Основы Python Imaging Library (Python 3)

Автор: Симонов Александр

Часть I: Как создавать и сохранять изображения

Код программы 1.1:

from PIL import Image img = Image.new('RGB',(800,600),(0,255,0))img.show()

Примечание:

Команда для создания нового изображения:

Image.new('Pежим',(w,h),(r,g,b))

Режим:

1 — 1-битные пиксели — чёрно-белое (монохромное) — хранится как 8-битные пиксели
 L — 8-битные пиксели — градации серого
 P — 8-битные пиксели — тарред color palette
 RGB — 3х8-битные пиксели — true color
 RGBA — 4х8-битные пиксели — true color с маской прозрачности (transparency mask)
 CMYK — 4х8-битные пиксели — Cyan-magenta-yellow-black color (Сине-пурпурный-желтый-черный цветовая модель)

YCbCr - 3x8-битные пиксели – color video format (цветовая модель: видео формат)

I - 32-разрядные целочисленные пиксели

F – 32-битные пиксели с плавающей точкой

w – ширина изображения в пикселях

h - высота изображения в пикселях

(r,g,b) — Все пиксели изображения первоначально будут установлены в этот цвет (по умолчанию черный цвет)

Команда для показывания изображения:

Img.show()

Код программы 1.2:

from PIL import Image

img = Image.new('RGB',(800,600),(0,255,0))

for x in range(800):

for y in range(600):

img.putpixel((x,y),(0,0,255))

img.show()

Примечание:

Img.putpixel((x,y),(r,g,b))

Команда для замены цвета пикселя, находящегося по координатам (x,y), на цвет (r,g,b)

Код программы 1.3:

```
from PIL import Image
img = Image.new('RGB',(800,600),(0,255,0))
for x in range(800):
    for y in range(600):
        img.putpixel((x,y),(0,0,255))
img.save('image.png','PNG')
img.show()
```

Примечание:

Img.save('имя файла', 'формат')

Сохранить изображение с именем 'имя файла'.

'формат' – указывается для сохранения изображения в необходимом формате.

🖥 image.png

Поддерживаемые форматы:

Формат	Расширение файла	В каком режиме можно открыть файл	В каком режиме можно сохранить файл	Примечания
"BMP"	.bmp .dib	1 L P RGB	1 L P RGB	Bitmap Picture
"DCX"	.dcx	1 L P RGB	Нельзя	Формат факса. Только первое изображение открывается.
"EPS"	.eps .ps	None	L RGB	Encapsulated PostScript

Формат	Расширение файла	В каком режиме можно открыть файл	В каком режиме можно сохранить файл	Примечания
"GIF"	.gif	P	P	Graphics Interchange Format
"IM"	.im	Все режимы	Все режимы	
"JPEG"	.jpg .jpe .jpeg	L RGB CMYK	L RGB CMYK	Joint Photographic Experts Group
"PCD"	.pcd	RGB	Нельзя	Фото CD формат; открывает только в разрешении 768х512.
"PCX"	.pcx	1 L P RGB	1 L P RGB	PCExchange
"PDF"	.pdf	Нельзя	1 RGB	Формат Adobe Page Description.
"PNG"	.png	1 L P RGB RGBA	1 L P RGB RGBA	Формат Portable Network Graphics.
"PPM"	.pbm .pgm .ppm	1 L RGB	1 L RGB	portable pixmap
"PSD"	.psd	P	Нельзя	Формат Photoshop.
"TIFF"	.tif .tiff	1 L RGB CMYK	1 L RGB CMYK	Tagged Image File Format
"XBM"	.xbm	1	1	X bitmap.
"XPM"	.xpm	P	P	X ріхтар с поддержкой до 256 цветов.

