TMLE of Primitive of Cumulative Distribution of Conditional Treatment Effect

Mark van der Laan Division of Biostatistics, University of California, Berkeley laan@berkeley.edu

June 30, 2016

Abstract

Keywords:

1 Introduction

Let $O = (W, A, Y) \sim P_0$ and let the model \mathcal{M} be nonparametric. Let $B(P)(W) = E_P(Y \mid A = 1, W) - E_P(Y \mid A = 0, W)$ and let $\Psi_y(P) = \int_{-1}^y E_P I(B(P)(W) > x) dx = \int_{-1}^y S_B(x) dx$ be the target parameter of interest, where $S_B(x) = P(B(W) > x)$. We note that we can also write this target parameter as follows:

$$\Psi_y(P) = E_P(\min(B(P)(W), y) + 1) = 1 + E_P\min(B(P)(W), y).$$

The latter representation demonstrates that this parameter is smoother in P than $S_B(x) = E_P I(B(P)(W) > x)$: instead of having B in an indicator it is now truncated from above (i.e. from non differentiable to continuous with a point of non differentiability). We will prove that Ψ_y is pathwise differentiable at P with efficient influence curve given by:

$$D_y^*(P) = \frac{2A-1}{g(A|W)}I(B(P)(W) \le y)(Y - \bar{Q}(A,W)) + \int_{-1}^y I(B(P)(W) > x) - \Psi_y(P).$$

Subsequently, we will study the remainder $P_0D_y^*(P) + \Psi_y(P) - \Psi_y(P_0)$.

1.1 Pathwise differentiability of Ψ_y

We first note that $b \to I(b > x)$ is a function in b that jumps from 0 to 1 at x. One can think of this as a cumulative distribution function of a pointmass 1 at x. That is, we can define $F_{0,x}(b) = I(b > x) = \int_{-1}^{b} dF_{0,x}(u)$, where $dF_{0,x}(u)$

is the degenerate probability distribution/density that puts mass 1 at x. Thus $\Psi_y(P) = \int_{-1}^y E_P F_{0,x}(B(P)(W)) dx$. This suggest approximating $F_{0,x}$ with $F_{h,x}(b) = \int_{-1}^b K((u-x)/h)/h du$, where K is a mean zero density with support [-1,1]. Note that $F_{h,x}(b)$ approximates the step function $F_{0,x}(b)$ by smoothing its jump at x from 0 to 1 over a little interval [x-h,x+h]. This suggest defining an approximate parameter

 $\Psi_{y,h}(P) = \int_{-1}^{y} E_P F_{h,x}(B(P)(W)) dx.$

Let's consider the function $\Psi_{y,h}(B) = \int_{-1}^{y} E_{P} F_{h,x}(B(W)) dx$, treating P as known in the expectation E_{P} , and let's aim to understand if this parameter is pathwise differentiable and its behavior at $h \to 0$. We have

$$\begin{split} \Psi_{y,h}(B_{\epsilon}) - \Psi_{y,h}(B) &= \int_{-1}^{y} E_{P}\{F_{h,x}(B_{\epsilon}(W)) - F_{h,x}(B(W))\}dx \\ &= \int_{-1}^{y} E_{P} \frac{d}{dB(W)} F_{h,x}(B(W)) (B_{\epsilon}(W) - B(W))dx \\ &+ \int_{-1}^{y} E_{P} \frac{d^{2}}{db(W)} F_{h,x}(b(W)) (B_{\epsilon}(W) - B(W))^{2}/2, \end{split}$$

for a $b = b(x, h, W, \epsilon)$ in the interval spanned by the values $B_{\epsilon}(W)$ and B(W). Let's denote this last second order term with $R_{2,h,y}(B_{\epsilon}, B)$. We have

$$\frac{d}{db}F_{h,x}(b) = \frac{d}{db} \int_{-1}^{b} K((u-x)/h)/h du = K((b-x)/h)/h.$$

