Machine Learning Assisted Validation, Off and On-Line Test and Tuning of Advanced Mixed-Signal/RF Circuits and Systems

A. Chatterjee Smart Resilient Systems Laboratory Georgia Institute of Technology USA

GRAs: D. Banerjee, S. Sen, J. Wells, S. Banerjee, M. Momtaz, V. Natarajan, B. Muldrey and S. Deyati

Overview

Future real-time mixedsignal/RF/DSP/control systems: *the need for self-awareness*

 Self aware: Dynamically adapt to operating environment and health (failure conditions)

Objective: Minimize power, maximize reliability/error resilience

Machine Learning Assisted Validation of Mixed-Signal Systems

S602A – Qualcomm's automotive SoCs must meet automotive temperature, quality and reliability requirements

Bad News: Complexity Makes Design Bugs Inevitable!

Verification complexity is increasing exponentially with design size: Logic bugs, Electrical bugs

- System-level simulation bottlenecks (billions of cycles at 1000 cycles/second)
- Verification bottlenecks
 - Manually generated assertions requiring combinatorial search
 - Inability to verify physics-based electrical interactions between devices (electrical bugs)
- No golden DUT! Do not where, when and how the bug will manifest!

Increasing numbers of bugs are escaping into silicon!

Cumulative No of Respin Requests

> 7 respins for advanced SoCs

Source: Qualcomm

Approach 1: Adversarial Test Generation Vs. Behavior Learning

Sparse Weiner learning kernel
Recurrent neural networks can be used

Learning Agent Example: Incorporating memory

- Combine Radial Basis Neurons into a Weiner filter structure
- Employ nonlinear activation functions chosen on a per-neuron basis
- Highly parametric: sparse number of delay taps

When extracting data from hardware, internal circuit nodes may not be externally observable, so training is based on only observable signals!

Can use Volterra filters, Recurrent neural networks, etc!

Per Iteration Kernel Update

Per Iteration Kernel Update

Experimental Validation

Experimental Results: Maxim MAX2242 RF PA

Captures
hysteresis
and memory
effects
automatically

Augmenting Behavioral Models

Network was able to learn:

- "Memory" effects
- AM-PM behavior
- AM-AM behavior

Several orders of magnitude behavior correction!

The Diagnosis Problem

- System is failing
- Which comp. is responsible?

Diagnosis of Static Design Bugs

Augmenting Behavioral Models

Systematically impart additional behaviors to arbitrary B-Mods

Stimulating Errant Behavior

- Operational space must be searched to discover design/manufacture bugs
- Huge space to search (stoch.)
- Algorithm requires determinism

Stimulus complexity (search space) increases deterministically

PLL Experiments

- System stimulated by summing LP signal at VCO input
- System observed immediately prior to summing

PLL Experiments

Adaptation Based on Off-Line Test Response Analysis: *Post-Manufacture*

State of the Art: Mixed-Signal SoCs

- Specification Tests
- Each test requires a different setup
 - Total testing time
 - ATE complexity
 - Load board complexity
- Test cost up 30%- 45%*

30%

Standard Specification Tests

Key Issues:

Manufacturing test time: Relay settling time >> actual test time! Test multiple specs.

Built-in test of complex specifications: Difficult to place test instruments and circuitry on-chip for multiple specifications!

Post-manufacture and field performance tuning: Tune multiple specs while minimizing power? Need to tune devices without extended test costs.

Alternate Tests: Key Principles

➤ The mapping S=f(M) is derived using nonlinear regression (multiple adaptive regression splines: MARS)

Alternate Tests: Key Principles

➤ The mapping S=f(M) is derived using nonlinear regression (multiple adaptive regression splines: MARS)

Signature Test Methodology

Test Stimulus Generation

TI Precision Opamp

>3X test time reduction

Alternate Test: Performance

Capability Study (Guardbands)

For most specs, identical or better guardbands resulted

Hysteretic Buck Converter

100 chips (LM3485)

0.6 0.5 0.4 0.5 0.4 0.5 0.6 Measured Load Regulation (V)

SW1 and SW2 in positions 2 for proposed test and position 1 for conventional test

BIST for Multiple Specs

SIGNATURE TEST!

