

# Annex II: Climate System Scenario Tables

#### **Editorial Team:**

Michael Prather (USA), Gregory Flato (Canada), Pierre Friedlingstein (UK/Belgium), Christopher Jones (UK), Jean-François Lamarque (USA), Hong Liao (China), Philip Rasch (USA)

#### **Contributors:**

Olivier Boucher (France), François-Marie Bréon (France), Tim Carter (Finland), William Collins (UK), Frank J. Dentener (EU/Netherlands), Edward J. Dlugokencky (USA), Jean-Louis Dufresne (France), Jan Willem Erisman (Netherlands), Veronika Eyring (Germany), Arlene M. Fiore (USA), James Galloway (USA), Jonathan M. Gregory (UK), Ed Hawkins (UK), Chris Holmes (USA), Jasmin John (USA), Tim Johns (UK), Fiona Lo (USA), Natalie Mahowald (USA), Malte Meinshausen (Germany), Colin Morice (UK), Vaishali Naik (USA/India), Drew Shindell (USA), Steven J. Smith (USA), David Stevenson (UK), Peter W. Thorne (USA/Norway/UK), Geert Jan van Oldenborgh (Netherlands), Apostolos Voulgarakis (UK/Greece), Oliver Wild (UK), Donald Wuebbles (USA), Paul Young (UK)

#### This annex should be cited as:

IPCC, 2013: Annex II: Climate System Scenario Tables [Prather, M., G. Flato, P. Friedlingstein, C. Jones, J.-F. Lamarque, H. Liao and P. Rasch (eds.)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

# **Table of Contents**

| Introduction                                         | 1397 |
|------------------------------------------------------|------|
| Chemical Abbreviations and Symbols                   | 1397 |
| List of Tables                                       | 1398 |
| References                                           | 1400 |
| Tables                                               | 1401 |
| AII.1: Historical Climate System Data                | 1401 |
| AII.2: Anthropogenic Emissions                       | 1410 |
| AII.3: Natural Emissions                             | 1421 |
| AII.4: Abundances of the Well-Mixed Greenhouse Gases | 1422 |
| AII.5: Column Abundances, Burdens, and Lifetimes     | 1428 |
| AII.6: Effective Radiative Forcing                   | 1433 |
| All.7: Environmental Data                            | 1437 |

# Introduction

Annex II presents, in tabulated form, data related to historical and projected changes in the climate system that are assessed in the chapters of this report (see Section 1.6). It also includes some comparisons with the Third Assessment Report (TAR) and Fourth Assessment Report (AR4) results. These data include values for emissions into the atmosphere, atmospheric abundances and burdens (integrated abundance), effective radiative forcing (ERF; includes adjusted forcing from aerosols, see Chapters 7 and 8), and global mean surface temperatures and sea level. Projections from 2010 to 2100 focus on the RCP scenarios (Moss et al., 2010; Lamarque et al., 2010; 2011; Meinshausen et al., 2011a; van Vuuren et al., 2011; see also Chapters 1, 6, 8, 11, 12 and 13). Projections also include previous IPCC scenarios (IPCC Scenarios 1992a (IS92a), Special Report on Emission Scenarios (SRES) A2 and B1, TAR Appendix II) and some alternative near-term scenarios for methane (CH<sub>4</sub>) and short-lived pollutants that impact climate or air quality. Emissions from biomass burning are included as anthropogenic. ERF from land use change is also included in some tables.

Where uncertainties or ranges are presented here, they are noted in each table as being a recommended value or model ensemble mean/ median with a 68% confidence interval (16 to 84%,  $\pm 1\sigma$  for a normal distribution) or 90% confidence interval (5 to 95%,  $\pm 1.645\sigma$  for a normal distribution) or statistics (standard deviation, percentiles, or minimum/maximum) of an ensemble of models. In some cases these are a formal evaluation of uncertainty as assessed in the chapters, but in other cases (specifically Tables All.2.1, 3.1, 4.1, 5.1, 6.10, 7.1 to 7.5) they just describe the statistical results from the available models, and the referenced chapters must be consulted for the assessed uncertainty or confidence level of these results. In the case of Table All.7.5, for example, the global mean surface temperature change (°C) relative to 1986-2005 is a statistical summary of the spread in the Coupled Model Intercomparison Project (CMIP) ensembles for each of the scenarios: model biases and model dependencies are not accounted for; the percentiles do not correspond to the assessed uncertainty derived in Chapters 11 (Section 11.3.6.3) and 12 (Section 12.4.1); and statistical spread across models cannot be interpreted in terms of calibrated language (Section 12.2).

The Representative Concentration Pathway (RCP) scenarios for emissions include only anthropogenic sources and use a single model to project from emissions to abundances to radiative forcing to climate change (Meinshausen et al., 2011a; 2011b). We include projected changes in natural carbon dioxide (CO<sub>2</sub>) sources and sinks for 2010–2100 based on this assessment (Chapters 6 and 12). Present-day natural and anthropogenic emissions of CH<sub>4</sub> and nitrous oxide (N<sub>2</sub>O) are assessed and used to scale the RCP anthropogenic emissions to be consistent with these best estimates (Chapters 6 and 11). Current model evaluations of atmospheric chemistry and the carbon cycle, including results from the CMIP5 and Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) projects, are used to project future composition and ERF separately from the RCP model (see Sections

6.4.3, 11.3.5 and 12.3). Thus, projected changes in greenhouse gases (GHGs), aerosols and ERF evaluated in this report may differ from the published RCPs and from what was used in the CMIP5 runs, and these are denoted RCP\*. The CMIP5 climate projections used for the most part the RCP concentration pathways for well-mixed greenhouse gases (WMGHG) and the emissions pathways for ozone ( $O_3$ ) and aerosol precursors. Such differences are discussed in the relevant chapters and noted in the tables.

For each species, the abundances (given as dry air mole fraction: ppm = micromoles per mole ( $10^{-6}$ ); ppb = nanomoles per mole ( $10^{-9}$ ); and ppt = picomoles per mole  $(10^{-12})$ ), burdens (global total in grams, 1 Tg =  $10^{12}$  g), average column amount (1 Dobson Unit (DU) =  $2.687 \times 10^{16}$ molecules per cm<sup>2</sup>), AOD (mean aerosol optical depth at 550 nm), ERF (effective radiative forcing, W m<sup>-2</sup>), and other climate system quantities are calculated for scenarios using methodologies based on the latest climate chemistry and climate carbon models (see Chapters 2, 6, 7, 8, 10, 11 and 12). Results are shown for individual years (e.g., 2010 = year 2010) and decadal averages (e.g., 2020<sup>d</sup> = average of years 2016 through 2025), although some 10-year periods are different, see table notes. Year 2011 is the last year for observed quantities (denoted 2011\* or 2011<sup>obs</sup>). Results are shown as global mean values except for environmental data focussing on air quality (Tables AII.7.1–AII.7.4), which give regional mean surface abundances of O<sub>3</sub> and fine particulate matter with diameter less than 2.5 µm (PM<sub>2.5</sub>). Results for global mean surface temperature (Tables AII.7.5 and AII.7.6) show only raw CMIP5 data or data from previous assessments. For best estimates of near-term and long-term temperature change see Chapters 11 and 12, respectively. Results for global mean sea level rise (Table AII.7.7) are assessed values with uncertainties described in Chapter 13.

# **Chemical Abbreviations and Symbols**

## Well Mixed Greenhouse Gases (WMGHG)

| $CO_2$ | carbon diox | ide (KP. | Kvoto | Protocol | gas) |
|--------|-------------|----------|-------|----------|------|
|--------|-------------|----------|-------|----------|------|

CH<sub>4</sub> methane (KP)

N<sub>2</sub>O nitrous oxide (KP)

HFC hydrofluorocarbon<sup>1</sup> (a class of compounds: HFC-32, HFC-

134a, ...) (KP)

PFC perfluorocarbon (a class of compounds: CF<sub>4</sub>, C<sub>2</sub>F<sub>6</sub>, ...) (KP)

SF<sub>6</sub> sulphur hexafluoride (KP) NF<sub>3</sub> nitrogen trifluoride (KP)

CFC chlorofluorocarbon (a class of compounds: CFCl<sub>3</sub>, CF<sub>2</sub>Cl<sub>2</sub>, ...)

(MP, Montreal Protocol gas)

HCFC hydrochlorofluorocarbon<sup>1</sup> (a class of compounds: HCFC-22,

HCFC-141b, ...) (MP)

CCl<sub>4</sub> carbon tetrachloride (MP)

CH<sub>3</sub>CCl<sub>3</sub> methyl chloroform (MP)

<sup>&</sup>lt;sup>1</sup> A few HFCs and HCFCs are very short lived in the atmosphere and therefore not well mixed.

# Ozone and Aerosols, and their Precursors

 ${
m O_3}$  ozone (both stratospheric and tropospheric)  ${
m NO_x}$  sum of NO (nitric oxide) and  ${
m NO_2}$  (nitrogen dioxide)

NH<sub>3</sub> ammonia CO carbon monoxide

NMVOC a class of compounds comprising all non-methane volatile

organic compounds (i.e., hydrocarbons that may also contain

oxygen, also known as biogenic VOC or NMHC)

OH hydroxyl radical

 $PM_{2.5} \hskip 10mm \text{any aerosols with diameter less than 2.5 } \mu m$ 

BC black carbon aerosol
OC organic carbon aerosol
SO<sub>2</sub> sulphur dioxide, a gas

SO<sub>x</sub> oxidized sulphur in gaseous form, including SO<sub>2</sub>

SO<sub>4</sub> sulphate ion, usually as sulphuric acid or ammonium sul-

phate in aerosol

# **List of Tables**

# **AII.1: Historical Climate System Data**

**Table All.1.1a:** Historical abundances of the Kyoto greenhouse gases **Table All.1.1b:** Historical abundances of the Montreal Protocol greenhouse gas (all ppt)

**Table All.1.2:** Historical effective radiative forcing (ERF) (W m<sup>-2</sup>), including land use change (LUC)

**Table AII.1.3:** Historical global decadal-mean global surface-air temperature (°C) relative to 1961–1990 average

# **AII.2: Anthropogenic Emissions**

**Table All.2.1a:** Anthropogenic CO<sub>2</sub> emissions from fossil fuels and other industrial sources (FF) (PgC yr<sup>-1</sup>)

**Table AII.2.1b:** Anthropogenic CO<sub>2</sub> emissions from agriculture, forestry, land use (AFOLU) (PqC yr<sup>-1</sup>)

**Table All.2.1c:** Anthropogenic total CO<sub>2</sub> emissions (PgC yr<sup>-1</sup>)

Table AII.2.2: Anthropogenic CH₄ emissions (Tg yr⁻¹)
Table AII.2.3: Anthropogenic N₂O emissions (TgN yr⁻¹)
Table AII.2.4: Anthropogenic SF₆ emissions (Gg yr⁻¹)

**Table AII.2.5:** Anthropogenic CF<sub>4</sub> emissions (Gg yr<sup>-1</sup>) **Table AII.2.6:** Anthropogenic C<sub>2</sub>F<sub>6</sub> emissions (Gg yr<sup>-1</sup>)

**Table AII.2.7:** Anthropogenic C<sub>6</sub>F<sub>14</sub> emissions (Gg yr<sup>-1</sup>)

Table All.2.8: Anthropogenic HFC-23 emissions (Gg yr<sup>-1</sup>)

Table AII.2.9: Anthropogenic HFC-32 emissions (Gg yr<sup>-1</sup>)
Table AII.2.10: Anthropogenic HFC-125 emissions (Gg yr<sup>-1</sup>)

**Table All.2.11:** Anthropogenic HFC-134a emissions (Gg yr<sup>-1</sup>)

**Table AII.2.12:** Anthropogenic HFC-143a emissions (Gg yr<sup>-1</sup>)

**Table All.2.13:** Anthropogenic HFC-227ea emissions (Gg yr<sup>-1</sup>)

**Table AII.2.14:** Anthropogenic HFC-245fa emissions (Gg yr<sup>-1</sup>) **Table AII.2.15:** Anthropogenic HFC-43-10mee emissions (Gg yr<sup>-1</sup>)

Table AII.2.16: Anthropogenic CO emissions (Tg yr<sup>-1</sup>)

**Table AII.2.17:** Anthropogenic NMVOC emissions (Tg yr<sup>-1</sup>) **Table AII.2.18:** Anthropogenic NO<sub>x</sub> emissions (TgN yr<sup>-1</sup>)

Table All.2.19: Anthropogenic NH<sub>3</sub> emissions (TgN yr<sup>-1</sup>)

Table AII.2.20: Anthropogenic SO<sub>X</sub> emissions (TgS yr<sup>-1</sup>)

**Table All.2.21:** Anthropogenic OC aerosols emissions (Tg yr<sup>-1</sup>) **Table All.2.22:** Anthropogenic BC aerosols emissions (Tg yr<sup>-1</sup>)

Table AII.2.23: Anthropogenic nitrogen fixation (Tg-N yr<sup>-1</sup>)

#### **AII.3: Natural Emissions**

Table AII.3.1a: Net land (natural and land use) CO<sub>2</sub> emissions (PgC

yr<sup>-1</sup>

Table All.3.1b: Net ocean CO<sub>2</sub> emissions (PgC yr<sup>-1</sup>)

# AII.4: Abundances of the Well-Mixed Greenhouse Gases

Table AII.4.1: CO<sub>2</sub> abundance (ppm)

**Table AII.4.2:** CH<sub>4</sub> abundance (ppb)

Table AII.4.3: N<sub>2</sub>O abundance (ppb)

**Table AII.4.4:** SF<sub>6</sub> abundance (ppt)

**Table AII.4.5:** CF<sub>4</sub> abundance (ppt)

Table AII.4.6: C<sub>2</sub>F<sub>6</sub> abundance (ppt)

**Table AII.4.7:** C<sub>6</sub>F<sub>14</sub> abundance (ppt)

Table AII.4.8: HFC-23 abundance (ppt)

Table AII.4.9: HFC-32 abundance (ppt)

Table AII.4.10: HFC-125 abundance (ppt)

Table AII.4.11: HFC-134a abundance (ppt)

Table AII.4.12: HFC-143a abundance (ppt)

Table AII.4.13: HFC-227ea abundance (ppt)

 Table AII.4.14: HFC-245fa abundance (ppt)

Table AII.4.15: HFC-43-10mee abundance (ppt)

Table AII.4.16: Montreal Protocol greenhouse gas abundances (ppt)

#### AII.5: Column Abundances, Burdens, and Lifetimes

Table AII.5.1: Stratospheric O<sub>3</sub> column changes (DU)

**Table AII.5.2:** Tropospheric O<sub>3</sub> column changes (DU)

Table AII.5.3: Total aerosol optical depth (AOD)

**Table AII.5.4:** Absorbing aerosol optical depth (AAOD)

Table AII.5.5: Sulphate aerosol atmospheric burden (TgS)

Table AII.5.6: OC aerosol atmospheric burden (Tg)

Table AII.5.7: BC aerosol atmospheric burden (Tg)

Table AII.5.8: CH<sub>4</sub> atmospheric lifetime (yr) against loss by tropospheric OH

Table AII.5.9: N<sub>2</sub>O atmospheric lifetime (yr)

## All.6: Effective Radiative Forcing

Table AII.6.1: ERF from CO<sub>2</sub> (W m<sup>-2</sup>)

Table AII.6.2: ERF from CH<sub>4</sub> (W m<sup>-2</sup>)

Table AII.6.3: ERF from N<sub>2</sub>O (W m<sup>-2</sup>)

Table All.6.4: ERF from all HFCs (W m<sup>-2</sup>)

Table AII.6.5: ERF from all PFCs and SF<sub>6</sub> (W m<sup>-2</sup>)

Table All. 6.5. ENF ITOHI dii FFCS diiu 5F<sub>6</sub> (W III -)

Table All.6.6: ERF from Montreal Protocol greenhouse gases (W m<sup>-2</sup>)

Table All.6.7a: ERF from stratospheric O<sub>3</sub> changes since 1850 (W m<sup>-2</sup>)

Table All 6.8: Total anthropogenic ERE from published RCPs and SRES

**Table AII.6.8:** Total anthropogenic ERF from published RCPs and SRES (W m<sup>-2</sup>)

**Table AII.6.9:** ERF components relative to 1850 (W m<sup>-2</sup>) derived from ACCMIP

**Table All.6.10:** Total anthropogenic plus natural ERF (W m<sup>-2</sup>) from CMIP5 and CMIP3, including historical

# **AII.7: Environmental Data**

Table AII.7.1: Global mean surface O<sub>3</sub> change (ppb)

Table AII.7.2: Surface O<sub>3</sub> change (ppb) for HTAP regions

**Table AII.7.3:** Surface O<sub>3</sub> change (ppb) from CMIP5/ACCMIP for continental regions

**Table AII.7.4:** Surface particulate matter change (log<sub>10</sub>[PM<sub>2.5</sub> (microgram/m³)]) from CMIP5/ACCMIP for continental regions

**Table AII.7.5:** CMIP5 (RCP) and CMIP3 (SRES A1B) global mean surface temperature change (°C) relative to 1986–2005 reference period

**Table AII.7.6:** Global mean surface temperature change (°C) relative to 1990 from the TAR

**Table AII.7.7:** Global mean sea level rise (m) with respect to 1986–2005 at 1 January on the years indicated

# References

- Calvin, K., et al., 2012: The role of Asia in mitigating climate change: Results from the Asia modeling exercise. *Energy Econ.*, **34**, S251–S260.
- Cionni, I., V. Eyring, J. Lamarque, W. Randel, D. Stevenson, F. Wu, G. Bodeker, T. Shepherd, D. Shindell, and D. Waugh, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. *Atmos. Chem. Phys.*, 11, 11267–11292.
- Cofala, J., M. Amann, Z. Klimont, K. Kupiainen, and L. Hoglund-Isaksson, 2007: Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos. Environ., 41, 8486–8499.
- Dentener, F., D. Stevenson, J. Cofala, R. Mechler, M. Amann, P. Bergamaschi, F. Raes, and R. Derwent, 2005: The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030. Atmos. Chem. Phys., 5, 1731–1755.
- Dentener, F., et al., 2006: The global atmospheric environment for the next generation. *Environ. Sci. Technol.*, **40**, 3586–3594.
- Douglass, A. and V. Fioletov, 2010: Stratospheric Ozone and Surface Ultraviolet Radiation in Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project-Report No. 52.World Meteorological Organization, Geneva, Switzerland.
- Erisman, J. W., M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, 2008: How a century of ammonia synthesis changed the world. *Nature Geosci.*, 1, 636–639.
- Eyring, V., et al., 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. *J. Geophys. Res.*, doi:10.1002/jgrd.50316.
- Fiore, A. M., et al., 2012: Global air quality and climate. *Chem. Soc. Rev.*, 41, 6663–6683.
- Fleming, E., C. Jackman, R. Stolarski and A. Douglass, 2011: A model study of the impact of source gas changes on the stratosphere for 1850-2100. Atmos. Chem. Phys., 11, 8515–8541.
- Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res., 118, 1139–1150.
- Friedlingstein, P., et al., 2006: Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. *J. Clim.*, **19**, 3337–3353.
- Holmes, C. D., M. J. Prather, A.O. Søvde, and G. Myhre, 2013: Future methane, hydroxyl, and their uncertainties: Key climate and emission parameters for future predictions. Atmos. Chem. Phys., 13, 285–302.
- HTAP, 2010. Hemispheric Transport of Air Pollution 2010, Part A: Ozone and Particulate Matter. United Nations, Geneva, Switzerland.
- Jones, C. D., et al., 2013: 21st Century compatible CO2 emissions and airborne fraction simulated by CMIP5 Earth System models under 4 Representative Concentration Pathways. J. Clim., doi:10.1175/JCLI-D-12-00554.1.
- Lamarque, J. F., G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. Van Vuuren, A. J. Conley, and F. Vitt, 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Clim. Change, 109, 191–212.
- Lamarque, J. F., et al., 2010: Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys., 10, 7017–7039.
- Lamarque, J. F., et al., 2013: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev., 6, 179–206.
- Meinshausen, M., T. M. L. Wigley, and S. C. B. Raper, 2011b: Emulating atmosphereocean and carbon cycle models with a simpler model, MAGICC6-Part 2: Applications. *Atmos. Chem. Phys.*, **11**, 1457–1471.
- Meinshausen, M., et al., 2011a: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. *Clim. Change*, **109**, 213–241.
- Moss, R. H., et al., 2010: The next generation of scenarios for climate change research and assessment. *Nature*, **463**, 747–756.
- Prather, M., et al., 2001: Atmospheric chemistry and greenhouse gases. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [J. T. Houghton, Y. Ding, D. J. Griggs, M. Noquer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 239–287.
- Prather, M., et al., 2003: Fresh air in the 21st century? Geophys. Res. Lett., 30, 1100.

- Prather, M. J., C. D. Holmes, and J. Hsu, 2012: Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. *Geophys. Res. Lett.*, 39, L09803.
- Rogelj, J., et al., 2011: Emission pathways consistent with a 2°C global temperature limit. *Nature Clim. Change*, 1, 413–418.
- Shindell, D.T., J.-F. Lamarque, M. Schulz, M. Flanner, et al., 2013: Radiative forcing in the ACCMIP historical and future climate simulations. *Atmos. Chem. Phys.*, 13, 2939–2974.
- Stevenson, D. S., et al., 2013: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 3063–3085.
- van Vuuren, D. P., et al., 2008: Temperature increase of 21st century mitigation scenarios. *Proc. Natl. Acad. Sci. U.S.A.*, **105**, 15258–15262.
- van Vuuren, D., et al., 2011: The representative concentration pathways: An overview. *Clim. Change*, **109**, 5–31.
- Voulgarakis, A., et al., 2013: Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. 21 *Atmos. Chem. Phys.*, **13**, 2563–2587.
- Wild, O., A.M. Fiore et al., 2012: Modelling future changes in surface ozone: A parameterized approach. Atmos. Chem. Phys., 12, 2037–2054.
- WMO. 2010. Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project—Report No. 52. World Meteorological Organization, Geneva, Switzerland.
- Young, P. J., et al., 2013: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 2063–2090.

# **Tables**

# AII.1: Historical Climate System Data

Table All.1.1a | Historical abundances of the Kyoto greenhouse gases

| Year | CO <sub>2</sub> (ppm) | CH₄ (ppb) | N₂O (ppb) |
|------|-----------------------|-----------|-----------|
| PI*  | 278 ± 2               | 722 ± 25  | 270 ± 7   |
| 1755 | 276.7                 | 723       | 272.8     |
| 1760 | 276.5                 | 726       | 274.1     |
| 1765 | 276.6                 | 730       | 274.2     |
| 1770 | 277.3                 | 733       | 273.7     |
| 1775 | 278.0                 | 736       | 273.1     |
| 1780 | 278.2                 | 739       | 272.4     |
| 1785 | 278.6                 | 742       | 271.9     |
| 1790 | 280.0                 | 745       | 271.8     |
| 1795 | 281.4                 | 748       | 272.1     |
| 1800 | 282.6                 | 751       | 272.6     |
| 1805 | 283.6                 | 755       | 272.1     |
| 1810 | 284.2                 | 760       | 271.4     |
| 1815 | 284.0                 | 765       | 271.5     |
| 1820 | 283.3                 | 769       | 272.9     |
| 1825 | 283.1                 | 774       | 274.1     |
| 1830 | 283.8                 | 779       | 273.7     |
| 1835 | 283.9                 | 784       | 270.5     |
| 1840 | 284.1                 | 789       | 269.6     |
| 1845 | 285.8                 | 795       | 270.3     |
| 1850 | 286.8                 | 802       | 270.4     |
| 1855 | 286.4                 | 808       | 270.6     |
| 1860 | 286.1                 | 815       | 271.7     |
| 1865 | 286.3                 | 823       | 272.3     |
| 1870 | 288.0                 | 831       | 273.0     |
| 1875 | 289.4                 | 839       | 274.7     |
| 1880 | 289.8                 | 847       | 275.8     |
| 1885 | 290.9                 | 856       | 277.2     |
| 1890 | 293.1                 | 866       | 278.3     |
| 1895 | 295.4                 | 877       | 277.7     |
| 1900 | 296.2                 | 891       | 277.3     |
| 1905 | 297.4                 | 912       | 279.2     |
| 1910 | 299.3                 | 935       | 280.8     |
| 1915 | 301.1                 | 961       | 282.7     |
| 1920 | 303.3                 | 990       | 285.1     |
| 1925 | 304.7                 | 1020      | 284.3     |
| 1930 | 306.6                 | 1049      | 284.9     |
| 1935 | 308.4                 | 1077      | 286.6     |
| 1940 | 310.4                 | 1102      | 287.7     |
| 1945 | 310.9                 | 1129      | 288.0     |
| 1950 | 311.2                 | 1162      | 287.6     |
| 1955 | 313.4                 | 1207      | 289.6     |
| 1956 | 314.0                 | 1217      | 290.4     |
| 1957 | 314.6                 | 1228      | 291.2     |
| 1958 | 315.3                 | 1239      | 291.7     |

| Year | CO <sub>2</sub> (ppm) | CH₄ (ppb) | N₂O (ppb) |
|------|-----------------------|-----------|-----------|
| PI*  | 278 ± 2               | 722 ± 25  | 270 ± 7   |
| 1959 | 316.0                 | 1251      | 292.1     |
| 1960 | 316.7                 | 1263      | 292.4     |
| 1961 | 317.4                 | 1275      | 292.5     |
| 1962 | 318.0                 | 1288      | 292.5     |
| 1963 | 318.5                 | 1301      | 292.6     |
| 1964 | 319.0                 | 319.0     | 292.6     |
| 1965 | 319.7                 | 1328      | 292.7     |
| 1966 | 320.6                 | 1343      | 292.9     |
| 1967 | 321.5                 | 1357      | 293.3     |
| 1968 | 322.5                 | 1372      | 293.8     |
| 1969 | 323.5                 | 1388      | 294.4     |
| 1970 | 324.6                 | 1403      | 295.2     |
| 1971 | 325.6                 | 1419      | 296.0     |
| 1972 | 326.8                 | 1435      | 296.9     |
| 1973 | 328.0                 | 1451      | 297.8     |
| 1974 | 329.2                 | 1467      | 298.4     |
| 1975 | 330.2                 | 1483      | 299.0     |
| 1976 | 331.3                 | 1500      | 299.4     |
| 1977 | 332.7                 | 1516      | 299.8     |
| 1978 | 334.3                 | 1532      | 300.2     |
| 1979 | 336.2                 | 1549      | 300.7     |
| 1980 | 338.0                 | 1567      | 301.3     |
| 1981 | 339.3                 | 1587      | 302.0     |
| 1982 | 340.5                 | 1607      | 303.0     |
| 1983 | 342.1                 | 1626      | 303.9     |
| 1984 | 343.7                 | 1643      | 304.5     |
| 1985 | 345.2                 | 1657      | 305.5     |
| 1986 | 346.6                 | 1670      | 305.9     |
| 1987 | 348.4                 | 1682      | 306.3     |
| 1988 | 350.5                 | 1694      | 306.7     |
| 1989 | 352.2                 | 1704      | 307.8     |
| 1990 | 353.6                 | 1714      | 308.7     |
| 1991 | 354.8                 | 1725      | 309.3     |
| 1992 | 355.7                 | 1733      | 309.8     |
| 1993 | 356.6                 | 1738      | 310.1     |
| 1994 | 358.0                 | 1743      | 310.4     |
| 1995 | 359.9                 | 1747      | 311.0     |
| 1996 | 361.4                 | 1751      | 311.8     |
| 1997 | 363.1                 | 1757      | 312.7     |
| 1998 | 365.2                 | 1765      | 313.7     |
| 1999 | 367.2                 | 1771      | 314.7     |
| 2000 | 368.7                 | 1773      | 315.6     |
| 2001 | 370.2                 | 1773      | 316.3     |
| 2002 | 370.2                 | 1773      | 317.0     |
| 2002 | 312.3                 | 1774      | 317.0     |

(continued on next page)

Table All.1.1a (continued)

| Year  | CO <sub>2</sub> (ppm) | CH <sub>4</sub> (ppb) | N <sub>2</sub> O (ppb) |
|-------|-----------------------|-----------------------|------------------------|
| PI*   | 278 ± 2               | 722 ± 25              | 270 ± 7                |
| 2003  | 374.5                 | 1776                  | 317.6                  |
| 2004  | 376.6                 | 1776                  | 318.3                  |
| 2005  | 378.7                 | 1776                  | 319.1                  |
| 2006  | 380.8                 | 1776                  | 319.8                  |
| 2007  | 382.7                 | 1781                  | 320.6                  |
| 2008  | 384.6                 | 1787                  | 321.4                  |
| 2005  | 378.7                 | 1776                  | 319.1                  |
| 2006  | 380.8                 | 1776                  | 319.8                  |
| 2007  | 382.7                 | 1781                  | 320.6                  |
| 2008  | 384.6                 | 1787                  | 321.4                  |
| 2009  | 386.4                 | 1792                  | 322.3                  |
| 2010  | 388.4                 | 1798                  | 323.2                  |
| 2011* | 390.5 ± 0.3           | 1803 ± 4              | 324 ± 1                |

| Year  | SF <sub>6</sub> (ppt) | CF <sub>4</sub> (ppt) | C <sub>2</sub> F <sub>6</sub> (ppt) | C <sub>6</sub> F <sub>14</sub> (ppt) | NF <sub>3</sub> (ppt) |
|-------|-----------------------|-----------------------|-------------------------------------|--------------------------------------|-----------------------|
| PI*   | 0                     | 35                    | 0                                   | 0                                    |                       |
| 1900  | 0                     | 35                    | 0                                   | 0                                    |                       |
| 1910  | 0                     | 35                    | 0.1                                 | 0                                    |                       |
| 1920  | 0                     | 35                    | 0.1                                 | 0                                    |                       |
| 1930  | 0                     | 36                    | 0.2                                 | 0                                    |                       |
| 1940  | 0                     | 37                    | 0.3                                 | 0                                    |                       |
| 1950  | 0                     | 39                    | 0.5                                 | 0                                    |                       |
| 1960  | 0.1                   | 43                    | 0.6                                 | 0                                    |                       |
| 1970  | 0.3                   | 51                    | 0.8                                 | 0                                    |                       |
| 1980  | 0.8                   | 60                    | 1.2                                 | 0                                    |                       |
| 1990  | 2.4                   | 68                    | 1.9                                 | 0                                    |                       |
| 2000  | 4.5                   | 76                    | 2.9                                 | 0                                    |                       |
| 2005  | 5.6                   | 75                    | 3.7                                 | 0                                    | 0.3                   |
| 2010  | 7.0                   | 78.3                  | 4.1                                 | 0                                    |                       |
| 2011* | 7.3 ± 0.1             | 79.0                  | 4.2                                 | 0                                    | 0.6                   |

| Year  | HFC-23<br>(ppt) | HFC-32<br>(ppt) | HFC-125<br>(ppt) | HFC-134a<br>(ppt) | HFC-143a<br>(ppt) | HFC-227ea<br>(ppt) | HFC-245fa<br>(ppt) | HFC-43-10mee<br>(ppt) |
|-------|-----------------|-----------------|------------------|-------------------|-------------------|--------------------|--------------------|-----------------------|
| PI*   | 0               | 0               | 0                | 0                 | 0                 | 0                  | 0                  | 0                     |
| 1940  | 0.1             | 0               | 0                | 0                 | 0                 | 0                  | 0                  | 0                     |
| 1950  | 0.3             | 0               | 0                | 0                 | 0                 | 0                  | 0                  | 0                     |
| 1960  | 0.7             | 0               | 0                | 0                 | 0                 | 0                  | 0                  | 0                     |
| 1970  | 1.6             | 0               | 0                | 0                 | 0                 | 0                  | 0                  | 0                     |
| 1980  | 3.7             | 0               | 0                | 0                 | 0.2               | 0                  | 0                  | 0                     |
| 1990  | 7.9             | 0               | 0.1              | 0                 | 0.6               | 0                  | 0                  | 0                     |
| 2000  | 14.8            | 0               | 1.3              | 14                | 3.1               | 0.1                | 0                  | 0                     |
| 2010  | 23.2            | 4.1             | 8.2              | 58                | 10.9              | 0.6                | 1.1                | 0                     |
| 2011* | 24.0            | 4.9             | 9.6              | 63 ± 1            | 12.0              | 0.65               | 1.24               | 0                     |

Abundances are mole fraction of dry air for the lower, well-mixed atmosphere (ppm = micromoles per mole, ppb = nanomoles per mole, ppt = picomoles per mole). Values refer to single-year average. Uncertainties (5 to 95% confidence intervals) are given for 2011 only when more than one laboratory reports global data. Pre-industrial (P1\*, taken to be 1750 for GHG) and present day (2011\*) abundances are from Chapter 2, Tables 2.1 and 2.5M.1; see also Chapter 6 for Holocene variability (10 ppm CO<sub>2</sub>, 40 ppb CH<sub>4</sub>, 10 ppb N<sub>2</sub>O). Intermediate data for CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O are from Chapters 2 and 8, Figure 8.6. See also Appendix 1.A. Intermediate data for the F-gases are taken from Meinshausen et al. (2011).

