Supplementary

In this document, we demonstrate the programming to reproduce the result we have in the supplementary material.

```
source(here::here('src/optimization/w_optimization.R'))
```

1 Optimal Bonferroni weights table

In this section, we provide two tables of optimal α_1 under different marginal powers regarding to maximize disjunctive and conjunctive power of two independent hypotheses.

```
alpha = 0.025
mp_1 \leftarrow mp_2 \leftarrow seq(0.95, 0.5, by = -0.05)
opt_alpha_disj <- data.frame(matrix(nrow = length(mp_1),</pre>
                                       ncol = length(mp_2)),
                               row.names = mp 1)
colnames(opt_alpha_disj) <- mp_2</pre>
opt_alpha_conj <- opt_alpha_disj</pre>
for (p1 in mp_1) {
  for (p2 in mp_2) {
    opt_alpha_disj[as.character(p1),
                    as.character(p2)] = optim_w_dp(alpha = alpha,
                                                      mp = c(p1, p2)) w[1]
    opt_alpha_conj[as.character(p1),
                    as.character(p2)] = optim_w_cp(alpha = alpha,
                                                      mp = c(p1, p2)) w[1]
  }
```

Table 1: Optimal Bonferroni weights table for disjunctive power

	0.95	0.9	0.85	0.8	0.75	0.7	0.65	0.6	0.55	0.5
0.95	0.500	0.566	0.616	0.659	0.699	0.736	0.771	0.804	0.837	0.868
0.9	0.434	0.500	0.552	0.597	0.639	0.679	0.718	0.755	0.793	0.829
0.85	0.384	0.448	0.500	0.546	0.589	0.631	0.672	0.713	0.753	0.794
0.8	0.341	0.403	0.454	0.500	0.544	0.587	0.629	0.672	0.715	0.759
0.75	0.301	0.361	0.411	0.456	0.500	0.543	0.587	0.631	0.677	0.723
0.7	0.264	0.321	0.369	0.413	0.457	0.500	0.544	0.589	0.636	0.685
0.65	0.229	0.282	0.328	0.371	0.413	0.456	0.500	0.546	0.594	0.645
0.6	0.196	0.245	0.287	0.328	0.369	0.411	0.454	0.500	0.549	0.601
0.55	0.163	0.207	0.247	0.285	0.323	0.364	0.406	0.451	0.500	0.553
0.5	0.132	0.171	0.206	0.241	0.277	0.315	0.355	0.399	0.447	0.500

Table 2: Optimal Bonferroni weights table for conjunctive power

	0.95	0.9	0.85	0.8	0.75	0.7	0.65	0.6	0.55	0.5
0.95	0.500	0.410	0.358	0.322	0.294	0.271	0.253	0.237	0.222	0.210
0.9	0.590	0.500	0.445	0.404	0.373	0.347	0.325	0.306	0.289	0.273
0.85	0.642	0.555	0.500	0.459	0.426	0.399	0.375	0.354	0.336	0.318
0.8	0.678	0.596	0.541	0.500	0.467	0.439	0.414	0.393	0.373	0.355
0.75	0.706	0.627	0.574	0.533	0.500	0.472	0.447	0.425	0.404	0.385
0.7	0.729	0.653	0.601	0.561	0.528	0.500	0.475	0.452	0.432	0.412
0.65	0.747	0.675	0.625	0.586	0.553	0.525	0.500	0.477	0.456	0.437
0.6	0.763	0.694	0.646	0.607	0.575	0.548	0.523	0.500	0.479	0.459
0.55	0.778	0.711	0.664	0.627	0.596	0.568	0.544	0.521	0.500	0.480
0.5	0.790	0.727	0.682	0.645	0.615	0.588	0.563	0.541	0.520	0.500

