Hands on Machine Learning 2nd Edition

Chapter 6 – Decision Trees

Prepared by Glenn Miller for the San Diego Machine Learning Meetup™ group

Decision Tree (DT) + / -

ADVANTAGES

- Simple to understand and interpret ('White Box' model)
- Little data prep (e.g. no scaling)
- Versatile (classification and regression)
- Cost of using the tree is logarithmic in # of data points used to train the tree
- Can handle multi-output problems
- Can validate using statistical tests
- Performs well even if its assumptions are somewhat violated

DISADVANTAGES

- Prone to overfitting (must restrict degrees of freedom)
- Can be unstable (small data variations produce big changes to the tree)
- Predictions are piecewise constant approximations (not smooth or continuous)
- DT learners create biased trees if some classes dominate
- Practical DT algos cannot guarantee to return the globally optimal DT b/c learning an optimal DT is NP-complete

Source: Scikit-Learn documentation

Computational Complexity

- Predictions are fast, even with large training sets
- Algorithm compares all available* features on all samples at each node
- Big O O($n \times m \log_2(m)$)
- Presorting the data (presort=True) can speed up training for small data sets

^{*}If max_features is set, the algorithm will consider max_features features at each split, subject to a minimum one valid partition of the node samples

Regulation / Pruning

Impurity

Gini impurity index

$$G_i = 1 - \sum_{k=1}^{n} p_{i,k}^{2}$$

Where $P_{i,k}$ is the ratio of k instances among the training instances in the i^{th} node

Entropy / Information Gain

•
$$H_i = -\sum_{k=1}^{n} P_{i,k} log_2(P_{i,k})$$

CART Algorithm (Scikit-Learn)

Splits the training set into two subsets using a single feature (k) and a threshold (t_k)

Classification (DecisionTreeClassifier)

- Predict a class in each node
- Minimize impurity
- Cost function:

$$J(k,t_k) = \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}}$$

Regression (DecisionTreeRegressor)

- Predict a value in each node
- Minimize MSE
- Cost function:

$$J(k,t_k) = \frac{m_{\text{left}}}{m} MSE_{\text{left}} + \frac{m_{\text{right}}}{m} MSE_{\text{right}}$$

G is impurity of the subset; m is number of instances in the subset

(Some) Iris Species

• Setosa

Versicolor

Versicolor

Classification

Regression

Regulation / Pruning

Source: HOML 2nd edition pp. 182,184 / https://github.com/ageron/handson-ml2/blob/master/06_decision_trees.ipynb

Instability

Sensitivity to training set rotation

Sensitivity to training set details

Source: HOML 2nd edition pp. 185,186 / https://github.com/ageron/handson-ml2/blob/master/06_decision_trees.ipynb

Conclusion

• Decision trees are powerful, versatile, and easy to understand

• They have limitations, which can be addressed – e.g. averaging trees reduces instability (random forests)

More on this in the chapter 7, 'Ensemble Learning and Random Forests'