Sistema de Alarme Assistido com Robot

Grupo 26:

- 93143 Miguel Nabais
- 93168 Ricardo Febra

Breve Introdução do Projeto

- Objetivo
- Funcionalidades

Este projeto tem o propósito de permitir o controlo de um robot num dado espaço quando há deteção de presença numa dada divisão. Desta maneira, numa app, o utilizador poderá confirmar a identidade do intruso, já que terá acesso a uma câmera presente no robot, bem como a possibilidade de alertar o intruso produzindo som.

A deteção de movimento realiza-se através de um sensor de ultrasom conectado a uma base de dados em tempo real, Firebase. Comunicação base: LoRa.

O robot, quando solicitado pelo utilizador, pode ser ativado através da aplicação e, por sua vez, controlado. Comunicação base: WiFi.

O que já existe

ESCAM PT205-R 2MP Wifi

Robot estático com o objetivo de passar despercebido num ambiente de casa. Através de uma aplicação é possível controlar a posição da cabeça, onde se encontra incorporada uma câmera.

Robot de vigilância ligado a rede privada 5G. Responsável por complementar tarefas de vigilância física do campus da Universidade de Vigo, Espanha. O robot é controlado remotamente através de uma sala de controlo montada dentro da universidade, com capacidade para visão térmica, vídeo de alta definição e visão panorâmica 360°.

ROBOTVIGIL: Robot Vigilante

Robot orientado para espaços interiores, capaz de recolher e enviar informação de sensores e vídeo de várias câmaras em tempo real. Oferece a possibilidade de ser operado remotamente ou instruído para realizar rondas de forma autónoma. O sistema é capaz de cooperar com outros robots e humanos.

Arquitetura do Projeto

Algoritmos Implementados

Arduino Uno ESP32 Arduino Leonardo state=[] Ligar à Firebase Start Está uma (mensagem a) Servidor es ser recebida? a correr? Nao Inicialização do Iniciar state=serial message sensor Servidor? Desliga servidor? Inicia Web Server Envio da primeira mensagem LoRa Tratamento de iterações no web O carro move se para state=="E O carro move se para trás avançar? Há algum evento tipo trigger Nao Houve clique ou já passou o tempo minimo carro move se nar no botão de Envia "F" para a direita recuar? de envio de mensagens arduino por UART Houve clique no botão de Envia "B" para esquerda2 Nao state=="V arduino por UART Houve clique no botão de Sim Envia "L" para Nao direita? arduino por UAR state=="M" Para os motores no botão de Envio de Envia "R" para sound? Continuar Musica arduino por UART mensagem LoRa Comeca Musica Sim Envia "M" para arduino por UART Toca Musica

Montagem

Bases de Dados

TTN (The Things Network):

 Base de dados (temporário) para dispositivos que comunicam via LoRa. Utilizado como intermediário entre o dispositivo LoRa e a base de dados Firebase. Recebe dados vindos do sensor de ultrasom -Variável: alarm status.

Firebase:

 Base de dados que resume todas as variáveis relacionadas com o projeto, que necessitem de ser conhecidas entre dispositivos (e.g., app <-> robot) - Variáveis: alarm_status, shut_down, start_server.

APP Descrição

A aplicação desenvolvida comprime-se em duas páginas/atividades. Primeira página:

- Dar a conhecer ao utilizador o status do alarme sensor de ultrasom. Se for detetado movimento a aplicação exibe "ALERT!ALERT!", e, caso contrário, exibe "Nothing to Report".
- Oferecer ao utilizador a possibilidade de ligar o servidor do robot. Assim, sempre que pretender é possível ligar-se ao robot, visualizar a stream e controlá-lo.

Segunda página:

- Exibe o servidor Web disponibilizado pelo robot. Desta forma é possível não só visualizar o que o robot dispõe à sua frente como controlá-lo. Também é oferecido ao utilizador a possibilidade de ligar/desligar o buzzer incorporado no robot.
- Permite ao utilizador controlar o servidor Web, na medida em que este o pode desligar, colocando o robot outra vez num estado em que apenas escuta a Firebase até receber instruções que digam o contrário, nomeadamente a nova ativação do servidor por pedido do utilizador (na primeira página).
- Realizar o refresh da página Web onde o servidor Web se encontra aberto, não sendo necessário retornar à primeira página para o fazer.

Composição da APP

Primeira Página:

Segunda Página:

Conclusão

O sistema implementado teve bastantes dificuldade na sua implementação, quer devido ao seu grande consumo de energia quer na complexidade do mesmo originada pela grande quantidade de ligações presentes no mesmo.

O código implementado no ESP32-cam permitiu-nos retirar um sensor do circuito, já que o mesmo hospeda um web server. Sendo o controlo do carro feito a partir do web site hospedado no web server, a comunicação com o Arduino Uno (de maneira a ser feito o controlo dos motores) pode ser feita diretamente entre o ESP32-cam e o arduino uno.

Apesar disto, ainda há algumas funcionalidades e melhorias que podem ser adicionadas ao sistema exposto:

- Regular a velocidade do carro a partir da aplicação
- Controlo do carro fora da rede local (fazer o encaminhamento de porta através do router da rede local, por forma a abrir o servidor criado pelo ESP32 num IP público)