De Indias	
I ndice	pag.
1) Proporre le varie soluzioni per pianificare gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da due LAN di 90 e 25 host collegate tramite un router.	2
2) Proporre le varie soluzioni per pianificare gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da tre LAN di 50, 12 e 3 host collegate tramite un router.	8
3) Pianificare, utilizzando l'indirizzo di classe C 192.168.30.0/24, gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da due LAN di 80 e 60 host collegate tramite due router.	18
4) Pianificare, utilizzando l'indirizzo di classe C 200.20.5.0/24, gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da quattro LAN di 12, 24, 5 e 28 host collegate tramite due router come mostrato in figura.	22
5) Pianificare, utilizzando l'indirizzo di classe C 192.168.1.0/24, gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da tre LAN di 50, 40 e 35 host collegate tramite tre router come mostrato in figura.	27
6) Pianificare, utilizzando l'indirizzo di classe B 150.10.128.0/18, gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da quattro LAN di 1200, 1000, 500 e 200 host collegate tramite due router come mostrato in figura.	33
7) Pianificare, utilizzando l'indirizzo di classe B 160.10.144.0/20, gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da tre LAN di 2000, 600 e 400 host collegate tramite tre router come mostrato in figura.	38
8) Configurare la rete, a cui è assegnato l'indirizzo di rete 194.5.12.0/23, rappresentata in figura assegnando a ciascun host un indirizzo IP pubblico. L'indirizzo IP (190.13.90.1) verso la rete esterna e l'indirizzo del primo router del provider (190.13.90.2) sono assegnati dal provider. Suddividere la rete in sottoreti indicando per ciascuna sottorete l'indirizzo e la netmask, sia per le LAN che per i collegamenti punto-punto. Assegnare, inoltre, alle interfacce dei router degli indirizzi compatibili con quelli delle reti a cui sono collegate.	44
9) Configurare la rete rappresentata in figura assegnando a ciascun host un indirizzo IP pubblico. L'indirizzo IP (200.10.0.1) verso la rete esterna e l'indirizzo del primo router del provider (200.10.0.2) sono assegnati dal provider. Proporre la soluzione che preveda l'utilizzo del minor numero di reti partendo dalla classe C 210.0.1.0/24. Dopo aver determinato gli indirizzi di tutte le sottoreti, specificare per ciascuna di esse l'indirizzo di broadcast ed assegnare gli indirizzi IP ai router.	48
10) Configurare la rete rappresentata in figura assegnando a ciascun host un indirizzo IP pubblico. L'indirizzo IP (190.13.90.1) verso la rete esterna e l'indirizzo del primo router del provider (190.13.90.2) sono assegnati dal provider. Proporre la soluzione che preveda l'utilizzo del minor numero di reti partendo dalla classe C 205.0.1.0/24. Dopo aver determinato gli indirizzi di tutte le sottoreti, specificare per ciascuna di esse l'indirizzo di broadcast ed assegnare gli indirizzi IP ai router.	51
Appendice & Riferimenti	54

+ Esercizio 1

Proporre le varie soluzioni per pianificare gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da due LAN di 90 e 25 host collegate tramite un router.

Indirizzamento IP Classfull

Si possono utilizzare **due** indirizzi di classe **C**, uno (per es. **192.168.1.0** con SM implicita 255.255.255.0) per la **LAN A** e l'altro (per es. **192.168.2.0** con SM implicita 255.255.255.0) per la **LAN B**.

Per gli indirizzi proposti si ottiene :

Rete		Broadcast	
	Min IP	Max IP	
192.168.1.0	192.168.1.1	192.168.1.254	192.168.1.255
192.168.2.0	192.168.2.1	192.168.2.254	192.168.2.255

La pianificazione degli indirizzi per la rete proposta risulta la seguente :

LAN	SM	Rete	Hosts		Router	Broadcast
			da	а		
A	/24	192.168.1.0	192.168.1.2	192.168.1.91	192.168.1.1	192.168.1.255
В	/24	192.168.2.0	192.168.2.2	192.168.2.26	192.168.2.1	192.168.2.255

Subnetting con maschera fissa (FLSM)

Con il subnetting si può utilizzare un solo indirizzo (per es. **192.168.1.0** con SM 255.255.25.0) da suddividere opportunamente in due sottoreti aventi la stessa SM.

Si considera la LAN con un numero maggiore di host (in questo esempio la LAN A ha bisogno di 90 indirizzi per gli host + 1 indirizzo per il router + 1 per l'indirizzo di broadcast). Per calcolare la SM opportuna è sufficiente prendere in considerazione la potenza del 2 > di 93 ($2^7 = 128$).

Il numero di bit necessari per ottenere gli indirizzi da assegnare agli hosts della LAN A è, quindi, **7** e la SM da utilizzare diventa :

$$10000000 = 128_{(10)}$$
 255.255.255.128 o in notazione slash /25.

In questo modo si ottengono le seguenti due sottoreti (il numero di sottoreti ottenute deve essere, ovviamente, >= al numero di sottoreti da pianificare) :

Rete	Н	Broadcast	
	Min IP		
192.168.1.0	192.168.1.1	192.168.1.126	192.168.1.127
192.168.1.128	192.168.1.129	192.168.1.254	192.168.1.255

La pianificazione degli indirizzi per la rete proposta risulta la seguente :

LAN	SM	Rete	Hosts		Router	Broadcast
			da	а		
A	/25	192.168.1.0	192.168.1.2	192.168.1.91	192.168.1.1	192.168.1.127
В	/25	192.168.1.128	192.168.1.130	192.168.1.154	192.168.1.129	192.168.1.255

Subnetting con maschera variabile (VLSM)

Il procedimento è identico a quello del subnetting a maschera fissa fino alla determinazione degli intervalli delle due sottoreti. Associando il primo intervallo alla sottorete con un numero maggiore di host (90) si può ottenere un intervallo diverso, rispetto a quello trovato precedentemente, in modo da ottimizzare il numero di indirizzi utilizzati per gli hosts della seconda sottorete (25).

Per la **LAN B** si ha bisogno di **28** indirizzi (25 indirizzi per gli host + 1 indirizzo per il router + 1 per l'indirizzo di rete + 1 per l'indirizzo di broadcast). Per calcolare la SM opportuna è sufficiente prendere in considerazione la potenza del $2 > di 28 (2^5 = 32)$.

Il numero di bit necessari per ottenere gli indirizzi della LAN B sono, quindi, 5 e la SM da utilizzare diventa :

$$11100000 = 224_{(10)}$$
 255.255.254 o in notazione slash /27.

In questo modo si ottengono le seguenti sottoreti :

Rete	Hosts		Broadcast
	Min IP	Max IP	
192.168.1.128	192.168.1.129	192.168.1.158	192.168.1.159
192.168.1.160	192.168.1.161	192.168.1.190	192.168.1.191
192.168.1.192	192.168.1.193	192.168.1.222	192.168.1.223
192.168.1.224	192.168.1.225	192.168.1.254	192.168.1.255

Il primo intervallo può essere utilizzato per la LAN B :

LAN B	Hosts		Router	Broadcast
indirizzo di rete	da a			
192.168.1.128	192.168.1.130	192.168.1.154	192.168.1.129	192.168.1.159

La pianificazione degli indirizzi per la rete proposta risulta, in definitiva, la seguente :

LAN	SM	Rete	Hosts		Router	Broadcast
			da	а		
A	/25	192.168.1.0	192.168.1.2	192.168.1.91	192.168.1.1	192.168.1.127
В	/27	192.168.1.128	192.168.1.130	192.168.1.154	192.168.1.129	192.168.1.159

Come si può notare, gli indirizzi attribuiti alla **LAN B** non sono cambiati ma, in questo modo, sono rimasti liberi altri 96 indirizzi che potrebbero essere utilizzati per eventuali ulteriori sottoreti.

Per definire gli spazi di indirizzamento da riservare alle sottoreti, si può procedere anche nel seguente modo :

- si considera, per l'esempio proposto, l'ultimo ottetto dell'indirizzo IP i cui valori sono compresi fra **00000000 (0** (10)) e **11111111 (255** (10)) ;
- si suddivide tale intervallo in due parti (in quanto per la LAN A occorrono 93 indirizzi):

0 ÷ 127	128 ÷ 255

corrispondenti alle seguenti due sottoreti (con SM /25):

Rete	Н	Broadcast	
	Min IP		
192.168.1.0	192.168.1.1	192.168.1.126	192.168.1.127
192.168.1.128	192.168.1.129	192.168.1.254	192.168.1.255

Il primo intervallo può essere attribuito alla LAN A (a cui occorrono 93 indirizzi) ed il secondo alla LAN B (che, però, ha bisogno soltanto di 28 indirizzi).

• si procede a suddividere il secondo intervallo in due parti :

0 ÷ 127	128 ÷ 191	192 ÷ 255

corrispondenti alle seguenti due sottoreti (con SM /26) :

Rete	Но	Broadcast	
	Min IP		
192.168.1.128	192.168.1.129	192.168.1.190	192.168.1.191
192.168.1.192	192.168.1.193	192.168.1.254	192.168.1.255

I due intervalli ottenuti sono costituiti, ognuno, da 64 indirizzi che, per la LAN B, sono ancora sprecati.

• si procede a suddividere ciascun intervallo ulteriormente in due parti (oppure solo il primo fra i due) :

0 ÷ 127	128÷159	160÷191	192÷223	224÷255
0 · 1 - 1				

corrispondenti alle seguenti quattro sottoreti (con SM /27) :

Rete	Н	Broadcast	
	Min IP Max IP		
192.168.1.128	192.168.1.129	192.168.1.158	192.168.1.159
192.168.1.160	192.168.1.161	192.168.1.190	192.168.1.191
192.168.1.192	192.168.1.193	192.168.1.222	192.168.1.223
192.168.1.224	192.168.1.225	192.168.1.254	192.168.1.255

Gli intervalli così ottenuti sono costituiti, ognuno, da 32 indirizzi sufficienti, a questo punto, ad assegnare gli indirizzi alla **LAN B** e lasciando 3 intervalli da 32 indirizzi (oppure uno da 32 ed uno da 64) utilizzabili per successive sottoreti.

Per ricavare gli indirizzi da associare alla varie sottoreti si propone un procedimento diverso rispetto a quelli visti precedentemente.

Partendo dalla tabella per la classe C (vedi Appendice "Classe C") si ottiene la tabella relativa alle sottoreti da creare, specificando la SM opportuna in funzione degli indirizzi necessari per le singole sottoreti (numero hosts + router) :

Rete	Indirizzi	/SM	SM	256 - SM
A	91	/25	255.255.255. 128	128
В	26	/27	255.255.255. 224	32

L'indirizzo 192.168.1.0 con SM /25 è l'indirizzo di rete della prima sottorete.

