

Università degli Studi di Pavia

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE, NATURALI Corso di laurea in Scienze Fisiche

Fotorivelatori Criogenici per la rivelazione di eventi rari in fisica delle alte energie

Candidato Alessandro Villa Matricola 462495 Supervisore

Dott. Andrea Negri

Co-Supervisori

Dott. Roberto Ferrari Dott. Lorenzo Pezzotti

Indice

In	trod	uction		iii				
1	Future e^+ e^- colliders							
	1.1	Physic	cs goals	. 1				
	1.2	_	nic colliders					
	1.3		tors					
2	Cal	orimet	ry and dual-readout	3				
	2.1	Electo	omagnetic showers	. 3				
		2.1.1	Shower development					
		2.1.2	Energy resolution	. 3				
	2.2	Hadro	onic showers					
		2.2.1	Shower development	. 3				
		2.2.2	Energy resolution					
	2.3	Dual-r	readout calorimetry					
		2.3.1	Working principles					
		2.3.2	Experiments					
3	Silie	con Ph	notomultipliers	5				
	3.1		ing principles	. 5				
	3.2	SiPM	Response	. 5				
	3.3		effects					
		3.3.1	Dark Count Rate					
		3.3.2	After-Pulse					
		3.3.3	Optical Cross-Talk					
4	IDE	A DR	calorimeter project	7				
5	IDE	A DR	calorimeter full simulation	9				
	5.1	Simula	ation structure	. 10				
		5.1.1	Calorimeter simulation					
		5.1.2	SiPM response digitization					
	5.2		ation performances					
			Different configurations					

ii	INDICE	

		5.2.2	Time studies	10
		5.2.3	Saturation effect	10
		5.2.4	Digitization impact on energy resolution	10
	5.3	Neural	Network: Particle ID on waveform	10
		5.3.1	Configuration	10
		5.3.2	Performances	11
	5.4	Neural	Network: Particle ID on imaging	11
		5.4.1	Configuration	11
		5.4.2	Performances	11
6 Conclusion		13		
Tł	anks	5		15
Bi	bliog	raphy		17

Introduction

Future e^+ e^- colliders

aaa

1.1 Physics goals

aaa

1.2 Leptonic colliders

aaa

1.3 Detectors

Calorimetry and dual-readout

aaa

2.1 Electomagnetic showers

aaa

2.1.1 Shower development

aaa

2.1.2 Energy resolution

aaa

2.2 Hadronic showers

aaa

2.2.1 Shower development

aaa

2.2.2 Energy resolution

aaa

2.3 Dual-readout calorimetry

2.3.1 Working principles

aaa

2.3.2 Experiments

aaa

3.3.2

3.3.3

aaa

Silicon Photomultipliers

3.1 Working principles
aaa
3.2 SiPM Response
aaa
3.3 Noise effects
aaa
3.3.1 Dark Count Rate
aaa

After-Pulse

Optical Cross-Talk

IDEA DR calorimeter project

IDEA DR calorimeter full simulation

As already said, the project described in chapter 4 is an on-going production and has to be supported by simulation. With this goal, a dual-readout calorimeter full simulation has been developed allowing to generate data and monitor the whole process from the collision on the interaction point to the digitized signal produced by SiPMs.

The chapter presents a description of the simulation structure. The section 5.1 describes in details the simulation dividing it in two main Monte Carlo processes:

- the calorimeter simulation, coded in GEANT4;
- the SiPM response digitization ("pySIPM"), coded in Python.

Later, the performances obtained will be shown. The temporal behavior, the SiPM saturation effect and the energy resolution will be described in section 5.2.

The second half of the chapter treats of the possibility of simple particle identification using neural network structures.

In section 5.3 neural networks working on digitized waveforms are described. The aim of these neural network is to correctly distinguish waveforms generated by electrons (e^-) or pions (π^-) in a range of energy from 20 to 80 GeV.

The last section (sec.5.4) exposes another type of neural networks. These have the purpose of identify if signal are generated from photons (γ) or neutral pions (π^0) analyzing the spazial pattern of energy released in the calorimeter.

5.1 Simulation structure

aaa

5.1.1 Calorimeter simulation

aaa

5.1.2 SiPM response digitization

aaa

5.2 Simulation performances

aaa

5.2.1 Different configurations

aaa

5.2.2 Time studies

aaa

5.2.3 Saturation effect

aaa

Occupancy effect and Energy loss

Studies of the occupancy effect are important preliminary studies that give knowledge about the information loss in the detection process.

5.2.4 Digitization impact on energy resolution

aaa

5.3 Neural Network: Particle ID on waveform

aaa

5.3.1 Configuration

5.3.2 Performances

aaa

5.4 Neural Network: Particle ID on imaging

aaa

5.4.1 Configuration

aaa

5.4.2 Performances

Conclusion

Thanks

16 THANKS

Bibliografia

 $[1]\,$ Y. Fukuda et al., Phys. Rev. Lett. 81 (1998) 1158-1162.