Holy bible of Theoretische Informatik III Das losteste Skript der lostesten Person bei dem lostesten Prof

Nora Jasharaj

Wahrscheinlichkeit 24/25

Inhaltsverzeichnis

1	Ein		aufzeitanalysen, O-Notation, Sortieren	5
			Beispiel 1:	5
		1.0.2	Beispiel 2:	5
	1.1	Wie sor	tiert man "gut"?	5
	1.2	Ein Ers	ter Sortieralgorithmus: Bubblesort	6
		1.2.1	Laufzeitanalyse	6
			Annahme:	7
			Laufzeit von Bubblesort	7
	1.3	MergeSe	ort – ein $O(n \log n)$ Sortieralgorithmus	8
			Beispiele:	9
			Laufzeitanalyse	9
	1.4		$\operatorname{rt} - \operatorname{ein} O(n \log n)$ Sortieralgorithmus	9
			Die Heap-Datenstruktur	9
			Die Heapify-Routine	9
			Die Remove-Min-Routine	9
			Die Change-Key-Routine	9
			Sortieren mittels eines Heaps	10
			Konstruktionen des Initialen Heaps	10
			Untere und obere Schranke für deterministisches Sortieren	12
			Die Change-Key-Routine	13
			Sortieren mitels eines Heaps	13
			Die Remove-Min-Routine	$\frac{13}{13}$
	1.5		Schranke für deterministisches Sortieren	$\frac{13}{13}$
	1.5	Ontere	Schränke für deterministisches Sortieren	10
2	Gra	phalgor	ithmen	13
_	G10		Operationen auf Graphen	13
	2.1		arstellungen/repräsentation	14
	2.1		Adjazenzmatrixdarstellung	14
			Knoten-Kanten-Inzidenzmatrix	14
			Adjazenzlistendarstellung	14
			Wie unterscheiden sich die verschiedenen Darstellungen?	14
			Effiziente Graphdarstellung für statische Graphen	14
	2.2		egende Fragestellungen bzgl. Graphen	14
	2.2		Erreichbarkeit/Zusammenhang in ungerichteten Graphen	15
			DFS	15
			Beweis:	
	2.3			$\frac{15}{15}$
	$\frac{2.3}{2.4}$		oonbingenden Cropb	$\frac{10}{16}$
	2.4	2 4 1	nenhängender Graph	
				$\frac{17}{17}$
			Anwendung:	17
			Beweis:	17
			Algorithmus zur Berechnung aller Szhks in $O(n+m)$	18
	0.5		Alternative Graphtraversierung: Breitensuche	18
	2.5		nung kürzester Weg in gewichteten Graphen:	19
			Algorithmus	19
	2.6		rierte Version dieses Ansatzes:	19
	2.7		iierung für verschiedene Graphklassen	20
			Berechnung kürzester Wege	21
			Generischer Algorithmus zur Berechnung kürzester Wege	21
			Berechnung kürzester Wege in gewichteter Graphen (AUS VORLESUNG) .	21
			Berechnung kürzester Wege (VON SEINEM SCHEIß SKELETT)	22
		2.7.5	Generischer Algorithmus zur Berechnung kürzester Wege (SKELETT LOL)	23

		2.7.6 Instanziierung für verschiedene Graphenkalssen	2:					
		2.7.7 Irgendein neues Thema,das der bre machen will, damit wir was neues lernen	24					
	2.8	Ein weiteres Problem in Graphen	24					
		2.8.1 Prim's Algorithmus (Greedy)	2^{5}					
		2.8.2 Minimale Spannbäume	25					
3	Dyn	namisches Programmierung, Pseudopolynomialität und Fully-Polynomial-						
	Tim	ne Approximation Schemes	26					
	3.1		26					
		3.1.1 Schwache NP-Härte und Pseudopolynomialität	26					
			28					
	3.2	Constrained Shortest Path(CSP)	28					
4	Ran	domisierte Algorithmen	28					
	4.1	Closest Pair Problem	28					
			28					
		4.1.2 Neuer, inkrementeller Algorithmus	29					
		4.1.3 Beobachtungen:	29					
			3(
			3(
	4.2	MinCut-Problem	3(
	4.3	Las Vegas Algorithmus: Closest Pair (bruder meinte iwo sollen Fehler in den Be-						
		zeichnern sein)						
	4.4		31					
	4.5		32					
	4.6		32					
			32					
	4.7		34					
	4.8		34					
			35					
	4.9		37					
	4.10		37					
		4.10.1 Exkurs: Median in deterministisch $O(n)$ Zeit /k select	38					
	4.11		39					
			4(
			41					
		4.12.2 Beispiel:	41					
			42					
			42					
			45					
	4.13		45					
			48					
	4.14	9 1 -	49					
			49					
			5(
	4.16		5(
			52					
			53					
		· · · · · · · · · · · · · · · · · · ·	54					

5 A :	nortisierte Analyse		
5.1	Inkrementzähler		
5.2			
5.3	2-4-Bäume [´]		
	5.3.1 Amortisierte Analyse		
	5.3.2 Anwednung von 2,3,4 Bäumen		
	5.3.3 Finger-Search mit Anwendungen		
6 Li	neares Programmieren		
6.1	Billige und gesunde Ernährung- Problem		
6 9	Geometrische Instanzen für lineares Programmieren		
0.4	Geometrische instanzen für infeates i fogrammieren		
0.2			
6.3	6.2.1 Prune Search für LP		
6.3	6.2.1 Prune Search für LP		

1 Einfache Laufzeitanalysen, O-Notation, Sortieren

Gegeben: Eine Menge S von n Elementen aus einem total geordneten Universum, $S = \{s_1, s_2, s_3, \dots s_n\}$

Gesucht: Eine Permutation π , also eine bijektive Funktion $\pi: \{1, \ldots, n\} \to \{1, \ldots, n\}$, sodass

$$s_{\pi(1)} \le s_{\pi(2)} \le \dots \le s_{\pi(n)}$$

1.0.1 Beispiel 1:

$$S = \{2, 7, 4, 3, 8\}$$

Die gesuchte Permutation π ist:

i	$\pi(i)$
1	1
2 3	4
3	3
4	2
5	5

1.0.2 Beispiel 2:

 $S = \{Messi, Kaka, Xavi, Iniesta, Zidane\}$

Hier ist zunächst möglicherweise unklar, was die totale Ordnung auf den Elementen aus S ist. Eine natürliche Ordnung ergibt sich jedoch wie folgt:

- 1. $A < B < C < \cdots < X < Y < Z < a < b < c < \cdots < x < y < z$, d.h. Großbuchstaben sind 'kleiner' als Kleinbuchstaben; unter den Groß- bzw. Kleinbuchstaben gilt die normale Ordnung.
- 2. Wir erweitern diese Ordnung auf Buchstaben auf Wörter $w_i \in \{A, B, \dots, x, y, z\}^*$ wie folgt:

$$w_1 < w_2 \Leftrightarrow w_1 = pxs \land w_2 = pys' \land x < y$$

mit
$$p, s, s' \in \{A, B, C, \dots, x, y, z\}^*$$
 und $x, y \in \{A, B, C, \dots, x, y, z\}$.

1.1 Wie sortiert man "gut"?

Wir werden für alle Probleme bzw. den entsprechenden Algorithmen zur Problemlösung betrachten, wie viel "Aufwand" vonnöten ist, dieses Problem zu lösen. "Aufwand" kann hier verschiedenes bedeuten (konkret am Beispiel des Sortierens):

- \bullet ... die Zeit, die nötig ist, um auf meinem Desktop-PC die Permutation π zu berechnen
- \bullet ... die Anzahl an Rechenschritten, die nötig sind, um π zu berechnen
- \bullet ...der *Platz*, der nötig ist, um π zu berechnen
- ... die Anzahl an I/O-Operationen, die nötig sind, um π zu berechnen
- \bullet ...die Anzahl an Zufallsbits, die nötig sind,
um π zu berechnen

Es kann auch von Interesse sein, für welche Probleminstanzen wir den Aufwand betrachten. Wenn wir z.B. wissen, dass die zu sortierende Eingabesequenz schon immer "fast sortiert" ist (wir werden später präzise machen, was das heißt), ist der Aufwand möglicherweise geringer, als wenn die Sequenz "maximal unsortiert" bzw. "maximal schwierig" für unseren Algorithmus.

Wir werden im Rahmen dieser Vorlesung eigentlich nur den Fall betrachten, dass die Probleminstanz maximal schwierig für den Algorithmus ist, d.h. wir betreiben hier eine sogenannte Worst-Case Analyse.

1.2 Ein Erster Sortieralgorithmus: Bubblesort

Wir wollen n Zahlen, welche in einem Array A[1...n] stehen, so permutieren, dass sie in aufsteigender Reihenfolge in diesem Array stehen, d.h. $\forall 1 \leq i < n : A[i] \leq A[i+1]$. Folgender Algorithmus im Pseudocode macht hoffentlich genau das:

```
00:
     BubbleSort(A,n)
01:
      i=n
02:
      while (i>1) do
03:
         j=1
04:
         while (j<i) do
05:
           if A[j]>A[j+1]
             swap(A[j],A[j+1])
06:
07:
           j=j+1
08:
         od
09:
         i=i-1
10:
      od
```

Wie überzeugen wir uns davon, dass der Algorithmus auch wirklich das macht, was er soll? Die erste Beobachtung ist eigentlich offensichtlich: Wenn während der swap-Operation nichts Komisches passiert, bleibt die Menge der Zahlen, welche im Array steht, gleich (es wird ja nur getauscht).

Aber ist das Array am Ende wirklich sortiert? Folgende Lemmas sollen uns davon überzeugen.

Lemma 1.1. Betrachte für beliebiges $i \in \{2, ..., n\}$ den Inhalt von A[] direkt vor Ausführung von Zeile 03 und nach Ausführung des inneren while-Loops (direkt vor Zeile 09). Dann gilt A[i] = $\max_{1 \le g \le i} A[g]$

Mit anderen Worten: das größte Element aus $A[1], \dots A[i]$ steht jetzt auf jeden Fall in A[i].

```
Beweis. Sei g_{\max} der größte Index \in \{1, \ldots, i\} mit A[g_{\max}] = \max_{1 \leq g \leq i} A[g].
Wenn j = g_{\max} wird A[j] mit A[j+1] getauscht, wenn j = g_{\max} + 1 wird A[j] mit A[j+1] getauscht, usw.
```

Das Lemma impliziert, dass nach der ersten Runde des äußeren while-Loops das größte Element ganz hinten steht, nach der *i*-ten Runde das *i*-t-größte Element.

Theorem 1.2. Nach Durchführung von Bubblesort liegt A[] sortiert vor.

Beweis. Vor Ausführung von Zeile 09 gilt: A[] ist von A[i] bis A[n] sortiert und enthält die (n-i+1) größten Elemente. Wenn Zeile 09 mit i=2 erreicht wird, ist A[] sortiert.

1.2.1 Laufzeitanalyse

Nun beschäftigen wir uns mit der Frage, mit welchem Aufwand Bubblesort die Zahlenfolge sortiert. Der Aufwand, der uns momentan am meisten interessiert, ist hierbei die "Laufzeit". Aber was ist die "Laufzeit"?

Ein naheliegendes Maß für die Laufzeit ist folgendes: Implementiere den Algorithmus in einer Programmiersprache, lasse ihn auf einem Rechner laufen und stoppe die Zeit. Diese Laufzeitbetrachtung bringt allerdings einige Nachteile mit sich:

- Sortieralgorithmus A wurde auf Superrechner S gemessen, Sortieralgorithmus B auf Netbook
 N. Für gleiche Probleminstanz war A auf S schneller als B auf N. Ist deshalb A ein besserer
 Algorithmus als B?
- Sortieralgorithmus A wurde in BASIC implementiert, Sortieralgorithmus B in Assembler.
 Auf dem gleichen Rechner war A immer langsamer als B. Ist B deshalb der bessere Algorithmus?

Eine sinnvollere Alternative scheint es zu sein, die Anzahl an *Instruktionen* die während des Programmablaufs zu zählen und nehmen an, dass die eine Instruktion eine Zeiteinheit benötigt. Das ist eigentlich eine gute Idee, aber was ist "eine Instruktion"?

Ist swap(x,y) eine Instruktion oder aber 3 Instruktionen (temp=x; x=y; y=temp) oder gar noch mehr (Assembler)?

Zur Analyse eines Algorithmus wollen wir etwas zählen, was *invariant* ist bzgl. der gewählten Implementierung/CPU-Architektur ist. **Idee:** wir zählen nur die Anzahl an *Vergleichsoperationen*. Alle anderen Operationen ignorieren wir. Warum ist das eine nicht ganz so schlechte Idee?

1.2.2 Annahme:

Wir betrachten nur Programme/Algorithmen von konstanter Länge, d.h. unser Programm/Algorithmus hat eine Beschreibung endlicher Länge und hängt nicht von der zu bearbeitenden Probleminstanz ab. Beispiel: der BubbleSort-Algorithmus zum Sortieren von 100 Zahlen soll derselbe sein, wie der, welcher 100000000 Zahlen sortiert. Insbesondere wollen wir uns nicht mit selbstmodifizierenden Programmen beschäftigen.

Sei c die Anzahl Instruktionen in der Beschreibung (nicht im Ablauf) unseres Algorithmus. c ist abhängig von der gewählten Implementationssprache und ggf. der CPU-Architektur, ist aber sicherlich konstant.

Lemma 1.3. Wenn der Algorithmus auf einer Eingabe terminiert, tritt beim Ablauf nach spätestens c Nicht-Vergleichsinstruktionen eine Vergleichsinstruktion auf.

Beweis. Wenn > c Instruktionen ausgeführt werden, wird mindestens eine Instruktion I ein zweites Mal ausgeführt. Daraus folgt, dass sich der Algorithmus in einer Endlosschleife befindet, falls zwischen den beiden Ausführungen von I keine Vergleichsoperation durchgeführt wird, da dann keine Verzweigung und damit Terminierung möglich ist.

Wenn wir also nur die Vergleiche zählen, können wir die "Laufzeit" bis auf einen konstanten Faktor genau bestimmen.

1.2.3 Laufzeit von Bubblesort

Betrachten wir nochmals unseren Bubblesortalgorithmus:

```
00:
     BubbleSort(A,n)
01:
      i=n
02:
      while (i>1) do
         j=1
03:
04:
         while (j<i) do
           if A[j]>A[j+1]
05:
             swap(A[j],A[j+1])
06:
07:
           j=j+1
08:
         od
09:
         i=i-1
10:
```

Wie viele Vergleiche führt dieser aus, wenn er mit einer Eingabe der Länge n (n Zahlen) aufgerufen wird?

- der Vergleich in Zeile 02 wird genau n-mal ausgeführt
- für ein fixes i wird der Vergleich in Zeile 04 genau i-mal durchgeführt. Da i den Wertebereich von n bis 2 durchläuft, wird der Vergleich in Zeile 04 insgesamt $\sum_{i=2}^{n} i$ oft durchgeführt.
- der Vergleich in Zeile 05 wird für ein fixes i genau i-1-mal durchgeführt (05 wird immer ausgeführt, wenn 04 ausgeführt, außer bei der letzten Durchführung), also insgesamt $\sum i = 1^{n-1}i$.

Zusammengerechnet komme wir so auf $n+\sum_{i=2}^n i+\sum_{i=1}^{n-1} i=n+-1\sum_{i=1}^n i+\sum_{i=1}^{n-1} i=n+-1+\frac{n(n+1)}{2}+\frac{n(n-1)}{2}=n^2+n-1$ Vergleiche. Die Anzahl der ausgeführten Instruktionen ist somit $c(n^2+n-1)$ für eine Konstante c, welche abhängig ist von Implementierungssprache bzw. CPU-Architektur.

Nehmen wir im Folgenden an, dass wir einen Rechner haben, der 1 Milliarde (10^9) Instruktionen pro Sekunde ausführen kann, also eine *Nanosekunde* pro Instruktion braucht. Lassen Sie uns in Tabelle 1 verschiedene Algorithmenlaufzeiten betrachten.

Problemgröße	10000	100000	1000 000	10 000 000
Alg. mit n^2	0.1 s	10 s	1000 s	100 000 s
Alg. mit $n^2 + n$	$0.10001 \mathrm{\ s}$	10.0001 s	$1000.001 \mathrm{\ s}$	100 000.01 s
Alg. mit n	$10^{-5} { m s}$	$10^{-4} { m s}$	$10^{-3} { m s}$	$1/100 { m s}$
Alg. mit n^3	$\approx 1/4 \text{ h}$	$\approx 333 \text{ h}$	lang	lang
Alg. mit $\log_{10} n$	$4 \cdot 10^{-9} \text{ s}$	$5 \cdot 10^{-9}$		
Alg. mit $n \log n$	$4 \cdot 10^{-5} \text{ s}$	$5 \cdot 10^{-4}$	$6 \cdot 10^{-3}$	$7 \cdot 10^{-2}$

Tabelle 1: Laufzeitgrößenordnungen unter der Annahme dass eine Instruktion 1 Nanosekunde braucht.

Schlechte bzw. schlecht implementierte Sortieralgorithmen machen typischerweise etwa n^2 Vergleiche/Instruktionen, gute Sortieralgorithmen $n \log n$. Vergleichen wir die ersten beiden Zeilen der Tabelle, fällt ebenfalls auf, dass die bei der Laufzeit im Prinzip nur der Term mit der höchsten Potenze dominiert, d.h. ob n^2 oder $n^2 + n$ fällt im Endeffekt für große Eingabeinstanzen nicht ins Gewicht.

Wir sagen daher informell "Bubblesort hat Laufzeit n^2 ; etwas formaler können wir das mittels der sogenannten O-Notation ausdrücken, welche es erlaubt untere/obere bzw. genaue Schranken für die Laufzeit anzugeben. Informell:

- \bullet Bubblesort hat Laufzeit $O(n^2)$ meint "Bubblesort macht asymptotisch $nicht\ mehr$ als n^2 Vergleiche"
- Bubblesort hat Laufzeit $\Theta(n^2)$ meint "Bubblesort macht asymptotisch genau n^2 Vergleiche"
- \bullet Bubblesort hat Laufzeit $\Omega(n^2)$ meint "Bubblesort macht asymptotisch mindestens n^2 Vergleiche"

Es ist also auch korrekt zu sagen, dass Bubblesort Laufzeit $O(n^3)$ bzw. Laufzeit $\Omega(n)$ hat. Formal bezeichnet O(f(n)) eine Klasse von Funktionen wie folgt:

$$O(f(n)) = \{g(n) : \mathbb{N} \to \mathbb{R} | \exists c > 0, n_0 \in \mathbb{N} \text{ mit } g(n) \le c \cdot f(n) \forall n \ge n_0 \}$$

also die Menge aller Funktionen, die für genügend große n nicht wirklich schneller wachsen als f(n).

Es gilt insbesondere $n^2+n-1\in O(n^2)$ da für $c=2, n\geq n_0=1$ wir $n^2+n\leq c\dot{n}$ haben. Weitere Details zur O-Notation in den Übungen.

1.3 MergeSort – ein $O(n \log n)$ Sortieralgorithmus

```
MergeSort(A[1...n])
  if (n<2) return
  m=n/2
  copy A[1...m] to B[1..m]
  copy A[m+1 .. n] to C[1.. n-m]
  MergeSort(B[1..m]
  MergeSort(C[1..(n-m)])
  merge B and C into A
  return</pre>
```

1.3.1 Beispiele:

1.3.2 Laufzeitanalyse

Wir nehmen im Folgenden an, dass n eine Zweierpotenz ist, d.h. $n=2^x$ für eine natürlich Zahl x. Dies ist keine Einschränkung, da wir eine Probleminstanz immer durch "Dummyzahlen" entsprechend vergrößern können, ohne die Größenordnung der Probleminstanzgröße zu ändern.

Das Aufteilen und Mischen in einer Rekursion kostet $c \cdot n$ Vergleiche für eine Konstante c. Der Aufruf mit n Zahlen auf 0-ter Rekursionsebene generiert 2 Aufrufe der Größe n/2 für die 1-te Rekursionsebene. Summiert über die Aufrufe der 1-ten Rekursionsebene kostet das Aufteilen und Mischen wiederum $c \cdot n$ Vergleiche. Ein Aufruf mit n' Elementen der 1-ten Rekursionsebene generiert wiederum zwei Aufrufe der 2-ten Rekursionsebene. In der Summe kostet das Aufteilen und Mischen dieser zwei Aufrufe wiederum n' Vergleiche usw. D.h. die summierten Kosten für Aufteilen und Mischen einer beliebigen Rekursionsebene sind immer O(n). Es bleibt herauszufinden, wie viele Rekursionsebenen es gibt, d.h. für welches k gilt

$$n \cdot (\frac{1}{2})^k < 2$$

Das passiert für $k > \log_2 n$, d.h. es wird nie mehr als $\log_2 n$ Rekursionsebenen geben, die Gesamtlaufzeit ist somit $O(n \log n)$.

Wir können die Laufzeit auch mithilfe der wie folgt hergeleiteten Rekursion lösen: Die Laufzeit T(n) von Mergesort bei Aufruf auf n Elementen, n>2 besteht aus zweimal der Laufzeit für n/2 Elemente und zusätzlich $c\cdot n$ Vergleichen, also $T(n)=2\cdot T(n/2)+c\cdot n$. Für $n\leq 2$ haben wir maximal einen Vergleich, d.h. T(n)=1.

Lemma 1.4. Es gilt $\forall n \in \mathbb{N}$: $T(n) \leq c \cdot n \log_2 n$.

