

High Efficiency LED in Ø 3 mm Clear Package

DESCRIPTION

The TLH.4900 series was developed for applications where high light output is required.

It is housed in a 3 mm clear plastic package. The small viewing angle of these devices provides a high brightness.

All LEDs are categorized in luminous intensity groups. The green and yellow LEDs are categorized additionally in wavelength groups.

That allows users to assemble LEDs with uniform appearance.

PRODUCT GROUP AND PACKAGE DATA

Product group: LEDPackage: 3 mm

Product series: standard
Angle of half intensity: ± 16°

FEATURES

- Choice of four bright colors
- Standard Ø 3 mm (T-1) package
- · Small mechanical tolerances
- · Suitable for DC and high peak current
- · Very small viewing angle
- · Luminous intensity categorized
- · Yellow and green color categorized

Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS

HALOGEN FREE

GREEN (5-2008)

APPLICATIONS

- · Status lights
- Off / on indicator
- · Background illumination
- · Readout lights
- Maintenance lights
- Legend light

PARTS TABLE														
PART COLOR		LUMINOUS INTENSITY (mcd)		at I _F		(11111)		at I _F	FORWARD VOLTAGE (V)		at I _F	TECHNOLOGY		
		MIN.	TYP.	MAX.	(mA)	MIN.	TYP.	MAX.	(mA)	MIN.	TYP.	MAX.	(MA)	
TLHR4900	Red	6.3	25	-	10	612	-	625	10	-	2	3	20	GaAsP on GaP
TLHY4900	Yellow	10	26	-	10	581	-	594	10	-	2.4	3	20	GaAsP on GaP
TLHG4900	Green	16	37	-	10	562	-	575	10		2.4	3	20	GaP on GaP
TLHG4900-AS12Z	Green	16	37	-	10	562	-	575	10	-	2.4	3	20	GaP on GaP

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) TLHG4900, TLHR4900, TLHY4900							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Reverse voltage		V _R	6	V			
DC forward current	T _{amb} ≤ 60 °C	I _F	30	mA			
Surge forward current	t _p ≤ 10 μs	I _{FSM}	1	А			
Power dissipation	T _{amb} ≤ 60 °C	P _V	100	mW			
Junction temperature		Tj	100	°C			
Operating temperature range		T _{amb}	-40 to +100	°C			
Storage temperature range		T _{stg}	-55 to +100	°C			
Soldering temperature	$t \le 5$ s, 2 mm from body	T _{sd}	260	°C			
Thermal resistance junction/ambient		R _{thJA}	400	K/W			

www.vishay.com

Vishay Semiconductors

OPTICAL AND ELE TLHR4900, RED	CTRICAL CHARACTI	ERISTICS (T	_{amb} = 25 °C,	unless otherw	ise specified)	
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	I _F = 10 mA	I _V	6.3	25	-	mcd
Dominant wavelength	I _F = 10 mA	λ_{d}	612	-	625	nm
Peak wavelength	I _F = 10 mA	λ_{p}	-	635	-	nm
Angle of half intensity	I _F = 10 mA	φ	-	± 16	-	deg
Forward voltage	$I_F = 20 \text{ mA}$	V _F	-	2	3	V
Reverse voltage	I _R = 10 μA	V _R	6	15	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz	C _i	-	50	-	pF

Note

⁽¹⁾ In one packing unit $I_{Vmin.}/I_{Vmax.} \le 0.5$

OPTICAL AND ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) TLHY4900, YELLOW							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Luminous intensity (1)	I _F = 10 mA	I _V	10	26	-	mcd	
Dominant wavelength	I _F = 10 mA	λ_d	581	-	594	nm	
Peak wavelength	I _F = 10 mA	λ_{p}	-	585	-	nm	
Angle of half intensity	I _F = 10 mA	φ	-	± 16	-	deg	
Forward voltage	I _F = 20 mA	V _F	-	2.4	3	V	
Reverse voltage	I _R = 10 μA	V _R	6	15	-	V	
Junction capacitance	V _R = 0 V, f = 1 MHz	C _j	-	50	-	pF	

