[19] 中华人民共和国国家知识产权局

[12] 发明专利申请公开说明书

[21] 申请号 01812318.X

[51] Int. Cl⁷ C07D235/06

C07D277/64 C07D401/06 C07D401/12 C07D401/14 C07D403/12 C07D405/06 C07D405/12 C07D405/14 C07D409/06 C07D409/12 C07D409/14 C07D413/12 [11] 公开号 CN 1440391A

[43] 公开日 2003年9月3日

[22] 申请日 2001.7.4 [21] 申请号 01812318.X

[30] 优先权

[32] 2000. 7. 5 [33] JP [31] 204425/2000 [32] 2001. 5.23 [33] JP [31] 153372/2001

[86] 国际申请 PCT/JP01/05813 2001.7.4

[87] 国际公布 WO02/02533 日 2002.1.10

[85] 进入国家阶段日期 2003.1.3

[71] 申请人 山之内制药株式会社 地址 日本东京

[72] 发明人 平野祐明 河南英次 丰岛启 森友博幸 関规夫 若山竜太郎 冈田稔 草山俊之 [74] 专利代理机构 上海专利商标事务所 代理人 胡 烨

C07D417/12 C07D471/04
A61K 31/4184 A61K 31/422
A61K 31/427 A61K 31/428
A61K 31/4439 A61K 31/454
A61K 31/4725 A61K 31/506
A61K 31/5377 A61P 5/24
A61P 35/00

权利要求书3页 说明书51页 序列表4页

[54] 发明名称 丙 -1,3 - 二酮衍生物 [57] 摘要

本发明提供了以通式(I)表示的丙-1,3-二酮为有效成分的医药组合物,特别提供了促性腺素释放激素(GnRH)受体拮抗剂。 并提供了具有 GnRH 拮抗作用的新颖的丙-1,3-二酮衍生物。

1、医药组合物, 其特征在于, 以通式(I)

所示的丙一1,3一二酮衍生物或其制药学上允许的盐为有效成分,式中, R^1 、 R^2 、 R^3 及 R^4 可以相同也可以不同,为 H、 NO_2 、CN、卤素、可被取代的烃基、可被取代的杂环、可被取代的羟基、可被取代的羧基、可被取代的酰基—O—、可被取代的酰基、取代基— $S(O)n_{101}$ — $(n_{101}$ 表示 0~2 的整数,下同)、H— $S(O)n_{101}$ —、可被取代的氨基甲酰基、可被取代的氨基磺酰基或可被取代的氨基,且选自 R^1 、 R^2 、 R^3 及 R^4 的相邻两个基团可一起形成芳基或环烯基, R^5 及 R^6 可以相同也可以不同,为 H、卤素、可被取代的烃基或可被取代的氨基, X^1 或 X^2 可以相同也可以不同,为 N、S 或 O 原子,A 及 B 可以相同也可以不同,为 D 可被取代的杂环,D 之。D 之。D

- 2、如权利要求1所述的医药组合物,其特征还在于,所述组合物为促性腺素释放激素受体拮抗剂。
- 3、如权利要求 1 或 2 所述的以丙 -1, 3 -1 二酮衍生物或其制药学上允许的盐为有效成分的医药组合物,其特征还在于, X^1 及 X^2 中的至少一个为 X^2 N。
- 4、丙-1,3-二酮衍生物或其制药学上允许的盐,其特征在于,所述衍生物或其制药学上允许的盐如权利要求1所述,但下表中的化合物1~39除外,表中的 Ph表示苯基,Me表示甲基,Et表示乙基,tBu表示叔丁基。

表 1 14. 27. 2. 15. 28. 16. Web. 29. 30. 17. 5. 31. 18. 6. 19 32. -001, -C000tBu COOOtBu 33. 20. 34. 21. 8. 35. 22. 9. 36. 23. 10. 37. 24. 11. 38. 25. 12. COOOtBu 39. 26. 13.

5、如权利要求 4 所述的丙-1, 3-二酮衍生物或其制药学上允许的盐, 其特征还在于, X^1 及 X^2 中的至少一个为 N。

6、如权利要求 4 或 5 所述的丙-1, 3—二酮衍生物或其制药学上允许的盐,其特征还在于, X^1 及 X^2 同时为 N。

丙一1,3一二酮衍生物

技术领域

本发明涉及以丙-1,3-二酮衍生物或其制药学上允许的盐为有效成分的医药组合物以及新颖的丙-1,3-二酮衍生物衍生物。

背景技术

已知下丘脑激素或垂体激素参与外周激素的分泌调节机制。通常垂体前叶激素的分泌受其上位中枢下丘脑分泌的分泌促进激素、分泌抑制激素或各激素的靶器官分泌的外周激素调节。

已知促性腺素释放激素(Gonadotropin Releasing Hormone,以下简称 GnRH)。GnRH 也称促黄体素释放激素(Luteinizing Hormone Releasing Hormone, LHRH),它是控制性激素分泌的最上位的激素,通过据认为存在于垂体前叶的受体(以下简称 GnRH 受体)控制垂体前叶激素黄体生成素(以下简称 LH),促卵泡素(以下简称 FSH)以及性腺中的性激素的分泌(激素与临床 46,46-57(1998))。这种 GnRH 受体的特异性和选择性拮抗剂,由于能调节 GnRH 的作用、控制下位 LH、FSH 以及性激素的分泌,预期可作为性激素依赖性疾病的防治药物(激素与临床 46,46-57(1998))。

作为具有 GnRH 受体拮抗作用的化合物,已知有 GnRH 衍生物的直链肽,环状六肽衍生物以及二环多肽衍生物等肽类化合物。而作为具有该作用的非肽类化合物,已报告有下列氨基苯并咪唑衍生物(日本专利公开公报 2000-95767)或噻吩并嘧啶衍生物(WO 95/28405)等。

式中符号参照上述公报。

另一方面,已报道具有公知的苯并咪唑,苯并噻唑或苯并噁唑骨架的下表 1 所列的丙-1,3-二酮衍生物,作为试剂可用作感光剂(欧洲专利公开公报 135348,631177,368327,332004,国际公开公报 WO 94/01415,美国专利 4062686,4119466, Collect, Czech. Chem, Commun (1971), 36(1), 150-63, Zh, Nauch, Prikl,

Fotogr, Kinematogr, (1971), 16(4), 282-8, Collect, Czech, Chem, Commun(1978), 43(3), 739-45, Collect, Czech, Chem, Commun(1979), 44(5), 1540-51, 以及 Collect, Czech, Chem, Commun (1973), 38(12), 3616-22), 但未揭示其作为医药品的作用,特别是未揭示 GnRH 受体拮抗作用。

发明的揭示

本发明者对具有良好的 GnRH 受体拮抗作用的非肽类化合物深入研究后发现了 2-(1,3-二氢-2H-苯并咪唑-2-亚基)-1,3-二苯基丙-1,3-二酮衍生物。本发明者进一步根据这一发现创制了各种化合物,发现通式(I)所示的丙-1,3-二酮衍生物具有良好的 GnRH 受体拮抗作用,从而完成了本发明。确认本发明的化合物中有与目前上市的肽类拮抗剂 Cetrorelix(西曲瑞克)具备同等 GnRH 受体结合抑制活性的化合物,本发明作为非肽类化合物是极有用的化合物。

即,本发明涉及以通式(I)

所示的丙-1, 3-二酮衍生物或其制药学上允许的盐为效成分的医药组合物,式中, R^1 、 R^2 、 R^3 及 R^4 可以相同也可以不同,为 H、 NO_2 、CN、卤素、可被取代的烃基,可被取代的杂环,可被取代的羟基,可被取代的羧基,可被取代的酰基-O-,可被取代的酰基,取代基 $-S(O)n_{101}-(n_{101}$ 表示 $0\sim2$ 的整数,下同)、 $H-S(O)n_{101}-$,可被取代的氨基甲酰基,可被取代的氨基磺酰基或可被取代的氨基,且选自 R^1 、 R^2 、 R^3 及 R^4 的相邻两个基团可一起形成芳基或环烯基, R^5 及 R^6 可以相同也可以不同,为 H、卤素、可被取代的烃基或可被取代的氨基, X^1 及 X^2 可以相同也可以不同,为 N、S 或 O 原子,A 及 B 可以相同也可以不同,为可被取代的芳基或可被取代的杂环, Z^1 、 Z^2 、 Z^3 及 Z^4 为 C 或 N,但 1) X^1 及 X^2 为 S 或 O 时,对应的 R^5 及 R^6 中的一个或两个不存在,2) Z^1 、 Z^2 、 Z^3 及 Z^4 中的 $1\sim4$ 个为 N 时,对应的 R^1 、 R^2 、 R^3 及 I 或 I 或 I 或 I 的是作为促性腺素释放激素受体拮抗剂的该医药组合物。更好的是以通式(I)中的 I 以 I 及 I 以 I 及 I 的丙I 、I 二二酮衍生物或通式(I)中的 I 的 I 的 I 的 I 的 I 的 I 可 I 的 I 的 I 可 I 的 I 可 I 的 I 的 I 的 I 可 I 的 I 的 I 可 I 的 I 的 I 可 I 的 I 的 I 可 I 的 I 的 I 可 I 的 I 的 I 的 I 可 I 的 I 的 I 的 I 可 I 的 I 的 I 可 I 的 I 的 I 的 I 的 I 的 I 可 I 的 I 的 I 可 I 的 I

本发明还涉及通式(I)所示的丙-1,3-二酮衍生物或其制药学上允许的盐,

但下表 1 中的化合物 1~39 除外, 表中的符号 Ph 为苯基, Me 为甲基, Et 为乙基, tBu 为叔丁基。

表 1

表 1		
1. S O O	14.	27. s 0
2. s o s o s o s o s o s o s o s o s o s	15. Et, 0	28. Et 0 N CC1,
3.	16. We 0 S 0 S 0	29. Ne 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.	N O OMe 17.	30. Me 0 S S O O O O O O O O O O O O O O O O O
5.	18. Ft o	Me N 0 S 0 31.
6. Et N 0 2 N 0 2	19 NO.	32. S 0
7.	20. Et 0 — C0000tBu	33.
8 s 0 - cc1,	21.	34.
9.	22. s o o o	35.
10. No 0 0 0 0 0 1,	23.	36.
11.	24.	37. Et 0 0 1
12. Et, 0 0000tBu	25. No. No. 0	38.
13. We 0 0 0 0000tBu	26.	39. No 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

较好的是通式(I)中的 X^1 及 X^2 的至少一个为 N 的丙一1,3一二酮衍生物或通式(I)中的 X^1 及 X^2 同时为 N 的丙一1,3一二酮衍生物或其制药学上允许的盐。还涉及 R^1 、 R^2 、 R^3 或 R^4 为 H、可被取代的氨基或可被取代的羟基的丙一1,3一二酮衍生物或其制药学上允许的盐。

实施发明的最佳方式

下面更详细地说明本发明。

"卤素"可列举氟、氯、溴或碘原子等。

"烃基"指由 C1-15 的碳和氢组成的基团,包括直链或支链,单环或稠合多环及/或饱和或不饱和等所有形式,较好为烷基、烯基、炔基,环烷基、环烯基、芳基或芳烷基。

"烷基"指直链或支链的饱和烃基,较好为 C_{1-10} 烷基,更好为 C_{1-6} 烷基。具体有甲基、乙基、异丙基、己基或癸基等。 "烯基"指直链或支链且至少有一个以上双键的烃基,较好为 C_{2-10} 烯基,具体有乙烯基、丙烯基、烯丙基、异丙烯基或己烯基等。 "炔基"指直链或支链且至少有一个以上三键的烃基,较好为 C_{2-10} 炔基,具体有乙炔基、丙炔基、丁炔基等。 "环烷基"指单环饱和烃环,较好为 C_{3-8} 环烷基,具体有环丙基、环戊基或环己基等。 "环烯基"指单环不饱和烃环,较好为 C_{3-8} 环烯基,具体有环烯基或环己烯基等。 "芳基"指芳香族烃环,较好为 C_{3-8} 环烯基,具体有苯基、萘基、5,6,7,8-四氢萘基,茚基,蒽基或芴基等。

"杂环基"是含 1~4个选自 N、S 和 O 的杂原子的 5~6 元单环或二环饱和或不饱和环。不饱和环包括芳香环(杂芳基)和非芳香环。单环包括吡咯烷环、吡唑烷环、二噁烷基、哌嗪基、哌啶基、吗啉基、三硫杂环己烷基、二氧戊环基、呋喃基、噻吩基、吡咯基、咪唑基、吡唑基、噻唑基、呕唑基、吡啶基、吡嗪基、嘧啶基、三唑基、噻二唑基、哒嗪基、三嗪基或噁二唑基,二环包括吲哚满基、3,4-亚甲二氧苯基、3,4-亚乙二氧苯基、苯并呋喃基、苯并噻吩基、苯并噻二唑基、苯并噻唑基、苯并咪唑基、吲哚基、喹啉基、异喹啉基或喹喔啉基等,较好是 5~6 元单环杂芳基,更好是呋喃基、噻吩基、咪唑基、噻唑基或吡啶基。

"酰基"可列举 HCO-、 C_{1-15} 烃基-CO-、杂环基-CO-,杂环基- 烷基-CO-、杂环基- 烷基-CO-、杂环基- 烷基-CO-、杂环基- 烷基-CO-、杂环基- 烷基-CS-、杂环基- 烷基-CS-、杂环基- 烷基-CS-。较好的是 C_{1-15} 烃基-CO- 及杂环基-CO-,具体包括 HCO-、乙酰基、丙酰基、2-甲基丁-2-烯-2-酰基、苯甲酰基、烟酰基、噻吩甲酰基、吡咯烷基羰基

或哌啶基羰基等。

"卤代烃基"是指卤素 C_{1-10} 烷基和卤素 C_{6-14} 芳基,具体可列举氯甲基、三氮甲基、氟苯基、二氟苯基或三氟苯基等。

"杂环亚基"是指杂环上的同一碳原子存在两个游离价键的基团,可列举3--甲基-4-氧代-2-硫化噻唑烷-5-亚基等。

"杂环基-C1.10亚烷基"可列举吡啶基亚甲基等。

作为可被取代的烃基中的取代基,具体可列举下述 a 组的取代基。

作为可被取代的杂环基,可被取代的羟基、可被取代的羧基、可被取代的酰基-O-,可被取代的酰基,取代基 $-S(O)n_{101}-$,可被取代的氨基甲酰基及可被取代的氨基磺酰基中的取代基,具体可列举下述 b 组的取代基。

作为可被取代的氨基中的取代基,具体可列举下述c组的取代基。

作为 A 环和 B 环的可被取代的芳基或杂环基中的取代基,可列举下述 d 组的取代基。

a组:OH,NO₂,COOH,卤素,C₆₋₁₄ 芳基,杂环基,R¹⁰¹₃SiO-及 / 或 R¹⁰¹-T¹⁰¹-,R¹⁰¹: (1)H,(2)C₃₋₈ 环烷基,(3)杂环基,(4)可被[OH,NO₂,COOH,卤素,杂环基,C₁₋₁₀ 烷基-CO-,C₁₋₁₀ 烷基-O-,C₁₋₁₀ 烷基-O-CO 及 / 或(R¹⁰²)n₁₀₂C₆₋₁₄ 芳基]取代的 C₁₋₁₀ 烷基,R¹⁰²: H,卤素,NO₂,OH,COOH,C₁₋₁₀ 烷基-O-或 C₁₋₁₀ 烷基-O-CO-,n₁₀₂: 1~5 的整数,(5) OH,CN,NO₂,卤素及 / 或可被 C₁₋₁₀ 烷基-CONR¹⁰³-取代的 C₆₋₁₄ 芳基,R¹⁰³: 与 R¹⁰¹ 相同或不同,(a) H,(b)C₃₋₈ 环烷基,(c)杂环基,(d)可被 COOH,C₁₋₁₀ 烷基-O-CO-,(R¹⁰⁴)n₁₀₂-C₆₋₁₄ 芳基或(R¹⁰⁴)n₁₀₂-杂环基取代的 C₁₋₁₀ 烷基,R¹⁰⁴: H,OH,卤素或 C₁₋₁₀ 烷基-O-或(e)可被 OH,CN,NO₂,卤素或 C₁₋₁₀ 烷基-CONR¹⁰⁵-取代的 C₆₋₁₄ 芳基,R¹⁰⁵: (a)H,(b)C₃₋₈ 环烷基,(c)杂环基,(d)可被 COOH,C₁₋₁₀ 烷基-O-CO-,CO-,C₆₋₁₄ 芳基或杂环基取代的 C₁₋₁₀ 烷基,或(e)可被 OH,CN,NO₂ 或卤素取代的 C₆₋₁₄ 芳基,不¹⁰¹:

b 组: (1)H, (2)C₃₋₈ 环烷基, (3)可被 C_{1-10} 烷基-O-取代的 C_{6-14} 芳基, (4) 杂环基, (5)可被[OH, NO₂, 卤素,杂环基, $R^{101}R^{103}N$, C_{1-10} 烷基-O-,酰基或 $(R^{106})n_{102}-C_{6-14}$ 芳基]取代的 C_{1-10} 烷基, R^{106} : H, COOH, NO₂, $R^{101}R^{103}N$,酰基 $-NR^{101}$ -或 C_{1-10} 烷基-O-CO-,下同。

c 组: (1)可被 C_{1-10} 烷基,卤代 C_{1-10} 烷基或 C_{6-14} 芳基- C_{1-10} 烷基取代的杂环基,(2)可被环烷基或 $R^{101}R^{103}N$ 取代的 C_{6-14} 芳基,(3)可被 R^{107} 取代的 C_{1-10} 烷基, R^{107} : (a) C_{3-8} 环烷基,(b) C_{3-8} 环烯基,(c) R^{108} —O一, R^{108} : (i)可被 C_{6-14} 芳

基, 杂环基或 $R^{101}R^{103}N$ 取代的 C_{1-10} 烷基, 或(ii)可被 C_{6-14} 芳基或 $R^{101}R^{103}N$ 取代 的芳基, (d)可被 NO,取代的酰基, (e)(R^{109}) $n_{102}-C_{6-14}$ 芳基, R^{109} : (i)H, (ii)OH, (iii)CN, (iv)NO₂, (v)COOH, (vi)卤素, (vii)氧代(=O), (Viii)R¹⁰¹R¹⁰³N, (ix)可 被 R¹¹⁰ 取代的 C₁₋₁₀ 烷基, R¹¹⁰: H, OH, COOH, 卤素, C₆₋₁₄ 芳基, 可被[C₁₋₁₀ 烷基,氧化或硫代(=S)]取代的杂环亚基, C_{1-10} 烷基-O-, C_{1-10} 烷基-O-CO 一或酰基-O-, (x)酰基-O-, (xi)可被卤素取代的 C_{6-14} 芳基, (xii)可被卤素, C_{1-10} 烷基或卤代 C_{1-10} 烷基取代的杂环基及 / 或(xiii) $R^{111}-T^{102}-$, R^{111} : (i)H, (ii)C₃₋₈环烷基, (iii) R¹⁰¹ R¹⁰³ N, (iv)可被卤素, C₁₋₁₀ 烷基, 卤代 C₁₋₁₀ 烷基或 C₆ $_{-14}$ 烷基取代的 C_{6-14} 芳基,或(v)可被卤素,COOH, C_{1-10} 烷基-O-, $R^{101}R^{103}N$, C_{6-14} 芳基,杂环基,杂环亚基, C_{1-10} 烷基-O-CO-或酰基-O-取代的 C_{1-10} 烷基, T¹⁰²: -O-, -CO-, -NR¹⁰¹-, -O-CO-, -CONR¹⁰¹-, - $NR^{101}NR^{101}CO-$, $-O-CONR^{101}-$, $-S(O)n_{101}-$ 或 $-S(O)n_{101}NR^{101}-$ 及/或 R^{111b}NC(NR^{111b})NR¹⁰¹一,R^{111b}: H或C₁₋₁₀烷基-O-CO-,(f)(R¹¹²)n₁₀₂一杂环 基, R^{112} : 氧代,氧化物或与 R^{102} 相同的基团,(g) C_{1-10} 烷基-O-CO-,(4)可 被卤素,氧化物, C_{1-10} 烷基, C_{1-10} 烷基-O-或 C_{1-10} 烷基-O-CO-NR $^{101}-$ 取 代的杂环基 $-C_{1^{-10}}$ 亚烷基,(5)可被 R^{113} 取代的酰基, R^{113} : OH, COOH, CN, NO₂, 卤素, C₆₋₁₄ 芳基, 杂环基, R¹⁰¹R¹⁰³N, C₁₋₁₀烷基, 卤素 C₁₋₁₀烷基, C₁₋₁₀ 烷基-O-, C_{1-10} 烷基-O-CO-, C_{1-10} 烷基 $-O-C_{6-14}$ 芳基,酰基, C_{1-10} 烷 基-O-CO-, C_{1-10} 烷基 $-C_{6-14}$ 芳基,酰基 $-NR^{101}-$,酰基 $-NR^{101}-C_{6-14}$ 芳 基或 C_{1-10} 烷基 $-C_{6-14}$ 芳基 $-SO_2-NR^{101}-$,(6) $R^{101}R^{103}NCO$,(7) $R^{114}-S(O)n_{101}$ -, R¹¹⁴: (a)H, (b)可被 OH, NO₂, 卤素, R¹⁰¹R¹⁰³N, C₁₋₁₀烷基-O-, 酰基- NR^{101} 一或 $C_{6^{-14}}$ 芳基取代的 $C_{1^{-10}}$ 烷基,(c)可被 OH, NO_2 ,卤素, $R^{101}R^{103}N$, C_1 $-_{10}$ 烷基,卤代 C_{1-10} 烷基, C_{1-10} 烷基-O-,酰基 $-NR^{101}-$ 或 C_{6-14} 芳基取代的 C₆₋₁₄ 芳基, (d)可被 OH, NO₂, 卤素, R¹⁰¹R¹⁰³N, C₁₋₁₀烷基, 卤代 C₁₋₁₀烷基, C_{1-10} 烷基-O-,酰基 $-NR^{101}-$ 或 C_{6-14} 芳基取代的杂环基,或(e) $R^{101}R^{103}N$ 及 / 或(8) R^{115} - T^{103} -, R^{115} : (a)可被杂环基取代的 C_{1-10} 烷基, (b)可被杂环基或 $R^{101}R^{103}N$ 取代的 C_{6^-14} 芳基或(c)杂环基, T^{103} : $-CO-NR^{101}-$, $-NR^{101}-CO-$, $-NR^{101}$ -CS-, -O-CO-CO-, -O-CO-或-CO-CO, 下同。

d组: (1)CN, (2)NO₂, (3)卤素, (4)OH, (5)COOH, (6)可被[OH, 卤素, 杂环基, 可被卤素取代的 C_{6-14} 芳基, $R^{101}R^{103}N$, $R^{101}-CO-$, $R^{101}-T^{101}-$, CO-或 $R^{101}-T^{101}-$]取代的 C_{1-10} 烷基 $-T^{104}-$, T^{104} : 键,-O-, -CO-O-, -O- CO-, (7)可被 R^{113} 取代的酰基,(8)可被 R^{113} 取代的酰基-O-, (9) $R^{116}R^{117}N$,

