# Deep Learning for Natural Language Processing

Lecture 5 – Bilingual and Syntax-Based Word Embeddings

Dr. Ivan Habernal May 10, 2022

Trustworthy Human Language Technologies Department of Computer Science Technical University of Darmstadt



www.trusthlt.org

#### This lecture

Multi-Lingual, Multi-Sense Word Embeddings Syntactic Word Embeddings Miscellaneous

#### **Word Senses**

Words do not represent only one meaning

Problem is generally known as polysemy (or even homonymy): a word may have many different meanings:

· bank, table, fly, man, ...



**Figure 1:** Source: Wiktionary

#### **Word Senses**

#### Man

- 1. The human species (man vs. other organism)
- 2. Males of the human species (i.e. man vs. woman)
- 3. Adult males of the human species

This example shows the specific polysemy where the same word is used at different levels of a taxonomy.

Example 1 contains example 2, and example 2 contains example 3.

## Sense-disambiguated word representations

Idea: Train word vectors on sense-disambiguated corpora "a rush of panic caught Sarah" 1

<sup>&</sup>lt;sup>1</sup>Shortened example from *SemCor* corpus. Not all words have different senses; function words and punctuation do not have senses

## Sense-disambiguated word representations

| ${\it bank}_1^n$ (geographical)      | $bank_2^n$ (financial)       | number <sup>n</sup><br>(phone)  | $number_3^n$ (acting)   | $m{hood}_1^n$ (gang)               | $hood_{12}^n$ (convertible car) |
|--------------------------------------|------------------------------|---------------------------------|-------------------------|------------------------------------|---------------------------------|
| upstream $_1^r$                      | $commercial\_bank_1^n$       | calls <sub>1</sub> <sup>n</sup> | appearing <sup>v</sup>  | tortures <sub>5</sub> <sup>n</sup> | taillights $_1^n$               |
| downstream <sub>1</sub> <sup>r</sup> | $financial\_institution_1^n$ | dialled $_1^v$                  | $minor\_roles_1^n$      | vengeance $_1^n$                   | $grille_2^n$                    |
| $runs_6^v$                           | $national\_bank_1^n$         | operator $_{20}^n$              | $stage\_production_1^n$ | $badguy_1^n$                       | $bumper_2^n$                    |
| $confluence_1^n$                     | $trust\_company_1^n$         | $telephone\_network_1^n$        | supporting_roles $_1^n$ | $brutal_1^a$                       | $fascia_2^n$                    |
| $river_1^n$                          | $savings\_bank_1^n$          | $telephony_1^n$                 | $leading\_roles_1^n$    | $execution_1^n$                    | $rear_window_1^n$               |
| $stream_1^n$                         | banking $_1^n$               | $subscriber_2^n$                | $stage\_shows_1^n$      | $murders_1^n$                      | headlights $_1^n$               |

Table 1: Closest senses to two senses of three ambiguous nouns: bank, number, and hood

Figure 2: Result: different representations for each sense<sup>2</sup>

Note: subscript is sense-id superscript is pos-tag Number and bank could also appear as verbs (not illustrated here) <sup>2</sup>I. Iacobacci, M. T. Pilehvar, and R. Navigli (2015). "SensEmbed: Learning Sense Embeddings for Word and Relational Similarity". In: *Proceedings of ACL*. Beijing, China: Association for Computational Linguistics, pp. 95–105

#### **Problems**

How do you now train an NLP system with these sense-disambiguated embeddings?

## A more parsimonious approach

Run word2vec on your data and compute embeddings For each target word, represent its context as avg. or concatenated embedding

- · ... need to go to the bank to get some money ...
- · ... debt by utilizing a credit line granted by a bank ...
- ... raw water is largely river bank filtrate (approximately 70 percent) ...
- ... runs from its idyllic river *bank* promenade under the Elbe to ...

## A more parsimonious approach

Run word2vec on your data and compute embeddings For each target word, represent its **context** as avg. or concatenated embedding

- · ... need to go to the bank to get some money ...
- · ... debt by utilizing a credit line granted by a bank ...
- ... raw water is largely river bank filtrate (approximately 70 percent) ...
- ... runs from its idyllic river bank promenade under the Elbe to ...

