

Generalized Risk Parity Portfolio Optimization: An ADMM Approach

CORS Annual Conference Saskatoon, SK May 27, 2019

Giorgio Costa

University of Toronto

Department of Mechanical and Industrial Engineering

Joint work with Roy H. Kwon

Introduction

What is this presentation about?

- ► We wish to construct an optimal portfolio
 - \Rightarrow High return
 - \Rightarrow Low risk
 - ⇒ Well-diversified
 - ⇒ Flexibility for the investor

Introduction

What is this presentation about?

- ► We wish to construct an optimal portfolio
 - ⇒ High return
 - ⇒ Low risk
 - ⇒ Well-diversified
 - ⇒ Flexibility for the investor
- ► Meeting these criteria is **difficult**
 - ⇒ It may lead to non-convex problems

Introduction

Could we design a model that:

- ► Meets the investor's criteria
- ► Addresses non-convexity

Portfolio Optimization

Assets and Portfolios

- ▶ An asset i has some expected return μ_i and variance (risk) σ_i^2
- ▶ A portfolio $x \in \mathbb{R}^n$ is a collection of n financial assets
 - $\Rightarrow x_i$ is our weight on asset i
- ▶ The relevant measures of risk and return are

Assets

 \Rightarrow Return: $\mu \in \mathbb{R}^n$

 \Rightarrow Risk: $\Sigma \in \mathbb{R}^{n \times n}$

<u>Portfolio</u>

 \Rightarrow Return: $\mu_p = \boldsymbol{\mu}^T \boldsymbol{x}$

 \Rightarrow Risk: $\sigma_p^2 = oldsymbol{x}^T oldsymbol{\Sigma} oldsymbol{x}$

Portfolio Optimization

Mean–Variance Optimization (MVO)

► Introduced by Markowitz (1952),

$$\min_{m{x}} \ m{x}^T m{\Sigma} m{x} - \lambda m{\mu}^T m{x}$$
 Min. risk and max. return s.t. $\mathbf{1}^T m{x} = 1$ Budget constraint $(m{x} \geq 0)$ Disallow short sales (optional)

- ▶ Weaknesses:
 - ⇒ May lead to over-concentrated portfolios
 - \Rightarrow The estimated parameter μ is very **noisy**

What is risk parity?

- ► Risk parity seeks to find portfolios based on a risk-weighted basis
- ▶ Does not require estimated returns as an input, improving stability
- ► Each asset contributes the same level of risk
- ► The resulting portfolio is well-diversified

Measuring the risk contribution per asset

► Decompose the portfolio variance

$$\sigma_p^2 = \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} = \sum_{i=1}^n x_i (\boldsymbol{\Sigma} \boldsymbol{x})_i$$

 $\Rightarrow x_i(\Sigma x)_i$ is the individual **risk contribution** of asset i

Measuring the risk contribution per asset

▶ Decompose the portfolio variance

$$\sigma_p^2 = \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} = \sum_{i=1}^n x_i (\boldsymbol{\Sigma} \boldsymbol{x})_i$$

 $\Rightarrow x_i(\Sigma x)_i$ is the individual risk contribution of asset i

► Risk parity: Take a least-squares approach

$$\min_{\boldsymbol{x}} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(x_i (\boldsymbol{\Sigma} \boldsymbol{x})_i - x_j (\boldsymbol{\Sigma} \boldsymbol{x})_j \right)^2$$
s.t.
$$\mathbf{1}^T \boldsymbol{x} = 1$$

$$\boldsymbol{x} \ge \mathbf{0}$$

Non-convexity of risk parity

- ▶ **Problem**: The objective is non-convex
 - \Rightarrow In standard quadratic notation: $x_i(\Sigma x)_i = x^T A_i x$
 - $\Rightarrow A_i \in \mathbb{R}^{n \times n}$ captures the individual risk contribution of asset i
 - \Rightarrow The matrices A_i are indefinite

