Interner Speicher

Markus Weißenbach

Klassifzierung von internem Speicher

Zugriffszeit: Zeitspanne vom Anlegen der Adresse bis zum

Ubertragen der Daten vom/zum Prozessor

Datenrate: Geschwindigkeit, mit der Daten geschrieben/gelesen

werden können in Bytes/s

ROM (Read Only Memory)

MROM	Festwertspeicher	
	nur einmalig beschreibbar mit einer speziellen "Maske"	
PROM	Programmierbarer Festwertspeicher	
	nur einmalig elektrisch programmierbar	
EPROM	Löschbarer programmierbarer Festwertspeicher	
	der Inhalt kann mit Hilfe von UV-Licht gelöscht werden	
EEPROM (E ² PROM)	Elektrisch löschbarer programmierbarer Festwertspeicher	
	der Inhalt kann mit elektrischem Impuls byteweise gelöscht werden	
Flash- EEPROM	Elektrisch löschbarer programmierbarer Festwertspeicher	
	Schreib-/Löschvorgang kann "blockweise" erfolgen	

EEPROM

- Electrically Erasable Programmable Read-Only Memory
 - elektrisch löschbarer Nur-Lese-Speicher
- Programmierung durch spezielle Programmier-Geräte oder direkt durch Chipsatz/BIOS
- Besteht aus Feldeffekt-Transistorenmatrix
- Mit geringer Spannung werden Daten ausgelesen
- Max. ca. 1.000.000 Schreibzyklen

RAM (Random Access Memory)

- elektronischer, flüchtiger Schreib-Lesespeicher
- Wahlfreier Zugriff: Random Access Memory
- bei Unterbrechung der Spannungsversorgung gehen die gespeicherten Daten verloren
- der Speicherbereich ist matrizenförmig angeordnet:
 - jede Speicherzelle kann eindeutig über ihre Zeilen- und Spaltenadresse angesprochen werden
- man kann zwischen zwei grundlegenden Technologien unterscheiden:
 - Static RAM: SRAM
 - Dynamic RAM: DRAM

Static RAM - SRAM

- eine Speicherzelle ist aus Flipflops aufgebaut; jedes Flipflop kann einen binären Zustand codieren, also 0 oder 1 einnehmen
- Inhalt bleibt solange erhalten, wie Spannungsversorgung anliegt
- zunächst asynchron: interne Funktionsabläufe nicht mit dem Timing von anderen Systemkomponenten synchronisiert → Wartezyklen (Waitstates)
- jetzt synchron: heute standardmäßig verwendetes SSRAM arbeitet synchron zum Systemtakt → Wartezyklen entfallen
- Zugriffszeit ist kürzer als bei DRAM, jedoch ist die Anzahl von Speicherzellen pro Fläche kleiner und die Herstellung teurer
- wird meist nur bei Zwischenspeichern (Caches) eingesetzt
- spezielle Cellular-SRAMS mit besonders geringer Leistungsaufnahme und hoher Speicherkapazität für den Einsatz in Handys

Schaltbild einer SRAM Zelle

pro Bit 4 Transistoren:

Dynamic RAM - DRAM

- Speicherzellen bestehen nur aus Transistoren und Kondensatoren
 - Kondensatoren speichern Informationen mit elektrischen Ladungen
 - Transistoren regeln den Zugang der Kondensatoren

Problem:

■ Kondensatoren verlieren kontinuierlich Ladung → Spannung sinkt

Lösung:

- Refresh: Wiederauffüllen der Ladung
 - ca. alle 3 ms ist eine Auffrischung nötig
 - Während des Refresh's hat der Prozessor keine Zugriffsmöglichkeit auf die Zelle
- DRAM benötigen weniger Platz für Speicherzellen als SRAM

Schaltbild einer DRAM Zelle

pro Bit 1 Transistor und 1 Kondensator (wird als Transistor hergestellt)

DRAM Typen

EDO-RAM	Früher verwendeter RAM-Baustein, arbeitet asynchron zum CPU-Takt
SD-RAM SDR-SDRAM	Ein- und Ausgangssignale werden synchron mit dem CPU-Takt verwendet, es entfallen unnötige Wartezyklen
DDR-SDRAM	Weiterentwicklung des SD-RAM
DDR-RAM	Es werden Daten auf der ansteigenden und abfallende Flanke eines Taktzyklus gelesen
DDR2-RAM	Weiterentwicklung der DDR-RAM-Technologie
DDR3-RAM	
DDR4-RAM	

Speichermodule

Unter einem Speichermodul versteht man eine kleine Leiterplatte, die mit montierten Speicher-ICs bestückt ist

