Эконометрика, 2020-2021, 1 модуль Семинар 5 05.10.20

ДЛЯ

Группы Э_Б2018_Э_3 Семинарист О.А.Демидова

Задачи с семинара 4

Задача 3. (Борзых Д.А., Демешев Б.Б., Эконометрика в задачах и упражнениях, Издание 2, URSS, 2017, с. 26, задача 2.6)

- **2.6** Рассмотрите классическую линейную регрессионную модель $y_i = \beta x_i + \varepsilon_i$. Найдите $\mathbb{E}\hat{\beta}$. Какие из следующих оценок параметра β являются несмещёнными:
 - 1. $\hat{\beta} = \frac{y_1}{x_1}$;
 - 2. $\hat{\beta} = \frac{1}{2} \frac{y_1}{x_1} + \frac{1}{2} \frac{y_n}{x_n}$;
 - 3. $\hat{\beta} = \frac{1}{n} \left(\frac{y_1}{x_1} + \ldots + \frac{y_n}{x_n} \right);$
 - 4. $\hat{\beta} = \frac{\bar{y}}{\bar{x}}$;
 - 5. $\hat{\beta} = \frac{y_n y_1}{x_n x_1}$;
 - 6. $\hat{\beta} = \frac{1}{2} \frac{y_2 y_1}{x_2 x_1} + \frac{1}{2} \frac{y_n y_{n-1}}{x_n x_{n-1}};$
 - 7. $\hat{\beta} = \frac{1}{n} \frac{y_2 y_1}{x_2 x_1} + \frac{1}{n} \frac{y_3 y_2}{x_3 x_2} + \ldots + \frac{1}{n} \frac{y_n y_{n-1}}{x_n x_{n-1}};$
 - 8. $\hat{\beta} = \frac{1}{n-1} \left(\frac{y_2 y_1}{x_2 x_1} + \frac{y_3 y_2}{x_3 x_2} + \dots + \frac{y_n y_{n-1}}{x_n x_{n-1}} \right);$

Задачи 4-5. (Борзых Д.А., Демешев Б.Б., Эконометрика в задачах и упражнениях, Издание 2, URSS, 2017, с. 28, задачи 2.7, 2.8)

- 2.7 Рассмотрите классическую линейную регрессионную модель $y_i =$ $\beta x_i + \varepsilon_i$. Найдите $Var(\beta)$.
 - 1. $\hat{\beta} = \frac{y_1}{x_1}$;
 - 2. $\hat{\beta} = \frac{1}{2} \frac{y_1}{x_1} + \frac{1}{2} \frac{y_n}{x_n}$;
 - 3. $\hat{\beta} = \frac{1}{n} \left(\frac{y_1}{x_1} + \ldots + \frac{y_n}{x_n} \right);$
 - 4. $\hat{\beta} = \frac{\bar{y}}{\bar{z}}$;
 - 5. $\hat{\beta} = \frac{y_n y_1}{x_n x_1}$;
 - 6. $\hat{\beta} = \frac{1}{2} \frac{y_2 y_1}{x_2 x_1} + \frac{1}{2} \frac{y_n y_{n-1}}{x_n x_{n-1}};$
 - 7. $\hat{\beta} = \frac{x_1 y_1 + \dots + x_n y_n}{x_1^2 + \dots + x_n^2};$
 - 8. $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})}{\sum_{i=1}^{n} (x_i \bar{x})^2};$ 9. $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i \bar{x})(\bar{y} y_i)}{\sum_{i=1}^{n} (x_i \bar{x})^2};$ 10. $\hat{\beta} = \frac{y_1 + 2y_2 + \dots + ny_n}{x_1 + 2x_2 + \dots + nx_n};$ 11. $\hat{\beta} = \frac{\sum_{i=1}^{n} i(y_i \bar{y})}{\sum_{i=1}^{n} i(x_i \bar{x})};$

 - 12. $\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i}$
 - 13. $\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i \bar{y}}{x_i \bar{x}}$.
- 2.8 Рассмотрите классическую линейную регрессионную модель $y_i = \beta$ · $i+arepsilon_i, i=1,\ldots,n$. Какая из оценок \hat{eta} и \tilde{eta} является более эффективной?
 - 1. $\hat{\beta} = y_1$ и $\tilde{\beta} = y_2/2$:
 - 2. $\hat{\beta} = y_1$ и $\tilde{\beta} = \frac{1}{2}y_1 + \frac{1}{2}\frac{y_2}{2}$;
 - 3. $\hat{\beta} = \frac{1}{n} \left(\frac{y_1}{1} + \ldots + \frac{y_n}{n} \right) \mathbf{u} \, \tilde{\beta} = \frac{1 \cdot y_1 + \ldots + n \cdot y_n}{1^2 + \ldots + n^2}$

Новые задачи

- Задача 1. (Демидова О.А., Малахов Д.И. Учебник и практикум для прикладного бакалавриата. М., «Юрайт», 2016, с.105, № 4.1)
- По 50 наблюдениям была оценена парная регрессия $Y_i = \beta_0 + \beta_1 X_i + u_i$ и получены оценки коэффициента наклона и стандартного отклонения $\hat{\sigma}_{\hat{\theta}_i}$.

