(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 December 2001 (27.12.2001)

PCT

(10) International Publication Number WO 01/98342 A1

(51) International Patent Classification⁷: C07K 14/47, C12N 5/10, 5/16, 15/12, 15/63, 15/64

(21) International Application Number: PCT/US01/19929

(22) International Filing Date: 22 June 2001 (22.06.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/213,161 22 June 2000 (22.06.2000) US 60/213,156 22 June 2000 (22.06.2000) US

(71) Applicants (for all designated States except US):

SMITHKLINE BEECHAM CORPORATION
[US/US]; One Franklin Plaza, Philadelphia, PA 19103
(US). SMITHKLINE BEECHAM P.L.C. [GB/GB]; New Horizons Court, Great West Road, Brentford, Middlesex TW8 9EP (GB). GLAXO GROUP LIMITED [GB/GB]; Glaxo Wellcome House, Berkley Avenue, Greenford, Middlesex UB6 0NN (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AGARWAL, Pankaj [IN/US]; 251 West DeKalb Pike, King of Prussia, PA 19406 (US). COGSWELL, John, P. [US/US]; Five Moore Drive, Research Triangle Park, NC 27709 (US). KABNIC, Karen, S. [US/US]; 4138 Presidnetial Drive, Lafayette Hill, PA 19444 (US). LAI, Ying-Ta [—/US]; 516 Spruce Avenue. Upper Darby, PA 19082 (US). MARTENSEN, Shelby, A. [US/US]; Five Moore Drive, Research Triangle Park, NC 27709 (US). MURDOCK, Paul, R. [GB/GB]; New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB). SMITH, Randall, F. [US/US]; 4138 Presidential Drive, Lafayette Hill, PA 19444 (US). STRUM, Jay, C. [US/US]; Five

Moore Drive, Research Triangle Park, NC 27709 (US). XIANG, Zhaoying [CN/US]; 2413 Ridgeway, Fort Lee, NJ 07024 (US). XIE, Qing [CN/US]; 310 Sawmill Lane, Horsham, PA 19044 (US). RIZNI, Safia, K. [PK/US]; 4617 Pine Street, Philadelphia, PA 19143 (US).

- (74) Agents: VENETIANER, Stephen et al.; SmithKline Beecham Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC. LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL COMPOUNDS

(57) Abstract: Polypeptides and polynucleotides of the genes set forth in Table I and methods for producing such polypeptides by recombinant techniques are disclosed. Also disclosed are methods for utilizing polypeptides and polynucleotides of the genes set forth in Table I in diagnostic assays.

Novel Compounds

Field of Invention

This invention relates to newly identified polypeptides and polynucleotides encoding such polypeptides, to their use in diagnosis and in identifying compounds that may be agonists, antagonists that are potentially useful in therapy, and to production of such polypeptides and polynucleotides. The polynucleotides and polypeptides of the present invention also relate to proteins with signal sequences which allow them to be secreted extracellularly or membrane-associated (hereinafter often referred collectively as secreted proteins or secreted polypeptides).

Background of the Invention

The drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics", that is, high throughput genome- or gene-based biology. This approach as a means to identify genes and gene products as therapeutic targets is rapidly superseding earlier approaches based on "positional cloning". A phenotype, that is a biological function or genetic disease, would be identified and this would then be tracked back to the responsible gene, based on its genetic map position.

Functional genomics relies heavily on high-throughput DNA sequencing technologies and the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available. There is a continuing need to identify and characterise further genes and their related polypeptides/proteins, as targets for drug discovery.

Proteins and polypeptides that are naturally secreted into blood, lymph and other body fluids, or secreted into the cellular membrane are of primary interest for pharmaceutical research and development. The reason for this interest is the relative ease to target protein therapeutics into their place of action (body fluids or the cellular membrane). The natural pathway for protein secretion into extracellular space is the endoplasmic reticulum in eukaryotes and the inner membrane in prokaryotes (Palade, 1975, Science, 189, 347; Milstein, Brownlee, Harrison, and Mathews, 1972, Nature New Biol., 239, 117; Blobel, and Dobberstein, 1975, J. Cell. Biol., 67, 835). On the other hand, there is no known natural pathway for exporting a protein from the exterior of the cells into the cytosol (with the exception of pinocytosis, a mechanism of snake venom toxin intrusion into cells). Therefore targeting protein therapeutics into cells poses extreme difficulties.

The secreted and membrane-associated proteins include but are not limited

to all peptide hormones and their receptors (including but not limited to insulin, growth hormones, chemokines, cytokines, neuropeptides, integrins, kallikreins, lamins, melanins, natriuretic hormones, neuropsin, neurotropins, pituitiary hormones, pleiotropins, prostaglandins, secretogranins, selectins, thromboglobulins, thymosins), the breast and colon cancer gene products, leptin, the obesity gene protein and its receptors, serum albumin, superoxide dismutase, spliceosome proteins, 7TM (transmembrane) proteins also called as G-protein coupled receptors, immunoglobulins, several families of serine proteinases (including but not limited to proteins of the blood coagulation cascade, digestive enzymes), deoxyribonuclease I, etc.

Therapeutics based on secreted or membrane-associated proteins approved by FDA or foreign agencies include but are not limited to insulin, glucagon, growth hormone, chorionic gonadotropin, follicle stimulating hormone, luteinizing hormone, calcitonin, adrenocorticotropic hormone (ACTH), vasopressin, interleukines, interferones, immunoglobulins, lactoferrin (diverse products marketed by several companies), tissue-type plasminogen activator (Alteplase by Genentech), hyaulorindase (Wydase by Wyeth-Ayerst), dornase alpha (Pulmozyme\ by Genentech), Chymodiactin (chymopapain by Knoll), alglucerase (Ceredase by Genzyme), streptokinase (Kabikinase by Pharmacia) (Streptase by Astra), etc. This indicates that secreted and membrane-associated proteins have an established, proven history as therapeutic targets. Clearly, there is a need for identification and characterization of further secreted and membrane-associated proteins which can play a role in preventing, ameliorating or correcting dysfunction or disease, including but not limited to diabetes, breast-, prostate-, colon cancer and other malignant tumors, hyper- and hypotension, obesity, bulimia, anorexia, growth abnormalities, asthma, manic depression, dementia, delirium, mental retardation, Huntington's disease, Tourette's syndrome, schizophrenia, growth, mental or sexual development disorders, and dysfunctions of the blood cascade system including those leading to stroke. The proteins of the present invention which include the signal sequences are also useful to further elucidate the mechanism of protein transport which at present is not entirely understood, and thus can be used as research tools.

Summary of the Invention

The present invention relates to particular polypeptides and polynucleotides of the genes set forth in Table I, including recombinant materials and methods for their production.

5

10

15

20

25

30

Such polypeptides and polynucleotides are of interest in relation to methods of treatment of certain diseases, including, but not limited to, the diseases set forth in Tables III and V, hereinafter referred to as "diseases of the invention". In a further aspect, the invention relates to methods for identifying agonists and antagonists (e.g., inhibitors) using the 5 materials provided by the invention, and treating conditions associated with imbalance of polypeptides and/or polynucleotides of the genes set forth in Table I with the identified compounds. In still a further aspect, the invention relates to diagnostic assays for detecting diseases associated with inappropriate activity or levels the genes set forth in Table I. Another aspect of the invention concerns a polynucleotide comprising any of the nucleotide 10 sequences set forth in the Sequence Listing and a polypeptide comprising a polypeptide encoded by the nucleotide sequence. In another aspect, the invention relates to a polypeptide comprising any of the polypeptide sequences set forth in the Sequence Listing and recombinant materials and methods for their production. Another aspect of the invention relates to methods for using such polypeptides and polynucleotides. Such uses include the 15 treatment of diseases, abnormalities and disorders (hereinafter simply referred to as diseases) caused by abnormal expression, production, function and or metabolism of the genes of this invention, and such diseases are readily apparent by those skilled in the art from the homology to other proteins disclosed for each attached sequence. In still another aspect, the invention relates to methods to identify agonists and antagonists using the materials provided by the 20 invention, and treating conditions associated with the imbalance with the identified compounds. Yet another aspect of the invention relates to diagnostic assays for detecting diseases associated with inappropriate activity or levels of the secreted proteins of the present invention.

25 Description of the Invention

In a first aspect, the present invention relates to polypeptides the genes set forth in Table I. Such polypeptides include:

- (a) an isolated polypeptide encoded by a polynucleotide comprising a sequence set forth in the Sequence Listing, herein when referring to polynucleotides or polypeptides of the Sequence Listing, a reference is also made to the Sequence Listing referred to in the Sequence Listing;
- (b) an isolated polypeptide comprising a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;
- (c) an isolated polypeptide comprising a polypeptide sequence set forth in the SequenceListing;

(d) an isolated polypeptide having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;

- (e) a polypeptide sequence set forth in the Sequence Listing; and
- (f) an isolated polypeptide having or comprising a polypeptide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to a polypeptide sequence set forth in the Sequence Listing;
 - (g) fragments and variants of such polypeptides in (a) to (f). Polypeptides of the present invention are believed to be members of the gene families set forth in Table II. They are therefore of therapeutic and diagnostic interest for the reasons set forth in Tables III and V. The biological properties of the polypeptides and polynucleotides of the genes set forth in Table I are hereinafter referred to as "the biological activity" of polypeptides and polynucleotides of the genes set forth in Table I. Preferably, a polypeptide of the present invention exhibits at least one biological activity of the genes set forth in Table I.

Polypeptides of the present invention also include variants of the aforementioned polypeptides, including all allelic forms and splice variants. Such polypeptides vary from the reference polypeptide by insertions, deletions, and substitutions that may be conservative or non-conservative, or any combination thereof. Particularly preferred variants are those in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 amino acids are inserted, substituted, or deleted, in any combination.

Preferred fragments of polypeptides of the present invention include an isolated polypeptide comprising an amino acid sequence having at least 30, 50 or 100 contiguous amino acids from an amino acid sequence set forth in the Sequence Listing, or an isolated polypeptide comprising an amino acid sequence having at least 30, 50 or 100 contiguous amino acids truncated or deleted from an amino acid sequence set forth in the Sequence Listing. Preferred fragments are biologically active fragments that mediate the biological activity of polypeptides and polynucleotides of the genes set forth in Table I, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also preferred are those fragments that are antigenic or immunogenic in an animal, especially in a human.

Fragments of a polypeptide of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention. A polypeptide of the present invention may be in the form of the "mature" protein or may be a

10

15

20

25

30

part of a larger protein such as a precursor or a fusion protein. It is often advantageous to include an additional amino acid sequence that contains secretory or leader sequences, prosequences, sequences that aid in purification, for instance multiple histidine residues, or an additional sequence for stability during recombinant production.

- Polypeptides of the present invention can be prepared in any suitable manner, for instance by isolation form naturally occurring sources, from genetically engineered host cells comprising expression systems (*vide infra*) or by chemical synthesis, using for instance automated peptide synthesizers, or a combination of such methods. Means for preparing such polypeptides are well understood in the art.
- In a further aspect, the present invention relates to polynucleotides of the genes set forth in Table I. Such polynucleotides include:
 - (a) an isolated polynucleotide comprising a polynucleotide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polynucleotide sequence set forth in the Sequence Listing;
- (b) an isolated polynucleotide comprising a polynucleotide set forth in the Sequence Listing;
 - (c) an isolated polynucleotide having at least 95%, 96%, 97%, 98%, or 99% identity to a polynucleotide set forth in the Sequence Listing;
 - (d) an isolated polynucleotide set forth in the Sequence Listing;
- 20 (e) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;
 - (f) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide set forth in the Sequence Listing;
- 25 (g) an isolated polynucleotide having a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;
 - (h) an isolated polynucleotide encoding a polypeptide set forth in the Sequence Listing;
- (i) an isolated polynucleotide having or comprising a polynucleotide sequence that has an
 Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to a polynucleotide sequence set forth in the Sequence Listing;
 - (j) an isolated polynucleotide having or comprising a polynucleotide sequence encoding a polypeptide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to a polypeptide sequence set forth in the Sequence Listing; and

polynucleotides that are fragments and variants of the above mentioned polynucleotides or that are complementary to above mentioned polynucleotides, over the entire length thereof.

Preferred fragments of polynucleotides of the present invention include an isolated polynucleotide comprising an nucleotide sequence having at least 15, 30, 50 or 100 contiguous nucleotides from a sequence set forth in the Sequence Listing, or an isolated polynucleotide comprising a sequence having at least 30, 50 or 100 contiguous nucleotides truncated or deleted from a sequence set forth in the Sequence Listing.

Preferred variants of polynucleotides of the present invention include splice variants, allelic variants, and polymorphisms, including polynucleotides having one or more single nucleotide polymorphisms (SNPs).

Polynucleotides of the present invention also include polynucleotides encoding polypeptide variants that comprise an amino acid sequence set forth in the Sequence Listing and in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 amino acid residues are substituted, deleted or added, in any combination.

In a further aspect, the present invention provides polynucleotides that are RNA transcripts of the DNA sequences of the present invention. Accordingly, there is provided an RNA polynucleotide that:

- (a) comprises an RNA transcript of the DNA sequence encoding a polypeptide set forth in the Sequence Listing;
 - (b) is a RNA transcript of a DNA sequence encoding a polypeptide set forth in the Sequence Listing;
 - (c) comprises an RNA transcript of a DNA sequence set forth in the Sequence Listing; or
- (d) is a RNA transcript of a DNA sequence set forth in the Sequence Listing; and RNA polynucleotides that are complementary thereto.

The polynucleotide sequences set forth in the Sequence Listing show homology with the polynucleotide sequences set forth in Table II. A polynucleotide sequence set forth in the Sequence Listing is a cDNA sequence that encodes a polypeptide set forth in the Sequence Listing. A polynucleotide sequence encoding a polypeptide set forth in the Sequence Listing may be identical to a polypeptide encoding a sequence set forth in the Sequence Listing or it may be a sequence other than a sequence set forth in the Sequence Listing, which, as a result of the redundancy (degeneracy) of the genetic code, also encodes a polypeptide set forth in the Sequence Listing. A polypeptide of a sequence set forth in the Sequence Listing related to other proteins of the gene families set forth in Table II, having

5

10

15

20

25

30

homology and/or structural similarity with the polypeptides set forth in Table II. Preferred polypeptides and polynucleotides of the present invention are expected to have, *inter alia*, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides and polynucleotides of the present invention have at least one activity of the genes set forth in Table I.

Polynucleotides of the present invention may be obtained using standard cloning and screening techniques from a cDNA library derived from mRNA from the tissues set forth in Table IV (see for instance, Sambrook *et al.*, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.

When polynucleotides of the present invention are used for the recombinant production of polypeptides of the present invention, the polynucleotide may include the coding sequence for the mature polypeptide, by itself, or the coding sequence for the mature polypeptide in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain preferred embodiments of this aspect of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag. A polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that stabilize mRNA.

Polynucleotides that are identical, or have sufficient identity to a polynucleotide sequence set forth in the Sequence Listing, may be used as hybridization probes for cDNA and genomic DNA or as primers for a nucleic acid amplification reaction (for instance, PCR). Such probes and primers may be used to isolate full-length cDNAs and genomic clones encoding polypeptides of the present invention and to isolate cDNA and genomic clones of other genes (including genes encoding paralogs from human sources and orthologs and paralogs from other species) that have a high sequence similarity to sequences set forth in the Sequence Listing, typically at least 95% identity. Preferred probes and primers will generally comprise at least 15 nucleotides, preferably, at least 30 nucleotides and may have at least 50, if not at least 100 nucleotides. Particularly preferred probes will have between

5

10

15

20

25

30 and 50 nucleotides. Particularly preferred primers will have between 20 and 25 nucleotides.

A polynucleotide encoding a polypeptide of the present invention, including homologs from other species, may be obtained by a process comprising the steps of screening a library under stringent hybridization conditions with a labeled probe having a sequence set forth in the Sequence Listing or a fragment thereof, preferably of at least 15 nucleotides; and isolating full-length cDNA and genomic clones containing the polynucleotide sequence set forth in the Sequence Listing. Such hybridization techniques are well known to the skilled artisan. Preferred stringent hybridization conditions include overnight incubation at 42°C in a solution comprising: 50% formamide, 5xSSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA; followed by washing the filters in 0.1x SSC at about 65°C. Thus the present invention also includes isolated polynucleotides, preferably with a nucleotide sequence of at least 100, obtained by screening a library under stringent hybridization conditions with a labeled probe having the sequence set forth in the Sequence Listing or a fragment thereof, preferably of at least 15 nucleotides.

The skilled artisan will appreciate that, in many cases, an isolated cDNA sequence will be incomplete, in that the region coding for the polypeptide does not extend all the way through to the 5' terminus. This is a consequence of reverse transcriptase, an enzyme with inherently low "processivity" (a measure of the ability of the enzyme to remain attached to the template during the polymerisation reaction), failing to complete a DNA copy of the mRNA template during first strand cDNA synthesis.

There are several methods available and well known to those skilled in the art to obtain full-length cDNAs, or extend short cDNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE) (see, for example, Frohman et al., Proc Nat Acad Sci USA 85, 8998-9002, 1988). Recent modifications of the technique, exemplified by the Marathon (trade mark) technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer cDNAs. In the Marathon (trade mark) technology, cDNAs have been prepared from mRNA extracted from a chosen tissue and an 'adaptor' sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the "missing" 5' end of the cDNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction is then repeated using 'nested' primers, that is, primers designed to anneal within the amplified product (typically an adapter specific primer that anneals further 3' in the adaptor sequence and a gene specific

5

10

15

20

25

30

primer that anneals further 5' in the known gene sequence). The products of this reaction can then be analyzed by DNA sequencing and a full-length cDNA constructed either by joining the product directly to the existing cDNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.

Recombinant polypeptides of the present invention may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems comprising a polynucleotide or polynucleotides of the present invention, to host cells which are genetically engineered with such expression systems and to the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention. Polynucleotides may be introduced into host cells by methods described in many standard laboratory manuals, such as Davis et al., Basic Methods in Molecular Biology (1986) and Sambrook et al.(ibid). Preferred methods of introducing polynucleotides into host cells include, for instance, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, micro-injection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.

Representative examples of appropriate hosts include bacterial cells, such as Streptococci, Staphylococci, E. coli, Streptomyces and Bacillus subtilis cells; fungal cells, such as yeast cells and Aspergillus cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells; and plant cells.

A great variety of expression systems can be used, for instance, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems may contain control regions that regulate as well as engender expression. Generally, any system or vector that is able to maintain, propagate or express a polynucleotide to produce a

5

10

15

20

25

30

polypeptide in a host may be used. The appropriate polynucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook *et al.*, (*ibid*). Appropriate secretion signals may be incorporated into the desired polypeptide to allow secretion of the translated protein into the lumen of the endoplasmic reticulum, the periplasmic space or the extracellular environment. These signals may be endogenous to the polypeptide or they may be heterologous signals.

If a polypeptide of the present invention is to be expressed for use in screening assays, it is generally preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If the polypeptide is secreted into the medium, the medium can be recovered in order to recover and purify the polypeptide. If produced intracellularly, the cells must first be lysed before the polypeptide is recovered.

Polypeptides of the present invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during intracellular synthesis, isolation and/or purification.

Polynucleotides of the present invention may be used as diagnostic reagents, through detecting mutations in the associated gene. Detection of a mutated form of a gene is characterized by the polynucleotides set forth in the Sequence Listing in the cDNA or genomic sequence and which is associated with a dysfunction. Will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, or susceptibility to a disease, which results from under-expression, over-expression or altered spatial or temporal expression of the gene. Individuals carrying mutations in the gene may be detected at the DNA level by a variety of techniques well known in the art.

Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material. The genomic DNA may be used directly for detection or it may be amplified enzymatically by using PCR, preferably RT-PCR, or other amplification techniques prior to analysis. RNA or cDNA may also be used in similar fashion. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified

10

15

20

25

30

by hybridizing amplified DNA to labeled nucleotide sequences of the genes set forth in Table I. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence difference may also be detected by alterations in the electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing (see, for instance, Myers et al., Science (1985) 230:1242). Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (see Cotton et al., Proc Natl Acad Sci USA (1985) 85: 4397-4401).

An array of oligonucleotides probes comprising polynucleotide sequences or fragments thereof of the genes set forth in Table I can be constructed to conduct efficient screening of e.g., genetic mutations. Such arrays are preferably high density arrays or grids. Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability, see, for example, M. Chee et al., Science, 274, 610-613 (1996) and other references cited therein.

Detection of abnormally decreased or increased levels of polypeptide or mRNA expression

may also be used for diagnosing or determining susceptibility of a subject to a disease of the invention. Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, nucleic acid amplification, for instance PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods. Assay techniques that can be used to determine levels of a protein, such as a polypeptide of the present invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radio-immunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

Thus in another aspect, the present invention relates to a diagnostic kit comprising:

(a) a polynucleotide of the present invention, preferably the nucleotide sequence set forth in the Sequence Listing, or a fragment or an RNA transcript thereof;

- (b) a nucleotide sequence complementary to that of (a);
- (c) a polypeptide of the present invention, preferably the polypeptide set forth in the Sequence Listing or a fragment thereof; or
- (d) an antibody to a polypeptide of the present invention, preferably to the polypeptide set forth in the Sequence Listing.

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component. Such a kit will be of use in diagnosing a disease or susceptibility to a disease, particularly diseases of the invention, amongst others.

5

10

15

20

25

30

The polynucleotide sequences of the present invention are valuable for chromosome localisation studies. The sequences set forth in the Sequence Listing are specifically targeted to, and can hybridize with, a particular location on an individual human chromosome. The mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found in, for example, V. McKusick, Mendelian Inheritance in Man (available online through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (co-inheritance of physically adjacent genes). Precise human chromosomal localisations for a genomic sequence (gene fragment etc.) can be determined using Radiation Hybrid (RH) Mapping (Walter, M. Spillett, D., Thomas, P., Weissenbach, J., and Goodfellow, P., (1994) A method for constructing radiation hybrid maps of whole genomes, Nature Genetics 7, 22-28). A number of RH panels are available from Research Genetics (Huntsville, AL, USA) e.g. the GeneBridge4 RH panel (Hum Mol Genet 1996 Mar;5(3):339-46 A radiation hybrid map of the human genome. Gyapay G, Schmitt K, Fizames C, Jones H, Vega-Czarny N, Spillett D, Muselet D, Prud'Homme JF, Dib C, Auffray C, Morissette J, Weissenbach J, Goodfellow PN). To determine the chromosomal location of a gene using this panel, 93 PCRs are performed using primers designed from the gene of interest on RH DNAs. Each of these DNAs contains random human genomic fragments maintained in a hamster background (human / hamster hybrid cell lines). These PCRs result in 93 scores indicating the presence or absence of the PCR product of the gene of interest. These scores are compared with scores created using PCR products from genomic sequences of known location. This comparison is conducted at http://www.genome.wi.mit.edu/.

The polynucleotide sequences of the present invention are also valuable tools for tissue expression studies. Such studies allow the determination of expression patterns of polynucleotides of the present invention which may give an indication as to the expression patterns of the encoded polypeptides in tissues, by detecting the mRNAs that encode them. The techniques used are well known in the art and include in situ hydridization techniques to clones arrayed on a grid, such as cDNA microarray hybridization (Schena *et al*, Science, 270, 467-470, 1995 and Shalon *et al*, Genome Res, 6, 639-645, 1996) and nucleotide amplification techniques such as PCR. A preferred method uses the TAQMAN (Trade mark) technology available from Perkin Elmer. Results from these studies can provide an

5

10

15

20

25

30

į

indication of the normal function of the polypeptide in the organism. In addition, comparative studies of the normal expression pattern of mRNAs with that of mRNAs encoded by an alternative form of the same gene (for example, one having an alteration in polypeptide coding potential or a regulatory mutation) can provide valuable insights into the role of the polypeptides of the present invention, or that of inappropriate expression thereof in disease. Such inappropriate expression may be of a temporal, spatial or simply quantitative nature.

A further aspect of the present invention relates to antibodies. The polypeptides of the invention or their fragments, or cells expressing them, can be used as immunogens to produce antibodies that are immunospecific for polypeptides of the present invention. The term "immunospecific" means that the antibodies have substantially greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the prior art.

Antibodies generated against polypeptides of the present invention may be obtained by administering the polypeptides or epitope-bearing fragments, or cells to an animal, preferably a non-human animal, using routine protocols. For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C., Nature (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor *et al.*, Immunology Today (1983) 4:72) and the EBV-hybridoma technique (Cole *et al.*, Monoclonal Antibodies and Cancer Therapy, 77-96, Alan R. Liss, Inc., 1985).

Techniques for the production of single chain antibodies, such as those described in U.S. Patent No. 4,946,778, can also be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms, including other mammals, may be used to express humanized antibodies.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography. Antibodies against polypeptides of the present invention may also be employed to treat diseases of the invention, amongst others.

Polypeptides and polynucleotides of the present invention may also be used as vaccines. Accordingly, in a further aspect, the present invention relates to a method for inducing an immunological response in a mammal that comprises inoculating the mammal with a polypeptide of the present invention, adequate to produce antibody and/or T cell immune response, including, for example, cytokine-producing T cells or cytotoxic T cells,

5

10

15

20

25

30

to protect said animal from disease, whether that disease is already established within the individual or not. An immunological response in a mammal may also be induced by a method comprises delivering a polypeptide of the present invention via a vector directing expression of the polynucleotide and coding for the polypeptide in vivo in order to induce such an immunological response to produce antibody to protect said animal from diseases of the invention. One way of administering the vector is by accelerating it into the desired cells as a coating on particles or otherwise. Such nucleic acid vector may comprise DNA, RNA, a modified nucleic acid, or a DNA/RNA hybrid. For use a vaccine, a polypeptide or a nucleic acid vector will be normally provided as a vaccine formulation (composition). The formulation may further comprise a suitable carrier. Since a polypeptide may be broken down in the stomach, it is preferably administered parenterally (for instance, subcutaneous. intra-muscular, intravenous, or intra-dermal injection). Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions that may contain anti-oxidants, buffers, bacteriostats and solutes that render the formulation instonic with the blood of the recipient; and aqueous and non-aqueous sterile suspensions that may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

Polypeptides of the present invention have one or more biological functions that are of relevance in one or more disease states, in particular the diseases of the invention hereinbefore mentioned. It is therefore useful to identify compounds that stimulate or inhibit the function or level of the polypeptide. Accordingly, in a further aspect, the present invention provides for a method of screening compounds to identify those that stimulate or inhibit the function or level of the polypeptide. Such methods identify agonists or antagonists that may be employed for therapeutic and prophylactic purposes for such diseases of the invention as hereinbefore mentioned. Compounds may be identified from a variety of sources, for example, cells, cell-free preparations, chemical libraries, collections of chemical compounds, and natural product mixtures. Such agonists or antagonists so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of the polypeptide; a structural or functional mimetic thereof (see Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991)) or a small molecule. Such

5

10

15

20

25

30

small molecules preferably have a molecular weight below 2,000 daltons, more preferably between 300 and 1,000 daltons, and most preferably between 400 and 700 daltons. It is preferred that these small molecules are organic molecules.

ţ

The screening method may simply measure the binding of a candidate compound to the polypeptide, or to cells or membranes bearing the polypeptide, or a fusion protein thereof, by means of a label directly or indirectly associated with the candidate compound. Alternatively, the screening method may involve measuring or detecting (qualitatively or quantitatively) the competitive binding of a candidate compound to the polypeptide against a labeled competitor (e.g. agonist or antagonist). Further, these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells bearing the polypeptide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed. Further, the screening methods may simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide of the present invention, to form a mixture, measuring an activity of the genes set forth in Table I in the mixture, and comparing activity of the mixture of the genes set forth in Table I to a control mixture which contains no candidate compound.

Polypeptides of the present invention may be employed in conventional low capacity screening methods and also in high-throughput screening (HTS) formats. Such HTS formats include not only the well-established use of 96- and, more recently, 384-well micotiter plates but also emerging methods such as the nanowell method described by Schullek et al, Anal Biochem., 246, 20-29, (1997).

Fusion proteins, such as those made from Fc portion and polypeptide of the genes set forth in Table I, as hereinbefore described, can also be used for high-throughput screening assays to identify antagonists for the polypeptide of the present invention (see D. Bennett *et al.*, J Mol Recognition, 8:52-58 (1995); and K. Johanson *et al.*, J Biol Chem, 270(16):9459-9471 (1995)).

The polynucleotides, polypeptides and antibodies to the polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and polypeptide in cells. For example, an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents that may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.

5

10

15

20

25

30

A polypeptide of the present invention may be used to identify membrane bound or soluble receptors, if any, through standard receptor binding techniques known in the art. These include, but are not limited to, ligand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, ¹²⁵I), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (cells, cell membranes, cell supernatants, tissue extracts, bodily fluids). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide that compete with the binding of the polypeptide to its receptors, if any. Standard methods for conducting such assays are well understood in the art.

Examples of antagonists of polypeptides of the present invention include antibodies or, in some cases, oligonucleotides or proteins that are closely related to the ligands, substrates, receptors, enzymes, etc., as the case may be, of the polypeptide, e.g., a fragment of the ligands, substrates, receptors, enzymes, etc.; or a small molecule that bind to the polypeptide of the present invention but do not elicit a response, so that the activity of the polypeptide is prevented.

Screening methods may also involve the use of transgenic technology and the genes set forth in Table I. The art of constructing transgenic animals is well established. For example, the genes set forth in Table I may be introduced through microinjection into the male pronucleus of fertilized oocytes, retroviral transfer into pre- or post-implantation embryos, or injection of genetically modified, such as by electroporation, embryonic stem cells into host blastocysts. Particularly useful transgenic animals are so-called "knock-in" animals in which an animal gene is replaced by the human equivalent within the genome of that animal. Knock-in transgenic animals are useful in the drug discovery process, for target validation, where the compound is specific for the human target. Other useful transgenic animals are so-called "knock-out" animals in which the expression of the animal ortholog of a polypeptide of the present invention and encoded by an endogenous DNA sequence in a cell is partially or completely annulled. The gene knock-out may be targeted to specific cells or tissues, may occur only in certain cells or tissues as a consequence of the limitations of the technology, or may occur in all, or substantially all, cells in the animal. Transgenic animal technology also offers a whole animal expression-cloning system in which introduced genes are expressed to give large amounts of polypeptides of the present invention

5

10

15

20

25

Screening kits for use in the above described methods form a further aspect of the present invention. Such screening kits comprise:

- (a) a polypeptide of the present invention;
- (b) a recombinant cell expressing a polypeptide of the present invention;
- 5 (c) a cell membrane expressing a polypeptide of the present invention; or
 - (d) an antibody to a polypeptide of the present invention;

which polypeptide is preferably that set forth in the Sequence Listing.

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.

10

15

20

25

30

35

Glossary

The following definitions are provided to facilitate understanding of certain terms used frequently hereinbefore.

"Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an

Fab or other immunoglobulin expression library.

"Isolated" means altered "by the hand of man" from its natural state, *i.e.*, if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Moreover, a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method is "isolated" even if it is still present in said organism, which organism may be living or non-living.

"Secreted protein activity or secreted polypeptide activity" or "biological activity of the secreted protein or secreted polypeptide" refers to the metabolic or physiologic function of said secreted protein including similar activities or improved activities or these activities with decreased undesirable side-effects. Also included are antigenic and immunogenic activities of said secreted protein.

"Secreted protein gene" refers to a polynucleotide comprising any of the attached nucleotide sequences or allelic variants thereof and/or their complements.

"Polynucleotide" generally refers to any polyribonucleotide (RNA) or polydeoxribonucleotide (DNA), which may be unmodified or modified RNA or DNA. "Polynucleotides" include, without limitation, single- and double-stranded DNA, DNA that

is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term "polynucleotide" also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications may be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short polynucleotides, often referred to as oligonucleotides.

"Polypeptide" refers to any polypeptide comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. 15 "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. "Polypeptides" include amino acid sequences modified either by natural processes, such as post-translational 20 processing, or by chemical modification techniques that are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications may occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present to the 25 same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from post-translation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-30 ribosylation, amidation, biotinylation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, crosslinking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, 35 glycosylation, GPI anchor formation, hydroxylation, iodination, methylation,

5

myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination (see, for instance, Proteins - Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993; Wold, F., Post-translational Protein Modifications: Perspectives and Prospects, 1-12, in Post-translational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter *et al.*, "Analysis for protein modifications and nonprotein cofactors", Meth Enzymol, 182, 626-646, 1990, and Rattan *et al.*, "Protein Synthesis: Post-translational Modifications and Aging", Ann NY Acad Sci, 663, 48-62, 1992).

"Fragment" of a polypeptide sequence refers to a polypeptide sequence that is shorter than the reference sequence but that retains essentially the same biological function or activity as the reference polypeptide. "Fragment" of a polynucleotide sequence refers to a polynucleotide sequence that is shorter than the reference sequence set forth in the Sequence Listing.

"Variant" refers to a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide, but retains the essential properties thereof. A typical variant of a polynucleotide differs in nucleotide sequence from the reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from the reference polypeptide. Generally, alterations are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, insertions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. Typical conservative substitutions include Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe and Tyr. A variant of a polynucleotide or polypeptide may be naturally occurring such as an allele, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis. Also included as variants are polypeptides having one or more post-translational modifications, for instance glycosylation, phosphorylation, methylation, ADP ribosylation and the like. Embodiments include methylation of the N-terminal amino acid, phosphorylations of serines and threonines and modification of C-terminal glycines.

5

10

15

20

25

30

"Allele" refers to one of two or more alternative forms of a gene occurring at a given locus in the genome.

"Polymorphism" refers to a variation in nucleotide sequence (and encoded polypeptide sequence, if relevant) at a given position in the genome within a population.

"Single Nucleotide Polymorphism" (SNP) refers to the occurrence of nucleotide variability at a single nucleotide position in the genome, within a population. An SNP may occur within a gene or within intergenic regions of the genome. SNPs can be assayed using Allele Specific Amplification (ASA). For the process at least 3 primers are required. A common primer is used in reverse complement to the polymorphism being assayed. This common primer can be between 50 and 1500 bps from the polymorphic base. The other two (or more) primers are identical to each other except that the final 3' base wobbles to match one of the two (or more) alleles that make up the polymorphism. Two (or more) PCR reactions are then conducted on sample DNA, each using the common primer and one of the Allele Specific Primers.

"Splice Variant" as used herein refers to cDNA molecules produced from RNA molecules initially transcribed from the same genomic DNA sequence but which have undergone alternative RNA splicing. Alternative RNA splicing occurs when a primary RNA transcript undergoes splicing, generally for the removal of introns, which results in the production of more than one mRNA molecule each of that may encode different amino acid sequences. The term splice variant also refers to the proteins encoded by the above cDNA molecules.

"Identity" reflects a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, determined by comparing the sequences. In general, identity refers to an exact nucleotide to nucleotide or amino acid to amino acid correspondence of the two polynucleotide or two polypeptide sequences, respectively, over the length of the sequences being compared.

"% Identity" - For sequences where there is not an exact correspondence, a "% identity" may be determined. In general, the two sequences to be compared are aligned to give a maximum correlation between the sequences. This may include inserting "gaps" in either one or both sequences, to enhance the degree of alignment. A % identity may be determined over the whole length of each of the sequences being compared (so-called global alignment), that is particularly suitable for sequences of the same or very similar length, or over shorter, defined lengths (so-called local alignment), that is more suitable for sequences of unequal length.

5

10

15

20

25

"Similarity" is a further, more sophisticated measure of the relationship between two polypeptide sequences. In general, "similarity" means a comparison between the amino acids of two polypeptide chains, on a residue by residue basis, taking into account not only exact correspondences between a between pairs of residues, one from each of the sequences being compared (as for identity) but also, where there is not an exact correspondence, whether, on an evolutionary basis, one residue is a likely substitute for the other. This likelihood has an associated "score" from which the "% similarity" of the two sequences can then be determined.

Methods for comparing the identity and similarity of two or more sequences are well known in the art. Thus for instance, programs available in the Wisconsin Sequence Analysis Package, version 9.1 (Devereux J et al, Nucleic Acids Res, 12, 387-395, 1984, available from Genetics Computer Group, Madison, Wisconsin, USA), for example the programs BESTFIT and GAP, may be used to determine the % identity between two polynucleotides and the % identity and the % similarity between two polypeptide sequences. BESTFIT uses the "local homology" algorithm of Smith and Waterman (J Mol Biol, 147,195-197, 1981, Advances in Applied Mathematics, 2, 482-489, 1981) and finds the best single region of similarity between two sequences. BESTFIT is more suited to comparing two polynucleotide or two polypeptide sequences that are dissimilar in length, the program assuming that the shorter sequence represents a portion of the longer. In comparison, GAP aligns two sequences, finding a "maximum similarity", according to the algorithm of Neddleman and Wunsch (J Mol Biol, 48, 443-453, 1970). GAP is more suited to comparing sequences that are approximately the same length and an alignment is expected over the entire length. Preferably, the parameters "Gap Weight" and "Length Weight" used in each program are 50 and 3, for polynucleotide sequences and 12 and 4 for polypeptide sequences, respectively. Preferably, % identities and similarities are determined when the two sequences being compared are optimally aligned.

Other programs for determining identity and/or similarity between sequences are also known in the art, for instance the BLAST family of programs (Altschul S F et al, J Mol Biol, 215, 403-410, 1990, Altschul S F et al, Nucleic Acids Res., 25:389-3402, 1997, available from the National Center for Biotechnology Information (NCBI), Bethesda, Maryland, USA and accessible through the home page of the NCBI at www.ncbi.nlm.nih.gov) and FASTA (Pearson W R, Methods in Enzymology, 183, 63-99, 1990; Pearson W R and Lipman D J, Proc Nat Acad Sci USA, 85, 2444-2448,1988, available as part of the Wisconsin Sequence Analysis Package).

5

10

15

20

25

Preferably, the BLOSUM62 amino acid substitution matrix (Henikoff S and Henikoff J G, Proc. Nat. Acad Sci. USA, 89, 10915-10919, 1992) is used in polypeptide sequence comparisons including where nucleotide sequences are first translated into amino acid sequences before comparison.

Preferably, the program BESTFIT is used to determine the % identity of a query polynucleotide or a polypeptide sequence with respect to a reference polynucleotide or a polypeptide sequence, the query and the reference sequence being optimally aligned and the parameters of the program set at the default value, as hereinbefore described.

"Identity Index" is a measure of sequence relatedness which may be used to compare a candidate sequence (polynucleotide or polypeptide) and a reference sequence. Thus, for instance, a candidate polynucleotide sequence having, for example, an Identity Index of 0.95 compared to a reference polynucleotide sequence is identical to the reference sequence except that the candidate polynucleotide sequence may include on average up to five differences per each 100 nucleotides of the reference sequence. Such differences are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion. These differences may occur at the 5' or 3' terminal positions of the reference polynucleotide sequence or anywhere between these terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, to obtain a polynucleotide sequence having an Identity Index of 0.95 compared to a reference polynucleotide sequence, an average of up to 5 in every 100 of the nucleotides of the in the reference sequence may be deleted, substituted or inserted, or any combination thereof, as hereinbefore described. The same applies mutatis mutandis for other values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.

Similarly, for a polypeptide, a candidate polypeptide sequence having, for example, an Identity Index of 0.95 compared to a reference polypeptide sequence is identical to the reference sequence except that the polypeptide sequence may include an average of up to five differences per each 100 amino acids of the reference sequence. Such differences are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion. These differences may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between these terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, to obtain a polypeptide sequence having an Identity Index of 0.95 compared to a reference polypeptide sequence, an average of up to 5

5

10

15

20

25

30

in every 100 of the amino acids in the reference sequence may be deleted, substituted or inserted, or any combination thereof, as hereinbefore described. The same applies *mutatis mutandis* for other values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.

The relationship between the number of nucleotide or amino acid differences and the Identity Index may be expressed in the following equation:

$$n_a \le x_a - (x_a \bullet 1),$$

in which:

5

15

20

25

30

na is the number of nucleotide or amino acid differences,

 x_a is the total number of nucleotides or amino acids in a sequence set forth in the Sequence Listing,

I is the Identity Index,

• is the symbol for the multiplication operator, and in which any non-integer product of x_a and I is rounded down to the nearest integer prior to subtracting it from x_a .

"Homolog" is a generic term used in the art to indicate a polynucleotide or polypeptide sequence possessing a high degree of sequence relatedness to a reference sequence. Such relatedness may be quantified by determining the degree of identity and/or similarity between the two sequences as hereinbefore defined. Falling within this generic term are the terms "ortholog", and "paralog". "Ortholog" refers to a polynucleotide or polypeptide that is the functional equivalent of the polynucleotide or polypeptide in another species. "Paralog" refers to a polynucleotideor polypeptide that within the same species which is functionally similar.

"Fusion protein" refers to a protein encoded by two, often unrelated, fused genes or fragments thereof. In one example, EP-A-0 464 533-A discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, employing an immunoglobulin Fc region as a part of a fusion protein is advantageous for use in therapy and diagnosis resulting in, for example, improved pharmacokinetic properties [see, e.g., EP-A 0232 262]. On the other hand, for some uses it would be desirable to be able to delete the Fc part after the fusion protein has been expressed, detected and purified.

All publications and references, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference in their entirety as if each individual publication or reference were specifically and individually indicated to be incorporated by reference herein as being fully set forth. Any patent application to which

this application claims priority is also incorporated by reference herein in its entirety in the manner described above for publications and references.

Table I.

	GSK	Nucleic Acid	Corresponding
Gene Name	Gene ID	SEQ ID NO's	Protein
			SEQ ID NO's
sbg237163LIPASE	237163	SEQ ID NO:1	SEQ ID NO:23
sbg251170CEAa	251170	SEQ ID NO:2	SEQ ID NO:24
		SEQ ID NO:3	SEQ ID NO:25
sbg389686WNT15a	389686	SEQ ID NO:4	SEQ ID NO:26
		SEQ ID NO:5	SEQ ID NO:27
sbg236015LIPASE	236015	SEQ ID NO:6	SEQ ID NO:28
		SEQ ID NO:7	SEQ ID NO:29
sbg417005LAMININ_AL	417005	SEQ ID NO:8	SEQ ID NO:30
PHA		SEQ ID NO:9	SEQ ID NO:31
sbg425649KINASEa	425649	SEQ ID NO:10	SEQ ID NO:32
sbg419582PROTOCADH	419582	SEQ ID NO:11	SEQ ID NO:33
ERIN		SEQ ID NO:12	SEQ ID NO:34
sbg453915TECTORINa	453915	SEQ ID NO:13	SEQ ID NO:35
SBh385630.antiinflam	385630	SEQ ID NO:14	SEQ ID NO:36
		SEQ ID NO:15	SEQ ID NO:37
sbg471005nAChR	471005	SEQ ID NO:16	SEQ ID NO:38
sbg442445PROa	442445	SEQ ID NO:17	SEQ ID NO:39
sbg456548CytoRa	456548	SEQ ID NO:18	SEQ ID NO:40
		SEQ ID NO:19	SEQ ID NO:41
sbg456548CytoRa	456548b	SEQ ID NO:20	SEQ ID NO:42
sbg442358PROa	442358	SEQ ID NO:21	SEQ ID NO:43
		SEQ ID NO:22	SEQ ID NO:44

Table II

Gene Family Pancreatic ipase Carcinoem oryonic antigen	Closest Polynuclotide by homology GB:AC011328 Direct submitted (06- OCT-1999) Genome Therapeutics Corporation, 100 Beaver Street, Waltham, MA 02453, USA GB:AC020914 Submitted (12-JAN- 2000) Production Sequencing Facility, DOE Joint	Closest Polypeptide by homology Mouse pancreatic lipase related protein 1, gi: 9256628 Remington,S.G., Lima,P.H. and Nelson,J.D. Invest. Ophthalmol. Vis. Sci. 40 (6), 1081-1090 (1999) Mouse putative protein, gi:12842545	Cell Localization (by homology) Secreted
ipase Carcinoem oryonic	Direct submitted (06-OCT-1999) Genome Therapeutics Corporation, 100 Beaver Street, Waltham, MA 02453, USA GB:AC020914 Submitted (12-JAN-2000) Production Sequencing Facility,	related protein 1, gi: 9256628 Remington,S.G., Lima,P.H. and Nelson,J.D. Invest. Ophthalmol. Vis. Sci. 40 (6), 1081-1090 (1999) Mouse putative protein, gi:12842545	Secreted
oryonic	GB:AC020914 Submitted (12-JAN-2000) Production Sequencing Facility,	Mouse putative protein, gi:12842545	Secreted
	Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA	Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K., Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y. Genome Res. 10 (10), 1617-1630 (2000).	-
WNT15	GB:AC015855 Directly submitted (17-NOV-1999) Whitehead Institute/MIT Center for Genome Research, 320 Charles Street, Cambridge, MA 02141, USA.	Chicken WNT14 protein, gi:3915306 Bergstein I, Eisenberg LM, Bhalerao J, Jenkins NA, Copeland NG, Osborne MP, Bowcock AM, Brown AM; 1997; Genomics 46:450-8.	Secreted
ysosoma acid ipase	GB:AL358532 Directly submitted (15-DEC-2000) by Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA, UK.	Rat lingual lipase, gi:126307 Docherty,A.J., Bodmer,M.W., Angal,S., Verger,R., Riviere,C., Lowe,P.A., Lyons,A., Emtage,J.S. and Harris,T.J. Nucleic Acids Res. 13 (6), 1891-1903 (1985)	Secreted
aminin Ipha	GB:AL354836 Direct submitted (02-MAY-2000) Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA	Human laminin alpha 5, gi:12274842 Submitted (14-FEB-2001) by Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA, UK.	Secreted
C sein inase I- Ipha	GB:AL356107 Submitted (16-MAY-2000) by Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA, UK.	Human casein kinase I- alpha, gi:2134872 Fish,K.J., Cegielska,A., Getman,M.E., Landes,G.M. and Virshup,D.M.	Cytosolic
ina	n se I-	Submitted (16-MAY-2000) by se I-Sanger Centre, Hinxton, Cambridgeshire, CB10	Submitted (16-MAY- 2000) by se I- a Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA, UK. Submitted (16-MAY- 2000) by gi:2134872 Fish,K.J., Cegielska,A., Getman,M.E., Landes,G.M. and

			TT 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Secreted
sbg419582P	Protocadh	GB:AL355593	Human protocadherin 68	Secreted
ROTOCAD	erin	Direct submitted (17-	gi:11433373	
HERIN		MAY-2000) Sanger	Submitted (16-NOV-2000)	
		Centre, Hinxton,	by National Center for	
1		Cambridgeshire, CB10	Biotechnology	
		ISA, UK.	Information, NIH,	
		,	Bethesda, MD 20894, USA	
sbg453915T	Tectorin	SC:AL157786	Mouse tectorin beta,	Secreted
ECTORINa	Beta	Submitted (04-MAY-	gi:7363457	
	ł	2001) by Sanger	Legan, P.K., Rau, A.,	
		Centre, Hinxton,	Keen,J.N. and	
		Cambridgeshire, CB10	Richardson, G.P.	
		ISA, UK.	J. Biol. Chem. 272 (13),	
	,		8791-8801 (1997)	
SBh385630.		GB:AC015525	Rabbit lacrimal lipase,	Secreted
antiinflam	Lipase	Submitted (16-NOV-	gi:13560884	
anaman		1999) by Whitehead	Submitted (20-FEB-2001)	
	1	Institute/MIT Center	Ophthalmology, Regions	
		for Genome Research,	Hospital, 640 Jackson	
		320 Charles Street,	Street, St. Paul, MN 55101,	
		Cambridge, MA 02141,	USA	
1		USA		

Table II (cont).

