Math 322 Suggested solutions to Homework Set 2

Problem 1. (i) Let us write $a_{s,t}$ for the (s,t)-th entry of the adjacency matrix A of G, and $b_{s,t}$ for the (s,t)-th entry of the matrix $A^2 = A \cdot A$; in other words, we write $A = (a_{s,t})_{1 \leq s,t \leq n}$ and $A^2 = (b_{s,t})_{1 \leq s,t \leq n}$.

We recall that

$$a_{s,t} = \begin{cases} 1 & \text{if } \{v_s, v_t\} \in E(G) \\ 0 & \text{otherwise} \end{cases}.$$

We also have that

$$b_{i,j} = \langle \text{Row}_i(A), \text{Col}_j(A) \rangle$$

$$= \sum_{s=1}^n a_{i,s} \cdot a_{s,j}$$

$$= \left| \left\{ s \in \{1, 2, \dots, n\} : a_{i,s} = a_{s,j} = 1 \right\} \right|$$

$$= \left| \left\{ s \in \{1, 2, \dots, n\} : \{v_i, v_s\} \in E(G) \text{ and } \{v_s, v_j\} \in E(G) \right\} \right|.$$

In other words, $b_{i,j}$ equals the number of vertices v_s which are adjacent both to v_i and to v_j , which is what we wanted to show.

As the subsequent remark also states, this is the same as the total number of $v_i - v_j$ walks of length 2 in the graph G.

(ii) We will use induction in k to verify the following

Claim 1. For every $s, t \in \{1, 2, ..., n\}$ (with s not necessarily different from t), the (s, t)-th entry of A^k is equal to the total number of $v_s - v_t$ walks of length k in G (that is, walks in G which have length k and endvertices the vertex v_s and the vertex v_t).

Note that this includes the desired conclusion of part (ii), as well as the corresponding conclusion for the cases where s=t (which part (ii) did not require us to consider); however it is easier to prove the entire claim using induction. Observe also that, when s=t (or in other words, v_s and v_t stand for the same vertex of G), $b_{s,s}$ counts closed walks of length k.

Base Case: k=2. We observe that we have verified the claim in this case in part (i) as well as in HW1, Problem 1 (where we showed that the (i,i)-th entry of A^2 equals the number of neighbours of the vertex v_i ; note that, as we argue in the Remark after part (i), we can check that the number

of neighbours of v_i coincides with the number of closed walks of length 2 which start (and end) at v_i).

Induction Step: Assume that the claim has been verified for some $k \ge 2$, and we now want to prove it for k+1. For convenience, let us write $w_{s,t}$ for the (s,t)-th entry of the matrix A^k (that is, $A^k = (w_{s,t})_{1 \le s,t \le n}$). We also keep writing $A = (a_{s,t})_{1 \le s,t \le n}$.

Consider $i, j \in \{1, 2, ..., n\}$ (not necessarily different). Then

$$\begin{array}{l} (i,j)\text{-th entry of }A^{k+1}=(i,j)\text{-th entry of }A^k\cdot A\\ &=\langle \mathrm{Row}_i(A^k),\,\mathrm{Col}_j(A)\rangle\\ &=\sum_{s=1}^n w_{i,s}\cdot a_{s,j}\\ &=\sum_{s:a_{s,j}=1}w_{i,s}. \end{array}$$

In other words, if $v_{l_1}, v_{l_2}, \ldots, v_{l_{d_j}}$ are the neighbours of v_j in G where $d_j = \deg(v_j)$ (that is, $l_1, l_2, \ldots, l_{d_j}$ are those indices s for which we have $a_{s,j} = 1$), then

the
$$(i, j)$$
-th entry of A^{k+1} equals

the number of walks in G of length k which start at v_i and end at v_{l_1}

- + the number of walks in G of length k which start at v_i and end at v_{l_2}
- + the number of walks in G of length k which start at v_i and end at v_{l_3}

+ the number of walks in G of length k which start at v_i and end at $v_{l_{d_i}}$.

This final sum equals the total number of walks in G of length k+1 which start at v_i and end at v_j : indeed,

- note that, if $v_i u_1 u_2 \cdots u_{k-1} u_k v_j$ is such a walk, then the vertex u_k must be a neighbour of v_j . Say it is the vertex v_{l_r} for some $1 \leq r \leq d_j$, in which case the initial part $v_i u_1 u_2 \cdots u_{k-1} u_k$ of this walk, which is itself a walk of length k from v_i to $u_k = v_{l_r}$, is counted above by the term w_{i,l_r} .
- Conversely, for any walk $v_i z_1 z_2 \cdots z_{k-1} v_{l_r}$ of length k which starts at v_i and ends at a neighbour v_{l_r} of v_j , we can get a walk of length k+1 which ends at v_j by just adding the vertex v_j at the end of the sequence $v_i z_1 z_2 \cdots z_{k-1} v_{l_r}$; thus each such walk of length k corresponds uniquely to a $v_i v_j$ walk of length k+1.

