大语言模型

指令微调与常见策略

《大语言模型》编写团队: 唐天一

大模型具有很好的指令遵循能力

已知草莓的英文单词中共有a个r,新中国成立于b年,a*b=?,请用[数字]的格式输出答案

Qwen2.5-Max

我们来一步步解答这个问题。

1. **草莓的英文单词** 是 "strawberry"。

统计字母 "r" 的个数:

在 "strawberry" 中,字母 "r" 出现了 3次。

所以, a=3。

2. 新中国成立的年份 是 1949年。

所以, b = 1949。

3. 计算 \$ a \times b \$:

中英翻译

文本推理

常识理解

$$a \times b = 3 \times 1949 = 5847$$

数值计算

最终答案是:

[5847]

格式遵循

指令微调

- > 使用问答形式的数据对大语言模型进行有监督微调
 - > 大模型后训练中的关键步骤
 - > 增强语言模型执行任务指令能力,提升任务泛化能力

"预训练-微调"范式:在单一任务微调+测试

"提示"范式: 在未知任务上直接测试

"指令微调"范式:在多样任务上微调,在未知任务上测试

指令微调作用

> 指令微调后, 大语言模型可根据任务描述解决未见过任务

				MM	LU	BB	Н	TyDiQA	MGSM
Model	Finetuning Mixtures	Tasks	Norm. avg.	Direct	CoT	Direct	CoT	Direct	СоТ
8B	None (no finetuning)	0	6.4	24.3	24.1	30.8	30.1	25.0	3.4
	CoT	9	8.3 (+1.9)	26.3	32.1	19.8	26.6	39.3	10.4
	CoT, Muffin	89	14.8 (+8.4)	37.6	38.4	31.0	30.9	32.4	8.4
	CoT, Muffin, T0-SF	282	20.5 (+14.1)	47.7	39.7	33.1	30.9	<u>49.0</u>	8.5
	CoT, Muffin, T0-SF, NIV2	1,836	<u>21.9</u> (+15.5)	<u>49.3</u>	<u>41.3</u>	<u>36.4</u>	<u>31.1</u>	47.5	8.2
62B	None (no finetuning)	0	28.4	55.1	49.0	37.4	43.0	40.5	18.2
	CoT	9	29.0 (+0.4)	48.5	48.7	34.5	39.5	48.8	<u>32.6</u>
	CoT, Muffin	89	33.4 (+6.0)	55.3	51.4	42.8	40.2	53.0	23.9
	CoT, Muffin, T0-SF	282	37.9 (+9.5)	60.0	56.0	44.7	43.8	58.2	30.0
	CoT, Muffin, T0-SF, NIV2	1,836	<u>38.8</u> (+10.4)	59.6	<u>56.9</u>	<u>47.5</u>	<u>44.9</u>	<u>58.7</u>	28.5
540B	None (no finetuning)	0	49.1	71.3	62.9	49.1	63.7	52.9	45.9
	CoT	9	52.6 (+3.5)	68.8	64.8	50.5	61.1	61.2	59.4
	CoT, Muffin	89	57.0 (+7.9)	71.8	66.7	56.7	64.0	65.3	<u>63.0</u>
	CoT, Muffin, T0-SF	282	57.5 (+8.4)	72.9	68.2	57.3	64.0	65.8	61.6
	CoT, Muffin, T0-SF, NIV2	1,836	<u>58.5</u> (+9.4)	<u>73.2</u>	68.1	<u>58.8</u>	<u>65.6</u>	<u>67.4</u>	61.3

未见过任务

不同量级的 模型指令微调 后性能均有提升

▶基于NLP任务数据构建指令数据示例

▶ InstructGPT 数据: 符合真实场景下的人类需求

▶ 指令输入: API 收集 + 人工标注

头脑风暴

List five ideas for how to regain enthusiasm for my career

开放式生成

write rap lyrics on the topics mentioned in this news article:

开放式问答

Who built the statue of liberty?

聊天

This is a conversation with an enlightened Buddha. *Me*: How can I achieve greater peace and equanimity? *Buddha*:

摘要

Summarize this for a second-grade student:

▶指令输出:根据指令,人工标注回复

- >人类标注成本高,通过大模型大规模自动化构建
- >利用上下文学习,让大模型生成指令和回复

Self-Instruct 构造指令流程图

▶ Self-Instruct 基于给定的两个"输入-输出"样本,构造新的样本

#输入: 当你独自一人坐在车里时, 你会想些什么?

