

Исследование применимости специализации алгоритма Витерби скрытой марковской моделью

Автор: Иван Владимирович Тюляндин, 19.М07-мм Руководитель: к.ф.-м.н., доцент С.В. Григорьев Консультант: к.ф.-м.н., ст. преп. СПбГУ Д.А. Березун Рецензент: ст. преп. СПбПУ М.Х. Ахин

Санкт-Петербургский Государственный Университет Кафедра системного программирования

9 июня 2021

Введение

- Алгоритмы методами линейной алгебры (ЛА) на больших данных
- Любые улучшения критичны
 - оборудование
 - изменение алгоритма
- Часть данных может быть зафиксирована
- Применение специализации

Специализация

Два типа параметров

- статические т.е. зафиксированные
- динамические все остальные

Специализация

Техника преобразования программ для оптимизации использования статических данных с целью уменьшить количество вычислений

Применение специализации к алгоритмам, выраженными методами ЛА, не изучено

Алгоритм Витерби

• применяется во многих областях

• выражается методами ЛА

 два параметра: скрытая марковская модель (СММ) и последовательность наблюдений

 на практике СММ зафиксирована, меняется только последовательность

Цель и задачи

Цель работы

Исследовать применимость специализации к алгоритму Витерби, который описан методами ЛА, при условии, что СММ является статическим параметром

- сделать обзор предметной области
 - рассмотреть алгоритм Витерби и его существующие реализации
 - описать технику специализации
- разработать специализированный алгоритм Витерби, реализовать и протестировать корректность реализации
- провести эксперименты по сравнению производительности специализированного алгоритма с неспециализированной версией и существующими реализациями

Скрытая марковская модель

Скрытая марковская модель

Вероятностный детерминированный автомат, каждое состояние которого создает наблюдение

- S_{1...N} N состояний
- $O_{1..K} K$ возможных наблюдений
- $B_{1..N}$ вероятности для состояний $S_{1..N}$ быть стартовыми
- $T_{1..N,1..N}$ матрица переходов, $T_{i,j}$ это вероятность перехода из S_i в S_j
- $E_{1..N,1..K}$ матрица наблюдений, $E_{i,j}$ это вероятность создать наблюдение O_j в состоянии S_i

Алгоритм Витерби

СММ и последовательность наблюдений

Алгоритм Витерби, выраженный с помощью полукольца *Min-plus*

Для всех вероятностей p из СММ:

$$t(p) = \begin{cases} p > 0 : & -1 * log_2(p)) \\ p = 0 : & +\infty \end{cases}$$

Алгоритм Витерби методами ЛА

Для всех наблюдений о:

$$P(o) = \begin{pmatrix} t(E[1,o]) & \dots & +\infty \\ \vdots & \ddots & \vdots \\ +\infty & \dots & t(E[N,o]) \end{pmatrix}$$

Алгоритм Витерби методами ЛА

Обработка первого наблюдения из последовательности Obs:

$$Probs_1 = P(Obs[1]) \times B$$

Оставшаяся часть Obs:

$$Probs_t = P(Obs[t]) \times T^{\top} \times Probs_{t-1}$$

Алгоритм специализации

Как использовать данные СММ?

Для всех наблюдений о можно вычислить:

$$P(o) \times B$$
, далее как $PB(o)$

$$P(o) imes T^{ op}$$
, далее как $PT(o)$

Алгоритм Витерби первого уровня специализации

$$Probs_1 = PB(Obs[1])$$

$$Probs_t = PT(Obs[t]) \times Probs_{t-1}$$

Алгоритм специализации

Матричное умножение ассоциативно

Обработка o_1 и o_2 , если столбец $Probs_0$ известен?

$$Probs_{2} = PT(o_{2}) \times Probs_{1}$$

$$= PT(o_{2}) \times (PT(o_{1}) \times Probs_{0})$$

$$= (PT(o_{2}) \times PT(o_{1})) \times Probs_{0}$$
(1)

Можно вычислить $PT(o_2) \times PT(o_1)$. Два наблюдения одним умножением, т.е. второй уровень!

