Intro ML ML. 5. Probabilistic graphical models

Objectives and schedule

Introduce key concepts about PGMs. Conditional independence. Representations: directed and undirected. Hints on computations and inference. Influence diagrams. Generative models, Gibbs sampling.

Contents

- Bayesian networks
- Conditional Independence
- Markov random fields
- Inference
- Influence diagrams

Bishop 8, Goodfellow et al 16

Lab

- Several lasb around probabilistic graphical models
 - Handling PGMs
 - Structuring PGMs

• Case. Risk factors for cardiovascular diseases by Chem Camacho

PGMs. Motivation

Motivation

- Simple way to visualize structure of probabilistic models
- Designing and motivating new models
- Understanding properties like conditional independence
- Complex computations viewed through simple graphical manipulations
- Explainable and interpretable
- Classification, generation.
- Deep belief nets in deep learning

Concept

$$p(\mathbf{x}) = \prod_{i} p(\mathbf{x}_{i} \mid Pa_{\mathcal{G}}(\mathbf{x}_{i}))$$

$$p(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}) = p(\mathbf{a})p(\mathbf{b} \mid \mathbf{a})p(\mathbf{c} \mid \mathbf{a}, \mathbf{b})p(\mathbf{d} \mid \mathbf{b})p(\mathbf{e} \mid \mathbf{c})$$

$$\tilde{p}(\mathbf{x}) = \Pi_{\mathcal{C} \in \mathcal{G}} \phi(\mathcal{C})$$

$$p(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d},\mathbf{e},\mathbf{f}) \quad \frac{1}{Z} \overset{\circ}{\phi_{\mathbf{a},\mathbf{b}}}(\mathbf{a},\mathbf{b}) \phi_{\mathbf{b},\mathbf{c}}(\mathbf{b},\mathbf{c}) \phi_{\mathbf{a},\mathbf{d}}(\overset{\circ}{\mathbf{a}},\overset{\circ}{\mathbf{d}}) \phi_{\mathbf{b},\mathbf{e}}(\mathbf{b},\overset{\circ}{\mathbf{e}}) \phi_{\mathbf{e},\mathbf{f}}(\mathbf{e},\mathbf{f})$$

Bayesian networks. Directed, Acyclic

Markov fields. Undirected

Probabilistic graphical models. Directed Bayesian networks

Directed PGMs

As basic tools for qualitative modelling of uncertainty use probabilistic influence diagrams a.k.a. causal networks, Bayesian networks, Belief networks,.... See the excellent

http://en.wikipedia.org/wiki/Bayesian network

They are **influence diagrams** with chance nodes only. Qualitatively they describe a probabilistic model through

$$P(A1, A2,..., An) = P(A1 \mid ant(A1))....P(An \mid ant (An))$$

where ant (Ai) are the antecessors of node Ai.

In what follows we see several PIDs and we need to indicate the entailed probabilistic model

Probabilistic diagrams with two nodes

Before moving foreward, write the entailed probabilistic model

Probabilistic diagrams with two nodes

Model for P(A,B)

First case, A and B are independent. We move from second to third, and viceversa, via Bayes formula

Probabilistic diagrams with three nodes

Before moving foreward, write the entailed probabilistic model

Probabilistic diagrams with three nodes

Model P(A,B,C)

First case, independence. Third case, A and C are conditionally independent given B.

Read http://en.wikipedia.org/wiki/Conditional_independence

The hidden info

P(A,B,C,D,E) = P(A)P(B|A)P(C|A)P(D|B,C)P(E|C)

The hidden info

	a	\overline{a}
b	0.8	0.2

	a	\overline{a}
c	0.2	0.05

	b, c	\overline{b}, c	b, \overline{c}	$\overline{b}, \overline{c}$
d	0.8	8.0	0.8	0.05

P(A,B,C,D,E) = P(A)P(B|A)P(C|A)P(D|B,C)P(E|C)

The hidden info

DataLab CSIC

15

Conditional Independence I

A and B conditional independent given C if

$$p(A|B,C)=p(A|C)$$
or
$$p(A,B|C)=p(A|C) p(B|C)$$

$$a \perp \!\!\!\perp b \mid c$$

Conditional Independence II

Tail to tail

Head to head

D-separation

In a DAG, let A, B and C be three different subsets of nodes

Are A and B c.i. given C?

