Yizhou Shan

Ph.D. Candidate
UCSD Computer Science and Engineering
Web: lastweek.io

Research Interests

My research interests span Distributed System, Operating System, and Computer Architecture, with a focus on building fast and reliable systems for datacenters. I work at Wuklab, UCSD, under the supervision of Prof. Yiying Zhang.

Education

University of California, San Diego Ph.D. in Computer Science	2019-2022
Purdue University Ph.D. in Computer Engineering (Transferred to UCSD)	2016-2019
Beijing University of Aeronautics and Astronautics (BUAA) B.E. in Computer Engineering	2010-2014

Industry Experiences

Microsoft Research - Intern	Virtual
Mentors: Ziqiao Zhou, Weidong Cui, Andrew Baumann, Marcus Peinado	2021
VMware Research - Intern	Palo Alto, CA
Mentor: Marcos K. Aguilera	2019
VMware Research - Intern	Palo Alto, CA
Mentor: Stanko Novakovic	2018
ICT, Chinese Academy of Sciences - Research Assistant	Beijing, China
Mentors: Zhiwei Xu, Jin Xiong, Dejun Jiang	2014-2016

Publications

[7] De-Virtualize the Virtualized Cloud for Performance and Security Ziqiao Zhou, <i>Yizhou Shan</i> , Weidong Cui, Xinyang Ge, Marcus Peinado, Andrew Baumann	Under Submission
[6] Disaggregating and Consolidating Network Functionalities with SuperNIC <i>Yizhou Shan</i> , Will Lin, Ryan Kosta, Arvind Krishnamurthy, Yiying Zhang	Under Submission
[5] Clio: A Hardware-Software Co-Designed Disaggregated Memory System <i>Yizhou Shan*</i> , Zhiyuan Guo*, Xuhao Luo, Yutong Huang, Yiying Zhang (co-first authors)	ASPLOS '22
[4] Disaggregating Persistent Memory and Controlling Them Remotely: An Exploration of Passive Disaggregated Key-Value Stores Shin-Yeh Tsai, Yizhou Shan, Yiying Zhang	ATC '20
[3] Storm: a Fast Distributed Storage System Using Remote Memory Primitives Stanko Novakovic, <i>Yizhou Shan</i> , Aasheesh Kolli, Michael Cui, Yiying Zhang, Haggai Eran,	SYSTOR '19 Best Paper

Liran Liss, Michael Wei, Dan Tsafrir, Marcos Aguilera

[2] LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation <i>Yizhou Shan</i> , Yutong Huang, Yilun Chen, Yiying Zhang	OSDI'18 Best Paper
[1] Distributed Shared Persistent Memory	SoCC '17
Yizhou Shan, Shin-Yeh Tsai, Yiying Zhang	
WORKSHOPS AND POSTERS	
[6] Challenges in Building and Deploying Disaggregated Persistent Memory <i>Yizhou Shan</i> , Yutong Huang, Yiying Zhang	NVMW '19
[5] Distributed Shared Persistent Memory <i>Yizhou Shan</i> , Shin-Yeh Tsai, Yiying Zhang	NVMW '18
[4] Disaggregating Memory with Software-Managed Virtual Cache Yizhou Shan, Yiying Zhang	WAMS '18
[3] Disaggregated Operating System Yiying Zhang, Yizhou Shan, Sumukh Hallymysore	HPTS '17
[2] Lego: A Distributed, Decomposed OS for Resource Disaggregation <i>Yizhou Shan</i> , Yilun Chen, Yutong Huang, Sumukh Hallymysore, Yiying Zhang	Poster at SOSP '17
[1] Disaggregated Operating System Yizhou Shan, Sumukh Hallymysore, Yutong Huang, Yilun Chen, Yiying Zhang	Poster at SoCC '17

Professional Services

Program Committee

EuroSys '22 (Shadow PC) EuroSys '21 (Shadow PC) ASPLOS '21 (External PC)

Journal Review

Journal of Systems Research: 2021 - Current

ACM Transactions on Architecture and Code Optimization (TACO): 2021

ACM Transactions on Storage (TOS): 2020 IEEE/ACM Transactions on Networking: 2020

Artifact Evaluation

SOSP'21 (Artifact Evaluation) OSDI '20 (Artifact Evaluation)

Teaching

TA for UCSD CSE120 Undergraduate Operating System

Awards

2020 Facebook Fellowship Finalist

SYSTOR'19 Best Paper Award OSDI '18 Jay Lepreau Best Paper Award OSDI '18 Student Travel Grant SOSP '17 Student Travel Grant SoCC '17 Student Travel Grant

Research Experiences

Network Design for Disaggregated Datacenter (Work-in-Progress)

2020-Current

UCSD

How to build a disaggregated datacenter when both the number of network ports and bandwidth requirement exploded? We propose a way to solve this issue without disrupting the existing network infrastructure.

Programmable Disaggregated Memory System (Under Submission)

2018-Current

Purdue University and UCSD

We are building a hardware-based active disaggregated memory system using FPGA. This is a follow-up work of LegoOS. We build a distributed hardware-based virtual memory system, and a framework for building memory services.

Serverless on Disaggregated Datacenter (WIP) UCSD

2019-Current

We are trying to demonstrate when serverless means no server. Instead of using monolithic machines, we explore the possibility of using a disaggregated datacenter. Instead of optimizing existing VM and container technologies, we explore a new way to run serverless functions: using library OS.

An Operating System Inside Cloud FPGA (Concluded)

2019-2020

UCSD

We are building a new operating system inside a cloud FPGA. This new runtime overcomes the limitations of static compile-time approaches and provides a set of new services. We explored how this helps reduce cost and enable new FPGA apps.

Optimize Page Faults 2019 May-Aug

VMware Research

Ancient old page fault handling is the driving wheel for many emerging datacenter systems and applications. But the page fault handling mechanism was designed for millisecond-level disk operations, there is a performance mismatch when it is used by fast devices like RDMA, or PM. We are now trying to close the gap.

LegoOS: A Disaggregated Operating System

2017-2018

Purdue University

We propose a new OS model called the splitkernel to manage disaggregated systems. Splitkernel disseminates traditional OS functionalities into loosely-coupled monitors, each of which runs on and manages a hardware component. Using the splitkernel model, we built LegoOS, a new OS designed for hardware resource disaggregation.

Hotpot: Distributed Shared Persistent Memory

2016-2017

Purdue University

We propose Distributed Shared Persistent Memory (DSPM), a new framework for using persistent memories in datacenter environments. We designed and implemented *Hotpot*, the first DSPM system in the Linux kernel. Hotpot provides low-latency, transparent memory accesses, data persistence, data reliability and high availability.

Non-Volatile Memory (NVM) Emulator

2015-2016

Institute of Computing Technology, Chinese Academy of Sciences

We designed and implemented a NVM emulator in Linux kernel, which leverages Intel's Performance Monitoring Unit to emulate NVM's slower read/write latency and smaller bandwidth on physical DRAM. This emulator runs on bare-metal x86 machines.

ARMv8 CPU Project 2013

Institute of Computing Technology, Chinese Academy of Sciences

I participated in the Register-Transfer Level design and verification of some blocks within the cache unit and load-store unit. It is a commercial project collaborated with Huawei.

Skills

Languages: x86 Assembly, C, C++, Python, Scala, Rust, Go, TCL, Verilog, Java

Systems: Linux Kernel, DPDK/RDMA, KVM, QEMU, Docker, k8s, Pytorch, Tensorflow, Spark, Memcached, Vivado, Vivado HLS, Vitis, SpinalHDL, Chisel