Shortest Path Algorithm: Terminology and Theoretical Concepts

Mark Wesley Harris

September 18, 2018

1 Introduction

This document breifly explains the theoretical concepts behind the Shortest Path Algorithm developed in this repository. This algorithm attempts to solve the Traveling Salesman Problem, with the input of a 2D graph of datapoints represented on a Cartesian coordinate system.

2 Input Requirements

There are some requirements that must be met by the input to this algorithm. These are outlined below:

- 1. Data must be represented on a 2D Cartesian plane
- 2. The weights between vertices must be the distance between them (i.e. the weight between pionts $p:(x_1,y_1)$ and $q:(x_2,y_2)$ is $\sqrt{((x_1-x_2)^2+(y_1-y_2)^2)}$

3 Definitions

- (x,y): the definition of a point with coordinates (x,y).
- < p, q >: the definition of a vector from point p to point q.
- $[s_1, s_2, ..., s_k]$: the definition for a path through a known set of edges.
- n: the number of points in the dataset.
- \mathcal{V} : the set of all vertices in the dataset. Formally, $\mathcal{V} = \{p_1, p_2, ..., p_n\}$
- \mathcal{E} : the set of all edges in the dataset. The size of \mathcal{E} is $n \times n$.
- \mathcal{H} : the convex hull of the dataset. Formally, $\mathcal{H} = \{h_1, h_2, ..., h_k\}$, where $k \leq n 1$. Given any set of points, there is only one convex hull.

- S: the shortest path of a dataset as the set $S = \{s_1, s_2, ..., s_n\}$ of edges which are contained in the shortest path.
- \mathcal{E}' : the set of all edges in the dataset that are in \mathcal{E} but not \mathcal{S} . Formally, $\mathcal{E}' = \mathcal{E} \mathcal{S}$.
- W: the set of edges produced by the construction phase of the algorithm. Formally, $W = \{w_1, w_2, ..., w_m\}$, where $3 < m < n^2$.
- $S' \equiv S$: the path S' has the same perimeter as path S (they may or may not have the same edges).

4 Theoretical Concepts

My algorithm is based upon many theoretical concepts I have discovered through research and experimentation. They are explained below in different sections.

4.1 Properties of Shortest Paths

I begin by describing the properties I have found to be true for all shortest paths. These properties have been used to create the foundations for my algorithm.

- 1. For any two edges $s_i, s_j \in \mathcal{S}$ where $i \neq j$, s_i and s_j do not cross.
- 2. For any two edges $s_i, s_j \in \mathcal{S}$ where $i \neq j$, s_i and s_j do not overlap.
- 3. No edge $s \in \mathcal{S}$ intersects a point $p \in \mathcal{V}$ where $s_1, s_2 \neq p$. I.e. if an edge e intersects a point p that isn't an end point of e, then $e \notin \mathcal{S}$.
- 4. If we were to add an arbitrary point p_{n+1} to \mathcal{V} , \mathcal{S} will not change iff p_{n+1} is a point on the line of any $s \in \mathcal{S}$.

4.2 Invalidating a Segment

My algorithm is based upon the concept of invalidating as many segments of \mathcal{E} as possible, but keeping all segments which could be in \mathcal{S} . In order to do this, I propose a method of construction that invalidates segments based upon the properties for shortest paths which I have produced above. Any segment which fails these properties cannot be in \mathcal{S} , and so it should not be included in \mathcal{W} .

We test each line segment $w \in \mathcal{E}$ such that there is no point $v \in \mathcal{V}$ where $v \neq w_1, w_2$ that lies on w.

Bijection Range Method

. . .

Using Intersections

The Bijection Range Method works for determining ranges on a segment w for which points $p, q \in \mathcal{V}$ are closer to w than w_1 or w_2 . However, since we are only interested in invalidating the line with respect to this property, it is worth looking at the possibility of using the intersection of any $e \in \mathcal{E}$ instead.

Theorem 4.1. For each $p, q \in \mathcal{V}$ where $p \neq w_1, w_2$ and $q \neq w_1, w_2$, if p and q have overlapping Bijection Ranges then the line passing through them intersects w.

Proof. The proof is shown below:

- (1) Given that p and q have overlapping Bijection Ranges, it is evident that there are 2 intersection points formed by the lower and upper bounds of the intersection of ranges. Let these points be w_l and w_u .
- (2) By definition, these points form a quadralateral. Let the quadralateral p, w_l, q, w_u be denoted as Q.
- (3) Since Q is a quadralateral, a line segment can be drawn between p and q that lies within the inner region formed by Q. Let that line be denoted as e.
- (4) Since w_l and w_u both intersect w, and e is a continuous line that lies between w_l and w_u , then e must also intersect w.