Gene Name	Gene Family	Closest Polynuclotide	Closest Polypeptide by homology	Cell Localization
		by homology	liomology	(by homology)
sbg47100 5nAChR	Nicotinic acetylcholine receptor	GB:AC060812 Direct submitted (20-APR-2000) Whitehead Institute/MIT Center for Genome Research, 320 Charles Street, Cambridge, MA 02141, USA	Human cholinergic receptor, nicotinic, alpha polypeptide 10, gi:11138123 Lustig,L.R., Peng,H., Hiel,H., Yamamoto,T. and Fuchs,P.A. Genomics 73 (3), 272-283 (2001)	Membrane- bound
sbg44244 5PROa	Leucine rich repeat protein	GB:AC060234 Submitted (20-APR-2000) Genome Therapeutics Corporation, 100 Beaver Street, Waltham, MA 02453, USA	RIKEN cDNA mouse 4930442L21 gene Carninci,P., Shibata,Y., Hayatsu,N., Sugahara,Y., Shibata,K., Itoh,M., Konno,H., Okazaki,Y., Muramatsu,M. and Hayashizaki,Y. Genome Res. 10 (10), 1617-1630 (2000)	Cytosolic
sbg45654 8CytoRa	Cytokine receptor	GB:AL158138 Submitted (20- JAN-2001) by Sanger Centre, Hinxton, Cambridgeshire, CB10 1SA, UK.	Human IL20 receptor, gi:7657691 Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J, Wood WI, Goddard AD and Gurney AL. J. Biol. Chem. 275 (40), 31335-31339 (2000)	Membrane- bound
sbg44235 8PROa	Leucine rich repeat protein	GB:AL139099 Submitted (23- MAY-2000) by Genoscope - Centre National de Sequencage: BP 191 91006 EVRY cedex - FRANCE	Human EXMAD-9 geneseqp: AAB27231 Submitted by INCYTE GENOMICS INC Application and publication date: WO200068380-A2, 16- NOV-00	Membrane- bound

Table III

Gene Name	Uses	Associated Diseases
sbg237163	An embodiment of the invention is the use of sbg237163	Cancer, infection,
LIPASE	LIPASE as replacement enzymes for patients with chronic pancreatitis. A close homologue of sbg237163 LIPASE is pancreatic lipase. Pancreatic lipase hydrolyzes dietary long chain triacylglycerol to free fatty acids and monoacylglycerols in the intestinal lumen (Lowe ME, Rosenblum JL, and Strauss AW; 1989; J Biol Chem 264:20042-8). Pancreatic steatorrhea and pancreatic diabetes are the dominant symptoms of patients in a certain stage of chronic pancreatitis. In this stage, the nutritional state is greatly disturbed and hypoglycemia and labile infection are involved. Pancreatic enzyme replacement therapy is the principal treatment method for pancreatic steatorrhea (Nakamura T, Takeuchi T, and	autoimmune disorder, hematopoietic disorder, wound healing disorders, inflammation.
sbg251170C EAa	Tando Y; 1998; Pancreas 16:329-36. An embodiment of the invention is the use of sbg251170CEAa as cell-surface molecules mediating cell-specific interactions in normal and neoplastic cells. A close homologue of sbg251170CEAa is carcinoembryonic antigen-related cell adhesion molecule 6. Carcinoembryonic antigen-related cell adhesion molecule 6 is claimed to function as a cell-surface molecules mediating cell-specific interactions in normal and neoplastic cells (1. Barnett T, Goebel SJ, Nothdurft MA, Elting JJ, Carcinoembryonic antigen family: characterization of cDNAs coding for NCA and CEA and suggestion of nonrandom sequence variation in their conserved loop-domains. Genomics 1988 Jul;3(1):59-66. 2. Inazawa J, Abe T, Inoue K, Misawa S, Oikawa S, Nakazato H, Yoshida MC. Regional assignment of nonspecific cross-reacting antigen (NCA) of the CEA gene family to chromosome 19 at band q13.2. Cytogenet Cell Genet 1989;52(1-2):28-31).	Cancer, autoimmune disorders, wound healing disorders, hematopoietic disorders and infection
sbg389686 WNT15a	An embodiment of the invention is the use of sbg389686WNT15a in regulation of cell growth and differentiation. Close homologues of sbg389686WNT15a are Wnt proteins. Wnt proteins are involved in critical developmental processes in both vertebrates and invertebrates and are implicated in regulation of cell growth and differentiation in certain adult mammalian tissues (Bergstein I, Eisenberg LM, Bhalerao J, Jenkins NA, Copeland NG, Osborne MP, Bowcock AM, Brown AM; 1997; Genomics 46:450-8). The Wnt gene family consists of at least 15 structurally related genes that encode secreted extracellular signaling factors. Wnt signaling is involved in many mammalian developmental processes, including cell proliferation, differentiation and epithelial-mesenchymal interactions, through which they contribute to the development of tissues and organs such as the limbs, the brain, the reproductive tract and the kidney. Evidence from tumor expression studies and transgenic animals experiments suggests that inappropriate activation of the Wnt signaling pathway is a major feature in human neoplasia and that oncogenic activation of this pathway can occur at many levels. Inappropriate expression of	Cancer, infection, autoimmune disorder, hematopoietic disorder, wound healing disorders, and inflammation

	the Wnt ligand and Wnt binding proteins have been found in a variety of human tumors (Smalley MJ, Dale	
	TC;1999; Cancer Metastasis Rev 18:215-30).	
sbg236015L IPASE	An embodiment of the invention is the use of sbg236015LIPASE for treating lipase deficiency. A close homologue of sbg236015LIPASE is lysosomal acid lipase. The lysosomal acid lipase catalyzes the deacylation of triacylglyceryl and cholesteryl ester core lipids of endocytosed low density lipoproteins. This activity is deficient in patients with Wolman disease and cholesteryl ester storage disease, which are caused by a deficiency of lysosomal acid lipase activity, resulting in massive accumulation of cholesteryl ester and triglycerides (Anderson RA, Sando GN; 1991; J Biol Chem 266:22479-84).	Cancer, infection, autoimmune disorder, hematopoietic disorder, wound healing disorders, inflammation, Wolman disease, and cholesteryl ester storage disease
sbg417005L	An embodiment of the invention is the use of	Cancer, infection,
AMININ_A LPHA	sbg417005LAMININ_ALPHA to promote myogenesis in skeletal muscle, outgrowth of neurites from central and peripheral neurons, and mesenchymal to epithelial transitions in kidney. A close homologue of sbg417005LAMININ_ALPHA is laminin. Laminins trimers, composed of alpha, beta, and gamma chains, are components of all basal laminae (BLs) throughout the bodies. In mammals they play at least three essential roles. First, they are major structural elements of BLs, forming one of two self-assembling networks to which other glycoproteins and proteoglycans of the BL attach. Second, they interact with cell surface components such as dystroglycan to attach cells to the extracellular matrix. Third, they are signaling molecules that interact with cellular receptors such as the integrins to convey important information to the cell interior. The alpha chains are ligands for most cellular laminin receptors. (Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, Copeland NG, Sanes JR; 1997; J Cell Biol 137:685-701).	autoimmune disorder, hematopoietic disorder, wound healing disorders, inflammation, congenital muscular dystrophy, and junctional epidermolysis bullosa
sbg425649K INASEa	An embodiment of the invention is the use of sbg425649KINASEa in DNA replication and repair, membrane trafficking, neuroprotective, cytostatic, cardioactive, immunomodulatory, muscular, vulnerary, gastrointestinal, nephrotropic, anti-infective, gynaecological and antibacterial activities, and can be used in gene therapy. Close homologues of sbg425649KINASEa is mammalian casein kinases I (CKI) and human prostate cancer associated protein. CKI belongs to a family of serine/threonine protein kinases involved in diverse cellular processes including DNA replication and repair, membrane trafficking, circadian rhythms and Wnt signaling. Human prostate cancer associated proteins have neuroprotective, cytostatic, cardioactive, immunomodulatory, muscular, vulnerary, gastrointestinal, nephrotropic, anti-infective, gynaecological and antibacterial activities, and can be used in gene therapy.	Cancer, wound healing disorders, autoimmune disorders, hematopoietic disorders and infection

PCT/US01/19929 WO 01/98342

<u> Fable III (cont</u> Gene Name	Uses	Associated
		Diseases
sbg419582P ROTOCAD HERIN	An embodiment of the invention is the use of sbg419582PROTOCADHERIN in functional systems of the nervous system, and may be involved in the formation of the neural network. A close homologue of sbg419582PROTOCADHERIN is protocadherin. The expression of protocadherin is developmentally regulated in a subset of the functional systems of the nervous system, and may be involved in the formation of the neural network by segregation of the brain nuclei and mediation of the axonal connections (Hirano S, Yan Q, Suzuki ST; 1999; J Neurosci 19:995-1005). The	Cancer, infection, autoimmune disorder, hematopoietic disorder, wound healing disorders, inflammation, Parkinson's disease, Huntington's chorea, and
	members of the cadherin superfamily are divided into two groups: classical cadherin type and protocadherin type. The current cadherins appear to have evolved from protocadherin (Suzuki ST; 1996; J Cell Sci 109:2609-11).	multiple sclerosis
sbg453915T ECTORINa	An embodiment of the invention is the use of sbg453915TECTORINa, a secreted protein, in cellular adhesion. A close homologue of sbg453915TECTORINa is mouse tectorin beta. The beta-tectorin is a protein of 36,074 Da that contains 4 consensus N glycosylation sites and a single zona	Infection, cancer, wound healing disorders, hemotopoietic disorders and autoimmune
	pellucida domain. It is similar to components of the sperm-egg adhesion system, and, as such may have a similar functional role (Legan PK, Rau A, Keen JN, Richardson GP, The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J Biol Chem 1997 Mar 28;272(13):8791-801).	disorders.
SBh385630. antiinflam	An embodiment of the invention is the use of SBh385630.antiinflam in gene therapy and are also suggested to have cytokine and cell proliferation/differentiation activity, immune stimulating (e.g. vaccines) or suppressing activity, haematopoiesis regulating activity, tissue growth activity, activin/inhibinactivity, chemotactic/chemokinetic activity, haemostatic and thrombolytic activity, receptor/ligand activity,anti-inflammatory activity, cadherin/tumour invasion suppressor activity, and tumour inhibition activity. Lipases are also reported to be useful for gene therapy (WO9957132-A1;.Agostino, M.J., filed by GENETICS INST INC.). Close homologues of SBh385630.antiinflam include lipases.	Lematopoietic disorders, wound healing disorders, viral and bacterial infections, cancer, and autoimmune diseases
sbg471005n AChR	An embodiment of the invention is the use of sbg471005nAChR in physiological and behavioural processes of the brain. A close homologue of sbg471005nAChR is neuronal nicotinic acetylcholine receptors. Neuronal nicotinic acetylcholine receptors are a family of ion channels which are widely distributed in the human brain. There are many subtypes, and each has individual pharmacological and functional profiles. They mediate the effects of nicotine, and are involved in a number of physiological and behavioural processes. Additionally they may be implicated in a number of pathological conditions such	Cancer, infection, autoimmune disorder, hematopoietic disorder, wound healing disorders, inflammation, Alzheimer's disease, Parkinson's disease, and schizophrenia

	as Alzheimer's disease, Parkinson's disease and	
	schizophrenia (Paterson D, Nordberg A; 2000; Prog Neurobiol 61:75-111).	
sbg442445P	An embodiment of the invention is the use of	Inflammation,
ROa	sbg442445PROa which may be involved in protein-	autoimmune
	protein interation and signal transduction in immune	disorders, asthma,
	system. sbg442445PROa was expressed predominantly	allergies
	in lung and spleen/lymph. It encodes a protein with leucine rich repeats which may be involved in protein-	and
1	protein interation and signal transduction in immune	sbg442445PROa-
	systems.	associated disorders
sbg456548C	The present gene has been cloned. Sybrman data	Chronic and acute
ytoRa	showed its high expression levels in placenta and	inflammation.
1	moderate levels in spleen and lymph. A close	allergy, arthritis
1	homologue of sbg456548CytoRa is another Class II	(including
	cytokine receptor, ZCYTOR7. An embodiment of the	rheumatoid
	invention is the use of sbg456548CytoRa, a decoy	arthritis),
Ì	receptor, in the identification of other ligands, the	septicemia,
	promotion of anti-microbial activation of these cells,	autoimmune
	and/or potentiate the effectiveness of the natural ligand.	diseases (e.g.,
	Growth factors are known to promote the progression of	inflammatory
	cancer. A decoy receptor could interfere with that	bowel disease,
l	process. Proliferation, survival and differentiation can	psoriasis),
	be transduced from activated cytokine receptors (Cell	transplant
	Signal. 1998. 10(9):619-628). Blocking these events could be crucial in modulating various diseases.	rejection, graft vs.
ł	The decoy receptor could potentially interfere with	host disease, infection, stroke,
	binding of these or other putative ligands, preventing	ischemia, acute
	downstream effects (Blood. 1999. 94(6):1943-1951).	respiratory disease
]	GM-CSF also has anti-apoptotic activity. A decoy	syndrome, asthma,
	receptor might then be able to block GM-CSF's anti-	restenosis, brain
	apoptotic actions when appropriate (Mol Biol Cell.	injury, AIDS, bone
	1999. 10(11):3959-3970). Roles for blocking the	diseases, cancer,
•	activity of the decoy receptor can be envisioned. GM-	atheroschlerosis,
	CSF promotes anti-microbial functions of mature	Alzheimers
	neutrophils. Inhibiting the activity of an interfering	disease,,
	decoy receptor could promote anti-microbial activation	hematopoietic
	of these cells. Furthermore, rhGM-CSF is in wide	disorder, and
	clinical use to fight acute myeloid leukemia	wound healing
	(Haematologica. 1991. 82(2): 239-245). Inhibition of a decoy receptor could potentiate the effectiveness of the	disorder
	natural ligand.	
sbg442358P	An embodiment of the invention is the use of	Cancer.
ROa	sbg442358PROa useful in the prevention and treatment	autoimmune
	of cancers, cell proliferation, cardiovascular,	disorders,
	reproductive, immune, musculoskeletal, developmental	hemotopoietic
	and gastrointestinal disorders and inflammation. Close	disorders, wound
	homologues of sbg442358PROa are human protein	healing disorders
	B27231 and Drosophila LRR47 that also contains	and infections
	leucine-rich repeats (LRRs) motifs. LRR has been	
	found in a variety of extracellular, membrane and	
	cytoplasmic proteins and are believed to mediate	
	specific protein-protein interactions and to function in	
	cellular adhesion (Ntwasa, M., Buchanan, S.G. and	
	Gay, N.J. Biochim. Biophys. Acta 1218 (2), 181-186	
	(1994)).	

Table IV. Quantitative, Tissue-specific mRNA expression detected using SybrMan

Quantitative, tissue-specific, mRNA expression patterns of the genes were measured using SYBR-Green Quantitative PCR (Applied Biosystems, Foster City, CA; see Schmittgen T.D. et al., Analytical Biochemistry 285:194-204, 2000) and human cDNAs prepared from various human tissues. Gene-specific PCR primers were designed using the first nucleic acid sequence listed in the Sequence List for each gene. Results are presented as the number of copies of each specific gene's mRNA detected in 1ng mRNA pool from each tissue. Two replicate mRNA measurements were made from each tissue RNA.

Gene Name sbg237163LIPASE

5

10

15

20

		Tissue-Specific mRNA Expression					
Gene	(copies	(copies per ng mRNA; avg. ± range for 2 data points per tissue)					
Name	Brain						
sbg23716 3LIPASE	5	8	7	-6	5	5	4
JUII ASE	±0	±2	±2	±1	±1	±2	±6

Gene Name sbg237163LIPASE cont.

Tissue-Specific mRNA Expression Gene (copies per ng mRNA; avg. ± range for 2 data points per tissue-						
Name	Spleen/lymph	Placenta	Testis			
sbg23716	3	1	47			
3LIPASE	±2	±1	±1			

Gene Name sbg251170CEAa

Gene	Tissue-Specific mRNA Expression (copies per ng mRNA; avg. ± range for 2 data points per tissue)						
Name	Brain						
sbg25117	3	19	30	-5	3	5	21
0CEAa	±1	±1	±5	±3	±1	±5	±2

Gene Name sbg251170CEAa cont.

Tissue-Specific mRNA Expression						
Gene	(copies per ng mRNA; avg. ± range for 2 data points per tissue)					
Name _	Spleen/lymph	Placenta	Testis			
sbg23716 3LIPASE	33	22	14			
JLII ASE	±4	±3	±0			

Table IV (cont).

In each gene's first subset table, two replicate measurements of gene of identification (GOI) mRNA were measured from various human tissues (column 2 and 3). The average GOI mRNA copies of the two replicates were made from each tissue RNA (column 4). The average amount of 18S rRNA from each tissue RNA was measured (column 5) and used for normalization. To make each tissue

with the same amount of 50 ng of 18S rRNA, the normalization factor (column 6) was calculated by dividing 50 ng with the amount of 18S rRNA measured from each tissue (column 5). The mRNA copies per 50 ng of total RNA were obtained by multipling each GOI normalization factor and average mRNA copies (column7).

5

10

15

Fold changes shown in each gene's second subset table were only calculated for disease tissues which have a normal counterpart. There are blanks in the fold change column for all samples that do not have counterparts. In addition, the fold change calculations are the fold change in the disease sample as compared to the normal sample. Accordingly, there will not be a fold change calculation next to any of the normal samples. For patient matched cancer pairs (colon, lung, and breast), each tumor is compared to its specific normal counterpart. When patient-matched normal/disease pairs do not exist, each disease sample was compared back to the average of all the normal samples of that same tissue type. For example, normal brain from the same patient that provided Alzheimer's brain is not applicable. Three normal brain samples and 4 Alzheimer's brain samples are used in the fold change. Three normal samples were averaged, and each of the Alzheimer's samples was compared back to that average.

Abbreviations

ALZ Alzheimer's Disease

20 CT CLONTECH (1020 East Meadow Circle Palo Alto, CA 94303-4230, USA)

KC Sample prepared by GSK investigator

COPD chronic obstructive pulmonary disease

endo endothelial

VEGF vascular endothelial growth factor

25 bFGF basic fibroblast growth factor

BM bone marrow

osteo osteoblast

OA osteoarthritis

RA rheumatoid arthritis

30 PBL peripheral blood lymphocytes

PBMNC peripheral blood mononuclear cells

HIV human immunodeficiency virus

HSV Herpes simplex virus

HPV human papilloma virus

35

40

Gene Name sbg389686WNT15a

Strong expression in Brain and dendritic cells. Brain expression may be from presence of glial cells. Expression in RA and OA synovium along with dendritic cells suggests a role for this protein in these diseases. Down regulation in ischemic and dilated heart indicates that replacement of protein could be therapeutic.

Sample sbg389686WNT15a	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detected/ 50 ng total RNA
Subcutaneous Adipocytes Zenbio	0.00	0.00	0.00	3.06	16.34	0.00
Subcutaneous Adipose Zenbio	0.00	1.71	0.86	0.96	52.36	44.76
Adrenal Gland Clontech	2.29	4.18	3.24	0.61	81.97	265.16
Whole Brain Clontech	698.52	625.01	661.77	7.24	6.91	4570.20
Fetal Brain Clontech	4.14	6.78	5.46	0.48	103.95	567.57

						
Cerebellum Clontech	2.02	3.63	2.83	2.17	23.04	65.09
Cervix	3.16	10.14	6.65	2.42	20.66	137.40
Colon	2.48	3.44	2.96	2.71	18.45	54.61
Endometrium	2.69	5.20	3.95	0.73	68.21	269.10
Esophagus	10.67	3.24	6.96	1.37	36.50	253.83
Heart Clontech	9.26	6.07	7.67	1.32	37.88	290.34
Hypothalamus	7.10	5.16	6.13	0.32	155.28	951.86
Ileum	2.04	10.37	6.21	2.58	19.38	120.25
Jejunum	36.78	27.16	31.97	6.60	7.58	242.20
Kidney	16.46	16.55	16.51	2.12	23.58	389.27
Liver	14.07	3.34	8.71	1.50	33.33	290.17
Fetal Liver Clontech	4.60	8.89	6.75	10.40	4.81	32.43
Lung	3.11	10.49	6.80	2.57	19.46	132.30
Mammary Gland	3.28	10.61	6.95	13.00	3.85	26.71
Clontech						
Myometrium	1.79	13.84	7.82	2.34	21.37	166.99
Omentum	1.96	2.65	2.31	3.94	12.69	29.25
Ovary	4.50	1.71	3.11	4.34	11.52	35.77
Pancreas	3.40	2.41	2.91	0.81	61.80	179.54
Head of Pancreas	2.22	4.63	3.43	1.57	31.85°	109.08
Parotid Gland	5.48	2.07	3.78	5.48	9.12	34.44
Placenta Clontech	15.15	12.80	13.98	5.26	9.51	132.84
Prostate	3.39	7.44	5.42	3.00	16.67	90.25
Rectum	2.98	3.94	3.46	1.23	40.65	140.65
Salivary Gland Clontech	3.24	1.61	2.43	7.31	6.84	16.59
Skeletal Muscle Clontech	2.01	1.55	1.78	1.26	39.68	70.63
Skin	2.69	3.45	3.07	1.21	41.32	126.86
Small Intestine	5.39	1.67	3.53	0.98	51.07	180.29
Clontech						
Spleen	3.96	2.52	3.24	4.92	10.16	32.93
Stomach	1.08	5.33	3.21	2.73	18.32	58.70
Testis Clontech	3.27	2.88	3.08	0.57	87.87	270.21
Thymus Clontech	5.43	4.42	4.93	9.89	5.06	24.90
Thyroid	2.32	3.01	2.67	2.77	18.05	48.10
Trachea Clontech	1.64	4.25	2.95	9.71	5.15	15.16
Urinary Bladder	3.63	6.81	5.22	5.47	9.14	47.71
Uterus	31.55	11.10	21.33	5.34	9.36	199.67
0.0100	102.00	1 2 2 2 2 2				

Sample	Reg	Mean	copies of	Sample	Fold Change in
sbg389686WNT15a	number	GOI	mRNA		Disease
	(GSK	copies	detected/50		Population
	identifier)		ng total RNA		
colon normal GW98-167	21941	36.16	72.32	colon normal	
colon tumor GW98-166	21940	71.5	143.00	colon tumor	1.977323009
colon normal GW98-178	22080	2.09	4.18	colon normal	
colon tumor GW98-177	22060	9.84	19.68	colon tumor	4.708133971
colon normal GW98-561	23514	13.09	26.18	colon normal	
colon tumor GW98-560	23513	15.11	30.22	colon tumor	1.154316272
colon normal GW98-894	24691	8.62	17.24	colon normal	
colon tumor GW98-893	24690	5.76	11.52	colon tumor	-1.496527778
lung normal GW98-3	20742	140.19	280.38	lung normal	
lung tumor GW98-2	20741	1.67	3.34	lung tumor	-83.94610778
lung normal GW97-179	20677	60.54	121.08	lung normal	
lung tumor GW97-178	20676	135.62	271.24	lung tumor	2.240171787
lung normal GW98-165	21922	257.96	515.92	lung normal	
lung tumor GW98-164	21921	61.69	123.38	lung tumor	-4.181552926
lung normal GW98-282	22584	49.3	98.60	lung normal	
lung tumor GW98-281	22583	12.39	24.78	lung tumor	-3.979015335
breast normal GW00-392	28750	71.94	71.94	breast normal	
breast tumor GW00-391	28746	41.4	82.80	breast tumor	1.150959133
breast normal GW00-413	28798	19.37	19.37	breast normal	
breast tumor GW00-412	28797	1.13	2.26	breast tumor	-8.57079646
breast normal GW00- 235:238	27592-95	8.19	8.19	breast normal	
breast tumor GW00- 231:234	27588-91	38.27	38.27	breast tumor	4.672771673
breast normal GW98-621		77.26	154.52	breast normal	
breast tumor GW98-620	23655	37.57	75.14	breast tumor	-2.056428001
brain normal BB99-542	25507	597.17	1194.34	brain normal	
brain normal BB99-406	25509	104.34	208.68	brain normal	
brain normalBB99-904	25546	282.15	564.30	brain normal	
brain stage 5 ALZ BB99- 874	25502	84.26	168.52	brain stage 5 ALZ	-3.891367988
brain stage 5 ALZ BB99- 887	25503	247.01	494.02	brain stage 5 ALZ	-1.327422641
brain stage 5 ALZ BB99- 862	25504	173.02	346.04	brain stage 5 ALZ	-1.895079567
brain stage 5 ALZ BB99- 927	25542	253.73	507.46	brain stage 5 ALZ	-1.292266057
CT lung KC	normal	146.22	292.44	CT lung	
lung 26 KC	normal	150.46	150.46	lung 26	
lung 27 KC	normal	0	0.00	lung 27	
lung 24 KC	COPD	4.76	4.76	lung 24	-23.36292017
lung 28 KC	COPD	10.06	10.06	lung 28	-11.05442346
lung 23 KC	COPD	2.75	2.75	lung 23	-40.43909091

ung 25 KC	COPD	1.93	1.93	lung 25	
sthmatic lung DDO3112	29321	20.88	20.88	asthmatic lung	-5.326029693
sthmatic lung DDO3433	29323	133.29	266.58	asthmatic lung	2.397140481
isthmatic lung DDO3397	29322	322.77	645.54	asthmatic lung	5.804824315
sthmatic lung	29325	43.52	87.04	asthmatic lung	-1.277659697
ODO4928 endo cells KC	control	1.89	1.89	endo cells	
endo VEGF KC		0 .	0.00	endo VEGF	-1.89
endo vEGF KC		1.17	1.17	endo bFGF	-1.615384615
neart Clontech	normal	153.9	307.80	heart	
heart (T-1) ischemic	29417	137.74	275.48	heart T-1	-1.117322492
neart (T-14) non-	29422	87.79	175.58	heart T-14	-1.753047044
obstructive DCM	29426	43.68	87.36	heart T-3399	-3.523351648
heart (T-3399) DCM	26162	17.62	35.24	adenoid	
adenoid GW99-269		52.34	104.68	tonsil	<u> </u>
tonsil GW98-280	22582		16.90	T cells	
T cells PC00314	28453	8.45	1.99	PBMNC	
PBMNC KC		1.99			
monocyte KC		4.74	9.48	monocyte B cells	
B cells PC00665	28455	7.65	15.30		
dendritic cells 28441		194.97	389.94	dendritic cells	
neutrophils	28440	2.13	2.13	neutrophils	
eosinophils	28446	7.25	14.50	eosinophils	
BM unstim KC		0	0.00	BM unstim	<u> </u>
BM stim KC		0	0.00	BM stim	0
osteo dif KC		1.48	1.48	osteo dif	
osteo undif KC		7.41	7.41	osteo undif	5.006756757
chondrocytes		26.64	66.60	chondrocyte s	
OA Synovium IP12/01	29462	476.3	476.30	OA Synovium	
OA Synovium NP10/01	29461	151.36	302.72	OA Synovium	
OA Synovium NP57/00	28464	165.01	330.02	OA Synovium	
RA Synovium NP03/01	28466	84.02	168.04	RA Synovium	
RA Synovium NP71/00	28467	184.75	369.50	RA Synovium	
RA Synovium NP45/00	28475	223.3	446.60	RA Synovium	
OA bone (biobank)	29217	72.31	72.31	OA bone (biobank)	
OA bone Sample 1	J. Emory	10.46	20.92	OA bone	
OA bone Sample 2	J. Emory	111.79	223.58	OA bone	
Cartilage (pool)	Normal	215.54	431.08	Cartilage (pool)	
Cartilage (pool)	OA	81.85	163.70	Cartilage (pool)	-2.633353696

PBL unifected	28441	2.31	4.62	PBL unifected	
PBL HIV IIIB	28442	2.28	4.56	PBL HIV IIIB	-1.013157895
MRC5 uninfected (100%)	29158	2.37	4.74	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	37.5	75.00	MRC5 HSV strain F	15.82278481
W12 cells	29179	0.93	1.86	W12 cells	
Keratinocytes	29180	1.33	2.66	Keratinocyte s	

Gene Name sbg389686WNT15a

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.98
colon tumor	4.71
colon tumor	1.15
colon tumor	-1.50
lung tumor	-83.95
lung tumor	2.24
lung tumor	-4.18
lung tumor	-3.98
breast tumor	1.15
breast tumor	-8.57
breast tumor	4.67
breast tumor	-2.06
brain stage 5 ALZ	-3.89
brain stage 5 ALZ	-1.33
brain stage 5 ALZ	-1.90
brain stage 5 ALZ	-1.29
lung 24	-23.36
lung 28	-11.05
lung 23	-40.44
asthmatic lung	-5.33
asthmatic lung	2.40
asthmatic lung	5.80
asthmatic lung	-1.28
endo VEGF	-1.89
endo bFGF	-1.62
heart T-1	-1.12
heart T-14	-1.75
heart T-3399	-3.52
BM stim	0.00
osteo undif	5.01
Cartilage (pool)	-2.63
PBL HIV IIIB	-1.01
MRC5 HSV strain F	15.82

Gene Name sbg236015LIPASE

5

Strongly expressed in neutrophils and eosinophils suggesting an immune system function. Additional expression is seen in RA and OA synovium and I/3 OA bone samples. This suggests an involvement of 236015 in RA and OA. The high expression in skin when taken together with expression in neutrophils and eosinophils suggests possible involvement in immune pathologies of the skin ie. Eosinophilia, psoriasis and eczema. The expression in eosinophils also suggests involvement in allergic reactions. Expression in neutrophils suggests role in anti-infectives.

Sample sbg236015LIPASE	Mean GOI copies	Mean GOI copies	Average GOI	18S rRNA	50 ng/18S	copies of mRNA
	(sample 1)	(sample 2)	Copies	(ng)	rRNA (ng)	detected/ 50 ng total RNA
Subcutaneous Adipocytes Zenbio	0.00	11.45	5.73	3.06	16.34	93.55
Subcutaneous Adipose Zenbio	0.00	1.33	0.67	0.96	52.36	34.82
Adrenal Gland Clontech	0.52	5.04	2.78	0.61	81.97	227.87
Whole Brain Clontech	15.73	14.55	15.14	7.24	6.91	104.56
Fetal Brain Clontech	1.02	0.94	0.98	0.48	103.95	101.87
Cerebellum Clontech	0.38	0.39	0.39	2.17	23.04	8.87
Cervix	16.33	20.03	18.18	2.42	20.66	375.62
Colon	32.41	50.89	41.65	2.71	18.45	768.45
Endometrium	0.40	0.42	0.41	0.73	68.21	27.97
Esophagus	5.45	22.47	13.96	1.37	36.50	509.49
Heart Clontech	0.92	0.00	0.46	1.32	37.88	17.42
Hypothalamus	0.50	1.59	1.05	0.32	155.28	162.27
Ileum	41.95	1.51	21.73	2.58	19.38	421.12
Jejunum	7.59	15.40	11.50	6.60	7.58	87.08
Kidney	5.32	6.82	6.07	2.12	23.58	143.16
Liver	12.64	19.46	16.05	1.50	33.33	535.00
Fetal Liver Clontech	10.02	5.90	7.96	10.40	4.81	38.27
Lung	22.86	24.78	23.82	2.57	19.46	463.42
Mammary Gland Clontech	1.53	20.56	11.05	13.00	3.85	42.48
Myometrium	16.05	1.34	8.70	2.34	21.37	185.79
Omentum	8.33	9.88	9.11	3.94	12.69	115.55
Ovary	8.22	14.40	11.31	4.34	11.52	130.30
Pancreas	0.00	1.58	0.79	0.81	61.80	48.83
Head of Pancreas	0.00	1.98	0.99	1.57	31.85	31.53
Parotid Gland	5.30	11.45	8.38	5.48	9.12	76.41
Placenta Clontech	11.93	1.22	6.58	5.26	9.51	62.50
Prostate	0.00	0.00	0.00	3.00	16.67	0.00
Rectum	6.96	1.27	4.12	1.23	40.65	167.28
Salivary Gland Clontech	0.34	0.53	0.44	7.31	6.84	2.98
Skeletal Muscle Clontech	176.88	0.41	88.65	1.26	39.68	3517.66

Skin	95.17	147.16	121.17	1.21	41.32	5006.82
Small Intestine Clontech	0.35	1.31	0.83	0.98	51.07	42.39
Spleen	105.73	80.76	93.25	4.92	10.16	947.61
Stomach	0.56	3.73	2.15	2.73	18.32	39.29
Testis Clontech	0.79	0.78	0.79	0.57	87.87	68.98
Thymus Clontech	22.00	22.48	22.24	9.89	5.06	112.44
Thyroid	0.65	0.48	0.57	2.77	18.05	10.20
Trachea Clontech	1.20	0.00	0.60	9.71	5.15	3.09
Urinary Bladder	5.59	8.67	7.13	5.47	9.14	65.17
Uterus	19.26	27.10	23.18	5.34	9.36	217.04

Sample	Reg	Mean	copies of	Sample	Fold Change in
sbg236015LIPASE	number	GOI	mRNA]	Disease
	(GSK	copies	detected/50		Population
	identifier)		ng total		
			RNA		
colon normal GW98-167	21941	58.7	117.40	colon normal	
colon tumor GW98-166	21940	300.92	601.84	colon tumor	5.126405451
colon normal GW98-178	22080	8.78	17.56	colon normal	
colon tumor GW98-177	22060	23.74	47.48	colon tumor	2.703872437
colon normal GW98-561	23514	27.1	54.20	colon normal	
colon tumor GW98-560	23513	39.16	78.32	colon tumor	1.44501845
colon normal GW98-894	24691	10.15	20.30	colon normal	
colon tumor GW98-893	24690	144.58	289.16	colon tumor	14.24433498
lung normal GW98-3	20742	165.8	331.60	lung normal	
lung tumor GW98-2	20741	80.9	161.80	lung tumor	-2.049443758
lung normal GW97-179	20677	37.81	75.62	lung normal	
lung tumor GW97-178	20676	109.72	219.44	lung tumor	2.90187781
lung normal GW98-165	21922	150.06	300.12	lung normal	
lung tumor GW98-164	21921	169.73	339.46	lung tumor	1.131080901
lung normal GW98-282	22584	489.42	978.84	lung normal	
lung tumor GW98-281	22583	188.22	376.44	lung tumor	-2.600255021
breast normal GW00-392	28750	44.86	44.86	breast	
breast tumor GW00-391	28746	46.35	92.70	normal	0.06640000
				breast tumor	2.06642889
breast normal GW00-413	28798	16.35	16.35	breast normal	
breast tumor GW00-412	28797	55.98	111.96	breast tumor	6.847706422
breast normal GW00- 235:238	27592-95	3.84	3.84	breast normal	
breast tumor GW00- 231:234	27588-91	35.8	35.80	breast tumor	9.322916667
breast normal GW98-621	23656	12.14	24.28	breast normal	
breast tumor GW98-620	23655	44.85	89.70	breast tumor	3.694398682
brain normal BB99-542	25507	26.03	52.06	brain normal	
brain normal BB99-406	25509	14.78	29.56	brain normal	
brain normal BB99-904	25546	3.39	6.78	brain normal	
brain stage 5 ALZ BB99- 874	25502	35.71		brain stage 5 ALZ	2.423755656

brain stage 5 ALZ BB99-	25503	9.11	18.22	brain stage 5	-1.617270399
brain stage 5 ALZ BB99-	25504	8.18	16.36	ALZ brain stage 5	-1.801140994
862				ALZ	
brain stage 5 ALZ BB99- 927	25542	46.37	92.74	brain stage 5 ALZ	3.147285068
CT lung KC	normal	80.77	161.54	CT lung	
lung 26 KC	normal	233.65	233.65	lung 26	
lung 27 KC	normal	75.27	75.27	lung 27	
lung 24 KC	COPD	68.64	68.64	lung 24	-1.876821096
lung 28 KC	COPD	94.1	94.10	lung 28	-1.369022317
lung 23 KC	COPD	88.48	88.48	lung 23	-1.455978752
lung 25 KC	normal	44.84	44.84	lung 25	
asthmatic lung ODO3112	29321	111.42	111.42	asthmatic lung	-1.156210734
asthmatic lung ODO3433	29323	566.5	1133.00	asthmatic lung	8.794876771
asthmatic lung ODO3397	29322	262.77	525.54	asthmatic lung	4.079487677
asthmatic lung ODO4928	29325	367.52	735.04	asthmatic lung	5.70572482
endo cells KC	control	3.23	3.23	endo cells	
endo VEGF KC		3.41	3.41	endo VEGF	1.055727554
endo bFGF KC		0	0.00	endo bFGF	-3.23
heart Clontech	normal	0	0.00	heart	
heart (T-1) ischemic	29417	35.96	71.92	heart T-1	71.92
heart (T-14) non- obstructive DCM	29422	18.72	37.44	heart T-14	37.44
heart (T-3399) DCM	29426	37.97	75.94	heart T-3399	75.94
adenoid GW99-269	26162	14.17	28.34	adenoid	
tonsil GW98-280	22582	51.21	102.42	tonsil	
T cells PC00314	28453	111.1	222.20	T cells	
PBMNC KC		162.01	162.01	PBMNC	
monocyte KC		90.49	180.98	monocyte	
B cells PC00665	28455	109.71	219.42	B cells	
dendritic cells 28441		2.44	4.88	dendritic cells	
neutrophils	28440	1110.91	1110.91	neutrophils	
eosinophils	28446	835.72	1671.44	eosinophils	
BM unstim KC		181.05	181.05	BM unstim	
BM stim KC		93.96	93.96	BM stim	-1.92688378
osteo dif KC		0	0.00	osteo dif	
osteo undif KC	1	0.72	0.72	osteo undif	0.72
chondrocytes		2.03	5.08	chondrocyte s	
OA Synovium IP12/01	29462	27.82	27.82	OA Synovium	
OA Synovium NP10/01	29461	84.94	169.88	OA Synovium	
OA Synovium NP57/00	28464	46.58	93.16	OA Synovium	
RA Synovium NP03/01	28466	248.24	496.48	RA Synovium	

RA Synovium NP71/00	28467	148.32	296.64	RA Synovium	
RA Synovium NP45/00	28475	260.28	520.56	RA Synovium	
OA bone (biobank)	29217	10.27	10.27	OA bone (biobank)	
OA bone Sample 1	J. Emory	17.32	34.64	OA bone	
OA bone Sample 2	J. Emory	657.01	1314.02	OA bone	
Cartilage (pool)	Normal	59.17	118.34	Cartilage (pool)	_
Cartilage (pool)	OA	23.33	46.66	Cartilage (pool)	-2.53621946
PBL unifected	28441	23.51	47.02	PBL unifected	
PBL HIV IIIB	28442	5.86	11.72	PBL HIV IIIB	-4.011945392
MRC5 uninfected (100%)	29158	3.79	7.58	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	80.19	160.38	MRC5 HSV strain F	21.15831135
W12 cells	29179	95.42	190.84	W12 cells	
Keratinocytes	29180	16.18	32.36	Keratinocyte s	

Gene Name sbg236015LIPASE

Disease tissues	Fold Change in Disease
	Population Relative to
	Normal
colon tumor	5.13
colon tumor	2.70
colon tumor	1.45
colon tumor	14.24
lung tumor	-2.05
lung tumor	2.90
lung tumor	1.13
lung tumor	-2.60
breast tumor	2.07
breast tumor	6.85
breast tumor	9.32
breast tumor	3.69
brain stage 5 ALZ	2.42
brain stage 5 ALZ	-1.62
brain stage 5 ALZ	-1.80
brain stage 5 ALZ	3.15
lung 24	-1.88
lung 28	-1.37
lung 23	-1.46
asthmatic lung	-1.16
asthmatic lung	8.79
asthmatic lung	4.08
asthmatic lung	5.71
endo VEGF	1.06

endo bFGF	-3.23	
heart T-1	71.92	
heart T-14	37.44	
heart T-3399	75.94	
BM stim	-1.93	
osteo undif	0.72	
Cartilage (pool)	-2.54	\
PBL HIV IIIB	-4.01	
MRC5 HSV strain F	21.16	<u>-</u>

Gene Name sbg417005LAMININ

5

Expression in adenoid, tonsil and B-cells with corroborating expression in RA/OA samples and asthmatic lung (1/4) suggests involvement in these diseases. Strong expression in brain with overexpression in Alzheimer's disease indicates a role in AD. Down regulation in HSV infected cells suggests potential host cell factor. Expression in colon and lung normal/tumor pairs without corroborating expression in normal tissues suggests immune cell infiltrates.

Sample	Mean GOI	Mean GOI	Average	18S	50 ng/18S	copies
sbg417005LAMININ	copies	copies	GOI	rRNA	rRNA	of
	(sample 1)	(sample 2)	Copies	(ng)	(ng)	mRNA
						detecte
]		d/50 ng total
						RNA
Subcutaneous	60.2785303	73.59679955	66.94	3.06	16.34	1093.75
Adipocytes Zenbio	00.2,03303	75.5507775				
Subcutaneous Adipose	3.032572965	1.985862153	2.51	0.96	52.36	131.37
Zenbio				0.64	01.05	70.16
Adrenal Gland	0.965703497	0.965703497	0.97	0.61	81.97	79.16
Clontech Whole Brain Clontech	4131.557992	6997.879078	5564.72	7.24	6.91	38430.3
Whole Blam Clonicen	14151.557572	0557.075070	330 / 2	'		8
Fetal Brain Clontech	0.965703497	3.268211325	2.12	0.48	103.95	220.06
Cerebellum Clontech	3.301057867	17.3966665	10.35	2.17	23.04	238.45
Cervix	5.920484049	7.517891571	6.72	2.42	20.66	138.83
Colon	35.48962684	22.53180605	29.01	2.71	18.45	535.25
Endometrium	11.59757492	0.965703497	6.28	0.73	68.21	428.49
Esophagus	7.098528857	3.523216475	5.31	1.37	36.50	193.83
Heart Clontech	0.965703497	5.368977287	3.17	1.32	37.88	119.98
Hypothalamus	0.965703497	0.965703497	0.97	0.32	155.28	149.95
Ileum	30.81006847	14.15032296	22.48	2.58	19.38	435.66
Jejunum	44.08994058	30.29386314	37.19	6.60	7.58	281.76
Kidney	9.424973981	15.68529125	12.56	2.12	23.58	296.11
Liver	3.742288161	0.965703497	2.35	1.50	33.33	78.47
Fetal Liver Clontech	94.45949484	93.8962252	94.18	10.40	4.81	452.78
Lung	13.84782444	19.95367566	16.90	2.57	19.46	328.81
Mammary Gland	107.7956161	95.02632495	101.41	13.00	3.85	390.04
Clontech						
Myometrium	12.50117866	<u> </u>		2.34	21.37	293.15
Omentum	13.998213	22.03816357	18.02	3.94	12.69	228.66
Ovary	i	0.965703497		4.34	11.52	11.13
Pancreas	2.254750425	0.965703497	1.61	0.81	61.80	99.52

Head of Pancreas	0.965703497	0.965703497	0.97	1.57	31.85	30.75
					 	
Parotid Gland	25.8930892	14.85668173	20.37	5.48	9.12	185.90
Placenta Clontech	83.84029668	95.02632495	89.43	5.26	9.51	850.13
Prostate	8.047386733	15.18245262	11.61	3.00	16.67	193.58
Rectum	10.53572882	20.06385011	15.30	1.23	40.65	621.94
Salivary Gland Clontech	62.43024331	57.19623352	59.81	7.31	6.84	409.12
Skeletal Muscle Clontech	1.376746214	0.965703497	1.17	1.26	39.68	46.48
Skin	0.965703497	0.965703497	0.97	1.21	41.32	39.91
Small Intestine Clontech	0.965703497	0.965703497	0.97	0.98	51.07	49.32
Spleen	0.965703497	5.740147492	3.35	4.92	10.16	34.07
Stomach	0.965703497	0.965703497	0.97	2.73	18.32	17.69
Testis Clontech	0.965703497	0.965703497	0.97	0.57	87.87	84.86
Thymus Clontech	258.7386545	207.7169358	233.23	9.89	5.06	1179.11
Thyroid	12.56849785	19.09489343	15.83	2.77	18.05	285.77
Trachea Clontech	24.35330878	31.87047641	28.11	9.71	5.15	144.76
Urinary Bladder	51.81831091	57.53035871	54.67	5.47	9.14	499.77
Uterus	13.12099559	14.61718971	13.87	5.34	9.36	129.86

Sample sbg417005LAMININ	Reg number (GSK identifier	Mean GOI copies	copies of mRNA detected/50 ng total RNA	Sample	Fold Change in Disease Population
colon normal GW98-167	21941	15446.92728	30893.85	colon normal	
colon tumor GW98-166	21940	23910.90415	47821.81	colon tumor	1.547939193
colon normal GW98-178	22080	14621.97321	29243.95	colon normal	
colon tumor GW98-177	22060	2058.30396	4116.61	colon tumor	-7.10389403
colon normal GW98-561	23514	5590.900474	11181.80	colon normal	
colon tumor GW98-560	23513	12318.10362	24636.21	colon tumor	2.203241442
colon normal GW98-894	24691	4478.692403	8957.38	colon normal	
colon tumor GW98-893	24690	7546.100944	15092.20	colon tumor	1.684889308
lung normal GW98-3	20742	23910.90415	47821.81	lung normal	
lung tumor GW98-2	20741	35021.23317	70042.47	lung tumor	1.464655328
lung normal GW97-179	20677	23341.61421	46683.23	lung normal	
lung tumor GW97-178	20676	24103.90252	48207.81	lung tumor	1.032657909
lung normal GW98-165	21922	18374.41273	36748.83	lung normal	
lung tumor GW98-164	21921	34735.19726	69470.39	lung tumor	1.890411289
lung normal GW98-282	22584	3002.298467	6004.60	lung normal	
lung tumor GW98-281	22583	3519.560955	7039.12	lung tumor	1.172288829
breast normal GW00-392	28750	5978.671937	5978.67	breast normal	
breast tumor GW00-391	28746	5674.721186	11349.44	breast tumor	1.898321649
breast normal GW00-413	28798	1523.643258	1523.64	breast normal	
breast tumor GW00-412	28797	956.0902914	1912.18	breast tumor	1.255005444
breast normal GW00-	27592-95	760.6128764	760.61	breast	

235:238				normal	
breast tumor GW00-	27588-91	4192.50003	4192.50	breast tumor	5.51200244
231:234					
breast normal GW98-621	23656	5674.721186	11349.44	breast	
	20177	2015 202051	16024 40	normal	1.412702242
breast tumor GW98-620	23655	8017.202071		breast tumor	1.412792243
brain normal BB99-542	25507	791.7818289	1583.56	brain normal	
brain normal BB99-406	25509	524.990001	1049.98	brain normal	
brain normal BB99-904	25546	396.8655236	793.73	brain normal	
brain stage 5 ALZ BB99-	25502	3203.498645	6407.00	brain stage 5	5.608243725
874	05502	3925.505917	7851.01	ALZ brain stage 5	6.872234505
brain stage 5 ALZ BB99- 887	25503	3923.303917	7651.01	ALZ	0.872234303
brain stage 5 ALZ BB99-	25504	1502.651942	3005.30	brain stage 5	2.630635833
862		_		ALZ	
brain stage 5 ALZ BB99-	25542	1555.711325	3111.42	brain stage 5	2.723524884
927				ALZ	
CT lung KC	normal	3730.249874		CT lung	
lung 26 KC	normal	286.3143862		lung 26	
lung 27 KC	normal	72.30560941	72.31	lung 27	
lung 24 KC	COPD	28.47771374		lung 24	-69.25877363
lung 28 KC	COPD	66.98006875	66.98	lung 28	-29.44654382
lung 23 KC	COPD	57.53035871	57.53	lung 23	-34.28331708
lung 25 KC	COPD	70.20637402	70.21	lung 25	
asthmatic lung	29321	2304.915385	2304.92	asthmatic	1.168624722
ODO3112			6004.75	lung	2.156029205
asthmatic lung ODO3433	29323	3112.377018	6224.75	asthmatic lung	3.156038395
asthmatic lung	29322	21892.2071	43784.41	asthmatic	22.19931768
ODO3397				lung	
asthmatic lung	29325	5268.438364	10536.88	asthmatic	5.34234563
ODO4928		206 2655226	206.97	lung endo cells	<u> </u>
endo cells KC	control	396.8655236		endo VEGF	-2.524610421
endo VEGF KC		157.1987188			1.305616778
endo bFGF KC		518.1542863	1	endo bFGF	1.303610776
heart Clontech	normal	1865.302957		heart	0.014401005
heart (T-1) ischemic	29417	3757.505456		heart T-1	2.014421005
heart (T-14) non- obstructive DCM	29422	1633.333543	3266.67	heart T-14	-1.142022072
heart (T-3399) DCM	29426	2938.226492	5876.45	heart T-3399	1.575200683
adenoid GW99-269	26162	1238.725105		adenoid	
tonsil GW98-280	22582	2288.625236		tonsil	
T cells PC00314	28453	61.34444995	122.69	T cells	
PBMNC KC	20433	5.341492957		PBMNC	
	 	3.576686692	7.15	monocyte	-
monocyte KC	20455			B cells	
B cells PC00665	28455	716.2601536		dendritic	
dendritic cells 28441		32.23243314	64.46	cells	
neutrophils	28440	32.9693996	32.97	neutrophils	
eosinophils	28446	1.444144312	2.89	eosinophils	
BM unstim KC	 	5.951115795	5.95	BM unstim	

BM stim KC		11.72233235	11.72	BM stim	1.969770503
osteo dif KC	1	10.20495465	10.20	osteo dif	
osteo undif KC	1	8.526098078	8.53	osteo undif	-1.196907959
chondrocytes	1	14621.97321	36554.93	chondrocyte	-
				s	
OA Synovium IP12/01	29462	5549.480142	5549.48	OA	
				Synovium	
OA Synovium NP10/01	29461	3545.197127	7090.39	OA	
				Synovium	
OA Synovium NP57/00	28464	4223.325454	8446.65	OA	
				Synovium	
RA Synovium NP03/01	28466	1221.845309	2443.69	RA	
DA C > ND71100	20467	1000 (7070	0707.06	Synovium	
RA Synovium NP71/00	28467	4892.67872	9785.36	RA	
RA Synovium NP45/00	00475	1000 000700	2162.72	Synovium	
RA Synovium NP45/00	28475	1080.396739	2160.79	RA	
OA bone (biobank)	29217	995.7612933	995.76	Synovium	
OA bone (blobank)	29217	993.7012933	993.76	OA bone (biobank)	
OA bone Sample 1	J. Emory	982.3483914	1964.70	OA bone	
OA bone Sample 2	J. Emory	472.8535333	L	OA bone	
Cartilage (pool)	Normal	1213.496434	2426.99	Cartilage	
om mage (poor)	1 TOTTING	1213.470434	2420.77	(pool)	ļ
Cartilage (pool)	OA	697.4302173	1394.86	Cartilage	-1.73995391
				(pool)	
PBL unifected	28441	161.1142664	322.23	PBL	
	<u> </u>			unifected	
PBL HIV IIIB	28442	191.5686557	383.14	PBL HIV	1.189023542
	ļ <u>.</u>			IIIB	
MRC5 uninfected	29158	5934.220593	11868.44	MRC5	
(100%)				uninfected	
MDCs Hov	00170	50 5000555	101.01	(100%)	
MRC5 HSV strain F	29178	50.63206269	101.26	MRC5 HSV	-117.2028213
W12 cells	20170	12042 2055	27696.50	strain F	
	29179	13843.2955	27686.59	W12 cells	
Keratinocytes	29180	11849.9156	23699.83	Keratinocyte	
	1	i		S	

Gene Name sbg417005LAMININ

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.55
colon tumor	-7.10
colon tumor	2.20
colon tumor	1.68
lung tumor	1.46
lung tumor	1.03
lung tumor	1.89
lung tumor	1.17
breast tumor	1.90
breast tumor	1.26
breast tumor	5.51

breast tumor	1.41
brain stage 5 ALZ	5.61
brain stage 5 ALZ	6.87
brain stage 5 ALZ	2.63
brain stage 5 ALZ	2.72
lung 24	-69.26
lung 28	-29.45
lung 23	-34.28
asthmatic lung	1.17
asthmatic lung	3.16
asthmatic lung	22.20
asthmatic lung	5.34
endo VEGF	-2.52
endo bFGF	1.31
heart T-1	2.01
heart T-14	-1.14
heart T-3399	1.58
BM stim	1.97
osteo undif	-1.20
Cartilage (pool)	-1.74
PBL HIV IIIB	1.19
MRC5 HSV strain F	-117.20

Gene Name sbg425649KINASEa
Strongly expressed in neutrophils and eosinophils suggesting function in immume system such as involvement in allergic reactions and anti-infective. Lower expression in T-cells. Expression in 2/3 OA bone samples indicate a role in OA. Strongly expressed in rectum and skeletal muscle, unknown function.

