4. Berechnung von Energieübertragungsanlagen und -netzen

4.1. Aufbereitung des Netzes

Es wird eine symmetrische Betriebsweise des Netzes vorausgesetzt. Dies ist erfüllt, wenn sämtliche Betriebsmittel im Netz und Verbraucher in ihrem dreiphasigen Aufbau vollkommen symmetrisch sind. Es genügt dann die einphasige Nachbildung des Netzes, wie in Kapitel 2 beschrieben.

4.1.1. Netzauftrennung

Das gesamte westeuropäische Hochspannungsnetz ist zusammengeschaltet \Rightarrow Verbundnetz. An der Leistungsflußverteilung (Lastfluß) sind deshalb alle Kraftwerke, Netze und Verbraucher beteiligt. Für die Berechnung wird ein Ausschnitt des Netzes mit sinnvoller Trennung an den Übergabestellen gewählt. Für abgetrennte Netzteile wird die Übergabeleistung S_i vorgegeben (Netzeinspeisung) nach Abbildung 4.1.

4.1.2. Topologie und Elemente des Netzes

Die Topologie des Netzes bzw. der Übertragungsanlage wird folgendermaßen in die Berechnung eingeführt:

1. Knotenpunkte

werden eingeführt und durchnummeriert: Einspeisepunkte, Abnahmepunkte, Übergabestellen, Verbindung von Netzelementen, Sammelschienen.

2. Netzelemente

werden durch Ersatzschaltungen dargestellt und als per-unit-Werte auf eine Spannungsebene umgerechnet:

- Leitungen: π-Glied nach 2.1
- Transformatoren: T-Glied mit Übersetzung nach 2.2

Drosselspulen: Impedanzen nach 2.3

Kondensatoren: nach 2.4

3. Kraftwerke und Netzeinspeisungen (siehe 2.5 und 2.6):

Generatoren werden, soweit möglich, zusammengefaßt und ihre Einspeiseleistungen \underline{S}_i angegeben. Für Netzeinspeisungen wird ihre Leistung \underline{S}_i angesetzt. Da die Spannung nur wenig von der Nennspannung abweicht, wird diese Leistung über den Strom \underline{I}_i dieses Knotenpunktes berechnet (keine Ersatzspannungsquelle).

4. Verbraucher (siehe 2.7):

Einzelne Verbraucher werden zu Netzlasten in Knotenpunkten zusammengefaßt (evtl. durch Verwerfen) und durch die aufgenommene Leistung gekennzeichnet.

Die über den Transformator abgenommene Netzlast eines Niederspannungsnetzes kann unterschiedlich von der Spannung abhängen, zumal noch der Spannungsregler des Transformators eingreift. Es wird deshalb bei der Lastflußberechnung mit einer abgenommenen Leistung gerechnet, die unabhängig von der Spannung ist. Diese läßt sich am besten durch einen Belastungsstrom am Knotenpunkt darstellen, also nicht als Ersatzimpedanz.

Knotenpunktströme werden gleichartig angesetzt für Netzlast (Verbraucher) und Einspeisung. Verwendet wird das Verbraucherzählpfeilsystem:

- positiver Strom für Netzlast
- negativer Strom f
 ür Einspeisung

()

Abbildung 4.1: Netzausschnitt mit Größen zur Lastflußberechnung

4.2. Knotenpunkt-Verfahren (Potential-Verfahren)

4.2.1. Vollständige Knotenpunkt-Admittanz-Matrix (KAM)

- 1. Aus den Streckenimpedanzen $\underline{z}_{jk}^{(s)}$ der Netzelemente werden Streckenadmittanzen $\underline{y}_{jk} = 1/\underline{z}_{jk}^{(s)}$ gebildet und zwischen Knoten j und k geschaltet.
- 2. Die Queradmittanzen \underline{y}_Q aller an den Knoten j angrenzenden Leitungen und Transformatoren werden zu einer Queradmittanz \underline{y}_{j0} des Knotens j zusammengefaßt. Dies ergibt ein Vierpolnetz. Das Zweipolnetz entsteht, wenn diese Queradmittanzen vernachlässigt werden.
- 3. Bei den Transformatoren wird zunächst $\underline{t} = 1$ gesetzt, so daß die idealen Übertrager entfallen können. Die Berücksichtigung der Übersetzung wird in Abschnitt 4.2.3 gezeigt.
- 4. Die Neutrale ist der Bezugsknoten 0 mit dem Potential 0. Die Spannung \underline{u}_j ist die Potentialdifferenz zwischen dem Knotenpunkt j und dem Bezugsknoten 0. Durch diesen Ansatz der Spannungen ist die Bedingung für die Maschen von selbst erfüllt. Es muß dann noch die

Stromsumme an den Knoten gebildet werden. Die inneren Ströme i_{jk} im Netzwerk lassen sich durch die Spannungen \underline{u}_j , \underline{u}_k und die Admittanzen \underline{y}_{jk} ausdrücken, treten also im Gleichungssystem nicht auf.

