

Module 9: Water and Minerals

Electrolytes, Mg, Zn I-Chap.8

* Minerals

- Bioavailability
 - Inorganic, highly variable
 - Absorption varies with need
 - Interactions with other nutrients
- Potential toxicity from excess intakes
- Metabolic interactions
- General function in metalloenzymes
 - Regulators of body processes
 - Structural components

Food contents

Minerals: micrograms (µg) to grams (g)

Minerals – in a 60 kg person

Minerals in a 60-kilogram (132-pound) Human Body FIGURE 10-2

Not only are the major minerals needed by the body in larger amounts, but they are also present in the body in larger amounts than the trace minerals.

Amount (g)

Water, Electrolytes, Mg

Blood pressure

Water and Body Fluids

- About 60% of body weight (higher in children)
- Dependent on body composition
 - 3/4 of weight in lean tissue is water
 - < 1/4 of weight in fat tissue</p>
- Proportion of water is smallest in:
 - Females
 - Individuals with higher % body fat
 - Elderly

An extra drink of water benefits both young and old.

* Water and Body Fluids

- Functions:
 - Nutrient absorption and transport
 - Waste product
 - Maintains the structure of large molecules
 - Participates in metabolic reactions
 - Serves as a solvent
 - Acts as a lubricant
 - Shock absorber

Aids in body temperature regulation

Maintains blood volume

+

Water Balance

- Every cell contains fluid and is surrounded by fluid
 - Intracellular
 - Extracellular (interstitial)
- Continual turnover
- Rapid adjustments to maintain homeostasis

* Water Intake

- Controlled by hypothalamus
 - \ water = concentrated blood = \ thirst
 - ↑ water = distension of stomach = ↓ thirst
- Dehydration
 - Thirst
 - Weakness, exhaustion, delirium
- Water intoxication
 - Confusion, convulsions, death
 - Hyponatremia

How Much Water Do I Need to Drink in a Day?

- Water needs vary
- 1 to 1.5 mL/kcal
- ■DRI recommendations:
 - Men need about 15.6 cups (3.7 L) of fluid
 - Women need about 11.4 cups (2.7 L)

Figure 8-2 Water Balance—A Typical Example Each day, water enters the body in liquids and foods, and some water is created in the body as a byproduct of metabolic processes. Water leaves the body through the evaporation of sweat, in the moisture of exhaled breath, in the urine, and in the feces. Water input (Total = 1,450-2,800 mL) Liquids (550-1,500 mL) Foods (700-1,000 mL) Water created by metabolism (200-300 mL) Water output (Total = 1,450-2,800 mL) Kidneys (500-1,400 mL) (450-900 mL) Lungs (350 mL) Feces (150 mL)

Water Balance

Water Sources	Amount (mL)	
Beverages	550 to 1500	
Foods	700 to 1000	
Metabolism	200 to 300	
Total	1450 to 2800	

Water Losses	Amount (mL)	
Kidneys (urine)	500 to 1400	
Skin (sweat)	450 to 900	
Lungs (breath)	350	
GI tract (feces)	150	
Total	1450 to 2800	

Obligatory urine excretion = 500 ml

~2/3 fluid intracellular and 1/3 extracellular

Water Intake

- Increased intakes for:
 - Pregnant and lactating women
 - Diarrhea, vomiting and/ or Fever
 - Alcohol
 - Heavy exercise
 - Very young or Elderly
 - Disease conditions, surgery
 - Medications
 - Diet: fiber, high protein, salt and sugar intakes
 - Air travel
 - Hot or cold environment, High altitude
- Thirst
 - Mouth sensations, stomach, hypothalamus
 - Slow can lag behind need
 - Must <u>notice</u> thirst signal then <u>drink</u>

* Dehydration

- Water lost > water consumed
 - Negative water balance
- Many causes:
 - Diarrhea
 - Vomiting
 - Fever or excessive sweating
 - Unmanaged diabetes
 - Laxative or diuretic use

Water Balance and Recommended Intakes

Transparent Possible over-hydration
Pale straw Normal, well hydrated
Transparent yellow Normal
Dark yellow Normal, possible mild dehydration
Deep amber or honey Normal, possible moderate dehydration
Orange Possible severe dehydration

+

Signs of Dehydration

Body Weight Lost %	Symptoms	
1-2	Thirst, fatigue, weakness, vague discomfort, loss of appetite	
3-4	Impaired physical performance, dry mouth, reduction in urine, flushed skin, impatience, apathy	
5-6	Difficulty concentrating, headache, irritability, sleepiness, impaired temperature regulation, increased respiratory rate	
7-10	7-10 Dizziness, spastic muscles, loss of balance, delirium, exhaustion, collapse	

NOTE: The onset and severity of symptoms at various percentages of body weight lost depend on the activity, fitness level, degree of acclimation, temperature, and humidity.