Rete	Indirizzo di rete	/SM	SM	256 - SM
A	192.168.1.0	/25	255.255.255. 128	128

Per ottenere l'indirizzo di rete della seconda sottorete è sufficiente sommare all'indirizzo di rete della prima sottorete la differenza 256 - 128 = 128

Rete	Indirizzo di rete	/SM	SM	256 - SM
В	192.168.1.128	/27	255.255.255. 224	32

Per ottenere l'indirizzo di rete della eventuale successiva sottorete (per calcolare l'indirizzo di broadcast della sottorete B) è sufficiente sommare all'indirizzo di rete della sottorete B la differenza 256-224 = 32

Rete	Indirizzo di rete	/SM	SM	256 - SM
	192.168.1.160			

Il risultato è, evidentemente, identico a quello ottenuto con i procedimenti precedenti :

LAN	SM	Rete	Hosts		Router	Broadcast
			da	а		
A	/25	192.168.1.0	192.168.1.2	192.168.1.91	192.168.1.1	192.168.1.127
В	/27	192.168.1.128	192.168.1.130	192.168.1.154	192.168.1.129	192.168.1.159

★ Esercizio 2

Proporre le varie soluzioni per pianificare gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da tre LAN di 50, 12 e 3 host collegate tramite un router.

Indirizzamento IP Classfull

Si possono utilizzare **tre** indirizzi di classe **C**, il primo (per es. **192.168.1.0** con SM implicita 255.255.255.0) per la **LAN A**, il secondo (per es. **192.168.2.0** con SM implicita 255.255.255.0) per la **LAN B** ed il terzo (per es. **192.168.3.0** con SM implicita 255.255.255.0) per la **LAN C**.

Per gli indirizzi proposti si ottiene :

Rete	Н	Broadcast	
	Min IP	Max IP	
192.168.1.0	192.168.1.1	192.168.1.254	192.168.1.255
192.168.2.0	192.168.2.1	192.168.2.254	192.168.2.255
192.168.3.0	192.168.3.1	192.168.3.254	192.168.3.255

La pianificazione degli indirizzi per la rete proposta risulta la seguente :

LAN	SM	Rete	Hosts		Router	Broadcast
			da	а		
A	/24	192.168.1.0	192.168.1.2	192.168.1.51	192.168.1.1	192.168.1.255
В	/24	192.168.2.0	192.168.2.2	192.168.2.13	192.168.2.1	192.168.2.255
C	/24	192.168.3.0	192.168.3.2	192.168.3.4	192.168.3.1	192.168.3.255

Subnetting con maschera fissa (FLSM)

Con il subnetting si può utilizzare un solo indirizzo (per es. **192.168.1.0** con SM 255.255.25.0) da suddividere opportunamente in tre sottoreti aventi la stessa SM.

Si considera la LAN con un numero maggiore di host (in questo esempio la LAN A ha bisogno di 50 indirizzi per gli host + 1 indirizzo per il router + 1 per l'indirizzo di broadcast). Per calcolare la SM opportuna è sufficiente prendere in considerazione la potenza del 2 > di 53 ($2^6 = 64$).

Il numero di bit necessari per ottenere gli indirizzi da assegnare agli hosts della LAN A è, quindi, **6** e la SM da utilizzare diventa :

 $11000000 = 192_{(10)}$

255.255.255.192 o in notazione slash /26.

In questo modo si ottengono le seguenti quattro sottoreti (il numero di sottoreti ottenute deve essere, ovviamente, >= al numero di sottoreti da pianificare) :

Rete	Hosts		Broadcast
	Min IP	Max IP	
192.168.1.0	192.168.1.1	192.168.1.62	192.168.1.63
192.168.1.64	192.168.1.63	192.168.1.126	192.168.1.127
192.168.1.128	192.168.1.129	192.168.1.190	192.168.1.191
192.168.1.192	192.168.1.193	192.168.1.254	192.168.1.255

La pianificazione degli indirizzi per la rete proposta risulta la seguente :

LAN	SM	Rete	Hosts		Router	Broadcast
			da	а		
A	/26	192.168.1.0	192.168.1.2	192.168.1.51	192.168.1.1	192.168.1.63
В	/26	192.168.1.64	192.168.1.66	192.168.1.77	192.168.1.65	192.168.1.127
C	/26	192.168.1.128	192.168.1.130	192.168.1.132	192.168.1.129	192.168.1.191

Subnetting con maschera variabile (VLSM)

Il procedimento è identico a quello del subnetting a maschera fissa fino alla determinazione degli intervalli delle tre sottoreti. Associando il primo intervallo alla sottorete con un numero maggiore di host (50) si possono ottenere intervalli diversi, rispetto a quelli trovati precedentemente, in modo da ottimizzare il numero di indirizzi utilizzati per gli hosts della seconda (12) e terza (3) sottorete.

Per la **LAN B** si ha bisogno di **15** indirizzi (12 indirizzi per gli host + 1 indirizzo per il router + 1 per l'indirizzo di rete + 1 per l'indirizzo di broadcast). Per calcolare la SM opportuna è sufficiente prendere in considerazione la potenza del $2 > di 15 (2^4 = 16)$.

Il numero di bit necessari per ottenere gli indirizzi della LAN B sono, quindi, 4 e la SM da utilizzare diventa :

 $11110000 = 240_{(10)}$

255.255.250.240 o in notazione slash **/28**.

In questo modo si ottengono le seguenti sottoreti :

Rete	H	Broadcast	
	Min IP	Max IP	
192.168.1.64	192.168.1.65	192.168.1.78	192.168.1.79
192.168.1.80	192.168.1.81	192.168.1.94	192.168.1.95
192.168.1.240	192.168.1.241	192.168.1.254	192.168.1.255

Il primo intervallo può essere utilizzato per la LAN B :

LAN B	Hosts		Router	Broadcast
indirizzo di rete	da	а		
192.168.1.64	192.168.1.66	192.168.1.77	192.168.1.65	192.168.1.79

Per la LAN \mathbb{C} si ha bisogno di $\mathbf{6}$ indirizzi (3 indirizzi per gli host + 1 indirizzo per il router + 1 per l'indirizzo di rete + 1 per l'indirizzo di broadcast). Per calcolare la SM opportuna è sufficiente prendere in considerazione la potenza del 2 > di $\mathbf{6}$ ($\mathbf{2}^3 = \mathbf{8}$).

Il numero di bit necessari per ottenere gli indirizzi della LAN C sono, quindi, 3 e la SM da utilizzare diventa :

 $11111000 = 248_{(10)}$

255.255.255.248 o in notazione slash **/29**.

In questo modo si ottengono le seguenti sottoreti :

Rete	H	Broadcast	
	Min IP	Max IP	
192.168.1.80	192.168.1.81	192.168.1.86	192.168.1.87
192.168.1.88	192.168.1.89	192.168.1.94	192.168.1.95
192.168.1.248	192.168.1.249	192.168.1.254	192.168.1.255

Il primo intervallo può essere utilizzato per la LAN C:

LAN C	Hosts		Router	Broadcast
indirizzo di rete	da	а		
192.168.1.80	192.168.1.82	192.168.1.84	192.168.1.81	192.168.1.87

La pianificazione degli indirizzi per la rete proposta risulta, in definitiva, la seguente :

LAN	SM	Rete	Но	sts	Router	Broadcast
			da a			
A	/26	192.168.1.0	192.168.1.2	192.168.1.51	192.168.1.1	192.168.1.63
В	/28	192.168.1.64	192.168.1.66	192.168.1.77	192.168.1.65	192.168.1.79
C	/29	192.168.1.80	192.168.1.82	192.168.1.84	192.168.1.81	192.168.1.87

Come si può notare, gli indirizzi attribuiti alla **LAN A** non sono cambiati ma, in questo modo, sono rimasti liberi altri 168 indirizzi che potrebbero essere utilizzati per eventuali ulteriori sottoreti.

Per definire gli spazi di indirizzamento da riservare alle sottoreti, si può procedere anche nel seguente modo :

- si considera, per l'esempio proposto, l'ultimo ottetto dell'indirizzo IP i cui valori sono compresi fra 00000000 (0 (10)) e 11111111 (255 (10));
- si suddivide tale intervallo in quattro parti (in quanto per la LAN A occorrono 53 indirizzi) :

0 ÷ 63 64 ÷ 127 128 ÷ 191 192 ÷ 255

corrispondenti alle seguenti quattro sottoreti (con SM /26):

Rete	Н	Broadcast	
	Min IP Max IP		
192.168.1.0	192.168.1.1	192.168.1.62	192.168.1.63
192.168.1.64	192.168.1.63	192.168.1.126	192.168.1.127
192.168.1.128	192.168.1.129	192.168.1.190	192.168.1.191
192.168.1.192	192.168.1.193	192.168.1.254	192.168.1.255

Il primo intervallo può essere attribuito alla **LAN A** (a cui occorrono 53 indirizzi) ed il secondo alla **LAN B** (che, però, ha bisogno soltanto di 15 indirizzi).

• si procede a suddividere il secondo intervallo in due parti :

corrispondenti alle seguenti due sottoreti (con SM /27) :

Rete	Н	Broadcast	
	Min IP Max IP		
192.168.1.64	192.168.1.65	192.168.1.94	192.168.1.95
192.168.1.96	192.168.1.97	192.168.1.126	192.168.1.127

I due intervalli (con SM /27) ottenuti sono costituiti, ognuno, da 32 indirizzi che, per la LAN B, sono ancora sprecati.

si procede a suddividere il secondo intervallo ulteriormente in due parti :

corrispondenti alle seguenti due sottoreti (con SM /28) :

Rete	Ho	Broadcast	
	Min IP		
192.168.1.64	192.168.1.65	192.168.1.78	192.168.1.79
192.168.1.80	192.168.1.81	192.168.1.94	192.168.1.95

Gli intervalli (con SM /28) così ottenuti sono costituiti, ognuno, da 16 indirizzi sufficienti, a questo punto, ad assegnare gli indirizzi alla LAN B.

Il primo intervallo può essere attribuito alla **LAN B** (a cui occorrono 15 indirizzi) ed il secondo alla **LAN C** (che, però, ha bisogno soltanto di 6 indirizzi).

• si continua a suddividere il terzo intervallo ulteriormente in due parti :

corrispondenti alle seguenti due sottoreti (con SM /29) :

Rete	Но	Broadcast	
	Min IP Max IP		
192.168.1.80	192.168.1.81	192.168.1.86	192.168.1.87
192.168.1.88	192.168.1.89	192.168.1.94	192.168.1.95

Gli intervalli (con SM **/29**) così ottenuti sono costituiti, ognuno, da 8 indirizzi sufficienti, a questo punto, ad assegnare gli indirizzi alla **LAN C**.

In definitiva gli intervalli:

vengono utilizzati per la pianificazione degli indirizzi della rete proposta mentre gli altri intervalli possono essere usati per ulteriori sottoreti.

Per ricavare gli indirizzi da associare alla varie sottoreti si propone un procedimento diverso rispetto a quelli visti precedentemente.

Partendo dalla tabella per la classe C (vedi Appendice "Classe C") si ottiene la tabella relativa alle sottoreti da creare, specificando la SM opportuna in funzione degli indirizzi necessari per le singole sottoreti (numero hosts + router) :

Rete	Indirizzi	/SM	SM	256 - SM
A	51	/26	255.255.255. 192	64
В	13	/28	255.255.255. 240	16
C	4	/29	255.255.255. 248	8

L'indirizzo 192.168.1.0 con SM /26 è l'indirizzo di rete della prima sottorete.

