Compte rendu de TP

Mesure de vitesse d'un modèle réduit de locomotive par effet Döppler acoustique

Tom SALES

13 décembre 2023

Sommaire

1	Intr	coducti	ion	5	
2	Etude Théorique				
	2.1	Le dét	secteur est fixe et seule la source est mobile	5	
		2.1.1	Source S se translatant en se rapprochant d'un détecteur D, situé sur sa		
			trajectoire	5	
		2.1.2	Source S se translatant en s'éloignant d'un détecteur D, situé sur sa trajectoire	6	
	2.2	Le dét	secteur est mobile et seule la source est fixe	7	
		2.2.1	Détecteur D se translatant en se rapprochant d'une source S, située sur sa		
			trajectoire	8	
		2.2.2	Détecteur D se translatant en s'éloignant d'une source S, située sur sa tra-		
			jectoire	9	
3	Mes	sure ex	xpérimentale d'une vitesse de locomotive	10	
	3.1	Descri	ption de l'experience	10	
	3.2	Dispos	sitifs expérimentaux	10	
		3.2.1	Mesure directe de la fréquence reçue	10	
		3.2.2	Mesure de Δf par les battements (en additionnant $u_2(t)$ et $u_1(t)$)	11	
		3.2.3	Mesure de Δf par les battements (en multipliant $u_2(t)$ et $u_1(t)$)	15	
4	Cor	nclusio	n du TP	18	
5	Anı	nexes		19	
	5.1	Code	python de calcul de l'incertitude statistique	19	

Liste des images

1	Illustration de l'effet Doppler (Cas où la source avance vers le récepteur)	5
2	Illustration de l'effet Doppler (Cas où la source s'éloigne du récepteur)	6
3	Illustration de l'experience	10
4	Rignal reçu et amplifié	11
5	Spectre en fréquence du signal résultant $w(t) = u_1(t) + u_2(t) \dots \dots \dots$	13
6	Montage de détection synchrone	15
7	Spectre en fréquence du signal résultant $q(t) = ku_1(t)u_2(t)$	16
8	Resultats de l'experience pour les mesures 1 et 4 du tableau de résultats	17

Liste des tableaux

1	Résulats des mesures (Fréquence des battements en addition)	14
2	Résulats des mesures (Fréquence des battements en multiplication) $\dots \dots \dots$	17
3	Ecarts relatifs	18

1 Introduction

But du TP: Mesurer la vitesse d'une locomotive miniature à l'aide d'un radar à effet Döppler à ultrasons (f = 40kHz). Nous assurerons la mesure précise du décalage fréquentiel grâce à un dispositif de détection synchrone.

2 Etude Théorique

On note c_s la célérité du son dans le milieu de propagation (l'air dans le cas de ce TP). La source sonore s'appelle S et le détecteur sonore s'appelle D. À une date t_i , la distance SD sera notée $SD(t_i) = d_i$.

2.1 Le détecteur est fixe et seule la source est mobile

2.1.1 Source S se translatant en se rapprochant d'un détecteur D, situé sur sa trajectoire

Figure 1: Illustration de l'effet Doppler (Cas où la source avance vers le récepteur).

Dans cette première partie, la source sonore S, mobile à vitesse $\vec{v_s} = v_s \vec{e_x}$ dans le référentiel \mathcal{R}_T terrestre , émet des "bips" sonores périodiques de période T_s . Le détecteur D est fixe dans \mathcal{R}_T , et est situé sur la trajectoire de S. Ce récepteur reçoit les "bips" selon la periode T_D Un premier bip est émis par S à la date t_1 et reçu par le détecteur à la date t_1' On peut relier d_1, t_1, t_1' et c_s (Célérité de l'onde sonore)

Relation 1 entre
$$d_1, t_1, t_1'$$
 et c_s
$$c_s(t_1' - t_1) = d_1 \, \, \textcircled{1}$$

Un second bip est émis par S à la date t_2 et reçu par D à la date t_2' De meme, on obtient une relation entre d_2, t_2, t_2' et c_s

