

Predicting primate sources of Zika virus spillover

Barbara A. Han¹, Subho Majumdar^{2,3}, A. Mojsilović³, Kush Varshney³

¹Cary Institute of Ecosystem Studies, ²Univ. Florida Informatics Institute, ³IBM Watson Research Lab

BACKGROUND

- Non-human primates maintain mosquito-borne flaviviruses in the wild (reservoirs).
- Successful control of Zika virus relies on spillover prevention from wild reservoirs^{1.}
- Primate diversity & abundance is exceptionally high in the neotropics, especially Brazil.
- Identifying potential primate reservoirs will require highly targeted surveillance.

- Which primate species are most likely to carry Zika virus in the Neotropics?
- Where are these species distributed?
- Where should human and non-human primate surveillance be focused?

METHODS

- Collect primate trait data to identify primate species with the highest probability of carrying ZIKV
 - Why trait data? Organismal trait data are useful because:
 - They are immediately available (unlike ZIKV surveillance data)
 - They reliably distinguish one host species from another
 - They underpin species' intrinsic capacity to harbor zoonoses²⁻³
- Apply a machine learning method on imputed trait data to recognize primate species resembling known flavivirus hosts to target ZIKV surveillance.

DATA

RESPONSE VARIABLE: Host status for ZIKV & other mosquito-borne flaviviruses (YFV, JEV, SLEV, DENV, WNV) for all primates (N=376); 20 positive species in 376 x 6 matrix; only 2 ZIKV+ species

PROBLEM: POSITIVE SAMPLES VERY RARE

BAYESIAN MULTI-LABEL MACHINE LEARNING⁶

Simultaneously models reservoir status for all 7 mosquito-borne flaviviruses across all primates by considering their species-level features as predictors

PREDICTOR VARIABLES: 50 organismal traits (e.g., body mass, longevity, metabolic rate, geographic range area, population density; compiled from ⁴⁻⁵)

PROBLEM: INCOMPLETE TRAITS FOR MANY SPECIES

MULTIPLY CHAINED IMPUTATION⁷

MICE method predicts missing entries by iteratively leveraging information available across the other variables. Imputation process is repeated until the entries across a number of imputed datasets reach a stable distribution

MODEL PERFORMANCE

- Model classified flavivirus+ primates with 82% accuracy
- Model identified particular primate species as likely ZIKV hosts
- Model identified primates as likely hosts for other flaviviruses

REFERENCES

- Althouse BM, Vasilakis N, Sall AA, Diallo M, Weaver SC, Hanley KA. Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl Trop Dis 2016; 10: e0005055.
- Han BA, Schmidt JP, Bowden SE, Drake JM. Rodent reservoirs of future zoonotic diseases. Proc Natl Acad Sci USA 2015; 112: 7039–44. Han BA, Schmidt JP, Alexander LW, Bowden SE, Hayman DTS, Drake JM. Undiscovered bat hosts of filoviruses. PLoS Negl Trop Dis 2016; 10:
- e0004815. Jones KE, Bielby J, Cardillo M, et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 09/2009; 90: 2648–2648.
- Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W. EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. Ecology 2014; 95: 2027–2027.
- Rai P, Hu C, Henao R, Carin L. Large-scale Bayesian multi-label learning via topic-based label embeddings. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R, eds. Advances in Neural Information Processing Systems 28. Curran Associates, Inc., 2015: 3222–30.
- 7. Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence
- of regression models. Surv Methodol 2001; 27: 85-96. Messina JP, Kraemer MU, Brady OJ, et al. Mapping global environmental suitability for Zika virus. Elife 2016; 5: e15272.

RESULTS & CONCLUSIONS

A map depicting overlapping species ranges of global primates and their probability of being ZIKV+.

6 primate species in Central and South America in the 90th percentile probability of being ZIKV+

frequent human contact suggests prioritizing these species for ZIKV surveillance in Central America.

MODEL VALIDATION

Out-of-sample validation: Reassigned virus-positive primates to negative, and re-ran the model to obtain risk scores.

- Model assigned high risk scores to majority of known primate hosts.
- Model assigned low risk of flavivirus positivity to some known primate hosts.
- Data scarcity, even for very common species, may preclude our capacity to predict flavivirus reservoirs.

Training vs. validation percentile scores

Midas tamarin (Saguinus midas) Black howler (Alouatta caraya)

Ring-railed lemur (*Lemur catta*)

White-faced saki (*Pithecia pithecia*) African green (*Chlorocebus aethiops*)

ACKNOWLEDGEMENTS

PEOPLE: IBM WATSON DATA SCIENCE GROUP, CHRIS HOUGH (IBM graphic artist) **FUNDING:** IBM SOCIAL GOOD FELLOWSHIP PROGRAM (S. MAJUMDAR); NSF EEID GRANT #--- (B. HAN)

www.PosterPresentations.com