5. An sämtlichen Knoten werden abfließende Ströme *i*, (Knotenpunktströme) eingetragen. Lastströme sind positiv, einspeisende Ströme negativ einzusetzen. Die Stromsummen für die Knoten werden gebildet und ergeben die Knotenpunkt-Gleichungen.

Abbildung 4.2: Beispielnetz

Die Knotenpunkt-Gleichungen:

$$\frac{\underline{u}_{1}}{-(\underline{y}_{10} + \underline{y}_{12} + \underline{y}_{14})} \quad \underline{\underline{u}_{2}} \quad \underline{\underline{u}_{3}} \quad \underline{\underline{u}_{4}} \qquad \underline{\underline{i}_{1}} \\
\underline{y}_{12} \quad -(\underline{y}_{20} + \underline{y}_{12} + \underline{y}_{23} + \underline{y}_{24}) \quad \underline{y}_{23} \quad \underline{\underline{y}_{24}} \qquad \underline{\underline{i}_{2}} \qquad \underline{\underline{i}_{2}} \qquad \underline{\underline{i}_{2}} \qquad \underline{\underline{i}_{3}} \\
\underline{y}_{14} \quad \underline{\underline{y}_{23}} \quad -(\underline{y}_{30} + \underline{y}_{23} + \underline{y}_{34}) \quad \underline{\underline{y}_{34}} \qquad \underline{\underline{i}_{3}} \qquad \underline{\underline{i}_{3}} \qquad \underline{\underline{i}_{3}} \qquad \underline{\underline{i}_{3}} \qquad \underline{\underline{i}_{4}}$$

Der Zusammenhang zwischen den Knotenpunkt-Spannungen und den Knotenpunkt-Strömen für ein Netz mit n Knoten lautet in Matrizenform geschrieben:

$$\begin{pmatrix}
\underline{y}_{11} & \underline{y}_{12} & \cdots & \underline{y}_{1n} \\
\underline{y}_{21} & \underline{y}_{22} & \cdots & \underline{y}_{2n} \\
\vdots & \vdots & & \vdots \\
\underline{y}_{n1} & \underline{y}_{n2} & \cdots & \underline{y}_{nn}
\end{pmatrix} \cdot \begin{pmatrix}
\underline{u}_{1} \\
\underline{u}_{2} \\
\vdots \\
\underline{u}_{n}
\end{pmatrix} = \begin{pmatrix}
\underline{i}_{1} \\
\underline{i}_{2} \\
\vdots \\
\underline{i}_{n}
\end{pmatrix}$$
(4.2)

Kurzschreibweise:
$$(\underline{y}) \cdot (\underline{u}) = (\underline{i})$$
 (4.3)

Dabei ist (y) die Knotenpunkt-Admittanz-Matrix KAM.

Ihr Bildungsgesetz lautet:

- Außenelement der Matrix (\underline{y}) : Koppeladmittanz \underline{y}_{jk} = Admittanz, die die jeweiligen Knoten j und k miteinander verbindet.
- Diagonalelement der Matrix (\underline{y}) : Eigenadmittanz \underline{y}_{jj} = negative Summe aller Admittanzen, die mit dem Knoten j verbunden sind.

$$\underline{y}_{jj} = -\sum_{\substack{k=0\\k\neq j}}^{n} \underline{y}_{jk} \tag{4.4}$$

4.2.2. Verkürzte Knotenpunkt-Admittanz-Matrix

Beim Zweipolnetz, bei dem die Verbindungen zum Bezugspunkt 0 nicht vorhanden sind (Admittanzen $y_{j0} = 0$), ist die Matrix singulär (Determinante = 0, Gleichungssystem überbestimmt). In den Netzen der elektrischen Energieversorgung sind die Verbindungen zwar vorhanden (Vierpolnetz), aber die Admittanzen y_{j0} sind klein gegenüber allen übrigen Admittanzen. Die Matrix ist daher fast singulär (Determinante ≈ 0). Deshalb wird an einem Knotenpunkt die Spannung u_j (Referenzspannung) vorgegeben. Damit reduziert sich das Gleichungssystem, und es tritt die verkürzte Knotenpunkt-Admittanz-Matrix (y_v) auf, die nicht singulär ist und deshalb invertiert werden kann.

An dem Knoten mit der Referenzspannung, dem Potentialknoten, kann keine Leistung vorgegeben werden, sondern diese ergibt sich aus der Lastflußberechnung. Man wählt deshalb hierfür einen Knoten mit einem leistungsfähigen Kraftwerk als Bilanzkraftwerk (Slack-Generator), damit dieses die Leistungsbilanz des Netzes erfüllen kann.

Im obigen Beispiel sei am Knotenpunkt n dieser Slack-Generator angeschlossen. Damit wird eine Unbekannte (hier die Spannung u_n) festgelegt.

