3/3.DS.BA/4

DIALOG(R)File 352:Derwent WPI

(c) 2003 Thomson Derwent. All rts. reserv.

012388546

WPI Acc No: 1999-194653/199917

XRAM Acc No: C99-057312 XRPX Acc No: N99-142923

Radiation-sensitive composition - contains film-forming resin producing

acid on exposing

Patent Assignee: MITSUBISHI CHEM CORP (MITU) Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week JP 11038604 19990212 JP 97189479 Α Α 19970715 199917 B

Priority Applications (No Type Date): JP 97189479 A 19970715

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 11038604 15 G03F-007/004 A

Abstract (Basic): JP 11038604 A

A radiation-sensitive composition contains a film-forming resin, bissulphonyldiazomethane compound (BSDC) which produces an acid on exposing. The BSDC is a compound of formula (I-A1), (I-A2) or (I-A3). The film-forming resin is a hydroxy(methyl)styrene (HMS) copolymer which contains 30-90 mol.% of at least hydroxy(meth)styrene and 10-60 mol.% of HMS protected with an acid-releasable group of formula (II-1) or (II-2) and has weight average molecular weight (Mw) of 2000-70,000. In the formulae: R1 and R3 = optionally substituted aliphatic alkyl; R2 = halogen, optionally substituted alkoxy, nitro, cyano, nitrile or amide; R4-R6 = optionally substituted alkyl, halogen, optionally substituted alkoxy, nitro, cyano, nitrile or amide; R7 = optionally substituted alkoxy; and R8-R10 = H, halogen, optionally substituted alkoxy, optionally substituted alkyl, nitro, cyano, nitrile or amide. In (II-1) and (II-2): X1-X5 = H, 1-4C alkyl or alkoxy; X1 and X3 may combine to form rings; and X6 = 1-10C alkyl.

USE - The radiation-sensitive composition is used for forming a semiconductor integrated circuit.

ADVANTAGE - The radiation-sensitive composition has good sensitivity, definition and thermoresistance.

Dwg.0/0

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-38604

(43) 公開日 平成11年(1999) 2月12日

(51) Int. Cl. 6	識別記号	庁内整理番号	FI				技術表示箇所	
G03F 7/004	503		G03F 7/0	03F 7/004		A		
7/039	601		7/039 601		601			
HO1L 21/027			H01L 21/3	0 .	502	R		,
			審査請才	ネ 未請求	請求項(の数12	OL	(全15頁)
(21) 出願番号	特願平9-189479		(71) 出願人		8 株式会社			
(22) 出願日	平成9年(1997)7	月15日	東京都千代田区丸の内			の内二	二丁目5番2号	
			(72) 発明者	浦野 年	由			
				神奈川県	横浜市青	葉区鴨	志田町	1000番地
				三菱化学株式会社横浜総合研究所内				
			(72) 発明者	子				
				神奈川県横浜市青葉区鴨志田町1000番地				
				三菱化学	株式会社	横浜総	合研究	所内
			(72) 発明者	横尾 敏	明			

(54) 【発明の名称】感放射線性組成物

(57) 【要約】 (修正有)

【課題】 感度、解像力及び耐熱性の良好な感放射線性 組成物を提供する。

【解決手段】 塗膜形成性樹脂、露光により酸を発生するビススルホニルジアゾメタン化合物を含有することを特徴とする感放射線性組成物において、ビススルホニルジアゾメタン化合物が下記一般式(A1)~(A3)で表わされる化合物であり、

塗膜形成性樹脂が少なくともヒドロキシ(メチル)スチレン30~90モル%と酸により脱離する下記一般式 (1)又は(2)

$$X_1 \xrightarrow{X_2} X_3 \xrightarrow{X_4} (1) \qquad \begin{array}{c} 0 \\ \parallel \\ -C - O X_6 \end{array} \qquad (3)$$

(74) 代理人 弁理士 長谷川 曉司

神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内

最終頁に続く

(式中、 X^1 ~ X^5 は独立に水素原子、炭素数 1 ~4 の アルキル基またはアルコキシ基であり、 X^1 と X^3 は結合して環を形成しても良い。 X^6 は炭素数 1 ~1 0 のアルキル基を表わす。)で表わされる基で保護されたヒドロキシ(メチル)スチレン 1 0 ~6 0 モル%を含有し、重量平均分子量(Mw)が 2 0 0 0 ~7 0 0 0 0 のヒドロキシ(メチル)スチレン共重合体である。

【特許請求の範囲】

【請求項1】 塗膜形成性樹脂、露光により酸を発生す るビススルホニルジアゾメタン化合物を含有することを 特徴とする感放射線性組成物において、ビススルホニル

(式中、R' 及びR' は置換されていても良い脂肪族ア ルキル基を表わし、R'はハロゲン原子、置換されてい ても良いアルコキシ基、ニトロ基、シアノ基、ニトリル 基又はアミド基を表わし、R'、R'、R' はそれぞれ 独立に置換されていても良いアルキル基、ハロゲン原 子、置換されていても良いアルコキシ基、二トロ基、シ 20 レン30~90モル%と酸により脱離する下記一般式 アノ基、ニトリル基又はアミド基を表わし、R¹ は置換 されていても良いアルコキシル基、Rº~R"はそれぞ

$$X^{1} \xrightarrow{X^{2}} X^{3} X^{4}$$
 (1)

(式中、X'~X'は独立に水素原子、炭素数1~4の アルキル基またはアルコキシ基であり、X' と X^3 は結 合して環を形成しても良い。X⁶ は炭素数1~10のア ルキル基を表わす。) で表わされる基で保護されたヒド ロキシ (メチル) スチレン10~60モル%を含有し、 重量平均分子量 (Mw) が2000~7000のヒド ロキシ(メチル)スチレン共重合体であることを特徴と する感放射線性組成物。

