Аннотация

Лекции по математическому анализу 2 семестра потока бакалавров ВМК МГУ. Лектор — Фоменко Татьяна Николаевна. Составитель — Андрей Тихонов (tiacorpo@gmail.com).

Оглавление

1	Опр	ределенный интеграл	2
	1.1	Основные понятия	2
	1.2	2 критерия интегрируемости функции по Риману	4
	1.3	Классы интегрируемых функций	5
	1.4	Основные свойства определенных интегралов	6
	1.5	Интеграл с переменным верхним(нижним) пределом	8

Глава 1

Определенный интеграл

1.1 Основные понятия

Определение. Разбиением отрезка [a,b] называется набор $\{x_k\} = \{x_0, x_1, \dots, x_n\}$, где $x_0 = a, x_n = b, x_0 < x_1 < \dots < x_n$.

Определение. Диаметром, или мелкостью разбиения $\{x_k\}$ называется число $d=d(\{x_k\})=\max_{1\leq k\leq n}\{\Delta x_k\},$ $\Delta x_k=x_k-x_{k-1}.$

Определение. Размеченным разбиением называется разбиение, в котором зафиксированы точки $\{\xi_k\}$, где $\xi_k \in [x_{k-1}, x_k].$

Определение. Разбиение $\{y_m\}$ называется **измельчением разбиения** $\{x_k\}$, если $\{x_k\} \subset \{y_m\}$.

Определение. Разбиение $\{z_j\}$ называется объединением разбиений $\{x_k\}$ и $\{y_m\}$, если $\{z_j\} = \{x_k\} \cup \{y_m\}$.

Определение. Пусть на [a,b] задана f(x). Интегральной суммой для f(x) на отрезке [a,b], составленной по размеченному разбиению $(\{x_k\}, \{\xi_k\})$ называется выражение вида

$$\sigma_f = \sigma_f(\{x_k\}, \{\xi_k\}) := \sum_{k=1}^n f(\xi_k) \Delta x_k$$

Определение. Число A наывается **пределом интегральных сумм** f(x) **на** [a,b] **при** $d\mapsto 0$, где d - мелкость разбиений, если $\forall \ \varepsilon>0 \ \exists \ \delta=\delta(\varepsilon)>0$, что для любого размеченного разбиения $(\{x_k\},\{\xi_k\})$, мелкость которого $d<\delta$, выполнено неравенство: $|\sigma_f(\{x_k\},\{\xi_k\})-A|<\varepsilon$.

$$A = \lim_{d \to 0} \sigma_f(\{x_k\}, \{\xi_k\})$$

Определение. Определенным интегралом f(x) на отрезке [a,b] называется предел интегральных сумм этой функции на этом отрезке при $d\mapsto 0$.

$$\int_{a}^{b} f(x)dx := \lim_{d \to 0} \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Теорема 1. Если y f(x) существует предел интегральных сумм, то этот предел – единственный.

Доказательство. Предположим противное. Пусть существует 2 предела: $A_1 < A_2, \ A_2 - A_1 = \alpha > 0$. По определению предела, для $\forall \ \varepsilon = \frac{\alpha}{3} \ \exists \ \delta_1, \delta_2, \ \text{что}$:

- 1. для $\forall (\{x_k\}, \{\xi_k\}), d < \delta_1 : |\sigma_f(\{x_k\}, \{\xi_k\}) A_1| < \varepsilon$
- 2. для $\forall (\{x_k\}, \{\xi_k\}), d < \delta_2 : |\sigma_f(\{x_k\}, \{\xi_k\}) A_2| < \varepsilon$

Тогда для любого размеченного разбиения $(\{x_k\}, \{\xi_k\})$, у которого $d \leq min(\delta_1, \delta_2)$, будет выполнено и 1), и 2) $\Rightarrow \sigma_f(\{x_k\}, \{\xi_k\})$ попадает одновременно в 2 непересекающихся интервала. Противоречие.

Теорема 2. Если существует $\int_{a}^{b} f(x)dx$, то обязательно f(x) ограничена на [a,b].

Доказательство. Предположим противное. Пусть f(x) неограничена на [a,b]. Тогда для любого разбиения $\{x_k\}$ f(x) будет неограничена на хотя бы одном отрезке $[x_{k_0-1},x_{k_0}]$ этого разбиения. Выберем последовательность разбиений $\{x_k^m\}$ с мелкостью $d_m=d_m(\{x_k^m\})<\frac{1}{m}$. В каждом из этих разбиений выберем отрезок $[x_{k_0-1}^m,x_{k_0}^m]$, где f(x) не $0\le k\le n$

ограничена. Теперь подберем разметку так, чтобы интегральные суммы $\sigma_f(\{x_k\}, \{\xi_k\})$ были больше m. Выберем ξ_k на всех отрезках $[x_{k-1}^m, x_k^m]$, кроме $[x_{k_0-1}^m, x_{k_0}^m]$, произвольным образом. А на $[x_{k_0-1}, x_{k_0}]$ выберем ξ_{k_0} так, чтобы $|f(\xi_{k_0})| > m+|\sum\limits_{\substack{k \neq k_0 \\ A}} f(\xi_k)\Delta x_k)|$. Тогла вспомним неравенство: |a+b| > |a| - |b| ($|a| = |(a+b) - b| < |a+b| + |b| \Rightarrow |a| - |b| < |a+b|$,

 $\frac{1}{2} \frac{1}{2} \frac{1$

$$|\sigma_f(\{x_k\},\{\xi_k\})| = |f(\xi_k^m)\Delta x_{k_0}^m + \sum_{k \neq k_0} f(\xi_k^m)\Delta x_k^m| \ge |f(\xi_k^m)\Delta x_{k_0}^m| - |\sum_{k \neq k_0} f(\xi_k^m)\Delta x_k^m| > m \Rightarrow \sigma_f > m \Rightarrow$$
 при $m \mapsto \infty$ получим противоречие.

