Remarks

We have amended claim 26 to correct a typographical error and to rephrase the element of the claim the requires "direct contact" between a portion of the metal chlorite and at least one acid forming component. "Direct contact" has been rephrased as "having no interposed material," with support being found in Example 1, page 26, line 23 to page 27, line 2; Example 2, page 27, line 25 to page 28, line 2; Example 3, page 28, lines 19-24; Example 4, page 29, lines 4-9; Example 5, page 29, lines 16-20; Example 6, page 30, lines 5-9; and Example 7, page 30, lines 14-22.

We have added claim 60 specify that the membrane must comprise kraft paper (support on page 22, line 9 of the specification).

We respectfully submit that the amended claim 26, and all claims depending therefrom, define an invention that is novel and non-obvious over the Derwent English abstract No. 1997-311227 of Chinese published patent specification 1104610A, because the reference fails to teach or suggest direct contact between a metal chlorite and acid forming component. The translated Chinese abstract teaches that sodium chlorite reactant must be encapsulated by Chinese wax, stearic acid, bees wax or paraffin wax. The material interposed between the sodium chlorite and the tartaric or oxalic acid creates a barrier that interferes with the sodium chlorite/acid reaction. The production of chlorine dioxide is accordingly hindered, or even prevented in areas where the barrier cannot be breached by the reaction medium, i.e., water. Furthermore, encapsulation is a relatively costly processing step, and encapsulation of a strongly oxidizing material, such as sodium chlorite, with combustible organic materials, like waxes, is dangerous due to the potentially explosive reaction that can occur between the two materials.

In contrast, the present invention requires that at least a portion of the metal chlorite and acid forming component have <u>no</u> interposed material between them, thereby promoting chlorine dioxide production, saving costs, and avoiding hazards relating to the prior art encapsulation.

4355D (DIV) 09/760,065 Amendment Page 4

In addition, the outstanding Office action suggests that when stearic acid is utilized as the encapsulating material in the cited reference, it would constitute an acid forming component in direct contact with the sodium chlorite as required in the claims. However, the acid forming component defined in claim 26 must be selected from one of the following materials: water soluble acids, water soluble acid salts, synthetic molecular sieves, acid ion exchange resins, acid treated clays and acid treated calcined clays. While stearic acid is an acid, it is <u>not</u> water soluble, as evidenced by the attached excerpt from *Handbook of Chemistry and Physics*, CRC Press (1974). Thus, stearic acid is not an "acid forming component" as required in the present claims.

In light of the forgoing, we respectfully submit that the claims, as amended, define a novel and non-obvious invention that fully merits patent protection. We therefore respectfully request that the entire application be allowed at an early date. If there remain any issues that the Examiner believes can be resolved by discussion, the Examiner is cordially invited to contact applicant's undersigned representative at the telephone number provided below.

This amendment is being submitted after three-months, but before four-months, from the December 18, 2002 mailing date of the outstanding Office action. We hereby request a one-month extension for response, and authorization is hereby granted to charge deposit Account No. 05-1070 for the associated fee. If any other fee is required in association with this response, we hereby request and authorize the charging of the fee to deposit Account No. 05-1070.

Respectfully submitted,

Russell G. Lindenfeldar

Reg. No. 39,750

Engelhard Corporation 101 Wood Avenue P. O. Box 770 Iselin, NJ 08830-0770 (732) 205-5181

Version with markings to show changes made

Please amend claim 26 as follows:

26. (three-times amended) A device capable of producing an aqueous solution of chlorine dioxide when said device is placed into water, the device comprising a water-permeable membrane defining at least in part an enclosed space containing a mixture of at least one metal chlorite and at least one acid forming component, at least a [of] portion of said at least one metal chlorite and at least one acid forming component having no interposed material [being in direct contact], said acid forming component being selected from the group consisting of water soluble acids, water soluble acid salts, synthetic molecular sieves, acid ion exchange resins, acid treated clays and acid treated calcined clays, and wherein said metal chlorite and said acid forming component are such that they will react with each other in the presence of water but not in the substantial absence of water to produce chlorine dioxide, said membrane comprising a material which permits: (a) controlled passage of liquid water and/or water vapor into the enclosed space to thereby allow the metal chlorite and the acid forming component to react to produce chlorine dioxide and (b) passage of the so produced chlorine dioxide into a body of liquid water to produce the aqueous solution of chlorine dioxide.

Please add the following new claim 60:

60. (New) The device of claim 26, wherein the membrane comprises kraft paper.

Handbook

OF

Chemistry and Physics

A Ready-Reference Book of Chemical and Physical Data

EDITOR

ROBERT C. WEAST, Ph.D.

