

PowerFactory 2021

Technical Reference

SEL 351

Publisher:

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen / Germany Tel.: +49 (0) 7072-9168-0 Fax: +49 (0) 7072-9168-88

info@digsilent.de

Please visit our homepage at: https://www.digsilent.de

Copyright © 2021 DIgSILENT GmbH

All rights reserved. No part of this publication may be reproduced or distributed in any form without written permission of DIgSILENT GmbH.

May 6, 2019 PowerFactory 2021 Revision 892

Contents

1	Model information								
2	Gen	eral de	scription	1					
3	Supported features								
	3.1	Measu	rement and acquisition	2					
		3.1.1	Available Units	2					
		3.1.2	Functionality	2					
		3.1.3	Data input	2					
	3.2	Main F	Relay protective elements	3					
		3.2.1	Available Units	3					
		3.2.2	Functionality	4					
		3.2.3	Data input	5					
	3.3	Outpu	t logic	10					
		3.3.1	Available Units and Signals	10					
		3.3.2	Functionality	10					
		3.3.3	Data input	10					
4	Feat	tures n	ot supported	11					
5	Refe	erences	S	12					

i

1 Model information

Manufacturer SEL

Model 351

Variants The SEL 351 PowerFactory relay models can be used to simulate the different firmware versions of the SEL 351 protective relays. The reference firmware version used to implement the models is SEL351-x-R306-V0-Z003003-D20010307. However please consider that the models have been implemented with a reduced set of the features available in the relays.

2 General description

The SEL 351 relay includes phase, negative-sequence, residual, and neutral overcurrent elements. Each element type has six levels of instantaneous protection (four of these levels with definite-time functions). Each element type has a time-overcurrent element (phase elements include a maximum-phase time-overcurrent element and single-phase time-overcurrent elements). Directional control is provided for each of these overcurrent elements.

The SEL 351 PowerFactory relay models consist of a monolithic scheme.

The following model versions are available:

- SEL 351-1A-150V
- SEL 351-5A-150V
- SEL 351-1A-300V
- SEL 351-5A-300V

The relay models have been implemented trying to simulate the most commonly used protective functions.

The relay models contain the measurement and acquisition units, an accurate model of the directional element, the load encroachment element, the phase, negative sequence, zero sequence and neutral overcurrent elements, the voltage elements, the frequency elements and the output logic.

The model implementation has been based on the information available in the relay manual [1].

3 Supported features

3.1 Measurement and acquisition

The voltage and the current are measured by one three phase current transformer ("Ct" block), one single phase current transformer ("CoreCt" block) and one three phase voltage transformer ("Vt" block).

Five measurement units ("MeasU-I", "Meas Delta", "Measurement seq", "Meas Neutral I" and "Meas Freq" block) are fed by these CTs and this VT.

3.1.1 Available Units

- One three phase current transformers measuring the phase current ("Ct" block).
- One single phase current transformers measuring the neutral current ("CoreCt" block).
- One three phase voltage transformer measuring the phase voltages("Vt" block).
- One three phase measurement element calculating both the current and voltage values ("Measurement" block).
- One three phase measurement element calculating the phase to phase currents and voltages ("Mea Idelta" block).
- One three phase measurement element calculating the current and the voltage sequence vectors ("Measurement seq" block).
- One single phase measurement element calculating the neutral current value ("Meas Neutral I" block).
- One frequency measurement element ("Meas Freq" block).

3.1.2 Functionality

The input current and voltage values are sampled at 20 samples/cycle. The values are processed by a DFT filter, operating over a cycle, which then calculates the voltage and current values used by the protective elements.

The "Mea Idelta" block calculates the phase-phase current values monitored by the phase-phase voltage elements and the phase-phase current values monitored by the overcurrent elements.

The "Meas Freq" measures the frequency using a selectable voltage; by default the phase a - phase b voltage is used.

3.1.3 Data input

Please select the relay version accordingly with the input rated current value (1 A or 5 A) and input rated voltage value (150V or 300V).

3.2 Main Relay protective elements

The overcurrent elements, the directional element, the load encroachment element are working together to simulate the SEL 351 protection functionalities. The ancillary voltage and frequency elements are also modeled.

