Mixed Models 1

Random intercepts

Daniela Palleschi

2024 - 01 - 12

Table of contents

3
3
3
4
4
5
5
7
7
7
7
8
8
8
8
9
0
0
1
2
2
5
_
5

Crossed random effects: two grouping factors	16
Comparing random effects	18
Comparing fixed effects	19
Comparing predictions	19
Model comparison	20
Exploring our random effects estimates	21
Extracting fixed effects	21
Extract random intercept estimates	22
Extract deviations from the intercept	
Compare estimates and deviances	28
Visualise random effects	28
Reporting your model	30
Model definition	30
Results	31
In-text	31
Tables	31
Figures	32
Important terms	36
Task	37

Learning Objectives

Today we will learn...

- what linear mixed models are
- how to fit a random-intercepts model
- how to inspect and interpret a mixed effects model

Resources

- this lecture covers
 - Chapter 14 'Mixed Models 1: Conceptual Introduction' (until Section 14.8; Winter, 2019)
 - Winter (2014) (until page 16)
 - Sections 8.1-8.3 in Sonderegger (2023)
- we will be using the data from Biondo et al. (2022)

Set-up

```
# suppress scientific notation
options(scipen=999)

library(broman)
# function to format p-values
format_pval <- function(pval){
    dplyr::case_when(
        pval < .001 ~ "< .001",
        pval < .01 ~ "< .01",
        pval < .05 ~ "< .05",
        TRUE ~ broman::myround(pval, 3)
    )
}</pre>
```

Load packages

Resolve conflicts

- both lme4 and lmerTest have a function lmer()
 - for now we want to use the lme4 version

```
lmer <- lme4::lmer</pre>
```

Load data

• data from Biondo et al. (2022)

And take a look at the data:

```
head(df_biondo)
# A tibble: 6 x 13
         item adv_type adv_t verb_t gramm
                                             roi label
                                                                          tt
                                                                                ri
                                                             fp
                                                                    gp
  <fct> <dbl> <fct>
                       <fct> <fct> <fct> <dbl> <fct>
                                                          <dbl> <dbl> <dbl> <dbl>
1 1
           54 Deic
                       Past Past
                                               1 En la c~ 1173 1173
                                                                        1173
                                                                                 0
                                     gramm
2 1
           54 Deic
                       Past Past
                                                            474
                                                                  474
                                                                         474
                                                                                 0
                                               2 ayer te~
                                     gramm
3 1
           54 Deic
                                               3 los car~
                       Past Past
                                     gramm
                                                            910
                                                                  910
                                                                         910
                                                                                 0
4 1
                                               4 encarga~
           54 Deic
                                                           1027
                                                                 1027
                                                                        1027
                                                                                 0
                       Past Past
                                     gramm
5 1
           54 Deic
                       Past Past
                                     gramm
                                               5 muchas ~
                                                            521
                                                                  521
                                                                         521
                                                                                 0
           54 Deic
                       Past Past
                                               6 al prov~
                                                           1029
                                                                 1029
                                                                        1029
                                                                                 0
                                     gramm
# i 1 more variable: ro <dbl>
```

Set contrasts

```
contrasts(df_biondo$verb_t) <- c(-0.5,+0.5)
contrasts(df_biondo$gramm) <- c(-0.5,+0.5)

contrasts(df_biondo$verb_t)

[,1]
Past  -0.5
Future  0.5</pre>
```

contrasts(df_biondo\$gramm)

[,1] gramm -0.5 ungramm 0.5

Linear mixed (effects) models

- mixed models allow for varying intercepts and slopes per level of some grouping factor
- recall that intercepts (can) represent the grand mean of the data
- slopes represent a change in y for a 1-unit change in x ($\frac{\Delta y}{\Delta x}$, "rise over run")
 - i.e., the difference between two categories, or for a 1-unit change of a continuous predictor
- random intercepts take into account that each level of a grouping factor can vary in their mean
- random slopes take into account that each level of a grouping factor can vary in the effect of a predictor

Random intercepts vs. random slopes

- Biondo et al. (2022) used a within-participant, a.k.a. repeated measures design
 - 60 participants saw 96 items, rotated throughout the conditions in a Latin square design
- we would expect some participants to be faster readers than others
 - this would be reflected in a shorter mean reading time
- some participants will tend to have a stronger effect of e.g., grammaticality than others
 - this would be reflected in a steeper slope for grammaticality
- the same could be said for certain experimental items
 - reading times will vary by item e.g., for word length or familiarity
 - some items will also tend to have a stronger effect than others

By-participant first-pass RTs at the verb (sw) sound 1000 - 1000

Figure 1: By-participant boxplot of first-pass RTs at the verb region with overall median FP value in red

4623544573244553092782492386867862487328822282761826512810 Participant ID

Figure 2: By-item boxplot of first-pass RTs at the verb region with overall median FP value in red

By-participant variance

By-item variance

By-participant varying intercepts and slopes

Figure 3: Predicted by-participant varying intercepts (A) and slopes (B) with overall effects in black

