18.781 PROBLEM SET 7

JOHN WANG

1. Problem 1

Problem 1.1. Let n be a positive integer. Evaluate $\sum_{k=0}^{n} {n \choose 3k}$.

Solution First, we know that $(1+x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k$ is the generating function for the expression. Let us now use the third roots of unity ω and substitute them into the expression for the generating function. We know that the third roots of unity are 1 and $-\frac{1}{2} \pm \frac{i\sqrt{3}}{2}$. Moreover, we know that the following holds, using the fact that $\omega^2 = -\omega - 1$:

(1.1)
$$\sum_{k=0}^{n} \omega^k \binom{n}{k} = (1+\omega)^n = (-\omega^2)^n$$

(1.2)
$$\sum_{k=0}^{n} \omega^{2k} \binom{n}{k} = (1+\omega^2)^n = (-\omega)^n$$

(1.3)
$$\sum_{k=0}^{n} 1^{k} \binom{n}{k} = (1+1)^{n} = 2^{n}$$

Therefore, since we know that summing up each of these series, we will obtain the sum $3\sum_{k=0}^{n} {n \choose 3k}$, we find that:

(1.4)
$$3\sum_{k=0}^{n} {n \choose 3k} = 2^{n} + (-\omega)^{n} + (-\omega)^{2n}$$

(1.5)
$$\sum_{k=0}^{n} {n \choose 3k} = \frac{1}{3} \left(2^{n} + (-\omega)^{n} + (-\omega)^{2n} \right)$$

The completes the calculation. \Box

2. Problem 2

For a sequence $\{a_n\}$ we can define another kind of generating function called an exponential generating function as follows:

(2.1)
$$\bar{A}(x) = \sum_{n>0} a_n \frac{x^n}{n!}.$$

It satisfies many of the nice properties we have seen for generating functions (for example, linearity with respect to the sequence). But some properties are slightly modified.

Problem 2.1. Show that the generating function for the left-shifted sequence $\{a_1, a_2, \ldots\}$ is $\frac{d}{dx}\bar{A}(x)$.

Solution We see that if we differentiate $\bar{A}(x)$, we obtain the following:

(2.2)
$$\frac{d}{dx}\bar{A}(x) = \sum_{n>0} a_n \frac{d}{dx} \frac{x^n}{n!}$$

$$= \sum_{n\geq 0} a_n \frac{nx^{n-1}}{n!}$$

$$= \sum_{n>0} a_n \frac{x^{n-1}}{(n-1)!}$$

$$= \sum_{n\geq 1} a_n \frac{x^n}{n!}$$

This is exactly what we wanted to show because the bottom expression is the sequence $\{a_n\}$ left shifted by one unit. \square

Problem 2.2. If $\bar{A}(x)$ is the exponential generating function for $\{a_n\}$ and $\bar{B}(x)$ is the exponential generating function for $\{b_n\}$, show that $\bar{A}(x)\bar{B}(x)$ is the exponential generating function for the sequence $\{c_n\}$ given by $c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}$.

Solution We shall compute $\bar{A}(x)\bar{B}(x)$ by examining the coefficients of $\frac{x^n}{n!}$ for each $n \geq 0$. We see that if we multiply the terms on a_k and b_{n-k} we obtain:

(2.6)
$$a_k \frac{x^k}{k!} b^{n-k} \frac{x^{n-k}}{(n-k)!} = a_k b_{n-k} \frac{x^n}{k!(n-k!)}$$

Moreover, we know that the only terms that have x^n are those where k + (n - k) = n. This includes all k ranging from 0 to n. However, we know that in the exponential generating function, we must have $\frac{x^n}{n!}$ as the term without the coefficient c_n . However, we know that $\frac{x^n}{n!}\binom{n}{k} = \frac{x^n}{k!(n-k)!}$. Therefore, we know

(2.7)
$$a_k b_{n-k} \frac{x^n}{k!(n-k)!} = \binom{n}{k} a_k b_{n-k} \frac{x^n}{n!}$$

Since we range over all $k \in \{0, 1, \dots, n\}$, we see that $c_n = \sum_{k=0}^n {n \choose k} a_k b_{n-k}$ as desired. \square

Problem 2.3. Show that the generating function E(x) for the sequence $a_n = r^n$ (where r is some fixed complex number) satisfies E'(x) = rE(x). Solve this differential equation to deduce that $e^{rx} = \sum_{n\geq 0} \frac{r^n x^n}{n!}$.

