Exercícios Cálculo 1

- 1. Resolva a inequação.
 - a. 3x + 3 < x + 6
 - b. $x + 3 \le 6x 2$
 - c. x 3 > 3x + 1
 - d. 1 3x > 0
 - e. $2x 1 \ge 5x + 3$
 - f. $2x + 1 \ge 3x$
- 2. Divida $x^3 a^3$ por x a e conclua que $x^3 a^3 = (x a)(x^2 + ax + a^2)$.
- 3. Verifique as identidades.
 - a. $x^2 a^2 = (x a)(x + a)$
 - b. $x^3 a^3 = (x-a)(x^2 + ax + a^2)$
 - c. $x^4 a^4 = (x a)(x^3 + ax^2 + ax^2 + a^2)$
 - d. $x^5 a^5 = (x a)(x^4 + ax^3 + a^2x^2 + a^3x + a^4)$
- 4. Simplifique
 - $a) \ \frac{x^2-1}{x-1}$

b) $\frac{x^3 - 8}{x^2 - 4}$

 $c)\ \frac{4x^2-9}{2x+3}$

 $\frac{1}{x} - 1$

 $e) \ \frac{\frac{1}{x^2} - 1}{x - 1}$

 $\int \frac{\frac{1}{x^2} - \frac{1}{9}}{x - 3}$

 $g) \ \frac{\frac{1}{x} - \frac{1}{5}}{x - 5}$

 $h) \frac{\frac{1}{x} - \frac{1}{p}}{x - p}$

 $i) \frac{\frac{1}{x^2} - \frac{1}{p^2}}{x - p}$

 $j) \; \frac{x^4 - p^4}{x - p}$

 $l) \frac{(x+h)^2 - x^2}{h}$

m) $\frac{1}{x+h} - \frac{1}{x}$

n) $\frac{(x+h)^3-x^3}{h}$

o) $\frac{(x+h)^2 - (x-h)^2}{h}$

5.

Considere o polinômio do 2.º grau $ax^2 + bx + c$, onde $a \ne 0$, $b \in c$ são reais dados.

a) Verifique que

$$ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$
, onde $\Delta = b^2 - 4ac$.

b) Conclua de (a) que, se $\Delta \ge 0$, as raízes de $ax^2 + bx + c$ são dadas pela fórmula

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}.$$

c) Sejam $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ e $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ ($\Delta \ge 0$) as raízes de $ax^2 + bx + c$. Verifique que

$$x_1 + x_2 = -\frac{b}{a} e x_1 x_2 = \frac{c}{a}$$
.

6. Resolva as inequações.

a)
$$x^2 - 3x + 2 < 0$$

b) $x^2 - 5x + 6 \ge 0$
c) $x^2 - 3x > 0$
d) $x^2 - 9 < 0$
e) $x^2 - x - 2 \ge 0$
f) $3x^2 + x - 2 > 0$
g) $x^2 - 4x + 4 > 0$
h) $3x^2 - x \le 0$

b)
$$x^2 - 5x + 6 \ge 6$$

c)
$$x^2 - 3x > 0$$

d)
$$x^2 - 9 < 0$$

$$e) x^2 - x - 2 \ge 0$$

$$f(3x^2 + x - 2) = 0$$

$$g) x^2 - 4x + 4 > 0$$

$$h) 3x^2 - x \le 0$$

$$i) \, 4x^2 - 4x + 1 < 0$$

$$j) 4x^2 - 4x + 1 \le 0$$

7.

Suponha que $P(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ seja um polinômio de grau n, com coeficientes inteiros, isto é, $a_0 \neq 0$, $a_1, a_2, ..., a_n$ são números inteiros. Seja α um número inteiro. Prove que se α for raiz de P(x), então α será um divisor do termo independente an.

8.

Seja P(x) um polinômio de grau n. Prove:

 α é raiz de $P(x) \Leftrightarrow P(x)$ é divisível por $x - \alpha$.

(Sugestão: dividindo-se P(x) por $x - \alpha$, obtém-se um quociente Q(x) e um resto R, R constante, tal que $P(x) = (x - \alpha) Q(x) + R$.