Non-convexity of risk parity

- ► **Problem**: The objective is non-convex
 - \Rightarrow In standard quadratic notation: $x_i(\Sigma x)_i = x^T A_i x$
 - $\Rightarrow A_i \in \mathbb{R}^{n \times n}$ captures the individual risk contribution of asset i
 - \Rightarrow The matrices A_i are indefinite
- ► Solution: Disallow short selling
 - ⇒ This limits the investor's possibilities

Formulate a new optimization problem

Formulate a new optimization problem

- ➤ We seek a desirable portfolio
 - ⇒ Minimize risk and maximize return
 - ⇒ Risk-based diversification
 - ⇒ Short selling allowed

Formulate a new optimization problem

- ▶ We seek a desirable portfolio
 - ⇒ Minimize risk and maximize return
 - ⇒ Risk-based diversification
 - ⇒ Short selling allowed
- ► Generalized Risk Parity (GRP)

$$\min_{\boldsymbol{x}, \ \theta} \ \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} - \lambda \boldsymbol{\mu}^T \boldsymbol{x}$$
s.t. $(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i = 1, ..., n$

$$\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i = 1, ..., n$$

$$\boldsymbol{1}^T \boldsymbol{x} = 1$$

A closer look at the risk diversification constraints

$$(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i = 1, ..., n$$

 $\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i = 1, ..., n$

- $ightharpoonup heta \in \mathbb{R}$ is an auxiliary variable
- $ightharpoonup c \in \mathbb{R}_+$ is a user-defined risk diversification parameter

A closer look at the risk diversification constraints

$$(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i = 1, ..., n$$

 $\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i = 1, ..., n$

- $ightharpoonup heta \in \mathbb{R}$ is an auxiliary variable.
- ▶ $c \in \mathbb{R}_+$ is a user-defined risk diversification parameter.

 $\Rightarrow c = 0$ enforces perfect risk parity

 $\Rightarrow c > 1$ reverts to MVO

Adding robustness to the portfolio return

 $\blacktriangleright \mu$ is a **noisy** estimate

Adding robustness to the portfolio return

- $\blacktriangleright \mu$ is a **noisy** estimate
- ► Robust GRP

$$\min_{\boldsymbol{x}, \ \theta} \ \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} - \lambda \left(\boldsymbol{\mu}^T \boldsymbol{x} - \omega \| \boldsymbol{\Omega}^{1/2} \boldsymbol{x} \|_2 \right)$$
s.t. $(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i=1,...,n$

$$\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i=1,...,n$$

$$\boldsymbol{1}^T \boldsymbol{x} = 1$$

 $m \Omega \in \mathbb{R}^{n imes n}$ and $\omega \in \mathbb{R}_+$ quantify the estimation error around $m \mu$

The issue of non-convexity still remains

$$(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i = 1, ..., n$$

 $\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i = 1, ..., n$

The issue of non-convexity still remains

$$(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i = 1, ..., n$$

 $\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i = 1, ..., n$

► Relax the problem into a Semidefinite Program (SDP)

Semidefinite relaxation

▶ Introduce a new variable $X \in \mathbb{R}^{n \times n}$

 \Rightarrow Non-convex: $X = xx^T$

Semidefinite relaxation

▶ Introduce a new variable $X \in \mathbb{R}^{n \times n}$

 \Rightarrow Non-convex: $\boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^T$

 \Rightarrow Convex relaxation: $X \succeq xx^T$

$$\begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{nn} \end{bmatrix} \succeq \begin{bmatrix} x_1^2 & x_1 x_2 & \cdots & x_1 x_n \\ x_2 x_1 & x_2^2 & \cdots & x_2 x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_n x_1 & x_n x_2 & \cdots & x_n^2 \end{bmatrix}$$

Semidefinite relaxation of the problem

- ▶ Introduce a new variable $X \in \mathbb{R}^{n \times n}$
 - \Rightarrow Non-convex: $oldsymbol{X} = oldsymbol{x} oldsymbol{x}^T$
 - \Rightarrow Convex relaxation: $X \succeq xx^T$
- ► Taking the Schur complement, $Y = \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$.

