Γ_1

Let v(G) denote the size of a maximum matching of G. Obviously, $val(MLP(G)) \ge v(G)$ for all graphs. Show that v(G) = val(MLP(G)) for all bipartite graphs G. Do this without referring to Konig's Theorem.

Solution. Suppose X is a solution to MLP(G). E_F is the set of edges with fractional values in X. First do as follows:

- (1) If E_F doesn't contain a cycle, terminate.
- (2) Find a cycle in E_F with fractional values, denote it $C := \{e_i \in E_F : 1 \le i \le n, i \in \mathbb{N}\}.$
- (3) Add $x_{e_{2k-1}}$ by ϵ and $x_{e_{2k}}$ by $-\epsilon$ for $\{k \in \mathbb{N} : k \le n/2\}$.
- (4) Increase ϵ until there exists i such that $x_{e_i} = 0$ or 1.
- (5) go to step(2) if there exists a cycle in E_F .

Since G is a bipartite, C can only be a even cycle, so step (3) makes sense. If we modify the solution by step(3), obviously the constraints of MLP(G) will still be satisfied, and the target function will remain unchanged. The process will terminate because $|E_F|$ decreases by at least 1 in each iteration.

Then do as follows:

- (1) If E_F is empty, terminate.
- (2) Choose 2 vertex v_1, v_2 that $|\{x_e \in (0,1) : v_1 \in e\}| = 1$, $|\{x_e \in (0,1) : v_2 \in e\}| = 1$ and there's a path between v_1 and v_2 in E_F , denote it $P := \{e'_i \in E_F : 1 \le i \le m, i \in \mathbb{N}\}$
- $(3) \ \mathrm{Add} \ x_{e'_{2k-1}} \ \mathrm{by} \ \epsilon \ \mathrm{for} \ \{k \in \mathbb{N} : 2k-1 \leq m\} \ \mathrm{and} \ x_{e'_{2k}} \ \mathrm{by} \ -\epsilon \ \mathrm{for} \ \{k \in \mathbb{N} : 2k \leq m\}$
- (4) Increase ϵ until there exists i such that $x_{e'_i} = 0$ or 1
- (5) Go to step (2) if E_F is not empty

Since there's no cycle in E_F , we can definitely choose v_1, v_2 that satisfy the requirements if E_F is not empty. In each iteration, the target function will not decrease. Since v_1, v_2 can only be touched by edges with fractional value or value 0, the constraints of v_1, v_2 can be satisfied. In other words, $\sum_{e \in E: v_1 \in e} x_e = x_{e'_1} \le 1$, $\sum_{e \in E: v_2 \in e} x_e = x_{e'_m} \le 1$ The constraints of other vertices v in P will obviously be maintained. The process will terminate because $|E_F|$ decreases by at least 1 in each iteration.

Finally, after 2 processes, the solution becomes integral and the value of target function does not decrease, which means $\operatorname{int-val}(MLP(G)) \geq val(MLP(G))$. However we have $\operatorname{int-val}(MLP(G)) \leq val(MLP(G))$. So $v(G) = \operatorname{int-val}(MLP(G)) = val(MLP(G))$