Sample sbg425649KINASEa	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	ng/18S rRNA (ng)	copies of mRNA detected/ 50 ng total RNA
Subcutaneous Adipocytes Zenbio	0.00	0.03	0.02	3.06	16.34	0.25
Subcutaneous Adipose Zenbio	0.00	0.00	0.00	0.96	52.36	0.00
Adrenal Gland Clontech	0.23	0.00	0.12	0.61	81.97	9.43
Whole Brain Clontech	163.64	47.63	105.64	7.24	6.91	729.52
Fetal Brain Clontech	0.47	0.00	0.24	0.48	103.95	24.43
Cerebellum Clontech	0.00	0.00	0.00	2.17	23.04	0.00
Cervix	5.54	0.00	2.77	2.42	20.66	57.23
Colon	0.70	0.00	0.35	2.71	18.45	6.46
Endometrium	0.33	0.06	0.20	0.73	68.21	13.30
Esophagus	0.35	0.47	0.41	1.37	36.50	14.96
Heart Clontech	0.00	0.00	0.00	1.32	37.88	0.00
Hypothalamus	0.00	0.00	0.00	0.32	155.28	0.00
Ileum	0.00	4.49	2.25	2.58	19.38	43.51
Jejunum	0.29	0.73	0.51	6.60	7.58	3.86
Kidney	0.00	0.00	0.00	2.12	23.58	0.00
Liver	10.48	5.64	8.06	1.50	33.33	268.67

5

Fetal Liver Clontech	8.56	0.00	4.28	10.40	4.81	20.58
Lung	0.00	0.00	0.00	2.57	19.46	0.00
Mammary Gland Clontech	0.00	0.00	0.00	13.00	3.85	0.00
Myometrium	8.61	5.00	6.81	2.34	21.37	145.41
Omentum	0.23	10.99	5.61	3.94	12.69	71.19
Ovary	4.48	4.62	4.55	4.34	11.52	52.42
Pancreas	0.27	0.00	0.14	0.81	61.80	8.34
Head of Pancreas	0.11	0.04	0.08	1.57	31.85	2.39
Parotid Gland	0.69	4.51	2.60	5.48	9.12	23.72
Placenta Clontech	10.58	0.14	5.36	5.26	9.51	50.95
Prostate	9.74	6.18	7.96	3.00	16.67	132.67
Rectum	225.51	76.99	151.25	1.23	40.65	6148.37
Salivary Gland Clontech	60.93	67.22	64.08	7.31	6.84	438.27
Skeletal Muscle Clontech	749.28	29.78	389.53	1.26	39.68	15457.54
Skin	0.00	4.46	2.23	1.21	41.32	92.15
Small Intestine Clontech	0.73	0.00	0.37	0.98	51.07	18.64
Spleen	4.10	8.60	6.35	4.92	10.16	64.53
Stomach	4.24	19.28	11.76	2.73	18.32	215.38
Testis Clontech	10.11	6.34	8.23	0.57	87.87	722.76
Thymus Clontech	2.79	5.35	4.07	9.89	5.06	20.58
Thyroid	0.00	0.06	0.03	2.77	18.05	0.54
Trachea Clontech	5.24	14.14	9.69	9.71	5.15	49.90
Urinary Bladder	0.09	0.00	0.05	5.47	9.14	0.41
Uterus	27.26	7.61	17.44	5.34	9.36	163.25

Sample sbg425649KINASEa	Reg number (GSK identifier)	Mean GOI copies	copies of mRNA detected/50 ng total RNA	Sample	Fold Change in Disease Population
colon normal GW98-167	21941	11.11	22.22	colon normal	
colon tumor GW98-166	21940	7.3	14.60	colon tumor	-1.521917808
colon normal GW98-178	22080	0	0.00	colon normal	
colon tumor GW98-177	22060	2.57	5.14	colon tumor	5.14
colon normal GW98-561	23514	0	0.00	colon normal	
colon tumor GW98-560	23513	0	0.00	colon tumor	0
colon normal GW98-894	24691	2.71	5.42	colon normal	
colon tumor GW98-893	24690	8.51	17.02	colon tumor	3.140221402
lung normal GW98-3	20742	1.78	3.56	lung normal	
lung tumor GW98-2	20741	0	0.00	lung tumor	-3.56
lung normal GW97-179	20677	3.18	6.36	lung normal	
lung tumor GW97-178	20676	2.64	5.28	lung tumor	-1.204545455
lung normal GW98-165	21922	6.46	12.92	lung normal	
lung tumor GW98-164	21921	19.99	39.98	lung tumor	3.094427245
lung normal GW98-282	22584	31.56	63.12	lung normal	

lung tumor GW98-281	22583	7.47	14.94		-4.224899598
breast normal GW00-392	28750	5.68	5.68	breast normal	
breast tumor GW00-391	28746	2.87	5.74	breast tumor	1.01056338
breast normal GW00-413	28798	1.66	1.66	breast normal	
breast tumor GW00-412	28797	1.99	3.98	breast tumor	2.397590361
breast normal GW00-	27592-95	0	0.00	breast	
235:238				normal	2.19
breast tumor GW00- 231:234	27588-91	2.19	2.19		<u></u>
breast normal GW98-621	<u> </u>	4.72	9.44	breast normal	
breast tumor GW98-620	23655	0	0.00	breast tumor	-9.44
brain normal BB99-542	25507	28.9	57.80	brain normal	
brain normal BB99-406	25509	24.84	49.68	brain normal	
brain normal BB99-904	25546	6.92	13.84	brain normal	
brain stage 5 ALZ BB99-874	25502	23.65	47.30	brain stage 5 ALZ	1.169634026
brain stage 5 ALZ BB99- 887	25503	28.68	57.36	brain stage 5 ALZ	1.418397626
brain stage 5 ALZ BB99- 862	25504	18.18	36.36	brain stage 5 ALZ	-1.112211221
brain stage 5 ALZ BB99- 927	25542	14.18	28.36	brain stage 5 ALZ	-1.425952045
CT lung KC	normal	29.45	58.90	CT lung	
lung 26 KC	normal	2.47	2.47	lung 26	
lung 27 KC	normal	0	0.00	lung 27	
lung 24 KC	COPD	0	0.00	lung 24	-15.3425
lung 28 KC	COPD	0.3	0.30	lung 28	-51.14166667
lung 23 KC	COPD	0	0.00	lung 23	-15.3425
lung 25 KC	COPD	0	0.00	lung 25	
asthmatic lung ODO3112	29321	3.24	3.24	asthmatic lung	-4.735339506
asthmatic lung ODO3433	29323	88.32	176.64	asthmatic lung	11:51311716
asthmatic lung ODO3397	29322	55.65	111.30	asthmatic lung	7.254358807
asthmatic lung ODO4928	29325	50.64	101.28	asthmatic lung	6.601270979
endo cells KC	control	0	0.00	endo cells	
endo VEGF KC		0	0.00	endo VEGF	0
endo bFGF KC	+	0	0.00	endo bFGF	0
heart Clontech	normal	15.26	30.52	heart	
heart (T-1) ischemic	29417	0	0.00	heart T-1	-30.52
heart (T-14) non- obstructive DCM	29422	3.69	7.38	heart T-14	-4.135501355
heart (T-3399) DCM	29426	0	0.00	heart T-3399	-30.52
adenoid GW99-269	26162	0	0.00	adenoid	
tonsil GW98-280	22582	3.65	7.30	tonsil	
T cells PC00314	28453	167.51	335.02	T cells	
PBMNC KC	 	2.5	2.50	PBMNC	

monocyte KC		2.37	4.74	monocyte	T
B cells PC00665	28455	0	0.00	B cells	
dendritic cells 28441		0	0.00	dendritic	+
			0.00	cells	
neutrophils	28440	1576.76	1576.76	neutrophils	
eosinophils	28446	755.1	1510.20	eosinophils	†
BM unstim KC		14.87	14.87	BM unstim	
BM stim KC		45.45	45.45	BM stim	3.056489576
osteo dif KC		0	0.00	osteo dif	
osteo undif KC		0	0.00	osteo undif	0
chondrocytes		7.48	18.70	chondrocyte s	
OA Synovium IP12/01	29462	17.79	17.79	OA Synovium	
OA Synovium NP10/01	29461	14.09	28.18	OA Synovium	
OA Synovium NP57/00	28464	11.97	23.94	OA Synovium	
RA Synovium NP03/01	28466	6.84	13.68	RA Synovium	
RA Synovium NP71/00	28467	22.88	45.76	RA Synovium	
RA Synovium NP45/00	28475	1.64	3.28	RA Synovium	
OA bone (biobank)	29217	370.22	370.22	OA bone (biobank)	
OA bone Sample 1	J. Emory	3.21	6.42	OA bone	
OA bone Sample 2	J. Emory	311.65	623.30	OA bone	
Cartilage (pool)	Normal	32.23	64.46	Cartilage (pool)	
Cartilage (pool)	OA	2.87	5.74	Cartilage (pool)	-11.22996516
PBL unifected	28441	4.18	8.36	PBL unifected	
PBL HIV IIIB	28442	0	0.00	PBL HIV IIIB	-8.36
MRC5 uninfected (100%)	29158	4.4	8.80	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	11.46	22.92	MRC5 HSV strain F	2.604545455
W12 cells	29179	0	0.00	W12 cells	
Keratinocytes	29180	0	0.00	Keratinocyte s	

Gene Name sbg425649KINASEa

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-1.52
colon tumor	5.14
colon tumor	0.00
colon tumor	3.14

lung tumor	-3.56
lung tumor	-1.20
lung tumor	3.09
lung tumor	-4.22
breast tumor	1.01
breast tumor	2.40
breast tumor	2.19
breast tumor ·	-9.44
brain stage 5 ALZ	1.17
brain stage 5 ALZ	1.42
brain stage 5 ALZ	-1.11
brain stage 5 ALZ	-1.43
lung 24	-15.34
lung 28	-51.14
lung 23	-15.34
asthmatic lung	-4.74
asthmatic lung	11.51
asthmatic lung	7.25
asthmatic lung	6.60
endo VEGF	0.00
endo bFGF	0.00
heart T-1	-30.52
heart T-14	-4.14
heart T-3399	-30.52
BM stim	3.06
osteo undif	0.00
Cartilage (pool)	-11.23
PBL HIV IIIB	-8.36
MRC5 HSV strain F	2.60

Gene Name sbg419582PROTOCADHERIN

Brain specific expression. No correlation with Alzheimer's disease. Low expression in RA and OA synovium but no corroborating expression in immune cells. Slightly upregulated in heart disease. Overexpressed in lung (1/4) and breast (1/4) tumors.

Sample sbg419582PROTOCA DHERIN	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detected/ 50 ng total RNA
Subcutaneous Adipocytes Zenbio	18.18	23.43	20.81	3.06	16.34	339.95
Subcutaneous Adipose Zenbio	0.11	0.33	0.22	0.96	52.36	11.52
Adrenal Gland Clontech	1.8	1.06	1.43	0.61	81.97	117.21
Whole Brain Clontech	10913.92	10314.42	10614.17	7.24	6.91	73302.28
Fetal Brain Clontech	0.31	4.68	2.50	0.48	103.95	259.36
Cerebellum Clontech	0.1	4.58	2.34	2.17	23.04	53.92
Cervix	0.22	1.22	0.72	2.42	20.66	14.88
Colon	0.31	13.73	7.02	2.71	18.45	129.52
Endometrium	0.1	0.58	0.34	0.73	68.21	23.19
Esophagus	2.21	1.96	2.09	1.37	36.50	76.09
Heart Clontech	0.32	0	0.16	1.32	37.88	6.06

5

Hypothalamus	0.15	1.2	0.68	0.32	155.28	104.81
Ileum	2.77	1.03	1.90	2.58	19.38	36.82
Jejunum	0.26	1.18	0.72	6.60	7.58	5.45
Kidney	1.99	0.28	1.14	2.12	23.58	26.77
Liver	7.59	12.42	10.01	1.50	33.33	333.50
Fetal Liver Clontech	18.75	11.04	14.90	10.40	4.81	71.61
Lung	7.19	0.71	3.95	2.57	19.46	76.85
Mammary Gland Clontech	88.14	97.88	93.01	13.00	3.85	357.73
Myometrium	0.51	4.8	2.66	2.34	21.37	56.73
Omentum	7.52	2.19	4.86	3.94	12.69	61.61
Ovary	13.46	4.84	9.15	4.34	11.52	105.41
Pancreas	0.49	1.02	0.76	0.81	61.80	46.66
Head of Pancreas	0.29	0.15	0.22	1.57	31.85	7.01
Parotid Gland	6.09	6.19	6.14	5.48	9.12	56.02
Placenta Clontech	10.67	2.35	6.51	5.26	9.51	61.88
Prostate	2.02	3.59	2.81	3.00	16.67	46.75
Rectum	0.54	7.25	3.90	1.23	40.65	158.33
Salivary Gland Clontech	20.51	13.73	17.12	7.31	6.84	117.10
Skeletal Muscle Clontech	1.06	0.79	0.93	1.26	39.68	36.71
Skin	13.09	0.6	6.85	1.21	41.32	282.85
Small Intestine Clontech	0.11	2.47	1.29	0.98	51.07	65.88
Spleen	1.05	11	6.03	4.92	10.16	61.23
Stomach	0.95	1.3	1.13	2.73	18.32	20.60
Testis Clontech	2.82	3.19	3.01	0.57	87.87	264.06
Thymus Clontech	117.82	118.81	118.32	9.89	5.06	598.15
Thyroid	2.34	2.29	2.32	2.77	18.05	41.79
Trachea Clontech	8.72	9.37	9.05	9.71	5.15	46.58
Urinary Bladder	14.23	16.82	15.53	5.47	9.14	141.91
Uterus	1.49	27.26	14.38	5.34	9.36	134.60

Sample sbg419582PROTOCA DHERIN	Reg number (GSK identifier)	Mean GOI copies	copies of mRNA detected/50 ng total RNA	Sample	Fold Change in Disease Population
colon normal GW98-167	21941	464.48	928.96	colon normal	
colon tumor GW98-166	21940	84.22	168.44	colon tumor	-5.515079554
colon normal GW98-178	22080	32.8	65.60	colon normal	
colon tumor GW98-177	22060	44.71	89.42	colon tumor	1.363109756
colon normal GW98-561	23514	135.5	271.00	colon normal	
colon tumor GW98-560	23513	78.51	157.02	colon tumor	-1.72589479
colon normal GW98-894	24691	454.16	908.32	colon normal	
colon tumor GW98-893	24690	51.37	102.74	colon tumor	-8.840957757
lung normal GW98-3	20742	60.35	120.70	lung normal	
lung tumor GW98-2	20741	101.98	203.96	lung tumor	1.689809445

lung normal GW97-179	20677	264	528.00	lung normal	
lung tumor GW97-178	20676	78.49	156.98	lung tumor	-3.363485794
lung normal GW98-165	21922	88.19	176.38	lung normal	3.303.103.73.1
	21922	7554.58	15109.16	lung tumor	85.66254677
lung tumor GW98-164					65.00254077
lung normal GW98-282	22584	344.2	688.40	lung normal	7.562172020
lung tumor GW98-281	22583	45.51	91.02	lung tumor	-7.563172929
breast normal GW00-392	28750	132.43	132.43	breast normal	
breast tumor GW00-391	28746	98.14	196.28	breast tumor	1.482141509
breast normal GW00-413	28798	154.37	154.37	breast normal	
breast tumor GW00-412	28797	1289.09	2578.18	breast tumor	16.70130207
breast normal GW00- 235:238	27592-95	18.63	18.63	breast normal_	
breast tumor GW00- 231:234	27588-91	133.52	133.52	breast tumor	7.166935051
breast normal GW98-621	23656	1334.91	2669.82	breast normal	
breast tumor GW98-620	23655	212.39	424.78	breast tumor	-6.285182918
brain normal BB99-542	25507	6816.47	13632.94	brain normal	
brain normal BB99-406	25509	1984.48	3968.96	brain normal	
brain normal BB99-904	25546	2805.82	5611.64	brain normal	
brain stage 5 ALZ BB99- 874	25502	467.59	935.18	brain stage 5 ALZ	-8.274178946
brain stage 5 ALZ BB99- 887	25503	3104.22	6208.44	brain stage 5 ALZ	-1.24634315
brain stage 5 ALZ BB99- 862	25504	1889.81	3779.62	brain stage 5 ALZ	-2.047255191
brain stage 5 ALZ BB99- 927	25542	2902.29	5804.58	brain stage 5 ALZ	-1.333058837
CT lung KC	normal	103.32	206.64	CT lung	
lung 26 KC	normal	1.13	1.13	lung 26	
lung 27 KC	normal	1.51	1.51	lung 27	
lung 24 KC	COPD	1.47	1.47	lung 24	-35.82312925
lung 28 KC	COPD	0	0.00	lung 28	-52.66
lung 23 KC	COPD	1.91	1.91	lung 23	-27.57068063
lung 25 KC	COPD	1.36	1.36	lung 25	
asthmatic lung ODO3112	29321	2.68	2.68	asthmatic lung	-19.64925373
asthmatic lung ODO3433	29323	3.25	6.50	asthmatic lung	-8.101538462
asthmatic lung ODO3397	29322	26.23	52.46	asthmatic lung	-1.003812429
asthmatic lung ODO4928	29325	7.15	14.30	asthmatic lung	-3.682517483
endo cells KC	control	15.9	15.90	endo cells	
endo VEGF KC	 	8.26	8.26	endo VEGF	-1.924939467
endo bFGF KC		2.01	2.01	endo bFGF	-7.910447761
heart Clontech	normal	7.9	15.80	heart	1
heart (T-1) ischemic	29417	67.47	134.94	heart T-1	8.540506329
heart (T-14) non-	29422	106.83	213.66	heart T-14	13.52278481
obstructive DCM		100.05			

heart (T-3399) DCM	29426	425.28	850.56	heart T-3399	53.83291139
adenoid GW99-269	26162	15.98	31.96	adenoid	
tonsil GW98-280	22582	17.95	35.90	tonsil	
T cells PC00314	28453	3.18	6.36	T cells	
PBMNC KC		0	0.00	PBMNC	
monocyte KC	-	0.81	1.62	monocyte	
B cells PC00665	28455	2.74	5.48	B cells	
dendritic cells 28441		0	0.00	dendritic cells	
neutrophils	28440	0	0.00	neutrophils	
eosinophils	28446	0	0.00	eosinophils	
BM unstim KC	1	0	0.00	BM unstim	
BM stim KC		0	0.00	BM stim	0
osteo dif KC	1	2.34	2.34	osteo dif	
osteo undif KC		0	0.00	osteo undif	-2.34
chondrocytes		145.14	362.85	chondrocyte s	
OA Synovium IP12/01	29462	320.78	320.78	OA Synovium	
OA Synovium NP10/01	29461	396.85	793.70	OA Synovium	
OA Synovium NP57/00	28464	329.87	659.74	OA Synovium	
RA Synovium NP03/01	28466	103.85	207.70	RA Synovium	
RA Synovium NP71/00	28467	617.72	1235.44	RA Synovium	
RA Synovium NP45/00	28475	63.13	126.26	RA Synovium	
OA bone (biobank)	29217	3.19	3.19	OA bone (biobank)	
OA bone Sample 1	J. Emory	126.87	253.74	OA bone	
OA bone Sample 2	J. Emory	44.76	89.52	OA bone	
Cartilage (pool)	Normal	502.66	1005.32	Cartilage (pool)	
Cartilage (pool)	OA	206.76	413.52	Cartilage (pool)	-2.431127878
PBL unifected	28441	0	0.00	PBL unifected	
PBL HIV IIIB	28442	0	0.00	PBL HIV IIIB	0
MRC5 uninfected (100%)	29158	0	0.00	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	17.73	35.46	MRC5 HSV strain F	35.46
W12 cells	29179	0.62	1.24	W12 cells	
Keratinocytes	29180	22.63	45.26	Keratinocyte s	

PCT/US01/19929 WO 01/98342

Gene Name sbg419582PROTOCADHERIN

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-5.52
colon tumor	1.36
colon tumor	-1.73
colon tumor	-8.84
lung tumor	1.69
lung tumor	-3.36
lung tumor	85.66
lung tumor	-7.56
breast tumor	1.48
breast tumor	16.70
breast tumor	7.17
breast tumor	-6.29
brain stage 5 ALZ	-8.27
brain stage 5 ALZ	-1.25
brain stage 5 ALZ	-2.05
brain stage 5 ALZ	-1.33
lung 24	-35.82
lung 28	-52.66
lung 23	-27.57
asthmatic lung	-19.65
asthmatic lung	-8.10
asthmatic lung	-1.00
asthmatic lung	-3.68
endo VEGF	-1.92
endo bFGF	-7.91
heart T-1	8.54
heart T-14	13.52
heart T-3399	53.83
BM stim	0.00
osteo undif	-2.34
Cartilage (pool)	-2.43
PBL HIV IIIB	0.00
MRC5 HSV strain F	35.46

5

Gene Name sbg453915TECTORINa

Very low expression overall. Expression in female reproductive tissues suggests a protein that may be secreted by these tissue types.

Sample sbg453915TECTORIN a	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detected/ 50 ng total RNA
Subcutaneous Adipocytes Zenbio	2.70	5.41	4.06	3.06	16.34	66.26
Subcutaneous Adipose	0.00	0.00	0.00	0.96	52.36	0.00

Zenbio			T	<u> </u>	<u> </u>	T
Adrenal Gland Clontech	3.75	5.67	4.71	0.61	81.97	386.07
Whole Brain Clontech	22.57	27.88	25.23	7.24	6.91	174.21
Fetal Brain Clontech	2.42	1.80	2.11	0.48	103.95	219.33
Cerebellum Clontech	0.00	1.93	0.97	2.17	23.04	22.24
Cervix	2.90	2.10	2.50	2.42	20.66	51.65
Colon	11.19	2.68	6.94	2.71	18.45	127.95
Endometrium	4.79	19.31	12.05	0.73	68.21	821.96
Esophagus	2.06	2.93	2.50	1.37	36.50	91.06
Heart Clontech	5.42	7.31	6.37	1.32	37.88	241.10
Hypothalamus	0.00	3.70	1.85	0.32	155.28	287.27
Ileum	3.72	18.75	11.24	2.58	19.38	217.73
Jejunum	28.49	49.80	39.15	6.60	7.58	296.55
Kidney	2.12	4.37	3.25	2.12	23.58	76.53
Liver	15.74	39.80	27.77	1.50	33.33	925.67
Fetal Liver Clontech	27.96	26.14	27.05	10.40	4.81	130.05
Lung	0.00	2.37	1.19	2.57	19.46	23.05
Mammary Gland Clontech	19.68	19.22	19.45	13.00	3.85	74.81
Myometrium	3.40	1.71	2.56	2.34	21.37	54.59
Omentum	14.33	138.99	76.66	3.94	12.69	972.84
Ovary	46.55	37.80	42.18	4.34	11.52	485.89
	4.26	2.19	3.23	0.81	61.80	199.32
Head of Pancreas	1.93	1.52	1.73	1.57	31.85	54.94
	4.04	5.93	4.99	5.48	9.12	45.48
	3.69	15.48	9.59	5.26	9.51	91.11
	7.94	28.75	18.35	3.00	16.67	305.75
	11.09	3.41	7.25	1.23	40.65	294.72
Clontech	0.00	1.45	0.73	7.31	6.84	4.96
Clontech	4.76	0.00	2.38	1.26	39.68	94.44
	0.00	1.39	0.70	1.21	41.32	28.72
Clontech	2.20	1.41	1.81	0.98	51.07	92.19
	7.15	8.12	7.64	4.92	10.16	77.59
	1.98	0.00	0.99	2.73	18.32	18.13
	6.83	2.61	4.72	0.57	87.87	414.76
	0.00	0.00	0.00	9.89	5.06	0.00
	2.38	1.88	2.13	2.77	18.05	38.45
	1.71	9.25	5.48	9.71	5.15	28.22
	3.72	8.22	5.97	5.47	9.14	54.57
Uterus	74.31	73.54	73.93	5.34	9.36	692.18

Sample sbg453915TECTORINa	Reg number (GSK identifier)	Mean GOI copies	copies of mRNA detected/50 ng total RNA	Sample	Fold Change in Disease Population
colon normal GW98-167	21941	131.15	262.30	colon normal	
colon tumor GW98-166	21940	85.76	171.52	colon tumor	-1.529267724
colon normal GW98-178	22080	1.82	3.64	colon normal	
colon tumor GW98-177	22060	10.14	20.28	colon tumor	5.571428571
colon normal GW98-561	23514	14.25	28.50	colon normal	
colon tumor GW98-560	23513	9.89	19.78	colon tumor	-1.440849343
colon normal GW98-894	24691	32.05	64.10	colon normal	
colon tumor GW98-893	24690	53.06	106.12	colon tumor	1.655538222
lung normal GW98-3	20742	6.9 -	13.80	lung normal	
lung tumor GW98-2	20741	0.81	1.62	lung tumor	-8.518518519
lung normal GW97-179	20677	1.19	2.38	lung normal	
lung tumor GW97-178	20676	0	0.00	lung tumor	-2.38
lung normal GW98-165	21922	0.91	1.82	lung normal	
lung tumor GW98-164	21921	5.99	11.98	lung tumor	6.582417582
lung normal GW98-282	22584	5.93	11.86	lung normal	
lung tumor GW98-281	22583	1.54	3.08	lung tumor	-3.850649351
breast normal GW00-392	28750	6.88	6.88	breast normal	
breast tumor GW00-391	28746	4.24	8.48	breast tumor	1.23255814
breast normal GW00-413	28798	0	0.00	breast normal	
breast tumor GW00-412	28797	13.96	27.92	breast tumor	27.92
breast normal GW00- 235:238	27592-95	14.42	14.42	breast normal	
breast tumor GW00- 231:234	27588-91	0	0.00	breast tumor	-14.42
breast normal GW98-621	23656	5.81	11.62	breast normal	11 (2
breast tumor GW98-620	23655	0	0.00	breast tumor	-11.62
brain normal BB99-542	25507	20.59	41.18	brain normal	
brain normal BB99-406	25509	15.98	31.96	brain normal	
brain normal BB99-904	25546	2.38	4.76	brain normal	
brain stage 5 ALZ BB99- 874		25.45	50.90	brain stage 5 ALZ	
brain stage 5 ALZ BB99- 887		35.78	71.56	brain stage 5 ALZ	
brain stage 5 ALZ BB99- 862		13.83	27.66	brain stage 5	
brain stage 5 ALZ BB99- 927		21.67	43.34	brain stage 5	1.009002901
CT lung KC	normal	6.52	13.04	CT lung	
lung 26 KC	normal	2.1	2.10	lung 26	
lung 27 KC	normal	0.84	0.84	lung 27	1 422
lung 24 KC	COPD	1.25	1.25	lung 24	-3.432
lung 28 KC	COPD	0	0.00	lung 28	-4.29
lung 23 KC	COPD	1.16	1.16	lung 23	-3.698275862

lung 25 KC	COPD	1.18	1.18	lung 25	T
asthmatic lung ODO3112	29321	4.9	4.90	asthmatic lung	1.142191142
asthmatic lung ODO3433	29323	0.83	1.66	asthmatic lung	-2.584337349
asthmatic lung ODO3397	29322	2.46	4.92	asthmatic lung	1.146853147
asthmatic lung ODO4928	29325	6	12.00	asthmatic lung	2.797202797
endo cells KC	control	2.52	2.52	endo cells	
endo VEGF KC		1.28	1.28	endo VEGF	-1.96875
endo bFGF KC		0	0.00	endo bFGF	-2.52
heart Clontech	normal	0	0.00	heart	
heart (T-1) ischemic	29417	3.58	7.16	heart T-1	7.16
heart (T-14) non- obstructive DCM	29422	0	0.00	heart T-14	0
heart (T-3399)DCM	29426	0	0.00	heart T-3399	0
adenoid GW99-269	26162	2.29	4.58	adenoid	
tonsil GW98-280	22582	1.85	3.70	tonsil	
T cells PC00314	28453	4.29	8.58	T cells	
PBMNC KC		0	0.00	PBMNC	
monocyte KC	<u> </u>	3.39	6.78	monocyte	
B cells PC00665	28455	6.04	12.08	B cells	
dendritic cells 28441		0.83	1.66	dendritic cells	
neutrophils	28440	34.69	34.69	neutrophils	-
eosinophils	28446	2.86	5.72	eosinophils	
BM unstim KC		0	0.00	BM unstim	
BM stim KC		12.8	12.80	BM stim	12.8
osteo dif KC		0	0.00	osteo dif	12.0
osteo undif KC		0	0.00	osteo undif	0
chondrocytes	 	4.78	11.95	chondrocyte	-
OA Synovium IP12/01	29462	18.31	18.31	s OA	
Oli Synovidin ii 12/01	23402	16.51	16.51	Synovium	
OA Synovium NP10/01	29461	0	0.00	OA Synovium	
OA Synovium NP57/00	28464	11.46	22.92	OA Synovium	
RA Synovium NP03/01	28466	0.87	1.74	RA Synovium	
RA Synovium NP71/00	28467	26.95	53.90	RA Synovium	
RA Synovium NP45/00	28475	18.91	37.82	RA Synovium	
OA bone (biobank)	29217	0	0.00	OA bone (biobank)	
OA bone Sample 1	J. Emory	8.66	17.32	OA bone	
OA bone Sample 2	J. Emory	7.8	15.60	OA bone	
Cartilage (pool)	Normal	16.93	33.86	Cartilage (pool)	
Cartilage (pool)	OA	6.39	12.78	Cartilage (pool)	-2.649452269

PBL unifected	28441	0	0.00	PBL unifected	
PBL HIV IIIB	28442	1.15	2.30	PBL HIV IIIB	2.3
MRC5 uninfected (100%)	29158	0	0.00	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	70.84	141.68	MRC5 HSV strain F	141.68
W12 cells	29179	5.59	11.18	W12 cells	
Keratinocytes	29180	0	0.00	Keratinocyte s	

Gene Name sbg453915TECTORINa

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	-1.53
colon tumor	5.57
colon tumor	-1.44
colon tumor	1.66
lung tumor	-8.52
lung tumor	-2.38
lung tumor	6.58
lung tumor	-3.85
breast tumor	1.23
breast tumor	27.92
breast tumor	-14.42
breast tumor	-11.62
brain stage 5 ALZ	1.96
brain stage 5 ALZ	2.76
brain stage 5 ALZ	1.07
brain stage 5 ALZ	1.67
lung 24	-3.43
lung 28	-4.29
lung 23	-3.70
asthmatic lung	1.14
asthmatic lung	-2.58
asthmatic lung	1.15
asthmatic lung	2.80
endo VEGF	-1.97
endo bFGF	-2.52
heart T-1	7.16
heart T-14	0.00
heart T-3399	0.00
BM stim	12.80
osteo undif	0.00
Cartilage (pool)	-2.65
PBL HIV IIIB	2.30
MRC5 HSV strain F	141.68

5 Gene Name SBh385630.antiinflam

Some expression in adenoid, tonsils and T-cells suggesting a role in the immune system. Expression in GI tissues suggests a role in the digestive system and potential role in

diseases of the GI system such as IBD. Overexpression in lung (1/4) and colon tumors (1/4) suggesting a role in lung and colon cancer. Increased expression in ischemic and dilated heart samples indicating a role in Cardiovascular diseases that are consistent with cardiac hypertrophy. Expression in whole brain but not localized to hypothalamus, cerebellum or cortex.

Sample SBh385630.antiinflam	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detected/ 50 ng total RNA
Subcutaneous Adipocytes Zenbio	0.00	6.41	3.21	3.06	16.34	52.37
Subcutaneous Adipose Zenbio	0.00	0.00	0.00	0.96	52.36	0.00
Adrenal Gland Clontech	8.40	0.00	4.20	0.61	81.97	344.26
Whole Brain Clontech	817.17	466.76	641.97	7.24	6.91	4433.46
Fetal Brain Clontech	3.80	0.00	1.90	0.48	103.95	197.51
Cerebellum Clontech	6.66	0.00	3.33	2.17	23.04	76.73
Cervix	11.99	12.30	12.15	2.42	20.66	250.93
Colon	55.51	211.32	133.42	2.71	18.45	2461.53
Endometrium	0.00	0.00	0.00	0.73	68.21	0.00
Esophagus	11.75	30.29	21.02	1.37	36.50	767.15
Heart Clontech	0.00	0.00	0.00	1.32	37.88	0.00
Hypothalamus	0.00	0.00	0.00	0.32	155.28	0.00
Ileum	40.37	42.85	41.61	2.58	19.38	806.40
Jejunum	200.19	263.82	232.01	6.60	7.58	1757.61
Kidney	18.38	34.53	26.46	2.12	23.58	623.94
Liver	11.00	17.20	14.10	1.50	33.33	470.00
Fetal Liver Clontech	150.74	123.93	137.34	10.40	4.81	660.26
Lung	82.73	77.24	79.99	2.57	19.46	1556.13
Mammary Gland Clontech	161.37	155.19	158.28	13.00	3.85	608.77
Myometrium	5.79	9.38	7.59	2.34	21.37	162.07
Omentum	36.14	46.80	41.47	3.94	12.69	526.27
Ovary	59.25	44.29	51.77	4.34	11.52	596.43
Pancreas	6.29	6.70	6.50	0.81	61.80	401.42
Head of Pancreas	0.00	26.25	13.13	1.57	31.85 .	417.99
Parotid Gland	8.77	52.96	30.87	5.48	9.12	281.61
Placenta Clontech	4.11	0.00	2.06	5.26	9.51	19.53
Prostate	100.91	49.99	75.45	3.00	16.67	1257.50
Rectum	180.24	305.61	242.93	1.23	40.65	9875.00
Salivary Gland Clontech	49.36	70.01	59.69	7.31	6.84	408.24
Skeletal Muscle Clontech	0.00	0.00	0.00	1.26	39.68	0.00
Skin	18.00	3.22	10.61	1.21	41.32	438.43
Small Intestine Clontech	3.90	2.55	3.23	0.98	51.07	164.71

5

Spleen	9.67	5.60	7.64	4.92	10.16	77.59
Stomach	32.34	83.60	57.97	2.73	18.32	1061.72
Testis Clontech	3.53	0.00	. 1.77	0.57	87.87	155.10
Thymus Clontech	73.66	60.02	66.84	9.89	5.06	337.92
Thyroid	15.87	12.31	14.09	2.77	18.05	254.33
Trachea Clontech	98.68	187.11	142.90	9.71	5.15	735.81
Urinary Bladder	118.92	101.91	110.42	5.47	9.14	1009.28
Uterus	9.03	24.21	16.62	5.34	9.36	155.62

Sample SBh385630.antiinflam	Reg number (GSK identifier)	Mean GOI copies	copies of mRNA detected/50 ng total	Sample	Fold Change in Disease Population
			RNA		
colon normal GW98-167	21941	6479.77	12959.54	colon normal	1 005450251
colon tumor GW98-166	21940	7824.02	15648.04	colon tumor	1.207453351
colon normal GW98-178	22080	343.81	687.62	colon normal	0.750440005
colon tumor GW98-177	22060	3011.93	6023.86	colon tumor	8.760449085
colon normal GW98-561	23514	5457.38	10914.76	colon normal	
colon tumor GW98-560	23513	4017.14	8034.28	colon tumor	-1.358523726
colon normal GW98-894	24691	14903.68	29807.36	colon normal	
colon tumor GW98-893	24690	4814.19	9628.38	colon tumor	-3.095781429
lung normal GW98-3	20742	3731.84	7463.68	lung normal	
lung tumor GW98-2	20741	719.6	1439.20	lung tumor	-5.185992218
lung normal GW97-179	20677	1090.56	2181.12	lung normal	
lung tumor GW97-178	20676	6187.22	12374.44	lung tumor	5.673433832
lung normal GW98-165	21922	8416.82	16833.64	lung normal	
lung tumor GW98-164	21921	4405.14	8810.28	lung tumor	-1.910681613
lung normal GW98-282	22584	2033.26	4066.52	lung normal	
lung tumor GW98-281	22583	1785.69	3571.38	lung tumor	-1.138641086
breast normal GW00-392	28750	1583.49	1583.49	breast normal	
breast tumor GW00-391	28746	1334.89	2669.78	breast tumor	1.686010016
breast normal GW00-413	28798	1225.92	1225.92	breast normal	
breast tumor GW00-412	28797	1213.71	2427.42	breast tumor	1.980080266
breast normal GW00- 235:238	27592-95	862.26	862.26	breast normal	
breast tumor GW00- 231:234	27588-91	1766.08	1766.08	breast tumor	2.048198919
breast normal GW98-621	23656	1420.57	2841.14	breast normal	
breast tumor GW98-620	23655	760.05	1520.10	breast tumor	
brain normal BB99-542	25507	679.48	1358.96	brain normal	
brain normal BB99-406	25509	423.69	847.38	brain normal	
brain normal BB99-904	25546	401.34	802.68	brain normal	
brain stage 5 ALZ BB99- 874	25502	264.51	529.02	brain stage 5	
brain stage 5 ALZ BB99- 887	25503	648.88	1297.76	brain stage 5	1.293869765

brain stage 5 ALZ BB99 862		234.97	469.94	brain stage 5	-2.134329205
brain stage 5 ALZ BB99 927	- 25542	404.55	809.10	brain stage 5	-1.239657232
CT lung KC	normal	6620.85	13241.70	CT lung	
lung 26 KC	normal	320.43	320.43	lung 26	1
lung 27 KC	normal	164.59	164.59	lung 27	
lung 24 KC	COPD	141.57	141.57	lung 24	-25.25392032
lung 28 KC	COPD	323.8	323.80	lung 28	-11.04137585
lung 23 KC	COPD	363.35	363.35	lung 23	-9.839541764
lung 25 KC	COPD	574.07	574.07	lung 25	7,00,00
asthmatic lung ODO3112	29321	6073.99	6073.99	asthmatic lung	1.698924325
asthmatic lung ODO3433	29323	4568.41	9136.82	asthmatic lung	2.555612662
asthmatic lung ODO3397	29322	17389.11	34778.22	asthmatic lung	9.727636026
asthmatic lung ODO4928	29325	4719.27	9438.54	asthmatic lung	2.640005203
endo cells KC	control	0	0.00	endo cells	
endo VEGF KC		0	0.00	endo VEGF	0
endo bFGF KC		0	0.00	endo bFGF	0
heart Clontech	normal	10.63	21.26	heart	
heart (T-1) ischemic	29417	599.01	1198.02	heart T-1	56.3508937
heart (T-14) non- obstructive DCM	29422	666.41	1332.82	heart T-14	62.69143932
heart (T-3399) DCM	29426	142.85	285.70	heart T-3399	13.43838194
adenoid GW99-269	26162	1138	2276.00	adenoid	
tonsil GW98-280	22582	561.57	1123.14	tonsil	
T cells PC00314	28453	736.27	1472.54	T cells	
PBMNC KC		0	0.00	PBMNC	
monocyte KC		30.38	60.76	monocyte	
B cells PC00665	28455	204.15	408.30	B cells	
dendritic cells 28441		57.66	115.32	dendritic cells	
neutrophils	28440	13.3	13.30	neutrophils	
eosinophils	28446	5.71	11.42	eosinophils	
BM unstim KC		0	0.00	BM unstim	
BM stim KC		50.38	50.38	BM stim	50.38
osteo dif KC		8.62	8.62	osteo dif	
osteo undif KC		0	0.00	osteo undif	-8.62
chondrocytes		14.98	37.45	chondrocyte s	
OA Synovium IP12/01	29462	134.63	134.63	OA Synovium	
OA Synovium NP10/01	29461	73.89	147.78	OA Synovium	
	28464		213.96	OA Synovium	
	28466		53.18	RA Synovium	
RA Synovium NP71/00	28467	60.88	121.76	RA	

				Synovium	
RA Synovium NP45/00	28475	60.81	121.62	RA Synovium	
OA bone (biobank)	29217	98.18	98.18	OA bone (biobank)	
OA bone Sample 1	J. Emory	78.3	156.60	OA bone	
OA bone Sample 2	J. Emory	107.7	215.40	OA bone	
Cartilage (pool)	Normal	72.21	144.42	Cartilage (pool)	
Cartilage (pool)	OA	48.61	97.22	Cartilage (pool)	-1.485496811
PBL unifected	28441	30.22	60.44	PBL unifected	
PBL HIV IIIB	28442	21.89	43.78	PBL HIV IIIB	-1.380539059
MRC5 uninfected (100%)	29158	10.74	21.48	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	171.23	342.46	MRC5 HSV strain F	15.94320298
W12 cells	29179	1143.85	2287.70	W12 cells	
Keratinocytes	29180	388.06	776.12	Keratinocyte s	

Gene Name SBh385630.antiinflam

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.21
colon tumor	8.76
colon tumor	-1.36
colon tumor	-3.10
lung tumor	-5.19
lung tumor	5.67
lung tumor	-1.91
lung tumor	-1.14
breast tumor	1.69
breast tumor	1.98
breast tumor	2.05
breast tumor	-1.87
brain stage 5 ALZ	-1.90
brain stage 5 ALZ	1.29
brain stage 5 ALZ	-2.13
brain stage 5 ALZ	-1.24
lung 24	-25.25
lung 28	-11.04
lung 23	-9.84
asthmatic lung	1.70
asthmatic lung	2.56
asthmatic lung	9.73
asthmatic lung	2.64
endo VEGF	0.00
endo bFGF	0.00
heart T-1	56.35

heart T-14	62.69	
heart T-3399	13.44	
BM stim	50.38	
osteo undif	-8.62	
Cartilage (pool)	-1.49	
PBL HIV IIIB	-1.38	
MRC5 HSV strain F	15.94	

Gene Name sbg471005nAChR

5

Expressed in immune cells with corroborating expression in OA and RA synovium suggesting a role in this disease.

High expression in whole brain but not present in cortex, cerebellum, or hypothalamus suggesting localized brain expression.

Sample sbg471005nAChR	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detecte d/50 ng total
Subcutaneous Adipocytes Zenbio	32.42	2.90	17.66	3.06	16.34	RNA 288.56
Subcutaneous Adipose Zenbio	0.00	0.00	0.00	0.96	52.36	0.00
Adrenal Gland Clontech	0.00	0.00	0.00	0.61	81.97	0.00
Whole Brain Clontech	1606.00	1058.07	1332.04	7.24	6.91	9199.14
Fetal Brain Clontech	0.00	6.34	3.17	0.48	103.95	329.52
Cerebellum Clontech	10.65	0.00	5.33	2.17	23.04	122.70
Cervix	0.00	0.00	0.00	2.42	20.66	0.00
Colon	0.00	0.00	0.00	2.71	18.45	0.00
Endometrium	0.00	0.00	0.00	0.73	68.21	0.00
Esophagus	0.00	2.52	1.26	1.37	36.50	45.99
Heart Clontech	4.05	0.00	2.03	1.32	37.88	76.70
Hypothalamus	2.24	0.00	1.12	0.32	155.28	173.91
Ileum	0.00	0.00	0.00	2.58	19.38	0.00
Jejunum	20.32	41.44	30.88	6.60	7.58	233.94
Kidney	14.56	0.00	7.28	2.12	23.58	171.70
Liver	3.55	10.72	7.14	1.50	33.33	237.83
Fetal Liver Clontech	127.95	116.81	122.38	10.40	4.81	588.37
Lung	12.79	0.00	6.40	2.57	19.46	124.42
Mammary Gland Clontech	30.53	24.12	27.33	13.00	3.85	105.10
Myometrium	0.00	7.10	3.55	2.34	21.37	75.85
Omentum	8.15	0.00	4.08	3.94	12.69	51.71
Ovary	18.27	7.02	12.65	4.34	11.52	145.68
Pancreas	0.00	0.00	0.00	0.81	61.80	0.00
Head of Pancreas	0.00	0.00	0.00	1.57	31.85	0.00
Parotid Gland	0.00	0.00	0.00	5.48	9.12	0.00
Placenta Clontech	9.17	0.00	4.59	5.26	9.51	43.58

0.00	1.35	0.68	3.00	16.67	11.25
0.00	0.00	0.00	1.23	40.65	0.00
0.00	11.84	5.92	7.31	6.84	40.49
6.09	7.36	6.73	1.26	39.68	266.87
0.00	0.00	0.00	1.21	41.32	0.00
0.00	0.00	0.00	0.98	51.07	0.00
5.20	7.36	6.28	4.92	10.16	63.82
12.85	6.38	9.62	2.73	18.32	176.10
0.00	2.25	1.13	0.57	87.87	98.86
177.85	168.23	173.04	9.89	5.06	874.82
6.44	0.00	3.22	2.77	18.05	58.12
5.07	0.00	2.54	9.71	5.15	13.05
0.00	0.00	0.00	5.47	9.14	0.00
29.20	10.39	19.80	5.34	9.36	185.35
	0.00 0.00 6.09 0.00 0.00 5.20 12.85 0.00 177.85 6.44 5.07 0.00	0.00 0.00 0.00 11.84 6.09 7.36 0.00 0.00 0.00 0.00 5.20 7.36 12.85 6.38 0.00 2.25 177.85 168.23 6.44 0.00 5.07 0.00 0.00 0.00	0.00 0.00 0.00 0.00 11.84 5.92 6.09 7.36 6.73 0.00 0.00 0.00 0.00 0.00 0.00 5.20 7.36 6.28 12.85 6.38 9.62 0.00 2.25 1.13 177.85 168.23 173.04 6.44 0.00 3.22 5.07 0.00 2.54 0.00 0.00 0.00	0.00 0.00 0.00 1.23 0.00 11.84 5.92 7.31 6.09 7.36 6.73 1.26 0.00 0.00 0.00 1.21 0.00 0.00 0.00 0.98 5.20 7.36 6.28 4.92 12.85 6.38 9.62 2.73 0.00 2.25 1.13 0.57 177.85 168.23 173.04 9.89 6.44 0.00 3.22 2.77 5.07 0.00 2.54 9.71 0.00 0.00 0.00 5.47	0.00 0.00 0.00 1.23 40.65 0.00 11.84 5.92 7.31 6.84 6.09 7.36 6.73 1.26 39.68 0.00 0.00 0.00 1.21 41.32 0.00 0.00 0.98 51.07 5.20 7.36 6.28 4.92 10.16 12.85 6.38 9.62 2.73 18.32 0.00 2.25 1.13 0.57 87.87 177.85 168.23 173.04 9.89 5.06 6.44 0.00 3.22 2.77 18.05 5.07 0.00 2.54 9.71 5.15 0.00 0.00 5.47 9.14

Sample	Reg	Mean	copies of	Sample	Fold Change
sbg471005nAChR	number	GOI	mRNA		in Disease
	(GSK	copies	detected/50		Population
	identifier)		ng total		
- 1 CW00 167	21041	1530.09	RNA 3060.18	colon normal	
colon normal GW98-167	21941				-2.479283805
colon tumor GW98-166	21940	617.15	1234.30	colon tumor	-2.479283803
colon normal GW98-178	22080	406.03	812.06	colon normal	2 222121222
colon tumor GW98-177	22060	1231.53	2463.06	colon tumor	3.033101002
colon normal GW98-561	23514	844.37	1688.74	colon normal	
colon tumor GW98-560	23513	633.99	1267.98	colon tumor	-1.331834887
colon normal GW98-894	24691	1130.51	2261.02	colon normal	
colon tumor GW98-893	24690	721.29	1442.58	colon tumor	-1.567344619
lung normal GW98-3	20742	2433.65	4867.30	lung normal	
lung tumor GW98-2	20741	334.04	668.08	lung tumor	-7.28550473_
lung normal GW97-179	20677	823.51	1647.02	lung normal	
lung tumor GW97-178	20676	1492	2984.00	lung tumor	1.811756991
lung normal GW98-165	21922	829.65	1659.30	lung normal	
lung tumor GW98-164	21921	595.31	1190.62	lung tumor	-1.393643648
lung normal GW98-282	22584	357.69	715.38	lung normal	
lung tumor GW98-281	22583	256.76	513.52	lung tumor	-1.393090824
breast normal GW00-392	28750	357.44	357.44	breast normal	
breast tumor GW00-391	28746	280.98	561.96	breast tumor	1.572179946
breast normal GW00-413	28798	286.18	286.18	breast normal	
breast tumor GW00-412	28797	195.5	391.00	breast tumor	1.366272975
breast normal GW00- 235:238	27592-95	161.68	161.68	breast normal	
breast tumor GW00- 231:234	27588-91	217.83	217.83	breast tumor	1.347290945
breast normal GW98-621	23656	531.53	1063.06	breast normal	

breast tumor GW98-620	23655	556.17	1112.34	breast tumor	1.046356744
brain normal BB99-542	25507	143.72	287.44	brain normal	1.040330744
brain normal BB99-406	25509	569.17	1138.34	brain normal	
brain normal BB99-904	25546	106.85	213.70	brain normal	
brain stage 5 ALZ BB99-	25502	286.37	572.74	brain stage 5	1.048027423
874				ALZ	
brain stage 5 ALZ BB99- 887	25503	746.74	1493.48	brain stage 5 ALZ	2.732842121
brain stage 5 ALZ BB99- 862	25504	382.97	765.94	brain stage 5 ALZ	1.401554151
brain stage 5 ALZ BB99- 927	25542	367.49	734.98	brain stage 5 ALZ	1.344902042
CT lung KC	normal	175.41	350.82	CT lung	
lung 26 KC	normal	20.66	20.66	lung 26	
lung 27 KC	normal	13.06	13.06	lung 27	
lung 24 KC	COPD	15.89	15.89	lung 24	-6.182662052
lung 28 KC	COPD	7.34	7.34	lung 28	-13.38453678
lung 23 KC	COPD	22.3	22.30	lung 23	-4.405493274
lung 25 KC	COPD	8.43	8.43	lung 25	
asthmatic lung ODO3112	29321	264.47	264.47	asthmatic lung	2.692012113
asthmatic lung ODO3433	29323	442.3	884.60	asthmatic lung	9.004249688
asthmatic lung ODO3397	29322	670.04	1340.08	asthmatic lung	13.64053236
asthmatic lung ODO4928	29325	414.13	828.26	asthmatic lung	8.430770797
endo cells KC	control	66.94	66.94	endo cells	
endo VEGF KC		18.49	18.49	endo VEGF	-3.620335316
endo bFGF KC		15.93	15.93	endo bFGF	-4.202134338
heart Clontech	normal	180.76	361.52	heart	
heart (T-1) ischemic	29417	161.9	323.80	heart T-1	-1.116491662
heart (T-14) non- obstructive DCM	29422	141.03	282.06	heart T-14	-1.281713111
heart (T-3399) DCM	29426	321.32	642.64	heart T-3399	1.777605665
adenoid GW99-269	26162	193.61	387.22	adenoid	
tonsil GW98-280	22582	625.4	1250.80	tonsil	
T cells PC00314	28453	140.44	280.88	T cells	
PBMNC KC		0	0.00	PBMNC	-
monocyte KC		0	0.00	monocyte	
B cells PC00665	28455	476.72	953.44	B cells	
dendritic cells 28441		205.79	411.58	dendritic cells	
neutrophils	28440	1366.99	1366.99	neutrophils	
eosinophils	28446	316.57	633.14	eosinophils	
BM unstim KC		29.41	29.41	BM unstim	
BM stim KC		46.03	46.03	BM stim	1.565113907
osteo dif KC		17.47	17.47	osteo dif	1.505115901
osteo undif KC		1.87	1.87	osteo undif	-9.342245989
chondrocytes		735.88	1839.70	chondrocyte	-7.372243707
				s	

OA Synovium IP12/01	29462	686.8	686.80	OA Synovium	_
OA Synovium NP10/01	29461	4887.16	9774.32	OA Synovium	
OA Synovium NP57/00	28464	721.49	1442.98	OA Synovium	
RA Synovium NP03/01	28466	383.33	766.66	RA Synovium	
RA Synovium NP71/00	28467	780.94	1561.88	RA Synovium	
RA Synovium NP45/00	28475	543.62	1087.24	RA Synovium	
OA bone (biobank)	29217	780.12	780.12	OA bone (biobank)	
OA bone Sample 1	J. Emory	361.65	723.30	OA bone	
OA bone Sample 2	J. Emory	197.57	395.14	OA bone	
Cartilage (pool)	Normal	220.7	441.40	Cartilage (pool)	
Cartilage (pool)	OA	75.52	151.04	Cartilage (pool)	-2.922404661
PBL unifected	28441	1745.81	3491.62	PBL unifected	
PBL HIV IIIB	28442	832.4	1664.80	PBL HIV IIIB	-2.097321
MRC5 uninfected (100%)	29158	147.92	295.84	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	146	292.00	MRC5 HSV strain F	-1.013150685
W12 cells	29179	304.27	608.54	W12 cells	
Keratinocytes	29180	139.44	278.88	Keratinocyte s	

Gene Name sbg471005nAChR

Disease tissues	Fold Change in Disease Population Relative to
	Normal
colon tumor	-2.48
colon tumor	3.03
colon tumor	-1.33
colon tumor	-1.57
lung tumor	-7.29
lung tumor	1.81
lung tumor	-1.39
lung tumor	-1.39
breast tumor	1.57
breast tumor	1.37
breast tumor	1.35
breast tumor	1.05
brain stage 5 ALZ	1.05
brain stage 5 ALZ	2.73
brain stage 5 ALZ	1.40
brain stage 5 ALZ	1.34
lung 24	-6.18

5

lung 28	-13.38
lung 23	-4.41
asthmatic lung	2.69
asthmatic lung	9.00
asthmatic lung	13.64
asthmatic lung	8.43
endo VEGF	-3.62
endo bFGF	-4.20
heart T-1	-1.12
heart T-14	-1.28
heart T-3399	1.78
BM stim	1.57
osteo undif	-9.34
Cartilage (pool)	-2.92
PBL HIV IIIB	-2.10
MRC5 HSV strain F	-1.01

Gene Name sbg442445PROa

Strong expression in B-cells with expression in other immune cell types indicate function in immune system. Corroborating expression in RA and OA samples indicate role in disease. 2X increase in cells infected with HIV suggests possible marker in HIV infection. Expression in whole brain but not cortex or cerebellum suggests localized expression in brain.

