DRINKING WATER SURVEILLANCE PROGRAM

TILBURY WATER TREATMENT PLANT

REPORT FOR 1991 AND 1992

TILBURY WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

APRIL 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994
This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 2977

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

TILBURY WATER TREATMENT PLANT 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Tilbury water treatment plant is a conventional treatment plant which treats water from Lake St. Clair. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration (pressure filters), taste and odour control, fluoridation and disinfection. Chlorine is added at the mouth of the intake structure for zebra mussel control when the raw water temperature is above 12°C. Polyphosphate is added for corrosion control. This plant has a rated capacity of 6.5 x 1000 m³/day. The Tilbury water treatment plant serves a population of approximately 6,000.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Tilbury water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE A
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WIP

SUMMARY TABLE BY SCAN

			v	A INDICATES THAT NO SAMPLE WAS TAKEN	NO N	AMPLE WAS	IAKEN			
	SCAN	RAW TESTS	TE RAW TESTS POSITIVE %POSITIVE	%POSITIVE	TESTS	TREATED ITS POSITIVE	TREATED TESTS POSITIVE %POSITIVE	YOU TESTS	YOUNG ST TESTS POSITIVE %POSITIVE	OSITIVE
	BACTER 10L0G1CAL	8,4	92	75	17	2	=	17	13	92
	CHEMISTRY (FIELD)	53	. 53	100	66	66	100	154	153	66
	CHEMISTRY (LABORATORY)	397	378	95	405	336	82	712	950	87
	METALS	408	207	20	408	122	53	782	329	75
	CHLOROAROMATICS	168	0	0	181	_	0	182	0	0
	CHLOROPHENOLS	54	0	0	54	0	0	٠		•
	PESTICIDES AND PCB	195	-	0	482		0	288	2	0
	PHENOL I CS	17	2	11	17	г,	17	•		•
	POLYAROMATIC HYDROCARBONS	119		0	85	Ü	0	85	0	0
	SPECIFIC PESTICIDES	93	0	0	76	Ü	0	2	0	0
	VOLATILES	505	80	•	505	29	. 13	505	89	13
	RADIONUCLIDES	21	М	14	12	.,	14			•
TOTAL		2.314	829		2.338	52.9		727 5	1185	

DRINKING WATER SURVEILLANCE PROGRAM

TILBURY WATER TREATMENT PLANT 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Tilbury water treatment plant in the spring of 1990. A previous annual report was published in 1990.

PLANT DESCRIPTION

The Tilbury water treatment plant is a conventional treatment plant which treats water from Lake St. Clair. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration (pressure filters), taste and odour control, fluoridation and disinfection. Chlorine is added at the mouth of the intake structure for zebra mussel control when the raw water temperature is above 12°C. Polyphosphate is added for corrosion control. This plant has a rated capacity of 6.5 x 1000 m³/day. The Tilbury water treatment plant serves a population of approximately 6,000.

The sample day flows ranged from 4.0 x 1000 m^3 /day to 7.2 x 1000 m^3 /day.

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). These objectives are applied to free flowing water. When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

-THE TREATED AND DISTRIBUTED WATER;

-ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE
GUIDELINE VALUES; AND

-POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis

conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

Field pH was below the ODWO Recommended Operational Guideline of 6.5-8.5 pH units in 1 of 32 treated and distributed water samples with a minimum reported value of 6.4 pH units.

It is desirable that the temperature of drinking water be less than 15°C . The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of $15^{\circ}\mathrm{C}$ in 12 of 31 treated and distributed water samples with a maximum reported value of $24.0^{\circ}\mathrm{C}$.

CHEMISTRY (LABORATORY)

Colour in drinking water may be due to the presence of natural or synthetic substances as well as certain metallic ions. Colour is measured in Hazen units ($\rm HZU$).

Colour exceeded the ODWO Aesthetic Objective of 5 HZU in 1 of 34 treated and distributed water samples with a maximum reported value of 13.5 HZU.

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the European Economic Community Aesthetic Guideline Level of 400 umho/cm in 19 of 34 treated and distributed water samples with a maximum reported value of 722 umho/cm.

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L in all 34 treated and distributed water samples with 12 samples above 200 mg/L and a maximum reported value of 317.0 mg/L.

Total phosphorus exceeded the European Economic Community Aesthetic Guideline Level of 0.40 mg/L in 6 of 17 treated water samples with a maximum reported value of 1.17 mg/L. Polyphosphate is added in the treatment process for corrosion control in the distribution system. The presence of slightly elevated phosphate levels in the treated water is therefore expected.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful quideline is to maintain a residual below 100 uq/L as aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 5 of 34 treated and distributed water samples with a maximum reported value of 170.0 ug/L.

ORGANIC

CHLOROAROMATICS

1,2,4,5-Tetrachlorobenzene was found at a positive level in 1 of the 25 treated and distributed water samples analyzed. The maximum observed level was 11.0 ng/L. This was below the United States Environmental Protection Agency Ambient Water Quality Criteria of 38,000 ng/L.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

PESTICIDES AND PCB

Hexachlorocyclopentadiene was found at positive levels in 4 of the 15 treated and distributed water samples analyzed. The maximum observed level was 112.0 ng/L. This was below the United States Environmental Protection Agency Ambient Water Quality Criteria of 206,000 ng/L.

Trace levels of atrazine and metolachlor were also detected. The addition of powder activated carbon was effective in reducing the concentrations of pesticides in the treated water.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWos have been revised to replace the aesthetic phenolic objective with objectives for specific phenols.

Phenolics were found at positive levels in 3 of the 17 treated and distributed water samples analyzed. The maximum observed level was 3.0 ug/L.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 34 treated and distributed water samples analyzed with a maximum level of $107.0~{\rm ug/L}$. This was below the ODWO Maximum Acceptable Concentration of 350 ${\rm ug/L}$.

THMs were detected at positive levels in two raw water samples. Where prechlorination is practiced, the operator must ensure that no chlorine is present in the lowlift chamber or discharge line and that the lowlift pumps are in operation for some time before the raw water sample is taken.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bg/L). No results were above the available guidelines.

CONCLUSIONS

The number of pesticides which were detected at the Tilbury water treatment plant indicates that this raw water source is adversely affected by agricultural activity.

The results are similar to those found in the previous year.

No known health related guidelines were exceeded.

The Tilbury water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME: WORKS #:

TILBURY WTP 220003350

UTM #:

173808574686875

DISTRICT:

WINDSOR

REGION: DISTRICT OFFICER: SOUTHWEST J. DRUMMOND

CHIEF OPERATOR:

GASTON BOUILLON

ADDRESS:

TILBURY WATER TREATMENT PLANT

LOT 12, CONC. FRONT

DOVER TOWNSHIP 519-682-0330

MUNICIPALITY: AUTHORITY:

TILBURY MUNICIPAL

PLANT INFORMATION

PLANT VOLUME: (X 1000 M3)

DESIGN CAPACITY: (X 1000 M3/DAY) RATED CAPACITY: 6.519 (X 1000 M3/DAY)

MUNICIPA	ALITY	POPULATION
TILBURY	EAST TOWNSHIP	800
TILBURY	NORTH TOWNSHIP	1,200
TOWN OF	TILBURY	4,000

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
COMBINED CHLORINE RESIDUAL	TREATED	DAILY
FREE CHLORINE RESIDUAL	TREATED	CONTINUOUS
TOTAL CHLORINE RESIDUAL	TREATED	CONTINUOUS
PH	RAW TREATED	EVERY 4 HOURS EVERY 4 HOURS
TEMPERATURE	RAW	DAILY
TURBIDITY	RAW TREATED	CONTINUOUS CONTINUOUS

18BLE 3
DRINKING WATER SURVEILLANCE PROGRAM TILBURY UTP SAMPLE DAY CONDITIONS
AND TREATHER! CHELICAL DOSAGES FOR 1991 AND 1992

ri T	;																	1
CORROSION CONTROI SODIUM POLYPHOSPHATE		1.00	.85	.87			.85	.80	.85	1.06	06.	76.	1.01	1.07	5.04	1.42	1.81	1.80
TASTE AND ODOUR ACTIVATED CARBON POWDER		3.50	8.00		8.00	00.4	3.00	8.00	92.9	07.9	00.9	9.00		3.60	9.00	6.10	3.17	7.00
FLUORIDATION— SODIUM FLUORIDE		1.33	1.01	1.10	1.10		3.33		1.16	1.10	1.40	1.20	26.	1.24	1.10	1.10	1.20	1.40
POST CHLORINATION CHLORINE		4.52	1.82	3.09	3.23		4.70	2.59	4.19	3.38	3.20	1.64	3.13	2.81	1.50	07.7	3.19	3.89
COAGULATION AID POLYELECTROLYTE			. •	5.60							.20							
COAGULATION POLYALUMINUM CHLORIDE .		18.00	24.02	27.80	31.76	14.00	17.60	15.00	16.00	17.50	23.00		3.77	14.28	8.40	8.60	22.90	20.00
PRE CHLORINATION CHLORINE														1.69			2.20	
_	FLOW (1000M3)	6.220	4.580	6.050	5.880	5.880	5.790	4.360	6.390	6.650	6.390	6.060	7.260	7.260	6.020	7.000	4.000	7.080
	DELAY * TIME(HRS)	4.40	5.00	4.77	7.00	4.55	5.00	2.00	4.30	4.20	4.20	4.00	3.19	4.30	3.00	5.00	86.4	00.6
	DATE	91 JAN 22	91 FEB 19	91 MAR 19	91 APR 23	91 MAY 22	91 JUN 18	91 JUL 16	91 AUG 20	91 SEP 17	91 OCT 22	91 NOV 19	92 FEB 18	92 APR 22	92 JUN 16	92 AUG 18		92 DEC 15

^{*} THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - Interim MAC
 - 4. Aesthetic Objective (AO)
 - WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
!48 .	No Data: Sample Age Exceeded 48 Hours
! AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
!EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
! LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
! QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!sm	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
!U	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken

No Data: Result Unreliable

! UN

!UR No Data: Unpreserved Sample Required

A Approximate Value

A3C Approximate, Total Count Exceeded 300 Colonies

A> Approximate Value, Exceeded Normal Range

APS Additional Peak, Less Than, Not Priority Pollutant

ARO Additional Information In Laboratory Report

CRO Calculated Result Only

NAF Not All Required Tests Found

RID Ioncal Calculated on Incomplete Data Set

RMP P and M-Xylene Not Separated

RRR Result Obtained by Repeat Analysis

RRV Rerun Verification

SFA Sample Filtered: Filtrate Analyzed

SIL Sample Incorrectly Labelled

SPS Several Peaks, Small, Not Priority Pollutant

U48 Unreliable: Sample Age Exceeded 48 Hours

UAL Unreliable: Sample Age Exceeded Limit

UAU Unreliable: Sample Age Unknown

UCS Unreliable: Contamination Suspected

WSD Wrong Sample Description On Bottle

Σ.	GUIDELINE = 0 (A1)																	GUIDELINE = 500 (A3)														0.0				
DIST. SYSTEM YOUNG ST STANDING				•	•	•	•	•	•	•	•	•	•	•	•	•	•																			
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0																	DET'N LIMIT = 0	. 1	10	31	2 <=>	24	° 0	7	6 5	00,	12	12	17	10	310	100		3 <=>	
TREATMENT PLANT TREATED	J							:											<=> 7	2 <=>	<=> 9	<=> 7	-	<=> 7	(!)	() ! > r	î,	÷	<=> 2	53		2 <=>	2 (=)	\$ °	;	
TREATMENT PLANT TR RAW TR	BACTERIOLOGICAL MF (CT/100ML)	140	108	801	<=> 09	2	108	BDL	<=> 7	4	BOL	10 <=>	B0L	B0L	0	B01	12	ONT MF (CT/ML)	•															•		
	FECAL COLIFORM MF	1001	1991 FEB			1991 MAY											1992 DEC	STANDRO PLATE CNT MF (CT/ML	1991 JAN	1991 FEB					1991 JUL		1991 SEP			1992 FEB	1992 APR		1992 AUG		1992 DEC	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

	GUIDELINE = 5/100ML (A1)																	GUIDELINE = N/A																
DIST. SYSTEM YOUNG ST STANDING	GUIDELI																	GUIDELI																
DIST. SYSTEM D YOUNG ST Y FREE FLOW S	DET'N LIMIT = 0					•			•				•					DET'N LIMIT = 0																
TREATMENT PLANT TREATED	=																				•										٠			
TREATMENT PLANT RAW	BACTERIOLOGICAL MF (CI/100ML)	42000	1900	BDL	4000 A3C	<=> 007	120 <=>	<=> 02	33 (=>	<=> 09	<=> 09	280	BDL	BD1	190 A3C	740 A3C	2400	RD MF (CT/100ML)	10000	2800	000	2000 A3C	36000 A3C	24000 A3C	24833 A3C	20000 A3C		2720	180 <=>	. 6300 A3C	< 00072	5900 A3C	25000	
	BACTERIOL TOTAL COLIFORM MF (CT/100ML	1991 JAN		1991 MAR		1991 MAY				1991 SEP					1992 AUG		1992 DEC	T COLIFORM BCKGRD MF			1991 MAR	1001 MAY			1991 AUG		1991 OCT	1992 FEB			1992 AUG		1992 DEC	

WIP
TILBURY
1992
AND
1991
PROGRAM
SURVEILLANCE
WATER
RINKING
_

	⋖																		¥																	
DIST. SYSTEM YOUNG ST STANDING	GUIDELINE = N/A	.200	.200	.200	.200	.200	007.		.000	.300	.200	. 400	.200	.400	.300	.200	007	.200	GUIDELINE = N/A	1.000	1.100	1,300	1.100	.500	.100		.300	.700	.000	.700	.300	.700	009.	.100	.300	1.900
DIST. SYSTEM DIST. SY: YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 0	.200	.200	009.	.200	.200	007.		.200	.300	.200	.200	.200	.200	.300	,200	007.		DET'N LIMIT = 0	1.100	1.300	1,100	1.100	.500	009.		.300	.700	006.	006.	.700	1.300	.700	.100	.300	
TREATED TREATED		.230	.310	.270	.530	. 200	.320	.300	.260		.220	.350	097.	.240	.310	.330	.720	.410	۵	2.030	2.490	1,170	1.760	1.650	3.000	2.510	2.200		1.640	1.870	1.510	1.620	1.500	2.050	2.080	2.150
RAW	CHEMISTRY (FIELD) (COMB) (MG/L)													.480					FREE (MG/L)	•		•										.050	•			
	CHEMIST FLD CHLORINE (COMB) (MG/L	1001 IAN	1991 FFB		1001 APR			1001		1991 SEP			1992 FEB			1992 AUG		1992 DEC	FLD CHLORINE FREE (MG/L	1991 JAN			1991 APR				1991 AUG									1992 DEC

	WIP	
	TILBURY	
	1992	
	AND	
	1991	
ABLE 4	PROGRAM	
	SURVE 1 LL ANCE	
	WATER	
	DRINKING	
	_	

	GUIDELINE = N/A	00	00	00	00	00	00		00	90	96	90	90	90	90	96	00	00	GUIDELINE. = 6.5-8.5 (A4)	00	9	00	00	90	90		00	90	00	90	00	00	00	00	00	8
YOUNG ST STANDING		1.200	1.30	1.50	1.30	. 700	.500		.300	1.000	1.100	1.100	.500	1.100	.900	.300	. 700	2.10		7.600	7.6	7.40	7.80	7.60	7.40		7.400	7.40	7.40	7.6	7.60	7.4(7.40	7.4(7.40	7.40
YOUNG ST FREE FLOW	DET'N LIMIT = 0	1.300	1.500	1.700	1.300	.700	1.000		.500	1.000	1.100	1.100	006.	1.500	1.000	.300	. 700		DET'N LIMIT = N/A	7.700	7.400	7.400	7.400	7.400	7.400		7.600	7.400	7.300	7.600	7.800	7.600	7.600	7.400	7.400	
TREATED		2.260	2.800	1.440	2.290	1.850	3.320	2.810	2.460		1.860	2.220	1.980	1.860	1.810	2.380	2.800	2.560		7.800	9.900	9.700	9.700	9.900	2.000	6.800	.500	9.700	9.900	9.400	7.500	2.400	6.500	9.900	7.000	7.000
RAW	CHEMISTRY (FIELD) TOTAL) (MG/L)													.530					ss)	7.600	9.800	9.700	6.700	2.400	2.400	9.900	6.500	6.800	2.000	9.400	2.600	7.500	009.9	6.800	7.100	7.200
	CHEMISTR FLD CHLORINE (TOTAL) (MG/L	1991 JAN	1991 FEB	1991 MAR		1991 MAY	1991 JUN	1991 JUL	1991 AUG									1992 DEC	FLD PH (DMNSLESS)		1991 FEB	1991 MAR					1991 AUG									1992 DEC

	3			(14
	GUIDELINE = 15 (A3)			GUIDELINE = 1.0 (A1)
DIST. SYSTEM YOUNG ST STANDING	GUIC	12.200 12.000 13.000 17.500	22.500 24.000 17.000 11.000 15.000 18.500 20.000 17.000 5.000	
POIST. SYSTEM 01: YOUNG ST YOU FREE FLOW ST	DET'N LIMIT = N/A	4,000 3,000 4,000 15,600	20,000 22,700 24,000 13,000 4,500 6,500 19,800 12,000	06T'N LIMIT = N/A
TREATMENT PLANT TREATED		2.000 1.000 3.000 8.000	22.000 22.000 23.000 8.0000 8.0000 8.0000 20.100 20.100 8.500 1.600	200 200 200 200 200 200 110 120 200 200
TREATMENT PLANT RAW	CHEMISTRY (FIELD)	1.000 1.000 3.000 8.000 16.000	22.000 23.000 22.000 22.000 8.000 8.000 2.000 20.100 9.500 1.600	30, 000 30, 000 22, 000 20, 000 10, 000 18,
	CHEMI		1991 JUL 1991 JUL 1991 SEP 1991 OCT 1991 NOV 1992 FEB 1992 APR 1992 AUG 1992 OCT 1992 OCC	FLD TURB BD ITY (FTU 1991 JAN 1991 RB 1991 MAR 1991 MAR 1991 JUL 1991 SEP 1991 ND 1992 APR 1992 APR 1992 APR 1992 APR 1992 APR 1992 DEC