Beweis (via Induktion). Induktionsanfang: für n=2,2 gilt T(n)=1, also stimmt die Formel für n=2,1. wir nehmen im Folgenden an, es gelte $T(i) \le c \cdot n \log_2 n$ für alle i < n, und wollen zeigen, dass auch $T(n) \le c \cdot n \log_2 n$ gilt.

Wir haben $T(n) = 2 \cdot T(n/2) + c \cdot n \le 2 \cdot c_{\frac{n}{2}} \log_2 \frac{n}{2} + c \cdot n = c \cdot n \log_2 \frac{n}{2} + c \cdot n$; die letzte Ungleichung gilt aufgrund der Induktionsannahme! Für n. Es gilt aber auch $c \cdot n \log_2 \frac{n}{2} + c \cdot n = c \cdot n \log_2 n - c \cdot n + c \cdot n = c \cdot n \log_2 n$, da $\log_n \frac{1}{n} = \log_n 2$

Mitte wichtig, weil sonst lineare Ebene und quadratisch viele Vergleiche.

Frage: gibt es einene Algorithmus, der in $O(n \log \log n)$ sortiert? (Muss mind in n Zeit und mind ein mal durchgehen um zu checken auf Korrektheit.)

1.4 Heapsort – ein $O(n \log n)$ Sortieralgorithmus

1.4.1 Die Heap-Datenstruktur

basiert auf einem Heap blayt. Ein Heap ist ein binärer Baum mit einer ausgezeichneten Wurzel, bei dem die Heapeigenschaft gilt:

Heap-Eigenschaft: Wert eines Knotens ist immer *lew* Werte seiner Kinder(MinHeap). Organisiert aber nicht sortiert.

1.4.2 Die Heapify-Routine

Lemma 1.5. Ein initialer Heap aus n Zahlen kann in Zeit O(n) konstruiert werden.

1.4.3 Die Remove-Min-Routine

Lemma 1.6. Wir können in Zeit $O(\log n)$ das kleinste Element eines Heaps entfernen.

1.4.4 Die Change-Key-Routine

Lemma 1.7. Wir können in Zeit $O(\log n)$ den Schlüssel eines Knotens ändern.

1.4.5 Sortieren mittels eines Heaps

Definition: Baum mit ausgezeichneten Wurzel und Knoten erhalten zu organsierende Elemente und es gilt die heap-Eigenschaft. Es existieren Min und Maxheaps. (Erinnerung PriorityQueues) Heaps sind eine nützliche Datenstruktur um eine Menge aus einem geordneten Universum zu verwalten(PriorityQueue)

Operationen:

- 1. Hinzufügen eines Elements
- 2. Entfernen eines Minimums
- 3. Ändern des Wertes eines Elements
- 4. Entfernen eines beliebigen Elements

Lemma 1.8. Ein Binärheap mit n Elementen hat Tiefe $O(\log n)$ (surprise!).

Naiv: Implementiere den Heap als Liste \rightarrow sehr ineffizient (krise).

Wir betrachten im Folgenden nur Binärheaps, d.h., jeder Knoten hat ≤ 2 Kinder. Zudem betrachten wir nur solche Bäume, die "fast" einen vollständigen Binärbaum bilden (nur in der letzten Reihe von rechts darf ein Knoten fehlen.

Erinnerung: Arrays; letztes Arrayfeld leer und dann als Baum).

Wir legen einen solchen fast vollständigen Binärheap in einem Array/Vektor in Levelorder ab.

Vorteil: Speicherbedarf = Anzahl der Elemente.

1.4.6 Konstruktionen des Initialen Heaps

Lemma 1.9. Ein initialer Heap aus n Zahlen kann in Zeit $O(n \log n)$ konstruiert werden.

Beobachtung: Ein Knoten mit Index i hat einen Elternknoten mit Index $\lfloor \frac{i-1}{2} \rfloor$. Ein Knoten mit Index i hat Kinder mit Indizes 2i + 1 und 2i + 2 (für i < n).

Übung: Ternärer Heap.

$$A[i] \le A[2i+1] \quad \forall i = 0, \dots, \left\lfloor \frac{n-1}{2} \right\rfloor$$

$$A[i] \le A[2i+2] \quad \forall i = 0, \dots, \left| \frac{n-2}{2} \right|$$

In A[0] steht das kleinste Element. Die Folge der Werte von der Wurzel zu einem Blatt ist aufsteigend.

Frage: Wie "hoch" ist ein Heap mit n Elementen?

Wie viele Elemente hat ein Heap der Höhe h mindestens/höchstens?

Ein Heap der Höhe h hat **maximal** $2^h - 1$ **Knoten.** Also gilt:

$$n \le 2^h - 1 \quad \Rightarrow \quad n + 1 \le 2^h \quad \Rightarrow \quad h \ge \log_2(n+1).$$

 \Rightarrow Ein Heap der Höhe h hat mindestens 2^{h-1} Knoten, also:

$$n > 2^{h-1} \Leftrightarrow h < \log_2(n) + 1.$$

Lemma 1.10. Wir können in Zeit $O(\log n)$ ein Element in einen Heap mit n Zahlen einfügen.

Frage: Wie konstruiere ich einen Heap aus einer Menge von n Zahlen? \Rightarrow mittels Einfüge-Insert-Operation.

Füge das neue Element rechts unten ein \to Die Heap-Eigenschaft könnte mit dem Elternknoten verletzt sein.

Falls **ja**, tausche mit dem Elternknoten (heapify).

- \Rightarrow Mit $O(\log n)$.
- \Rightarrow Konstruktion eines Heaps durch wiederholtes Einfügen in $O(n \log n)$. (Falls die Liste schon sortiert ist, geht es in O(n)-Zeit,a lso einfach n Elemente einfügen bastard).

Entfernen des kleinsten Elements aus dem Heap:

Es steht an der Wurzel und wird entfernt.

Dann wird das **letzte Element** aus dem Array genommen und mit *heapify* an die richtige Position gebracht. \Rightarrow **in** $O(\log n)$. \Rightarrow Wir können in $O(n \log n)$ **sortieren** (n-mal einfügen, dann n-mal das Minimum entfernen).

Zeige: Wie kann der Initial-Heap in O(n) aufgebaut werden? **Hilfsroutine:** heapify **Eingabe:** Array A mit der Annahme, dass $\forall i \in [\text{top} + 1, n - 1]$ gilt:

$$A[i] \leq A[2i+1] \quad \text{und} \quad A[i] \leq A[2i+2].$$

Ausgabe: Ein Array A, wobei die Heap-Eigenschaft für alle Knoten von top bis n-1 gilt. Also einfach heapify anwenden, indem Kinder getauscht werden, um die Reihenfolge beizubehalten. Rufe heapify für n-1 Elemente auf, dann für n-2, und so weiter.

Kosten: Ungefähr die Höhe über den Blättern.

 \Rightarrow Gesamtkosten:

$$1 \cdot \frac{n}{2} + 2 \cdot \frac{n}{4} + 3 \cdot \frac{n}{8} + 4 \cdot \frac{n}{16} + \dots \approx O(n).$$

Die Gesamtkosten sind O(n).

 \Rightarrow Dies kann insstmt h-mal passieren \Rightarrow Laufzeit O(n).

Genauer: Die Laufzeit eines heapify für einen Knoten der Höhe x über den Blättern ist $\leq x$.

Idee: Gebe jedem Knoten so viele Münzen, wie er über dem Blatt-Level ist.

Dann: Jeder Knoten verteilt seine Münzen entlang der Kanten des Baumes. Dies bestimmt einen Pfad nach unten zu einem Blatt, der die Form "rechts-links-links-links...' hat.

 \Rightarrow Wir können den Initial-Heap in O(n) konstruieren. Insert

Lemma 1.11. Wir können in Zeit $O(\log n)$ ein Element in einen Heap mit n Zahlen einfügen.

Frage: Wie konstruiere ich einen Heap aus einer Menge von n Zahlen? \Rightarrow mittels Einfüge-Insert-Operation.

Füge das neue Element rechts unten ein \to Die Heap-Eigenschaft könnte mit dem Elternknoten verletzt sein.

Falls \mathbf{ja} , tausche mit dem Elternknoten (heapify). \Rightarrow Mit $O(\log n)$.

 \Rightarrow Konstruktion eines Heaps durch wiederholtes Einfügen in $O(n \log n)$. (Falls die Liste schon sortiert ist, geht es in O(n)-Zeit,a lso einfach n Elemente einfügen bastard).

Entfernen des kleinsten Elements aus dem Heap:

Es steht an der Wurzel und wird entfernt.

Dann wird das **letzte Element** aus dem Array genommen und mit *heapify* an die richtige Position gebracht. \Rightarrow **in** $O(\log n)$. \Rightarrow Wir können in $O(n \log n)$ **sortieren** (n-mal einfügen, dann n-mal das Minimum entfernen).

Zeige: Wie kann der Initial-Heap in O(n) aufgebaut werden? *Hilfsroutine: heapify* Eingabe: Array A mit der Annahme, dass $\forall i \in [\text{top} + 1, n - 1]$ gilt:

$$A[i] \le A[2i+1]$$
 und $A[i] \le A[2i+2]$.

Ausgabe: Ein Array A, wobei die Heap-Eigenschaft für alle Knoten von top bis n-1 gilt. Also einfach heapify anwenden, indem Kinder getauscht werden, um die Reihenfolge beizubehalten. Rufe heapify für n-1 Elemente auf, dann für n-2, und so weiter.

Kosten: Ungefähr die Höhe über den Blättern.

 \Rightarrow Gesamtkosten:

$$1 \cdot \frac{n}{2} + 2 \cdot \frac{n}{4} + 3 \cdot \frac{n}{8} + 4 \cdot \frac{n}{16} + \dots \approx O(n).$$

Die Gesamtkosten sind O(n).

 \Rightarrow Dies kann insstmt h-mal passieren \Rightarrow Laufzeit O(n).

Genauer: Die Laufzeit eines heapify für einen Knoten der Höhe x über den Blättern ist $\leq x$.

Idee: Gebe jedem Knoten so viele Münzen, wie er über dem Blatt-Level ist.

Dann: Jeder Knoten verteilt seine Münzen entlang der Kanten des Baumes. Dies bestimmt einen Pfad nach unten zu einem Blatt, der die Form "rechts-links-links-links...' hat.

 \Rightarrow Wir können den Initial-Heap in O(n) konstruieren.

1.4.7 Untere und obere Schranke für deterministisches Sortieren

Random Zitat: erst in Linearzeit den Heap konstruieren und kann k mal das min heraussuchen. Anwednung: Top-k Ergebnisse einer Suchmaschine:

- Baue Heap in O(n) Zeit
- k mal remove min machen

 $\rightarrow O(n) + O(k \cdot log_n) = O(n + klog_n)vsO(log_n)$ bei kompletten Sortieren.

Theorem 1.12. Jeder vergleichsbasierte (man darf nur zwei Elemente nehmen und dann entweder das oder das andere tun (radixSort Beispiel nicht vergleichsbasiert), deterministische (deterministisch vs randomisierte Algorithmen deterministisch gemeint, also nicht mit Zufall arbeitend) Sortieralgorithmus braucht im worst case $\Omega(n \log n)$ Vergleiche, um n Zahlen zu sortieren.

Idee: Betrachte eine Ausführung als Sequenz von Vergleichen der zu sortierenden Elemente. Je nach Vergleichsergebnis wird ein anderer Pfad im Baum durchlaufen.

Bei n Elementen hätte der Baum n! verschiedene Ausführungen, d.h. mindestens n! Blätter. Unterschiedliche Eingabesortieren müssen zu unterschiedlichen Werten führen, sonst liegt keine korrekte Sortierung vor.

Ein binärer Baum der Höhe h hat maximal 2^h Blätter. Wir suchen h so, dass

$$2^h = n!$$
.

Mit Hilfe der Stirling-Formel erhalten wir asymptotisch:

$$h = \Omega(n \log n)$$
.

Stirling Formel: $n! \approx \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$

1.4.8 Die Change-Key-Routine

Lemma 1.13. Wir können in Zeit $O(\log n)$ den Schlüssel eines Knotens ändern.

1.4.9 Sortieren mitels eines Heaps

1.4.10 Die Remove-Min-Routine

Lemma 1.14. Wir können in Zeit $O(\log n)$ das kleinste Element eines Heaps entfernen.

1.5 Untere Schranke für deterministisches Sortieren

Wir haben inzwischen zwei deterministische Sortieralgorithmen (Merge- und Heapsort) kennengelernt, welche worst-case Laufzeit $\Theta(n \log n)$ haben. Man könnte sich nun fragen, ob es z.B. einen deterministischen Sortieralgorithmus gibt, welcher Laufzeit $o(n \log n)$ gibt, z.B. einer mit linearer Laufzeit O(n). Im Folgenden zeigen wir, dass dies nicht der Fall ist.

Theorem 1.15. Jeder vergleichsbasierte, deterministische Sortieralgorithmus braucht im worst case $\Omega n \log n$ Vergleiche, um n Zahlen zu sortieren.

2 Graphalgorithmen

Beispiele: Straßengraphen, Interaktionsnetzwerke, ...)

Geschichte: aus der Projektplanung um Mitarbeiter etc in Interaktionen Probleme (Google PCS apparently schedueling bei ressourcenbeschränkung).

Ein Graph G(V, E) ist gegeben durch eine $Knotenmenge\ V$ und eine Kantenmenge E. Im Falle eines $gerichteten\ Graphen$ ist $E\subseteq V\times V$, d.h. (geordnete) Paare, im Falle eines $ungerichteten\ Graphen$ haben wir ist jedes $e\in E$ eine zweielementige Teilmenge aus V (ungeordnet). Typischerweise bezeichnen wir die Anzahl an Knoten in G als n, also |V|=n. Die Anzahl der Kanten in einem Graph wird typischerweise mit |E|=m bezeichnet.

Ein Pfad π von v nach w in einem gerichteten (ungerichteten) Graph G(V,E) ist eine Folge von Knoten $\pi = v_0v_1v_2\dots v_k$ mit $v_0 = v$ und $v_k = w$ mit $(v_i,v_{i+1}) \in E$ ($\{v_i,v_{i+1}\} \in E$) für $i=0,\dots k-1$. π heißt einfacher Pfad, falls $v_i \neq v_j$ für alle $i\neq j$. Also "für ungerichtete Kanten und '()' für gerichtete Kanten. Insert inneres Bild von einem ungerichteten und gerichteten Graph du unkreative Hure.

2.0.1 Operationen auf Graphen

- Anfragen:
 - Existiert eine Kante zwischen Knoten v und Knoten w?
 - Was sind alle adjazenten Kanten zu Knoten v?
- Updates:
 - Füge Knoten v ein
 - Füge Kante von v nach w ein
 - Lösche Knoten v
 - Lösche Kante von v nach w

source	target	info
0	0	7
1	0	8
2	2	1
3	2	8
4	•••	

Tabelle 2: Darstellung vom Array

2.1 Graphdarstellungen/repräsentation

2.1.1 Adjazenzmatrixdarstellung

2.1.2 Knoten-Kanten-Inzidenzmatrix

2.1.3 Adjazenzlistendarstellung

2.1.4 Wie unterscheiden sich die verschiedenen Darstellungen?

- Platzverbrauch
- Wie schnell kann man bestimmen, ob zwischen Knoten v und w eine Kante besteht?
- Knoten/Kanten löschen/hinzufügen
- Welche Kanten sind zu einem Knoten v adjazent?

Wir haben folgende sogenannte OffSetArray-Darstellung: Annahme: Knoten haben die IDs $0, 1, 2, \ldots, n-1$. Ein Knoten ist dargestellt durch (Quelle(ID), ZielID, Info).

Darstellung: In 3 Arrays (int) der Größe n. Wir sortieren alle Kanten lexikographisch.

Ohne Zusatzinformation benötigt man $O(\log n + k)$ Zeit, um alle ausgehenden Kanten eines Knotens v zu bestimmen, wobei k die Anzahl der Kanten ist.

Jetzt: Wir legen zusätzlich ein sogenanntes OffSetArray an, das für jeden Knoten die KnotenID seiner ersten ausgehenden Kante speichert. Der Offset eines Knotens ist immer die Kantennummer der ersten ausgehenden Quelle; falls keine vorhanden ist, nehmen wir einfach den Offset des nächsten Knotens.

Wir können nun wie folgt über alle ausgehenden Kanten eines Knotens i iterieren:

```
for (int j = offSet[i]; j < offSet[i+1]; j++)</pre>
```

Die Datenstruktur ist nur sinnvoll unter der Annahme, dass sich am Graphen nichts ändern wird

Speicherverbrauch: (source, target, info, offset) = $3 \cdot m + n$ ints, wobei (int = 4 Byte), m = 100 Mio., n = 50 Mio. < 1.4 GB

2.1.5 Effiziente Graphdarstellung für statische Graphen

2.2 Grundlegende Fragestellungen bzgl. Graphen

Gegeben: $s \in V$, $E \subseteq V$ Frage: Gibt es einen Pfad von s nach t in G? Oder: Welche Knoten sind von s erreichbar? Idee: Die von einem Knoten v erreichbaren Knoten sind:

- \bullet v selbst
- \bullet alle Knoten, die von v aus erreichbar sind

\rightarrow Tiefensuche

2.2.1 Erreichbarkeit/Zusammenhang in ungerichteten Graphen

2.2.2 DFS

Die Tiefensuche bestimmt alle Knoten, die von einem Knoten v über Kanten erreichbar sind.

```
DFS(v)
  erreichbar[v] = true
  for all e = {v, w}
   if erreichbar[w] = false
        DFS(w)
```

Die Breitensuche bestimmt ebenfalls alle von einem Knoten s erreichbaren Knoten, berechnet 'nebenbei' aber auch für jedes v die Länge des Weges mit den wenigsten Kanten von s nach v.

Satz: Nach Ausführung von DFS(s) gilt: $\forall v \in V$: erreichbar[v] = true $\Leftrightarrow \exists$ Pfad von s nach v in G.

2.2.3 Beweis:

Jeder Knoten wird höchstens einmal von DFS aufgerufen, wobei jede Kante maximal zweimal betrachtet wird. Das bedeutet, dass v selbst und alle seine Nachbarn betrachtet werden. Sobald ein Knoten als Nachbar aufgerufen wird, wird dieser als erreichbar markiert.

- Rückrichtung: Sei $v_0, v_1, v_2, \dots, v_k$ ein Pfad von s nach v. Zeige: erreichbar[v] = true. Beweise durch Induktion, dass DFS (v_i) für $i = 0, \dots, k$ aufgerufen wird.
 - Induktionsanfang: $i = 0 \Rightarrow DFS(v_0)$ wird aufgerufen.
 - Induktionsschritt: Angenommen, $DFS(v_i)$ wird aufgerufen. Zeige: $DFS(v_{i+1})$ wird ebenfalls aufgerufen.
 - * Falls v_i, v_{i+1} betrachtet wird und erreichbar $[v_{i+1}]$ bereits true ist, ist nichts zu tun.
 - * Falls v_i, v_{i+1} betrachtet wird und erreichbar $[v_{i+1}]$ false ist, wird DFS (v_{i+1}) aufgerufen.
- Konstruktion für jede Kante v mit erreichbar[v] = true eines Pfades $\pi(v)$ von s nach v wie folgt:

```
\pi(s) = s Sei v \neq s mit erreichbar[v] = \text{true}, und sei w, v die Kante, über die DFS(v) aufgerufen wurde. Setze \pi(v) = \pi(w) \cdot v.
```

Merke: Mittels DFS kann man alle Kanten von einem Knoten ermittlen.

2.3 BFS

```
BFS(s)
  Queue current={s}
  dist[s]=0; dist[w]=pinf for all w!=s
  while current!={} do
   v=current.pop()
  for all e={v,w} do
     if dist[w]=pint
        dist[w]=dist[v]+1
        current.push_back(w)
     fi
  od
  od
```

Niemals so gottlos hässleih implementieren.

Die Laufzeit von DFS und BFS ist jeweils O(n+m).

2.4 Zusammenhängender Graph

Eine starke Zusammenhangskomponente ist eine maximale (maximal = man kann keinen Knoten hinzufügen, ohne die Eigenschaft zu verletzen) Knotenmenge $C \in V$, sodass $\forall v, w \in C$ es einen Pfad von n nach w in G gibt.

Naiv: Betrachte alle möglichen Teilmengen $T \in V$ und überprüfe paarweise, ob es passt.

```
def dfs(v):
    dfsNum[v] = dfsNum_count
    dfsNum_count += 1
    erreichbar[v] = True
    for e in graph[v]:
        if not erreichbar[e]:
            dfs(e)
    compNum[v] = compNum_counter
    compNum_counter += 1

# Globale Variablen
compNum_count = 1
dfsNum_count = 1
dfsNum_count = 1
dfsNum = []
compNum = []
```

Die erweiterte Tiefensuche wird so lange auf Knoten aufgerufen, bis alle Knoten besucht worden sind und klassifiziert die Kanten eines Graphen G(V, E) in 4 Klassen:

$$E = T \uplus F \uplus B \uplus C$$
,

wobei die 4 Klassen folgendermaßen definiert sind: Betrachte den Zeitpunkt, wenn die DFS eine Kante e=(v,w) betrachtet:

- $e \in T$ (tree): falls w noch nicht besucht
- • $e \in F$ (forward) : falls w schon be sucht und $v \xrightarrow{T}^* w$ auf Baumkanten
- $e \in B$ (backward) : falls w schon be sucht und $w \xrightarrow{T} v$ auf Baumkanten
- $e \in C$ (cross) : falls w schon be sucht und weder $v \xrightarrow{T}^* w$ noch $w \xrightarrow{T}^* v$

Lemma 2.1. Es gilt für eine Kante $e = (v, w) \in E$:

- $e \in T \cup F \Leftrightarrow dfsnum[v] < dfsnum[w] \land compnum[v] > compnum[w]$
- $e \in B \Leftrightarrow dfsnum[v] > dfsnum[w] \land compnum[v] < compnum[w]$
- $e \in C \Leftrightarrow dfsnum[v] > dfsnum[w] \land compnum[v] > compnum[w]$

Lemma 2.2. Ein gerichteter Graph G(V, E) ist genau dann azyklisch, falls in keinem DFS-Aufruf eine Rückwärtskante gefunden wird.