Определение. Пусть f(x) ограничена на [a,b], и задано размеченное разбиение $(\{x_k\}, \{\xi_k\}) \Rightarrow f(x)$ ограничена на каждом отрезке $[x_{k-1}, x_k] \Rightarrow$ существует $\sup_{x \in [x_{k-1}, x_k]} \{f(x)\} = M_k$, $\inf_{x \in [x_{k-1}, x_k]} \{f(x)\} = m_k$. Верхней (нижней) ин-

тегральной суммой (суммой Дарбу) f(x) по разбиению $\{x_k\}$ на [a,b] называется выражение:

$$\overline{s} := \sum_{k=1}^{n} M_k \Delta x_k$$
$$\underline{s} := \sum_{k=1}^{n} m_k \Delta x_k$$

Теорема 3. 6 свойств сумм Дарбу.

- 1. $\forall (\{x_k\}, \{\xi_k\}) \underline{s} \leq \sigma_f(\{x_k\}, \{\xi_k\}) \leq \overline{s}$
- 2. $\forall \ \varepsilon > 0 \ \exists \ pasmemka \ \{\xi_k\} \ dahhoгo pasбиения \ \{x_k\}, \ что \ \sigma_f(\{x_k\}, \{\xi_k\}) \underline{s} < \varepsilon, \ \overline{s} \sigma_f(\{x_k\}, \{\xi_k\}) < \varepsilon$
- 3. При ризмельчении разбиения \underline{s} не может уменьшиться, \overline{s} увеличиться.
- 4. При добавлении κ разбиению $\{x_k\}$ q новых точек \bar{s} может уменьшиться не более чем на (M-m)qd, d-m мелкость $\{x_k\}$. Аналогично для \underline{s} .
- 5. Пусть $\{x_k\}$, $\{y_j\}$ 2 разбиения [a,b]. \overline{s} , \underline{s} и \overline{s}' , \underline{s}' их суммы Дарбу. Тогда $\underline{s} \leq \overline{s}'$, $\overline{s} \geq \underline{s}'$.
- 6. B силу 5), \exists $sup\{\underline{s}\} = \underline{I}$ нижний интеграл Дарбу, \exists $inf\{\overline{s}\} = \overline{I}$ верхний интеграл Дарбу, причем $\underline{s} \leq \underline{I} \leq \overline{I}$.

Доказательство. 1. Для любого разбиения $\{x_k\}$ и любой разметки $\{\xi_k\}$ $m_k \leq f(\xi_k) \leq M_k \Rightarrow \underline{s} = \sum_{k=1}^n m_k \Delta x_k \leq \sum_{k=1}^n f(\xi_k) \Delta x_k = \sigma_f(\{x_k\}, \{\xi_k\}) \leq \sum_{k=1}^n M_k \Delta x_k = \overline{s}$

- 2. По определению sup, $\forall \ \varepsilon > 0$ на каждом $[x_{k-1}, x_k] \ \exists \ \xi_k$, что $M_k f(\xi_k) < \frac{\varepsilon}{b-a}, \ 1 \le k \le n \Rightarrow \overline{s} \sum_{k=1}^n f(\xi_k) \Delta x_k = \sum_{k=1}^n (M_k f(\xi_k)) \Delta x_k < \frac{\varepsilon}{b-a} \sum_{k=1}^n \Delta x_k = \varepsilon$. Аналогично для \underline{s} .
- 3. Достаточно доказать, что \overline{s} не увеличивается, а \underline{s} не уменьшается, при добавлении к разбиению $\{x_k\}$ 1 новой точки.

Пусть новая точка η добавлена между x_{k_0-1} и x_{k_0} . Расмотрим суммы Дарбу.

$$\overline{s} = M_{k_0} \Delta x_{k_0} + \sum_{k \neq k_0} M_k \Delta x_k$$

$$\overline{s}' = M_{k_0}^1(\eta - x_{k_0-1}) + M_{k_0}^2(x_{k_0} - \eta) + \sum_{k \neq k_0} M_k \Delta x_k$$

Сравним эти два выражения. Заметим, что $M_{k_0}\Delta x_{k_0}=M_{k_0}(\eta-x_{k_0-1})+M_{k_0}(x_{k_0}-\eta)$. Причём очевидно, что $M_{k_0}\geq \sup_{x\in[x_{k_0-1},\eta]}\{f(x)\}=M_{k_0}^1$ и $M_{k_0}\geq \sup_{x\in[\eta,x_{k_0}]}\{f(x)\}=M_{k_0}^2\Rightarrow \overline{s}\geq \overline{s}'$. Аналогично для \underline{s} .

4. Докажем, что при добавлении 1 новой точки к разбиению $\{x_k\}$ \overline{s} может уменьшиться не более, чем на (M-n)d, где $M=\sup_{x\in [a,b]}\{f(x)\},\ m=\inf_{x\in [a,b]}\{f(x)\},\ d$ – мелкость разбиения $\{x_k\}$.