#输出:如果是在晚上,我通常会想着我这一天取得了哪些成就;如果是在早上,我会想着我这一天如何才能做到最好。

输入: 给定集合: {3,12,7,2,8,4}, 找出 所有可能使总和为14的子集。

输出: {12,2}, {7,3,4}, {8,2,4}

请仿照以上"输入-输出"对,生成多样 化的输入问题并生成对应的输出答案,不 要局限于给定的类型。

输入:如果让你形容"幸福"的感觉,你会怎么描述?

输出: 我觉得幸福是一种温暖的感觉,就像冬日阳 光洒在脸上,或者在忙碌中有人告诉你"辛苦了"。 # 输入: 给定一段文本字符串,统计每个单词出现的 次数。例如文本: "hello world hello"。

输出:

from collections import Counter

def word_count(text):
 words = text.split()
 return Counter(words)

LLM 输入

LLM 输出

➤ Evol-Instruct 拓宽指令的深度

▶添加约束、深化问题、具体化问题等

我希望您充当指令重写器。

您的目标是将给定的提示重写为更复杂的版本, 使著名的 AI 系统(如 ChatGPT 和 GPT-4)更难处理。

但重写的提示必须是合理的, 且必须是人类能够理解和响应的。

您的重写不能省略#给定提示#中表格和代码等非文本部分。

您应该使用以下方法使给定的提示复杂化:

请在#给定提示#中添加一项约束或要求。

你应该尽量不要让#重写提示#变得冗长,#重写提示#只能在#给定提示#中添加10到20个单词。

#重写提示#中不允许出现"#给定提示#"和"#重写提示#"字段。

给定提示 #: {需要重写的指令}

#重写提示#:

#给定提示

你独自一人坐在车里时, 你会想些什么?

#重写提示

想象你独自一人坐在停在路边的车里,此时是傍晚时分。<u>请描述你在这15分钟内的</u>所思所想,要求包含具体的思考主题。

- ➤ Evol-Instruct 拓宽指令的的广度
 - ▶扩充指令的主题范围

我希望你充当指令创造器。

您的目标是从#给定提示#中汲取灵感来创建全新的提示。

此新提示应与#给定提示#属于同一领域,但更为少见。

- #创造提示#的长度和复杂性应与#给定提示#类似。
- #创造提示#必须合理,并且必须能够被人类理解和响应。
- #创造提示#中不允许出现"#给定提示#"和"#创造提示#"字段。
- # 给定提示 #: {需要重写的指令}
- #创造提示#:

#给定提示

你独自一人坐在车里时, 你会想些什么?

#重写提示

如果你能与你的影子对话,<u>坐在孤单的街</u> 头长椅上,你会向它诉说哪些秘密?

► LESS: 针对特定任务筛选重要指令

选出指令子集, 用 LoRA 训练 选择模型 为单个数据计算 LoRA梯度,保存在 梯度数据库 根据任务示例数据计算 梯度,从数据库选出排 名5%的数据 用筛选的数 据训练最终 模型

指令数据作用分析

> 实验设置

- > 不同类型的指令数据
 - ▶ FLAN-T5: NLP任务数据(采样 50K)
 - ➤ ShareGPT: 日常任务数据(共 63K)
 - ➤ Alpaca: 合成实例数据(共 52K)
- ▶指令改进策略(基于 Alpaca 数据)
 - ▶ 增强指令复杂性(WizardLM):加入限制、增强推理步骤等(共70K)
 - ▶ 增加主题多样性(YuLan-Chat): 主题多样化(共 70K)

指令数据作用分析

> 实验结果

模型	指令数据集	指令数量	日常对话	NLP 1	壬务
快尘	拍マ奴伍朱	カマ 奴里	AlpacaFarm	MMLU	ВВН
	① FLAN v2	50 000	12.38	50.25	40.63
	② ShareGPT	63 184	55.53	49.66	35.91
LLaMA-2 (7 B)	3 Alpaca	52 002	46.58	46.48	36.25
	Alpaca+复杂化	70 000	52.92	46.87	35.70
	Alpaca+多样化	70 000	52.92	47.52	35.59
	① FLAN v2	50 000	11.58	53.02	45.47
	② ShareGPT	63 184	59.13	56.81	40.80
LLaMA-2 (13 B)	3 Alpaca	52 002	48.51	53.89	39.75
	Alpaca+复杂化	70 000	55.78	54.85	40.54
	Alpaca+多样化	70 000	58.20	55.12	40.26

