Cohomology of the Cotangent Bundle to a Grassmannian and Puzzles

Voula Collins

University of Connecticut

UCONN

Based on work done with Allen Knutson at Cornell University

voula.collins@uconn.edu

Workshop on "Representation Theory, Combinatorics, and Geometry", University of of

Virginia

October 19, 2018

Schubert calculus background

- The set of **Schubert classes** $\{S_{\lambda}\}$ form a basis over \mathbb{Z} for the cohomology ring $H^*(Gr_k(\mathbb{C}^n))$ where λ is a string with k 1s and n-k 0s.
- Then write

$$S_{\lambda}S_{\mu}=\sum_{
u}c_{\lambda\mu}^{
u}S_{
u}$$

- Determining these $c^{\nu}_{\lambda\mu}$, called **Littlewood-Richardson coefficients** is one of the goals of Schubert calculus
- One way to compute them involves tiling of equilateral triangles called puzzles.

Knutson-Tao puzzles

Suppose you have an equilateral triangle of side length n with the strings of 0s and 1s λ , μ , and ν labeling the NW, NE and S boundaries respectively, all from left to right. This is called a " $\Delta^{\nu}_{\lambda\mu}$ puzzle."

Theorem (KT)

The Littlewood-Richardson coefficient $c^{\nu}_{\lambda\mu}$ is the number of ways to tile a $\Delta^{\nu}_{\lambda\mu}$ puzzle with the following puzzle pieces.

Knutson-Tao puzzles

Suppose you have an equilateral triangle of side length n with the strings of 0s and 1s λ , μ , and ν labeling the NW, NE and S boundaries respectively, all from left to right. This is called a " $\Delta^{\nu}_{\lambda\mu}$ puzzle."

Theorem (KT)

The Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ is the number of ways to tile a $\Delta_{\lambda\mu}^{\nu}$ puzzle with the following puzzle pieces.

Why use puzzles?

- They're combinatorial. They are a simple visual tool that you can use to attack some very complex problems.
- It provides a positive way to determine L-R coefficients
- They show more symmetries than other positive combinatorial rules.
- Easier to generalize to other Schubert calculus problems than other positive combinatorial rules are.
- Since L-R coefficients show up all over the place, puzzles get a lot of use and are implemented in Sage.

Other puzzle formulas

Equivariant cohomology-Schubert calculus [Knutson, Tao 2001]

K-theory [Buch '00]

• $H^*(2 - \text{step flag manifolds})$ [Buch, Kresh, Purbhoo, Tamvakis '14]

- $K_T(Gr_k(\mathbb{C}^n))$ [Pechenik, Yong '15]
- Equivariant cohomology of two-step flag varieties [Buch, 15]

Cohomology and Maulik-Okounkov Classes

- In their 2012 paper Quantum Groups and Quantum Cohomology, D. Maulik and A. Okounkov defined the "stable basis" for a class of varieties called Nakajima varieties.
- The Nakajima varieties of a quiver which contains one vertex with no arrows are the cotangent bundles of Grassmann varieties.
- ullet So Maulik and Okounkov's definition describes a basis M_λ for

$$H_{\mathbb{C}^{\times}}^*(T^*Gr_k(\mathbb{C}^n)) \cong H^*(Gr_k(\mathbb{C}^n))[\hbar]$$

where λ is a string of k 1s and n - k 0s.

ullet It also describes a basis \widetilde{M}_{λ} in equivariant cohomology:

$$H^*_{T \times \mathbb{C}^\times}(T^* Gr_k(\mathbb{C}^n))$$

These classes form a basis for the space over $\mathbb{Z}[\hbar, y_1, \dots, y_n]$ after inverting \hbar .

Maulik-Okounkov class restrictions

These classes have restrictions $\alpha|_{\lambda} \in H_{T \times \mathbb{C}^{\times}}^{*}$ to fixed points $\mathbb{C}^{\lambda} \in (T^{*}Gr_{k}(\mathbb{C}^{n}))^{T \times \mathbb{C}^{\times}}$ of the torus action which satisfy

1.
$$\widetilde{M}_{\lambda}|_{\mu} = 0$$
 for $\mu \geqslant \lambda$

2.
$$\widetilde{M}_{\lambda}|_{\lambda} = \prod_{i \in [1,k], j \in [1,n-k]} \begin{cases} y_i - y_j & (i,j) \in \lambda \\ \hbar - (y_i - y_j) & (i,j) \notin \lambda \end{cases}$$