## A more parsimonious approach

- ... need to go to the bank to get some money ...  $\rightarrow$  [.2, .8]
- ... debt by utilizing a credit line granted by a bank ...  $\rightarrow$  [.4, .6]
- ... raw water is largely river bank filtrate (approximately 70 percent) ...  $\rightarrow$  [-.2, -.8]
- ... runs from its idyllic river bank promenade under the Elbe to ...  $\rightarrow$  [-.9, -.3]

Cluster the context representations (unsupervised!)

Assign each word's context to a cluster: the word has the sense corresponding to the cluster index

Run word2vec on sense-disambiguated corpus

## Sense-disambiguated word representations

- Promising approach to unsupervised sense-disambiguated word representation
- On the other hand, the cost is much higher one needs a sense-labeler or a more complicated model
- Hardly used in practice
- Before ELMo and BERT came around in 2018 with contextualized word embeddings

# Bilingual Embeddings

Word representations for two languages: train on corpus from both languages





# Bilingual Embeddings

Goal: represent words from different languages in the same space



# Bilingual Embeddings – General idea

Can think of it as having two objectives we want to satisfy

- cross-lingual objective: words that are translations of each other should be close in the projected space
- mono-lingual objective: words that occur in monolingually similar contexts should be close to each other in vector space

# Bilinguality - Why?

- (1) Second language may act as an additional "signal"
  - Which may help to improve word embeddings even in the first language
    - ightarrow Make Monolingual Embeddings better
  - E.g. assume that some word like "opa" occurs very infrequently in the German corpus, thus it's difficult to reliably estimate its word embedding
  - If its English translation "grandfather" occurs frequently in the English corpus, the German word should get a more appropriate embedding in the bilingual space

## Bilinguality – Why?

- (2) If words are projected in a common space ("shared features"), this may allow for **direct transfer** 
  - Train a model in one language (usually resource-rich)
  - Directly apply in another language (usually resource-poor)

# Bilinguality – Example

(2) Example Direct Transfer: task is POS tagging Goal / approach:

Train: I may not drink this  $\rightarrow$  PRON VERB PARTICLE VERB DFT

Test: Es ist wichtig, ausreichend zu trinken  $\rightarrow$ ?

#### Training (idea):

Input: center words with their context words
Output: labels of center word

E.g. (not, drink, this)  $\rightarrow$  VERB



## Bilinguality – Example

(2) Example Direct Transfer: task is POS tagging

Direct transfer aka zero-shot transfer:

- train using bilingual embeddings in English (assume big labeled English dataset)
- then apply to German data

Problems with the Direct Transfer approach?

- "OOV words"
- syntactic ordering

# Bilingual Embeddings – Naive Approach

Given 1: Monolingual Embeddings (e.g. English, German)

Given 2: Dictionary  $EN \Leftrightarrow DE$ 

Translate German words to English words, assign them the embedding of the English word (or concatenate, average, ...)

- · Bottleneck is the dictionary
- Cannot assign meanings to words that are not in the dictionary

# Bilingual Embeddings

More sophisticated approaches have been suggested, relying on different kinds of (costly) information

# Approach 1: Learning a transformation matrix

- One of the first and simplest approaches
  - Mikolov et al. 2013, Exploiting similarities among languages for machine translation
- · Given: monolingual embeddings + dictionary
  - · Dictionary: cat-Katze, table-Tisch, ...

| $x_i$ | $z_i$ |
|-------|-------|
| cat   | Katze |
| table | Tisch |
|       | •••   |

# Approach 1: Learning a transformation matrix

| $\mathbf{x}_i$   | $\mathbf{z}_i$   |
|------------------|------------------|
| [0.2, -0.3, 0.8] | [0.5, 0.9, -1]   |
| [1, 2, -5]       | [0.1, -0.1, 0.1] |
|                  |                  |

We estimate a linear transformation from this data:

$$\min_{\mathbf{W}} \sum_{i} \left\| \mathbf{x}_{i} \mathbf{W} - \mathbf{z}_{i} \right\|_{2}$$

-  $\mathbf{x}_i$  and  $\mathbf{z}_i$ : monolingual word vectors from dictionary

Once  $\mathbf{W}$  is learned, we can map any language  $\mathbf{x}$  word into the space of language  $\mathbf{z}$ 

Even words for which we do not have translations

## More Bilingual Embeddings – Survey papers

See S. Upadhyay et al. (2016). "Cross-lingual Models of Word Embeddings: An Empirical Comparison". In: *Proceedings of ACL*. Berlin, Germany, pp. 1661–1670

