Problemas de Termodinámica (PEP1)

1. Gases ideales

Problema 1.1

Un recipiente de volumen $V=30\,\mathrm{l}$ contiene gas ideal a la temperatura de 0 °C. Luego de liberar una porción del gas, la presión disminuye en $\Delta p=0.78\,\mathrm{atm}$ (manteniéndose constante la temperatura). Determinar la masa del gas liberado. La densidad del gas en condiciones normales es $\rho=1.3\,\mathrm{g/l}$.

Problema 1.2

Dos recipientes idénticos están conectados mediante un tubo con una válvula que permite el paso del gas de un recipiente al otro si la diferencia de presión $\Delta p \geq 1.10$ atm. Inicialmente uno de los recipientes estaba al vacío y el otro contenía gas ideal a temperatura $t_1 = 27\,^{\circ}\mathrm{C}$ y presión $p_1 = 1.00$ atm. Luego ambos se calientan a una temperatura $t_2 = 107\,^{\circ}\mathrm{C}$. ¿Hasta qué valor aumentará la presión en el primer recipiente (el que estaba inicialmente vacío)?

Problema 1.3

Determinar la temperatura máxima alcanzable de un gas ideal en cada uno de los siguientes procesos:

1.
$$p = p_0 - \alpha V^n$$
;

2.
$$p = p_0 e^{-\beta V}$$
,

donde p_0 , α y β son constantes positivas, y V es el volumen de un mol de gas.

Problema 1.4

Determinar la presión mínima alcanzable de un gas ideal en el proceso

$$T = T_0 + \alpha V^n$$
,

donde T_0 y α son constantes positivas, y V es el volumen de un mol de gas. Dibujar el gráfico aproximado de p en función de V para este proceso.

Problema 1.5

Un recipiente cilíndrico alto contiene nitrógeno gaseoso y se encuentra en un campo gravitacional uniforme donde la aceleración de caída libre es igual a g. La temperatura del nitrógeno varía con la altura h de modo que su densidad es constante en todo el volumen. Determinar el gradiente de temperatura $\frac{dT}{dh}$.

Problema 1.6

Supóngase que la presión p y la densidad ρ del aire están relacionadas por

$$\frac{p}{\rho^n} = \text{const},$$

independientemente de la altura (n es constante). Determinar el gradiente de temperatura correspondiente.

Problema 1.7

Supongamos que el aire se encuentra en condiciones estándar cercanas a la superficie de la Tierra. Considerando que la temperatura y la masa molar del aire son independientes de la altura, determinar la presión del aire a una altura de 5.0 km sobre la superficie y en una mina a una profundidad de 5.0 km por debajo de la superficie.

Problema 1.8

Suponiendo que la temperatura, la masa molar del aire y la aceleración de caída libre son independientes de la altura, determinar la diferencia de alturas a las que la densidad del aire a una temperatura de 0°C difiere:

- (a) en un factor e;
- (b) en un factor $\eta = 1.0\%$.

2. Procesos Termodinámicos

Problema 2.1

Un mol de oxígeno, inicialmente a una temperatura $T_0 = 290 \,\mathrm{K}$, se comprime adiabáticamente de forma que su presión aumenta un factor $\eta = 10.0$. Calcular:

- (a) la temperatura del gas después de la compresión;
- (b) el trabajo realizado sobre el gas.

Problema 2.2

El volumen de un mol de un gas ideal con exponente adiabático γ varía de acuerdo con la ley

$$V = \frac{a}{T},$$

donde a es constante. Determinar la cantidad de calor absorbido por el gas si su temperatura aumenta en ΔT .

Problema 2.3

Demostrar que el proceso en el cual el trabajo realizado por un gas ideal es proporcional al incremento correspondiente de su energía interna está descrito por la ecuación

$$pV^n = \text{const.}$$

donde n es constante.

Problema 2.4

Determinar la capacidad calorífica molar de un gas ideal en un proceso politrópico $pV^n=\text{const}$, si el exponente adiabático del gas es γ . ¿Para qué valores de n la capacidad calorífica del gas será negativa?

Problema 2.5

En un proceso politrópico, el volumen de argón aumenta en un factor $\alpha=4.0$, y simultáneamente, la presión disminuye en un factor $\beta=8.0$. Calcular la capacidad calorífica molar del argón en este proceso, suponiendo que el gas es ideal.

Problema 2.6

Un mol de argón se expande de manera politrópica, con un exponente politrópico n = 1.50. Durante el

proceso, la temperatura del gas cambia en $\Delta T = -26\,\mathrm{K}.$ Calcular:

- (a) la cantidad de calor absorbido por el gas;
- (b) el trabajo realizado por el gas.

Problema 2.7

Un gas ideal cuyo exponente adiabático es γ se expande de acuerdo con la ley

$$p = \alpha V$$

donde α es una constante. El volumen inicial del gas es V_0 . Como resultado de la expansión, el volumen aumenta un factor η . Determinar:

- (a) el incremento de la energía interna del gas;
- (b) el trabajo realizado por el gas;
- (c) la capacidad calorífica molar del gas en este proceso.

Problema 2.8

Un gas ideal cuyo exponente adiabático es γ se expande de tal manera que la cantidad de calor transferido al gas es igual a la disminución de su energía interna. Determinar:

- (a) la capacidad calorífica molar del gas en este proceso;
- (b) la ecuación del proceso en las variables T y V;
- (c) el trabajo realizado por un mol de gas cuando su volumen aumenta un factor η , si la temperatura inicial del gas es T_0 .

3.Segunda Ley de la Termodinámica

Problema 3.1

¿En qué caso será mayor la eficiencia de un ciclo de Carnot: cuando la temperatura del foco caliente se incrementa en ΔT , o cuando la temperatura del foco frío se reduce en la misma magnitud?

Problema 3.2

El hidrógeno se utiliza como sustancia de trabajo en un ciclo de Carnot. Determinar la eficiencia del ciclo si, como resultado de una expansión adiabática:

- (a) el volumen del gas aumenta n = 2.0 veces;
- (b) la presión del gas disminuye n = 2.0 veces.

Problema 3.3

Una máquina térmica que opera bajo un ciclo de Carnot con una eficiencia $\eta=10\%$ es usada como refrigerador, manteniéndose los mismos focos térmicos. Determinar su coeficiente de eficiencia como refrigerador, ε .

Problema 3.4

Un gas ideal realiza un ciclo compuesto por transformaciones isotermas y adiabáticas alternadas. Determinar la eficiencia de dicho ciclo, si en cada expansión isoterma el volumen del gas aumenta en la misma proporción.

Problema 3.5

Determinar la eficiencia de un ciclo compuesto por dos transformaciones isócoras y dos adiabáticas, si el volumen del gas ideal cambia n=10 veces a lo largo del ciclo.

Problema 3.6

Determinar la eficiencia de un ciclo compuesto por dos transformaciones isóbaras y dos adiabáticas, si la presión cambia un factor n a lo largo del ciclo.