Titre

• détection fracture osseuse à partir d'imagerie médicale

Pk

- aider pompiers/secours lors d'événements à savoir rapidement si fracture
- type de fracture
- => fluidifier procédé d'hospitalisation, réduire attente car on envoie dans le bon service d'urgence direct

Deux approches

- sans ML
 - ML a des desavantages
 - bcp de données
 - biais
- avec ML
 - o si nécéssaire

DICOM

- difficle de trouver des bonnes banques
- celle que j'ai trouvé ct pas ce que je cherchais

Images normales

• sur internet

Détection des bords

• avec cv2.Canny

Détection des bords: pb de texture

- os poreux => artéfacts si trop sensible
- faut trouver les bons seuils

seuils(image)

• selon image, seuil optimal différent

seuils(lumi, cont)?

• est-ce que on peut déduire seuils depuis prop de l'image?

slide avec les graphes décorrelés

• sur quelques images testées, pas encore de correl. évidente

autres approches

- statistique: une solution serait d'utiliser différents seuils sur même image, et de prendre le résultat majoritaire
- heuristique:
 - o par ex, nombre segments détectés / proportion de pixels blancs
 - artéfacts donne segments trops petits pour être considéré comme tel

détection segments

vectorisation

- · avec potrace
- donne fichiers SVG => stocke image comme instructions de dessins vectoriel

pb de la vectorisation

- en modifiant la balise contenant le chemin de tracé pour voir les contours
- on se rend compte que ce ne sont pas des lignes
- => difficile pour en déduire des angles

trasnformée de hough

- · deux approches
 - classique:
 - droites
 - difficile de gérer les courbes car pas de taille de segment
 - on obtient point de départ & pente
 - probabiliste:
 - segments
 - on lui donne une taille de segment maximum
 - on obtient coords point de départ et d'arrivée
- j'ai préféré la probabiliste

calcul d'angles

· ensuite angles

calcul d'angles: avec de la trigonométrie

• rapports trigonométriques dans un triangle rectangle

crit décision

• vient le moment d'utiliser données pour déterminer état de l'os

crit décision:

• on choisit un seuil ϵ , si le segment le plus horizontal est trop horiz => c'est cassé

compensations

• images pas parfaites

inclinaison: pb

- certaines penchées
 - $\circ~$ il pensera que c'est cassé à cause de l'inclinaison

inclinaison: fixed

id typ fracture

lignes de fractures

• diff noms pour diff fractures

nom fracture $(\theta, ...)$

• lignes fractures <=> angle & point de départ