

GeoSurv II

System Requirements Document

Revision E

System Requirements Document

DR No. 12-01 Version E By: Thomas James Date: 31-Mar, 08 Ck By: Ben Allison Date: 31-Mar, 08

Prepared by:	
Thomas James, Carleton University	
Integration	
Concurred by:	
Concurred by:	
Ben Allison, Carleton University	
Integration	
Approved by:	
Prof. Paul Straznicky, Carleton University	David Waigh, Sander Geophysics Ltd.
Project Manager	Aviation Manager

System Requirements Document DR No. 12-01 Version E By: Thomas James Date: 31-Mar, 08 Ck By: Ben Allison Date: 31-Mar, 08

Revision History

Version	Date	Description
A	5-Nov-04	Initial Release
В	1-Feb-05	This document has been modified significantly from its initial release. Changes include addition of sections, restructuring of section 3.1, renumbering of many requirements, deletion of many requirements, addition of many new requirements as well as the addition of new sections. References to requirements in Version A may no longer be valid.
C	4-Mar-05	 The requirement numbering system has been slightly modified; a dash line has been added in place of a dot (e.g. 3.1.3.7 is now 3.1.3-7) New Requirements: 3.2-12 Modified Requirements: 3.1.1-2, 3.1.1-6, 3.1.1-8, 3.1.2.1-6, 3.1.3-7, 3.1.3-13, 3.2-7, 3.6-3, 3.6-7 Deleted Requirements: 3.1.1.6.1, 3.1.3.3.1, 3.2-3, 3.1.2.1-4 Moved (renumbered) Requirements: 3.1.2.9-1 became 3.1.2-12 3.1.2.4-1 became 3.1.2-13 3.1.2.4-2 became 3.1.2-14 3.1.3.1-1 became 3.1.3-14 3.1.3.10-1 became 3.1.3-15 Note: Many requirements have had unnecessary tolerances removed.
D	6-Feb-06	SRC-01 included SRC-02 included SRC-03 included SRC-05 included SRC-07 included Cert. Status column added for section 3
Е	31-Mar-08	SCR-10 included SCR-11 included SCR-12 included

System Requirements Document

DR No. 12-01 Version E By: Thomas James Date: 31-Mar, 08 Ck By: Ben Allison Date: 31-Mar, 08

TABLE OF CONTENTS

1	INTRODUCTION	5
1.1	Purpose and Scope	5
1.2	Document Control	5
1.3	Acronyms, Abbreviations, and Definitions	5
1.3.1	Acronyms	5
1.3.2	Abbreviations	6
1.3.3	Definitions	6
1.4	References	7
1.4.1	Document Precedence	7
1.4.2	Document Inclusion	7
2	GENERAL DESCRIPTION	8
2.1	Functions and Purpose	8
2.1.1	Operations Concept (ConOps)	10
2.1.2	(Section removed)	11
2.2	(Section removed)	11
2.3	General Constraints	12
3	SPECIFIC REQUIREMENTS	13
3.1	Functional Requirements	13
3.1.1	General Functional Requirements	13
3.1.2	Flight Avionics	15
3.1.3	Payload Avionics	18
3.1.4	Ground Control Station (GCS)	20
3.2	Performance Requirements	21
3.3	External Interface Requirements	23
3.4	Operational Availability Requirements	23
3.5	(section removed)	24
3.6	Environmental Requirements	24
3.7	Acceptance Testing Requirements	25
3.8	Security Requirements	25
3.9	Transportability Requirements	25
3.10	Quality Requirements	26
3.11	Reliability Requirements	26

CARLETON UNIVERSITY AEROSPACE ENGINEERING AERO 4907-04		GeoSurv II UAV System Requirements Document	DR No. 12-01 Version E By: Thomas James Date: 31-Mar, 08 Ck By: Ben Allison Date: 31-Mar, 08
3.12	Maintainability Requiremen	ts	27
3.13	Safety Requirements		27
3.14	Certification Requirements		27
3.15	Training Requirements		28

System Requirements Document DR No. 12-01 Version E By: Thomas James Date: 31-Mar, 08 Ck By: Ben Allison Date: 31-Mar, 08

1 INTRODUCTION

1.1 Purpose and Scope

The purpose of this document is to state the objectives and design requirements for the design of the GeoSurv II Unmanned Aerial Vehicle (UAV) system. This document is the governing documentation of the requirements of the customer, Sander Geophysics Ltd.

1.2 Document Control

The approved GeoSurv II Systems Requirements Document is controlled by the Integration group of the 2004-2005 Fourth Year Engineering Design Project - UAV Team. Approval of the document is by Prof. Paul Straznicky, UAV Project Manager and Sander Geophysics Ltd.

