Contents

1	Met	talle mit Ingo								
	1.1									
	1.2	Elektrisches Verhalten								
		1.2.1 Betrachtung des spezifischen Widerstands								
		1.2.2 Betrachtung der thermischen Verhaltens der Leitfähigkeit								
	1.3	Definition des metallischen Zustands								
	1.4	Die chemische Bindung in Metallen								
		1.4.1 Ketelaar-Diagramm								
		1.4.2 Das Elektronengasmodell								
		1.4.3 Das Bändermodell								
	1.5	Strukturen der Metalle								
		1.5.1 Die kubisch-innenzentrierte Kugelpackung								
		1.5.2 Die dichtesten Packungen								
		1.5.3 Aufgefüllte dichteste Packungen								
2	Die	Elemente der ersten und elften Periode (-H&Rg)								
		2.0.1 Vorkommen								
		2.0.2 Herstellung								
		2.0.3 Verbindungen								
		2.0.4 Sauerstoff-Verbindungen								
		2.0.5 Hydroxide								
		2.0.6 Alkalimetall-Elektrode und Alkalide								
		2.0.7 Stickstoffverbindungen								
	2.1	Oxidationsstufen der Münzmetalle								
		2.1.1 Allgemeines								
	2.2	2.1.2 Verbindungen von Cu und Ag in hohen Oxidationsstufen								
	2.2	Die Chemie der Golds								
		2.2.1 Relativistische Effekte								
		2.2.2 Goldverbindungen								
3	Eler	mente der 2. und 12. Gruppe								
	3.1	Vorkommen								
		3.1.1 Erdalkalimetalle								
		3.1.2 Elemente der Zink-Gruppe								
	3.2	Herstellung								
		3.2.1 Erdalkalimetalle								
		3.2.2 Zinkgruppe								
	3.3	Verbindungen 9								
		3.3.1 Halogenide MX_2								
	9.4	3.3.2 Chalkogenide 9 Die Chemie des Quecksilbers 10								
	3.4	Die Chemie des Quecksilbers 10 3.4.1 Besonderheiten 10								
		3.4.2 Halogenide								
		3.4.3 Chalkogenide								
		3.4.4 Amalgame								
		5111 1IIIMaSame								
4	\mathbf{Die}	Metalle des p-Blocks								
	4.1	Eigenschaften								
		4.1.1 Tabelle								
		4.1.2 Grnazbereich Metalle-Nichtmetalle								
	4.2	Vorkommen								
		4.2.1 Erdmetalle								
	4.0	4.2.2 Zinn, Blei, Actino-, Bismut								
	4.3	Herstellung								
		4.3.1 Erdmetalle								

		4.3.2 Zinn, Blei, Antimon, Bismut	12
	4.4	Verbindungen	12
		4.4.1 Halogenide	12
		4.4.2 Chalkogenide	13
		4.4.3 Aquakomplexe von Aluminium	13
		4.4.4 Zintl-Phasen	13
5		indzüge der Komplexchemie	13
	5.1	Allgemeines	13
		Komplexliganden	13
	5.3	Arten der Donor-Bindung und Ligandenverbrückung	14
		5.3.1 Arten der Donor-Bindung	14
		5.3.2 Haptizität (π -Komplexe) η	14
		5.3.3 Verbrückung μ	14
	5.4	Geometrien in Komplexen	14
	5.5	Isomerie in Komplexen	14
		5.5.1 Geometrische Isomere	14
		5.5.2 Konstitutionsisomere	14
	5.6	Die Kristallfeld- bzw. Ligandenfeldtheorie	15
		5.6.1 Allgemeines	15
		5.6.2 Die Ligandenfeldstabilisierungsenergie (LFSE)	15
		5.6.3 Die spektrochemischen Reihen	16
	5.7	Physikalische Eigenschaften	16
		5.7.1 Optische Eigenschaften	16
		5.7.2 Magnetismus in Komplexen	16
6	Übe	ergangsmetalle	16
	6.1	Allgemeines	16
		6.1.1 Verschiedene Trends im Vergleich Hauptgruppenmetalle / Übergangsmetalle	16
	6.2	Die vierte Gruppe	16
		6.2.1 Vorkommen	16
		6.2.2 Herstellung	17
		6.2.3 Verbindungen	17
	6.3	Die fünfte Gruppe	17
		6.3.1 Vorkommen	17
		6.3.2 Herstellung	17
		6.3.3 Verbindungen	17

1 Metalle mit Ingo

1.1 Eigenschaften metallischer Elemente

Physikalische Eigenschaften

- Leitfähigkeit
 - elektrischen
 - thermische
- Metallischer Glanz
- Duktilität (Formbarkeit)
- Nicht Lichtdurchlässig

Chemische Eigenschaften

- niedrige Elektronegativität
- bildet bevorzugt Kationen
- Meist basische Hydroxide!?
 - niedrige Oxidationsstufe: JA Beispiel: $Cr(OH)_2 + H_2O \longrightarrow Cr^{2+} + 2OH^- + H_2O$
 - hohe Oxidationsstufe: NEIN Beispiel: Cr(OH)₆ (gibt's nicht) wird zu CrO₂(OH)₂ →H₂CrO₄ H_2 CrO₄ + 2 H_2 O \longrightarrow CrO₄^{2−} + 2 H_3 O⁺

1.2 Elektrisches Verhalten

1.2.1 Betrachtung des spezifischen Widerstands

• Metalle: 10^{-4} bis $10^{-6}\Omega \cdot \text{cm}^{-1}$

• Halbleiter: 10^1 bis $10^4 \Omega \cdot \text{cm}^{-1}$

• Isolator: $> 10^{10} \Omega \cdot \text{cm}^{-1}$

1.2.2 Betrachtung der thermischen Verhaltens der Leitfähigkeit

Siehe Folie

1.3 Definition des metallischen Zustands

Phänomenologisch: schwierig, da makroskopische Eigenschaften wie Glanz, Duktilität verändert werden können. Temperaturabhängigkeit der elektrischen Leitfähigkeit: schwierig, da andere Stoffklassen ähnliche Eigenschaften aufweisen.

