Unit 10 Congruent Triangles

THEOREM 10.1.1

If in any correspondence of two triangles, two angles and one side of a triangle are congruent to the corresponding two angles and one side of the other, the triangles are congruent. (A.S.A \cong A.S.A) Solution:

Given:

In $\triangle ABC \leftrightarrow \triangle DEF$

 $\angle B \cong \angle E$ $\angle C \cong \angle F$ $\overline{BC} \cong EF$

To Prove: $\triangle ABC \cong \triangle DEF$

Construction:

Suppose $\overline{AB} \ncong \overline{DE}$ and there is a point D' on \overline{DE} such that $\overline{AB} \cong \overline{D'E}$. Join D' to F.

Statements	Reasons
In $\triangle ABC \longleftrightarrow \triangle D'EF$	
$\overline{AB} \cong \overline{D'E}$ (i)	Construction / Supposition
$\overline{BC} \cong \overline{EF}$ (ii)	Given
$\angle B \cong \angle E$ (iii)	Given
$\therefore \Delta ABC \cong \Delta D'EF$	S.A.S. Postulate
So, ∠ <i>C</i> ≅ ∠ <i>D'EF</i>	Corresponding angles of congruent triangles
But $\angle C \cong \angle DFE$	Given

 $\angle DFE \cong \angle D'FE$

This is possible only if D and D' are the same points.

So, $\overline{AB} \cong \overline{DE}$ (iv)

Thus from (ii), (iii) and (iv), we have

 $\triangle ABC \cong \triangle DEF$

Both congruent to $\angle C$

Proved that D and D'are the same points.

S.A.S. postulate

EXERCISE 10.1

In the given figure, Q1.

 $\overline{AB} \cong \overline{CB}, \angle 1 \cong \angle 2.$ $\triangle ABD \cong \triangle CBE$.

Prove that

Solution:

Given:

In the given figure $\angle 1 \cong \angle 2$ and $\overline{AB} \cong \overline{CB}$

To prove:

 $\triangle ABD \cong \triangle CBE$

Statements	Reasons
In ΔABD ↔ ΔCBE	
AB ≅ CB	Given
∠BAD ≅ ∠BCE	Given ∠1 ≅ ∠2
∠ABD ≅ ∠CBE	Common
∴ ∆ABD ≅ ΔCBE	$S. A. A \cong S. A. A$

Proof:

Statements	Reasons
In $\triangle ABD \leftrightarrow \triangle ACD$	
$\overline{AD} \cong \overline{AD}$	Common
$\angle B \cong \angle C$	Given
∠BAD ≅ ∠CAD	Construction
	A.A.S. ≅ A.A.S
Hence $\overline{AB} \cong \overline{AC}$	Corresponding angles of congruent
	triangles

EXERCISE 10.2

Q1. Prove that any two medians of an equilateral

triangle are

equal in measure.

Solution:

Given:

In $\triangle ABC$, $\overrightarrow{AB} \cong \overrightarrow{AC}$ and M is mid point of BC.

To prove:

AM bisects ∠A and

AM is perpendicular to BC.

0011	444
Statements	Reasons
In ΔABM ↔ ΔACM	
$\overline{AB} \cong \overline{AC}$	Given
BM ≅ CM	Given M is mid point of BC.
$\overline{BM} \cong \overline{AM}$	Common
∴ ΔABM ≅ ΔACM	S. S. S. ≅ S. S. S.
So ∠BAM ≅ ∠CAM	Corresponding sides of $\cong \Delta'$ s.
∴ AM bisects ∠A	
Also ∠AMB ≅ ∠AMC	Corresponding sides of $\cong \Delta'$ s.
but m∠AMB ≅ ∠AMC	
= 180°	

THEOREM 10.1.3

If in a given correspondence of two triangles, the three sides of one triangle are congruent to the corresponding three sides of the other triangle then the triangles are congruent. Solution:

Given:

In
$$\triangle$$
 ABC \longleftrightarrow \triangle DEF

$$\overrightarrow{AB} \cong \overrightarrow{DE}, \qquad \overrightarrow{BC} \cong \overrightarrow{EF}$$

$$\overline{BC}\cong \overline{EF}$$

and

$$\overrightarrow{CA} \cong \overrightarrow{FD}$$

To Prove:

$$\triangle ABC \cong \triangle DEF$$

Construction:

Suppose that in ΔDEF the side \overline{EF} is not smaller than any of the remaining two sides. On \overline{EF} construct a ΔLEF in which $\Delta B \cong \angle FEL$ and $\overline{LE} \cong \overline{AB}$. Join D and L. In the figure, the names of some of the angles are 1, 2, 3 and 4.

Statements	Reasons
$In \triangle ABC \iff \triangle LEF$	
$\overline{BC} \cong \overline{EF}$	Given
$\angle B \cong \angle FEL$	Construction
$\overline{AB} \cong \overline{LE}$	Construction
$\therefore \Delta ABC \cong \Delta LEF$	S.A.S postulate
and $\overline{CA} \cong \overline{FL}$ (i)	Corresponding sides of congruent triangles
Also $\overline{CA} \cong \overline{FD}$ (ii)	Given
$\therefore \overline{FL} \cong \overline{FD}$	From (i) and (ii)

In $\triangle FDL$ $\angle 2 \cong \angle 4$	$\overline{FL} \cong \overline{FD}$ (Proved)
$\therefore m \angle 2 + m \angle 1 = m \angle 4 + m \angle 3$	From (iii) and (iv)
Now, in $\triangle DEF \leftrightarrow \triangle LEF$ $\overline{FD} \cong \overline{FL}$ And $\angle EDF \cong \angle ELF$	Proved Proved
$\overline{DE} \cong \overline{LE}$ $\therefore \Delta DEF \cong \Delta LEF$ Also $ \Delta ABC \cong \Delta LEF$ Hence $ \Delta ABC \cong \Delta LEF$	Each one $\cong \overline{AB}$ S.A.S. Postulate Proved Each one $\cong \Delta LEF$ (Proved)

EXERCISE 10.3

Q1. In the given figure, $\overline{AB} \cong \overline{DC}$, $\overline{AD} \cong \overline{BC}$.

Prove that $\angle A \cong \angle C$, $\angle ABC \cong \angle ADC$

Solution:

Given:

In the figure

 $\overline{AB} \cong \overline{DC}$ and $\overline{AD} \cong \overline{BC}$

To prove:

 $\angle A \cong \angle C$

∠ABC ≅ ∠ADC

Construction:

Join B to D.

XII.	
Statements	Reasons
In ΔABD ←→ ΔCDB	
$\overline{AB} \cong \overline{DC}$	Given
$\overline{AD} \cong \overline{CD}$	Given
$\overline{BD} \cong \overline{DB}$	Common
∴ ΔABC ≅ ΔCDB	S. S. S. ≅ S. S. S.
∠A ≅ ∠C	Corresponding sides of $\cong \Delta s$.

Proof:

Statement	Reasons
In the correspondence of	
$\triangle \ ABD \longleftrightarrow \triangle \ ACD$	
$\overline{AB} \cong \overline{AC}$	Given
$\overline{AD} \cong \overline{AD}$	Common
$\overline{BD} \cong \overline{DC}$	Given
$\therefore \triangle ABD \cong \triangle ACD$	S.S.S. postulate
Thus $\angle BAD \cong \angle CAD$	Corresponding angles of
	congruent triangle
$m \angle ADB + m \angle ADC = 180^{\circ}$	Supplementary angles
$m\angle ADC + m\angle ADC = 180^{\circ}$	
\Rightarrow 2 m $\angle ADC = 180^{\circ}$	As $m \angle ADC = m \angle ADB$
\Rightarrow m $\angle ADC = 90^{\circ}$,
Hence $\overline{AD} \perp \overline{BC}$	

