Advanced uses of weather radar

Prof. Lee, Dong-In Pukyong National University

Dual-Wavelength Radar

- Rainfall and hail detection
- \bullet Backscattering cross-sectional area σ depends upon diameter relative to wavelength

Wavelength (cm)

Diameter (mm) 3 5 10

0.1 (drizzle) Rayleigh Rayleigh Rayleigh
1 (rain) Rayleigh Rayleigh Rayleigh
10 (v. large rain, small hail)Mie Mie Rayleigh
100 (large hail) Mie Mie Mie

Rainfall Measurement Using Dual-Wavelength Radar

- Japanese are using K- and X-band radars for rainfall measurements.
- Raindrops are Rayleigh scatterers at Xband but in the Mie region for K-band.
- Can also get attenuation from K-band compared to X-band and use attenuationrainfall relationships.
 - i.e., R = A I b
 - Studies by Atlas, Ulbrich, and others show that rainfall is almost exactly linearly proportional to attenuation for 1-cm wavelength radar signals.

Dual-Wavelength Hail Detection

- Ludlam and Atlas first proposed that using two wavelengths might be useful for hail detection.
- lacktriangledown Hail signal $H=10 \log (z_s/z_x)$, where z is radar reflectivity factor at S- and X-band, respectively. H is measured in dB.
- \bullet H is usually positive (i.e., $z_s > z_x$)
- For some sizes of small hail, H can be negative.

Dual wavelength radar measurement of cirrus microphysical properties Robin Hogan Anthony Illingworth and Henri

- The figure shows a case study from 22 June 1996 in which thick cirrus was observed by the colocated 35 GHz Rabelais and 94 GHz Galileo radars.
- www.met.rdg.ac.uk/radar/rese arch/dualfreq/iwc.html

Sauvageot

Polarization

- Polarization is one of the fundamental characteristics of electromagnetic radiation
 - Amplitude
 - Frequency/wavelength
 - Polarization
 - Direction of propagation

Why is polarization important?

- ◆If all targets were perfect spheres, polarization wouldn't help.
- Most hydrometeors are <u>NOT</u> spheres!
 - Ice crystals are very irregular
 - Hail is seldom spherical
 - Raindrops are oblate
 - Cloud droplets <u>are</u> spheres, however.

Uses of Polarization with Radar

- Linear depolarization ratio
- Circular depolarization ratio
- Reflectivity depolarization ratio

Linear Depolarization Ratio

- Radar transmits linear polarization (typically, horizontal)
- Radar detects both horizontal and vertical polarizations

$$LDR = 10 \cdot \log_{10} \left(\frac{z_{horizontal}}{z_{vertical}} \right)$$

- 7 LDR = 1 for perfect spheres
- **7** LDR = ∞ for long, thin scatterers

2006-11-22

Prof. Leedi

Circular Depolarization

- Radar transmits circular polarization (typically, right-hand circular, e.g., RHC)
- Radar detects both RHC and LHC polarizations

$$CDR = 10 \cdot \log_{10} \left(\frac{z_{parallel}}{z_{orthogonal}} \right)$$

- ◆ CDR = 0 for infinitely long, thin scatterers
- \diamond CDR = - ∞ for perfect spheres

2006-11-22

Reflectivity Depolarization Ratio (Seliga and Bringi, 1976)

- Radar transmits alternate pulses of horizontal and vertical polarization
- \bullet Separate averages of z_h and z_v are determined

$$Z_{DR} = 10 \log(z_h/z_v)$$

- ♦ Z_{DR} also written as ZDR
- $\diamond Z_{DR} = 0$ for perfect spheres
- $Z_{DR} > 0$ for nonspherical hydrometeors

Z_{DR} for various situations

Source

Drizzle

Light rain

Moderate rain

Heavy rain

Graupel

Hail

 Z_{DR} (dB)

0 - 1

~3

up to 5

slightly negative

Block diagram of radar (as used in real radars)