Table All.1.1b | Historical abundances of the Montreal Protocol greenhouse gases (all ppt)

| Year  | CFC-11  | CFC-12 | CFC-113  | CFC-114 | CFC-115 | CCI₄  | CH <sub>3</sub> CCl <sub>3</sub> | HCFC-22 |
|-------|---------|--------|----------|---------|---------|-------|----------------------------------|---------|
| PI*   | 0       | 0      | 0        | 0       | 0       | 0     | 0                                | 0       |
| 1960  | 9.5     | 29.5   | 1.9      | 3.8     | 0.0     | 52.1  | 1.5                              | 2.1     |
| 1965  | 23.5    | 58.8   | 3.1      | 5.0     | 0.0     | 64.4  | 4.7                              | 4.9     |
| 1970  | 52.8    | 114.3  | 5.5      | 6.5     | 0.2     | 75.9  | 16.2                             | 12.1    |
| 1975  | 106.1   | 203.1  | 10.4     | 8.3     | 0.6     | 85.5  | 40.0                             | 23.8    |
| 1980  | 161.9   | 297.4  | 19.0     | 10.7    | 1.3     | 93.3  | 81.6                             | 42.5    |
| 1985  | 205.4   | 381.2  | 37.3     | 12.9    | 2.8     | 99.6  | 106.1                            | 62.7    |
| 1990  | 256.2   | 477.5  | 67.6     | 15.4    | 4.7     | 106.5 | 127.2                            | 88.2    |
| 1995  | 267.4   | 523.8  | 83.6     | 16.1    | 6.8     | 103.2 | 110.3                            | 113.6   |
| 2000  | 261.7   | 541.0  | 82.3     | 16.5    | 7.9     | 98.6  | 49.7                             | 139.5   |
| 2005  | 251.6   | 542.7  | 78.8     | 16.6    | 8.3     | 93.7  | 20.1                             | 165.5   |
| 2010  | 240.9   | 532.5  | 75.6     | 16.4    | 8.4     | 87.6  | 8.3                              | 206.8   |
| 2011* | 238 ± 1 | 528±2  | 74.3±0.5 | 15.8    | 8.4     | 86±2  | 6.4±0.4                          | 213±2   |

| Year  | HCFC-141b | HCFC-142b | Halon 1211 | Halon 1202 | Halon 1301 | Halon 2402 | CH₃Br | CH₃Cl |
|-------|-----------|-----------|------------|------------|------------|------------|-------|-------|
| PI*   | 0         | 0         | 0          | 0          | 0          | 0          |       |       |
| 1960  | 0.0       | 0.0       | 0.00       | 0.00       | 0.00       | 0.00       | 6.5   | 510   |
| 1965  | 0.0       | 0.0       | 0.00       | 0.00       | 0.00       | 0.00       | 6.7   | 528   |
| 1970  | 0.0       | 0.0       | 0.02       | 0.00       | 0.00       | 0.02       | 0.0   | 540   |
| 1975  | 0.0       | 0.2       | 0.12       | 0.01       | 0.04       | 0.06       | 7.4   | 546   |
| 1980  | 0.0       | 0.4       | 0.42       | 0.01       | 0.24       | 0.15       | 7.7   | 548   |
| 1985  | 0.0       | 0.7       | 1.04       | 0.02       | 0.74       | 0.26       | 8.2   | 549   |
| 1990  | 0.0       | 1.2       | 2.27       | 0.03       | 1.66       | 0.41       | 8.6   | 550   |
| 1995  | 2.7       | 6.3       | 3.34       | 0.04       | 2.63       | 0.52       | 9.2   | 550   |
| 2000  | 11.8      | 11.4      | 4.02       | 0.04       | 2.84       | 0.50       | 8.9   | 550   |
| 2005  | 17.5      | 15.1      | 4.26       | 0.02       | 3.03       | 0.48       | 7.9   | 550   |
| 2010  | 20.3      | 20.5      | 4.07       | 0.00       | 3.20       | 0.46       | 7.2   | 550   |
| 2011* | 21.4±0.5  | 21.2±0.5  | 4.07       | 0.00       | 3.23       | 0.45       | 7.1   | 534   |

See Table All.1.1a. For present-day (2011\*) see Chapter 2. Intermediate years are from Scenario A1, WMO Ozone Assessment (WMO, 2010).

Table AII.1.2 | Historical effective radiative forcing (ERF) (W m<sup>-2</sup>), including land use change (LUC)

| _ |              | -               |               |                |               |                    |                  |                |            |                |                  |                  |
|---|--------------|-----------------|---------------|----------------|---------------|--------------------|------------------|----------------|------------|----------------|------------------|------------------|
|   | Year         | CO <sub>2</sub> | GHG<br>Other* | O₃<br>(Trop)   | O₃<br>(Strat) | Aerosol<br>(Total) | LUC              | H₂O<br>(Strat) | BC<br>Snow | Con-<br>trails | Solar            | Volcano          |
|   | 1750         | 0.000           | 0.000         | 0.000          | 0.000         | 0.000              | 0.000            | 0.000          | 0.000      | 0.000          | 0.000            | -0.001           |
|   | 1751         | -0.023          | 0.004         | 0.000          | 0.000         | -0.002             | 0.000            | 0.000          | 0.000      | 0.000          | -0.014           | 0.000            |
|   | 1752         | -0.024          | 0.006         | 0.001          | 0.000         | -0.004             | -0.001           | 0.000          | 0.000      | 0.000          | -0.029           | 0.000            |
|   | 1753         | -0.024          | 0.007         | 0.001          | 0.000         | -0.005             | -0.001           | 0.000          | 0.000      | 0.000          | -0.033           | 0.000            |
|   | 1754         | -0.025          | 0.008         | 0.002          | 0.000         | -0.007             | -0.002           | 0.000          | 0.001      | 0.000          | -0.043           | 0.000            |
|   | 1755         | -0.026          | 0.010         | 0.002          | 0.000         | -0.009             | -0.002           | 0.000          | 0.001      | 0.000          | -0.054           | -0.664           |
|   | 1756         | -0.026          | 0.011         | 0.003          | 0.000         | -0.011             | -0.002           | 0.000          | 0.001      | 0.000          | -0.055           | 0.000            |
|   | 1757         | -0.027          | 0.013         | 0.003          | 0.000         | -0.013             | -0.003           | 0.000          | 0.001      | 0.000          | -0.048           | 0.000            |
|   | 1758         | -0.028          | 0.014         | 0.003          | 0.000         | -0.014             | -0.003           | 0.000          | 0.001      | 0.000          | -0.050           | 0.000            |
|   | 1759         | -0.028          | 0.015         | 0.004          | 0.000         | -0.016             | -0.004           | 0.000          | 0.001      | 0.000          | -0.102           | 0.000            |
|   | 1760         | -0.029          | 0.016         | 0.004          | 0.000         | -0.018             | -0.004           | 0.000          | 0.001      | 0.000          | -0.112           | -0.060           |
|   | 1761         | -0.029          | 0.017         | 0.005          | 0.000         | -0.020             | -0.004           | 0.000          | 0.002      | 0.000          | -0.016           | -1.093           |
|   | 1762         | -0.029          | 0.017         | 0.005          | 0.000         | -0.021             | -0.005           | 0.001          | 0.002      | 0.000          | -0.007           | -0.300           |
|   | 1763         | -0.029          | 0.018         | 0.006          | 0.000         | -0.023             | -0.005           | 0.001          | 0.002      | 0.000          | -0.018           | -0.093           |
|   | 1764         | -0.028          | 0.018         | 0.006          | 0.000         | -0.025             | -0.006           | 0.001          | 0.002      | 0.000          | -0.022           | -0.021           |
|   | 1765         | -0.026          | 0.018         | 0.006          | 0.000         | -0.027             | -0.006           | 0.001          | 0.002      | 0.000          | -0.054           | -0.003           |
|   | 1766         | -0.024          | 0.018         | 0.007          | 0.000         | -0.029             | -0.006           | 0.001          | 0.002      | 0.000          | -0.048           | 0.000            |
|   | 1767         | -0.022          | 0.018         | 0.007          | 0.000         | -0.030             | -0.007           | 0.001          | 0.003      | 0.000          | -0.036           | 0.000            |
|   | 1768         | -0.020          | 0.018         | 0.008          | 0.000         | -0.032             | -0.007           | 0.001          | 0.003      | 0.000          | 0.016            | 0.000            |
|   | 1769         | -0.017          | 0.018         | 0.008          | 0.000         | -0.034             | -0.008           | 0.001          | 0.003      | 0.000          | 0.050            | 0.000            |
|   | 1770         | -0.014          | 0.018         | 0.009          | 0.000         | -0.036             | -0.008           | 0.001          | 0.003      | 0.000          | 0.081            | 0.000            |
|   | 1771         | -0.011          | 0.018         | 0.009          | 0.000         | -0.038             | -0.008           | 0.001          | 0.003      | 0.000          | 0.055            | 0.000            |
|   | 1772         | -0.008          | 0.018         | 0.009          | 0.000         | -0.039             | -0.009           | 0.001          | 0.003      | 0.000          | 0.052            | -0.070           |
|   | 1772         | -0.005          | 0.018         | 0.010          | 0.000         | -0.041             | -0.009           | 0.001          | 0.003      | 0.000          | 0.016            | -0.020           |
|   | 1774         | -0.003          | 0.018         | 0.010          | 0.000         | -0.043             | -0.010           | 0.001          | 0.003      | 0.000          | -0.002           | -0.005           |
|   | 1775         | -0.001          | 0.018         | 0.011          | 0.000         | -0.045             | -0.010           | 0.001          | 0.004      | 0.000          | -0.038           | -0.001           |
|   | 1776         | 0.001           | 0.018         | 0.011          | 0.000         | -0.045             | -0.010           | 0.001          | 0.004      | 0.000          | -0.035           | 0.000            |
|   | 1777         | 0.002           | 0.018         | 0.011          | 0.000         | -0.048             | -0.010           | 0.001          | 0.004      | 0.000          | -0.045           | 0.000            |
|   | 1778         | 0.002           | 0.018         | 0.012          | 0.000         | -0.050             | -0.011           | 0.001          | 0.004      | 0.000          | 0.017            | -0.067           |
|   | 1778         | 0.003           | 0.018         | 0.012          | 0.000         | -0.052             | -0.011           | 0.001          | 0.004      | 0.000          | -0.034           | -0.007           |
|   | 1780         | 0.003           | 0.018         | 0.012          | 0.000         | -0.052             | -0.012           | 0.002          | 0.004      | 0.000          | -0.069           | -0.018           |
|   | 1781         | 0.004           | 0.018         | 0.013          | 0.000         | -0.055             | -0.012           | 0.002          | 0.005      | 0.000          | -0.057           | -0.004           |
|   | 1781         | 0.004           | 0.018         | 0.013          | 0.000         | -0.057             | -0.012           | 0.002          | 0.005      | 0.000          | -0.037           | -0.004           |
|   | 1782         | 0.004           | 0.018         | 0.014          | 0.000         | -0.057             | -0.013           | 0.002          | 0.005      | 0.000          | -0.028           | -7.857           |
|   | 1784         | 0.009           | 0.018         | 0.014          | 0.000         | -0.059             | -0.013           | 0.002          | 0.005      | 0.000          | -0.059           | -0.522           |
|   |              |                 | 0.018         |                | 0.000         |                    |                  |                | 0.005      | 0.000          |                  |                  |
|   | 1785<br>1786 | 0.012<br>0.017  | 0.018         | 0.015<br>0.015 | 0.000         | -0.062<br>-0.064   | -0.014<br>-0.014 | 0.002          | 0.005      | 0.000          | -0.046<br>-0.022 | -0.121<br>-0.027 |
|   |              |                 |               |                |               |                    |                  |                |            |                |                  |                  |
|   | 1787         | 0.021           | 0.018         | 0.016          | 0.000         | -0.066             | -0.015           | 0.002          | 0.005      | 0.000          | -0.001           | -0.002           |
|   | 1788         | 0.027           | 0.018         | 0.016          | 0.000         | -0.068             | -0.015<br>-0.016 | 0.002          | 0.006      | 0.000          | 0.034            | -0.133<br>-0.041 |
|   | 1789         | 0.033           | 0.019         | 0.017          | 0.000         | -0.070             |                  | 0.002          | 0.006      | 0.000          | -0.033           |                  |
|   | 1790         | 0.038           | 0.019         | 0.017          | 0.000         | -0.071             | -0.016           | 0.002          | 0.006      | 0.000          | -0.058           | -0.009           |
|   | 1791         | 0.044           | 0.019         | 0.017          | 0.000         | -0.073             | -0.016           | 0.002          | 0.006      | 0.000          | -0.056           | -0.001           |
|   | 1792         | 0.050           | 0.020         | 0.018          | 0.000         | -0.075             | -0.017           | 0.002          | 0.006      | 0.000          | -0.051           | 0.000            |
|   | 1793         | 0.055           | 0.020         | 0.018          | 0.000         | -0.077             | -0.017           | 0.002          | 0.006      | 0.000          | -0.065           | 0.000            |
|   | 1794         | 0.060           | 0.021         | 0.019          | 0.000         | -0.079             | -0.018           | 0.002          | 0.006      | 0.000          | -0.064           | -0.157           |
|   | 1795         | 0.066           | 0.022         | 0.019          | 0.000         | -0.080             | -0.018           | 0.002          | 0.007      | 0.000          | -0.027           | 0.000            |
|   | 1796         | 0.070           | 0.023         | 0.020          | 0.000         | -0.082             | -0.018           | 0.002          | 0.007      | 0.000          | -0.033           | -0.781           |
|   | 1797         | 0.075           | 0.023         | 0.020          | 0.000         | -0.084             | -0.019           | 0.002          | 0.007      | 0.000          | -0.043           | -0.071           |
|   | 1798         | 0.079           | 0.024         | 0.020          | 0.000         | -0.086             | -0.019           | 0.002          | 0.007      | 0.000          | -0.045           | -0.016           |

Table AII.1.2 | (continued)

| Year | CO <sub>2</sub> | GHG<br>Other* | O <sub>3</sub> (Trop) | O₃<br>(Strat) | Aerosol<br>(Total) | LUC    | H <sub>2</sub> O<br>(Strat) | BC<br>Snow | Con–<br>trails | Solar  | Volcano |
|------|-----------------|---------------|-----------------------|---------------|--------------------|--------|-----------------------------|------------|----------------|--------|---------|
| 1799 | 0.084           | 0.025         | 0.021                 | 0.000         | -0.087             | -0.020 | 0.003                       | 0.007      | 0.000          | -0.047 | -0.002  |
| 1800 | 0.088           | 0.025         | 0.021                 | 0.000         | -0.089             | -0.020 | 0.003                       | 0.007      | 0.000          | -0.055 | 0.000   |
| 1801 | 0.092           | 0.026         | 0.022                 | 0.000         | -0.091             | -0.020 | 0.003                       | 0.007      | 0.000          | -0.021 | -0.154  |
| 1802 | 0.096           | 0.026         | 0.022                 | 0.000         | -0.093             | -0.021 | 0.003                       | 0.008      | 0.000          | -0.010 | -0.048  |
| 1803 | 0.099           | 0.026         | 0.023                 | 0.000         | -0.095             | -0.021 | 0.003                       | 0.008      | 0.000          | -0.033 | -0.011  |
| 1804 | 0.103           | 0.026         | 0.023                 | 0.000         | -0.096             | -0.022 | 0.003                       | 0.008      | 0.000          | -0.040 | -0.230  |
| 1805 | 0.106           | 0.026         | 0.023                 | 0.000         | -0.098             | -0.022 | 0.003                       | 0.008      | 0.000          | -0.046 | -0.070  |
| 1806 | 0.109           | 0.026         | 0.024                 | 0.000         | -0.100             | -0.022 | 0.003                       | 0.008      | 0.000          | -0.036 | -0.016  |
| 1807 | 0.112           | 0.026         | 0.024                 | 0.000         | -0.102             | -0.023 | 0.003                       | 0.008      | 0.000          | -0.057 | -0.002  |
| 1808 | 0.114           | 0.026         | 0.025                 | 0.000         | -0.104             | -0.023 | 0.003                       | 0.008      | 0.000          | -0.065 | 0.000   |
| 1809 | 0.116           | 0.026         | 0.025                 | 0.000         | -0.105             | -0.024 | 0.003                       | 0.009      | 0.000          | -0.065 | -6.947  |
| 1810 | 0.117           | 0.026         | 0.025                 | 0.000         | -0.107             | -0.024 | 0.003                       | 0.009      | 0.000          | -0.070 | -2.254  |
| 1811 | 0.118           | 0.027         | 0.026                 | 0.000         | -0.109             | -0.024 | 0.003                       | 0.009      | 0.000          | -0.072 | -0.836  |
| 1812 | 0.119           | 0.027         | 0.026                 | 0.000         | -0.111             | -0.025 | 0.003                       | 0.009      | 0.000          | -0.072 | -0.308  |
| 1813 | 0.118           | 0.028         | 0.027                 | 0.000         | -0.112             | -0.025 | 0.004                       | 0.009      | 0.000          | -0.069 | -0.109  |
| 1814 | 0.117           | 0.029         | 0.027                 | 0.000         | -0.114             | -0.026 | 0.004                       | 0.009      | 0.000          | -0.064 | 0.000   |
| 1815 | 0.115           | 0.030         | 0.028                 | 0.000         | -0.116             | -0.026 | 0.004                       | 0.009      | 0.000          | -0.062 | -11.629 |
| 1816 | 0.113           | 0.031         | 0.028                 | 0.000         | -0.118             | -0.026 | 0.004                       | 0.010      | 0.000          | -0.052 | -4.553  |
| 1817 | 0.110           | 0.032         | 0.028                 | 0.000         | -0.120             | -0.027 | 0.004                       | 0.010      | 0.000          | -0.048 | -2.419  |
| 1818 | 0.107           | 0.034         | 0.029                 | 0.000         | -0.121             | -0.027 | 0.004                       | 0.010      | 0.000          | -0.053 | -0.915  |
| 1819 | 0.104           | 0.035         | 0.029                 | 0.000         | -0.123             | -0.028 | 0.004                       | 0.010      | 0.000          | -0.054 | -0.337  |
| 1820 | 0.101           | 0.037         | 0.030                 | 0.000         | -0.125             | -0.028 | 0.004                       | 0.010      | 0.000          | -0.059 | -0.039  |
| 1821 | 0.099           | 0.038         | 0.030                 | 0.000         | -0.127             | -0.028 | 0.004                       | 0.010      | 0.000          | -0.065 | 0.000   |
| 1822 | 0.097           | 0.040         | 0.031                 | 0.000         | -0.128             | -0.029 | 0.004                       | 0.010      | 0.000          | -0.066 | 0.000   |
| 1823 | 0.096           | 0.041         | 0.031                 | 0.000         | -0.130             | -0.029 | 0.004                       | 0.011      | 0.000          | -0.068 | 0.000   |
| 1824 | 0.097           | 0.042         | 0.031                 | 0.000         | -0.132             | -0.030 | 0.004                       | 0.011      | 0.000          | -0.059 | 0.000   |
| 1825 | 0.098           | 0.043         | 0.032                 | 0.000         | -0.134             | -0.030 | 0.005                       | 0.011      | 0.000          | -0.052 | 0.000   |
| 1826 | 0.100           | 0.044         | 0.032                 | 0.000         | -0.136             | -0.030 | 0.005                       | 0.011      | 0.000          | -0.044 | 0.000   |
| 1827 | 0.103           | 0.045         | 0.033                 | 0.000         | -0.137             | -0.031 | 0.005                       | 0.011      | 0.000          | -0.018 | 0.000   |
| 1828 | 0.106           | 0.045         | 0.033                 | 0.000         | -0.139             | -0.031 | 0.005                       | 0.011      | 0.000          | -0.008 | 0.000   |
| 1829 | 0.109           | 0.045         | 0.033                 | 0.000         | -0.141             | -0.032 | 0.005                       | 0.011      | 0.000          | -0.006 | 0.000   |
| 1830 | 0.103           | 0.045         | 0.034                 | 0.000         | -0.141             | -0.032 | 0.005                       | 0.011      | 0.000          | 0.002  | 0.000   |
| 1831 | 0.113           | 0.043         | 0.034                 | 0.000         | -0.145             | -0.032 | 0.005                       | 0.012      | 0.000          | 0.002  | -1.538  |
| 1832 | 0.113           | 0.043         | 0.035                 | 0.000         | -0.143             | -0.032 | 0.005                       | 0.012      | 0.000          | -0.020 | -1.229  |
| 1833 | 0.114           | 0.043         | 0.035                 | 0.000         | -0.148             | -0.033 | 0.005                       | 0.012      | 0.000          | -0.020 | -0.605  |
|      |                 |               |                       |               |                    |        |                             |            |                |        |         |
| 1834 | 0.114           | 0.039         | 0.036                 | 0.000         | -0.150             | -0.034 | 0.005                       | 0.012      | 0.000          | -0.038 | -0.223  |
| 1835 | 0.113           | 0.037         | 0.036                 | 0.000         | -0.152             | -0.034 | 0.005                       | 0.012      | 0.000          | -0.033 | -4.935  |
| 1836 | 0.112           | 0.036         | 0.037                 | 0.000         | -0.153             | -0.034 | 0.005                       | 0.012      | 0.000          | 0.017  | -1.445  |
| 1837 | 0.112           | 0.035         | 0.037                 | 0.000         | -0.155             | -0.035 | 0.006                       | 0.013      | 0.000          | 0.055  | -0.523  |
| 1838 | 0.112           | 0.035         | 0.037                 | 0.000         | -0.157             | -0.035 | 0.006                       | 0.013      | 0.000          | 0.051  | -0.192  |
| 1839 | 0.114           | 0.036         | 0.038                 | 0.000         | -0.159             | -0.036 | 0.006                       | 0.013      | 0.000          | 0.028  | -0.069  |
| 1840 | 0.117           | 0.037         | 0.038                 | 0.000         | -0.161             | -0.036 | 0.006                       | 0.013      | 0.000          | 0.027  | -0.047  |
| 1841 | 0.121           | 0.038         | 0.039                 | 0.000         | -0.162             | -0.036 | 0.006                       | 0.013      | 0.000          | 0.007  | -0.013  |
| 1842 | 0.127           | 0.040         | 0.039                 | 0.000         | -0.164             | -0.037 | 0.006                       | 0.013      | 0.000          | -0.006 | -0.003  |
| 1843 | 0.135           | 0.041         | 0.039                 | 0.000         | -0.166             | -0.037 | 0.006                       | 0.013      | 0.000          | -0.013 | -0.052  |
| 1844 | 0.142           | 0.042         | 0.040                 | 0.000         | -0.168             | -0.038 | 0.006                       | 0.014      | 0.000          | -0.024 | -0.014  |
| 1845 | 0.149           | 0.043         | 0.040                 | 0.000         | -0.169             | -0.038 | 0.006                       | 0.014      | 0.000          | -0.026 | -0.003  |
| 1846 | 0.155           | 0.044         | 0.041                 | 0.000         | -0.171             | -0.038 | 0.006                       | 0.014      | 0.000          | -0.024 | -0.071  |
| 1847 | 0.160           | 0.044         | 0.041                 | 0.000         | -0.173             | -0.039 | 0.007                       | 0.014      | 0.000          | -0.062 | -0.020  |
| 1848 | 0.163           | 0.045         | 0.042                 | 0.000         | -0.175             | -0.039 | 0.007                       | 0.014      | 0.000          | -0.018 | -0.005  |

Table AII.1.2 | (continued)

| Year | CO <sub>2</sub> | GHG<br>Other* | O <sub>3</sub><br>(Trop) | O₃<br>(Strat) | Aerosol<br>(Total) | LUC    | H <sub>2</sub> O<br>(Strat) | BC<br>Snow | Con-<br>trails | Solar  | Volcano |
|------|-----------------|---------------|--------------------------|---------------|--------------------|--------|-----------------------------|------------|----------------|--------|---------|
| 1849 | 0.166           | 0.046         | 0.042                    | 0.000         | -0.177             | -0.040 | 0.007                       | 0.014      | 0.000          | 0.043  | -0.001  |
| 1850 | 0.167           | 0.046         | 0.042                    | 0.000         | -0.178             | -0.040 | 0.007                       | 0.014      | 0.000          | 0.024  | -0.100  |
| 1851 | 0.167           | 0.047         | 0.043                    | 0.000         | -0.180             | -0.040 | 0.007                       | 0.015      | 0.000          | 0.016  | -0.075  |
| 1852 | 0.166           | 0.048         | 0.044                    | 0.000         | -0.182             | -0.041 | 0.007                       | 0.015      | 0.000          | 0.020  | -0.025  |
| 1853 | 0.164           | 0.049         | 0.045                    | 0.000         | -0.184             | -0.041 | 0.007                       | 0.015      | 0.000          | 0.011  | -0.025  |
| 1854 | 0.162           | 0.050         | 0.046                    | 0.000         | -0.185             | -0.041 | 0.007                       | 0.016      | 0.000          | -0.010 | 0.000   |
| 1855 | 0.160           | 0.051         | 0.047                    | 0.000         | -0.187             | -0.042 | 0.007                       | 0.016      | 0.000          | -0.027 | -0.050  |
| 1856 | 0.158           | 0.052         | 0.048                    | 0.000         | -0.189             | -0.042 | 0.007                       | 0.016      | 0.000          | -0.037 | -0.975  |
| 1857 | 0.156           | 0.054         | 0.049                    | 0.000         | -0.191             | -0.042 | 0.008                       | 0.016      | 0.000          | -0.037 | -1.500  |
| 1858 | 0.155           | 0.055         | 0.050                    | 0.000         | -0.192             | -0.043 | 0.008                       | 0.017      | 0.000          | -0.020 | -0.725  |
| 1859 | 0.154           | 0.057         | 0.050                    | 0.000         | -0.194             | -0.043 | 0.008                       | 0.017      | 0.000          | -0.007 | -0.275  |
| 1860 | 0.154           | 0.058         | 0.051                    | 0.000         | -0.196             | -0.043 | 0.008                       | 0.017      | 0.000          | 0.029  | -0.125  |
| 1861 | 0.153           | 0.060         | 0.052                    | 0.000         | -0.198             | -0.044 | 0.008                       | 0.018      | 0.000          | 0.036  | -0.075  |
| 1862 | 0.153           | 0.061         | 0.053                    | 0.000         | -0.199             | -0.044 | 0.008                       | 0.018      | 0.000          | 0.013  | -0.350  |
| 1863 | 0.154           | 0.062         | 0.054                    | 0.000         | -0.201             | -0.044 | 0.008                       | 0.018      | 0.000          | 0.006  | -0.250  |
| 1864 | 0.156           | 0.063         | 0.055                    | 0.000         | -0.203             | -0.045 | 0.008                       | 0.018      | 0.000          | -0.017 | -0.125  |
| 1865 | 0.158           | 0.064         | 0.056                    | 0.000         | -0.205             | -0.045 | 0.009                       | 0.019      | 0.000          | -0.018 | -0.050  |
| 1866 | 0.162           | 0.066         | 0.057                    | 0.000         | -0.206             | -0.045 | 0.009                       | 0.019      | 0.000          | -0.021 | -0.025  |
| 1867 | 0.167           | 0.067         | 0.058                    | 0.000         | -0.208             | -0.046 | 0.009                       | 0.019      | 0.000          | -0.037 | 0.000   |
| 1868 | 0.173           | 0.068         | 0.059                    | 0.000         | -0.210             | -0.046 | 0.009                       | 0.020      | 0.000          | -0.039 | 0.000   |
| 1869 | 0.180           | 0.070         | 0.059                    | 0.000         | -0.212             | -0.046 | 0.009                       | 0.020      | 0.000          | -0.005 | -0.025  |
| 1870 | 0.188           | 0.071         | 0.060                    | 0.000         | -0.213             | -0.047 | 0.009                       | 0.020      | 0.000          | -0.028 | -0.025  |
| 1871 | 0.195           | 0.073         | 0.061                    | 0.000         | -0.215             | -0.047 | 0.009                       | 0.020      | 0.000          | 0.025  | -0.025  |
| 1872 | 0.202           | 0.075         | 0.062                    | 0.000         | -0.217             | -0.047 | 0.009                       | 0.021      | 0.000          | 0.012  | -0.025  |
| 1873 | 0.208           | 0.077         | 0.063                    | 0.000         | -0.219             | -0.048 | 0.010                       | 0.021      | 0.000          | 0.015  | -0.075  |
| 1874 | 0.212           | 0.079         | 0.064                    | 0.000         | -0.220             | -0.048 | 0.010                       | 0.021      | 0.000          | 0.000  | -0.050  |
| 1875 | 0.215           | 0.081         | 0.065                    | 0.000         | -0.222             | -0.049 | 0.010                       | 0.022      | 0.000          | -0.015 | -0.025  |
| 1876 | 0.218           | 0.083         | 0.066                    | 0.000         | -0.224             | -0.049 | 0.010                       | 0.022      | 0.000          | -0.029 | -0.150  |
| 1877 | 0.219           | 0.084         | 0.067                    | 0.000         | -0.226             | -0.049 | 0.010                       | 0.022      | 0.000          | -0.033 | -0.125  |
| 1878 | 0.219           | 0.086         | 0.067                    | 0.000         | -0.227             | -0.050 | 0.010                       | 0.022      | 0.000          | -0.041 | -0.075  |
| 1879 | 0.221           | 0.088         | 0.068                    | 0.000         | -0.229             | -0.050 | 0.010                       | 0.023      | 0.000          | -0.044 | -0.050  |
| 1880 | 0.222           | 0.089         | 0.069                    | 0.000         | -0.231             | -0.050 | 0.011                       | 0.023      | 0.000          | -0.039 | -0.025  |
| 1881 | 0.224           | 0.091         | 0.070                    | 0.000         | -0.233             | -0.051 | 0.011                       | 0.023      | 0.000          | -0.007 | -0.025  |
| 1882 | 0.228           | 0.092         | 0.071                    | 0.000         | -0.234             | -0.051 | 0.011                       | 0.024      | 0.000          | -0.019 | -0.025  |
| 1883 | 0.232           | 0.094         | 0.072                    | 0.000         | -0.236             | -0.052 | 0.011                       | 0.024      | 0.000          | -0.031 | -1.175  |
| 1884 | 0.238           | 0.096         | 0.073                    | 0.000         | -0.238             | -0.052 | 0.011                       | 0.024      | 0.000          | 0.018  | -3.575  |
| 1885 | 0.244           | 0.098         | 0.074                    | 0.000         | -0.240             | -0.053 | 0.011                       | 0.024      | 0.000          | 0.002  | -1.575  |
| 1886 | 0.250           | 0.100         | 0.075                    | 0.000         | -0.241             | -0.053 | 0.011                       | 0.025      | 0.000          | -0.014 | -0.900  |
| 1887 | 0.258           | 0.102         | 0.075                    | 0.000         | -0.243             | -0.053 | 0.012                       | 0.025      | 0.000          | -0.033 | -0.925  |
| 1888 | 0.266           | 0.104         | 0.076                    | 0.000         | -0.245             | -0.054 | 0.012                       | 0.025      | 0.000          | -0.037 | -0.550  |
| 1889 | 0.274           | 0.106         | 0.077                    | 0.000         | -0.247             | -0.054 | 0.012                       | 0.026      | 0.000          | -0.041 | -0.725  |
| 1890 | 0.283           | 0.107         | 0.078                    | 0.000         | -0.248             | -0.055 | 0.012                       | 0.026      | 0.000          | -0.041 | -0.975  |
| 1891 | 0.293           | 0.108         | 0.079                    | 0.000         | -0.250             | -0.055 | 0.012                       | 0.026      | 0.000          | -0.020 | -0.750  |
| 1892 | 0.302           | 0.109         | 0.080                    | 0.000         | -0.252             | -0.056 | 0.012                       | 0.026      | 0.000          | 0.004  | -0.550  |
| 1893 | 0.311           | 0.110         | 0.081                    | 0.000         | -0.254             | -0.056 | 0.013                       | 0.027      | 0.000          | 0.035  | -0.225  |
| 1894 | 0.319           | 0.111         | 0.082                    | 0.000         | -0.255             | -0.057 | 0.013                       | 0.027      | 0.000          | 0.072  | -0.100  |
| 1895 | 0.325           | 0.111         | 0.083                    | 0.000         | -0.257             | -0.057 | 0.013                       | 0.027      | 0.000          | 0.052  | -0.025  |
| 1896 | 0.330           | 0.112         | 0.083                    | 0.000         | -0.259             | -0.058 | 0.013                       | 0.028      | 0.000          | 0.023  | -0.450  |
| 1897 | 0.334           | 0.113         | 0.084                    | 0.000         | -0.261             | -0.058 | 0.013                       | 0.028      | 0.000          | -0.003 | -0.425  |
| 1898 | 0.336           | 0.114         | 0.085                    | 0.000         | -0.262             | -0.059 | 0.014                       | 0.028      | 0.000          | -0.012 | -0.300  |