【請求項2】 ヒドロキシ (メチル) スチレン共重合体 のヒドロキシ基の保護基が一般式(1)で表わされる基 であることを特徴とする請求項1に記載の感放射線性組 成物。

【請求項3】 ヒドロキシ(メチル)スチレン共重合体 のヒドロキシ基の保護基がエトキシエチル基であること を特徴とする請求項2に記載の感放射線性組成物。

【請求項4】 一般式 (A1) に於けるR' 及び一般式 (A2) に於けるR'が置換されていても良い脂環式ア ルキル基であることを特徴とする請求項1~3記載の感 放射線性組成物。

【請求項5】 ビススルホニルジアゾメタン化合物が一 般式(A1)で表わされ、かつR'がハロゲン原子又は 置換されても良い炭素数 1から4のアルコキシ基である ことを特徴とする請求項4記載の感放射線性組成物。

【請求項6】 R' が非置換の炭素数5又は6の脂環式

ジアゾメタン化合物が下記一般式(A1)~(A3)で 表わされる化合物であり、

【化1】

れ独立して水素原子、ハロゲン原子、置換されていても 良いアルコキシ基、置換されていても良いアルキル基、 ニトロ基、シアノ基、ニトリル基又はアミド基を表わ

塗膜形成性樹脂が少なくともヒドロキシ(メチル)スチ (1) 又は(2)

【化2】

$$\begin{array}{ccc}
0 & & \\
\parallel & & \\
-C-OX^6 & & (2)
\end{array}$$

射線性組成物。

【請求項7】 R² の置換位置がオルト位であることを 特徴とする請求項5又は6に記載の感放射線性組成物。

【請求項8】 ビススルホニルジアゾメタン化合物が一 般式(A2)で表わされ、かつR³が非置換の炭素数5 又は6の脂環式アルキル基であることを特徴とする請求 項4記載の感放射線性組成物。

【請求項9】 ビススルホニルジアゾメタン化合物が一 般式 (A3) で表わされ、かつR⁵ ~ R¹¹ が水素、置換 基を有してもよいアルキル基、置換基を有してもよいア ルコキシ基またはフッ素原子であることを特徴とする請 求項1~3に記載の感放射線性組成物。

【請求項10】 R¹ が炭素数1~4のアルコキシ基で あることを特徴とする請求項9に記載の感放射線性組成 物。

【請求項11】 R[®] がp位の炭素数1~4のアルコキ シ基であることを特徴とする請求項10に記載の感放射 線性組成物。

【請求項12】 R® 及びR®が水素原子であることを 特徴とする請求項11に記載の感放射線性組成物。

【発明の詳細な説明】

[0001]

40

【発明の属する技術分野】本発明は一般に放射線に感応 する感放射線性組成物に関するものであり、詳しくは半 アルキル基であることを特徴とする請求項5記載の感放 50 導体集積回路を作成するレジストとして好適な感放射性

組成物に関するものである。

[0002]

【従来の技術】半導体集積回路の髙集積度化は、一般に言われるように3年間に4倍のスピードで進行し、例えばダイナミック・ランダム・アクセス・メモリー(DRAM)を例にとれば、現在では、16Mピットの記憶容量を持つものの本格生産が開始されている。それにともない集積回路の生産に不可欠のフォトリソグラフィー技術に対する要求も年々きびしくなってきている。例えば、16MピットDRAMの生産には、 0.5μ mレベルのリソグラフィー技術が必要とされ、更に高集積度化の進んだ64MDRAMでは 0.35μ mレベルのリソグラフィー技術が必要とされている。これにともない、それぞれのリソグラフィーレベルに対応できるレジストの開発が切望されている。

【0003】超微細化が進んでいる今日ではレジストの 露光に用いられる波長も、水銀灯のi線(365nm) からKrFエキシマレーザ光(248nm)へと短波長 化が進んでおり、このような短波長露光に適したポジ型 レジストとして、化学増幅型ポジ型フォトレジストが種 20 々提案されている。化学増幅型レジストとは、放射線

(紫外線、遠紫外線、X線、例えば電子線のような荷電粒子線等)の照射により発生した酸の触媒作用により放射線照射部の現像液に対する溶解性を制御するレジストであり、酸発生剤と酸触媒反応によりアルカリ現像液に対する溶解性が増大するような化合物を含有する。このような化学増幅型ポジ型フォトレジストに特有の問題として、露光と露光後ベーク(ポスト・エクスポージャー・ベーク)との間の引置き時間に対する安定性の問題、すなわち、露光とポスト・エクスポージャー・ベークと 30の間に時間が空くと発生した酸の拡散に由来するパターン寸法の変動の問題がある。これを解決する技術として特開平5-249682号公報には、特定の樹脂成分を

【0008】(式中、R'及びR'は置換されていても良い脂肪族アルキル基を表わし、R'はハロゲン原子、置換されていても良いアルコキシ基、ニトロ基、シアノ基、ニトリル基又はアミド基を表わし、R'、R'、R'はそれぞれ独立に置換されていても良いアルキル基、ハロゲン原子、置換されていても良いアルコキシ基、ニトロ基、シアノ基、ニトリル基又はアミド基を表わし、

含むレジスト材料が、又、好適な酸発生剤として特定化合物が示されている。具体的には、エトキシエチル基を有するポリヒドロキシスチレンとビス (シクロヘキシルスルホニル) ジアゾメタンを含むレジスト等が開示され

