$\begin{array}{c} {\rm Universit\acute{e}\ Toulouse\ III-Paul\ sabatier} \\ {\rm L2\ Informatique} \end{array}$

Complexité des algorithmes

Semestre 3

Table des matières

1	roduction	4	
	1.1	Complexité	4
	1.2	Complexité asymptotique	5
	1.3	Exemple de complexités d'algorithmes	7
	1.4	Comportement symptotique de fonctions usuelles	8
2 Complexité des boucles			9
	2.1	Complexité de boucles "pour"	9
	2.2	Complexité de boucles "tant que"	11
	2.3	Approximation asymptotique de sommes partielles	11
	2.4	Analyse de cas particuliers de boucles	13
3	Complexité d'algorithmes définis par réccurence		13
4	Structure de données et complexité		
\mathbf{A}	Exe	ercices	15
	A.1	TD 1	15

1

Introduction

Sommaire

1.1	Complexité	4
1.2	Complexité asymptotique	5
1.3	Exemple de complexités d'algorithmes	7
1.4	Comportement symptotique de fonctions usuelles	8

1.1 Complexité

On cherche à estimer le temps de calcul d'un algorithme A en fonction d'un paramètre n. Pour avoir une mesure indépendante de la machine, on identifie le temps de calcul avec le nombre d'instructions exécutées.

Ex Le paramètre n pourrait être la taille d'un tableau, par exemple.

Soit D_i l'ensemble des données possibles telle que n = i. Pour $d \in D_i$ on notera T(A, d) le nombre d'instructions exécutée pendant l'exécution de A(d).

On notera prob(d|i) la probabilité que les données soit d'étant donné qu'elles sont de taille i.

1.1.1 La complexité temporelle maximale

La complexité temporelle maximale ¹ d'un algorithme A :

$$T_{\max}(i) = \max_{d \in D_i} \{T(A, d)\}$$

1.1.2 La complexité temporelle moyenne

La complexité temporelle moyenne ² d'un algorithme A :

$$T_{\text{moy}} = \sum_{d \in D_i} \text{prob}(d|i) \times T(A, d)$$

^{1.} Complexité dans le pire des cas

^{2.} Complexité dans le cas moyen

R Pour pouvoir calculer T_{moy} , il faut connaître la distribution des données, ce qui n'est pas toujours évident (par exemple en traitement d'image)

1.1.3 La complexité temporelle minimale

La complexité temporelle minimale 3 d'un algorithme A :

$$T_{\min}(i) = \min_{d \in D_i} \{T(A, d)\}$$

R Peu utilisé, sauf pour prouver qu'un algorithme est mauvais. Si la complexité temporelle minimale est mauvaise même dans le meilleur des cas, alors l'algorithme n'est pas bon.

1.1.4 Compairaison de complexités en fonction de la machine

Complexité	mplexité Nombre d'instructions pouvant executer la machine			
	1 000 000	1 000 000 000 000		
n	1 000 000	1 000 000 000 000		
$n \log_2 n$	64 000	32 000 000 000		
n^2	1 000	1 000 000		
n^3	100	10 000		
2^n	20	40		

1.2 Complexité asymptotique

Pour comparer des algorithmes, on ne s'intéresse qu'à leur comportements pour n grand. On cherche une mesure de complexité qui soit indépendante du langage de programmation et de la vitesse de la machine.

- ⇒ On ne doit pas perdre en compte des facteurs constants.
- \Rightarrow Ordre de grandeur

1.2.1 La complexité asymptotique

La complexité asymptotique 4 est l'ordre de grandeur de sa limite lorsque $n \to \infty$

1.2.2 Notation

Soient T, f des fonctions positives ou nulles. Rotations de grandeur de fonction asymptotiques.

- 3. Complexité dans le meilleur des cas
- 4. Que ce soit maximale, moyenne ou minimale

Grand O T = O(f) si $\exists c \in \mathbb{R}^{>0}$ et $n_0 \in \mathbb{N}$ tels que $\forall n \geq n_0, T(n) \leq cf(n)$.

