Constrained vs. Penalized ERM

David S. Rosenberg

Bloomberg ML EDU

October 5, 2017

Regularization Paths in Function Space

2/9

$$f^* = \underset{f}{\arg\min} \mathbb{E}\ell(f(X), Y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\arg\min} \mathbb{E}\ell(f(X), Y))$$

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\arg\min} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

3 / 9

$$f^* = \underset{f}{\operatorname{arg \, min}} \mathbb{E}\ell(f(X), Y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \mathbb{E}\ell(f(X), Y))$$

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

• Approximation Error (of \mathfrak{F}) = $R(f_{\mathfrak{F}}) - R(f^*)$

$$f^* = \underset{f}{\operatorname{arg \, min}} \mathbb{E}\ell(f(X), Y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \mathbb{E}\ell(f(X), Y))$$

$$\hat{f_n} = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

- Approximation Error (of \mathfrak{F}) = $R(f_{\mathfrak{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

• Introduce complexity-constrained hypothesis space: $\mathcal{F}_r = \{f \in \mathcal{F} \mid \Omega(f) \leqslant r\}$

• Revised notation:

$$\hat{f}_r = \arg\min_{f \in \mathcal{F}_r} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) \qquad f_r = \arg\min_{f \in \mathcal{F}_r} \mathbb{E}\ell(f(X), Y)) \qquad f^* = \arg\min_{f} \mathbb{E}\ell(f(X), Y)$$

Revised notation:

$$\hat{f}_r = \arg\min_{f \in \mathcal{F}_r} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) \qquad f_r = \arg\min_{f \in \mathcal{F}_r} \mathbb{E}\ell(f(X), Y)) \qquad f^* = \arg\min_{f} \mathbb{E}\ell(f(X), Y)$$

• This time we've put \hat{f}_r on the boundary of \mathcal{F} - why?

• This time we've put \hat{f}_r on the boundary of \mathcal{F} - why?

- This time we've put \hat{f}_r on the boundary of \mathcal{F} why?
- Typically, \hat{f}_r will have $\Omega(\hat{f}_r) = r$, since with more complexity we can usually fit the data better.

• Consider complexity constraints r = .001, .01, 1.0, 10, 1000, corresponding to nested spaces:

$$\mathfrak{F}_{0.001} \subset \mathfrak{F}_{0.1} \subset \mathfrak{F}_{1.0} \subset \mathfrak{F}_{10} \subset \mathfrak{F}_{1000}$$

• Consider complexity constraints r = .001, .01, 1.0, 10, 1000, corresponding to nested spaces:

$$\mathcal{F}_{0.001} \subset \mathcal{F}_{0.1} \subset \mathcal{F}_{1.0} \subset \mathcal{F}_{10} \subset \mathcal{F}_{1000}$$

• We get corresponding sequence of ERMs: $\hat{f}_{0.001}$, $\hat{f}_{0.1}$, $\hat{f}_{1.0}$, \hat{f}_{10} , \hat{f}_{1000}

• Consider complexity constraints r = .001, .01, 1.0, 10, 1000, corresponding to nested spaces:

$$\mathcal{F}_{0.001} \subset \mathcal{F}_{0.1} \subset \mathcal{F}_{1.0} \subset \mathcal{F}_{10} \subset \mathcal{F}_{1000}$$

• We get corresponding sequence of ERMs: $\hat{f}_{0.001}$, $\hat{f}_{0.1}$, $\hat{f}_{1.0}$, \hat{f}_{10} , \hat{f}_{1000}

Regularization Path for Constrained ERM

• What if we found ERM's \hat{f}_r for all $r \in [0, \infty]$?

Regularization Path for Constrained ERM

- What if we found ERM's \hat{f}_r for all $r \in [0, \infty]$?
- ullet Define the **regularization path** for constrained optimization in ${\mathcal F}$ with complexity Ω as

$$P_{\mathfrak{F},\Omega}^{\mathsf{constrained}} = \left\{\hat{f}_r \mid r \in [0,\infty]\right\},$$

where \hat{f}_r is the constrained ERM in \mathcal{F} defined by $\hat{f}_r = \arg\min_{\{f \in \mathcal{F} | \Omega(f) \leq r\}} \hat{R}(f)$.

Regularization Path for Constrained ERM

- What if we found ERM's \hat{f}_r for all $r \in [0, \infty]$?
- ullet Define the **regularization path** for constrained optimization in ${\mathcal F}$ with complexity Ω as

$$P_{\mathcal{F},\Omega}^{\mathsf{constrained}} = \left\{\hat{f}_r \mid r \in [0,\infty]\right\}$$
 ,

where \hat{f}_r is the constrained ERM in \mathcal{F} defined by $\hat{f}_r = \arg\min_{\{f \in \mathcal{F} | \Omega(f) \leqslant r\}} \hat{R}(f)$.

Regularization Path for Penalized ERM

ullet Define the **regularization path** for penalized optimization in ${\mathcal F}$ with complexity Ω as

$$P_{\mathcal{F},\Omega}^{\mathsf{penalized}} = \left\{\hat{f}_{\lambda} \mid \lambda \in [0,\infty]
ight\}$$
 ,

where \hat{f}_r is the constrained ERM in \mathcal{F} defined by $\hat{f}_r = \arg\min_{\{f \in \mathcal{F} | \Omega(f) \leq r\}} \hat{R}(f)$.

Regularization Path for Penalized ERM

ullet Define the **regularization path** for penalized optimization in ${\mathcal F}$ with complexity Ω as

$$P_{\mathfrak{F},\Omega}^{\mathsf{penalized}} = \left\{\hat{f}_{\lambda} \mid \lambda \in [0,\infty]
ight\}$$
 ,

where \hat{f}_r is the constrained ERM in \mathcal{F} defined by $\hat{f}_r = \arg\min_{\{f \in \mathcal{F} | \Omega(f) \leqslant r\}} \hat{R}(f)$.

- For lasso, ridge, and many more, $P_{\mathcal{F},\Omega}^{\text{constrained}} = P_{\mathcal{F},\Omega}^{\text{penalized}}$.
 - Precise statement in homework.