VECTOR

EXERCISE - V

1. Select the correct alternative

[JEE 2000(Scr.), 1 + 1 + 1]

- (i) If the vectors \vec{a} , \vec{b} & \vec{c} form the sides BC, CA & AB respectively of a triangle ABC, then
- (A) $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$
- (B) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$
- (C) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} \cdot \vec{a}$
- (D) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$
- (ii) Let the vectors \vec{a} , \vec{b} , \vec{c} & \vec{d} be such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$. Let P_1 & P_2 be planes determined by the pairs of vectors \vec{a} , \vec{b} & \vec{c} , \vec{d} respectively. Then the angle between P_1 and P_2 is (A) 0 (B) $\pi/4$ (C) $\pi/3$ (D) $\pi/2$
- (iii) If \vec{a} , \vec{b} & \vec{c} are unit coplanar vectors, then the scalar triple product $[2\vec{a} \vec{b} \ 2\vec{b} \vec{c} \ 2\vec{c} \vec{a}] =$ (A) 0 (B) 1 (C) $-\sqrt{3}$ (D) $\sqrt{3}$
- **2.** (i) If $\vec{a} = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + 2\hat{k}$ & $\vec{c} = -\hat{i} + 2\hat{j} \hat{k}$, find a unit vector normal to the vectors $\vec{a} + \vec{b}$ and $\vec{b} \vec{c}$. [REE 2000(Mains), 3 + 3 + 3]
- (ii) Given that vectors \vec{a} & \vec{b} are perpendicular to each other, find vector \vec{v} in terms of \vec{a} & \vec{b} satisfying the equations, $\vec{v} \cdot \vec{a} = 0$, $\vec{v} \cdot \vec{b} = 1$ and $[\vec{v} \vec{a} \vec{b}] = 1$
- (iii) \vec{a} , \vec{b} & \vec{c} are three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2} (\vec{b} + \vec{c})$. Find angle between vectors \vec{a} & \vec{b} given that vectors \vec{b} & \vec{c} are non-parallel.
- **3.** (a) The diagonals of a parallelogram are given by vectors $2\hat{i} + 3\hat{j} 6\hat{k}$ and $3\hat{i} 4\hat{j} \hat{k}$. Determine its sides and also the area. **[REE 2001(Mains), 3 + 3]**
- (b) Find the value of $\boldsymbol{\lambda}$ such that a, b, c are all non-zero and

$$(-4\hat{i}+5\hat{j}) a + (3\hat{i}-3\hat{j}+\hat{k}) b + (\hat{i}+\hat{j}+3\hat{k}) c = \lambda (a\hat{i}+b\hat{j}+c\hat{k})$$

JEE PROBLEMS

- **4.** (a) Find the vector \vec{f} which is perpendicular to $\vec{a} = \hat{j} 2\hat{j} + 5\hat{k} \& \vec{b} = 2\hat{j} + 3\hat{j} \hat{k} \& \vec{f} \cdot (2\hat{i} \hat{j} + \hat{k}) + 8 = 0$ [REE 2001(Mains), 3 + 3]
- **(b)** Two vertices of a triangle are at $-\hat{i} + 3\hat{j}$ and $2\hat{i} + 5\hat{j}$ and its orthocentre is at $\hat{i} + 2\hat{j}$. Find the position vector of third vertex.
- **5.** (a) If \vec{a} , \vec{b} and \vec{c} are unit vectors, then $|\vec{a} \vec{b}|^2 + |\vec{b} \vec{c}|^2 + |\vec{c} \vec{a}|^2$ does NOT exceed [JEE 2001(Scr.), 1 + 1] (A) 4 (B) 9 (C) 8 (D) 6
- **(b)** Let $\vec{a} = \hat{i} \hat{k}$, $\vec{b} = x\hat{i} + \hat{j} + (1 x)\hat{k}$ and $\vec{c} = y\hat{i} + x\hat{j} + (1 + x y)\hat{k}$. Then $[\vec{a}, \vec{b}, \vec{c}]$ depends on (A) only x (B) only y (C) neither x nor y (D) both x and y
- **6.** Let $\vec{A}(t) = f_1(t)\hat{i} + f_2(t)\hat{j}$ and $\vec{B}(t) = g_1(t)\hat{i} + g_2(t)\hat{j}$, $t \in [0, 1]$, where f_1 , f_2 , g_1 , g_2 are continuous functions. If $\vec{A}(t)$ and $\vec{B}(t)$ are nonzero vectors for all t and $\vec{A}(0) = 2\hat{i} + 2\hat{j}$, $\vec{A}(1) = 6\hat{i} + 2\hat{j}$, $\vec{B}(0) = 3\hat{i} + 2\hat{j}$ and $\vec{B}(1) = 2\hat{i} + 6\hat{j}$, then show that $\vec{A}(t)$ and $\vec{B}(t)$ are parallel for some t. [**JEE 2001(Mains), 5**]
- **7.** (a) If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} 4\vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is [JEE 2002(Scr.), 3 + 3]
 (A) 45° (B) 60° (C) $\cos^{-1}(1/3)$ (D) $\cos^{-1}(2/7)$
- **(b)** Let $\vec{V}=2\hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3\hat{k}$. If \vec{U} is a unit vector, then the maximum value of the scalar triple product $[\vec{U}\ \vec{V}\ \vec{W}\]$ is
- (A) -1 (B) $\sqrt{10} + \sqrt{6}$ (C) $\sqrt{59}$ (D) $\sqrt{60}$

8. If $\vec{a} = \hat{i} + a\hat{j} + \hat{k}$, $\vec{b} = \hat{j} + a\hat{k}$, $\vec{c} = a\hat{i} + \hat{k}$, then find the value of 'a' for which volume of parallelopiped formed by three vectors as coterminous edges, is minimum, is

[JEE 2003(Scr.), 3]

(A)
$$\frac{1}{\sqrt{3}}$$

(B)
$$-\frac{1}{\sqrt{3}}$$

(A)
$$\frac{1}{\sqrt{3}}$$
 (B) $-\frac{1}{\sqrt{3}}$ (C) $\pm \frac{1}{\sqrt{3}}$

- **9.** If \vec{u} , \vec{v} , \vec{w} are three non-coplanar unit vectors and α , β , γ are the angles between \vec{u} and \vec{v} , \vec{v} and $_{\vec{W}}\,,~_{\vec{W}}$ and $_{\vec{u}}$ respectively and $_{\vec{X}}\,,~_{\vec{y}}\,,~_{\vec{z}}$ are unit vectors along the bisectors of the angles α , β , γ respectively. Prove that $[\vec{x} \times \vec{y} \quad \vec{y} \times \vec{z} \quad \vec{z} \times \vec{x}] =$

$$\frac{1}{16} [\vec{u} \ \vec{v} \ \vec{w}] \sec^2 \frac{\alpha}{2} \sec^2 \frac{\beta}{2} \sec^2 \frac{\gamma}{2}.$$
 [JEE 2003, 4]

10.(a) A unit vector in the plane of the vectors $2\hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \hat{j} + \hat{k}$ and orthogonal to $5\hat{i} + 2\hat{j} + 6\hat{k}$

[JEE 2004(Scr.)]

(A)
$$\frac{6\hat{i}-5\hat{k}}{\sqrt{61}}$$
 (B) $\frac{3\hat{j}-\hat{k}}{\sqrt{10}}$ (C) $\frac{2\hat{i}-5\hat{k}}{\sqrt{29}}$ (D) $\frac{2\hat{i}+\hat{j}-2\hat{k}}{3}$

(C)
$$\frac{2\hat{i} - 5\hat{k}}{\sqrt{29}}$$

(D)
$$\frac{2\hat{i} + \hat{j} - 2}{3}$$

(b) If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then \vec{b} equals

(B)
$$\hat{i} - \hat{j} + \hat{k}$$
 (C) $2\hat{j} - \hat{k}$

- **11.** Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four distinct vectors satisfying $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$. Show that $\vec{a}.\vec{b} + \vec{c}.\vec{d} \neq \vec{a}.\vec{c} + \vec{b}.\vec{d}$ [JEE 2004, 2]
- **12.** Incident ray is along the unit vector $\hat{\mathbf{v}}$ and the reflected ray is along the unit vector $\hat{\mathbf{w}}$. The normal

is along unit vector â outwards. Express ŵ in terms of \hat{a} and \hat{v} .