Sample sbg442445PROa	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	1.13	3.82	2.48	3.06	16.34	40.44
Subcutaneous Adipose Zenbio	0.63	0	0.32	0.96	52.36	16.49
Adrenal Gland Clontech	0.64	0.74	0.69	0.61	81.97	56.56
Whole Brain Clontech	368.87	396.51	382.69	7.24	6.91	2642.89
Fetal Brain Clontech	1.57	2.5	2.04	0.48	103.95	211.54
Cerebellum Clontech	1.63	0	0.82	2.17	23.04	18.78
Cervix	4.57	5.6	5.09	2.42	20.66	105.06
Colon	18.13	7.38	12.76	2.71	18.45	235.33
Endometrium	4.23	0	2.12	0.73	68.21	144.27
Esophagus	6.85	12.66	9.76	1.37	36.50	356.02
Heart Clontech	12.83	1.44	7.14	1.32	37.88	270.27
Hypothalamus	0.58	7.26	3.92	0.32	155.28	608.70
Ileum	22.89	6.34	14.62	2.58	19.38	283.24
Jejunum	6.67	36.71	21.69	6.60	7.58	164.32
Kidney	2.82	6.28	4.55	2.12	23.58	107.31
Liver	11.21	1.24	6.23	1.50	33.33	207.50
Fetal Liver Clontech	118	135.81	126.91	10.40	4.81	610.12
Lung	13.95	37.87	25.91	2.57	19.46	504.09
Mammary Gland Clontech	15.77	11.19	13.48	13.00	3.85	51.85

Myometrium	16.26	49.21	32.74	2.34	21.37	699.47
Omentum	16.64	25.59	21.12	3.94	12.69	267.96
Ovary	4.98	7.48	6.23	4.34	11.52	71.77
Pancreas	1.23	0	0.62	0.81	61.80	38.01
Head of Pancreas	3.57	0	1.79	1.57	31.85	56.85
Parotid Gland	0.59	0	0.30	5.48	9.12	2.69
Placenta Clontech	2.67	2.75	2.71	5.26	9.51	25.76
Prostate	9.23	7.92	8.58	3.00	16.67	142.92
Rectum	2.62	4.28	3.45	1.23	40.65	140.24
Salivary Gland	1.02	14.59	7.81	7.31	6.84	53.39
Clontech	1.02	1,12,				
Skeletal Muscle	0	0.98	0.49	1.26	39.68	19.44
Clontech				1.01	41.20	56.20
Skin	2.72	0	1.36	1.21	41.32	
Small Intestine	0.99	1	1.00	0.98	51.07	50.82
Clontech				1.00	1,016	373.22
Spleen	31.29	42.16	36.73	4.92	10.16	
Stomach	15.74		7.87	2.73	18.32	144.14
Testis Clontech	4.63	2.77	3.70	0.57	87.87	325.13
Thymus Clontech	503.91	615.6	559.76	9.89	5.06	2829.90
Thyroid	0.75	10.38	5.57	2.77	18.05	100.45
Trachea Clontech	65.95	52.98	59.47	9.71	5.15	306.20
Urinary Bladder	9.1	3.76	6.43	5.47	9.14	58.78
Uterus	13.88	4.35	9.12	5.34	9.36	85.35

sbg442445PROa	Reg number (GSK identifier)	Mean GOI copies	copies of mRNA detected/50 ng total RNA	Sample	Fold Change in Disease Population
colon normal GW98-167	21941	392.89	785.78	colon normal	
colon tumor GW98-166	21940	466.75	933.50	colon tumor	1.18799155
colon normal GW98-178	22080	113.54	227.08	colon normal	
colon tumor GW98-177	22060	43.88	87.76	colon tumor	-2.587511395
colon normal GW98-561	23514	335.16	670.32	colon normal	
colon tumor GW98-560	23513	173.85	347.70	colon tumor	-1.927868852
colon normal GW98-894	24691	288.76	577.52	colon normal	
colon tumor GW98-893	24690	164.44	328.88	colon tumor	-1.756020433
lung normal GW98-3	20742	2119.16	4238.32	lung normal	
lung tumor GW98-2	20741	33.63	67.26	lung tumor	-63.01397562
lung normal GW97-179	20677	1213.42	2426.84	lung normal	
lung tumor GW97-178	20676	2011.79	4023.58	lung tumor	1.657950256
lung normal GW98-165	21922	2088.93	4177.86	lung normal	
lung tumor GW98-164	21921	862.54	1725.08	lung tumor	-2.421835509
lung normal GW98-282	22584	499.54	999.08	lung normal	
lung tumor GW98-281	22583	946.36	1892.72	lung tumor	1.894462906
breast normal GW00-392	28750	208.96	208.96	breast normal	
breast tumor GW00-391	28746	259.34	518.68	breast tumor	2.48219755
breast normal GW00-413	28798	65.02	65.02	breast normal	

breast tumor GW00-412	28797	493.02	986.04	1	115 165-5
breast normal GW00-	27592-95	24.18	24.18	breast tumor	15.16517994
235:238	21392-93	24.10	24.18	breast normal	
breast tumor GW00- 231:234	27588-91	126.63	126.63	breast tumor	5.236972705
breast normal GW98-621	23656	536.09	1072.18	breast normal	
breast tumor GW98-620	23655	203.7	407.40	breast tumor	-2.631762396
brain normal BB99-542	25507	88.47	176.94	brain normal	
brain normal BB99-406	25509	147.87	295.74	brain normal	
brain normal BB99-904	25546	35.13	70.26	brain normal	
brain stage 5 ALZ BB99- 874	25502	75.02	150.04	brain stage 5	-1.206211677
brain stage 5 ALZ BB99- 887	25503	189	378.00	brain stage 5	2.088628578
brain stage 5 ALZ BB99- 862	25504	131.38	262.76	brain stage 5 ALZ	1.451873135
brain stage 5 ALZ BB99- 927	25542	36.77	73.54	brain stage 5 ALZ	-2.46097362
CT lung KC	normal	1441.16	2882.32	CT lung	
lung 26 KC	normal	69.7	69.70	lung 26	
lung 27 KC	normal	59.95	59.95	lung 27	
lung 24 KC	COPD	5.33	5.33	lung 24	-142.0727017
lung 28 KC	COPD	30.24	30.24	lung 28	-25.04125331
lung 23 KC	COPD	52.96	52.96	lung 23	-14.29847998
lung 25 KC	COPD	17.02	17.02	lung 25	
asthmatic lung ODO3112	29321	309.94	309.94	asthmatic lung	-2.44320675
ODO3433	29323	532.32	1064.64	asthmatic lung	1.405933991
ODO3397	29322	1159.05	2318.10	asthmatic lung	3.061218426
ODO4928	29325	873.73	1747.46	asthmatic lung	2.307647103
	control	0	0.00	endo cells	
endo VEGF KC		0.93	0.93	endo VEGF	0.93
endo bFGF KC		5.16	5.16	endo bFGF	5.16
	normal	43.01	86.02	heart	
	29417	81.55	163.10	heart T-1	1.896070681
obstructive DCM	29422	51.64	103.28	heart T-14	1.200651011
	29426	90.27	180.54	heart T-3399	2.098814229
	26162	982.05	1964.10	adenoid	
	22582	3981.71	7963.42	tonsil	
	28453	265.95	531.90	T cells	
PBMNC KC		40.89	40.89	PBMNC	
monocyte KC		62.92	125.84	monocyte	
	28455	9045.58	18091.16	B cells	
dendritic cells 28441		267.47	534.94	dendritic cells	
	28440	1212.1	1212.10	neutrophils	
	28446	1563.76	3127.52	eosinophils	
BM unstim KC					

BM stim KC		27.4	27.40	BM stim	-2.063868613
osteo dif KC		0	0.00	osteo dif	
osteo undif KC		0	0.00	osteo undif	0
chondrocytes		0.92	2.30	chondrocytes	
OA Synovium IP12/01	29462	524.44	524.44	OA Synovium	
OA Synovium NP10/01	29461	191.8	383.60	OA Synovium	
OA Synovium NP57/00	28464	461.09	922.18	OA Synovium	
RA Synovium NP03/01	28466	484.63	969.26	RA Synovium	
RA Synovium NP71/00	28467	698.08	1396.16	RA Synovium	
RA Synovium NP45/00	28475	1034.78	2069.56	RA Synovium	
OA bone (biobank)	29217	547.68	547.68	OA bone (biobank)	
OA bone Sample 1	J. Emory	286.6	573.20	OA bone	
OA bone Sample 2	J. Emory	604.86	1209.72	OA bone	
Cartilage (pool)	Normal	224.68	449.36	Cartilage (pool)	
Cartilage (pool)	OA	113.78	227.56	Cartilage (pool)	-1.974687994
PBL unifected	28441	966.68	1933.36	PBL unifected	
PBL HIV IIIB	28442	1353.87	2707.74	PBL HIV IIIB	1.400535855
MRC5 uninfected (100%)	29158	1.28	2.56	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	34.07	68.14	MRC5 HSV strain F	26.6171875
W12 cells	29179	3.55	7.10	W12 cells	
Keratinocytes	29180	5.64	11.28	Keratinocytes	

Gene Name sbg442445PROa

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	1.19
colon tumor	-2.59
colon tumor	-1.93
colon tumor	-1.76
lung tumor	-63.01
lung tumor	1.66
lung tumor	-2.42
lung tumor	1.89
breast tumor	2.48
breast tumor	15.17
breast tumor	5.24
breast tumor	-2.63
brain stage 5 ALZ	-1.21
brain stage 5 ALZ	2.09
brain stage 5 ALZ	1.45
brain stage 5 ALZ	-2.46

lung 24	-142.07	
lung 28	-25.04	
lung 23	-14.30	
asthmatic lung	-2.44	
asthmatic lung	1.41	
asthmatic lung	3.06	
asthmatic lung	2.31	
endo VEGF	0.93	
endo bFGF	5.16	
heart T-1	1.90	
heart T-14	1.20	
heart T-3399	2.10	
BM stim	-2.06	
osteo undif	0.00	
Cartilage (pool)	-1.97	
PBL HIV IIIB	1.40	
MRC5 HSV strain F	26.62	

Gene Name sbg456548CytoRa

Strongly expressed in adenoid/tonsils and dendritic cells. Overexpressed in stimulated bone marrow. Taken together, these data suggest a role in immune function.

5 Expression in GI tract suggests potential role in diseases of the GI system like IBD, Chron's, etc.

Sample sbg456548CytoRa	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detected/ 50 ng total
Subcutaneous Adipocytes Zenbio	0.00	5.06	2.53	3.06	16.34	RNA 41.34
Subcutaneous Adipose Zenbio	0.00	0.00	0.00	0.96	52.36	0.00
Adrenal Gland Clontech	0.00	0.00	0.00	0.61	81.97	0.00
Whole Brain Clontech	0.00	0.00	0.00	7.24	6.91	0.00
Fetal Brain Clontech	0.00	0.00	0.00	0.48	103.95	0.00
Cerebellum Clontech	0.00	0.00	0.00	2.17	23.04	0.00
Cervix	0.00	7.86	3.93	2.42	20.66	81.20
Colon	9.12	37.61	23.37	2.71	18.45	431.09
Endometrium	0.00	0.00	0.00	0.73	68.21	0.00
Esophagus	0.00	0.00	0.00	1.37	36.50	0.00
Heart Clontech	0.00	0.00	0.00	1.32	37.88	0.00
Hypothalamus	0.00	0.00	0.00	0.32	155.28	0.00
Ileum	not done	39.63	39.63	2.58	19.38	768.02
Jejunum	9.16	33.67	21.42	6.60	7.58	162.23
Kidney	0.00	0.00	0.00	2.12	23.58	0.00
	0.00	13.75	6.88	1.50	33.33	229.17
Fetal Liver Clontech	0.00	0.00	0.00	10.40	4.81	0.00
Lung	0.00	0.00	0.00	2.57	19.46	0.00

Mammary Gland Clontech	136.73	106.34	121.54	13.00	3.85	467.44
Myometrium	27.33	17.56	22.45	2.34	21.37	479.59
Omentum	0.00	12.61	6.31	3.94	12.69	80.01
Ovary	16.46	17.90	17.18	4.34	11.52	197.93
Pancreas	0.00	0.00	0.00	0.81	61.80	0.00
Head of Pancreas	0.00	0.00	0.00	1.57	31.85	0.00
Parotid Gland	21.25	23.72	22.49	5.48	9.12	205.16
Placenta Clontech	101.11	73.40	87.26	5.26	9.51	829.42
Prostate	8.55	0.00	4.28	3.00	16.67	71.25
Rectum	0.00	0.00	0.00	1.23	40.65	0.00
Salivary Gland Clontech	0.00	0.00	0.00	7.31	6.84	0.00
Skeletal Muscle Clontech	0.00	0.00	0.00	1.26	39.68	0.00
Skin	0.00	0.00	0.00	1.21	41.32	0.00
Small Intestine Clontech	0.00	0.00	0.00	0.98	51.07	0.00
Spleen	31.60	14.66	23.13	4.92	10.16	235.06
Stomach	0.00	7.01	3.51	2.73	18.32	64.19
Testis Clontech	0.00	0.00	0.00	0.57	87.87	0.00
Thymus Clontech	51.70	103.21	77.46	9.89	5.06	391.58
Thyroid	0.00	0.00	0.00	2.77	18.05	0.00
Trachea Clontech	0.00	0.00	0.00	9.71	5.15	0.00
Urinary Bladder	0.00	7.29	3.65	5.47	9.14	33.32
Uterus	5.98	21.02	13.50	5.34	9.36	126.40

Sample sbg456548CytoRa	Reg number	Mean GOI	copies of	Sample	Fold Change in Disease
Sug450546CytoNa	(GSK	copies	detected/50		Population
	identifier)	•	ng total RNA		
colon normal GW98-167	21941	54.19	108.38	colon normal	
colon tumor GW98-166	21940	242.87	485.74	colon tumor	4.481823215
colon normal GW98-178	22080	24.61	49.22	colon normal	
colon tumor GW98-177	22060	17.37	34.74	colon tumor	-1.416810593
colon normal GW98-561	23514	120.13	240.26	colon normal	
colon tumor GW98-560	23513	43.05	86.10	colon tumor	-2.79047619
colon normal GW98-894	24691	81.35	162.70	colon normal	
colon tumor GW98-893	24690	16.94	33.88	colon tumor	-4.802243211
lung normal GW98-3	20742	12.83	25.66	lung normal	
lung tumor GW98-2	20741	94.41	188.82	lung tumor	7.358534684
lung normal GW97-179	20677	519.7	1039.40	lung normal	
lung tumor GW97-178	20676	46.83	93.66	lung tumor	-11.09758702
lung normal GW98-165	21922	7.95	15.90	lung normal	
lung tumor GW98-164	21921	237.54	475.08	lung tumor	29.87924528
lung normal GW98-282	22584	251.04	502.08	lung normal	
lung tumor GW98-281	22583	28.16	56.32	lung tumor	-8.914772727
breast normal GW00-392	28750	138.99	138.99	breast normal	

breast normal GW00-412 28798 30.39 30.39 breast normal breast tumor GW00-412 28797 37.64 75.28 breast tumor CW00-231:238 218.09 218.09 breast normal GW00-231:234 breast normal GW98-621 23656 1888.3 3776.60 breast tumor CW02-231:234 breast normal GW98-621 23656 1888.3 3776.60 breast tumor GW98-620 23655 877.2 1754.40 breast tumor -2.152644779 brain normal BB99-542 25507 0 0.00 brain normal brain normal BB99-406 25509 0 0.00 brain normal brain stage 5 ALZ BB99-25502 0 0.00 brain stage 5 0 ALZ brain stage 5 ALZ BB99-25502 0 0.00 brain stage 5 0 ALZ brain stage 5 ALZ BB99-25504 0 0.00 brain stage 5 0 ALZ brain stage 5 ALZ BB99-25504 0 0.00 brain stage 5 0 ALZ brain stage 5 ALZ BB99-25504 0 0.00 brain stage 5 0 ALZ brain stage 5 ALZ BB99-27 0 0.00 brain stage 5 0 ALZ brain stage	breast tumor GW00-391	28746	147.66	295.32	breast tumor	2.124757177
	breast normal GW00-413	28798	30.39	30.39		
breast normal GW00-233:238						
235:238		28797	37.64	75.28	breast tumor	2.477130635
December		27592-95	218.09	218.09		
Decease tumor GW98-620 23655 877.2 1754.40 Dreast tumor -2.152644779		27588-91	14.68	14.68	breast tumor	-14.85626703
breast tumor GW98-620 23655 877.2 1754.40 breast tumor 2.152644779 brain normal BB99-542 25507 0 0.00 brain normal - brain normal BB99-406 25509 0 0.00 brain normal - brain stage 5 ALZ BB99-874 25502 0 0.00 brain stage 5 0 Brain stage 5 ALZ BB99-887 25503 7.32 14.64 brain stage 5 14.64 brain stage 5 ALZ BB99-862 25504 0 0.00 brain stage 5 0 Bear Star Star Star Star Star Star Star St	breast normal GW98-621	23656	1888.3	3776.60	1	
brain normal BB99-406 25509 0 0.00 brain normal brain normal BB99-904 25546 0 0.00 brain stage 5 0 374 25502 0 0.00 brain stage 5 0 brain stage 5 ALZ BB99-887 25503 7.32 14.64 brain stage 5 14.64 brain stage 5 ALZ BB99-862 25504 0 0.00 brain stage 5 0 brain stage 5 ALZ BB99-862 25504 0 0.00 brain stage 5 0 BC2 ALZ 0 0.00 brain stage 5 0 CCPD 2020 0 0.00 brain stage 5 0 ALZ 0 0.00 brain stage 5 0 Lung 2 2022 2542 0 0.00 0 <td>breast tumor GW98-620</td> <td>23655</td> <td>877.2</td> <td>1754.40</td> <td></td> <td>-2.152644779</td>	breast tumor GW98-620	23655	877.2	1754.40		-2.152644779
brain normal BB99-904 25546 0 0.00 brain normal brain stage 5 ALZ BB99-874 25502 0 0.00 brain stage 5 0 brain stage 5 ALZ BB99-887 25503 7.32 14.64 brain stage 5 14.64 brain stage 5 ALZ BB99-862 25504 0 0.00 brain stage 5 0 CT lung KC normal 10.31 20.62 CT lung and LZ 0 Lung 26 KC normal 49.79 49.79 lung 26 0 Lung 27 KC normal 4.11 4.11 lung 27 1 Lung 28 KC COPD 0.67 0.67 lung 28 -1.326793139 Lung 28 KC COPD 3.15 3.15 lung 28 -1.326793139 Lung 25 KC COPD 27.59 27.59 lung 25 asthmatic lung 29321 2.95 2.95 asthmatic lung 25 -8.653389831 1 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1	brain normal BB99-542	25507	0	0.00	brain normal	
brain normal BB99-904 25546 0 0.00 brain normal brain stage 5 ALZ BB99-874 25502 0 0.00 brain stage 5 ALZ BB99-887 14.64 brain stage 5 ALZ BB99-862 14.64 brain stage 5 ALZ BB99-862 0 0.00 brain stage 5 ALZ BB99-87 0.00 0 0 0.00 brain stage 5 ALZ BB99-87 0 0.00 brain stage 5 ALZ BB99-87 0.00 0 0 0.00 brain stage 5 ALZ BB99-87 0 0 0.07	brain normal BB99-406	25509	0	0.00	brain normal	
brain stage 5 ALZ BB99-874 25502 0 0.00 brain stage 5 ALZ BB99-887 0 0.00 brain stage 5 ALZ BB99-887 14.64 brain stage 5 ALZ BB99-862 14.64 brain stage 5 ALZ BB99-862 14.64 brain stage 5 ALZ BB99-862 0 0.00 brain stage 5 ALZ BB99-927 0 0.00 brain stage 5 ALZ BB99-927-92 0 0.00 brain stage 5 ALZ BB99-927-92 0 0 0.00 brain stage 5 ALZ BB99-92-92 0 0 0 0.00 brain stage 5 ALZ BB99-92-92 0 0 0 0 0 0 0 0 0 0 0 0 0	brain normal BB99-904	25546	0	0.00		
brain stage 5 ALZ BB99-87 25503 7.32 14.64 brain stage 5 ALZ 14.64 brain stage 5 ALZ BB99-862 25504 0 0.00 brain stage 5 Datz 0 brain stage 5 ALZ BB99-927 25542 0 0.00 brain stage 5 Datz 0 CT lung KC normal 10.31 20.62 CT lung 1 lung 26 KC normal 49.79 49.79 lung 26 1 lung 27 KC normal 4.11 4.11 lung 27 1 lung 28 KC COPD 0.67 0.67 lung 28 -1.326793139 lung 28 KC COPD 3.15 3.15 lung 23 -8.103968254 lung 25 KC COPD 27.59 27.59 lung 25 asthmatic lung 25 asthmatic lung 29321 2.95 2.95 asthmatic lung 25 asthmatic lung 29322 24.39 48.78 asthmatic lung 24 -1.294497972 lung 26 4.218196063 lung 25 asthmatic lung 25 asthmatic lung 29 0.00397 asthmatic lung 29		25502	0	0.00		0
brain stage 5 ALZ BB99-862 25504 0 0.00 brain stage 5 ALZ BB99-927 25542 0 0.00 brain stage 5 ALZ BB99-927 0 0 0.00 brain stage 5 ALZ BB99-927 0 <t< td=""><td>brain stage 5 ALZ BB99-</td><td>25503</td><td>7.32</td><td>14.64</td><td>brain stage 5</td><td>14.64</td></t<>	brain stage 5 ALZ BB99-	25503	7.32	14.64	brain stage 5	14.64
brain stage 5 ALZ BB99- 927 25542 0 0.00 brain stage 5 ALZ 0 CT lung KC normal 10.31 20.62 CT lung 0 lung 26 KC normal 49.79 49.79 lung 26 0 lung 27 KC normal 4.11 4.11 lung 27 1 lung 24 KC COPD 0.67 0.67 lung 24 -38.10074627 lung 28 KC COPD 19.24 19.24 lung 28 -1.326793139 lung 23 KC COPD 3.15 3.15 lung 23 -8.103968254 lung 25 KC COPD 27.59 27.59 lung 25 asthmatic lung 23 -8.653389831 ODO3112 29321 2.95 2.95 asthmatic lung 25 asthmatic lung 29322 24.39 48.78 asthmatic lung 38thmatic lung 29322 24.39 48.78 asthmatic lung 38thmatic lung 29325 53.84 107.68 asthmatic lung 38thmatic lung 39 -1.294497972 10.00 endo cells 60 -1.465 endo cells 60 -1.294497972 10.00 <		25504	0	0.00	brain stage 5	0
lung 26 KC	927	25542	0	0.00	brain stage 5	0
lung 26 KC normal 49.79 49.79 lung 26 lung 27 KC normal 4.11 4.11 lung 27 lung 24 KC COPD 0.67 0.67 lung 24 -38.10074627 lung 28 KC COPD 19.24 19.24 lung 28 -1.326793139 lung 23 KC COPD 3.15 3.15 lung 23 -8.103968254 lung 25 KC COPD 27.59 27.59 lung 25 asthmatic lung ODO3112 29321 2.95 2.95 asthmatic lung oDO3433 asthmatic lung ODO3433 29322 24.39 48.78 asthmatic lung ODO3977 29325 53.84 107.68 asthmatic lung ODO4928 endo cells KC control 0 0.00 endo cells endo VEGF KC 14.65 14.65 endo VEGF 14.65 endo VEGF KC endo bFGF KC 0 0.00 endo bFGF 0 eart (T-14) nonobstructive DCM heart (T-14) nonobstructive DCM heart (T-3399) DCM 29426 93.27 186.54 heart T-1 42.36 heart (T-3399) DCM 29426 579.69 1159.38 adenoid consil GW98-280 22582 3780.08 7560.16 tonsil T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 monocyte KC D 0.00 Eclls Cells PC00665 28455 19.6 39.20 B cells Cells PC00665 Cells PC00665 28455 19.6 39.20 B cells Cells PC00665 Cells PC0	CT lung KC	normal	10.31	20.62	CT lung	
lung 24 KC COPD 0.67 0.67 lung 24 -38.10074627 lung 28 KC COPD 19.24 19.24 lung 28 -1.326793139 lung 23 KC COPD 3.15 3.15 lung 23 -8.103968254 lung 25 KC COPD 27.59 27.59 lung 25		normal	49.79	49.79		
lung 28 KC	lung 27 KC	normal	4.11	4.11	lung 27	
lung 23 KC COPD 3.15 3.15 lung 23 -8.103968254 lung 25 KC COPD 27.59 27.59 lung 25 -8.653389831 asthmatic lung ODO3112 29321 2.95 2.95 asthmatic lung lung -8.653389831 ODO3433 29323 9.86 19.72 asthmatic lung asthmatic lung lung -1.294497972 ODO3397 29322 24.39 48.78 asthmatic lung asthmatic lung lung 4.218196063 ODO4928 29325 53.84 107.68 asthmatic lung lung 4.218196063 ODO4928 29325 53.84 107.68 asthmatic lung lung 4.218196063 ODO4928 29325 53.84 107.68 asthmatic lung lung 4.218196063 ODO4928 2016 KC control 0 0.00 endo cells endo VEGF KC 14.65 14.65 endo VEGF 14.65 endo bFGF KC 0 0.00 heart T-1 42.36 heart (T-1) ischemic 29417 21.18 42.36 heart T-1	lung 24 KC	COPD	0.67	0.67	lung 24	-38.10074627
lung 25 KC COPD 27.59 27.59 lung 25 asthmatic lung ODO3112 29321 2.95 2.95 asthmatic lung -8.653389831 asthmatic lung ODO3433 29323 9.86 19.72 asthmatic lung -1.294497972 asthmatic lung ODO3397 29322 24.39 48.78 asthmatic lung 1.910880423 and ODO4928 29325 53.84 107.68 asthmatic lung 4.218196063 and ODO4928 control 0 0.00 endo cells 4.218196063 and VEGF KC control 0 0.00 endo VEGF 14.65 endo VEGF KC lat.65 14.65 endo VEGF 14.65 endo bFGF KC lat.65 leard VEGF 14.65 endo bFGF KC lat.65 leard VEGF 14.65 endo bFGF KC lat.65 leard T-1 42.36 heart (T-1) ischemic 29417 21.18 42.36 leart T-1 54.8 heart (T-14) non-obstructive DCM lat.65 lat.654 leart T-14 </td <td>lung 28 KC</td> <td>COPD</td> <td>19.24</td> <td>19.24</td> <td>lung 28</td> <td>-1.326793139</td>	lung 28 KC	COPD	19.24	19.24	lung 28	-1.326793139
asthmatic lung ODO3112 asthmatic lung ODO3433 asthmatic lung ODO3433 asthmatic lung ODO3497 asthmatic lung ODO397 asthmatic lung ODO4928 endo cells KC endo VEGF KC endo FGF KC heart Clontech heart (T-1) ischemic Dear Port Or	lung 23 KC	COPD	3.15	3.15	lung 23	-8.103968254
DDO3112 Submatic lung 29323 9.86 19.72 Submatic lung 1.294497972	lung 25 KC	COPD	27.59	27.59	lung 25	
asthmatic lung ODO3433 asthmatic lung ODO3397 asthmatic lung ODO4928 endo cells KC endo VEGF KC endo bFGF KC heart Clontech heart (T-1) ischemic 29417 beart (T-14) non-obstructive DCM heart (T-3399) DCM beart (T-3399) DCM consil GW98-280 29323 29322 24.39 48.78 asthmatic lung asthmatic lung asthmatic lung asthmatic lung asthmatic lung beart lone asthmatic lung asthmatic lung asthmatic lung asthmatic lung asthmatic lung beart lone asthmatic lung asthmat		29321	2.95	2.95		-8.653389831
asthmatic lung ODO3397 asthmatic lung ODO4928 endo cells KC control 0 0.00 endo cells endo VEGF KC		29323	9.86	19.72	asthmatic	-1.294497972
asthmatic lung ODO4928 endo cells KC control 0 0.00 endo cells endo VEGF KC 14.65 14.65 endo VEGF I4.65 endo bFGF KC 0 0.00 endo bFGF 0 endo bFGF KC 14.65 leart Clontech normal 0 0.00 heart leart (T-1) ischemic 29417 21.18 42.36 heart T-1 42.36 heart (T-14) non-obstructive DCM leart (T-3399) DCM 29426 93.27 186.54 heart T-3399 186.54 leart (T-3399) DCM 29426 lossed 3780.08 7560.16 lossil T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells		29322	24.39	48.78	asthmatic	1.910880423
endo VEGF KC endo bFGF KC o 0 0.00 endo bFGF 0 heart Clontech heart (T-1) ischemic heart (T-14) non- obstructive DCM heart (T-3399) DCM 29426 adenoid GW99-269 26162 27.4 27.4 27.4 29426 27.4 29426 27.4 34.80 heart T-14 54.8 heart T-3399 186.54 heart T-3399 186.54 adenoid GW98-280 22582 3780.08 7560.16 T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 PBMNC monocyte KC 0 0.00 B cells Comparison Com	ODO4928	29325	53.84	107.68		4.218196063
endo bFGF KC heart Clontech heart Clontech heart (T-1) ischemic heart (T-14) non- obstructive DCM heart (T-3399) DCM adenoid GW99-269 adenoid GW98-280 T cells PC00314 PBMNC KC DCM DOCUMENT CONTRACT CON		control	0	0.00	endo cells	
heart Clontech normal 0 0.00 heart heart (T-1) ischemic 29417 21.18 42.36 heart T-1 42.36 heart (T-14) non-obstructive DCM 29422 27.4 54.80 heart T-14 54.8 heart (T-3399) DCM 29426 93.27 186.54 heart T-3399 186.54 adenoid GW99-269 26162 579.69 1159.38 adenoid tonsil GW98-280 22582 3780.08 7560.16 tonsil T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 PBMNC monocyte KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells			14.65	14.65	endo VEGF	14.65
heart (T-1) ischemic 29417 21.18 42.36 heart T-1 42.36 heart (T-14) non-obstructive DCM 29422 27.4 54.80 heart T-14 54.8 heart (T-3399) DCM 29426 93.27 186.54 heart T-3399 186.54 adenoid GW99-269 26162 579.69 1159.38 adenoid tonsil GW98-280 22582 3780.08 7560.16 tonsil T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 PBMNC monocyte KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells .			0	0.00	endo bFGF	0
heart (T-14) non-obstructive DCM 29422 27.4 54.80 heart T-14 54.8 heart (T-3399) DCM 29426 93.27 186.54 heart T-3399 186.54 adenoid GW99-269 26162 579.69 1159.38 adenoid tonsil GW98-280 22582 3780.08 7560.16 tonsil T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 PBMNC monocyte KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells .		normal	0	0.00	heart	
obstructive DCM Beart (T-3399) DCM 29426 93.27 186.54 heart T-3399 186.54 adenoid GW99-269 26162 579.69 1159.38 adenoid tonsil GW98-280 22582 3780.08 7560.16 tonsil T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 PBMNC monocyte KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells		29417	21.18	42.36	heart T-1	42.36
adenoid GW99-269 26162 579.69 1159.38 adenoid tonsil GW98-280 22582 3780.08 7560.16 tonsil T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 PBMNC monocyte KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells		29422	27.4	54.80	heart T-14	54.8
tonsil GW98-280 22582 3780.08 7560.16 tonsil T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 PBMNC monocyte KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells .	heart (T-3399) DCM	29426	93.27	186.54	heart T-3399	186.54
T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 PBMNC monocyte KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells	adenoid GW99-269	26162	579.69	1159.38	adenoid	,
T cells PC00314 28453 5.86 11.72 T cells PBMNC KC 0 0.00 PBMNC monocyte KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells	tonsil GW98-280	22582	3780.08	7560.16	tonsil	
PBMNC KC 0 0.00 PBMNC monocyte KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells .	T cells PC00314	28453	5.86	11.72		
monocyte KC 0 0.00 monocyte B cells PC00665 28455 19.6 39.20 B cells	PBMNC KC		0	0.00		_
B cells PC00665 28455 19.6 39.20 B cells .	monocyte KC		0			
	B cells PC00665	28455	19.6			
dendritic cells 28441 580.67 1161.34 dendritic	dendritic cells 28441		580.67	1161.34		

			T	cells	
neutrophils	28440	19.76	19.76	neutrophils	
eosinophils	28446	15.12	30.24	eosinophils	
BM unstim KC		0	0.00	BM unstim	
BM stim KC	1	296.72	296.72	BM stim	296.72
osteo dif KC		0	0.00	osteo dif	
osteo undif KC		0	0.00	osteo undif	0
chondrocytes		15.31	38.28	chondrocyte s	
OA Synovium IP12/01	29462	39.57	39.57	OA Synovium	
OA Synovium NP10/01	29461	0	0.00	OA Synovium	
OA Synovium NP57/00	28464	70.08	140.16	OA Synovium	
RA Synovium NP03/01	28466	23.73	47.46	RA Synovium	
RA Synovium NP71/00	28467	24.13	48.26	RA Synovium	
RA Synovium NP45/00	28475	51.88	103.76	RA Synovium	
OA bone (biobank)	29217	0	0.00	OA bone (biobank)	
OA bone Sample 1	J. Emory	0	0.00	OA bone	
OA bone Sample 2	J. Emory	5.45	10.90	OA bone	
Cartilage (pool)	Normal	0	0.00	Cartilage (pool)	
Cartilage (pool)	OA	0	0.00	Cartilage (pool)	0
PBL unifected	28441	76.67	153.34	PBL unifected	
PBL HIV IIIB	28442	13.77	27.54	PBL HIV IIIB	-5.567901235
MRC5 uninfected (100%)	29158	0	0.00	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	0	0.00	MRC5 HSV strain F	0
W12 cells	29179	0	0.00	W12 cells	
Keratinocytes	29180	0	0.00	Keratinocyte s	

Gene Name sbg456548CytoRa

Disease tissues	Fold Change in Disease Population Relative to Normal
colon tumor	4.48
colon tumor	-1.42
colon tumor	-2.79
colon tumor	-4.80
lung tumor	7.36

lung tumor	-11.10
lung tumor	29.88
lung tumor	-8.91
breast tumor	2.12
breast tumor	2.48
breast tumor	-14.86
breast tumor	-2.15
brain stage 5 ALZ	0.00
brain stage 5 ALZ	14.64
brain stage 5 ALZ	0.00
brain stage 5 ALZ	0.00
lung 24	-38.10
lung 28	-1.33
lung 23	-8.10
asthmatic lung	-8.65
asthmatic lung	-1.29
asthmatic lung	1.91
asthmatic lung	4.22
endo VEGF	14.65
endo bFGF	0.00
heart T-1	42.36
heart T-14	54.80
heart T-3399	186.54
BM stim	296.72
osteo undif	0.00
Cartilage (pool)	0.00
PBL HIV IIIB	-5.57
MRC5 HSV strain F	0.00

Gene Name sbg442358PROa

Expression in multiple immune cell types as well as stimulated bone marrow and thymus strongly suggests function in immune system. Overexpressed in breast tumors (1/4).

5 Expression in RA and OA with corroborating expression in immune cells suggests role in these diseases. Overexpressed in heart disease suggesting role in CV diseases.Downregulated in HSV infected cells suggesting possible host cell factor.

Sample sbg442358PROa	Mean GOI copies (sample 1)	Mean GOI copies (sample 2)	Average GOI Copies	18S rRNA (ng)	50 ng/18S rRNA (ng)	copies of mRNA detecte d/50 ng total RNA
Subcutaneous Adipocytes Zenbio	1.86	1.71	1.79	3.06	16.34	29.17
Subcutaneous Adipose Zenbio	0.71	0.73	0.72	0.96	52.36	37.70

Adrenal Gland Clontech	3.45	1.89	2.67	0.61	81.97	218.85
Whole Brain Clontech	406.27	496.60	451.44	7.24	6.91	3117.65
Fetal Brain Clontech	3.82	1.68	2.75	0.48	103.95	285.86
Cerebellum Clontech	5.84	30.51	18.18	2.17	23.04	418.78
Cervix	2.50	0.48	1.49	2.42	20.66	30.79
Colon	18.45	18.77	18.61	2.71	18.45	343.36
Endometrium	4.93	0.30	2.62	0.73	68.21	178.38
Esophagus	8.97	6.99	7.98	1.37	36.50	291.24
Heart Clontech	5.26	16.53	10.90	1.32	37.88	412.69
Hypothalamus	2.10	2.41	2.26	0.32	155.28	350.16
Ileum	18.94	12.62	15.78	2.58	19.38	305.81
Jejunum	65.51	95.24	80.38	6.60	7.58	608.90
Kidney	2.60	3.81	3.21	2.12	23.58	75.59
Liver	7.19	7.05	7.12	1.50	33.33	237.33
Fetal Liver Clontech	1252.22	1363.06	1307.64	10.40	4.81	6286.73
Lung	27.57	6.97	17.27	2.57	19.46	335.99
Mammary Gland	79.83	72.99	76.41	13.00	3.85	293.88
Clontech		1000	-	-	01.07	100.74
Myometrium	2.46	10.62	6.54	2.34	21.37	139.74
Omentum	10.40	3.27	6.84	3.94	12.69	86.74
Ovary	17.71	31.15	24.43	4.34	11.52	281.45
Pancreas	3.33	1.74	2.54	0.81	61.80	156.67
Head of Pancreas	3.82	6.17	5.00	1.57	31.85	159.08
Parotid Gland	22.77	22.54	22.66	5.48	9.12	206.71
Placenta Clontech	14.71	53.83	34.27	5.26	9.51	325.76
Prostate	16.71	19.39	18.05	3.00	16.67	300.83
Rectum	6.71	3.49	5.10	1.23	40.65	207.32
Salivary Gland Clontech	55.38	9.30	32.34	7.31	6.84	221.20
Skeletal Muscle Clontech	3.79	4.16	3.98	1.26	39.68	157.74
Skin	4.51	14.47	9.49	1.21	41.32	392.15
Small Intestine Clontech	8.12	7.87	8.00	0.98	51.07	408.32
Spleen	14.88	17.12	16.00	4.92	10.16	162.60
Stomach	21.85	11.68	16.77	2.73	18.32	307.05
Testis Clontech	22.77	11.54	17.16	0.57	87.87	1507.47
Thymus Clontech	1990.82	1374.71	1682.77	9.89	5.06	8507.41
Thyroid	16.85	2.86	9.86	2.77	18.05	177.89
Trachea Clontech	29.69	82.85	56.27	9.71	5.15	289.75
Urinary Bladder	2.32	13.42	7.87	5.47	9.14	71.94
Uterus	8.86	11.18	10.02	5.34	9.36	93.82

Sample sbg442358PROa	Reg number (GSK identifier)	Mean GOI copies	copies of mRNA detected/50 ng total RNA	Sample	Fold Change in Disease Population
colon normal GW98-167	21941	1232.32	2464.64	colon normal	

colon tumor GW98-166	21940	2940.17	5880.34	colon tumor	2.385881914
colon normal GW98-178	22080	2940.17	442.52	colon tumor	2.383881914
colon tumor GW98-177	22060	709.52	1419.04	colon tumor	3.20672512
colon normal GW98-561	23514	985.52	1971.04	colon normal	3.20072312
colon tumor GW98-560	23514	829.67	1659.34		1 10704577
colon normal GW98-894	24691	2738.17	5476.34	colon tumor	-1.18784577
colon tumor GW98-893	24690		6044.12	colon normal	1 102670724
		3022.06		colon tumor	1.103678734
lung normal GW98-3 lung tumor GW98-2	20742	536.82	1073.64	lung normal	1100000015
lung normal GW97-179	20741	594.2	1188.40 8765.22	lung tumor	1.106888715
	20677	4382.61		lung normal	10.00544741
lung tumor GW97-178	20676	359.07	718.14	lung tumor	-12.20544741
lung normal GW98-165	21922	622.06	1244.12	lung normal	0.000500400
lung tumor GW98-164	21921	1299.85	2599.70	lung tumor	2.089589429
lung normal GW98-282	22584	1782.09	3564.18	lung normal	2 505 5 500
lung tumor GW98-281	22583	470.51	941.02	lung tumor	-3.787570934
breast normal GW00-392	28750	429	429.00	breast normal	
breast tumor GW00-391	28746	417.99	835.98	breast tumor	1.948671329
breast normal GW00-413	28798	16.03	16.03	breast normal	
breast tumor GW00-412	28797	1048.11	2096.22	breast tumor	130.768559
breast normal GW00- 235:238	27592-95	2.17	2.17	breast normal	
breast tumor GW00- 231:234	27588-91	69.91	69.91	breast tumor	32.21658986
breast normal GW98-621	23656	1037.08	2074.16	breast normal	
breast tumor GW98-620	23655	1010.59	2021.18	breast tumor	-1.026212411
brain normal BB99-542	25507	299.28	598.56	brain normal	
brain normal BB99-406	25509	250.85	501.70	brain normal	
brain normal BB99-904	25546	97.7	195.40	brain normal	
brain stage 5 ALZ BB99- 874	25502	125	250.00	brain stage 5 ALZ	-1.727546667
brain stage 5 ALZ BB99- 887	25503	850.01	1700.02	brain stage 5 ALZ	3.936264143
brain stage 5 ALZ BB99- 862	25504	347.91	695.82	brain stage 5 ALZ	1.611117114
brain stage 5 ALZ BB99- 927	25542	147.11	294.22	brain stage 5 ALZ	-1.467903836
CT lung KC	normal	130.37	260.74	CT lung	
lung 26 KC	normal	159.19	159.19	lung 26	
lung 27 KC	normal	0.49	0.49	lung 27	
lung 24 KC	COPD	2.37	2.37	lung 24	-47.89873418
lung 28 KC	COPD	45.72	45.72	lung 28	-2.482939633
lung 23 KC	COPD	20.36	20.36	lung 23	-5.575638507
lung 25 KC	COPD	33.66	33.66	lung 25	
asthmatic lung ODO3112	29321	65.46	65.46	asthmatic lung	-1.734188818
asthmatic lung ODO3433	29323	532.42	1064.84	asthmatic lung	9.380197322
asthmatic lung ODO3397	29322	2865.67	5731.34	asthmatic lung	50.48749119
asthmatic lung ODO4928	29325	494.27	988.54	asthmatic lung	8.708069063

endo cells KC	control	62.77	62.77	endo cells	
endo VEGF KC		22.41	22.41	endo VEGF	-2.800981705
endo bFGF KC		33.16	33.16	endo bFGF	-1.892943305
heart Clontech	normal	74.18	148.36	heart	
heart (T-1) ischemic	29417	270.07	540.14	heart T-1	3.640738744
heart (T-14) non-	29422	680.12	1360.24	heart T-14	9.168509032
obstructive DCM					5 501010140
heart (T-3399) DCM	29426	414	828.00	heart T-3399	5.581019143
adenoid GW99-269	26162	781.46	1562.92	adenoid	
tonsil GW98-280	22582	2279.13	4558.26	tonsil	
T cells PC00314	28453	1129.27	2258.54	T cells	
PBMNC KC		27.98	27.98	PBMNC	
monocyte KC		3.55	7.10	monocyte	
B cells PC00665	28455	872.58	1745.16	B cells	
dendritic cells 28441		1055.22	2110.44	dendritic cells	
neutrophils	28440	740.39	740.39	neutrophils	
eosinophils	28446	1081.83	2163.66	eosinophils	
BM unstim KC		50.91	50.91	BM unstim	
BM stim KC		391.11	391.11	BM stim	7.682380672
osteo dif KC		161.31	161.31	osteo dif	
osteo undif KC	 	40.01	40.01	osteo undif	-4.031742064
chondrocytes	 	2250.59	5626.48	chondrocytes	
OA Synovium IP12/01	29462	229.19	229.19	OA	
OA Syllovidin ii 1201	_			Synovium	
OA Synovium NP10/01	29461	152.3	304.60	OA Synovium	
OA Synovium NP57/00	28464	413.06	826.12	OA Synovium	
RA Synovium NP03/01	28466	611.02	1222.04	RA Synovium	
RA Synovium NP71/00	28467	385.94	771.88	RA Synovium	
RA Synovium NP45/00	28475	1701.68	3403.36	RA Synovium	L
OA bone (biobank)	29217	225.69	225.69	OA bone (biobank)	
OA bone Sample 1	J. Emory	306.63	613.26	OA bone	
OA bone Sample 2	J. Emory	1811.32	3622.64	OA bone	
Cartilage (pool)	Normal	384.44	768.88	Cartilage (pool)	
Cartilage (pool)	OA	174.53	349.06	Cartilage (pool)	-2.202715865
PBL unifected	28441	9016.82	18033.64	PBL unifected	
PBL HIV IIIB	28442	4331.76	8663.52	PBL HIV IIIB	-2.081560382
MRC5 uninfected (100%)	29158	2232.48	4464.96	MRC5 uninfected (100%)	
MRC5 HSV strain F	29178	419.67	839.34	MRC5 HSV strain F	-5.319608264
W12 cells	29179	3336.07	6672.14	W12 cells	
Keratinocytes	29180	5568.91	11137.82	Keratinocytes	: [

Gene Name sbg442358PROa

Disease tissues	Fold Change in Disease
	Population Relative to
	Normal
colon tumor	2.39
colon tumor	3.21
colon tumor	-1.19
colon tumor	1.10
lung tumor	1.11
lung tumor	-12.21
lung tumor	2.09
lung tumor	-3.79
breast tumor	1.95
breast tumor	130.77
breast tumor	32.22
breast tumor	-1.03
brain stage 5 ALZ	-1.73
brain stage 5 ALZ	3.94
brain stage 5 ALZ	1.61
brain stage 5 ALZ	-1.47
lung 24	-47.90
lung 28	-2.48
lung 23	-5.58
asthmatic lung	-1.73
asthmatic lung	9.38
asthmatic lung	50.49
asthmatic lung	8.71
endo VEGF	-2.80
endo bFGF	-1.89
heart T-1	3.64
heart T-14	9.17
heart T-3399	5.58
BM stim	7.68
osteo undif	-4.03
Cartilage (pool)	-2.20
PBL HIV IIIB	-2.08
MRC5 HSV strain F	-5.32

Table V. Additional diseases based on mRNA expression in specific tissues

Tissue Expression	Additional Diseases
Brain	Neurological and psychiatric diseases, including Alzheimers, parasupranuclear palsey, Huntington's disease, myotonic dystrophy, anorexia, depression, schizophrenia, headache, amnesias, anxiety disorders, sleep disorders, multiple sclerosis
Heart	Cardiovascular diseases, including congestive heart failure, dilated cardiomyopathy, cardiac arrhythmias, Hodgson's Disease, myocardial infarction, cardiac arrhythmias
Lung	Respiratory diseases, including asthma, Chronic Obstructive Pulmonary Disease, cystic fibrosis, acute bronchitis, adult respiratory distress syndrome
Liver	Dyslipidemia, hypercholesterolemia, hypertriglyceridemia, cirrhosis, hepatic encephalopathy, fatty hepatocirrhosis, viral and nonviral hepatitis, Type II Diabetes Mellitis, impaired glucose tolerance
Kidney	Renal diseases, including acute and chronic renal failure, acute tubular necrosis, cystinuria, Fanconi's Syndrome, glomerulonephritis, renal cell carcinoma, renovascular hypertension
Skeletal	Eulenburg's Disease, hypoglycemia, obesity, tendinitis, periodic paralyses,
muscle	malignant hyperthermia, paramyotonia congenita, myotonia congenita
Intestine	Gastrointestinal diseases, including Myotonia congenita, Îleus, Intestinal Obstruction, Tropical Sprue, Pseudomembranous Enterocolitis
Spleen/lymph	Lymphangiectasia, hypersplenism, angiomas, ankylosing spondylitis, Hodgkin's Disease, macroglobulinemia, malignant lymphomas, rheumatoid arthritis
Placenta	Choriocarcinoma, hydatidiform mole, placenta previa
Testis	Testicular cancer, male reproductive diseases, including low testosterone and male infertility
Pancreas	Diabetic ketoacidosis, Type 1 & 2 diabetes, obesity, impaired glucose tolerance

What is claimed is:

- 1. An isolated polypeptide selected from the group consisting of:
- 5 (a) an isolated polypeptide encoded by a polynucleotide comprising a sequence set forth in Table I;
 - (b) an isolated polypeptide comprising a polypeptide sequence set forth in Table I; and
 - (c) a polypeptide sequence of a gene set forth in Table I.
- 10 2. An isolated polynucleotide selected from the group consisting of:
 - (a) an isolated polynucleotide comprising a polynucleotide sequence set forth in Table I;
 - (b) an isolated polynucleotide of a gene set forth in Table I;
 - (c) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide set forth in Table I;
- 15 (d) an isolated polynucleotide encoding a polypeptide set forth in Table I;
 - (e) a polynucleotide which is an RNA equivalent of the polynucleotide of (a) to (d); or a polynucleotide sequence complementary to said isolated polynucleotide.
- 3. An expression vector comprising a polynucleotide capable of producing a polypeptide of
 claim 1 when said expression vector is present in a compatible host cell.
 - 4. A process for producing a recombinant host cell which comprises the step of introducing an expression vector comprising a polynucleotide capable of producing a polypeptide of claim 1 into a cell such that the host cell, under appropriate culture conditions, produces said polypeptide.
 - 5. A recombinant host cell produced by the process of claim 4.
 - 6. A membrane of a recombinant host cell of claim 5 expressing said polypeptide.
 - 7. A process for producing a polypeptide which comprises culturing a host cell of claim 5 under conditions sufficient for the production of said polypeptide and recovering said polypeptide from the culture.

25

30

SEQUENCE LISTING

```
<110> SMITHKLINE BEECHAM CORPORATION
     SMITHKLINE BEECHAM p.1.c.
      GLAXO GROUP LTD.
<120> NOVEL COMPOUNDS
<130> GP50029
<140> TO BE ASSIGNED
<141> 2001-06-22
<150> 60/213,161
<151> 2000-06-22
<150> 60/213,156
<151> 2000-06-22
<160> 44
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 1383
<212> DNA
<213> Homo sapiens
<400> 1
atgcttggaa tttggattgt tgcattcttg ttctttggca catcaagagg aaaagaagtt 60
tgctatgaaa ggttagggtg tttcaaagat ggtttaccat ggaccaggac tttctcaaca 120
gagttggtag gtttaccctg gtctccagag aagataaaca ctcgtttcct gctctacact 180
atacacaatc ccaatgccta tcaggagatc agtgcggtta attcttcaac tatccaagcc 240
tcatattttg gaacagacaa gatcacccgt atcaacatag ctggatggaa aacagatggc 300
aaatggcaga gagacatgtg caatgtgttg ctacagctgg aagatataaa ttgcattaat 360
ttagattgga tcaacggttc acgggaatac atccatgctg taaacaatct ccgtgttgtt 420
ggtgctgagg tggcttattt tattgatgtt ctcatgaaaa aatttgaata ttccccttct 480
 aaagtgcact tgattggcca cagcttggga gcacacctgg ctggggaagc tgggtcaagg 540
 ataccaggcc ttggaagaat aactgggttg gacccagctg ggccattttt ccacaacact 600
 ccaaaggaag tcaggctaga cccctcggat gccaactttg ttgacgttat tcatacaaat 660
 geagetegea teetetttga gettggtgtt ggaaccattg atgettgtgg teatettgae 720
 ttttacccaa atggagggaa gcacatgcca ggatgtgaag acttaattac acctttactg 780
 aaatttaact tcaatgctta caaaaaagaa atggcttcct tctttgactg taaccatgcc 840
 cgaagttatc aattttatgc tgaaagcatt cttaatcctg atgcatttat tgcttatcct 900
 tgtagatcct acacatcttt taaagcaggt acatgtgtag gatgtgcaga titgttacat 960
 aggatagata agataggaag tcatacttcc catgtgtttt taaccctttc tctccctttc 1020
 cttcttgttt ccttatatct aggttggagg cacaaattgt ctgttaaact cagtggaagc 1080
 gaagtcactc aaggaactgt ctttcttcgt gtaggcgggg cagttaggaa aactggggag 1140
 tttgccattg tcagtggaaa acttgagcca ggcatgactt acacaaaatt aatcgatgca 1200
 gatgttaacg ttggaaacat tacaagtgtt cagttcatct ggaaaaaaca tttgtttgaa 1260
 gattctcaga ataagttggg agcagaaatg gtgataaata catctgggaa atatggatat 1320
 aaatctacct tetgtageca agacattatg ggacetaata ttetecagaa eetgaaacca 1380
 tgc
 <210> 2
 <211> 927
 <212> DNA
 <213> Homo sapiens
```

```
<400> 2
 atgccgttcc tgcagctgaa agggagagca acacctccat cctggagaca cgatagccgc 60
 tcacttgttc acctgctgga cggcaaggag ggcgtgtggg acaccacggg ctatgcctta 120
 gggagcagag aatcattgaa tcctgacatg gggattggtg acccacatgg acacagcact 180
 gtccacacca gggaagcagg cactgcctgt ccattacagc ttctaggtgc tcgggaggcc 240
 agtctgctgg cctgtgggat ctgccaggcc tctggccaaa tcttcatcac ccaaaccctg 300
 gggatcaagg gatatcggac tgtcgtggcc ctggataagg tccctgagga tgttcaggaa 360
 tacagctggt actggggtgc aaacgacagc gcaggaaaca tgattatcag ccacaaaccg 420
 cccagtgccc agcagcctgg gcccatgtac actggcaggg agagagtgaa cagagaaggc 480
 agcctgttga tcaggccgac tgcattaaat gacacgggaa actacactgt tcgggtggtt 540
 gcaggcaatg agacccaaag agcaaccggc tggctggagg ttctagatgg gcccgactat 600
 gtgctgctga ggagcaatcc tgatgatttc aacggcattg tgacagctga gatcggctcc 660
 caagtggaaa tggagtgtat ctgctattcc ttcctggatc tcaagtacca ctggatccac 720
 aatggctccc tcctgaactt ctcagatgca aagatgaacc tctcgagtct tgcctgggag 780
 cagatgggcc gttaccgatg cactgtggag aaccccgtga cacagctgat catgtacatg 840
 gacgtcagga tccaggcccc ccatgagtgc agcagctccc ctccaggctc atgctttgca 900
 catctccctg cctccatgcc ctgctag
                                                                   927
 <210> 3
 <211> 1374
 <212> DNA
 <213> Homo sapiens
<400> 3
atggacettt ccagacecag atggagectg tggaggaggg tetteeteat ggecagtetg 60
ctggcctgtg ggatctgcca ggcctctggc caaatcttca tcacccaaac cctggggatc 120
aagggatatc ggactgtcgt ggccctggat aaggtccctg aggatgttca ggaatacagc 180
tggtactggg gtgcaaacga cagcgcagga aacatgatta tcagccacaa accgcccagt 240
gcccagcagc ctgggcccat gtacactggc agggagagag tgaacagaga aggcagcctg 300
ttgatcaggc cgactgcatt aaatgacacg ggaaactaca ctgttcgggt ggttgcaggc 360
aatgagaccc aaagagcaac cggctggctg gaggttctag agttgggaag caatctgggc 420
atctccgtca atgccagctc cctggtggag aacatggatt ctgtggctgc tgactgcctc 480
acaaatgtca ccaacatcac gtggtatgtg aatgatgtgc ctacctctag tagtgaccgg 540
atgacaattt ccccagacgg caagaccctc gtcatcctca gggtcagccg ctatgacaga 600
acaattcagt gcatgataga gagtttccca gagatctttc agagaagtga acgcatctct 660
ctgactgtgg cctatgggcc cgactatgtg ctgctgagga gcaatcctga tgatttcaac 720
ggcattgtga cagctgagat cggctcccaa gtggaaatgg agtgtatctg ctattccttc 780
ctggatctca agtaccactg gatccacaat ggctccctcc tgaacttctc agatgcaaag 840
atgaacctct cgagtcttgc ctgggagcag atgggccgtt accgatgcac tgtggagaac 900
cccgtgacac agctgatcat gtacatggac gtcaggatcc aggcccccca tgagtgtcct 960
cttccttcag ggatcttacc tgttgtccac agagatttct ccatctcagg atccatggtg 1020
atgttcctca tcatgctgac agtgctgggt ggcgtttaca tctgtggagt cctgatccat 1080
getetgatea accaetaete aatcaggtge eeteattget etgggacaag ggtgggatgt 1140
tggctggggg ctgggactca ggagccagcc ctccctccag aggggaagca gagccagaag 1200
gggagggata agccaggaac taggttgtca gggatcatct ggggcagaca gatcagccc 1260
caggacctga agctgatggg agcaagagag ggtttagagt cggccatggt tctaaatagc 1320
tgtggggttt cttctagcaa cttcccttct ctttgtgttt ataagggata ttaa
<210> 4
<211> 2115
<212> DNA
<213> Homo sapiens
<400> 4
atgctccatg atgggttgac tgcacctgat gggtgtggaa tctacagcct gaccgggcgg 60
gaagteetga egeeetteee aggattggge aetgeggeag eeeeggeaca gggeggggee 120
cacctgaagc agtgtgacct gctgaagctg tcccggcggc agaagcagct ctgccggagg 180
gageceggee tggetgagae eetgagggat getgegeace teggeetget tgagtgeeag 240
                                  2/53
```

```
tttcagttcc ggcatgagcg ctggaactgt agcctggagg gcaggatggg cctgctcaag 300
agaggettea aagagacage ttteetgtae geggtgteet etgeegeeet cacceacace 360
ctggcccggg cctgcagcgc tgggcgcatg gagcgctgca cctgtgatga ctctccgggg 420
ctggagagcc ggcaggcctg gcagtggggc gtgtgcggtg acaacctcaa gtacagcacc 480
aagtttctga gcaacttcct ggggtccaag agaggaaaca aggacctgcg ggcacgggca 540
gacgcccaca atacccacgt gggcatcaag gctgtgaaga gtggcctcag gaccacgtgt 600
aagtgccatg gcgtatcagg ctcctgtgcc gtgcgcacct gctggaagca gctctccccg 660
ttccgtgaga cgggccaggt gctgaaactg cgctatgact cggctgtcaa ggtgtccagt 720
gccaccaatg aggccttggg ccgcctagag ctgtgggccc ctgccaggca gggcagcctc 780
accaaaggcc tggccccaag gtctggggac ctggtgtaca tggaggactc acccagcttc 840
tgccggccca gcaagtactc acctggcaca gcaggtaggg tgtgctcccg ggaggccagc 900
tgcagcagcc tgtgctgcgg gcggggctat gacacccaga gccgcctggt ggccttctcc 960
tgccactgcc aggtgcagtg gtgctgctac gtggagtgcc agcaatgtgt gcaggaggag 1020
cttgtgtaca cctgcaagca ctagatgggc cctgtggggt tcccgaggca gtgccaggga 1080
geettetttg agageageec tgggeagaec agggeeegee tgaeegggeg ggaagteetg 1140
acgcccttcc caggattggg cactgcggca gccccggcac agggcggggc ccacctgaag 1200
cagtgtgacc tgctgaagct gtcccggcgg cagaagcagc tctgccggag ggagcccggc 1260
ctggctgaga ccctgaggga tgctgcgcac ctcggcctgc ttgagtgcca gtttcagttc 1320
cggcatgagc gctggaactg tagcctggag ggcaggatgg gcctgctcaa gagaggcttc 1380
aaagagacag ctttcctgta cgcggtgtcc tctgccgccc tcacccacac cctggcccgg 1440
geetgeageg etgggegeat ggagegetge acetgtgatg acteteeggg getggagage 1500
cggcaggcct ggcagtgggg cgtgtgcggt gacaacctca agtacagcac caagtttctg 1560
agcaacttcc tggggtccaa gagaggaaac aaggacctgc gggcacgggc agacgcccac 1620
aatacccacg tgggcatcaa ggctgtgaag agtggcctca ggaccacgtg taagtgccat 1680
ggcgtatcag gctcctgtgc cgtgcgcacc tgctggaagc agctctcccc gttccgtgag 1740
acgggccagg tgctgaaact gcgctatgac tcggctgtca aggtgtccag tgccaccaat 1800
gaggccttgg gccgcctaga gctgtgggcc cctgccaggc agggcagcct caccaaaggc 1860
ctggccccaa ggtctgggga cctggtgtac atggaggact cacccagctt ctgccggccc 1920
agcaagtact cacctggcac agcaggtagg gtgtgctccc gggaggccag ctgcagcagc 1980
ctgtgctgcg ggcggggcta tgacacccag agccgcctgg tggccttctc ctgccactgc 2040
caggtgcagt ggtgctgcta cgtggagtgc cagcaatgtg tgcaggagga gcttgtgtac 2100
acctgcaagc actag
<210> 5
<211> 1086
<212> DNA
<213> Homo sapiens
<400> 5
atgaagecee tgaggaggee cettecette atttgeecet caccaccate eccaaggete 60
acctgtetee etectetege tetetetage etgaceggge gggaagteet gacgeeette 120
ccaggattgg gcactgcggc agccccggca cagggcgggg cccacctgaa gcagtgtgac 180
ctgctgaagc tgtcccggcg gcagaagcag ctctgccgga gggagcccgg cctggctgag 240
accetgaggg atgetgegea ceteggeetg ettgagtgee agttteagtt eeggeatgag 300
cgctggaact gtagcctgga gggcaggatg ggcctgctca agagaggctt caaagagaca 360
gettteetgt acgeggtgte etetgeegee eteacecaea eeetggeeeg ggeetgeage 420
gctgggcgca tggagcgctg cacctgtgat gactctccgg ggctggagag ccggcaggcc 480
tggcagtggg gcgtgtgcgg tgacaacctc aagtacagca ccaagtttct gagcaacttc 540
ctggggtcca agagaggaaa caaggacctg cgggcacggg cagacgccca caatacccac 600
gtgggcatca aggctgtgaa gagtggcctc aggaccacgt gtaagtgcca tggcgtatca 660
ggctcctgtg ccgtgcgcac ctgctggaag cagctctccc cgttccgtga gacgggccag 720
gtgctgaaac tgcgctatga ctcggctgtc aaggtgtcca gtgccaccaa tgaggccttg 780
ggccgcctag agctgtgggc ccctgccagg cagggcagcc tcaccaaagg cctggcccca 840
aggtctgggg acctggtgta catggaggac tcacccagct tctgccggcc cagcaagtac 900
tcacctggca cagcaggtag ggtgtgctcc cgggaggcca gctgcagcag cctgtgctgc 960
gggcggggct atgacaccca gagccgcctg gtggccttct cctgccactg ccaggtgcag 1020
tggtgctgct acgtggagtg ccagcaatgt gtgcaggagg agcttgtgta cacctgcaag 1080
                                                                   1086
cactag
```

```
<210> 6
<211> 1098
<212> DNA
<213> Homo sapiens
<400> 6
atgtggctgc ttttaacaac aacttgtttg atctgtggaa ctttaaatgc tggtggattc 60
cttgatttgg aaaatgaagt gaatcctgag gtgtggatga atactagtga aatcatcatc 120
tacaatggct accccagtga agagtatgaa gtcaccactg aagatgggta tatactcctt 180
gtcaacagaa ttccttatgg gcgaacacat gctaggagca cagcagatgc aggttatgat 240
gtatggatgg gaaacagtcg gggaaacact tggtcaagaa gacacaaaac actctcagag 300
acagatgaga aattetggge etttagtttt gatgaaatgg ecaaatatga teteecagga 360
gtaatagact tcattgtaaa taaaactggt caggagaaat tgtatttcat tggacattca 420
cttggcacta caatagggtt tgtagccttt tccaccatgc ctgaactggc acaaagaatc 480
aaaatgaatt ttgccttggg tcctacgatc tcattcaaat atcccacggg catttttacc 540
aggttttttc tacttccaaa ttccataatc aaggctgttt ttggtaccaa aggtttcttt 600
ttagaagata agaaaacgaa gatagcttct accaaaatct gcaacaataa gatactctgg 660
ttgatatgta gcgaatttat gtccttatgg gctggatcca acaagaaaaa tatgaatcag 720
agtegaatgg atgtgtatat gteacatget eccaetggtt cateagtaca caacattetg 780
catataaaac agctttacca ctctgatgaa ttcagagctt atgactgggg aaatgacgct 840
gataatatga aacattacaa tcagagtcat ccccctatat atgacctgac tgccatgaaa 900
gtgcctactg ctatttgggc tggtggacat gatgtcctcg taacacccca ggatgtggcc 960
aggatactee etcaaateaa gagtetteat taetttaage tattgeeaga ttggaaceae 1020
tttgattttg tctggggcct cgatgcccct caacggatgt acagtgaaat catagcttta 1080
atgaaggcat attcctaa
                                                                  1098
<210> 7
<211> 1194
<212> DNA
<213> Homo sapiens
<400> 7
atgtggcagc ttttagcagc agcatgctgg atgcttcttc ttggatctat gtatggttat 60
gacaagaaag gaaacaatgc aaaccctgaa gctaatatga atattagcca gattatttct 120
tactggggtt atccttatga agagtatgat gttacaacaa aagatggtta tatccttgga 180
atttatagga ttccacatgg aagaggatgc ccagggagga cagctccaaa gcctgctgtg 240
tatttgcagc atggcttaat tgcatctgcc agtaactgga tttgcaacct gcccaacaac 300
agtttggctt tccttctggc agatagtggt tatgacgtgt ggttggggaa cagccgagga 360
aacacttggt ccagaaaaca ccttaaattg tcaccgaaat caccggaata ctgggccttc 420
agtttggatg agatggctaa atatgacctt ccagccacaa tcaattttat catagagaaa 480
actggacaga agcgactcta ctacgtgggc cactcacaag gcaccaccat agcttttata 540
gcattttcta caaacccaga actggctaaa aagattaaga tattttttgc actggctcca 600
gttgtcacag ttaaatacac ccaaagtcct atgaaaaaac taacaaccct ttccaggcga 660
gtagttaagg tgttgtttgg tgacaaaatg ttccaccctc atacattgtt tgaccaattc 720
attgccacca aagtgtgcaa tcgaaagcta ttccgtcgta tttgcagcaa cttcctattt 780
actctgagtg gatttgatcc gcaaaactta aatatgagtc gcttggatgt ttatttgtca 840
cacaatcetg cgggaacate tgttcagaat atgctgcact gggctcaget ttaccactct 900
gatgaattca gagcttatga ctggggaaat gacgctgata atatgaaaca ttacaatcag 960
agtcatcccc ctatatatga cctgactgcc atgaaagtgc ctactgctat ttgggctggt 1020
ggacatgatg tectegtaac acceeaggat gtggceagga tacteeetca aateaagagt 1080
cttcattact ttaagctatt gccagattgg aaccactttg attttgtctg gggcctcgat 1140
gcccctcaac ggatgtacag tgaaatcata gctttaatga aggcatattc ctaa
<210> 8
<211> 11118
<212> DNA
<213> Homo sapiens
<400> 8
```

					~~~~~~~	60
atggcgaagc	ggctctgcgc	ggggagcgca	ctgtgtgttc	geggeeeeeg	gggccccgcg	120
ccgctgctgc	tggtcgggct	ggcgctgctg	ggcgcggcgc	gggcgcggga	ggaggcgggc	180
ggcggcttca	gcctgcaccc	gccctacttc	aacctggccg	agggegeeeg	categeegee	240
tccgcgacct	gcggagagga	ggccccggcg	cgcggctccc	egegeeecae	catacagaga	300
tactgcaagc	tggtaggggg	ccccgtggcc	ggcggcgacc	ccaaccagac	gaggaatgc	360
cagtactgtg	acatetgeac	ggctgccaac	agcaacaagg	cacaccccgc	gagcaacgcc	420
atcgatggca	cggagcgctg	gtggcagagt	ccaccgctgt	tagastagat	cctcatcaac	480
gaggtcaacg	tcaccctgga	cctgggccag	gtcttccacg	ratacataca	etteggeege	540
tttgccaact	cacccggcc	ggacctctgg	gtgctggagc	ggtccatgga	acaattcaaa	600
acctaccagc	cctggcagtt	ctttgcctcc	tccaagaggg	teteesess	geggeeeggg	660
ccacagacgc	tggagcgcat	cacacgggac	gacgcggcca	testanaga	reatecaaaa	720
cgcatcgtgc	ccctggagaa	cggagagatc	gtggtgtccc	rggrgaacgg	acycccgggc	720
gccatgaatt	tetectacte	geegetgeta	cgtgagttca	teaaggeeac	actacagasc	840
ctgcgcttcc	tgcgtaccaa	cacgctgctg	ggccatctca	tagggaagge	aggeggtat	900
cccacggtca	cccgccggta	ttattacage	atcaaggata	ceageacegg	atterageta	960
gtctgccacg	gccacgcgga	tgcctgcgat	gccaaagacc	ecaeggacee	gereaggerg	1020
cagtgcacct	gccagcacaa	cacctgcggg	ggcacctgcg	accyclycly	ceeeggette	1020
aatcagcagc	cgtggaagcc	tgcgactgcc	aacagtgcca	acgagigeea	gccctgcaac	11/10
tgctacggcc	atgccaccga	ctgttactac	gaccctgagg	tggaccggcg	cegegeeage	1200
cagagcctgg	atggcaccta	tcagggtggg	ggtgtctgta	tegactgeca	geaceacace	1260
accggcgtca	actgtgagcg	ctgcctgccc	ggcttctacc	geteteecaa	taggagetag	1320
gactcgcccc	acgtctgccg	ccgctgcaac	tgcgagtccg	acttcacgga	cygcaccigc	1320
gaggacctga	cgggtcgatg	ctactgccgg	cccaacttct	ctggggageg	gracyca	1///
tgtgccgagg	gcttcacggg	cttcccaage	tgctacccga	egecetegte	agaggaagga	1500
accagggagc	aggtgctgcc	agccggccag	attgtgaatt	gegaeegeag	cgcggcaggg	1560
acccagggca	acgcctgccg	gaaggaccca	agggtgggac	getgtetgtg	atagaagaa	1620
ttccaaggca	cccattgtga	gctctgcgcg	ccagggttct	acggccccgg	agggagtag	1680
tgccagtgtt	ccagccctgg	agtggccgat	gaccgctgtg	accetgacae	aggetagege	1740
aggtgccgag	tgggcttcga	gggggccaca	tgtgatcgct	gtgcccccgg	gractagast	1000
ttccctctct	gccagttgtg	tggctgcagc	cctgcaggaa	etesttetes	gggctgcgac	1860
gaggccggcc	gctgcctatg	ccagectgag	tttgctggac	gazagatag	aggageesta	1920
cctggctacc	atggtttece	caactgccaa	gcatgcacct	gegactereg	aggageeeeg	1980
gaccagctct	grggggcggg	aggiligige	cgctgccgcc	atatoccota	ccactactct	2040
tgccaggaat	gcagccccgg	cutcacgge	ttccccagct	gratacea	ctaccaaccc	2100
gctgaaggct	ccctgcacgc	tananantat	ccccggagtg	cctacaactt	ccctactac	2160
cgtgtgacgg	ggctgcggtg	tgacacatgt	gtgcccggtg	atectacect	tectgaggea	2220
gaagetgget	cttgccaccc	egeeggeetg	gccccagtgg	actotacco	ctgcaaacct	2280
caggttccct	gtatgtgeeg	ggeteaegtg	gaggggccga	cccactacea	ctgcgacctc	2340
gggttctggg	gactgagecc	tagtaacccc	gagggctgta	ccaaccaata	cttctgcaag	2400
aggggcacac	tgggtggagt	cyclyagige	cagccgggca	acttettaa	actonateag	2460
ccccacgtgt	geggeeagge	engegegeee	tgcaaggatg	acastacact	acaccacac	2520
gctgactatt	ttggetgeeg	cagetgeegg	tgtgacattg	cccaraaccc	cacctgcage	2580
tgtgaaccga	ggacgggcgt	ctgeeggtge	cgccccaaca	tacacctaga	actagaaga	2640
gageetgega	gggaccacta	cetecegyae	ctgcaccacc	acccctcga	attcaagaac	2700
gctgccacac	etgagggtea	agaaatagaa	tttggcttca	ccannatont	aaccaaacta	2760
ttcagctgga	ggggctacgc	geagaeggea	cctgtccagc	acatcaacca	addadcesta	2820
aacctgacct	ecectgaeet	tataggara	gtcttccgat	canceaceta	caccaactac	2880
agtgtgagcg	ggcgggtctc	tgtgtgagag	gagggcaggt	agestacett	catcaccata	2940
acagcacaga	greageeegt	ggccttccca	cccagcacgg	agecegeeee	cctacatata	3000
ccccagaggg	getteggaga	gecettigtg	ctgaaccctg	ctaccccgggc	ctacaaaaca	3060
gaggccgaag	gggtgeteet	ggactacgtg	gttctgctgc	atacatata	ccaccagtet	3120
gcgctcctgc	agetgegggt	gactgaggee	tgcacatacc	gettecete	aaccaccaaa	3180
ggcgacaact	gcctcctcta	cacacacctc	cccctggatg	cetaceces	adadcadctc	3240
ctggaggccc	tgtgtcgcca	ggacaacagc	ctgccccggc	atataaacat	ccarcttcaa	3300
agcccgtcgc	acccgccact	garcaccigo	acgggcagtg	argrayargr	taagaataca	3360
gtggcagtgc	cacagccagg	eegetatgee	ctagtggtgg	agracyccaa	agaggatgtt	3420
cgccaggagg	rgggcgrggc	egrgcacacc	ccacagcggg	chacceagea	tacccaddac	3480
tecetgeace	cctgcctgta	cagcaccctg	tgccggggca	ggctcacagg	cascaggae	3540
cacctggctg	tcttccacct	ggacccggag	gccagcgtga	ggcccacago	cgaacaggca	2240

cgcttcttcc tgcacggggt cactctggtg cccattgagg agttcagcc ggagttcgtg 3600 gageceeggg teagetgeat eageageeac ggegeetttg geceeaacag tgeegeetgt 3660 etgecetege getteceaaa geegeeeeag eccateatee teagggaetg ecaggtgate 3720 cegetgeege eeggeeteee getgaeecae gegeaggate teacteeage catgteecea 3780 gctggacccc gacctcggcc ccccaccgct gtggaccctg atgcagagcc caccctgctg 3840 cgtgagcccc aggccaccgt ggtcttcacc acccatgtgc ccacgctggg ccgctatgcc 3900 ttcctgctgc acggctacca gccagcccac cccaccttcc ccgtggaagt cctcatcaac 3960 gccggccgcg tgtggcaggg ccacgccaac gccagcttct gtccacatgg ctacggctgc 4020 cgcaccctgg tggtgtgtga gggccaggcc ctgctggacg tgacccacag cgagctcact 4080 gtgaccgtgc gtgtgcccaa gggccggtgg ctctggctgg attatgtact cgtggtccct 4140 gagaacgtet acagetttgg ctaceteegg gaggageece tggataaate etatgaette 4200 atcagccact gegeageeca gggetaceac atcageecea geageteate cetgttetge 4260 cgaaacgctg ctgcttccct ctccctcttc tataacaacg gagcccgtcc atgtggctgc 4320 cacgaagtag gtgctacagg ccccacgtgt gagcccttcg ggggccagtg tccctgccat 4380 gcccatgtca ttggccgtga ctgctcccgc tgtgccaccg gatactgggg cttccccaac 4440 tgcaggccct gtgactgcgg tgcccgcctc tgtgacgagc tcacgggcca gtgcatctgc 4500° cegecaegea ceatecegee egactgeetg etgtgeeage eccagaeett tggetgeeae 4560 cccctggtcg gctgtgagga gtgtaactgc tcagggcccg gcatccagga gctcacagac 4620 cctacctgtg acacagacag cggccagtgc aagtgcagac ccaacgtgac tgggcgccqc 4680 tgtgatacct geteteeggg ettecatgge tacceeeget geegeeeetg tgaetgteae 4740 gaggegggea etgegeetgg egtgtgtgac ecceteacag ggeagtgeta etgtaaggag 4800 aacgtgcagg gccccaaatg tgaccagtgc agccttggga ccttctcact ggatgctgcc 4860 aaccccaaag gttgcacccg ctgcttctgc tttggggcca cggagcgctg ccggagctcg 4920 tectacacce gecaggagtt egtggatatg gagggatggg tgetgetgag caetgaeegg 4980 caggtggtgc cccacgagcg gcagccaggg acggagatgc tccgtgcaga cctgcggcac 5040 gtgcctgagg ctgtgcccga ggctttcccc gagctgtact ggcaggcccc accctcctac 5100 ctgggggacc gggtgtcatc ctacggtggg accctccgtt atgaactgca ctcagagacc 5160 cagcggggag atgtctttgt ccccatggag agcaggccgg atgtggtgct gcagggcaac 5220 cagatgagca tcacattcct ggagccggca taccccacgc ctggccacgt tcaccgtggg 5280 cagctgcagc tggtggaggg gaacttccgg catacggaga cgcgcaacac tgtgtcccgc 5340 gaggagetea tgatggtget ggeeageetg gageagetge agateegtge cetettetea 5400 cagateteet eggetgtett eetgegeagg gtggeaetgg aggtggeeag eecageagge 5460 cagggggccc tggccagcaa tgtggagctg tgcctgtgcc ccgccagcta ccggggggac 5520 teatgecagg aatgtgeece eggettetat egggaegtea aaggtetett eetgggeega 5580 tgtgtccctt gtcagtgcca tggacactca gaccgctgcc tccctggctc tggcgtctgt 5640 gtggactgcc agcacaacac cgaaggggcc cactgtgagc gctgccaggc tggcttcgtg 5700 agcagcaggg acgaccccag cgcccctgt gtcagctgcc cctgccccct ctcagtgcct 5760 tccaacaact tcgccgaggg ctgtgtcctg cgaggcggcc gcacccagtg cctctgcaaa 5820 cctggttatg caggtgcctc ctgcgagcgg tgtgcgcccg gattctttgg gaacccactg 5880 gtgctgggca gctcctgcca gccatgcgac tgcagcggca acggtgaccc caacttgctc 5940 ttcagcgact gcgaccccct gacgggcgcc tgccgtggct gcctgcgcca caccactggg 6000 ccccgctgcg agatetgtgc ccccggcttc tacggcaacg ccctgctgcc cggcaactgc 6060 acceggtgeg actgtacece atgtgggaca gaggeetgeg acceecacag egggeactge 6120 ctgtgcaagg cgggcgtgac tgggcggcgc tgtgaccgct gccaggaggg acattttggt 6180 ttcgatggct gcgggggctg ccgcccgtgt gcttgtggac cggccgccga gggctccgag 6240 tgccacccc agageggaca gtgccactgc cgaccaggga ccatgggacc ccagtgccgc 6300 gagtgtgccc ctggctactg ggggctccct gagcagggct gcaggcgctg ccagtgccct 6360 gggggccgct,gtgaccctca cacgggccgc tgcaactgcc ccccggggct cagcggggag 6420 cgctgcgaca cctgcagcca gcagcatcag gtgcctgttc caggcgggcc tgtgggccac 6480 agcatccact gtgaagtgtg tgaccactgt gtggtcctgc tcctggatga cctggaacgg 6540 geeggegeee tecteeeege catteaegag caactgegtg geatcaatge cagetecatg 6600 gcctgggccc gtctgcacag gctgaacgcc tccatcgctg acctgcagag ccagctccgg 6660 agccccctgg gcccccgcca tgagacggca cagcagctgg aggtgctgga gcagcagagc 6720 acaageeteg ggeaggaege aeggeggeta ggeggeeagg eaggageece aagaeeece 6780 agggccccgg gaggctttca cctgtaccag gcgagccaat tgctggccgg caccgaggcc 6840 acactgggcc atgcgaagac gctgttggcg gccatccggg ctgtggaccg caccctgagc 6900 gageteatgt cecagaeggg ceaeetgggg etggeeaatg eeteggetee ateaggtgag 6960 cagetgetee ggacactgge egaggtggag eggetgetet gggagatgeg ggeeegggae 7020 ctgggggccc cgcaggcagc agctgaggct gagttggctg cagcacagag attgctggcc 7080

		asastataa	asaasasacc	aggeactgge	cacacaaacc	7140
cgggtgcagg	agcagctgag	cageetetgg	ctcatggacc	aggcactggc	tttgaaccgg	7200
cgcgaccggc	tggcccagca	agaggeegge	ctcaeggace	tgcgagaggc	acacctagag	7260
gcagtggacg	ccacacggga	ggeceaggag	caacagee	gcaaccagga ccaccctgca	gaccactctg	7320
gaagecetge	aaaggaagca	ggagetgtee	ttcagattgc	tgcacagcct	ggaccaggct	7380
catgcggcta	gggacacccc	ggccagcgcc	ctagatege	ctcggacccc	actoctocao	7440
aaggaggagc	tggagtgeet	agaggagag	aaactacatc	tagtggaggc	caccaaaacc	7500
aggatgcaga	CCCCCCCCC	ggcgggcagc	aatctgtcca	gcatcatcct	ggacgtcaac	7560
cacgcacagc	agetgygeea	geeggeacee	acctccaaca	cctacagccg	catcctgcag	7620
caggaccgcc	ctacccagag	tactactaac	caddccctdc	agcaggcgga	ccacacgtgg	7680
gccgtgcagg	tagaagaaga	cetagtage	caaacccaac	agctcctggc	caacagcact	7740
gegaeggryg	agggeaggg	ccaggagac	cagaggetag	gccttgtgtg	ggctgccctc	7800
gcactagaag	aggecaegee	ccaggateag	caaaccaaga	aggaccaget	ggaggcgcac	7860
cagggracea	cacaaaccat	acttaccata	gacacagacg	agacaagcaa	gaagatcgca	7920
acceaggegg	ctataactac	tgaagecaag	gacaccgcca	cccgtgtgca	gtcccagctg	7980
cacyccaayy	aggagaatgt	agaagaataa	cagggccagt	acgagggcct	gcggggccag	8040
caggecatge	aggagaacge	taacacaaac	cactcagtgt	ccaccctgga	gaagacgctg	8100
gaccagggcc	taaccaaact	gacatctq	gagaaccgtg	gggtgcacaa	cgccagcctg	8160
geotateca	ccarcattra	ccacatacas	gageteattg	cccaggcccg	gggggctgcc	8220
agtaggtca	agataccat	gaagttcaac	gagcactcag	gggtgcagct	gcgcacccca	8280
agraaggrea	ccgaccttgc	tacctacact	gccctcaagt	tctacctgca	gggcccagag	8340
cctgacctg	accadante	cgaggatcgc	tttgtgatgt	acatgggcag	ccgccaggcc	8400
actgageerg	acatoootot	atctctacat	gacaagaagg	tgcactgggt	gtatcagctg	8460
actggggact	accetacaat	cctaagcatc	gatgaggaca	ttggggagca	gttcgcagct	8520
atcaacctaa	acaggactet	ccagtttggc	cacatgtccg	tcacagtgga	gagacagatg	8580
atccaggggaaa	ccaagggtga	cacqqtqqcc	cctggggcag	aggggctgct	caacctgcgg	8640
ccagacgact	tegtetteta	catcagagag	taccccagta	ccttcacgcc	eceteeerg	6700
cttcacttcc	ccggctaccg	gggctgcatc	gagatggaca	cgctgaatga	ggaggtggtc	8/60
ageetetaca	acttcgagag	gaccttccag	ctggacacgg	ctgtggacag	geettgtgee	0020
cactccaagt	cgaccgggga	cccataactc	acggacggct	cctacctgga	eggeaeegge	8880
ttcgccgca	tcagcttcga	cagtcagatc	agcaccacca	agegettega	geaggagetg	0340
caactcatat	cctacagcgg	aatactcttc	ttcctgaagc	agcagagcca	gttcctgtgc	9000
ttaaccatac	aagaaggcag	cctcatacta	ttgtatgact	ttggggctgg	cctgaaaaag	3000
accatecéae	tacaaccccc	accoccccto	acctcggcca	gcaaggcgat	ccaggigiic	3120
ctactagaga	gcagccgcaa	acatatacta	gtgcgtgtgg	agcgggccac	ggtgtacage	2100
atagaggagg	acaatgatct	ggagetggee	gacgcctact	acctgggggg	egraceacec	3240
gaccagetge	ccccgagcct	gcgacggctc	ttccccaccg	gaggeteagt	eegtggetge	9300
at caaaaaca	tcaaggccct	gggcaagtat	gtggacctca	agcggctgaa	cacgacagge	9300
gtgaggggg	getgeacege	cgacctgctg	gtggggcgcg	ccatgacttt	ccatggccac	9420
gactteette	acctaacact	ctcgaacgtg	gcaccgctca	ctggcaacgt	ctactccggc	2400
ttcaacttcc	acagegeeca	ggacagtgcc	ctgctctact	accgggcgic	cccygarygy	2340
ctatgccagg	tatecetaca	acaaaaccat	gtgagcctac	agctcctgag	gactgaagtg	3000
aaaactcaag	caaacttcac	caataatacc	ccccattacg	, tegeetteta	cagcaatycc	9000
acgggagtct	gactatatat	cgatgaccag	rctccagcaga	Lydaycccca	ccggggacca	5,20
cccccgagc	tccagccgca	gcctgagggg	ccccgaggc	tcctcctggg	aggeergeer	9840
gagtctggca	ccatttacaa	cttcagtggc	tgcatcagca	acgtcttcgt	geageggete	9900
ctgggcccac	agcgcgtatt	tgatctgcag	cagaacctgg	gcagcgtcaa	tytyaycacy	9960
ggctgtgcac	ccgccctgca	agcccagacc	: ccgggcctgg	ggcctagagg	actycagycc	10020
accgcccgga	aggcctcccg	ccgcagccgt	. cagcccgccc	ggcatcctgc	etgcatgctg	10020
ccccacacc	traggarcac	ccgagactcc	: taccagtttg	i ggggtteeet	. giccagicac	10000
ctagaattta	taggcatect	ggcccgacat	: aggaactggc	ccagtetete	: catycatytt	TOTAO
checegegaa	geteccgagg	cctcctcctc	: ttcactgccc	gtctgaggcc	: cygcaycccc	10200
tccctggcgc	tcttcctgag	caatggccac	ttcgttgcac	agatggaagg	arteteert	10320
cggctccgcg	cccagagccg	ccagcgctcc	cggcctggc	gctggcacaa	, dauccausa	10320
cgctgggaga	agaaccggat	cctgctggtg	acggacgggg	cccgggcctg	gayccayyay ctttdtddd	10440
gggccgcacc	ggcagcacca	gggggcagag	cacccccago	cccacaccct	. caccaactat	10500
ggcctcccgg	ccagcagcca	cagetecaaa	cttccggtga	a ccgtcgggtt	. cagoggoogi	10560
gtgaagagac	tgaggctgca	cgggaggcc	ctgggggcc	ccacacggat	. Gacagaaatt	10620
acaccctgca	tcttgggccc	cctggaggcg	ggcctgttci	tcccaggcag	, -2222244	

```
atcactttag acctcccagg agctacactg cctgatgtgg gcctggaact ggaggtgcgg 10680
cccctggcag tcaccggact gatcttccac ttgggccagg cccggacgcc cccctacttg 10740
cagttgcagg tgaccgagaa gcaagtcctg ctgcgggcgg atgacggagc aggggagttc 10800
tecaegteag tgaecegeee eteagtgetg tgtgatggee agtggeaeeg getageggtg 10860
atgaaaagcg ggaatgtgct ccggctggag gtggacgcgc agagcaacca caccgtgggc 10920
cccttgctgg cggctgcagc tggtgcccca gccctctgt acctcggggg cctgcctgag 10980
eccatggeeg tgeageeetg geeceegee tactgegget geatgaggag getggeggtg 11040
aaccggtccc ccgtcgccat gactcgctct gtggaggtcc acggggccagt gggggccagt 11100
ggctgcccag ccgcctag
<210> 9
<211> 11091
<212> DNA
<213> Homo sapiens
<400> 9
atggcgaagc ggctctgcgc ggggagcgca ctgtgtgttc gcggcccccg gggccccgcg 60
ccgctgctgc tggtcgggct ggcgctgctg ggcgcggcgc gggcgcggga ggaggcgggc 120
ggcggcttca gcctgcaccc gccctacttc aacctggccg agggcgcccg catcgccgcc 180
tecgegacet geggagagga ggeeeeggeg egeggeteee egegeeeeae egaggacett 240
tactgcaagc tggtaggggg ccccgtggcc ggcggcgacc ccaaccagac catccggggc 300
cagtactgtg acatctgcac ggctgccaac agcaacaagg cacaccccgc gagcaatgcc 360
atcgatggca cggagcgctg gtggcagagt ccaccgctgt cccgcggcct ggagtacaac 420
gaggtcaacg tcaccctgga cctgggccag gtcttccacg tggcctacgt cctcatcaag 480
tttgccaact cacceggee ggacetetgg gtgctggage ggtecatgga etteggeege 540
acctaccage cetggcagtt etttgeetee tecaagaggg actgtetgga geggtteggg 600
ccacagacgc tggagcgcat cacacgggac gacgcggcca tctgcaccac cgagtactca 660
cgcatcgtgc ccctggagaa cggagagatc gtggtgtccc tggtgaacgg acgtccgggc 720
gecatgaatt tetectacte geegetgeta egtgagttea ceaaggeeae caacgteege 780
etgegettee tgegtaceaa eaegetgetg ggecatetea tggggaagge getgegggae 840
eccaeggtea eccgeeggta ttattacage ateaaggata teagcategg aggeegetgt 900
gtetgecacg gecacgegga tgeetgegat gecaaagace ceaeggacee gtteaggetg 960
cagtgcacct gccagcacaa cacctgcggg ggcacctgcg accgctgctg ccccggcttc 1020
aatcagcagc cgtggaagcc tgcgactgcc aacagtgcca acgagtgcca gtcctgtaac 1080
tgctacggcc atgccaccga ctgttactac gaccctgagg tggaccggcg ccgcgccagc 1140
cagageetgg atggeaceta teagggtggg ggtgtetgta tegaetgeea geaceacac 1200
accggcgtca actgtgagcg ctgcctgccc ggcttctacc gctctcccaa ccaccctctc 1260
gactegeece aegtetgeeg eegetgeaac tgegagteeg aetteaegga tggeaectge 1320
gaggacetga egggtegatg etactgeegg eccaacttet etggggageg gtgtgaegtg 1380
tgtgccgagg gcttcacggg cttcccaagc tgctacccga cgccctcgtc ctccaatgac 1440
accagggage aggtgetgee ageeggeeag attgtgaatt gtgactgeag egeggeaggg 1500
acccagggca acgcctgccg gaaggaccca agggtgggac gctgtctgtg caaacccaac 1560
ttccaaggca cccattgtga gctctgcgcg ccagggttct acggccccgg ctgccagccc 1620
tgccagtgtt ccagccctgg agtggccgat gaccgctgtg accctgacac aggccagtgc 1680
aggtgccgag tgggcttcga gggggccaca tgtgatcgct gtgcccccgg ctactttcac 1740
ttccctctct gccagttgtg tggctgcagc cctgcaggaa ccttgcccga gggctgcgat 1800
gaggccggcc gctgcctatg ccagcctgag tttgctggac ctcattgtga ccggtgccgc 1860
cctggctacc atggtttccc caactgccaa gcatgcacct gcgaccctcg gggagccctg 1920
gaccagetet gtggggeggg aggtttgtge egetgeegee eeggetacae aggeaetgee 1980
tgccaggaat gcagcccgg ctttcacggc ttccccagct gtgtcccctg ccactgctct 2040
gctgaaggct ccctgcacgc agcctgtgac ccccggagtg ggcagtgcag ctgccggccc 2100
cgtgtgacgg ggctgcggtg tgacacatgt gtgcccggtg cctacaactt cccctactgc 2160
gaagetgget ettgecacce tgeeggtetg geeceagtgg atcetgeect teetgaggea 2220
caggttccct gtatgtgccg ggctcacgtg gaggggccga gctgtgaccg ctgcaaacct 2280
gggttctggg gactgagccc cagcaacccc gagggctgta cccgctgcag ctgcgacctc 2340
aggggcacac tgggtggagt tgctgagtgc cagccgggca ccggccagtg cttctgcaag 2400
ccccacgtgt gcggccaggc ctgcgcgtcc tgcaaggatg gcttctttgg actggatcag 2460
gctgactatt ttggctgccg cagctgccgg tgtgacattg gcggtgcact gggccagagc 2520
tgtgaaccga ggacgggcgt ctgccggtgc cgccccaaca cccagggccc cacctgcagc 2580
```

the second of grant and acceptance decided and acceptance and acceptance acceptance and acceptance	
gageetgega gggaceacta ceteceggae etgeaceace tgegeetgga getggaggag 2640	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
constance teteragere decilional acycoadors sissis	
at an accord and of the control	
	-
· · · · · · · · · · · · · · · · · · ·	
+atataaca aaaaaaaaaaa Clucccaac cccaccac ssasss	
the second of cateacetic according all all all and a second of the secon	
The state of the s	
the second of the care of the care of the country of the care of t	
tottogacct gractchand decadeding decedence	
the base agget carrette confiction of the confic	
The standard of Carcarcas (MCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
The matters and the control of the c	
burens agreeated actuactual actuactuation of the second actual ac	_
and tagged coccacoust deddacoold acgordages careers	
The second accordance of the contract of the c	
The tatage and concurred decade telegraphics and the tatage to the second secon	-
The Feet at at a data and Country of Country C	
Lui atatacces anaccarra cicludity accargence egosses	
. L	
stagtfacet erecerere taladedacy gageeegee assess	
han atactocom accesement danceelled addressed accessing	
the	
The section of the contract of	
The state of the s	
Laborate and Antaragana Affacation Lacelledge googoood as a second	
gaggeggea etgegeetgg egtgtgtgae ecceteacag ggeagtgeta etgtaaggag 480	50
gaggegggda ttgtgtettgg tgtgtgtgtgt agcettggga cetteteact ggatgetgee 486 aacgtgcagg geeceaaatg tgagacagtge agcettggga cetteteact ggatgetee 492	0.5
aaccccaaag gttgcacccg ctgcttctgc tttggggcca cggagcgctg ccggagctcg 492	30
tectacace gecaggagtt egggatatg gagggatggg tgetgetgag caetgacegg 498	10
caggtggtgc cccacgagcg gcagccaggg acggagatgc tccgtgcaga cctgcggcac 504 gtgcctgagg ctgtgcccga ggctttcccc gaggtgtact ggcaggccc accetcctac 510	
	60
cagateteet eggetgtett eetgegeagg geggeaetgg aggeggedag oods 552	20
cagateteet eggetgtett eetgegeagg giggeactgg aggegetet ootag 552 cagggggee tggeeageaa tgtggagetg tgeetgtgee eegeeageta eeggggggae 552 caggggggee tggeeageageaggggae 552 caggggggee aggettetat egggaegtea aaggtetett eetgggeega 552	20 80
cagateteet eggetgtett eetgegeagg griggeactig aggriggeda oord 552 cagggggee tggecageaa tgtggagetg tgeetgtgee eegecageta eegggggggae 552 teatgecagg aatgtgeee eggettetat egggaegtea aaggtetett eetgggeega 552 teatgecagg aatgtgeee tggagagtea gaeggetgee teeetggete tggegtetgt 562	20 80 40
cagateteet eggetgtett eetgegeagg gtggtattgg aggtggtetg 552 eagggggeet tggeeageaa tgtggagetg tgeetgtgee eegeeageta eeggggggae 552 teatgeeagg aatgtgeee eggettetat egggaegtea aaggtetett eetgggeega 554 tgtgteeett gteagtgeea tggaeactea gaeegetgee teeetggete tggegtetgt 564 tgtgteeett gteagtgeea eggagggee eactgtgage getgeeagge tggetteegtg 570	20 80 40 00
cagateteet eggetgtett eetgegeagg gtggeattgg aggeggeetg oosal 552 cagggggeet tggeeagea tgtggagetg tgeetgtgee eegeeageta eeggggggae 552 teatgeeagg aatgtgeee eggettetat egggaegtea aaggtetett eetgggeega 554 tgtgteeett gteagtgeea tggaeactea gaeegetgee teeetggete tggegtetgt 564 gtggaetgee ageaeaacae egaaggggee eactgtgage getgeeagge tggettegtg 574 gtggaetgee ageaeaacae egaaggggee gaeegetge eetgeeeet eteagtgeet 574	20 80 40 00 60
cagateteet eggetgtett eetgegeagg gtggeactgg aggeggeetg below 552 caggggggee tggeeagea tgtggagetg tgeetgtgee eegeeageta eeggggggae 552 teatgeeagg aatgtgeee eggettetat egggaegtea aaggtetett eetgggeega 552 tgtgteeett gteagtgeea tggaeactea gaeegetgee teeetggete tggegtetgt 564 gtggaetgee ageacaacae egaaggggee eactgtgage getgeeagge tggetteetg 574 ageaggaggg aegaeeceag egeeeeetgt gteagetgee eetgeeeet eteagtgeet 574 ageaggaggg aegaeeceag egeeeeetgt gteagetgee geageegagg eetetgeaaa 583	20 80 40 00 60 20
cagateteet eggetgtett eetgegeagg gtggeactgg aggetgeets oorgaggggac 552 cagggggee tggeeagea tgtggagetg tgeetgtgee eegeeageta eeggggggac 552 teatgeeagg aatgtgeee eggettetat egggaegtea aaggtetett eetgggeega 552 tgtgteett gteagtgeea tggaeaetea gaeegetgee teeetggete tggegtetgt 562 gtggaetgee ageaeaaeae egaaggggee eaetgtgage getgeeagge tggettegt 572 ageagaggg aegaeeeetg eggeeeetgt gteagetgee eetgeeeet eteagtgeet 573 ageagaggg aegaeeeetg etggegeeg geaeeeagtg eetetgeaaa 582 teeaaaaet tegeegaggg etgtgeetg tgtggeeg gaaceeagtg gaaceeaetg 582	20 80 40 00 60 20
cagateteet eggetgetet eetgegeagg geggeatetgg aggeggeagg aggegggae 552 cagggggee tggeeagea tgtggagetg tgeetgtgee eegeeageta eeggggggae 552 teatgeeagg aatgtgeee eggettetat egggaegtea aaggtetett eetgggeega 552 tgtgteett gteagtgeea tggaeaetea gaeegetgee teeetggete tggegtetgt 562 gtggaetgee ageaeaaeae egaaggggee eaetgtgage getgeeagge tggetteegt 572 ageageaggg aegaeeeeag egeeeeettg gteagetgee eetgeeeet eteagtgeet 572 teeaaeaaet tegeegaggg etgtgeetg egageggee geaeeeagtg eetetgeaaa 582 eetggttatg eaggtgeete etgegagegg tgtgegeeeg gattetttgg gaaeeeaetg 582 eetggttatg eaggtgeete etgegagegg tgtgegeeeg gattetttgg gaaeeeaetg 582 eetggttatg eaggtgeete etgegagegg tgtgegeeeg gattetttgg gaaeeeaetg 582 eetggttatg eaggtgeete etgegagegg tgtgegeeeg gattetttgg eagetgete 592	20 80 40 00 60 20 80
cagateteet eggetgetet eetgegeagg gtggeactgg aggetgeta eeggegggac 55% cagggggee tggeeagea tgtggagetg tgeetgtge eegecageta eeggggggac 55% teatgeeagg aatgtgeee eggettetat egggaegtea aaggtetett eetgggeega 55% tgtgteett gteagtgeea tggaeaetea gaeegetgee teeetggete tggegtetgt 56% gtggaetgee ageaeaaeae egaaggggee eaetgtgage getgeeagge tggetteegt 57% ageageaggg acgaeeceag egeceeett gteagetgee eetgeeeet eteagtgeet 57% teeaaeaaet tegeegagg etgtgeetg egaageggee geaeecagtg eetetgeaa 58% eetggttatg eaggtgeete etgegagegg tgtgegeeg gateetttgg gaaeecaetg 58% eggetgggea geteetgeea geeatgegae tgeageggea aeggtgaeee eaeettgete 59% eggetgggea geteetgeea geeatgegae tgeageggea aeggtgaeee eaeeatggg 60% eaeettgeea eaeettgeea eaeeatggg 60% eaeettgeea eaeettgeea eaeeatggg 60% eaeettgeea e	20 80 40 00 60 20 80 40
cagateteet eggetgetet eetgegeagg gtggeactgg aggetgetes eggegggae 55% eagggggee tggeeagea tgtggagetg tgeetgtgee eeggeageta eetgggeega 55% etatgeeagg aatgtgeee eggettetat egggaegtea aaggtetett eetgggeega 55% egggaetgee ageacaacae egaaggggee eaetgtgage getgeeagge tggettegtg 57% egggaegggaegggeegggeegggeegggeegggeegg	20 80 40 00 60 20 80 40 00
cagateteet eggetgetet eetgegeagg geggeatetgg aggeggeagg aggegggae 552 cagggggee tggeeagea tgtggagetg tgeetgtgee eegeeageta eeggggggae 552 teatgeeagg aatgtgeee eggettetat egggaegtea aaggtetett eetgggeega 552 tgtgteett gteagtgeea tggaeaetea gaeegetgee teeetggete tggegtetgt 562 gtggaetgee ageaeaaeae egaaggggee eaetgtgage getgeeagge tggetteegt 572 ageageaggg aegaeeeeag egeeeeettg gteagetgee eetgeeeet eteagtgeet 572 teeaaeaaet tegeegaggg etgtgeetg egageggee geaeeeagtg eetetgeaaa 582 eetggttatg eaggtgeete etgegagegg tgtgegeeeg gattetttgg gaaeeeaetg 582 eetggttatg eaggtgeete etgegagegg tgtgegeeeg gattetttgg gaaeeeaetg 582 eetggttatg eaggtgeete etgegagegg tgtgegeeeg gattetttgg gaaeeeaetg 582 eetggttatg eaggtgeete etgegagegg tgtgegeeeg gattetttgg eagetgete 592	20 80 40 00 60 20 80 40 00

