Bin packing, linear programming and rounding

Less special special case

Large items, many sizes

ldea: Rounding

Round sizes Reduce to special special case

How to round?

Capacity = 100 & Min size > 10: Attempt: Round sizes up to nearest integer Solve rounded problem

Observe: lt's a solution to original problm

But how good is it?

How much does OPT change?

Capacity 100
50 items with size 100*(1/3)
50 items with size 100*(2/3)
0PT=50

Rounded input:
Capacity 100
50 items with size 34
50 items with size 67
OPT'=75

This rounding fails

Adaptive rounding

Algorithm - large items

Assume: sizes > capacity * ϵ Sort sizes Make groups of cardinality $n \times \epsilon^2$ Round up to max size in group Solve rounded problem Output corresponding packing

Observe: output is a packing

Observe: all sizes are > Capacity \times ϵ

Observe: #distinct sizes < $1/\epsilon^2$

Runtime: polynomial

But how good is it?

Value(Output) < OPT * $(1 + O(\epsilon))$

Bin packing, linear programming and rounding

