Całkowanie numeryczne metodą Simpsona

Wiktoria Zaczyk

27.05.2020

1 Wstęp teoretyczny

Całkowanie numeryczne

Oznacza zastosowanie metod numerycznych w celu wyznaczenia przybliżonej wartości całki oznaczonej. Proste metody całkowania numerycznego polegają na przybliżeniu całki za pomocą odpowiedniej sumy ważonej wartości całkowanej funkcji w kilku punktach. Aby uzyskać dokładniejsze przybliżenie dzieli się przedział całkowania na niewielkie fragmenty. Ostateczny wynik jest sumą oszacowań całek w poszczególnych podprzedziałach.

$$C = \int_{a}^{b} f(x)dx \tag{1}$$

Kwadratury Newtona-Cotesa

Rozważamy przypadek z węzłami równoodległymi $x_i = a + i \cdot h$, i = 0, 1, 2, ..., N. Jeśli końce przedziału są również węzłami wówczas kwardatury noszą nazwę kwadratur zamkniętych. Przybliżamy funkcję podcałkową wielomianem Lagrange'a stopnia conajwyżej N:

$$f(x_i) = L_N(x_i), i = 1, 2, ..., N$$
(2)

$$L_N(x) = \sum_{k=0}^{N} f(x_k) \Phi_k(x)$$
(3)

$$\Phi_k(x) = \prod_{j=0, j \neq k} \frac{x - x_j}{k_k - x_j} \tag{4}$$

Numerycznie całkę policzyć można z następującego wzoru:

$$S(f) = \sum_{k=0}^{N} A_k f(x_k), \quad x \in [a, b]$$

$$\tag{5}$$

Współczynnik Ak wyraża się następującym wzorem:

$$A_k = h \frac{(-1)^{N-k}}{k!(N-k)!} \int_0^N \frac{t(t-1)...(t-N)}{t-k}$$
(6)

Metoda Simpsona

jest numeryczną metodą pozwalającą na obliczenie całek. W tej metodzie funkcja podcałkowa jest przybliżana parabolą rozpiętą na krańcach przedziału całkowania oraz jego środku.

Przedział całkowania [a, b] dzielimy na m podprzedziałów (m jest parzyste). W podprzedziałach [a, a+2h], . . . , [a+(m-1)h,b] stosuje się wzór parabol a wyniki cząstkowe sumuje:

$$S(f) = \frac{h}{3} \sum_{k=1}^{m/2} (f_{2k-2} + 4f_{2k-1} + f_{2k})$$
 (7)

Błąd jest równy:

$$E(f) = -\frac{1}{90}h^5 f^{(4)}(\xi) \tag{8}$$

2 Cel zadania

Zadaniem w trakcie laboratoriów było za pomocą metody Simpsona, obliczyć numerycznie całki typu: $\mathbf{I} = \int_0^\pi x^m sin(kx) dx$ Wartość dokładną obliczyliśmy rozwijając w szereg dla 30 pierwszych wyrazów. Policzyliśmy wartości dla 3 przypadków:

- 1. m = 0, k = 1
- 2. m = 1, k = 1
- 3. m = 5, k = 5

Wartości całki liczone metodą Simpsona wyznaczyliśmy dla następującej liczby węzłów: n=2p+1=11,21,51,101,201 Funkcja w postaci szergu:

$$I = \sum_{i=0}^{\infty} (-1)^i \frac{(kx)^{2i+m+2}}{k^{m+1}(2i+1)!(2i+m+2)} \Big|_a^b$$
(9)

3 Wyniki

I. Wartość całki obliczone metodą rozwinięcia funkcji podcałkowej w szereg $\mathbf{a})m=0,\,k=1$

n	wartość całki	CI
1	4.9348	2.9348
2	0.87609	1.12391
3	2.21135	0.211353
4	1.97602	0.0239778
5	2.00183	0.0018291
6	1.9999	0.00010047
7	2	4.16781e-06
8	2	1.3526e-07
9	2	3.52908e-09
10	2	7.56506e-11
11	2	1.35669e-12
12	2	2.02061e-14
13	2	8.88178e-16
14	2	4.44089e-16
15	2	4.44089e-16
16	2	4.44089e-16
17	2	4.44089e-16
18	2	4.44089e-16
19	2	4.44089e-16
20	2	4.44089e-16
21	2	4.44089e-16
22	2	4.44089e-16
23	2	4.44089e-16
24	2	4.44089e-16
25	2	4.44089e-16
26	2	4.44089e-16
27	2	4.44089e-16
28	2	4.44089e-16
29	2	4.44089e-16
30	2	4.44089e-16

Tabela 1: Wartości sum szeregu

Po dodaniu 8 elementów wartość sumy szeregu zaczęła być bardzo bliska oczekiwaniu teoretycznemu.

