Solución del SEGUNDO PARCIAL DE MATEMÁTICA DISCRETA II

Ejercicio 1.

- **A.** Si $A, B \in G$, claramente las entradas de AB también son enteras. Además $\det(AB) = \det(A)\det(B) = 1 \Rightarrow AB \in G$.
 - La multiplicación de matrices es asociativa.
 - El neutro de la multiplicación de matrices, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ tiene entradas enteras y $\det(I) = 1 \Rightarrow I \in G$. Entonces I es el neutro en G.
 - Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, entonces $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Tenemos que las entradas de A^{-1} son enteras y $\det(A^{-1}) = \det(A) = 1$ y por lo tanto A tiene inverso en G.

Por todo lo anterior, G es un grupo.

$$\mathbf{B.} \ \ker \varphi = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G : \varphi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \begin{pmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{1} \end{pmatrix} \right\} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G : \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} = \begin{pmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{1} \end{pmatrix} \right\} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G : a \equiv d \equiv 1 \pmod{n} \ y \ b \equiv c \equiv 0 \pmod{n} \right\}.$$

C. Primer Teorema de Isomorfismo: Si $\varphi: G \to K$ es un homomorfismo de grupos; entonces $G/\ker(\varphi) \simeq \operatorname{Im}(\varphi)$.

Ejercicio 2. Sea G un grupo finito y H un subgrupo de G.

- **A.** Sea $x \in G$, $x \sim x \Leftrightarrow xx^{-1} \in H \Leftrightarrow e \in H$ lo cual es cierto ya que H es subgrupo.
 - Si $x \sim y \Rightarrow xy^{-1} \in H$; como H es subgrupo tenemos que $(xy^{-1})^{-1} \in H \Rightarrow yx^{-1} \in H \Rightarrow y \sim x$.
 - Si $x \sim y$ e $y \sim z$, entonces xy^{-1} , $yz^{-1} \in H$ y como H es cerrado con la multiplicación, tenemos que $xy^{-1}yz^{-1} \in H \Rightarrow xz^{-1} \in H \Rightarrow x \sim z$.
- **B.** Teorema de Lagrange: Si G es un grupo finito y H un subgrupo de G, entonces |H|||G|. Demostración: Si C_1, \dots, C_k son las distintas clases de equivalencia dadas por la relación de equivalencia de la parte A, tenemos que $G = C_1 \cup \dots \cup C_k$, la unión disjunta. Entonces $|G| = \#C_1 + \dots + \#C_k$. Si probamos que $\#C_i = |H|$ tendremos que $|G| = \underbrace{|H| + \dots + |H|}_{k \text{ veces}} = k|H|$.

Ahora la clase de equivalencia de y es Hy ya que $x \sim y \Leftrightarrow xy^{-1} \in H \Leftrightarrow \exists h \in H : xy^{-1} = h \Leftrightarrow \exists h \in H : x = hy \Leftrightarrow x \in Hy$.

Tenemos que si $h_1, h_2 \in H$ y $h_1y = h_2y \Leftrightarrow h_1 = h_2yy^{-1} = h_2$ y por lo tanto #(Hy) = |H|.

C. Sea $g \in G$ es tal que $\operatorname{mcd}(o(g), |K|) = 1$. Entonces $e_K = \varphi(e_G) = \varphi(g^{o(g)}) = (\varphi(g))^{o(g)}$. Entonces $o(\varphi(g))|o(g)$ y además $o(\varphi(g))||K|$, por lo tanto $o(\varphi(g))|\operatorname{mcd}(o(g), |K|) = 1$ entonces $o(\varphi(g)) = 1 \Rightarrow \varphi(g) = e_K \Rightarrow g \in \ker \varphi$.

Ejercicio 3.

A. Sea x = o(g) e y = o(h). Como gh = hg tenemos que para todo $n \in \mathbb{Z}$, $(gh)^n = g^n h^n$.

Tenemos $(gh)^{xy}=g^{xy}h^{xy}=(g^x)^y(h^y)^x=ee=e$. Falta ver que si $(gh)^n=e\Rightarrow xy|n$. Si $e=(gh)^n=g^nh^n\Rightarrow e=(g^nh^n)^x=h^{nx}\Rightarrow y|nx$ y como $\operatorname{mcd}(x,y)=1$ tenemos que y|n. Análogamente $e=(g^nh^n)^y=g^{ny}\Rightarrow x|ny\Rightarrow x|n$. Tenemos y|n,x|n y $\operatorname{mcd}(x,y)=1$, entonces xy|n.