Rete	Indirizzo di rete	/SM	SM	256 - SM
A	192.168.1.0	/26	255.255.255. 192	64

Per ottenere l'indirizzo di rete della seconda sottorete è sufficiente sommare all'indirizzo di rete della prima sottorete la differenza 256 - 192 = 64

Rete	Indirizzo di rete	/SM	SM	256 - SM
В	192.168.1.64	/28	255.255.255. 240	16

Per ottenere l'indirizzo di rete della terza sottorete è sufficiente sommare all'indirizzo di rete della prima sottorete la differenza 256 - 240 = 16

Rete	Indirizzo di rete	/SM	SM	256 - SM
C	192.168.1.80	/29	255.255.255. 248	8

Per ottenere l'indirizzo di rete della eventuale successiva sottorete (per calcolare l'indirizzo di broadcast della sottorete C) è sufficiente sommare all'indirizzo di rete della sottorete C la differenza 256-248 = 8

Rete	Indirizzo di rete	/SM	SM	256 - SM
	192.168.1.88			

Il risultato è, evidentemente, identico a quello ottenuto con i procedimenti precedenti :

LAN	SM	Rete	Но	sts	Router	Broadcast
			da a			
A	/26	192.168.1.0	192.168.1.2	192.168.1.51	192.168.1.1	192.168.1.63
В	/28	192.168.1.64	192.168.1.66	192.168.1.77	192.168.1.65	192.168.1.79
C	/29	192.168.1.80	192.168.1.82	192.168.1.84	192.168.1.81	192.168.1.87

Verifica con VLSM Subnet Calculator (http://www.vlsm-calc.net/)

Subnet Name	Needed Size	Allocated Size	Address	Mask	Dec Mask	Assignable Range
A	51	62	192.168.1.0		255.255.255.192	
В	13	14	192.168.1.64		255.255.255.240	
С	4	6	192.168.1.80	/29	255.255.255.248	192.168.1.81 - 192.168.1.86

∔ Esercizio 3

Pianificare, utilizzando l'indirizzo di classe C 192.168.30.0/24, gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da due LAN di 80 e 60 host collegate tramite due router.

Nella seguente tabella si riassumono gli indirizzi richiesti per pianificare i dispositivi che compongono la rete proposta :

Rete	Indirizzi richiesti			
A	81 80 IP per gli host + 1 per il router			
В	61	60 IP per gli host + 1 per il router		
C	2	2 IP per il collegamento punto-punto fra i due router		

Per ottenere la pianificazione più efficiente si devono prendere in considerazione il numero di sottoreti o il numero di host per ciascuna sottorete.

Subnetting con maschera fissa (FLSM)

Per il subnetting a *maschera fissa* si prende in considerazione il numero di sottoreti presenti nella topologia. In questo caso le sottoreti sono 3 e quindi si deve usare la SM **255.255.255.192** (/26) che divide l'indirizzo di classe C dato nelle seguenti quattro sottoreti:

Rete	SM	Hosts		Broadcast
		Min IP	Max IP	
192.168.30.0	/26	192.168.30.1	192.168.30.62	192.168.30.63
192.168.30.64	/26	192.168.30.65	192.168.30.126	192.168.30.127
192.168.30.128	/26	192.168.30.129	192.168.30.190	192.168.30.191
192.168.30.192	/26	192.168.30.193	192.168.30.254	192.168.30.255

Come si può notare questa soluzione **non si può** adottare in quanto le sottoreti hanno ciascuna 64 indirizzi (62 utilizzabili), insufficienti per gestire la LAN A a cui occorrono 81 indirizzi.

Subnetting con maschera variabile (VLSM)

Per il subnetting a maschera *variabile* il valore della SM è determinato esclusivamente dal numero di host che costituiscono le singole sottoreti + 1 indirizzo per il router (+ 1 indirizzo riservato alla rete e + 1 indirizzo di broadcast) :

Rete	Indirizzi	N.ro bit	SM	
A	81 + 2	$2^n \ge 83 \; ; \; \; n = 7$	255.255.255.128 (10000000)	/25
В	61 + 2	$2^n \ge 63 \; ; \; \; n = 6$	255.255.255.192 (11000000)	/26
С	2 + 2	$2^n \ge 4 \; ; n = 2$	255.255.255.252 (11111100)	/30

L'assegnazione degli indirizzi alle sottoreti deve essere tale da non creare sovrapposizione di indirizzi. Si può procedere nel seguente modo:

Partendo dalla tabella per la classe C (vedi Appendice "Classe C") si ottiene la tabella relativa alle sottoreti da creare, specificando la SM opportuna in funzione degli indirizzi necessari per le singole sottoreti (numero hosts + router) :

Rete	Indirizzi	/SM	SM	256 - SM
A	81	/25	255.255.255. 128	128
В	61	/26	255.255.255. 192	64
C	2	/30	255.255.255. 252	8

L'indirizzo 192.168.30.0 con SM /25 è l'indirizzo di rete della prima sottorete.

Rete	Indirizzo di rete	/SM	SM	256 - SM
A	192.168.30.0	/25	255.255.255. 128	128

Per ottenere l'indirizzo di rete della seconda sottorete è sufficiente sommare all'indirizzo di rete della prima sottorete la differenza 256 - 128 = 128

Rete	Indirizzo di rete	/SM	SM	256 - SM
В	192.168.30.128	/26	255.255.255. 192	64

Per ottenere l'indirizzo di rete della terza sottorete è sufficiente sommare all'indirizzo di rete della prima sottorete la differenza 256 - 240 = 16

Rete	Indirizzo di rete	/SM	SM	256 - SM
С	192.168.30.192	/30	255.255.255. 252	4

Per ottenere l'indirizzo di rete della eventuale successiva sottorete (per calcolare l'indirizzo di broadcast della sottorete C) è sufficiente sommare all'indirizzo di rete della sottorete C la differenza 256-248 = 8

Rete	Indirizzo di rete	/SM	SM	256 - SM
	192.168.30.196			

La pianificazione degli indirizzi per la rete proposta risulta, in definitiva, la seguente :

LAN	SM	Rete	Ho	sts	Router	Broadcast
			da a			
A	/25	192.168.30.0	192.168.30.2	192.168.30.81	192.168.30.1	192.168.30.127
В	/26	192.168.30.128	192.168.30.130	192.168.30.189	192.168.30.129	192.168.30.191
C	/30	192.168.30.192			192.168.30.193 192.168.30.194	192.168.30.195

Verifica con VLSM Subnet Calculator (http://www.vlsm-calc.net/)

Subnet Name	Needed Size	Allocated Size	Address	Mask	Dec Mask	Assignable Range
A	81	126	192.168.30.0	/25	255.255.255.128	192.168.30.1 - 192.168.30.126
В	61	62	192.168.30.128		255.255.255.192	192.168.30.190
С	2	2	192.168.30.192	/30	255.255.255.252	192.168.30.193 - 192.168.30.194

∔ Esercizio 4

Pianificare, utilizzando l'indirizzo di classe C 200.20.5.0/24, gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da quattro LAN di 12, 24, 5 e 28 host collegate tramite due router come mostrato in figura.

Nella seguente tabella si riassumono gli indirizzi richiesti per pianificare i dispositivi che compongono la rete proposta :

Rete		Indirizzi richiesti		
A	13 12 IP per gli host + 1 per il router			
В	25 24 IP per gli host + 1 per il router			
C	6	5 IP per gli host + 1 per il router		
D	29	28 IP per gli host + 1 per il router		
E	2	2 IP per il collegamento punto-punto fra i due router		

Per ottenere la pianificazione più efficiente si devono prendere in considerazione il numero di sottoreti o il numero di host per ciascuna sottorete.

Subnetting con maschera fissa (FLSM)

Per il subnetting a *maschera fissa* si prende in considerazione il numero di sottoreti presenti nella topologia. In questo caso le sottoreti sono 5 e quindi si deve usare la SM **255.255.255.224** (/27) che divide l'indirizzo di classe C dato nelle seguenti otto sottoreti:

Rete	SM	Hosts		Broadcast
		Min IP	Max IP	
200.20.5.0	/27	200.20.5.1	200.20.5.30	200.20.5.31
200.20.5.32	/27	200.20.5.33	200.20.5.62	200.20.5.63
200.20.5.64	/27	200.20.5.65	200.20.5.94	200.20.5.95
200.20.5.96	/27	200.20.5.97	200.20.5.126	200.20.5.127
200.20.5.128	/27	200.20.5.129	200.20.5.158	200.20.5.159
200.20.5.160	/27	200.20.5.161	200.20.5.190	200.20.5.191
200.20.5.192	/27	200.20.5.193	200.20.5.222	200.20.5.223
200.20.5.224	/27	200.20.5.225	200.20.5.254	200.20.5.255

Come si può notare questa soluzione *si può* adottare in quanto le sottoreti hanno ciascuna 32 indirizzi (30 utilizzabili), sufficienti per gestire tutte le LAN.

Subnetting con maschera variabile (VLSM)

Per il subnetting a maschera *variabile* il valore della SM è determinato esclusivamente dal numero di host che costituiscono le singole sottoreti + 1 indirizzo per il router (+ 1 indirizzo riservato alla rete e + 1 indirizzo di broadcast).

Rete	Indirizzi	N.ro bit	SM
D	29 + 2	$2^n \ge 31 \; ; \; \; n = 5$	255.255.255.224 (11100000) /27
В	25 + 2	$2^n \ge 27 \; ; \; \; n = 5$	255.255.255.224 (11100000) /27
A	13 + 2	$2^n \ge 15 \; ; \; \; n = 4$	255.255.255.240 (11110000) /28
С	6 + 2	$2^n \ge 8 \; ; n = 3$	255.255.255.248 (11111000) /29
E	2 + 2	$2^n \ge 4 \; ; n = 2$	255.255.255.248 (11111100) /30

L'assegnazione degli indirizzi alle sottoreti, procedendo in ordine decrescente rispetto al numero di hosts, deve essere tale da non creare sovrapposizione di indirizzi. Si può procedere nel seguente modo:

Partendo dalla tabella per la classe C (vedi Appendice "Classe C") si ottiene la tabella relativa alle sottoreti da creare, specificando la SM opportuna in funzione degli indirizzi necessari per le singole sottoreti (numero hosts + router) :

Rete	Indirizzi	/SM	SM	256 - SM
D	31	/27	255.255.255. 224	32
В	27	/27	255.255.255. 224	32
A	15	/28	255.255.255. 240	16
D	8	/29	255.255.255. 248	8
E	2	/30	255.255.255. 252	4

L'indirizzo 200.20.5.0 con SM /27 è l'indirizzo di rete della prima sottorete.