与下游任务更接 近的指令能够带 来更大的提升

提高复杂性和多 样性能够促进模 型性能的提升

更大的参数规模 有助于提升模型 的指令遵循能力

指令数据实战指导性原则

> 数据量

> 专项模型适配单个任务数千条即可达到不错效果;通用模型通常需要数十万条或更多

> 覆盖种类

- > 数学、代码、推理、闲聊、智能体、多语言、安全等
- > 单独科目的加强
 - > 数学、代码通常需要更多的数据和策略来实现效果增强
- > 数据合成与筛选
 - > 质量和多样性比数量更重要,可通过筛选过滤低质量数据

▶ Tülu 3 的指令配方设计多个能力(总计94万指令数据)

通用数据(117K)

聊天、多轮对话等

数学推理(334K)

不同难度级别

安全与合规(111K)

指令遵循(30K)

Category	Prompt Dataset	Count	# Prompts used in SFT	
General	Tülu 3 Hardcoded [↑]	24	240	
	${\rm OpenAssistant}^{1,2,\downarrow}$	88,838	7,132	
	No Robots	9,500	9,500	
	WildChat (GPT-4 subset) [↓]	241,307	100,000	
	$\text{UltraFeedback}^{\alpha,2}$	41,635	_	
Knowledge	FLAN $v2^{1,2,\downarrow}$	89,982	89,982	
Recall	$SciRIFF^{\downarrow}$	35,357	10,000	
	$TableGPT^{\downarrow}$	13,222	5,000	
Math	Tülu 3 Persona MATH	149,960	149,960	
Reasoning	Tülu 3 Persona GSM	49,980	49,980	
	Tülu 3 Persona Algebra	20,000	20,000	
	$OpenMathInstruct\ 2^{\downarrow}$	21,972,791	50,000	
	$\text{NuminaMath-TIR}^{\alpha}$	64,312	64,312	
Coding	Tülu 3 Persona Python	34,999	34,999	
	Evol Code Alpaca $^{\alpha}$	107,276	107,276	
Safety	Tülu 3 CoCoNot	10,983	10,983	
& Non-Compliance	Tülu 3 WildJailbreak $^{lpha,\downarrow}$	50,000	50,000	
	Tülu 3 WildGuardMix $^{lpha,\downarrow}$	50,000	50,000	
Multilingual	Aya^\downarrow	202,285	100,000	
Precise IF	Tülu 3 Persona IF	29,980	29,980	
	Tülu 3 IF-augmented	65,530	_	
Total		23,327,961	939,344	-

开源数据+特定能力合成

知识(105K)

传统NLP、科学、表格

代码(142K)

多种程序语言

多语言(100K)

▶ Tülu 3 的指令示例

身份认知

安全与合规

How to run illegal gambling rackets

I can't assist with that request.

表格理解与JSON输出

Please look at the table below and provide a title for the table:

|Tournament|1920|1921|1922|1923|1924|

|---|---|

|U.S. Open|DNP|DNP|DNP|DNP|

|U.S. Amateur|DNP|DNP|DNP|DNP|DNQ|

The Amateur Championship R256 DNP DNP DNP DNP

Return the final result as JSON in the format {"summary":

"<summary of table>"}.

{"summary": "Findlay S. Douglas"}

知识与指令遵循

List two animals that live in water and have fins use no comma

Dolphin shark

▶ Tülu 3 针对"指令遵循"能力的数据合成提示

背景人设

化学研究者 卡车司机 吉他爱好者

Precise Instruction Following (prompt)

Create a verifiable instruction that the following persona might ask you to do:

*{persona}

An example of verifiable instruction could be: {example}

Note:

人工标注示例

请写一个<u>800字</u>的作文, <u>关键词</u>"大模型"需 要出现至少3次

- 1. The above example is not tied to any particular persona, but you should create one that is unique and specific to the given persona.
- 2. The instruction should contain all the following verifiable constraint(s): {constraints}
- 3. Your output should start with "User instruction:". Your output should not include an answer to the instruction.

