

Benchmarking OLS with non-linear models: A "supervised" investigation on players' compensation exploiting basketball data

20630 - Introduction to Sport Analytics Team 2, Final Presentation

OUR TEAM

OUR GOAL

ADDRESSING THE SALARY CAP

PROBLEMS	SOLUTIONS
Salary Cap Growth	Take salaries expressed as percentage of salary cap each year as our target variable
Soft Cap/Bird Rights	Add a dummy variable for contracts signed using bird rights
Rookie/Maximum Contracts	Add a dummy variable for rookie/maximum contracts

MAX / SUPERMAX CONTRACTS

Look-Ahead-Bias: Using Information that would not be available at the time of analysis ⇒ Could undermine strength of our model (model leakage), but we should also consider:

Proxy for Team Impact

Accounting for:

- Star Players have large impact on team
- Veteran / locker room presence

Eligibility Requirements

Accounting for:

- Seniority
- Individual accomplishments (e.g. MVP, All-NBA)
- Past performance

Proxy for Monetary Impact

Accounting for:

- Personal brand of player
- Marketing impact on team
- Monopsony Rent

Despite the risk, we decided to keep the Dummy Variables for Max & Supermax Contracts.

DATA COLLECTION

Per-Game & **Advanced** statistics 61 Variables 6870 Rows 1202 Players

Statistics

Some Numbers

Source

Every season statistics and **Contract Type** for every player that started playing in Season 1999-00 (up to season 2020-21)

OUR VARIABLES (1/3)

PER-GAME

- 1. **Season** Year the season ended
- **2. Age** -- Player's age on February 1st.
- **3. Tm** -- Team
- **4. Lg** -- League
- **5.** Pos -- Position
- **6. G** -- Games
- 7. **GS** -- Games Started
- **8. MP** -- Minutes Played Per Game
- 9. FG -- Field Goals Per Game
- **10**. **FGA** -- Field Goal Attempts Per Game
- **11. FG**% -- Field Goal Percentage
- **12. 3P** -- 3-Point Field Goals Per Game
- **13. 3PA** -- 3-Point Field Goal Attempts Per Game
- **14. 3P%** -- 3-Point Field Goal Percentage
- **15. 2P** -- 2-Point Field Goals Per Game

- **16. 2PA** -- 2-Point Field Goal Attempts Per Game
- **17. 2P%** -- 2-Point Field Goal Percentage
- **18. eFG%** -- Effective Field Goal Percentage
- **19. FT** -- Free Throws Per Game
- **20. FTA** -- Free Throw Attempts Per Game
- **21. FT%** -- Free Throw Percentage
- 22. ORB -- Offensive Rebounds Per Game
- 23. DRB -- Defensive Rebounds Per Game
- 24. TRB -- Total Rebounds Per Game
- **25. AST** -- Assists Per Game
- 26. STL -- Steals Per Game
- 27. BLK -- Blocks Per Game
- **28. TOV** -- Turnovers Per Game
- **29. PF** -- Personal Fouls Per Game
- **30. PTS** -- Points Per Game

OUR VARIABLES (2/3)

ADVANCED

- 1. PER -- Player Efficiency Rating
- 2. TS% -- True Shooting Percentage
- 3. 3PAr -- 3-Point Attempt Rate
- 4. FTr -- Free Throw Attempt Rate
- 5. ORB% -- Offensive Rebound Percentage
- 6. DRB% -- Defensive Rebound Percentage
- 7. TRB% -- Total Rebound Percentage
- 8. AST% -- Assist Percentage
- 9. STL% -- Steal Percentage

- 10. BLK% -- Block Percentage
- 11. TOV% -- Turnover Percentage
- 12. USG% -- Usage Percentage
- 13. OWS -- Offensive Win Shares
- 14. DWS -- Defensive Win Shares
- 15. WS -- Win Shares
- 16. WS/48 -- Win Shares Per 48 Minutes
- 17. OBPM -- Offensive Box Plus/Minus
- 18. DBPM -- Defensive Box Plus/Minus
- 19. BPM -- Box Plus/Minus
- 20. VORP -- Value Over Replacement Player

OUR VARIABLES (3/3)

CONTRACTS & OTHERS

- 1. PLAYER -- Player's Name
- 2. IMAGE_LINK -- Link of BR image
- 3. US_PLAYER -- Dummy for US Players
- 4. SALARY -- Player's Salary
- 5. SALARY_CAP -- Cap of that season
- 6. SALARY_CAP_% -- Player's Cap %