Grand Oméga $T = \Omega(f)$ si $\exists c \in \mathbb{R}^{>0}$ et $n_0 \in \mathbb{N}$ tels que $i \forall n \geq n_0, T(n) \geq c f(n)$

Petit O T = o(f) si $\frac{T(n)}{f(n)} \to O$ lorsque $n \to \infty$.

R T est négligeable devant f

$\mathbf{E}\mathbf{x}$

- 1. $2n^2 + 5n + 10 = O(n^2)$ Dans la définition $n_0 = 5, c = 4$: $\forall n \geq 5, \ 2n^2 + 5n + 10 \leq 4n^2$
- 2. $2n^2 + 5n + 10 = \Omega(n^2)$ Dans la définition, $n_0 = 1$, c = 2 $\forall n \ge 1$, $2n^2 + 5n + 10 \ge 2n^2 \cdots$ Donc $2n^2 + 5n + 10 = \Theta(n^2)$
- 3. $\frac{1}{5} + n = O(n \log_2 n) \ (n_0 = 2, \ c = 2)$
- 4. $\frac{1}{5}n\log_2 n + n = \Omega(n\log n) \ (n_0 = 1, c = \frac{1}{5})$
- 5. $\forall k \geq 0, \, n^k = O(n^{k+1}) \text{ mais } n^k \neq \Omega(n^{k+1})$
- 6. $\forall a,b>1, \log_a n = \Theta(\log_b n)$ car $\log_a n = \frac{\log_b n}{\log_b a}$ et $\log_b a$ est une constante. \Rightarrow On a pas besoin de préciser la base de logarithme dnas une complexité asymptotique
- 7. $2n^2 + 5n + 10 = 2n^2 + 0(n^2)$
- 8. Pour toute constante $c > 0, C = \Theta(1)$
- 9. $2^n = o(3^n)$

R

- 1. O et Ω sont des pré-ordres a : f = O(f) et f = O(g) et g = O(h) $\Rightarrow f = O(h)$
- 2. Θ est une relation d'équivalence $^b:f=\Theta(g)\Leftrightarrow g=\Theta(f)$
- a. Relations reflexives et transitives
- b. relation reflexives, symétrique et transitive

Proposition

Si
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = a > 0$$
 Alors $f = \Theta(g)$

R La réciproque est fausse

Notation

$$f \sim g \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

Ex
$$(3n+1)^3 \sim 27n^3$$

1.3 Exemple de complexités d'algorithmes

1.3.1 Le tri à bulles

$$T_{\min}(n) = \Theta(n)$$
 Si le tableau est est déjà trié $T_{\max}(n) = \Theta(n^2)$ Si le tableau est trié en ordre décroissant $T_{\max}(n) = T_{\max}(n) = \Theta(n^2)$

1.3.2 Tri par fusion

$$T_{\min}(n) = T_{\max}(n) = T_{\max}(n) = \Theta(n \log n)$$

1.3.3 Tri rapide

$$T_{\min}(n) = T_{\max}(n) = \Theta(n \log n)$$

 $T_{\max}(n) = \Theta(n^2)$

1.4 Comportement symptotique de fonctions usuelles

Il y a quatre groupes importants de fonction positives croissantes.

Logarithmiques $(\log n)^{\sigma}$ $(\text{où } \sigma > 0), \log \log n, \dots$

Polynomiales n^{γ} (où $\gamma > 0$), $n^{\gamma}(\log n)^{\gamma}$ (où $\gamma > 0$)

Exponentielles $2^{\alpha n^{\beta}}$ (où $\alpha > 0$ et $0 < \beta \le 1$), par exemple 2^{n} , 4^{n} , $2^{\sqrt{n}}$