Thus, we obtain

$$\Psi_{y,h}(B_{\epsilon}) - \Psi_{y,h}(B) = E_{P} \int_{-1}^{y} K((B(W) - x)/h)/h dx (B_{\epsilon}(W) - B(W)) + R_{2,h,y}(B_{\epsilon}, B) = E_{P} F_{h,B(W)}(y) (B_{\epsilon}(W) - B(W)) + R_{2,h,y}(B_{\epsilon}, B) = E_{P} (F_{0,B(W)}(y) (B_{\epsilon}(W) - B(W)) + R_{2,h,y}(B_{\epsilon}, B) + E_{P} (F_{h,B(W)}(y) - F_{0,B(W)}(y)) (B_{\epsilon}(W) - B(W)).$$

Note $F_{0,B(W)}(y) = I(B(W) \leq y)$. As $h \to 0$, we have that $\| F_{h,B(W)}(y) - F_{0,B(W)}(y) \|_{P} = O(h)$ converges to zero. Using Cauchy-Schwarz inequality, the last term is bounded by $\| F_{h,B(W)}(y) - F_{0,B(W)}(y) \|_{P} \| B_{\epsilon} - B \|_{P}$, which is thus $O(h \| B_{\epsilon} - B \|_{P})$. We also note that the second derivative of $F_{h,x}$ in $F_{h,x}(y)$ behaves as 1/h so that

$$R_{2,h,y}(B_{\epsilon},B) = O(\parallel B_{\epsilon} - B \parallel^2 / h).$$

Thus,

$$\Psi_{y,h}(B_{\epsilon}) - \Psi_{y,h}(B) = E_P I(B(W) \le y) (B_{\epsilon}(W) - B(W)) + O(h \parallel B_{\epsilon} - B \parallel_P) + O(\parallel B_{\epsilon} - B \parallel_P^2 / h).$$

Note $B_{\epsilon} - B = O(\epsilon)$. Given a path $\{P_{\epsilon} : \epsilon\}$, we can select $h = h(\epsilon) \to 0$ so that $\epsilon/h \to 0$ so that

$$\frac{\Psi_{y,h_{\epsilon}}(B(P_{\epsilon})) - \Psi_{y,h_{\epsilon}}(B(P))}{\epsilon} = E_{P}I(B(W) \leq y)(B_{\epsilon}(W) - B(W))/\epsilon + o(1).$$

The right-hand side will converge to

$$PD_{y,1}^*(P)S$$
,

where S is the score of $\{P_{\epsilon} : \epsilon\}$ and

$$D_{y,1}^*(P)(O) = \frac{2A-1}{g(A \mid W)} I(B(W) \le y) (Y - \bar{Q}(A, W)).$$

In this way, we have proven that for such a sequence $h = h(\epsilon)$

$$\lim_{\epsilon \to 0} \frac{\Psi_{h_{\epsilon}}(P_{\epsilon}) - \Psi_{h_{\epsilon}}(P)}{\epsilon} = PD_{y}^{*}(P)S,$$

where

$$D_y^*(P) = D_{y,1}^*(P)(O) + D_{y,2}^*(P)(O),$$

and

$$D_{y,2}^*(P)(O) = \int_{-1}^y I(B(P)(W) > x) dx - \Psi_y(P).$$

So we have the following theorem:

Theorem 1 Consider the target parameter $\Psi_{y,h}: \mathcal{M} \to \mathbb{R}$ defined by

$$\Psi_{y,h}(P) = \int_{-1}^{y} E_{P} F_{h,x}(B(P)(W)) dx.$$

We have that for a path $\{P_{\epsilon} : \epsilon\}$ with score S at $\epsilon = 0$

$$\frac{\Psi_{y,h}(P_{\epsilon}) - \Psi_{y,h}(P)}{\epsilon} = PD_{y,h}^*(P)S + O(\epsilon/h),$$

where

$$D_{y,h}^*(P) = \frac{2A-1}{g(A\mid W)} F_{h,B(W)}(y) (Y - \bar{Q}(A,W)) + \int_{-1}^{y} F_{h,x}(B(P)(W)) dx - \Psi_{y,h}(P).$$

For $h \to 0$ and $\epsilon/h \to 0$, we have

$$\lim_{\epsilon \to 0} \frac{\Psi_{y,h_{\epsilon}}(P_{\epsilon}) - \Psi_{y,h_{\epsilon}}(P)}{\epsilon} = PD_{y}^{*}(P)S.$$

In order to show that this result implies pathwise differentiability of $\Psi_{y,0}$, we would need to show the following lemma.