Аналогично доказательству 3), пусть добавлена новая точка η между x_{k_0-1} и x_{k_0} . Рассмотрим разность $\overline{s}-\overline{s}'$: $\overline{s}-\overline{s}'=M_{k_0}\Delta x_{k_0}-(M_{k_0}^1(\eta-x_{k_0-1})+M_{k_0}^2(x_{k_0}-\eta))=(M_{k_0}-M_{k_0}^1)(\eta-x_{k_0-1})+(M_{k_0}-M_{k_0}^2)(x_{k_0}-\eta)\leq (M-m)((\eta-x_{k_0-1})+(x_{k_0}-\eta))=(M-m)\Delta x_{k_0}\leq (M-m)d$

5. Пусть даны 2 любых разбиения: $\{x_k\}, \{y_j\}; \{z_m\} = \{x_k\} \cup \{y_j\}.$ Пусть $\overline{s}, \underline{s}$ – суммы Дарбу для $\{x_k\}, \overline{s}', \underline{s}'$ – для $\{y_j\}, \, \overline{s}'', \underline{s}'' -$ для $\{z_m\}.$

$$\underline{s} \le \underline{s}'' \le \overline{s}'' \le \overline{s}', \ \underline{s}' \le \underline{s}'' \le \overline{s}'' \le \overline{s}.$$

6. Докажем, что $\underline{s} \leq \underline{I} \leq \overline{I} \leq \overline{s}$.

Предположим противное. $\overline{I} < \underline{I}, \ \underline{I} - \overline{I} = \alpha > 0$. По определению $sup, \ inf$ для $\frac{\alpha}{3} \ \exists \ \underline{s}, \$ что $\underline{I} - \frac{\alpha}{3} < \underline{s} \leq \underline{I}; \ \exists \ \overline{s}, \$ что $\overline{I} \leq \overline{s} < \overline{I} + \frac{\alpha}{3} \Rightarrow \overline{s} < \overline{I} + \frac{\alpha}{3} < \underline{I} - \frac{\alpha}{3} < \underline{s} \Rightarrow$ противоречие.

Определение. f(x) называется **интегрируемой по Риману на** [a,b], если $\exists \int\limits_{-b}^{b} f(x) dx$. Также используется $sanucь f \in \mathbb{R}[a,b].$

1.2 2 критерия интегрируемости функции по Риману

Теорема 4. Критерий интегрируемости в терминах сумм Дарбу

Для того, чтобы f(x), ограниченная на [a,b], была интегрируема по Риману, необходимо и достаточно, чтобы $\forall \ \varepsilon > 0 \ \exists \ \{x_k\}, \ umo \ \overline{s}_f - \underline{s}_f < \varepsilon.$

Доказательство. Необходимость.

Пусть $\exists \ I = \int\limits_a^b f(x) dx = \lim\limits_{d \to 0} \ \sum_{k=1}^n f(\xi_k) \Delta x_k \Rightarrow$ по определению \lim , $\forall \varepsilon > 0 \ \exists \ \delta = \delta(\frac{\varepsilon}{4}) > 0$, что для любого разбиения $\{x_k\}$ и любой его разметки $\{\xi_k\}$, если $d(\{x_k\}) < \delta \Rightarrow |\sigma_f - I| < \frac{\varepsilon}{4}$. По 2 свойству из теоремы 3, $\exists \ \{\xi_k'\}$, $\exists \ \{\xi_k''\}$, что при даном разбиении $\{x_k\}$

$$\sigma'_f = \sum_{k=1}^n f(\xi'_k) \Delta x_k, \ \sigma''_f = \sum_{k=1}^n f(\xi''_k) \Delta x_k,$$
 удовлетворяющие неравенствам:

$$\sigma_f' - \underline{s} < \frac{\varepsilon}{4}, \ \overline{s} - \sigma_f'' < \frac{\varepsilon}{4}.$$

При этом выполнены и неравенства:

$$|\sigma_f' - I| < \frac{\varepsilon}{4}, \ |\sigma_f'' - I| < \frac{\varepsilon}{4} \Rightarrow |\overline{s} - \underline{s}| \le |\overline{s} - \sigma_f''| + |\sigma'' - I| + |I - \sigma'| + |\sigma' - \underline{s}| < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \varepsilon$$

Для доказательства достаточности нам потребуется доказать следующее утверждение:

Лемма. Основная лемма Дарбу.

$$\underline{I} = \lim_{d \mapsto 0} \{\underline{s}\}, \ \overline{I} = \lim_{d \mapsto 0} \{\overline{s}\}$$

Доказательство. По определению $\overline{I}=\inf\{\overline{s}\}\Rightarrow \forall\ \varepsilon>0\ \exists$ разбиение $\{x_k\}$, что \overline{s} удовлетворяет неравенству:

Пусть в $\{x_k\}$ имеется q+1 точка. Рассмотрим теперь разбиение $\{y_j\}$ с мелкостью

$$d(\{y_j\}) < \frac{\varepsilon}{2(M+m)(q-1)} = \delta(\varepsilon) > 0$$

Рассмотрим разбиение $\{z_m\} = \{y_j\} \cup \{x_k\}$. В $\{z_m\}$, по сравнению с $\{y_j\}$, добавлено не более, чем q-1 точек. Обозначим верхние суммы Дарбу: \overline{s}' - для $\{y_j\}$, \overline{s}'' - для $\{z_m\}$.

$$\overline{s}'' < \overline{s} \ \overline{s}'' < \overline{s}$$

$$\overline{s}'' \leq \overline{s}, \, \overline{s}'' < \overline{s}'
\overline{s}' - \overline{s}'' \leq (M - m)(q - 1)d < (M - m)(q - 1)\frac{\varepsilon}{2(M - m)(q - 1)} = \frac{\varepsilon}{2}
I \leq \overline{s}'' < I + \frac{\varepsilon}{2} \Rightarrow \overline{I} \leq \overline{s}' < \overline{I} + \varepsilon \Rightarrow \overline{I} = \lim_{d \to 0} \overline{s}$$

Доказательство. Достаточность.

