Systèmes dynamiques Feuille d'exercices 10

Les résultats démontrés dans le TD3 seront admis. On admettra également le résultat suivant.

Théorème (Perron-Frobenius). Soit L une matrice $N \times N$ dont les coefficients sont positifs. On suppose que L est transitive, i.e il existe $n \in \mathbb{N}$ tel que tous les coefficients de L^n sont strictement positifs. Alors, L admet un unique (modulo produit par un scalaire) vecteur propre e dont toutes les coordonnées sont strictement positives and n'admet aucun autre vecteur propre dont les coordonnées sont positives. De plus, la valeur propre $\lambda_{max}(L)$ correspondant à e est simple, positive and strictement plus grande que le module de toutes les autres valeurs propres.

On pourra en trouver une preuve concise dans le Katok-Hasselblatt, théorème 1.9.11. Dans toute la feuille, on notera Λ un ensemble fini.

Exercice 1. Entropie topologique des chaînes de Markov et points périodiques Soit $(A_{\alpha\beta})_{\alpha,\beta\in\Lambda}$ une matrice dont les coefficients sont égaux à 0 ou 1 et supposée transitive. On note alors

$$X_A = \{ \omega \in \Lambda^{\mathbf{Z}} : \forall n \in \mathbf{Z}, A_{\omega_n \omega_{n+1} = 1} \}$$

et σ_A la restriction du décalage σ à X_A . Muni de la topologie induite de $\Lambda^{\mathbf{Z}}$, on appelle (X_A, σ_A) un sous-décalage de type fini ou système de Markov. On notera $P_n = \{\omega \in X_A : \sigma_A^n(\omega) = \omega\}$ l'ensemble des points périodiques de période divisant n. Montrer que, quand n tend vers $+\infty$, on a

$$\operatorname{Card}(P_n) \sim e^{nh_{top}(\sigma_A)}.$$

Exercice 2. Construction de mesures invariantes pour les sous-décalages de type fini

On se propose ici de construire une classe de mesures invariantes sur $(\Lambda^{\mathbf{Z}}, \sigma)$ à partir de matrices stochastiques. Rappelons qu'un *cylindre* sur $\Omega = \Lambda^{\mathbf{Z}}$ est une partie de la forme

$$C_{\alpha}^{m,n} = \{ \omega \in \Omega : \forall i = m, \dots, n, \ \omega_i = \alpha_i \},$$

avec $m \leq n$ dans \mathbf{Z} et $\alpha_m, \ldots, \alpha_n$ dans Λ . La tribu \mathcal{A} considérée est celle engendrée par les cylindres.

On appelle matrice stochastique $\pi = (\pi_{\alpha\beta})_{\alpha,\beta\in\Lambda}$ une matrice à coefficients positifs ou nuls tels que la somme des coefficients de chaque colonne vaut 1 : pour tout β dans Λ , on a

$$\sum_{\alpha \in \Lambda} \pi_{\alpha\beta} = 1.$$

- 1. Montrer que le produit de deux matrices stochastiques est encore une matrice stochastique.
- 2. Soit π une matrice stochastique transitive. Montrer qu'il existe un unique vecteur $v^{\pi} = (v^{\pi}_{\alpha})_{\alpha \in \Lambda}$ tel que $\pi \cdot v^{\pi} = v^{\pi}$ et $\sum_{\alpha \in \Lambda} v^{\pi}_{\alpha} = 1$. Montrer de plus que les coefficients de v^{π} sont strictement positifs et les autres valeurs propres vérifient $|\lambda| < 1$.
- 3. En utilisant le théorème de Carathéodroy, montrer qu'il existe une unique mesure μ_{π} sur (Ω, \mathcal{A}) , invariante par σ et vérifiant

$$\mu_{\pi}(C^{m,n}_{\alpha_m,\ldots,\alpha_n}) = \left(\prod_{i=m}^{n-1} \pi_{\alpha_i \alpha_{i+1}}\right) v_{\alpha_n}^{\pi}.$$

4. Montrer que

$$h_{\mu_{\pi}}(\sigma) = -\sum_{\alpha,\beta \in \Lambda} \pi_{\alpha\beta} \log(\pi_{\alpha\beta}) v_{\beta}^{\pi}.$$

- 5. Montrer que la suite des matrices $(\pi^N)_{N\in\mathbb{N}}$ converge vers une matrice τ correspondant à la projection sur la droite $\mathbf{R}v^{\pi}$ parallèllement à l'hyperplan $H_0=\{v\in\mathbf{R}^{\Lambda}\ :\ \sum_{\alpha\in\Lambda}v_{\alpha}=0\}.$
- 6. Montrer que le décalage σ est mélangeant pour μ_{π} .

