K means klastering

Primenjeni algoritmi

Uvod

- Nenadgledana tehnika učenja
- Postoji veliki broj tačaka predstavljenih vektorima (elementi vektora su atributi) koje nisu klasifikovane ili označene
- Cilj je pametno grupisati tačke
- Svaka grupa je asocirana svojim centroidom, tj. težištem
- Koliko ima takvih grupa i gde su im težišta?

Primena K means podele

- Grupisanje neobeleženih podataka na osnovu sličnosti njihovih osobina
- Primer: Klasifikacija kupaca prema istoriji kupovine, svaka karakteristika može biti trošak za različite vrste robe
- Primer: Optimalan raspored parkirališta u gradu
- Primer: Optimizacija veličine vrata i dužine ruku košulja
- Primer: Grupisanje sličnih slika, bez prethodnog klasifikovanja

Vrste problema klasifikacije

- 1. Traženje strukture unutar skupova neklasifikovanih podataka, sa pretpostavkom o kategorijama.
 - Primer: podaci o modelima automobila
 - cene, efikasnost, goriva, veličina točkova, snaga zvučnika itd.

- 2. Veštačko deljenje podataka čak i ako ne postoji očigledno grupisanje
 - Proizvođač escajga želi da pakuje pibor za jelo kriterijum: broj viljušaka i noževa i "otmenost"(cena) pribora

K means algoritam

Ulazi:

- K broj klastera
- Obučavajući skup $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} = \begin{bmatrix} x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}_{n \times 1}, x^{(i)} \in \mathbb{R}^n$$

Izlaz:

- Grupisane tačke $\{c^{(1)}, c^{(2)}, ..., c^{(m)}\}$

K means algoritam

$C = \{C^{(1)}, C^{(2)}, \dots, C^{(m)}\}$ $X^{(5)} \longleftrightarrow M_2 \qquad X^{(5)} \longleftrightarrow 2$ $C^{(5)} \longleftrightarrow 2$

K-MEANS (X,K)

```
1 \rightarrow inicijalizacija: slučajan izbor \underline{K} težišta \mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n
2 repeat (do konvergencije težišta)
```

```
for i = 1 to m
\underline{c^{(i)}} = \text{indeks klastera sa težištem najbližim } x_{i}^{(i)}
for k = 1 to K
```

6
$$\mu_k = \text{težište za tačke iz klastera } k$$
7
$$\mathbf{return} \ C = \{c^{(1)}, c^{(2)}, \dots, c^{(m)}\}$$

K means algoritam

- Korak 0: Skaliranje podataka
- Korak 1: Slučajan izbor K težišta $\mu_1, \mu_2, \dots, \mu_K$
- Korak 2: Odrediti udaljenost $D^{(i,k)}$ tačaka (vektora $x^{(i)}$) do težišta svakog klastera k

$$D^{(i,k)} = ||x^{(i)} - \mu_k|| = \sqrt{\sum_{j=1}^n (x_j^{(i)} - \mu_{j(k)})^2} \qquad k = 1, 2, \dots, K$$

Svaka tačka se pridružuje najbližem klasteru

$$\underline{c^{(i)}} = \underset{k}{\operatorname{argmin}} D^{(i,k)}$$

- Korak 3. Pronaći novih K težišta za formirane klastere.
 - Povratak na korak 2 i ponavlja se postupak sve do konvergencije težišta.

Inicijalizacija – slučajan izbor centroida

- izbor K težišta na slučajan način (K < m)
- →• Težišta su iz skupa X
 - Težišta su slučajno izabrane tačke iz \mathbb{R}^n
 - sa osobinama koje odgovaraju podacima: sr.vred i stdev, min, max)

Poređenje rezultata

 $\underline{\mu_k}$ – centroid (težište) za tačke iz klastera k $\underline{c^{(i)}}$ - indeks klastera kome je trenutno pridružen $x^{(i)}$ $\mu_{c^{(i)}}$ - centroid klastera kome je trenutno pridružen $x^{(i)}$

$$X^{[n]} \rightarrow 4$$

$$C^{(n)} = 4$$

$$M_{c^{(n)}} = M_{4}$$

Kriterijum optimalnosti

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} \left\| x^{(i)} - \mu_{c^{(i)}} \right\|^2$$

$$\min_{c, \mu} J$$

$$v = \begin{bmatrix} 2\\1\\-4\\-2 \end{bmatrix} \qquad ||v|| = \sqrt{\sum_{i=1}^{4} v_i^2} = \sqrt{4+1+16+4} = \sqrt{25} = 5$$

Višestruka slučajna inicijalizacija – izbor optimuma

```
for i = 1 to 100

Randomly initialize K-means.

c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K \leftarrow \text{run K-means}

Compute J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)
```

Izabrati podelu koja daje minimalno $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Primer: Kriminal u Engleskoj

• 13 dimenzija 🛩

- Provala u drugu zgradu osim stana
- Provala u stan
- Krivična šteta
- Prekršaji droge
- Prevara i falsifikat
- Prekršaji u vezi vozila
- Ostali prestupi
- Ostala krivična dela
- Pljačka
- Seksualni prestupi
- Nasilje nad osobom sa povredom
- Nasilje nad osobom bez povreda

		Burgiary in								
		a building					Offences			Population
		other than	Burglary in	Criminal	Drug	Fraud and	against		1	per Square
	Local Authority	a dweiling	a dwelling	damage	offences	forgery	vehicles		Population	Mile
A \	Adur	280	120	708	158	68	382		58500	3610
ζľ	Allerdale	323	126	1356	392	79	394		96100	198
	Alnwick	94	33	215	25	11	71	***	31400	75
	Amber Valley	498	367	1296	241	195	716	•••	116600	1140
	Arun	590	299	1806	471	194	819		140800	1651
	Ashfield	784	504	1977	352	157	823		107900	2543
	Ashford	414	226	1144	196	162	608	•••	99900	446
	Aylesbury Vale	696	377	1490	502	315	833	***	157 9 00	453
	Babergh	398	179	991	137	152	448		79500	346
	Barking & Dagenham	639	1622	2353	1071	1194	3038		155600	11862
	Barnet	1342	3550	2665	1198	1504	4104	***	331500	9654
	Barnsley	1332	860	3450	1220	322	1661	***	228100	1803
	Barrow-in-Furness	190	134	1158	179	59	227		70400	2339
	Basildon	756	1028	1906	680	281	1615		164400	3874
	Basingstoke & Deane	1728	598	426	930	182	1159	***	147900	605
		•								

Primer: Kriminal u Engleskoj

- 3 klastera je već interesantno
 - Klaster 1 jedna tačka London

Number in cluster	Cluster 1	Cluster 2	Cluster 3
Number in cluster		00	213
Burglary in a building other than a dwelling	0.0433	0.0059	0.0046
Burglary in a dwelling	0.0077	0.0079	0.0030
Criminal damage	0.0398	0.0156	0.0114
Drug offences	0.1446	0.0070	0.0029
Fraud and forgery	0.1037	0.0042	0.0020
Offences against vehicles	0.0552	0.0125	0.0060
Other offences	0.0198	0.0018	0.0009
Other theft offences	0.6962	0.0313	0.0154
Robbery	0.0094	0.0033	0.0004
Sexual offences	0.0071	0.0015	0.0008
Violence against the person - with injury	0.0560	0.0098	0.0053
Violence against the person - without injury	0.0796	0.0128	0.0063
Population per Square Mile	4493	10952	1907

K-means – broj klastera (grupa)

