

Introduction to Business Valuation

Course Instructor - Jeff

Jeff Schmidt
VP, Financial Modeling

About Jeff...

Prior to joining CFI, for over a decade Jeff taught financial modeling and valuation to thousands of students all over the world. Before his career in financial education, Jeff covered approximately 50 companies with a combined market cap of \$500 billion during his career in equity research. He also worked in corporate development leading M&A modeling and due diligence, and FP&A, as well as working in investment banking and restructuring. Jeff has a B.S. from Texas A&M University and obtained his MBA from the University of Houston. He is a CFA charterholder.

Learning Objectives

Identify a wide range of valuation methods.

Understand the difference between enterprise value and equity value.

Explore the three main business valuation techniques.

Determine the pros and cons of different valuation methods.

Discover how to present your analysis like a world-class financial analyst.

Calculate key outputs within the model structure.

Why Value Companies

What is Valuation

Valuation is the art and science of attributing value to an asset, investment, or company.

Why Perform Valuation

Valuing a Business for Investment Purposes

Selling a business

Acquiring a business

Raising money (i.e., IPO)

Investment recommendations (i.e., buy, hold, sell)

Internal business decision-making

Impairment testing

Valuing employee options and compensation

Bankruptcy

Estate planning

Litigation

Science

Historical Financials
Ratios

Track Record

Statistical Analysis

Art

Management Team

Culture and Strategy

"Moat"

Competition

Macroeconomic Factors

Cost of Capital

Forecasting I

ROE			Future ROE			
2020	2021	2022	2023	2024	2025	2025
%	%	%	%	%	%	%
	γ				γ	

We must have a deep understanding of the business and where it's going for our forecast to be meaningful.

Based on this, we apply acceptable valuation methods to determine a company's worth.

We must have a deep understanding of the business and where it's going for our forecast to be meaningful.

Based on this, we apply acceptable valuation methods to determine a company's worth.

Valuation Techniques

Valuation Techniques

Asset Approach (FMV of Net Assets)

- Cost to Build
- Replacement Cost
- Liquidation Value

Intrinsic Value (Income Approach)

Discounted Cash Flows (DCF)

Relative Value (Market Approach)

- Public Company
 Comparables
- Precedent Transactions

Intrinsic Value – DCF

Intrinsic Value (Income Approach)

 Discounted Cash Flows (DCF)

Intrinsic valuation means looking at a company in isolation without worrying about peers.

Involves: forecasting future performance, calculating future cash flows, and discounting back to the present.

It doesn't directly depend on the mood of the market since we are more focused on the fundamentals of the company.

Relative Value – Public Company Comparables

Relative Value (Market Approach)

- Public Company
 Comparables
- Precedent Transactions

Peers are generally easy to find because these companies' shares are publicly traded on a stock exchange.

We use multiples to find the worth of the company we are trying to value (i.e., Price-to-earnings multiple).

It is more likely to reflect the mood of the market and produce a valuation that is closer to market price than DCF.

Relative Value – Precedent Transactions

Precedent transactions relate to past mergers and acquisitions.

This form of valuation includes a takeover premium (generally, more money is paid for a controlling position).

Presenting Valuation Results

Football Field Chart

It's the job of analysts to weigh the different methods.

Value can never be truly observed, so we use all of these techniques.

Enterprise Value vs. Equity Value

Enterprise Value vs. Equity Value

House Example

What are each of these houses worth?

Answer: \$500,000

- The funding mix is independent of the value of the house.
- The value of the house is what enterprise value reflects for companies.
- Regardless of how the house is financed, the price (or enterprise value) remains the same.

Calculating Enterprise Value

Calculating Enterprise Value

Net Debt Defined (\$MM)				
Short-term Interest-bearing Debt	5,000			
Long-term Interest-bearing Debt	35,000			
Gross Debt	40,000			
Less: Cash and Cash Equivalents	10,000			
Net Debt	30,000			

Think about cash as offsetting debt because cash can be used to pay debt off.

Net Debt

Cash is **not included in firm value** as it is not an operating asset that generates cash.