1.4 Die chemische Bindung in Metallen

1.4.1 Ketelaar-Diagramm

Man stelle sich ein Dreieck vor mit den Eckenbeschriftungen ionische Bindung NaCl, kovalente Bindung Cl₂ und metallisch Na

1.4.2 Das Elektronengasmodell

- Die Metallatome geben eine gewisse Zahl an Valenzelektronen ab, es verbleiben positiv geladene Atomrümpfe
- Die Elektronen sind zwischen den Atomrümpfen frei beweglich, ähnlich eines Gases → Elektronengas (versagt bei der Beschreibung der Wärmekapazität von Metallen)

1.4.3 Das Bändermodell

- Elektronen können nur bestimmte Energien aufweisen
 - \rightarrow Orbitale (hier Atomorbitale)
- Beim Übergang von Ein- zu Mehratomsystemen
 - \rightarrow Übergang von Atom- zu Molekülorbitalen

Li₃: + + + =
$$\sigma_b$$

+ - + = σ_{ab}
+ | + = σ_{nb}

- Beim Übergang von Mehr- zu Vielatomsystemen
 - \rightarrow Übergang von Molekülorbital zu (Orbital-) Bändern
 - → Valenzband: mit Valenzelektronen besetzt, höchster besetzte Zustand: HOMO
 - \rightarrow Leitungsband: frei, niedrigste unbesetzte Zustand: LUMO

Fermikante = Ort zwischen Besetzt und Unbesetzt

1.5 Strukturen der Metalle

Übersicht:

- kubisch-innenzentriert
- hexagonal dichteste Packung
- kubisch dichteste Packung
- eigener Strukturtyp
- unbekannt

1.5.1 Die kubisch-innenzentrierte Kugelpackung

(bcc = body-centered cubis), W(olfram)-Typ CoordinationNumber = 8+6 Koordinationspolyeder = Rhombododecaeder Raumerfüllung = 68% Siehe Folie für näheres.

1.5.2 Die dichtesten Packungen

Hexagonal-dichteste Kugelpackung

(hcp = hexagonal close packed), M(a)g(nesium)-Typ CN=12

Koordinationspolyeder = Antikuboktaeder

Raumerfüllung = 74%

Kubisch-dichteste Kugelpackung

(ccp=cubic close packed), Cu(pfer)-Typ CN = 12

Koorinationspolyeder = Kuboktaeder

Varianten der dichtesten Kugelpackungen

hc-Typ

hhc-Typ

Kommen vor und nach einer Schicht dieselbe Schicht, so ist diese hexagonal umgeben. (Kurz: h)

Sind die Schichten vor und nach der betrachteten Schicht nicht gleich, so ist die betrachtete Schicht kubisch umgeben. (Kurz: c)

Siehe Folie.

Variation der Kristallstruktur der Metalle. (Abhängig von Druck und Temperatur)

Fe: α (bcc) $\rightarrow \gamma$ (ccp) $\rightarrow \delta$ (bcc)

Erster Schritt bei ca. 900° , zweiter schritt bei ca. 1400°

Na: bcc \longrightarrow ccp \longrightarrow \longrightarrow transparente Modifikation, kein Metall mehr

Dabei läuft der erste Schritt bei 656 Pa ab und der letzte bei $> 100~\mathrm{GPa}$

1.5.3 Aufgefüllte dichteste Packungen

• Oktaederlücken

hcp-Abfolge: A c B (A,B = Schichten, c = Lücken)

 $N(\text{Oktaederl\"{u}cken}) = N(\text{Packungsteilchen})$

ccp Abfolge: A c B a C b A (A,B,C = Schichten, a,b,c = Lücken)

• Tetraederlücken

hcp:Abfolge: A β α B α β A β (A,B = Schichten, α, β = Lücken)

 $N(\text{Tetraederl\"{u}cken}) = 2N(\text{Packungsteilchen})$

Tetraederlücken

ccp:Abfolge: A β c α B γ a β C α b γ A (A,B,C = Schichten, α,β,γ = Tetraederlücken, a, b, c = Oktaederlücken)

2 Die Elemente der ersten und elften Periode (-H&Rg)

- 1. Gruppe Alkalimetalle
- 11. Gruppe Münzmetalle

2.0.1 Vorkommen

lkalimetalle:

- kationisch in salzartigen Verbindungen NaCl Halit, KCl -Sylvin
- kationisch eingelagert in Alumosilicaten (LiAlSi₂O₆)

ünzmetalle:

Kupfer: hauptsächlich sulfidisch: Cu₂S, CuFeS₂, ...

auch: gediegen (elementar)

Silber: hauptsächlich gediegen

auch: sulfidisch

Gold: hauptsächlich gediegen

selten: Goldtelluride

2.0.2Herstellung

lkalimetalle:

Li und Na: Schmelzflusselektrolyse aus Salz(-mischungen)

K: Reduktion mit metallischem Na

Rb und Cs: Reduktion mit metallischem Ca und anschließender Destillation

ünzmetalle:

Cu: Rösten der sulfideischen Kupfererze

Rösten: $6 \text{ CuFeS}_2 + 13 \text{ O}_2 \longrightarrow 3 \text{ Cu}_2\text{S} + 2 \text{ Fe}_3\text{O}_4 + 9 \text{ SO}_2$ Schlacke: $2 \operatorname{Fe}_3 \operatorname{O}_4 + 2 \operatorname{CO} + 3 \operatorname{SiO}_2 \longrightarrow 3 \operatorname{Fe}_2 \operatorname{SiO}_4 + 2 \operatorname{CO}_2$

