计算机组织结构

8 内部存储器

任桐炜

2021年10月14日

教材对应章节

第7章 存储器分层体系结构

第5章 内部存储器

回顾:存储器

存储器 (Memory) 由一定数量的单元构成,每个单元可以被唯一标识,每个单元都有存储一个数值的能力

• 地址: 单元的唯一标识符 (采用二进制)

• 地址空间: 可唯一标识的单元总数

• 寻址能力: 存储在每个单元中的信息的位数

大多数存储器是字节寻址的,而执行科学计算的计算机通常是64位寻址的

存储器层次结构

半导体存储器

- 用半导体芯片作主存储器是目前的主流做法
- ・位元 (memory cell)
 - 半导体存储器的基本元件,用于存储1位数据
 - 特性
 - 呈现两种稳态(或半稳态): 分别表示二进制的0和1
 - 它们能够至少被写入 (write) 数据一次: 用来设置状态
 - 它们能够被读取 (read) 来获得状态信息

半导体存储器类型

存储器类型	种类	可擦除性	写机制	易失性
随机存取存储器(RAM)	读-写存储器	电可擦除,字节级	电	易失
一 只读存储器(ROM)	只读存储器	不可能	掩膜	
可编程ROM (PROM)			- 电	非易失
可擦除PROM (EPROM)	主要进行读操作的存储器	紫外线可擦除,芯片级		
电可擦除PROM (EEPROM)		电可擦除,字节级		
快闪存储器		电可擦除, 块级		

半导体存储器类型

存储器类型	种类	可擦除性	写机制	易失性
随机存取存储器(RAM)	读-写存储器	电可擦除,字节级	电	易失
只读存储器(ROM)	只读存储器	不可能	掩膜	
可编程ROM (PROM)			- 电	非易失
可擦除PROM (EPROM)	主要进行读操 作的存储器	紫外线可擦除,芯片级		
电可擦除PROM (EEPROM)		电可擦除,字节级		
快闪存储器		电可擦除, 块级		

随机存取存储器(RAM)

- Random-Access Memory (RAM)
- 特性
 - 可以简单快速地进行读/写操作
 - ・ 易失的 (Volatile)
- 类型
 - 动态RAM (DRAM) : Dynamic RAM
 - 静态RAM (SRAM) : Static RAM

DRAM

- 在电容器上用电容充电的方式存储数据
 - 电容器中有无电荷在分别代表二进制的1与0
- 需要周期地充电刷新以维护数据存储
 - 原因: 电容器有漏电的自然趋势
 - 由一个阈值来确定电荷是被解释为1还是0

SRAM

- 使用传统触发器、逻辑门配置来存储二进制值
 - 使用与处理器相同的逻辑元件
- 只要有电源,就可以一直维持数据

DRAM 与 SRAM 的对比

- 相同点
 - 易失的: 两者都要求电源持续供电才能保存位值
- 不同点
 - DRAM比SRAM具有更简单、更小的位元,但要求能支持刷新的电路
 - DRAM比相应的SRAM密度更高,价格更低
 - SRAM通常比DRAM快
 - DRAM更倾向于满足大容量存储器的需求,SRAM一般用于高速缓存,DRAM用于主存

高级的DRAM架构

- 问题
 - 传统的DRAM芯片受到其内部架构和与处理器内存总线接口的限制
- 类型
 - 同步DRAM (Synchronous DRAM, SDRAM)
 - 双速率SDRAM (Double-Data-Rate SDRAM, DDR SDRAM / DDR)

SDRAM

- 传统DRAM是异步的
 - 处理器向内存提供地址和控制信号,表示内存中特定单元的一组数据应该被读出或写入DRAM
 - DRAM执行各种内部功能,如激活行和列地址线的高电容,读取数据,以及通过输出缓冲将数据输出,处理器只能等待这段延迟,即存取时间
 - 延时后,DRAM才写入或读取数据

SDRAM (续)

- SDRAM与处理器的数据交互同步与外部的时钟信号,并且以处理器/存储器总线的最高速度运行,而不需要插入等待状态
- 由于SDRAM随系统时钟及时移动数据,CPU知道数据何时准备好,控制器可以完成其它工作

DDR SDRAM

- 每个时钟周期发送两次数据,一次在时钟脉冲的上升沿,一次在下降沿
- DDR → DDR2 → DDR3 → DDR4
 - 增加操作频率
 - 增加预取缓冲区

半导体存储器类型

存储器类型	种类	可擦除性	写机制	易失性
随机存取存储器(RAM)	读-写存储器	电可擦除,字节级	电	易失
只读存储器(ROM)	只读存储器	不可能	掩膜	
可编程ROM (PROM)		1 - 3 60		
可擦除PROM (EPROM)	- 	紫外线可擦除,芯片级	—	非易失
电可擦除PROM (EEPROM)	主要进行读操 作的存储器	电可擦除,字节级	电	
快闪存储器		电可擦除, 块级		

只读存储器 (ROM)

