Optimal Bayesian Kalman Filtering with Prior Update

Toshinori Kitamura

University of California Davis tkitamura@ucdavis.edu

March 2, 2019

Overview

- What's this paper?
- Overview Kalman Filter
 - Basic Idea
 - Algorithm
 - Problem of Kalman Filter
 - Solutions of the Problem
- ③ A Bayesian Solution: IBR Kalman Filter
 - Basic Idea
 - Algorithm
- Prior update: Optimal Bayesian Kalman Filter
 - Basic Idea
 - Algorithm
 - Find Posterior Expectations
 - Performance
 - Problems and Future Works
- Summery

What's this paper?

- Overview Kalman Filter
 - Basic Idea
 - Algorithm
 - Problem of Kalman Filter
 - Solutions of the Problem
- 3 A Bayesian Solution: IBR Kalman Filter
 - Basic Idea
 - Algorithm
- 4 Prior update: Optimal Bayesian Kalman Filter
 - Basic Idea
 - Algorithm
 - Find Posterior Expectations
 - Performance
 - Problems and Future Works
- 5 Summery

What's this Paper?

- Introduce a new Kalman Filter: Optimal Bayesian Kalman Filter(OBKF)[Dehghannasiri et al., 2018]
- OBKF is a advanced Kalman Filter of IBR Kalman Filter[Dehghannasiri et al., 2017]
- OBKF exploit the measured data to estimate the true unknown value

- What's this paper?
- Overview Kalman Filter
 - Basic Idea
 - Algorithm
 - Problem of Kalman Filter
 - Solutions of the Problem
- 3 A Bayesian Solution: IBR Kalman Filter
 - Basic Idea
 - Algorithm
- 4 Prior update: Optimal Bayesian Kalman Filter
 - Basic Idea
 - Algorithm
 - Find Posterior Expectations
 - Performance
 - Problems and Future Works
- 5 Summery

Kalman Filter: Basic idea

- Outputs the optimal estimation of the state of a dynamic system
- Exploits both the prediction based on the model and the measurement
- Application Example: Robot Localization

Kalman Filter: Algorithm I

Kalman Filter works for linear dynamic systems:

Linear Dynamic System Example

$$\mathbf{x}_{k+1} = \mathbf{\Phi}_k \mathbf{x}_k + \mathbf{\Gamma}_k \mathbf{u}_k$$

$$\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$$

- **x**_k: state vector
- y_k: observation vector
- \mathbf{u}_k , \mathbf{v}_k : zero-mean noise vector
- \bullet Φ_k , Γ_k , H_k : transition matrix

Kalman Filter: Algorithm II

Algorithm 1 Classic Kalman Filter

```
Input: \hat{\mathbf{x}}_{k}, \mathbf{P}^{x}_{k}, \mathbf{y}_{k}

1: \tilde{\mathbf{z}}_{k} = \mathbf{y}_{k} - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}

2: \mathbf{K}_{k} = \mathbf{P}^{x}_{k}\mathbf{H}_{k}^{T}(\mathbf{H}_{k}\mathbf{P}^{x}_{k}\mathbf{H}_{k}^{T} + \mathbf{R})^{-1}

3: \hat{\mathbf{x}}_{k+1} = \mathbf{\Phi}_{k}\hat{\mathbf{x}}_{k} + \mathbf{\Phi}_{k}\mathbf{K}_{k}\tilde{\mathbf{z}}_{k}

4: \mathbf{P}^{x}_{k+1} = \mathbf{\Phi}_{k}(\mathbf{I} - \mathbf{K}_{k}\mathbf{H}_{k})\mathbf{P}^{x}_{k}\mathbf{\Phi}_{k}^{T} + \mathbf{\Gamma}_{k}\mathbf{Q}\mathbf{\Gamma}_{k}^{T}

Output: \hat{\mathbf{x}}_{k+1}, \mathbf{P}^{x}_{k+1}
```

- $\hat{\mathbf{x}}_k$: estimated mean
- **P**^x_k: estimated covariance
- R: Noise covariance of **u**_k
- **Q**: Noise covariance of \mathbf{v}_k

Problems of Kalman Filter

 The performance is sensitive to the accuracy of the noise covariance matrixes: Q and R[Sangsuk-lam and Bullock, 1990]