Aus Gleichung (4.2) bzw. (4.3) wird herausgenommen:

$$\underline{i}_{n} = \underline{y}_{n1}\underline{u}_{1} + \underline{y}_{n2}\underline{u}_{2} + \dots \underline{y}_{nn}\underline{u}_{n} \tag{4.5}$$

und es bleibt mit m = n-1

د) حوال

$$\begin{pmatrix}
\underline{y}_{11} & \underline{y}_{12} & \cdots & \underline{y}_{1m} \\
\underline{y}_{21} & \underline{y}_{22} & \cdots & \underline{y}_{2m} \\
\vdots & \vdots & & \vdots \\
\underline{y}_{m1} & \underline{y}_{m2} & \cdots & \underline{y}_{mm}
\end{pmatrix}
\cdot
\begin{pmatrix}
\underline{u}_{1} \\
\underline{u}_{2} \\
\vdots \\
\underline{u}_{m}
\end{pmatrix} =
\begin{pmatrix}
\underline{i}_{1} \\
\underline{i}_{2} \\
\vdots \\
\underline{i}_{m}
\end{pmatrix}
-
\underline{u}_{n}
\cdot
\begin{pmatrix}
\underline{y}_{1n} \\
\underline{y}_{2n} \\
\vdots \\
\underline{y}_{mn}
\end{pmatrix}$$
(4.6)

Kurzschreibweise:
$$(y_n) \cdot (\underline{u}_{1,m}) = (\underline{i}_{1,m}) - \underline{u}_n \cdot (y_n)$$
 (4.7)

(y) ist die verkürzte Knotenpunkt-Admittanz-Matrix.

Spannungsdifferenzen eingeführt:

1. Zeile aus Gleichung (4.2) mit Spannungsdifferenz gegen \underline{u}_n :

$$\underline{y}_{11} \cdot (\underline{u}_{1} - \underline{u}_{n}) + \underline{y}_{12} \cdot (\underline{u}_{2} - \underline{u}_{n}) + \dots + \underline{y}_{1n} \cdot (\underline{u}_{n} - \underline{u}_{n})
= \underline{i}_{1} - (\underline{y}_{11} + \underline{y}_{12} + \dots + \underline{y}_{1n}) \cdot \underline{u}_{n}
= \underline{i}_{1} - \sum_{v=1}^{n} \underline{y}_{1v} \cdot \underline{u}_{n}
= \underline{i}_{1} - (-\underline{y}_{10} - \underline{y}_{12} - \dots - \underline{y}_{1n} + \underline{y}_{12} + \dots + \underline{y}_{1n}) \cdot \underline{u}_{n}
= \underline{i}_{1} + \underline{y}_{10} \cdot \underline{u}_{n}$$
(4.8)

Damit Spannungsdifferenzen mit verkürzter Knotenpunkt-Admittanz-Matrix (Transformatorübersetzungen t = 1):

$$\begin{pmatrix}
\underline{y}_{11} & \underline{y}_{12} & \cdots & \underline{y}_{1m} \\
\underline{y}_{21} & \underline{y}_{22} & \cdots & \underline{y}_{2m} \\
\vdots & \vdots & & \vdots \\
\underline{y}_{m1} & \underline{y}_{m2} & \cdots & \underline{y}_{mm}
\end{pmatrix}
\cdot
\begin{pmatrix}
\underline{u}_{1} - \underline{u}_{n} \\
\underline{u}_{2} - \underline{u}_{n} \\
\vdots \\
\underline{u}_{m} - \underline{u}_{n}
\end{pmatrix}
=
\begin{pmatrix}
\underline{i}_{1} \\
\underline{i}_{2} \\
\vdots \\
\underline{i}_{m}
\end{pmatrix}
+
\underline{u}_{n}
\cdot
\begin{pmatrix}
\underline{y}_{10} \\
\underline{y}_{20} \\
\vdots \\
\underline{y}_{m0}
\end{pmatrix}$$
(4.9)

Kurzschreibweise:
$$(\underline{y}_{n}) \cdot (\underline{u}_{1,m} - \underline{u}_{n}) = (\underline{i}_{1,m}) + (\underline{y}_{0}) \cdot \underline{u}_{n}$$
 (4.10)

4.2.3. Transformatoren mit Übersetzungsverhältnis t

a) Beschreibungsgleichung

Halbidealer Transformator mit bezogener Kurzschlußspannung \underline{u}_k und komplexem Übersetzungsverhältnis $\underline{\ddot{u}} = \underline{U}_{n1}/\underline{U}_{21}$ (Leerlaufspannungen).

