Claims

- 1. Process for curing amino resins, characterized in that layers with thicknesses up to 300 μm or filaments or fibrids with a diameter up to 300 μm and comprising
 - e) from 95 to 99.95% by mass of solvent-free meltable amino resin polycondensates having molar masses of 1 000 to 300 000,
 - f) from 5 to 0.05% by mass of curing agents which can be activated by actinic light and are composed of
 - b1) acid formers of the type of blocked sulphonic acid of the general formula (I)

$$R_1 - SO_2 - O - R_2$$
 (I)

R₁ = unsubstituted or substituted aryl, biphenyl or alkyl,

$$CO-R_3$$

- $N = C$
 $R_2 = 4$ -nitrobenzyl, pentafluorobenzyl, $N (R_4)(R_5)$

substituents

 $Z = {}_{C6-C24}$ -aryl, ${}_{C6-C4}$ -alkyl, ${}_{C6-C4}$ -alkenyl, ${}_{C7-C8}$ -bicycloalkenyl,

where

 R_3 = non-substituted or substituted alkyl or aryl,

 $R_4 = H$, C_1 - C_{12} -alkyl, phenyl, C_2 - C_9 -alkanoyl or benzyl,

 $R_5 = H$, C_1 - C_{12} -alkyl or cyclohexyl

or R_3 and R_4 or R_5 together with the atoms to which they are attached form a 5- to 8-membered ring which can be fused by 1 or 2 benzo radicals,

and/or

b2) halogen-substituted triazine derivatives of the general formula (II)

$$X_3C$$
 N
 R_7 (II)

 $X = CI, Br$

 $R_7 = C_1 - C_{16}$ -alkyl, alkoxy, $C_1 - C_{16}$ -aryl biphenyl, naphthyl, and/or

b3) onium salts of the type of aryldiazonium salts, diarylhalonium salts, triarylsulphonium salts, triarylselenonium salts and/or N-alkoxypyridinium salts,

and if desired

- g) from 1 to 20% by mass, based on the meltable amino resin polycondensates, of non-modified and/or modified maleic anhydride copolymers, and/or
- h) from 0.1 to 5% by mass, based on the meltable amino resin polycondensates, of nanoparticles in the form of phyllosilicates, hydrophilic or hydrophobic synthetic silicas, calcium carbonate or metal oxides of the ZnO, SnO, Al₂O₃ or TiO₂ type.

are cured by irradiation with actinic light at a temperature between the melting point of the amino resin polycondensate and the thermoinduced decomposition temperature of the light-activable curing agents, and if desired are subjected to a thermal aftercure below 250°C.

 Process for curing amino resins according to Claim 1, characterized in that the acid formers of the type of blocked sulphonic acid of the general formula

$$R_1 - SO_2 - O - R_2$$
 (I)

are blocked sulphonic acids in which the substituents

 R_1 = unsubstituted or singly or multiply halogen-, C_1 - C_4 -haloalkyl-, C_1 - C_{16} -alkyl-, C_1 - C_4 -alkoxy-, C_1 - C_4 -alkyl-CO-NH-, phenyl-CO-NH-, benzoyl- and/or nitro-substituted C_6 - C_{10} -aryl or C_7 - C_{12} -arylalkyl,

 $R_2 = 4$ -nitrobenzyl, pentafluorobenzyl, N = C - Su substituents, $N = R_2 - Su$ substituents,

 $Z = {}_{C6-C24}$ -aryl, ${}_{C2-C4}$ -alkyl, ${}_{C2-C4}$ -alkenyl, ${}_{C7-C8}$ -bicycloalkenyl,

where

 $R_3 = C_1$ - C_{12} -alkyl, C_1 - C_4 -haloalkyl, C_2 - C_6 -alkenyl, C_5 - C_{12} -cycloalkyl, unsubstituted or singly or multiply halogen-, C_1 - C_4 -haloalkyl-, C_1 - C_{16} -alkyl-, C_1 - C_4 -alkoxy-, C_1 - C_4 -alkyl-CO-NH-, phenyl-CO-NH-, benzoyl- and/or nitro-substituted C_6 - C_{10} -aryl and/or C_7 - C_{12} -arylalkyl, C_1 - C_8 -alkoxy, C_5 - C_8 -cycloalkoxy, phenoxy or H_2 N-CO-NH-, -CN, C_2 - C_5 -alkyloyl, benzoyl, C_2 - C_5 -alkoxycarbonyl, phenoxycarbonyl, morpholino, piperidino, C_1 - C_1 -alkyl, C_1 - C_4 -haloalkyl, C_2 - C_6 -alkenyl, C_5 - C_{12} -cycloalkyl, unsubstituted or singly or multiply halogen-, C_1 - C_4 -haloalkyl-, C_1 - C_16 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkyl-CO-NH-, phenyl-CO-NH-, benzoyl- and/or nitro-substituted C_6 - C_{10} -aryl, C_7 - C_{12} -arylalkyl, C_1 - C_8 -alkoxy, C_5 - C_8 -cycloalkoxy-, phenoxy- or H_2 N-CO-NH-,

 $R_4 = H$, C_1 - C_{12} -alkyl, phenyl, C_2 - C_9 -alkanoyl or benzyl

 $R_5 = H$, C_1 - C_{12} -alkyl or cyclohexyl,

or R_3 and R_4 or R_5 together with the atoms to which they are attached form a 5- to 8-membered ring which can be fused by 1 or 2 benzo radicals.

 Process for curing amino resins according to Claim 2, characterized in that the acid former of the type of blocked sulphonic acid of the general formula

$$R_1 - SO_2 - O - R_2$$
 (I)

is a blocked sulphonic acid of the structure

4. Process for curing amino resins according to Claim 1, characterized in that the acid formers of the type of halogen-substituted triazine derivatives of the general formula (II)

$$X_3C$$

$$N$$

$$R_7 (II)$$

$$X_3C$$

are halogen-substituted triazine derivatives in which X = CI and $R_7 = p$ -methoxyphenyl.

