Tutorial 0: Matlab Introduction

Empirical Exercises

- 1. Create and save a script file Matlab_intro. In the script file, create the following vectors and matrices
 - (a) $m = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$, and $n = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}'$

(b)
$$O = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $Z = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, and $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

(c)
$$Q = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

- 2. Consider the matrix Q in 1.(c)
 - (a) create a transpose matrix $P = Q' = \begin{pmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12 \end{pmatrix}$
 - (b) select the column vector $(9 \ 10 \ 11 \ 12)'$, row vector $(3 \ 7 \ 11)$, and matrix $\begin{pmatrix} 7 \ 11 \\ 8 \ 12 \end{pmatrix}$
- 3. Consider the AR(1) process

$$y_t = \alpha + \beta y_{t-1} + u_t \tag{1}$$

where $u_t \sim N(0,1)$

- (a) Create a random column vector u_t with 100 elements, each are independently drawn from standard normal distribution.
- (b) Assume $y_0 = 0$, $\alpha = 0.5$ and $\beta = 0.2$. Use **for** loop to generate a sequence of y_t . Plot y_t
- 4. Use the simulated time series y_t in 3. to estimate parameters α and β .