

ACME
A powerful ADL

Project 2
OP5

ADL presentation

Euro Team

Alauzet Pierre, Ahvenniemi Mikko,

Colin Julien, Starck Benoit

TABLE OF CONTENTS

- 1. Why do we use ADLs?
- 2. ADL investigation & choice
- 3. ACME presentation
- 4. ACME Particularities
- 5. ACMEStudio
- 6. ADLs Comparison

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 3 / 28

1. WHY DO WE USE ADLS?

- Necessity of using standardized architectural representation
 - ADLs bring standards for architecture description, just as what
 - UML do for design
 - Entity-relationship model do for database
 - Using architectural styles for the structure
 - Pipe and filters
 - Client/Server
 - ...
 - Using formal language
 - Components
 - Connectors
 - ...
 - Makes the architecture universally understandable
 - Designers
 - Programmers
 - Stakeholders

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 4 / 28

1. WHY DO WE USE ADLS ?(CONT.)

- An ADL is a language for modeling a software system's conceptual architecture, distinguished from the system's implementation
- ADLs bring the tools for architecture evolution and reusability
- Makes the architecture assessable using external tools or methods

Why do we use ADLs? <u>ADL Choice</u> ACME Presentation ACME Particularities ACMEStudio Comparison 5 / 28

2. ADL INVESTIGATION AND CHOICE

Comparison between several available ADLs

- Abacus:
 - Not well provided (movies, tutorials,...) but not a lot of papers
 - For professional & enterprises
 - Software: 30 day trial
- Rapide :
 - Best documentation and example
 - Software on Linux & Solaris: free BUT NOT ACCESSIBLE
- Wright
 - Not enough documents
 - Well represented on Internet
 - No software
- Unicon
 - Good specification
 - Software not available

Why do we use ADLs? <u>ADL Choice</u> ACME Presentation ACME Particularities ACMEStudio Comparison 6 / 28

2. ADL INVESTIGATION AND CHOICE (CONT.)

We have chosen ACME!

- Well known
- A lot of documentation
 - Website
 - HTML large documentation
 - Tutorials available
- Complete and well-made software as an Eclipse plug-in
- Free software available on every platforms
- Developed in the same university as ATAM method Carneggie
 Melon University

Why do we use ADLs? ADL Choice <u>ACME Presentation</u> ACME Particularities ACMEStudio Comparison 7 / 28

3. WHAT IS ACME?

- Acme created in 1995 by Carnegie Mellon University
- □ The original goal was to provide a **common language** that could be used to support the interchange of architectural descriptions between a variety of architectural design tools.
- Provide a generic, extensible infrastructure for describing, representing, generating, and analyzing software architecture language description.
- Provide descriptions that are easy to understand for everyone

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 8 / 28

3. WHAT IS ACME? (CONT.)

- One of ACME's goals is to be an ADL interchange format
 - □ Facilities exist for translating ACME to Aesop, Rapide, Wright, and back
- Some steps have to be taken to take full advantage of this (e.g. Wright to Rapide)
 - 1. Translating specification form ADL 1 to ACME specification
 - 2. Translating the annotated ACME specification in ACME specification with ADL 2 annotations
 - 3. Finally, ACME code can be directly translated into ADL 2 specific description

Why do we use ADLs? ADL Choice <u>ACME Presentation</u> ACME Particularities ACMEStudio Comparison 9 / 28

3. ACME TRANSFORMATION

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 10 / 28

3. ACME DESCRIPTION

ACME describes a whole system thanks to

- Library of 7 architectural elements
 - Components
 - Connectors
 - Systems
 - Ports
 - Roles
 - Representations
 - Representation maps
- Architectural families
 - Tiered
 - Pipe & filters
 - Client & servers
 - Pub-Sub
 - Shared data
 - Three-tiered

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 11/28

3. ACME DESCRIPTION

Component

- Primary computational elements & data stores
 - Filter
 - Object
 - Client/Server
 - Database
 - Black board

Component

Connectors

- Interaction among components
 - connector embodying HTTP protocol within a client/server architecture
 - data flow channel in a pipe/filter architecture
- Communication & coordination among components
 - asynchronous communication channel such as event bus

3. ACME DESCRIPTION (CONT.)

Systems

- First ordered entity in ACME
- Configuration of components & connectors

Role

- Particularity of the connector
- Describes how the connector links the components
 - Client-server connector has 2 roles designated caller & callee
 - Reading or writing pipe

Port

- Anchorage point on the component
- Describes input or ouptut of a component
- Can be unique or multiple

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 13 / 28

3. ACME DESCRIPTION (CONT.)

Properties

- Used to define component's or connector's behavior
- Provide a way to encoding information to be interpreted
- Defines information that are likely to change within the architecture
- Properties are transparent for ACME itself

