

The Human Genome

BIOL3120 Human Genetics and Evolutionary Medicine

The Human Genome

LEARNING OBJECTIVES

At the end of this lecture you should be able to:

- Define the terms used to describe the human genome
- Understand the structure of chromosomes
- Understand the coding regions of the human genome

The human genome

- First draft sequence February 2001
- Complete draft 2003
- Cost ~ 2.7 billion USD

Cost per Genome

The human genome

- First draft sequence February 2001
- Complete draft 2003
- Cost ~ 2.7 billion USD

 Sequence determined but little understanding of its meaning

Quick overview

- 3.2 billion basepairs x 2
- Over 23 chromosome pairs
- ~20,000 protein-coding genes

Junk DNA?

- Historically, non-coding DNA referred to as junk DNA
- ENCODE project (2012):
 - "The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or chromatin-associated event in at least one cell type"
 - (think about gene definition)
 - https://www.nature.com/articles/nature11247

National Human Genome Research Institute

Example genome sizes

Terms used to describe the human genome

Chromosomes

Chromosome related nomenclature

- Chromatin: the material of which chromosomes are made.
 - complex of DNA, and proteins (histones and non-histones)
- Chromatid: one of the two copies of a chromosome
 - joined at the centromere
 - two homologous chromatids are called sister chromatids.
- Centromere is DNA normally in a heterochromatin state
 - Site of spindle attachment to chromosomes (important in meiosis)

Chromosome parts

Heterochromatin:

- More condensed
- Silenced genes (methylated)
- Gene poor (high AT content)
- Stains darker

Euchromatin:

- Less condensed
- Gene expressing
- Gene rich (higher GC content)
- Stains lighter

DNA & Gene parts

- \bigcirc
- Enhancers: genomic DNA (gDNA) which can alter the expression of a gene
- Promoters: gDNA region where transcription factors bind to initiate transcription of a gene
- Exons: gDNA that is the coding regions of a gene
- Introns: a portion of a gene that does not code for an amino acid
- Gene: a sequence of nucleotides in DNA that codes for a molecule that has a function

The Structure of Chromosomes

Chromosome numbering

- 1-22 Arranged in order of decreasing size
- q = long arm; p = short arm

G-banding example: Chromosome 4

- Giemsa stain
 - darker on heterochromatin (AT rich) regions, less accessible
 - Lighter on euchromatin (GC rich) regions, more accessible and active
 - 92% of genes in euchromatin in humans

Chromosome numbering

- 1-22 Arranged in order of decreasing size
- q = long arm; p = short arm
- Black and white stripes are because of staining: G-banding
- 'Bands' have the same appearance on homologous chromosomes so identification became easier
- Banding allows:
 - Unequivocal identification of each human chromosome
 - Detection of rearrangements (e.g. translocations)

Chromosomes

Telomeres

- protect functional regions (containing genes) by capping the ends with a 'buffer' sequence
- Telomeres consist of variable numbers of a repetitive sequence (TTAGGG)
- Telomere length is reduced every time a cell divides
- average telomere length declines from ~ 11 kilobases at birth to less than 4 kilobases in old age, decline greater in men
- Marker of cell age signal for apoptosis (cell self-destruction)
- "telomeric DNA is lost at an average rate of '25.7–27.7 base pairs' per year

Telomeres

- Various premature ageing disease characterised by critically short telomeres
- Cancer cells often do not show telomere length shortening - telomerase protein not normally active has become active in many cancer cell types
- Telomerase and telomere-binding proteins are potential targets for anti-cancer and antiageing therapies

Pseudoautosomal regions on X & Y chromosomes

- Homologous regions at ends of X and Y chromosomes
 - Allows pairing during meiosis
 - Regions tend not to be silenced in Xinactivation
 - Inherited in an autosomal manner
 - These regions are called PAR1 and PAR2