Lemma 1

$$\frac{\Psi_{y,h_{\epsilon}}(P_{\epsilon}) - \Psi_{y,0}(P_{\epsilon}) - \{\Psi_{y,h_{\epsilon}}(P) - \Psi_{y,0}(P)\}}{\epsilon} \\
= \frac{\int_{-1}^{y} P(F_{h,x} - F_{0,x}) (B(P_{\epsilon}) dx - \int_{-1}^{y} P(F_{h,x} - F_{0,x}) (B(P)) dx}{\epsilon} \\
\rightarrow 0.$$

as $\epsilon \to 0$, $h_{\epsilon} \to 0$, $\epsilon/h_{\epsilon} \to 0$.

We have to check if the latter is true, but I suspect it is since we know that $(\Psi_{y,h_{\epsilon}}(P_{\epsilon}) - \Psi_{y,h_{\epsilon}}(P))/\epsilon$ converges nicely (no singularity), and $(F_{h,x} - F_{0,x})(B(W))$ converges to zero in $L^{2}(P)$ -norm, which should all that is relevant since we are averaging over distribution of W. In that case, we have the following theorem.

Theorem 2 Recall $F_{0,x}(b) = I(b > x)$. Consider the target parameter $\Psi_y : \mathcal{M} \to \mathbb{R}$ defined by

$$\Psi_y(P) = \int_{-1}^y E_P F_{0,x}(B(P)(W)) dx.$$

We have that for a path $\{P_{\epsilon} : \epsilon\}$ with score S at $\epsilon = 0$

$$\lim_{\epsilon \to 0} \frac{\Psi_y(P_\epsilon) - \Psi_y(P)}{\epsilon} = PD_y^*(P)S,$$

where

$$D_y^*(P) = \frac{2A - 1}{g(A \mid W)} F_{0,B(W)}(y) (Y - \bar{Q}(A, W)) + \int_{-1}^{y} F_{0,x}(B(P)(W)) dx - \Psi_y(P).$$

1.2 Study of Remainder

Let's suppress y in the notation for now. Let's study the remainder

$$R_{20}(P, P_0) = P_0 D^*(P) + \Psi(P) - \Psi(P_0).$$

Let $Q_W(P) = Q_W(P_0)$, since the contribution from $Q_W(P), Q_W(P_0)$ is trivial. We have

$$P_{0}D^{*}(P) + \Psi(P) - \Psi(P_{0}) = E_{P_{0}} \frac{2A - 1}{g(A \mid W)} I(B(W) < y)(Y - \bar{Q}(A, W))$$

$$+ \int_{-1}^{y} I(B(W) > x) dx - \int_{-1}^{y} P_{0}I(B > x) dx$$

$$+ \int_{-1}^{y} P_{0}I(B > x) dx - \int_{-1}^{y} P_{0}I(B_{0} > x) dx$$

$$= E_{P_{0}} \frac{2A - 1}{g(A \mid W)} I(B(W) < y)(Y - \bar{Q}(A, W))$$

$$+ \int_{-1}^{y} I(B(W) > x) dx - \int_{-1}^{y} P_{0}I(B_{0} > x) dx$$

$$= E_{P_{0}} \frac{g_{0}(1 \mid W)}{g(1 \mid W)} I(B(W) < y)(\bar{Q}_{0} - \bar{Q})(1, W)$$

$$- E_{P_{0}} \frac{g_{0}(0 \mid W)}{g(0 \mid W)} I(B(W) < y)(\bar{Q}_{0} - \bar{Q})(0, W)$$