R¹¹⁶ 和 R¹¹⁷: 可以相同或不同,为 H 或 c 组的取代基及 / 或(10)R¹¹⁶R¹¹⁷NCO,下同。

本发明的有效成分或本发明的化合物存在如下所示的几何异构体和互变异构体。

本发明包括这些已分离的异构体或它们的混合物。根据取代基的不同种类本 发明的化合物中存在不对称原子或不对称轴时,可存在由不对称碳原子等引起的 异构体。本发明包括这些光学异构体的混合物和经分离的异构体。且本发明也包 括以放射性同位素标记的本发明化合物。

本发明的化合物中对于丙烷 2 位双键几何异构体通过如上所述的互变异构而存在可如下相互变换的化合物。

此外,本发明的有效成分或本发明的化合物有时也形成酸加成盐或依据取代基的不同种类与碱形成盐,这些盐限于制药学上允许的盐,它们也包括在本发明中,具体可列举与盐酸、氢溴酸、氢碘酸、硫酸、硝酸、磷酸等无机酸,以及甲酸、乙酸、丙酸、草酸、丙二酸、琥珀酸、富马酸、马来酸、乳酸、苹果酸、酒石酸、柠檬酸、甲磺酸、乙磺酸、对甲苯磺酸、天冬氨酸或谷氨酸等有机酸形成的酸加成盐,与钠、钾、镁、钙、铝等无机碱,甲胺、乙胺、乙醇胺、赖氨酸、乌氨酸等有机碱形成的盐和铵盐等。本发明还包括本发明的有效成分,本发明的化合物及其制药学上允许的盐的各种水合物和溶剂合物。此外也包括其多晶型物

质。

此外,本发明的有效成分分或本发明化合物也包括所有在机体内经过代谢和转化的化合物,即所谓的前体药物。作为形成本发明的前体药物的基团可列举 Prog Med,5,2157-2161(1985)及《医药品的开发》第7卷(广川书店,1990年)分子设计163-198页记载的基团。

制造法

本发明化合物及其制药学上允许的盐,可利用其基本骨架或取代基的种类等特征,采用各种公知的合成法制得。

根据官能团的种类,将该官能团和在原料或中间体的阶段以适当的保护基(可容易地转化成该官能团的基因)取代,有时在制造技术上是有效的。这种官能团包括氨基、羟基、羧基等,它们的保护基可列举 Greene 及 Wuts 著的《Protective Groups in Organic Synthesis(第 3 版)》中所记载的保护基,可根据反应条件适当选择并使用它们。在这样的方法中,在引入该保护基并进行反应后,可根据需要除去该保护基,得到所需的化合物。

本发明有效成分是公知化合物的场合,根据上述文献(Collect, Czech, Chem. Commun(1971), 36(1), 150-163 等)可能容易获得。

以下说明本发明化合物或其中间体的代表制造法。

以下记载中的符号如下。

DMF: N,N-二甲基甲酰胺; DMSO: 二甲基砜; THF: 四氢呋喃; Tol: 甲苯; EtOAc: 酸酸乙酯; DCE: 1,2-二氯乙烷; TEA: 三乙胺; Diglyme: 二乙二醇二甲醚。

第1制法(酰化反应)

本制法是常规的酰化反应,具体是在对反应呈惰性的溶剂中于室温至加温下使烷基化合物和反应对应量的酰基化合物反应。

对反应呈惰性的溶剂包括苯或 Tol 等芳香族烃类溶剂, Diglyme、THF、1,4 一二噁烷或 1,2一二甲氧基乙烯等醚类溶剂, 二氯甲烷, 氯仿或 DCE 等卤烃类溶剂, TEA, 吡啶, 三甲基吡啶, 吗啉, 2,6一二甲基吡啶等碱性溶剂等。这些溶剂可单用或两种以上混用。根据需要也可添加氢化钠等无机碱。

作为典型实例,使甲基咪唑化合物(II)与酰基化合物(III)在对反应呈惰性的溶剂中于室温至加温下反应(工序 1)得中间体(IV)等,加入与该化合物(IV)的反应对应量的羧酸(V),经加热(工序 ii)制造本发明化合物。

在本制法中,不分离中间体(IV)等直接在第一工序后加入化合物(II)的反应对应量的羧酸(V)或反应对应量的水,如上所述加热使反应进行,而且可用酸酐代替酰基化合物(III)。

离去基 L¹为卤素或甲烷磺酰氧基或对甲苯磺酰氧基等有机磺酸基等。

第2制法

本制法是使酯化合物(VII)与酰基化合物(VIII)反应而得二酮化合物(IX),再使该化合物(IX)与二硫化碳反应,通过加入卤代烷得二硫代缩醛化合物(X),再使该化合物(X)与胺化合物(XI)反应。

本发明化合物(XII)是在氢化钠等碱存在下,在 THF 等对反应惰性的溶剂中于室温乃至加温下使酯化合物(VII)与反应对应量的酰基化合物(VIII)反应(工序 i),再使所得化合物(IX)与二硫化碳在 KF/Al $_2$ O $_3$ 或碳酸钾等无机碱或 TEA 等有机碱存在下,于冷却乃至室温最好是在 0°C至室温下反应,然后加碘甲烷或 1,3—二溴丙烷等烷化剂进行烷基化反应(工序 ii),所得的二硫代缩醛化合物(X)与反应对应量的酰基化合物(XI)在乙醇或 DMSO 等对反应惰性的溶剂中,于室温乃至加热回流下反应(工序 iii)而获得。

式中,R⁷表示C₁₋₆烷基,XI表示NH、O或S。虚线表示2个烷基结合形成环。

第3制法

本制法是使 2一甲基咪唑化合物(II)与酰基化合物(III)反应(工序 i),于吗啉等有机碱存在下在对反应惰性的溶剂中在室温乃至加温下得咪唑化合物(XIV)(工序 ii),再使该化合物(XIV)与酰基化合物(XV)进行酰化反应(工序 iii)。工序 i 及工序 ii 按照上述第 1 制法的酰化反应,其中的中间体(XIII)等也可以不分离。

第 4 制法(还原反应)

本还原反应使用公知的方法进行(Comprehensive Organic Synthesis 8 Reduction (Pergamen Press)(1991))。较好的是(1)于氢氛围气下或甲酸铵等供氢物质存在于用钯(Pd),铂(Pt)或镍(Ni)等在甲醇、乙醇、氯仿、乙酸乙酯或乙酸等溶剂中,于室温乃至加温下催化还原,或(2)于乙酸或盐酸等酸存在下使用 Fe 或 SnCl₂等金属,或于水与甲醇或 THF 等混合溶剂中在室温乃至加温下用连二亚硫酸钠等还原剂进行反应,或(3)在乙醇等对反应惰性的溶剂中加硼氢化钠,氰基硼氢化钠或三乙酰氧基硼氢化钠等还原剂,于冰冷却乃至加温下进行反应。

作为典型例子,可列举硝基化合物(XVII)生成胺化合物(XVIII)的反应或酮化合物(XIX)生成醇化合物(XX)的反应。

$$(0_2N)_{a3} \leftarrow C \qquad X^2 \qquad (N0_2)_{a1} \qquad (E_2N)_{a3} \leftarrow C \qquad X^2 \qquad (NH_2)_{a2}$$

$$(XVII) \qquad (XVIII) \qquad (XVIII)$$

或

$$\left(\begin{array}{c} R^{5} \\ R^$$

式中的符号 R^8 为可被取代的烃基或可被取代的杂环基,m1 或 m2 可以相同或不同,表示 $0\sim5$ 的整数,m3 表示 $0\sim4$ 的整数, $m1+m2+m3\geq1$,下同。

第5制法

本反应是在对甲苯磺酸等酸的存在下或不存在下于乙醇、苯; THF 或 Tol 等对反应惰性的溶剂中,在室温乃至加温下搅拌胺化合物和反应对应量的醛化合物而得到亚胺化合物,然后根据上述第 4 制法较好是根据反应(1)或(3)进行还原反应。

或者,将胺化合物与反应对应量的醛化合物混合,按照第 4 制法加入还原剂而进行本反应。还原剂加入时间可于胺化合物与醛化合物刚混合后加入,也可于过一段时间后加入。也可不用醛化合物而用酮或 1 一羟基甲基苯并三唑。典型实例包括胺化合物(XVIII)和醛化合物(XXI)生成烷胺化合物(XXII)的反应,以及胺化合物(XVIII)经亚胺化合物(XXIII)生成烷胺化合物(XXII)的反应。

式中, R⁹: R¹⁰-T¹-, R¹⁰: H、R¹⁰⁷、 R^e、R^f: 可以相同或不同, 为氢

原子或上述 c 组的取代基,虚线: R^e 与 R^f 可结合形成上述杂环(下同)。或具有 $1\sim$ 5 个选自 C_{1-10} 烷基-CONH-, C_{1-10} 烷基, C_{1-10} 烷基-O-及可被上述 b 组的取代基取代的羧基的官能团的 C_{1-15} 烃基, T^1 : C_{1-10} 烷基, C_{2-10} 烷基, C_{2-10} 炔基或单键,下同。

第6制法(酰胺化反应或磺酰胺化反应)

本反应以常规方法进行。例如,通常使用缩合剂(二环己基碳二亚胺,1-乙基-3-(3'-二甲基氨基丙基)碳二亚胺,1,1'-羧基二咪唑等)的方法,或使用 氯甲酸乙酯或氯甲酸异丁酯等的混合酸酐法。

此外,也可以用亚硫酰氯,草酰氯或氧氯化磷等卤化剂使羧酸或磺酸形成卤化物等反应性衍生物后和胺化合物反应。该反应通常在 THF, DMF, 二氯甲烷,氯仿,乙腈或乙酸乙酯等对反应惰性的溶剂中,必要时在 TEA 等有机碱或碳酸钾等无机碱存在下,于冷却下(较好为-15-0℃)乃至室温下或加温下进行较好。

典型实例可列举由胺化合物(XVIII)与羧酸(XXIV)或其反应性衍生物等或磺酸(XXVI)或其反应性衍生物等,生成酰胺化合物(XXV)或磺酰胺化合物(XXVII)的反应。

式中的 R11CO 表示可被 R113取代的酰基,下同。

第7制法

在 THF, 丙酮, DMF, 乙腈, 二氯甲烷, 甲醇或 DMSO 等对反应惰性的溶剂中, 于冷却下、 室温乃至加温下或回流下使具有离去基团的化合物和反应对应量的胺化合物、具有羟基(OH)的化合物或磺酰胺化合物进行反应。根据需要可加入碳酸钾等无机碱或 TEA 等有机碱。

典型实例可列举由具有离去基 L2 的烷基化合物(XXVIII)和胺化合物(XXIX) 生成本发明化合物(XXX)的胺化反应,或由具有离去基 L2 的烷基化合物(XXXIV) 与羟基化合物(XXXIII)生成本发明化合物(XXXV)的 O一烷基化反应。

式中,L2: 上述 L1 或重氮基(N=N-),L3: 氯(Cl)或溴(Br), n1 和 n3: 可以相同或不同,表示 $0\sim1$ 的整数, n2: $0\sim4$ 的整数, 但 $m1+m2+n1+n2+n3 \geq 1$ (下同),或

式中, R¹²为 b 组的取代基, 下同。

第8制法

本水解反应是在碳酸钾等无机碱,更好是在吗啉等有机碱存在下,于甲醇等对反应惰性的溶剂中在室温乃至加热回流下进行的。

典型实例可列举化合物(XXXI)生成化合物(XXXII)的水解反应。

$$(R^{8}COO)_{m3} = C = X^{2} = X^{2}$$

第9制法

在 Tol, 乙腈, 氯仿或 DMF 等对反应惰性的溶剂中于 0℃乃至回流下使胺化合物与反应对应量的异氰酸酯化合物或异硫氰酸酯化合物反应。

由原料羧酸或其反应性衍生物(酰氯等)经公知的重排反应(J.March 著,Advanced Organic Chemistry (John Wiley & Sons(1992))可得异氰酸酯化合物。由原料胺化合物,卤烷,重氮盐或异腈等经公知的及应(J. March 著,Advanced Organic Chemistry (John Wiley & Sons(1992)) 可得异硫氰酸酯化合物。

由上述反应得到异氰酸酯化合物或异硫氰酸酯化合物,可于原位与脲或硫脲反应,也可于异氰酸酯化合物或异硫氰酸酯化合物分离后与脲或硫脲反应。且可不用异氰酸酯化合物或异硫氰酸酯化合物而让胺化合物与反应对应量的碳二亚胺化合物在二氯甲烷等对反应惰性的溶剂中于 0℃乃至加温反应,经脱保护基反应而进行。碳二亚胺化合物可由公知的反应(Fieser and Fieser's Reagent for Organic Synthesis vol.8(Wiley)p.96)合成。碳二亚胺化合物可用适当的保护基保护。保护基和脱保护反应按照上述《Protective Groups in Organic Synthesis(第 3 版)》进行。

典型实例可列举由胺化合物(XXXVI)与异氰酸酯化合物或异硫氰酸酯化合物生成脲化合物(XXXVII)或硫脲化合物(XXXVII)的反应,或胺化合物(XXXVI)与碳二亚胺化合物(XXXXIX)生成胍化合物(XXXXI)的反应。

第 10 制法

本氧化反应用公知的方法进行(J.March 著, Advanced Organic Chemistry (John Wiley & Sons (1992))。较好是在二氯甲烷或氯仿等对反应惰性的溶剂中于间氯过苯甲酸(mcpba)、过氧化氢或过镣酸四丙基铵(TPAP)等氧化剂存在下进行。

典型实例包括硫化物(XXXXII)与氧化剂生成磺酰化合物(XXXXIII)的反应,醇化合物生成醛化合物的反应,或吡啶基甲基氨基化合物生成 N-氧化吡啶基亚甲基氨基化合物的反应。

上述制造法所列的反应式表示典型化合物的反应,因此,在本发明化合物中如在该反应式中其他位置存在相同的取代基,通过使用上述反应式的取代基修饰反应,可容易地制造本发明范围内所包括的化合物。

原料化合物是新化合物时,可用以下的制法得到。

制法1

在碱存在下或在酸催化剂存在下于室温乃至加温下使醛化合物或酮化合物与反应对应量的活性亚甲基化合物缩合。

溶剂可用乙酸,碱较好是使用哌啶等仲胺,酸催化剂可用氯化铵或氟化钾等 盐或 TiCl4 等路易斯酸。

式中, H₂Q Hot 为具有氧代及活性亚甲基、且可被 C₁₋₁₀烷基及/或硫代基取代的杂环。

制法2

在甲醇等对反应惰性的溶剂中,于室温乃至加温下使具有离去基 L¹的硝基苯 化合物与反应对应量的氨封管反应。

制法3

在 DMF 等对反应惰性的溶剂中,于 0℃乃至加温下使醛化合物或酮化合物与反应对应量的膦内鎓盐反应。该膦内鎓盐可用公知的方法由磷盐与氢化钠等碱制备(J.March 著,Advanced Organic Chemistry (John Wiley & Sons (1992))。

式中,R¹³为可被取代的烃基或杂芳基。

制法4

在乙醇等对反应惰性的溶剂中,于室温乃至回流下使 1,2-苯二胺化合物与原乙酸三烷基酯化合物反应。必要时可加盐酸等酸催化剂,也可加分子筛等或使用Dean-stark 分水器使反应体系脱水。

或者,使按照第4制法对邻硝基乙酰苯胺化合物进行还原反应得到的邻氨基乙酰苯胺化合物在乙酸或盐酸等酸催化剂存在或不存在下进行缩环反应。这时所得的邻氨基乙酰苯胺化合物可以分离,也可以不分离。

制法 5

在三(二亚苄基丙酮)二钯等钯催化剂以及三叔丁基膦等配位体和碳酸铯等碱存在下,于二噁烷等对反应惰性的溶剂中在室温乃至加温使卤苯化合物和苯基硼酸化合物反应 (Angew. Chem. Int. Ed.,37,3388(1998))。反应最好在氦气或氩气等对反应惰性的氛围气中进行。

制法 6

在四氯化碳或 DCE 等卤烃类溶剂或苯等芳香族烃类溶剂等对反应惰性的溶剂中,于 0℃乃至回流下使胺化合物、酰胺化合物或酰亚胺化合物与反应对应量的 溴化合物反应。溴化合物包括 N-溴琥珀酰亚胺、溴、tBuoBr、AcoBr 等。根据需要可加入偶氮二异丁腈(AIBN)等游离基引发剂。

本发明化合物可作为游离化合物、其制药学上允许的盐、水合物、溶剂合物或多晶型物质分离精制。本发明化合物(I)的制药学上允许的盐也可用常规的成盐反应制得。分离、精制可采用提取、分级结晶、各种色谱法等常规化学操作来完成。

各种异构体可通过选择适当的原料化合物或利用异构体间的物理化学性质差异而分离。例如,光学异构体可通过选择适当的原料或通过消旋化合物的拆分(例如与一般的光学活性的碱或酸生成非对映异构体盐进行拆分的方法等)得到立体化学纯的异构体。

除下述实施例的化合物之外,下表的化合物可利用与本制造法相同的方法获得。此外,还得到了下表中的一部分化合物。

另外, 说明书中的缩写如下所述。

Rex: 参考例; EX: 实施例; Str: 结构式; Dat: 物理化学性质; FA: FAB-MS(M+H)⁺; MS: 质谱数据; FN: FAB-MS(M-H)⁻; EI: EI-MS; N1: NMR(DMSO-d₆, TMS 内标)的特征峰δ ppm; N2: NMR(CDCl₃, TMS 内标)的特征峰δ ppm; ph: 苯基; Me: 甲基; diMe: 二甲基; Et: 乙基; Pr: 丙基; ipr: 异丙基; iBu: 异丁基; Pen: 戊基; cPr: 环丙基; Ac: 乙酰基; Cl: 氯; diCl: 二氯; CN: 氰基; F: 氟; diF: 二氟; triF: 三氟; NO₂: 硝基; MeO: 甲氧基; diMeO: 二甲氧基; Br: 溴; diBr: 二溴; CF₃: 三氟甲基; AcO: 乙酰氧基; MeOCO: 甲氧羰基; Boc: 叔丁氧羰基; NH₂: 氨基; PhCONH: 苯甲酰胺基; EtCONH: 乙基羰基氨基; Et₂N: 二乙基氨基; TBS: 叔丁基二甲基甲硅烷基; biPh: 联苯; Naph: 萘; Thiop: 噻吩; Fu: 呋喃; Py: 吡啶; IM: 咪唑; Pyrazi: 吡嗪; Pipe: 哌啶; Pyrazo: 吡唑; Pyrim: 嘧啶; Pyrr: 吡咯; Pyrroli: 吡咯烷; Mo: 吗啉; Isoquin: 异喹啉; Isoind: 异吲哚啉; Thiaz: 噻唑; Tr: 三苯甲基; TEA: 三乙胺; NMO: N一甲基吗啉氧化物; TPAP: 过镣酸四丙基铵; Sa: 加成盐; HCl: 盐酸盐; Oxal: 草酸盐; MS4A: 分子筛 4A。