By-item varying intercepts and slopes

Figure 4: By-item varying intercepts (A) and slopes (B) with overall effects in black

Comparing participant and item

- just by eye-balling our data we see there was more variability in intercepts and effects by-participant than by-item
 - this is typical: People tend to vary more than our highly controlled experimental items
- how can we take this variability of both item and participant into account?
 - mixed models!
 - today we'll focus on varying intercepts, first for by-participants and then by-item

Random intercepts

• random intercepts = taking group-level variance in overall tendencies into account

Random intercepts: one grouping factor

• below is our first mixed effects model

- 1. create an object fit_lmm_fp_sj, which contains...
- 2. a mixed model (lmer()): log first-pass RTs as a function of our fixed effects, plus...
- 3. varying intercepts (1) by-participant (|sj)
- 4. from our dataset
- 5. subsetted to only include the verb region
 - can also be done above the model using filter(roi == 4)

Summary

• we can use the summary() function, just as we did with (g)lm()

```
summary(fit_lmm_fp_sj)
```

Linear mixed model fit by REML ['lmerMod']
Formula: log(fp) ~ verb_t * gramm + (1 | sj)

Data: df_biondo
Subset: roi == 4

REML criterion at convergence: 4479.1

Scaled residuals:

Min 1Q Median 3Q Max -4.0560 -0.6427 -0.0419 0.6168 4.0901

Random effects:

Groups Name Variance Std.Dev. sj (Intercept) 0.06573 0.2564 Residual 0.18030 0.4246 Number of obs: 3795, groups: sj, 60

Fixed effects:

Estimate Std. Error t value (Intercept) 5.957102 0.033809 176.199 verb_t1 0.062209 0.013787 4.512 gramm1 0.003466 0.013787 0.251 verb_t1:gramm1 -0.015741 0.027573 -0.571

Correlation of Fixed Effects:

(Intr) vrb_t1 gramm1

verb_t1 0.000

gramm1 0.000 -0.002

vrb_t1:grm1 0.000 0.002 0.000

Model info

Linear mixed model fit by REML ['lmerMod']. #<1>
Formula: log(fp) ~ verb_t * gramm + (1 | sj) #<2>
 Data: df_biondo #<3>
 Subset: roi == 4 #<4>

REML criterion at convergence: 4479.1 #<5>

Scaled residuals: #<6>
 Min 1Q Median 3Q Max

```
-4.0560 -0.6427 -0.0419 0.6168 4.0901
```

- (1) Model description (object class = lmerMod)
- (2) Model formula
- (3) Data
- 4 Any subsetting
- (5) REML: Restricted Maximum Likelihood; important for model comparison, but not for us today
- (6) Residuals: do these look normally distributed?

Fixed effects

```
Fixed effects: #<1>
                Estimate Std. Error t value #<2>
(Intercept)
                5.957102
                           0.033809 176.199 #<3>
verb_t1
                0.062209
                           0.013787
                                      4.512 #<4>
gramm1
                0.003466
                           0.013787
                                      0.251 #<5>
verb_t1:gramm1 -0.015741
                           0.027573
                                     -0.571 #<6>
Correlation of Fixed Effects: #<7>
            (Intr) vrb_t1 gramm1
verb_t1
             0.000
             0.000 -0.002
gramm1
vrb_t1:grm1 0.000 0.002 0.000
```

- (1) Our fixed effects:
- (2) Estimate (coefficient), standard error, t-value (no p-value...)
- (3) Intercept (grand mean)
- (4) Effect of tense
- **5** Effect of grammaticality
- (6) Interaction Effect
- (7) Correlation matrix of fixed effects

Random effects

```
Random effects: #<1>
Groups Name Variance Std.Dev. #<2>
sj (Intercept) 0.06573 0.2564 #<3>
Residual 0.18030 0.4246 #<4>
Number of obs: 3795, groups: sj, 60 #<5>
```

- (1) Random effects
- (2) Grouping factor, effect name, overall variance and standard deviation
- (3) By-participant random intercepts
- (4) Residual error not accounted for by our random effects
- (5) Number of observations and grouping factor levels

Interpreting random effects

- we can also selectively print our random effects (variance components) using the VarCorr() function from lme4
 - only gives us the standard deviation, which is the square root of the variance

```
VarCorr(fit_lmm_fp_sj)
```

```
Groups Name Std.Dev.
sj (Intercept) 0.25638
Residual 0.42462
```

• to also get the variance

```
Groups Name Variance Std.Dev.
sj (Intercept) 0.065731 0.25638
Residual 0.180305 0.42462
```

• if we compute the mean, variance, and SD of the by-participant intercepts we get

```
coef(fit_lmm_fp_sj) |>
  pluck("sj") |>
as_tibble() |> rownames_to_column(var = "sj") |>
  rename(
```

```
intercept = 2
) |>
summarise(
   mean = mean(intercept),
   var = var(intercept),
   sd = sd(intercept)
)

# A tibble: 1 x 3
   mean   var   sd
   <dbl>   <dbl>   <dbl>
1 5.96 0.0630 0.251
```