We conclude that the (i, j)-th entry of A^{k+1} equals the total number of $v_i - v_j$ walks of length k+1 in G. This completes the proof of the Induction Step too.

(iii) (Practice Question) Note that, by proving the entire Claim 1 in part (ii), we have also verified that each diagonal entry $w_{j,j}$ of A^k counts the total number of closed walks of length k which start (and end) at the vertex v_j .

Problem 2. (i) The graph G_1 below has order 6 and size 12. Thus, its complement has size 3, and is clearly disconnected (we can also verify this from the pictures).

3

Figure 1: Graph G_1

Figure 2: Complement of G_1

(ii) The 7-cycle below has order 7 and is connected, with a connected complement too.

Figure 3: Graph C_7

Figure 4: Complement of C_7

- (iii) Let us write u_1, u_2, \ldots, u_n for the vertices of H. Then $v = u_{j_0}$ for some $j_0 \in \{1, 2, \ldots, n\}$.
 - We have that $V(H-v) = V(H-u_{j_0}) = \{u_i : 1 \le i \le n, i \ne j_0\}$. Also, $E(H-v) = E(H-u_{j_0})$ no longer contains any edges of H that v was incident with, but it contains all other edges, that is, all edges of H whose endvertices are in the set $U' = \{u_1, u_2, \dots, u_n\} \setminus \{u_{j_0}\}$.

But then the vertex set of $\overline{H-v}=\overline{H-u_{j_0}}$ is again

$$U' = \{u_1, u_2, \dots, u_n\} \setminus \{u_{j_0}\},\$$

while its edge set is

$$[U']^2 \setminus E(H - u_{i_0}),$$

that is, it contains an edge joining two vertices in U' if and only if those two vertices were not joined in $H - u_{j_0}$ (equivalently, if and only if those two vertices were not joined in H).

• We have that $V(\overline{H}) = V(H) = \{u_1, u_2, \dots, u_n\}$, while

$$E(\overline{H}) = [V(H)]^2 \setminus E(H),$$

that is, it contains an edge joining two vertices in $\{u_1, u_2, \dots, u_n\}$ if and only if those two vertices are not joined in H.

In particular, for any two vertices in $U' = \{u_1, u_2, \ldots, u_n\} \setminus \{u_{j_0}\}$, we have that \overline{H} contains an edge if and only if these two vertices are not joined in H. But these edges of \overline{H} are exactly the edges that will not be removed when we delete the vertex $v = u_{j_0}$, and coincide with the edge set of $\overline{H} - v = \overline{H} - u_{j_0}$, as we saw above.

Finally,
$$V(\overline{H} - v) = U'$$
.

We conclude that $\overline{H-v}$ and $\overline{H}-v$ have the same vertex set, and also the same edge set. Thus they are the same graph.

Problem 3. Let us write v_1, v_2, \ldots, v_n for the vertices of G (recall that $n \ge 2$) and e_1, e_2, \ldots, e_m for the edges of G, which are also the vertices of L(G).

Consider two different edges e_i , e_j of G. We need to show that there is a $e_i - e_j$ path in L(G). Let v_{i_1}, v_{i_2} be the two endvertices of e_i , and v_{j_1}, v_{j_2} be the two endvertices of e_j (note that these aren't necessarily four distinct vertices, because the edges e_i and e_j that we have considered might have a common endvertex).

We can consider two cases:

Case 1: e_i and e_j have a common endvertex; say $v_{i_1} = v_{j_1}$. Then e_i and e_j are neighbours in L(G), and therefore the sequence $e_i e_j$ is a path from e_i to e_j .

Case 2: e_i and e_j don't have a common endvertex. Then $v_{i_1}, v_{i_2}, v_{j_1}$ and v_{j_2} are four different vertices of G. Given that G is connected, we can find a $v_{i_1}-v_{j_1}$ path in G. We write this path here, including the edges of G that it traverses:

$$v_{i_1} - e_{s_1} - w_1 - e_{s_2} - w_2 - e_{s_3} - w_3 - \cdots - w_{l-2} - e_{s_{l-1}} - w_{l-1} - e_{s_l} - v_{j_1}$$
.