Дано: $\forall \ \varepsilon > 0 \ \exists \ \{x_k\}$, что $\overline{s} - \underline{s} < \varepsilon \Rightarrow \underline{s} \leq \underline{I} \leq \overline{I} \leq \overline{s} \Rightarrow \underline{I} = \overline{I} = I$

По основной лемме Дарбу
$$\lim_{d\to 0} \underline{s} = \lim_{d\to 0} \overline{s} = I$$

По свойству 1 теоремы $3, \underline{s} \leq \sigma_f(\{x_k\}, \{\xi_k\}) \leq \overline{s} \Rightarrow \exists \lim \sigma_f(\{x_k\}, \{\xi_k\}) = I, \text{ т. е. } f \in \mathbb{R}[a, b]$

Теорема 5. Критерий интегрируемости в теминах верхних и нижних интегралов Дарбу $f \in \mathbb{R}[a,b] \iff \underline{I} = \overline{I}$

Доказательство. Необходимость.

Пусть $f \in \mathbb{R}[a,b] \Rightarrow$ по теореме $4 \forall \varepsilon \exists \{x_k\}, \, \text{что } \overline{s} - s < \varepsilon \Rightarrow I = \overline{I}$

Пусть
$$\underline{I} = \overline{I}$$
. По основной лемме Дарбу $\lim_{d \to 0} \underline{s} = \lim_{d \to 0} \overline{s} = I$. По теореме $3 \underline{s} \le \sigma_f \le \overline{s}$. По теореме о двух милиционерах $\lim_{d \to 0} \sigma_f = I$

1.3 Классы интегрируемых функций

Теорема 6. Если f(x) непрерывна на [a,b], то она интегрируема.

Доказательство. По теорема Кантора f(x) равномерно непрерывна на [a,b], т. е. $\forall \ \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0, \ \forall \ x_1, \ x_2 \in$ $[a,b]: |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$

Рассмотрим разбиение $\{x_k\}$ на [a,b] с мелкостью $d \leq \delta(\frac{\varepsilon}{b-a})$. Тогда $\overline{s} - \underline{s} = \sum_{k=1}^n (M_k - m_k) \Delta x_k$, где $M_k - m_k = 1$

$$\sup_{x\in[x_{k-1},x_k]}\{f(x)\}-\inf_{x\in[x_{k-1},x_k]}\{f(x)\}=\sup_{x_1,x_2\in[x_{k-1},x_k]}\{\underbrace{f(x_1)-f(x_2)}_{<\underbrace{\varepsilon}}\}\leq \frac{\varepsilon}{b-a}\ \Rightarrow\ \overline{s}-\underline{s}\leq \sum_{k=1}^n(M_k-m_k)\Delta x_k\leq \frac{\varepsilon}{b-a}*(b-a)=\varepsilon$$

Теорема 7. Если ограниченная функция f(x) монотонна на [a,b], то она интегрируема.

Доказательство. Пусть f(x) не убывает на [a,b]. Для $\forall \ \varepsilon > 0$ рассмотрим любое разбиение x_k на [a,b] с мелкостью $d \le \delta(\varepsilon) = \frac{\varepsilon}{f(b) - f(a)}$. Тогда $\overline{s} - \underline{s} = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k$.

Так как f(x) не убывает, то $\overline{s} - \underline{s} = \sum_{k=1}^{n} (M_k - m_k) \underbrace{\Delta x_k}_{z = s(s)} \le \frac{\varepsilon}{f(b) - f(a)} \sum_{k=1}^{n} (M_k - m_k) = \frac{\varepsilon}{f(b) - f(a)} (M_n - m_1)^* = \frac{\varepsilon}{f(b) - f(a)} (f(b) - m_1)^*$

По 1 критерию интегрируемости f(x) интегрируема.

*: действительно, $M_k = m_{k+1}$

Определение. Функция f(x) называется **почти везде непрерывной на** [a,b], если для $\forall \ \varepsilon > 0$ существует конечный набор интервалов суммарной длины $l < \varepsilon$, покрывающих все точки разрыва f(x).

Теорема 8. Если f(x) почти везде непрерывна на [a, b], то она интегрируема.

Доказательство. Для $\forall \varepsilon > 0$ рассмотрим конечный набор интервалов $J_j = (c_j, d_j)$, сумма длин которых $l = \sum_{i=1}^{q} |J_j| < 1$

 $\frac{\varepsilon}{2(M-m)}$, который покрывает все точки разрыва f(x). Здесь $M=\sup_{a\leq x\leq b}\{f(x)\},\ m=\inf_{a\leq x\leq b}\{f(x)\}$. (можно считать, что J_j не пересекаются) Тогда $[a,b]\setminus\bigcup_{q}^{j=1}J_j=I$ - объедиение отрезков, $I=\bigcup_{q+1}^{i=1}I_i$.

