1. Introduction to Group Theory

Definition 1.1. A **group** is a pair (G, \cdot) where G is a set and \cdot is a binary operation on G such that

- (i) for all $a, b, c \in G$, it holds $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
- (ii) there is $e \in G$ for all $a \in G$ such that $e \cdot a = a \cdot e = a$, and
- (iii) for all $a \in G$, there is $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

Instead of saying (G, \cdot) is a group, we say G is a group under \cdot . If the operation is understood from the context, we simply say G is a group.

We will study various types of groups. Let's begin with one of the most basic. An **Abelian group** is a group (G, \cdot) with the aditional property that

$$a \cdot b = b \cdot a$$

for all $a, b \in G$. In this case, we use + insted of \cdot for the binary operation of the group, and denote its identity by 0. A finite group is a group where the underlying set is finite.

Example 1. (i) Some Abelian groups: $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{Z}/n\mathbb{Z}, +)$

- (ii) More Abelian groups: $(\mathbb{R} \setminus \{0\}, \cdot)$, $(\mathbb{Q} \setminus \{0\}, \cdot)$, $((\mathbb{Z}/n\mathbb{Z})^{\times}, \cdot)$. Why do we use \cdot instead of + in this case?
- (iii) $((\mathbb{Z}/n\mathbb{Z})^{\times}, +)$ is not a group.
- (iv) Let (A, \bullet) and (B, \circ) be groups. Then the set

$$A \times B = \{(a,b) \mid a \in a, b \in B\}$$

is a group under the operation defined by the rule

$$(a,b)\cdot(c,d)=(a\bullet c,b\circ d).$$

What is the identity of this group? How are inverses defined?

Proposition 1.2. *Suppose* (G, \cdot) *is a group. Then*

- (i) The identity of G is unique.
- (ii) For any $a \in G$, its inverse a^{-1} is unique.
- (iii) For any $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$

(iv) Finite products are well-defined.

Proof. (i) If both e and f are identities of G, then e = ef = f. The first equality is due to the fact f is an identity, the second because e is also an identity.

(ii) Let $a \in G$. If both b and c are inverses of a, then

$$b = be = b(ac) = (ba)c = ec = c.$$

П

- (iii) Classwork.
- (iv) Classwork.

Notation. Let x be any element of a group. The product of x with itself n times is denoted x^n . The product of x^{-1} with itself n times is denoted x^{-n} . We define $x^0 = e$. If the group is Abelian, we write nx instead of x^n and -nx instead of x^{-n} . Also, 0x = 0.

Remark 1.2.1. For an Abelian group we denote e = 0, and, for a nonAbelian group, e = 1. When not mentioned, we denote the identity of a group by 1.

Proposition 1.3. *Let* G *be a group and let* $a, b \in G$. *The left and right cancellation laws hold in* G, *that is, for any* $u, v \in G$ *it holds*

- (i) if au = av, then u = v, and
- (ii) if ub = vb, then u = v.

Proof. Exercise. \Box

Definition 1.4. Let *G* be a group and $x \in G$. The **order** of *x* is

$$\min\left\{n\in\mathbb{Z}^+\mid x^n=1\right\},\,$$

provided it exists. We denote the order of x by |x|. If no such integer exists (i.e., if no positive power of x is the identity), $|x| = \infty$.

Remark 1.4.1. This notation must not be regarded as an absolute value. The use of the bars should cause no problem because it is used in a different context.

Exercise 1. Compute $|\overline{6}|$ in $\mathbb{Z}/9\mathbb{Z}$ and $|\overline{2}|$ in $(\mathbb{Z}/7\mathbb{Z})^{\times}$.