Solution We know that $E(x) = 1 + rx + r^2 + \frac{x^2}{2!} + \ldots = \sum_{n>0} r^n \frac{x^n}{n!}$. Taking the derivative we find:

$$(2.8) E'(x) = \sum_{n>0} r^n \frac{d}{dx} \frac{x^n}{n!}$$

$$= \sum_{n>1} r^n \frac{x^{n-1}}{(n-1)!}$$

$$(2.10) = r \sum_{n>0} r^n \frac{x^n}{n!}$$

$$(2.11) = rE(x)$$

This is an easily solvable differential equation. We know that $E(x) = e^{rx}$ by elementary differential equations class. This means that $e^{rx} = \sum_{n \geq 0} \frac{r^n x^n}{n!}$. \square

3. Problem 3

Define a sequence B_n by the identity $f(x) := \frac{x}{e^x - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$, i.e. B_n is n! times the coefficient of x^n in the expansion of the left hand side, where one uses $e^x - 1 = \sum_{n=0}^{\infty} x^n / n!$.

Problem 3.1. Calculate B_0 through B_{10} .

Solution First, we can clearly see from the series expansion of the left hand side that $B_0 = 1$. Next, we see that if we multiply both sides of the definition of f(x) by $(e^x - 1)$ and expand out the series, we obtain $x = (e^x - 1) \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$. Using the fact that $\overline{A}(x)\overline{B}(x)$ generates the function $\{c_n\}$ where $c_n = \sum_{k=0}^{n} {n \choose k} a_k b_{n-k}$, we find:

$$(3.1) x = \left(\sum_{n=0}^{\infty} (1) \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} B_n \frac{x^n}{n!}\right)$$

$$(3.2) x = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} B_k$$

Equating the coefficients of x^{n+1} on both sides of the expression, we find that:

(3.3)
$$0 = \sum_{k=0}^{n+1} {n+1 \choose k} B_k$$

$$(3.4) (n+1)B_n = -\sum_{k=0}^{n-1} {n+1 \choose k} B_k$$

18.781 PROBLEM SET 7 3

This means that we can use this recurrence to calculate B_0, \ldots, B_{10} . We obtain:

$$\begin{array}{rcl}
 (3.5) & B_0 & = & 1 \\
 (3.6) & B_1 & = & -\frac{1}{2} \\
 (3.7) & B_2 & = & \frac{1}{6} \\
 (3.8) & B_3 & = & 0 \\
 (3.9) & B_4 & = & -\frac{1}{30} \\
 (3.10) & B_5 & = & 0 \\
 (3.11) & B_6 & = & \frac{1}{42} \\
 (3.12) & B_7 & = & 0 \\
 (3.13) & B_8 & = & -\frac{1}{30} \\
 (3.14) & B_9 & = & 0 \\
 (3.15) & B_{10} & = & \frac{55}{66} \\
 \end{array}$$

Problem 3.2. Show that for n > 1 odd, $B_n = 0$.

Solution We see that f(x) - f(-x) can be expanded into the following, using the series representations:

(3.16)
$$f(x) - f(-x) = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!} - \sum_{n=0}^{\infty} B_n \frac{(-x)^n}{n!}$$

$$= \sum_{n \text{ odd}} B_n \frac{x^n}{n!}$$

Moreover, we know that f(x) - f(-x) can also be represented as:

(3.18)
$$f(x) - f(-x) = \frac{x}{e^x - 1} - \frac{-x}{e^{-x} - 1}$$

$$= \frac{x(e^{-x}-1) + x(e^x-1)}{(e^x-1)(e^{-x}-1)}$$

$$= \frac{xe^{-x} + xe^x - 2x}{2 - e^x - e^{-x}}$$

$$(3.21) = -x$$

Thus, equating these two expressions, we see that $B_1 = -1$, and that $B_n = 0$ for all odd n. \square

Problem 3.3. Establish the recurrence for $n \ge 2$ that $\sum_{k=0}^{n-1} {n \choose k} B_k = 0$.