→(Abtrennug des Eisenanteils)

$$2 \operatorname{Cu}_2 S + 3 \operatorname{O}_2 \longrightarrow 2 \operatorname{Cu}_2 O + 2 \operatorname{SO}_2$$

Röstreaktion

Röstreduktion

 $2 \operatorname{Cu}_2 O + \operatorname{Cu}_2 S \longrightarrow 6 \operatorname{Cu} + \operatorname{SO}_2 \uparrow \mid \operatorname{Cu}_2 O + \operatorname{CO} \longrightarrow 2 \operatorname{Cu} + \operatorname{CO}_2 \uparrow$

Reinigung des Rohkupfers durch elektrolytische Kupferaffinition

Ag und Au: Reinigung der gediegenen Metalle

- * Recycling aus Anodenschlamm (Reinigung des Rohkupfers)
- * Amalgamierung vom Gold, Goldwäsche
- * Cyanidlaugerei

$$Ag_2S + 4NaCN \longrightarrow 2Na[Ag(CN)_2] + Na_2S$$

$$2 \operatorname{Ag} + \operatorname{H}_2 \operatorname{O} + \frac{1}{2} \operatorname{O}_2 + 4 \operatorname{NaCN} \longrightarrow 2 \operatorname{Na}[\operatorname{Ag}(\operatorname{CN})_2] + 2 \operatorname{NaOH}$$

$$\begin{array}{l} {\rm Ag^{+}} + 2\,{\rm CN^{-}} \longrightarrow {\rm [Ag(CN)_{2}]^{-}} \ K_{K} \approx 10^{21} \frac{{\rm mol}^{2}}{{\rm l}^{2}} \\ K_{K} = \frac{{\rm [[Ag(CN)_{2}]^{-}} {\rm [Ag^{+}] \cdot [CN^{-}]^{2}}} \to {\rm [Ag^{+}]} = \frac{{\rm [[Ag(CN)_{2}]^{-}} {\rm [}K_{K} \cdot {\rm [CN^{-}]^{2}}} \\ E = E_{\rm (Ag/Ag^{+})}^{o} + \frac{RT}{zF} \ln({\rm [Ag^{+}]}) \end{array}$$

$$E = E_{(Ag/Ag^+)}^o + \frac{RT}{zF} \ln([Ag^+])$$

Rückgewinnung des Silbers

$$2 \operatorname{Na[Ag(CN)_2]} + \operatorname{Zn} \longrightarrow 2 \operatorname{Ag} + \operatorname{Na_2[Zn(CN)_4]}$$

2.0.3Verbindungen

Halogenide:

- Alkalimetallhalogenide: $A = Li \text{ bis } Cs \rightarrow AX \leftarrow X = F \text{ bis } I$

NaCl-Struktur: ccp mit allen Oktaederlücken gefüllt

CsCl-Struktur: kubisch-primitiver Aufbau der Packungsteilchen, Lückensitzer im Zentrum des Würfels

ünzmetalle:

Cu(I)-Halogenide vom Cl —— I

Cu(II)-Halogenide \rightarrow schwache Oxidationsmittel

$$\operatorname{CuCl}_2 + \operatorname{Cu} \longrightarrow \operatorname{CuCl} \xrightarrow{\operatorname{mehr} \operatorname{Cl}^-} \operatorname{CuCl}_{2/3/4}^{1/2/3 -}$$

$$CuCl_2 + Fe^{2+} \longrightarrow CuCl + Fe^{3+} + Cl^{-}$$

$$CuI_2 \longrightarrow CuI + \frac{1}{2}I_2$$

$$Cu^{2+} + 2CN^{-} \longrightarrow CuCN + \frac{1}{2}(CN)_{2}$$

Oxidation organischer Verbindungen \rightarrow Fehling-Probe

$$Ag^+ + Halogenide \rightarrow AgF, AgCl, AgBr, AgI$$

2.0.4 Sauerstoff-Verbindungen

$$4 \operatorname{Li} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Li}_2 \operatorname{O}$$

$$6 \operatorname{Li} + \operatorname{N}_2 \longrightarrow 2 \operatorname{Li}_3 \operatorname{N}$$

$$2\,\mathrm{Na} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{NaO} \xrightarrow{\mathrm{besser}} \mathrm{Na}_2\mathrm{O}_2$$
 - natrium
peroxid $(\mathrm{O_2}^{-2})$

$$A + O_2 \longrightarrow AO_2$$
 mit $A = K$, Rb, Cs

Der Name des AO₂ lautet: "Alkalimetallsuperoxid"
$$\rightarrow$$
 O₂

Umsetzung mit mehr O_2 :

$$A_4O_6 \to 1 \times O_2^{-2} + 2 \times O_2^{-1}$$

Umsetzung mit Metallüberschuss \rightarrow Alkalimetallsuboxide

Münzmetalle

2.0.5 Hydroxide

- Alkalimetallhydroxide
 - stark basisch
 - ziehen CO_2 aus der Luft
- Herstellung durch Elektrolyse aus NaCl-Lösung
 - Chloralkalielektrolyse

$$2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \xrightarrow{\operatorname{Strom}} 2 \operatorname{Na}^+ + 2 \operatorname{OH}^- + \operatorname{Cl}_2 + \operatorname{H}_2$$

Probleme: Cl₂ disproportioniert in Lauge

$$H_2 + Cl_2 \longrightarrow Chlorknallgas$$

- Münzmetallhydroxide
 - $Cu(OH)_2$
 - $Au(OH)_3$

$$2 A + 2 H_2 O \longrightarrow A^+ + OH^- + H_2$$

2.0.6 Alkalimetall-Elektrode und Alkalide

$$\begin{array}{c} A \longrightarrow A^{+} + e^{-} \\ \hookrightarrow + 3 \text{-} 4 \, \text{NH}_{3} \longrightarrow \left[e(\text{NH}_{3})_{3-4} \right]^{-} \end{array}$$

auch möglich:

$$A + \frac{Kronenether}{Cryptant} \longrightarrow [A(Kronenether)]^{+} + e^{-} \xrightarrow{+A} [A(Kronenether)]^{+} + A^{-}$$

