(Some) Waveform Simulation [MDC] Infrastructure

All-Sky Burst Call Oct 21st 2014

James A. Clark

Georgia Institute Of Technology

Bursts In LALSimulation

LALSimulation: simulation engine for well-defined, analytic waveforms. Can make the following *right now*:

- sine-Gaussians
- white noise bursts
- Gaussians (?)
- Cosmic strings
- . . .

Astrophysical waveforms will require a little more work:

- Supernovae
- Binary coalescence with matter
- NR BBH (!)

MDC Generation With LALSimulation

Utilities in excess-power for e.g.,:

- MDC frames with user-specified distributions on optimal-SNR h_{rss} , frequencies, quality factors, bandwidths, durations etc
- Distributions created by lalapps_binj creates XML file with a sim_burst which is readable by LAL codes.
- Already deployed in ETG comparison study, cosmic string search

Useful links:

- ETG trigger comparison wiki: https://wiki.ligo.org/viewauth/DetChar/ETGperformanceStudy
- Excess-power utilities: https://github.com/cpankow/excesspower-utils

Astrophysical Waveforms: NINJA Codes

LALSimulation and friends: parameterised waveforms. No current support for waveforms directly from numerical simulation (SNe, NR BBH, NSBH, BNS).

- Obvious candidate: NINJA codes¹
- NINJA infrastructure: tools and standards for handling NR BBH data in a standard format, project signals with random extrinsic params onto detectors.
- Currently only support binary mergers (i.e., sim_inspiral tables); would be convenient to add support to sim_burst for e.g., SNe & injection-finding / characterisation using burst codes
- NINJA codes were used in IMR study, S6 IMBH analysis, post-BNS merger studies (and NINJA!)

¹Currently broken, unmaintained...

LALSimulation & Swig

Worth noting injections easily performed in python using swig-wrapped LAL routines:

- Construct LAL TimeSeries objects for h_+ , h_\times (e.g., read from file or generated with LALSimulation)
- ② Generate sky-location, polarisation, detector site (can e.g., be read from sim_burst, sim_inspiral tables)
- $oldsymbol{3}$ SimDetectorStrainREAL8TimeSeries() projects $h_{+, imes}$ onto this detector with these angles
- Can then pass the TimeSeries or python arrays directly on for further analysis or write to frame with e.g. pylal frame library

LALSim & Swig

Currently using LALSim/Swig in LIB post-merger studies:

- Read quadrupole moments J_{xx} , J_{xy} , ... from file
- ② Construct expansion parameters H_{lm} (see LIGO-T1000553)
- **3** Generate random (θ, ϕ) and construct

$$h_{+} - ih_{\times} = \frac{1}{D} \sum_{l=2}^{\infty} \sum_{m=-2}^{m=2} H_{lm}(t)^{-2} Y_{lm}(\theta, \phi)$$
 (1)

- **①** Choose detector, sky-location & project $h_{+,\times}$ onto detector
- Write to frame, generate cache file
- O Call lalinference_nest with subprocess.call()
- O Delete frame, cache
- **◎** repeat (3–7)...

Summary

- LALSimulation + LALBurst + GSTLAL = well documented, largely reviewed and easy way to generate MDCs
- Can be run by anyone with LDG access (i.e., software is installed system-wide)
- Used in ETG trigger study & cosmic string analysis
- Only standard ad hoc burst waveforms (+strings) currently supported
- NINJA can be used for unparameterized, astrophysical waveforms (e.g., NR mergers, SNe) but some maintenance required, details TBD for SNe
- Swig-wrapped LAL: high-level routines for waveform generation & injection - useful for development & plotting
- Wiki to collate info & examples coming soon!