Punctaj total: 90p + 10p oficiu **Nume:** _____

Examen Analiză complexă¹

Subjecte:

1. (a) (5 p) Determinați soluțiile $z \in \mathbb{C}$ ale ecuației $z^2 = 3 + 4i$.

(b) (5 p) Considerăm $f: \mathbb{C} \to \mathbb{C}$ definită prin

$$f(x+iy) = (x\cos y - y\sin y) + i(y\cos y + x\sin y),$$

pentru orice $x, y \in \mathbb{R}$. Este f olomorfă pe \mathbb{C} ? Justificați răspunsul!

(c) (5 p) Pentru $f(z) = \frac{z}{z^3 - z^2 - z + 1}$, calculați $\mathrm{res}(f,1).$

(d) (5 p) Decideți dacă pentru o funcție olomorfă f, cu singularitate izolată în 0, putem avea $res(f^2, 0) = [res(f, 0)]^2 \neq 0$. Justificați răspunsul dat.

(e) (5 p) Demonstrați că dacă f este olomorfă pe $\mathbb{C}\setminus\{0\}$ și f(-z)=-f(z) pentru orice $z\neq 0$, atunci toți termenii pari din seria Laurent a lui f în $z_0=0$ sunt nuli. Dați toate justificările necesare.

2. (a) (10 p) Determinați polii și ordinele lor pentru funcția $f(z) = \frac{1}{z^4 + z^2}$. Calculați apoi seria Laurent a funcției f pe coroana circulară $\mathcal{A} = \{0 < |z| < 1\}$.

(b) (10 p) Calculați, folosind eventual principiul argumentului,

$$\int_{|z-1|=2} \frac{2z+1}{z^2+z+1} dz,$$

unde cercul |z-1|=2 este pozitiv orientat.

3. (a) (5 p) Pentru a, b > 0, considerăm funcția olomorfă $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$, definită prin

$$f(z) = \frac{e^{i az} - e^{i bz}}{z^2}.$$

Folosind seria Taylor a funcției e^z in jurul lui 0, arătați că $f(z) = \frac{i(a-b)}{z} + g(z)$, unde g este olomorfă în 0.

(b) (5 p) Folosind, eventual, rezultatul de la punctul anterior, demonstrați că

$$\lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} f(z)dz = \pi(a - b),$$

unde γ_{ϵ} este semicercul din desenul următor:

¹Subiectele continuă pe verso!

(c) (15 p) Calculați

$$\int_0^\infty \frac{\cos ax - \cos bx}{x^2} dx,$$

unde a, b > 0, folosind funcția f(z) și conturul de integrare din desenul următor:

și rezultatele de la punctele anterioare, chiar dacă nu le-ati demonstrat.

4. (10 p) Descrieți cum putem obține o aplicație biolomorfă între Ω_1 și Ω_2 , unde

$$\Omega_1 = \left\{ z = re^{it} \mid r > 0, t \in \left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \right\} \text{ si } \Omega_2 = \{ z \in \mathbb{C} \mid |z - 1| < 1 \}.$$

- 5. (a) (5 p) Demonstrați că dacă $f:\mathbb{C}\to\mathbb{C}$ este olomorfă și injectivă, atunci f nu poate avea singularitate esențială la infinit.
 - (b) (5 p) Demonstrați că dacă $f:\mathbb{C}\to\mathbb{C}$ este biolomorfă, atunci f(z)=az+b, unde $a,b\in\mathbb{C},$ $a\neq 0.$

Rezolvane examem 2022

Z=x+iy

a) Determinati solutile ZEC ale ecuației Z=3+4i

VHenu Zo= H(cost+isint)

$$H = |Z| = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$
 $|H = 5|$

$$\cos \theta = \frac{x}{\lambda} = \frac{3}{5}$$

$$\cos \theta = \frac{y}{\lambda} = \frac{4}{5}$$

$$\cos \theta = \frac{x}{\lambda} = \frac{3}{5}$$

$$\sin \theta = \frac{y}{\cos \theta} = \frac{4}{3}$$

$$\sin \theta = \frac{y}{\lambda} = \frac{4}{5}$$

$$\Rightarrow \theta = \operatorname{arctg}(\frac{4}{3})$$

Briene radatinile:

$$Z_K = \sqrt[2]{5} \left(\cos \frac{\theta + 2Kii}{2} + i \sin \frac{\theta + 2Kii}{2} \right), K = 0.1$$

b) consideration f: C > C definità prin:

Fre $u, v: \mathbb{R}^2 \rightarrow \mathbb{R}$, $u(x, y) = x\cos y + y\sin y = \text{Rec}(7)$ $v(x, y) = y\cos y + x\sin y = \text{In}(7)$

Cauchy Riemann:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \Rightarrow \frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} \Rightarrow \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} \Rightarrow \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$$

c)
$$f(\frac{1}{2}) = \frac{\frac{1}{2}}{\frac{1}{2}-\frac{1}{2}+1}$$
, $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{$

rus (+20)=29. Ategen a= 1

3/4

Dem. ca daca f este olomorfa pe [130] zi f(-z) = -f(z) pt. orice z + 0, atunci tots termeni pari dim socia Lawrent a lui f m zo = 0 sunt muli. Dati toate justificarile mecusare.

 $f(-\frac{1}{2}) = \sum_{n=-\infty}^{\infty} a_n (-\frac{1}{2})^n$ $\sum_{n=-\infty}^{\infty} a_n \frac{1}{2}^n = -\sum_{n=-\infty}^{\infty} -a_n (-\frac{1}{2})^n$ $\sum_{n=-\infty}^{\infty} -a_n \frac{1}{2}^n = \sum_{n=-\infty}^{\infty} (-1)^n a_n \frac{1}{2}^n$ $-a_n = (-1)^n a_n + neill$ $a_n [(-1) - (-1)^n] = 0, + ne \in \mathbb{S}$ $= \begin{cases} 0 - daca^{(n)} = nupar \\ a_n = 0, + ne = ne \end{cases}$ $= \begin{cases} 0 - daca^{(n)} = nupar \\ a_n = 0, + ne = ne \end{cases}$

② Determinati poli zi ordinele lor puntru funcția $f(z) = \frac{1}{z^4 + z^2}$. Colculați apoi revia Laurut a fundiei $f(z) = \frac{1}{z^4 + z^2}$ ordinat $f(z) = \frac{1}{z^4 + z^2}$ ordinat $f(z) = \frac{1}{z^4 + z^2}$

 $z^{4}+z^{2}=0$ $z^{2}(z^{2}+1)=0$ $z^{2}=0$, $z^{2}+1=0$ $z^{2}=0$, $z^{2}=-1$ political 2. $z^{2}=\pm i$ political and $z^{2}=\pm i$

$$\frac{z^{2}+z+1=0}{\delta=1-4\cdot 1\cdot 1=1-4=-3}$$

$$\frac{z_{1}}{2}=\frac{-1\pm\sqrt{-3}}{2}=\frac{-1\pm i\sqrt{3}}{2}$$

$$\Rightarrow P_{1}\left[-\frac{1}{2},\frac{\sqrt{3}}{2}\right]$$

$$P_{2}\left[-\frac{1}{2},-\frac{\sqrt{3}}{2}\right]$$

Observem cat polissement me intersonal conculier deci cale, reproduente

$$\frac{2}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}$$

$$\operatorname{Res}(f_{1} - \frac{1 - i\sqrt{3}}{2}) = \lim_{Z \to -1 - i\sqrt{3}} (z - \frac{1 - i\sqrt{3}}{2}) \cdot \underbrace{27 + 1}_{Z \to -1 - i\sqrt{3}} (z - \frac{1 + i\sqrt{3}}{2})(z - \frac{1 + i\sqrt{3}}{2})(z - \frac{1 + i\sqrt{3}}{2})$$

$$= \underbrace{\frac{2 \cdot (1 - i\sqrt{3})}{2} + 1}_{2} + \underbrace{\frac{-i\sqrt{3}}{2}}_{2} = +1.$$

Aplican the residuuritor:

$$\int_{|z-1|=2}^{27+1} \frac{27+1}{z^2+7+1} dz = 2\pi i \left[\text{Res} \left[\frac{1}{7}, \frac{1+i\sqrt{3}}{2} \right] + \text{Res} \left[\frac{7}{2}, \frac{1+i\sqrt{3}}{2} \right] + \text{Res} \left[\frac{7}{2},$$