Science des données II: tp6

Régression linéaire & regression linéaire multiple

Guyliann Engels & Philippe Grosjean

Université de Mons, Belgique Laboratoire d'Écologie numérique des Milieux aquatiques

 $\label{eq:http://biodatascience-course.sciviews.org} $$ sdd@sciviews.org $$$

La Croissance des arbre

L'UR2PI et le CIRAD souhaite trouver un modèle pour estimer la hauteur d'un arbre sur base de sa circonférence à 1 m50 du sol.

Tab. 1 : Quelques lignes du tableau de données eucalyptus

Code d'identification	Hauteur	Circonférence	Bloc
1	18.25	0.36	1
135	22.25	0.43	1
246	23.50	0.56	1
779	21.25	0.46	2
1251	17.50	0.38	2
1716	22.00	0.46	3

Variables:

- id : Code d'identification
- height: Hauteur [m]
- circ : Circomférence à 1.50 m du sol [m]
- bloc : variables facteurs structurant les zones d'échantillonnages

Créez un projet eucalyptus pour répondre à cette analyse.

Employez la relation linéaire et la relation linaire multiple pour proposer un modèle entre la hauteur et la circomférence

croissance de la coquille d'escargots géants d'Afrique

Achatina achatina (Linnaeus, 1758) a été étudié dans le cadre d'une étude tentant de modéliser la croissance des coquilles. Employez la régression linaire afin de modéliser la croissance de la coquille de ces animaux.

Variables:

- coils : nombre de tours de coquille (sans unité)
- shell: rayon de la suture mesuré depuis le point de référence (apex) en mm

