Exercises deformation theory

FM

1 Chapter 1.1

Exercise 1. Existence of the Hilbert scheme for curves in \mathbb{P}^2 . Here a *curve* is a closed subscheme of \mathbb{P}^2_k defined by any homogeneous polynomial of degree d in S = k[x, y, z] (so curves are in 1-1 correspondence with points in $\mathbb{P}(S^dV)$ where V is a 3-dim k-vector space).

Write f has $a_0 x_0^d + \ldots + a_n z^d$ with $a_i \in k$ and $n = {d+2 \choose 2} - 1$. Consider (a_0, \dots, a_n) as a point in \mathbb{P}_k^n .

- 1. Curves in \mathbb{P}^2 of degree d are in 1-1 correspondence with points in \mathbb{P}^n by this correspondence.
- 2. Define $\mathcal{C} \subseteq \mathbb{P}^2 \times \mathbb{P}^n$ by $a_0 x^d + \cdots + a_n + x^d = 0$. Show that the correspondence in a) is given by $a \in \mathbb{P}^n$ goes to the fiber $\mathcal{C}_a \subseteq \mathbb{P}^2$ over the point a. We call \mathcal{C} the tautological family.
- 3. For any finitely generated k-algebra A, we define a family of curves of degree d in \mathbb{P}^2 over A to be a closed subscheme $X \subseteq \mathbb{P}^2_A$, flat over A, such that the fibers over closed points of Spec A are curves of degree d in \mathbb{P}^2 . Show that the ideal $I_X \subseteq A[x,y,z]$ is generated by a single homogeneous polynomial f of degree d in A[x,y,z].

Solution 1. 1. Obvious.

2. Let $a \in \mathbb{P}^n$. Then \mathcal{C}_a is precisely the subscheme $\subseteq \mathbb{P}^2$ cut out by f = 0.

1

3. By lifting, we can assume that $A=k[b_1,\cdots,b_l]$ for some l. Then the question is equivalent to: Suppose $I\subseteq k[b_1,\cdots,b_l]\otimes k[x,y,z]$ is such that $I\otimes_k A/\mathfrak{m}=\langle f\rangle$ for some $f\in k[x,y,z]$ for all $\mathfrak{m}\in\operatorname{Spec} A$. Suppose in addition that A[x,y,z]/I is a flat A-module. Then $I=\langle \tilde{f}\rangle$ for some $\tilde{f}\in A[x,y,z]$ such that $\tilde{f}\otimes A/\mathfrak{m}=f$.

This should follow from the equational criterium for flatness. In particular: in each fibre, $I \otimes A/\mathfrak{m}$ is generated by a single polynomial, and this lifts to a generator of I, together with the trivial relation. If I had more than one generator, there would be a relation that is trivial in all fibers. But then it must be trivial everywhere.

 \Diamond