表2

化合 物 No	R²	R³	В	化合 物 No	R²	- R³	В
1a	Н	Py-3-y1CH2NHCH2	Ph	7a	Py-3-y1CH2NHCH2	MeO	Ph
2a	Н	MeOCOCH ₂	Ph	8a	Н	Py-3-y1CH₂NH	3-H2N-Ph
3a	Н	Py-3-y1CH2NHCH2	Ph	9a	Н	Py-3-y1CH₂NH	Py-3-y1
4a	Н	Me ₂ NCOCH ₂	Ph	10a	Н	4-0,N-PhCONH	3-H ₂ N-Ph
5a	Н	4-AcNH-PhCH2NH	Ph	11a	Н	Me[MeO(CH ₂) ₃]NCH ₂	Ph
6a	Н	MeCH (Ph) NH	Ph	12a	Me0	Py-3-y I CH ₂ NHCH ₂	Ph

表3

	<u> </u>			
化合 物 No	R²	R³	Α ·	В
13a	1,3-Thiaz-5-yICH ₂ NH	Н	3, 5-diF-Ph	3-Me-Ph
14a	O ₂ N	CI	3, 5-diF-Ph	3-Me-Ph
15a	н	F	Ph	4-cPrNH-Ph
16a	MeO	MeO	3-H00C-Ph	Ph
17a	H l	Н	3, 5-d≀F₃C-Ph	3-H ₂ N-Ph
18a	4-F-PhCONH	Н	. Ph	Ph
19a	4-F-PhCONH	H	Ph	3, 5-diF-Ph
20a	Н	H	4-F-Ph	4-F-Ph

赉 4

化合 物 No	A	8	化合物 No	Α	В
21a	4-01-Ph	4-C1-Ph	31a	3-Me0-Ph	3-Me0-Ph
22a	4CNPh	4-CN-Ph	32a	3-Br-Ph	3-Br-Ph
23a	4-Me-Ph	4-Me-Ph	33a	3-Me-Ph	. 3-ме-Рh
24a	4-0 ₂ NPh	4-0 ₂ N-Ph	34a	3-Et-Ph	3-Et-Ph
25a	4-MeOCO-Ph	4-Me0C0-Ph	35a	Ph	3-F-Ph
26a	2-Ci-Ph	2-CI-Ph	36a	3-H ₂ N-Ph	3-H ₂ N-Ph
27a	3-CI-Ph	3-C1-Ph	37a	3-(Py-3-y1CH₂CONH)Ph	3, 5-diF-Ph
28a	4-CI-CH ₂ -Ph	4-C1-CH2-Ph	38a	4-(Mo-4-y1CH ₂)Ph	4- (Mo-4-y I CH ₂) Ph
29a	2-F-Ph	2-F-Ph	39a	3-0H-Ph	3-0H-Ph
30a	4-Me0-Ph	4-Me0-Ph	40a	3, 5-diF-Ph	Py-3-y1CH₂NHPh

表 5

H o			
化合物 No	· R ^z	化合物No	R ²
41a	Py-3-y1CH,NHCH ₂	81a	4-C1-PhCH2NH
42a	Me0C0CH ₂	82a	2-Br-PhCH₂NH
43a	Me [MeO (CH,) , NCH,	83a	2-F-PhCH₂NH
44a	Py-3-y1CH,NHCH,	84a	3-F-PhCH ₂ NH
45a	Me,NCOCH,	85a	4-F-PhCH2NH
46a	4-AcNH-PhCH,NH	86a	2-HO-PhCH2NH
47a	MeCH (Ph) NH	87a	3-HO-PhCH2NH
48a	6-CF ₃ -Py-3-y1CH ₂ NH	88a	2-0 ₂ N-PhCH ₂ NH
49a	4-tBuOCONH-Py-3-yICH,NH	89a	3, 5-diMeO-PhCH ₂ NH
50a	2-C1-Py-3-y1CH,NH	90a	2, 5-d i MeO-PhCH ₂ NH
51a	4-H ₂ N-Py-3-y1CH ₂ NH	91a	2, 3-diMeO-PhCH ₂ NH
52a	6-Me-Py-2-y1CH ₂ NH	92a	3, 4-diF-PhCH₂NH
53a	3-C1-4-F ₃ C-Py-2-y1CH ₂ NH	93a	2, 4-diF-PhCH2NH
54a	4, 6-diMe-Py-2-y1CH2NH	94a	Fu-2-y1CH ₂ NH
55a	5-CN-6-MeS-Py-2-y1CH,NH	95a	5-Me-Fu-2-y1CH ₂ NH
56a	3. 6-diC1-4-0H-Py-2-y1CH,NH	96a	4- i Bu-PhCH ₂ NH
57a	Py-2-y1CH₂NH	97a	4-Br-PhCH2NH
58a	Py-4-y1CH2NH	98a	3-MeO-CO-PhCH,NH
59a	2. 6-diCI-Py-4-y1CH,NH	99a	4-CN-PhCH,NH
60a	3, 5-diOH-2-Me-Py-4-yICH,NH	100a	3-PhCH,0-PhCH,NH
61a	. Py-4-y1-CONH	101a	2-C1-4-F-PhCH2NH
62a	3-MeO-CO-PhCONH	102a	2-C1-5-H0-PhCH2NH
63a	4-(iPrNHCO)PhCH ₂ NH	103a	3-C1-4-MeO-PhCH ₂ NH
64a	1-Me-IM-4-yICH ₂ NH	104a	3-C1-6-0,N-PhCH,NH
65a	Py-2-y1CH ₂ NH	105a	4-C1-5-0,N-PhCH,NH
66a	6-Br-咪唑并[1,2-a]Py-3-y1CH,NH	106a	2, 3-diH0-PhCH₂NH
67a	3-CI-PhCH ₂ NH	107a	2, 4-diH0-PhCH2NH
68a	3−Br−PhCH₂NH	108a	4,5-diHO-PhCH,NH
69a	4-CI-PhCH ₂ NH	109a	3-H0-4-Me0-PhCH ₂ NH
70a	Naph-1-y I-CH2NH	110a	3-H0-5-0,N-PhCH,NH
71a	2-Me-PhCH ₂ NH	111a	3-H0-4-0,N-PhCH,NH
72a	3-Me-PhCH ₂ NH	112a	2-H0-6-Me0-PhCH,NH
73a	4-iPr-PhCH ₂ NH	113a	4-MeO-PhCH ₂ NH
74a	4-Et-PhCH2NH	114a	2-EtO-PhCH ₂ NH
75a	2-Me0-PhCH ₂ NH	115a	4-EtO-PhCH ₂ NH
76a	4-MeO-Naph-1-yl-CH ₂ NH	116a	4-MeO-Naph-1-y1-CH ₂ NH
77a	4-MeO-3, 6-diMe-PhCH₂NH	185a	5-Me-1M-4-y1GH ₂ NH
78a	3, 5-diBr-6-HO-PhCH2NH	186a	IM-2-y1CH ₂ NH
79a	2-CF ₃ -PhCH ₂ NH	187a	6-Me-Py-2-y1CH ₂ NH
80a	3-GI-PhCH ₂ NH		
1	I		

表 6

	н о	U			
化合 物 No	R²	В	化合物	R²	В
117a	Н	1H-1M-4-y1	151a	H	5-Me0-Py-3-y1
118a	Н	Fu-2-y1	152a	Н	2-H ₂ N-Thiaz-4-yl
119a	Н	3-PhNHCOPh	153a	H	1- (4-F-PhCH ₂) IM-4-y1
120a	Н	3-H2N-5-F2C-Ph	154a	Н	2-Me-Thiaz-4-yl
121a	0,N	3, 5-diF-Ph	155a	Н	5-Me-Py-3-y1
122a	0,N	2-Me-Ph	156a	Py-3-y1CH2NH	3-H ₂ NPh
123a	0,N	3-F ₃ C-0-Ph	157a	H	6-F ₃ C-Py-3-y1
124a	0,N	3-C1-Ph	158a	Py-3-y1CH₂NH	Py-3-y1
125a	0,N	3,4-diMe-Ph	159a	Н	1-Me- 吡咯 -3-y1
126a	0 ₂ N	4-Me0-Ph	160a	Н	1, 2, 3- 噻二唑 -5-y1 3-H ₂ N-Ph
127a	O ₂ N	2-G1-Ph	161a	4-NO ₂ -PhCONH	
128a	02N	· 2,5-diF-Ph	162a	Н	1-Me-苯并(M-5-y)
129a	02N	2-F ₃ C-Ph	163a	H	3-Me-Ph
130a	0.N	3,5-diMe-Ph	164a	Py-3-y1CONH	3-Me-Ph
131a	0,1	2-F-Ph	165a	3-CI-PhSO ₂ NH	3, 5-diF-Ph
132a	0,N	3, 5-diMeO-Ph	166a	4-AcNH-PhCH ₂ NH 4-AcNH-PhCH ₂ NH	2-Me-Ph
133a	0 ₂ N	5-Br-Py-3-y1	167a	4-AcNH-PhCH ₂ NH	4-F ₃ C-0-Ph
134a	0 ₂ N	3-Br-Ph	168a	4-AcNH-PhCH ₂ NH	3-F ₃ C-0-Ph
135a	O ₂ N	3-Me-Ph	169a		3-F ₃ C-Ph
136a	H ₂ N	3-F-Ph	170a	4-AcNH-PhCH ₂ NH	4-C1-Ph
137a	H ₂ N	4-Me-Ph	171a	4-AcNH-PhCH ₂ NH	3, 4-diMe-Ph
138a	H ₂ N	4-F ₃ C-0-Ph	172a	4-AcNH-PhCH ₂ NH	4-Me0-Ph
139a	H ₂ N	2-F ₃ C-0-Ph	173a	4-AcNH-PhCH2NH	3, 5-di Me0-Ph
140a	H ₂ N	4-01-Ph	174a	4-AcNH-PhCH ₂ NH	3, 5-41me0-Ph
141a	H ₂ N	3-C1-Ph	175a	4-AcNH-PhCH₂NH	4-F-Ph
142a	H ₂ N	3, 4-diMe-Ph	176a	3-CI-PhCH2NH	4-F-Ph
143a	H ₂ N	4-Me0-Ph	177a	4-HO-PhCH ₂ NH	
144a	H ₂ N	2-C1-Ph	178a	3-CN-PhCH2NH	2-Me0-Ph
145a	H ₂ N	2-F ₃ C-Ph	179a	3-C1-PhCH2NH	2-MeO-Ph
146a	H ₂ N	2-F-Ph	180a	4-HOOG-PhCH2NH	Z-WEU-FII
147a	H ₂ N	3,5-diMeO-Ph	181a	4-H0-PhCH₂NH	3-Me-Ph
148a	H ₂ N	4-F ₂ C-Ph	182a	2-C1-PhCH ₂ NH	3-Me-Ph
149a	H ₂ N	3-Br-Ph	183a	3-Br-PhCH2NH	. Ph
150a	H		184a	4-CI-PhCH ₂ NH	Ph
1000			<u> </u>		

表 7

13		
化合物 No.	R²	В
188a	H	3-{Me[MeO(CH ₂) ₂]N}Ph
189a	Н	2-H ₂ NGH ₂ Ph
190a	H	2-(1-H00C-EtNH)Ph
191a	H	3-H00C-Ph
192a	Pipe-1-yl	Ph
193a	Н	4-H2NGO-IM-1-yl
194a	PhNHCO-diMe-C	Ph
195a	3-CN-PhNHCOCH ₂	Ph
196a	Py-4-y1CH ₂ 0C0CH ₂	Ph
197a	Н	3-H ₂ N-5-F-Ph
198a	3-F-PhCH ₂ NHCH ₂	Ph
199a	F	4-cPr-NH-Ph
200a	Py-4-y1CONH	Ph
201a	3-MeOCOPhCH ₂ CO	Ph of the ph
202a	6-F ₃ C-Py-3-y1CH ₂ NH	3, 5-diF-Ph
203a	4-tBuOCONH-Py-3-yICH,NH	3, 5-diF-Ph
204a	2-C1-Py-3-y1CH ₂ NH	3, 5-diF-Ph
205a	4-H ₂ N-Py-3-y1GH ₂ NH	3, 5-diF-Ph
206a	6-Me-Py-2-yICH2NH	3, 5-diF-Ph
207a	3-G1-4-F3C-Py-2-y1CH2NH	3,5-diF-Ph 3,5-diF-Ph
208a	4, 6-diMe-Py-2-yICH,NH	3, 5-diF-Ph
209a	5-CN-6-MeS-Py-2-y1CH ₂ NH	3, 5-diF-Ph
210a	3, 6-diC1-4-0H-Py-2-y1CH ₂ NH	3, 5-diF-Ph
211a	Py-2-y1 CH ₂ NH	3, 5-diF-Ph
212a	Py-4-y I CH ₂ NH	3, 5-diF-Ph
213a	2, 6-diCl-Py-4-ylCH,NH	3, 5-diF-Ph
214a	3, 5-d10H-2-Me-Py-4-y1CH,NH	3,0-017-711

	_
==	Λ.

3Z 0					
化合	Str	化合 物 No	Str	化合 物 No	Str ·
物No		190 110			
215a	S NO.	217a		219a	No N
216a	HOOD HOOD	218a		222a	H N H O F

本发明有效成分及本发明化合物或其制药学上允许的盐可单独作为医药品使用,但通常是一种或两种以上的有效成分采用该领域常用的药用载体、赋形剂等以通常使用的方法调剂。经口给药可以是片剂、丸剂、胶囊剂、颗粒剂、散剂、溶液剂等形式,非经口给药可以关节内、静脉内、肌肉内等注射剂,栓剂、滴眼剂、眼膏、透皮液剂、软膏剂、透皮贴剂、透粘膜液剂、透粘膜贴剂、吸入剂等形式。

作为本发明经口给药的固体组合物可使用片剂、散剂、颗粒剂等。在这类固体组合物中将一种或两种以上的有效成分与至少一种惰性稀释剂例如乳糖、甘露醇、葡萄糖、羟丙基纤维素、微晶纤维素、淀粉、聚乙烯吡咯烷酮及/或硅酸铝镁等混合。组合物根据常法也可含有惰性稀释剂以外的添加剂,如硬脂酸镁等润滑剂、纤维素乙醇酸钙等崩解剂、乳糖等稳定剂、谷氨酸或天冬氨酸等增溶剂。必要时片剂或丸剂可包以蔗糖、明胶、羟丙基纤维素、羟丙基甲基纤维素邻苯二甲酸酯等糖衣或胃溶性或肠溶性膜。

口服的液体组合物包括制药学上允许的乳剂、溶液剂、悬浮剂、糖浆剂或 酏剂等,通常含有一般使用的惰性稀释剂,例如精制水或乙醇。该液体组合物除 惰性稀释剂之外可含有增溶剂、湿润剂、悬浮剂等助剂、甜味剂、调味剂、芳香 剂、防腐剂。

非经口给药的注射剂包括无菌的水性或非水性的溶液剂、悬浮剂或乳剂。 水性的溶液剂或悬浮剂含有注射用蒸馏水或生理盐水。非水性的溶液剂或悬浮剂 含有丙二醇、聚乙二醇或橄榄油等植物油,乙醇等醇类或吐温 80 等。这些组合 物还可含有等渗剂、防腐剂、湿润剂、乳化剂、分散剂、稳定剂(如乳糖)或增溶 剂(如谷氨酸、天冬氨酸)等助剂。它们可通过除菌滤器过滤、加入杀菌剂或经辐 射灭菌,也可制成无菌的固体组合物,在使用前溶解或悬浮于无菌水或无菌的注 射用溶剂后再使用。

滴鼻剂等透粘膜剂可使用固体、液体或半固体状制剂,可按以前公知的方法制造。例如,适当添加公知的 PH 调节剂、防腐剂、增粘剂和赋形剂形成固体、液体或半固体状。鼻用制剂采用通常的喷雾器、滴鼻容器、软管或鼻腔内插入器具等给药。

口服时,通常每日给药量约为 0.001~100mg/kg, 较好为 0.1~30mg/kg, 更好为 0.1~10mg/kg, 该剂量供 1 次或分 2~4 次给药。静脉给药时,每日给药量约为 0.0001~10mg/kg,日剂量供 1 次或分数次给药。经粘膜给药,剂量约 0.001~100mg/kg,供每日 1 次或分数次给药。给药剂量考虑症状、年龄、性别等按具体情况适当确定。

实施例

以下根据实施例更详细说明本发明。本发明化合物并不限于以下实施例记载的化合物。同时在参考例中说明原料化合物的制法。

参考例 1

在氢化钠(在油中,60%)(360mg)的无水 THF(10ml)的沸腾悬浮液中,于搅拌下滴加乙酰苯(720mg)和 2-甲基噻唑-4-羧酸乙酯(1.20g)的无水 THF(10ml)溶液,加热回流 10 分钟。将反应液冷却后,加乙酸(1ml)和水(30ml)的混合液,以乙酸乙酯提取。提取液水洗后以无水硫酸镁干燥。减压蒸除溶剂,残留物以硅胶柱色谱法(洗脱剂:乙烷:乙酸乙酯=4:1(V/V))精制,得1-(2-甲基噻唑-4-基)-3-苯基丙-1,3-二酮的黄色结晶(1.3g,88%)。同样得以下参考例2~10的化合物。

参考例 11

在参考例 1 所得化合物(674mg)的 DMF(8ml)溶液中加入碳酸钾(1.14g),于室温搅拌 1 小时。在反应液中加二硫化碳(283mg),于室温搅拌 2 小时后,再加碘甲烷(0.369ml),于室温搅拌 1.5 小时。在反应液中加水,以乙酸乙酯提取。提取液水洗后,以无水硫酸镁干燥,减压蒸除溶剂。残留物以硅胶柱色谱(洗脱剂(V/V): 乙烷: 乙酸乙酯=4: 1)精制,得 2-(双甲硫基亚甲基)-1-(2-甲基噻唑-4-基)-3-苯基丙-1,3-二酮的黄色油状物(555mg,64%)。同样得以下参考例 12~23 的化合物。

参考例 24

在含对苯二甲醛 1.34g 和 3-甲基绕丹宁 1.53g 的乙酸溶液 100ml 中加催化量的氯化铵,于 110C 加热约 12 小时。冷却后滤取生成的黄色结晶,以适量的乙醇一水(10:1)洗涤,干燥,得 4-(3-甲基-4-氧代-2-硫代噻唑烷-5-亚基甲基)苯甲醛 1.91g。

参考例 25

在饱和的氨一甲醇溶液 60ml 中加入 4-氯-3-硝基-N-(吡啶-3-基甲基)苯磺酰胺 2.77g, 置封管中于 100℃加热约 2 日。反应后减压蒸除溶剂所得的残渣以适量精制水洗涤,滤取生成的黄色结晶干燥,得 4-氨基-3-硝基-N-(吡啶-3-基甲基)苯磺酰胺 2.51g。同样得到以下参考例 26 的化合物。

参考例 27

参考例 25 所得的化合物 2.49g 溶于乙酸乙酯-乙醇(1:1)溶液 200ml 中,在 其中加催化量的阮来镍,于氢气存在下常温常压反应。反应后滤去催化剂所得的 滤液,经减压蒸馏,得3,4-二氨基-N-(吡啶-3-基甲基)苯磺酰胺2.22g。

参考例 28

在含 4-氨基-3-硝基苯酚 4.72g 的 DMF 溶液 150ml 中, 依次加入碳酸钾 12.8g、碘化四丁铵 0.56g 及 3-氯甲基吡啶盐酸盐 5.42g,然后于 60℃加温约 1.5 小时。减压下浓缩反应,加入冰水 250ml 和 1M 盐酸水溶液 30ml,滤取生成的结晶,干燥后得 2-硝基-4-(吡啶-5-基甲氧基)苯胺 7.39g。同样得到以下参考例 35 及 60 的化合物。

参考例 29

在含参考例 28 所得的化合物 3.68g 的乙酸乙酯-甲醇(1: 1)溶液 300ml 中,加入 10%钯炭 0.31g,然后在氢气存在下于常温常压反应。反应后,滤除催化剂所得滤液,经减压蒸馏得 4-(吡啶-3-基甲氧基)苯-1, 2-二胺 3.23g。同样得到以下参考例 30 的化合物。