3.2.1 Available Units

- One inverse time directional 3phase overcurrent element ("51P" block).
- Three inverse time directional single phase overcurrent elements ("51A", "51B" and "51C" block).
- Four definite time directional 3phase overcurrent elements ("67P1", "67P2", "67P3" and "67P4" block).
- Two instantaneous 3phase overcurrent elements ("50P5" and "50P6" block).
- Four instantaneous directional 3phase phase-phase overcurrent elements ("50PP1", "650PP2", "50PP3" and "50PP4" block).
- One inverse time directional ground overcurrent element ("51G" block).
- Four definite time directional ground overcurrent elements ("67G1", "67G2", "67G3" and "67G4" block).
- Two instantaneous ground overcurrent elements ("50G5" and "50G6" block).
- One inverse time directional neutral overcurrent element ("51N" block).
- Four definite time directional neutral overcurrent elements ("67N1", "67N2", "67N3" and "67N4" block).
- Two instantaneous neutral overcurrent elements ("50N5" and "50N6" block).
- One inverse time directional negative sequence overcurrent element ("51Q" block).
- Four definite time directional negative sequence overcurrent elements ("67Q1", "67Q2", "67Q3" and "67Q4" block).
- Two instantaneous negative sequence overcurrent elements ("50Q5" and "50Q6" block).
- One definite time phase-phase overvoltage element ("59PP" block).
- One definite time phase-phase undervoltage element ("27PP" block).
- One definite time positive sequence overvoltage element ("59V1" block).
- One definite time negative sequence overvoltage element ("59Q" block).
- Two definite time residual overvoltage elements ("59N1" and "59N2" block).
- Two definite time phase-ground overvoltage elements ("59P1" and "59P2" block).
- Two definite time phase-ground undervoltage elements ("27P1" and "27P2" block).
- Six over/under frequency elements ("81D1", "81D2", "81D3", "81D4", "81D5" and "81D6" block).
- One load encroachment element ("Load Encroachment" block).
- One load encroachment activation threshold element ("load enc i threshold" block).
- One directional element ("Sel Dir" block).

3.2.2 Functionality

Directional element The directional element simulate in detail the SEL 351 negative sequence, ground and phase direction detection logic. The direction of the overcurrent elements must be set in the directional element dialog, four directional levels can be set. The ground directional priority feature is supported.

The "Loss of potential" logic is also supported.

Load encroachment element The model load encroachment element simulate exactly the shape of the relay feature. When a load encroachment condition is detected the load encroachment element sends a block signal to the "Logic" block. A fixed value minimum current load encroachment activation threshold is present.

Overcurrent The inverse time elements ("51P", "51N', "51Q" and "51G" block) are supporting the following inverse time trip characteristics:

- C1 IEC Class A (Standard Inverse)
- C2 IEC Class B (Very Inverse)
- C3 IEC Class C (Extremely Inverse)
- C4 IEC Long Time Inverse
- · C5 IEC Short Time Inverse
- U1 U.S. Moderately Inverse
- U2 U.S. Inverse
- U3 U.S. Very Inverse
- U4 U.S. Extremely Inverse
- U5 U.S. Short Time Inverse

The inverse time element trip characteristic equations comply with the IEC and ANSI standard equations.

The overcurrent element direction is controlled by the directional element ("SelDir" block). Please notice that the following directional control logic has been used in the model:

- Level 1 direction: inverse time elements, phase single phase elements, "67P1", "67G1", "67N1","67Q1", "50PP1".
- Level 2 direction: "67P2", "67G2", "67N2", "67Q2", "50PP2".
- Level 3 direction: "67P3", "67G3", "67N3", "67Q3", "50PP3".
- Level 4 direction: "67P4", "67G4", "67N4", "67Q4", "50PP4".

3.2.3 Data input

The relationships between the relay settings and the model parameters can be found in the following tables (the relay model parameter names are listed between brackets):

Directional element ("Sel Dir") :