		-500 (A4)																		= 100 (F2)																	2 (A1)	
YSTEM		GUIDELINE = 30-500 (A4)	102.700	165.200	.300	.700	. 500	127.800	.200	.800	.600	106.200	.600	.000	.700	.300	110.200	.700	.200	GUIDELINE = 100	000.76	.400	51.200	.000	.800	.600	.000	.600	006.	76,400	.000	005.08	800	46.200	000	.950	GUIDELINE = 0.2 (A1)	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING		DET'N LIMIT = 0.2	202.900 202					124.200 127												DET'N LIMIT = 0.20		78,700 74					25.800 25							48.650		59.350 60	DET'N LIMIT = 0.001	
TREATMENT PLANT DIST. TREATED YOUNG		DET 'A	204.500	157.000	107.600	148.300	101.400	127.000	72.000	88.300	88.000	111.100	114.800	196.800	99.200	99.500	98.500	153.000	120.400	DET 'N	97.200	72.000	47.500	72.800	41.200	55.000	25.700	33.400	32.800	000.44	005.04	40.100	37.700	40.650	61.800	50.600	DET'N	80L
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	۲ ،	219.500	220,800	i IS	170.500	106.500	126.500	74.100	97.300	005.66	122.300	118.200	193.200	114.800	101.700	105.300	244.300	137.200	(97.600	90.700	41.000	76.000	40.000	47.800	.55.400	35.400	32.400	007.94	007.44	74.500	35.900	39.750	007.76	48.500	^	BOL
		ALKALINITY (MG/L	1991 JAN	1991 FEB		1991 APR	_			1991 AUG			1991 NOV				_	_	1992 DEC	CALCIUM (MG/L	1991 JAN	1991 FEB	_	_			1991 JUL			1991 001		1992 APR		_	1992 OCT	1992 DEC	CYANIDE (MG/L	26 SAMPLES

	GUIDELINE = 250 (A3)																		GUIDELINE = 5 (A3)																	:
DIST. SYSTEM YOUNG ST STANDING		50.300	76.000	31.900	33.700	24.500	36.800	25.800	32.000	32,000	45.400	33.500	62.700	20.100	20,600	26.400	32.700	31.000		3.000	.500 <1			1,000 <t< th=""><th>1.500</th><th>.500 <t< th=""><th></th><th></th><th>.500 <t< th=""><th>.500 <t< th=""><th>3.500</th><th>.500 <⊤</th><th>.500 <1</th><th>1.500</th><th></th><th>.500 <1</th></t<></th></t<></th></t<></th></t<>	1.500	.500 <t< th=""><th></th><th></th><th>.500 <t< th=""><th>.500 <t< th=""><th>3.500</th><th>.500 <⊤</th><th>.500 <1</th><th>1.500</th><th></th><th>.500 <1</th></t<></th></t<></th></t<>			.500 <t< th=""><th>.500 <t< th=""><th>3.500</th><th>.500 <⊤</th><th>.500 <1</th><th>1.500</th><th></th><th>.500 <1</th></t<></th></t<>	.500 <t< th=""><th>3.500</th><th>.500 <⊤</th><th>.500 <1</th><th>1.500</th><th></th><th>.500 <1</th></t<>	3.500	.500 <⊤	.500 <1	1.500		.500 <1
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0.20	50.300	76.800	33.500	33.500	25.500	36.800	25.800	31,500	32,000	006.47	33.700	63.400	19.900	21.900	29.200	33.200	30.300	DET'N LIMIT = 0.50	2.500	.500 <1		1.000 <7	1.000 <7				.500 <t< th=""><th></th><th>.500 <t< th=""><th>3,000</th><th>.500 <t< th=""><th>.500 <t< th=""><th>2.000</th><th></th><th>.500 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>		.500 <t< th=""><th>3,000</th><th>.500 <t< th=""><th>.500 <t< th=""><th>2.000</th><th></th><th>.500 <t< th=""></t<></th></t<></th></t<></th></t<>	3,000	.500 <t< th=""><th>.500 <t< th=""><th>2.000</th><th></th><th>.500 <t< th=""></t<></th></t<></th></t<>	.500 <t< th=""><th>2.000</th><th></th><th>.500 <t< th=""></t<></th></t<>	2.000		.500 <t< th=""></t<>
TREATMENT PLANT TREATED		57.700	44.200	28.200	34.000	21.200	37.900	24.800	33.200	30,500	40.100	34.100	59.800	22.200	19.100	21.700	29.700	31.600		3.000	B0L		.500 <t< th=""><th></th><th>1.000 <t< th=""><th></th><th></th><th></th><th>.500 <t< th=""><th>BDL</th><th>3.000</th><th></th><th>.500 <t< th=""><th>.500 <t< th=""><th>1.000</th><th>BOL</th></t<></th></t<></th></t<></th></t<></th></t<>		1.000 <t< th=""><th></th><th></th><th></th><th>.500 <t< th=""><th>BDL</th><th>3.000</th><th></th><th>.500 <t< th=""><th>.500 <t< th=""><th>1.000</th><th>BOL</th></t<></th></t<></th></t<></th></t<>				.500 <t< th=""><th>BDL</th><th>3.000</th><th></th><th>.500 <t< th=""><th>.500 <t< th=""><th>1.000</th><th>BOL</th></t<></th></t<></th></t<>	BDL	3.000		.500 <t< th=""><th>.500 <t< th=""><th>1.000</th><th>BOL</th></t<></th></t<>	.500 <t< th=""><th>1.000</th><th>BOL</th></t<>	1.000	BOL
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	50.500	39.000	16.800	23.900	15,700	26.800	16.600	28.200	25.900	32.400	25.000	58.300	19.500	12.800	15.500	30,000	16.200	(17.500	10.500	3.000	8.000	4.500	7.500	4.000	2.000	2.000	.500 <t< th=""><th>2.500</th><th>7.500</th><th>B0L</th><th>7.000</th><th>9.000</th><th>10.500</th><th>5.000</th></t<>	2.500	7.500	B0L	7.000	9.000	10.500	5.000
	CHLORIDE (MG/L	1001 JAN		_					1991 AUG		1991 OCT						_	1992 DEC	COLOUR (HZU	1991 JAN	1991 FEB	_	_	_			1991 AUG					_		-	_	1992 DEC

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP	
ROGRAM 1991 AND	OIST. SYSTEM YOUNG ST STANDING
SURVEILLANCE PR	DISTSYSTEM YOUNG ST FREE FLOW
WATER	PLANT
DRINKING	TREATMENT PLANT TREATED
	PLANT
	TREATMENT PLANT RAW

GUIDELINE = 400 (F2)		GUIDELINE = 5.0 (A3)
GUD	664, 657	3.100 2.400 2.400 2.400 2.400 2.400 2.400 1.900 1.800 1.800 1.400
DET'N LIMIT = 1.0	667 667 787 787 787 787 787 787 787 787	DET'N LIMIT = 0.10 2.200 2.200 2.200 2.300 2.400 1.700 1.600 2.000 1.600 2.000 1.600 2.000 1.600 2.000 1.700 1.700
(LABORATORY)	868 777 777 778 778 778 778 778	3,100 2,100 2,200 2,200 2,200 1,800 1,800 1,800 1,800 1,800 1,200
MISTRY	673 673 673 673 673 673 673 673 673 673	(M6/L) 4,300 4,300 2,500 2,500 2,500 3,000 3,000 1,700 2,500 2,800
CONDUCTIVITY (UMHO/CM	1991 JAM 1991 FEB 1991 MAP 1991 JUN 1991 JUN 1991 JUN 1991 AUC 1993 AUC 1992 CEF 1992 CEF 1992 CEF	1991 FEB 1991 FEB 1991 FEB 1991 ARR 1991 ARR 1991 ARR 1991 ARR 1991 JUN 1991 JUN 1991 GET 1992 CET 1992 CET 1992 CET 1992 CET 1992 CET 1992 CET 1992 CET

	GUIDELINE = 1.5 (A1)																		GUIDELINE = 80-100 (A4)																		
DIST. SYSTEM YOUNG ST STANDING	GUIDEL	1.180	076	.980	.860	1,120	.920	.540	.980	086.	1.040	1.020	.840	1.120	1.020	1.000	1,100	1.060	GUIDEL	310.000	247.500	174 800	242 000	145 000	107.000	000.761	103.100	155.000	130.600	174.000	166.500	300.000	134.900	140.000	160.310	227.000	205.560
DIST. SYSTEM DIST. YOUNG ST YOUNG ST STAND!	0ET'N LIMIT = 0.01	1.160	.980	076	.880	1.120	. 920	.540	086.	1.000	1.040	1.020	.840	1.100	1.120	1.000	1.100	1.000	DET'N LIMIT = 0.5	317,000	258 800	172, 400	325 000	121 000	000.171	195,000	102.600	131.000	127.600	176.500	166.500	298.000	136.200	146.000	229.950	259,000	200.300
TREATMENT PLANT D TREATED Y		1.260	096.	.840	1.000	1.140	076	.540	1.080	0%6	1,060	1.040	.840	1.080	1.060	1.140	1.220	1.100	30	316.000	220 300	34, 400	2000	251.000	146.000	196.000	102.700	132.000	125.000	168.000	169.100	285.000	136.000	130.000	141.070	208.000	171.990
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	180	. 160	160	160	100	160	120	180	. 200	.240	. 160	.180	.180	.100	.160	.160	.100	^	117 000	002.200	005.762	143.300	262.000	143.000	177.000	95.400	137.000	128.300	168.000	162.300	282.000	151,000	124.000	137.140	309,000	165.750
	LUORIDE (MG/L	1991 JAN			1001					1991 SEP				1007 APR				_	HARDNESS (MG/L	1001				1991 APR				1991 AUG	1991 SEP	1991 OCT	1991 NOV		1992 APR		1992 AUG		1992 DEC

DIST. SYSTEM	YOUNG ST	STANDING
DIST. SYSTEM	YOUNG ST	FREE FLOW
TREATMENT PLANT	TREATED	
TREATMENT PLANT	RAW	

GUIDELINE = N/A	1,738				6.545 NAF		4.787 NAF		3.996 NAF	1.303	.240	1.157	2.326 NAF	2.057	.599	.460	GUIDELINE = 10 (F2)	2.850	2.790	1.710	1.950	1.600	2.650	1.340	1.950	1.990	2.900	2.600	3.080	1.473	1.590	2.280	3.428	2.294
DET'N LIMIT = N/A	3.903					2.254 NAF		2.464 NAF		.030	3.451	2,756	2.038 NAF	.188	.368	.506	DET'N LIMIT = 0.01	. 2,920	2.860	1,740	1.950	1.750	2.650	1.350	1.800	1.930	2.950	2.560	3.070	1.500	1.670	2.374	3.457	2.201
	2.466					2.154 NAF				.561	3.458	2.746	1.579 NAF	2.124	.884	026.	190	3.000	2.490	1.640	1.550	1.400	2.500	1.460	2.000	1.860	3.200	2.650	2.800	1.930	1.570	2.019	2.900	1.935
CHEMISTRY (LABORATORY)	.883	_	_	1.479 NAF						2.374	4.235	3.754	. 125 NAF	. 124	. 269	2.264	^	3.250	3.390	1,780	1.950	1.450	2,350	1.120	2.200	2.140	3.500	2.580	3.020	2.623	1.600	1.969	3.892	2.530
IONCAL (DMNSLESS				1991 APR							1992 FEB					1992 OEC	POTASSIUM (MG/L																1992 OCT	

																			F2)																		
	GUIDELINE = N/A																		GUIDELINE = 30.0 (F2)																		
DIST. SYSTEM YOUNG ST STANDING	CUIDELI	976	.763 NAF	.672	.719	.505	.555	-, 132	860.	.126	.375	.268	1.119	.294	.521	.348	.703	.551	GUIDELI	18.300	15.000	11,400	15.700	11.700	14.200	9.300	11.300	11.150	12.300	12.750	18.100	8.840	9.300	10.920	13.900	12.960	
DIST. SYSTEM DIST YOUNG ST YOUN FREE FLOW STAN	DET'N LIMIT = N/A	1 023	. 743 NAF	049	.774	167	.587	014	. 149	.114	.301	.338	1,127	.313	.547	.419	.750	.516	DET'N LIMIT = 0.1	17.700	15.150	11.550	15.800	12.000	14.100	9.250	11.500	11.100	12.900	12,550	18.200	000.6	0.640	11.880	14.100	12.600	
TREATMENT PLANT DIS TREATED YOU FRE		510	.780 NAF			. 288	.427	200	-,026	.195	757	.382	1, 135	.363	747	.168	002.	.394	DET	17.900	14,400	11,100	16.800	10.400	14.300	9.350	11.700	10.450	12.800	13.050	17.900	9.570	8.710	9.620	13.000	11.100	
TREATMENT PLANT TR RAW TR	CHEMISTRY (LABORATORY) (DMNSLESS)	1 166	1,229 NAF		.971	.431	.599	707	.552	.373	.619	.431	1,185	.541	.451	.379	1.233	902.	^	17.800	17.250	10.400	17.600	10.600	13.900	9.550	11.800	11.500	12.800	12.500	18.600	10.230	8.220	9.210	17.800	10.860	
ĒŒ	LANGELIERS INDEX	1001	_	-	_	-		1991 JUL		1991 SEP	1991 OCT		- 1992 FEB	1992 APR		-	1992 OCT	1992 DEC	MAGNESIUM (MG/L	1991 JAN	_	_	1991 APR	_				1991 SEP	1991 OCT	1991 NOV	1992 FEB				1992 OCT	1992 DEC	

	ΜTΡ
	TILBURY
	1992
	AND
	1991
ABLE 4	PROGRAM
	SURVE ILLANCE
	WATER
	DRINKING

DIST. SYSTEM

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM

		GUIDELINE = 200 (A4)																		GUIDELINE = 0.05 (F2)																	
YOUNG ST STANDING		3109	21.300	18.500	10.800	9.800	10.600	15.200	10.500	17.200	15.800	19.600	17.700	31.000	9.710	11.400	13.070	12.710	11.930	3I N9	BOL	BOL	BOL	BDL			.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>BDL</td><td>BDL</td><td>.010</td><td>.006 <t< td=""><td></td><td>.004 <↑</td><td>. 008 <t< td=""><td>BOL</td></t<></td></t<></td></t<></td></t<>	BDL	.002 <t< td=""><td>BDL</td><td>BDL</td><td>.010</td><td>.006 <t< td=""><td></td><td>.004 <↑</td><td>. 008 <t< td=""><td>BOL</td></t<></td></t<></td></t<>	BDL	BDL	.010	.006 <t< td=""><td></td><td>.004 <↑</td><td>. 008 <t< td=""><td>BOL</td></t<></td></t<>		.004 <↑	. 008 <t< td=""><td>BOL</td></t<>	BOL
YOUNG ST YOU FREE FLOW STAI		DET'N LIMIT = 0.20	21.200	19.100	10.300	9.800	11.000	14.800	10.400	16.600	15.400	20.600	17.600	32.300	0.470	12.500	14.200	12.910	11.370	DET*N LIMIT = 0.002	B0L	BOL	B0L	BOL	.002 <⊤	.002 <↑	BDL		.002 <1	BDL	BDL		. 000, <1	BDL	.004 <1	.012	BDL.
TREATED	BORATORY)		24.200	17.100	000.6	007.6	007.6	16.600	10.900	18.400	15.300	22.200	18.100	30.700	0.840	11.500	11,040	11.640	10.500		.002 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td></td><td>.004 <1</td><td>80F</td><td>B01</td><td>BDL</td><td></td><td>.006 ×T</td><td>BDL</td><td>.002 <t< td=""><td>BOL</td><td>.002 <↑</td><td>80F</td></t<></td></t<>	BDL	BDL	BDL	108		.004 <1	80F	B01	BDL		.006 ×T	BDL	.002 <t< td=""><td>BOL</td><td>.002 <↑</td><td>80F</td></t<>	BOL	.002 <↑	80F
RAW	CHEMISTRY (LABORATORY)	^	23.000	18.800	9.900	000.6	8.200	14.600	009.6	18.200	15.700	21.200	15.300	29.800	9.010	8.570	8.810	12.930	8.010	(MG/L)	.174	.208	770	910.	.050	.058	920.	.020	.032	970.	.044	.102	.052	.022	260.	T> 900.	.018
		SODIUM (MG/L	1991 JAN				1991 MAY				1991 SEP			1992 FEB			1992 AUG		1992 DEC	AMMONIUM TOTAL (MG/L	1991 JAN	_	_	1991 APR			1991 JUL			1991 OCT			1992 APR			1992 OCT	_

	GUIDELINE = 1.0 (A1)																		GUIDELINE = 10.0 (A1)																	
	SUIDE	Þ				<u>_</u>	Ļ							-		₩.	Ļ		GUIDE																	
DIST. SYSTEM YOUNG ST STANDING	J	.002		BOL	B01			BDL	80F	BDL	B01	B01			BOL		.00	B 01		6.380	4.340	3.040	7.990	1.30	3.210	525	.615	.435	.905	1.450	7.680	1.200	.965	2.330	3.360	2.600
DIST. SY YOUNG ST STANDING	. 00																		.005																	
DIST. SYSTEM YOUNG ST FREE FLOW	DET*N LIMIT = 0.001	.002 <1	T> 100.	BOL	BOL	BOL	BOL	BDL	108	BOL	BDL	108	BDL	.002 <t< th=""><th>BDL</th><th>. 001 <t< th=""><th>.002 <t< th=""><th>BOL</th><th>DET'N LIMIT = 0.005</th><th>9.400</th><th>4.550</th><th>3.100</th><th>4.750</th><th>1.860</th><th>3.120</th><th>. 225</th><th>.590</th><th>.455</th><th>.955</th><th>1.450</th><th>7.630</th><th>1.370</th><th>1.020</th><th>2.760</th><th>3.430</th><th>2.440</th></t<></th></t<></th></t<>	BDL	. 001 <t< th=""><th>.002 <t< th=""><th>BOL</th><th>DET'N LIMIT = 0.005</th><th>9.400</th><th>4.550</th><th>3.100</th><th>4.750</th><th>1.860</th><th>3.120</th><th>. 225</th><th>.590</th><th>.455</th><th>.955</th><th>1.450</th><th>7.630</th><th>1.370</th><th>1.020</th><th>2.760</th><th>3.430</th><th>2.440</th></t<></th></t<>	.002 <t< th=""><th>BOL</th><th>DET'N LIMIT = 0.005</th><th>9.400</th><th>4.550</th><th>3.100</th><th>4.750</th><th>1.860</th><th>3.120</th><th>. 225</th><th>.590</th><th>.455</th><th>.955</th><th>1.450</th><th>7.630</th><th>1.370</th><th>1.020</th><th>2.760</th><th>3.430</th><th>2.440</th></t<>	BOL	DET'N LIMIT = 0.005	9.400	4.550	3.100	4.750	1.860	3.120	. 225	.590	.455	.955	1.450	7.630	1.370	1.020	2.760	3.430	2.440
70UN FREE	DET'N																		DET 'N																	
TREATMENT PLANT TREATED	BORATORY)	108	108 80 1	BDL	80F	B01	BDL	BOL	B0L	BDL	108	108	BOL	B0L	801	BDL	801	BOL		6.230	4.020	2.600	9.900	1.250	3.250	.205	.535	.395	1.120	1.400	7.050	3.370	.755	1.820	2.750	1.810
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	.050	970	.015	.032	.014	.036	.004 <t< th=""><th>.016</th><th>.013</th><th>.031</th><th>.023</th><th>.027</th><th>.025</th><th>200.</th><th>.024</th><th>600.</th><th>.025</th><th>MG/L)</th><th>6.320</th><th>5.730</th><th>1.920</th><th>7.500</th><th>1.200</th><th>2.670</th><th>. 125</th><th>.535</th><th>.385</th><th>1.160</th><th>1.260</th><th>7.430</th><th>4.120</th><th>.560</th><th>1.640</th><th>4.870</th><th>1.800</th></t<>	.016	.013	.031	.023	.027	.025	200.	.024	600.	.025	MG/L)	6.320	5.730	1.920	7.500	1.200	2.670	. 125	.535	.385	1.160	1.260	7.430	4.120	.560	1.640	4.870	1.800
TREA	(MG/L	NAL	FFR	MAR	APR	MAY	NOF	JUL.	AUG	SEP				APR					NITRATE (TOTAL) (MG/L	JAN													NOL	AUG	_	
	NITRITE (MG/L	1001	1001	100	1001	8	1991	1991	1991	1991	1991	1991	1992	1992	1992	1992	1992	1992	NITRATE	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1992	1992	1992	1992	1992	1992

