First Texas Products LLC

ADDENDUM TEST REPORT FOR 91407-7

Metal Detector, GoldBug

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.209 and RSS 210 Issue 8

Report No.: 91407-7A

Date of issue: July 20, 2011

TESTING CERT #803.01, 803.02, 803.05, 803.06 This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	
Revision History	
Report Authorization	
Test Facility Information	
Site Registration & Accreditation Information	
Summary of Results	
Conditions During Testing	
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	
Maximum Radiated Output	
15.209 Radiated Spurious Emissions	10
RSS 210	18
99% Occupied Bandwidth	18
Supplemental Information	
Measurement Uncertainty	
Emissions Test Details	

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

First Texas Products LLC

1465 -H Henry Brennan

El Paso, TX 79936

Source Walker

CKC Laboratories, Inc.

5046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Art Nemirow Project Number: 91407

Customer Reference Number: 012015-00

DATE OF EQUIPMENT RECEIPT: November 22, 2010

DATE(S) OF TESTING: November 22 – December 2, 2010

Revision History

Original: Testing of the Metal Detector, GoldBug to FCC Part 15 Subpart C Sections 15.209 and RSS 210 Issue 8. **Addendum A:** To add to the test conditions for all testing that the EUT was testing in accordance with 15.31e.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 7 B

Page 3 of 21 Report No.: 91407-7A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Site Registration & Accreditation Information

Location	CB #	Japan	Canada	FCC
Mariposa A	US0103	R-563, C-578, T-1492 & G-87	3082A-2	90477

Page 4 of 21 Report No.: 91407-7A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.209 and RSS-210 Issue 8

Description	Test Procedure/Method	Results
Maximum Radiated Output	FCC Part 15 Subpart C Section 15.209/ ANSI C63.4 (2003)	Pass
Spurious Radiated Emissions	FCC Part 15 Subpart C Section 15.209 / ANSI C63.4 (2003)	Pass
99% Occupied Bandwidth	RSS-210 Issue 8	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 21 Report No.: 91407-7A

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Metal Detector

Manuf: First Texas Products, LLC

Model: GoldBug Serial: None

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Headphones

Manuf: Fisher Labs Model: 89723-99960

Serial: None

Page 6 of 21 Report No.: 91407-7A

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.209 Maximum Radiated Output

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: First Texas Products
Specification: 15.209 Radiated Emissions

Work Order #: 91407 Date: 12/7/2010
Test Type: Maximized Emissions Time: 14:33:11
Equipment: Metal Detector Sequence#: 2

Manufacturer: First Texas Products, LLC Tested By: Chuck Kendall

Model: GoldBug S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	AN00226	Loop Antenna	6502	4/10/2009	4/10/2011
	AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Metal Detector*	First Texas Products.	LLC GoldBug	None	

Support Devices:

Function	Manufacturer	Model #	S/N
Headphones	Fisher Labs	89723-99960	None

Test Conditions / Notes:

Metal detector is vertical, horizontal or perpendicular atop an 80cm high wooden turn table and there is a wooden rotating disk with a coin atop it. When the rotating disk spins the coin comes in contact with the detector antenna and the audio sounds an alarm.

Frequencies of interest is 19.2 kHz

In accordance with 15.31e, testing was performed with new batteries installed.

RBW = 200 Hz & the VBW = 200 Hz

Temp = 40° F

Relative Humidity= 40 %

Page 7 of 21 Report No.: 91407-7A

Ext Attn: 0 dB

Measure	ement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters	3	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	19.228k	82.4	+0.0	+11.4			-80.0	13.8	41.9	-28.1	Vert
									EUT horiz	ontal on	
									table with	large	
									antenna pa	rallel to	
									receive and	enna.	
2	19.230k	73.5	+0.0	+11.4			-80.0	4.9	41.9	-37.0	Horiz
									EUT vertice	cal with	
									coil paralle	el to	
									receive and	enna.	
3	19.228k	72.0	+0.0	+11.4			-80.0	3.4	41.9	-38.5	Vert
									EUT horiz	ontal	
									with ant pa	rallel to	
									loop anten	na-small	
									antenna		
4	19.230k	63.6	+0.0	+11.4			-80.0	-5.0	41.9	-46.9	Vert
									EUT horiz	ontal	
									with anten	na	
									perpendicu	ılar to	
									receive ant	tenna.	

