VE216 Lecture 4

Continuous-time system

Multiple Representations of CT Systems

the same as DT Systems

Differential Equations

New methods based on **block diagrams** and **operators**, provide new ways to think about system's behaviors.

Block Diagrams

Key difference is the **delays in DT** are replaced by **integrators in CT**.

adders, scalers, delays

adders, scalers, integrators

Operator Representation

- use the **A** operator.
- **A** in CT signal generates a new signal that equals to **the integral of the input signal at all points**.
- $ullet \ Y = AX$ is equal to $y(t) = \int_{-\infty}^t x(au) d au$ for all the time t.

Unit Impulse Signal

Properties

- Nonzero only at t = 0.
- Integral $(-\infty, +\infty)$ is 1.

Represented by an arrow with number 1, representing the area or weight.

Unit Impulse and Unit Step

Unit Step Definition

Indefinite integral of unit impulse is unit step.

$$u(t) = \int_{-\infty}^t \delta(\lambda) d\lambda = \left\{egin{array}{ll} 1 & t \geq 0 \ 0 & ext{otherwise} \end{array}
ight.$$

Then we can see the block diagram: $\delta(t) \longrightarrow \mathcal{A} \longrightarrow u(t)$

Impulse Response of Acyclic CT System

If the block diagram of CT system has no feedback (acyclic, no circle), then the corresponding expression is **imperative**.

$$X \longrightarrow A \longrightarrow A \longrightarrow Y$$

$$Y = (1+A)^2 X$$

if
$$x(t) = \delta(t)$$
 , then $y(y) = \delta(t) + 2u(t) + t \cdot u(t)$

CT Feedback Methods

Method 1: Differential Equation Method

 $\dot{y}(t) = x(t) + py(t)$ this is a linear, first order equation with constant coefficients.

try $y(t) = Ce^{\alpha t}u(t)$, then we get:

$$\dot{y}(t) = \alpha C e^{\alpha t} u(t) + C e^{\alpha t} \delta(t) = \alpha C e^{\alpha t} u(t) + C \delta(t) = \delta(t) + p C e^{\alpha t} u(t) = x(t) + p y(t)$$

if $y(t) = e^{pt}u(t)$, the equation is satisfied ($\delta(t) = e^{pt}\delta(t)$).

Method 2: Operator Method

$$Y = A(X + pY) \leftrightarrow \frac{Y}{X} = \frac{A}{1-pA} = A(1 + pA + p^2A^2 + \cdots)$$

Let $X=x(t)=\delta(t)$ then:

$$y(t) = A(1+pA+p^2A^2+\ldots)\delta(t)$$

$$=(1+pA+p^2A^2+...)u(t)$$

$$= (1 + pA + p^{2}A^{2} + \dots)u(t)$$

$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \dots)u(t) = e^{pt}u(t)$$

Convergent and Divergent Poles

check the **CT system**:

then we get a $y(t) = e^{pt}u(t)$.

We decide the convergence by this method: 1

if Re(p) < 0 then it is convergent, Re(p) > 0 then it is divergent.

Feedback Comparison (CT, DT)

CT Feedback

In CT, each cycle adds new integration.

$$egin{aligned} y(t) &= A(1+pA+p^2A^2+\ldots)\delta(t) \ &= (1+pA+p^2A^2+\ldots)u(t) \ &= (1+pt+rac{1}{2}p^2t^2+rac{1}{6}p^3t^3+\cdots)u(t) = e^{pt}u(t) \end{aligned}$$

PT Feedback

In DT, each cycle creates another sample in output:

$$egin{aligned} y[n] &= (1 + pR + p^2R^2 + p^3R^3 + \cdots)\delta[n] \ &= \delta[n] + p\delta[n-1] + p^2\delta[n-2] + p^3\delta[n-3] + \cdots \end{aligned}$$

Diagram Comparison

Equation:	$\dot{y}(t) = x(t) + py(t)$	y[n]=x[n]+py[n-1]
Block diagram:	$x(t)$ \xrightarrow{p} $y(t)$	$X \longrightarrow \bigoplus$ p Delay
Operator:	$\frac{A}{1-pA}$	$\frac{1}{1-pR}$
Solution	$e^{pt}u(t)$	$p^nu[n]$
Convergence:		

