Low Overhead Broadcast Encryption from Multilinear Maps

Stanford

UT Austin

Dan Boneh Brent Waters Mark Zhandry Stanford

Broadcast Encryption

Broadcast Encryption

Trivial system: each user has secret/public key

Goal: smallest parameter sizes n = # of users

Scheme	CT	SK	PP , BK	PK ?	Assumptio n
Trivial	O(S)	O(1)	O(n)		PKE
BGW'05	O(1)	O(1)	O(n)	✓ □	BDHE
BGW'05	O(√n)	O(1)	O(√n)	\	BDHE
BS'03+ GGH'13	O(1)	n ^{O(1)}	n ^{O(1)}	X	MDHI
BZ'13	O(1)	O(1)	n ^{O(1)}	\	iO

Multilinear Maps (aka Graded Encodings)

Encoding ring elements:

Multilinear Maps (aka Graded Encodings)

k Levels:

Add within levels:

$$\alpha$$
 + β = $\alpha + \beta$

Multilinear Maps (aka Graded Encodings)

Problem with Using Multilinear Maps

BS'03 (secret key) solution:

CT overhead: **0** (public key variant: **1** group element)

SK: 1 group element

BK: Map description, some scalars

Multilinearity: **k** = **n**

Problem with GGH'13, CLT'13: |group element| = $\Omega(k)$ |map description| = $\Omega(k)$

 \Rightarrow |SK| = $\Omega(k)$, |PP| = $\Omega(k)$ (|CT| = $\Omega(k)$ for public key variant)

To use multilinear maps for BE, need k << n

Starting Point: BGW'05 (k = 2)

For any **S⊆[g-1]**, **i∈S**, define

$$\mathbf{u}_{S} = \mathbf{\Sigma}_{j \in S} \alpha^{g-j} \ \mathbf{u}_{S}^{(i)} = \mathbf{\Sigma}_{j \in S \setminus \{i\}} \alpha^{g+i-j}$$

Property:
$$u_s\alpha^i - u_s^{(i)} = \alpha^g$$

Given **PP**, can compute:

Starting Point: BGW'05 (k = 2)

Dec(S, sk_i =
$$\beta \alpha^i$$
 t $t(\beta + u_S)$

$$K_{enc} = \alpha^i X t(\beta + u_S) - \beta \alpha^i + u_S^{(i)} X t = t\alpha^g$$

Note: if no gap at **g** anyone can decrypt: $\mathbf{K}_{enc} = \mathbf{t} \times \mathbf{x} \times \mathbf{g}$

New Idea: Use Map to Generate PP

BGW'05: Too many components in PP

Idea: Put BGW'05 in intermediate levels of multilinear map Use map to generate **PP** from small level **1** set **PP**'

What elements should **PP'** consist of?

Abstract Construction

ID: User space

CT, sk: Level m and h encodings of (m+h)-linear map

PP': level-1 encodings of α^j for $j \in T$ (and β at level m)

Need to be able to compute the following from **PP**:

• For enc: u_s

• For dec: $u_s^{(i)}$ $α^i$

No security if able to compute:

α^g

Needed Properties

•g ∉ m-span(T)

s-span(T) = sums of ≤s (possibly repeating) elements of T

```
Need sets T,ID, integers g,h,m such that:

•j \in h-span(T) \forall j \in ID (for \alpha^j at level h)

•g - i \in m-span(T) \forall i \in ID (for u_s at level m)

•g + j - i \in m-span(T) \forall i,j \in ID, i \neq j (for u_s^{(j)} at level m)

•g \in (m+h)-span(T) (for \alpha^g at level m+h)
```

Goal: Maximize |ID| (# users), Minimize |T| (# PP), h+m (# levels) Simple T (for nice assumption)

(to block trivial attack)

```
Generalization of BGW'05:

m = h = 1 ID = [g-1] (n = g-1) T = \{1,...,g-1,g+1,...,2g-2\}
```

Our New Scheme

```
T= { 1, 2, ..., 2^{m+1} }, g = 2^{m+1} - 1
ID = { i<g : Hamming(i) = h } for 1 \le h \le m
```

```
j ∈ h-span(T) ∀j∈ID

g - i ∈ m-span(T) ∀i∈ID

g + j - i ∈ m-span(T) ∀i,j∈ID, i≠j

g∈(m+h)-span(T)

g ∉ m-span(T)
```

Multilinear Diffie-Hellman Exponent Assumption

Theorem: (m,h)-MDHE ⇒ static security

Parameter Sizes

Number of users: $n = \binom{m+1}{h}^1$

For best n, set m≅log n + ½ loglog n, h≅m/2

- Total multilinearity: O(log n)
- Size of group elements, map parameters: polylog(n)
- •Size of all params: polylog(n)

Since all params polylog, can set **n=2**^λ

⇒ Identity based scheme

Setting of m,h to minimize m+h

n	m	h	k=m+h
24	5	3	8
28	10	4	14
2 ¹⁶	18	8	26
2 ³²	35	15	50
264	68	29	97
2 ¹²⁸	136	53	189
2 ²⁵⁶	270	104	374
2 ⁵¹²	533	211	744

Conclusion and Open Problems

Broadcast scheme with polylog parameters from M-maps (two other variants with various trade-offs)

Open questions:

- Adaptive security
- Low overhead traitor tracing from O(log |n|)-linear maps
- Circuit ABE from O(log |C|)-linear maps
- Other applications of M-maps with low multilinearity