Semidefinite relaxation of the problem

- ▶ Introduce a new variable $X \in \mathbb{R}^{n \times n}$
 - \Rightarrow Non-convex: $X = xx^T$
 - \Rightarrow Convex relaxation: $X \succeq xx^T$
- ► Taking the Schur complement, $Y = \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$.
- ► Align the input parameters with the dimensions of *Y*

$$m{Q} = egin{bmatrix} m{\Sigma} & -rac{\lambda}{2}m{\mu} \ -rac{\lambda}{2}m{\mu}^T & m{0} \end{bmatrix}, \quad m{B_i} = egin{bmatrix} m{A_i} & m{0} \ m{0}^T & 0 \end{bmatrix} ext{ for } i=1,...,n.$$

Relax the GRP model into a SDP

$$\min_{\boldsymbol{x},\ \theta} \ \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} - \lambda \left(\boldsymbol{\mu}^T \boldsymbol{x} - \omega \| \boldsymbol{\Omega}^{1/2} \boldsymbol{x} \|_2 \right)$$
s.t. $(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i=1,...,n$

$$\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i=1,...,n$$

$$\boldsymbol{1}^T \boldsymbol{x} = 1$$

Relax the GRP model into a SDP

Original
$$\Rightarrow$$

$$\min_{\boldsymbol{x},\ \theta} \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} - \lambda \left(\boldsymbol{\mu}^T \boldsymbol{x} - \omega \| \boldsymbol{\Omega}^{1/2} \boldsymbol{x} \|_2 \right)$$
s.t. $(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \geq 0, \quad i=1,...,n$

$$\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \geq 0, \quad i=1,...,n$$

$$\boldsymbol{1}^T \boldsymbol{x} = 1$$

$$\begin{aligned} \text{SDP} \Rightarrow \qquad & \underset{\boldsymbol{Y}, \ \theta}{\min} \quad & \text{Tr}(\boldsymbol{Q}\boldsymbol{Y}) + \lambda \omega \|\boldsymbol{\Omega}^{1/2}\boldsymbol{Y}_{1:n,n+1}\|_2 \\ \text{s.t.} \quad & (1+c)\theta - \text{Tr}(\boldsymbol{B}_i\boldsymbol{Y}) \geq 0, \quad i=1,...,n \\ & \text{Tr}(\boldsymbol{B}_i\boldsymbol{Y}) - (1-c)\theta \geq 0, \quad i=1,...,n \\ & \sum_{i=1}^n Y_{i,n+1} = 1 \\ & Y_{n+1,n+1} = 1 \\ & \boldsymbol{Y} \succeq 0 \end{aligned}$$

Relax the GRP model into a SDP

Original
$$\Rightarrow$$

$$\min_{\boldsymbol{x},\ \theta} \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} - \lambda \left(\boldsymbol{\mu}^T \boldsymbol{x} - \omega \| \boldsymbol{\Omega}^{1/2} \boldsymbol{x} \|_2 \right)$$
s.t. $(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \geq 0, \quad i=1,...,n$

$$\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \geq 0, \quad i=1,...,n$$

$$\boldsymbol{1}^T \boldsymbol{x} = 1$$

$$\begin{aligned} & \underset{\boldsymbol{Y}, \ \theta}{\text{MDP}} \Rightarrow & \underset{\boldsymbol{Y}, \ \theta}{\min} & \operatorname{Tr}(\boldsymbol{Q}\boldsymbol{Y}) + \lambda \omega \| \boldsymbol{\Omega}^{1/2}\boldsymbol{Y}_{1:n,n+1} \|_2 & \Big\} \, f(\boldsymbol{Y}) \\ & \text{s.t.} & (1+c)\theta - \operatorname{Tr}(\boldsymbol{B}_i\boldsymbol{Y}) \geq 0, \quad i=1,...,n \\ & \operatorname{Tr}(\boldsymbol{B}_i\boldsymbol{Y}) - (1-c)\theta \geq 0, \quad i=1,...,n \\ & \sum_{i=1}^n Y_{i,n+1} = 1 \\ & \boldsymbol{Y}_{n+1,n+1} = 1 \\ & \boldsymbol{Y} \succeq 0 \end{aligned} \right\} \mathcal{S}$$

How do we solve the original problem?