1.3 Acronyms, Abbreviations, and Definitions

1.3.1 Acronyms

AGL	above ground level
AME	aircraft maintenance engineer
ASL	above sea level
ATB	avionics test bed
BLOS	beyond line of sight
DGPS	differential global positioning system
FAA	Federal Aviation Administration
FOM	Figure of Merit
GCS	ground control station
GDAS	geophysical data acquisition system
GGS	geophysical ground station
KEAS	Knots equivalent airspeed
Lkm	line-kilometres

GeoSurv II UAV System Requirements Document

DR No. 12-01 Version E By: Thomas James Date: 31-Mar, 08 Ck By: Ben Allison Date: 31-Mar, 08

ОТН	over the horizon
SGL	Sander Geophysics Ltd.
SRD	system requirements document
TBD	to be determined
TBO	time between overhaul
TC	Transport Canada
UAV	Uninhabited aerial vehicle

1.3.2 Abbreviations

ANL	analysis
DEMO	demonstration
INSP	inspection
ref	reference
Survey	geophysical survey
TST	test
Verif.	Verification
Cert.	Certification

1.3.3 Definitions

Crew	Group of persons performing survey at field location.
Geophysical data acquisition system	A distinct payload system responsible for measurement and acquisition of geophysical data.
Geophysical ground station	Ground based geophysical system for obtaining differential GPS corrections and diurnal magnetic field variations. Both of these are used for post mission data processing of the data acquired in flight.
Ground control station	Collection of ground based systems (both vehicle and

GeoSurv II UAV System Requirements Document

DR No. 12-01 Version E By: Thomas James Date: 31-Mar, 08 Ck By: Ben Allison Date: 31-Mar, 08

	mission oriented) used to control or monitor the UAV.
The Customer	Sander Geophysics Ltd. (SGL)
Line-kilometre	Unit of measure for survey sizing. The amount of data collected over a kilometre length of the survey. Sander Geophysics Ltd. charges clients for data on a line-kilometre basis.
Magnetic Noise	Undesired magnetic fields
Operator	Person operating and/or supervising the UAV from the ground control station.
Transit Distance	Distance between the launch/recovery site and the survey area.

1.4 References

1.4.1 Document Precedence

This system requirements document (SRD) is consistent with, and responsive to, the following documents. If the SRD conflicts with any of these documents, the SRD document takes precedence:

Document Number	Document Title	Version or Date

1.4.2 Document Inclusion

The following documents form a part of the SRD to the extent specified herein:

Document	Document Title	Version or Date	
Number			
01	UAV Specification: Magnetic Noise	13-Sept-04	
02	Magnetic Compensation Maneuvers	18-Feb-05	

System Requirements
Document

DR No. 12-01 Version E By: Thomas James Date: 31-Mar, 08 Ck By: Ben Allison Date: 31-Mar, 08

Ck By: Ben Allison Date: 31-Mar, 08

2 GENERAL DESCRIPTION

2.1 Functions and Purpose

The Carleton University UAV student team is designing a UAV system for geophysical surveillance. This design must meet the requirements and objectives of the customer, Sander Geophysics Ltd (SGL). This project is intended to last four years, beginning with the conceptual design stage and ending with a system capable of meeting the requirements. The UAV has been named GeoSurv II. The UAV system includes the aerial vehicle, launch system, payload, recovery system and the ground control station (GCS).

Typical geophysical surveillance field projects today include a crew of one or two geophysicists, a pilot, a co-pilot as well as an aircraft maintenance engineer (AME). Such projects require an aircraft capable of carrying two pilots plus a payload of several hundred pounds. The costs associated with these activities are the driving factor for pursuing a more economic means of performing surveys, particularly of smaller areas. The primary objective of the GeoSurv II system is to offer primarily an economic advantage over traditional manned aircraft surveying, and secondarily, a performance advantage. In order to accomplish this, it is required that the system be operated by a field crew of two people.

The UAV is to be used primarily for magnetic total field and gradiometer surveying and must therefore have an exceptionally low magnetic signature. Hence, the aircraft must not create fixed or time-varying magnetic fields.

The system shall be designed to operate in various geographical areas, which may include remote and underdeveloped areas. Considerations will be made for aircraft launch and recovery systems that accommodate the need to perform take-off and recovery in areas such as bush clearings, without access to a conventional landing strip. The recovery of the aircraft is to be performed at the same location as take-off. It is desirable that the system, including UAV, GCS, launching/recovery system and accessories, be transportable by a conventional road vehicle such as a pickup truck or cargo van. Similarly, the system shall fit within the cargo compartment(s) of a conventional transport aircraft, as survey projects may be located globally.