And more recent G. Glavaš et al. (2019). "How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions". In: *Proceedings of ACL*. Florence, Italy, pp. 710–721

# Bilingual embeddings

**BiSkip** uses sentence and word aligned texts, then runs a skip-gram model whose contexts are words from both languages:

- E.g. on input *love* BiSkip wants to predict the context *je*, *I*, *you*, *t'*;
- · similar for aime: t', you
- → similar contexts are predicted → similar representations



# Bilingual embeddings

**BiVCD**<sup>3</sup> is even simpler. Given aligned documents (e.g. Wikipedia articles)

- · Merge them, then random shuffle all words
- Then run a Monolingual Model (e.g. CBOW, Glove, Skip-Gram) on it



<sup>&</sup>lt;sup>3</sup>I. Vulić and M.-F. Moens (2015). "Bilingual Word Embeddings from Non-Parallel Document-Aligned Data Applied to Bilingual Lexicon Induction". In: *Proceedings of ACL (Volume 2: Short Papers)*. Beijing, China, pp. 719–725

# Determining bi-lingual mappings (for BiSkip)

- Dictionary
- Inter-lingual links in Wikipedia
- Word alignments learned from parallel corpora

# Multilinguality

- We talked about mapping two languages in a common space
- · How about 3, 5, 10 languages?
- Much less explored topic
- However, there is work on it, such as Ammar et al. (2016), Massively Multilingual word embeddings
  - They extend BiCCA to MultiCCA and BiSkip to MultiSkip

In recent years, Multilingual BERT (MBERT), which yields embeddings in a joint space for 100+ languages

#### **Current trends**

- Learn bilingual word embeddings from as few resources as possible
- E.g., only 10 aligned word pairs (can be punctuation)
- From there we can go to unsupervised machine translation

#### **Current trends**

M. Artetxe, G. Labaka, and E. Agirre (2017). "Learning bilingual word embeddings with (almost) no bilingual data". In: *Proceedings of ACL*. Vancouver, Canada, pp. 451–462

#### Main idea:

- If we had a dictionary, we can get bilingual embeddings
- If we had bilingual embeddings, we can get a dictionary

#### Current trends

Artetxe, Labaka, and Agirre's (2017) method:

- Use a lexicon (seed lexicon is easy to get automatically)
- 2. Learn bilingual embeddings using current lexicon ( $\rightarrow$  Mikolov's method, i.e., "Approach 1")
- 3. Get a better lexicon using bilingual embeddings
- 4. Go back to 1)



Syntactic word embeddings

## More syntactically oriented embeddings

Syntactic relations between words should also be represented in the vectors

- Problem: word order matters

Dog bites man. vs. Man bites dog.

#### Position Information

Remember: The **word2vec** models do not consider position information:

- · No distinction between left and right context
- No distinction between close and far contexts

Skip-gram: \_\_\_ bites \_\_\_  $\rightarrow$  (bites, man), (bites, dog)

### **Position Information**

```
dog bites man vs. man bites dog

(bites, dog-1), (bites, man+1)

vs.

(bites, man-1), (bites, dog+1)

This is "intuitively" what we want (although we don't add indices to words)
```

# Skip-gram model



**Figure 3:** SkipGram model

How can we predict different words when V is always the same?

# Structured Skip-gram model



**Figure 4:** Structured SkipGram model

#### Results

Nearest neighbours for breaking

| Skip-gram | Structured Skip-gram |
|-----------|----------------------|
| breaks    | putting              |
| turning   | turning              |
| broke     | sticking             |
| break     | pulling              |
| stumbled  | picking              |

Word representations with positional information work slightly better for syntactic tasks like POS-tagging and parsing.

