A Big Data problem arising in Design Theory Cyclic $(v; k_1, k_2, k_3; \lambda)$ Difference Families with Three Base Blocks

Ilias S. Kotsireas

CARGO Lab
Wilfrid Laurier University
Waterloo, ON, Canada
April 2025

1 Introduction

Consider the ring $Z_v = \{0, 1, \dots, v-1\}$ of integers modulo a positive integer v. Let k_1, \dots, k_i be positive integers and λ an integer such that

$$\lambda(v-1) = \sum_{i=1}^{t} k_i(k_i - 1), \tag{1}$$

and let X_1, \ldots, X_t be subsets of Z_v such that $|X_i| = k_i$, $i \in \{1, \ldots, t\}$. We say that X_1, \ldots, X_t are **supplementary difference sets** (SDS) with parameters $(v; k_1, \ldots, k_t; \lambda)$, if the multiset of the union of the differences of X_1, \ldots, X_t is equal to λ copies of $\{1, 2, \ldots, v - 1\}$.

2 SDS Examples

1. Let v=7, $k_1=k_2=k_3=2$, $\lambda=1,$ t = 3, producing: (7;2,2,2;1) Construct $X_i\subseteq Z_i$ st:

1.
$$|X_i| = k_i$$

2.
$$\bigcup_{i=1}^{t} \Delta(X_i) = \lambda \cdot \{1, 2, \dots, v-1\}$$

Given the requirements above, we get: $X_1 = \{0,1\}$, $X_2 = \{0,2\}$, $X_3 = \{0,3\}$ For each set X_i , we generate the difference all pairs of elements such that $d = (x - y) \mod v$, $(x, y) \in X_i, x \neq y$. The collection of the union of the multi sets produces: $\{1,6\} \bigcup \{2,5\} \bigcup \{3,4\} = 1$ copy of $\{1,2,\ldots,6\}$

- SDSs with t=1 are called cyclic difference sets, (Baumert 1971)
- SDSs with t=2 are called difference families with two base blocs, (Djokovic 2011)
- SDSs with t=3 are called difference families with three base blocks. v prime $p \equiv 3 \pmod{4}$, (Djokovic, Kotsireas, 2016)
- **2.** Let $v=19, k_1=9, k_2=7, k_3=6, \lambda=8, t=3$, producing: (19;9,7,6;8) By following the same requirements as above, we get:

$$X_1 = \{0, 1, 2, 3, 5, 7, 12, 13, 16\}, X_2 = \{0, 1, 2, 4, 5, 10, 13\}, X_3 = \{0, 1, 4, 6, 8, 13\}$$

There exist $\binom{9}{2}$ combinations of pairs in X_1 alone, computing each difference by hand is rigorous, and instead completed by a program.

The program works slightly differently:

1. Check for the size of all subsets $\sum_{i=1}^{t} |U_i|$

- 2. Track the frequency of each difference of subsets produced $\{1,\ldots,v-1\}$
- 3. If we produce λ frequencies of each element, then we have the sufficient elements to create λ sets of unique elements

Click here to see the full code with comments

OPEN PROBLEMS:

- 1. (167; 83, 76, 73; 107)
- 2. (167; 79, 76, 74, 104)

PAF and PSD invariants

- PAF == Periodic Autocorrelation Function
- **PSD** == Power Spectral Density (DFT)
- For SDS $(v; k_1; k_2; k_3; \lambda)$ with three base blocks, denote a new parameter as:

$$n = k_1 + k_2 + k_3 - \lambda.$$

• Denote the $\{\pm 1\}$ -sequences (of lengths v) associated to X_1, X_2, X_3 by A, B, C

•

$$PSD(A, i) + PSD(B, i) + PSD(C, i) = 4n, \quad i = 1, ..., v - 1$$

 $PAF(A, i) + PAF(B, i) + PAF(C, i) = 3v - 4n, \quad i = 1, i = 1, \dots, v - 1$

3 Computational Results

- D. Z Djokovic, I. S. Korsireas
 A class of cyclic (v; k₁, k₂, k₃; λ) difference families with v ≡ 3(mod 4) a
 prime. Special Matrices 4 (2016), pp. 317 325
- Skew hadamard matrices of orders $4 \cdot 239 = 956$ and $4 \cdot 331 = 1324$
- SDS $(v; k_1, k_2, k_3; \lambda)$ for all parameters set with prime $\mathbf{v} \leq 131$, $\mathbf{v} \equiv 3 \pmod{4}$.

How about SDS with 3 blocks for prime = $3 \mod 3$? Say for v = 23.

- 1. Look for SDS(23;11,10,7;11), n = 11+10+7-11 = 17,
- 2. Three $\{+1, -1\}$ sequences having PAF = $t_v 4n = 3 \cdot 23 4 \cdot 14 = 1$

and PSD = $4n = 4 \cdot 17 = 68$

$$(23 - 2 \cdot 11)^2 + (23 - 2 \cdot 10)^2 + (23 - 2 \cdot 7)^2 = a^2 + b^2 + c^2 = 91$$

and it turns out that the equation $a^2+b^2+c^2=91$ has only one solution (up to sign): $\{1,3,9\}$