Код программы 1.4:

```
from PIL import Image img = Image.new('RGB',(800,600),(0,255,0)) for x in range(800): for y in \ range(600): img.putpixel((x,y),(int(x/3),int((x+y)/6),int(y/2)))
```

img.save('image.png','PNG')
img.show()

Часть II: Как открыть изображение

Код программы 2.1:

from PIL import Image
img = Image.open('ship.jpg')
img.show()

Код программы 2.2:

```
from PIL import Image
img = Image.open('image.png')
for x in range(img.size[0]):
    for y in range(img.size[1]):
        r,g,b = img.getpixel((x,y))
        img.putpixel((x,y),(b,r,g))
img.show()
```


Часть III: Фильтры для изображений

Код программы 3.1:

```
from PIL import Image
from PIL import ImageFilter
img = Image.open('ship.jpg')
imout = img.filter(ImageFilter.CONTOUR)
```

img.show()

imout.show()

Примечание:

img.filter('Фильтр') - Команда для фильтрации изображения . **'Фильтр'** может принимать следующие значения:

- ImageFilter.BLUR размытие
- ImageFilter.CONTOUR выделение контура
- ImageFilter.DETAIL детализация
- ImageFilter.EDGE_ENHANCE улучшение краев
- ImageFilter.EDGE_ENHANCE_MORE более сильное улучшение краев
- ImageFilter.EMBOSS выдавливание
- ImageFilter.FIND_EDGES поиск краев

- ImageFilter.SMOOTH сглаживание
- ImageFilter.SMOOTH_MORE более сильное сглаживание
- ImageFilter.SHARPEN резкость

Часть IV: Геометрические преобразования

Обрезать изображение:

Код программы 4.1:

from PIL import Image

img = Image.open('ship.jpg')

img.show()

box = (542,619,664,653)

img2 = img.crop(box)

img2.show()

Примечание:

img.crop('координаты вырезаемого прямоугольного куска изображения') – команда для вырезания прямоугольного куска изображения, где **'координаты вырезаемого прямоугольного куска изображения'** имеют следующий вид (x1,y1,x2,y2), x1,y1 – координаты левой верхней точки прямоугольника, а x2,y2 – координаты правой нижней точки прямоугольника.

Изменить размер изображения:

Код программы 4.2:

from PIL import Image

img = Image.open('ship.jpg')

img.show()

box = (542,619,664,653)

img2 = img.crop(box)

newsize = (400,400)

img2 = img2.resize(newsize)

img2.show()

Примечание:

img2.resize('размер изображения') — команда для изменения размера изображения, где 'размер изображения' имеет значение (новая ширина изображения, новая высота изображения)

Транспонирование изображения:

Код программы 4.3:

```
from PIL import Image

img = Image.open('ship.jpg')

img.show()

box = (542,619,664,653)

img2 = img.crop(box)

img2 = img2.transpose(Image.FLIP_TOP_BOTTOM)

img2.show()
```


Примечание:

img2.transpose('метод') – команда для транспонирования изображения, где **'метод'** может принимать следующие значения:

- Image.FLIP_RIGHT_LEFT перевернуть изображение слева направо.
- Image.FLIP_TOP_BOTTOM перевернуть изображение сверху вниз.
- Image.ROTATE_90 повернуть изображение на 90 градусов по часовой стрелке.
- Image.ROTATE_180 повернуть изображение на 180 градусов.
- Image.ROTATE_270 повернуть изображение на 270 градусов по часовой стрелке.

Вращение изображения:

Код программы 4.4:

from PIL import Image

img = Image.open('ship.jpg')

img.show()

box = (542,619,664,653)

img2 = img.crop(box)

img2 = img2.rotate(45)

img2.show()

Примечание:

img2.rotate('угол') – команда для вращения изображения на определённый угол, где **'угол'** – значение в градусах.

Вставить изображение:

Код программы 4.5:

from PIL import Image

img = Image.open('ship.jpg')

box = (542,619,664,653)

img2 = img.crop(box)

 $img2 = img2.transpose(Image.FLIP_LEFT_RIGHT)$

img.paste(img2,box)

img.show()

Примечание:

img.paste(**'источник изображения', 'координаты вырезаемого прямоугольного куска изображения'**) — команда для того, чтобы в **img** вставить вырезанный кусок из **'источника изображения'**, где **'координаты вырезаемого прямоугольного куска изображения'** имеют следующий вид (x1,y1,x2,y2), x1,y1 — координаты левой верхней точки прямоугольника, а x2,y2 — координаты правой нижней точки прямоугольника.