【0004】一方、半導体集積回路を作成する工程においては従来よりレジストに対して耐熱性が良好であることが求められているが、我々の検討の結果、前述の公知のレジスト材料は耐熱性においては不十分であることが判った。耐熱性が劣るとエッチング工程でパターンの変形が起こるため、基板に形成される線幅等を所望の寸法通り加工できなくなり、不都合が生じる。より高集積な半導体集積回路を作成するために、高性能の感放射性塗布組成物の開発が鋭意行われているが使用するプロセス側から要求されている本質的な高解像等の性能に加え感度、耐熱性、パターン形状、塗布膜の均一性等の性能をパランス良く満たすことは難しいことであった。

[0005]

ている。

【発明が解決しようとする課題】本発明の目的は、前記 従来技術の問題点を解決した放射線を用いたハーフミク ロンリソグラフィーに対応できる高解像度を有する感放 射線性塗布組成物を提供することである。本発明の他の 目的は化学増幅型レジストにおいて感度及び耐熱性が良 好な感放射線性塗布組成物を提供することにある。

[0006]

【課題を解決するための手段】本発明の目的は、塗膜形成性樹脂、露光により酸を発生するビススルホニルジアゾメタン化合物を含有することを特徴とする感放射線性組成物において、ビススルホニルジアゾメタン化合物が下記一般式(A1)~(A3)で表わされる化合物であり、

[0007]

【化3】

(A3)

R'は置換されていても良いアルコキシル基、R'~R "はそれぞれ独立して水素原子、ハロゲン原子、置換されていても良いアルコキシ基、置換されていても良いアルキル基、ニトロ基、シアノ基、ニトリル基又はアミド基を表わす。)

塗膜形成性樹脂が少なくともヒドロキシ(メチル)スチ50 レン30~90モル%と酸により脱離する下記一般式

4

(1) 又は(2) [0009]

$$X^{1} \xrightarrow{X^{2}} X^{5} X^{4}$$
 (1)

【0010】(式中、X'~X'は独立に水素原子、炭 案数1~4のアルキル基またはアルコキシ基であり、X 'とX'は結合して環を形成しても良い。X'は炭素数 1~10のアルキル基を表わす。)で表わされる基で保 **護されたヒドロキシ(メチル)スチレン10~60モル 10** %を含有し、重量平均分子量 (Mw) が2000~70 000のヒドロキシ (メチル) スチレン共重合体である ことを特徴とする感放射線性組成物により達成される。 [0011]

【発明の実施の形態】以下、本発明を詳細に説明する。 本発明に用いられる塗膜形成性樹脂(以下、ベース樹脂 という)は、一般的にはアルカリ可溶性樹脂であり、均 一な感放射線性層を形成させる機能と共に、アルカリ現 像液に対する感放射線性層の溶解性を未露光部分は不溶 性、露光部分は可溶性になるように感放射線性層の溶解 性を調整、さらには、画像再現性や耐熱性を向上させる 機能を有する。

【0012】該ベース樹脂としては、ヒドロキシ(メチ ル)スチレンと少なくとも前記一般式(1)又は(2) で表わされる基で保護されたヒドロキシ(メチル)スチ レンをそれぞれ含有するヒドロキシ(メチル)スチレン 共重合体である。尚、本発明に於て、ヒドロキシ(メチ ル)スチレンは、ヒドロキシスチレン又はヒドロキシメ チルスチレンを表わす。

【0013】該ヒドロキシ(メチル)スチレンとして は、o-ヒドロキシスチレン、m-ヒドロキシスチレ ン、p-ヒドロキシスチレン、o-ヒドロキシ-α-メ チルスチレン、m-ヒドロキシーα-メチルスチレン、 p-ヒドロキシ-α-メチルスチレン等を挙げることが 出来、好ましくは、o-、m-又はp-のヒドロキシス チレンが好ましく、さらに好ましくは、p-ヒドロキシ スチレンである。

【0014】該式(1)又は式(2)で表わされる保護 基のうち、X¹~X⁵がアルキル基またはアルコキシル 基である場合は、炭素数が1~3が好ましく、さらに好 40 ル)スチレン共重合体を得ることもできる。 ましくは1~2であり、X^f がアルキル基を表わす場合 は炭素数が、1~6が好ましく、さらに好ましくは3~ 5 である。特にエトキシエチル基、 t ープチルオキシカ ルポニル基、テトラヒドロピラニル基、テトラヒドロフ ラニル基が好ましい。

【0015】該ヒドロキシ(メチル)スチレン共重合体 に含有しているヒドロキシ (メチル) スチレンと一般式 (1) 又は(2) で表わされる基で保護されたヒドロキ シ(メチル)スチレンの共重合比は、ヒドロキシ(メチ

【化4】

%であり、保護されたヒドロキシ (メチル) スチレンが $10\sim60$ 、好ましくは $20\sim50$ モル%である。

【0016】該ヒドロキシ(メチル)スチレンの共重合 比が著しく低いと、感放射線性層、露光部分の抜け不良 (現像溶解性不良)を起こし、反対にヒドロキシ (メチ ル)スチレンの共重合比が著しく高いと、未露光部分の 膜減りを生じ易くなる。また、保護基を有するヒドロキ シ (メチル) スチレンの共重合比が著しく低くなると、 未露光部分の膜減り、画像再現性の低下を起こし、反対 に著しく高くなると感度の低下、抜け不良を起こす。

【0017】本発明のヒドロキシ(メチル)スチレン共 重合体には、ヒドロキシ(メチル)スチレン或いは保護 基を有するヒドロキシ(メチル)スチレンの他に、他の 共重合モノマーを含有させることが出来る。該共重合モ ノマーとしては、例えば特開平6-16111、特開平 5-262699、特開平6-273934号各公報等 に記載の置換スチレン単位、特開平5-107761、 特開平5-210240に記載の(メタ) アクリル酸誘 導体単位等を含有することができる。該共重合モノマー の共重合率は0~50モル%であり、好ましくは0~2 0モル%である。