W. Ling et al. (2015). "Two/Too Simple Adaptations of Word2Vec for Syntax Problems". In: *Proceedings of NAACL*. Denver, Colorado, pp. 1299–1304

## Long-distance dependencies

Words can be similar with respect to verb selection preferences

 tea/milk/beer/coffee can all be an object of the verb drink

Words that share syntactic relations might be distant in a sentence:

I would like to **drink** a very hot tall decaf half-soy (...insert any other thousand options ...) white chocolate **mocha** 

## Dependency parsing in one slide

Grammatical relationships between words in a sentence



**Ambiguity: PP attachments** 





**Figure 5:** Prepositional phrase (PP) attachment. Image courtesy of Stanford NLP lab

## Towards dependency-embeddings

Idea: apply dependency parsing first

I would like to **drink** a very hot tall decaf half-soy (...) white chocolate **mocha** 

Output of Stanford dependency parser:

```
nsubj(like-3, I-1) nsubj(drink-5, I-1) aux(like-3, would-2) root(ROOT-0, like-3) mark(drink-5, to-4) xcomp(like-3, drink-5) det(mocha-14, a-6) advmod(hot-8, very-7) amod(mocha-14, hot-8) amod(mocha-14, tall-9) amod(mocha-14, decaf-10) amod(mocha-14, half-soy-11) amod(mocha-14, white-12) compound(mocha-14, chocolate-13) dobj(drink-5, mocha-14)
```

#### dobj(drink-5, mocha-14): direct object

The direct object of a verb phrase is the noun phrase which is the (accusative) object of the verb.

## Dependency-based embeddings

I would like to **drink** a very hot tall decaf half-soy (...) white chocolate **mocha** 

```
nsubj(like-3, I-1) nsubj(drink-5, I-1) aux(like-3, would-2)
root(ROOT-0, like-3) mark(drink-5, to-4) xcomp(like-3, drink-5)
...
```

O. Levy and Y. Goldberg (2014). "Dependency-Based Word Embeddings". In: *Proceedings of ACL*. Baltimore, MD, USA, pp. 302–308

| Word  | Dependency Context                         |
|-------|--------------------------------------------|
| like  | I/nsubj, would/aux, drink/xcomp            |
| drink | I/nsubj, to/mark, mocha/dobj, like/xcomp-1 |
| hot   | very/advmod, mocha/amod-1                  |
| •••   |                                            |

## Dependency-based embeddings

Word2Vec finds words that associate with other words, while DepEmbeddings finds words behave like others - Domain similarity vs. functional similarity

| Target Word     | BoW5              | BoW2              | DEPS            |
|-----------------|-------------------|-------------------|-----------------|
| batman          | nightwing         | superman          | superman        |
|                 | aquaman           | superboy          | superboy        |
|                 | catwoman          | aquaman           | supergirl       |
|                 | superman          | catwoman          | catwoman        |
|                 | manhunter         | batgirl           | aquaman         |
| hogwarts        | dumbledore        | evernight         | sunnydale       |
|                 | hallows           | sunnydale         | collinwood      |
|                 | half-blood        | garderobe         | calarts         |
|                 | malfoy            | blandings         | greendale       |
|                 | snape             | collinwood        | millfield       |
| turing          | nondeterministic  | non-deterministic | pauling         |
|                 | non-deterministic | finite-state      | hotelling       |
|                 | computability     | nondeterministic  | heting          |
|                 | deterministic     | buchi             | lessing         |
|                 | finite-state      | primality         | hamming         |
| florida         | gainesville       | fla               | texas           |
|                 | fla               | alabama           | louisiana       |
|                 | jacksonville      | gainesville       | georgia         |
|                 | tampa             | tallahassee       | california      |
|                 | lauderdale        | texas             | carolina        |
| object-oriented | aspect-oriented   | aspect-oriented   | event-driven    |
|                 | smalltalk         | event-driven      | domain-specific |
|                 | event-driven      | objective-c       | rule-based      |
|                 | prolog            | dataflow          | data-driven     |
|                 | domain-specific   | 4gl               | human-centere   |
| dancing         | singing           | singing           | singing         |
|                 | dance             | dance             | rapping         |
|                 | dances            | dances            | breakdancing    |
|                 | dancers           | breakdancing      | miming          |
|                 | tap-dancing       | clowning          | busking         |

## Miscellaneous

## Embeddings of other things than words

#### Embed other stuff than words:

- · Characters: insightful
- Syllables: in + sight + ful
- Morphemes:
  - insightful = insight + ful
  - helping = help + ing
  - greedily = greedy + ly
  - Dampfschifffahrt = Dampf+Schiff+Fahrt
  - Useful particulary for morphologically rich languages like German, French, Czech, etc.
  - Rarely find Dampfschifffahrt in a corpus, but its three morphemes are quite likely
- · Embed postags, synsets, lexemes, supersenses, ...

