

Artificial Intelligence

Lecture 4. Data Acquisition & Preprocessing I. Know your data

Spring 2022

Prof. Jonghoon Chun, Ph.D.

E-mail : jchun@mju.ac.kr Lecture Note : http://lms.mju.ac.kr

Data Acquisition & Preprocessing

Data (Know your data)

Data Acquisition

Data Preprocessing

Data Acquisition & Preprocessing

Data (Know your data)

Data Acquisition

Data Preprocessing

Know your data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary

DATA OBJECTS AND ATTRIBUTE TYPES

Where to look for data?

- Kaggle datasets (https://www.kaggle.com/datasets)
- Datahub.io (https://datahub.io/)
- Data.gov (https://www.data.gov/)
- Datausa.io (https://datausa.io/)
- European data portal
 (https://www.europeandataportal.eu/en)

Where to look for data?

- 공공데이터 개방
 - 공공데이터포털(data.go.kr), 지자체別 데이터개방(서울시 등)
 - 빅데이터 플랫폼 및 센터(bigdata-map.kr)
 - 인공지능 학습 데이터(aihub.or.kr)
 - 언론진흥재단(bigkinds.or.kr)
- Internet
 - 블로그와 SNS
 - Facebook, Twitter
 - 전자상거래 데이터
 - 네이버 웹 API (developers.naver.com/products/intro/plan/)
 - 금융정보
 - 주식, 환율, 금값
 - 이미지 데이터
 - 위키피디아

Record

- Relational database tuples(records)
- Data matrix, e.g., numerical matrix, crosstabs
- Document data: text documents: term-frequency vector
- Transaction data

	team	coach	pla y	ball	score	game	n Wi.	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures

Useful Links:

- Bibliography
- Other Useful Web sites
 - ACM SIGKDD
 - <u>KDnuggets</u>
 - The Data Mine

Knowledge Discovery and Data Mining Bibliography

(Gets updated frequently, so visit often!)

- Books
- General Data Mining

Book References in Data Mining and Knowledge Discovery

Usama Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy uthurasamy, "Advances in Knowledge Discovery and Data Mining", AAAI Press/the MIT Press, 1996.

J. Ross Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers, 1993. Michael Berry and Gordon Linoff, "Data Mining Techniques (For Marketing, Sales, and Customer Support), John Wiley & Sons, 1997.

General Data Mining

Usama Fayyad, "Mining Databases: Towards Algorithms for Knowledge Discovery", Bulletin of the IEEE Computer Society Technical Committee on data Engineering, vol. 21, no. 1, March 1998.

Christopher Matheus, Philip Chan, and Gregory Piatetsky-Shapiro, "Systems for knowledge Discovery in databases", IEEE Transactions on Knowledge and Data Engineering, 5(6):903-913, December 1993.

Data Engineering Lab

Ordered

- Video data: sequence of images
- Temporal data: time-series
- Sequential Data: transaction sequences
- Genetic sequence data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Sequence of transactions

Genetic sequence data

- Spatial, image and multimedia
 - Spatial data: maps
 - Image data
 - Video data

Spatio-temporal data: Average Monthly Temperature of land and ocean

Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - sales database: customers, store, items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes.

Attributes

Attribute (or dimensions, features, variables)

- a data field, representing a characteristic or feature of a data object.
- E.g., customer _ID, name, address

Attribute Types

- Nominal: e.g., ID numbers, eye color, zip codes
- Ordinal: e.g., rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}
- Numeric: quantitative
 - Interval-scaled: e.g., calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio-scaled: e.g., length, time, counts

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

Quantity (integer or real-valued)

Interval

- Measured on a scale of equal-sized units
- Values have order
 - E.g., temperature in C°or F°, calendar dates
- No true zero-point

Ratio

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floatingpoint variables

BASIC STATISTICAL DESCRIPTIONS OF DATA

Basic Statistical Descriptions of Data

Motivation

- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

- Mean (algebraic measure) (sample vs. population): $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $\mu = \frac{\sum x_i}{N}$ Note: n is sample size and N is population size.
 - Weighted arithmetic mean:
 - Trimmed mean: chopping extreme values

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula: $mean mode = 3 \times (mean median)$

Measuring the Central Tendency

Median:

- Middle value if odd number of values, or average of the middle two values otherwise
- Estimated by interpolation (for grouped data):

$$median = L_1 + (\frac{n/2 - (\sum freq)l}{freq_{median}}) width$$

where L_1 is the lower boundary of the median interval, n is the number of values in the entire data set, $(\Sigma freq)/$ is the sum of the frequencies of all of the intervals that are lower than the median interval, $freq_{median}$ is the frequency of the median interval, and *width* is the width of the median interval.