参考例 31

将氯化三苯基吡啶-3-基甲基膦加至冰冷却的含氢化钠(60%,在油中)0.26g的 DMF 悬浮液 40ml 中,室温搅拌 30 分钟。将反应液冷却至 0℃,缓缓添加 4-氯-3-硝基苯甲醛 1.04g,然后室温搅拌 2 小时,于减压蒸干反应液所得残渣中加入适量精制水,以乙酸乙酯提取,然后以无水硫酸镁干燥有机层。蒸除溶剂所得的粗产物以硅胶柱色谱法精制,自乙酸乙酯-己烷(2:1(V/V))洗脱部分得到 3-[2-(4-氯-3-硝基苯基)乙烯基]吡啶 0.86g。

参考例 32

在(2-甲基-1H-苯并咪唑-5-基)甲醇(811mg)的 DMF 溶液(10ml)中加入叔丁基二甲基氯甲硅烷(904mg)和咪唑(689mg),于室温搅拌 2 小时。浓缩反应液,加水,以氯仿提取,以无水硫酸镁干燥。减压下浓缩有机层,所得残渣以硅胶柱色谱(洗脱剂:氯仿:甲醇=10:1(V/V))精制,得 5-(叔丁基二甲基甲硅烷基氧甲基)-2-甲基-1H-苯并咪唑(1305mg,94%)。

参考例 33

在含参考例 27 所得化合物 2.2g 的乙醇溶液 100ml 中加入原乙酸三乙酯

3.21g,加热回流约 12 小时。滴加浓盐酸 1ml,再加热回流 2 小时,然后减压蒸干反应液,所得残渣以含饱和碳酸氢钠水溶液 10ml 的冷却水 100ml 洗涤,滤取和干燥后,得 2-甲基-1H-苯并咪唑-5-磺酸(吡啶-3-基甲基)酰胺 1.94g。同样得以下参考例 34 及 36 的化合物。

参考例 37

- (1)室温下向 2-甲基-5-硝基苯并咪唑(12.5g)和 TEA(38.8ml)的二甘醇二甲醚 (63ml)的混合物中滴加苯甲酰氯(32.5ml)。反应混合物于 100℃搅拌 1 小时。反应混合物冷却至室温,加水,搅拌 45 分钟。反应混合物以氯仿提取,有机层以水洗、无水硫酸钠干燥后,减压蒸除溶剂。所得粗结晶以氯仿-正己烷重结晶,得苯甲酸 2-(1-苯甲酰-1H-5-硝基苯并咪唑-2-基)-1-苯基乙烯基酯(29.7g, 86%)。
- (2)将(1)所得化合物(29.7g)和吗啉(15.8g)溶解于甲醇(90ml)中,加热回流 30 分钟,将反应混合物冷却至室温,然后加水搅拌 2 小时。滤取生成的析出物,以冷水洗涤后,干燥,得 2-(1,3-二氢-2H-5-硝基苯并咪唑-2-亚基)-1-苯基乙-1-酮的淡黄色粉状结晶(16.7g, 84%)。同样得以下参考例 38~54 及参考例 61~64 的化合物。

参考例 55

在含 2-氨基-4-氯噻唑-5-甲醛 10.83g 的 1,4-二噁烷溶液 250ml 中,加入 4-(二甲基氨基)吡啶 1g,在加热至 60℃时缓缓滴加含焦碳酸二叔丁酯 29g 的 1,4-二噁烷溶液 100ml,继续加热约 30 分钟。反应溶液放冷后,减压蒸除溶剂,在所得残渣中加适量 5%硫酸氢钾水溶液,以乙酸乙酯提取。有机层经水洗,以无水硫酸镁干燥,然后蒸除溶剂得到粗产物,以硅胶柱色谱精制,自乙酸乙酯-甲苯(2:3(V/V))洗脱部分得到(4-氯-5-甲酰噻唑-2-基)氨基甲酸叔丁酯的淡褐色结晶 10.73g。

参考例 56

在氫气流下,向对甲氧基苯基硼酸 4.364g、三(二亚苄基丙酮)二钯 4505mg、二噁烷 50ml 的混合物中加入三叔丁基膦 240mg 的二噁烷溶液 10ml,于 85℃加热 2 小时 10 分钟。放冷至室温后,加乙醚 500ml 和氯仿 500ml,滤除不溶物后,将滤液浓缩,得目的化合物 5-(4'-甲氧基苯基)-2-硝基苯胺 6.5g。

参考例 57

向 5-(4'-甲氧基苯基)-2-硝基苯胺 2.02g 的乙酸酐 55ml 的悬浮液中滴加催化量的浓硫酸后,于 40℃搅拌 3 小时 20 分钟。冷却至室温后加乙醚 200ml,滤取析出的粉末,得 N-(4'-甲氧基-4-硝基联苯-3-基)乙酰胺 596mg.。

参考例 58

将 N-(4'-甲氧基-4-硝基联苯-3-基)乙酰胺 500mg、乙酸 6ml 和铁粉 308mg 的混合物于 100℃搅拌 50 分钟后,冷却至室温,用硅藻土滤除不溶物。滤液中加入饱和碳酸钠溶液将 pH 调至 7 后,以氯仿提取。有机层以无水硫酸镁干燥后减压浓缩,得 5-(4'-甲氧基苯基)-2-甲基苯并咪唑 320mg。

参考例 59

于室温下向 2-甲基苯并咪唑-5-羧酸 1.00g、二甲基甲酰胺 20ml 溶液加入羟基苯并三唑 844mg、1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐 1.21g、4-甲氧基苯基甲胺 1.33g,反应液于室温搅拌 18 小时。反应液减压浓缩,所得残渣以氯仿 20ml 稀释。有机层以饱和碳酸氢钠溶液、水、饱和氯化钠水溶液洗涤,以无水硫酸钠干燥。减压蒸除溶剂,对所得残渣用硅胶柱色谱分离,以氯仿-甲醇(30:1(V/V))洗脱,得 2-甲基-1H-苯并咪唑-5-羧酸(4-甲氧基苯基甲基)酰胺 1.27g(99%)。

实施例 1

将 5-氯-2-甲基苯并咪唑(833mg)溶于二甘醇二甲醚(4ml)中,加 TEA (2.43ml)。 再滴加苯甲酰氯(2.0ml)后,于约 100℃加热搅拌 15 分钟。将水(0.1ml)滴入反应液,于约 175℃加热搅拌 10 分钟。反应液以自然冷却后,加水(15ml)搅拌,倾析出上清液。残留物中加甲醇(5ml),滤以析出的结晶,以冷甲醇洗涤、干燥,得 2-(5-氯-1,3-二氢-2H-苯并咪唑-2-亚基)-1,3-二苯基丙-1,3-二酮的淡黄色粉状结晶 (706mg,38%)。同样得到以下实施例 2~25、119 及 126 的化合物。

实施例 26

与参考例 37 同样,经工序(1)得苯甲酸 2-(1-苯甲酰-1H-苯并咪唑-2-基)-1-苯基乙烯基酯(26.8g,86%),经工序(2)得 2-(1,3-二氢-2H-苯并咪唑-2-亚基)-1-苯基乙-1-酮(11.9g,84%)。

- (3)将上述(2)得到的化合物(1.01g)每次取少量加至3,5-二氟苯甲酰氯(1.67g)和吡啶(8.5ml)的混合物中,于室温搅拌3小时。在反应混合物中加水,以氯仿提取。所得有机层以水、饱和氯化铵水溶液、饱和食盐水洗涤,以无水硫酸钠干燥后,减压蒸除溶剂。所得残渣以硅胶柱色谱分离,自氯仿-正己烷洗脱部分得到3,5-二氟苯甲酸2-[1-(3,5-二氟苯甲酰)-1H-苯并咪唑-2-基]-1-苯基乙烯基酯的黄白色粉状结晶(1.45g,65%)。
- (4)将(3)所得化合物(931mg)与 3,5-二氟苯甲酸(570mg)溶解于二甘醇二甲醚(2.5ml),于 175℃搅拌 20 分钟。在冷却至室温的反应混合物中加水,以氯仿提取,有机层水洗后,以无水硫酸钠干燥,减压蒸除溶剂。所得残渣经硅胶柱色谱分离,自氯仿-正己烷洗脱部分得到黄色粉状结晶。将其用甲醇重结晶,得 1-(3,5-二氟苯基)-2-(1,3-二氢-2H-苯并咪唑-2-亚基)-3-苯基丙-1,3-二酮(603mg,89%)。同样可得以下实施例 27~39、117、118、120~125、127~166、425、431 及 446 的化合物。

实施例 40

将实施例 35 所得的化合物(317mg)、氧化铂(1V)(30mg)及乙酸乙酯(30ml)的混合物在氢氛围气下,于室温搅拌 23 小时。滤除黑色粉末后,将滤液浓缩所得残渣以 4N 的氯化氢-乙酸乙酯溶液处理,得 1-(3-氨基苯基)-3-(3,5-二氟苯基)-2-(1,3-二氢-2H-苯并咪唑-2-亚基)丙-1,3-二酮盐酸盐的绿色粉末(245mg,76%)。同样得到以下实施例 41~43、167~203、411、412 及 432 的化合物。

实施例 44

将实施例 43 所得化合物(200mg)溶解于吡啶(2ml)中,在冰冷却下滴加丙酰 氯(58mg)。使反应温度升高到室温,搅拌 1 小时。在反应混合物中加水,以氯 仿提取。所得有机层以水和饱和食盐水洗涤,以无水硫酸钠干燥后,将溶液减 压蒸干。所得残渣经硅胶柱色谱法分离,自氯仿-甲醇洗脱部分得 3'-[2-(1, 3-二氢-2H-苯并咪唑-2-亚基)-3-氧代-3-苯基丙酰]丙烷苯胺的黄色泡状粉末 (204mg, 88%)。同样得到以下实施例 45~78、204~237、416~420、430、433、440~442 及 449 的化合物。

实施例 79

将实施例 39 所得化合物(162mg)溶解于 DMF(10ml), 加 4-(2-氨基乙基)吡啶

(348mg)、碳酸钾(591mg)及碘化钾(473mg),于室温搅拌 7 小时。在反应混合物中加乙酸乙酯及水,分离有机层。所得有机层以水和饱和食盐水洗涤,以无水硫酸钠干燥后,将溶液减压蒸干。所得残渣进行硅胶柱色谱法分离,将氯仿洗脱部分溶解于乙酸乙酯,加氯化氢的乙醇溶液。滤出生成的结晶,得 2-(1, 3-二氢-2H-苯并咪唑-2-亚基)-1-苯基-3-(3-{[(2-吡啶-4-基乙基)氨基]甲基}苯基)丙-1, 3-二酮盐酸盐的淡红色粉末(417mg, 51%)。同样得以下实施例 80、81 及 450 的化合物。

实施例 82

将实施例 30 所得化合物(343mg)溶解于乙醇(8ml),加吗啉(0.4ml),加热回流 2 小时。反应溶液冷却后减压蒸干。所得残渣中加氯仿和水,分离有机层。所得有机层以水及饱和食盐水洗涤,以无水硫酸钠干燥后,减压蒸除溶剂。所得残渣进行硅胶柱色谱法分离,自氯仿洗脱部分得 2-(1, 3-二氢-2H-苯并咪唑-2-亚基)-1-(3-羟基苯基)-3-苯基丙-1, 3-二酮的黄色粉末(125mg, 41%)。

实施例 83

将实施例 40 所得化合物(450mg)溶解于苯(30ml),加入 4-甲酰咪唑(121mg) 及催化量的对甲苯磺酸,于室温搅拌 3 小时,50℃搅拌 2.5 小时,加热回流搅拌 3.5 小时。蒸除溶剂后将残渣溶解于甲醇(25ml),于冰冷却下加硼氢化钠 44mg,搅拌 1 小时 40 分钟。反应液中加水、氯仿、异丙醇,分离有机层。所得有机层浓缩后,对所得残渣进行硅胶柱色谱法分离,自氯仿-甲醇洗脱部分得 1-(3,5-二氟苯基)-2-(1,3-二氢-2H-苯并咪唑-2-亚基)-3-{3-[(1H-咪唑-4-基甲基)氨基]苯基}丙-1,3-二酮。将其用 4M-氯化氢-乙酸乙酯溶液生成盐酸盐,得 1-(3,5-二氟苯基)-2-(1,3-二氢-2H-苯并咪唑-2-亚基)-3-{3-[(1H-咪唑-4-基甲基)氨基]苯基}丙-1,3-二酮盐酸盐的淡蓝色粉末(159mg,27%)。同样得以下实施例 395~396 的化合物。

实施例 84

在实施例 43 所得化合物(180mg)的二氯甲烷溶液(3ml)中,加入吡啶-3-甲醛 (60mg)和乙酸(153mg),再在冰冷却下加三乙酰氧基硼氢化钠(215mg)后,于室温 搅拌 15 小时。在反应液中加饱和碳酸氢钠水溶液,以二氯甲烷提取,以水和饱 和食盐水洗涤后,用无水硫酸镁干燥。有机层减压浓缩后,所得残渣以硅胶柱色谱法(洗脱剂:氯仿:甲醇=30:1(V/V))精制。将其溶解于氯仿(3ml),以 4M-HCl-

乙酸乙酯溶液成盐,得 2-(1,3-二氢苯并咪唑-2-亚基)-1-苯基-3-{3-(吡啶-3-基甲基氨基)苯基}丙-1,3-二酮盐酸盐(186mg,76%)。同样得以下实施例 85~100、238~293、410、413~415、421~424、426、428、429、435~437、439 及 443~445 的化合物。

实施例 101

将参考例 11 所得化合物(512mg)溶解于乙醇(6ml),加 1,2-苯二胺(237mg),加热回流 13 小时。将反应溶液冷却,滤取生成的结晶,以甲醇洗涤,得 2-(1,3-二氢-2H-苯并咪唑-2-亚基)-1-(2-甲基噻唑-4-基)-3-苯基丙-1,3-二酮的黄色粉末(171mg,32%)。同样得以下实施例 102~111、实施例 397 和 398 的化合物。

实施例 112

- (1)用参考例 19 所得化合物,与实施例 101 同样,得 1-(5-苄氧基吡啶-3-基)-3-(3,5-二氟苯基)-2-(1,3-二氢-2H-苯并咪唑-2-亚基)丙-1,3-二酮。
- (2)将(1)所得化合物(121mg)溶解于乙醇(6ml),加 10%钯炭(160mg),在氢泵围气下,激烈搅拌 21 小时。滤除催化剂,将滤液减压浓缩,残留物以硅胶柱色谱法(洗脱剂:氯仿:甲醇=10:1(V/V))精制。将洗脱物以氯仿-甲醇-己烷重结晶,得 1-(3,5-二氟苯基)-2-(1,3-二氢-2H-苯并咪唑-2-亚基)-3-(5-羟基吡啶-3-基)丙-1,3-二酮的黄色结晶(61mg,62%)。

实施例 113

将实施例 20 所得化合物(150mg)于氩气氛围气下溶解于二氯甲烷(4ml),于冰冷却下滴加 1.0M 的三溴化硼的二氯甲烷溶液(1.25ml)。于 0℃搅拌 1 小时后使反应温度升至室温,再搅拌 4 小时。于冰冷却下向反应混合物加甲醇(0.5ml),搅拌 40 分钟后,加氯仿、水,分离有机层。所得有机层以水和饱和食盐水洗涤,以无水硫酸钠干燥后,减压下将溶液蒸干。所得残渣以硅胶柱色谱法精制,自氯仿洗脱部分得 2-(5-羟基-1,3-二氢-2H-苯并咪唑-2-亚基)-1,3-二(3-甲基苯基)丙-1,3-二酮的橙色粉末(39mg,27%)。

实施例 114

于室温下向 1, 2-二甲基苯并咪唑(0.5g)及 TEA(1.21g)的二甘醇二甲醚(5ml) 的混合物中加入苯甲酰氯(1.68g)。将反应混合物在 120℃搅拌 1 小时, 再在 150

℃搅拌 6 小时。在反应混合物中加水,以乙酸乙酯提取。有机层以水洗,以无水硫酸镁干燥,然后减压蒸除溶剂。所得残渣以硅胶柱色谱法精制,自氯仿洗脱部分得粗结晶。将其以乙酸乙酯重结晶,得 2-(1-甲基-1H-苯并咪唑-2-基)-1, 3-二苯基丙-1, 3-二酮(0.81g)。同样得以下实施例 115 的化合物。

实施例 116

- (1)将实施例 3 所得化合物(1.01g)和 N-溴琥珀酰亚胺(609mg)溶解于四氯化碳(14ml),加偶氮二异丁腈(47mg),加热回流 1 小时。反应液冷却后,滤取析出的结晶,干燥,得 2-(1-溴-5-甲基-1,3-二氢-2H-苯并咪唑-2-亚基)-1,3-二苯丙-1,3-二酮的奶白色粉状结晶(1.22g,99%)。
- (2)将(1)所得化合物(400mg)、碳酸钾(153mg)及二乙胺(0.115ml)溶解于DMF(4ml),于室温搅拌 4.5 小时。将反应混合物倾入水中,以氯仿提取。所得有机层以水及饱和食盐水洗涤,以无水硫酸钠干燥后,减后蒸除溶剂。所得残渣以硅胶柱色谱法精制,由氯仿洗脱部分得黄色油状物。将其溶解于氯仿(1ml),所得溶液中于冰冷却下滴加 4M-氯化氢-乙酸乙酯溶液,于室温搅拌 30 分钟。滤取析出的结晶,以氯仿洗涤,干燥后得 2-(1-二乙基氨基-5-甲基-1,3-二氢-2H-苯并咪唑-2-亚基)-1,3-二苯基丙-1,3-二酮盐酸盐的淡黄色粉末(203mg,48%)。

实施例 394

在乙酸 3-{2-[5-(4-乙酰胺基苄基氨基)-1, 3-二氢-2H-苯并咪唑-2-亚基]-3-(3, 5-二氟苯基)-3-氧代丙酰}苯基酯(123mg)的 THF 溶液(5ml)中,加氢氧化钠水溶液(0.5ml),搅拌 24 小时。加饱和氯化铵水溶液,以乙酸乙酯提取,用无水硫酸镁干燥。有机层在减压下浓缩,所得残渣以硅胶柱色谱法(洗脱剂: 氯仿: 甲醇=20:1(V/V))精制,得 N-[4-({2-[1-(3, 5-二氟苯甲酰)-2-(3-羟基苯基)-2-氧代亚乙基]-2, 3-二氢-1H-苯并咪唑-5-基氨基}甲基)苯基]乙酰胺(98mg, 86%)。同样得以下实施例 438 的化合物。

实施例 399

将含实施例 127 所得化合物 0.23g 的乙醇溶液 10ml 冷却至-15℃, 加 90%硼氢化钠 30mg 后,于同一温度搅拌 1 小时。在反应液中加适量精制水和饱和食盐水,以乙酸乙酯提取,有机层干燥、浓缩所得残渣以硅胶柱色谱精制,从氯仿-甲醇(50: 1(V/V))洗脱部分得 1-(3,5-二氟苯基)-2-[5-(1-羟基乙基)-1,3-二氢-2H-

苯并咪唑-2-亚基]-3-苯基丙-1,3-二酮90mg。同样得以下实施例400的化合物。

实施例 401

在含实施例 132 所得化合物 0.77g 的乙酸溶液 40ml 中加入 10%钯炭 80mg, 在氢氛围气下于常温常压搅拌。滤去催化剂后,减压蒸除溶剂,以乙酸乙酯提取后,依次用适量碳酸氢钠水溶液和饱和食盐水洗涤。以无水硫酸镁干燥乙酸乙酯层,减压蒸除溶剂,得 1-(3,5-二氟苯基)-2-(5-羟基-1,3-二氢-2H-苯并咪唑-2-亚基)-3-苯基丙-1,3-二酮 0.58g。

实施例 402

在含实施例 401 所得化合物 100mg 和(3-氯甲基)吡啶盐酸盐 50mg 的乙腈溶液 4ml 中,依次加入碳酸钾 83mg 和催化量的碘化钠,于 80℃加热 3.5 小时。蒸除溶剂后,加适量精制水,以乙酸乙酯提取,用无水硫酸镁干燥和浓缩后,生成的残渣以硅胶柱色谱法精制,从氯仿一甲醇(200:1(v/v))洗脱部分得黄色发泡物质 43mg。将其溶解于丙酮 2ml 中,加草酸 16mg,搅拌后滤取生成的结晶,得 1一(3,5 二氟苯基)-2-[5-(吡啶-3-基甲氧基)-1,3-二氢-2H-苯并咪唑-2-亚基]-3-苯基丙-1,3-二酮草酸盐 35mg。