- Read-only memory (ROM)
- 特性
 - 非易失的: 不要求供电来维持数据
 - 可读,但不能写入新数据
- 应用
 - 微程序设计, 库子程序, 系统程序, 函数表
- 问题
 - 无出错处理机会:如果有一位出错,整批的ROM芯片只能报废
 - 用户无法写入数据: 唯一的数据写入机会在出厂时完成

可编程ROM (PROM)

- Programmable ROM (PROM)
- 特性
 - 非易失的
 - 只能被写入一次
 - 写过程是用电信号执行
 - 需要特殊设备来完成写或"编程"过程
- 与ROM的对比
 - PROM提供了灵活性和方便性
 - ROM在大批量生产领域仍具有吸引力

半导体存储器类型

存储器类型	种类	可擦除性	写机制	易失性
随机存取存储器(RAM)	读-写存储器	电可擦除,字节级	电	易失
一 只读存储器(ROM)	只读存储器	不可能	掩膜	
可编程ROM (PROM)		טמניןי		
可擦除PROM (EPROM)	- 	紫外线可擦除,芯片级	电	非易失
电可擦除PROM (EEPROM)	主要进行读操 作的存储器	电可擦除,字节级		
快闪存储器		电可擦除, 块级		

主要进行读操作的存储器

- Read-Mostly Memory
- 特性
 - 非易失的
 - 写操作与读操作相比, 较为困难
- 应用
 - 读操作比写操作频繁得多的场景
- 类型
 - EPROM
 - EEPROM
 - Flash memory

光可擦除/可编程只读存储器 (EPROM)

- Erasable programmable read-only memory (EPROM)
- 特性
 - 光擦除
 - 擦除: 在写操作前将封装芯片暴露在紫外线下
 - 所有的存储单元都变回相同的初始状态
 - 每次擦除需要约20分钟
 - ・电写入
- · 与PROM对比
 - EPROM更贵,但具有可多次改写的优点

电可擦除/可编程只读存储器(EEPROM)

- Electrically erasable programmable read-only memory (EEPROM)
- 特性
 - 可以随时写入而不删除之前的内容
 - 只更新寻址到的一个或多个字节
 - 写操作每字节需要几百微秒
- · 与EPROM对比
 - EEPROM更贵, 且密度低, 支持小容量芯片

快闪存储器

- Flash Memory
- 特性
 - 电可擦除:与EEPROM相同,优于EPROM
 - 擦除时间为几秒:优于EPROM,不如EEPROM
 - 可以在块级擦除,不能在字节级擦除:优于EPROM,不如 EEPROM
 - 达到与EPROM相同的密度:优于EEPROM
- 与EPROM、EEPROM对比
 - 价格和功能介于EPROM和EEPROM之间

从位元到主存: 寻址单元

- 寻址单元(Addressable unit):由若干相同地址的位元组成
- 寻址模式
 - 字节 (Byte): 常用
 - 字 (Word)

从位元到主存:存储阵列

• 存储阵列(Memory Array): 由大量寻址单元组成

如何寻址

- 地址译码器
 - 一个 n 位译码器有 2ⁿ 种输出.
 - 当所有 n 个寻址位都满足条件时,该输出为1
 - 任何时候,只有一个输出是1, 其他的都是0

2位译码器

如何刷新

- 集中式刷新 (Centralized refresh)
 - 停止读写操作,并刷新每一行
 - 刷新时无法操作内存
- 分散式刷新 (Decentralized refresh)
 - 在每个存储周期中, 当读写操作完成时进行刷新
 - 会增加每个存储周期的时间
- 异步刷新 (Asynchronous refresh)
 - 每一行各自以64ms间隔刷新
 - 效率高:常用

从位元到主存: 芯片

• 芯片引脚

Address: A0 – A19

Data: D0 – D7

• Vcc: 电源

• Vss: 地线

• CE: 芯片允许引脚

• Vpp: 程序电压

• WE: 写允许

• OE: 读允许

• RAS: 行地址选通

• CAS: 列地址选通

16-Mbit DRAM

8-Mbit EPROM

从位元到主存:模块组织

- 模块组织
 - 位扩展: 地址线不变, 数据线增加
 - 使用 8 块 4K*1 bit 的芯片组成 4K*8 bit 的存储器
 - 字扩展: 地址线增加, 数据线不变
 - 使用 4 个 16K*8 bit 的芯片组成 64K*8 bit 的存储器
 - 字、位同时扩展: 地址线增加, 数据线增加
 - 使用 8 个 16K*4 bit 的芯片组成 64K*8 bit 的存储器

从位元到主存: 主存

- 插槽
 - 组合多个存储模块

总结

- 半导体存储器
 - 读-写存储器: RAM
 - DRAM vs. SRAM
 - DRAM → SDRAM, DDR
 - 只读存储器: ROM, PROM
 - 主要进行读操作的存储器: EPROM, EEPROM, flash memory
- 从位元到主存
 - 位元 → 寻址单元 → 存储阵列 → 芯片 → 模块组织 → 主存

谢谢

rentw@nju.edu.cn