Рассмотрим f(x) на I_i . Она там непрерывна \Rightarrow по теореме Кантора f(x) равномерно непрерывна на I_i , т. е. для $\forall \ \varepsilon > 0 \ \exists \ \delta = \delta(\frac{\varepsilon}{2(b-a)}) > 0$, что для $\forall \ x', x'' \in I_i, \ |x'-x''| < \delta_i \ \Rightarrow \ |f(x') - f(x'')| < \frac{\varepsilon}{2(b-a)}$ Тогда для любого разбиения $\nu_i = \{\nu_{i_k}\}$ отрезка I_i с мелкостью $d_i < \delta_i(\frac{\varepsilon}{2(b-a)})$ для любых двух точек элементарного

отрезка разбиения $([\nu_{i_{k-1}}, \nu_{i_k}])$:

 $x', x'' \in [\nu_{i_{k-1}}, \nu_{i_k}] \Rightarrow |f(x') - f(x'')| < \frac{\varepsilon}{2(b-a)}.$

Переходя к sup, получим:

$$M_{i_k}(=\sup_{x\in[\nu_{i_{k-1}},\nu_{i_k}]}f(x))-m_{i_k}(=\inf_{x\in[\nu_{i_{k-1}},\nu_{i_k}]}f(x))=\sup_{x',x''\in[\nu_{i_{k-1}},\nu_{i_k}]}|f(x')-f(x'')|\leq \frac{\varepsilon}{2(b-a)} \tag{\#}$$

Возьмем теперь $0<\delta\leq \min_{1\leq i\leq q+1}\{\delta_i\}$ и рассмотрим на любом отрезке I_i разбиение мелкостью $d_i<\delta\Rightarrow$ для любого $i: 1 \le \le q+1$ выполняется (#)

Объединим все эти разбиения. Получится некоторое разбиение $\{y_k\}$ отрезка [a,b], в которое войдут замыкания выброшенных интервалов J_j . Пусть $\overline{s}, \underline{s}$ - суммы Дарбу этого разбиения. Тогда рассмотрим их разность: $\overline{s} - \underline{s} =$

орошенных интервалов
$$J_j$$
. Пусть S, \underline{S} - суммы дароу этого разонения. Тогда рассмотрим их разность. $S = \underline{S}$ $\underline{S} = \underline{S} = \sum_{k=1}^{N} (M_k - m_k) \Delta y_k = \sum_{[y_{k-1}, y_l] \subset \cup I_i} (M_k - m_k) \Delta y_k + \sum_{[y_{k-1}, y_k] \subset [\underline{a}, \underline{b}] \setminus \cup I_i} (M_k - m_k) \Delta y_k \leq \underline{\varepsilon} = \underline{S} = \underline$

$$+(M-m)\underbrace{\sum_{\substack{[y_{k-1},y_l]\subset \cup J_j\\ <\frac{\varepsilon}{2(M-m)}}} \Delta y_k < \frac{\varepsilon}{2(b-a)}(b-a) + \frac{\varepsilon}{2(M-m)}(M-m) = \varepsilon}$$

Теорема 9. Верно также следующее утверждение (без доказательства):

Eсли f(x) интегрируема на [a,b], а $\phi(y)$ - непрерывна на [m;M], то $\phi(f(x)) \in \mathbb{R}[a,b]$

Следствие: если $f \in \mathbb{R}[a,b]$, то и $\frac{1}{f}$ - тоже. $(f(x) \neq 0 \text{ на } [a,b])$.

1.4 Основные свойства определенных интегралов

Теорема 10. 7 свойств определенных интегралов

Соглашение: будем считать, что $\int\limits_a^a f(x)dx=0, \int\limits_b^a f(x)dx=-\int\limits_a^b f(x)dx$ (a < b)

- 1. Линейность: $\forall \ \alpha, \beta \in \mathbb{R}, \ f, g \in \mathbb{R}[a,b]$: $\int\limits_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int\limits_a^b f(x) + \beta \int\limits_a^b g(x) dx$
- 2. Интегрируемость произведения: если $f,g\in\mathbb{R}[a,b],$ то $fg\in\mathbb{R}[a,b]$
- 3. Аддитивность: если $f \in \mathbb{R}[a,b]$, то $f \in \mathbb{R}[c,d] \ \forall \ [c,d] \subset [a,b]$.

Кроме того, $\forall \ c \in (a,b) \int\limits_a^b f(x)df = \int\limits_a^c f(x)dx + \int\limits_c^b f(x)dx$

- 4. (a) Ecau $f \in \mathbb{R}[a,b]$ u $f(x) \ge 0$, $a \le x \le b \Rightarrow \int_a^b f(x)df \ge 0$
 - (b) Если f непрерывна и неотрицательна на [a,b], и существует $c,\ a \le c \le b,\ f(c) > 0,\ mo\int\limits_a^b f(x)dx > 0$
- 5. (a) Ecau $f,g \in \mathbb{R}[a,b], \ f(x) \leq g(x), \ a \leq x \leq b, \ mo \int_a^b f(x) dx \leq \int_a^b g(x) dx$
 - (b) Если f,g непрерывны на $[a,b],\ f(x) \leq g(x),\ \exists\ c \in [a,b]\colon f(x) < g(c),\ mo\int\limits_a^b f(x)dx < \int\limits_a^b g(x)dx$
- 6. Если f(x) неотрицательна и непрерывна на [a,b] и $\int\limits_a^b f(x)dx=0$, то $f(x)\equiv 0$ на [a,b]
- 7. Если $f \in \mathbb{R}[a,b]$, то $|f| \in \mathbb{R}[a,b]$. Кроме того, $|\int\limits_a^b f(x) dx| \leq \int\limits_a^b |f(x)| dx$

Доказательство.