Calculating Enterprise Value

Net Debt Defined (\$MM)				
Short-term Interest-bearing Debt	5,000			
Long-term Interest-bearing Debt	35,000			
Gross Debt	40,000			
Less: Cash and Cash Equivalents	10,000			
Net Debt	30,000			

Net Debt (with positive net cash posit	ion) (\$MM)
Short-term Interest-bearing Debt	5,000
Long-term Interest-bearing Debt	0
Gross Debt	5,000
Less: Cash and Cash Equivalents	20,000
Net Debt	(15,000)
Net Cash	15,000

Advantages and Disadvantages

Let's look at the advantages and disadvantages of enterprise value and equity value.

Enterprise Value

More useful when comparing companies with different capital structures.

Minimizes accounting policies relative to net income and earnings per share.

There are other debt and cash-like items that may be difficult to measure.

Less useful for analyzing stocks since enterprise value is total business value, not equity value.

Equity Value

More relevant to equity valuation, which is just a portion of a business.

Requires less judgment than enterprise value, where there is debate over cash and debt.

Multiples rely on accrual accounting, which can be manipulated.

Different capital structures impact earnings, even if the businesses are otherwise identical.

Numerator/Denominator Consistency

Valuation Consistency

We start with assets, which can be funded by either debt or equity.

Valuation Consistency

Now, let's look at how this really flows through the income statement.

Valuation Consistency

Now, let's look at how this really flows through the income statement.

XYZ Inc. Income Statement	¢Millione.	
Sales	\$Millions 1,000	If the denomina expense, it's an
Operating Expenses EBITDA	(350) 650	↑ • EV/SalesI • EV/EBITDA
Depreciation	(400)	• EV/EBIT
EBIT	250	
Interest	(100)	16.11
Earnings Before Tax	150	If the d
Tax	(50)	expense, i
Net Earnings	100	
No. of Shares	100 Million	
Earnings per Share	\$1.00	

If the denominator is **before** interest expense, it's an **enterprise value** multiple.

If the denominator is **after** interest expense, it's an **equity value** multiple.

- P/E
- P/B

Discounted Cash Flow Valuation

Intrinsic Value

The intrinsic value of an asset or business is based on its future profits.

Where:

 FV_n = Net cash flow for the *n*th period

i = Annual interest rate

n = Number of periods

Types of Free Cash Flows

There are two types of discounted cash flow calculations:

Levered Free Cash Flow (LFCF)

The cash flow a business has **after** it has met its debt obligations.

Numerator and Denominator Consistency

We need **consistency** between the numerator and denominator.

Numerator and Denominator Consistency

We need **consistency** between the numerator and denominator.

DCF Considerations

A DCF is easiest to use on a company that has positive and fairly predictable cash flows.

A DCF becomes more difficult for younger companies and companies that are in financial distress.

While a private company can be valued using a DCF, the most difficult part is estimating a discount rate.

Two Parts to a Typical DCF Forecast

The **further we predict** into the future, the **more prone to error** our estimates become.

Stage 1:

Discrete Forecast

Time Period

 Typically covers a period of 5 to 10 years.

Description

 Involves calculating free cash flows each year based on projections.

Stage 2:

Terminal Value

Time Period

 Assumes cash flows grow infinitely or company is acquired.

Description

 Assumes cash flows grow at a steady rate or acquired at some multiple.

We will discount all cash flows and the terminal value back to the present at the appropriate discount rate.

Key Assumptions

Key Assumptions

Drivers

Market Size
Sales Mix
Volume/Price
Materials Price
Staffing Levels
Wage Rates
Taxes

A/R, Inventory, A/P Terms

Useful Life Maintenance Scale Revenue

Operating Margin

Taxes

Working Capital

Capital Expenditures

Unlevered Free Cash Flows

The EBIT method is most commonly used to calculate unlevered free cash flows.

Unlevered Free Cash Flows

There are two other methods to calculate unlevered free cash flows.

Cost of Capital

Risk Spectrum

High Risk High risk means the Equity required rate of return is even higher. The required rate of return Corporate Debt must be higher to compensate for taking on more risk. Low risk means the Government Bonds required rate of return is low as well. Low Risk

Calculating WACC

WACC is the
Weighted Average
Cost of Capital or
the weighted
average cost of
debt and the cost
of equity.