Convergent? (Exercise)

•
$$\frac{1}{1-\frac{1}{4}R^2}$$

$$Y = \frac{1}{1-\frac{1}{4}R^2}X$$

$$= k_1 \frac{1}{1-\frac{1}{2}R}X + k_2 \frac{1}{1+\frac{1}{2}R}X$$

$$= k_1 (1 + \frac{1}{2}R + \frac{1}{4}R^2 + \cdots)X + k_2 (1 + (-\frac{1}{2}R) + (-\frac{1}{2}R)^2 + \cdots)X$$

Poles of $\pm \frac{1}{2}$ for discrete case, so convergent.

$$\begin{split} \bullet & \frac{1}{1 - \frac{1}{4}A^2} \\ & Y = \frac{1}{1 - \frac{1}{4}A^2} X \\ & = k_1 \frac{1}{1 - \frac{1}{2}A} X + k_2 \frac{1}{1 + \frac{1}{2}A} X \\ & = k_1 (1 + \frac{1}{2}A + (\frac{1}{2}A)^2 + \cdots) X + k_2 (1 + (-\frac{1}{2}A) + (-\frac{1}{2}A)^2 + \cdots) X \\ & = k_1 e^{1/2t} + k_2 e^{-1/2t} \end{split}$$

Poles of $\pm \frac{1}{2}$ in continuous case, so divergent $(\frac{1}{2})$.

$$egin{array}{ll} ullet & rac{1}{1+2R+rac{3}{4}R^2} \ & Y = rac{1}{1+2R+rac{3}{4}R^2} X \ & = k_1rac{1}{1+rac{1}{2}R}X + k_2rac{1}{1+rac{3}{2}R}X \end{array}$$

We have pole for $-\frac{3}{2}$ and $-\frac{1}{2}$ in discrete case, so divergent $(-\frac{3}{2})$.

$$\begin{array}{ll}
\bullet & \frac{1}{1+2A+\frac{3}{4}A^2} \\
Y = \frac{1}{1+2A+\frac{3}{4}A^2} X \\
= k_1 \frac{1}{1+\frac{1}{2}A} X + k_2 \frac{1}{1+\frac{3}{2}A} X
\end{array}$$

The poles are $-\frac{1}{2}$ and $-\frac{3}{2}$ in continuous case, so convergent.

Mass-Spring System (Exercise)

$$F=K(x(t)-y(t))=M\dot{\dot{y}}(t)$$

$$rac{Y}{X}=rac{rac{K}{M}A^2}{1+rac{K}{M}A^2}$$
 , thus $p=\pm j\sqrt{rac{K}{M}}$.

 $e^{j\omega_0t}=cos\omega_0t+jsin\omega_0t$ and $e^{-j\omega_0t}=cos\omega_0t-jsin\omega_0t$.

$$\frac{Y}{X} = \frac{\omega_0}{2j} (\frac{A}{1-j\omega_0 A}) - \frac{\omega_0}{2j} (\frac{A}{1+j\omega_0 A})$$
, with $\frac{A}{1\pm j\omega_0 A}$ as two modes (check lecture 2 for **fundamental modes**)

Then check lecture 3 for fundamental mode and complex poles, we get:

$$y(t)=rac{\omega_0}{2j}(e^{j\omega_0t}-e^{-j\omega_0t})=\omega_0sin\omega_0t$$
, $t>0$.

An alternative (ugly) approach

$$rac{Y}{X} = rac{\omega_0^2 A^2}{1 + \omega_0^2 A^2} = \omega_0^2 A^2 \sum_{l=0}^{\infty} (-\omega_0^2 A^2)^l$$

then if $x(t) = \delta(t)$:

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 (-\omega_0^2)^l A^{2l+2} \delta(t) = \omega_0^2 t - \omega_0^4 rac{t^3}{3!} + \omega_0^6 rac{t^5}{5!} \cdots = \omega_0 sin\omega_0 t$$