Vice President, Research, Consolidated Natural Gas Service Company, Inc. Formerly Professor of Chemistry at Case Institute of Technology

In collaboration with a large number of professional chemists and physicists whose assistance is acknowledged in the list of general collaborators and in connection with the particular tables or sections involved.

Published by

18901 Cranwood Parkway · Cleveland, Ohio 44128

SYMBOLS AND ABBREVIATIONS

				par	partial
	'6- motation	fl	flakes	neth	petroleum ether
	specific rotation	flr	fluorescent	pk	pink ³
•	slightly above, more than	fr	freezes freezing point		phenyl
> <	below less than	fr. p.	fuming	Ρ.	plates
<u>~</u>	coluble in all proportions	fum gel	gelatinous .		prisms propyl
*	-ama approved by the	gl	glacial	Pr Prak	J. Prak. Chem.
	International Union of Chemists (I.U.C.)	gold	golden	purp	purple ³
_	IR, or UV, or NMR spectra	gr	green ³	nw .	nowder
Ω	referenced	gran	granular		pyremidine
?	unknown	gу	gray ³ hot	pym	pyramids racemic
aa	acetic acid	h H	Helv. Chim. Acta	rac rect	rectangular
abs	absolute	hex	hexagonal	red	red
ac	acid	hp	heptane	res	resinous
Ac	acetyl acetone	hing	heating	rh	rhombic
ace al	alcohol ²	hx ,	hexane hydrate	rhd	rhombohedral
alk	alkali	hyd	hygroscopic	S	soluble secondary ⁷
Am	J. Am. Chem. Soc.	hyg i	insoluble	S	scales
Am	amyl (pentyl)	i-	iso-	sc sec	secondary ⁷
amor	amorphous	ign	ignites	sf	softens
anh	anhydrous	in	inactive	sh	shoulder
aqu	aqueous asymmetric	inflan	inflammable	silv	silvery
as atm	atmospheres	infus	infusible iridescent	sl	slightly (δ)
b	boiling	irid	isooctane	so.	solid solution
B	Beilstein	iso J	I Chem. Soc.	sol solv	solvent
Ber	Chem. Ber.	JOC	J. Org. Chem.	sph	sphenoidal
bipyr	n bipyramidal	L, I	levo⁴	st	stable
bk	black ³	la	large	sub	sublimes
bl	blue ³ brown ³	lf	leaf	suc	supercooled
br bt	bright	lig	ligroin	sulf	sulfuric acid
Bu	butyl	liq	liquid long	sym	symmetrical syrup
bz	Benzene	lo It	light	syr	tertiary ⁷
Č	Chem. Abs.	m	melting	t ta	tablets
c	percentage concentration	m-	meta-	tcl	triclinic
ca	about (circa) chloroform	M	molar (concentration)	tert	tertiary ⁷
chl	columns	M	Merck Index, 7th Edition	Tet	Tetrahedron
co col	colorless	mcl	monoclinic methyl	tetr	tetragonal
con	concentrated	Me	ilia	THF	tetrahydrofuran toluene
cor	corrected	met mic		to	transparent
cr	crystals	mir	mineral	tr trg	trigonal
су	cyclohexane	mo	d modification	und	a undiluted
d	decomposes line in the spectrum of	mu	mutarotatory normal chain, refractive	uns	unsymmetrical
D	sodium (subscript)	n	index	uns	
D, 0	i dextro ⁴	N 1	normal (concentration)	v	very vacuum
δd	slight decomposition	N N	nitrogen ⁶	vac	variable
dil	diluted	nd	needles	var vap	
dio		0-	ortho-	vic	vicinal
dis	tb distillable	oc	octahedral	viso	viscous
dk	dark dl racemic ⁴	og		vol	at volatile or volatilises
dlo	. deliquescent	00		vt	violet ³
Di	MF dimethyl formamide	or or	A ordinary	W	water white ³
E.	Elsevier's	or	a organic	wh wr	
eff	efflorescent	01	C orthorhombic	wı	WOVV
Et		09	organic solvents	ye	vellow ³
etl	1. 3.0	p-		хy	
ex	trap extrapolated	p	a pale	•	
ex	map variations				

¹ For I.U.C. rules of nomenclature see General Index.