При уровне значимости 5% и 1% проверить основную гипотезу H_0 : $\beta_1 = 0$ при следующих результатах оценивания и основных гипотезах:

- 1) $\hat{\beta}_1 = 0.30$, $\hat{\sigma}_{\hat{\beta}_1} = 0.12$, $H_1: \beta_1 \neq 0$
- 2) $\hat{\beta}_1 = 0.30$, $\hat{\sigma}_{\hat{\beta}_1} = 0.12$, $H_1: \beta_1 > 0$
- Задача 2. (Демидова О.А., Малахов Д.И. Учебник и практикум для прикладного бакалавриата. М., «Юрайт», 2016, с.111, № 4.4)

Если при проверке гипотезы о значимости коэффициента p-value = 0.03, то соотствующий коэффициент будет значим при уровне значимости:

1) 0.001 2) 0.01 3) 0.05 4) 0.4 5) ни при одном из перечисленных

Задача 3. (Демидова О.А., Малахов Д.И. Учебник и практикум для прикладного бакалавриата. М., «Юрайт», 2016, с.111, № 4.5)

При оценке модели парной регрессии по 62 наблюдениям МНК-оценка коэффициента наклона оказалась равной 3, а стандартная ошибка равной 0.25. Вычислите 95% доверительный интервал для этого коэффициента.

Задача 4.

(Демидова О.А., Малахов Д.И. Учебник и практикум для прикладного бакалавриата. М., «Юрайт», 2016, с.106, № 4.2)

Заполните пустые ячейки, в которых стоят точки, в приведенной ниже таблице (в верхнюю таблицу переносить ответы не надо, клетки с XXX заполнять не надо)

SUMMARY					
OUTPUT					
Regression					
Statistics					
R Square	•••				
Adjusted R					
Square	XXX				
Observations	24				
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	15	XXX	XXX	XXX
Residual	22	10	XXX		
Total	23	•••			
		Standard			
	Coefficients	Error	t Stat	Lower 95%	Upper 95%
Intercept	-0.56868	0.272979	XXXXXX	XXXXXXX	XXXXXXXXX
X Variable 1	0.48	0.08	•••	•••	

Задача 5.

Оценка модели САРМ по американским данным

В файле Berndt.xls представлены ряды данных в формате Excel о месячных доходностях акций компаний США, список которых приведен ниже, с января 1978 г. по декабрь 1987 г.

Данные были собраны Э.Берндтом и заимствованы с сайта издательства его книги «Практика эконометрики»: www.unity-dana.ru

Отрасль промышленности	Компания	Переменная	
Переработка нефти	Mobil	MOBIL	
	Texaco	TEXACO	
Вычислительная техника	International Business	IBM	
	Machines		
	Digital Equipment Company	DEC	
	Data General	DATGEN	
Производство	Consolidated Edison	CONED	
электроэнергии			
	Public Service of New	PSNH	
	Hampshire		
Деревообрабатывающая	Weyerhauser	WEYER	
промышленность			
	Boise	BOISE	
Электронное оборудование	Motorola	MOTOR	
	Tandy	TANDY	
Авиакомпании	Pan American Airways	PANAM	
	Delta	DELTA	
Банки	Continental Illinois	CONTIL	
	Citicorp	CITCRP	
Пищевая промышленность	Gerber	GERBER	
	General Mills	GENMIL	

Приведены также данные для доходности общего рыночного портфеля ценных бумаг (переменная MARKET) и доходности безрискового актива — 30- дневных казначейских билетов США (переменная RKFREE).

Используя модель САРМ

$$r_j - r_f = \alpha_j + \beta_j (r_m - r_f) + \varepsilon_j,$$

где r_j и r_f соответственно доходности ${\bf j}$ – ой ценной бумаги и безрискового актива, r_m – доходность общего рыночного портфеля ценных бумаг, ε_j - ошибки регрессии,

Предположим, Вы выбрали для исследования ценную бумагу Mobil.

- 1) В этом случае $r_{_{j}}=MOBIL$, $r_{_{f}}=RKFREE$, $r_{_{m}}=MARKET$.
- 2) Создайте зависимую переменную $Y = r_i r_f = Mobil RKFREE$
- 3) Создайте независимую переменную $\mathbf{X} = r_{\scriptscriptstyle m} r_{\scriptscriptstyle f} = \mathbf{MARKET} \mathbf{RKFREE}$
- 4) Вычислите дескриптивные статистики переменных Y, X.
- 5) Постройте гистограммы переменных Y и X.
- 6) Постройте диаграмму рассеяния для переменных Y и X.
- 7) Оцените параметры уравнения регрессии $Y_j = \alpha + \beta_j X + \varepsilon$.
- 8) Проверьте значимость коэффициента β_j . Сделайте вывод, влияет ли доходность общего рыночного портфеля ценных бумаг на доходность j ой ценной бумаги.
- 9) Если $\hat{\beta}_j > 1$, то проверьте гипотезу $H_0: \beta_j = 1$ при альтернативной гипотезе $H_0: \beta_j > 1$. Сделайте вывод, можно ли считать доходность j ой ценной бумаги выше доходности общего рыночного портфеля ценных бумаг.
- 10) Если $\hat{\beta}_j < 1$, то проверьте гипотезу $H_1: \beta_j = 1$ при альтернативной гипотезе $H_1: \beta_j < 1$. Сделайте вывод, можно ли считать доходность \mathbf{j} ой ценной бумаги ниже доходности общего рыночного портфеля ценных бумаг.

11) Дайте экономическую интерпретацию полученным результатам.

Рекомендуется выполнить упражнение в статистических пакетах Excel и Stata.

Проведите аналогичное исследование для другой ценной бумаги.