THEOREM 10.1.4

If in the correspondence of the two right-angled triangles, the hypotenuse and one side of one triangle are congruent to the hypotenuse and the corresponding side of the other, then the triangles is congruent. Solution:

Given:

$$\ln \Delta ABC \leftrightarrow \Delta DEF$$

$$\angle B \cong \angle E$$
 (Right angles); $\overline{CA} \cong \overline{FD}$

To Prove:

 $\triangle ABC \cong \triangle DEF$

Construction:

Produce \overline{EF} to point L such that $\overline{EL}\cong \overline{BC}$ and join points D and L.

1001:	
Statements	Reasons
$m \angle DEF + m \angle DEL = 180^{\circ}$. (i)	Supplementary angles
Now $m \angle DEF = 90^{\circ}$ (ii)	Given
$\therefore m \angle DEL = 90^{\circ}$	From (i) and (ii)
In $\triangle ABC \longleftrightarrow \triangle DEL$	
$\overline{BC} \cong \overline{EL}$	Construction
$\angle ABC \cong DEL$	Each equal to 90°
$\overline{AB} \cong \overline{DE}$	Given
$\therefore \Delta ABC \cong \Delta DEL$	S.A.S. postulate
And $\angle C \cong \angle L$	Corresponding angles of
, ctus	congruent triangles
$\overline{CA} \cong \overline{LD}$	Corresponding sides of
MAN.	congruent triangles
But $\overrightarrow{CA} \cong \overrightarrow{FD}$	Given
$\therefore \overline{LD} \cong \overline{FD}$	each is congruent to \overline{CA}
In Δ <i>DLF</i>	
$\angle F \cong \angle L$	$\overline{FD} \cong \overline{LD}$ (proved)
But $\angle C \cong \angle L$	Proved
$\angle C \cong \angle F$	Each is congruent to ∠L
In $\triangle ABC \leftrightarrow \triangle DEF$	
$\overrightarrow{AB} \cong \overrightarrow{DE}$	Given
∠ABC ≅ ∠DEF	Given
$\therefore \Delta \ ABC \cong \Delta \ DEF$	S.A.A. ≅ S.A.A

 $\angle DFE \cong \angle D'FE$

This is possible only if D and D' are the same points.

So, $\overline{AB} \cong \overline{DE}$ (iv)

Thus from (ii), (iii) and (iv), we have

 $\triangle ABC \cong \triangle DEF$

Both congruent to $\angle C$

Proved that D and D'are the same points.

S.A.S. postulate

EXERCISE 10.1

In the given figure, Q1.

 $\overline{AB} \cong \overline{CB}, \angle 1 \cong \angle 2.$ $\triangle ABD \cong \triangle CBE$.

Prove that

Solution:

Given:

In the given figure $\angle 1 \cong \angle 2$ and $\overline{AB} \cong \overline{CB}$

To prove:

 $\triangle ABD \cong \triangle CBE$

Statements	Reasons
In ΔABD ↔ ΔCBE	
AB ≅ CB	Given
∠BAD ≅ ∠BCE	Given ∠1 ≅ ∠2
∠ABD ≅ ∠CBE	Common
∴ ∆ABD ≅ ΔCBE	$S. A. A \cong S. A. A$

Q2. From a point on the bisector of an angle, perpendiculars are drawn to the arms of the angle. Prove that these perpendiculars are equal in measure.

Solution:

Given:

 \overline{BD} is bisector of $\angle ABC$. P is point on \overline{BD} and \overline{PL} and \overline{PM} are perpendicular to \overline{AB} and \overline{CB} respectively.

