Lecture 11 - Discrete Mafematiks

Kori Vernon

July 30, 2020

1 Functions

Proving a function is one-to-one

- Direct method: Suppose f(x) = f(y), therefore, x = y, thus f is one-to-one
- Contrapositive method: Suppose that $x \neq y$ Therefore, $f(x) \neq f(y)$, thus f is one-to-one
- Contradiction method: Suppose f(x) = f(y) but $x \neq y \implies$, thus f is one-to-one.

Proving a function is onto.

- Direct method: Let b be an arbitrary element of B, then construct an element $a \in A$: f(a) = b, therefore f is onto.
- **Set method:** Show that sets im f = B.

1.1 Examples:

- 1. $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x + 4. Show that f is one-to-one.
 - Proof by direct method: Suppose f(x) = f(y), then

$$3x + 4 = 3y + 4$$

$$3x = 3y \Rightarrow x = y$$

- 2. Let $f: \mathbb{Z} \to \mathbb{Z}$, defined by f(x) = |x|. Show it is not one-to-one.
 - Proof by counterexample: Consider f(5) = f(-5), but $5 \neq -5$, thus, f is not one to one.

Note: Recall that $f: A \to B$, where f is onto B if $\forall b \in B$, $|existsa \in A: f(a) = b$, so im f = B.

- 3. Show $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x + 4 is onto.
 - **Proof:** Consider $b \in \mathbb{R}$. We need to find $a \in \mathbb{R}$ so that f(a) = b.
 - Let $a \in A$: $a = \frac{1}{3}(b-4)$ Then $f(a) = f(\frac{1}{3}(b-4)) = 3(\frac{1}{3}(b-4)) + 4 = b$ Thus, f is onto.
- 4. **Proposition:** Let f be a function. The inverse relation f^{-1} is a function if and only if f is one-to-one.
 - **Proof:** Let f be function
 - \Rightarrow Assume f^{-1} is a function. We need to show that f is one-to-one.
 - Suppose f(x) = f(y), then $\exists z : (x, z), (y, z) \in f$. Then $(z, x), (z, y) \in f^{-1}$ by the definition of the inverse relation. And because it is a function, then x = y by definition.
 - \bullet Therefore, f is one-to-one.
 - \Leftarrow Assume f is one-to-one. We need to show f^{-1} is a function.
 - Let $(x,y),(x,z) \in f^{-1}$ and we need to show y=z.
 - Then $(y, x), (z, x) \in f$, so f(y) = f(z) = x and f is one-to-one, so $f(y) = f(z) \Rightarrow y = z$. Thus, f^{-1} is a function.

2 Pigeonhole Principle:

Let A and B be finite sets and let $f: A \to B$

- If |A| > |B|, then f is not one-to-one.
- If |A| < |B|, then f is not onto.
- If $f: A \to B$ is one-to-one, then $|A| \le |B|$
- If $f: A \to B$ is onto, then $|A| \ge |B|$
- If there is a bijection for $f: A \to B$, then |A| = |B|
- Let A and B be finite sets with |A| = a and |B| = b.
 - 1. The number of functions from A to B is b^a
 - 2. If $a \leq b$, the number of functions $f: A \to B$ is $\frac{b!}{(b-a)!}$

Note: If a > b, then the number one-to-one functions is zero

3. If $a \leq b$, the number of functions $f: A \to B$ is $\sum_{j=0}^{b} (-1)^{j} (b-j)^{a}$

Note: If a < b, the number of onto functions is zero.

