

Michele Alessi, Samuele D'Avenia, Elena Rivaroli

Michele Alessi, Samuele D'Avenia, Elena Rivaroli

MSc Data Science and Scientific Computing

Michele Alessi, Samuele D'Avenia, Elena Rivaroli

Michele Alessi, Samuele D'Avenia, Elena Rivaroli

Michele Alessi, Samuele D'Avenia, Elena Rivaroli

Michele Alessi, Samuele D'Avenia, Elena Rivaroli

Michele Alessi, Samuele D'Avenia, Elena Rivaroli

MSc Data Science and Scientific Computing

Michele Alessi, Samuele D'Avenia, Elena Rivaroli

MSc Data Science and Scientific Computing

Michele Alessi, Samuele D'Avenia, Elena Rivaroli

MSc Data Science and Scientific Computing

Flappy bird

- Tap -> The bird flies up
- Do not tap -> The bird moves down

Aim: keep the bird alive as long as possible

Flappy bird

- Tap -> The bird flies up
- Do not tap -> The bird moves down

Aim: keep the bird alive as long as possible

Player	Best score
Michele	5
Samuele	29
Elena	6

Text-flappy-bird environment [1]

Rules:

- If you flap you move up by 1
- If you don't, you move down

Reward: +1 for every step until the game ends

Game ends:

- It touches the pipe
- It touches the floor

Model-free approach

States (dx, dy):

- 14 possible dx
- 22 possible dy

Actions

- 0 Remain Idle
- 1 Flap

General setup

General setup

- Techniques tried out
 - Monte Carlo Control*
 - Sarsa*
 - Expected Sarsa*
 - Q-learning**

^{*}On-policy technique

^{**} Off-policy technique

General setup

- Techniques tried out
 - Monte Carlo Control*
 - Sarsa*
 - Expected Sarsa*
 - Q-learning**
- Study on behaviour of hyper-parameters
 - λ on Sarsa and Q-learning
 - k_{lpha} on Sarsa, Q-learning and Expected Sarsa
 - k_{ε} on all the techniques

^{*}On-policy technique

^{**} Off-policy technique

Monte Carlo Control

This is a on-policy control method based on first-visit MC

Update the current estimate of action-value function:

$$Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t))$$

 $Returns(S_t, A_t)$ stores the first-visit return of (S_t, A_t) for all the episodes generated so far.

MC control cumulative rewards

$$\varepsilon_0 = 0.2, k = 0.0$$

SARSA: On-Policy TD Control

It consists of two main ideas:

Update the current estimate of action-value function

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

• Construct an ϵ -greedy policy $\pi_t^{\epsilon}(s)$ given the current Q-value

Expected SARSA

Very simple modification to SARSA method.

Update the current estimate of action-value function as follows:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \mathbb{E}_{\pi} [Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_t, A_t) \right]$$

$$\leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Q-Learning: Off-Policy TD Control

Update the current estimate of action-value function:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + lpha[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]$$

SARSA control cumulative rewards

Expected SARSA cumulative rewards

$$\varepsilon_0 = 0.2, k_{\varepsilon} = 0, \alpha_0 = 0.15, k_{\alpha} = 0$$

	SARSA	Expected SARSA
Mean	55.374	49.982
Standard Deviation	52.530	42.942

$TD(\lambda)$ Learning

The eligibility trace for each state s at time t is denoted as $e_t(s)$. On each step, the eligibility traces are updated as follows:

$$e_t(s,a) \leftarrow egin{cases} \gamma \lambda e_{t-1}(s,a) + 1 & ext{if } s = s_t, \, a = a_t \ \gamma \lambda e_{t-1}(s) & ext{otherwise} \end{cases}$$

- SARSA(λ) \rightarrow Fairly straighforward
- $Q(\lambda) \rightarrow$ Some care handling eligibility traces

Hyperparameters

All the hyperparameters:

- t^* : until t^* we keep α and ε constant
- ε_0 : initial value of ε
- α_0 : initial value of α
- λ : determines eligibility decay
- k_{α} : controls how fast α goes to 0
- k_{ε} : controls how fast ε goes to 0

