2024/2025

1 Généralités

[Groupe] Un groupe (G, *) est un ensemble G muni d'une loi de composition interne * vérifiant :

- 1. Associativité : $\forall a, b, c \in G, (a * b) * c = a * (b * c)$
- 2. Élément neutre : $\exists e \in G, \forall a \in G, a * e = e * a = a$
- 3. Symétrique : $\forall a \in G, \exists b \in G, a * b = b * a = e$
- -(,+) est un groupe
- (*, ×) est un groupe
- (S_n, \circ) le groupe symétrique

2 Théorèmes fondamentaux

[Lagrange] Soit G un groupe fini et H un sous-groupe de G. Alors |H| divise |G|. [Cauchy] Si G est fini d'ordre divisible par un premier p, alors G contient un élément d'ordre p.

[Sylow] Soit $|G| = p^a m$ avec $p \nmid m$. Alors:

- 1. Il existe des sous-groupes d'ordre p^a (p-Sylow)
- 2. Tous les *p*-Sylow sont conjugués
- 3. Leur nombre n_p vérifie $n_p \equiv 1 \pmod{p}$ et $n_p \mid m$

3 Exercices

Montrer qu'un groupe d'ordre $p^2\ (p\ {\rm premier})$ est abélien.

Par analyse des classes de conjugaison et utilisation du théorème de Sylow.

Anneaux et corps

4 Définitions

[Anneau] $(A, +, \times)$ est un anneau si :

- 1. (A, +) est un groupe abélien
- 2. \times est associative, distributive sur +, et possède un neutre 1_A

[Morphisme d'anneaux] Une application $f: A \to B$ est un morphisme si :

- 1. f(a+b) = f(a) + f(b)
- 2. $f(a \times b) = f(a) \times f(b)$
- 3. $f(1_A) = 1_B$

Cours de mathématiques Algèbre linéaire

5 Exercices

Montrer que $[i]=\{a+ib\mid a,b\in\}$ est un sous-anneau de . Vérification directe des propriétés des sous-anneaux. Arithmétique

6 Théorèmes fondamentaux

[Bézout] $\forall a, b \in {}^*, \exists u, v \in \text{tels que } au + bv = a \land b$ [Gauss] Si $a \mid bc \text{ et } a \land b = 1, \text{ alors } a \mid c$ [Euler-Fermat] Pour $a \land n = 1$:

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

En particulier pour p premier :

$$a^{p-1} \equiv 1 \pmod{p}$$

7 Exercices

Résoudre $x^2 \equiv -1 \pmod{5^k}$ pour $k \geq 1$. Par récurrence et lemme de Hensel. Applications avancées

8 Théorème chinois

[Restes chinois] Si $m \wedge n = 1$ alors :

$$/mn \simeq /m \times /n$$

Résoudre :

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

Par substitutions successives : solution $x \equiv 23 \pmod{105}$.

9 Groupes abéliens finis

[Classification] Tout groupe abélien fini est isomorphe à :

$$\prod_{i=1}^{k} / d_i \text{ avec } d_1 \mid \dots \mid d_k$$

Les groupes d'ordre 8 : /8, $/4 \times /2$, $(/2)^3$

Cours de mathématiques Algèbre linéaire

2024/2025

10 Exercices finals

[Wilson] Montrer que pour p premier : $(p-1)! \equiv -1 \pmod{p}$ En associant chaque élément avec son inverse dans /p. Montrer qu'un groupe d'ordre 15 est cyclique. Analyse des p-Sylow et produit direct.