- 7. CONTRACT_TYPE -- Player's CT
- 8. ROOKIE_CONTRACT -- Dummy for Rookies
- 9. BIRD_RIGHTS -- Dummy for Bird Contracts
- MAXIMUM_CONTRACT -- Dummy for Max Contracts
- 11. SUPER_MAX_CONTRACT -- Dummy for Super-Max Contracts

DIMENSIONALITY REDUCTION: PCA

OUR MODELS

K-Nearest Neighbors

Random Forest

K-NEAREST NEIGHBORS

K = 5

- 2 white neighbors, i.e. $P(white|x_0) = 0.4$
- 3 orange neighbors, i.e. $P(\text{orange}|x_0) = 0.6$

MAJORITY VOTE

ORANGE CLASS

The value of a data point is determined by the data points around it.

RANDOM FOREST

- Bootstrap: Pick at random and with replacement n data points from the original dataset
- Training: Build the decision tree associates with the newly constructed dataset
- Build a Forest: Repeat steps 1 and 2 B times, with B being the number of trees in the forest
- Ensemble: Predict the target of a new data point by combining the different predictions coming from the B trees

GRADIENT BOOSTING

- Random Forest lowers variance by randomly changing inputs to trees
- What if instead of randomly, we focus on areas where we underperform?
- This is the idea of Boosting

- 1. Set $\hat{f}\left(x
 ight)\equiv0$ and $r_{i}=y_{i}^{-1}$
- 2. For $b = 1, 2 \dots, B$ repeat:
 - a. Fit tree to residualweighted training data
 - b. Update \hat{f} with new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \hat{\lambda}^b(x)$$

- c. Update residuals
- 3. Output boosted model:

$$\hat{f}(x) = \sum\limits_{b=1}^{B} \lambda \hat{f}^{b}(x)$$

Three tuning parameters:

- B Number of trees (overfitting possible)
- λ shrinkage parameter (controls learning rate)
- d Number of splits in each tree

Main Idea

Details

Implementation

SUPPORT VECTOR MACHINES

Non-Perfect Separation

 Allow for violations of border through parameter C

Non-Linear Clusters

Using Kernels, we can achieve non-linearity

Multiple Clusters

- We can use OVA & OVO to separate multiple clusters
 - o OVA: One vs. All
 - OVO: One vs. One

TRIAL & ERROR: WHY?

Failure is essential.

The rationale behind ML is exactly based on allowing the model to understand patterns and then trying to adapt for the subsequent step in order to minimize a certain error.

SEPARATION OF WORK

DATA SCRAPING

WEB SCRAPING 1/4

BBR PACKAGE

To scrape each player **Basketball Reference** "slug"

(source: https://github.com/ mbjoseph/bbr)

R CODES

First letter of the Slug

"https://.../players/", initial, "/",slug,".html"

Slug scraped with BBR function "get_player"

WEB SCRAPING 2/4

Scraped Elements:

- Player Name
- Image Link
- Tables (Per-Game st., Advanced st., Cap History)

Salary Cap History

Year	Salary Cap	2021 Dollars
1984-85	\$3,600,000	\$9,083,539
1985-86	\$4,233,000	\$10,479,694
1986-87	\$4,945,000	\$11,812,089
1987-88	\$6,164,000	\$14,143,899
1988-89	\$7,232,000	\$15,832,740
1989-90	\$9,802,000	\$20,360,496
1990-91	\$11,871,000	\$23,652,090
1991-92	\$12,500,000	\$24,172,990
1992-93	\$14,000,000	\$26,300,391
1993-94	\$15,175,000	\$27,784,491
1994-95	\$15,964,000	\$28,431,190
1995-96	\$23,000,000	\$39,797,368
1996-97	\$24,363,000	\$41,185,792
1997-98	\$26,900,000	\$44,787,566
1998-99	\$30,000,000	\$48,871,354
4 30	20 76 1	ED 64 1

BPM VORP

0.9 6.8 19.8

WEB SCRAPING 3/4

Current & Previous Contract Types

CONTRACT:

5 yr(s) / \$201,158,790

AVG. SALARY:

\$40,231,758

GTD AT SIGN: \$201,158,790

SIGNED USING:

Designated Player Veteran Extension/Bird

FREE AGENT: 2022 / UFA

2013-2016

CONTRACT:

4 yr(s) / \$44,000,000

AVG. SALARY: \$11,000,000

SIGNED USING: Rookie Extension/Bird FREE AGENT: 2017 / UFA

2009-2012 ENTRY LEVEL

CONTRACT:

4 yr(s) / \$12,700,262

AVG. SALARY: \$3,175,066

SIGNED USING: Entry Level/Rookie

WEB SCRAPING 4/4

Columns **Season** and **Player** used to merge the two scraped datasets, obtaining a final dataset with **61 variables** and **6870 rows**

season	Player
1999-00	Jeff Foster
1999-00	Steve Francis
1999-00	Kenny Thomas
1999-00	Richard Hamilton
1999-00	Baron Davis
1999-00	Elton Brand
1999-00	Jason Terry
1999-00	Corey Maggette
1999-00	James Posey
1999-00	Shawn Marion
1000 00	Chucky Atkins

Image_Link	US	⊿yer	age		tm	Ig		pos	g		Salary_Ca	Salary_Ca	Sala			
https://www.l	Di 🔻	1		23	IND	NB	Α	С		19	0.0252282	34000000	8			
nicps.//www.	٠,	ż		22	1100	NB	Α	PG		77	0.0888388	34000000	30			
ht season		yer_r	name	8			sign	ed_usir	ng		contract	_type	roo	kie_co	bird_	right maxi
ht 1999-00	Kev	rin Ga	arnett	t			Roo	kie Exte	ension		Standard	d		0		0
ht 1999-00		Dun	can				Entr	y Level			Rookie (Contract		1		0
ht 1999-00		quill	e O'N	leal			Star	ndard			Standard	d		0		0
ht 1999-00	Ras	hard	Lewi	5			Entr	y Level			Rookie (Contract		1		0
ht ht 1999-00		is W	ebber	9			Star	dard			Standard	t		0		0
ht 1999-00	Juw	/an H	lowar	d			Star	ndard			Standard	t		0		0
1999-00	Alo	nzo I	Mourr	ning	3		Star	ndard			Standard	t		0		0
1999-00	Mic	hael	Finle	у			Roo	kie Exte	ension		Standard	t		0		0

OUR RESULTS & CODE DEMO

Model Evaluation

RMSE

$$RMSE = \sqrt{rac{\Sigma_{i=1}^{N}\left(y_{i}-\hat{\mathtt{y}}_{i}
ight)^{2}}{N}}$$

Standard way to measure the error of a model in predicting quantitative data

 \mathbb{R}^2

$$R^2=1-rac{RSS}{TSS}$$

Statistical measure that represents the proportion of the variance of a dependent variable that's explained by the model

Model Summary: OLS

VERSIONS:

- Pure OLS on the entire dataset
- Variable exclusion for correlation reduction
- PCA: 18 out of 56 components explain most of the variability
- Forward, Backward and Bi-directional variable selection: Forward selection based on AIC works the best

The importance of CONTRACT VARIABLES is confirmed in every alternative

Best RMSE:

0.040

Best R²:

0.715

Computational Costs

Train

Model Summary: KNN

VERSIONS:

- Simple KNN (K = 5)
- Resampled (25 bootstrap rep.), cross validated K (K= 9)
- Resampled, centered, scaled, cv'd (K = 9)
- Resampled, centered, scaled, cv'd (K = 11)
- Last 7 seasons, centered, scaled, cv'd (K = 9)

When only looking at the last 7 season, the chosen K drops back to 9

Best RMSE:

0.033

Best R²:

0.808

Computational Costs

Train

Model Summary: RF

VERSIONS:

- Random Forest using full dataset
- Random Forest keeping only players who played more than 20 games in a season
- Random Forest keeping only last 7 seasons (from 2014/2015 to 2020/2021)

Focusing only on the last 7 seasons, BIRD RIGHTS became the most important variable

Best RMSE:

0.035

Best R²:

0.765

Computational Costs

Train

Model Summary: GB

VERSIONS:

- Gradient Boosting, full dataset
- Gradient Boosting keeping only players who played more than 20 games in a season
- Gradient Boosting keeping only last 7 seasons (from 2014/2015 to 2020/2021)

Most increased variable importance: THREE POINT PERCENTAGE (from 0.056 to 0.648, 11x increase)

Best RMSE:

0.036

Best R²:

0.777

Computational Costs

Train

Model Summary: SVM

VERSIONS:

- Linear, **Radial** and Polynomial Kernels
- SVM keeping only players who played more than 20 games in a season
- SVM keeping only last 7 seasons (from 2014/2015 to 2020/2021)

<u>Best Setting:</u> Radial Kernel, keeping only last 7 seasons (from 2014/15 to 2020/21) <u>Tuning:</u> C = 1.5, Sigma = 0.005

Best RMSE:

0.032

Best R²:

0.821

Computational Costs

Train

Models Summary

Model	RMSE	R ²
OLS	0.040	0.715
KNN	0.033	0.808
Random Forest	0.035	0.765
Gradient Boosting	0.036	0.777
SVM	0.032	0.821

Model Summary II

OLS

Need to eliminate Multicollinearity prior to model being usable KNN

Good results, but not quite as interpretable

Random Forest

Decent results, ability to interpret results and what drives performance

Gradient Boosting

Similar to Random Forest, but improved performance SVM

Best results achieved, interpretable results

Results Interpretation

- If we fit well-performing model to only the last 7 seasons (in line with the experts opinion on when the increased focus for 3pt shots happened), we see an increase in model performance
- Most important variables proved to be minutes played, points scored, age as well as our contract variables
- Advanced Metrics do not perform as well as expected, instead, we see a market reliance on standard metrics
- If we compare variable importance for the whole dataset and only the last 7 seasons, we see that the biggest increase in importance is 3pt% (11x), Box Plus-Minus (8x), and Defensive Win Shares (7.9x)

"Agent" Effect: Chandler Parsons

Season	Predicted Salary	True Salary
2014/2015	10.113% (\$6,377,544)	23.309% (\$14,700,000)
2015/2016	11.030% (\$7,720,861)	21.945% (\$15,361,500)

"I end up hiring Dan Fagen, the only reason because he said 'I can get you out of that fourth year.' And no one else could. How he did it is he basically used leverage. He went to the GM, he went to the owners and said 'I'll get you Dwight Howard, but you're not picking up Parsons' contract. So instead of getting paid \$920k I got bumped to a max and we got Dwight Howard. Agents get you paid but Dan Fagan got you overpaid."

— Chandler Parsons, answering on how he got his contract

Behavioral Problems: DeMarcus Cousins

Season	Predicted Salary	True Salary			
2018/2019	17.283% (\$17,605,589)	5.239% (\$5,337,000)			

DeMarcus Cousins Audio Allegedly Threatening to Shoot Baby Mama Before Wedding

ALLEGEDLY
THREATENED TO KILL
BABY MAMA
'Bullet In Your F'ing Head'

DeMarcus Cousins Since 2010-11, leads NBA in

Technical fouls 105 Times fouling out 46 Ejections 12

3:00 PM · Feb 20, 2017 · TweetDeck

Feeling the Pressure: Ryan Anderson

Season	Predicted Salary	True Salary
2017/2018	7.828% (\$7,756,916)	19.758% (\$19,578,455)
2018/2019	4.577% (\$4,662,805)	20.047% (\$20,421,546)

"It was a new thing for me, because I had sort of always been the underdog, overachieving and now I was sort of the overpaid guy who was underachieving from what they wanted. It was hard for me to be the guy that was like, 'You need to do more and we're paying you a lot for this,' rather than before it was like, 'Wow, we got a steal for this guy.' It really affected me at home. I felt like every time I was in Houston, I was letting down the fans, or something like that. Houston's one of those sports cities where just the pressure is always on you, and that's all people want to talk about with you."

- Ryan Anderson, on performing after signing his new contract

Most Underpaid Players by Model

Gradient Boosting	Random Forest	KNN
Andre Drummond	Andre Drummond	Blake Griffin
Carl Landry	Damion Lee	Bobby Portis
David West	DeMarcus Cousins	Chris Boucher
DeMarcus Cousins	Jusuf Nurkic	JaKarr Middleton
Kemba Walker	Kemba Walker	Michael Carter-Williams
Kenny Thomas	Khem Birch	Montrezi Harrell
Marc Jackson	Marco Belinelli	Reggie Bullock
Michael Carter Williams	Michael Carter -Williams	Spencer Dinwiddie

- Quite some difference between Models
- Gradient Boosting and Random Forest being comparable seems intuitive, since both are tree-based models

GM's Little Helper

R-SHINY APP

https://sportylytics-predictions.herokuapp.com/

