ASEN 6060 ADVANCED ASTRODYNAMICS Week 2 Discussion

Objectives:

- Apply theoretical knowledge from Weeks 1 and 2 to scenarios in real celestial systems
- Devise foundational maneuvering heuristics
- Identify implementation challenges and useful questions to ask

Question 1: How would you select appropriate characteristic quantities for nondimensionalization in the Earth-Moon system if we didn't provide an orbital parameters sheet on Canvas?

Approved AGI Educational Alliance Partner

* Earth and Moon not to scale!

Question 1: How would you select appropriate characteristic quantities for nondimensionalization in the Earth-Moon system if we didn't provide an orbital parameters sheet on Canvas? Group Brainstorming:

Question 2: Is a circular path of the Moon with a single semi-major axis a 'good' approximation of the Moon's actual path?

Question 2: Is a circular path of the Moon with a single semi-major axis a 'good' approximation of the Moon's actual path?

A spacecraft is located near the Moon and in the Earth-Moon rotating frame with state vector $[x_0, y_0, 0, \dot{x}_0, \dot{y}_0, 0]^T$

The initial Jacobi constant for this state vector is C_0 , producing ZVCs that resemble the following from lecture:

Question 3: Derive an expression for the theoretical minimum magnitude for an impulsive maneuver at ★ for the spacecraft to be guaranteed to never leave the Moon vicinity in the Earth-Moon CR3BP? List <u>all</u> necessary assumptions.

Question 3:

Assumptions:

Question 4: You have been tasked with designing a maneuver for a planetary defense interceptor mission within the Earth-Moon system. The interceptor spacecraft is currently positioned at L_1 with zero velocity and the goal is for the spacecraft to reach the location of L_4 (with any velocity vector).

A colleague proposes slightly perturbing the state of the spacecraft in manner that does not change the Jacobi constant but would place the spacecraft on a transfer from L_1 to L_4 .

Given your initial understanding of motion in the CR3BP and zero velocity curves, do you think your colleague's plan could work and why?

Question 5: You and your colleague are each numerically generating a trajectory associated with the same initial state $[x_0, y_0, 0, \dot{x}_0, \dot{y}_0, 0]^T$ and integration time. You are each using your own code or using off-the-shelf software. Do you expect to recover the exact same state as your colleague after the integration time? Why/why not?

Question 5: You and your colleague are each numerically generating a trajectory associated with the same initial state $[x_0, y_0, 0, \dot{x}_0, \dot{y}_0, 0]^T$ and integration time. You are each using your own code or using off-the-shelf software. Do you expect to recover the exact same state as your colleague after the integration time? Why/why not?

Question 6: Do you expect the trajectory you have generated to accurately reflect the path of the spacecraft in a high-fidelity model of cislunar space? Why or why not?

Question 6: Do you expect the trajectory you have generated to accurately reflect the path of the spacecraft in a high-fidelity model of cislunar space? Why or why not?

Question 7: What are the implications of your answers to Question 5 and 6 on predicting the future paths of objects in cislunar space (assuming perfect state knowledge)?

Question 7: What are the implications of your answers to Question 5 and 6 on predicting the future paths of objects in cislunar space (assuming perfect state knowledge)?

General Takeaways