SUPPORT VECTOR CLASSIFIER

Dr. Brian Mc Ginley

GENERALISED LINEAR MODELS

Recall

$$y = mx + c$$

- is the equation of a line.
- Basically, if that equation is satisfied for a point (x, y) then the point falls on the line. We can also describe a line as

$$w_2x_2 + w_1x_1 + w_0 = 0$$

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{w}_{0} = 0$$

• is also an equation of a line, a vector equation of a line. Whatever way you want to think about it, it described a line - is linear.

JUNIOR CERT GEOMETRY

- The following is the plot of the line 4x 3y 2 = 0
- Clearly from the picture (2, 2) falls on the line and 4(2) 3(2) 2 = 0 so the equation is satisfied showing this.
- Look at the image, the point (2, -2) is clearly to the right of the line. Try the equation and the result is 4(2) 3(-2) 2 = 12. A positive number.
- Now, the point (-4, 2) is clearly to the left of the line. Equation: 4(-4) 3(2) 2 = -24. A negative number.
- So, whether the calculation of the line is positive or negative will tell us which side of the line it falls on.

LET'S EXTEND THIS

- Take $w = {w_1 \choose w_2}$ and $x = {x_1 \choose x_2}$
- Put it into the equation of the line: $\mathbf{w}^T \mathbf{x} + \mathbf{w}_0 = (w_1 \quad w_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \mathbf{w}_0 = w_0 + w_1 x_1 + w_2 x_2$
- If $w = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$ and $w_0 = -2$
- Then we have $4x_1 3x_2 2$
- Then if we evaluate the sample (2, -2), we find it is positive, so we classify as the positive class. (-4, 2) classifies in the negative class. This expands easily to larger dimensions we just can't visualise past 3!
- The result $w^T x + w_0$ describes a hyperplane in any dimension

HYPERPLANE

Linear classifier has a linear boundary (hyperplane)

$$\mathbf{w}^T \mathbf{x} + w_0$$

• which separates the space into two "half-spaces". In 1D this is simply a threshold

HYPERPLANE

Linear classifier has a linear boundary (hyperplane)

$$\mathbf{w}^T \mathbf{x} + \mathbf{w}_0$$

• which separates the space into two "half-spaces". In 2D this is a line

HYPERPLANE

Linear classifier has a linear boundary (hyperplane)

$$\mathbf{w}^T \mathbf{x} + \mathbf{w}_0$$

• which separates the space into two "half-spaces". In 3D this is a plane

GEOMETRY

- $w^T x = 0$ is a line/hyperplane passing through the origin and is orthogonal to w
- The reason that **w** is orthogonal (perpendicular) to the hyperplane is that the dot product of any 2 vectors can be 0 only if they're orthogonal (90 degrees)
- Dot product review:

$$\boldsymbol{a}.\,\boldsymbol{b} = a_1b_1 + \dots + a_nb_n$$
 $\boldsymbol{a}.\,\boldsymbol{b} = |\boldsymbol{a}||\boldsymbol{b}|\cos\theta$

• $\mathbf{w}^T \mathbf{x} + \mathbf{w}_0 = 0$ shifts the hyperplane by \mathbf{w}_0

$$\mathbf{a}.\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta$$

Recall |a| corresponds to the length (magnitude/modulus) of vector a.

LEARNING LINEAR CLASSIFIERS

- Learning consists in estimating a "good" decision boundary
- We need to find w (direction) and w_0 (location) of the boundary.
- What does "good" mean?
- Is this boundary good? We need a criteria that tell us how to select the parameters use a loss function.

SEPARATING CLASSES

• If we can separate the classes, the problem is linearly separable

SEPARATING CLASSES

- Causes of non-perfect separation:
 - Model is too simple
 - Noise in the inputs (i.e., data attributes)
 - Simple features that do not account for all variations
 - Errors in data targets (mis-labellings)
- Should we make the model complex enough to have perfect separation in the training data?

DECISION BOUNDARIES

- For example, we may select a decision boundary that maximises the margin between both classes
 - Geometrically, this means choosing a boundary that maximizes the distance or margin between the boundary and both classes.
 - This is known as a Maximal Margin/Hard Margin Classifier
 - However, what if the data looks like this?
 - Maximal Margin /Hard Margin Classifiers are very sensitive to outliers and are prone to over-fitting
 - We can consider alternative/relaxed constraints that prevent overfitting.