Test Data

Test Setup Photos

Page 9 of 21 Report No.: 91407-7A

15.209 Radiated Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: First Texas Products
Specification: 15.209 Radiated Emissions

 Work Order #:
 91407
 Date:
 11/22/2010

 Test Type:
 Radiated Scan
 Time:
 4:17:08 PM

Equipment: **Metal Detector** Sequence#: 7

Manufacturer: First Texas Products, LLC Tested By: Chuck Kendall

Model: GoldBug S/N: None

Test Equipment:

1	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	T1	AN00226	Loop Antenna	6502	4/10/2009	4/10/2011
	T2	ANMA10M	Cable		5/10/2009	5/10/2011
		AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

	- /-		
Function	Manufacturer	Model #	S/N
Metal Detector*	First Texas Products, LLC	GoldBug	None

Support Devices:

Tr Fr				
Function	Manufacturer	Model #	S/N	
Headphones	Fisher Labs	89723-99960	None	

Test Conditions / Notes:

15.209 Radiated Emissions

Metal detector is sitting vertically atop an 80cm high wooden turn table and there is a wooden rotating disk with a coin atop it. When the rotating disk spins the coin comes in contact with the detector antenna and the audio sounds an alarm.

In accordance with 15.31e, testing was performed with new batteries installed.

Frequencies of interest are from 9kHz to 30MHz and the RBW = 200Hz, VBW=1kHz from 9-150kHz and RBW=9kHz, VBW=30kHz from 150kHz to 30MHz.

Temp = 40° F

Relative Humidity = 40 %

EUT is Horizontal during testing.