Capital Asset Pricing Model (CAPM)

Risk-free Rate

Risk-free Rate

Normally the yield on a long-term government bond.

Free from default risk.

Premium

Beta

The output of a statistical regression that measures change in a stock return vs. the overall market.

Equity Risk Premium

This is the return of the stock market over and above the risk-free rate.

Usually 4% - 8%.

Factors that Impact Cost of Equity

Let's analyze some factors that impact the cost of equity for a business.

Diversified portfolios of stocks are only exposed to market risk, or the beta.

Market Risk

- **01**. Interest Rates
- 02. Business/Economic Cycle
- 03. Inflation
- **04.** Political/Legislation
- 05. Socio-economic

Firm-Specific Risk

- 01. Management
- O2. Profits
- 03. Operations
- O4. Projects
- 05. Products

Understanding the CAPM

Beta

We can observe or calculate an individual company's Beta, but the company's beta might not be meaningfully impacted by the overall stock market.

R-Squared

R-Squared (R² or the coefficient of determination) is a statistical measure that shows the goodness of fit.

Correlation

Higher R² indicates
more correlation
between the stock
and the market.

If it is low, we might
opt to use industry
beta.

Industry Beta

If there is a low R-squared, we can improve our beta calculation by calculating an industry beta.

Levered Beta
(1 + (1 - tax rate) x (Debt/Equity))

Unlever Beta

2

Take an average or median of the unlevered betas

3

Re-lever Beta

Unlevered Beta x (1 + (1 - tax rate) x (Debt/Equity))

Terminal Value

Terminal Value Calculation Methods

Terminal Value =
$$\frac{\text{Last Forecast UFCF x (1 + g)}}{\text{(WACC - g)}}$$

We will still have to discount this terminal value back to the present value.

Terminal Value = Last Forecast EBITDA
$$\times$$
 EBITDA

Still must discount this terminal value back to the present value.

Always assume this approach happens at the **end of the year**.

DCF Advantages and Disadvantages

Let's look at the advantages and disadvantages of discounted cash flow models.

Advantages

Theoretically, the most "correct" way to value companies or investments.

Provides an opportunity to learn about the company and industry.

Less prone to market conditions (since it's an intrinsic valuation, not a relative one).

Disadvantages

Requires a lot of inputs, and the model is only as good as those inputs.

Given all of the inputs, it is easier to "manipulate" a DCF to a desired outcome.

Greater complexity may give an analyst a false sense of precision.

NPV and IRR in Excel

Discounted Cash Flow Analysis – NPV Function

The NPV function is used in Excel to quickly calculate net present value.

Key Assumptions:

- 1. NPV discounts all cash flows.
- 2. Cash flows occur at regular intervals.
- 3. Cash flows occur at the end of the period.

Excel Syntax:

=NPV(rate,value₁,value₂,...value_n)

Where:

rate = The discount rate

value_n = Cash flows for the nth period

n = Number of periods

Discounted Cash Flow Analysis – Adjusted NPV Function

Mid-period discounting is **used to account for the inaccuracy of end-of-period cash flow timing** and assumes that cash flows occur at the midpoint of the period.

Key Assumptions:

- 1. NPV discounts all cash flows.
- 2. Cash flows occur at regular intervals.
- 3. Compounds cash flows at WACC by half a period.

Excel Syntax:

=NPV(rate, value₁, value₂, ... value_n) x $(1 + rate)^{0.5}$

Where:

rate = The discount rate

value_n = Cash flows for the nth period

n = Number of periods

Discounted Cash Flow Analysis – XNPV Function

The XNPV function is used when cash flows occur at irregular intervals.

Key Assumptions:

- =XNPV() function discounts on a daily basis (i.e., each cash flow is discounted to the day on which it occurs).
- The initial cash flow is not discounted.
- 3. Dates must correspond to the periodic cash flows.

Excel Syntax:

=XNPV(rate, values, dates)

Where:

rate = The discount rate

value_n = Cash flows for the nth period

dates = An array of dates corresponding to

an array of payments

Discounted Cash Flow Analysis – XNPV Function (Mid-point Discounting)

The =XNPV() function is also easily **used when cash flows occur over a period**. In calculating the NPV, one **would choose a specific date that corresponds to the mid-point** of the period.

