

- Día 1: Parte 2 - Sensores y LEDs

Prof. Oscar E. Ramos, Ph.D.

Universidad de Ingeniería y Tecnología (UTEC) Departamento de Ingeniería Electrónica 12 de febrero del 2018

Sensores

- ¿Qué es un sensor?
 - Es un dispositivo que obtiene información física interna o externa
 - Ejemplo: Sensor de objetos ("efecto Hall")

- Sensores en robótica:
 - Permiten conocer qué pasa en el entorno (luz, sonido, imágenes, obstáculos)
 - Permiten conocer qué pasa interiormente (temperatura, ángulos de los motores)

Sensores del NAO

Sensores de Proximidad y Contacto

Sensores de Tacto

Sensores Capacitivos:

- Se basan en el cambio de "Capacitancia" de un capacitor o condensador

- Al variar la distancia entre las placas, varía la capacitancia

Sensores de Tacto del NAO

- Son sensores capacitivos:
 Se basan en la variación de la capacitancia de un condensador
- Sensores de tacto de la cabeza:

Sensores de Tacto del NAO

- Son sensores capacitivos:
 Se basan en la variación de la capacitancia de un condensador
- Sensores de tacto de las manos

Bumpers

Son interruptores "switches":
 Permiten o impiden el paso de la corriente en un circuito

 Nota: cuando se tiene sensores uno después de otro, es importante detener cada bloque (conectando la "X")

Ejercicio:

Usar los sensores de tacto y bumpers para que el robot reaccione de manera diferente (se mueva o diga algo)

Sensor de Ultrasonido ("sonar")

 Envía una señal de ultrasonido y calcula el tiempo de respuesta

En el NAO:

"Sensor de voz" Reconocimiento de palabras

Micrófonos

¿Cómo funciona un micrófono?

Micrófonos

• El robot tiene 4 micrófonos: dos en la parte frontal (A, B) y dos en la parte posterior (C, D).

• Los micrófonos le sirven al robot para "escuchar".

¿Cuándo escucha el robot?

- El robot no escucha todo el tiempo
 - Solo escucha cuando se le indica que debe escuchar
- El robot tiene una "biblioteca" de sonidos: se le indica lo que espera escuchar
- Ejemplo: Palabras "sí" y "no"
 - Compara lo escuchado con esas palabras.
 - Si las reconoce (sí/no) hace algo, si no las reconoce indica que no ha reconocido

 Usando el bloque "Speech recognition" construir el siguiente diagrama

- Objetivo:
 - Cuando reconoce la palabra "nao" dirá "soy el robot nao" (bloque de arriba)
 - Cuando no la reconoce dirá: "no entendí" (bloque de abajo)

• En el bloque "Speech recognition", hacer click en la herramienta y escribir la palabra "nao" (sin comillas)

Dar click en OK

- Añadir la conexión de las salidas del bloque "Speech reco." a la "X" de la entrada
 - El robot dejará de escuchar luego de la primera palabra

- Ejecutar el programa:
 - Después de hacer un sonido, el robot escucha (ojos azules)
 - Al terminar de escuchar hace otro sonido

• ¿Cómo hacer que el robot siga escuchando y el programa no termine?

Conectar las salidas de cada "Say" a la entrada al bloque "Speech recognition"

Reconocimiento de Varias Palabras

• Las salidas del bloque "Speech Reco." son:

 Para identificar cuál es la palabra se debe añadir un bloque "Switch Case" (en Flow Control)

Reconocimiento de Varias Palabras

• Ejemplo: reconocer 3 palabras: "casa", "gato", "perro"

Al reconocer alguna de estas palabras el robot dirá algo como: "entendí gato". Si ninguna palabra es reconocida, el robot dirá: "no entendí".

Reconocimiento de Varias Palabras

• En el bloque "Speech Reco.", hacer click en la herramienta e ingresar las palabras seguidas de punto y coma:

Es importante que no haya espacios ni antes ni después del punto y coma.

Para dejar de escuchar, conectar la salida a la "X":

Variar el "Confidence threshold"

Bloque "Choice"

• Similar a los bloques anteriores, para varias opciones

• Al hacer doble click se puede editar más fácilmente

Ejercicios

- → Hacer que el robot pregunte "¿cómo estás?" y luego responda según la respuesta que se le da
- → Hacer alguna conversación con el robot con varias opciones: pregunta, respuesta, pregunta, respuesta, ...
- → Hacer que el NAO sea un traductor de algunas palabras
- → Controlar el robot con la voz:
 - Al decirle "adelante" camina 0.30m
 - Al decirle "atrás" camina 0.30 m hacia atrás
 - Al decirle "gira" gira 90 grados hacia la derecha

"Sensor de visión": Detección de Rostros

Cámara

¿Cómo funciona una cámara?

Cámaras en el NAO

 El bloque "Select Camera" permite seleccionar la cámara del robot (superior o inferior)

 La detección de rostro se hace con el bloque "Face Detection"

Detección de Rostro

- Objetivo: que el robot diga "veo un rostro" cuando ve por lo menos un rostro
 - Realizar el siguiente diagrama:

- En el bloque if (herramienta) cambiar la condición

En el bloque "Say" cambiar el texto

LEDs del Robot NAO

¿Qué es un LED?

• El robot NAO posee LEDs en

"Ojos"

Cabeza

El robot NAO posee LEDs en

Parlante derecho

Parlante izquierdo

El robot NAO posee LEDs en

Ambos pies

- Existe una carpeta "LEDs"
 - Permite controlar la intensidad, color y algunas animaciones de LEDs
- Insertar los bloques: "Blink" y "Random Eyes" y observar lo que hacen

 Insertar un bloque "Twinkle" y experimentar con las diversas opciones (en la herramienta)

- LEDs de los "oídos"
 - Ear LEDs: intensidad y duración del oído derecho y/o izquierdo
 - Single Ear LED: intensidad y duración de cada LED de los oídos

- LEDs de los ojos
 - Eye LEDs: duración y color del ojo izquierdo y/o derecho
 - Single Eye LED: duración y color de cada LED de los ojos

- LEDs de oídos, ojos, cabeza, pies
 - Set LEDs: intensidad y duración

- Control de cada LED
 - Set Single LED: intensidad y duración de cualquier LED por separado

Ejercicio:

Hacer que los LEDs de los ojos y oídos cambien al presionar los bumpers

Ejercicio

→ Realizar un movimiento libre con el robot usando los módulos vistos hasta ahora