ctgtgcaag	g cgggcgtga	c tgggcggcg	c tgtgaccgc	t gccaggaggg	g acattttggt	6180
cccgatggt	r gegggget	g ccgcccgtg	t gcttgtgga	c caaccaccas	agactccaaa	6240
egecaceee	c ayaycygac	a gtgccactg	c cgaccaggg	a ccatgggaco	ccantaccae	6300
gagegegee	c ciggotact	g ggggctccc	t gagcagggc	t gcaggcgctd	CCagtgccct	6360
agaageege	r graaceere.	a cacgggccg	c tgcaactgc	c ccccaaaact	Cancadadaa	6420
egetgegat.	a ccegcagec	a gcagcatca	g gtgcctatt	c cagacaaaca	: tataaaccac	6480
ageaectae	ı yıyaayıyı	g tgaccactg	t gtggtcctq	c tcctagataa	cctanaacaa	6540
geeggegee	c cccccccg	cattcacgag	g caactgcgt	g gcatcaatgo	: cageteeatg	6600
geetgggee	c grotgeaca	g gctgaacgc	: tccatcgctd	g acctdcadac	CCanctccaa	6660
ageceeeg	g geeeeegee	ı igagacggca	a cagcagetgo	a aggtactaga	acancananc	6720
acaageeee	y yycaggacgo	: acggcggcta	a ggcggccago	r cagccgtggg	dacccdagac	6790
caggegage	- aartycigg	cggcaccgag	g gccacactgo	g gccatgcgaa	gacgctgttg	6840
geggeeace	- yyycryrgga	: ccgcaccctg	g agcgagctca	a totcccagae	gggccacctg	6900
gggccggcc	acyccicygo	: cccatcaggt	gagcagctgo	: tccqqacact	aaccaaaata	6960
gageggeeg	- cccgggagai	- gcgggcccgg	g gacctgggg	1 ccccacaaa	agcagetgag	7020
gctgagttgg	g ctgcagcaca	gagattgct	gcccaaatac	aggaggaggt	gagcagcctc	7020
tgggaggaga	a accaggcact	ggccacacaa	acccgcgaco	gactaaccca	gcacgaggcc	7140
ggcctcatgg	g acctgcgaga	ggctttgaac	cagacagtac	acaccacaca	ggaggcccag	7200
gagctcaaca	gccgcaacca	ggagcgcctc	gaggaagee	: tacaaaaaaa	gcaggagctg	7260
tcccgggaca	atgccaccct	gcaggccact	ctgcatgcgg	r ctannagaa	cctggccage	7200
gtcttcagat	tgctgcacag	cctggaccac	gctaaggagg	, adctadadca	cctcgccgcc	7320
agcctggato	gggctcggac	cccactacta	cagaggatgc	agecggageg	cccggcgggc	7440
agcaagctgo	gtctagtgga	ggccgccgag	acccacacac	: agcagetggg	ccagctggca	7440
ctcaatctgt	ccagcatcat	cctggacgtc	aaccaggacc	gcctcaccca	gagggccatc	7500
gaggcctcca	acgcctacag	ccgcatcctg	caggccgtgc	aggetgeega	ggatgctgct	7500
ggccaggccc	tgcagcaggc	ggaccacacg	tagacaacaa	taatacaaca	gggcctggtg	7620
gaccgagccc	agcagctcct	ggccaacagc	actocactao	aagaggccat	gctccaggaa	7740
cagcagaggc	tgggccttgt	gtgggctgcc	ctccagggtg	CCannaccca	gctccgagat	7740
gtccgggcca	agaaggacca	gctggaggcg	cacatccagg	caacacsaac	catgettgee	7800
atggacacag	acgagacaag	caagaagatc	gcacatgcca	aggetgtgge	tgctgaagcc	7020
caggacaccg	ccacccgtgt	gcagtcccag	ctgcaggcca	tacaggagaa	tgtggagcgg	7920
tggcagggcc	agtacgaggg	cctgcggggc	caggacctgg	accadacaat	gcttgacgca	2040
ggccactcag	tgtccaccct	ggagaagacq	ctgccccagc	tactaaccaa	gctgagcatc	2100
ctggagaacc	gtggggtgca	caacgccagc	ctgaccctat	CCGCCagcat	tggccgcgtg	9160
cgagagctca	ttgcccaggc	ccggggggct	gccagtaagg	tcaaggtgcc	catgaagttc	0100
aacgggcgct	caggggtgca	gctgcgcacc	ccacgggatc	ttaccaacct	tgctgcctac	9220 9290
actgccctca	agttctacct	gcagggccca	gagectgage	ctagacaga	taccgaggat	8340
cgctttgtga	tgtacatggg	cagccgccag	gccactgggg	actacatogo	tgtgtctctg	8400
cgtgacaaga	aggtgcactg	ggtgtatcag	ctgggtgagg	caaaccctac	agtcctaagc	0400
accgacgagg	acactgggga	gcagttcgca	gctgtcagcc	tagacaggac	tetecaattt	8520
ggccacatgt	ccgtcacagt	ggagagacag	atgatecagg	aaaccaagga	tgacacggtg	0520 0520
geeeetgggg	cagaggggct	gctcaacctg	cqqccaqacq	acttement	ctacatcaaa	0610
gggtacccca	gtaccttcac	gccccctccc	ctacttcact	teccegacta	ccggggctgc	0040 0700
accgagacgg	acacycigaa	Lyayyaggtg	greageetet	acaacttcga	gaggagette	97 <i>6</i> 0
cagctggaca	cggctgtgga	caggccttgt	gcccgctcca	agtcgaccgg	ggacccgtgg	8820
ctcacggacg	gctcctacct	ggacggcacc	gacttcaccc	gcatcagett	cgacagtcag	0020
atcagcacca	ccaagcgctt	cgagcaggag	ctacaactca	tatectacaa	cggggtgctc	0000
ttcttcctga	agcagcagag	ccagttcctg	tacttaacca	tacaagaagg	cagcctcgtg !	0000
ctgttgtatg	actttggggc	tggcctgaaa	aaggccgtcc	cactgcagg	cccaccgccc !	3060
ctgacctcgg	ccagcaaggc	gatccaggtg	ttcctactaa	agaacaacca	caagcgtgtg 9	2120
ctggtgcgtg	tggagcgggc	cacggtgtac	agcatagaaa	aggacaatga	tctggagctg 9	2100
gccgacgcct	actacctggg	gggcgtacca	cccgaccage	tacccccaa	cctgcgaccgg	7100
ctcttcccca	ccggaggctc	agtccgtggc	tgcgtcaaag	gcatcaaggg	cctgggcaag 9)3UV)7AU
tatgtggacc	tcaagcggct	gaacacqaca	ggcgtgaggg	ccaactacac	cgccgacctg	736V
ctggtggggc	gcgccatgac	tttccataac	cacggettee	ttcacctac	getetegaeetg S	7700
gtggcaccgc	tcactggcaa	cgtctactcc	gacttcgact	tecacage	ccaggacagt	742U
gccctgctct	actaccgggc	gtccccaat	gaactatacc	aggtgtggg	gcagcagggc 9	746U
cgtgtgagcc	tacageteet	gaggactgaa	gtgaaaactc	aagcggccct	gcagcagggc 9 cgccgatggt 9	7540
gcccccatt	acgtcgcctt	ctacagcaar	accacaaaaa	tetaactata	tgtcgatggt 9	,000
	-	5	10/53	ggctgta	egecyatyac s	000
			10/33			

```
cagetecage agatgaagee ecacegggga ceaceeeeg agetecagee geageetgag 9720
gggcccccga ggctcctcct gggaggcctg cctgagtctg gcaccattta caacttcagt 9780
ggctgcatca gcaacgtctt cgtgcagcgg ctcctgggcc cacagcgcgt atttgatctg 9840
cagcagaacc tgggcagcgt caatgtgagc acgggctgtg cacccgccct gcaagcccag 9900
acccgggcc tggggcctag aggactgcag gccaccgccc ggaaggcctc ccgccgcagc 9960
egtcageceg eceggeatee tgeetgeatg etgeececae aceteaggae caceegagae 10020
tectaccagt ttgggggttc cetgtccagt cacetggagt ttgtgggcat cetggecega 10080
cataggaact ggcccagtct ctccatgcac gtcctcccgc gaagctcccg aggcctcctc 10140
ctcttcactg cccgtctgag gcccggcagc ccctccctgg cgctcttcct gagcaatggc 10200
cacttegttg cacagatgga aggeeteggg acteggetee gegeecagag cegeeagege 10260
teceggeetg geegetggea caaggtetee gtgegetggg agaagaaceg gateetgetg 10320
gtgacggacg gggcccgggc ctggagccag gaggggccgc accggcagca ccagggggca 10380
gagcacccc agccccacac cetetttgtg ggcggcctcc cggccagcag ccacagetcc 10440
aaacttccgg tgaccgtcgg gttcagcggc tgtgtgaaga gactgaggct gcacgggagg 10500
cccctggggg cccccacacg gatggcaggg gtcacaccct gcatcttggg ccccctggag 10560
gegggeetgt tetteecagg cageggggga gttateaett tagaeeteee aggagetaea 10620
ctgcctgatg tgggcctgga actggaggtg cggcccctgg cagtcaccgg actgatcttc 10680
cacttgggcc aggcccggac gccccctac ttgcagttgc aggtgaccga gaagcaagtc 10740
ctgctgcggg cggatgacgg agcaggggag ttctccacgt cagtgacccg cccctcagtg 10800
ctgtgtgatg gccagtggca ccggctagcg gtgatgaaaa gcgggaatgt gctccggctg 10860
gaggtggacg cgcagagcaa ccacaccgtg ggccccttgc tggcggctgc agctggtgcc 10920
ccagcccctc tgtacctcgg gggcctgcct gagcccatgg ccgtgcagcc ctggcccccc 10980
gectactgeg getgeatgag gaggetggeg gtgaaccggt ceceegtege catgaetege 11040
tetgtggagg tecaegggge agtggggge agtggetgee cageegeeta g
 <210> 10
 <211> 1014
 <212> DNA
 <213> Homo sapiens
 <400> 10
 atgacaaaca acagcggctc caaagccgaa ctcgttgtgg gagggaaata caaactggtg 60
 cggaagatcg ggtctggctc ctttggagac gtttatctgg gcatcaccac caccaacggc 120
 gaggacgtag cagtgaagct ggaatctcag aaggtcaagc accccagtt gctgtatgag 180
 agcaaactct acacgattct tcaaggtggg gttggcatcc cccacatgca ctggtatggt 240
 caggaaaaag acaacaatgt gctagtcatg gaccttctgg gacccagcct cgaagacctc 300
 tttaatttct gttcaagaag gttcaccatg aaaactgtac ttatgttagc cgaccagatg 360
 atcagcagaa ttgaatacgt gcatacaaag aattttctac accgagacat taaaccagat 420
 aactteetga tgggtaetgg gegteaetgt aataagttgt teettattga ttttggtttg 480
 gccaaaaagt acagagacaa caggaccagg caacacatac cgtacagaga agataaacac 540
 ctcattggca ctgtccgata tgccagcatc aatgcacatc ttggtattga gcagagccgc 600
 cgagatgaca tggaatcctt aggctacgtt ttcatgtatt ttaatagaac cagcctgccg 660
 tggcaaggac taagggctat gacaaaaaaa caaaaatatg aaaagattag tgagaagaag 720
 atgtccaccc ctgttgaagt tttatgtaag gggtttcctg cagaattcgc catgtacttg 780
 aactactgtc gtgggctgcg ctttgaggaa gtcccagatt acatgtatct gaggcagcta 840
 ttccgcattc ttttcaggac cctgaaccac caatatgact acacatttga ttggacgatg 900
 ttaaagcaga aagcagcaca gcaggcagcc tcttccagtg ggcagggtca gcaggcccaa 960
 acccagacag gcaagcaaac tgaaaaaaac aagaataatg tgaaagataa ctaa
                                                                   1014
 <210> 11
 <211> 2667
 <212> DNA
 <213> Homo sapiens
 <400> 11
 atggagtcgc tcctgctgcc ggtgctgctg ctgctggcca tactgtggac gcaggctgcc 60
 gccctcatta atctcaagta ctcggtagaa gaggagcagc gcgccgggac ggtgattgcc 120
 aacgtggcca aagacgcgcg agaggcggc ttcgcgctgg acccccggca ggcttcagcc 180
 tttcgcgtgg tgtccaactc ggctccacac ctagtggaca tcaatcccag ctctggcctg 240
                                    11/53
```

```
ctggtcacca agcagaagat tgaccgtgat ctgctgtgcc gccagagccc caagtgcatc 300
 atctcgctcg aggtcatgtc cagctcaatg gaaatctgcg tgataaaggt ggagatcaag 360
 gacctgaacg acaatgcgcc cagtttcccg gcagcacaga tcgagctgga gatctcggag 420
 gcagccagcc ctggcacgcg catcccgctg gacagcgctt acgatccaga ctcaggaagc 480
 tttggcgtgc agacttacga gctcacgccc aacgagctgt tcggcctgga gatcaagacg 540
 cgcggcgacg gctcccgctt tgccgaactc gtggtggaaa agagcctgga ccgcgagacg 600
 cagtcgcact acagetteeg aatcactgeg ctagaeggtg gegaeeegee gegeetggge 660
 accgttggcc ttagtatcaa ggtgaccgac tccaatgaca acaacccggt gtttagcgag 720
 tecacetacg eggtgagegt gecagaaaac tegeeteeca acacaceegt cateegeete 780
 aacgccagcg atccagacga gggcaccaac ggccaggtgg tctactcctt ctatggctac 840
 gtcaacgacc gcacgcgcga gctctttcag atcgacccgc acagtggcct ggtcactgtc 900
 actggcgctt tagactacga agaggggcac gtgtacgaac tggacgtgca ggctaaggac 960
 ttgggggccca attccatccc ggcacactgc aaggtcaccg tcagcgtgct ggacaccaat 1020
 gacaatccgc cggtcatcaa cctgctgtca gtcaacagtg agcttgtgga ggtcagcgag 1080
 agegeeece egggetaegt gategeettg gtgegggtgt etgategega eteaggeete 1140
 aatggacgtg tgcagtgccg tttgctgggc aatgtgccct ttcgactgca ggaatatgag 1200
 agctteteca etattetggt ggaeggaegg etggaeegeg ageageaega eeaataeaae 1260
ctcacaattc aggcacgcga cggcggcgtg cccatgctgc agagtgccaa gtcctttacc 1320
gtgctcatca ctgacgaaaa tgacaaccac ccgcactttt ccaagcccta ctaccaggtc 1380
attgtgcagg agaacaacac gcctggcgcc tatctgctct ctgtgtctgc tcgcgacccc 1440
gacctgggtc tcaacggcag tgtctcctac cagatcgtgc cgtcgcaggt gcgggacatg 1500
cctgtcttca cctatgtctc catcaatccc aactcaggcg acatctacgc gctgcgatcc 1560
tttaaccacg agcagaccaa ggcgttcgaa ttcaaggtgc tggccaagga cggcggcctt 1620
ccctcactgc aaagcaacgc tacggtgcgg gtcatcatcc tcgacgtcaa cgacaacacc 1680
ccggtcatca cagccccacc tctgattaac ggcactgccg aggtctacat accccgcaac 1740
tctggcatag gctacctggt gactgttgtc aaggcagaag actacgatga gggcgaaaat 1800
ggccgagtca cctaégacat gaccgagggc gaccgcggct tctttgaaat agaccaggtc 1860
aatggcgaag tcagaaccac ccgcaccttc ggggagagct ccaagtcctc ctatgagctt 1920
atcgtggtgg ctcacgacca cggcaagaca tctctctctg cctctgctct cgtcctaatc 1980
tacttgtccc ctgctctcga tgcccaagag tcaatgggct ctgtgaactt gtccttgatt 2040
ttcattattg ccctgggctc cattgcgggc atcctctttg taactatgat cttcgtggca 2100
atcaagtgca agcgagacaa caaagagatc cggacctaca actgcagtaa ttgtttaacc 2160
atcacttgtc tcctcggctg ttttataaaa ggacaaaaca gcaagtgtct gcattgcatc 2220
tcggtttctc ccattagcga ggagcaagac aaaaagacag aggagaaagt gagcctaagg 2280
ggaaagagaa ttgctgagta ctcctatggg catcaaaaga aatcaagcaa gaagaaaaaa 2340
atcagtaaga atgacatccg cctggtaccc cgggatgtgg aggagacaga caagatgaac 2400
gttgtcagtt gctcttccct gacctcctcc ctcaactatt ttgactacca ccagcagacg 2460
ctgcccctgg gctgccgccg ctctgagagc actttcctga atgtggagaa ccagaatacc 2520
cgcaacacca gtgctaacca catctaccat cactctttca acagccaggg gccccagcag 2580
cctgacctga ttatcaacgg tgtgcctctg cctgaggtga gtgcagctaa gtggctctgt 2640
gaggttctcc caggtctcct tctttag
                                                                  2667
<210> 12
<211> 2568
<212> DNA
<213> Homo sapiens
<400> 12
atggagtege teetgetgee ggtgetgetg etgetggeea taetgtggae geaggetgee 60
gccctcatta atctcaagta ctcggtagaa gaggagcagc gcgccgggac ggtgattgcc 120
aacgtggcca aagacgcgcg agaggcgggc ttcgcgctgg acccccggca ggcttcagcc 180
tttcgcgtgg tgtccaactc ggctccacac ctagtggaca tcaatcccag ctctggcctg 240
ctggtcacca agcagaagat tgaccgtgat ctgctgtgcc gccagagccc caagtgcatc 300
atctcgctcg aggtcatgtc cagctcaatg gaaatctgcg tgataaaggt ggagatcaag 360
gacctgaacg acaatgcgcc cagtttcccg gcagcacaga tcgagctgga gatctcggag 420
gcagccagcc ctggcacgcg catcccgctg gacagcgctt acgatccaga ctcaggaagc 480
tttggcgtgc agacttacga gctcacgccc aacgagctgt tcggcctgga gatcaagacg 540
cgcggcgacg gctcccgctt tgccgaactc gtggtggaaa agagcctgga ccgcgagacg 600
cagtcgcact acagetteeg aatcactgeg ctagaeggtg gegaeeegee gegeetggge 660
                                  12/53
```

```
accgttggcc ttagtatcaa ggtgaccgac tccaatgaca acaacccggt gtttagcgag 720
tecacetacg eggtgagegt gecagaaaac tegeeteeca acacaceegt cateegeete 780
aacgccagcg atccagacga gggcaccaac ggccaggtgg tctactcctt ctatggctac 840
gtcaacgacc gcacgcgca gctctttcag atcgacccgc acagtggcct ggtcactgtc 900
actggcgctt tagactacga agaggggcac gtgtacgaac tggacgtgca ggctaaggac 960
ttggggccca attccatccc ggcacactgc aaggtcaccg tcagcgtgct ggacaccaat 1020
gacaatccgc cggtcatcaa cctgctgtca gtcaacagtg agcttgtgga ggtcagcgag 1080
agegeeece egggetaegt gategeettg gtgegggtgt etgategega eteaggeete 1140
aatggacgtg tgcagtgccg tttgctgggc aatgtgccct ttcgactgca ggaatatgag 1200
agetteteca etattetggt ggacggacgg etggacegeg ageageacga ecaatacaac 1260
ctcacaattc aggcacgcga cggcggcgtg cccatgctgc agagtgccaa gtcctttacc 1320
gtgctcatca ctgacgaaaa tgacaaccac ccgcactttt ccaagcccta ctaccaggtc 1380
attgtgcagg agaacaacac gcctggcgcc tatctgctct ctgtgtctgc tcgcgacccc 1440
gacctgggtc tcaacggcag tgtctcctac cagatcgtgc cgtcgcaggt gcgggacatg 1500
cetgtettea cetatgtete cateaateee aacteaggeg acatetacge getgegatee 1560
tttaaccacg agcagaccaa ggcgttcgaa ttcaaggtgc tggccaagga cggcggcctt 1620
ecctcactgc aaagcaacgc tacggtgcgg gtcatcatcc tcgacgtcaa cgacaacacc 1680
ceggtcatca cagececace tetgattaac ggcaetgeeg aggtetacat acceegcaac 1740
tctggcatag gctacctggt gactgttgtc aaggcagaag actacgatga gggcgaaaat 1800
ggccgagtca cctacgacat gaccgaggc gaccgcggct tctttgaaat agaccaggtc 1860
aatggcgaag tcagaaccac ccgcaccttc ggggagagct ccaagtcctc ctatgagctt 1920
atcgtggtgg ctcacgacca cggcaagaca tctctctctg cctctgctct cgtcctaatc 1980
tacttgtccc ctgctctcga tgcccaagag tcaatgggct ctgtgaactt gtccttgatt 2040
ttcattattg ccctgggctc cattgcgggc atcctctttg taactatgat cttcgtggca 2100
atcaagtgca agcgagacaa caaagagatc cggacctaca actgcagaat tgctgagtac 2160
tectatggge atcaaaagaa atcaagcaag aagaaaaaaa teagtaagaa tgacateege 2220
ctggtacccc gggatgtgga ggagacagac aagatgaacg ttgtcagttg ctcttccctg 2280
acctcctccc tcaactattt tgactaccac cagcagacgc tgcccctggg ctgccgccgc 2340
tetgagagea ettteetgaa tgtggagaac cagaatacee gcaacaccag tgetaaccae 2400
atctaccatc actctttcaa cagccagggg ccccagcagc ctgacctgat tatcaacggt 2460
gtgcctctgc ctgagactga aaactattct tttgactcca actacgtgaa tagccgagcc 2520
catttaatca agaggtatgt tggtttgctt gcttattgct gcaactaa
 <210> 13
 <211> 990
 <212> DNA
 <213> Homo sapiens
 <400> 13
 atggtgacga aggcctttgt cttgttggcc atctttgcag aagcctctgc aaaatcgtgt 60
 gctccaaata aagcagatgt cattcttgtg ttttgctatc ccaaaaccat catcaccaaa 120
 atccccgagt gtccctatgg atgggaagtt catcagctgg ccctcggagg gctgtgttac 180
 aatggggtcc acgaaggagg ttactaccaa tttgtgatcc cagatttatc acctaaaaac 240
 aagteetatt gtggaaceca gtetgagtac aageeaceta tetateactt etacagteac 300
 atcgtttcca atgacaccac agtgattgta aaaaaccagc ctgtcaacta ctccttctcc 360
 tgcacctacc actccaccta cttggtgaac caggctgcct ttgaccagag agtggccact 420
 gttcacgtga agaacgggag catgggcaca tttgagagcc aactgtctct caacttctac 480
 actaatgcca agttctccat caagaaagaa gctccctttg tcctggaggc atccgaaatc 540
 ggttcagatc tgtttgcagg agtggaagcc aaagggttaa gcattaggtt taaagtggtc 600
 ttgaacaget gttgggccac cccctcggct gacttcatgt atcccttgca gtggcagctg 660
 atcaacaagg gctgccccac ggatgaaacc gtcctcgtgc atgagaatgg gagagatcac 720
 agggcaacct tccaattcaa tgctttccgg ttccagaaca tccccaaact ctccaaggtg 780
 tggttacact gtgagacgtt catctgcgac agtgagaaac tctcctgccc agtgacctgc 840
 gataaacgga agcgcctcct gcgagaccag accgggggag tcctggtcgt ggagctctcc 900
 ctgcggagca ggggattttc cagtctctat agcttctcag atgttctcca ccacctcatc 960
                                                                    990
 atgatgttgg ggatttgtgc cgtgttatag
 <210> 14
```

<211> 14 <211> 699

```
<212> DNA
 <213> Homo sapiens
 <400> 14
 atgctctaca caaggaaaaa cctgacctgc gcacaaacca tcaactcctc agcttttggg 60
 aacttgaatg tgaccaagaa aaccaccttc attgtccatg gattcaggcc aacaggctcc 120
 cctcctgttt ggatggatga cttagtaaag ggtttgctct ctgttgaaga catgaacgta 180
 gttgttgttg attggaatcg aggagctaca actttaatat atacccatgc ctctagtaag 240
 accagaaaag tagccatggt cttgaaggaa tttattgacc agatgttggc agaaggagct 300
 tetettgatg acatttacat gateggagta agtetaggag eccaeatate tgggtttgtt 360
 ggagagatgt acgatggatg gctggggaga attacaggcc tcgaccctgc aggcccttta 420
 ttcaacggga aacctcacca agacagatta gatcccagtg atgcgcagtt tgttgatgtc 480
 atccattccg acactgatgg taacgctcct ttccttgtgg cactgggcta caaggagcca 540
 ttaggaaaca tagacttcta cccaaatgga ggattggatc aacctggctg ccccaaaaca 600
 atattgggag gaaatgttaa ggaaatgata caggcttcct atatcttttt ccttaaaaac 660
 gactctatgg acttaagttc accgaaggaa gtggaatga
<210> 15
 <211> 1359
<212> DNA
<213> Homo sapiens
<400> 15
atgttgagat tctacttatt catcagtttg ttgtgcttgt caagatcaga cgcagaagaa 60
acatgtcctt cattcaccag gctgagcttt cacagtgcag tggttggtac gggactaaat 120
gtgaggctga tgctctacac aaggaaaaac ctgacctgcg cacaaaccat caactcctca 180
gcttttggga acttgaatgt gaccaagaaa accaccttca ttgtccatgg attcaggcca 240
acaggetece etectgittg gatggatgae ttagtaaagg gittgetete tgitgaagae 300
atgaacgtag ttgttgttga ttggaatcga ggagctacaa ctttaatata tacccatgcc 360
tctagtaaga ccagaaaagt agccatggtc ttgaaggaat ttattgacca gatgttggca 420
gaaggagctt ctcttgatga catttacatg atcggagtaa gtctaggagc ccacatatct 480
gggtttgttg gagagatgta cgatggatgg ctggggagaa ttacaggcct cgaccctgca 540
ggccctttat tcaacgggaa acctcaccaa gacagattag atcccagtga tgcgcagttt 600
gttgatgtca tccattccga cactgatgca ctgggctaca aggagccatt aggaaacata 660
gacttctacc caaatggagg attggatcaa cctggctgcc ccaaaacaat attgggagga 720
tttcagtatt ttaaatgtga ccaccagagg tctgtatacc tgtacctgtc ttccctgaga 780
gagagetgea ceateactge gtatecetgt gaetectace aggattatag gaatggeaag 840
tgtgtcagct gcggcacgtc acaaaaagag tcctgtcccc ttctgggcta ttatgctgat 900
aattggaaag accatctaag ggggaaagat cctccaatga cgaaggcatt ctttgacaca 960
gctgaggaga gcccattctg catgtatcat tactttgtgg atattataac atgggacaag 1020
aatgtaagaa gaggggacat taccatcaaa ttgagagaca aagctggaaa cacccacaga 1080
tecaaaatea teagtaatga acceaceaca ttteagaaat ateaecaagt gagtetaett 1140
gcaagattta atcaagatct ggataaagtg gctgcaattt ccttgatgtt ctctacagga 1200
tctctaatag gcccaaggta caagctcagg attctccgaa tgaagttaag gtcccttgcc 1260
catccggaga ggcctcagct gtgtcggtat gatcttgtcc tgatggaaaa cgttgaaaca 1320
gtcttccaac ctattctttg cccagagttg cagttgtaa
<210> 16
<211> 1353
<212> DNA
<213> Homo sapiens
<400> 16
atggggctcc ggagccacca cctcagcctg ggccttctgc ttctgtttct actccctgca 60
gagtgcctgg gagctgaggg ccggctggct ctcaagctgt tccgtgacct ctttgccaac 120
tacacaagtg ccctgagacc tgtggcagac acagaccaga ctctgaatgt gaccctggag 180
gtgacactgt cccagatcat cgacatggat gaacggaacc aggtgctgac cctgtatctg 240
tggatacggc aggagtggac agatgcctac ctacgatggg accccaatgc ctatggtggc 300
ctggatgcca tccgcatccc cagcagtctt gtgtggcggc cagacatcgt actctataac 360
```

```
aaagccgacg cgcagcctcc aggttccgcc agcaccaacg tggtcctgcg ccacgatggc 420
geogtgeget gggaegegee ggeeateaeg egeagetegt geegegtgga tgtageagee 480
ttcccgttcg acgcccagca ctgcggcctg acgttcggct cctggactca cggcgggcac 540
caactggatg tgcggccgcg cggcgctgca gccagcctgg cggacttcgt ggagaacgtg 600
gagtggcgcg tgctgggcat gccggcgcgg cggcgcgtgc tcacctacgg ctgctgctcc 660
gagecetace ecgaegteae etteacgetg etgetgegee geegegeege egeetaegtg 720
tgcaacetge tgctgccctg cgtgctcatc tcgctgcttg cgccgctcgc cttccacctg 780
cctgccgact caggcgagaa ggtgtcgctg ggcgtcaccg tgctgctggc gctcaccgtc 840
ttccagttgc tgctggccga gagcatgcca ccggccgaga gcgtgccgct catcgggaag 900
tactacatgg ccactatgac catggtcaca ttctcaacag cactcaccat ccttatcatg 960
aacctgcatt actgtggtcc cagtgtccgc ccagtgccag cctgggctag ggccctcctg 1020
ctgggacacc tggcacgggg cctgtgcgtg cgggaaagag gggagccctg tgggcagtcc 1080
aggccacctg agttatctcc tagcccccag tcgcctgaag gaggggctgg ccccccagcg 1140
ggcccttgcc acgagccacg atgtctgtgc cgccaggaag ccctactgca ccacgtagcc 1200
accattgcca ataccttccg cagccaccga gctgcccagc gctgccatga ggactggaag 1260
cgcctggccc gtgtgatgga ccgcttcttc ctggccatct tcttctccat ggccctggtc 1320
atgageetee tggtgetggt geaggeeetg tga
<210> 17
<211> 768
<212> DNA
<213> Homo sapiens
<400> 17
atggttaagg gtgagaaagg ccccaagggc aagaagatca ccctcaaggt ggccaggaat 60
tgcatcaaaa tcacttttga tgggaaaaag cgccttgact tgagcaagat gggaattacc 120
accttcccca agtgtattct gcgccttagt gacatggacg agctggacct tagccggaat 180
cttatcagga agatccctga ctccatctcc aagttccaga acctccggtg gctggacctg 240
cacagcaact acatagacaa gctgcctgag tccattggcc agatgaccag cctgctctac 300
ctcaacgtca gcaacaaccg gctgaccagc aacgggctgc ccgtggagct gaagcaactc 360
aagaacatcc gcgctgtgaa cctaggcttg aaccacctgg acagcgtgcc caccacactg 420
ggggccctga aggagctcca cgaggtaggg ctccatgaca acctactgaa caacatcccc 480
gtgagcatct ccaagctccc caagctgaaa aagctcaaca taaagcggaa cccctttcca 540
aagccaggtg agtcggaaat attcatagac tccatcagga ggctggagaa cttgtatgtt 600
gtggaggaga aggatetgtg tgeggettge etgagaaaat gecaaaaege eegggacaae 660
ctgaatagaa tcaagaacat ggccacgacg acaccgagaa agaccatett teccaatetg 720
                                                                   768
atctcaccca attccatggc caaggactcc tgggaagact ggaggtga
<210> 18
<211> 645
<212> DNA
<213> Homo sapiens
<400> 18
atgcaggcag gaactcagtc aacgcatgag tctctgaagc ctcagagggt acaatttcag 60
 tcccgaaatt ttcacaacat tttgcaatgg cagcctggga gggcacttac tggcaacagc 120
 agtgtctatt ttgtgcagta caaaatatat ggacagagac aatggaaaaa taaagaagac 180
 tgttggggta ctcaagaact ctcttgtgac cttaccagtg aaacctcaga catacaggaa 240
 ccttattacg ggagggtgag ggcggcctcg gctgggagct actcagaatg gagcatgacg 300
 ccgcggttca ctccctggtg ggaaacaaaa atagatcctc cagtcatgaa tataacccaa 360
 gtcaatggct ctttgttggt aattctccat gctccaaatt taccatatag ataccaaaag 420
 gaaaaaaatg tatctataga agattactat gaactactat accgagtttt tataattaac 480
 aattcactag aaaaggagca aaaggtttat gaaggggctc acagagcggt tgaaattgaa 540
 gctctaacac cacactccag ctactgtgta gtggctgaaa tatatcagcc catgttagac 600
                                                                   645
 agaagaagtc agagaagtga agagagatgt gtggaaattc catga
 <210> 19
 <211> 696
 <212> DNA
```

15/53

```
<213> Homo sapiens
<400> 19
atgatgccta aacattgctt tctaggcttc ctcatcagtt tcttccttac tggtgtagca 60
ggaactcagt caacgcatga gtctctgaag cctcagaggg tacaatttca gtcccgaaat 120
tttcacaaca ttttgcaatg gcagcctggg agggcactta ctggcaacag cagtgtctat 180
tttgtgcagt acaaaatata tggacagaga caatggaaaa ataaagaaga ctgttggggt 240
actcaagaac tetettgtga cettaceagt gaaaceteag acatacagga acettattac 300
gggagggtga gggcggcctc ggctgggagc tactcagaat ggagcatgac gccgcggttc 360
actecetggt gggaaacaaa aatagateet eeagteatga atataaceea agteaatgge 420
tctttgttgg taattctcca tgctccaaat ttaccatata gataccaaaa ggaaaaaaat 480
gtatctatag aagattacta tgaactacta taccgagttt ttataattaa caattcacta 540
gaaaaggagc aaaaggttta tgaaggggct cacagagcgg ttgaaattga agctctaaca 600
ccacactcca gctactgtgt agtggctgaa atatatcagc ccatgttaga cagaagaagt 660
cagagaagtg aagagagatg tgtggaaatt ccatga
<210> 20
<211> 792
<212> DNA
<213> Homo sapiens
<400> 20
atgatgeeta aacattgett tetaggette etcateagtt tetteettae tggtgtagea 60
ggaactcagt caacgcatga gtctctgaag cctcagaggg tacaatttca gtcccgaaat 120
tttcacaaca ttttgcaatg gcagcctggg agggcactta ctggcaacag cagtgtctat 180
tttgtgcagt acaaaatcat gttctcatgc agcatgaaaa gctctcacca gaagccaagt 240
ggatgctggc agcacatttc ttgtaacttc ccaggctgca gaacattggc taaatatgga 300
cagagacaat ggaaaaataa agaagactgt tggggtactc aagaactctc ttgtgacctt 360
accagtgaaa cctcagacat acaggaacct tattacggga gggtgagggc ggcctcggct 420
gggagetaet cagaatggag catgaegeeg eggtteaete eetggtggga aacaaaaata 480
gatcctccag tcatgaatat aacccaagtc aatggctctt tgttggtaat tctccatgct 540
ccaaatttac catatagata ccaaaaggaa aaaaatgtat ctatagaaga ttactatgaa 600
ctactatacc gagtttttat aattaacaat tcactagaaa aggagcaaaa ggtttatgaa 660
ggggctcaca gagcggttga aattgaagct ctaacaccac actccagcta ctgtgtagtg 720
gctgaaatat atcagcccat gttagacaga agaagtcaga gaagtgaaga gagatgtgtg 780
gaaattccat ga
<210> 21
<211> 780
<212> DNA
<213> Homo sapiens
atgtatgtat tatctccagt ggaatttata attctacaac ttttatttat tcaggccatt 60
tccagcagtt taaaaggttt cctttcagct atgagactgg ctcatagagg ctgtaatgtt 120
gatacaccag tttcaacgct cacaccagtg aagacttcag aatttgaaaa ctttaaaact 180
aaaatggtta tcacatccaa aaaagactat cctctaagta agaattttcc atattccttg 240
gaacatcttc agacttctta ctgtgggctt gtccgagttg atatgcgtat gctttgctta 300
aaaagcctta ggaaattaga cttgagtcac aaccatataa aaaagcttcc agctacaatt 360
ggagacetea tacacettea agaacttaac etgaatgaca atcacttgga gteatttagt 420
gtagccttgt gtcattctac actccagaag tcacttcgga gtttggacct cagcaagaac 480
aaaatcaagg cactccctgt gcagttttgc cagctccagg aacttaagaa tttaaaactt 540
gacgataatg aattgattca atttccttgc aagataggac aactaataaa ccttcgcttt 600
ttgtcagcag ctcgaaataa gcttccattt ttgcctagtg aatttagaaa tttatccctt 660
gaatacttgg atctttttgg aaatactttt gaacaaccaa aagtccttcc agtaataaag 720
ctgcaagcac cattaacttt attggaatct tctgcacgaa ccatattaca taataggtaa 780
```

```
<211> 1251
<212> DNA
<213> Homo sapiens
<400> 22
atgaagctac actgtgaggt ggaggtgatc agccggcact tgcccgcctt ggggcttagg 60
aaccggggca agggcgtccg agccgtgttg agcctctgtc agcagacttc caggagtcag 120
ccgccggtcc gagccttcct gctcatctcc accctgaagg acaagcgcgg gacccgctat 180
gagctaaggg agaacattga gcaattcttc accaaatttg tagatgaggg gaaagccact 240
gttcggttaa aggagcctcc tgtggatatc tgtctaagta aggccatttc cagcagttta 300
aaaggtttcc tttcagctat gagactggct catagaggct gtaatgttga tacaccagtt 360
tcaacgctca caccagtgaa gacttcagaa tttgaaaact ttaaaactaa aatggttatc 420
acatccaaaa aagactatcc tctaagtaag aattttccat attccttgga acatcttcag 480
acttettact gtgggettgt cegagttgat atgegtatge tttgettaaa aageettagg 540
aaattagact tgagtcacaa ccatataaaa aagcttccag ctacaattgg agacctcata 600
caccttcaag aacttaacct gaatgacaat cacttggagt catttagtgt agccttgtgt 660
cattctacac tccagaagtc acttcggagt ttggacctca gcaagaacaa aatcaaggca 720
ctccctgtgc agttttgcca gctccaggaa cttaagaatt taaaacttga cgataatgaa 780
ttgattcaat ttccttgcaa gataggacaa ctaataaacc ttcgcttttt gtcagcagct 840
cgaaataagc ttccatttt gcctagtgaa tttagaaatt tatcccttga atacttggat 900
ctttttggaa atacttttga acaaccaaaa gtccttccag taataaagct gcaagcacca 960
ttaactttat tggaatcttc tgcacgaacc atattacata ataggaatag gattccatat 1020
ggctctcata tcattccatt ccatctctgc caagatttgg ataccgcaaa aatttgtgtt 1080
tgtggaagat tctgtctgaa ctctttcatt caaggaacta ctaccatgaa tctgcattct 1140
gttgcccaca ctgtggtctt agtagataat ttgggtggta ctgaagcacc tattatctct 1200
tatttctgtt ctctaggctg ttatgttaat tcctctgata tgttaaagta a
<210> 23
<211> 461
<212> PRT
<213> Homo sapiens
<400> 23
Met Leu Gly Ile Trp Ile Val Ala Phe Leu Phe Phe Gly Thr Ser Arg
                                     10
                  5
Gly Lys Glu Val Cys Tyr Glu Arg Leu Gly Cys Phe Lys Asp Gly Leu
                                 25
Pro Trp Thr Arg Thr Phe Ser Thr Glu Leu Val Gly Leu Pro Trp Ser
                                                 45
                             40
Pro Glu Lys Ile Asn Thr Arg Phe Leu Leu Tyr Thr Ile His Asn Pro
                         55
                                             60
Asn Ala Tyr Gln Glu Ile Ser Ala Val Asn Ser Ser Thr Ile Gln Ala
                                         75
 Ser Tyr Phe Gly Thr Asp Lys Ile Thr Arg Ile Asn Ile Ala Gly Trp
                                     90
                 85
 Lys Thr Asp Gly Lys Trp Gln Arg Asp Met Cys Asn Val Leu Leu Gln
                                                     110
                                 105
             100
 Leu Glu Asp Ile Asn Cys Ile Asn Leu Asp Trp Ile Asn Gly Ser Arg
                                                 125
                             120
 Glu Tyr Ile His Ala Val Asn Asn Leu Arg Val Val Gly Ala Glu Val
                                             140
                         135
     130
 Ala Tyr Phe Ile Asp Val Leu Met Lys Lys Phe Glu Tyr Ser Pro Ser
                                         155
                     150
 145
 Lys Val His Leu Ile Gly His Ser Leu Gly Ala His Leu Ala Gly Glu
                                     170
                 165
 Ala Gly Ser Arg Ile Pro Gly Leu Gly Arg Ile Thr Gly Leu Asp Pro
                                                      190
                                 185
 Ala Gly Pro Phe Phe His Asn Thr Pro Lys Glu Val Arg Leu Asp Pro
                             200
         195
                                    17/53
```

```
Ser Asp Ala Asn Phe Val Asp Val Ile His Thr Asn Ala Ala Arg Ile
                        215
Leu Phe Glu Leu Gly Val Gly Thr Ile Asp Ala Cys Gly His Leu Asp
                    230
                                         235
Phe Tyr Pro Asn Gly Gly Lys His Met Pro Gly Cys Glu Asp Leu Ile
                245
                                    250
Thr Pro Leu Leu Lys Phe Asn Phe Asn Ala Tyr Lys Lys Glu Met Ala
            260
Ser Phe Phe Asp Cys Asn His Ala Arg Ser Tyr Gln Phe Tyr Ala Glu
                            280
Ser Ile Leu Asn Pro Asp Ala Phe Ile Ala Tyr Pro Cys Arg Ser Tyr
                        295
Thr Ser Phe Lys Ala Gly Thr Cys Val Gly Cys Ala Asp Leu Leu His
                    310
                                        315
Arg Ile Asp Lys Ile Gly Ser His Thr Ser His Val Phe Leu Thr Leu
                325
                                    330
Ser Leu Pro Phe Leu Leu Val Ser Leu Tyr Leu Gly Trp Arg His Lys
                                345
Leu Ser Val Lys Leu Ser Gly Ser Glu Val Thr Gln Gly Thr Val Phe
                            360
                                                365
Leu Arg Val Gly Gly Ala Val Arg Lys Thr Gly Glu Phe Ala Ile Val
                        375
                                            380
Ser Gly Lys Leu Glu Pro Gly Met Thr Tyr Thr Lys Leu Ile Asp Ala
                    390
                                        395
Asp Val Asn Val Gly Asn Ile Thr Ser Val Gln Phe Ile Trp Lys Lys
                405
                                    410
His Leu Phe Glu Asp Ser Gln Asn Lys Leu Gly Ala Glu Met Val Ile
            420
Asn Thr Ser Gly Lys Tyr Gly Tyr Lys Ser Thr Phe Cys Ser Gln Asp
                            440
Ile Met Gly Pro Asn Ile Leu Gln Asn Leu Lys Pro Cys
                        455
```

<210> 24 <211> 308 <212> PRT

<213> Homo sapiens

<400> 24

Met Pro Phe Leu Gln Leu Lys Gly Arg.Ala Thr Pro Pro Ser Trp Arg 10 His Asp Ser Arg Ser Leu Val His Leu Leu Asp Gly Lys Glu Gly Val 20 25 Trp Asp Thr Thr Gly Tyr Ala Leu Gly Ser Arg Glu Ser Leu Asn Pro 40 Asp Met Gly Ile Gly Asp Pro His Gly His Ser Thr Val His Thr Arg 60 Glu Ala Gly Thr Ala Cys Pro Leu Gln Leu Leu Gly Ala Arg Glu Ala Ser Leu Leu Ala Cys Gly Ile Cys Gln Ala Ser Gly Gln Ile Phe Ile 90 Thr Gln Thr Leu Gly Ile Lys Gly Tyr Arg Thr Val Val Ala Leu Asp 105 Lys Val Pro Glu Asp Val Gln Glu Tyr Ser Trp Tyr Trp Gly Ala Asn 120 125 Asp Ser Ala Gly Asn Met Ile Ile Ser His Lys Pro Pro Ser Ala Gln 135 140 Gln Pro Gly Pro Met Tyr Thr Gly Arg Glu Arg Val Asn Arg Glu Gly

18/53

```
150
                                       155
145
Ser Leu Leu Ile Arg Pro Thr Ala Leu Asn Asp Thr Gly Asn Tyr Thr
               165
                                  170
Val Arg Val Val Ala Gly Asn Glu Thr Gln Arg Ala Thr Gly Trp Leu
                               185
Glu Val Leu Asp Gly Pro Asp Tyr Val Leu Leu Arg Ser Asn Pro Asp
                                               205
                          200
Asp Phe Asn Gly Ile Val Thr Ala Glu Ile Gly Ser Gln Val Glu Met
                                           220
                       215
Glu Cys Ile Cys Tyr Ser Phe Leu Asp Leu Lys Tyr His Trp Ile His
                   230
                           235
Asn Gly Ser Leu Leu Asn Phe Ser Asp Ala Lys Met Asn Leu Ser Ser
                                  250
               245
Leu Ala Trp Glu Gln Met Gly Arg Tyr Arg Cys Thr Val Glu Asn Pro
                               265
Val Thr Gln Leu Ile Met Tyr Met Asp Val Arg Ile Gln Ala Pro His
                    280
                                               285
Glu Cys Ser Ser Ser Pro Pro Gly Ser Cys Phe Ala His Leu Pro Ala
                      295
Ser Met Pro Cys
305
<210> 25
<211> 457
<212> PRT
<213> Homo sapiens
<400> 25
Met Asp Leu Ser Arg Pro Arg Trp Ser Leu Trp Arg Arg Val Phe Leu
                                    10
                5
Met Ala Ser Leu Leu Ala Cys Gly Ile Cys Gln Ala Ser Gly Gln Ile
Phe Ile Thr Gln Thr Leu Gly Ile Lys Gly Tyr Arg Thr Val Val Ala
Leu Asp Lys Val Pro Glu Asp Val Gln Glu Tyr Ser Trp Tyr Trp Gly
                        55
Ala Asn Asp Ser Ala Gly Asn Met Ile Ile Ser His Lys Pro Pro Ser
                   70
Ala Gln Gln Pro Gly Pro Met Tyr Thr Gly Arg Glu Arg Val Asn Arg
                                    90
               85
Glu Gly Ser Leu Leu Ile Arg Pro Thr Ala Leu Asn Asp Thr Gly Asn
                               105
            100
Tyr Thr Val Arg Val Val Ala Gly Asn Glu Thr Gln Arg Ala Thr Gly
                                                125
                           120
Trp Leu Glu Val Leu Glu Leu Gly Ser Asn Leu Gly Ile Ser Val Asn
                                            140
                        135
Ala Ser Ser Leu Val Glu Asn Met Asp Ser Val Ala Ala Asp Cys Leu
                                        155
                    150
Thr Asn Val Thr Asn Ile Thr Trp Tyr Val Asn Asp Val Pro Thr Ser
                                    170
                165
Ser Ser Asp Arg Met Thr Ile Ser Pro Asp Gly Lys Thr Leu Val Ile
                                185
            180
Leu Arg Val Ser Arg Tyr Asp Arg Thr Ile Gln Cys Met Ile Glu Ser
                            200
Phe Pro Glu Ile Phe Gln Arg Ser Glu Arg Ile Ser Leu Thr Val Ala
                                            220
                        215
Tyr Gly Pro Asp Tyr Val Leu Leu Arg Ser Asn Pro Asp Asp Phe Asn
                                        235
225
                    230
```

19/53

Gly Ile Val Thr Ala Glu Ile Gly Ser Gln Val Glu Met Glu Cys Ile 245 250 Cys Tyr Ser Phe Leu Asp Leu Lys Tyr His Trp Ile His Asn Gly Ser 260 265 Leu Leu Asn Phe Ser Asp Ala Lys Met Asn Leu Ser Ser Leu Ala Trp 280 Glu Gln Met Gly Arg Tyr Arg Cys Thr Val Glu Asn Pro Val Thr Gln 295 300 Leu Ile Met Tyr Met Asp Val Arg Ile Gln Ala Pro His Glu Cys Pro 310 315 Leu Pro Ser Gly Ile Leu Pro Val Val His Arg Asp Phe Ser Ile Ser 325 330 Gly Ser Met Val Met Phe Leu Ile Met Leu Thr Val Leu Gly Gly Val 345 Tyr Ile Cys Gly Val Leu Ile His Ala Leu Ile Asn His Tyr Ser Ile 360 Arg Cys Pro His Cys Ser Gly Thr Arg Val Gly Cys Trp Leu Gly Ala 375 380 Gly Thr Gln Glu Pro Ala Leu Pro Pro Glu Gly Lys Gln Ser Gln Lys 395 Gly Arg Asp Lys Pro Gly Thr Arg Leu Ser Gly Ile Ile Trp Gly Arg 405 410 Gln Ile Ser Pro Gln Asp Leu Lys Leu Met Gly Ala Arg Glu Gly Leu 420 425 Glu Ser Ala Met Val Leu Asn Ser Cys Gly Val Ser Ser Ser Asn Phe 440 Pro Ser Leu Cys Val Tyr Lys Gly Tyr 455

<210> 26 <211> 704 <212> PRT

<213> Homo sapiens

<400> 26 Met Leu His Asp Gly Leu Thr Ala Pro Asp Gly Cys Gly Ile Tyr Ser 10 Leu Thr Gly Arg Glu Val Leu Thr Pro Phe Pro Gly Leu Gly Thr Ala 25 Ala Ala Pro Ala Gln Gly Gly Ala His Leu Lys Gln Cys Asp Leu Leu 40 Lys Leu Ser Arg Arg Gln Lys Gln Leu Cys Arg Arg Glu Pro Gly Leu Ala Glu Thr Leu Arg Asp Ala Ala His Leu Gly Leu Leu Glu Cys Gln 75 Phe Gln Phe Arg His Glu Arg Trp Asn Cys Ser Leu Glu Gly Arg Met Gly Leu Leu Lys Arg Gly Phe Lys Glu Thr Ala Phe Leu Tyr Ala Val 100 105 Ser Ser Ala Ala Leu Thr His Thr Leu Ala Arg Ala Cys Ser Ala Gly 120 Arg Met Glu Arg Cys Thr Cys Asp Asp Ser Pro Gly Leu Glu Ser Arg 135 140 Gln Ala Trp Gln Trp Gly Val Cys Gly Asp Asn Leu Lys Tyr Ser Thr 150 155 Lys Phe Leu Ser Asn Phe Leu Gly Ser Lys Arg Gly Asn Lys Asp Leu 165 170 Arg Ala Arg Ala Asp Ala His Asn Thr His Val Gly Ile Lys Ala Val 20/53

								105					190		
	_	~3	180	A	mb.~	のひと	Cys	185	Cvs	His	Glv			Gly	Ser
		105					200					203			
	210	Val				215	Lys				240				
005	Gln				つてり	Arg	Tyr			233					
225 Ala	Thr	Asn	Glu	Ala 245	Leu	Gly	Arg	Leu	Glu 250	Leu	Trp	Ala	Pro	Ala 255	Arg
Gln	Gly	Ser	Leu 260	Thr	Lys	Gly	Leu	Ala 265	Pro	Arg	Ser	Gly	Asp 270	Leu	Val
		275	Asp				Phe 280	Cys				200			
	200	Ala	Gly			295	Ser				300				
205	Cys				210	Asp	Thr			273					220
Cys				325	Gln		Суѕ		330		_			333	
			3 1 0	Leu			Thr	345					220		
		255	Arg	Gln			Gly 360					202			
	220	Arg	Ala			375	Gly				200				
205	Leu	Gly			าวดก		Pro			כככ					400
Gln	Суя			405					410					410	
			420	١				425					430		Gly
		131	=				440					440			Ser
	AEC	١				455	i				400	,			Ala
100					470	l				4/:)				Arg 480
				1 Q F					490)				ユノー	
			500	٦.				505)				21	,	Asn
		C 1	C				520	}				24.	,		Arg
	F 2	^				53,	٦.				241	,			Val
C / C	=				55()				22:	•				560
				561	5				57	U				57.	
			5.8	0				58	5				יעכ	U	r Ala
		59	5				600	0				00	5		u Leu
	61	Λ				61	5				62	U			o Arg
62	_				63	n				ده	O				g Pro 640 n Ala
Se	r Ly	т Ту	r Se	r Pr 64	o Gl; 5	y Th	r Al		65	U	т сх	5 5e	I AT	65 65	u Ala 5
									21/5	3					

 Ser
 Cys
 Ser
 Leu
 Cys
 Cys
 Gly
 Arg
 Gly
 Tyr
 Asp
 Thr
 Gln
 Ser
 Arg

 660
 660
 665
 665
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 680
 685
 685
 685
 685
 685
 685
 690
 695
 695
 690
 690
 700
 690
 695
 695
 700
 690
 690
 690
 695
 695
 695
 695
 665
 665
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 670
 6

<210> 27 <211> 361 <212> PRT <213> Homo sapiens

.