Table AII.1.2 | (continued)

| Year | CO <sub>2</sub> | GHG<br>Other* | O <sub>3</sub><br>(Trop) | O₃<br>(Strat) | Aerosol<br>(Total) | LUC              | H <sub>2</sub> O<br>(Strat) | BC<br>Snow | Con–<br>trails | Solar  | Volcano |
|------|-----------------|---------------|--------------------------|---------------|--------------------|------------------|-----------------------------|------------|----------------|--------|---------|
| 1899 | 0.337           | 0.115         | 0.086                    | 0.000         | -0.264             | -0.059           | 0.014                       | 0.028      | 0.000          | -0.017 | -0.125  |
| 1900 | 0.339           | 0.117         | 0.087                    | 0.000         | -0.266             | -0.060           | 0.014                       | 0.029      | 0.000          | -0.028 | -0.050  |
| 1901 | 0.341           | 0.120         | 0.088                    | 0.000         | -0.268             | -0.061           | 0.014                       | 0.029      | 0.000          | -0.043 | -0.025  |
| 1902 | 0.344           | 0.123         | 0.089                    | 0.000         | -0.270             | -0.061           | 0.015                       | 0.030      | 0.000          | -0.048 | -0.500  |
| 1903 | 0.349           | 0.127         | 0.090                    | 0.000         | -0.272             | -0.062           | 0.015                       | 0.030      | 0.000          | -0.036 | -1.800  |
| 1904 | 0.355           | 0.130         | 0.091                    | 0.000         | -0.274             | -0.062           | 0.015                       | 0.031      | 0.000          | 0.011  | -0.800  |
| 1905 | 0.362           | 0.134         | 0.092                    | 0.000         | -0.276             | -0.063           | 0.016                       | 0.032      | 0.000          | -0.016 | -0.325  |
| 1906 | 0.369           | 0.138         | 0.092                    | 0.000         | -0.278             | -0.063           | 0.016                       | 0.032      | 0.000          | 0.028  | -0.175  |
| 1907 | 0.376           | 0.141         | 0.093                    | 0.000         | -0.280             | -0.064           | 0.016                       | 0.033      | 0.000          | -0.001 | -0.225  |
| 1908 | 0.383           | 0.145         | 0.094                    | 0.000         | -0.282             | -0.064           | 0.017                       | 0.033      | 0.000          | 0.020  | -0.250  |
| 1909 | 0.389           | 0.148         | 0.095                    | -0.001        | -0.284             | -0.065           | 0.017                       | 0.034      | 0.000          | -0.002 | -0.100  |
| 1910 | 0.395           | 0.151         | 0.096                    | -0.001        | -0.286             | -0.065           | 0.017                       | 0.035      | 0.000          | -0.006 | -0.075  |
| 1911 | 0.400           | 0.155         | 0.097                    | -0.001        | -0.288             | -0.066           | 0.018                       | 0.035      | 0.000          | -0.032 | -0.050  |
| 1912 | 0.406           | 0.159         | 0.098                    | -0.001        | -0.289             | -0.066           | 0.018                       | 0.035      | 0.000          | -0.045 | -0.475  |
| 1913 | 0.412           | 0.163         | 0.100                    | -0.001        | -0.290             | -0.067           | 0.019                       | 0.035      | 0.000          | -0.042 | -0.600  |
| 1914 | 0.419           | 0.167         | 0.101                    | -0.001        | -0.291             | -0.068           | 0.019                       | 0.035      | 0.000          | -0.033 | -0.250  |
| 1915 | 0.427           | 0.171         | 0.102                    | -0.001        | -0.292             | -0.068           | 0.019                       | 0.035      | 0.000          | 0.013  | -0.100  |
| 1916 | 0.436           | 0.175         | 0.103                    | -0.001        | -0.293             | -0.069           | 0.020                       | 0.035      | 0.000          | 0.068  | -0.075  |
| 1917 | 0.445           | 0.180         | 0.104                    | -0.001        | -0.294             | -0.069           | 0.020                       | 0.035      | 0.000          | 0.086  | -0.050  |
| 1918 | 0.453           | 0.185         | 0.105                    | -0.001        | -0.296             | -0.070           | 0.021                       | 0.035      | 0.000          | 0.121  | -0.050  |
| 1919 | 0.460           | 0.189         | 0.107                    | -0.002        | -0.297             | -0.071           | 0.021                       | 0.035      | 0.000          | 0.073  | -0.050  |
| 1920 | 0.466           | 0.193         | 0.108                    | -0.001        | -0.298             | -0.071           | 0.022                       | 0.035      | 0.000          | 0.039  | -0.225  |
| 1920 | 0.472           |               | 0.109                    | -0.001        | -0.302             | -0.071           | 0.022                       | 0.036      | 0.000          | 0.033  | -0.223  |
| 1921 | 0.472           | 0.196         |                          | -0.001        | -0.302<br>-0.305   | -0.072<br>-0.073 | 0.022                       | 0.036      |                | -0.013 | -0.200  |
|      |                 | 0.199         | 0.110                    |               |                    |                  |                             |            | 0.000          |        |         |
| 1923 | 0.481           | 0.201         | 0.111                    | -0.002        | -0.309             | -0.073           | 0.023                       | 0.036      | 0.000          | -0.025 | -0.025  |
| 1924 | 0.486           | 0.203         | 0.113                    | -0.002        | -0.313             | -0.074           | 0.023                       | 0.036      | 0.000          | -0.029 | -0.075  |
| 1925 | 0.491           | 0.205         | 0.114                    | -0.002        | -0.317             | -0.075           | 0.024                       | 0.036      | 0.000          | -0.015 | -0.075  |
| 1926 | 0.497           | 0.207         | 0.115                    | -0.002        | -0.321             | -0.076           | 0.024                       | 0.036      | 0.000          | 0.020  | -0.050  |
| 1927 | 0.503           | 0.210         | 0.116                    | -0.002        | -0.325             | -0.076           | 0.025                       | 0.036      | 0.000          | 0.063  | -0.050  |
| 1928 | 0.510           | 0.214         | 0.117                    | -0.002        | -0.328             | -0.077           | 0.025                       | 0.037      | 0.000          | 0.033  | -0.125  |
| 1929 | 0.517           | 0.218         | 0.119                    | -0.002        | -0.332             | -0.078           | 0.025                       | 0.037      | 0.000          | 0.028  | -0.250  |
| 1930 | 0.523           | 0.222         | 0.120                    | -0.003        | -0.336             | -0.079           | 0.026                       | 0.037      | 0.000          | 0.048  | -0.150  |
| 1931 | 0.530           | 0.226         | 0.122                    | -0.003        | -0.338             | -0.080           | 0.026                       | 0.037      | 0.000          | 0.009  | -0.125  |
| 1932 | 0.536           | 0.230         | 0.124                    | -0.003        | -0.340             | -0.081           | 0.027                       | 0.038      | 0.000          | -0.016 | -0.200  |
| 1933 | 0.542           | 0.234         | 0.126                    | -0.003        | -0.341             | -0.081           | 0.027                       | 0.038      | 0.000          | -0.029 | -0.175  |
| 1934 | 0.548           | 0.237         | 0.128                    | -0.003        | -0.343             | -0.082           | 0.027                       | 0.039      | 0.000          | -0.027 | -0.100  |
| 1935 | 0.555           | 0.241         | 0.130                    | -0.003        | -0.345             | -0.083           | 0.028                       | 0.039      | 0.000          | -0.008 | -0.100  |
| 1936 | 0.563           | 0.244         | 0.133                    | -0.003        | -0.347             | -0.084           | 0.028                       | 0.040      | 0.000          | 0.068  | -0.075  |
| 1937 | 0.570           | 0.247         | 0.135                    | -0.003        | -0.349             | -0.085           | 0.029                       | 0.040      | 0.000          | 0.089  | -0.075  |
| 1938 | 0.577           | 0.251         | 0.137                    | -0.003        | -0.350             | -0.086           | 0.029                       | 0.040      | 0.000          | 0.080  | -0.125  |
| 1939 | 0.584           | 0.254         | 0.139                    | -0.004        | -0.352             | -0.087           | 0.029                       | 0.041      | 0.000          | 0.094  | -0.100  |
| 1940 | 0.590           | 0.257         | 0.141                    | -0.004        | -0.354             | -0.088           | 0.030                       | 0.041      | 0.000          | 0.070  | -0.075  |
| 1941 | 0.595           | 0.261         | 0.143                    | -0.004        | -0.358             | -0.089           | 0.030                       | 0.042      | 0.000          | 0.057  | -0.050  |
| 1942 | 0.598           | 0.264         | 0.146                    | -0.004        | -0.362             | -0.090           | 0.030                       | 0.042      | 0.000          | 0.030  | -0.100  |
| 1943 | 0.599           | 0.267         | 0.148                    | -0.004        | -0.366             | -0.092           | 0.031                       | 0.043      | 0.000          | -0.005 | -0.100  |
| 1944 | 0.599           | 0.270         | 0.150                    | -0.004        | -0.370             | -0.093           | 0.031                       | 0.043      | 0.001          | -0.011 | -0.050  |
| 1945 | 0.599           | 0.273         | 0.152                    | -0.004        | -0.374             | -0.094           | 0.032                       | 0.043      | 0.001          | 0.019  | -0.050  |
| 1946 | 0.599           | 0.276         | 0.154                    | -0.005        | -0.378             | -0.095           | 0.032                       | 0.044      | 0.001          | 0.025  | -0.050  |
| 1947 | 0.598           | 0.279         | 0.156                    | -0.005        | -0.382             | -0.096           | 0.032                       | 0.044      | 0.002          | 0.093  | -0.050  |
| 1948 | 0.598           | 0.283         | 0.158                    | -0.005        | -0.386             | -0.097           | 0.033                       | 0.045      | 0.002          | 0.146  | -0.050  |

Table AII.1.2 | (continued)

| Year | CO <sub>2</sub> | GHG<br>Other* | O <sub>3</sub> (Trop) | O₃<br>(Strat) | Aerosol<br>(Total) | LUC    | H₂O<br>(Strat) | BC<br>Snow | Con–<br>trails | Solar  | Volcano |
|------|-----------------|---------------|-----------------------|---------------|--------------------|--------|----------------|------------|----------------|--------|---------|
| 1949 | 0.601           | 0.287         | 0.161                 | -0.005        | -0.390             | -0.099 | 0.033          | 0.045      | 0.002          | 0.123  | -0.075  |
| 1950 | 0.604           | 0.291         | 0.163                 | -0.005        | -0.394             | -0.100 | 0.034          | 0.046      | 0.002          | 0.110  | -0.075  |
| 1951 | 0.608           | 0.296         | 0.168                 | -0.005        | -0.409             | -0.102 | 0.034          | 0.046      | 0.002          | 0.037  | -0.050  |
| 1952 | 0.615           | 0.302         | 0.173                 | -0.006        | -0.424             | -0.103 | 0.035          | 0.047      | 0.002          | 0.045  | -0.100  |
| 1953 | 0.623           | 0.308         | 0.178                 | -0.006        | -0.439             | -0.105 | 0.036          | 0.047      | 0.003          | 0.025  | -0.075  |
| 1954 | 0.631           | 0.315         | 0.183                 | -0.006        | -0.455             | -0.106 | 0.036          | 0.048      | 0.003          | 0.003  | -0.100  |
| 1955 | 0.641           | 0.323         | 0.188                 | -0.006        | -0.470             | -0.108 | 0.037          | 0.048      | 0.003          | 0.015  | -0.050  |
| 1956 | 0.651           | 0.332         | 0.193                 | -0.007        | -0.485             | -0.109 | 0.038          | 0.049      | 0.003          | 0.064  | -0.025  |
| 1957 | 0.662           | 0.341         | 0.198                 | -0.007        | -0.500             | -0.111 | 0.038          | 0.050      | 0.004          | 0.129  | -0.025  |
| 1958 | 0.673           | 0.349         | 0.203                 | -0.007        | -0.515             | -0.112 | 0.039          | 0.050      | 0.004          | 0.194  | 0.000   |
| 1959 | 0.685           | 0.358         | 0.208                 | -0.008        | -0.530             | -0.114 | 0.040          | 0.051      | 0.004          | 0.159  | 0.000   |
| 1960 | 0.698           | 0.366         | 0.213                 | -0.008        | -0.546             | -0.116 | 0.041          | 0.051      | 0.004          | 0.151  | -0.125  |
| 1961 | 0.709           | 0.374         | 0.218                 | -0.008        | -0.563             | -0.117 | 0.041          | 0.051      | 0.004          | 0.110  | -0.275  |
| 1962 | 0.719           | 0.383         | 0.223                 | -0.009        | -0.580             | -0.119 | 0.042          | 0.051      | 0.004          | 0.051  | -0.325  |
| 1963 | 0.727           | 0.392         | 0.228                 | -0.009        | -0.598             | -0.120 | 0.043          | 0.050      | 0.005          | 0.038  | -1.150  |
| 1964 | 0.735           | 0.402         | 0.233                 | -0.010        | -0.615             | -0.122 | 0.044          | 0.050      | 0.005          | 0.019  | -1.800  |
| 1965 | 0.748           | 0.412         | 0.239                 | -0.011        | -0.632             | -0.123 | 0.045          | 0.050      | 0.005          | 0.008  | -1.075  |
| 1966 | 0.762           | 0.424         | 0.244                 | -0.011        | -0.650             | -0.125 | 0.046          | 0.050      | 0.006          | 0.012  | -0.575  |
| 1967 | 0.778           | 0.437         | 0.249                 | -0.012        | -0.667             | -0.126 | 0.047          | 0.049      | 0.007          | 0.055  | -0.375  |
| 1968 | 0.794           | 0.451         | 0.254                 | -0.013        | -0.684             | -0.127 | 0.048          | 0.049      | 0.008          | 0.086  | -0.675  |
| 1969 | 0.811           | 0.466         | 0.259                 | -0.014        | -0.701             | -0.129 | 0.049          | 0.049      | 0.009          | 0.077  | -0.850  |
| 1970 | 0.828           | 0.483         | 0.264                 | -0.014        | -0.719             | -0.130 | 0.050          | 0.049      | 0.009          | 0.092  | -0.425  |
| 1971 | 0.846           | 0.500         | 0.270                 | -0.016        | -0.722             | -0.131 | 0.050          | 0.049      | 0.009          | 0.082  | -0.150  |
| 1972 | 0.865           | 0.519         | 0.277                 | -0.017        | -0.725             | -0.132 | 0.051          | 0.049      | 0.009          | 0.076  | -0.100  |
| 1973 | 0.885           | 0.538         | 0.284                 | -0.018        | -0.728             | -0.134 | 0.052          | 0.049      | 0.010          | 0.044  | -0.200  |
| 1974 | 0.904           | 0.558         | 0.290                 | -0.019        | -0.732             | -0.135 | 0.053          | 0.050      | 0.010          | 0.023  | -0.325  |
| 1975 | 0.920           | 0.578         | 0.297                 | -0.021        | -0.735             | -0.136 | 0.054          | 0.050      | 0.010          | 0.006  | -0.750  |
| 1976 | 0.938           | 0.598         | 0.304                 | -0.022        | -0.738             | -0.137 | 0.055          | 0.050      | 0.010          | -0.003 | -0.350  |
| 1977 | 0.960           | 0.617         | 0.310                 | -0.024        | -0.741             | -0.138 | 0.056          | 0.050      | 0.011          | 0.040  | -0.125  |
| 1978 | 0.987           | 0.636         | 0.317                 | -0.026        | -0.745             | -0.138 | 0.057          | 0.051      | 0.011          | 0.129  | -0.200  |
| 1979 | 1.018           | 0.656         | 0.324                 | -0.027        | -0.748             | -0.139 | 0.058          | 0.051      | 0.012          | 0.167  | -0.225  |
| 1980 | 1.046           | 0.675         | 0.330                 | -0.029        | -0.751             | -0.140 | 0.059          | 0.051      | 0.012          | 0.150  | -0.125  |
| 1981 | 1.066           | 0.696         | 0.335                 | -0.031        | -0.763             | -0.141 | 0.061          | 0.051      | 0.012          | 0.147  | -0.125  |
| 1982 | 1.085           | 0.717         | 0.339                 | -0.033        | -0.775             | -0.141 | 0.062          | 0.050      | 0.012          | 0.094  | -1.325  |
| 1983 | 1.110           | 0.737         | 0.343                 | -0.035        | -0.788             | -0.142 | 0.063          | 0.050      | 0.012          | 0.091  | -1.875  |
| 1984 | 1.136           | 0.757         | 0.348                 | -0.037        | -0.800             | -0.143 | 0.064          | 0.049      | 0.013          | 0.016  | -0.750  |
| 1985 | 1.158           | 0.776         | 0.352                 | -0.038        | -0.812             | -0.143 | 0.065          | 0.049      | 0.014          | 0.011  | -0.325  |
| 1986 | 1.180           | 0.795         | 0.356                 | -0.040        | -0.824             | -0.144 | 0.065          | 0.049      | 0.015          | 0.012  | -0.350  |
| 1987 | 1.208           | 0.813         | 0.360                 | -0.042        | -0.836             | -0.144 | 0.066          | 0.048      | 0.016          | 0.015  | -0.250  |
| 1988 | 1.240           | 0.832         | 0.365                 | -0.044        | -0.848             | -0.145 | 0.067          | 0.048      | 0.017          | 0.095  | -0.200  |
| 1989 | 1.266           | 0.853         | 0.369                 | -0.046        | -0.861             | -0.145 | 0.067          | 0.047      | 0.018          | 0.151  | -0.150  |
| 1990 | 1.287           | 0.872         | 0.373                 | -0.048        | -0.873             | -0.146 | 0.068          | 0.047      | 0.019          | 0.118  | -0.150  |
| 1991 | 1.305           | 0.888         | 0.375                 | -0.050        | -0.878             | -0.146 | 0.068          | 0.046      | 0.019          | 0.126  | -1.350  |
| 1992 | 1.318           | 0.900         | 0.376                 | -0.052        | -0.883             | -0.146 | 0.069          | 0.045      | 0.020          | 0.137  | -3.025  |
| 1993 | 1.332           | 0.909         | 0.378                 | -0.054        | -0.888             | -0.147 | 0.069          | 0.045      | 0.022          | 0.063  | -1.225  |
| 1994 | 1.354           | 0.916         | 0.379                 | -0.055        | -0.893             | -0.147 | 0.069          | 0.044      | 0.024          | 0.027  | -0.500  |
| 1995 | 1.381           | 0.923         | 0.380                 | -0.056        | -0.897             | -0.147 | 0.070          | 0.043      | 0.025          | 0.020  | -0.250  |
| 1996 | 1.404           | 0.930         | 0.382                 | -0.057        | -0.902             | -0.148 | 0.070          | 0.043      | 0.027          | 0.003  | -0.175  |
| 1997 | 1.428           | 0.937         | 0.383                 | -0.057        | -0.907             | -0.148 | 0.070          | 0.042      | 0.028          | 0.016  | -0.125  |
| 1998 | 1.459           | 0.944         | 0.385                 | -0.057        | -0.912             | -0.148 | 0.071          | 0.041      | 0.029          | 0.062  | -0.075  |

Table AII.1.2 | (continued)

| Year | CO <sub>2</sub> | GHG<br>Other* | O <sub>3</sub><br>(Trop) | O <sub>3</sub><br>(Strat) | Aerosol<br>(Total) | LUC    | H <sub>2</sub> O<br>(Strat) | BC<br>Snow | Con-<br>trails | Solar  | Volcano |
|------|-----------------|---------------|--------------------------|---------------------------|--------------------|--------|-----------------------------|------------|----------------|--------|---------|
| 1999 | 1.489           | 0.952         | 0.386                    | -0.056                    | -0.917             | -0.148 | 0.071                       | 0.041      | 0.031          | 0.104  | -0.050  |
| 2000 | 1.510           | 0.957         | 0.388                    | -0.056                    | -0.922             | -0.149 | 0.071                       | 0.040      | 0.033          | 0.127  | -0.050  |
| 2001 | 1.532           | 0.961         | 0.389                    | -0.055                    | -0.920             | -0.149 | 0.071                       | 0.040      | 0.033          | 0.114  | -0.050  |
| 2002 | 1.563           | 0.965         | 0.390                    | -0.055                    | -0.918             | -0.149 | 0.071                       | 0.040      | 0.033          | 0.108  | -0.050  |
| 2003 | 1.594           | 0.969         | 0.391                    | -0.054                    | -0.916             | -0.149 | 0.071                       | 0.040      | 0.034          | 0.042  | -0.075  |
| 2004 | 1.624           | 0.973         | 0.393                    | -0.053                    | -0.913             | -0.149 | 0.071                       | 0.040      | 0.038          | 0.012  | -0.050  |
| 2005 | 1.654           | 0.976         | 0.394                    | -0.053                    | -0.911             | -0.149 | 0.071                       | 0.040      | 0.040          | -0.011 | -0.075  |
| 2006 | 1.684           | 0.981         | 0.395                    | -0.052                    | -0.909             | -0.150 | 0.071                       | 0.040      | 0.042          | -0.016 | -0.100  |
| 2007 | 1.711           | 0.986         | 0.396                    | -0.052                    | -0.907             | -0.150 | 0.071                       | 0.040      | 0.044          | -0.017 | -0.100  |
| 2008 | 1.736           | 0.992         | 0.398                    | -0.051                    | -0.904             | -0.150 | 0.072                       | 0.040      | 0.046          | -0.025 | -0.100  |
| 2009 | 1.762           | 0.999         | 0.399                    | -0.051                    | -0.902             | -0.150 | 0.072                       | 0.040      | 0.044          | -0.027 | -0.125  |
| 2010 | 1.789           | 1.005         | 0.400                    | -0.050                    | -0.900             | -0.150 | 0.072                       | 0.040      | 0.048          | 0.001  | -0.100  |
| 2011 | 1.816           | 1.015         | 0.400                    | -0.050                    | -0.900             | -0.150 | 0.073                       | 0.040      | 0.050          | 0.030  | -0.125  |

See Figure 8.18, also Sections 8.1 and 11.3.6.1. To get the total ERF (effective radiative forcing) all components can be summed. Small negative values for CO<sub>2</sub> prior to 1800 are due to uncertainty in PI values. GHG other\* includes only WMGHG. Aerosol is the sum of direct and indirect effects. LUC includes land use land cover change. Contrails combines aviation contrails (~20% of total) and contrail-induced cirrus. Values are annual average.

Table All.1.3 | Historical global decadal mean global surface air temperature (°C) relative to 1961–1990 average

| Vanu                         |            | HadCRUT4     |             | GISS         | NCDC         |
|------------------------------|------------|--------------|-------------|--------------|--------------|
| Year                         | Lower (5%) | Median (50%) | Upper (95%) | Median (50%) | Median (50%) |
| 1850 <sup>d</sup>            | -0.404     | -0.320       | -0.243      |              |              |
| 1860 <sup>d</sup>            | -0.413     | -0.335       | -0.263      |              |              |
| 1870 <sup>d</sup>            | -0.326     | -0.258       | -0.195      |              |              |
| 1880 <sup>d</sup>            | -0.363     | -0.297       | -0.237      | -0.296       | -0.291       |
| 1890 <sup>d</sup>            | -0.430     | -0.359       | -0.299      | -0.361       | -0.370       |
| 1900 <sup>d</sup>            | -0.473     | -0.410       | -0.353      | -0.418       | -0.434       |
| 1910 <sup>d</sup>            | -0.448     | -0.387       | -0.334      | -0.435       | -0.430       |
| 1920 <sup>d</sup>            | -0.297     | -0.242       | -0.193      | -0.311       | -0.311       |
| 1930 <sup>d</sup>            | -0.166     | -0.116       | -0.070      | -0.172       | -0.161       |
| 1940 <sup>d</sup>            | -0.047     | -0.002       | +0.042      | -0.085       | -0.063       |
| 1950 <sup>d</sup>            | -0.106     | -0.061       | -0.017      | -0.134       | -0.136       |
| 1960 <sup>d</sup>            | -0.093     | -0.054       | -0.014      | -0.104       | -0.086       |
| 1970 <sup>d</sup>            | -0.113     | -0.077       | -0.041      | -0.058       | -0.060       |
| 1980 <sup>d</sup>            | +0.052     | +0.095       | +0.135      | +0.118       | +0.109       |
| 1990 <sup>d</sup>            | +0.221     | +0.270       | +0.318      | +0.275       | +0.272       |
| 2000 <sup>d</sup>            | +0.400     | +0.453       | +0.508      | +0.472       | +0.450       |
| 1986–2005<br>minus 1850–1900 |            | +0.61 ± 0.06 |             | N/A          | N/A          |
| 1986–2005<br>minus 1886–1905 |            | +0.66 ± 0.06 |             | +0.66        | +0.66        |
| 1986–2005<br>minus 1961–1990 |            | +0.30 ± 0.03 |             | +0.31        | +0.30        |
| 1986–2005<br>minus 1980–1999 |            | +0.11 ± 0.02 |             | +0.11        | +0.11        |
| 1946–2012<br>minus 1880–1945 |            | +0.38 ± 0.04 |             | +0.40        | +0.39        |

## Notes:

Decadal average (1990<sup>d</sup> = 1990–1999) median global surface air temperatures from HadCRUT4, GISS and NCDC analyses. See Chapter 2, Sections 2.4.3 and 2.SM.4.3.3, Table 2.7, Figures 2.19, 2.20, 2.21 and 2.22, and also Figure 11.24a. Confidence intervals (5 to 95% for HadCRUT4 only) take into account measurement, sampling, bias and coverage uncertainties. Also shown are temperature increases between the CMIP5 reference period (1986–2005) and four earlier averaging periods, where 1850–1900 is the early instrumental temperature record. Uncertainties in these temperature differences are 5 to 95% confidence intervals.

# **AII.2: Anthropogenic Emissions**

See discussion of Figure 8.2 and Section 11.3.5.

**Table All.2.1a** | Anthropogenic CO<sub>2</sub> emissions from fossil fuels and other industrial sources (FF) (PgC yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2    | B1    | IS92a | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|-------------------|--------|--------|--------|--------|-------|-------|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| 2000 <sup>d</sup> | 6.82   | 6.82   | 6.82   | 6.82   | 6.90  | 6.90  | 7.10  | 6.92 ± 0.80             | 6.98 ± 0.81             | 6.76 ± 0.71             | 6.98 ± 0.81             |
| 2010 <sup>d</sup> | 8.61   | 8.54   | 8.39   | 8.90   | 8.46  | 8.50  | 8.68  | 8.38 ± 1.03             | 8.63 ± 1.07             | 7.66 ± 1.64             | 8.27 ± 1.68             |
| 2020 <sup>d</sup> | 9.00   | 9.79   | 8.99   | 11.38  | 11.01 | 10.00 | 10.26 | 8.46 ± 1.38             | 10.24±1.69              | 8.33 ± 1.82             | 10.30 ± 1.87            |
| 2030 <sup>d</sup> | 7.21   | 10.83  | 9.99   | 13.79  | 13.53 | 11.20 | 11.62 | 6.81 ± 1.49             | 10.93±1.83              | 9.20 ± 1.55             | 12.36 ± 2.25            |
| 2040 <sup>d</sup> | 4.79   | 11.25  | 11.47  | 16.69  | 15.01 | 12.20 | 12.66 | 4.61 ± 1.60             | 11.82±1.84              | 10.04 ± 1.42            | 15.09 ± 2.15            |
| 2050 <sup>d</sup> | 3.21   | 10.91  | 13.00  | 20.03  | 16.49 | 11.70 | 13.70 | 2.96 ± 1.80             | 11.37±1.84              | 11.14 ± 1.55            | 18.15 ± 2.56            |
| 2060 <sup>d</sup> | 1.55   | 9.42   | 14.73  | 23.32  | 18.49 | 10.20 | 14.68 | 1.77 ± 1.06             | 9.96 ± 2.17             | 13.22 ± 2.05            | 21.49 ± 2.42            |
| 2070 <sup>d</sup> | 0.26   | 7.17   | 16.33  | 25.75  | 20.49 | 8.60  | 15.66 | 0.75 ± 0.90             | 7.86 ± 1.94             | 14.57 ± 1.88            | 23.62 ± 2.43            |
| 2080 <sup>d</sup> | -0.39  | 4.62   | 16.87  | 27.28  | 22.97 | 7.30  | 17.00 | -0.09 ± 0.99            | 5.17 ± 1.77             | 15.51 ± 2.29            | 24.47 ± 2.70            |
| 2090 <sup>d</sup> | -0.81  | 4.19   | 14.70  | 28.24  | 25.94 | 6.10  | 18.70 | -0.30 ± 1.09            | 5.13 ± 1.53             | 14.24 ± 1.81            | 25.30 ± 2.86            |
| 2100 <sup>d</sup> | -0.92  | 4.09   | 13.63  | 28.68  | 28.91 | 5.20  | 20.40 | -0.63 ± 1.17            | 4.64 ± 1.34             | 12.78 ± 1.35            | 25.28 ± 2.73            |

Notes

Decadal mean values (2010<sup>d</sup> = average of 2005–2014) are used for emissions because linear interpolation between decadal means conserves total emissions. Data are taken from RCP database (Meinshausen et al., 2011a; http://www.iiasa.ac.at/web-apps/tnt/RcpDb) and may be different from yearly snapshots; for 2100 the average (2095–2100) is used. SRES A2 and B1 and IS92a are taken from TAR Appendix II. RCPn.n<sup>®</sup> values are inferred from ESMs used in CMIP5. The model mean and standard deviation is shown. ESM fossil emissions are taken from 14 models as described in Jones et al. (2013) although not every model has performed every scenario. See Chapter 6, Sections 6.4.3, and 6.4.3.3, and Figure 6.25.

Table All.2.1b | Anthropogenic CO<sub>2</sub> emissions from agriculture, forestry, land use (AFOLU) (PgC yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | SRES-A2 | SRES-B1 | IS92a |
|-------------------|--------|--------|--------|--------|---------|---------|-------|
| 2000 <sup>d</sup> | 1.21   | 1.21   | 1.21   | 1.21   | 1.07    | 1.07    | 1.30  |
| 2010 <sup>d</sup> | 1.09   | 0.94   | 0.93   | 1.08   | 1.12    | 0.78    | 1.22  |
| 2020 <sup>d</sup> | 0.97   | 0.41   | 0.38   | 0.91   | 1.25    | 0.63    | 1.14  |
| 2030 <sup>d</sup> | 0.79   | 0.23   | -0.43  | 0.74   | 1.19    | -0.09   | 1.04  |
| 2040 <sup>d</sup> | 0.51   | 0.21   | -0.67  | 0.65   | 1.06    | -0.48   | 0.92  |
| 2050 <sup>d</sup> | 0.29   | 0.23   | -0.48  | 0.58   | 0.93    | -0.41   | 0.80  |
| 2060 <sup>d</sup> | 0.55   | 0.19   | -0.27  | 0.50   | 0.67    | -0.46   | 0.54  |
| 2070 <sup>d</sup> | 0.55   | 0.11   | -0.04  | 0.42   | 0.40    | -0.42   | 0.28  |
| 2080 <sup>d</sup> | 0.55   | 0.02   | 0.20   | 0.31   | 0.25    | -0.60   | 0.12  |
| 2090 <sup>d</sup> | 0.59   | 0.03   | 0.24   | 0.20   | 0.21    | -0.78   | 0.06  |
| 2100 <sup>d</sup> | 0.50   | 0.04   | 0.18   | 0.09   | 0.18    | -0.97   | -0.10 |

Notes:

See Table All.2.1a.

**Table All.2.1c** | Anthropogenic total CO<sub>2</sub> emissions (PgC yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|-------------------|--------|--------|--------|--------|
| 2000 <sup>d</sup> | 8.03   | 8.03   | 8.03   | 8.03   |
| 2010 <sup>d</sup> | 9.70   | 9.48   | 9.32   | 9.98   |
| 2020 <sup>d</sup> | 9.97   | 10.20  | 9.37   | 12.28  |
| 2030 <sup>d</sup> | 8.00   | 11.06  | 9.57   | 14.53  |
| 2040 <sup>d</sup> | 5.30   | 11.46  | 10.80  | 17.33  |
| 2050 <sup>d</sup> | 3.50   | 11.15  | 12.52  | 20.61  |
| 2060 <sup>d</sup> | 2.10   | 9.60   | 14.46  | 23.83  |
| 2070 <sup>d</sup> | 0.81   | 7.27   | 16.29  | 26.17  |
| 2080 <sup>d</sup> | 0.16   | 4.65   | 17.07  | 27.60  |
| 2090 <sup>d</sup> | -0.23  | 4.22   | 14.94  | 28.44  |
| 2100 <sup>d</sup> | -0.42  | 4.13   | 13.82  | 28.77  |

Notes:

See Table AII.2.1a.

Table All.2.2 | Anthropogenic CH<sub>4</sub> emissions (Tg yr<sup>-1</sup>)

| Year                    | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1  | IS92a | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5&      |
|-------------------------|--------|--------|--------|--------|-----|-----|-------|-------------------------|-------------------------|-------------------------|--------------|
| PI                      |        |        |        |        |     |     |       | 202 ± 28                | 202 ± 28                | 202 ± 28                | 202 ± 28     |
| 2010 <sup>total</sup>   |        |        |        |        |     |     |       | 554 ± 56                | $554 \pm 56$            | 554 ± 56                | 554 ± 56     |
| 2010 <sup>anthrop</sup> |        |        |        |        |     |     |       | 352 ± 45                | 352 ± 45                | 352 ± 45                | 352 ± 45     |
| 2010 <sup>d</sup>       | 322    | 322    | 321    | 345    | 370 | 349 | 433   | 352 ± 45                | 352 ± 45                | 352 ± 45                | 352 ± 45     |
| 2020 <sup>d</sup>       | 267    | 334    | 315    | 415    | 424 | 377 | 477   | 268 ± 34                | $366 \pm 47$            | 338 ± 43                | 424 ± 54     |
| 2030 <sup>d</sup>       | 238    | 338    | 326    | 484    | 486 | 385 | 529   | 246 ± 31                | $370 \pm 47$            | 354 ± 45                | $490 \pm 63$ |
| 2040 <sup>d</sup>       | 223    | 337    | 343    | 573    | 542 | 381 | 580   | 235 ± 30                | $368 \pm 47$            | 373 ± 47                | 585 ± 75     |
| 2050 <sup>d</sup>       | 192    | 331    | 354    | 669    | 598 | 359 | 630   | 198 ± 25                | 361 ± 46                | 385 ± 49                | $685 \pm 88$ |
| 2060 <sup>d</sup>       | 169    | 318    | 362    | 738    | 654 | 342 | 654   | 174 ± 22                | $346 \pm 44$            | 395 ± 50                | 754 ± 96     |
| 2070 <sup>d</sup>       | 161    | 301    | 359    | 779    | 711 | 324 | 678   | 169 ± 22                | $328 \pm 42$            | 390 ± 50                | 790 ±101     |
| 2080 <sup>d</sup>       | 155    | 283    | 336    | 820    | 770 | 293 | 704   | 162 ± 21                | $306 \pm 39$            | 369 ± 47                | 832 ±106     |
| 2090 <sup>d</sup>       | 149    | 274    | 278    | 865    | 829 | 266 | 733   | 155 ± 20                | 298 ± 38                | 293 ± 37                | 882 ±113     |
| 2100 <sup>d</sup>       | 143    | 267    | 250    | 885    | 889 | 236 | 762   | 148 ± 19                | 290 ± 37                | 267 ± 34                | 899 ±115     |

| Year              | MFR | CLE | MFR* | CLE* | Rog <sup>∟</sup> | Rog <sup>u</sup> | AME <sup>L</sup> | AME <sup>U</sup> |
|-------------------|-----|-----|------|------|------------------|------------------|------------------|------------------|
| 2000 <sup>d</sup> | 366 | 366 | 303  | 303  |                  |                  |                  |                  |
| 2010 <sup>d</sup> |     |     | 193  | 335  |                  |                  | 332              | 333              |
| 2020 <sup>d</sup> |     |     | 208  | 383  | 240              | 390              | 294              | 350              |
| 2030 <sup>d</sup> | 339 | 478 | 229  | 443  | 217              | 428              | 293              | 376              |
| 2040 <sup>d</sup> |     |     |      |      |                  |                  | 295              | 404              |
| 2050 <sup>d</sup> |     |     |      |      | 178              | 454              | 291              | 426              |
| 2060 <sup>d</sup> |     |     |      |      |                  |                  | 275              | 434              |
| 2070 <sup>d</sup> |     |     |      |      |                  |                  | 254              | 436              |
| 2080 <sup>d</sup> |     |     |      |      |                  |                  | 201              | 430              |
| 2090 <sup>d</sup> |     |     |      |      |                  |                  | 183              | 417              |
| 2100 <sup>d</sup> |     |     |      |      | 121              | 385              | 167              | 406              |

For all anthropogenic emissions see Box 1.1 (Figure 4), Section 8.2.2, Figure 8.2, Sections 11.3.5.1.1 to 3, 11.3.5.2, 11.3.6.1. Ten-year average values (2010<sup>d</sup> = average of 2005–2014; but 2100<sup>d</sup> = average of 2095–2100) are given for RCP-based emissions, but single-year emissions are shown for other scenarios. RCPn.n = harmonized anthropogenic emissions as reported. SRES A2 and B1 and IS92a are from TAR Appendix II. AR5 RCPn.n<sup>&</sup> emissions have ± 1- $\sigma$  (16 to 84% confidence) uncertainties and are based on the methodology of Prather et al. (2012) updated with CMIP5 results (Holmes et al., 2013; Voulgarakis et al., 2013). Projections of CH<sub>4</sub> lifetimes are harmonized based on PI (1750) and PD (2010) budgets that include uncertainties in lifetimes and abundances. All projected RCP abundances for CH<sub>4</sub> and N<sub>2</sub>O (Tables AII.4.2 to AII.4.3) rescale each of the RCP emissions by a fixed factor equal to the ratio of RCP to AR5 anthropogenic emissions at year 2010 to ensure harmonization between total emissions, lifetimes and observed abundances. Natural emissions are kept constant but included as additional uncertainty. Independent emission estimates are shown as follows: MFR/CLE are the maximum feasible reduction and current legislation scenarios from Dentener et al. (2005), while MFR\*/CLE\* are the similarly labeled scenarios from Cofala et al. (2007). REFY/REF<sup>U</sup> are lower/upper bounds from the reference scenario of van Vuuren et al. (2008), while POL¹/POL<sup>U</sup> are the lower/upper bounds from their policy scenario. AME¹/AME<sup>U</sup> are lower/upper bounds from Calvin et al. (2012). Rog¹/Rog<sup>U</sup> are lower/upper bounds from Rogelj et et. (2011).

