Complex Analysis Homework 4

Colin Williams

September 25, 2020

Question 2

Plot the image γ^* of the curve γ in the following cases, indicating how the image is traced:

- (a) $\gamma(t) = 1 + ie^{it}, t \in [0, \pi]$
- (b) γ is the join of three line segments: [-1,1],[1,1+i], and [1+i,-1-i]

Answer. (a)

First, note that the curve e^{it} , $t \in [0, \pi]$ simply has an image of the upper semi-circle centered at 0 going counter-clockwise. Next, note that multiplying any $a + bi \in \mathbb{C}$ by i gives -b + ai which is a 90° rotation counter-clockwise. Thus, the curve ie^{it} , $t \in [0, \pi]$ would have the image of the left semi-circle centered at 0 going counter-clockwise. Lastly, adding 1 simply shifts the center of the semi-circle right 1 unit, so $\gamma(t) = 1 + ie^{it}$, $t \in [0, \pi]$ have the image γ^* represented as the following:

Answer. (b)

The way that γ is defined, it should consist of line segments going to the following points in this order: -1, 1, 1+i, -1-i. Thus, γ^* looks like the following:

