Week 6 Lectorial

Question #1

Imagine you have access to a 4-bit register.

What does the Write signal do?

Question #2

Assume that you have access to a counter circuit:

- How do you make a signal that goes high after 10 clock cycles?
- How do you make a signal that goes high every 10 clock cycles?

Question #2 (cont'd)

• How do you make a signal that goes high every 100 clock cycles, only using 4-bit counters like the one below (and a few additional gates)?

Question #3

- How many flipflops would you need to implement the following finite state machine (FSM)?
 - 11 states

 - # flip-flops = 4

Reminder: How to Design FSM

- As a brief reminder:
 - Draw state diagram
 - 2. Derive state table from state diagram
 - 3. Assign flip-flop configuration to each state
 - Number of flip-flops needed is: $\lceil \log(\# \text{ of states}) \rceil$
 - 4. Redraw state table with flip-flop values
 - 5. Derive combinational circuit for output and for each flip-flop input.

Review of FSMs

- Step 5 requires two combinational circuit design tasks.
 - For Moore machines (pictured bottom right), output is determined solely based on current state (i.e. flip-flop values).

Review of FSMs

- For Mealy machines, output is determined by both the current state and the current input values.
 - For simplicity, most of our examples will focus on Moore machines.

State diagrams with output

 Output values are incorporated into the state diagram, depending on the machine used.

➤ Moore Machine

State/
Output(s)

➤ Mealy Machine

FSM Example: Barcode Reader

When scanning UPC
 barcodes, the laser
 scanner looks for black
 and white bars that
 indicate the start of the code.

- If black is read as a 1 and white is read as a 0, the start of the code (from either direction) has a 1010 pattern.
 - Can you create a state machine that detects this pattern?

Step #1: Draw state diagram

Step #2: State Table

- Output Z is determined by the current state.
 - Denotes Moore machine.
- Next step: allocate flipflops values to each state.
 - How many flip-flops will we need for 5 states?
 - Recall:
 - # flip-flops = \[log(# of states) \]

Present State	Z	x	Next State
A	0	0	A
A	0	1	В
В	0	0	С
В	0	1	В
С	0	0	A
С	0	1	D
D	0	0	E
D	0	1	В
E	1	0	A
E	1	1	D

Step #3: Flip-Flop Assignment

 3 flip-flops needed here.

Assign states carefully though!

Can't simply do this:

$$> A = 100 > B = 011$$

Why not?

Step #3: Flip-Flop Assignment

В

Be careful of race conditions.

Better solution:

$$A = 000$$
 $B = 001$

$$\triangleright$$
 C = 011 \triangleright D = 101

- "Safer" is defined according to output behaviour.
- Sometimes, extra flip-flops are used for extra insurance.

Step #4: Redraw State Table

- From here, we can construct the K-maps for the state logic combinational circuit.
 - Derive equations for each flip-flop value, given the previous values and the input X.

Present State		Z	x	Next State			
0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	1
0	0	1	0	0	0	1	1
0	0	1	0	1	0	0	1
0	1	1	0	0	0	0	0
0	1	1	0	1	1	0	1
1	0	1	0	0	1	0	0
1	0	1	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	0	1	1	1	0	1

• Three equations total, plus one more for \mathbb{Z} (trivial for Moore machines).

Karnaugh map for F₂:

	$\overline{\mathbf{F}}_0 \cdot \overline{\mathbf{X}}$	F ₀ ⋅ x	F ₀ · X	$\mathbf{F}_0 \cdot \overline{\mathbf{X}}$	
$\overline{\mathbf{F}}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	0	
$\overline{\mathbf{F}}_2 \cdot \mathbf{F}_1$	X	X	1	0	
$\mathbf{F}_2 \cdot \mathbf{F}_1$	X	X	X	X	
$\mathbf{F}_2 \cdot \overline{\mathbf{F}}_1$	0	1	0	1	

$$F_2 = F_1 X + F_2 \overline{F}_0 X + F_2 F_0 \overline{X}$$

■ Karnaugh map for F₁:

	$\overline{\mathbf{F}}_0 \cdot \overline{\mathbf{X}}$	F ₀ ⋅ x	F ₀ · X	$\mathbf{F}_0 \cdot \overline{\mathbf{X}}$
$\overline{\mathbf{F}}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	1
$\overline{\mathbf{F}}_2 \cdot \mathbf{F}_1$	X	X	0	0
$\mathbf{F}_2 \cdot \mathbf{F}_1$	X	X	X	Х
$\mathbf{F}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	0

$$F_1 = F_2 F_1 F_0 \overline{X}$$

Karnaugh map for F_o:

	$\overline{\mathbf{F}}_{0}\cdot\overline{\mathbf{X}}$	$\overline{\mathbf{F}}_0 \cdot \mathbf{x}$	F ₀ ·X	$\mathbf{F}_0 \cdot \overline{\mathbf{X}}$
$\overline{\mathbf{F}}_2 \cdot \overline{\mathbf{F}}_1$	0	1	1	1
$\overline{\mathbf{F}}_2 \cdot \mathbf{F}_1$	Χ	X	1	0
$\mathbf{F}_2 \cdot \mathbf{F}_1$	X	X	X	X
$\mathbf{F}_2 \cdot \overline{\mathbf{F}}_1$	0	1	1	0

$$F_0 = X + \overline{F}_2 \overline{F}_1 F_0$$

Output value Z goes high based on the following output equation:

$$Z = F_2 \overline{F}_1 \overline{F}_0$$

- Note: All of these equations would be different, given different flip-flop assignments!
 - Practice alternate assignment for the midterm ©