$$+ \int_{-1}^{y} I(B(W) > x) dx - \int_{-1}^{y} P_{0}I(B_{0} > x) dx$$

$$= E_{P_{0}}I(B(W) < y)(B_{0} - B)(W) + \int_{-1}^{y} P_{0}I(B > x) dx$$

$$- \int_{-1}^{y} P_{0}I(B_{0} > x) dx + R_{20,1}(g, g_{0}, \bar{Q}, \bar{Q}_{0}),$$

where

$$R_{20,1}(g, g_0, \bar{Q}, \bar{Q}_0) = E_{P_0} \left(\frac{g_0(1 \mid W)}{g(1 \mid W)} - 1 \right) I(B(W) < y) (\bar{Q}_0 - \bar{Q})(1, W)$$

$$-E_{P_0} \left(\frac{g_0(0 \mid W)}{g(0 \mid W)} - 1 \right) I(B(W) < y) (\bar{Q}_0 - \bar{Q})(0, W).$$

So it remains to analyze:

$$-R_{20,2}(B,B_0) \equiv \int_{-1}^{y} P_0\{I(B>x) - I(B_0>x)\}dx - P_0I(B$$

and note that $R_{20}(P, P_0) = R_{20,1}(P, P_0) + R_{20,2}(P, P_0)$. By Fubini's theorem, we can write this as:

$$\begin{split} R_{20,2}(B,B_0) &= E_{P_0} \int_{-1}^{y} I(B(W) > x) dx - E_{P_0} \int_{-1}^{y} I(B_0(W) > x) dx - P_0 I(B < y)(B - B_0) \\ &= E_{P_0}(\min(y,B(W)) + 1) - E_{P_0}(\min(y,B_0(W)) + 1) - P_0 I(B < y)(B - B_0) \\ &= E_{P_0}(\min(y,B(W)) - \min(y,B_0(W))) - P_0 I(B < y)(B - B_0) \\ &= E_{P_0} I(B < y,B_0 < y)(B - B_0) + E_{P_0} I(B < y,B_0 > y)(B - y) + E_{P_0} I(B > y,B_0 < y)(y - B_0) \\ &= P_0 \{I(B < y,B_0 < y) - I(B < y)\}(B - B_0) + P_0 I(B < y,B_0 > y)(B - y) \\ &+ P_0 I(B > y,B_0 < y)(y - B_0) \\ &= P_0 I(B < y,B_0 > y)(B_0 - B) + P_0 I(B < y,B_0 > y)(B - y) \\ &+ P_0 I(B > y,B_0 < y)(y - B_0) \\ &= P_0 I(B < y,B_0 < y)(y - B_0) \\ &= P_0 I(B < y,B_0 < y)(y - B_0) \\ &= P_0 I(B < y,B_0 > y)(B_0 - y) + P_0 I(B > y,B_0 < y)(y - B_0) \end{split}$$

where we used that $I(B < y, B_0 < y) - I(B < y) = I(B < y)(I(B_0 < y) - 1) = -I(B < y, B_0 > y)$. Note that both terms are positive. Note that

$$0 \le P_0 I(B < y, B_0 > y)(B_0 - y) \le P_0 I(B < y, B_0 > y)(B_0 - B)$$

$$0 \le P_0 I(B > y, B_0 < y)(y - B_0) \le P_0 I(B > y, B_0 < y)(B - B_0)$$

So we have that $R_{20,2}(B, B_0) \ge 0$ and

$$R_{20,2}(B, B_0) \le P_0I(B < y, B_0 > y)(B_0 - B) + P_0I(B > y, B_0 < y)(B - B_0).$$

This is indeed a higher order remainder. For example, using Cauchy-Schwarz inequality, we could bound $R_{20,2}$ as follows:

$$| R_{20,2}(B, B_0) | \leq | | B - B_0 | |_{P_0} | | I(B < y, B_0 > y) | |_{P_0}$$

$$+ | | B - B_0 | |_{P_0} | | I(B > y, B_0 < y) | |_{P_0}$$

$$= | | B - B_0 | |_{P_0} \left\{ \sqrt{P_0(B < y, B_0 > y)} + \sqrt{P(B > y, B_0 < y)} \right\}.$$

