

F.E. (Semester – II) Examination, May/June 2014 (Revised 2007-08) BASIC MECHANICAL ENGINEERING

Duration: 3 Hours Max. Marks: 100

Instructions: 1) Answer five questions in all selecting at least one question from each Module.

- 2) Assume missing data, if any with proper justification.
- 3) **Appropriate** visuals are part of the weightage assigned to a question.

MODULE-I

1. A) Answer the following:

 (3×3)

- i) Does a heat engine that has a thermal efficiency of 100% necessarily violate either:
 - a) the I law? or
 - b) the II law? or
 - c) both?: Justify your answer.
- ii) Comment on the difference between a reversible cycle gets reversed and a reversible process getting reversed.
- iii) Explain the postulates of change of state of a system.
- B) An ideal gas with an adiabatic index 1.45 and molecular weight 30 at a given state of Pressure = 20 bar, and Temperature = 600° C undergoes an isothermal expansion to half of its pressure. Then the system follows a second process known to be reversible adiabatic till it reaches its initial pressure 20 bar. Thirdly by a process, the system returns to its initial state and thus it completes a cycle. Plotting the cycle on P-V plane find the following:

i) Investigate and comment on the second, third and cyclic processes.

- ii) Cardinal points (P, v and T at each point of the cycle).
- iii) Work and heat transfer during each process.
- iv) Change in internal energy and enthalpy during each process.
- v) Ratio of heat added to the system to net work input.

11

2.	A)	A spark ignition engine working on Otto cycle has the following data:	10
1		➤ Compression ratio = 6	
		➤ State at commencement of compression = NTP	
		➤ Maximum pressure in the cycle = 30 bar	
		For unit mass flow, drawing P-V diagram find the following:	
		a) P, v and T at various salient points of the cycle	
		b) Air standard efficiency	
,		c) Heat and work transfers in each process.	
	B)	Answer the following: (2×	:5)
		a) Explain the utility of Carnot engine in absolute temperature scale	
		b) List out the limitations of first law and explain how they are overcome in second law.	
		MODULE – II	
3.	A)	A 4-S single cylinder engine has the following data during a trial run on a	
0.	,		10
		➤ Indicated thermal efficiency = 32%	
		➤ Mechanical efficiency = 78%	
		> Total fuel consumption = 20 kg/h	
		➤ Brake mean effective pressure (BMEP) = 6 bar	
		➤ Mean piston speed = 12 m/s	
		> Stroke to bore ratio = 1.2	
		➤ Calorific value of the fuel = 42 MJ/kg	
		Calculate the following:	
		i) Brake power, Brake thermal efficiency and brake specific fuel consumption (BSFC)	
		ii) Engine speed and Engine Dimensions i.e., bore X stroke	
		iii) Indicate power, indicated mean effective pressure (IMEP) and indicated specific fuel consumption (ISFC).	
	B)	Explain the following terms used in I.C engines with appropriate sketch:	10
		i) Swept volume ii) Clearance volume	
		iii) TDC and BDC iv) Stroke	
		v) Bore.	

- 4. A) With a help of schematic diagram explain the working principle of a vapour compression refrigeration system. (7+7+6)
 - B) With a help of schematic diagram explain the working principle of a basic Rankine cycle used in steam power plant.
 - C) Define the following terms and highlight their applicability:
 - i) Ton of refrigeration
 - ii) Dryness fraction.

MODULE - III

			MODULE - III	
	5.	A)	What are the functions and requirements of steering system? Explain with a neat diagram the construction and working of rack and pinion steering system.	10
		B)	Discuss the functions of clutch plate, differential and slip joint in an automobile.	6
		C)	Write a short note on automotive emissions and control.	4
	6.	A)	Draw a simple diagram to show the layout of hydraulically operated four wheel brake system and explain its working.	8
		B)	Draw the layout of complete transmission system of a four wheel driven automobile and label its various components.	6
		C)	Discuss in detail the construction and working of a differential.	6
			MODULE-IV	
	7.	A)	Sketch the various rolling stand arrangements.	6
		B)	Compare between brazing and welding.	4
		C)	Sketch and explain indirect extrusion process. Discuss its power requirements compared to direct extrusion process.	6
		D)	State the advantages and applications of soldering.	4
	8.	A)	With a neat sketch explain arc welding process.	5
		B)	Describe the grinding process showing relative motion between work piece and tool. How does it differ from turning?	5
		C)	With neat sketches explain sheet metal bending operations.	5
		D)	What are the advantages and limitations of cold working?	5