Relation 2 entre d_2 , t_2 , t'_2 et c_s

$$c_s(t_2'-t_2)=d_2$$
 ②

En soustrayant les deux relations précédentes, il vient

$$c_s(t_2' - t_1 - T_s - t_1' + t_1) = d_2 - d_1$$
Or $T_D = t_2' - t_1'$

On exprime alors la periode T_D à l'aide de $c_s,\,v_s$ et T_S

Relation 3 entre c_s , v_s et T_S

$$T_D = T_S (1 - \frac{v_s}{c_s}) \ \Im$$

Par définition de la fréquence, $f_s = \frac{1}{T_s}$ et $f_D = \frac{1}{T_D}$

Finalement on obtient l'expression de la fréquence reçe par le récepteur D en fonction de la fréquence envoyée par la source S

Relation 4 entre f_s , f_D , v_s et c_s

$$f_D = \frac{f_S}{(1 - \frac{v_s}{c_s})}$$

Remarque: On peut obtenir la relation entre les longueurs d'ondes incidentes et recues car $\lambda = \frac{c_s}{f}$

On aurait la relation : $\lambda_D = \lambda_s (1 - \frac{v_s}{c_s})$

2.1.2 Source S se translatant en s'éloignant d'un détecteur D, situé sur sa trajectoire

Figure 2: Illustration de l'effet Doppler (Cas où la source s'éloigne du récepteur).

Par analogie avec la situation précédente, on retrouve la relation

$$c_s(t_2' - t_1 - T_s - t_1' + t_1) = d_2 - d_1$$

Cependant cette fois ci, le signe de d_2-d_1 change et $d_2-d_1=v_s$

La relation 3 change donc en conséquence, pour donner la relation 3'

Relation 3' entre c_s , v_s et T_S

$$T_D = T_S(1 + \frac{v_s}{c_s})$$
 ③'

On en déduit donc les relations 4' et 5'

Relation 4' entre f_s , f_D , v_s et c_s , et 5' entre les longueurs d'ondes incidente et reçue

$$f_D = \frac{f_S}{(1 + \frac{v_s}{c_s})} \, \, \textcircled{4},$$

$$\lambda_D = \lambda_s (1 + \frac{v_s}{c_s}) \, \, \mathfrak{D}',$$

Synthèse des deux cas

Dans les deux cas , on obtient la relation $f_D = \frac{c_s}{c_s \pm v_s} f_s$, donc $f_D = \frac{1}{1 \pm \frac{v_s}{c_s}} f_s$

A l'ordre 1 en $\frac{v_s}{f_s}$, $f_D = (1 \pm \frac{v_s}{c_s}) f_s$

Alors $f_D - f_s = \frac{f_s v_s}{c_s}$

On pose maintenant $\Delta f = f_D - f_s$

Approximation de $\frac{\Delta f}{f_s}$

$$\frac{\Delta f}{f_s} pprox \pm \frac{v_s}{c_s}$$

Remarque: Lorsque la source se rapproche du capteur, la frequence perçue par celui ci est superieure à celle émise, et le son perçu est plus aigu

Réciproquement, lorsque la source s'éloigne du capteur, le son perçu est plus grave

2.2 Le détecteur est mobile et seule la source est fixe

Soit une source S fixe dans le référentiel \mathcal{R}_T terrestre. Cette source émet le "Bip" de periode T_s . Cette fois ci le détecteur (D) est mobile à vitesse $\vec{v_D}$, sur la trajectoire contenant la source (S).

Nous noterons \mathcal{R}' le référentiel lié à (D)

Dans \mathcal{R}' , qualitativement, la vitesse de (D) est opposée à celle de (S), alors on obtient une relation entre $\vec{v}_{(S)(\mathcal{R})'}$ et $\vec{v_D}$

$$\vec{v}_{(S)(\mathcal{R})'} = -\vec{v_D}$$

Avec cette relation, on peut relier la vitesse de l'onde dans \mathcal{R}' notée c_s' , c_s et v_D

$$\vec{c}_s' = \vec{c}_s - \vec{v}_D$$

<u>Remarque</u>: Dans \mathcal{R}' , le détecteur est fixe et la source bouge, ce qui revient au cas précédent : On peut utiliser les résultats de l'effet Döppler d'une source mobile et d'un emetteur fixe.