Kurzschlußimpedanz
$$\underline{Z}_T = \underline{u}_k \cdot \frac{U_{n1}^2}{S_{nT}}$$

Abbildung 4.3: Transformator-Ersatzschaltbild

Knotenpunkt-Admittanz-Matrix: $Y_T = 1/Z_T$

(J.

$$\begin{pmatrix} -\underline{Y}_T & \underline{Y}_T \\ \underline{Y}_T & -\underline{Y}_T \end{pmatrix} \cdot \begin{pmatrix} \underline{U}_1 \\ \underline{U}_2 \end{pmatrix} = \begin{pmatrix} \underline{I}_1 \\ \underline{I}_2 \end{pmatrix}$$

Übersetzung in Matrix übernommen: $\underline{\ddot{u}} \cdot \underline{\ddot{u}}^* = \ddot{u}^2$

$$\begin{pmatrix} -\underline{Y}_{T} & \underline{\ddot{u}} \cdot \underline{Y}_{T} \\ \underline{\ddot{u}}^{*} \cdot \underline{Y}_{T} & -\ddot{u}^{2} \cdot \underline{Y}_{T} \end{pmatrix} \cdot \begin{pmatrix} \underline{U}_{1} \\ \underline{U}_{2} \end{pmatrix} = \begin{pmatrix} \underline{I}_{1} \\ \underline{I}_{2} \end{pmatrix}$$

$$(4.11)$$

b) Beschreibungsgleichung in per-unit-Werten

Mit den Bezugsspannungen $U_{\rm B1}$ und $U_{\rm B2}$ der angrenzenden Spannungsebenen wird die per-unit-Übersetzung:

$$\underline{t} = \underline{\ddot{u}} \cdot \frac{U_{B2}}{U_{B1}}$$

und damit die Knotenpunkt-Admittanz-Matrix:

$$\begin{pmatrix} -\underline{y}_{T} & \underline{t} \cdot \underline{y}_{T} \\ \underline{t}^{*} \cdot \underline{y}_{T} & -t^{2} \cdot \underline{y}_{T} \end{pmatrix} \cdot \begin{pmatrix} \underline{u}_{1} \\ \underline{u}_{2} \end{pmatrix} = \begin{pmatrix} \underline{i}_{1} \\ \underline{i}_{2} \end{pmatrix}$$

$$(4.12)$$

c) Anwendung im Netz

Abbildung 4.4: Netzausschnitt mit Stelltransformator

Ausschnitt aus der Knotenpunkt-Admittanz-Matrix des Netzes:

Die Elemente der Knotenpunkt-Admittanz-Matrix sind beim Transformator entsprechend Gleichung (4.11) zu bilden. Dann kann mit der Matrix normal weitergerechnet werden.

d) Verkürzte KAM mit Spannungsdifferenzen beim Transformator

Nach 4.2.2 sind die Elemente y_{j0} im Spaltenvektor (y_0) der Gleichungen (4.9) und (4.10) zu berechnen aus:

$$\underline{y}_{j0} = -\sum_{v=1}^{n} \underline{y}_{jv}$$

Transformator im Netz zwischen Knoten j und k: Knoten j (nicht stellbar), geändertes Element

$$\underline{y}_{j0}' = -\left[\underline{y}_{j1} + \underline{y}_{j2} + \dots + \left(\underline{-y}_{j0} - \underline{y}_{j1} - \underline{y}_{j2} - \dots - \underline{y}_{T} - \dots - \underline{y}_{jn}\right) \\
+ \underline{t} \cdot \underline{y}_{jt} + \dots + \underline{y}_{jn}\right] \\
\underline{y}_{j0}' = \underline{y}_{j0} + (1 - \underline{t}) \cdot \underline{y}_{T}$$

$$(4.14)$$

Knoten k (stellbar), geändertes Element

$$\underline{y}_{k0} = -\left[\underline{y}_{k1} + \underline{y}_{k2} + \dots + \underline{t} * \cdot \underline{y}_{T} + \dots + (-\underline{y}_{k0} - \underline{y}_{k1} - \underline{y}_{k2} - \dots - |\underline{t}|^{2} \cdot \underline{y}_{T} - \dots - \underline{y}_{kn}\right]$$

$$\underline{y}_{k0} = \underline{y}_{k0} + \underline{t} * \cdot (\underline{t} - 1) \cdot \underline{y}_{T}$$
(4.15)

Nach Berücksichtigung des Übersetzungsverhältnisses $t \neq 1$ in diesem Knoten am Transformator kann mit Gleichung (4.9) und (4.10) normal weitergerechnet werden.

e) Strom im Transformatorzweig

ab Knoten
$$j$$
: $\underline{i}_{jk} = \underline{y}_{\underline{I}} \cdot (\underline{u}_j - \underline{t} \cdot \underline{u}_k)$
ab Knoten k : $\underline{i}_{kj} = \underline{y}_{\underline{I}} \cdot (|\underline{t}|^2 \cdot \underline{u}_k - \underline{t}^* \cdot \underline{u}_j) = -\underline{t}^* \cdot \underline{i}_{jk}$ (4.16)