68-95% rule

- in a normal distribution, 68% of the data will lie within +/-1 SD of the mean, and 95% will lie within +/-2 SDs of the mean
- our model intercept is 5.957102, so 68% of our participant intercepts will lie roughly between 5.7007211 and 6.2134829

```
Groups Name Variance Std.Dev.
sj (Intercept) 0.065731 0.25638
Residual 0.180305 0.42462
```

• so we can interpret the standard deviation as quantifying the variability of the byparticipant intercepts around the mean (i.e., intercept)

lmerTest::lmer()

- recall we had a conflict for the function lmer() between lme4 and lmerTest, and we set lme4 to be our default for this function
- let's refit our model using lmerTest::lmer()

• the only change is the addition of lmerTest::, which specifies which package to retreive
the lmer() function from

By-participant varying intercepts density

Figure 5: Density plot of by-participant intercepts with 95% (+/-SD*1.96) and 68% (+/-SD) ranges

• what's different in the summary?

```
summary(fit_lmm_fp_sj)
```

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]

Formula: log(fp) ~ verb_t * gramm + (1 | sj)

Data: df_biondo
Subset: roi == 4

REML criterion at convergence: 4479.1

Scaled residuals:

Min 1Q Median 3Q Max
-4.0560 -0.6427 -0.0419 0.6168 4.0901
```

Random effects:

Groups Name Variance Std.Dev.

```
(Intercept) 0.06573 0.2564
 sj
                      0.18030 0.4246
 Residual
Number of obs: 3795, groups: sj, 60
Fixed effects:
                  Estimate Std. Error
                                                df t value
                                                                        Pr(>|t|)
(Intercept)
                  5.957102
                              0.033809
                                         58.991899 176.199 < 0.00000000000000002
verb_t1
                  0.062209
                              0.013787 3732.065822
                                                     4.512
                                                                      0.00000662
                              0.013787 3732.032139
                                                                           0.802
gramm1
                  0.003466
                                                     0.251
                              0.027573 3732.037124 -0.571
                                                                           0.568
verb_t1:gramm1
                 -0.015741
(Intercept)
verb_t1
gramm1
verb_t1:gramm1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
            (Intr) vrb_t1 gramm1
verb_t1
             0.000
gramm1
             0.000 - 0.002
```

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] #<1
. . .
Fixed effects:
                 Estimate Std. Error
                                               df t value
                                                                      Pr(>|t|)
                                                                                   #<2>
(Intercept)
                 5.957102 0.033809
                                        58.991899 176.199 < 0.0000000000000000 ***
verb_t1
                 0.062209
                             0.013787 3732.065822
                                                   4.512
                                                                    0.00000662 ***
                             0.013787 3732.032139
gramm1
                 0.003466
                                                    0.251
                                                                         0.802
verb_t1:gramm1
                -0.015741
                             0.027573 3732.037124 -0.571
                                                                         0.568
```

(1) New: Satterthwaite's method and object class (lmerModLmerTest)

vrb_t1:grm1 0.000 0.002 0.000

- (2) Fixed effects include df (degrees of freedom) and p-values (Pr(>|t|))
 - lme4::lmer() doesn't provide degrees of freedom or p-values

Table 1: Fixed effects for lm_fp_sj

term	estimate	std.error	statistic	p.val
(Intercept)	5.957	0.008	741.568	0.00000
verb_t1	0.061	0.016	3.809	0.00014
gramm1	0.003	0.016	0.193	0.84695
verb_t1:gramm1	-0.015	0.032	-0.474	0.635212

- defining degrees of freedom (and therefore calculating p-values) is more complex and not trivial in mixed models
- lmerTest uses the Satterthwaite method, which is fine for our purposes
- importantly, everything else is exactly the same as when we use lme4::lmer()

Fixed effects for lm() and lmer()

• let's compare our fixed effects to those from a model without random effects

Comparing fixed effects

- so far we see that our model estimates are still descriptively similar, there are only some slight quantitative differences
- your fixed effects will typically be unchanged with the addition of random effects
 - what changes will be usually be the standard error, t-value (or z-value for generalised linear (mixed) models), confidence intervals, and p-values
 - the magnitude of this change will depend on whether the inclusion of the random effects better accounts for variability in your data than your fixed effects alone

Table 2: Fixed effects for lmm_fp_sj

term	estimate	std.error	statistic	df	
(Intercept)	5.957	0.034	176.199	59	0.
verb_t1	0.062	0.014	4.512	3732	0.
gramm1	0.003	0.014	0.251	3732	0
verb_t1:gramm1	-0.016	0.028	-0.571	3732	0.

