Quiz 7

Student ID Number:	Name	
Math 173B, 1 PM		
Please justify all your answers		February 28, 2019
Please also write your full name on the back		

Here we describe (with an example) a cryptosystem that requires Alice and Bob to exchange several messages.

Bob and Alice fix a publicly known prime p=32611 and all other numbers used are private. Alice takes her message m=11111, chooses a random exponent a=3589, and sends the number $u=m^a\pmod p=15950$ to Bob. Bob chooses a random exponent b=4037 and sends $v=u^b\pmod p=15422$ back to Alice. Alice then computes $a^{-1}\equiv 15619\pmod {p-1}$ then $w=v^{15619}\equiv 27257\pmod {32611}$ and sends w=27257 to Bob. Finally, Bob computes $b^{-1}\equiv 31883\pmod {p-1}$ then $w^{31883}\pmod {32611}$ and recovers the value 11111 of Alice's message.

1. Describe a version of this cryptosystem that uses the elliptic curve discrete log problem. It will start with them agreeing on an elliptic curve E over \mathbb{F}_p for some prime p and some point $P \in E(\mathbb{F}_p)$. Assume that they both know the order of P in $E(\mathbb{F}_p)$.