ANÁLISIS MATEMÁTICO III

por Facundo Fernández

Desigualdad triangular: $z, w \in \mathbb{C}$

•
$$|z + w| \le |z| + |w|$$
 • $|z - w| \ge ||z| - |w||$ • $|z + w| \ge ||z| - |w||$

Límites con el punto en infinito:

<u>Transformaciones</u>: siendo $z(x,y) = x + i y \Longrightarrow f(z) = u(x,y) + i v(x,y)$:

•
$$\frac{1}{z} = \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}$$
 • $z^2 = x^2 - y^2 + i \ 2xy$

•
$$\operatorname{sen}(z) = \operatorname{sen}(x) \cos(i \ y) + \cos(x) \operatorname{sen}(i \ y) = \operatorname{sen}(x) \cosh(y) + i \cos(x) \operatorname{senh}(y)$$

•
$$\cos(z) = \cos(x)\cos(iy) - \sin(x)\sin(iy) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)$$

•
$$\operatorname{sen}(i\ y) = i\operatorname{senh}(y)$$
 • $\cos(i\ y) = \cosh(y)$

•
$$\operatorname{senh}(i \ y) = i \operatorname{sen}(y)$$
 • $\operatorname{cosh}(i \ y) = \operatorname{cos}(y)$

•
$$\cosh(z) = \cos(i \ x) \cos(y) + \sin(i \ x) \sin(y) = \cosh(x) \cos(y) + i \sinh(x) \sin(y)$$

•
$$\operatorname{senh}(z) = \frac{1}{i} \operatorname{senh}(i \ z) = (-i) \left[\operatorname{sen}(i \ x) \cos(y) - \cos(i \ x) \operatorname{sen}(y) \right]$$

•
$$\operatorname{senh}(z) = \operatorname{sen}(x)\cos(x) + i\cosh(x)\operatorname{sen}(y)$$

•
$$e^z = e^x \left[\cos(y) + i\sin(y)\right] = e^x \cos(y) + i e^x \sin(y) = \cosh(z) + \sinh(z)$$

•
$$\log(z) = \ln|z| + i \left[\operatorname{Arg}(z) + 2k\pi \right] \longrightarrow$$
 función multiforme

•
$$z = |z|e^{i\varphi} = |z|[\cos(\varphi) + i\sin(\varphi)]$$
 • $\sqrt[n]{z} = |z|^{\frac{1}{n}} e^{i\frac{\varphi + 2k\pi}{n}}$

Ecuaciones de Cauchy - Riemann: $u_x = v_y \wedge u_y = -v_x$.

<u>Derivabilidad</u>: f(z) = u(x,y) + i v(x,y) es derivable en z_0 si u,v son diferenciables y cumplen Cauchy - Riemann en z_0 .

<u>Holomorfía</u>: f(z) es Holomorfa en z_0 si $\exists f'(z)$ para z_0 y $\forall z \in \mathcal{E}nt(z_0) : |z - z_0| < r$.

Funciones Armónicas:

u,vson armónicas conjugadas $\Longrightarrow \nabla^2 u = \nabla^2 v = 0$ y cumplen Cauchy - Riemann.

u, v son armónicas conjugadas $\Longrightarrow [u + i \ v]$ ó $[v + i \ u]$ es Holomorfa, sólo una de ellas.

Potencial Complejo: $w(z) = \phi + i\psi$ tal que $\phi = K$ equipotenciales y $\psi = C$ líneas de campo.

Transformación Conforme: $f(z) \in \mathcal{H}ol \land f'(z) \neq 0 \Longrightarrow$ conserva los ángulos.

<u>Problema de Dirichlet</u>: \exists única función que $\nabla^2 = 0$ y $h|_{\partial D_R} = \phi(x,y)$

Inversión: $f(z) = \frac{1}{z}$

Ecuación general de circunferencias y rectas de \mathbb{R}^2 :

$$a(x^2 + y^2) + b x + c y + d = 0$$
 \longrightarrow $a + b u + c (-v) + d(u^2 + v^2) = 0$

Si no depende de x o de $y \Longrightarrow u(x,y) = u(x) = \alpha x + \beta$

Las semirrectas unidas $\Longrightarrow u(x,y) = a \arctan(\frac{y}{x}) + b$

Un valle entre $-\frac{\pi}{2}$ y $\frac{\pi}{2} \Longrightarrow f(z) = \operatorname{sen}(z)$

Integración – parametrización: Si C: z(t) tal que $t \in [a, b]$

$$\int_C f(z) \ dz = \int_0^b f(z(t)) z'(t) \ dt \qquad z'(t) \equiv \text{ Jacobiano}$$

 $\int_C f(z) \ dz = \int_a^b f\left(z(t)\right) z'(t) \ dt \qquad z'(t) \equiv \text{ Jacobiano}$ Teorema de Cauchy – Goursat: $f(z) \in \mathcal{H}ol$ sobre y dentro de C (curva cerrada y simple),

Teorema de Cauchy – Goursat para recintos:
$$f(z) \in \mathcal{H}ol$$
 en $R, C \subset R$ (simple y cerrada), $\oint_C f(z)dz = 0$

<u>Corolarios</u>:

- Si C no es simple también $\oint_C f(z)dz = 0$ (Se puede dividir en curvas cerradas simples).
- Si $f(z) \in \mathcal{H}ol$ en R (Recinto: abierto y conexo) $\Longrightarrow \exists F$ tal que F' = f.
- $F(z) \in \mathcal{H}ol \ \forall \ z \in R$.
- Si $f(z) \in \mathcal{H}ol \exists \infty$ primitivas.

