#### Seminario Taller ENERGÍAS RENOVABLES PARA ECOTURISMO Situación actual y perspectivas

## Revisión del uso de sistemas eólicos y/o híbridos en aplicaciones de turismo

Luis Arribas

CIEMAT

lm.arribas@ciemat.es

Lima, 12 de setiembre del 2012







#### Planteamiento

- Revisión conceptual, no exhaustiva
  - Tecnologías
  - Tipologías
  - Peculiaridades
  - Casos
- Configuraciones:
  - Aisladas de la red eléctrica
    - Conectadas a red



#### Tecnologías - Difícil de abordar (en 20')



# Estado de las tecnologías renovables para electrificación rural (aislada)

| Mini-hydro Plant capacity: 100–1,000 kilowatts (kW) 5–1 Micro-hydro Plant capacity: 1–100 kW 7–2 | Typical Energy Costs<br>(U.S. cents/kilowatt-hour) |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| Micro-hydro Plant capacity: 1–100 kW 7–2                                                         | Rural (off-grid) Energy                            |  |  |  |  |  |
| , , , , , , , , , , , , , , , , , , , ,                                                          | 0                                                  |  |  |  |  |  |
| Pico-hydro Plant capacity: 0.1–1 kW 20–                                                          | 20                                                 |  |  |  |  |  |
|                                                                                                  | 40                                                 |  |  |  |  |  |
| Biogas digester Digester size: 6–8 cubic meters n/                                               | a                                                  |  |  |  |  |  |
| Biomass gasifier Size: 20–5,000 kW 8–1                                                           | 2                                                  |  |  |  |  |  |
| Small wind turbine Turbine size: 3–100 kW 15–                                                    | 25                                                 |  |  |  |  |  |
| Household wind turbine Turbine size: 0.1–3 kW 15–                                                | 35                                                 |  |  |  |  |  |
| Village-scale mini-grid System size: 10–1,000 kW 25–                                             | 00                                                 |  |  |  |  |  |
| Solar home system System size: 20–100 watts 40–                                                  | 60                                                 |  |  |  |  |  |

Fuente: REN21. 2008. "Renewables 2007 Global Status Report" (Paris: REN21 Secretariat and Washington, DC:Worldwatch Institute). Copyright © 2008 Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH.

#### Fotovoltaica y ...





# Tipologías - Difícil de abordar (en 20')

| Type of generator             |            | Classification of associated systems |                   |
|-------------------------------|------------|--------------------------------------|-------------------|
|                               |            | Individual                           | Collective        |
| RE only, hybrid or not        | no storage | T <sub>1</sub> .I                    | T <sub>1</sub> .C |
| RE only, hybrid or not        | storage    | T <sub>2</sub> .I                    | T <sub>2</sub> .C |
| RE, hybrid or not<br>+ Genset | no storage | T <sub>3</sub> .I                    | T <sub>3</sub> .C |
| RE, hybrid or not<br>+ Genset | storage    | T <sub>4</sub> .I                    | T <sub>4</sub> .C |
| Genset only                   | no storage | T <sub>5</sub> .I                    | T <sub>5</sub> .C |
| Genset only                   | storage    | T <sub>6</sub> .I                    | T <sub>6</sub> .C |
|                               |            |                                      |                   |

Notation principle: T<sub>i</sub>.I = individual system, type i; T<sub>i</sub>.C = collective system, type j Rem: "Storage" = storage of energy produced by one of the generator of the system and which can be reconverted "on demand" to electricity through the system.





## Tipologías: Aplicaciones - necesidades

- Uso individual (sistemas domésticos)
- Uso colectivo (sistemas comunitarios): mini-redes









# Peculiaridades técnico/económicas del emprendimiento turístico

- Disponibilidad para pagar (es un negocio)
- El grupo electrógeno resulta molesto...
- ...aunque aporta garantía de suministro
- Disponibilidad de realización de O&M
- No hay problemas con la medida, facturación y reparto de la energía
- Resulta fácil la implementación de medidas de ahorro de energía y de gestión de cargas



### Sistemas individuales de pequeña potencia

- 12 a 48 Vcc
- FV y/o eólico
- 100 % renovable
- | < kW
- Suministro en CC o CA
- Convertidor unidireccional





### Isla de Tortoise Head, Australia

- Emprendimiento de pequeña escala (B&B)
- Consumo: 20 kWh/día
- Capacidad: 30 personas
- Configuración
  - Aerogenerador 3 kW
  - FV 1.5 kW
  - Grupo electrógeno 5.6 kW
  - Batería 26.4 kWh
  - Inversor 10 kW





http://www.tortoisehead.net/







# Sistemas individuales o colectivos (miniredes) de mayor potencia

1 48 a 300 Vcc

FV y/o eólico con grupo de apoyo

Importante fracción renovable (aunque <100 %)</p>

Unidades de kW a 50 kW

Suministro en CA

Convertidor uni- ó bidireccional







# Costa de Cocos, Méjico

- Centro de submarinismo
- Consumo: 46 kWh/día (127 kWh/día con OI)
- Configuración
  - Aerogenerador 7 kW
  - Grupo electrógeno 15 kW
  - Batería 50 kWh
  - Inversor unidirectional 11 kW

| 7 kW Wind Turbine               | \$12750  |
|---------------------------------|----------|
| Tower                           | \$7626   |
| Charge Controller               | \$1700   |
| 2 -5.5 kW Inverters             | \$6800   |
| Battery System                  | \$4992   |
| Misc. Hardware                  | \$450    |
| AC Load Center                  | \$714    |
| System Wiring                   | \$1370   |
| DC Source Center                | \$1200   |
| Installation and System Testing | \$6600   |
| System Documentation            | \$300    |
| Shipping and Insurance          | \$3750   |
| Travel Expense                  | \$1953   |
| Warrantee                       | \$1250   |
| Battery/Inverter Structure      | \$950    |
| Customs                         | \$4224   |
| TOTAL                           | \$58,315 |







# Isla de Kythnos, Grecia

**ECOTURISMO** 



MINISTERIO

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas aplicaciones de turismo

### Sistemas colectivos (mini-redes) con diesel

Eólico, FV... con grupo (o grupos): diesel esencial

Fracción renovable

– baja

media

alta

De 50 kW a MWs

Suministro en AC

Presencia de cargas regulables



## Coral Bay Resort, Australia

- Aerogenerador 3 x 275 kW
- Grupo electrógeno 7 x 320 kW
- Volante de inercia 500 kW





#### Conclusión

- La fotovoltaica es la tecnología más utilizada en aplicaciones turísticas. Se han revisado aplicaciones que incluyan eólica
- Existen distintas topologías aplicables, en función de la distribución y de la potencia
- ¿Cómo hacerlo (en 5 pasos)?
  - Auditoría energética: cuánta energía y de qué tipo?
  - Potencial de energías renovables
  - ¿Cuál es la composición más adecuada?
  - Encontrar quién pueda hacerlo
  - Monitorear y aprender