**Table AII.2.3** | Anthropogenic  $N_2O$  emissions (TgN yr<sup>-1</sup>)

| Year                    | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1  | IS92a | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|-------------------------|--------|--------|--------|--------|------|-----|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| PI                      |        |        |        |        |      |     |       | 9.1 ± 1.0               | 9.1 ± 1.0               | 9.1 ± 1.0               | 9.1 ± 1.0               |
| 2010 <sup>total</sup>   |        |        |        |        |      |     |       | 15.7 ± 1.1              | 15.7 ± 1.1              | 15.7 ± 1.1              | 15.7 ± 1.1              |
| 2010 <sup>anthrop</sup> |        |        |        |        |      |     |       | 6.5 ± 1.3               | 6.5 ± 1.3               | 6.5 ± 1.3               | 6.5 ± 1.3               |
| 2010 <sup>d</sup>       | 7.7    | 7.8    | 8.0    | 8.25   | 8.1  | 7.5 | 6.2   | 6.5 ± 1.3               | 6.5 ± 1.3               | 6.5 ± 1.3               | 6.5 ± 1.3               |
| 2020 <sup>d</sup>       | 7.4    | 8.2    | 8.1    | 9.5    | 9.6  | 8.1 | 7.1   | 6.1 ± 1.2               | 6.8 ± 1.3               | 6.3 ± 1.2               | 7.7 ± 1.5               |
| 2030 <sup>d</sup>       | 7.3    | 8.5    | 8.8    | 10.7   | 10.7 | 8.2 | 7.7   | 6.1 ± 1.2               | 7.1 ± 1.4               | 7.0 ± 1.4               | 8.6 ± 1.7               |
| 2040 <sup>d</sup>       | 7.1    | 8.7    | 9.7    | 11.9   | 11.3 | 8.3 | 8.0   | 6.0 ± 1.2               | 7.2 ± 1.4               | 7.8 ± 1.5               | 9.6 ± 1.9               |
| 2050 <sup>d</sup>       | 6.3    | 8.6    | 10.5   | 12.7   | 12.0 | 8.3 | 8.3   | 5.2 ± 1.0               | 7.1 ± 1.4               | 8.4 ± 1.6               | 10.3 ± 2.0              |
| 2060 <sup>d</sup>       | 5.8    | 8.5    | 11.3   | 13.4   | 12.9 | 7.7 | 8.3   | 4.8 ± 0.9               | 7.1 ± 1.4               | 9.1 ± 1.8               | 10.8 ± 2.1              |
| 2070 <sup>d</sup>       | 5.7    | 8.4    | 12.0   | 13.9   | 13.9 | 7.4 | 8.4   | 4.8 ± 0.9               | 7.0 ± 1.3               | 9.6 ± 1.9               | 11.2 ± 2.2              |
| 2080 <sup>d</sup>       | 5.6    | 8.2    | 12.3   | 14.5   | 14.8 | 7.0 | 8.5   | 4.7 ± 0.9               | 6.8 ± 1.3               | 9.9 ± 1.9               | 11.7 ± 2.3              |
| 2090 <sup>d</sup>       | 5.5    | 8.1    | 12.4   | 15.2   | 15.7 | 6.4 | 8.6   | 4.6 ± 0.9               | 6.8 ± 1.3               | 9.9 ± 1.9               | 12.3 ± 2.4              |
| 2100 <sup>d</sup>       | 5.3    | 8.1    | 12.2   | 15.7   | 16.5 | 5.7 | 8.7   | 4.4 ± 0.9               | 6.7 ± 1.3               | 9.8 ± 1.9               | 12.6 ± 2.4              |

See Table AII.2.2.

**Table All.2.4** | Anthropogenic SF<sub>6</sub> emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2    | B1    |
|-------------------|--------|--------|--------|--------|-------|-------|
| 2000 <sup>d</sup> | 5.70   | 5.70   | 5.70   | 5.70   | 6.20  | 6.20  |
| 2010 <sup>d</sup> | 6.14   | 5.68   | 7.43   | 6.93   | 7.60  | 5.60  |
| 2020 <sup>d</sup> | 2.87   | 3.02   | 9.19   | 8.12   | 9.70  | 5.70  |
| 2030 <sup>d</sup> | 1.96   | 2.89   | 9.58   | 9.83   | 11.60 | 7.20  |
| 2040 <sup>d</sup> | 1.53   | 3.32   | 9.68   | 11.14  | 13.70 | 8.90  |
| 2050 <sup>d</sup> | 0.76   | 3.77   | 9.78   | 12.07  | 16.00 | 10.40 |
| 2060 <sup>d</sup> | 0.51   | 4.28   | 9.92   | 13.69  | 18.80 | 10.90 |
| 2070 <sup>d</sup> | 0.42   | 4.87   | 10.05  | 13.72  | 19.80 | 9.50  |
| 2080 <sup>d</sup> | 0.32   | 5.53   | 10.00  | 14.79  | 20.70 | 7.10  |
| 2090 <sup>d</sup> | 0.19   | 5.99   | 9.86   | 15.96  | 23.40 | 6.50  |
| 2100 <sup>d</sup> | 0.07   | 6.25   | 9.37   | 16.79  | 25.20 | 6.50  |

Notes

For this and all following emissions tables, see Table AII.2.2. RCPn.n = harmonized anthropogenic emissions as reported by RCPs (Lamarque et al., 2010; 2011; Meinshausen et al., 2011a). SRES A2 and B1 and IS92a from TAR Appendix II.

**Table AII.2.5** | Anthropogenic CF<sub>4</sub> emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2    | B1    |
|-------------------|--------|--------|--------|--------|-------|-------|
| 2000 <sup>d</sup> | 11.62  | 11.62  | 11.62  | 11.62  | 12.60 | 12.60 |
| 2010 <sup>d</sup> | 13.65  | 10.69  | 19.10  | 11.04  | 20.30 | 14.50 |
| 2020 <sup>d</sup> | 12.07  | 8.77   | 22.84  | 11.67  | 25.20 | 15.70 |
| 2030 <sup>d</sup> | 7.36   | 8.47   | 23.46  | 12.29  | 31.40 | 16.60 |
| 2040 <sup>d</sup> | 5.06   | 8.68   | 23.77  | 12.22  | 37.90 | 18.50 |
| 2050 <sup>d</sup> | 2.95   | 9.04   | 23.73  | 12.37  | 45.60 | 20.90 |
| 2060 <sup>d</sup> | 2.24   | 8.95   | 23.70  | 11.89  | 56.00 | 23.10 |
| 2070 <sup>d</sup> | 2.07   | 9.04   | 23.45  | 11.81  | 63.60 | 22.50 |
| 2080 <sup>d</sup> | 1.52   | 9.51   | 22.91  | 11.58  | 73.20 | 21.30 |
| 2090 <sup>d</sup> | 1.22   | 10.50  | 21.98  | 11.14  | 82.80 | 22.50 |
| 2100 <sup>d</sup> | 1.11   | 11.05  | 20.56  | 10.81  | 88.20 | 22.20 |

**Table AII.2.6** | Anthropogenic  $C_2F_6$  emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1   |
|-------------------|--------|--------|--------|--------|------|------|
| 2000 <sup>d</sup> | 2.43   | 2.43   | 2.43   | 2.43   | 1.30 | 1.30 |
| 2010 <sup>d</sup> | 4.29   | 2.34   | 2.62   | 2.50   | 2.00 | 1.50 |
| 2020 <sup>d</sup> | 4.98   | 1.76   | 2.66   | 2.61   | 2.50 | 1.60 |
| 2030 <sup>d</sup> | 2.33   | 1.80   | 2.69   | 2.75   | 3.10 | 1.70 |
| 2040 <sup>d</sup> | 1.15   | 1.94   | 2.63   | 2.74   | 3.80 | 1.80 |
| 2050 <sup>d</sup> | 0.55   | 2.03   | 2.56   | 2.79   | 4.60 | 2.10 |
| 2060 <sup>d</sup> | 0.34   | 2.03   | 2.49   | 2.71   | 5.60 | 2.30 |
| 2070 <sup>d</sup> | 0.26   | 1.99   | 2.50   | 2.74   | 6.40 | 2.20 |
| 2080 <sup>d</sup> | 0.16   | 1.93   | 2.36   | 2.74   | 7.30 | 2.10 |
| 2090 <sup>d</sup> | 0.10   | 1.97   | 2.26   | 2.68   | 8.30 | 2.20 |
| 2100 <sup>d</sup> | 0.09   | 2.01   | 2.09   | 2.63   | 8.80 | 2.20 |

**Table AII.2.7** | Anthropogenic  $C_6F_{14}$  emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|-------------------|--------|--------|--------|--------|
| 2000 <sup>d</sup> | 0.213  | 0.213  | 0.213  | 0.213  |
| 2010 <sup>d</sup> | 0.430  | 0.430  | 0.429  | 0.430  |
| 2020 <sup>d</sup> | 0.220  | 0.220  | 0.220  | 0.220  |
| 2030 <sup>d</sup> | 0.123  | 0.123  | 0.123  | 0.123  |
| 2040 <sup>d</sup> | 0.112  | 0.112  | 0.112  | 0.112  |
| 2050 <sup>d</sup> | 0.109  | 0.109  | 0.109  | 0.109  |
| 2060 <sup>d</sup> | 0.108  | 0.108  | 0.108  | 0.108  |
| 2070 <sup>d</sup> | 0.106  | 0.106  | 0.106  | 0.106  |
| 2080 <sup>d</sup> | 0.103  | 0.103  | 0.103  | 0.103  |
| 2090 <sup>d</sup> | 0.097  | 0.097  | 0.097  | 0.097  |
| 2100 <sup>d</sup> | 0.090  | 0.088  | 0.088  | 0.090  |

Table AII.2.8 | Anthropogenic HFC-23 emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1   |
|-------------------|--------|--------|--------|--------|------|------|
| 2000 <sup>d</sup> | 10.4   | 10.4   | 10.4   | 10.4   | 13.0 | 13.0 |
| 2010 <sup>d</sup> | 9.1    | 9.1    | 9.1    | 9.1    | 15.0 | 15.0 |
| 2020 <sup>d</sup> | 2.4    | 2.4    | 2.4    | 2.4    | 5.0  | 5.0  |
| 2030 <sup>d</sup> | 0.7    | 0.7    | 0.7    | 0.7    | 2.0  | 2.0  |
| 2040 <sup>d</sup> | 0.4    | 0.4    | 0.4    | 0.4    | 2.0  | 2.0  |
| 2050 <sup>d</sup> | 0.3    | 0.3    | 0.3    | 0.3    | 1.0  | 1.0  |
| 2060 <sup>d</sup> | 0.1    | 0.1    | 0.1    | 0.1    | 1.0  | 1.0  |
| 2070 <sup>d</sup> | 0.1    | 0.1    | 0.1    | 0.1    | 1.0  | 1.0  |
| 2080 <sup>d</sup> | 0.0    | 0.0    | 0.0    | 0.0    | 1.0  | 1.0  |
| 2090 <sup>d</sup> | 0.0    | 0.0    | 0.0    | 0.0    | 1.0  | 1.0  |
| 2100 <sup>d</sup> | 0.0    | 0.0    | 0.0    | 0.0    | 1.0  | 1.0  |

**Table AII.2.9** | Anthropogenic HFC-32 emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1   |
|-------------------|--------|--------|--------|--------|------|------|
| 2000 <sup>d</sup> | 3.5    | 3.5    | 3.5    | 3.5    | 0.0  | 0.0  |
| 2010 <sup>d</sup> | 20.1   | 20.1   | 20.1   | 20.1   | 4.0  | 3.0  |
| 2020 <sup>d</sup> | 55.4   | 55.4   | 55.4   | 55.4   | 6.0  | 6.0  |
| 2030 <sup>d</sup> | 71.2   | 71.2   | 71.2   | 71.2   | 9.0  | 8.0  |
| 2040 <sup>d</sup> | 78.8   | 78.8   | 78.8   | 78.8   | 11.0 | 10.0 |
| 2050 <sup>d</sup> | 76.5   | 76.5   | 76.5   | 76.5   | 14.0 | 14.0 |
| 2060 <sup>d</sup> | 83.6   | 83.6   | 83.6   | 83.6   | 17.0 | 14.0 |
| 2070 <sup>d</sup> | 92.7   | 92.7   | 92.7   | 92.7   | 20.0 | 14.0 |
| 2080 <sup>d</sup> | 95.4   | 95.4   | 95.4   | 95.4   | 24.0 | 14.0 |
| 2090 <sup>d</sup> | 91.0   | 91.0   | 91.0   | 91.0   | 29.0 | 14.0 |
| 2100 <sup>d</sup> | 82.7   | 82.7   | 82.7   | 82.7   | 33.0 | 13.0 |

**Table All.2.10** | Anthropogenic HFC-125 emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1 | IS92a |
|-------------------|--------|--------|--------|--------|-----|----|-------|
| 2000 <sup>d</sup> | 8      | 8      | 8      | 8      | 0   | 0  | 0     |
| 2010 <sup>d</sup> | 29     | 18     | 10     | 32     | 11  | 11 | 1     |
| 2020 <sup>d</sup> | 82     | 29     | 9      | 63     | 21  | 21 | 9     |
| 2030 <sup>d</sup> | 108    | 32     | 9      | 79     | 29  | 29 | 46    |
| 2040 <sup>d</sup> | 122    | 31     | 10     | 99     | 35  | 36 | 111   |
| 2050 <sup>d</sup> | 122    | 30     | 10     | 115    | 46  | 48 | 175   |
| 2060 <sup>d</sup> | 138    | 27     | 11     | 128    | 56  | 48 | 185   |
| 2070 <sup>d</sup> | 157    | 24     | 11     | 139    | 66  | 48 | 194   |
| 2080 <sup>d</sup> | 165    | 24     | 12     | 144    | 79  | 48 | 199   |
| 2090 <sup>d</sup> | 161    | 23     | 12     | 147    | 94  | 46 | 199   |
| 2100 <sup>d</sup> | 150    | 23     | 12     | 148    | 106 | 44 | 199   |

Table AII.2.11 | Anthropogenic HFC-134a emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1  | IS92a |
|-------------------|--------|--------|--------|--------|------|-----|-------|
| 2000 <sup>d</sup> | 72     | 72     | 72     | 72     | 80   | 80  | 148   |
| 2010 <sup>d</sup> | 146    | 140    | 139    | 153    | 166  | 163 | 290   |
| 2020 <sup>d</sup> | 173    | 184    | 153    | 255    | 252  | 249 | 396   |
| 2030 <sup>d</sup> | 193    | 208    | 159    | 331    | 330  | 326 | 557   |
| 2040 <sup>d</sup> | 209    | 229    | 163    | 402    | 405  | 414 | 738   |
| 2050 <sup>d</sup> | 203    | 248    | 167    | 461    | 506  | 547 | 918   |
| 2060 <sup>d</sup> | 225    | 246    | 172    | 506    | 633  | 550 | 969   |
| 2070 <sup>d</sup> | 252    | 260    | 175    | 553    | 758  | 544 | 1020  |
| 2080 <sup>d</sup> | 263    | 299    | 177    | 602    | 915  | 533 | 1047  |
| 2090 <sup>d</sup> | 256    | 351    | 175    | 651    | 1107 | 513 | 1051  |
| 2100 <sup>d</sup> | 239    | 400    | 171    | 696    | 1260 | 486 | 1055  |

Table AII.2.12 | Anthropogenic HFC-143a emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1   |
|-------------------|--------|--------|--------|--------|------|------|
| 2000 <sup>d</sup> | 7.5    | 7.5    | 7.5    | 7.5    | 0.0  | 0.0  |
| 2010 <sup>d</sup> | 23.1   | 14.0   | 7.0    | 23.2   | 9.0  | 8.0  |
| 2020 <sup>d</sup> | 59.1   | 17.4   | 5.4    | 34.1   | 16.0 | 15.0 |
| 2030 <sup>d</sup> | 74.7   | 20.3   | 6.0    | 38.5   | 22.0 | 21.0 |
| 2040 <sup>d</sup> | 81.8   | 23.1   | 6.6    | 45.1   | 27.0 | 26.0 |
| 2050 <sup>d</sup> | 79.0   | 25.6   | 7.1    | 49.8   | 35.0 | 35.0 |
| 2060 <sup>d</sup> | 86.1   | 25.9   | 7.7    | 52.3   | 43.0 | 35.0 |
| 2070 <sup>d</sup> | 94.2   | 28.2   | 8.3    | 54.1   | 51.0 | 35.0 |
| 2080 <sup>d</sup> | 95.1   | 33.5   | 8.7    | 52.7   | 61.0 | 35.0 |
| 2090 <sup>d</sup> | 88.7   | 39.6   | 9.0    | 50.2   | 73.0 | 34.0 |
| 2100 <sup>d</sup> | 79.2   | 45.1   | 9.1    | 47.3   | 82.0 | 32.0 |

**Table All.2.13** | Anthropogenic HFC-227ea emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1   |
|-------------------|--------|--------|--------|--------|------|------|
| 2000 <sup>d</sup> | 1.7    | 1.7    | 1.7    | 1.7    | 0.0  | 0.0  |
| 2010 <sup>d</sup> | 7.0    | 5.3    | 6.9    | 8.5    | 12.0 | 13.0 |
| 2020 <sup>d</sup> | 2.6    | 1.4    | 2.5    | 2.7    | 17.0 | 18.0 |
| 2030 <sup>d</sup> | 0.9    | 0.3    | 0.8    | 0.7    | 21.0 | 24.0 |
| 2040 <sup>d</sup> | 0.8    | 0.2    | 0.7    | 0.7    | 26.0 | 30.0 |
| 2050 <sup>d</sup> | 0.4    | 0.1    | 0.3    | 0.4    | 32.0 | 39.0 |
| 2060 <sup>d</sup> | 0.2    | 0.0    | 0.1    | 0.2    | 40.0 | 40.0 |
| 2070 <sup>d</sup> | 0.1    | 0.0    | 0.1    | 0.1    | 48.0 | 39.0 |
| 2080 <sup>d</sup> | 0.1    | 0.0    | 0.1    | 0.1    | 58.0 | 38.0 |
| 2090 <sup>d</sup> | 0.1    | 0.0    | 0.0    | 0.1    | 70.0 | 36.0 |
| 2100 <sup>d</sup> | 0.1    | 0.0    | 0.0    | 0.1    | 80.0 | 34.0 |

Table AII.2.14 | Anthropogenic HFC-245fa emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1  |
|-------------------|--------|--------|--------|--------|-----|-----|
| 2000 <sup>d</sup> | 11     | 11     | 11     | 11     | 0   | 0   |
| 2010 <sup>d</sup> | 42     | 46     | 53     | 74     | 59  | 60  |
| 2020 <sup>d</sup> | 32     | 86     | 65     | 143    | 79  | 80  |
| 2030 <sup>d</sup> | 7      | 95     | 67     | 186    | 98  | 102 |
| 2040 <sup>d</sup> | 0      | 97     | 68     | 181    | 121 | 131 |
| 2050 <sup>d</sup> | 0      | 95     | 69     | 163    | 149 | 173 |
| 2060 <sup>d</sup> | 0      | 87     | 70     | 150    | 190 | 173 |
| 2070 <sup>d</sup> | 0      | 82     | 71     | 138    | 228 | 170 |
| 2080 <sup>d</sup> | 0      | 80     | 70     | 129    | 276 | 166 |
| 2090 <sup>d</sup> | 0      | 81     | 68     | 123    | 334 | 159 |
| 2100 <sup>d</sup> | 0      | 83     | 65     | 130    | 388 | 150 |

Table AII.2.15 | Anthropogenic HFC-43-10mee emissions (Gg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1   |
|-------------------|--------|--------|--------|--------|------|------|
| 2000 <sup>d</sup> | 0.6    | 0.6    | 0.6    | 0.6    | 0.0  | 0.0  |
| 2010 <sup>d</sup> | 5.6    | 5.6    | 5.6    | 5.6    | 7.0  | 6.0  |
| 2020 <sup>d</sup> | 7.2    | 7.2    | 7.2    | 7.2    | 8.0  | 7.0  |
| 2030 <sup>d</sup> | 8.1    | 8.1    | 8.1    | 8.1    | 8.0  | 8.0  |
| 2040 <sup>d</sup> | 9.4    | 9.4    | 9.4    | 9.1    | 9.0  | 9.0  |
| 2050 <sup>d</sup> | 10.8   | 10.8   | 10.8   | 10.4   | 11.0 | 11.0 |
| 2060 <sup>d</sup> | 11.1   | 11.1   | 11.1   | 12.1   | 12.0 | 11.0 |
| 2070 <sup>d</sup> | 11.0   | 11.0   | 11.0   | 13.9   | 14.0 | 11.0 |
| 2080 <sup>d</sup> | 11.0   | 11.0   | 10.9   | 16.2   | 16.0 | 11.0 |
| 2090 <sup>d</sup> | 10.7   | 10.7   | 10.7   | 18.9   | 19.0 | 11.0 |
| 2100 <sup>d</sup> | 10.5   | 10.5   | 10.5   | 21.4   | 22.0 | 10.0 |

**Table All.2.16** | Anthropogenic CO emissions (Tg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1  | IS92a |
|-------------------|--------|--------|--------|--------|------|-----|-------|
| 2000 <sup>d</sup> | 1071   | 1071   | 1071   | 1071   | 877  | 877 | 1048  |
| 2010 <sup>d</sup> | 1035   | 1041   | 1045   | 1054   | 977  | 789 | 1096  |
| 2020 <sup>d</sup> | 984    | 997    | 1028   | 1058   | 1075 | 751 | 1145  |
| 2030 <sup>d</sup> | 930    | 986    | 1030   | 1019   | 1259 | 603 | 1207  |
| 2040 <sup>d</sup> | 879    | 948    | 1046   | 960    | 1344 | 531 | 1282  |
| 2050 <sup>d</sup> | 825    | 875    | 1033   | 907    | 1428 | 471 | 1358  |
| 2060 <sup>d</sup> | 779    | 782    | 996    | 846    | 1545 | 459 | 1431  |
| 2070 <sup>d</sup> | 718    | 678    | 939    | 799    | 1662 | 456 | 1504  |
| 2080 <sup>d</sup> | 668    | 571    | 879    | 759    | 1842 | 426 | 1576  |
| 2090 <sup>d</sup> | 638    | 520    | 835    | 721    | 2084 | 399 | 1649  |
| 2100 <sup>d</sup> | 612    | 483    | 798    | 694    | 2326 | 363 | 1722  |

| Year              | MFR | CLE | REF <sup>L</sup> | REF <sup>∪</sup> | POL <sup>L</sup> | POL <sup>U</sup> |
|-------------------|-----|-----|------------------|------------------|------------------|------------------|
| 2000 <sup>d</sup> | 977 | 977 | 708              | 1197             | 706              | 1197             |
| 2010 <sup>d</sup> |     |     | 771              | 1408             | 769              | 1408             |
| 2020 <sup>d</sup> |     |     | 755              | 1629             | 705              | 1611             |
| 2030 <sup>d</sup> | 729 | 904 | 707              | 1865             | 592              | 1803             |
| 2040 <sup>d</sup> |     |     | 695              | 2165             | 620              | 2002             |
| 2050 <sup>d</sup> |     |     | 591              | 2487             | 482              | 2218             |
| 2060 <sup>d</sup> |     |     | 504              | 2787             | 363              | 2409             |
| 2070 <sup>d</sup> |     |     | 450              | 3052             | 328              | 2558             |
| 2080 <sup>d</sup> |     |     | 438              | 3279             | 268              | 2635             |
| 2090 <sup>d</sup> |     |     | 410              | 3510             | 259              | 2714             |
| 2100 <sup>d</sup> |     |     | 363              | 3735             | 253              | 2796             |

Table AII.2.17 | Anthropogenic NMVOC emissions (Tg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1  | IS92a | CLE | MFR |
|-------------------|--------|--------|--------|--------|-----|-----|-------|-----|-----|
| 2000 <sup>d</sup> | 213    | 213    | 213    | 213    | 141 | 141 | 126   | 147 | 147 |
| 2010 <sup>d</sup> | 216    | 209    | 215    | 217    | 155 | 141 | 142   |     |     |
| 2020 <sup>d</sup> | 213    | 197    | 214    | 224    | 179 | 140 | 158   |     |     |
| 2030 <sup>d</sup> | 202    | 201    | 217    | 225    | 202 | 131 | 173   | 146 | 103 |
| 2040 <sup>d</sup> | 192    | 201    | 222    | 218    | 214 | 123 | 188   |     |     |
| 2050 <sup>d</sup> | 179    | 191    | 220    | 209    | 225 | 116 | 202   |     |     |
| 2060 <sup>d</sup> | 167    | 180    | 214    | 202    | 238 | 111 | 218   |     |     |
| 2070 <sup>d</sup> | 152    | 167    | 204    | 194    | 251 | 103 | 234   |     |     |
| 2080 <sup>d</sup> | 140    | 152    | 193    | 189    | 275 | 99  | 251   |     |     |
| 2090 <sup>d</sup> | 132    | 145    | 182    | 182    | 309 | 96  | 267   |     |     |
| 2100 <sup>d</sup> | 126    | 141    | 174    | 177    | 342 | 87  | 283   |     |     |

Table AII.2.18 | Anthropogenic  $NO_X$  emissions (TgN yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | CLE  | MFR  |
|-------------------|--------|--------|--------|--------|------|------|
| 2000 <sup>d</sup> | 38.5   | 38.5   | 38.5   | 38.5   | 53.4 | 53.4 |
| 2010 <sup>d</sup> | 43.5   | 42.4   | 43.1   | 43.5   |      |      |
| 2020 <sup>d</sup> | 47.5   | 43.5   | 43.3   | 48.1   |      |      |
| 2030 <sup>d</sup> | 50.8   | 45.2   | 46.2   | 52.1   | 69.8 | 69.8 |
| 2040 <sup>d</sup> | 53.2   | 46.3   | 49.8   | 55.6   |      |      |
| 2050 <sup>d</sup> | 55.5   | 46.4   | 53.0   | 58.4   |      |      |
| 2060 <sup>d</sup> | 58.4   | 46.0   | 56.5   | 60.6   |      |      |
| 2070 <sup>d</sup> | 61.2   | 45.2   | 59.5   | 62.4   |      |      |
| 2080 <sup>d</sup> | 63.3   | 44.3   | 60.9   | 63.8   |      |      |
| 2090 <sup>d</sup> | 65.2   | 43.9   | 62.1   | 65.3   |      |      |
| 2100 <sup>d</sup> | 67.0   | 43.6   | 61.8   | 66.9   |      |      |

| Year              | MFR  | CLE  | REF <sup>L</sup> | REF   | POL <sup>L</sup> | POL <sup>U</sup> |
|-------------------|------|------|------------------|-------|------------------|------------------|
| 2000 <sup>d</sup> | 38.0 | 38.0 | 29.1             | 41.6  | 29.1             | 41.6             |
| 2010 <sup>d</sup> |      |      | 26.0             | 50.2  | 23.9             | 50.1             |
| 2020 <sup>d</sup> |      |      | 26.3             | 60.4  | 21.6             | 59.2             |
| 2030 <sup>d</sup> | 23.1 | 42.9 | 24.4             | 71.8  | 16.5             | 67.4             |
| 2040 <sup>d</sup> |      |      | 21.5             | 86.3  | 14.1             | 75.3             |
| 2050 <sup>d</sup> |      |      | 17.0             | 101.7 | 11.6             | 83.3             |
| 2060 <sup>d</sup> |      |      | 13.2             | 115.7 | 11.4             | 89.8             |
| 2070 <sup>d</sup> |      |      | 12.0             | 127.5 | 10.5             | 94.6             |
| 2080 <sup>d</sup> |      |      | 11.5             | 137.2 | 9.6              | 97.2             |
| 2090 <sup>d</sup> |      |      | 12.0             | 146.2 | 8.8              | 100.1            |
| 2100 <sup>d</sup> |      |      | 13.0             | 155.0 | 8.0              | 104.0            |

Odd nitrogen (NO $_{x}$ ) emissions occur as NO or NO $_{2}$ , measured here as Tg of N.

Table AII.2.19 | Anthropogenic NH<sub>3</sub> emissions (TgN yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | CLE  | MFR  |
|-------------------|--------|--------|--------|--------|------|------|
| 2000 <sup>d</sup> | 38.5   | 38.5   | 38.5   | 38.5   | 53.4 | 53.4 |
| 2010 <sup>d</sup> | 43.5   | 42.4   | 43.1   | 43.5   |      |      |
| 2020 <sup>d</sup> | 47.5   | 43.5   | 43.3   | 48.1   |      |      |
| 2030 <sup>d</sup> | 50.8   | 45.2   | 46.2   | 52.1   | 69.8 | 69.8 |
| 2040 <sup>d</sup> | 53.2   | 46.3   | 49.8   | 55.6   |      |      |
| 2050 <sup>d</sup> | 55.5   | 46.4   | 53.0   | 58.4   |      |      |
| 2060 <sup>d</sup> | 58.4   | 46.0   | 56.5   | 60.6   |      |      |
| 2070 <sup>d</sup> | 61.2   | 45.2   | 59.5   | 62.4   |      |      |
| 2080 <sup>d</sup> | 63.3   | 44.3   | 60.9   | 63.8   |      |      |
| 2090 <sup>d</sup> | 65.2   | 43.9   | 62.1   | 65.3   |      |      |
| 2100 <sup>d</sup> | 67.0   | 43.6   | 61.8   | 66.9   |      |      |

**Table AII.2.20** | Anthropogenic SO<sub>X</sub> emissions (TgS yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2    | B1   | IS92a |
|-------------------|--------|--------|--------|--------|-------|------|-------|
| 2000 <sup>d</sup> | 55.9   | 55.9   | 55.9   | 55.9   | 69.0  | 69.0 | 79.0  |
| 2010 <sup>d</sup> | 54.9   | 54.8   | 55.8   | 51.9   | 74.7  | 73.9 | 95.0  |
| 2020 <sup>d</sup> | 44.5   | 50.3   | 49.9   | 47.6   | 99.5  | 74.6 | 111.0 |
| 2030 <sup>d</sup> | 30.8   | 43.2   | 42.7   | 42.3   | 112.5 | 78.2 | 125.8 |
| 2040 <sup>d</sup> | 20.9   | 35.0   | 41.9   | 33.5   | 109.0 | 78.5 | 139.4 |
| 2050 <sup>d</sup> | 16.0   | 26.5   | 37.8   | 26.8   | 105.4 | 68.9 | 153.0 |
| 2060 <sup>d</sup> | 13.8   | 21.0   | 34.0   | 23.0   | 89.6  | 55.8 | 151.8 |
| 2070 <sup>d</sup> | 11.9   | 16.7   | 23.5   | 20.3   | 73.7  | 44.3 | 150.6 |
| 2080 <sup>d</sup> | 9.9    | 13.2   | 15.9   | 18.3   | 64.7  | 36.1 | 149.4 |
| 2090 <sup>d</sup> | 8.0    | 12.0   | 12.7   | 14.9   | 62.5  | 29.8 | 148.2 |
| 2100 <sup>d</sup> | 6.7    | 11.4   | 10.8   | 13.1   | 60.3  | 24.9 | 147.0 |

| Year              | MFR  | CLE  | REF <sup>L</sup> | REF  | POL <sup>L</sup> | POL <sup>u</sup> |
|-------------------|------|------|------------------|------|------------------|------------------|
| 2000 <sup>d</sup> | 55.6 | 55.6 | 50.6             | 76.4 | 50.6             | 76.4             |
| 2010 <sup>d</sup> |      |      | 53.1             | 81.8 | 52.7             | 78.7             |
| 2020 <sup>d</sup> |      |      | 56.9             | 84.8 | 47.7             | 77.8             |
| 2030 <sup>d</sup> | 17.9 | 58.8 | 60.1             | 86.7 | 29.8             | 76.3             |
| 2040 <sup>d</sup> |      |      | 52.5             | 82.9 | 19.0             | 72.0             |
| 2050 <sup>d</sup> |      |      | 44.2             | 72.3 | 12.4             | 61.7             |
| 2060 <sup>d</sup> |      |      | 32.8             | 73.9 | 9.5              | 52.9             |
| 2070 <sup>d</sup> |      |      | 30.5             | 77.7 | 7.8              | 49.8             |
| 2080 <sup>d</sup> |      |      | 29.6             | 81.1 | 6.2              | 50.5             |
| 2090 <sup>d</sup> |      |      | 22.8             | 84.5 | 5.1              | 52.5             |
| 2100 <sup>d</sup> |      |      | 18.0             | 88.0 | 4.0              | 54.0             |

Anthropogenic sulphur emissions as  $\mathrm{SO}_{\mathrm{2}}\textsc{,}$  measured here as Tg of S.

Table AII.2.21 | Anthropogenic OC aerosols emissions (Tg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2    | B1   | IS92a | MFR* | CLE* |
|-------------------|--------|--------|--------|--------|-------|------|-------|------|------|
| 2000 <sup>d</sup> | 35.6   | 35.6   | 35.6   | 35.6   | 81.4  | 81.4 | 81.4  | 35.0 | 35.0 |
| 2010 <sup>d</sup> | 36.6   | 34.6   | 36.2   | 35.6   | 89.3  | 74.5 | 85.2  | 29.2 | 34.6 |
| 2020 <sup>d</sup> | 36.6   | 30.8   | 36.1   | 34.5   | 97.0  | 71.5 | 89.0  | 28.6 | 32.6 |
| 2030 <sup>d</sup> | 35.3   | 29.2   | 36.0   | 33.2   | 111.4 | 59.9 | 93.9  | 27.9 | 30.9 |
| 2040 <sup>d</sup> | 32.3   | 28.0   | 36.4   | 31.6   | 118.1 | 54.2 | 99.8  |      |      |
| 2050 <sup>d</sup> | 30.3   | 26.8   | 36.5   | 30.1   | 124.7 | 49.5 | 105.8 |      |      |
| 2060 <sup>d</sup> | 29.6   | 25.0   | 35.7   | 28.5   | 133.9 | 48.6 | 111.5 |      |      |
| 2070 <sup>d</sup> | 28.2   | 22.8   | 34.4   | 27.4   | 143.1 | 48.3 | 117.2 |      |      |
| 2080 <sup>d</sup> | 27.0   | 20.7   | 33.4   | 26.4   | 157.2 | 46.0 | 122.9 |      |      |
| 2090 <sup>d</sup> | 26.4   | 19.9   | 32.7   | 25.1   | 176.2 | 43.8 | 128.6 |      |      |
| 2100 <sup>d</sup> | 25.5   | 19.5   | 32.2   | 24.1   | 195.2 | 41.0 | 134.4 |      |      |

For both MFR\* and CLE\* 23 Tg is added to Cofala et al. (2007) values to include biomass burning.

