On Simulation and Design of Parallel-Systems Schedulers

Are We Doing the Right Thing?

Xinyu Chen

April 13, 2017

University of New Mexico

OUTLINE

- 1. A Little Background
- 2. Scheduling Simulator
- 3. Experiments Result
- 4. Conclusion and Related Work
- 5. Questions

A Little Background

PARALLEL SYSTEM ARCHITECTURE

Distributed-memory model

shared-memory model

Scheduling Simulator

CONVENTIONAL SCHEDULERS AND SIMULATIONS

Trace-driven Workload Some Metrics

- · Close-System
- Open-System

- Response Time = $t_{terminate} t_{start}$
- Slowdown = $\frac{resp_time}{actual\ runtime}$
- Thinking Time= $t_{new\ submission}-t_{last_finish}$

SITE-LEVEL SIMULATIONS

Table: Methodological Difference between Two Types of Simulation

Category	Conventional Simulations	Site-Level Simulations
Workload source Workload generation Load scaling Performance Metrics	System traces Open-system model Trace (de)-compression Response time, slowdown	User models User-scheduler interaction Number of users Throughput, session length

User Model

- · Session Dynamic
- Job Submission
- Activity Cycle

USER BEHAVIOR - FROM THINK TIME TO SESSIONS

Potential Problems

The CDF of think time looks symmetric. The negative part indicates script submit.

USER BEHAVIOR - SESSION DYNAMICS

Probability to continue session

$$p_cont(j) = \frac{0.8}{0.05 \times resp \ time(j)+1}$$

Potential Problems

Regression? Confounding Factors? Causal Relationship?

USER BEHAVIOR - JOB SUBMISSION

USER BEHAVIOR - ACTIVITY CYCLE

Table: Four user cycle classes

	Daytime-weekdays	Daytime-weekend
Ī	Nighttime-weekdays	Nighttime-weekend

Recap User Model

- · Workload source
- · Workload Generation

USER AWARE SCHEDULING

Similar to EASY

$$criticality(j) = \frac{0.04}{(0.05 \times estimate_resp_time(j)+1)^2}$$

$$priority(j) = \alpha \times criticality(j) + seniority(j)$$

$$estimate_resp_time(j) = seniority(j) + runtime(j)$$

Potential Problems

criticality tends to starve long jobs How to decide and interpret α values

Experiments Result

METRICS: THROUGHPUT AND SESSION LENGTH

Potential Problems

Is Number of Users related with Productivity?

How many processors are used?

What are the job sizes?

Larger number of users favors large α , which favors short jobs.

METRICS: RESPONSE TIME AND SLOWDOWN

Potential Problems

Is Average Response Time and Slowdown useful? What is the standard error?

Slowdown should be greater than 100%.

METRICS: RESPONSE TIME AND SLOWDOWN IN DIFFERENT CLASSES

Potential Problems

It's clear in the above two graphs that the scheduler favors small jobs and sacrifices big jobs.

Slowdown should be greater than 100%

Conclusion and Related Work

Conclusion

- Trace-driven Scheduling Simulation cannot reflect user-system interactions.
- Conventional metrics like Response Time and Slowdown cannot help improve user productivity
- The User Model is much simplified. Real user behaviors are more complicated.
- The interactive sessions is critical but only require less resources. Script submission need to be considered in the future.

Some Previous Discussed Papers

- · Looking at Data by Dror G. Feitelson
- · How Uber Uses Psychological Tricks to Push Its Drivers' Buttons

Questions