Beweis:

- \Rightarrow Falls eine B-Kante präsent ist, \rightarrow Zyklus gefunden.
- \rightarrow Falls G einen Zyklus enthält, findet DFS eine B-Kante.

Sei v_1, v_2, \ldots, v_k $(v_{i+1} = v_0)$ ein Zyklus in G.

Für
$$(v_i, v_{i+1}) \in E$$
, $i = 0, ..., k-1$, $(v_k, v_0) \in E$.

O.B.d.A. sei v_0 der erste von DFS besuchte Knoten des Zyklus.

$$\rightarrow dfsNum[v_i] > dfsNum[v_0] \ \forall i = 1, \dots, k.$$

Ebenso $compNum[v_i] < compNum[v_0] \ \forall i = 1, ..., k.$

Insbesondere $compNum[v_k] < compNum[v_0]$

und $df sNum[v_k] > df sNum[v_0]$.

2.4.1 Definition

Für einen gerichteten azykklischen Graphen G(V,E) heißt $\phi: V \xrightarrow{1,\dots n}$ eine topologische Sortierung für G falls $\forall e \in E: \phi(v) < \phi(w)$

Lemma 2.3. Für gerichteten azyklsichen Graphen G(V,E) Ist $\phi(v) := n+1-compNum(v)$ eine topologische Sortierung.

2.4.2 Anwendung:

Gegeben: gerichteter azyklischer Graph $s,t \in V$. Was ist die Länge des längsten Pfades von s nach t? Eigentliches Ziel: Bestimmung der starken Zshks

2 Phasen- Algorithmus für Szhk

- 1. Berechne für alle $v \in V$ compnum [v]
- 2. Konstruiere G' aus G, welcher alle Kanten aus G umgedreht enthält.
- 3. Lasse DFS auf G' laufen (Reihenfolge in absteigender compNum)

 Jeder durch diese DFS Aufrufe generierte Teilbaum ust eine starke Zshgk.

2.4.3 Beweis:

Anmerkung: Umdrehen der Kanten beeinflusst Szhks **nicht.** Insbesodndere gibt es dann also die gleichen Szhks von G und G', umdrehen läst Szhg beibehalten. Zu zeigen:

- a) alle Knoten einer Szhk werden vom Algorithmus auch als eine solche erkannt.
- b) alle Knitenmengenm die Algorithmus berechnet, bilden eine Szhk.
- a) Betrachte Szhk C: Sei v der Knoten mit maximaler compNum.

Behauptung: v ist der erste Knoten in C, der bei den DFS-Aufrufen in G' besucht wird. Falls nicht wird für einen Knoten $w \in C$ DFS(w) im Unterbuam eines r mit größerer compu

Falls nicht wird für einen Knoten $w \in C$ DFS(w) im Unterbuam eines r mit größerer compnum aufgerufen und r nichtelement von C.

Daraus folgt: es gibt einen Pfad von w nach r in G (achtung nicht in G'!) (weil in G' der umgeddreht e Graph wäre und es deswefen einen Pfad in G geben müsste). Da compnum[v] < compNum[r] muss in G v von r aus besucht worden sein WIDERSPRUCH zu compNum, d.h r und v sind in derselben Szhgk. WIDERSPRUCH zur maximalität von compNum[v] weil es de rmacimale Knoten ist in der Szhgk.

Wenn DFS von v in G' gestartet wird, werden alle Knoten der Szhk besucht.

Nachtrag: Gilt für Baumkanten i = (v, w) immer, dass dfsnum[w] = dfsnum[v] + 1 oder compnum [v] = compnum[w] + 1? Nein

2.4.4 Algorithmus zur Berechnung aller Szhks in O(n+m)

- 1. Berechne für alle \$v \in V\$ compnum \$[v]\$
 \$compnum [v] = \infinity \forall v \in V\$
 forall v \in V\$
 if compnum [v] \$= \infinity \$
 DFS(v)
- 2. Berechne G'(V,E') aus G durch umdrehen aller Kanten.
- 3. Starte DFS(v) auf G' in absteigender Reihenfolgr der compnum (falls noch nicht besucht). Jeder Aufruf von DFS(v) besucht die Knoten einer Szhk.

Lemma 2.4. Dieser Alg berechnet alle Szhks

Proof. Wir zeigen 2 Dinge:

- a) Alle Knote der Szhk von v werden vom Aufruf DFS(v) in G' besucht.
- b) Alle vom Algorithmus während DFS(v) besuchte Knoten gehören zur Szhk von v.

Beobachtung: Szhks von G und G' sind identisch.

Zu a) Betrahcte beliebige Szhk C. Sei $v \in C$ der Knoten mit maximaler compnum. Behauptung: v ist der erste von den DFS- Aufrufen in G' besuchten Knoten von C Annahme des Gegenteils: es gibt Knoten $W \in C$ mit compnum[w] < compnum[v] und wurde von einem DFS-Aufruf DFS(r) besucht mit $compnum[r] > compnum[v] \rightarrow \exists Pfad(w \rightarrow r)$ in G. Und auch einen Pfad $(v \rightarrow r)inG$.

 $Da\ {\rm compnum}[{\bf r}]\ {\it i.}\ {\rm compnum}\ [{\bf v}] mussvin Gvon raus be such two rdense in.$

 $\rightarrow rundvliegeninderselbenSzhk, dav \rightarrow w \rightarrow r \rightarrow v.$

 $vhatmax compnum in C \rightarrow wenn DFS(v) in G'gestartet wird werden alle Knoten der SZhkvonv besucht (evt lnoch mehr).$

```
zub)SeiwimDFS - BaumvonvinG' \rightarrow \exists Pfadw \rightarrow ving
```

Da compnum[v] > compnum[w] wurde entweder w vollständig vor v bearbeitet (in G) oder w lag im DFS- Bau, von vi in G.

Bei letzterem folgt daraus: $\exists Pfad(v \to w)inG \to vundwliegeninderselbenSzhk$.

Im ersten Fall wurde DFS(w) vor DFS(v) aufgerufen, v lag aber nicht im DFS-Baum von w.

WIDERSPRUCH zur Existenz eines Pfades $w \to v$ in G.

2.4.5 Alternative Graphtraversierung: Breitensuche

- traversiert in ungerichtete Zhks
- berechnet als Nebenprodukt auch kürzeste Wege (bzgl. Kanten)

Gegeben: Gegeben (un)gerichteter, ungewichteter Graph G(V,E), berechne für $s \in S : \forall v \in V : d(v) = mink | \exists PfadvonsnachvmitkKanten$

Idee: Bestimme iterativ Mengen $V_0, V_1, V_2, ...mit V_i = v \in V | d(v) = i = v \in V | V_j mit \exists (u, v) \in Emit u \in V_i$ Idee: Implementierung verwaltet

dist[v] (Distanz von s zu Beginn $dist[v] = \liminf v \pmod v$ und dist[s] = 0)

```
current Menge der aktuelle zu bestimmenden Knoten, zu beginn current = {s}

next Menge der in der nächsten runde zu betrahctenden Knoten
```

Was kommt in next?

Wir iterieren über alle Knoten in current; falls ein $v \in current$ einen Nachbarn w hat $((v, w) \in E)$ mit $dist[w] = \infty \to$ füge w in next hinzu, setzte dist[w] = dist[v] + 1Sobald current abgearbeite, setzte current= next und next = \emptyset

Implementierung typischerweise mittels FIFO Queue mit Operationen: Element vorne Wegnehmen(pop) und noch (push, peek)

2.5 Berechnung kürzester Weg in gewichteten Graphen:

```
Gegeben: Graph G(V, E) und c : E \to R s \in V

Gesucht: \forall v \in Vd(v)inf c(\pi)|\pi ist Pfad von s nach t c(\pi) = \sum c(e)
```

Kantenrelaxierung: Habe Kanten $V \to w$ und (vorläufige) Distanzwerte dist[v] und dist[w]. Dann wissen wir: Man könnte w über v mit Kosten dist[v] + c(v, w) erreichen. \Rightarrow falls dist[w] > dist[v] + c(v, w) setzte dist[w] =: dist[v] + c(v, w)

2.5.1 Algorithmus

```
1. Setzte dist[s] = 0, dist [v] = \infinity \forall v \in V \{s} 
2. Solange \ exists e = (v,w) mit dist[v] + c(v,w) < dist [w] relaxiere e, dh t[v] := dist[v] + c(v,w)
```

Hoffnung: Irgendwann tut sich nichts mehr

2.6 Strukturierte Version dieses Ansatzes:

```
U \subset V Menge von Knoten sodass gilt: v \not\in U \Rightarrow dist[v] + c(v,w) >= dist[w] \forall (v,w) \in E
```

U = unfertigen Knoten, bei denen es ggf noch ausgehende Kanten zu relaxieren gibt.

```
dist[s] = 0
dist[v] = \infty \forall v \in V ohne s
U= s
while U !empty D0
    entferne ein v \in U
    \forall e=(v,w) \in E
        x= dist[v] + c(v,w)
        if x < dist[w]
        dist[w] = x
        U = U vereinigt w
od</pre>
```

Eigenschaften dieses Algorithmus

```
1. u \notin U \Rightarrow dist[u] + c(u, v) >= dist[v] \forall e = (u, v)
```

Proof. (1) gilt nach Intilaisierung und Entferung eines $u \in U$

- (2) solange $u \notin U$ ändert sich dist[u] nicht und damit auch dist[u] + c(u,v) nicht, die rechte Seite wird nur kleiner.
- (3) dist[v] kann nur kleiner werden.

Falls dist[w] > (dh hat noch nicht die richtige Distannz) d[w] > - (also w hängt nicht an negativen Zvklus).

dann gibt es einen Knoten u auf dem kürzesten Weg von s nach w der in U ist und für den dist[u] = dist(u) gilt. (hier das ist das wichtigste also das man dann au die korrektheit zeigt.)

Beweis: Sei $v0v1, \ldots, vk, s = v0, vk = w$ ein kürzester Pfad von s nach w ; i maximal mit dist[vi] = d(vi)

```
a) i existiert, da d(s) = dist[s] = 0
```

b) es gilt $v_i \in U$

Annahme: $v_i \notin U$: dann müsste gelten $dist[v_i] + c(v_i, v_i + 1) >= dist[v_i + 1]$

Aber dann müsste gelten $dist[v_i+1] = dist[v_i] + c(v_i, v_{i+1})$ und insbesondere $dist[v_i+1] = d(v_i+1)$

Falls man einen Knoten k aus U entfernt mit dist[u] = d(u), dann wird nie wieder in U aufgenommen.

2.7 Instanziierung für verschiedene Graphklassen

A) Allgemeine Kantenkosten (positiv und negativ)

Implementiere U als FIFO- Queue;

Es wird immer erstes Element aus U entfernt und bei Hinzufügung hinten angehängt.

Behauptung: Wenn $d(w) > -\forall w \in V$, dann wird jeder Knoten max n-mal aus U entfernt.

Beweis: Betrachte U, wenn v zu U hinzukommt.

U enthält Knoten z mit dist[z] = d(z), z wird vor v aus U entfernt und zwar endgültig. Also kommt v maximal n-1 mal zu U hinzu.

 $\Rightarrow LaufzeitistO(m \cdot n)$

B) Graph azyklisch ist Übung

2.7.1 Berechnung kürzester Wege

Für einen Graph G(V, E) mit Kantenkosten $c: E \to \mathbb{R}$ interessiert uns für ein gegebenes $s \in V$ für alle $v \in V$ die Kürzeste-Wege-Distanz $d(v) := \inf\{c(\pi) : \pi \text{ ist Pfad von } s \text{ nach } v\}.$

Wichtigste Operation aller Algorithmen zur Lösung dieses Problems ist die sogenannte Kantenrelaxierung. Typischerweise werden während des Verlaufs eines Algorithmus temporäre/vorläufige Distanzwerte dist[v] berechnet (die noch nicht den gesuchten d(v) entsprechen müssen). Für eine Kante e=(v,w) ist die Kanterelaxierung der Test, ob dist[w]>dist[v]+c(v,w), und falls ja, das Neusetzen von dist[w]=dist[v]+c(v,w). Intuitiv besagt eine Kantenrelaxierung: "Wenn es einen Pfad mit Kosten dist[v] von s nach v gibt, gibt es auch einen Pfad von s nach v mit Kosten dist[v]+c(v,w)."

2.7.2 Generischer Algorithmus zur Berechnung kürzester Wege

```
Sei U\subseteq V, sodass v\notin U\Rightarrow \forall e=(v,w)\colon dist[v]+c(v,w)\geq dist[w]. U={s} dist[v]=infty for all v dist[s]=0 while U not empty do v=some element from U removed for all e=(v,w) do if dist[v]+c(v,w)<dist[w] dist[w]=dist[v]+c(v,w) fi od do
```

2.7.3 Berechnung kürzester Wege in gewichteter Graphen (AUS VORLESUNG)

```
Gegeben: Graph G(V,E) und c: E \to \mathbb{R}, s \in V.

Gesucht: \forall v \in V \text{ dist}(v) \dots \inf\{c(\pi - \pi \text{ ist } P \text{ fad } von \text{ } s \text{ nach } v)\}.

c(\pi) = \sum_{l \in \pi} (r(l)).
```

Kantenrelaxierung: Habe Kanten $v \longrightarrow w$ und (vorläufige) Distanzwerte dist[v] und dist[w].

Dann wissen wir: Man könnte w über v mit Kosten dist[v] + c(v,w) erreichen.

```
\implies falls dist[w] > dist[v] + c(v,w)
setze dist[w] := dist[v] + c(v,w)
```

Algorithmus

```
[label=0)]Setze dist[s] = 0, dist[v] = \infty für alle v \in V \setminus \{s\}.
Solange es eine Kante e = (v, w) gibt, für die gilt dist[v] + c(v, w) < dist[w], relaxiere e, d.h., setze dist[w] := dist[v] + c(v, w).
```

Hoffnung:

[label=0)]Irgendwann tut sich nichts mehr. Es stimmt.

Strukturiete Version dieses Ansatzes

 $U \subseteq V \dots$ Menge von Knoten sodass gilt:

$$v \notin U \implies dist[v] + c(v, w) \ge dist[w] \forall (v, w) \in E$$

 \mathcal{U} $\widehat{=}$ "unfertigen" Knoten, bei denen es ggf. noch ausgehende Kanten zu relaxieren gibt.

2.

```
dist[s]=0 dist[v]=$\infty$ $\forall v \in V$ \ {s}
U = {s}
while U $\neq \emptyset$ do
  enferne ein $v \in U$
  $\forall$ e=(v,w) $\in$ U
    x=dist[v] + r(v,w)
    if x < dist[w]
      dist[w] = x
      U = V $\cup $ {w}
od</pre>
```

Eigenschaften dieses Algorithmus

```
[label=0. Eigenschaft:]u \notin U \implies \text{dist}[u] + c(u,v) \ge \text{dist}[v] \ \forall \ e=(u,v) Beweis[label=(0)]
```

- 1. (a) gilt nach Initialisierung \checkmark und Entfernung eines $u \in U$.
 - (b) solange $u \notin U$ ändert sich dist[u] nicht und damit auch dist[u] +c(u,v) nicht; die rechte Seiten werden nur kleiner.
 - (c) dist[v] kann nur kleiner werden.
- 2. Falls $dist[w] > d(w) > -\infty$ (w hängt nicht in negativem Zyklus)

Dann gibt es einen Knoten u auf dem kürzestem Weg von s nach w, der in U ist und für den dist[u] = d(u) gilt.

Beweis:

Sei $v_0, v_1, \ldots v_k, s = v_0, v_k = w$ ein kürzester Pfad von s nach w_i i maximal mit $dist[v_i] = d(v_i)$.

- (a) i existiert, da d(s) = dist[i] = 0
- (b) es gilt $v_i \in U$

Annahme $v_i \in U$: Dann müsste gelten $\operatorname{dist}[v_i] + \operatorname{c}(v_i, v_{i+1}) \ge \operatorname{dist}[v_{i+1}] = \operatorname{dist}[v_c] + \operatorname{c}(v_i, v_{i+1})$ und insbesondere $\operatorname{dist}[v_{i+1}] = \operatorname{dist}(v_{i+1})$

 Falls man einen Knoten u aus U entfernt mit dist[u]=d(u), dann wird u nie wieder in U aufgenommen.

2.7.4 Berechnung kürzester Wege (VON SEINEM SCHEIß SKELETT)

Für einen Graph G(V, E) mit Kantenkosten $c: E \to \mathbb{R}$ interessiert uns für ein gegebenes $s \in V$ für alle $v \in V$ die Kürzeste-Wege-Distanz $d(v) := \inf\{c(\pi) : \pi \text{ ist Pfad von } s \text{ nach } v\}.$

Wichtigste Operation aller Algorithmen zur Lösung dieses Problems ist die sogenannte Kantenrelaxierung. Typischerweise werden während des Verlaufs eines Algorithmus temporäre/vorläufige
Distanzwerte dist[v] berechnet (die noch nicht den gesuchten d(v) entsprechen müssen). Für eine
Kante e = (v, w) ist die Kanterelaxierung der Test, ob dist[w] > dist[v] + c(v, w), und falls ja,
das Neusetzen von dist[w] = dist[v] + c(v, w). Intuitiv besagt eine Kantenrelaxierung: "Wenn es
einen Pfad mit Kosten dist[v] von s nach v gibt, gibt es auch einen Pfad von s nach w mit Kosten dist[v] + c(v, w)."

2.7.5 Generischer Algorithmus zur Berechnung kürzester Wege (SKELETT LOL)

```
Sei U\subseteq V, sodass v\notin U\Rightarrow \forall e=(v,w)\colon dist[v]+c(v,w)\geq dist[w]. U={s} dist[v]=infty for all v dist[s]=0 while U not empty do v=some element from U removed for all e=(v,w) do if dist[v]+c(v,w)<dist[w] dist[w]=dist[v]+c(v,w) fi od do
```

Falls der Graph keine negativen Zyklen enthält, terminiert diese Prozedur irgendwann (wieso?). Je nach Graphstruktur gibt es jedoch bessere Strategien, die Menge U zu verwalten:

- 1. Uniforme Kantenkosten
- 2. Beliebige Kantenkosten, keine neg. Zyklen
- 3. Azyklische Graphen
- 4. Nichtnegative Kantenkosten

Dijkstras Algorithmus: Verwalte U in einer $priority\ queue/$ einem Heap, welche die Knoten; entferne immer das kleinste Element; bei Hinzufügung eines w zu U muss entweder ein schon in im Heap befindliches Element mit einem kleineren Schlüssel versehen werden (decreaseKey-Operation), oder ein neues mit entsprechendem Schlüssel eingefügt werden. Ein Heap unterstützt decreaseKey, insert, removeMin in jeweils $O(\log n)$, was zu einer Laufzeit von $O((n+m)\log n)$ führt, da ein Element maximal einmal aus dem Heap entfernt wird.

2.7.6 Instanziierung für verschiedene Graphenkalssen

[label=)]Allgemeine Kantenkosten (positiv und negativ):

Implementiere U als FIFO-Schlange; es wird immer erstes Element aus U entfernt und bei Hinzufügen hinten angehängt. Wenn sich die Distanz eines $w \in V$ ändert, $w \notin U$, füge w hinten an.

Behauptung: Wenn $d(w) > -\infty \ \forall w \in V$, dann wird jeder Knoten maximal n-mal aus U entfernt.

Beweis: Betrachte U, wenn w zu U hinzukommt. U enthält Knoten x mit dist[x]=d(x), x wird vor U aus U entfernt und zwar endgültig, also kommt w maximal n-1 mal zu U hinzu.

 \Longrightarrow Laufzeit des Algorithmus (Bellman Ford) ist $O(n\cdot n)$ da jede Kante seqn -mal angeschaut wir.

Graph azyklisch → Übung Graph uniforme Kantenkosten → Übung kl. Einschub: O(n · m) ist nicht gut. Z.B. Deutschlandgraph 15:58 Nichtn

kl. Einschub: O(n · m) ist nicht gut. Z.B Deutschlandgraph 15:58 Nichtnegative Kantenkosten

Idee: Finde immer Knoten $u \in U$ mit minimalen dist $[u] \implies \text{jeder } v \in V$ wird maximal

1mal aus U entnommen (mit richtiger Distanz) Warum?

Sei $w \in U$ mit dist[w] minimal in U aus U entfernt worden, Falls dist[w] > d(w), dann existiert ein v auf kürzestem Weg von s nach w mit $v \in U$ und dist[v] = d(v). Da v auf kW von s nach w liegt und KK (Kantenkosten) geq gilt d(v) leq d(w). Also dist[v] < dist[w] Wiederspruch!