2.0.7 Stickstoffverbindungen

- \rightarrow Nitride N³⁻
- \rightarrow Imide NH²⁻ (vgl. O²⁻)
- \rightarrow Amide NH_2^- (vgl. OH^-H^-)
- \rightarrow Ammoniak NH₃ (vgl. H₂O HF)
- \rightarrow Ammonium NH₄⁺ (vgl. H₃O⁺ H₂F⁺ \rightarrow CH₄)
- \rightarrow Azide N₃ (isoelektronisch zu N₂O CO₂ NO₂ +)

2.1 Oxidationsstufen der Münzmetalle

2.1.1 Allgemeines

 \hookrightarrow Siehe Folie

Wiederholung der Kristallfeldtheorie

 \hookrightarrow Siehe Folie

2.1.2 Verbindungen von Cu und Ag in hohen Oxidationsstufen

 $\rm CuF_3, K_3[CuF_6], 4\,Ba_2Cu_3O_{7-x}$ (Supraleiter) $\rm K[AgF_4], Cs_2[AgF_4]$

2.2 Die Chemie der Golds

2.2.1 Relativistische Effekte

Kontraktion von 6s und 6p; Expansion von 5d

- $r(Au) \approx r(Ag) \rightarrow \text{h\"o}$ here dichte
- höhere Elektronenaffinität $\rightarrow {\rm Au^-}$ aber kein ${\rm Ag^-}$
- $\bullet\,$ aurophile Wechselwirkungen \to Au
 Au-Bindungen in der Gasphase
- \bullet Farbigkeit \rightarrow elektronische Übergäng eim sichtbaren Bereich

2.2.2 Goldverbindungen

Oxidation von Gold durch Königswasser

 $\mathrm{HNO_3} + 3\,\mathrm{HCl} \longrightarrow \mathrm{NO_4} + 2\,\mathrm{H_2O} + 2\,\mathrm{Cl} \cdot$

Cl· ist das naszierende Chlor

$$Au + 3Cl \cdot + Cl^{-} \longrightarrow [AuCl_{4}]^{-}$$
 (Tetrachloridoaurat)

• Au^{2+} 5d⁹-System $\rightarrow Au_2^{4+}$

3 Elemente der 2. und 12. Gruppe

3.1 Vorkommen

3.1.1 Erdalkalimetalle

Be: in (Alumo-)Silicaten: z.B. $Be_3Al_2[Si_6O_{18}]$ Mg + Ca:

- Carbonate z.B. CaCO₃
- Sulfate
- Halogenide

Sr + Ba:

- Carbonate
- Sulfate

3.1.2 Elemente der Zink-Gruppe

 Zn^+Cd :

- Sulfide
- Carbonate (untergeordnet)

Hg

- Sulfide (Farben durch ostwaldsche Stufenregel)
- Gediegen

3.2 Herstellung

3.2.1 Erdalkalimetalle

 $Be \colon \, BeF_2 + Mg \longrightarrow Be + MgF_2$

Mg: Schmelzflusselektrode

Ca, Sr, Ba: Aluminothermie: $4 \text{ MO} + 2 \text{ Al} \longrightarrow 3 \text{ M} + \text{MAl}_2 \text{O}_4$

3.2.2 Zinkgruppe

 $M = Zn + Cd: MS + O_2 \longrightarrow MO + SO_2$

1. Röstreduktion: $ZnO + CO \longrightarrow Zn + CO_2$

2. "Im Nassen": ZnO + $H_2SO_4 \longrightarrow Zn^{2+} + SO_4^{2-} + H_2O$

 $2 \,\mathrm{HgS} + \mathrm{O}_2 \longrightarrow 2 \,\mathrm{Hg} + \mathrm{SO}_2$

3.3 Verbindungen

3.3.1 Halogenide MX₂

Metall in Tetraederlücken aus X

z.B. $BeCl_2$ oder $ZnCl_2 \rightarrow$ siehe Folie

Metall in Oktaederlücke aus X:

z.B. $CaCl_2$, MgI_2 , $CdCl_2 \rightarrow$ siehe Folie

Metall in kubischen Lücken aus X

z.B. $\mathrm{CaF}_2 \to \mathrm{siehe}$ Folie

3.3.2 Chalkogenide

ZnS in Zinkblende und Wurzit-Typ \rightarrow siehe Folie

Kalk: CaCO₃ (Kalkstein)

 $CaCO_3 \longrightarrow CaO + CO2$

CaO ist gebrannter Kalk

 $CaO + H_2O \longrightarrow Ca(OH)_2$

 $Ca(OH)_2$ ist gelöschter Kalk

 $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$

Gips: $CaSO_4 \cdot _2H_2O \longrightarrow CaSO_4 \cdot _0 \cdot _5H_2O$

 $\cdot 0.5\,\mathrm{H}_2\mathrm{O}$ nennt man Hemihydrat

Anhydrit: CaSO₄ wasserfrei

EINSCHUB: Wasserhärte: Gesamtmenge an zweiwertiger Kationen im Wasser.