Table AII.2.22 | Anthropogenic BC aerosols emissions (Tg yr<sup>-1</sup>)

| Year              | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2    | B1    | IS92a | MFR* | CLE* |
|-------------------|--------|--------|--------|--------|-------|-------|-------|------|------|
| 2000 <sup>d</sup> | 7.88   | 7.88   | 7.88   | 7.88   | 12.40 | 12.40 | 12.40 | 7.91 | 7.91 |
| 2010 <sup>d</sup> | 8.49   | 8.13   | 8.13   | 8.06   | 13.60 | 11.30 | 13.00 | 6.31 | 8.01 |
| 2020 <sup>d</sup> | 8.27   | 7.84   | 7.77   | 7.66   | 14.80 | 10.90 | 13.60 | 5.81 | 7.41 |
| 2030 <sup>d</sup> | 7.03   | 7.36   | 7.53   | 7.04   | 17.00 | 9.10  | 14.30 | 5.41 | 7.01 |
| 2040 <sup>d</sup> | 5.80   | 6.81   | 7.39   | 6.22   | 18.00 | 8.30  | 15.20 |      |      |
| 2050 <sup>d</sup> | 5.00   | 6.21   | 7.07   | 5.67   | 19.00 | 7.50  | 16.10 |      |      |
| 2060 <sup>d</sup> | 4.46   | 5.56   | 6.48   | 5.22   | 20.40 | 7.40  | 17.00 |      |      |
| 2070 <sup>d</sup> | 3.99   | 4.88   | 5.75   | 4.88   | 21.80 | 7.40  | 17.90 |      |      |
| 2080 <sup>d</sup> | 3.70   | 4.23   | 5.15   | 4.66   | 24.00 | 7.00  | 18.70 |      |      |
| 2090 <sup>d</sup> | 3.55   | 4.01   | 4.70   | 4.43   | 26.80 | 6.70  | 19.60 |      |      |
| 2100 <sup>d</sup> | 3.39   | 3.88   | 4.41   | 4.27   | 29.70 | 6.20  | 20.50 |      |      |

Notes:

For both MFR\* and CLE\* 2.6 Tg added to Cofala et al. (2007) values to include biomass burning.

Table AII.2.23 | Anthropogenic nitrogen fixation (Tg-N yr<sup>-1</sup>)

| Year | Historical | SRES A1<br>+ Biofuel | SRES A2 | SRES B1 | SRES B2 | FAO2000<br>Baseline <sup>a</sup> | FAO2000<br>Improved <sup>a</sup> | Tilman<br>2001 ª | Tubiello<br>2007 ª |
|------|------------|----------------------|---------|---------|---------|----------------------------------|----------------------------------|------------------|--------------------|
| 1910 | 0.0        |                      |         |         |         |                                  |                                  |                  |                    |
| 1920 | 0.2        |                      |         |         |         |                                  |                                  |                  |                    |
| 1925 | 0.6        |                      |         |         |         |                                  |                                  |                  |                    |
| 1930 | 0.9        |                      |         |         |         |                                  |                                  |                  |                    |
| 1935 | 1.3        |                      |         |         |         |                                  |                                  |                  |                    |
| 1940 | 2.2        |                      |         |         |         |                                  |                                  |                  |                    |
| 1950 | 3.7        |                      |         |         |         |                                  |                                  |                  |                    |
| 1955 | 6.8        |                      |         |         |         |                                  |                                  |                  |                    |
| 1960 | 9.5        |                      |         |         |         |                                  |                                  |                  |                    |
| 1965 | 18.7       |                      |         |         |         |                                  |                                  |                  |                    |
| 1970 | 31.6       |                      |         |         |         |                                  |                                  |                  |                    |
| 1971 | 33.3       |                      |         |         |         |                                  |                                  |                  |                    |
| 1972 | 36.2       |                      |         |         |         |                                  |                                  |                  |                    |
| 1973 | 39.1       |                      |         |         |         |                                  |                                  |                  |                    |
| 1974 | 38.6       |                      |         |         |         |                                  |                                  |                  |                    |
| 1975 | 43.7       |                      |         |         |         |                                  |                                  |                  |                    |

Table AII.2.23 (continued)

| Year | Historical | SRES A1<br>+ Biofuel | SRES A2 | SRES B1 | SRES B2 | FAO2000<br>Baseline <sup>a</sup> | FAO2000<br>Improved <sup>a</sup> | Tilman<br>2001 ª | Tubiello<br>2007 ª |
|------|------------|----------------------|---------|---------|---------|----------------------------------|----------------------------------|------------------|--------------------|
| 1975 | 43.7       |                      |         |         |         |                                  |                                  |                  |                    |
| 1976 | 46.4       |                      |         |         |         |                                  |                                  |                  |                    |
| 1977 | 49.9       |                      |         |         |         |                                  |                                  |                  |                    |
| 1978 | 53.8       |                      |         |         |         |                                  |                                  |                  |                    |
| 1979 | 57.4       |                      |         |         |         |                                  |                                  |                  |                    |
| 1980 | 60.6       |                      |         |         |         |                                  |                                  |                  |                    |
| 1981 | 60.3       |                      |         |         |         |                                  |                                  |                  |                    |
| 1982 | 61.3       |                      |         |         |         |                                  |                                  |                  |                    |
| 1983 | 67.1       |                      |         |         |         |                                  |                                  |                  |                    |
| 1984 | 70.9       |                      |         |         |         |                                  |                                  |                  |                    |
| 1985 | 70.2       |                      |         |         |         |                                  |                                  |                  |                    |
| 1986 | 72.5       |                      |         |         |         |                                  |                                  |                  |                    |
| 1987 | 75.8       |                      |         |         |         |                                  |                                  |                  |                    |
| 1988 | 79.5       |                      |         |         |         |                                  |                                  |                  |                    |
| 1989 | 78.9       |                      |         |         |         |                                  |                                  |                  |                    |
| 1990 | 77.1       |                      |         |         |         |                                  |                                  |                  |                    |
| 1991 | 75.5       |                      |         |         |         |                                  |                                  |                  |                    |
| 1992 | 73.7       |                      |         |         |         |                                  |                                  |                  |                    |
| 1993 | 72.3       |                      |         |         |         |                                  |                                  |                  |                    |
| 1994 | 72.4       |                      |         |         |         |                                  |                                  |                  |                    |
| 1995 | 78.5       |                      |         |         |         |                                  |                                  |                  |                    |
| 1996 | 82.6       |                      |         |         |         | 77.8                             | 77.8                             |                  |                    |
| 1997 | 81.4       |                      |         |         |         |                                  |                                  |                  |                    |
| 1998 | 82.8       |                      |         |         |         |                                  |                                  |                  |                    |
| 1999 | 84.9       |                      |         |         |         |                                  |                                  |                  |                    |
| 2000 | 82.1       |                      |         |         |         |                                  |                                  | 87.0             |                    |
| 2001 | 82.9       |                      |         |         |         |                                  |                                  |                  |                    |
| 2002 | 85.2       |                      |         |         |         |                                  |                                  |                  |                    |
| 2003 | 90.2       |                      |         |         |         |                                  |                                  |                  |                    |
| 2004 | 91.7       |                      |         |         |         |                                  |                                  |                  |                    |
| 2005 | 94.2       |                      |         |         |         |                                  |                                  |                  |                    |
| 2007 | 98.4       |                      |         |         |         |                                  |                                  |                  |                    |
| 2010 |            | 104.1                | 101.9   | 101.7   | 96.5    |                                  |                                  |                  |                    |
| 2015 |            | -                    | -       | -       | _       | 106.8                            | 88.0                             |                  |                    |
| 2020 |            | 122.6                | 110.7   | 111.2   | 100.9   |                                  |                                  | 135.0            |                    |
| 2030 |            | 141.1                | 117.6   | 118.4   | 103.3   | 124.5                            | 96.2                             |                  |                    |
| 2040 |            | 153.3                | 130.7   | 122.2   | 103.5   |                                  |                                  |                  |                    |
| 2050 |            | 165.5                | 131.1   | 123.2   | 101.9   |                                  |                                  | 236.0            |                    |
| 2060 |            | 171.3                | 134.0   | 121.4   | 99.2    |                                  |                                  |                  |                    |
| 2070 |            | 177.0                | 132.1   | 117.5   | 95.6    |                                  |                                  |                  |                    |
| 2080 |            | 180.1                | 138.1   | 111.6   | 91.5    |                                  |                                  |                  | 205                |
| 2090 |            | 186.0                | 146.5   | 108.8   | 91.3    |                                  |                                  |                  |                    |
| 2100 |            | 192.5                | 149.8   | 104.1   | 91.0    |                                  |                                  |                  |                    |

(a) See Chapter 6, Figure 6.30 and Erisman et al. (2008) for details and sources.

# **AII.3: Natural Emissions**

Table AII.3.1a | Net land (natural and land use) CO<sub>2</sub> emissions (PgC yr<sup>-1</sup>)

| Year              | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|-------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 2000 <sup>d</sup> | $-1.02 \pm 0.87$        | $-1.14 \pm 0.87$        | -0.92 ± 0.93            | $-1.14 \pm 0.87$        |
| 2010 <sup>d</sup> | $-1.49 \pm 1.02$        | $-1.85 \pm 0.96$        | -1.03 ± 1.65            | $-1.30 \pm 1.64$        |
| 2020 <sup>d</sup> | -1.24 ± 1.35            | -2.83 ± 1.47            | -1.79 ± 1.95            | -1.43 ± 1.82            |
| 2030 <sup>d</sup> | -1.28 ± 1.53            | $-2.84 \pm 1.59$        | −2.37 ± 1.54            | -1.76 ± 2.22            |
| 2040 <sup>d</sup> | -1.21 ± 1.33            | -3.25 ± 1.58            | −2.27 ± 1.46            | -2.15 ± 2.13            |
| 2050 <sup>d</sup> | $-1.00 \pm 1.53$        | $-3.07 \pm 1.54$        | -1.98 ± 1.57            | $-2.35 \pm 2.45$        |
| 2060 <sup>d</sup> | $-0.76 \pm 0.83$        | $-2.80 \pm 1.83$        | -2.46 ± 2.01            | -2.71 ± 2.38            |
| 2070 <sup>d</sup> | $-0.68 \pm 0.84$        | $-2.59 \pm 1.73$        | $-2.40 \pm 2.06$        | -2.57 ± 2.42            |
| 2080 <sup>d</sup> | $-0.15 \pm 0.81$        | $-2.04 \pm 1.48$        | −2.22 ± 2.12            | $-1.96 \pm 2.64$        |
| 2090 <sup>d</sup> | $-0.03 \pm 0.99$        | -2.12 ± 1.38            | −2.77 ± 1.96            | $-1.63 \pm 2.70$        |
| 2100 <sup>d</sup> | 0.36 ± 0.95             | -1.54 ± 1.25            | -2.13 ± 1.32            | -1.27 ± 2.90            |

Notes:

Ten-year average values are shown (2010 $^d$  = average of 2005–2014). CO $_2$  emissions are inferred from ESMs used in CMIP5 (Jones et al., 2013). See notes Table AlI.2.1a and Chapter 6, Sections 6.4.3 and 6.4.3.3 and Figure 6.24.

Table AII.3.1b | Net ocean CO<sub>2</sub> emissions (PgC yr<sup>-1</sup>)

| Year              | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|-------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 2000 <sup>d</sup> | -2.09 ± 0.19            | -2.14 ± 0.32            | −2.10 ± 0.17            | -2.14 ± 0.32            |
| 2010 <sup>d</sup> | −2.44 ± 0.22            | -2.50 ± 0.42            | $-2.44 \pm 0.20$        | -2.53 ± 0.43            |
| 2020 <sup>d</sup> | −2.70 ± 0.26            | −2.75 ± 0.46            | -2.59 ± 0.22            | −3.02 ± 0.51            |
| 2030 <sup>d</sup> | $-2.59 \pm 0.30$        | -2.98 ± 0.52            | $-2.69 \pm 0.22$        | $-3.47 \pm 0.54$        |
| 2040 <sup>d</sup> | −2.22 ± 0.32            | −3.16 ± 0.56            | -2.88 ± 0.27            | -3.96 ± 0.67            |
| 2050 <sup>d</sup> | −1.83 ± 0.33            | −3.22 ± 0.60            | $-3.16 \pm 0.31$        | -4.47 ± 0.76            |
| 2060 <sup>d</sup> | −1.52 ± 0.30            | −3.12 ± 0.63            | $-3.52 \pm 0.36$        | -4.92 ± 0.84            |
| 2070 <sup>d</sup> | −1.23 ± 0.23            | -2.82 ± 0.61            | $-3.79 \pm 0.41$        | -5.24 ± 0.97            |
| 2080 <sup>d</sup> | −0.99 ± 0.27            | -2.46 ± 0.59            | -4.02 ± 0.44            | -5.40 ± 1.14            |
| 2090 <sup>d</sup> | −0.85 ± 0.26            | −2.22 ± 0.53            | $-3.96 \pm 0.43$        | -5.45 ± 1.18            |
| 2100 <sup>d</sup> | -0.77 ± 0.26            | -2.14 ± 0.47            | $-3.84 \pm 0.42$        | -5.44 ± 1.22            |

Notes:

See Table AII.3.1.a.

# All.4: Abundances of the Well-Mixed Greenhouse Gases

Table All.4.1 | CO<sub>2</sub> abundance (ppm)

| Year                | Observed    | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1  | IS92a | Min | RCP8.5 <sup>&amp;</sup> | Max  |
|---------------------|-------------|--------|--------|--------|--------|-----|-----|-------|-----|-------------------------|------|
| PI                  | 278 ± 2     | 278    | 278    | 278    | 278    | 278 | 278 | 278   |     |                         |      |
| 2011 <sup>obs</sup> | 390.5 ± 0.3 |        |        |        |        |     |     |       |     |                         |      |
| 2000                |             | 368.9  | 368.9  | 368.9  | 368.9  | 368 | 368 | 368   |     |                         |      |
| 2005                |             | 378.8  | 378.8  | 378.8  | 378.8  |     |     |       |     | 378.8                   |      |
| 2010                |             | 389.3  | 389.1  | 389.1  | 389.3  | 388 | 387 | 388   | 366 | 394                     | 413  |
| 2020                |             | 412.1  | 411.1  | 409.4  | 415.8  | 416 | 411 | 414   | 386 | 425                     | 449  |
| 2030                |             | 430.8  | 435.0  | 428.9  | 448.8  | 448 | 434 | 442   | 412 | 461                     | 496  |
| 2040                |             | 440.2  | 460.8  | 450.7  | 489.4  | 486 | 460 | 472   | 443 | 504                     | 555  |
| 2050                |             | 442.7  | 486.5  | 477.7  | 540.5  | 527 | 485 | 504   | 482 | 559                     | 627  |
| 2060                |             | 441.7  | 508.9  | 510.6  | 603.5  | 574 | 506 | 538   | 530 | 625                     | 713  |
| 2070                |             | 437.5  | 524.3  | 549.8  | 677.1  | 628 | 522 | 575   | 588 | 703                     | 810  |
| 2080                |             | 431.6  | 531.1  | 594.3  | 758.2  | 690 | 534 | 615   | 651 | 790                     | 914  |
| 2090                |             | 426.0  | 533.7  | 635.6  | 844.8  | 762 | 542 | 662   | 722 | 885                     | 1026 |
| 2100                |             | 420.9  | 538.4  | 669.7  | 935.9  | 846 | 544 | 713   | 794 | 985 ± 97                | 1142 |

#### Notes

For observations (2011° bs) see Chapter 2; and for projections see Box 1.1 (Figure 2), Sections 6.4.3.1, 11.3.5.1.1, RCPn.n refers to values taken directly from the published RCP scenarios using the MAGICC model (Meinshausen et al., 2011a; 2011b). These are harmonized to match observations up to 2005 (378.8 ppm) and project future abundances thereafter. RCP8.5° shows the average and assessed 90% confidence interval for year 2100, plus the min-max full range derived from the CMIP5 archive for all years (P. Friedlingstein, based on Friedlingstein et al., 2006). 11 ESMs participated (BCC-CSM-1, CanESM2, CESM1-BGC, GFDL-ESM2G, HadGem-2ES, INMCM4, IPSLCM5-LR, MIROC-ESM, MPI-ESM-LR, MRI-ESM1, and Nor-ESM1-ME), running the RCP8.5 anthropogenic emission scenario forced by the RCP8.5 climate change scenario (see Figure 12.36). All abundances are mid-year. Projected values for SRES A2 and B1 and IS92 are the average of reference models taken from the TAR Appendix II.

Table AII.4.2 | CH<sub>4</sub> abundance (ppb)

| Year                | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1   | IS92a | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|---------------------|--------|--------|--------|--------|------|------|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| PI                  | 720    | 720    | 720    | 720    |      |      |       | 722 ± 25                | 722 ± 25                | 722 ± 25                | 722 ± 25                |
| 2011 <sup>obs</sup> |        |        |        |        |      |      |       | 1803 ± 4                | 1803 ± 4                | 1803 ± 4                | 1803 ± 4                |
| 2000                | 1751   | 1751   | 1751   | 1751   | 1760 | 1760 | 1760  |                         |                         |                         |                         |
| 2010                | 1773   | 1767   | 1769   | 1779   | 1861 | 1827 | 1855  | 1795 ± 18               | 1795 ± 18               | 1795 ± 18               | 1795 ± 18               |
| 2020                | 1731   | 1801   | 1786   | 1924   | 1997 | 1891 | 1979  | 1716 ± 23               | 1847 ± 21               | 1811 ± 22               | 1915 ± 25               |
| 2030                | 1600   | 1830   | 1796   | 2132   | 2163 | 1927 | 2129  | 1562 ± 38               | 1886 ± 28               | 1827 ± 28               | 2121 ± 44               |
| 2040                | 1527   | 1842   | 1841   | 2399   | 2357 | 1919 | 2306  | 1463 ± 50               | 1903 ± 37               | 1880 ± 36               | 2412 ± 74               |
| 2050                | 1452   | 1833   | 1895   | 2740   | 2562 | 1881 | 2497  | 1353 ± 60               | 1899 ± 47               | 1941 ± 48               | 2784 ± 116              |
| 2060                | 1365   | 1801   | 1939   | 3076   | 2779 | 1836 | 2663  | 1230 ± 71               | 1872 ± 59               | 1994 ± 61               | 3152 ± 163              |
| 2070                | 1311   | 1745   | 1962   | 3322   | 3011 | 1797 | 2791  | 1153 ± 78               | 1824 ± 72               | 2035 ± 77               | 3428 ± 208              |
| 2080                | 1285   | 1672   | 1940   | 3490   | 3252 | 1741 | 2905  | 1137 ± 88               | 1756 ± 87               | 2033 ± 94               | 3624 ± 250              |
| 2090                | 1268   | 1614   | 1819   | 3639   | 3493 | 1663 | 3019  | 1135 ± 98               | 1690 ± 100              | 1908 ± 111              | 3805 ± 293              |
| 2100                | 1254   | 1576   | 1649   | 3751   | 3731 | 1574 | 3136  | 1127 ± 106              | 1633 ± 110              | 1734 ± 124              | 3938 ± 334              |

#### Notes

RCPn.n refers to values taken directly from the published RCP scenarios using the MAGICC model (Meinshausen et al., 2011b) and initialized in year 2005 at 1754 ppb. Values for SRES A2 and B1 and IS92 are from the TAR Appendix II. RCPn.n<sup>a</sup> values are best estimates with uncertainties (68% confidence intervals) from Chapter 11 (Section 11.3.5) based on Holmes et al. (2013) and using RCP<sup>a</sup> emissions and uncertainties tabulated above. For RCP<sup>a</sup> the PI, year 2011 and year 2010 values are based on observations. RCP models used slightly different PI abundances than recommended here (Table AII.1.1, Chapter 2).

Table AII.4.3 | N<sub>2</sub>O abundance (ppb)

| Year                | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1  | IS92a | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|---------------------|--------|--------|--------|--------|-----|-----|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| PI                  | 272    | 272    | 272    | 272    |     |     |       | 270 ± 7                 | 270 ± 7                 | 270 ± 7                 | 270 ± 7                 |
| 2011 <sup>obs</sup> |        |        |        |        |     |     |       | 324 ± 1                 | 324 ± 1                 | 324 ± 1                 | 324 ± 1                 |
| 2000                | 316    | 316    | 316    | 316    | 316 | 316 | 316   |                         |                         |                         |                         |
| 2010                | 323    | 323    | 323    | 323    | 325 | 324 | 324   | 323 ± 3                 | 323 ± 3                 | 323 ± 3                 | 323 ± 3                 |
| 2020                | 329    | 330    | 330    | 332    | 335 | 333 | 333   | 330 ± 4                 | 331 ± 4                 | 331 ± 4                 | 332 ± 4                 |
| 2030                | 334    | 337    | 337    | 342    | 347 | 341 | 343   | 336 ± 5                 | 339 ± 5                 | 338 ± 5                 | 342 ± 6                 |
| 2040                | 339    | 344    | 345    | 354    | 360 | 349 | 353   | 342 ± 6                 | 346 ± 7                 | 346 ± 7                 | 353 ± 8                 |
| 2050                | 342    | 351    | 355    | 367    | 373 | 357 | 363   | 346 ± 8                 | 353 ± 9                 | 355 ± 9                 | 365 ± 11                |
| 2060                | 343    | 356    | 365    | 381    | 387 | 363 | 372   | 349 ± 9                 | 360 ± 10                | 364 ± 11                | 377 ± 13                |
| 2070                | 344    | 361    | 376    | 394    | 401 | 368 | 381   | 351 ± 10                | 365 ± 12                | 374 ± 13                | 389 ± 16                |
| 2080                | 344    | 366    | 386    | 408    | 416 | 371 | 389   | 352 ± 11                | 370 ± 13                | 384 ± 15                | 401 ± 18                |
| 2090                | 344    | 369    | 397    | 421    | 432 | 374 | 396   | 353 ± 11                | 374 ± 14                | 393 ± 17                | 413 ± 21                |
| 2100                | 344    | 372    | 406    | 435    | 447 | 375 | 403   | 354 ± 12                | 378 ± 16                | 401 ± 19                | 425 ± 24                |

See notes Table AII.4.2.

**Table AII.4.4** |  $SF_6$  abundance (ppt)

| Year                | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2 | B1 | Obs       |
|---------------------|--------|--------|--------|--------|----|----|-----------|
| 2011 <sup>obs</sup> |        |        |        |        |    |    | 7.3 ± 0.1 |
| 2010                | 7.0    | 6.9    | 7.0    | 7.0    | 7  | 7  |           |
| 2020                | 8.9    | 8.7    | 10.3   | 9.9    | 11 | 9  |           |
| 2030                | 9.7    | 9.7    | 14.1   | 13.4   | 15 | 12 |           |
| 2040                | 10.4   | 10.9   | 17.9   | 17.6   | 20 | 15 |           |
| 2050                | 10.8   | 12.3   | 21.7   | 22.1   | 26 | 19 |           |
| 2060                | 11.0   | 13.8   | 25.6   | 27.2   | 32 | 23 |           |
| 2070                | 11.2   | 15.6   | 29.5   | 32.6   | 40 | 27 |           |
| 2080                | 11.3   | 17.6   | 33.4   | 38.1   | 48 | 30 |           |
| 2090                | 11.4   | 19.9   | 37.3   | 44.1   | 56 | 33 |           |
| 2100                | 11.4   | 22.3   | 41.0   | 50.5   | 65 | 35 |           |

Notes:

Projected SF<sub>6</sub> and PFC abundances (Tables All.4.4 to All.4.7) taken directly from RCPs (Meinshausen et al., 2011a). Observed values shown for year 2011.

Table AII.4.5 | CF<sub>4</sub> abundance (ppt)

| Year     | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1  | Obs  |
|----------|--------|--------|--------|--------|-----|-----|------|
| 2011 obs |        |        |        |        |     |     | 79.0 |
| 2010     | 84     | 83     | 85     | 83     | 92  | 91  |      |
| 2020     | 93     | 90     | 99     | 91     | 107 | 101 |      |
| 2030     | 99     | 95     | 115    | 99     | 125 | 111 |      |
| 2040     | 103    | 101    | 130    | 107    | 148 | 122 |      |
| 2050     | 106    | 107    | 146    | 115    | 175 | 135 |      |
| 2060     | 108    | 113    | 162    | 123    | 208 | 150 |      |
| 2070     | 109    | 119    | 177    | 131    | 246 | 164 |      |
| 2080     | 110    | 125    | 193    | 138    | 291 | 179 |      |
| 2090     | 111    | 131    | 207    | 146    | 341 | 193 |      |
| 2100     | 112    | 138    | 222    | 153    | 397 | 208 |      |

Table AII.4.6 | C<sub>2</sub>F<sub>6</sub> abundance (ppt)

| Year     | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2 | B1 | Obs |
|----------|--------|--------|--------|--------|----|----|-----|
| 2011 obs |        |        |        |        |    |    | 4.2 |
| 2010     | 4.1    | 3.9    | 3.9    | 3.9    | 4  | 4  |     |
| 2020     | 6.2    | 4.8    | 5.0    | 5.0    | 5  | 4  |     |
| 2030     | 7.9    | 5.5    | 6.2    | 6.1    | 6  | 5  |     |
| 2040     | 8.6    | 6.3    | 7.3    | 7.2    | 7  | 6  |     |
| 2050     | 8.9    | 7.1    | 8.4    | 8.4    | 9  | 7  |     |
| 2060     | 9.1    | 7.9    | 9.4    | 9.6    | 11 | 8  |     |
| 2070     | 9.2    | 8.8    | 10.5   | 10.7   | 14 | 8  |     |
| 2080     | 9.3    | 9.6    | 11.5   | 11.8   | 17 | 9  |     |
| 2090     | 9.3    | 10.4   | 12.5   | 13.0   | 20 | 10 |     |
| 2100     | 9.3    | 11.3   | 13.4   | 14.1   | 23 | 11 |     |

# **Table All.4.7** | C<sub>6</sub>F<sub>14</sub> abundance (ppt)

| Year | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|------|--------|--------|--------|--------|
| 2010 | 0.07   | 0.07   | 0.07   | 0.07   |
| 2020 | 0.13   | 0.13   | 0.13   | 0.13   |
| 2030 | 0.16   | 0.16   | 0.16   | 0.16   |
| 2040 | 0.18   | 0.18   | 0.18   | 0.18   |
| 2050 | 0.20   | 0.20   | 0.20   | 0.20   |
| 2060 | 0.21   | 0.21   | 0.21   | 0.21   |
| 2070 | 0.23   | 0.23   | 0.23   | 0.23   |
| 2080 | 0.25   | 0.25   | 0.25   | 0.25   |
| 2090 | 0.27   | 0.27   | 0.27   | 0.27   |
| 2100 | 0.28   | 0.28   | 0.28   | 0.28   |

Table AII.4.8 | HFC-23 abundance (ppt)

| Year                | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2 | B1 | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5&  |
|---------------------|--------|--------|--------|--------|----|----|-------------------------|-------------------------|-------------------------|----------|
| 2011 <sup>obs</sup> |        |        |        |        |    |    | 24.0                    | 24.0                    | 24.0                    | 24.0     |
| 2010                | 22.9   | 22.9   | 22.9   | 22.9   | 26 | 26 | 23.2 ± 1                | 23.2 ± 1                | 23.2 ± 1                | 23.2 ± 1 |
| 2020                | 27.2   | 27.2   | 27.2   | 27.2   | 33 | 33 | 26.6 ± 1                | 26.6 ± 1                | 26.6 ± 1                | 26.6 ± 1 |
| 2030                | 27.0   | 27.0   | 27.1   | 27.1   | 35 | 35 | 26.3 ± 1                | 26.3 ± 1                | 26.3 ± 1                | 26.3 ± 1 |
| 2040                | 26.5   | 26.5   | 26.6   | 26.6   | 35 | 35 | 25.7 ± 1                | 25.8 ± 1                | 25.8 ± 1                | 25.8 ± 1 |
| 2050                | 25.8   | 25.9   | 25.9   | 26.0   | 35 | 35 | 24.9 ± 1                | 25.0 ± 1                | 25.1 ± 1                | 25.1 ± 1 |
| 2060                | 25.0   | 25.1   | 25.1   | 25.3   | 35 | 34 | 24.0 ± 1                | 24.2 ± 1                | 24.3 ± 1                | 24.4 ± 1 |
| 2070                | 24.1   | 24.2   | 24.4   | 24.6   | 34 | 34 | 23.0 ± 1                | 23.4 ± 1                | 23.4 ± 1                | 23.6 ± 1 |
| 2080                | 23.3   | 23.3   | 23.5   | 23.8   | 34 | 33 | 22.1 ± 1                | 22.5 ± 1                | 22.6 ± 1                | 22.8 ± 1 |
| 2090                | 22.4   | 22.5   | 22.7   | 23.0   | 34 | 33 | 21.2 ± 1                | 21.6 ± 1                | 21.8 ± 1                | 22.1 ± 1 |
| 2100                | 21.6   | 21.6   | 21.9   | 22.3   | 33 | 32 | 20.3 ± 1                | 20.8 ± 1                | 21.0 ± 1                | 21.3 ± 1 |

#### Notes:

RCPn.n HFC abundances (Tables All.4.8 to All.4.15) are as reported (Meinshausen et al., 2011a). SRES A2 and B1 and IS92a (where available) are taken from TAR Appendix II. Observed values are shown for 2011 (see Chapter 2, and Table All.1.1). The AR5 RCPn.n<sup>a</sup> abundances are calculated starting with observed abundances (adopted for 2010) and future tropospheric OH changes using the methodology of Prather et al. (2012), updated for uncertainty in lifetime and scenario changes in OH using Holmes et al. (2013) and ACCMIP results (Stevenson et al., 2013; Voulgarakis et al., 2013). Projected RCP<sup>a</sup> abundances are best estimates with 68% confidence range as uncertainties. See also notes Tables All.4.2 and All.5.9.

Table AII.4.9 | HFC-32 abundance (ppt)

| Year                | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2 | B1 | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|---------------------|--------|--------|--------|--------|----|----|-------------------------|-------------------------|-------------------------|-------------------------|
| 2011 <sup>obs</sup> |        |        |        |        |    |    | 4.9                     | 4.9                     | 4.9                     | 4.9                     |
| 2010                | 5.7    | 5.7    | 5.7    | 5.7    | 1  | 1  | 4.1 ± 0                 | 4.1 ± 0                 | 4.1 ± 0                 | 4.1 ± 0                 |
| 2020                | 21.0   | 21.0   | 21.1   | 21.1   | 3  | 3  | 23.8 ± 2                | 24.0 ± 2                | 24.0 ± 2                | 24.0 ± 2                |
| 2030                | 34.7   | 35.2   | 35.5   | 35.8   | 4  | 4  | 38.1 ± 5                | 39.1 ± 5                | 39.1 ± 5                | 39.2 ± 5                |
| 2040                | 41.1   | 41.9   | 42.4   | 43.6   | 6  | 5  | 44.7 ± 6                | 46.7 ± 6                | 46.9 ± 6                | 47.8 ± 6                |
| 2050                | 41.9   | 42.8   | 43.9   | 46.2   | 7  | 7  | 44.3 ± 7                | 47.6 ± 7                | 48.2 ± 7                | 50.3 ± 8                |
| 2060                | 43.1   | 43.8   | 45.6   | 48.8   | 9  | 8  | 45.0 ± 7                | 49.6 ± 8                | 50.6 ± 8                | 53.8 ± 8                |
| 2070                | 47.9   | 48.1   | 50.7   | 54.7   | 11 | 8  | 49.4 ± 8                | 54.9 ± 8                | 56.8 ± 9                | 60.3 ± 9                |
| 2080                | 51.3   | 50.5   | 54.0   | 58.6   | 14 | 8  | 53.8 ± 9                | 58.2 ± 9                | 61.4 ± 10               | 64.7 ± 10               |
| 2090                | 51.0   | 49.6   | 52.8   | 58.2   | 17 | 8  | 54.0 ± 9                | 56.9 ±10                | 60.6 ± 10               | 64.4 ± 11               |
| 2100                | 47.5   | 45.6   | 47.4   | 53.8   | 20 | 8  | 50.5 ± 9                | 51.8 ± 9                | 55.2 ± 10               | 59.6 ± 11               |

Table AII.4.10 | HFC-125 abundance (ppt)

| Year    | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1 | IS92a | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|---------|--------|--------|--------|--------|-----|----|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| 2011obs |        |        |        |        |     |    |       | 9.6                     | 9.6                     | 9.6                     | 9.6                     |
| 2010    | 7.1    | 6.4    | 5.7    | 7.7    | 2   | 2  | 0     | 8.2 ± 1                 | 8.2 ± 1                 | 8.2 ± 1                 | 8.2 ± 1                 |
| 2020    | 27.4   | 14.3   | 7.6    | 25.7   | 8   | 8  | 2     | 30.9 ± 1                | 16.3 ± 1                | 9.6 ± 1                 | 27.6 ± 1                |
| 2030    | 60.0   | 23.2   | 9.2    | 48.5   | 16  | 16 | 12    | 64.1 ± 3                | 25.2 ± 2                | 10.9 ± 1                | 51.0 ± 3                |
| 2040    | 90.5   | 29.7   | 10.6   | 72.0   | 24  | 24 | 40    | 95.5 ± 7                | 31.9 ± 3                | 12.2 ± 1                | 75.9 ± 5                |
| 2050    | 114.5  | 34.0   | 11.8   | 97.6   | 34  | 33 | 87    | 119.5 ± 11              | 36.6 ± 4                | 13.3 ± 2                | 103 ± 8                 |
| 2060    | 133.4  | 36.0   | 12.9   | 122.9  | 45  | 43 | 137   | 139.0 ± 15              | 39.0 ± 5                | 14.4 ± 2                | 130 ± 12                |
| 2070    | 154.8  | 35.8   | 13.9   | 147.1  | 58  | 49 | 177   | 160.8 ± 20              | 39.4 ± 6                | 15.5 ± 2                | 156 ± 16                |
| 2080    | 176.2  | 34.8   | 14.8   | 168.7  | 72  | 54 | 210   | 183.2 ± 24              | 39.1 ± 6                | 16.6 ± 2                | 180 ± 20                |
| 2090    | 192.3  | 34.0   | 15.5   | 185.8  | 89  | 57 | 236   | 200.9 ± 29              | 38.7 ± 7                | 17.4 ± 3                | 199 ± 25                |
| 2100    | 200.2  | 33.2   | 15.8   | 198.9  | 107 | 58 | 255   | 210.5 ± 34              | 38.1 ± 7                | 18.0 ± 3                | 215 ± 30                |

Table AII.4.11 | HFC-134a abundance (ppt)

| Year | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1  | IS92a | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|------|--------|--------|--------|--------|-----|-----|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| 2011 |        |        |        |        |     |     |       | 63 ± 1                  | 63 ± 1                  | 63 ± 1                  | 63 ± 1                  |
| 2010 | 56     | 56     | 56     | 56     | 55  | 55  | 94    | 58 ± 3                  | 58 ± 3                  | 58 ± 3                  | 58 ± 3                  |
| 2020 | 96     | 95     | 90     | 112    | 111 | 108 | 183   | 97 ± 5                  | 98 ± 5                  | 91 ± 5                  | 117 ± 5                 |
| 2030 | 122    | 129    | 109    | 180    | 170 | 165 | 281   | 123 ± 9                 | 132 ± 9                 | 110 ± 8                 | 184 ± 11                |
| 2040 | 142    | 154    | 121    | 245    | 231 | 223 | 401   | 143 ± 12                | 157 ± 12                | 122 ± 10                | 249 ± 17                |
| 2050 | 153    | 175    | 129    | 311    | 299 | 293 | 537   | 150 ± 15                | 178 ± 16                | 130 ± 12                | 314 ± 24                |
| 2060 | 160    | 187    | 135    | 370    | 382 | 352 | 657   | 155 ± 16                | 192 ± 19                | 137 ± 14                | 373 ± 32                |
| 2070 | 175    | 193    | 141    | 423    | 480 | 380 | 743   | 168 ± 18                | 200 ± 21                | 143 ± 15                | 427 ± 39                |
| 2080 | 191    | 205    | 144    | 471    | 594 | 391 | 807   | 184 ± 21                | 216 ± 23                | 148 ± 16                | 476 ± 47                |
| 2090 | 200    | 229    | 144    | 517    | 729 | 390 | 850   | 193 ± 23                | 242 ± 26                | 150 ± 18                | 524 ± 56                |
| 2100 | 199    | 262    | 141    | 561    | 877 | 379 | 878   | 192 ± 25                | 275 ± 30                | 148 ± 19                | 570 ± 64                |