DIST. SYSTEM YOUNG ST STANDING	
DIST. SYSTEM YOUNG ST FREE FLOW	
TREATMENT PLANT TREATED YOUNG ST RAW TREATED YOUNG ST FREE FLOW	
TREATMENT PLANT RAW	

	GUIDELINE = N/A																		GUIDELINE = 6.5-8.5 (A4)																	
	GUIDEL	90	30	20	.310	10	06	9	2	. 02	2	0,	20	9	0,	10	8	20	GUIDEL	2	0,	20	90	50	20	20	20	8	10	2	20	20	9	8	10	0,
YOUNG ST STANDING		7.	ĸ	2.	.3	2.	~	÷.	Ξ.	-	Ξ.	~·	- 6	.140	÷.	2.	.390	λ.		8.170	8.1	8.3	8.2	8.250	8.1	8.0	8.0	8.0	8.1	8.0	8.3	8.1	8.3	8.090	8.110	8.040
	T = 0.02	. 0	20	07	00	20	07	07	80	20	20	30	20	30	07	09	.400	30	T = N/A	00	80	30	20	10	10	20	30	00	07	80	06	20	30	10	20	30
YOUNG ST FREE FLOW	DET'N LIMIT = 0.02	7.	ĸ.	~.	.300	ς.	~	-	٦.	-	-	2.	2.0	-	-	۶.	4.	~.	DET'N LIMIT = N/A	8.200	8.0	8.3	8.2	8.2	8.2	8.1	8.1	8.1	8.0	8.0	8.3	8.1	8.3	8.1	8.150	8.0
TREATED	(LABORATORY)	.410	.260	.240	. 290	.160	.220	. 110	.100	. 130	.220	.230	1.850	.280	T> 090.	.130	.320	.130		8.090	8.190	8.370	8.190	8.110	8.040	7.960	7.950	8.180	8.200	8.110	8.390	8.210	8.310	8.010	8.180	8.060
RAW	CHEMISTRY (KJELD (MG/L	. 870	.840	.450	1.120	.450	.550	.340	.360	.410	.530	.420	.450	.700	.180	007.	.790	.480		8.290	8.400	SII	8.320	8.240	8.270	8.600	8.460	8.310	8.320	8.160	8.460	8.280	8.320	8.200	8.340	8.330
	NITROGEN TOT K				91 APR	91 MAY	91 JUN	91 JUL	91 AUG	91 SEP	91 OCT	91 NOV	92 FEB	92 APR	NOC 26	92 AUG	1992 OCT	92 DEC	(DMNSLESS)		91 FEB		91 APR												1992 OCT	
	NITRO	10	19	19	19	5	19	19	19	19	19	9	19	19	19	19	19	19	ЬН (О	19	19	19	19	19	19	19	6	4	6	5	19	19	19	4	19	19

	= N/A		GUIDELINE = 0.40 (F2)
E	GUIDELINE = N/A		GUIDELINE
DIST. SYSTEM YOUNG ST STANDING	.0005		2000
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0.0005		0.002
TREATMENT PLANT TREATED		113 188 100 100 100 100 100 100 100 100 100	.310 .465 .646 .061 .001 .001 .163 .200 .200 .200 .200 .200 .200 .200 .20
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY) REACT (MG/L)	\$00.000.0000.0000.0000.0000.0000.0000.	10 (MG/L) 11 (MG/L) 11 (MG/L) 12 (MG/L)
	CHEMISTR PHOSPHORUS FIL REACT (MG/L	1991 JAN 1991 ARR 1991 ARR 1991 ARR 1991 ARR 1991 JUN 1991 CGT 1991 CGT 1992 ARR 1992 ARR 1992 AUG 1992 AUG 1992 OGT	PHOSPHORUS TOTAL (MG/L 1991 JAN 1997 IRB 1991 JAN 1997 IAN 1991 JUL 1997 JUL 1997 JUL 1999 LOCT 1992 JUL 1992 JUL 1992 JUL 1992 JUL 1992 JUL 1992 JUL 1992 JUL

	GUIDELINE = 500 (A3)																		= 500 (A3)																	
	INE =																																			
	GUIDEL	CRO		CRO	CRO		CRO			GUIDELINE																	:									
DIST. SYSTEM YOUNG ST STANDING		432.000	361,000	263.000	308,000	227,000	298,000	176,000	219.000	227,000	282,000	268.000	473,000	200,000	213.000	247.000	313,000	297.000		55.080	42.690	32.840	41.100	28.930	36.950	24.170	29.990	32.220	40.860	38.810	57.630	24.690	26.210	30.720	32.310	29.040
TEM	T = N/A	000 CRO						300 CRO	300 CRO	300 CRO	300 CRO	000 CRO	300 CRO		_	_	_	000	T = 0.20	00	020	360	.70	250	240	010	730	570	510	. 010	200	.50	750	510	580	090
DIST. SYS YOUNG ST FREE FLOW	DET'N LIMIT	430.0	371.(266.000	305.000	236.000	295.0	176.000	214.000	224.(289.	268,000	456.000	200,000	222.000	268.000	317.000	286.000	DET'N LIMIT	54.100	43.0	35.8	40.470	30.3	36.540	24.0	28.930	31.0	39.	41.9	57.600	23.4	27.	33.	32.580	28.9
LANT		CRO				CRO	CRO	CRO	CRO	CRO			CRO	CRO		_	CRO	_		_	_	_	_	_	_	_	_	_	_	_	0	_	_	_	_	
TREATMENT PLANT	CHEMISTRY (LABORATORY) MG/L)	444,000	344.000	239.000	328.000	204.000	302.00	176.000	225.000	221.00	283.000	270.000	469.000	228.000	202.000	219.000	289,000	255.000		53.480	06.04	31.01	45.490	25.16	36.89	22.90	32.360	30.41	38.25	41.00	59.210	24.250	24.340	27.42	28.810	26.67
LANT	CLAB	_	_	_	CRO						CRO				CRO	CRO	CR0																			
TREATMENT PLANT	CHEMISTR (MG/L	437.000	401.000	202,000	328,000	194.000	268,000	176.000	218.000	221.000	273.000	247.000	467.000	235.000	183.000	205.000	383.000	233.000	^	52.940	42.770	26.280	47.150	25.080	34.480	21,450	30.900	31.610	39.230	34.970	61,580	24.850	21.680	24.860	35.620	23.220
TRE	FILTRATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	. 100	NOV	FEB	APR	NOS	AUG	OCT	DEC	(MG/L	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	FEB	APR	NON	AUG	001	DEC
	RESIDUE				1991	1991					1661						1992	1992	SULPHATE (MG/L	1991	1991	1661	1991	1991	1991										1992	1992

	4
	TILBURY
	1992
	AND
	1991
TABLE 4	PROGRAM
	SURVE I L L ANCE
	WATER
	DRINKING WATER

DIST. SYSTEM YOUNG ST STANDING

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED YOUNG ST FREE FLOW

GUIDELINE = 1.0 (A1)		
COLDELINE	1,190 1,286 1,286 1,286 1,286 1,586	.290 1.110 RRV
DET'N LIMIT = 0.05	420 420 430 430 430 430 430 430 430 43	.430 1.030 RRV
(LABORATORY)	, 430 , 540 , 550 , 550 , 170 , 400 , 400 , 400 , 500 , 500	.320
CHEMISTRY (LABO	27.000 RV 14.600 111.000 RV 5.300 9.300 8.300 6.	39.200
URBIDITY (FTU	1991 JAN 1991 FEB 1991 MAR 1991 APR 1991 JUL 1991 SEP 1991 OCT 1991 OCT 1992 EEB 1992 AUR	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

	NE = N/A																		GUIDELINE = 100 (A4)																		
YSTEM T G	GUIDELINE	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	.060 <1	BDL	GU10EL11	000.29	000	000	52.000	.000	000.69	.000	.000	140.000	24.000	98.000	26.000	.000	.000	.000	29.000	.000	
DIST. SYSTEM YOUNG ST STANDING	0.05																		0.10	29	26	52	52	93	69	120	33	140	24	89	29	87	55	27	59	120	
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0.05	BDL	BDL	BDL	BDL	BDL	108	BDL	BDL	BDL	BDL	80F	BDL	80F	80L	80F	• 090.	108	DET'N LIMIT = 0.10	86.000	78.000	73.000	26.000	99.000	70.000	120.000	81,000	160.000	65.000	98.000	92.000	62,000	59.000	58.000	80.000	130.000	
TREATMENT PLANT TREATED		BDL	BOL	BDL	BDL	80F	BDL	T> 070.	BDL	80°L	108	BDL	80 L	BDL	BDL	BOL	80L	108		76.000	51,000	95,000	44.000	110.000	65.000	170.000	88.000	98.000	92.000	57.000	27,000	61.000	61.000	58.000	24.000	24.000	
TREATMENT PLANT RAW	METALS)	BDL	BDL	BDL	BDL	BDL	BDL	.430 <t< td=""><td>BOL</td><td>B0L</td><td>108</td><td>108</td><td>TOB ·</td><td>BDL</td><td>BOL</td><td>30F</td><td>80F</td><td>108</td><td>^</td><td>260,000</td><td>220,000</td><td>200,000</td><td>620,000 RRV</td><td>130,000</td><td>230.000</td><td>110.000</td><td>120.000</td><td>150,000</td><td>340.000</td><td>150.000</td><td>41.000</td><td>000.009</td><td>21.000</td><td>30.000</td><td>290.000</td><td>330,000</td><td></td></t<>	BOL	B0L	108	108	TOB ·	BDL	BOL	30F	80F	108	^	260,000	220,000	200,000	620,000 RRV	130,000	230.000	110.000	120.000	150,000	340.000	150.000	41.000	000.009	21.000	30.000	290.000	330,000	
-	SILVER (UG/L	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 MAY		1991 JUL									1992 OCT	1992 DEC	ALUMINUM (UG/L		1991 FEB		1991 APR		1991 JUN		1991 AUG				1992 FEB				1992 OCT		

	TREATED	YOUNG ST FREE FLOW	YOUNG ST - STANDING	
METALS)		DET'N LIMIT = 0.10		GUIDELINE = 25 (A1)
.340 <t< th=""><th>. 801</th><th>.130 <t< th=""><th>B0L</th><th></th></t<></th></t<>	. 801	.130 <t< th=""><th>B0L</th><th></th></t<>	B0L	
.410 <t< td=""><td>B0L</td><td>BDL</td><td>B0L</td><td></td></t<>	B0L	BDL	B0L	
.710 <t< td=""><td>.220 <t< td=""><td>1> 009.</td><td>.330 <1</td><td></td></t<></td></t<>	.220 <t< td=""><td>1> 009.</td><td>.330 <1</td><td></td></t<>	1> 009.	.330 <1	
1.300	BOL	. 130 <t< td=""><td>801</td><td></td></t<>	801	
.530 <1	.240 <t< td=""><td>.250 <1</td><td>. 140 <t< td=""><td></td></t<></td></t<>	.250 <1	. 140 <t< td=""><td></td></t<>	
.950 <t< td=""><td>.290 <t< td=""><td>T> 0450 <t< td=""><td>.500 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	.290 <t< td=""><td>T> 0450 <t< td=""><td>.500 <t< td=""><td></td></t<></td></t<></td></t<>	T> 0450 <t< td=""><td>.500 <t< td=""><td></td></t<></td></t<>	.500 <t< td=""><td></td></t<>	
1,000 <t< td=""><td>108 -</td><td>T> 072.</td><td>.370 <t< td=""><td></td></t<></td></t<>	108 -	T> 072.	.370 <t< td=""><td></td></t<>	
1,100	.320 <1	.540 <t< td=""><td>.450 <t< td=""><td></td></t<></td></t<>	.450 <t< td=""><td></td></t<>	
. 910 <t< td=""><td>T> 011.</td><td>BOL</td><td>. 110 <t< td=""><td></td></t<></td></t<>	T> 011.	BOL	. 110 <t< td=""><td></td></t<>	
.880 <t< td=""><td>. 150 <t< td=""><td>. 220 <t< td=""><td>.350 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	. 150 <t< td=""><td>. 220 <t< td=""><td>.350 <t< td=""><td></td></t<></td></t<></td></t<>	. 220 <t< td=""><td>.350 <t< td=""><td></td></t<></td></t<>	.350 <t< td=""><td></td></t<>	
.780 <t< td=""><td>.310 <₹</td><td>.200 <t< td=""><td>.260 <1</td><td></td></t<></td></t<>	.310 <₹	.200 <t< td=""><td>.260 <1</td><td></td></t<>	.260 <1	
.530 <t< td=""><td>T> 054.</td><td>.300 <1</td><td>.500 <t< td=""><td></td></t<></td></t<>	T> 054.	.300 <1	.500 <t< td=""><td></td></t<>	
	BDL	B0L	108	
	110 <1	.270 <1	.420 <1	
.780 <t< td=""><td>.270 <t< td=""><td>T> 093.</td><td>T> 094.</td><td></td></t<></td></t<>	.270 <t< td=""><td>T> 093.</td><td>T> 094.</td><td></td></t<>	T> 093.	T> 094.	
1.100	T> 084.	T> 017.	.530 <t< td=""><td></td></t<>	
T> 079.	130 <1	. 190 <t< td=""><td>.180 <t< td=""><td></td></t<></td></t<>	.180 <t< td=""><td></td></t<>	
		DET'N LIMIT = 0.05		GUIDELINE = 1000 (A2)
34.000	28.000	27.000	27.000	
32.000	22.000	25.000	24.000	
18.000	16.000	17.000	17.000	
36.000	22.000	22.000	22,000	
20.000	17,000	20.000	18,000	
28.000	28,000	28.000	28,000	
13,000	16.000	18.000	18,000	
24.000	23.000	21.000	22,000	
24.000	23.000	23.000	23.000	
32.000	30.000	70.000	38,000	
23.000	23.000	22.000	23,000	
34.000	30.000	31,000	33.000	
23.000	19.000	15.000	15,000	
13.000	14.000	15,000	14,000	
18,000	20.000	23,000	22.000	
35.000	23.000	25.000	26.000	
26 000	20 000	21 000	21 000	

DIST, SYSTEM YOUNG ST STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GUIDELINE = 5000 (A1)	42.000	29,000	18.000 <t< th=""><th>21,000</th><th>24.000</th><th>38.000</th><th>33,000</th><th>39.000</th><th>43.000</th><th>48.000</th><th>35.000</th><th>28.000</th><th>19,000 <t< th=""><th>23.000</th><th>58.000</th><th>31.000</th><th>28.000</th><th>GUIDELINE = 6800 (D4)</th><th>IUB</th><th>iua</th><th>801</th><th>108</th><th>BDL</th><th>80f</th><th>80F</th><th>BDL</th><th>BDL</th><th>8DL</th><th>80F</th><th>.140 <t< th=""><th>108</th><th>80F</th><th>.060 <t< th=""><th>BDL</th><th>BDL</th></t<></th></t<></th></t<></th></t<>	21,000	24.000	38.000	33,000	39.000	43.000	48.000	35.000	28.000	19,000 <t< th=""><th>23.000</th><th>58.000</th><th>31.000</th><th>28.000</th><th>GUIDELINE = 6800 (D4)</th><th>IUB</th><th>iua</th><th>801</th><th>108</th><th>BDL</th><th>80f</th><th>80F</th><th>BDL</th><th>BDL</th><th>8DL</th><th>80F</th><th>.140 <t< th=""><th>108</th><th>80F</th><th>.060 <t< th=""><th>BDL</th><th>BDL</th></t<></th></t<></th></t<>	23.000	58.000	31.000	28.000	GUIDELINE = 6800 (D4)	IUB	iua	801	108	BDL	80f	80F	BDL	BDL	8DL	80F	.140 <t< th=""><th>108</th><th>80F</th><th>.060 <t< th=""><th>BDL</th><th>BDL</th></t<></th></t<>	108	80F	.060 <t< th=""><th>BDL</th><th>BDL</th></t<>	BDL	BDL
DIST SYSTEM YOUNG ST FREE FLOW		DET'N LIMIT = 2.00		0 26.000	.				0 28.000									0 32,000		DET'N LIMIT = 0.05			108					٦ 80١						BDL	•	108	
T TREATED TREATED						30.00	21.000	38.00	32.000	45.00	00.44	51.00	00.44	30.000	16.000	24.000	52.00	30.000	23.00		BD	an an	108	8	80	80	8	8	80	80	8	. 140	80	80	8	18 E	08
TREATMENT PLANT RAW	METALS	^	45.000	27.000	17.000 <1	31.000	19.000 <t< td=""><td>35.000</td><td>24.000</td><td>41.000</td><td>49.000</td><td>24.000</td><td>35.000</td><td>32.000</td><td>21,000</td><td>21.000</td><td>48.000</td><td>32.000</td><td>23.000</td><td>٦)</td><td>BDL</td><td>108</td><td>B0L</td><td>.100 <⊤</td><td>B01</td><td>T> 090.</td><td>. 060 <⊤</td><td>BDL</td><td>BDL</td><td>T> 090.</td><td>80F</td><td>1> 041.</td><td>108</td><td>801</td><td>BOL</td><td>T> 090.</td><td>T> 00L.</td></t<>	35.000	24.000	41.000	49.000	24.000	35.000	32.000	21,000	21.000	48.000	32.000	23.000	٦)	BDL	108	B0L	.100 <⊤	B01	T> 090.	. 060 <⊤	BDL	BDL	T> 090.	80F	1> 041.	108	801	BOL	T> 090.	T> 00L.
		BORON (UG/L	1991 JAN	1991 FEB		1991 APR			1991 JUL		1991 SEP	1991 OCT	1991 NOV	1992 FEB		1992 JUN			1992 DEC	BERYLLIUM (UG/L	1991 JAN	1991 FEB			1991 MAY			1991 AUG		1991 OCT	1991 NOV	1992 FEB		1992 JUN		1992 001	

