ECE 174

Fall 2022

Mini Project 2

$$\begin{array}{c} D_{1} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{5} \\$$

```
N = 100;
x = rand([N 3]);

x = rond([N 3]);

%e = 0 for part a-c
e = .1*rand([N 1]);
lambda = 10^-5;
lambdaSquaredRootedMatrix = sqrt(lambda) * eye(16);
gamma = 10^-5;
syms n;

tanh = @(n) ((exp(n)-exp(-n))/(exp(n) + exp(-n)));
syms
f = @(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) ...
    w1*tanh(w2*x1+w3*x2+w4*x3+w5) + w6*tanh(w7*x1+w8*x2+w9*x3+w10) + ...
    w11*tanh(w12*x1+w13*x2+w14*x3+w15) + w16;
    initialDerivativeMatrix = derivativeMatrix(x,w,N);
    r = zeros([N 1]);
        r(k) = f(x(k,1),x(k,2),x(k,3),w(1),w(2),w(3),w(4),w(5),w(6),...
            w(7),w(8),w(9),w(10),w(11),w(12),w(13),w(14),w(15),w(16)) - y(k,1);
    b = r - initialDerivativeMatrix * w;
    b = [b;zeros([16 1])];
    Dh = [initialDerivativeMatrix; lambdaSquaredRootedMatrix];
    b = [b; -1*sqrt(gamma)*w];
    A = [Dh; (sqrt(gamma) * eye(16))];
    new_weights = pinv(transpose(A) * A) * transpose(A) * b;
    r_hat = zeros([N 1]);
    for u = 1:N
    r_{\text{hat}}(u) = f(x(u,1),x(u,2),x(u,3),\text{new\_weights}(1),\text{new\_weights}(2),...
        new_weights(3),new_weights(4),new_weights(5),new_weights(6),...
        new_weights(7),new_weights(8),new_weights(9),new_weights(10),...
        new_weights(11), new_weights(12), new_weights(13), new_weights(14),...
        new_weights(15),new_weights(16)) - y(u,1);
```

```
h_hat = [r_hat; (lambda*new_weights)];
   loss_hat(i) = transpose(h_hat)*h_hat;
   h_bar = [r; (lambda*w)];
   loss_bar(i) = transpose(h_bar)*h_bar;
   if (loss_hat(i) < loss_bar(i)) %loss function of loss hat is better, so update weights
       w = new_weights;
       gamma = .8*gamma;
       gamma = 2*gamma;
   if(abs(loss_hat(i) - loss_bar(i)) < 10^-6)</pre>
   if loss_hat(i) < 10^-2
       w = new_weights;
   break;
elseif loss_bar(i) < 10^-2
function Dr = derivativeMatrix(x,w,N)
   f = @(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16)
       w1*tanh(w2*x1+w3*x2+w4*x3+w5) + w6*tanh(w7*x1+w8*x2+w9*x3+w10) + .
       w11*tanh(w12*x1+w13*x2+w14*x3+w15) + w16;
   Dr1(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) = diff(f,w1);
   Dr2(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) =
                                                                             diff(f,w2);
                                                                             diff(f,w3);
   Dr4(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) =
                                                                             diff(f,w4);
   Dr5(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) =
                                                                             diff(f,w5);
   Dr6(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) =
                                                                             diff(f,w6);
   Dr7(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) =
                                                                             diff(f,w7);
   Dr8(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) =
                                                                             diff(f,w8);
   Dr9(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) =
   Dr10(x_1,x_2,x_3,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_{10},w_{11},w_{12},w_{13},w_{14},w_{15},w_{16}) = diff(f,w_{10});
   Dr11(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16)
                                                                              diff(f,w11);
   Dr12(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16)
```

Dr13(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16)

Dr14(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16)

Dr = zeros([N 16]);

Dr15(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) = diff(f,w15); Dr16(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) = diff(f,w16);

diff(f,w13);

diff(f,w14);

Workspace	
Name 🔺	Value
<mark></mark> A	132x16 double
<mark>₩</mark> b	132x1 double
<mark>→</mark> Dh	116x16 double
🗑 f	@(x1,x2,x3,w1,w2,w3,w4,w5,w6,w7,w8,
🕂 gamma	0.0104
	116x1 double
	116x1 double
<mark></mark> i	51
initialDerivativeM	100x16 double
<mark></mark> k	100
🚻 lambda	1.0000e-05
🚟 lambdaSquaredRo	16x16 double
── loss_bar	1x231 double
🚻 loss_hat	1x231 double
😰 n	1x1 sym
<mark></mark> N	100
new_weights	16x1 double
<mark>∓</mark> r	100x1 double
🚃 r_hat	100x1 double
😰 tanh	@(n)((exp(n)-exp(-n))/(exp(n)+exp(-n)))
<mark>₩</mark> u	100
<mark></mark> w	16x1 double
	1x1 sym
	1x1 sym
፱ w11	1x1 sym
፱ w12	1x1 sym
	1x1 sym
	1x1 sym
	1x1 sym
© w16	1x1 sym
© w2	1x1 sym
© w3	1x1 sym
₩4	1x1 sym
© w5	1x1 sym
	1x1 sym
© w7	1x1 sym
₩8	1x1 sym
© w9	1x1 sym
x	100x3 double
© x1	1x1 sym
© x2	1x1 sym
© x3	1x1 sym
<mark>─</mark> y	100x1 double

$\lambda = 10^{-5}$

100 Test Points RMS = 1.0046

To compare the test data, the RMS of it was computed to determine how close f_w is to y. When the algorithm was completed successfully and the RMS was calculated, the test data RMS was very close to the training data RMS with a max difference in RMS of .03 so we can say that our findings were consistent.

With my own function, I changed x1,x2,x3 around and a coefficient in one of the terms. The results for this function were not as good as the given function (RMS slightly above 1), however the difference in f_w and y are still very small when comparing RMS.

With the noisy data, consistent results were achieved. This may be due to the value of the noise (noise was at most about 10% of the data point) however it seems as though the noise didn't affect the function very much.

Overall, most parts of the project were successful with the only inconsistency in my own function for y.