Rete	Indirizzo di rete	/SM	SM	256 - SM
D	200.20.5.0	/27	255.255.255. 224	32

Per ottenere l'indirizzo di rete della seconda sottorete è sufficiente sommare all'indirizzo di rete della prima sottorete la differenza 256 - 224 = 32

Rete	Indirizzo di rete	/SM	SM	256 - SM
В	200.20.5.32	/27	255.255.255. 224	32

Per ottenere l'indirizzo di rete della terza sottorete è sufficiente sommare all'indirizzo di rete della seconda sottorete la differenza 256 - 224 = 32

Rete	Indirizzo di rete	/SM	SM	256 - SM
A	200.20.5.64	/28	255.255.255. 240	16

Per ottenere l'indirizzo di rete della quarta sottorete è sufficiente sommare all'indirizzo di rete della terza sottorete la differenza 256 - 240 = 16

Rete	Indirizzo di rete	/SM	SM	256 - SM
С	200.20.5.80	/29	255.255.255. 248	8

Per ottenere l'indirizzo di rete della quinta sottorete è sufficiente sommare all'indirizzo di rete della quarta sottorete la differenza 256 - 248 = 8

Rete	Indirizzo di rete	/SM	SM	256 - SM
E	200.20.5.88	/30	255.255.255. 252	4

Per ottenere l'indirizzo di rete della eventuale successiva sottorete (per calcolare l'indirizzo di broadcast della sottorete E) è sufficiente sommare all'indirizzo di rete della sottorete E la differenza 256-252=4

Rete	Indirizzo di rete	/SM	SM	256 - SM
	200.20.5.92			

La pianificazione degli indirizzi per la rete proposta risulta, in definitiva, la seguente :

LAN	SM	Rete	Hosts		Server	Router	Broadcast
			da	а			
D	/27	200.20.5.0	200.20.5.2	200.20.5.28	200.20.5.30	200.20.5.1	200.20.5.31
В	/27	200.20.5.32	200.20.5.34	200.20.5.57	200.20.5.62	200.20.5.33	200.20.5.63
A	/28	200.20.5.64	200.20.5.66	200.20.5.77		200.20.5.65	200.20.5.79
С	/29	200.20.5.80	200.20.5.82	200.20.5.86		200.20.5.81	200.20.5.87
E	/30	200.20.5.88				200.20.5.89 200.20.5.90	200.20.5.91

Verifica con VLSM Subnet Calculator (http://www.vlsm-calc.net/)

Subnet Name	Needed Size	Allocated Size	Address	Mask	Dec Mask	Assignable Range
D	29	30	200.20.5.0	/27	255.255.255.224	200.20.5.1 - 200.20.5.30
В	25	30	200.20.5.32	/27	255.255.255.224	200.20.5.33 - 200.20.5.62
A	13	14	200.20.5.64	/28	255.255.255.240	200.20.5.65 - 200.20.5.78
С	6	6	200.20.5.80	/29	255.255.255.248	200.20.5.81 - 200.20.5.86
E	2	2	200.20.5.88	/30	255.255.255.252	200.20.5.89 - 200.20.5.90

★ Esercizio 5

Pianificare, utilizzando l'indirizzo di classe C 192.168.1.0/24, gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da tre LAN di 50, 40 e 35 host collegate tramite tre router come mostrato in figura.

Nella seguente tabella si riassumono gli indirizzi richiesti per pianificare i dispositivi che compongono la rete proposta :

Rete		Indirizzi richiesti			
A	50 IP per gli host + 1 per il router				
В	41	40 IP per gli host + 1 per il router			
C	36	35 IP per gli host + 1 per il router			
D	2	2 IP per il collegamento punto-punto fra due router			
E	2	2 IP per il collegamento punto-punto fra due router			
F	2	2 IP per il collegamento punto-punto fra due router			

Per ottenere la pianificazione più efficiente si devono prendere in considerazione il numero di sottoreti o il numero di host per ciascuna sottorete.

Subnetting con maschera fissa (FLSM)

Per il subnetting a *maschera fissa* si prende in considerazione il numero di sottoreti presenti nella topologia. In questo caso le sottoreti sono 6 e quindi si deve usare la SM **255.255.255.224** (/27) che divide l'indirizzo di classe C dato nelle seguenti otto sottoreti:

Rete	SM	Hosts		Broadcast
		Min IP	Max IP	
192.168.1.0	/27	192.168.1.1	192.168.1.30	192.168.1.31
192.168.1.32	/27	192.168.1.33	192.168.1.62	192.168.1.63
192.168.1.64	/27	192.168.1.65	192.168.1.94	192.168.1.95
192.168.1.96	/27	192.168.1.97	192.168.1.126	192.168.1.127
192.168.1.128	/27	192.168.1.129	192.168.1.158	192.168.1.159
192.168.1.160	/27	192.168.1.161	192.168.1.190	192.168.1.191
192.168.1.192	/27	192.168.1.193	192.168.1.222	192.168.1.223
192.168.1.224	/27	192.168.1.225	192.168.1.254	192.168.1.255

Come si può notare questa soluzione *non si può* adottare in quanto le sottoreti hanno ciascuna 32 indirizzi (30 utilizzabili), insufficienti per gestire le Reti A, B e C.

Subnetting con maschera variabile (VLSM)

Per il subnetting a maschera *variabile* il valore della SM è determinato esclusivamente dal numero di host che costituiscono le singole sottoreti + 1 indirizzo per il router (+ 1 indirizzo riservato alla rete e + 1 indirizzo di broadcast).

Rete	Indirizzi	N.ro bit	SM
A	51 + 2	$2^n \ge 51 \; ; \; \; n = 6$	255.255.255.192 (11000000) /26
В	41 + 2	$2^n \ge 43 \; ; \; \; n = 6$	255.255.255.192 (11000000) /26
C	36 + 2	$2^n \ge 38 \; ; \; \; n = 6$	255.255.255.192 (11000000) /26
D	2 + 2	$2^n \ge 4 \; ; n = 2$	255.255.255.248 (11111100) /30
E	2 + 2	$2^n \ge 4 \; ; n = 2$	255.255.255.248 (11111100) /30
F	2 + 2	$2^n \ge 4 \; ; n = 2$	255.255.255.248 (11111100) /30

L'assegnazione degli indirizzi alle sottoreti, procedendo in ordine decrescente rispetto al numero di hosts, deve essere tale da non creare sovrapposizione di indirizzi. Si può procedere nel seguente modo:

Partendo dalla tabella per la classe C (vedi Appendice "Classe C") si ottiene la tabella relativa alle sottoreti da creare, specificando la SM opportuna in funzione degli indirizzi necessari per le singole sottoreti (numero hosts + router) :

Rete	Indirizzi	/SM	SM	256 - SM
A	51	/26	255.255.255. 192	64
В	41	/26	255.255.255. 192	64
С	38	/26	255.255.255. 192	64
D	2	/30	255.255.255. 252	4
E	2	/30	255.255.255. 252	4
F	2	/30	255.255.255. 252	4

L'indirizzo 191.168.1.0 con SM /26 è l'indirizzo di rete della prima sottorete.

Rete	Indirizzo di rete	/SM	SM	256 - SM
A	192.168.1.0	/26	255.255.255. 192	64

Per ottenere l'indirizzo di rete della seconda sottorete è sufficiente sommare all'indirizzo di rete della prima sottorete la differenza 256 - 192 = 64

Rete	Indirizzo di rete	/SM	SM	256 - SM
В	192.168.1.64	/26	255.255.255. 192	64

Per ottenere l'indirizzo di rete della terza sottorete è sufficiente sommare all'indirizzo di rete della seconda sottorete la differenza 256 - 192 = 64

Rete	Indirizzo di rete	/SM	SM	256 - SM
С	192.168.1.128	/26	255.255.255. 192	64

Per ottenere l'indirizzo di rete della quarta sottorete è sufficiente sommare all'indirizzo di rete della terza sottorete la differenza 256 - 192 = 64

Rete	Indirizzo di rete	/SM	SM	256 - SM
D	192.168.1.192	/30	255.255.255. 252	4

Per ottenere l'indirizzo di rete della quinta sottorete è sufficiente sommare all'indirizzo di rete della quarta sottorete la differenza 256 - 252 = 4

Rete	Indirizzo di rete	/SM	SM	256 - SM
E	192.168.1.196	/30	255.255.255. 252	4

Per ottenere l'indirizzo di rete della sesta sottorete è sufficiente sommare all'indirizzo di rete della quinta sottorete la differenza 256 - 252 = 4

Rete	Indirizzo di rete	/SM	SM	256 - SM
F	192.168.1.200	/30	255.255.255. 252	4

Per ottenere l'indirizzo di rete della eventuale successiva sottorete (per calcolare l'indirizzo di broadcast della sottorete F) è sufficiente sommare all'indirizzo di rete della sottorete F la differenza 256-252=4

Rete	Indirizzo di rete	/SM	SM	256 - SM
	192.168.1.204			

La pianificazione degli indirizzi per la rete proposta risulta, in definitiva, la seguente :

LAN	SM	Rete	Hos	Hosts		
			da	а		
A	/26	192.168.1.0	192.168.1.1	192.168.1.62	192.168.1.63	
В	/26	192.168.1.64	192.168.1.65	192.168.1.126	192.168.1.127	
С	/26	192.168.1.128	192.168.1.129	192.168.1.190	192.168.1.191	
D	/30	192.168.1.192	192.168.1.193	192.168.194	192.168.1.195	
E	/30	192.168.1.196	192.168.1.197	192.168.1.198	192.168.1.199	
F	/30	192.168.1.200	192.168.1.201	192.168.1.202	192.168.1.203	

Verifica con VLSM Subnet Calculator (http://www.vlsm-calc.net/)

Subnet Name	Needed Size	Allocated Size	Address	Mask	Dec Mask	Assignable Range
A	50	62	192.168.1.0	/26	255.255.255.192	192.168.1.1 - 192.168.1.62
В	40	62	192.168.1.64	/26	255.255.255.192	192.168.1.65 - 192.168.1.126
С	35	62	192.168.1.128	/26	255.255.255.192	192.168.1.129 - 192.168.1.190
D	2	2	192.168.1.192	/30	255.255.255.252	192.168.1.193 - 192.168.1.194
E	2	2	192.168.1.196	/30	255.255.255.252	192.168.1.197 - 192.168.1.198
F	2	2	192.168.1.200	/30	255.255.255.252	192.168.1.201 - 192.168.1.202

Piano di indirizzamento

Componente	Indirizzo IP	Subnet mask	/SM
	Rete	• A	1
Router-ReteA	192.168.1.1	255.255.255.192	/26
PC1-ReteA	192.168.1.2	255.255.255.192	/26
PC2-ReteA	192.168.1.3	255.255.255.192	/26
		255.255.255.192	/26
PC50-ReteA	192.168.1.51	255.255.255.192	/26
Stampante-ReteA	192.168.1.62	255.255.255.192	/26
	Rete	B	
Router-ReteB	192.168.1.65	255.255.255.192	/26
PC1-ReteB	192.168.1.66	255.255.255.192	/26
PC2-ReteB	192.168.1.67	255.255.255.192	/26
		255.255.255.192	/26
PC40-ReteB	192.168.1.105	255.255.255.192	/26
Stampante-ReteB	192.168.1.125	255.255.255.192	/26
Server-ReteB	192.168.1.126	255.255.255.192	/26
	Rete	e C	<u> </u>
Router-ReteC	192.168.1.129	255.255.255.192	/26
PC1-ReteC	192.168.1.130	255.255.255.192	/26
PC2-ReteC	192.168.1.131	255.255.255.192	/26
		255.255.255.192	/26
PC35-ReteC	192.168.1.164	255.255.255.192	/26
Stampante-ReteC	192.168.1.189	255.255.255.192	/26
Server-ReteC	192.168.1.190	255.255.255.192	/26
	Rete D (canal	e punto-punto)	
Punto ReteA	192.168.1.193	255.255.255.252	/30
Punto ReteB	192.168.1.193	255.255.255.252	/30
	Rete E (canal	"	-1
Punto ReteC	192.168.1.197	255.255.255.252	/30
Punto ReteB	192.168.1.198	255.255.255.252	/30
	Rete F (canal	"	
Punto ReteA	192.168.1.201	255.255.255.252	/30
Punto ReteC	192.168.1.202	255.255.255.252	/30

∔ Esercizio 6

Pianificare, utilizzando l'indirizzo di classe B 150.10.128.0/18, gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da quattro LAN di 1200, 1000, 500 e 200 host collegate tramite due router come mostrato in figura.