Supraexponentielles $n!, n^n, 2^{n^2}, \dots$

R Il existe des fonctions intermédiaires (par exemple $n^{\log_2 n}$) mais ces fonctions se rencontrent très rarement dans l'analyse de complexité d'algorithmes

$$\lim_{n\to\infty}\frac{n^b}{a^n}=O \text{ Pour toutes constantes} a, b \text{ avec } a>1)$$

$$n^b=o(a^n)$$

$$\lim_{n\to\infty}\frac{(\log_2 n)^\sigma}{n^\sigma}=O$$

$$\Rightarrow (\log_2 n)^\sigma=o(n^\sigma)$$

1.4.1 La formule de Stisling

$$n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$$

$$\Rightarrow n! = o(n^n) \text{ et } n! = \Omega(2^n)$$

On peut aussi en déduire :

$$\log(n!) \sim n \log n$$

Complexité des boucles

Sommaire

2.1	Complexité de boucles "pour"	9
2.2	Complexité de boucles "tant que"	.1
2.3	Approximation asymptotique de sommes partielles	.1
2.4	Analyse de cas particuliers de boucles	.3

2.1 Complexité de boucles "pour"

```
pour i:= 1 a n faire
    -- Corps de la boucle
fin pour;
```

Notions I_i la i^e itération (les instructions executées lors du i^e passage dans la boucle) et $T(I_i)$ sa complexité temporelle. :

Par exemple, $T_{\text{moy}}(n) = T \max(n) = \Theta(n)$ si $T(I_i)$ constant et $= \Theta(n^2)$ si $T(I_i) = an + b$ (boucle imbriquée.

2.1.1 Exemple

Calculer A = BC, le produit de 2 matrics. Rappel :

$$a_{ik} = \sum_{j=1}^{n} = b_{ij}C_{ji}$$

```
pour i = 1 a n faire
pour k = 1 a n faire
aik 0
pour j = 1 a n faire
aik = aik + bij * cjk;
fin pour;
fin pour;
fin pour;
fin pour;
```

$$T_{\text{moy}}(n) = T_{\text{max}}(n) = \sum_{i=1}^{n} \sum_{k=1}^{n} (1+n) = \Theta(n^3)$$

2.2 Complexité de boucles "tant que"

```
tantque C faire
-- Corps de la boucle
fin tantque;
```

$$T_{\text{moy}} = 1 + \sum_{i=1}^{\infty} \text{Prob}$$

On ajoute 1 pour le test de la condition C lorsque C = faux.

Soit E_i l'événement C = Vrai au début de i_i Si $\forall i, j E_i, E_j$ sont indépendantes et $\operatorname{prob}(E_i) = p < 1$, où p est une constante, alors $\operatorname{prob}(\operatorname{on exécute} I_i) = \operatorname{prob}(E_1 \cdots E_i) = p^i$ d'où

$$T_{\text{moy}}(n) = 1 + \sum_{i=1}^{\infty} p^{i} * T(I_{i})$$

Si $T(I_i)$ est constante, alors

$$T_{\text{moy}}(n) = \Theta(1 + \frac{p}{1-p}) = \Theta(\frac{1}{1-p}) = \Theta(1)$$

2.2.1 Exemple

Comparaison de 2 suites $\{A_i\}, \{b_i\}.$

```
i := 1;
tantque (ai = bi et i <= n) faire
i := i + 1;
fin tantque;</pre>
```

 $T_{\text{mov}}(n) = \Theta(1)$ si les suites sont indépendantes et aléatoires.

2.3 Approximation asymptotique de sommes partielles

Exemples de sommes partielles

$$\sum_{i=1}^{n} \frac{1}{i} \quad \sum_{i=1}^{n} i^k \quad \sum_{i=1}^{n} \log_2 i$$

2.3.1 Principe de la méthode

Pour calculer une approximation asymptotique de $\sum_{i=1}^{n} f(i)$ où f est une fonction monotone on l'encadre par $\int f(n)du$.