Internal Rate of Return – IRR Function

The internal rate of return, or IRR, is the discount rate that makes the **net present value of an investment equal to zero**.

In general, if the IRR is greater than the cost of capital, then the project should be profitable.

Key Assumptions:

- 1. The value inputs must contain at least one positive value and one negative value.
- 2. Values should be in chronological order.

Internal Rate of Return – XIRR Function

The XIRR function is used when cash flows occur at irregular intervals.

Key Assumptions:

- 1. The value inputs must contain at least one positive value and one negative value.
- 2. Values should be in chronological order.
- Dates must correspond to the periodic cash flows.

=XIRR(values, dates, [guess])

Where:

value = Cash flows for the nth period

dates = An array of dates corresponding to

an array of payments

guess = An estimate of the XIRR

Relative Valuation

Relative Valuation

Under this methodology, the target company's valuation is relative to other companies or transactions.

Compares prices of similar assets to determine value.

Assumes other assets are priced correctly by market.

Public Company Comparables

Looks at the valuation for similar peer companies that are publicly traded.

Precedent Transactions

Looks at the acquisition prices for similar peer companies in recent transactions.

- Multiples are ratios that scale companies by size.
- Alternatively, we can see how a company's multiple has changed over time.

When Is a Multiple Appropriate

Multiple	Utility	Drawbacks			
Enterprise Value/Revenue	Younger companies that haven't reached profitability	 Doesn't account for company's costs Revenue is an incomplete measure of performance 			
Enterprise Value/EBITDA	Investment banking and private equity Industries with large amounts of long-term assets	 EBITDA is not the "bottom line" that net income is EBITDA doesn't include any reinvestment in the business 			
Price/Earnings	Mature, publicly traded companies	The denominator is based on accrual accounting which requires many assumptions (can be manipulated)			
Price/Book	Financial service firms (e.g., banks)	Limited usefulness for non-banks			

Firm Life Cycle and Choosing Multiples

Relative Valuation Advantages and Disadvantages

Let's look at the advantages and disadvantages of relative valuation.

Advantages

Calculating and applying multiples is relatively simple and user-friendly.

Data is observable since we can directly look at a public company's market capitalization.

Relative valuation reflects market conditions.

Precedent transactions are useful for mergers and acquisitions due to the control premium.

Disadvantages

Sometimes relative valuation can be too simplistic.

Companies have lots of complex value drivers that multiples don't explicitly account for.

Since no companies are exactly alike, relative valuation can be difficult and subjective.

There are many reasons multiples, companies, and transactions may vary.

Differences in Multiples, Transactions & Companies

Growth Rates

Higher growth companies typically command a higher multiple and, thus, a higher valuation.

Management Team

Higher-quality businesses with better management should trade at higher multiples.

Mispricing

A company might simply be mispriced by investors and be under or overvalued.

Accounting Policies

Policies may impact accounting profits and, therefore, company multiples.

Older Deals

Outdated deals may not be representative of the current market for similar assets and companies.

Inaccessibility

May be difficult to find transactions without a paid subscription or within a specific timeframe.

Comparable Company Valuation

Steps in Performing a Comparable Trading Analysis

We must thoroughly understand the target's business before going through a comparable company analysis.

Selecting comparables is the most important part of a comparable trading analysis.

Let's go over what characteristics to look for when selecting the best comparables.

Industry

Geographic Location

Size & Growth
Profiles

Profitability

Accounting Policies

Capital Structure

	Company Name	Location	Business Description
\bigcirc	Alpha.com	Canada	Leading supermarket chain with over 200 locations. Specializes in middle-income consumers.
\odot	Big Bucks Company	United States	Supermarket chain with over 500 locations, targeting lower or middle-income consumers.
\bigcirc	Centibillions Inc.	United States	Supermarket and discount chain with 150 locations.
\bigcirc	Deep Pockets Ltd.	United States	Owns several different supermarket concepts, mostly in smaller towns.
\bigcirc	Evergreen Co.	Canada	75-location supermarket chain serving the central Provinces in Canada (for example, Manitoba and Saskatchewan).
\bigcirc	Fat Cat Inc.	Canada	Supermarket and discount chain with 100 locations.