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM DIST. SYSTEM RAW TREATED YOUNG ST YOUNG ST		DRINKING WATER	SURVEILLANCE PRO	DGRAM 1991 AND 1992 TILBURY WTP
	TMENT	TREATMENT PLANT TREATED	YOUNG ST	DIST. SYSTEM YOUNG ST

	^																																				
DING	GUIDELINE = 5.0 (A1)	ē	BDI	BDL	BDL	BDL	BOL	801	.060 <t< td=""><td>80 F</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>GUIDELINE = N/A</td><td>.080 <1</td><td>.180 <t< td=""><td>.060 <t< td=""><td>.080 <1</td><td>.120 <t< td=""><td>.050 <t< td=""><td>.390 <1</td><td>.120 <7</td><td>.150 <t< td=""><td>.080 <t< td=""><td>.110 <1</td><td>.170 <1</td><td>.180 <t< td=""><td>.320 <t< td=""><td>.230 <t< td=""><td>1.600</td><td>.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 F	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	GUIDELINE = N/A	.080 <1	.180 <t< td=""><td>.060 <t< td=""><td>.080 <1</td><td>.120 <t< td=""><td>.050 <t< td=""><td>.390 <1</td><td>.120 <7</td><td>.150 <t< td=""><td>.080 <t< td=""><td>.110 <1</td><td>.170 <1</td><td>.180 <t< td=""><td>.320 <t< td=""><td>.230 <t< td=""><td>1.600</td><td>.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.060 <t< td=""><td>.080 <1</td><td>.120 <t< td=""><td>.050 <t< td=""><td>.390 <1</td><td>.120 <7</td><td>.150 <t< td=""><td>.080 <t< td=""><td>.110 <1</td><td>.170 <1</td><td>.180 <t< td=""><td>.320 <t< td=""><td>.230 <t< td=""><td>1.600</td><td>.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.080 <1	.120 <t< td=""><td>.050 <t< td=""><td>.390 <1</td><td>.120 <7</td><td>.150 <t< td=""><td>.080 <t< td=""><td>.110 <1</td><td>.170 <1</td><td>.180 <t< td=""><td>.320 <t< td=""><td>.230 <t< td=""><td>1.600</td><td>.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>.390 <1</td><td>.120 <7</td><td>.150 <t< td=""><td>.080 <t< td=""><td>.110 <1</td><td>.170 <1</td><td>.180 <t< td=""><td>.320 <t< td=""><td>.230 <t< td=""><td>1.600</td><td>.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.390 <1	.120 <7	.150 <t< td=""><td>.080 <t< td=""><td>.110 <1</td><td>.170 <1</td><td>.180 <t< td=""><td>.320 <t< td=""><td>.230 <t< td=""><td>1.600</td><td>.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.080 <t< td=""><td>.110 <1</td><td>.170 <1</td><td>.180 <t< td=""><td>.320 <t< td=""><td>.230 <t< td=""><td>1.600</td><td>.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<></td></t<></td></t<>	.110 <1	.170 <1	.180 <t< td=""><td>.320 <t< td=""><td>.230 <t< td=""><td>1.600</td><td>.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<></td></t<>	.320 <t< td=""><td>.230 <t< td=""><td>1.600</td><td>.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<>	.230 <t< td=""><td>1.600</td><td>.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<>	1.600	.090 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FREE FLOW STANDING	DET'N LIMIT = 0.05	ī	BDI	BDL	BDL	BDL		BDL		BDL	BDL	BDL	.070 <1	BDL	BDL	BDL	BDL	BDL	DET'N LIMIT = 0.02	.120 <1	. 130 <t< td=""><td></td><td></td><td></td><td>.100</td><td>.350</td><td>060</td><td>.180</td><td>.100</td><td>. 150</td><td>.750</td><td>.180</td><td>.270</td><td></td><td>_</td><td>.080 <t< td=""><td>111111111111111111111111111111111111111</td></t<></td></t<>				.100	.350	060	.180	.100	. 150	.750	.180	.270		_	.080 <t< td=""><td>111111111111111111111111111111111111111</td></t<>	111111111111111111111111111111111111111
		Ğ	i i	BDL	BDL	BDL	7> 090.	BDL	T> 070.	BOL	BOL	BOL	BDL	BDL	BDL	BDL	BDL	BDL	· · · · · · · · · · · · · · · · · · ·	T> 060.	.160 <t< td=""><td>.150 <t< td=""><td>. 090 <t< td=""><td>.160 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td><td>; ; ; ; ;</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td>. 090 <t< td=""><td>.160 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td><td>; ; ; ; ;</td></t<></td></t<></td></t<></td></t<></td></t<>	. 090 <t< td=""><td>.160 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td><td>; ; ; ; ;</td></t<></td></t<></td></t<></td></t<>	.160 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td><td>; ; ; ; ;</td></t<></td></t<></td></t<>										.200 <t< td=""><td>.580 <t< td=""><td>T> 090.</td><td>; ; ; ; ;</td></t<></td></t<>	.580 <t< td=""><td>T> 090.</td><td>; ; ; ; ;</td></t<>	T> 090.	; ; ; ; ;
	METALS)	ā	060 <1	BDL	BDL	BDL	BDL	. BDL	. T> 090	BDL	BDL	BDL	.060 <t< td=""><td>BDL</td><td>T> 090.</td><td>BDL</td><td>BDL</td><td>BDL</td><td>^</td><td>.210 <t< td=""><td></td><td>.210 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.270 <1</td><td></td><td></td><td>.290 <1</td><td>1,300</td><td>.320 <1</td><td>, , , , , , , , , , , , , , , , , , ,</td></t<></td></t<></td></t<>	BDL	T> 090.	BDL	BDL	BDL	^	.210 <t< td=""><td></td><td>.210 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.270 <1</td><td></td><td></td><td>.290 <1</td><td>1,300</td><td>.320 <1</td><td>, , , , , , , , , , , , , , , , , , ,</td></t<></td></t<>		.210 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.270 <1</td><td></td><td></td><td>.290 <1</td><td>1,300</td><td>.320 <1</td><td>, , , , , , , , , , , , , , , , , , ,</td></t<>									.270 <1			.290 <1	1,300	.320 <1	, , , , , , , , , , , , , , , , , , ,
	CADMIUM (UG/L			1991 MAR													1992 OCT		COBALT (UG/L																1992 OCT		

	RAW	TREATED	YOUNG ST FREE FLOW	YOUNG ST STANDING	
CHROMIUM (UG/L	METALS)		DET'N LIMIT = 0.50	GUIDELINE = 50.0 (A1)	0.0 (41)
1991 JAN	4.800 <t< td=""><td>4.400 <t< td=""><td>4,100 <t< td=""><td>3,200 <1</td><td></td></t<></td></t<></td></t<>	4.400 <t< td=""><td>4,100 <t< td=""><td>3,200 <1</td><td></td></t<></td></t<>	4,100 <t< td=""><td>3,200 <1</td><td></td></t<>	3,200 <1	
	2.900 <t< td=""><td>1,100 <1</td><td>80F</td><td></td><td></td></t<>	1,100 <1	80F		
	2,100 <t< td=""><td>2.000 <t< td=""><td>1,900 <1</td><td>1.900 <t< td=""><td></td></t<></td></t<></td></t<>	2.000 <t< td=""><td>1,900 <1</td><td>1.900 <t< td=""><td></td></t<></td></t<>	1,900 <1	1.900 <t< td=""><td></td></t<>	
1991 APR	4.400 <t< td=""><td>2.700 <t< td=""><td>2,100 <t< td=""><td>801</td><td></td></t<></td></t<></td></t<>	2.700 <t< td=""><td>2,100 <t< td=""><td>801</td><td></td></t<></td></t<>	2,100 <t< td=""><td>801</td><td></td></t<>	801	
	T> 098.	1.200 <1	.830 <t< td=""><td>1,200 <t< td=""><td></td></t<></td></t<>	1,200 <t< td=""><td></td></t<>	
1991 JUN	3.000 <1	2.500 <1	2.100 <t< td=""><td>2.600 <7</td><td></td></t<>	2.600 <7	
	1.300 <t< td=""><td>2.400 <t< td=""><td>BDL</td><td>2,200 <7</td><td></td></t<></td></t<>	2.400 <t< td=""><td>BDL</td><td>2,200 <7</td><td></td></t<>	BDL	2,200 <7	
	1,900 <1	1.700 <t< td=""><td>1,600 <7</td><td>1,400 <7</td><td></td></t<>	1,600 <7	1,400 <7	
	3.600 <t< td=""><td>3.000 <1</td><td>.710 <t< td=""><td>1,000 <t< td=""><td></td></t<></td></t<></td></t<>	3.000 <1	.710 <t< td=""><td>1,000 <t< td=""><td></td></t<></td></t<>	1,000 <t< td=""><td></td></t<>	
1991 OCT	3,000 <7	2,400 <t< td=""><td>2.000 <t< td=""><td>2,100 <t< td=""><td></td></t<></td></t<></td></t<>	2.000 <t< td=""><td>2,100 <t< td=""><td></td></t<></td></t<>	2,100 <t< td=""><td></td></t<>	
	T> 098.	2,500 <t< td=""><td>.930 <t< td=""><td></td><td></td></t<></td></t<>	.930 <t< td=""><td></td><td></td></t<>		
	108	1.200 <t< td=""><td>G</td><td>BDI</td><td></td></t<>	G	BDI	
_	1,900 <1	108	1.100 <t< td=""><td>.530 <t< td=""><td></td></t<></td></t<>	.530 <t< td=""><td></td></t<>	
1992 JUN	BDL	B01	108	B0L	
	2.600 <t< td=""><td>2,400 <1</td><td>1,900 <t< td=""><td>2.500 <t< td=""><td></td></t<></td></t<></td></t<>	2,400 <1	1,900 <t< td=""><td>2.500 <t< td=""><td></td></t<></td></t<>	2.500 <t< td=""><td></td></t<>	
	2,100 <t< td=""><td>3.100 <t< td=""><td>.550 <t< td=""><td>.980 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	3.100 <t< td=""><td>.550 <t< td=""><td>.980 <t< td=""><td></td></t<></td></t<></td></t<>	.550 <t< td=""><td>.980 <t< td=""><td></td></t<></td></t<>	.980 <t< td=""><td></td></t<>	
1992 DEC	3.500 <t< td=""><td>3.200 <t< td=""><td>4.400 <t< td=""><td>3,900 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	3.200 <t< td=""><td>4.400 <t< td=""><td>3,900 <t< td=""><td></td></t<></td></t<></td></t<>	4.400 <t< td=""><td>3,900 <t< td=""><td></td></t<></td></t<>	3,900 <t< td=""><td></td></t<>	
17017 01000			0 0 1	4 - 100000	
CUPPER (UG/L	_		DEI'N LIMII = U.3U	GUIDELINE = 1000 (AS)	000 (AS)
1991 JAN	2.200 <1	1.500 <t< td=""><td>2.900 <1</td><td>8.900</td><td></td></t<>	2.900 <1	8.900	
_	14.000	. 910 <t< td=""><td>2.600 <t< td=""><td>13.000</td><td></td></t<></td></t<>	2.600 <t< td=""><td>13.000</td><td></td></t<>	13.000	
1991 MAR	24.000	T> 008.	2.300 <t< td=""><td>14.000</td><td></td></t<>	14.000	
	5.700	1,000 <1	3.100 <t< td=""><td>13.000</td><td></td></t<>	13.000	
1991 MAY	13.000	.570 <t< td=""><td>3,300 <t< td=""><td>13.000</td><td></td></t<></td></t<>	3,300 <t< td=""><td>13.000</td><td></td></t<>	13.000	
	14.000	T> 048.	2.700 <1	12.000	
1991 JUL	9.400	.630 <t< td=""><td>3.500 <1</td><td>3.700 <1</td><td></td></t<>	3.500 <1	3.700 <1	
_	6.700	1> 079.	2.500 <t< td=""><td>10.000</td><td></td></t<>	10.000	
	17.000	BOL	2.200 <t< td=""><td>19.000</td><td></td></t<>	19.000	
	12,000	T> 070.	2.800 <t< td=""><td>11,000</td><td></td></t<>	11,000	
1991 NOV	16.000	1.100 <t< td=""><td>2,000 <t< td=""><td>3,100 <t< td=""><td></td></t<></td></t<></td></t<>	2,000 <t< td=""><td>3,100 <t< td=""><td></td></t<></td></t<>	3,100 <t< td=""><td></td></t<>	
	15.000	2.800 <⊤	2,900 <t< td=""><td>9.200</td><td></td></t<>	9.200	
1992 APR	1.900 <t< td=""><td>1> 075.</td><td>1.800 <t< td=""><td>8.500</td><td></td></t<></td></t<>	1> 075.	1.800 <t< td=""><td>8.500</td><td></td></t<>	8.500	
	11.000	901	3.400 <t< td=""><td>13.000</td><td></td></t<>	13.000	
	8.400	540 <t< td=""><td>2,400 <t< td=""><td>12.000</td><td></td></t<></td></t<>	2,400 <t< td=""><td>12.000</td><td></td></t<>	12.000	
1992 OCT	19.000	.630 <1	2.600 <t< td=""><td>19.000</td><td></td></t<>	19.000	
4000	1. 002 4		* 007 *	* 002 -	

DIST. SYSTEM YOUNG ST STANDING	
DIST. SYSTEM YOUNG ST FREE FLOW	
REATMENT PLANT TREATMENT PLANT DIST. SYSTEM YOUNG ST AW FREE FLOW	
TREATMENT PLANT RAW	METALO

INE = 300 (A3)		INE = 1.0 (A1)	GUIDELINE = 50.0 (A3)
GUIDELINE	18. 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GUIDELINE	3.100 2.100 1.200 1.300 2.700 2.000 1.900 1.900 2.600 1.200 2.600
DET'N LIMIT = 6.00	25.000 c c c c c c c c c c c c c c c c c c	DET'N LIMIT = 0.02	DETAL LINIT = 0.05 3.800 2.800 2.800 4.700 1.700 2.900
	6.100 d	308	2,600 4890 ct 400 1,800 ct 400
METALS	280.000 320.000 320.000 170.000 170.000 150.000 210.000 210.000 210.000 210.000 210.000 210.000 320.000 520.000 570.000 570.000 570.000 570.000 570.000 570.000 570.000 570.000). BOL	25. 900 27. 90
IRON (UG/L)	1991 JAN 1993 MAR 1993 MAR 1991 MAR 1991 JUN 1991 MAR 1992 RE 1992 RE 1992 AR 1992 AR 1992 AR 1992 AR 1993 AR 1993 AR 1993 AR 1993 AR 1993 AR 1993 AR 1993 AR		MANGANESE (UU/L 1991 JAN 1997 FEB 1997 APR 1997 APR 1997 JAN 1997 AUC 1997 OCT 1997 OCT 1997 APR 1992 APR 1992 APR 1992 APR 1992 APR 1992 APR 1992 APR 1992 APR

