$R_a=K[X,Y]/(X^2-Y^2-X-Y-a)\cong K[S,T]/(ST-a)$ であることに注意する. I=(ST-a) とおく.

(1) Hilbert の零点定理より,K[X,Y] の極大イデアルは $(X-\alpha,Y-\beta)$ という形をしている.また,剰 余環のイデアルの対応関係により, R_a の極大イデアルは $\mathfrak{m}=(X-\alpha,Y-\beta)/I$ と表せる.ここで, $(XY)=I\subseteq (X-\alpha,Y-\beta)$ より, $\alpha\beta=0$ となるので, $\alpha=0$ または $\beta=0$ が成り立つ. $\beta=0$ としても一般性は失わないので,以下では $\beta=0$ を仮定する.

$$((X - \alpha, Y)/I)^2 = ((X - \alpha, Y)^2 + I)/I$$

であることに注意し、 $\mathfrak{m}_{\alpha} = (X - \alpha, Y)$ とおけば、

$$(\mathfrak{m}_{\alpha}/I)/(\mathfrak{m}_{\alpha}/I)^2 = (\mathfrak{m}_{\alpha}/I)/((\mathfrak{m}_{\alpha}^2 + I)/I) = \mathfrak{m}_{\alpha}/(\mathfrak{m}_{\alpha}^2 + I)$$

となる.

 $\alpha = 0$ とすれば,

$$\mathfrak{m}_0/(\mathfrak{m}_0^2+I)=(X,Y)/((X^2,XY,Y^2)+(XY))=(X,Y)/(X^2,XY,Y^2)$$

となるので, $\dim_K(\mathfrak{m}/\mathfrak{m}^2)=2$ となる. これと次元理論の基本定理より, \mathfrak{m} が単項生成でないことが従う.

 $\alpha \neq 0$ とすれば,