实施例 403

在含实施例 136 所得化合物 0.13g 的二氯甲烷溶液 5ml 中,加 80%MCPBA 0.14g 后,室温搅拌 2 小时。反应液依次用亚硫酸氢钠水溶液和碳酸氢钠水溶液洗涤,有机层用无水硫酸镁干澡,减压蒸除溶剂,然后用乙酸乙酯一己烷(1:1(v/v))混合液将生成的残渣重结晶,得 1-(3,5-二氟苯基)-3-苯基-2-(5-苯基甲磺酰基-1,3-二氢-2H-苯并咪唑-2-亚基)丙-1,3-二酮 94mg。

实施例 404

将含实施例 239 所得化合物 145mg 的氯仿溶液 3ml 以冰冷却,加 80%MCPBA 80mg 后,于室温搅拌 1 小时。反应液依次用亚硫酸氢钠水溶液和碳酸氢钠水溶液洗涤,以无水硫酸镁干燥,减压蒸除溶剂后,生成的残渣以硅胶柱色谱精制,从氯仿一甲醇(100:1(v/v))洗脱部分得 1-(3,5-二氟苯基)-3-苯基-2-{5-[(1-氧代吡啶-3-基甲基)氨基]-1,3-二氢-2H-苯并咪唑-2-亚基}丙-1,3-二酮 92mg。

实施例 405

在实施例 131 所得化合物(62mg)的 THF / 水(=1 / 1)溶液(4ml)中加乙酸 (2ml),于室温搅拌 4 小时。加饱和碳酸氢钠水溶液,以氯仿提取,用无水硫酸镁干燥。有机层减压浓缩,所得残渣以硅胶柱色谱法(洗脱剂;氯仿:甲醇=20:1(v/v))精制,得 1-(3,5-二氟苯基)-2-(5-羟基甲基-1,3-二氢-2H-苯并咪唑-2-亚基)-3-苯基丙-1,3-二酮(43mg,89%)。

实施例 406

在含实施例 393 所得化合物 0.30g 的乙醇溶液 6ml 中加氧化铂 0.03g 后,在氢 氛围气下于室温搅拌 8.5 小时。滤除反应液中的固体物,滤液减压蒸干后,生成的残渣用硅胶柱色谱法(洗脱剂: 氯仿: 甲醇=100: 3(v/v))精制,得 2-{5-[(1H - 苯并咪唑-5-基甲基)氨基]-1,3-二氢苯并咪唑-2-亚基}-1-(3,5-二 氟苯基)-3-苯基丙-1,3-二酮(24mg,12%)。

实施例 407

向含实施例 196 所得化合物 160mg 的乙腈溶液 5ml 中滴加异硫氰酸苯酯 60mg, 于室温搅拌 5 小时, 滤取生成的结晶, 以少量乙醚洗涤, 干燥后得 1-{2-[1-(3,5-二氟苯甲酰基)-2-氧代-2-苯基亚乙基]-2,3-二氢-1H-苯并咪唑-5-基}-3-苯基硫脲 0.19g。

实施例 408

在烟酰氯盐酸盐(356mg)的乙腈溶液(10ml)中加叠氮化钠(325mg)和三乙胺 (0.836ml),在冰冷却下搅拌 1.5 小时。加水,以二乙醚提取,用无水硫酸镁干燥。有机层减压浓缩,在所得残渣中加入甲苯(10ml),加热回流 1 小时,冷却至室温,再加入实施例 196 所得化合物(255mg)的乙腈溶液(5ml),于室温搅拌 18 小时。反应液减压浓缩,所得残渣以硅胶柱色谱法(洗脱剂:氯仿:甲醇=10:1(v/v))精制,重结晶(氯仿:甲醇:己烷)后得 1-{2-[1-(3,5-二氟苯甲酰基)-2-氧代-2-苯基亚乙基}-2,3-二氢-1H-苯并咪唑-5-基)-3-吡啶-3-基脲 (108mg,42%)。

实施例 409

在实施例 405 所得化合物(174mg)的二氯甲烷熔液(5ml)中加 NMO(100mg)和

MS4A,于室温搅拌 10 分钟。再加 TPAP(8mg),于室温搅拌 30 分钟。反应液以 硅胶柱色谱法(洗脱剂:氯仿:甲醇=40:1(v/v))精制,得 2-[1-(3,5-1)] 甲酰)-2-氧代-2-苯基亚乙基]-2,3-二氢-1H-苯并咪唑-5-甲醛 (76mg,44%)。

实施例 427

室温下向 N- $\{2-[1-苯甲酰-2-(3,5-二氟苯基)-2-氧代亚乙基\}-2,3-二氢-1H-苯并咪唑-5-基\}-4-甲基苯磺酰胺 376mg,二氯甲烷 40ml,甲醇 10ml 的溶液加入 2M 三甲基甲硅烷基重氮甲烷的己烷溶液 1.0ml,反应液于室温搅拌 15 小时。减压蒸除溶剂所得残渣以硅胶柱色谱法精制,以氯仿洗脱,得 N-<math>\{2-[1-苯甲酰-2-(3,5-二氟苯基)-2-氧代亚乙基]-2,3-二氢-1H-苯并咪唑-5-基\}-N,4-二甲基苯磺酰胺 310mg。所得粗结晶以乙酸乙酯-己烷重结晶,得结晶 <math>181mg(47\%)$ 。

实施例 434

室温下,向 2-(5-氨基-1,3-二氢-2H-苯并咪唑-2-亚基)-1-(3,5-二氟苯基)-3-苯基丙-1,3-二酮 400mg 的乙醇 10ml 的溶液中加入羟甲基苯并三唑 168mg,于室温搅拌反应液 20 小时。将反应液过滤,所得固体物溶于THF10ml,于室温加硼氢化钠 78mg,于室温搅拌反应液 3 小时。反应液以乙酸乙酯 10ml 稀释,有机层以饱和碳酸氢钠溶液,水,饱和氯化钠水溶液洗涤。有机层以无水硫酸钠干燥,减压蒸除溶剂,所得残渣以硅胶柱色谱法精制,得以氯仿一甲醇(100:1(v/v))洗脱,得1-(3,5-二氟苯基)-2-[5-甲基氨基-1,3-二氢-2H-苯并咪唑-2-亚基]-3-苯基丙-1,3-二酮 163mg(48%)。

实施例 447

在含 2-[5-(4-氨基苄基氨基)-1,3-二氢-2H-苯并咪唑-2-亚基]-1-(3,5-二氟苯基)-3-(3-甲基苯基)丙-1,3-二酮 0.28g 和碘化 2-氯-1-甲基吡啶锅 0.17g 的二氯甲烷溶液中,依次加入 N,N-二异丙基乙胺 0.23ml和 N,N'-(二叔丁氧基羰基)硫脲 0.18g,然后室温搅拌约 2 天。用适量精制水洗涤反应液,有机层以无水硫酸镁干燥,蒸除溶剂所得残渣以硅胶柱色谱法精制,从乙酸乙酯-己烷(1:2(v/v))洗脱部分得到 N,N'-(二叔丁氧基羰基)-N''-[4-({2-[1-(3,5-二氟苯甲酰基)-2-氧代-2-(3-甲基苯基)乙-(Z)-亚基]

-2, 3-二氢-1H-苯并咪唑-5-基氨基}甲基)苯基]胍 0.31g。

实施例 448

在含实施例 447 所得化合物 0.3g 的乙酸乙酯溶液 3ml 中滴加含 4M 盐酸的乙酸乙酯溶液 3ml, 于室温搅拌约 2.5 小时后, 滤取生成的白色结晶, 得 N-[4-({2-[1-(3,5-二氟苯甲酰基)-2-氧代-2-(3-甲基苯基)乙-(Z)-亚基]-2, 3-二氢-1H-苯并咪唑-5-基氨基}甲基)苯基]胍盐酸盐 0.21g。

下列各表列出上述参考例及实施例所得化合物及其物理化学性质。

							,
Rex	A	В	DAT (FA:)	Rex	Α .	В	DAT (FA:)
11	Ph	2-Me-1, 3-Thiaz-4-yl	350	17	Py-3-y1	3,5-diF-Ph	366
12	Ph	Py-4-y1	330	18	· Ph	3,5-diF-Ph	261
13	Ph	Py-3-y1	330	19	5-PhCH ₂ 0-Py-3-y1	3,5-diF-Ph	368
14	Ph	3-Mo-1-y1 (CH,),0	458	20	5-Me-Py-3-yl	3, 5-diF-Ph	380
15	Ph	3-Me₂N-Ph	371	21	1-Me- 苯并 IM-5-yl	3,5-diF-Ph	419
16	Ph	Me (PhCH ₂) NCH ₂	462	22	6-Me-Py-3-yl	3,5-diF-Ph	380

Rex	Str	DAT	Rex	Str	DAT
23		FA:251	55	Boc-NH- S CHO .	FA:263
24	Ma N O CHO	E1:263			

表 12

Rex	R ²	R*	R ^b	DAT	Rex	R ²	R	R⁵	DAT
25	Py-3-yICH2NHSO2	NO ₂	NH ₂	FA:309	30	Py-3-y1 (CH ₂),		NH ₂	FA: 214
26	Py-3-y1CH=CH	NO,	NH ₂	FA:242	31	Py-3-y1CH=CH	NO,	CI	FA:261
27	Py-3-y1CH2NHSO2	NH,	NH ₂	FA:279	56	4-MeO-Ph	ND ₂	NH ₂	FN:243
28		NO ₂	NH ₂	FA:246	57	4-Me0-Ph	NO ₂	NHAc	FN: 285
29	Py-3-y1CH ₂ 0	NH ₂	NH ₂	FA:216					

Rex	R ²	DAT	Rex	R ²	DAT
32	TBS-OCH,	FA:277	36	Py-3-y1 (CH ₂),	FA:238
33	Py-3-y1CH,NHSO,	FA:303	58	4-Me0-Ph	FA:239
34	Py-3-y1CH ₂ 0	FA: 240	59	4-MeO-Ph (Me) NCO	FA:296
35	4-0,N-PhCH ₂ O	FA:284	60	PhCH ₂ O-CO	FA:267

		H							
Rex	R ²	R³	A	DAT (FA:)	Rex	R²	₽³	A	DAT (FA:)
37	0,N	Н	Ph	282	48	PhCH ₂ S	Н	Ph	359
38	O ₂ N	Н	4-MeO-Ph	312	49	HOCH ₂	H	Ph	267
39	0,1	н	2-MeO-Ph	312	50 -	TBS-OCH,	H	Ph	381
40	0 ₂ N	Н.	2-C1-Ph	316	51	Py-3-y1CH2NHSO2	H	Ph	407
41.	0,0	Н	2, 3-diMe0-Ph	342	52	Py-3-y1CH ₂ 0	H	3,5-diF-Ph	380
42	0,N	Н	Thiop-2-yl	286	53	4-0 ₂ N-PhCH ₂ 0	H	3,5-diF-Ph	424
43	O ₂ N	Н	3.5-diF-Ph	318	54	$Py-3-y1(CH_2)$	H	3,5-diF-Ph	378
44	N _c O	CI	3.5-diF-Ph	352	61	4-MeO-Ph	H	3-Me-Ph	357
45	H	H	3, 5-diF-Ph	273	62	O ₂ N	H	3-Me-Ph	296
46	Ac	Н	Ph	279	63	4-MeO-Ph (Me) NCO	Н	3,5-diF-Ph	436
47	PhCH ₂ 0	H	Ph	343	64	PhCH ₂ 0-C0	H	3, 5-diF-Ph	407

表 15

	H 0 🔾					
EX	R²	R ³	A	8	Sa	DAT
1	C1	H	Ph	Ph	_	FA: 375
2	O ₂ N	H	Ph	Ph	_	FA: 386
3	Me	Н	የክ	Ph	1	FA: 355
4	H	Н	3-F-Ph	3-F-Ph	1	FA:377, N1:7.30-7.33(2H, m), 7.74-7.76(2H, m),13.15(2H, s)
5	Н	Н	3, 4-diC1-Ph	3, 4-diC1-Ph		FA: 479 .
6	Н	Н	Fu-2-y1	Fu-2-y1	1	FA: 321
7	Н	Н	Thiop-2-yl		1	FA: 353
1 8	H	H	2-Me0-Ph	2-Me0-Ph	-	FA: 401
9	Н	Н	3-0 ₂ N-Ph	3-0₂N-Ph	-	FA: 431, N1: 7.80-7.82(2H, m), 8.00-8.01(2H, m), 13.28(2H, s)
10	Me	Me	Ph	Ph	1	FA: 369
177	H	H	3-F ₃ C-Ph	3 - F₃C-Ph	_	FA: 477
12	Н	Н	3-Me000-Ph			FA: 457
13	Н	Н	3-C1-CH2-Ph	3-CI-CH2-Ph		FA:437, N1:4.59(4H, s), 7.73- 7.76 (2H, m), 13.13(2H, s)
14	F	H	Ph	Ph	_	FA: 359
15	H	Н	3-CN-Ph	3-CN-Ph		FA: 391
16	H	H	3~(PhCO)Ph	3-(PhCO) Ph		FA: 549-
77	Н	H	3-Ac0-Ph	3-Ac0-Ph	[_	FA: 457
18	Н	Н	4-iPr-Ph	4-iPr-Ph	_	N1:1.03(d, 6H, J=9), 2.68(m, 1H), 13.11(m, 2H)
19	F	Н	3-Me-Ph	3-Me-Ph	-	FA:387, N1:2.11 (6H, s), 6.17- 7.18 (9H, m), 7.50-7.73 (2H, m), 13.14-13.19 (2H, m)
20	MeO	H	3-Me-Ph	3-Me-Ph	=	FA: 399
21	ਜ ਜ	H	3, 5-diF-Ph			FA: 413
173	H ₂ N		3, 5-diF-Ph		=	FA: 440
429	4-AcMH-PhCH2NH		3, 5-diF-Ph	3-Me-Ph	Œ	FA:587

.表 16

EX	R ²	A	В	Sa	DAT
22	PhCOCH ₂ OCO	. Ph	Ph	1	FA: 503
23	PhCO	Ph	Ph	-	FA: 445
26	Н	Ph	3,5-diF-Ph	-	FA: 377, N1: 7.30-7.34 (4H, m), 7.74-7.76 (2H, m), 13.15 (2H, s)
27	Н	3-Me-Ph	Ph	=	FA:355, N1:2.10(3H, s), 7.72-7.74(2H, m), 13.11(2H, s)
28	Н	3-0 ₂ N-Ph	Ph	-	FA: 386, N1: 7. 74-7. 79 (3H, m), 7. 93-7. 98 (2H, m), 13. 20 (2H, s)
29	H	Ph	3,5-diMe-Ph	=	FA: 369, N1: 2. 07 (6H, s), 6. 68 (1H, s), 13. 11 (2H, s)
30	H	Ph	3-AcO-Ph	E	FA: 399
31	H	Ph	3-Br-Ph	-	FA: 419, N1: 6. 99-7. 03 (1H, m), 7. 73-7. 75 (2H, m), 13. 12 (2H, s)
32	Н	Ph	2,6-diF-Ph	三	FA: 377

$$\begin{array}{c|c} R^2 & H & O & A \\ \hline N & N & B \\ \hline N & O & B \\ \end{array}$$

	n O \				
EX	R²	A	В	Sa	DAT
33	н	Ph	3-(Me000)Ph	-	FA: 399
34	MeOCO	Ph	Ph	-	FA: 399
35	Н	3, 4-diF-Ph	3-0,N-Ph		FA: 422, N2: 6. 46-6. 56 (1H,
	}	_, }	•		m), 6.83-6.93(2H, m), 7.30-
	ļ				7.60 (5H, m), 7.72-7.87 (1H,
	į				m), 7.98-8.22(2H,m), 12.79
1 1	((2H, s)
36	н	Ph	3, 5-diCl-Ph	_	FA:342, N1:7.28-7.33 (5H, m),
					7.74-7.77 (2H, m), 13.15 (2H, [
					s)
37	0,N	3, 5-diF-Ph	Ph		FA: 422
38	Н	3, 5-diF-Ph	Thiop-2-yl	_	FA: 383
39	H	3-(C1-CH ₂)Ph	Ph		FA: 389
40	н	3-H₂N-Ph	3, 5-diF-Ph	HCI	FA:392, N1:6. 90-7. 24 (9H,
1.	l	-	-		m), 7.71-7.79(2H, m), 13.10
1 1					(2H, s)
41	H	3-H ₂ N-4-Me-Ph	3, 5-diF-Ph	HCI	FA: 406
42	H ₂ N	Ph	Ph		FA: 356
43	H	3-H ₂ N-Ph	Ph		FA: 356
44	Н	Ph	3-(EtCONH)Ph		FA: 412
45	н	3-(MeCONH)Ph	3-(MeCONH)Ph		FA: 455
46	PhCONH	Ph	. Ph		FA: 460
47	н	. Ph	3-(Ph(CH2),CONH)Ph		FA: 516
48	Н	3-(Py-4-yICH2CONH)Ph	3, 5-diF-Ph	HCI	FA: 511
49	н	3,5-diF-Ph	3-(Et, NCH, CONH) Ph	HCI	FA: 505
50	EtCONH	Ph	Ph	_	FA: 412
51	PhCH,CONH	Ph	Ph		FA: 474
52	Н	. 3, 5-diF-Ph	3-(Et ₂ N (CH ₂),CONH)Ph		FA: 519
79	H	Ph ·	3-{Py-4-y1 (O+2) 2NHCH2} Ph	HCI	FA: 475
80	Н	4-CICH2-Ph	4- (Mo-4-y I CH ₂) Ph		FA: 488
81	. н	3-{Et2N(CH2)2}Ph	3-{Et ₂ N (CH ₂) ₂ }Ph		FA: 511
82	н	Ph	3-H0-Ph	_	FA:357, N1:6. 45-6. 48 (1H, m),
					9. 22 (1H, s), 13. 04 (2H, s)
83	н	IM-4-yICH2N+Ph	3, 5-diF-Ph	HCI	FA: 472, N1: 4. 28 (2H, s), 6. 43-
					7. 02 (7H, m), 7. 25 80 (5H, m),
})	9.06 (1H, s), 13.09 (2H, s),
					14.3-14.8 (2H, m)

表 18

				<u>-</u> -3	DAT
EX	R ²	A	B	Sa HC1	DAT FA: 447
84	Н	Ph	Py-3-y1CH ₂ NHPh	HUI	FA: 503
85	• Н		3-(4-AcNHPhCH,NH)Ph	HCI	FA: 434, N1:0. 93 (3H, t),
86	н	3-(PrNH) Ph	3,5-diF-Ph	HUL	1.45-1.65 (2H, m), 3.01
]]					(2H, t), 6. 90-7. 37 (9H,
}					m), 7. 70-7. 80 (2H, m),
[[`		13. 13 (2H, s)
	Py-3-y1CH ₂ NH	Ph	Ph		FA:447, N1:4.32 (m, 2H),
87	Fy-3-y (Grigivit	111	, , ,		6. 40-6. 89 (3H, m), 6. 99-
1 1					7.43(12H, m), 7.78-8.64
					(3H, m), 12.79 (2H, m)
88	Н	3, 5-diF-Ph	3-(Ph (CH ₂) 3NH) Ph	HCI	FA:510
89	4-(AcNH) PhCH,NH	Ph	Ph	=	FA: 503
90	Н	3, 5-diF-Ph	3- (MaO (CH ₂) 2NH) Ph	HCI	FA:450, N1:3, 13-3, 25
					(2H, m), 3.30 (3H, s), 3.42
1 1					-3.50(2H, m), 6.65-7.05
					(7H, m), 7. 25-7. 37 (2H,
					m), 7. 66-7. 78 (2H, m), 13. 02-13. 18 (2H, m)
			0.011.01		FA:440
117	Н	3, 4, 5, -trif-Ph	3-0 ₂ N-Ph		FA:427
118	Н	3, 5-diF-Ph	Naph-2-yl		FA: 453
119	H	苯并[b]Thiop-2-yl	苯并[b]Thiop-2-yl	<u> </u>	FA:456
120	H	3, 5-diF-Ph	4-C1-3-N0 ₂ -Ph	<u> </u>	FA:436
121	H	3, 5-diF-Ph	3-0 ₂ N-2-Me-Ph		
122	H	3, 5-diF-Ph	苯并[b]Thiop-2-yl		FA:433
123	Н	3, 5-d1F-Ph	4-CN-Ph	_	FA:402
124	Н	3, 5-diF-Ph	3-0 ₂ N-4-Me0-Ph		FA:452
125	Н	3, 5-diF-Ph	5-0 ₂ N-Fu-2-y I		FA:412
126	PhCO-OCH,	Ph	Ph		FA:475
127	. Ac	3,5-diF-Ph	Ph	_	FA:419
128	3-0,N-PhCH,NH	3, 5-diF-Ph	Ph	1-	FA:527
129	O ₂ N	3,5-diF-Ph	3-Me-Ph	1=	FA:436
130	3-0,N-PhCONH	3, 5-diF-Ph	Ph	 -	FA:541
131	TBS-OCH ₂	3, 5-diF-Ph	Ph	1-	FA:521
132	PhCH ₂ 0	3, 5-diF-Ph	Ph	1-	FA:483
133	O ₂ N	3, 5-diF-Ph	3-0 ₂ N-Ph		FA:467
134	0 ₂ N	3,5-diF-Ph	3-F-Ph		FA:440
135	O ₂ N	3, 5-diF-Ph	3-0 ₂ N-4-Me-Ph	_	FA:481
136	PhCH ₂ S	3, 5-diF-Ph	Ph	$\Gamma \equiv$	FA:498
137	Py-3-y1CH2NHSO2	3, 5-diF-Ph	Ph	1-	FA:547
		3, 5-diF-Ph	4-Me-Ph	1 -	FA: 436
138	O ₂ N	1 0,0 411 711	1	<u></u>	

