

Lok Nayak Jai Prakash Institute of Technology Chapra, Bihar-841302

Conformal Mapping...

Dr. G.K. Prajapati

LNJPIT, Chapra

ntroduction

TRANSFORMATION

CONFORMAL TRANSFOR-MATION Mathematics-II (Complex Variable)
Lecture Notes
April 25, 2020

by

Dr. G.K.Prajapati

Department of Applied Science and Humanities

LNJPIT, Chapra, Bihar-841302

Dr. G.K. Prajapati

LNJPIT, Chapra

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

TRANSFORMA

CONFORMAL TRANSFOR-MATION **Transformation:** For every point (x,y) in the z-plane, the relation w=f(z) defines a corresponding point (u,v) in the w-plane. We call this **transformation or mapping of** z-plane into w-plane. If a point z_0 maps into the point w_0 , w_0 is also known as the image of z_0 .

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

TRANSFORMA

CONFORMAL TRANSFOR-MATION

Example

Transform the rectangular region ABCD in z-plane bounded by $x=1, x=3; \ y=0$ and y=3. Under the transformation w=z+(2+i).

Solution: Here

$$w = z + (2+i)$$

$$\implies u + iv = x + iy + (2+i)$$

$$= (x+2) + i(y+1)$$

By equating real and imaginary quantities, we have u=x+2 and v=y+1.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

TRANSFORM

CONFORMAL TRANSFOR-MATION

z-plane	w-plane	z-plane	w-plane	
X	u = x + 2	у	v = y + 1	
1	= 1 + 2 = 3	0	= 0 + 1 = 1	
3	= 3 + 2 = 5	3	= 3 + 1 = 4	

Here the lines $x=1, x=3; \ y=0$ and y=1 in the z-plane are transformed onto the line u=3, u=5; v=1 and v=4 in the w-plane. The region ABCD in z-plane is transformed into the region EFGH in w-plane.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

TRANSFORMA

CONFORMAL TRANSFOR-MATION

Example

Transform the curve $x^2 - y^2 = 4$ under the mapping $w = z^2$.

Solution.

$$w = z^{2}$$

$$\implies u + iv = (x + iy)^{2}$$

$$= x^{2} - y^{2} + 2ixy$$

This gives $u = x^2 - y^2$ and v = 2xy.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

TRANSFORMA

CONFORMAL TRANSFOR-MATION

Table of (x, y) and (u, v)

X	2	2.5	3	3.5	4	4.5	5
$y = \pm \sqrt{x^2 - 4}$	0	± 1.5	± 2.2	± 2.9	± 3.5	± 4.1	± 4.6
$u = x^2 - y^2$	4	4	4	4	4	4	4
v = 2xy	0	± 7.5	± 13.2	± 20.3	± 28	± 36.9	± 46

Image of the curve $x^2-y^2=4$ is a straight line, u=4 parallel

Dr. G.K. Prajapati

LNJPIT, Chapra

Dr. G.K. Prajapati

LNJPIT, Chapra

ntroductior

TRANSFORMATIO

CONFORMAL TRANSFOR-MATION Let two curves C_1 , C_2 in the z-plane intersect at the point Z_0 and the corresponding curve C_1^* , C_2^* in the w-plane intersect at $f(z_0)$. If the angle of intersection of the curves at z_0 in z-plane is the same as the angle of intersection of the curves of w-plane at $f(z_0)$ in magnitude and sense, then the transformation is called conformal.

If only the magnitude of the angle is preserved, transformation is **Isogonal**.

Fig. 380. Curves C_1 and C_2 and their respective images C_1^* and C_2^* under a conformal mapping w = f(z)

Dr. G.K. Prajapati

LNJPIT, Chapra

ntroduction

TRANSFORM

CONFORMAL TRANSFOR-MATION

Theorem

If f(z) is analytic, mapping is conformal.

Theorem

Prove that an analytic function f(z) ceases to be conformal at the points where f'(z)=0.

Note 1. The point at which f'(z) = 0 is called a **critical point** of the transformation.

Dr. G.K. Prajapati

LNJPIT, Chapra

ntroduction

CONFORMAL TRANSFOR-MATION

Example

If $u=2x^2+y^2$ and $v=\frac{y^2}{x}$, show that the curves u=constant and v=constant cut orthogonally at all intersections but that the transformation w=u+iv is not conformal.

Solution: For the curve, $2x^2 + y^2 = u$

$$2x^2 + y^2 = constant = c_1(say) \tag{1}$$

Differentiating (1), we get

$$4x + 2y\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = \frac{-2x}{y} = m_1(say)$$
 (2)

Dr. G.K. Prajapati

LNJPIT, Chapra

ntroduction

CONFORMAL TRANSFOR-MATION

TRANSFORMATION

For the curve, $\frac{y^2}{x} = \text{constant} = c_2$ (say),

$$y^2 = c_2 x \tag{3}$$

Differentiating (3), we get

$$2y\frac{dy}{dx} = c_2 \implies \frac{dy}{dx} = \frac{c_2}{2y} = \frac{y^2}{x} \times \frac{1}{2y} = \frac{y}{2x} = m_2(say)$$
 (4)

For orthogonal, from equation (2) and (4), we have

$$m_1 m_2 = \left(\frac{-2x}{y}\right) \left(\frac{y}{2x}\right) = -1$$

Hence, two curves cut orthogonally.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

TRANSFORMATION

However, since

$$\frac{du}{dx}=4x\text{, }\frac{du}{dy}=2y\text{, }\frac{dv}{dx}=-\frac{y^2}{x^2}\text{ and }\frac{dv}{dy}=\frac{2y}{x}$$

CONFORMAL TRANSFOR-MATION The Cauchy-Riemann equations are not satisfied by u and v. Hence, the function u+iv is not analytic. So, the transformation is not conformal.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

TRANSFORMATION

CONFORMAL TRANSFOR-MATION

Example

For the conformal transformation $w=z^2$, show that

- a. The coefficient of magnification at z=2+i is $2\sqrt{5}$.
- b. The angle of rotation at z = 2 + i is $tan^{-1}(0.5)$.
- c. The coefficient of magnification at z = 1 + i is $2\sqrt{2}$.
- d. The angle of rotation at z = 1 + i is $\frac{\pi}{4}$.

Dr. G.K. Prajapati

LNJPIT. Chapra

CONFORMAL TRANSFOR-**MATION**

Solution:

$$w = f(z) = z^{2}$$

$$\implies f'(z) = 2z$$

$$\implies f'(2+i) = 2(2+i) = 4+2i.$$

- (a.) Coefficient of magnification at z=2+i is $f'(2+i) = |4+2i| = 2\sqrt{5}.$
 - **(b)** Angle of rotation at z = 2 + i is

$$ampf'(2+i) = (4+2i) = \tan^{-1}\left(\frac{2}{4}\right) = \tan^{-1}(0.5).$$
 and $f'(1+i) = 2(1+i) = 2+2i$

- (c) The coefficient of magnification at z=1+i is $|f'(1+i)| = |2+2i| = \sqrt{4+4} = 2\sqrt{2}$
- (d) The angle of rotation at z = 1 + i is

$$amp.f'(1+i) = 2 + 2i = tan^{-1} \left(\frac{2}{2}\right) = \frac{\pi}{4}$$

Dr. G.K. Prajapati

LNJPIT, Chapra

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

TRANSFORMATION

CONFORMAL TRANSFOR-MATION Thanks !!!

Dr. G.K. Prajapati

LNJPIT, Chapra