n	wartość całki	CI
1	10.3354	7.19383
2	0.134769	3.00682
3	3.73036	0.588764
4	3.07319	0.0684032
5	3.14689	0.00530114
6	3.1413	0.000294494
7	3.1416	1.23208e-05
8	3.14159	4.02514e-07
9	3.14159	1.0558e-08
10	3.14159	2.27316e-10
11	3.14159	4.09006e-12
12	3.14159	6.26166e-14
13	3.14159	4.44089e-16
14	3.14159	4.44089e-16
15	3.14159	4.44089e-16
16	3.14159	4.44089e-16
17	3.14159	4.44089e-16
18	3.14159	4.44089e-16
19	3.14159	4.44089e-16
20	3.14159	4.44089e-16
21	3.14159	4.44089e-16
22	3.14159	4.44089e-16
23	3.14159	4.44089e-16
24	3.14159	4.44089e-16
25	3.14159	4.44089e-16
26	3.14159	4.44089e-16
27	3.14159	4.44089e-16
28	3.14159	4.44089e-16
29	3.14159	4.44089e-16
30	3.14159	4.44089e-16

Tabela 2: Wartości sum szeregu

Po dodaniu 8 elementów wartość sumy szeregu zaczęła być bardzo bliska oczekiwaniu teoretycznemu.

n	wartość całki	CI
1	2157.35	2100.99
2	-66845.2	66901.6
3	629661	629604
4	-2.83264e+06	2.83269e+06
5	7.45046e + 06	7.4504e + 06
6	-1.29018e+07	1.29019e+07
7	1.59002e+07	1.59002e+07
8	-1.47179e + 07	1.47179e + 07
9	1.06416e + 07	1.06416e+07
10	-6.19063e+06	6.19068e+06
11	2.96544e + 06	2.96539e+06
12	-1.1914e+06	1.19146e+06
13	407744	407688
14	-120262	120318
15	31013.5	30957.2
16	-6952.2	7008.56
17	1463.78	1407.42
18	-196.104	252.468
19	97.0724	40.7088
20	50.4304	5.93318
21	57.1491	0.785554
22	56.2687	0.0949094
23	56.3741	0.0105079
24	56.3625	0.00106895
25	56.3637	0.000101369
26	56.3636	7.89865e-06
27	56.3636	1.55232e-06
28	56.3636	7.929e-07
29	56.3636	8.4974e-07
30	56.3636	8.45767e-07

Tabela 3: Wartości sum szeregu

Po zsumowania pierwszych 30 wyrazów wyznaczone wartości z rozwiązaniem dokładnym nie przestała się zmieniać, jednak można zaobserwować, że po zsumowaniu 26 wyrazów była ona już bardzo niewielka.

II. Wartość całki obliczone metodą Simpsona

a)m = 0, k = 1

n	wartość całki	CI
11	2.000007	6.78444e-06
21	2.0	4.23093e-07
51	2.0	1.08245 e-08
101	2.0	6.76472e-10
201	2.0	4.22777e-11

Tabela 4: Wartości całki obliczone metodą Simpsona

Rysunek 1: Wykres zależności różnicy wartości dokładnej całki, a całki obliczonej numerycznie od ilości przyjętych węzłów

b)
$$m = 1, k = 1$$

\mathbf{n}	wartość całki	CI
11	3.141603	1.0657e-05
21	3.141593	6.64593e-07
51	3.141593	1.70031e-08
101	3.141593	1.0626e-09
201	3.141593	6.64095e-11

Tabela 5: Wartości całki obliczone metodą Simpsona

Rysunek 2: Wykres zależności różnicy wartości dokładnej całki, a całki obliczonej numerycznie od ilości przyjętych węzłów

c)
$$m = 5, k = 5$$

n	wartość całki	CI
11	56.462920	0.0993507
21	56.369718	0.00614874
51	56.363727	0.000157636
101	56.363580	1.06398e-05
201	56.363570	1.45813e-06

Tabela 6: Wartości całki obliczone metodą Simpsona

Rysunek 3: Wykres zależności różnicy wartości dokładnej całki, a całki obliczonej numerycznie od ilości przyjętych węzłów

4 Wnioski

Przy rozwijaniu funkcji w szereg dla kolejnych iteracji funkcja zmierza do punktu zbieżności. Dla małej liczby iteracji widać zaburzenia. Przy korzystaniu z metody Simpsona dla liczby wezłów: $m=0,\,k=1$ wartość całki jest bardzo dokładna, w pozostałych przypadkach wartości całki są bardzo bliskie. Wraz ze wzrostem liczby węzłów, zwiększała się dokładność przybliżenia. Metoda Simpsona okazała się być skuteczną i szybką metodą do numerycznego obliczenia wartości całki oznaczonej. Podobnie jak dla metoda interpolacji.

Literatura

- [1] Tomasz Chwiej, Szybka transformacja Fouriera http://galaxy.agh.edu.pl/~chwiej/mn/calkowanie_1819.pdf
- [2] https://pl.wikipedia.org/wiki/Całkowanie_numeryczne