Script Documentation: MNIST Digit Classifier using TensorFlow and Keras

Overview

This Python script implements a simple neural network using TensorFlow and Keras to classify handwritten digits from the MNIST dataset. The script includes data preprocessing, model definition, training, evaluation, and visualization of performance metrics.

Dependencies

Install required packages:

pip install tensorflow matplotlib

Dataset

The script uses the MNIST dataset, which contains 60,000 training images and 10,000 test images of handwritten digits (0 through 9). Each image is 28x28 pixels.

Script Workflow

- 1. Load the MNIST dataset using TensorFlow/Keras.
- 2. Normalize the image pixel values to the range 0–1.
- 3. Define a neural network model with the following layers:
- Flatten: Converts 28x28 image into a 1D vector.
- Dense (128 neurons): Hidden layer with ReLU activation.
- Dense (10 neurons): Output layer with softmax activation.
- 4. Compile the model with Adam optimizer and sparse categorical crossentropy loss function.
- 5. Train the model for 5 epochs with 20% of training data used for validation.
- 6. Evaluate the model on test data and print the test accuracy.
- 7. Plot training/validation accuracy and loss graphs.

Model Architecture

- Input Layer: Flatten layer with input_shape=(28, 28)
- Hidden Layer: Dense layer with 128 neurons and 'relu' activation
- Output Layer: Dense layer with 10 neurons and 'softmax' activation

Visualization

The script generates two plots after training:

- Accuracy over epochs (training vs validation)

- Loss over epochs (training vs validation)

Model Evaluation

After training, the model is evaluated on the test set using `model.evaluate()`. The script prints the test accuracy.

How to Run

Ensure TensorFlow and matplotlib are installed, then run the script using Python:

python mnist_classifier.py

Notes

- Ensure you have a stable internet connection when loading the MNIST dataset for the first time.
- The training might take longer depending on your hardware (CPU vs GPU).