System Requirements Document

DR No. 12-01 Version E By: Thomas James Date: 31-Mar, 08

Ck By: Ben Allison Date: 31-Mar, 08

The system must be capable of operating year round anywhere in the world. expected that operations would be suspended in temperatures of -45 degrees Celsius and below.

The system should be robust and relatively inexpensive to facilitate field repairs or replacement if necessary following damage.

Survey projects will require capturing various levels of data resolution. As a result surveys may be performed at varying flight speeds. In general, the greatest flight speed permitted by the data capturing capability of the sensors/system is desirable. Variations in flight speed are undesirable but tolerable. The aircraft shall have a survey speed range of 60 to 100 KEAS. The 60 and 100 KEAS are two design points.

To achieve better operational efficiency and reduce 'down time', the UAV should have as large an endurance as possible. A minimum endurance of 2 hours is required at 100 knots and 4 hours at 60 knots. However, an endurance of 8 hours would be considered highly advantageous.

The UAV is expected to have a terrain following capability with terrain gradients of at least 10% followed at constant height above the ground. Surveys performed over terrain gradients greater than the UAV's capability are to be flown following a planned smooth surface (draped surface) which is generated prior to flight.

The avionics, communication and data management aspects of this system form a major part of the design considerations. The aircraft shall have an autopilot system allowing flight profiles to be preprogrammed and then flown while under minimum supervision of an operator at the ground control station (GCS). The aircraft shall have the ability to transmit and receive information with the GCS at regular and changeable intervals. Such information shall include position, 'general health' (such as fuel level) and data sample.

A collision detection and avoidance system shall be in place and shall operate automatically, without the need for operator intervention. This is a necessary safety consideration as it is not always possible to predict discrete obstacles. The system should allow for known obstacles, such as towers and power lines, to be preprogrammed into the flight profile.

Prior to any survey flying it is generally necessary to perform a series of compensation

System Requirements Document

DR No. 12-01 Version E

By: Thomas James Date: 31-Mar, 08 Ck By: Ben Allison Date: 31-Mar, 08

manoeuvres to ensure that the sensor(s) is(are) oriented correctly and that the overall system figure of merit (FOM) is acceptable. The data acquired during these compensation flights must be downloaded and analyzed prior to sending the aircraft out on a survey data acquisition mission. Compensation flying is performed at an altitude of approximately 8000 feet above ground. Therefore the UAV shall be able to attain this altitude.

The overall objective of the GeoSurv II UAV design project is to produce a high quality design of a UAV system that satisfies the requirements and objectives of SGL while providing valuable experience for the UAV student team.

Operations Concept (ConOps)

This section describes a typical survey mission.

Once at the survey area, or a suitable location within the vicinity, the two system operators assemble and prepare the aircraft and launch systems for the mission. Adequate fuel is added to the aircraft fuel tank. A prepared mission profile is transferred to the aircraft flight control system. A pre-flight check is performed including checks of the engine, structural and avionics systems, and geophysical equipment. The aircraft is then installed on the launch system.

When ready, the operators start the engine and allow time for it to reach operating temperature. The launch command is given and the aircraft is accelerated beyond its stall speed into flight. The aircraft can now begin the mission profile which may include transit to the survey area. Much of the flight will be over the horizon (OTH) and beyond line of sight (BLOS).

Communications between the operators and the UAV is done via the ground control station (GCS).

Through the course of the mission the on-board geophysical data system records all necessary data which includes differential global positioning system (DGPS) information as well as aircraft yaw, pitch and roll. Periodically, the aircraft transmits to the GCS its position, velocity, fuel status and other data on system health. Similarly, short bursts of data in binary format are transmitted and handled by processing software on the ground to provide magnetometer health assessments.

System Requirements Document DR No. 12-01 Version E By: Thomas James Date: 31-Mar, 08 Ck By: Ben Allison Date: 31-Mar, 08

Once the mission profile is completed or a refuelling is needed, the aircraft returns to the launch site. The operators then execute the necessary procedures for recovery of the aircraft.

The mission data are retrieved and the aircraft is then prepared for another flight cycle or disassembled and stowed for transportation.

2.1.2 (Section removed)

2.2 (Section removed)

System Requirements Document

DR No. 12-01 Version C

By: Marc Graziani Date: 4-Mar, 05 Ck By: A. Marasse Date: 4-Mar, 05

2.3 General Constraints

Requirement	Rationale	Cert.	Verif.	Status
		Status		
2.3-1 The UAV system shall be cost competitive	System must ultimately be more economic and more		ANL	TBD
with existing manned survey services.	capable than existing survey services to justify			
	investment.			
2.3-2 The UAV system shall not pose hazards to	The safety of all persons is the highest priority. See		ANL	TBD
the operators or general population.	sections 3.13 and 3.14 for specific safety and			
	certification requirements			
2.3-2 Minor UAV service should be able to be	This avoids the cost of transporting the UAV for		DEMO	TBD
performed by operator(s) on site.	minor services. This may include 'routine' engine			
	replacement.			