4.2.4. System-Impedanz-Matrix (z)

Die gesuchten Spannungen $(u_{1,m})$ erhält man aus Gleichung (4.6) bzw. (4.7) zu

$$(\underline{u}_{1,m}) = (\underline{y}_{\nu})^{-1} \cdot \left[(\underline{i}_{1,m}) - \underline{u}_{n} \cdot (\underline{y}_{n}) \right]$$

$$(4.17)$$

oder die Spannungsdifferenzen aus Gleichung (4.9) bzw. (4.10)

$$(\underline{u}_{1,m} - \underline{u}_n) = (\underline{y}_{\nu})^{-1} \cdot \left[(\underline{i}_{1,m}) + \underline{u}_n \cdot (\underline{y}_0) \right]$$
(4.18)

Die verkürzte Knotenpunkt-Admittanz-Matrix (y_v) muß dazu invertiert werden. Ein Verfahren hierzu wird im Seminar gezeigt. Die damit berechnete Matrix ist die System-Impedanz-Matrix (z)

$$(\underline{z}) = (y_{u})^{-1}$$

System-Impedanz-Matrix zur Berechnung der Knotenpunktspannungen:

$$\begin{pmatrix}
\underline{u}_{1} \\
\underline{u}_{2} \\
\vdots \\
\underline{u}_{n-1}
\end{pmatrix} = \begin{pmatrix}
\underline{z}_{11} & \underline{z}_{12} & \cdots & \underline{z}_{1,n-1} \\
\underline{z}_{21} & \underline{z}_{22} & \cdots & \underline{z}_{2,n-1} \\
\vdots & \vdots & & \vdots \\
\underline{z}_{n-1,1} & \underline{z}_{n-1,2} & \cdots & \underline{z}_{n-1,n-1}
\end{pmatrix} \cdot \begin{pmatrix}
\underline{i}_{1} - \underline{y}_{1n} \cdot \underline{u}_{n} \\
\underline{i}_{2} - \underline{y}_{2n} \cdot \underline{u}_{n} \\
\vdots \\
\underline{i}_{n-1} + \underline{y}_{n-1,n} \cdot \underline{u}_{n}
\end{pmatrix}$$

$$(4.19)$$

oder zur Berechnung der Differenzspannungen

$$\begin{pmatrix}
\underline{u}_{1} - \underline{u}_{n} \\
\underline{u}_{2} - \underline{u}_{n} \\
\vdots \\
\underline{u}_{n-1} - \underline{u}_{n}
\end{pmatrix} = \begin{pmatrix}
\underline{z}_{11} & \underline{z}_{12} & \cdots & \underline{z}_{1,n-1} \\
\underline{z}_{21} & \underline{z}_{22} & \cdots & \underline{z}_{2,n-1} \\
\vdots & \vdots & & \vdots \\
\underline{z}_{n-1,1} & \cdots & \underline{z}_{n-1,n-1}
\end{pmatrix} \cdot \begin{pmatrix}
\underline{i}_{1} + \underline{y}_{10} \cdot \underline{u}_{n} \\
\underline{i}_{2} + \underline{y}_{20} \cdot \underline{u}_{n} \\
\vdots \\
\underline{i}_{n-1} + \underline{y}_{n-1,n} \cdot \underline{u}_{n}
\end{pmatrix} (4.20)$$

Diese kennzeichnet das Netz, weil sie angibt, wie die einzelnen Knotenpunktströme die Spannungen beeinflussen. Die Elemente z_{jk} der System-Impedanz-Matrix haben negative Vorzeichen und die Dimension einer Impedanz. Der Wert der Elemente entspricht im allgemeinen nicht einer im Netz vorkommenden Impedanz, sondern einer Ersatzimpedanz in Bezug auf das betrachtete Klemmenpaar.

Auch andere Verfahren, zum Beispiel das Maschenverfahren (Kreisströme), führen auf dieselbe System-Impedanz-Matrix des Netzes.

Beachten:

 \underline{y}_{j0} muß die Transformatorübersetzung t nach Gleichung (4.14) und Gleichung (4.15) enthalten. Die nach Gleichung (4.13) in die KAM eingeführten Übersetzungen sind in die Werte der Elemente \underline{z}_{jk} eingegangen.

4.2.5. Leitungsströme und Leistungsfluß

Abbildung 4.5: Beispiel für zwei Leitungen: $\underline{y}_{j0} = \underline{y}_{ji0} + \underline{y}_{jk0}$

Wenn die Spannungen $(u_{1,m})$ berechnet sind, können daraus die weiteren gewünschten Größen bestimmt werden. Da für die Leitungen die Vierpoldarstellung in π -Schaltung gewählt wird, setzt sich die Queradmittanz y_{j0} aus den Anteilen mehrerer Leitungen zusammen.