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

	GUIDELINE = N/A																		GUIDELINE = 350 (03)																	
DIST. SYSTEM YOUNG ST STANDING	GUIDE	1.800	1.100	.760	1.200	1.200	2.100	1.400	1.500	1.600	2.100	1.500	1.000	1.100	2.600	3.500	1.200	1.000	GUIDE	2.200	1,700 <t< td=""><td></td><td>1.400 <t< td=""><td>BOL</td><td>1.200 <1</td><td></td><td></td><td></td><td>1.200 <t< td=""><td>1.300 <t< td=""><td>2.700</td><td>1,400 <t< td=""><td></td><td>1.600 <1</td><td></td><td>1.700 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		1.400 <t< td=""><td>BOL</td><td>1.200 <1</td><td></td><td></td><td></td><td>1.200 <t< td=""><td>1.300 <t< td=""><td>2.700</td><td>1,400 <t< td=""><td></td><td>1.600 <1</td><td></td><td>1.700 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	BOL	1.200 <1				1.200 <t< td=""><td>1.300 <t< td=""><td>2.700</td><td>1,400 <t< td=""><td></td><td>1.600 <1</td><td></td><td>1.700 <t< td=""></t<></td></t<></td></t<></td></t<>	1.300 <t< td=""><td>2.700</td><td>1,400 <t< td=""><td></td><td>1.600 <1</td><td></td><td>1.700 <t< td=""></t<></td></t<></td></t<>	2.700	1,400 <t< td=""><td></td><td>1.600 <1</td><td></td><td>1.700 <t< td=""></t<></td></t<>		1.600 <1		1.700 <t< td=""></t<>
DIST, SYSTEM D YOUNG ST FREE FLOW S	DET'N LIMIT = 0.05	1.800	1.200	.760	1.200	1,100	2.100	1.300	1.500	1.700	2.300	1.600	066.	1,100	2.500	3.600	.930	1.000	DET'N LIMIT = 0.20	1.800 <t< td=""><td>2.700</td><td>80F</td><td>1.100 <1</td><td>5.300</td><td>1.300 <t< td=""><td>2.400</td><td>BOL</td><td></td><td>1.300 <t< td=""><td>.700 <1</td><td></td><td>1.700 <1</td><td></td><td>1.400 <t< td=""><td>7.500</td><td>2.100</td></t<></td></t<></td></t<></td></t<>	2.700	80F	1.100 <1	5.300	1.300 <t< td=""><td>2.400</td><td>BOL</td><td></td><td>1.300 <t< td=""><td>.700 <1</td><td></td><td>1.700 <1</td><td></td><td>1.400 <t< td=""><td>7.500</td><td>2.100</td></t<></td></t<></td></t<>	2.400	BOL		1.300 <t< td=""><td>.700 <1</td><td></td><td>1.700 <1</td><td></td><td>1.400 <t< td=""><td>7.500</td><td>2.100</td></t<></td></t<>	.700 <1		1.700 <1		1.400 <t< td=""><td>7.500</td><td>2.100</td></t<>	7.500	2.100
TREATMENT PLANT TREATED	·	1.800	1.200	.730	1.300	.970	5.000	1.200	1.900	1.600	2.300	1.600	.860	1.100	2.400	3.600	.880	.890		1.800 <t< td=""><td>1,600 <t< td=""><td></td><td>.590 <t< td=""><td>BDL</td><td>.850 <t< td=""><td>2.100</td><td>T> 099.</td><td>80F</td><td></td><td>.630 <t< td=""><td>3.200</td><td>1.300 <t< td=""><td></td><td>T> 090°.</td><td>1.800 <t< td=""><td>1.400 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1,600 <t< td=""><td></td><td>.590 <t< td=""><td>BDL</td><td>.850 <t< td=""><td>2.100</td><td>T> 099.</td><td>80F</td><td></td><td>.630 <t< td=""><td>3.200</td><td>1.300 <t< td=""><td></td><td>T> 090°.</td><td>1.800 <t< td=""><td>1.400 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		.590 <t< td=""><td>BDL</td><td>.850 <t< td=""><td>2.100</td><td>T> 099.</td><td>80F</td><td></td><td>.630 <t< td=""><td>3.200</td><td>1.300 <t< td=""><td></td><td>T> 090°.</td><td>1.800 <t< td=""><td>1.400 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	.850 <t< td=""><td>2.100</td><td>T> 099.</td><td>80F</td><td></td><td>.630 <t< td=""><td>3.200</td><td>1.300 <t< td=""><td></td><td>T> 090°.</td><td>1.800 <t< td=""><td>1.400 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	2.100	T> 099.	80F		.630 <t< td=""><td>3.200</td><td>1.300 <t< td=""><td></td><td>T> 090°.</td><td>1.800 <t< td=""><td>1.400 <t< td=""></t<></td></t<></td></t<></td></t<>	3.200	1.300 <t< td=""><td></td><td>T> 090°.</td><td>1.800 <t< td=""><td>1.400 <t< td=""></t<></td></t<></td></t<>		T> 090°.	1.800 <t< td=""><td>1.400 <t< td=""></t<></td></t<>	1.400 <t< td=""></t<>
TREATMENT PLANT RAW	METALS)	066	.730	T> 005.	.330 <t< td=""><td>.810</td><td>1.500</td><td>1.000</td><td>1.500</td><td>1.800</td><td>1.400</td><td>1.100</td><td>.700</td><td>.500 <t< td=""><td>2.400</td><td>3.800</td><td>T> 097</td><td>.360 <1</td><td>^</td><td>1.700 <1</td><td></td><td>. 900 <⊤</td><td>2.500</td><td>80F</td><td>1.400 <t< td=""><td>2.300</td><td>T> 070.</td><td>1× 0/4.</td><td>2.800</td><td>1.000 <t< td=""><td>3.700</td><td>2.400</td><td>1.900 <t< td=""><td>1.500 <t< td=""><td>7.400</td><td>2.400</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.810	1.500	1.000	1.500	1.800	1.400	1.100	.700	.500 <t< td=""><td>2.400</td><td>3.800</td><td>T> 097</td><td>.360 <1</td><td>^</td><td>1.700 <1</td><td></td><td>. 900 <⊤</td><td>2.500</td><td>80F</td><td>1.400 <t< td=""><td>2.300</td><td>T> 070.</td><td>1× 0/4.</td><td>2.800</td><td>1.000 <t< td=""><td>3.700</td><td>2.400</td><td>1.900 <t< td=""><td>1.500 <t< td=""><td>7.400</td><td>2.400</td></t<></td></t<></td></t<></td></t<></td></t<>	2.400	3.800	T> 097	.360 <1	^	1.700 <1		. 900 <⊤	2.500	80F	1.400 <t< td=""><td>2.300</td><td>T> 070.</td><td>1× 0/4.</td><td>2.800</td><td>1.000 <t< td=""><td>3.700</td><td>2.400</td><td>1.900 <t< td=""><td>1.500 <t< td=""><td>7.400</td><td>2.400</td></t<></td></t<></td></t<></td></t<>	2.300	T> 070.	1× 0/4.	2.800	1.000 <t< td=""><td>3.700</td><td>2.400</td><td>1.900 <t< td=""><td>1.500 <t< td=""><td>7.400</td><td>2.400</td></t<></td></t<></td></t<>	3.700	2.400	1.900 <t< td=""><td>1.500 <t< td=""><td>7.400</td><td>2.400</td></t<></td></t<>	1.500 <t< td=""><td>7.400</td><td>2.400</td></t<>	7.400	2.400
	MOLYBDENUM (UG/L	1991 JAN		-	_	_						1991 NOV		1992 APR		1992 AUG		1992 DEC	NICKEL (UG/L	1991 JAN		_													1992 OCT	1992 DEC

	DRINKING WATER	SURVEILLANCE PROGRAM	DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED YOUNG ST. FREE FLOW	TREATMENT PLANT TREATED	0 - 0,	DIST. SYSTEM YOUNG ST STANDING
METALS			

GUIDELINE = N/A	230 cf 110 cf 110 cf 140 cf 160 cf 170 cf 17	QUIDELINE = 5000 (A3) 9,100 12,000 12,000 12,000 11
0ET'N LIMIT = 0.05	> 0.00 > 0.00	5.400 5.400 5.400 6.400 5.400 6.400 6.400 6.400 6.400 6.400 7.500
0	230 ct	2.500 2.700 2.700 2.700 2.700 2.900 1.900 1.900 1.100 1.100 1.100 1.200
METALS)	2.70 2.300 2.300 2.300 2.300 1.000 1.100 1.200 2.70	5 - 700 1 - 200 1 - 200 1 - 200 1 - 200 2 - 300 3 - 400 5 - 200 5 - 200 6 - 200 6 - 200 7 - 200 7 - 200 8 - 20
VANADIUM (UG/L	1997 JAN 1997 FEB 1997 ARP 1991 ARP 1991 JUL 1991 JUL 1991 OCT 1992 ARP 1992 ARP	21NC (UG/L 1991 JAN 1997 JAN 1997 JAN 1997 JUN 1997 JUN 1997 JUN 1997 SEP 1998 CET 1998 CET 1998 CET 1998 AND 1992 AND 1

Page 42

	GUIDELINE = 450 (D4)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 10000 (I)		GUIDELINE = 38000 (D4)	•																GUIDELINE = N/A		GUIDELINE = 10 (C1)	:
Æ	3		3		3				3																			3		3	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 1.000	BOL	DET'N LIMIT = 5.000	BOL	DET'N LIMIT = 1.000	. 108	DET'N LIMIT = 1.000	. BOL	DET'N LIMIT = 5.000	BOL	DET'N LIMIT = 1.000	ä	BUL	BOL	108	101	ios ios	- AN	· Au	i AW	BDL	BOL	BOL	,	Jon Boi	80L	BDL	DET'N LIMIT = 5.000	108	DET'N LIMIT = 1.000	BOL
TREATMENT PLANT TREATED	S	108		BOL		. 108		BDL		BDL		ě	7 S	80L	000.11	. [5]	BOL	i Au	IAW	i Aw	BOL	108	, a	80F	2 2	B01	BDL		BDL		BDL
ANT))														•													Α.		^	
ENT PI	CHLOROAROMATICS IE (NG/L)	BOL	CNG/L	BDL	(NG/L	BDL	CNG/L	80L	(NG/L	BDL	CNG/L	ć	109	2	100	ם פ	9	A	AN.	I AU	80 F	80	100	2 6	2 2	80	BDL	CNG/L	80F	7	BDL
TREATMENT PLANT RAW	CHLOROBUTADIENE (NG/L	38 SAMPLES	123-TRICHLOROBENZENE (NG/L	38 SAMPLES	1234-TETCLOROBENZENE (NG/L	38 SAMPLES	1235-TETCLOROBENZENE (NG/L	38 SAMPLES	124-TRICHLOROBENZENE (NG/L	38 SAMPLES	1245-TETCLOROBENZENE (NG/L	1000	-	1991 FEB								VON 1991	1992 FEB				1992 DEC	135-TRICHLOROBENZENE (NG/L	38 SAMPLES	HEXACHLOROBENZENE (NG/L	38 SAMPLES

	GUIDELINE = 1900 (04)																	GUIDELINE = N/A		GUIDELINE = 74000 (04)		NE = N/A		GUIDELINE = N/A		GUIDELINE = N/A	
E	GUIDELI			,														GUIDELI		GUIDELI		GUIDELINE		GUIDELI		GUIDEL I	
YOUNG ST STANDING	1.000								•	•		۲.					•	1.000	٠	1.000		5.000	•	5.000	•	5.000	
YOUNG ST FREE FLOW	DET'N LIMIT = 1.000		108		2.000	00.00	- Au	I AW	i AW	108	108				9.000	_	708 .	DET'N LIMIT = 1,000	108	DET'N LIMIT = 1.000	108	DET'N LIMIT = 5.000	108	DET'N LIMIT = 5.000	108	DET*N LIMIT = 5.000	108
TREATED	S	5.000 <1	000°6		3.000 <t< td=""><td>9 6</td><td>I AN</td><td>I AW</td><td>. AW</td><td>BDL</td><td>108</td><td>4.000 <t< td=""><td>108 109</td><td>80F</td><td>B0L</td><td>1.000 <t< td=""><td>108</td><td></td><td>108</td><td></td><td>108</td><td></td><td>108</td><td></td><td>BDL</td><td></td><td>108</td></t<></td></t<></td></t<>	9 6	I AN	I AW	. AW	BDL	108	4.000 <t< td=""><td>108 109</td><td>80F</td><td>B0L</td><td>1.000 <t< td=""><td>108</td><td></td><td>108</td><td></td><td>108</td><td></td><td>108</td><td></td><td>BDL</td><td></td><td>108</td></t<></td></t<>	108 109	80F	B0L	1.000 <t< td=""><td>108</td><td></td><td>108</td><td></td><td>108</td><td></td><td>108</td><td></td><td>BDL</td><td></td><td>108</td></t<>	108		108		108		108		BDL		108
RAW	CHLOROAROMATICS NG/L)	108	00	80F	BDL	9 6	IAW	. AM	i AW	BDL	80L	BDL	108	108	80F	BDL	BOL	NG/L)	108	(NG/L)	B0L	IE (NG/L)	108	(NG/L)	108	IE (NG/L)	108
RAW	CHLO HEXACHLOROETHANE (NG/L				1991 APR				1991 SEP	_							1992 DEC	OCTACHLOROSTYRENE (NG/L	38 SAMPLES	PENTACHLOROBENZENE (NG/L	38 SAMPLES	236-TRICHLOROTOLUENE (NG/L	38 SAMPLES	245-TRICHLOROTOLUENE (NG/L	38 SAMPLES	26A-TRICHLOROTOLUENE (NG/L	38 SAMPLES

GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 2600000 (D4)		GUIDELINE ≈ 5000 (A1)					GUIDELINE = 60000 (A1)		
ET'N LIMIT = 100.0		ET'N LIMIT = 20.0		ET'N LIMIT = 10.0		ET'N LIMIT = 100.0		ET'N LIMIT = 20.0					ET'N LIMIT = 10.00		
۵	BDL	Q	BOL	0	BDL	0	BDL	٥	BDL	BDL	BOL	BDL	0	BDL	
CHLOROPHENOLS 4-TRICHLOROPHENOL	8 SAMPLES BOL	45-TETCHLOROPHENOL (NG/L)	8 SAMPLES BDL	56-TETCHLOROPHENOL (NG/L)	8 SAMPLES BDL	5-TRICHLOROPHENOL (NG/L)	8 SAMPLES BOL	6-TRICHLOROPHENOL (NG/L)				1992 OCT 70.000 <t< td=""><td>NTACHLOROPHENOL (NG/L)</td><td>8 SAMPLES BOL</td><td></td></t<>	NTACHLOROPHENOL (NG/L)	8 SAMPLES BOL	
	DET'N LIMIT = 100.0	(ENOLS DET'N LIMIT = 100.0 BDL BDL	FMOLS DET'N LIMIT = 100.0	FMOLS DET'N LIMIT = 100.0 BOL	FMOLS DETIN LIMIT = 100.0) BBUL) BRUL) BRUL) BRUL) OETIN LIMIT = 20.0	HOLS DET'N LIMIT = 100.0 80L	HOLS BOL BOL BOL BOL BOL BOL BOL	HOLS BOL BOT'N LIMIT = 100.0 BOL BOL BOL BOL BOL BOL BOL BO	HOLS BOL BOL BOL BOL BOL BOL BOL	HOLS BOL BOL BOL BOL BOL BOL BOL	HOLS BOL BOL BOL BOL BOL BOL BOL	HOLS BOL BOL BOL BOL BOL BOL BOL	HOLS BOL BOL BOL BOL BOL BOL BOL	HOLS BOL BOL BOL BOL BOL BOL BOL	HOLS BOL BOL BOL BOL BOL BOL BOL

	GUIDELINE = 700 (A1)		GUIDELINE = 700 (G)																		GUIDELINE = 300 (G)																	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 1.000	. 801	DET'N LIMIT = 1.000	. TOB	108	1.000 <t< th=""><th>BDL .</th><th>. noi</th><th>. 108</th><th>. IAW</th><th>. IAW</th><th>. AM</th><th>. 801</th><th>. 108</th><th>. BDL</th><th>BDL .</th><th>BD1</th><th>. BDL</th><th>BDL</th><th>1.000 <t< th=""><th>DET'N LIMIT = 1.00</th><th>ide</th><th>108</th><th>108</th><th>801</th><th>· noi</th><th>. BDL</th><th>. MY i</th><th>. IAW</th><th>· AN</th><th>. BDL</th><th>. BDL</th><th>. BDL</th><th>. BDL</th><th>. BDL</th><th>. BDL</th><th>. BDL</th><th>. 108</th></t<></th></t<>	BDL .	. noi	. 108	. IAW	. IAW	. AM	. 801	. 108	. BDL	BDL .	BD1	. BDL	BDL	1.000 <t< th=""><th>DET'N LIMIT = 1.00</th><th>ide</th><th>108</th><th>108</th><th>801</th><th>· noi</th><th>. BDL</th><th>. MY i</th><th>. IAW</th><th>· AN</th><th>. BDL</th><th>. BDL</th><th>. BDL</th><th>. BDL</th><th>. BDL</th><th>. BDL</th><th>. BDL</th><th>. 108</th></t<>	DET'N LIMIT = 1.00	ide	108	108	801	· noi	. BDL	. MY i	. IAW	· AN	. BDL	. BDL	. BDL	. BDL	. BDL	. BDL	. BDL	. 108
TREATMENT PLANT TREATED		BDL	Q	1.000 <t< td=""><td>. 108</td><td>2.000 <1</td><td>108</td><td>no:</td><td>BDL</td><td>'AN</td><td>i Av</td><td>i Au</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>1.000 <1</td><td>1,000 <1</td><td></td><td>2 000 <1</td><td>Ē</td><td>801</td><td>BDF</td><td>9</td><td>BDL</td><td>i AW</td><td>i Aw</td><td>1AV</td><td>108</td><td>BDL</td><td>901</td><td>301</td><td>BDF</td><td>BDL</td><td>108</td><td>. BDL</td></t<>	. 108	2.000 <1	108	no:	BDL	'AN	i Av	i Au	BDL	BDL	BDL	BDL	BDL	BDL	1.000 <1	1,000 <1		2 000 <1	Ē	801	BDF	9	BDL	i AW	i Aw	1AV	108	BDL	901	301	BDF	BDL	108	. BDL
TREATMENT PLANT RAW	PESTICIDES AND PCB	BDL	^	1 DOD <7	101	BDL	1.000 <1	no i	BDL	IAW	I AN	I AW	BDL	1,000 <1	BDL	BDL	BDL	BOL	BOL	1.000 <1	^	·	101	8	108	9	BOL	i AV	. i AW	i AK	BD1	B0L	BDL	BDL	BDL	108	BDL	BDL
	ALDRIN (NG/L	38 SAMPLES	ALPHA BHC (NG/L	1001	1001 FFR			1991 MAY				1991 SEP				1992 APR			1992 OCT	1992 DEC	BETA BHC (NG/L	1001		•		1991 MAY		1991 JUL	1991 AUG				1992 FEB	1992 APR	1992 JUN		1992 OCT	1992 DEC

Z	GUIDELINE = 4000 (A1)																		GUIDELINE = 7000 (A1)		GUIDELINE = 7000 (A1)		GUIDELINE = 700 (A1)		GUIDELINE = 900000 (A1)		GUIDELINE = 74000 (04)		GUIDELINE = 74000 (04)		GUIDELINE = 1600 (D3)	
DISI. SYSIEM DISI. STSIEM YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 1.000	1.000 <1	. 108	BDL	801	noi	BDL	i AW	i AW	iAW	8DL	901	901	80 F	. 108	B0L	BDL	BOL	DET'N LIMIT = 2.000	BDL	DET'N LIMIT = 2.00	BOL	DET'N LIMIT = 2.00	B0L	DET'N LIMIT = 5.0	BDL	DET'N LIMIT = 2.00	BOL	0ET'N LIMIT = 5.000	108	DET'N LIMIT = 5.000	BDL
TREATED	PC8	1.000 <1	108	80F	B0L	100	G	- AM	- AM	- AN	BDL	B01	BDL	BOL	108	BDL	801	108		BOL		BDL.		B0L		BOL		BDL		108		BDL
TREATMENT PLANI	PESTICIDES AND PCB BHC) (NG/L)	2,000 <t< td=""><td>0</td><td>BDL</td><td>ICE</td><td>101</td><td>2 000 cT</td><td></td><td>UA.</td><td>. AN</td><td>4.000 <t< td=""><td>1.000 <1</td><td>1,000 <⊺</td><td>BDL</td><td>30r</td><td>BDL</td><td>108</td><td>BDL</td><td>(NG/L)</td><td>BDL</td><td>E (NG/L)</td><td>108</td><td>^</td><td>BDL</td><td>VG/L)</td><td>BDL</td><td>NG/L)</td><td>BDL</td><td>(NG/L)</td><td>BDL</td><td>^</td><td>BDL</td></t<></td></t<>	0	BDL	ICE	101	2 000 cT		UA.	. AN	4.000 <t< td=""><td>1.000 <1</td><td>1,000 <⊺</td><td>BDL</td><td>30r</td><td>BDL</td><td>108</td><td>BDL</td><td>(NG/L)</td><td>BDL</td><td>E (NG/L)</td><td>108</td><td>^</td><td>BDL</td><td>VG/L)</td><td>BDL</td><td>NG/L)</td><td>BDL</td><td>(NG/L)</td><td>BDL</td><td>^</td><td>BDL</td></t<>	1.000 <1	1,000 <⊺	BDL	30r	BDL	108	BDL	(NG/L)	BDL	E (NG/L)	108	^	BDL	VG/L)	BDL	NG/L)	BDL	(NG/L)	BDL	^	BDL
	LINDANE (GAMMA BHC) (NG/L	1991 JAN		_						1991 SFP									ALPHA CHLORDANE (NG/L	38 SAMPLES	GAMMA CHLORDANE (NG/L	38 SAMPLES	DIELORIN (NG/L	38 SAMPLES	METHOXYCHLOR (NG/L	38 SAMPLES	ENDOSULFAN 1 (NG/L	38 SAMPLES	ENDOSULFAN 11 (NG/L	38 SAMPLES	ENDRIN (NG/L	38 SAMPLES

