CMSC 27100 - Problem Set 2

Sohini Banerjee

October 16, 2023

1

- injective but not surjective: $f: \mathbb{Z} \mapsto \mathbb{Z}$ such that f(x) = 2x
- surjective but not injective: $f: \mathbb{Z} \mapsto \mathbb{Z}$ such that $f(x) = x^3 x$

2

We must show that if f is a bijection, then f^{-1} exists, and that if f^{-1} exists, then f is a bijection.

- Starting with the former, assume f is a bijection. This means that for any $y \in B$, there exists $x \in A$ such that f(x) = y (because f is surjective) and x is unique (because f is injective), allowing us to define $g: B \mapsto A$ such that g(y) = x. Given this, we know that for all $x \in A$, g(f(x)) = g(y) = x and for all $y \in B$, f(g(y)) = f(x) = y. Thus, we have shown that if f is a bijection, then $g = f^{-1}$ exists.
- For the latter, assume f^{-1} exists. Defining $g: B \mapsto A$ as $g = f^{-1}$ we know that for all $x \in A$, g(f(x)) = x and for all $y \in B$, f(g(y)) = y. Assume $x_1 \in A$ and $x_2 \in A$. If $f(x_1) = f(x_2)$ where $f(x_1) = y$ and $f(x_2) = y$, we know that $g(f(x_1)) = x_1$ and $g(f(x_2)) = x_2$, so $g(y) = x_1$ and $g(y) = x_2$. Since g is a well-defined function, each element $y \in B$ can only be mapped to a single element $x \in A$, so $x_1 = x_2$. Thus, f is injective. For all $y \in B$, we know there exists $x \in A$ such that g(y) = x, and since $g = f^{-1}$, then f(g(y)) = f(x) = y. Thus, f is surjective. Since f is both injective and surjective, it is bijective.

We have shown that if f is a bijection, then f^{-1} exists, and that if f^{-1} exists, then f is a bijection. This means that a function has an inverse if and only if it is a bijection.

3

$(A \setminus B) \setminus (= A^c \cap B^c \cap C^c)$ $A \setminus (B \setminus C) = A \cap (B \cap C^c)^c$ $A \cap C = \emptyset$

The venn diagram shows that with no restrictions for A, B, and C, $(A \setminus B) \setminus C \neq A \setminus (B \setminus C)$, unless $A \cap C = \emptyset$. We can formalize this proof as follows:

 $(A \setminus B) \setminus C$ is equivalent to $(A \cap B^C) \cap C^C$, which is the same as $A \cap B^C \cap C^C$.

 $A\setminus (B\setminus C) \text{ is equivalent to } A\cap (B\cap C^C)^C, \text{ which is the same as } A\cap (B^C\cup C). \text{ Distributing the } \cap, \text{ we get } (A\cap B^C)\cup (A\cap C). \text{ We can rewrite this as } ((A\cap B^C)\cap C)\cup ((A\cap B^C)\cap C^C)\cup ((A\cap C)\cap B)\cup ((A\cap C)\cap B^C)\cup (A\cap B^C\cap C)\cup (A\cap B^C\cap C)\cup (A\cap B\cap C)\cup (A\cap B^C\cap C), \text{ which can be simplified to and rewritten as } (A\cap B^C\cap C^C)\cup (A\cap (B^C\cap C))\cup ((A\cap (B\cap C)). \text{ This is equivalent to } (A\cap B^C\cap C^C)\cup (A\cap ((B^C\cap C)\cup (B\cap C))). \text{ This simplifies to } (A\cap B^C\cap C^C)\cup (A\cap C).$

For $A \cap B^C \cap C^C = (A \cap B^C \cap C^C) \cup (A \cap C)$, $A \cap C = \emptyset$. Thus, $A \cap C = \emptyset$ is a necessary and sufficient condition for $(A \setminus B) \setminus C = A \setminus (B \setminus C)$ to hold.

4

$$GCD(84, 63) = GCD(63, 84 \text{ mod } 63) = GCD(63, 21) = GCD(21, 63 \text{ mod } 21) = GCD(21, 0) = \boxed{21}$$

5

Let x = 20, y = 5, and z = 8. Then, $x \mid (y \cdot z)$ is true because $20 \mid (5 \cdot 8)$ or $20 \mid 40$. However, $x \mid y \lor x \mid z$ is false because $20 \mid 5 \lor 20 \mid 8$ is false. Therefore, the statement $x \mid (y \cdot z) \Rightarrow x \mid y \lor x \mid z$ is false.

6

We need to prove that for all integers a, b, if 3a - 5b = 31, then GCD(a, b) $\neq 17$. We can prove this by proving the contrapositive. Assume GCD(a, b) = 17. By definition, $17 \mid a$ and $17 \mid b$, so there exists integers d_1 and d_2 such that $17 \cdot d_1 = a$ and $17 \cdot d_2 = b$. Substituting a and b into 3a - 5b = 31, we get that $3(17 \cdot d_1) - 5(17 \cdot d_2) = 31$, which we can rewrite as $17(3d_1 - 5d_2) = 31$. We defined d_1 and d_2 as divisors, so $3d_1 - 5d_2$ must be an integer, which implies $17 \mid 31$, which is false, so 3a - 5b = 31 is false. Thus, we have proven the contrapositive true, and so for all integers a, b, if 3a - 5b = 31, then GCD(a, b) $\neq 17$ is true.