【0018】また、本発明のヒドロキシ(メタ)スチレ ン共重合体の構成単位中のベンゼン骨格を水素添加反応 により還元してシクロヘキサン骨格とすることで、エキ シマー光線(248nm)等のディープUV光領域の吸 収を低下させること即ち、露光光源に対して内部フィル ター効果を低減させることができる。本発明のヒドロキ シ(メタ)スチレン共重合体は、各共重合モノマーをラ ジカル重合開始剤、アニオン重合開始剤またはカチオン 重合開始剤の存在下で重合し得ることができる。また保 **護基を付加させる前のヒドロキシ(メチル)スチレン共** 重合体をあらかじめ共重合させた後、該ヒドロキシ(メ チル)スチレン共重合の水酸基の一部を酸触媒により保 護基を付加させることにより目的のヒドロキシ(メチ

【0019】該ヒドロキシ (メチル) スチレン共重合体 の重量平均分子量 (Mw) は、2000~70000、 好ましくは3000以上6000以下、さらに好まし くは5000以上4000以下である。該分子量が著 しく低いと十分な塗膜が得られず耐熱性が低下する、或 いは、感放射線性層のアルカリ溶解性が過多により感放 射線性層の未露光部分の膜ベリを生じやすく、また反対 に分子量が著しく高いと露光部分のアルカリ溶解性が低 くなり、露光部分の抜け不良、画像再現性の低下が生じ ル) スチレンが30~90、好ましくは50~80モル 50 やすくなる。このようなヒドロキシ (メタン) スチレン

共重合体の具体的な例としては、例えば、

【表1】

[0020]

P-1
$$\leftarrow CH_2 - CH \rightarrow_a \leftarrow CH_2 - CH \rightarrow_b$$

O $\rightarrow CH_3$ OH $a:b=35:65 \in LL$

O $\rightarrow C_2H_5$ Mw 15000

P-2
$$\leftarrow CH_2 - CH \rightarrow_a \leftarrow CH_2 - CH \rightarrow_b$$

OH
 $a:b=35:65 \in \text{PL}$

Mw 15000

[0021]

$$P-5 \xrightarrow{9} CH_2 - CH \xrightarrow{a} CH_2 - CH \xrightarrow{b} (CH_2 - CH \xrightarrow{c} CH_3 - C$$

a:b:c=30:65:5モル比

Mw 10000

P-6
$$\leftarrow CH_2 - CH \rightarrow_a \leftarrow CH_2 - CH \rightarrow_b \leftarrow CH_2 - CH \rightarrow_c \leftarrow CH_3 \rightarrow_b \rightarrow CH_3 \rightarrow_b \rightarrow CH_3 \rightarrow_b \rightarrow CH_3 \rightarrow_b \rightarrow CH_3 \rightarrow CH$$

a:b:c=30:65:5モル比

Mw 10000

P-7
$$\leftarrow CH_2 - CH \rightarrow_{\overline{a}} \leftarrow CH_2 - CH \rightarrow_{\overline{b}} (CH_2 - CH \rightarrow_{\overline{c}})$$

O $\rightarrow CH_3$ OH $\rightarrow CH_2$

C $\rightarrow CH_3$

O $\rightarrow CH_3$

C $\rightarrow CH_2$

a:b:c=30:65:5モル比

Mw 15000

40 【表3】

[0022]

P-8
$$\leftarrow CH_2 - CH \rightarrow_{\overline{a}} \leftarrow CH_2 - CH \rightarrow_{\overline{b}} (CH_2 - C \rightarrow_{\overline{c}})$$

$$CH_3 \qquad CH_3 \qquad CH_3$$

$$CH_3 \qquad CH_3$$

a:b:c=30:63:7モル比

Mw 20000

【0023】等を挙げることが出来る。尚、前述のベー ス樹脂は単独もしくは、2種以上を混合しても使用でき る。該ベース樹脂の配合率、感放射線性層の全固形分に 対して、60~99.9重量%、好ましくは70~9 9. 5重量%、さらには80~99重量%が好ましい。 本発明は、露光により酸を発生するビススルホニルジア ゾメタン化合物として前記の式(A1)~(A3)で表 わされる化合物を含むことを特徴とする発明である。 【0024】一般式 (A1) ~ (A3) に於けるR'、 R^{\imath} 、 R^{\imath} で表わされ る置換されていてもよいアルキル基としては、炭素数1 ~6の直鎖又は分岐のアルキル基及び炭素数3~10の 脂環式アルキル基が挙げられ、置換基としてはハロゲン 原子、炭素数1~4のアルコキシ基等が挙げられる。R 1 及びR1 は、好ましくは非量換の炭素数5又は6の脂 環式アルキル基である。R'、R'、R'、R'、 R*、R"、R"で表わされるハロゲン原子としては、

はフッ素原子であり、置換されていても良いアルコキシ 基としては、トリフルオロメトキシ、トリクロロメトキ シ、トリプロモメトキシ、ペンタフルオロエトキシ等の ハロゲン原子等の置換基で置換されていても良い炭素数 1~4のアルコキシ基が挙げられる。置換基R'として は、好ましくはハロゲン原子又は置換されていても良い 炭素数1~4のアルコキシ基である。又、R¹の置換位 40 置は特に限定されないが、オルト又はパラ位が好まし く、耐熱性感度、解像力の全てのパランスから、特にパ ラ位が好ましい。また、R¹ は炭素数1~4のアルコキ シ基が好ましく、更に、R* はp-位の炭素数1~4の アルコキシ基が好ましく、更にR® 及びR® が水素原子 であるのが好ましい。

