TEST I

Imię i nazwisko:

Numer indeksu:

Numer grupy:

Test jest testem wielokrotnego wyboru (tzn. wszystkie kombinacje odpowiedzi są możliwe). Pytanie jest uznane za poprawnie rozwiązane wttw, gdy wszystkie podpunkty w pytaniu mają zaznaczone właściwe odpowiedzi. Odpowiedzi "+" oraz "-" proszę zaznaczać przy każdym podpunkcie pytania w stosownym miejscu - wewnątrz nawiasu kwadratowego poprzedzającego treść []. Życzę powodzenia.

- 1. Niech $A_t = \{x \in \mathbb{N} : t|x\}$, wtedy:
 - (a) [+] jeżeli $T = \{2, 3, 5\}$, to $\bigcap_{t \in T} A_t = \{x \in \mathbb{N} : (2 \cdot 3 \cdot 5) | x\}$
 - (b) [-] jeżeli $T=\{2,3,5\},$ to $\bigcup_{t\in T}A_t=\{x\in\mathbb{N}:(2\cdot3\cdot5)\,|x\}$
 - (c) [+] jeżeli $T=\{2,3\},$ to $\displaystyle\bigcap_{t\in T}A_t\setminus\bigcup_{t\in T}A_t=\emptyset$
- 2. Niech $A = \emptyset$, $B = {\emptyset}$ oraz $C = {\emptyset, {\emptyset}, 1, 2}$, stąd:
 - (a) $[-] |A \cap B| = 1$
 - (b) $[+] |B \cap C| = 1$
 - (c) $[-] |(C \setminus B) \setminus A| = |(C \cup B) \cup A|$
- 3. Niech $A = \{1, 2, 3\}$ oraz $B = \{x : x \text{ jest liczbą pierwszą}\}$, wtedy:
 - (a) [-] $A \times B = B \times A$
 - (b) $[+] |A \times B| = |B \times A|$
 - (c) [+] ({2,3} × {2,3}) $\subset A \times B$
- 4. Niech A, B oraz C będą zbiorami niepustymi, wtedy:
 - (a) [+] $A \oplus B \oplus C \subset A \cup B \cup C$
 - (b) [-] $(A \cap B) \subset C' \cup (A \cap B)$
 - (c) [-] $C' \setminus (A \cup B) = \emptyset$
- 5. Niech $U = \mathbb{N} \times \mathbb{N}$ będzie uniwersum relacji r, wtedy:
 - (a) [+] jeżeli $r = \emptyset$, to r jest relacją antysymetryczną, przechodnią
 - (b) [+] jeżeli $r = \{(a,b) \in U : (a+b) \mod 2 = 1\}$, to r jest relacją zwrotną lub symetryczną
 - (c) [+] jeżeli $r = \{(a,b) \in U : a = 1 \land b > a\}$, to r jest relacją przeciwzwrotną lub spójną
- 6. Dla dowolnych relacji r_1 oraz r_2 zdefiniowanych nad niepustym uniwersum zachodzi:
 - (a) [-] jeżeli r_1 , r_2 są relacjami symetrycznymi, to relacja $r_1 \oplus r_2$ jest zwrotna
 - (b) [+] jeżeli r_1 , r_2 są relacjami zwrotnymi, to relacja $r_1 \setminus r_2$ jest przeciwzwrotna
 - (c) [+] jeżeli obie relacje są relacjami pełnymi, to $|r_1 \oplus r_2| < |r_1 \cup r_2|$
- 7. Niech r i s będą relacjami takimi, że $r = \{(1,1), (1,2), (2,1), (3,3)\}$ oraz $s = \{(1,1), (2,3), (3,2), (3,3)\}$, wtedy:
 - (a) $[+] r \circ s = \{(1,1), (1,3), (2,1), (3,2), (3,3)\}$
 - (b) [-] $s \circ r = \{(1,1), (1,2), (2,1), (2,3), (3,2), (3,3)\}$

- (c) $[+] r \circ s \neq s \circ r$
- 8. Niech r_1 oraz r_2 będą dowolnymi relacjami równoważności nad niepustym uniwersum, wtedy:
 - (a) [+] relacja $r_1 \oplus r_2$ nie jest relacją równoważności
 - (b) [-] relacja $r_1 \cup r_2$ nie jest relacją równoważności
 - (c) [+] jeżeli $r_1 \cap r_2 = \emptyset$, to $r_1 \setminus r_2$ jest relacją równoważności
- 9. Istnieją skończony niepusty zbiór X oraz relacja równoważności r nad zbiorem X takie, że:
 - (a) [-] relacja r dzieli zbiór X na dwie klasy abstrakcji A oraz B takie, że $A \cap B \neq \emptyset$,
 - (b) [+] relacja rdzieli zbiór Xna $\left|\sqrt{|X|}\right|$ klas abstrakcji
 - (c) [+] relacja roraz r^{-1} generują identyczne podziały zbioru X
- 10. Rozważmy zbiór $X=\{a,c,d,f,g,k,s,x,z\}$ uporządkowany relacją r zgodnie z poniższym diagramem Hassego, wtedy:

- (a) [+] ograniczeniem dolnym zbioru $\{z, s, d\}$ względem relacji r jest element c
- (b) [-] ograniczeniem górnym zbioru $\{c, x, k\}$ względem relacji r jest element d albo f
- (c) $[+] \sup \{s, d\} = f \text{ lub inf } \{s, d\} = c$
- 11. Rozważ zbiory uporządkowane pewnymi relacjami zgodnie z diagramami Hassego przedstawionymi na poniższym rysunku. Które ze zdań jest prawdziwe:

- (a) [-] w zbiorze (a) istnieje element największy
- (b) [-] w zbiorze (b) nie istnieje element maksymalny
- (c) [-] w zbiorze (c) lub (d) można wyróżnić element najmniejszy
- 12. Relacja $\{(a,a),(a,b),(a,c),(b,b),(b,c),(c,c)\}$ jest w zbiorze $\{a,b,c\}$ relacją porządku:

- (a) [+] częściowego
- (b) [+] liniowego
- (c) [+] dobrego
- 13. Porządkiem liniowym w zbiorze $W = \{w_1, w_2, w_3, \ldots\}$ wielokątów wypukłych na płaszczyźnie euklidesowej jest relacja r taka, że:
 - (a) [-] $(w_i, w_j) \in r$ wttw wielokąt w_i zawiera się w wielokącie w_j
 - (b) [-] $(w_i, w_j) \in r$ wttw pole powierzchni wielokąta w_i jest nie większe niż pole wielokąta w_j
 - (c) [-] $(w_i, w_j) \in r$ wttw wielokąt w_i ma tyle samo wierzchołków co wielokąt w_j
- 14. Niech $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, będzie funkcją, wtedy:
 - (a) [-] jeżeli $f(x) = \sin(x) + \cos(x)$, to funkcja f nie jest suriekcją ale jest injekcją
 - (b) [+] jeżeli $f(x) = \frac{1}{x}$, to funkcja f jest injekcją lub suriekcją
 - (c) [+] jeżeli $f(x) = \frac{1}{x}$, to funkcja f nie jest bijekcją
- 15. Rozważmy funkcję $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, gdzie $f(x) = \left|\frac{1}{x}\right|$, wtedy:
 - (a) [-] dla A = [-1, 1] zachodzi $f(A) = (0, \infty)$
 - (b) [+] dla B = (1,2) zachodzi $f^{-1}(B) = (-1, -\frac{1}{2}) \cup (\frac{1}{2}, 1)$
 - (c) [-] dla $C = \left\{\frac{1}{2}, 1\right\}$ zachodzi $f(C) \cap f^{-1}(C) = \emptyset$
- 16. Niech $f: \mathbb{R} \to \mathbb{R}$ będzie funkcją, jeżeli:
 - (a) [-] f(x) = ||x| 2|, to $f^{-1}(x) = \left|\frac{1}{2}|x| 1\right|$
 - (b) [-] $f(x) = x^5 + 5$, to $f^{-1}(x) = \sqrt{x-5}$
 - (c) $[+] f(x) = f^{-1}(x)$, to f(x) = x
- 17. Niech $f: \mathbb{N} \to \mathbb{R}_+$ będzie funkcją postaci $f(n) = \sqrt{n^3} \lg n! + n^2$. Które z podanych poniżej ograniczeń funkcji jest poprawne:
 - (a) [-] $f(n) = \Theta(n^2)$
 - (b) [+] $f(n) = \Omega\left(n^{\frac{5}{2}}\right)$
 - (c) [+] $f(n) = O\left(n^{\sqrt{n}}\right)$
- 18. Niech $f(n) = n^3 + nlgn + \sqrt{n}$ oraz $g(n) = 2^{2lgn} + n^2$, wtedy:
 - (a) $[+] f(n) + g(n) = \Omega(n)$
 - (b) [-] $f(n) + g(n) = O(n^2)$
 - (c) [-] $f(n) \cdot g(n) = \Theta(n^4)$
- 19. Które z poniższych stwierdzeń jest tautologią rachunku zdań:
 - (a) [+] $(p \land \neg p) \lor (q \oplus \neg q)$
 - (b) $[+] \neg (p \land \neg q) \leftrightarrow \neg p \lor q$
 - (c) [-] $(p \rightarrow q) \leftrightarrow ((p \land \neg q) \rightarrow p)$
- 20. Które z poniższych zdań jest prawdziwe:
 - (a) $[-] \exists (m \in \mathbb{Z}) \forall (n \in \mathbb{Z}) (m+n-3=157)$
 - (b) $[+] \forall (x \in \mathbb{Q}) \exists (y \in \mathbb{Q}) ((x^2 + 43) y = 3)$
 - (c) $[-] \forall (p \in \mathbb{R}) \neg \exists (q \in \mathbb{R}) ((|p| + 43) y = 0)$