An analysis of anonymity and unlinkablility for a VoIP conversation

Ge Zhang

ge.zhang@kau.se

Karlstad University

Outlines

- Background of VoIP
- Previous work
- Analysis of caller/callee anonymity
- Requirement on a VoIP Anonymization Service (VAS)
- Conclusions and future work

Backgournd of VoIP (1)

- VoIP procotcols, By IETF, Not SKYPE!
 - SIP: Session Initiation Protocol
 - SDP: Session Desicription protocol
 - RTP: Realtime Transport Protocol
- Pro and con of VoIP

Backgournd of VoIP (2)

Backgournd of VoIP (3)

Backgournd of VoIP (4)

INVITE sip:bob@mit.edu SIP/2.0

From: sip:alice@kau.se; tag=1b34283

To: sip:bob@mit.edu

Call-Id: 1-15673@1.2.3.4

Contact: <sip:alice@1.2.3.4:5069>

Content-Type: application/sdp

•••

V=0

o=alice 2891234526 2891234526 IN IP4 alice.kau.se

s=Let us talk for a while

c=IN IP4 1.2.3.4

t=00

m=audio 20002 RTP/AVP 0

Backgournd of VoIP (3)

- Signaling level: the caller, the intermediaries, the callee
- Session level: the caller and the callee

Previous work (1)

- J. Peterson, "A Privacy Mechanism for the Session Initiation Protocol (SIP)", RFC 3323, Nov, 2002.
- Caller anonymity (3 privacy preferences)
 - vs. callee
 - vs. intermediaries
 - vs. both of them
- 2 methods to reach privacy protection
 - User provided privacy (minimize PII in a SIP request)
 - Networking provided privacy (a TTP)

Previous work (1)

- The problem of RFC 3323
 - Have to trust a single TTP
 - There is no detailed privacy analysis.
 - Only caller anonymity, no callee anonymity

Analysis of caller/callee anonymity (1)

- Item of Interest (IOI)
- Attackers
- Links
 - 1,2,3: contain
 - 4:contain, calling records
 - 5: WHOIS lookup, IPlocation database, transaction links.
 - 6: relationship

Analysis of caller/callee anonymity (2)

- To break links
 - 1, 2, 3: unlikely
 - 4: weak-linked SIP URI
 - 5: weak-linked IP address
 - 6: Open SP

Analysis of caller/callee anonymity (3)

Requirements on a VAS

- Basic requirements
 - Compliant to VoIP protocols
 - UDP support
 - No single TTP
- Requirements on performance
 - Network delay: <400ms.
- Requirements on usability
 - Predefined privacy settings
 - Less waiting time

Conclusion and future work

Conclusion

- Problems of previous mechanism
- An anlysis of VoIP anonymity
- Summarized further requirements for a VoIP anonymization service.

Future work

- Which topology should be employed?
 - Core-based? (like Tor, JAP)
 - P2P-based? (like Tazan, Crowds)
- Performance optimization: (1) a metrics to model performance and anonymity; (2) a heuristic algorithm to trade off performance and anonymity by nodes selection