3.
$$\hbar \left| \widetilde{M}_{\lambda} \right|_{\mu}$$
 for $\mu > \lambda$

These conditions uniquely determine this basis $\{\tilde{M}_{\lambda}\}$. Maulik-Okounkov classes are related to each other by a "deformed reflection operator," R_i

$$R_i \cdot \widetilde{M}_{\lambda} = \widetilde{M}_{r_i \cdot \lambda}$$
 where $R_i = r_i + \hbar \partial_i$

Product Structure in Equivariant Cohomology

Given that

$$\widetilde{M}_{\lambda}\cdot\widetilde{M}_{\mu}=\sum_{
u}c_{\lambda\mu}^{
u}\widetilde{M}_{
u}$$

what are the coefficients $c_{\lambda\mu}^{\nu} \in \mathbb{Z}[\hbar, y_1, \dots, y_n]$? This is the question my research has been attempting to answer.

Finding the answer in the equivariant case will provide the coefficients in regular cohomology as well, by simply setting $y_i = 0$.

Recall that a Grassmannian, $Gr_k(\mathbb{C}^n)$, is the set of k-planes in \mathbb{C}^n . I began by looking at the projective case, i.e. where k=1 or k=n-1. We will use k=n-1.

The case of $H^*_{T \times \mathbb{C}^{\times}}(T^*Gr_{n-1}(\mathbb{C}^n))$

In $H^*_{T \times \mathbb{C}^\times}(T^*Gr_{n-1}(\mathbb{C}^n))$, the \widetilde{M}_λ can be indexed by λ which are strings of n-1 1s and one 0, which we will call $\binom{[n]}{n-1}$. We will use \widetilde{M}_i to mean the class given by the element of $\binom{[n]}{n-1}$ where the 0 is in the ith spot.

Looking at this case our restriction formulas tell us

$$\widetilde{M}_{i}|_{a} = \prod_{b \in [1,i)} (y_{a} - y_{b}) \prod_{b \in (i,n]} (\hbar + y_{a} - y_{b})$$

We can use a standard inner product on our ring to get a formula for a dual basis:

$$\widetilde{M}_{i}^{*}|_{a} = \prod_{b \in [1,i)} (\hbar + y_{a} - y_{b}) \prod_{b \in (i,n]} (y_{a} - y_{b})$$

The case of $H^*_{T \times \mathbb{C}^{\times}}(T^* \mathit{Gr}_{n-1}(\mathbb{C}^n))$

Theorem

(C) Consider $\lambda, \mu, \nu \in \binom{[n]}{n-1}$ so that the 0 is in the ith, jth, and kth spots respectively. Here c_{ij}^k corresponds to the coefficient for \widetilde{M}_k in $\widetilde{M}_i\widetilde{M}_j$. Then, using equivariant localization, we get

$$c_{ij}^{k} = \sum_{i,j \leqslant a \leqslant k} \frac{\hbar \prod\limits_{b < i} (y_{a} - y_{b}) \prod\limits_{b > i} (\hbar + y_{a} - y_{b}) \prod\limits_{b < j} (y_{a} - y_{b}) \prod\limits_{b > j} (\hbar + y_{a} - y_{b}) \prod\limits_{b > k} (y_{a} - y_{b})}{\prod\limits_{b \neq a} (y_{a} - y_{b}) \prod\limits_{b \geqslant k} (\hbar + y_{a} - y_{b})}$$

- NOT positive
- not obviously polynomial

I've been attempting to find a positive combinatorial rule which will be able to compute these product structure coefficients in a more reasonable time frame.

Initial Puzzle Formula for $H^*_{T \times \mathbb{C}^{\times}}(T^*Gr_{n-1}(\mathbb{C}^n))$

By looking at small examples I was able to come up with the following puzzle pieces

Note that the above puzzle pieces satisfy the boundary label condition that $a+b\omega+c\omega^2=0$

However weights are now no longer assigned to pieces. They are assigned to **fiefdoms** which are smallest collections of puzzle pieces with 1s and 0s on the boundary.

Initial Puzzle Formula for $H^*_{T \times \mathbb{C}^{\times}}(T^*Gr_{n-1}(\mathbb{C}^n))$

By looking at small examples I was able to come up with the following puzzle pieces

Note that the above puzzle pieces satisfy the boundary label condition that $a + b\omega + c\omega^2 = 0$

However weights are now no longer assigned to pieces. They are assigned to **fiefdoms** which are smallest collections of puzzle pieces with 1s and 0s on the boundary.