Solution We use the same method we used in part 1 and multiply both sides by $e^x - 1$. Thus, we find:

$$(3.22) x = \left(\sum_{n=0}^{\infty} (1) \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} B_n \frac{x^n}{n!}\right)$$

$$(3.23) x = \sum_{n=0}^{\infty} \sum_{k=0}^{n} {n \choose k} B_k$$

Finding the coefficient of x^n on both sides, we see that $B_n = \sum_{k=0}^n \binom{n}{k} B_k$, which shows, since $\binom{n}{n} B_n = B_n$, that we have:

(3.24)
$$0 = \sum_{k=0}^{n-1} \binom{n}{k} B_k$$

This is what we wanted to show. \square

Problem 3.4. Let $S_k(n) = 1^k + 2^k + \ldots + n^k$ be the sum of the kth powers of the first n natural numbers. Show that S_k is given by the following polynomial of degree k+1 in n: $S_k(n) = \frac{1}{k+1} \sum_{i=0}^k (-1)^i \binom{k+1}{i} B_i n^{k+1-i}$.

Solution First, we know that $\sum_{k\geq 0} S_k(n) \frac{x^k}{k!}$ can be computed as follows:

$$(3.25) \qquad \sum_{k\geq 0} S_k(n) \frac{x^k}{k!} = \sum_{k=0}^{\infty} \left(\sum_{m=0}^n k^m\right) \frac{x^k}{k!}$$

$$= \sum_{m=0}^{n} \sum_{k=0}^{\infty} \frac{k^m x^k}{k!}$$

$$= \sum_{m=0}^{n} e^{mx}$$

Where the last line comes from the result we showed in problem 2. However, we know that $\sum_{m=0}^{\infty} e^{mx}$ is a geometric series which can be evaluted. We find:

(3.28)
$$\sum_{m=0}^{n} e^{mx} = \frac{e^{nx} - 1}{e^{x} - 1}$$

$$= \frac{e^{nx} - 1}{x} \frac{x}{e^x - 1}$$

$$= \left(\sum_{k=0}^{\infty} \frac{n^{k+1}}{k+1} \frac{x^k}{k!}\right) \left(\sum_{k=0}^{\infty} B_k \frac{x^k}{k!}\right)$$

And now we use result from problem 2 on the product of two exponential generating functions to continue this:

(3.31)
$$\sum_{k>0} S_k(n) \frac{x^k}{k!} = \sum_{m=0}^n e^{mx} = \sum_{k=0}^\infty \left(\sum_{i=0}^k \binom{k}{i} \frac{1}{k-i+1} B_i n^{k+1-i} \right) \frac{x^k}{k!}$$

Now, we can equate the coefficients of $\frac{x^k}{k!}$ on the left and right hand sides. We find:

(3.32)
$$S_k(n) = \sum_{i=0}^k {k \choose i} \frac{1}{k-i+1} B_i n^{k+1-i}$$

$$= \sum_{i=0}^{k} \frac{k!}{i!(k-i)!(k-i+1)} B_i n^{k+1-i}$$

$$= \sum_{i=0}^{k} \frac{1}{k+1} {k+1 \choose i} B_i n^{k+1-i}$$

$$= \frac{1}{k+1} \sum_{i=0}^{k} (-1)^{i} {k+1 \choose i} B_{i} n^{k+1-i}$$

Which is what we wanted to show. \square

4. Problem 4

Problem 4.1. Let m and n be two integers which are sums of two squares. Show that mn is a sum of two squares. Use this to show that any positive integer of the form $\prod p_i^{e_i} \prod q_j^{f_j}$, where p_i are primes which are 2 or 1 mod 4, and q_j are primes which are 3 mod 4, such that f_j are all even, is a sum of two integer squares.

Solution First, if $m = a^2 + b^2$ and $n = c^2 + d^2$, then it is clear that mn is also a sum of two squares because we can write $mn = (a^2 + b^2)(c^2 + d^2) = (ac)^2 + (ad)^2 + (bc)^2 + (bd)^2 = (ac + bd)^2 + (ad - bc)^2$. This shows that mn is a sum of two squares.

Now, note that if p is a prime such that p=2 or $p\equiv 1\pmod 4$, then p is a sum of two squares by a theorem proven in class. This means that $\prod p_i^{e_i}$ is a sum of two squares, since $p_i^{e_i}$ are all sum of two squares and we can therefore apply our previous result.