5. Process for curing amino resins according to Claim 1, characterized in that the onium salt is an onium salt of the formula

$$\begin{array}{c}
OMe \\
N_{2} \\
PF^{\oplus}
\end{array}$$

- 6. Process for curing amino resins according to Claim 1, characterized in that the amino resin polycondensates are polycondensates of melamine resins, urea resins, cyanamide resins, dicyandiamide resins, sulphonamide resins and/or guanamine resins.
- 7. Process for curing amino resins according to Claim 1, characterized in that the polycondensates of melamine resins are mixtures of meltable 4- to 1000-nucleus polytriazine ethers,

where in the polytriazine ethers the triazine segments

 $R_1 = -NH_2$, $-NH-CHR_2-O-R_3$, $-NH-CHR_2-O-R_4-OH$, $-CH_3$, $-C_3H_7$,

-C₆H₅, -OH, phthalimido-, succinimido-, -NH-CO-_{C5-C18}-alkyl,

-NH-C₅-C₁₆-alkylene-OH, -NH-CHR₂-O-C₅-C₁₈-alkylene-NH₂,

-NH-C₅-C₁₈-alkylene-NH₂, -NH-CHR₂-O-R₄-O-CHR₂-NH-,

-NH-CHR₂-NH-, -NH-CHR₂-O-C₅-C₁₈-allkylene-NH-,

-NH-C5-C18-alkylene-NH-, -NH-CHR2-O-CHR2-NH-,

 $R_2 = H$, C_1 - H_7 -alkyl:

$$R_3 = C_1 - C_{18} - alkyl, H;$$

 $R_4 = C_2 - C_{18}$ -alkylene,

- -CH(CH₃)-CH₂-O_{-C2-C12}-alkylene-O-CH₂-CH(CH₃)-,
- -CH(CH₃)-CH₂-O-_{C2-C12}-arylene-O-CH₂-CH(CH₃)-
- -[CH₂-CH₂-O-CH₂-CH₂]_n-, -[CH₂-CH(CH₃)-O-CH₂-CH(CH₃)]_n-,
- $-[-O-CH_2-CH_2-CH_2-CH_2-]_n-$
- $-[(CH_2)_{2-8}-O-CO-_{C6-C14}-arylene-CO-O-(CH_2)_{2-8}-]_n-,$
- $-[(CH_2)_{2\text{-8}}\text{-O-CO-}_{C2\text{-C12}}\text{-alkylene-CO-O-}(CH_2)_{2\text{-8}}\text{-}]_n\text{-},\\$

where n = 1 to 200;

polyester sequences containing siloxane groups, of the type
 -[(X)_r-O-CO-(Y)₉-CO-O-(X)_r]-

in which

$$X = \{(CH_2)_{2-8}\text{-O-CO}_{-C8-C14}\text{-arylene-CO-O-}(CH_2)_{2-8}\text{-}\} \text{ or }$$
$$-\{(CH_2)_{2-8}\text{-O-CO}_{-C2-C12}\text{-alkylene-CO-O-}(CH_2)_{2-8}\text{-}\}$$

$$C_{1}-C_{4}- \text{ alkyl} \qquad C_{1}-C_{4}- \text{ alkyl}$$

$$| \qquad | \qquad |$$

$$Y = -\{C_{6}-C_{14}- \text{ arylene-CO-O-}(\{S_{1}-O_{5}-O_{5}-C_{14} \text{ arylene-}\})$$

$$| \qquad |$$

$$C_{1}-C_{4}- \text{ alkyl} \qquad C_{1}-C_{4}- \text{ alkyl}$$
or

$$r = 1$$
 to 70; $s = 1$ to 70 and $y = 3$ to 50;

- polyether sequences containing siloxane groups, of the type

where $R_2 = H$; C_1 - C_4 -alkyl and y = 3 to 50;

- sequences based on alkylene oxide adducts of melamine, of the type of 2-amino-4,6-di-_{C2-C4}-alkylenamino-1,3,5-triazine sequences;

- phenol ether sequences based on dihydric phenols and C_2 - C_8 diols of the type of - $_{C2-C8}$ -alkylene- $O_{-C6-C18}$ -arylene- O_{-C2-C8} -alkylene-sequences;

are linked by bridge members -NH-CHR2-NH- or

- -NH-CHR₂-O-R₄-O-CHR₂-NH- and -NH-CHR₂-NH- and also, where appropriate, -NH-CHR₂-O-CHR₂-NH-,
- -NH-CHR₂-O-C₅-C₁₈-alkylene-NH- and/or -NH-C₅-C₁₈-alkylene-NHto form 4- to 1000-nucleus polytriazine ethers with a linear and/or branched structure,

where in the polytriazine ethers the molar ratio of the substituents $R_3:R_4=20:1$ to 1:20 and the fraction of the linkages of the triazine segments through bridge members -NH-CHR₃-O-R₄-O-CHR₃-NH-is from 5 to 95 mol%.

- 8. Process for curing amino resins according to Claim 1, characterized in that the curing of layers of amino resins takes place continuously by irradiation of the melt layer of the amino resin polycondensate applied to moving carrier materials.
- 9. Process for curing amino resins according to Claim 1, characterized in that curing of filaments or fibrids of amino resins takes place continuously by irradiation of the filaments or fibrids, discharged as a viscous melt, following the fibre-forming operation.
- 10. Amino resin products, preferably sheetlike textile structures or coatings, produced according to one or more of Claims 1 to 9.