2 Optimal α splitting under different correlation

In this section, we illustrate how correlation affect the disjunctive/conjunctive power in the two hypotheses scenario.

```
mp2_eq \leftarrow c(0.9, 0.9)
corr2s \leftarrow list(disj = c(0., 0.25, 0.5, 0.815, 0.9),
                conj = c(0., 0.25, 0.5, 0.75, 0.99))
ws \leftarrow seq(0, 1, by=0.01)
disj_pow_eq <- data.frame(matrix(ncol=6, nrow=length(ws)))</pre>
colnames(disj_pow_eq) <- c("w1", corr2s$disj)</pre>
disj_pow_eq['w1'] = ws
conj_pow_eq <- data.frame(matrix(ncol=6, nrow=length(ws)))</pre>
colnames(conj_pow_eq) <- c("w1", corr2s$conj)</pre>
conj_pow_eq['w1'] = ws
for (i in 1:5) {
  dps = c()
  cps = c()
  for (w in ws) {
    dps = c(dps, disjunctive_power_corr(c(w, 1-w),
                                           alpha = alpha,
                                           mp = mp2_eq,
                                           rho = corr2s$disj[i]))
    cps = c(cps, conjunctive_power_corr(c(w, 1-w),
                                           alpha = alpha,
                                           mp = mp2_eq,
                                           rho = corr2s$conj[i]))
  }
  disj_pow_eq[i+1] = dps
  conj_pow_eq[i+1] = cps
df_disj_eq = reshape2::melt(disj_pow_eq, id.vars='w1', variable.name='correlation')
names(df disj eq)[3] <- "disjunctive.power"</pre>
df_conj_eq = reshape2::melt(conj_pow_eq, id.vars='w1', variable.name='correlation')
names(df_conj_eq)[3] <- "conjunctive.power"</pre>
opt_disj_eq <- data.frame()</pre>
opt_conj_eq <- data.frame()</pre>
for (i in 1:5) {
  opt_disj_eq <- rbind(opt_disj_eq,</pre>
                        df_disj_eq %>%
                           filter(correlation == corr2s$disj[i]) %>%
                           slice_max(disjunctive.power))
  opt_conj_eq <- rbind(opt_conj_eq,</pre>
                         df_conj_eq %>%
                           filter(correlation == corr2s$conj[i]) %>%
                           slice_max(conjunctive.power))
}
dp.corr <- ggplot(df_disj_eq, aes(w1, disjunctive.power)) +</pre>
  geom_line(aes(lty = correlation), size=1) +
 labs(x = expression(w[1]), y = "disjunctive power") +
```

```
theme(text = element_text(size=15)) +
  geom_point(aes(x=w1, y=disjunctive.power, colour = "Optima"),
             data = opt_disj_eq,
             shape=17, size=3) +
  scale_colour_manual(name="Optima",
                      labels = c("Optima"),
                      values=c("black"))
cp.corr <- ggplot(df_conj_eq, aes(w1, conjunctive.power)) +</pre>
  geom_line(aes(lty = correlation), size=1) +
  labs(x = expression(w[1]), y = "conjunctive power") +
  theme(text = element_text(size=15)) +
  geom_point(aes(x=w1, y=conjunctive.power, colour = "Optima"),
             data = opt_conj_eq,
             shape=17, size=3) +
  scale_colour_manual(name="Optima",
                      labels = c("Optima"),
                      values=c("black"))
```


Figure 1: Disjunctive power of two hypotheses with equal marginal power of 90% under different w_1