Consider all trajectories between A and B. We say that a trajectory is blocked if it includes a node such that either

- All arrows on pathe find a head-to-tail or tail-to-tail at node and node in C, or
- All arrows find head-to-head at node, and is not in C (neither its descendants)

If all paths between A and B are blocked, then A and B are d-separated by C and are c.i. given C

Probabilistic diagrams. Asia

An example referring to lung diseases

A breathing condition (dyspnea) may be due to tuberculosis, lung cancer or bronchitis, none of them or several of them. A recent visit to Asia, increases the chances of tuberculosis, whereas smoking is a risk factor for lung cancer and bronchitis. The results of an X-ray may not discriminate between cancer and tuberculosis, as neither the presence or absence of dyspnea does.

An example referring to lung diseases:

A breathing condition (dyspnea) may be due to tuberculosis, lung cancer or bronchitis, none of them or several of them. A recent visit to Asia, increases the chances of tuberculosis, whereas smoking is a risk factor for lung cancer and bronchitis. The results of an X-ray may not discriminate between cancer and tuberculosis, as neither the presence or absence of dyspnea does.

An example referring to lung diseases

A breathing condition (dyspnea) may be due to tuberculosis, lung cancer or bronchitis, none of them or several of them. A recent visit to Asia, increases the chances of tuberculosis, whereas smoking is a risk factor for lung cancer and bronchitis. The results of an X-ray may not discriminate between cancer and tuberculosis, as neither the presence or absence of dyspnea does.

Provide the model

DataLab CSIC

22

P(A,T,S,L,B,O,X,D) = P(A)P(T|A)P(S)P(L|S)P(B|S)P(0|T,L)P(X|O)P(D|O,B)

Hypertension

Build the probabilistic model

Runway excursions at airports

Build the probabilistic model

National security

Build the probabilistic model

Statistical models as PGMs. Inference and Prediction

Statistical models as PGMs. Decision Analysis

Statistical models as PGMs. Hierarchical models

National aviation safety plan

$$\begin{cases} \begin{cases} n_k = H_k \vartheta_k + z_k, & z_k \sim N(0, \Sigma_k) \\ \vartheta_k = J_k \vartheta_{i-1} + \xi_k, & \xi_k \sim N(0, S_k) \\ \vartheta_0 \sim N(\eta_0, S_0) \end{cases} \\ x_k | \lambda_k, n_k \sim Po(\lambda_k n_k), \quad \lambda_k = \exp(u_k) \\ \begin{cases} u_k = F_k \theta_k + v_k, & v_k \sim N(0, V_k) \\ \theta_k = G_k \theta_{k-1} + w_k, & w_k \sim N(0, W_k) \\ \theta_0 \sim N(m_0, C_0), \end{cases} \end{cases}$$

Assessments. Discrete case

- 1 node
- 2 nodes

M nodes

$$\rho(x|\mu) = \prod_{K=1}^{K} \mu_{K} \longrightarrow K^{-1}$$

$$\rho(x_{1},x_{1}|\mu) = \prod_{K=1}^{K} \mu_{K} \lim_{K \to \infty} K^{2} - 1$$

$$\rho(x_{1},x_{1}) = \rho(x_{2}|x_{1}) \rho(x_{1}) + \dots + K^{2} - 1$$

$$\rho(x_{1},x_{1}) = \rho(x_{1}) \rho(x_{1}) + \dots + (K^{-1})$$

$$\rho(x_{1},x_{1}) = \rho(x_{1}) \rho(x_{1}) \longrightarrow 2(K-1)$$

$$\rho(x_{1},x_{1}) = \rho(x_{1}) \rho(x_{1}) \longrightarrow K^{M} - 1$$

$$\rho(x_{1},x_{1}) = \rho(x_{1}) \rho(x_{1})$$

$$\rho($$

Probabilistic graphical models. Undirected Markov random fields

Conditional independence

A, B are conditionally independent given C

If all paths between nodes in A and B are blocked by a node in C

Factorization properties

If nodes x_i and x_j not connected by arc

$$p(x_i,x_j|x_{\setminus\{i,j\}})=p(x_i|x_{\setminus\{i,j\}})p(x_j|x_{\setminus\{i,j\}}).$$