Page 10 of 21 Report No.: 91407-7A

Ext Attn: 0 dB

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>	e: 3 Meters	est Distance	Τe		argin.	ted by ma	eading lis		rement Data:	
1 1.440M 50.9 +10.1 +0.2 -40.0 21.2 24.4 -3.2 2 789.755k 52.3 +10.3 +0.1 -40.0 22.7 29.6 -6.9 3 940.285k 50.3 +10.3 +0.1 -40.0 20.7 28.1 -7.4 4 1.459M 45.3 +10.1 +0.2 -40.0 15.6 24.3 -8.7 5 1.168M 47.1 +10.2 +0.1 -40.0 17.4 26.2 -8.8 6 1.340M 45.0 +10.1 +0.2 -40.0 15.3 25.0 -9.7 7 1.599M 43.4 +10.1 +0.2 -40.0 13.7 23.5 -9.8 8 1.559M 43.6 +10.1 +0.2 -40.0 13.7 23.5 -9.8 9 1.641M 43.1 +10.1 +0.2 -40.0 13.7 23.8 -10.1 11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12	Polar	Margin								Rdng		#
2 789.755k 52.3 +10.3 +0.1 -40.0 22.7 29.6 -6.9 3 940.285k 50.3 +10.3 +0.1 -40.0 20.7 28.1 -7.4 4 1.459M 45.3 +10.1 +0.2 -40.0 15.6 24.3 -8.7 5 1.168M 47.1 +10.2 +0.1 -40.0 17.4 26.2 -8.8 6 1.340M 45.0 +10.1 +0.2 -40.0 15.3 25.0 -9.7 7 1.599M 43.4 +10.1 +0.2 -40.0 13.7 23.5 -9.8 8 1.559M 43.6 +10.1 +0.2 -40.0 13.9 23.7 -9.8 9 1.641M 43.1 +10.1 +0.2 -40.0 13.4 23.2 -9.8 10 1.530M 43.4 +10.1 +0.2 -40.0 13.7 23.8 -10.1 11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12	Ant			•		dB	dB			•		
3 940.285k 50.3 +10.3 +0.1 -40.0 20.7 28.1 -7.4 4 1.459M 45.3 +10.1 +0.2 -40.0 15.6 24.3 -8.7 5 1.168M 47.1 +10.2 +0.1 -40.0 17.4 26.2 -8.8 6 1.340M 45.0 +10.1 +0.2 -40.0 15.3 25.0 -9.7 7 1.599M 43.4 +10.1 +0.2 -40.0 13.7 23.5 -9.8 8 1.559M 43.6 +10.1 +0.2 -40.0 13.4 23.2 -9.8 9 1.641M 43.1 +10.1 +0.2 -40.0 13.4 23.2 -9.8 10 1.530M 43.4 +10.1 +0.2 -40.0 13.7 23.8 -10.1 11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12 1.580M 41.4 +10.1 +0.2 -40.0 11.7 23.6 -11.9 13	Vert	-3.2	24.4	21.2	-40.0			+0.2	+10.1	50.9	1.440M	1
4 1.459M 45.3 +10.1 +0.2 -40.0 15.6 24.3 -8.7 5 1.168M 47.1 +10.2 +0.1 -40.0 17.4 26.2 -8.8 6 1.340M 45.0 +10.1 +0.2 -40.0 15.3 25.0 -9.7 7 1.599M 43.4 +10.1 +0.2 -40.0 13.7 23.5 -9.8 8 1.559M 43.6 +10.1 +0.2 -40.0 13.9 23.7 -9.8 9 1.641M 43.1 +10.1 +0.2 -40.0 13.4 23.2 -9.8 10 1.530M 43.4 +10.1 +0.2 -40.0 13.7 23.8 -10.1 11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12 1.580M 41.4 +10.1 +0.2 -40.0 11.7 23.6 -11.9 13 1.509M 41.2 +10.1 +0.2 -40.0 11.5 24.0 -12.5 14	Vert	-6.9	29.6	22.7	-40.0			+0.1	+10.3	52.3	789.755k	2
5 1.168M 47.1 +10.2 +0.1 -40.0 17.4 26.2 -8.8 6 1.340M 45.0 +10.1 +0.2 -40.0 15.3 25.0 -9.7 7 1.599M 43.4 +10.1 +0.2 -40.0 13.7 23.5 -9.8 8 1.559M 43.6 +10.1 +0.2 -40.0 13.9 23.7 -9.8 9 1.641M 43.1 +10.1 +0.2 -40.0 13.4 23.2 -9.8 10 1.530M 43.4 +10.1 +0.2 -40.0 13.7 23.8 -10.1 11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12 1.580M 41.4 +10.1 +0.2 -40.0 11.7 23.6 -11.9 13 1.509M 41.2 +10.1 +0.2 -40.0 11.5 24.0 -12.5 14 1.659M 39.9	Vert	-7.4	28.1	20.7	-40.0			+0.1	+10.3	50.3	940.285k	3
6 1.340M 45.0 +10.1 +0.2 -40.0 15.3 25.0 -9.7 7 1.599M 43.4 +10.1 +0.2 -40.0 13.7 23.5 -9.8 8 1.559M 43.6 +10.1 +0.2 -40.0 13.9 23.7 -9.8 9 1.641M 43.1 +10.1 +0.2 -40.0 13.4 23.2 -9.8 10 1.530M 43.4 +10.1 +0.2 -40.0 13.7 23.8 -10.1 11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12 1.580M 41.4 +10.1 +0.2 -40.0 11.7 23.6 -11.9 13 1.509M 41.2 +10.1 +0.2 -40.0 11.5 24.0 -12.5 14 1.659M 39.9 +10.1 +0.2 -40.0 10.2 23.1 -12.9 15 689.401k 47.4 +10.3 +0.1 -40.0 17.8 30.8 -13.0 1	Vert	-8.7	24.3	15.6	-40.0			+0.2	+10.1	45.3	1.459M	4
7 1.599M 43.4 +10.1 +0.2 -40.0 13.7 23.5 -9.8 8 1.559M 43.6 +10.1 +0.2 -40.0 13.9 23.7 -9.8 9 1.641M 43.1 +10.1 +0.2 -40.0 13.4 23.2 -9.8 10 1.530M 43.4 +10.1 +0.2 -40.0 13.7 23.8 -10.1 11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12 1.580M 41.4 +10.1 +0.2 -40.0 11.7 23.6 -11.9 13 1.509M 41.2 +10.1 +0.2 -40.0 11.5 24.0 -12.5 14 1.659M 39.9 +10.1 +0.2 -40.0 10.2 23.1 -12.9 15 689.401k 47.4 +10.3 +0.1 -40.0 17.8 30.8 -13.0 16 1.300M 42.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 <td< td=""><td>Vert</td><td>-8.8</td><td>26.2</td><td>17.4</td><td>-40.0</td><td></td><td></td><td>+0.1</td><td>+10.2</td><td>47.1</td><td>1.168M</td><td>5</td></td<>	Vert	-8.8	26.2	17.4	-40.0			+0.1	+10.2	47.1	1.168M	5
8 1.559M 43.6 +10.1 +0.2 -40.0 13.9 23.7 -9.8 9 1.641M 43.1 +10.1 +0.2 -40.0 13.4 23.2 -9.8 10 1.530M 43.4 +10.1 +0.2 -40.0 13.7 23.8 -10.1 11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12 1.580M 41.4 +10.1 +0.2 -40.0 11.7 23.6 -11.9 13 1.509M 41.2 +10.1 +0.2 -40.0 11.5 24.0 -12.5 14 1.659M 39.9 +10.1 +0.2 -40.0 10.2 23.1 -12.9 15 689.401k 47.4 +10.3 +0.1 -40.0 17.8 30.8 -13.0 16 1.300M 42.0 +10.1 +0.1 -40.0 12.2 25.3 -13.1 17 1.400M 40.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 <	Vert	-9.7	25.0	15.3	-40.0			+0.2	+10.1	45.0	1.340M	6
9 1.641M 43.1 +10.1 +0.2 -40.0 13.4 23.2 -9.8 10 1.530M 43.4 +10.1 +0.2 -40.0 13.7 23.8 -10.1 11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12 1.580M 41.4 +10.1 +0.2 -40.0 11.7 23.6 -11.9 13 1.509M 41.2 +10.1 +0.2 -40.0 11.5 24.0 -12.5 14 1.659M 39.9 +10.1 +0.2 -40.0 10.2 23.1 -12.9 15 689.401k 47.4 +10.3 +0.1 -40.0 17.8 30.8 -13.0 16 1.300M 42.0 +10.1 +0.1 -40.0 12.2 25.3 -13.1 17 1.400M 40.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 18 1.210M 41.0 +10.1 +0.2 -40.0 7.1 23.0 -15.9	Vert	-9.8	23.5	13.7	-40.0			+0.2	+10.1	43.4	1.599M	7
10 1.530M 43.4 +10.1 +0.2 -40.0 13.7 23.8 -10.1 11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12 1.580M 41.4 +10.1 +0.2 -40.0 11.7 23.6 -11.9 13 1.509M 41.2 +10.1 +0.2 -40.0 11.5 24.0 -12.5 14 1.659M 39.9 +10.1 +0.2 -40.0 10.2 23.1 -12.9 15 689.401k 47.4 +10.3 +0.1 -40.0 17.8 30.8 -13.0 16 1.300M 42.0 +10.1 +0.1 -40.0 12.2 25.3 -13.1 17 1.400M 40.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 18 1.210M 41.0 +10.1 +0.1 -40.0 11.2 25.9 -14.7 19 1.680M 36.8 +10.1 +0.2 -40.0 7.1 23.0 -15.9	Vert	-9.8	23.7	13.9	-40.0			+0.2	+10.1	43.6	1.559M	8
11 1.059M 46.2 +10.2 +0.1 -40.0 16.5 27.1 -10.6 12 1.580M 41.4 +10.1 +0.2 -40.0 11.7 23.6 -11.9 13 1.509M 41.2 +10.1 +0.2 -40.0 11.5 24.0 -12.5 14 1.659M 39.9 +10.1 +0.2 -40.0 10.2 23.1 -12.9 15 689.401k 47.4 +10.3 +0.1 -40.0 17.8 30.8 -13.0 16 1.300M 42.0 +10.1 +0.1 -40.0 12.2 25.3 -13.1 17 1.400M 40.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 18 1.210M 41.0 +10.1 +0.1 -40.0 11.2 25.9 -14.7 19 1.680M 36.8 +10.1 +0.2 -40.0 7.1 23.0 -15.9 20 919.378k 41.8 +10.4 +0.1 -40.0 12.3 28.3 -16.0	Vert	-9.8	23.2	13.4	-40.0			+0.2	+10.1	43.1	1.641M	9
12 1.580M 41.4 +10.1 +0.2 -40.0 11.7 23.6 -11.9 13 1.509M 41.2 +10.1 +0.2 -40.0 11.5 24.0 -12.5 14 1.659M 39.9 +10.1 +0.2 -40.0 10.2 23.1 -12.9 15 689.401k 47.4 +10.3 +0.1 -40.0 17.8 30.8 -13.0 16 1.300M 42.0 +10.1 +0.1 -40.0 12.2 25.3 -13.1 17 1.400M 40.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 18 1.210M 41.0 +10.1 +0.1 -40.0 11.2 25.9 -14.7 19 1.680M 36.8 +10.1 +0.2 -40.0 7.1 23.0 -15.9 20 919.378k 41.8 +10.4 +0.1 -40.0 12.3 28.3 -16.0 21 1.231M 39.4 +10.1 +0.1 -40.0 9.6 25.7 -16.1 <	Vert	-10.1	23.8	13.7	-40.0			+0.2	+10.1	43.4	1.530M	10