Note

⁽¹⁾ In one packing unit I_{Vmin.}/I_{Vmax.} ≤ 0.5

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}\text{C}$, unless otherwise specified) TLHG4900, GREEN						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	I _F = 10 mA	I _V	16	37	-	mcd
Dominant wavelength	I _F = 10 mA	λ_{d}	562	-	575	nm
Peak wavelength	I _F = 10 mA	λ_{p}	-	565	-	nm
Angle of half intensity	I _F = 10 mA	φ	-	± 16	-	deg
Forward voltage	I _F = 20 mA	V _F	-	2.4	3	V
Reverse voltage	I _R = 10 μA	V_R	6	15	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz	Ci	-	50	_	pF

Note

⁽¹⁾ In one packing unit $I_{Vmin.}/I_{Vmax.} \le 0.5$

LUMINOUS INTENSITY CLASSIFICATION						
GROUP	LUMINOUS INTENSITY (mcd)					
GROUP	MIN.	MAX.				
Q	6.3	12.5				
R	10	20				
S	16	32				
Т	25	50				
U	40	80				
V	63	125				

Note

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel or bulk (there will be no mixing of two groups on one reel/bulk). In order to ensure availability, single brightness groups will not be orderable. In a similar manner for colors where wavelength groups are measured and binned single wavelength groups will be shipped on any one reel/bulk. In order to ensure availability, single wavelength groups will not be orderable.

COLO	COLOR CLASSIFICATION							
	DOM. WAVELENGTH (nm)							
GROUP	YEL	LOW	GRI	EEN				
	MIN.	MAX.	MIN.	MAX.				
0								
1	581	584						
2	583	586						
3	585	588	562	565				
4	587	590	564	567				
5	589	592	566	569				
6	591	594	568	571				
7			570	573				
8			572	575				

Note

• Wavelengths are tested at a current pulse duration of 25 ms.

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 1 - Forward Current vs. Ambient Temperature

Fig. 2 - Forward Current vs. Pulse Length

Fig. 3 - Relative Luminous Intensity vs. Angular Displacement

Fig. 4 - Forward Current vs. Forward Voltage

Fig. 5 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 6 - Relative Luminous Intensity vs. Forward Current/Duty Cycle

Fig. 7 - Relative Luminous Intensity vs. Forward Current

Fig. 8 - Relative Intensity vs. Wavelength

Fig. 9 - Forward Current vs. Forward Voltage

Fig. 10 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 11 - Relative Luminous Intensity vs. Forward Current/Duty Cycle

Fig. 12 - Relative Luminous Intensity vs. Forward Current

Fig. 13 - Relative Intensity vs. Wavelength

Fig. 14 - Forward Current vs. Forward Voltage

Fig. 15 - Rel. Luminous Intensity vs. Ambient Temperature

Fig. 16 - Specific Luminous Intensity vs. Forward Current

Fig. 17 - Relative Luminous Intensity vs. Forward Current

Fig. 18 - Relative Intensity vs. Wavelength

PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.544-5255.02-4

Issue: 5; 28.07.14

AREA NOT PLANE Ø 2.9 ± 0.1 technical drawings according to DIN specifications

TAPE

Adhesive tape Identification label Reel Paper Diodes: cathode before collector code 21 Diodes: cathode before anode Phototransistors: collector before emitter Code 12 Paper 94 8671

Fig. 19 - LED in Tape

AMMOPACK

Fig. 20 - Tape Direction

Note

 The new nomenclature for ammopack is e.g. ASZ only, without suffix for the LED orientation. The carton box has to be turned to the desired position: "+" for anode first, or "-" for cathode first. AS12Z and AS21Z are still valid for already existing types, BUT NOT FOR NEW DESIGN.

TAPE DIMENSIONS in millimeters

	Reel
Quantity per:	(Mat No. 1764)
	2000

94 8171

Option	Dim. "H" ± 0.5 mm
AS	17.3

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.