Implementierung: Zentral: bestimme $w \in U$ mit dist[w] minimal

- **3.** (a) Dijkstar '62: Boolsches Feld für U verwaltet alle markierten Knoten durchgehen \Longrightarrow $O(n^2+m)$
 - (b) Williams '64: verwalte U mit einem Heap
 - i. insert $O(\log(n))$
 - ii. remove_Min $O(\log(n)) \Rightarrow O((n+m) \cdot \log(n))$
 - iii. decrease_Key $O(\log(n))$

Für m \gg n, z.B. $m \approx n^2$ geht es noch besser Fibonacci Heaps $\implies O(n \cdot log(n) + m)$

2.7.7 Irgendein neues Thema, das der bre machen will, damit wir was neues lernen

Dijkstras Algorithmus braucht auf z.B. Straßennetz von Deutschland 10s für eine Anfrage Stuttgart nach Berlin $(n = 20 \cdot 10^6, m = 40 \cdot 10^k)$.

Idee: Teile Routenberechnung in 2 Phasen auf:

- 1. Vorverarbeitung des Graphs (passiert nur 1 mal darf mehrere Minuten kosten)
- 2. Anfrage nutzt vorberechnete Infos zur schnellen Beantwortung von Anfragen ($\approx 1 \text{ms}$)

Zentrale Operation des Ansatzes "Contraction Hierarchies" Kontraktion(v):

1. betrachte alle (u_i, w_j) ; falls kürzesten Weg von u_i nach w_j über v muss \implies shortcut einfügen!

Vorverarbeitung

- 1. Kontrahiere alle Knoten
- 2. Gehe Reihenfolge und Shortcuts zurück

Anfrage (Wollte er iwie doch nicht mehr machen)

2.8 Ein weiteres Problem in Graphen

Gegeben ungerichteter Graph G(V,E) mit $c:E \to \mathbb{R}_{\geq 0}$ Ziel Finde $E' \subseteq E$ mit

- 1. G(V,E') Zusammenhängend
- 2. $\sum l \in E'c(l)$ minimal

Beobachtung: E' bildet einen Baum

2.8.1 Prim's Algorithmus (Greedy)

Lasse einen Baum "greedy" wachsen, indem in jeder Runde ein Knoten mit minimaler Distanz zu den Knoten bereits im Baum hinzugenommen wird.

Implementierung: naiv $O(n \cdot m)$

```
besser: Verwalte Knoten, die noch nicht um Baum sind mittels Heap. \implies n mal insert \land n mal removeMin \land n mal decreaseKey \implies O(m \cdot log(n))
```

```
Q.insert((o,s,$\epsilon$));
T[v] = false $\forall v \in V$;
E=$\emptyset$

while Q $\neq \emptyset$ do
   (d,v,k) $\leftarrow$ Q.remove_min();
   if(T[v]==false)
   { T[v]=true; E'= E' $\cup$ {1}
      forall (v,w) $\in$ E:
      if w $\notin$ Q
            Q.insert(c(v,w), w ,(v,w))
      else
            Q.delete_key(w, c(v,w) ,(v,w))
}

od
v e?? E'
```

Wann ist Algorithmus korrekt?

Lemma 2.5. Cut Property: Sei $P \subseteq V$ beliebig, l=(v,w) mit minimalen Gewicht, die einen Knoten aus P mit einem aus $V \setminus P$ verbindet. Dann ist l Teil **jedes** MST von G.

Proof. Betrachte Knotenmenge E* des MST, der l nicht enthält. l schließt den Zyklus bei Hinzunahme zu E*. Mindestens eine weitere Kante in Zyklus verbindet einen Knoten von P mit einem in V-P.

```
\implies 1 muss in E* sein Wiederspruch!
```

2.8.2 Minimale Spannbäume

Gegeben: ungerichteter, zusammenhängender Graph G(V,E) mit Kantenkosten $c:E\Rightarrow\mathbb{R}_{>0}$. Ziel: Bestimme $E'\subseteq E$ sodass G(V,E') zusammenhängend und $\sum_{e\in E'}c(e)$ minimal.

Beobachtung: E' bildet einen Baum.

Prims Greedy Algorithmus: Baue nach und nach für eine Menge $T\subseteq V$ einen Spannbaum auf. Zu Beginn enthält T einen beliebigen Knoten, E' ist leer. Im Folgenden wird immer ein Knoten aus V-T zu T hinzugenommen, der eine Kante mit minimalen Kosten zu einem Knoten in T besitzt; die entsprechende Kante wird zu E' hinzugefügt.

Naive Laufzeit O(mn). Besser in $O(m \log n)$ durch Verwaltung der Knoten in V-T in einem Heap. Behauptung: Algorithmus berechnet einen Spannbaum mit minimalen Kosten. Beweis via Cut Property.

3 Dynamisches Programmierung, Pseudopolynomialität und Fully-Polynomial-Time Approximation Schemes

3.1 Das Rucksack Problem

Gegeben sind n Gegenstände $I = \{1, 2, 3, \dots n\}$, sowie eine Wertefunktion $c: I \to \mathbb{N}$, eine Gewichtsfunktion $w: I \to \mathbb{N}$, sowie ein Maximalgewicht $W \in \mathbb{N}$. Ziel ist es, eine Menge $I' \subseteq I$ zu indentifizieren, welche den Wert maximiert, d.h.

$$\max \sum_{i \in I'} c(i)$$

unter der Bedingung, dass das Gewicht der gewählten Gegenstände unter der Gewichtsschranke W liegt, also:

$$\sum_{i \in I'} w(i) \le W$$

Dynamisches Programm basiert auf einer einzigen Einsicht: Grundlage eines dynamischen Programms für dieses Problem ist folgende Beobachtung: sei C(i,k) das **minimale Gewicht** eines Rucksackinhalts, der nur Gegenstände aus $\{1,....,i\}$ beinhalten darf und der Kosten/Wert genau k hat, dann gilt:

$$C(i,k) = \min(C(i-1,k), C(i-1,c-c(i)) + w(i))$$

Einfach so eine Levenstein-Distanz Tabelle vorstellen als Matrix mit Matrixzeilen. Wenn wir diese Matrix ausgefüllt bekommen, befindet sich maximal Möglicher Wert der Rucksacks in der untersten Zelle der letzen Spalte, wo ein Gewicht $\leq Wsteht$.

Wenn wir diese Matrix ausgefüllt bekommen findet sich der maximal mögliche Wert des Rucksackgewichts in der untersten Zeile der letzten Spalte wo ein Gewicht \leq W steht.

Wie bestimmen wir ci, k? Es gibt nur 2 Fälle:

- 1. i \notin Rucksack von $c_{i,k}$ realisiert $\implies c_{i,k} = c_{i-1,k}$
- 2. $i \in \text{Rucksack von } c_{i,k} \text{ realisiert } \implies c_{i,k} = w(i) + c_{i-1,k-c(i)}$
- $\implies c_{i,k} = min(c_{i-1,k}, w(i) + c_{i-1,k-c(i)})$

Außerdem gilt $O(n \cdot \sum_{i \in I} c(i))$ als Laufzeit.

Man nennt diese Laufzeit pseudopolynomiell, weil sie nur polymionell ist bei unärer Kodierung der Eingabe. Probleme die bei unärer kodierung in polynoieller Zeit lösbar sind, heißen schwach NP-hart, solche die NP hart bleiben heißen stark NP-hart.

3.1.1 Schwache NP-Härte und Pseudopolynomialität

Auch wenn das Problem "einfach"/polynomiell lösbar zu sein scheint, ist es dies nicht. Polynomielle Lösbarkeit ist immer bzgl. der Kodierung der Eingabe zu sehen. In diesem Fall, könnte $\sum_{i \in I} c(i)$ jedoch exponentiell in der Eingabegröße sein. Nur wenn wir annehmen, dass die Eingabezahlen unär kodiert sind, dürfen wir von polynomieller Laufzeit sprechen. Wir nennen die Laufzeit dieses dynamischen Programms auch pseudopolynomiell. Man kann zeigen, dass bei "normaler" Kodierung das Rucksackproblem NP-hart ist (Reduktion auf 3-SAT). Das es bei nicht unärer Kodierung jedoch in polynomieller Zeit lösbar ist, sprechen wir hier von schwacher NP-Härte. Probleme, die

selbst bei unärer Kodierung NP-hart bleiben, nennt man stark NP-hart – Beispiele hierfür sind z.B. das Vertex Cover Problem, eigentlich alle scheiß Graphenprobleme.

Nun in Polyzeit ein Ergebnis mit garantierter Qualität zu haben.

Konkret: für gewähltes $\epsilon > 0$ berechnen wir in Zeit $O(n^2 \div \epsilon$ eine Lösung, die Wert $>= (1 - \epsilon)$ c_{opt} hat.

Idee:

- 1. Wähle einen geeigneten Skalierungsfaktor S (abhängig von ϵ) ud
n definiere $\operatorname{cschlage} := c(i) \div s$ untere Gauß Klammer.
- 2. Löse Rucksackproblem für cschlange (und gleichen I, w, W) zur Optimalität und erhalte I (Inhalt des Rucksacks).
- 3. Gebe I zurück

$$\begin{split} c(I') &= \sum_{i \in I'} c(i) = S \cdot \sum_{i \in I'} \frac{c(i)}{S} \\ &= S \cdot \sum_{i \in I'} \left(\frac{c(i)}{S} + \delta_i \right), \quad \delta_i \in (0, 1) \\ &= S \cdot \sum_{i \in I'} \frac{c(i)}{S} + S \cdot \sum_{i \in I'} \delta_i \\ &\geq S \cdot \sum_{i \in I_{opt}} \frac{c(i)}{S} \\ &\geq S \cdot \sum_{i \in I_{opt}} \frac{c(i)}{S} - S \cdot \sum_{i \in I_{opt}} \delta_i \\ &= S \cdot \sum_{i \in I_{opt}} \frac{c(i)}{S} - S \cdot \sum_{i \in I_{opt}} \delta_i \\ &\geq S \cdot \sum_{i \in I_{opt}} -S \cdot n \\ &= c_{opt} - S \cdot n. \end{split}$$

$$c(I') \ge c_{opt} - S \cdot n = c_{opt} \left(1 - \frac{S \cdot n}{c_{opt}} \right).$$

To achieve a desired ϵ , set:

$$S := \frac{\epsilon \cdot c_{opt}}{n}.$$

If c_{opt} is unknown, this is not problematic if, for example, we have an approximation $c_{apx} \ge \frac{1}{2} \cdot c_{opt}$. Then set:

$$S := \frac{\epsilon \cdot c_{apx}}{2n}.$$

Laufzeitanalyse: Die naive Laufzeit kann nicht besser werden als von $O\left(n \cdot \sum_{i \in I} c(i)\right)$ zu $O(n \cdot c_{opt})$. $\Rightarrow skalierteLaufzeitistO(n \cdot c_{opt}) = O(\frac{n^2}{\epsilon})$

 \Rightarrow **FPTAS** also ponlynomiell in Probleminstanz und polynomiell wie nah man da drankommen möchte.

3.1.2 Fully-Polynomial-Time-Approximation Scheme (FPTAS)

Wir geben ein beliebig nahes Optimum vor und kommen dann so an das Optimum ran. Dass fully polynomial sagt, dass die Laufzeit dann $\mathcal{O}\left(\frac{n}{n\cdot\epsilon}\right)$ ist. Ist das beste was man von einem np-harten Problem erwarten kann.

3.2 Constrained Shortest Path(CSP)

Die bisher betrachteten Wegeprobleme in Graphen waren allesamt in Polynomialzeit lösbar. Es gibt jedoch sehr viele anderen Wegprobleme, für die eine Lösung in Polynomialzeit bislang nicht bekannt ist bzw. für die NP-Härte bewiesen werden kann. Eine davon ist folgende:

Gegeben ein Graph G(V,E), Funktionen $c:E\to\mathbb{N}^+$ (cost) und $r:E\to\mathbb{R}^+$ (resource) auf den Kanten, sowie Start- und Zielknoten s und t, wollen wir einen Pfad $\pi=v_0v_1\dots v_k$ finden mit $v_0=s,\,v_k=t,\,\mathrm{der}\,\sum_{e\in\pi}c(e)$ minimiert und dabei $\sum_{e\in\pi}r(e)\le R$ erfüllt. Dieses Problem

heisst auch Constrained Shortest Path (CSP). Wir können im Folgenden ohne Einschränkung der Allgemeinheit an, dass die Knoten von 1 bis n bezeichnet sind und $s=1,\,t=n$. Ziel: die kosten sollten minimal sein. Grundlage eines Dynamischen Programms für diese Problem ist folgende Beobachtung: sei $r_{k,j}$ der minimale Resourcenverbrauch eines Pfades von 1 nach j, der Kosten höchstens k hat. Es muss dann folgendes gelten:

$$r_{k,j} = \min_{i} e = (i,j)r_{k-c(e)} + r(e)$$

4 Randomisierte Algorithmen

Ein Randomisierter Algorithmus ist ein Algorithmus, welcher unter Nutzung einer Zufallsquelle ein Problem löst. Oft sind randomisierte Algorithmen deutlich einfacher und teilweise auch effizienter als entsprechende deterministische Algorithmen. Randomisierte Algorithmen analysiert man typischerweise nach

- 1. Zeitverbrauch (ggf. erwartet)
- 2. Platzverbrauch (ggf. erwartet)
- 3. Anzahl verbrauchter Zufallsbits
- 4. Wahrscheinlichkeit für Erfolg

4.1 Closest Pair Problem

Gegeben: n Punkte in \mathbb{R}^2

Gesucht: Die zwei Punkte die zueinander den minimalsten Abstand haben.

Übung: $O(n \log(n))$ Algorithmus via D und C.

Vergleichsbasiert existiert ein $\Omega(n \log(n))$ untere Schranke.

4.1.1 Naive Lösungsstrategie

Inspiziere jedes der $\binom{n}{2} \approx n^2$ Punktepaare und nimm das "closest" davon $\implies Laufzeit.\ O(n^2)$. **Jetzt:** Algorithmus, der das in erwartet O(n) Zeit löst. Der Erwartungswert einer diskreten Zufallsvariable X ist:

$$E(X) = \sum_{i} (iP_r(X=i))$$

z.B. Würfel: X kann Werte aus $\{1, 6\}$ annehmen, jeden mit Wahrscheinlichkeit $\frac{1}{6}$

$$\implies E(x) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3, 5$$

Wir betrachten nun einen Algorithmums, dessen Laufzeit durch eine ZV X beschrieben werden kann mit E(x) = O(n).

4.1.2 Neuer, inkrementeller Algorithmus

Betrachte Punkte in einer fixen Reihenfolge p_1, p_2, \ldots, p_n . Sei δ_i die CP-Distanz der Punktmenge $\{p_1, \ldots, p_i\}$. Angenommen, wir kennen δ_i , wie können wir δ_{i+1} bestimmen?

Naiv: Berechne die Distanz von p_{i+1} zu p_1, \ldots, p_i und setze δ_{i+1} entsprechend.

Kosten: i Vergleiche für den (i+1)-ten Punkt,

 \implies Gesamtkosten: $1+2+3+4+\cdots+(n-1)=\Theta(n^2)$.

Verbesserung: Angenommen, wir haben nicht nur δ_i bestimmt, sondern auch die Punkte p_1, \ldots, p_i in ein Gitter der Maschenweite δ_i einsortiert.

Gitterbeispiel:

Das Gitter ist in Zellen der Maschenweite δ_i unterteilt, und die Punkte werden entsprechend in diesen Zellen einsortiert.

Die Gitterzelle, welche einen Punkt $P(p_x, p_y)$ enthält, bestimmt sich durch $\left\lfloor \frac{p_x}{\delta_i} \right\rfloor$, $\left\lfloor \frac{p_y}{\delta_i} \right\rfloor$.

4.1.3 Beobachtungen:

- 1. Um δ_{i+1} zu bestimmen, schauen wir in die Gitterzelle von p_{i+1} und in ihre 8 Nachbarzellen und überprüfen mit allen Punkten darin.
- 2. (In einer Gitterzelle liegen nie mehr als 4 Punkte.) \implies wir können δ_{i+1} in Zeit O(1) berechnen.

Problem:

Falls $\delta_{i+1} < \delta i$, muss Gitter neu konsturiert werden. Dazu muss jeder Punkt p_1, \ldots, p_{i+1} in neues Gitter der Maschenweite δ_{i+1} eingefügt werden.

 $\Longrightarrow \Theta(i)$ Zeit.

Falls $\delta_{i+1} = \delta_i$, füge in O(1) p_{i+1} in bestehendes Gitter ein.

Es gibt Reihenfolgen und Punkteingaben die bei diesem Algorithmus wieder zur Laufzeit $\Theta(n^2)$ führen.

Zum Beispiel wenn alle Punkte auf einer Geraden liegen:

[scale=1] [-;, thick] (0,0) - (10,0);

(1,0) circle (2pt) node[above] P_1 ; (3,0) circle (2pt) node[above] P_2 ; (5.5,0) circle (2pt) node[above] P_3 ; (8,0) circle (2pt) node[above] P_4 ; (9.5,0) circle (2pt) node[above] P_5 ;

Trick:

Permutiere p_1, \ldots, p_n zufällig und hoffe, dass dadurch die Anzahl der Änderung der cp-Distanz gering bleibt.

4.1.4 Algorithmus:

- 1. Bringe Punkte in zufällige Reihenfolge p_1, \ldots, p_n
- 2. $\delta_2 = |p_1 p_2|$
- 3. D \leftarrow Gitterstruktur mit Maschenweite δ_2 welche $\{p_1, p_2\}$ enthält
- 4. for i to n do platziere P_i in D untersuche die 9 relevanten Gitterzellen auf potentielle CPs mit p_i if $\nexists p_j, j < i$ mit $|p_i p_j| < \delta_{i-j}$ gibt then tue nichts, $\delta_i = \delta_{i-1}$ else $\delta_i = min|p_j p_i|$ mit j < i D \leftarrow Gitterstruktur mit Maschweite δ_i , welche $\{p_1, \ldots, p_i\}$ enthaelt od
- 5. return δ_n

4.1.5

Analyse: Betrachte Einfügung von Punkt p_i . Es gibt zwei Fälle:

[label=.](billig) $\delta_i = \delta_{i-1}$, d.h. p_i erzeugt kein neues CP. (teuer) $\delta_i < \delta_{i-1}$, d.h. p_i erzeugt neues CP.

Sei $\{p_a, p_b\} \subset \{p_1, \dots, p_i\}$ das CP in $\{p_1, \dots, p_i\}$. Die Einfügung von p_i ist genau dann teuer, wenn $p_i = p_a$ oder $p_i = p_b$.

Da die Punkte $\{p_1, \ldots, p_i\}$ zufällig gleichverteilt permutiert sind, ist diese Wahrscheinlichkeit $\leq \frac{2}{i}$. \Longrightarrow Erwartete Kosten der Einfügung von p_i sind:

$$P_r(\text{teure Einfuegung}) \cdot O(i) + P_r(\text{billige Einfuegung}) \cdot O(1) = O\left(\frac{1}{i}\right) \cdot O(i) + O(1)$$

= $O(1)$

Gesamtkosten des Algorithmus sind die Summen der Kosten der Einfügungen p_1, p_2, \ldots, p_n . Sei X_c eine ZV, welche die Kanten der Einfügung von p_i benennt und X eine ZV, welche die Gesamtkosten benennt. Es gilt:

$$X = X_1 + X_2 + \dots + X_n = \sum_{i=1}^{n} (X_i)$$

$$E(X) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \underbrace{E(X_i)}_{=O(1)} = O(n)$$

Sehr wichtig: Die Laufzeit unseres Algorithmus ist immer erwartet O(n), egal wie die Eingabe aussieht.

Auch wichtig: Algorithmus berechnet immer das korrekte Ergebnis, nur die Laufzeit. kann variieren aufgrund des Zufalls.

 \implies LAS VEGAS ALGORITHMUS

4.2 MinCut-Problem

Gegeben: ungerichteter, ungewichteter (Multi)-Graph G(V,E) mit |V| = n, |E| = mEin Cut(Schnitt) ϕ von G ist definiert durch eine Partition $V = V_1 \uplus V_2$ der Knoten $|V_i| > 0$. Der Wert des Cuts ϕ ist:

```
|\{e = \{v, w\} \in E | v \in V_1, w \in V_2\}|
```

Ziel: Bestimme den Cut ϕ mit minimalem Wert.

Bsp.: Bild von Graph

4.3 Las Vegas Algorithmus: Closest Pair (bruder meinte iwo sollen Fehler in den Bezeichnern sein)

Laufzeit von O(n)

Kann nur quadratische Zeitdauer haben wenn der Algorithmus quadratisch würfelt **Problem:** Gegeben sei eine Punktmenge $P = \{p_1, p_2, \dots, p_n\}$ im \mathbb{R}^2 . Ziel ist es, Punkte $p, q \in P, p \neq q$ zu finden sodass $|pq| \leq |p'q'|$ für alle $p', q' \in P, p' \neq q'$.