Observe that $w_1, w_2, \ldots, w_{l-1}$ are l-1 distinct vertices of G which are also all different from v_{i_1} and v_{j_1} . It also follows that $e_{s_1}, e_{s_2}, \ldots, e_{s_l}$ are l distinct edges of G. Moreover, consecutive edges here are adjacent (since they share one endvertex), and hence the sequence

$$e_{s_1} e_{s_2} e_{s_3} \cdots e_{s_{l-1}} e_{s_l}$$

is a path in L(G).

We now check that this path can give us the e_i-e_j path in L(G) that we want. We consider a few cases:

- $-e_{s_1}=e_i$ and $e_{s_l}=e_j$. This happens if we already have that $w_1=v_{i_2}$ and $w_{l-1}=v_{j_2}$. Then the path we already found is the path we wanted.
- $-e_{s_1} = e_i$ but $e_{s_l} \neq e_j$. In this case, e_{s_l} is a neighbour of e_j in L(G) (given that these two edges of G both have v_{j_1} as an endvertex). Therefore, the sequence

$$e_i = e_{s_1} e_{s_2} e_{s_3} \cdots e_{s_{l-1}} e_{s_l} e_{j}$$

is also a path in L(G).

 $-e_{s_l}=e_j$ but $e_{s_1}\neq e_i$. We can deal with this case completely analogously to the previous one: the sequence

$$e_i e_{s_1} e_{s_2} e_{s_3} \cdots e_{s_{l-1}} e_{s_l} = e_j$$

is a path in L(G).

– Finally, in the case that both $e_{s_1} \neq e_i$ and $e_{s_l} \neq e_j$, the $e_i - e_j$ path we want is the path

$$e_i e_{s_1} e_{s_2} e_{s_3} \cdots e_{s_{l-1}} e_{s_l} e_j$$

(note that, in this case, e_{s_1} and e_i are neighbours in L(G) since they share the vertex v_{i_1} when viewed as edges of G, and similarly e_{s_l} and e_j are neighbours in L(G) since they share the vertex v_{j_1} when viewed as edges of G).

Problem 4. (i) We start with the assumption that $G_1 \cong G_2$. Then we know that, if $V(G_1) = \{v_1, v_2, \dots, v_n\}$, while $V(G_2) = \{u_1, u_2, \dots, u_n\}$, we can find a bijection

$$f:V(G_1)\to V(G_2)$$

such that, for every $i, j \in \{1, 2, ..., n\}$, we will have that

$$\{v_i, v_i\} \in E(G_1)$$
 if and only if $\{f(v_i), f(v_i)\} \in E(G_2)$.

This also implies that, if $E(G_1) = \{e_1, e_2, \dots, e_{m-1}, e_m\}$ is the edge set of G_1 and $E(G_2) = \{d_1, d_2, \dots, d_{m-1}, d_m\}$ is the edge set of G_2 , then we also get a bijection

$$g: E(G_1) \to E(G_2).$$

Indeed, we can set $g(e_s) = d_t$ if the following holds true: the endvertices of e_s are the vertices v_i, v_j of G_1 while the endvertices of d_t are the vertices $u_k = f(v_i)$ and $u_l = f(v_j)$ of G_2 (note that this rule gives us a function from $E(G_1)$ to $E(G_2)$ which is injective, given that f is injective, and also surjective, since $\{f(v_i), f(v_j)\} \in E(G_2)$ only if $\{v_i, v_j\} \in E(G_1)$).

We now recall that $V(L(G_1)) = E(G_1) = \{e_1, e_2, \dots, e_{m-1}, e_m\}$, while $V(L(G_2)) = E(G_2) = \{d_1, d_2, \dots, d_{m-1}, d_m\}$. We already have the bijection

$$g:V(L(G_1))\to V(L(G_2)).$$

We check that this is a graph isomorphism. We have that

$${e_i, e_j} \in E(L(G_1))$$

if and only if

the edges e_i and e_j of G_1 have a common endvertex, say vertex $v_s \in V(G_1)$

if and only if

the edges $g(e_i)$ and $g(e_j)$ of G_2 have a common endvertex, vertex $f(v_s) \in V(G_2)$

if and only if

$$\{g(e_i), g(e_j)\} \in E(L(G_2)).$$

Thus g preserves adjacencies. Given that we have found a graph isomorphism from $L(G_1)$ to $L(G_2)$, we conclude that $L(G_1) \cong L(G_2)$.