Comparing residual error

- the residual error for our fixed-effects-only model was is 0.49

```
glance(fit_lm_fp)$sigma
```

[1] 0.494879

 $\bullet\,$ for our by-participant varying intercepts model it goes down to 0.42

```
glance(fit_lmm_fp_sj)$sigma
```

[1] 0.424623

- this tells us that our inclusion of by-participant varying intercepts accounts for some of the variance in the model that was not accounted for in fixed-effects-only model
- are there any other possible sources of variance that we haven't taken into account?

Crossed random effects: two grouping factors

• we still haven't taken by-item variance into account, let's now include *crossed* random effects in our model

```
(1|item),
data = df_biondo,
subset = roi == 4)
```

- crossed random effects refer to a property of your data (/experimental design), i.e., repeated measures for items and participants
 - one level of a grouping factor contains observations from all levels from another grouping factor (e.g., each item has an observations from each participant and vice versa)

```
summary(fit_lmm_fp_sj_item)
```

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method [ lmerModLmerTest]
```

Formula: $log(fp) \sim verb_t * gramm + (1 | sj) + (1 | item)$

Data: df_biondo
Subset: roi == 4

REML criterion at convergence: 4220.3

Scaled residuals:

Min 1Q Median 3Q Max -4.1568 -0.6169 -0.0257 0.6006 4.0422

Random effects:

Groups Name Variance Std.Dev.
item (Intercept) 0.01940 0.1393
sj (Intercept) 0.06654 0.2580
Residual 0.16089 0.4011

Number of obs: 3795, groups: item, 96; sj, 60

Fixed effects:

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	5.956404	0.036790	79.200811	161.903	< 0.00000000000000000000000000000000000
verb_t1	0.061892	0.013025	3637.133151	4.752	0.00000209
gramm1	0.003212	0.013025	3637.183379	0.247	0.805
verb_t1:gramm1	-0.014316	0.026049	3637.102346	-0.550	0.583

Table 3: By-participant varying variance component

group	term	estimate
Sj	sd(Intercept)	0.2563809
Residual	sdObservation	0.4246230

Table 4: By-participant and -item variance components

group	term	estimate
item	sd(Intercept)	0.1392928
Sj	sd(Intercept)	0.2579514
Residual	sdObservation	0.4011073

Comparing random effects

- we now have the variance of by-item random intercepts (Table 4)
- the variance component for the by-subjects intercepts is not much changed
 - the value is slightly different because it now also takes by-item variability into account
- the residual error also goes down in fit_lmm_fp_sj_item (0.4), because by-item intercepts account for some of the variance that was unaccounted for in fit_lmm_fp_sj (0.42)

Table 5: Fixed effects for lmm_fp_sj

term	estimate	std.error	statistic	df	
(Intercept)	5.957	0.034	176.199	59	0.
verb_t1	0.062	0.014	4.512	3732	0.
gramm1	0.003	0.014	0.251	3732	0.
verb_t1:gramm1	-0.016	0.028	-0.571	3732	0.

Table 6: Fixed effects for lmm_fp_sj_item

term	estimate	std.error	statistic	df	
(Intercept)	5.956	0.037	161.903	79	0.
verb_t1	0.062	0.013	4.752	3637	0.
gramm1	0.003	0.013	0.247	3637	0.
verb_t1:gramm1	-0.014	0.026	-0.550	3637	0.

• note that there is most by-participant than by-item variance, this is typical and reflects what we saw in our boxplots

Comparing fixed effects

• again we see there isn't much change to our coefficient estimates

Comparing predictions

```
sjPlot::plot_model(fit_lm_fp, type = "int") +
  geom_line(position = position_dodge(.1)) +
  ylim(340,440) +
  labs(title = "fit_lm_fp") +

sjPlot::plot_model(fit_lmm_fp_sj, type = "int") +
```

```
geom_line(position = position_dodge(.1)) +
ylim(340,440) +
labs(title = "fit_lmm_fp_sj") +

sjPlot::plot_model(fit_lmm_fp_sj_item, type = "int") +
geom_line(position = position_dodge(.1)) +
ylim(340,440) +
labs(title = "fit_lmm_fp_sj_item") +

plot_layout(guides = "collect")
```


Figure 6: Comparison of predicted estimates and 95% confidence intervals for the three models

- if we plot the results from all three models we've fit so far we see the estimates are similar but the confidence intervals are wider for the mixed models
 - this is despite the fact that the p-values are significant for all three

Model comparison

• we can use the anova() function to compare model fit

```
anova(fit_lmm_fp_sj, fit_lmm_fp_sj_item)
```

- here we see that the AIC, BIC, and logLik are all lower for our model with by-participant and -item varying intercepts
 - lower AIC and BIC indicate better model fit
 - higher logLik indicates better fit
- the inclusion of by-item random intercepts significantly improves the fit of our model

Exploring our random effects estimates

- what we saw in our model summary were the variance components
 - a description of the variance of our by-item and by-participant random intercepts
- our model also contains intercept estimates for each level of item and participant
 - we can extract the intercept estimates
 - or we extract their deviance from the model intercept

Extracting fixed effects

• we've already used coef() to extract fixed effect estimates from 1m objects

• to extract our fixed effect estimates from lmer objects we need fixef()

• or we can append \$coefficients to the model summary

