▷ Exercice 2. Le but de cet exercice est de démontrer le théorème

Théorème 1. s* est solution du problème

$$(P^{rc}) \left\{ \begin{array}{l} \min q(s) = f + g^{\mathsf{T}} s + \frac{1}{2} s^{\mathsf{T}} H s \\ ||s||^2 \le \delta, \end{array} \right.$$

si et seulement si $||s^*||^2 \le \delta$ et il existe $\mu^* \ge 0$ tel que

- 1. $(H + 2\mu^*I)s^* = -g$;
- 2. $\mu^*(||s^*||^2 \delta) = 0$;
- 3. $H + 2\mu^*I$ est semi-définie positive.
- 2.1. Démontrer le lemme

Lemme 1. Soit q la forme quadratique $q(s) = g^{\top}s + \frac{1}{2}s^{\top}Hs$, H symétrique, alors les assertions suivantes sont vraies :

- 1. q atteint un minimum si et seulement si H est semi-définie positive et $g \in \operatorname{Im} H$ et dans ce cas tout point solution de Hs = -g est un minimum global de q.
- 2. q a un unique minimum si et seulement si H est définie positive.
- 2.2. Démontrer le théorème.

$$\mathcal{E}_{=}\{A\}$$
 $|A|^2 \leq S$ $\}$ et boule fermée - compacte - converse dons \mathbb{R}^n par on the $g(s)$ est \mathcal{E}^∞ su \mathbb{R}^n , g admet un non $g(obal)$ on le compact $\mathcal{E}_{-}(\mathcal{E}^o)$

Si
$$HAC$$
 est validée e, p^* , la CN1 (kkT) rous dit que

 $\nabla_{p}L(s, \mu) = \nabla_{q}s_{1} + \mu^{*}\nabla_{c}s_{2} = (H_{p}^{*}+g) + \mu^{*}(2p^{*}) = 0$

avec (ker^{n} , $\mu \in R^{+}$)

et . $c: k \mapsto |k|^{2} - 8$

Pour HQC. en
$$S \in C$$
: ceid pur $\|A\|^2 \le S$
 $\nabla_{C(S)} = 2S$ et clist nul que si $S = 0$

mais deux ce cas la on est à l'intérieur du donaire C

Le plus, la CMA (ptio) implique que pro = 0 et or retouve brer léguisalerce avec les 3 relations. @ M* = 0 3 H 1 = - g (ge Im H, D* reglise) bl sin est sur la frankeie de C | | 1 A | 1 = S => A 70 et HQC en 1 est valide et @ et @ - sont validées (CM1 some HQC) la CM2 indique alor que $Z_{L}\left(\mathcal{E},\mathcal{S}^{\alpha}\right) = \left\{ d \in \mathbb{R}^{n} / \left\langle \nabla \mathcal{E}(\mathcal{S}^{\alpha}) \mid d \right\rangle = 0 \right\}$ on a donc la semi delinie positivité de (H+2, m I)= Del(x, m)
sur le s.e.r (x) + (pt(3) mais en partie seult) Vérihous alors, que (H+P, MI) est rect seni-det pos ou 1R" considérens der ty d'A \ \ O. et notes E = - 2 1 1 0 Poson $\overline{\Delta} = \Delta^* + td = \Delta^* - \frac{2dd^{\top}}{\|d\|^2} = \left(t_n - 2\frac{dd^{\top}}{\|d\|^2}\right) \Delta^*$ reflexion extragonals an traves de l'hyperplan engender par d $\|\overline{A}\|^2 = \|(\overline{I} - 2 \frac{dd}{\|d\|^2}) A^*\|_2^2 = \|A^*\|^2 = S$ q(A) + M* || A || = q(A+td) + M* || A* ||2 puisque de réalose le minimum de g(d)
sur la sphère - (de est solution de PC) q (st) + \(\nabla q (st), td \rangle + \frac{1}{2} \left(\nabla q (st) td \rangle + \mu (11 st) \\
+ t \(\nabla 11 \)

$$= 9 (N^{4}) \left(HA^{4} + g, td \right) + 1 t^{2} (Hd, d)$$

$$+ \mu^{4} [A^{4}]^{2} + (2\mu^{4})^{4}, td \right) + \mu^{4} t^{2} [d]^{2}$$

$$= 9 (N^{4}) + (H+2\mu^{4}) A^{4} g | td \right) + \mu^{4} S + \mu^{4} t^{2} [d]^{2} + 1 t^{2} (Hd, d)$$

$$= 0 (CHA)$$

$$\geqslant 9 (N^{4}) + \mu^{4} S$$
On a done
$$\mu^{4} t^{2} | | d | |^{2} + 1 t^{2} d^{4} Hd \geqslant 0$$
on excerce:
$$1 t^{2} ((H+2\mu^{4})d, d) \geqslant 0$$
et an a done verifie: la seni-definite positivité de
$$\sum_{k=1}^{2} L(K^{4})^{k} = H+2\mu^{4} I \quad \text{sur } \mathbb{R}^{n} \quad \text{aid } (a p^{2} t^{2} (3) - \mu^{4})$$

