The given daily newspaper data follows a poison distribution with variance, var(x) = 1.2 for the number of error occurrences x.

We know,

for a poison probability distribution, E(x) = var(x) = m

- $\therefore$  Expected value or mean number of errors on a page, m=1.2
- (a) probility of the number of errors in a page two being 2,

$$f(x=2) = \frac{e^{-m} \cdot m^x}{x!} = \frac{e^{-12} \cdot (1.2)^2}{2!} = 0.217$$
 (approx.)

(b) probability of occurrence on page four,

$$0 \text{ error:} f(x=0) = \frac{e^{-m} \cdot m^x}{x!} = \frac{e^{-1.2} \cdot (1.2)^0}{0!} = 0.301 \quad \text{(approx.)}$$

$$1 \text{ error:} f(x=1) = \frac{e^{-m} \cdot m^x}{x!} = \frac{e^{-1.2} \cdot (1.2)^1}{1!} = 0.361 \quad \text{(approx.)}$$

$$2 \text{ error:} f(x=2) = \frac{e^{-m} \cdot m^x}{x!} = \frac{e^{-1.2} \cdot (1.2)^2}{1!} = 0.217 \quad \text{(approx.)}$$

$$3 \text{ error:} f(x=3) = \frac{e^{-m} \cdot m^x}{x!} = \frac{e^{-1.2} \cdot (1.2)^3}{3!} = 0.087 \quad \text{(approx.)}$$

٠.