Single Inline Memory Module (SIMM)	Veraltetes Speichermodul; findet man noch in alten PC's; Datenbusbreite von 8 bzw. 32 bit
Dual Inline Memory Module (DIMM)	Entweder für SDR-SDRAM (Single Data Rate Synchronous Dynamic Random Access Memory) oder DDR-SDRAM, haben aber verschiedene Anschlusskontakte; Datenbusbreite von 64 bit
Small Outline DIMM (SO-DIMM)	Speziell für Notebooks aufgrund ihrer Größe und der geringen Energieaufnahme und Wärmeabgabe
Rambus Inline Memory Modul (RIMM)	Sind grundsätzlich mit RD-RAM-Bausteinen (Rambus) ausgestattet und werden von Pentium-IV-Prozessoren unterstützt, sind aber noch sehr teuer.

SDR-SDRAM (DIMM)

SO-DIMM

DDR, DDR2, DDR3 Module

DDR → DDR4 Module

Fehlererkennung und -korrektur

- Speichermodule können unterschiedlich organisiert sein:
 - ohne Paritätsprüfung
 - mit Paritätsprüfung
 - mit Fehlerkorrekturcode (ECC: Error Checking Code)

Paritätsprüfung:

- zusätzlich zu 8 Datenbits wird in einem Paritätsbit festgehalten, ob im Datenbyte eine gerade oder ungerade Anzahl von Einsen enthalten ist
- daran lässt sich erkennen ob ein Fehler im Datenwort vorliegt

Fehlerkorrektur:

- ECC: Error Correction Code
- nur unter Verwendung spezieller Fehlerortbestimmungsalgorithmen möglich
- meist nur in High-End PCs oder Servern

SD-RAM

SDR-RAM: Die Datenübertragung findet nur auf der aufsteigenden Signalflanke statt.

DDR-RAM

64 Bit Busbreite

ca. 2,1 GByte/s

max. Bandbreite

DDR-RAM: Die Datenübertragung erfolgt über die auf- und über die absteigende Taktflanke.

DDR2-RAM

64 Bit Busbreite

ca. 4,3 GByte/s

max. Bandbreite

DDR2-RAM: Der I/O-Buffer arbeitet mit zweifachem Takt. Resultat: Eine weitere Verdopplung.

$DDR2 \leftarrow \rightarrow DDR3$

DDR4

- Keine neue Vervielfachung der Taktfrequenz zwischen I/O Buffer und Memory Array
- Gegenüber DDR3
 - kleinere Strukturgröße (30nm)
 - Kleinere Spannung (1,2V statt 1,5V)
 - Höhere Taktraten

Datentransferrate

- der Speicherbustakt ist nicht mehr die allein bestimmende Größe für die maximale Datentransferrate
- daher wird die "Geschwindigkeitsklasse" angegeben

 $Geschwindigkeitsklasse = TaktSpeicherzelle \cdot Datenpipel ins \cdot \ddot{U}bertragungsfaktor$

 Beispielrechnung für die max. theoretische Übertragungsrate eines DDR-SDRAMs mit 133MHz

$$V_{\ddot{U}\max} = \frac{Datenbusbreite \cdot Geschwindigkeitsklasse}{8}$$

$$= \frac{64bit * 266MHz}{8} = 2,12GByte / s$$

Berechnung der Datentransferrate

DDR-400

(200 MHz × 64 Bit × 2) / 8 = 3.200 MByte/s = 3,2 GByte/s

DDR2-800

(200 MHz × 64 Bit × 2 x 2) / 8 = 6.400 MByte/s = 6,4 GByte/s

DDR3-1600

(200 MHz × 64 Bit × 2 x 4) / 8 = 12.800 MByte/s = 12,8
 GByte/s

Berechnung der Datentransferrate

DDR4-2133

(266 MHz × 64 Bit × 2 x 4) / 8 = 17.024 MByte/s = 17,0
 GByte/s

DDR4-2400

(300 MHz × 64 Bit × 2 x 4) / 8 = 19.200 MByte/s = 19,2
 GByte/s

Dual Channel RAM

Dual Channel RAM

- Fähigkeit aktueller Mainboards, zwei Arbeitsspeichermodule parallel zu betreiben
- dazu benötigen die Module:
 - die selbe Speicherkapazität
 - die selbe Geschwindigkeitsklasse (z.B. PC 2700 oder PC 3200)
 - die selbe Anzahl von Chips und "module sides"
- nicht die Bandbreite zwischen Prozessor und Speicher sondern die Bandbreite zwischen Speicher und Speichercontroller wird erhöht
- bei Single-Channel-Modus mit 64 Bit (64 Datenleitungen) → Betrieb im Dual-Channel-Modus mit 2 x 64 Bit = 128 Bit (jeweils 128 Datenleitungen)
- Performancesteigerung bis zu 20%