Introduction to Blockchain, Cryptocurrencies and Smart Contracts

(CS765)

Assignment 2

Rhushabh Gedam - 180050085 Utkarsh Agarwal - 180050115 Gagan Jain - 180100043 Kaushik Sen - 203044008

Markov Chain: Selfish Mining

Markov Chain: Stubborn Mining

Insights and Critique

The experimental datatable by varying parameters (*Adversary mining power*, $\zeta = 0.25$, 0.5, 0.75) and their corresponding MPU_adv and MPU_overall are as follows:

SELFISH								STUBBORN							
Seed	Adv Gamm a	Adv Power	Eff fractio n	MPU_ Adv	MPU_ overall			Seed	Adv Gamm a	Adv Power	Eff fractio n	MPU_ Adv	MPU_ overall	blockc hain length	
0	0.25	0.3	0.227	0.555	0.759	66		0	0.25	0.3	0.177 4	0.268 3	0.568 8	62	
0	0.5	0.3	0.206	0.583	0.791	68		0	0.5	0.3	0.442 6	0.675	0.61	61	
0	0.75	0.3	0.358	0.76	0.716	53		0	0.75	0.3	0.509 4	0.627 9	0.552	53	
20	0.25	0.3	0.272 7	0.75	0.786	66		20	0.25	0.3	0.103 4	0.153 8	0.604 2	58	
20	0.5	0.3	0.19	0.57	0.775	62		20	0.5	0.3	0.148 1	0.235 3	0.620 7	54	
20	0.75	0.3	0.264	0.864	0.828	72		20	0.75	0.3	0.25	0.517 2	0.681 8	60	
40	0.25	0.3	0.215 4	0.538 5	0.738 6	65		40	0.25	0.3	0.44	0.714	0.65	67	

40	0.5	0.3	0.338	0.884	0.8	68	40	0.5	0.3	0.228	0.351	0.606	57	
40	0.75	0.3	0.388	0.823 5	0.742	72	40	0.75	0.3	0.271	0.363	0.584	59	
60	0.25	0.3	0.333	0.75	0.783	54	60	0.25	0.3	0.286	0.516	0.644	56	
60	0.5	0.3	0.4	0.889	0.723	60	60	0.5	0.3	0.261	0.45	0.645	69	
60	0.75	0.3	0.28	0.75	0.762	64	60	0.75	0.3	0.298	0.567	0.633	57	
		5	SELFISH	1			STUBBORN							
Seed	Adv Gamm a	Adv Power	Eff fractio	MPU_ Adv	MPU_		Seed	Adv Gamm a	Adv Power	Eff fractio	MPU_ Adv	MPU_ overall	blockc hain length	
occa	u	1 OWCI		/ tu v	Overan	lengur	occu	u	1 OWCI		7101	Overan	iongai	
0	0.5	0.1	0.06	0.5	0.902	83	0	0.5	0.1	0.925	0.980	0.586	54	
0	0.5	0.3	0.206	0.583	0.791	68	0	0.5	0.3	0.442	0.675	0.61	61	
0	0.5	0.5	0.89	0.894	0.534	47	0	0.5	0.5	0.927	0.962	0.604 4	55	
0	0.5	0.7	1	0.673	0.764 7		0	0.5	0.7	0.957 4	1	0.534 1	47	

Selfish mining

It is expected and experimentally proven that MPU_adv > MPU_overall for higher values of ζ

Effective fraction of Adversary's blocks in the main chain (Eff.)

As the mining power of the adversary increases, his fraction of blocks in the main chain (Eff.) increases. More mining power implies the adversary is able to elongate his chain at a faster pace without transitioning to state=0' and take a lead of more than 1 with high probability.

This fraction is seemingly more than his mining power which proves the effectiveness of the attack.

As ζincreases, on average Eff. increases. As more honest peers are directly connected to the adversary, this attracts more honest miners to his chain and reduces the chances of being overtaken by the public chain completely. This ensures that even if he loses his private chain in state 0', he still manages to put some of his blocks into the accepted chain.

MPU_adv

As the mining power of the adversary increases, MPU_adv increases.

As ζincreases, MPU_adv increases.

MPU_overall

As mining power increases, MPU_overall increases.

As ζincreases, MPU_overall fluctuates.

This is evident as more branching is visible when the public and private blocks are in parallel. This diverts the honest mining power to do useless work and buys adversary time to further elongate his private chain.

Stubborn mining

Effective fraction of Adversary's blocks in the main chain (Eff.)

As the mining power of the adversary increases, his fraction of blocks in the main chain (Eff.) increases.

As ζincreases, on average Eff. increases.

MPU_adv

As the mining power of the adversary increases, MPU_adv increases.

As ζincreases, MPU_adv increases.

MPU_overall

As mining power increases, MPU_overall increases.

As ζincreases, more branching is visible when the public and private blocks are in parallel. This decreases the MPU overall.