An Introduction to Quantum Computing v. 1.0

February 12, 2024

Torben Larsen, tola@cs.aau.dk
Computer Science

Rafal Wisniewski, raf@es.aau.dk Electronic Systems

Aalborg University, Denmark

Quantum Background Exercise 1.1

An Introduction to Quantum Computing

Torben Larsen

Excercise

The system:

► We have a 2-state quantum system with basis states |0⟩ and $|1\rangle$, and joint state:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle, \quad |\alpha|^2 + |\beta|^2 = 1, \ \alpha, \beta \in \mathbb{C}$$
 (1)

where $|\alpha|^2$ is the probability for measuring state $|0\rangle$, and $|\beta|^2$ is the probability for measuring state $|1\rangle$.

- ▶ In vector form the states are $|0\rangle = [1, 0]^T$ and $|1\rangle = [0, 1]^T$.
- We define two states as:

$$|+\rangle \equiv \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$
 (2)

$$|-\rangle \equiv \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$$
 (3)

Aalborg University, Denmark

Quantum Background

An Introduction to Quantum Computing

Torben Larsen

Excercise

Questions:

- 1. What are α and β in the system described in (1) above when $\alpha = \beta$?
- 2. What are $|+\rangle + |-\rangle$ and $|+\rangle |-\rangle$ in (2)–(3) expressed by $|0\rangle$ and $|1\rangle$ in the general case of α and β ?
- 3. And finally, what is then $|\psi\rangle$ expressed by $|0\rangle$ and $|1\rangle$?
- 4. How can the arbitrary state $|\psi\rangle$ in (1) be expressed by α , β , $|+\rangle$, and $|-\rangle$?