GeoSurv II UAV **System Requirements Document**

DR No. 12-01 Version D Date: 06-Feb-06 Date: 06-Feb-06

By: Joseph Jakym Ck By:

SPECIFIC REQUIREMENTS

Functional Requirements 3.1

3.1.1 General Functional Requirements

Requirement	Rationale	Cert. Status	Verif.	Status
3.1.1-1 All field operations of UAV system shall	Maintain low cost of field man-hours.		DEMO	TBD
require a crew of not more than 2 persons				
3.1.1-2 The launch and recovery of the UAV shall	Surveys are often performed in underdeveloped		DEMO	TBD
be achievable within a flat area clear of obstructions	areas. There may be no airstrip within the vicinity			
meeting one of the following definitions:	of the survey area			
• A square measuring not more than 100 feet (30				
metres) on each side;				
• A circle measuring not more than 115 feet (35				
metres) diametre;				
A rectangle measuring not more than 328 feet				
(100 metres) by 33 feet (10 metres) provided				
UAV can be safely launched and recovered from				
such an area without the long dimension needing				
to be aligned with the prevailing wind direction				
for winds meeting the requirements of section				
3.6-4				

CARLETON UNIVERSITY AEROSPACE **ENGINEERING** AERO 4907-04

GeoSurv II UAV

System Requirements Document

DR No. 12-01 Version D
By: Joseph Jakym Date: 06-Feb-06
Ck By: Date: 06-Feb-06

3.1.1-3 Uncompensatable magnetic fields (noise)	The magnetometers are passive devices that measure	TST	TBD
generated by the UAV shall not exceed 0.1 nT +/-	the strength of the local field in which they are		
0.05 nT for fixed sources. (reference section	located in . This includes the local effect of any		
1.4.2 – 01)	noise generated by the aircraft. Therefore, noise		
	will compromise measured data.		
3.1.1-4 Uncompensatable magnetic fields (noise)	As above (3.1.1.3)	TST	TBD
generated by the UAV shall not exceed 0.01 nT +/-			
0.005 nT for time-varying sources, in a 0 to 5 Hz			
bandwidth. (ref section 1.4.2 – 01)			
3.1.1-5 The UAV shall operate on one of the	The fuel must be readily available. Heavy fuel is	INSP	TBD
following fuels: Jet A; JP-4, unleaded gasoline,	preferred.		
diesel.			
3.1.1-6 The UAV shall incorporate a means to	Significant static charge may otherwise accumulate	DEMO	TBD
minimize and dissipate static charge accumulation.	and discharge at random thereby causing interfering		
	electro-magnetic fields.		
3.1.1-7 The UAV shall provide necessary	The UAV must provide for all necessary electrical	INSP	TBD
electrical power for avionics.	power needs and should allow for future upgrading.		
3.1.1-8 In addition to design flight loads as		TST	TBD
specified in the applicable design standard, the UAV			
shall be capable of safely sustaining design launch			
loads.			
3.1.1-9 The UAV structure shall consist of only	Metal materials within this area may create		

DR No. 12-01 Version D
By: Joseph Jakym Date: 06-Feb-06
Ck By: Date: 06-Feb-06

System Requirements Document

composite materials within 30 cm of the	uncompensatable magnetic fields (noise) regardless		
magnetometer sensors. Use of metals within this	of their ferrous content.		
area shall be minimized and shall in any case be			
limited to non-magnetic hardware components			
3.1.1-10 Provisions for landing gear on the UAV	In testing the UAV, it may be necessary to have the		
shall be made. As well, the UAV shall be able to	UAV take-off and land using a ground strip, rather		
withstand all loads associated with the landing gear.	than with the winch launching and parachute landing		
	systems. This requires that provisions be made to		
	attach landing gear to the UAV.		