Address	Relay Setting	Model block	Model setting	Note
	ORDER	Sel Dir	Ground directional element priority(ORDER)	In the "Basic settings" tab page
	DIR1	Sel Dir	Level 1 direction (DIR1)	In the "Basic settings" tab page
	DIR2	Sel Dir	Level 2 direction (DIR2)	In the "Basic settings" tab page
	DIR3	Sel Dir	Level 3 direction (DIR3)	In the "Basic settings" tab page
	DIR4	Sel Dir	Level 4 direction (DIR4)	In the "Basic settings" tab page
	Z2F	Sel Dir	Forward directional Z2 threshold Z2F	In the "Negative sequence" tab page
	50QF	Sel Dir	Forward directional current threshold (s50QF)	In the "Negative sequence" tab page
	Z2R	Sel Dir	Reverse directional Z2 threshold Z2R	In the "Negative sequence" tab page
	50QR	Sel Dir	Reverse directional current threshold (s50QR)	In the "Negative sequence" tab page
	a2	Sel Dir	Positive sequence current restraint factor a2=12/11	In the "Negative sequence" tab page
	a0	Sel Dir	Zero sequence current restraint factor a0=I0/I1	In the "Ground" tab page
	k2	Sel Dir	Zero sequence current restraint factor k2=I2/I0	In the "Negative sequence" tab page
	ELOP	Sel Dir	Loss Of Potential enable setting (ELOP)	In the "Basic settings" tab page
	Z1MAG	Sel Dir	Positive sequence line impedance magnitude Z1MAG (Zm)	In the "Negative sequence" tab page
	Z1ANG	Sel Dir	Positive sequence line impedance angle Z1ANG (phi)	In the "Negative sequence" tab page
	50GFP	Sel Dir	Forward directional residual ground pickup 50GFP (s50GFP)	In the "Ground" tab page
	50GRP	Sel Dir	Reverse directional residual ground pickup 50GRP (s50GRP)	In the "Ground" tab page
	Z0F	Sel Dir	Forward directional Z0 threshold Z0F	In the "Ground" tab page
	Z0R	Sel Dir	Reverse directional Z0 threshold Z0R	In the "Ground" tab page
	Z0MAG	Sel Dir	Zero sequence line impedance magnitude Z0MAG (Z0)	In the "Ground" tab page
	Z0ANG	Sel Dir	Zero sequence line impedance angle Z0ANG (phi0)	In the "Ground" tab page
	50P32P	Sel Dir	Phase directional element 3-phase pickup 50P32P (s50P32P)	In the "Phase" tab page
	50LP	Sel Dir	Load Detection phase pickup 50LP (s50LP)	In the "Ground" tab page
	E32IV	Sel Dir	Ground directional element enabling flag E32IV (E32IV)	In the "Ground" tab page

Overcurrent :

Address	Relay Setting	Model block	Model setting	Note
	E51P	51P	Out of Service (outserv)	
		51AP	Out of Service (outserv)	
		51BP	Out of Service (outserv)	
		51CP	Out of Service (outserv)	
	51PP	51P	Current Setting (Ipsetr)	
	51PC	51P	Characteristic(pcharac)	
	51PTD	51P	Time Dial (Tpset)	
	51AP	51A	Current Setting (Ipsetr)	
	51AC	51A	Characteristic(pcharac)	
	51ATD	51A	Time Dial (Tpset)	
	51BP	51B	Current Setting (Ipsetr)	
	51BC	51B	Characteristic(pcharac)	
	51BTD	51B	Time Dial (Tpset)	
	51CP	51C	Current Setting (Ipsetr)	
	51CC	51C	Characteristic(pcharac)	
	51CTD	51C	Time Dial (Tpset)	
	E51G	51G	Out of Service (outserv)	
	51GP	51G	Current Setting (Ipsetr)	
	51GC	51G	Characteristic(pcharac)	
	51GTD	51G	Time Dial (Tpset)	
	E51N	51N	Out of Service (outserv)	
	51NP	51N	Current Setting (Ipsetr)	
	51NC	51N	Characteristic(pcharac)	
	51NTD	51N	Time Dial (Tpset)	
	E51Q	51Q	Out of Service (outserv)	
	51QP	51Q	Current Setting (Ipsetr)	
	51QC	51Q	Characteristic(pcharac)	
	51QTD	51Q	Time Dial (Tpset)	
	E50P	67P1	Out of Service (outserv)	
		67P2	Out of Service (outserv)	
		67P3	Out of Service (outserv)	
		67P4	Out of Service (outserv)	
		50P5	Out of Service (outserv)	
		50P6	Out of Service (outserv)	
	50P1P	67P1	Pickup Current (Ipsetr)	
	50P2P	67P2	Pickup Current (Ipsetr)	
	50P3P	67P3	Pickup Current (Ipsetr)	
	50P4P	67P4	Pickup Current (Ipsetr)	
	50P5P	50P5	Pickup Current (Ipsetr)	
	50P6P	50P6	Pickup Current (Ipsetr)	
	67P1D	67P1	Time Setting (cTset)	
	67P2D	67P2	Time Setting (cTset)	
	67P3D	67P3	Time Setting (cTset)	
	67P4D	67P4	Time Setting (cTset)	
	E50N	67N1	Out of Service (outserv)	
		67N2	Out of Service (outserv)	
		67N3	Out of Service (outserv)	
		67N4	Out of Service (outserv)	
		50N5	Out of Service (outserv)	
		50N6	Out of Service (outserv)	
	50N1P	67N1	Pickup Current (Ipsetr)	
	50N1P 50N2P	67N2	Pickup Current (Ipsetr)	
	50N3P	67N3	Pickup Current (Ipsetr)	
	50N3P 50N4P	67N4	Pickup Current (Ipsetr)	
	50N5P	50N5	Pickup Current (Ipsetr)	
	001101	JUINJ	i ionup Guitetii (ipaeti)	