	Company Name	Location	Business Description
\otimes	Nav Inc.	United States	High-end supermarket chain, primarily in wealthy cities on the coasts.
\bigotimes	JJ Co.	Canada	Large supermarket chain targeting middle-income consumers. Also has 400 gas stations.
\bigotimes	LRM Ltd.	Ghana	Large supermarket chain with 200 locations.
\otimes	Zhao Ltd.	China	Large supermarket chain with 700 locations.

We can further screen by looking at different financial metrics like growth rates, leverage, margins, etc..

	Company Name	e Location	Business Description
\otimes	Nav Inc.	Uni	arket chain, primarily in wealthy cities on
\otimes	JJ Co.		Transactions s 400 gas stations.
\otimes	LRM Ltd.	The analysis is s performing a pr transactions val also include:	ecedent shain with 200 locations
\otimes	Zhao Ltd.	 Acquisition t Control pren Type of buye 	nium chain with 700 locations.
		We can metrics like growth rat	es, leverage, margins, etc

Financial Da	ata Trading Multiples Operating Statistics Busines	ss Description Implied Value	ation Valuation Chart Cre	dit Health Panel					
Options V	Add Companies	Currency: US Dollar	~	Data as of: 03	/22/2023				
Apple Inc.	Apple Inc. (NasdaqGS:AAPL) Technology Hardware, Storage and Peripherals (Primary) Consumer Discretionary Financials Communication Services								
	Company Name	TEV/Total Revenues LTM - Latest	TEV/EBITDA LTM - Latest	TEV/EBIT LTM - Latest	P/Diluted EPS Before Extra LTM - Latest	P/TangBV LTM - Latest	NTM TEV/Forward Total Revenue (Capital IQ)	NTM TEV/Forward EBITDA (Capital IQ)	NTM Forward P/E (Capital IQ)
	Amazon.com, Inc. (NasdaqGS:AMZN)	2.2x	17.1x	90.8x	NM	8.4x	1.99x	12.86x	68.90x
	Alphabet Inc. (NasdaqGS:GOOGL)	4.4x	13.2x	16.7x	22.7x	5.9x	4.17x	10.75x	20.20x
	Microsoft Corporation (NasdaqGS:MSFT)	9.8x	19.9x	24.0x	30.3x	19.3x	9.16x	18.84x	27.50x
	Dell Technologies Inc. (NYSE:DELL)	0.5x	7.2x	8.4x	11.8x	NM	0.55x	5.13x	7.16×
	HP Inc. (NYSE:HPQ)	0.6x	6.4x	7.9x	11.0x	NM	0.68x	6.79x	8.09×
_	Hewlett Packard Enterprise Company (NYSE:HPE)	1.0x	5.7x	11.4x	22.3x	9.8x	1.02x	5.56x	7.41x
	NetApp, Inc. (NasdaqGS:NTAP)	2.0x	9.0x	11.2x	10.7x	NM	2.07x	7.97x	11.36×
_	QUALCOMM Incorporated (NasdaqGS:QCOM)	3.4x	8.8x	10.0x	11.7x	21.2x	3.63x	9.47x	12.10x
	Advanced Micro Devices, Inc. (NasdaqGS:AMD)	6.5x	31.7x	120.8x	116.2x	25.8x	6.51x	21.64x	31.99>
	Western Digital Corporation (NasdaqGS:WDC)	1.1x	9.2x	19.0x	NM	5.7x	1.34x	22.20x	NM
c									
	Apple Inc. (NasdaqGS:AAPL)	6.3x	17.2x	21.4x	26.9x	44.1x	6.13x	19.34x	25.43>
שisplaying ש	11 companies.								
		TEV/Total Revenues	TEV/EBITDA LTM -	TEV/EBIT LTM -	P/Diluted EPS Before Extra	P/TangBV LTM -	NTM TEV/Forward Total	NTM TEV/Forward	NTM Forward P/E
	Summary Statistics	LTM - Latest	Latest	Latest	LTM - Latest		Revenue (Capital IQ)	EBITDA (Capital IQ)	(Capital IQ
	High	9.8x	31.7x	120.8x	116.2x		9.16x	22.20x	68.90x
	Low	0.5x	5.7x	7.9x	10.7x	5.7x	0.55x	5.13x	7.16x
	Mean	3.1x	12.8x	32.0x	29.6x	13.7x	3.11x	12.12x	21.64x
1	Median	2.1x	9.1x	14.1x	17.0x	9.8x	2.03x	10.11x	12.10x

Precedent Transaction Valuation

Steps in Performing a Precedent Transaction Analysis

Determining appropriate transactions is the **most important part** of this analysis.