Deterministisch können wir dieses Problem in $O(n \log n)$ lösen, z.B. mittels eines Divide&Conquer-Algorithmus. Unter der Annahme, dass wir in konstanter Zeit hashen können, zeigen wir einen randomisiert inkrementellen Algorithmus, der das Problem in erwartet O(n) Zeit löst.

```
Data: Point set P

Result: \min_{p,q \in P, p \neq q} |pq|
randomly permute P to \{p_1, p_2, \dots, p_n\};

\delta_2 \leftarrow |p_1 p_2|;

D \leftarrow \text{grid structure with cell width } \delta_2, \text{ containing } p_1, p_2;

for i \leftarrow 3 to n do

 | \text{put } p_i \text{ into } D; \\ \text{check } 9 \text{ relevant grid cells for new closest pair with } p_i; \\ \text{if } \nexists p_j \text{ with } j < i \text{ and } |p_j p_i| < \delta_{i-1} \text{ then } \\ | \delta_i \leftarrow \delta_{i-1}; \\ \text{else} \\ | \delta_i \leftarrow \min_{j < i} |p_j p_i|; \\ D \leftarrow \text{grid structure with cell width } \delta_i, \text{ containing } p_1, \dots, p_i; \\ \text{return } \delta_n;
```

Zentrale Einsicht beim Beweis der Laufzeit ist folgendes Lemma:

Lemma 4.1. Die Wahrscheinlichkeit, dass bei Hinzunahme von p_i die Gitterstruktur neu aufgebaut werden muss, ist $\leq 2/i$.

2. Proof. Wir nehmen zunächst an, dass die closest pair Distanz eindeutig ist und von nur zwei Punkten definiert wird. Seien nun $P_i = \{p_1, p_2, \dots p_i\}$ und $p_a, p_b \in P_i$ die beiden Punkte aus P_i , welche das closest pair in P_i definieren. Die Gitterstruktur muss genau dann neu aufgebaut werden, wenn $p_i = p_a$ oder $p_i = p_b$. Da die Reihenfolge jedoch zufällig gleichverteilt ist, ist jeder der ersten i Punkte mit gleicher Wahrscheinlichkeit p_i . Daher ist die Wahrscheinlichkeit, dass p_i entweder p_a oder p_b ist, genau 2/i. Falls die closest pair Distanz von mehr als zwei Punkten definiert wird, ist die Wahrscheinlichkeit, dass die Gitterstruktur neu aufgebaut werden muss, nur noch geringer.

4.4 Monte Carlo Algorithmus: Karger's MinCut Algorithmus

(Übung einfach mal integrieren)

Problem: Gegeben einen ungewichteten, ungerichteten Multigraph G(V, E), bestimme eine Partition $V = V_1 \dot{\cup} V_2$ der Knotenmenge mit $V_1, V_2 \neq \emptyset$, sodass der induzierte Schnitt

$$cut(G,V_1) := \big\{ \{v,w\} \in E : v \in V_1, w \in V - V_1 \big\}$$

minimale Kardinalität hat. Der Wert des Cuts ist =

Bekannte Algorithmen wie Edmonds-Karp lösen dieses Problem deterministisch in Zeit $O(m^2n)$, wobei $n = |V|, m = |E| \ e = v, w \in E$

Ziel: Beste Knotenpartition mit minimalem Cut Wert.

Determinismus: Stoer-Wagner-Algorithmus löst das Problem in $O(nm + n^2 \log n)$.

Randomisierter Algorithmus: hat Laufzeit $O(n^2 loq^3 n)$ Naive Lösung: Alle Partitionen überprüfen, dauert aber 2^n lang, weil 2^n viele.

Zentrale Operation des neuen Algortihmus 4.5

Kantenkontraktion (nimmt die Knoten und zieht diese zusammen inklusiver der, die an dem Hängen, einfach zwei Knoten zu einem mergen, aber wenn die gleichen Knoten beide mit einem verbunden sind, hat man sogar zwei Kanten zum gleichen Knoten und nicht nur einen !.)

4.6 Karger Min-Cut Algorithmus

Algorithmus: Karger MinCut Algorithmus

for i=1 to n-2 do Kontrahiere zufällige Kanten od

Gebe die Partition der Knotenmenge entsprechend der beiden "ueberlebenden" Kanten zurueck

Man kann den Algorithmus so implementieren, dass ein Durchlauf O(m) kostet.

Jetzt beweise, dass die Wahrscheinlichkeit einen MinCut zu finden $\geq \frac{1}{n^2}$ ist.

Lemma 4.2. Betrachte eunen Multigraph G=(V,E) mit einem MinCut mit Wert k, dann gilt: Ghat mindestens $\frac{k \cdot n}{2}$ Kanten.

4.6.1 Beweis

Beobachtung: Jeder Knoten hat Grad $\geq k$. \implies Es gibt $\geq \frac{k \cdot n}{2}$ Kanten.

Anmerkung: Wir konzentrieren uns im folgenden auf einen fixen MinCut: $X \uplus V - X$

Sei E_i das Ereignis, dass im i-ten Kantenkontraktionsschritt keine MinCut kontrahiert wurde. Was ist die Wahrscheinlichkeit, dass im ersten Schritt keine Kante unseres MinCuts kontrahiert wird?

$$\implies 1 - \underbrace{\frac{k}{m}}_{\text{Wahrscheinlichkeit eine Kante des MinCuts zu erwischen}} \ge 1 - \frac{k \cdot 2}{k \cdot n} = 1 - \frac{2}{n} \qquad \text{mit} \quad \frac{k}{m} \ge \frac{k \cdot n}{2}$$

$$P_r(E_1) = 1 - \frac{2}{n}$$

Falls E_1 eingetreten ist, existieren vor dem zweiten Schritt mindestens $\frac{k(n-1)}{2}$ Kanten. ⇒ Wahrscheinlichkeit im zweiten Schritt keine Kante des MinCuts zu erwischen ist dann:

$$P_r(\epsilon_2|\epsilon_1) = 1 - \frac{k}{m'} \ge 1 - \frac{2}{n-1}$$

Wahrscheinlichkeit im i-ten Schritt keine Kante des MinCuts zu erwischen ist:

$$P_r(E_i|\bigcap_{j=1}^{i-1} E_j) \ge 1 - \frac{2}{n-i+1}$$

⇒ Wahrscheinlichkeit, nur eine Kante des MinCuts kontrahiert zu haben ist:

$$P_r\left(\bigcap_{i=1}^{k-2} E_i\right) = P_r(E_1) \cdot P_r(E_2 \mid E_1) \cdot P_r(E_3 \mid E_1 \cap E_2) \cdots$$

$$= \prod_{i=1}^{n-2} \left(1 - \frac{2}{n-i+1}\right)$$

$$= \prod_{i=1}^{n-2} \frac{n-i+1-2}{n-i+1}$$

$$= \prod_{i=1}^{n-2} \frac{n-i-1}{n-i+1}$$

$$= \frac{n-1}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \cdot \frac{n-6}{n-4} \cdot \cdots \cdot \frac{2\cdot 1}{4\cdot 3}$$

$$= \frac{2}{n(n-1)}$$

 \implies Wahrscheinlichkeit keine Kante des Min
Cuts zu kontrahieren ist $\geq \frac{2}{n(n-1)} \geq \frac{1}{n^2}$

Eine Erfolgswahrscheinlichkeit von $\sim \frac{1}{n^2}$ klingt nicht sehr überzeugend, durch Wiederholung und Bestimmung des besten Resultats der Wiederholungen können wir die Erfolgswahrscheinlichkeit beliebig erhöhen.

Wenn wir den Algorithmus $\frac{n^2}{2}$ - mal wiederholen, ist die Wahrscheinlichkeit nie den echten MinCut gesehen zu haben:

$$(1 - \frac{2}{n(n-1)})^{\frac{n^2}{2}} \underbrace{\leq}_{1-x \leq e^{-x}} (e^{\frac{-2}{n(n-1)}}) < \frac{1}{e}$$

Also wissen wir, dass die Wahrscheinlichkeit nach $\frac{n^2}{2}$ Wiederholungen den echten MinCut berechnet zu haben midestens $1-\frac{1}{e}\approx 0.63$ ist.

Durch noch mehr Wiehderholen lässt sich die ErfolgsWahrscheinlichkeit beliebig erhöhen, z.B:

$$10 \cdot \frac{n^2}{2}$$
 wiederholen \Longrightarrow Fehlerwarscheinlichkeit $<(\frac{1}{e}^{10}) \approx 0,000045$. Das geht in Laufzeit $O(m \cdot n^2)$ (Vergleiche mit $O(n \cdot m + n^2 \cdot log(n))$) deterministisch)

Dieser Algorithmus gehört zur Klasse der Monte-Carlo Algorithmen, deren Korrektheit hängt vom Zufall ab.

Wenn wir z.B. $c \cdot \frac{n^2}{2} \cdot log(n)$ wiederholbar, ist die Fehlerwarscheinlichkeit $\approx \frac{1}{n}$. "Erfolg tritt mit hoher Wahrscheinlichkeit ein"

Wenn wir z,B $c \cdot \frac{n^2}{2} \cdot n$ wiederholbar, ist die Fehlerwarscheinlichkeit $\approx \frac{1}{2^n}$. "Erfolg tritt mit sehr hoher Wahrscheinlichkeit ein"

Closest Pair	MinCut	
liefert immer korrektes Resultat, egal wie sich Zufall verhält	Kann falsches Ergebnis liefern abhängig von Zufall	
Laufzeit abhängig von Zufall	Laufzeit fix für gegebene Fehlerschwelle	
LasVegas	MonteCarlo	

4.7 Unterschiede LasVegas und MonteCarlo Algorithmen

Man kann aus jedem Las Vegas Algorithmus einen Monte Carlo Algorithmus machen. Sei f(n) die erwartete Laufzeit des Monte Carlo Algorithmus, wir lassen den Algorithmus für $\alpha \cdot f(n)$ mit $\alpha > 1$. Falls Alg. bis dahin terminiert:

⇒ Ergebnis korrekt, sonst brechen wir ab und geben irgendwas aus.

Dieser modisierte Alg. hat Laufzeit. von $\alpha \cdot f(n)$. \implies müssen noch ErfolgsWahrscheinlichkeit berechnen

Markov-Ungleichung

Sei X eine nicht negative ZV mit $E(X) = \mu$, Dann gilt: $P_r(X > \alpha \cdot \mu) \leq \frac{1}{\alpha}$ \implies Unser modifizierter, abbrechender LV Algorithmus hat Fehlerwarscheinlichkeit $\leq \frac{1}{\alpha}$.

 $MC \rightarrow LV$ machbar?

Falls wir neben dem MC Algorithmus mit Laufzeit f(n) und ErfolgsWahrscheinlichkeit p(n) einen Checker-Algorithmus C mit Laufzeit g(n) haben, der Korrektheit überprüfen kann, machen wir folgendes:

- 1. lasse MC Algorithmus laufen
- 2. checke ob korrekt, falls nein gehe zu 1.

Pro Runde ist Laufzeit. f(m) + g(n)Die erwartete Anzahl Runden bis zum Erfolg $\frac{1}{p(n)} \implies$ erwartete Laufzeit. $\frac{f(n)+g(n)}{p(n)}$.

4.8 Monte Carlo Algorithmus: Karger's MinCut Algorithmus

Problem: Gegeben einen ungewichteten, ungerichteten Multigraph G(V, E), bestimme eine Partition $V = V_1 \cup V_2$ der Knotenmenge mit $V_1, V_2 \neq \emptyset$, sodass der induzierte Schnitt

$$cut(G, V_1) := \{ \{v, w\} \in E : v \in V_1, w \in V - V_1 \}$$

minimale Kardinalität hat.

Der deterministische Stoer-Wagner Algorithmus löst das Problem (für gewichtete Graphen) in $O(nm+n^2\log n)$, das Problem des minimalen s-t-cuts wird z.B. vom Edmonds-Karp-Algorithmus in in Zeit $O(m^2n)$ gelöst, wobei n=|V|, m=|E|. Wir betrachten im Folgenden einen randomisierten Monte-Carlo-Algorithmus für dieses Problem mit (verbesserter) Laufzeit $O(n^2\log^3 n)$, der den MinCut mit Wahrscheinlichkeit $\Omega(1-1/n)$ bestimmt.

Zentrale Operation des Algorithmus ist die Kontraktion zweier adjazenter Knoten. Hierbei werden alle bestehenden Kanten übernommen, Schleifen jedoch gelöscht. Der Algorithmus selbst ist dann sehr simpel, es wird in n-2 Runden jeweils eine zufällige Kante ausgewählt und die entsprechenden Knoten kontrahiert.

```
for i \leftarrow 1 to n-2 do
```

 \lfloor select a random edge $\{v, w\}$ and contract nodes v and w return vertex sets corresponding to two surviving nodes

Fixieren wir einen konkreten MinCut, so wird dieser genau dann gefunden, wenn während des Ablaufs des Algorithmus, nie eine Kante dieses MinCuts kontrahiert wird. Wir wollen im Folgenden eine untere Schranke dafür beweisen, dass ein konkreter MinCut gefunden wird.

Lemma 4.3. Betrachte einen Multigraph G(V, E), der einen MinCut mit Wert k enthält. Dann gilt: G hat mindestens $\frac{kn}{2}$ Kanten.

Lemma 4.4. Sei (X, V - X) ein fixer MinCut. Unter der Annahme, dass in den i-1 vorherigen Kontraktionen keine Kante diese MinCuts kontrahiert wurde, ist die Wahrscheinlichkeit, bei der i-ten Kontraktion keine Kante dieses MinCuts zu kontrahieren mindestens $1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1}$.

Lemma 4.5. Die Wahrscheinlichkeit, dass obiger Algorithmus einen fixen MinCut findet ist mindestens $\frac{2}{n(n-1)}$

Dadurch, dass wir den Algorithmus $n^2/2$ oft wiederholen und den Cut mit kleinstem Gewicht zurück geben, können wir die Erfolgswahrscheinlichkeit deutlich erhöhen:

Lemma 4.6. Bei $n^2/2$ Wiederholungen ist die Wahrscheinlichkeit, einen fixen MinCut zu finden mindestens 1-1/e.

Durch weitere Wiederholungen lässt sich die Erfolgswahrscheinlichkeit beliebig verbessern, so führen z.B. $c \cdot \log n \cdot \frac{n^2}{2}$ Wiederholungen zu einer Erfolgswahrscheinlichkeit von mindestens $1 - \frac{1}{n^c}$

4.8.1 Verbesserung der Erfolgswahrscheinlichkeit (Karger-Stein)

Die Erfolgswahrscheinlichkeit des ursprünglichen Karger-MinCut Algorithmus kann deutlich verbessert werden, indem man eher späte Kontraktionen mehrfach/oft wiederholt(anstatt alle oft zu wiederholen), da gerade diese eine größere Wahrscheinlichkeit haben, eine MinCut-Kante zu kontrahieren. Zunächst beobachten wir, dass es recht wahrscheinlich ist, in den ersten $n-n/\sqrt{2}-1$ Kontraktionsschritten keinen Fehler zu machen:

Lemma 4.7. Die Wahrscheinlichkeit, dass man von einem fixen MinCut bei $n - \frac{n}{\sqrt{2}} - 1$ Kontraktionsschritten eine Kante dieses MinCuts kontrahiert, ist $\leq 1/2$.

Proof. Wie in der Grundversion des Karger Algorithmus ist die Wahrscheinlichkeit, diesen MinCut in der i-ten Kontraktion nicht zu zerstören (unter der Annahme ihn davor schon nicht zerstört zu haben) mindestens $1-\frac{2}{n-i+1}=\frac{n-i-1}{n-i+1}$. Die Wahrscheinlichkeit, ihn in den ersten i Kontraktionsschritten nicht zu zerstören (also basically Erfolgswahrscheinlichkeit) ist somit $\frac{(n-i-1)(n-i)}{n(n-1)}$. Für $i=n-n/\sqrt{2}-1$ ergibt sich somit $\frac{(n/\sqrt{2})(n/\sqrt{2}+1)}{n(n-1)}=\frac{n^2/2+n/\sqrt{2}}{(n-1)}=\frac{n/2+1/\sqrt{2}}{(n-1)}=\frac{1}{2}\frac{n+\sqrt{2}}{n-1}\geq\frac{1}{2}$

Wir nutzen dies dann in folgender Variation des Algorithmus:

Sei T(n) die Laufzeit dieses Algorithmus für einen Graph mit |V| = n. Exklusive der Rekursion, verbraucht ein Aufruf $O(n^2)$ Zeit für die Kontraktionen. Somit haben wir $T(n) = O(n^2) + 2T(n/\sqrt{2})$ (weil Rekursion).

Lemma 4.8. Es gilt $T(n) = O(n^2 \log n)$.

Interessant ist nun die Analyse der Wahrscheinlichkeit P(n), dass der Algorithmus einen Min-Cut berechnet.

Lemma 4.9. Es gilt $P(n) \ge 1/\log n$.

Proof. Wir beweisen per Induktion und nehmen an, es gelte $P(i) \ge 1/\log i$ für i < n. Mit Wahrscheinlichkeit $\frac{1}{2} \cdot P(n/\sqrt{2})$ (das ist so, weil man bei der Konstruktion von G_1 keinen Fehler gemacht haben muss und die Rekursion zurückkommen muss und dafür hat man ja schon das p definiert) ist $(C_i, V - C_i)$ ein MinCut, d.h. kein MinCut wird gefunden mit der entsprechenden Gegenwahrscheinlichkeit:

$$\begin{split} P(n) & \geq 1 - (1 - \frac{1}{2}P(n/\sqrt{2}))^2 \geq 1 - (1 - \frac{1}{2 \cdot (\log n - 1/2)}))^2 = 1 - (1 - \frac{1}{2\log n - 1})^2 \\ & = 1 - 1 + \frac{2}{2\log n - 1} - \frac{1}{(2\log n - 1)^2} \\ & = \frac{1}{\log n - 1/2} - \frac{1}{(2\log n - 1)^2} = \frac{\log n}{\log n(\log n - 1/2)} - \frac{1}{(2\log n - 1)^2} \\ & = \frac{\log n + 1/2 - 1/2}{\log n(\log n - 1/2)} - \frac{1}{(2\log n - 1)^2} \\ & = \frac{1}{\log n} + \frac{1/2}{\log n(\log n - 1/2)} - \frac{1}{(2\log n - 1)^2} \\ & = \frac{1}{\log n} + \frac{1}{\log n(2\log n - 1)} - \frac{1}{(2\log n - 1)^2} \\ & = \frac{1}{\log n} + \frac{2\log n - 1 - \log n}{\log n(2\log n - 1)^2} \\ & \geq = \frac{1}{\log n} \end{split}$$

Nun reichen wenige Wiederholungen dieses Algorithmus, um eine recht hohe Erfolgswahrscheinlichkeit zu erreichen:

Lemma 4.10. Wiederholen wir KargerStein $\log n$ mal, erreichen wir eine Erfolgswahrscheinlichkeit von 1-1/e.

Proof. Die Wahrscheinlichkeit nach ($\log n$) Wiederholungen keinen MinCut gefunden zu haben ist

$$\leq (1 - \frac{1}{\log n})^{\log n} \leq e^{-\frac{\log n}{\log n}} = \frac{1}{e}$$

Vorher zum Vergleich: Man vergleiche das mit den $\approx n^2$ Wiederholungen, die der ursprüngliche Karger Algorithmus zur Erreichung derselben Erfolgswahrscheinlichkeit benötigt hatte. also $O(n^2 \log^2 n)$ vs $O(n^4)$

```
choose r \in \{0, 1\}^n u.a.r.;
check whether A \cdot (B \cdot r) = C \cdot r:
```

4.9 Monte Carlo Algorithmus: Verifikation von Matrix Multiplikation(Freivalds)

Gegeben $A, B, C \in \mathbb{R}^{n \times n}$ möchten wir wissen, ob $A \cdot B = C$. Naiv geht dies in $O(n^3)$ durch Berechnung von AB und Vergleich mit C, alternativ könnte man z.B. Strassens Algorithmus (ca. $O(n^{2.81})$ anwenden. Also naiv: ausrechnen und verifizieren. Folgender Monte-Carlo-Algorithmus verifiziert in $O(n^2)$ mit einer konstanten einseitigen (wenn er nein sagt stimmt es immer, aber wenn er ja sagt, kann es auch falsch sein) Fehlerwahrscheinlichkeit (Freivalds): Beides auf jeder Seite läuft in $O(n^2)$ Der Algorithmus läuft offensichtlich in $O(n^2)$ Zeit. Falls der Algorithmus Ungleichheit feststellt, gilt offensichtlich $AB \neq C$. Es bleibt zu zeigen, dass die Wahrscheinlichkeit, dass die Wahrscheinlichkeit, eine Ungleichheit zu entdecken, groß genug ist.

Lemma 4.11. Falls $AB \neq C$ gilt: $P(A(Br) = Cr) \leq 1/2$. P steht für Wahrscheinlichkeit.

Proof. Sei D = AB - C. Es gilt $ABr = Cr \Leftrightarrow (AB - C)r = 0 \Leftrightarrow Dr = 0$. Wir wissen, dass D nicht die Nullmatrix ist, sei o.B.d.A. $d_{11} \neq 0$. Es muss gelten

$$\sum_{j=1}^{n} d_{1j}r_j = 0$$

aufgelöst nach r_1 erhält man

$$r_1 = \frac{-\sum_{j=2}^n d_{1j} r_j}{d_{11}}$$

Für fixe $r_2, \ldots r_n$ gibt es nur einen Wert für r_1 , der die Gleichung erfüllt. Das heißt mit Wahrscheinlichkeit $\geq 1/2$ wird ein Fehler entdeckt. Dh wenn wir r_2, \ldots, r_n schon zufällig bestimmt haben gibt es für r_1 genau eine Wahl, die $A \cdot (B \cdot r) = C \cdot r$ mal , r_1 ist aber nur Wahrscheinlichkeit $\frac{1}{2}$ die restliche Wahl.

