

WATER SOLUBLE PRODRUGS OF HINDERED ALCOHOLS

Background of the Invention

5 1. Field of the Invention

The present invention relates to novel water-soluble prodrugs of aliphatic or aromatic hindered hydroxyl group containing pharmaceuticals. Particularly, the present invention concerns novel water-soluble phosphonooxymethyl ethers of hindered alcohol and phenol containing pharmaceuticals, such as camptothecin, propofol, etoposide, Vitamin E and Cyclosporin A. The present invention also relates to intermediates used to create the final prodrugs as well as pharmaceutical compositions containing the novel compounds.

15 2. Background Art

The successful delivery of a pharmaceutical to a patient is of critical importance in the treatment of disorders. However, the use of many clinical drugs with known properties is limited by their very low water solubility. As a result of low water solubility these drugs must be formulated in co-solvent pharmaceutical vehicles, including surfactants. These surfactants have

been shown to lead to severe side effects in humans that limit the clinical safety of these drugs and therefore the treatment of several disorders.

For example, camptothecin is a natural product isolated from barks of the Chinese camptotheca tree, *Camptotheca acuminata*. It has been shown to have strong anti-tumor activity in several in vivo animal models including major tumor types such as lung, breast, ovary, pancreas, colon and stomach cancer and malignant melanoma. Camptothecin inhibits the cellular enzyme DNA topoisomerase I and triggers a cascade of events leading to apoptosis and programmed cell death. Topoisomerase I is essential nuclear enzyme responsible for the organization and modulation of the topological feature of DNA so that a cell may replicate, transcribe and repair genetic information.

Figure 1 - Camptothecin

The serious drawback of camptothecin is its very limited water solubility. For biological studies it is necessary to dissolve the compound in a strong organic solvent (DMSO) or to formulate the drug as a suspension in Tween 80:saline which is an undesirable drug formulation for human therapy. Recently two analogs of camptothecin with moderate water solubility have been approved in United States for treatment of advanced ovarian cancer (Hycamtin) and colorectal cancer (Camptosar).

Other drugs, like camptothecin, that have similar problems are cyclosporin A (CsA), propofol, etoposide and Vitamin E (alpha-tocopherol). Like camptothecin, CsA has within its structure a sterically hindered alcohol, a 5 secondary alcohol in this case. CsA is formulated in a CremophorEL/ethanol mixture.

An example of a sterically hindered, poorly water soluble phenol is propofol, an anesthetic.

Propofol (2,6-diisopropylphenol)

10 Propofol is formulated for i.v. clinical use as a o/w emulsion. Not only is propofol poorly water soluble, but it also causes pain at the site of injection. This pain must be ameliorated by using lidocaine. Due to the fact that it is formulated as an emulsion, it is 15 difficult and questionable to add other drugs to the

formulation and physical changes to the formulation such as an increase in oil droplet size can lead to lung embolisms, etc. A water soluble and chemically stable prodrug of propofol would provide several advantages.

5 Such a formulation could be a simple aqueous solution that could be admixed with other drugs. If the prodrug itself was painless, the prodrug may be more patient friendly, and finally there should be no toxicity due to the vehicle. Other poorly water soluble, sterically

10 hindered phenols are the anticancer drug, etoposide and Vitamin E (alpha-tocopherol).

The present invention provides a water soluble form of alcohol and phenol containing drugs such as camptothecin and propofol. With respect to camptothecin, compounds according to the present inventions are phosphonooxymethyl ethers of camptothecin in the form of the free acid and pharmaceutically acceptable salts thereof. The water solubility of the acid and the salts facilitates preparation of pharmaceutical formulations.

15 All of the prodrugs according to the present invention exhibit superior water solubility compared to their respective parent drugs. The methods developed for the compounds of the present invention can be useful for conversion of many other water insoluble medicinal agents

20 having aliphatic or aromatic hindered hydroxyl groups to the water soluble derivatives.

25

Summary of the Invention

The invention described herein involves new compositions of matter. The invention relates to the

30 water soluble phosphonooxymethyl derivatives of alcohol and phenol containing pharmaceuticals represented by the general formula I:

+ T, 0060

The above formula I is the derivative of ROH, wherein ROH represents an alcohol- or phenol-containing drug, such as camptothecin, propofol, etoposide, vitamin E and cyclosporin A. In the above formula I, n represents an integer of 1 or 2. When n is 2, ROH is preferably a phenol-containing pharmaceutical, such as propofol. Also included are some drugs for which injectable forms are not possible due to their inherent poor water solubility.

These include danazol, methyltestosterone, iodoquinol and atovaquone. R¹ is hydrogen or an alkali metal ion including sodium, potassium or lithium or a protonated amine or protonated amino acid or any other pharmaceutically acceptable cation. R² is hydrogen or an alkali metal ion including sodium, potassium or lithium or a protonated amine or a protonated amino acid or any other pharmaceutically acceptable cation. After intravenous or oral administration, the derivatives according to formula I are converted back to the parent drugs by hydrolysis and/or phosphatase.

Accordingly, it is an object of the present invention to develop derivatives of water insoluble drugs which exhibit good activity and water solubility.

It is another object of the present invention to develop pharmaceutical compositions of these water soluble compounds, which comprises an amount of the compound of formula I and a pharmaceutically acceptable carrier.

It is another object of the present invention to develop drug derivatives having good stability at pH levels suitable for making pharmaceutical formulations,

but quickly break down *in vivo* under physiological conditions, to potentially act as prodrugs.

Brief Description of the Drawings

5 The drawings of the present application are explained as follows:

Figure 1 illustrates an *in vitro* enzymatic conversion of propofol prodrug to propofol.

10 Figure 2 illustrates the blood concentration change of propofol with respect to time from administration of the propofol prodrug or Diprivan® in a dog study.

15 Figure 3 illustrates an *in vitro* enzymatic conversion of camptothecin prodrug to camptothecin.

Figure 4 illustrates the correlation between plasma concentration of camptothecin from the camptothecin prodrug and from camptothecin in organic co-solvents for a rat study.

Detailed Description of the Invention

20 In the present specification, unless otherwise specified or in context, the following definitions apply.

"Phosphono-" means the group $-P(O)(OH)_2$ and "phosphonooxymethoxy" or "phosphonooxymethyl ether" means generically the group $-OCH_2OP(O)(OH)_2$. "Methylthiomethyl" refers to the group $-CH_2SCH_3$. The present invention also encompasses compounds wherein n=2 such that a "phosphono-di(oxymethyl) ether" generically means the group $-OCH_2OCH_2OP(O)(OH)_2$.

30 "Camptothecin moiety" denotes moiety containing the twenty carbon camptothecin core framework including two nitrogen atoms and four oxygen atoms as represented by the structural formula shown below with the absolute configuration.

+T, 0080

The numbering system shown above is one used in conventional camptothecin derivatives, and is followed throughout the application. For example the notation C20 refers to the carbon atom labeled as "20".

- 5 "Camptothecin analogue" refers to a compound having the basic camptothecin core framework. It is to be understood that camptothecin analogues encompass compounds including but not limited to the following compounds: Topotecan, available from SmithKline Beecham,
- 10 Irinotecan (CPT-11), available from Pharmacia & Upjohn, 9-Aminocamptothecin (9AC), 9-Nitrocamptothecin (9NC), GI 147211C, available from Glaxo Wellcome, and DX-8951f (the previous six camptothecin analogues are currently under clinical investigation and are described in a review conducted by the Pacific West Cancer Fund authored by Claire McDonald (December 1997).

Additionally, several other non-limiting Camptothecin analogues which are herein incorporated by reference are disclosed by Sawada et al., *Current Pharmaceutical Design*, Vol. 1, No. 1, pp 113-132, as well as United States Patents Nos. 5,646,159, 5,559,235, 5,401,747, 5,364,858, 5,342,947, 5,244,903, 5,180,722, 5,122,606, 5,122,526, 5,106,742, 5,053,512, 5,049,668, 4,981,968 and 4,894,456.

25 Several pharmaceutical compounds including their respective derivatives of camptothecin contain more than one hydroxyl group, for example 10-hydroxycamptothecin, topotecan and several others listed in the above

references. It is herein understood that the present invention may be applied to more than one hydroxyl group. This may be accomplished by protecting the additional hydroxyl group prior to derivatization.

5 "Phosphono protecting groups" means moieties, which can be employed to block or protect the phosphono functional group. Preferably, such protecting groups are those that can be removed by methods that do not appreciably affect the rest of the molecule. Suitable 10 phosphonooxy protecting groups include for example benzyl (denoted by "Bn"), t-butyl, and allyl groups.

15 "Pharmaceutically acceptable salt" means a metal or an amine salt of the acidic phosphono group in which the cation does not contribute significantly to the toxicity or biological activity of the active compound. Suitable metal salts include lithium, potassium, sodium, calcium, barium, magnesium, zinc, and aluminum salts. Preferred salts are sodium and potassium salts. Suitable amines salts are for example, ammonia, tromethamine, 20 triethanolamine, ethylenediamine, glucamine, N-methylglucamine, glycine, lysine, ornithine, arginine, ethanolamine, to name but a few. Preferred amine salts are lysine, arginine, N-methylglucamine, and tromethamine salts.

25 In the specification and in the claims, the term -OCH₂OP(O)(OH)₂ is intended to encompass both the free acid and its pharmaceutically acceptable salts, unless the context indicates specifically that the free acid is intended.

30 One aspect of the present invention provides for derivatives of alcohol and phenol containing pharmaceuticals as shown in formula I:

+T, O'00

The derivatives according to formula I can be prepared according to the reaction sequence shown in Scheme 1:

Scheme 1

wherein ROH represents an alcohol- or phenol-containing drug, such as camptothecin, propofol, etoposide, vitamin E, cyclosporin A. It is to be understood that the above pathway is just one of several alternate pathways. These alternate pathways will become evident upon review of the following disclosure and examples.

