A Bayesian Analysis of Spotify Data

Nathaniel Maxwell, Jessie Bierschenk

30 April, 2021

Introduction

For many musicians, the art of composing/performing/marketing a new song is an arduous process. Even after all the work has been completed and a song is ready to be played to the public, the biggest uncertainty still awaits: How will the song be received? Will it become a hit? Will it be a song that everyone skips over, or never becomes popular? The purpose of this analysis is to investigate which characteristics of a song (such as tempo, duration, mode, acousticness, etc.) would make it more "likeable," less likely to be skipped, or more popular. Of course, music taste is a very subjective matter, and thus, there will be quite a bit of uncertainty around any variables that are deemed important/unimportant. What one person likes; another person may dislike. Therefore, looking at such musical characteristics through a Bayesian lens will help to quantify the uncertainty surrounding any of our findings. Through this analysis we hope to provide some conclusions that an aspiring musician (or even a well-established musician) can have at their disposal when creating new music.

Pre-Analysis

Data

Two datasets were utilized during this analysis.

- 1. The first dataset consists of 83,939 observations on Spotify of whether or not a track was skipped by users. In total, 65,417 different tracks were included in the dataset. Each track has the following characteristics:
 - (a) Release Year (Year the song was released)
 - (b) Duration (length of song in seconds)
 - (c) US Popularity Estimate (A popularity rating of song, on a scale 1-100)
 - (d) Acousticness (A confidence measure from 0-1 on whether the track is acoustic, where values near 1 represent high confidence that the track is acoustic)
 - (e) Beat Strength (The strength of the beat from 0-1, where 1 represents a very strong sense of beat)
 - (f) Bounciness (A rating of the bounciness from 0-1, where 1 represents a strong sense of bounciness)
 - (g) Danceability (A rating from 0-1 of how suitable the track is for dancing, where values near 1 represent high suitability)
 - (h) Energy (A rating from 0-1 representing a perceptual measure of intensity and activity, where values near 1 represent high energy)
 - (i) Instrumentalness (A rating from 0-1 that predicts whether a track has no vocals, where values close to 1 represent high confidence that there are no vocals)

- (j) Mode (Predicts whether or not a song is major or minor)
- (k) Speechiness (A rating from 0-1 that detects the presence of spoken words in a track, with values near 1 representing an exclusively speech-like track)
- (1) Tempo (The estimated tempo of the track in Beats Per Minute (BPM))
- (m) Valence (A rating from 0-1 that represents the positivity of the song, with 1 representing high positivity)
- (n) Skipped (Denotes whether or not that particular track was skipped or played the entire way through)

Note: in order to try to obtain tracks most representative of new music, only the following tracks were kept:

- (a) Tracks from 2010-present
- (b) Tracks with a speechiness value <= 0.4 (filters out tracks that are mostly spoken, such as podcasts and ebooks)
- (c) Tracks with an instrumentalness value <= 0.6 (filters out tracks that contain no vocals)
- (d) Tracks with a duration <= 360 seconds (given that the average new song is 3-5 minutes, a cutoff of 6 minutes seemed appropriate)
- 2. The second dataset consisted of 2017 songs compiled by a single person, where a portion of the songs are songs that he likes, and the other portion are songs that he dislikes. This dataset includes similar variables as the first dataset, including:
 - (a) Acousticness
 - (b) Danceability
 - (c) Duration
 - (d) Energy
 - (e) Instrumentalness
 - (f) Key (The particular grouping of chords and notes in a song)
 - (g) Liveness (rating from 0-1 of whether the track was performed live, with 1 representing high confidence the track was performed live)
 - (h) Loudness (Overall loudness of the track in decibles (dB))
 - (i) Mode
 - (j) Speechiness
 - (k) Tempo
 - (l) Time Signature (The way in which beats of the song are organized)
 - (m) Valence

Model Selection

For the first dataset, we wanted to estimate the values of the coefficients $\boldsymbol{\beta}$ for each of the variables to find out how they impact whether or not a track is skipped. We are assuming little knowledge about each variable's effect, so we propose a weakly informative prior for $[\boldsymbol{\beta}]$: Using recommendations from Gelman, Jakulin, Pittau, and Su, we use a cauchy(0,2.5) prior for each scaled variable (we scaled the variables). Our response variable, \mathbf{y} , will follow a logistic regression model, where 1 means the track was skipped. This is equivalent to the Bernoulli distribution $\mathbf{y}|\theta \sim Bern(\theta)$. We will use the logit link, where $logit(\theta) = \eta$, and $\eta = \mathbf{x}^T \boldsymbol{\beta}$, where \mathbf{x} is the covariate space for textbfY. Using the rstanarm package, Rstudio will compute the posterior and draw MCMC samples from the posterior distribution $[\boldsymbol{\beta}|\mathbf{Y}\$, \mathbf{X}]$.

```
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
```