Change these

Convergence & Exploitation

Use constant α and ϵ up to some point t^* , and then decrease them as

$$oldsymbol{lpha} lpha(t) = rac{lpha_0}{1 + k_lpha(t-t^\star)^{0.75}}$$

$$egin{aligned} egin{aligned} arepsilon(t) &= rac{arepsilon_0}{1 + k_arepsilon(t - t^\star)^{1.05}} \end{aligned}$$

$$\varepsilon_0 = 0.2, k_{\varepsilon} = 0, \alpha_0 = 0.15, k_{\alpha} = 0, \lambda = 0.0$$

	Mean for fixed $lpha$ and $arepsilon$	Mean varying $lpha$ and $arepsilon$
Monte Carlo Control	48.74	199.46
SARSA	55.37	2633.70
Expected SARSA	49.98	127.30
Q-Learning	51.49	4783.61

Shown in the plots

Final results

	Monte Carlo Control	SARSA	Expected SARSA	Q-Learning
λ	-	0.2	-	0.5
k_{lpha}	-	0.00003	0.0003	0.00003
k_{ϵ}	0.005	0.00005	0.00005	0.00005
Mean	199.46	2633.70	127.30	4783.61
Median	143	1831	93	3186
S.D.	175.70	2632.14	111.71	4952.15

Final results

	Monte Carlo Control	SARSA	Expected SARSA	Q-Learning
λ	-	0.2	-	0.5
k_{lpha}	-	0.00003	0.0003	0.00003
k_{ϵ}	0.005	0.00005	0.00005	0.00005
Mean	199.46	2633.70	127.30	4783.61
Median	143	1831	93	3186
S.D.	175.70	2632.14	111.71	4952.15

Further Work

• Perform a more in depth analysis of the hyper-parameters.

 More complex environment where agent receives frames as observations.

Thanks for the attention!

References

[1] https://gitlab-research.centralesupelec.fr/stergios.christodoulidis/text-flappy-bird-gym/-/tree/master

Some notes about the code:

- For the implementation of the algorithms we started from the code provided by the course tutor, Emanuele Panizon https://www.ictp.it/member/emanuele-panizon
- Small sections of the code were implemented using ChatGPT, more details on where it was used can be found on the GitHub repository.

Appendix: Pseudocodes

Pseudocodes were taken from

http://incompleteideas.net/book/first/ebook/node1.html

MC on policy control

```
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
    Q(s, a) \leftarrow \text{arbitrary}
     Returns(s, a) \leftarrow \text{empty list}
     \pi \leftarrow an arbitrary \varepsilon-soft policy
Repeat forever:
     (a) Generate an episode using \pi
     (b) For each pair s, a appearing in the episode:
               R \leftarrow return following the first occurrence of s, a
               Append R to Returns(s, a)
               Q(s, a) \leftarrow \text{average}(Returns(s, a))
     (c) For each s in the episode:
              a^* \leftarrow \arg\max_a Q(s, a)
               For all a \in \mathcal{A}(s):
             \pi(s,a) \leftarrow \left\{ \begin{array}{ll} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = a^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq a^* \end{array} \right.
```

$SARSA(\lambda)$

```
Initialize Q(s, a) arbitrarily and e(s, a) = 0, for all s, a
Repeat (for each episode):
   Initialize s, a
   Repeat (for each step of episode):
       Take action a, observe r, s'
       Choose a' from s' using policy derived from Q (e.g., \varepsilon-greedy)
       \delta \leftarrow r + \gamma Q(s', a') - Q(s, a)
       e(s,a) \leftarrow e(s,a) + 1
       For all s, a:
           Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)
           e(s, a) \leftarrow \gamma \lambda e(s, a)
       s \leftarrow s'; a \leftarrow a'
   until s is terminal
```

$Q(\lambda)$

```
Initialize Q(s, a) arbitrarily and e(s, a) = 0, for all s, a
Repeat (for each episode):
   Initialize s, a
   Repeat (for each step of episode):
       Take action a, observe r, s'
       Choose a' from s' using policy derived from Q (e.g., \varepsilon-greedy)
       a^* \leftarrow \arg\max_b Q(s', b) (if a' ties for the max, then a^* \leftarrow a')
       \delta \leftarrow r + \gamma Q(s', a^*) - Q(s, a)
       e(s,a) \leftarrow e(s,a) + 1
       For all s, a:
           Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)
           If a' = a^*, then e(s, a) \leftarrow \gamma \lambda e(s, a)
                         else e(s, a) \leftarrow 0
       s \leftarrow s'; a \leftarrow a'
   until s is terminal
```