Fórmula Integral de Cauchy (generalizada): Sea $f(x) \in \mathcal{H}ol$ en R, C curva cerrada simple $\subset R$ y z_0 en el interior de

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \quad \text{ \'o} \quad \frac{2\pi i}{n!} f^{(n)}(z_0) = \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \quad \text{ con } n \in \mathbb{N}_0$$

PROPIEDADES

- $\int_C z_0 f(z) dz = z_0 \int_C f(z) dz$ $\int_C [f(z) + g(z)] dz = \int_C f(z) dz + \int_C g(z) dz$ $\int_C |dz| = L_C \equiv \text{Longitud de la curva } C$ $\int_C f(z) dz = -\int_{-C} f(z) dz$
- $\bullet \sum_{n=1}^{\infty} \int_{C_i} f(z) \ dz = \int_C f(z) \ dz$ donde los C_i son trozos que forman C
- $\left|\int_C f(z) \ dz\right| \leq \int_C |f(z)| \ dz| = \int_C |f(z)| \ |dz|$ Acotación ML $(M_CL_C): \left|\int_C f(z) \ dz\right| \leq \int_C |f(z)| \ |dz| \leq M_C \int_C |dz| = M_CL_C = ML$ Si f(z) es acotada en C tiene un máximo M_C en la curva C

- Condición necesaria de convergencia: Si $\sum_{n=0}^{\infty} a_n$ es convergente, entonces $\lim_{n\to\infty} a_n = 0$ Series: $f_n(z)$ converge uniformemente si la convergencia no depende de z. Resultados:

 - 1) $f_n(z)$ es continua $\Longrightarrow S(z) = \sum_{n=0}^{\infty} f_n(z)$ es continua y holomorfa. 2) $f_n(z)$ es holomorfa y g(z) es continua $\Longrightarrow \oint_C g(z)S(z)dz = \sum_{n=0}^{\infty} \oint_C g(z)f_n(z)dz$. 3) $f_n(z)$ es holomorfa $\Longrightarrow S'(z) = \sum_{n=0}^{\infty} f'_n(z)$.

Serie de potencias: $\sum_{n=0}^{\infty} a_n (z-z_0)^n$

Es única y converge unformemente por 1° lema de Abel y el criterio de Weierstrass.

Serie de Taylor:
$$f_n(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \longrightarrow a_n = \frac{f^{(n)}(z_0)}{n!}$$
 y $f(z) \in \mathcal{A}nal$

<u>Serie de Laurent</u>: $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$, converge en un anillo.

Serie Geométrica: Si
$$|z| < 1$$
 $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ \vee $\sum_{n=0}^{\infty} (-z)^n = \sum_{n=0}^{\infty} z^n (-1)^n = \frac{1}{1+z}$

Función Serie Desarrollo de la serie Radio de convergencia
$$e^z$$
 $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ $1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\frac{z^4}{4!}+\dots$ $\operatorname{si}|z|<\infty$ $\operatorname{sen}z$ $\sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$ $z-\frac{z^3}{3!}+\frac{z^5}{5!}-\frac{z^7}{7!}+\frac{z^9}{9!}-\dots$ $\operatorname{si}|z|<\infty$ $\operatorname{cos}z$ $\sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$ $1-\frac{z^2}{2!}+\frac{z^4}{4!}-\frac{z^6}{6!}+\frac{z^8}{8!}-\dots$ $\operatorname{si}|z|<\infty$ $\operatorname{senh}z$ $\sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$ $z+\frac{z^3}{3!}+\frac{z^5}{5!}+\frac{z^7}{7!}+\frac{z^9}{9!}+\dots$ $\operatorname{si}|z|<\infty$ $\operatorname{cosh}z$ $\sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$ $1+\frac{z^2}{2!}+\frac{z^4}{4!}+\frac{z^6}{6!}+\frac{z^8}{8!}+\dots$ $\operatorname{si}|z|<\infty$ $\operatorname{ln}z$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(z-1)^n}{n}$ $(z-1)-\frac{(z-1)^2}{2}+\frac{(z-1)^3}{3}-\dots$ $\operatorname{si}|z-1|\leq 1$ y $z\neq 0$

Ceros de f(z) analítica: z_0 es cero de orden k, entonces:

$$f(z_0) = 0, f^{(1)}(z_0) = 0, f^{(2)}(z_0) = 0, \dots, f^{(k-1)}(z_0) = 0 \text{ y } f^{(k)}(z_0) \neq 0$$

•PROPIEDAD: Si $f(z) \in \mathcal{A}nal$ en $|z-z_0| < R$ de forma tal que z_0 es cero de orden k, entonces:

 $f(z) = (z - z_0)\Phi(z) \longrightarrow \Phi(z)$ es analítica y z_0 es cero de orden k

Singularidades: z_0 es singularidad de $f(z) \longrightarrow$ analizo con **DSL** (Desarrollo en Serie de Laurent)

 $\lim_{z\to z_0} f(z) = w_0 \Longrightarrow z_0$ es singularidad evitable \Longrightarrow ningún término en la parte principal.