An example of the above Scheme 1 can be illustrated using the compound camptothecin. It is to be understood that these schemes are applicable to other compounds encompassed by formula I of the present invention, such as those listed above. Accordingly, another aspect of the present invention provides camptothecin derivatives of according to formula II:

II

which include the free acid wherein Z is hydrogen and pharmaceutically acceptable salts thereof wherein Z is metal or amine. Alternatively, formula II includes 5 diacids where Z is metal or amine in both occurrences.

The preferred pharmaceutically acceptable salts of a compound of formula II are alkali salts including lithium, sodium, and potassium salts; and amine salts including triethylamine, triethanolamine, ethanolamine, 10 arginine, lysine and N-methylglucamine salts.

The most preferred embodiments of camptothecin derivatives of formula II include the following compounds: (20)-O-phosphonooxymethylcamptothecin, (20)-O-phosphonooxymethylcamptothecin mono- or di-sodium salt, 15 (20)-O-phosphonooxymethylcamptothecin mono- or di-potassium salt, (20)-O-phosphonooxymethylcamptothecin mono- or di-arginine salt, (20)-O-phosphonooxymethylcamptothecin mono- or di-lysine salt, (20)-O-phosphonooxymethylcamptothecin mono- or di-N-20 methylglucamine salt and (20)-O-phosphonooxymethylcamptothecin mono- or di-triethanolamine salt.

Compounds of formula II may be prepared directly from camptothecin (shown as O-OH) according to the 25 reaction sequence shown in Scheme 2:

Scheme 2

A compound of formula III (methylthiomethyl ether, MTM ether) may be prepared by treating camptothecin with dimethylsulfoxide/acetic anhydride/acetic acid.

5 In the second step shown in Scheme 2, the methylthiomethyl ether is converted to the corresponding protected phosphonoxymethyl ether (compound of formula IV). This is accomplished by treating the MTM ether with N-iodosuccinamide and protected phosphate $\text{HOP}(\text{O})(\text{OR})_2$. In
10 10 the third step, the phosphono protecting groups are removed to provide a compound of formula II. For example, a suitable phosphono protecting group(s) is benzyl that may be removed by catalytic hydrogenolysis.

15 The general process of Scheme 2 for the preparation of a compound of formula I is more particularly exemplified in Scheme 3:

Scheme 3

In the first step, the free hydroxy group of the camptothecin is converted to the corresponding methylthiomethyl ether (-OCH₂SCH₃) group. This conversion may be accomplished by reaction with dimethylsulfoxide in the presence of acetic anhydride and acetic acid. This

method, commonly known as the Pummer reaction was successfully applied by Bristol-Myers Squibb for methylthiomethylation of taxol (Europ.Pat.0604910A1, Bioorg.Med.Chem.Lett., 6, 1837, 1996). The reaction is 5 usually carried out at room temperature, and for 24-72 hours to produce the methylthiomethyl ether.

In the second step of the reaction sequence, the methylthiomethyl ether is converted to the corresponding protected phosphonooxymethyl ether. This well-known 10 conversion was successfully applied by Bristol-Myers Squibb for phosphonooxymethylation of taxol (Europ.Pat.0604910A1, Bioorg.Med.Chem.Lett., 6, 1837, 1996). Thus, a compound of formula III is treated with N-iodosuccinamide and protected phosphoric acid such as 15 dibenzyl phosphate. The reaction is carried out in an inert organic solvent such as tetrahydrofuran and halogenated hydrocarbon such as methylene chloride and in the presence of molecular sieves. Reaction is carried out at room temperature. N-iodosuccinimide and protected 20 phosphoric acid are used in excess (3-5 equivalents) relative to the methylthiomethyl ether.

In the third step of the reaction sequence, the phosphono protecting groups are removed. The deblocking is accomplished by conventional methods well known in the 25 art such as acid- or base-catalyzed hydrolysis, hydrogenolysis, reduction, and the like. For example, catalytic hydrogenolysis can be used to remove the benzyl phosphono-protecting group. Deprotecting methodologies may be found in standard texts, such as T.W. Green and 30 P.G.M. Wutz, Protective groups in organic synthesis, J. Wiley publishers, New York, NY, 1991, pp. 47-67.

The base salts of a compound of formula II may be formed by conventional techniques involving contacting a compound of formula II free acid with a metal base or

with an amine. Suitable metal bases include hydroxides, carbonates and bicarbonates of sodium, potassium, lithium, calcium, barium, magnesium, zinc, and aluminum; and suitable amines include triethylamine, ammonia, 5 lysine, arginine, N-methylglucamine, ethanolamine, procaine, benzathine, dibenzylamine, tromethamine (TRIS), chloroprocaine, choline, diethanolamine, triethanolamine and the like. The base salts may be further purified by chromatography followed by lyophilization or 10 crystallization.

Compounds of the present invention are phosphonooxymethyl ether pharmaceuticals such as camptothecin, propofol, etoposide, tocopherol, etc. The pharmaceutically acceptable salt forms exhibit improved water solubility over parent compounds thereby allowing more convenient pharmaceutical formulations. Without being bound by theory, it is believed that the phosphonooxymethyl ethers of the present invention are prodrugs of the parent pharmaceuticals; the phosphonoxyethyl moiety being cleaved upon contact with phosphatase *in vivo* to generate subsequently the parent compound. As shown above, compounds of the instant invention are effective pharmaceutical or therapeutic agents.

25 For example, compounds of formula II of the present invention may be used in a manner similar to that of camptothecin. The structure of the camptothecin prodrug is shown above. Therefore, an oncologist skilled in the art of cancer treatment will be able to ascertain,
30 without undue experimentation, an appropriate treatment protocol for administering a compound of the present invention. The dosage, mode and schedule of administration of compounds of this invention are not particularly restricted, and will vary with the

particular compound employed. Thus a compound of the formula II may be administrated via any suitable route of administration, preferable parenterally; the dosage may be, for example, in the range of about 0.1 to about 100
5 mg/kg of body weight, or about 5 to 500 mg/m². Compounds of formula II may also be administrated orally; oral dosage may be in the range of about 5 to about 500 mg/kg of body weight. The actual dose used will vary according to the particular composition of formulated, the route of
10 administration, and the particular site, host and type of tumor being treated. Many factors that modify the action of the drug will be taken into account in determining the dosage including age, sex, diet and the physical conditions of the patient.

15 Another example is the propofol prodrug according to formula I of the present invention. The structure of the propofol prodrug is shown below:

Propofol Prodrug

20 In the above formula for the propofol prodrug, Z is the same as defined above for formula II. Therefore, an anesthesiologist skilled in the art of anesthesia will be able to ascertain, without undue experimentation, an appropriate treatment protocol for administering a compound of the present invention. The dosage, mode and schedule of administration of compounds of this invention are not particularly restricted, and will vary with the particular compound employed. Thus, a compound of

formula I such as the propofol prodrug may be administered via any suitable route of administration, preferably parenterally; the dosage may be, for example, in the range of 0.5 to 10 mg/kg administered according to
5 procedures for induction of general anesthesia or maintenance of general anesthesia. Alternatively, the compound of formula I may be administered by parenteral infusion, the dosage may be, for example, in the range of 2 μ g/kg/min to 800 μ g/kg/min administered according to
10 procedures for maintenance of general anesthesia, initiation and maintenance of MAC sedation or initiation and maintenance of ICU sedation.

The present invention also provides pharmaceutical compositions containing a pharmaceutically effective amount of compound of formula I in combination with one or more pharmaceutically acceptable carriers, excipients, diluents or adjuvants. For example, compounds of the present invention may be formulated in the form of tablets, pills, powder mixtures, capsules, injectables,
15 solutions, suppositories, emulsions, dispersions, food premix, and in other suitable forms. They may also be manufactured in the form of sterile solid compositions, for example, freeze-dried and, if desired, combined with other pharmaceutically acceptable excipients. Such solid
20 compositions can be reconstituted with sterile water, physiological saline, or a mixture of water and an organic solvent, such as propylene glycol, ethanol, and the like, or some other sterile injectable medium
25 immediately before use of parenteral administration.

Typical of pharmaceutically acceptable carriers are, for example, manitol, urea, dextrans, lactose, non-reducing sugars, potato and maize starches, magnesium stearate, talc, vegetable oils, polyalkylene glycols, ethyl cellulose, poly(vinyl-pyrrolidone), calcium

carbonate, ethyloleate, isopropyl myristate, benzyl benzoate, sodium carbonate, gelatin, potassium carbonate, silicic acid. The pharmaceutical preparation may also contain non toxic auxiliary substances such as
5 emulsifying, preserving, wetting agents, and the like as for example, sorbitan monolaurate, triethanolamine oleate, polyoxyethylene monostearate, glyceryl tripalmitate, dioctyl sodium sulfosuccinate, and the like.

10 In the following experimental procedures, all temperatures are understood to be in Centigrade (C) when not specified. The nuclear magnetic resonance (NMR) spectral characteristics refer to chemical shifts (δ) expressed in parts per million (ppm) versus
15 tetramethylsilane (TMS) as reference standard. The relative area reported for the various shifts in the proton NMR spectral data corresponds to the number of hydrogen atoms of a particular functional type in the molecule. The nature of the shifts as to multiplicity is
20 reported as broad singlet (bs), broad doublet (bd), broad triplet (bt), broad quartet (bq), singlet (s), multiplet (m), doublet (d), quartet (q), triplet (t), doublet of doublet (dd), doublet of triplet (dt), and doublet of quartet (dq). The solvents employed for taking NMR
25 spectra are acetone-d₆ (deuterated acetone) DMSO-d₆ (perdeuteriodimethylsulfoxide), D₂O (deuterated water), CDCl₃ (deuterochloroform) and other conventional deuterated solvents.