Nella seguente tabella si riassumono gli indirizzi richiesti per pianificare i dispositivi che compongono la rete proposta :

Rete		Indirizzi richiesti					
A	1201	1200 IP per gli host + 1 indirizzo per il router					
В	1001	1000 IP per gli host + 1 indirizzo per il router					
С	501	500 IP per gli host + 1 indirizzo per il router					
D	201	200 IP per gli host + 1 indirizzo per il router					
E	2	2 IP per il collegamento punto-punto fra i due router					

Per ottenere la pianificazione più efficiente si devono prendere in considerazione il numero di sottoreti o il numero di host per ciascuna sottorete.

Subnetting con maschera fissa (FLSM)

Per il subnetting a *maschera fissa* si prende in considerazione il numero di sottoreti presenti nella topologia. In questo caso le sottoreti sono 5 e quindi si deve usare la SM **255.255.224.0** (/19) che divide l'indirizzo di classe B dato nelle seguenti otto sottoreti:

Rete	SM	Hosts		Broadcast
		Min IP	Max IP	
150.10.0.0	/19	150.10.0.1	150.10.31.254	150.10.31.255
150.10.32.0	/19	150.10.32.1	150.10.63.254	150.10.63.255
150.10.64.0	/19	150.10.64.1	150.10.95.254	150.10.95.255
150.10.96.0	/19	150.10.96.1	150.10.127.254	150.10.127.255
150.10.128.0	/19	150.10.128.1	150.10.159.254	150.10.159.255
150.10.160.0	/19	150.10.160.1	150.10.191.254	150.10.191.255
150.10.192.0	/19	150.10.192.1	150.10.223.254	150.10.223.255
150.10.224.0	/19	150.10.224.1	150.10.255.254	150.10.255.255

Come si può notare questa soluzione *si può* adottare in quanto le sottoreti hanno ciascuna 8192 indirizzi (8190 utilizzabili), sufficienti per gestire tutte le LAN ma sicuramente non è quella ottimale in quanto si potrebbe, tenendo ovviamente conto del numero degli host, usare la SM **255.255.48.0** (/21) che consente di ottenere 32 sottoreti con 2048 indirizzi (2046 utilizzabili):

Rete	SM	Hosts		Broadcast
		Min IP	Max IP	
150.10.0.0	/21	150.10.0.1	150.10.7.254	150.10.7.255
150.10.8.0	/21	150.10.8.1	150.10.15.254	150.10.15.255
150.10.16.0	/21	150.10.16.1	150.10.23.254	150.10.23.255
	/21			
	/21			
150.10.240.0	/21	150.10.240.1	150.10.247.254	150.10.247.255
150.10.248.0	/21	150.10.248.1	150.10.255.254	150.10.255.255

Subnetting con maschera variabile (VLSM)

Per il subnetting a maschera *variabile* il valore della SM è determinato esclusivamente dal numero di host che costituiscono le singole sottoreti + 1 indirizzo per il router (+ 1 indirizzo riservato alla rete e + 1 indirizzo di broadcast).

Rete	Indirizzi	N.ro bit	SM	
A	1201 + 2	$2^n \ge 1203 \; ; \; n = 11$	255.255.248.0 (11111000) /2	21
В	1001 + 2	$2^n \ge 1003 \; ; \; n = 10$	255.255.252.0 (11111100) /2	22
C	501 + 2	$2^n \ge 503$; $n = 9$	255.255.254.0 (11111110) /2	23
D	201 + 2	$2^n \ge 203$; $n = 8$	255.255.255.0 (11111111) /2	24
E	2 + 2	$2^n \ge 4 \qquad ; n = 2$	255.255.255.252 (11111100) /3	Ю

L'assegnazione degli indirizzi alle sottoreti, procedendo in ordine decrescente rispetto al numero di hosts, deve essere tale da non creare sovrapposizione di indirizzi. Si può procedere nel seguente modo:

Partendo dalla tabella per la classe B (vedi Appendice "Classe B") si ottiene la tabella relativa alle sottoreti da creare, specificando la SM opportuna in funzione degli indirizzi necessari per le singole sottoreti (numero hosts + router) :

Rete	Indirizzi	/SM	SM	256 - SM
A	1203	/21	255.255. 248 .0	8
В	1003	/22	255.255. 252 .0	4
С	503	/23	255.255. 254 .0	2
D	203	/24	255.255. 255 .0	1
E	4	/30	255.255.255. 252	4

L'indirizzo 150.10.128.0 con SM /21 è l'indirizzo di rete della prima sottorete.

Rete	Indirizzo di rete	/SM	SM	256 - SM
A	150.10.128.0	/21	255.255. 248 .0	8

Per ottenere l'indirizzo di rete della seconda sottorete è sufficiente sommare all'indirizzo di rete della prima sottorete la differenza 256 - 248 = 8

Rete	Indirizzo di rete	/SM	SM	256 - SM
В	150.10.136.0	/22	255.255. 252 .0	4

Per ottenere l'indirizzo di rete della terza sottorete è sufficiente sommare all'indirizzo di rete della seconda sottorete la differenza 256 - 252 = 4

Rete	Indirizzo di rete	/SM	SM	256 - SM
С	150.10.140.0	/23	255.255. 254 .0	2

Per ottenere l'indirizzo di rete della quarta sottorete è sufficiente sommare all'indirizzo di rete della terza sottorete la differenza 256 - 254 = 2

Rete	Indirizzo di rete	/SM	SM	256 - SM
D	150.10.142.0	/24	255.255. 255 .0	1

Per ottenere l'indirizzo di rete della quinta sottorete è sufficiente sommare all'indirizzo di rete della quarta sottorete la differenza 256 - 255 = 1

Rete	Indirizzo di rete	/SM	SM	256 - SM
E	150.10.143.0	/30	255.255.255. 252	4

Per ottenere l'indirizzo di rete della eventuale successiva sottorete (per calcolare l'indirizzo di broadcast della sottorete E) è sufficiente sommare all'indirizzo di rete della sottorete E la differenza 256-252 = 4. Da notare, comunque, che per reti /30, aventi solo quattro indirizzi (due utilizzabili), l'indirizzo di broadcast si può calcolare semplicemente aggiungendo 3 all'indirizzo di rete.

Rete	Indirizzo di rete	/SM	SM	256 - SM
	150.10.143.4			

La pianificazione degli indirizzi per la rete proposta risulta, in definitiva, la seguente :

LAN	SM	IP Rete	Hosts		Server	Router	Broadcast
			da	а			
A	/21	150.10.128.0	150.10.128.2	150.10.132.177		150.10.128.1	150.10.135.255
В	/22	150.10.136.0	150.10.136.2	150.10.138.233	150.10.139.254	150.10.136.1	150.10.139.255
C	/23	150.10.140.0	150.10.140.2	150.10.141.245		150.10.140.1	150.10.141.255
D	/24	150.10.142.0	150.10.142.2	150.10.142.201	150.10.142.254	150.10.142.1	150.10.142.255
E	/30	150.10.143.0				150.10.143.1 150.10.143.2	150.10.143.3

Subnet Name	Needed Size	Allocated Size	Address	Mask	Dec Mask	Assignable Range	Broadcast
A	1200	2046	150.10.128.0	/21	255.255.248.0	150.10.128.1 - 150.10.135.254	150.10.135.255
В	1000	1022	150.10.136.0	/22	255.255.252.0	150.10.136.1 - 150.10.139.254	150.10.139.255
C	500	510	150.10.140.0	/23	255.255.254.0	150.10.140.1 - 150.10.141.254	150.10.141.255
D	200	254	150.10.142.0	/24	255.255.255.0	150.10.142.1 - 150.10.142.254	150.10.142.255
E	2	2	150.10.143.0	/30	255.255.255.252	150.10.143.1 - 150.10.143.2	150.10.143.3

★ Esercizio 7

Pianificare, utilizzando l'indirizzo di classe B 160.10.144.0/20, gli indirizzi IP di tutti i dispositivi che costituiscono la rete costituita da tre LAN di 2000, 600 e 400 host collegate tramite tre router come mostrato in figura.

Nella seguente tabella si riassumono gli indirizzi richiesti dalle singole sottoreti, che compongono la rete proposta, con la relativa SM :

Rete	Ind	irizzi richiesti (esclusi IP rete e Broadcast)	SM	
A	2001	2000 IP per gli host + 1 per il router	255.255.248.0	/21
В	601	600 IP per gli host + 1 per il router	255.255.252.0	/22
С	401	400 IP per gli host + 1 per il router	255.255.254.0	/23
R1-R2	2	2 IP per il collegamento punto-punto fra R1 e R2	255.255.255.252	/30
R1-R3	2	2 IP per il collegamento punto-punto fra R1 e R3	255.255.255.252	/30
R2-R3	2	2 IP per il collegamento punto-punto fra R1 e R4	255.255.255.252	/30

L'indirizzo di classe B 160.10.14.0/20 consente (vedere Appendice "Classe B") di ottenere 16 sottoreti con 4096 IP (4094 utilizzabili) ed è, quindi, possibile pianificare tutte le sottoreti della rete proposta.

Per ottimizzare, comunque, lo spreco di indirizzi si può utilizzare l'indirizzo 160.10.14.0/21 (255.255.248.0) che consente di ottenere 32 sottoreti da 2048 IP (2046 utilizzabili) e, quindi, sufficiente a pianificare tutte le sottoreti della rete proposta.

Si può, quindi procedere a calcolare l'indirizzo di rete di ciascuna sottorete con il procedimento del :

Subnetting con maschera variabile (VLSM)

Rete	Indirizzo di rete	/SM	SM	256 - SM	
A	160.10.144.0	/21	255.255. 248 .0	8	da aggiungere al terzo ottetto
В	160.10.152.0	/22	255.255. 252 .0	4	da aggiungere al terzo ottetto
С	160.10.156.0	/23	255.255. 254 .0	2	da aggiungere al terzo ottetto
R1-R2	160.10.158.0	/30	255.255.255. 252	4	da aggiungere al quarto ottetto
R1-R3	160.10.158.4	/30	255.255.255. 252	4	da aggiungere al quarto ottetto
R2-R3	160.10.158.8	/30	255.255.255. 252	4	da aggiungere al quarto ottetto

Per questo esercizio si propone anche un procedimento che considera l'IP espresso in binario (in grassetto la parte riservata alla rete).