 $\lim_{z\to z_0} f(z) = \infty \implies z_0$ es un polo de orden $n \implies$ cantidad finita de términos en la parte principal.

 $\lim_{z\to z_0} f(z) = \nexists \Longrightarrow z_0$ es singularidad esencial \Longrightarrow infinitos términos en la parte principal.

Residuos: $f(z) \in \mathcal{H}ol$ dentro y sobre C salvo en una singularidad z_0 en el interior de C entonces se puede escribir su serie de Laurent en $0 < |z - z_0| < R$. Si $C : |z - z_0| = R$

$$\operatorname{Res}(f(z), z_0) = \frac{1}{2\pi i} \oint_C f(z) dz = b_1$$

 $\operatorname{Res}\left(f(z),z_{0}\right)=\tfrac{1}{2\pi i}\oint_{C}f(z)dz=b_{1}$ Teorema de los residuos: $f(z)\in\mathcal{H}ol$ dentro y sobre C salvo en algunas singularidades z_{1},z_{2},\ldots,z_{n} en el interior de C entonces

$$\oint_C f(z)dz = 2\pi i \sum_{k=1}^n \text{Res}(f(z), z_k)$$

Cálculo de Residuos:

- 1) z_0 es singularidad evitable $\Longrightarrow \operatorname{Res}(f(z), z_0) = 0$.
- 2) z_0 es polo de orden $k \Longrightarrow \text{Res}(f(z), z_0) = b_1$ ó $\text{Res}(f(z), z_0) = \lim_{n \to z_0} \frac{d^{k-1}}{dz^{k-1}} \left[\frac{(z-z_0)^k f(z)}{(k-1)!} \right]$.
- 3) z_0 es singularidad esencial \Longrightarrow Sólo con b_1 de la serie de Laurent en $0 < |z-z_0| < R$.

Residuo en el ∞ : Res $(f(z), \infty) = -\operatorname{Res}\left(\frac{1}{z^2}f\left(\frac{1}{z}\right), 0\right)$.

• PROPIEDAD:

Si
$$f(z) \in \mathcal{A}nal \ \forall \ z \in \mathbb{C}^*$$
 salvo en z_1, z_2, \dots, z_n , entonces $\sum_{k=1}^{\infty} \operatorname{Res}(f(z), z_k) + \operatorname{Res}(f(z), \infty) = 0$

Teorema del argumento: si $f(z) \in \mathcal{H}ol$, entonces

$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = C - P$$

 $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = C - P$ donde C y P denotan el número de ceros y polos de f(z), respectivamente, en el interior de C. Integrales impropias

Valor Principal de Cauchy:
$$VPC = \lim_{R \to \infty} \int_{-R}^{R} f(x) \ dx \neq \int_{-\infty}^{\infty} f(x) \ dx$$
 (a menos que converja)

• Condición necesaria de convergencia: Si $\int_{0}^{\infty} f(x) dx$ es convergente, entonces $\lim_{x \to \infty} f(x) = 0$

<u>Criterio de convergencia - Comparación</u>: Si se conoce $\int\limits_a^\infty f(x)\ dx$ o $\int\limits_a^\infty g(x)\ dx$ se analiza el límite

Función generalmente continua: $f(x):[a,b]\longrightarrow \mathbb{R}$

- f(x) está acotada para todo $x \in [a, b]$
- f(x) tiene un número finito de discontinuidades de salto (Hasta acá son funciones continuas a trozos)
- Límites laterales: Existe $\lim_{x \to a} f(x)$ para todo $x \in [a, b]$

Si f(x) es generalmente continua entonces existe su Serie de Fourier.

Serie de Fourier de
$$f(x)$$
 - Trigonométrica: $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(n\frac{2\pi}{T}x\right) + \sum_{n=1}^{\infty} b_n \sin\left(n\frac{2\pi}{T}x\right)$

Coeficientes a_0, a_n, b_n :

Si f(x) es T periódica en $[\alpha, \alpha + T]$

$$a_0 = \frac{2}{T} \int_{\alpha}^{\alpha+T} f(x) \ dx \qquad a_n = \frac{2}{T} \int_{\alpha}^{\alpha+T} f(x) \cos\left(n\frac{2\pi}{T}x\right) \ dx \qquad b_n = \frac{2}{T} \int_{\alpha}^{\alpha+T} f(x) \sin\left(n\frac{2\pi}{T}x\right) \ dx$$

para $n \in \mathbb{N}$.

