Probabilistic Method Lecture 2

EGMOTC 2023 - Rohan

December 24, 2023

Erdös-Ko-Rado

Intersecting Set-families: A family \mathcal{F} of sets is called intersecting if, $A, B \in \mathcal{F} \implies A \cap B \neq \Phi$. Now, suppose $n \geq 2k$ and let \mathcal{F} be an intersecting family of k-element subsets of an n set, say $[0, 1, 2, \dots, n-1]$. Then, Erdös-Ko-Rado Theorem states that $|\mathcal{F}| \leq {n-1 \choose k-1}$.

Maximal Antichains

Antichains: A family \mathcal{F} of subsets of [n] is called an anti-chain if no set of \mathcal{P} is contained in another.

Theorem 1. Let \mathcal{F} be an antichain then,

$$\sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}} \le 1$$

The above theorem is also called the Lubell-Yamamoto-Meshalkin inequality or more frequently, the LYM inequality.

Corollary 1. (Sperner's Theorem) Let \mathcal{F} be an antichain, then

$$|\mathcal{F}| \le \binom{n}{\lfloor n/2 \rfloor}$$

Try to prove these three results.

¹Taken from the probabilistic lens 1 in Alon-Spencer.

Law of Large Numbers

Take this result as something to remember intuitively and not necessarily too formally but more as an intuitive statement:

Law of Large Numbers. Let $X_1, \dots X_n$ be indepedent identically distributed random values with expected value 0. Then, if you define $\overline{X_n} = \frac{X_1 + \dots + X_n}{n}$ then for any $\epsilon > 0$, we have

$$\lim_{n \to \infty} \mathbb{P}[|\overline{X_n}| < \epsilon] = 1$$