<400> 27 Met Lys Pro Leu Arg Arg Pro Leu Pro Phe Ile Cys Pro Ser Pro Pro Ser Pro Arg Leu Thr Cys Leu Pro Pro Leu Ala Leu Ser Ser Leu Thr Gly Arg Glu Val Leu Thr Pro Phe Pro Gly Leu Gly Thr Ala Ala Ala Pro Ala Gln Gly Gly Ala His Leu Lys Gln Cys Asp Leu Leu Lys Leu Ser Arg Arg Gln Lys Gln Leu Cys Arg Arg Glu Pro Gly Leu Ala Glu Thr Leu Arg Asp Ala Ala His Leu Gly Leu Leu Glu Cys Gln Phe Gln 90 Phe Arg His Glu Arg Trp Asn Cys Ser Leu Glu Gly Arg Met Gly Leu 105 Leu Lys Arg Gly Phe Lys Glu Thr Ala Phe Leu Tyr Ala Val Ser Ser 120 Ala Ala Leu Thr His Thr Leu Ala Arg Ala Cys Ser Ala Gly Arg Met 135 Glu Arg Cys Thr Cys Asp Asp Ser Pro Gly Leu Glu Ser Arg Gln Ala 150 155 Trp Gln Trp Gly Val Cys Gly Asp Asn Leu Lys Tyr Ser Thr Lys Phe 165 170 Leu Ser Asn Phe Leu Gly Ser Lys Arg Gly Asn Lys Asp Leu Arg Ala 185 Arg Ala Asp Ala His Asn Thr His Val Gly Ile Lys Ala Val Lys Ser 200 205 Gly Leu Arg Thr Thr Cys Lys Cys His Gly Val Ser Gly Ser Cys Ala 215 220 Val Arg Thr Cys Trp Lys Gln Leu Ser Pro Phe Arg Glu Thr Gly Gln 230 235 Val Leu Lys Leu Arg Tyr Asp Ser Ala Val Lys Val Ser Ser Ala Thr 250 Asn Glu Ala Leu Gly Arg Leu Glu Leu Trp Ala Pro Ala Arg Gln Gly 265 Ser Leu Thr Lys Gly Leu Ala Pro Arg Ser Gly Asp Leu Val Tyr Met 280 Glu Asp Ser Pro Ser Phe Cys Arg Pro Ser Lys Tyr Ser Pro Gly Thr 295 . 300 Ala Gly Arg Val Cys Ser Arg Glu Ala Ser Cys Ser Ser Leu Cys Cys 310 Gly Arg Gly Tyr Asp Thr Gln Ser Arg Leu Val Ala Phe Ser Cys His 325 330 Cys Gln Val Gln Trp Cys Cys Tyr Val Glu Cys Gln Gln Cys Val Gln 345 Glu Glu Leu Val Tyr Thr Cys Lys His

22/53

355 360

```
<210> 28
<211> 365
<212> PRT
<213> Homo sapiens
<400> 28
Met Trp Leu Leu Thr Thr Thr Cys Leu Ile Cys Gly Thr Leu Asn
                        10
Ala Gly Gly Phe Leu Asp Leu Glu Asn Glu Val Asn Pro Glu Val Trp
                              25
Met Asn Thr Ser Glu Ile Ile Ile Tyr Asn Gly Tyr Pro Ser Glu Glu
                          40
Tyr Glu Val Thr Thr Glu Asp Gly Tyr Ile Leu Leu Val Asn Arg Ile
                      55
Pro Tyr Gly Arg Thr His Ala Arg Ser Thr Ala Asp Ala Gly Tyr Asp
                                      75 .
                  70
Val Trp Met Gly Asn Ser Arg Gly Asn Thr Trp Ser Arg Arg His Lys
                                  90
Thr Leu Ser Glu Thr Asp Glu Lys Phe Trp Ala Phe Ser Phe Asp Glu
                             105
Met Ala Lys Tyr Asp Leu Pro Gly Val Ile Asp Phe Ile Val Asn Lys
               120
Thr Gly Gln Glu Lys Leu Tyr Phe Ile Gly His Ser Leu Gly Thr Thr
            135
Ile Gly Phe Val Ala Phe Ser Thr Met Pro Glu Leu Ala Gln Arg Ile
        150
                                      155
Lys Met Asn Phe Ala Leu Gly Pro Thr Ile Ser Phe Lys Tyr Pro Thr
                                  170
              165
Gly Ile Phe Thr Arg Phe Phe Leu Leu Pro Asn Ser Ile Ile Lys Ala
                               185
Val Phe Gly Thr Lys Gly Phe Phe Leu Glu Asp Lys Lys Thr Lys Ile
      195
                           200
Ala Ser Thr Lys Ile Cys Asn Asn Lys Ile Leu Trp Leu Ile Cys Ser
                                          220
                       215
Glu Phe Met Ser Leu Trp Ala Gly Ser Asn Lys Lys Asn Met Asn Gln
                                       235
                   230
Ser Arg Met Asp Val Tyr Met Ser His Ala Pro Thr Gly Ser Ser Val
                                   250
His Asn Ile Leu His Ile Lys Gln Leu Tyr His Ser Asp Glu Phe Arg
                               265
Ala Tyr Asp Trp Gly Asn Asp Ala Asp Asn Met Lys His Tyr Asn Gln
                          280
Ser His Pro Pro Ile Tyr Asp Leu Thr Ala Met Lys Val Pro Thr Ala
                       295
                                           300
Ile Trp Ala Gly Gly His Asp Val Leu Val Thr Pro Gln Asp Val Ala
                                      315
                    310
Arg Ile Leu Pro Gln Ile Lys Ser Leu His Tyr Phe Lys Leu Leu Pro
                                   330
                325
 Asp Trp Asn His Phe Asp Phe Val Trp Gly Leu Asp Ala Pro Gln Arg
                               345
 Met Tyr Ser Glu Ile Ile Ala Leu Met Lys Ala Tyr Ser
```

<210> 29 <211> 397

<213> Homo sapiens <400> 29 Met Trp Gln Leu Leu Ala Ala Cys Trp Met Leu Leu Gly Ser 10 Met Tyr Gly Tyr Asp Lys Lys Gly Asn Asn Ala Asn Pro Glu Ala Asn 25 Met Asn Ile Ser Gln Ile Ile Ser Tyr Trp Gly Tyr Pro Tyr Glu Glu Tyr Asp Val Thr Thr Lys Asp Gly Tyr Ile Leu Gly Ile Tyr Arg Ile . 55 Pro His Gly Arg Gly Cys Pro Gly Arg Thr Ala Pro Lys Pro Ala Val 70 75 Tyr Leu Gln His Gly Leu Ile Ala Ser Ala Ser Asn Trp Ile Cys Asn Leu Pro Asn Asn Ser Leu Ala Phe Leu Leu Ala Asp Ser Gly Tyr Asp 100 105 Val Trp Leu Gly Asn Ser Arg Gly Asn Thr Trp Ser Arg Lys His Leu 120 Lys Leu Ser Pro Lys Ser Pro Glu Tyr Trp Ala Phe Ser Leu Asp Glu 135 Met Ala Lys Tyr Asp Leu Pro Ala Thr Ile Asn Phe Ile Ile Glu Lys 150 155 Thr Gly Gln Lys Arg Leu Tyr Tyr Val Gly His Ser Gln Gly Thr Thr 165 170 Ile Ala Phe Ile Ala Phe Ser Thr Asn Pro Glu Leu Ala Lys Lys Ile 185 Lys Ile Phe Phe Ala Leu Ala Pro Val Val Thr Val Lys Tyr Thr Gln 195 200 Ser Pro Met Lys Lys Leu Thr Thr Leu Ser Arg Arg Val Val Lys Val 215 220 Leu Phe Gly Asp Lys Met Phe His Pro His Thr Leu Phe Asp Gln Phe 230 235 Ile Ala Thr Lys Val Cys Asn Arg Lys Leu Phe Arg Arg Ile Cys Ser 245 250 Asn Phe Leu Phe Thr Leu Ser Gly Phe Asp Pro Gln Asn Leu Asn Met 265 Ser Arg Leu Asp Val Tyr Leu Ser His Asn Pro Ala Gly Thr Ser Val 275 280 285 Gln Asn Met Leu His Trp Ala Gln Leu Tyr His Ser Asp Glu Phe Arg 295 300 Ala Tyr Asp Trp Gly Asn Asp Ala Asp Asn Met Lys His Tyr Asn Gln 310 315 Ser His Pro Pro Ile Tyr Asp Leu Thr Ala Met Lys Val Pro Thr Ala 325 330 Ile Trp Ala Gly Gly His Asp Val Leu Val Thr Pro Gln Asp Val Ala 340 345 Arg Ile Leu Pro Gln Ile Lys Ser Leu His Tyr Phe Lys Leu Leu Pro 360 Asp Trp Asn His Phe Asp Phe Val Trp Gly Leu Asp Ala Pro Gln Arg 375 380 Met Tyr Ser Glu Ile Ile Ala Leu Met Lys Ala Tyr Ser 390 <210> 30

<210> 30 <211> 3705 <212> PRT

<212> PRT

<213> Homo sapiens

<400> 30 Met Ala Lys Arg Leu Cys Ala Gly Ser Ala Leu Cys Val Arg Gly Pro Arg Gly Pro Ala Pro Leu Leu Leu Val Gly Leu Ala Leu Leu Gly Ala 25 Ala Arg Ala Arg Glu Glu Ala Gly Gly Gly Phe Ser Leu His Pro Pro 40 Tyr Phe Asn Leu Ala Glu Gly Ala Arg Ile Ala Ala Ser Ala Thr Cys Gly Glu Glu Ala Pro Ala Arg Gly Ser Pro Arg Pro Thr Glu Asp Leu 70 Tyr Cys Lys Leu Val Gly Gly Pro Val Ala Gly Gly Asp Pro Asn Gln 90 Thr Ile Arg Gly Gln Tyr Cys Asp Ile Cys Thr Ala Ala Asn Ser Asn 105 Lys Ala His Pro Ala Ser Asn Ala Ile Asp Gly Thr Glu Arg Trp Trp 120 Gln Ser Pro Pro Leu Ser Arg Gly Leu Glu Tyr Asn Glu Val Asn Val 135 Thr Leu Asp Leu Gly Gln Val Phe His Val Ala Tyr Val Leu Ile Lys 155 150 Phe Ala Asn Ser Pro Arg Pro Asp Leu Trp Val Leu Glu Arg Ser Met 170 Asp Phe Gly Arg Thr Tyr Gln Pro Trp Gln Phe Phe Ala Ser Ser Lys 185 Arg Asp Cys Leu Glu Arg Phe Gly Pro Gln Thr Leu Glu Arg Ile Thr 205 200 Arg Asp Asp Ala Ala Ile Cys Thr Thr Glu Tyr Ser Arg Ile Val Pro 220 215 Leu Glu Asn Gly Glu Ile Val Val Ser Leu Val Asn Gly Arg Pro Gly 235 230 Ala Met Asn Phe Ser Tyr Ser Pro Leu Leu Arg Glu Phe Thr Lys Ala 250 245 Thr Asn Val Arg Leu Arg Phe Leu Arg Thr Asn Thr Leu Leu Gly His 265 Leu Met Gly Lys Ala Leu Arg Asp Pro Thr Val Thr Arg Arg Tyr Tyr 285 280 Tyr Ser Ile Lys Asp Ile Ser Ile Gly Gly Arg Cys Val Cys His Gly 300 295 His Ala Asp Ala Cys Asp Ala Lys Asp Pro Thr Asp Pro Phe Arg Leu 315 310 Gln Cys Thr Cys Gln His Asn Thr Cys Gly Gly Thr Cys Asp Arg Cys 330 325 Cys Pro Gly Phe Asn Gln Gln Pro Trp Lys Pro Ala Thr Ala Asn Ser 345 340 Ala Asn Glu Cys Gln Ser Cys Asn Cys Tyr Gly His Ala Thr Asp Cys 365 360 Tyr Tyr Asp Pro Glu Val Asp Arg Arg Arg Ala Ser Gln Ser Leu Asp 380 375 Gly Thr Tyr Gln Gly Gly Gly Val Cys Ile Asp Cys Gln His His Thr 390 395 Thr Gly Val Asn Cys Glu Arg Cys Leu Pro Gly Phe Tyr Arg Ser Pro 410 405 Asn His Pro Leu Asp Ser Pro His Val Cys Arg Arg Cys Asn Cys Glu 425 Ser Asp Phe Thr Asp Gly Thr Cys Glu Asp Leu Thr Gly Arg Cys Tyr 440

Cys Arg Pro Asn Phe Ser Gly Glu Arg Cys Asp Val Cys Ala Glu Gly 455 Phe Thr Gly Phe Pro Ser Cys Tyr Pro Thr Pro Ser Ser Ser Asn Asp 470 Thr Arg Glu Gln Val Leu Pro Ala Gly Gln Ile Val Asn Cys Asp Cys 485 490 Ser Ala Ala Gly Thr Gln Gly Asn Ala Cys Arg Lys Asp Pro Arg Val 505 Gly Arg Cys Leu Cys Lys Pro Asn Phe Gln Gly Thr His Cys Glu Leu 520 Cys Ala Pro Gly Phe Tyr Gly Pro Gly Cys Gln Pro Cys Gln Cys Ser 535 540 Ser Pro Gly Val Ala Asp Asp Arg Cys Asp Pro Asp Thr Gly Gln Cys 550 555 Arg Cys Arg Val Gly Phe Glu Gly Ala Thr Cys Asp Arg Cys Ala Pro 570 Gly Tyr Phe His Phe Pro Leu Cys Gln Leu Cys Gly Cys Ser Pro Ala 585 Gly Thr Leu Pro Glu Gly Cys Asp Glu Ala Gly Arg Cys Leu Cys Gln 600 Pro Glu Phe Ala Gly Pro His Cys Asp Arg Cys Arg Pro Gly Tyr His 620 Gly Phe Pro Asn Cys Gln Ala Cys Thr Cys Asp Pro Arg Gly Ala Leu 630 Asp Gln Leu Cys Gly Ala Gly Gly Leu Cys Arg Cys Arg Pro Gly Tyr 650 Thr Gly Thr Ala Cys Gln Glu Cys Ser Pro Gly Phe His Gly Phe Pro 665 Ser Cys Val Pro Cys His Cys Ser Ala Glu Gly Ser Leu His Ala Ala 680 Cys Asp Pro Arg Ser Gly Gln Cys Ser Cys Arg Pro Arg Val Thr Gly 695 700 Leu Arg Cys Asp Thr Cys Val Pro Gly Ala Tyr Asn Phe Pro Tyr Cys 710 715 Glu Ala Gly Ser Cys His Pro Ala Gly Leu Ala Pro Val Asp Pro Ala 725 730 Leu Pro Glu Ala Gln Val Pro Cys Met Cys Arg Ala His Val Glu Gly 745 Pro Ser Cys Asp Arg Cys Lys Pro Gly Phe Trp Gly Leu Ser Pro Ser 760 765 Asn Pro Glu Gly Cys Thr Arg Cys Ser Cys Asp Leu Arg Gly Thr Leu 775 780 Gly Gly Val Ala Glu Cys Gln Pro Gly Thr Gly Gln Cys Phe Cys Lys 795 Pro His Val Cys Gly Gln Ala Cys Ala Ser Cys Lys Asp Gly Phe Phe 810 Gly Leu Asp Gln Ala Asp Tyr Phe Gly Cys Arg Ser Cys Arg Cys Asp 820 825 Ile Gly Gly Ala Leu Gly Gln Ser Cys Glu Pro Arg Thr Gly Val Cys 840 845 Arg Cys Arg Pro Asn Thr Gln Gly Pro Thr Cys Ser Glu Pro Ala Arg 855 Asp His Tyr Leu Pro Asp Leu His His Leu Arg Leu Glu Leu Glu Glu 870 Ala Ala Thr Pro Glu Gly His Ala Val Arg Phe Gly Phe Asn Pro Leu 885 890 Glu Phe Glu Asn Phe Ser Trp Arg Gly Tyr Ala Gln Met Ala Pro Val 905 Gln Pro Arg Ile Val Ala Arg Leu Asn Leu Thr Ser Pro Asp Leu Phe 26/53

							920					925			
Trp L		915	Dhe	Δra	ጥህዮ ነ	Val	Asn	Arq	Gly	Ala			Val	Ser	Gly
_						ロマム					J40				
Arg V	7al				0 = 0					223					
945 Thr A					Pro										
Phe I	[le	Thr	Val	Pro	Gln	Arg	Gly	Phe 985	Gly	Glu	Pro	Phe	Val 990	Leu	Asn
Pro (3ly	Thr	980 Trp	Ala	Leu	Arg	Val	Glu	Ala	Glu	Gly	Val	Leu	Leu	Asp
Tyr '							1 43()	1				T 0 0 -	,		
		~				11111	_				102	_			
Leu 1															
Gly .	Asp			10/					$\pm v \rightarrow$	U					
			400	Leu	Glu			1 111	Arg 5	Gln			,	-	Pro
Arg	Pro	Cys	106 Pro	o Thr	Glu	Gln	Leu	Ser	Pro	Ser	His	Pro 108	Pro	Leu	lle
		4 0 7	_			Val	Asp	t J			Gln	Val	_		Pro
		_				7/10	_				110	•			Ala 1120
					111	^									
Arg	Gln			217	_) ()					
				Ser	Leu										s Arg
			Arg	ı Ası				His	s Lev						u Asp
			a Ser				ı Thi	Ala							e Leu
His	117	ru z Val	l Thi	Le	ı Val	Pro	, Ile	e Glu	u Gl	u Phe	e Sei	Pro	Gl	u Ph	e Val 1200
					710	. (1				1.1.	,,				
				12	٦ Ε				1.4	Tυ					
			101	20				12	25					J 0	o Ile
		40	g Asj	р Су			12	411					4 J		o Leu
	40	s Al	a Gl			7.7	55				12	00			o Arg
	Ar	g Pr			17'	a Va	l As			1.4	13				tu Leu 1280
126 Arg	G1	u Pr	o Gl	n Al	a Th	r Va	l Va	1 Ph	e Th	r Th	r Hi	s Va	l Pr	o Th	r Leu 195
Gly	Ar	д Ту	r Al	a Ph	85 .e Le1	u Le	u Hi	s Gl	у Ту	r Gl	n Pr	o Al	a Hi 13	s Pi	o Thr
Ph∈	Pr	o Va	13 1 Gl	00 u Va	l Le	u Il	e As	n Al	05 .a G]	y Ar	g Va	1 Tr			ly His
Ala	. As	13 n Al	:15 .a Se	r Ph	ье Су	s Pr	o Hi	20 .s G]	у Ту	r Gl	у Су			ır Le	eu Val
	4 7	20			n Al	a Le	(4 5			al Th	r Hi				eu Thr 1360
	-				77	50				1	נכו				
															yr Val 375 In Glu
Let	ı Va	al Va		ro GI 880	lu As	n Va	al Ty	yr Se 13	er P 385	ne Gl	rA 1,7	\I ⊓€	1:	390	lu Glu
									27/5	53					

Pro Leu Asp Lys Ser Tyr Asp Phe Ile Ser His Cys Ala Ala Gln Gly Tyr His Ile Ser Pro Ser Ser Ser Leu Phe Cys Arg Asn Ala Ala Ala Ser Leu Ser Leu Phe Tyr Asn Asn Gly Ala Arg Pro Cys Gly Cys His Glu Val Gly Ala Thr Gly Pro Thr Cys Glu Pro Phe Gly Gln Cys Pro Cys His Ala His Val Ile Gly Arg Asp Cys Ser Arg Cys Ala Thr Gly Tyr Trp Gly Phe Pro Asn Cys Arg Pro Cys Asp Cys Gly Ala · 1485 Arg Leu Cys Asp Glu Leu Thr Gly Gln Cys Ile Cys Pro Pro Arg Thr Ile Pro Pro Asp Cys Leu Leu Cys Gln Pro Gln Thr Phe Gly Cys His Pro Leu Val Gly Cys Glu Glu Cys Asn Cys Ser Gly Pro Gly Ile Gln Glu Leu Thr Asp Pro Thr Cys Asp Thr Asp Ser Gly Gln Cys Lys Cys Arg Pro Asn Val Thr Gly Arg Arg Cys Asp Thr Cys Ser Pro Gly Phe His Gly Tyr Pro Arg Cys Arg Pro Cys Asp Cys His Glu Ala Gly Thr Ala Pro Gly Val Cys Asp Pro Leu Thr Gly Gln Cys Tyr Cys Lys Glu Asn Val Gln Gly Pro Lys Cys Asp Gln Cys Ser Leu Gly Thr Phe Ser Leu Asp Ala Ala Asn Pro Lys Gly Cys Thr Arg Cys Phe Cys Phe Gly Ala Thr Glu Arg Cys Arg Ser Ser Ser Tyr Thr Arg Gln Glu Phe Val Asp Met Glu Gly Trp Val Leu Leu Ser Thr Asp Arg Gln Val Val Pro His Glu Arg Gln Pro Gly Thr Glu Met Leu Arg Ala Asp Leu Arg His Val Pro Glu Ala Val Pro Glu Ala Phe Pro Glu Leu Tyr Trp Gln Ala Pro Pro Ser Tyr Leu Gly Asp Arg Val Ser Ser Tyr Gly Gly Thr Leu Arg Tyr Glu Leu His Ser Glu Thr Gln Arg Gly Asp Val Phe Val Pro Met Glu Ser Arg Pro Asp Val Val Leu Gln Gly Asn Gln Met Ser Ile Thr Phe Leu Glu Pro Ala Tyr Pro Thr Pro Gly His Val His Arg Gly Gln Leu Gln Leu Val Glu Gly Asn Phe Arg His Thr Glu Thr Arg Asn Thr Val Ser Arg Glu Glu Leu Met Met Val Leu Ala Ser Leu Glu Gln 1780 1785 Leu Gln Ile Arg Ala Leu Phe Ser Gln Ile Ser Ser Ala Val Phe Leu Arg Arg Val Ala Leu Glu Val Ala Ser Pro Ala Gly Gln Gly Ala Leu Ala Ser Asn Val Glu Leu Cys Leu Cys Pro Ala Ser Tyr Arg Gly Asp Ser Cys Gln Glu Cys Ala Pro Gly Phe Tyr Arg Asp Val Lys Gly Leu Phe Leu Gly Arg Cys Val Pro Cys Gln Cys His Gly His Ser Asp Arg 28/53

								1065					1870		
			1860)	~1	77_ 7	0	1865) Acn	Cve	Gln				Glu
		1075					1880					TRRD			
	1000					1295					1900	1	Ser		
4005					1010	•				1913)		Ser		1020
Ser	Asn			1025					1931	J				1733	
			1940	า -				1945)				Arg 1950		
		1055	Phe	Gly			1960)				T30:			
	107	Cys	Ser			1971	5				TAR	J	Ser		
1006	Pro	Leu			1990	1				エフフ	9		Thr		2000
Pro	Arg			200	Cys	Ala			201	U			Ala	201	,
			202	Thr	Arg			202	5				Thr 2030	,	
		202	His	Ser			2040	Leu	Суѕ			2043			
	205	Cys	Asp			205	Glu 5	Gly			200	U	Asp		
000	Gly	Cys			207	Ala	Cys			207	5		Gly		2000
206 Cys	His	Pro	Gln	Ser 208	Gly	Gln	Суѕ	His	Cys 209	Arg	Pro	Gly	Thr	Met 209	Gly 5
Pro	Gln	Cys	Arg 210	Glu	Cys	Ala	Pro	Gly 210	Туг 5	Trp	Gly	Leu	Pro 211	Glu O	Gln
		211	Arg	Cys			212	0				212			
	212	Суз	Asr			213	.5				414	·U	Суз		
214	Ser	Gln			215	Val	Pro			213	22		Val		2100
Ser	Ile	His	Cys	Glu 216	val	Суз	: Asp	His	Cys 217	s Va] 70	L Val	. Leu	Leu	Leu 217	Asp 5
			219	Ala	Gly			218	35				Glu 219	U	
		210	Asr	n Ala			220	10				220			
	222	a Ser	Ile			221	L 5				224	20			Gly
227	Arg	y His			223	a Glr 30	ı Glr			22.	35				Ser 2240
	Se			22	n Asp) Ala			22	50				22-	-
			22	o Ar	g Ala			220	ככ				221	•	a Ser
		22.	ı Ala	a Gl			228	30				228	35		Leu
	22	a Ala	a Il			22	l Asp 95	Arg			23	00			Ser
22	n Th	r Gl			23	y Le	u Ala			23	15				/ Glu 2320
Gl	n Le	u Le	u Ar	g Th	r Le	u Al	a Glu	ı Va	1 G1 23			u Le	u Try	Gl: 23	u Met 35
				23					29/53						

Arg Ala Arg Asp Leu Gly Ala Pro Gln Ala Ala Ala Glu Ala Glu Leu Ala Ala Ala Gln Arg Leu Leu Ala Arg Val Gln Glu Gln Leu Ser Ser Leu Trp Glu Glu Asn Gln Ala Leu Ala Thr Gln Thr Arg Asp Arg Leu Ala Gln His Glu Ala Gly Leu Met Asp Leu Arg Glu Ala Leu Asn Arg Ala Val Asp Ala Thr Arg Glu Ala Gln Glu Leu Asn Ser Arg Asn Gln Glu Arg Leu Glu Glu Ala Leu Gln Arg Lys Gln Glu Leu Ser Arg Asp Asn Ala Thr Leu Gln Ala Thr Leu His Ala Ala Arg Asp Thr Leu Ala Ser Val Phe Arg Leu Leu His Ser Leu Asp Gln Ala Lys Glu Glu Leu Glu Arg Leu Ala Ala Ser Leu Asp Gly Ala Arg Thr Pro Leu Leu Gln Arg Met Gln Thr Phe Ser Pro Ala Gly Ser Lys Leu Arg Leu Val Glu Ala Ala Glu Ala His Ala Gln Gln Leu Gly Gln Leu Ala Leu Asn Leu Ser Ser Ile Ile Leu Asp Val Asn Gln Asp Arg Leu Thr Gln Arg Ala Ile Glu Ala Ser Asn Ala Tyr Ser Arg Ile Leu Gln Ala Val Gln Ala Ala Glu Asp Ala Ala Gly Gln Ala Leu Gln Gln Ala Asp His Thr Trp Ala Thr Val Val Arg Gln Gly Leu Val Asp Arg Ala Gln Gln Leu Leu Ala Asn Ser Thr Ala Leu Glu Glu Ala Met Leu Gln Glu Gln Arg Leu Gly Leu Val Trp Ala Ala Leu Gln Gly Ala Arg Thr Gln Leu Arg Asp Val Arg Ala Lys Lys Asp Gln Leu Glu Ala His Ile Gln Ala Ala Gln Ala Met Leu Ala Met Asp Thr Asp Glu Thr Ser Lys Lys Ile Ala His Ala Lys Ala Val Ala Ala Glu Ala Gln Asp Thr Ala Thr Arg Val Gln Ser Gln Leu Gln Ala Met Gln Glu Asn Val Glu Arg Trp Gln Gly Gln Tyr Glu Gly Leu Arg Gly Gln Asp Leu Gly Gln Ala Val Leu Asp Ala Gly His Ser Val Ser Thr Leu Glu Lys Thr Leu Pro Gln Leu Leu Ala Lys Leu Ser Ile Leu Glu Asn Arg Gly Val His Asn Ala Ser Leu Ala Leu Ser Ala Ser Ile Gly Arg Val Arg Glu Leu Ile Ala Gln Ala Arg Gly Ala Ala Ser Lys Val Lys Val Pro Met Lys Phe Asn Gly Arg Ser Gly Val Gln Leu Arg Thr Pro Arg Asp Leu Ala Asp Leu Ala Ala Tyr Thr Ala Leu Lys Phe Tyr Leu Gln Gly Pro Glu Pro Glu Pro Gly Gln Gly Thr Glu Asp Arg Phe Val Met Tyr Met Gly Ser Arg Gln Ala Thr Gly Asp Tyr Met Gly Val Ser Leu Arg Asp Lys Lys Val His Trp 30/53

PCT/US01/19929 WO 01/98342

2805 2810 2815	
Val Tyr Gln Leu Gly Glu Ala Gly Pro Ala Val Leu Ser Ile Asp Glu	ı
2020	
Asp Ile Gly Glu Gln Phe Ala Ala Val Ser Leu Asp Arg Thr Leu Gir	
Phe Gly His Met Ser Val Thr Val Glu Arg Gln Met IIe Gln Glu Thr	
Lys Gly Asp Thr Val Ala Pro Gly Ala Glu Gly Leu Leu Ash Leu Arg	₿0 ₿
2865 2876 Phe Val Phe Tyr Val Gly Gly Tyr Pro Ser Thr Phe Th	r
2005 (890	
Pro Pro Pro Leu Leu Arg Phe Pro Gly Tyr Arg Gly Cys Ile Glu Met 2900 2905 2910	
Asp Thr Leu Asn Glu Glu Val Val Ser Leu Tyr Asn Phe Glu Arg Th	
Phe Gln Leu Asp Thr Ala Val Asp Arg Pro Cys Ala Arg Ser Lys Se.	
Thr Gly Asp Pro Trp Leu Thr Asp Gly Ser Tyr Leu Asp Gly Thr Gl	У 60
The Ala Arg The Ser Phe Asp Ser Gln Ile Ser Thr Thr Lys Arg Ph	.e
Glu Gln Glu Leu Arg Leu Val Ser Tyr Ser Gly Val Leu Phe Phe Le 2980 2985 2990	
Lys Gln Gln Ser Gln Phe Leu Cys Leu Ala Val Gln Glu Gly Ser Le	
Val Leu Tyr Asp Phe Gly Ala Gly Leu Lys Lys Ala Val Pro Le	
Gln Pro Pro Pro Leu Thr Ser Ala Ser Lys Ala Ile Gln Val Ph	
Joy Low Cly Cly Ser Arg Lys Arg Val Leu Val Arg Val Glu Arg Al	la
2016 3030	
Thr Val Tyr Ser Val Glu Gln Asp Asn Asp Leu Glu Leu Ala Asp Al 3060 3065 3070	
Tyr Tyr Leu Gly Gly Val Pro Pro Asp Gln Leu Pro Pro Ser Leu As 3075 3080 3085	
Arg Leu Phe Pro Thr Gly Gly Ser Val Arg Gly Cys Val Lys Gly II 3090 3095 3100	
Lys Ala Leu Gly Lys Tyr Val Asp Leu Lys Arg Leu Asn Thr Thr G.	ly 120
3105 3110 3115 3. Val Ser Ala Gly Cys Thr Ala Asp Leu Leu Val Gly Arg Ala Met Tl	
2125 3130	
Phe His Gly His Gly Phe Leu Arg Leu Ala Leu Ser Asn Val Ala P. 3140 3145 3150	
Leu Thr Gly Asn Val Tyr Ser Gly Phe Gly Phe His Ser Ala Gin A	
Ser Ala Leu Leu Tyr Tyr Arg Ala Ser Pro Asp Gly Leu Cys Gln V	
Can Low Cln Cln Cly Arg Val Ser Leu Gln Leu Leu Arg Thr Glu V	al
3190 3155	
Lys Thr Gln Ala Gly Phe Ala Asp Gly Ala Pro His Tyr Val Ala P 3215 3205 3210 3215	
Tyr Ser Asn Ala Thr Gly Val Trp Leu Tyr Val Asp Asp Gln Leu G	
Gln Met Lys Pro His Arg Gly Pro Pro Pro Glu Leu Gln Pro Gln F	
Glu Gly Pro Pro Arg Leu Leu Gly Gly Leu Pro Glu Ser Gly T	
The Tyr Asn Phe Ser Gly Cys Ile Ser Asn Val Phe Val Gln Arg I	ieu
3265 3270 3273	3280
31/53	

Leu Gly Pro Gln Arg Val Phe Asp Leu Gln Gln Asn Leu Gly Ser Val Asn Val Ser Thr Gly Cys Ala Pro Ala Leu Gln Ala Gln Thr Pro Gly Leu Gly Pro Arg Gly Leu Gln Ala Thr Ala Arg Lys Ala Ser Arg Arg Ser Arg Gln Pro Ala Arg His Pro Ala Cys Met Leu Pro Pro His Leu Arg Thr Thr Arg Asp Ser Tyr Gln Phe Gly Gly Ser Leu Ser Ser His Leu Glu Phe Val Gly Ile Leu Ala Arg His Arg Asn Trp Pro Ser Leu Ser Met His Val Leu Pro Arg Ser Ser Arg Gly Leu Leu Phe Thr 3385 3390 Ala Arg Leu Arg Pro Gly Ser Pro Ser Leu Ala Leu Phe Leu Ser Asn Gly His Phe Val Ala Gln Met Glu Gly Leu Gly Thr Arg Leu Arg Ala Gln Ser Arg Gln Arg Ser Arg Pro Gly Arg Trp His Lys Val Ser Val Arg Trp Glu Lys Asn Arg Ile Leu Leu Val Thr Asp Gly Ala Arg Ala Trp Ser Gln Glu Gly Pro His Arg Gln His Gln Gly Ala Glu His Pro Gln Pro His Thr Leu Phe Val Gly Gly Leu Pro Ala Ser Ser His Ser Ser Lys Leu Pro Val Thr Val Gly Phe Ser Gly Cys Val Lys Arg Leu Arg Leu His Gly Arg Pro Leu Gly Ala Pro Thr Arg Met Ala Gly Val Thr Pro Cys Ile Leu Gly Pro Leu Glu Ala Gly Leu Phe Pro Gly Ser Gly Gly Val Ile Thr Leu Asp Leu Pro Gly Ala Thr Leu Pro Asp Val Gly Leu Glu Leu Glu Val Arg Pro Leu Ala Val Thr Gly Leu Ile Phe His Leu Gly Gln Ala Arg Thr Pro Pro Tyr Leu Gln Leu Gln Val Thr Glu Lys Gln Val Leu Leu Arg Ala Asp Asp Gly Ala Gly Glu Phe Ser Thr Ser Val Thr Arg Pro Ser Val Leu Cys Asp Gly Gln Trp His Arg Leu Ala Val Met Lys Ser Gly Asn Val Leu Arg Leu Glu Val Asp Ala Gln Ser Asn His Thr Val Gly Pro Leu Leu Ala Ala Ala Gly Ala Pro Ala Pro Leu Tyr Leu Gly Gly Leu Pro Glu Pro Met Ala Val Gln Pro Trp Pro Pro Ala Tyr Cys Gly Cys Met Arg Arg Leu Ala Val Asn Arg Ser Pro Val Ala Met Thr Arg Ser Val Glu Val His Gly Ala Val Gly Ala Ser Gly Cys Pro Ala Ala

<210> 31 <211> 3696 <212> PRT

32/53

<213> Homo sapiens

<400> 31 Met Ala Lys Arg Leu Cys Ala Gly Ser Ala Leu Cys Val Arg Gly Pro Arg Gly Pro Ala Pro Leu Leu Leu Val Gly Leu Ala Leu Leu Gly Ala Ala Arg Ala Arg Glu Glu Ala Gly Gly Gly Phe Ser Leu His Pro Pro Tyr Phe Asn Leu Ala Glu Gly Ala Arg Ile Ala Ala Ser Ala Thr Cys Gly Glu Glu Ala Pro Ala Arg Gly Ser Pro Arg Pro Thr Glu Asp Leu Tyr Cys Lys Leu Val Gly Gly Pro Val Ala Gly Gly Asp Pro Asn Gln Thr Ile Arg Gly Gln Tyr Cys Asp Ile Cys Thr Ala Ala Asn Ser Asn 105 100 Lys Ala His Pro Ala Ser Asn Ala Ile Asp Gly Thr Glu Arg Trp Trp 125 120 115 Gln Ser Pro Pro Leu Ser Arg Gly Leu Glu Tyr Asn Glu Val Asn Val 140 135 Thr Leu Asp Leu Gly Gln Val Phe His Val Ala Tyr Val Leu Ile Lys 155 150 Phe Ala Asn Ser Pro Arg Pro Asp Leu Trp Val Leu Glu Arg Ser Met 170 Asp Phe Gly Arg Thr Tyr Gln Pro Trp Gln Phe Phe Ala Ser Ser Lys 185 Arg Asp Cys Leu Glu Arg Phe Gly Pro Gln Thr Leu Glu Arg Ile Thr 200 Arg Asp Asp Ala Ala Ile Cys Thr Thr Glu Tyr Ser Arg Ile Val Pro 220 215 Leu Glu Asn Gly Glu Ile Val Val Ser Leu Val Asn Gly Arg Pro Gly 235 230 Ala Met Asn Phe Ser Tyr Ser Pro Leu Leu Arg Glu Phe Thr Lys Ala 250 245 Thr Asn Val Arg Leu Arg Phe Leu Arg Thr Asn Thr Leu Leu Gly His 265 Leu Met Gly Lys Ala Leu Arg Asp Pro Thr Val Thr Arg Arg Tyr Tyr 280 Tyr Ser Ile Lys Asp Ile Ser Ile Gly Gly Arg Cys Val Cys His Gly 295 His Ala Asp Ala Cys Asp Ala Lys Asp Pro Thr Asp Pro Phe Arg Leu 315 310 Gln Cys Thr Cys Gln His Asn Thr Cys Gly Gly Thr Cys Asp Arg Cys 330 325 Cys Pro Gly Phe Asn Gln Gln Pro Trp Lys Pro Ala Thr Ala Asn Ser 345 Ala Asn Glu Cys Gln Ser Cys Asn Cys Tyr Gly His Ala Thr Asp Cys 360 Tyr Tyr Asp Pro Glu Val Asp Arg Arg Arg Ala Ser Gln Ser Leu Asp 380 375 Gly Thr Tyr Gln Gly Gly Gly Val Cys Ile Asp Cys Gln His His Thr 395 390 Thr Gly Val Asn Cys Glu Arg Cys Leu Pro Gly Phe Tyr Arg Ser Pro 405 Asn His Pro Leu Asp Ser Pro His Val Cys Arg Arg Cys Asn Cys Glu 425 420 Ser Asp Phe Thr Asp Gly Thr Cys Glu Asp Leu Thr Gly Arg Cys Tyr 440

Cys Arg Pro Asn Phe Ser Gly Glu Arg Cys Asp Val Cys Ala Glu Gly Phe Thr Gly Phe Pro Ser Cys Tyr Pro Thr Pro Ser Ser Ser Asn Asp 470 475 Thr Arg Glu Gln Val Leu Pro Ala Gly Gln Ile Val Asn Cys Asp Cys 485 490 Ser Ala Ala Gly Thr Gln Gly Asn Ala Cys Arg Lys Asp Pro Arg Val 505 Gly Arg Cys Leu Cys Lys Pro Asn Phe Gln Gly Thr His Cys Glu Leu 520 Cys Ala Pro Gly Phe Tyr Gly Pro Gly Cys Gln Pro Cys Gln Cys Ser 535 540 Ser Pro Gly Val Ala Asp Asp Arg Cys Asp Pro Asp Thr Gly Gln Cys 550 555 Arg Cys Arg Val Gly Phe Glu Gly Ala Thr Cys Asp Arg Cys Ala Pro 570 Gly Tyr Phe His Phe Pro Leu Cys Gln Leu Cys Gly Cys Ser Pro Ala 585 Gly Thr Leu Pro Glu Gly Cys Asp Glu Ala Gly Arg Cys Leu Cys Gln Pro Glu Phe Ala Gly Pro His Cys Asp Arg Cys Arg Pro Gly Tyr His 620 Gly Phe Pro Asn Cys Gln Ala Cys Thr Cys Asp Pro Arg Gly Ala Leu 630 Asp Gln Leu Cys Gly Ala Gly Gly Leu Cys Arg Cys Arg Pro Gly Tyr 645 650 Thr Gly Thr Ala Cys Gln Glu Cys Ser Pro Gly Phe His Gly Phe Pro 665 Ser Cys Val Pro Cys His Cys Ser Ala Glu Gly Ser Leu His Ala Ala 680 Cys Asp Pro Arg Ser Gly Gln Cys Ser Cys Arg Pro Arg Val Thr Gly 695 700 Leu Arg Cys Asp Thr Cys Val Pro Gly Ala Tyr Asn Phe Pro Tyr Cys 710 715 Glu Ala Gly Ser Cys His Pro Ala Gly Leu Ala Pro Val Asp Pro Ala 725 730 Leu Pro Glu Ala Gln Val Pro Cys Met Cys Arg Ala His Val Glu Gly 745 Pro Ser Cys Asp Arg Cys Lys Pro Gly Phe Trp Gly Leu Ser Pro Ser 760 765 Asn Pro Glu Gly Cys Thr Arg Cys Ser Cys Asp Leu Arg Gly Thr Leu 775 780 Gly Gly Val Ala Glu Cys Gln Pro Gly Thr Gly Gln Cys Phe Cys Lys 795 Pro His Val Cys Gly Gln Ala Cys Ala Ser Cys Lys Asp Gly Phe Phe 805 810 Gly Leu Asp Gln Ala Asp Tyr Phe Gly Cys Arg Ser Cys Arg Cys Asp 820 825 Ile Gly Gly Ala Leu Gly Gln Ser Cys Glu Pro Arg Thr Gly Val Cys 840 845 Arg Cys Arg Pro Asn Thr Gln Gly Pro Thr Cys Ser Glu Pro Ala Arg 855 Asp His Tyr Leu Pro Asp Leu His His Leu Arg Leu Glu Leu Glu Glu 870 875 Ala Ala Thr Pro Glu Gly His Ala Val Arg Phe Gly Phe Asn Pro Leu 885 890 Glu Phe Glu Asn Phe Ser Trp Arg Gly Tyr Ala Gln Met Ala Pro Val 905 Gln Pro Arg Ile Val Ala Arg Leu Asn Leu Thr Ser Pro Asp Leu Phe 34/53

							000					925			
	3	915	DI	3	m	1707	920	2~~	Clv	בוג	Mat		Val	Ser	Glv
Trp L	30					935					940				
Arg V	al	Ser	Val	Arg		Glu	Gly	Arg	Ser	Ala	Thr	Cys	Ala	Asn	Cys
945					950					955	_		~3		960
Thr A	la (Gln	Ser	Gln 965	Pro	Val	Ala	Phe	Pro 970	Pro	Ser	Thr	GIu	975	Ala
Phe .I	le '	Thr	Val 980		Gln	Arg	Gly	Phe 985		Glu	Pro	Phe	Val 990	Leu	Asn
Pro G		Thr 995		Ala	Leu	Arg	Val	Glu	Ala	Glu	Gly	Val 1005	Leu	Leu	Asp
Tyr V	al '	Val	Leu	Leu	Pro	Ser 1015	Ala		Tyr	Glu	Ala 1020	Ala	Leu	Leu	Gln
Leu A	ırg	Val	Thr	Glu		Cys		Tyr	Arg	Pro	Ser	Ala	Gln	Gln	Ser 1040
1025			_	_	1030)	m)	***	T	1035		7	C1	Dho	
Gly A				1045	5				1050)				105	5
Ser A			1060)				1065	5				1070)	
Arg E				Thr	Glu	Gln			Pro	Ser	His			Leu	Ile
		1075	5		_		1080		61	T	O1	1089		17-1	Dwo
Thr C	.090					109	5				110	0			
Gln E	Pro	Gly	Arg	Tyr	Ala	Leu	Val	Val	Glu	Tyr	Ala	Asn	Glu	Asp	Ala
1.1.05					111	0				111	5				1120
Arg (3ln	Glu	Val	Gly 112		Ala	Val	His	Thr 113		Gln	Arg	Ala	Pro 113	Gln 5
Gln (Зlу	Leu	Leu 1140		Leu	His	Pro	Cys 114		Tyr	Ser	Thr	Leu 1150		Arg
Gly 7	Phr	Ala	Arg	Asp	Thr	Gln	Asp			Ala	Val	Phe	His	Leu	Asp
Ser (1155	5				1160	0				116	5		
1	1170)				117	5				118	0			
His C	Gly	Val	Thr	Leu	Val	Pro	Ile	Glu	Glu	Phe	Ser	Pro	Glu	Phe	Val
1185					119	0				119	5				1200
Glu I				120	5				121	0				121	5
Ser A	Ala	Ala	Cys	Leu	Pro	Ser	Arg	Phe	Pro	Lys	Pro	Pro	Gln	Pro	Ile
Ile 1			122	0				122	5				123	0	
		1239	5				124	0				124	5		
Thr l	1250)				125	5				126	0			
Pro I	Arg	Pro	Pro	Thr			Asp	Pro	Asp			Pro	Thr	Leu	Leu 1280
1265 Arg (GT11	Pro	Gln	Δla	127	u Val	Val	Phe	Thr	127 Thr		Val	Pro	Thr	
				128	5				129	0				129	5
Gly i			130	0				130	5				131	0	
Phe		131	5				132	0				132	5		
Ala	1330)				133	5				134	0			
Val (Glu	Gly	Gln	Ala 135		Leu	Asp	Val	Thr 135		Ser	Glu	Leu	Thr 1360
Val	Thr	Val	Arg		Pro		Gly	Arg		Leu		Leu	Asp	Туг 137	Val
I.au	Val	Va I	Pro	136 Glu) Aen	Val	Ͳν·	Ser	137 Phe		Tvr	Leu	Arg		Glu
Dea	V (1)	val	138				-1-	138		~-3			139	0	
				-					5/53						

