Week 1 - Check Your Understanding

1. In simple linear regression, both the response and the predictor are usually assumed to be random

	variables.
	a. Trueb. False
2	. The variance of the response and the error are both assumed to be constant (does not depend on the predictors) and equal to σ^2 .
	a. Trueb. False
3	. The least squared method is the only way to determine the parameters β_0 and β_1
	• a. True
	• b. False

- b. The sum of all absolute errors.5. The total sum of squares is always greater than the Regression sum squares.
 - a. True
 - b. False
- 6. The coefficient of determination can not be greater than 1.

4. In the least square method, $\hat{\beta_0}$ and $\hat{\beta_1}$ minimizes

• a. The sum of all square errors

- a. True
- b. False
- 7. The hypothesis that there is no linear relationship between the response and the predictor is equivalent to
 - a. $H_0: \beta_1 \neq 0$
 - b. $H_0: \beta_0 \neq 0$
- 8. We can use both the t-test and F-test to test for $H_0: \beta_1 = 0$ vs. $H_\alpha: \beta_1 \neq 0$
 - a. True
 - b. False