

Premultiplying with  $(sI - A)^{-1}$  on either side of the system equation, results in

$$x(s) = (sI - A)^{-1} Bu(s)$$
  
$$y(s) = Cx(s) + Du(s)$$

Finally, we obtain:

$$x(s) = (sI - A)^{-1} Bu(s)$$

$$y(s) = C(sI - A)^{-1} Bu(s) + Du(s)$$

Consequently,

$$y(s) = G(s)u(s)$$
, where:  
 $G(s) = C(sI - A)^{-1}B + D$ 

- 40/



For the spring-mass-damper system with m=1, c=3, k=2, the state space representation is:

$$\begin{pmatrix} \mathbf{p} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ \mathbf{v} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} F$$

$$\mathbf{v} = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ \mathbf{v} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} F$$

Thus, the transfer function becomes:

$$G(s) = C (sI - A)^{-1} B + D$$

~ 44/



$$G(s) = C (sI - A)^{-1} B + D$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

~ 4 A /C



$$G(s) = C (sI - A)^{-1} B + D$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s & -1 \\ 2 & s+3 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

~ 44/



$$G(s) = C (sI - A)^{-1} B + D$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s & -1 \\ 2 & s+3 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \frac{1}{s^2 + 3s + 2} \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s + 3 & 1 \\ -2 & s \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

~ 44/



$$G(s) = C(sI - A)^{-1}B + D$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s & -1 \\ 2 & s+3 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \frac{1}{s^2 + 3s + 2} \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s+3 & 1 \\ -2 & s \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \frac{s}{s^2 + 3s + 2}$$

- 11



## Transfer fct. $\rightarrow$ state space model

Consider the transfer function  $g(s) = \frac{1}{s^2 + a_1 s + a_2}$ . From the relationship

$$y(s) = \frac{1}{s^2 + a_1 s + a_2} u(s)$$

we infer

$$s^{2}y(s) + a_{1}sy(s) + a_{2}y(s) = u(s)$$

Taking inverse Laplace transform, this becomes:

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_2 y(t) = u(t)$$

- 4EI



#### Transfer fct. $\rightarrow$ state space model

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_2 y(t) = u(t)$$

A possible choice of states is:  $x_1 = y$ ,  $x_2 = \dot{y}$ . With this choice, the system equations become:

$$\dot{x}_1 = \dot{y} = x_2$$

$$\dot{x}_2 = \ddot{y} = -a_1\dot{y} - a_2y + u = -a_2x_1 - a_1x_2 + u$$

In matrix form, we obtain:

. 4EI



## Transfer fct. $\rightarrow$ state space model

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_2 y(t) = u(t)$$

A possible choice of states is:  $x_1 = y$ ,  $x_2 = \dot{y}$ . With this choice, the system equations become:

$$\dot{x}_1 = \dot{y} = x_2$$

$$\dot{x}_2 = \ddot{y} = -a_1\dot{y} - a_2y + u = -a_2x_1 - a_1x_2 + u$$

In matrix form, we obtain:

$$\begin{pmatrix} \dot{x}_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -a_2 & -a_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$$

$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix} u$$

45



### Contents

- One slide course summary
- State space models
  - Example: mass-spring-damper
- State space models and transfer functions
- Poles and zeros of state space models
- State space transformations



# Poles of state space models

With

$$G(s) = C (sI - A)^{-1} B + D$$

we have that:

$$G(s) \to \infty \text{ for } s \to p \quad \Rightarrow \quad \det(pI - A) = 0$$

Hence,

p is a pole for  $G(s) \Rightarrow$ 

4-



# Poles of state space models

With

$$G(s) = C (sI - A)^{-1} B + D$$

we have that:

$$G(s) \to \infty \text{ for } s \to p \quad \Rightarrow \quad \det(pI - A) = 0$$

Hence,

p is a pole for  $G(s) \Rightarrow p$  is an eigenvalue for A

4-1



For the mass-spring-damper system, the A matrix was:

$$A = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix}$$

which has the characteristic polynomial:

$$\det(\lambda I - A) = \begin{vmatrix} \lambda & -1 \\ 2 & \lambda + 3 \end{vmatrix}$$
$$= \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2)$$

Thus, the system has poles in  $\{-1, -2\}$ .

- 40/



# Zeros of state space models

With

$$G(s) = C (sI - A)^{-1} B + D$$

we have that:

$$G(z)u = 0 \Rightarrow C(zI - A)^{-1}Bu + Du = 0$$

$$\Rightarrow C\xi + Du = 0, \ \xi = (zI - A)^{-1}Bu$$

$$\Rightarrow C\xi + Du = 0, \ (A - zI)\xi + Bu = 0$$

$$\Rightarrow \begin{pmatrix} A - zI & B \\ C & D \end{pmatrix} \begin{pmatrix} \xi \\ u \end{pmatrix} = 0$$

401



## Zeros of state space models

$$G(z)u = 0 \Rightarrow C(zI - A)^{-1}Bu + Du = 0$$

$$\Rightarrow C\xi + Du = 0, \ \xi = (zI - A)^{-1}Bu$$

$$\Rightarrow C\xi + Du = 0, \ (A - zI)\xi + Bu = 0$$

$$\Rightarrow \begin{pmatrix} A - zI & B \\ C & D \end{pmatrix} \begin{pmatrix} \xi \\ u \end{pmatrix} = 0$$

Thus, z is a zero for  $G(s) \Rightarrow$ 

$$\begin{pmatrix} A - zI & B \\ C & D \end{pmatrix}$$
 does not have full column rank



For the mass-spring-damper system, zeros must satisfy:

$$\begin{vmatrix} A - zI & B \\ C & D \end{vmatrix} = 0$$

or

$$\begin{vmatrix} -z & 1 & 0 \\ -2 & -3 - z & 1 \\ 0 & 1 & 0 \end{vmatrix} = \begin{vmatrix} -z & 1 \\ 0 & 1 \end{vmatrix} \cdot (-1) = z = 0$$

Hence, the system has a zero in the origin.