Si f(x) es T periódica en centrada en x=0, entonces con $\alpha=-\frac{T}{2}$

Serie de Fourier de
$$f(x)$$
 – Exponencial: $S(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\frac{2\pi}{T}x}$

Coeficientes c_n :

Si f(x) es T periódica en $[\alpha, \alpha + T]$

$$c_n = \frac{1}{T} \int_{\alpha}^{\alpha+T} f(x)e^{-in\frac{2\pi}{T}x} dx$$
 para $n \in \mathbb{Z}$

Si f(x) es T periódica en centrada en x=0, entonces con $\alpha=-\frac{T}{2}$

Producto interno:

Sea $\mathcal{C}_{\mathbb{R}}([a,b]) = \{f : [a,b] \longrightarrow \mathbb{R} / f \text{ es continua}\}$

Si
$$\mathcal{C}_{\mathbb{R}}\left(\left[-\frac{T}{2}, \frac{T}{2}\right]\right) \Longrightarrow \langle f(x), g(x)\rangle = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x)g(x) \ dx$$

• Las funciones $\{1, \cos\left(n\frac{2\pi}{T}x\right), \sin\left(n\frac{2\pi}{T}x\right)\}_{n\in\mathbb{N}}$ forman una base ortogonal respecto a $\langle \ , \ \rangle$ y $\mathcal{C}_{\mathbb{R}}\left([a,b]\right)$

Sea $\mathcal{C}_{\mathbb{C}}([a,b]) = \{f : [a,b] \longrightarrow \mathbb{C} / f \text{ es continua}\}$

Si
$$\mathcal{C}_{\mathbb{C}}\left(\left[-\frac{T}{2}, \frac{T}{2}\right]\right) \Longrightarrow \langle f(x), g(x) \rangle = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x)\overline{g(x)} \ dx$$

• Las funciones $\{\Phi_n(x)\}_{n\in\mathbb{Z}} = \left\{e^{in\frac{2\pi}{T}x}\right\}_{n\in\mathbb{Z}}$ forman una base ortogonal respecto a $\langle \ , \ \rangle$ y $\mathcal{C}_{\mathbb{C}}\left([a,b]\right)$

Norma:
$$||f(x)||^2 = \langle f(x), f(x) \rangle = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \overline{f(x)} \, dx = \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)|^2 \, dx$$

Lema de Riemann – Lebesgue: Condición necesaria para la convergencia de una serie de Fourier. Si f es una función periódica continua a trozos con coeficientes de Fourier a_n y b_n , entonces:

$$\lim_{n \to \infty} a_n = 0 \quad \land \quad \lim_{n \to \infty} b_n = 0$$

 $\lim_{n\to\infty}a_n=0\quad\wedge\quad \lim_{n\to\infty}b_n=0$ Si f es una función periódica continua a trozos con coeficientes de Fourier c_n , entonces:

$$\lim_{n \to -\infty} c_n = 0 \quad \land \quad \lim_{n \to \infty} c_n = 0$$

 $\lim_{n\to-\infty}c_n=0 \quad \wedge \quad \lim_{n\to\infty}c_n=0$ Teorema fundamental de las series de Fourier (Convergencia puntual): Sea f(t) una función periódica suave a trozos en \mathbb{R} con coeficientes de Fourier c_n . Entonces se tiene para cualquier $t \in \mathbb{R}$

$$\lim_{N \to \infty} \left[\sum_{n=-\infty}^{N} c_n e^{in\frac{2\pi}{T}t} \right] = \frac{1}{2} \left[f(t^+) + f(t^-) \right]$$

Si f(t) es continua entonces $f(t^+) = f(t^-)$ y el lado derecho es igual a f(t).

Si f(t) una función periódica suave a trozos en \mathbb{R} con coeficientes de Fourier a_n y b_n , entonces se tiene para cualquier $t \in \mathbb{R}$

$$\lim_{N\to\infty} \left[\frac{a_0}{2} + \sum_{n=1}^N a_n \cos\left(n\frac{2\pi}{T}t\right) + \sum_{n=1}^N b_n \sin\left(n\frac{2\pi}{T}t\right) \right] = \frac{1}{2} \left[f(t^+) + f(t^-) \right]$$

Si f(t) es continua entonces $f(t^+) = f(t^-)$ y el lado derecho es igual a f(t).

Teorema de convergencia uniforme: Si f(x) es una función generalmente continua para todo $x \in \left[-\frac{T}{2}, \frac{T}{2}\right]$, $f\left(-\frac{T}{2}\right) = f\left(\frac{T}{2}\right)$ y f'(x) es continua a trozos en $\left[-\frac{T}{2}, \frac{T}{2}\right]$ entonces la serie de Fourier converge uniformemente a f en $\left[-\frac{T}{2}, \frac{T}{2}\right]$.

• Convergencia uniforme implica convergencia puntual.

• PROPIEDAD: Si $\sum_{n=1}^{\infty} |a_n|$ y $\sum_{n=1}^{\infty} |b_n|$ convergen, entonces la serie de Fourier converge uniformemente a una función

Si f(x) es continua en \mathbb{R} y en un intervalo cerrado [a,b] se tiene que f(a)=f(b) entonces la serie de Fourier de f(a)converge uniformemente.