Rete	Indirizzo di rete	/SM
A	/21	

Con SM /21 ventuno bit sono riservati alla rete ed undici agli host :

La successiva rete si ottiene incrementando di 1 il valore, in questo caso, dei primi 5 bit del terzo ottetto, ovvero scrivendo tutte le possibili configurazioni binarie successive alla configurazione data si ottengono tutte le altre sottoreti successive a quella proposta :

ecc., ecc.

La prima configurazione viene utilizzata per la rete B:

Rete	Indirizzo di rete	/SM
В	160.10.152.0	/22

Con SM /22 ventidue bit sono riservati alla rete e dieci agli host :

1010000	00001010	10011000	0000000
160	10	152	0

La successiva rete, come visto precedentemente, si ottiene incrementando di 1 il valore, in questo caso, dei primi 6 bit del terzo ottetto, ovvero scrivendo tutte le possibili configurazioni binarie successive alla configurazione data si ottengono tutte le altre sottoreti successive a quella proposta :

ecc., ecc.

La prima configurazione viene utilizzata per la rete C:

Rete	Indirizzo di rete	/SM
С	160.10.156.0	/23

Con SM /23 ventitrè sono riservati alla rete e nove agli host :

La successiva rete, come visto precedentemente, si ottiene incrementando di 1 il valore, in questo caso, dei primi 7 bit del terzo ottetto, ovvero scrivendo tutte le possibili configurazioni binarie successive alla configurazione data si ottengono tutte le altre sottoreti successive a quella proposta :

La prima configurazione viene utilizzata il collegamento punto-punto fra R1 e R2 :

Rete	Indirizzo di rete	/SM
R1-R2	160.10.158.0	/30

Con SM /30 trenta bit sono riservati alla rete e due agli host :

10100000	00001010	10011110	0000000
160	10	158	0

La successiva rete, come visto precedentemente, si ottiene incrementando di 1 il valore, in questo caso, dei primi 7 bit del quarto ottetto, ovvero scrivendo tutte le possibili configurazioni binarie successive alla configurazione data si ottengono tutte le altre sottoreti successive a quella proposta :

ecc., ecc

La prime due configurazioni vengono utilizzate il collegamento punto-punto fra R1 e R3 e fra R2 e R3 :

Rete	Indirizzo di rete	/SM
R1-R3	160.10.158.4	/30
R2-R3	160.10.158.8	/30

La pianificazione degli indirizzi per la rete proposta risulta, in definitiva, la seguente :

LAN	SM	IP Rete	Hosts		Router	Broadcast
			da	а		
A	/21	160.10.144.0	160.10.144.2	160.10.151.254	160.10.144.1	160.10.151.255
В	/22	160.10.152.0	160.10.152.2	160.10.155.254	160.10.152.1	160.10.155.255
С	/23	160.10.156.0	160.10.156.2	160.10.157.254	160.10.156.1	160.10.157.255
R1-R2	/30	160.10.158.0			160.10.158.1 160.10.158.2	160.10.158.3
R1-R3	/30	160.10.158.4			160.10.158.5 160.10.158.6	160.10.158.7
R2-R3	/30	160.10.158.8			160.10.158.9 160.10.158.10	160.10.158.11

Subnet Name	Needed Size	Allocated Size	Address	Mask	Dec Mask	Assignable Range	Broadcast
A	2001	2046	160.10.144.0	/21	255.255.248.0	160.10.144.1 - 160.10.151.254	160.10.151.255
В	601	1022	160.10.152.0	/22	255.255.252.0	160.10.152.1 - 160.10.155.254	160.10.155.255
С	401	510	160.10.156.0	/23	255.255.254.0	160.10.156.1 - 160.10.157.254	160.10.157.255
D	2	2	160.10.158.0	/30	255.255.255.252	160.10.158.1 - 160.10.158.2	160.10.158.3
E	2	2	160.10.158.4	/30	255.255.255.252	160.10.158.5 - 160.10.158.6	160.10.158.7
F	2	2	160.10.158.8	/30	255.255.255.252	160.10.158.9 - 160.10.158.10	160.10.158.11

↓ Esercizio 8

Configurare la rete, a cui è assegnato l'indirizzo di rete 194.5.12.0/23, rappresentata in figura assegnando a ciascun host un indirizzo IP pubblico. L'indirizzo IP (190.13.90.1) verso la rete esterna e l'indirizzo del primo router del provider (190.13.90.2) sono assegnati dal provider. Suddividere la rete in sottoreti indicando per ciascuna sottorete l'indirizzo e la netmask, sia per le LAN che per i collegamenti punto-punto. Assegnare, inoltre, alle interfacce dei router degli indirizzi compatibili con quelli delle reti a cui sono collegate.

Nella seguente tabella si riassumono gli indirizzi richiesti dalle singole sottoreti, che compongono la rete proposta, con la relativa SM espressa in notazione decimale puntata e in notazione CIDR.

Rete	(00	Indirizzi richiesti ompresi IP rete e Broadcast)	N.ro bit	SM
	(60	impresi ir rete e broaucast)		
A	223	220 IP per gli host + 1 per il router	$2^n \ge 223 \; ; \; n = 8$	255.255.255.0 /24
В	88	85 IP per gli host + 1 per il router	$2^{n} \ge 88 \; ; n = 7$	255.255.255.128 /25
С	53	50 IP per gli host + 1 per il router	$2^n \ge 53 \; ; n = 6$	255.255.255.192 /26
D	23	20 IP per gli host + 1 per il router	$2^n \ge 23$; $n = 5$	255.255.255.224 /27
R1-R2	4	2 IP per il collegamento punto- punto fra R1 e R2	$2^n \ge 4$; $n = 2$	255.255.255.252 /30
R1-R3	4	2 IP per il collegamento punto- punto fra R1 e R3	$2^n \ge 4$; $n = 2$	255.255.255.252 /30
R1-R4	4	2 IP per il collegamento punto- punto fra R1 e R4	$2^n \ge 4$; $n = 2$	255.255.255.252 /30
R1-R5	4	2 IP per il collegamento punto- punto fra R1 e R5	$2^n \ge 4$; $n = 2$	255.255.255.252 /30

L'indirizzo di rete proposto 194.5.12.0/23 è sufficiente a pianificare tutte le sottoreti in quanto può generare due sottoreti /24 ed esattamente la 194.5.12.0/24 e la 194.5.13.0/24.

Per la rete assegnata, infatti, si ha:

IP Rete	SM		Hosts		Broadcast
			da	а	
194.5.12.0	255.255.254.0	/23	194.5.12.1	194.5.13.254	194.5.13.255

Per ottenere, da questa, due sottoreti $\ /24$ si deve utilizzare anche il 24° bit dell'indirizzo

194	5	12	0
-----	---	----	---

Il terzo ottetto in binario è:

194	5	0001100 0	0

utilizzare anche il 24° bit vuol dire che si può modificare l'ultimo bit del terzo ottetto che diventa :

194 5 0001100**1 0**

ovvero:

194 5 13 0

Il primo indirizzo di rete viene assegnato alla rete A ed il secondo viene assegnato a tutte le altre. Si può, quindi procedere a calcolare l'indirizzo di rete di ciascuna sottorete :

Rete	Indirizzo di rete	/SM	SM	256 - SM
A	194.5.12.0	/24	255.255. 255 .0	1
В	194.5.13.0	/25	255.255.255. 128	128
С	194.5.13.128	/26	255.255.255. 192	64
D	194.5.13.192	/27	255.255.255. 224	32
R1-R2	194.5.13.224	/30	255.255.255. 252	4
R1-R3	194.5.13.228	/30	255.255.255. 252	4
R1-R4	194.5.13.232	/30	255.255.255. 252	4
R1-R5	194.5.13.236	/30	255.255.255. 252	4

La pianificazione degli indirizzi per la rete proposta risulta, in definitiva, la seguente :

LAN	SM	IP Rete	Но	sts	Router	Broadcast
			da	а		
A	/24	194.5.12.0	194.5.12.2	194.5.12.221	194.5.12.1	194.5.12.255
В	/25	194.5.13.0	194.5.13.2	194.5.13.86	194.5.13.1	194.5.13.127
C	/26	194.5.13.128	194.5.13.130	194.5.13.179	194.5.13.129	194.5.13.191
D	/27	194.5.13.192	194.5.13.194	194.5.13.213	194.5.13.193	194.5.13.223
R1-R2	/30	194.5.13.224			194.5.13.225 194.5.13.226	195.5.13.227
R1-R3	/30	194.5.13.228			194.5.13.229 194.5.13.230	194.5.13.231
R1-R4	/30	194.5.13.232			194.5.13.233 194.5.13.234	194.5.13.235
R1-R5	/30	194.5.13.236			194.5.13.237 194.5.13.238	194.5.13.239

Subnet Name	Needed Size	Allocated Size	Address	Mask	Dec Mask	Assignable Range	Broadcast
A	221	254	194.5.12.0	/24	255.255.255.0	194.5.12.1 - 194.5.12.254	194.5.12.255
В	86	126	194.5.13.0	/25	255.255.255.128	194.5.13.1 - 194.5.13.126	194.5.13.127
С	51	62	194.5.13.128	/26	255.255.255.192	194.5.13.129 - 194.5.13.190	194.5.13.191
D	21	30	194.5.13.192	/27	255.255.255.224	194.5.13.193 - 194.5.13.222	194.5.13.223
E	2	2	194.5.13.224	/30	255.255.255.252	194.5.13.225 - 194.5.13.226	194.5.13.227
F	2	2	194.5.13.228	/30	255.255.255.252	194.5.13.229 - 194.5.13.230	194.5.13.231
G	2	2	194.5.13.232	/30	255.255.255.252	194.5.13.233 - 194.5.13.234	194.5.13.235
Н	2	2	194.5.13.236	/30	255.255.255.252	194.5.13.237 - 194.5.13.238	194.5.13.239

★ Esercizio 9

Configurare la rete rappresentata in figura assegnando a ciascun host un indirizzo IP pubblico. L'indirizzo IP (200.10.0.1) verso la rete esterna e l'indirizzo del primo router del provider (200.10.0.2) sono assegnati dal provider. Proporre la soluzione che preveda l'utilizzo del minor numero di reti partendo dalla classe C 210.0.1.0/24. Dopo aver determinato gli indirizzi di tutte le sottoreti, specificare per ciascuna di esse l'indirizzo di broadcast ed assegnare gli indirizzi IP ai router.

Nella seguente tabella si riassumono gli indirizzi richiesti dalle singole sottoreti, che compongono la rete proposta, con la relativa SM espressa in notazione decimale puntata e in notazione CIDR.

Rete	Inc	lirizzi richiesti (esclusi IP rete e Broadcast)	SM	
A	71	50 IP per gli host + 1 per il router	255.255.255.128	/25
В	36	25 IP per gli host + 1 per il router	255.255.255.192	/26
C	21	20 IP per gli host + 1 per il router	255.255.255.224	/27
D	13	12 IP per gli host + 1 per il router	255.255.255.240	/28
R1-R2	2	2 IP per il collegamento punto-punto fra R1 e R2	255.255.255.252	/30
R2-R3	2	2 IP per il collegamento punto-punto fra R2 e R3	255.255.255.252	/30

Con gli indirizzi richiesti è possibile effettuare il subnetting della rete di classe C **210.0.1.0/24** a maschera variabile.

