Problem Set 2

February 1, 2024

1 Part 1: Simulation with Metropolis-Hastings and Comparison

Task: Simulate a normal (Gaussian) distribution using the Metropolis-Hastings algorithm, targeting a mean (μ) of 0 and variance (σ^2) of 1.

Approach: Implement the Metropolis-Hastings algorithm within the framework provided by the Elvis_simple.jl file.

• Acceptance Criterion: Define the acceptance criterion based on the ratio of the target distribution probabilities and the proposal distribution probabilities.

The Metropolis-Hastings algorithm performs a sampling from a target distribution π by generating a Markov chain with a stationary distribution of π .

My solution is based on a proposal distribution with mean 0 and variance 1.5, as seen below. I run the solution 10,000 times.

1.1 Defining an initial proposal distribution

The code in Julia below defines the proposal distribution based on a normal distribution with mean 0 and variance 2.

```
[]: using Distributions
using Random
using DataFrames

function metropolis_hastings(n_samples::Int)
    # Initialize the chain
    chain = zeros(n_samples)
    current = randn()  # Start at a random place

# Target distribution
    target = Normal(0, 1.5)

for i in 2:n_samples
    proposal = current + randn()  # Add some noise

# Calculate acceptance probability (as the ratio, given in the_
instructions)
    p_accept = min(1, pdf(target, proposal) / pdf(target, current))
```

	x	
	Float64	
1	0.0	
2	2.24555	
3	2.20137	
4	1.17754	
5	-0.137905	
6	-0.137905	
7	0.583942	
8	1.55178	
9	2.22483	
10	3.44804	
11	3.74749	
12	5.29991	
13	4.4817	
14	4.01859	
15	4.01859	
16	4.01859	
17	3.21273	
18	1.7521	
19	0.883975	
20	-0.0485275	
21	0.433413	
22	-0.085052	
23	-0.216319	
24	-0.216319	

I plot the proposal distribution below to see how "normal" it looks. I use TidierPlots, the amazing Julia implementation of R's ggplot2. I also overlay a standard normal distribution (randn()) to compare the two, where the standard normal distribution is the darker distribution overlaid in the histogram below.

```
standard_normal = DataFrame(normal = randn(100000))

ggplot(samples_df, aes(x=:x)) +
    geom_histogram(binwidth=0.1) +
    geom_histogram(data = standard_normal, aes(x = :normal)) +
    labs(title="Metropolis-Hastings", x="x", y="Frequency") +
    theme_minimal()
```


ggplot options

height: 400

x: x

title: Metropolis-Hastings

width: 600
y: Frequency

geom_histogram data: inherits from plot x: not specified

geom_histogram

```
data: A DataFrame (100000 rows, 1 columns) x: normal
```

The data looks pretty normal, however, it can noted that my sample has wider tails, probably due to the greater variance. Below, I also computed descriptive statistics using TidierData, the Julia implementation of R's dplyr.

	mean	std
	Float64	Float64
1	-0.00779182	1.49748

The mean is approximately 0, and the standard deviation is approximately 1.5, which are close to the target distribution's π defined mean and standard deviation, so the Metropolis-Hastings algorithm is working well in this regard. A Q-Q plot is presented below to see how well it fits a normal distribution.

```
[]: using StatsPlots

qqplot(Normal(), samples, title="Normal Q-Q Plot", legend=false, color=:blue, □
□lw=2, grid=false, size=(400, 400))
```

Normal Q-Q Plot

The data has heavier tails than a normal distribution, but it is still a good approximation. As mentioned the heavier tails probably come from the variance of 1.5 in the target distribution π .

```
[]: using HypothesisTests
   ks_test = ExactOneSampleKSTest(samples_df.x, Normal(0, 1.5))
   pvalue(ks_test)
```

Warning: This test is inaccurate with ties

@ HypothesisTests

C:\Users\user\.julia\packages\HypothesisTests\r322N\src\kolmogorov_smirnov.j1:68

0.07336724692448748

The test, however, ultimately rejects the possibility that samples_df is normally distributed with

mean 0 and variance 1.5. So, the sampling is not perfect. The efficiency of the Metropolis-Hastings is smaller than the sampling process of the randn() function, given that the proposal distribution fails the Smirnov-Kolmogorov test.

1.2 Enhancing the Metropolis-Hastings algorithm

I enhance my algorithm by fine-tuning the proposal distribution, but also by varying the initial number of the Markov chain, as well as the scale. By making the algorithm a function, I can see how it performs with different parameters and compare how it might do better or worse in the Smilnov-Kolmogorov test.