Figure 2: Conjunctive power of two hypotheses with equal marginal power of 90% under different w_1

```
ws \leftarrow seq(0, 1, by=0.01)
disj_pow_uneq <- data.frame(matrix(ncol=6, nrow=length(ws)))</pre>
colnames(disj_pow_uneq) <- c("w1", corr2s$disj)</pre>
disj_pow_uneq['w1'] = ws
conj_pow_uneq <- data.frame(matrix(ncol=6, nrow=length(ws)))</pre>
colnames(conj_pow_uneq) <- c("w1", corr2s$conj)</pre>
conj_pow_uneq['w1'] = ws
for (i in 1:5) {
 dps = c()
  cps = c()
  for (w in ws) {
    dps = c(dps, disjunctive power corr(c(w, 1-w),
                                          alpha = alpha,
                                          mp = mp2\_uneq,
                                          rho = corr2s$disj[i]))
    cps = c(cps, conjunctive_power_corr(c(w, 1-w),
                                          alpha = alpha,
                                          mp = mp2\_uneq,
                                          rho = corr2s$conj[i]))
 disj_pow_uneq[i+1] = dps
  conj_pow_uneq[i+1] = cps
}
df_disj_uneq = reshape2::melt(disj_pow_uneq, id.vars='w1', variable.name='correlation')
names(df disj uneq)[3] <- "disjunctive.power"</pre>
df_conj_uneq = reshape2::melt(conj_pow_uneq, id.vars='w1', variable.name='correlation')
names(df_conj_uneq)[3] <- "conjunctive.power"</pre>
opt_disj_uneq <- data.frame()</pre>
opt_conj_uneq <- data.frame()</pre>
for (i in 1:5) {
  opt_disj_uneq <- rbind(opt_disj_uneq,</pre>
                          df_disj_uneq %>%
                            filter(correlation == corr2s$disj[i]) %>%
                            slice_max(disjunctive.power))
  opt_conj_uneq <- rbind(opt_conj_uneq,</pre>
                          df_conj_uneq %>%
                            filter(correlation == corr2s$conj[i]) %>%
                            slice_max(conjunctive.power))
}
dp.corr.uneq <- ggplot(df_disj_uneq, aes(w1, disjunctive.power)) +</pre>
  geom_line(aes(lty = correlation), size=1) +
  labs(x = expression(w[1]), y = "disjunctive power") +
  theme(text = element_text(size=15)) +
  geom_point(aes(x=w1, y=disjunctive.power, colour = "Optima"),
             data = opt_disj_uneq,
             shape=17, size=3) +
  scale_colour_manual(name="Optima",
                       labels = c("Optima"),
                       values=c("black"))
```


Figure 3: Disjunctive power of two hypotheses with unequal marginal power of 90% under different w_1

Figure 4: Conjunctive power of two hypotheses with unequal marginal power of 90% under different w_1

3 Optimal Bonferroni weights for disjunctive power with four hypotheses

```
mps4 \leftarrow list(rep(0.9, 4),
             rep(0.8, 4),
             c(0.9, 0.8, 0.7, 0.6),
             c(0.9, 0.75, 0.6, 0.45),
             c(0.9, 0.7, 0.5, 0.1),
             c(0.9, 0.5, 0.5, 0.5),
             c(0.9, 0.1, 0.1, 0.1))
opt_disj <- data.frame(marginal_power = character(),</pre>
                        w1 = numeric(),
                        w2 = numeric(),
                        w3 = numeric(),
                        w4 = numeric(),
                        disjunctive_power = numeric())
opt_conj <- data.frame(marginal_power = character(),</pre>
                        w1 = numeric(),
                        w2 = numeric(),
                        w3 = numeric(),
                        w4 = numeric(),
                        conjunctive_power = numeric())
for (mp in mps4) {
  indopt_dp <- optim_w_dp(alpha = alpha,</pre>
                           mp = mp)
  indopt_cp <- optim_w_cp(alpha = alpha,</pre>
                           mp = mp)
  opt_disj <- opt_disj %>%
    add_row(marginal_power = paste(mp, collapse = ", "),
            w1 = indopt_dp$w[1],
            w2 = indopt_dp$w[2],
            w3 = indopt_dp$w[3],
            w4 = indopt_dp$w[4],
            disjunctive_power = -indopt_dp$optima$objective * 100)
  opt_conj <- opt_conj %>%
    add_row(marginal_power = paste(mp, collapse = ", "),
            w1 = indopt_cp$w[1],
            w2 = indopt_cp$w[2],
            w3 = indopt_cp$w[3],
            w4 = indopt_cp$w[4],
            conjunctive_power = -indopt_cp$optima$objective * 100)
```