The abbreviations used herein are conventional
30 abbreviations widely employed in the art. Some of which are: MS (mass spectrometry); HRMS (high resolution mass spectrometry); Ac (acetyl); Ph (phenyl); FAB (fast atom bombardment); min (minute); h or hrs (hour(s)); NIS (N-

iodosuccinimide); DMSO (dimethylsulfoxide); THF (tetrahydrofuran).

The following examples are provided to illustrate the synthesis of representative compounds of the instant invention and are not to be construed as limiting the scope of the invention in any manner. One skilled in the art will be able to adapt these methods, without undue experimentation, to the synthesis of compounds within the scope of this invention but not specifically disclosed.

5 For example, in the following examples, specific salts are employed, however, these salts are not to be construed as limiting. An example of this situation is the repeated use of a silver salt of dibenzylphosphosphate. Tetralkyl ammonium salts, such as tetramethyl ammonium

10 salts or other alkali metal salts may be used in lieu of the silver salt.

15

EXAMPLES

+7,0190

I. Synthesis of O-Phosphonooxymethylpropofol

Ia. Synthesis of O-methylthiomethylpropofol:

To a stirred suspension of sodium hydride (150 mg, 6.2 mmol) in dry HMPA (10 mL), kept under an argon atmosphere, was added dropwise propofol (1.1 mL of 97%, 5.7 mmol) over 15 minutes. The reaction mixture was then 5 stirred at room temperature for an additional 30 minutes. To this mixture was added dropwise chloromethyl methyl sulfide (550 μ L of 95%, 6.2 mmol) and then stirred at room temperature. After 20 hours, the reaction mixture was partitioned with stirring between water (10 mL) and 10 benzene (20 mL). The aqueous layer was separated and extracted with benzene (10 mL). The benzene fractions were combined, washed with water (2 \times 3 mL), dried over sodium sulfate, and evaporated under reduced pressure. The resulting oily residue was subjected to column 15 chromatography (silica gel, hexane, then 4:1 hexane/chloroform) to give 1.15 g (85% yield) of the title compound as a colorless oil.

EIMS: [M+], m/z 238.

^1H NMR (300 MHz, CDCl_3 , δ): 1.24 (d, $J = 6.9$ Hz, 12H), 2.37
20 (s, 3H), 3.37 (hept, $J = 6.9$ Hz, 2H), 4.86 (s, 2H), 7.12
(s, 3H). ^{13}C NMR (75 MHz, CDCl_3 , δ): 15.40, 23.98, 26.68,
78.12, 124.04, 125.05, 141.74, 152.20.

Ib. Synthesis of O-chloromethylpropofol:

To a stirred solution of O-methylthiomethylpropofol (3.00 g, 12.5 mmol) in dry methylene chloride (30 mL), kept under an argon atmosphere, was added a 1M solution of SO_2Cl_2 in dry methylene chloride (12.2 mL, 12.2 mmol) at 5 5°C over five minutes. The reaction mixture was stirred for 10 minutes at the same temperature and then for three hours at room temperature. The solvent was evaporated under reduced pressure and the brown residual oil was purified by flash column chromatography (silica gel, 1:20 10 hexane / ethyl acetate) to give 2.36 g (83% yield) of the title compound as a yellow oil.

CIMS (NH_3): $[\text{M}]^+$, m/z 226, $[\text{MH} + \text{NH}_3]^+$, m/z 244.

^1H NMR (300 MHz, CDCl_3 , δ): 1.22 (d, $J = 6.9$ Hz, 12H), 3.35 (hept, $J = 6.9$ Hz, 2H), 5.76 (s, 2H), 7.15 (m, 3H). ^{13}C NMR 15 (75 MHz, CDCl_3 , δ) 23.93, 26.84, 83.34, 124.34, 125.95, 141.34, 150.93.

Ic. Synthesis of O-phosphonooxymethylpropofol dibenzyl ester (route-1):

A mixture of O-chloromethylpropofol (2.20 g, 9.7 20 mmol), silver dibenzylphosphate (3.85 g, 10.0 mmol) and dry toluene (50 mL) was refluxed under an argon atmosphere for 45 minutes. The mixture was cooled down to room temperature and filtered. After the solvent was evaporated *in vacuo*, the oily residue was purified by silica gel

flash column chromatography (9:1 hexane/ethyl acetate and then 1:1 hexane/ethyl acetate) to give 4.43 g (98% yield) of the title compound as a yellow oil.

CIMS (NH₃): [MH]⁺, m/z 469, [MH+ NH₃]⁺, m/z 486.

5 ¹H NMR (300 MHz, CDCl₃, δ): 1.17 (d, J = 6.8 Hz, 12H), 3.33 (hept, J = 6.9 Hz, 2H), 5.00 (d, J = 7.8 Hz, 2H), 5.01 (d, J = 7.8 Hz, 2H), 5.42 (d, J = 9.9 Hz, 2H), 7.12 (m, 3H), 7.32 (m, 1OH). ¹³C NMR (75 MHz, CDCl₃, δ): 23.79, 26.57, 69.15, 69.23, 94.14, 94.20, 124.07, 125.62, 127.70,
10 128.44, 135.42, 135.51, 141.50, 151.07.

Ic. Synthesis of O-phosphonooxymethylpropofol dibenzyl ester (alternate route-1):

To a stirred solution of O-methylthiomethylpropofol (1.45 g, 6.08 mmol) in dry methylene chloride (15 mL)
15 under an argon atmosphere at 0-5°C was added a 1M solution
of SO_2Cl_2 in dry methylene chloride (6.5 mL, 6.5 mmol) over
five minutes. The reaction mixture was stirred for 10
minutes at 5°C and three hours at room temperature. Then
the solvent was evaporated under reduced pressure. The
20 residual oil was dissolved in toluene (ACS-grade, 20 mL);
silver dibenzylphosphate (3.50 g, 9.1 mmol) was added, and
the resulting mixture was refluxed for 45 minutes. The
brown reaction mixture was cooled down to room temperature
and filtered. After the solvent was evaporated *in vacuo*,
25 the oily residue was purified by silica gel flash column
chromatography (9:1 hexane/ethyl acetate, then 1:1

hexane/ethyl acetate) to give 2.41 g (85% yield) of the title compound as a yellow oil. This product had the same R_f (TLC) and ¹H NMR spectrum (300 MHz, CDCl₃) as an authentic sample.

5

Ic. Synthesis of O-phosphonooxymethylpropofol dibenzyl ester (alternate route-2):

To a stirred suspension of sodium hydride (41 mg of 60% dispersion in mineral oil, 1.02 mmol) in dry dimethoxyethane (1.5 mL) under an argon atmosphere was added dropwise propofol (200 μ L of 97%, 1.04 mmol) over 5 minutes and the resulting mixture was stirred for an additional 15 minutes. The resulting homogeneous solution was added dropwise to a stirred solution of chloroiodomethane (4.0 mL, 53 mmol) in dry dimethoxyethane (4 mL) over 15 minutes. This reaction mixture was stirred for two hours, filtered, and then the solvent and the excess of chloroiodomethane were evaporated. The residual oil was dissolved in toluene (HPLC-grade, 10 mL). To this solution was added silver dibenzylphosphate (400 mg, 1.04 mmol), and the resulting mixture was refluxed for 10 minutes. After the reaction mixture was cooled down to room temperature and filtered, the solvent was evaporated *in vacuo*. The oily residue was purified by silica gel flash column chromatography (9:1 hexane/ethyl acetate and then 1:1 hexane/ethyl acetate) to give 205 mg (42% yield) of the title compound as a yellow oil. This product had

the same Rf (TLC) and ^1H NMR spectrum (300 MHz, CDCl_3) as an authentic sample.

Further to the above reaction Ic (alternate route-2) it is understood that other reagents may be used depending 5 on the desired compound. For example, when, a compound of formula I wherein n=2 is desired, the chloroiodomethane may be substituted with a compound such as $\text{X}-\text{CH}_2-\text{O}-\text{CH}_2-\text{Cl}$, wherein X is a good leaving group.

10 **Ic. Synthesis of O-phosphonooxymethylpropofol dibenzyl ester (alternate route-3):**

To a stirred solution of O-methylthiomethylpropofol (91 mg, 0.38 mmol) in dry methylene chloride (2 mL) under an argon atmosphere were added powdered, activated 4Å 15 molecular sieves (100 mg), and then a solution of dibenzylphosphate (127 mg, 0.45 mmol) and N-iodosuccinimide (102 mg of 95%, 0.43 mmol) in tetrahydrofuran (2 mL). The reaction mixture was stirred at room temperature for one hour, filtered, and diluted 20 with methylene chloride (30 mL). The resulting solution was washed with a solution of sodium thiosulfate (2 mL of a 1M solution), a saturated solution of sodium bicarbonate (3 mL), brine (5 mL), dried over a mixture of sodium sulfate and magnesium sulfate, filtered, and concentrated 25 *in vacuo*. The oily residue was purified by silica gel flash column chromatography (1:1 hexane/ethyl acetate) to give 120 mg (67% yield) of the title compound as a yellow

oil. This product had the same R_f (TLC) and ^1H NMR spectrum (300 MHz, CDCl_3) as an authentic sample.

