Applied Statistics Feb 9-11 2021

Chiara Seghieri, Laboratorio MeS Istituto di Management Scuola Superiore Sant'Anna c.seghieri@santannapisa.it

Two Types of Inference

1. Confidence Intervals:

- Confidence Intervals give us a range in which the population parameter is likely to fall.
- We use confidence intervals whenever the research question calls for an **estimation** of a population parameter.

Example: What is the mean age of trees in the Black forest?

Which is the proportion of US adults who would vote for candidate A.

2. <u>Hypothesis Testing:</u>

- Hypothesis tests are tests of population parameters.

Example: Is the proportion of US adult women who would vote for candidate A >50%?

Is the mean age of trees in the forest > 50 years? Is average income greater in men than in women?

Hypothesis Testing:

Hypothesis is a statement regarding the range of values of the unknown population parameter of interest. As, for example the mean μ : "Is the true mean different from 100?

•Hypothesis testing: an objective method of making decisions or inferences from sample data (evidence). Sample data used to choose between two choices i.e.hypotheses or statements about a population parameter. We typically do this by comparing what we have observed to what we expected if one of the statements (Null Hypothesis) was true.

Since Cls provide a set of plausible values for the true value of the population parameter they could be used for testing hypotheses.

Hypothesis Testing: concepts

There are two hypotheses called the *null hypothesis* and the other the *alternative* or *research hypothesis*. The usual notation is:

 H_0 : — the 'null' hypothesis

 H_1 (or H_a): — the 'alternative' or 'research' hypothesis

Null Hypothesis: H_0

- * The null hypothesis is a statement indicating no change, no difference (the status quo); it is usually expressed such as that the value of a population parameter (proportion, mean, standard deviation,...) is equal to some claimed value.
- We test the null hypothesis directly.
- \clubsuit Either reject H_0 or fail to reject H_0 .

Always two hypotheses:

H_A: Research (Alternative) Hypothesis

- What we aim to gather evidence of
- Typically that there is a difference/effect/relationship etc.
- The research hypothesis should be set up by the investigator before any data are collected.

H₀: Null Hypothesis

- What we assume is true to begin with
- Typically that there is **no** difference/effect/relationship etc.

The standard procedure is to assume H₀ is true - just as we presume innocent until proven guilty. Using probability theory, we try to determine whether there is sufficient evidence to declare H₀ false.

Alternative Hypothesis: H_1

- The alternative hypothesis (denoted by H_1 or H_a or H_A) is the statement that the parameter has a value that somehow differs from the null hypothesis.
- The symbolic form of the alternative hypothesis must use one of these symbols: \neq , <, >.

Example:

Null hypothesis – Mean age on the population is equal to 50

$$H_0: \mu = 50$$

Alternative hypothesis - Mean age is different from 50

 $H_A: \mu \neq 50$ two-tailed test

or $H_A: \mu < 50$ lower-tailed test

 $H_A: \mu > 50$ upper-tailed test

Illustrative Example: "Body Weight"

- The problem: In the 1970s, 20–29 year old men in the U.S. had a mean μ body weight of 170 pounds. Standard deviation σ was 40 pounds. We test whether mean body weight in the population now differs.
- Null hypothesis $H_{0:} \mu = 170$ ("no difference")
- The alternative hypothesis can be either $H_{a:} \mu > 170$ (one-sided test) body weight in this group has increased since 1970 or $H_{a:} \mu \neq 170$ (two-sided test)

Test Statistics

To check the null hypothesis we calculate a figure known as a **test statistic**, which is based on data from our samples.

Different types of problems require different test statistics.

If the test statistic shows you "observed an unlikely result", you reject the null hypothesis and accept the alternative hypothesis.

Test Statistic

The test statistic is a value used in making a decision about the null hypothesis, and it is found by converting the sample statistic to a score with the assumption that the null hypothesis is true.

It tells us, if H_0 is true, how likely it is that we would obtain the given sample result.

Examples of Test Statistic -Formulas

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

Test statistic for proportions

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
 Test statistic for mean

Decision Criterion

Traditional method: the rejection region (typically used when computing statistics manually):

Reject H_0 if the test statistic falls within the critical region of the sampling distribution.

Fail to reject H_0 if the test statistic does not fall within the critical region of the sampling distribution.

Alternative Method: the p-value approach (generally used with a computer and statistical software).

Types of Errors

No matter which hypothesis represents the claim, always begin the hypothesis test assuming that the null hypothesis is true.

At the end of the test, one of two decisions will be made:

- 1. reject the null hypothesis, or
- 2. fail to reject the null hypothesis.

There are **two** possible decisions that can be made:

- A. Conclude that there *is enough evidence* to support the alternative hypothesis (rejecting the null hypothesis in favor of the alternative)
- B. Conclude that there *is not enough evidence* to support the alternative hypothesis (not rejecting the null hypothesis in favor of the alternative)

We reject Hoonly when the chance is small that Hois true. Since our decisions are based on probability rather than certainty, we can make errors.