Réaiproguement, veritions que sui les 3 ptés sont validées en un couple (10, 14), les 2 ptés sont validées en un couple (10, 14), les 2 ptés sont validées en un couple (10, 14), les 2 ptés sont validées en un couple (10, 14), les 2 ptés sont validées en un couple (10, 14), les 2 ptés sont validées en un couple (10, 14), les 2 ptés sont validées en un couple (10, 14), les 3 ptés sont validées en un couple (10, 14), les 3 ptés sont validées en un couple (10, 14), les 3 ptés sont validées en un couple (10, 14), les 3 ptés sont validées en un couple (10, 14), les 3 ptés sont validées en un couple (10, 14), les 2 ptés sont validées en un couple (10, 1

verhent les prés @ @ et B), alors $g(A^{\otimes}) \leq g(A)$, $\forall A \in \mathcal{E}$ ca't que A^{\otimes} est solution de P^{Re} .

[d'où l'equivalence du Théorème]

$$\begin{cases} \prod_{i} h & f(A) = \int_{a}^{T} A + C \\ \|A\|^{2} \leq S \end{cases}$$

- ightharpoonup Exercice 1. On s'intéresse ici à un cas simple des "Support Vector Machines". On considère dans \mathbb{R}^n deux groupes de points $\mathcal{X}^1 = \{x_1^1, \dots, x_{n_1}^1\}$ et $\mathcal{X}^2 = \{x_1^2, \dots, x_{n_2}^2\}$ où $x_i^k = (x_{11}^k, \dots, x_{in}^k) \in \mathbb{R}^n$. On suppose que ces deux groupes de points sont séparables par un hyperplan affine de \mathbb{R}^n (et non vides!). L'objectif est de trouver le "meilleur" hyperplan séparateur (cf. Figure 1). On désire donc trouver les hyperplans H_1 d'équation $\langle a \,,\, x \rangle = \alpha_1 \ (a \neq 0)$ et H_2 d'équation $\langle a \,,\, x \rangle = \alpha_2$ tels que :
 - Pour tout $x \in \mathcal{X}^1$, $\langle a, x \rangle \alpha_1 \ge 0$;
 - Pour tout $x \in \mathcal{X}^2$, $\langle a, x \rangle \alpha_2 \leq 0$;
 - $d(H_1, H_2) = |\alpha_1 \alpha_2|/||a||$ soit maximal.

On peut toujours en fait écrire les deux premières conditions de la façon suivante :

- H_1 d'équation $\langle \omega, x \rangle + b 1 = 0$ et pour tout $x \in \mathcal{X}^1, \langle \omega, x \rangle + b \geq 1$;
- H_2 d'équation $\langle \omega \,,\, x \rangle + b + 1 = 0$ et pour tout $x \in \mathcal{X}^2, \langle \omega \,,\, x \rangle + b \leq -1$.

Figure 1 – SMV pour n=2.

Le problème d'optimisation s'écrit alors

$$(P) \left\{ \begin{array}{l} \operatorname{Max} \frac{2}{\|\omega\|} \\ \langle \omega, x \rangle + b \geq 1, \forall x \in \mathcal{X}^1 \\ \langle \omega, x \rangle + b \leq -1, \forall x \in \mathcal{X}^2 \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \iff (P') \left\{ \begin{array}{l} \operatorname{Min} ||\omega||^2 \\ \langle \omega, x \rangle + b \geq 1, \forall x \in \mathcal{X}^1 \\ \langle \omega, x \rangle + b \leq -1, \forall x \in \mathcal{X}^2 \end{array} \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, x \rangle + b \leq -1, \forall x \in \mathcal{X}^2 \end{array} \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \right. \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \right. \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \end{array} \right. \right. \right. \right. \right. \left. \left. \begin{array}{l} \operatorname{Contrain} \text{ for a line of the solution} \\ \langle \omega, b \rangle \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \right$$

- 1.1. Montrer l'existence de solution.
- 1.2. Écrire le Lagrangien associé à ce problème
- $\textbf{1.3.} \ \ \text{Donnez les conditions de } (KKT) \ \text{associ\'es \`a ce problème}. \ \text{Ces conditions sont-elles ici des conditions n\'ecessaires et suffisantes}?$

On pose maintenant

$$D = \begin{pmatrix} -1 & & & & & \\ & \ddots & & & & \\ & & -1 & & & \\ & & & 1 & & \\ & & & \ddots & & \\ & & & & 1 \end{pmatrix}, X = \begin{pmatrix} x_{11}^1 & \dots & x_{1n}^1 \\ \vdots & & \vdots \\ x_{n_{11}}^1 & \dots & x_{1n}^1 \\ x_{11}^2 & \dots & x_{1n}^2 \\ \vdots & & \vdots \\ x_{n_{21}}^2 & \dots & x_{n_{2n}}^2 \end{pmatrix}, e = \begin{pmatrix} 1 \\ \dots \\ 1 \end{pmatrix},$$