Ic. Synthesis of O-phosphonooxymethylpropofol dibenzyl

To a solution of propofol (38 mg of 97%, 0.21 mmol) in methylene chloride (1 mL) was added tetrabutylammonium bromide (10 mg, 0.03 mmol) and a solution of sodium hydroxide (40 mg, 1 mmol) in water (0.2 mL). The heterogeneous mixture was stirred for 15 minutes. Then a solution of chloromethyl dibenzylphosphate (104 mg, 0.32 mmol) in methylene chloride (1 mL) was added and the reaction mixture was stirred vigorously for eight hours. The mixture was then diluted with methylene chloride (10 mL), washed with water (2 mL), dried over sodium sulfate, filtered, and evaporated *in vacuo*. The oily residue was purified by silica gel flash column chromatography (hexane, 20:1 hexane/ethyl acetate, and 10:1 hexane/ethyl acetate) to give 44 mg (45% yield) of the title compound as a yellow oil. This product had the same R_f (TLC) and ^1H NMR spectrum (300 MHz, CDCl_3) as an authentic sample.

Further to the above reaction Ic (alternate route-4) it is to be understood that the reagent:

+T, 0251

can be generically represented by the following formula:

+T, 0260

wherein X represents a leaving group, R³ and R⁴ are each a hydrogen atom, an organic group or an inorganic group and Y is a phosphate protecting group. Examples of leaving groups include chlorine, bromine, iodine, tosylate or any other suitable leaving group. Examples of phosphate protecting groups include protecting groups that temporarily block the reactivity of the phosphate group and permit selective displacement with the nucleophilic displacement reaction. Examples of such blocking groups include but are not limited to benzyl, allyl, tertiary butyl and isopropyl, ethyl and β-cyanoethyl.

15 **Ic. Synthesis of O-phosphonooxymethylpropofol dibenzyl ester (alternate route-5) :**

7%

To a stirred suspension of sodium hydride (36 mg of a 60% dispersion in mineral oil, 0.91 mmol) in dry dimethoxyethane (2 mL) under an argon atmosphere was added 20 dropwise propofol (172 µl of 97%, 0.90 mmol) over five minutes. The resulting mixture was stirred at room temperature for an additional 20 minutes. To the mixture was then added the solution of formaldehyde bis-(dibenzylphosphono)acetal (500 mg, 0.88 mmol) in dry

dimethoxyethane (3 mL). The reaction mixture was stirred at room temperature for 20 hours and then at 70°C for 2.5 hours. The mixture was then filtered and the solvent was evaporated *in vacuo*. The oily residue was purified by 5 silica gel flash column chromatography (hexane, 10:1 hexane/ethyl acetate, and then 1:1 hexane/ethyl acetate) to give 29 mg (7% yield) of the title compound as a yellow oil. This product had the same R_f (TLC) and ^1H NMR spectrum (300 MHz, CDCl_3) as an authentic sample.

10 **Id. Synthesis of O-phosphonooxymethylpropofol:**

To a solution of O-phosphonooxymethylpropofol dibenzyl ester (115 mg, 0.245 mmol) in methanol (10 mL) was added palladium on carbon (10%, 20 mg). This mixture was stirred under an atmosphere of hydrogen (1 atm) for 15 1.5 hour. The catalyst was removed by filtration through Celite, and the filtrate was evaporated at reduced pressure to give 70.5 mg (100% yield) of the title compound as a colorless oil, unstable on standing at room temperature.

20 FABMS-(GLY): $[\text{M}-\text{H}]^-$, m/z 287.

^1H NMR (300 MHz, acetone-d₆, δ): 1.19 (d, $J = 6.8$ Hz, 12H), 3.46 (sext, $J = 6.8$ Hz, 2H), 5.45 (d, $J = 9.7$ Hz, 2H), 7.15 (m, 3H). ^{13}C NMR (75 MHz, acetone-d₆, δ): 24.2178, 27.1496, 94.63, 94.65, 124.08, 126.30, 142.46, 152.32.

Ie. Synthesis of O-phosphonooxymethylpropofol disodium salt:

To a solution of O-phosphonooxymethylpropofol dibenzyl ester (1.05 g, 2.24 mmol) in tetrahydrofuran (100 mL) was added water (5 mL) and palladium on carbon (10%, 300 mg). This mixture was stirred under hydrogen (1 atm) for one hour. The catalyst was removed by filtration through Celite, and the filtrate was treated with a solution of sodium carbonate hydrate (263 mg in 3 mL of water, 2.12 mmol). THF was evaporated under reduced pressure and the residual water solution was extracted with ether (3 x 3 mL). The aqueous layer was evaporated to dryness (argon stream or rotary evaporator) and the resulting solid was dried overnight *in vacuo*, washed with ether (4 x 4 mL), hexane (2 x 4 mL), and again dried *in vacuo* to provide 655 mg (93% yield) of the title compound as a white powder.

FABMS-(GLY): $[\text{M}-2\text{Na}+\text{H}]^-$, m/z 287.

^1H NMR (300 MHz, D_2O , δ): 1.22 (d, $J = 7.0$ Hz, 12H), 3.46 (hept, $J = 6.9$ Hz, 2H), 5.27 (d, $J = 7.5$ Hz, 2H), 7.28 (m, 3H).

II. Synthesis of O-Phosphonooxymethyl-alpha-tocopherol

IIa. Synthesis of O-phosphonooxymethyl-alpha-tocopherol dibenzyl ester:

To a solution of chloromethyl dibenzylphosphate (323 mg, 0.98 mmol), alphatocopherol (409 mg of 97%, 0.92 mmol), and tetrabutylammonium bromide (301 mg, 0.92 mmol) in benzene (5 mL) was added an aqueous solution of sodium hydroxide (150 mg in 0.2 mL of water, 3.7 mmol). The resulting reaction mixture was vigorously stirred at room temperature for two hours under an argon atmosphere. The mixture was then diluted with benzene (10 mL), washed with water (3 x 3 mL), dried over magnesium sulfate, filtered, and evaporated under reduced pressure. The brown oily residue was purified by silica gel flash column chromatography (10:1 hexane/ethyl acetate) to give 336 mg (51 % yield) of the title compound as a yellow oil.

FABMS+(NBA): $[M]^+$, m/z 720.

¹H NMR (500 MHz, CDCl₃, δ): 0.85 (m, 12H), 1.21 (s, 3H), 1.27 (m, 24H), 1.75 (m, 2H), 2.06 (s, 3H), 2.11 (s, 3H), 2.14 (s, 3H), 2.54 (t, J = 6.8 Hz, 2H), 4.97 (m, 4H), 5.20 (d, J = 9.3 Hz, 2H), 7.31 (m, 1OH).

+T, O³⁰⁰

5 IIb. Synthesis of O-phosphonooxymethyl-alpha-tocopherol:

To a solution of O-phosphonooxymethyl-alpha-tocopherol dibenzyl ester (88 mg, 0.12 mmol) in tetrahydrofuran (10 mL) was added palladium on carbon (10%, 15 mg). The mixture was stirred under an atmosphere 10 of hydrogen (1 atm) for 10 minutes (the reaction was complete after 5 minutes as judged by TLC). The catalyst was removed by filtration through Celite, the filtrate was evaporated at reduced pressure, and then dried *in vacuo*. The title compound was obtained in an amount of 70 mg 15 (100% yield) as a brownish oil, which was unstable at room temperature.

FABMS+ (NBA): [M]⁺, m/z 540, [M + Na]⁺, m/z 563; (NBA + Li): [M + Li]⁺, m/z 547

IIc. Synthesis of O-phosphonooxymethyl-alpha-tocopherol
20 disodium salt:

+T, O³⁰¹

To a solution of O-phosphonooxymethyl-alpha-tocopherol dibenzyl ester (100 mg, 0.14 mmol) in tetrahydrofuran (10 mL) was added palladium on carbon (10%, 18 mg). The mixture was stirred under an atmosphere of hydrogen (1 atm) for 5 minutes. The catalyst was removed by filtration through Celite, the filtrate was evaporated at room temperature at reduced pressure, and the resulting residue was dissolved in ether (2 mL). The ether solution was then treated with an aqueous solution of sodium hydroxide (11.2 mg in 100 mL of water, 0.28 mmol), and the resulting mixture was stirred at room temperature for 10 min. The ether phase was removed and the aqueous phase was washed with ether (3 x 3 mL) and then dried *in vacuo* for 20 hours to give 73 mg (89% yield) of the title compound as a gray solid.

FABMS+ (TG/G): $[MH]^+$, m/z 585, $[M + Na]^+$, m/z 607

The synthesis of water soluble derivatives of camptothecin will also be further detailed as follows:

III. Synthesis of 20-O-Phosphonooxymethylcamptothecin

+T, 0310

IIIa. Synthesis of 20-O-methylthiomethylcamptothecin:

To a suspension of camptothecin (5.0 g, 14.3 mmol) in dimethylsulfoxide (250 mL) was added acetic anhydride (125 mL) and acetic acid (35 mL). The heterogeneous mixture was vigorously stirred at room temperature for 24 hours, poured into ice (800 mL), stirred for 30 minutes, and then extracted with methylene chloride (4 x 100 mL). The combined methylene chloride extracts were washed with water (2 x 100 mL) and dried over magnesium sulfate. The methylene chloride was removed at reduced pressure to give a brownish solid. The solid was dissolved in a minimum volume of methylene chloride. This solution was filtered and diluted with a 10-fold excess of hexane and then kept overnight in the refrigerator. The precipitated solid was filtered off, washed several times with hexane, and dried to give 5.38 g (92% yield) of the title compound as a light brown powder. $\alpha_{D}^{20}-123.6^{\circ}$ (c 0.55, CHCl₃).

FABMS+ (NBA): [MH]⁺, m/z 409.