Uncertainty of the noise covariances

Assume covariances are parameterized by $\theta = [\theta_1, \theta_2]$

- The covariance matrix of ${\bf u}$ is ${\bf Q}^{\theta_1}$ (e.g. ${\bf Q}^{\theta_1}=\theta_1{\bf I}$)
- The covariance matrix of ${\bf v}$ is ${\bf R}^{\theta_2}$ (e.g. ${\bf R}^{\theta_2}=\theta_2{\bf I}$)
- Unknown prameter: $\theta = [\theta_1, \theta_2]$

If the θ used in the Algorithm is much different from the true θ , Kalman Filter provides poor estimation

Solutions of the Problem

- Non-Bayesian Approach: Adaptive Kalman Filter
 - Doesn't require any prior knowledge (θ is not a R.V.)
 - Require many measured data

Solutions of the Problem

- Non-Bayesian Approach: Adaptive Kalman Filter
 - Doesn't require any prior knowledge (θ is not a R.V.)
 - Require many measured data
- Bayesian Approach: IBR Kalman Filter
 - Require prior knowledge (θ is a R.V.)
 - Robust: Guarantee the best average performance relative to the prior distribution

Solutions of the Problem

- Non-Bayesian Approach: Adaptive Kalman Filter
 - Doesn't require any prior knowledge (θ is not a R.V.)
 - Require many measured data
- Bayesian Approach: IBR Kalman Filter
 - Require prior knowledge (θ is a R.V.)
 - Robust: Guarantee the best average performance relative to the prior distribution
- Bayesian Approach: Optimal Bayesian Kalman Filter
 - Require prior knowledge (θ is a R.V.)
 - Utilize measured data to estimate unknown parameters
 - Optimal over the posterior distribution obtained from measured data

- What's this paper?
- Overview Kalman Filter
 - Basic Idea
 - Algorithm
 - Problem of Kalman Filter
 - Solutions of the Problem
- A Bayesian Solution: IBR Kalman Filter
 - Basic Idea
 - Algorithm
- 4 Prior update: Optimal Bayesian Kalman Filter
 - Basic Idea
 - Algorithm
 - Find Posterior Expectations
 - Performance
 - Problems and Future Works
- 5 Summery

Basic Idea

- Assume the prior distribution $\pi(\theta)$ for the uncertainty of the covariance matrices
- Best estimation relative to $\pi(\theta)$: $\underset{\hat{\mathbf{x}}_{\theta}(k)}{\arg \min} E_{\theta}[E[(\mathbf{x}_{\theta}(k) - \hat{\mathbf{x}}_{\theta}(k))^{T} \times (\mathbf{x}_{\theta}(k) - \hat{\mathbf{x}}_{\theta}(k))]]$

Algorithm: IBR Kalman Filter

• IBR Kalman Filter is obtained just replacing \mathbf{Q} and \mathbf{R} in Calssic Kalman Filter with $E_{\theta_1}[\mathbf{R}^{\theta_1}]$ and $E_{\theta_2}[\mathbf{Q}^{\theta_2}]$ respectively

Algorithm 2 IBR Kalman Filter

Input:
$$\hat{\mathbf{x}}_k^{\theta}$$
, $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_k]$, \mathbf{y}_k^{θ}

1:
$$\tilde{\mathbf{z}}_{k}^{\theta} = \mathbf{y}_{k}^{\theta} - \mathbf{H}_{k} \hat{\mathbf{x}}_{k}^{\theta}$$

2:
$$\mathbf{K}_{k}^{\Theta} = E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}]\mathbf{H}_{k}^{T}E_{\theta}^{-1}[\mathbf{H}_{k}\mathbf{P}^{\mathbf{x},\theta}_{k}\mathbf{H}_{k}^{T} + \mathbf{R}^{\theta_{2}}]$$