► Recall
$$Y = \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$$

▶ If $X = xx^T$, we recover the original problem

How do we solve the original problem?

$$lacktriangleright$$
 Recall $Y = egin{bmatrix} X & x \ x^T & 1 \end{bmatrix} \succeq 0$

- ▶ If $X = xx^T$, we recover the original problem
- ► This is equivalent to a rank-1 constraint

$$\boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^T \iff \operatorname{rank}(\boldsymbol{Y}) = 1$$

How do we solve the original problem?

► Recall
$$Y = \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$$

- ▶ If $X = xx^T$, we recover the original problem
- ► This is equivalent to a rank-1 constraint

$$\boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^T \iff \operatorname{rank}(\boldsymbol{Y}) = 1$$

► Idea: Approximate the rank-1 condition

Approximate the rank-1 condition

- ► Use the Alternating Direction Method of Multipliers (ADMM)
- ightharpoonup Transfer the rank-1 requirement to a new variable Z

$$\Rightarrow Z = Y$$

$$\Rightarrow \operatorname{rank}(\boldsymbol{Z}) = 1$$

Approximate the rank-1 condition

- ▶ Use the Alternating Direction Method of Multipliers (ADMM)
- ightharpoonup Transfer the rank-1 requirement to a new variable Z

$$\Rightarrow \mathbf{Z} = \mathbf{Y}$$
$$\Rightarrow \operatorname{rank}(\mathbf{Z}) = 1$$

► Reformulate as an Augmented Lagrangian

$$L(\boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{\Lambda}) = f(\boldsymbol{Y}) + \frac{\rho}{2} \|\boldsymbol{Y} - (\boldsymbol{Z} - \frac{1}{\rho} \boldsymbol{\Lambda})\|_F^2$$

 $\Rightarrow \rho \in \mathbb{R}_+$ is a tuning parameter

 $oldsymbol{
ightarrow} oldsymbol{\Lambda} \in \mathbb{R}^{(n+1) imes(n+1)}$ is the dual variable of the constraint $oldsymbol{Z} = oldsymbol{Y}$

ADMM algorithm

► Iterate through the steps:

1) Convex
$$Y$$
-minimization: $Y^{k+1} = \underset{Y,\theta \in S}{\operatorname{argmin}} L(Y, Z^k, \Lambda^k)$

ADMM algorithm

► Iterate through the steps:

1) Convex
$$Y$$
-minimization: $Y^{k+1} = \underset{Y,\theta \in S}{\operatorname{argmin}} L(Y, Z^k, \Lambda^k)$

2) Non-convex Z-minimization:
$$\mathbf{Z}^{k+1} = \underset{\mathrm{rank}(\mathbf{Z})=1}{\operatorname{argmin}} L(\mathbf{Y}^{k+1}, \mathbf{Z}, \mathbf{\Lambda}^k)$$

ADMM algorithm

► Iterate through the steps:

1) Convex
$$Y$$
-minimization: $Y^{k+1} = \underset{Y,\theta \in S}{\operatorname{argmin}} L(Y, Z^k, \Lambda^k)$

2) Non-convex Z-minimization:
$$\mathbf{Z}^{k+1} = \underset{\text{rank}(\mathbf{Z})=1}{\operatorname{argmin}} L(\mathbf{Y}^{k+1}, \mathbf{Z}, \mathbf{\Lambda}^k)$$

3) Dual variable
$$\Lambda$$
-update: $\Lambda^{k+1} = \Lambda^k + \rho(Y^{k+1} - Z^{k+1})$

ADMM algorithm

► Iterate through the steps:

1) Convex
$$Y$$
-minimization: $Y^{k+1} = \underset{Y,\theta \in S}{\operatorname{argmin}} L(Y, Z^k, \Lambda^k)$

2) Non-convex Z-minimization:
$$Z^{k+1} = \underset{\text{rank}(Z)=1}{\operatorname{argmin}} L(Y^{k+1}, Z, \Lambda^k)$$

3) Dual variable
$$\Lambda$$
-update: $\Lambda^{k+1} = \Lambda^k + \rho(Y^{k+1} - Z^{k+1})$