【0025】前記式(1A)で示される化合物の具体例 としては、シクロヘキシルスルホニルー(2-メトキシ フェニルスルホニル) ジアゾメタン、シクロヘキシルス ルホニルー(3-メトキシフェニルスルホニル)ジアゾ フッ素原子、塩素原子、臭素原子が挙げられ、好ましく 50 メタン、シクロヘキシルスルホニルー(4-メトキシフ

ェニルスルホニル) ジアゾメタン、シクロペンチルスル ホニルー (2-メトキシフェニルスルホニル) ジアゾメ タン、シクロペンチルスルホニルー(3-メトキシフェ ニルスルホニル) ジアゾメタン、シクロペンチルスルホ ニルー (4-メトキシフェニルスルホニル) ジアゾメタ ン、シクロヘキシルスルホニルー(2-フルオロフェニ ルスルホニル) ジアゾメタン、シクロペンチルスルホニ ルー(2-フルオロフェニルスルホニル)ジアゾメタ ン、シクロヘキシルスルホニルー(4-フルオロフェニ ルスルホニル) ジアゾメタン、シクロペンチルスルホニ 10 ルー(4-フルオロフェニルスルホニル)ジアゾメタ ン、シクロヘキシルスルホニルー(4-クロロフェニル スルホニル) ジアゾメタン、シクロペンチルスルホニル - (4-クロロフェニルスルホニル)ジアゾメタン、シ クロヘキシルスルホニルー (3-トリフルオロメチルス ルホニル)ジアゾメタン、シクロペンチルスルホニルー (3-トリフルオロメチルスルホニル) ジアゾメタン、 シクロヘキシルスルホニルー4-トリフルオロメトキシ スルホニルジアゾメタン、シクロペンチルー4ートリフ ルオロメトキシスルホニルジアゾメタン等が挙げられ る。前記式(2A)で示される化合物の具体例として は、シクロヘキシルスルホニルー(1,3,5-トリメ チルフェニルスルホニル) ジアゾメタン、シクロヘキシ ルスルホニルー(2,3,4-トリメチルフェニルスル ホニル) ジアゾメタン、シクロヘキシルスルホニルー (1, 3, 5-トリエチルフェニルスルホニル)ジアゾ メタン、シクロヘキシルスルホニルー(2,3,4-ト リエチルフェニルスルホニル) ジアゾメタン、シクロペ ンチルスルホニルー(1,3,5-トリメチルフェニル スルホニル) ジアゾメタン、シクロペンチルスルホニル 30 - (2, 3, 4ートリメチルフェニルスルホニル)ジア ゾメタン等が挙げられる。中でも、シクロヘキシルスル ホニルー (1, 3, 5-トリメチルフェニルスルホニ ル) ジアゾメタン、シクロヘキシルスルホニルー(4-メトキシフェニルスルホニル) ジアゾメタン、シクロへ キシルスルホニルー (4-フルオロフェニルスルホニ ル)ジアゾメタンが挙げられる。

オロメチルフェニルスルホニル)ジアゾメタン、4-エトキシフェニルスルホニルー(4-メトキシフェニルスルホニル)ジアゾメタン、2-メトキシー4-メトキシーフェニルスルホニルー(4-メトキシフェニルスルホニル)シアゾメタン等が挙げられる。特にシクロヘキシルスルホニルー(4-メトキシフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニルー(2-メトキシフェニルスルホニル)ジアゾメタン、ビスー(4-メトキシフェニルスルホニル)ジアゾメタンが結晶性に優れ合成しやすく好ましい。

【0027】該ピススルホニルジアゾメタン化合物の配合率は感放射線性層の全固形分に対して $0.1\sim20$ 量 量%好ましくは $0.5\sim10$ 重量%さらには $0.5\sim5$ 重量%である。尚、本発明では発明の効果を妨げない範囲であれば他の酸発生剤を1 種または2 種以上混合しても構わない。

【0028】適当な酸発生剤としては、露光に用いられ る光または電子線によって、酸を発生するものであれ ば、何でも用いることができるが、具体的には、たとえ ば、トリス(トリクロロメチル)-s-トリアジン、ト リス (トリプロモメチル) - s - トリアジン、トリス (ジプロモメチル) -s-トリアジン、2,4-ビス (トリプロモメチル) - 6 - p - メトキシフェニル - s ートリアジンなどのハロゲン含有 s ートリアジン誘導 体、1,2,3,4ーテトラプロモプタン、1,1, 2, 2-テトラプロモエタン、四臭化炭素、ヨードホル ムなどのハロゲン置換パラフィン系炭化水素、ヘキサブ ロモシクロヘキサン、ヘキサクロロシクロヘキサン、ヘ キサブロモシクロドデカンなどのハロゲン置換シクロパ ラフィン系炭化水素、ビス (トリクロロメチル) ベンゼ ン、ビス(トリブロモメチル)ベンゼンなどのハロゲン 含有ベンゼン誘導体、トリブロモメチルフェニルスルホ ン、トリクロロメチルフェニルスルホン、2,3ージブ ロモスルホランなどのハロゲン含有スルホン化合物、ト リス(2,3-ジブロモプロピル)イソシアヌレートな どのハロゲン含有イソシアヌレート誘導体、トリフェニ ルスルホニウムクロライド、トリフェニルスルホニウム メタンスルホネート、トリフェニルスルホニウムトリフ ルオロメタンスルホネート、トリフェニルスルホニウム p-トルエンスルホネート、トリフェニルスルホニウム テトラフルオロボレート、トリフェニルスルホニウムへ キサフルオロアルセネート、トリフェニルスルホニウム ヘキサフルオロホスホネートなどのスルホニウム塩、ジ フェニルヨードニウムトリフルオロメタンスルホネー ト、ジフェニルヨードニウムp-トルエンスルホネー ト、ジフェニルヨードニウムテトラフルオロポレート、 ジフェニルヨードニウムヘキサフルオロアルセネート、 ジフェニルヨードニウムヘキサフルオロホスホネートな どのヨードニウム塩、p-トルエンスルホン酸メチル、

