

SysEng 5212 /EE 5370 Introduction to Neural Networks and Applications

Week 5 : Multilayer Perceptrons and Backpropagation

Learning

Cihan H Dagli, PhD

Professor of Engineering Management and Systems Engineering Professor of Electrical and Computer Engineering Founder and Director of Systems Engineering Graduate Program

dagli@mst..edu

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY Rolla, Missouri, U.S.A.

- Murat Aslan
- Tatiana Cardona Sepulveda
- Prince Codjoe
- Xiongming Dai
- Jeffrey Dierker

- Venkata Sai Abhishek Dwivadula
- Brian Guenther
- Anthony Guertin
- Timothy Guertin
- Seth Kitchen

- Gregory Leach
- Yu Li
- John Nganga
- Igor Povarich
- Jack Savage

- William Symolon
- Wayne Viers III
- Tao Wang
- Kari Ward
- Julia White
- Jun Xu

Lecture outline

- 1. Nonlinear Perceptron
 - Character Recognition Example
- 2. Multilayer Perceptrons
 - XOR Problem
- 3. Backpropagation
 - Derivation of Backpropagation Weight Update Rule
 - Backpropagation Examples
- 4. Improving Performance

Perceptron with a Nonlinear Activation Function

这个就是y=v,斜率等于1的直线 MISSOURI

Network Output

Given that the output of the linear combiner is, $v(n) = \mathbf{w}^T x$, the network output is given by,

$$y(n) = \Phi(v(n))$$

Most commonly used nonlinear activation function is the sigmoidal nonlinearity; Its two variations are,

• Logistic function, where a > 0 is the slope parameter.

$$\mathbf{\Phi}(v(n)) = \frac{1}{1 + e^{-av(n)}}$$

双曲线的

正切的

• Hyperbolic tangent function, where a and b are positive constants

$$\Phi(v(n)) = a \tanh(bv(n))$$

Weight Update Rule for the Linear Neuron

Weight update for the linear neuron,

$$\widehat{w}(n+1) = \widehat{w}(n) + \eta x(n) \hat{e}(n)$$

Where $-x(n)\hat{e}(n)$ is the instantaneous estimate of the gradient.

瞬间的

The error e(n) is,

$$e(n) = d(n) - y(n) = d(n) - \Phi(v(n))$$

The derivative of the error e'(n) is,

$$e'(n) = -\Phi'(v(n)) = \Phi(\mathbf{w}^T \mathbf{x}) = -x(n)$$

这个就是对w的求导

Weight Update Rule for the Nonlinear Neuron

For the nonlinear neuron, the derivative of the error is, $e'(n) = -\Phi'(v(n))$

and the instantaneous estimate of the gradient is given by,

$$\widehat{w}(n+1) = \widehat{w}(n) + \eta \hat{e}(n) \Phi'(v(n))$$

Derivative of the Logistic Function

Logistic function:

$$\phi(v(n)) = \frac{1}{1 + e^{-av(n)}}$$
 求导的时候,直接把a作为1计算。

The derivative:

$$\phi'(v(n)) = \frac{ae^{-av(n)}}{[1 + e^{-av(n)}]^2}$$

$$= a\left(\frac{e^{-av(n)}}{[1 + e^{-av(n)}]}\right) \left(\frac{1}{[1 + e^{-av(n)}]}\right)$$

$$= ay(n)[1 - y(n)]$$

LMS weight update with the logistic function,

$$\hat{w}(n+1) = \hat{w}(n) + a\eta \hat{e}(n)y(n)[1 - y(n)]$$

Derivative of the Hyperbolic Tangent Function

Hyperbolic tangent function:

$$\phi(v(n)) = a \tanh(bv(n))$$

The derivative:

$$\phi'(v(n)) = ab \operatorname{sech}^{2}(bv(n))$$

$$= ab[1 - \tanh^{2}(bv(n))]$$

$$= ab\left[1 - \frac{y^{2}(n)}{a^{2}}\right]$$

$$= \frac{b}{a}[a - y(n)][a + y(n)]$$

LMS weight update with the hyperbolic tangent function,

$$\hat{w}(n+1) = \hat{w}(n) + \frac{b}{a} \eta \hat{e}(n) [a - y(n)] [a + y(n)]$$

Character Recognition Example

Use a perceptron with a sigmoid activation function to learn the letter **E**.

Each image consists of a 5 5 array of pixels.

