2007,05/04 16:28 FAX 415 576 0300

RECEIVED CENTRAL FAX GENTER MAY U 4 2007

PATENT

Appl. No. 10/668,778 Amdt. dated May 4, 2007 Reply to Office Action of January 5, 2007

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1. - 62. (Cancelled)

63. (Currently amended) A fragment complementation system, said system comprising[:] a first oligopeptide sequence and a second oligopeptide sequence;

wherein said first oligopeptide sequence is a fusion protein comprised of and in the direction of translation, comprising an N-terminal fragment of a Class A β-lactamase protein at least 25 amino acids in length, fused through a first break-point terminus to a first flexible polypeptide linker and covalently bonded through the C-terminus of a first Class A β-lactamase protein break-point to a first interactor domain; and

wherein said a second oligopeptide sequence is a fusion protein comprised of and in the direction of translation, a second interactor domain and a second flexible polypeptide linker fused through a second break-point terminus to comprising a C-terminal fragment of a Class A β-lactamase protein at least 25 amino acids in length; covalently bonded through the N-terminus of a second Class A β-lactamase protein break-point to a second interactor domain,

wherein said first and second Class-A β lactamase protein break-point termini:
and second Class-A-β lactamase protein break point;

are within 10 amino acids in either direction from a junction between 2 amino acid residues, wherein said 2 amino acid residues are within a solvent exposed loop between elements of secondary structure and,

wherein upon binding of said first interactor domain with said second interactor domain, said N-terminal fragment and said C-terminal fragment functionally reconstitute to form the Class A β -lactamase protein.

PATENT

- 64. (Currently amended) The fragment complementation system of claim 63, wherein said first oligopeptide and said second oligopeptide comprise a signal peptide that translocates said first oligopeptide and said second oligopeptide through the plasma membrane of the a host cell in which said first oligopeptide and said second oligopeptide are expressed.
 - 65. (Canceled)
- 66. (Currently amended) The fragment complementation system of claim 63, wherein said Class A β-lactamase protein comprises amino acids 26 to 288 of the following sequence:

His Pro Glu Thr Leu Val Lys	Val Lys Asp Ala Glu Asp Gln Leu Gly		
26 30	35 40		
Ala Arg Val Gly Tyr Ile Glu	Leu Asp Leu Asn Ser Gly Lys Ile Leu		
45	50 55		
Glu Ser Phe Arg Pro Glu Glu	Arg Phe Pro Met Met Ser Thr Phe Lys		
60	65 70		
Val Leu Leu Cys Gly Ala Va	Leu Ser Arg Ile Asp Ala Gly Gln Glu		
7580	85		
Gln Leu Gly Arg Arg Ile His	Tyr Ser Gln Asn Asp Leu Val Glu Tyr		
90 95	100 105		
Ser Pro Val Thr Glu Lys His	Leu Thr Asp Gly Met Thr Val Arg Glu		
110	115 120		
Leu Cys Ser Ala Ala Ile Thr	fet Ser Asp Asn Thr Ala Ala Asn Leu		
125	130 135		
Leu Leu Thr Thr Ile Gly Gly	Pro Lys Glu Leu Thr Ala Phe Leu His		
140	45 150		
Asn Met Gly Asp His Val Th	Arg Leu Asp Arg Trp Glu Pro Glu Leu		
155160	165		
Asn Glu Ala Ile Pro Asn Asp	Glu Arg Asp Thr Thr Met Pro Val Ala		
<u>170</u> <u>175</u>	180 185		

PATENT

Met Ala Thr Thr Leu Arg L	Leu Leu Thr Gly Glu Leu Leu Thr Leu		
190	195	200	
Ala Ser Arg Gln Gln Leu Ile	Asp Tro Met Glu Ala Asp Lys Val Ala		
205	210	215	
Gly Pro Leu Leu Arg Ser Al	Leu Pro Ala Gly Trp Phe Ile Ala Asp		
220	225	230	
Lys Ser Gly Ala Gly Glu Ar	Gly Ser Arg Gly Ile Ile Ala Ala Leu		
23524	245		
Gly Pro Asp Gly Lys Pro Se	Arg Ile Val Val Ile Tyr Thr Thr Gly		
250 255	260	265	
Ser Gln Ala Thr Met Asp Gl	Arg Asn Arg Gln Ile Ala Glu Ile Gly		
270	275	280	
Ala Ser Leu Ile Lys His Trp			
285			
(SEQ ID NO:2);			

wherein said junction is selected from the group consisting of P174 and N175, E197 and L198, K215 and V216, A227 and G228, and G253 and K254.

- 67. (Canceled).
- 68. (Previously Presented) The fragment complementation system of claim 63, wherein said fragment complementation system further comprises a first peptide that enhances the functional reconstitution of said N-terminal fragment and said C-terminal fragment in comparison with the identical system without said first peptide, wherein said first peptide is 3-12 amino acids in length.
- 69. (Previously Presented) The fragment complementation system of claim 68, wherein said first peptide is 3 amino acids in length.

PATENT

- 70. (Previously Presented) The fragment complementation system of claim 69, wherein said first peptide is covalently bonded to the active site of a thioredoxin protein, wherein the sequence of said first peptide is GRE.
- 71. (Currently amended) The fragment complementation system of claim 63, wherein

said-first oligopeptide further comprises a first polypeptide linker that separates the N-terminal fragment of a Class Λ β-lacta mase protein from the first interactor domain; wherein-said first polypeptide linker is 3-30 amino acids in length; and

said second oligopeptide further comprises a second polypeptide linker that separates the C terminal fragment of a Class $A \beta$ lactamase protein from the second interactor domain, wherein said second polypeptide linker is 3-30 amino acids in length.

72. (Previously Presented) The fragment complementation system of claim 71, wherein

said first oligopeptide further comprises a first complementation enhancement peptide fused between the N-terminal fragment of a Class A β -lactamase protein and the first polypeptide linker; and

said second oligopeptide further comprises a second complementation enhancement peptide fused between the C-terminal fragment of a Class A \(\beta\)-lactamase protein and the second polypeptide linker

73. (Previously Presented) The fragment complementation system of claim 72, wherein

the sequence of said first complementation enhancement peptide is selected from the group consisting of HSE, GRE, EKR, and NGR, and

the sequence of said second complementation enhancement peptide is selected from the group consisting of REQ, QGN, DGR, GRR and GNS.

PATENT

74. (Previously Presented) The fragment complementation system of claim 73, wherein

if the sequence of said first complementation enhancement peptide is HSE, then the sequence of said second complementation enhancement peptide is REQ;

if the sequence of said first complementation enhancement peptide is NGR, then the sequence of said second complementation enhancement peptide is selected from the group consisting of REQ and GNS;

if the sequence of said first complementation enhancement peptide is GRE, then the sequence of said second complementation enhancement peptide is DGR; and

if the sequence of said first complementation enhancement peptide is EKR, then the sequence of said second complementation enhancement peptide is GRR.