酸ブチル、p-トルエンスルホン酸フェニル、1,2, 3-トリ (p-トルエンスルホニル) ベンゼン、p-ト ルエンスルホン酸ペンゾインエステル、メタンスルホン 酸メチル、メタンスルホン酸エチル、メタンスルホン酸 プチル、1,2,3-トリ(メタンスルホニル)ベンゼ ン、メタンスルホン酸フェニル、メタンスルホン酸ベン ゾインエステル、トリフルオロメタンスルホン酸メチ ル、トリフルオロメタンスルホン酸エチル、トリフルオ ロメタンスルホン酸プチル、1,2,3-トリ(トリフ ルオロメタンスルホニル) ベンゼン、トリフルオロメタ ンスルホン酸フェニル、トリフルオロメタンスルホン酸 ベンゾインエステル、などのスルホン酸エステル類、ジ フェニルジスルホンなどのジスルホン類、ビス(フェニ ルスルホニル)ジアゾメタン、ピス(シクロヘキシルス ルホニル)ジアゾメタンなどのスルホンジアジド類、o ーニトロベンジル-p-トルエンスルホネートなどのo ーニトロベンジルエステル類、N, N'ージ (フェニル スルホニル)ヒドラジドなどのスルホンヒドラジド類な どが、挙げられる。オルトキノンジアジド基を含む化合 物としては、通常、1,2-ベンゾキノンジアジド-4 ースルホン酸、1,2-ナフトキノンジアジド-4-ス ルホン酸、1,2-ナフトキノンジアジド-5-スルホ ン酸等のエステルもしくはアミド等のオルトキノンジア ジド系化合物である。これらの酸発生剤の配合率は感放 射線性層の全固形分に対して0.01~5重量%、好ま しくは0.1~3重量%である。

【0029】本発明における感放射線性組成物の溶媒は、前述のベース樹脂、酸発生剤を溶解させ得るものであれば何でも用いることが可能であるが、好ましい溶媒としては2-ヘキサノン、シクロヘキサノンなどのケト 30ン系溶媒、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテートなどのセロソルブ系溶媒、ジエチルオキサレート、ピル

ピン酸エチル、エチルー2ーヒドロキシブチレート、エチルアセトアセテート、酢酸ブチル、酢酸アミル、酪酸エチル、乳酸エチル、乳酸メチル、乳酸エチル、3ーメトキシプロピオン酸メチル、2ーヒドロキシー2ーメチルプロピオン酸メチルなどのエステル系溶媒、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールジメチルエーテルアセテート、ジプロピレングリコールジメチルエーテルなどのプロピレングリコール系溶媒、シクロヘキサノン、メチルアミルケトン、2ーヘプタノンなどのケトン系溶媒、あるいはこれらの混合溶媒、あるいはさらに芳香族炭化水素を添加したものなどが挙げられる。

16

【0030】本発明の感放射線性組成物には本発明の効果を損なわない程度に添加剤を加えることができる。添加剤の例としては溶解抑制剤、界面活性剤、有機酸、アミン化合物等を感放射線性層に0.01~10重量%、好ましくは0.05~5重量%の範囲で含有させることができる。溶解抑制剤とはアルカリ現像液に対するアルカリ可溶性樹脂の未露光部の溶解性を制御する化合物で酸燥作用により脱離する基を有するものであれば低分子化合物でも高分子の樹脂でも良い。好ましくはフェルール性水酸基やカルボキシル基等の酸性官能基の水素原子を酸触媒作用により脱離する基で保護した化合物である。低分子化合物の例としてはビスフェノール誘導体、トリスフェノール誘導体等のフェノール性化合物に代表されるような下記式(3)あるいは(4)が挙げられる

【0031】 【化5】

$$(R^{11})_{a} OH$$

$$(R^{12})_{b} (R^{12})_{b}$$

$$(R^{12})_{b} OH$$

$$(R^{15})_{c}$$

$$(R^{15})_{c}$$

【0032】(式中、R''、R''、R''、R'' 、R'' およびR'' は、各々独立にハロゲン原子、アルキル基、アルコキシ基またはアラルキル基であり、a、b及びc は独立に0~4の範囲の整数である。また、R'' 及びR'' はこれらを含むアルキレン環を形成していてもよい。R'' ~R'' は水素原子、アルキル基であり、d は独立に0~3の範囲の整数である。)

【0033】また、酸触媒作用により脱離する基の構造は基本的に前述の保護基(化3)または保護基(化4)で表わされるが、特にt ープチルオキシカルボニル基、テトラヒドロピラル基、エトキシエチル基等が好ましい。更に、本発明に用いられる溶解抑制剤は単独もしくは2種以上混合して使用することもできる。有機酸、アミン化合物としては、特開平9-90639、特開平9-6001号公報に記載のもの等を挙げることができる。

【0034】本発明の感放射線性塗布組成物を用いて半導体基板上にレジストパターンを形成する場合には、通常、上記のような溶媒に溶解した本発明の感放射線性塗布組成物を半導体基板上に塗布し、プリベーク、露光によるパターンの転写、露光後ベーク、現像の各工程を経てフォトレジストとして使用することができる。半導体基板は、通常半導体製造用基板として使用されているものであり、シリコン基板、ガリウムヒ素基板などである。