Otra forma:

Como $\operatorname{mcd}(x,y)=1$ tenemos que $\langle g \rangle \cap \langle h \rangle = \{e\}$ (Lagrange). Si $e=(gh)^n=g^nh^n \Rightarrow g^n=h^{-n}\in \langle g \rangle \cap \langle h \rangle = \{e\}$. Por lo tanto $g^n=e\Rightarrow x|n$ y $h^n=e\Rightarrow y|n$; como $\operatorname{mcd}(x,y)=1$ resulta que xy|n.

B. Tenemos que $5^2 = 25$ y $5^3 = 125 \equiv 1 \mod 31$, entonces o(5) = 3. Como $29 \equiv -2 \mod 31$ y $2^2 = 4$, $2^3 = 8$, $2^4 = 16$ y $2^5 = 32 \equiv 1 \mod 31$, tenemos que o(29) = 10.

Ahora, $21 \equiv -10 \mod 31 \equiv (-2)(5) \mod 31$. Por la parte anterior, como mcd(3, 10) = 1, tenemos que o(21) = o((-2)(5)) = (3)(10) = 30.

Como $\varphi(31)=30$ y o(21)=30 tenemos que 21 es raíz primitiva módulo 31

C. La clave común es $k \equiv x^{14} \mod 31 \equiv 7^{14} \mod 31$.

Ahora, $21^2 \equiv (-10)^2 \mod 31 = 7 \mod 31$, entonces $k = 7^{14} \equiv 21^{28} \mod 31$ y como $21^{30} \equiv 1 \mod 31$, k es el inverso de $21^2 = 7$ en U(31). Entonces k = 9.

Ejercicio 4.

- **A.** (i) $\sigma_1 = (abx)$ y $\sigma_2 = (day)$. Además $a = \sigma_2\sigma_1(b) = \sigma_2(x)$ entonces x = d. También $y = \sigma_2(a) = \sigma_2\sigma_1(x) = \sigma_2\sigma_1(d) = c$.
 - (ii) Como todos los elementos de A_n son producto de una cantidad par de transposiciones, basta probar que cualquier producto de 2 transposiciones está en N:

Por la parte (i), el producto de 2 transposiciones disjuntas es el producto de dos 3ciclos σ_1, σ_2 . Como $\sigma_1, \sigma_2 \in N$ y N es subgrupo, tenemos que $\sigma_2\sigma_1 \in N$. El producto de 2 transposiciones distintas no disjuntas es de la forma $(a b)(b c) = (a b c) \in N$. Y si las transposiciones son iguales entonces $(a b)(a b) = e \in N$.

- **B.** Sea $\alpha = (x y z)$ un 3 ciclo; tomando $\gamma \in S_5$ tal que $\gamma(a) = x$, $\gamma(b) = y$, $\gamma(c) = z$ tenemos $\gamma \sigma \gamma^{-1} = \alpha$; como $N \triangleleft S_5$ tenemos que $\alpha \in N$. Entonces N contiene a todos los 3-ciclos y por la parte anterior tenemos $N = A_5$.
- **C.** (i) $(a b c d e)\tau = (a d b) \Leftrightarrow \tau = (a b c d e)^{-1}(a d b) = (a c b e d).$

$$(ii) \ (a\,b)(c\,d)\gamma = (a\,b\,e) \Leftrightarrow \gamma = ((a\,b)(c\,d))^{-1}(a\,b\,e) = (a\,b)(c\,d)(a\,b\,e) = (b\,e)(c\,d).$$

D. Por las partes anteriores, basta ver que N contiene un 3-ciclo. Como $N \neq e$, existe $\sigma \in N$, $\sigma \neq e$. Si descomponemos σ en producto de ciclos disjuntos tenemos 3 posibilidades (pues σ está en A_5): σ es un 3-ciclo, un producto de dos transposiciones disjuntas o un 5-ciclo. Si σ es un 3-ciclo, ya está.

Si $\sigma = (a\,b)(c\,d)$ entonces por la parte C(ii) tenemos que $(a\,b\,e) = (a\,b)(c\,d)(b\,e)(c\,d) = \sigma(b\,e)(c\,d)$. Basta probar que $\alpha = (b\,e)(c\,d) \in N$ (y entonces $(a\,b\,e) = \sigma\,\alpha \in N$. Si tomamos $\gamma = (a\,b\,e)$, tenemos que $\alpha = (be)(cd) = \gamma(ab)(cd)\gamma^{-1} \in N$ pues $N \triangleleft S_5$.

Si σ es un 5-ciclo, entonces por la parte C.(i) tenemos que si $\sigma = (a\,b\,c\,d\,e)$ entonces $(a\,b\,c\,d\,e)\tau = (a\,d\,b)$ con $\tau = (a\,c\,b\,e\,d)$. Basta ver que $\tau \in N$. Ahora $\tau = (bc)(de)\sigma((bc)(de))^{-1} \in N$ ya que $(bc)(de) \in S_5$