1. Рассмотрим интегральные суммы функций $f, g, \alpha f, \beta g$ по некоторому размеченному разбиению ($\{x_k\}, \{\xi_k\}$):

$$\sigma_{\alpha f + \beta g} = \sum_{k=1}^{n} (\alpha f(\xi_k) + \beta g(\xi_k)) \Delta x_k = \alpha \sum_{k=1}^{n} f(\xi_k) \Delta x_k + \beta \sum_{k=1}^{n} g(\xi_k) \Delta x_k$$

Переходя к пределу при $d\mapsto 0$, получим требуемое равенство.

2. $f, g \in \mathbb{R}[a, b]$ Заметим, что $fg = \frac{1}{4}((f+g)^2 - (f-g)^2)$. По свойству 1, достаточно доказать, что если $f \in \mathbb{R}[a, b]$, то и $f^2 \in \mathbb{R}[a, b]$.

Предположим сначала, что $\sup\{f(x)\}=M>0$ и m>0. Пусть $\overline{s},\underline{s}$ - суммы Дарбу для f по $\{x_k\}$, а $\overline{s}',\underline{s}'$ - для f^2 .

$$\bar{s}' - \underline{s}' = \sum (\tilde{M}_k - \tilde{m}_k) \Delta x_k = \sum (M_k^2 - m_k^2) \Delta x_k = \sum \underbrace{(M_k + m_k)}_{\leq 2M} (M_k - m_k) \Delta x_k \leq 2M \underbrace{\sum (M_k - m_k) \Delta x_k}_{\bar{s} - s} < \varepsilon$$

при достаточно мелком разбиении, при котором $\overline{s} - \underline{s} < \frac{\varepsilon}{2M}$.

Пусть теперь M,m не обязательно больше нуля. Рассмотрим $\tilde{f}(x)=f(x)+\lambda$, где $\lambda\in\mathbb{R}$, что $\inf\{\tilde{f}(x)\}>0$. По предыдущему рассуждению \tilde{f}^2 интегрируема. Но тогда $\tilde{f}^2(x)=f^2(x)+2\lambda f(x)+\lambda^2\Rightarrow f^2(x)=\tilde{f}^2(x)-2\lambda f(x)-\lambda^2$ интегрируема как линейная комбинация интегрируемых функций.

3. (a) Пусть $a \le c \le d \le b$.

Рассмотрим любое разбиение $\{x_k\}$ на [a,b], содержащее точки c и d

$$(\overline{s} - \underline{s})_{[a,b]} = \sum_{c < x_{k-1} \le x_k < d} (M_k - m_k(\Delta x_k + \sum_{\underline{[x_{k-1}, x_k] \in [a, b] \setminus (c, d)}} (M_k - m_k)\Delta x_k$$

При этом

$$(\overline{s} - \underline{s})_{[c,d]} = (\overline{s} - \underline{s})_{[a,b]} - \gamma \le (\overline{s} - \underline{s})_{[a,b]} < \varepsilon$$

при достаточно малой мелкости разбиения $\{x_k\}$.

(b) Для любого c: a < c < b по предыдущему доказательству f интегрируема на [a,c] и [c,b]. Пусть задано размеченное разбиение $(\{x_k\}, \{\xi_k\}), c \in \{x_k\}$:

$$\sigma_f[a,b] = \sum_{k=1}^n f(\xi_k) \Delta x_k = \sum_{x_k \le c} f(\xi_k) \Delta x_k + \sum_{x_{k-1} \ge c} f(\xi_k) \Delta x_k$$

Переходя к пределу при $d\mapsto 0$, получим требуемое равенство.

4. (a)

$$f(x) \ge 0, \ a \le x \le b \stackrel{?}{\Rightarrow} \int_{a}^{b} f(x) dx \ge 0$$

Любая интегральная сумма:

$$\sigma_f(\{x_k\}, \{\xi_k\}) = \sum_{k=1}^n \underbrace{f(\xi_k) \Delta x_k}_{>0} \ge 0$$

Переходя к пределу при $d\mapsto 0$, получим требуемое равенство.

(b) $f \in \underbrace{C[a,b]}_{\text{непрерывные}}$, $f(x) \ge 0$, $a \le x \le b$, $\exists c \in [a,b]$, что $\underbrace{f(c)}_{=\gamma} > 0$

По теореме о сохранении знака непрерывных функций, $\exists \ \delta > 0$, что $f(x) \geq \frac{\gamma}{2}$ в $U_{\delta}(c)$ (Если c = a или c = b, то будем иметь в виду правую или левую окрестность c). Тогда

$$\int_{a}^{b} = \underbrace{\int_{a}^{c-\delta} f(x)dx}_{\geq 0} + \underbrace{\int_{c-\delta}^{c+\delta} f(x)dx}_{>\frac{\gamma}{2}2\delta > 0} + \underbrace{\int_{c+\delta}^{b} f(x)dx}_{\geq 0} > 0$$