¹H NMR (400 MHz, CDCl₃, δ): 0.93 (t, J = 7.2 Hz, 3H), 2.11 (sext, J = 7.6 Hz, 1H), 2.29 (sext, J = 7.6 Hz, 1H), 2.30 (s, 3H), 4.58 (s, 2H), 5.33 (s, 2H), 5.40 (d, J = 17.2 Hz, 1H), 5.62 (d, J = 17.3 Hz, 1H), 7.48 (s, 1H), 7.69 (t, J = 5 7.1 Hz, 1H), 7.86 (t, J = 7.1 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.42 (s, 1H).

¹³C NMR (75 MHz, CDCl₃, δ): 7.76, 14.89, 33.90, 49.92, 66.68, 71.02, 76.57, 97.51, 122.63, 128.02, 128.09, 128.30, 129.71, 130.64, 131.11, 145.14, 146.10, 148.88, 10 152.27, 157.43, 169.34, 169.73.

IIIb. Synthesis of 20-O-phosphonoxyethylcamptothecin dibenzyl ester:

To a well stirred suspension of 20-O-methylthiomethylcamptothecin (1.00 g, 2.44 mmol) and 15 powdered, activated 4 Å molecular sieves (5 g) in tetrahydrofuran (20 mL) was added a suspension of N-iodosuccinimide (2.00 g of 95%, 8.44 mmol) and dibenzylphosphate (2.20 g, 7.83 mmol) in methylene chloride (12 mL). The resulting mixture was vigorously 20 stirred at room temperature for 30 minutes, filtered, and diluted with ethyl acetate (300 mL). The solution was washed with aqueous sodium thiosulfate (10%, 2 x 15 mL), water (2 x 20 mL), brine (50 mL), and dried over magnesium sulfate. The mixture was filtered and the solvent was 25 evaporated under reduced pressure. The brown oily residue

was purified by silica gel flash column chromatography (98:2 ethyl acetate/methanol) and dried *in vacuo* overnight to give 1.19 g (76% yield) of the title compound as a yellow foam. $\alpha_{D}^{20} -43.1^{\circ}$ (*c* 0.55, CHCl₃).

5 FABMS+ (NBA): [MH]⁺, m/z 639.

¹H NMR (400 MHz, CDCl₃, δ): 0.91 (t, *J* = 7.4 Hz, 3H), 2.09 (sext, *J* = 7.4 Hz, 1H), 2.26 (sext, *J* = 7.4 Hz, 1H), 5.06 (m, 4H), 5.28 (m, 3H), 5.35 (d, *J* = 17.0 Hz, 1H), 5.48 (2xd, *J* = 10.5 Hz, 1H), 5.64 (d, *J* = 17.3 Hz, 1H), 7.59 (s, 1H), 7.67 (t, *J* = 7.0 Hz, 1H), 7.80 (t, *J* = 7.1 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 8.13 (d, *J* = 8.5 Hz, 1H), 8.35 (s, 1H).

¹³C NMR (100 MHz, CDCl₃, δ): 7.73, 29.53, 32.49, 49.86, 66.74, 69.37, 69.44, 78.48, 88.99, 89.04, 98.09, 121.55, 127.65, 127.70, 127.90, 128.01, 128.25, 128.35, 128.36, 129.62, 130.48, 130.97, 135.45, 135.55, 145.47, 145.82, 148.76, 152.15, 157.18, 168.67.

IIIc. Synthesis of 20-O-phosphonooxymethylcamptothecin:

To a solution of 20-O-phosphonooxymethylcamptothecin dibenzyl ester (500 mg, 0.78 mmol) in tetrahydrofuran (100 mL) and water (5 mL) was added palladium on carbon (10%, 500 mg). This mixture was stirred under an atmosphere of

hydrogen (1 atm) for 35 minutes. The catalyst was removed by filtration through Celite. The Celite was then washed with tetrahydrofuran (300 mL) and the combined filtrates were evaporated at reduced pressure. The resulting green solid was washed with ether (2 x 20 mL), hexane (50 mL), dried *in vacuo*, and then dissolved in hot methanol (60 mL). The solution was filtered, concentrated at reduced pressure to ~10 mL volume. After standing at room temperature for one hour, the solution was placed in the refrigerator overnight. The crystalline precipitate that had formed overnight was filtered off and dried *in vacuo* to give 155 mg of the title compound as a yellow solid. The filtrate was concentrated to ~1 mL volume and kept in the refrigerator for one hour to give an additional 28 mg of the product. Total yield: 183 mg (51%).

FABMS+(NBA): $[\text{MH}]^+$, m/z 459, $[\text{M} + \text{Na}]^+$, m/z 481.

¹H NMR (400 MHz, D₂O, δ): 0.95 (t, J = 7.5 Hz, 3H), 2.25 (m, 2H), 4.98 (d, J = 5.0 Hz, 2H), 5.14 (2xd, J = 9.3 Hz, 1H), 5.22 (2xd, J = 8.9 Hz, 1H), 5.48 (d, J = 17.0 Hz, 1H), 5.60 (d, J = 16.9 Hz, 1H), 7.54 (s, 1H), 7.56 (t, J = 7.7 Hz, 1H), 7.77 (t, J = 7.2 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 8.44 (s, 1H).

Chemical structure and purity of the product were also confirmed by ^1H NMR spectroscopy of its disodium salt, formed from the acid and two mole equivalents of sodium bicarbonate in D_2O .

**IIIc. Synthesis of 20-O-phosphonoxyethylcamptothecin
(alternate run):**

+T, 0350

To a solution of 20-O-phosphonooxymethylcamptothecin dibenzyl ester (500 mg, 0.78 mmol) in tetrahydrofuran (100 mL) and water (5 mL) was added palladium on carbon (10 %, 500 mg). The mixture was stirred under an atmosphere of 5 hydrogen (1 atm) for 30 minutes. The catalyst was removed by filtration through Celite. Celite was washed with tetrahydrofuran (2 x 100 mL), and the combined filtrates were treated with an aqueous solution of sodium carbonate hydrate (97 mg in 2 mL water, 0.78 mmol). THF was 10 evaporated at reduced pressure and the heterogeneous aqueous residue was diluted with water (10 mL) and extracted with ethyl acetate (2 x 3 mL). The resulting yellow homogeneous solution was acidified with hydrochloric acid (10%) to pH=1. The resulting precipitate 15 was filtered off and dried in vacuo overnight to give 145 mg (41% yield) of the title compound as a yellow solid.

IIIId. Synthesis of 20-O-phosphonooxymethylcamptothecin disodium salt:

To a suspension of 20-O-phosphonooxymethylcamptothecin (5 mg, 10.9 μ mol) in deuterium oxide (0.5 mL) was added a deuterium oxide solution of sodium bicarbonate (50 μ L of 0.44 M solution = 22 μ mol). The heterogeneous mixture 5 was sonicated for a few minutes to give a yellow homogenous solution of the title product.

^1H NMR (400 MHz, D_2O , after 10 min., 96% lactone, 4% carboxylate, δ): 1.05 (t, J = 7.2 Hz, 3H), 2.27 (m, 2H), 4.57 (d, J = 18.8 Hz, 1H), 4.70 (d, J = 18.9 Hz, 1H), 5.06 10 (dd, J = 8.3, J = 5.4 Hz, 1H), 5.18 (dd, J = 7.6, J = 5.5 Hz, 1H), 5.45 (d, J = 16.7 Hz, 1H), 5.59 (d, J = 16.8 Hz, 1H), 7.34 (t, J = 7.1 Hz, 1H), 7.41 (s, 1H), 7.60 (m, 2H), 7.81 (d, J = 8.3 Hz, 1H), 8.17 (s, 1H).

**IIIId. Synthesis of 20-O-phosphonooxymethylcamptothecin
disodium salt (alternate run 1):**

To a solution of 20-O-phosphonooxymethylcamptothecin dibenzyl ester (78 mg, 0.122 mmol) in tetrahydrofuran (10 mL) and water (3 mL) was added palladium on carbon (10%, 80 mg). The mixture was stirred under an atmosphere of 20 hydrogen (1 atm) for 30 minutes. The catalyst was removed by filtration through Celite and the filtrate was treated with an aqueous solution of sodium bicarbonate (20 mg in 0.5 mL of water, 0.238 mmol). The yellow precipitate was filtered off, washed with methylene chloride, and dried in

vacuo to give 35 mg (57% yield) of the title compound (light brown solid) as a mixture of its lactone form (82%) and its carboxylate form (18%) (by ^1H NMR).

IIId. Synthesis of 20-O-phosphonoxyethylcamptothecin

5 disodium salt (alternate run 2):

To a solution of 20-O-phosphonoxyethylcamptothecin dibenzyl ester (500 mg, 0.78 mmol) in tetrahydrofuran (100 mL) and water (5 mL) was added palladium on carbon (10%, 500 mg). This mixture was stirred under an atmosphere of 10 hydrogen (1 atm) for 30 minutes. The catalyst was removed by filtration through Celite. Celite was washed with tetrahydrofuran (50 mL), and the combined filtrates were treated with an aqueous solution of sodium carbonate hydrate (90 mg in 2 mL of water, 0.72 mmol). 15 Tetrahydrofuran was evaporated at reduced pressure, and the residue was dissolved in water (15 mL). The heterogeneous mixture was extracted with ethyl acetate (2×15 mL) and ether (20 mL), and the resulting aqueous homogenous solution was evaporated to dryness under a 20 stream of argon at room temperature. The residue was dried *in vacuo* overnight to give 290 mg (80% yield) of the title compound (orange solid) as a mixture of its lactone form (60%), its carboxylate form (40%), and a small amount of byproducts (by ^1H NMR).

