High-Accuracy Low-Precision Training

Chris De Sa*, **Megan Leszczynski**, Jian Zhang, Chris Aberger, Matt Feldman, Alana Marzoev*, Kunle Olukotun, Chris Ré

Stanford University
*Cornell University

"Neural network **predictions** often don't require the precision of floating point calculations with 32-bit or even 16-bit numbers. With some effort, you may be able to use **8-bit integers** to calculate a neural network **prediction** and still maintain the appropriate level of accuracy."

Kaz Sato, Cliff Young, and David Patterson, "An in-depth look at Google's first Tensor Processing Unit", Google Cloud Big Data and Machine Learning Blog

Low Precision: The best thing since sliced bread

But there's no free lunch...

Training usually requires at least 16 bits.

Optimization

minimize
$$f(w) = \frac{1}{N} \sum_{i=1}^{N} f_i(w)$$
 over $w \in \mathbb{R}^d$

But there's no free lunch...

Or is there? HALP outperforms SGD and LP-SGD.

Update Steps

$$w_{t+1} = w_t - \alpha \nabla f_{i_t}(w_t)$$

$$w_{t+1} = w_t - \alpha \nabla f_{i_t}(w_t)$$

3.

4.

5.

Where do SGD algorithms fall short?

(1) SGD algorithms converge slower(2) SGD algorithms converge to a higher noise floor

Challenge 1: High Gradient Variance

SGD's small batch size:

Computational cost

Gradient variance

Convergence rate

Noise floor

Low precision introduces even more variance!

Idea 1: Use Stochastic Variance Reduced Gradient (SVRG).

SVRG converges faster than SGD

SVRG is proven to converge at a linear rate due to reduced variance.

Stochastic Variance Reduced Gradient (SVRG)

```
for k=1 to K: \widetilde{w}=w \widetilde{g}=\text{full gradient over the dataset} for t=1 to T: do SVRG update step
```

SVRG works really
well on many
applications with
large variance!

$$w_{t+1} = w_t - \alpha(\nabla f_{i_t}(w_t) - \nabla f_{i_t}(\tilde{w}_t) + \tilde{g})$$

Tradeoff: How often do you take the full gradient? Conventionally, T = 2N to 5N where N = dataset size.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems, pp. 315–323, 2013.

Update Steps

1. SGD

3. SVRG

4. LP-SVRG

$$w_{t+1} = w_t - \alpha \nabla f_{i_t}(w_t)$$

$$w_{t+1} = w_t - \alpha \nabla f_{i_t}(w_t)$$

$$w_{t+1} = w_t - \alpha(\nabla f_{i_t}(w_t) - \nabla f_{i_t}(\tilde{w}_t) + \tilde{g})$$

$$w_{t+1} = w_t - \alpha(\nabla f_{i_t}(w_t) - \nabla f_{i_t}(\tilde{w_t}) + \tilde{g})$$

= Low-precision

LP-SVRG hits an accuracy limit

Simply making the weights low-precision as in LP-SGD and LP-SVRG is not enough.

Challenge 2: Static Representable Numbers

Idea 2: Use Bit Centering.

points representable in low-precision arithmetic

bound on solution

global solution

19

points representable in low-precision arithmetic

For strongly convex objectives with strong convexity constant μ , bound the location of the optimum with

 μ becomes a hyperparameter for non-strongly convex objectives.

HALP = SVRG + Bit Centering

```
for k=1 to K:  \widetilde{g} = \text{full gradient over the dataset}    \widetilde{w} = \widetilde{w} + z \text{ (bit center)}    \text{for } t=1 \text{ to T:}    \text{do HALP update step}
```

- Up to 4x faster than full-precision SVRG on convex problems with a C++ implementation using AVX2
- Can converge at a linear rate using low precision

Store $z = w - \widetilde{w}$ instead of w

z is the dynamically changing low-precision representation

$$z_{t+1} = z_t - \alpha(\nabla f_{i_t}(\tilde{w}_t + z_t) - \nabla f_{i_t}(\tilde{w}_t) + \tilde{g})$$

HALP is dependent on conditioning

Tradeoff: The number of bits needed for HALP's linear convergence depends on the condition number.

Future work: should preconditioning techniques be combined with low-precision training?

HALP surpasses the accuracy limitation

HALP can provably converge at a linear rate.

Update Steps

1. SGD

3. SVRG

4. LP-SVRG

5. HALP

$$w_{t+1} = w_t - \alpha \nabla f_{i_t}(w_t)$$

$$w_{t+1} = w_t - \alpha \nabla f_{i_t}(w_t)$$

$$w_{t+1} = w_t - \alpha \nabla f_{i_t}(w_t)$$

$$w_{t+1} = w_t - \alpha(\nabla f_{i_t}(w_t) - \nabla f_{i_t}(\tilde{w_t}) + \tilde{g})$$

$$w_{t+1} = w_t - \alpha(\nabla f_{i_t}(w_t) - \nabla f_{i_t}(\tilde{w_t}) + \tilde{g})$$

$$z_{t+1} = z_t - \alpha(\nabla f_{i_t}(\tilde{w}_t + z_t) - \nabla f_{i_t}(\tilde{w}_t) + \tilde{g})$$

where
$$z_t = w_t - ilde{w}_t$$

= Low-precision

Deep Learning Results

CNN: HALP versus Full-Precision Algorithms

14-layer ResNet on CIFAR10

HALP matches the training loss and validation accuracy of SGD and SVRG.

CNN: HALP versus Low-Precision Algorithms

14-layer ResNet on CIFAR10

HALP exceeds the training loss and validation accuracy of LP-SGD and LP-SVRG.

LSTM: HALP versus Full-Precision Algorithms

2-layer LSTM on TinyShakespeare

HALP matches SVRG and outperforms SGD in training loss, but reaches a larger (worse) validation perplexity than both.

LSTM: HALP versus Low-Precision Algorithms

2-layer LSTM on TinyShakespeare

HALP outperforms LP-SVRG and LP-SGD in training loss, while matching LP-SVRG and outperforming LP-SGD in validation perplexity.

Wrap-Up

- HALP = SVRG + Bit Centering
- For convex problems, HALP can converge at a linear rate while using low precision
- Promising results on deep learning
- Future work: More deep learning simulation & FPGA results coming soon

Learn more!

Blog: http://dawn.cs.stanford.edu/2018/03/09/low-precision/

Paper: https://arxiv.org/abs/1803.03383

Contact: <u>mleszczy@stanford.edu</u>

Megan Leszczynski