Hypothesis Testing: type of errors

	Fail to reject H ₀ reject H ₀		
True State			
H ₀ True	Correct Decision	Type I Error	
H ₀ False	Type II Error	Correct Decision	

 $\alpha = P(Type\ I\ Error)$ $\beta = P(Type\ II\ Error)$

Goal: Keep α , β reasonably small

Type I and type II errors are inversely related. Decreasing one increases the other.

They are different sorts of mistakes and have different consequences. For instance in the scientific research:

A type I error (reject the null hypothesis when the null is true) introduces a false conclusion into the scientific community and can lead to a tremendous waste of resources before further research invalidates the original finding.

Type II errors can be costly as well, but generally go unnoticed A type II error – failing to recognize a scientific breakthrough – represents a missed opportunity for scientific progress.

By convention it is given more importance to P(Type I error) = α which is usually fixed= 0.05, 0.01 or 0.1

Level of Significance

In a hypothesis test, the level of significance is your maximum allowable probability of making a type I error. It is denoted by α .

> _ Hypothesis tests are based on α .

The probability of making a type II error is denoted by β .

By setting the level of significance at a small value, you are saying that you want the probability of rejecting a true null hypothesis to be small.

Commonly used levels of significance:

$$\alpha = 0.10$$

$$\alpha = 0.10$$
 $\alpha = 0.05$ $\alpha = 0.01$

$$\alpha = 0.01$$

Level of Significance, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
 - Typical values are 0.01, 0.05, or 0.10
- Is selected by the researcher at the beginning

You should be aware that Type II error is also important. A small sample size, for example, might lead to frequent Type II errors, i.e. it could be that your (alternative) hypotheses are right, but because your sample is so small, you fail to reject the null even though you should.

Steps to undertaking a Hypothesis test

The Rejection Region

A rejection region (or critical region) of the sampling distribution is the range of values for which the null hypothesis is not probable. If the test statistic falls into that range, we decide to reject the null hypothesis.

 \overline{x}_L is the critical value of \overline{x} to reject H_0 .

Rejection Region (dependent on H_A)

Alternative Hypothesis	Critical Region		
$H_A: \mu \neq \mu_0$	$z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$		
$H_A: \mu > \mu_0$	$z > z_{\alpha}$		
$H_A: \mu < \mu_0$	$z < -z_{\alpha}$		

Decision Criterion - cont

P-value method:

Reject H_0 if the P-value $\leq \alpha$ (where α is the significance level, such as 0.05).

Fail to reject H_0 if the P-value $> \alpha$.

The p-value approach:

The p-value is the probability that the data could deviate from the null hypothesis as much as they did or more. It si not the probability that the null hypothesis is correct.

A small p-value indicates that observation of the test statistic would be unlikely if the null hypothesis is true >> the difference of the sample statistic with respect to the population parameter is not by chance.

The lower the p-value, the more evidence there is in favour of rejecting the null hypothesis.

Hypothesis Test for Two Independent Samples

Test for mean difference:

- Null Hypothesis H_0 : $\mu_1 = \mu_2$
- Alternative $H_1: \mu_1 \neq \mu_2$

Under H_0 μ_1 - μ_2 = 0. So, the test concludes whether there is a difference between the means or not.

Some examples

examples

- populations of users and non-users of a brand differ in perceptions of the brand
- high income consumers spend more on the product than low income consumers
- The proportion of brand-loyal users in Segment 1 (egmales) is more than the proportion in segment II (e.g. females)
- The proportion of households with Internet in Canada exceeds that in USA

Can be used for examining differences between means and proportions

. ttest incomeppp, by(sex)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	14,339 15,473	30459.53 15746.7	228.5309 148.0887	27365.57 18420.83	30011.58 15456.43	30907.48 16036.97
combined	29,812	22823.29	140.7191	24296.77	22547.47	23099.11
diff		14712.83	268.4461		14186.66	15238.99

$$diff = mean(1) - mean(2)$$

t = 54.8074

Ho: diff = 0

degrees of freedom = 29810

Ha: diff < 0

Ha: diff != 0

Ha: diff > 0

Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

Comparing more than two means: the ANOVA test

The null hypothesis tests whether the mean of all the independent samples is equal

$$H_0 \ \mu_1 = \mu_2 = \mu_3 \dots = \mu_n$$

 $H_1 \ \mu_1 \neq \mu_2 \neq \mu_3 \dots \neq \mu_n$

ANOVA Test

 The null hypothesis would be tested with the F distribution

The "F-test"

Is the difference in the means of the groups more than background noise (=variability within groups)?

Summarizes the mean differences between all groups at once.

$$F = \frac{Variability\ between\ groups}{Variability\ within\ groups}$$

Analogous to pooled variance from a ttest.

oneway incomeppp country

Analysis of Variance					
Source	SS	df	MS	F	Prob >
Between groups	1.9988e+12	3	6.6625e+11	1273.08	0.00
Within groups	1.5600e+13	29808	523338228		
Total	1.7598e+13	29811	590333165		

Example: Titanic

Research question: Did class (of travel) affect survival?