4.10 Las Vegas Algorithm: QuickSort

```
a[1,...,n]
wähle Pivot p in {1,...,n}
rearrange A sodass
<= A[p] | A[p] | > A[p]
QS(A_left)
QS(A_right)
```

Idealerwesie hat man p so, dasss $|A_l|, |A_r| \leq \frac{h}{2}$ also p als Median gewählt.

Berechnet es in Linearzeit aber praktisch relativ teuer.

Wir wollen prakatisch teure Bestimmung des Medians vermeiden \Rightarrow wähle p zufällig gleichverteilt in 1, ..., n

Laufzeitanalyse:

Bennene die zu sortierenden Elemente $s_1, ..., s_n$ gemäß der natürlichen Ordnung also $s_1 < s_2 < s_n$

Definiere ZV $X_i, j =: 1$ falls s_i mit s_j verglichen wurde, 0 sonst Uns interessiert

$$\sum_{i < j} X_{i,j} := X(AnzahlVegleiche)$$

Abbildung 1: Hässliche Veranschaulichung

Was ist E(X) basically

$$\sum_{i,j} Pr(X_{i,j} = 1)$$

Lemma 4.12. Die erwartete Laufzeit des randomisierten QuickSort Algorithmus ist $O(n \log n)$

Uns interessiert im Folgenden Pr(Xi, j = 1) Stelle den Ablauf von QuickSort als Rekursionsbaum dar und schreibe jeweils das PivotElement in den entsprechenden Knoten. Wir bennenen die Pivotelemente von oben nach unten/links nach rechts

 $\Rightarrow wirbekommenPermutation\pi = s_7 s_3 s : 20 \dots$

Wir suchen π aus, wenn s_i nicht mit s_j verglichen wird?

Dann taucht ein Element s_k mit i < k < j als Pivotelement vor $s_i s_j$ in π auf.

 si_i wird mit s_j genau dann verglichen, wenn s_i oder s_j das erste Element aus $Mengenklamerns_i, s_{i+1},, s_j$ Mit gleicher Wahrscheinlichkeit ist jedes der s_i, s_j das erste Element das i $-\pi$ auftaucht.

$$\Rightarrow$$
Pr(s_i mit s_j verglichen= $\frac{2}{j-i+1}$

 $Pr(X_{i,j} = 1$

Einstöpseln:

Emistopsem:
$$E(X) = \sum_{i < j} Pr(X_{i,j} = 1 = \sum_{i < j} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n-1} \sum_{j=i+1}^{n-1} nocheinsum_{j}^{2} \text{ Dann iwie Integral } \frac{1}{i}$$
 basicall $O(nlogn)$

4.10.1 Exkurs: Median in deterministisch O(n) Zeit /k select

Wir betrachten im Folgenden das Problem, das k-t größte Element eines Arrays A[] zu bestimmen; das ist noch allgemeiner als die Bestimmung des Medians, da wir einfach k=n/2 setzen können. Behauptung:

$$|A_L||A_R| \le \frac{7}{10}n\}$$

 \widetilde{m} war Median der Mediane der 5er Gruppe

 \Rightarrow in jeder dieser Gruppen waren 2 Elemente echt kleiner als m_i , d.h. es gibt mindestens

$$\frac{n}{10} + \frac{2}{10}n$$

Elemente kleiner \widetilde{m} .

 \Rightarrow mindestens $\frac{3}{10}n$ Elemente sind kleiner als \widetilde{m} .

 \Longrightarrow

$$|A_L|, |A_L| \le \frac{7}{10}$$

Abbildung 2: Rekursiver Baum

$$T(n) = O(n) + T(\frac{n}{5}) + T(\frac{7}{10}n)$$

$$also \frac{9}{10} dann \frac{81}{100}n = (\binom{9}{10})^2$$

$$T(n) = O(n) = \sum_{i=1}^{n} (\frac{9}{10})^i = 10$$

Lemma 4.13. DSelect berechnet das k-t größte Element eines Arrays in O(n).

 \square

KSelecte deterministisch relativ kompliziert und praktisch nicht gut. Randomisierte Version viel besser:

4.11 Las Vegas Algorithm: QuickSelect

Seien wir zudem pessimsitisch, dass wir immer die größere Hälfte der Rekursion ausführen müssen.

$$T(n) = n + \frac{1}{n} \sum_{i=0}^{n} T(max(i, n-i+1))$$

Function RandSelect(A[1...n],k) is $\begin{array}{l} \text{pick } i \in \{1,...,n\} \text{ u.a.r. }; \\ \text{partition } A \text{ into } A_L, A[i], A_R; \\ \text{if } |A_L| = k-1 \text{ then} \\ & \lfloor \text{return } A[i]; \\ \text{else if } |A_L| \geq k \text{ then} \\ & \lfloor \text{return RandSelect}(A_L, k); \\ \text{else} \\ & \lfloor \text{return RandSelect}(A_R, k-|A_L|); \end{array}$

$$= n + \sum_{i = \lfloor \frac{n}{2} \rfloor} T(i)$$

Proof. Wollen per Induktion zeigen: $T(n) \leq c \cdot n$

$$n-1 \to n: T(n) = n + \frac{2}{n} \sum_{i=\frac{n}{2} \rfloor} c \cdot i$$

$$= n + \frac{2c}{n} \sum_{i=\lfloor \frac{n}{2} \rfloor}$$

$$\leq n + \frac{3}{4}c$$

$$\leq \frac{3}{8}n^2 = n(1 + \frac{3}{4}c)$$

$$1 + \frac{3}{4}c$$

ok für

Also praktisch ist also randomisiert einfacher da determibistisch aufwendiger ist.

Lemma 4.14. RandSelect berechnet das k-t größte Element eines Arrays in erwartet O(n).

Proof.

4.12 Hashing

Ein Wörterbuch besteht aus einer Menge von Items, welche jeweils aus einem *Schlüssel* und assoziierten *Informationen* besteht.

Jedes Item wird eindeutig durch seine Schlüssel identifiziert. Beispiel

• Stowasser

Schüssel: Lat. Wort.

Information: Übersetzung/Erklärung des Wortes

• Telefonbuch

 $Schl\ddot{u}ssel: Name + Vorname$ Information: Telefobuch/Adresse • Im randomisierten Closest Pair Algorithmus:

Schlüssel: Gitterzahlkoordinaten

Information: Menge der unlesbar in dieser Zelle

Wenn wir ein Wörterbuch als abstakte Datenstruktur auffassen, hätten wir gerne u.a folgende Operationen darauf:

S.insert(x)... fügt Item x in S ein

S.delete(x) ... löscht item x aus S

s-lookup(k)...findet item k welches Schlüssel k hat.

4.12.1 Naivies Implementieren

1. Lege Vektor an für Items samt Zähler für Anzahl an Items in S

S.lookup(k)... alle Items durchgehen

s.delete(x) item finden, löschen, letztes Element an freie Stelle kopieren und Zähler runtersetzen

s.insert(k) ... Item x hinten anhängen, Zähler erhöhen.(nach Test, ob x nicht schon in S ist) \Rightarrow alle in O(n) (item ist echt das Paar aus Schlüssel und info)

- 2. Ähnlich, aber mittels verketteter Liste \Rightarrow auch nicht gut aber
- 3. ALternativ: verwalte Schlüssel in einem Suchbaum(RotSchwarz, AVL, 2,3,4- Baum) $\Rightarrow O(logn)$ für lookup, insert, delete im **worst case**
- 4. Direkte Addressierung:

Annahme: Schlüsseluniversum ist [0,...N-1]

Speichere Arrays in Größe N.

An Stelle i steht das Item mit Schlüssel(i), falls vorhanden,

 \Rightarrow insert/lookup/delete alles in O(n).

Dass das Problem Platzverbrauch ist und der ungefähr die Größe des Schlüsseluniversums ist, überrascht nur Opfer.

Definition 4.15 (Hashing). Gegeben sei ein Universum $U = \{0, ..., N-1\}$, eine abzuspeichernde Schlüsselmenge $S \subset U$, |S| = n sowie eine Hashtafel T der Größe t.

Ziel ist die Bestimmung einer Hashfunktion

$$h: U \to \{0, \dots, t-1\}$$

, sodass

$$c_x(S) \le \lceil \frac{|S|}{t} \rceil$$

 $f\ddot{u}r$ alle $x \in S$. Hierbei sei

$$c_x(S) := |\{y \in S : h(y) = h(x)\}|$$

Also Nummern der Schubladen blyat. S ist eine Teilmenge also das Schlüsseluniversum wären wirklich alle möglichen Lösungen an Vor und Nachnamen.

Intuitiv wollen wir, dass die gesuchte Hashfunktion h die Schlüsselmenge S 'gleichmäßig' über die Hashtafel verteilt.

4.12.2 Beispiel:

U = N

S = 20, 13, 6, 18.28, 31

t = 5

h(x) = x mod 5

Für S = 11, 33, 22, 19, 5 ist diese Hashfunktion perfekt

Abbildung 3: Beispiel Hashtabelle lel

4.12.3 Hashing mit Verkettung

Jede Schublade/hashttafelposition ist Kopf einer linearen Liste. Alle $x \in S$ mit h(x)0i in der i-ten Liste gespeichert.

Platzbedarf einer solchen Datenstruktur ist

$$O(t+n) = O(n(\frac{t}{n}+1)), \beta = \frac{n}{t}$$

Belegungsfaktor der Hashtafel. Evtl statt n k nehmen.

Unter der Annahme, dass h(x) in O(1) berechnet werden kann, haben wir folgende Zugriffszeiten:

Zugriff auf $x \notin S : O(1 + \text{Länge der Liste } L_{h(x)})$

Zugriff auf $x \in S : O(1 + Position von x in L_{h(x)})$

Annahme: h verteilt U gleichmäßig über T, dh $\forall i: |x \in U: h(x) = i| \leq \frac{N}{t}$ (bsp h(x)= x mod t

4.12.4 Frage

Gibt es eine Superfunktion h
 welche für jedes $S\subset U$ erreicht, dass $\forall i\in 0,...,t-1\ |x\in S:h(x)i\leq \frac{|S|}{t}$?

Proof. Sei

$$c_x(S) = y \in S | h(y) = h(x)$$

(Menge der Schlüssel aus S, die in derselben Schublade wie x landen.

$$c_{max}(S) = max(c_x(S)), x \in S$$

Theorem 4.16. Seien U, t, h gegeben, |U| = k. Dann gibt es für alle n mit

$$1 \le n \le \frac{k}{t}$$

ein

$$S \subset Umit|S| = n$$

, mit

$$c_{\max}(S) = n.$$

Hierbei ist

$$c_{\max}(S) = \max_{x \in S} c_x(S)$$

Dh alle Elemente $x \in S$ werden in der seleben Schublade gehasht. Es gibt also immer eine Hashfunktion die völlig nutzlos ist, da sie alles in die gleiche reinhaut.

Proof. Nach Schubfachprinzip existiert ein $0 \le i \le t$ sodass $|h^{-1}(i)|$ (das ist die Menge der

$$x \in U : h(x) = i) > = \frac{|U|}{t} = \frac{k}{t}$$

Da $\frac{k}{t} >= n$, wöhle einfach S aus $h^{-1}(i)$.

Die Aussage des Theorems ist, dass es keine "Superhashfunktion" gibt, die für alle möglichen Schlüsselmengen S gut ist.

Definition 4.17 (Belegungsfaktor). Bei Hashing mit Verkettung ist $\beta = \frac{n}{t}$ (durchschnittliche Anzahl an Elementen aus S pro Hashtafeleintrag) der sogenannte Belegungsfaktor.

Unter der Annahme, dass wir eine Hashfunktion h haben, die U (nicht S!) gleichmäßig über die Hashtafel verteilt, d.h.

$$\forall i : |\{x \in U : h(x) = i\}| \le \lceil \frac{N}{t} \rceil$$

, können wir einige Aussagen über die erwartete Zugriffszeit für zufällige Elemente treffen.

Lemma 4.18. Sei $x \in U - S$ zufällig und $n \le N/2$. Dann ist die erwartete Suchzeit nach x in $O(1+\beta)$. $\beta = Belegungsfaktor$

Proof. Sei i = Elemte aus S, die in L_i gespeichert werden.

$$\sum_{i=0}^{t-1} l_i = n$$

Die erwartete Suchzeit x ist

$$\sum_{i=0}^{t-1} l_i \cdot Pr(h(x) = i)) + 1$$

Pr ist die Wahrscheinleihekit, dass das actually Eintritt, also Ergebnis der Klammer

$$Pr(h(x) = i = \frac{\frac{U}{S}}{\frac{U}{S}}$$

$$\leq \frac{U_i}{\frac{U}{S}}$$

$$\leq \frac{N/t}{N/2}$$

$$\leq \frac{2}{t} + \frac{1}{n}$$

$$= 1 + \frac{2}{t} \sum_{i=0}^{t-1} l_i + \frac{1}{n} \sum_{i=0}^{t-1} l_i + \frac{1}{n} \sum_{i=0}^{t-1} l_i + \frac{1}{n} \sum_{i=0}^{t-1} l_i + \frac{2n}{t} + 1$$

$$= 2 + 2\frac{n}{t} = O(1 + \beta)$$

Problem: in der Praxis sind Zugriffe in der Regel alles andere als zufällig gleichverteilt. Im Folgenden sei $l_i = |\{x \in S : h(x) = i\}|$

Lemma 4.19. Sei $x \in S$ zufällig (gleichverteilt). Dann ist die erwartete Zugriffszeit für x in

$$O(1 + \frac{1}{n} \sum_{i=0}^{t-1} \frac{l_i(l_i+1)}{2}).$$

Anmerkung: die Aussage ist ziehmlich schwach, da wir wenig über

$$\sum_{i=0}^{t-1} \frac{l_i(l_i+1)}{2})$$

wissen, auch wenn $l_i = n$. Schwache Aussage alert.

Proof. Wenn x das j-te Element m
 seiner liste ist, ist die Suchzeit O(1+j) Also ist die erwartete Suchzeit

$$O(\frac{1}{n}\sum_{j=0}^{n}\sum_{j=1}^{l_i}(1+j]] =$$

$$O(\frac{1}{n}\sum_{i=0}^{t-1}\frac{l_i(l_i+1)}{2}$$

Die Aussage dieses Lemmas ist jedoch äußerst schwach, da aus

$$\sum l_i =$$

nichts interessantes für

$$\sum l_i^2$$

folgt.

Unter der Annahme, dass S eine zufällige Teilmenge aus U ist, kann auch noch folgende Aussage bewiesen werden:

Lemma 4.20. Für $S \in \binom{U}{n}$ zufällig, ist die erwartete Zugriffszeit auf ein $x \in S$ in $O(1 + \frac{3}{2}\beta \cdot e^{\beta})$.

Unter zufälligem S kann somit bei sinnvoller Wahl des Belegungsfaktors eine erwartet konstante Anfragezeit erreicht werden.

Allerdings sind Anfragen in der Praxis selten wirklich zufällig.

Plan: ersetze die Annahme, dass $S \subset U$ zufällig durch zufällige Wahl der Hashfunktion.

4.12.5 Perfektes Hashing

Im Folgenden möchten wir ein Schema entwickeln, welches für eine gegebene Schlüsselmenge S konstante Zugriffszeit garantiert. Dazu führen wir zunächst die c-Universalität einer Familie von Hashfunktionen ein.

4.13 Universelles Hashing

Sei X eine Menge von Funktionen von U nach 0,...,t-1. **Definition:** Für c>1 heißt X **c-universell**, falls für alle $x,y\in U, x\neq y$ gilt:

$$\frac{|h \in X : h(x) = h(y)|}{|X|} \le \frac{c}{t}$$

Intuitiv bedeutet das, dass der Anteil an Hashfunktionen in \mathcal{H} , die zwei Elemente x, y auf denselben Eintrag hashen relativ gering ist, d.h. eine zufällig gewählte Hashfunktion aus \mathcal{H} hasht mit recht großer Wahrscheinlichkeit x in einen anderen Eintrag als y.

Theorem 4.21. Für $a, b \in [0, ..., N-1]$ sei $h_{a,b} : x \mapsto ((ax+b) \mod N) \mod t$ und sei N eine Primzahl. Dann ist die Klasse $\mathcal{H} = \{h_{a,b} : 0 \le a, b \le N-1\}$ c-universell mit $c = \frac{\lceil N/m \rceil}{N/m} \approx 1$.

Lemma 4.22. Benutzt man Hashing mit Verkettung und wählt $h \in \mathcal{H}$ zufällig aus einer c-universellen Hashfamilie, dann ist die erwartete Zugriffszeit:

$$O(1 + c \cdot B)$$

für beliebige Mengen $S \subset U$ mit |S| = n, wobei der Belegungsfaktor $B = \frac{n}{t}$ ist.

Proof. Die Zugriffszeit auf ein Element x besteht aus zwei Teilen:

- 1. Berechnung der Hashfunktion: Dies dauert konstant O(1).
- 2. Durchsuchen der verketteten Liste in der Bucket-Position h(x). Die Anzahl der Elemente $y \in S$, die mit x kollidieren (d.h. h(y) = h(x)), ist eine obere Schranke für die Zugriffszeit.

Definiere die Indikatorfunktion:

$$\delta_h(x,y) = \begin{cases} 1, & \text{falls } h(x) = h(y), \\ 0, & \text{sonst.} \end{cases}$$

Dann interessiert uns der Erwartungswert:

$$\mathbb{E}[\text{Anzahl der Kollisionen mit } x] = \sum_{y \in S} \mathbb{E}[\delta_h(x, y)].$$

Da h zufällig aus einer c-universellen Familie gewählt ist, gilt für $x \neq y$:

$$\mathbb{E}[\delta_h(x,y)] \le \frac{c}{t}.$$

Summiere über alle $y \in S$:

$$\sum_{y \in S} \mathbb{E}[\delta_h(x, y)] = 1 + \sum_{\substack{y \in S \\ y \neq x}} \mathbb{E}[\delta_h(x, y)]$$
$$= 1 + (n - 1) \cdot \frac{c}{t}.$$

Da der Belegungsfaktor $B = \frac{n}{t}$ ist:

$$\mathbb{E}[\text{Zugriffszeit}] = 1 + c \cdot B.$$

Also folgt:

$$O(1+c\cdot B)$$
.

Sonderfall für $x \notin S$: Falls $x \notin S$, ist die erwartete Anzahl an Elementen in seinem Bucket:

$$\sum_{y \in S} \frac{c}{t} = c \cdot B.$$

Damit bleibt die erwartete Suchzeit ebenfalls in O(1+cB).

ABER: Zugriff ist nur **erwartet** O(1), wir hätten gerne worst case O(1). \Rightarrow zweistufiges, perfektes Matching

Ideal: Möchte h finden mit

$$h(x) \neq h(y) \forall x, y \in S$$

1.Versuch: Einstufiges, perfektes Hashing

$$|c_s(h) = (x, y) \in \binom{s}{2} : h(x) = h(y)|$$

Also die Anzahl an Kollisionen für S unter h.

$$c_s(h) = 0 \Leftrightarrow h|_s injektiv$$

Satz: Für zufällige $h \in \chi$ (c universell) gilt

$$E(c_s(h) \le \frac{c}{t}$$

Proof.

$$E(c_s(h)) = \sum_{(x,y)\in\binom{S}{2}} E(\delta_n(x,y)) \le \binom{n}{2} \cdot \frac{c}{t}$$

 $\left(\frac{c}{t} \text{ we$ $gen c-universell} \right)$

Korollar: Für $t > c \cdot \binom{n}{2}$ gibt es ein $h \in \chi$ mit $h|_s$ injektiv. Also wir zeigen das für ein h ohne ein h zu konstruieren (probalistisch).

Proof. Nach probalistischen Methoden durch Ersetzen

$$E(c_s(h)) < \binom{n}{2} \cdot \frac{c}{c \cdot \binom{n}{2}} = 1$$

Also

$$E(c_s(h)) < 1.$$

Da $c_s(h)$ nur Werte 0,1,2... annehmen kann, muss es mind ein $h \in \chi$ mot $c_s(h) = 0$

Wir könnten auch durch testen aller $|\chi|$ eine solche Hashfunktion in Zeit $O(|\chi| \cdot (n+t))$ finden. **Korollar:** Für $t > 2 \cdot \binom{n}{2}$ kann man in erwarteter Zeit O(n+t) ein injektives h finden.

Abbildung 4: Lösung für Teil der Lösung heißt

Proof.

 $E(c_s(h)) \le {n \choose 2} \cdot \frac{c}{t} \le \frac{1}{2}$ Wegen Markov Ungleichung:

$$Pr(X >= c) \le \frac{E(c)}{c} \Rightarrow Pr(c_s(h) >= 1) \le \frac{1}{2} = \frac{1}{2} \Rightarrow Pr(c_s(h) = 0) >= \frac{1}{2}$$

Wir könnten somit in erwarteter Zeit O(n+t) ein h mit mit $h|_s$ injektiv finden.

1. wähle $h \in \chi u.a.r$ also random

2. falls $h|_s$ ijektiv $\to fertig, sonst1$)

Problem: Perfektes Hashen würde so quadratisch Platz verbrauchen (t ungefähr $\binom{n}{2}$)) ⇒ völlig unpraktisch!