- The ON pixels have a value of 1
- The OFF pixels have a value of 0

Preparing the Input

Each input character is a 5 5 array,

$$\mathbf{x} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

To present the input to the neuron, we vectorize it,

$$\mathbf{x} = [1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]^{T}$$

We set the desired response to 0.5

Performance Curve

Compensating for Noisy Input

补偿,修正

Vectors representing noisy input, (red numbers are noise)

$$\mathbf{x} = [1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0]^T$$

$$\mathbf{x} = [1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0]^{\mathsf{T}}$$

A single neuron cannot compensate very well for noisy input.
 As noise increases performance degrades.

Layered Architecture

Notation and Network Output

$$j = 1 : m_1$$

$$k = 1 \rightarrow : m_2$$

Basic Features of an MLP

• Each neuron has a nonlinear activation function that is continuously differentiable

- Each network contains one or more hidden layers
- Network exhibits a high degree of connectivity determined by the synaptic weights of the network

Purpose of the Hidden Neurons

- Transform the input space into a new space called the feature space
- Act as feature detectors that identify the most useful components of the input
- Separation of classes becomes easier in this new space than in the original input space
- Provide the MLP with the capability to perform nonlinear separation.

Solving the XOR Problem

x_1	x_1	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Separation of the input space for the XOR function,

Multilayer Network for Solving the XOR Problem

Rosenblatt's perceptron could not classify the XOR input patterns, as they are not linearly separable.

We can solve this problem by using a network with a single hidden layer with two neurons.

Decision Boundaries of the Network

$$\{w_11 = w_12 = +1, b_1 = -3/2\}$$

 $\{w_21 = w_22 = +1, b_1 = -1/2\}$
 $\{w_31 = -2, w_32 = +1, b_1 = -1/2\}$

Signal Flows in a Multilayer Perceptron

Forward Pass: Computation of Network Error

Output at layer 1:

$$v_j(n) = \sum_{i=0}^m w_{ji}(n)x_i(n)$$
$$y_j(n) = \Phi(v_j(n))$$

Output at layer 2 (output layer):

$$v_k(n) = \sum_{i=0}^{m_1} w_{kj}(n) y_j(n)$$
$$y_k(n) = \Phi(v_k(n))$$

Error at the output layer:

$$e_k(n) = d_k(n) - y_k(n)$$

Generalizing the LMS Cost Function

From the LMS derivation, instantaneous error for a single neuron k is

 $\frac{1}{2}e^{2}_{k}(n)$. Combined error of all neurons in the output layer for iteration n is,

又是这个二分之一惹的祸!!!!
$$\epsilon = \frac{1}{2} \sum_{i \in C} e^2_{k}(n)$$

Average squared error over all the input samples (N) is,

$$\mathcal{E}_{av} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}(n)$$

The objective of the learning process is to minimize the average squared error. To do so, we will consider an incremental training approach.

Chain Rule of Calculus

$$\frac{df(n(t))}{dt} = \frac{df(n)}{dn} \times \frac{dn(t)}{dt}$$

Consider,
$$f(n) = ln(n)$$
, $n = t^2$, and $f(n(t)) = ln(t^2)$.

$$\frac{df(n(t))}{dt} = \frac{df(n)}{dn} \times \frac{dn(t)}{dt} = \frac{1}{n} \times 2t = \frac{2t}{n}$$

Backward Pass: Weight Correction

Similar to the LMS algorithm, the backpropagation algorithm applies the correction $\Delta w_{kj}(n)$.

$$\frac{\partial \mathcal{E}(n)}{\partial w_{kj}(n)} \sim \Delta w_{kj}(n)$$

Using the chain rule of calculus,

$$\frac{\partial \mathcal{E}(n)}{\partial w_{kj}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_k(n)} \frac{\partial e_k(n)}{\partial y_k(n)} \frac{\partial y_k(n)}{\partial v_j(n)} \frac{\partial v_j(n)}{\partial w_{kj}(n)}$$

Computing the Gradient

Differentiating w.r.t $e_k(n)$, with regard to; with reference to;

$$\frac{\partial \varepsilon(n)}{\partial e_k(n)} = e_k(n)$$

Differentiating w.r.t $y_k(n)$,

$$\frac{\partial e_k(n)}{\partial y_k(n)} = -1$$

Differentiating w.r.t $v_k(n)$,

$$\frac{\partial y_k(n)}{\partial v_k(n)} = \phi'_k(v_k(n))$$

Differentiating w.r.t $w_{jk}(n)$,

$$\frac{\partial v_k(n)}{\partial w_{jk}(n)} = y_j(n)$$

where $y_j(n) = x_i(n)$ for the first layer.