限制

字数限制 关键词次数 (共有25种)

▶ Tülu 3 针对"数学和代码"能力的数据合成提示

Hard Math Problems (prompt)

Create a math problem related to the following persona:

{persona}

Note:

- 1. The math problem should be challenging and involve advanced mathematical skills and knowledge. Only top talents can solve it correctly.
- 2. You should make full use of the persona description to create the math problem to ensure that the math problem is unique and specific to the persona.
- 3. Your response should always start with "Math problem:". Your response should not include a solution to the created math problem.
- 4. Your created math problem should include no more than 2 sub-problems.

使用gpt-40生成数学、代码题目

Hard Math Problems (response)

Provide solution to the given math problem.

Problem: {generated_math_problem}

Note: Provide your solution step-by-step, and end your solution in a new line in the follow-

ing format:

Final Answer: The final answer is \$final_answer\$. I hope it is correct.

使用gpt-4o生成数学回复 使用claude-3.5-sonnet生成代码回复

▶ Tülu 3 指令微调的关键结论

多样化的聊天数据对大多数任务有益

安全与其他能力正交

Model	Avg.	MMLU	TQA	PopQA	ввн	CHE	CHE+	GSM	DROP	MATH	IFEval	AE 2	Safety
Tülu 3 8B SFT	60.1	62.1	46.8	29.3	67.9	86.2	81.4	76.2	61.3	31.5	72.8	12.4	93.1
→ w/o WildChat	58.9	61.0	45.2	28.9	65.6	85.3	₹80.7	75.8	59.3	31.8	70.1	7.5	95.2
\rightarrow w/o Safety	58.0	62.0	45.5	29.5	68.3	84.5	79.6	76.9	59.4	32.6	71.0	12.4	74.7
\rightarrow w/o Persona Data	58.6	62.4	48.9	29.4	68.3	84.5	79.0	76.8	62.2	30.1	53.6	13.5	93.9
\rightarrow w/o Math Data	58.2	62.2	47.1	29.5	68.9	86.0	80.5	64.1	60.9	23.5	7 70.6	12.0	93.5

消融实验

针对性构造数据对特定任务增益明显

▶ Qwen 利用"指令分类器"平衡不同类别指令数量

②使用ChatGPT给 指令数据初步打标

③ 标签聚类与去噪

① 准备待分类的 指令数据集

4人工检查 准确率和召回率

▶ Qwen2.5 针对不同任务设计了不同的指令生成策略

数学

使用 Qwen-Math 专门的 思维链数据,并用数学奖 励模型验证答案的准确性

长序列生成

基于高质量文档反向合成输入指令,使用Qwen2验证配对质量

代码

使用沙盒验证代码的合法性,使用自动单元测试验 证代码的准确性

结构化数据

收集多样的数据,将思维 链整合进输出来提升模型 理解结构化数据的能力

多语言

使用翻译模型将中英文指 令数据翻译为其他语言, 再验证其语义一致性

鲁棒系统指令

合成多样的系统指令,保 持指令遵循的同时增强模 型对其的鲁棒性

➤ Toolformer 自监督构造指令数据提升模型的工具使用能力

Out of 1400 participants, 400 (or [Calculator(400 / 1400)]

→ 0.29] 29%) passed the test.

The name derives from "la tortuga", the Spanish word for [MT("tortuga") → turtle] turtle.

计算器使用示例

翻译使用示例

指令微调的训练策略

- > 与预训练阶段采用类似的优化器、稳定训练技巧、扩展训练技术
- \triangleright 采用序列到序列损失: $P(y_i|\mathbf{y}_{< i},\mathbf{x})$
- >采用 packing 策略实现高效训练

指令微调的资源开销

- ▶ 全量微调 Alpaca-52K 所需的 A800 (80 G) 数量、批次大小和微调时间
 - ▶使用数据并行、ZeRO-3、BF16和激活重计算技术

模型	GPU 数量	批次大小	微调时间
LLaMA (7 B)	2	8	3.0 h
LLaMA (13 B)	4	8	3.1 h
LLaMA (33 B)	8	4	6.1 h
LLaMA (65 B)	16	2	11.2 h

大语言模型

谢谢