3.1.2 Flight Avionics

Requirement	Rationale	Cert. Status	Verif.	Status
3.1.2-1 (deleted)				
3.1.2-2 (deleted)				
3.1.2-3 The UAV shall carry on board a flight	Data shall be processed by computer during flight to		INSP	TBD
computer to process the sensor output data.	facilitate decision-making.			
3.1.2-4 The UAV shall record air vehicle sensor	Data shall be recorded during flight to avoid the need		INSP	TBD
data.	to transmit all data.			
3.1.2-5 The UAV shall transmit GPS coordinates			DEMO	TBD
(vehicle position) to the GCS every 1 minute.				
3.1.2-6 The UAV should incorporate an icing	This will allow for the triggering of a 'return to base'		DEMO	TBD
detection system.	flight plan, as flight in icing conditions is not			

DR No. 12-01 Version D lakym Date: 06-Feb-06 Ck By: Date: 06-Feb-06 By: Joseph Jakym Ck By:

System Requirements Document

	required nor desirable.		
3.1.2-7 The UAV should monitor fuel		DEMO	TBD
consumption vs. line-kilometres flown (on the basis			
of complete lines)			
3.1.2-8 The auto-pilot system shall trigger a	This is to avoid running out of fuel during a mission.	DEMO	TBD
'return to base' sequence when the fuel level is	This acts as a safety in case communications with the		
depleted such that at least 15 minutes of fuel remains	UAV are lost. 15 Minutes of fuel is reserved for		
at recovery.	contingencies.		
3.1.2-9 DGPS corrections for flight avionics shall	Sensor readings need to be accurately data stamped.	TST	TBD
be done on the UAV, not through updates from the			
ground station.			
3.1.2-10 Flight avionics shall transmit the following	Payload computer can incorporate the necessary data	TST	TBD
data at predetermined intervals to payload avionics:	with the derived sensor reading.		
pitch, roll, azimuth, track.			
3.1.2-11 The UAV shall accept mission	Must be able to modify and /or abort a mission at any	DEMO	TBD
amendments from the GCS.	time, therefore giving the operator better control of		
	system at all times.		
3.1.2-12 Flights with DGPS corrections for flight	Need only to be concerned with Canadian DGPS.	DEMO	TBD
avionics shall be restricted to Canada.	Project scope is currently limited to flight within		
	Canada.		
3.1.2-13 The UAV shall record vehicle attitude		DEMO	TBD
including pitch, roll and heading, at 10 Hz.			

_	CARLETON UNIVERSITY
\sim	CARLETON UNIVERSITY
X	AEROSPACE
	ENGINEERING
	AERO 4907-04

GeoSurv II UAV **System Requirements Document**

By: Joseph Jakym Ck By:

DR No. 12-01 Version D lakym Date: 06-Feb-06 ck By: Date: 06-Feb-06

3.1.2-14 The UAV shall record laser altimeter		DEMO	TBD
output (altitude) at 10 Hz.			

3.1.2.1 Guidance & Navigation

Requirement	Rationale	Verif.	Status
3.1.2.1-1 The navigation and guidance system shall	The UAV must be able to detect unforeseen discrete	TST	TBD
incorporate an obstacle detection system.	obstacles within the flight path in order to avoid		
	collision.		
3.1.2.1-2 The navigation and guidance system shall	The UAV must be able to avoid unforeseen obstacles	TST	TBD
incorporate an obstacle avoidance system.	within the flight path in order to avoid collision		
3.1.2.1-3 The UAV shall carry 1 radar altimeter.	Accurate height above ground is required for	INSP	TBD
	geophysics. A radar altimeter may also be desirable		
	as part of navigation/guidance system and for		
	supplementary geophysical data.		
3.1.2.1-4 (deleted)			
3.1.2.1-5 The UAV shall maintain a constant		TST	TBD
height above terrain as predetermined for each			
mission by the customer.			
3.1.2.1-6 Measurement of height above ground		DEMO	TBD
should be accurate to 2 feet (0.6 metres) (one sigma)			
3.1.2.1-7 Aircraft navigation system shall utilise	GPS is an accurate worldwide navigation system;	INSP	TBD
GPS supplemented by barometric altimetry and the	barometric altimetry provides redundant vertical data;		

DR No. 12-01 Version D By: Joseph Jakym Ck By:

Date: 06-Feb-06 Date: 06-Feb-06

System Requirements Document

obstacle detection/avoidance system.	additional altimetry required for flight guidance.		
3.1.2.1-8 Aircraft guidance system shall be GPS	GPS is an accurate worldwide navigation system;	INSP	TBD
supplemented by laser or radar altimetry and the	barometric altimetry provides redundant vertical data;		
obstacle detection/avoidance system.	additional altimetry required for flight guidance.		
3.1.2.1-9 The UAV shall return to the flight plan	Keep in phase with the flight plan	DEMO	TBD
upon avoiding an obstacle.			

3.1.2.2 Communications

Requirement	Rationale	Cert. Status	Verif.	Status
3.1.2.2-1 The UAV shall use satellite	System currently used.		DEMO	TBD
communication (SATCOM) as the primary beyond				
line of sight system.				
3.1.2.2-2 The UAV shall transmit mission health			DEMO	TBD
parameters to the GCS.				