Equivariant puzzles

There is always one central piece with three tendrils coming out that track where the 0 goes within the puzzle.

Puzzle pieces and their weights

In the NE tendril, you get fiefdoms with two possible weights:

In the NW tendril, you get fiefdoms you also get two possible weights:

Puzzle pieces and their weights

In the S tendril the weight of the fiefdom depends on what kind of fiefdom is above it:

There are two kinds of central fiefdoms, again with two possible weights:

 \hbar

Weight of whole puzzle

$$\hbar^2(y_5-y_2)(y_5-y_3)(\hbar-(y_8-y_2))(\hbar+y_7-y_6)(\hbar+y_7-y_5)$$

Weight of whole puzzle

$$\hbar^3(y_2-y_1)(\hbar-(y_8-y_1))(\hbar-(y_6-y_3))(\hbar+y_6-y_5)$$

Puzzle Recurrence Relations

The puzzle weight summations $p_{i,j}^k(\ell,n)$ satisfy the recurrence relations

(1) For j < n - 1

$$p_{i,j}^n(1,n) = p_{i,j}^n(0,n) - p_{i,j}^{n-1}(0,n)$$

(2) For $\ell > 1$ and i < n

$$p_{i,j}^{n}(\ell,n) = p_{i,j}^{n}(\ell-1,n) - \prod_{b \in [1,\ell-1]} \frac{\hbar + y_{n} - y_{n-b}}{\hbar + y_{n-1} - y_{n-b-1}} \cdot A$$

where

$$A = (\hbar + y_1 - y_n)p_{i,j}^{n-1}(\ell - 1, n - 1) + (\hbar + y_{n-1} - y_{n-\ell})p_{i,n-\ell}^{n-1}(\ell - 2, n - 1)$$
$$+ \hbar \cdot \sum_{a \in [2, n-\ell-1]} p_{i,a}^{n-1}(\ell - 1, n - 1)$$

where $p_{i,j}^k(\ell,n)$ is the sum of the weights corresponding to n-dimensional puzzles with 0s on the boundary at i, j and k with **at least** ℓ copies of the (1,0,1,0) sideways rhombus stacked at the bottom of the southern tendril.

This has been checked by computer for up to n = 9.

A Different Proof Method using R-matrices

In 2017, Knutson and Zinn-Justin found new proofs of the already existing puzzle formulas for $H^*(Gr_k(\mathbb{C}^n))$, 2-step flag manifolds, and 3-step manifolds, as well as for two previously unsolved Schubert calculus problems : K(2-step flag manifolds) and K(3-step flag manifolds).

Let V be a finite-dimensional vector space, and $a,b,c,\in\mathbb{C}$ parameters. Then the algebraic formulation of the **(rational) Yang-Baxter equation** on $R\in End(V\otimes V)(u)$ is

$$R_{12}(a-b)R_{13}(a-c)R_{23}(b-c) = R_{23}(b-c)R_{13}(a-c)R_{12}(a-b)$$

Jimbo and Drinfeld constructed solutions of the YBE in the quantized loop algebra $U_q(\mathfrak{g}[z^\pm])$. These solutions are called R-matrices, and they provide an isomorphism from the tensor product $(V,a_1)\otimes (V,a_2)$ to $(V,a_2)\otimes (V,a_1)$.

How does this help?

So for $\lambda, \mu, \nu \in {[n] \choose k}$ representing an element of our basis, all of the crossings in the following diagram are encoded by the corresponding R-matrix

$$\widetilde{M}_{\lambda}\cdot\widetilde{M}_{\mu}=\sum_{
u}c_{\lambda\mu}^{
u}\widetilde{M}_{
u}$$

How does this help?

$$\widetilde{M}_{\lambda}\cdot\widetilde{M}_{\mu}=\sum_{
u}c_{\lambda\mu}^{
u}\widetilde{M}_{
u}$$

This picture is the dual of a puzzle!

How does this help?