Temporäre Härte:

$$Ca^{2+} + 2OH^{-} + CO_{2} \longrightarrow CaCO_{3} + H_{2}O$$

 $CaCO_3 + H_2O + CO_2 \longrightarrow Ca^{2+} + 2 HCO_3^{-}$

Edukte schwerlöslich, Produkte leichtlöslich Enthärtung von H₂O:

• Ionenaustausch: Harz mit Sulfonsäurengruppen, belegt mit Na $^+$ \to Austausch gegen Ca $^{2+}$

• Komplexbildner: EDTA, Zeolith

• Umkehrosmose

• Kristallisationskeim

Grimm-Sommerfeld-Verbindungen

Kation aus der N-k-ten Gruppe + Anion aus der N+k-ten Gruppe = Struktur, die einen Element aus der N-ten Gruppe des PSE

Beispiele:

- 1. BN \rightarrow Struktur von C (Diamant, Graphit) (14.Gruppe)
- 2. $CdSn \rightarrow Struktur von C (Diamant) (14.Gruppe)$
- 3. GeSe → Struktur von As (auch möglich: Struktur von P oder Sb) (15.Gruppe)

Wichtige Vertreter:

CdS,CdSe und $CdTe \rightarrow$ wichtige Farbpigmente

 $ZnSe,CdSe,CdTe \rightarrow Halbleitermaterialien$

 $CdS \rightarrow Fotohalbleiter$

 $ZnS:M \rightarrow Phosphoreszenzmaterial$ (:M heißt dotiert mit M)

Hydroxide

höherer
$$\xrightarrow{\text{Be(OH)}_2} \longrightarrow \text{Ba(OH)}_2$$
höherer $\xrightarrow{\text{kovalenter Bindungsanteil}}$ niedrigerer niedrige $\xrightarrow{\text{Löslichkeit}}$ hohe
$$\text{Zn(OH)}_2 + 2 \text{ H}^+ \longrightarrow \text{Zn}^{2+} + 2 \text{ H}_2\text{O S\"{a}ure}$$

$$\text{Zn(OH)}_2 + 2 \text{ OH}^- \longrightarrow [\text{Zn(OH)}_4]^{2-} \text{ Base}$$

$$\text{Cd- und Hg-Hydroxide sind basisch}$$

3.4 Die Chemie des Quecksilbers

3.4.1 Besonderheiten

- relativistische Effekte \hookrightarrow keine " sp^3 -Hybridisierung", maximal sp \rightarrow lineare Koordination
- pseudo-Edelgaskonfiguration \hookrightarrow schwache Bindungskräfte zwischen den Atomen \to flüssig bei Zimmertemperatur
- Ox-Stufe +1 in Form von ${\rm Hg_2}^{2+}$ -Kationen

3.4.2 Halogenide

Hg₂Cl₂, Hg₂Br₂, Hg₂I₂ molekular aufgebaut Kalomel-Reaktion:

$$\begin{split} \operatorname{Hg_2Cl_2} + 2\operatorname{NH_3} &\longrightarrow \operatorname{Hg} + [\operatorname{Hg}(\operatorname{NH_2})]\operatorname{Cl} + \operatorname{Cl}^- + \operatorname{NH_4}^+ \\ \operatorname{HgCl_2}, \operatorname{HgBr_2}, \operatorname{HgI_2} & \operatorname{molekular}, \operatorname{HgF_2} & \operatorname{ionisch} \\ \operatorname{HgCl_2} + 2\operatorname{NH_3} &\longrightarrow [\operatorname{Hg}(\operatorname{NH_3})_2]_2^{2^{++}}\operatorname{Cl}^- \\ \operatorname{zwischen} & \operatorname{Hg} & \operatorname{und} & \operatorname{I} & \operatorname{besonders} & \operatorname{starke} & \operatorname{Bindung} \\ \operatorname{HgCl_2} + 2\operatorname{I}^- &\longrightarrow \operatorname{HgF_2} + 2\operatorname{Cl}^- \\ \operatorname{HgI_2} + 2\operatorname{I}^- &\longrightarrow [\operatorname{HgI_4}]^{2^-} \\ [\operatorname{HgI_4}]^{2^-} + \operatorname{NH_4}^+ + 4\operatorname{OH}^- &\longrightarrow [\operatorname{Hg_2}\operatorname{N}]\operatorname{I} + 7\operatorname{I}^- + 4\operatorname{H_2}\operatorname{O} \end{split}$$

3.4.3 Chalkogenide

$$\begin{array}{c} \operatorname{Hg_2O} \longrightarrow \operatorname{Hg^+HgO} \ \operatorname{Disproportionierung} \\ \operatorname{HgO} \longrightarrow \operatorname{Hg} + \tfrac{1}{2} \operatorname{O_2} \\ \operatorname{HgO} \ \operatorname{zeigt} \ \operatorname{Thermochromie} \ (\operatorname{Farbwechsel} \ \operatorname{bei} \ \operatorname{Temperaturerh\"{o}hung}) \\ \operatorname{HgS:} \end{array}$$

- Metacinnabarit (ZnS-Struktur, schwarz)
- Cinnabarit/Zinnoger (HgS, rot)

3.4.4 Amalgame

Metallverbindungen mit Quecksilberbeteiligung

- 1. Stöchiometrische Amalgame (intermet. Verbindungen) z.B. Na
Hg $_2,$ BaHg $_{11}$
- 2. Amalgame mit Phasenbreiten (intermet. Verbindung) $HgIn_{1+-x}Hg_{2+-x}Tl$
- 3. Amalgame mit Löckenlose Mischbarkeit (farbe Lösung) $\mathrm{Hg}_x\mathrm{Au}_{1-x}$

4 Die Metalle des p-Blocks

4.1 Eigenschaften

4.1.1 Tabelle

4.1.2 Grnazbereich Metalle-Nichtmetalle

- Al \rightarrow ccp
- Ga \rightarrow spezieller Strukturtyp
- In \rightarrow verzerrte ccp
- $Tl \rightarrow hcp$
- Sn \rightarrow verzerrte dichteste Kugelpackung
- Pb \rightarrow verzerrte dichteste Kugelpackung
- Sb \rightarrow Arsenstruktur
- Bi \rightarrow Arsenstruktur