Cliques. Subgraphs with every pair of nodes linked by arc

Maximal cliques. No node can be added without losing the clique property

Joint distribution

For a clique C and the variables in it we use potentials

$$p(x) = rac{1}{Z} \prod_C \Psi_C(x_C), \qquad Z = \sum_x \prod_C \Psi_C(x_C)$$

Potential functions do not have probabilistic interpretation, in general

From directed to indirected

Moralization of graph. Moral graph

Inference in graphical models

General problem

Assuming DAG (arcs and distributions at nodes):

- 1. Initialisation
- 2. Absorption of evidence
- 3. Global propagation of evidence
- 4. Hypothesising and propagating single pieces of evidence
- 5. Planning
- 6. Influential findings

Core ideas

Model $p(\alpha, \tau, \xi, \varepsilon, \delta, \lambda, \beta, \sigma)$ expressed as $p(\alpha)p(\tau \mid \alpha)p(\xi \mid \varepsilon)p(\varepsilon \mid \tau, \lambda)p(\delta \mid \varepsilon, \beta)p(\lambda \mid \sigma)p(\beta \mid \sigma)p(\sigma)$

Typical (probabilistic) query $p(x \mid a, d)$

Trivially p(x, a, d)/p(a, d) and can be computed by brute force..... Idea 1. Take advantage of structure

$$p(a) \sum_{\tau} p(\tau \mid a) \left[\sum_{\varepsilon} p(x \mid \varepsilon) \left[\sum_{\lambda} p(\varepsilon \mid \tau, \lambda) \left[\sum_{\beta} p(d \mid \varepsilon, \beta) \left[\sum_{\sigma} p(\lambda \mid \sigma) p(\beta \mid \sigma) p(\sigma) \right] \right] \right] \right]$$

Core ideas

Idea 2. Full calculation not needed until the end

 $p(\alpha)p(\tau \mid \alpha)p(\xi \mid \varepsilon)p(\varepsilon \mid \tau, \lambda)p(\delta \mid \varepsilon, \beta)p(\lambda \mid \sigma)p(\beta \mid \sigma)p(\sigma)$ Rewritten (initially) as

 $\psi(\alpha)\psi(\tau, \alpha)\psi(\xi, \varepsilon)\psi(\varepsilon, \tau, \lambda)\psi(\delta, \varepsilon, \beta)\psi(\lambda, \sigma)\psi(\beta, \sigma)\psi(\sigma)$

Idea 3. Track computations through moral graph Idea 4. Actually track it through triangulated mg

 $p \propto \psi(\alpha, \tau)\psi(\tau, \lambda, \varepsilon)\psi(\lambda, \varepsilon, \beta)\psi(\lambda, \beta, \sigma)\psi(\varepsilon, \beta, \delta)\psi(\varepsilon, \xi)$

Core ideas

Idea 6. Represent joint in terms of marginals on cliques

$$\frac{p(\alpha, \tau)p(\tau, \lambda, \varepsilon)p(\lambda, \varepsilon, \beta)p(\lambda, \beta, \sigma)p(\varepsilon, \beta, \delta)p(\varepsilon, \xi)}{p(\tau)p(\lambda, \varepsilon)p(\lambda, \beta)p(\varepsilon, \beta)p(\varepsilon)}$$

Idea 7. Store clique marginals

Algos

Sum-product

Max-product

Junction tree

• • • • •

Simulation based

Sampling from a belief network. Generative model

$$p(\mathbf{x}) = \prod_{i} p(\mathbf{x}_{i} | Pa_{\mathcal{G}}(\mathbf{x}_{i}))$$

Generic Gibbs sampler

Sample from
$$X_{S}|X_{S}|=(X_{1},...,X_{p},...,X_{p})$$

Thirtielize $X_{1}^{\circ},...,X_{p}^{\circ}$, $c=1$

Therate

Sample $X_{1}^{\circ},...,X_{p}^{\circ}$, $c=1$

Sample $X_{1}^{\circ},...,X_{p}^{\circ}$, $c=1$

Sample $X_{1}^{\circ},...,X_{p}^{\circ}$, $c=1$

Sample $X_{2}^{\circ},...,X_{p}^{\circ}$, $c=1$

Gibbs sampler for belief nets

Conditionals

$$P(X_j = x_j | X_{-j} = x_{-j}) = \alpha P(X_j = x_j | \Pi_{X_j}(x_{-j})) \prod_{Y_j \in S_j} P(Y_j = y_j | \Pi_{Y_j}(x_j))$$

