۱۱.۲ جلسهی بیست و چهارم

پیشتر درباره ی مدلهای اولیه، به عنوان مدلهایی که به صورت مقدماتی در بقیه ی مدلها می نشیند، صحبت کردهایم. نیز مدلهای اتمیک را معرفی کردیم که در آنها تایپها ایزولهاند. نشان دادیم که در یک زبان شمارا، مدل اولیه، به پیمانه ی ایزومرفیسم یکتاست و علتش این است که در زبان شمارا، مدلهای اولیه، اتمیکند. یعنی از آنجا که تایپها ایزولهاند، به آسانی می توان میان دو مدل اولیه، یک سامانه ی رفت و برگشتی برقرار کرد. با این حال، همان گونه که اشاره شد، در آنجا زبان را شمارا فرض کرده بودیم. برای ادامه ی بحث نیاز به بسط تئوری مشابهی با زدودن فرضِ شمارا بودن زبان هستیم. نخست آنچه را که گفته شد در قالب یادآوری زیر می آوریم:

یادآوری ۲۱۸: مدل $m \models T$ را اول میخوانیم هرگاه برای هر $m \models T$ نشاندنی مقدماتی مانند $m \models T$ موجود باشد. بنا به کاربردی از لونهایماسکولم، همواره داریم مانند $m \mapsto m \mapsto m$ مدل $m \mapsto m$ مدل $m \mapsto m$ را اتمیک میخوانیم هرگاه $m \mapsto m$ برای هر $m \mapsto m$ برای هر اتمیک میخوانیم هرگاه $m \mapsto m$ برای هر این مورد نظر شمارا باشد، آنگاه هر مدل اول اتمیک است؛ زیرا، هر تایپ غیرایزوله بنا به قضیه ی حذف تایپ (که آن هم در زبانهای شمارا برقرار است) در توسیعی مقدماتی حذف می شود، پس در مدل اول نیز باید حذف شود.

سوال ۲۱۹: اگر \mathfrak{M} مدلی اتمیک باشد و $\|T\| \leq \|M\|$ آیا آنگاه \mathfrak{M} مدلی اول است؟ برای پاسخ به این سوال، دو حالت ِ زبان شمارا و ناشمارا را در نظر بگیرید. توجه کنید که در حالتی که زبان شماراست، پاسخ سوال مثبت است و می توان توسط یک سامانه ی رفت (بدون نیاز به برگشت)، به حکم رسید.

در ادامه، پرسش بالا یکی از محورهای بحث است.

۱۲.۲ مدلهای ساخته شدنی

فرض میکنیم که T یک تئوریِ ω پایدار باشد.

تعریف ۲۲۰: گیریم $\mathfrak{M}\models T$ و $\mathfrak{M}\subseteq A$. گوییم مدل M روی مجموعه $\mathfrak{M}\models T$ ساخته شدنی ۱۰ است هرگاه دنباله ای چون $(b_{\alpha})_{\alpha<\gamma}$ چنان موجود باشد که

^{\^}constructible

- $M = A \cup \{b_{\alpha} | \alpha < \gamma\}$.
- به ازای هر γ مجموعه ی $a<\gamma$ تایپ $a<\alpha$ روی $a<\alpha$ ایزوله باشد، که منظور از $a<\alpha$. ۲. به ازای هر $a<\alpha$ است.

تمرین 117: اگر \mathfrak{M} روی A ساخته شدنی باشد، نشان دهید که آنگاه

- است. \mathfrak{M} مدلی اول برای تئوری \mathfrak{M} است.
- .۲ ستفاده کنید). $\mathrm{Th}(\mathfrak{M},a)_{a\in A}$ برای تئوری تئوری \mathfrak{M} .۲

برای حل قسمت دوم تمرین بالا، به لم زیر نیاز خواهید داشت:

لم ۲۲۲: اگر $\operatorname{tp}(a/A)$ و $\operatorname{tp}(b/Aa)$ هر دو ایزوله باشند، آنگاه $\operatorname{tp}(ab/A)$ نیز ایزوله است.

اثنبات. فرض کنید $\operatorname{tp}(a/A)$ توسط $\operatorname{tp}(b/Aa)$ و $\operatorname{tp}(b/Aa)$ توسط $\operatorname{tp}(a/A)$ ایزوله شده باشند. ادعا می کنیم که در این صورت $\operatorname{tp}(ab/A)$ توسط فرمول $\operatorname{tp}(ab/A)$ ایزوله می شود.

کافی است نشان دهیم که فرمول یادشده تایپ ایزوله میکند. برای این منظور باید نشان دهیم که برای هر فرمول داده شده ی $\xi(x,y)$ فقط یکی از موارد زیر می تواند رخ دهد:

$$T \models \exists x, y \quad \xi(x, y) \land \phi(x) \land \psi(y, x).$$

$$T \models \exists x, y \neg \xi(x, y) \land \phi(x) \land \psi(y, x).$$

به برهان خلف فرض کنیم هر دوی آنها رخ داده باشند. در آن صورت فرمول $\phi(x)$ هم با $\psi(x)$ به برهان خلف فرض کنیم هر دوی آنها رخ داده باشند. $\exists y (\neg \xi(x,y) \land \psi(y,x))$ از آنجا که فرمول $\exists y (\xi(x,y) \land \psi(y,x))$ تایپ ایزوله می کند داریم

$$T \models \phi(x) \to \exists y \quad (\xi(x,y) \land \psi(y,x))$$

$$T \models \phi(x) \to \exists y \quad (\neg \xi(x, y) \land \psi(y, x)).$$

عبارات بالا برای x=a هم برقرارند؛ یعنی

$$T \models \phi(a) \to \exists y \quad (\xi(a,y) \land \psi(y,a))$$

$$T \models \phi(a) \to \exists y \quad (\neg \xi(a, y) \land \psi(y, a)).$$

عبارات سمت راست بالا، ناقض اینند که $\psi(y,a)$ تایپْ ایزوله میکند.

 \mathbb{Q} مرین ۲۲۳: در تئوری ACF. نشان دهید که \mathbb{Q}^{alg} ، یعنی بستارِ جبری اعداد گویا، روی \mathbb{Q} ساخته شدنی است.

تمرین ۲۲۴: مدلهای ساخته شدنی را در تئوریهای روابط همارزی تحلیل کنید.

در جلسه ی بعد قضیه ی زیر را ثابت خواهیم کرد. تئوریِ مورد نظر همچنان ω پایدار و شمارا است.

A و $M \subseteq N$ و $M \subseteq N$ مانند $M \subset M$ ساخته شدنی روی $M \models T$ فرض کنید $M \models T$ فرض کنید موجود است.