Sorbonne Université Cryptologie, cryptographie algébrique 4M035 - 2021/22 - Enseignement à distance Alain Kraus

Premier devoir

À rendre pour le lundi 21 mars

Exercice 1

Soit f le polynôme X^2+X+1 dans $\mathbb{F}_5[X]$. Considérons l'anneau quotient

$$K = \mathbb{F}_5[X]/(f)$$
.

- 1) Montrer que K est un corps. Quel est son cardinal ? Soit α la classe de X modulo l'idéal (f).
- 2) Quels sont les ordres de α et de $1+2\alpha$ dans K^* ?
- 3) En déduire que $3+4\alpha$ est un générateur de K^* .

Une personne Alice utilise l'algorithme de El Gamal afin de permettre à quiconque de lui envoyer des messages confidentiels. Pour cela, elle publie le triplet

$$(K, 3 + 4\alpha, 2 + 4\alpha).$$

- 4) Quel est le plus petit entier $a \ge 1$ tel que $(3+4\alpha)^a = 2+4\alpha$?
- 5) Alice reçoit le couple $(1 + \alpha, t)$ où $t \in K^*$. Quel est le message décrypté ?

Exercice 2

Cet exercice concerne l'analogue des nombres de Mersenne dans l'anneau $\mathbb{Z}[i]$ formé des nombres complexes a+ib où $a,b\in\mathbb{Z}$.

Soit $n \ge 1$ un entier impair. Posons dans $\mathbb{Z}[i]$

$$\alpha_n = (1+i)^n - 1.$$

1) Montrer que l'on a

$$\alpha_n = \left(\frac{2}{n}\right)2^{\frac{n-1}{2}} - 1 + i\left(\frac{-2}{n}\right)2^{\frac{n-1}{2}},$$

où $\left(\frac{2}{n}\right)$ et $\left(\frac{-2}{n}\right)$ désignent les symboles de Jacobi.

Indication : Utiliser l'égalité $1 + i = \sqrt{2}e^{\frac{\pi i}{4}}$.

Soit $|\alpha_n|$ le module de α_n . Posons

$$M_n = |\alpha_n|^2.$$

2) En déduire que l'on a

$$M_n = 2^n - \left(\frac{2}{n}\right)2^{\frac{n+1}{2}} + 1.$$

- 3) Soient a et b des entiers naturels impairs.
 - 3.1) Supposons que a divise b. Montrer que α_a divise α_b dans $\mathbb{Z}[i]$. En déduire que M_a divise M_b .
 - 3.2) Supposons a > b. Montrer que l'on a $M_a > M_b$.
- 4) En déduire que si M_n est premier, alors n est premier.

Soit p un nombre premier congru à 3 modulo 4.

- 5) Supposons M_p premier. Calculer le symbole de Legendre $\left(\frac{5}{M_p}\right)$.
- 6) En utilisant un résultat du cours que l'on précisera, en déduire l'équivalence

$$M_p$$
 est premier \iff $5^{\frac{M_p-1}{2}} \equiv -1 \mod M_p.$

7) Si vous disposez d'un logiciel de calcul, établir la liste des nombres premiers p < 100 congrus à 3 modulo 4, pour lesquels M_p est premier.

Remarque. Si p est nombre premier congru à 1 modulo 4, on peut démontrer, mais c'est plus difficile, que l'on a l'équivalence

$$M_p$$
 est premier \iff $5^{\frac{M_p-1}{4}} \equiv -1 \mod M_p.$