Problema 41. En aquest exercici calcularem els subgrups de Sylow del grup simètric S_4 .

- (a) Calculeu els 3-subgrups de Sylow de S_4 . De quin ordre són?
- (b) Descriviu els elements de S_4 que són d'ordre una potència de 2 i recordeu que aquests elements estan continguts en un 2-subgrup de Sylow. Deduïu que un 2-subgrup de Sylow conté un subgrup cíclic d'ordre 4. Expliciteu els 2-subgrups de Sylow de S_4 .

Solució. (a)

Sabem que $\#S_4 = 4! = 24 = 2^3 \cdot 3$.

Ara, pel primer teorema de Sylow, existeixen, com a mínim,

un 2-subgrup de Sylow d'ordre 2³ i un 3-subgrup de Sylow d'ordre 3.

Pel 3r teorema de Sylow, si n_3 denota el nombre de 3-subgrups de Sylow de S_4 , tenim que $n_3|8$ i $n_3 \equiv 1 \pmod{3}$.

Amb aquestes dades, podem escriure el següent.

 $\exists k, t \in \mathbb{N} \text{ tal que:}$

$$n_3 - 1 = 3k$$

 $2^3 = n_3 t$

Per la 2a condició obtinguda, els n_3 possibles són 1,2,4,8, i de tots aquests, només $n_3 = 4$ i $n_3 = 1$ compleixen la 1a condició. Per tant, hi ha quatre 3-subgrups de Sylow a S_4 .

Sabem que aquests 3-Sylows són d'ordre 3; és a dir, són d'ordre primer, i en conseqüència són cíclics (i simples). Aleshores, S_4 té quatre 3-Sylows cíclics d'ordre 3, que són:

$$H_1 = <(1,2,3)>, H_2 = <(2,3,4)>, H_3 = <(1,3,4)>, H_4 = <(1,2,4)>$$

(b)

i)

Totes les transposicions són d'ordre 2, per tant:

(1,2),(2,3),(3,4),(1,3),(2,4),(1,4) són d'ordre 2.

La composició de dues transposicions disjuntes també és d'ordre 2, per tant:

((1,2)(3,4)), ((1,3),(2,4)), ((1,4),(2,3)) són d'ordre 2.

Encara resten:

(1,2,3,4),(1,2,4,3),(1,3,2,4),(1,3,4,2),(1,4,2,3),(1,4,3,2) que són d'ordre 4.

Els 9 elements restants són el neutre (ordre 1) i 8 elements d'ordre 3.

ii)

Pel 2n teorema de Sylow, tot p-subgrup d'un grup G està contingut en un p-subgrup de Sylow de G. En aquest cas, tot 2-subgrup de S_4 està contingut en un 2-subgrup de Sylow de S_4 . Aleshores, ja que un subgrup cíclic d'ordre 4 és un 2-subgrup de S_4 , aquest està contingut en un 2-subgrup de Sylow de S_4 . Aplicant ara la segona part del 2n teorema de Sylow, tenim que tots els 2-subgrups de Sylow de S_4 són conjugats, de manera que si H_1 és el 2-subgrup de Sylow tal que $C_4 \subseteq H_1$ i H_2 és un altre 2-subgrup de Sylow, podem afirmar el següent:

 $\exists g \in S_4 \text{ t.q. } H_2 = gH_1g^{-1}$

En particular, si $< h> = \{h, h^2, h^3, h^4 = e\}$ és el subgrup cíclic d'ordre 4 de H_1 , tenim que $< ghg^{-1}> = \{ghg^{-1}, gh^2g^{-1}, gh^3g^{-1}, gh^4g^{-1} = e\} \subseteq H_2$ és un subgrup cíclic d'ordre 4 de H_2 , ja que $(ghg^{-1})^i = gh^ig^{-1}$.

iii)

Hem vist a l'apartat anterior que els 2-subgrups de Sylow de S_4 tenen ordre 8. Pel 3r teorema de Sylow, el nombre de 2-subgrups de Sylow n_2 compleix:

 $n_2|3$

,

$$n_2 \equiv 1 (mod 2)$$

Veiem, aleshores, que el nombre de 2-Sylows és 1 o 3. Trobem ara: $H_1 = <(1,2,3,4) = \sigma, (2,4) = \rho>=$ $\{e,(1,2,3,4),(1,3)(2,4),(1,4,3,2),(2,4),(1,4)(2,3),(1,3),(1,2)(3,4)\}$ Ara, conjugant, obtenim que $H_2 = (1,4)H_1(4,1) = <(1,4)(1,2,3,4)(4,1),(1,4)(2,4)(4,1)>=$ $\{e,(4,2,3,1),(4,3)(2,1),(4,1,3,2),(2,1),(1,4)(2,3),(4,3),(4,2)(3,1)\}$ Però n'hi ha d'haver un tercer. Tornant a conjugar obtenim que $H_3 = (1,2)H_1(2,1) = <(1,2)(1,2,3,4)(2,1),(1,2)(2,4)(2,1)>=$ $\{e,(2,1,3,4),(2,3)(1,4),(2,4,3,1),(1,4),(2,4)(1,3),(2,3),(1,2)(3,4)\}$ Observació. Veiem que aquests 2-subgrups de Sylow són isomorfs a $D_{2,4}$.