Division et Modulo Gabriel-Andrew Pollo-Guilbert

Mars 6, 2016

Théorème 1 Soit $a, b \in \mathbb{Z}$ tel que a|b. Alors a|bc, $\forall c \in \mathbb{Z}$.

Soit $a, b \in \mathbb{Z}$ tel que $a|b \Rightarrow \exists k \in \mathbb{Z}$ tel que b = ak. Donc bc = akc, $\forall c \in \mathbb{Z}$. Puisque $kc \in \mathbb{Z} \Rightarrow a|bc$.

Théorème 2 Soit $a, b, c \in \mathbb{Z}$ tel que a|b et b|c, alors a|c.

Soit $a,b,c\in\mathbb{Z}$ tel que a|b et $b|c\Rightarrow\exists s,t\in\mathbb{Z}$ tel que b=as et c=bt. Donc $b=\frac{c}{t}\Rightarrow\frac{c}{t}=as\Rightarrow c=a(st)$. Puisque $st\in\mathbb{Z}\Rightarrow a|c$.

Théorème 3 Soit $a, b \in \mathbb{Z}$ et $m \in \mathbb{N}^*$. Si $\exists k \in \mathbb{Z}$ tel que a = b + km, alors $a \equiv b \mod m$.

Soit $a, b \in \mathbb{Z}$ et $m \in \mathbb{N}^*$ tel que $a \equiv b \mod m \Rightarrow \exists r \in \mathbb{N}$ et $s, t \in \mathbb{Z}$ tel que a = sm + r et b = tm + r. Donc $a - sm = b - tm \Rightarrow a = b + (s - t)m$. Puisque $s - t \in \mathbb{Z} \Rightarrow a = b + km, k \in \mathbb{Z}$.

Théorème 4 Soit $a, b, c, d \in \mathbb{Z}$ et $m \in \mathbb{N}^*$. Si $a \equiv b \mod m$ et $c \equiv d \mod m$, alors $(a + c) \equiv (b + d) \mod m$.

Soit $a,b,c,d\in\mathbb{Z}$ et $m\in\mathbb{N}^*$ tel que $a\equiv b\mod m$ et $c\equiv d\mod m\Rightarrow\exists s,t\in\mathbb{Z}$ tel que a=b+sm et c=d+tm. Par addition, $a+c=b+sm+d+tm\Rightarrow(a+c)=(b+d)+(s+t)m$. Puisque $(s+t)\in\mathbb{Z}\Rightarrow(a+c)\equiv(b+d)\mod m$.

Théorème 5 Soit $a,b,c,d \in \mathbb{Z}$ et $m \in \mathbb{N}^*$. Si $a \equiv b \mod m$ et $c \equiv d \mod m$, alors $ac \equiv bd \mod m$.

Soit $a,b,c,d\in\mathbb{Z}$ et $m\in\mathbb{N}^*$ tel que $a\equiv b\mod m$ et $c\equiv d\mod m\Rightarrow\exists s,t\in\mathbb{Z}$ tel que a=b+sm et c=d+tm. Par multiplication, $ac=(b+sm)(d+tm)\Rightarrow ac=bd+m(bt+ds+stm)$. Puisque $(bt+ds+stm)\in\mathbb{Z}\Rightarrow ac\equiv bd\mod m$.