Final SY02 Automne 2006

Nom: Sign Prénom:	ature :
Trenom.	
Répondre sur ce document, en ne reportant que les grandes d'abord les calculs au brouillon). La qualité de la présentation cune copie supplémentaire ne sera acceptée. Le seul documen d'informations relatives au cours de sy02 sur une calculette pr	n sera prise en compte dans la notation. Au- t autorisé est le recueil de tables. Le stockage
Exercice 1 (7 points)	
Une v.a. aléatoire X suit une loi $\mathcal{N}(\mu, \sigma^2)$ d'écart-type connu σ de v.a. parente X , on veut tester l'hypothèse $H_0: \mu = 1$ contr	
1. Soit $L(\mu; x_1, \dots, x_n)$ la fonction de vraisemblance. Donne	r l'expression du rapport $\lambda = \frac{L(5;x_1,,x_n)}{L(1;x_1,,x_n)}$.
2. En déduire la région critique du test de Neyman-Pearson,	en fonction du niveau de signification α^* .
3. Calculer la puissance de ce test dans le cas où $n=5$ et α^*	* = 0.05.
4. Quelle doit être la taille minimum n_0 de l'échantillon po supposant toujours $\alpha^*=0.05$?	ur que la puissance soit supérieure à 0.95, en

. On a observé $\overline{x} = 6$ toujours avec $n = 5$. Quel est le degré de signification du test?
Exercice 2 (5 points)
On a demandé à 500 personnes de choisir au hasard un nombre entre 1 et 10. On obtient les résultats suivant
Nombre choisi $\begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 63 & 54 & 30 & 31 & 52 & 49 & 46 & 57 & 58 & 60 \end{vmatrix}$
D'après ces données, peut-on accepter, au niveau de signification de 1% , l'hypothèse selon laquelle les nombre té échoisi de manière uniforme.
Exercice 3 (8 points)
oit X_1, \ldots, X_n un échantillon i.i.d. de variable parente X , de densité $f(x) = \frac{\theta^4}{6} x^3 e^{-\theta x} 1_{[0,+\infty[}(x) \theta$ étan paramètre positif.
. Donner l'expression de $\widehat{\theta},$ estimateur du maximum de vraisemblance de $\theta.$

2. Calculer l'information de Fisher $I_n(\theta)$ relative au paramètre θ . En déduire une fonction asymptotiquement pivotale pour θ que l'on exprimera en fonction de $\widehat{\theta}$.
Information de Fisher
Fonction asymptotiquement pivotale de θ (en fonction de $\widehat{\theta}$)
3. On considère le problème de test $H_0: \theta = \theta_0$ contre $H_1: \theta = \theta_1$ avec $\theta_1 > \theta_0$. Montrer que la région critique W du test le plus puissant pour ce problème au niveau α^* s'exprime en fonction de $\widehat{\theta}$, puis donner une approximation de W en supposant n grand.
Expression de W en fonction de $\hat{\theta}$
Expression de W en jonction de v
$Approximation \ de \ W \ pour \ n \ grand$

4. On considère maintenant le problème de test suivant $H_0: \theta = \theta_0$ contre $H_1: \theta \neq \theta_0$. Existe-t-il un UPP pour ce problème?	test
5. Calculer la statistique du rapport de vraisemblance λ , exprimée en fonction de $\widehat{\theta}$, pour le problème test de la question 4.	e de
6. En utilisant la statistique $\ln \lambda$ et en supposant que n est grand, proposer une région critique pour le de la question 4. Quelle décision prendra-t-on si $\theta_0 = 2$, $n = 50$, $\sum_i x_i = 115$ et $\alpha^* = 0.05$.	test
Région critique	
Application numérique	