Der Leitungsstrom zwischen den Knoten j und k ist

$$\underline{i}_{jk} = \underline{y}_{jk} \cdot (\underline{u}_j - \underline{u}_k) + \underline{y}_{jk0} \cdot \underline{u}_j \tag{4.21}$$

im allgemeinen ist

 $\underline{i}_{jk} \neq \underline{i}_{kj}$

Ströme über Transformatorzweige sind nach Gleichung (4.16) in 4.2.3 zu berechnen. Der Leistungsfluß zwischen den Knoten ist dann

$$\underline{s}_{jk} = \underline{u}_j \cdot \underline{t}_{jk}^* \tag{4.22}$$

4.2.6. Zahlenbeispiel für Leitungsnetz

4.6: Abbildung Beispielnetz

Leiterimpedanz: $\underline{Z}_i = (0.157 + j \cdot 0.410) \frac{\Omega}{\text{km}} = 0.439 \angle 69^\circ \frac{\Omega}{\text{km}}$

Bezogene Admittanz: $\underline{U}_B = 110 \text{ kV}, \ \underline{S}_B = 100 \text{ MVA} \implies \frac{U_B^2}{S_B} = 121 \Omega$

$$\underline{y} = \frac{1}{\underline{Z}'_{L} \cdot l} \cdot \frac{U_{B}^{2}}{S_{B}} = \frac{275.6}{l/\text{km}} \cdot e^{-j\cdot69^{\circ}}$$

Vollständige Knotenpunkt-Admittanz-Matrix:

$$(\underline{y}) = \begin{pmatrix} -25 & 5 & 10 & 10 \\ 5 & -9 & 4 & 0 \\ 10 & 4 & -20 & 6 \\ 10 & 0 & 6 & -16 \end{pmatrix} \cdot e^{-j \cdot 69^{\circ}}$$

Verkürzte Knotenpunkt-Admittanz-Matrix:

$$\begin{pmatrix} -25 & 5 & 10 \\ 5 & -9 & 4 \\ 10 & 4 & -20 \end{pmatrix} \cdot e^{-j \cdot 69^{\circ}} \cdot \begin{pmatrix} \underline{u}_{1} - \underline{u}_{4} \\ \underline{u}_{2} - \underline{u}_{4} \\ u_{3} - u_{4} \end{pmatrix} = \begin{pmatrix} \underline{i}_{1} \\ \underline{i}_{2} \\ \underline{i}_{3} \end{pmatrix}$$
(4.23)

4.3. Lastflußberechnung

 \Rightarrow Leistungsfluß im Netz bei gegebenen Einspeise- und Verbraucherleistungen, wobei zunächst die Spannungen u_i berechnet werden.

4.3.1. Gleichungen für Leistungen

Die an den Knotenpunkten abgegebenen Leistungen (negativ bei Einspeisung) sind

$$\underline{s}_{j} = \underline{u}_{j} \cdot \underline{i}_{j}^{*} \tag{4.24}$$

mit der vollständigen Knotenpunkt-Admittanz-Matrix nach Gleichung (4.2) bzw. (4.3)

$$(\underline{i}) = (\underline{y}) \cdot (\underline{u}) \tag{4.25}$$

wird das Gleichungssystem für die Leistungen:

$$\begin{pmatrix}
\underline{s}_{1} \\
\underline{s}_{2} \\
\vdots \\
\underline{s}_{n}
\end{pmatrix} = \begin{pmatrix}
\underline{u}_{1} & 0 & \cdots & 0 \\
0 & \underline{u}_{2} & & \\
\vdots & \vdots & \ddots & \vdots \\
0 & & \underline{u}_{n}
\end{pmatrix} \cdot \begin{pmatrix}
\underline{y}_{11}^{*} & \underline{y}_{12}^{*} & \cdots & \underline{y}_{1n}^{*} \\
\underline{y}_{21}^{*} & \underline{y}_{22}^{*} & \cdots & \underline{y}_{2n}^{*} \\
\vdots & \vdots & \vdots & \vdots \\
\underline{y}_{n1}^{*} & \underline{y}_{n2}^{*} & \cdots & \underline{y}_{nn}^{*}
\end{pmatrix} \cdot \begin{pmatrix}
\underline{u}_{1}^{*} \\
\underline{u}_{2}^{*} \\
\vdots \\
\underline{u}_{n}^{*}
\end{pmatrix} \tag{4.26}$$

Kurzschreibweise:

$$(\underline{s}) = (\underline{u}_{diag}) \cdot (\underline{y}^*) \cdot [\underline{u}^*]$$

$$\underline{s}_{j} = \underline{u}_{j} \cdot \sum_{k=1}^{n} \underline{y}_{jk}^{*} \cdot \underline{u}_{k}^{*} = u_{j} \cdot \sum_{k=1}^{n} y_{jk} \cdot u_{k} \cdot e^{j \cdot (\theta_{j} - \theta_{k} - \alpha_{jk})}$$

$$(4.27)$$

mit:

$$\underline{u}_{j} = u_{j} \cdot e^{j\alpha_{j}}$$

$$\underline{y}_{jk} = y_{jk} \cdot e^{j\alpha_{jk}}$$

$$\underline{s}_{i} = p_{i} + j \cdot q_{i}$$
(4.28)