3:
$$\hat{\mathbf{x}}_{k+1}^{\theta} = \mathbf{\Phi}_k \hat{\mathbf{x}}_k^{\theta} + \mathbf{\Phi}_k \mathbf{K}_k^{\Theta} \hat{\mathbf{z}}_k^{\theta}$$

$$4: E_{\theta}[\mathsf{P}^{\mathsf{x},\theta}{}_{k+1}] = \mathbf{\Phi}_{k}(\mathsf{I} - \mathsf{K}_{k}^{\Theta}\mathsf{H}_{k})E_{\theta}[\mathsf{P}^{\mathsf{x},\theta}{}_{k}]\mathbf{\Phi}_{k}^{T} + \mathsf{\Gamma}_{k}E_{\theta_{1}}[\mathsf{Q}^{\theta_{1}}{}_{k}]\mathsf{\Gamma}_{k}^{T}$$

Output: $\hat{\mathbf{x}}_{k+1}^{\theta}$, $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k+1}]$

- What's this paper?
- Overview Kalman Filter
 - Basic Idea
 - Algorithm
 - Problem of Kalman Filter
 - Solutions of the Problem
- 3 A Bayesian Solution: IBR Kalman Filte
 - Basic Idea
 - Algorithm
- 4 Prior update: Optimal Bayesian Kalman Filter
 - Basic Idea
 - Algorithm
 - Find Posterior Expectations
 - Performance
 - Problems and Future Works
- 5 Summery

Basic Idea: OBKF

- Based on the IBR Kalman Filter
- Utilize measured data $\mathcal{Y}_k = \{\mathbf{y}_0, ..., \mathbf{y}_k\}$ to obtain the posterior distribution $\pi(\theta|\mathcal{Y}_k)$
- Best estimation relative to $\pi(\theta|\mathcal{Y}_{k-1})$: $\underset{\hat{\mathbf{x}}_{\theta}(k)}{\arg \min} E_{\theta}[E[(\mathbf{x}_{\theta}(k) \hat{\mathbf{x}}_{\theta}(k))^{T} \times (\mathbf{x}_{\theta}(k) \hat{\mathbf{x}}_{\theta}(k))]|\mathcal{Y}_{k-1}]$

Algorithm: OBKF

• OBKF is obtained just replacing \mathbf{Q} and \mathbf{R} in Calssic Kalman Filter with $E_{\theta_1}[\mathbf{Q}^{\theta_1}|\mathcal{Y}_k]$ and $E_{\theta_1}[\mathbf{R}^{\theta_2}|\mathcal{Y}_k]$ respectively

Algorithm 3 OBKF

```
Input: \hat{\mathbf{x}}_{k}^{\theta}, E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k-1}], \mathcal{Y}_{k}

1: \tilde{\mathbf{z}}_{k}^{\theta} = \mathbf{y}_{k}^{\theta} - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}^{\theta}

2: \mathbf{K}_{k}^{\Theta^{*}} = E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k-1}]\mathbf{H}_{k}^{T}E_{\theta}^{-1}[\mathbf{H}_{k}\mathbf{P}^{\mathbf{x},\theta}_{k}\mathbf{H}_{k}^{T} + \mathbf{R}^{\theta_{2}}|\mathcal{Y}_{k-1}]

3: \hat{\mathbf{x}}_{k+1}^{\theta} = \mathbf{\Phi}_{k}\hat{\mathbf{x}}_{k}^{\theta} + \mathbf{\Phi}_{k}\mathbf{K}_{k}^{\Theta}\tilde{\mathbf{z}}_{k}^{\theta}

4: E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k+1}|\mathcal{Y}_{k}] = \mathbf{\Phi}_{k}(\mathbf{I} - \mathbf{K}_{k}^{\Theta^{*}}\mathbf{H}_{k})E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k}]\mathbf{\Phi}_{k}^{T} + \mathbf{\Gamma}_{k}E_{\theta_{1}}[\mathbf{Q}^{\theta_{1}}|\mathcal{Y}_{k}]\mathbf{\Gamma}_{k}^{T}

Output: \hat{\mathbf{x}}_{k+1}^{\theta}, E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k+1}|\mathcal{Y}_{k}]
```

Algorithm: OBKF

• OBKF is obtained just replacing \mathbf{Q} and \mathbf{R} in Calssic Kalman Filter with $E_{\theta_1}[\mathbf{Q}^{\theta_1}|\mathcal{Y}_k]$ and $E_{\theta_1}[\mathbf{R}^{\theta_2}|\mathcal{Y}_k]$ respectively