► We can efficiently solve the **non-convex** step

ADMM algorithm

► Iterate through the steps:

1) Convex Y-minimization:
$$\mathbf{Y}^{k+1} = \underset{\mathbf{Y},\theta \in \mathcal{S}}{\operatorname{argmin}} L(\mathbf{Y}, \mathbf{Z}^k, \mathbf{\Lambda}^k)$$

2) Non-convex Z-minimization:
$$\mathbf{Z}^{k+1} = \underset{\text{rank}(\mathbf{Z})=1}{\operatorname{argmin}} L(\mathbf{Y}^{k+1}, \mathbf{Z}, \mathbf{\Lambda}^k)$$

3) Dual variable
$$\Lambda$$
-update: $\Lambda^{k+1} = \Lambda^k + \rho(Y^{k+1} - Z^{k+1})$

- ▶ We can efficiently solve the non-convex step
 - \Rightarrow Singular Value Decomposition of $m{Y}^{k+1} + rac{1}{
 ho} m{\Lambda}^k$

$$\boldsymbol{Z}^{k+1} = s_1 \boldsymbol{v}_1 \boldsymbol{v}_1^T,$$

 $\Rightarrow s_1 \in \mathbb{R}$ and $v_1 \in \mathbb{R}^{n+1}$ are the top singular value and vector

ADMM algorithm

- ightharpoonup As we iterate, we close the distance between Y and Z
- ightharpoonup Z is the closest rank-1 approximation of Y

ADMM algorithm

- ightharpoonup As we iterate, we close the distance between Y and Z
- ightharpoonup Z is the closest rank-1 approximation of Y
- ► At convergence, rank(Y) = rank(Z) = 1

$$\Rightarrow \boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^T$$

⇒ We solve the original problem

ADMM algorithm

- ightharpoonup As we iterate, we close the distance between Y and Z
- ightharpoonup Z is the closest rank-1 approximation of Y
- ► At convergence, rank(Y) = rank(Z) = 1

$$\Rightarrow \boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^T$$

- ⇒ We solve the original problem
- ▶ By tightening the lower bound, we can attain feasibility
 - ⇒ We converge to a highly quality local optimum

Experimental setup

- ► Two experiments with n = 33 and n = 50
- ▶ Data
 - ⇒ U.S. stocks belonging to the S&P 500 index
 - ⇒ Weekly rates of return from 01-Jan-2007 to 31-Dec-2009

Experimental setup

- ► Two experiments with n = 33 and n = 50
- ▶ Data
 - ⇒ U.S. stocks belonging to the S&P 500 index
 - ⇒ Weekly rates of return from 01-Jan-2007 to 31-Dec-2009
- ► Competing models
 - \Rightarrow Robust MVO \Rightarrow Non-convex GRP
 - ⇒ SDP relaxation of GRP ⇒ Non-convex GRP (warm)
 - \Rightarrow ADMM

- ► Measures of performance
 - ⇒ Objective value
 - ⇒ Coefficient of variation of the asset risk contributions
 - ⇒ Ex-post "c" parameter
 - ⇒ Runtime

- ► Measures of performance
 - ⇒ Objective value } Lower is better
 - ⇒ Coefficient of variation of the asset risk contributions
 - ⇒ Ex-post "c" parameter
 - ⇒ Runtime
- ▶ Note: We ignore the Augmented Lagrangian terms

- ► Measures of performance
 - ⇒ Objective value
 - ⇒ Coefficient of Variation (CV) } Lower = more diversification
 - ⇒ Ex-post "c" parameter
 - ⇒ Runtime

- ▶ Measures of performance
 - ⇒ Objective value
 - ⇒ Coefficient of Variation (CV)
 - \Rightarrow Ex-post "c" parameter $\}$ should approximate the user-defined "c"
 - \Rightarrow Runtime
- ▶ **Note**: *c* is the percentage value the asset risk contributions can deviate from their midpoint

- ► Measures of performance
 - ⇒ Objective value
 - ⇒ Coefficient of Variation (CV)
 - ⇒ Ex-post "c" parameter
 - **⇒ Runtime** } Lower is better