IIIe. Synthesis of 20-O-phosphonooxymethylcamptothecin monosodium salt:

To a continuously sonicated suspension of 20-O-phosphonooxymethylcamptothecin (5 mg, 10 μmol) in deuterium oxide (0.5 mL) was added dropwise a deuterium oxide solution of sodium bicarbonate until complete homogenization was achieved (21 μl of 0.44 M solution = 9.2 μmol). A yellow homogenous solution of the title compound was obtained.

10 ^1H NMR (400 MHz, D_2O , δ): 1.00 (t, $J = 7.2$ Hz, 3H), 2.23 (m, 2H), 4.40 (d, $J = 18.8$ Hz, 1H), 4.50 (d, $J = 18.8$ Hz, 1H), 5.10 (dd, $J = 9.7$, $J = 5.9$ Hz, 1H), 5.26 (dd, $J = 9.0$, $J = 6.1$ Hz, 1H), 5.39 (d, $J = 16.7$ Hz, 1H), 5.50 (d, $J = 16.7$ Hz, 1H), 7.20 (t, $J = 7.3$ Hz, 1H), 7.28 (s, 1H), 15 7.46 (m, 2H), 7.66 (d, $J = 8.4$ Hz, 1H), 8.02 (s, 1H).

IIIf. Synthesis of 20-O-phosphonooxymethylcamptothecin lysine salt:

+T,0 391

To a continuously sonicated suspension of 20-O-phosphonooxymethylcamptothecin (5 mg, 10 μmol) in deuterium oxide (0.5 mL) was added dropwise a deuterium oxide solution of L-lysine (25 μl of 0.43 M solution = 10.7 μmol) until complete homogenization was achieved. A yellow homogenous solution of the title compound was obtained.

^1H NMR (400 MHz, D_2O , 94% lactone, 6% carboxylate, δ): 1.02 (t, $J = 7.2$ Hz, 1H), 1.49 (m, 2H), 1.73 (m, 2H), 1.88 (m, 2H), 2.25 (m, 2H), 3.03 (t, $J = 7.5$ Hz, 2H), 3.76 (t, $J = 6.0$ Hz, 1H), 4.43 (d, $J = 19.0$ Hz, 1H), 4.52 (d, $J = 18.9$ Hz, 1H), 5.11 (dd, $J = 9.7$, $J = 5.8$ Hz, 1H), 5.27 (dd, $J = 9.2$, $J = 5.8$ Hz, 1H), 5.41 (d, $J = 16.7$ Hz, 1H), 5.53 (d, $J = 16.7$ Hz, 1H), 7.23 (t, $J = 7.4$ Hz, 1H), 7.30 (s, 1H), 7.49 (m, 2H), 7.68 (d, $J = 8.4$ Hz, 1H), 7.04 (s, 1H).

15 IIIg. Synthesis of 20-O-phosphonooxymethylcamptothecin arginine salt:

+ T_1O^{400}

To a continuously sonicated suspension of 20-O-phosphonooxymethylcamptothecin (5 mg, 10 μmol) in deuterium oxide (0.5 mL) was added dropwise a deuterium oxide solution of L-arginine (27 μl of 0.40 M, 10.8 μmol) until complete homogenization was achieved. A yellow homogenous solution of the title compound was obtained.

^1H NMR (400 MHz, D_2O , δ): 1.02 (t, $J = 7.1$ Hz, 1H), 1.66 (m, 2), 1.89 (m, 2H), 2.25 (m, 2H), 3.20 (t, $J = 6.8$ Hz, 2H), 3.77 (t, $J = 6.0$ Hz, 1H), 4.40 (d, $J = 19.0$ Hz, 1H), 4.49 (d, $J = 18.8$ Hz, 1H), 5.12 (dd, $J = 9.7$, $J = 6.0$ Hz, 1H), 5.29 (dd, $J = 8.8$, $J = 6.1$ Hz, 1H), 5.40 (d, $J = 16.7$ Hz, 1H), 5.51 (d, $J = 16$, 7 Hz, 1H), 7.20 (t, $J = 7.3$ Hz, 1H), 7.29 (s, 1H), 7.47 (m, 2H), 7.66 (d, $J = 8.3$ Hz, 1H), 8.03 (s, 1H).

15 IIIh. Synthesis of 20-O-phosphonooxymethylcamptothecin N-methylglucamine salt:

++ 0410

To a continuously sonicated suspension of 20-O-phosphonooxymethylcamptothecin (5 mg, 10.9 μmol) in deuterium oxide (0.5 mL) was added dropwise a deuterium oxide solution of (D)-N-methylglucamine (21 μl of 0.51 M solution = 10.7 μmol) until complete homogenization was achieved. A yellow homogenous solution of the title compound was obtained.

¹H NMR (400 MHz, D₂O, δ): 1.02 (t, J = 7.3 Hz, 3H), 2.25 (m, 2H), 2.78 (s, 3H), 3.20 (m, 2H), 3.65 (m, 2H), 3.80 (m, 3H), 4.11 (m, 1H), 4.44 (d, J = 18.9 Hz, 1H), 4.53 (d, J = 19.0 Hz, 1H), 5.12 (dd, J = 9.8, J = 5.9 Hz, 1H), 5.27 (dd, J = 9.2, J = 5.9 Hz, 1H), 5.41 (d, J = 16.7 Hz, 1H), 5.53 (d, J = 16.7 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 7.49 (m, 2H), 7.69 (d, J = 8.4 Hz, 1H), 8.05 (s, 1H).

IV. Synthesis of 4'-O-phosphonooxymethyl etoposide:

$+T^{\circ} 43^{\circ}$

IVa. Synthesis of 4'-O-phosphonooxymethyl etoposide dibenzyl ester:

To a solution of chloromethyl dibenzylphosphate (670
5 mg, 2.05 mmol), etoposide (300 mg, 0.51 mmol), and

tetrabutylammonium bromide (164.4 mg, 0.51 mmol) in tetrahydrofuran (0.5 mL) was added powdered potassium carbonate (352.4 mg, 2.55 mmol). The resulting reaction mixture was vigorously stirred at room temperature for 35 minutes. The mixture was then directly purified by silica gel flash column chromatography (30:1 methylene chloride/methanol) to give 272 mg (61% yield) of the title compound as a white solid with more than 95% of the trans stereochemistry retained.

10 FABMS+ (NBA): [MH]⁺, m/z 879.

11¹H NMR (400 MHz, CDCl₃, δ): 1.41 (d, J = 5.0 Hz, 3H), 2.79 (br s, 1H), 2.86 (m, 1H), 2.97 (br s, 1H), 3.30 (dd, J = 14.2, J = 5.3 Hz, 1H), 3.35 (m, 2H), 3.45 (t, J = 8.5, J = 8.0 Hz, 1H), 3.59 (m, 1H), 3.66 (s, 6H), 3.74 (m, 1H), 4.19 (m, 1H), 4.20 (t, J = 8.5, J = 8.0 Hz, 1H), 4.42 (dd, J = 10.3, J = 9.1 Hz, 1H), 4.60 (d, J = 5.2 Hz, 1H), 4.64 (d, J = 7.6 Hz, 1H), 4.76 (q, J = 5.0 Hz, 1H), 4.92 (d, J = 3.4 Hz, 1H), 5.03 (dd, J = 7.3, J = 4.3 Hz, 4H), 5.54 (dd, J = 11.7, J = 5.1 Hz, 1H), 5.59 (dd, J = 11.3, J = 5.1 Hz, 1H), 5.99 (d, J = 3.5 Hz, 2H), 6.26 (s, 2H), 6.51 (s, 1H), 6.84 (s, 1H), 7.33 (m, 10H).

12¹³C NMR (75 MHz, CDCl₃, δ): 20.21, 37.49, 41.00, 43.78, 56.07, 66.32, 67.87, 67.97, 69.06, 69.14, 73.01, 73.29, 74.47, 79.70, 92.55, 92.62, 99.70, 101.57, 101.72, 107.89, 109.13, 110.55, 127.82, 127.97, 128.15, 128.35, 128.43, 132.40, 133.08, 135.68, 135.78, 136.49, 147.14, 148.73, 152.18, 174.90.

IVb. Synthesis of 4'-O-phosphonooxymethyletoposide:

To a solution of 4'-O-phosphonooxymethyletoposide dibenzyl ester (20.5 mg, 0.023 mmol) in tetrahydrofuran (2 mL) was added palladium on carbon (10%, 5 mg). The mixture
 5 was stirred under an atmosphere of hydrogen (1 atm) for 10 minutes. The catalyst was removed by filtration through Celite, and tetrahydrofuran was evaporated at reduced pressure. The resulting residue was dried *in vacuo* to give 16 mg (100% yield) of the title compound as a white solid.

10 FABMS+ (NBA): $[MH]^+$, m/z 699.

^1H NMR (400 MHz, CDCl_3 / DMSO-d_6 , δ): 1.29 (d, $J = 5.0$ Hz, 3H), 2.78 (m, 1H), 3.21 (m, 2H), 3.29 (t, $J = 8.6$, $J = 7.8$ Hz, 1H), 3.37 (dd, $J = 14.0$, $J = 5.3$ Hz, 1H), 3.52 (m, 2H), 3.62 (s, 6H), 4.09 (m, 1H), 4.17 (t, $J = 8.1$ Hz, 1H),
 15 4.38 (dd, $J = 8.8$, $J = 8.7$ Hz, 1H), 4.44 (d, $J = 7.6$ Hz,

1H), 4.48 (d, $J = 5.3$ Hz, 1H), 4.66 (q, $J = 5.0$ Hz, 1H),
 4.88 (d, $J = 3.3$ Hz, 1H), 5.05 (br s, 7H), 5.40 (dd, $J = 10.7$, $J = 7.8$ Hz, 1H), 5.43 (dd, $J = 10.4$, $J = 7.5$ Hz, 1H), 5.89 (dd, $J = 8.8$ Hz, 1H), 6.18 (s, 2H), 6.41 (s, 5 1H), 6.78 (s, 1H).