Table 3: Optimal Bonferroni weights to maximize the disjunctive power with four independent hypotheses

disjunctive power($\%$)	w_4	w_3	w_2	w_1	marginal power
99.727	0.250	0.250	0.250	0.250	0.9, 0.9, 0.9, 0.9
97.901	0.250	0.250	0.250	0.250	0.8,0.8,0.8,0.8
97.519	0.122	0.187	0.276	0.415	0.9,0.8,0.7,0.6
96.024	0.066	0.152	0.279	0.502	0.9,0.75,0.6,0.45
94.453	0.000	0.189	0.313	0.498	0.9,0.7,0.5,0.1
93.417	0.122	0.122	0.122	0.633	0.9,0.5,0.5,0.5
90.000	0.000	0.000	0.000	1.000	0.9, 0.1, 0.1, 0.1

Table 4: Optimal Bonferroni weights to maximize the conjunctive power with four independent hypotheses

marginal power	w_1	w_2	w_3	w_4	$\operatorname{conjunctive\ power}(\%)$
0.9, 0.9, 0.9, 0.9	0.250	0.250	0.250	0.250	35.429
0.8,0.8,0.8,0.8	0.250	0.250	0.250	0.250	14.718
0.9, 0.8, 0.7, 0.6	0.158	0.224	0.281	0.337	9.579
0.9, 0.75, 0.6, 0.45	0.136	0.217	0.287	0.360	4.558
0.9, 0.7, 0.5, 0.1	0.104	0.181	0.250	0.465	0.499
0.9,0.5,0.5,0.5	0.121	0.293	0.293	0.293	2.163
0.9, 0.1, 0.1, 0.1	0.074	0.309	0.309	0.309	0.004

This table could take more than 10 mins to run, please add eval = FALSE on the header of following two cells to skip this table.

```
mp4_1 \leftarrow rep(0.9, 4)
mp4_2 \leftarrow rep(0.8, 4)
mp4_3 \leftarrow c(0.9, 0.75, 0.6, 0.45)
rhos \leftarrow c(0.9, 0.8, 0.77, 0.7, 0.5)
sigma1 <- matrix(c(1, 0.8, 0.6, 0.4,</pre>
                     0.8, 1, 0.6, 0.4,
                     0.6, 0.6, 1, 0.4,
                     0.4, 0.4, 0.4, 1), nrow = 4)
sigma2 \leftarrow matrix(c(1, 0.9, 0.1, 0.4,
                     0.9, 1, 0.1, 0.4,
                     0.1, 0.1, 1, 0.4,
                     0.4, 0.4, 0.4, 1), nrow = 4)
mp4 <- list(mp4_1, mp4_2, mp4_3)</pre>
corr <- c(as.list(rhos), list(sigma1, sigma2))</pre>
corr <- setNames(corr, c(rhos, "$\\Sigma_1$", "$\\Sigma_2$"))</pre>
opt_disj_corr <- data.frame(marginal_power = character(),</pre>
                               correlation = character(),
                               w1 = numeric(),
                               w2 = numeric(),
                               w3 = numeric(),
                               w4 = numeric(),
                               disjunctive_power = numeric())
```

```
opt_conj_corr <- data.frame(marginal_power = character(),</pre>
                             correlation = character(),
