Prof. Cl. Hongler

Série 9 du mardi 15 novembre 2016

Exercice 1.

Soient $a \in \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{R}$ une fonction dérivable en a. Vérifier que

$$\lim_{h \to 0 \atop \neq} \frac{f(a+h) - f(a-h)}{2h} = f'(a).$$

L'existence de cette dernière limite entraı̂ne-t-elle celle de f'(a)?

Exercice 2 (* A rendre).

On considère $f:[-1,1]\to\mathbb{R}$ définie par

$$f(x) = x^3 \sin\left(\frac{1}{x}\right), \ 0 \neq x \in [-1, 1], \ f(0) = 0.$$

Pour quel entier positif m a-t-on $f \in C^m([-1,1])$?

Exercice 3.

Soit a < b et $f : [a, b] \to \mathbb{R}$ une fonction de classe $C^1([a, b])$, deux fois dérivable sur]a, b[. Démontrer qu'il existe $c \in]a, b[$ tel que

$$f(b) = f(a) + f'(a)(b-a) + \frac{1}{2}f''(c)(b-a)^{2}.$$

Exercice 4.

Montrer que si la dérivée d'une fonction $f:]0,1[\to \mathbb{R}$ n'est pas bornée alors f n'est pas Lipschitz. En déduire que la fonction $x \sin \frac{1}{x}$ sur]0,1[n'est pas Lipschitz.

Indication: Montrer que si |f'(x)| > K, alors il existe $y \in]0,1[$ tq |f(x) - f(y)| > K|x - y|.