Validate Target variable's Data is `Gaussian or not`

- Using **Shapiro-will's** Hypothesis Test on 'count' column, p_value found as **0%**.
- Thus Data is not Gaussian.

Q1. Working Day has effect on number of electric cycles rented?

Working day Mean rent No of rent

No 182.189881 3360 Yes 173.568507 6992

Impact of Working day on No. of Bike Rent

Ho -> Working Day has no effect on number of electric cycles rented

Ha -> Working Day has effect on number of electric cycles rented

Samples size = 500

Significance_level = 0.1 = 1%

ttest_ind(rent_on_wd, rent_on_non_wd)

p_value = 0.887%

Insights

Using T-Test p_value found that **0.887%**.

- With Confidence interval of 99% & Sample Size of 500
 - Mean Bike rent on Working day is 173.48 with a Intervals of (168.92 178.04).
 - Mean Bike rent on Non-Working day is 182.21 with a Intervals of (175.20 189.22).
 - As 0.887% < 1% Thus Rejecting Ho & Accept Ha.

As per T-Test we can Conclude "Working Day has effect on number of electric cycles rented".

Q2. No. of cycles rented similar or different in different seasons?

Season	Mean rent	No of rent		
Fall	210.633564	2598		
Spring	112.774308	2530		
Summer	195.945328	2579		
Winter	184.446503	2645		

Impact of Season on No. of Bike Rent

Ho -> No. of Bike rented are Similar in different seasons

Ha -> No. of Bike rented are different in different seasons

Samples size = 500

Significance_level = 0.1 = 1%

Using ANOVA Test

f oneway(on summer, rent on fall, rent on winter, rent on spring)

p value = 0%

Using Kruskal Test

f_ kruskal(on_summer, rent_on_fall, rent_on_winter, rent_on_spring)

p value = 0%

Using Levene Test

f_ kruskal(on_summer, rent_on_fall, rent_on_winter, rent_on_spring)

p value = 0%

Insights

Using ANOVA, Kruskal & Levene Test p_value found that 0.0%.

- With Confidence interval of 99% & Sample Size of 500
 - Mean Bike rent on Spring Season is 112.87 with a Intervals of (106.51 119.23).
 - Mean Bike rent on Winter Season is 184.68 with a Intervals of (176.95 192.40).
 - Mean Bike rent on Summer Season is 195.84 with a Intervals of (186.98 204.69).
 - Mean Bike rent on Fall Season is 210.84 with a Intervals of (202.32 219.37).
 - As 0.0% < 1% Thus Rejecting Ho & Accept Ha.

As per Anova Test we can Conclude "No. of Bike rented are different in different seasons".

Q3. No. of cycles rented similar or different in different weather?

Weather	Mean rent	No of rent	
Clear or Cloudy	187.822607	6821	
Heavy Rain or Snow	164.000000	1	
Light Rain or Snow	113.562108	797	
Mist	166.095134	2733	

Impact of Weather on No. of Bike Rent

Ho -> No. of Bike rented are Similar in different weather

Ha -> No. of Bike rented are different in different weather

Samples size = 500

Significance_level = 0.1 = 1%

Using ANOVA Test

```
f_oneway(rent_on_clear_cloudy, rent_on_heavy_rain_snow,
rent_on_light_rain_snow, rent_on_mist)
```

p value = 0%

Using Kruskal Test

```
f_ kruskal(rent_on_clear_cloudy, rent_on_heavy_rain_snow,
rent_on_light_rain_snow, rent_on_mist)
```

p value = 0%

Using Levene Test

```
f_ kruskal(rent_on_clear_cloudy, rent_on_heavy_rain_snow,
rent_on_light_rain_snow, rent_on_mist)
```

p value = 0%

Insights

Using ANOVA, Kruskal & Levene Test p_value found that 0.0%.

- With Confidence interval of 99% & Sample Size of 500
 - Mean Bike rent on 'Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds' Weather is 113.18 with a Intervals of (102.31 - 124.04).
 - Mean Bike rent on 'Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist' Weather is 166.20 with a Intervals of (158.78 173.61).
 - Mean Bike rent on 'Clear, Few clouds, partly cloudy, partly cloudy' Weather is 187.83 with a Intervals of (182.51 193.14).
 - As only 1 record available for 'Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog'
 Weather, we are not going to consider this for Confidence Interval.
 - As 0.0% < 1% Thus Rejecting Ho & Accept Ha.

As per Anova Test we can Conclude "No. of Bike rented are different in different weather".

Q4. Weather is dependent on season?

Weather	Clear or Cloudy	Heavy Rain or Snow	Light Rain or Snow	Mist	All	
Season						
Fall	1838	0	185	575	2598	
Spring	1648	1	185	696	2530	
Summer	1687	0	213	679	2579	
Winter	1648	0	214	783	2645	
All	6821	1	797	2733	10352	

Ho -> Weather is Independent of Season.

Ha -> Weather is Dependent on Season.

Samples size = 500

Significance_level = 0.1 = 1%

Using ChiSqured Test

chi2_contingency(pd.crosstab(df_yulu['season'], df_yulu['weather']))

p_value = 0%

Insights

Using Chi-Square Test p_value found that **0.0%**.

- With Confidence interval of 99% & Sample Size of 500
 - As 0% < 1% Thus Rejecting Ho & Accept Ha.

As per Chi-Square Test we can Conclude "Weather is Dependent on Season".

- This is also absorbed from Heat Map & Probability plot
- As, Co-Relation Co-efficient for each Weather are mostly equal, except "Heavy Rain or Snow".