- 5. (a) Пусть $f, g \in \mathbb{R}[a, b], \ f(x) \leq g(x) \ \forall \ x \in [a, b].$ Для доказательством воспользуемся свойством 4.а для функции $\phi(x) = g(x) f(x) \geq 0.$
 - (b) Пусть $f,g \in C[a,b], \ f(x) \leq g(x), \ \exists c \in [a,b]\colon f(c) < g(c).$ Для доказательства воспользуемся свойством 4.6 для функции $\phi(x) = g(x) f(x) \geq 0, \ \phi(c) > 0.$
- 6. Пусть $f \in C[a,b], \ f(x) \ge 0 \ \forall \ x \in [a,b], \ \int\limits_a^b f(x) dx = 0.$ Для доказательства предположим противное, т.е. пусть $\exists \ c \in [a,b] \colon f(c) > 0.$ Но тогда по свойству $4.6 \int\limits_a^b f(x) dx > 0.$ Противоречие.
- 7. Пусть $f \in \mathbb{R}[a,b]$. Для доказательства воспользуемся неравенством $||a|-|b|| \leq |a-b|$. В частности, $|a|-|b| \leq |a-b|$. Обозначим, как выше, для разбиения $\{x_k\}$ на [a,b] M_k , $m_k sup$, inf f(x) на $[x_{k-1},x_k]$. \tilde{M}_k , $\tilde{m}_k sup$, inf |f(x)| на $[x_{k-1},x_k]$. В силу равенства, $\forall \ x',x'' \in [x_{k-1},x_k]$: $||f(x')| |f(x'')|| \leq |f(x') f(x'')|$. Переходя к sup этих разносткй, получим:

$$\underbrace{\sup_{\underline{x',x''\in[x_{k-1},x_k]}}\{||f(x')|-|f(x'')||\}}_{=\tilde{M}_k-\tilde{m}_k}\leq\underbrace{\sup_{\underline{x',x''\in[x_{k-1},x_k]}}\{|f(x')-f(x'')|\}}_{=M_k-m_k}$$

Рассмотри разности сумм Дарбу: $\overline{s}, \underline{s}$ – для f(x) на $\{x_k\}$, $\overline{s}', \underline{s}'$ – для |f(x)| на $\{x_k\}$.

$$\overline{s}' - \underline{s}' = \sum_{k=1}^{n} (\tilde{M}_k - \tilde{m}_k) \Delta x_k \le \sum_{k=1}^{n} (M_k - m_k) \Delta x_k = \overline{s} - \underline{s} < \varepsilon \ \forall \ \varepsilon > 0$$

По критерию интегрируемости $f \exists \{x_k\} : \forall \varepsilon > 0 \exists \{x_k\}$ на $[a,b] : \overline{s}' - \underline{s}' < \varepsilon \Rightarrow$ по критерию интегрируемости |f(x)| интегрируема на [a,b].

Рассмотрим интегральные суммы по некоторому размеченному разбиению $(\{y_j\}, \{\xi_j\})$:

$$|\sigma_f(\{y_j\}, \{\xi_j\})| = |\sum_{j=1}^N f(\xi_j) \Delta y_j| \le \sum_{j=1}^N |f(\xi_j) \Delta y_j| = \sigma_{|f|}(\{y_j\}, \{\xi_j\})$$

Переходя к пределу при $d \mapsto 0$ в полученном неравенстве, получим требуемое неравенство.

Замечания:

1. Обратное утверждение к свойству 7, вообще говоря, неверно. Пример:

Рассмотрим функцию Дирихле:

$$D(x) = \begin{cases} -1, & x \in \mathbb{Q} \\ 1, & x \in \mathbb{R} \end{cases}$$

D(x) не интегрируема, так как $\forall \{x_k\}$ на [a,b] $\forall \{\xi_k\}$ — рациональные точки и $\forall \{j_k\}$ — иррациональные точки $\Rightarrow \sigma_D(\{x_k\}, \{\xi_k\}) = \sum\limits_{k=1}^n (-1)\Delta x_k = -(b-a); \ \sigma_D(\{x_k\}, \{j_k\}) = \sum\limits_{k=1}^n \Delta x_k = b-a,$ причем $\{x_n\}$ может быть любой мелкости $\Rightarrow \nexists \int\limits_a^b D(x) dx.$ Однако |D(x)| = 1 на $[a,b] \Rightarrow \int\limits_a^b |D(x)| dx = b-a.$

2. Композиция двух интегрируемых на [a,b] функций не обязательно интегируема.

Теорема 11. Первая теорема о среднем для определенного интеграла.

Пусть $f \in \mathbb{R}[a,b],\ g(x)$ не меняет знак на [a,b]. Тогда $\exists\ \mu \in [m,M]\colon \int\limits_a^b f(x)g(x)dx = \mu \int\limits_a^b g(x)dx$

Доказательство. Пусть $g(x) \geq 0$ на [a,b]. Так как $m \leq f(x) \leq M$, то $mg(x) \leq f(x)g(x) \leq Mg(x)$, $a \leq x \leq b$. Тогда по свойству 5

$$\int_{\underline{a}}^{b} mg(x)dx \le \int_{a}^{b} f(x)g(x)dx \le \int_{\underline{a}}^{b} Mg(x)dx$$

$$= m \int_{a}^{b} g(x)dx \qquad = M \int_{a}^{b} g(x)dx \qquad (\#)$$

Полагая, что $\int\limits_a^b g(x)dx \neq 0$, получим $m \leq \underbrace{\int\limits_a^b f(x)g(x)dx}_{a} \leq M$, то есть $\int\limits_a^b f(x)g(x)dx = \mu \int\limits_a^b g(x)dx$.