13 1.509M 41.2 +10.1 +0.2 -40.0 11.5 24.0 -12.5 14 1.659M 39.9 +10.1 +0.2 -40.0 10.2 23.1 -12.9 15 689.401k 47.4 +10.3 +0.1 -40.0 17.8 30.8 -13.0 16 1.300M 42.0 +10.1 +0.1 -40.0 12.2 25.3 -13.1 17 1.400M 40.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 18 1.210M 41.0 +10.1 +0.1 -40.0 11.2 25.9 -14.7 19 1.680M 36.8 +10.1 +0.2 -40.0 7.1 23.0 -15.9 20 919.378k 41.8 +10.4 +0.1 -40.0 12.3 28.3 -16.0 21 1.231M 39.4 +10.1 +0.1 -40.0 9.6 25.7 -16.1	Vert	-10.6	27.1	16.5	-40.0			+0.1	+10.2	46.2	1.059M	11
14 1.659M 39.9 +10.1 +0.2 -40.0 10.2 23.1 -12.9 15 689.401k 47.4 +10.3 +0.1 -40.0 17.8 30.8 -13.0 16 1.300M 42.0 +10.1 +0.1 -40.0 12.2 25.3 -13.1 17 1.400M 40.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 18 1.210M 41.0 +10.1 +0.1 -40.0 11.2 25.9 -14.7 19 1.680M 36.8 +10.1 +0.2 -40.0 7.1 23.0 -15.9 20 919.378k 41.8 +10.4 +0.1 -40.0 12.3 28.3 -16.0 21 1.231M 39.4 +10.1 +0.1 -40.0 9.6 25.7 -16.1	Vert	-11.9	23.6	11.7	-40.0			+0.2	+10.1	41.4	1.580M	12
15 689.401k 47.4 +10.3 +0.1 -40.0 17.8 30.8 -13.0 16 1.300M 42.0 +10.1 +0.1 -40.0 12.2 25.3 -13.1 17 1.400M 40.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 18 1.210M 41.0 +10.1 +0.1 -40.0 11.2 25.9 -14.7 19 1.680M 36.8 +10.1 +0.2 -40.0 7.1 23.0 -15.9 20 919.378k 41.8 +10.4 +0.1 -40.0 12.3 28.3 -16.0 21 1.231M 39.4 +10.1 +0.1 -40.0 9.6 25.7 -16.1	Vert	-12.5	24.0	11.5	-40.0			+0.2	+10.1	41.2	1.509M	13
16 1.300M 42.0 +10.1 +0.1 -40.0 12.2 25.3 -13.1 17 1.400M 40.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 18 1.210M 41.0 +10.1 +0.1 -40.0 11.2 25.9 -14.7 19 1.680M 36.8 +10.1 +0.2 -40.0 7.1 23.0 -15.9 20 919.378k 41.8 +10.4 +0.1 -40.0 12.3 28.3 -16.0 21 1.231M 39.4 +10.1 +0.1 -40.0 9.6 25.7 -16.1	Vert	-12.9	23.1	10.2	-40.0			+0.2	+10.1	39.9	1.659M	14
17 1.400M 40.0 +10.1 +0.2 -40.0 10.3 24.6 -14.3 18 1.210M 41.0 +10.1 +0.1 -40.0 11.2 25.9 -14.7 19 1.680M 36.8 +10.1 +0.2 -40.0 7.1 23.0 -15.9 20 919.378k 41.8 +10.4 +0.1 -40.0 12.3 28.3 -16.0 21 1.231M 39.4 +10.1 +0.1 -40.0 9.6 25.7 -16.1	Vert	-13.0	30.8	17.8	-40.0			+0.1	+10.3	47.4	689.401k	15
18 1.210M 41.0 +10.1 +0.1 -40.0 11.2 25.9 -14.7 19 1.680M 36.8 +10.1 +0.2 -40.0 7.1 23.0 -15.9 20 919.378k 41.8 +10.4 +0.1 -40.0 12.3 28.3 -16.0 21 1.231M 39.4 +10.1 +0.1 -40.0 9.6 25.7 -16.1	Vert	-13.1	25.3	12.2	-40.0			+0.1	+10.1	42.0	1.300M	16
19 1.680M 36.8 +10.1 +0.2 -40.0 7.1 23.0 -15.9 20 919.378k 41.8 +10.4 +0.1 -40.0 12.3 28.3 -16.0 21 1.231M 39.4 +10.1 +0.1 -40.0 9.6 25.7 -16.1	Vert	-14.3	24.6	10.3	-40.0			+0.2	+10.1	40.0	1.400M	17
20 919.378k 41.8 +10.4 +0.1 -40.0 12.3 28.3 -16.0 21 1.231M 39.4 +10.1 +0.1 -40.0 9.6 25.7 -16.1	Vert	-14.7	25.9	11.2	-40.0			+0.1	+10.1	41.0	1.210M	18
21 1.231M 39.4 +10.1 +0.1 -40.0 9.6 25.7 -16.1	Vert	-15.9	23.0	7.1	-40.0			+0.2	+10.1	36.8	1.680M	19
	Vert	-16.0	28.3	12.3	-40.0			+0.1	+10.4	41.8	919.378k	20
22 1.131M 40.0 +10.2 +0.1 -40.0 10.3 26.5 -16.2	Vert	-16.1	25.7	9.6	-40.0			+0.1	+10.1	39.4	1.231M	21
	Vert	-16.2	26.5	10.3	-40.0			+0.1	+10.2	40.0	1.131M	22
23 1.620M 36.5 +10.1 +0.2 -40.0 6.8 23.3 -16.5	Vert	-16.5	23.3	6.8	-40.0			+0.2	+10.1	36.5	1.620M	23
24 580.685k 45.4 +10.2 +0.1 -40.0 15.7 32.3 -16.6	Vert	-16.6	32.3	15.7	-40.0			+0.1	+10.2	45.4	580.685k	24