```
summary(fit_lmm_fp_sj_item)$coefficients |>
    as_tibble()
# A tibble: 4 x 5
                           df 't value' 'Pr(>|t|)'
 Estimate `Std. Error`
     <dbl>
                 <dbl>
                        <dbl>
                                  <dbl>
                                             <dbl>
1 5.96
                0.0368 79.2
                                162.
                                         1.31e-101
2 0.0619
                0.0130 3637.
                                  4.75
                                         2.09e-
3 0.00321
                0.0130 3637.
                                  0.247 8.05e-
4 -0.0143
                0.0260 3637.
                                 -0.550 5.83e- 1
```

Extract random intercept estimates

• coef() behaves very differently with lmer objects, extracting the random effects estimates per level

```
coef(fit_lmm_fp_sj_item) |> pluck("item") |>
rownames_to_column(var = "item") |> head()
```

```
item (Intercept)
                      verb_t1
                                  gramm1 verb_t1:gramm1
1
          6.022184 0.06189237 0.00321152
                                            -0.01431578
2
          5.761268 0.06189237 0.00321152
                                            -0.01431578
3
         5.854873 0.06189237 0.00321152
                                            -0.01431578
          6.056862 0.06189237 0.00321152
                                            -0.01431578
5
          6.138213 0.06189237 0.00321152
                                            -0.01431578
          6.331058 0.06189237 0.00321152
                                            -0.01431578
```

- which outputs a list object, with one data frame for item and one for sj
 - in the code above I've 'plucked' just the by-item coefficients
- we can extract just one or the other (head() is for presentation purposes):

```
coef(fit_lmm_fp_sj_item) |> pluck("item") |>
rownames_to_column(var = "item") |> head()
```

```
item (Intercept)
                                  gramm1 verb_t1:gramm1
                      verb_t1
          6.022184 0.06189237 0.00321152
                                             -0.01431578
1
2
     2
          5.761268 0.06189237 0.00321152
                                             -0.01431578
3
          5.854873 0.06189237 0.00321152
                                             -0.01431578
4
          6.056862 0.06189237 0.00321152
                                             -0.01431578
5
          6.138213 0.06189237 0.00321152
                                             -0.01431578
          6.331058 0.06189237 0.00321152
                                             -0.01431578
  coef(fit_lmm_fp_sj_item) |> pluck("sj") |>
    rownames_to_column(var = "sj") |> head()
```

```
sj (Intercept)
                                gramm1 verb_t1:gramm1
                    verb_t1
        6.401777 0.06189237 0.00321152
                                          -0.01431578
2
        5.794179 0.06189237 0.00321152
                                          -0.01431578
3 07
        5.869627 0.06189237 0.00321152
                                          -0.01431578
4 09
        5.782527 0.06189237 0.00321152
                                          -0.01431578
        6.621081 0.06189237 0.00321152
5 10
                                          -0.01431578
6 11
        5.913712 0.06189237 0.00321152
                                          -0.01431578
```

• why do our intercepts vary, but not verb_t1, gramm1, or verb_t1:gramm1?

Extract deviations from the intercept

- the ranef() function provides the deviance from the model intercept and each random intercept estimate
 - the output is a list with a one element per grouping factor

