

◆ 占种 被 大 学 经济与管理学院

School of Management and Economics of UESTC

计量经济学

Econometrics

任课老师: 李亚静

电子科大经管学院

包占种 後大学 经济与管理学院

School of Management and Economics of UESTC

第五讲虚拟变量 (教材3.3、7.4)

什么是虚拟变量?

- ❖ 经济变量
 - >可以定量度量:商品需求量、价格、收入、产量等
 - > 无法定量度量:职业、性别、战争、自然灾害等
- ❖虚拟变量 (dummy variables): 定性变量

引例

- ❖比较某个国家三个地区(东部、中部和西部)公 立学校教师平均薪水在统计上的差异
 - ▶1,各个地区之间是否存在差异?统计上怎样检验?
 - ▶2, 如果存在差异, 地理位置是关键因素吗?

引例

❖从51个县(市)收集了当地教师的平均年薪数据, 并处理成Excel文档(data_8.1)。

▶ 东部: 13

>中部: 21

▶ 西部: 17

	А	В	С	D	Е	F	G	
1	OBS	LOCATION	SALARY	EAST	MIDDLE	WEST		
2	1	中部	19583	22482	19583	24624		
3	2	中部	20263	20969	20263	27186		
4	3	中部	20325	27224	20325	33990		
5	4	中部	26800	25892	26800	23382		
6	5	中部	29470	22644	29470	20627		
7	6	中部	26610	24640	26610	22795		
8	7	中部	30678	22341	30678	21570		
9	8	中部	27170	25610	27170	22080		
10	9	中部	25853	26015	25853	22250		
11	10	中部	24500	25788	24500	20940		
12	11	中部	24274	29132	24274	21800		
13	12	中部	27170	41480	27170	22934		
14	13	中部	30168	25845	30168	18443		
15	14	中部	26525		26525	19538		
16	15	中部	27360		27360	20460		
17	16	中部	21690		21690	21419		
18	17	中部	21974		21974	25160		
19	18	中部	20816		20816			
20	19	中部	18095		18095			
21	20	中部	20939		20939			
22	21	中部	22644		22644			
23	22	西部	24624					
24	23	西部	27186					

描述性统计分析

怎样检验东部和西部在均值是否存在显著差异?

- ❖地理位置真的是影响教师薪水差异的关键因素吗?
- ❖除了地理位置,还存在其他因素吗?
- ❖怎样排除其他因素的影响?

引例:虚拟变量模型

❖比较某个国家三个地区(东部、中部和西部)公 立学校教师平均薪水在统计上的差异(data_8.2)

$$Y_{i} = \beta_{0} + \beta_{0}D_{1i} + \beta_{2}D_{2i} + \mu_{i}$$
 为什么三个地区只 $Y_{i} =$ 第 i 个县的平均薪水 设两个虚拟变量? $D_{1i} = \begin{cases} 1 & 若该县位于中部 \\ 0 & 其它 \end{cases}$ 其它

给定:
$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \mu_i$$

中部平均薪水:

$$E(Y_i \mid D_{1i} = 1, D_{2i} = 0) = \beta_0 + \beta_1$$

西部平均薪水:

$$E(Y_i \mid D_{1i} = 0, D_{2i} = 1) = \beta_0 + \beta_2$$

东部平均薪水:

$$E(Y_i \mid D_{1i} = 0, D_{2i} = 0) = \beta_0$$

_		SALARY	LOCATION	SPENDING	D1	D2	^
	1	19583	中部	3346	1	0	
	2	20263		3114	1	0	
	3	20325	中部	3554	1	0	
	4	26800	帝中	4642	1	0	
	5	29470	中部	4669	1	0 .	
	6	26610	帝中	4888	1	0	
	7	30678	帝中	5710	1	0	D1: 中部
	8	27170	帘中	5536	1	0	
	9	25853	帝中	4168	1	0	D2:西部
	10	24500	帝中	3547	1	0	
	11	24274	帝中	3159	1	0	
	12	27170	帝中	3621	1	0	
	13	30168	帝中	3782	1	0 '	
	14	26525	帘中	4247	1	0	
	15	27360	帝中	3982	1	0	
	16	21690	帘中	3568	1	0	
	17	21974	帝中	3155	1	0	
	18	20816	帝中	3059	1	0	
	19	18095	帘中	2967	1	0	
	20	20939	帘中	3285	1	0	
	21	22644	中部	3914	1	0	_
	22	24624	西部	4517	0	1	
	23	27186	西部	4349	0	1	
	24	33990	西部	5020	0	1	
	25	23382	西部	3594	0	1	
	26	20627	西部	2821	0	1	
	27	22795		3366	0	1	
	28	21570	—	2920	0	1	
	29	22080	西部	2980	0	1	~
	< IIII						▶ .::

Sample: 1 51

Included observations: 51

D1:中部 D2:西部

Variable Coefficient Std. Error t-Statistic Prob.

