Distanciel : Algorithmes Approchés pour deux problèmes d'optimisation : Max-SGC et MIN MAKESPAN

Ismael BENBRIK Malo GRALL

Décembre 2021

Partie 1 : le problème Max-SGC

1. Le problème MAX-SGC est un problème d'optimisation. Écrire, sous la forme NOM/INSTANCE/QUESTION le problème de décision associé à MAX-SGC.

DEC-SGC

Instance : Un graphe orienté G = (V,A), un entier k.

Question : Possède t-il un sous-graphe sans circuit avec k sommets?

2. Démontrer que DEC-SGC est dans NP.

Certificat : un graphe G' qui est un sous-graphe de G qui ne possède pas de circuit.

Taille des donnée : |G'| est la taille du certificat. Donc la taille du certificat est polynomial.

Vérification:

- G' possède bien k sommets et qu'ils appartiennent au graphe $G => O(n+n^2)$ = O(n)
- G' ne possède pas de circuit $O(k*m + m^2)$ avec m le nombre d'Arc Ainsi la vérification se fait en temps polynomial.

La taille du certificat et la verification sont polynomiales donc on peut conclure que DEC-SGC est dans NP. 3. Appliquer l'algorithme Approx-SGC sur le graphe orienté cidessus, en utilisant la numérotation des sommets qui y est indiquée. En particulier, indiquer les contenus de A1, A2 et A'

A) Attribution aux hasards des sommets : La valeur des sommets est deja attribué tel que 1<=p<=n donc on garde cette attribution de G.

B) Séparation des Arcs dans l'ensemble A1 ou A2.

A1	A2
$ \begin{array}{c} (1,4) \\ (1,7) \\ (3,7) \\ (2,5) \\ (5,8) \end{array} $	(4,3) (7,5) (3,2) (7,6) (6,1) (8,6)

C) L'ensemble qui contient le plus d'Arcs est l'ensemble A2 donc A' = A2.

4. Montrer que, quel que soit le graphe orienté G donné en entrée, les arcs de l'ensemble A' calculé par Approx-SGC ne forment jamais de circuit.

5. Approx-SGC est-il polynomial? Justifier.

- Partie A : O(n), parcours tous les sommets.
- Partie B : O(n²), parcours tous les Arcs et ajoute dans les sommets A1 ou A2.

- Partie C : O(n), parcours l'ensemble A le plus grand. Donc pour tous les parties, le temps est polynomial ainsi Approx-SGC est polynomial.
- 6. Proposer un exemple de graphe orienté G à n=5 sommets pour lequel Approx-SGC ne fournit pas une solution optimale au problème MAX-SGC. Justifier.

Il y a autant d'ensemble A1 que A2 ainsi Approx-SGC ne fournit pas une solution optimale sans graphe. Car la solution optimal du graphe est tout les sommets soit 5.

7. Pour tout graphe orienté G, donner une borne supérieure pour $\mathrm{opt}(G)$, qui dépend de m (le nombre d'arcs du graphe). Justifier.

La borne maximum est un graphe qui ne possède pas de circuit ainsi opt(G) est m. m qui est le nombre d'Arcs.

$$opt(G) \leq m$$

8. Pour tout graphe orienté G, donner une borne inférieure pour sol(G), qui dépend aussi de m. Justifier.

La borne inférieur pour sol(G) est :

$$sol(G) = \geq \frac{m}{2}$$

Car l'algorithme Approx-SGC partage les arrêtes en deux parties puis on choisit la plus grande partie. Ainsi le plus petit ensemble possède donc la moitié des arrêtes.

$$sol(G) \geq \frac{m}{2}$$

9. En déduire un ratio d'approximation pour l'algorithme Approx-SGC.

On a :

$$\frac{m}{2} \geq opt(G) {\geq m}$$

Ainsi le ratio d'approximation est de 2.

10. Quel ratio d'approximation est obtenu par Approx-SGC sur le graphe orienté de la figure ? Justifier.

La figure possède 11 arrêtes , l'ensemble le plus grand possède 6 éléments. Donc :

$$ratio = \frac{11}{6} = 1.83$$

Partie 2: le problème MIN MAKESPAN

 Complexité en temps et au pire de la génération des instances Complexité génération Ip

$$C(newInstanceP(p)) = 8p^2 + 4p + 20$$

donc la complexité est polynomiale et d'ordre

$$O(n^2)$$

Complexité génération Ir

C(newInstanceRandom(m, n, dmax, dmin)) = 9n + 4m + 12

or on génère k instances avec une boucle

C(newInstanceRandom(m,n,dmax,dmin)) = k(9n+4m+12+6)+4 on a donc une complexité polynomiale

$$O(n^2)$$

La coût de la génération d'une instance Ir est équivalent à celui de la génération d'une instance Ir.

