Amazon Fake Review Detection using various ML Model

DONGJUN CHO 605.744

Ecommerce Growth

U.S. ecommerce grew 10.8% in Q3 2022.

• E-commerce sales accounted for around 14% of retail sales

About Review

Reviews are key to the decision-making process, helping customers to get a better idea about the product

95% of consumers read online reviews before they shop

 58% say they would pay more for the products of a brand with good reviews.

Related Works

In 2008, Jindal and Liu identified spam by analyzing the number of feedbacks, length of review titles, sorting order by date, positives used repeatedly in content, percentage of negative words, and review evaluation ratings for amazon reviews.

In 2021, Alsubari used Chicago hotel reviews (1600 hotel reviews, 800 fake, 800 real review), and predicted fake reviews with an accuracy of 93% and 95% with a review classifier using machine learning (SVM, Random Forest).

Fake Review

These reviews produced by persons who have not personally experienced the subjects of the reviews are called spam reviews; spam reviews might also be called fake reviews, non-genuine reviews, or fraudulent reviews.

Detection of review spam: A survey

Project Idea

Using supervised machine learning technique to train model to detect fake review based on labeled dataset.

16,320 customer ratings

Dataset

Used the dataset from Kaggle and previous research

Dataset of 20000 reviews

- 10000 fake reviews
- 10000 Real reviews

Reviews about amazon product reviews.

Data Analysis

Average Review Title Length

• Fake Review: 2.73

• Real Review: 3.18

Average Review Length

Fake Review: 28.53

• Real Review: 38.76

Common words that occurs in both real and fake text

Sentiment Analysis

Polarity

Steps

Dataset

Data Processing

Feature Extraction (TF-IDF)

Data Splitting

Supervised Machine Learning Techniques

Performance Evaluation

Machine Learning Models

- 1. Naïve Bayes Classifier
- 2. Logistic Regression
- 3. XGBoost Classifier
- 4. Support Vector Machine
- 5. Random Forest Classifier
- 6. Multi-layer Perceptron classifier (MLP)

Experiment Result

		Precision (%)	Recall (%)	F1 Score (%)	Accuracy Score (%)
BernouliNB	Train	90.281	54.329	67.836	74.273
	Test	98.389	64.896	78.207	81.848
LR	Train	78.791	81.004	79.882	79.625
	Test	84.882	87.362	86.104	85.848
XGB	Train	81.986	82.289	82.137	82.127
	Test	88.996	91.157	90.064	89.905
SVM	Train	94.989	94.24	94.613	94.641
	Test	<mark>99.315</mark>	<mark>99.051</mark>	99.183	<mark>99.181</mark>
RF	Train	65.66	52.537	58.37	62.578
	Test	58.464	85.199	69.344	62.19
MLP	Train	96.973	96.529	96.75	96.762
	Test	98.478	95.75	97.094	97.124

ML Classification Results

Conclusion

SVM

 Text Categorization with Support Vector Machines: Learning with Many Relevant Features - Thorsten Joachims

Future Plans / Works

- Larger dataset
- Testing new models

Reference

- 1. Heydari, A., Tavakoli, M. A., Salim, N., & Heydari, Z. (2015). Detection of review spam: A survey. Expert Systems with Applications, 42(7), 3634-3642.
- 2. Jindal, N., & Liu, B. (2008). Opinion spam and analysis. Proceedings of the 2008 International Conference on Web Search and Data Mining, Palo Alto, California, USA, ACM, 219-230.
- 3. Alsubari, Saleh & Deshmukh, Sachin & Alqarni, Ahmed & Alsharif, Nizar & Aldhyani, Theyazn & Fawaz, Waselallah & Alsaade, & Khalaf, Osamah. (2021). Data Analytics for the Identification of Fake Reviews Using Supervised Learning. Computers, Materials and Continua. 70. 10.32604/cmc.2022.019625.
- 4. Joachims, Thorsten. "Text Categorization with Support Vector Machines: Learning with Many Relevant Features." European Conference on Machine Learning (1998).

Thanks