Missouri University of Science and Technology

Thus the gradient is given by,

$$\frac{\partial \mathcal{E}(n)}{\partial w_{kj}(n)} = -e_k(n)\phi_k'(v_k(n))y_j(n)$$

From the LMS algorithm, the error correction $\triangle w_{kj}(n)$ applied to weight $w_{kj}(n)$ is defined by the delta rule,

$$\Delta w_{kj}(n) = -\eta \frac{\partial \mathcal{E}(n)}{\partial w_{kj}(n)}$$

which can be rewritten as,

$$\Delta w_{kj}(n) = \eta \delta_k(n) y_j(n)$$

where $\delta_k(n)$ is known as the *local gradient*.

$$\delta_k(n) = \frac{\partial \mathcal{E}(n)}{\partial v_k(n)}$$
$$= e_k(n)\phi'_k(v_k(n))$$

Case 1: Output Neuron

The error and the local gradient for output neurons can be computed in a straightforward manner using the expressions we just derived.

$$e_k(n) = d_k(n) - y_k(n)$$

$$\delta_k(\mathbf{n}) = e_k(n) \, \Phi_k'(v(n))$$

Thus the error correction for output neurons is,

$$\Delta w_{kj}(n) = \eta \delta_k(n) y_j(n)$$

Case 2: Hidden Neuron

 No desired responses are available for the hidden neurons.

The error signal must be worked out backwards.

• The error at each hidden neuron is a combination of its share of the error at each output neuron.

Case 2: Hidden Neuron

Local gradient for the hidden neuron,

$$\delta_{j}(n) = -\frac{\partial \mathcal{E}(n)}{\partial y_{j}(n)} \frac{\partial y_{j}(n)}{\partial v_{j}(n)}$$
$$= -\frac{\partial \mathcal{E}(n)}{\partial y_{j}(n)} \phi'_{j}(v_{j}(n))$$

To calculate $\frac{\partial \mathcal{E}(n)}{\partial y_i(n)}$, consider the error at the output layer,

$$\mathcal{E}(n) = \frac{1}{2} \sum_{k \in C} e_k^2(n)$$

Differentiate w.r.t $y_j(n)$,

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_k e_k \frac{\partial e_k}{\partial y_j(n)}$$

Missouri University of Science and Technology

Using the chain rule, we expand the above result,

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_k e_k \frac{\partial e_k}{\partial v_k(n)} \frac{\partial v_k}{\partial y_j(n)}$$

Error at the output neuron k is,

$$e_k(n) = d_k(n) - \phi_k(v_k(n))$$

Hence,

$$\frac{\partial e_k}{\partial v_k(n)} = -\phi_k'(v_k(n))$$

Recall that $v_k(n) = \sum_{j=0}^{m_1} w_{kj}(n) y_j(n)$; Differentiating w.r.t $y_j(n)$

$$\frac{\partial v_k}{\partial y_j(n)} = w_{kj}(n)$$

Thus, $\frac{\partial \mathcal{E}(n)}{\partial y_i(n)}$ is given by,

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = -\sum_k e_k \phi_k'(v_k(n)) w_{kj}(n) = -\sum_k \delta_k(n) w_{kj}(n)$$

Finally the backpropagation formula for local gradient of the hidden neuron is,

$$\delta_j(n) = \phi'_j(v_j(n)) \sum_k \delta_k(n) w_{kj}(n)$$

Thus the error correction for the hidden neuron is,

$$\Delta w_{ji}(n) = \eta \delta_j(n) y_i(n)$$

Summary of Weight Update Rules for Backpropagation

The weight correction $\Delta w_{ji}(n)$ applied to the weight connecting any neuron i to any neuron j is given by the delta rule,

$$\Delta w_{kj}(n) = \eta \delta_j(n) y_i(n)$$

Where $y_i(n)$ is the input signal of neuron j, and the local gradient $\delta_j(n)$ varies as,

1. If j is an output neuron,

$$\delta_j(\mathbf{n}) = e_j(n) \Phi_j'(v_j(n))$$

2. If j is a hidden neuron,

$$\delta_j(\mathbf{n}) = \Phi_j'(v_j(n)) \sum_k \delta_k(\mathbf{n}) w_{kj}(n)$$

Computation of the Local Gradient

• To compute δ , we need to compute the derivative of the activation function.

- The activation function of an MLP must be nonlinear and continuously differentiable.
- Two commonly used activation functions are the logistic function and the hyperbolic tangent function.

Local Gradient for the Logistic Function

We calculated the derivative of the logistic function as,

$$\phi'(v(n)) = ay(n)[1 - y(n)]$$

■ The local gradient of the output neuron j with a logistic activation

$$\delta_{j}(n) = e_{j}(n)\phi'_{j}(v_{j}(n))$$

= $a[d_{j}(n) - y_{j}(n)]y_{j}(n)[1 - y_{j}(n)]$

■ The local gradient of the hidden neuron j with a logistic activation

$$\delta_j(n) = \phi'_j(v_j(n)) \sum_k \delta_k(n) w_{kj}(n)$$
$$= ay_j(n) [1 - y_j(n)] \sum_k \delta_k(n) w_{kj}(n)$$

k is a neuron in the next layer.