```
ranef(fit_lmm_fp_sj_item)
```

\$item

(Intercept) 1 0.065780608 2 -0.195135717 3 -0.101530802 4 0.100458122 5 0.181809783 6 0.374654251 7 0.092819196 0.136954752

- 9 0.058102873
- 10 -0.054265683
- 11 -0.149873360
- 12 0.110751479
- 13 0.147096084
- 14 0.127958914
- 15 0.057606192
- 16 -0.081076541
- 17 0.125828603
- 18 -0.073509315
- 19 -0.012746330
- 20 0.110139903
- 21 -0.155506252
- 22 0.126398878
- 23 0.166876070
- 24 -0.034901551
- 25 0.146486591
- 26 0.074730265
- 27 0.088381259
- 00 000070040
- 28 -0.092678849
- 29 0.014411435
- 30 0.066763872
- 31 -0.038994027
- 32 -0.120446386
- 33 -0.194224589
- 34 -0.072322285 35 -0.084322521
- 35 -0.084322521 36 -0.103494886
- 38 0.118984111
- 39 0.091933443
- 40 -0.086216865
- 41 0.134573606
- 42 -0.117043412
- 43 -0.062584500
- 44 -0.001550553
- 46 0.008950192
- 47 -0.099435593
- 48 -0.107745509
- 49 -0.062632428
- 51 -0.023401507
- 52 0.206710720
- 53 -0.016527981
- 54 -0.032560697

- 55 -0.023730903
- 56 0.046093704
- 57 0.217142741
- 58 0.023060958
- 59 -0.217157054
- 60 0.059161953
- 61 0.148130135
- 62 0.076164596
- 63 -0.162879330
- 0.003286442 64
- 66 -0.145269266
- 67 0.038320168
- 68 0.144997093
- 69 -0.011825617
- 70
- 0.141234735
- 72 -0.019280976
- 73 0.243151378
- 74 0.005062608
- 75 -0.078003084
- 76 0.030885201
- 77 -0.105347877
- 78 0.267962295
- 79 0.049474689
- 80 0.012452861
- 81 -0.126197903
- 82
- -0.270275547 83
- -0.231166335 84 -0.148988678
- 85 -0.074619155
- 86 -0.316661058
- 87 -0.021441852
- 88 0.004467788
- 89 -0.068689368
- 90 0.168752654
- 91 -0.130311515 92 0.181189404
- 93 -0.113007279
- 94 -0.038028968
- 95 0.018891686
- 96 -0.010844951
- 97 -0.160693789
- 98 -0.189160313
- 99 -0.046282799

- 100 0.038520282
- 101 0.031027185

\$sj

(Intercept)

- 1 0.4453736686
- 2 -0.1622245920
- 07 -0.0867769204
- 09 -0.1738770087
- 10 0.6646773896
- 10 0:0010770000
- 11 -0.0426912397
- 12 0.1966276739
- 14 -0.2534130428
- 15 0.0744365289
- 16 0.3102703155
- 17 -0.4416672585
- 18 0.3483163760
- 20 -0.0004747722
- 21 -0.3905578006
- 22 0.1588478248
- 23 0.2750736081
- 24 -0.0164601317
- 26 0.0545049227
- 27 0.1681915401
- 28 0.3829174064
- 29 -0.0724729416
- 30 -0.1307018626
- 31 0.5591486944
- 32 -0.2297591961
- 33 -0.1058829882
- 34 -0.1929520704
- 25 0.2651328954
- 73 0.1010490787
- 74 0.1222262133
- 35 -0.3466865197
- 36 0.2458666126
- 37 -0.2586775333
- 38 -0.1170898527
- 39 -0.0707477418
- 40 -0.2595291388
- 41 -0.1337344231
- 42 0.1285752340
- 43 -0.3904903423

```
46 -0.5196576089
47 0.1586324543
48 0.2627372846
49 -0.1194323811
50 -0.3470873902
51 0.2998361957
52 0.1196091237
53 -0.1241739663
54 -0.1457289205
55 0.1724245610
56 -0.1790151326
57 -0.2663456249
58 0.0161788674
59 0.0070594181
60 0.2180027256
61 -0.0234205903
62 0.2711544584
63 -0.2167262452
64 -0.3457197069
65 0.0165792343
66 0.0426515896
67 0.0780730481
with conditional variances for "item" "sj"
```

• ranef()\$grouping_factor or pluck("grouping_factor") selects the relevant grouping factor

```
ranef(fit_lmm_fp_sj_item)$sj |>
head()

(Intercept)

1  0.44537367

2  -0.16222459

07  -0.08677692

09  -0.17387701

10  0.66467739

11  -0.04269124
```

Table 7: Random intercept estimates versus deviance

$\overline{\mathrm{sj}}$	sj_est	sj_dev	est_minus_dev	model_intercept e
1	6.402	0.445	5.956	5.956
2	5.794	-0.162	5.956	5.956
$\overline{07}$	5.870	-0.087	5.956	5.956
09	5.783	-0.174	5.956	5.956
10	6.621	0.665	5.956	5.956
11	5.914	-0.043	5.956	5.956

```
ranef(fit_lmm_fp_sj_item) |>
pluck("sj") |> head()
```

(Intercept)

1 0.44537367

2 -0.16222459

07 -0.08677692

09 -0.17387701

10 0.66467739

11 -0.04269124

Compare estimates and deviances

- the values extracted by ranef() (sj_dev in Table 7) equal the difference (difference) between the model intercept (model_intercept) and the by-participant random intercept estimates (sj_est)
- so we can either look at each participant's (or item's) estimate, or look at how much it deviates from the model intercept

Visualise random effects

• the lattice package automatically produces plots of random effects estimates

lattice::dotplot(ranef(fit_lmm_fp_sj_item))\$item

item

lattice::dotplot(ranef(fit_lmm_fp_sj_item))\$sj

sj

Reporting your model

- according to Sonderegger (2023) (p. 297), we should report:
 - 1. model definition (sometimes in 'Data Analysis' section)
 - 2. Fixed effects
 - 3. Random effects
 - 4. Sample size (number of observations, number of levels for each grouping factor)
 - 5. one or more quantitative summaries of the model, e.g., AIC, BIC, or logLik (although they're only informative in comparison to another model fit to the same data)

Model definition

We conducted the analysis by fitting linear mixed-effect models to our data, using the R package lme4 (Bates et al., 2014). We included Time Reference (past, future), and Verb Match (match, mismatch) as fixed-effect factors [...] by adopting sum contrast coding (Schad et al., 2020): past and match conditions were coded as -.5. while future and mismatch conditions were coded as .5. [...] Moreover, we included crossed random intercepts and random slopes for all fixed-effect parameters for subject and item grouping factors (Barr et al., 2013) in all models. [...] Logit mixed-effect models were employed (Jaeger, 2008) for the analysis of the probability of regression measure. [...] P-values were derived by using the lmerTest package (Kuznetsova et al., 2017).

- Biondo et al. (2022), p. 9
 - could also explicitly mention method used for p-values, an example:

P-values for individual predictors were computed using lmerTest, with the Satterthwaite option for denominator degrees of freedom for F statistics.

- Troyer & Kutas (2020), p. 9
 - but here they don't cite the package
 - so you see, there's alway something you miss...
 - FYI, to get a package's citation, run citation("lmerTest") in the Console

Results

- a combination of tables, figures, and in-text coefficient estimates is always key
- in-text, the t- and p-values should be included at minimum, Estimate and standard error (Est = ..., SE = ...,) could also be included if you aren't reporting many effects but must at least be included in a table
- figures will typically only show the distribution of raw observations and model predictions for fixed effects

In-text

A main effect of tense was found in first-pass reading times at the verb region (Est = 0.062, t = 4.8, p < .001), with the future tense (M = 458ms, SD = 274ms) eliciting longer first-pass reading times than the past tense.

Tables

Fixed effects

