



Magyarország, 2024. január 17.

excellent2 • HU

# Kiváló számok 2 (excellent2)

Alex nemrégiben megismerkedett a kiváló számok fogalmával: egy pozitív egész szám kiváló, ha tízes számrendszerben csak az 1 és az 5 számjegyeket tartalmazza, és osztható 3-mal.

Például a **15** és a **111** kiváló számok  $(15 = 5 \cdot 3 + 0 \text{ és } 111 = 37 \cdot 3 + 0)$ , míg a **151** nem  $(151 = 50 \cdot 3 + 1)$ .



1. ábra. 1515 sokak szerint Angyal szám<sup>1</sup>, és történetesen kiváló szám is!

Alex megfigyelte, hogy sok N-jegyű kiváló szám van, és elkezdte megszámolni őket. Ez azonban túl sok időt vett igénybe, ezért ezt a feladatot házi feladatként adta neked. Segíts Alexnek megszámolni, hogy hány kiváló N-jegyű szám létezik! Mivel a válasz nagy lehet, írd ki modulo  $10^9 + 7$ .

Az értékelő rendszerből letölthető csatolmányok közt találhatsz excellent2.\* nevű fájlokat, melyek a bemeneti adatok beolvasását valósítják meg az egyes programnyelveken. A megoldásodat ezekből a hiányos minta implementációkból kiindulva is elkészítheted.

#### **Bemenet**

A bemenet első sorában T található, a tesztesetek száma. A következő T sorban egy-egy  $N_i$  egész szám található, mely a jegyek számát jelenti, amelyre meg kell találnunk a választ.

#### **Kimenet**

A kimenet T sorból álljon; minden sorban egyetlen egész szám, az adott tesztesethez tartozó megoldás szerepeljen: az  $N_i$ -jegyű kiváló számok száma modulo  $10^9 + 7$ .

excellent2 1/2. oldal

<sup>&</sup>lt;sup>1</sup>A Bibliában megjelenő *Angyal számok* számok hihetetlenek és elképesztő jelentéssel bírnak. Pl. János 15:15 "Nem nevezlek többé szolgának benneteket, mert a szolga nem tudja, mit tesz ura. Barátaimnak mondalak benneteket, mert amit hallottam Atyámtól, azt mind tudtul adtam nektek."

A modulo művelet  $(a \mod m)$  C++/Python nyelven (a % m) formában írható. Az egész számok túlcsordulásának elkerülése érdekében ne feledd, hogy az összes részeredményt csökkentsd a mod művelettel, ne csak a végeredményt! Megjegyzés: ha  $x < 10^9 + 7$ , akkor a 2-szerese belefér a C++ int típusába.

### Korlátok

- $1 \le T \le 10$ .
- $1 \le N \le 10^{18}$ .

### **Pontozás**

A megoldásodat sok különböző tesztesetre lefuttatjuk. A tesztesetek részfeladatokba vannak csoportosítva. Egy-egy részfeladatot akkor tekintünk megoldottnak, ha volt legalább egy olyan beadásod, amely az adott részfeladat minden tesztesetére helyes megoldást adott. A feladat összpontszámát a megoldott részfeladatokra kapott pontszámok összege adja.

- **0. Részfeladat** (0 pont) Példák.
  - *8888*
- 1. Részfeladat (13 pont)  $N \leq 20$ .
  - **=**|8|8|8|8|
- 2. Részfeladat (24 pont)  $N \leq 2000$ .
  - **8**|**8**|**8**|**8**|
- 3. Részfeladat (34 pont)  $N \le 200\,000$ .
  - **8**|**8**|**8**|**8**|
- **4. Részfeladat** (29 pont) Nincsenek további megkötések.

#### **8**|**8**|**8**|**8**|

#### Példák

| input | output    |
|-------|-----------|
| 5     | 10        |
| 5     | 2         |
| 3     | 342       |
| 10    | 251936681 |
| 39    | 897205658 |
| 952   |           |

## Magyarázat

A példa első tesztesetében N=5. 10 darab kiváló ötjegyű szám van. Ezek növekvő sorrendben a következőek: 11115, 11151, 11511, 15511, 15555, 51111, 51555, 55155, 55515 és 55551.

A második tesztesetben N=3. 2 darab kiváló háromjegyű szám van: 111 és 555.

A negyedik tesztesetben 183 251 937 962 darab kiváló 39-jegyű szám van. Ez a szám modulo  $10^9 + 7$ : 251 936 681.

excellent2 2 / 2. oldal