Moreover, since q_j are all primes congruent to 3 (mod 4) where f_j are all even, we know that $q_j^{f_j} = (q_j^{f_j/2})^2 + 0^2$ is a sum of two squares. This, all of the q_j are sums of two squares, which means that $\prod q_j^{f_j}$ is a sum of two squares. Therefore, we see that $\prod p_i^{e_i} \prod q_j^{f_j}$ is a product of two squares given the assumptions of the problem. \square

18.781 PROBLEM SET 7

Problem 4.2. Now suppose n is a sum of two integer squares. Show that it must have the form above, i.e. if a prime q which is 3 mod 4 divides n, then it must divide it to an even power.

Solution We note that this is equivalent to proving that if q is a prime of the form 3 (mod 4), then it does not divide a sum of two coprime squares. Assume by contradiction that $q|x^2+y^2$ where gcd(x,y)=1. Thus, we see that $x^2 + y^2 \equiv 0 \pmod{q}$. Since we can choose x and y mod q such that -q/2 < x, y < q/2, we can set $x^2 + y^2 < (1/2)q^2$. Since we can write

(4.1)
$$\left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2}\right)^2 = \frac{x^2 + y^2}{2}$$

We can substitute a = (x + y)/2 and b = (x - y)/2 and find that $qs = a^2 + b^2$ where s is an odd number (since there are no factors of 2 left in a or b). Moreover, we know that s < q since $x^2 + y^2 < (1/2)q^2$. Since a and b are coprime, $a^2 + b^2 \equiv 1 \pmod{4}$. This means that $s \equiv 3 \pmod{4}$ so that s must have at least one prime factor $p \equiv 3 \pmod{4}$. Therefore, if $q \equiv 3 \pmod{4}$ divides a sum of two coprime squares, then $p \equiv 3 \pmod{4}$ less than q must also divide this sum of two coprime squares. However, we assumed that these squares were coprime, which is a contradiction. Therefore, $q \equiv 3 \pmod{4}$ must divide n to an even power if n is a sum of two integer squares. \square

Problem 4.3. Show that n is a sum of squares of two rational numbers if and only if it's a sum of squares of two integers.

Solution It is clear that if n is a sum of squares of two integers, then it is also a sum of squares of two rational numbers. Thus, we only need to show that if n is a sum of square of two rational numbers, then it is a sum of squares of two integers. Now suppose $n = (a/b)^2 + (c/d)^2$. We can rewrite this expression as $n(bd)^2 = (ad)^2 + (cb)^2$. Thus, we want to show that if there exist positive integers satisfying $m^2 n = x^2 + y^2$, then n can be written as a sum of squares of two integers.

Let t be chosen so that $t^2 < n < (t+1)^2$. Since there are $(t+1)^2$ integers of the form xu + yv where $0 \le u$ and $v \le t$, which is greater than n, we see that these numbers fill up a quadratic residue class modulo n. Thus, there are two numbers of the form x(u-u')+y(v-v') which are divisible by n. We can set w = u - u' and z = v - v', knowing that |w|, |z| < t. This means that $n|x^2w^2 - y^2z^2$. Moreover, we know that $n|x^2z^2+y^2z^2$. Therefore, n divides the sum of these two, so that $n|x^2(w^2+z^2)$. Since it is sufficient to show this when qcd(x,n)=1, we know that $n|w^2+z^2$. Since $x^2+y^2<2n$, we see that $n=w^2+y^2$. This completes the proof. \square

5. Problem 5

Problem 5.1. Let $\omega = e^{2\pi i/3}$ be a primitive cube root of unity. Write down the cyclotomic polynomial $\Phi_3(x)$ and thereby compute ω^2 in terms of ω . Now calculate the norm of the complex number $a + b\omega$. Use this to show that if m, n are two integers which can be written in the form $a^2 - ab + b^2$, then their product can also be written likewise.

Solution Using the factorization of $x^3 - 1$ for all factors $x^k - 1$ where $k \mid 3$, we find that $\Phi_3(x) = x^2 + x + 1$. Substituting $x = \omega$ into the polynomial, we find that $0 = \omega^2 + \omega + 1$ so that $\omega^2 = -\omega - 1$. To find the norm of $a + b\omega$, we see that $(a + b\omega)(a + b\omega^2) = a^2 + ab\omega^2 + ab\omega + b^2\omega^3 = a^2 + ab(-1 - \omega) + b^2 = a^2 - ab + b^2$. Thus, we see that $|a + b\omega| = a^2 - ab + b^2$.