Exercice 3. Mesure de Parry et principe variationnel

Soit $(A_{\alpha\beta})_{\alpha,\beta\in\Lambda}$ une matrice dont les coefficients sont égaux à 0 ou 1 et supposée transitive. Le but de cet exercice est de construire une mesure invariante sur la chaîne de Markov (X_A,σ_A) qui maximise son entropie topologique. On note $\lambda=\lambda_{max}(A)$ la plus grande valeur propre de A et soient $v=(v_\alpha)_{\alpha\in\Lambda}$ vecteur propre de A pour λ , et $f=(f_\beta)_{\beta\in\Lambda}$ vecteur propre de A^T donnés par le théorème de Perron-Frobenius. De plus, on normalise les vecteurs v et f de sorte que $\sum_{\alpha\in\Lambda}v_\alpha f_\alpha=1$.

1. Montrer que la matrice π^{\bullet} définie par

$$\pi_{\alpha\beta}^{\bullet} = \frac{A_{\alpha\beta}f_{\alpha}}{\lambda f_{\beta}}$$

est une matrice stochastique. La mesure de Markov $\mu = \mu_{\pi^{\bullet}}$ est appelée mesure de Parry.

- 2. Identifier la mesure de Parry associée à la matrice A dont tous les coefficients sont égaux à 1.
- 3. Montrer que $h_{top}(\sigma_A) = h_{\mu}(\sigma_A)$.

Dans la suite, on notera pour N > 0, $P_N = \{\omega \in X_A : \sigma_A^N \omega = \omega\}$ l'ensemble des points périodiques de période divisant N.

4. Montrer que la suite des mesures $\mu_N = \frac{1}{\operatorname{Card}(P_N)} \sum_{\omega \in P_N} \delta_{\omega}$ converge faiblement vers μ .

Dans cette dernière partie, on cherche à démontrer que la mesure de Parry est l'unique mesure maximisant l'égalité du principe variationnel. Pour cela, on raisonne par l'absurde et on suppose qu'il existe une autre mesure ν tel que $h_{\nu}(\sigma_A) = \log(\lambda)$.

- 5. Montrer qu'on peut se ramener au cas où μ et ν sont singulières l'une par rapport à l'autre.
- 6. On suppose donc qu'il existe un borélien B tel que $\nu(B) > 0$ et $\mu(B) = 0$. Montrer qu'il existe une suite (B_p) d'unions finies disjointes de cylindres de X_A tels que

$$\lim_{p \to \infty} \nu(B_p) = \nu(B), \quad \lim_{p \to \infty} \mu(B_p) = 0.$$

7. En notant $\xi_0 = \{X_A \cap C^0_\alpha : \alpha \in \Lambda\}$ et $\xi_n = \bigvee_{i=-n}^n \sigma_A^{-i} \xi_0$, montrer que

$$0 \le H_{\nu}(\xi_n) - 2n \log(\lambda)$$

- 8. Soient x_1, \ldots, x_k des réels strictement positifs avec $\sum_{i=1}^k x_i = a$, montrer que $-\sum_{i=1}^k x_i \log(x_i) \le a \log(\frac{k}{a})$.
- 9. Montrer qu'il existe c>0 tel que, pour tout cylindre $C^{m,\dots,n}_{\alpha_m,\dots,\alpha_n}$ non vide de X_A , on a

$$\mu(C^{m,\dots,n}_{\alpha_m,\dots,\alpha_n}) \ge c\lambda^{-(n-m)}.$$

10. En fixant p et en choisissant n suffisamment grand pour que B_p soit une réunion finie de parties de la partition ξ_n , montrer que

$$0 \le \nu(B_p) \log \frac{\mu(B_p)}{\nu(B_p)} + \nu(B_p^c) \log \frac{\mu(B_p^c)}{\nu(B_p^c)} - \log(c).$$

11. Conclure.