Business Analytics

Session 10b. Integer Programming

Renyu (Philip) Zhang

New York University Shanghai

Spring 2019

Integer Solutions to LP

Rounding LP Solutions

- When is rounding a non-integer solution to an LP acceptable?
- If variables take on large values, rounding usually does not have big impact on feasibility or optimality.
 - This is the case for Google AdWords.
- Rounding is a big problem if the optimal LP solution values are small.
 - Especially when the decisions are 1/0, Yes/No.

A new approach: Interger programming.

eHarmony

Business Model of eHarmony

Online dating website focusing on long term relationships.

 Computes a compatibility score between two people, and uses optimization models to determine the best matches.

- Successful business
 - 4% of US marriages are a result of eHarmony
 - 14% of US online dating market
 - Over \$1 billion revenue
 - Divorce rate: 3.86%

Compatibility Scores

- Questionnaire of 436 questions on 29 different dimensions of personality.
- Computes a compatibility score between two people, and uses optimization models to determine the best matches.
- Successful matches must meet 25/29 compatibility areas.

Compatibility Scores

 Clustering: Compatibility scores based on similarity between users' answers to the questionnaire.

Trees: Compatibility between users bears a nonlinear structure.

Text analytics: Analyze the text of users' profiles.

Distance

Attractiveness of Appearances

Height Difference

eHarmony's Matching Problem

Matching Optimization

- Goal of eHarmony: Determine who should be matched to whom given the compatibility scores
- Toy example: 3 men and 3 women; compatibility score between 1 and 5 for all pairs.

	W_1	W_2	W ₃
M_1	1	3	5
M_2	4	2	2
M_3	1	5	3

Table 1: Compatibility Scores

Matching Optimization

- Key question: How to match pairs together to maximize the total compatibility score?
- Each woman should be matched with exactly one man, and vice versa.

Figure 1: A Feasible Matching

Greedy Strategy May not Be Optimal

W_1	W_2
5	3
4	1
	5

Table 2: Compatibility Scores

- Greedy matching: $M_1 W_1$, $M_2 W_2$.
 - Total compatibility score: 5+1=6
- Optimal matching: $M_1 W_2$, $M_2 W_1$.
 - Total compatibility score: 4+3=7

Integer Programming: Decision Variables and Objective Function

	W_1	W_2	W_3
M_1	X 11	X_{12}	X_{13}
M_2	\mathbf{x}_{21}	\mathcal{X}_{22}	X_{33}
M_3	X_{31}	\mathbf{x}_{32}	X 33

- $x_{ij} = 1$ if we match M_i and W_j together; otherwise $x_{ij=0}$.
 - For the case in Figure 1, $x_{13} = x_{21} = x_{32} = 1$, and the rest of $x_{ij} = 0$.
- This is called an integer programming model as the decision variables x_{ij} 's only take integer (0 or 1) values.
- Objective function:

$$x_{11} + 3x_{12} + 5x_{13} + 4x_{21} + 2x_{22} + 2x_{23} + x_{31} + 5x_{32} + 3x_{13}$$

Integer Programming: Constraints

- Binary constraints: $x_{ij} \in \{0,1\}$ ($1 \le i,j \le 3$).
- Each man is matched with one woman:
 - $x_{11} + x_{12} + x_{13} = 1$
 - $x_{21} + x_{22} + x_{23} = 1$
 - $x_{31} + x_{32} + x_{33} = 1$
- Each woman is matched with one man:
 - $x_{11} + x_{21} + x_{31} = 1$
 - $x_{12} + x_{22} + x_{32} = 1$
 - $x_{13} + x_{23} + x_{33} = 1$

Integer Programming (IP) for eHarmony Matching

$$\max \ \, \boldsymbol{x}_{11} + 3\boldsymbol{x}_{12} + 5\boldsymbol{x}_{13} + 4\boldsymbol{x}_{21} + 2\boldsymbol{x}_{22} + 2\boldsymbol{x}_{23} + \boldsymbol{x}_{31} + 5\boldsymbol{x}_{32} + 3\boldsymbol{x}_{13}$$

