2021/11/29

TRAIN A NEURAL NETWORK

I.	PICK A NETWORK ARCHITECTURE	I
2.	RANDOMLY INITIALIZE WEIGHTS	2
3.	IMPLEMENT FORWARD PROPAGATION	2
4.	COMPUTE COST FUNCTION	2
5.	IMPLEMENT BP TO COMPUTE PARTIAL DERIVATIVES	3
6.	USE GRADIENT CHECKING TO CONFIRM BP WORKS. (THEN DISABLE IT)	3
7.	USE GRADIENT DESCENT OR A BUILT-IN OPTIMIZATION FUNCTION TO MINIMIZE THE COST FUNCTION WITH THE WEIGHTS IN THETA	3

1. Pick a Network Architecture

The input X is a matrix consists of vectors $X = \begin{bmatrix} (x^{(1)})^T \\ (x^{(2)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix}$, with m set of inputs.

Consider the network has L layers with each layer of units s_l .

Thus $z^{(l)}$ for every layer is $z^{(l)} = a^{(l-1)} \cdot (\Theta^{(l)})^T$.

 $\Theta^{(l)}$ is $[\Theta_{ij}]_{s_{l+1}\times(s_l+1)}$, considering bias terms, and the column indices starts at zero.

1

2. Randomly Initialize Weights

Randomly initialize the parameters for symmetry breaking.

For each layer, initialize $\Theta^{(l)}$ uniformly in the range $[-\varepsilon_{init}, \varepsilon_{init}]$.

3. Implement Forward Propagation

Use FP to compute every $z^{(l)}$, $a^{(l)}$, including the output layer result $h_{\Theta}^{(i)}$.

Remember to add x_0 and $z_0^{(l)}$ as bias terms for $l \in [1, L-1]$.

4. Compute Cost Function $J(\Theta)$

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_k^{(i)} ln \left(h_{\Theta}(x^{(i)})_k \right) + (1 - y_k^{(i)}) ln \left(1 - h_{\Theta}(x^{(i)})_k \right) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l+1}} \sum_{j=1}^{s_l} (\Theta_{ij}^{(l)})^2$$

To compute $J(\Theta)$, y must be formatted, say, extend y to the same dimension of h_{Θ} . i is ranged in $[0,s_{l+1}]$ and j is ranged in $[1,s_l]$, so as to exclude the bias terms.

5. Implement BP to Compute Partial Derivatives

The gradient we need is
$$\frac{\partial}{\partial \Theta_{jk}^{(l)}} J(\Theta) = D_{jk}^{(l)} = \frac{1}{m} \Delta_{jk}^{(l)} (+ \frac{\lambda}{m} \Theta_{jk}^{(l)} \ for \ k \neq 0).$$

For i = 1 : m

Perform FP and BP using example $(x^{(i)}, y^{(i)})$.

Get activations $a^{(l)}$ and delta terms $\delta^{(l)}$ for l=2,...,L.

Compute $\Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)} \cdot (a^{(l)})^T$.

Compute the gradient for the neural network as follows

Compute the sigmoid gradient for each layer $\frac{d}{dz}g(z^{(l)}) = g(z^{(l)})(1 - g(z^{(l)})).$

In output layer, define
$$\delta^{(L)} = a^{(L)} - y$$
, where $y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}_{m \times output\ units}$.

 δ reflects error of inputs in each layer, thus $\delta^{(l)} = [\delta_{ij}^{(l)}]_{m \times s_l}$ same size as $z^{(l)}$.

For hidden layers l, $\delta^{(l)} = \delta^{(l+1)} \cdot \Theta^{(l)}(:, 2:end) \cdot *g'(z^{(l)})$.

PAYATTENTION TO BIAS TERMS

- 6. Use Gradient Checking to Confirm BP Works. (Then disable it)
- 7. Use Gradient Descent or A Built-in Optimization Function to Minimize the Cost Function with the Weights in Theta