【0035】塗布には通常スピンコーターが使用され、露光には、低圧水銀灯の254nm、エキシマレーザーなどを光源とする157nm、193nm、222nm、248nmの光または電子線などが好適に用いられ、特にエキシマレーザーを光源とするのが有利である。露光の際の光は、単色光でなくブロードであってもよい。また、位相シフト法による露光も適用可能であ

る。

20 【0036】本発明の感放射線性組成物の現像液には、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水などの無機アルカリ類、エチルアミン、nープロピルアミンなどの第1級アミン類、ジエチルアミン、ジーnープロピルアミンなどの第2級アミン類、トリエチルアミン、XN、Nージエチルメチルアミンなどの第3級アミン類、テトラメチルアンモニウムハイドロオキシド、トリメチルヒドロキシエチルアンモニウムハイドロオキシドなどの第4級アンモニウム点、もしくはこれにアルコドなどの第4級アンモニウム塩、もしくはこれにアルコール、界面活性剤などを添加したものを使用することができる。本発明の感放射線性組成物は超LSIの製造のみならず一般のIC製造用、マスク製造用、画像形成用、液晶画面製造用、カラーフィルター製造用あるいはオフセット印刷用としても有用である。

[0037]

【実施例】次に実施例を挙げて本発明を更に詳しく説明 するが、本発明はその要旨を越えない限り実施例により 何等制約を受けない。

合成例1 1-エトキシエチル化ポリビニルフェノール の合成

窒素導入管、撹拌機、温度計を備えた1Lの四つロフラスコにポリビニルフェノール(重量平均分子量17200)100gとテトラヒドロフラン500mLとを加え溶解させた後、エチルビニルエーテル36.0gを加え、しばらく攪拌し均一な溶液とした。これに、35%塩酸0.5gを加え、ウオーターパスで40℃に加熱し2時間撹拌を続けた。その後、この反応溶液に28%アンモニア水5mLを加え30分間攪拌した。この反応液を純水9L中に滴下して得られた沈殿をろ取した。さら50に、この沈殿物をアセトンに溶解させ、その溶液を純水

19

に滴下し沈殿させることにより目的の樹脂を回収した。 回収した樹脂を真空乾燥して、100gの1-エトキシ エチル化ポリビニルフェノールを得た。得られた樹脂を 重水素化アセトンに溶解し、プロトンNMRスペクトル を測定し、δ値6.2~7.0の芳香族水素のシグナル と δ 値 5. 2~5. 5のアセタールメチン水素のシグナ ルとの面積比よりアセタール化率をもとめると35.0 %となった。他のポリビニルフェノール共重合体も同様 に合成した。

【0038】合成例2 シクロヘキシルスルホニルー (4-メトキシフェニルスルホニル) ジアゾメタンの合

(1) 窒素導入管、撹拌機、温度計を備えた1しの四つ ロフラスコにパラホルムアルデヒド12.1gとトルエ ン60gを加え攪拌した後に、濃塩酸120mLを加え た。その後、反応液を40℃に昇温しシクロヘキサンチ オール35.4gのトルエン溶液60gを20分間かけ て加えた。滴下終了後、反応液を50℃に保ちながら攪 拌した。TLCにより反応終了確認後、水相を廃棄し飽 和炭酸ソーダ水溶液でアルカリ性にしクロロメチルシク 20 ロヘキシルスルフィドのトルエン溶液を得た。

【0039】(2)4-メトキシベンゼンチオール7. 4gを200mLフラスコに入れ、水酸化ナトリウムの 5wt%エタノール溶液45.2gを加え攪拌をした。 このフラスコを水冷しながら、(1)で得られたクロロ メチルシクロヘキシルスルフィドのトルエン溶液27. 8gを5分間で滴下した。2時間攪拌後、70℃に昇温

感放射線性層塗布液

ペース樹脂 表-1に記載の樹脂

表-1に記載の化合物

テトライソプロパノールアミン

添加剤 溶媒

酸発生剤

プロピレングリコールモノメチル

エーテルアセテート

【0043】をシリコン基板上に反射防止膜(Brew er Science社製、DUV18)を塗布したウ ェハにスピンコートし、ホットプレート上で80℃、6 0 秒間ペークし、膜厚 0. 7 2 μmのレジスト膜とし た。この基板上のレジスト膜をニコン社製KrFエキシ マーレーザー縮小投影露光装置(NA=0.42)を用 いて露光した後、ホットプレート上で120℃、60秒 40 間ベークした。この後、このレジスト膜をテトラメチル アンモニウムヒドロキシド2. 38重量%水溶液で1分 間現像し、レジスト画像を形成させた。評価は下記の項 目について行なった。結果を表-1に示す。

【0044】〔合成難易度の評価〕合成例2と同様の合 成を行った反応液中に、生成した目的生成物(ビススル ホニルジアゾメタン化合物)の結晶の収率から、合成難 易度の評価を行った。

A: 収率50重量%以上の結晶が生成した。

B:収率20重量%以上、50重量%未満の結晶が生成 50 B:パターンの角は残っているが、かなりパターンにテ

してさらに1時間攪拌した。この反応溶液にタングステ ン酸ナトリウム500mgを加えた後、30%過酸化水 素水25gを1時間かけて加え5時間攪拌した。トルエ ンで抽出し無水硫酸ナトリウムで乾燥後溶媒を減圧留去 することにより、シクロヘキシルスルホニルー (4-メ トキシフェニルスルホニル) メタンを得た。

20

【0040】(3)(2)で合成したシクロヘキシルス ルホニルー (4-メトキシフェニルスルホニル) メタン 3. 0gをフラスコに入れ、エタノール100mLを加 え攪拌した。さらに、この溶液に水酸化ナトリウムの5 w t %エタノール溶液 8.0 g を加え攪拌した。この反 応溶液を-5℃から-10℃まで冷却しp-トルエンス ルホニルアジド2. 0gのエタノール溶液10mLを5 分間かけて滴下し、3時間攪拌し静置した。250℃で 12hr放置し、目標のシクロヘキシルスルホニルー (4-メトキシフェニルスルホニル) ジアゾメタンを得