Abstracting Bijection Ranges

Calculating both bijections of each possible point $v \in \mathcal{V}$ for each edge $e \in \mathcal{E}$ is a very costly method of validating a segment. Instead of having to do the calculations each time, it would be nice if there were a mathematical area to represent when a point's bijection ranges will overlap for a given segment.

Theorem 4.2. The area in which there is a bijection range created from point $p \in \mathcal{V}$ using segment $w \in \mathcal{E}$ can be represented as a semicircle, M, where w is the segment opposite its arc.

Proof. The proof is shown below:

- (1) Let w be the edge we are testing, with points $w_1, w_2 \in \mathcal{V}$.
- (2) Take a point $p \in \mathcal{V}$ where $p \neq w_1, w_2$ and p does not lie on w.
- (3) Let M be the unique semicircle in the direction of p formed using w as the flat segment of M.
- (4) Let A, B, and C represent the points w_1 , p, and w_2 , respectively. Similarly, let D, E, and F represent the midpoints of segments AC, BC, and AC, respectively.

- (5) Now we assume the 3 cases for the position of p relative to M:
 - (i) Assume that p lies on the arc of semicircle M:

Figure 1: p lies on M

- (a) Points A, B, and C satisfy the requirements of Thale's Theorem: "if segment AB is a diameter, then the angle at C is a right angle." Thus $\angle ACB = 90$.
- (b) Let vector V be the bijection of BC, so that V passes through E and is perpendicular to BC. Let the intersection point of V and AC be point I.
- (c) Since $\angle ABC = \angle IBE$ and $\angle BCA = \angle BEI$, $\triangle ABC$ and $\triangle IBE$ are similar triangles.
- (d) Given that BE is half the length of BC, then $BI = \frac{BA}{2} = BD$. Thus I is halfway between A and B, so $I \equiv D$.
- (e) Now let V be the bijection of AC, so that V passes through F and is perpendicular to AC. Let the intersection point of V and AC be point I.
- (f) Since $\angle BAC = \angle IAF$ and $\angle ACB = \angle AFI$, $\triangle ABC$ and $\triangle AIF$ are similar triangles.
- (g) Given that AF is half the length of AC, then $AI = \frac{BA}{2} = AD$. Thus I is halfway between A and B, so $I \equiv D$.
- (h) Since both bijections for p meet in the center of w, the Bijection Range is a single point.

This shows that the Bijection Range for points along the arc of M are equal to the center w.

- (ii) Now assume that p lies inside the area of M but not on the arc of M:
 - (a) As shown above, if p is on the arc of M then $\angle ACB = 90$. Thus if p is inside the arc, $\angle ACB < 90$ or $\angle ACB > 90$.
 - (b) As p approaches w, $\angle ACB$ approaches 180. So $\angle ACB > 90$.
 - (c) Since $\angle ACB > 90$, the two bijection vectors will intersect somewhere below w, opposite to M.

Figure 2: p lies inside M

(d) The area between the intersections of these vectors with w is the Bijection Range found previously through iteration.

This shows that the Bijection Range for points inside the area of M is equal to the intersection of the bijection vectors with w.

(iii) Now assume the final case, that p lies outside the area of M but not on the arc of M:

Figure 3: p lies outside M

- (a) If p is outside of the arc, then $\angle ACB < 90$.
- (b) Since $\angle ACB < 90$, the two bijection vectors will intersect somewhere in the region above w, on the same side as M.
- (c) The area between the intersections of these vectors with w is not the Bijection Range, since the inequalities will not contain the same ranges.

Thus the Bijection Range for points outside the area of M is undefined.

(6) This shows that the only possible way a Bijection Range is formed by point p on segment w is if p is inside or on the arc of semicircle M.

Final Segment Invalidation

I have decided to classify a segment w as a part of \mathcal{E}' instead of \mathcal{W} (i.e. as "invalid") in the following manner:

$$\mathcal{E}' = \{e' \mid \exists \ e \in \mathcal{E} \text{ where } e \neq e' \text{ and } e_1, e_2 \text{ have overlapping}$$

Bijection Ranges on opposite sides of $e'\}$

This means that for each edge $e' \in \mathcal{E}'$ there are two points, $p, q \in \mathcal{V}$ which lie inside opposite semicircles (by Theorem 4.2) and intersect e' through an edge $e \in \mathcal{E}$ (by Theorem 4.1). Since $\mathcal{W} = \mathcal{E} - \mathcal{E}'$, \mathcal{W} therefore contains all segments which were not intersected by two points that have overlapping Bijection Ranges. The set \mathcal{W} for a random set of datapoints in [-10, 10] is produced below. I have overlaid the actual shortest path, \mathcal{S} , in transparent blue. Notice that there is once segment which was proved to be invalid which actually belongs to a shortest path.

Figure 4: W and S

4.3 Expectations for W

Based upon the properites of shortest paths, W should have the following expectations:

- 1. \mathcal{H} will always be included, since there are no paths which could prove to invalidate any $h \in \mathcal{H}$.
- 2. Any two edges $w_i, w_j \in \mathcal{W}$ where $i \neq j$ can cross each other. However any path \mathcal{S}' can only contain one of these edges.
- 3. If an arbitrary point p_{n+1} was added on an edge $w \in \mathcal{W}$, w would not be intersected by an edge $e \in \mathcal{E}$ where $e \neq w$.

Derived from the construction phase of the algorithm, $\nexists w \in \mathcal{W}$ such that $w \in \mathcal{E}'$ given that \mathcal{E}' is defined in the following way:

$$\mathcal{E}' = \{e' \mid \exists \ e \in \mathcal{E} \text{ where } e \neq e' \text{ and } e_1, e_2 \text{ have overlapping}$$

Bijection Ranges on opposite sides of $e'\}$

Thus, if it were true that $p_{n+1} \in \mathcal{V}$, the only path in \mathcal{W} passing through p_{n+1} would be the path $[w_1, p_{n+1}, w_2]$. All other paths have been proven to be invalid, and thus unlikely to be part of the path \mathcal{S} .

4. A path \mathcal{S}' can be made from \mathcal{W} which goes through all vertices in \mathcal{V} only once and starts and ends on the same point. If \mathcal{W} has multiple paths that fit these requirements, then all such paths $\{\mathcal{S}'_1, \mathcal{S}'_2, ... \mathcal{S}'_k\}$ should be collected. The shortest path in this set is likely to be equivalent to \mathcal{S} .

5 The Algorithm

The algorithm is made up of 3 consecutive phases, Edge Invalidation, Path Generation, and Decision. The Edge Invalidation Phase is responsible for invalidating edges from \mathcal{E} to generate the set \mathcal{W} . The Path Generation Phase uses a greedy strategy to combine the resultant shapes inside of \mathcal{W} into a set of possible shortest paths, $\mathcal{S}' = \mathcal{S}'_1, \mathcal{S}'_2, ... \mathcal{S}'_k$. The Decision Phase chooses the shortest of these paths and returns it as the found shortest path, \mathcal{S} .

5.1 Edge Invalidation Phase

The goal of the construction phase of the algorithm is to generate W, i.e. a set of edges $W = \{w_1, w_2, ..., w_m\}$ such that $W \subseteq \mathcal{E}$ and $S \subseteq W$. These edges must hold the properties of shortest paths, discussed in section 4.1. They must also give us some kind of meaningful information, so that we are able to construct a path S' from them with the claim that $S' \equiv S$. The construction phase is broken up into steps below:

1. Choose an edge e from \mathcal{E} with the points e_1, e_2 . We will test this edge to see if it is possible that e is part of a shortest path, and subsequently that $e \in \mathcal{W}$.

Take each edge $e' \in \mathcal{E}$ with points p, q such that p and q straddle e and where p is on the right side of e and q is on the left side of e. We perform the following tests to see if e' invalidates $e \in \mathcal{W}$:

- (a) Let V_1 be the vector $\langle p, e_1 \rangle$.
- (b) Let V_2 be the vector $\langle p, e_2 \rangle$.
- (c) Find the bijection range of equality between V_1 , V_2 and e, represented as r[lower, upper], as follows:
 - i. Let vector B start from the bijection of V_1 in the direction of e with length $|V_2|$.
 - ii. Let the upper bound of r be the intersection of B and e.
 - iii. Let B start from the bijection of V_2 in the direction of e with length $|V_1|$.
 - iv. Let the lower bound of r be the intersection of B and e.
- (d) Repeat steps (a) through (c) with q instead of p.
- (e) If any of the intersections failed, e' does not invalidate e, so choose the next e' and repeat from the beginning.
- (f) If all intersections suceeded, find the overall intersection area between both r ranges generated from steps (a) through (c) using p and q.
- (g) If this intersection area is greater than the threshold, then e is proven invalid by e'. Choose the next e and repeat from the beginning.
- 2. If no e' invalidated e, then $e \in \mathcal{W}$.

5.2 Path Generation Phase

. . .

5.3 Decision Phase

. . .