			(A1)		(A1)						(A1)		(A2)		(A1)		(A1)		(A1)		(A1)		00 (03)	
Σ	GUIDELINE = N/A		GUIDELINE = 3000 (A1)		GUIDELINE = 3000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 30000 (A1)		GUIDELINE = 3000 (A2)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)		GUIDELINE = 5000 (A1)		GUIDELINE = 300000 (03)	
DIST. SYSTEM YOUNG ST STANDING	5.00		1.000		1,000		= 5.000		2.000		5.000		20.00		5.000		1.000		5.000		500.0		50.0	
DIST. SYSTEM- YOUNG ST FREE FLOW	DET'N LIMIT = 5.00	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	. BDL	DET'N LIMIT =	. BDL	DET'N LIMIT =	BDL	DET*N LIMIT = 5.000	108	DET'N LIMIT = 20.00	B0L	DET'N LIMIT =	108	DET'N LIMIT = 1.000	108	DET'N LIMIT =	BDL	DET'N LIMIT = 500.0	B01	DET'N LIMIT =	
TREATMENT PLANT TREATED	1	108		BDL		108	-	BDL		BDL		108		108		108		108		108		108		ĬŪ.
TREATMENT PLANT	PESTICIDES AND PCB E (NG/L)	BDL	(NG/L)	BDL	^	108		BDL	^	BDL	•	BDL		108	^	BDL	•	108	^	108	^	108	^	IGB
TRE	PESTICII ENDOSULFAN SULPHATE (NG/L	38 SAMPLES	HEPTACHLOR EPOXIDE (NG/L	26 SAMPLES	HEPTACHLOR (NG/L	38 SAMPLES	MIREX (NG/L)	38 SAMPLES	OXYCHLORDANE (NG/L	38 SAMPLES	O,P-DDT (NG/L	38 SAMPLES	PCB (NG/L)	38 SAMPLES	P,P-DDD (NG/L	38 SAMPLES	P,P-DDE (NG/L	38 SAMPLES	P,P-DDT (NG/L	38 SAMPLES	TOXAPHENE (NG/L	33 SAMPLES	AMETRINE (NG/L	30 SAMPLES

	GUIDELINE = 60000 (A2)		GUIDELINE = N/A	GUIDELINE = 10000 (A2)
rSTEM	GUIDELI		GUIDELI	euloeu
DIST. SYSTEM YOUNG ST STANDING	0.03		= 50.0	0.001
01ST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 50.0	· · · · · · · · · · · · · · · · · · ·	DET'N LIMIT =	DET'N LIMIT = 100.0
TREATMENT PLANT TREATED	PCB	220.000 ct 7000.001 ct 1000.001 ct 1000.00	B0L	108 801 14 AM 14 AM 19 BD 19 BD 10 B
TREATMENT PLANT 1	PESTICIDES AND PCB	350,000 ct 800,000 ct 100,000 ct) BOL	108 108 108 108 108 108 108 108 108 108
. 47	ATRAZINE (NG/L	1991 JAN 1991 FEB 1991 MAR 1991 JAN 1991 JUL 1991 JUL 1991 SEB 1991 OCT 1992 FEB 1992 APR 1992 APR 1992 APR 1992 APR	ATRATONE (NG/L	CYANAZINE (BLADEX) (NG/L 1991 JAN 1991 JAN 1991 JAN 1991 JUN 1991 JUN 1991 JUN 1991 ACF 1991 CEF 1991 CEF 1992 EE 1992 EE 1992 ACF

TREATHENT PLANT DIST, SYSTEM DIST, SYSTEM TREATED YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 200.0 GUIDELINE = 60000 (A2)			 108	. IUB	. Ida	74		108	108	708	. 108				108	108	DET'N LIMIT = 200.0 GUIDELINE = 10000 (A2)	. 108	DET'N LIMIT = 50.000 GUIDELINE = 52500 (D3)		DET'N LIMIT = 50.000 GUIDELINE = 700000 (D3)	Por .	DET'N LIMIT = 50.000 GUIDELINE = 1000 (A2)		DET'N LIMIT = 100.0 GUIDELINE = 80000 (A1)		DET'N LIMIT = 50.00 GUIDELINE = 10000 (A2)		DET'N LIMIT = 500.0 GUIDELINE = 5000 (A2)	
TREATMENT PLANT TREATMEN RAW TREATED	PESTICIDES AND PCB DESETHYL ATRAZINE (NG/L)	JAN 250.	FEB	1991 APR BDL	MAY	305 NIII	JUL	AUG	SEP	OCT	NOV	1992 FEB 80L	APR	NOC	AUG	1992 OCT 290,000 <t< td=""><td></td><td>DESETHYL SIMAZINE (NG/L)</td><td>30 SAMPLES BDL</td><td>PROMETONE (NG/L)</td><td>30 SAMPLES BDL</td><td>PROPAZINE (NG/L)</td><td>30 SAMPLES BOL</td><td>PROMETRYNE (NG/L)</td><td>30 SAMPLES . BDL</td><td>METRIBUZIN (SENCOR) (NG/L)</td><td>30 SAMPLES BOL</td><td>SIMAZINE (NG/L ,)</td><td>30 SAMPLES BOL</td><td>ALACHLOR (LASSO) (NG/L)</td><td></td></t<>		DESETHYL SIMAZINE (NG/L)	30 SAMPLES BDL	PROMETONE (NG/L)	30 SAMPLES BDL	PROPAZINE (NG/L)	30 SAMPLES BOL	PROMETRYNE (NG/L)	30 SAMPLES . BDL	METRIBUZIN (SENCOR) (NG/L)	30 SAMPLES BOL	SIMAZINE (NG/L ,)	30 SAMPLES BOL	ALACHLOR (LASSO) (NG/L)	

YOUNG ST STANDING	GUIDELINE = 50000 (A2)																		GUIDELINE = 206000 (D4)	•											•	*	•		
YOUNG ST YOUN FREE FLOW STAN	DET'N LIMIT = 500.0													•					DET'N LIMIT = 5.00	B0L	23.000 <1	30.000 <t< th=""><th>51.000</th><th></th><th>49.000 <t< th=""><th>i An</th><th>AV.</th><th>WA!</th><th>14.000 <1</th><th>113 000</th><th>200.31</th><th>200</th><th>701</th><th>∩0 i</th><th>0</th></t<></th></t<>	51.000		49.000 <t< th=""><th>i An</th><th>AV.</th><th>WA!</th><th>14.000 <1</th><th>113 000</th><th>200.31</th><th>200</th><th>701</th><th>∩0 i</th><th>0</th></t<>	i An	AV.	WA!	14.000 <1	113 000	200.31	200	701	∩ 0 i	0
TREATED		B01	BOL	B01	BDL	BDL	823.000 <t< td=""><td>iAW</td><td>HY</td><td>B01</td><td>BDL</td><td>108</td><td>B0L</td><td>108</td><td>B0L</td><td>BOL</td><td>B0L</td><td>BOL</td><td></td><td>BOL</td><td>19.000 <t< td=""><td>37.000 <t< td=""><td>79.000</td><td>9</td><td>900.09</td><td>- AM</td><td>AN.</td><td></td><td>12.000 <1</td><td>מון</td><td>2</td><td>3</td><td></td><td>0</td><td>00:</td></t<></td></t<></td></t<>	iAW	HY	B01	BDL	108	B0L	108	B0L	BOL	B0L	BOL		BOL	19.000 <t< td=""><td>37.000 <t< td=""><td>79.000</td><td>9</td><td>900.09</td><td>- AM</td><td>AN.</td><td></td><td>12.000 <1</td><td>מון</td><td>2</td><td>3</td><td></td><td>0</td><td>00:</td></t<></td></t<>	37.000 <t< td=""><td>79.000</td><td>9</td><td>900.09</td><td>- AM</td><td>AN.</td><td></td><td>12.000 <1</td><td>מון</td><td>2</td><td>3</td><td></td><td>0</td><td>00:</td></t<>	79.000	9	900.09	- AM	AN.		12.000 <1	מון	2	3		0	00:
RAW	PESTICIDES AND PCB	BDL	108	108	BDL	BOL	1755,000 <t< td=""><td>i AN</td><td>i AN</td><td>B0L</td><td>BOL</td><td>BDL</td><td>BDL</td><td>B01</td><td>BDL</td><td>BOL</td><td>BOL</td><td>B0L</td><td>HEXACLCYCLOPENTADIEN (NG/L</td><td>BDL</td><td>∩0:</td><td>BDL</td><td>BDL</td><td>no:</td><td>BOL</td><td>i Au</td><td>AN.</td><td>AA</td><td>10E</td><td>10 B</td><td>100</td><td>100</td><td>9</td><td>191</td><td>00;</td></t<>	i AN	i AN	B0L	BOL	BDL	BDL	B01	BDL	BOL	BOL	B0L	HEXACLCYCLOPENTADIEN (NG/L	BDL	∩ 0:	BDL	BDL	no:	BOL	i Au	AN.	AA	10E	10 B	100	100	9	191	00;
	METOLACHLOR (NG/L	1991 JAN	1991 FEB			1991 MAY												1992 DEC	XACLCYCLOPE	1991 JAN	1991 FEB										1002 ADD	1997 JUN		1992 OCT	1992 DEC

	GUIDELINE = N/A																		
DIST. SYSTEM YOUNG ST STANDING	0.2		•		•		•	•					•	•	•	•			
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT =	:						•.									•		
TREATMENT PLANT TREATED		1.600	3.000	BDL	BDL	BD1.	T> 009.	80F	T> 009.	BDL	T> 009.	T> 009.	T> 004.	1.200	80°	80F	B DL	1.000 <t< td=""><td>֡</td></t<>	֡
TREATMENT PLANT RAW	PHENOLICS)	1> 009.	BDL	BDL	T> 008.	T> 004.	T> 009.	BDT	.200 <t< td=""><td>BDL</td><td>T> 004.</td><td>T> 009.</td><td>.800 <t< td=""><td>1.400</td><td>1,600</td><td>T> 004.</td><td>T> 004.</td><td>108</td><td></td></t<></td></t<>	BDL	T> 004.	T> 009.	.800 <t< td=""><td>1.400</td><td>1,600</td><td>T> 004.</td><td>T> 004.</td><td>108</td><td></td></t<>	1.400	1,600	T> 004.	T> 004.	108	
	PHENOLICS (UG/L	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 OCT	1992 DEC	

E E	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 42000 (04)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE ≈ 10 (A1)	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST STANDING.	0ET'N LIMIT = 10.0	BDL	DET'N LIMIT = 1.0	BDL	DET'N LIMIT = 20.0	BOL	DET'N LIMIT = 20.0	BOL	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 50.0	BOL	DET'N LIMIT = 5.0	BOL	DET'N LIMIT = 50.0	BDL	DET'N LIMIT = 10.0	BDL	DET'N LIMIT = 10.0	BDL	DET'N LIMIT = 1.0	BDL	DET'N LIMIT = 5.0	BDL
TREATMENT PLANT DIST, SYSTEM TREATED YOUNG ST FREE FLOW	HYDROCARBONS	BOL		BOL		BDL		BOL	· · · · · · · · · · · · · · · · · · ·	108		BOL	(BOL		108		BDL		108	(108		BOL
TREATMENT PLANT RAW	POLYAROMATIC HYDROCARBONS PHENANTHRENE (NG/L)	17 SAMPLES BDL	ANTHRACENE (NG/L)	17 SAMPLES BDL	FLUORANTHENE (NG/L)	17 SAMPLES BDL	PYRENE (NG/L)	17 SAMPLES BDL	BENZO(A)ANTHRACENE (NG/L)	17 SAMPLES BDL	CHRYSENE (NG/L)	17 SAMPLES BOL	DIMETH. BENZ(A)ANTHR (NG/L)	17 SAMPLES BDL	BENZO(E) PYRENE (NG/L)	17 SAMPLES BDL	BENZO(B) FLUORANTHEN (NG/L)	17 SAMPLES BOL	PERYLENE (NG/L)	17 SAMPLES BDL	BENZO(K) FLUORANTHEN (NG/L)	17 SAMPLES BOL	BENZO(A) PYRENE (NG/L)	17 SAMPLES BDL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WIP

DIST. SYSTEM YOUNG ST STANDING

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED YOUNG ST RAW FREE FLOW

POLYAROMA BENZO(G,H,I) PERYLEN (NG/L	YAROMATI (NG/L	POLYAROMATIC HYDROCARBONS EN (NG/L)	DET'N LIMIT = 20.0	GUIDELINE = N/A
17 SAMPLES	BDL	BDL	BDL	
DIBENZO(A,H) ANTHRAC (NG/L	(NG/L	^	DET'N LIMIT = 10.0	GUIDELINE = N/A
17 SAMPLES	108	BDL	BDL	
INDENO(1,2,3-C,D) PY (NG/L	PY (NG/L	,	DET'N LIMIT = 20.0	GUIDELINE = N/A
17 SAMPLES	BDL	. 801	108	
BENZO(B) CHRYSENE (NG/L	3/1		DET'N LIMIT = 2.0	GUIDELINE = N/A
17 SAMPLES	BDL	BDL	BDL	
CORONENE (NG/L)			DET'N LIMIT = 10.0	GUIDELINE = N/A
17 SAMPLES	BDL	BDL	BDL	

SAMPLES SOLITION (NG/L 1) SOLITION (TREATMENT PLANT	TREATMENT PLANT TREATED	DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST FREE FLOW STANDING	Σ
BDL BDL BDL	HENE (NG/L	:	1C1DES	DET'N LIMIT = 500.0	GUIDELINE = 5000 (A1)
BDL BDL	5 SAMPLES	BDL	BDL	. 801	
BDL BDL BDL	2,4,5-T (NG/L	^			GUIDELINE = 280000 (A1)
BDL BDL BDL	8 SAMPLES	108			
901 901	2,4-D (NG/L	^		DET'N LIMIT = 100,0	GUIDELINE = 100000 (A1)
SDL BDL SDL SDL	8 SAMPLES	108	BDL		
BDL BDL BDL	2,4-DB (NG/L	^			GUIDELINE = N/A
SDL SDL	SAMPLES	108	BDL		
BDL BDL BDL BDL	PROPIONIC	ACID (NG/L		DET'N LIMIT = 100.0	GUIDELINE = N/A
BDL BDL	SAMPLES	BDL	BDL		
(MG/L) DET'N LIMIT = 20.00 BDL BDL BDL	BA (NG/L	^			GUIDELINE = 120000 (A1)
(NG/L) DET'N LIMIT = 20.00 BDL BDL BDL	SAMPLES	BDL	108		
90L 90L	TP (SILVE	(NG/L)		DET'N LIMIT = 20.00	GUIDELINE = 10000 (A1)
) DET'N LIMIT = 20.0 BDL BDL BDL L) DET'N LIMIT = 20.0 BDL BDL BDL BDL BDL BDL BDL BDL B	SAMPLES	108	BDL		
BDL BDL	NON (NG/L	(GUIDELINE = 20000 (A1)
) DET'N LIMIT = 20.0 1) DET'N LIMIT = 20.0 8DL 8DL DET'N LIMIT = 20.0 5 DET'N LIMIT = 20.0 5 DET'N LIMIT = 20.0 8DL 8DL BDL	SAMPLES	BDL	BDL		
901 901 1MIT = 20.0 901 801 DET'N LINIT = 20.0 1 DET'N LINIT = 20.0 1 DET'N LINIT = 20.0	OROVOS (NE	الر)			
671) DET'N LIMIT = 20.0 80L BDL DET'N LIMIT = 20.0) DET'N LIMIT = 20.0) BDL 80L 80L	SAMPLES	BDL	BDL		
901 901 1MIT = 20.0) DET'N LIMIT = 20.0 (PYRIFOS (N			DET'N LIMIT = 20.0	
) DET'N LIMIT = 20.0) BDL BDL) DET'N LIMIT = 20.0	SAMPLES	BDL	BDL		
901 801 1MIL = 50.0	N (NG/L	^			GUIDELINE = 35000 (G)
) DET'N LIMIT = 20.0 BDL BDL	SAMPLES	BOL	BDL		
BDL	HION (NG/L	^		DET'N LIMIT = 20.0	GUIDELINE = 190000 (A1)
	SAMPLES	108	BDL		

¥.	GUIDELINE = N/A		GUIDELINE = 9000 (03)		GUIDELINE = N/A		GUIDELINE = 50000 (A1)		GUIDELINE = 2000 (A2)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 90000 (A1)		GUIDELINE = 350000 (G)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		7
PLANT DIST. SYSTEM DIST. SYSTEM YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 20.0		DET'N LIMIT = 50.0	-	DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 2000.0		DET'N LIMIT = 2000,0		DET'N LIMIT = 2000.0		DET'N LIMIT = 2000,0	-	DET*N LIMIT = 2000,0		
TREATMENT PLANT TREATMENT PLANT RAW	SPECIFIC PESTICIDES MEVINPHOS (MG/L)	6 SAMPLES BDL BDL	METHYL PARATHION (NG/L)	6 SAMPLES BDL BDL	METHYLTRITHION (NG/L)	6 SAMPLES BDL BDL	PARATHION (NG/L)	6 SAMPLES BDL BDL	PHORATE (NG/L).	6 SAMPLES BDL BDL	RELDAN (NG/L)	6 SAMPLES BDL BDL	RONNEL (NG/L)	6 SAMPLES BDL BDL	CARBOFURAN (NG/L)	8 SAMPLES BDL BDL	CHLORPROPHAM (CIPC) (NG/L)	8 SAMPLES BDL BDL	DIALLATE (MG/L)	8 SAMPLES BDL BDL	EPTAM (NG/L)	8 SAMPLES BDL BDL	IPC (NG/L)	8 SAMPLES BDL BDL	