To prove:

 $\overline{PL} \cong \overline{PM}$

Proof:

Statements	Reasons
In $\triangle BLP \longleftrightarrow \triangle BMP$	
BP ≅ BP	Common
∠BLP ≅ ∠BMP	Each right angle (given)
∠LBP ≅ ∠MBP	Given BD is bisector of angle B
$\Delta BLP \cong \Delta BMP$	$S. A. A \cong S. A. A.$
So $\overline{PL} \cong \overline{PM}$	Corresponding sides of $\cong \Delta's$.

Q3. In a triangle ABC, the bisectors of $\angle B$ and $\angle C$ meet in a point I. Prove that I is equidistant from the three sides of $\triangle ABC$.

Solution:

Given:

In $\triangle ABD$ the bisector of $\angle B$ and $\angle C$ meet at I, IL, IM and IN are perpendiculars to the three sides of $\triangle ABD$.

To prove:

$$\overline{IL} \cong \overline{IM} \cong \overline{IN}$$

Proof:

Statements	Reasons
In $\triangle ILB \longleftrightarrow \triangle IMB$	
$\overline{\mathrm{BI}}\cong\overline{\mathrm{BI}}$	Common
∠IBL ≅ ∠IBM	Given BI is bisector of ∠B
∠ILB ≅ ∠IMB	Given each ∠ is right angles.
ΔILB ≅ ΔIMB	$S. A. A \cong S. A. A.$
$\overline{IL} \cong \overline{IM}$ (i)	Corresponding sides of $\cong \Delta s$
Similarly ΔIAC ≅ ΔINC	CO///
So $\overline{IL} \cong \overline{IN}$ (ii)	The same of the sa
From (i)and (ii)	Corresponding sides of $\cong \Delta s$.
$\overline{IL} \cong \overline{IM} \cong \overline{IN}$	
: I is equidistant from	
the three sides of AABC.	

THEOREM 10.1.2

If two angles of a triangle are congruent, then the sides opposite to them are also congruent. Solution:

Given:

In
$$\triangle ABC$$
, $\angle B \cong \angle C$

To Prove:

$$\overline{AB} \cong \overline{AC}$$

Construction:

Draw the bisector of $\angle A$, to meet \overline{BC} at point D.

In $\triangle FDL$ $\angle 2 \cong \angle 4$	$\overline{FL} \cong \overline{FD}$ (Proved)
$\therefore m \angle 2 + m \angle 1 = m \angle 4 + m \angle 3$	From (iii) and (iv)
Now, in $\triangle DEF \leftrightarrow \triangle LEF$ $\overline{FD} \cong \overline{FL}$ And $\angle EDF \cong \angle ELF$	Proved Proved
$\overline{DE} \cong \overline{LE}$ $\therefore \Delta DEF \cong \Delta LEF$ Also $ \Delta ABC \cong \Delta LEF$ Hence $ \Delta ABC \cong \Delta LEF$	Each one $\cong \overline{AB}$ S.A.S. Postulate Proved Each one $\cong \Delta LEF$ (Proved)

EXERCISE 10.3

Q1. In the given figure, $\overline{AB} \cong \overline{DC}$, $\overline{AD} \cong \overline{BC}$.

Prove that $\angle A \cong \angle C$, $\angle ABC \cong \angle ADC$

Solution:

Given:

In the figure

 $\overline{AB} \cong \overline{DC}$ and $\overline{AD} \cong \overline{BC}$

To prove:

 $\angle A \cong \angle C$

∠ABC ≅ ∠ADC

Construction:

Join B to D.