表 19

EX R² A B Sa DAT 139 0,N 3,5-diF-Ph 4-F ₃ C-O-Ph FA:506 140 0,N 3,5-diF-Ph 3-F ₃ C-Ph FA:490 141 0,N 3,5-diF-Ph 2-F ₃ C-O-Ph FA:490 141 0,N 3,5-diF-Ph 2-F ₃ C-O-Ph FA:456 142 0,N 3,5-diF-Ph 4-Cl-Ph FA:456 143 0,N 3,5-diF-Ph 4-F-Ph FA:456 144 0,N 3,5-diF-Ph 2,3-diMe-Ph FA:450 145 0,N 3,5-diF-Ph 2,3-diMe-Ph FA:452 146 Py-3-y1CH ₂ O 3,5-diF-Ph 2,3-diMe-Ph FA:452 146 Py-3-y1CH ₂ O 3,5-diF-Ph 2-Me-Ph FA:452 147 Py-3-y1CH ₂ O 3,5-diF-Ph 2-Me-Ph FA:452 149 0,N 3,5-diF-Ph 2-Me-Ph FA:452 149 0,N 3,5-diF-Ph 3-CN-Ph FA:447 150 0,N		H O		•		·
139	FX	R ²	A	В	Sa	DAT
140				4-F ₂ C-0-Ph		FA:506
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	FA:490
142 O ₂ N 3,5-diF-Ph 4-Cl-Ph FA:456 143 O ₂ N 3,5-diF-Ph 4-F-Ph FA:440 144 O ₂ N 3,5-diF-Ph 2,3-diMe-Ph FA:450 145 O ₂ N 3,5-diF-Ph 2,3-diMe-Ph FA:452 146 Py-3-y1CH ₂ O 3,5-diF-Ph 2,3-diMe-Ph FA:498 147 Py-3-y1CH ₂ O 3,5-diF-Ph 2-MeO-Ph FA:498 148 O ₂ N 3,5-diF-Ph 2-MeO-Ph FA:452 149 O ₂ N 3,5-diF-Ph 3-Me-Ph FA:457 150 O ₂ N 3,5-diF-Ph 3-CN-Ph FA:447 151 O ₂ N 3,5-diF-Ph Naph-1-y1 FA:447 152 O ₂ N 3,5-diF-Ph 3,4-diF-Ph FA:447 153 O ₂ N 3,5-diF-Ph 3,4-diF-Ph FA:448 154 O ₂ N 3,5-diF-Ph 3-AcO-Ph FA:448 155 O ₂ N 3,5-diF-Ph 3-AcO-Ph FA:480 156 O ₂				2-F ₃ C-0-Ph	_	FA:505
143				4-CI-Ph	_	FA:456
144				4-F-Ph	-	FA:440
145 O ₂ N 3,5-diF-Ph 3-MeO-Ph FA:452 146 Py-3-y1CH ₂ O 3,5-diF-Ph 2,3-diMe-Ph FA:512 147 Py-3-y1CH ₂ O 3,5-diF-Ph 3-Me-Ph FA:498 148 O ₂ N 3,5-diF-Ph 2-MeO-Ph FA:452 149 O ₂ N 3,5-diF-Ph 6-Cl-Py-3-y1 FA:457 150 O ₂ N 3,5-diF-Ph 3-CN-Ph FA:447 151 O ₂ N 3,5-diF-Ph Naph-1-yl FA:447 152 O ₂ N 3,5-diF-Ph A-CN-Ph FA:447 153 O ₂ N 3,5-diF-Ph 3,4-diF-Ph FA:458 154 O ₂ N 3,5-diF-Ph 3-AcO-Ph FA:480 155 O ₂ N 3,5-diF-Ph 3-AcO-Ph FA:480 156 O ₂ N 3,5-diF-Ph 3-AcO-Ph FA:482 157 O ₂ N 3,5-diF-Ph 3-Me-Ph FA:482 158 O ₂ N 3,5-diF-Ph 3-Me-Ph FA:482 158 O ₂ N </td <td></td> <td></td> <td></td> <td>2.3-diMe-Ph</td> <td>_</td> <td></td>				2.3-diMe-Ph	_	
146 Py-3-y1CH ₂ O 3,5-diF-Ph 2,3-diMe-Ph FA:512 147 Py-3-y1CH ₂ O 3,5-diF-Ph 3-Me-Ph FA:498 148 O ₂ N 3,5-diF-Ph 2-MeO-Ph FA:452 149 O ₂ N 3,5-diF-Ph 6-CI-Py-3-y1 FA:457 150 O ₂ N 3,5-diF-Ph 3-CN-Ph FA:447 151 O ₂ N 3,5-diF-Ph Naph-1-y1 FA:472 152 O ₂ N 3,5-diF-Ph 3,4-diF-Ph FA:472 153 O ₂ N 3,5-diF-Ph 3,4-diF-Ph FA:458 154 O ₂ N 3,5-diF-Ph 3-AcO-Ph FA:480 155 O ₂ N 3,5-diF-Ph 3-AcO-Ph FA:480 156 O ₂ N 3,5-diF-Ph 2,3-diMO-Ph FA:482 157 O ₂ N 3,5-diF-Ph 3-Me-Ph FA:482 158 O ₂ N 3,5-diF-Ph 3-Me-Ph FA:482 158 O ₂ N 3,5-diF-Ph 3-Me-Ph FA:494 160 O				3-Me0-Ph		FA:452
147 Py-3-y1CH ₂ O 3,5-diF-Ph 3-Me-Ph - FA:498 148 O ₂ N 3,5-diF-Ph 2-MeO-Ph - FA:452 149 O ₂ N 3,5-diF-Ph 6-Cl-Py-3-yl - FA:457 150 O ₂ N 3,5-diF-Ph 3-CN-Ph - FA:447 151 O ₂ N 3,5-diF-Ph Naph-1-yl - FA:472 152 O ₂ N 3,5-diF-Ph 4-CN-Ph - FA:447 153 O ₂ N 3,5-diF-Ph 3,4-diF-Ph - FA:445 154 O ₂ N 3,5-diF-Ph 3-AcO-Ph - FA:458 155 O ₂ N 3,5-diF-Ph 3-AcO-Ph - FA:480 156 O ₂ N 3,5-diF-Ph 2,3-diMeO-Ph - FA:428 157 O ₂ N 3,5-diF-Ph 2,3-diMeO-Ph - FA:482 158 O ₂ N 3,5-diF-Ph 3-AcO-2-Me-Ph - FA:482 158 O ₂ N 3,5-diF-Ph 3-AcO-2-Me-Ph - FA:482 160 O ₂ N 3,5-diF-Ph 3-Me-Ph - FA:414				2, 3-d i Me-Ph		
148 O2N 3,5-diF-Ph 2-MeO-Ph FA:452 149 O2N 3,5-diF-Ph 6-CI-Py-3-y1 FA:457 150 O2N 3,5-diF-Ph 3-CN-Ph FA:447 151 O2N 3,5-diF-Ph Naph-1-y1 FA:472 152 O2N 3,5-diF-Ph 4-CN-Ph FA:447 153 O2N 3,5-diF-Ph 3,4-diF-Ph FA:458 154 O2N 3,5-diF-Ph 3,4-diF-Ph FA:490 155 O2N 3,5-diF-Ph 3-AcO-Ph FA:480 156 O2N 3,5-diF-Ph 3-AcO-Ph FA:428 157 O2N 3,5-diF-Ph 2,3-diMeO-Ph FA:482 158 O2N 3-Me-Ph 3-AcO-Ph FA:442 160 O2N 3,5-diF-Ph 3-AcO-Ph-Ph FA:448 161 4-O2N-PhCH2NH 3,5-diF-Ph 3-AcO-Ph-Ph FA:414 160 O2N 3,5-diF-Ph 3-Me-Ph FA:414 162 O2N 3,5-diF-Ph </td <td></td> <td></td> <td></td> <td>3-Me-Ph</td> <td>-</td> <td>FA: 498</td>				3-Me-Ph	-	FA: 498
149				2-Me0-Ph		
150			3, 5-diF-Ph	6-CI-Py-3-y1	1	
151			3, 5-diF-Ph	· 3-CN-Ph		
152				Naph-1-yl		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3, 5-diF-Ph			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3,5-diF-Ph	. 3, 4-diF-Ph		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4-F ₃ C-Ph	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		O ₂ N	3, 5-diF-Ph	3-Ac0-Ph		
157			3, 5-diF-Ph	Thiop-2-yl	1	
158 O ₂ N 3-Me-Ph 3-Me-Ph - FA:414 160 O ₂ N 3.5-diF-Ph 3-AcO-2-Me-Ph - FA:494 161 4-O ₂ N-PhCH ₂ NH 3.5-diF-Ph 3-Me-Ph - FA:494 162 O ₂ N 4-F-Ph 3-Me-Ph - FA:418 163 O ₂ N 2-MeO-Ph 3-Me-Ph - FA:430 164 O ₂ N 2,3-diMe-Ph 3-Me-Ph - FA:428 165 Py-3-y1 (CH ₂) ₂ 3,5-diF-Ph 3-Me-Ph - FA:496 166 4-O ₂ N-PhCH ₂ O 3,5-diF-Ph 3-Me-Ph - FA:541 167 H 3,4,5,-triF-Ph 3-H ₂ N-Ph HCI FA:410 168 H 3,5-diF-Ph 3-H ₂ N-2-Me-Ph HCI FA:406 169 H 3,5-diF-Ph 3-H ₂ N-4-Gl-Ph - FA:426 170 H 3,5-diF-Ph 3-H ₂ N-4-MeO-Ph - FA:422				2,3-diMeO-Ph		
160			3-Me-Ph		_	
161 4-O ₂ N-PhCH ₂ NH 3,5-diF-Ph 3-Me-Ph FA:541 162 O ₂ N 4-F-Ph 3-Me-Ph - FA:418 163 O ₂ N 2-MeO-Ph 3-Me-Ph - FA:430 164 O ₂ N 2,3-diMe-Ph 3-Me-Ph - FA:428 165 Py-3-yl (CH ₂) ₂ 3,5-diF-Ph 3-Me-Ph - FA:496 166 4-O ₂ N-PhCH ₂ O 3,5-diF-Ph 3-Me-Ph - FA:541 167 H 3,4,5,-triF-Ph 3-H ₂ N-Ph HCI FA:410 168 H 3,5-diF-Ph 3-H ₂ N-2-Me-Ph HCI FA:406 169 H 3,5-diF-Ph 3-H ₂ N-4-Cl-Ph - FA:426 170 H 3,5-diF-Ph 3-H ₂ N-4-MeO-Ph - FA:422			3, 5-diF-Ph	3-Ac0-2-Me-Ph	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3, 5-d i F-Ph	3-Me-Ph		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3-Me-Ph	_	
164 0 ₂ N 2,3-diMe-Ph 3-Me-Ph - FA:428 165 Py-3-yl (CH ₂) ₂ 3,5-diF-Ph 3-Me-Ph - FA:496 166 4-0 ₂ N-PhCH ₂ O 3,5-diF-Ph 3-Me-Ph - FA:541 167 H 3,4,5,-triF-Ph 3-H ₂ N-Ph HCl FA:410 168 H 3,5-diF-Ph 3-H ₂ N-2-Me-Ph HCl FA:406 169 H 3,5-diF-Ph 3-H ₂ N-4-Gl-Ph - FA:426 170 H 3,5-diF-Ph 3-H ₂ N-4-MeO-Ph - FA:422			2-Me0-Ph	3-Me-Ph		
165 Py-3-yl (CH ₂) ₂ 3, 5-diF-Ph 3-Me-Ph - FA: 496 166 4-O ₂ N-PhCH ₂ O 3, 5-diF-Ph 3-Me-Ph - FA: 541 167 H 3, 4, 5, -tr i F-Ph 3-H ₂ N-Ph HCl FA: 410 168 H 3, 5-diF-Ph 3-H ₂ N-2-Me-Ph HCl FA: 406 169 H 3, 5-diF-Ph 3-H ₂ N-4-Cl-Ph - FA: 426 170 H 3, 5-diF-Ph 3-H ₂ N-4-MeO-Ph - FA: 422			2, 3-diMe-Ph	3-Me-Ph	_	<u> </u>
166 4-0 ₂ N-PhCH ₂ O 3,5-diF-Ph 3-Me-Ph - FA:541 167 H 3,4,5,-triF-Ph 3-H ₂ N-Ph HCI FA:410 168 H 3,5-diF-Ph 3-H ₂ N-2-Me-Ph HCI FA:406 169 H 3,5-diF-Ph 3-H ₂ N-4-GI-Ph - FA:426 170 H 3,5-diF-Ph 3-H ₂ N-4-MeO-Ph - FA:422				3-Me-Ph	_	
167 H 3, 4, 5, -tr i, F-Ph 3-H ₂ N-Ph HC1 FA: 410 168 H 3, 5-d i F-Ph 3-H ₂ N-2-Me-Ph HC1 FA: 406 169 H 3, 5-d i F-Ph 3-H ₂ N-4-C1-Ph - FA: 426 170 H 3, 5-d i F-Ph 3-H ₂ N-4-MeO-Ph - FA: 422			3,5-diF-Ph			
168 H 3, 5-diF-Ph 3-H ₂ N-2-Me-Ph HC1 FA: 406 169 H 3, 5-diF-Ph 3-H ₂ N-4-Gl-Ph - FA: 426 170 H 3, 5-diF-Ph 3-H ₂ N-4-MeO-Ph - FA: 422						
169 H 3, 5-diF-Ph 3-H ₂ N-4-GI-Ph - FA: 426 170 H 3, 5-diF-Ph 3-H ₂ N-4-MeO-Ph - FA: 422		Н			HC1	1
170 H 3, 5-diF-Ph 3-H ₂ N-4-MeO-Ph - FA: 422		Н	3,5-diF-Ph			
E 11 N F 1 - 1 F A · 382			3, 5-diF-Ph			
	171	Н	3,5-diF-Ph	5-H ₂ N-Fu-2-yl		FA:382

	H 0				·
EX	R²	Α	В	Sa	DAT
159	4-0,N-PhCH2NH	3,5-diF-Ph	2, 3-diMe-Ph		FA:555
172	3-H ₂ N-PhCONH	3,5-diF-Ph	Ph	_	FA:511
174	3-H ₂ N-PhCH ₂ NH	3,5-diF-Ph	Ph		FA:497
175	H ₂ N	3,5-diF-Ph	3,5-diF-Ph		FA: 428
176	H ₂ N	3,5-diF-Ph	3-H₂N-4-Me-Ph		FA: 421
177	H ₂ N	3,5-diF-Ph	3−H ₂ N−Ph	1	FA:407
178	H ₂ N	3,5-diF-Ph	2-Me-Ph	1	FA:406
179	H ₂ N	3,5-diF-Ph	3-F ₃ C-0-Ph	-	FA:476
180	H ₂ N	3,5-diF-Ph	3-F ₃ 0-Ph		FA:460
181	- H ₂ N	3,5-diF-Ph	. 4-F-Ph	ŀ	FA:410
182	H ₂ N	3,5-diF-Ph	2,3-diMe-Ph		FA:420
183	H ₂ N	3,5-diF-Ph	3-Me0-Ph		FA:422
184	H ₂ N	3,5-diF-Ph	2-Me0-Ph	_	FA:422
185	H ₂ N	3, 5-diF-Ph	2,5-diF-Ph		FA:428
186	H₂N	3,5-diF-Ph	6-CN-Py-3-y1		FA: 427
187	H₂N	3,5-diF-Ph	3,5-diMe-Ph		FA:420
188	H₂N	3,5-diF-Ph	3-CN-Ph	1	FA:417
189	H₂N	3, 5-diF-Ph	4-CN-Ph		FA:417
190	H ₂ N	3,5-diF-Ph	Naph-1-y l		FA:442
191	H₂N	3,5-diF-Ph	3, 4-diF-Ph		FA: 428
192	H ₂ N	3, 5-diF-Ph	5-Br-Py-3-y1		FA:501
193	H ₂ N	3,5-diF-Ph	3-Ac0-Ph	<u> </u>	FA: 450
194	H ₂ N	3,5-diF-Ph	2,3-diMeO-Ph	_	FA: 452
195	H ₂ N	3,5-diF-Ph	Thiop-2-yl	_	FA:398
196	. H ₂ N	3,5-diF-Ph	Ph		FA:392
197	H₂N	3,5-diF-Ph	3-Me-Ph		FA: 406
198	H₂N	3,5-diF-Ph	3-Ac0-2-Me-Ph		FA:464
199	4-H ₃ N-PhCH ₂ NH		3-Me-Ph		FA:511
200	4-H ₂ N-PhCH ₂ 0		3-Me-Ph		FA: 542
201	H₂N	4-F-Ph	3-Me-Ph		FA:388
202	H ₂ N	2-Me0-Ph	3-Me-Ph		FA:400
203		2,3-diMe-Ph	3-Me-Ph	_	FA:398
204	PhCONH		Ph		FA:496
205	4- (Et ₂ NCO) PhCH ₂ NH		Ph Ph		FA:581 FA:511
206	Py-2-y I CH ₂ CONH		Ph Ph	 _	FA:511
207	(4-Me0-Ph) (CH ₂) ₂ CONH		Ph	-	FA:514
208	3-F-PhCONH		Ph	 	FA:540
209	4-Me0-PhCH2CONH 4-Me2N-PhCONH		Ph	-	FA:539
210	4-Me2N-FROUNK	_ 3, 5-41F-Ph	F11	1	11,7.000

表 21

	н о в			
EX	R ²	В	Sa	DAT
211	4-Ac-PhCONH	Ph		FA:538
212	2−Me−PhC0NH	. Ph		FA:510, N1:2. 42 (3H, s), 6. 90-7. 00 (3H, m), 7. 11-7. 21 (3H, m), 7. 29-7. 34 (4H, m), 7. 38-7. 40 (1H, m), 7. 49 (1H, d, J=7. 8Hz), 7. 56 (1H, dd, J=8. 8, 1. 5Hz), 7. 67 (1H, d, J=8. 8Hz), 8. 37 (1H, s), 10. 45 (1H, s), 13. 10 (1H, s), 13. 14 (1H, s)
213	4-AcNH-PhCONH	Ph		FA:553
214	Pv-3-v1-C0NH	Ph	_	FA:497
215	3-CI-PhCONH	Ph	_	FA:530
216	MeOCO (CH ₂) ,CONH	Ph		FA:506
217	4-MeOCO-PhCONH	. Ph		FA:554
218	4-Me-PhCH ₂ CONH	· Ph		FA:524
219	苯并 IM-5-yICONH	· Ph		FA:536
220	Thiop-2-y1C0C0NH	Ph		FA:530
221	3-AcNH-PhCH2NH	Ph	-	FA:488
222	3- (cPrNHCO) PhCH2NH	Ph		FA:565
223	4-(4-F-PhNHNHCO) PhCH2NH	Ph		FA:634
224	4-H ₂ NCO-PhCH ₂ NH	Ph		FA: 525
225	4- (iPrNHCO) PhCH, NH	4-F-Ph	-	FA:585
$\overline{}$	Pyra-2-y1C0NH	3-Me-Ph		FA:512
226	Py-3-y100NH	4-F-Ph	_	FA:515
227		2-Me0-Ph		FA:595
228	cPrNHC0			FA:555
229	H ₂ NCO	2-Me0-Ph		
230	Ph0-CONH	Ph		FA: 512
231	MeSO ₂ NH	Ph		FA: 470
232	4-AcNH-PhS0 ₂ NH	Ph		FA:589
233	4-F-PhS0₂NH	3-Me-Ph		FA:566
234	4-Me0-PhS0₂NH	4-F-Ph	_	FA:600
235	3-F3C-PhSO2NH	2-Me0-Ph		FA:551
236	N Me SO ₂ NH	2-Me0-Ph	_	FA:587
237	H N 30 2 N H	_. Ph	-	FA:587
238	6-F ₃ C-Py-3-y1CH ₂ NH	Ph	HCI	FA:550
239	Py-3-y1CH ₂ NH	Ph	_	FA:483
240	Me (Py-3-y1CH ₂) N	Ph	_	FA: 497
241	· 4AcNHPhCH₂NH	Ph	-	FA:539, N1:2.02(3H, s), 4.22(2H, m), 6.34(1H, m), 6.65-7.53(15H, m), 9.88(1H, s), 12.81(2H, m)
242	Mo CH-CHINH	Ph	-	FA:639
243		Ph	HCI	FA:669

