Notations. k sera un corps algébriquement clos. Et V un k-espace vectoriel de dimension finie d. On notera V^* son dual.

On notera = ou \simeq les isomorphismes naturels (selon si ils sont plus ou moins naturels au sens commun) et \cong ceux qui ne sont pas canoniques dans le contexte. Par exemple on pourra noter $V \cong k^d$. Par contre si préalablement, une base de V a été fixée, on aurait du noter $V \simeq k^d$ (ou $V = k^d$), il existe un choix canonique d'un tel isomorphisme pour une base fixée.

1 Notions de base

1.1 Algèbre multilinéaire

- Produit tensoriel. Algèbre tensorielle
- Produit symétrique. Algèbre symétrique
- Produit extérieur. Algèbre extérieure
- Algèbre graduée

Proposition 1

 $S(V^*) \simeq K[V]$

Proposition 2

Si $G \subseteq V^*$ et $F \subseteq V$ sont deux sous-espaces vectoriels alors il existe des applications naturelles $V^{**} = V \to G^*$ et $V^* \to F^*$ dites de "restriction" obtenues par dualité à partir des inclusions ci-dessus. Et de plus, les suites

$$0 \to G^{\circ} \to V \to G^* \to 0$$

et

$$0 \to F^{\perp} \to V^* \to F^* \to 0$$

sont exactes.

1.2 Fibrés vectoriels

Soit $f: M \to N$ lisse, alors

En particulier, on a une suite exacte de fibrés vectoriels sur M,

$$0 \to K \to TM \to f^*TN \to Q \to 0$$

- -Q = 0 ssi f submersion
 - Dès lors K est le fibré tangent aux fibres de f dans M
- -K = 0 ssi f immersion

Dès lors Q est le tiré-en-arrière du fibré normal à l'image de f dans N

2 L'espace projectif

On note

$$\mathbb{P}(V) = \{ \ker \varphi \mid \varphi : V \to k \text{ linéaire surjective } \}$$

 Et

$$\mathcal{O}(-1) = \{ (K, \psi) \in \mathbb{P}V \times V^* \mid \ker \psi \subseteq K \}$$

qui est un fibré localement libre (et inversible) de rang 1.

Fixons un $K \in \mathbb{P}(V)$.

peut-être faux

Alors
$$\mathcal{O}(-1)_K = \{ \psi \in V^* \mid \ker \psi \subseteq K \} \subseteq V^*$$

On a une application naturelle $V \to (\mathcal{O}(-1)_K)^*$ qui a v associe l'évaluation en $v : A \psi \in V^*$ telle que $\ker \psi \subseteq K$, on associe $\psi(v)$. Dès lors le noyau de cette application est K, ce qui peut se résumer par la suite exacte suivante

$$0 \to K \to V \to \mathcal{O}(-1)_K^* \to 0$$

Définition 1

On note

$$\mathcal{O}(1) = \mathcal{O}(-1)^*$$

Le fibré inversible dual, que l'on appelle le fibré universel ou hyperplan.

On peut reformuler le résultat obtenu : Pour $K \in \mathbb{P}V$, la suite

$$0 \to K \to V \to \mathcal{O}(1)_K \to 0$$

est exacte.

3 Quelques suites exactes de fibrés vectoriels et leurs interprétations géométriques

3.1 Suite exacte d'Euler

$$0 \to \mathcal{O} \to \underline{V} \otimes \mathcal{O}(1) \to T\mathbb{P}V \to 0$$

Unrelated Il paraîtrait que le tangent en un point s'identifie naturellement à un espace vectoriel de la manière suivante

$$T_K \mathbb{P} V \simeq \operatorname{Hom}(K, K^{\circ})$$

also unrelated Les $\mathcal{O}(n)$ pour n > 0 ne sont JAMAIS des sous-fibré d'un fibré vectoriel trivial!! Tandis que les $\mathcal{O}(-n)$ le sont.

En effet un section au dessus de \mathbb{P}^n d'un fibré trivial est constante. Ainsi tout sous-fibré d'un fibré trivial ne peut avoir comme section que les sections constantes. Et en fait dans le cas des $\mathcal{O}(-n)$, cette constante doit appartenir à toutes les fibres, qui sont, dans le cas $\mathcal{O}(-1)$, toutes les droites de \mathbb{C}^{n+1} . Du coup cette constante est nécessairement nulle. Réciproquement les section des $\mathcal{O}(n)$ sont des restrictions de section de $((C^m)^{\otimes}n)^*$ donc des formes n-linéaires sur \mathbb{C}^m . Reste à montrer que ce sont exactement celles-ci.

Things to tell To Do!!

- Proj Euler exact sequence
- Chern class, Picard group...
 Tautological bundle
 Universal bundle

- Canonical bundle
- Bezout thm
- Grothendieck-Birkoff thm