Rough Sets: Theoretical aspects of reasoning about data

wu

July 10, 2019

Contents

1 Knowledge

1.1 Knowledge base

Given a finite set $U \neq \emptyset$ (the universe). Any subset $X \subset U$ of the universe is called a **concept** or a **category** in U. And any family of concepts in U will be referred to as **abstract knowledge** about U.

partition or **classification** of a certain universe U is a family $C = \{X_1, X_2, \dots, X_n\}$ s.t. $X_i \subset U, X_i \neq \emptyset, X_i \cap X_j = \emptyset$ and $\bigcup X_i = U$

A family of classifications is called a **knowledge base** over U

R an equivalence relation over U, U/R family of all equivalence classes of R, referred to be **categories** or **concepts** of R, and $[x]_R$ denotes a category in R containing an element $x \in U$

By a **knowledge base** we can understand a relational system $K = (U, \mathbf{R}), \mathbf{R}$ is a family of equivalence relations over U

If $P \subset R$ and $P \neq \emptyset$, then $\bigcap P$ is also an equivalence relation, and will be denoted by IND(P), called an **indiscernibility relation** over P

$$[x]_{IND(\mathbf{P})} = \bigcap_{R \in \mathbf{P}} [x]_R$$

 $U/IND(\boldsymbol{P})$ called \boldsymbol{P} -basic knowledge about U in K. For simplicity, $U/\boldsymbol{P} = U/IND(\boldsymbol{P})$ and \boldsymbol{P} will be also called \boldsymbol{P} -basic knowledge . Equivalence classes of $IND(\boldsymbol{P})$ are called basic categories of knowledge \boldsymbol{P} . If $Q \in \boldsymbol{R}$, then Q is a Q-elementary knowledge and equivalence classes of Q are referred to as Q-elementary concepts of knowledge \boldsymbol{R}

The family of all P-basic categories for all $\neq P \subset R$ will be called the family of basic categories in knowledge base K = (U, R)

Let $K = (U, \mathbf{R})$ be a knowledge base. By IND(K) we denote the family of all equivalence relations defined in K as $IND(K) = \{IND(\mathbf{P}) : \emptyset \neq \mathbf{P} \subseteq \mathbf{R}\}$.

Thus IND(K) is the minimal set of equivalence relations.

Every union of P-basic categories will be P-category

The family of all categories in the knowledge base $K = (U, \mathbf{R})$ will be referred to as K-categories

1.2 Equivalence, generalization and specialization of knowledge

Let $K = (U, \mathbf{P}), K' = (U, \mathbf{Q})$. K and K' are **equivalent** $K \simeq K', (\mathbf{P} \simeq \mathbf{Q})$ if $IND(\mathbf{P}) = IND(\mathbf{Q})$. Hence $K \simeq K'$ if both K and K' have the same set of elementary categories. This means that knowledge in knowledge bases K and K' enables us to express exactly the same facts about the universe.

If $IND(P) \subset IND(Q)$ then knowledge P is finer than knowledge Q (coarser). P is specialization of Q and Q is generalization of P

2 Imprecise categories, approximations and rough sets

2.1 Rough sets

Let $X \subseteq U$. X is R-definable or R-exact if X is the union of some R-basic categories. otherwise R-undefinable, R-rough, R-inexact.

2.2 Approximations of set

Given $K = (U, \mathbf{R}), R \in IND(K)$

$$\underline{R}X = \bigcup \left\{ Y \in U/R : Y \subseteq X \right\}$$

$$\overline{R}X = \bigcup \left\{ Y \in U/R : Y \cap X \neq \emptyset \right\}$$

called the R-lower and R-upper approximation of X

 $BN_R(X)=\overline{R}X-\underline{R}X$ is R-boundary of X. $BN_R(X)$ is the set of elements which cannot be classified either to X or to -X having knowledge R

$$POS_R(X) = \underline{R}X, R$$
-positive region of X
 $NEG_R(X) = U - \overline{R}X, R$ -negative region of X
 $BN_R(X) - R$ -borderline region of X

