

Answer all of the following questions

- 1. Compute the asymptotic order of growth of the following pairs of functions. In each case determine if:
 - $f(n) \in \mathcal{O}(g(n))$,
 - $f(n) \in \Omega(g(n))$,
 - $f(n) \in \Theta(g(n))$.

f(n)	g(n)
$100n + \log n$	$n + (\log n)^2$
$\log n$	$\log n^2$
$\frac{n^2}{\log n}$	$n(\log n)^2$
$(\log n)^{\log n}$	$\frac{n}{\log n}$
\sqrt{n}	$(\log n)^5$
$n2^n$	3^n
$2^{\sqrt{\log n}}$	\sqrt{n}

2. The following algorithm computes a power of 2 with the exponent which is itself a power of 2. Analyze the algorithm in terms of both the **unit cost** and **bit cost**.

```
Algorithm 1 Calculate y = 2^m
Require: m = 2^n
```

```
Ensure: y = 2^m

y \leftarrow 2

for i \leftarrow 1 to \log n
```

for $i \leftarrow 1$ to $\log m$ do

 $y \leftarrow y \cdot y$ end for return y

- 3. Describe and analyze an algorithm that determines whether a given graph is bipartite. The time complexity should be linear in both the number of nodes and edges of the graph.
- 4. Assume that each of the expressions below gives the processing time T(n) spent by an algorithm for solving a problem of size n. Select the dominant term(s) having the steepest increase in n and specify the lowest \mathcal{O} complexity of each algorithm.

Expression	Dominant term(s)	$\mathcal{O}(\cdots)$
$5 + 0.001n^3 + 0.025n$		
$500n + 100n^{1.5} + 50n\log_{10}n$		
$0.3n + 5n^{1.5} + 2.5n^{1.75}$		
$n^2 \log_2 n + n(\log_2 n)^2$		
$n\log_3 n + n\log_2 n$		
$3\log_8 n + \log_2 \log_2 \log_2 n$		
$100n + 0.01n^2$		
$0.01n + 100n^2$		
$2n + n^{0.5} + 0.5n^{1.25}$		
$0.01n\log_2 n + n(\log_2 n)^2$		
$100n\log_3 n + n^3 + 100n$		·
$0.003\log_4 n + \log_2 \log_2 n$		·

5. The statements below show some features of the \mathcal{O} notation for the functions f(n) and g(n). Determine whether each statement is TRUE or FALSE and correct the formula in the latter case.

Statement	true/false	in case of false, write the correct formula
Rule of sums: $\mathcal{O}(f+g) = \mathcal{O}(f) + \mathcal{O}(g)$		
Rule of products: $\mathcal{O}(f \cdot g) = \mathcal{O}(f) \cdot \mathcal{O}(g)$		
Transitivity: if $g = \mathcal{O}(f)$ and $h = \mathcal{O}(f)$ then $g = \mathcal{O}(h)$		
$5n + 8n^2 + 100n^3 = \mathcal{O}(n^4)$		
$5n + 8n^2 + 100n^3 = \mathcal{O}(n^2 \log n)$		

6. Sort each of the following sets of functions in increasing order of asymptotic \mathcal{O} complexity:

a) $f_1(n) = n^{0.999999} \log n$ $f_2(n) = 10000000n$ $f_3(n) = 1.000001n$ $f_4(n) = n^2$ (1)

b) $f_{1}(n) = 2^{2^{1000000}}$ $f_{2}(n) = 2^{100000n}$ $f_{3}(n) = \binom{n}{2}$ $f_{4}(n) = n\sqrt{n}$ (2)

c) $f_{1}(n) = n^{\sqrt{n}}$ $f_{2}(n) = 2^{n}$ $f_{3}(n) = n^{10} \cdot 2^{n/2}$ $f_{4}(n) = \sum_{i=1}^{n} (i+1)$ (3)