```
tidy(fit_lmm_fp_sj_item,
     effects = "fixed") |>
  as_tibble() |>
  select(-effect) |>
  mutate(p.value = format_pval(p.value),
         across(c(estimate,std.error, statistic), round, 3),
         df = round(df,1)) >
  mutate(term = fct_recode(term,
    "Intercept" = "(Intercept)",
    "Tense" = "verb_t1",
    "Grammticality" = "gramm1",
    "Tense x Gramm" = "verb_t1:gramm1"
  )) |>
  kable(
        col.names = c("Coefficient", "$\\hat{\\beta}$", "SE", "t", "df", "p")) |>
  kable_styling()
```

Random effects

Table 8: Table of fixed effects from fit_lmm_fp_sj_item

Coefficient	$\hat{\theta}$	SE	t	df	p
Intercept	5.956	0.037	161.903	79.2	< .001
Tense	0.062	0.013	4.752	3637.1	< .001
Grammticality	0.003	0.013	0.247	3637.2	0.805
Tense x Gramm	-0.014	0.026	-0.550	3637.1	0.583

Table 9: Table of random effects from fit_lmm_fp_sj_item

Group	Term	Variance	SD
item	(Intercept)	0.019	0.139
sj	(Intercept)	0.067	0.258
Residual	NA	0.161	0.401

Figures

• we don't usually include plots of our random effects in publications, but these can be useful for model exploration and can be included in supplementary materials

lattice

• as already mentioned, we can simply use the the lattice package

```
library(lattice)
dotplot(ranef(fit_lmm_fp_sj_item))["sj"]
```

\$sj

Figure 7: By-participant varying slopes (lattice::dotplot(res(model)))

broom.mixed

- or we can also generate the same plots using tidy() from the broom.mixed package + ggplot() (Figure 8 A)
- and we can add the model intercept to get each by-participant estimate, i.e., the values we get with coef() (Figure 8 B)

```
facet_grid(~term)
  fig_res_est <- broom.mixed::tidy(fit_lmm_fp_sj_item, effects = "ran_vals", conf.int = TRUE
    filter(group == "sj") |>
    # back-transform to ms
    mutate(across(c(estimate,conf.low,conf.high),~.+fixef(fit_lmm_fp_sj_item)[1])) |>
    # mutate(across(c(estimate,conf.low,conf.high),exp)) |>
    # plot
    ggplot() +
    aes(x = estimate, y = reorder(level, estimate)) +
    labs(title = "By-participant varying intercepts with 95% CIs",
          y = "Participant ID",
          x = "Estimate (log)") +
    geom_vline(xintercept = fixef(fit_lmm_fp_sj)[1], colour = "red", linetype = "dashed") +
    geom_point(colour = "blue") +
    geom_errorbar(
      aes(xmin = conf.low,
           xmax = conf.high)
    ) +
    scale_x_continuous(breaks = c(5.457102, 5.957102, 6.457102)) +
    facet_grid(~term)
  fig_res_dev + fig_res_est +
    plot_annotation(tag_levels = "A")
Α
                                         В
       By-participant varying intercepts \
                                                 By-participant varying intercepts wi
                   (Intercept)
                                                            (Intercept)
                                           Participant ID
 Participant ID
                    0.0
                               0.5
                                                 5.457102 5.957102 6.457102
         -0.5
```

Figure 8: Back-transformed first-pass reading times (ms) at the verb region with 95% CIs

Estimate (log)

Deviation from the intercept

- and we can back-transform these values to milliseconds by exponentiating the estimates in the log scale (Figure 9 A)
- and we can back-transform deviances by subtracting the exponentiating model estimate from the back-transformed estimates (Figure 9 B)