2.2.1 Détecteur D se translatant en se rapprochant d'une source S, située sur sa trajectoire

En projection sur l'axe des x, la relation sur les vitesses devient une relation sur les normes

$$c_s' = c_s + v_D$$

Alors $c_s' - c_s = v_D$

En multipliant cette expression par T_s , on obtient $T_s(c_s'-c_s)=v_DT_s$

Or $c'_s - c_s$ est la vitesse d'une impulsion par rapport a l'autre, donc $T_s(c'_s - c_s) = d_1 - d_2$ Finalement, on obtient

$$d_2 - d_1 = -v_D T_s$$

Selon la composition des vitesses établie précédemment, $d_1 - d_2 = c'_s T_D = (c_s + v_D)T_D$ Finalement, on obtient une relation entre les **periodes**, une relation entre les **fréquences** et une relation entre les **longueurs d'ondes** Relations entre les longureurs d'ondes, entre les fréquences et entre les periodes

$$T_D = T_s \frac{c_s}{c_s + v_D}$$

$$f_D = f_s \frac{c_s + v_D}{c_s}$$

$$\lambda_D = \lambda_s \frac{c_s}{c_s + v_D}$$

2.2.2 Détecteur D se translatant en s'éloignant d'une source S, située sur sa trajectoire

On retrouve l'equation $T_s(c'_s-c_s)=v_DT_s$, mais cette fois ci le signe de c'_s-c_s change, cela donne la relation suivante : $T_s(c'_s-c_s)=d_2-d_1$

Finalement

$$d_2 - d_1 = v_D T_s$$

Par le meme procédé que dans la partie précédente, on obtient une relation entre les **periodes**, une relation entre les **fréquences** et une relation entre les **longueurs d'ondes**

Relations entre les longureurs d'ondes, entre les fréquences et entre les periodes

$$T_D = T_s \frac{c_s}{c_s - v_D}$$

$$f_D = f_s \frac{c_s - v_D}{c_s}$$

$$\lambda_D = \lambda_s \frac{c_s}{c_s - v_D}$$

Synthèse des deux cas

Dans les deux cas , on obtient la relation $f_D=f_s\frac{c_s\pm v_D}{c_s},$ donc $f_D=(1\pm\frac{v_D}{c_s})f_s$

Alors
$$f_D - f_s = \frac{f_s v_D}{c_s}$$

On pose maintenant $\Delta f = f_D - f_s$

Formule de $\frac{\Delta f}{f_0}$

$$\frac{\Delta f}{f_s} = \pm \frac{v_D}{c_s}$$

9

3 Mesure expérimentale d'une vitesse de locomotive

3.1 Description de l'experience

Nous allons construire et étudier un Radar Döppler

Un emetteur E_1 émet dans l'air une onde acoustique de fréquence f = 40kHz. Nous supposerons cette onde plane progressive sinusoidale. On alimente cet emetteur avec une tension $u_1(t)$, de fréquencee f = 40kHz

Le train porte un écran réfléchissant, qui va réfléchir au mieux l'onde émise par E_1 .

Un récepteur est placé au meme niveau que l'emetteur et va recevoir cette onde réfléchie. Ce récepteur va renvoyer un signal sinusoidal E_2 , qu'il faudra amplifier avant de pouvoir traiter Remarque: L'emetteur convertit la tension $u_1(t)$ en onde ultrasnore par le déplacement vibratoire d'une lame de quartz piezoelectrique. Le récepteur, par fonctionnement inverse, capte les vibration du quartz piezoelectrique et les convertit en la tension $u_2(t)$

Le véhicule est une locomotive, dont la vitesse est de $v_s = 6cm.s^{-1}$ (Mesure effectuée grâce à un chronomètre)

3.2 Dispositifs expérimentaux

Nous étudieront 3 dispositifs experimentaux:

- La mesure directe de la fréquence reçue
- La mesure de Δf par les battements (en additionnant $u_2(t)$ et $u_1(t)$)
- La mesure de Δf par détection synchrone

3.2.1 Mesure directe de la fréquence reçue

Schéma:

Figure 3: Illustration de l'experience

Pour cette technique, on récupère directement le signal recu par le récepteur (D), et on mesure sa fréquence.

Figure 4: Rignal reçu et amplifié

La mesure de la fréquence donne $f_2=40013Hz$, donc $\Delta f=13Hz$ Avec la formule montrée en théorie, $v_s=\frac{\Delta f c_s}{f_s}$

Vitesse du mobile par mesure directe de la fréquence reçue

$$v_s = 11 cm.s^{-1}$$

3.2.2 Mesure de Δf par les battements (en additionnant $u_2(t)$ et $u_1(t)$)

L'emetteur est alimenté par un signal $u_1(t) = U_1 cos(2\pi f t + \phi_1)$. Avec cette tension sinusoïdale, il emet un signal acoustique

$$s_1(t) = S_1 cos(2\pi f t + \phi_1).$$

Le récepteur est fixe et identique à l'emetteur, sauf qu'il fonctionne en sens inverse. Il réceptionne une onde sonore $s_2(t)$ plane, sinusoïdale et de fréquence $f + 2\Delta f$, dans le sens et la direction de O_x .

$$s_2(t) = S_2 cos(2\pi (f + 2\Delta f)t + \phi_2)$$

Où
$$\Delta f = \pm \frac{v}{c_s} f$$

Ce signal acoustique $s_2(t)$ est transformé en tension $u_2(t) = U_2 cos(2\pi(f+2\Delta f)t + \phi_2)$

<u>Remarque</u>: On amplifiera ce signal en un signal $u_2^A = A \times u_2(t)$, et on règlera A de manière à obtenir $U_1 = AU_2 = U$

On notera par la suite $f' = f \pm 2\Delta f$

La superposition de $u_1(t)$ et $u_2(t)$ donne une porteuse de fréquence $f_H = \frac{f+f'}{2} = f + \Delta f$, d'amplitude modulée.

La modulante sera sinusoïdale de fréquence $f_B=\Delta f=|f-f'|$

Avec des formules de trigonométrie, on obtient la forme du signal résultant

$$w(t) = u_1(t) + u_2(t) = 2U_1 cos(2\pi(f + \Delta f)t + \frac{\phi_1 + \phi_2}{2})cos(2\pi\Delta ft + \frac{\phi_2 - \phi_1}{2}) + (AU_2 - U_1)cos(2\pi(f + 2\Delta f)t)$$

Or en première approximation, on peut simplifier cette formule en sachant que $\Delta f << f$ et $AU_2 << U_1$

$$w(t) = u_1(t) + u_2(t) = 2U_1 cos(2\pi\Delta f t) cos(2\pi\Delta f t) + (AU_2 - U_1) cos(2\pi(f + 2\Delta f)t)$$

<u>Remarque</u>: Le phénomène de battements sera d'autant plus marqué que AU_2 sera proche de U_1 Enfin, en appliquant encore une formule trigonométrique, on peut retrouver le signal de sortie sous la forme d'une somme pour tracer son spectre :

Forme du signal
$$w(t)$$

$$w(t) = U_1 cos(2\pi(f + \Delta f)t) + cos(2\pi(f - \Delta f)t) + (AU_2 - U_1)cos(2\pi(f + 2\Delta f)t)$$

Figure 5: Spectre en fréquence du signal résultant $w(t) = u_1(t) + u_2(t)$

Et grâce à la théorie vue au paravant, on obtient la relation entre Δf , f, c_s et v_s

$$\Delta f = \pm \frac{vf}{c_s}$$

Montrons maintenant grâce à la thermodynamique l'expression de c_s dans l'air ambiant considéré comme un gaz parfait

On sait que dans un gaz parfait, $c_s = \frac{1}{\rho_0 \chi_s}$

Considérons l'évolution comme isentropique, alors l'equation de Laplace s'écrit

$$P(\delta V)^{\gamma} = P_0(\delta V_0)^{\gamma}$$

Or dm = constante et $dm = \rho \delta V$, donc on peut transformer l'expression précédente

$$\rho(\delta V)^{\gamma} = \rho_0(\delta V_0)^{\gamma}$$

Par différentielle logarithmique, on obtient la relation suivante

$$\frac{dP}{P} - \gamma \frac{d\rho}{\rho} = 0$$

Finalement la relation suivante donne l'expression de χ_s pour un gaz parfait

$$\chi_s = \frac{1}{\rho} \frac{\partial \rho}{\partial P} = \frac{1}{\gamma P} \approx \frac{1}{\gamma P_0}$$
 (Au premier ordre)