25	000 5 (2)-	41.1	+10.4	ı O 1	40.0	11.6	20.5	160	XI a set
25	900.562k	41.1	+10.4	+0.1	-40.0	11.6	28.5	-16.9	Vert
26	998.825k	39.4	+10.2	+0.1	-40.0	9.7	27.6	-17.9	Vert
27	1.490M	35.9	+10.1	+0.2	-40.0	6.2	24.1	-17.9	Vert
28	9.637M	41.3	+9.1	+0.7	-40.0	11.1	29.5	-18.4	Vert
29	11.664M	40.4	+9.7	+0.8	-40.0	10.9	29.5	-18.6	Vert
30	1.101M	37.4	+10.2	+0.1	-40.0	7.7	26.7	-19.0	Vert
31	1.252M	36.4	+10.1	+0.1	-40.0	6.6	25.6	-19.0	Vert
32	980.009k	38.0	+10.2	+0.1	-40.0	8.3	27.7	-19.4	Vert
33	4.997M	39.8	+9.6	+0.4	-40.0	9.8	29.5	-19.7	Vert
34	1.078M	35.9	+10.2	+0.1	-40.0	6.2	26.9	-20.7	Vert
35	1.032M	36.2	+10.2	+0.1	-40.0	6.5	27.3	-20.8	Vert
36	747.941k	38.8	+10.3	+0.1	-40.0	9.2	30.1	-20.9	Vert
37	628.771k	40.2	+10.2	+0.1	-40.0	10.5	31.6	-21.1	Vert
38	766.757k	37.5	+10.3	+0.1	-40.0	7.9	29.9	-22.0	Vert
39	3.601M	37.4	+9.8	+0.3	-40.0	7.5	29.5	-22.0	Vert
40	15.430M	35.7	+10.5	+0.9	-40.0	7.1	29.5	-22.4	Vert
41	5.574M	36.8	+9.5	+0.4	-40.0	6.7	29.5	-22.8	Vert
42	15.619M	35.0	+10.4	+0.9	-40.0	6.3	29.5	-23.2	Vert
43	15.556M	34.2	+10.4	+0.9	-40.0	5.5	29.5	-24.0	Vert
44	11.880M	34.6	+9.7	+0.8	-40.0	5.1	29.5	-24.4	Vert
45	3.673M	34.7	+9.8	+0.3	-40.0	4.8	29.5	-24.7	Vert
46	9.421M	34.6	+9.1	+0.7	-40.0	4.4	29.5	-25.1	Vert
47	658.041k	35.4	+10.3	+0.1	-40.0	5.8	31.2	-25.4	Vert
48	13.583M	33.1	+10.2	+0.8	-40.0	4.1	29.5	-25.4	Vert
49	1.147M	30.3	+10.2	+0.1	-40.0	0.6	26.4	-25.8	Vert
50	831.569k	32.9	+10.3	+0.1	-40.0	3.3	29.2	-25.9	Vert