IVc. Synthesis of 4'-O-phosphonoxyethyltoposide disodium salt:

To a solution of 4'-O-phosphonoxyethyltoposide dibenzyl ester (200 mg, 0.227 mmol) in tetrahydrofuran (10 mL) was added palladium-on-carbon (10%, 45 mg). This mixture was stirred under an atmosphere of hydrogen (1 atm) for 25 minutes. The catalyst was removed by filtration through Celite. The filtrate was evaporated at reduced pressure, and the residue was dried *in vacuo*. The resulting white solid was dissolved in an aqueous solution of sodium bicarbonate (2.9 mL of 0.136 M = 0.394 mmol). The resulting heterogeneous mixture was mixed with

activated carbon, stirred for a few minutes, and was then filtered through a 40 μm filter unit. The homogenous, colorless filtrate was lyophilized to give 140 mg (96% yield) of the title compound as a white solid with more than 95% of bands stereochemistry retained.

FABMS+(NBA): $[\text{MH}]^+$, m/z 743, $[\text{M} - \text{Na} + 2\text{H}]^+$, m/z 721, $[\text{M} - 2\text{Na} + 3\text{H}]^+$, m/z 699.

¹H NMR (400 MHz, D₂O, δ): 1.37 (d, $J = 5.1$ Hz, 3H), 3.10 (m, 1H), 3.37 (dd, $J = 8.9$, $J = 8.0$ Hz, 1H), 3.48 (m, 2H), 3.65 (m, 3H), 3.75 (s, 6H), 4.29 (dd, $J = 10.4$, $J = 4.5$ Hz, 1H), 4.41 (t, $J = 8.3$, $J = 8.0$ Hz, 1H), 4.49 (dd, $J = 10.5$, $J = 8.9$ Hz, 1H), 4.68 (d, $J = 5.7$ Hz, 1H), 4.74 (d, $J = 7.8$ Hz, 1H), 4.91 (q, $J = 5.0$ Hz, 1H), 5.13 (d, $J = 3.0$ Hz, 1H), 5.26 (2xd, $J = 5.3$, $J = 3.3$ Hz, 1H), 5.28 (2xd, $J = 5.3$, $J = 3.3$ Hz, 1H), 5.98 (d, $J = 10.5$ Hz, 2H), 6.40 (s, 2H), 6.58 (s, 1H), 7.00 (s, 1H).

¹³C NMR (125 MHz, D₂O, δ): 22.13, 40.74, 43.56, 46.11, 59.12, 68.70, 70.41, 72.40, 75.46, 75.95, 76.95, 82.46, 94.87, 102.88, 103.66, 104.62, 111.14, 112.82, 113.23, 130.73, 135.45, 135.74, 140.22, 149.56, 151.43, 154.94, 166.36, 181.61.

³¹P NMR (200 MHz, D₂O, δ): s (2.19).

V. Synthesis of Phosphonooxymethylating Agents

Va. Synthesis of chloromethyldibenzyl phosphate

To a refluxed solution of chloroiodomethane (25 g of 97%, 0.14 mol) in toluene (HPLC-grade, 30 mL) was added silver dibenzylphosphate (7.0 g, 0.018 mol) in several portions over 20 minutes. Refluxing was continued for one hour. After the reaction mixture was cooled down to room temperature and filtered, the solvent was evaporated under reduced pressure. The oily residue was purified by silica gel flash column chromatography (7:3 hexane/ethyl acetate) to give 3.63 g (62% yield) of the title compound as a yellow oil.

FABMS+ (NBA): $[M+H]^+$, m/z 327

^1H NMR (300 MHz, CDCl_3 , δ): 5.10 (d, $J = 8.0$ Hz, 4H), 5.63 (d, $J = 15.7$ Hz, 2H), 7.36 (s, 10H).

^{13}C NMR (75 MHz, CDCl_3 , δ): 69.68, 69.75, 73.33, 73.42,

15 127.93, 128.51, 128.63, 135.07.

Vb. Synthesis of dibenzyl (*p*-toluenesulfonemethyl)-phosphate:

To a stirred solution of silver *p*-toluenesulfonate (600 mg, 2.15 mmol) in dry acetonitrile (3 mL) was added 20 chloromethyl dibenzylphosphate (150 mg, 0.46 mmol) under an argon atmosphere. After the reaction mixture was stirred for 21 hours at room temperature, the solvent was removed, and the residue extracted with ether (3 x 3 mL). The combined extracts were filtered, evaporated, and dried

in vacuo to give 210 mg (99% yield) of the title compound as a white solid.

EIMS: $[M+H]^+$, m/z 463.

5 ^1H NMR (300 MHz, CDCl_3 , δ): 2.37 (s, 3H), 4.91 (2 x d, J = 7.9 Hz, 4H), 5.61 (d, J = 14.2 Hz, 2H), 7.29 (m, 12H), 7.78 (d, J = 8.4 Hz, 2H).

With respect to the above reaction Vb, as explained also in Ic above, the reagent:

+T, O 490

10

can be generically represented by the following formula:

+T, O 491

wherein all symbols are the same as defined above.

15 **Vc. Synthesis of formaldehyde bis(dibenzyl oxyphosphono)-acetal:**

+T, O 492

To a solution of diiodomethane (4 mL, 50 mmol) in dry toluene (15 mL) was added silver dibenzylphosphate (3.0 g, 7.8 mmol). The resulting mixture was refluxed for 15 minutes under an argon atmosphere. The mixture was then cooled down to room temperature and filtered. Then the solvent was evaporated *in vacuo*. The oily residue was purified by silica gel flash column chromatography (1:1 hexane/ethyl acetate and then ethyl acetate) to yield a

yellowish oil which then crystallized to give 1.97 g (90% yield) of the title compound as a white solid, mp 39-42°C.

CIMS (NH₃): [MH]⁺, m/z 569.

¹H NMR (300 MHz, CDCl₃, δ): 5.03 (d, J = 7.9 Hz, 8H), 5.49 (t, J = 14.3 Hz, 2H), 7.30 (m, 20H).

¹³C NMR (75 MHz, CDCl₃, δ): 69.54, 69.61, 86.48, 127.88, 128.48, 128.55, 135.10, 135.20.

VI - Synthesis of O-Phosphonoxyethylcyclosporin A:

+TO 500

Cyclosporin A

10 **VIIa. Synthesis of O-methylthiomethylcyclosporin A:**

To a suspension of Cyclosporin A in dimethylsulfoxide (250 mL) is added acetic anhydride (125 mL) and acetic

49
SO

acid (35 mL). The heterogeneous mixture is vigorously stirred at room temperature for 24 hours, poured into ice (800 mL), stirred for 30 minutes, and then extracted with methylene chloride (4 x 100 mL). The combined methylene chloride extracts are washed with water (2 x 100 mL) and dried over magnesium sulfate. The methylene chloride is removed at reduced pressure to provide a product. The product is further purified by silica gel chromatography.

10 **VIIb. Synthesis of O-phosphonoxyethylcyclosporin A dibenzyl ester:**

To a well stirred suspension of O-
15 methylthiomethylcyclosporin A and powdered, activated 4 Å molecular sieves (5 g) in tetrahydrofuran (20 mL) is added a suspension of N-iodosuccinimide (2.00 g of 95%, 8.44 mmol) and dibenzylphosphate (2.20 g, 7.83 mmol) in methylene chloride (12 mL). The resulting mixture is
20 vigorously stirred at room temperature for 30 minutes, filtered, and diluted with ethyl acetate (300 mL). The solution is washed with aqueous sodium thiosulfate (10%, 2 x 15 mL), water (2 x 20 mL), brine (50 mL), and dried over magnesium sulfate. The mixture is filtered and the solvent
25 is evaporated under reduced pressure. The residue is purified by silica gel flash column chromatography.

VIc. Synthesis of O-phosphonooxymethylcyclosporin A:

To a solution of O-phosphonooxymethylcyclosporin A
5 dibenzyl ester in tetrahydrofuran (100 mL) and water (5
mL) is added palladium on carbon (10%, 500 mg). This
mixture is stirred under an atmosphere of hydrogen (1 atm)
for 35 minutes. The catalyst is removed by filtration
through Celite. The Celite is then washed with
10 tetrahydrofuran (300 mL) and the combined filtrates are
evaporated at reduced pressure. The resulting solid is
washed with ether (2 x 20 mL), hexane (50 mL), dried *in
vacuo*, and then dissolved in hot methanol (60 mL). The
solution is filtered, concentrated at reduced pressure to
15 ~10 mL volume. After standing at room temperature for one
hour, the solution is placed in a refrigerator overnight.
The crystalline precipitate that forms overnight is
filtered off and dried *in vacuo* to give the title compound
as a solid. The filtrate is concentrated to ~1 mL volume
20 and kept in the refrigerator for one hour to give
additional product.

BIOLOGICAL EVALUATION

Compounds of the present invention are novel pharmaceutical agents; representative compounds of formula I have been evaluated in *in vitro* and *in vivo* conversion studies. In all of these studies the prodrugs were converted into their pharmaceutically active parent compounds.

10 (1) Solubility Estimate of Propofol Prodrug in Water

The water solubility of propofol prodrug is approximately 500 mg/mL based on HPLC analysis of saturated aqueous solution.