```
fig_res_est_ms <-
 broom.mixed::tidy(fit_lmm_fp_sj_item, effects = "ran_vals", conf.int = TRUE) |>
 filter(group == "sj") |>
 # back-transform to ms
 mutate(across(c(estimate,conf.low,conf.high),~.+fixef(fit_lmm_fp_sj_item)[1])) |>
 mutate(across(c(estimate,conf.low,conf.high),exp)) |>
 # plot
 ggplot() +
 aes(x = estimate, y = reorder(level, estimate)) +
 labs(title = "By-participant varying intercepts with 95% CIs",
      y = "Participant ID",
      x = "Estimate (ms)") +
 geom_vline(xintercept = exp(fixef(fit_lmm_fp_sj)[1]), colour = "red", linetype = "dashed
 geom_point(colour = "blue") +
 geom_errorbar(
   aes(xmin = conf.low,
       xmax = conf.high)
 ) +
 scale x continuous(breaks = c(186.4884, 386.4884, 586.4884, 786.4884)) +
 facet_grid(~term)
fig_res_dev_ms <-
broom.mixed::tidy(fit_lmm_fp_sj_item, effects = "ran_vals", conf.int = TRUE) |>
 filter(group == "sj") |>
 # back-transform to ms
 mutate(across(c(estimate,conf.low,conf.high),~.+fixef(fit_lmm_fp_sj_item)[1])) |>
 mutate(across(c(estimate,conf.low,conf.high),exp)) |>
 mutate(across(c(estimate,conf.low,conf.high),~.-exp(fixef(fit_lmm_fp_sj_item)[1]))) |>
 # plot
 ggplot() +
 aes(x = estimate, y = reorder(level, estimate)) +
 labs(title = "Deviances in by-participant varying intercepts with 95% CIs",
      y = "Participant ID",
      x = "Deviance (ms)") +
 geom_vline(xintercept = 0, colour = "red", linetype = "dashed") +
```

```
geom_point(colour = "blue") +
     geom_errorbar(
       aes(xmin = conf.low,
            xmax = conf.high)
     ) +
     \# scale_x_continuous(breaks = c(-0.5,0,0.5)) +
     facet_grid(~term)
  fig_res_est_ms + fig_res_dev_ms + plot_annotation(tag_levels = "A")
Α
        By-participant varying intercepts v
                                                    Deviances in by-participant varying
                    (Intercept)
                                                                (Intercept)
  Participant ID
                                              Participant ID
                                                                      200
    186.4884 386.4884 586.4884 786.4884
                                                  -200
                                                                                400
                 Estimate (ms)
                                                             Deviance (ms)
```

Figure 9: By-participant estimates back-transformed to milliseconds

Learning objectives

Today we learned...

- what linear mixed models are
- how to fit a random-intercepts model
- how to inspect and interpret a mixed effects model

Important terms

Term	Definition	Equation/Code
linear mixed (effects) model	NA	NA

Task

- Fit a linear mixed model (lm() function) to log-transformed total reading times (tt) at
 the adverb region (roi == 2), with adverb time reference (adv_t) and gramm (gramm)
 and their interaction as fixed effects and by-participant and by-item varying intercepts.
 Use sum contrast coding (Past and gramm = -0.5, Future and ungramm = +0.5). Save
 this model as fit_lmm_adv_tt.
- 3. Inspect the fixed effect of your model.
- 5. Plot the fixed effects for fit_lm_adv_tt and fit_lmm_adv_tt.

```
coef_fixed <-
  broom.mixed::tidy(
  fit_lmm_adv_tt,
  effects="fixed",
  conf.int = T
)

pred_back <-
  tibble(
  tense = c(rep("Past",2),rep("Future",2)),
  gramm = rep(c("gramm","ungramm"),2)
)</pre>
```

- 4. Inspect the random effects for fit_lmm_adv_tt. Describe what you see.
- 5. Plot the random effects per participant and item.
- 6. Write up a description of your model as if for a publication (model formula, contrasts, random effects structure, packages/methods used).
- 7. Write up the results (coefficient estimates, etc.).

References

Biondo, N., Soilemezidi, M., & Mancini, S. (2022). Yesterday is history, tomorrow is a mystery: An eye-tracking investigation of the processing of past and future time reference during sentence reading. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 48(7), 1001–1018. https://doi.org/10.1037/xlm0001053

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. *Journal of Statistical Software*, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13

- Sonderegger, M. (2023). Regression Modeling for Linguistic Data.
- Troyer, M., & Kutas, M. (2020). To catch a Snitch: Brain potentials reveal variability in the functional organization of (fictional) world knowledge during reading. *Journal of Memory and Language*, 113(August 2019), 104111. https://doi.org/10.1016/j.jml.2020.104111
- Winter, B. (2014). A very basic tutorial for performing linear mixed effects analyses (Tutorial 2).
- Winter, B. (2019). Statistics for Linguists: An Introduction Using R. In Statistics for Linguists: An Introduction Using R. Routledge. https://doi.org/10.4324/9781315165547