Algorithm 4 OBKF

Input:
$$\hat{\mathbf{x}}_{k}^{\theta}$$
, $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k-1}]$, \mathcal{Y}_{k}
1: $\tilde{\mathbf{z}}_{k}^{\theta} = \mathbf{y}_{k}^{\theta} - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}^{\theta}$
2: $\mathbf{K}_{k}^{\Theta^{*}} = E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k-1}]\mathbf{H}_{k}^{T}E_{\theta}^{-1}[\mathbf{H}_{k}\mathbf{P}^{\mathbf{x},\theta}_{k}\mathbf{H}_{k}^{T} + \mathbf{R}^{\theta_{2}}|\mathcal{Y}_{k-1}]$
3: $\hat{\mathbf{x}}_{k+1}^{\theta} = \mathbf{\Phi}_{k}\hat{\mathbf{x}}_{k}^{\theta} + \mathbf{\Phi}_{k}\mathbf{K}_{k}^{\Theta}\tilde{\mathbf{z}}_{k}^{\theta}$
4: $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k+1}|\mathcal{Y}_{k}] = \mathbf{\Phi}_{k}(\mathbf{I} - \mathbf{K}_{k}^{\Theta^{*}}\mathbf{H}_{k})E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k}]\mathbf{\Phi}_{k}^{T} + \mathbf{\Gamma}_{k}E_{\theta_{1}}[\mathbf{Q}^{\theta_{1}}|\mathcal{Y}_{k}]\mathbf{\Gamma}_{k}^{T}$
Output: $\hat{\mathbf{x}}_{k+1}^{\theta}$, $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k+1}|\mathcal{Y}_{k}]$

How to find the posterior expectations: $E_{\theta_1}[\mathbf{Q}^{\theta_1}|\mathcal{Y}_k]$ and $E_{\theta_2}[\mathbf{R}^{\theta_2}|\mathcal{Y}_k]$?

Find Posterior Expectatoins: $E_{\theta_1}[\mathbf{Q}^{\theta_1}|\mathcal{Y}_k]$ and $E_{\theta_2}[\mathbf{R}^{\theta_2}|\mathcal{Y}_k]$

- Approximate $E_{\theta_1}[\mathbf{Q}^{\theta_1}|\mathcal{Y}_k]$ and $E_{\theta_1}[\mathbf{R}^{\theta_2}|\mathcal{Y}_k]$ using Metropolis Hastings MCMC
- MCMC requires the likelihood function $f(\mathcal{Y}_k|\theta)$
- $f(\mathcal{Y}_k|\theta)$ is calculated by:
 - Marginalize $f(\mathcal{Y}_k, \mathcal{X}_k | \theta)$ over \mathcal{X}_k
 - Factorize $f(\mathcal{Y}_k, \mathcal{X}_k | \theta)$ by Markov assumption
 - Using factor-graph, this step can be simplified
 - ullet $f(\mathcal{Y}_k| heta)$ can be calculated by recursive algorithm

Algorithm: Likelihood Function Calculation

Algorithm 5 Factor-Graph-Based Likelihood Function Calculation

Input: θ , \mathcal{Y}_k

1:
$$\mathbf{M}_0 \leftarrow E[\mathbf{x}_0], \ S_0 \leftarrow 1, \ \mathbf{\Sigma}_0 \leftarrow cov[\mathbf{x}_0], \ i \leftarrow 0$$

2: while
$$i \leq k-1$$
 do

3:
$$\mathbf{W}_i \leftarrow \mathbf{H}_i^T (\mathbf{R}^{\theta_2})^{-1} \mathbf{y}_i + \mathbf{\Sigma}_i^{-1} \mathbf{M}_i$$

4:
$$\mathbf{\Lambda}_{i}^{-1} \leftarrow \mathbf{\Phi}_{i}^{T}(\tilde{\mathbf{Q}}_{i}^{\theta_{1}})^{-1}\mathbf{\Phi}_{i} + \mathbf{H}_{i}^{T}(\mathbf{R}^{\theta_{2}})^{-1}\mathbf{H}_{i} + \mathbf{\Sigma}_{i}^{-1}$$