Table AII.4.12 | HFC-143a abundance (ppt)

| Year | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1 | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|------|--------|--------|--------|--------|-----|----|-------------------------|-------------------------|-------------------------|-------------------------|
| 2011 |        |        |        |        |     |    | 12.0                    | 12.0                    | 12.0                    | 12.0                    |
| 2010 | 10.2   | 9.4    | 8.4    | 10.8   | 3   | 2  | 11 ± 1                  | 11 ± 1                  | 11 ± 1                  | 11 ± 1                  |
| 2020 | 33.9   | 17.8   | 10.1   | 28.2   | 10  | 9  | 37 ± 1                  | 19 ± 1                  | 12 ± 1                  | 29 ± 1                  |
| 2030 | 72.1   | 26.8   | 12.1   | 46.8   | 20  | 18 | 75 ± 2                  | 28 ± 1                  | 14 ± 1                  | 48 ± 1                  |
| 2040 | 109.9  | 36.0   | 14.0   | 65.6   | 32  | 29 | 13 ± 4                  | 38 ± 1                  | 16 ± 1                  | 67 ± 2                  |
| 2050 | 142.1  | 45.4   | 16.0   | 85.7   | 45  | 43 | 144 ± 6                 | 47 ± 2                  | 18 ± 1                  | 88 ± 3                  |
| 2060 | 168.6  | 54.0   | 18.1   | 105.2  | 62  | 57 | 170 ± 8                 | 56 ± 3                  | 20 ± 1                  | 107 ± 4                 |
| 2070 | 196.1  | 61.4   | 20.1   | 123.2  | 81  | 68 | 197 ± 11                | 64 ± 3                  | 22 ± 1                  | 126 ± 6                 |
| 2080 | 222.2  | 69.7   | 22.2   | 138.7  | 103 | 77 | 223 ± 14                | 73 ± 4                  | 24 ± 2                  | 142 ± 8                 |
| 2090 | 242.0  | 80.2   | 24.0   | 150.2  | 129 | 85 | 243 ± 17                | 85 ± 5                  | 26 ± 2                  | 154 ± 9                 |
| 2100 | 252.9  | 92.6   | 25.6   | 157.9  | 157 | 90 | 254 ± 20                | 98 ± 6                  | 28 ± 2                  | 163 ± 11                |

# Table AII.4.13 | HFC-227ea abundance (ppt)

| Year | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2 | B1 | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|------|--------|--------|--------|--------|----|----|-------------------------|-------------------------|-------------------------|-------------------------|
| 2011 |        |        |        |        |    |    | 0.65                    | 0.65                    | 0.65                    | 0.65                    |
| 2010 | 1.43   | 1.28   | 1.42   | 1.56   | 2  | 2  | 0.6 ± 0.1               | 0.6 ± 0.1               | 0.6 ± 0.1               | 0.6 ± 0.1               |
| 2020 | 2.81   | 2.10   | 2.78   | 3.30   | 5  | 6  | 2.0 ± 0.1               | 1.5 ± 0.1               | 2.0 ± 0.1               | 2.4 ± 0.1               |
| 2030 | 2.48   | 1.71   | 2.44   | 2.77   | 10 | 10 | 2.0 ± 0.1               | 1.3 ± 0.1               | 2.0 ± 0.1               | 2.2 ± 0.1               |
| 2040 | 2.09   | 1.35   | 2.04   | 2.29   | 14 | 15 | 1.8 ± 0.1               | 1.1 ± 0.1               | 1.8 ± 0.1               | 2.0 ± 0.2               |
| 2050 | 1.74   | 1.06   | 1.68   | 1.92   | 19 | 21 | 1.6 ± 0.2               | 1.0 ± 0.1               | 1.6 ± 0.2               | 1.8 ± 0.2               |
| 2060 | 1.35   | 0.81   | 1.31   | 1.55   | 25 | 27 | 1.3 ± 0.2               | 0.8 ± 0.1               | 1.3 ± 0.2               | 1.5 ± 0.2               |
| 2070 | 1.04   | 0.61   | 1.01   | 1.23   | 32 | 31 | 1.1 ± 0.2               | 0.6 ± 0.1               | 1.1 ± 0.2               | 1.3 ± 0.2               |
| 2080 | 0.81   | 0.45   | 0.78   | 0.99   | 40 | 34 | 0.9 ± 0.2               | 0.5 ± 0.1               | $0.9 \pm 0.2$           | 1.1 ± 0.2               |
| 2090 | 0.63   | 0.34   | 0.59   | 0.79   | 49 | 35 | 0.8 ± 0.2               | 0.4 ± 0.1               | $0.8 \pm 0.2$           | $0.9 \pm 0.2$           |
| 2100 | 1.43   | 1.28   | 1.42   | 1.56   | 2  | 2  | 0.6 ± 0.2               | 0.3 ± 0.1               | 0.6 ± 0.2               | $0.8 \pm 0.2$           |

# Table AII.4.14 | HFC-245fa abundance (ppt)

| Year | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2  | B1 | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|------|--------|--------|--------|--------|-----|----|-------------------------|-------------------------|-------------------------|-------------------------|
| 2011 |        |        |        |        |     |    | 1.24                    | 1.24                    | 1.24                    | 1.24                    |
| 2010 | 7.5    | 7.3    | 8.2    | 9.5    | 8   | 8  | 1 ± 0.2                 | 1 ± 0.2                 | 1 ± 0.2                 | 1 ± 0.2                 |
| 2020 | 12.1   | 19.3   | 18.1   | 31.5   | 17  | 17 | 10.2 ± 1                | 18.9 ± 2                | 16.4 ± 2                | 31.0 ± 4                |
| 2030 | 7.4    | 28.2   | 21.3   | 51.2   | 23  | 23 | 6.6 ± 1.5               | 29.2 ± 4                | 21.6 ± 3                | 53.1 ± 8                |
| 2040 | 2.3    | 31.2   | 22.6   | 61.7   | 29  | 29 | 2.2 ± 1.0               | 33.0 ± 6                | 23.7 ± 4                | 63.8 ± 10               |
| 2050 | 0.6    | 31.9   | 23.3   | 62.0   | 36  | 38 | 0.7 ± 0.5               | 34.1 ± 7                | 24.6 ± 5                | 64.4 ± 12               |
| 2060 | 0.2    | 30.6   | 23.8   | 59.1   | 46  | 43 | 0.2 ± 0.2               | 32.9 ± 7                | 25.3 ± 5                | 61.7 ± 13               |
| 2070 | 0.0    | 28.2   | 24.2   | 55.3   | 58  | 44 | 0.1 ± 0.1               | 30.8 ± 7                | 25.9 ± 5                | 58.1 ± 13               |
| 2080 | 0.0    | 26.4   | 24.3   | 51.5   | 72  | 43 | 0.0 ± 0.1               | 29.3 ± 7                | 26.4 ± 6                | 54.4 ± 12               |
| 2090 | 0.0    | 25.8   | 23.6   | 48.0   | 88  | 42 | $0.0 \pm 0.0$           | 28.6 ± 6                | 26.0 ± 6                | 51.0 ± 12               |
| 2100 | 0.0    | 26.0   | 22.3   | 47.3   | 105 | 40 | $0.0 \pm 0.0$           | 28.6 ± 6                | 24.9 ± 6                | 50.6 ± 11               |

Table AII.4.15 | HFC-43-10mee abundance (ppt)

| Year | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2 | B1 | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|------|--------|--------|--------|--------|----|----|-------------------------|-------------------------|-------------------------|-------------------------|
| 2011 |        |        |        |        |    |    | _                       | _                       | _                       | _                       |
| 2010 | 0.52   | 0.52   | 0.52   | 0.52   | 1  | 1  | $0.0 \pm 0.0$           | $0.0 \pm 0.0$           | $0.0 \pm 0.0$           | $0.0 \pm 0.0$           |
| 2020 | 1.46   | 1.46   | 1.46   | 1.47   | 2  | 1  | 1.2 ± 0.1               | 1.2 ± 0.1               | 1.2 ± 0.1               | 1.2 ± 0.1               |
| 2030 | 2.09   | 2.11   | 2.12   | 2.14   | 2  | 2  | 2.0 ± 0.2               | 2.1 ± 0.2               | 2.1 ± 0.2               | 2.1 ± 0.2               |
| 2040 | 2.61   | 2.64   | 2.66   | 2.68   | 3  | 2  | 2.7 ± 0.3               | 2.8 ± 0.3               | 2.8 ± 0.3               | $2.8 \pm 0.3$           |
| 2050 | 3.13   | 3.17   | 3.22   | 3.23   | 3  | 3  | 3.3 ± 0.4               | $3.4 \pm 0.4$           | $3.4 \pm 0.4$           | $3.4 \pm 0.4$           |
| 2060 | 3.56   | 3.61   | 3.70   | 3.83   | 4  | 3  | 3.7 ± 0.6               | 3.9 ± 0.6               | $4.0 \pm 0.6$           | 4.1 ± 0.6               |
| 2070 | 3.78   | 3.81   | 3.96   | 4.52   | 4  | 4  | 3.9 ± 0.7               | 4.3 ± 0.7               | 4.3 ± 0.7               | 4.9 ± 0.7               |
| 2080 | 3.89   | 3.88   | 4.08   | 5.27   | 5  | 4  | 4.1 ± 0.8               | 4.4 ± 0.8               | 4.6 ± 0.8               | 5.8 ± 0.9               |
| 2090 | 3.93   | 3.87   | 4.10   | 6.14   | 6  | 4  | 4.2 ± 0.8               | 4.5 ± 0.8               | 4.7 ± 0.9               | 6.7 ± 1.0               |
| 2100 | 3.91   | 3.81   | 3.99   | 7.12   | 7  | 4  | 4.2 ± 0.9               | 4.4 ± 0.9               | 4.6 ± 0.9               | 7.9 ± 1.2               |

Table AII.4.16 | Montreal Protocol greenhouse gas abundances (ppt)

| Year  | CFC-11  | CFC-12  | CFC-113    | CFC-114 | CFC-115 | CCI <sub>4</sub> | CH <sub>3</sub> CCl <sub>3</sub> | HCFC-22 |
|-------|---------|---------|------------|---------|---------|------------------|----------------------------------|---------|
| 2011* | 238 ± 1 | 528 ± 2 | 74.5 ± 0.5 | 15.8    | 8.4     | 86 ± 2           | 6.4 ± 0.4                        | 213 ± 2 |
| 2010  | 240.9   | 532.5   | 75.6       | 16.4    | 8.4     | 87.6             | 8.3                              | 206.8   |
| 2020  | 213.0   | 492.8   | 67.4       | 15.8    | 8.4     | 70.9             | 1.5                              | 301.8   |
| 2030  | 182.6   | 448.0   | 59.9       | 15.1    | 8.4     | 54.4             | 0.2                              | 265.4   |
| 2040  | 153.5   | 405.8   | 53.3       | 14.4    | 8.4     | 40.3             | 0.0                              | 151.0   |
| 2050  | 127.2   | 367.3   | 47.4       | 13.6    | 8.4     | 29.2             | 0.0                              | 71.1    |
| 2060  | 104.4   | 332.4   | 42.1       | 12.9    | 8.3     | 20.0             | 0.0                              | 31.5    |
| 2070  | 85.2    | 300.7   | 37.4       | 12.3    | 8.3     | 13.6             | 0.0                              | 13.7    |
| 2080  | 69.1    | 272.1   | 33.3       | 11.6    | 8.2     | 9.3              | 0.0                              | 5.9     |
| 2090  | 55.9    | 246.2   | 29.6       | 11.1    | 8.2     | 6.3              | 0.0                              | 2.6     |
| 2100  | 45.1    | 222.8   | 26.3       | 10.5    | 8.1     | 4.3              | 0.0                              | 1.1     |

| Year  | HCFC-141b  | HCFC-142b  | Halon 1211 | Halon 1202 | Halon 1301 | Halon 2402 | CH₃Br | CH₃Cl |
|-------|------------|------------|------------|------------|------------|------------|-------|-------|
| 2011* | 21.4 ± 0.5 | 21.2 ± 0.5 | 4.07       | 0.00       | 3.23       | 0.45       | 7.1   | 534   |
| 2010  | 20.3       | 20.5       | 4.07       | 0.00       | 3.20       | 0.46       | 7.2   | 550   |
| 2020  | 30.9       | 30.9       | 3.08       | 0.00       | 3.29       | 0.38       | 7.1   | 550   |
| 2030  | 34.4       | 31.2       | 2.06       | 0.00       | 3.19       | 0.27       | 7.1   | 550   |
| 2040  | 27.9       | 23.3       | 1.30       | 0.00       | 2.97       | 0.18       | 7.1   | 550   |
| 2050  | 19.3       | 14.9       | 0.78       | 0.00       | 2.71       | 0.12       | 7.1   | 550   |
| 2060  | 12.4       | 9.0        | 0.46       | 0.00       | 2.43       | 0.07       | 7.1   | 550   |
| 2070  | 7.7        | 5.2        | 0.26       | 0.00       | 2.16       | 0.05       | 7.1   | 550   |
| 2080  | 4.7        | 3.0        | 0.15       | 0.00       | 1.90       | 0.03       | 7.1   | 550   |
| 2090  | 2.9        | 1.7        | 0.08       | 0.00       | 1.66       | 0.02       | 7.1   | 550   |
| 2100  | 1.7        | 0.9        | 0.05       | 0.00       | 1.44       | 0.01       | 7.1   | 550   |

Present day (2011\*) is from Chapter 2; projections are from Scenario A1, WMO Ozone Assessment (WMO 2010).

# AII.5: Column Abundances, Burdens, and Lifetimes

Table AII.5.1 | Stratospheric O<sub>3</sub> column changes (DU)

| Year | Obs     | RCP2.6  | RCP4.5  | RCP6.0  | RCP8.5  |
|------|---------|---------|---------|---------|---------|
| 1850 |         | 17      | 17      | 17      | 17      |
| 1980 | 11      | 15      | 15      | 15      | 15      |
| 2000 | 269 ± 8 | 276 ± 9 | 276 ± 9 | 276 ± 9 | 276 ± 9 |
| 2010 | 0       | 2       | -1      | 1       | -2      |
| 2020 |         | 4       | 0       | 3       | 2       |
| 2030 |         | 8       | 4       | 7       | 5       |
| 2040 |         | 9       | 7       | 10      | 9       |
| 2050 |         | 12      | 10      | 13      | 12      |
| 2060 |         | 13      | 12      | 14      | 15      |
| 2070 |         | 13      | 11      | 15      | 16      |
| 2080 |         | 12      | 11      | 16      | 15      |
| 2090 |         | 13      | 12      | 16      | 18      |
| 2100 |         | 15      | 13      | 17      | 20      |

#### Notes

Observed O<sub>3</sub> columns and trends taken from WMO (Douglass and Filetov, 2010), subtracting tropospheric column O<sub>3</sub> (Table AII.5.2) with uncertainty estimates driven by polar variability. CMIP5 RCP results are from Eyring et al. (2013). The multi-model mean is derived from the CMIP5 models with predictive (interactive or semi-offline) stratospheric and tropospheric ozone chemistry. The absolute value is shown for year 2000. All other years are differences relative to (minus) year 2000. The multi-model standard deviation is shown only for year 2000; it does not change much over time; and, representing primarily the spread in absolute O<sub>3</sub> column, it is larger than the standard deviation of the changes (not evaluated here). All models used the same projections for ozone-depleting substances. Near-term differences in projected O<sub>3</sub> columns across scenarios reflect model sampling (i.e., different sets of models contributing to each RCP), while long-term changes reflect changes in N<sub>2</sub>O, CH<sub>4</sub> and climate. See Section 11.3.5.1.2.

Table All.5.2 | Tropospheric O<sub>3</sub> column changes (DU)

| Year |            | CM         | IP5        |            |            | ACC        | MIP        |            |
|------|------------|------------|------------|------------|------------|------------|------------|------------|
|      | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     |
| 1850 | -10.2      | -10.2      | -10.2      | -10.2      | -8.9       | -8.9       | -8.9       | -8.9       |
| 1980 | -2.0       | -2.0       | -2.0       | -2.0       | -1.3       | -1.3       | -1.3       | -1.3       |
| 2000 | 31.1 ± 3.3 | 31.1 ± 3.3 | 31.1 ± 3.3 | 31.1 ± 3.3 | 30.8 ± 2.1 | 30.8 ± 2.1 | 30.8 ± 2.1 | 30.8 ± 2.1 |
| 2010 | 1.1        | 0.6        | 0.8        | 0.8        |            |            |            |            |
| 2020 | 1.0        | 0.9        | 1.0        | 2.1        |            |            |            |            |
| 2030 | 0.6        | 1.5        | 1.4        | 3.5        | -1.3       | 1.0        | -0.1       | 1.8        |
| 2040 | 0.5        | 1.6        | 2.1        | 4.5        |            |            |            |            |
| 2050 | 0.0        | 1.7        | 2.4        | 5.7        |            |            |            |            |
| 2060 | -0.7       | 1.3        | 2.6        | 7.1        |            |            |            |            |
| 2070 | -1.6       | 0.5        | 2.3        | 8.1        |            |            |            |            |
| 2080 | -2.5       | -0.1       | 2.0        | 8.9        |            |            |            |            |
| 2090 | -2.8       | -0.4       | 1.5        | 9.5        |            |            |            |            |
| 2100 | -3.1       | -0.5       | 1.1        | 10.2       | -5.4       | -2.2       | -2.6       | 5.3        |

(continued on next page)

Table AII.5.2 (continued)

| Year | A2   | B1   | IS92a | CLE           | MFR            |
|------|------|------|-------|---------------|----------------|
| 1850 |      |      |       |               |                |
| 1980 |      |      |       |               |                |
| 2000 | 34.0 | 34.0 | 34.0  | 32.6          | 32.6           |
| 2010 | 1.7  | 0.8  | 1.5   |               |                |
| 2020 | 4.2  | 1.6  | 3.1   |               |                |
| 2030 | 6.8  | 1.9  | 4.7   | $1.5 \pm 0.8$ | $-1.4 \pm 0.4$ |
| 2040 | 8.6  | 1.8  | 6.1   |               |                |
| 2050 | 10.2 | 1.0  | 7.6   |               |                |
| 2060 | 11.7 | 0.0  | 8.9   |               |                |
| 2070 | 13.2 | -0.9 | 10.0  |               |                |
| 2080 | 15.3 | -1.9 | 11.1  |               |                |
| 2090 | 18.0 | -2.8 | 12.1  |               |                |
| 2100 | 20.8 | -3.9 | 13.2  |               |                |

RCP results from CMIP5 (Eyring et al., 2013) and ACCMIP (Young et al., 2013). For ACCMIP all models have interactive tropospheric ozone chemistry and are included, in contrast to the CMIP5 multimodel mean which includes only those models with predictive (interactive or semi-offline) stratospheric and tropospheric ozone chemistry. The absolute value is shown for year 2000. All other years are differences relative to (minus) year 2000. The multi-model standard deviation is shown only for year 2000; it does not change much over time; and, representing primarily the spread in absolute O<sub>3</sub> columns, it is larger than the standard deviation of the changes across individual models (not evaluated here). SRES values are from TAR Appendix II. CLE/MFR scenarios are from Dentener et al. (2005, 2006): CLE includes climate change, MFR does not. See Section 11.3.5.1.2.

Table AII.5.3 | Total aerosol optical depth (AOD)

| Year              | (Min) | Historical | (Max) | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|-------------------|-------|------------|-------|--------|--------|--------|--------|
| 1860 <sup>d</sup> | 0.056 | 0.101      | 0.161 | 0.094  | 0.101  | 0.092  | 0.100  |
| 1870 <sup>d</sup> | 0.058 | 0.102      | 0.162 | 0.095  | 0.102  | 0.094  | 0.101  |
| 1180 <sup>d</sup> | 0.058 | 0.102      | 0.163 | 0.095  | 0.102  | 0.094  | 0.101  |
| 1890 <sup>d</sup> | 0.059 | 0.104      | 0.164 | 0.098  | 0.104  | 0.096  | 0.103  |
| 1900 <sup>d</sup> | 0.058 | 0.105      | 0.166 | 0.099  | 0.105  | 0.097  | 0.104  |
| 1910 <sup>d</sup> | 0.059 | 0.107      | 0.169 | 0.101  | 0.107  | 0.099  | 0.106  |
| 1920 <sup>d</sup> | 0.060 | 0.108      | 0.170 | 0.102  | 0.108  | 0.100  | 0.107  |
| 1930 <sup>d</sup> | 0.061 | 0.110      | 0.173 | 0.104  | 0.110  | 0.101  | 0.109  |
| 1940 <sup>d</sup> | 0.061 | 0.111      | 0.175 | 0.105  | 0.111  | 0.103  | 0.110  |
| 1950 <sup>d</sup> | 0.060 | 0.115      | 0.181 | 0.108  | 0.115  | 0.106  | 0.113  |
| 1960 <sup>d</sup> | 0.064 | 0.122      | 0.192 | 0.116  | 0.122  | 0.113  | 0.120  |
| 1970 <sup>d</sup> | 0.065 | 0.130      | 0.204 | 0.123  | 0.130  | 0.120  | 0.128  |
| 1980 <sup>d</sup> | 0.066 | 0.135      | 0.221 | 0.127  | 0.135  | 0.124  | 0.133  |
| 1990 <sup>d</sup> | 0.068 | 0.138      | 0.231 | 0.129  | 0.138  | 0.126  | 0.135  |
| 2000 <sup>d</sup> | 0.068 | 0.136      | 0.232 | 0.127  | 0.136  | 0.124  | 0.134  |
| 2010 <sup>d</sup> |       |            |       | 0.127  | 0.137  | 0.124  | 0.133  |
| 2020 <sup>d</sup> |       |            |       | 0.123  | 0.134  | 0.122  | 0.132  |
| 2030 <sup>d</sup> |       |            |       | 0.117  | 0.130  | 0.119  | 0.130  |
| 2040 <sup>d</sup> |       |            |       | 0.111  | 0.126  | 0.118  | 0.126  |
| 2050 <sup>d</sup> |       |            |       | 0.108  | 0.123  | 0.117  | 0.124  |
| 2060 <sup>d</sup> |       |            |       | 0.106  | 0.119  | 0.116  | 0.121  |
| 2070 <sup>d</sup> |       |            |       | 0.105  | 0.116  | 0.110  | 0.120  |
| 2080 <sup>d</sup> |       |            |       | 0.103  | 0.114  | 0.107  | 0.118  |
| 2090 <sup>d</sup> |       |            |       | 0.102  | 0.112  | 0.106  | 0.118  |
| 2100 <sup>d</sup> |       |            |       | 0.101  | 0.111  | 0.105  | 0.117  |
| Number of models  |       | 21         |       | 15     | 21     | 13     | 19     |

#### Notes

Multi-model decadal global means (2030<sup>d</sup> = 2025–2034, 2100<sup>d</sup> = 2095–2100) from CMIP5 models reporting AOD. The numbers of models for each experiment are indicated in the bottom row. The full range of models (given only for historical period for AOD and AAOD) is large and systematic in that models tend to scale relative to one another. Historical estimates for different RCPs vary because of the models included. RCP4.5 included the full set of CMIP5 models contributing aerosol results (21). The standard deviation of the models is 28% (AOD) and 62% (AAOD) (N. Mahowald, CMIP5 archive; Lamarque et al., 2013; Shindell et al., 2013). See Sections 11.3.5.1.3 and 11.3.6.1.

Table AII.5.4 | Absorbing aerosol optical depth (AAOD)

| Year              | (Min)     | Historical | (Max)  | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|-------------------|-----------|------------|--------|--------|--------|--------|--------|
| 1860 <sup>d</sup> | 0.00050   | 0.0035     | 0.0054 | 0.0033 | 0.0035 | 0.0031 | 0.0035 |
| 1870 <sup>d</sup> | 0.00060   | 0.0035     | 0.0054 | 0.0033 | 0.0035 | 0.0032 | 0.0036 |
| 1180 <sup>d</sup> | 0.00060   | 0.0036     | 0.0054 | 0.0034 | 0.0036 | 0.0032 | 0.0036 |
| 1890 <sup>d</sup> | 0.00060   | 0.0036     | 0.0055 | 0.0035 | 0.0036 | 0.0033 | 0.0037 |
| 1900 <sup>d</sup> | 0.00070   | 0.0037     | 0.0056 | 0.0035 | 0.0037 | 0.0033 | 0.0038 |
| 1910 <sup>d</sup> | 0.00070   | 0.0038     | 0.0057 | 0.0036 | 0.0038 | 0.0034 | 0.0038 |
| 1920 <sup>d</sup> | 0.00070   | 0.0038     | 0.0058 | 0.0036 | 0.0038 | 0.0034 | 0.0039 |
| 1930 <sup>d</sup> | 0.00070   | 0.0038     | 0.0057 | 0.0036 | 0.0038 | 0.0034 | 0.0038 |
| 1940 <sup>d</sup> | 0.00070   | 0.0038     | 0.0057 | 0.0036 | 0.0038 | 0.0034 | 0.0039 |
| 1950 <sup>d</sup> | 0.00070   | 0.0038     | 0.0058 | 0.0036 | 0.0038 | 0.0034 | 0.0039 |
| 1960 <sup>d</sup> | 0.00080   | 0.0040     | 0.0059 | 0.0038 | 0.0040 | 0.0036 | 0.0040 |
| 1970 <sup>d</sup> | 0.00090   | 0.0042     | 0.0065 | 0.0040 | 0.0042 | 0.0038 | 0.0043 |
| 1980 <sup>d</sup> | 0.00100   | 0.0046     | 0.0073 | 0.0044 | 0.0046 | 0.0042 | 0.0046 |
| 1990 <sup>d</sup> | 0.00110   | 0.0049     | 0.0079 | 0.0047 | 0.0049 | 0.0044 | 0.0049 |
| 2000 <sup>d</sup> | 0.00120   | 0.0050     | 0.0084 | 0.0048 | 0.0050 | 0.0045 | 0.0051 |
| 2010 <sup>d</sup> |           |            |        | 0.0050 | 0.0051 | 0.0046 | 0.0051 |
| 2020 <sup>d</sup> |           |            |        | 0.0050 | 0.0050 | 0.0045 | 0.0050 |
| 2030 <sup>d</sup> |           |            |        | 0.0047 | 0.0049 | 0.0045 | 0.0049 |
| 2040 <sup>d</sup> |           |            |        | 0.0043 | 0.0048 | 0.0044 | 0.0047 |
| 2050 <sup>d</sup> |           |            |        | 0.0041 | 0.0046 | 0.0044 | 0.0046 |
| 2060 <sup>d</sup> |           |            |        | 0.0039 | 0.0044 | 0.0043 | 0.0045 |
| 2070 <sup>d</sup> |           |            |        | 0.0037 | 0.0042 | 0.0041 | 0.0044 |
| 2080 <sup>d</sup> |           |            |        | 0.0037 | 0.0040 | 0.0039 | 0.0043 |
| 2090 <sup>d</sup> |           |            |        | 0.0036 | 0.0039 | 0.0038 | 0.0043 |
| 2100 <sup>d</sup> |           |            |        | 0.0036 | 0.0039 | 0.0038 | 0.0042 |
| Number            | of models | 14         |        | 11     | 14     | 10     | 12     |

See notes Table AII.5.3.

Table AII.5.5 | Sulphate aerosol atmospheric burden (TgS)

| Year              | (Min) | Historical | (Max) | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|-------------------|-------|------------|-------|--------|--------|--------|--------|
| 1860 <sup>d</sup> | 0.09  | 0.61       | 1.42  | 0.60   | 0.61   | 0.57   | 0.60   |
| 1870 <sup>d</sup> | 0.10  | 0.62       | 1.45  | 0.62   | 0.62   | 0.59   | 0.61   |
| 1180 <sup>d</sup> | 0.12  | 0.65       | 1.49  | 0.64   | 0.65   | 0.61   | 0.64   |
| 1890 <sup>d</sup> | 0.16  | 0.68       | 1.57  | 0.67   | 0.68   | 0.64   | 0.66   |
| 1900 <sup>d</sup> | 0.21  | 0.73       | 1.65  | 0.73   | 0.73   | 0.70   | 0.72   |
| 1910 <sup>d</sup> | 0.23  | 0.79       | 1.80  | 0.79   | 0.79   | 0.76   | 0.78   |
| 1920 <sup>d</sup> | 0.23  | 0.83       | 1.84  | 0.83   | 0.83   | 0.80   | 0.81   |
| 1930 <sup>d</sup> | 0.24  | 0.87       | 1.94  | 0.88   | 0.87   | 0.85   | 0.86   |
| 1940 <sup>d</sup> | 0.25  | 0.93       | 2.05  | 0.95   | 0.93   | 0.91   | 0.92   |
| 1950 <sup>d</sup> | 0.27  | 1.03       | 2.21  | 1.05   | 1.03   | 1.01   | 1.01   |
| 1960 <sup>d</sup> | 0.31  | 1.25       | 2.67  | 1.29   | 1.25   | 1.24   | 1.23   |
| 1970 <sup>d</sup> | 0.35  | 1.48       | 3.14  | 1.52   | 1.48   | 1.45   | 1.47   |
| 1980 <sup>d</sup> | 0.37  | 1.58       | 3.33  | 1.62   | 1.58   | 1.54   | 1.58   |
| 1990 <sup>d</sup> | 0.37  | 1.59       | 3.31  | 1.63   | 1.59   | 1.55   | 1.60   |
| 2000 <sup>d</sup> | 0.37  | 1.55       | 3.17  | 1.59   | 1.55   | 1.53   | 1.56   |

(continued on next page)

Table AII.5.5 | (continued)

| Year              | (Min)     | Historical | (Max) | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|-------------------|-----------|------------|-------|--------|--------|--------|--------|
| 2010 <sup>d</sup> |           |            |       | 1.57   | 1.59   | 1.52   | 1.54   |
| 2020 <sup>d</sup> |           |            |       | 1.43   | 1.54   | 1.43   | 1.51   |
| 2030 <sup>d</sup> |           |            |       | 1.21   | 1.44   | 1.33   | 1.44   |
| 2040 <sup>d</sup> |           |            |       | 1.03   | 1.31   | 1.34   | 1.31   |
| 2050 <sup>d</sup> |           |            |       | 0.94   | 1.16   | 1.29   | 1.20   |
| 2060 <sup>d</sup> |           |            |       | 0.90   | 1.05   | 1.24   | 1.13   |
| 2070 <sup>d</sup> |           |            |       | 0.86   | 0.96   | 1.06   | 1.08   |
| 2080 <sup>d</sup> |           |            |       | 0.81   | 0.88   | 0.92   | 1.05   |
| 2090 <sup>d</sup> |           |            |       | 0.76   | 0.85   | 0.86   | 0.98   |
| 2100 <sup>d</sup> |           |            |       | 0.71   | 0.83   | 0.80   | 0.94   |
| Number o          | of models | 18         |       | 12     | 18     | 10     | 16     |

See notes Table All.5.3. The standard deviation of the models is about 50% for sulphate, OC and BC aerosol loadings (N. Mahowald, CMIP5 archive; Lamarque et al., 2013; Shindell et al., 2013).

Table AII.5.6 | OC aerosol atmospheric burden (Tg)

| Year              | (Min)     | Historical | (Max) | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|-------------------|-----------|------------|-------|--------|--------|--------|--------|
| 1860 <sup>d</sup> | 0.34      | 1.08       | 2.7   | 1.09   | 1.08   | 1.13   | 1.12   |
| 1870 <sup>d</sup> | 0.35      | 1.09       | 2.7   | 1.10   | 1.09   | 1.14   | 1.13   |
| 1180 <sup>d</sup> | 0.36      | 1.09       | 2.7   | 1.11   | 1.09   | 1.15   | 1.14   |
| 1890 <sup>d</sup> | 0.35      | 1.10       | 2.8   | 1.12   | 1.10   | 1.16   | 1.15   |
| 1900 <sup>d</sup> | 0.36      | 1.11       | 2.8   | 1.12   | 1.11   | 1.16   | 1.15   |
| 1910 <sup>d</sup> | 0.33      | 1.10       | 2.8   | 1.11   | 1.10   | 1.15   | 1.15   |
| 1920 <sup>d</sup> | 0.34      | 1.08       | 2.7   | 1.09   | 1.08   | 1.12   | 1.13   |
| 1930 <sup>d</sup> | 0.33      | 1.07       | 2.6   | 1.07   | 1.07   | 1.11   | 1.12   |
| 1940 <sup>d</sup> | 0.33      | 1.07       | 2.6   | 1.07   | 1.07   | 1.11   | 1.12   |
| 1950 <sup>d</sup> | 0.36      | 1.08       | 2.6   | 1.08   | 1.08   | 1.11   | 1.12   |
| 1960 <sup>d</sup> | 0.41      | 1.13       | 2.7   | 1.13   | 1.13   | 1.17   | 1.17   |
| 1970 <sup>d</sup> | 0.46      | 1.20       | 2.9   | 1.22   | 1.20   | 1.26   | 1.24   |
| 1980 <sup>d</sup> | 0.54      | 1.28       | 3.1   | 1.32   | 1.28   | 1.36   | 1.33   |
| 1990 <sup>d</sup> | 0.53      | 1.38       | 3.3   | 1.44   | 1.38   | 1.48   | 1.43   |
| 2000 <sup>d</sup> | 0.53      | 1.41       | 3.5   | 1.47   | 1.41   | 1.52   | 1.46   |
| 2010 <sup>d</sup> |           |            |       | 1.59   | 1.21   | 1.55   | 1.29   |
| 2020 <sup>d</sup> |           |            |       | 1.59   | 1.12   | 1.56   | 1.26   |
| 2030 <sup>d</sup> |           |            |       | 1.56   | 1.08   | 1.55   | 1.25   |
| 2040 <sup>d</sup> |           |            |       | 1.47   | 1.06   | 1.57   | 1.22   |
| 2050 <sup>d</sup> |           |            |       | 1.41   | 1.04   | 1.57   | 1.20   |
| 2060 <sup>d</sup> |           |            |       | 1.40   | 1.01   | 1.56   | 1.17   |
| 2070 <sup>d</sup> |           |            |       | 1.36   | 0.96   | 1.55   | 1.14   |
| 2080 <sup>d</sup> |           |            |       | 1.33   | 0.92   | 1.55   | 1.13   |
| 2090 <sup>d</sup> |           |            |       | 1.32   | 0.90   | 1.54   | 1.10   |
| 2100 <sup>d</sup> |           |            |       | 1.30   | 0.89   | 1.55   | 1.09   |
| Number            | of models | 19         |       | 12     | 19     | 10     | 17     |

Notes:

See notes Table AII.5.5.

