第二章. 基本规率公式.

2.1罗美学记.

定义一个集合R=1x1x在x}

情况一: R在R中,依据定义、R由所有不属于 R的元素构成,故RAR,这与假设新提 RER矛盾.

情况二·R不在R中,而依据定义,有一切不属于 X的元素应在R中,则RER,与前提RER产程。

由此可见,松散定义和非正式论述非常危险。

2.2 集合记编述

2.2.1编码题说.

2.2.2.无穷大的大小和概率

大小:有限第一可數第一不可數集

于设值

可数集:元素可与自然数集一一对应。(单射)不…集:不能与心应、举例:实数集

不可数个事件的并,不可计算其概率!

2、2、3开集和闭集。

开集. $U \subseteq \mathbb{R}^n$, 对于每一个怎 $\times \in U$. 存在了,0. 球体 $B(x,r) = \{x = \{x, x, ..., x_n\} \mid (x = \alpha_n)^2 + (x = \alpha_n)^2 + ... + (x = \alpha_n)^2 < r^2\}$ 对于 $\alpha = \{\alpha_1, \alpha_2, ..., \alpha_n\} \in \mathbb{R}^n$ 城立. $\mathcal{A} \not\subseteq \mathbb{R}^n$ $\mathcal{A} \not\subseteq \mathbb{R}^n$

2.3 结果泾间,事件和规率公理。

结果全间/样本空间: 52. 概率函数: Pr(x) 事件: 52中的元素.

2-4 概至公里

(柯尔莫戈洛夫的) 概率公理: Ω 是一个结果空间, Σ 是一个 σ 代数. 如果概率函数满足下列条件, 那么 (Ω , Σ , Prob) 就是一个概率空间.

- 如果 $A \in \Sigma$, 那么 $\Pr(A)$ 是有定义的, 并且 $0 \leqslant \Pr(A) \leqslant 1$.
- $\Pr(\varnothing) = 0 \operatorname{Pr}(\Omega) = 1.$
- 设 $\{A_i\}$ 是由有限个或可数个两两互不相交的集合构成的集族, 并且每一个集合都是 \sum 中的元素. 那么 $\Pr(\cup_i A_i) = \sum_i \Pr(A_i)$.

和用对称艺术解极率.

Q: 抽置硬币与次、求弄数次正面朝上的概率

Q1: 小偶数次,线果如何?

A .. 2: 1/2.

工工基本规率规则.

概率空间的有用规则:设 $(\Omega, \Sigma, Prob)$ 是一个概率空间,那么可以得到如下结论.

- (1) "全概率公式": 如果 $A \in \Sigma$, 那么 $\Pr(A) + \Pr(A^c) = 1$. 也就是说, $\Pr(A) = 1 \Pr(A^c)$.
- (2) $\Pr(A \cup B) = \Pr(A) + \Pr(B) \Pr(A \cap B)$. 这个式子可以进一步推广. 例 如果有三个事件, 那么

$$\Pr(A_1 \cup A_2 \cup A_3) = \Pr(A_1) + \Pr(A_2) + \Pr(A_3)$$

 $-\Pr(A_1 \cap A_2) - \Pr(A_1 \cap A_3)$

 $-\Pr(A_2 \cap A_3) + \Pr(A_1 \cap A_2 \cap A_3).$

这也被称为"容斥原理".

- (3) 如果 $A \subset B$, 那么 $\Pr(A) \leq \Pr(B)$. 然而, 如果 $A \in B$ 的真子集, 那么 不一定有 $\Pr(A) < \Pr(B)$, 但我们确定有 $\Pr(B) = \Pr(A) + \Pr(B \cap A^c)$, 其中 $B \cap A^c$ 指的是 B 中不属于 A 的所有元素.
- (4) 如果对于任意的 i, 均有 $A_i \subset B$, 那么 $\Pr(\cup_i A_i) \leq \Pr(B)$.
- Q:现在了名同学、现要求其离开座位金部户随机打乱建生。可小V或小乙园到原座的概率。(客厅原理)
 P=P(U)+P(C)-P(U)

$$=\frac{1}{27}+\frac{1}{27}-\frac{(\times 1\times 25\times \cdots \times 1)}{27\times 26\times \cdots \times 1}$$

 $=\frac{17}{234}$

2.b. 代数注间和石代教.(Sigma)

选择公理:

选择公理的定义

选择公理可以用多种等价的方式来表述,其中最常见的形式是:

• 选择公理:对于任意的非空集合族 $\{A_i\}_{i\in I}$,如果每个集合 A_i 都是非空的,那么存在一 个选择函数 f,使得对于每个 $i \in I$,有 $f(i) \in A_i$ 。

换句话说,如果我们有一族非空集合,那么我们可以从每个集合中选择一个元素,形成一个新 的集合。

对于可数/有限集合理,因为我们知道如何遍历指标集 但对于不可数算则不然

首先很容易知道,对于不可数事件,无法分配概率 (飞標扎圆蓝)

⇒为了解决这个问题,我们决定重新定义"事件" 1 6代数.

设 Ω 是一个集合, Σ 是由 Ω 的子集构成的一个非空集合. 那么在如下前提下, Σ (1) 如果 $A \in \Sigma$, 那么有 $A^c \in \Sigma$. \nearrow 补算 / 注 是一个 σ 代数.

- (2) Σ 的子集的可数并仍属于 Σ : 如果每一个 A_i 均满足 $A_i \in \Sigma$, 那么 $\bigcup_{i=1}^{\infty} A_i \in \Sigma.$

延招:(1) 夕和52 6 区

(2) 互的子集不仅对可数并封闭,可数交布是.

筝例:①对于任意·□和有6代数于 = \p/, \p/ 的:有/无事发生(影响代数)

2. 包含一个单元素集合的 σ -代数:

- 例如, $\mathcal{F}_2 = \{\emptyset, \{1\}, \{2,3\}, \Omega\}$
- 这个 σ -代数包含了样本空间中一个单独的元素 $\{1\}$ 及其补集 $\{2,3\}$ 。

3. 包含两个单元素集合的 σ -代数:

- 例如, $\mathcal{F}_3 = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{3\}, \{1,3\}, \{2,3\}, \Omega\}$
- 这个 σ -代数更复杂,包含了样本空间中两个单独的元素 $\{1\}$ 和 $\{2\}$ 及其所有可能的并集。

(9) F = P(元), P(元)为元之幂集(最大")

6代数至(或于)中的每一个元素都是1个事件

(柯尔莫戈洛夫的) 概率公理: 设 Σ 是结果空间 Ω 的一个 σ 代数. 我们可以定义一个概率函数 Prob : $\Sigma \to [0,1]$. 换言之, 可以为 Σ 中满足以下性质的每个元素分配一个 0 和 1 之间的概率.

- (1) 对于任意的事件 $A \in \Sigma$, 均有 $0 \leq \Pr(A) \leq 1$. 有些教材会称之为<mark>概率</mark> **第一公理**.
- (2) 如果 Ω 是结果空间, 那么 $Pr(\Omega) = 1$. 这有时被称为概率第二公理.
- (3) 如果 $\{A_i\}$ 是 Σ 中可数个两两互不相交的集合,那么 $\Pr(\cup_i A_i) = \sum_i \Pr(A_i)$. 你应该能够想到,这通常被称为概率第三公理. 由此可以直接推出的一个重要结果是全概率公式,稍后我们将更详细地讨论: $\Pr(A) + \Pr(A^c) = 1$. 另外,如果 $A \subset B$,那么 $\Pr(A) \leqslant \Pr(B)$.

教材中提到一个有趣的反证"概率第三公理"只满足可数可加性"的方法。

对于不可数集, 必须把正的概率分配给不可数个事件. 我们看一下事件 A_n , 它是 A 中所有概率属于 $(\frac{1}{n+1}, \frac{1}{n}]$ 的元素的集合. 像 A_n 这样的子集有可数多个; 因为 A 中每个事件的概率都是正的, 所以每个事件都一定属于某个 A_n . 因此

$$A = \bigcup_{n=1}^{\infty} A_n.$$

那么至少有一个 A_n 包含了无穷多个元素, 否则 A 中只能包含可数个元素 (我们会用到集合论附录中的一些结果, 尤其是"可数集的可数并包含了可数多个元素").

91

72 第2章 基本概率定律

因此, 存在某个 m 使得 A_m 中包含无穷多个元素, 并且每个元素的概率至少为 $\frac{1}{m+1}$. 我们得出了一个矛盾 —— 我们刚刚证明了 A_m 的概率为无穷大, 但这是不可能的!