                             w1 = numeric(),
                             w2 = numeric(),
                             w3 = numeric(),
                             w4 = numeric(),
                             conjunctive_power = numeric())
for (mp in mp4) {
  for (rho in names(corr)) {
    locopt <- optim_w_dp(alpha = alpha,</pre>
                          mp = mp
    glopt <- go_optim_w_dp(alpha = alpha,</pre>
                            mp = mp,
                            rho = corr[[rho]])
    benchmark <- disjunctive_power_corr(w = locopt$w,</pre>
                                         alpha = alpha,
                                         mp = mp, rho = corr[[rho]])
    opt_disj_corr <- opt_disj_corr %>%
      add_row(marginal_power = paste(mp, collapse = ", "),
              correlation = as.character(rho),
              w1 = glopt[1, ]$w1,
              w2 = glopt[1, ]$w2,
              w3 = glopt[1, ]$w3,
              w4 = glopt[1, ]$w4,
              disjunctive_power = glopt[1, ]$optimal_value * 100)
    opt_disj_corr <- opt_disj_corr %>%
      add_row(marginal_power = paste(mp, collapse = ", "),
              correlation = "Benchmark",
              w1 = locopt$w[1],
              w2 = locopt\$w[2],
              w3 = locopt\$w[3],
              w4 = locopt\$w[4],
              disjunctive_power = benchmark * 100)
    locopt <- optim_w_cp(alpha = alpha,</pre>
                          mp = mp)
    glopt <- optim_w_cp(alpha = alpha,</pre>
                         mp = mp,
                         rho = corr[[rho]])
    benchmark <- conjunctive_power_corr(w = locopt$w,</pre>
                                         alpha = alpha,
                                         mp = mp, rho = corr[[rho]])
    opt_conj_corr <- opt_conj_corr %>%
      add_row(marginal_power = paste(mp, collapse = ", "),
              correlation = as.character(rho),
              w1 = glopt\$w[1],
              w2 = glopt$w[2],
              w3 = glopt\$w[3],
              w4 = glopt\$w[4],
              conjunctive_power = -glopt$optima$objective * 100)
    opt_conj_corr <- opt_conj_corr %>%
      add_row(marginal_power = paste(mp, collapse = ", "),
```

```
correlation = "Benchmark",
w1 = locopt$w[1],
w2 = locopt$w[2],
w3 = locopt$w[3],
w4 = locopt$w[4],
conjunctive_power = benchmark * 100)
}
```