The data may be hard to find depending on the transaction.

Usually has the highest valuation due to the control premium.

Selecting Relevant Transactions

Let's go over what characteristics to look for when selecting the best comparables.

Recent Deals

Try not to use older transactions **as industries and market conditions change.** However, older deals may be necessary for a robust valuation.

Buyer Awareness

Is it a strategic buyer that operates in the same or adjacent industry, or is the buyer a financial firm like private equity?

Strategic buyers are able to pay more due to synergies in an acquisition.

Private Equity buyers likely to pay less since they keep management in place.

Selecting Relevant Transactions

Let's go over what characteristics to look for when selecting the best comparables.

Appendix

Formula for terminal value (TV) using perpetuity growth method

Factor FCF

Multiply both sides of the equation by (WACC - g)

Factor Terminal Value

Move FCF to other side of the equation

Move TV x g to other side of the equation

Factor out g

Divide both sides by (FCF + TV)

$$TV = \frac{FCF \times (1 + g)}{(WACC - g)}$$

$$TV = \frac{(FCF + FCF \times g)}{(WACC - g)}$$

$$TV \times (WACC - g) = FCF + FCF \times g$$

$$TV \times WACC - TV \times g = FCF + FCF \times g$$

$$TV \times WACC - TV \times g - FCF = FCF \times g$$

$$TV \times WACC - FCF = g(FCF + TV)$$

$$\frac{(TV \times WACC - FCF)}{(FCF + TV)} = g$$

Formula for terminal value (TV) using perpetuity growth method

Factor FCF

$$TV = \frac{FCF \times (1 + g)}{(WACC - g)}$$

$$TV = \frac{(FCF + FCF \times g)}{(WACC - g)}$$

Multiply b

For mid-period discounting we need to adjust our terminal value, as seen below:

$$g = ((TV/(1 + WACC)^{0.5}) \times WACC - FCF)$$

(FCF + (TV/(1 + WACC)^{0.5}))

Move TV x g to other side of the equation

Factor out g

Divide both sides by (FCF + TV)

$$TV \times WACC - FCF = FCF \times g + TV \times g$$

$$TV \times WACC - FCF = g(FCF + TV)$$

$$\frac{(TV \times WACC - FCF)}{(FCF + TV)} = g$$

Formula for terminal value (TV) using perpetuity growth method

Factor FCF

$$TV = \frac{FCF \times (1 + g)}{(WACC - g)}$$

$$TV = \frac{(FCF + FCF \times g)}{(WACC - g)}$$

Multiply b

For mid-period discounting we need to adjust our terminal value, as seen below:

$$\frac{\text{(TVx WACC - FCF)}}{\text{(FCF + TV)}} = g$$

$$g = ((TV/(1 + WACC)^{0.5}) \times WACC - FCF)$$

$$(FCF + (TV/(1 + WACC)^{0.5}))$$

Move TV x g to other side of the equation

Factor out g

Divide both sides by (FCF + TV)

$$TV \times WACC - FCF = FCF \times g + TV \times g$$

$$TV \times WACC - FCF = g(FCF + TV)$$

$$\frac{(TV \times WACC - FCF)}{(FCF + TV)} = g$$

Formula for terminal value (TV) using perpetuity growth method
$$\frac{FCF \times (1+g)}{(WACC-g)}$$

Implied Terminal Value Multiple (End of Period)
$$\frac{\left[\text{FCF x } (1+g) \right]}{\left(\text{WACC - g} \right)}$$
Last Forecasted EBITDA

Implied Terminal Value Multiple (Middle of Period)
$$\boxed{ \frac{FCF \times (1+g)}{(WACC-g)} } \times (1+WACC)^{0.5}$$

Last Forecasted EBITDA

Levered Free Cash Flows

Remember when we perform a DCF we only discount future free cash flows.

