线性代数 B(A卷答题卡)

			考生学号												
	姓名	班级													
ĺ	灶石	红蚁	0	0	0	0	0	0	0	0	0	0	0	0	0
	•		1	1	1	1	1	1	1	1	1	1	1	1	1
		1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应	2	2	2	2	2	2	2	2	2	2	2	2	2
		考号信息点。	3	3	3	3	3	3	3	3	3	3	3	3	3
填	正确填涂	注 2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠	4	4	4	4	4	4	4	4	4	4	4	4	4
涂	!	意 作解答题:字体工整、笔迹清楚。	5	5	5	5	5	5	5	5	5	5	5	5	5
样	错误填涂	事 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域	6	6	6	6	6	6	6	6	6	6	6	6	6
例	# \$ %	项 写的答题无效;在草稿纸、试题卷上答题无效。	7	7	7	7	7	7	7	7	7	7	7	7	7
		4.保持卡面清洁,不要折叠、不要弄破。	8	8	8	8	8	8	8	8	8	8	8	8	8
			9	9	9	9	9	9	9	9	9	9	9	9	9

请将选择题、填空题的答案填于此:

一、单项选择题:

- (1) _____ (2) ____ (3) ____ (4) ____
- (1) _____ (2) ____ (3) ____ (4) ____

符号说明: det(A) 指方阵 A 的行列式; A^* 指方阵 A 的伴随矩阵; A^T 指矩阵 A 的转置矩阵; R(A) 指矩阵 A 的 秩; E 为单位矩阵。

─、单项选择题(每小题 3 分, 共 12 分)

(1) 若矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & a & -1 & 2 \\ 0 & -1 & a & 2 \\ 1 & 0 & -1 & 2 \end{pmatrix}$$
 的秩为 $R(\mathbf{A}) = 2$,则 a 的值为_____.

- (A) 0
- (B) 0 或-1 (C)-1
- (D)-1 或 1

(2) 设**A**为正交矩阵,且|A| = -1,则**A*** = _____.

- (A) $\boldsymbol{A}^{\mathrm{T}}$ (B) $-\boldsymbol{A}^{\mathrm{T}}$ (C) \boldsymbol{A}
- (D) $-\boldsymbol{A}$

(3) 设 $\alpha, \beta \in \mathbb{R}$ 维列向量, $\alpha^{T}\beta \neq 0$,n 阶方阵 $A = E + \alpha \beta^{T}$,n > 3,则在 A 的 n 个特征值中,必然

- (A) 有 n 个特征值等于 1
- (B) 有n-1个特征值等于1
- (C) 有1个特征值等于1
- (D) 没有 1 个特征值等于 1
- (4) 设 \mathbf{A} , \mathbf{B} 为n 阶方阵,且秩相等,即 $R(\mathbf{A}) = R(\mathbf{B})$,则_____.
 - (A) $R(\boldsymbol{A} \boldsymbol{B}) = 0$,
- (B) $R(\mathbf{A} + \mathbf{B}) = 2R(\mathbf{A})$,
- (C) $R(\mathbf{A}, \mathbf{B}) = 2R(\mathbf{A})$, (D) $R(\mathbf{A}, \mathbf{B}) \le R(\mathbf{A}) + R(\mathbf{B})$

二、填空题(每小题 3 分, 共 12 分)

- |(1) 设 \mathbf{A}^* 是n阶方阵 \mathbf{A} 的伴随矩阵,行列式 $|\mathbf{A}|=2$,则 $|2\mathbf{A}^*|=$ ______.
- (2) D中第 2 行元素的代数余子式的和 $\sum_{j=1}^{4} A_{2j} = 1$, 其中

$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix}.$$

[(3)] 已知实二次型 $f(x_1x_2,x_3) = x_1^2 + 4x_2^1 + 2x_3^2 + 2ax_1x_2 + 2x_2x_3$ 正定,则实常数 a 的取值范围为__

$$m{A} = egin{pmatrix} a & 0 & \cdots & 0 \\ 0 & a & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & a \end{pmatrix}, \quad m{B} = egin{pmatrix} 0 & \cdots & 0 & b \\ 0 & \cdots & b & 0 \\ \vdots & \ddots & \vdots & \vdots \\ b & \cdots & 0 & 0 \end{pmatrix}.$$