## Embeddings of other things than words

Embed n-grams – the FastText approach<sup>4</sup>

Words are represented as bags of character n-grams (n=3,4,5,6)

n=3: where = ( >wh , whe, her, ere , re< )

Learn embeddings for all n-grams, represent a word by averaging over its n-gram embeddings

Big advantage:

- Can embed OOV words, spelling mistakes: "lenght", "spellling"
- Naturally works for morphologically rich languages
   4P. Bojanowski et al. (2017). "Enriching Word Vectors with Subword Information". In: *Transactions of the ACL* 5, pp. 135–146

Using word embeddings in a task

## Training word vectors to the task

#### Option 1: fixed word representations

- map word into id and get the vector from the embedding matrix
- · only train the weights of the hidden layers

Option 2: adjust the word representations to the task

- word vectors are parameters and are updated in each epoch
- Example: sentiment classification, train vectors to represent positive/negative polarity for each word

## Problem: Adaptation to the training data

Representations for words that are seen in the training data move in vector space, but words that are not seen remain where they were

- "TV", "telly" and "television" all indicate negative sentiment in the dataset
- Due to pre-training, they have similar vectors
- "TV" and "telly" occur in the training data, "television" in the test data



**Figure 6:** Courtesy of Richard Socher

## Problem: Adaptation to the training data

"TV" and "telly" have been updated

"television" stayed the same -> synonym information is lost



Figure 7: Before training



Figure 8: After training

## Practical tips

Only train word vectors to the task if you have a large training corpus.

Even then, it might not be useful (depends on the task).

#### Common practice:

– Train the vectors only for a few epochs and then keep them fixed

**If in doubt** Keep your embeddings fixed

# Summary

## Summary: Embedding approaches

What do all the embedding approaches have in common?

Represent natural language input with real-valued vectors

Differences

Unit of representation characters, morphemes, words, senses, phrases, windows, sentences, documents, ...

**Definition of context for training** CBOW, Skip-gram, Glove, positional, dependency-based, ...

## Towards contextualized embeddings

Static word embeddings – huge impact on adoption of DL in NLP

Becoming extinct now

Deplaced by contextualized embeddings (BERT, etc.)

#### License and credits

Licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)



#### Credits

Ivan Habernal, Steffen Eger

Akir (https://commons.wikimedia.org/wiki/File:Table.png, CC-BY-SA)

Baba66

(https://commons.wikimedia.org/wiki/File:Arabicalphabet.svg, CC-BY)

Content from ACL Anthology papers licensed under CC-BY https://www.aclweb.org/anthology

#### References i

#### References

- Artetxe, M., G. Labaka, and E. Agirre (2017). "Learning bilingual word embeddings with (almost) no bilingual data". In: *Proceedings of ACL*. Vancouver, Canada, pp. 451–462.
- Bojanowski, P., E. Grave, A. Joulin, and T. Mikolov (2017). "Enriching Word Vectors with Subword Information". In: *Transactions of the ACL* 5, pp. 135–146.

#### References ii

- Glavaš, G., R. Litschko, S. Ruder, and I. Vulić (2019). "How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions". In: *Proceedings of ACL*. Florence, Italy, pp. 710–721.
- Iacobacci, I., M. T. Pilehvar, and R. Navigli (2015). "SensEmbed: Learning Sense Embeddings for Word and Relational Similarity". In: *Proceedings of ACL*. Beijing, China: Association for Computational Linguistics, pp. 95–105.

#### References iii

- Levy, O. and Y. Goldberg (2014). "Dependency-Based Word Embeddings". In: *Proceedings of ACL*. Baltimore, MD, USA, pp. 302–308.
  - Ling, W., C. Dyer, A. W. Black, and I. Trancoso (2015). "Two/Too Simple Adaptations of Word2Vec for Syntax Problems". In: *Proceedings of NAACL*. Denver, Colorado, pp. 1299–1304.
  - Upadhyay, S., M. Faruqui, C. Dyer, and D. Roth (2016). "Cross-lingual Models of Word Embeddings: An Empirical Comparison". In: *Proceedings of ACL*. Berlin, Germany, pp. 1661–1670.

#### References iv

Vulić, I. and M.-F. Moens (2015). "Bilingual Word Embeddings from Non-Parallel Document-Aligned Data Applied to Bilingual Lexicon Induction". In: *Proceedings of ACL (Volume 2: Short Papers)*. Beijing, China, pp. 719–725.