2. Complexité en temps et au pire de chacun des trois algorithmes

L'algorithme LSA possédant une boucle imbriquée, la complexité est

$$O(n^2)$$

L'algorithme LPT possédant la même structure, la complexité est

$$O(n^2)$$

Quant à l'algorithme RMA il n'y a pas de boucle imbriquée, la complexité est donc

RMA est donc le plus efficace en termes de complexité

3. Campagne de tests pour l'algorithme LSA avec les instances de type Ip

p	ratio LSA	p	ratio LSA	p	ratio LSA
1	1.333333333	15	1.935483871	70	1.985815603
2	1.6	20	1.951219512	80	1.98757764
3	1.714285714	25	1.960784314	90	1.988950276
4	1.777777778	30	1.967213115	100	1.990049751
5	1.818181818	35	1.971830986	120	1.991701245
6	1.846153846	40	1.975308642	140	1.992882562
7	1.866666667	45	1.978021978	160	1.99376947
8	1.882352941	50	1.98019802	180	1.994459834
9	1.894736842	55	1.981981982	200	1.995012469
10	1.904761905	60	1.983471074	300	1.996672213

4. Que remarquez-vous en ce qui concerne le ratio LSA sur les instances de type Ip quand p grandit ? Pouvez-vous fournir une explication à cette observation ?

On remarque que le ratio se rapproche rapidement de 2 et ne dépasse pas 2, même avec p=300. Le ratio est déjà à environ 1.8 pour p=8.

Plus p est grand, plus la différence entre la dernière tâche (2p) est grande, ce qui fait qu'en l'affectant à une machine en dernier, à la première, on se retrouve avec une machine ayant la même durée que les autres machines, plus 2p.

2p étant bien plus grand que toutes les autres durées de tâches, sa valeur écrase le reste, d'où le ratio de 2.

5. Campagne de tests pour l'algorithme LPT avec les instances de type ${\rm Ip}$

p	ratio LSA	р	ratio LSA	p	ratio LSA
1	1	15	1	70	1
2	1	20	1	80	1
3	1	25	1	90	1
4	1	30	1	100	1
5	1	35	1	120	1
6	1	40	1	140	1
7	1	45	1	160	1
8	1	50	1	180	1
9	1	55	1	200	1
10	1	60	1	300	1

6. Que remarquez-vous en ce qui concerne le ratio LPT sur les instances de type Ip quand p grandit ?

On constate que le ratio est toujours égal à 1. Ce qui veut dire que la machien avec la plus longue durée, a sa durée égale à la durée de la plus longue tâches.

Ce qui veut dire qu'en affectant la tâches la plus longue en premier, la répartition est idéale, la durée total étant égale à la durée de la plus longue tâche.

Avec une étape en plus on constate que LPT est en moyenne 2 fois plus efficace que LSA.

7. Campagne de tests pour l'algorithme RMA avec les instances de type Ip

p	ratio LSA	p	ratio LSA	p	ratio LSA
1	1.333333333	15	1.612903226	70	2.042553191
2	2	20	1.804878049	80	2.198757764
3	2	25	2	90	2.121546961
4	2.444444444	30	1.983606557	100	2.034825871
5	1.636363636	35	2.028169014	120	1.908713693
6	1.692307692	40	1.938271605	140	1.982206406
7	1.666666667	45	1.813186813	160	2.037383178
8	1.764705882	50	1.782178218	180	2.008310249
9	2.052631579	55	2	200	1.880299252
10	1.761904762	60	2.090909091	300	2.03327787

On remarque que le ratio est toujours supérieur à 1, et même souvent supérieur à 2. C'est donc l'algorithme le moins efficace en termes de répartition pour ces

conditions, pour des instances du type Ip.

On ne remarque pas de cas où l'algorithme RMA peut être plus avantageux.

8. Exécuter le mode IR sur au moins une trentaine d'exemples différents

k	n	m	dmin	dmax	Ratio LSA	Ratio LPT	Ratio RMA
1	1	1	1	1	1	1	1
2	1	1	1	2	1	1	1
3	2	3	1	3	1	1	1.444444444
4	1	3	2	5	1	1	1
5	5	3	3	3	1.2	1.2	1.44
6	4	2	2	7	1.243055556	1.129166667	1.381944444
7	4	4	1	6	1	1	1.107142857
8	7	3	4	9	1.175231975	1.147594243	1.547027032
9	4	9	1	8	1	1	1.046296296
10	1	8	7	14	1	1	1
15	13	6	5	6	1.384615385	1.384615385	1.938461538
20	14	18	11	26	1	1	2.165008282
25	9	11	2	17	1	1	1.63197619
30	11	29	18	20	1	1	2.180701754
35	19	15	32	62	1.543115818	1.32684556	2.831356524
40	5	13	19	50	1	1	1.363559417
45	5	16	41	80	1	1	1.346076262
50	39	38	17	57	1.079756703	1	2.546707185
55	9	21	38	53	1	1	1.784039736
60	20	40	14	67	1	1	1.845141216
70	4	41	65	115	1	1	1.075975467
80	68	73	56	96	1	1	3.181950641
90	20	73	78	165	1	1	1.76101225
100	20	41	48	118	1	1	1.899389274
120	48	90	43	161	1	1	2.180624255
140	39	83	10	69	1	1	1.91358129
160	35	55	155	288	1	1	2.468332632
180	154	164	8	18	1	1	3.419607843
200	62	33	49	93	1.283945452	1.072027552	2.836908181
300	91	155	10	26	1	1	2.5757
Moyenne					1.063657363	1.042008314	1.830432167

On constate donc que pour toutes ces Ir avec un nombre d'instances de plus en plus en plus élevé et avec les autres valeurs aléatoires, que les 3 algorithmes ont des ratios, et donc des efficacité, assez proches.

Mais on peut conclure en disant que LPT est plus efficace que LSA, qui est lui-même plus efficace que ${\tt RMA}.$