	н о в			
EX	R²	В	Sa	DAT
244	1-Me-5-F ₃ C-Pyrazo-3-ylThiop-2-	Ph	HCI	FA:636, N1:3. 99 (3H, s),
}	yICH,NH	, , ,	,,,,,	4. 58 (2H, s), 6. 82-6. 95 (5H,
1 1	,			m), 7.09-7.20 (4H, m), 7.23
{				(1H, d, J=2, 5Hz), 7, 27-7, 29
1 1				(2H, m), 7. 40 (1H, d, J=3. 4Hz)
)]				, 7.51(1H, d, J = 8.7Hz),
}				12.89(1H, s), 12.95(1H, s)
245	Py-4-y1CH ₂ NH	Ph	_	FA: 483, N1: 4. 34 (2H, d, J=5. 8Hz
[]), 6. 55 (1H, t, J=5. 8Hz), 6. 68
				(1H, dd, J = 8.8, 2.5Hz), 6.82-
1 1				6.94(4H, m), 7.09-7.18(3H, m),
} }	-		٠	7.29 (2H, d, J = 8.3Hz), 7.38
} }				(2H, d, J = 5.8Hz), 7.45 (1H, d,
				J = 8.8 Hz, 8.51 (2H, d, J)
1 1				=5.8Hz), 12.77 (1H, s), 12.88 (1
				H, s)
246	(4-Me ₂ N-PhCH ₂) ₂ N	Ph		FA:658
247	4-HOOC-PhCH2NH	Ph		FA:526
248	3-HO-5-HOCH,-2-Me-Py-4yICH,NH	Ph		FA: 543
249	_6-CI- 咪唑并[1,2-a]Py-3-yICH,NH	Ph		FA:556
250	IM-3-yICH,NH	Ph	2HC1	FA: 472
251	4-AcNH-PhCH₂NH	3-Me-Ph	_	FA:553, N1:2. 02 (3H, m), 2. 14 (3
1 1				H, s), 4. 21 (2H, d), 6. 80-7. 15
1				(10H, m), 7. 25-7. 55 (5H, m), 9. 85-9. 90 (1H, m), 12. 76-
1 1				12. 90 (2H, m)
252	Thiaz-2-ylCH,NH	Ph		FA: 489
253	PhCOCH ₂ NH	Ph		FA:510
254	1-氧代:-Py-4-yICH.NH	Ph		FA:499
255	5- (4-CI-Ph) Fu-2-yICH,NH	Ph	HC1	FA:582
256	Thiaz-5-ylCH ₂ NH	Ph	2HC1	FA: 489, N1:4. 77 (2H, s), 6. 88-
1 200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			6.98(3H, m), 7.11-7.21(4H, m),
{ {		,		7. 33 (2H, d, J=7Hz), 7. 55 (1H,
1 1				br), 7. 66 (1H, t, J=9Hz), 7. 82
1 1				(1H, d, J=4 Hz), 9.15(1H, d, J=9)
)	·			Hz), 13.10(2H, br)
257	5, 6-diC1-Py-3-y1-CH ₂ NH	Ph		FA:551
258	Pyrazi-3-yICH2NH	Ph	_	FA: 484
259	5-Br-Py-3-y1CH₂NH	Ph	_	FA:561
260	Pyrim-5-ylCH₂NH	Ph	-	FA:484 N1:4.35(2H, m), 6.47
1 [•			-9. 12 (15H, m) , 12. 84 (2H, m)
261	6-Me-Py-3-y1CH ₂ NH	Ph		FA: 497
262	2-Me-Py-3-y1CH ₂ NH	Ph		FA: 497
263	3-F ₃ C-PhCH ₂ NH	Ph		FA: 550
264	2-ŎH-PhCH,NH	Ph	-	FA: 498
265	1-Me-IM-2-yICH2NH	Ph		FA: 486
266	3-HOOC-PHCH,NH	Ph		FA: 526
267	3-Me0-PhCH ₂ NH	Ph		FA: 512
1 1		Ph		FA: 527
268	4-(I_N-Ph(:H_NH)			
268	4-0 ₂ N-PhCH ₂ NH Pv-3-v1CH_NHCH ₂			FA: 497
268 269 270	4-U ₂ N-PhUn ₂ NH Py-3-y (CH ₂ NHCH ₂ 4-F-PhCH ₂ NH	Ph Ph		FA: 497 FA: 500

,	· · · · · · · · · · · · · · · · · · ·			
EX	R ²	В	Sa	DAT
287	4-AcNH-PhCH₂NH	2-F₃C-0-Ph		FA:622
288	4-AcNH-PhCH₂NH	3-CI-Ph		FA:573 N1: 2.02(3H, s), 4.22(2H, d, J = 4.9Hz), 6.36(1H, t, J = 5.8Hz), 6.70(1H, dd, J = 8.8, 2.0Hz), 6.88-6.92(3H, m), 6.98(1H, tt, J = 8.3, 2.4Hz), 7.12-7.16(1H, m), 7.20-7.26(3H, m), 7.32(2H, d, J = 8.7Hz), 7.44(1H, d, J = 8.8Hz), 7.53(2H, d, J = 8.3Hz),
289	4-AcNH-PhCH₂NH	4-F-Ph	-	9.88(1H, s), 12.81(1H, s), 12.90(1H, s) FA:557 N1:2.01(3H, s), 4.21(2H, m), 6.34(1H, s), 6.65-7.53(14H, m), 9.87(1H, s)
290	4–AcNH−PhCH₂NH	2, 3-diMe-Ph		s), 12.80(2H, m) FA:567, N1:2.01(3H, s), 2.02(3H, s), 2.10(3H, s), 4.21(2H, s), 6.35(1H, br), 6.67-6.73(3H, m), 6.77-6.94(5H, m), 7.31(2H, d, J=9Hz), 7.43(1H, d, J=9Hz), 7.52(2H, d, J=9Hz), 9.88(1H, s), 12.85 (1H, s), 12.94(1H, s)
291	4–AcnH–PhCH₂NH	3−MeO−Ph	-	FA:569 N1: 2.02 (3H, s), 3.66 (3H, s), 4.22 (2H, d, J=5.3Hz), 6.35 (1H, t, J=5.6Hz), 6.67 (1H, dd, J=8.8, 2.5Hz), 6.71 (1H, dd, J=8.3, 2.5Hz), 6.79 (1H, s), 6.86-6.87 (4H, m), 6.92-6.97 (1H, m), 7.02 (1H, t, J=7.8Hz), 7.31 (2H, d, J=8.3Hz), 7.42 (1H, d, J=8.8Hz), 7.53 (2H, d, J=8.3Hz), 9.89 (1H, s), 12.78 (1H, s), 12.87 (1H, s)
292	4-H0-3-02N-PhNHCH2	Ph	_	FA:543
293	4-AcNH-PhCH₂NH	2-MeO-Ph	1	FA: 569, N1: 2. 02 (3H, s), 3. 63 (3H, S), 4. 22 (2H, d, J) = 5. 3Hz), 6. 34 (1H, t, J=5. 9Hz), 6. 58 (1H, d, J=8. 3 Hz), 6. 61-6. 71 (2H, m), 6. 75-6. 78 (2H, m), 6. 87-6. 92 (2H, m), 7. 00-7. 07 (2H, m), 7. 31 (2H, d, J=8. 3Hz), 7. 42 (1H, d, J=8. 8Hz), 7. 53 (2H, d, J=8. 8 Hz), 9. 88 (1H, s), 12. 84 (1H, s), 12. 94 (1H, s)
294	4-AcNH-PhCH ₂ NH	3,5-diMe-Ph	_	FA:567
295	4-AcNH-PhCH2NH	3-CN-Ph		FA: 564
296	4-AcNH-PhCH₂NH	2-F-Ph		FA:557, N2:2.19 (3H, s), 4.35 (2H, s), 6.46-7.87 (15H, m), 9.93 (1H, s), 12.65 (2H, m)
297	4-AcNH-PhCH₂NH	4-CN-Ph	-	FA: 564, N1:2.01 (3H, s), 4.21 (2H, m), 6.37 (1H, s), 6.67-7.87 (14H, m), 9.88 (1H, s), 12.86 (2H, m)
298	4-AcNH-PhCH₂NH	Naph-1-y∣		FA: 589 , N1: 2. 02 (3H, s), 4. 23 (2H, s), 6. 38 (1H, br), 6. 47-6. 58 (3H, m), 6. 71 (1H, dd, $J = 2$ Hz, 9 Hz), 6. 91 (1H, s), 7. 17-7. 26 (2H, m), 7. 32 (2H, d, $J = 9$ Hz), 7. 42-7. 54 (5H, m), 7. 64 (1H, d, $J = 8$ Hz), 7. 75 (1H, d, $J = 8$ Hz), 8. 14 (1H, d, $J = 8$ Hz), 9. 89 (1H, s), 12. 90 (1H, s), 12. 99 (1H, s)
299	4-AcNH-PhCH2NH	3, 4-d i F-Ph	=	FA:575
300	3-CN-PhCH2NH	4-F-Ph	-1	FA: 525
301	4-AcNH-PhCH₂NH	2-01-Ph		FA:573, N1: 2.02(3H, s), 4.22(2H, d, J = 5.3Hz), 6.38(1H, t, J = 5.9Hz), 6.70(1H, dd, J = 8.8, 2.0Hz), 6.83-6.96(4H, m), 7.05-7.17(4H, m), 7.31(2H, d, J = 8.3Hz), 7.44(1H, d, J = 8.3Hz), 7.53(2H, d, J = 8.8Hz), 9.88(1H, s), 12.87(1H, s), 12.97(1H, s)

雄	実	23

	4 38 60			
302	4-AcNH-PhCH ₂ NH	2, 5-diF-Ph	1	FA:575,N1:2.02(3H, s), 4.22(2H, m), 6.30- 6.75(2H, m), 6.82-7.10(7H, m), 7.27-7.57(5H, m), 9.88(1H, s), 12.80-13.05(2H, m)
303	4−AcNH−PhCH₂NH	2-F₃G-Ph	_	FA:607, N1:2.02(3H, s), 4.22(2H, m), 6.38(1H, m), 6.60-6.95(5H, m), 7.22-7.56(9H, m), 9.88(1H, s), 12:85-13.00(2H, m)
304	4-AcNH-PhCH ₂ NH	6-CI-Py-3-y1	-	FA:574
305	4-AcNH-PhCH₂NH	5-Br-Py-3-yi		FA: 618
306	4-AcNH-PhCH2NH	3-Br-Ph	-	FA: 616
307	4-AcNH-PhCH2NH	3-Ac0-Ph	_	FA:597
308	4-H0-3-Me0-PhCH,NH	3, 5Me0-Ph	-	FA: 588
309	4-HOOC-PhCH2NH	4-F-Ph	-	FA:544
310	4-AcNH-PhCH2NH	Thiop-2-yl	=	FA:545
311	4-AcNH-PhCH₂NH	2,3-diMeO-Ph	_	FA:599:N1:2.02(3H, s), 3.65(3H, S), 3.66(3H, s), 4.21(2H, d, J = 5.8Hz), 6.35(1H, t, J=5.9 Hz), 6.59-6.61(1H, m), 6.71(1H, dd, J=2.8, 8.8Hz), 6.74-6.79(4H, m), 6.85-6.91(2H, m), 7.32(2H, d, J=8.3Hz), 7.43(1H, d, J=8.8Hz), 7.53(2H, d, J=8.8 Hz), 9.88(1H, s), 12.84(1H, s), 12.93(1H, s)

表 24

EX	R ²	8	Sa	DAT
312	4-[Mo-4-y1 (CH ₂) 20]PhCH2NH	4-F-Ph	-	FA: 629
313	4-H0-PhCH₂NH	2-Me0-Ph		FA:528
314	3-Et0-4-Me0-PhCH ₂ NH	3-Me-Ph		FA:570
315	$4-(Me_2N(CH_2)_30)PhCH_2NH$	3-Me-Ph	_	FA:597
316	1.3- 苯并 Thiaz-6-yICH₂NH	3-Me-Ph		FA:553
317	4-[Mo-4-y1 (CH ₂) ₂ 0]PhCH ₂ NH	2-Me0-Ph		FA: 641
318	3-H00C-PhCH₂NH	2-Me0-Ph	_	FA:556
319	3-CN-PhCH₂NH	3-Me-Ph		FA:521
320	1-PhCH ₂ -Pipe-4-yICH ₂ NH	Ph	HCI	FA:579
321	PhCH ₂ NH	Ph	-	FA: 482
322	Naph-2-y1-CH₂NH	Ph		FA:532
323	4-Me-PhCH₂NH	Ph		FA: 496
324	3-MeO-PhCH ₂ NH	Ph	_	FA:512
325	2−CN−PhCH₂NH	Ph	-	FA:507
326	3−F₃C−PhCH₂NH	Ph	-	FA:550
327	3−Br−PhCH ₂ NH	Ph	-	FA:560
328	4-H0-PhCH₂NH	Ph	_	FA:498
329	4-0 ₂ N-PhCH ₂ NH	Ph	_	FA:527
330	4-MeS-PhCH₂NH	Ph	_	FA:528
331	2-MeO-Naph-1-yI-CH₂NH	Ph		FA:562

表 25

$$R^2$$
 N
 B
 F

0				75.17
EX	R ²	B	Sa	DAT
332	5, 6, 7, 8, -四氢-Naph-2-y I-CH ₂ NH	Ph		FA:536
333	2,3-二氢-苯并[b]Fu-5-y1CH ₂ NH	Ph		FA:524
334	CH ₂ NH	Ph l	-	FA:526
335	CH2NH	Ph		FA: 540
-006	3, 4-diMeO-PhCH2NH	Ph		FA: 542
336	2.5-diF-PhCH ₂ NH	Ph	_	FA:518
337	3, 5-diF ₃ C-PhCH ₂ NH	Ph		FA:618
000	5-Et-Fu-2-y1CH2NH	Ph		FA:500
339	Thiop-3-yICH ₂ NH	Ph		FA:488
340	1-Me0-C0 (CH ₂) 2-Pyrr-2-y I CH ₂ NH	Ph		FA:557
341	Pen-NH	Ph		FA:462
342	PhCH ₂ O (CH ₂) ₂ NH	Ph		FA:526
343	Ph (CH ₂) ₃ NH	Ph		FA:510
344	Me (Py-3-y I) CHNH	Ph		FA:497
345	4-Pen-PhCH ₂ NH	Ph		FA: 552 -
346	biPh-4-yiCH ₂ NH	Ph		FA:558 ·
347	4-F ₃ C-PhCH ₂ NH	Ph		FA:550
348	2-C1-PhCH ₂ NH	Ph		FA:516
349	4-Me0-C0-PhCH ₂ NH	Ph		FA:540
350	3-CN-PhCH ₂ NH	Ph		FA:507
351	4-Me ₂ N-PhCH ₂ NH	Ph		FA:525
352	4-Me2N-Phon2NA	Ph	-	FA:551
353	4-Pyrroli-1-yl-PhCH₂NH 4-PrO-PhCH₂NH	Ph	 	FA:540
354		Ph	}	FA:556
355	4-HOCOCH ₂ O-PhCH ₂ NH 4-PhO-PhCH ₂ NH	Ph	 	FA: 574
356		Ph	 	FA:642
357	3-(3-F ₃ C-Ph0) PhCH ₂ NH	Ph	 	FA:588
358	4-PhCH ₂ 0-PhCH ₂ NH	Ph	 	FA:650
359	4-b iPh0-PhCH ₂ NH	Ph	 	FA:624
360	2-(4-CI-PhS)-PhCH ₂ NH	Ph	 	FA:562
361	6-MeO-Naph-2-y I CH ₂ NH	Ph	+-=	FA:548
362	1-H0-Naph-2-yiCH₂NH	1	 	FA:570
363	9H- 芴-2-y I CH₂NH	Ph		FA:534
364	2-C1-5-F-PhCH₂NH	Ph		FA:514
365	3, 5-diH0-PhCH ₂ NH	Ph		FA:528
366	2-H0-3-Me0-PhCH ₂ NH	Ph		FA:569
367	2-H0-4-Me ₂ N-PhCH ₂ NH	Ph		
368	2-H0-5-0 ₂ N-PhCH ₂ NH			FA:543 ·
369	4-H0-3-0 ₂ N-PhCH ₂ NH			FA:543
370	4-H0-3-Me0-PhCH₂NH			FA:528
371	2, 4-diMeO-PhCH ₂ NH			FA:542
372	3-MeO-2-0 ₂ N-PhCH ₂ NH	Ph		. FA:557
373	4-(Mo-1-y1)-2-02N-PhCH2NH	Ph	1 -	FA:612

$$\begin{array}{c|c} R^2 & & \\ & & \\ N & O \\ \end{array} \begin{array}{c} F \\ B \\ \end{array}$$

EX	R ²	В	Sa	DAT
374	3, 5-diCl-6-HO-PhCH ₂ NH	Ph	_	FA:566
375	3, 4-diMeO-2-02N-PhCH2NH	Ph	-	FA:587
376	4-MeO-5, 6-diMe-PhCH2NH	Ph	_	FA:540
377	3-H0-4, 5-di MeO-PhCH ₂ NH	Ph		FA:558
378	1-PhSO ₂ -Pyrr-2-yICH ₂ NH	Ph		FA:611
379	5-AcOCH,-Fu-2-y I CH,NH	Ph		FA:544
380	5-Me-Thiop-2-yICH ₂ NH	Ph	_	FA:502
381	5-Thiop-2-ylThiop-2-ylCH ₂ NH	Ph	_	FA:570
382	4-Br-Thiop-2-y1CH ₂ NH	Ph	-	FA:566
383	2-Ph-IM-4-yICH ₂ NH	Ph'	_	FA:548
384	2-H ₂ N-Py-3-y I CH ₂ NH	· Ph	_	FA:498
385	吗哚 -3-y1CH₂NH	Ph		FA:521
386	1-(4-Me-PhSO ₂) 吲哚 -3-y1CH ₂ NH	Ph	-	FA: 675
387	3-Me-苯并 [b]Thiop-2-yICH₂NH	Ph		FA:552
388	quinolin-3-y1CH ₂ NH	Ph		FA:533
389	5-PhCH ₂ 0-1H-吡咯并 [2,3-c]Py-3-y1CH ₂ NH	Ph	-	FA:628
390	PrNH	P.h		FA:434
391	cHex-CH ₂ NH	Ph	<u> </u>	FA:488
392	PhCH₂NH	Ph		FA:496
393	. 1-Tr-苯并(M-5-y1CH₂NH)	Ph		FA:550
394	4-AcNH-PhCH ₂ NH	3-0H-Ph		FA:555
395	Me (Py-3-y1) C=N	Ph	_	FA: 495
396	Me (Py-3-y1) CH₂NH	Ph	HCI	FA:497
397	Н	6-Me-Py-3-yl		FA: 392
398	. Н	1-Me-苯并 IM-5-yl		FA: 431
399	Me (HO) CH ₂	Ph		FA: 421
400	1-氧代 -Py-3-y1CH ₂ NH	Ph		FA:499
401	НО	. Ph	-	FA:393