Examples of ACME code and properties definitions

 Example of code describing a filter architecture and his behavior defined as a propriety to be read by a Java IDE for implementation.

```
Component TheFilter = {
Port in; Port out;
Property implementation :
String ="while (!in.eof) {
in.read; in.read; compute; out.write}";}
```

3. ACME DESCRIPTION (CONT.)

■ Example of server component. The defined property represents a non-functional requirement. We want the server to respond in less than 15 ms.

```
Component Server = {
Port requests;
Property responsetime :
Float = 15.00 << units="ms">>;}
```

□ This last example shows us how to rely an architectural item in ACME to another ADL

```
Component TheFilter = {
Property external-type :
"SomeADL::Filter";
Port in; Port out;;}
```

Why do we use ADLs? ADL Choice <u>ACME Presentation</u> ACME Particularities ACMEStudio Comparison 15 / 28

3. ACME DESCRIPTION (CONT.)

Types

- A type is a ready-to-use structure prototype that can be use as an architectural template
- The architect is allowed to create his own types
- Types includes information that is not likely to change within the architecture
- Example of type definition

```
Component Type EventListenerT = {
Property eventMap; Property
implementation; };
```

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 16 / 28

3. ACME DESCRIPTION (CONT.)

Language is based on

- First order predicate logic
- Rules checking if architectural model is well formed

Rules can be defined

- By the style designer
- By ourself

2 types of rules

- Invariant : violations of which are errors
- Heuristics: violations of which leads to warnings

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 17 / 28

4. ACME PARTICULARITIES

Representation

- Way to abstract complex system
- Lower level view of a component
- Component contains & represents a sub system

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 18 / 28

4. ACME PARTICULARITIES (CONT.)

- ACME method allows a translation mechanism...
 - ... using properties
 - Runtime semantics
 - Data type for communication between components
 - Protocols of interaction
 - ... allowing other tools to interpret the architecture
 - ADL's (Wright, Unicon, etc.)
 - Development environments
 - Analysis or checker tools
- Type structuring allows the architect to create templates to be
 - Used within a project
 - from one client/one server to multiple clients/multiple servers architecture
 - Reused in other projects involving the same kind of structure

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 19 / 28

4. ACME PARTICULARITIES (CONT.)

Illustration of representation and properties of a component

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 20 / 28

5. ACME TOOL

Eclipse plug-in software : AcmeStudio

AcmeStudio

- Graphical interface
- Architecture drawing
- Design analyze
- Language description (development)

Features

- Create or edit families
- Edit visualization
- Edit and check rules
- Edit properties
- □ Etc...

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 21/28

5. ACMESTUDIO

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 22 / 28

5. ACMESTUDIO (CONT.)

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 23 / 28

5. ACMESTUDIO (CONT.)

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 24 / 28

5. ACMESTUDIO (CONT.)

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 25 / 28

6. ADLS COMPARISON: THE SCOPE

Comparison of scope

Scope				
ACME	Darwin	Rapide	Unicon	Wright
Architectural interchange, predominantly at the structural level	Architectures of highly- distributed systems whose dynamism is guided by strict formal underpinnings	Modeling and simulation of the dynamic behavior described by an architecture	Data-flows architectures with high volume of data and real-time requirements.	Modeling and analysis of the dynamic behavior of concurrent systems

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 26 / 28

6. ACME: QUALITIES AND LACKS

- A common interchange language:
 - Provide variety of tools belonging to several ADLs
 - Easy to use : one format for all ADLs, programmers don't have to master all ADL's languages
- User-friendly interface
 - Very complete, lot of functions
 - Seven basics entities
 - Easy for the user, don't need to learn ACME language
- Group each auxiliary information from ADLs, by using properties
 - Ex : Property Aesop-style : style-id = clientserver;

Why do we use ADLs? ADL Choice ACME Presentation ACME Particularities ACMEStudio Comparison 27 / 28

6. ACME: QUALITIES AND LACKS (CONT.)

- Acme provides translation between 2 ADLS
 - □ → don't provide advanced tools for each ADL
 - □ → you may turn to another tool if you want describe detailed architecture
- Should limit the class of systems of ADLs for translations
 - often important and painful trade-offs have to be made to permit the success of translation
- Try to develop a translator bi-directionality will complicate the program a lot
 - □ → loss of a main functionality

ACME
A powerful ADL

Euro Team

Alauzet Pierre, Ahvenniemi Mikko,

Colin Julien, Starck Benoit

REFERENCES

- **1. David S. Wile,** ACME: An Interchange Language for Architecture Representation
- 2. http://www.cs.cmu.edu/~acme/, ACME websites
- 3. http://en.wikipedia.org/wiki/Architecture description language, ADL wikipedia page
- **4. [KKC00] R. Kazman, M. Klein, P. Clements**, ATAM: A Method for Architecture Evaluation, CMU/SEI-2000-TR-004, Software Engineering Institute, Carnegie Mellon University, 2000.