Oblig 2a - Fasit

- 1. Bokoppgaver fra kapittel 7 (30%)
 - (a) 2b Se bokfasit
 - (b) 5d Se bokfasit
- 2. (25%) Grafisk vurdering av sannsynlighetsfordelinger
 - (a) Se eksamensfasit
 - (b) Grafene:

pdf	CDF	iCDF	
a	E	β	
b	С	ε	
С	G	ζ	
d	A	θ	
е	В	γ	
f	\mathbf{F}	α	
g	D	η	
h	Н	δ	

- (c) X_{max} , modus, ser vi lettest fra grafen for pdf.
- (d) $Medianen \ \tilde{X}$ finner vi lettest fra CDF eller iCDF.
- (e) E[X] er kanskje lettest å finne hvis vi tenker balansepunktet for et fysisk objekt.
- (f) Finn $P(X \le 6)$ for alle gruppene. Hvilken av de 3 grafene er lettest å bruke for dette?
- (g) Prosentilene og symmetrisk 90% intervallestimat finner vi lettest fra CDF eller iCDF. Det føles godt å være ferdig.

Hvilket	X_{max}	\tilde{X}	E[X]	$P(X \le 6)$	intervall
a	8	8	6.2	0.35	(1, 10)
b	0	1	1.45	0.97	(0, 5)
c	5	5	5	$\frac{7}{11}$	(0, 10)
d	1.82	4.81	4.56	0.68	(1.38, 8.97)
e	5	5	5	0.6	(0.5, 9.5)
f	10	7.1	6.67	0.36	(2.24, 9.75)
g	0	3.47	5	0.70	(0.26, 14.98)
h	5	5	5	0.75	(2.53, 7.47)

- 3. Basics for diskrete sannsynlighetsfordelinger:
 - (a) $P(X > a) = 1 P(X \le a)$
 - (b) Fordi $P(X \le c) = (X < c) + P(X = c)$, og P(X = c) ofte er større enn 0 for en diskret sannsynlighetsfordeling.

- (c) $P(X \ge 5) = P(X \in \{5, 6, 7, ...\})$, og for diskrete fordelinger er komplementet til $A = \{5, 6, 7, ...\}$ mengden $A^c = \{0, 1, 2, 3, 4\}$, hvor da 5 ikke er inkludert. Så $P(X \ge 5) = P(X \in \{5, 6, 7, ...\}) = 1 P(X \in \{0, 1, 2, 3, 4\})$.
- (d) 'pdf" for en diskret sannsynlighetsfordeling er punktsannsynligheten; sannsynlighetene for at X tar hver av disse individuelle x-verdiene.
- (e) Verdiene for pdf-en til en diskret sannsynlighetsfordeling aldri bli større enn 1 fordi sannsynligheter aldri kan bli større enn 1.
- (f) $CDF(x) = P(X \ge x)$, altså en sannsynlighet. Sannsynligheter aldii kan bli større enn 1.
- (g) 0 < CDF(x) < 1

4. Basics for kontinuerlige sannsynlighetsfordelinger:

- (a) $P(X < a) = 1 P(X \ge a)$
- (b) P(X = (a, b]) er lik arealet under grafen, fra a til b. Arealet mellom et punkt c og grafen er 0.
- (c) For kontinuerlige sannsynlighetsfordelinger er komplementet til $[5, \infty)$ mengden $(-\infty, 5)$, altså går vi like opp til 5, mens for diskrete mengder må vi ta mokplimentet innenfor heltallene så da er komplimentet til $A = \{5, 6, 7, \ldots\}$ mengden $A^c = \{0, 1, 2, 3, 4\}$.
- (d) Når X er kontinuerlig: $P(a \le X \le b) = P(X = a) + P(a < X < b) + P(X = b) = 0 + P(a < X < b) + 0 = P(a < X < b)$.
- (e) "pdf" for en kontinuerlig sannsynlighetsfordelinger en sannsynlighetstetthet i punktet x, og hjelper bare til med å finne sannsynligheten for at X er i et intervall (a,b) som inneholder x, ved at vi integrerer pdf fra a til b.
- (f) Kontinuerlige sannsynlighetsfordelinger sine pdf-er kan ha verdier som er større enn 1 over et lite område så lenge ikke integralet av pdf over området overstiger 1. Dette i motsetning til diskrete sannsynlighetsvurderinger hvor vi summerer, slik at en enkelt verdi over 1 en eneste gang allerede blir for mye.
- (g) For en kontinuerlig sannsynlighetsfordeling er $CDF(x) = P(X \le x)$
- (h) $0 \leq CDF(x) \leq 1$ uansett om den er kontonuerlig eller diskret.
- (i) iCDF(p) =CDF $^{-1}(p)$, altså den inverse av CDF, som lar oss gå fra sannsynligheten p til verdien x slik at $P(X \le x) = p$.
- (j) En iCDF er definert kun for $p \in [0, 1]$