

Analyse d'un algorithme

- Mesure la quantité de ressources utilisée
- Cependant
 - Temps d'exécution dépend de l'ordinateur
 - Espace mémoire peut dépendre du compilateur
- ⇒ Trouver des fonctions indépendantes de ces points
- Fonction de la taille du problème: f(n)

L'analyse pessimiste

- Les performances des algo ne sont pas toujours identiques
 - dépendent des données qui leur sont passées
 - 3 cas peuvent se présenter
 - le meilleur
 - le pire
 - entre les deux
 - Exemple: recherche linéaire
 - meilleur: l'élément recherché est le 1er
 - pire: l'élément recherché est le dernier (ou n'existe pas)
 - cas moyen: entre le 1er et le dernier

	п	
	ш	
	ш	
	ı	
-		

L'analyse pessimiste

- Pourquoi l'analyse pessimiste ?
 Pourquoi analyse-t-on, le plus souvent, les algorithmes dans les pires situations ?
 - de nombreux algorithmes fonctionnent, la plupart du temps, dans la situation la plus mauvaise pour
 - Exemple, le pire cas d'une recherche est lorsqu'on ne trouve pas l'élément cherché (souvent avec manipulation de BD)

L'analyse pessimiste

- Pourquoi l'analyse pessimiste ?
 - souvent, fonctionnement dans la pire situation
 - le cas optimal apporte peu d'informations
 - beaucoup d'algorithmes font exactement la même chose dans une telle situation

•			
•			
•			
•			
•			
•			
•			

L'analyse pessimiste

- Pourquoi l'analyse pessimiste ?
 - souvent, fonctionnement dans la pire situation
 - le cas optimal apporte peu d'informations
 - déterminer la performance dans le cas moyen est difficile
 - Qu'est exactement le cas moyen pour notre algorithme ?

	- 1	
	ш	
	н	
_		
-		

L'analyse pessimiste

- Pourquoi l'analyse pessimiste ?
 - souvent, fonctionnement dans la pire situation
 - le cas optimal apporte peu d'informations
 - performance dans le cas moyen difficile à évaluer
 - analyse pessimiste donne une borne supérieure de la performance
 - garantit que l'algorithme ne fera jamais moins bien que ce que nous calculons
 - les autres cas se dérouleront au moins aussi bien

Complexité maximale

- Quelle précision pour la complexité ?
- Lors d'une étude, nous pouvons arriver à la conclusion que la complexité maximale du programme est T_{max}(n)=3n²+10n+10.
 (on a ainsi le nombre exact d'instructions élémentaires utiles pour le programme)
- Une telle précision est inutile, l'ordre de grandeur est suffisant.

,			

Complexité maximale

- Pourquoi l'ordre de grandeur est-il suffisant ?
 - Exemple: complexité max T_{max}=3n²+10n+10
 - Si la taille des données est n=10, on a
 - tps d'exécution de 3n²: (3*10²)/(3*10²+10*10+10)=73.2%
 - tps d'exécution de 10n: (10*10)/(3*10²+10*10+10)=24.4%
 - tps d'exécution de 10: (10)/(3*10²+10*10+10)=2.4%
 - Si la taille des données est n=100, on a
 - tps d'exécution de 3n²: (3*100²)/(3*100²+10*100+10)=96.7%
 - tps d'exécution de 10n: (10*100)/(3*100²+10*100+10)=3.2%
 - tps d'exécution de 10: (10)/(3*100²+10*100+10)<0.1%
 - Le terme important est 3n²

Le grand O

- Sachant que n est le paramètre donnant la taille des données, nous voulons déterminer une fonction simple f(n) qui, à une constante près, borne la complexité de l'algorithme.
- Une complexité est dite "en grand O de f(n)"
- Exemple: $T_{max}(n) = 3n^2 + 10n + 10$ est en $O(3n^2) = O(n^2)$

Règles simples de la notation O

- Termes constants de la forme O(1)
 - O(c)=O(1)
- Constantes multiplicatives omises
 - O(c.n)=c.O(n)=O(n)

	1	
-	ı	
	П	
_		
7		

Règles simples de la notation O

- Termes constants de la forme O(1)
 - O(c)=O(1)
- Constantes multiplicatives omises
 - O(c.n)=c.O(n)=O(n)
- Addition réalisée en prenant le maximum
 - O(n)+O(m)=max{O(n),O(m)}
- Multiplication reste inchangée (souvent réécrite de façon plus compacte)
 - O(n)O(m)=O(nm)

-

Grandes classes de complexité

Grand O	Classe	
O(1)	constante	
O(log n)	logarithmique	Р
O(n)	linéaire	olyr
O(n log n)	n log n	polynomial
O(n ²)	quadratique	<u>a</u> .
O(n³)	cubique	
O(2 ⁿ)	exponentiel en 2 ⁿ	Q
O(3 ⁿ)	exponentiel en 3 ⁿ	exponentie exponentie
O(n ⁿ)	exponentiel en nn	ent
		<u>:ici</u>