Table 5: Optimal Bonferroni weights to maximize the disjunctive power with four hypotheses under dependence ${\cal C}$

	w_4	w_3	w_2	w_1	correlation	marginal power
90.000	0.000	0.000	0.000	1.000	0.9	0.9, 0.9, 0.9, 0.9
86.384	0.250	0.250	0.250	0.250	Benchmark	0.9, 0.9, 0.9, 0.9
90.238	0.000	0.000	0.500	0.500	0.8	0.9, 0.9, 0.9, 0.9
89.824	0.250	0.250	0.250	0.250	Benchmark	0.9, 0.9, 0.9, 0.9
90.721	0.000	0.333	0.333	0.333	0.77	0.9, 0.9, 0.9, 0.9
90.633	0.250	0.250	0.250	0.250	Benchmark	0.9, 0.9, 0.9, 0.9
92.277	0.250	0.250	0.250	0.250	0.7	0.9, 0.9, 0.9, 0.9
92.277	0.250	0.250	0.250	0.250	Benchmark	0.9, 0.9, 0.9, 0.9
95.732	0.250	0.250	0.250	0.250	0.5	0.9, 0.9, 0.9, 0.9
95.732	0.250	0.250	0.250	0.250	Benchmark	0.9, 0.9, 0.9, 0.9
95.499	0.424	0.288	0.288	0.000	Σ_1	0.9, 0.9, 0.9, 0.9
95.272	0.250	0.250	0.250	0.250	Benchmark	0.9, 0.9, 0.9, 0.9
97.305	0.178	0.411	0.411	0.000	Σ_2	0.9, 0.9, 0.9, 0.9
96.954	0.250	0.250	0.250	0.250	Benchmark	0.9, 0.9, 0.9, 0.9
80.000	0.000	0.000	0.000	1.000	0.9	0.8, 0.8, 0.8, 0.8
74.078	0.250	0.250	0.250	0.250	Benchmark	0.8, 0.8, 0.8, 0.8
80.000	0.000	0.000	0.000	1.000	0.8	0.8, 0.8, 0.8, 0.8
78.985	0.250	0.250	0.250	0.250	Benchmark	0.8, 0.8, 0.8, 0.8
80.584	0.000	0.000	0.500	0.500	0.77	0.8, 0.8, 0.8, 0.8
80.188	0.250	0.250	0.250	0.250	Benchmark	0.8, 0.8, 0.8, 0.8
82.704	0.250	0.250	0.250	0.250	0.7	0.8, 0.8, 0.8, 0.8
82.704	0.250	0.250	0.250	0.250	Benchmark	0.8,0.8,0.8,0.8
88.483	0.250	0.250	0.250	0.250	0.5	0.8, 0.8, 0.8, 0.8
88.483	0.250	0.250	0.250	0.250	Benchmark	0.8,0.8,0.8,0.8
88.084	0.426	0.287	0.000	0.287	Σ_1	0.8, 0.8, 0.8, 0.8
87.560	0.250	0.250	0.250	0.250	Benchmark	0.8, 0.8, 0.8, 0.8
91.441	0.180	0.410	0.410	0.000	Σ_2	0.8, 0.8, 0.8, 0.8
90.555	0.250	0.250	0.250	0.250	Benchmark	0.8, 0.8, 0.8, 0.8
90.000	0.000	0.000	0.000	1.000	0.9	0.9, 0.75, 0.6, 0.45
84.375	0.066	0.152	0.279	0.502	Benchmark	0.9, 0.75, 0.6, 0.45
90.000	0.000	0.000	0.000	1.000	0.8	0.9, 0.75, 0.6, 0.45
85.208	0.066	0.152	0.279	0.502	Benchmark	0.9, 0.75, 0.6, 0.45
90.000	0.000	0.000	0.000	1.000	0.77	0.9, 0.75, 0.6, 0.45
85.529	0.066	0.152	0.279	0.502	Benchmark	0.9, 0.75, 0.6, 0.45
90.000	0.000	0.000	0.000	1.000	0.7	0.9, 0.75, 0.6, 0.45
86.351	0.066	0.152	0.279	0.502	Benchmark	0.9, 0.75, 0.6, 0.45
90.538	0.000	0.000	0.134	0.866	0.5	0.9, 0.75, 0.6, 0.45
88.997	0.066	0.152	0.279	0.502	Benchmark	0.9, 0.75, 0.6, 0.45

_							
	marginal power	correlation	w_1	w_2	w_3	w_4	disjunctive power($\%$)
	0.9, 0.75, 0.6, 0.45	Σ_1	0.999	0.000	0.000	0.001	90.001
	0.9, 0.75, 0.6, 0.45	Benchmark	0.502	0.279	0.152	0.066	86.223
	0.9, 0.75, 0.6, 0.45	Σ_2	0.796	0.000	0.204	0.000	91.745
	0.9, 0.75, 0.6, 0.45	Benchmark	0.502	0.279	0.152	0.066	88.793

Table 6: Optimal Bonferroni weights to maximize the conjunctive power with four hypotheses under dependence $\,$