If not corrected, dehydration can lead to death.

Cengage 2019

Which of these is correct about water sources?

- a) Water is the main source of water in the diet.
- b) Water, fruits, and vegetables are the only water sources.
- c) Water, other foods, metabolism, and beverages provide water.
- d) Water, beverages, and food are the only water sources.

Percentage of Water in Selected Foods

100%	Water	
90-99%	Fat-free milk, strawberries, watermelon, lettuce, cabbage,	
90-99%	celery, spinach, broccoli	
80-89%	Fruit juice, yogurt, apples, grapes, oranges, carrots	
Shrimp, bananas, corn, potatoes, avocados, cottage chees		
70-79%	ricotta cheese	
60-69%	Pasta, legumes, salmon, ice cream, chicken breast	
50-59%	Ground beef, hot dogs, feta cheese	
40-49%	Pizza	
30-39%	Cheddar cheese, bagels, bread	
20-29%	Pepperoni sausage, cake, biscuits	
10-19%	Butter, margarine, raisins	
1-9%	Crackers, cereals, pretzels, taco shells, peanut butter, nuts	
0%	Oils, sugars	

+ Acid-Base

- Fluids and electrolytes help
- pH is maintained within a r
- Acidity = H+ atoms
- Buffered by:
 - Blood
 - Kidneys
 - Lungs

NOTE: Each step is ten times as concentrated in base (1/10 as much acid, or H+) as the one below it.

FIGURE 11-8 The pH Scale

Water Dissolves Salts and Follows Electrolytes

The negatively charged electrons that bond the hydrogens to the oxygen spend most of their time near the oxygen atom. As a result, the oxygen is slightly negative, and the hydrogens are slightly positive (see Appendix B).

In an electrolyte solution, water molecules are attracted to both anions and cations. Notice that the negative oxygen atoms of the water molecules are drawn to the sodium cation (Na⁺), whereas the positive hydrogen atoms of the water molecules are drawn to the chloride ions (Cl⁻).

Fluid and Electrolyte Balance

- Balance of fluid:
 - 2/3 inside cells and 1/3 outside cells
- Dissociation of salt
 - NaCl → Na+ (cation) + Cl- (anion)
 - Carry electrical currents (electrolytes)
 - Muscle contractions & conduction of nerve impulses
- Balance of cations and anions
- Electrolytes attract water
- Acid/base balance

* Water Follows Electrolytes

- Some electrolytes reside in
 - P, K, Mg, S
- Some electrolytes reside or
 - Na, Cl
- Water follows electrolytes a membrane
 - Osmosis

Chemical symbols:

K = potassium

P = phosphorus

Mg = magnesium

S = sulfate

Na = sodium

CI = chloride

Electrolytes

TABLE 12-1 Important Body Electrolytes

Electrolytes	Intracellular (inside cells) Concentration (mEq/L)	Extracellular (outside cells) Concentration (mEq/L)
Cations (positively charged ions)		
Sodium (Na+)	10	142
Potassium (K+)	150	5
Calcium (Ca++)	2	5
Magnesium (Mg++)	40	3
	202	155
Anions (negatively charged ions)		
Chloride (CI ⁻)	2	103
Bicarbonate (HCO ₃ -)	10	27
Phosphate (HPO ₄ =)	103	2
Sulfate (SO ₄ =)	20	1
Organic acids (lactate, pyruvate)	10	6
Proteins	57	16
	202	155

NOTE: The numbers of positive and negative charges in a given fluid are the same. For example, in extracellular fluid, the cations and anions both equal 155 milliequivalents per liter (mEq/L). Of the cations, sodium ions make up 142 mEq/L; and potassium, calcium, and magnesium ions make up the remainder. Of the anions, chloride ions number 103 mEq/L; bicarbonate ions number 27; and the rest are provided by phosphate ions, sulfate ions, organic acids, and protein.