2006-11-22 Prof. Leedi

13

Dual-polarization feed on Antenna

Dualpolarization feedhorn and antenna

http://radarmet.atmos. colostate.edu/CHILL/Pix.html

Dual-Linear, Switching Polarimetric Radar

Reflectivity Factor at Horizontal Polarization, Zh (dBZ)

$$Z_h = Z_h^{\text{int}} - \alpha_h(r) + OES$$

- $\diamond Z_h$ is measured
- $\bullet Z_h^{int}$ is the intrinsic Z_h due to the hydrometeors
- \bullet $\alpha_h(r)$ is the two-way attenuation
- OES stands for Other Error Sources
 - system noise
 - calibration errors
 - sidelobe contamination
 - statistical uncertainty of estimate

$$Z_{h}^{\text{int}} = 10 \log \left[\frac{\lambda^{4}}{\pi^{5} |K|^{2}} \int_{D_{eh} = D_{eh, \text{min}}}^{D_{eh} = D_{eh, \text{min}}} \sigma(D_{eh}) N(D_{eh}) dD_{eh} \right]$$

Measures amount

Differential Reflectivity, ZDR (dB)

$$Z_{DR} = Z_{DR}^{int} - \alpha_{dp}(r) + OES$$

 $\diamond Z_{DR}$ is measured

- $Z_{DR} = Z_h Z_v$

- OES stands for Other Error Sources
 - system noise
 - mismatched main-lobe power patterns
 - mismatched sidelobe power patterns
 - statistical uncertainty of estimate

Correlation Coefficient, |phv(0)|

$$|\rho_{hv}(0)| = |\rho_{hv}(0)|^{\text{int}} + ES$$

- $|\rho_{h\nu}(0)|$ is the measured magnitude of the correlation coefficient at zero time lag between horizontally and vertically polarized signals
- $|\rho_{h\nu}(0)|^{\rm int}$ is the intrinsic $|\rho_{h\nu}(0)|$ due to the hydrometeors
- **ES** stands for Error Sources
 - Sidelobe contamination
 - Low SNRs (system noise)

Measures hydrometeor diversity Resonant (δ) scattering

- Spectral shape (non-Gaussian spectra)
- Phase noise (of transmitter)
- Spatial phase pattern of transmitted signal

Phase Variables

$$\phi_{DP}$$
 (°), K_{DP} (° km⁻¹), and δ (°)

$$\phi_{DP} = \phi_{DP}^{\text{sys}} + \phi_{DP}^{m} + \delta + ES$$

- ϕ_{DP} is the measured two-way differential propagational phase shift
- Φ ϕ_{DP}^{sys} is the system, or initial (r = 0), ϕ_{DP}
- \diamond δ is the backscatter differential phase
- ES stands for Error Sources
 - System noise
 - Nonuniform beamfilling
 - Sidelobe contamination
 - Statistical uncertainty of estimate

$$K_{DP}^{\text{int}} = \frac{1}{2} \frac{\partial \phi_{DP}^m}{\partial r}$$

Measures amount and shape Good for R

ρ_{hv} and LDR_{hv}

- ρ_{hν} is the correlation of horizontally- and verticallypolarized powers. It is decreased by wide
 distributions of
 - hydrometeor eccentricities
 - canting angles
 - irregular hydrometeor shapes

and by

- Mie scattering
- mixtures of hydrometeor types
- LDR_{hv} is the horizontally-polarized power received from a vertically-polarized transmitted wave normalized by the concomitantly received vertically-polarized power. Significant depolarization occurs in
 - mixed phase precipitation
 - wet snow
- 2006-11-22 **hail**

Hydrometeors & Downdrafts: RFD (cont.)

Hook in Tornadic Supercell

Mark Askelson

Mark Askelson and Yidi Liu

Hook altitude ~3.9 km agl

Prof. Leedi

2006-11-22

Hydrometeors & Downdrafts: RFD (cont.)

