CPSC 465/565 Theory of Distributed Systems

James Aspnes

2023-09-20

Today's exciting topics

- ► Algorithms for synchronous Byzantine agreement.
- ▶ Impossibility of asynchronous agreement with 1 crash failure.

Byzantine agreement

Byzantine model: $\leq f$ faulty processes can do whatever they want.

- ▶ Agreement: All non-faulty nodes output same value.
- ▶ Termination: Finish in bounded number of rounds.
- Validity: If all non-faulty nodes have same input, they all output this input.

We showed last time that this requires f+1 synchronous rounds and $n \ge 3f+1$ in the worst case.

Today we'll show that these bounds are tight.

Exponential Information Gathering

(Pease, Shostak, Lamport 1980)

Idea:

- One process's reports are not trustworthy.
- ▶ But many processes' reports might be.

Strategy is to gather many secondhand reports, then use them to reconstruct "true" inputs.

Message: $\langle w, v \rangle$ means "I am reporting v from path w."

Variable: val(w, i) = value stored by i for path w.

Only paths with no repeated processes are allowed.

EIG algorithm: gathering part

```
// Set my value to my input
1 val(\langle \rangle, i) \leftarrow input
2 for round \leftarrow 0...f do
      // send step for this round
      for each non-repeating w, |w| = \text{round}, i \notin w do
3
          Send \langle wi, val(w, i) \rangle to all processes
4
      // receive step for this round
      for each non-repeating w, |w| = \text{round do}
5
          if i \ sent \ \langle wi, v \rangle then
6
              // Record reported value
              val(wj, i) \leftarrow v
          else
8
              // Record default value
            val(wj,i) \leftarrow 0
```

EIG algorithm: reconstruction part

```
// Compute decision value
1 for each path w of length f + 1 with no repeats do
   | |  val*(w, i) \leftarrow val(w, i)
3 for \ell \leftarrow f down to 0 do
6 Decide val*(\langle \rangle, i)
```

- \triangleright val*(w, i) is i's reconstruction of value reported by w.
- But we don't trust last node in w.
- So instead take majority of reports of what that node said.
 - ▶ With $\geq 2f + 1$ reports, majority $\geq f + 1$ are honest.
- We get those reports by same reconstruction process.

Last step: Reconstruct majority input.

Proof of correctness

Start with some lemmas:

- 1. If i and j are both non-faulty, val(wj, i) = val(w, j).
 - ▶ Proof: j sends $\langle wj, val(w, j) \rangle$ to i and i records it.
- 2. If i and j are both non-faulty, $val^*(wj, i) = val(w, j)$.
 - Proof: By induction on decreasing length of wj.
 - ▶ If |wj| = f + 1, $val^*(wj, i) = val(wj, i) = val(w, j)$.
 - ▶ If |wj| < f + 1,
 - ► Recall val*(wj, i) = majority_{$k \notin wj$} val*(wjk, i).
 - For non-faulty k, ind hyp says $val^*(wjk, i) = val(wj, k) = val(w, j)$.
 - ▶ Since majority of k are non-faulty, $val^*(wj, i) = val(w, j)$.

Define: w is **common** if $val^*(w, i) = val^*(w, j)$ for all good i, j.

Then wk is common if k is non-faulty.

How common values propagate

- valt
- ► Claim: If all *wk* are common, so is *w*.
- ► Proof:
 - 1. Let *i* and *j* be non-faulty.
 - 2. Suppose $val^*(wk, i) = val^*(wk, j)$ for all k.
 - Then i and j compute same majority value for val*(w, i) = val*(w, j).
- ▶ Contraposition: If w is *not* common, $\exists k : wk$ is not common.

Now suppose $\langle \rangle$ is not common. $\langle \rangle$ above $a_1 \cdots a_{f+1} \cdots a_{$

- each prefix $k_1 \dots k_m$ is not common.
- 2. But one of those prefixes ends with a non-faulty node!
- 3. Contradiction $\Rightarrow \langle \rangle$ is common.
- 4. So decision value val* $(\langle \rangle, i)$ is the same for all non-faulty i.

This proves agreement.

EIG solves Byzantine agreement

- Agreement: already proved.
- Termination: trivial as always.
- Validity:
 - ▶ Recall $val^*(j, i) = val(\langle \rangle, j) = input_j$ for all non-faulty i and j.
 - For all non-faulty j (a majority), input_j = v for some fixed v.
 - So all non-faulty i compute output $val^*(\langle \rangle, i) = majority_j val^*(j, i) = majority_j val(\langle \rangle, j) = v$.

Time complexity f + 1 is optimal.

Fault-tolerance $n \ge 3f + 1$ is optimal.

Message complexity, bit complexity, local computation, local storage: all exponentially horrifying.

Phase king (Berman, Garay, Perry 1989)

Byzantine agreement with

- \triangleright 2(f+1) rounds
- ▶ n > 4f + 1
- Constant-sized messages.

(We are doing simplified version from Attiya-Welch textbook; original paper gives better bounds with a more complicated algorithm.)