Back to example

	a	\overline{a}	
b	0.8	0.2	

	a	\overline{a}
c	0.2	0.05

	b, c	\overline{b}, c	b, \overline{c}	$\overline{b}, \overline{c}$
d	0.8	8.0	0.8	0.05

	c	\overline{c}
е	8.0	0.6

$$P(c|\overline{d},e) = \frac{P(c,\overline{d},e)}{P(\overline{d},e)}$$

$$\begin{split} P(c,\overline{d},e) &= \underset{\alpha,\beta}{\sum} P(\alpha,\beta,c,\overline{d},e) = \underset{\alpha,\beta}{\sum} P(\alpha)P(\beta|\alpha)P(c|\alpha)P(\overline{d}|\beta,c)P(e|c) \\ &= P(a)P(b|a)P(c|a)P(\overline{d}|b,c)P(e|c) + P(a)P(\overline{b}|a)P(c|a)P(\overline{d}|\overline{b},c)P(e|c) + \\ &\quad P(\overline{a})P(b|\overline{a})P(c|\overline{a})P(\overline{d}|b,c)P(e|c) + P(\overline{a})P(\overline{b}|\overline{a})P(c|\overline{a})P(\overline{d}|\overline{b},c)P(e|c) \\ &= 0.0118 \end{split}$$

 $P(\overline{d},e) = \sum_{\alpha,\beta,\gamma} P(\alpha,\beta,\gamma,\overline{d},e) = 0.410$

$$P(A, B, C, D, E) = P(A)P(B|A)P(C|A)P(D|B, C)P(E|C)$$

$$P(c|\overline{d},e)=0.0287$$

Back to example

```
\begin{array}{lcl} P(A|B,C,\overline{d},e) & = & P(A|x_{-A}) = \alpha_1 P(A) P(B|A) P(C|A) \\ P(B|A,C,\overline{d},e) & = & P(B|x_{-B}) = \alpha_2 P(B|A) P(\overline{d}|B,C) \\ P(C|A,B,\overline{d},e) & = & P(C|x_{-C}) = \alpha_3 P(C|A) P(\overline{d}|B,C) P(e|C) \end{array}
```

```
Selectionar B=b_0,\ C=c_0 arbitrariamente Hacer j=1 Mientras no se juzgue convergencia, Generar A_j=a_j\sim P(A|x_{-A})=\alpha_{1j}P(A)P(b_{j-1}|A)P(c_{j-1}|A) Generar B_j=b_j\sim P(B|x_{-B})=\alpha_{2j}P(B|a_j)P(\overline{d}|B,c_{j-1}) Generar C_j=c_j\sim P(C|x_{-C})=\alpha_{3j}P(C|a_j)P(\overline{d}|b_j,C)P(e|C) Hacer j=j+1 \#\{C_j=c\}
```

Final comments: Influence diagrams

Influence Diagrams

- Tool to structure (and solve) decision making problems
- Graph with nodes and arcs. No cycles
- Three main types of nodes.
 - Chance. Circle
 - Decision. Square
 - Value. Hexagon, Diamond
 - Fourth type of node. Deterministic. Double circle
- Two types of arcs
 - Arcs into decision nodes
 - Arcs into chance and value nodes

Influence Diagrams. Interpretation?

Suppose you're Nags Head mayor. There is a hurricane threat. Would you issue an evacuation order?

Decision under risk

Suppose you're Nags Head mayor. There is a hurricane threat. Would you issue an evacuation order?

You have as info a forecast from the NHC. But the forecast is not perfect...

Decision under risk with imperfect information

... the problem repeated over the hurricane season....

Sequential Decisions.

Additional comments

Learning structure from data: **Structure learning**. Greedy search based on a scoring function based on an information measure Learning node distributions....

Back when deep learning. Deep belief nets

GeNle

https://www.bayesfusion.com/influence-diagrams/

https://download.bayesfusion.com/files.html?category=Academia

Back when reinforcement learning

See you next week

introml@icmat.es

Stuff at

https://datalab-icmat.github.io/courses stats.html