

Grammars, SD Languages, and Turing Machines

Unrestricted Grammars

An *unrestricted grammar* G is a quadruple (V, Σ, R, S) , where:

- V is an alphabet,
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite subset of (V⁺ × V*),
- S (the start symbol) is an element of $V \Sigma$.

The language generated by *G* is:

$$\{w \in \Sigma^* : S \Rightarrow_G^* w\}.$$

Unrestricted Grammars

Example: $A^nB^nC^n = \{a^nb^nc^n, n \ge 0\}.$

$$S \rightarrow aBSc$$

$$S \rightarrow \epsilon$$

$$Ba \rightarrow aB$$

$$Bc \rightarrow bc$$

$$B$$
b \rightarrow bb

Proof:

- Only strings in AⁿBⁿCⁿ:
- All strings in AⁿBⁿCⁿ:

Another Example

$$\{w \in \{a, b, c\}^* : \#_a(w) = \#_b(w) = \#_c(w)\}$$

$$S \to ABCS$$

$$S \to \varepsilon$$

$$AB \to BA$$

$$BA \to AB$$

$$BC \to CB$$

$$CB \to BC$$

$$AC \to CA$$

$$CA \to AC$$

$$A \to a$$

$$B \to b$$

$$C \to c$$

WW = $\{ww : w \in \{a, b\}^*\}$

Idea:

1. Generate a string in ww^R, plus delimiters

aaabb**C**bbaaa#

2. Reverse the second half.

$WW = \{ww : w \in \{a, b\}^*\}$

Equivalence of Unrestricted Grammars and Turing Machines

Theorem: A language is generated by an unrestricted grammar if and only if it is in SD.

Proof:

Only if (grammar \rightarrow **TM):** by construction of an NDTM.

If $(TM \rightarrow grammar)$: by construction of a grammar that mimics the behavior of a semideciding TM.

Grammar → **Turing Machine**

Given G, produce a Turing machine M that semidecides L(G). M will be nondeterministic and will use two tapes:

	a	b	а	b			
1	0	0	0	0	0	0	
a	S	T	a	a	b		
1	0	0	0	0	0	0	

For each nondeterministic "incarnation":

- Tape 1 holds the input.
- Tape 2 holds the current state of a proposed derivation.

At each step, *M* nondeterministically chooses a rule to try to apply and a position on tape 2 to start looking for the left hand side of the rule. Or it chooses to check whether tape 2 equals tape 1. If any such machine succeeds, we accept. Otherwise, we keep looking.

The Last Step

The third (cleanup) part of G erases the junk if M ever reaches any of its accepting states, all of which will be encoded as A.

Rules:

$$\forall x$$
 $x \land A \rightarrow A x$ /* Sweep A to the left.
 $\forall x, y$ #A $x y \rightarrow x$ #A /* Erase duplicates.
#A# $\rightarrow \varepsilon$

Turing Machine → **Grammar**

Build *G* to simulate the forward operation of a TM *M*:

The first (generate) part of G: Create all strings over Σ^* of the form:

The second (test) part of *G* simulates the execution of *M* on a particular string *w*. An example of a partially derived string:

Examples of rules:

q100 b b
$$\rightarrow$$
 b 2 q101 a a q011 b 4 \rightarrow q011 a a b 4

Decision Problems for Unrestricted Grammars

- Given a grammar G and a string w, is $w \in L(G)$?
- Given a grammar G, is $\varepsilon \in L(G)$?
- Given two grammars G_1 and G_2 , is $L(G_1) = L(G_2)$?
- Given a grammar G, is $L(G) = \emptyset$?

Or, as languages:

- $L_a = \{ \langle G, w \rangle : w \in L(G) \}.$
- L_{ε} = {<G> : $\varepsilon \in L(G)$ }.
- $L_{=} = \{ \langle G_1, G_2 \rangle : L(G_1) = L(G_2) \}.$
- $\bullet \ L_{\varnothing} = \{ < G > : L(G) = \varnothing \}.$

None of these questions is decidable.

$L_a = {<G, w> : w \in L(G)}$ is not in D.

Proof: Let R be a mapping reduction from:

 $A = \{ \langle M, w \rangle : \text{Turing machine } M \text{ accepts } w \} \text{ to } L_a$:

R(< M, w>) =

- 1. From M, construct the description $\langle G# \rangle$ of a grammar G# such that L(G#) = L(M).
- 2. Return < G#, w>.

If Oracle decides L_a , then C = Oracle(R(< M, w>)) decides A. We have already defined an algorithm that implements R. C is correct:

- If < M, $w > \in A$: M(w) halts and accepts. $w \in L(M)$. So $w \in L(G\#)$. Oracle(< G#, w >) accepts.
- If < M, $w > \notin A : M(w)$ does not accept. $w \notin L(M)$. So $w \notin L(G\#)$. Oracle(< G#, w >) rejects.

But no machine to decide A can exist, so neither does Oracle.