5

Calcul d'une complexité

- Utilise la structure du programme: l' "arbre syntaxique" du programme
- 6 règles simples

Règle 1: Unité

- Définir l'unité utilisée
- Exemple
 - Temps d'exécution O(1)
 - expression simple (i←i+1; a←tab[i]; ...)
 - instructions lecture / écriture
 - retour de fonction

Règle 2: séquence

 La complexité d'une séquence de plusieurs instructions est le <u>maximum des complexités de</u> <u>chaque instruction</u>

Traitement	instruction 1	instruction 2	séquence
O()	O(f ₁ (n))	O(f ₂ (n))	$O(\max\{f_1(n),f_2(n)\})$
Exemple	O(n²)	O(n)	O(n²)

1/

_			

Règle 3: si alors sinon

 La complexité d'un si condition alors instruct1 sinon instruct2 finsi est le maximum des complexités de condition, instruct1 et instruct2

Traitement	condition	instruct1	instruct2	si
Exemple	O(n)	O(n²)	O(n)	O(n²)

Règle 4: Tantque...

La complexité d'un
 Tantque condition *faire* instructions Fintq
 est la complexité du <u>nombre d'itérations * le</u>
 <u>maximum des complexités de condition et</u>
 instructions

Traitement	Nb itérat.	condition	instructions	Tantque
Exemple	O(n)	O(1)	O(n²)	O(n ³)

Répéter...Jusqu'à similaire au Tantque

Règle 6: fonction

- L'appel à une fonction de complexité O(n) est en O(n') où n'est la taille des paramètres effectifs
- Exemple: x ← minimum(V)
 - minimum en *O(n)* où n est la taille du vecteur V
 - V de taille *m*
 - Assignation: en *O(m)*

Remarques

 2 algorithmes peuvent avoir la même complexité mais l'un peut être plus rapide que l'autre

Pour i allant de 1 à n faire $x \leftarrow x + 1$; Pour i allant de 1 à 100n faire $x \leftarrow x + 1$; Finpour Finpour

Remarques

- pour un problème, on peut parler de complexité en temps et de complexité en espace mémoire:
 - Un problème peut être de complexité
 - O(n2) en temps
 - O(n) en espace mémoire
 - Cela signifie qu'il existe 2 algorithmes A et B pour résoudre le problème (peut-être différents) tels que
 - A a un temps de O(n²)
 - B utilise un espace mémoire en O(n)

Calculs de complexité (2)					
Procédure p2(val t[]:entier, k:entier) var i:entier; Début pour i allant de 0 à k-1 faire $t[i] \leftarrow 0$; finpour pour i allant de 0 à k-1 faire $t[i] \leftarrow i+1$; finpour Fin	 t[i] ← 0, i+1 et t[i] ← i+1 ⇒ O(1) on parcours une 1ère fois le tableau de taille k ⇒ k*O(1) ⇒ O(k) on parcours une 2ème fois le tableau de taille k ⇒ k*O(1) ⇒ O(k) 				
	$\Rightarrow O(k)$ $\Rightarrow O(k) + O(k) = O(k)$				

Calculs de cor	mplexité (9)
Fonction Min(val t[],n,position:entier):entier Var min:entier; Début	Peut-on améliorer le résultat (avec peu de changements)?
min <- t[position]; POUR i allant de position+1 à n-1 FAIRE SI t[i] <min <-="" alors="" finsi<br="" min="" t[i];="">FINPOUR Retourner(min); Fin</min>	
var tab[n],i,j:entier; Début initTab(tab,n); //place des entiers dans tab POUR i allant de 0 à n-1 FAIRE POUR j allant de 0 à n-1 FAIRE	SI t[j]=tmp et j>i ALORS inverser(t, i, j); FINSI FINPOUR Fin
SI t[j]=Min(t,n,i) et j>i ALORS inverser(t, i, j); FINSI FINPOUR	Nouvelle complexité? O(n²)

Calculs de complexité (suite)

Ecrivez un programme permettant de remplir la diagonale d'une matrice carrée de taille n avec des 1. Calculez le nombre d'opérations élémentaires à réaliser. Donnez alors la complexité en temps et en espace.

Ecrivez un programme permettant de remplir la partie triangulaire supérieure d'une matrice carrée de taille n avec des 1. Calculez le nombre d'opérations élémentaires à réaliser. Donnez alors la complexité en temps et en espace.

Calculs de complexité (suite)

On dispose des deux fonctions suivantes avec 0 < q \leq 1, n > 0 :

Fonction Fct2 (yal q: reel, n: réel Var res: réel; i:entier; Début Res—0: Pour i allant de 0 à n faire Res —res*q: Fin pour Retourner ((1-res)/(1-q)); fin

- 1) Que font ces fonctions ?
- 2) Calculez le nombre d'opérations à exécuter pour chacune en fonction de n;
- 3) Calculez leur complexité en temps.
- 4) Laquelle utiliseriez vous ?

1	4	
L		