- 三、计算题(每小题 10 分, 共 60 分)
- (1) (本题 10 分) 计算 n 阶行列式

$$D_n = \begin{vmatrix} x_1 - m & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - m & x_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n - m \end{vmatrix}.$$

$$\begin{pmatrix} 2 & 2 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \boldsymbol{X} = \begin{pmatrix} 1 & 4 \\ -1 & 3 \\ 3 & 2 \end{pmatrix}.$$

(3) (本题 10 分) 设非齐次线性方程组 $\begin{cases} 2x_1 + x_2 + a_3x_3 + a_4x_4 = d_1 \\ x_1 - 2x_2 + b_3x_3 + b_4x_4 = d_2 \end{cases}$ 有 3 个解向量 $c_1x_1 + c_2x_2 + 2x_3 - 3x_4 = d_3$

$$\boldsymbol{\eta}_1 = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 1 \end{pmatrix}, \quad \boldsymbol{\eta}_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{\eta}_3 = \begin{pmatrix} 3 \\ 2 \\ 4 \\ 2 \end{pmatrix}$$

求此方程组系数矩阵的秩,并求该方程组的通解(其中 a_i, b_j, c_k, d_t 为已知常数).

武汉大学 2020-2021 学年第一学期期末考试

线性代数 B(A卷答题卡)

			考 生 学 号												
	姓名	班级 1	0	0	0	0	0	0	0	0	0	0	0	0	0
填涂样例	! 错误填涂	1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的 考号信息点。 注 2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔 意 作解答题:字体工整、笔迹清楚。 事 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书 页的答题无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠、不要弄破。	3 4 5	2 3 4 5 6 7 8 9	2 3 4 5 6 7 8 9	2 3 4 5 6 7 8 9	2 3 4 5 6 7 8 9	23456789	2 3 4 5 6 7 8 9	2 3 4 5 6 7 8 9	23456789	23456789	23456789	23456789	23456789

无解、或有无穷多解. 在有无穷多解时,求该非齐次方程组的通解并写出对应的齐次线性方程组的基础解系.

(5) (本题 10 分)已知实二次型 $f(x_1,x_2,x_3)=2x_1^2+3x_2^2+3x_3^2+2\lambda x_2x_3$ ($\lambda>0$)经过正交变换 ${\pmb x}={\pmb Q}{\pmb y}$,化为标准形 $y_1^2+2y_2^2+5y_3^2$,求实参数 λ 及正交矩阵 ${\pmb Q}$.

$$\begin{vmatrix} \boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{\alpha}_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{\beta}_1 = \begin{pmatrix} 1 \\ -1 \\ a \\ 1 \end{pmatrix}, \quad \boldsymbol{\beta}_2 = \begin{pmatrix} -1 \\ 1 \\ 2-a \\ 1 \end{pmatrix}, \quad \boldsymbol{\beta}_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{\beta}_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

四、证明题(每题8分,共16分)

(1) (本题 8 分)设 $\alpha_1, \alpha_2, \alpha_3$ 是欧氏空间 V 的标准正交基,证明:

$$\boldsymbol{\beta}_1 = \frac{1}{3}(2\boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3), \quad \boldsymbol{\beta}_2 = \frac{1}{3}(2\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3), \quad \boldsymbol{\beta}_3 = \frac{1}{3}(\boldsymbol{\alpha}_1 - 2\boldsymbol{\alpha}_2 - 2\boldsymbol{\alpha}_3) \, ,$$

也是V的标准正交基.

(2) (本题 8 分)设 $f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ 是 n 元实二次型,存在 n 维实列向量 $\mathbf{x}_1, \mathbf{x}_2$,使 $\mathbf{x}_1^{\mathrm{T}} \mathbf{A} \mathbf{x}_1 > 0$, $\mathbf{x}_2^{\mathrm{T}} \mathbf{A} \mathbf{x}_2 < 0$,证明: 存在 n 维列实向量 $\mathbf{x}_0 \neq \mathbf{0}$,使 $\mathbf{x}_0^{\mathrm{T}} \mathbf{A} \mathbf{x}_0 = 0$.