Phase king: pseudocode

```
1 pref<sub>i</sub>[i] = input; for each i \neq i do pref<sub>i</sub>[i] = 0
 2 for k \leftarrow 1 to f + 1 do
        send pref;[i] to all processes (including myself)
 3
        \operatorname{pref}_{i}[j] \leftarrow v_{i}, where v_{i} is the value received from process j
 4
        majority \leftarrow majority value in pref;
 5
       multiplicity \leftarrow number of times majority appears in pref;
 6
      \rightarrowif i = k then send majority to all processes
 7
        if received m from phase king k then
 8
             kingMajority \leftarrow m
 9
        else
10
            kingMajority \leftarrow 0
11
        if multiplicity > n/2 + f then
12
            pref_i[i] = majority
13
        else
14
            pref_i[i] = kingMajority
15
16 return pref<sub>i</sub>[i]
```

Phase king: phases preserve agreement

Lemma: If all non-faulty agree on v at start of phase t, all non-faulty agree on v at end of phase t.

Proof:

- $ightharpoonup \geq n-f$ processes send v in first round of phase t.
- Let *i* be non-faulty.
- ightharpoonup majority_i $\leftarrow v$
- ▶ multiplicity_i $\geq n f > n/2 + f$
- ightharpoonup i ignores phase king and keeps pref_i = v.

Phase king: proof of correctness

- Termination: yes.
- Validity: Use lemma to show common preference never changes.
- Agreement:
 - ▶ At least one phase ∤ has a non-faulty phase king.
 - ► At end of phase &
 - ightharpoonup All non-faulty *i* that picked kingMajority = v agree.
 - Any non-faulty i that picked majority = v' saw > n/2 + f copies.
 - ▶ But then phase king saw > n/2 copies of v' and v' = v.
 - ightharpoonup \Rightarrow all non-faulty *i* agree.
 - Use lemma for subsequent phases.

What happens with asynchrony?

Just one crash failure prevents agreement!

Fischer-Lynch-Paterson 1985 (FLP)

Assumptions:

- Asynchronous system.
- ▶ Up to f = 1 crash failure.
- Deterministic processes.
- Binary inputs and outputs.

Requirements:

- Agreement: All outputs are equal.
- Termination: All non-faulty processes finish.
- ▶ **Non-triviality**: There exist executions with different outputs.

Non-triviality is much weaker than validity.

FLP: model

Usual message-passing model except we'll assume each process receives at most one message per event.

Event is

- \triangleright (p, m) means p receives m
- $ightharpoonup (p, \perp)$ means p takes a step on its own.

In each case, p can send 0 or more messages.

This is equivalent to our usual model since we can just split up del(i, S) to multiple (i, m) events.

FLP: bivalence

Adversary strategy uses classification of configurations as:

▶ **Bivalent**: both decision values still possible.

▶ **0-valent**: only 0 possible.

▶ **1-valent**: only 1 possible.

▶ Univalent: 0-valent or 1-valent.

Goal: Start bivalent, stay bivalent.

Bivalent \Rightarrow nobody decided yet.

FLP: start bivalent

- 1. Suppose all initial C are univalent.
- 2. Then $\exists C_0, C_1$ where
 - 2.1 C_i is i-valent.
- 2.2 C_0 and C_1 differ only in input of some process i.
- 3. Consider a terminating execution $C_0\alpha$ in which i takes no steps.
- 4. Then $C_0 \alpha \sim_j C_1 \alpha$ for all $j \neq i$.
- 5. C_0 0-valent $\Rightarrow C_0 \alpha$ decides $0 \Rightarrow C_1 \alpha$ decides 0, contradicting 1-valence of C_1 .

So: not all initial *C* are univalent,.

FLP: stay bivalent

Goal: starting in bivalent C, stay bivalent forever with no failures.

Obstacle: fairness!

- Any pending event e must happen eventually.
 So need to find extension Cαe that is still bivalent.
- Let $S = \{$ all configurations $C\alpha$ where $\alpha \not\ni e \}$.
- If there some $D \in S$ such that De is bivalent, we win.
 - ► If not:
 - ▶ There exist $D_0, D_1 \in S$ such that $D_i e$ is *i*-valent.
 - Proof: If not, C is univalent.
 - Find least common ancestor L of D₀, D₁.
 Assumed without loss of generality that Le is 0-valent.
- There is some pair G, Ge' on E to D_1 path such that Ge is 0-valent Ge' is 1-valent
 - Docap tickil

Tf (xe bivelent

Jf no Coce brodite

The impossible FLP diamond

- ► Ge'e is 1-valent
- \blacktriangleright What events are e and e'?
 - 1. e and e' are events of different processes i, j, then
 - ► Gee′ is 0-valent.
 - ightharpoonup Ge'e is 1-valent.
 - $Gee' \sim_k Ge'e$ for all processes k.
 - ▶ So $Gee'\alpha$ and $Ge'e\alpha$ decide same value: a contradiction!

Ge'

- 2. e and e' are events of the same process i
 - Crash i!
 - Now $Gee'\alpha$ and $Ge'e\alpha$ again decide same value.

What went wrong?

- ▶ We assumed all $C\alpha e$ were not bivalent.
- ▶ Contradiction means some $C\alpha e$ is bivalent.

So: Starting in bivalent C, for any pending event e, can find an execution $C\alpha e$ such that

- $ightharpoonup C\alpha e$ is still bivalent.
- e happened.

Adversary strategy: Keep doing this to oldest pending event.

This gives an infinite fair execution that never decides.

Next time.

Paxos! (Lamport 1990, Lamport 1998, Lamport 2001)

- ▶ The only asynchronous consensus protocol in actual use.
- Gives up termination.