### Contents

- One slide course summary
- State space models
  - Example: mass-spring-damper
- State space models and transfer functions
- Poles and zeros of state space models
- State space transformations



## State space transformations

State space representations are not unique! Given one model:

$$\dot{x} = Ax + Bu \\
y = Cx + Du$$

another model can be obtained by a non-singular transformation of the state vector:

$$x = T\xi$$
,  $\xi = T^{-1}x$ 

---



### State space transformations

Introducing this in the state space model, we obtain:

$$T\dot{\xi} = AT\xi + Bu$$
$$y = CT\xi + Du$$

or, equivalently

$$\dot{\xi} = T^{-1}AT\xi + T^{-1}Bu$$

$$y = CT\xi + Du$$



### State space transformations

$$\dot{\xi} = T^{-1}AT\xi + T^{-1}Bu$$

$$y = CT\xi + Du$$

Thus, a new state space model of the form

$$\dot{\xi} = \tilde{A}\xi + \tilde{B}u 
y = \tilde{C}\xi + \tilde{D}u$$

where

$$egin{aligned} ilde{A} &= T^{-1}AT & ilde{B} &= T^{-1}B \\ ilde{C} &= CT & ilde{D} &= D \end{aligned}$$

has been obtained.



For the mass-spring-damper system, we change basis using the following transformation matrix:

$$T = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}, \qquad T^{-1} = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$$

This gives the following new state space representation:

$$\dot{\xi} = \tilde{A}\xi + \tilde{B}u 
y = \tilde{C}\xi + \tilde{D}u$$

with



$$\tilde{A} = T^{-1}AT = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$



$$\tilde{A} = T^{-1}AT = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$



$$\tilde{A} = T^{-1}AT = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$
$$\tilde{B} = T^{-1}B = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$



$$\tilde{A} = T^{-1}AT = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$
$$\tilde{B} = T^{-1}B = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$



$$\tilde{A} = T^{-1}AT = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$
$$\tilde{B} = T^{-1}B = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
$$\tilde{C} = CT = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$

. . . . . .



$$\tilde{A} = T^{-1}AT = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$
$$\tilde{B} = T^{-1}B = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
$$\tilde{C} = CT = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} -1 & -2 \end{pmatrix}$$



$$\tilde{A} = T^{-1}AT = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$

$$\tilde{B} = T^{-1}B = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\tilde{C} = CT = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} -1 & -2 \end{pmatrix}$$

$$\tilde{D} = D$$

- 24/



$$\tilde{A} = T^{-1}AT = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$

$$\tilde{B} = T^{-1}B = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\tilde{C} = CT = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} -1 & -2 \end{pmatrix}$$

$$\tilde{D} = D = 0$$

- 04



#### Transfer matrix:

$$\tilde{G}(s) = \tilde{C} \left( sI - \tilde{A} \right)^{-1} \tilde{B} + \tilde{D}$$

~ OF!



#### Transfer matrix:

$$\tilde{G}(s) = \tilde{C} \left( sI - \tilde{A} \right)^{-1} \tilde{B} + \tilde{D}$$

$$= \begin{pmatrix} -1 & -2 \end{pmatrix} \begin{pmatrix} s+1 & 0 \\ 0 & s+2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + 0$$

~ OF!



#### Transfer matrix:

$$\tilde{G}(s) = \tilde{C} \left( sI - \tilde{A} \right)^{-1} \tilde{B} + \tilde{D}$$

$$= \left( -1 - 2 \right) \begin{pmatrix} s+1 & 0 \\ 0 & s+2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + 0$$

$$= -\frac{1}{s+1} + 2 \cdot \frac{1}{s+2} = \frac{-(s+2) + 2(s+1)}{(s+1)(s+2)}$$

. 05



#### Transfer matrix:

$$\tilde{G}(s) = \tilde{C} \left( sI - \tilde{A} \right)^{-1} \tilde{B} + \tilde{D}$$

$$= \left( -1 - 2 \right) \begin{pmatrix} s+1 & 0 \\ 0 & s+2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + 0$$

$$= -\frac{1}{s+1} + 2 \cdot \frac{1}{s+2} = \frac{-(s+2) + 2(s+1)}{(s+1)(s+2)}$$

$$= \frac{s}{s^2 + 3s + 2}$$

0=



#### Transfer matrix:

$$\tilde{G}(s) = \tilde{C} \left( sI - \tilde{A} \right)^{-1} \tilde{B} + \tilde{D}$$

$$= \left( -1 - 2 \right) \begin{pmatrix} s+1 & 0 \\ 0 & s+2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + 0$$

$$= -\frac{1}{s+1} + 2 \cdot \frac{1}{s+2} = \frac{-(s+2) + 2(s+1)}{(s+1)(s+2)}$$

$$= \frac{s}{s^2 + 3s + 2}$$

$$= G(s)$$

0=