901i			
Statements	Reasons		
In ΔABD ←→ ΔCDB			
$\overline{AB} \cong \overline{DC}$	Given		
$\overline{AD} \cong \overline{CD}$	Given		
$\overline{BD} \cong \overline{DB}$	Common		
∴ ΔABC ≅ ΔCDB	S. S. S. ≅ S. S. S.		
∠A ≅ ∠C	Corresponding sides of $\cong \Delta s$.		

$$\hat{i} \cong \hat{2}$$

and
 $\angle x \cong \angle y$
∴ by adding above
equations
 $\hat{i} + \hat{x} = \hat{2} + \hat{y}$ Addition of angles
or $\angle ABC \cong \angle ADC$

- Q2. In the figure, $\overline{LN} \cong \overline{MP}, \overline{MN} \cong \overline{LP}$. Prove that $\angle N \cong \angle P, \angle NML \cong \angle PLM$.
- Solution:

Given:

In the figure

To prove: $\overline{LN} \cong \overline{MP} \text{ and } \overline{LP} \cong \overline{MN}$

 $\angle N \cong \angle P$ and

 $\angle N \cong \angle P$ and $\angle NML \cong \angle PLM$

Proof:

Statements	Reasons
In ΔLMN ↔ ΔMLP	
LN ≅ MP	Given
LP ≅ MN	Given
LM ≅ ML	Common
∆LMN ≅ ΔMLP	$S. S. S. \cong S. S. S.$
N ≅ ∠P	Corresponding sides of $\cong \Delta'$ s.
∠NML ≅ ∠PLM	Corresponding sides of $\cong \Delta's$.

Q3. Prove that the median bisecting the base of an isosceles triangle bisects the vertex angle and it is perpendicular to the base.

Solution:

Given:

An isosceles triangle ABC with base \overline{BC} and \overline{AD} bisects at point D.

i.e. $\overline{BD} \cong \overline{DC}$ and $\overline{AB} \cong \overline{AC}$

To prove:

and

 $\frac{\angle BAD}{AD} \perp \frac{\angle CAD}{BC}$

Proof:

Statement	Reasons
In the correspondence of	
$\triangle \ ABD \longleftrightarrow \triangle \ ACD$	
$\overline{AB} \cong \overline{AC}$	Given
$\overline{AD} \cong \overline{AD}$	Common
$\overline{BD} \cong \overline{DC}$	Given
$\therefore \triangle ABD \cong \triangle ACD$	S.S.S. postulate
Thus $\angle BAD \cong \angle CAD$	Corresponding angles of
	congruent triangle
$m \angle ADB + m \angle ADC = 180^{\circ}$	Supplementary angles
$m\angle ADC + m\angle ADC = 180^{\circ}$	
\Rightarrow 2 m $\angle ADC = 180^{\circ}$	As $m \angle ADC = m \angle ADB$
\Rightarrow m $\angle ADC = 90^{\circ}$,
Hence $\overline{AD} \perp \overline{BC}$	

THEOREM 10.1.4

If in the correspondence of the two right-angled triangles, the hypotenuse and one side of one triangle are congruent to the hypotenuse and the corresponding side of the other, then the triangles is congruent. Solution:

EXERCISE 10.4

٧′ ِ

Q1. In \triangle PAB of figure, $\overrightarrow{PQ} \perp \overrightarrow{AB}$, and $\overrightarrow{PA} \cong \overrightarrow{PB}$, Prove that $\overline{AQ} \cong \overline{BQ}$, and $\angle APQ \cong \angle BPQ$.

Solution:

Given:

ΔΡΑΒ, In

 $\overline{PQ} \perp \overline{AB}$, and

To prove:

 $\overline{AQ} \cong \overline{BQ}$

and

Proof:

Statements	Reasons ·		
In △APQ ↔ △BPQ			
PA ≅ PB	Given		
∠AQP ≅ ∠BQP	Given PQ ⊥ AB		
$\overline{PQ} \cong \overline{PQ}$	Common		
$\therefore \Delta AFQ \cong \Delta BFQ$	H. S. ≅ H. S.		
So $\overline{AQ} \cong \overline{BQ}$	Corresponding sides of $\cong \Delta s$.		
and $\angle APQ \cong \angle BPQ$	Corresponding sides of $\cong \Delta s$.		

In the figure, $m\angle C = m\angle D = 90^{\circ}$ and $\overline{BC} \cong \overline{AD}$. **Q2. Prove that** $\overline{AC} \cong \overline{BD}$, and $\angle BAC \cong \angle ABD$.