5:
$$\mathbf{\Sigma}_{i+1}^{-1} \leftarrow (\tilde{\mathbf{Q}}_{i}^{\theta_{1}})^{-1} - (\tilde{\mathbf{Q}}_{i}^{\theta_{1}})^{-1} \mathbf{\Phi}_{i} \mathbf{\Lambda}_{i} \mathbf{\Phi}_{i}^{T} (\tilde{\mathbf{Q}}_{i}^{\theta_{1}})^{-1}$$

6:
$$\mathbf{M}_{i+1} \leftarrow \mathbf{\Sigma}_{i+1}(\tilde{\mathbf{Q}}_i^{\theta_1})^{-1}\mathbf{\Phi}_i\mathbf{\Lambda}_i(\mathbf{H}_i^T(\mathbf{R}^{\theta_2})^{-1}\mathbf{y}_i + \mathbf{\Sigma}_i^{-1}\mathbf{M}_i)$$

7:
$$S_{i+1} \leftarrow \text{using Eq.}(29) \text{ in the paper}$$

8:
$$i \leftarrow i + 1$$

9: end while

10:
$$\mathbf{\Delta}_k^{-1} \leftarrow \mathbf{H}_k^T (\mathbf{R}^{\theta_2})^{-1} \mathbf{H}_k + \mathbf{\Sigma}_k^{-1}$$

11:
$$\mathbf{G}_{k} \leftarrow \mathbf{\Delta}_{k} (\mathbf{H}_{k}^{T} (\mathbf{R}^{\theta_{2}})^{-1} \mathbf{y}_{k} + \mathbf{\Sigma}_{k}^{-1} \mathbf{M}_{k})$$

12:
$$f(\mathcal{Y}_k|\theta) \leftarrow \text{using Eq.(34)}$$
 in the paper

Output: $f(\mathcal{Y}_k|\theta)$

Performance: Accuracy

Figure: Performance analysis for specific $\theta_1=1$ and known θ_2

- (a) OBKF achieves the lowest MSE
- (b) Empirical average and variance of $E[\theta_1|\mathcal{Y}_k]$ (cited from [Dehghannasiri et al., 2018])

Performance: Data Efficiency

Figure: Unknown θ_1 and comparison with two adaptive Kalman Filter methods

- (a) Myers method
- (b) Mehra method
- (cited from [Dehghannasiri et al., 2018])

Problems and Future Works

- If the prior distribution doesn't include the true value, the estimation won't converge
- Factor-graph and MCMC are computationally expensive. Finding efficient approach is a future work.

- What's this paper?
- Overview Kalman Filter
 - Basic Idea
 - Algorithm
 - Problem of Kalman Filter
 - Solutions of the Problem
- 3 A Bayesian Solution: IBR Kalman Filte
 - Basic Idea
 - Algorithm
- Prior update: Optimal Bayesian Kalman Filter
 - Basic Idea
 - Algorithm
 - Find Posterior Expectations
 - Performance
 - Problems and Future Works
- Summery

Summery

- OBKF converges to the optimal estimation as long as the prior distribution includes the true value
- OBKF requires much less data compared to Non-Bayesian methods
- The computational cost and deciding prior distribution are problems

References I

- Analysis of Discrete-Time Kalman Filterinng Under Incorrect Noise Covariances.
- Dalton, L. A. and Dougherty, E. R. (2014). Intrinsically optimal bayesian robust filtering. IEEE Transactions on Signal Processing, 62(3):657–670.
- Dehghannasiri, R., Esfahani, M. S., and Dougherty, E. R. (2017). Intrinsically Bayesian robust kalman filter: An innovation process approach.
 - *IEEE Transactions on Signal Processing*, 65(10):2531–2546.
- Dehghannasiri, R., Esfahani, M. S., Qian, X., and Dougherty, E. R. (2018).
 - Optimal Bayesian Kalman Filtering with Prior Update.
 - IEEE Transactions on Signal Processing, 66(8):1982–1996.

References II

A New Approach to Linear Filtering and Prediction Problems. *Journal of Basic Engineering*, 82(1):35.

🔋 Sangsuk-lam, S. and Bullock, T. (1990).

Analysis of discrete-time Kalman filtering under incorrect noise covariances.

IEEE Transactions on Automatic Control, 35(12):1304-1309.