Plaintext-Ciphertext Matrix Multiplication and FHE Bootstrapping: Fast and Fused

Youngjin Bae, Jung Hee Cheon, Guillaume Hanrot, Jai Hyun Park, Damien Stehlé

Summary

- Fast plaintext-ciphertext matrix multiplication (PCMM)
 - 0.31s for PCMM with 256 \times 256 matrices in a single thread CPU.
 - How? Reduce PCMM to plaintext matrix multiplications.
- Batch bootstrapping (BTS) with high throughput
 - 2x for 32 batches
- Fused PCMM with batch BTS
 - 41% higher throughput than current BTS without PCMM

Matrix Multiplication

- Matrix multiplication is central in high-performance computing
 - highly optimized libraries for basic linear algebra subprograms (BLAS)
 - Can be 10x faster than a naïve implementation for large matrices

What about matrix multiplication on encrypted data?

Privacy-preserving machine learning as a service

- PPMM: plaintext-plaintext matrix multiplication
- PCMM: plaintext-ciphertext matrix multiplication
- CCMM: ciphertext-ciphertext matrix multiplication
- PCMMs and CCMMs with diverse dimensions
 - e.g., PCMM of dimension 128 ~ 16384 for GPT-3.5

Plaintext-Ciphertext Matrix Multiplication (PCMM)

- Multiplication between a plaintext matrix and a ciphertext matrix.
 - $d \times d \times d$ PCMM
- PCMM with RLWE-based (fully) homomorphic encryption schemes (CKKS)
 - Compatibility with the other machine learning tasks
 - High efficiency

PCMM with CKKS

- CKKS
 - Plaintext: <u>vector</u> of real numbers
 - Native operations: // add, // mult, and rotate.

- With the native operations, PCMM requires lots of rotates.
 - For example, [JKLS18] has a cubic bit complexity, but is orders of magnitude slower than PPMM.
- Questions
 - 1. How to utilize PPMM BLAS libraries?
 - 2. How to handle multiple ciphertexts?

- ✓ Reduction from PCMM to PPMM
- ✓ Batch ciphertext computation

Reduction from PCMM to PPMMs

- [LZ22] considers verifiable PCMM
 - Performs one PCMM using two PPMMs
 - Restriction: $d \ge N$

• This is a great idea for fast PCMM: we can use BLAS libraries

RLWE-based Encryption of Matrices

• In the ring $\mathbb{Z}_Q[X]/(X^N+1)$, an RLWE ciphertext (a,b=as+m) is:

• N RLWE ciphertexts (with a shared secret) are:

RLWE PCMM ≤ PPMMs

- ❖ We use PPMM BLAS libraries for PCMM

PCMM with Small/Large Matrices

Small matrices

Data moves within ciphertexts

Can we reduce PCMM to PPMMs?

Large matrices

• Latency of 2 PPMMs is not satisfactory

Can we do better than 2 PPMMs?

Different Formats for Various Dimensions

Module LWE and Multi-secret RLWE to reduce various dimensional PCMMs to PPMMs.
(MLWE) (MSRLWE)

Format conversions are negligible unless matrices are small.

MSRLWE for Large Matrices

• MSRLWE ciphertexts share a-part rather than secret.

$$as_j + b_j = m_j \quad \forall j \in [k]$$

where s_j is a different secret for each j.

MSRLWE PCMM ≤ PPMMs

- $(d > N) d \times d \times d$ MSRLWE PCMM \leq two PPMMs modulo Q
- ightharpoonup PPMM UA is easier than UV

Experimental Results

Intel® Xeon® Gold 6242 CPU at 2.80GHz, single thread HEaaN library for HE, OpenBLAS for PPMM.

MSRLWE for Batch Computation

Another question: how to manage the multiple ciphertexts involved in PCMM?

- Native batch operations using MSRLWE
 - // add, // ptxt-ctxt mult, rotate
 - No // ctxt-ctxt mult
- ✓ Batch FHE bootstrapping: batch C2S and S2C during bootstrapping.
 - S2C and C2S do not require ctxt-ctxt mult.

Experimental Results

Intel® Xeon® Gold 6242 CPU at 2.80GHz, single thread

MAMBO: Fused PCMM and Batch Bootstrapping

✓ For large matrices, MAMBO is 41% faster than current bootstrapping without PCMM.

Wrapping Up!

- Fast PCMM
 - Uses various ciphertext formats for various dimensions
 - Exploits efficiency of BLAS libraries
 - Our PCMM is only ≤ 3.5 x slower than PPMM
- Even faster PCMM with a fixed plaintext matrix (see paper)
- Conversion from RLWE formats to MSRLWE formats (see paper)
- Batch FHE bootstrapping
 - MAMBO: Fused PCMM and Batch Bootstrapping
 - 41% faster than current bootstrapping without PCMM

eprint: 2024/1284 Thank you!