4.2 Vorkommen

4.2.1 Erdmetalle

Al: 3.häufigstes Element in der Erdkrust \hookrightarrow Al-Oxiden, - Hydroxiden, - Silcaten, -Alumosilicaten GaInTl

- Ga Begleiter von Al
- InTl Begleiter von SnPb

4.2.2 Zinn, Blei, Actino-, Bismut

SnPb: oxidisch (Sn) und sulfidisch (Pb) Sb: Sb₂S₃ (Grauspießerglanz) Bi: Bi₂S₃ aber auch Bi₂O₃

4.3 Herstellung

4.3.1 Erdmetalle

Aluminiumherstellung:

1.
$$Al(OH)_3 + NaOH \longrightarrow Na[Al(OH)_4]$$
 (löslich)
Fe, Ti, Si-Verbindungen unlöslich
2. $Na[Al(OH)_4] \xrightarrow{H2O} Al(OH)_3 \downarrow + NaOH_{(aq)}$
Dieses $Al(OH)_3$ ist nun rein
3. $2Al(OH)_3 \xrightarrow{Temperatur} Al_2O_3 + 3H_2O$
4. $Al_2O_3 \longrightarrow 2Al^+ \frac{3}{2}O_2$
 $3C + \frac{3}{2}O_2 \longrightarrow 3CO$
 $Al_2O_3 + 3C \longrightarrow 2Al + 3Co$

Galliumherstellung*: Reichert sich im ersten Schritt der Aluminiumherstellung an. Indium- / Thalliumherstellung*: Aus den Röstgasen bei der Pb-Herstellung * Urban-Mining

4.3.2 Zinn, Blei, Antimon, Bismut

Zinn: $SnO_2 + 2C \longrightarrow Sn + 2CO$, Reinigugn über "seigen" Blei, Antimon, Bismut: Rösten.

4.4 Verbindungen

4.4.1 Halogenide

 \hookrightarrow Trihalogenide z.B. AlCl₃ \hookrightarrow Auch fpr Gallium, Indium

ABER \rightarrow Thallium am liebsten einwertig: TlX Quizfrage: TlI₃ stabil? Nö, reagiert zu TlI · I₂

 $Zinn + Blei: SnX_4$ und PbX_4 sind leicht flüchtige und moderat hydrolyseempfindliche Moleküle, aber nur für X = Cl, Br, I SnF_4 und PbF_4 siehe Folie

 $f\ddot{u}r Pb \longrightarrow PbX_2$

 $PbI_2 + 2I^- \longrightarrow [Pb(I)_4]^{2-}$

Sb,Bi: SbX₃ + X⁻ \longrightarrow [SbX₄]⁻ und BiX₃ + X⁻ \longrightarrow [BiX₄]⁻:

Bei den Zinnverbindungen sind lonepairs vorhanden, es gibt Lonepairaktivität, Stereochemisch aktiv.

Bismutverbindungen sind über Kanten Verknüpft und Pentagonale Dipyramiden, das lonepair ist nicht visualisierbar, nicht stereochemisch aktiv

4.4.2 Chalkogenide

```
Aluminium: Al_2O_3

Korun, sehr stabil. Passivierung von metallischem Aluminium.

Al_2O_3:Cr^{3+} \to Rubin

Al_2O_3:Fe^{2+}Ti^{3+} \to Saphir

\hookrightarrow Ga_2O_3; In_2O_3; aber Tl_2O

Zinn und Blei:

SnO_2, PbO_2, SnO, PbO

PbO_2 \longrightarrow Pb_{12}O_{19} \longrightarrow Pb_{12}O_{17} \longrightarrow Pb_3O_4 \longrightarrow PbO Antimon und Bismut: Sb_2O_3, Bi_2O_3

Sb_2S_3, Bi_2S_3

\downarrow

SbS_3]<sup>3-</sup>
```

4.4.3 Aquakomplexe von Aluminium

 $[Al(H_2O)_6]^{3+} \longrightarrow [Al(H_2O)_5OH]^{2+} + H^+_{(aq)} Al^{3+}$ ist klein hart und hoch geladen, somit schafft es die Elektronenhülle von Sauerstoff leicht zu polarisieren.

Dadurch entsteht eine kovalente Bindung zwischen einem Wassermolekül und dem Al³⁺, wodurch ein H⁺ abgespalten werden muss!

Danach nimmt der Effekt ab.

 $\begin{array}{c} Al(OH)_3 + H^+ \longrightarrow Al^{3+}_{(aq)} + 3 H_2O \\ Al(OH)_3 + OH^- \longrightarrow [Al(OH)_4]^- \end{array}$

Amphoteres Verhalten.

4.4.4 Zintl-Phasen

Anionen ab der 13. Gruppe sind isoelektronisch zu Elementen derselben Elektronenzahl.

 ${
m Te}^-
ightarrow {
m Te}_2^{\ 2^-}$ isoelektronisch zu ${
m I}_2$ ${
m Si}^-
ightarrow {
m Si}_4^{\ 4^-}$ isoelektronisch zu ${
m P}_4$ ${
m Tl}^-
ightarrow {
m Tl}_4^{\ 4^-}$ isoelektronisch zu ${
m C}_4$

5 Grundzüge der Komplexchemie

5.1 Allgemeines

Besteht aus einem Zentralatom, um welches einige Liganden liegen.

Zentralatom meist metallisch, die Liganden sind meist nichtmetallisch oder besitzen einen nichtmetallischen Anteil.

Komplexbildung \rightarrow Lewis-Säure (Zentralatom) - Base (Liganden) - Reaktion.

Die Liganden müssen freie Elektronenpaare mitbringen, das Zentralatom freie Orbitale, so viele, damit ees für die Liganden reicht.

