Vojtěch Samek

Vzdělání

2014–2018 **Střední škola**, *Biskupské gymnázium*, Žďár nad Sázavou, *Úspěšně ukončeno*.

Čtyřletá forma studia

2018-nyní Bakalářský studijní program, fakulta informatiky, Masarykova univerzita, Brno,

Aktuálně studováno.

Aplikovaná informatika, jednooborové prezenční forma studia

Pracovní zkušenosti

Mimooborové

2015–2017 Hlavní vedoucí sportovně talentované mládeže, TJ Žďár nad Sázavou, klub

stolního tenisu, Žďár nad Sázavou.

Organizace a realizace tréningového plánu, vedení mládeže při zdokonalování jejich

sportovních schopností a dovedností

Jazykové schopnosti

Čeština Rodilý mluvčí

Angličtina B2

Ruština A2

Znalosti v oblasti výpočetní techniky

Programovací C, Java, Python, Haskell, C# (základní znalost), Unix shell (základní znalost),

jazyky Assembly language (základní znalost)

Principy vývoje Objektově orientované programování, nízkoúrovňové programování, funkcionální

software programování, paralelní programování

Správa Linux, Windows, Git

software

Zájmy

Pohyb tanec, běh, volejbal, turistika

Hudba bicí souprava, kytara

Cretivní umělecká činnost se dřevem

činnost

Vektorový obrázek

Obrázek je vytvořen programem MetaPost.

Úvod

Stereoskopie[3] je dnes všeobecně známá spíše pod názvem "3D technologie". Toto označení ale není zcela správné, 3D=3 dimenze (slovo dimenze[1] znamená rozměr - původ z latiny). 3D je tedy prostor, který má 3 rozměry. Takový prostor je všude kolem nás. Zatímco stereoskopie je systém, který umožňuje 2D obraz (tzn. plošný, např. na papíře nebo na monitoru) vnímat jako 3D obraz. V principu jde tedy o zrakovou iluzi.

1 Princip zrakového 3D vjemu

Samotné oko vidí 2D obraz. Tím, že oko zplošťuje nebo roztahuje čočku (akomodace[4]), zaostřuje sice na bližší a vzdálenější objekty v prostoru, samotný 3D obraz ale nevytváří.

Podmínkou 3D vnímání prostoru je mít dvě oči, jejichž osy musí směřovat stejným směrem. Tím, že jsou osy v určité vzdálenosti od sebe, každé oko vidí obraz před sebou z jiného úhlu, a tudíž se oba obrazy od sebe mírně liší (viz obr. 1). Mozek si oba obrazy automaticky spojí a umožní nám tak vnímat třetí rozměr, tedy hloubku prostoru.

Obrázek 1: obraz levého oka (nalevo), obraz pravého oka (napravo)

1.1 Konvergence a divergence

Čím blíže je pozorovaný objekt k pozorovateli, tím více se oči pozorovatele přibližují k sobě (mírně šilhají) a zároveň se vše, co je za objektem, rozdvojuje a vzdaluje od sebe. Tento děj se označuje jako konvergence[5]. Naopak, když se pozorovatel dívá na vzdálenější objekt, oči se od sebe oddalují a dvojitě vidí bližší objekty. Tento děj se označuje jako divergence[2]. Optické osy očí (osa určená středem sítnice a středem čočky oka; určuje směr pozorování oka) dosáhnou maximálního oddálení tehdy, když se pozorovatel dívá "do ztracena" (např. na obzor, na nebe). V tomto případě budou osy rovnoběžné. Plasticky (tj. rozeznávat

tvar) je člověk schopen vnímat objekty do vzdálenosti několika metrů, jednotlivé vrstvy prostoru (např. jednotlivé masivy hor) až do stovek metrů.

Pozn.: druhá polovina 1. zápočtového dokumentu je část práce soč, která je mým autorským dílem. Původně byla vypracována pomocí programu Microsoft Word, pro účely tohoto dokumentu jsem ji upravil a vysázel v LATEXu.

Odkazy

- [1] Dimenze-význam slova. 2005. URL: https://slovnik-cizich-slov.abz.cz/web.php/slovo/dimenze.
- [2] Wikipedia-Divergence. 2020. URL: https://en.wikipedia.org/wiki/Divergence_(disambiguation).
- [3] Wikipedia-Stereoscopy. 2020. URL: https://en.wikipedia.org/wiki/ Stereoscopy.
- [4] Wikipedie-Akomodace. 2020. URL: https://cs.wikipedia.org/wiki/Akomodace.
- [5] Wikipedie-Konvergence. 2017. URL: https://cs.wikipedia.org/wiki/Konvergence.

Rejstřík

A Akomodace, 1	P prostor 3D, 1
D Dimenze, 1 Divergence, 1	${\bf S}$ Stereoskopie, 1 ${\bf T}$ technologie 3D, viz Stereoskopie
K Konvergence, 1	Z zrakový vjem 3D, 1