시스템 개발을 사랑하는 개발자의

Portfolio

지금까지도 앞으로도 계속 성장하는 개발자가 되기위해 노력하는 개발자입니다.

기본정보

최영록

Profile. 2025.02.25

충남대학교 석사 졸업 정보통신시스템전공

학위논문. Communication-Aware Graph

Neural Network for Multi-agent

Reinforcement Learning

(멀티 에이전트 강화학습을 위한 그래

프 신경망 연구)

Contact. 010-2636-9923

cyr9923@gmail.com

https://github.com/yrokdove99/

연구 성과 (논문 게재)

2024.08 실내 차량 측위를 위한 그래프기반 딥러닝 모델 분석
2024.10 Thermal Runaway Diagnosis of Lithium-Ion Cells Using Data-Driven Method
2025.01 Communication-Aware Graph Neural Network for

(SCIE Accept) Multi-agent Reinforcement Learning

프로젝트 경험

2019.09데이터 마이닝을 활용한 웹 서비스 구축2021.03Vision Al기반 도로파손 인식모델 개발2018.09FPGA활용 디지털시스템설계2022.03MATLAB: 통신시스템 변/복조 설계2019.09임베디드 시스템 설계2021.12군집로봇 실시간 제어 테스트베드 개발

어학 능력

2022.08 일본어 능력시험 JLPT N1
2025.03 TOEIC Speaking Advanced Low (160)

기술 스택 Python Pytorch 00000 C 00000 Java 00000 **MATLAB** 00000 Verilog 중 Flask 중상 Opency Excel 상 상 & Visual Basic

대외활동

2018.03 ~ 2019.12교내 프로그래밍 동아리 활동2018.03 ~ 2019.12코딩 재능기부 봉사 활동 (충남여중 방문 수업)2018.09 ~ 2022.12외국인 교류 동아리 활동2021.07~2022.03세종시 32사단 신병교육대대 하사 전역2022.09 ~ 2023.09임베디드 시스템 설계 과목 조교2024.12 ~ 2025.01대전·세종· 충남 AI/빅데이터 해커톤 조교

기술 스택

디지털시스템설계

& Visual Basic

군집 로봇 제어 테스트베드 구축

Python • • • • · · 상

멀티 에이전트 시스템 인공지능 프레임워크 개발

주요 연구 성과

실내 차량 측위를 위한 그래프기반 딥러닝 모델 분석

프로젝트 기간 2022.03~2023.06

사용 프로그램 Python, Pytorch

제작기간 1년 3개월

연구 배경

딥러닝 기반의 실내 측위 모델 개발 시 고품질&고비용의 학습 데이터가 필요 따라서 비용 효율적인 데이터 수집 및 학습 방법론이 중요하나, 관련 연구가 매우 부족

목적

데이터 수집 비용을 최소화 하며 정확도를 보장하는 실내측위 딥러닝 모델 방법론 연구

방법

실내 측위를 위한 다양한 딥러닝 모델 구축(MLP, LSTM, CNN-LSTM)
그래프 이론 기반으로 딥러닝 모델의 범용성을 분석
범용성 분석 결과를 토대로 전체 실내주차장의 영역을 커버하는데 가장 효율적인 모델 파악해당 방법론을 적용하여 추가적인 데이터 수집 비용 절감

획득 역량

센서 데이터를 활용한 산업데이터 활용 역량 솔루션 구축을 위한 비용 효율적 방법 경험

최종 결과물

위치 추정 모델 개발 프레임워크

전체 영역 커버 위한 모델 수 1/10 로 감소 (데이터 수집 비용 감소)

모델 별 범용성 그래프 분석

Thermal Runaway Diagnosis of Lithium-Ion Cells Using Data-Driven Method 배터리 고장 원인 진단을 위한 머신러닝 프레임워크 개발

프로젝트 기간

2024.03~2024.09

사용 프로그램

Python, Pytorch

제작기간

6개월

연구 배경

전기차 등 산업에서 배터리 열 폭주는 연구 개발 및 상용화 과정에서 상당한 경제적 손실을 야기 사전에 열 폭주(고장) 원인 예측 관련 연구가 부족

