INFORMATION SYSTEMS ANALYSIS AND DESIGN

Mr. JACKSON ALUNGA

jalungar@gmail.com

Documenting Information Systems

- Introduction
- Why Documentation Is Important
- Document and Systems Flowcharts
- Process Maps and Data Flow diagrams

Documenting Information Systems

- Other documentation tools
- End-user Computing And Documentation
- Summary

Documentation of Systems

- Documentation is a vital part of any IS.
- Used to trace the flow of data through an IS.
- A wide variety of software is available for documenting ISs.

Why Documentation Is Important

- Depicting how the system works
- Training users
- Designing new systems
- Controlling system development and maintenance costs
- Standardizing communications with others

Why Documentation Is Important

- Auditing ISs
- Documenting business processes
- Complying with the Sarbanes
 Oxley Act of 2002
- Establishing accountability

Types of Flowcharts

- Document Flowcharts Document flowchart traces the physical flow of documents through an organization.
- Systems Flowcharts System flowcharts depict the electronic flow of data and processing steps in an IS.

Document Flowcharts

- Constructing a document flowchart begins by identifying the different departments or groups that handle the documents of a particular system.
- Auditors and accountants may use document flowcharts when analyzing a current system for weaknesses in controls and reports.

Common Document Flowcharting Symbols

Common Document Flowcharting Symbols

A Sample Document Flowchart

Requesting Department

Central Supplies Department

Document Flowcharting Guidelines

- Identify all departments involved
- Classify activities department-wise.
- Identify documents by numbers or colorcoding.
- Account for the distribution of every copy of a document.

Document Flowcharting Guidelines

- Use on-page and off-page connectors and connect by using same letter or number.
- Annotate document for clarity.
- Consider sequencing whenever important.
- Avoid acronyms to avoid confusion.
- Consider using automated flowchart tools.

System Flowcharts

- They use symbols that are industry conventions standardized by the National Bureau of Standards.
- Each processing phase of a system flowchart usually involves preparing one or more control reports.
- These flowcharts depict an electronic job stream of data through processing phases of an AIS, and therefore illustrate audit trails.

Common System Flowchart Symbols

System Flowchart Preparing a Payroll

Systems Flowcharting Guidelines

- Arrange to read from top to bottom and left to right.
- Use appropriate, standard symbols.
- Always use a process symbol between an input and an output symbol. This is called the sandwich rule.
- Use connectors to avoid crossed lines and cluttered flowcharts.

Systems Flowcharting Guidelines

- Sketch a flowchart before designing the final draft.
- Use annotated descriptions and comments in flowcharts for clarification.

Systems Flowcharting Guidelines

Question

The sandwich rule states that:

- a. You should only create logic diagrams that have some "meat" in them
- b. Every diagram should have a cover page and a summary page
- c. A processing symbol should be between an input and an output symbol
- d. In DFDs, there should always be data flow lines leading to and from files

Process Maps and Data Flow Diagrams

- Process maps document business processes in easy-to-follow diagrams.
- Data flow diagrams (DFDs) are primarily used in the systems development process as a tool for analyzing an existing system.

Process Map for the Order Fulfillment process

A Second-level Process Map

Guidelines for Drawing Process Maps

- Identify and define the process of interest to stay focused.
- Understand the purpose for the process map.
- Meet with employees to get their ideas, suggestions, and comments.
- Remember that processes have inputs, outputs, and enablers.

Guidelines for Drawing Process Maps

- Show key decision points.
- Pay attention to the level of detail you capture.
- Avoid mapping the "should-be" or "could-be".
 Map what is.
- Practice, practice, practice.

Data Flow Diagrams Symbols used

- A square represents an external data source or data destination.
- A circle indicates a internal entity that changes or transforms data.
- Two horizontal lines represent the storage of data. This is usually a file.
- A line with an arrow indicates the direction of the flow of data.

Parts of the DFD

- Context diagram an overview of the system
- Physical Data Flow Diagrams first level of detail
- Logical Data Flow Diagrams –idea of what participants do

Context diagram

Context Diagrams

- Data flow diagrams are usually drawn in levels that include increasing amounts of detail.
- A top level (or high-level) DFD that provides an overall picture of an application or system is called a context diagram.
- A context diagram is then decomposed, or exploded, into successively lower levels of detail.

Physical Data Flow Diagrams

- Resemble the document flowcharts
- Focus on physical entities as well as the tangible documents, reports, and similar hard-copy inputs and outputs that flow through the system
- List the job title of one typical employee
- Are simple, more readable, and therefore more easily understood

Physical Data Flow Diagrams

Logical Data Flow Diagrams

- Decompose DFDs into successive levels
- Address what participants do.
- Consist of bubbles each bubble contains a verb that indicates a task the system performs.
- Help designers decide
 - what system resources to acquire,
 - what activities employees must perform to run these systems, and
 - how to protect and control these systems after installation.

