اول باید با استفاده از جدول زیر آدرس شروع RCC و GPIOB و GPIOB را پیدا کنیم.

THE A COMMODIAN DIG ACCURAGE AND DIES.	
Table 1. STM32F401xB/C and STM32F401xD/E register boundary	addresses

Boundary address	Peripheral	Bus	Register map				
0x5000 0000 - 0x5003 FFFF	USB OTG FS	AHB2	Section 22.16.6: OTG_FS register map on page 755				
0x4002 6400 - 0x4002 67FF	DMA2		0				
0x4002 6000 - 0x4002 63FF	DMA1	1	Section 9.5.11: DMA register map on page 198				
0x4002 3C00 - 0x4002 3FFF	Flash interface register		Section 3.8: Flash interface registers on page 60				
0x4002 3800 - 0x4002 3BFF	RCC		Section 6.3.22: RCC register map on page 137				
0x4002 3000 - 0x4002 33FF	CRC		Section 4.4.4: CRC register map on page 70				
0x4002 1C00 - 0x4002 1FFF	GPIOH	AHB1					
0x4002 1000 - 0x4002 13FF	GPIOE	1					
0x4002 0C00 - 0x4002 0FFF	GPIOD	1	0.15.0.044.0000				
0x4002 0800 - 0x4002 0BFF	GPIOC		Section 8.4.11: GPIO register map on page 164				
0x4002 0400 - 0x4002 07FF	GPIOB						
0x4002 0000 - 0x4002 03FF	GPIOA						

برای استفاده از پورت ها باید کلاک آنها را فعال کنیم پس offset برای RCC_AHB1ENR را باید پیدا کنیم.

• Peripheral clock gating is controlled by the AHB1 peripheral clock enable register (RCC_AHB1ENR)

Bit 1 GPIOBEN: IO port B clock enable
Set and cleared by software.

O: IO port B clock disabled
1: IO port B clock enabled
Bit 0 GPIOAEN: IO port A clock enable
Set and cleared by software.

O: IO port A clock disabled
1: IO port A clock enabled

با استفاده از شکل بالا A و A باید بیت صفر و همچنین متوجه میشویم که برای فعال کردن کلاک پورتهای A و B باید بیت صفر و یک هنگام initialize کردن A برابر A باشند.

و بعد باید offsetهای GPIOB_IDR ،GPIOB_MODDER ،GPIOA_ODR ،GPIOA_IDR ،GPIOA_MODDER ،GPIOB_ODR و بعد باید offset بدست آوریم. reference manual بدست آوریم.

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H)

Address offset: 0x00

Reset values:

- 0x0C00 0000 for port A
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODE	R15[1:0]	MODE	R14[1:0]	MODE	R13[1:0]	MODER12[1:0]		MODE	R11[1:0]	MODER10[1:0]		MODER9[1:0]		MODER8[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	MODER4[1:0]		R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

00: Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

از شکل بالا moder offset بدست می آید. همچنین میبینیم برای پورت های A و B اگر پینی ورودی است با استفاده از moder با مقدار B با مقدار initialize شود و اگر خروجی است با مقدار B.

8.4.5 GPIO port input data register (GPIOx_IDR) (x = A..E and H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR1	5 IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	г	r	r	г	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDRy: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input value of the corresponding I/O port.

8.4.6 GPIO port output data register (GPIOx_ODR) (x = A..E and H)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Reserved																
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0	
rw	rw	rw	rw	rw	rw	ΓW	rw	rw	rw	rw	rw	rw	ΓW	rw	rw	1

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy**: Port output data (y = 0..15)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the GPIOx_BSRR register (x = A..E and H).

از شكل بالانيز offset براى IDR و ODR بدست مى آيد.

خط های زیر در کد نیز نام گذاری برای رجیسترهاست تا نوشتن و خواندن کد راحتتر شود.

CURR_LED	RN	R8	نشاندهنده شمار ه LED که الان باید ر و شن باشد
CURR_FLOOR	RN	R9	نساندهنده شماره طبقه فعلی
DEST FLOOR	RN	R10	ساندهنده شماره طبقه فعلی نشاندهنده شمار ه طبقه مقصد
VAL1 ENTERED	RN	R11	نساندهنده شماره صبعه معصد بولینی که در صورت وارد شدن عدد اول (طبقه فعلی) برابر ۱ و در غیر این صورت ۰ است
VAL2 ENTERED	RN		بولینی که در صورت وارد شدن عدد دوم (طبقه مقصد) برابر ۱ و در غیر این صورت ۱ است
			بريع - در سورت ورد ساق حد دوم (ب

در مدار، ردیف های keypad را به عنوان خروجی به پورت های B12-B15 وصل میکنیم تا مرتباً فعال و غیر فعالشان کنیم تا وقتی دکمه ای فشرده میشود با توجه به اینکه کدام ردیف فعال بوده و از کدام ستون خروجی گرفتیم عدد موردنظر را پیدا کنیم (ستون های keypad نیز به عنوان ورودی به B8-B10 وصل شدند تا مقدار آنها را بتوانیم بخوانیم)

در لوپ اصلی برنامه مدام چک میشود که کدام کلید زده شده است و وقتی رقم اول وارد شود، به عنوان CURR_FLOOR ست میشود و در لوپ اصلی برنامه مدام چک میشود و رقم وارد شده روی LED سمت چپ نمایش داده میشود. هر موقع رقم دیگری وارد شد (رقمی متفاوت با رقم اول) به عنوان DEST_FLOOR ست میشود و VAL2_ENTERED برابر ۱ میشود تا دیگر نتوان رقمی وارد کرد. با وارد شدن رقم دوم آسانسور شروع به بالا/پایین رفتن میکند و ارقام به ترتیب روی TSEGها به همراه روشن شدن LED مربوط به آن سگمنت، نشان داده میشوند.

برای نشان دادن اعداد باید CURR_LED چک شود و با توجه آن، عدد طبقه به اندازه ۱۲ بیت (برای LED3) یا ۸ بیت (برای LED2) یا ۴ بیت (برای LED1) شیفت داده شود و برای LED0 نیازی به شیفت نیست. اگر باید روی LED3 بنویسیم، چون که LED ها باید ریست شوند، عدد بدست آمده در شیفت را آتپوت میکنیم تا LED3 مقدار طبقه و بقیه آنها مقدار ۰ را بگیرند. در غیر این صورت عدد بدست آمده از شیفت با مقدار قبلی نمایش داده شده روی CRRها ORR میشود و سپس به عنوان خروجی نشان داده میشود.

دکمه ریست نیز به پورت B7 به عنوان ورودی وصل شده است تا با فشردن این دکمه متغیرها و LEDها ریست شوند و کاربر بتواند ارقام جدیدی وارد کند.