Coefficient of variation and objective value convergence

Coefficient of variation and objective value convergence

	$n=33, c=0.25, \lambda=0.1$					
	MVO	SDP	Non-Convex	NC (Warm)	ADMM	
Obj. Value	0.10	0.11	0.536	0.203	0.146	
CV	1.72	1.06	0.258	0.253	0.253	
Ex-post c	1.87	11.9	0.250	0.250	0.259	
Runtime (sec)	0.03	0.03	0.049	0.061	103.1	
	$n=50, c=0.15, \lambda=0.1$					
	MVO	SDP	Non-Convex	NC (Warm)	ADMM	
Obj. Value	0.09	0.10	0.223	0.259	0.141	
CV	1.75	1.12	0.150	0.150	0.150	
Ex-post c	1.99	6.93	0.151	0.151	0.155	
Runtime (sec)	0.04	0.25	0.101	0.103	1,376.3	

	$n=33, c=0.25, \lambda=0.1$					
	MVO	SDP	Non-Convex	NC (Warm)	ADMM	
Obj. Value	0.10	0.11	0.536	0.203	0.146	
CV	1.72	1.06	0.258	0.253	0.253	
Ex-post c	1.87	11.9	0.250	0.250	0.259	
Runtime (sec)	0.03	0.03	0.049	0.061	103.1	
	$n=50, c=0.15, \lambda=0.1$					
	MVO	SDP	Non-Convex	NC (Warm)	ADMM	
Obj. Value	0.09	0.10	0.223	0.259	0.141	
CV	1.75	1.12	0.150	0.150	0.150	
Ex-post c	1.99	6.93	0.151	0.151	0.155	
Runtime (sec)	0.04	0.25	0.101	0.103	1,376.3	

	$n=33, c=0.25, \lambda=0.1$					
	MVO	SDP	Non-Convex	NC (Warm)	ADMM	
Obj. Value	0.10	0.11	0.536	0.203	0.146	
CV	1.72	1.06	0.258	0.253	0.253	
Ex-post c	1.87	11.9	0.250	0.250	0.259	
Runtime (sec)	0.03	0.03	0.049	0.061	103.1	
	$n=50, c=0.15, \lambda=0.1$					
	MVO	SDP	Non-Convex	NC (Warm)	ADMM	
Obj. Value	0.09	0.10	0.223	0.259	0.141	
CV	1.75	1.12	0.150	0.150	0.150	
Ex-post c	1.99	6.93	0.151	0.151	0.155	
Runtime (sec)	0.04	0.25	0.101	0.103	1,376.3	

	$n = 33, c = 0.25, \lambda = 0.1$					
	MVO	SDP	Non-Convex	NC (Warm)	ADMM	
Obj. Value	0.10	0.11	0.536	0.203	0.146	
CV	1.72	1.06	0.258	0.253	0.253	
Ex-post c	1.87	11.9	0.250	0.250	0.259	
Runtime (sec)	0.03	0.03	0.049	0.061	103.1	
	$n=50, c=0.15, \lambda=0.1$					
	MVO	SDP	Non-Convex	NC (Warm)	ADMM	
Obj. Value	0.09	0.10	0.223	0.259	0.141	
CV	1.75	1.12	0.150	0.150	0.150	
Ex-post c	1.99	6.93	0.151	0.151	0.155	
Runtime (sec)	0.04	0.25	0.101	0.103	1,376.3	

Conclusion

What was our goal?

- ► We wanted to address
 - ⇒ Risk–return profile
 - ⇒ Risk-based diversification
 - ⇒ Short selling (flexibility)

Conclusion

What was our goal?

- ▶ We wanted to address
 - ⇒ Risk–return profile
 - ⇒ Risk-based diversification
 - ⇒ Short selling (flexibility)
- ► Meeting these criteria is difficult
 - ⇒ We have a **non-convex** problem

Conclusion

Our contribution

- ► Proposed a generalized risk parity model
- ► Addressed the non-convexity of risk parity
 - ⇒ Imposed a rank-1 constraint via ADMM