* Regulation of Fluid & Electrolyte Balance

- Fluids maintain blood volume and pressure
- GI Tract 8-10 L/day
 - Secretion and reabsorption

Kidneys

- Hormones regulate water and sodium excretion to adjust blood and urine volume and concentration and blood pressure
 - Antidiuretic hormone (ADH) signal from hypothalamus to pituitary
 - Renin, Angiotensin, Aldosterone

Losses

- Sweating, bleeding, GI loss (vomiting, diarrhea)
- Diabetes lose glucose and water
- Replacement oral rehydration therapy

Oral rehydration therapy (ORT) Recipe

ORT solution

- Sugar (4tsp),
- Salt (1/2 tsp)
- Water (boiled and cooled ½ liter)

Water alone won't restore balance. Imbalances can result in a medical emergency.

- ORT intervention depends on the circumstances surrounding losses
- Ideally use *commercially-available oral rehydration salts https://travel.gc.ca/travelling/health-safety/rehydration *

+

Cengage 2019

A Nephron, One of the Kidneys' Many Functioning Units

How the Body Regulates Blood Volume and Blood Pressure

Increases blood pressure

Safety and sources of Drinking Water

Tap water

Home water purification of tap water

Bottled water

All drinking water originates from surface water or ground water that is vulnerable to contamination from human activities

8-40

Water Recommendations

- Needs vary
 - Best beverages, foods

- Health effects
 - Physical and mental performance
 - Proper functioning of kidneys, heart, GI tract, and other systems

Sodium, Potassium and Magnesium

Electrolyte Balance

- Sodium
 - Extracellular cation
 - Blood volume regulation
 - Na K ATPase

- Potassium
 - Intracellular cation
 - High blood conc (cardiac arrest)
 - Deficiency
 - Losses (vomiting and diarrhea)
 - Diuretics (for hypertension)

Potassium

- Principal intracellular cation
- Roles in the body
 - Helps maintain fluid and electrolyte balance
 - Helps maintain cell integrity
 - Aids in nerve impulse transmission and muscle contraction

Potassium

Adequate Intake:

Men (19-30 yr): 3,400 mg/d

Women (19-30 yr): 2,600 mg/d

CCHS 2.2 Mean Intake:a

Men: ~2,985 mg/d

Women: ~2,411 mg/d

Chief Functions:

Maintains normal fluid and electrolyte balance; facilitates chemical reactions; supports cell integrity; assists in nerve functioning and muscle contractions

Deficiency:D

Muscle weakness, paralysis, confusion

Toxicity:

Muscle weakness; vomiting; for an infant given supplements, or when injected into a vein in an adult, potassium can stop the heart

^aNote: Statistics Canada began releasing/rolling out the 2015 CCHS Nutrition data starting in the summer of 2017. Therefore, watch for possible changes to mean intakes of both the macro- and micro-nutrients by Canadians.

^bDeficiency accompanies dehydration.

Source: All nutrient and Caloric values for the food items shown are based on the 2015 version of the Canadian Nutrient File, available at https://food-nutrition.canada.ca/cnf-fce/index-eng.jsp.

* Sodium (Na)

- Salt = sodium chloride (NaCl)
- Preserves food and enhances taste
- Roles in the body:
 - Fluid and electrolyte balance
 - Acid—base balance
 - Nerve transmission
 - Muscle contraction
- Readily absorbed and travels freely in the blood to the kidneys

+ Sodium

- Foods with sodium:
 - Processed foods (75%)
 - Also tend to have low potassium
 - Salt added
 - Natural sources
- Deficiency rare
 - Vomiting, heavy sweating, diarrhea
 - Hyponatremia
- Toxicity

Table 8-5

Sodium and Salt Intake Guidelines

2019 DRI Recommendations

- Recommended intakes for sodium:
 - Adults (19–50 years): 1,500 mg/d
 - Adults (51–70 years): 1,500 mg/d
 - Adults (71 years and older): 1,500 mg/d
- Chronic Disease Risk Reduction (CDRR) level for sodium and salt:
 - Adults (19 years and older): 2,300 mg sodium, or 5.6 g salt (sodium chloride) per day (http:// www8.nationalacademies.org/ onpinews/newsitem.aspx? RecordID=25353).