D est de dimension $(n_1 + n_2, n_1 + n_2)$. Le problème (P') s'écrit alors

$$(P'') \left\{ \begin{array}{l} \operatorname{Min} ||\omega||^2 \\ DX\omega + bDe \leq -e \\ (\omega,b) \in \mathbb{R}^n \times \mathbb{R}. \end{array} \right.$$

- **1.4.** Écrire le Lagrangien associé au problème (P'').
- 1.5. Écrire le problème dual du problème (P'')

. Ninters que
$$f(w,b) = ||w||^2$$

eit croissante à l'
$$\infty$$
 on le domaine
 $C = \int (\omega, b) / [(\omega, i) + b \ge 1 \quad \forall i \in X^1]$
 $(\omega, i) + b \le -1 \quad \forall i \in X^1]$

E est naturellement formé et convexe en fait qu'intersection de demi-espaces allibres

Pour
$$\|(\omega,b)\|$$
 \longrightarrow $+\infty$
. Soit $\|\omega\|_{-s}$ $+\infty$ et nahvellenert $f(\omega,b)=\|\omega\|^2$
tud vers (∞,∞)

$$\emptyset$$
 b $\leq -1 - \langle \omega, x^i \rangle \leq -1 + \|\omega\| \|x^i\|$ pour $x^i \in X^2$ donné

$$d(a'), si b \rightarrow -\infty \qquad \textcircled{0} \rightarrow \|\omega\| \rightarrow +\infty.$$

$$et si b \rightarrow +\infty \qquad \textcircled{0} \rightarrow \|\omega\| \rightarrow +\infty.$$

et par conséquent
$$f(\omega,b) = \|\omega\|^2 \longrightarrow +\infty$$
.

on a donc la grantie de l'existence d'un min global de f sur le ferne E-

1.25 A metre le pls sous toure caronique

$$\mathcal{L}(\omega,b,\mu^{1},\mu^{2}) = \|\omega\|^{2} - \sum_{i=1}^{n_{1}} \mu_{i}^{1}(\langle \omega, n_{i}^{1} \rangle + b - 1) \\
\mu^{1} \in (\mathbb{R}^{+})^{n_{2}} + \sum_{j=1}^{n_{2}} \mu_{j}^{2}(\langle \omega, n_{j}^{1} \rangle + b + 1)$$

$$\mu^{2} \in (\mathbb{R}^{+})^{n_{2}}$$

1.3) les contraintes sont dontes le type althe, donc HQC est valide

$$X = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\mathcal{L}(\omega,b,\mu) = \|\omega\|^2 + \langle \mu, PXw + bDe + e \rangle$$

$$\mathcal{L}(\omega,b,\mu) = \|\omega\|^2 + \langle \mu, PXw + bDe + e \rangle$$

$$\mathcal{L}(\omega b, \mu)$$
 est converse en (ω, b)
et donc Ω in $\mathcal{L}(\omega, b, \mu)$ (ω, b) $(\omega,$

est convexe en (wb)

et dans Hac est valide et tekt deusent

me CNS d'ophmalité globale

en outre, on a le th de dualité fort

gui s'applique.

Regardons
$$\nabla L(w,b,\mu) = \partial_w \left\{ 2w + (PX)^T \mu \right\}$$

Si $\langle \mu, De \rangle = 0$ alor u posah $\omega = (DX^T \mu \cdot \frac{1}{2})$ on annule $\nabla_{\omega b} \mathcal{L}(\omega, b, \mu)$ et a qui

garantit que an réalise le min du Lagragien $\forall (m) = \| - (DX^T \mu)\|^2 + \langle \mu, Dx (DX^T \mu + bDe + e)$ $= -\frac{1}{4} \| (DX^T \mu)\|^2 + \langle \mu, e \rangle$ $= -\frac{1}{4} \| (DX^T \mu)\|^2 + \langle \mu, e \rangle$

. Si'
$$\langle \mu, De \rangle \neq 0$$
 alors le terme $b \langle \mu, De \rangle$ Lans le Layrangien,

or part le bair tende vor $-\infty$, avec $|b| \to +\infty$ et donc $\mathcal{D}_n f$ $\mathcal{L}(w,b,n) = -\infty$.

ca'd que $\mathcal{L}(w) = -\infty$.

Par consignent, le PB Deal Sicht: $[\Pi_{ax} \quad \mathcal{L}(w) = -\frac{1}{4} \, \mathbb{I}(D \times)^T \mu \, \mathbb{I}^2 + \langle \mu, e \rangle$ $(De, \mu) = 0$ $\mu > 0$