Now, we see that if an integer can be written in the form $a^2 - ab + b^2$, then it is the norm of a complex number $a + b\omega$. Therefore, if two integers m, n can be written in the form $a^2 - ab + b^2$, then they are the norms of two numbers $a + b\omega$. Now, we know that the product mn is the product of two norms. Since a product of two norms is also a norm, we know that mn can be written in the form $a^2 - ab + b^2$. \square

Problem 5.2. Show that if p is a prime which can be written as $a^2 - ab + b^2$, then p cannot be 2 (mod 3), so that p = 3 or $p \equiv 1 \pmod{3}$.

Solution If $p = a^2 - ab + b^2$, then we can evaluate $a^2 - ab + b^2 \equiv p \pmod{3}$. We shall see what p can be modulo 3. So we shall enumerate all the possibilities of a, b (mod 3) (i.e $a, b = \{0, 1, 2\}$) and observe what happens:

(5.1)
$$0^2 - 0 * 0 + 0^2 \equiv 0 \pmod{3} \qquad 0^2 - 0 * 1 + 1^2 \equiv 1 \pmod{3}$$
(5.2)
$$0^2 - 0 * 2 + 2^2 \equiv 1 \pmod{3} \qquad 1^2 - 0 * 0 + 0^2 \equiv 1 \pmod{3}$$

$$(5.2) 0^2 - 0 * 2 + 2^2 \equiv 1 \pmod{3} 1^2 - 0 * 0 + 0^2 \equiv 1 \pmod{3}$$

$$(5.3) 1^2 - 1 * 1 + 1^2 \equiv 1 \pmod{3} 1^2 - 1 * 2 + 2^2 \equiv 0 \pmod{3}$$

$$(5.4) 2^2 - 2 * 0 + 0^2 \equiv 1 \pmod{3} 2^2 - 2 * 1 + 1^2 \equiv 0 \pmod{3}$$

$$(5.5) 2^2 - 2 * 2 + 2^2 \equiv 1 \pmod{3}$$

Thus, for all combinations of $a, b \pmod 3$, it is impossible for $a^2 - ab + b^2$ to be equivalent to 2 (mod 3). This completes the theorem. \square

6. Problem 6

Problem 6.1. Show 3 and any prime p which is 1 (mod 3) can be written as $a^2 - ab + b^2$, for some integers a and b.

Solution If p=3 then a=2 and b=1 satisfies $p=3=a^2-ab+b^2$. This means we can concern ourselves with all odd primes p such that $p\equiv 1\pmod 3$. We shall use strong induction on the primes, so assume that every prime q< p which is $1\pmod 3$ can be written in the form a^2-ab+b^2 . Next, we will invoke the following lemma:

Lemma 6.1. There exists a positive integer m < p such that $a^2 - ab + b^2 = mp$.

Proof. We know from a theorem proven earlier in class that if $f(x) = ax^2 + bx + c$, then the congruence $f(x) \equiv 0 \pmod{p}$ has one solution if $p \nmid 1$ and $p|b^2 - 4ac$. So let $f(x) = x^2 - bx + b^2$. We see that the congruence has a solution when $p|b^2 - 4b^2 = -3b^2$. Thus, the congruence has a solution when $p|3b^2$. We can set b = p so that this always occurs. Since this is the case, we see that x = a and b can always be found such that $p|a^2 - ab + b^2$ so that $mp = a^2 - ab + b^2$.

Now, if m = 1, then we are finished with the proof. If m > 1, we shall show that this results in a contradiction. So assume by contradiction that m > 1. We know that $a^2 - ab + b^2 < a^2 + b^2 < p^2$ because m < p. This implies that |a| < p and |b| < p. We also know that $g = \gcd(a, b) = 1$ because otherwise we could take $(a/q)^2 - (ab/q^2) + (b/q)^2 = (m/q^2)p$ and obtain a smaller m.