【0041】他のシクロヘキシルスルホニルー(置換フ ェニルスルホニル)ージアゾメタンも同様の方法により 合成を行った。又、4-メトキシフェニルスルホニル (4-メトキシフェニルスルホニル) ジアゾメタンは、 シクロヘキシルチオールを4-メトキシフェニルチオー ルに変更した他は同様の方法により合成を行った。 実施例1~8、比較例1~7

下記の感放射線性層塗布液

[0042] 【表4】

C: 収率20重量%未満の結晶が生成した。

0.8g

0.016g

0.0016g

D:まったく結晶が発生しなかった。

5 g

F:評価していないことを示す。

【0045】〔感度及び解像度評価〕現像後に得られた レジストパターンを走査電子顕微鏡で観察することによ り感度、即ち、 $0.3 \mu m$ のラインアンドスペースが 1:1に解像している露光量と解像度(限界解像度)を 評価した。

F:評価していないことを示す。

【0046】〔耐熱性評価〕シリコン基板上に限界の解 像度の画像を形成させた試料をホットプレート上で14 0℃および150℃で5分間ベークした。この後に、

 $0.5 \mu m$ のラインパターンの断面を切り出し、走査電 子顕微鏡で観察することにより耐熱性の評価を行った。

A:パターンの角が完全に残っている。

した。

ーパーが付いている。

C:パターンの角が部分的に削れてまるくなりはじめている。

D:パターンの角がまったくない。

F:評価していないことを示す。

【0047】 〔現像性〕 $0.5\mu m$ 、ラインアンドスペースが1:1に解像しているパターンを形成させた試料を走査し顕微鏡で観測し、露光部の抜け性及び未露光部分の膜減りを下記の様に評価した。

(露光部分の抜け性)

A: 露光部分にまったく感放射線性層の残膜がなかっ

た。

B: 3%未満の露光部分に残膜があった。 C: 3%以上7%未満の残膜があった。

D:7%以上の残膜があった。

(未露光部の膜減り)

A:まったく膜減りがなかった。

B:2%未満の膜減りがあった。

C:2%以上5%未満の膜減りがあった。

D:5%以上の膜減りがあった。

10 [0048]

【表 5】

表 -

			2 23	_ 1				
	ベース樹脂	酸発生剂	感度	解像度	耐熱性	合 成 難易度	現(象性
	樹脂		mJ/cm ²	(mm)	140°C	樂勿及	露光部 の抜け 性	未露光 部の膜 減り
実施例 1	B 2	A 1	25. 6	0. 28	A/A	Α	A	А
実施例 2	B 2	A 2	46. 2	0. 28	A/C	Α	A	. A
実施例3	В 2	A 3	26. 8	0. 26	A/B	В	Α	Α
比較例1	B 2	A 4	60. 0	0. 28	B/D	F	A	Α
比較例2	B 2	A 5	18. 0	0. 28	C/D	F	A	Α
比較例3	B 2	A 6	27. 0	0. 26	D/D	D	A	Α
実施例 4	B 1	A 1	20. 5	0. 27	A/B	Α	A	Α
実施例 5	В 3	A 1	35. 0	0. 26	A/A	A	Α	Α
比較例 4	B 4	A 1	F	F.	F	Α	D	A
比較例 5	B 5	A 1	F	F	F	A	A	Д
比較例 6	B 7	A 1	F	F	F	A	D	A
比較例7	В 6	Αl	F	F	F	Α	Α	D
実施例 6	B 2	A 7	20. 0	0. 26	A/A	Α	Α	Α
実施例7	В 3	A 3	32. 0	0. 28	A/A	В	А	Α
実施例8	B 1	А 3	20. 5	0. 27	A/C	В	A	Α

[0049]

【表6】

Mw 8000

23 〔ベース樹脂〕

$$B-2: \leftarrow CH_2 - CH \xrightarrow{a} \leftarrow CH_2 - CH \xrightarrow{b}$$

$$O \qquad OH \qquad a: b=35:65 \neq \text{NHz}$$

$$Mw \quad 17200$$

[0050]

【表7]

$$B-5: \begin{array}{c} 25 \\ \leftarrow CH_2 - CH \xrightarrow{a} \leftarrow CH_2 - CH \xrightarrow{b} \\ O \\ O \\ CoH_5 \end{array}$$

a:b=8:92モル比 Mw 15000

$$B-6: \leftarrow CH_2 - CH \xrightarrow{a} \leftarrow CH_2 - CH \xrightarrow{b}$$

$$O \qquad OH \qquad a: b=3 \ 0: 7 \ 0 \ne \nu \text{H}.$$

$$O \qquad Mw \ 1 \ 0 \ 0 \ 0$$

Mw 1000

$$B-7: \leftarrow CH_2 - CH \xrightarrow{a} \leftarrow CH_2 - CH \xrightarrow{b}$$

$$O \qquad OH$$

a:b=31:69モル比 Mw 1 0 0 0 0 0

[0051]

【表8】

27

(酸発生剤)

[0052]

【発明の効果】本発明の感放射線性組成物は、その構成 成分として特定のベース樹脂とスルホニルジアゾメタン 化合物を用いることにより、従来と同等以上の解像力を 有するにもかかわらず実用上充分な感度を持ち、しかも 耐熱性が著しく優れており、実用上極めて有用である。

フロントページの続き

(72) 発明者 新実 高明

.神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内

(72) 発明者 藤田 淳

神奈川県横浜市脊薬区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内