

Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Метод сжатия статических изображений без потерь на основе алгоритма Хаффмана

Студент: Ковалец Кирилл Эдуардович ИУ7-42М

Научный руководитель: Новик Наталья Владимировна

Цель и задачи

Цель работы: разработать метод сжатия статических изображений без потерь на основе алгоритма Хаффмана.

Задачи:

- провести аналитический обзор известных методов сжатия статических изображений;
- разработать метод сжатия статических изображений без потерь на основе алгоритма Хаффмана;
- разработать программное обеспечение для демонстрации работы созданного метода;
- провести сравнение разработанного метода с аналогами по степени сжатия изображений.

Сравнение методов сжатия без потерь

- К1 возможность кодирования данных за один проход;
- K2 отсутствие необходимости в таблице частот пикселей сжимаемого изображения;
- К3 наличие в зашифрованном сообщении информации для распаковщика;
- К4 наличие у каждого сжатого пикселя своего кода.

Метод сжатия	К1	К2	К3	К4
RLE	+	+	_	_
LZW (словарный метод)	+	+	+	_
Унарное кодирование	+	_	+	+
Метод Хаффмана	_	_	+	+
Арифметическое кодирование	+	_	+	_

Выбор цветовой модели

- К1 класс метода по принципу действия;
- К2 количество байт для кодирования одного пикселя;
- К3 наличие поддержки альфа-канала;
- К4 отсутствие отдельного канала для яркости.

Метод сжатия	К1	К2	К3	К4
RGB	аддитивный	3	_	+
RGBA	аддитивный	4	+	+
CMYK	субтрактивный	4	_	+
LAB	перцепционный	3	_	_
HSB	перцепционный	3	_	_

Формализованная постановка задачи в нотации IDEF0

Детализированная IDEF0-диаграмма первого уровня разработанного метода

Детализированная IDEF0-диаграмма уровня A2 разработанного метода

Первичное сжатие с использованием метода LZW

Построение дерева Хаффмана

Выполнение сжатия подготовленных данных методом Хаффмана

Используемые программные средства для реализации метода

- **Python** язык программирования;
- tkinter библиотека для создания графического интерфейса;
- matplotlib.pyplot модуль, предоставляющий функции для создания графиков;
- matplotlib.offsetbox модуль, предоставляющий возможность размещения текстовых и графических элементов на построенных графиках;
- **bitarray** библиотека для работы с массивами битов (использовалась при сжатии данных методом Хаффмана);
- **progress** библиотека, используемая для отображения прогресса этапов сжатия и распаковки изображений.

UML-диаграмма компонентов разработанного ПО

Результаты сжатия изображения

Сжимаемое изображение

Диаграмма сравнения размеров сжатого изображения с исходным

Сравнение методов сжатия изображений (по степени сжатия)

• График показывает, на сколько процентов от изначального размера файла удалось сжать изображение.

Сравнение методов сжатия изображений (по размеру данных для распаковки)

• График показывает, сколько процентов от размера сжатого файла занимает информация для его распаковки.

Заключение

В ходе выполнения работы цель была достигнута, а все поставленные задачи выполнены:

- проведен аналитический обзор известных методов сжатия статических изображений;
- разработан метод сжатия статических изображений без потерь на основе алгоритма Хаффмана;
- разработано программное обеспечение для демонстрации работы созданного метода;
- проведено сравнение разработанного метода с аналогами по степени сжатия изображений.

Направление дальнейшего развития

- Добавить поддержку сжатия файлов, отличных от изображений.
- Уменьшить размер сжатого файла путем оптимизации данных, требуемых для распаковки изображения.
- Разработать алгоритмы управления сжатием файлов в зависимости от особенностей исходных изображений.

Научная публикация

• Ковалец К. Э., Новик Н. В. Метод сжатия статических изображений на основе алгоритма Хаффмана // Вестник Российского нового университета. Серия: Сложные системы: модели, анализ и управление. — 2025. — № 2. (Рецензируемое издание ВАК, научные специальности: информатика, вычислительная техника и управление)