Number of genes on each chromosome

Chromosome \$	Length (mm)	Base pairs	Variations ♦	Protein- coding \$ genes	Pseudo- genes \$	Total long ♦ ncRNA	Total small ♦ ncRNA	miRNA 💠	rRNA ♦	snRNA ♦	snoRNA ◆	Misc ncRNA ◆	Links \$	Centromere position (Mbp)	Cumulative (%)
1	85	248,956,422	12,151,146	2058	1220	1200	496	134	66	221	145	192	EBI&	125	7.9
2	83	242,193,529	12,945,965	1309	1023	1037	375	115	40	161	117	176	EBId	93.3	16.2
3	67	198,295,559	10,638,715	1078	763	711	298	99	29	138	87	134	EBI&	91	23
4	65	190,214,555	10,165,685	752	727	657	228	92	24	120	56	104	EBId	50.4	29.6
5	62	181,538,259	9,519,995	876	721	844	235	83	25	106	61	119	EBI&	48.4	35.8
6	58	170,805,979	9,130,476	1048	801	639	234	81	26	111	73	105	EBI&	61	41.6
7	54	159,345,973	8,613,298	989	885	605	208	90	24	90	76	143	EBI &	59.9	47.1
8	50	145,138,636	8,221,520	677	613	735	214	80	28	86	52	82	EBI &	45.6	52
9	48	138,394,717	6,590,811	786	661	491	190	69	19	66	51	96	EBI &	49	56.3
10	46	133,797,422	7,223,944	733	568	579	204	64	32	87	56	89	EBI &	40.2	60.9
11	46	135,086,622	7,535,370	1298	821	710	233	63	24	74	76	97	EBI &	53.7	65.4
12	45	133,275,309	7,228,129	1034	617	848	227	72	27	106	62	115	EBI &	35.8	70
13	39	114,364,328	5,082,574	327	372	397	104	42	16	45	34	75	EBI &	17.9	73.4
14	36	107,043,718	4,865,950	830	523	533	239	92	10	65	97	79	EBI &	17.6	76.4
15	35	101,991,189	4,515,076	613	510	639	250	78	13	63	136	93	EBI &	19	79.3
16	31	90,338,345	5,101,702	873	465	799	187	52	32	53	58	51	EBI &	36.6	82
17	28	83,257,441	4,614,972	1197	531	834	235	61	15	80	71	99	EBI &	24	84.8
18	27	80,373,285	4,035,966	270	247	453	109	32	13	51	36	41	EBI &	17.2	87.4
19	20	58,617,616	3,858,269	1472	512	628	179	110	13	29	31	61	EBI &	26.5	89.3
20	21	64,444,167	3,439,621	544	249	384	131	57	15	46	37	68	EBI &	27.5	91.4
21	16	46,709,983	2,049,697	234	185	305	71	16	5	21	19	24	EBI &	13.2	92.6
22	17	50,818,468	2,135,311	488	324	357	78	31	5	23	23	62	EBI &	14.7	93.8
Х	53	156,040,895	5,753,881	842	874	271	258	128	22	85	64	100	EBI &	60.6	99.1
Υ	20	57,227,415	211,643	71	388	71	30	15	7	17	3	8	EBI &	12.5	100
mtDNA	0.0054	16,569	929	13	0	0	24	0	2	0	0	0	EBI &	N/A	100
total		3,088,286,401	155,630,645	20412	14600	14727	5037	1756	532	1944	1521	2213			

https://en.wikipedia.org/wiki/Human genome

Chromosome size vs number of genes

Gene size in humans

- Titin gene (TTN)
 - 365,719bp total gene size (including introns)
 - Exons: 80,781bp across 365 exons
- DMD gene (Duchenne muscular dystrophy)
 - 2,220,390 bp including introns
 - ~14kb mRNA

• Average gene size ~8kb

Coding Regions Human Genome

Human genome summary

- 3.2 billion base pairs x 2 across 23 chromosome pairs
- ~20,000 protein coding genes, but other functional molecules
- Only 1-2% codes for protein, but up to 80% of genome regulatory function

How many genes?

What is a gene?

- Classically, region of DNA which codes for a protein
- Nowadays:
 - a sequence of nucleotides in DNA that codes for a molecule that has a function
 - This might code for a protein, or just be transcribed into RNA e.g. t-RNAs, noncoding RNAs

What is a gene?

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Exons and introns

- Exon: part of a gene that will encode a part of the final mature RNA
- Intron: any nucleotide sequence within a gene that is removed by RNA splicing during maturation of the final RNA product
- 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA

Multiple transcripts / alternate splicing

 Exons can be alternatively arranged to create different proteins from the same gene

 Different types of cells often use different transcripts more/less frequently

The Human Genome

LEARNING OBJECTIVES

At the end of this lecture you should be able to:

- Define the terms used to describe the human genome
- Understand the structure of chromosomes
- Understand the coding regions of the human genome