If we allow σ shaped partitions at the bottom of this picture, then it will encode the entire right side of the equivariant localization formula for our product.

$$\left.\widetilde{M}_{\lambda}\right|_{\sigma}\cdot\left.\widetilde{M}_{\mu}\right|_{\sigma}=\sum_{\nu}c_{\lambda\mu}^{\nu}\left.\widetilde{M}_{\nu}\right|_{\sigma}$$

Rearranging our picture

We can move our partition σ through the puzzle by showing that the puzzles satisfy certain equations (one in particular being a visual version of the YBE). This leads us to the following picture which encodes the left hand side of our product formula

$$\widetilde{M}_{\lambda}\Big|_{\sigma}\cdot\widetilde{M}_{\mu}\Big|_{\sigma}=\sum_{
u}c_{\lambda\mu}^{
u}\widetilde{M}_{
u}\Big|_{\sigma}$$

Results from KZJ and ideas for $H^*_{\mathbb{C}^{\times}}(T^*Gr_k(\mathbb{C}^n))$

So this new proof method involves showing that the puzzles and dual puzzles satisfy several equations, as well as finding the *R*-matrix which encodes the correct products. Knutson and Zinn-Justin have done this in the following cases:

$$\begin{array}{cccc} H^*(Gr_k(\mathbb{C}^n)) & \longleftrightarrow & U_q(\mathfrak{sl}_3[z^\pm]) \mathbb{Q} \mathbb{C}^3 \\ \text{2 - step} & \longleftrightarrow & U_q(\mathfrak{so}_8[z^\pm]) \mathbb{Q} \mathbb{C}^8 \\ \text{3 - step} & \longleftrightarrow & U_q(\mathfrak{e}_6[z^\pm]) \mathbb{Q} \mathbb{C}^{27} \end{array}$$

My initial computations have indicated the formula will include at least seven edge labels:

$$0, 1, \omega^2, 1 + \omega^2, 2 + \omega^2, 1 + 2\omega^2, 2 + 2\omega^2$$

This indicates that the correct R-matrix may be $U_q(\mathfrak{g}_2[z^{\pm}])\mathbb{QC}^7$, which is what I am investigating now.

Inductively reducing to $c_{i,1}^n$

Definition for proof

Define $p_{i,j}^k(\ell,n)$ as the sum of the weights corresponding to n-dimensional puzzles with 0s on the boundary at i, j and k with **at least** ℓ copies of the (1,0,1,0) sideways rhombus stacked at the bottom of the southern tendril.

Illustration of $p_{i,i}^k(\ell, n)$

Main Conjecture

Using the above definition $c_{i,j}^k = p_{i,j}^k(0,n)$, i.e. the total weight of **all** puzzles with the right boundary.

Relating $c_{i,1}^n = p_{i,1}^n(0, n)$ to smaller puzzles

Lemma

The puzzle weight summations $p_{i,i}^k(\ell,n)$ satisfy the recurrence relations

(1) For
$$j < n-1$$

$$p_{i,j}^{n}(1,n) = p_{i,j}^{n}(0,n) - p_{i,i}^{n-1}(0,n)$$

(2) For $\ell > 1$ and i < n

$$p_{i,j}^{n}(\ell,n) = p_{i,j}^{n}(\ell-1,n) - \prod_{b \in [1,\ell-1]} \frac{\hbar + y_n - y_{n-b}}{\hbar + y_{n-1} - y_{n-b-1}} \cdot A$$

where

$$A = (\hbar + y_1 - y_n)p_{i,j}^{n-1}(\ell - 1, n - 1) + (\hbar + y_{n-1} - y_{n-\ell})p_{i,n-\ell}^{n-1}(\ell - 2, n - 1)$$

$$+\hbar \cdot \sum_{a \in [2, n-\ell-1]} p_{i,a}^{n-1}(\ell-1, n-1)$$

Gash argument

$p_{i,1}^n(n-2,n)$

$$\hbar \cdot \prod_{b \in [1, n-2]} (\hbar + y_n - y_{n-b})$$

Rational function

Definition

Let

$$r_{i,j}^{n}(0,n) := c_{i,j}^{n}$$

as given by the rational function formula. Then we can define $r_{i,j}^n(\ell,n)$ for any $\ell < n-j$ by using the p recurrence relations from 3 slides ago.

The main conjecture reduces to this:

Use the recurrence relations and the exact formula for $c_{i,j}^k$ to inductively define the a priori rational function $r_{i,1}^n(n-2,n)$ and show that

$$r_{i,1}^{n}(n-2,n) = \hbar \cdot \prod_{b \in [1,n-2]} (\hbar + y_n - y_{n-b})$$
 (that being $p_{i,1}^{n}(n-2,n)$)

This has been checked by computer for up to n = 9.