[JEE 2005 (Mains), 4]

13.(a) Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}, \vec{b} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{c} = \hat{i} + \hat{j} - \hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose projection on \vec{c} has the magnitude equal to $1/\sqrt{3}$, is [JEE 2006, 3 + 5]

(A)
$$4\hat{i} - \hat{j} + 4\hat{k}$$

(B)
$$3\hat{i} + \hat{j} - 3\hat{k}$$

(C)
$$2\hat{i} + \hat{j} - 2\hat{k}$$

(D)
$$4\hat{i} + \hat{j} - 4\hat{k}$$

(b) Let \vec{A} be vector parallel to line of intersection of planes P_1 and P_2 through origin. P_1 is parallel to the vectors $2\hat{j} + 3\hat{k}$ and $4\hat{j} - 3\hat{k}$ and P_2 is parallel to $\hat{j} - \hat{k}$ and $3\hat{i} + 3\hat{j}$, then the angle between vector \vec{A} and $2\hat{i} + \hat{j} - 2\hat{k}$ is

(A)
$$\frac{\pi}{2}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{3}$

(B)
$$\frac{\pi}{4}$$

(C)
$$\frac{\pi}{6}$$

(D)
$$\frac{\pi}{3}$$

14. (a) The number of distinct real values of λ , for which the vectors $-\lambda^2\hat{j} + \hat{j} + \hat{k}$, $\hat{j} - \lambda^2\hat{j} + \hat{k}$ and $\hat{j} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is [**JEE 2007, 3+3+3**]

(A) zero (B) one

(C) two

- (D) three
- **(b)** Let \vec{a} , \vec{b} , \vec{c} be unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Which one of the following is correct?

(A)
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} = \vec{0}$$

(B)
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$$

(C)
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{a} \times \vec{c} \neq \vec{0}$$

- (D) $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ are mutually perpendicular.
- (c) Let the vectors $\overrightarrow{PQ}, \overrightarrow{QR}, \overrightarrow{RS}, \overrightarrow{ST}, \overrightarrow{TU}$ and \overrightarrow{UP} represent the sides of a regular hexagon.

Statement-I: $\overrightarrow{PQ} \times (\overrightarrow{RS} + \overrightarrow{ST}) \neq \overrightarrow{0}$

because

Statement-II: $\overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{0}$ and $\overrightarrow{PQ} \times \overrightarrow{ST} \neq \overrightarrow{0}$

- (A) Statement-I is true, statement-II is true; statement-II is a correct explanation for statement-I
- (B) Statement-I is true, statement-II is true; statement-II is **NOT** a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 15. (a) The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors

 \hat{a} , \hat{b} , \hat{c} such that $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = \frac{1}{2}$. Then the [JEE 2008, 3+3]

volume of the parallelopiped is

(A) $\frac{1}{\sqrt{2}}$ (B) $\frac{1}{2\sqrt{2}}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{1}{\sqrt{3}}$

(b) Let two non-collinear unit vector \hat{a} and \hat{b} form an acute angle. A point P moves so that at any time t the position vector \overrightarrow{OP} (where O is the origin) is given by $\hat{a} \cos t + \hat{b} \sin t$. When P is farthest from origin O, let M be the length of \overrightarrow{OP} and \overrightarrow{u} be the unit vector along \overrightarrow{OP} . Then,

(A)
$$\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$
 and $M = (1 + \hat{a}.\hat{b})^{1/2}$

(B)
$$\hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|}$$
 and $M = (1 + \hat{a} \cdot \hat{b})^2$

(C)
$$\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} + \hat{\mathbf{b}}}{|\hat{\mathbf{a}} + \hat{\mathbf{b}}|}$$
 and $\mathbf{M} = (1 + 2\hat{\mathbf{a}}.\hat{\mathbf{b}})^{1/2}$

(D)
$$\hat{u} = \frac{\hat{a} - \hat{b}}{\left|\hat{a} - \hat{b}\right|}$$
 and $M = (1 + 2\hat{a}.\hat{b})^{1/2}$

16.(a) If \vec{a} , \vec{b} , \vec{c} and \vec{d} are unit vectors such that

$$((\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = 1 \text{ and } \vec{a}.\vec{c} = \frac{1}{2}, \text{ then}$$
[JEE 2009, 3+3+3+8+4]

- (A) \vec{a} , \vec{b} , \vec{c} are non-coplanar
- (B) \vec{b} , \vec{c} , \vec{d} are non-coplanar
- (C) \vec{b} , \vec{d} are non-parallel
- (D) \vec{a} , \vec{d} are parallel and \vec{b} , \vec{c} are parallel
- (b) Match the statements/expressions given in Column-I with the value given in Column-II.