Load Encroachment :

67Q4D

67Q4

Address	ress Relay Setting Model block		Model setting	Note
	ELOAD	Load Encroachment	Out of Service (outserv)	
	ZLF	Load Encroachment	ZLF	
	ZLR	Load Encroachment	ZLR	
	PLAF	Load Encroachment	PLAF	
	NLAF	Load Encroachment	NLAF	
	PLAR	Load Encroachment	PLAR	
	NLAR	Load Encroachment	NLAR	

Time Setting (cTset)

Voltage :

Address	Relay Setting	Model block	Model setting	Note
	EVOLT	59N1	Out of Service (outserv)	
		59N2	Out of Service (outserv)	
		59Q	Out of Service (outserv)	
		59V1	Out of Service (outserv)	
		27PP	Out of Service (outserv)	
		59PP	Out of Service (outserv)	
		27P1	Out of Service (outserv)	
		27P2	Out of Service (outserv)	
		59P1	Out of Service (outserv)	
		59P2	Out of Service (outserv)	
	59N1	59N1	Pickup Voltage (Usetr)	
	59N2	59N2	Pickup Voltage (Usetr)	
	59Q	59Q	Pickup Voltage (Usetr)	
	59V1	59V1	Pickup Voltage (Usetr)	
	27PP	27PP	Pickup Voltage (Usetr)	
	59PP	59PP	Pickup Voltage (Usetr)	
	27P1	27P1	Pickup Voltage (Usetr)	
	27P2	27P2	Pickup Voltage (Usetr)	
	59P1	59P1	Pickup Voltage (Usetr)	
	59P2	59P2	Pickup Voltage (Usetr)	

Frequency:

Address	Relay Setting	Model block	Model setting	Note
	E81	81D1	Out of Service (outserv)	
		81D2	Out of Service (outserv)	
		81D3	Out of Service (outserv)	
		81D4	Out of Service (outserv)	
		81D5	Out of Service (outserv)	
	81D1	81D1	Frequency (Fset)	
	81D1	81D1	Time Delay (cTdel)	
	81D2	81D2	Frequency (Fset)	
	81D2	81D2	Time Delay (cTdel)	
	81D3	81D3	Frequency (Fset)	
	81D3	81D3	Time Delay (cTdel)	
	81D4	81D4	Frequency (Fset)	
	81D4	81D4	Time Delay (cTdel)	
	81D5	81D5	Frequency (Fset)	
	81D5	81D5	Time Delay (cTdel)	
	81D6	81D6	Frequency (Fset)	
	81D6	81D6	Time Delay (cTdel)	

3.3 Output logic

The output logic is the interface between the relay and the power system. A set of relay output signals is available and can be configured by the user to implement any control logic.

3.3.1 Available Units and Signals

The trip logic is implemented by the "Logic" block. Eleven relay output signals are available ("OUT1", "OUT2", "OUT3" . . . "OUT11").

3.3.2 Functionality

The "Logic" block operates the power breaker when a trip command has been issued by any protective element. The phase overcurrent element trip signals are blocked by the load encroachment signal ("loadenc" input signal). The block output signal used to operate the breaker is "OUT1". By default the output logic sets other trip signals equal to the no trip value ("NOTRIP" macro). The behavior of the output signals, the trip logic and any special logic implemented in the relay by a SELOGIC control equation can be configured in the "Logic" tab page of the "Logic" block dialog.

3.3.3 Data input

Please disable the "Logic" block to disable the relay model ability to open the power circuit.

4 Features not supported

The following features are not supported:

- Inverse characteristics electromechanical reset.
- Frequency phase undervoltage block.
- · Reclosing Relay.
- · Switch onto fault.
- POTT Trip Scheme.
- Additional DCUB Trip Scheme.
- DCB Trip Scheme.
- · Power Elements.
- Voltage Sag/Swell/Interrupt.

5 References

[1] SCHWEITZER ENGINEERING LABORATORIES, 2350 NE HOPKINS COURT PULLMAN, WA USA 99163-5603. SEL-351-5, -6, -7 DIRECTIONAL OVERCURRENT RELAY RE-CLOSING RELAY FAULT LOCATOR INTEGRATION ELEMENT STANDARD INSTRUCTION MANUAL 20010307, March 2001.