Page 12 of 21 Report No.: 91407-7A

CKC Laboratories, Inc. Date: 11/22/2010 Time: 4:17:08 PM First Texas Products WO#: 91407 15.209 Radiated Emissions Test Distance: 3 Meters Sequence#: 7 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: First Texas Products
Specification: 15.209 Radiated Emissions

Work Order #: 91407 Date: 11/23/2010
Test Type: Maximized Emissions Time: 13:13:34

Equipment: Metal Detector Sequence#: 9
Manufacturer: First Texas Products, LLC Tested By: Chuck Kendall

Model: GoldBug S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	AN01991	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T3	AN00062	Preamp	8447D	6/23/2010	6/23/2012
	AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Metal Detector*	First Texas Products, LLC	GoldBug	None

Support Devices:

Function	Manufacturer	Model #	S/N
Headphones	Fisher Labs	89723-99960	None

Test Conditions / Notes:

15.209 Radiated Emissions

Metal detector is sitting horizontally atop an 80cm high wooden turn table and there is a wooden rotating disk with a coin atop it. When the rotating disk spins the coin comes in contact with the detector antenna and the audio sounds an alarm.

In accordance with 15.31e, testing was performed with new batteries installed.

Frequencies of interest are from 30 MHz to 1 GHz.

RBW = 120 kHz & the VBW = 360 kHz

Temp = 60° F

Relative Humidity = 40 %

EUT is Horizontal during testing with large antenna attached. Headphones are attached.

Vertical position and horizontal position investigated.

Ext Attn: 0 dB

Measur	Asurement Data: Reading listed by margin.					Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	59.994M	60.6	+1.8	+6.5	-30.9		+0.0	38.0	40.0	-2.0	Vert
)P								EUT Horiz	contal	
2	62.231M	59.5	+1.9	+6.6	-30.9		+0.0	37.1	40.0	-2.9	Horiz
									EUT vertice	al	
3	59.992M	59.6	+1.8	+6.5	-30.9		+0.0	37.0	40.0	-3.0	Vert
)P								EUT vertice	al	
٨	59.996M	63.4	+1.8	+6.5	-30.9		+0.0	40.8	40.0	+0.8	Vert
									EUT vertice	al	
٨	60.008M	62.2	+1.8	+6.5	-30.9		+0.0	39.6	40.0	-0.4	Vert
									EUT Horiz	contal	
6	62.780M	58.8	+1.9	+6.6	-30.9		+0.0	36.4	40.0	-3.6	Horiz
)P								EUT vertic	al	

