Explicit CN Soundness Proof

Dhruv Makwana

June 18, 2021

1 Weakening

If $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ and $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$ then $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$.

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$

PROVE: $C'; L'; \Phi'; \mathcal{R}' \vdash J$.

2 Substitution

2.1 Weakening for Substitution

Weakening for substitution: as above, but with $J = (\sigma) : (\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROOF SKETCH: Induction over the substitution.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C''; \mathcal{L}''; \Phi''; \mathcal{R}'')$

PROVE: $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash (\sigma) : (C''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

2.2 Substitution Lemma

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ and $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. C; L; Φ ; $R \vdash (\sigma) : (C'; L'; \Phi'; R')$ 2. C'; L'; Φ' ; $R' \vdash J$

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$.

2.3 Identity Extension

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$.

PROOF SKETCH: Induction over the substitution.

Assume: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}').$

2.4 Usable Substitution Lemma

If
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$
 and $C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Apply identity extension then substitution lemma.

Assume: 1.
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$

2. $C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

3 Progress

If $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$ then either value(e) or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROOF SKETCH: Induction over the typing rules.

Assume: $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$

PROVE: either value(e) or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

4 Framing

If $\langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$ and h_1, h_2 disjoint then $\langle h_1 + h_2; e \rangle \longrightarrow \langle h'_1 + h_2; e' \rangle$.

PROOF SKETCH: Induction over the operational rules.

Assume: 1. $\langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$ 2. h_1, h_2 disjoint.

Prove: $\langle h_1 + h_2; e \rangle \longrightarrow \langle h'_1 + h_2; e' \rangle$.

5 Type Preservation

If $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t \text{ then } \forall h : \mathcal{R}, e', h' : \mathcal{R}'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle \implies \cdot; \cdot; \cdot; \mathcal{R}' \vdash e' \Leftrightarrow t.$

PROOF SKETCH: Induction over the typing rules.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$

2. arbitrary $h: \mathcal{R}, e', h': \mathcal{R}'$

3. $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}' \vdash e' \Leftrightarrow t$.

6 Typing Judgements

$$\begin{array}{lll} object_value_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash object_value \Rightarrow \mathsf{obj} \, \beta \\ \\ pval_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ \\ res_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow res \\ \\ spine_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash pexpr \Rightarrow ident: \beta. term \\ \\ tpval_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash pexpr \Rightarrow ident: \beta. term \\ \\ tpexpr_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash tpval \Leftarrow ident: \beta. term \\ \\ tpexpr_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident: \beta. term \\ \\ action_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident: \beta. term \\ \\ action_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident: \beta. term \\ \\ memop_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ memop_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident: \beta. term \\ \\ cc_j \mathcal{L}; \Phi \vdash Tpexpr \Leftrightarrow ident:$$

7 Opsem Judgements