<u>Función de cuadrado integrable</u>: f(x) es de cuadrado integrable en [a,b] si $\int_{a}^{b} |f(x)|^2 dx < \infty$

<u>Teorema de Parseval</u>: Si f(x) es una función de cuadrado integrable en $\left[-\frac{T}{2}, \frac{T}{2}\right]$ con la serie de Fourier $f(x) \approx$ $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(n\frac{2\pi}{T}x\right) + \sum_{n=1}^{\infty} b_n \sin\left(n\frac{2\pi}{T}x\right)$ entonces

$$||f(x)||^2 = \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)|^2 dx = \frac{T}{2} \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \right] \xrightarrow{\text{o tambi\'en}} \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)|^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \left(a_n^2 + b_n^2 \right)$$

Si $T=2\pi$

$$||f(x)||^2 = \int_{-\pi}^{\pi} |f(x)|^2 dx = \pi \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \right] \xrightarrow{\text{o tambi\'en}} \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$

Si f(x) es una función de cuadrado integrable en $\left[-\frac{T}{2},\frac{T}{2}\right]$ con la serie de Fourier $f(x)\approx\sum_{n=-\infty}^{\infty}c_ne^{in\frac{2\pi}{T}x}$ entonces

$$||f(x)||^2 = \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)|^2 dx = T \left[\sum_{n=-\infty}^{\infty} |c_n|^2 \right] \xrightarrow{\text{o tambi\'en}} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)|^2 dx = \sum_{n=-\infty}^{\infty} |c_n|^2$$

Si $T=2\pi$

$$||f(x)||^2 = \int_{-\pi}^{\pi} |f(x)|^2 dx = 2\pi \left[\sum_{n=-\infty}^{\infty} |c_n|^2 \right] \xrightarrow{\text{o tambi\'en}} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{n=-\infty}^{\infty} |c_n|^2$$
Extensión par: T es el período de $f(x)$: $[0,T] \longrightarrow \mathbb{R} \Longrightarrow 2T$ es el período de $f_{\text{par}}(x)$.

$$f_{\text{par}}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(n\frac{2\pi}{2T}x\right) \longrightarrow f_{\text{par}}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(n\frac{\pi}{T}x\right)$$

Extensión impar:
$$T$$
 es el período de $f(x)$. $[0,T] \longrightarrow \mathbb{R} \longrightarrow 2T$ es el período de $f_{\mathrm{par}}(x)$.
$$f_{\mathrm{par}}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(n\frac{2\pi}{2T}x\right) \longrightarrow f_{\mathrm{par}}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(n\frac{\pi}{T}x\right)$$
$$a_n = \frac{2}{2T} \int_{-T}^{T} f_{\mathrm{par}}(x) \cos\left(n\frac{2\pi}{2T}x\right) \ dx \xrightarrow{\text{integrando} \to \mathrm{par} \atop f_{\mathrm{par}}(x) = f(x) \text{ en } [0,T]} a_n = \frac{2}{T} \int_{0}^{T} f(x) \cos\left(n\frac{\pi}{T}x\right) \ dx$$
$$\text{Extensión impar: } T \text{ es el período de } f(x) : [0,T] \longrightarrow \mathbb{R} \Longrightarrow 2T \text{ es el período de } f_{\mathrm{impar}}(x).$$

$$f_{\text{impar}}(x) = \sum_{n=1}^{\infty} b_n \operatorname{sen}\left(n\frac{2\pi}{2T}x\right) \longrightarrow f_{\text{impar}}(x) = \sum_{n=1}^{\infty} b_n \operatorname{sen}\left(n\frac{\pi}{T}x\right)$$

$$b_n = \frac{2}{2T} \int_{-T}^{T} f_{\text{impar}}(x) \operatorname{sen}\left(n \frac{2\pi}{2T} x\right) dx \xrightarrow{\text{integrando } \to \operatorname{par}} b_n = \frac{2}{T} \int_{0}^{T} f(x) \operatorname{sen}\left(n \frac{\pi}{T} x\right) dx$$

<u>Función absolutamente integrable</u>: $f: \mathbb{R} \longrightarrow \mathbb{C}$ es absolutamente integrable en (\mathbb{R}) $(f \in L_1)$ si $\int_{-\infty}^{\infty} |f(t)| dt < \infty$ existe como integral de Riemann impropia.