Leistungen an den Knotenpunkten:

$$p_{j} = u_{j} \cdot \sum_{k=1}^{n} y_{jk} \cdot u_{k} \cdot \cos(\vartheta_{j} - \vartheta_{k} - \alpha_{jk})$$

$$q_{j} = u_{j} \cdot \sum_{k=1}^{n} y_{jk} \cdot u_{k} \cdot \sin(\vartheta_{j} - \vartheta_{k} - \alpha_{jk})$$
für $j = 1 \dots n$ (4.29)

4.3.2. Aufgabe der Lastflußberechnung

Gegeben:

Leistungen der Einspeisungen und Verbraucher an den Knoten j.

Sollwert der Wirkleistungen $p_{j,soll}$ für j = 1...n-1 Sollwert der Blindleistungen $q_{j,soll}$

(Statt q_j kann auch der Betrag der Spannung u_j angegeben werden).

Spannung am Potentialknoten $\underline{u}_n = u_n \cdot e^{j \cdot \theta_n}$ mit $\vartheta_n = 0$

Gesucht:

(

d Min Spannungen \underline{u}_j der Knoten $j = 1 \dots n-1$.

Bestimmungsgleichungen:

$$\underbrace{\frac{p_{j}(u_{j},\vartheta_{j}) - p_{j,soll} = 0}{q_{j}(u_{j},\vartheta_{j}) - q_{j,soll} = 0}}_{\text{nach Gl. }4.29} \text{für } j = 1...n - 1$$
(4.30)

4.3.3. Stromiteration

Nicht Gleichung (4.30) gelöst, sondern Strom i_j als Zwischengröße verwendet. Dazu i_j über Gleichung (4.24) näherungsweise berechnet mit geschätzter Spannung bzw. derjenigen aus dem letzten Iterationsschritt. Dann mit Gleichung (4.19) bzw. (4.20) die zugehörigen neuen Spannungen berechnet. Die Ströme werden iterativ verbessert, bis sie sich nicht mehr ändern, also Solleistungen erreicht sind.

13)

Abbildung 4.7: Flußbild der Stromiteration

Konvergenzverhalten:

Zeile aus System-Impedanz-Matrix:

$$\underline{u}_{j} - \underline{u}_{n} = \underline{z}_{jj} \cdot \underline{i}_{j} + \underbrace{\sum_{\substack{k=1 \ k \neq j}}^{n-1} \underline{z}_{jk} \cdot \underline{i}_{k}}_{u_{v}}$$

Abbildung 4.8: Konvergenz der Stromiteration

Erläuterungen zu Abbildung 4.8:

- $u_i = f(i_i)$ ist eine Gerade durch $u_n = 1$, verschoben durch u_v .
- Iterationsweg zwischen Kurve 1 und Gerade 2.
- Konvergenzfaktor des Schrittes v:

$$k_{\nu} = \frac{\left| x^{(\nu+1)} - x^{(\nu)} \right|}{\left| x^{(\nu)} - x^{(\nu-1)} \right|} \tag{4.31}$$

mit:

 $\frac{x^{(v)}}{x}$: Ergebnis beim Iterationsschritt v

• Abbrechfehler:
$$\left|x^{(v)} - \bar{x}\right| \le \frac{k_v}{1 - k_v} \cdot \left|x^{(v)} - x^{(v-1)}\right|$$
 (4.32)

Nur für $k_v < 0.5$ ist der Abbrechfehler kleiner als die letzte Korrektur.

- Keine Konvergenz:
 - 1. Es existiert keine Lösung, meist wegen ungünstiger Vorgabe der Blindleistungen.
 - 2. Lösung existiert, wird aber wegen ungünstiger Startbedingungen nicht gefunden.

Beispiel für Lastflußberechnung durch Stromiteration

• Gleichungen:

$$\underline{i}_{j}^{(v)} = \frac{p_{j} - j \cdot q_{j}}{\underline{u}_{j}^{*(v-1)}} \\
\left(\underline{u}_{1} - \underline{u}_{4} \atop \underline{u}_{2} - \underline{u}_{4}\right) = \frac{1}{100} \cdot \begin{pmatrix} -7,131 & -6,087 & -4,783 \\ -6,087 & -17,391 & -6,522 \\ -4,783 & -6,522 & -8,696 \end{pmatrix} \cdot e^{j69^{\circ}} \cdot \begin{pmatrix} \underline{i}_{1} \\ \underline{i}_{2} \\ \underline{i}_{3} \end{pmatrix}$$