Subnetting con maschera variabile (VLSM)

Rete	Indirizzo di rete	/SM	SM	256 - SM
A	210.0.1.0	/25	255.255.255. 128	128
В	210.0.1.128	/26	255.255.255. 192	64
С	210.0.1.192	/27	255.255.255. 224	32
D	210.0.1.224	/28	255.255.255. 240	16
R1-R2	210.0.1.240	/30	255.255.255. 252	4
R2-R3	210.0.1.244	/30	255.255.255. 252	4

La pianificazione degli indirizzi per la rete proposta risulta, in definitiva, la seguente :

LAN	SM	IP Rete	Hosts		Router	Broadcast
			da	а		
A	/25	210.0.1.0	210.0.1.2	210.0.1.126	210.0.0.1	210.0.1.127
В	/26	210.0.1.128	210.0.1.130	210.0.1.190	210.0.1.129	210.0.1.191
C	/27	210.0.1.192	210.0.1.194	210.0.1.222	210.0.1.193	210.0.1.223
D	/28	210.0.1.224	210.0.1.226	210.0.1.238	210.0.1.225	210.0.1.239
R1-R2	/30	210.0.1.240			210.0.1.241 210.0.1.242	210.0.1.243
R2-R3	/30	210.0.1.244			210.0.1.245 210.0.1.246	210.0.1.247

Subnet Name	Needed Size	Allocated Size	Address	Mask	Dec Mask	Assignable Range	Broadcast
A	71	126	210.0.1.0	/25	255.255.255.128	210.0.1.1 - 210.0.1.126	210.0.1.127
В	36	62	210.0.1.128	/26	255.255.255.192	210.0.1.129 - 210.0.1.190	210.0.1.191
С	21	30	210.0.1.192	/27	255.255.255.224	210.0.1.193 - 210.0.1.222	210.0.1.223
D	13	14	210.0.1.224	/28	255.255.255.240	210.0.1.225 - 210.0.1.238	210.0.1.239
E	2	2	210.0.1.240	/30	255.255.255.252	210.0.1.241 - 210.0.1.242	210.0.1.243
F	2	2	210.0.1.244	/30	255.255.255.252	210.0.1.245 - 210.0.1.246	210.0.1.247

↓ Esercizio 10

Configurare la rete rappresentata in figura assegnando a ciascun host un indirizzo IP pubblico. L'indirizzo IP (190.13.90.1) verso la rete esterna e l'indirizzo del primo router del provider (190.13.90.2) sono assegnati dal provider. Proporre la soluzione che preveda l'utilizzo del minor numero di reti partendo dalla classe C 205.0.1.0/24. Dopo aver determinato gli indirizzi di tutte le sottoreti, specificare per ciascuna di esse l'indirizzo di broadcast ed assegnare gli indirizzi IP ai router.

Nella seguente tabella si riassumono gli indirizzi richiesti dalle singole sottoreti, che compongono la rete proposta, con la relativa SM espressa in notazione decimale puntata e in notazione CIDR.

Rete	Inc	lirizzi richiesti (esclusi IP rete e Broadcast)	SM	
A	63	62 IP per gli host + 1 per il router	255.255.255.128	/25
В	23	22 IP per gli host + 1 per il router	255.255.255.224	/27
С	11	10 IP per gli host + 1 per il router	255.255.255.240	/28
D	3	Sottorete per la dorsale (<i>backbone</i>) che connette i router : 3 IP per le interfacce dei router collegati	255.255.255.248	/29

Con gli indirizzi richiesti è possibile effettuare il subnetting della rete di classe C **205.0.1.0/24** a maschera variabile.

Subnetting con maschera variabile (VLSM)

Rete	Indirizzo di rete	/SM	SM	256 - SM
A	205.0.1.0	/25	255.255.255. 128	128
В	205.0.1.128	/27	255.255.255. 224	32
С	205.0.1.160	/28	255.255.255. 240	16
D	205.0.1.176	/29	255.255.255. 248	8

La pianificazione degli indirizzi per la rete proposta risulta, in definitiva, la seguente :

LAN	SM	IP Rete	Hosts		Router	Broadcast
			da a			
A	/25	205.0.1.0	205.0.1.2	205.0.1.126	205.0.1.1	205.0.1.127
В	/27	205.0.1.128	205.0.1.130	205.0.1.158	205.0.1.129	205.0.1.159
C	/28	205.0.1.160	205.0.1.162	205.0.1.174	205.0.1.161	205.0.1.175
D	/29	205.0.1.176	205.0.1.177	205.0.1.182		205.0.1.183

Subnet Name	Needed Size	Allocated Size	Address	Mask	Dec Mask	Assignable Range	Broadcast
A	63	126	205.0.1.0	/25	255.255.255.128	205.0.1.1 - 205.0.1.126	205.0.1.127
В	23	30	205.0.1.128	/27	255.255.255.224	205.0.1.129 - 205.0.1.158	205.0.1.159
С	11	14	205.0.1.160	/28	255.255.255.240	205.0.1.161 - 205.0.1.174	205.0.1.175
D	3	6	205.0.1.176	/29	255.255.255.248	205.0.1.177 - 205.0.1.182	205.0.1.183

Appendice

Classe C

Netmask	/prefisso	Subnet Bits	Sottoreti	N.ro IP	N.ro Hosts utilizzabili
255.255.255.0	/24	0	1	256	254
255.255.255.128	/25	1	2	128	126
255.255.255.192	/26	2	4	64	62
255.255.255.224	/27	3	8	32	30
255.255.255.240	/28	4	16	16	14
255.255.255.248	/29	5	32	8	6
255.255.255.252	/30	6	64	4	2

Classe B

Netmask	/prefisso	Subnet Bits	Sottoreti	N.ro IP	N.ro Hosts utilizzabili
255.255.0.0	/16	0	1	65536	65534
255.255.128.0	/17	1	2	32768	32766
255.255.192.0	/18	2	4	16384	16382
255.255.224.0	/19	3	8	8192	8190
255.255.240.0	/20	4	16	4096	4094
255.255.248.0	/21	5	32	2048	2046
255.255.252.0	/22	6	64	1024	1022
255.255.254.0	/23	7	128	512	510
255.255.255.0	/24	8	256	256	254
255.255.255.128	/25	9	512	128	126
255.255.255.192	/26	10	1024	64	62
255.255.255.224	/27	11	2048	32	30
255.255.255.240	/28	12	4096	16	14
255.255.255.248	/29	13	8192	8	6
255.255.255.252	/30	14	16384	2	4

Classe A

Netmask	/prefisso	Subnet Bits	Sottoreti	N.ro IP	N.ro Hosts utilizzabili
255.0.0.0	/8	0	1	16777216	16777214
255.128.0.0	/9	1	2	8388608	8388606
255.192.0.0	/10	2	4	4194304	4194302
255.224.0.0	/11	3	8	2097152	2097150
255.240.0.0	/12	4	16	1048576	1048574
255.248.0.0	/13	5	32	524288	524286
255.252.0.0	/14	6	64	262144	262142
255.254.0.0	/15	7	128	131072	131070
255.255.0.0	/16	8	256	65536	65534
255.255.128.0	/17	9	512	32768	32766
255.255.192.0	/18	10	1024	16384	16382
255.255.224.0	/19	11	2048	8192	8190
255.255.240.0	/20	12	4096	4096	4094
255.255.248.0	/21	13	8192	2048	2046
255.255.252.0	/22	14	16384	1024	1022
255.255.254.0	/23	15	32768	512	510
255.255.255.0	/24	16	65536	256	254
255.255.255.128	/25	17	131072	128	126
255.255.255.192	/26	18	262144	64	62
255.255.255.224	/27	19	524288	32	30
255.255.255.240	/28	20	1048576	16	14
255.255.255.248	/29	21	2097152	8	6
255.255.255.252	/30	22	4194304	2	4

TABELLA DELLE SUBNET E LORO ANNOTAZIONE CIDR

(dal sito : http://www.tuttoreti.it/tabelle_cidr.htm)

La tabella seguente mostra le corrispondenze che esistono tra una subnet mask descritta con annotazione CIDR, la corrispondente subnet inversa (o wildcard mask), la sua forma binaria, il numero di reti che comprende tale subnet e il totale degli indirizzi IP a disposizione per quella subnet.

		Wildcard Mask			
CIDR	Subnet Mask	(Subnet	Subnet Mask in Binario	Numero di Reti	Totale IP Utilizzabili
		Inversa)		ui Keti	Othizzabili
/1	128.0.0.0		1000 0000 0000 0000 0000 0000 0000 0000		2.147.483.646
/2	192.0.0.0	63.255.255.255	1100 0000 0000 0000 0000 0000 0000 0000		1.073.741.822
/3	224.0.0.0	31.255.255.255	1110 0000 0000 0000 0000 0000 0000 0000	32 A	536.870.910
/4	240.0.0.0	15.255.255.255	1111 0000 0000 0000 0000 0000 0000 0000	16 A	268.435.454
/5	248.0.0.0	7.255.255.255	1111 1000 0000 0000 0000 0000 0000 0000	8 A	134.217.726
/6	252.0.0.0	3.255.255.255	1111 1100 0000 0000 0000 0000 0000 0000	4 A	67.108.862
/7	254.0.0.0	1.255.255.255	1111 1110 0000 0000 0000 0000 0000 0000	2 A	33.554.430
/8	255.0.0.0	0.255.255.255	1111 1111 0000 0000 0000 0000 0000 0000	1 A oppure 256 B	16.777.214
/9	255.128.0.0	0.127.255.255	1111 1111 1000 0000 0000 0000 0000 0000	128 B	8.388.606
/10	255.192.0.0	0.63.255.255	1111 1111 1100 0000 0000 0000 0000 0000	64 B	4.194.302
/11	255.224.0.0	0.31.255.255	1111 1111 1110 0000 0000 0000 0000 0000	32 B	2.097.150
/12	255.240.0.0	0.15.255.255	1111 1111 1111 0000 0000 0000 0000 0000	16 B	1.048.574
/13	255.248.0.0	0.7.255.255	1111 1111 1111 1000 0000 0000 0000 0000	8 B	524.286
/14	255.252.0.0	0.3.255.255	1111 1111 1111 1100 0000 0000 0000 0000	4 B	262.142
/15	255.254.0.0	0.1.255.255	1111 1111 1111 1110 0000 0000 0000 0000	2 B	131.070
/16	255.255.0.0	0.0.255.255	1111 1111 1111 1111 0000 0000 0000 0000	1 B oppure 256 C	65.534
			'		
/17	255.255.128.0	0.0.127.255	1111 1111 1111 1111 1000 0000 0000 0000	128 C	32.766
/18	255.255.192.0	0.0.63.255	1111 1111 1111 1111 1100 0000 0000 0000	64 C	16.382
/19	255.255.224.0	0.0.31.255	1111 1111 1111 1111 1110 0000 0000 0000	32 C	8.190
/20	255.255.240.0	0.0.15.255	1111 1111 1111 1111 1111 0000 0000 0000	16 C	4.094
	255.255.248.0	0.0.7.255	1111 1111 1111 1111 1111 1000 0000 0000	8 C	2.046
/22	255.255.252.0	0.0.3.255	1111 1111 1111 1111 1111 1100 0000 0000	4 C	1.022
	255.255.254.0	0.0.1.255	1111 1111 1111 1111 1111 1110 0000 0000	2 C	510
/24	255.255.255.0	0.0.0.255	1111 1111 1111 1111 1111 1111 0000 0000	1 C	254
	I	ı		l	
/25	255.255.255.128	0.0.0.127	1111 1111 1111 1111 1111 1111 1000 0000	1/2 C	126
	255.255.255.192		1111 1111 1111 1111 1111 1111 1100 0000	1/4 C	62
	255.255.255.224		1111 1111 1111 1111 1111 1111 1110 0000	1/4 C	30
	255.255.255.240		1111 1111 1111 1111 1111 1111 1111 0000	1/16 C	14
	255.255.255.248		1111 1111 1111 1111 1111 1111 1000	1/10 C	6
	255.255.255.252		1111 1111 1111 1111 1111 1111 1111 1100	1/64 C	2
	255.255.255.254		1111 1111 1111 1111 1111 1111 1111 1110	1/128 C	0
	255.255.255.255		1111 1111 1111 1111 1111 1111 1111	1/256 C	1
/32	200.200.200.200	0.0.0.0		1/230 C	I