Next, we know that m must be odd. If not, then a^2 , ab, b^2 must all be even (no other combination allows mp to be even. This implies that a and b must have the same parity. Therefore, we can set A = (2a + b)/2 and B = (a + b)/2 and obtain:

(6.2)
$$A^{2} - AB + B^{2} = \left(\frac{2a+b}{2}\right)^{2} - \left(\frac{2a+b}{2}\frac{a+b}{2}\right) + \left(\frac{a+b}{2}\right)^{2}$$

$$= \frac{3}{4} \left(a^2 - ab + b^2 \right)$$

This contradicticts the minimality of m, so we see that m must be odd. Now, if we let q be an odd prime dividing m so that m=qn, we see that $a^2-ab+b^2=qnp$. We see that $q\nmid a$ and $q\nmid b$ or else q would divide both a and b which would contradict the fact that gcd(a,b)=1. Moreover, we know that $a^2-ab+b^2\equiv 1\pmod 3$ by the analysis given the previous problem. Thus, we see that $qpn\equiv 1\pmod 3$. Since $p\equiv 1\pmod 3$, we know that $qn\equiv 1\pmod 3$. Since we have shown that $n\equiv 1\pmod 3$ by the fact that n is odd, we must have $q\equiv 1\pmod 3$.

Because of this, we can use the inductive hypothesis, so we know that $q = c^2 - cd + d^2$. Thus, if we multiply both sides of $a^2 - ab + b^2 = qpn$ by q, we obtain:

(6.4)
$$(a^2 - ab + b^2)(c^2 - cd + d^2) = pq^2n$$

Simplifying this expression, we find that $(ac - bd)^2 + (ad + bc)^2 - (ac - bd)(ad + bc) = pq^2n$. We see that q|ac - bd and q|ad + bc which implies:

$$\left(\frac{ac-bd}{q}\right)^2 + \left(\frac{ad+bc}{q}\right)^2 + \left(\frac{ac-bd}{q}\frac{ad+bc}{q}\right) = pn$$

However, since we know that n < m since qn = m, we see that we have contradicted the minimality of m. This completes the proof. \square

Problem 6.2. An integer n can be written as $a^2 - ab + b^2$ if and only if n > 0 and every prime $p \equiv 2 \pmod{3}$ which divides n, divides n to an even power.

Solution In order to prove this theorem, we will invoke a lemma:

Lemma 6.6. Let p be a prime equivalent to $2 \pmod{3}$. Then no integer n divisible precisely by an odd power of p can be written in the form $a^2 - ab + b^2$.

Proof. Let $p \equiv 2 \pmod{3}$ and suppose by contradiction that $n = a^2 - ab + b^2$ where $p^{2s+1}||n$ for some integer s. Let $g = \gcd(a,b)$ so that we can simplify the expression to the following: $n/g^2 = (a/g)^2 - (ab/g^2) + (b/g)^2$. Now, substitute $m = n/g^2$, x = a/g, and y = b/g to obtain the expression

(6.7)
$$m = x^2 - xy + y^2, \qquad \gcd(x, y) = 1$$

PROBLEM SET 7

We see that $p^{2s+1}||m$, which means that $x^2 - xy + y^2 \equiv 0 \pmod{p}$. Now we can choose A as an integer such that $2Ax = y \pmod{p}$. Substituting this expression for y, we find that $x^2 - x(2Ax) + (2Ax)^2 = x^2 + x^2 +$ $x^2 - 2Ax^2 + 4A^2x^2 = x^2(4A^2 - 2A + 1) \equiv 0 \pmod{p}$. Completing the square and factorizing, this expression can be rewritten as $x^24^{-1}((4A-1)^2+3)\equiv 0\pmod{p}$. However, we know that $p\nmid x$ because if it did, then $p|y^2$ because $m=x^2+y^2-xy$. This would imply that p|y, and clearly p does not divide both x and y. Therefore, we see that $(4A-1)^2+3\equiv 0\pmod p$.

Substituting B=4A-1, we find that $B^2\equiv -3\pmod{p}$. However, we know that $\left(\frac{-3}{n}\right)=-1$ because $p \equiv 2 \pmod{3}$. This is a contradiction because we have shown that $B^2 \equiv -3 \pmod{p}$. Therefore, we no integer n divisible by an odd power of p can be written in the form $a^2 - ab + b^2$ and we have completed the proof of the lemma.

