

Q2:

Part 2)Reporting Training and validation for 3 Fold Cross-validation for linear kernel with varying C. For other parameters, default values were used, which were as follows:

```
degree=3,
gamma="scale",
coef0=0.0,
shrinking=True,
probability=False,
tol=1e-3,
cache_size=200,
class_weight=None,
verbose=False,
max_iter=-1,
decision_function_shape="ovr",
break_ties=False,
random_state=None,
```

C = 0.01	C = 0.05	C = 0.1	C = 0.5	C = 1.0
Train: 0.8454	Train: 0.8481	Train: 0.8491	Train: 0.8498	Train: 0.8499
Val: 0.8448	Val: 0.8472	Val: 0.8479	Val: 0.8479	Val: 0.8479

The Best linear model is with C = 1.0, which is to be expected, as a higher C value means that the classifier pays more weight on reducing error (increasing error) rather than maximising margin. I suspect that with an even higher C accuracy could be improved even more.

Part 3)Reporting Training and Validtion Accuracy for rbf kernel with varying C and gamma. For other parameter, default values were used, same as Part 2.

γ \ C	0.01	0.05	0.10	0.50	1.00
0.01	Train: 0.7592 Val: 0.7592	Train: 0.8316 Val: 0.8310	Train: 0.8385 Val: 0.8379	Train: 0.8445 Val: 0.8436	Train: 0.8471 Val: 0.8451
0.05	Train: 0.8201 Val: 0.8201	Train: 0.8369 Val: 0.8356	Train: 0.8416 Val: 0.8397	Train: 0.8515 Val: 0.8448	Train: 0.8566 Val: 0.8470
0.10	Train: 0.8204 Val: 0.8195	Train: 0.8359 Val: 0.8342	Train: 0.8421 Val: 0.8390	Train: 0.8586 Val: 0.8464	Train: 0.8669 Val: 0.8472
0.50	Train: 0.7592 Val: 0.7592	Train: 0.7945 Val: 0.7889	Train: 0.8136 Val: 0.8055	Train: 0.8868 Val: 0.8328	Train: 0.9361 Val: 0.8347
1.00	Train: 0.7592	Train: 0.7592	Train: 0.7640	Train: 0.8380	Train: 0.9613

Val: 0.7592 Val: 0.7592 Val: 0.7619 Val: 0.7889 Val: 0.7975 Once again, the best validation accuracy was observed at C = 1.0. For gamma, too small is underfitting, too large is overfitting, though the best performance was observed at gamma = 0.01.

Part 4)

Based on the previous 2 parts, the best performance was for the linear kernel with C = 1.0. Although for C = 0.1, 0.5, 1.0, the validation accuracy did not change, the training accuracy was the highest for C = 1.0, so a linear kernel with C = 1.0 was chosen to train on the entire training set and used for test predictions.

	Linear Kernel With C = 1.0
Accuracy of SVM	Test: 0.8498, Train: 0.8499

