1. Decir en qué puntos son continuas las siguientes funciones y justificar.

(a)
$$f(x) = \begin{cases} \frac{x+1}{x-1}, & x < 0; \\ x \operatorname{sen}(x), & x \ge 0. \end{cases}$$
 (b) $f(x) = \begin{cases} \frac{\operatorname{sen}(5x)}{x}, & x < 0; \\ 5, & x = 0; \\ \frac{\sqrt{1+10x}-1}{x}, & x > 0. \end{cases}$

(c)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1}, & x \neq -1; \\ 6, & x = -1. \end{cases}$$
 (d) $f(x) = [x]$ (e) $f(x) = [1/x]$

- 2. (a) Probar que si $|f(x)| \le |x|$, entonces f es continua en 0.
 - (b) Probar que si $|f(x)| \le |g(x)|$, g es continua en 0 y g(0) = 0, entonces f es continua en 0.
- 3. Determinar para cuáles de las siguientes funciones f existe una función continua F, definida en toda la recta real, que extienda a f.

(a)
$$f(x) = \frac{x^4 - 1}{x^2 - 1}$$
 (b) $f(x) = \frac{|x|}{x}$ (c) $f(x) = x \operatorname{sen}(1/x)$

- **4.** (a) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ continua. Probar que si $f|_{\mathbb{Q}} \equiv 0$, entonces $f \equiv 0$.
 - (b) Probar que si $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ son continuas y coinciden en \mathbb{Q} , entonces son iguales.
- **5.** (a) Mostrar que si f es continua en [a,b], entonces existe una extensión continua g definida en todo \mathbb{R} .
 - (b) Mostrar que la conclusión del punto anterior es falsa si cambiamos [a, b] por (a, b).
 - (c) Supongamos que f es continua en [a,b] y que g es continua en [b,c]. Probar que si f(b)=g(b), entonces la función $h:[a,c]\to\mathbb{R}$ es continua en [a,c], donde h está definida por

$$h(x) = \begin{cases} f(x), & x \in [a, b] \\ g(x), & x \in [b, c]. \end{cases}$$

- **6.** Para cada una de las siguientes funciones decir si están acotadas superior o inferiormente y si alcanzan sus valores máximos o mínimos.
 - (a) $f(x) = x^2$ en: (i) (-1, 1); (ii) \mathbb{R} ; (iii) $[0, \infty)$; (iv) (-1, 2].
 - (b) f(x) = [x] en [0, a].
 - (c) $f(x) = 2 + \sin(x)$ en: (i) $[k\pi, (k+1)\pi]$, k entero; (ii) $(k\pi, (k+1)\pi)$, k entero.
- 7. Sea $p(x) = x^5 + x + 1$.
 - (a) Demostrar que $\lim_{x\to\infty} p(x) = \infty$ y $\lim_{x\to-\infty} p(x) = -\infty$ (Sugerencia: comparar p con la función x^5).
 - (b) Probar que p es survectiva sobre \mathbb{R} .
 - (c) Hallar un número natural n tal que p(x) = 0 para algún $x \in [-n, n]$.
- 8. Sea f una función continua y supongamos que f(x) es siempre racional. ¿Qué se puede decir de f?

- **9.** (a) Probar que si f y g son dos funciones continuas en [a, b] tales que f(a) > g(a) y f(b) < g(b), entonces existe un x_0 en (a, b) tal que $f(x_0) = g(x_0)$.
 - (b) Mostrar que la ecuación sen(x) = x + 1, tiene al menos una solución. Graficar las funciones sen(x) y x + 1 en el mismo sistema de ejes coordenados.
 - (c) Mostrar que existe un $x \in [0, \pi/2]$ tal que $x^3 \operatorname{sen}^7(x) = 2$
 - (d) Mostrar que en el plano, un círculo de radio 1 y un cuadrado de lado $\sqrt{2}$ pueden intersecarse en una región cuya área sea exactamente 1.337...
- 10. Decidir si las siguientes afirmaciones son verdaderas o falsas, y justificar.
 - (a) Si f es continua y acotada en \mathbb{R} entonces f alcanza un mínimo.
 - (b) Si |f| es continua en a entonces entonces f es continua en a.
 - (c) Existe un número que es exactamente una unidad mayor que su cubo.
- **11.** Sea $f:[0,1] \longrightarrow [0,1]$. Mostrar que si f es continua, entonces tiene un punto fijo, esto es, existe un x_0 tal que $f(x_0) = x_0$. Interpretar gráficamente.
- 12. Un monje tibetano sale del monasterio a las 7:00 am y toma su camino cotidiano a la cima de la montaña, donde llega a las 7:00 pm. A la mañana siguiente baja de la cima a las 7:00 am, siguiendo el mismo camino, arriba al monasterio a las 7:00 pm. Con el teorema del valor intermedio, demuestre que hay un punto del camino por el cual el monje pasa exactamente a la misma hora de los dos días.
- 13. Sea f definida y continua en todo \mathbb{R} . Supongamos que f es siempre positiva y que $\lim_{x\to\pm\infty} f(x) = 0$. Probar que existe $x_0 \in \mathbb{R}$ tal que $f(x_0) \geq f(x)$ para todo $x \in \mathbb{R}$.
- 14. (a) Definir una función que no sea continua en ningún punto, pero que |f| sea continua en todo punto.
 - (b) Definir una función que sea discontinua en $1, \frac{1}{2}, \frac{1}{3}, \dots$, pero continua en todos los demás puntos.
 - (c) Definir una función que sea discontinua en $1, \frac{1}{2}, \frac{1}{3}, \dots$ y en 0, pero continua en todos los demás puntos.
- **15.** (a) ¿Cuántas funciones f continuas hay tales que $f(x)^2 = x^2$ para todo x en \mathbb{R} ?
 - (b) ¿Cuál es la respuesta a la pregunta anterior si no exigimos continuidad?
 - (c) Si f y g son continuas con $g(x) \neq 0$ para todo x y si $f^2 = g^2$, probar que f = g o f = -g.
 - (d) ¿Qué sucede si no suponemos g nunca nula en el inciso anterior?