MARGIN

• Definition: The shortest distance between the observations and the hyperplane is

called the margin

GEOMETRY TO DECISION BOUNDARY

 Recall that the decision boundary is defined by some equation in terms of the predictors. A linear boundary is defined by

$$\mathbf{w}^T \mathbf{x} + w_0 = 0$$

• The non-constant coefficients, **w**, represent a **normal vector**, pointing orthogonally away from the plane

GEOMETRY TO DECISION BOUNDARY

- Now, using some geometry, we can compute the distance between any point to the decision boundary using \mathbf{w} and \mathbf{w}_0 .
- The signed distance from a point $x \in \mathbb{R}^n$ to the decision boundary is

$$D(x) = \frac{\boldsymbol{w}^T \boldsymbol{x} + w_0}{\|\boldsymbol{w}\|}$$

- Note: we need the signed distance because we care which side of the hyperplane the observation is on.
- E.g. in 2D (standard equation for distance from point to line):

$$D(x) = \frac{w_0 + w_1 x_1 + w_2 x_2}{\sqrt{w_1^2 + w_2^2}}$$

MAXIMISING MARGINS

- So our goal. Find a decision boundary that maximises the distance to both classes.
- A hard margin classifier doesn't maximise the distance of all points to the boundary. Instead, it only maximises the distance to the **closest** points.
- The points closest to the decision boundary are called support vectors.
- This means that only support vectors impact position of the hyperplane. Which training samples are used as support vectors is decided by cross-validation
- For any plane, we can always scale the equation

$$\mathbf{w}^T \mathbf{x} + \mathbf{w}_0 = 0$$

• so that the support vectors lie on the planes (depending on their classes)

$$\mathbf{w}^T \mathbf{x} + \mathbf{w}_0 = \pm 1$$

WAXIMISING MARGINS

- For points on planes $\mathbf{w}^T \mathbf{x} + \mathbf{w}_0 = \pm 1$, their distance to the decision boundary is $\pm \frac{1}{\|\mathbf{w}\|}$
- So we can define the **margin** of a decision boundary as the distance to its support vectors: $\mathbf{m} = \frac{2}{\|w\|}$

SUPPORT VECTOR CLASSIFIER: HARD MARGIN

 Finally, formulate our optimization problem: Find a decision boundary that maximises the distance to both classes – i.e. maximises the margin, M, while maintaining zero misclassifications

$$\begin{cases} max_w \frac{2}{\|w\|} \\ such that y^{(i)} (w^T x^{(i)} + x_0) \ge 1, \qquad i = 1, ..., N \end{cases}$$

• Maximising $\frac{2}{\|w\|}$ is the same as minimizing $\|w\|$. However L2 optimisations are more stable. Therefore:

$$\begin{cases} \min_{w} ||w||^{2} \\ such that y^{(i)} (w^{T} x^{(i)} + x_{0}) \ge 1, & i = 1, ..., N \end{cases}$$

- This is a quadratic optimisation problem, has linear constraints and there is a unique solution.
- Calculus again! (Lagrange multipliers if you want to look up the maths)

MARGIN ERROR/TRADE OFF

• Which one of these lines is a better generalisation?

- In the first one the points can be linearly separated but there is a very narrow margin
- But possibly the large margin solution is better, even though one constraint is violated (this is known as a soft margin classifier)

MARGIN ERROR/TRADE OFF

- Maximising the margin is a good idea as long as we know that the underlying classes are linear separable and that the data is noise free.
- If data is noisy, we might be sacrificing generalisation in order to minimise classification error with a very narrow margin
- With every decision boundary, there is a trade-off between maximising margin and minimising the error.

SLACK VARIABLES

- We can add a variable $\xi_i \ge 0$ for each point/sample.
 - For $0 < \xi \le 1$ point is between margin and correct side of hyperplane. This is called a margin violation
 - For $\xi \ge 1$ point is misclassified
 - For $\xi = 0$ point is the correct side of the margin.

SOFT MARGIN SOLUTION

• To relax the constraints, our problem is re framed as

$$\begin{cases} \min_{w} ||w||^{2} + C \sum_{i=1}^{N} \xi_{i} \\ such that y^{(i)} (w^{T} x^{(i)} + x_{0}) \ge 1 - \xi_{i}, & i = 1, ..., N \end{cases}$$

- C is a regularisation parameter: (some notes will use λ instead of C, sklearn uses C)
 - Small C allows constraints to be easily ignored → large margin
 - Large C makes constraints hard to ignore \rightarrow narrow margin
 - $C \rightarrow \infty$ enforces all constraints: hard margin
- This is still a quadratic optimization problem and there is a unique minimum. Note: there is only one parameter, C (that you choose/cross-validation).
- In general, the best C parameter depends on the situation. Experiment (Cross-Validation). One note: larger C takes more computation to train.

EXAMPLE:

Data is linearly separable - but only with a narrow margin

INFINITY C - HARD MARGIN

C = 10 - SOFT WARGIN

PREVIOUS PROBLEM - BREAST CANCER DATA SET

• SVM classifiers often do better on the "hard" problems. If we return to the breast cancer data set:

```
model = make_pipeline(
    StandardScaler(),
    SVC(kernel='linear', C=2.0)
)
model.fit(X_train, y_train)
print(model.score(X_test, y_test))
0.993006993006993
```

• That's better than either GaussianNB or KNeighborsClassifier.