3.1.3 Payload Avionics

Requirement	Rationale	Cert. Status	Verif.	Status
3.1.3-1 The UAV shall carry on board a mission	Data shall be processed by computer during flight to		INSP	TBD
computer to process the magnetometer sensor output	facilitate decision-making.			
data.				

System Requirements Document

DR No. 12-01 Version D lakym Date: 06-Feb-06 Ck By: Date: 06-Feb-06 By: Joseph Jakym Ck By:

2 1 2 2 75- 114 77 -1-11	D-41-1111-11	INSP	TBD
3.1.3-2 The UAV shall carry on board a recorder	Data shall be recorded by computer during flight to	INSP	IBD
to record sensor data.	avoid the need to transmit all measured data.		
3.1.3-3 An onboard colour camera shall be used	Photographs may need to be taken of areas where	INSP	TBD
for optical surveillance.	unusual sensor readings occur.		
3.1.3-4 If 2 magnetometers are carried, these shall	Magnetic gradient perpendicular to the direction of	INSP	TBD
be mounted in horizontal gradiometer configuration.	flight is the most useful one to measure. Along		
	track gradient can be determined with a single sensor		
	and vertical gradient is often related to the others.		
3.1.3-5 The UAV shall carry 1 or 2 G822A	SGL requirement.	INSP	TBD
magnetometer sensors			
3.1.3-6 The UAV shall carry 1 Billingsley TFM	SGL requirement.	INSP	TBD
100 vector magnetometer sensor			
3.1.3-7 All materials within 1 foot (30	This reduces eddy currents within the vicinity of the	DEMO	TBD
centimetres) of magnetometer(s) shall be	sensor(s)		
non-conductive, with the exception of small			
non-magnetic fasteners.			
3.1.3-8 (deleted)			
3.1.3-9 The UAV shall record the output of each		DEMO	TBD
magnetometer sensor at frequency of 160 Hz			
3.1.3-10 DGPS corrections for payload avionics	Sensor readings need to be accurately data stamped.	TST	TBD
shall be done on the UAV, not through updates from			
the ground station.			

DR No. 12-01 Version D
By: Joseph Jakym Date: 06-Feb-06
Ck By: Date: 06-Feb-06

System Requirements Document

3.1.3-11 Payload avionics shall utilize its own GPS	This is due to the need to record more than just	INSP	TBD
decoder board to supply its position data.	decoded latitude, longitude and altitude information.		
3.1.3-12 Payload needs to record timestamp from	This needs to be done for post processing.	TST	TBD
each satellite in view at 10hz.			
3.1.3-13 The UAV shall carry 1 laser rangefinder	Accurate height above ground is required for	INSP	TBD
for altimetry.	geophysics. A laser altimeter may also be desirable		
	as part of navigation/guidance system and for		
	supplementary geophysical data.		
3.1.3-14 The UAV should use a CompactPCI	CompactPCI is easier to expand and more rugged.	INSP	TBD
architecture for the on board mission computer.	Currently used by SGL.		
3.1.3-15 Flights with DGPS corrections for	Need only to be concerned with Canadian DGPS.	DEMO	TBD
payload avionics shall be restricted to Canada.	Project scope is currently limited to flight within		
	Canada.		

3.1.4 Ground Control Station (GCS)

Requirement	Rationale	Cert. Status	Verif.	Status
3.1.4-1 GCS shall receive and record the			TST	TBD
corrections for post-processing of the magnetometer				
data.				
3.1.4-2 The GCS shall have the capability to	Must be able modify and /or abort a mission at any		DEMO	TBD
amend the mission during flight.	time, therefore giving the operator better control of			

GeoSurv II UAV **System Requirements Document**

DR No. 12-01 Version D By: Joseph Jakym Ck By:

Date: 06-Feb-06 Date: 06-Feb-06

system at all times.		

