Ali Muhammad Asad aa 07190
(i) $f(x a) = ax^{\alpha-1}$ for $0 < x < 1$, $a > 0$ (i) $f(x) = \int_{0}^{\infty} x(\alpha x^{\alpha-1}) \cdot dx = \int_{0}^{\infty} f(x) = \int_{0}^{\infty} ax^{\alpha} \cdot dx$
$= \frac{\alpha \left[\frac{x^{2} \cdot dn}{2} \right] \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]}$ $= \frac{\alpha \left[\frac{x^{2} \cdot dn}{\alpha + 1} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{1}{2} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]}{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]} = \frac{\alpha \left[\frac{\alpha \left[\frac{1}{2} \right]}{\alpha + 1} \right]}{\alpha \left[\alpha \left$
=) a z - E[n] = > a z E[n] $= Len E(x) = L(x) = L(x)$ Then $E(x) = L(x) = L(x)$
Then amount 2 ft 1-ji
(ii) $E[I(n)] = E[n] = \alpha_{n+1}$ $V_{\alpha x}(I(n)) = V_{\alpha x}(\frac{1}{n}\sum_{i}x_{i}) = \frac{1}{n}V_{\alpha x}(\sum_{i}x_{i}) = \frac{V_{\alpha x}(x_{i})}{n}$ $V_{\alpha x}(x_{i}) = \sigma E[x_{i}] - (E[n_{i})^{2}$ $E[x_{i}] = \int_{0}^{1} x_{i}^{2}(\alpha x_{i}^{2}) dx = \int_{0}^{1} x_{i}^{2} dx$
$\frac{f(n^2) z \int_0^2 x^2 (\alpha x^{a-1}) \cdot dn}{f(x^2) z a \int_0^{a+1} \cdot dx} \frac{\int_0^2 a x^{a+1} \cdot dx}{a+2} \frac{\int_0^2 a x^{a+1} \cdot dx}{a+2} \frac{\int_0^2 a x^{a+1} \cdot dx}{a+2}$ $= \int_0^2 \left[\int_0^2 x^2 (\alpha x^{a-1}) \cdot dx \cdot d$
$ \frac{Var(x)_{2} \frac{\alpha}{\alpha+2} - \alpha^{2}(\alpha+1)^{2}}{(\alpha+2)^{2}} = \frac{a(\alpha+1)^{2} - a^{2}(\alpha+2)}{(\alpha+2)(\alpha+1)^{2}} \frac{2}{(\alpha+1)^{2}(\alpha+2)} $ $ \frac{(\alpha+2)(\alpha+1)^{2}}{(\alpha+2)} = \frac{a(\alpha+1)^{2} - a^{2}(\alpha+2)}{(\alpha+1)^{2}(\alpha+2)} $ $ \frac{a(\alpha+1)^{2}(\alpha+2)}{(\alpha+2)} = \frac{a(\alpha+1)^{2} - a^{2}(\alpha+2)}{(\alpha+1)^{2}(\alpha+2)} $
Lef f(T) = 1/1-T(N) Then Var (amoun) = Var (F(T)) (CEFT) = Property (F(T)) (CEFT) = Property (F(T))
Then $f'(\mu_{\bar{1}}) = \mu_{\bar{1}}$ $(\mu_{\bar{1}})^2 = \mu_{\bar{1}}$
$\frac{1}{(a+1)^2(a+2)} = \frac{\sqrt{(a+1)^2}}{\sqrt{(a+1)^2}} = \sqrt{\sqrt{(a+1)^2}} = \sqrt{(a+1)^2}$ $\sqrt{(a+1)^2(a+2)} = \sqrt{(a+1)^2}$ $\sqrt{(a+1)^2(a+2)} = \sqrt{(a+1)^2}$