Hook in Nontornadic Supercell

2006-11-22

24

Example of using ZDR data

- Case study of bright-band situation around a radar
 - Radar reflectivity factor
 - \mathbf{Z}_{DR}
 - L_{DR}
 - Bright-band detection
 - Hydrometeor classification
 - Rainfall

Another example in RHI format

Future Radars

- Rapid scan antennas
 - Courtesy of Bob Blasewitz
 - Lockheed-Martin

Limitations of Mechanical Scanning Radars

- Positioning Antenna is SLOW
- Reduced reaction times
- Blind Sided!
- Mechanical error

Electronic Scanning

- ◆Increased Data Rates
- Instantaneous Beam Positioning
- Elimination of Mechanical Errors
- Multi-mode Operation
- Multi-target capability

Phased-Array Radar System: Background

- Directive antenna made up of a number of individual antennas, or radiating elements
- Radiation pattern is determined by the amplitude & phase of the current at each element
- Electronically steered beams are accomplished by changing phase of current at each element
- Array of elements can be stationary or rotating
- Initial Phased Array Radars were developed by the DOD for surveillance, tracking & guidance functions

11/22/2006

WHY Phased Array Radar Systems?

- Agile, rapid beam steering capability
- Supports multifunctional capability
 - Tracking multiple targets
 - Surveillance of specified volume
 - Weather processing
- Can accommodate large power transmitters for long range applications
- ♦ Electronic beam forming and steering eliminate mechanical challenges
- Capability can add to complexity and cost

11/22/2006

2006-11-22 Prof. Leedi

36

WHY Phased Array Radar Systems?

- Simultaneous functions can be implemented
 - Surveillance: user-defined volumes of interest
 - Tracking: 3D, no transponder is necessary
 - Weather: measure reflectivity, velocity, spectrum width, wind shear
- Cost trends are making this a viable choice for the future
 - Electronics are following Moore's Law
 - Commercial competition
 - High technology insertion
 - Invention

11/22/2006

Phased Array Radar Capabilities

- Surveillance
 - Generates sequence of beam positions to search a given volume
 - Radar commands dictate specified volume of space at a specified scan rate
 - Users can define surveillance dwells by waveform and dwell period for special needs
- Tracking
 - Detections are stored in a track processor
 - Dwell sequences are initiated on detections to establish track rates
 - Data on tracks is smoothed and used to estimate future position & velocity
 - Track files are maintained in track processor
 - Track maintenance is software intensive

11/22/2006

Phased Array Radar Capabilities

- Weather
 - Reflectivity measures can be processed through an environmental processor
 - Rain, snow, hail, sleet are good targets for meteorologists
 - Wind shear, velocity can be obtained
 - Cloud bases & tops can be identified
 - Hazardous weather can be located and tracked
- Wake Vortex
 - Capability to detect and measure are being studied
 - Frequency for this challenge is a major driver

11/22/2006

What is Beamforming?

 The combination of energy from the elements of a phased array antenna by which the properties of that antenna beam are established

The Antenna Beamformer Sets the Direction of the Radar Beam and the Detailed Properties of its Shape

Antenna Beamforming

- Multifunction radars usually generate multiple beam patterns simultaneously to support the different radar functions
- Typically a multifunction radar has the following beams:
 - Sum patterns: Full power focused beams used on transmit and receive for target detection and tracking
 - Difference patterns: Patterns used on receive to aid in tracking
 - Sidelobe blanking patterns: Used in automatic detection systems to prevent tracking of targets in the antenna sidelobes

Sidelobe Blanker Pattern

Difference Pattern

AN/SPY-1D Antenna

National Testbed for Phased Array Weather Radar

AN/SPY-1 with TEP Weather Processor

- Electronically Steered Beam
- Rapid Volume Scan
- High Resolution
- Maximum Flexibility

Hurricane DENNIS taken from USS O'KANE DDG 77, located off Wallops Island Aug. 30, 1999

Testbed Equipment

Antenna

AN/SPY-1B Beam Programmer

U.S. Navy

WSR-88D Transmitter

NOAA

PAR Analysis Testbed with TEP Weather Processor

Univ. of OK

COVICTO DAD

SPY LSTP PAR Receiver/ Testbed Exciter Controller Pedestal & User Radome Facility

Lockheed Martin

NSSL

Phased Array Weather Radar Technology Provides Increased Lead Time to Save Lives and Property

Radar Evolution

R76

1970

2000

COBRA

Reflector Antenna

- Tube
 Transmitter
- Slow Search rates
- Low Tracking rates
- Few Targets

Passive Phased
Array Antenna

- Tube
 Transmitter
- Fast Search rates
- Fast Tracking rates
- Many Targets
- Heavyof, Leedi