3.2 Performance Requirements

Requirement	Rationale	Cert. Status	Verif.	Status
3.2-1 The aircraft shall be able to maintain a flight	This represents expected target surveying speeds. 100		DEMO	TBD
speed of 60 KEAS (30 m/s) to 100 KEAS (51.4 m/s)	knots is a desirable speed for efficient surveying of			
without the use of high lift devices.	large areas.			
3.2-2 The stall speed without the use of high lift	Slow speed is desirable for high resolution surveys.		DEMO	TBD
devices shall be no greater than seventy-five percent				
of the minimum survey speed.				
3.2-3 The stall speed shall also be no greater than			DEMO	TBD
seventy-five percent of the lower of the minimum				
launch speed of the minimum recovery speed.				
High lift devices may be deployed as appropriate for				
the limiting condition (launch or recovery) to				
achieve the required stall speed.				
3.2-4 The UAV shall be capable of following	Gradient necessary for terrain following and collision		DEMO	TBD
terrain of at least 10% gradients, both climb and	avoidance			
descent.				
3.2-5 The UAV shall be able to maintain climb	This affects data quality in draped profile missions.		DEMO	TBD
and descent gradients of 10% at 30°C (86°F) and				

By: Joseph Jakym Ck By:

DR No. 12-01 Version D lakym Date: 06-Feb-06 Ck By: Date: 06-Feb-06

System Requirements Document

8000 feet (2438 m) AGL.			
3.2-6 The UAV shall be able to maintain a	Low altitude flight allows passive magnetometer	DEMO	TBD
minimum flight altitude of 33 feet AGL (10 metres).	sensors to be located closer to source being measured		
	(i.e. submersed in stronger magnetic fields)		
3.2-7 The UAV shall be capable of performing	This is the maximum altitude necessary for	DEMO	TBD
survey operations at a maximum altitude of 8000	magnetometer correction procedures. Some surveys		
feet (2440 metres) ASL.	may be conducted at this altitude. (ref section		
	1.4.2 - 02)		
3.2-8 The UAV shall be capable of a rate of climb	A desirable time frame to attain a suitable	DEMO	TBD
of 400 ft of vertical rise per minute (122 metres per	magnetometer correction altitude.		
minute) at 30°C (86°F) and sea level conditions.			
3.2-9 The UAV shall have a minimum flight	The higher endurance the better for increased	DEMO	TBD
endurance of 4 hours at 60 knots and 2 hours at 100	operational efficiency		
knots. A flight endurance of 8 hours at 60 knots is			
the design point.			
3.2-10 The UAV should be capable of maintaining a	Variations of speed along track are undesirable but	TST	TBD
constant flight speed +/- 3 knots (+/- 1.5 m/s).	tolerable in straight and level flight.		
3.2-11 The UAV should have a lateral deviation of		TST	TBD
not more than 33 feet (10 metres) for 1 sigma.			
3.2-12 Following cold soak of the air vehicle all		TST	TBD
systems must be brought to their minimum operating			
temperature before the start of the mission.			

DR No. 12-01 Version D By: Joseph Jakym

Date: 06-Feb-06 Date: 06-Feb-06 Ck By:

System Requirements Document

3.3 External Interface Requirements

Requirement	Rationale	Cert. Status	Verif.	Status

3.4 Operational Availability Requirements

Requirement	Rationale	Cert. Status	Verif.	Status
3.4-1 The system shall be operable up to 16 hours	Economical use of system.		DEMO	TBD
per day, 6 days per week, 48 weeks per year.				
3.4-2 The maximum acceptable transit distance is	This limits the distance between the UAV and		INSP	TBD
25 nmi (46.3 km).	operators during a mission.			
3.4-3 The UAV assembly and disassembly	This is considering a crew of 2 persons. The less		DEMO	TBD
process, including all mechanical preparations for	time and effort the better as this allows for more			
flight as well as stowage of the UAV for	line-kilometres flown per day.			
transportation but not including programming of				
flight profile, should require not more than 2 hours				
combined time.				
3.4-4 The pre-flight and post-flight checks should	This is considering a crew of 2 persons.		DEMO	TBD
require a time of not more than 15 minutes each.				

$\overline{\mathbf{A}}$	CARLETON UNIVERSITY
7.	AEROSPACE
	ENGINEERING
	AERO 4907-04

System Requirements Document

DR No. 12-01 Version D lakym Date: 06-Feb-06 Ck By: Date: 06-Feb-06 By: Joseph Jakym Ck By:

3.4-5 The scheduled engine time between overhaul	This may depend on engine cost and ease of engine	DEMO	TBD
(TBO) should be at least 500 hours.	replacement.		

3.5 (section removed)

3.6 Environmental Requirements

Requirement	Rationale	Cert. Status	Verif.	Status
3.6-1 The UAV should operate within a	This represents the range in which the crew can		DEMO	TBD
temperature range of -49 to 104 °F(-45 to 40 °C)	operate.			
3.6-2 The UAV shall operate in rain of up to 0.12	Moderate rain should not inhibit a mission.		DEMO	TBD
inches/hr (3 mm/hr)				
3.6-3 The UAV shall operate in snowfall of up to	Moderate snowfall should not inhibit a mission.		DEMO	TBD
0.5 inch/hr (13 mm/hr).				
3.6-4 The UAV shall fly in crosswind of up to 0.6	Desirable not to be limited by crosswinds up to this		DEMO	TBD
V_{stall} .	size			
3.6-5 (deleted)				
3.6-6 The UAV system shall use a ground based			DEMO	TBD
lightning detection system.				
3.6-7 The UAV shall include positive airflow	Ram air cooling is preferred as rotating devices (such		TST	TBD
cooling of avionics.	as fans) may create undesirable magnetic fields.			