If $x \in POS(X)$, then x will be called an R-positive example of X

Proposition 2.1. 1. X is R-definable if and only if $\underline{R}X = \overline{R}X$

2. X is rought w.r.t. R if and only if $\underline{R}X \neq \overline{R}X$

2.3 Properties of approximations

Proposition 2.2 (2.2). 1. $\underline{R}X \subseteq X \subseteq \overline{R}X$

2.
$$R\emptyset = R\emptyset = \emptyset; \quad RU = \overline{R}U = U$$

3.
$$\overline{R}(X \cup Y) = \overline{R}X \cup \overline{R}Y$$

4.
$$\underline{R}(X \cap Y) = \underline{R}X \cap \underline{R}Y$$

5.
$$X \subseteq Y$$
 implies $\underline{R}X \subseteq \underline{R}Y$

6.
$$X \subseteq Y$$
 implies $\overline{R}X \subseteq \overline{R}Y$

7.
$$\underline{R}(X \cup Y) \subseteq \underline{R}X \cup \underline{R}Y$$

8.
$$\underline{R}(-X) = -\overline{R}X$$

9.
$$\overline{R}(-X) = -\underline{R}X$$

10.
$$\overline{R}(-X) = -RX$$

11.
$$RRX = \overline{R}RX = RX$$

12.
$$\overline{RR}X = \underline{R}\overline{R}X = \overline{R}X$$

The equivalence relation R over U uniquely defines a topological space T = (U, DIS(R)) where DIS(R) is the familty of all open and closed set in T and U/R is a base for T. The R-lower and R-upper approximation of X in A are **interior** and **closure** operations in the topological space T

2.4 Approximations and membership relation

$$x \subseteq_R X$$
 if and only if $x \in \underline{R}X$
 $x \in_R X$ if and only if $x \in \overline{R}X$

where \subseteq_R read "x surely belongs to X w.r.t. R" and $\overline{\in}_R$ - "x possibly belongs to X w.r.t. R". The lower and upper membership.

Proposition 2.3. 1. $x \in X$ implies $x \in X$ implies $x \in X$

- 2. $X \subset Y$ implies $(x \in X \text{ implies } x \in Y \text{ and } x \in X \text{ implies } x \in Y)$
- 3. $x \in (X \cup Y)$ if and only if $x \in X$ or $x \in Y$
- 4. $x \in (X \cap Y)$ if and only if $x \in X$ and $x \in Y$
- 5. $x \in X$ or $x \in Y$ implies $x \in (X \cup Y)$
- 6. $x \in X \cap Y$ implies $x \in X$ and $x \in Y$
- 7. $x \in (-X)$ if and only if non $x \in X$
- 8. $x \in (-X)$ if and only if non $x \in X$

2.5 Numerical characterization of imprecision

accuracy measure

$$\alpha_R(X) = \frac{card \ \underline{R}}{card \ \overline{R}}$$

2.6 Topological characterization of imprecision

- **Definition 2.1.** 1. If $\underline{R}X \neq \emptyset$ and $\overline{R}X \neq U$, then we say that X is roughly R-definable. We can decide whether some elements belong to X or -X
 - 2. If $\underline{R}X = \emptyset$ and $\overline{R}X \neq U$, then we say that X is **internally R-undefinable**. We can decide whether some elemnts belong to -X
 - 3. If $\underline{R}X \neq \emptyset$ and $\overline{R}X = U$, then we say that X is **externally R-undefinable**. We can decide whether some elements belong to X
 - 4. If $\underline{R}X = \emptyset$ and $\overline{R}X = U$, then we say that X is **totally R-undefinable**. unable to decide

Proposition 2.4 (2.4). 1. Set X is R-definable (roughly R-definable, totally R-undefinable) if and only if so is -X

2. Set X is externally R-undefinable if and only if -X is internally R-undefinable

Proof. 1.

$$\begin{split} R\text{-definable} &\Leftrightarrow \underline{R}X = \overline{R}X, \underline{R} \neq \emptyset, \overline{R} \neq U \\ &\Leftrightarrow -\underline{R}X = -\overline{R}X \\ &\Leftrightarrow \overline{R}(-X) = \underline{R}(-X) \end{split}$$