Logica e Metodi Formali

Esercizi Espressioni Regolari

Marco Console

Ingegneria Informatica e Automatica, Sapienza Università di Roma

Esercizio 1

1.
$$a+b+ab$$

2.
$$(ab)^*(ba)^*$$

3.
$$(a+bb)(a+b)^*(ab)$$

4.
$$(ab + ba)^*$$

5.
$$a^*((aa)^*b + (bb)^*a)b^*$$

1.
$$a + b + ab$$

$$- L(r) = \{a, b, ab\}$$

$$- aa \notin L(r)$$

- 2. $(ab)^*(ba)^*$
 - $L(r) = \{x \mid x = YZ, Y \text{ è una sequenza di } ab, Z \text{ è una sequenza di } ba\}$
 - $ababba \in L(r)$; $baab \notin L(r)$

- 3. $(a+bb)(a+b)^*(ab)$
 - $-L(r) = \{x \mid x = XYab \ con \ X \in \{a,bb\} \ e \ Y \ un \ stringa \ su \ \{a,b\} \}$
 - $ababab \in L(r)$
 - $-bbabab \in L(r)$
 - $babab \notin L(r)$
 - $-abb \notin L(r)$

```
4. (ab + ba)^*

- L(r) = \{x \mid x \text{ è una sequenza di ab e ba }\}

- ababab \in L(r)

- baabab \in L(r)

- babab \notin L(r)

- baaba \notin L(r)
```

Per le seguenti espressioni regolari r, definire il linguaggio L(r) definito da r, fornire un esempio di una stringa $\sigma \in L(r)$ e una stringa $\tau \notin L(r)$ nell'alfabeto $\Sigma = \{a, b\}$

5. $a^*((aa)^*b + (bb)^*a)b^*$ $- \{a^nb^l \mid n \ge 0, l \ge 1\} \cup \{a^n(bb)^mab^l \mid n \ge 0, m \ge 0, l \ge 0\}$ $- aaab \in L(r)$ $- aaa \in L(r)$ $- aba \notin L(r)$ $- baa \notin L(r)$

Esercizio 2

- Sia $\Sigma = \{a, b\}$. Per ognuno dei seguenti linguaggi \mathcal{L} , definire un'espressione regolare r tale che $\mathcal{L} = L(r)$
- 1. Stringhe di lunghezza n > 3 il cui secondo carattere è a e il quinto (se esiste) è b
- 2. Tutte le possibili stringhe su Σ il cui terzultimo carattere è b
- 3. Stringhe di lunghezza pari
- 4. Stringhe di lunghezza dispari
- 5. Stringhe con un numero di a pari

- Sia $\Sigma = \{a, b\}$. Per ognuno dei seguenti linguaggi \mathcal{L} , definire un'espressione regolare r tale che $\mathcal{L} = L(r)$
- 1. Stringhe di lunghezza n > 3 il cui secondo carattere è a e il quinto (se esiste) è b

$$- r_1 = (a+b)a(a+b)(a+b+ab(a+b)^* + bb(a+b)^*)$$

- Sia $\Sigma = \{a, b\}$. Per ognuno dei seguenti linguaggi \mathcal{L} , definire un'espressione regolare r tale che $\mathcal{L} = L(r)$
- 2. Tutte le possibili stringhe su Σ il cui terzultimo carattere è b

$$- r_2 = (a + b)^* b (aa + ab + ba + bb)$$

- Sia $\Sigma = \{a, b\}$. Per ognuno dei seguenti linguaggi \mathcal{L} , definire un'espressione regolare r tale che $\mathcal{L} = L(r)$
- 3. Stringhe di lunghezza pari

$$- r_3 = ((a+b)(a+b))^*$$

• Sia $\Sigma = \{a, b\}$. Per ognuno dei seguenti linguaggi \mathcal{L} , definire un'espressione regolare r tale che $\mathcal{L} = L(r)$

4. Stringhe di lunghezza dispari

$$- r_4 = (a+b)((a+b)(a+b))^*$$

- Sia $\Sigma = \{a, b\}$. Per ognuno dei seguenti linguaggi \mathcal{L} , definire un'espressione regolare r tale che $\mathcal{L} = L(r)$
- 5. Stringhe con un numero di a pari

$$- r_4 = b^* (a(b)^*a)^*b^*$$

Esercizio 3

Considera il seguente grafo etichettato. Fornire un'espressione regolare per il linguaggio delle etichette degli archi nei percorsi da A a B.

Considera la seguente mappa stradale. Fornire un'espressione regolare che definisca tutti i percorsi, anche passanti più volte per uno stesso nodo, tra A e B

$$(ad+f)(ebd)^*(ec+g)$$

Esercizio 4

Fornire un'espressione regolare equivalente al seguente automa.

•
$$A = \langle \Sigma, Q, \delta, I, F \rangle$$

•
$$\Sigma = \{a, b\}$$

•
$$Q = \{q_0, q_1, q_2, q_3\}$$

•
$$I = q_0$$

•
$$F = \{q_3\}$$

(q,σ)	$\delta(q,\sigma)$
(q_0,a)	$\{q_0\}$
(q_0,b)	$\{q_0,q_1\}$
(q_1,a)	$\{q_2\}$
(q_1, b)	$\{q_2\}$
(q_2,a)	$\{q_3\}$
(q_2,b)	$\{q_3\}$
(q_3,a)	{ }
(q_3,b)	{ }

$$r = \epsilon (a \cup b)^* b (a \cup b) (a \cup b) \epsilon$$

Esercizio 5

Fornire un'espressione regolare equivalente al seguente ASFND

$$\epsilon (a)^*b(a)^*b (b (a)^*b(a)^*b + a)^*\epsilon$$

$$r = \epsilon (a)^* b(a)^* b (b (a)^* b(a)^* b + a)^* \epsilon$$