The Digital Fourier Transform

Mohammed Muqeeth EE16B026 Electrical Engineering IIT Madras

April 10, 2018

Abstract

This report explains how to obtain discrete fourier transform using pylab library and generate spectrum of functions.

1 Introduction

• Python has two commands in pylab library fft() to compute the forward fourier transform, ifft() to compute inverse.

numpy.fft.fft()
numpy.fft.ifft()

• fftshift command helps us in shifting frequency axis to represent negative frequencies.

$$\sin(5t) = \frac{e^{j5t} - e^{-j5t}}{2j}$$

$$Y(f) = \frac{1}{2j}(\delta(f-5) - \delta(f+5))$$

- For the spectrum of sin(5t) the deltas should be at 5 and -5, with amplitudes of 0.5. The phase at 5 should be $-\pi/2$ and phase at -5 should be $\pi/2$. These can be seen in below graph.
- Amplitude modulation can also generate a spectrum. Let us consider f(t) = (1+0.1cos(t))cos(10t)Here we do this using tighther spacing between frequencies.

• It generates spikes at 9,10,11 rad/s.

$$0.1\cos(t)\cos(10t) = 0.05(\cos(11t) + \cos(9t)) = 0.025(e^{11tj} + e^{9tj} + e^{-11tj} + e^{-9tj})$$

Figure 1: Spectrum of sin(5t)

Figure 2: spectrum of f(t) = (1 + 0.1cos(t))cos(10t)

2 Spectrum of sin^3x

$$y = \sin^3(x) = \frac{3\sin x - \sin 3x}{4} = \frac{3e^{jx} - 3e^{-jx} - e^{-3jx} + e^{3jx}}{8j}$$

The expected spectrum is

$$Y(f) = \frac{3}{8j} \left[\delta(f-1) - \delta(f+1) \right] - \frac{1}{8j} \left[\delta(f-3) - \delta(f+3) \right]$$

```
#sin^3t spectrum
x=linspace(0,2*pi,129)
x=x[:-1]
y=pow(sin(x),3)
Y=fftshift(fft(y))/128.0
w=linspace(-64,63,128)
figure()
subplot(2,1,1)
plot(w,abs(Y),lw=2)
xlim([-10,10])
ylabel(r"$|Y|$",size=16)
title(r"Spectrum of $\sin^3(t)$")
grid(True)
subplot(2,1,2)
plot(w,abs(Y),'ro',lw=2)
ii=where(abs(Y)>1e-3)
plot(w[ii],angle(Y[ii]),'go',lw=2)
xlim([-10,10])
ylabel(r"Phase of $Y$",size=16)
xlabel(r"$k$",size=16)
grid(True)
show()
```

Figure 3: Spectrum of sin^3t

• From graph the spikes are at 1,-1,3,-3. The height at 1,-1 & 3,-3 are 0.375 and 0.125 respectively. The peaks at 1,-3 has phase of $-\pi/2$ because they have j in the denominator. The peaks at -1,3 has phase of $\pi/2$ because they have -1/j as their multiplying factor.

3 Spectrum of $\cos^3 x$

$$y = \cos^{3}(x) = \frac{3\cos x + \cos 3x}{4} = \frac{3e^{jx} + 3e^{-jx} + e^{3jx} + e^{-3jx}}{8j}$$

The expected spectrum is

$$Y(f) = \frac{3}{8i} \left[\delta(f-1) + \delta(f+1) \right] + \frac{1}{8i} \left[\delta(f-3) + \delta(f+3) \right]$$

```
# #cos^3t spectrum
x=linspace(0,2*pi,129)
x=x[:-1]
y=pow(cos(x),3)
Y=fftshift(fft(y))/128.0
w=linspace(-64,63,128)
figure()
subplot(2,1,1)
plot(w,abs(Y),lw=2)
xlim([-10,10])
ylabel(r"$|Y|$",size=16)
title(r"Spectrum of $\cos^3(t)$")
grid(True)
```

```
subplot(2,1,2)
plot(w,abs(Y),'ro',lw=2)
ii=where(abs(Y)>1e-3)
plot(w[ii],angle(Y[ii]),'go',lw=2)
xlim([-10,10])
ylabel(r"Phase of $Y$",size=16)
xlabel(r"$k$",size=16)
grid(True)
show()
```

Figure 4: Spectrum of sin^3t

• From graph the spikes are at 1,-1,3,-3. The height at 1,-1 & 3,-3 are 0.375 and 0.125 respectively. The peaks has $\pi/2$ as phase since they have j in the denominator.

4 Spectrum of cos(20x + 5cosx)

- cos(20x + 5cosx) function is peroidic so the spectrum consits of deltas. It is phase modulation of a signal.
- The phase is plot only where magnitude is greater than 10^{-3} . The magnitude plot is symmetric where as phase of those deltas are inverted in if postive frequencies have phase of ϕ then negative frequencies have phase of $-\phi$.

```
x=linspace(-4*pi,4*pi,513)
x=x[:-1]
y=cos(20*x+5*cos(x))
Y=fftshift(fft(y))/512.0
w=linspace(-64,64,513)
```

```
w=w[:-1]
figure()
subplot(2,1,1)
plot(w,abs(Y),lw=2)
xlim([-30,30])
ylabel(r"$|Y|$",size=16)
title(r"Spectrum of $\cos(20t+5cos(t))$")
grid(True)
subplot(2,1,2)
plot(w,angle(Y),'ro',lw=2)
ii=where(abs(Y)>1e-3)
plot(w[ii],angle(Y[ii]),'go',lw=2)
xlim([-30,30])
ylabel(r"Phase of $Y$",size=16)
xlabel(r"$k$",size=16)
grid(True)
show()
```

Figure 5: spectrum of cos(20t + 5cost)

5 Spectrum of $exp(\frac{-x^2}{2})$

- $exp(\frac{-x^2}{2})$ is not a peroidic function. we take fourier inverse of it and take all those frequencies where magnitude of Y(f) is greater than 10^{-6} . It makes signal band limited to frequency of 0.86
- For nyquist criteria to hold we should sample at twice the above frequency. so the t is sampled at $512/8\pi$ frequency, which is higher than 0.86
- fftshift is done for input signal so that it results in phase of zero.

```
x=linspace(-4*pi,4*pi,513)
x=x[:-1]
y = \exp(-(x*x)/2.0)
Y=fftshift(fft(fftshift(y)))*8*pi/512.0
w=linspace(-64,64,513)
w=w[:-1]
figure()
subplot(2,1,1)
plot(w,abs(Y),lw=2)
xlim([-30,30])
ylabel(r"$|Y|$",size=16)
title(r"Spectrum of \exp(-t^2/2)")
grid(True)
subplot(2,1,2)
plot(w,angle(Y),'ro',lw=2)
ii=where(abs(Y)>1e-6)
plot(w[ii],angle(Y[ii]),'go',lw=2)
xlim([-30,30])
ylabel(r"Phase of $Y$",size=16)
xlabel(r"$k$",size=16)
grid(True)
show()
```

Figure 6: Spectrum of $exp(\frac{-x^2}{2})$

