Quiz 2 • Graded

Student

LAVESH GUPTA

Total Points

20 / 20 pts

Question 1

N2R1 6 / 6 pts

- + **0 pts** Give marks directly out of 6 using points adjustment. 1 mark per correct answer. No partial marking for incorrect sign etc.
- + 0 pts Completely wrong or else unanswered
- + 6 pts Point adjustment

Question 2

N2R2 6 / 6 pts

- 1 pt Minor mistakes such as forgetting a constant term or wrong sign
- + 2 pts Valid expression for the expectation, possibly with minor mistakes. Completing the squares is not essential.
- - 1 pt Minor mistakes in derivation e.g. wrong sign or wrong multiplier
 - 2 pts Major mistakes in derivation e.g. not applying linearity of expectation correctly or other major errors
 - + 0 pts Totally wrong or else unanswered

Question 3

N2R3 2 / 2 pts

- - -1 pt Minor mistakes e.g. wrong sign or missing terms or missing factor of N in the regularizer.
 - + 0 pts Completely wrong or else unanswered

Question 4

IPL Intrigue 6 / 6 pts

- + **0 pts** Give marks directly out of 6 using points adjustment. 1 mark per correct answer. No partial marking for incorrect sign etc.
- + 0 pts Completely wrong or else unanswered

CS 771A:	: Intro to Machine	e Learning,	IIT Kanpur	Quiz II (20 Mar 2024)
Name	Name LANESH GUPTA			
Roll No	210562	Dept.	ELECTRICAL	20 marks Page 1 of 2

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in block letters neatly with ink.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ such cases will get straight 0 marks.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

(Noise to Regularize) The underlying principle behind the deep learning technique *dropout* is that adding noise to data can prevent models from overfitting. Let us derive this fact formally. Q1. Let $\epsilon \in \{-1, +1\}^D$ be a D-dim Rademacher vector with coordinates chosen i.i.d. $\epsilon_j = 1$ or -1 uniformly randomly. Find the following (no derivation) Note: $j, k \in [D], j \neq k$. (6 x 1 = 6 marks)

$$\mathbb{E}[\epsilon_{j} + \epsilon_{k}] = 0 \qquad \qquad \text{Var}[\epsilon_{j} + \epsilon_{k}] = 2$$

$$\mathbb{E}[\epsilon_{j}\epsilon_{k}] = 0 \qquad \qquad \text{Var}[\epsilon_{j}\epsilon_{k}] = 2$$

$$\mathbb{E}[\epsilon_{j}/\epsilon_{k}] = 0 \qquad \qquad \text{Var}[\epsilon_{j}/\epsilon_{k}] = 1$$

Q2. Let $y, \lambda \in \mathbb{R}$ and $\mathbf{w}, \mathbf{x} \in \mathbb{R}^D$ be constants and $\epsilon \in \{-1, +1\}^D$ be a Rademacher vector sampled independently of $y, \lambda, \mathbf{w}, \mathbf{x}$. Obtain a simplified expression (expectation is over the choice of ϵ only). Give brief derivation. Your expression should not contain any ϵ_i terms. (2 + 4 = 6 marks)

Write final expression in tradox
$$E_{\varepsilon} \left[(y - w^{T}(x + \lambda \cdot \varepsilon))^{2} \right] = \begin{bmatrix} E[(y - w^{T}x)^{2}] + \lambda^{2} ||w||_{2}^{2} \\ = (y - w^{T}x)^{2} + \lambda^{2} ||w||_{2}^{2} \end{bmatrix}$$

$$= (y - w^{T}x)^{2} + \lambda^{2} ||w||_{2}^{2}$$

$$= E[(y - w^{T}x)^{2}] + \lambda^{2} E[(w^{T}\varepsilon)^{2}] - 2y\lambda E[(w^{T}\varepsilon)] - 2y\lambda E[$$

Q3. We have N datapoints $(\mathbf{x}^n, y^n) \in \mathbb{R}^D \times \mathbb{R}, n \in [N], \lambda \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^D$ all of which can be treated as constants. We also sample N Rademacher vectors $\boldsymbol{\epsilon}^n \in \{-1, +1\}^D, n \in [N]$ i.i.d. of each other as well as independent of the datapoints and λ, \mathbf{w} . Expectation is over the choice of $\{\boldsymbol{\epsilon}^n, n \in [N]\}$ only. Write down a simplified expression for the following (no derivation needed). (2 marks)

$$\mathbb{E}_{\{\epsilon^{n}\}} \left[\sum_{n \in [N]} (y^{n} - \mathbf{w}^{\mathsf{T}} (\mathbf{x}^{n} + \lambda \cdot \epsilon^{n}))^{2} \right] = \sum_{n \in [N]} \mathbb{E} \left[(y^{n} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{n})^{2} \right] \mathbf{y} + \mathbf{J} \cdot \mathbf{N} \cdot \mathbf{N}$$

Q4 (IPL Intrigue). Melbo is a big IPL fan and is trying to analyse the performance of MI vs CSK on various kinds of pitches. Let M be the event that MI won a MI-vs-CSK match and C be the event that CSK won a MI-vs-CSK match. There are 3 kinds of pitches F = flat, G = green, D = dusty. A total of 24 matches were played between MI and CSK, $1/4^{\text{th}}$ of which were on green pitches and $1/3^{\text{rd}}$ on flat pitches. MI won 6 of the matches played on flat pitches. Both MI and CSK won equal number of matches played on green pitches i.e., $\mathbb{P}[M \mid G] = \mathbb{P}[C \mid G]$. Also, both flat and dusty pitches have been equally favourable for MI in that $\mathbb{P}[F \mid M] = \mathbb{P}[D \mid M]$. Find out the following quantities as fractions or decimals (no derivations needed). Hint: either use Bayes rule or fill-up a 2×3 matrix showing which team won how many matches on what kind of pitch. (6 x 1 = 6 marks)

$$\mathbb{P}[F \mid M] = \frac{2}{5}$$

$$\mathbb{P}[G \mid M] = \frac{2}{5}$$

$$\mathbb{P}[G \mid C] = \frac{3}{4}$$

$$\mathbb{P}[D \mid M] = \frac{2}{5}$$

$$\mathbb{P}[D \mid C] = \frac{4}{4}$$

Anything written here will not be graded