Proposition Si f est décroissante, alors

$$\int_{p}^{n+1} f(u)du \le \sum_{i=p}^{n} f(i) \le \int_{p-1}^{n} f(u)du$$

Ex $f(u) = \frac{1}{u} \cdot H_n = \sum_{i=1}^n \frac{1}{i}$ est la série harmonique. On ne peut intégrer $\frac{1}{u}$ qu'à partir de 1 donc on choisit p=2. $\int_2^{n+1} \frac{1}{u} du \leq H_n - 1 \leq \int_1^n \frac{1}{u} du$ $[\log_e u]_2^{n+1} \leq H_n - 1 \leq [\log_e u]_1^n$ $\log_e (n+1) - \log_e 2 \leq H_n - 1 \leq \log_e n - \log_e 1$ $\log_e n - \log_e 2 + 1 < H_n \leq (\log_e n) + 1$ Donc $H_n = \Theta(\log n)$

2.3.2 Application

Étude de complexité d'un algorithme de génération d'une permutation aléatoire des entiers $1, 2, \dots, n$ dans un tableau perm

R Il existe un algorithme de complexité $\Theta(N)$ pour ce problème : pour chaque $i \in \{1, 2, \dots, n\}$, échanger perm[i] et perm[random(i)].

```
pour i = 1 a n faire
    vu[i] = faux;

fin pour;

pour i = 1 a n faire

    x = random(n);

tantque vu[x] faire
    x = random(n);

fin tantque;

perm[i] = x;

vu[x] = vrai;

fin pour;
```

Listing 2.1 – Génération d'une permutation aléatoire

 $T_{\rm max} = \infty$ car il n'y a aucune garantie de terminaison. C'est un exemple d'algorithme de type *Las Vegas* la probabilité de non terminaison est nulle.

On suppose que la complexité de perm(n) est $\Theta(1)$.

Pour i, n fixe, à chaque itération de la boucle "tantque", la probabilité de rentrer dans la boucle est une constante pour $p = \frac{i-1}{n}$ et p < 1 pour $1 \le i \le n$.

Par l'analyse de la complexité d'une boucle "tantque" (section 2.2), la complexité moyenne de la boucle "tantque" est $\Theta(\frac{1}{1-n}$ donc

$$T_{\text{moy}} = \Theta\left(\sum_{i=1}^{n} \frac{1}{1 - \frac{i-1}{n}}\right)$$

$$= \Theta\left(\sum_{i=1}^{n} \frac{n}{n - (i-1)}\right)$$

$$= \Theta\left(n \sum_{k=1}^{n} \frac{1}{k}\right)$$

$$= \Theta(nH_n) = \Theta(n\log n) \text{ car } H_n = \Theta(\log n)$$

2.4 Analyse de cas particuliers de boucles

Parfois, il est possible de trouver un majorant de la complexité d'un algorithme en identifiant une variable monotone croissante dont la valeur est majorée.

2.4.1 Algorithme gourmand pour trouver une semengation optimale

2.4.1.1 Problème

Décomposer une suite d'entiers $A_1A_2\cdots A_n$ en un nombre minimum de segments tels que les valeurs dans un même segment ne différent que par au plus k.

Application Nettoyage de signal, compactage de données (avec perte d'informations)

Algorithme gourmand

- 1. Trouver le plus long préfixe $A_1 \cdots A_{i_1}$, de la suite $A_1 \cdots A_n$ telle que que $\forall i, j \in \{1, \dots, i_1\}$, $|A_i A_j| \leq k$
- 2. Appel récursif du même algorithme sur la suite $A_{i_1+1} \cdots A_n$

2.4.1.2 Démonstration que l'algorithme trouve toujours une segmentation optimale

Supposons que l'algorithme gourmand trouve une segmentation σ dont les segments se terminent aux positions $i_1, i_2, \dots, i_{\sigma}$, mais qu'il existe une segmentation optimale $\sigma_o pt$ dont les segments se terminent aux positions j_1, j_2, \dots, j_t avec t < r.

```
Soient i_0 = j_0 = 1. Nous avons i_t < i_r = n = j_t.
```

Soit m le plus petit indice tel que $i_m < j_m$. Donc $i_{m-1} \ge j_{m-1}$. Un tel indice existe car $i_0 = j_0$ et $i_t < j_t$

