Keywords

higher category theory, concurrency, message-passing, types, Curry-Howard

ABSTRACT

We present an approach to modeling computational calculi using higher category theory. While the paper focuses on applications to the mobile process calculi, and more specifically, the π -calculus, because they provide unique challenges for categorical models, the approach extends smoothly to a variety of other computational calculi, including important milestones such as the λ -calculus. One of the key contributions is a method of restricting rewrites to specific contexts inspired by catalysis in chemical reactions.

Submission to arXiv

Higher category models of mobile process calculi

Mike Stay Google metaweta@gmail.com L.G. Meredith Biosimilarity, LLC lgreg.meredith@biosimilarity.com

1. INTRODUCTION

TBD

1.0.1 Organization of the rest of the paper TBD

2. THE CALCULUS

Some examples of process expressions.

2.1 Our running process calculus

2.1.1 *Syntax*

 TBD

- 2.1.2 Free and bound names TBD
- 2.1.3 Structural congruence TBD
- 2.1.4 Operational Semantics TBD
- 2.1.5 Bisimulation TBD

3. CATEGORICAL MACHINERY TBD

4. THE INTERPRETATION TBD

Interpreting names a morphisms, $x: J \to D^* \boxtimes C$ Figure 1: Interpretation of output

That means we can interpret output, x!(y), as connecting a source to the input of the morphism. Figure 2: Interpretation of output - again

And the adjoint morphism, $x:D^*\boxtimes C -\!\!\!> J,$ corresponds to input $Figure \ 3: \ Interpretation \ of \ input$

5. CONCLUSIONS AND FUTURE WORK $_{\rm TBD}$

6. REFERENCES

 $\label{eq:theorem} This provides the interpretation of x?(y)P. \\ Figure 4: Interpretation of input guarded process$

This provides the interpretation of $x?(z)P \mid x!(y)$. Figure 5: Interpretation of basic π -calculus redex

 $\label{eq:counit} \begin{tabular}{ll} The co-unit of the adjunction provides a mechanism for synchronization and data flow. \\ Figure 6: Interpretation of adjunction-based rewrite template \\ \end{tabular}$