MATH 633 (HOMEWORK 8)

HIDENORI SHINOHARA

Exercise. (Problem 13) For any $w \in D$, $\phi_w(z) = (z - w)/(1 - \overline{w}z)$ is an automorphism on D that maps w to 0. Fix $w \in D$. Then $\phi_{f(w)} \circ f \circ \phi_w^{-1}$ is an automorphism that maps 0 to 0. By Lemma 2.1, $|(\phi_{f(w)} \circ f \circ \phi_w^{-1})(z)| \leq |z|$ for all $z \in D$. Fix $z \in D$. Then $\phi_w(z) \in D$, so $|(\phi_{f(w)} \circ f \circ \phi_w^{-1})(\phi_w(z))| \leq |\phi_w(z)|$. This equals to

$$\left| (\phi_{f(w)} \circ f \circ \phi_w^{-1})(\phi_w(z)) \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| \implies \left| \phi_{f(w)}(f(z)) \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right|$$

$$\implies \left| \frac{f(z) - f(w)}{1 - \overline{f(w)}f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right|$$

$$\implies \rho(f(z), f(w)) \le \rho(z, w).$$

For any $z \in D$ and for any appropriate value of $h \neq 0$,

$$\rho(f(z+h), f(z)) \le \rho(z+h, z) \implies \left| \frac{f(z+h) - f(z)}{1 - \overline{f(z+h)}} f(z) \right| \le \left| \frac{z+h-z}{1 - \overline{(z+h)}z} \right|$$

$$\implies \left| \frac{f(z+h) - f(z)}{h} \right| \cdot \frac{1}{\left| 1 - \overline{f(z+h)}f(z) \right|} \le \left| \frac{1}{1 - \overline{(z+h)}z} \right|.$$

By letting $h \to 0$, we obtain the Schwarz-Pick lemma.

Exercise. (Problem 3) Let $\Omega = \{z \in \mathbb{C} \mid |z| < 1\}$. Then Ω is a Jordan domain such that $\partial \Omega$ is parametrized by $\alpha(t) = e^{2\pi i t}$. Clearly, $\alpha' \neq 0$ everywhere. However, for any R > 0 and $a < b < a + 2\pi$, $\Omega \cap C_R(1) \neq \{1 + Re^{i\theta} \mid a < \theta < b\}$. Therefore, Ω is not nice, so the proposition is false.