Если $g(x)dx \equiv 0$, то имеем в (#) все части равные 0, т. е. $\int\limits_a^b f(x)g(x)dx = 0$. Поэтому равенство $\int\limits_a^b \underbrace{f(x)g(x)}_{=0}dx = \mu \int\limits_a^b g(x)dx$ верно при любом μ .

Если $f(x) \leq 0$ на [a,b], то рассмотрим $(-g(x)) \geq 0$. Для нее формула верна: $\exists \ \mu, \int\limits_a^b f(x)(-g(x))dx = \mu \int\limits_a^b (-g(x))dx$. Вынесем (-1) и сократим \Rightarrow ЧТД.

Следствия.

- 1. Пусть $f(x) \in C[a,b]$. Тогда, так как $m \leq \mu \leq M$, то по непрерывности f(x) для $\forall \mu, m \leq \mu \leq M$, $\exists \xi \in [a,b] \colon f(\xi) = M \Rightarrow$ формула среднего значения имеет вид $\int\limits_a^b f(x)g(x)dx = f(\xi)\int\limits_a^b g(x)dx$.
- 2. Пусть $g(x) \equiv 1$ на $[a,b], \ f \in \mathbb{R}[a,b].$ Тогда по теореме 11 $\exists \ \mu, \ m \leq \mu \leq M$: $\int\limits_a^b f(x) dx = \mu(b-a) \left(= \mu \int\limits_a^b 1 dx \right)$. Если в этих условиях $f \in C[a,b],$ то $\exists \ \xi \in [a,b] \int\limits_a^b f(x) dx = f(\xi)(b-a)$.

1.5 Интеграл с переменным верхним(нижним) пределом

Определение. Интегралом с переменным верхним(нижним) пределом от f(x) называется функция $F(x) := \int\limits_a^x f(t)dt, \ a \leq x \leq b \ \left(G(x) := \int\limits_x^b f(t)dt, \ a \leq x \leq b \right)$

Теорема 12. Если $f \in \mathbb{R}[a,b]$, то $F(x) = \int_a^x f(t)dt$ непрерывен на [a,b].

Доказательство. $|\Delta F| = |F(x+\Delta x) - F(x)| = |\int\limits_a^{x+\Delta x} f(t)dt - \int\limits_a^x f(t)dt = |\int\limits_x^{x+\Delta x} f(t)dt| \le \int\limits_x^{x+\Delta x} |f(t)|dt \le (|f(t)| \le Q, \ a \le t \le b)$ $Q \int\limits_x^{x+\Delta x} 1dt = Q\Delta x \Rightarrow F(x)$ непрерывен в $\forall x$.

Если
$$\Delta x < 0$$
, то $|\Delta F| = |-\int\limits_{x+\Delta x}^x f(t)dt| = |\int\limits_x^{x+\Delta x} f(t)dt|$.

Теорема 13. Пусть $f(x) \in \mathbb{R}[a,b]$ и непрерывна в точке $x_0 \in (a,b)$. Тогда $\int_a^x f(t)dt = F(x)$ дифференцируема в точке x_0 , и $F'(x_0) = f(x_0)$.

Доказательство. Из условия непрерывности f(x) в точке x_0 следует, что $\forall \ \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0 \colon x - x_0 = \Delta x < \delta \Leftrightarrow f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$

$$\int_{x_0}^{x_0+\delta} (f(x_0) - \varepsilon) dx < \int_{x_0}^{x_0+\delta} f(x) dx < \int_{x_0}^{x_0+\delta} (f(x_0) + \varepsilon) dx$$

$$(f(x_0) - \varepsilon) \delta < \int_{x_0}^{x_0+\delta} f(x) dx < (f(x_0) + \varepsilon) \delta$$

$$f(x_0) - \varepsilon < \frac{\int_{x_0}^{x_0+\delta} f(x) dx}{\delta} < f(x_0) + \varepsilon$$

$$\delta = \Delta x$$

Таким образом,
$$f(x_0) - \varepsilon < \frac{\int\limits_{x_0}^{x_0+\delta} f(x)dx}{\delta} < f(x_0) + \varepsilon \Longrightarrow_{\Delta x \mapsto 0} |\frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} - f(x_0)| < \varepsilon \Rightarrow$$

$$\exists \underbrace{\lim_{\Delta x \mapsto 0} \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x}}_{=F'(x_0)} = f(x_0), \text{ т. e. } \exists F'(x_0) = f(x_0).$$

Замечание

Если f(x) непрерывна в точке a справа (в точке b слева), то аналогично можно показать, что $\exists F'(a+0) = f(a) \ (\exists F'(b-0) = f(a))$

Теорема 14. Вторая теорема о среднем для определенного интеграла. Пусть $f(x) \in \mathbb{R}[a,b]$, а g(x) монотонна на [a,b]. Тогда $\exists \xi \in (a,b)$, что

$$\int_{a}^{b} f(x)g(x)dx = g(a)\int_{a}^{\xi} f(x)dx + g(b)\int_{\xi}^{b} f(x)dx \tag{\heartsuit} (useuhume, hem "usemovka")$$

Замечание.

Eсли $g(x) \geq 0$ и не возрастает, или $g(x) \leq 0$ и не убывает, то (\heartsuit) имеет вид

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx$$

Доказательство. Эта теорема без доказательства.