Лабораторный практикум по курсу «Математическая статистика»

Лабораторная работа № 4 «Корреляционный анализ»

студента _	Васильев	группы	<u>Б21-524</u> .	Дата сдачи:	:16.	12.2023	_
Ведущий і	преподавател	ь:		_ оценка:		подпись:	

Вариант № 6_

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проведения корреляционного анализа данных.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2	Объем выборки, <i>п</i>
X	$\chi^{2}(2)$	$\chi^2(n)$	2	4	150
Y	<i>N</i> (3, 1)	$N(m, \sigma)$	3	1	130

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \bar{x}_i	Оценка дисперсии, s_i^2	КК по Пирсону, $\tilde{r}_{_{XY}}$	КК по Спирмену, $\tilde{\rho}_{XY}$	КК по Кендаллу, $ ilde{ au}_{_{XY}}$
X	2.012	4.197	0.000	0.039	0.027
Y	2.890	0.896	-0.002	-0.038	-0.027

Проверка значимости коэффициентов корреляции:

Статистическая гипотеза, <i>H</i> ₀	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
H_0 : $r_{XY} = 0$	0.976	H_0 принимается	2 _{рода}
H_0 : $\rho_{XY} = 0$	0.645	H_0 принимается	2 _{рода}
H_0 : $\tau_{XY} = 0$	0.627	H_0 принимается	2 _{рода}

Примечание: для проверки гипотез использовать функцию **corr** (**scipy.stats.pearsonr**)

2. Визуальное представление двумерной выборки Диаграмма рассеяния случайных величин *X* и *Y*:

Примечание: для построения диаграммы использовать функции plot, scatter (matplotlib.pyplot.scatter)

3. Проверка независимости методом таблиц сопряженности

Статистическая гипотеза: $H_0: F_Y(y \mid X \in \Delta_1) = ... = F_Y(y \mid X \in \Delta_k) = F_Y(y)$

Эмпирическая таблица сопряженности:

Y X	[0.397; 3.296)	[3.296; 6.196)	[6.196; 9.096)	[9.096; 11.995)	[11.995; 14.895)
$\Delta_1 = [0.296; 4.455)$	5	27	39	36	8
$\Delta_2 = [4.455; 8.613)$	P	7	H	6	4
$\Delta_3 = [8.613; 12.771)$	0	0	1	4	0
$\Delta_4 = [12.771;$ 16.929)	0	1	0	0	0
$\Delta_5 = [16.929;$ 21.086]	0	1	0	9	9

Теоретическая таблицы сопряженности:

					[11.995;
X	3.296)	6.196)	9.096)	11.995)	14.895)
$\Delta_1 = [0.296; 4.455)$	3.833	27.60	39.10	35.27	9.200
$\Delta_2 = [4.455; 8.613)$	0.933	6.720	9.520	8.586	2.240
$\Delta_3 = [8.613; 12.771)$	0.166	1.200	1.700	1.533	0.400
$\Delta_4 = [12.771;$ 16.929)	0.033	0.240	0.340	0.306	0.080
$\Delta_5 = [16.929;$ 21.086]	0.033	0.240	0.340	0.306	0.080

Примечание: функцию для группировки hist3 использовать

(matplotlib.pvplot.hist2d)

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = _0.05_$	Ошибка стат. решения
16.233	0.436	H_0 принимается	нет

Примечание: для проверки гипотезы использовать функцию crosstab (scipy.stats.chi2_contingency)

4. Исследование корреляционной связи

Случайная величина $U = \lambda X + (1 - \lambda)Y$, $\lambda \in [0; 1]$ Случайная величина $V = \lambda X^3 + (1 - \lambda)Y^3$ $\lambda \in [0; 1]$

Графики зависимостей коэффициента корреляции $\tilde{r}_{xU}(\lambda)$, рангового коэффициента корреляции по Спирмену $\tilde{\rho}_{xU}(\lambda)$, по Кендаллу $\tilde{\tau}_{xU}(\lambda)$

Графики зависимостей $\tilde{r}_{xv}(\lambda)$, $\tilde{\rho}_{xv}(\lambda)$, $\tilde{\tau}_{xv}(\lambda)$

Лабораторный практикум по курсу «Математическая статистика»

Bыводы:С увеличением значения $\lambda \in [0,1]$ коэффициент корреляции $r_{XU}(\lambda)$, ранговый коэффициент корреляции по Спирмену $\rho_{XU}(\lambda)$ и по Кендаллу $\tau_{XU}(\lambda)$ стремятся к единице. При $\lambda = 0$ коэффициенты корреляции равны нулю и статистическая связь между случайными величинами отсутствует, а при увеличении значения λ теснота статистической свзи между случайными величинами увеличивается, и при $\lambda = 1$ между случайными величинами имеется линейная функциональная связь.

Диаграмма рассеяния случайных величин X и V при $\lambda = 0$:

Диаграмма рассеяния **рангов** случайных величин X и V при $\lambda = 0$:

Диаграмма рассеяния случайных величин X и V при $\lambda = 1$:

Диаграмма рассеяния **рангов** случайных величин X и V при $\lambda = 1$:

Лабораторный практикум по курсу «Математическая статистика»

Примечание: для расчёта рангов использовать функцию tiedrank (scipy.stats.rankdata)

Выводы: Из диаграммы рассеяния случайных величин X и V при $\lambda = 0$ видно, что статистическая связь между данными случайными величинами отсутствует, при этом ранги случайных величин X и V при $\lambda = 0$ рассеяны практически равномерно внутри квадрата. На диаграмме рассеяния случайных величин X и V при $\lambda = 1$ прослеживается монотонная зависимость между случайными величинами, при этом переход к рангам выпрямляет данную зависимость.