marginal power	correlation	w_1	w_2	w_3	w_4	conjunctive power($\%$)
0.9, 0.9, 0.9, 0.9	0.9	0.250	0.250	0.250	0.250	66.633
0.9,0.9,0.9,0.9	Benchmark	0.250	0.250	0.250	0.250	66.633
0.9, 0.9, 0.9, 0.9	0.8	0.250	0.250	0.250	0.250	61.813
0.9, 0.9, 0.9, 0.9	Benchmark	0.250	0.250	0.250	0.250	61.813
0.9, 0.9, 0.9, 0.9	0.77	0.250	0.250	0.250	0.250	60.570
0.9, 0.9, 0.9, 0.9	Benchmark	0.250	0.250	0.250	0.250	60.570
0.9, 0.9, 0.9, 0.9	0.7	0.250	0.250	0.250	0.250	57.875
0.9, 0.9, 0.9, 0.9	Benchmark	0.250	0.250	0.250	0.250	57.875
0.9, 0.9, 0.9, 0.9	0.5	0.250	0.250	0.250	0.250	51.068
0.9, 0.9, 0.9, 0.9	Benchmark	0.250	0.250	0.250	0.250	51.068
0.9, 0.9, 0.9, 0.9	Σ_1	0.224	0.224	0.255	0.297	52.800
0.9, 0.9, 0.9, 0.9	Benchmark	0.250	0.250	0.250	0.250	52.628
0.9, 0.9, 0.9, 0.9	Σ_2	0.217	0.217	0.308	0.257	49.773
0.9, 0.9, 0.9, 0.9	Benchmark	0.250	0.250	0.250	0.250	49.520
0.8,0.8,0.8,0.8	0.9	0.250	0.250	0.250	0.250	49.135
0.8,0.8,0.8,0.8	Benchmark	0.250	0.250	0.250	0.250	49.135
0.8,0.8,0.8,0.8	0.8	0.250	0.250	0.250	0.250	43.503
0.8,0.8,0.8,0.8	Benchmark	0.250	0.250	0.250	0.250	43.503
0.8,0.8,0.8,0.8	0.77	0.250	0.250	0.250	0.250	42.070
0.8,0.8,0.8,0.8	Benchmark	0.250	0.250	0.250	0.250	42.070
0.8,0.8,0.8,0.8	0.7	0.250	0.250	0.250	0.250	38.990
0.8,0.8,0.8,0.8	Benchmark	0.250	0.250	0.250	0.250	38.990
0.8,0.8,0.8,0.8	0.5	0.250	0.250	0.250	0.250	31.367
0.8,0.8,0.8,0.8	Benchmark	0.250	0.250	0.250	0.250	31.367
0.8,0.8,0.8,0.8	Σ_1	0.220	0.220	0.255	0.304	33.083
0.8,0.8,0.8,0.8	Benchmark	0.250	0.250	0.250	0.250	32.885
0.8,0.8,0.8,0.8	Σ_2	0.215	0.215	0.317	0.253	29.292
0.8,0.8,0.8,0.8	Benchmark	0.250	0.250	0.250	0.250	29.031
0.9, 0.75, 0.6, 0.45	0.9	0.039	0.135	0.289	0.536	29.291
0.9, 0.75, 0.6, 0.45	Benchmark	0.136	0.217	0.287	0.360	26.878
0.9, 0.75, 0.6, 0.45	0.8	0.055	0.155	0.294	0.497	24.936
0.9, 0.75, 0.6, 0.45	Benchmark	0.136	0.217	0.287	0.360	23.630
0.9, 0.75, 0.6, 0.45	0.77	0.059	0.159	0.295	0.488	23.826
0.9, 0.75, 0.6, 0.45	Benchmark	0.136	0.217	0.287	0.360	22.716
0.9, 0.75, 0.6, 0.45	0.7	0.067	0.168	0.296	0.470	21.447
0.9, 0.75, 0.6, 0.45	Benchmark	0.136	0.217	0.287	0.360	20.676
0.9, 0.75, 0.6, 0.45	0.5	0.087	0.186	0.295	0.432	15.675
0.9, 0.75, 0.6, 0.45	Benchmark	0.136	0.217	0.287	0.360	15.400
0.9, 0.75, 0.6, 0.45	Σ_1	0.065	0.169	0.297	0.469	15.365
0.9, 0.75, 0.6, 0.45	Benchmark	0.136	0.217	0.287	0.360	14.766
0.9, 0.75, 0.6, 0.45	Σ_2	0.068	0.198	0.336	0.398	12.871

marginal power	correlation	w_1	w_2	w_3	w_4	conjunctive power(%)
0.9, 0.75, 0.6, 0.45	Benchmark	0.136	0.217	0.287	0.360	12.496