

Markov Chains

Stationnarité: cas continu

La matrice de transition P devient un "noyau": $(x,y) \mapsto K(x,y)$ qui correspond à la densité de $X_{n+1} = y | X_n = x$

Une condition suffisante pour avoir une distribution stationnaire π est le principe "detailed balance":

Interprétez cette équation en l'intégrant sur des régions A et B contenant x et y respectivement.

"autant de particules vont de A à B que de B à A"

Detailed balance

Si π vérifie la condition:

Alors $(X_n)_n$ a une distribution stationnaire π .

 $K(\mathbf{x}, y)\pi(\mathbf{x}) = K(y, \mathbf{x})\pi(y)$

 $\forall x, y$

On obtient: $\mathbb{P}(X_{n+1} \in A, X_n \in B) = \mathbb{P}(X_{n+1} \in B, X_n \in A)$

Si $X_n \sim \pi_n$ alors $X_{n+1} \sim$

 $\pi_{n+1}(y) = \int K(x,y)\pi_n(x)dx$

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans \mathbb{R}^d .

Stationnarité: cas continu

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans \mathbb{R}^d .

La matrice de transition P devient un "noyau": $(x,y) \mapsto K(x,y)$ qui correspond à la densité de $X_{n+1} = y | X_n = x$

Si
$$X_n \sim \pi_n$$
 alors $X_{n+1} \sim \pi_{n+1}(y) = \int K(x,y)\pi_n(x)dx$

Une condition suffisante pour avoir une distribution stationnaire π est le principe "detailed balance":

Detailed balance

Si π vérifie la condition:

$$K(\mathbf{x}, y)\pi(\mathbf{x}) = K(y, \mathbf{x})\pi(y) \quad \forall \mathbf{x}, y$$

Alors $(X_n)_n$ a une distribution stationnaire π .

Interprétez cette équation en l'intégrant sur des régions A et B contenant x et y respectivement.

On obtient:
$$\mathbb{P}(X_{n+1} \in A, X_n \in B) = \mathbb{P}(X_{n+1} \in B, X_n \in A)$$

"autant de particules vont de A à B que de B à A"

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Markov Chains Monte-Carlo

Définition

Algorithmes MCMC