Page 14 of 21 Report No.: 91407-7A

7 62.753M	58.6	+1.9	+6.6	-30.9	+0.0	36.2	40.0 -3.8	8 Vert
QP							EUT Horizontal	
8 62.740M	58.1	+1.9	+6.6	-30.9	+0.0	35.7	40.0 -4.3	8 Vert
QP							EUT vertical	
^ 62.750M	61.3	+1.9	+6.6	-30.9	+0.0	38.9	40.0 -1.1	Vert
							EUT Horizontal	
^ 62.650M	56.7	+1.9	+6.6	-30.9	+0.0	34.3	40.0 -5.7	Vert
							EUT vertical	
11 59.995M	58.2	+1.8	+6.5	-30.9	+0.0	35.6	40.0 -4.4	Horiz
QP							EUT Horizontal	
^ 59.985M	61.3	+1.8	+6.5	-30.9	+0.0	38.7		B Horiz
							EUT Horizontal	
13 62.771M	58.0	+1.9	+6.6	-30.9	+0.0	35.6		Horiz
QP							EUT Horizontal	
^ 62.771M	60.4	+1.9	+6.6	-30.9	+0.0	38.0	40.0 -2.0) Horiz
							EUT Horizontal	
15 55.882M	50.4	+1.8	+7.4	-30.9	+0.0	28.7		3 Horiz
QP							EUT Horizontal	
^ 55.878M	56.1	+1.8	+7.4	-30.9	+0.0	34.4	40.0 -5.6	6 Horiz
							EUT Horizontal	
17 55.967M	48.8	+1.8	+7.3	-30.9	+0.0	27.0	40.0 -13.0) Vert
QP							EUT Horizontal	
^ 55.958M	59.4	+1.8	+7.3	-30.9	+0.0	37.6	40.0 -2.4	Vert
							EUT Horizontal	
19 240.000M	43.3	+3.7	+12.1	-30.0	+0.0	29.1	46.0 -16.9	9 Horiz
							EUT vertical	
20 240.000M	43.3	+3.7	+12.1	-30.0	+0.0	29.1	46.0 -16.9	9 Horiz
							EUT Horizontal	
21 320.000M	36.7	+4.5	+14.2	-29.9	+0.0	25.5	46.0 -20.5	5 Horiz
							EUT vertical	
22 320.002M	36.5	+4.5	+14.2	-29.9	+0.0	25.3	46.0 -20.	7 Horiz
							EUT Horizontal	
23 149.737M	36.5	+2.9	+12.1	-30.6	+0.0	20.9	43.5 -22.0	6 Horiz
							EUT vertical	
24 149.637M	35.4	+2.9	+12.1	-30.6	+0.0	19.8	43.5 -23.	7 Horiz
							EUT Horizontal	

CKC Laboratories, Inc. Date: 11/23/2010 Time: 13:13:34 First Texas Products WO#: 91407 15:209 Radiated Emissions Test Distance: 3 Meters Sequence#: 9 Ext ATTN: 0 dB

Test Setup Photos

RSS 210

99% Occupied Bandwidth

Test Conditions:

Metal detector is vertical, horizontal or perpendicular atop an 80cm high wooden turn table and there is a wooden rotating disk with a coin atop it. When the rotating disk spins the coin comes in contact with the detector antenna and the audio sounds an alarm.

In accordance with 15.31e, testing was performed with new batteries installed.

Frequencies of interest is 19.2 kHz

RBW = 15 Hz & the VBW = 300 kHz

 $Temp = 40^{\circ}F$

Relative Humidity = 40 %

Engineer Name: C. Kendall

Test Equipment							
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due		
ANMA10M	Cable	NA	NA	5/10/2009	5/10/2011		
AN00226	Loop Antenna	6502	EMCO	4/10/2009	4/10/2011		
AN02111	Spectrum	8593EM	НР	3/6/2009	3/6/2011		
	Analyzer						

Test Data

Page 18 of 21 Report No.: 91407-7A

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 20 of 21 Report No.: 91407-7A

SAMPLE CALCULATIONS							
	Meter reading (dBμV)						
+	Antenna Factor	(dB)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBµV/m)					

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST BEGINNING FREQUENCY ENDING FREQUENCY BANDWIDTH SETTING							
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 21 of 21 Report No.: 91407-7A