Column-I

Column-II

- (A) Roots(s) of the equation $2\sin^2\theta + \sin^2 2\theta = 2$

(Q)

- (B) Points of discontinuity of the function $f(x) = \left[\frac{6x}{\pi}\right] \cos \left[\frac{3x}{\pi}\right]$, where [y] denotes the largest integer less than or equal to y
- (C) Volume of the parallelopiped (R) with its edges represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$ and $\hat{i} + \hat{j} + \pi \hat{k}$
- (D) Angle between vectors \vec{a} and \vec{b} where \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $\vec{a} + \vec{b} + \sqrt{3} \vec{c} = \vec{0}$ (T)

- 17. Let P, Q, R and S be the points on the plane with position vectors $-2\hat{i} - \hat{j}$, $4\hat{i}$, $3\hat{i} + 3\hat{j}$ & $-3\hat{i} + 2\hat{j}$ respectively. The quadrilateral PQRS must be a [JEE 2010] (A) parallelogram, which is neither a rhombus nor a
- (B) square

rectangle

- (C) rectangle, but not a square
- (D) rhombus, but not a square
- **18.** If \vec{a} and \vec{b} are vectors in space given by

$$\vec{a}=\frac{\hat{i}-2\hat{j}}{\sqrt{5}}$$
 and $\vec{b}=\frac{2\hat{i}+\hat{j}+3\hat{k}}{\sqrt{14}}$, then the value of

$$(2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})]$$
 is

[JEE 2010]

19. Two adjacent sides of a parallelogram ABCD are given by $AB = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and $AD = -\hat{i} + 2\hat{j} + 2\hat{k}$ The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB, then the cosine of the angle α is given by

- (A) $\frac{8}{9}$ (B) $\frac{\sqrt{17}}{9}$ (C) $\frac{1}{9}$ (D) $\frac{4\sqrt{5}}{9}$

- **20.** Let $\vec{a} = \hat{i} + \hat{i} + \hat{k}$, $\vec{b} = \hat{i} \hat{i} + \hat{k}$ and $\vec{c} = \hat{i} \hat{i} \hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b} , w

hose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by [JEE 2011]

- (A) $\hat{i} 3\hat{i} + 3\hat{k}$
- (B) $-3\hat{i} 3\hat{i} \hat{k}$
- (C) $3\hat{i} \hat{j} + 3\hat{k}$ (D) $\hat{i} + 3\hat{j} 3\hat{k}$
- 21. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2\hat{k}$ and $\hat{i}+2\hat{j}+\hat{k}$, and perpendicular to the vector $\hat{i} + \hat{i} + \hat{k}$ is/are [JEE 2011]
- (A) $\hat{j} \hat{k}$ (B) $-\hat{i} + \hat{j}$ (C) $\hat{i} \hat{j}$ (D) $-\hat{j} + \hat{k}$
- **22.** Let $\vec{a} = -\hat{i} \hat{k}$, $\vec{b} = -\hat{i} + \hat{i}$ and $\vec{c} = \hat{i} + 2\hat{i} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$, then the value of $\vec{r} \cdot \vec{b}$ is

[JEE 2011]

- **23.** If \vec{a} and \vec{b} are vectors such that $|\vec{a} + \vec{b}| = \sqrt{29}$ and $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$ then a possible value of $(\vec{a} + \vec{b}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ is **[JEE 2012]** (A) 0 (B) 3 (C) 4 (D) 8
- **24.** If \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying

$$\left| \vec{a} - \vec{b} \right|^2 + \left| \vec{b} - \vec{c} \right|^2 + \left| \vec{c} - \vec{a} \right|^2 = 9$$
, then $\left| 2\vec{a} + 5\vec{b} + 5\vec{c} \right|$ is [JEE 2012]