		TREATMENT RAW	PLANT	TREATMENT PLANT TREATMENT PLANT RAW TRAW	DISI. SYSTEM YOUNG ST FREE FLOW	DIST. SYSTEM YOUNG ST STANDING	Σ	
PROPOXUR (NG/L	NG/L	SPECIFIC PESTICIDES	C PEST	SPECIFIC PESTICIDES DET'N LIMIT = 2000.0 GUIDE	DET*N LIMIT = 2000.0	0.00	GUIDELINE = 140000 (D3)	140000 (03)
8 SAMPLES	ES	108	_	108				
CARBARYL (NG/L	L/SN)	^		CARBARYL (NG/L) DET'N' LIMIT = 200.0 GUIDE	DET'N' LIMIT = 200.0	0.0	GUIDELINE = 90000 (A1)	90000 (A1)
8 SAMPLES	S	108 .	ب	, 80L		•		
BUTYLATE (NG/L	L/G/L	^		BUTYLATE (NG/L) DET'N LIMIT = 2000.0 GUIDE	DET'N LIMIT = 2000.0	0.00	GUIDELINE = 245000 (03)	245000 (03)
8 SAMPLES	ES	BDL	ب	BDL		•		

Σ	GUIDELINE = 5 (A1)		GUIDELINE = 24 (A3)																		GUIDELINE = 2.4 (A3)																		GUIDELINE = 300 (A3*)	
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST YOUNG ST STANDING	DET'N LIMIT = 0.05	. 801	DET'N LIMIT = 0.05	.300 <1	. 050 <t< td=""><td>. 200 <1</td><td>BDL</td><td>BDL</td><td>. 108</td><td>. BDL</td><td>. BDL</td><td>. 108</td><td>. 801</td><td>. BDL</td><td>. BDL</td><td>. 801</td><td>. 108</td><td>. 108</td><td>. BDL</td><td>. B0L</td><td>DET'N LIMIT = 0.05</td><td>. BDL</td><td>.050 <t< td=""><td>.100 <1</td><td>. 100 <t< td=""><td>. BOL</td><td>. BDL</td><td>. 150 <1</td><td>. BOL</td><td>. 050 <1</td><td>. 050 <1</td><td>.050 <⊺</td><td>.050 <1</td><td>. 100 <t< td=""><td>. 100 <1</td><td>. BDL</td><td>901</td><td>100 <t< td=""><td>DET'N LIMIT = 0.10</td><td>80F</td></t<></td></t<></td></t<></td></t<></td></t<>	. 200 <1	BDL	BDL	. 108	. BDL	. BDL	. 108	. 801	. BDL	. BDL	. 801	. 108	. 108	. BDL	. B0L	DET'N LIMIT = 0.05	. BDL	.050 <t< td=""><td>.100 <1</td><td>. 100 <t< td=""><td>. BOL</td><td>. BDL</td><td>. 150 <1</td><td>. BOL</td><td>. 050 <1</td><td>. 050 <1</td><td>.050 <⊺</td><td>.050 <1</td><td>. 100 <t< td=""><td>. 100 <1</td><td>. BDL</td><td>901</td><td>100 <t< td=""><td>DET'N LIMIT = 0.10</td><td>80F</td></t<></td></t<></td></t<></td></t<>	.100 <1	. 100 <t< td=""><td>. BOL</td><td>. BDL</td><td>. 150 <1</td><td>. BOL</td><td>. 050 <1</td><td>. 050 <1</td><td>.050 <⊺</td><td>.050 <1</td><td>. 100 <t< td=""><td>. 100 <1</td><td>. BDL</td><td>901</td><td>100 <t< td=""><td>DET'N LIMIT = 0.10</td><td>80F</td></t<></td></t<></td></t<>	. BOL	. BDL	. 150 <1	. BOL	. 050 <1	. 050 <1	.050 <⊺	.050 <1	. 100 <t< td=""><td>. 100 <1</td><td>. BDL</td><td>901</td><td>100 <t< td=""><td>DET'N LIMIT = 0.10</td><td>80F</td></t<></td></t<>	. 100 <1	. BDL	901	100 <t< td=""><td>DET'N LIMIT = 0.10</td><td>80F</td></t<>	DET'N LIMIT = 0.10	80F
TREATED	_	BDL		1> 050	BDL	.150 <t< td=""><td>BDL</td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>.100 <t< td=""><td>BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td>1> 001.</td><td>. T> 050.</td><td>BDL</td><td>BDL</td><td>. 100 <t< td=""><td>.100 ×T</td><td>.100 ×T</td><td>.200 <t< td=""><td>.200 <1</td><td>.050 <t< td=""><td>BDL</td><td>108</td><td>BDL</td><td>.100 <t< td=""><td>.150 <t< td=""><td>80F</td><td>BDL</td><td></td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	108	BDL	BOL	BDL	BOL	BDL	.100 <t< td=""><td>BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td>1> 001.</td><td>. T> 050.</td><td>BDL</td><td>BDL</td><td>. 100 <t< td=""><td>.100 ×T</td><td>.100 ×T</td><td>.200 <t< td=""><td>.200 <1</td><td>.050 <t< td=""><td>BDL</td><td>108</td><td>BDL</td><td>.100 <t< td=""><td>.150 <t< td=""><td>80F</td><td>BDL</td><td></td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	BDL	BOL	BDL	BDL	BDL		1> 001.	. T> 050.	BDL	BDL	. 100 <t< td=""><td>.100 ×T</td><td>.100 ×T</td><td>.200 <t< td=""><td>.200 <1</td><td>.050 <t< td=""><td>BDL</td><td>108</td><td>BDL</td><td>.100 <t< td=""><td>.150 <t< td=""><td>80F</td><td>BDL</td><td></td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<>	.100 ×T	.100 ×T	.200 <t< td=""><td>.200 <1</td><td>.050 <t< td=""><td>BDL</td><td>108</td><td>BDL</td><td>.100 <t< td=""><td>.150 <t< td=""><td>80F</td><td>BDL</td><td></td><td>BDL</td></t<></td></t<></td></t<></td></t<>	.200 <1	.050 <t< td=""><td>BDL</td><td>108</td><td>BDL</td><td>.100 <t< td=""><td>.150 <t< td=""><td>80F</td><td>BDL</td><td></td><td>BDL</td></t<></td></t<></td></t<>	BDL	108	BDL	.100 <t< td=""><td>.150 <t< td=""><td>80F</td><td>BDL</td><td></td><td>BDL</td></t<></td></t<>	.150 <t< td=""><td>80F</td><td>BDL</td><td></td><td>BDL</td></t<>	80F	BDL		BDL
RAW FLAN	VOLATILES)	BDL	Ŷ	BDL	.150 <t< td=""><td>. 100 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>B0L</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>BDL</td><td>T> 050.</td><td>T> 050.</td><td>BDL</td><td>.150 <t< td=""><td>BDL</td><td>(7/9</td><td>BDL</td><td>BDL</td><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>80F</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>80L</td><td>T> 050.</td><td>BDT</td><td>BDL</td><td>BDL</td><td>^</td><td>. 80L</td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>B0L</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>BDL</td><td>T> 050.</td><td>T> 050.</td><td>BDL</td><td>.150 <t< td=""><td>BDL</td><td>(7/9</td><td>BDL</td><td>BDL</td><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>80F</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>80L</td><td>T> 050.</td><td>BDT</td><td>BDL</td><td>BDL</td><td>^</td><td>. 80L</td></t<></td></t<></td></t<>	BDL	BDL	BDL	B0L	BDL	BDL	108	BDL	BDL	T> 050.	T> 050.	BDL	.150 <t< td=""><td>BDL</td><td>(7/9</td><td>BDL</td><td>BDL</td><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>80F</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>80L</td><td>T> 050.</td><td>BDT</td><td>BDL</td><td>BDL</td><td>^</td><td>. 80L</td></t<></td></t<>	BDL	(7/9	BDL	BDL	.050 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>80F</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>80L</td><td>T> 050.</td><td>BDT</td><td>BDL</td><td>BDL</td><td>^</td><td>. 80L</td></t<>	BDL	BOL	BDL	80F	BDL	BOL	BDL	BDL	BOL	80L	T> 050.	BDT	BDL	BDL	^	. 80L
	BENZENE (UG/L	51 SAMPLES	TOLUENE (UG/L	1991 JAN					1991 JUN		1991 AUG							1992 AUG	1992 OCT	1992 DEC	ETHYLBENZENE (UG/L	-	1991 FEB	_												1992 AUG	1992 OCT	1992 DEC	P-XYLENE (UG/L	51 SAMPLES

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP

£.	GUIDELINE = 300 (A3*)																		GUIDELINE = 300 (A3*)																	
DIST. SYSTEM YOUNG ST STANDING	10																		. 05																	
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0.10	IGB	BOL	B01	BOL	BDL	108	100 €	108	.200 <1	B01	BOL	BOL	B0L	BOL	108	108	108	DET'N LIMIT = 0.05	BDL	BDL	BOL	108	108	BOL	T> 001.	801	.100 ×T	BOL	BOL	BDL	108	108	80r	108	108
TREATMENT PLANT TREATED	_	BDI	108	B0L	BDL	BDL	BDL	108	BOL	BOL	BOL	B01	B0L	BOL	BDL	BDL	BDL	BDL		BDL	B0L	BOL	108	B0L	BOL	B0L	BOL	108 80 F	BDL	80L	BDL	80f	BDL	BOL	BDL	BDL
TREATMENT PLANT RAW	VOLATILES)	BDL	108	108	BDL	BDL	BDL	BDL	108	108	BOL	BOL	108	BDL	BDL	BOL	108	BDL	^	BDL	BOL	B0L	BOL	BDL	BDL	BDL	BDL	BDL	80F	80L	80F	. BDL	80F	BOL	BOL	BOL
- 4	M-XYLENE (UG/L	1991 JAN					1991 JUN		1991 AUG	1991 SEP			1992 FEB				1992 OCT	1992 DEC	O-XYLENE (UG/L	1991 JAN			1991 APR	1991 MAY	1991 JUN		1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 FEB	1992 APR				

DIST. SYSTEM	2000	STANDING
DIST, SYSTEM	0 000	FREE FLOW
TREATMENT PLANT		
TREATMENT PLANT		

ST	GUIDELINE = 100 (D1)					•	•												GUIDELINE = 7 (D1)	.	GUIDELINE = 50 (A1)		GUIDELINE = 70 (D1)		GUIDELINE = N/A		
YOUNG ST YOUNG ST FREE FLOW STANDING	DET'N LIMIT = 0.05			1 000	12 031	1, 901 : BDI	.050	200 <1	.050 <7	.050 <t< th=""><th>.100 <7</th><th>.150 <t< th=""><th>.150 <1</th><th>.200 <1</th><th>.250 <1</th><th>BDL</th><th>BDL</th><th>.150 <</th><th>DET'N LIMIT = 0.100</th><th>BOL</th><th>DET'N LIMIT = 0.50</th><th>8DL</th><th>DET'N LIMIT = 0.10</th><th>BDL</th><th>DET'N LIMIT = 0.100</th><th>108</th><th></th></t<></th></t<>	.100 <7	.150 <t< th=""><th>.150 <1</th><th>.200 <1</th><th>.250 <1</th><th>BDL</th><th>BDL</th><th>.150 <</th><th>DET'N LIMIT = 0.100</th><th>BOL</th><th>DET'N LIMIT = 0.50</th><th>8DL</th><th>DET'N LIMIT = 0.10</th><th>BDL</th><th>DET'N LIMIT = 0.100</th><th>108</th><th></th></t<>	.150 <1	.200 <1	.250 <1	BDL	BDL	.150 <	DET'N LIMIT = 0.100	BOL	DET'N LIMIT = 0.50	8DL	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.100	108	
TREATED		Ğ		B) (8)		100 BDT	108	BDL	108						BDL		108	BDL	(BDL		BDL	•	BDL	0	108	
RAW	VOLATILES	ğ	i ca	100 <1	- I-G	90F	BDL	BDL	BDL	BDL	BDL	BDL	80F	. 100 <t< td=""><td>BDL</td><td>BDL</td><td>.050 <1</td><td>, BDL</td><td>1,1-DICHLOROETHYLENE (UG/L</td><td>S BDL</td><td>METHYLENE CHLORIDE (UG/L</td><td>S . BOL</td><td>T12-DICHLOROETHYLENE (UG/L</td><td>S BDL</td><td>1,1-DICHLOROETHAWE (UG/L</td><td>S BDL</td><td></td></t<>	BDL	BDL	.050 <1	, BDL	1,1-DICHLOROETHYLENE (UG/L	S BDL	METHYLENE CHLORIDE (UG/L	S . BOL	T12-DICHLOROETHYLENE (UG/L	S BDL	1,1-DICHLOROETHAWE (UG/L	S BDL	
	STYRENE (UG/L	1001				1991 MAY				1991 SEP		1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG		1992 DEC	1,1-DICHLORO	51 SAMPLES	METHYLENE CH	51 SAMPLES	112-DICHLORO	51 SAMPLES	1,1-DICHLORO	51 SAMPLES	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WIP

DIST. SYSTEM

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM

	GUIDELINE = 350 (A1+)																		GUIDELINE = 200 (D1)		GUIDELINE = 5 (A1)		GUIDELINE = 5 (A1)		GUIDELINE = 5 (D1)		GUIDELINE = 50 (A1)		
YOUNG ST STANDING	0.10																		0.02		0.05		0.20		0.05		0.10		1
YOUNG ST FREE FLOW	DET'N LIMIT = 0.10	37.800	28.900	19.400	39.700	39.200	42.200	35.500	35.200	25.600	11.300	16.300	31.700	19.900	10.100	36.500	86.200	22.200	DET'N LIMIT = 0.02	108	DET'N LIMIT = 0.05	108	DET'N LIMIT = 0.20	108	DET'N LIMIT = 0.05	108	DET'N LIMIT = 1	108 ·	· · · · · · · · · · · · · · · · · · ·
TREATEO .		53,100	34.200	36.100	51,900	43.600	56.200	55.500	43.500	33.800	23.500	32.400	31.400	41.500	15.800	31,400	74.200	34.300		BDL		BDL		108		BDL		108	
-		Þ																	^		^		^		^		_		
3	VOLATILES)	.200 <1	BDL	2,000	BOL	BDL	. 801	BDL	BDL	BDL	BDL	BDL	BOL	15,300	BDL	BOL	39.500	BDL	NE (UG/L	BDL	E (UG/L	BDL	IDE (UG/L	BDL	NE (UG/L	BDL	(UG/L	B0L	
RAW	CHLOROFORM (UG/L	1991 JAN		1991 MAR	_		1991 JUN		1991 AUG				1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 OCT	1992 DEC	111, TRICHLOROETHANE (UG/L	51 SAMPLES	1,2 DICHLOROETHANE (UG/L	51 SAMPLES	CARBON TETRACHLORIDE (UG/L	51 SAMPLES	1,2-DICHLOROPROPANE (UG/L	51 SAMPLES	TRICHLOROETHYLENE (UG/L	51 SAMPLES	

STEM	GUIDELINE = 350 (A1+)																	•		GUIDELINE = 0.6 (04)		GUIDELINE = 350 (A1+)							⊕ •											
DIST. SYSTEM DIST. SYSTEM YOUNG ST YOUNG ST STANDING	DET'N LIMIT = 0.05	11.850 SPS	11,300	7.250	13,700	15.800	21,300	16,300	20.700	15,400	12,000	13.750	13.500	2.600	0 050	10 300	000.41	18.400	10.400	DET'N LIMIT = 0.05	B0L	DET'N LIMIT = 0.10	2.400	3.300	1.800	3.800	4.300	8.200	6.200	10.100	8.000	000.6	7.600	3,900	2.400	7.300	7.200	2.400	3.100	
TREATMENT PLANT TREATED	,	19.700 SPS	15.450	12.850	20,150	15.600	25.200	19.350	22,150	17,800	21.600	22.050	16.800	12,100	12 100	15 400	000,71	14.600	16.000		BOL	,	3.800	4.300	2.700	2.400	4.100	10.200	9.400	11,200	8,000	13.800	0.600	B01	1.800	7.200	9,000	. 1.600	4.700	
TREATMENT PLANT RAW	VOLATILES THANE (UG/L	BDL	BOL	.850	801	BOL	B01	B01	B0L	108	108	108	BDI	009.7	i a	100	100	8.650	108	THANE (UG/L)	BOL	THANE (UG/L	108	108	.300 <	80F	B0L	BDL	BOL	BDL	BOL	B0L	108	BOL	.500 <1	108	BDL	.800 <t< td=""><td>. BDL</td><td></td></t<>	. BDL	
	VOLATILE DICHLOROBROMOMETHANE (UG/L	1991 JAN	1991 FEB	_	-		1991 JUN												1992 DEC	112-TRICHLOROETHANE (UG/L	51 SAMPLES	CHLORODIBROMOMETHANE (UG/L	-		1991 MAR			1991 JUN			1991 SEP		1991 NOV					1992 OCT		

