CMPE 315: Principles of VLSI Design Project Cover Page

Project Title	<u>:</u>	Cache Design: Final Submission
Name	<u>:</u>	Brendan Cain & Scott Boyd
Section	:	<u>Friday @ 1:00pm</u>
Date Submitted	:	12/8/2020
TA / Grader Use O	only:	
Late Submission Ded	uction (20% per	· day late):
Other Deductions:		
Final Lab Grade:		
Comments to student	:	

Design Description:

Cache Design:

The Cache is made up of x8 cache blocks. Each cache block is made up of x4 bytes of cache. The cache block relies on the statemachine and state register to send the correct address, data, and signals at the correct time. The inputs and outputs to the cache memory are shown below

Inputs: Data_in[7:0], Addr[7:0], read_enable, write_enable, verify, reset Outputs Data Out[7:0], hit miss

The cache memory design is fully able to verify that any of the 8 blocks in the cache is able to be written or read from provided there is a valid address in the address input. This is done via the hit or miss entity which compares the input tag and the tag that is currently saved in the block's tag along with the currently saved valid bit.

The cache memory entity assumes that if a read or write operation is occurring, then the address that it is occurring at is a hit. This is why before any operation occurs the hit or miss output from the cache entity must be latched by the state register/state machine. Since the verify input, which triggers the hit miss output, is tied to the start input coming from the cpu, it is able to return whether a hit or miss will occur before any state machine timer takes place.

The reset input to the cache memory comes directly from the cpu and is tied to the reset input to each cache block. In the cache block entity, there is a validate entity which allows the writing to the valid bit on 2 occasions: One, a write operation occurs and thus the valid and tag are updated (valid being 1), or two, the entire cache is being reset and thus every valid bit will be set to 0.

Cache Design Diagrams

Block Diagram:

Design Hierarchy:

- Top.vhd
 - A. Cache.vhd
 - I. x8 cache block.vhd
 - 1. x1 cache byte.vhd
 - o x4 cache cell.vhd
 - i. D latch.vhd
 - ii. tx.vhd
 - iii. inv.vhd
 - 2. x1 tag.vhd
 - o x3 cache cell.vhd
 - 3. x1 cache_cell.vhd (for valid)
 - 4. x1 hit miss.vhd
 - o x3 xnor2.vhd
 - o x1 and4.vhd
 - 5. x1 validate.vhd
 - o x1 and2.vhd
 - o x1 xor.vhd
 - o x1 inv.vhd
 - 6. x2 decod 1to4.vhd
 - o x4 and 3.vhd
 - o x2 inv.vhd
 - 7. x2 mux8_4to1.vhd
 - o x8 mux 4to1.vhd
 - II. x1mux8 8to1.vhd
 - 1. x8 mux 8to1.vhd
 - III. x3 decod 1to8.vhd
 - B. Statemachine.vhd
 - I. X2 counter.vhd
 - II. X4 and 2.vhd
 - C. State register.vhd
 - I. X5 inv.vhd
 - II. X1 and 3.vhd
 - III. X4 and 5.vhd
 - IV. X1 or5.vhd
 - D. Busy calc.vhd
 - I. X5 and 2.vhd
 - II. X7 and 5.vhd
 - III. X3 or2.vhd
 - IV. X2 or3.vhd

Layouts:

Below is a layout of the and2 schematic

Below is a layout of the and3 schematic

Below is a layout of the and4 schematic

Below is a layout of the and5 schematic

Below is a layout of the or2 schematic

Below is a layout of the or3 schematic

Below is a layout of the or8 schematic

Below is a layout of the xnor2 schematic

Below is a layout of the inverter schematic

Below is a layout of the dlatch schematic

Below is a layout of the decoder 1to4 schematic

Below is a layout of the decoder 1to8 schematic

Below is a layout of the tx schematic

Below is a layout of the Dlatch schematic

Below is a layout of the cache cell schematic

Below is a layout of the hit miss schematic

Below is a layout of the state register schematic

Below is a layout of the cache tag schematic

Below is a layout of the mux4to1 schematic

Area Of Major Components:

Component Name	Area of Component (µm^2)
Dlatch	174.96
Cache Cell	991.44
Cache Byte	9,958.545
Decode 1 to 4	2,950.425
Decode 1 to 8	7,740.9
Mux 4 to 1	1,155.06
Tag	3,318.52
Validate	621.81
Hit Miss	88.92
State Register	6,498.1125
Busy Calculator	2,520.54

Running LVS:

LVS was run for the following entities: dlatch, cache_cell, cache_byte, decod_1to4, decod_1to8, mux_4to1, tag, validate, and hit_miss. Every netlist matched appropriately. Their runs are in the "LVS runs" folder of the final submission zip file.

Conclusion:

Overall, this project was very successful at teaching the vlsi design process. A lot was learned regarding cadence, vhdl, schematic & layout creation, and extraction/verification testing. LVS was performed at every level including the gate level logic to ensure that the device was working properly. However a lot of time was spent trying to figure out issues with the dlatch and the xnor schematic and layout. First, a dflipflop was made and that had to be changed and then for the xnor schematic a xor schematic was made instead and so that had to be changed. As a result of this and lack of time we were unable to finish all layouts.

Work Breakup:

Brendan			
Date	Worked On	Started / In Progress / Completed	
10/28/2020	Took Notes on Specs	Completed	
	Took Notes on Deliverables	Completed	
	Completed Report Outline/Skeleton	Completed	
10/30/2020	Finished Taking Notes on Deliverables	Completed	
11/9/2020	Cache Cell	Completed	
	Created a Make File for Compiling, Elaborating, and Simulating a single entity	Completed	
11/10/2020	Simulated Cache Cell	Completed	
	Created and Simulated Cache Byte	Completed	
11/11/2020	finalized cache block Design	Completed	
11/11/2020	Created cache block vhdl	Completed	
11/12/2020	tested and verified cache_block	completed	
11/12/2020	designed full 8block cache	Completed	
11/12/2020	created and tested: reset & hitmiss calculator	Completed	
11/12/2020	created a decoder for enable symbols	Completed	
11/12/2020	tested and verified decoder	Completed	
11/12/2020	added multiplexers to cache	completed	
11/13/2020	Created Schematic graphics for report	completed	
11/13/2020	simulated cache entity with 2 different test benches	completed	
11/13/2020	verified cache entity with ta	completed	
11/13/2020	put simulation, code, and observations into report completed		
12/1/2020	fixed unnoticed vhdl error (or4 entity)	completed	
12/1/2020	Imported Cache VHDL code into Cadence	completed	
12/1/2020	created schematics for all low level gates	completed	
12/1/2020	created schematics for cache_cell, tag, and cache_byte	completed	

	created schematics for multiplexers and	
12/2/2020	decoders	completed
12/6/2020	Created cache block schematic	completed
12/6/2020	created cache memory schematic (for cache.vhdl)	completed
12/7/2020	created layout and extracted views for all lower level gates	completed
12/8/2020	having issues with xnor2 and dlatch layout, going to office hours	completed
12/8/2020	created cache_cell layout	completed
12/8/2020	cache_byte layout complete	completed
12/8/2020	finish all decoder layouts	completed
12/8/2020	finished hit miss calculation layout	completed
12/8/2020	finished mux_4to1 layout	completed
12/8/2020	finished validate layout	completed
12/8/2020	verified every completed layout with LVS	completed
12/8/2020	started 8 bit multiplexers	started
12/8/2020	started cache_block layout	started
12/8/2020	started top cache layout	started

Scott				
Date	Worked On	Started / In Progress / Completed		
10/28/2020	Researched Statemachine	Completed		
11/4/2020	Reaseached and went of Off hours	Completed		
11/10/2020	Started Statemachine Design	Completed		
11/11/2020	Worked on state machine	Completed		
11/12/2020	Attempted to finish state machine	Completed		
12/4/2020	Finished State Machine Code	Completed		
12/7/2020	Completed State Register Layout	Completed		
12/8/2020	Completed Busy Calculator Layout	Completed		
12/8/2020	Completed Documentation for the project	Completed		