Production Phase

RF Transceiver Non-idealities

Signature-BIST: Overview

Signature Based Model Parameter Estimation

Current State-of-Art: Tuning

• Impacts time to market

- § 1. Texas Instruments, stack and rack bench equipments
- § 2. Lee, K. et.al, "The Impact of semiconductor technology scaling on CMOS RF and Digital Circuits for Wireless Applications", IEEE Trans. Elec. Devices, July 2006
- § 3. Advantest tester

Tuning: Learning Driven

Tuning Architecture

Supervised Learning

- Ability to tune for multiple specs using single data acquisition
- Ability to perform <u>near optimal tuning</u>
- Minimal on-chip hardware overhead

Learning driven tuning algorithms

Need accurate learning algorithms!

Can predict optimal tuning knob values from DUT response: One-shot tuning!

NF (top) and Idd (bottom) before tuning.

NF (top) and Idd (bottom) after tuning

Self-healing LNA!

70% to 99% yield improvement

Parameter Tuning: Iterative

Experimental Results: Test Response to Tuning

Experimental Results: Iterative Tuning

- 207 possible knob combinations (P1) for yield recovery
- Power conscious knob combination (P1): 0.5724W
- Converged Knob combination (P1): 0.5724W

Concurrent Built In Test and Tuning of Beamforming MIMO Systems Using Learning Assisted Performance Optimization

MIMO Test Challenges

- 1) Decoupling of test results for individual antenna-RF chains from combined signals
- 2) Concurrently test all mixed-signal/RF components in all the RF chains with the least test cost
- 3) Test and calibrate for all beam steering angles

Tuning Bits

Coarse Bits: SW1-4, MSB 4 bits of DI,DQ

Fine Bits: LSB 4 bits of DI,DQ

Coarse Bits : MSB 4 bits of VA

Fine Bits: LSB 4 bits of VA

Efficacy of Proposed Tuning Methodology

- ☐ Yield improvement: 11% to 88%
- (acceptance criteria: EVM 5% SINR 8dB)
- 256 bits tuned simultaneously
- □ Average tuning optimization process takes 2.5 ms in MATLAB.

Adaptation Based on Algorithmic Circuit-Level Encodings: Circuits in the Field

Case Study

6th Order Band-Pass Butterworth Filter

Specification	Value
Frequency	100 MHz
Band Pass Gain	1 V / V
Quality Factor	1
Band Pass	100 MHz

$$H(s) = \frac{-\frac{s^3}{\omega_0^3}}{\frac{s^6}{\omega_0^6} + 2\frac{s^5}{\omega_0^5} + 5\frac{s^4}{\omega_0^4} + 5\frac{s^3}{\omega_0^3} + 5\frac{s^2}{\omega_0^2} + 2\frac{s}{\omega_0} + 1}$$

6 STATES TO CHECK: $x_1,...,x_6$

6 ERROR SIGNALS: $e_1, ..., e_6$

Case Study

State Space Representation

BAND-PASS FILTER SIGNAL FLOW GRAPH DESCRIPTION

Analog Checksums

STATE

Redundant States

Consider a state space system...

$$sX = AX + BU$$

$$s \underbrace{\left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right]}_{X} = \underbrace{\left[\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{array}\right]}_{A} \underbrace{\left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right]}_{X} + \underbrace{\left[\begin{array}{ccc} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{np} \end{array}\right]}_{B} \underbrace{\left[\begin{array}{c} u_1 \\ \vdots \\ u_p \end{array}\right]}_{U}$$

And a set of scalars...
$$\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n]$$

CODING VECTOR

Extend the system with a new redundant state being a linear combination of $x_1,...,x_n$...

$$s \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ \hline x_r \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} & 0 \\ \hline (\alpha A)_1 & \cdots & (\alpha A)_n & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ \hline x_r \end{bmatrix} + \begin{bmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{np} \\ \hline (\alpha B)_1 & \cdots & (\alpha B)_p \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_p \end{bmatrix}$$
REDUNDANT

Error Signal Generation

Error signal is defined as...

$$E = \alpha X - x_r$$

And we already know the expression for the redundant state...

$$-\frac{s}{\omega_0}x_r = 3(-x_6) + x_r + u(s)$$

We just need an integration, a linear combination and a subtraction...

FEEDINGTHE ERROR SIGNAL ALLOWS ERROR/NOISE COMPENSATION

ERROR SIGNAL

Input-Output

With No Perturbation

Perturbed Output

Before Compensation

Compensated Output

After Compensation

Future Work

- Exciting road ahead
 - Large scale sensor networks
 - Self-driven vehicles
 - Drones
 - Personal robots

Adapt in real-time to working environment, electro-mechanical degradation and failures

Questions