4. If a = b, the number of bijections for $f: A \to B$ is a! or b!

Note: If $a \neq b$, the number of bijections is zero

2.1 Examples:

- 1. 24.1(b) $\{(x,y): x,y \in \mathbb{Z}, y=2x\}$ where dom $f=\mathbb{Z}$ and $im\ f=$ the set of all even integers.
 - Is f one-to-one? Yes
 - What is f^{-1} ? f^{-1} is not onto \mathbb{Z} , because $f^{-1}(x) = \frac{1}{2}x$.
- 2. (g) $\{(x,y): x,y \in \mathbb{Q}, x^2+y^2=1\}$ is not a function, because $(0,1) \in f$, but $(0,-1) \in f$.
- 3. (j) $\{(x,y): x,y\in\mathbb{N}, \binom{x}{y}=1\}=f$ is not a function, because $\binom{x}{0}=1, \binom{x}{x}=1$, so $(x,0)\in f$, but $\binom{x}{0}\in f$.
- 4. 24.4 Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write down all functions $f : A \to B$, indicate which are one-to-one, and which are onto B.
 - $\{(1,3),(2,4)\}$: onto \checkmark , one-to-one \checkmark
 - $\{(1,4),(2,3): \text{ onto } \checkmark, \text{ one-to-one } \checkmark\}$
 - $\{(1,4),(2,4): \text{ onto } \times, \text{ one-to-one } \times\}$
 - $\{(1,4),(2,3): \text{ onto } \times, \text{ one-to-one } \times\}$

2.2 What is the Pigeonhole Principle?

Dirichlet Box Principle: States that if n + 1 or more pigeons are placed in n holes, then one hole must contain two or more pigeons.

2.3 Examples:

- 1. Assume you have an infinite number of red, green, blue, and black socks in a drawer. How many socks do you need to pull out of the drawer to guarantee a pair?
 - **A:** You will need to pull out 5 socks to guarantee a pair. In this case, pigeons are socks, which you pull out, and the holes are the colors of the socks.
- 2. Let $n \in \mathbb{N}$. Then there exist positive integers a and b, with $a \neq b$, such that $n^a n^b$ is divisible by 10. **A:**Any natural number is divisible by 10 if its last digit is zero.
 - Proof: Consider 11 natural numbers.

$$n^1, n^2, ..., n^{11}$$

• Since there are ten possible one's digits, but we have 11 different numbers, then two of these numbers must have the same last digits. Thus, $10|n^a - n^b$.

3 Composition

Let A, B, C be sets and let $f: A \to B$ and $g: B \to C$. Then the function $g \circ f$ is a function from A to C, defined by $(f \circ g)(a) = g(f(a))$, where $a \in A$, and gf is called the composition of g and f. Where $dom(g \circ f) = f$ and $g \circ f \neq f \circ g$

Let f and g be functions. To prove f = g

- Prove dom f = dom g
- Prove that for every x in their common domain, f(x) = g(x)

Identity Function:

Definition: Let A be a set. The identity function on A Is the function $id_A(a) = a$, so $id_A = \{(a, a) : a \in A\}$.

3.1 Examples:

1. Let $A = \{1, 2, 3, 4, 5, 6\}$ and let $f: A \to A$, and $g: A \to A$. Find $g \circ f$ and $f \circ g$

$$f = \{(1,1), (2,1), (3,1), (4,1), (5,1)\}$$

$$g = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$$

Therefore,

$$g \circ f = \{(1,5), (2,5), (3,5), (4,5), (5,5)\}$$

$$f\circ g=\{(1,1),(2,1),(3,1),(4,1),(5,1)\}$$

2. Let A
$$f: A \to B, g: B \to C, h: C \to D$$
. Then $h \circ (g \circ f) = (h \circ g) \circ f$

Note: Composition of functions are associative. However, composition of functions are not commutative.

- 3. Let A and B be sets and $f: A \to B$. Then $f \circ id_A = id_B \circ f = f$
 - **Proof:** Consider $f \circ id_A$ and f. We know that $dom\ (f \circ id_A) = dom\ id_A = A = dom\ f$, so all domains are the same. Let $a \in A$, then $(f \circ id_A)(a) = f(id_A(a)) = f(a)$, so $f \circ id_A$ and f have the same image $\forall a \in A$. Thus, $f \circ id_A = f$.
 - Similar argument for $id_B \circ f$. $dom(id_B \circ f)(a) = id_B(f(a)) = f(a)$, so $id_B \circ f$ and f have the same integers. Thus $id_B \circ f = f$
 - Let $f: A \to B$ be a bijection, then $f \circ f^{-1} = id_B$ and $f^{-1} \circ f = id_A$.