Local Gradient for the Hyperbolic Tangent Function

Hyperbolic tangent function:

$$\phi(v(n)) = a \tanh(bv(n))$$

The derivative:

$$\phi'(v(n)) = ab \operatorname{sech}^{2}(bv(n))$$

$$= ab[1 - \tanh^{2}(bv(n))]$$

$$= ab\left[1 - \frac{y^{2}(n)}{a^{2}}\right]$$

$$= \frac{b}{a}[a - y(n)][a + y(n)]$$

LMS weight update with the hyperbolic tangent function,

$$\hat{w}(n+1) = \hat{w}(n) + \frac{b}{a}\eta \hat{e}(n)[a - y(n)][a + y(n)]$$

Generalized Delta Rule

The rule for updating the synaptic weights can be written as,

$$w_{ji}(n+1) = w_{ji}(n) + \eta \delta_j(n) y_i(n)$$

$$y_i(n) = x(n)$$
 for layer 1.

The value of $\delta_j(n)$ depends on whether neuron j is an output neuron or a hidden neuron.

Comments on Learning Rate

- Backpropagation is a generalization of the LMS algorithm.
- The learning rate behaves similar to the that of the LMS algorithm
 - smaller learning rate→ smoother trajectory→ slower rate of convergence
 - Larger learning rate → zigzagging trajectory → faster rate of learning; possible unstable behavior

Comments on Learning Rate

To avoid instability while increasing the learning rate, a modified delta rule can be used,

$$\Delta w_{ji}(n) = \alpha w_{ji}(n-1) + \eta \delta_j(n) y_i(n)$$

$$w_{ji}(n+1) = w_{ji}(n) + \alpha [w_{ji}(n+1)] + \eta \delta_j(n) y_i(n)$$
可能是n

Here, $\alpha w_{ji}(n-1)$ is the momentum term.

- α is the momentum constant; $0 \le \alpha < 1$
- α is generally positive
- Setting $\alpha = 0$ gives the original delta rule

Momentum accelerates descent, however it has a stabilizing effect on oscillatory behavior of the direction of descent.

or,

Training Methods

How often should we update the weights?

- after each input sample
- after a complete presentation of all input samples
- after a small batch of input samples

How do we set the learning rate?

- Fixed learning rate
- Use annealing methods
- Use momentum with learning rate

Stopping Criteria

Some 'reasonable' criteria for stopping training,

- When the norm of the gradient vector goes below a threshold value
- When the average squared error per iteration is below a threshold value
- When the generalization performance has peaked

Example

 https://mattmazur.com/2015/03/17/a-stepby-step-backpropagation-example/

Function Approximation Example

We want to use a MLP trained using backpropagation to approximate the function,

$$f(x) = 1 + \sin\frac{pi}{4}x, \quad \text{for } -2 \le x \le 2$$

Create a dataset by evaluating the function for several values of x within the specified interval.

Input: x

Target: F(x)

Learning Curve

Network Performance

Pattern Classification Example

Results of the computer experiment on the backpropagation algorithm applied to the MLP with distance d = -4.

Missouri University of Science and Technology

Results of the computer experiment on the back-propagation algorithm applied to the MLP with distance d=-5

Heuristics for Improving the Performance of the Backpropagation Algorithm

- Update scheme: Batch vs Sequential training is faster and less computationally intensive.
- Maximize information content Choose training samples that is different from previous samples and results in maximum training error.

洗牌

• Shuffle inputs before presenting to the network; As far as possible make sure each successive input belongs to a different class.

Heuristics: Activation Function

Use an activation that is an odd function of its argument,

$$\phi(-v) = -\phi(v)$$

This condition is met by the hyperbolic tangent function,

$$\phi(v) = = a \tanh(bv)$$

Heuristics: Setting the Target Values

Use an offset to move the desired response away from the limiting values of the sigmoid function.

$$d_j = a - \varepsilon$$
$$d_j = -a + \varepsilon$$

where ε is a positive constant.

Heuristics: Normalizing Inputs

Heuristics: Other Suggestions

- Initialization: Avoid very large and very small values of initial weights. A safe range is [-0.5, 0.5].
- Learning rates: Ideally all neurons in the network should learn at the same rate. Neurons with many inputs should have a lower learning rate than neurons with fewer inputs, to ensure a uniform learning time.