Subject to

$$egin{aligned} m{x}_{11} + m{x}_{12} + m{x}_{13} &= 1 \\ m{x}_{21} + m{x}_{22} + m{x}_{23} &= 1 \\ m{x}_{31} + m{x}_{32} + m{x}_{33} &= 1 \\ m{x}_{11} + m{x}_{21} + m{x}_{31} &= 1 \\ m{x}_{12} + m{x}_{22} + m{x}_{32} &= 1 \\ m{x}_{13} + m{x}_{23} + m{x}_{33} &= 1 \\ m{x}_{ij} \in \{1,0\}, \ \ \mbox{for} \ 1 \leq i,j \leq 3 \end{aligned}$$

IP for eHarmony Matching: Larger Scale

- N men and N women on the platform.
- The compatibility score of M_i to W_j is s_{ij} .
- $x_{ij} = 1$ if we match M_i to W_j ; otherwise $x_{ij} = 0$.

$$\max \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{s}_{ij} \boldsymbol{x}_{ij}$$

Subject to

$$\sum_{j=1}^{N} extbf{ extit{X}}_{ij} = 1$$
 for all $1 \leq i \leq N$ (Each man is matched with one woman)

$$\sum_{i=1}^{N} x_{ij} = 1$$
 for all $1 \leq j \leq N$ (Each woman is matched with one man)

$$\mathbf{x}_{ij} \in \{1, 0\}, \text{ for } 1 \leq i, j \leq N$$

Solving the Integer Program in Python

- Use the package "cvxopt" in Python to solve this integer program.
- Demonstration in Python.
- Optimal Matching Strategy:

	W_1	W_2	W ₃
M_1	$\mathbf{X}_{11}^* = 0$	$\mathbf{X}_{12}^* = 0$	$\mathbf{X}_{13}^* = 1$
M_2	$\mathbf{X}_{21}^* = 1$	$\mathbf{X}_{22}^* = 0$	$\mathbf{X}_{33}^* = 0$
M_3	$\mathbf{X}_{31}^* = 0$	$\mathbf{X}_{32}^* = 1$	$X_{33}^* = 0$

- Optimal Compatibility Score=14
- The IP model for eHarmony's matching optimization problem is also called the assignment model.
 - Even if we allow $x_{ij} \in [0,1]$, the optimal solution would still be binary, i.e., $x_{ii}^* \in \{0,1\}$.

Another Example of Integer Programming

Capital Budgeting

 The Tatham Company is considering 7 investment options, the cash requirements and net present value (NPV) of which are:

Project	Cash Required	NPV
1	\$5,000	\$16,000
2	\$2,500	\$8,000
3	\$3,500	\$10,000
4	\$6,000	\$19,500
5	\$7,000	\$22,000
6	\$4,500	\$12,000
7	\$3,000	\$7,500

- The cash available for investment is \$15,000.
- Goal: Maximize the total NPV.
- Formulate the capital budgeting problem as an integer program.

Modeling Constraints in Integer Programming

- If project 4 is undertaken, then project 5 must be taken: $x_4 \le x_5$.
- If project 4 and project 5 must be undertaken together: $x_4 = x_5$.
- If project 3 is undertaken, project 4 must be rejected: $x_3 + x_4 \le 1$.
- At most 3 of projects 1 through 5 can be undertaken: $x_1 + x_2 + x_3 + x_4 + x_5 \le 3$.
- Exactly 1 of the first 3 projects must be undertaken: $x_1 + x_2 + x_3 = 1$.

Homework

• Submit your choice of final topic to me if you haven't done so.

Read Analytics Edge, Chapter 12, Chapter 22.6-22.7.

• Finish Homework 9 and 10 (NO need to submit it).

Read the required reading for Session 11.