FreieOrbitale = Ligandenanzahl

Freie Orbitale müssen Valenzorbitale sein (äußersten)

Übergangsmetallkationen:

- Valentorbitale: $n ext{ s (1 s-Orbital)}$ (n=2,5,6,7), und (n-1) d Orbitale (5 d-Orbitale), und $n ext{ p (3 p-Orbitale)} \rightarrow 9$ Orbitale mit 18 Elektronen \Rightarrow Edelgasschale
- homoleptische Komplexe: Selbe Art von Liganden
- heteroletische Komplexe: Unterschiedliche Liganden

5.2 Komplexliganden

Unterschieden durch Anzahl an Koordinationsstellen:

• Einzähnige Liganden - eine Koordinationsstellen

• Mehrzähnige Liganden - mehrere Koordinationsstellen zum gleichen Zentralatom (Monoatomare Liganden fallen hier aus) Chelatliganden! Bsp: EDTA - EthylenDiamminTetraAcetat

CO_3^{2-}	vs.	$C_2O_4^{\ 2-}$
	An den Zwei Sauerstoffen mit	
	3 freien Elektronenpaaren	
	an das gleiche Zentralatom	
	90 ° Winkel am Zentralatom	
	120° am Molekül am C-Atom	
	105 ° Winkel am Sauerstoff	
	zwischen den zwei Bindungen	
	(zum Zentralatom und C)	
\sum (Winkel)		\sum (Winkel)
sollte 360° sein		sollte 540 ° sein
ist aber 420		ist es auch.

5.3 Arten der Donor-Bindung und Ligandenverbrückung

5.3.1 Arten der Donor-Bindung

n-Komplex : Z —— L

 $\pi\text{-Komplex}$: Z ——BENZOL

 σ -Komplex : Sigmabindung wird zum Zentralatom hinverlagert, schwächt die Sigmabindung, nur bei Elektronenarmen Bindungen.

5.3.2 Haptizität (π -Komplexe) η

Definition: Wie viele Orbitale des Liganden- π -Sytsems tragen zur Koordination zum Zentralatom bei

5.3.3 Verbrückung μ

Definition: Wie viele Zentralatome kann der Ligand miteinander Verbinden, bzw. zu ie vielen verschiedenen Zentralatomen kann er koordinieren

WICHTIG: NOMENKLATUR VON LIGANDEN LERNEN

5.4 Geometrien in Komplexen

SIEHE FOLIE

Ab der Koordinationszahl CN=5 gibt es Äquatorial- und Axial-Liganden

5.5 Isomerie in Komplexen

5.5.1 Geometrische Isomere

SIEHE FOLIE

5.5.2 Konstitutionsisomere

• Ionisationsisomere:

$\boxed{[Pt(NH_3)_4Br_2]Cl_2}$	vs.	$C_2O_4^{2-}$
	An den Zwei Sauerstoffen mit	
	3 freien Elektronenpaaren	
	an das gleiche Zentralatom	
	90 ° Winkel am Zentralatom	
	120° am Molekül am C-Atom	
	105 ° Winkel am Sauerstoff	
	zwischen den zwei Bindungen	
	(zum Zentralatom und C)	
∑(Winkel)	·	\sum (Winkel)
sollte 360° sein		sollte 540 ° sein
ist aber 420		ist es auch.

Die Kristallfeld- bzw. Ligandenfeldtheorie 5.6

Kristallfeldtheorie Elektrostatische Wechselwirkungen zwischen dem Ligand (negativ geladen) und dem Zentralatom (positiv geladen) **Ligandenfeldtheorie** Kristallfeldtheorie + die Erklärung der Bindung mit der Molekülorbitaltheorie (MO-Theorie)

5.6.1Allgemeines

Energetische Aufspaltung der d-Orbitale im Feld der Liganden \rightarrow elektrostatische Gründe

Tetraeder: immer Lowspin, da Ligandenfeldaufspaltungsenergie geringer als Spinpaarungsenergie.

Oktader: Lowspin oder Highspin, je nach Verhältnis von Ligandenfeldaufspaltungsenergie zu Spinpaarungsenergie.

Bei einem quadratischen planaren Feld immer Lowspin, da Ligandenfeldaufspaltungsenergie doppelt so groß wie beim Oktaeder, limitiert auf d⁸, machmal auch d⁹, hier aber verzerrt

5.6.2Die Ligandenfeldstabilisierungsenergie (LFSE)

= Ligandenfeldaufspaltungsenergie Beispiel: MgAl₂O₄ - Spinell

Kubisch-dichteste-Kugelpackung aus O²

Dreiwertiges Ion in der Hälfte der Oktaederlücke

Zweiwertiges Ion in $\frac{1}{8}$ der Tetraederlücken

$$Fe_3O_4 \rightarrow Fe^{II}Fe^{III}_2O_4$$

Tetraeder:

3 Orbitale (3 e) werden um 4 Dq angehoben, 2 (3 e) Orbitale werden um -6 Dq abgesenkt:

$$3 \cdot -6 + 3 \cdot 4 = -6 \cdot \frac{4}{9}$$
 da Tetraeder

$$\hat{=} - \frac{24}{9} = 2.\overline{6}$$

Oktaeder:

2 (2 e) Anheben um 6 Dq, 3 (3 e) Absenken um -4 Dq:

$$3 \cdot -4 + 2 \cdot 6 = 0$$

Gesamterenergiegewinn: $-2.\overline{6}$

Inverser Spinell:

Zweiwertige Ionen besetzen $\frac{1}{4}$ der Oktaderlücken Dreiwertige Ionen besetzen $\frac{1}{4}$ der Oktaderlücken Dreiwertige Ionen besetzen $\frac{1}{8}$ der Tetraederlücken

Beim Oktaeder:

3 Orbitale (4 e) abgesenkt um -4 Dq, 2 Orbitale (2 e) um 6 Dq angehoben:

= -4

Tetraeder:

3 Orbitale (3 e) anheben um 4 Dq, 2 (2 e) absenken um -6 Dq

Gesamtgewinn: -4 Dq

Somit eher im inversen Spinell.

