# Onlinekurs Mathematik - Gleichungen mit einer Unbekannten - Einfache Gleichungen Einführung

# Beispiel 2.1.2

Die Gleichung  $2x-1=x^2$  besitzt die rechte Seite  $x^2$  und die linke Seite 2x-1. Einsetzen von x=1 ergibt den Zahlenwert 1 auf beiden Seiten des Gleichheitszeichens, also ist x=1 eine Lösung dieser Gleichung. Dagegen ist x=2 keine Lösung, denn Auswerten ergibt 4 auf der linken Seite und 3 auf der rechten Seite der Gleichung.

Typische Aufgabenstellungen für Gleichungen sind

- Angabe der Lösungen einer Gleichung, d.h. aller Werte für die Unbestimmten, welche die Gleichung erfüllen,
- Umformen der Gleichung, insb. Auflösen nach den Variablen,

Kommentar [I1]: umformen

das Finden einer Gleichung, die ein textuell gegebenes Problem beschreibt.

#### Info 2.1.4

Zwei Gleichungen sind äquivalent, wenn sie die gleiche Lösungsmenge besitzen.

Eine Äquivalenzumformung ist eine spezielle Umformung, welche die Gleichung, aber nicht ihre Lösungsmenge verändert. Wichtige Äquivalenzumformungen sind

- Addieren/Subtrahieren von Termen auf beiden Seiten der Gleichung,
- Umdrehen der Gleichung,

Kommentar [I2]: umdrehen

• Umformen von Termen auf einer Seite der Gleichung,

Kommentar [I3]: umformen

• bekannte Gleichungen auf eine Seite anwenden.

Die folgenden Umformungen sind nur dann Äquivalenzumformungen, wenn der verwendete Term nicht Null ist (was von den Variablen abhängen kann):

Multiplikation/Division mit einem Term (dieser Term darf nicht Null sein),

### 2.1.2 Auflösen linearer Gleichungen

#### Beispiel 2.1.13

Die lineare Gleichung 3x+3=9x+9 hat eine Lösung:

$$3x+3 = 9x+9 \iff \Rightarrow = \square \square \square \square \square \square \square (x+1)$$
 3 =

Dies ist eine falsche Aussage, also ist die Gleichung für alle  $x \neq -1$  (Bedingung aus der Umformung) falsch. Einsetzen von x=-1 erfüllt jedoch die Gleichung, daher ist es die einzige Lösung.

Alternativ hätte man die Gleichung aus so umformen können:

$$3x+3 = 9x+9 \iff = \square \square \square \square \square -3x-9 \qquad -6 = 6x \iff x = -1.$$

# 2.1.3 Auflösen quadratischer Gleichungen

# Info 2.1.20

Beliebige quadratische Gleichungen kann man (ggf. Sortieren der Terme auf die linke Seite und Normieren) durch **quadratische Ergänzung** in Scheitelpunktform bringen. Dazu wird auf beiden Seiten eine Konstante addiert, so dass links ein Term der Form  $x2\pm2sx+s2$  für die erste oder zweite binomische Formel entsteht.

Kommentar [I4]: auch

Kommentar [I5]: der linken

#### Beispiel 2.1.21

Die Gleichung  $x_2-4x+2=0$  kann man durch Addieren der Konstanten 2 in die Form  $x_2-4x+4=2$  bzw. in die Scheitelpunktform  $(x-2)_2=2$  bringen. Aus ihr kann man sofort die Lösungen  $x_1=2-2\sqrt{1}$  und  $x_2+2\sqrt{1}$  ablesen. Andererseits besitzt die quadratische Gleichung  $x_2+x=-2$  keine Lösung, denn quadratische Ergänzung führt auf  $x_2+x+14=-74$  bzw.  $(x_1+2)_2=-74$  mit negativer rechter Seite.

Kommentar [I6]: die quadratrische

#### Aufgabe 2.1.22

Bestimmen Sie die Lösungen dieser quadratischen Gleichungen über quadratische Ergänzung, nachdem Sie die Terme auf die linke Seite sortiert und normiert haben:

Kommentar [17]: die quadratische

Kommentar [18]: der linken

#### Lösung

Die Umormungen lauten:

Kommentar [19]: Umformungen

#### Onlinekurs Mathematik - Gleichungen mit einer Unbekannten - Betragsgleichungen

#### 2.2.2 Gemischte Gleichungen

# Beispiel 2.2.6

Zu lösen sei die Gleichung  $|x-1|+x^2=1$ . Die Fallunterscheidung lautet hier wie folgt:

 Ist x≥1, so kann man den Betrag durch Klammern ersetzen und erhält die quadratische Gleichung (x-1)+x2=1, welche zu x2+x-2=0 umgeformt wird. Die pq-Formel liefert die beiden Lösungen

$$x_1x_2 = -12 - 94 - -\sqrt{\phantom{0}} = -2 , -12 + 94 - -\sqrt{\phantom{0}} = 1$$

von denen nur x2 die Fallbedingung erfüllt.

Ist x<1, so kann erhält man die Gleichung -(x-1)+x2=1, welche zu x2-x=0 bzw. x·(x-1)=0 umgeformt wird. Man kann aus der Produktdarstellung die beiden Lösungen x3=0 und x4=1 ablesen, wegen der Fallbedingung ist hier nur x3=0 eine Lösung der ursprünglichen Gleichung.</li>

Insgesamt ist also  $L=\{0,1\}$  die Lösungsmenge der Ausgangsgleichung.

Kommentar [I10]: so erhält