Abietic acid Qal Abietic acid . . . a3 Acenaphthanthracene Q a4 Acenaphthene __,3-amino- . _,5-amino- . 0 a9 a10 .5-iodo-__,3-nitro- . __,1-oxo-.. al3 5-Acenapht carboxylic Qal4 Acenaphthe quinone a15 3-Acenaph sulfonic a ale 1-Acenaph Ωal7 Acenapht Ω a18 Acetalde a19 _,bis(2ethyl) a a20 -,diace Ωa21 -, dieth Ωa22 __,dim Ω a23 **--,2,4**-₁ pheny (stable —,—(ı form) a24 Ω a25 -,oxii —,phe zone a26 For explanati

Name

For I.U.C. rules of nomenciature see General index.

Generally means ethyl alcohol.

The abbreviation of a color ending in "sh" is to be read as ending with the suffix "-ish," e.g., grsh means greenish.

D, L generally mean configuration and d, l generally mean optical rotation, but there are many examples in the chemical literature for which the meaning of these symbols as ambiguous and/or interchangeable.

⁵ Generally means diethyl ether.

⁶ N indicates a position in the molecule.
7 s and sec, or t and test, are used as convenient.

PHYSICAL CONSTANTS OF ORGANIC COMPOUNDS (Continued)

		Pł	HYSICAL CON	51A								So	lubil	ity		- 1		
T	Name	Synon	Synonyms and Formula	Mol. wt.	Color. crystalline form. specific rotation	m.p.	b.p. °C	Density	n _D	*	al	eth	ace	bz	oth solv		Ref.	\ .
). 	Manie				and λ_{max} (log ϵ)	-			1.452020				œ	s	chl s		B13,582	
	Octacosane*	CH3(CI	H ₂) ₂₆ CH ₃	1	mcl or rh (bz-al)	64.5 fr 61.4 90.4	431.6 ⁷⁶⁰ 264 ¹⁰	0.806740 0.775070 0.8191100	1.43307	9							B2 ³ , 1095	
- 1	Octacosanoic	CH ₃ (C	H ₂) ₂₆ CO ₂ H	424.76	(ace or aa)	83.3	sub				1	\···					B22,459	- 1
	acid* 1-Octacosanol*		CH ₂) ₂₇ OH	1	<i>c</i> 1	-5	200-50 229-301	0.902220	1.46992	' '	000	000	000	80	C	Cl₄, ¢OH		- 1
1 04	9,12-Octade- cadienoic acid (cis,cis)*	Linole CH ₃ (ic acid. CH₂)₄CH:CHCH₂CF	I:CH(C	H ₂) ₇ CO ₂ H pa ye or col l ^{a1} 232 (3.8).												B22,461	
			vl-ote	308.4	275 (2.9)		270-51	0.886520		·· '	· \ '	S		1				
0	5ethyl ester*	CH ₁	linoleate. s(CH2)4CH:CHCH2C	H:CH(C	ye or col 2 ⁸¹ 198 (4.6 2 ⁸¹ 233 sh (D).							s.				B2 ² , 46	,
		3401	hyl linoleate.	294	270 (1.79)	1 - 53	215 ²⁰ 168-	701 0.8886	1.463	320	i	5	"					
Ω	, methyl est	CH	hyl linoleate. I ₃ (CH ₂) ₄ CH:CHCH ₂ (- 1	λ ^{a1} 232 (3.	78) 56–7.	5	0.8686	70 1.468	960					… ∙		B23, 1	476
٠.	o7 10,12-Octad		2-Linoleic acid. H ₃ (CH ₂) ₄ CH:CHCH:	280 CH(CH).45 ₂) ₈ CO ₂ H (bz or al)				• 1.46°	281.	i						B23, 1	068
	(trans,tran	۱ • ا	I3(CH2)3C:CCH2CH2	- 1	}" 233 (3		167-	87 0.841	1.46								B12,	- 1
	08 7,11-Octa- decadiyne	5	dehvde.	24	6.44 8.49 nd (peth)	55 (3	8-9) 261 212	2-3 ¹² -70 ³	1.44	1025		v	٧			MeO'	1	6613