Posterior Estimates


```
##
                              5%
                                   95%
## (Intercept)
                           0.535 0.823
## duration
                           0.043 0.272
## us_popularity_estimate -0.239 0.073
## acousticness
                          -0.108 0.162
                          -0.836 0.227
## beat_strength
## bounciness
                          -0.324 0.804
## danceability
                          -0.242 0.266
## energy
                          -0.055 0.246
                          -0.065 0.177
## instrumentalness
```

```
## modeminor
                          -0.302 0.156
                          -0.068 0.206
## speechiness
                          -0.130 0.120
## tempo
## valence
                          -0.116 0.143
## Computed from 4000 by 1000 log-likelihood matrix
##
##
            Estimate
                       SE
## elpd loo
              -654.9 10.2
## p_loo
                13.2 0.8
## looic
              1309.8 20.3
## -----
## Monte Carlo SE of elpd_loo is 0.1.
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
##
## Computed from 4000 by 1000 log-likelihood matrix
##
            Estimate
                       SE
              -648.5 9.3
## elpd_loo
## p_loo
                 1.0 0.0
## looic
              1296.9 18.6
## Monte Carlo SE of elpd_loo is 0.0.
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
##
              elpd_diff se_diff
                         0.0
## posterior0 0.0
## posterior1 -6.5
                         3.7
```

After running the rstanarm function and including all of the variables, we see that there is only variable whose 90% confidence interval does not include 0. That variable is duration, and furthermore, when calculating the 'leave-one-out' cross-validation information criterion (looic), we see that this model actually has a *higher* value than the looic of a baseline model with no predictors. In other words, our model is worse at predicting whether or not a song is skipped than if someone randomly guessed! Therefore, we will drop all variables that were not deemed significant at a 90% confidence interval (included 0 in their posterior interval), and rerun the model. In this case, 'duration' is the only variable remaining.

```
##
## Computed from 4000 by 1000 log-likelihood matrix
```

```
##
## Estimate SE
## elpd_loo -646.7 9.6
## p_loo 2.0 0.1
## looic 1293.4 19.3
## -----
## Monte Carlo SE of elpd_loo is 0.0.
##
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.</pre>
```

rstanarm::loo_compare(loo0, loo2)

```
## elpd_diff se_diff
## posterior2 0.0 0.0
## posterior0 -1.8 2.4
```

mcmc_areas(as.matrix(posterior2), prob = 0.90, prob_outer = 1)

round(posterior_interval(posterior2, prob = 0.90), 3)

```
## 5% 95%
## (Intercept) 0.524 0.739
## duration 0.047 0.268
```

This model proved to be better, but not by much. Furthermore, the p

```
## Instead of posterior_linpred(..., transform=TRUE) please call posterior_epred(), which provides equi
## [1] 0.65
## [1] 0.65
###New Data
#Drop un-needed variables
spotify1 \leftarrow spotify[-c(1,16,17)]
#View(spotify1)
spotify1$target <- factor(spotify1$target)</pre>
spotify1$mode <- factor(spotify1$mode)</pre>
spotify1$key <- factor(spotify1$key)</pre>
spotify1 <- spotify1 %>%
   mutate(duration_ms = duration_ms / 1000)
# scale the covariates for easier comparison of coefficient posteriors
spotify1$acousticness <- scale(spotify1$acousticness)</pre>
spotify1$danceability <- scale(spotify1$danceability)</pre>
spotify1$duration_ms <- scale(spotify1$duration_ms)</pre>
spotify1$energy <- scale(spotify1$energy)</pre>
spotify1$instrumentalness <- scale(spotify1$instrumentalness)</pre>
spotify1$liveness <- scale(spotify1$liveness)</pre>
spotify1$loudness <- scale(spotify1$loudness)</pre>
spotify1$speechiness <- scale(spotify1$speechiness)</pre>
spotify1$tempo <- scale(spotify1$tempo)</pre>
spotify1$valence <- scale(spotify1$valence)</pre>
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat bin()' using 'bins = 30'. Pick better value with 'binwidth'.
```


Model Info:

function: stan_glm

family: binomial [logit]

formula: target ~ .
algorithm: sampling

sample: 4000 (posterior sample size)
priors: see help('prior_summary')

observations: 2017
predictors: 24

##

##

Estimates:

