Test 3 for CS2334 December 6, 2004

24

(10 pts) 1. Mark ○ if the statement is true, and mark × otherwise.

- (a) A set of nonzero orthogonal vectors are linearly independent.
- \swarrow (b) A set of nonzero orthonormal vectors in \mathbb{R}^n must be a basis.
- (c) Every square matrix can be factored as QR, where Q is orthogonal and R is upper-Δ.
- (d) If $x, y \in \mathbb{R}^n$ and (x, y) = 1, then x and y are linearly independent.
- \swarrow (e) If U, V, W are vector subspaces of \mathbb{R}^n such that $U \perp V$ and $V \perp W, U \perp W$.
- (f) If $A \in \mathbb{R}^{m \times n}$, then AA^t and A^tA have the same rank.

(1) x_(2) 2x, (3) 4a, (4) 6a, (5) now

- (g) Let $Q_1, Q_2, \dots, Q_m \in \mathbb{R}^{n \times n}$ be orthogonal, then $\prod_{i=1}^m Q_i$ is also orthogonal.
- (h) Let v₁, v₂, v₃ be linearly independent vectors in R³, then any Gram-Schmidt orthogonalization process constructs the unique orthonormal basis.
- X (i) A Householder matrix is symmetric, orthogonal, and has determinant 1.
- (j) Let $x, y \in \mathbb{R}^n$ such that (x, y) = 0. Then x and y are orthonormal.
- (k) In \mathbb{R}^n , if **p** is the projection of **b** along the line **a**, then $\mathbf{a}^t(\mathbf{b} \mathbf{p}) = 0$.

(10 pts) 2. Choose the best solution in the following questions.

- (a) Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ be orthonormal vectors, then $\|2\mathbf{u} 4\mathbf{v} + 4\mathbf{w}\|_2 = (1) \ 4, \ (2) \ 5, \ (3) \ 6, \ (4) \ 7, \ (5) \ \text{none}.$
- (b) Let $\mathbf{x} = [1, 2, 1, 2]^t$, $\mathbf{y} = [1, -1, -1, 1]^t$, then the angle between \mathbf{x} and \mathbf{y} is $(1) \frac{\pi}{6}$, $(2) \frac{\pi}{4}$, $(3) \frac{\pi}{3}$, $(4) \frac{\pi}{2}$, (5) none.
 - (c) Let $V = \{[b, 0, a]^t | a, b \in R\} \subset R^3$, then $dim(V^{\perp}) = ?$ (1) 1, (2) 2, (3) 3, (4) 4, (5) none.
 - (d) Let $\mathbf{u} = [1, 2, 3, 4]^t$, then the rank of $\mathbf{u}\mathbf{u}^t$ is (1) 1, (2) 2, (3) 3, (4) 4, (5) none.
- (e) Let $A \in \mathbb{R}^{m \times n}$ have rank r, then $dim(Null(A)) + dim(\mathbb{R}(A)) = ?$ (1) m r, (2) n r, (3) m, (4) n, (5) none.
- (f) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, the least squares solution of $A\mathbf{x} = \mathbf{b}$ is
 - (1) $[-1, -1]^t$, (2) $[0, 1]^t$, (3) $[1, 0]^t$, (4) $[1, 1]^t$, (5) none.
 - (g) Let $H \in \mathbb{R}^{n \times n}$ be a Householder matrix and define (i) orthogonal, (ii) symmetric, (iii) $||H\mathbf{x}||_2 = 1$ for $\mathbf{x} \in \mathbb{R}^n$. What statements of (i), (ii), (iii) are true?
 - (1) (i),(ii) only, (2) (i),(iii) only, (3) (i),(ii),(iii), (4) (ii),(iii) only, (5) (iii) only.
 - (h) Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal, then det(Q) = ?
 - (1) 1, (2) -1, (3) n, (4) \sqrt{n} , (5) none.
 - (i) Let $\mathbf{a} = [1, 1, 1]^t$, $\mathbf{b} = [2, 4, 6]^t$, then the projection of \mathbf{b} onto the line \mathbf{a} is (1) \mathbf{a} , (2) $2\mathbf{a}$, (3) $4\mathbf{a}$, (4) $6\mathbf{a}$, (5) none.
 - (j) Let $f, g \in C[-1, 1]$, and define the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$, then $\langle \sin 2\pi x, \sin 2\pi x \rangle$ (1) 0, (2) 1, (3) 2π , (4) 4π , (5) none.

(3 pts) 3. Find the point on the line y = 2x + 1 that is closest to $[5, 2]^t$.

: the point
$$\Rightarrow [0,1]^{t} + [\frac{2}{5}, \frac{14}{5}]^{t} = [\frac{7}{5}, \frac{19}{5}]^{t}$$

(3 pts) 4. Let $\mathbf{a}_1 = [1, 1, 0]^t$, $\mathbf{a}_2 = [2, 3, 0]^t$, and $\mathbf{b} = [4, 5, 6]^t$. Find the projection vector of \mathbf{b} onto the plane that is spanned by the vectors $\mathbf{a}_1 = [1, 1, 0]^t$ and $\mathbf{a}_2 = [2, 3, 0]^t$.

$$\Rightarrow (4,5,0)^{t}$$

(4 pts) 5. (a) Find the best least squares fitting line to the data [-1,0]^t, [0,1]^t, [1,3]^t, [2,9]^t,
(b) plot your linear function from (a) along with the data on a coordinate system.

$$\frac{1}{2} \left(\frac{-\alpha + b}{\sqrt{\alpha^{2} + 1}} \right)^{2} + \left(\frac{b - 1}{\sqrt{\alpha^{2} + 1}} \right)^{2} + \left(\frac{2\alpha + b - 3}{\sqrt{\alpha^{2} + 1}} \right)^{2} + \left(\frac{2\alpha + b - 9}{\sqrt{\alpha^{2} + 1}} \right)^{2}$$

$$= \frac{\alpha^{2} - 2\alpha b + b^{2}}{\alpha^{2} + 1} + \frac{b^{2} - 2b + 1}{\alpha^{2} + 1} + \frac{\alpha^{2} + 2\alpha b + b^{2} - b\alpha - b + 9}{\alpha^{2} + 1} + \frac{4\alpha^{2} + 4\alpha b + b^{2} - 3b\alpha - 18b + 81}{\alpha^{2} + 1}$$