

# Kaggle Fire Loss Prediction

A Strategic Approach with CRISP-DM Model

Presented by FireKeeper



- **BUSINESS UNDERSTANDING**
- **DATA UNDERSTANDING**
- **DATA PREPARATION**
- MODELING
- **EVALUATION**
- CONCLUSION (DEPLOYMENT)

# Our Approach

Cross-Industry standard process for data mining (CRISP-DM)



# **BUSINESS UNDERSTANDING**





## 4 DATA UNDERSTANDING



#### **Pros**

- Most features have decent amount of data
- ✓ Most features have been normalized, allowing us to fill missing data with 0 (average)



#### Cons

- ✓ Contains categorical variables -> Need to be transformed into numeric variables
- ✓ features such as weather115 have only one value
- ✓ Artificial features such as id have no contribution to the prediction

| 7 | eatherVar207  | weatherVar208 | weatherVar209 | weatherVar210 | weatherVar211 |
|---|---------------|---------------|---------------|---------------|---------------|
|   | 19386         | 19386         | 32373         | 32373         | 32373         |
|   | weatherVar212 | weatherVar213 | weatherVar214 | weatherVar215 | weatherVar216 |
| ı | 32373         | 32373         | 32373         | 32373         | 32373         |
|   | weatherVar217 | weatherVar218 | weatherVar219 | weatherVar220 | weatherVar221 |
|   | 32373         | 32373         | 32373         | 32373         | 32373         |
|   | weatherVar222 | weatherVar223 | weatherVar224 | weatherVar225 | weatherVar226 |
|   | 32373         | 32373         | 32373         | 32373         | 32373         |
|   | var15         | crimeVar1     | crimeVar3     | crimeVar6     | crimeVar8     |
|   | 98856         | 109988        | 109988        | 109988        | 109988        |
|   | crimeVar9     | crimeVar5     | crimeVar4     | crimeVar2     | crimeVar7     |
|   | 109988        | 110655        | 112798        | 114553        | 117363        |
|   | var14         | var12         | var16         |               |               |
|   | 290466        | 355042        | 361693        |               |               |
|   |               |               |               |               |               |

Feature Engineering

Numeric Conversion & Pre-Cleaning

Missing Value Imputation

- Lasso
- Filter Method: Pearson and Spearman Correlation Coefficient
- RFE (Recursive Feature Elimination)
- PCA (Principle Component Analysis)
- Fill all missing data with 0 (mean of the normalized data)
- One-hot Encoding
  - Delete var12, var14, var16, weather115, X, id from training set



## MODELING – LASSO REGRESSION



#### Trained with 287 features. Kaggle Leaderboard Rank 11th

| Lambda       | 3.139e-3 | 2.285e-3 | 1.663e-3 | 1.211e-3 | 0.881e-3 |
|--------------|----------|----------|----------|----------|----------|
| Kaggle Score | 0.29356  | 0.29356  | 0.31324  | 0.30923  | 0.30488  |
| D.F.         | 1        | 1        | 4        | 5        | 10       |





```
57 library(qlmnet)
58 y <- as.matrix(Data2[, "target"])</pre>
   x \leftarrow as.matrix(Data2\lceil, c(2:287)\rceil)
   FIT <- glmnet(x, y, family = "gaussian", nlambda = 30.
    print(FIT)
    coef(FIT, s=FIT$lambda[4])
63
    xNew <- as.matrix(Test)</pre>
    colnames(xNew)
    xNew <- apply(xNew, 2, function(x) Trans_Zero(x))</pre>
    ID <- xNew[, 1]
    xNew <- xNew \- 1 \-
    yNew <- predict(FIT, newx = xNew, s=FIT$lambda[4])</pre>
    Ans <- matrix(0, nrow(yNew), 2)
    Ans <- data.frame(Ans)
   Ans[, 1] <- ID
   Ans[, 2] <- yNew
74 names(Ans) <- c("id", "target")
75 write.csv(Ans, file="Sub024.csv", row.names = FALSE)
```

# MODELING – UNIVARIATE/MULTI-VAR REGRESSION

Try related model to see if we could get higher score



Interesting Finding: var13 tends to be significant everywhere

## MODELING – OTHER MODELS

Try different models to see if we could get higher score



```
\hat{eta}^{	ext{ridge}} = \mathop{
m argmin}_{eta \in \mathbb{R}^p} \, \|y - Xeta\|_2^2 + \lambda \|eta\|_2^2
```

```
58 y <- as.matrix(Data2[, "target"])
    x <- as.matrix(Data2[, c(2 : 287)])
    FIT <- glmnet(x, y, family = "gaussian", nlambda =
    print(FIT)
 62
    coef(FIT, s=FIT$lambda[4])
 63
     xNew <- as.matrix(Test)
     colnames(xNew)
     xNew <- apply(xNew, 2, function(x) Trans_Zero(x))
    ID <- xNew[, 1]
    xNew <- xNew[, -1]
     yNew <- predict(FIT, newx = xNew, s=FIT$lambda[4])
    Ans <- matrix(0, nrow(yNew), 2)
71 Ans <- data.frame(Ans)
72 Ans[, 1] <- ID
```



AdaBoosting with Decision Tree Regressor with highest score 0.03





Principle Component Regression with highest score 0.27



```
library(factoextra)
pcal <- princomp(sub_x[,c(5:160,161:169,171:291)]) # doing
model1 <- glm(sub_x$target ~ pcal$scores[, 1:11])
summary(model1)
class(pcalsscores)
pcal.score <- data.frame(pcl=pcal$scores[, 1],</pre>
                          pc2=pca1sscores[, 2],
                          pc3=pca1$scores[, 3],
                          pc4=pca1$scores[, 4],
                          pc5=pca1$scores[, 5],
                          pc6=pca1sscores[, 6],
                          pc7=pca1$scores[, 7],
                          pc8=pcal$scores[, 8],
                          pc9=pca1$scores[, 9],
                          pc10=pca1$scores[, 10],
                          pc11=pca1$scores[, 11])
pred_target1 <- predict.glm(model1, newdata = pcal.score)</pre>
```







#### **Pros**

- ✓ Consider all the variables and their correlation.
- ✓ Transfer categorical variables into numeric ones
- ✓ Fill in the blanks for missing data
- ✓ Reach a condensed conclusion from different models

#### **Next Steps**

- ✓ Try different boosting methods to solve the problem that the distribution of data is unbalanced.
- ✓ Based on the characteristics of categorical variables, we could try more combinations of classification and regression model.



#### CONCLUSION



# Keys to address insurance problem

- ✓ Feature Reduction
- ✓ Missing Data Imputation
- √ Simplicity > Complexity



#### Magic of Var13

✓ Key feature for fire loss prediction



#### **Profit Maximization**

- ✓ Use our Lasso Model to ace the prediction
- ✓ Pay attention to the tail that cause a great loss (high value in target)



#### Var13 = sqrt(ln(N))

```
> table(Var13)
Var13
           0 0.8325546112 1.048147074
       93089
                    46926
                                 29880
1.4420268866 1.4823038074 1.5174271294
        8160
                     7466
                                  6776
1.6456154475 1.6651092223 1.6832151806
        4895
                     3982
                                  3166
1.7581360736 1.7707326777 1.7827096876
        2889
                     3148
                                  3260
```



# THANKS!