Logical Data Flow Diagrams

Decomposition

- Is the act of exploding data flow diagrams to create more detail.
- Level 0 data flow diagrams may be exploded into successive levels of detail.
 The next level of detail would be a level 1 data flow diagram.
- The DFDs become linked together in a hierarchy, which would fully document the system.

Decomposition

Guidelines for Drawing DFDs

- Avoid detail in high level DFDs.
- Ensure that between five and seven processes are in each DFD
- Give different data flows different names.
- Ensure all data stores have data flows both into them and out of them.
- Include even temporary files in a DFD.

Guidelines for Drawing DFDs

- Classify most of the final recipients of system information as external entities.
- Classify personnel and departments that process the data of the current system as internal entities.
- Display only normal processing routines in high-level DFDs.
- Use only one entity to represent several system entities that perform the same task,

Guidelines for Drawing DFDs

Question

Which of these is *not* a good guideline to follow when creating DFDs?

- a. Avoid detail in high-level DFDs
- b. Avoid drawing temporary files in DFDs
- c. Classify most of the final recipients of system outputs as external entities
- d. Avoid showing error routines or similar exception tasks

Other Documentation Tools

Program flowcharts

Organizations use structured programming techniques to create large computer programs in a hierarchical fashion

Decision tables

Organizations use a table of conditions and processing tasks that indicates what action to take for each possibility.

Software Tools for Graphical documentation and SOX compliance

- **➤ Microsoft Word, Excel, and PowerPoint**
- >CASE Tools
- **≻SOX Compliance**

Program flowcharts

- outline the processing logic
- indicate the order of processing steps
- present the steps in a structured walk-through which helps the reviewers
 - assess the soundness of the logic,
 - detect and correct design flaws, and
 - make improvements
- macro program flowcharts serve as an overview of the data processing logic

Program flowcharts

Flowcharts

Question

The diagram here is most likely a:

- a. document flowchart
- b. system flowchart
- c. data flow diagram
- d. program flowchart

Decision Tables

A decision table

- is a matrix of conditions and processing tasks that indicate what action to take for each possibility,
- is used when the computer program involves many conditions and subsequent courses of action,
- is used as an alternative to program flowcharts or in addition to the flowcharts.

Decision Tables

The drawbacks of a decision table are

- they do not show the order in which a program tests data conditions or takes processing actions
- require an understanding of documentation techniques beyond flowcharting
- require extra work to prepare, which may not be cost effective

Decision Tables

			Rules			
		1	2	3	4	
	Conditions					
Condition stub	Account balance less than \$5	Y	Ν	Ν	Nη	Condition entries
	Account balance less than \$1,000	*	Y	*	N	
	Account 1 year old or less	*	*	Y	N	
	Actions					
Action stub	Pay no interest	X			١	A ation
	Pay 5 percent interest		Χ	Χ		Action
	Pay 5.5 percent interest				X	entries

Software Tools for Graphical documentation and SOX compliance

Microsoft Word, Excel, and PowerPoint

- All the programs have the "AutoShapes" option for the graphic symbols and logic diagrams
- Excel can create large drawings and has the option to embed computed values in flowcharting symbols.

CASE Tools

 Has capabilities of graphical documentation software that exceed those of word-processing or spreadsheet packages.

SOX Compliance Software

Enable businesses to reduce the time and costs required to satisfy
 Sarbanes Oxley Act of 2002 requirements.

CASE Tools

- CASE is an acronym for computer-assisted software engineering.
- CASE tools automate costly, inefficient, slow documentation tasks.
- CASE tools can reduce the time and cost to produce high-quality documentation for new systems, thus supporting rapid application development (RAD).

CASE Tool--ExceleratorTM

End-User Computing

End-user computing

- refers to the ability of non-IT employees to create their own computer applications,
- is important for end-users to document applications they develop.

Importance of End-User Documentation

- End users require complete, easy-tofollow training manuals, tutorials, and reference guides.
- Documentation is important for learning how to accomplish things or undo mistakes.
- Documentation is also important for end users as time is wasted when other employees need to alter a system but lack the basic documentation to accomplish this task.

Policies for End-User Computing and Documentation

- 1. Formally evaluate large projects.
- 2. Adopt formal end-user development policies.
- 3. Formalize documentation standards.
- 4. Limit the number of employees authorized to create end-user applications.
- 5. Audit new and existing systems.