<u>Transformada de Fourier</u>: $f: \mathbb{R} \to \mathbb{R}$ y es absolutamente integrable.

$$\mathcal{F}[f(t)](\omega) \equiv F(\omega) \equiv \hat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
 con $\omega \in \mathbb{R}$

Transformada inversa de Fourier:

$$\mathcal{F}^{-1}[F(\omega)](t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{i\omega t} d\omega$$

También se llama Integral de Fourier, si la misma existe

Convolución: $(f * g)(t) = \int_{0}^{\infty} f(\tau)g(t-\tau) d\tau$

Lema de Riemann - Lebesgue: Sea f(t) una función absolutamente integrable y continua a trozos en \mathbb{R} . Entonces

$$\lim_{\omega \to \pm \infty} F(\omega) = \lim_{\omega \to \pm \infty} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt = 0$$

<u>Identidad de Parseval</u>: $\int\limits_{-\infty}^{\infty} |f(t)|^2 \ dt = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} |F(\omega)|^2 \ d\omega$

Lema de Riemann – Lebesgue: Sea f(t) una función absolutamente integrable y continua a trozos en \mathbb{R} . Entonces

$$\lim_{\omega \to \pm \infty} F(\omega) = \lim_{\omega \to \pm \infty} \int\limits_{-\infty}^{\infty} f(t) e^{-i\omega t} dt = 0$$

<u>Valor principal de Cauchy</u>: El valor de $\lim_{A\to\infty}\int_{-A}^{A}f(t)dt$ es llamado el **Valor Pricipal de Cauchy** de la integral

 $\int_{0}^{\infty} f(t)dt$, si el límite existe.

Teorema fundamental de la integral de Fourier: Sea f(t) una función absolutamente integrable y suave a trozos en \mathbb{R} y sea $F(\omega)$ la transformada de Fourier de f. Entonces la integral de Fourier converge para cada $t \in \mathbb{R}$ como una valor principal de Cauchy y

$$\boxed{\frac{1}{2\pi} \int\limits_{-\infty}^{\infty} F(\omega)e^{i\omega t} \ d\omega = \frac{1}{2} \left[f(t^{+}) + f(t^{-}) \right]}$$

donde $f(t^+) = \lim_{h \to 0^+} f(t+h)$ y $f(t^-) = \lim_{h \to 0^-} f(t+h)$.

• Si f(t) es una función continua, entonces el lado derecho de la igualdad es f(t) porque en éste caso $f(t^+) = f(t^-)$ para cada $t \in \mathbb{R}$.

Transformada coseno de Fourier: Si f(t) es par su transformada es

$$\int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt = \int_{-\infty}^{\infty} f(t)\cos(\omega t) dt - i\int_{\infty}^{\infty} f(t)\sin(\omega t) dt = 2\int_{0}^{\infty} f(t)\cos(\omega t) dt$$

$$\frac{\text{Transformada coseno de}}{\text{Fourier de } f(t) \text{ par}} F_{c}(\omega) = \int_{0}^{\infty} f(t)\cos(\omega t) dt \implies F(\omega) = 2F_{c}(\omega)$$

Transformada seno de Fourier: Si
$$g(t)$$
 es impar su transformada es
$$\int_{-\infty}^{\infty} g(t)e^{-i\omega t} dt = \int_{-\infty}^{\infty} g(t)\cos(\omega t) dt - i \int_{-\infty}^{\infty} g(t)\sin(\omega t) dt = -2i \int_{0}^{\infty} g(t)\sin(\omega t) dt$$

$$\xrightarrow{\text{Transformada seno de} \atop \text{Fourier de } g(t) \text{ impar}} G_s(\omega) = \int_{0}^{\infty} g(t)\sin(\omega t) dt \Longrightarrow G(\omega) = -2iG_s(\omega)$$

Teorema fundamental de funciones pares: $e^{i\omega t} = \cos(\omega t) + i \sin(\omega t)$

$$\int_{-\infty}^{\infty} F(\omega)e^{i\omega t} d\omega = \int_{-\infty}^{\infty} F(\omega)\cos(\omega t) d\omega = 2\int_{0}^{\infty} F(\omega)\cos(\omega t) d\omega = 4\int_{0}^{\infty} F_{c}(\omega)\cos(\omega t) d\omega$$

$$\frac{\text{Teorema Funadamental}}{\text{para funciones pares}} \sqrt{\frac{2}{\pi} \int_{0}^{\infty} F_{c}(\omega)\cos(\omega t) d\omega} = \frac{1}{2} \left[f(t^{+}) + f(t^{-}) \right]$$

Teorema fundamental de funciones impares: $[e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)]$

$$\frac{\int_{-\infty}^{\infty} G(\omega)e^{i\omega t} \ d\omega = i \int_{-\infty}^{\infty} G(\omega) \operatorname{sen}(\omega t) \ d\omega = 2i \int_{0}^{\infty} G(\omega) \operatorname{sen}(\omega t) \ d\omega = 4 \int_{0}^{\infty} G_{s}(\omega) \operatorname{sen}(\omega t) \ d\omega}{\frac{\operatorname{Teorema Funadamental}}{\operatorname{para funciones impares}}} \frac{1}{\pi} \int_{0}^{\infty} G_{s}(\omega) \operatorname{sen}(\omega t) \ d\omega = \frac{1}{2} \left[g(t^{+}) + g(t^{-}) \right]$$

 \bullet INTEGRACIÓN POR PARTES: Elegir la parte del integrando a derivar y la parte del integrando a integrar. No olvidar colocar los signos comenzando por + y alternando con -. Se multiplican las diagonales y se suman los términos definidos por esos productos.

Caso 1: Detenerse cuando la columna de derivadas D se llega a 0.