15 (2) *in vitro* conversion of propofol prodrug to propofol

The *in vitro* conversion of propofol prodrug to propofol was performed using alkaline phosphatase in glycine buffer pH 10.4 medium. 25 mL of a 100 µg/mL propofol prodrug solution in glycine buffer was prepared. One millimeter was saved for a zero time point and the remaining 24 mL were placed in a 37°C water bath. 960 µL of a 0.1 mg/mL alkaline phosphatase in glycine buffer solution was added to the 24 mL of propofol prodrug solution, mixed, and returned to the water bath. 1.5 mL samples were removed at 5, 10, 20, 30, 40, 60, 90, 120, 180, 240, 300, and 360 minutes. To each sample, 10 µL of glacial acetic acid was added immediately to stop the enzymatic reaction. The samples were assayed by HPLC to quantitate the propofol prodrug and propofol concentration. The results of the *in vitro* conversion are shown in Figure 1. These results demonstrate that the propofol prodrug is a substrate for alkaline phosphatase.

30 (3) Gross Toxicity Evaluation in Rats

Propofol prodrug was prepared for i.v. injection at a concentration of 68 mg/mL in 0.9% Sodium Chloride Injection, USP. This concentration is equivalent to 36 mg/mL of propofol. The propofol prodrug solution was filtered through a 0.22 µm nylon membrane prior to administration.

The evaluation of the propofol prodrug on rats was conducted with two male Harlen Sprague-Dawley rats weighing 820 and 650 g. The 820 g rat received 200 µL of the propofol prodrug i.v. formulation (equivalent to 9 mg/kg of propofol) in the tail vein. A blood sample was taken from the tail vein (with heparinized syringe) after approximately 12 minutes. The 650 g rat received a dose of the mild sedative Metaphane® prior to receiving the propofol prodrug formulation. The 650 g rat was injected with 125 µL of the propofol prodrug formulation in the tail vein and a blood sample was taken from the tail vein (with heparinized syringe) after approximately six minutes. The blood samples from both rats were assayed for propofol by HPLC.

The results of the propofol prodrug injection in both rats were similar. Both rats became unsteady after a few minutes, but never lost their righting reflex. Based on visual observations, the rats fully recovered from the propofol prodrug injections. Blood removed from both rats confirmed the presence of propofol through HPLC analysis. The rats did not display signs of discomfort due to the propofol prodrug.

30 (4) Pharmacokinetic Evaluation in Dogs

A pharmacokinetic study involving Diprivan® or the propofol prodrug was performed in a dog with a sufficient

washout period between studies. The blood concentrations were determined using HPLC with fluorescence detection while brain activity was monitored with two lead electroencephalography (EEG). Prior to dosing the dog,
5 the dog was blindfolded, cotton was placed in the ears of the dog, and the legs of the dog were bound to minimize movement and other outside stimuli so that the effect of the propofol on the dog's brain wave activity could be most efficiently monitored.

10 The evaluation of the propofol blood concentration versus time was conducted with a beagle weighing ~ 13 kg. Approximately 8 mL of blood was taken prior to injection to be used for standard curve preparation and a zero time blood level. The dog received a volume of Diprivan® or
15 propofol prodrug formulation equivalent to 7 mg/kg of propofol via injection in the cephalic vein.

Two mL blood samples were taken from either the cephalic (not the same vein as the formulation injection site), jugular, or saphenous vein (with heparinized
20 syringe) after 1, 3, 5, 10, 15, 20 and 30 minutes after the injection. Blood samples were also taken after 60, 90, 120, 180, 240, 300, 360, 480, and 1440 minutes. Blood samples were extracted to remove the propofol immediately after being taken from the dog. The dog was fasted for
25 approximately 20 hours prior to receiving the Diprivan® or propofol prodrug formulation. After the 120 minute sample was taken, the dog was allowed to drink water. Food was given to the dog after the 480 minute blood sample was obtained. The dog's regular diet was Hills'
30 Science Diet Maintenance. The dog was on a light/dark cycle of 12 hours of light per day.

The concentration of propofol in the blood samples was determined using HPLC with fluorescence detection. The results are shown in Figure 2. The blood extraction

and HPLC methods used were based on work reported by Plummer (1987) with minor modifications. The sample preparation and assay procedure used were as follows:

To a 1 mL sample of blood, 10 μ L of thymol internal standard (20 μ g/mL) and 1 mL phosphate buffer (0.1 M, pH 7.2) were added, vortexing to mix after each addition. Five mL of cyclohexane was then added and the samples were mixed at 75 rpm for 20-30 minutes. The organic layer was separated by 1 minute of centrifugation at approximately 2000 rmp. Approximately 4.5 mL of the organic layer was transferred to a tube containing 50 μ L of dilute tetramethylammonium hydroxide (TMAH) solution at approximately 1.8% (w/v). The solvent was evaporated to dryness under a stream of nitrogen and reconstituted with 200 μ L of Mobile Phase A. The samples were centrifuged at 15,000 rmp for 30 seconds to remove any particles, and the supernatant was injected on the HPLC. Standard curve samples were prepared by spiking 1 mL aliquots of the initial blood with propofol at concentrations 5, 1, 0.5, 0.1 and 0.01 μ g/mL. These standards were treated the same as the samples.

The HPLC system consisted of the following Shimadzu components: LC-10AT pumps, SCL-10A system controller, RF 353 fluorescence detector, and SIL-10A auto sampler. The HPLC parameters were as follows: excitation at 275 nm and emission at 320 nm; flow rate at 1 mL/min; injection volume was 3-30 μ L depending on propofol concentration. The HPLC column was a Zorbax RX-C18, 15 cm x 4.6 mm i.d., 5 μ m particle size. Mobile Phase A was 60:40 (v/v) acetonitrile: 25 mM phosphate, 15 mM TBAP Buffer pH 7.1. Mobile Phase B was 80:10:10 (v/v/v) acetonitrile: water: THF. Mobile Phase B was used to clean the column after the thymol and propofol eluted using Mobile Phase A (4.2 and 7.4 minutes, respectively).

The dog exhibited signs of anesthesia upon injection of both formulations based on visual observations and EEG patterns. The dog recovered from anesthesia from both formulations in 20-30 minutes. Propofol blood levels 5 resulting from injection of the propofol prodrug approximate those from injection of Diprivan®.

(5) Solubility Estimate of Camptothecin prodrug in water

The water solubility of the camptothecin prodrug is greater than 50 mg/mL based on visual and HPLC analysis.

10

(6) Camptothecin Prodrug (p-cpt) Enzymatic Study

A 16 µg/mL p-cpt was cleaved with acid phosphatase (0.02 units/mL of p-cpt solution). The media was 0.09 M citrate buffer, pH 4.8 and the temperature was 37°C. The 15 conversion of p-cpt to camptothecin was monitored by HPLC.

HPLC Parameters:

MP: 24% potassium phosphate buffer pH 4, 76% acetonitrile

20 Column: Zorbax RX-C18, 15 cm x 4.6 mm i.d., 5 µm particle size

Detection: 370 nm UV

Flowrate: 1 mL/min

Acid phosphatase from bovine prostate (sigma). The 25 results are shown in Figure 3. The results demonstrate that the camptothecin prodrug is a substrate for phosphatases.

(7) Pharmacokinetic Study of the Camptothecin Prodrug
30 Using Rats

Pharmacokinetic experiments involving the dosing of male Sprague-Dawley rats with formulations of the camptothecin prodrug and camptothecin were undertaken. The two formulations of the camptothecin prodrug that

were examined consisted of the prodrug dissolved in 15 mM phosphate, pH 4.0 and camptothecin dissolved in organic co-solvents. The following is a summary of the pharmacokinetic experiments:

5 A volume of the camptothecin prodrug formulation or camptothecin formulation was prepared at a concentration so that a dose equivalent to 1 mg camptothecin per kg weight could be given to the rat. The formulation was given to the rat using an indwelling cannula in the left 10 jugular vein of the rat. Blood samples were taken via an indwelling cannula located in the right jugular vein of the rat. Both cannulas were rinsed with heparinized saline prior to use and contained heparinized saline during the study.

15 The rats were anesthetized with sodium pentobarbital prior to insertion of the jugular cannulas and kept anesthetized with sodium pentobarbital during the study. The rats were placed on a 37°C heating pad during the study and tracheotomized. Blood samples of approximately 20 150 µL were taken prior to dosing and after 1, 3, 5, 10, 15, 20, 30, 45, 60 and 90 minutes after the formulations were given to the rat.

The blood samples were placed in microcentrifuge tubes and centrifuged for 20 seconds at approximately 25 15000 rpm. A 50 µL aliquot of plasma from each blood sample was transferred to a second microcentrifuge tube. A 150 µL aliquot of chilled acetonitrile was added to the plasma and the preparation is vortexed for 5 seconds. A 450 µL aliquot of chilled sodium phosphate (0.1 M, pH 7.2) 30 was then added. The contents in the microcentrifuge tubes were vortexed for 5 seconds and centrifuged for 20 seconds at approximately 15000 rpm. The supernatant was transferred to an HPLC autosampler set at 4°C and analyzed (50 µL injections).

The HPLC system consisted of the following Shimadzu components: LC-10AT pump, SCL-10A system controller, RF 535 fluorescence detector, SIL-10A autosampler (set at 4°C), and CTO-10A column oven (temperature set at 30°C).
5 The HPLC parameters were as follows: excitation at 370 nm and emission at 435 nm; flow rate at 2 mL/min. The HPLC column was a Hypersil ODS, 15 cm x 4.5 mm i.d., 5 µm particle size. The mobile phase was 75% 25 nM sodium phosphate, pH 6.5/25% acetonitrile (v/v) with 25 mM
10 tetrabutylammonium dihydrogen phosphate added as an ion-impairing reagent.

As can be seen in the graph (Figure 4) the prodrug provides camptothecin plasma levels which are equivalent to those attained from direct injection of camptothecin in
15 organic co-solvents. The graph provides the mean with standard deviation for five rats which received prodrug and six rats which received camptothecin.