• Bezugswerte:

$$S_B = 100 \text{ MVA}$$
$$U_B = 110 \text{ kV}$$

• Vorgegebene Leistungen:

$$P_1 = 150 \text{ MW}$$

 $P_2 = 75 \text{ MW}$
 $P_3 = -180 \text{ MW}$ $\cos \varphi = 0.93$
 $\underline{s}_1 = 1.5 + j \cdot 0.59$
 $\underline{s}_2 = 0.75 + j \cdot 0.30$
 $\underline{s}_3 = -1.8 - j \cdot 0.71$
 $U_4 = 110 / \sqrt{3} \text{ kV}$
 $u_4 = 1.0$

Abbildung 4.9: Zahlenbeispiel für das Konvergenzverhalten der Stromiteration

Rechnerausdruck für Beispiel Stromiteration:

DEMO-BEISPIEL FUER VORLESUNG METZE BSPIEL.BUK 4-KNOTEN-NETZ – 6 LEITUNGEN MIT BLINDLEISTUNGEN

ZWISCHENKNOTENDATEN										
ART	NAELNUEL	VON	NACH	R PER-UNIT	X PER-UNI	T G PER-UNIT	B PER-UNIT	TAP (1	P-U) ANK	SLE DEGR.
LIN LIN LIN LIN LIN LIN		KNOTEN 1 KNOTEN 1 KNOTEN 3 KNOTEN 2 KNOTEN 1 KNOTEN 1 KNOTEN 1	KNOTEN 4 KNOTEN 3 KNOTEN 3 KNOTEN 3 KNOTEN 4	0.0714 0.0714 0.0597 0.0895 0.0714 0.0714	0.1864 0.1864 0.1559 0.2338 0.1864 0.1864	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			
KNOTENDATEN										
NAME	ART G/L	NAELNUEL	U P-U 1	T DEGR. P P	-U Q P-U	PMIN P-U PMAX	P-U QMIN P-U	U-9 XAMD	UHIN P-U	UMAX P-U
KHOTEK KHOTEK KHOTEK KHOTEK	12 PQ LOA 13 PQ GEN		1.000	1.5 0.7 -1.8 0.000	50 0.300		620 -0.781 000 0.000	-0.639 0.000	0.700 0.700 0.700 0.700	1.300 1.300 1.300 1.300
,	KNOTEN ELEMEN NAME NAM			E N PROZENT	L E 1 BELAS MW	STUNGEN Stung Myar	I AN DE EINSPEISUI MW	N K N O NG MVAR (TEN BIL MW	ANZ MVAR
SPANNUNGSEBERE 1 110 KV										
KN	OTEN 1 OTEN 2 OTEN 3 OTEN 4	102.583 98.292 110.731 110.000	-3.265 -5.363 1.676 0.000	93.257 89.357 100.665 100.000	150.000 75.000 0.000 0.000	59.000 30.000 0.000 0.000	0.000 180.000 7	0.000 0.000 1.000 8.324	150.000 75.000 -180.000 -56.612	59.000 30.000 -71.000 -48.324
erœbnisse - Leitungs-Leistungen und -strodhe										
v	KNOTEN EI ON NACII I K	LEMENT EBENE NAME KV	WIRKLEI MW I - K K		EISTUNG MVAR K - I	LAENCSLEISTUNG HW HVAI		STUNG MVAR	STROM IN MAXWERT G	
SPANNUI	NGSEBENE 1	110 KV								
KNOTEN KNOTEN KNOTEN KNOTEN KNOTEN	1 KNOTEN 2 1 KNOTEN 4 1 KNOTEN 4 2 KNOTEN 3 1 1 KNOTEN 3 1 1 KNOTEN 3	110. 110. 110. 110. 110. 110.	-35.852 -35.852 -54.581 -49.593 -49.593	20.419 11.81 37.210 -19.20 37.210 -19.20 58.344 -19.41 51.827 -16.20 51.827 -16.20 17.808 -2.32	2 22.746 2 22.746 8 29.245 6 22.040 6 22.040	0.473 1.2 1.357 3.5 1.357 3.5 3.763 9.8 2.234 5.8 2.234 5.8 0.194 0.5	45 0.000 45 0.000 27 0.000 33 0.000 33 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	135.085 228.901 228.901 340.284 293.644 293.644 94.639	535 25.2 535 42.8 535 42.8 535 63.6 535 54.9 535 54.9 535 17.7
VERLUS	STE									
	S - LTG.+TRAFO - KONSTIMP.	11.612 M 0.000 M 0.000 M	W 0.0	24 MVAR 00 MVAR 00 MVAR						
ŒSAM	τ .	11.612 H	w 30.3	24 MVAR						
KNOTE	NPUNKTB ILANZ	-11.612 H	w -30.3	324 MVAR						

Abbildung 4.10: Rechnerausdruck für Beispiel Stromiteration