<u>Caso 2</u>: Detenerse cuando se puede integrar una fila de la tabla.

$$\int_{a}^{b} x^{4} \ln(x) dx = +\left[\ln(x)\frac{x^{5}}{5}\right]_{a}^{b} - \int_{a}^{b} \frac{1}{x}\frac{x^{5}}{5} dx = \left[\ln(x)\frac{x^{5}}{5}\right]_{a}^{b} - \frac{1}{5}\int_{a}^{b} x^{4} dx \Longrightarrow \left[\ln(x)\frac{x^{5}}{5}\right]_{a}^{b} - \left[\frac{x^{5}}{25}\right]_{a}^{b}$$

$$\xrightarrow{\text{indefinida}} \int x^{4} \ln(x) dx = +\left[\ln(x)\frac{x^{5}}{5}\right] - \int \frac{1}{x}\frac{x^{5}}{5} dx = \left[\ln(x)\frac{x^{5}}{5}\right] - \frac{1}{5}\int x^{4} dx \Longrightarrow \left[\ln(x)\frac{x^{5}}{5}\right] - \left[\frac{x^{5}}{25}\right]$$

$$D \qquad \qquad I$$

$$+ \quad \ln(x) \qquad \qquad x^{4}$$

$$- \quad \frac{1}{x} \qquad \qquad \frac{x^{5}}{5}$$

Caso 3: Detenerse cuando una fila es múltiplo de la primera.

$$\int_{a}^{b} \operatorname{sen}(at)e^{-ut} dt = + \left[-\operatorname{sen}(at) \frac{e^{-ut}}{u} \right]_{a}^{b} - \left[a \cos(at) \frac{e^{-ut}}{u^{2}} \right]_{a}^{b} + \int_{a}^{b} -a^{2} \operatorname{sen}(at) \frac{e^{-ut}}{u^{2}} dt$$

$$\left(1 + \frac{a^{2}}{u^{2}} \right) \int_{a}^{b} \operatorname{sen}(at)e^{-ut} dt = - \left[\operatorname{sen}(at) \frac{e^{-ut}}{u} \right]_{a}^{b} - \left[a \cos(at) \frac{e^{-ut}}{u^{2}} \right]_{a}^{b}$$

$$\xrightarrow{\operatorname{indefinida}} \int \operatorname{sen}(at)e^{-ut} dt = + \left[-\operatorname{sen}(at) \frac{e^{-ut}}{u} \right] - \left[a \cos(at) \frac{e^{-ut}}{u^{2}} \right] + \int -a^{2} \operatorname{sen}(at) \frac{e^{-ut}}{u^{2}} dt$$

$$\left(1 + \frac{a^{2}}{u^{2}} \right) \int \operatorname{sen}(at)e^{-ut} dt = - \left[\operatorname{sen}(at) \frac{e^{-ut}}{u} \right] - \left[a \cos(at) \frac{e^{-ut}}{u^{2}} \right]$$

Solo falta dividir a ambos lados por $(1 + a^2/u^2)$.

•PROPIEDADES DE TRASFORMADA DE FOURIER:

1 $a f(t) + b g(t)$ $a F(\omega) + b G(\omega)$ $a, b \in \mathbb{C}$	
$2 \qquad \overline{f(t)} \qquad \qquad \overline{F(-\omega)}$	
$3 f(t-a) e^{-i\omega a}F(\omega) a \in \mathbb{R}$	
$4 e^{iat}f(t) F(\omega - a) a \in \mathbb{R}$	
5 $f(at)$ $\frac{1}{ a }F\left(\frac{\omega}{a}\right)$ $a \in \mathbb{R}, a$	$t \neq 0$
6 $f(t)$ par y real $F(\omega)$ par y real	
$f(t)$ impar y real $F(\omega)$ impar e imaginaria	
$8 f^{(n)}(t) (i\omega)^n F(\omega)$	
$9 \qquad (-it)^n f(t) \qquad \qquad F^{(n)}(\omega)$	
$10 \qquad \int_{-\infty}^{t} f(\tau) \ d\tau \qquad \qquad \frac{F(\omega)}{i\omega} \qquad \qquad F(0) = 0$	0
$11 F(-t) 2\pi f(\omega)$	
12 $(f * g)(t)$ $F(\omega)G(\omega)$	
13 $f(t)g(t)$ $\frac{1}{2\pi}(F*G)(\omega)$	