TABELLA POTENZE DEL 2

_ 1	2
2 ¹	2
2 ²	4
2 ² 2 ³ 2 ⁴	8
2 ⁴	16
2 ⁵	32
2 ⁶	64
2 ⁷	128
2 ⁸	256
2 ⁸ 2 ⁹	512
2 ¹⁰	1.024
2 ¹¹ 2 ¹²	2.048
2 ¹²	4.096
2 ¹³	8.192
2 ¹⁴	16.384
2 ¹⁵	32.768
2 ¹⁶	65.536
2 ¹⁷	131.072
2 ¹⁸	262.144
2 ¹⁹	524.288
2 ¹⁸ 2 ¹⁹ 2 ²⁰	1.048.576
221	2.097.152
2 ²² 2 ²³	4.194.304
2 ²³	8.388.608

TABELLA DECIMALE-BINARIO

decimale	binario	decimale	binario	decimale	binario	decimale	binario
0 ₁₀	000000002	32 ₁₀	001000002	64 ₁₀	010000002	96 ₁₀	011000002
1 ₁₀	000000012	33 ₁₀	001000012	65 ₁₀	010000012	97 ₁₀	011000012
2 ₁₀	000000102	34 ₁₀	001000102	66 ₁₀	010000102	98 ₁₀	011000102
3 ₁₀	000000112	35 ₁₀	001000112	67 ₁₀	010000112	99 ₁₀	011000112
4 ₁₀	000001002	36 ₁₀	001001002	68 ₁₀	010001002	100 ₁₀	011001002
5 ₁₀	000001012	37 ₁₀	001001012	69 ₁₀	010001012	101 ₁₀	011001012
6 ₁₀	000001102	38 ₁₀	001001102	70 ₁₀	010001102	102 ₁₀	01100110 ₂
7 ₁₀	000001112	39 ₁₀	001001112	71 ₁₀	010001112	103 ₁₀	011001112
8 ₁₀	000010002	40 ₁₀	001010002	72 ₁₀	010010002	104 ₁₀	011010002
9 ₁₀	000010012	41 ₁₀	001010012	73 ₁₀	010010012	105 ₁₀	011010012
10 ₁₀	000010102	42 ₁₀	001010102	74 ₁₀	010010102	106 ₁₀	011010102
11 ₁₀	000011012	43 ₁₀	001011012	75 ₁₀	010011012	107 ₁₀	011011012
12 ₁₀	000011002	44 ₁₀	001011002	76 ₁₀	010011002	108 ₁₀	011011002
13 ₁₀	000011012	45 ₁₀	001011012	77 ₁₀	010011012	109 ₁₀	011011012
14 ₁₀	000011102	46 ₁₀	001011102	78 ₁₀	010011102	110 ₁₀	011011102
15 ₁₀	000011112	47 ₁₀	001011112	79 ₁₀	010011112	111 ₁₀	011011112
16 ₁₀	000100002	48 ₁₀	001100002	80 ₁₀	010100002	112 ₁₀	011100002
17 ₁₀	000100012	49 ₁₀	001100012	81 ₁₀	010100012	113 ₁₀	011100012
18 ₁₀	000100102	50 ₁₀	001100102	82 ₁₀	010100102	114 ₁₀	01110010 ₂
19 ₁₀	000100112	51 ₁₀	001100112	83 ₁₀	010100112	115 ₁₀	011100112
20 ₁₀	000101002	52 ₁₀	001101002	84 ₁₀	01010100 ₂	116 ₁₀	01110100 ₂
21 ₁₀	000101012	53 ₁₀	001101012	85 ₁₀	010101012	117 ₁₀	011101012
22 ₁₀	000101102	54 ₁₀	001101102	86 ₁₀	010101102	118 ₁₀	011101102
23 ₁₀	000101112	55 ₁₀	001101112	87 ₁₀	010101112	119 ₁₀	011101112
24 ₁₀	000110002	56 ₁₀	001110002	88 ₁₀	010110002	120 ₁₀	01111000 ₂
25 ₁₀	000110012	57 ₁₀	001110012	89 ₁₀	010110012	121 ₁₀	011110012
26 ₁₀	000110102	58 ₁₀	001110102	90 ₁₀	010110102	122 ₁₀	011110102
27 ₁₀	000110112	59 ₁₀	001110112	91 ₁₀	010110112	123 ₁₀	011110112
28 ₁₀	000111002	60 ₁₀	001111002	92 ₁₀	010111002	124 ₁₀	011111002
29 ₁₀	000111012	61 ₁₀	001111012	93 ₁₀	010111012	125 ₁₀	011111012
30 ₁₀	000111102	62 ₁₀	001111102	94 ₁₀	010111102	126 ₁₀	011111102
31 ₁₀	000111112	63 ₁₀	001111112	95 ₁₀	010111112	127 ₁₀	0111111112

a cura del prof. Salvatore De Giorgi (I.T.I.S. "FALANTO" - TALSANO (TA))

^{- 58 -}

decimale	binario	decimale	binario	decimale	binario	decimale	binario
128 ₁₀	100000002	160 ₁₀	101000002	192 ₁₀	110000002	224 ₁₀	111000002
129 ₁₀	100000012	161 ₁₀	101000012	193 ₁₀	110000012	225 ₁₀	111000012
130 ₁₀	100000102	162 ₁₀	101000102	194 ₁₀	110000102	226 ₁₀	11100010 ₂
131 ₁₀	100000112	163 ₁₀	101000112	195 ₁₀	110000112	227 ₁₀	111000112
132 ₁₀	100001002	164 ₁₀	101001002	196 ₁₀	11000100 ₂	228 ₁₀	11100100 ₂
133 ₁₀	100001012	165 ₁₀	101001012	197 ₁₀	110001012	229 ₁₀	111001012
134 ₁₀	100001102	166 ₁₀	101001102	198 ₁₀	11000110 ₂	230 ₁₀	11100110 ₂
135 ₁₀	100001112	167 ₁₀	101001112	199 ₁₀	110001112	231 ₁₀	111001112
136 ₁₀	100010002	168 ₁₀	101010002	20010	11001000 ₂	23210	11101000 ₂
137 ₁₀	100010012	169 ₁₀	101010012	201 ₁₀	110010012	233 ₁₀	111010012
138 ₁₀	100010102	170 ₁₀	101010102	202 ₁₀	11001010 ₂	234 ₁₀	11101010 ₂
139 ₁₀	100011012	171 ₁₀	101011012	203 ₁₀	110011012	235 ₁₀	11101101 ₂
140 ₁₀	100011002	172 ₁₀	101011002	204 ₁₀	110011002	236 ₁₀	111011002
141 ₁₀	100011012	173 ₁₀	101011012	205 ₁₀	110011012	237 ₁₀	111011012
142 ₁₀	100011102	174 ₁₀	101011102	206 ₁₀	110011102	238 ₁₀	111011102
143 ₁₀	100011112	175 ₁₀	101011112	207 ₁₀	11001111 ₂	239 ₁₀	11101111 ₂
144 ₁₀	100100002	176 ₁₀	101100002	208 ₁₀	110100002	240 ₁₀	111100002
145 ₁₀	100100012	177 ₁₀	101100012	209 ₁₀	110100012	241 ₁₀	111100012
146 ₁₀	100100102	178 ₁₀	101100102	210 ₁₀	110100102	242 ₁₀	111100102
147 ₁₀	100100112	179 ₁₀	101100112	211 ₁₀	110100112	243 ₁₀	111100112
148 ₁₀	100101002	180 ₁₀	10110100 ₂	212 ₁₀	11010100 ₂	244 ₁₀	111101002
149 ₁₀	100101012	181 ₁₀	101101012	213 ₁₀	110101012	245 ₁₀	111101012
150 ₁₀	100101102	182 ₁₀	101101102	214 ₁₀	110101102	246 ₁₀	111101102
151 ₁₀	100101112	183 ₁₀	101101112	215 ₁₀	110101112	247 ₁₀	111101112
152 ₁₀	100110002	184 ₁₀	101110002	216 ₁₀	110110002	248 ₁₀	111110002
153 ₁₀	100110012	185 ₁₀	101110012	217 ₁₀	110110012	249 ₁₀	111110012
154 ₁₀	100110102	186 ₁₀	10111010 ₂	218 ₁₀	11011010 ₂	250 ₁₀	11111010 ₂
155 ₁₀	100110112	187 ₁₀	101110112	219 ₁₀	110110112	251 ₁₀	111110112
156 ₁₀	100111002	188 ₁₀	101111002	220 ₁₀	110111002	252 ₁₀	111111002
157 ₁₀	100111012	189 ₁₀	101111012	221 ₁₀	110111012	253 ₁₀	111111012
158 ₁₀	100111102	190 ₁₀	101111102	222 ₁₀	11011110 ₂	254 ₁₀	111111102
159 ₁₀	100111112	191 ₁₀	101111112	223 ₁₀	110111112	255 ₁₀	11111111 ₂

Riferimenti

- Subnetting con VLSM
 http://www.trainsignaltraining.com/cisco-ccna-vlsm/2008-04-08/
- ◆ IP Addressing and Subnetting for New Users

http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a00800a67f5.shtml#vlsmex

- Indirizzi IP, classi e Subnetting http://openskill.info/infobox.php?ID=849
- Gli indirizzi I P, classi e subnet mask
 http://www.areanetworking.it/il-subnetting-e-lindirizzamento-ip.html
- ◆ IP subnetting made easy http://articles.techrepublic.com.com/5100-10878_11-6089187.html?tag=fdpop
- ◆ Simplify Routing: Organize Your Network Into Smaller Subnets (http://www.trainsignaltraining.com/simplify-routing-how-to-organize-your-network-into-smaller-subnets/2007-11-08/)

Subnet Calculator

- ◆ http://www.vlsm-calc.net/ (VLSM)
- ♦ http://www.scit.wlv.ac.uk/~in8297/tools/vlsmCalculator.html (VLSM)
- http://nj180degree.net/OnlineVLSMcalc.htm (VLSM)
- http://ccna.exampointers.com/subnet.phtml
- http://www.subnetmask.info/
- http://www.subnet-calculator.com/cidr.php