The function metro_hastings takes the following parameters:

- n: the number of samples to generate
- π : the target distribution, with μ and σ^2 as parameters (mean and variance)
- Init: the initial value of the Markov chain
- scale: the scale of the proposal distribution

The code below shows how the function works. I also plot the results of the function with different parameters to see how it performs.

```
[]: function metropolis_hastings(n_samples::Int, target::Distribution, init::Real,__
      ⇔scale::Real)
         # Initialize the chain
         chain = zeros(n_samples)
         chain[1] = init
         n_accept = 0
         for i in 2:n_samples
             proposal = chain[i-1] + rand(Normal(0, scale)) # Add some noise
             # Calculate acceptance probability
             p accept = min(1, pdf(target, proposal) / pdf(target, chain[i-1]))
             # Accept or reject
             if rand() < p_accept</pre>
                 chain[i] = proposal
                 n_accept += 1
             else
                 chain[i] = chain[i-1]
             end
             # Adapt the scale of the proposal distribution
             if i % 100 == 0 && i < n_samples/2</pre>
                 if n_accept / i < 0.2
                     scale *= 0.9
                 elseif n_accept / i > 0.4
                     scale *= 1.1
                 end
```

```
end
end
return chain
end
```

metropolis_hastings (generic function with 2 methods)

Below, I set the initial value of the Markov chain to 0, and the scale of the proposal distribution to 1. I run the function 1,000,000 times, with a target distribution of π with mean 1 and variance 2.

```
[]: new_samples = metropolis_hastings(1000000, Normal(1, 2), 0.0, 1.0)
    1000000-element Vector{Float64}:
      0.0
      1.3398092759012632
      1.1894000985767126
      1.3001204626839074
     -0.5781329214849151
     -0.5702501368014415
     -0.5600397725807035
     -0.17314332965298074
     -0.17314332965298074
     -0.9921124872005007
      0.5421147263083261
      0.5421147263083261
      0.5421147263083261
      0.5421147263083261
     -1.6123943948972208
     -1.6123943948972208
     -2.2443627912739212
```

4.906671179041968 4.906671179041968

A narrative proof of the algorithm's performance is that when I tried to run the code at the beginning of this Jupyter notebook with 1,000,000 iterations, the kernel crashed. So, I had to run the code with 100,000 iterations. This is much better.

```
[]: # Define the sample sizes
sample_sizes = [1000, 5000, 10000, 50000, 100000]

# Define the target distribution

target = Normal(0, 1)

# Define the initial value and the scale of the proposal distribution

init = 0.0
```

```
scale = 1.0
# Initialize an empty Dict to store the DataFrames
dfs = Dict()
⇒samples in a separate DataFrame
for n_samples in sample_sizes
   samples = metropolis_hastings(n_samples, target, init, scale)
   dfs["samples_$n_samples"] = DataFrame(samples = samples)
end
# Run the Metropolis-Hastings function for each sample size and create a QQ plot
for n_samples in sample_sizes
   samples = metropolis_hastings(n_samples, target, init, scale)
   p = qqplot(Normal(0,1), samples, title = "QQ plot for $n_samples samples", __
 ⇔legend = false)
   display(p)
end
```


This is a much better result than the previous one. In terms of the Smirnov-Kolmogorov test, I perform the analysis below.

[]: | # Perform the Smirnov-Kolmogorov test for each sample size

```
for n_samples in sample_sizes
    samples = dfs["samples_$n_samples"].samples
    ks_test = ExactOneSampleKSTest(samples, target)
    p_value = pvalue(ks_test)
    println("Sample size: $n_samples, p-value: $p_value")
end
Sample size: 1000, p-value: 0.15464286515578862
Sample size: 5000, p-value: 0.0023610555858638396
Sample size: 10000, p-value: 1.458157170760516e-17
Sample size: 50000, p-value: 5.149515593524394e-9
Sample size: 100000, p-value: 0.017501710791874975
 Warning: This test is inaccurate with ties
 @ HypothesisTests
C:\Users\user\.julia\packages\HypothesisTests\r322N\src\kolmogorov_smirnov.jl:68
 Warning: This test is inaccurate with ties
 @ HypothesisTests
C:\Users\user\.julia\packages\HypothesisTests\r322N\src\kolmogorov_smirnov.jl:68
 Warning: This test is inaccurate with ties
 @ HypothesisTests
C:\Users\user\.julia\packages\HypothesisTests\r322N\src\kolmogorov_smirnov.jl:68
 Warning: This test is inaccurate with ties
 @ HypothesisTests
C:\Users\user\.julia\packages\HypothesisTests\r322N\src\kolmogorov_smirnov.j1:68
 Warning: This test is inaccurate with ties
 @ HypothesisTests
C:\Users\user\.julia\packages\HypothesisTests\r322N\src\kolmogorov smirnov.jl:68
```

There are now cases where I can definitely not reject null, that is, my approximation may allow to say the data is normally distributed with mean 0 and variance 1.

2 Part II: Expanding the ELVIS script

Please see the problem_set_2_part_2_elvis.jl file for the expanded ELVIS script.