•TRASFORMADAS DE FOURIER:

no.	f(t)	$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$	Condiciones
1	$\begin{cases} 1 \text{ si } t \le a \\ 0 \text{ si } t > a \\ t \text{ si } t \le a \\ 0 \text{ si } t > a \end{cases}$	$2a\frac{\sin(a\omega)}{a\omega}$	a > 0
2	$\begin{cases} t & \text{si } t \le a \\ 0 & \text{si } t > a \end{cases}$	$2a^2 \frac{\operatorname{sen}(a\omega)}{a\omega} - a^2 \frac{\operatorname{sen}^2\left(\frac{a\omega}{2}\right)}{\left(\frac{a\omega}{2}\right)^2}$	a > 0
3	$\frac{\operatorname{sen}(at)}{t}$	$\begin{cases} \pi & \text{si } \omega \le a \\ 0 & \text{si } \omega > a \end{cases}$	a > 0
4	$\begin{cases} 1 - \frac{ t }{a} & \text{si } t \le a \\ 0 & \text{si } t > a \end{cases}$		a > 0
5	$\frac{\sin^2(at)}{t^2}$	$\begin{cases} \pi a \left[1 - \frac{ \omega }{2a} \right] & \text{si } \omega \le 2a \\ 0 & \text{si } \omega > 2a \end{cases}$	a > 0
6	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	a > 0
7	$\frac{1}{a^2 + t^2}$	$\frac{\pi}{a}e^{-a w }$	a > 0
8	$e^{-at}H(t)$	$rac{1}{a+i\omega}$	$\operatorname{Re}(a) > 0, b \in \mathbb{R}$
9	$t e^{-at}H(t)$	$\frac{1}{(a+i\omega)^2}$	$\operatorname{Re}(a) > 0, b \in \mathbb{R}$
10	$e^{-at}\operatorname{sen}(bt)H(t)$	$\frac{b}{(a+i\omega)^2+b^2}$	$\operatorname{Re}(a) > 0$
11	$e^{-at}\cos(bt)H(t)$	$\frac{a+i\omega}{(a+i\omega)^2+b^2}$	$\operatorname{Re}(a) > 0$
12	e^{-at^2}	$\sqrt{\frac{\pi}{a}}e^{\frac{-\omega^2}{4a}}$	a > 0

Función causal: Sea f(t) una función continua. f es una función causal si f(t) = 0 para t < 0.

Función de orden exponencial

La función causal $f: \mathbb{R} \longrightarrow \mathbb{C}$ es de orden exponencial si existen $\alpha \in \mathbb{R}$ y M > 0 tales que $|f(t)| \leq Me^{\alpha t}$ para todo $t \geq 0$

Transformada de Laplace: $f:[0,\infty)\to\mathbb{R}$ y es de orden exponencial.

$$\mathcal{L}\left[f(t)H(t)\right](s) = F(s) = \int\limits_{0}^{\infty} f(t)e^{-st}dt$$

Transformada de Laplace inversa:

$$\mathcal{L}^{-1}[F(s)](t) = f(t) = \frac{1}{2\pi i} \lim_{\beta \to \infty} \oint_{a-i\beta}^{a+i\beta} F(s)e^{st}ds, \text{ donde } a = \text{Re}(s)$$

•PROPIEDADES DE TRASFORMADA DE LAPLACE:

no.	f(t), g(t)	F(s), G(s)	Condiciones
1	a f(t) + b g(t)	a F(s) + b G(s)	$a,b\in\mathbb{C}$
2	f(t-a)H(t-a)	$e^{-as}F(s)$	$a \ge 0$
3	$e^{at}f(t)$	F(s-a)	$a \in \mathbb{C}$
4	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$	a > 0
5	f'(t)	$s F(s) - f(0^+)$	
6	f''(t)	$s^2F(s) - s f(0^+) - f'(0^+)$	
7	$(-1)^n t^n f(t)$	$F^{(n)}(s)$	
8	$\int_0^t f(\tau) \ d\tau$	$\frac{F(s)}{s}$	
9	(f*g)(t)	F(s) G(s)	
10	f(t)	$\frac{\int_0^T f(t)e^{-st} dt}{1 - e^{-st}}$	f(t+T) = f(t)
11	$\frac{f(t)}{t}$	$\int_{s}^{\infty} \mathcal{L}[f(t)](u) \ du$	

•TRANSFORMADAS DE LAPLACE:

no.	f(t)	$F(s) = \mathcal{L}[f(t)](s)$	Semiplano de	Condiciones
110.	f(t)	$\int_0^\infty f(t)e^{-st}dt$	convergencia	Condiciones
1	1 H(t)	$\frac{1}{s}$	Re(s) > 0	
2	e^{at}	$\frac{1}{s-a}$	Re(s) > a	$a\in\mathbb{C}$
3	t^n	$\frac{n!}{s^{n+1}}$	Re(s) > 0	
4	sen(at)	$\frac{a}{s^2+a^2}$	Re(s) > 0	$a \in \mathbb{R}$
5	$\cos(at)$	$\frac{s}{s^2+a^2}$	Re(s) > 0	$a \in \mathbb{R}$
6	senh(at)	$\frac{a}{s^2-a^2}$	Re(s) > a	$a \in \mathbb{R}$
7	$\cosh(at)$	$\frac{s}{s^2-a^2}$	Re(s) > a	$a \in \mathbb{R}$
8	sen(at+b)	$\frac{a\cos(b) + s\sin(b)}{s^2 + a^2}$	Re(s) > 0	$a,b\in\mathbb{R}$
9	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$	Re(s) > 0	$a,b\in\mathbb{R}$
10	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	Re(s) > Re(-a)	$a\in\mathbb{C}$
11	H(t-a)	$\frac{e^{-as}}{s}$	Re(s) > 0	a > 0