Vision in Man and Machine

Part 2 The Human Visual Pathways and Early Feature Processing

Heiko Wersing

Honda Research Institute Europe GmbH

Human visual pathways 1

The human visual system

- Eyes → Retina
 - Sensor array
- LGN
 - Thalamic relay station
- Primary visual cortex
 - First visual area: V1
 - **Topographical** organization
 - Left-right separation
- Secondary and association cortex
 - Intermediate and high-level visual representations

Cortex Areas - Lobes

Human visual pathways 3

The eye and retina

Neurons

- Cell body integrates electrical signals from dendrites
- Axon projects to other neurons
- Action potentials (spikes) travel along the axons
- Synapses control the signal transmission by chemical signalling

Human visual pathways 5

The retinal neural structure

- Powerful computation architecture
- Photoreceptors: Rods and Cones
- Rods: ~120 million High sensitivity
- Cones: ~8 million Lower sensitivity Color vision

Receptor distribution on the retina

- Fovea has highest cone density
- Receptor distribution is not completely regular

Human visual pathways 7

Spotting the blind spot

Localizing functions - Phrenology

Human visual pathways 9

Localizing functions – Visual cortex areas

A large part of the brain deals with visual information (macaque monkey >50% van Essen 1990)

Localizing functions – Ventral and dorsal pathways

What and where separation in visual processing (Ungerleider & Mishkin 1982)

Human visual pathways 11

Visual Areas **Dorsal** VIP stream: Area "where" V3 V4 TEO **Ventral stream:** Area TE "what"

Magnocellular(M) and parvocellular(P) pathways

- Retinal ganglion cells can be differentiated into M and P cells
- Depends on the projection to LGN

Property	P cells	M cells
Contrast Sensitivity	lower	higher
Receptive field size	smaller	higher
Temporal resolution	lower	higher
Conduction velocity	lower	higher
Response to luminance contrast	tonic (sustained)	phasic (transient)
Spectral selectivity	yes	no

Human visual pathways 13

Magnocellular(M) and parvocellular(P) pathways

Figure 3.20

Simplified diagram of the visual pathways. Signals flow from right to left, starting with the M and P ganglion cells on the far right, which feed into the parietal and temporal pathways, respectively. V1 is the striate cortex, and V2, V3, and V4 are extrastriate visual areas; other extrastriate areas are IT, inferotemporal cortex; MT, medial temporal cortex; and Parietal, which refers to other areas in the parietal lobe. The visual qualities most strongly associated with areas MT, V4, and IT are indicated.

Visual Agnosias: Evidence for visual modularity

- Agnosia: Loss of the ability to recognize objects/scenes/people although the initial visual sensory processing is intact
- Simultanagnosia: Inability to see more than one object at the same time
- Prosopagnosia: Inability to recognize faces
- Associative visual agnosia: Inability to recognize objects
- Hemineglect: Lack of spatial attention
- Blindsight: Response to visual stimuli without awareness

"a man looking at mountains"

Human visual pathways 15

Acting without "recognizing"

Visual Form Agnosia - DF Deficit in 'seeing' but 'action' intact

Parietal pathway is serving motor-guided behavior "how vs. where" (Milner & Goodale 1995)

Early feature processing

- How does the visual cortex compute/generate visual information ?
- How can we understand the basic visual processing principles?
- What determines the "usefulness" of a visual representation ?

Human visual pathways 17

Human visual pathways 18

Receptive field structure of ganglion cells

B. OFF-CENTER ON-SURROUND CELLS

Human visual pathways 19

Hubel and Wiesel's discovery

"Simple" and "complex" cells in the cat visual cortex

→ Video

Human visual pathways 21

Simple cells continued Relative Sensitivity 10 0 -5 Retina Cortical LGN -10 Area V1 Relative Sensitivity 10 5 0 -5 -10 -2 Center-Relative Sensitivity Receptive Fields Surround Simple Cell 10 Cells 0 -5 -10 Degrees of Visual Angle

Complex cells

Properties of complex cells

- Nonlinearity
- Motion sensitivity
- Position insensitivity
- Spatial extension

Human visual pathways 23

Hypercomplex cells

End-stopping

Architecture of V1 – Striate cortex

- Retinotopic mapping
- Ocular dominance stripes

Cortical Column

Human visual pathways 27

Spatial frequencies Human high Macaque Monkey Contrast Sensitivity Human Infant 6 mo 3 mo. 1 mo low 100 Spatial Frequency (cycles/degree) C. COMPARATIVE SENSITIVITY

Spatial frequency-based image decomposition

Human visual pathways 29

Hybrid images

Contrast sensitivity functions

Human visual pathways 31

Two-dimensional Gabor function

$$f(x) = e^{\left(-\frac{x^2}{\sigma^2}\right)} \cos(2\pi\omega x)$$

$$f(x, y) = e^{\left(-\left(\frac{x^2 + y^2}{\sigma^2}\right)\right)} \cos(2\pi\omega x)$$

General 2D Gabor

$$g(x, y; \lambda, \theta, \psi, \sigma, \gamma) = \exp\left(-\frac{x'^2 + \gamma^2 y'^2}{2\sigma^2}\right) \cos\left(2\pi \frac{x'}{\lambda} + \psi\right)$$

$$x' = x\cos\theta + y\sin\theta;$$

$$y' = -x\sin\theta + y\cos\theta_1$$

Human visual pathways 33

Convolution and receptive fields

A. Grayscale Image

C. Vertical Edge Operator

E. Convolution of Image with Vertical Edge Operator

				_	
10	10	02	02	10	10
10	10	02	02	10	10
02	02	02	02	02	02
02	02	02	02	02	02
10	10	02	02	10	10
10	10	02	02	10	10

B. Image Intensities

D. Horizontal Edge Operator

F. Convolution of Image with Horizontal Edge Operator

Basic recognition problem

Stability (invariance)

Selectivity

ქლოიn visual pathways 35

Edge feature detector

Feature Selectivity – Stability Dilemma

Low Threshold = High Stability

Hyman visual pathways 37

Feature Selectivity – Stability Dilemma

Low Stability

පුලman visual pathways 38

Why does V1 detect "features"?

- Robust information
- Conservation of information
- Selectivity versus stability
- → Practical tutorial