Sei $B_i(h) = h|_S^{-1}(i) = x \in S|h(x) = i$ Sei $S_i(h) = |B_i(h)|$

Es gilt: $c_s(h) = \sum_i {S_i(h) \choose 2}$

Wir können aber h so wählen, dass $c_s(h) \le n$ und zwar wie folgt: **Korollar 1:** Für $t > \frac{n-1}{2}$ existiert $h \in \chi$ mit $c_s(h) \le n$

Proof.

$$E(c_s(h)) \le \binom{n}{2} \cdot \frac{c}{t} < \binom{n}{2} \cdot \frac{c \cdot 2}{(n-1) \cdot c} \le n$$

Korollar: Für $t > (n-1) \cdot c$ kann so ein $h \in \chi$ mit $c_s(h) \le n$ effizient gefunden werden. Für jedes $B_i(h)$ mit $S_i(h) > 1$ erzeugen wir eine Sekundärhashfunktion/table der Größe

$$t_i > 2 \cdot c \cdot {S_i(n) \choose 2},$$

womit wir den Inhalt von $B_i(h)$ injektiv hashen können.

- \Rightarrow das Verfahren ordnet jedem $x \in S$ injektiv eine Zelle zu.
- ⇒ die Größe der Sekundärhashtabellen ist

$$\sum_{i} {\binom{b_i(h)}{2}} \cdot 2 \cdot c = 2 \cdot c \cdot \sum_{i} {\binom{S - i(h)}{2}} \le 2 \cdot c \cdot n$$

Satz: für a,b \in [0, ..., N-1] prim sei: $h \to (|ax+b| \mod N) \mod t$

Dann ist die Familie

$$\chi = h_{a,b}: 0 \le a,b \le N-1c-universellmitc = \frac{\lfloor N/t \rfloor}{N/T}ungef\ddot{a}hr = 1.$$

Proof.

$$|\chi| = N^2$$
.

Seien $x, y \in U, x \neq y$.

Falls $\exists t, q, r, s \text{ mit } 0 \le q < t, 0 \le r, s < \lceil N \rceil / t$, gilt:

$$ax + b = r \cdot t + q \mod N$$

$$ay + b = s \cdot t + q \mod N$$

Da N prim ist, folgt Z_N ist ein Körper. Daher hat für fixes r, s, q das obige Gleichungssystem maximal eine Lösung in a, b.

$$\Rightarrow |h_{a,b}: h_{a,b}(x) = h_{a,b}(y)| \le t \cdot \left\lceil \frac{N}{t} \right\rceil^2$$
$$= \frac{\left(\frac{N}{t}\right)^2}{\left(\frac{N}{t}\right)^2} \cdot \frac{1}{t} \cdot N^2.$$

Lösung: 2 stufiges Hashing

4.13.1 Zweistufiges, perfektes Hashing

•

Sei $c_S(h) = |\{(x,y) \in \binom{S}{2} : h(x) = h(y)\}|$ die Anzahl der Kollisionen für S unter h. Offensichtlich gilt $c_S(h) = 0 \Leftrightarrow h|_S$ ist injektiv.

Theorem 4.23. Für zufällig gleichverteilt gewähltes $h \in \mathcal{H}$, wobei \mathcal{H} eine c-universelle Familie von Hashfunktionen ist, gilt

$$E(c_S(h)) \le \binom{n}{2} \cdot \frac{c}{t}$$

Lemma 4.24. Für $t > \binom{n}{2}$ gibt es ein $h \in \mathcal{H}$ mit $h|_S$ injektiv.

Lemma 4.25. Für $t > 2\binom{n}{2}$ können wir in erwartet O(n+t) Zeit ein $h \in \mathcal{H}$ finden mit $h|_S$ injektiv.

Wir könnten somit direkt eine für S injektive Hashfunktion finden, allerdings bräuchten wir dafür eine Hashtafel der Größe $\Omega(n^2)$. Im Folgenden wenden wir ein zweistufiges Hashingschema an, um den Gesamtplatzverbrauch auf O(n) zu drücken.

Lemma 4.26. Falls $t > \frac{n-1}{2}c$, dann existiert ein $h \in \mathcal{H}$ mit $c_S(h) \leq n$.

Proof.

Lemma 4.27. Falls t > (n-1)c, dann gilt für mindest die Hälfte der $h \in \mathcal{H}$ $c_S(h) \leq n$.

Wir können somit in erwarteter Linearzeit ein h finden mit $c_S(h) \leq n$.

Sei $B_i(h) = h|_S^{-1}(i) = \{x \in S : h(x) = i\}, S_i(h) = |B_i(h)|.$

$$c_S(h) = \sum_{i} \binom{S_i(h)}{2}$$

Für unser gewähltes h gilt somit $\sum_{i} {S_i(h) \choose 2} \le n$. Idee ist es nun, für jede Menge $B_i(h)$ eine zweite Hashfunktion zu wählen, welche diese Elemente dann injektiv hasht.

Gemäß den vorangehenden Lemata können wir $B_i(h)$ injektiv in eine Hashtafel der Größe $\binom{S_i(h)}{2}$ hashen (und die entsprechende Hashfunktion auch in Linearzeit finden). In Summe ist der Platzverbrauch wie oben gesehen $c_S(h)$.

Test-MC-Test findet sich hier.

Zählen in Datenströmen 4.14

Wir betrachten ein Universum U = [0, ..., N-1], mit z.B. $N = 2^{128}$. In einem Streamingkontext werden nach und nach $u \in U$ sichtbar. Aufgabe: Schätze die Anzahl verschiedener Elemente u die bislang gesehen wurden.

Naive Lösung: Speichere die gesehenen u ab; das ist nicht praktikabel, wenn deren Anzahl sehr groß wird.

Streaming Algorithmus 4.15

Problem: Wir betreten eine sehr populäre Website und möchten wissen, wie viele verschiedene Benutzer bislang darauf zugegriffen haben

Annahme: Benutzer = Ip Adresse

Naiv: Speichere alle IP-Adressen und mit jedem neuen Zugriff prüfe, ob bereits gespeichert.

Problem: Speichern problematisch + Datenschutz lololol

Annahme:

$$U = 0, 1, 2, |U| - 1$$

ipv6 Adressen und $|U| = 2^{128}$ Sei

$$X \subset U$$

die Menge der angefragten Ip-Adressen.

wichtig: manche $u \in U$ werden sehr oft angeschaut.

Wenn Annahme:

X ist zufällig gleichverteilt gewählt. [0,1] Intervall und wählen n Zahlen zufällig gleichverteilt aus [0,1] (man merkt also dann an der Dichte ob das n groß oder klein gewählt wurde)

Man erwähne, dass die Lücke zwischen 0 und kleinster Zahl etwas

Man kann sagen, dass die Lücke mit Wahrscheinlichkeit $\geq \frac{7}{10}$ zwischen

$$\frac{1}{4n}$$
 und $\frac{4}{n}$

ist.

Das legt folgende Strategie nahe:

- Speichere immer nur das kleinste gesehene Element $(U|_{min})$
- gib am Ende $\frac{|U|}{rang(U|_{min})}$

Rang ist die Position von dem kleinsten n.

Problem:

Annahme, dass X u.a.r aus U nicht gegeben.

Fix: Bestimme zunächst eine Funktion f, welche jedem $u \in U$ eine (fast) zufällige Zahl $f(u) \in [0, 1]$ zuordnet. A unlesbar dann mit f(u).

4.15.1 Allgemein zu Streaming Algorithmus

- Modell ist kontinuerlicher Eingang (also nt das klassische mit einer Eingabe der Größe n), aber begrenzter Speicher.
- Ziel: Statistik/Charackteristika über den Eingabestrom über die Zeit aufrecht erhalten.
- Beispiel: Durchschnitt (Übung), Median(maybe nein maybe doch, eher nt), Komplexe Hülle.

4.16 Zero Knowledge Proofs

Anwendung: Online Banking

Wir gehen auf die Website unserer Bank, wie können wir sicher sein, wirklich mit unserer Bank verbunden zu sein?

Idee: Die Bank soll uns beweisen, dass sie ein Geheimnis kennt, welches nur die Bank kennt, allerdings ohne uns das zu verraten (weil wenn sie es uns verraten würde,könnten wir auch einfach die Bank sein lololol).

In Cryptosprache: Alice möchte Bob beweisen, dass sie ein Geheimnis kennt, ohne dass Bob etwas über das Geheimnis erfährt.

Lösung: basiert auf dem Graphisomorphieproblem

Definition 4.28 (Graphisomorphieproblem). Gegeben zwei Graphen $G_1(V_1, E_1)$, $G_2(V_2, E_2)$ möchten wir eine bijektive Funktion $\phi: V_1 \to V_2$ konstruieren, für welche gilt:

$$(v, w) \in E_1 \Leftrightarrow (\phi(v), \phi(w)) \in E_2$$

Also gleiche Graphen, nur anders benannte Knoten.

Intuitiv: Sind G_1, G_2 dieselben Graphen, nurmitanderen Knotennamen? Testen von Graphenisomorphen gute Idee einfach Kantengrad zu berechnen und schauen, ob es aufgeht. Das Graphisomorphieproblem wird im allgemeinen als sehr schwierig angesehen, auch wenn es quasipolynomielle Algorithmen dafür gibt. Wir nutzen die Annahme, dass Graphisomorphie schwierig ist, um ein Zero-Knowledge-Protokoll zu entwerfen.

Anmerkung: Für praktisch vorkommende Instanzen gibt es oft gute Lösungen.

Theorie: Bester Algorithmus ist quasipolynomiell n^{logn}

Geheimnis von Alice/Banke: Isomorphie zwischen zwei öffentlich bekannten Graphen.

Abbildung 5: Beispiel von einem isomorphen Graph

Also die Bank hat in der Schalterhalle zwei riesige Graphen und sagt okay, wir kennen die Isomorphie und man geht in die Bank rein und merkt sich die Graphen lol. Dann geht man Heim, loggt sich ein und um sich zu überzeugen fragt man sozusagen die Bank, ob es da eine Isomorphie gibt. Dh die Bank muss uns überzeugen, dass sie die Isomorphie kennt ohne die Isomorphie zu droppen.

Geheimnis von Alice/Bank: ϕ zwischen G_1 und G_{-2}

Wie beweist Alice, gegenüber Bob, dass sie ϕ kennt?

Alice permutiert G_1 oder G_2 mit einer zufälligen Permutation π zu H (und stellt sicher, dasss $H \neq G_1, G_2$

Sie schickt Graph H an Bob.

Bob empfängt dann H (wow)

Bob möchte sich dann davon überzeugen, dass Alice ϕ kennt.

er wirft ne Münze und entweder sagt er Alice zeig die Isomorphie oder gibt mir den Graph zwischen G_1, G_2 . Also wenn es Alice kennt, egal ob er nach G_1 oder G_2 fragt, sie kann entweder π nehmen dass sie generiert hat oder die Umkehrfunktion.

Aber: Wenn Bob nach dem Graphen fragt, den sie nicht von H konstruiert hat, she is fucked. Also mit Wahrscheinlichkeit von $\frac{1}{2}$ klappts oder nt. Das macht man dann log n mal um die Wahrscheinlichkeit zu bestimmen (I guess aber bissle unsicher bei seinem Monolog mitnotiert) Bob hat danach **wichtig** das gleiche gelernt wie wenn er Alice gefragt hätte.

Bob wählt $K\in 1,2$ mit Wahrscheinlichkeit $\frac{1}{2}$ und bittet Alice die Isomorphie zwischen G_k und H offenzulegen.

Alice zeigt entweder π (falls Bob das G_k anfragt, aus dem de H konstruiert hat) oder $\pi verkette\phi^{-1}$

Falls Alice ϕ kennt kann sie immer antworten.

Falls Alice ϕ nicht kennt und Bob den Graphen anfragt, aus dem sie H erzeugt hat, kann sie einfach antworten

Falls Bob den anderen Graphen anfragt, müsste sie ein Graphenisomorphierporblem lösen. Wahrscheinlichkeit für sie hat System durchgespielt durch nicht kennen und trzdm richtig ist $\frac{1}{1000}$

Theorem 4.29. Alice verrät nichts über ϕ

Proof. Bob lässt Isomorphie zurück. zB G_1 und ein zufälligen Permutation von G_1 . Diese hätte er selbst basteln können

Abbildung 6: Skipliste

Theorem 4.30. Bob bekommt probalistisheen Beweis, dass ALice ϕ kennt. Bei k-mal Wiederholung ist Wahrscheilichkeit, dass Alice immer antworten kann, obwohl sie das Geheimnis nicht kennt $\frac{1}{2k}$

4.17 Skiplisten eine Randomisierte Alternative zu (2,4)-, AVL- Rot-Schwarz-Bäumen

Für ein total geordnetes Universum U möchten wir eine Datenstruktur konstruieren, welche es erlaubt eine Teilmenge $S \subset U$ effizient zu verwalten sodass man effizient

- für gegebenes $x \in U$ das maximale $x' \in S$ mit $x' \leq x$ bestimmen
- Elemente löschen
- Elemente hinzufügen

kann.

Skiplisten erlauben alle diese Operationen in erwartet $O(\log n)$ Zeit, wobei n = |S| die größe der verwalteten Menge ist. **Deterministsich:** Viele lösungen zB (,2,4), AvL- bäume,...

Jetzt: Randomisiert mit erwarteten Lauzfiet O(logn) für alle Operationen.

Ideee. Wähle für jedes $x_i \in S$ eine zufällige Turmhöhe h_i mit $\Pr(h_i = h) = 2^{-(h+1)}$

Verbinde Turmetagen mit dem nächsten Turm, der auf dieser Höhe rechts sichtbar ist. Suche nach einem $\mathbf{x} \in U$

Ist wohl so ähnlich wie QuickSort.

Jetzt: Zeige, dass erwartete Laufzeit O(logn)

Proof. Standardbeweise ähnlich wie bei Quicksort mit ZV X_i dann auf 1 od 0

Alternativer Beweis:

Lemma 4.31. Die erwartete Höhe eines Turms über einem x_i ist 1.

Was ist die erwartete Maximalhöhe eines vorkommenden Turms in S?

- mit hoher Wahrscheinlichkeit ist **ein** Turm nicht höher als logn $Pr(h_i >= k) = 2^{-k} \Rightarrow Pr(h_i >= logn) = \frac{1}{n^2}$
- Wahrscehinlichkeit, dass irgendein Turm Höhe $>= 2\log n$ hat ist $\leq n \cdot \frac{1}{n^2} = \frac{1}{n}$

Idee: Konstruier Route, die genau dieselben Zellen besucht wie die Suche nach x, aber einfach zu analogen ist.

Es fängt in dem Erdgeschoss, wo man eigentlich hinwill an und hangelt sich dann nach links also die Liste genau andersherum.

```
v= x
h= 0
while v != - infinity && h != hmax D0
   if v.height > h
        h= h+1
   else
      v = v.backward [h]
```

Besucht exakt die gleichen wie von der Skizze nur halt andersrum also exakt der gleiche Weg mit den exakt gleichen Zellen.

Beobachtung: Ein höheres Level im Turm existiert jeweils mit Wahrscheinlichkeit $\frac{1}{2}$. Das heißt, die erwartete Laufzeit obiger Routine/Suche ist äquivalent zur Laufzeit von:

```
h= 0
v=0
while v!= - infiity && h_max D0
    werfe fairw Mpnze
    falls Kopf
        h= h+1
    sonst
    v= v.backwards[h]
od
```

Da wir eine faire Münze werfen ist die erwartete Anzah an Schritten nach oben identisch mit der erwarteten Anzahl an Schritten nach links $\leq 2 \cdot logn$ mit hoher Wahrscheinlichkeit.

4.17.1 Randomisierter vs deterministischer Algorithmus:

Randomisierung kann wirklich einen Unterschied machen, sieht man bei dem **GameTrueEvaluation**: hat einen **vollständigen** Binärbaum der Höhe 2k.

- Die $2^d = 2^{2^2} = 4^k$ Blätter tragen jeweils Beschriftung 0,1.
- Die inneren Knoten sind MAX oder MIN Knoten, auf dem Pfad von der Wurzel zu einem Blatt wechseln sich MAX und MIN Knoten ab.
- immer auf einer Ebene sind alle max und auf der nächsten min abwechselnd PRO EBENE

Abbildung 7: Evaluierung auf 0

Ziel: Evaluiere diesen Baum, d.h bestimmt für jeden inneren Knoten seinen Wert (= MAX/MIN seiner Kinder) , insbesondere dann Wert der Wurzel.

Laufzeit:= Anzahl angeschauter Blätter.

Deterministisch mittels modifizierter DFS und 4k Blattevaluationen.

Die Natur eines jeden deterministischen lLgos ist, dass er schon weis, was an den Blättern steht wo er befragt wird und muss dann herausfinden, wo er den nächsten befragt.

Der deterministische setzt dann der Wert auf 0 oder 1 dass er erzwingt, dass keine Suche von einem Teilbaum weggelassen werden kann, also kein Verlust und kann alles in der Theorie finden. Jeder deterministischer Algorithmus kann dazu gezwungen werden, alle 4^k Blätter anzuschauen.

Jetzt: Es existiert ein randomisierter Algorithmus, der erwartet 3^k Blätter evaluiert.

Wenn $n = 4^k$ entspricht 3^k entspricht $n^{o,79}$

4.17.2 Warum können wir auf bessere Lösung hoffen?

Betrachte MAX Knoten mit 2 Blättern, da auf 1 ausgewertet.

- \Rightarrow minde eines der Kinder ist 1
- \Rightarrow wenn man zufällig eines der Blätter zur Evaluation auswählt, kann man sich mit Wahrscheinlichkeit $=\frac{1}{2}$ die Auswertung sparen.

Betrachte MIN Knoten mit 2 Blättern, der auf 0 ausgewertet wird.

- \Rightarrow mind eines der Kinder ist 0
- \Rightarrow mit Wahrscheinlichkeit $>=\frac{1}{2}$ spart man eine Evaluation.

Wie schaut es bei (inneren) Knoten aus, der nicht auf 1 (MAX) bzw 0 (MIN) evaluiert wird? (also bei max muss man sich bei 0 au den zweiten anschauen also bei zwei mal 0 und bei min mit 1)

```
Eval(v) /V hat Kinder v_o,v_1
wähle i in {0,1} u.a.r
r_i := Eval(v_i)
```


falls max=1 => mit ws >=0,5 muss nur eine
Rekursion durchgeführt werden.
2 + 0,5*2=3.
Weil zweiter Teilbaum nur mit WS >=0,5 höchstens
evaluiert wird. Analog für min
Falls MAX=0
=> beide MIN Knoten sind 0
1 + 0,5 *1 + 1 ü 0,5 *1=
1+0,5+1+0,5=3

Abbildung 8: Beweis Mind Knoten

```
if (v is MAX_Node) D0
    if ( r_i = 1 return 1
       Else return Eval(v_1-i)
    od
if (r_i =0)
    return 0
else
return Eval(v_1-i)
```

Lemma 4.32. Eval(v) aufgerufen auf einem Knoten mit Teilbaum der Höhe 2k schait erwartet 3k Blätter an.

Proof. k = 0 passt k = 1 passt au

für $k-1 \to k$: Sei E_k die erwartete Anzahl evaluiere Blätter bei Teilbaum der Tiefe 2k.

- 1. Fall: MAX-Knoten der zu 1 evaluiert wird $E_k = 2 \cdot E_{k-1} + \tfrac{1}{2} \cdot E_{k-1} = 3 \cdot 3^{k-1} = 3^k$
- 2. Fall: Max-Knoten, der zu 0 evaluiert wird. $\Rightarrow E_{k-1} + \frac{1}{2}E_{k-1} + E_{k-1} + \frac{1}{2}E_{k-1} = 3E_{k-1} = 3 \cdot 3^{k-1} = 3^k$

⇒ es gibt Probeleme, bei denen kein determinstischer Algorithmus worst-case dieselbe Anzahl Operationen wie erwartet der beste randomisierte Algorithmus ausführt. **Starke Aussage Bruder**.

5 Amortisierte Analyse

Bislang haben lag unser Fokus auf die Laufzeitanalyse von Algorithmen und Datenstrukturen für den schlechtestmöglichen Fall (z.B. Heapsort $O(n\log n)$ Operationen um zu Sortieren, oder erwartet $O(\log n)$ Zeit für das Suchen in einer Skipliste). Insbesondere die Worst Case Analyse spiegelt jedoch bei einigen wichtigen Datenstrukturen nicht das in der Praxis beobachtete Verhalten wieder, da sie oft zu pessimistisch ist. Im Folgenden führen wir eine Analyseart ein, welche es manchmal erlaubt, sehr gute praktische Laufzeiten auch theoretisch fundiert zu erklären.

5.1 Inkrementzähler

Wir illustrieren dies zunächst an einer extrem einfachen 'Datenstruktur', einem Zähler mit k Bits, der eine Zahl in $0, \ldots, 2^k - 1$ repräsentiert. Die einzige Operation auf der Datenstruktur ist das Inkrement.

Betrachten wir zunächst eine einzelne Inkrementoperation und die damit verbundenen Kosten (für uns: Anzahl der geflippten Bits).

Es gilt offensichtlich, dass im schlimmsten Fall ein Inkrement Kosten k hat.

Wenn wir nun eine Sequenz von $n = 2^k - 1$ Inkrementoperationen haben, ergibt sich aufgrund dieser Worst Case Analyse eine obere Schranke von $k(2^k - 1)$ für die Gesamtkosten.

Zählt man jedoch genau nach, ergeben sich weniger als $2 \cdot 2^k - 1 = 2^k$ Bitflips, also durchschnittlich nur 2 Bitflips! Wie kann man sich das erklären?

