Oblika in dimenzije Zemlje

Osnovni namen:

- Določiti prostorske odnose naravnih in umetnih objektov in pojavov v prostoru.
- Prikazati položaj in obliko zemeljske površine in objektov ter pojavov v primerni metrični obliki.

življenski prostor

predavalnica-stavba-ulica-soseska-mesto-pokrajina-celina-Zemlja Zemlja-celina-pokrajina-mesto-soseska-ulica-stavba-predavalnica

ZAKAJ določitev oblike in dimenzij Zemlje - 2

Postopek:

Določimo obliko in dimenzije Zemlje.

Zemljo opišemo s fizikalno ali matematično predstavljivo ploskvijo.

Definiramo koordinatne sisteme.

Koordinatne sisteme povežemo z referenčno ploskvijo - definiramo koordinatni prostor.

 Določimo obliko, velikost objekta in njegov položaj na referenčni ploskvi v numerični in grafični obliki.

Izvedemo meritve v **merskem prostoru**.

Merski prostor transformiramo v koordinatni prostor.

Objekt prikažemo v 2D, 3D grafiki (načrti, karte, virtualni prostor ...)

Zgodnje predstave:

Omejeno življenjsko območje npr. ukrivljeno ploščo nosijo štirje sloni.

Odkritje oblike :

- Tales (625 do 547 p.n.š.) Zemlja je telo v obliki diska, ki plava na neskončnem oceanu
- Pitagora (569 do 475 p.n.š) O Zemlji kot krogli je sklepal na osnovi delnih luninih mrkov.
- Aristotel (384 do 322 p.n.š) Prvi navaja razloge za in proti kroglasti obliki Zemlje.

Dimenzije Zemlje - zgodovina - 1

 Eratosten (276 do 195 p.n.š.)
Dimenzije Zemlje je določil na osnovi merjenega središčnega kota in dolžine temu kotu pripadajočega loka.

Metoda se je ohranila do danes.

kot - dolžina sence v vodnjaku
(α = 1/50 polnega kota)

 dolžina loka - število obratov kolesa (5000 stadijev)

rezultat: o = 250 000 stadijev
R = 5909 km (napaka 10 %)

- Arabci (827) Muhamed Ibn Musen, Ibn Šakira
- kot izmerjen na osnovi opazovanja višinskega kota do zvezd
- dolžina loka zakoličena v smeri S-J in izmerjena z lesenimi latami v obeh smereh
- rezultat: R = 6753 km (napaka 10 %)
- Fernel (1528)
- kot izmerjen na osnovi opazovanja višinskega kota do zvezd s pomočjo kvadranta
- dolžina loka Pariz Amiens izmerjena s štetjem števila obra kolesa voza
- rezultat: R = 6373 km (napaka 0.1 %)

Določen je model Zemlje, ki izpolnjuje postavljene pogoje:

- Merjenja morajo biti izražena in uporabljiva v izbranem modelu.
- Stanje in spremembe površine Zemlje morajo biti predstavljive.
- Model mora biti enolično določen.
- Model je zadosten približek dejanski obliki Zemlje.

Fizična površina Zemlje je močno razčlenjena, velike spremembe v času, kot model ja tako telo neuporabno!

Fizikalna in matematična obravnava modela Zemlje:

- Merjenja se nanašajo na zemeljsko težnost fizikalni model primerjalna ploskev je fizikalno definirana - geoid.
- Izračuni se izvedejo v geometričnem prostoru primerjalna ploskev je matematično definirana elipsoid, krogla.

Razčlenjena fizična površina, z instrumenti merimo v zemeljskem težnostnem polju.

Merski prostor je definiran na osnovi zemeljske težnosti.

Koordinatni prostor je geometrijski prostor.

topografija

geoid

elipsoid

Katedra za geodezijo

GEOID - 1

 Geoid je izhodiščna ekvipotencialna ploskev, to je ploskev, ki je v vsaki svoji točki pravokotna na vektor sile teže in sovpada s srednjim nivojem morske gladine.

geoid $W = W_0 = konst.$ razlika potencialov dW = -gdn

GEOID - 2

Vpliv centripetalne in centrifugalne sile in nehomogenosti mase

- ekvipotencialne ploskve niso paralelne, vertikale so krivulje
- ploskev je analitično neopisljiva
- prikaz ploskve je mogoč s primerjavo z analitično opisljivo ploskvijo (geoidne višine - geoidne ondulacije)

zmanjšanje geoidne ondulacije

globalni geoid lokalni geoid

Rotacijski elipsoid je matematično definirana ploskev, ki nastane z rotacijo elipse meridianov okrog male polosi. Rotacijska os je običajno vzporedna rotacijski osi Zemlje.

Parametri elipsoida

a ... velika polos

b ... mala polos

f ... prva sploščenost f=(a-b)/a

Značilnosti

- geometrija: dve prostostni stopnji
- primerna primerjalna ploskev ob dobrem sovpadanju z geoidom
- vertikalna odstopanja od ploskve geoida so odvisna od dimenzij elipsoida (do 100 m)

Velika odstopanja med ploskvijo geoida in ploskvijo elipsoida lahko "z dogovorom" zmanjšamo. Definiramo dve skupini elipsoidov:

- *globalni* elipsoidi (GRS 1967, WGS 84, GRS 80 (D96) ...)
- *lokalni* elipsoidi (Everest, Bessel (D48) ...)

Leto	Ime	a	1/f	v uporabi
1830	Everest	6377276 , 345	300,8017	IND, MAL, PK, SGP
1830	Airy	6377563 , 396	299,3249646	GB,
1841	Bessel	6377397 , 155	299,1528128	D, A, CH, YU, ETH,
				RI, J, ROK,
1866	Clarke	6378206 , 4	294,9786982	USA, CND
1880	Clarke	6378249,145	293,465	F
1910	Hayford	6378388,0	297,0	USA
1924	Mednarodni	6378388,0	297,0	DK,B,I,T,FIN,L,
	(Hayford)			
1940	Krasovski	6378245 , 0	298,3	RUS, PL, CZ, SK,
	(Красовски)			BG,RO,LT,LV,EST
1969	Južnoameriški 1969	6378160,0	298,25	Južna Amerika
1967	GRS67	6378160,0	298,247167427	mednarodni
1960	WGS60	6378165,0	298,3	USA (MO)
1966	WGS66	6378145,0	298,25	USA (MO)
1972	WGS72	6378135 , 0	298,26	USA (MO)
1984	WGS84	6378137,0	298,257223563	USA (MO)
1980	GRS80	6378137,0	298,257222101	mednarodni

- Primerjalna ploskev za merjenja je geoid.
- Primerjalna ploskev za računanje je elipsoid.

Povezavo geoid-elipsoid lahko realiziramo:

- z geoidnimi višinami $N: \Sigma N = 0$
- pod *pogojem enakosti volumnov*

Quasigeoid Model EGG97

KROGLA - 1

Krogla je najenostavnejša ploskev, s katero opišemo Zemljo. Dimenzije *Zemljine krogle* so odvisne od izbranega elipsoida:

izbrani Zemljin elipsoid v celoti aproksimiramo s kroglo

$$R_P = \frac{a+a+b}{3}$$
 enakost površin $R_V = \sqrt[3]{a^2b}$ enakost volumnov

Značilnosti

vertikalna oddaljenost od ploskve geoida tudi do 20 km

Razlike v dolžini na elipsoidu (S_E) in krogli (S_K) so za območje Slovenije naslednje:

 $\Delta S = 0,001$ m pri dolžini 104 km, $\Delta S = 0,01$ m pri dolžini 185 km, $\Delta S = 0,1$ m pri dolžini 328 km, $\Delta S = 1,0$ m pri dolžini 584 km.

KROGLA - 1

$$R = \sqrt{M \cdot N}$$

R srednji radij ukrivljenosti v T

M krivinski polmer krajevnega meridiana T

N krivinski polmer 1. vertikala v T

Značilnosti

- geometrija: ena prostostna stopnja,
- najenostavnejši opis oblike Zemlje,
- enostavni približki in redukcije merskih količin.