.0000 .2330

-3264.615 -2.177637 D21499,155 0.0344

24356.22

Adjusted K-squared

0.052170

S.D. dependent var

4179,426

仅仅是地区因素吗?

Sample: 1 51

Included observations: 51

根据回归结果,你的结论是什么?

4179,426

18.36827

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C D1 D2 SPENDING	13269.11 -1673.514 -1144.157 3.288848	1395.056 801.1703 861.1182 0.317642	9.511530 -2.088837 -1.328687 10.35393	0.0000 0.0422 0.1904 0.0000
R-squared	0.722665	Mean dependent var		24356.22

D1:中部

D2:西部

根据新的回归结果,政府应该补贴哪个地区的教师?

S.D. dependent var

Akaike info criterion

Prob(F-statistic)

Adjusted R-squared

S.E. of regression

0.000000

0.704963

2270.152

虚拟变量的设置原则

- ❖每一定性变量所需的虚拟变量个数要比该定性变量的类别数少1,即如果有m个定性变量,只在模型中引入m-1个虚拟变量。
- ❖在同一个方程中,可以引入多个虚拟变量来考察 多种定性因素的影响。

房屋价格

房屋的土 地面积

建筑年龄

卧室 数目

是否有 壁炉

是否面 朝海滩

 $PRICE_{i} = \beta_{0} + \beta_{1}LOT_{i} + \beta_{2}AGE_{i} + \beta_{3}BED_{i} + \beta_{4}FIRE_{i} + \beta_{5}BEACH_{i} + \varepsilon_{i}$

虚拟变量的引入

❖加法形式:考察截距的不同

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}D_{i} + \mu_{i}$$

❖乘法形式:考察斜率的不同

$$C_{t} = \beta_{0} + \beta_{1}X_{t} + \beta_{2}D_{t}X_{t} + \mu_{t}$$

❖混合形式: 截距和斜率同时发生变化

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{3}D_{i} + \beta_{4}(D_{i}X_{i}) + \mu_{i}$$

单独采用乘 法形式的情 况极少

DiXi:被称为斜率虚拟变量

例:考察1992年前后的中国居民的总储蓄-收入关系是否已发生变化。以Y为储蓄,X为收入。

则有可能出现下述四种情况中的一种:

- $1. \alpha_1 = \beta_1$,且 $\alpha_2 = \beta_2$,称为重合回归。
- $2. \alpha_1 \neq \beta_1$,但 $\alpha_2 = \beta_2$,差异仅在其截距,称为平行回归。
- $3. \alpha_1 = \beta_1$,但 $\alpha_2 \neq \beta_2$,差异仅在其斜率,称为同截距回归
- 4. $\alpha_1 \neq \beta_1$,且 $\alpha_2 \neq \beta_2$,两个回归完全不同,称为非相似回归。

将 n_1 与 n_2 次观察值合并,估计以下回归方程:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{3}D_{i} + \beta_{4}(D_{i}X_{i}) + \mu_{i}$$

$$\mathbf{D_i}$$
为引入的虚拟变量: $D_i = \begin{cases} 1 & 1992$ 年前 $0 & 1992$ 年后

于是有:

$$E(Y_i | D_i = 0, X_i) = \beta_0 + \beta_1 X_i$$

$$E(Y_i | D_i = 1, X_i) = (\beta_0 + \beta_3) + (\beta_1 + \beta_4) X_i$$

可分别表示1992年后面年度和前面年度的储蓄函数。

具体的回归结果为:

$$\hat{Y}_i = -15452 + 0.8881X_i + 13802.3D_i - 0.4765D_iX_i$$
t\(\hat{\text{l}}\) (-6.11) (22.89) (4.33) (-2.55)
$$\{\bar{R}^2 = 0.9836}\$$

储蓄函数分别为:

1992年前:
$$\hat{Y}_i = -1649.7 + 0.4116X_i$$

1992年后:
$$\hat{Y}_i = -15452 + 0.8881X_i$$

- ❖某企业的工会宣称存在性别歧视:女性的收入比 男性低,并且这种差异在年龄较大的女性群体表 现地尤为明显。
 - > 你能设计一个实证检验方案吗?
 - >你打算收集那些数据?

经济学中的实验方法

- ❖随机分配实验
 - ▶ 处理组(treatment group):参与实验人员
 - ➤ 对照组(comparison group)或控制组(control group): 未参与实验的人员
- ❖ 自然实验(natural experiment)
 - >观测值自然产生,由外生事件引起
 - > 自然事件、政策变动

- ❖2003年美国有10个州增加了对香烟的税收,预期增税将导致烟草消费量减少。这些州实现了降低烟草消费的目的吗(Table16-2)?
 - >你能设计一个实证检验方案吗?
 - ✓收集10个州在增税前后的相关数据,进行纵向对比检验?
 - ✓在某一个时点上收集这10个州与非增税州的相关数据,进行横向比较?
 - ✓同时收集增税州与非增税州的相关数据,进行比较?

❖第七章 (P128): 习题1、3、5、8