Table AII.5.7 | BC aerosol atmospheric burden (Tg)

| Year              | (Min)     | Historical | (Max) | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|-------------------|-----------|------------|-------|--------|--------|--------|--------|
| 1860 <sup>d</sup> | 0.037     | 0.059      | 0.127 | 0.058  | 0.059  | 0.057  | 0.059  |
| 1870 <sup>d</sup> | 0.039     | 0.063      | 0.133 | 0.062  | 0.063  | 0.061  | 0.064  |
| 1180 <sup>d</sup> | 0.040     | 0.068      | 0.139 | 0.066  | 0.068  | 0.065  | 0.069  |
| 1890 <sup>d</sup> | 0.043     | 0.075      | 0.149 | 0.070  | 0.075  | 0.070  | 0.076  |
| 1900 <sup>d</sup> | 0.045     | 0.082      | 0.156 | 0.076  | 0.082  | 0.075  | 0.083  |
| 1910 <sup>d</sup> | 0.048     | 0.089      | 0.167 | 0.081  | 0.089  | 0.081  | 0.091  |
| 1920 <sup>d</sup> | 0.049     | 0.092      | 0.167 | 0.083  | 0.092  | 0.082  | 0.095  |
| 1930 <sup>d</sup> | 0.049     | 0.090      | 0.161 | 0.082  | 0.090  | 0.081  | 0.092  |
| 1940 <sup>d</sup> | 0.051     | 0.091      | 0.162 | 0.082  | 0.091  | 0.082  | 0.093  |
| 1950 <sup>d</sup> | 0.053     | 0.094      | 0.165 | 0.085  | 0.094  | 0.085  | 0.096  |
| 1960 <sup>d</sup> | 0.061     | 0.102      | 0.179 | 0.094  | 0.102  | 0.094  | 0.105  |
| 1970 <sup>d</sup> | 0.071     | 0.115      | 0.201 | 0.107  | 0.115  | 0.107  | 0.117  |
| 1980 <sup>d</sup> | 0.088     | 0.141      | 0.245 | 0.130  | 0.141  | 0.130  | 0.144  |
| 1990 <sup>d</sup> | 0.098     | 0.157      | 0.274 | 0.146  | 0.157  | 0.145  | 0.161  |
| 2000 <sup>d</sup> | 0.101     | 0.164      | 0.293 | 0.153  | 0.164  | 0.152  | 0.169  |
| 2010 <sup>d</sup> |           |            |       | 0.170  | 0.174  | 0.157  | 0.170  |
| 2020 <sup>d</sup> |           |            |       | 0.169  | 0.174  | 0.152  | 0.164  |
| $2030^{d}$        |           |            |       | 0.144  | 0.166  | 0.147  | 0.153  |
| 2040 <sup>d</sup> |           |            |       | 0.120  | 0.155  | 0.144  | 0.138  |
| 2050 <sup>d</sup> |           |            |       | 0.103  | 0.141  | 0.138  | 0.127  |
| 2060 <sup>d</sup> |           |            |       | 0.091  | 0.126  | 0.127  | 0.118  |
| 2070 <sup>d</sup> |           |            |       | 0.081  | 0.110  | 0.113  | 0.110  |
| 2080 <sup>d</sup> |           |            |       | 0.075  | 0.094  | 0.101  | 0.106  |
| 2090 <sup>d</sup> |           |            |       | 0.071  | 0.087  | 0.092  | 0.102  |
| 2100 <sup>d</sup> |           |            |       | 0.068  | 0.084  | 0.087  | 0.099  |
| Number            | of models | 19         |       | 13     | 19     | 11     | 17     |

See notes Table AII.5.5.

Table AII.5.8 | CH<sub>4</sub> atmospheric lifetime (yr) against loss by tropospheric OH

| Year | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> | RCP2.6^    | RCP4.5^    | RCP6.0^    | RCP8.5^    |
|------|-------------------------|-------------------------|-------------------------|-------------------------|------------|------------|------------|------------|
| 2000 | 11.2 ± 1.3              | 11.2 ± 1.3              | 11.2 ± 1.3              | 11.2 ± 1.3              | 11.2 ± 1.3 | 11.2 ± 1.3 | 11.2 ± 1.3 | 11.2 ± 1.3 |
| 2010 | 11.2 ± 1.3              | 11.2 ± 1.3              | 11.2 ± 1.3              | 11.2 ± 1.3              |            |            |            |            |
| 2020 | 11.0 ± 1.3              | 11.2 ± 1.3              | 11.2 ± 1.3              | 11.2 ± 1.3              |            |            |            |            |
| 2030 | 10.8 ± 1.3              | 11.3 ± 1.4              | 11.3 ± 1.4              | 11.4 ± 1.4              | 10.6 ± 1.4 | 11.4 ± 2.1 | 11.1 ± 1.4 | 11.2 ± 1.4 |
| 2040 | 10.6 ± 1.3              | 11.3 ± 1.4              | 11.4 ± 1.4              | 11.8 ± 1.4              |            |            |            |            |
| 2050 | 10.2 ± 1.3              | 11.3 ± 1.4              | 11.5 ± 1.4              | 12.2 ± 1.5              |            |            |            |            |
| 2060 | 9.9 ± 1.3               | 11.2 ± 1.4              | 11.6 ± 1.4              | 12.6 ± 1.6              |            |            |            |            |
| 2070 | 9.9 ± 1.4               | 11.2 ± 1.5              | 11.8 ± 1.5              | 12.6 ± 1.7              |            |            |            |            |
| 2080 | 10.4 ± 1.5              | 11.1 ± 1.5              | 11.9 ± 1.6              | 12.6 ± 1.8              |            |            |            |            |
| 2090 | 10.4 ± 1.6              | 10.9 ± 1.6              | 11.7 ± 1.7              | 12.6 ± 1.8              |            |            |            |            |
| 2100 | 10.6 ± 1.6              | 10.7 ± 1.6              | 11.4 ± 1.8              | 12.5 ± 1.9              | 10.7 ± 1.6 | 10.1 ± 1.5 | 11.1 ± 1.8 | 12.1 ± 2.0 |

Notes

RCPn.n $^{8}$  lifetimes based on best estimate with uncertainty for 2000–2010 (Prather et al., 2012) and then projecting changes in key factors (Holmes et al., 2013). All uncertainties are 68% confidence intervals. RCPn.n $^{\wedge}$  lifetimes are from ACCMIP results (Voulgarakis et al., 2013) scaled to 11.2  $\pm$  1.3 yr for year 2000; the ACCMIP mean and standard deviation in 2000 are 9.8  $\pm$  1.5 yr. Projected ACCMIP values combine the present day uncertainty with the model standard deviation of future change. Note that the total atmospheric lifetime of CH $_{4}$  must include other losses (e.g., stratosphere, surface, tropospheric chlorine), and for 2010 it is 9.1  $\pm$  0.9 yr, see Chapter 8, Section 11.3.5.1.1.

Table AII.5.9 | N<sub>2</sub>O atmospheric lifetime (yr)

| Year | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|------|-------------------------|-------------------------|-------------------------|-------------------------|
| 2010 | 131 ± 10                | 131 ± 10                | 131 ± 10                | 131 ± 10                |
| 2020 | 130 ± 10                | 131 ± 10                | 131 ± 10                | 131 ± 10                |
| 2030 | 130 ± 10                | 130 ± 10                | 130 ± 10                | 130 ± 10                |
| 2040 | 130 ± 10                | 130 ± 10                | 130 ± 10                | 129 ± 10                |
| 2050 | 129 ± 10                | 129 ± 10                | 129 ± 10                | 129 ± 10                |
| 2060 | 129 ± 10                | 129 ± 10                | 129 ± 10                | 128 ± 10                |
| 2070 | 129 ± 11                | 128 ± 11                | 128 ± 10                | 128 ± 11                |
| 2080 | 128 ± 11                | 128 ± 11                | 128 ± 11                | 127 ± 11                |
| 2090 | 128 ± 11                | 128 ± 11                | 127 ± 11                | 127 ± 11                |
| 2100 | 128 ± 11                | 127 ± 11                | 127 ± 11                | 126 ± 11                |

RCPn.n<sup>a</sup> lifetimes based on projections from Fleming et al. (2011) and Prather et al. (2012). All uncertainties are 68% confidence intervals.

# **AII.6: Effective Radiative Forcing**

Table AII.6.1 | ERF from CO<sub>2</sub> (W m<sup>-2</sup>)

| Year | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1   | IS92a |
|------|--------|--------|--------|--------|------|------|-------|
| 2000 | 1.51   | 1.51   | 1.51   | 1.51   | 1.50 | 1.50 | 1.50  |
| 2010 | 1.80   | 1.80   | 1.80   | 1.80   | 1.78 | 1.77 | 1.78  |
| 2020 | 2.11   | 2.09   | 2.07   | 2.15   | 2.16 | 2.09 | 2.13  |
| 2030 | 2.34   | 2.40   | 2.32   | 2.56   | 2.55 | 2.38 | 2.48  |
| 2040 | 2.46   | 2.70   | 2.58   | 3.03   | 2.99 | 2.69 | 2.83  |
| 2050 | 2.49   | 2.99   | 2.90   | 3.56   | 3.42 | 2.98 | 3.18  |
| 2060 | 2.48   | 3.23   | 3.25   | 4.15   | 3.88 | 3.20 | 3.53  |
| 2070 | 2.43   | 3.39   | 3.65   | 4.76   | 4.36 | 3.37 | 3.89  |
| 2080 | 2.35   | 3.46   | 4.06   | 5.37   | 4.86 | 3.49 | 4.25  |
| 2090 | 2.28   | 3.49   | 4.42   | 5.95   | 5.39 | 3.57 | 4.64  |
| 2100 | 2.22   | 3.54   | 4.70   | 6.49   | 5.95 | 3.59 | 5.04  |

Notes:

RCPn.n ERF based on RCP published projections (Tables All.4.1 to All.4.3) and TAR formula for RF. See Chapter 8, Figure 8.18, Section 11.3.5, 11.3.6.1, Figure 12.3. SRES A2 and B1 and IS92a calculated from abundances in Tables All.4.1 to All.4.3.

Table AII.6.2 | ERF from  $CH_4$  (W  $m^{-2}$ )

| Year | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1   | IS92a |
|------|--------|--------|--------|--------|------|------|-------|
| 2000 | 0.47   | 0.47   | 0.47   | 0.47   | 0.48 | 0.48 | 0.48  |
| 2010 | 0.48   | 0.48   | 0.48   | 0.48   | 0.51 | 0.50 | 0.51  |
| 2020 | 0.47   | 0.49   | 0.49   | 0.54   | 0.56 | 0.53 | 0.56  |
| 2030 | 0.42   | 0.50   | 0.49   | 0.61   | 0.62 | 0.54 | 0.61  |
| 2040 | 0.39   | 0.51   | 0.51   | 0.70   | 0.68 | 0.54 | 0.67  |
| 2050 | 0.36   | 0.50   | 0.53   | 0.80   | 0.75 | 0.52 | 0.73  |
| 2060 | 0.32   | 0.49   | 0.54   | 0.90   | 0.81 | 0.51 | 0.78  |
| 2070 | 0.30   | 0.47   | 0.55   | 0.97   | 0.88 | 0.49 | 0.82  |
| 2080 | 0.29   | 0.44   | 0.54   | 1.01   | 0.95 | 0.47 | 0.85  |
| 2090 | 0.28   | 0.42   | 0.50   | 1.05   | 1.01 | 0.44 | 0.88  |
| 2100 | 0.27   | 0.41   | 0.44   | 1.08   | 1.07 | 0.41 | 0.92  |

Notes:

See notes Table AII.6.1.

Table AII.6.3 | ERF from  $N_2O$  (W  $m^{-2}$ )

| Year | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | B1   | IS92a |
|------|--------|--------|--------|--------|------|------|-------|
| 2000 | 0.15   | 0.15   | 0.15   | 0.15   | 0.15 | 0.15 | 0.15  |
| 2010 | 0.17   | 0.17   | 0.17   | 0.17   | 0.17 | 0.17 | 0.17  |
| 2020 | 0.19   | 0.19   | 0.19   | 0.19   | 0.20 | 0.20 | 0.20  |
| 2030 | 0.20   | 0.21   | 0.21   | 0.23   | 0.24 | 0.22 | 0.23  |
| 2040 | 0.22   | 0.23   | 0.24   | 0.26   | 0.28 | 0.25 | 0.26  |
| 2050 | 0.23   | 0.25   | 0.26   | 0.30   | 0.32 | 0.27 | 0.29  |
| 2060 | 0.23   | 0.27   | 0.29   | 0.34   | 0.36 | 0.29 | 0.32  |
| 2070 | 0.23   | 0.28   | 0.33   | 0.38   | 0.40 | 0.30 | 0.34  |
| 2080 | 0.23   | 0.30   | 0.36   | 0.42   | 0.44 | 0.31 | 0.37  |
| 2090 | 0.23   | 0.31   | 0.39   | 0.46   | 0.49 | 0.32 | 0.39  |
| 2100 | 0.23   | 0.32   | 0.41   | 0.49   | 0.53 | 0.32 | 0.41  |

See notes Table AII.6.1.

Table AII.6.4 | ERF from all HFCs (W m<sup>-2</sup>)

| Year  | Historical | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|-------|------------|--------|--------|--------|--------|
| 2011* | 0.019      |        |        |        |        |
| 2010  |            | 0.019  | 0.019  | 0.019  | 0.020  |
| 2020  |            | 0.038  | 0.034  | 0.030  | 0.044  |
| 2030  |            | 0.056  | 0.046  | 0.036  | 0.069  |
| 2040  |            | 0.071  | 0.055  | 0.040  | 0.091  |
| 2050  |            | 0.083  | 0.061  | 0.042  | 0.110  |
| 2060  |            | 0.092  | 0.064  | 0.044  | 0.128  |
| 2070  |            | 0.104  | 0.066  | 0.046  | 0.144  |
| 2080  |            | 0.116  | 0.069  | 0.047  | 0.159  |
| 2090  |            | 0.124  | 0.074  | 0.047  | 0.171  |
| 2100  |            | 0.126  | 0.080  | 0.046  | 0.182  |

Notes:

See Table 8.3, 8.A.1, Section 11.3.5.1.1. ERF is calculated from RCP published abundances (Meinshausen et al., 2011a; http://www.iiasa.ac.at/web-apps/tnt/RcpDb) and AR5 radiative efficiencies (Chapter 8).

**Table AII.6.5** | ERF from all PFCs and SF<sub>6</sub> (W m<sup>-2</sup>)

| Year  | Historical | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 |
|-------|------------|--------|--------|--------|--------|
| 2011* | 0.009      |        |        |        |        |
| 2010  |            | 0.009  | 0.009  | 0.010  | 0.009  |
| 2020  |            | 0.012  | 0.011  | 0.013  | 0.012  |
| 2030  |            | 0.014  | 0.013  | 0.017  | 0.015  |
| 2040  |            | 0.015  | 0.014  | 0.021  | 0.019  |
| 2050  |            | 0.015  | 0.016  | 0.025  | 0.022  |
| 2060  |            | 0.016  | 0.017  | 0.029  | 0.026  |
| 2070  |            | 0.016  | 0.019  | 0.033  | 0.031  |
| 2080  |            | 0.016  | 0.021  | 0.038  | 0.035  |
| 2090  |            | 0.016  | 0.023  | 0.042  | 0.039  |
| 2100  |            | 0.016  | 0.026  | 0.045  | 0.044  |

Notes:

See notes Table AII.6.4.

Table AII.6.6 | ERF from Montreal Protocol greenhouse gases (W m<sup>-2</sup>)

| Year  | Historical | WMO A1      |
|-------|------------|-------------|
| 2011* | 0.328      |             |
| 2020  |            | 0.33 ± 0.01 |
| 2030  |            | 0.29 ± 0.01 |
| 2040  |            | 0.24 ± 0.01 |
| 2050  |            | 0.20 ± 0.01 |
| 2060  |            | 0.17 ± 0.02 |
| 2070  |            | 0.15 ± 0.02 |
| 2080  |            | 0.13 ± 0.02 |
| 2090  |            | 0.11 ± 0.02 |
| 2100  |            | 0.10 ± 0.02 |

See Table 8.3, 8.A.1. ERF is calculated from AR5 radiative efficiency and projected abundances in Scenario A1 of WMO/UNEP assessment (WMO 2010). The 68% confidence interval shown is approximated by combining uncertainty in the radiative efficiency of each gas ( $\pm 6.1\%$ ) and the decay of each gas since 2010 from Table All.4.16 ( $\pm 15\%$ ). All sources of uncertainty are assumed to be independent (see Chapters 2 and 8).

**Table AII.6.7a** | ERF from stratospheric O<sub>3</sub> changes since 1850 (W m<sup>-2</sup>)

| Year  | AR5   | CCMVal-2 |
|-------|-------|----------|
| 1960  |       | 0.0      |
| 1980  |       | -0.033   |
| 2000  |       | -0.079   |
| 2011* | -0.05 |          |
| 2050  |       | -0.055   |
| 2100  |       | -0.075   |

#### Notes:

AR5 results are from Chapter 8, see also Sections 11.3.5.1.2, 11.3.6.1. CCMVal-2 results (Cionni et al. 2011) are the multi-model average (13 chemistry—climate models) running a single scenario for stratospheric change: REF-B2 scenario of CCMVal-2 with SRES A1B climate scenario.

Table AII.6.7b | ERF from tropospheric O<sub>3</sub> changes since 1850 (W m<sup>-2</sup>)

| Year  | AR5  | RCP2.6      | RCP4.5      | RCP6.0      | RCP8.5      |
|-------|------|-------------|-------------|-------------|-------------|
| 1980  |      | 0.31 ± 0.05 | 0.31 ± 0.05 | 0.31 ± 0.05 | 0.31 ± 0.05 |
| 2000  |      | 0.36        | 0.36        | 0.36        | 0.36        |
| 2011* | 0.40 |             |             |             |             |
| 2030  |      | 0.32        | 0.38        | 0.36        | 0.44        |
| 2100  |      | 0.17        | 0.27        | 0.27        | 0.60 ± 0.11 |

## Notes:

AR5 results from Chapter 8; see also Sections 11.3.5.1.2, 11.3.6.1. Model mean results from ACCMIP (Stevenson et al., 2013) using a consistent model set (FGKN), which is similar to the all-model mean. Standard deviation across models shown for 1980s decade is similar for all scenarios except for RCP8.5 at 2100, which is twice as large.

Table AII.6.8: Total anthropogenic ERF from published RCPs and SRES (W m-2)

| Year | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | A2   | A1B  | B1   | IS92a | AR5<br>Historical |
|------|--------|--------|--------|--------|------|------|------|-------|-------------------|
| 1850 | 0.12   | 0.12   | 0.12   | 0.12   |      |      |      |       | 0.06              |
| 1990 | 1.23   | 1.23   | 1.23   | 1.23   | 1.03 | 1.03 | 1.03 | 1.03  | 1.60              |
| 2000 | 1.45   | 1.45   | 1.45   | 1.45   | 1.33 | 1.33 | 1.33 | 1.31  | 1.87              |
| 2010 | 1.81   | 1.81   | 1.78   | 1.84   | 1.74 | 1.65 | 1.73 | 1.63  | 2.25              |
| 2020 | 2.25   | 2.25   | 2.15   | 2.32   | 2.04 | 2.16 | 2.15 | 2.00  |                   |
| 2030 | 2.52   | 2.67   | 2.52   | 2.91   | 2.56 | 2.84 | 2.56 | 2.40  |                   |
| 2040 | 2.65   | 3.07   | 2.82   | 3.61   | 3.22 | 3.61 | 2.93 | 2.82  |                   |
| 2050 | 2.64   | 3.42   | 3.20   | 4.37   | 3.89 | 4.16 | 3.30 | 3.25  |                   |
| 2060 | 2.55   | 3.67   | 3.58   | 5.13   | 4.71 | 4.79 | 3.65 | 3.76  |                   |
| 2070 | 2.47   | 3.84   | 4.11   | 5.89   | 5.56 | 5.28 | 3.92 | 4.24  |                   |
| 2080 | 2.41   | 3.90   | 4.60   | 6.60   | 6.40 | 5.62 | 4.09 | 4.74  |                   |
| 2090 | 2.35   | 3.91   | 4.93   | 7.32   | 7.22 | 5.86 | 4.18 | 5.26  |                   |
| 2100 | 2.30   | 3.94   | 5.15   | 7.97   | 8.07 | 6.05 | 4.19 | 5.79  |                   |

## Notes:

Derived from RCP published CO<sub>2</sub>-eq concentrations that aggregate all anthropogenic forcings including greenhouse gases plus aerosols. These results may not be directly comparable to ERF values used in AR5 because of how aerosol indirect effects are included, but results are similar to those derived using ERF in Chapter 12 (see Figure 12.4). Comparisons with the TAR Appendix II (SRES A2 and B1) may not be equivalent because those total RF values (TAR II.3.11) were made using the TAR Chapter 9 Simple Model, not always consistent with the individual components in that appendix (TAR II.3.1 to 9). See Chapter 1, Sections 11.3.6.1, 12.3.1.3 and 12.3.1.4, Figures 1.15 and 12.3. For AR5 Historical, see Table All.1.2 and Chapter 8.

Table AII.6.9: ERF components relative to 1850 (W m<sup>-2</sup>) derived from ACCMIP

| Year |        | WMGHG       | Ozone           | Aerosol          | ERF Net     |
|------|--------|-------------|-----------------|------------------|-------------|
| 1930 |        | 0.58 ± 0.04 | $0.09 \pm 0.03$ | $-0.24 \pm 0.06$ | 0.44 ± 0.07 |
| 1980 |        | 1.56 ± 0.10 | $0.30 \pm 0.10$ | -0.90 ± 0.22     | 1.00 ± 0.26 |
| 2000 |        | 2.30 ± 0.14 | 0.33 ± 0.11     | −1.17 ± 0.28     | 1.51 ± 0.33 |
| 2030 | RCP8.5 | 3.64 ± 0.22 | 0.43 ± 0.12     | −0.91 ± 0.22     | 3.20 ± 0.33 |
| 2100 | RCP2.6 | 2.83 ± 0.17 | 0.14 ± 0.07     | -0.12 ± 0.06*    | 2.86 ± 0.19 |
| 2100 | RCP4.5 | 4.33 ± 0.26 | $0.23 \pm 0.09$ | -0.12 ± 0.06*    | 4.44 ± 0.28 |
| 2100 | RCP6.0 | 5.60 ± 0.34 | 0.25 ± 0.05     | -0.12 ± 0.06*    | 5.74 ± 0.35 |
| 2100 | RCP8.5 | 8.27 ± 0.50 | 0.55 ± 0.18     | -0.12 ± 0.03     | 8.71 ± 0.53 |

Radiative forcing and adjusted forcing from the ACCMIP results (Shindell et al., 2013) are given for all well-mixed greenhouse gases (WMGHG), ozone, aerosols, and the net. Original 90% confidence intervals have been reduced to 68% confidence to compare with the CMIP5 model standard deviations in Table All.6.10. Some uncertainty ranges (\*) are estimated from the 2100 RCP8.5 results (see Chapter 12). See Sections 11.3.5.1.3 and 11.3.6.1, Figure 12.4.

Table AII.6.10 | Total anthropogenic plus natural ERF (W m<sup>-2</sup>) from CMIP5 and CMIP3, including historical

| Year                   | SRES A1B     | RCP2.6 <sup>&amp;</sup> | RCP4.5 <sup>&amp;</sup> | RCP6.0 <sup>&amp;</sup> | RCP8.5 <sup>&amp;</sup> |
|------------------------|--------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 1850s <sup>H</sup>     | -0.19 ± 0.19 |                         | -0.12                   | ± 0.07                  |                         |
| 1986–2005 <sup>H</sup> | 1.51 ± 0.44  |                         | 1.34 :                  | ± 0.50                  |                         |
| 1986–2005              | 1.51 ± 0.44  | 1.31 ± 0.47             | 1.30 ± 0.48             | 1.29 ± 0.51             | 1.30 ± 0.47             |
| 2010 <sup>d</sup>      | 2.18 ± 0.53  | 1.97 ± 0.50             | 1.91 ± 0.53             | 1.90 ± 0.54             | 1.96 ± 0.53             |
| 2020 <sup>d</sup>      | 2.58 ± 0.57  | 2.33 ± 0.47             | 2.27 ± 0.51             | 2.16 ± 0.55             | 2.43 ± 0.52             |
| 2030 <sup>d</sup>      | 3.15 ± 0.60  | 2.50 ± 0.51             | 2.61 ± 0.54             | 2.41 ± 0.60             | 2.92 ± 0.57             |
| 2040 <sup>d</sup>      | 3.77 ± 0.72  | 2.64 ± 0.47             | 2.98 ± 0.55             | 2.72 ± 0.58             | 3.52 ± 0.60             |
| 2050 <sup>d</sup>      | 4.32 ± 0.73  | 2.65 ± 0.47             | 3.25 ± 0.56             | 3.07 ± 0.61             | 4.21 ± 0.63             |
| 2060 <sup>d</sup>      | 4.86 ± 0.74  | 2.57 ± 0.50             | 3.50 ± 0.59             | 3.40 ± 0.60             | 4.97 ± 0.68             |
| 2070 <sup>d</sup>      | 5.32 ± 0.79  | 2.51 ± 0.50             | 3.65 ± 0.58             | 3.90 ± 0.65             | 5.70 ± 0.76             |
| 2080 <sup>d</sup>      | 5.71 ± 0.81  | 2.40 ± 0.46             | 3.71 ± 0.55             | 4.27 ± 0.69             | 6.31 ± 0.81             |
| 2090 <sup>d</sup>      | 6.00 ± 0.83  | 2.44 ± 0.49             | 3.78 ± 0.58             | 4.64 ± 0.71             | 7.13 ± 0.89             |
| 2081–2100              | 5.99 ± 0.78  | 2.40 ± 0.46             | 3.73 ± 0.56             | 4.56 ± 0.70             | 7.02 ± 0.92             |

## Notes:

CMIP5 historical and RCP results (Forster et al., 2013) are shown with CMIP3 SRES A1B results (Forster and Taylor, 2006). The alternative results for 1986–2005 with CMIP5 are derived from: all models contributing historical experiments (1986–2005), and the subsets of models contributing to each RCP experiment (next line, 1986–2005). For SRES A1B the same set of models is used from 1850 to 2100. Values are 10-year averages (2090) = 2086–2095) and show multi-model means and standard deviations. See Chapter 12, Section 12.3 and discussion of Figure 12.4, also Sections 8.1, 9.3.2.2, 11.3.6.1 and 11.3.6.3. Due to lack of reporting, for RCP8.5 the 2081–2100 result contains one fewer model than the 2090d decade, and for A1B the 1850s result has just 5 models and the 2081–2100 result has 3 fewer models than the 2090d decade.

## AII.7: Environmental Data

Table All.7.1 | Global mean surface O<sub>3</sub> change (ppb)

|      |            | НТ         | AP         |            | SR         | ES         |           |            |
|------|------------|------------|------------|------------|------------|------------|-----------|------------|
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | A2         | B1         | CLE       | MFR        |
| 2000 | 27.2 ± 2.9 | 27.2 ± 2.9 | 27.2 ± 2.9 | 27.2 ± 2.9 | 27.2 ± 2.9 | 27.2 ± 2.9 | 28.7      | 28.7       |
| 2010 | 0.1        | 0.1        | 0.0        | 0.1        | 1.2        | 0.6        |           |            |
| 2020 | -0.3       | -0.2       | -0.2       | 0.6        | 2.8        | 1.1        |           |            |
| 2030 | -1.1       | -0.1       | -0.3       | 1.0        | 4.4        | 1.3        | 0.7 ± 1.4 | −2.3 ± 1.1 |
| 2040 | -1.5       | -0.3       | -0.3       | 1.2        | 5.3        | 1.3        |           |            |
| 2050 | -1.9       | -0.8       | -0.4       | 1.5        | 6.2        | 0.8        |           |            |
| 2060 | -2.4       | -1.3       | -0.5       | 1.8        | 7.1        | 0.2        |           |            |
| 2070 | -3.0       | -1.9       | -1.0       | 1.9        | 8.0        | -0.5       |           |            |
| 2080 | -3.5       | -2.5       | -1.5       | 1.9        | 9.2        | -1.1       |           |            |
| 2090 | -3.8       | -2.8       | -2.1       | 1.9        | 10.6       | -1.7       |           |            |
| 2100 | -4.2       | -3.0       | -2.8       | 1.9        | 11.9       | -2.5       |           |            |

|      |            | CM         | IP5        |            | ACCMIP     |            |           |            |
|------|------------|------------|------------|------------|------------|------------|-----------|------------|
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | RCP2.6     | RCP4.5     | RCP6.0    | RCP8.5     |
| 2000 | 30.0 ± 4.2 | 30.0 ± 4.2 | 30.0 ± 4.2 | 30.0 ± 4.2 | 28.1 ± 3.1 | 28.1 ± 3.2 | 28.1± 3.1 | 28.1 ± 3.1 |
| 2010 | -0.4       | -0.2       | -0.6       | -0.1       |            |            |           |            |
| 2020 | -0.9       | -0.3       | -0.9       | 0.7        |            |            |           |            |
| 2030 | -1.8       | -0.2       | -1.1       | 1.5        | -1.4       | 0.3        | -0.6      | 1.7        |
| 2040 | -2.3       | -0.3       | -1.2       | 2.0        |            |            |           |            |
| 2050 | -2.9       | -0.9       | -1.5       | 2.5        |            |            |           |            |
| 2060 | -4.0       | -1.7       | -1.9       | 2.9        |            |            |           |            |
| 2070 | -5.4       | -2.8       | -2.8       | 3.1        |            |            |           |            |
| 2080 | -6.4       | -3.7       | -3.9       | 3.0        |            |            |           |            |
| 2090 | -6.9       | -4.1       | -4.8       | 2.8        |            |            |           |            |
| 2100 | -7.2       | -4.3       | -5.6       | 2.7        | -6.3       | -3.5       | -4.9      | 3.4        |

## Notes:

HTAP results are from Wild et al. (2012) and use the published O<sub>3</sub> sensitivities to regional emissions from the HTAP multi-model study (HTAP 2010) and scale those O<sub>3</sub> changes to the RCP emission scenarios. The ±1 standard deviation (68% confidence interval) over the range of 14 parametric models is shown for year 2000 and is similar for all years. Results from the SRES A2 and B1 scenarios are from the TAR 0xComp studies diagnosed by Wild (Prather et al., 2001; 2003). CLE and MFR results (Dentener et al., 2005; 2006) include uncertainty (standard deviation of model results) in the change since year 2000, and CLE alone includes climate effects. The CMIP5 and ACCMIP results are from V. Naik and A. Fiore based on Fiore et al. (2012) and include the standard deviation over the models in year 2000, which is similar for following years. This does not necessarily reflect the uncertainty in the projected change, which may be smaller, see Fiore et al. (2012). The difference in year 2000 between CMIP5 (4 models) and ACCMIP (12 models) reflect different model biases. Even though ACCMIP only has three decades (2000, 2030, 2100), the greater number of models (5 to 11 depending on time slice and scenario) makes this a more robust estimate. See Chapter 11, ES, Section 11.3.5.2.2.

**Table AII.7.2** | Surface O<sub>3</sub> change (ppb) for HTAP regions

|      | North America |            |            |            |            |            |  |  |  |  |  |
|------|---------------|------------|------------|------------|------------|------------|--|--|--|--|--|
| Year | RCP2.6        | RCP4.5     | RCP6.0     | RCP8.5     | A2         | B1         |  |  |  |  |  |
| 2000 | 36.1 ± 3.2    | 36.1 ± 3.2 | 36.1 ± 3.2 | 36.1 ± 3.2 | 36.1 ± 3.2 | 36.1 ± 3.2 |  |  |  |  |  |
| 2010 | -0.8          | -1.1       | -0.1       | -1.5       | 1.5        | 0.4        |  |  |  |  |  |
| 2020 | -1.9          | -2.3       | -0.9       | -1.4       | 3.6        | 0.5        |  |  |  |  |  |
| 2030 | -3.7          | -2.7       | -1.5       | -1.1       | 5.3        | -0.1       |  |  |  |  |  |
| 2040 | -4.6          | -3.2       | -1.9       | -1.1       | 6.2        | -0.8       |  |  |  |  |  |
| 2050 | -5.6          | -3.9       | -2.4       | -0.9       | 6.9        | -1.9       |  |  |  |  |  |
| 2060 | -6.5          | -4.6       | -3.0       | -0.7       | 7.9        | -2.9       |  |  |  |  |  |
| 2070 | -7.5          | -5.3       | -4.0       | -0.7       | 8.8        | -3.8       |  |  |  |  |  |
| 2080 | -8.2          | -6.1       | -4.9       | -0.7       | 10.3       | -4.5       |  |  |  |  |  |
| 2090 | -8.5          | -6.4       | -5.7       | -0.8       | 12.2       | -5.2       |  |  |  |  |  |
| 2100 | -8.9          | -6.6       | -6.7       | -0.9       | 13.9       | -6.1       |  |  |  |  |  |

|      |            |            | Europe     |            |                |            |
|------|------------|------------|------------|------------|----------------|------------|
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | A2             | B1         |
| 2000 | 37.8 ± 3.7 | 37.8 ± 3.7 | 37.8 ± 3.7 | 37.8 ± 3.7 | $37.8 \pm 3.7$ | 37.8 ± 3.7 |
| 2010 | -0.5       | -0.3       | -0.1       | -0.7       | 1.5            | 0.3        |
| 2020 | -1.4       | -1.3       | -0.7       | -0.2       | 3.7            | 0.6        |
| 2030 | -3.0       | -1.4       | -1.1       | 0.1        | 5.7            | 0.2        |
| 2040 | -3.8       | -1.9       | -1.5       | 0.1        | 6.7            | -0.3       |
| 2050 | -4.6       | -2.7       | -2.0       | 0.3        | 7.7            | -1.2       |
| 2060 | -5.6       | -3.5       | -2.6       | 0.4        | 8.8            | -2.1       |
| 2070 | -6.6       | -4.3       | -3.3       | 0.4        | 9.8            | -3.0       |
| 2080 | -7.5       | -5.1       | -4.2       | 0.2        | 11.3           | -3.8       |
| 2090 | -8.0       | -5.6       | -5.2       | -0.1       | 13.4           | -4.6       |
| 2100 | -8.5       | -6.0       | -6.4       | -0.2       | 15.1           | -5.6       |

|      |            |            | South Asia | 1          |            |            |
|------|------------|------------|------------|------------|------------|------------|
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | A2         | B1         |
| 2000 | 39.6 ± 3.4 | 39.6 ± 3.4 | 39.6 ± 3.4 | 39.6 ± 3.4 | 39.6 ± 3.4 | 39.6 ± 3.4 |
| 2010 | 1.5        | 1.4        | 0.3        | 1.4        | 2.7        | 1.8        |
| 2020 | 1.6        | 2.2        | 0.0        | 3.9        | 6.1        | 3.3        |
| 2030 | 0.5        | 3.4        | -0.6       | 5.0        | 8.9        | 3.9        |
| 2040 | 0.3        | 3.5        | -0.1       | 5.5        | 10.4       | 4.1        |
| 2050 | 0.2        | 2.9        | 0.0        | 5.2        | 11.7       | 2.9        |
| 2060 | -0.1       | 1.1        | 0.4        | 5.1        | 12.7       | 1.5        |
| 2070 | -1.0       | -1.2       | -0.2       | 4.9        | 13.6       | -0.1       |
| 2080 | -2.6       | -3.9       | -1.7       | 4.9        | 14.5       | -1.5       |
| 2090 | -4.4       | -5.0       | -3.0       | 4.1        | 15.1       | -3.0       |
| 2100 | -6.8       | -6.0       | -4.7       | 4.0        | 15.0       | -4.6       |

Table AII.7.2 | (continued)

|      |            |            | East Asia  |            |            |            |
|------|------------|------------|------------|------------|------------|------------|
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | A2         | B1         |
| 2000 | 35.6 ± 2.7 | 35.6 ± 2.7 | 35.6 ± 2.7 | 35.6 ± 2.7 | 35.6 ± 2.7 | 35.6 ± 2.7 |
| 2010 | 1.0        | 0.6        | 0.5        | 1.3        | 2.0        | 1.1        |
| 2020 | 0.5        | 0.6        | 0.4        | 2.5        | 4.6        | 1.9        |
| 2030 | -1.4       | 0.2        | 0.6        | 2.8        | 6.8        | 2.1        |
| 2040 | -2.7       | -0.8       | 1.4        | 1.8        | 8.0        | 2.0        |
| 2050 | -3.8       | -2.5       | 1.4        | 1.4        | 9.1        | 0.9        |
| 2060 | -4.8       | -3.6       | 0.9        | 1.4        | 10.2       | -0.3       |
| 2070 | -6.0       | -4.6       | -0.7       | 1.2        | 11.2       | -1.4       |
| 2080 | -6.9       | -5.5       | -2.2       | 1.0        | 12.5       | -2.4       |
| 2090 | -7.4       | -5.8       | -3.5       | 0.7        | 13.9       | -3.4       |
| 2100 | -8.0       | -6.0       | -4.9       | 0.5        | 14.9       | -4.6       |

HTAP results from Wild et al. (2012); see Table AII.7.1.