	09 Octadecana	C	H ₃ (CH ₂) ₁₆ CHU		14.56		216	.1760 0.776	828 1.4	9020	i	δ	s	s		lig s	Bi',	1
	o10dimethy	, C	CH ₃ (CH ₂) ₁₆ CH(OCH ₃ H ₃ (CH ₂) ₁₆ CH ₃		54.51 nd (al or MeOH)		17	3.5 ¹⁰ 8 ⁷⁶⁰ 0.86	1	52220	i	s	5	δ	s	chi v	B43	
	oll Octadecan	1	H ₃ (CH ₂) ₁₇ NH ₂		69.52 (w)	11.3	19	9.510			.l i	V			. s			,433
Ω	1 o12 ,1-amino	1	H ₃ (CH ₂) ₁₇ NH ₂ . CH ₃	со₂н	129.57 nd (al).	er (bz) fr 8	4.5				∫ s*	δ	\ i	\··	.\ i		B4	, 432
	013,acet	ite	CH ₃ (CH ₂) ₁₇ NH ₂ . HCl		305.98 orh pl (a	,	2-3		348 ²⁰ 1.	1631 ²⁰	o		ι.			peth	OEts	3,567
			CH ₃ (CH ₂) ₁₇ Br		333.41 cr (al)	28		· .	1	.4594 4531 ²	30	i	1				B1	3,566
	Ω o15 —.1-bron		CH3(CH2)17Cl		288.95	28	. 1	99 ¹⁰ 05-7 ¹⁵ ···			- 1	٠ ز	5 .			. chi	1	12,139
	Ω 0161-chlo	1	Br(CH ₂) ₁₈ Br		412.31 nd or lf	į		1	99420 1	.4810	20			δ.				13,567
	017 —.1,18-d		CH ₃ (CH ₂) ₁₃ 1		or al-	nd (ace 3	' 1	223 ¹⁰ 40 ¹²				i	s	s .	∤.			2 ² ,626
	October	nedioic	Diethyl eicosanedioat	J2~2**3	370.58		1.5	210-12			…	i						
	acid, di	a-	HO(CH ₂) ₁₈ OH		286.50 If (al. or bz	z), nd (bz.		1881-2 0	847520	1.464	520		δ	5				B1 ³ , 18 ³⁸
	decane		n-Octadecyl mercapt	an.	286.57		(ii) 28			1.429	·	i	ς* δ	v \	s	δ cl	hl, CCl4, CS2, 10 S	B2-, 340 B2, 384
	o21 1-Octa- decane Ω o22 Octade	hioi.	CH ₃ (CH ₂) ₁₇ SH		284.50 mcl lf	in (1.69)	/	232 ¹⁵ 250-1 ¹²			!	i i	s*	s	δ	δ c	hls	B12 ² , 1 ⁴⁸
	acid*		CH ₃ (CH ₂) ₁₆ CO ₂ H		283.50 If (al)	,		153.510				i	٧	٧	s	v °	hls peth δ	B12,360
	Ω 023 —,ami	/-phenyl	CH ₃ (CH ₂) ₁₆ CONI		. 359.60 nd (a		94	1),8368 ⁶²	1.43	62 ⁸⁰	i	i	δ		δ		B6 ² , 418
	- 1		CH ₃ (CH ₂) ₁₆ CON		550.96 X 2	43 (4.17)	72	1	0.907529	1.46	6350	i	δ	δ			chl δ	B2 ² , 352
		ydride*	[CH ₃ (CH ₂) ₁₆ CO _{J2}		374.61 pay	re	28 (45–6)	1	0.85520	1.43	32850	i	s		·\			B2, 384
	1	zyl ester	CH ₃ (CH ₂) ₁₆ CO ₂ C				27.5	21515		1.45	523 ²⁴		.\ s*	1	$\cdot \mid \cdots \mid$			B62, 11
	1	yl ester*	CH ₃ (CH ₂) ₁₆ CO ₂ (302.93		23	202-36	0.89023	\		.\ i	\ i	s	.			B62, 379
	Ω 027 —.ch		CH ₃ (CH ₂) ₁₆ COC	Л 	366.64		(28-9)	19910	05730	1.4	3494	• i	\ s	. •	, \ <u>'</u>	\···		B22,377
	028 —.cy		Ethyl stearate.	o 1:	312.54		(i) 33.4 (ii) 30.9		(0.8973	5 1	14 10 ⁷	ì	.	: ا	s s	i s*	chl, CS ₂ s	1
		nyl ester*	CH ₃ (CH ₂) ₁₆ CO ₃			or pl (eth, a)	57			-		1			s* .		aaı	B23,10
	o30 —,h	xadecyl este	CH ₃ (CH ₂) ₁₆ CO		,0.13	eth)	60-1	189-913	0.8780	- l	4310	- 1		δ	- 1		J	B22,35
	1 400	-hydroxyeth er*	(01.3(2.11	201120	H₂OH 340.60 w	ax	(i) 22.5 (ii) 28	3 22313 .9 1995	0.8498	!° ∤…			'	"	5			1
	031	obutyl ester	CH ₃ (CH ₂) ₁₆ CC	J. C. E. C	H(CH ₃) ₂		1	1									-	

For explanations, symbols and abbreviations see beginning of table. For structural formulas see end of table.