(ii) In the picture below we have labelled representations of the graphs $K_{1,3}$ and K_3 (note that we have only labelled the edges of the graphs):

We observe that each of these graphs has 3 edges, any two of which are adjacent. Therefore, the line graph of either of these graphs is isomorphic to K_3 , the complete graph on 3 vertices:

Problem 5. (i) Here is a labelled representation of W_6 :

Based on this labelling, the line graph of W_6 is given by

Moreover, the complement $\overline{L(W_6)}$ of $L(W_6)$ is

We now turn to the complete graph K_5 . We know that it contains $\binom{5}{2}$ = 10 edges, which we can label as follows: suppose that the vertices of K_5 are denoted by 1, 2, 3, 4 and 5; then the edge joining e.g. vertices 1 and 4 can be referred to as edge 14.

Observe also that each edge of K_5 is adjacent to exactly six other edges of K_5 (why?), so $L(K_5)$ will be a 6-regular graph on 10 vertices.

Below is a drawing of $L(K_5)$ based on the labelling just described:

Also, here is the complement $\overline{L(K_5)}$ of $L(K_5)$ (which contains 15 edges, given that $L(K_5)$ contains $\frac{10\cdot6}{2}=30$ edges, and given that the complete graph on 10 vertices has $\binom{10}{2}=45$ vertices):

- (ii) In the given picture, we have that only the graphs A, B and E are trees.
 - Regarding the graph A, we note that it contains 14 edges, and thus L(A) will contain 14 vertices. More specifically, we can label the edges of A as follows:

in which case its line graph will be

• Regarding the graph B, we note that it contains 8 edges, and thus L(A) will contain 8 vertices. More specifically, we can label the edges of B as follows:

in which case its line graph will be

• Finally, we note that graph E coincides with $K_{1,4}$. It has 4 edges, any two of which are adjacent, and thus its line graph is K_4 :

Problem 6. We recall that, in any bipartite graph $K_{s,t}$, the vertices in the first partite set all have degree t, while the vertices in the second partite set all have degree s.

Therefore, $\delta(K_{s,t}) = \min\{s,t\}$. If we now had that both s and t were different from 1 (and thus larger than 1, since they are both positive integers), it would follow that the minimum degree of the graph is ≥ 2 . But then, by Problem 7, part (ii) of this homework set, we would be able to find a cycle in $K_{s,t}$.

This contradicts the assumption that $K_{s,t}$ is a tree. Therefore, we must have that at least one of s and t is equal to 1, and hence $K_{s,t}$ turns out to be a star.

Problem 7. (i) Let s_0 be the largest possible length of a path in G (clearly we can find a maximum value here, since a path in G can contain at most all the vertices of G, so it can have length at most |G| - 1). We need to show that $s_0 \ge k$.

Assume towards a contradiction that $s_0 < k$, and consider a path P_0 in G which has length s_0 . Let us write $x_0, x_1, x_2, \ldots, x_{s_0-1}, x_{s_0}$ for the vertices which P_0 passes through (in the order that these vertices appear in the path, with x_0 being one of the endvertices of P_0 , viewed here as its initial vertex).

Since $\delta(G) \ge k$, we have that $\deg(x_{s_0}) \ge k > s_0$, and thus we can find at least one neighbour of x_{s_0} which is not among the vertices $\{x_0, x_1, \dots, x_{s_0-1}\}$. Say this is the vertex y_0 of G.

But then the walk

$$x_0 x_1 x_2 \cdots x_{s_0-1} x_{s_0} y_0$$

is also a path of G (given that all the vertices are distinct), and it has length $s_0+1>s_0$, which contradicts the assumption that P_0 had the largest possible length among paths in G.

We conclude that the assumption that s_0 , the largest possible length of a path in G, is < k was incorrect.

(ii) Again, let us consider a path P_1 of G of largest possible length. Then P_1 has the form

$$z_0 z_1 z_2 \dots z_{l-1} z_l$$

for some distinct vertices $z_0, z_1, z_2, \ldots, z_{l-1}$ and z_l of G, with $l \ge k \ge 2$.

Claim. All the neighbours of z_0 will be among the vertices $z_1, \ldots, z_{l-1}, z_l$. This is because if this were not the case, then we could find a neighbour y_1 of z_0 which would not be among the vertices already in the path P_1 , and then the walk

$$y_1 z_0 z_1 z_2 \ldots z_{l-1} z_l$$

would be a longer path in G, contradicting the assumption that P_1 has longest possible length.

We look for the last vertex in P_1 which is a neighbour of z_0 ; say this is vertex z_{t_1} . Based on the claim, we know that $t_1 \ge \deg(z_0) \ge \delta(G) \ge k \ge 2$. Then the walk

$$z_0 z_1 z_2 \ldots z_{t_1-1} z_{t_1} z_0$$

is a cycle of G which passes through $t_1 + 1 \ge k + 1$ vertices.