Age	Frequency
1-5	20
6-10	35
11-16	150
16-20	300
21-50	1500
51-80	700
81-110	44

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q_1 , median, Q_3 , max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right] \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

- **Standard deviation** s (or σ) is the square root of variance s^2 (or σ^2)

Boxplot Analysis

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Visualization of Data Dispersion: 3-D Boxplots

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Quantile plot: each value x_i is paired with f_i indicating that approximately $100 \times f_i\%$ of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately 100 X f_i % of the data are below or equal to the value x_i

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data

- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated Data

Data Engineering Lab

MEASURING DATA SIMILARITY AND DISSIMILARITY

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data matrix
 - n data points with p dimensions
 - Two modes

Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix
- Single mode

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the M nominal states
 - E.g., For {red, yellow, blue, green}, yellow = 0100, blue = 0010

Proximity Measure for Binary Attributes

A contingency table for binary data
 Object j

Distance measure for <u>symmetric binary variables*</u>:

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

Distance measure for <u>asymmetric binary variables</u>:

$$d(i,j) = \frac{r+s}{q+r+s}$$

Proximity Measure for Binary Attributes

Jaccard coefficient (similarity measure for asymmetric binary variables):

$$sim(i, j) = \frac{q}{q+r+s} = 1 - d(i, j).$$

■ Example: gender는 symmetric, 나머지는 asymmetric. Y=Yes,
N=Negative, P=Positive. 유사한 질병을 가질 확률이 있는 사람은
누구와 누구인가?

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)

- Properties
 - d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positive definiteness)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: Manhattan (city block, L₁ norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \to \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Example: Minkowski Distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x 3	2	0
<u>x</u> 4	4	5

Dissimilarity Matrices

L	x1	x2	х3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean (L2)

L2	x1	x2	х3	x 4
x 1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x 1	x2	х3	x4
x 1	0			
x2	3	0		
х3	2	5	0	
x4	3	1	5	0

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, ..., M_f\}$
 - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by $z_{\it if} = \frac{r_{\it if}-1}{M_{\it f}-1}$
 - compute the dissimilarity using methods for interval-scaled variables

Example

Sample data

Object test-l Identifier (nominal)		test-2 (ordinal)	test-3 (numeric)		
1	code A	excellent 3	45		
2	code B	fair 1	22		
3	code C	good 2	64		
4	code A	excellent 3	28		

- Rank = {fair:1, good:2, excellent:3}
- Normalization rank 1 \rightarrow 0, rank 2 \rightarrow 0.5, rank 3 \rightarrow 1
- Then use Euclidean distance to measure the dissimilarity

$$\begin{bmatrix} 0 \\ 1.0 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 1.0 & 0.5 & 0 \end{bmatrix}$$

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- f is binary or nominal:
 - $d_{ii}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ii}^{(f)} = 1$ otherwise
- f is numeric: use the normalized distance
- f is ordinal

 - Compute ranks r_{if} and Treat z_{if} as interval-scaled $z_{if} = \frac{r_{if}-1}{M_f-1}$

Cosine Similarity

 A document can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...

Cosine Similarity

- Vector Space Model
 - 문서(document)가 벡터?
 - 단어 하나 하나가 벡터의 차원이 됨!
- Assumption
 - 가정 1: 단어는 단 3개만 존재한다고 가정(AOA, 블랙핑크, 트와이스)
 - 가정 2: Database에 단 3건의 문서만 저장

Vector Space Model

Vector Space Model

- Similarity를 pair-wise로 구해보자
 - D1과 D2의 유사도는? D1 vector와 D2 vector의 유사도는?
 - D1과 D3의 유사도는?
 D1 vector와 D3 vector의 유사도는?
 - D2와 DS3의 유사도는? D2 vector와 D3 vector의 유사도는?
 - 방향성이 없으므로 N(N-1)/2 의 유사도를 측정
- 벡터간의 유사도를 측정
 - 2개의 벡터간에 벌어진 각도를 측정 → cosine measure
 - x y = x₁y₁ + x₂ y₂ (2차원인 경우)
 - X Y = X₁Y₁ + X₂ Y₂ + X₃Y₃ (3차원인 경우 → AOA, 블랙핑크, 트와이스)
 - x y = x₁y₁ + x₂ y₂ + + x_ny_n (n차원인 경우) = ||x|| ||y|| cosθ

$$x \bullet y = ||x|| ||y|| \cos\theta$$

$$\cos\theta = (x \bullet y) / ||x|| ||y||$$

Cosine Similarity

• Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$$

where \cdot indicates vector dot product, $||d||$: the length of vector d

- Two vectors are orthogonal => the value of Cosine is 0 (하나도 유사하지 않은 경우)
- Two vectors are identical => value of Cosine is 1 (완전히 동일한 경우)
- Ex: Find the similarity between documents 1 and 2.

$$d_{1} = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

$$d_{2} = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

$$d_{1} \bullet d_{2} = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25$$

$$||d_{1}|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_{2}|| = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)^{0.5} = (17)^{0.5} = 4.12$$

$$\cos(d_{1}, d_{2}) = 0.94$$

Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
- Many types of data sets, e.g., numerical, text, graph, Web, image.
- Gain insight into the data by:
 - Basic statistical data description: central tendency, dispersion, graphical displays
 - Measure data similarity
- Above steps are the beginning of data preprocessing.
- Many methods have been developed but still an active area of research.

END