Canada's Food Guide recommends

Canada's Food Guide recommends that we make healthy choices by choosing "foods that have little to no added sodium..." and by taking care to "Compare the nutrition facts table on foods to choose products that are lower in sodium..." (go to the bottom of the page at https://food-guide.canada.ca/ en/healthy-eating-recommendations/ make-it-a-habit-to-eat-vegetablesfruit-whole-grains-and-protein-foods/ eat-vegetables-and-fruits/).

Figure 8-7

Sodium Intakes of Canadian Adults (19–30 years)

^aChronic Disease Risk Reduction (CDRR) level

Health Canada, Sodium Intake of Canadians in 2017, available at https://www.canada.ca/en/health-canada/services/publications/food-nutrition/sodium-intake-canadians-2017.html#a2.

Sodium

- Controlling daily salt intake
- 6 grams of salt (1 teaspoon) contains
 2400 mg of sodium
 - Table salt contributes ~10%
 - Processed & fast foods contribute~75%
 - 1/3 food budget on processed foods
 - Choose and prepare foods with less salt
 - Label reading is crucial

Functions of Salt and Sodium-Containing Additives in Food

- Microbial food preservation
- Texture, flavour, colour
- Control fermentation in bread and cheese

Magnesium

- Mg
- Storage: More than half is in bones
 - Reservoir to ensure normal blood concentrations
- Roles
 - Maintains bone health
 - Energy metabolism and ATP production
 - Inhibits muscle contraction and blood clotting
 - Blood pressure dietary intake protective
 - Supports normal function of immune system
- Deficiency rare d/t inadequate intakes
 - Impairs central nervous system activity
- UL: 350 mgfor supplements not foods

* Magnesium

- Half found in bones
 - Acts as a reservoir for blood
- Involved in energy metabolism
- Other functions:
 - Immune system, muscle contraction, blood clotting
- Deficiencies and toxicities rarely occur
- Critical to heart function
 - ↑ hard water = low rates of heart disease
 - Deficiency = vessel wall constriction Nelson 2016

Trace minerals

Zinc and Iodine

* Zinc

Works with proteins in every organ

Metalloenzymes (>100)

- DNA and protein synthesis
- release of vitamin A from stores
- synthesis, storage, and release of insulin
- taste perception
- free radical protection
- RBC synthesis heme, blood clotting
- immune function, wound healing
- growth and development, reproduction
- influences behavior and learning

Snapshot 8-6 --->

Zinc

		Milligrams				
Food	Serving size (kcal)	0	3	6	9	1
Broccoli, boiled	125 mL (29)		1	'		
Carrots, boiled	125 mL (29)				RDA fo	
Tomato, fresh	1 medium (22)				RDA for adult ma	
Apple, fresh	1 medium (95)				ult females 11 mg/	
Banana, fresh	1 medium (105)			<u> </u>	8 mg/d	
Blueberries, fresh	125 mL (44)					
Bread, whole wheat	1 slice, 35 g (90)					
Pasta, whole wheat, cooked	125 mL (92)					
Rice, white, cooked	125 mL (109)			ZINC		
Oatmeal, cooked	175 mL (144)				ernatives (red) are d sources of zinc.	
Pita, white	½ pita, 35 g (82)				rnatives (blue)	
Cereal, high fibre	30 g (81)			contain some		
Milk, 2%	250 mL (129)					
Cheddar cheese	50 g (203)			Key:		
Yogurt, 2-3.9%, plain	175 g (93)			Verteta	bles & Fruits	
Soy beverage, fortified	250 mL (110)				Products	
Kefir	175 g (110)				Alternatives	
Ice cream, strawberry	125 mL (134)				Alternatives	
Chicken breast, roasted	75 g (124)			ivieat o	Alternatives	
Ground beef, lean, baked	75 g (175)			Best source	es per kcal	
Egg, poached	2 large (145)					
Tuna, canned in water	75 g (96)					
Tofu, made with calcium salt	150 g (114)					
Peanut butter	30 mL (184)					
Excellent, and sometimes un	usual, sources:					
Oysters, steamed	75 g (76)					
Crab, boiled	75 g (73)					
Sirloin steak, lean, braised	75 g (165)					

DRI Recommended Intakes:

Men: 11 mg/d Women: 8 mg/d

CCHS 2.2 Mean Intake:a

Men: ~14 mg/d Women: ~9.5 mg/d

Tolerable Upper Intake Level:

Adults: 40 mg/d

Chief Functions:

Activates many enzymes; associated with hormones; synthesis of genetic material and proteins, transport of vitamin A, taste perception, wound healing, reproduction

Deficiency:b

Growth retardation, delayed sexual maturation, impaired immune function, hair loss, eye and skin lesions, loss of appetite

Toxicity:

Loss of appetite, impaired immunity, reduced copper and iron absorption, low HDL cholesterol (a risk factor for heart disease)

*Note: Statistics Canada began releasing/rolling out the 2015 CCHS Nutrition data starting in the summer of 2017. Therefore, watch for possible changes to mean intakes of both the macro- and micronutrients by Canadians.

A rare inherited form of zinc malabsorption causes additional and more severe symptoms.

Source: All nutrient and Caloric values for the food items shown are based on the 2015 version of the Canadian Nutrient File, available at https://food-nutrition.canada.ca/cnf-fce/index-eng.jsp.

Enteropancreatic Circulation of Zinc

* Zinc: Homeostatic regulation

Total body zinc content is controlled between

- absorption efficiency of dietary zinc and
 - Absorption increases at low intakes
- endogenous circulation secretions in pancreatic fluid
 - Endogenous fecal losses increase several folds at high intakes
 - Recycling from pancreas to small intestine if low intake

* Zinc Absorption

Enhancers

- Acids
- Amino acids

Absorption rate varies depending on amount consumed: 15-40%

https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/

<u>Inhibitors</u>

- Phytate
- Oxalate
- Polyphenols
- Fibre insoluble
- Other divalent cations
- Folate
- H₂ blockers

+

Steps in dietary zinc deficiency

Increased absorption / decreased losses

(re-establishes homeostasis in mild deficiency)

Tissue zinc conservation

Mobilization of zinc

from exchangeable pool

General tissue dysfunction

* Zinc Deficiency

- Difficult to diagnose
- Misdiagnosed as general PEM
 - No sensitive and specific test
 - Pancreatic function, GI function, infections
- Children most vulnerable
 - Compromised growth and development
 - Poor appetite, diarrhea
 - Immune system and CNS dysfunction
 - Widespread in developing world

The Egyptian man on the right is an adult of average height. The Egyptian boy on the left is 17 years old but is only 4 feet tall, like a 7-year-old in the United States. His genitalia are like those of a 6-year-old.

* Zinc Toxicity

- UL= 40 mg Zn
- Zn excess interferes with copper(Cu) and Fe metabolism

Symptoms:

- Acute toxicity: Nausea, vomiting, diarrhea
- Chronic Zn Toxicity:
 - Cu deficiency, alter Fe function and conversion Fe2+ to Fe 3+
 - Increased intestinal metallothionein
 - Copper not released into blood, lost in shed mucosal cells
 - Reduced immunity, urinary problems
 - May decrease HDL ("good") cholesterol in the blood

+

Chromium and Copper

Chromium

- Works with insulin to regulate and release energy from glucose
- Food sources:
 - Unrefined foods, whole grains, liver, nuts, cheese

Copper

- Helps form hemoglobin and collagen
- Food sources:
 - Organ meats, seafood, nuts, seeds

Mineral Interactions

■↑ Iron affects Zinc

iron overload - Fe occupies all transferrin binding sites, ↓ Zn absorption, transport

■↑ Zinc affects Copper

■ high diet Zn ↑ metallothionein -Cu bound more strongly - not released from mucosal cell

■ Protein affects Zinc

- ↓ albumin ↓ Zn released from mucosal cell more growth failure, immune dysfunction
- Others...

+ lodine

- Thyroxin thyroid hormones (T3 and T4)
 - metabolic rate of every cell
 - body temperature
 - RBC synthesis
 - growth, reproduction
 - brain development
 - Body's work is done by ionic form, iodide

Todine Deficiency

- Dietary Iodine
 - lodized salt, seafood
 - Deliver RDA (150ug) in 2 g salt
 - (average intake: 8 g/d)
 - UL= 1100ug
- ■200 Million people:
 - Goiter
 - Cretinism (pregnancy)

In iodine deficiency, the thyroid gland enlarges—a condition known as simple goiter

Normal:

Iodine Deficient:

In iodine deficiency, the thyroid gland enlarges—a condition known