Support Vector Machine

Sudipta Roy

What is Support Vector Machine?

 "Support Vector Machine" (SVM) is a supervised machine learning algorithm which can be used for both classification or regression challenges. However, it is mostly used in classification problems.

In this algorithm, we plot each data item as a point in n-dimensional space (where n is number of features you have) with the value of each feature being the value of a particular coordinate. Then, we perform classification by finding the hyper-plane that differentiate the two classes very well (look at the below snapshot).

How does it work?

- The process of segregating the two classes with a hyper-plane
 - How can we identify the right hyper-plane?
 - Identify the right hyper-plane (Scenario-1): Here, we have three hyper-planes (A, B and C). Now, identify the right hyper-plane to classify star and circle.
 - You need to remember a thumb rule to identify the right hyperplane: "Select the hyper-plane which segregates the two classes better". In this scenario, hyperplane "B" has excellently performed this job.

How does it work?(Contd)

- Identify the right hyper-plane (Scenario-2): Here, we have three hyper-planes (A, B and C) and all are segregating the classes well. Now, How can we identify the right hyper-plane?
- Maximizing the distances between nearest data point (either class) and hyper-plane will help us to decide the right hyper-plane. This distance is called as Margin.

Identify the right hyper-plane (Scenario-3):

Some of you may have selected the hyper-plane B as it has higher margin compared to A. But, here is the catch, SVM selects the hyper-plane which classifies the classes accurately prior to maximizing margin. Here, hyper-plane B has a classification error and A has classified all correctly. Therefore, the right hyper-plane is A.

Can we classify two classes (Scenario-4)?:

 Below, I am unable to segregate the two classes using a straight line, as one of star lies in the territory of other(circle) class as an outlier.

 Find the hyper-plane to segregate to classes (Scenario-5): In the scenario below, we can't have linear hyperplane between the two classes, so how does SVM classify these two classes? Till now, we have only looked at the linear hyper-plane.

Solun

 SVM can solve this problem. Easily! It solves this problem by introducing additional feature. Here, we will add a new feature $z=x^2+y^2$. Now, let's plot the data points on axis x and z:

Kernel Trick

- In SVM, it is easy to have a linear hyper-plane between these two classes. But, another burning question which arises is, should we need to add this feature manually to have a hyper-plane.
 - No, SVM has a technique called the kernel trick. These are functions which takes low dimensional input space and transform it to a higher dimensional space i.e. it converts not separable problem to separable problem, these functions are called kernels. It is mostly useful in nonlinear separation problem. Simply put, it does some extremely complex data transformations, then find out the process to separate the data based on the labels or outputs you've defined.

Pros and Cons associated with SVM

Pros:

- It works really well with clear margin of separation
- It is effective in high dimensional spaces.
- It is effective in cases where number of dimensions is greater than the number of samples.
- It uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

Cons:

- It doesn't perform well, when we have large data set because the required training time is higher
- It also doesn't perform very well, when the data set has more noise i.e. target classes are overlapping
- SVM doesn't directly provide probability estimates, these are calculated using an expensive five-fold cross-validation.