Chi squared Test

Null: There is NO association between class and survival

• Alternative: There IS an association between class and survival

ontingency table

Class * Survived? Crosstabulation Count Survived? Survived Total Died Class 1st 123 200 323 277 2nd 158 119 3rd 528 709 181 1309 Total 809 500

Chi-squared test statistic

- The chi-squared test is used when we want to see if two categorical variables are related
- The test statistic for the Chi-squared test uses the sum of the squared differences between each pair of observed (O) and expected values – in case H0 is true - (E)

$$\chi^2 = \sum_{i=1}^n \frac{\left(O_i - E_i\right)^2}{E_i}$$

tab pclass survived, row col chi2

Key				
frequency				
row percentage				
column percentage				

	survived			
pclass	0	1	Total	
1	123	200	323	
	38.08	61.92	100.00	
	15.20	40.00	24.68	
2	158	119	277	
	57.04	42.96	100.00	
	19.53	23.80	21.16	
3	528	181	709	value of the chi
	74.47	25.53	100.00	square test statistic
	65.27	36.20	54.16	square test statistic
Total	809	500	1,309	
	61.80	38.20	100.00	
	100.00	100.00	100.00	_
,				p- value
Pe	arson chi2(2)) = 127.859	Pr = 0.000	p < 0.005

Interpretation

Since p < 0.05 we reject the null

There is evidence to suggest that there is an association between class and survival

But... what is the nature of this association/relationship?

I expect that 'wealthy' people more likely to survive on board the Titanic

 Choose the right percentages from the two-way table to investigate

Two-way –Contingency- tables

Which percentages between row and col are better for investigating whether class had an effect on survival?

	survived				
pclass	0		1	Total	
1	123		200	323	
		38.08	61.92	100.00	
		15.20	40.00	24.68	
2		158	119	277	
		57.04	42.96	100.00	
		19.53	23.80	21.16	
3		528	181	709	
		74.47	25.53	100.00	
		65.27	36.20	54.16	
Total		809	500	1,309	
		61.80	38.20	100.00	
		100.00	100.00	100.00	

65.3% of those who died were in 3rd class 74.5% of those in 3rd class died

Did class affect survival? Solution

%'s within each class are preferable due to different class frequencies

	surv	ived	
pclass	0	1	Total
1	123	200	323
	38.08	61.92	100.00
2	158	119	277
	57.04	42.96	100.00
3	528	181	709
	74.47	25.53	100.00
Total	809	500	1,309
	61.80	38.20	100.00

The question of interest is whether the class of an individual affected their chance of survival.

As there are different numbers in the classes, the percentages within those who died (col freq) are misleading

Did class affect survival? Solution

Figure 1: Bar chart showing % of passengers surviving within each class

catplot survived pclass, percent(pclass) asyvars stack /// blabel(bar, pos(center) format(%2.0f)) legend(pos(bottom) col(5))

Data collected on 1309 passengers aboard the Titanic was used to investigate whether class had an effect on chances of survival. There was evidence (p < 0.005) to suggest that there is an association between class and survival.

Figure 1 shows that class and chances of survival were related. As class decreases, the percentage of those surviving also decreases from 62% in 1st Class to 26% in 3rd Class.

Scatterplot

Relationship between two quantitative variables:

- Explores the way the two co-vary: (correlate)
 - Positive / negative
 - Linear / non-linear
 - Strong / weak
- ➤ Presence of outliers
- > Statistic used:
- r = correlation coefficient

Correlation Coefficient r

Measures strength of a relationship between two continuous variables

 $-1 \le r \le 1$ Strong positive linear relationship r close to 1 r close to No linear relationship zero r close to -1

Strong negative linear relationship

Correlation quantifies this relationship. Correlation coefficients range from -1 and +1 with 0 meaning there is no relationship at all.

The further away from 0 the coefficient is, the stronger the relationship. A positive number means that as x increases, so does y and negative coefficients that y decreases as x increases.

Correlation Interpretation

An interpretation of the size of the coefficient has been described by Cohen (1992) as:

Correlation coe	efficient va	Relationship	
-0.3 to +0.3			Weak
-0.5 to -0.3	or	0.3 to 0.5	Moderate
-0.9 to -0.5	or	0.5 to 0.9	Strong
-1.0 to -0.9	or	0.9 to 1.0	Very strong

Cohen, L. (1992). Power Primer. Psychological Bulletin, 112(1) 155-159

Does chocolate make you clever or crazy?

 A paper in the New England Journal of Medicine claimed a relationship between chocolate and Nobel Prize winners

http://www.nejm.org/doi/full/10.1056/NEJMon1211064

Is higher inequality associated with higher homicide rate?

Is higher inequality associated with higher homicide rate?

same graph but without Dallas

Hypothesis tests for r

Tests the null hypothesis that the population correlation:

$$H_0 r = 0$$

$$H_1 r \neq 0$$

pwcorr inequal homrate if city!="Dallas", sig

inequal hom	rate
1.0000	r=0.71
0.7163 1.6 0.0006	0000
	1.0000 0.7163 1.0

→ p-value<0.005

A significant result just means that there is evidence to suggest that r is not 0

Exercise - Solution

r = 0.71

There is a significant and strong positive relationship between inequalities and homicides and the relationship looks like a linear relationship (it can be approximated by a line)