Этот подход можно применить для повышения уровня

Анализ операций

Пусть длина Obs обозначается как Io, количество состояний CMM как N, количество возможных наблюдений CMM как K

Неспециализированная версия

Матричных умножений:

$$1 + 2 * (lo - 1)$$

Специализированная версия уровня M

Матричных умножений:

$$(lo-1)/M + (lo-1) \mod M$$

Дополнительной памяти: K^M матриц, каждая $N \times N$

Реализация

Нужно и для CPU, и для GPGPU

Библиотеки SUITESPARSE:GRAPHBLAS и CUASR

Проведено тестирование

- на корректность реализации алгоритма Витерби
- на сохранение семантики
- отсутствие утечек памяти

- Ubuntu 20.04
 Intel Core i7-6700 3.40 ГГц, 64 Гб RAM
 NVIDIA GeForce GTX 1070, 8Гб, 1920 CUDA-ядер
- Сравнение специализированной версии с неспециализированной и CUDAMPF

- 24 CMM из репозитория CUDAMPF, 4 набора данных
- Медиана из 10 запусков

Рис. 1: GraphBLAS, набор данных из БД PFAM, меньше — лучше

Рис. 2: GraphBLAS, время на специализацию, меньше — лучше

Рис. 3: cuASR, набор данных из БД PFAM, меньше — лучше

Рис. 4: cuASR, время на специализацию, меньше — лучше

Результаты

- Выполнен обзор предметной области
- Реализованы и протестированы две реализации специализированного алгоритма Витерби
 - ► SUITESPARSE: GRAPHBLAS для выполнения на CPU
 - ▶ CUASR для выполнения на GPGPU
- Проведены эксперименты на данных из репозитория CUDAMPF

Специализированная версия алгоритма Витерби превосходит неспециализированную

SEIM 2021: статья Viterbi Algorithm Specialization Using Linear Algebra

Ответы на вопросы рецензента

- Подход не зависит от бионформатики и применим в областях, где СММ может быть фиксирована
- Не было найдено инструментов для специализации с возможностью оптимизации ЛА
- 🧿 На графиках указано время обработки без учёта специализации
- Точная причина не установлена
- Указано время для обработки СММ с кол-вом состояний менее 2000

Пример специализации: возведение в степень

```
function f(x, n)
  if n == 0 then 1
  elif even(x) then f(x, n/2)^2
  else x * f(x, (n-1)/2)^2
```

Предположим n=5, т.е. это статический параметр

```
function f_{spec}(x) = x * (x^2)^2
```

Специализация бесполезна, если x — статический параметр

СММ: пример

Вероятности быть стартовым состоянием

Н	L			
0.5	0.5			

Полукольцо Min-plus

Переопределяем '+' как min, '*' как plus, ∞ и 0 как нейтральные элементы

Пример матричного умножения

$$\begin{pmatrix} 0 & 1 \\ +\infty & 2 \end{pmatrix} \times \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} \min(0+3,1+4) \\ \min(+\infty+3,2+4) \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

О повышении уровня

Обработка o_{t-2} , o_{t-1} и o_t , если столбец $Probs_{t-3}$ известен?

$$Probs_t = PT(o_t) \times PT(o_{t-1}) \times PT(o_{t-2}) \times Probs_{t-3}$$
 (2)

Все произведения PT(o) могут быть вычислены по данным из СММ

СММ в БД PFAM

Рис. 5: График зависимости количества СММ от количества состояний в них

	CUDAMPF	неспец.	Ур. 1	Ур. 2
3 x 3500	4854	10765	8062	215329
3 x 7000	9209	21062	16152	387464
Набор из PFAM	8796	15864	12036	298269
50 x 3500	103036	176263	134259	2921104

Таблица 1: GraphBLAS, общее время обработки с учетом затрат времени на специализацию, мс

	CUDAMPF	неспец.	Ур. 1	Ур. 2
3 x 3500	3666	154415	77758	85977
3 x 7000	7053	305578	153216	145176
Набор из PFAM	6777	241687	114214	114766
50 x 3500	78930	2596532	1271980	1025473

Таблица 2: cuASR, общее время обработки с учетом затрат времени на специализацию, кол-во состояний СММ меньше 2000, мс