Using this Cauchy-Schwarz bounding, the remainder appears to behave as a $(B - B_0)^{3/2}$, intuitively speaking. However, one can also bound it as

$$R_{20,2}(B, B_0) \le ||B_0 - B||_{\infty} \{ P_0(B < y, B_0 > y) + P_0(B > y, B_0 < y) \},$$

which is a second order difference. To further understand this remainder, we note that

$$P_{0}(B < y, B_{0} > y) = E_{0}I(B(W) < y, B_{0}(W) > y)$$

$$= E_{0}I(B(W) < y, B_{0}(W) > y)I(B_{0}(W) - B(W) > B_{0}(W) - y)$$

$$\leq E_{0}I(B(W) < y, B_{0}(W) > y)I(\parallel B_{0} - B \parallel_{\infty} > B_{0}(W) - y)$$

$$= P_{0}(y < B_{0}(W) < y + \parallel B_{0} - B \parallel_{\infty}, B(W) < y)$$

$$\leq F_{B_{0}}(y + \parallel B_{0} - B \parallel_{\infty}) - F_{B_{0}}(y),$$

where $F_{B_0}(y) = P_0(B_0 \le y)$ is the cdc of B_0 . If we assume that F_{B_0} is Lipsnitz-continuous, then this can be bounded by a constant times $||B_0 - B||_{\infty}$. Similarly,

$$P_{0}(B > y, B_{0} < y) = E_{0}I(B(W) > y, B_{0}(W) < y)$$

$$= E_{0}I(B(W) > y, B_{0}(W) < y)I(y - B_{0}(W) < B(W) - B_{0}(W))$$

$$\leq E_{0}I(B(W) > y, B_{0}(W) < y)I(y - B_{0}(W) < || B - B_{0} ||_{\infty})$$

$$= P_{0}(y - || B - B_{0} ||_{\infty} < B_{0}(W) < y, B(W) > y)$$

$$\leq F_{B_{0}}(y) - F_{B_{0}}(y - || B_{0} - B ||_{\infty}).$$

This proves the following theorem.

Theorem 3 Let

$$R_{20}(P, P_0) = P_0 D^*(P) + \Psi(P) - \Psi(P_0).$$

We have

$$R_{20}(P, P_0) = R_{20,1}(g, g_0, \bar{Q}, \bar{Q}_0) + R_{20,2}(B, B_0),$$

where

$$R_{20,1}(g, g_0, \bar{Q}, \bar{Q}_0) = E_{P_0} \left(\frac{g_0(1 \mid W)}{g(1 \mid W)} - 1 \right) I(B(W) < y) (\bar{Q}_0 - \bar{Q})(1, W)$$

$$-E_{P_0} \left(\frac{g_0(0 \mid W)}{g(0 \mid W)} - 1 \right) I(B(W) < y) (\bar{Q}_0 - \bar{Q})(0, W),$$

and

$$0 \le R_{20,2}(B, B_0) = P_0I(B < y, B_0 > y)(B_0 - B) + P_0I(B > y, B_0 < y)(B - B_0).$$

We can bound the latter term in the following two ways.

$$R_{20,2}(B, B_0) \leq \|B - B_0\|_{P_0} \left\{ \sqrt{P_0(B < y, B_0 > y)} + \sqrt{P(B > y, B_0 < y)} \right\}$$

$$R_{20,2}(B, B_0) \leq \|B_0 - B\|_{\infty} \left\{ P_0(B < y, B_0 > y) + P_0(B > y, B_0 < y) \right\},$$

and

$$P_0(B < y, B_0 > y) \le F_{B_0}(y + || B_0 - B ||_{\infty}) - F_{B_0}(y)$$

 $P_0(B > y, B_0 < y) \le F_{B_0}(y) - F_{B_0}(y - || B_0 - B ||_{\infty}),$

where F_{B_0} is the cumulative distribution function of B_0 .