Solution:

Given:

In the figure,

 $m\angle C = m\angle D = 90^{\circ}$

 $\overline{BC} \cong \overline{AD}$ and

To prove:

∠ABC ≅ ∠ABD

Proof:

Statements	Reasons			
In $\triangle ABD \longleftrightarrow \triangle BAC$	·			
D̂ ≅ Ĉ	Given			
$\overline{AD} \cong \overline{BC}$	Given			
$\overline{AB} \cong \overline{BA}$	Common			
\therefore $\triangle ABD \cong \triangle BAC$	H. S. ≅ H. S.			
So $\overline{AC} \cong \overline{BD}$	Corresponding sides of $\cong \Delta'$ s.			
and ∠BAC ≅ ∠ABD	Corresponding sides of $\cong \Delta'$ s.			

Q3. In the figure, $m\angle B = m\angle D = 90^{\circ}$ and $\overline{AD} \cong \overline{BC}$. Prove that ABCD is a rectangle.

Solution:

Given:

In the figure,

$$m\angle B = m\angle D = 90^{\circ}$$
 and $\overline{AD} \cong \overline{BC}$

To prove:

ABCD is a rectangle.

Construction:

Join A to C.

Proof:

.Statements	Reasons		
In $\triangle ABC \longleftrightarrow \triangle CDA$			
B≅D	Given each angle = 90°		
$\overline{AC} \cong \overline{CA}$	Common		
$\overline{BC} \cong \overline{DA}$	Given		
∴ ΔABC ≅ ΔCDA	H. S. ≅ H. S.		
$\therefore \overline{AB} \cong \overline{CD}$	Corresponding sides of $\cong \Delta's$.		
and ∠ACB ≅ ∠CAD	Corresponding sides of $\cong \Delta'$ s.		
Hence ABCD is a rectangle			

REVIEW EXERCISE 10

- Q1. Which of the following are true and which are false?
- (i) A ray has two end points.
- (ii) In a triangle, there can be only right angle.
- (iii) Three points are said to be collinear if they lie on same line.
- (iv) Two parallel lines intersect only at a point.
- .(v) Two lines can intersect only at one point.
- (vi) A triangle of congruent sides has non-congruent angles.

Answers:

	(i) F (ii)	T (ii) T	(iv) F	(v) T	(vi) F	
Q2.	If ∆ABC ≅ ∆LMN, then						
(i)	m∠M = ···	(ii)	m۷	.N = ···	` (iii)	$m \angle A = \cdots$	
-				M	•		
	c_				\		
	500			30	^\		

Solution:

(i) m∠B (ii) m∠C (iii) m∠L

Q3. If $\triangle ABC = \triangle LMN$, then find the unknown x. Solution:

$$\therefore$$
 $\angle C \cong \angle M$

or
$$m \angle C \cong m \angle M$$

$$\Rightarrow$$
 60° = x°

$$\Rightarrow$$
 $x = 60^{\circ}$

Q4. Find the value unknowns for the given congruent triangles.

$$\triangle ADB \cong \triangle ADC$$

$$\overline{BD} \cong \overline{CD}$$

Corresponding sides of $\cong \Delta's$.

$$\Rightarrow$$
 mBD \cong mCD

$$\Rightarrow$$
 5m - 3 = 2m + 6

or
$$5m - 2m = 6 + 3$$

 $3m = 9$

Corresponding sides of $\cong \Delta's$.

$$\Rightarrow$$
 $m \angle B \cong m \angle C$

$$55^{\circ} = (5x + 5)^{\circ}$$

$$\Rightarrow 55 = 5x + 5$$
or
$$5x = 55 - 5 = 50$$

$$\Rightarrow x = 10^{0}$$

Q5. If $PQR \cong ABC$, then find the unknowns. Solution:

