Design and Analysis of Algorithms: Lecture 1

Ben Chaplin

Contents

1	Overview		
	1.1	Course details	1
2	Intr	troductory Definitions	
	2.1	Alphabets and Strings	1
	2.2	Encoding Mathematical Objects	2
	2.3	Computational Problems	2

1 Overview

1.1 Course details

Course Title: Undergrad Complexity Teacher: Professor Ryan O'Donnell School: Carnegie Melon University

Lectures: https://www.youtube.com/playlist?list=PLm3J0oaFux3YL5vLXpzOyJiLtqLp6dCW2

Textbook: Introduction to the Theory of Computation by Michael Sipser

2 Introductory Definitions

2.1 Alphabets and Strings

Definition. Computational tasks are processes which, given an input, should produce a certain kind of output.

In general, we encode both inputs and outputs using a given set of characters.

Definition. An alphabet Σ is a non-empty finite set of symbols.

Example. $\Sigma = \{0, 1\}.$

Definition. Σ^n is the set of all **strings** of length exactly n made up of symbols in the alphabet Σ .

Example. Let $\Sigma = \{0, 1\}$, then $\Sigma^2 = \{00, 01, 10, 11\}$.

Note that n=0 is allowed, the empty string is denoted as ϵ .

Definition. $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup ...$ is the set of all finite length strings made up of symbols in the alphabet Σ .

2.2 Encoding Mathematical Objects

This is an annoying topic, but necessary for a complete analysis of complexity.

Definition. If X is a mathematical object and Σ is an alphabet, then $\langle X \rangle_{\Sigma} \in \Sigma^*$ is an **encoding of** X (a unique representation of x using the alphabet σ).

In general, we are going to avoid rigorously describe encodings. It will be enough to imagine a theoretical "most sensible" one.

2.3 Computational Problems

There are three categories of computational problems:

- **Decision problems:** $f: \Sigma^* \to \{0,1\}$. Problems for which the answer is either "yes" or "no".
 - **Example.** Is a number prime? Does there exist a path in a given graph?
- Function problems: $f: \Sigma^* \to \Sigma'^*$. Problems for which the answer is another string (not necessarily of the same alphabet).
 - **Example.** Convert a decimal number to binary $(\{0,1,...,9\} \rightarrow \{0,1\})$. Factor a prime.
- Search problems: $f: \Sigma^* \to \{x: x \in \Sigma'^*\}$. Problems for which there may be more than one answer, or no answer at all.
 - **Example.** What are the paths in a given graph?

We primarly work with decision problems. In most cases, search problems and function problems can be easily reduced to decision problems, without added complexity.