Now, let us go back to proving the original theorem and assume that n can be written as $a^2 - ab + b^2$. By the lemma, we see that all primes $p \equiv 2 \pmod{3}$ which divide n must have even powers when dividing n. This completes the first part of the proof.

For the converse, we let $n = p_1 p_2 \dots p_m q_1^{2e_1} \dots q_l^{2e_l}$ where $p_i \equiv 1 \pmod{3}$ and $q_i \equiv 2 \pmod{3}$. By part a of the problem, we see that p_i can be written as $a^2 - ab + b^2$ for some integers a and b. By a previous problem, we know that if n and m are integers that can be written in the form $a^2 - ab + b^2$, then their product can also be written in this form. This shows that the product $p_1p_2...p_m$ can be written in the form $a^2 - ab + b^2$. We also know that $q_i^{2e_i} = (q_i^{e_i})^2 - (0)q_i^{e_i} + 0^2$ can be written in the form $a^2 - ab + b^2$. Thus, we see that n, which is the product of a elements which can be written in the form $a^2 - ab + b^2$, can also be written in the form $a^2 - ab + b^2$. This completes the proof of the converse. \square

7. Problem 7

Problem 7.1. Calculate the continued fraction of 6157/783.

Solution We first find that 6157/783 = 7 + 676/783. Thus, the first digit of the continued fraction is 7. Next, we want to find the continued fraction of $\frac{783}{676}$. This comes out to $1 + \frac{107}{676}$. Thus, the second digit of the original continued fraction is 1. Performing the same operations, we obtain the following series of operations:

(7.1)
$$\frac{676}{107} = 6 + \frac{34}{107}$$
(7.2)
$$\frac{107}{34} = 3 + \frac{5}{34}$$
(7.3)
$$\frac{34}{5} = 6 + \frac{4}{5}$$
(7.4)
$$\frac{5}{4} = 1 + \frac{1}{4}$$

$$\frac{107}{34} = 3 + \frac{5}{34}$$

$$\frac{34}{5} = 6 + \frac{4}{5}$$

$$\frac{5}{4} = 1 + \frac{1}{4}$$

Thus, the continued fraction of 6157/783 comes out to [7, 1, 6, 3, 6, 1, 4]. \square

Problem 7.2. Calculate the continued fraction of $\sqrt{15}$.

Solution The continued fraction of $\sqrt{15}$ can be calculated in the following manner, noting that $3 < 10^{-2}$ $\sqrt{15} < 4$:

(7.5)
$$\sqrt{15} = 3 + \frac{\sqrt{15} - 3}{1} = 3 + \frac{(\sqrt{15} - 3)(\sqrt{15} + 3)}{\sqrt{15} + 3} = 3 + \frac{6}{\sqrt{15} + 3}$$

$$= 3 + \frac{1}{\frac{\sqrt{15}+3}{6}}$$

Now, we shall compute the continued fraction of $\frac{\sqrt{15}+3}{6}$ to continue to find the continued fraction of $\sqrt{15}$:

(7.7)
$$\frac{\sqrt{15}+3}{6} = 1 + \frac{\sqrt{15}-3}{6} = 1 + \frac{(\sqrt{15}-3)(\sqrt{15}+3)}{6(\sqrt{15}+3)}$$

$$= 3 + \frac{1}{\sqrt{15} + 3}$$

Proceeding onwards, we will find the continued fraction of $\sqrt{15} + 3$:

Proceeding onwards, we will find the continued fraction of
$$\sqrt{15} + 3$$
:

(7.9)
$$\sqrt{15} + 3 = 6 + \frac{\sqrt{15} - 3}{1} = 6 + \frac{(\sqrt{15} - 3)(\sqrt{15} + 3)}{\sqrt{15} + 3} = 6 + \frac{6}{\sqrt{15} + 3}$$
(7.10)
$$= 6 + \frac{1}{\frac{\sqrt{15} + 3}{6}}$$

$$= 6 + \frac{1}{\frac{\sqrt{15}+3}{6}}$$

We see that this has looped back to the continued fraction of $\frac{\sqrt{15}+3}{6}$. Therefore, we have found a recursive relationship, so that $\sqrt{15}=[3,1,6,1,6,\ldots]$. \square