On peut alors remplacer l'expression de χ_s dans c_s

$$c_s = \sqrt{\frac{\gamma P_0}{T_0}}$$

Or d'après l'équation d'et at des gaz parfaits, $\frac{P_0}{\rho_0} = \frac{RT_0}{M_{air}}$

Expression de c_s dans un gaz parfait

$$c_s = \sqrt{\frac{\gamma R T_0}{M}}$$

On peut maintenant mesurer la fréquence des battements et en déduire la vitesse du mobile

Mesure	1	2	3	4	5
$2\Delta f$	15.48	12.4	14.4	14.4	16
v_s	0.066	0.053	0.062	0.062	0.069

Table 1: Résulats des mesures (Fréquence des battements en addition)

On calcule l'incertitude sur la vitesse par une méthode statistique, pour cela, on utilise le code python présent en annexe 1

Avec ce code on obtient
$$U_{vs} = 0.00549m.s^{-1}$$

Valeur de la vitesse par la méthode des battements en addition des deux signaux

$$v_s = (0.0624 \pm 0.00549) m.s^{-1}$$

3.2.3 Mesure de Δf par les battements (en multipliant $u_2(t)$ et $u_1(t)$)

On met en oeuvre une chaine de traitement comprenant un multiplieur, et un filtre RC passe bas afin de récupérer un signal que l'on notera q(t)

Schéma du circuit :

Figure 6: Montage de détection synchrone

Ce montage est un montage de détection sychrone

En sortie du multiplieur, on récupère un signal

$$q(t) = kAU_1U_2cos(2\pi ft + \varphi_1)cos(2\pi (f + 2\Delta f)t + \varphi_2)$$

Avec des formules trigonométriques, on obtient

$$q(t) = \frac{kAU_1U_2}{2}(\cos(4\pi(f+\Delta f)t + \varphi_1 + \varphi_2) + \cos(4\pi\Delta ft + \varphi_1 - \varphi_2))$$

Grâce a cette dernière expression, on peut tracer le spectre en amplitude du signal q(t)

Figure 7: Spectre en fréquence du signal résultant $q(t) = ku_1(t)u_2(t)$

En rouge on a tracé le fonctionnement optimal du filtre RC pour récupérer la fréquence Δf On privilégiera une mesure de $2\Delta f$ par la mesure de la fréquence des battements car le bruit empeche d'obtenir un spectre avec peu de "batons"

Résultats obtenus sur l'oscilloscope

Figure 8: Resultats de l'experience pour les mesures 1 et 4 du tableau de résultats

Et voici les résulats numériques pour cette meme experience repetee 5 fois

Mesure	1	2	3	4	5
$2\Delta f$	16.3	18.7	15.7	14.4	14
v_s	0.070	0.081	0.068	0.062	0.061

Table 2: Résulats des mesures (Fréquence des battements en multiplication)

On utilise le code python de l'annexe 1 pour obtenir l'incertitude statistique sur cette mesure

Avec ce code on obtient
$$U_{vs} = 0.00717m.s^{-1}$$

Valeur de la vitesse par la méthode des battements en multiplication des deux signaux

$$v_s = (0.0684 \pm 0.00717) m.s^{-1}$$

4 Conclusion du TP

Dans ce TP nous avons pu mesurer la vitesse d'une locomotive par 3 méthodes utilisant l'effet Döppler accoustique.

Voici les résultats des différentes experiences réalisées

Chronométrage de la locomotive (Témoin)

$$v_s = 6cm.s^{-1}$$

Mesure directe de la fréquence reçue (1)

$$v_s = 11 cm.s^{-1}$$

Mesure par les battements par addition (2)

$$v_s = (6.84 \pm 0.717) cm. s^{-1}$$

Mesure par les battements par multiplication (3)

$$v_s = (6.24 \pm 0.549)cm.s^{-1}$$

La méthode d'addition des battements semble etre la plus précise, ci-dessous voici le calcul des ecarts relatifs correspondant

Méthode	Témoin	(1)	(2)	(3)
Ecart relatif (%)	X	83	14	4

Table 3: Ecarts relatifs

La méthode de mesure directe est par conséquent à proscrire car **tres imprécise** et l'ecart relatif des autres grandeurs à la grandeur témoin est **satisfaisante**

5 Annexes

5.1 Code python de calcul de l'incertitude statistique