2D convolution

Circular convolution

The circular convolution of A and B produces a third matrix W.

The elements of W can be computed by following the steps below:

				_	$\omega_{\mathbf{L}}$	0
₩ w	remaining elements of are computed by sliding	33 35 37 30	33 32 31 30			
ade	temporary matrix and ling the products of erposed elements		73 77 77 70 53 55 57 50	23		23 27 24 20
Sul	Wo1		03 02 01 00 12 13	13		13 15 17 70
	∞ oT	1	33 32 31 30 22 23	03		02 05 91 00 17 15 13
			22 23 23 22 24 20 32 33	31	30 30 30	35 32 31 30 31 32 33
		T3 T5 T7 70	T3 T5 T7 T0	23	3 22 24 20	23 22 24 10
		03 02 01 00	03 02 01 00	F:	3 15 77 70	T3 T5 T7 T0
				03	02 01 00	03 02 01 00

By repeating step 6, we obtain all elements of W: ധം Woz ω_{o_1} ധംം W13 Wiz ω_{0} WII WZZ WZ1 Wzz SSW Wzz Wzz Wzo WZI

 $\begin{bmatrix} \mathbf{w}_{0} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{0} & \mathbf{c}_{3} & \mathbf{c}_{2} & \mathbf{c}_{1} \\ \mathbf{c}_{1} & \mathbf{c}_{0} & \mathbf{c}_{3} & \mathbf{c}_{2} \\ \mathbf{c}_{2} & \mathbf{c}_{1} & \mathbf{c}_{0} & \mathbf{c}_{3} \\ \mathbf{c}_{3} & \mathbf{c}_{2} & \mathbf{c}_{1} & \mathbf{c}_{0} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{0} \\ \mathbf{c}_{3} \\ \mathbf{c}_{3} \end{bmatrix}$
$\omega_1 = C_1 C_0 C_3 C_2 A_1$
$\begin{bmatrix} \mathbf{\omega}_3 \end{bmatrix} \begin{bmatrix} \mathbf{c}_3 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_0 \end{bmatrix} \begin{bmatrix} \mathbf{\omega}_3 \end{bmatrix}$