일부 연구는 시스템 레벨(배터리 팩 또는 모듈 단위)에서 고장 진단을 수행하였으나 한계가 존재

목적

시스템 레벨보다 하위 레벨인 배터리 셀 단위에서 고장 원인을 예측하는 머신러닝 프레임워크 개발

방법

SVM, Naïve Byesian, Decision Tree, MLP 등 다양한 머신러닝 방식으로 예측 모델 구축 및 성능평가 Decision Tree Ensemble 모델 적용으로 데이터의 다양한 패턴 포착 능력을 향상하여 성능 개선 Feature Importance 분석 통해 열폭주 발생 원인의 주요 변수 도출

획득 역량

데이터 특성을 고려한 모델 선정 및 구축 역량, 산업 데이터 분석 및 모델 최적화 경험

최종 결과물

고장 진단 프레임워크 개빌

모델 성능 분석

Communication-Aware Graph Neural Network for Multi-agent Reinforcement Learning 멀티 에이전트 강화학습을 위한 통신기반 그래프 신경망 연구

프로젝트 기간 2022.03~2023.09

사용 프로그램 Python, Pytorch, Gym

제작기간 1년 6개월

연구 배경

인공지능 기술 발전에 따라 멀티 에이전트 시스템(군집 로봇)관련 연구가 활발함 멀티 에이전트간 통신을 고려한 그래프 신경망 기반 연구가 주로 진행됨 그러나 실제 통신환경에서 발생하는 정보 손실이 고려된 연구가 부족함

목적

통신에서 정보손실이 반영/보완한 멀티 에이전트 강화학습 프레임워크 개발

방법

그래프 신경망(GNN)에 링크별 정보 손실을 베르누이 랜덤프로세스를 적용하여 통합 노드 간 정보손실을 보완하기 위해 Zero-Input Compensation 방식 적용 통신 링크의 손실 시나리오 적용하여 성능 검증

획득 역량

인공지능 기반 멀티 에이전트 시스템의 통신 프레임워크 설계 경험 시험 환경 구축 및 성능 검증용 실험 설계 역량 확보

프로젝트 경험

임베디드 시스템 설계

프로젝트 기간 2019.09~2019.11

사용 프로그램 C, Keil

제작기간 2개월

연구 배경

산업에서 특정 태스크에 맞는 비용 효율적인 커스텀 임베디드 시스템 개발이 요구됨 데이터 수집, 물체 감지, 알람, 등

목적

저비용의 개별 센서와 임베디드 보드를 통합하여 주변의 특정 색상의 물체를 감지하고 각도를 출력해주는 솔루션 개발

방법

컬러센서, 스텝 모터, LCD 디스플레이 데이터 시트를 통한 데이터 입 출력 방식 파악 임베디드 보드의 서비스 루틴과 인터럽트 기능을 활용한 센서 데이터 입력 및 처리 각 GPIO 포트 할당 및 제어 및 신호 출력

획득 역량

데이터 시트 분석 및 임베디드 보드 연동 설계 능력

최종 결과물

컬러센서가 360도로 회전하며 타겟 색상을 감지, 각도를 디스플레이에 출력

군집로봇 실시간 제어 테스트베드 개발

프로젝트 기간 2021.12~2022.02

사용 프로그램Python제작기간2개월

연구 배경

인공지능 기술이 발전함에 따라 군집 드론/로봇의 연구가 활발함 개발된 군집 제어 알고리즘을 검증할 수 있는 테스트베드가 요구됨

목적

실시간 데이터 수집/분석이 가능한 군집로봇 제어 알고리즘 테스트베드 개발

방법

멀티 쓰레딩을 활용하여 모션 캡쳐 장치와 DJI로봇, 각종 센서를 중앙 PC와 연동 센서 데이터 수집 및 핵심 데이터 추출 (글로벌 좌표계-모션캡쳐와 로봇의 로컬 좌표계 일치) 위치 및 거리 데이터 기반으로 제어 알고리즘 계산 및 커맨드 전송

획득 역량

다수의 장치 간 연동 및 통합 시스템 설계 및 구현 경험 테스트베드 설계 및 구축 역량 획득

최종 결과물

로봇, 센서 장치 간 연동 설계 및 테스트베드 구축

테스트 시나리오 설계 및 환경 구축

복합 시나리오 시험 & 데이터 취득 및 분석

시스템 개발을 사랑하는 개발자의 **Portfolio**

끝까지 봐주셔서 감사합니다.

성장하는 개발자가 되기 위해 더 노력하겠습니다.