Oxidationsstufen werden $\underline{\rm NICHT}$ verändert.

5.6.3 Die spektrochemischen Reihen

1. Größe des Zentralatoms

LFSE groß
$$5d > 4d > 3d$$
 LFSE klein bei 4d & 5d kein Highspin

2. Oxidationsstufe des Zentralatoms

LFSE groß
$$+5 > +4 > +3 > +2 > +1$$
 LFSE klein

3. Ligandenstärke

$$\rm I^- < Br^- < Cl^- < F^- < O^{2-} < OH^- < H_2O < NH_3 << CN^- < CO$$
 Bis $\rm O^{2-}$ schwach

5.7 Physikalische Eigenschaften

5.7.1 Optische Eigenschaften

1. Wellenlänge $\hat{=}$ Energie

Bei Komplexen: LFSE

2. Intensität (wie oft findet der Prozess statt?)

d - d Übergänge sind verboten (quantenmechanisch)

Übergang mit Spinumkehr sind verboten (quantenmechanisch)

Laporte-Verbot \rightarrow Übergänge unter Inversionssymmetie sind verboten.

5.7.2 Magnetismus in Komplexen

Alle Elektronen gepaart \rightarrow Diamagnetismus, Lowspin gerade Anzahl an Elektronen

Ungepaarte Elektronen \rightarrow Paramagnetismus

- \hookrightarrow Je mehr ungepaarte Elektronen, desto höher das magnetische Moment*
- * Gilt nur in der ersten Übergangsmetallreihe, da die sogenannte "Spin-Bahn-Kopplung" vernachlässigt wird.

6 Übergangsmetalle

6.1 Allgemeines

6.1.1 Verschiedene Trends im Vergleich Hauptgruppenmetalle / Übergangsmetalle

Siehe Folie.

6.2 Die vierte Gruppe

6.2.1 Vorkommen

Titan: \to oxidisch: TiO₂, Perwoskit-Strukturtyp: CaTiO₃ Zirkonium und Hafnium: oxiditsch \to ZnO₂ / HfO₂, ZrSiO₄

6.2.2 Herstellung

Carbochlorierung:

 $TiO_2 + 2C + 2Cl_2 \longrightarrow TiCl_4 + 2CO$

Kroll-Prozess:

 $TiCl_4 + 2 Mg \longrightarrow 2 MgCl_2 + Ti (SChwamm)$

van Arlid-de Boer $\mathrm{Ti} + 2\,\mathrm{I}_2 \xrightarrow{873.15\,\mathrm{K}} \mathrm{Ti}\mathrm{I}_4$

Chemische Transport

Siehe Folie

6.2.3 Verbindungen

Halogene:

 $\begin{array}{c} \operatorname{TiX_4} \xrightarrow{+\operatorname{H2O}} \operatorname{Ti_{(aq)}}^{4+} \\ \left[\operatorname{Ti}(\operatorname{H_2O})_6\right]^{4+} - 2\operatorname{H}^+ \longrightarrow \operatorname{TiO_{(aq)}}^{2+} \end{array}$

 $\mathrm{TiO}^{2+} + \mathrm{O_2}^{2-} \longrightarrow [\mathrm{TiO}(\mathrm{O_2})]_{\mathrm{(aq)}}$ $\mathrm{Ti}^{3+} + 3\,\mathrm{X}^- \longrightarrow \mathrm{TiX_3}$

 \rightarrow fest, BiI₃-Struktur.

Chalkogenide:

 $TiO_2 \rightarrow Rutil$, Anatas, Brookit

 $\mathrm{Ti_{3}O_{5};\,TiO_{2-\mathit{x}}}$

 $\operatorname{Zn}^{+} \operatorname{HCl} \longrightarrow \operatorname{Zn}^{2+} \operatorname{+} \operatorname{HCl}^{-} + 2 \operatorname{H}^{-}$ $\operatorname{Ti}_{(\operatorname{aq})}^{4+} \operatorname{+} \operatorname{H} \longrightarrow \operatorname{Ti}_{(\operatorname{aq})}^{3+} + \operatorname{H}^{+}$

Percowsit CaTiO₃

Siehe Folie

Die fünfte Gruppe 6.3

6.3.1Vorkommen

Vanadium:

Vanadit: Pb₅Cl[VO₄]₃

Patronit: VS₄

 $Niob + Tantal: (Fe, Mn)[NbO_3] bzw. (Fe, Mn)TaO_3$

6.3.2Herstellung

Vanadium: $V_2O_5 + 5 Ca \longrightarrow 2 V + 5 CaO$ metallothermisch

Niob / Tantal: $MsO_5 + 5C \longrightarrow 2M + 5CO$

6.3.3 Verbindungen

Halogenide: VX₅; NbX₅;TaX₅c

verknüpfe Aktaeder in der Krsitallstruktur niedrigere Oxidationsstufen bei Nb und Ta

 Nb_6X_8 oder Nb_6X_{12}

Linkes ist ein Cluster, siehe Folie

Oxide:

 V_2O_5 analog zu $P_2O_5 \xrightarrow{H2O} H_3VO_4$

VO₂ Rutil-Typ

V₂O₃ Korund-Struktur

VO NaCl-Typ

Nach unten hin immer dunkler richtung schwarz

 $2\operatorname{VO_4^{3-}} \xrightarrow{2\operatorname{Protonen}} \operatorname{V_2O_3^{4-}} \longrightarrow \operatorname{V_3O_{10}^{5-}} \dots \operatorname{V_2O_5} \text{ Bei den Punkten handelt es sich um isopolysäuren}.$