Active Phased Array
Antenna

- Solid-State T/R Modules
- Very Fast Search rates
- Fast Tracking rates
- Many Targets
- Lower Weight
- Increased Capability

2006-11-22

Vision

- From Aerospace, Inc. Study
- Multi Purpose Radar
- Integrated Radar Network including CASA radars
- Using Radar Data to Initialize Forecast Models

Vision from Aerospace, Inc. Study

Given this price breakthrough, it is now possible to envision a four-faced radar system (four antennae mounted as in a pyramid) that would yield a weather radar with no moving parts. This would greatly reduce lifecycle cost and yield a volume scanning rate of approximately 20 seconds. The current NEXRAD volume scanning rates are between 5 and 6 minutes.

Prof. Leedi

Multi Purpose Vision

Integrated Radar Network Vision

Big (NOAA, FAA), little (CASA) radars, other (HLS, DOT,?) radars, built real-time accessible data bases.

- Deployment of scalable radar systems
- Local, regional, national accessible databases
- Heavy involvement of state and local governments
- Potential commercial involvement
- Media involvement

Using Radar Data to Initialize Forecast Models

- Radar is the only technology that "measures" the atmosphere on the space and time scales of the phenomena one wants to forecast.
- Assimilation of radar data can retrieve wind, temperature, and "pressure" observations.

Using Radar Data to Initialize Forecast Models (2)

Using Radar Data to Initialize Forecast Models (3)

- Run very short term, very high resolution, ensemble based forecast models to get probabilistic forecasts of severe weather events.
- Move from "warn on detection" to "warn on forecast".
- Extend tornado lead times from 12 minutes to 45 minutes.

Using Radar Data to Initialize Forecast Models (4)

- WFUS54 KOUN 032330
- TOROKC
- OKC151-040000-
- **BULLETIN EAS ACTIVATION REQUESTED**
 - TORNADO WARNING
- NATIONAL WEATHER SERVICE NORMAN OK
 - 630 PM CDT THU OCT 3 2002
- THE NATIONAL WEATHER SERVICE IN NORMAN HAS ISSUED A
- * TORNADO WARNING FOR...
 - WOODS COUNTY IN NORTHWEST OKLAHOMA
- * UNTIL 700 PM CDT
- * AT 630 PM CDT...DOPPLER RADAR DETECTED A SEVERE THUNDERSTORM
- CAPABLE OF PRODUCING A TORNADO 13 MILES WEST OF CAPRON...MOVING EAST-NORTHEAST AT 30 MPH.
- - * LOCATIONS IN THE WARNING INCLUDE CAPRON
- IN ADDITION TO THE TORNADO THREAT... A LINE OF SEVERE THUNDERSTORMS
- EXTENDS FROM THE KANSAS STATE LINE NORTHWEST OF ALVA TO 9 MILES WEST
- OF AVARD. THESE THUNDERSTORMS WILL BE CAPABLE OF PRODUCING DAMAGING
- WINDS AND HAIL TO THE SIZE OF HALF DOLLARS IN THE AVARD ... CORA ...
- AVARD HOPETON AND ALVA AREAS
- TAKE COVER NOW. LEAVE MOBILE HOMES AND VEHICLES. IF POSSIBLE...MOVE
 - TO A BASEMENT OR STORM SHELTER, OTHERWISE MOVE TO AN INTERIOR ROOM
 - HALLWAY ON THE LOWEST FLOOR STAY AWAY FROM WINDOWS AND OUTSIDE
- LAT...LON 3698 9895 3682 9884 3688 9854 3700 9854
- ..SPEG

Summary

- PAR technology will become cheap.
- Multi-purpose radars are feasible:
 - Weather surveillance
 - Radar data assimilation into very high resolution, very short term, ensemble based forecast models
 - Aircraft tracking
 - Non-cooperative aircraft tracking
 - 4D measurements for dispersion winds
 - Chem/bio detection
- Polarization diversity, multi-frequency, active PAR T/R elements already exist.
- Can government agencies collaborate on a multi-purpose project of this magnitude?

Conclusions

- Radar is a very powerful tool for learning about the world.
- Now it is up to YOU to add to the knowledge by your own research!
- Good luck!

Prof. Leedi 2006-11-22