Par définition de la segmentation «gourmande», σ , il y a une valeur j dans le segment S_m telle que |y-x|>k. Mais dans ce cas, σ_{opt} n'est pas une segmentation valide. Cette contradiction montre que la segmentation gourmande est toujours optimale.

```
= 1:
     = 0;
  m
  i0 = 1;
  tantque (i <= n) faire
    m = m + 1; --On cherche le segment Sm
    max = min = A[i] -- max et min sont les valeurs max et min de Sm
    tantque (i <= n et A[i]-min <= k et max-A[I] <= k) faire
      si A[i] > max alors
         max = A[i];
      fin si;
11
      si A[i] < min alors
12
         min = A[i];
13
      fin si;
14
15
      i = i + 1;
16
    fin tantque
17
    im = i-1;
               --im = fin du segmetn de Sm
18
  fin tantque;
```

Chaque itération des deux boucles tant que incrémente i. Puis que $i \leq n$, on peut en déduire $T_{\max}(n) = \Theta(n)$ malgré la présence de deux boucles imbriquées.

Exercices

A.1 TD 1

A.1.1 Lesquelles des affirmations suivantes sont vraies?

- 1. $n^2.5 = \Theta(n^3)$: Faux
- 2. $n^2.5 = O(n^3)$: Vrai
- 3. $n^2.5 = \Omega(n^3)$: Faux
- 4. $log_2(2n) = \Theta(\log n)$: Vrai
- 5. Vrai
- 6. Faux

A.1.2 Une seule des afirmations suivantes est vraie. Laquelle?

Réponse D

A.1.3 Une seule des affirmations suivantes est vraie. Laquelle?

Réponse C $n + n \log_2 n \leq 2n \log_2 n = \Theta(n \log n)$

R On ne s'occupe pas des facteurs constants

A.1.4

Réponse D

A.1.5 Laquelle des affirmations suivantes sont vraies

- 1. $\max(f(n), g(n)) = \Theta(f(n) + g(n))$ Vrai : $\max(f(n), g(n)) \le f(n) + n(n) \le 2 \max(f(n), g(n))$
- 2. Vrai : $\frac{1}{c}f(n) \leq g(n)$ et $g(n) \leq \frac{1}{2}f(n)$

- 3. Vrai : $\forall n \geq n_0 : f(n) \leq cg(n)$
- 4. Faux
- 5. Vrai
- 6. Faux

$$g(n) = 2n, f(n) = ng(n) = O(f(n))2^{g(n)} = 2^{2n} = (2^n)^2$$

A.1.6 Lesquelles des affirmations suivantes sont vraies?

Réponse D.

$$f(n) \le c_1 g(n)$$
 , $g(n) \le c_2 f(n)$
 $\frac{1}{c_2} \le \frac{f(n)}{g(n)} \le c_1.1 \Rightarrow \frac{f(n)}{g(n)} = \Theta(1)$

A.1.7 Simplifiez les expressions suivantes

- 1. $O(4n^2 + 3n^2 + 7\log_2(n^n)) = O(n^3)$
- 2. $\Theta(n \log_2 n + 17n + 2n^3 = \Theta(n^2))$
- 3. $\Omega(4n^2 + 3n^3) = \Omega(n^3)$
- 4. $O(2^{n\log_3 n} + 3\log_2 n!) = O(n^2)$
- 5. $O(2\log_3 n + 3\log_2 n + 6) = O(\log n)$

A.1.8 Classez les fonctions suivantes dans l'ordre croissant d'ordre de grandeur

- $1. 4n \log_2 n + 4n$
- $2. \ 2n\log_2 n + 4n$
- 3. $n^2 \log_e n$

A.1.9

$$\begin{split} \Theta(\frac{1}{1-p}) \\ p &= 1 - (\frac{1}{6})^{n-1} \\ \Theta(\frac{1}{1-(1-\frac{1}{6^{n-1}})}) &= \Theta(\frac{1}{\frac{1}{6^{n-1}}}) = \Theta(6^{n-1}) = \Theta(6^n) \end{split}$$

Donc réponse D.

A.1.10

- a $\Theta(1)$
- b $\Theta(1)$
- c $\Theta(\log n)$
- d $\Theta(n \log n)$
- e $\Theta(n^3)$
- f $\Theta(n^4)$

A.1.11

A.1.12