STEM	GUIDELINE = 65 (A5)												•						GUIDELINE = 350 (A1+)												•		•			GUIDELINE = 0.17 (04)		• ;	GUIDELINE = 2 (D1)	
DIST. SYSTEM YOUNG ST STANDING	0.05																		0.20									. ↓	ţ.	-		,				= 0.05			0.100	
DIST. SYSTEM YOUNG ST FREE FLOW	DET'N LIMIT = 0.05	ē	100	100	100	2 6	Š	108	BDL	BDL	80F	BDL	108	80F	801	100	306	BDL	DET'N LIMIT = 0.20	108		108	BDF	108			. 800			000	100		. EDI	2 2	BOL	DET'N LIMIT =		108	DET'N LIMIT = 0.100	B0L
TREATMENT PLANT TREATED		ě	1 2	2 2	- N	100		108	BDL	BOL	BOL	BDL	B01	B0L	801	100	80F	BDL		BDL	.200 <t< td=""><td>108</td><td>. 200 <1</td><td>108</td><td>.800 <1</td><td>BDL</td><td>1.000 <t< td=""><td>BDL</td><td>1.800 <1</td><td>. 000.</td><td>7 6</td><td>800 41</td><td>200</td><td>i</td><td>BDL</td><td></td><td>-</td><td>BOL</td><td></td><td>BDL</td></t<></td></t<>	108	. 200 <1	108	.800 <1	BDL	1.000 <t< td=""><td>BDL</td><td>1.800 <1</td><td>. 000.</td><td>7 6</td><td>800 41</td><td>200</td><td>i</td><td>BDL</td><td></td><td>-</td><td>BOL</td><td></td><td>BDL</td></t<>	BDL	1.800 <1	. 000.	7 6	800 41	200	i	BDL		-	BOL		BDL
	^																																			^				
TREATMENT PLANT RAW	VOLATILES E (UG/L	ě	2 2	3 6	2 2	i 6	2 2	306	8DL	BDL	BDL	8 0	BDL	80 1	<u>8</u>	BDL.	80	80F	_	BDL	B DL	BDL	BDL	BDL	BDL	BDL	B 8	BD	80	2 2	2 2	2 2	2 2	2 2	B01	CUG/L		BDL	^	BDL
TREAT	VOLATILE TETRACHLOROETHYLENE (UG/L				1001 ADD		1001				1991 OCT	1991 NOV	1992 FEB		1992 JUN		1992 001	1992 DEC	BROMOFORM (UG/L			1991 MAR			1991 JUN	1991 JUL	1991 - AUG	1991 SEP		1007 FEB	1002 ABD					1122-TETCHLOROETHANE (UG/L		51 SAMPLES	VINYL CHLORIDE (UG/L	18 SAMPLES

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 TILBURY WTP	DIST. SYSTEM YOUNG ST STANDING
R SURVEILLANCE PRO	DIST. SYSTEM YOUNG ST FREE FLOW
DRINKING WATE	TREATMENT PLANT TREATED
	TREATMENT PLANT RAW

STANDING	DET*N LIMIT = 0.100 GUIDELINE = 70 (D1)	. 108	IT = 0.10 GUIDELINE = 1510 (D3)	BDL .	IT = 0.10 GUIDELINE = 5 (A1)	8DL .	IT = 0.10 GUIDELINE = 3750 (D3)		IT = 0.05 GUIDELINE = 200 (A1)	. PDF	IT = 0.05 GUIDELINE = 50 (D1)	. 108	IT = 0.50 GUIDELINE = 350 (A1)	. 050	. 059				. 000	000	. 008			. 006		
PREE PLUW	DET*N LIMI		DET'N LIMIT = 0.10		DET'N LIMIT = 0.10		DET'N LIMIT = 0.10		DET'N LIMIT = 0.05		DET'N LIMIT = 0.05		DET'N LIMIT = 0.50			57 250				008.800					28.150	
	^	108	1	108	^	BDL	^	108	^	108	^	HOL	^	76.600	54.250		63.300	92.400	81.250	59 400	60.600	64.800	48.200	55.400	35.900	
	VOLATILES HYLENE (UG/L	300	(UG/L)	BDL	NZENE (UG/L	108	NZENE (UG/L	BDL	NZENE (UG/L	108	MIDE (UG/L	BDL	THANES (UG/L	. 108	80L	or ide	801	BDL	80F	108	108	BDL	108	20.400	108 108	
	VOLATILE C12-DICHLOROETHYLENE (UG/L	18 SAMPLES	CHLOROBENZENE (UG/L	51 SAMPLES	1,4-DICHLOROBENZENE (UG/L	51 SAMPLES	1,3-DICHLOROBENZENE (UG/L	51 SAMPLES	1,2-DICHLOROBENZENE (UG/L	51 SAMPLES	ETHYLENE DIBROMIDE (UG/L	51 SAMPLES	TOTL TRIHALOMETHANES (UG/L		1991 FEB			-		1991 AUG					1992 JUN	

Page 64

		ANIANING WALEN	SORVEILLANCE PROGR	DAINAING WAIER SONVEILLANCE FROGRAM 1991 AND 1992 IILBOAR WIT	k
⊢ α.́	TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED YOUNG ST FREE FLOW	TREATMENT PLANT TREATED		DIST. SYSTEM YOUNG ST STANDING	
COBALT 60 (BQ/L	RADIONUCLIDES		DET'N LIMIT = 0.70	GUIDELINE = N/A	N/A
6 SAMPLES	108	BDL			
CESIUM 134 (BQ/L	^		DET'N LIMIT = 0.70	GUIDELINE = N/A	N/A
6 SAMPLES	BDL	108			
CESIUM 137 (BQ/L	^		DET'N LIMIT = 0.70	GUIDELINE = 50 (A1)	50 (A1)
6 SAMPLES	BDL	BDL			
GROSS ALPHA COUNT (BQ/L	T (BQ/L)		DET'N LIMIT = 0.04	GUIDELINE = 0.55 (D1)	0.55 (01)
6 SAMPLES	BDL	BDL			

. GUIDELINE = 40000 (A1)

DET'N LIMIT = 7.00

80L 80L 11.000

1991 JUL 1992 FEB 1992 AUG IODINE 131 (BQ/L

6 SAMPLES

g.:

B 61.

1991 JUL 1992 FEB 1992 AUG

TRITIUM (BQ/L

GUIDELINE = N/A

DET'N LIMIT = 0.04

GROSS BETA COUNT (BQ/L)

GUIDELINE = 10 (A1)

DET'N LIMIT = 0.70

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

		DETECTION	01110511115	
SCAN/PARAMETER	UNIT	LIMII	GUIDELINE	

BACTERIOLOGICAL				
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	. 0	0	(A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	0	500/ML	(A3)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0	N/A	
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	5/100ML	(A1)
CHEMISTRY (FLD)				
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	. N/A	
FIELD TOTAL CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD PH	DMNSLESS	N/A	6.5-8.5	(A4)
FIELD TEMPERATURE	. DEG.C	N/A	15.0	(A3)
FIELD TURBIDITY	FTU	N/A	1.0	(A1)
CHEMISTRY (LAB)				
ALKALINITY	MG/L	0.20	30-500	(A4)
AMMONIUM TOTAL	MG/L	0.002		(F2)
CALCIUM	MG/L	0.20	100.0	
CHLORIDE	MG/L	0.20	250.0	
COLOUR	TCU	0.50	5.0	(A3)
CONDUCTIVITY	UMHO/CM	1.00		
CYANIDE	MG/L	0.001	0.2	(A1)
DISSOLVED ORGANIC CARBON	MG/L	0.10	5.0	(A3)
FLUORIDE	MG/L	0.01		(A1)
HARDNESS	MG/L	0.50	80-100	(A4)
IONCAL	DMNSLESS	N/A	N/A N/A	
LANGELIERS INDEX	DMNSLESS	N/A 0.10	30.0	(52)
MAGNESIUM NITRATES (TOTAL)	MG/L MG/L	0.005	10.0	(F2) (A1)
NITRITE	MG/L MG/L	0.003	1.0	(A1)
NITROGEN TOTAL KJELDAHL	MG/L	0.001	N/A	(41)
PH ROBER TOTAL KSELDARE	DMNSLESS	N/A	6.5-8.5	(A4)
PHOSPHORUS FIL REACT	MG/L	0.0005	N/A	(///
PHOSPHORUS TOTAL	MG/L	0.002	0.4	(F2)
POTASSIUM	MG/L	0.010	10.0	(F2)
RESIDUE FILTRATE (CALCULATED TDS)	MG/L	N/A	500.0	(A3)
SODIUM	MG/L	0.20	200.0	(A4)
SULPHATE	MG/L	0.20	500.0	(A4)
TURBIDITY	FTU	0.05	1.0	(A1)

^{*} The Maximum Acceptable Concentration (MAC) for <u>naturally occurring fluoride</u> in drinking water is 2.4 mg/L.

CHLOROAROMATICS

CHLOROAKOMATICS				
1,2,3-TRICHLOROBENZENE	NG/L	5.0	N/A	
1.2.3.4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(1)
1.2.4.5-TETRACHLOROBENZENE	NG/L	1.0	38000	(D4)
1,3,5-TRICHLOROBENZENE	NG/L	5.0	N/A	
2,3,6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2.4.5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,6A-TRICHLOROTOLUENE	NG/L	5.0	N/A	
HEXACHLOROBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLOROBUTAD I ENE	NG/L	1.0	450	(D4)
HEXACHLOROETHANE	NG/L	1.0	1900	(D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(04)
CHLOROPHENOLS				
2,3,4-TRICHLOROPHENOL	NG/L	100.0	N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2,3,5,6-TETRACHLOROPHENOL	NG/L	10.0	N/A	

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(D4)
2,4,6-TRICHLOROPHENOL	NG/L	20.0	5000	(A1)
PÉNŤACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS				
ALUMINUM	UG/L	0.10	100	(A4)
ANTIMONY	UG/L	0.05	146	(D4)
ARSENIC	UG/L	0.10	25 1000	(A1)
BARIUM BERYLLIUM	UG/L UG/L	0.05 0.05	6800	(A2) (D4)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5	(A1)
CHROMIUM	UG/L	0.50	50	(A1)
COBALT .	UG/L	0.02	N/A 1000	/47>
COPPER IRON	UG/L UG/L	0.50 6.00	300	(A3) (A3)
LEAD	UG/L	0.05	10	(A1)
MANGANESE	UG/L	0.05	50	(A3)
MERCURY	UG/L	0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	(07)
NICKEL SELENIUM	UG/L UG/L	0.20 1.00	350 10	(D3) (A1)
SILVER	UG/L	0.05	N/A	(11)
STRONTIUM	UG/L	0.10	N/A	
THALLIUM	UG/L	0.05	13	(D4)
TITANIUM .	UG/L	0.50	N/A	
URANIUM VANADIUM	UG/L UG/L	0.05 0.05	100 N/A	(A1)
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				
ANTHRACENE	NC (I	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L NG/L	20.0	N/A	
BENZO(A) PYRENE	NG/L	5.0	10	(A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A	
BENZO(B) FLUORANTHENE	NG/L	10.0	N/A	
BENZO(E) PYRENE	NG/L	50.0 20.0	N/A	
BENZO(G,H,I) PERYLENE BENZO(K) FLUORANTHENE	NG/L NG/L	1.0	N/A N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE INDENO(1,2,3-C;D) PYRENE	NG/L NG/L	20.0 20.0	42000 N/A	(D4)
PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE	NG/L	10.0	N/A	
PYRENE	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN	NG/L	1.0	700	(A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0 2.0	700 7000	(G) (A1)
ALPHA CHLORDANE AMETRINE	NG/L NG/L	50.0	300000	(D3)
ATRATONE	NG/L	50.0	N/A	,55,
ATRAZINE	NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE	NG/L	200.0	60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0 100.0	300 10000	(G)
CYANAZINE (BLADEX) DIELDRIN	NG/L NG/L	2.0	700	(A2)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000	(D4)
ENDOSULFAN 2 (THIODAN 11)	NG/L	5.0	74000	(D4)
ENDOSULFAN SÚLPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A	

		DETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
ENDRIN	NG/L	5.0	1600	(D3)
GAMMA CHLORDANE	NG/L	2.0	7000	(A1)
HEPTACHLOR	NG/L	1.0	3000	(A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000	(A1)
HEXACHLOROCYCLOPENTAD I ENE	NG/L	5.0	206000	(D4)
LINDANE (GAMMA BHC)	NG/L	1.0	4000	(A1)
METHOXYCHLOR	NG/L	5.0	900000	(A1)
METOLACHLOR	NG/L	500.0	50000	(A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000	(A1)
MIREX	NG/L	5.0	N/A	(^,,
P,P-DDD	NG/L	5.0	30000	(A1)
O.P-DDT	NG/L	5.0	30000	(A1)
P,P-DDT	NG/L	5.0	30000	(A1)
P,P-DDE		1.0	30000	(A1)
OXYCHLORDANE	NG/L		N/A	(AI)
	NG/L	2.0	3000	(42)
PCB -	NG/L	20.0		(A2)
PROME TONE .	NG/L	50.0	52500	(D3)
PROMETRYNE	NG/L	50.0	1000	(A2)
PROPAZINE	NG/L	50.0	700000	(D3)
SIMAZINE	NG/L	50.0	10000	(A2)
DESETHYL SIMAZINE	NG/L	200.0	10000	(A2)
TOXAPHENE	NG/L	500.0	5000	(A1)
PHENOLICS				
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A	
SPECIFIC PESTICIDES				
2,4 D PROPIONIC ACID	NG/L	100.0	N/A	
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000	(A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000	(A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)	NG/L	200.0	N/A	
2,4,5-TP (SILVEX)	NG/L	20.0	10000	(A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000	(D3)
CARBARYL (SEVIN)	NG/L	200.0	90000	(A1)
CARBOFURAN	NG/L	2000.0	90000	(A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000	(G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A	
DIALLATE	NG/L	2000.0	N/A	
DIAZINON	NG/L	20.0	20000	(A1)
DICAMBA	NG/L	50.0	120000	(A1)
DICHLOROVOS	NG/L	20.0	N/A	
EPTAM	NG/L	2000.0	N/A	
ETHION	NG/L	20.0	35000	(G)
IPC	NG/L	2000.0	N/A	,
MALATHION '	NG/L	20.0	190000	(A1)
METHYL PARATHION	NG/L	50.0	9000	(D3)
METHYLTRITHION	NG/L	20.0	N/A	,,
MEVI NPHOS	NG/L	20.0	N/A	
PARATHION	NG/L	20.0	50000	(A1)
PHORATE (THIMET)	NG/L	20.0	2000	(A2)
PICHLORAM	NG/L	100.0	190000	(A2)
PROPOXUR (BAYGON)	NG/L	2000:0	140000	(D3)
RELDAN	NG/L	20.0	N/A	(03)
RONNEL	NG/L	20.0	N/A	
VOLATILES	, .		.,	
1,1-DICHLOROETHANE	UG/L	0.10	N/A	
1,1-DICHLOROETHYLENE	UG/L	0.10	7	(D1)
1,2-DICHLOROBENZENE	UG/L	0.05	200	(A1)
1,2-DICHLOROETHANE	UG/L	0.05	5	(A1)
1,2-DICHLOROPROPANE	UG/L	0.05	5	(D1)
1,3-DICHLOROBENZENE	UG/L	0.10	3750	(D3)
1,4-DICHLOROBENZENE	UG/L	0.10	5/50	(A1)
1,1,1-TRICHLOROETHANE	UG/L	0.02	200	(D1)
	UG/L	0.05	0.	
1,1,2-TRICHLOROETHANE		0.05	0.	6 (D4) 17 (D4)
1,1,2,2-TETRACHLOROETHANE	UG/L	0.00	υ.	17 (04)

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
BENZENE	UG/L	0.05	5	(A1)
BROMOFORM	UG/L	0.20	350	(A1+)
CARBON TETRACHLORIDE	UG/L	0.20	5	(A1)
CHLOROBENZENE	UG/L	0.10	1510	(D3)
CHLOROD I BROMOME THANE	UG/L	0.10	350	(A1+)
CHLOROFORM	UG/L	0.10	350	(A1+)
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10		(D1)
DICHLOROBROMOMETHANE	UG/L	0.05	350	
ETHYLENE DIBROMIDE	UG/L	0.05	50	(D1)
ETHYLBENZENE	UG/L	0.05		4 (A3)
M-XYLENE	UG/L	0.10 .		(A3*)
METHYLENE CHLORIDE	UG/L	0.50	50	(A1)
O-XYLENE	UG/L	0.05	300	(A3*)
P-XYLENE	UG/L	0.10	- 300	(A3*)
STYRENE	UG/L	0.05	100	(D1)
TETRACHLOROETHYLENE	UG/L	0.05	65	(A5)
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(D1)
TOLUENE	UG/L	0.05	24	(A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350	(A1)
TRICHLOROETHYLENE	UG/L	0.10	50	(A1)
VINYL CHLORIDE	UG/L	0.10	2	(D1)
RADIONUCLIDES				
TRITIUM	BQ/L	7.0	40000	
GROSS ALPHA COUNT	BQ/L	0.04		55# (D1)
GROSS BETA COUNT	BQ/L	0.04	N/A	
COBALT 60	BQ/L	0.70	N/A	
CESIUM 134	BQ/L	0.70	N/A	
CESIUM 137	BQ/L	0.70	50	(A1)
1001NF 131	RO/I	0.70	10	(A1)

[#] Equal to 15.0 Picocuries/litre

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOBE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MODE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

FIG.1

PARAMETER REFERENCE INFORMATION

NAME: BENZENE

CAS#: 71-43-2

MOLECULAR FORMULAE: C6H2

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 μq/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR

DISTILLATION (39): FOOD PROCESSING AND TANNING INDUSTRIES:

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES: DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER

COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY: DEGREASING AND CLEANSING

AGENT: GASOLINE.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION

WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES: MOLECULAR WEIGHT: 78.12

MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39)
CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃)
 (Caution: HNO₃ is corrosive)

-1 L amber glass bottle per scan

Volatiles (duplicates) -45 mL glass vial with septum

(OPOPUP) (teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

(OWOC),(OWTRI) -do not rinse bottle

-fill to 2 cm from top

Specific Pesticides

-as per Organics

(OWCP),(PEOP),(PECAR) -three extra bottles must be filled

Polyaromatic hydrocarbons (OAPAHX)

-1 L amber glass bottle per scan -do $\underline{\text{not}}$ rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃)
and potassium dichromate (K₂Cr₂O₇)
(Caution: HNO₃&K₂Cr₂O₇ are corrosive)

Phenols

-250 mL glass bottle
-do not rinse bottle, preservative has been added
-fill to top of label

Radionuclides
(as scheduled)

-4 L plastic jug
-do not rinse, carrier added
-fill to 5 cm from top

Organic Characterization (GC/MS - once per year) (PBVOL),(PBEXT) -1 L amber glass bottle; instructions as per organic -250 mL glass bottle -do not rinse bottle -fill completely without bubbles

Steps:

- 1. Let sampling water tap run for an adequate time to clear the sample line.
- 2. Record time of day on submission sheet.
- 3. Record temperature on submission sheet.
- 4. Fill up all bottles as per instructions.
- Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.
- 6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)
-rinse bottle and cap with sample water three times
-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times
-fill to 2 cm from top
-add 10 drops nitric acid (HNO₃)
(Caution: HNO₄ is corrosive)

Steps:

- 1. Record time of day on submission sheet.
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do <u>not</u> rinse bottle, preservative has been added -avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃

(Caution: HNO3 is corrosive)

Volatiles (duplicate)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)

-do $\underline{\text{not}}$ rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics

-1 L amber glass bottle per scan

(OWOC)

-do <u>not</u> rinse bottle -fill to 2 cm from top

Polvaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan -do not rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