X 4.1		,
Ex	Str	DAT
110	H O O	FA: 391
111		FA: 394
450	F-W-N-OFF	FA:542, FN:540

表 28

$$\begin{array}{c|c} R^2 & & \\ & & \\ N & & \\ N & O & B \end{array}$$

	н о.С				
EX	R ²	A	B)	Sa	DAT
402	Py-3-y1CH ₂ 0	3,5-diF-Ph	Ph	0xa1	FA:483
403	PhGH ₂ SO ₂	3,5-diF-Ph	Ph		FA:530
404	1-氧代-Py-3-y1CH=N	3,5-diF-Ph	Ph		FA:497
405	HOCH ₂	3, 5-diF-Ph	Ph		FA:407
406	苯并IM-5-yICH2NH	3, 5-diF-Ph	Ph	_	FA:522
407	PHNHCSNH	3,5-diF-Ph	Ph		FA:527
408	Py-3-y INHCONH	3,5-diF-Ph	Ph		FA:512
409	HCO	3,5-diF-Ph	Ph		FA:405
410	4-AcNHPhCH₂NH	3-Me-Ph	3-Me-Ph		FA:531
411	H ₂ N	3-Me-Ph	3-Me-Ph.		FA:384
412	4-H ₂ N-PhCH ₂ NH	3,5-diF-Ph	2,3-diMe-Ph		FN:523
413	4-iPrNHOC-PhCH₂NH	3,5-diF-Ph	3-Me-Ph		FA:581
414	4-HOOC-PhCH2NH	3,5-diF-Ph	3-Me-Ph		FA:540
415	4-[Pyrroli-1-yl(CH ₂) ₂ 0]-PhCH ₂ NH	3,5-diF-Ph	3-Me-Ph		FA: 609
416	Ph0-CONH	3,5-diF-Ph	Ph		FA:512
417	. 4-MeOCH2CONH-PhCH2(MeOCH2CO)N	3,5-diF-Ph	2, 3-diMe-Ph		FA:669
418	4-cBuCONH-PhCH ₂ NH	3,5-diF-Ph	2, 3-diMe-Ph		FA:607
419	4-Et ₂ N (CH ₂) ₂ CONH-PhCH ₂ NH	3,5-diF-Ph	2, 3-diMe-Ph	0xa1	FA: 652
420	4-MeNHCH2CONH-PhCH2NH	3,5-diF-Ph	2, 3-diMe-Ph	0xal	FA:596
422	1,3-Jhiaz-5-ylCH ₂ NH	3,5-diF-Ph	3-Me-Ph	0xa1	FA:503
423	2-H ₂ N-1, 3-Thiaz-5-yICH ₂ NH	3,5-diF-Ph	3-Me-Ph		FA:518
424	2-AcNH-1, 3-Thiaz-5-yICH ₂ NH	3,5-diF-Ph	3-Me-Ph		FA:560
425	4-Me0-Ph	3,5-diF-Ph	3-Me-Ph	-	FA: 497
426	1-PhCH ₂ -Pipe-4-yICH ₂ NH	3, 5-d i F-Ph	Ph	HCI	FA:579
427	4-Me-PhSO₂ (Me) N	3,5-diF-Ph	Ph	-	FA:560
428	1,3-Thiaz-5-yICH ₂ NH	3,5-diF-Ph	2, 3-diMe-Ph	0xal	FA:517
430	4-MeO-PhNHCO	3,5-diF-Ph	Ph.	-	FA:526
431	PhCH ₂ O-CO	3,5-diF-Ph	Ph	 -	
432	H00C	3, 5-diF-Ph	Ph	 	FA: 421 FA: 528
433	4-F-PhCO(Me)N	3,5-diF-Ph	Ph Ph	_	FA: 406
434	MeNH	3, 5-diF-Ph	Ph	 -	FA: 406
435	2-tBuO-CONH-4-Cl-1,3-Thiaz-5-ylCH₂NH	3, 5-diF-Ph	3-Me-Ph	- -	
436	2-tBuO-CONH-4-CI-1,3-Thiaz-5-yICH=N	3,5-diF-Ph	3-Me-Ph	+=	FA: 650
437	4-AcNH-PhGH₂NH	. 3, 5-diF-Ph	3-Ac0-2-Me-Ph		FA: 611

EX	R ²	A	В	Sa	DAT
421	1,3-Thiaz-5-ylCH2NH	3,5-diF-Ph	2-Me0-Ph	Oxal	FA:519, N1:3.64(3H, s),
}		1			4.54 (2H, s), 6.59 (1H, d, J
\	Į.	<u> </u>			=8Hz), 6. 68-6. 72 (2H, m),
'}	. }	Š			6.77 (2H, dd, J=2Hz, 8Hz),
1					6.90(1H, tt, J=2Hz, 9Hz),
	{				6.97(1H, d, J=2Hz), 7.01-
}	<u> </u>	,			7.07(2H, m), 7.45(1H, d,
	}	į			(J=9Hz) , 7. 89 (1K, s) , 8. 96 (1H, s) , 12. 90 (1H, s) , 12.
1	}		,		96 (1H, s)
		0 5 115 N	3-H0-2-Me-Ph		FA:569
438	4-AcNH-PhCH2NH	3,5-diF-Ph		L	
439	4-Ac (Me) N-PhCH₂NH	3, 5-diF-Ph	3-Me-Ph		FA: 567
440	4-F₃CCONH-PhCH₂NH	3, 5-d i F-Ph	3-Ne-Ph		FA: 607
441	4-MeSO2NH-PhCH2NH	3,5-diF-Ph	3-Me-Ph		FA:589
442	4-AcNH-PhCH ₂ 0	3, 5-d i F-Ph	3-Me-Ph	-	FA:554, N1:2. 05 (3H, s)
}				ł	2.51 (3H, s), 5.06 (2H, s),
1 }				{	6. 86-7. 07 (7H, m), 7. 14
}			}	1	(1H, d, J =7Hz), 7.39 (1H, s), 7.41 (2H, d, J=9Hz), 7.
} }	·		}	ł	61 (2H, d, J=9Hz), 7.64
} })	}	(1H, s), 9, 98 (1H, s), 13.0
} }			})	6 (2H, s)
11			O. Ha. Dh	 	FA:535
443	4-Acnh-PhCH2NH	4-F-Ph	3-Me-Ph		FA:547
444	4-AcNH-PhCH₂NH	2-MeO-Ph	3-Me-Ph	 	
445	4-AcNH-PhCH2NH	2,3-diMe-Ph	3-Me-Ph	<u> </u>	FA:545
446	4-MeO-Ph (Me) NCO	3,5-dif-Ph	Ph	<u> </u>	FA:540
447	4-[BocHNC (NBoc) NH]-	3,5-diF-Ph	3-Me-Ph	-	FA:753
1 ''' 1	. PhCH ₂ NH		1	1-110-	F4.552
448	4-[H,NC (NH) NH]-PhCH2NH	3,5-diF-Ph		HGI	FA:553
449	4-MeSO2NH-PhCH2 (MeSO2) N	3,5-diF-Ph	3-Me-Ph	1-	FA:667
773	A MOODING ALLENS				

表 30

Ex	R'-Z'	R^2-Z^2	DAT
24	CH	N	FA:342, N1:7.04-7.38(11H, m), 8.00(1H, m), 8.34(1H, m), 13.13-13.19(2H, m)
25	N	CH	FA: 342, N1: 7. 04-7. 34 (10H, m), 7. 66 (1H, m), 8. 41 (1H, m), 8. 91 (1H, m), 13. 21 (m, 2H)

Ex	R²	R⁵		DAT
114	Н	Me	-	FA:355
115	Н	PhGH ₂	Į	FA: 429
116	Me	Et ₂ N	HCI	FA:426

表 32

Ex	R 16	DAT	Ex	R 16	DAT
53	. Ac	FA: 455	71	BuSO ₂	FA: 611
54	PhC0	FA: 579	72	Me ₂ NSO ₂	FA: 585
55	2-F ₃ C-PhC0	FA: 715	73	PhCH ₂ SO ₂	FA: 679
56	W.s.o	FA: 973	74	PhSO ₂	FA: 651
57	2-Me-PhC0	FA: 607	75	3-Me-PhSO ₂	FA: 679
58	PhCH ₂ CO	FA: 607	76	2, 4-di-F-PhSO ₂	FA: 723
59	2PyC0	FA: 581	77	4-MeO-PhSO,	FA: 711
60	MeOCH ₂ CO	FA: 515	. 78	3-0 ₂ N-PhSO ₂	FA: 741
61	4-F-PhC0	FA: 615	91	cHex-CH ₂	FA: 563
62	iPrC0	FA: 511	92	· PhCH ₂	FA: 551
63	3-C1-PhC0	FA: 647	93	2-(Et0) PhCH ₂	FA: 639
64	3-Me0-Ph00	FA: 639	94	3-BrPhCH ₂	FA: 709
65	Et0C0C0	FA: 571	95	3-MePhCH ₂	FA: 579
66	4-CN-PhCO	FA: 629	96	3-NO ₂ PhCH ₂	FA: 641
67	iPrSO ₂	FA: 583	97	4-(MeOCO) PhCH ₂	FA: 667
68	4-F-Ph\$0,	FA: 687	98	2, 4-diF-PhCH ₂	FA: 623 ·
69	2-F ₃ C-PhSO,	FA: 787	99	. 3-PyCH ₂	FA: 553
70	MeSO₂	FA: 527	100	4-1M-CH ₂	FA: 530

表 33

EX	R ¹	R ²	·. A	В	Sa	DAT
101	Н	Н	2-Me-1, 3-Thiaz-4-yl	Ph	-	FA:362, N1:2.30(3H, s),
						7.64 (1H, s), 13.04(2H, s)
102	Н	MeO	Ph	Ph		FA: 371 .
103	Н	Н	4-Py	Ph	-	FA: 342
104	Me	Н	Ph	Ph		FA: 355
105	Н	Н	· 3–Py	Ph	_	FA:342, N1:8. 24(1H, dd, 卢
			-			1. 5, 4. 4), 8. 42 (1H, d, 上
						1.5), 13.18 (2H, s)
106	Н	Н	Ph	3-[Mo-4-y1 (CH ₂) ₂ 0] Ph		FA: 470
107	Н	Н	Ph	3-Me ₂ NPh		FA: 384
108	Н	Н	Ph	3- Me (PhCH2) NCH2 Ph	HC1	FA: 474
109	Н	Н	3, 5-d i F-Ph	Py-3-y1	HCI	FA:378, N1:7. 79-7. 81 (2H,
						m), 8.74(1H, d, 上1.5),
						13.28 (2H, s)
112	Н	Н	5-H0-Py-3-y1	3,5-diF-Ph	_	FA: 394
113	Н	ОН	3-MePh	3-MePh	_	FA: 383

产业上利用的可能性

本发明化合物具有 GnRH 受体拮抗作用,因此具有降低性激素的作用,对性

激素依赖性疾病,如前列腺癌、乳腺癌、子宫内膜异位和子宫肌瘤等的治疗有效 (Proc, Natl, Acad, Sci, USA,87,7100-7140(1990))。

以下通过测定对 ¹²⁵I-D-Trp⁶-LHRH 与人的 GnRH 受体结合的抑制率,评价本发明药物及化合物的 GnRH 受体拮抗作用。

- 1、GnRH 受体拮抗作用试验
- (1)表达人 GnRH 受体的 CHO(中国仓鼠卵巢)细胞的制备

人 GnRH 受体表达与通常的蛋白表达法(第9章, Current Protocols in Molecular Bioligy: F.M.Ausubel 等编, Greene Publishing Associates and Wiley-Interscience, 9.0.1-9.9.6(1987); S.S.Kaker 等, Biol. Biophys. Res. Commun, 189, 289-295(1992), R.Grosse 等, Mol. Endocrinol, 11, 1305-1318(1997)同样进行。首先,培养 CHO 细胞(培养基: α MEM, 10%FCS, 含抗生素一抗真菌剂),加入导入了人 GnRH 受体基因(序列编号: 1)的表达载体和转染用试剂 FuGENE6(Boehringer Mannbeim 公司制),反应 24 小时进行转染,得到稳定表达人 GnRH 受体(序列编号: 2, S.S.Kaker 等, Biol. Biophys, Res, Commun, 189,289-295(1992)的 CHO 细胞,用 PCR 法确认能表达目标受体。

(2)含人 GnRH 受体的 CHO 细胞膜部位的制备

在如上所述(1)制备的表达人 GnRH 受体的 CHO 细胞(3×10^8 个)中加磷酸缓冲生理盐水(PBS)后回收,以 $100\times G$ 离心 3 分钟。细胞沉淀中加匀浆缓冲液(10nM NaHCO₃, 5mM 的 EDTA(乙二胺四乙酸),pH7.5)100ml,用 Polytron 匀浆器匀浆。以 $400\times G$ 离心 15 分钟,其上清液用超速离心管以 $100,000\times G$ 离心 1 小时,得膜部位的沉淀物。该沉淀物悬浮于贮存用缓冲液(25mM Tris-Hcl,1mM EDTA,10ug/ml 蛋白酶抑制剂(Pefabloc SC (默克公司制)),1ug/ml 胃酶抑制剂 A,20ug/ml 亮抑蛋白酶肽,0.03%叠氮化钠,pH7.5)60ml,分装,于-80 C保存,每次使用时先解冻。

(3)对 125I-D-Trp6-LHRH 结合的抑制率的测定

上述(2)制备的含人 GnRH 受体的 CHO 细抱膜部位以测定用缓冲液 (HBSS(Hanks 平衡盐溶液), 20mM HEPES, 0.1%BSA(牛血清白蛋白), 100ug/ml 杆菌肽, pH7.4)稀释成 20ug/ml, 分装于试管中, 每管 148ul。再添加溶于 DMSO 的不同浓度的供试化合物 2ul 和 0.1nM 的 ¹²⁵I-D-Trp⁶-LHRH(50ul)(序列编号: 3), 开始反应。另外,为测定最大结合量准备加有 DMSO(2ul)的反应液代替供试化合物,为测定非特异性结合量准备加有 100umLHRH(2ul)(序列编号: 4)的反应液代替试化合物。这些反应液在 4℃温育 3 小时。温育后,经已用 0.5%聚乙烯亚胺处

理的 Whatman 玻璃漏斗(GF/B)吸滤反应液,使反应停止。滤纸上残留的放射活性用计数器测定。然后用下式: PMB=(SB-NSB)/(TB-NSB)×100(式中,TB为最大结合放射活性,SB为加供试化合物时的放射活性,NSB为非特异性结合放射活性)算出不同浓度的供试化合物的结合抑制率(%, PMB),标绘不同浓度供试化合物的 PMB,求出 PMB为 50%时的供试化合物浓度(IC $_{50}$ 值)。试验结果确认,表 6 的化合物 No.178a,实施例 40,43,79,83,87,132,146、147,169,209,224,239,241,245,251,256,258,290,293,400,402,421,422 或 423 的化合物具有 10^{-10} M $\sim 10^{-9}$ M 数量级的结合抑制活性。特别是确认具有二氢苯并咪唑—2—亚基取代的丙—1,3—二酮骨架的本发明化合物具有和目前销售的肽类拮抗剂西曲瑞克同等的 GnRH 受体结合抑制活性。

2、对 GnRH 诱发血中睾酮上升反应的拮抗作用的试验

化合物在体内对促性腺素释放激素(GnRH)的拮抗作用,通过大鼠给予 GnRH 后对诱发的血中睾酮上升反应的抑制作用进行评价。

实施使用 9 周龄的 Wistar 系雄性大鼠(日本 SLC)。经大鼠臀部的肌肉给予 GnRH(多肽研究所,LHRH(人)(序列编号: 4)(30ng / 大鼠))。供试化合物溶解或 悬浮于 6.7%DMSO、6.7%PEG400、6.7%吐温 80 的水溶液,于给予 GnRH 之前 3 小时经口给予 30mg/kg,于 GnRH 给予后 1 小时采血,用特异性的放射免疫测定 法(RIA 试剂盒)测定血清中的睾酮浓度。

设不给予 GnRH 的大鼠血清中睾酮浓度为 Tn,不给供试化合物而给予溶剂的大鼠血清中的睾酮浓度为 Tc,给予供试化合物的大鼠血清中的睾酮浓度为 Ts,按 IA=(Tc-Ts) / (Tc-Tn)×200 计算供试化合物的抑制活性(%)(IA)(下降至 Tn 的场合,认为 IA=100%)。试验的结果表明表 5 的化合物 No.63a,表 6 的化合物 No.167a,169a,173a,实施例的 40,212,241,244,245,251,256,260,274,275,288,289,290,291,293,296,297,298,301,302,303,311 或 421 的化合物抑制活性大于 50%。

通过以上试验 1 及 2, 说明本发明化合物具有强力的 GnRH 受体拮抗作用,证明本发明化合物能降低激素,对于性激素依赖性疾病,如前列腺癌,乳腺癌,子宫内膜异位和子宫肌瘤的治疗是有用的(C.Huggins & C.V. Hodges, Cancer Res, 1, 293-297(1941); L.Bokser 等, Proc, Natl, Acad, Sci, USA87,7100-7104(1990))。

序列表

```
<110> 山之内制药株式会社
```

<120>丙烷衍生物

<130> GnRH

<140>

<141>

<150> JP2000-204425

<151> 2000-07-05

<150> JP2001-153372

<151> 2001-05-23

<160> 4

<170> Patentln Ver. 2.1

<210> 1

<211> 987

<212> DNA

<213> 智人 (Homo sapiens)

<300>

<303> 生物学与生物物理研究通讯

<304> 189

<306> 289-295

<307> 1992

<400> 1

 tggaacatta cagtccaatg gtatgctgga gagttactct gcaaagttct cagttatcta 360 aagctttct ccatgtatge cccagectte atgatggtgg tgatcagect ggaccgetec 420 ctggctatca egaggecect agetttgaaa ageaacagea aagteggaca gtecatggtt 480 ggeetggeet ggatceteag tagtgtettt geaggaceae agttatacat etteaggatg 540 atteatetag eagacagete tggacagaca aaagtttet eteaatggt aacacaetge 600 agtttteae aatggtggea teaageattt tataaetttt teaeetteag etgeetette 660 ateateete tttteateat getgatetge aatgeaaaaa teatetteae eetgacaegg 720 gteetteate aggaceeea egaactacaa etgaateagt eeaagaacaa tataccaaga 780 geaeggetga agaetetaaa aatgaeggtt geatttgeea etteattae tgtetgetgg 840 aeteeetaet atgteetagg aatttggtat tggtttgate etgaaatgtt aaacaggttg 900 teagaeceag taaateaett ettettete tttgeettt taaaeceatg ettgateea 960 ettatetatg gatatttte tetgtga

<210> 2

<211> 328

<212> PRT

<213> 智人 (Homo sapiens)

<400> 2

Met Ala Asn Ser Ala Ser Pro Glu Gln Asn Gln Asn His Cys Ser Ala 1 5 10 15

lle Asn Asn Ser lle Pro Leu Met Gln Gly Asn Leu Pro Thr Leu Thr 20 25 30

Leu Ser Gly Lys 11e Arg Val Thr Val Thr Phe Phe Leu Phe Leu Leu 35 40 45

Ser Ala Thr Phe Asn Ala Ser Phe Leu Leu Lys Leu Gln Lys Trp Thr
50 55 60

Gln Lys Lys Glu Lys Gly Lys Leu Ser Arg Met Lys Leu Leu Leu 65 70 75 80

Lys His Leu Thr Leu Ala Asn Leu Leu Glu Thr Leu lle Val Met Pro. 85 90 95

- Leu Asp Gly Met Trp Asn lie Thr Val Gin Trp Tyr Ala Gly Glu Leu 100 105 110
- Leu Cys Lys Val Leu Ser Tyr Leu Lys Leu Phe Ser Met Tyr Ala Pro 115 120 125
- Ala Phe Met Met Val Val IIe Ser Leu Asp Arg Ser Leu Ala IIe Thr 130 135 140
- Arg Pro Leu Ala Leu Lys Ser Asn Ser Lys Val Gly Gln Ser Met Val 145 150 155 160
- Gly Leu Ala Trp lle Leu Ser Ser Val Phe Ala Gly Pro Gln Leu Tyr 165 170 175
- lle Phe Arg Met IIe His Leu Ala Asp Ser Ser Gly Gln Thr Lys Val 180 185 190
- Phe Ser Gln Cys Val Thr His Cys Ser Phe Ser Gln Trp Trp His Gln
 195 200 205
- Ala Phe Tyr Asn Phe Phe Thr Phe Ser Cys Leu Phe IIe IIe Pro Leu 210 215 220
- Phe lle Met Leu lle Cys Asn Ala Lys lle lle Phe Thr Leu Thr Arg 225 230 235 240
- Val Leu His Gln Asp Pro His Glu Leu Gln Leu Asn Gln Ser Lys Asn 245 250 255
- Asn lle Pro Arg Ala Arg Leu Lys Thr Leu Lys Met Thr Val Ala Phe 260 265 270
- Ala Thr Ser Phe Thr Val Cys Trp Thr Pro Tyr Tyr Val Leu Gly lle 275 280 285
- Trp Tyr Trp Phe Asp Pro Glu Met Leu Asn Arg Leu Ser Asp Pro Val 290 295 300

```
Asn His Phe Phe Phe Leu Phe Ala Phe Leu Asn Pro Cys Phe Asp Pro 305 310 315 320
```

Leu lle Tyr Gly Tyr Phe Ser Leu 325

<210> 3

<211> 10

<212> PRT

〈213〉人工序列

<220>

〈223〉人工序列的说明: Tyr 以 125I 标记, 并以 D 型 Trp 置换

<400> 3

Glu His Trp Ser Tyr Trp Leu Arg Pro Gly
1 5 10

<210> 4

(211) 10

<212> PRT

<213> 智人(Homo sapiens)

<400> 4

Glu His Trp Ser Tyr Gly Leu Arg Pro Gly
1 5 10