Teoría de Lenguajes Primer Parcial

Segundo cuatrimestre de 2019

Apagar los celulares.

Hacer cada ejercicio en hojas separadas.

Poner nombre, número de orden y número de página en cada ejercicio.

Justificar todas las respuestas.

El examen es a libro abierto.

Se aprueba con al menos 65 puntos.

1. (25 pts)

Sea $L_1 = \{\omega \in \{0,1,2\}^* \mid \omega = d_1d_2...d_n, n \geq 0, (n \geq 2) \Rightarrow d_n = \max\{d_1,d_2,...d_{n-1}\}\}$. Determinar si existe una expresión regular que denote L_1 . De existir, exhibir alguna. De no existir, probarlo.

2. (25 pts)

Sea $L_2 = \{a^m b^n c^r \mid m \ge n \lor n \le r\}$. Determinar si L_2 puede ser reconocido por algún autómata finito. De existir, exhibir alguno. De no existir, probarlo.

3. (25 pts)

Sea L_3 el lenguaje sobre el alfabeto $\{(,),[,]\}$ de las cadenas de paréntesis y corchetes balanceados tales que no tengan ningún anidamiento de más de 2 paréntesis seguidos (pero sí pueden alternar paréntesis con corchetes ilimitadamente y anidar corchetes ilimitadamente).

Ejemplos de cadenas válidas:

()(())

([([([])])])

()[[[[]]]]]

([[(()())]]])

Ejemplos de cadenas inválidas¹:

((()))	//anida 3 paréntesis
[(([]()[]))]	//anida 3 paréntesis
([]((())))	//anida 4 paréntesis
([]([]([]))))	//anida 4 paréntesis
([]))	//no balanceado

Dar una gramática libre de contexto para L_3 .

4. (25 pts)

Dar un autómata de pila determinístico que acepte el lenguaje L_3 .

¹Los comentarios a la derecha no forman parte de las cadenas.