GeoSurv II UAV **System Requirements Document**

DR No. 12-01 Version D Date: 06-Feb-06 Date: 06-Feb-06 By: Joseph Jakym

Ck By:

3.7 Acceptance Testing Requirements

Requirement	Rationale	Cert. Status	Verif.	Status
3.7-1 The UAV system shall comply with UAV	Compliance to these specifications is essential to		DEMO	TBD
systems acceptance criteria as stated in the UAV	capturing valuable data.			
Specification: Magnetic Noise – 13-Sept-04 (ref				
section 1.4.2 - 01)				

Security Requirements

Requirement	Rationale	Cert. Status	Verif.	Status

Transportability Requirements

Requirement	Rationale	Cert.	Verif.	Status
		Status		
3.9-1 The entire UAV operational system shall be	Must be easily transportable to/from operating area in a		DEMO	TBD
able to fit within a pickup truck bed 96 inches long	conventional road vehicle. This is the typical box size			
by 50 inches wide by 36 inches high (2.4m long x	of a full size pickup truck.			

$\overline{\mathbf{A}}$	CARLETON UNIVERSITY
7	AEROSPACE
	ENGINEERING
	AERO 4907-04

DR No. 12-01 Version D
By: Joseph Jakym Date: 06-Feb-06
Ck By: Date: 06-Feb-06

System Requirements Document

1.2m wide x 0.9m high)			
3.9-2 The complete UAV operational system shall	Allows for economic means of transportation by a	DEMO	TBD
be able to fit within an Air Canada cargo container	conventional transport aircraft.		
of 7.16 feet long by 10.25 feet wide by 5.25 feet			
high (2.182m long x 3.124m wide x 1.600m high).			

3.10 Quality Requirements

Requirement	Rationale	Cert.	Verif.	Status
		Status		

3.11 Reliability Requirements

Requirement	Rationale	Cert.	Verif.	Status
		Status		
3.11-1 The UAV mission abort rate should be not	This applies to missions aborts as a result of UAV		DEMO	TBD
more than 1 mission in 50.	related system failures (i.e. autopilot, engine, GCS,			
	launch/recovery system). Missions not flown due to			
	time required for routine aircraft maintenance or			
	magnetic diurnal activity out-of-spec are not included.			

System Requirements Document

DR No. 12-01 Version D

By: Joseph Jakym Date: 06-Feb-06
Ck By: Date: 06-Feb-06

3.12 Maintainability Requirements

Requirement	Rationale	Cert.	Verif.	Status
		Status		

3.13 Safety Requirements

Requirement	Rationale	Cert.	Verif.	Status
		Status		
3-13-1 As part of the normal landing procedure,			DEMO	TBD
the propeller shall not incur any damage that				
requires significant propeller maintenance or				
propeller replacement				
3-13-2 As part of the emergency landing			DEMO	TBD
procedure, the propeller shall not damage the aircraft				

3.14 Certification Requirements

	Requirement	Rationale	Cert.	Verif.	Status
			Status		
3.14-1	The UAV should comply with the	-Design quality/safety		DEMO	TBD

DR No. 12-01 Version D
By: Joseph Jakym Date: 06-Feb-06
Ck By: Date: 06-Feb-06

System Requirements Document

GeoSurv II Standards Document (DR28-01)	-Ensure compliance with proposed international UAV		
	regulations		
3.14-2 The UAV should comply with Canadian	-Design quality/safety	DEMO	TBD
Aviation Regulation, Part V, 523-VLA (Very Light	-Ensure compliance with proposed international UAV		
Aircraft) in instances where sufficient guidance is	regulations		
not provided by the GeoSurv II Standards Document			
(DR28-01)			

3.15 Training Requirements

Requirement	Rationale	Cert.	Verif.	Status
		Status		
3.15-1 The training of system operators should	This is an acceptable time frame to allow for operator		DEMO	TBD
require not more than 5 days, covering GCS	training.			
operation, launch/recovery, field maintenance,				
servicing and diagnostics.				
3.15-2 The training of existing Licensed Aircraft	This is typical of what training an AME receives for a		DEMO	TBD
Maintenance Engineer (AME) should require not	new aircraft Type at present.			
more than 10 days.				