[Ad-Hoc Beweis der Gesamtkosten]:

Letztes Bit flippt 2^k-1 mal vorletztes Bit flippt $\frac{(2^k-1)}{2}$ mal drittletztes Bit flippt $\frac{(2^k-1)}{4}$ mal

Im Folgenden möchten wir ein abstraktes Framework entwickeln, welches es erlaubt, über die durchschnittlichen Kosten einer Operation in einer längeren Sequenz von Operationen zu argumentieren.

Sei S die Menge der Zustände einer Datenstruktur. Wir definieren eine sogenannte Potenzial-funktion

$$\phi: \mathcal{S} \to \mathbb{N}$$
,

welche jedem Zustand der Datenstruktur eine natürliche Zahl zuweist. Für eine Operation op, welche die Datenstruktur von Zustand $s_i \in \mathcal{S}$ in Zustand $s_{i+1} \in \mathcal{S}$ überführt, definieren wir die amortisierten Kosten als

$$acost(op) = rcost(op) + \phi(s_{i+1}) - \phi(s_i).$$

Die Behauptung ist nun: Falls wir ϕ so wählen können, dass acost = O(1), sind die durchschnittlichen Kosten einer längeren Sequenz von Operationen O(1), da Folgendes gilt:

$$\sum_{i=1}^{l} acost(op_i) = \sum_{i=1}^{l} (rcost(op_i) - \phi(s_i) + \phi(s_{i+1}) = \sum_{i=1}^{l} rcost(op_i) + \phi(s_{l+1}) - \phi(s_1)$$

und somit

$$\frac{1}{l} \sum_{i=1}^{l} rcost(op_i) = \frac{1}{l} \sum_{i=1}^{l} (acost(op_i) + \phi(s_1) - \phi(s_{l+1})) = \frac{O(l) + \phi(s_1) - \phi(s_{l+1})}{l} = O(1)$$

for große n soweit ϕ unabhängig von der Länge der Sequenz gewählt ist.

5.2 Inkrement-/Dekrement-Zähler

Frage, funktioniert das auch, wenn man zusätzlich zum Inkrement auch Dekrement (-1) erlaubt?

NEIN Möglicher Fix: Mache Datenstruktur uneindeutig, z.B. indem jedes Bit $B_i \in 0, 1, -1$ dargestellte Zahl weiterhin $\sum_{i=0}^{k-1} b_i \cdot 2^i$.

5.3 2-4-Bäume

Datenstruktur zur Verwaltung von geordneten Mengen mit folgenden Eigenschaften:

- alle Blätter haben dieselbe Tiefe
- alle Schlüssel tauchen in den Blättern auf (geordnet von links nach rechts)
- jeder innere Knoten hat 1,2 oder 3 Schlüssel, d.h. 2,3 oder 4 Kinder. er hat ganz wildes Bild von 2-4 Baum gemal, bei ihm steht jeder Schlüssel max 2 mal im Baum

Beobachtung: Für die Höhe h
 eines 2-4 Baums mit n Blättern gilt $2^h \le n \le 4^h \Leftrightarrow \frac{1}{2}log(n) \le h \le log(n)$

 \implies Lokalisierung in logarithmischer Zeit.

Einfügen eines Elements in (2,4) Baum:

1. Lokalisiere neues Element im aktuellen Baum Problem: Splitten könnte sich immer weiter fortsetzen \implies Aufwand log(n)

Löschen: Problem: Wenn Elternknoten dann auch Grad 1 hat, müssen wir wieder verschmelzen, eventuell bis zur Wurzel log(n).

Alternativ, falls Bruder mehr als 2 Kinder hat, dann stehlen.

5.3.1 Amortisierte Analyse

Idee: Definiere eine Potentialfunktion. $\phi: S \to N$ mit S Zustände der Ds sodass,

$$aconst(op =:= rconst(op) + \phi(s_{n \in n} - \phi(S_{alt} = O(1)))$$

Jetzt stell dir hier ein Bild von einem 2,3,4 Buam vor. Es geht um den Schlüssel links drunter also einfach wie das Format von so einem Form ist und jeder Schlüssel kommt nur max zweimal vor oder andere auch gar nicht.

Und dann jeder über Löschen und verschmelzen wie in DSA um die Struktur beizubehalten.

Ziel: Wollen zeigen, dass im Schnitt er Aufwand für Split/Verschmelzen nach einem Einfügen/Löschen O(1) ist und nicht O(logn) wie es im Worst case passieren kann.

Intuition: Der beste Zustand des 2,3,4 Baums ist wenn alle Knoten Grad 3 haben, weil dann durch ein einzelnes Löschen/Einfügen nie viel Aufwand durch Split oder so entstehen kann

Ziel: Zeige, dass für beliebige Sequenzen von Einfügen und Löschen der durchschnittlichen Umbaukosten O(1) sind.

 $\phi(t) = 0$ Anzahl Knoten mit Grad 3

+ 1 Anzahl Knoten mit Grad 2

+ 2 Anzahl Knoten mit Grad 1

+ 2 Anzahl Knoten mit Grad 4

+4 Anzahl Knoten mit Grad 5

Behauptung: Die armotisierten Kosten eines einzelnen Splits oder Verschmelzens sind < 0.

Proof. Einzelner Split/Verschmelzen hat echte Kosten 1.

$$\Rightarrow acost(split) \le 1 - 1 = 0$$

Grad	potentieller Beitrag height1
2	
2	1
3	0
4	2
5	4

Tabelle 3: Beweis

Abbildung 9: Enter Caption

Also man schaut sich einen einzelnen Split an und schaut wie ändert sich das Potenzial. Verschmelzen: hat acost(verschmelzen)

$$> 1 - 3 + 1 = -1 \le 0$$

Klar, dass Blatt anhängen ändert Potenzial um $\leq +2$. Blatt löschen ändert Potential um $\leq +1$ Stehlen hat auch acost O(1)

Anwednung von 2,3,4 Bäumen

Wir formalisieren die 'Unsortiertheit' einer Folge $x_1, x_2, x_3, \dots x_n$ von Zahlen als Anzahl der Inversionen F:

$$F := |\{(i,j): i < j \land x_i > x_j\}|$$

Es gilt $0 \le F \le \frac{n(n-1)}{2}$ und wir können in $O(n+n\log\max(1,F/n))$ eine vorsortierte Folge mit FInversionen sortieren, indem wir die Elemente nacheinander einfügen, aber zur Lokalisierung immer vom rechtesten Blatt im Baum nach oben wandern, bis wir die Position des neu einzufügenden Elements in einem Teilbaum kennen und dann die Suche umdrehen. Da wir oben gezeigt haben, dass die durchschnittlichen Kosten für Spalten O(1) sind, kommen wir auf diese Laufzeit (ohne amortisierte Analyse der Spaltungen könnten wir die $O(n \log n)$ nicht schlagen, da jede Einfügung Spaltungsaufwand von $O(\log n)$ nach sich ziehen könnte im schlimmsten Fall).

Das ermöglicht es uns, z.B. zwei sortierte Folgen, die als 2-4-Bäume vorliegen in Zeit $O(\log {m+n \choose n})$ zu mischen. Dies wiederum ermöglicht unbalanciertes rekursives Sortieren (im Gegensatz zu Mergesort) in optimaler Zeit von $O(n \log n)$.

1. Sortieren vorsortierte Folgen

Gegeben Folgen $x_1, x_2, x_3, x_4, x-5$

 $F := |(i, j) : i < jundx_i > x_j| = Anzahl Inversionen.$

Es gilt offensichtlich: $0 \le F \le \frac{n \cdot (n-1)}{2}$

Behauptung: Mit 2,3,4 Bäumen können wir in Zeit $O(n + nlogmax(1, \frac{F}{n} \text{ sortieren.}))$

z.B F= n $\Rightarrow O(n)$

$$F = \frac{n \cdot (n-1)}{2} \Rightarrow O(nlog n)$$

 $F = \frac{n \cdot (n-1)}{2} \Rightarrow O(nlogn)$ wenn aber zB $F = nlogn \Rightarrow O(n \cdot loglogn)$

Abbildung 10: SO gehen wir entlang beim Einfügen

Wir sortieren durch wiederholtes Einfügen

Annahme: $x_1...x_i$ liegen in Form eines 2,3,4 Baums vor.

Füge x_{i+1} wie folgt ein (fügen es beim rechtesten ein und laufen dann bei dem Baum an der rechten Kante entlang bis wir dann feststellen, ob wenn ich da jetzt dran hingehe für den Knoten bzw den Schlüssel müsste ich an diesen Knoten. Also einfach vom Blatt aus gehen bis xi+1 in einem Teilbaum drunter liegt.

Lemma 5.1. $x_{i+1}kanninamortisierterZeitO(1 + log max(1, f_{i+1}))eingefügt werden.$

Proof. Laufre vom rechtesten Blatt nach oben, bis Knoten v erreicht wird mit X_{i+1} rechtester Schlüssel in V. Dann suche wie gewohnt abwärts, Zeit dafür ist O(1+h), wobei h die Höhe von V ist. Dadurch ist dann $k < x_{i+1} \le k$

 x_{i+1} wird in einen der Unterbäume eingefügt, aber nicht den rechtesten. Also ist f_{i+1} Anzahl der Blätter unterhalb v" $\geq 2^{h-2}$, da v" Höhe h-2 halt. Also $h \leq 2 + log(f_{i+1})$

Gesamtlaufzeit:

$$O(\sum_{1 \le 1 \le n} (1 + \log \max(1, f_i))$$

$$= O(n + \sum_{1 \le i \le n} \log(1 + f_i) \le O(n + \sum_{i=1}^n \log \frac{n+F}{n})$$

$$\sum 1 + f_i = n + f = F = O(n + n \cdot \log \frac{n+F}{n})$$

$$= n \cdot \log \frac{F}{n}$$

2. Fingersuche, schnelles Mischen sortieren durch Mischen. Finger = Pointer auf ein Blatt.

5.3.3 Finger-Search mit Anwendungen

Noch allgemeiner ist die Nutzung von (augmentierten) 2-4-Bäumen für die Finger-Suche. Hierbei müssen wir die 2-4-Bäume um Pointer erweitern, sodass jeder Knoten (nicht nur die Blattknoten) den linken und rechten Nachbarknoten auf seiner Ebene kennt. Wenn wir nun einen Finger/Pointer auf das i-te Blatt haben und eine Suche starten, die im j-ten Blatt endet, so könen wir diese Suche in $O(\log |i-j|)$ durchführen, indem wir vom i-ten Blatt im Baum nach oben wandern, bis das Ziel in einem der Teilbäume des aktuellen Knotens oder seines linken oder rechten Nachbarn liegt. Sobald dies der Fall ist, drehen wir die Suche um.

Das ermöglicht es uns, z.B. zwei sortierte Folgen, die als 2-4-Bäume vorliegen in Zeit $O(\log {m+n \choose n})$ zu mischen. Dies wiederum ermöglicht unbalanciertes rekursives Sortieren (im Gegensatz zu Mergesort) in optimaler Zeit von $O(n \log n)$.

Lemma 5.2. In niveau-verbundenen 2,3,4 Bäumen kann 'an Fingersuche in Zeit O(log min (d, n-d)) durchführen, wobei der Abstand(Anzahl an Blättern) zwischen dem Finger und dem Ziel der Suche ist

Proof. Laufe vom Finger in richtung Wurzel bis ein Knoten v erreicht wird, sodass x unterhalb linkem Nachbar(v), v, rechten Nachbar(v) liegt. (also einfach Pointer zu en Nachbarn) Drehe dann um und suche normalen Wert.

Laufzeit = Höhe des Knoten v

Also der Schatten wächst einfach exponentiell.

Mische: $S_1, S_2,...$ sortierte Folgen in 2,3,4 Baum. Mische S_1, S_2 zu S(in 2,3,4 Baum)

Mischen vorsortierter Folgen **Naive Lösung:** Füge S_2 nacheinander in 2,3,4 Baum von S_1 ein wir nehmen an für wenn S_2 weniger als S1 ist

 $\Rightarrow O(|S_2| \cdot logn)$ gut, falls $|S_2| << |S_1|$

Bessere Lösung: Finger auf linkestes Blatt in S_1 , dann füge Elemente aus S_2 aufsteigend in S_1 ein. Starte Suche jeweils mit Finger auf zuletzt eingefügten Element.

Sei d_i = Abstand zwischen Position von X_i in S_1 und $X_i - 1$ dann gilt:

$$\sum_{i=0}^{|S_2|} d : i \le h$$

Suche nach X_i Kosten O(1 + log (1 + d_i) m= $|S_2|$ \Rightarrow Gesamtlaufzeit

$$=\sum_{i=1}^{|S_2|}1+\log(1+D_i)\leq m+m\cdot\log\frac{\sum 1+d_i}{m}\leq m+m\log\frac{m+n}{m}\leq 2\cot m\log\frac{m+n}{m}\leq 2\cdot\log\frac{m+n}{m}\leq 4\log\binom{m+n}{m}$$

Wenn die Folge der Länge n_1 und n_2 mischen möchte. Zu einer Folger der Länge $n_1 + n_2$, kostet das

$$log(\binom{n1}{n2}) = log \frac{(n1+n2)!}{n2!+n1!} = log n! - log n2! - log n1!$$

wenn man das glaubt dann heißt das, dass man in dem merge Baum in den ersten Beträgen oder so das bezahlt also die Kosten und am Schluss bleibt nur noch das log n! übrig.

6 Lineares Programmieren

6.1 Billige und gesunde Ernährung- Problem

Ein Mensch lebt ein gesundes Leben, falls er jeden Tag

- falls er mindestens 11 Einheiten Kohlenhydrate zu sich nimmt
- mindestens 7 Einheiten Proteine
- mindestens 5 Einheiten Fett

Diese Inhaltsstoffe können durch Verzehr von Fleisch, Tofu, Brot und Käse aufgenommen werden. Hierbei enthält:

• 1 Einheit Fleisch, 1 Einheit Kohlenhydrate, 3 Einheiten Proteine, 5 Einheiten Fett Kostet: 7€

• Einheit Tofu: (2,2,0) Kosten: 3 €

• 1 Einheit Brot: (4,1,0) Kosten: 2 €

• Käse: (1,4,2) Kosten: 4 €

Ziel: Bestimme die täglich einzukaufenden Mengen an Fleisch, Tofu, Brot und Käse, sodass mindestens 11/7/5 Einheiten der Nährstoffe zu sich genommen werden und der Preis minimal wird.

Problemlösestrategie: Führe folgende Variablen ein: $x_m >= 0$ zu kaufende Fleischeinheiten

 $x_t >= 0$ zu kaufende Tofueinheiten

 $x_b >= 0$ zu kaufende Broteinheiten

 $x_c >= 0$ zu kaufende Käseeinheiten

 $\min 7x_m + 3x_r + 2x_b + 4x_c$

 $1x_m + 2x_t + 4x_b + 1x_c > = 11$ - Kohlenhydrat COnstraint

 $3x_m + 2x_e + 1x_b + 4x_c > = 7$ Protein Constraint

 $5x_m + 0x_t + 0x_b + 2x_c > = 5$ Fett Constraint

 $x_m, x_e, x_b, x_c >= 0$

Lineare Programme (LP) können ungleich viele Problemstellungen modellieren.

Beispiele:

- Kürzester Wege Probleme
- max Flow
- minimum enclosing annulus Problem
- noch tausend weitere Probleme die dann in der Praxis echt wichtig sind

6.2 Geometrische Instanzen für lineares Programmieren

```
\begin{aligned} &\max \ 1x + 1y \\ &\text{s.t.} -x - y \leq -3 \\ &0, 5x + < \leq 7 \\ &o, 5x - y \leq 0 \end{aligned}
```

 $-0, 5x + y \le 3$ Ein Algorithmus zur Lösung von LPs in $2^{2^d} \cdot n$ n ist die Anzahl der Constraints

6.2.1 Prune Search für LP

Annahme:

- Ziel: finde untersten Punkt des Zulässigkeitsbereichs
- Zulässigkeitsbereich ist nicht-leer

High level Idee: Rundenbasiert immer einen konstanten Anteil an Constraints wegwerfen, die sicher nicht das Optimum definieren. (in d=2 pro Runde $\frac{n}{4}$ Constrainst wegwerfen.

$$\Rightarrow n + \frac{3}{4}n + \frac{3}{4}^{2}n + \frac{3}{4}^{3}n + \dots$$

Wie können wir Constraints wegwerfen? (Prunen)?

Teile Constraints H in zwei Gruppen auf H= $H_{up}H_{down}$ Constraints., die nach oben bzw unten offen sind.

Beachte dann ein Paar von Constraints im H_{up} Wie Orakel implementieren? Orakel kriegt Vertikale und sagt einfach ob das Optimum links oder rechts ist. Steigung von H_{up} bestimmt Lage des Optimums Orakel kann in O(n)implementiert werden. Befrage Orakel mit Vertikalen durch x Median aller Paare in O(n)und dann kann $\frac{n}{2} \cdot \frac{1}{2} = \frac{n}{4}$ Constraints eliminieren pro Runde.

Abbildung 11: Zifuuuuuuu

Abbildung 12: Hup und Down und dann auf welcher Seite man was abschneidet

Abbildung 13: HUP

6.3 Prune and search in 3d

Vereinfache Annahme:

Alle Constraints sind nach oben offen. Betrachte zwei Constraints und deren Schnitt

6.4 Implementierung des vertikale Ebene Orakels

mit der blauen schneidet man einfach alle durch die Ebene und erhält dadurch in lineares Programm in zwei Dimensionen und erhält dann den untersten Punkt.

Man muss es mehrfach befragen, bascially macht man von einem 3 d Problem bringt das auf eine 2d Ebene.

Schneide alle Constraints mit Orakelanfragebenen. Da LP in \mathbb{R}^2

Löse das mittels Prune and Search und das Optimum ist definiert durch 2 Geraden und die Gerade der 2 Ebenen im \mathbb{R}^3 ist die Schnittgerade- diese Ebene bestimmt, wo das Optimum liegt also, ob es drüber oder drunter liegt.

Effizientere Nutzung von Orakelanfragen:

Komplizierter als im 2d.

- 1. Paare die Constraints $\Rightarrow \frac{n}{2}$ Schnittgeraden.
- Betrachte Projektion der Schnittgeraden in x,y- Ebene. Bestimme Mediansteigung in Linearzeit und rotiere alles, sodass die Hälfte der Geraden Steigung > 0 die Hälfte der Geradensteigung < 0 hat.
- 3. Paare jeweils eine Gerade mit Steigung > 0 mit einer mit Steigung < 0. Also man bekommt immer basically ganz viele Kreuze. Wenn es eine ungerade Anzahl an Gerade ist bleibt halt eine einsam übrig.
- 4. Befrage Orakel mit vertikaler Ebene durch den x-Median und mit horizontaler Ebene durch den y- Median der Kreuze auf der anderen Seite. $\Rightarrow \frac{n}{2}$ Schnittgeraden und $\frac{n}{4}$ Kreuzchen Bei $\frac{n}{10}$ Kreuzchen kann man 1 Constraint eliminieren \Rightarrow nächste Instanz hat $\frac{1}{16}n$ Constraints Aufwand war $O(n) \Rightarrow O(n)$ Gesamt Laufzeit. **Allgemein:** $T(n) = O(2^{2^{O(d)}}n)$

Abbildung 14: In 3d

Abbildung 15: Implementierung des Orakels

6.4.1 Anwendung von linearem Programmieren

Personalisierte Routenplanung beschleunigt

Bekannt: Routenplanungsproblem. Geg G(V,E) mit c E -; R +

 $Ziel: Findek\"{u}rzestenWegbez\"{u}glichvoncvonsnachtL\"{o}sung: DijkstrasAlgorithmusO(nlogn+m)$ \Rightarrow Query Stuttgart- Berlin im Bereich von Sekunden

Bei vielen Anfragen auf denselben Graph lohnt sich die Vobrerechnugn von Hilfsinformationen. Damit Anfragen schneller beantwortet werdne könnnen.

Contraction Hierarchies: wenige Minuten Vorverarbeitung dann Query jeweils 1ms PPersonalisierte Routenplanung:

Wir haben 2 Metriken: c e -¿, R und r: E -¿, R

Anfrage besteht aus $s,t\in V\alpha\in[0,1]$

Gewichtete Antwort: DPfad π von s nach t, der minimierte Kosten hat, wenn man nach jeder Kante e im Graph Kosten $\alpha \cdot c(e) + (1 - \alpha) \cdot r(e)$ zuweist.

Weil davor früher hat die Schranke es apparenlty np hart gemacht aber wenn 'an es jetzt macht wird es sozusagen einfach langweilig.

Problem: Möchten für personalisiere RoutenPlanung auch Hilfsinformationen vorbereiten, sodass Anfang beschleunigt werden.

Zentrale Operation bei Contraction Hierarchies: Kontraktion eines Knotens

Allgemein: Gegeben ein Pfad π von s nach t in G.

Gibt es ein α sodass π optimal ist für eine personalisierte Routenplanungsanfrage für (s,t, α ? Lösen wir in einem linearen Programm wo es eigentlich nur um Zulässigkeit geht und wnen wir einen Punkt dazu finden dann gibt es ein Alpha und wenn nicht dann halt nicht blyat.

 $\begin{array}{l} \textbf{CP daf\"{u}r:} \ \ \text{Variable} \ \alpha \ , \ \max \alpha \\ c(\pi,\alpha) = \sum_{l \in \pi} \alpha c(e) + (1-\alpha) r(l) \\ \forall s,t \ \text{Pfade} \ \pi \text{:} \ c(\pi,\alpha) \leq c(\pi,\alpha) \ 0 \leq d \leq 1 \end{array}$