 $\textbf{Table AII.7.3} \ | \ \ \text{Surface O}_3 \ \text{change (ppb) from CMIP5/ACCMIP for continental regions}$ 

|      | Africa     |            |            |            |            |            |            |            |  |  |  |  |
|------|------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|--|
|      |            | CM         | IP5        |            |            | ACC        | MIP        |            |  |  |  |  |
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     |  |  |  |  |
| 2000 | 33.8 ± 4.3 | 33.8 ± 4.3 | 33.8 ± 4.3 | 33.8 ± 4.3 | 33.1 ± 4.1 | 33.1 ± 4.1 | 33.1 ± 4.1 | 33.1 ± 4.1 |  |  |  |  |
| 2010 | -0.7       | -0.1       | -1.2       | -0.2       |            |            |            |            |  |  |  |  |
| 2020 | -1.0       | 0.2        | -1.5       | 0.9        |            |            |            |            |  |  |  |  |
| 2030 | -1.9       | 0.5        | -1.8       | 1.7        | -1.4       | 0.9        | -1.3       | 2.4        |  |  |  |  |
| 2040 | -2.0       | 0.6        | -1.8       | 2.6        |            |            |            |            |  |  |  |  |
| 2050 | -2.3       | 0.2        | -2.0       | 3.2        |            |            |            |            |  |  |  |  |
| 2060 | -2.6       | -0.3       | -2.2       | 3.7        |            |            |            |            |  |  |  |  |
| 2070 | -3.2       | -1.2       | -2.8       | 4.0        |            |            |            |            |  |  |  |  |
| 2080 | -3.6       | -2.3       | -3.7       | 4.1        |            |            |            |            |  |  |  |  |
| 2090 | -4.1       | -3.0       | -4.5       | 4.1        |            |            |            |            |  |  |  |  |
| 2100 | -4.8       | -3.3       | -5.2       | 4.1        | -4.9       | -2.9       | -4.9       | 5.0        |  |  |  |  |

|      |            |            |            | Australia  | a          |            |            |            |
|------|------------|------------|------------|------------|------------|------------|------------|------------|
|      |            | CM         | IP5        |            |            | ACC        | MIP        |            |
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     |
| 2000 | 23.3 ± 4.6 | 23.3 ± 4.6 | 23.3 ± 4.6 | 23.3 ± 4.6 | 23.7 ± 3.5 | 23.7 ± 3.5 | 23.7 ± 3.5 | 23.7 ± 3.5 |
| 2010 | -1.3       | -1.1       | -0.8       | -0.9       |            |            |            |            |
| 2020 | -1.7       | -1.4       | -1.0       | -0.6       |            |            |            |            |
| 2030 | -2.3       | -1.3       | -1.4       | 0.0        | -1.8       | -0.4       | -1.4       | 0.9        |
| 2040 | -2.6       | -1.2       | -1.7       | 0.5        |            |            |            |            |
| 2050 | -3.0       | -1.5       | -1.9       | 0.9        |            |            |            |            |
| 2060 | -3.7       | -1.9       | -2.0       | 1.5        |            |            |            |            |
| 2070 | -4.4       | -2.4       | -2.5       | 1.8        |            |            |            |            |
| 2080 | -5.0       | -2.9       | -3.1       | 1.9        |            |            |            |            |
| 2090 | -5.0       | -3.1       | -3.5       | 1.9        |            |            |            |            |
| 2100 | -5.2       | -3.2       | -4.0       | 2.0        | -4.3       | -2.5       | -4.0       | 3.1        |

# Table AII.7.3 | (continued)

|      |            |            |            | Central Eur | asia       |            |            |            |
|------|------------|------------|------------|-------------|------------|------------|------------|------------|
|      |            | CMIP5      |            |             |            | ACC        | MIP        |            |
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5      | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     |
| 2000 | 38.7 ± 5.3 | 38.7 ± 5.3 | 38.7 ± 5.3 | 38.7 ± 5.3  | 32.5 ± 6.2 | 32.5 ± 6.2 | 32.5 ± 6.2 | 32.5 ± 6.2 |
| 2010 | -0.6       | -0.6       | -0.6       | -0.5        |            |            |            |            |
| 2020 | -1.6       | -1.2       | -1.2       | 0.5         |            |            |            |            |
| 2030 | -3.2       | -1.3       | -1.4       | 1.4         | -1.9       | -0.1       | -0.3       | 1.8        |
| 2040 | -4.5       | -1.9       | -1.7       | 1.6         |            |            |            |            |
| 2050 | -5.7       | -2.9       | -2.2       | 1.8         |            |            |            |            |
| 2060 | -7.2       | -4.2       | -3.0       | 2.8         |            |            |            |            |
| 2070 | -9.1       | -5.4       | -4.3       | 3.0         |            |            |            |            |
| 2080 | -10.6      | -6.5       | -6.0       | 2.9         |            |            |            |            |
| 2090 | -11.2      | -6.8       | -7.2       | 2.6         |            |            |            |            |
| 2100 | -11.5      | -7.0       | -8.1       | 2.6         | -8.5       | -3.8       | -5.6       | 4.3        |

|      |            |            |            | Europe     |            |            |            |            |
|------|------------|------------|------------|------------|------------|------------|------------|------------|
|      |            | CMIP5      |            |            | ACCMIP     |            |            |            |
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     |
| 2000 | 40.4 ± 6.0 | 40.4 ± 6.0 | 40.4 ± 6.0 | 40.4 ± 6.0 | 33.6 ± 5.2 | 33.6 ± 5.2 | 33.6 ± 5.2 | 33.6 ± 5.2 |
| 2010 | -0.4       | -0.5       | -0.5       | -0.4       |            |            |            |            |
| 2020 | -1.5       | -1.3       | -1.2       | 0.3        |            |            |            |            |
| 2030 | -3.2       | -1.7       | -1.7       | 1.1        | -1.6       | 0.6        | -0.4       | 2.3        |
| 2040 | -4.6       | -2.4       | -2.3       | 1.4        |            |            |            |            |
| 2050 | -6.1       | -3.5       | -3.0       | 1.8        |            |            |            |            |
| 2060 | -8.0       | -4.9       | -4.1       | 2.4        |            |            |            |            |
| 2070 | -10.4      | -6.3       | -5.8       | 2.6        |            |            |            |            |
| 2080 | -12.2      | -7.6       | -7.6       | 2.3        |            |            |            |            |
| 2090 | -13.0      | -8.0       | -9.2       | 2.1        |            |            |            |            |
| 2100 | -13.4      | -8.1       | -10.3      | 2.0        | -9.4       | -3.5       | -7.2       | 4.9        |

|      |            |            |            | East Asia  | 1          |            |            |            |
|------|------------|------------|------------|------------|------------|------------|------------|------------|
|      |            | CM         | IP5        |            | ACCMIP     |            |            |            |
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     |
| 2000 | 46.3 ± 4.9 | 46.3 ± 4.9 | 46.3 ± 4.9 | 46.3 ± 4.9 | 41.0 ± 5.5 | 41.0 ± 5.5 | 41.0 ± 5.5 | 41.0 ± 5.5 |
| 2010 | 0.8        | 0.6        | 0.1        | 1.1        |            |            |            |            |
| 2020 | -0.1       | 0.8        | -0.1       | 2.7        |            |            |            |            |
| 2030 | -2.3       | 0.5        | 0.4        | 3.8        | -1.8       | 1.0        | 0.4        | 3.2        |
| 2040 | -3.9       | -0.9       | 1.1        | 3.8        |            |            |            |            |
| 2050 | -5.8       | -3.3       | 1.0        | 3.7        |            |            |            |            |
| 2060 | -8.0       | -5.4       | 0.2        | 3.9        |            |            |            |            |
| 2070 | -10.2      | -7.3       | -1.6       | 3.6        |            |            |            |            |
| 2080 | -12.1      | -8.8       | -4.0       | 3.3        |            |            |            |            |
| 2090 | -13.2      | -9.4       | -6.3       | 2.9        |            |            |            |            |
| 2100 | -13.9      | -9.6       | -8.0       | 2.8        | -11.4      | -5.9       | -6.6       | 4.6        |

Table AII.7.3 | (continued)

|      |            |            |            | Middle Ea  | st         |            |            |            |
|------|------------|------------|------------|------------|------------|------------|------------|------------|
|      |            | CM         | IP5        |            | ACCMIP     |            |            |            |
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     |
| 2000 | 45.9 ± 3.1 | 45.9 ± 3.1 | 45.9 ± 3.1 | 45.9 ± 3.1 | 45.7 ± 5.4 | 45.7 ± 5.4 | 45.7 ± 5.4 | 45.7 ± 5.4 |
| 2010 | -0.4       | 0.5        | -0.7       | 0.5        |            |            |            |            |
| 2020 | -1.5       | 0.4        | -1.4       | 2.5        |            |            |            |            |
| 2030 | -3.3       | 0.6        | -1.6       | 3.8        | -2.8       | 0.9        | -1.1       | 4.1        |
| 2040 | -3.6       | 0.2        | -2.0       | 4.4        |            |            |            |            |
| 2050 | -4.6       | -0.9       | -2.6       | 4.7        |            |            |            |            |
| 2060 | -6.0       | -2.7       | -3.5       | 5.2        |            |            |            |            |
| 2070 | -8.1       | -4.9       | -4.2       | 5.1        |            |            |            |            |
| 2080 | -9.9       | -7.1       | -5.9       | 5.1        |            |            |            |            |
| 2090 | -11.3      | -8.4       | -8.2       | 4.8        |            |            |            |            |
| 2100 | -12.4      | -9.0       | -9.9       | 4.6        | -11.7      | -7.5       | -9.8       | 5.0        |

|      |            |            |            | North Ame  | rica       |            |            |            |
|------|------------|------------|------------|------------|------------|------------|------------|------------|
|      | CMIP5      |            |            |            | ACCMIP     |            |            |            |
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     |
| 2000 | 40.7 ± 5.1 | 40.7 ± 5.1 | 40.7 ± 5.1 | 40.7 ± 5.1 | 34.3 ± 5.5 | 34.3 ± 5.5 | 34.3 ± 5.5 | 34.3 ± 5.5 |
| 2010 | -0.9       | -1.2       | -0.6       | -1.0       |            |            |            |            |
| 2020 | -2.1       | -2.4       | -1.4       | -0.5       |            |            |            |            |
| 2030 | -4.3       | -2.8       | -1.8       | 0.1        | -2.5       | -0.7       | -0.8       | 1.3        |
| 2040 | -5.7       | -3.6       | -2.5       | 0.3        |            |            |            |            |
| 2050 | -7.2       | -4.6       | -3.1       | 0.6        |            |            |            |            |
| 2060 | -9.1       | -5.8       | -4.4       | 1.0        |            |            |            |            |
| 2070 | -11.4      | -7.1       | -6.2       | 1.2        |            |            |            |            |
| 2080 | -13.2      | -8.3       | -8.1       | 1.2        |            |            |            |            |
| 2090 | -13.8      | -8.5       | -9.6       | 1.0        |            |            |            |            |
| 2100 | -14.1      | -8.8       | -10.9      | 0.9        | -10.5      | -4.7       | -8.7       | 3.4        |

|      |            |            |            | South Ame  | rica       |            |            |            |
|------|------------|------------|------------|------------|------------|------------|------------|------------|
|      | CMIP5      |            |            |            | ACCMIP     |            |            |            |
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     |
| 2000 | 25.3 ± 4.2 | 25.3 ± 4.2 | 25.3 ± 4.2 | 25.3 ± 4.2 | 23.7 ± 3.9 | 23.7 ± 3.9 | 23.7 ± 3.9 | 23.7 ± 3.9 |
| 2010 | -1.4       | -0.6       | -1.2       | -0.3       |            |            |            |            |
| 2020 | -2.1       | -1.2       | -1.8       | 0.3        |            |            |            |            |
| 2030 | -2.9       | -1.2       | -2.1       | 0.6        | -2.3       | -0.6       | -1.8       | 1.2        |
| 2040 | -2.9       | -1.3       | -2.3       | 1.1        |            |            |            |            |
| 2050 | -3.2       | -1.7       | -2.6       | 1.3        |            |            |            |            |
| 2060 | -3.6       | -2.5       | -2.9       | 1.5        |            |            |            |            |
| 2070 | -4.3       | -3.6       | -3.5       | 1.5        |            |            |            |            |
| 2080 | -5.1       | -4.5       | -4.2       | 1.1        |            |            |            |            |
| 2090 | -5.5       | -5.0       | -4.7       | 0.7        |            |            |            |            |
| 2100 | -5.7       | -5.2       | -5.3       | 0.4        | -5.0       | -4.0       | -5.2       | 2.0        |

## Table AII.7.3 | (continued)

|      |            |            |            | South Asi  | ia         |            |            |            |
|------|------------|------------|------------|------------|------------|------------|------------|------------|
|      |            | CMIP5      |            |            |            | ACC        | MIP        |            |
| Year | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     | RCP2.6     | RCP4.5     | RCP6.0     | RCP8.5     |
| 2000 | 34.4 ± 3.9 | 34.4 ± 3.9 | 34.4 ± 3.9 | 34.4 ± 3.9 | 33.7 ± 4.6 | 33.7 ± 4.6 | 33.7 ± 4.6 | 33.7 ± 4.6 |
| 2010 | 1.3        | 0.9        | -0.1       | 1.3        |            |            |            |            |
| 2020 | 1.4        | 1.6        | -0.2       | 3.1        |            |            |            |            |
| 2030 | 0.7        | 2.7        | -0.1       | 3.9        | 0.6        | 2.3        | -0.4       | 4.6        |
| 2040 | 0.6        | 2.8        | 0.3        | 4.0        |            |            |            |            |
| 2050 | 0.4        | 1.6        | 0.4        | 3.6        |            |            |            |            |
| 2060 | -0.5       | -0.7       | 0.3        | 3.2        |            |            |            |            |
| 2070 | -2.0       | -3.2       | -0.5       | 2.9        |            |            |            |            |
| 2080 | -3.9       | -5.7       | -2.0       | 2.7        |            |            |            |            |
| 2090 | -5.7       | -6.7       | -3.3       | 2.2        |            |            |            |            |
| 2100 | -7.1       | -7.3       | -4.5       | 1.9        | -7.2       | -6.1       | -4.5       | 3.6        |

Notes

See notes for Table All.7.1. For definition of regions, see Figure 11.23 and Fiore et al. (2012).

**Table AII.7.4** | Surface particulate matter change (log<sub>10</sub>[PM<sub>2.5</sub> (microgram/m³)]) from CMIP5/ACCMIP for continental regions

|      | Africa |             |       |       |  |  |  |  |  |
|------|--------|-------------|-------|-------|--|--|--|--|--|
| Year | RCP2.6 | RCP8.5      |       |       |  |  |  |  |  |
| 2000 |        | 1.17 ± 0.23 |       |       |  |  |  |  |  |
| 2030 | 0.00   | 0.04        | -0.01 | 0.01  |  |  |  |  |  |
| 2050 | -0.02  |             | -0.02 | 0.01  |  |  |  |  |  |
| 2100 | 0.00   | -0.01       | -0.03 | -0.02 |  |  |  |  |  |

|      | Australia |                 |       |       |  |  |  |  |  |  |
|------|-----------|-----------------|-------|-------|--|--|--|--|--|--|
| Year | RCP2.6    | RCP8.5          |       |       |  |  |  |  |  |  |
| 2000 |           | $0.65 \pm 0.32$ |       |       |  |  |  |  |  |  |
| 2030 | -0.04     | 0.03            | -0.01 | 0.01  |  |  |  |  |  |  |
| 2050 | -0.06     |                 | -0.02 | -0.04 |  |  |  |  |  |  |
| 2100 | 0.00      | 0.00            | -0.03 | -0.01 |  |  |  |  |  |  |

|      | Central Eurasia |             |       |       |  |  |  |  |  |  |
|------|-----------------|-------------|-------|-------|--|--|--|--|--|--|
| Year | RCP2.6          | RCP8.5      |       |       |  |  |  |  |  |  |
| 2000 |                 | 0.59 ± 0.17 |       |       |  |  |  |  |  |  |
| 2030 | -0.07           | -0.01       | -0.05 | -0.06 |  |  |  |  |  |  |
| 2050 | -0.12           |             | -0.08 | -0.09 |  |  |  |  |  |  |
| 2100 | -0.13           | -0.11       | -0.11 | -0.12 |  |  |  |  |  |  |

|      | Europe                      |             |       |       |  |  |  |  |  |
|------|-----------------------------|-------------|-------|-------|--|--|--|--|--|
| Year | RCP2.6 RCP4.5 RCP6.0 RCP8.5 |             |       |       |  |  |  |  |  |
| 2000 |                             | 0.81 ± 0.09 |       |       |  |  |  |  |  |
| 2030 | -0.20                       | -0.10       | -0.13 | -0.24 |  |  |  |  |  |
| 2050 | -0.31                       |             | -0.25 | -0.33 |  |  |  |  |  |
| 2100 | -0.32                       | -0.28       | -0.37 | -0.38 |  |  |  |  |  |

## Table AII.7.4 | (continued)

|      | East Asia                   |             |       |       |  |  |  |  |  |
|------|-----------------------------|-------------|-------|-------|--|--|--|--|--|
| Year | RCP2.6 RCP4.5 RCP6.0 RCP8.5 |             |       |       |  |  |  |  |  |
| 2000 |                             | 1.04 ± 0.16 |       |       |  |  |  |  |  |
| 2030 | -0.04                       | -0.02       | 0.01  | 0.01  |  |  |  |  |  |
| 2050 | -0.24                       |             | 0.07  | -0.17 |  |  |  |  |  |
| 2100 | -0.31                       | -0.33       | -0.21 | -0.30 |  |  |  |  |  |

|      | Middle East                 |       |       |       |  |  |  |  |
|------|-----------------------------|-------|-------|-------|--|--|--|--|
| Year | RCP2.6 RCP4.5 RCP6.0 RCP8.5 |       |       |       |  |  |  |  |
| 2000 | 1.10 ± 0.27                 |       |       |       |  |  |  |  |
| 2030 | -0.06                       | -0.02 | -0.05 | -0.03 |  |  |  |  |
| 2050 | -0.08                       |       | -0.06 | -0.03 |  |  |  |  |
| 2100 | -0.11                       | -0.11 | -0.10 | -0.12 |  |  |  |  |

| North America |                             |             |       |       |  |  |  |  |
|---------------|-----------------------------|-------------|-------|-------|--|--|--|--|
| Year          | RCP2.6 RCP4.5 RCP6.0 RCP8.5 |             |       |       |  |  |  |  |
| 2000          |                             | 0.51 ± 0.15 |       |       |  |  |  |  |
| 2030          | -0.16                       | -0.10       | -0.10 | -0.15 |  |  |  |  |
| 2050          | -0.20                       |             | -0.16 | -0.17 |  |  |  |  |
| 2100          | -0.20                       | -0.19       | -0.24 | -0.21 |  |  |  |  |

| South America |                             |       |       |       |  |  |  |  |
|---------------|-----------------------------|-------|-------|-------|--|--|--|--|
| Year          | RCP2.6 RCP4.5 RCP6.0 RCP8.5 |       |       |       |  |  |  |  |
| 2000          | 0.71 ± 0.11                 |       |       |       |  |  |  |  |
| 2030          | -0.05                       | -0.04 | -0.04 | -0.03 |  |  |  |  |
| 2050          | -0.10                       |       | -0.05 | -0.07 |  |  |  |  |
| 2100          | -0.11                       | -0.11 | -0.09 | -0.12 |  |  |  |  |

| South Asia |                             |       |       |       |  |  |  |  |
|------------|-----------------------------|-------|-------|-------|--|--|--|--|
| Year       | RCP2.6 RCP4.5 RCP6.0 RCP8.5 |       |       |       |  |  |  |  |
| 2000       | 1.02 ± 0.11                 |       |       |       |  |  |  |  |
| 2030       | 0.04                        | 0.02  | 0.03  | 0.05  |  |  |  |  |
| 2050       | -0.05                       |       | 0.07  | 0.00  |  |  |  |  |
| 2100       | -0.16                       | -0.24 | -0.06 | -0.11 |  |  |  |  |

## Notes:

Decadal average of the  $log_{10}[PM_{2.5}]$  values are given only where results include at least four models from either ACCMIP or CMIP5. Results are from A. Fiore and V. Naik based on Fiore et al. (2012) using the CMIP5/ACCMIP archive. Due to the very large systematic spread across models, the statistics were calculated for the log values, but Figure 11.23 shows statistics for direct  $PM_{2.5}$  values. Owing to the large spatial variations no global average is given. Model mean and standard deviation are shown for year 2000; differences in  $log_{10}[PM_{2.5}]$  are shown for 2030, 2050 and 2100. See notes for Table All.7.3 and Figure 11.23 for regions; see also Chapter 11, ES.

Table AII.7.5 | CMIP5 (RCP) and CMIP3 (SRES A1B) global mean surface temperature change (°C) relative to 1986–2005 reference period. Results here are a statistical summary of the spread in the CMIP ensembles for each of the scenarios. They do not account for model biases and model dependencies, and the percentiles do not correspond to the assessed uncertainty in Chapters 11 (11.3.6.3) and 12 (12.4.1). The statistical spread across models cannot be interpreted as uncertainty ranges or in terms of calibrated language (Section 12.2).

|                   | RCP2.6 |      |       |      |      | RCP4.5 |      |       |      |      |
|-------------------|--------|------|-------|------|------|--------|------|-------|------|------|
| Years             | 5%     | 17%  | 50%   | 83%  | 95%  | 5%     | 17%  | 50%   | 83%  | 95%  |
| 1850–1990         |        |      | -0.61 |      |      |        |      | -0.61 |      |      |
| 1986–2005         |        |      | 0.00  |      |      |        |      | 0.00  |      |      |
| 2010d             | 0.19   | 0.33 | 0.36  | 0.52 | 0.62 | 0.22   | 0.26 | 0.36  | 0.48 | 0.59 |
| 2020 <sup>d</sup> | 0.36   | 0.45 | 0.55  | 0.81 | 1.07 | 0.39   | 0.48 | 0.59  | 0.74 | 0.83 |
| 2030 <sup>d</sup> | 0.47   | 0.56 | 0.74  | 1.02 | 1.24 | 0.56   | 0.69 | 0.82  | 1.10 | 1.22 |
| 2040 <sup>d</sup> | 0.51   | 0.68 | 0.88  | 1.25 | 1.50 | 0.64   | 0.86 | 1.04  | 1.35 | 1.57 |
| 2050 <sup>d</sup> | 0.49   | 0.71 | 0.94  | 1.37 | 1.65 | 0.84   | 1.05 | 1.24  | 1.63 | 1.97 |
| 2060 <sup>d</sup> | 0.36   | 0.69 | 0.93  | 1.48 | 1.71 | 0.90   | 1.13 | 1.44  | 1.90 | 2.19 |
| 2070 <sup>d</sup> | 0.20   | 0.70 | 0.89  | 1.49 | 1.71 | 0.98   | 1.20 | 1.54  | 2.07 | 2.32 |
| 2080 <sup>d</sup> | 0.15   | 0.62 | 0.94  | 1.44 | 1.79 | 0.98   | 1.27 | 1.62  | 2.25 | 2.54 |
| 2090 <sup>d</sup> | 0.18   | 0.58 | 0.94  | 1.53 | 1.79 | 1.06   | 1.33 | 1.68  | 2.29 | 2.59 |

|                   | RCP6.0 |      |       |      |      | RCP8.5 |      |       |      |      |
|-------------------|--------|------|-------|------|------|--------|------|-------|------|------|
| Years             | 5%     | 17%  | 50%   | 83%  | 95%  | 5%     | 17%  | 50%   | 83%  | 95%  |
| 1850–1990         |        |      | -0.61 |      |      |        |      | -0.61 |      |      |
| 1986–2005         |        |      | 0.00  |      |      |        |      | 0.00  |      |      |
| 2010 <sup>d</sup> | 0.21   | 0.26 | 0.36  | 0.47 | 0.64 | 0.23   | 0.29 | 0.37  | 0.47 | 0.62 |
| 2020 <sup>d</sup> | 0.33   | 0.40 | 0.55  | 0.70 | 0.90 | 0.37   | 0.51 | 0.66  | 0.84 | 0.99 |
| 2030 <sup>d</sup> | 0.40   | 0.59 | 0.74  | 0.92 | 1.17 | 0.65   | 0.77 | 0.94  | 1.29 | 1.39 |
| 2040 <sup>d</sup> | 0.59   | 0.73 | 0.95  | 1.21 | 1.41 | 0.93   | 1.13 | 1.29  | 1.68 | 1.77 |
| 2050 <sup>d</sup> | 0.69   | 0.92 | 1.15  | 1.52 | 1.81 | 1.20   | 1.48 | 1.70  | 2.19 | 2.37 |
| 2060 <sup>d</sup> | 0.88   | 1.08 | 1.32  | 1.78 | 2.18 | 1.55   | 1.88 | 2.16  | 2.74 | 2.99 |
| 2070 <sup>d</sup> | 1.08   | 1.28 | 1.58  | 2.14 | 2.52 | 1.96   | 2.25 | 2.60  | 3.31 | 3.61 |
| 2080 <sup>d</sup> | 1.33   | 1.56 | 1.81  | 2.58 | 2.88 | 2.31   | 2.65 | 3.05  | 3.93 | 4.22 |
| 2090 <sup>d</sup> | 1.51   | 1.72 | 2.03  | 2.92 | 3.24 | 2.63   | 2.96 | 3.57  | 4.45 | 4.81 |

|                   | SRES A1B |      |       |      |      |  |  |  |  |
|-------------------|----------|------|-------|------|------|--|--|--|--|
| Years             | 5%       | 17%  | 50%   | 83%  | 95%  |  |  |  |  |
| 1850–1990         |          |      | -0.61 |      |      |  |  |  |  |
| 1986–2005         |          |      | 0.00  |      |      |  |  |  |  |
| 2010 <sup>d</sup> | 0.15     | 0.22 | 0.34  | 0.44 | 0.62 |  |  |  |  |
| 2020 <sup>d</sup> | 0.27     | 0.37 | 0.52  | 0.76 | 0.91 |  |  |  |  |
| 2030 <sup>d</sup> | 0.47     | 0.59 | 0.82  | 1.04 | 1.38 |  |  |  |  |
| 2040 <sup>d</sup> | 0.65     | 0.90 | 1.11  | 1.36 | 1.79 |  |  |  |  |
| 2050 <sup>d</sup> | 0.92     | 1.14 | 1.55  | 1.65 | 2.14 |  |  |  |  |
| 2060 <sup>d</sup> | 1.12     | 1.40 | 1.75  | 1.98 | 2.67 |  |  |  |  |
| 2070 <sup>d</sup> | 1.40     | 1.60 | 2.14  | 2.39 | 3.12 |  |  |  |  |
| 2080 <sup>d</sup> | 1.61     | 1.80 | 2.30  | 2.75 | 3.47 |  |  |  |  |
| 2090 <sup>d</sup> | 1.76     | 1.96 | 2.54  | 3.05 | 3.84 |  |  |  |  |

This spread in the model ensembles (as shown in Figures 11.26a and 12.5, and discussed in Section 11.3.6) is not a measure of uncertainty. For the AR5 assessment of global mean surface temperature changes and uncertainties see: Section 11.3.6.3 and Figure 11.25 for the near-term (2016–2035) temperatures; and Section 12.4.1 and Tables 12.2–3 for the long term (2081–2100). See discussion about uncertainty and ensembles in Section 12.2, which explains how model spread is not equivalent to uncertainty. Results here are shown for the CMIP5 archive (Annex I, frozen as of March 15, 2013) for the RCPs and the similarly current CMIP3 archive for SRES A1B, which is not the same set of models used in AR4 (Figure SPM.5). Ten-year averages are shown (2030d = 2026–2035). Temperature changes are relative to the reference period (1986–2005, defined as zero in this table), using CMIP5 for all four RCPs (G. J. van Oldenborgh, http://climexp.knmin/l<sup>2</sup>; see Annex I for listing of models included) and CMIP3 for SRES A1B (22 models). The warming from early instrumental record (1850–1900) to the modern reference period (1986–2005) is derived from HadCRUT4 observations as 0.61°C (C. Morice; see Chapter 2 and Table All.1.3).

Table All.7.6 | Global mean surface temperature change (°C) relative to 1990 from the TAR

| Years | A1B   | A1T   | A1FI  | A2    | B1    | B2    | IS92a | A1B   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| PI*   | -0.33 | -0.33 | -0.33 | -0.33 | -0.33 | -0.33 | -0.33 | -0.33 |
| 1990  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| 2000  | 0.16  | 0.16  | 0.16  | 0.16  | 0.16  | 0.16  | 0.15  | 0.16  |
| 2010  | 0.30  | 0.40  | 0.32  | 0.35  | 0.34  | 0.39  | 0.27  | 0.30  |
| 2020  | 0.52  | 0.71  | 0.55  | 0.50  | 0.55  | 0.66  | 0.43  | 0.52  |
| 2030  | 0.85  | 1.03  | 0.85  | 0.73  | 0.77  | 0.93  | 0.61  | 0.85  |
| 2040  | 1.26  | 1.41  | 1.27  | 1.06  | 0.98  | 1.18  | 0.80  | 1.26  |
| 2050  | 1.59  | 1.75  | 1.86  | 1.42  | 1.21  | 1.44  | 1.00  | 1.59  |
| 2060  | 1.97  | 2.04  | 2.50  | 1.85  | 1.44  | 1.69  | 1.26  | 1.97  |
| 2070  | 2.30  | 2.25  | 3.10  | 2.33  | 1.63  | 1.94  | 1.52  | 2.30  |
| 2080  | 2.56  | 2.41  | 3.64  | 2.81  | 1.79  | 2.20  | 1.79  | 2.56  |
| 2090  | 2.77  | 2.49  | 4.09  | 3.29  | 1.91  | 2.44  | 2.08  | 2.77  |
| 2100  | 2.95  | 2.54  | 4.49  | 3.79  | 1.98  | 2.69  | 2.38  | 2.95  |

Single-year estimates of mean surface air temperature warming relative to the reference period 1990 for the SRES scenarios evaluated in the TAR. The pre-industrial estimates are for 1750, and all results are based on a simple climate model. See TAR Appendix II.

Table All.7.7 | Global mean sea level rise (m) with respect to 1986–2005 at 1 January on the years indicated. Values shown as median and likely range; see Section 13.5.1.

| Year | SRES A1B            | RCP2.6              | RCP4.5              | RCP6.0              | RCP8.5              |
|------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 2007 | 0.03 [0.02 to 0.04] |
| 2010 | 0.04 [0.03 to 0.05] |
| 2020 | 0.08 [0.06 to 0.10] | 0.08 [0.06 to 0.11] |
| 2030 | 0.12 [0.09 to 0.16] | 0.13 [0.09 to 0.16] | 0.13 [0.09 to 0.16] | 0.12 [0.09 to 0.16] | 0.13 [0.10 to 0.17] |
| 2040 | 0.17 [0.13 to 0.22] | 0.17 [0.13 to 0.22] | 0.17 [0.13 to 0.22] | 0.17 [0.12 to 0.21] | 0.19 [0.14 to 0.24] |
| 2050 | 0.23 [0.17 to 0.30] | 0.22 [0.16 to 0.28] | 0.23 [0.17 to 0.29] | 0.22 [0.16 to 0.28] | 0.25 [0.19 to 0.32] |
| 2060 | 0.30 [0.21 to 0.38] | 0.26 [0.18 to 0.35] | 0.28 [0.21 to 0.37] | 0.27 [0.19 to 0.35] | 0.33 [0.24 to 0.42] |
| 2070 | 0.37 [0.26 to 0.48] | 0.31 [0.21 to 0.41] | 0.35 [0.25 to 0.45] | 0.33 [0.24 to 0.43] | 0.42 [0.31 to 0.54] |
| 2080 | 0.44 [0.31 to 0.58] | 0.35 [0.24 to 0.48] | 0.41 [0.28 to 0.54] | 0.40 [0.28 to 0.53] | 0.51 [0.37 to 0.67] |
| 2090 | 0.52 [0.36 to 0.69] | 0.40 [0.26 to 0.54] | 0.47 [0.32 to 0.62] | 0.47 [0.33 to 0.63] | 0.62 [0.45 to 0.81] |
| 2100 | 0.60 [0.42 to 0.80] | 0.44 [0.28 to 0.61] | 0.53 [0.36 to 0.71] | 0.55 [0.38 to 0.73] | 0.74 [0.53 to 0.98] |