Integration Techniques

(fast tut) Integration by Substitution: 4> Inverse of Chain Rule Recall chain rule: $\frac{d}{dx}f(g(x)) = f'(g(x)), g'(x)$

By applying FTC, we get Sf'(g(n)), g'(n) dn = f(g(n)) + C

Steps

1. Look if the occurrence of a function (AND) it's derivative can be found e.g. g(x) l(g(x)) in the above

2. Let u=g(x) s.t. du=g(x)dx

3. Replace everything until we only depend on a instead of z

f'(g(x)) g(x) dx = f'(u) du f'(u) should be seensier

to apply integration to

 $\int f'(u)du = f(u) + 0$

5. Soln is in terms of u -> Make substitution (u=g(x)) for original answer $\int f'(g(x)) g'(x) dx = f(g(x)) + C,$

final cons

Integration by Ports

>> Inverse of product rule

Recall product rule: $\frac{d}{dx}(f(x).g(x)) = f(x)g(x) + g(x)f(x)$

 $\int \frac{d}{dx} (f(x).g(x))dx = f(x)g(x) + C \quad [FTC]$

 $= \int f(x)g(x) dx + \int g(x) f(x) dx$

Hence, $\int f(x)g(x)dx = f(x)g(x) - \int f(x)g(x)dx$

Let $u=f(x) \longrightarrow du = f'(x)dx$ $V = g(x) \longrightarrow dV = g'(x)dx$

(*) Sudv = uv - Svdu, $\int_a^b udv = uv \Big|_a^b - \int_a^b vdu$

Steps

1. Choose du l u.

tip: choose u to be whichever for easier to differentiate choose dv // integrate

2. Compute V by integrating $\int dV = \int f(x) dx$

3. Compute du by differentiating u.

4. Substitute into (x) appropriately.

Partial Fractions

goal: Break rational functions (quotient of polynomials) into simpler pieces which can integrated more easily

Decomposition

Let p & q be polynomial forms, deg(q(x)) > deg(p(x))Suppose q(x) can be factored into products of linear forms 5-t. $q(x) = (a_1x + b_1)(a_2x + b_2) \cdots (a_nx + b_n)$

 χ Want $\frac{P(x)}{q(x)} = \frac{C_1}{\alpha_1 x + b_1} - \frac{C_2}{\alpha_2 x + b_2} + \dots + \frac{C_n}{\alpha_n x + b_n} \frac{p(x)}{lin. factors}$

where C1,C2, ~~, Cn ER (constants)

* If q(x) has a repeated linear factor (ax+b), n>1

decompose the factor as follows

C1

C2

(ax+b)

(ax+b)

(ax+b)

* f q(x) has an irreducible quadratic factor ax2+bx+c decomposition must contain the term

 $\frac{Ax+B}{ax^2+bx+c} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$

Note: the common denominator in all these decompositions is the initial polynomial we were trying to decompose

Partial Fractions (continued)

Steps

1. Decompose as above

2. Solve for all constants

e.g. Supp. $\frac{P(x)}{q(x)} = \frac{A}{a_1x+b_1} + \frac{B}{a_2x+b_2}$

(i-e, q(x) = (ax +bi) (ax x +bz)

Want to find A&B s.t. A(a2x+b2)+B(a1x+b1)=P(x)

3. Integrate resulting decomposition

Q1. Find the indefinite integral $\int \frac{1}{(x-3)(x-2)} dx$.

Q2. Find the indefinite integral $\int \frac{1}{x^3 - x} dx$.

Improper Integrals

Definite integrals we bounds that are infinite or outside the domain of the integrand.

⊙ Supp. I is cont. on [a, ∞).

Then $\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$

DSupp. It is cont. on (-oo, b].

Then $\int_{-\infty}^{b} f(x) dx = \lim_{\alpha \to -\infty} \int_{\alpha}^{b} f(x) dx$

Improper integrals in OL2 converge if the corresponding limits exist & diverge otherwise

 \bigcirc Supp. f is conf. on $(-\infty, \infty)$

Then $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f(x) dx + \int_{0}^{\infty} f(x) dx$

= lim for (x)dx + lim for f(x)dx, cer

Integral 3 converges if & only if both limits exist

Q3. Determine whether the following integral converges or diverges.

$$\int_{e}^{\infty} \frac{1}{x \ln x} \ dx$$

Q4. Determine whether the following integral converges or diverges.

$$\int_{-\infty}^{\infty} \frac{x}{x^2 + 1} \ dx$$

Q5. Determine whether the following integral converges or diverges.

$$\int_0^\infty e^{-x} \ dx$$

Q6. Determine whether the following integral converges or diverges.

$$\int_0^2 \frac{1}{x^3} \ dx$$