	Doumarco.					
##		mean	sd	10%	50%	90%
##	(Intercept)	0.4	0.8	-0.7	0.4	1.4
##	acousticness	-0.4	0.1	-0.5	-0.4	-0.3
##	danceability	0.3	0.1	0.2	0.3	0.4
##	duration_ms	0.2	0.1	0.2	0.2	0.3
##	energy	0.1	0.1	0.0	0.1	0.2
##	${\tt instrumentalness}$	0.4	0.1	0.3	0.4	0.4
##	key1	-0.3	0.2	-0.5	-0.3	0.0
##	key2	0.5	0.2	0.2	0.5	0.8
##	key3	-0.6	0.3	-1.0	-0.6	-0.2
##	key4	0.0	0.3	-0.3	0.0	0.3
##	key5	-0.1	0.2	-0.3	-0.1	0.2
##	key6	-0.2	0.2	-0.5	-0.2	0.1
##	key7	0.0	0.2	-0.3	0.0	0.2

```
## key8
                   -0.1
                            0.2 - 0.4 - 0.1
                                             0.2
## key9
                            0.2 - 0.1
                                      0.2
                                             0.4
                     0.2
                            0.2 - 0.2
## key10
                     0.1
                                      0.1
                                             0.4
                            0.2 -0.3 -0.1
## key11
                   -0.1
                                             0.2
## liveness
                     0.1
                            0.1 0.0
                                      0.1
                                            0.1
## loudness
                            0.1 -0.5 -0.4 -0.3
                   -0.4
## mode1
                   -0.2
                            0.1 -0.3 -0.2 -0.1
## speechiness
                            0.1 0.3
                     0.3
                                      0.3
                                            0.4
                           0.1 0.0
## tempo
                     0.1
                                      0.1
                                             0.2
## time_signature
                     0.0
                            0.2 - 0.3
                                      0.0
                                            0.2
## valence
                     0.2
                            0.1 0.1
                                      0.2
                                             0.3
##
## Fit Diagnostics:
                               50%
                                      90%
##
                     sd
                          10%
## mean_PPD 0.5
                  0.0 0.5
                            0.5
                                  0.5
##
## The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for de
## MCMC diagnostics
##
                   mcse Rhat n_eff
## (Intercept)
                   0.0 1.0 6427
## acousticness
                   0.0 1.0 5178
## danceability
                        1.0 4508
                   0.0
## duration_ms
                        1.0 7388
                   0.0
## energy
                   0.0
                        1.0 3166
## instrumentalness 0.0
                        1.0 6279
## key1
                   0.0
                        1.0
                             1729
## key2
                        1.0
                             2056
                   0.0
## key3
                   0.0 1.0
                             3784
## key4
                   0.0 1.0
                             2661
## key5
                   0.0
                        1.0
                             2200
## key6
                   0.0 1.0
                             2169
## key7
                   0.0
                        1.0
                             2015
## key8
                        1.0
                             2316
                   0.0
## key9
                   0.0
                        1.0
                             1983
## key10
                   0.0 1.0 2432
## key11
                   0.0 1.0 1986
## liveness
                   0.0 1.0 6678
## loudness
                   0.0 1.0
                             3862
## mode1
                   0.0 1.0 6291
                   0.0 1.0 6375
## speechiness
## tempo
                   0.0
                        1.0 8025
                   0.0 1.0 7416
## time_signature
## valence
                   0.0 1.0 4655
                   0.0 1.0 5700
## mean_PPD
## log-posterior
                   0.1 1.0 1719
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample
```


##	(Intercept)	aco	ousticness	danceability	duration_ms
##	0.371		-0.409	0.321	0.230
##	energy	instru	mentalness	key1	key2
##	0.105		0.356	-0.261	0.507
##	key3		key4	key5	key6
##	-0.611		-0.001	-0.066	-0.167
##	key7		key8	key9	key10
##	-0.024		-0.138	0.152	0.091
##	key11		liveness	loudness	mode1
##	-0.064		0.066	-0.422	-0.198
##	speechiness		tempo	time_signature	valence
##	0.348		0.105	-0.046	0.194
##		5%	95%		
##	(Intercept)	-0.964	1.736		
##	acousticness	-0.522	-0.295		
##	danceability	0.224	0.423		
##	duration_ms	0.137	0.324		
##	energy	-0.050	0.250		
##	${\tt instrumentalness}$	0.262	0.454		
##	key1	-0.576	0.054		
##	key2	0.147	0.865		
##	key3	-1.151	-0.083		

-0.418 0.410

-0.431 0.303

key4

key5

```
## key9
                    -0.195 0.503
                    -0.311 0.489
## key10
                   -0.417 0.299
## key11
## liveness
                    -0.017 0.149
## loudness
                    -0.561 -0.282
## mode1
                    -0.369 -0.028
## speechiness
                    0.263 0.438
## tempo
                     0.022 0.191
## time_signature
                    -0.380 0.280
## valence
                     0.093 0.289
(loo3 <- loo(posterior3, save_psis = TRUE))</pre>
##
## Computed from 4000 by 2017 log-likelihood matrix
##
            Estimate
                       SE
           -1268.1 17.0
## elpd_loo
## p_loo
                25.0 0.6
              2536.3 34.1
## looic
## Monte Carlo SE of elpd_loo is 0.1.
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## Computed from 4000 by 2017 log-likelihood matrix
##
           Estimate SE
##
## elpd_loo -1398.9 0.5
## p_loo
                 1.0 0.0
## looic
              2797.9 1.0
## ----
## Monte Carlo SE of elpd_loo is 0.0.
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
              elpd_diff se_diff
## posterior3
                 0.0
                           0.0
## posterior4 -130.8
                          17.1
## Instead of posterior_linpred(..., transform=TRUE) please call posterior_epred(), which provides equi
## [1] 0.676
## [1] 0.667
```

key6

key7

key8

-0.536 0.196

-0.374 0.314

-0.523 0.248