Pro Leu Asp Lys Ser Tyr Asp Phe Ile Ser His Cys Ala Ala Gln Gly Tyr His Ile Ser Pro Ser Ser Ser Leu Phe Cys Arg Asn Ala Ala Ala Ser Leu Ser Leu Phe Tyr Asn Asn Gly Ala Arg Pro Cys Gly Cys His Glu Val Gly Ala Thr Gly Pro Thr Cys Glu Pro Phe Gly Gly Gln Cys Pro Cys His Ala His Val Ile Gly Arg Asp Cys Ser Arg Cys Ala Thr Gly Tyr Trp Gly Phe Pro Asn Cys Arg Pro Cys Asp Cys Gly Ala Arg Leu Cys Asp Glu Leu Thr Gly Gln Cys Ile Cys Pro Pro Arg Thr Ile Pro Pro Asp Cys Leu Leu Cys Gln Pro Gln Thr Phe Gly Cys His Pro Leu Val Gly Cys Glu Glu Cys Asn Cys Ser Gly Pro Gly Ile Gln Glu Leu Thr Asp Pro Thr Cys Asp Thr Asp Ser Gly Gln Cys Lys Cys Arg Pro Asn Val Thr Gly Arg Arg Cys Asp Thr Cys Ser Pro Gly Phe His Gly Tyr Pro Arg Cys Arg Pro Cys Asp Cys His Glu Ala Gly Thr Ala Pro Gly Val Cys Asp Pro Leu Thr Gly Gln Cys Tyr Cys Lys Glu Asn Val Gln Gly Pro Lys Cys Asp Gln Cys Ser Leu Gly Thr Phe Ser Leu Asp Ala Ala Asn Pro Lys Gly Cys Thr Arg Cys Phe Cys Phe Gly Ala Thr Glu Arg Cys Arg Ser Ser Ser Tyr Thr Arg Gln Glu Phe Val Asp Met Glu Gly Trp Val Leu Leu Ser Thr Asp Arg Gln Val Val Pro His Glu Arg Gln Pro Gly Thr Glu Met Leu Arg Ala Asp Leu Arg His Val Pro Glu Ala Val Pro Glu Ala Phe Pro Glu Leu Tyr Trp Gln Ala Pro Pro Ser Tyr Leu Gly Asp Arg Val Ser Ser Tyr Gly Gly Thr Leu Arg Tyr Glu Leu His Ser Glu Thr Gln Arg Gly Asp Val Phe Val Pro Met Glu Ser Arg Pro Asp Val Val Leu Gln Gly Asn Gln Met Ser Ile Thr Phe Leu Glu Pro Ala Tyr Pro Thr Pro Gly His Val His Arg Gly 1750 1755 Gln Leu Gln Leu Val Glu Gly Asn Phe Arg His Thr Glu Thr Arg Asn Thr Val Ser Arg Glu Glu Leu Met Met Val Leu Ala Ser Leu Glu Gln Leu Gln Ile Arg Ala Leu Phe Ser Gln Ile Ser Ser Ala Val Phe Leu Arg Arg Val Ala Leu Glu Val Ala Ser Pro Ala Gly Gln Gly Ala Leu Ala Ser Asn Val Glu Leu Cys Leu Cys Pro Ala Ser Tyr Arg Gly Asp Ser Cys Gln Glu Cys Ala Pro Gly Phe Tyr Arg Asp Val Lys Gly Leu Phe Leu Gly Arg Cys Val Pro Cys Gln Cys His Gly His Ser Asp Arg 36/53

								7.0	
	1860		1	865			18		C1
Cys Leu Pro	5		1880			Τ.	003		
Gly Ala His	Cys Glu	1895	5			1900			
Asp Pro Ser	Ala Pro	Cys Val	Ser C	ys Pro	Cys I 1915	Pro L	eu Se	r Val	Pro 1920
1905 Ser Asn Asn		Glu Gly	Cys V	al Leu 193	Arg (Gly G	ly Ar	g Thr 1935	Gln
Cys Leu Cys		Gly Tyr	Ala G	ly Ala		Cys G	lu Ar		
Pro Gly Phe	1940 Phe Gly	Asn Pro	Leu V	945 al Leu	Gly s	Ser S	er Cy		Pro
195 Cys Asp Cys	5 Ser Gly	Asn Gly	1960 Asp P	ro Asn	Leu l	Leu P	965 he Se	r Asp	Cys
1970 Asp Pro Leu		197'	5			1980			Gly
1985 Pro Arg Cys		1990			TAAD				2000
Pro Gly Asn	200	5		201	0			201.	J
	2020		2	2025			20	20	
Cys Asp Pro	5		2040			4	045		
Arg Arg Cys 2050		205	5			2000			
Gly Gly Cys		2070			2075				2000
Cys His Pro	208	15		209	0			209	2
Pro Gln Cys	Arg Glu	Cys Ala		2105			2.	LIU	
Gly Cys Arg	g Arg Cys		2120			2	7172		
Gly Arg Cys	s Asn Cys	Pro Pro	Gly 1	Leu Sei	Gly	Glu <i>F</i> 2140	Arg Cy	ys Asp	Thr
Cys Ser Glr	n Gln His	Gln Val 2150	Pro '	Val Pro	Gly 2155	Gly I	Pro Va	al Gly	His 2160
2145 Ser Ile His		ı Val Cys	asp 1	His Cys 21'	s Val	Val I	Leu L	eu Leu 217	Asp '5
Asp Leu Glu		oo a Gly Ala	Leu :	Leu Pro	Ala	Ile E	His G		
Arg Gly Ile	2180 e Asn Ala	a Ser Ser	Met .	2185 Ala Tr	o Ala	Arg l	Leu H		Leu
21! Asn Ala Se	95 r Ile Ala	a Asp Lev	2200 ı Gln	Ser Gl	n Leu	Arg :	2205 Ser P	ro Leu	Gly
2210 Pro Arg Hi		221	L 5			2220			ser
2225 Thr Ser Le		2230			223)			2240
Gly Thr Ar	22	45		22	50			445))
	2260			2265			2	270	
Leu Gly Hi 22	75		2280)			2200		
Thr Leu Se 2290		229	95			2300			
Ala Ser Al 2305		2310			231	5			2320
Glu Arg Le	u Leu Tr 23	p Glu Me 25	t Arg	Ala Ar 23	g Asp 30	Leu	Gly A	la Pro 23:	o Gin 35
	30			37/5	3				

Ala Ala Ala Glu Ala Glu Leu Ala Ala Ala Gln Arg Leu Leu Ala Arg Val Gln Glu Gln Leu Ser Ser Leu Trp Glu Glu Asn Gln Ala Leu Ala Thr Gln Thr Arg Asp Arg Leu Ala Gln His Glu Ala Gly Leu Met Asp Leu Arg Glu Ala Leu Asn Arg Ala Val Asp Ala Thr Arg Glu Ala Gln Glu Leu Asn Ser Arg Asn Gln Glu Arg Leu Glu Glu Ala Leu Gln Arg Lys Gln Glu Leu Ser Arg Asp Asn Ala Thr Leu Gln Ala Thr Leu His Ala Ala Arg Asp Thr Leu Ala Ser Val Phe Arg Leu Leu His Ser Leu Asp Gln Ala Lys Glu Glu Leu Glu Arg Leu Ala Ala Ser Leu Asp Gly Ala Arg Thr Pro Leu Leu Gln Arg Met Gln Thr Phe Ser Pro Ala Gly Ser Lys Leu Arg Leu Val Glu Ala Ala Glu Ala His Ala Gln Gln Leu Gly Gln Leu Ala Leu Asn Leu Ser Ser Ile Ile Leu Asp Val Asn Gln Asp Arg Leu Thr Gln Arg Ala Ile Glu Ala Ser Asn Ala Tyr Ser Arg Ile Leu Gln Ala Val Gln Ala Ala Glu Asp Ala Ala Gly Gln Ala Leu Gln Gln Ala Asp His Thr Trp Ala Thr Val Val Arg Gln Gly Leu Val Asp Arg Ala Gln Gln Leu Leu Ala Asn Ser Thr Ala Leu Glu Glu Ala Met Leu Gln Gln Gln Arg Leu Gly Leu Val Trp Ala Ala Leu Gln Gly Ala Arg Thr Gln Leu Arg Asp Val Arg Ala Lys Lys Asp Gln Leu Glu Ala His Ile Gln Ala Ala Gln Ala Met Leu Ala Met Asp Thr Asp Glu Thr Ser Lys Lys Ile Ala His Ala Lys Ala Val Ala Ala Glu Ala Gln Asp Thr Ala Thr Arg Val Gln Ser Gln Leu Gln Ala Met Gln Glu Asn Val Glu Arg Trp Gln Gly Gln Tyr Glu Gly Leu Arg Gly Gln Asp Leu Gly Gln Ala Val Leu Asp Ala Gly His Ser Val Ser Thr Leu Glu Lys Thr Leu Pro Gln Leu Leu Ala Lys Leu Ser Ile Leu Glu Asn Arg Gly Val His Asn Ala Ser Leu Ala Leu Ser Ala Ser Ile Gly Arg Val Arg Glu Leu Ile Ala Gln Ala Arg Gly Ala Ala Ser Lys Val Lys Val Pro Met Lys Phe Asn Gly Arg Ser Gly Val Gln Leu Arg Thr Pro Arg Asp Leu Ala Asp Leu Ala Ala Tyr Thr Ala Leu Lys Phe Tyr Leu Gln Gly Pro Glu Pro Glu Pro Gly Gln Gly Thr Glu Asp Arg Phe Val Met Tyr Met Gly Ser Arg Gln Ala Thr Gly Asp Tyr Met Gly Val Ser Leu Arg Asp Lys Lys Val His Trp Val Tyr Gln Leu Gly Glu Ala Gly Pro 38/53

PCT/US01/19929 WO 01/98342

				2805	į				2810)				2815	
			2820	Ile	Asp			Ile 2825	Gly	Glu			2830		
		2035	Arg	Thr			2840	Gly				2040			
	2850	Met	Ile			2855)	Gly			2000	,			
2865	Gly	Leu			2870)		Asp		2875	•				2000
Gly	Тут	Pro	Ser	Thr 2885		Thr	Pro	Pro	Pro 2890	Leu)	Leu	Arg	Phe	Pro 2895	Gly
			2900	Ile	Glu			Thr 2905	Leu	Asn			2310	,	
		2914	Phe	Glu			2920					2925)		
	2936	Ala	Arg			2935	5	Gly			2940)			
2015	Tyr	Leu			295	0		Ala		295	•				290U
Ile	Ser			296	5			Gln	297	0				2915	•
			298	n				Gln 2985	5				2990	J	
		299	5				3000	Leu D				3003	>		
	3.01	Λ				301	5	Pro			302	υ			
2021	Lys	Ala			303	ብ		Leu		303	5				3040
Leu	Val			304	5			Val	305	U				305.	,
			306	0				Tyr 306	5				307	U	
		307	Pro	Ser			308	Leu 0				308	5		
	309	Λ				309	5	Ala			310	U			
310	5				311	0				311	5				Leu 3120
				312	5			His	313	0				212	2
			314	.0				Thr 314	5				313	U	
		315	55				316	Ala 0				316	5		
	317	7.0				317	5				318	U			Leu
318	Leu	ı Lev			319	90				319	5				Gly 3200
Ala	Pro	His	з Туг	· Val		n Ph∈	туг	Ser	Asr. 321	a Ala LO	Thr	Gly	Val	Trp 321	Leu 5
Туг	Val	l Ası	Asp 322	Glr	ı Leı	ı Glr	Glr	Met 322	. Lys 5	s Pro	His	Arg	Gly 323	Pro	Pro
		323	ı Glr 35	n Pro			324	Gly	Pro			324	5		Gly
	321	ı Pro	o Glu			325	: Ile	• Туг			326	0			Ser
Asr 326	ı Va	l Ph	e Val	l Glı	n Arg	g Lei	ı Leı	ı Gly	Pro	o Glr 327	n Arg	y Val	Phe	e Asp	Leu 3280
J 2 (_	0/52	,					

Gln Gln Asn Leu Gly Ser Val Asn Val Ser Thr Gly Cys Ala Pro Ala 3285 3290 Leu Gln Ala Gln Thr Pro Gly Leu Gly Pro Arg Gly Leu Gln Ala Thr 3300 3305 Ala Arg Lys Ala Ser Arg Arg Ser Arg Gln Pro Ala Arg His Pro Ala 3315 3320 Cys Met Leu Pro Pro His Leu Arg Thr Thr Arg Asp Ser Tyr Gln Phe 3335 3340 Gly Gly Ser Leu Ser Ser His Leu Glu Phe Val Gly. Ile Leu Ala Arg 3350 3355 His Arg Asn Trp Pro Ser Leu Ser Met His Val Leu Pro Arg Ser Ser 3365 3370 Arg Gly Leu Leu Phe Thr Ala Arg Leu Arg Pro Gly Ser Pro Ser 3385 Leu Ala Leu Phe Leu Ser Asn Gly His Phe Val Ala Gln Met Glu Gly 3400 3405 Leu Gly Thr Arg Leu Arg Ala Gln Ser Arg Gln Arg Ser Arg Pro Gly 3415 3420 Arg Trp His Lys Val Ser Val Arg Trp Glu Lys Asn Arg Ile Leu Leu 3425 3430 3435 Val Thr Asp Gly Ala Arg Ala Trp Ser Gln Glu Gly Pro His Arg Gln 3445 3450 His Gln Gly Ala Glu His Pro Gln Pro His Thr Leu Phe Val Gly Gly 3460 3465 Leu Pro Ala Ser Ser His Ser Ser Lys Leu Pro Val Thr Val Gly Phe 3480 Ser Gly Cys Val Lys Arg Leu Arg Leu His Gly Arg Pro Leu Gly Ala 3495 3500 Pro Thr Arg Met Ala Gly Val Thr Pro Cys Ile Leu Gly Pro Leu Glu 3510 3515 Ala Gly Leu Phe Phe Pro Gly Ser Gly Gly Val Ile Thr Leu Asp Leu 3525 3530 -Pro Gly Ala Thr Leu Pro Asp Val Gly Leu Glu Leu Glu Val Arg Pro 3540 3545 Leu Ala Val Thr Gly Leu Ile Phe His Leu Gly Gln Ala Arg Thr Pro 3560 Pro Tyr Leu Gln Leu Gln Val Thr Glu Lys Gln Val Leu Leu Arg Ala 3575 3580 Asp Asp Gly Ala Gly Glu Phe Ser Thr Ser Val Thr Arg Pro Ser Val 3590 3595 Leu Cys Asp Gly Gln Trp His Arg Leu Ala Val Met Lys Ser Gly Asn 3605 3610 Val Leu Arg Leu Glu Val Asp Ala Gln Ser Asn His Thr Val Gly Pro 3625 3630 Leu Leu Ala Ala Ala Gly Ala Pro Ala Pro Leu Tyr Leu Gly Gly 3635 3640 3645 Leu Pro Glu Pro Met Ala Val Gln Pro Trp Pro Pro Ala Tyr Cys Gly 3655 3660 Cys Met Arg Arg Leu Ala Val Asn Arg Ser Pro Val Ala Met Thr Arg 3670 3675 Ser Val Glu Val His Gly Ala Val Gly Ala Ser Gly Cys Pro Ala Ala 3685 3690

<210> 32

<211> 337

<212> PRT

<213> Homo sapiens

```
<400> 32
Met Thr Asn Asn Ser Gly Ser Lys Ala Glu Leu Val Val Gly Gly Lys
                                   10
Tyr Lys Leu Val Arg Lys Ile Gly Ser Gly Ser Phe Gly Asp Val Tyr
                                25
Leu Gly Ile Thr Thr Asn Gly Glu Asp Val Ala Val Lys Leu Glu
                            40
Ser Gln Lys Val Lys His Pro Gln Leu Leu Tyr Glu Ser Lys Leu Tyr
                        55
Thr Ile Leu Gln Gly Gly Val Gly Ile Pro His Met His Trp Tyr Gly
                                        75
Gln Glu Lys Asp Asn Asn Val Leu Val Met Asp Leu Cly Pro Ser
                                   90
                85
Leu Glu Asp Leu Phe Asn Phe Cys Ser Arg Arg Phe Thr Met Lys Thr
                               105
Val Leu Met Leu Ala Asp Gln Met Ile Ser Arg Ile Glu Tyr Val His
                                                125
                           120
Thr Lys Asn Phe Leu His Arg Asp Ile Lys Pro Asp Asn Phe Leu Met
                                          .140
                       135
Gly Thr Gly Arg His Cys Asn Lys Leu Phe Leu Ile Asp Phe Gly Leu
                                        155
                   150
Ala Lys Lys Tyr Arg Asp Asn Arg Thr Arg Gln His Ile Pro Tyr Arg
                                                    · 175
                                   170
                165
Glu Asp Lys His Leu Ile Gly Thr Val Arg Tyr Ala Ser Ile Asn Ala
                                185
            180
His Leu Gly Ile Glu Gln Ser Arg Arg Asp Asp Met Glu Ser Leu Gly
                            200
        195
 Tyr Val Phe Met Tyr Phe Asn Arg Thr Ser Leu Pro Trp Gln Gly Leu
                                            220
                        215
 Arg Ala Met Thr Lys Lys Gln Lys Tyr Glu Lys Ile Ser Glu Lys Lys
                                        235
                    230
 Met Ser Thr Pro Val Glu Val Leu Cys Lys Gly Phe Pro Ala Glu Phe
                                    250
 Ala Met Tyr Leu Asn Tyr Cys Arg Gly Leu Arg Phe Glu Glu Val Pro
                                 265
 Asp Tyr Met Tyr Leu Arg Gln Leu Phe Arg Ile Leu Phe Arg Thr Leu
                             280
 Asn His Gln Tyr Asp Tyr Thr Phe Asp Trp Thr Met Leu Lys Gln Lys
                                             300
                         295
 Ala Ala Gln Gln Ala Ala Ser Ser Ser Gly Gln Gly Gln Gln Ala Gln
                                         315
                     310
 Thr Gln Thr Gly Lys Gln Thr Glu Lys Asn Lys Asn Asn Val Lys Asp
                                     330
 Asn
```

<210> 33 <211> 888 <212> PRT

<213> Homo sapiens

Ala Gly Phe Ala Leu Asp Pro Arg Gln Ala Ser Ala Phe Arg Val Val Ser Asn Ser Ala Pro His Leu Val Asp Ile Asn Pro Ser Ser Gly Leu Leu Val Thr Lys Gln Lys Ile Asp Arg Asp Leu Leu Cys Arg Gln Ser Pro Lys Cys Ile Ile Ser Leu Glu Val Met Ser Ser Ser Met Glu Ile 105 Cys Val Ile Lys Val Glu Ile Lys Asp Leu Asn Asp Asn Ala Pro Ser 120 125 Phe Pro Ala Ala Gln Ile Glu Leu Glu Ile Ser Glu Ala Ala Ser Pro 135 140 Gly Thr Arg Ile Pro Leu Asp Ser Ala Tyr Asp Pro Asp Ser Gly Ser 150 155 Phe Gly Val Gln Thr Tyr Glu Leu Thr Pro Asn Glu Leu Phe Gly Leu 165 170 Glu Ile Lys Thr Arg Gly Asp Gly Ser Arg Phe Ala Glu Leu Val Val 180 185 Glu Lys Ser Leu Asp Arg Glu Thr Gln Ser His Tyr Ser Phe Arg Ile 200 Thr Ala Leu Asp Gly Gly Asp Pro Pro Arg Leu Gly Thr Val Gly Leu 215 220 Ser Ile Lys Val Thr Asp Ser Asn Asp Asn Asn Pro Val Phe Ser Glu 230 235 Ser Thr Tyr Ala Val Ser Val Pro Glu Asn Ser Pro Pro Asn Thr Pro 250 Val Ile Arg Leu Asn Ala Ser Asp Pro Asp Glu Gly Thr Asn Gly Gln 265 Val Val Tyr Ser Phe Tyr Gly Tyr Val Asn Asp Arg Thr Arg Glu Leu 280 Phe Gln Ile Asp Pro His Ser Gly Leu Val Thr Val Thr Gly Ala Leu 295 Asp Tyr Glu Glu Gly His Val Tyr Glu Leu Asp Val Gln Ala Lys Asp 310 315 Leu Gly Pro Asn Ser Ile Pro Ala His Cys Lys Val Thr Val Ser Val 325 330 Leu Asp Thr Asn Asp Asn Pro Pro Val Ile Asn Leu Leu Ser Val Asn 340 345 Ser Glu Leu Val Glu Val Ser Glu Ser Ala Pro Pro Gly Tyr Val Ile 360 Ala Leu Val Arg Val Ser Asp Arg Asp Ser Gly Leu Asn Gly Arg Val 375 Gln Cys Arg Leu Leu Gly Asn Val Pro Phe Arg Leu Gln Glu Tyr Glu 390 395 Ser Phe Ser Thr Ile Leu Val Asp Gly Arg Leu Asp Arg Glu Gln His 405 410 Asp Gln Tyr Asn Leu Thr Ile Gln Ala Arg Asp Gly Gly Val Pro Met 420 425 Leu Gln Ser Ala Lys Ser Phe Thr Val Leu Ile Thr Asp Glu Asn Asp 440 Asn His Pro His Phe Ser Lys Pro Tyr Tyr Gln Val Ile Val Gln Glu 455 460 Asn Asn Thr Pro Gly Ala Tyr Leu Leu Ser Val Ser Ala Arg Asp Pro 470 475 Asp Leu Gly Leu Asn Gly Ser Val Ser Tyr Gln Ile Val Pro Ser Gln 485 490 Val Arg Asp Met Pro Val Phe Thr Tyr Val Ser Ile Asn Pro Asn Ser 505 Gly Asp Ile Tyr Ala Leu Arg Ser Phe Asn His Glu Gln Thr Lys Ala 42/53

PCT/US01/19929 WO 01/98342

```
525
                          520
       515
Phe Glu Phe Lys Val Leu Ala Lys Asp Gly Gly Leu Pro Ser Leu Gln
                                   540
                    535
Ser Asn Ala Thr Val Arg Val Ile Ile Leu Asp Val Asn Asp Asn Thr
                                     555
                  550
Pro Val Ile Thr Ala Pro Pro Leu Ile Asn Gly Thr Ala Glu Val Tyr
                                 570 .
               565
Ile Pro Arg Asn Ser Gly Ile Gly Tyr Leu Val Thr Val Val Lys Ala
                             585
Glu Asp Tyr Asp Glu Gly Glu Asn Gly Arg Val Thr Tyr Asp Met Thr
                                           605
                          600
Glu Gly Asp Arg Gly Phe Phe Glu Ile Asp Gln Val Asn Gly Glu Val
                                   620
                    615
Arg Thr Thr Arg Thr Phe Gly Glu Ser Ser Lys Ser Ser Tyr Glu Leu
                                     635
                  630
Ile Val Val Ala His Asp His Gly Lys Thr Ser Leu Ser Ala Ser Ala
                                  650
               645
Leu Val Leu Ile Tyr Leu Ser Pro Ala Leu Asp Ala Gln Glu Ser Met
                              665
Gly Ser Val Asn Leu Ser Leu Ile Phe Ile Ile Ala Leu Gly Ser Ile
                                              685
                          680
Ala Gly Ile Leu Phe Val Thr Met Ile Phe Val Ala Ile Lys Cys Lys
                                         700
                      695
Arg Asp Asn Lys Glu Ile Arg Thr Tyr Asn Cys Ser Asn Cys Leu Thr
                               715
                  710
Ile Thr Cys Leu Leu Gly Cys Phe Ile Lys Gly Gln Asn Ser Lys Cys
                                  730
               725
Leu His Cys Ile Ser Val Ser Pro Ile Ser Glu Glu Gln Asp Lys Lys
                                                  750
                    745
Thr Glu Glu Lys Val Ser Leu Arg Gly Lys Arg Ile Ala Glu Tyr Ser
                          760
Tyr Gly His Gln Lys Lys Ser Ser Lys Lys Lys Lys Ile Ser Lys Asn
                                          780
                       775
Asp Ile Arg Leu Val Pro Arg Asp Val Glu Glu Thr Asp Lys Met Asn
                                       795
                   790
Val Val Ser Cys Ser Ser Leu Thr Ser Ser Leu Asn Tyr Phe Asp Tyr
                                   810
               805
His Gln Gln Thr Leu Pro Leu Gly Cys Arg Arg Ser Glu Ser Thr Phe
                               825
 Leu Asn Val Glu Asn Gln Asn Thr Arg Asn Thr Ser Ala Asn His Ile
                            840
 Tyr His His Ser Phe Asn Ser Gln Gly Pro Gln Gln Pro Asp Leu Ile
                                           860
                       855
 Ile Asn Gly Val Pro Leu Pro Glu Val Ser Ala Ala Lys Trp Leu Cys
                                       875
                    870
 Glu Val Leu Pro Gly Leu Leu Leu
                885
```

<210> 34

<211> 855

<212> PRT

<213> Homo sapiens

<400> 34

Met Glu Ser Leu Leu Pro Val Leu Leu Leu Ala Ile Leu Trp 10 5 Thr Gln Ala Ala Ala Leu Ile Asn Leu Lys Tyr Ser Val Glu Glu

Gln Arg Ala Gly Thr Val Ile Ala Asn Val Ala Lys Asp Ala Arg Glu Ala Gly Phe Ala Leu Asp Pro Arg Gln Ala Ser Ala Phe Arg Val Val 55 Ser Asn Ser Ala Pro His Leu Val Asp Ile Asn Pro Ser Ser Gly Leu 70 Leu Val Thr Lys Gln Lys Ile Asp Arg Asp Leu Leu Cys Arg Gln Ser 85 90 Pro Lys Cys Ile Ile Ser Leu Glu Val Met Ser Ser Ser Met Glu Ile 105 Cys Val Ile Lys Val Glu Ile Lys Asp Leu Asn Asp Asn Ala Pro Ser 120 Phe Pro Ala Ala Gln Ile Glu Leu Glu Ile Ser Glu Ala Ala Ser Pro 135 140 Gly Thr Arg Ile Pro Leu Asp Ser Ala Tyr Asp Pro Asp Ser Gly Ser 150 155 Phe Gly Val Gln Thr Tyr Glu Leu Thr Pro Asn Glu Leu Phe Gly Leu 170 Glu Ile Lys Thr Arg Gly Asp Gly Ser Arg Phe Ala Glu Leu Val Val 185 Glu Lys Ser Leu Asp Arg Glu Thr Gln Ser His Tyr Ser Phe Arg Ile 200 Thr Ala Leu Asp Gly Gly Asp Pro Pro Arg Leu Gly Thr Val Gly Leu 215 220 Ser Ile Lys Val Thr Asp Ser Asn Asp Asn Asn Pro Val Phe Ser Glu 230 235 Ser Thr Tyr Ala Val Ser Val Pro Glu Asn Ser Pro Pro Asn Thr Pro 245 250 Val Ile Arg Leu Asn Ala Ser Asp Pro Asp Glu Gly Thr Asn Gly Gln 265 Val Val Tyr Ser Phe Tyr Gly Tyr Val Asn Asp Arg Thr Arg Glu Leu 280 Phe Gln Ile Asp Pro His Ser Gly Leu Val Thr Val Thr Gly Ala Leu 295 300 Asp Tyr Glu Glu Gly His Val Tyr Glu Leu Asp Val Gln Ala Lys Asp 310 315 Leu Gly Pro Asn Ser Ile Pro Ala His Cys Lys Val Thr Val Ser Val 325 330 Leu Asp Thr Asn Asp Asn Pro Pro Val Ile Asn Leu Leu Ser Val Asn 345 Ser Glu Leu Val Glu Val Ser Glu Ser Ala Pro Pro Gly Tyr Val Ile 360 365 Ala Leu Val Arg Val Ser Asp Arg Asp Ser Gly Leu Asn Gly Arg Val 375 380 Gln Cys Arg Leu Leu Gly Asn Val Pro Phe Arg Leu Gln Glu Tyr Glu 390 395 Ser Phe Ser Thr Ile Leu Val Asp Gly Arg Leu Asp Arg Glu Gln His 405 410 Asp Gln Tyr Asn Leu Thr Ile Gln Ala Arg Asp Gly Gly Val Pro Met 420 425 Leu Gln Ser Ala Lys Ser Phe Thr Val Leu Ile Thr Asp Glu Asn Asp 440 445 Asn His Pro His Phe Ser Lys Pro Tyr Tyr Gln Val Ile Val Gln Glu 455 460 Asn Asn Thr Pro Gly Ala Tyr Leu Leu Ser Val Ser Ala Arg Asp Pro 470 475 Asp Leu Gly Leu Asn Gly Ser Val Ser Tyr Gln Ile Val Pro Ser Gln 485 490 Val Arg Asp Met Pro Val Phe Thr Tyr Val Ser Ile Asn Pro Asn Ser 44/53

```
500
                               505
Gly Asp Ile Tyr Ala Leu Arg Ser Phe Asn His Glu Gln Thr Lys Ala
                           520
                                               525
Phe Glu Phe Lys Val Leu Ala Lys Asp Gly Gly Leu Pro Ser Leu Gln
                       535
                                           540
Ser Asn Ala Thr Val Arg Val Ile Ile Leu Asp Val Asn Asp Asn Thr
                   550
                                       555
Pro Val Ile Thr Ala Pro Pro Leu Ile Asn Gly Thr Ala Glu Val Tyr
                                   570
Ile Pro Arg Asn Ser Gly Ile Gly Tyr Leu Val Thr Val Val Lys Ala
                               585
Glu Asp Tyr Asp Glu Gly Glu Asn Gly Arg Val Thr Tyr Asp Met Thr
                           600
Glu Gly Asp Arg Gly Phe Phe Glu Ile Asp Gln Val Asn Gly Glu Val
                       615
                                           620
Arg Thr Thr Arg Thr Phe Gly Glu Ser Ser Lys Ser Ser Tyr Glu Leu
                   630
                                       635
Ile Val Val Ala His Asp His Gly Lys Thr Ser Leu Ser Ala Ser Ala
               645
                                   650
Leu Val Leu Ile Tyr Leu Ser Pro Ala Leu Asp Ala Gln Glu Ser Met
                               665
                                                   670
Gly Ser Val Asn Leu Ser Leu Ile Phe Ile Ile Ala Leu Gly Ser Ile
                                               685
                           680
Ala Gly Ile Leu Phe Val Thr Met Ile Phe Val Ala Ile Lys Cys Lys
                                           700
                       695
Arg Asp Asn Lys Glu Ile Arg Thr Tyr Asn Cys Arg Ile Ala Glu Tyr
                                       715
                   710
Ser Tyr Gly His Gln Lys Lys Ser Ser Lys Lys Lys Ile Ser Lys
                                   730
               725
Asn Asp Ile Arg Leu Val Pro Arg Asp Val Glu Glu Thr Asp Lys Met
                               745
Asn Val Val Ser Cys Ser Ser Leu Thr Ser Ser Leu Asn Tyr Phe Asp
                           760
Tyr His Gln Gln Thr Leu Pro Leu Gly Cys Arg Arg Ser Glu Ser Thr
                       775
                                           780
Phe Leu Asn Val Glu Asn Gln Asn Thr Arg Asn Thr Ser Ala Asn His
                   790
                                       795
Ile Tyr His His Ser Phe Asn Ser Gln Gly Pro Gln Gln Pro Asp Leu
               805
                                   810
Ile Ile Asn Gly Val Pro Leu Pro Glu Thr Glu Asn Tyr Ser Phe Asp
                              825
           820
Ser Asn Tyr Val Asn Ser Arg Ala His Leu Ile Lys Arg Tyr Val Gly
      835
Leu Leu Ala Tyr Cys Cys Asn
   850
```

<210> 35

<211> 329 <212> PRT

<213> Homo sapiens

<400> 35

45/53

Glu Val His Gln Leu Ala Leu Gly Gly Leu Cys Tyr Asn Gly Val His Glu Gly Gly Tyr Tyr Gln Phe Val Ile Pro Asp Leu Ser Pro Lys Asn Lys Ser Tyr Cys Gly Thr Gln Ser Glu Tyr Lys Pro Pro Ile Tyr His 85 90 Phe Tyr Ser His Ile Val Ser Asn Asp Thr Thr Val Ile Val Lys Asn 100 105 Gln Pro Val Asn Tyr Ser Phe Ser Cys Thr Tyr His Ser Thr Tyr Leu 120 Val Asn Gln Ala Ala Phe Asp Gln Arg Val Ala Thr Val His Val Lys 135 Asn Gly Ser Met Gly Thr Phe Glu Ser Gln Leu Ser Leu Asn Phe Tyr 155 150 Thr Asn Ala Lys Phe Ser Ile Lys Lys Glu Ala Pro Phe Val Leu Glu 170 165 Ala Ser Glu Ile Gly Ser Asp Leu Phe Ala Gly Val Glu Ala Lys Gly 185 Leu Ser Ile Arg Phe Lys Val Val Leu Asn Ser Cys Trp Ala Thr Pro 200 Ser Ala Asp Phe Met Tyr Pro Leu Gln Trp Gln Leu Ile Asn Lys Gly 215 220 Cys Pro Thr Asp Glu Thr Val Leu Val His Glu Asn Gly Arg Asp His 230 235 Arg Ala Thr Phe Gln Phe Asn Ala Phe Arg Phe Gln Asn Ile Pro Lys 245 250 Leu Ser Lys Val Trp Leu His Cys Glu Thr Phe Ile Cys Asp Ser Glu 260 265 Lys Leu Ser Cys Pro Val Thr Cys Asp Lys Arg Lys Arg Leu Leu Arg 275 280 285 Asp Gln Thr Gly Gly Val Leu Val Val Glu Leu Ser Leu Arg Ser Arg 295 Gly Phe Ser Ser Leu Tyr Ser Phe Ser Asp Val Leu His His Leu Ile 315 310 Met Met Leu Gly Ile Cys Ala Val Leu 325

<210> 36 <211> 232

<212> PRT

<213> Homo sapiens

<400> 36

 Met
 Leu
 Tyr
 Thr
 Arg
 Lys
 Asn
 Leu
 Thr
 Cys
 Ala
 Gln
 Thr
 Ile
 Asn
 Ser

 Ser
 Ala
 Phe
 Gly
 Asn
 Leu
 Asn
 Val
 Thr
 Lys
 Lys
 Thr
 Thr
 Phe
 Ile
 Val
 Asn
 Jul
 Jul

```
115
                           120
Gly Arg Ile Thr Gly Leu Asp Pro Ala Gly Pro Leu Phe Asn Gly Lys
                      135
                                           140
Pro His Gln Asp Arg Leu Asp Pro Ser Asp Ala Gln Phe Val Asp Val
                   150
                                       155
Ile His Ser Asp Thr Asp Gly Asn Ala Pro Phe Leu Val Ala Leu Gly
                                   170
               165
Tyr Lys Glu Pro Leu Gly Asn Ile Asp Phe Tyr Pro Asn Gly Gly Leu
                               185
Asp Gln Pro Gly Cys Pro Lys Thr Ile Leu Gly Gly Asn Val Lys Glu
                           200
Met Ile Gln Ala Ser Tyr Ile Phe Phe Leu Lys Asn Asp Ser Met Asp
                       215
Leu Ser Ser Pro Lys Glu Val Glu
<210> 37
<211> 452
<212> PRT
<213> Homo sapiens
Met Leu Arg Phe Tyr Leu Phe Ile Ser Leu Leu Cys Leu Ser Arg Ser
                                   10
Asp Ala Glu Glu Thr Cys Pro Ser Phe Thr Arg Leu Ser Phe His Ser
Ala Val Val Gly Thr Gly Leu Asn Val Arg Leu Met Leu Tyr Thr Arg
Lys Asn Leu Thr Cys Ala Gln Thr Ile Asn Ser Ser Ala Phe Gly Asn
                       55
Leu Asn Val Thr Lys Lys Thr Thr Phe Ile Val His Gly Phe Arg Pro
                   70
Thr Gly Ser Pro Pro Val Trp Met Asp Asp Leu Val Lys Gly Leu Leu
                                   90
Ser Val Glu Asp Met Asn Val Val Val Val Asp Trp Asn Arg Gly Ala
                               105
Thr Thr Leu Ile Tyr Thr His Ala Ser Ser Lys Thr Arg Lys Val Ala
                           120
Met Val Leu Lys Glu Phe Ile Asp Gln Met Leu Ala Glu Gly Ala Ser
                       135
Leu Asp Asp Ile Tyr Met Ile Gly Val Ser Leu Gly Ala His Ile Ser
                   150
                                       155
Gly Phe Val Gly Glu Met Tyr Asp Gly Trp Leu Gly Arg Ile Thr Gly
               165
                                   170
Leu Asp Pro Ala Gly Pro Leu Phe Asn Gly Lys Pro His Gln Asp Arg
                               185
Leu Asp Pro Ser Asp Ala Gln Phe Val Asp Val Ile His Ser Asp Thr
                           200
Asp Ala Leu Gly Tyr Lys Glu Pro Leu Gly Asn Ile Asp Phe Tyr Pro
                       215
                                           220
Asn Gly Gly Leu Asp Gln Pro Gly Cys Pro Lys Thr Ile Leu Gly Gly
                   230
                                       235
Phe Gln Tyr Phe Lys Cys Asp His Gln Arg Ser Val Tyr Leu Tyr Leu
               245
                                   250
Ser Ser Leu Arg Glu Ser Cys Thr Ile Thr Ala Tyr Pro Cys Asp Ser
                                                  270
                              265
Tyr Gln Asp Tyr Arg Asn Gly Lys Cys Val Ser Cys Gly Thr Ser Gln
```

280

Lys Glu Ser Cys Pro Leu Leu Gly Tyr Tyr Ala Asp Asn Trp Lys Asp 295 His Leu Arg Gly Lys Asp Pro Pro Met Thr Lys Ala Phe Phe Asp Thr 310 315 Ala Glu Glu Ser Pro Phe Cys Met Tyr His Tyr Phe Val Asp Ile Ile 325 330 Thr Trp Asp Lys Asn Val Arg Arg Gly Asp Ile Thr Ile Lys Leu Arg 345 Asp Lys Ala Gly Asn Thr His Arg Ser Lys Ile Ile Ser Asn Glu Pro 360 Thr Thr Phe Gln Lys Tyr His Gln Val Ser Leu Leu Ala Arg Phe Asn 375 380 Gln Asp Leu Asp Lys Val Ala Ala Ile Ser Leu Met Phe Ser Thr Gly 390 395 Ser Leu Ile Gly Pro Arg Tyr Lys Leu Arg Ile Leu Arg Met Lys Leu 405 410 Arg Ser Leu Ala His Pro Glu Arg Pro Gln Leu Cys Arg Tyr Asp Leu 425 Val Leu Met Glu Asn Val Glu Thr Val Phe Gln Pro Ile Leu Cys Pro 440 Glu Leu Gln Leu 450

<210> 38 <211> 450 <212> PRT

<213> Homo sapiens

<400> 38

Met Gly Leu Arg Ser His His Leu Ser Leu Gly Leu Leu Leu Phe 10 Leu Leu Pro Ala Glu Cys Leu Gly Ala Glu Gly Arg Leu Ala Leu Lys 25 Leu Phe Arg Asp Leu Phe Ala Asn Tyr Thr Ser Ala Leu Arg Pro Val 40 Ala Asp Thr Asp Gln Thr Leu Asn Val Thr Leu Glu Val Thr Leu Ser Gln Ile Ile Asp Met Asp Glu Arg Asn Gln Val Leu Thr Leu Tyr Leu Trp Ile Arg Gln Glu Trp Thr Asp Ala Tyr Leu Arg Trp Asp Pro Asn 90 Ala Tyr Gly Gly Leu Asp Ala Ile Arg Ile Pro Ser Ser Leu Val Trp 105 Arg Pro Asp Ile Val Leu Tyr Asn Lys Ala Asp Ala Gln Pro Pro Gly 120 Ser Ala Ser Thr Asn Val Val Leu Arg His Asp Gly Ala Val Arg Trp 135 140 Asp Ala Pro Ala Ile Thr Arg Ser Ser Cys Arg Val Asp Val Ala Ala 155 150 Phe Pro Phe Asp Ala Gln His Cys Gly Leu Thr Phe Gly Ser Trp Thr 170 165 His Gly Gly His Gln Leu Asp Val Arg Pro Arg Gly Ala Ala Ala Ser 180 185 Leu Ala Asp Phe Val Glu Asn Val Glu Trp Arg Val Leu Gly Met Pro 200 Ala Arg Arg Val Leu Thr Tyr Gly Cys Cys Ser Glu Pro Tyr Pro 220 215 Asp Val Thr Phe Thr Leu Leu Leu Arg Arg Arg Ala Ala Ala Tyr Val

48/53

```
235
                    230
Cys Asn Leu Leu Leu Pro Cys Val Leu Ile Ser Leu Leu Ala Pro Leu
                                    250
                245
Ala Phe His Leu Pro Ala Asp Ser Gly Glu Lys Val Ser Leu Gly Val
                                265
Thr Val Leu Leu Ala Leu Thr Val Phe Gln Leu Leu Ala Glu Ser
                                                285
                            280
Met Pro Pro Ala Glu Ser Val Pro Leu Ile Gly Lys Tyr Tyr Met Ala
                        295
                                            300
Thr Met Thr Met Val Thr Phe Ser Thr Ala Leu Thr Ile Leu Ile Met
                                        315
                    310
Asn Leu His Tyr Cys Gly Pro Ser Val Arg Pro Val Pro Ala Trp Ala
                                    330
                325
Arg Ala Leu Leu Gly His Leu Ala Arg Gly Leu Cys Val Arg Glu
                                345
Arg Gly Glu Pro Cys Gly Gln Ser Arg Pro Pro Glu Leu Ser Pro Ser
                            360
Pro Gln Ser Pro Glu Gly Gly Ala Gly Pro Pro Ala Gly Pro Cys His
                        375
                                            380
Glu Pro Arg Cys Leu Cys Arg Gln Glu Ala Leu Leu His His Val Ala
                                       395
                    390
Thr Ile Ala Asn Thr Phe Arg Ser His Arg Ala Ala Gln Arg Cys His
                                    410
Glu Asp Trp Lys Arg Leu Ala Arg Val Met Asp Arg Phe Phe Leu Ala
                                                    430
                                425
Ile Phe Phe Ser Met Ala Leu Val Met Ser Leu Leu Val Leu Val Gln
                            440
Ala Leu
    450
<210> 39
<211> 255
<212> PRT
<213> Homo sapiens
<400> 39
Met Val Lys Gly Glu Lys Gly Pro Lys Gly Lys Lys Ile Thr Leu Lys
Val Ala Arg Asn Cys Ile Lys Ile Thr Phe Asp Gly Lys Lys Arg Leu
                                25
Asp Leu Ser Lys Met Gly Ile Thr Thr Phe Pro Lys Cys Ile Leu Arg
                             40
Leu Ser Asp Met Asp Glu Leu Asp Leu Ser Arg Asn Leu Ile Arg Lys
Ile Pro Asp Ser Ile Ser Lys Phe Gln Asn Leu Arg Trp Leu Asp Leu
                                        75
                    70
His Ser Asn Tyr Ile Asp Lys Leu Pro Glu Ser Ile Gly Gln Met Thr
                                    90
Ser Leu Leu Tyr Leu Asn Val Ser Asn Asn Arg Leu Thr Ser Asn Gly
                                105
Leu Pro Val Glu Leu Lys Gln Leu Lys Asn Ile Arg Ala Val Asn Leu
                            120
Gly Leu Asn His Leu Asp Ser Val Pro Thr Thr Leu Gly Ala Leu Lys
                                            140
                        135
Glu Leu His Glu Val Gly Leu His Asp Asn Leu Leu Asn Asn Ile Pro
                                        155
                    150
Val Ser Ile Ser Lys Leu Pro Lys Leu Lys Lys Leu Asn Ile Lys Arg
                165
                                    170
                                   49/53
```

```
Asn Pro Phe Pro Lys Pro Gly Glu Ser Glu Ile Phe Ile Asp Ser Ile
                                185
Arg Arg Leu Glu Asn Leu Tyr Val Val Glu Glu Lys Asp Leu Cys Ala
                            200
                                                205
Ala Cys Leu Arg Lys Cys Gln Asn Ala Arg Asp Asn Leu Asn Arg Ile
                        215
                                            220
Lys Asn Met Ala Thr Thr Pro Arg Lys Thr Ile Phe Pro Asn Leu
                    230
                                        235
Ile Ser Pro Asn Ser Met Ala Lys Asp Ser Trp Glu Asp Trp Arg
<210> 40
<211> 214
<212> PRT
<213> Homo sapiens
<400> 40
Met Gln Ala Gly Thr Gln Ser Thr His Glu Ser Leu Lys Pro Gln Arg
Val Gln Phe Gln Ser Arg Asn Phe His Asn Ile Leu Gln Trp Gln Pro
                                25
Gly Arg Ala Leu Thr Gly Asn Ser Ser Val Tyr Phe Val Gln Tyr Lys
                            40
Ile Tyr Gly Gln Arg Gln Trp Lys Asn Lys Glu Asp Cys Trp Gly Thr
                        55
Gln Glu Leu Ser Cys Asp Leu Thr Ser Glu Thr Ser Asp Ile Gln Glu
                    70
                                        75
Pro Tyr Tyr Gly Arg Val Arg Ala Ala Ser Ala Gly Ser Tyr Ser Glu
               85
                                    90
Trp Ser Met Thr Pro Arg Phe Thr Pro Trp Trp Glu Thr Lys Ile Asp
           100
                                105
Pro Pro Val Met Asn Ile Thr Gln Val Asn Gly Ser Leu Leu Val Ile
                           120
                                                125
Leu His Ala Pro Asn Leu Pro Tyr Arg Tyr Gln Lys Glu Lys Asn Val
                       135
                                            140
Ser Ile Glu Asp Tyr Tyr Glu Leu Leu Tyr Arg Val Phe Ile Ile Asn
                    150
                                        155
Asn Ser Leu Glu Lys Glu Gln Lys Val Tyr Glu Gly Ala His Arg Ala
                165
                                    170
                                                        175
Val Glu Ile Glu Ala Leu Thr Pro His Ser Ser Tyr Cys Val Val Ala
                                185
                                                    190
Glu Ile Tyr Gln Pro Met Leu Asp Arg Ser Gln Arg Ser Glu Glu
       195
                            200
Arg Cys Val Glu Ile Pro
    210
<210> 41
<211> 231
<212> PRT
<213> Homo sapiens
```

```
40
Pro Gly Arg Ala Leu Thr Gly Asn Ser Ser Val Tyr Phe Val Gln Tyr
                       55
Lys Ile Tyr Gly Gln Arg Gln Trp Lys Asn Lys Glu Asp Cys Trp Gly
                  70
                                       75
Thr Gln Glu Leu Ser Cys Asp Leu Thr Ser Glu Thr Ser Asp Ile Gln
                                   90
Glu Pro Tyr Tyr Gly Arg Val Arg Ala Ala Ser Ala Gly Ser Tyr Ser
                               105
           100
Glu Trp Ser Met Thr Pro Arg Phe Thr Pro Trp Trp Glu Thr Lys Ile
                           120
Asp Pro Pro Val Met Asn Ile Thr Gln Val Asn Gly Ser Leu Leu Val
                                           140
                       135
Ile Leu His Ala Pro Asn Leu Pro Tyr Arg Tyr Gln Lys Glu Lys Asn
                                       155
                   150
Val Ser Ile Glu Asp Tyr Tyr Glu Leu Leu Tyr Arg Val Phe Ile Ile
                                   170
               165
Asn Asn Ser Leu Glu Lys Glu Gln Lys Val Tyr Glu Gly Ala His Arg
                               185
Ala Val Glu Ile Glu Ala Leu Thr Pro His Ser Ser Tyr Cys Val Val
                           200
Ala Glu Ile Tyr Gln Pro Met Leu Asp Arg Arg Ser Gln Arg Ser Glu
                       215
Glu Arg Cys Val Glu Ile Pro
```

<210> 42

<211> 263

<212> PRT

<213> Homo sapiens

<400> 42

Met Met Pro Lys His Cys Phe Leu Gly Phe Leu Ile Ser Phe Phe Leu 10 Thr Gly Val Ala Gly Thr Gln Ser Thr His Glu Ser Leu Lys Pro Gln 25 Arg Val Gln Phe Gln Ser Arg Asn Phe His Asn Ile Leu Gln Trp Gln 40 Pro Gly Arg Ala Leu Thr Gly Asn Ser Ser Val Tyr Phe Val Gln Tyr 55 Lys Ile Met Phe Ser Cys Ser Met Lys Ser Ser His Gln Lys Pro Ser 70 Gly Cys Trp Gln His Ile Ser Cys Asn Phe Pro Gly Cys Arg Thr Leu 85 Ala Lys Tyr Gly Gln Arg Gln Trp Lys Asn Lys Glu Asp Cys Trp Gly 105 Thr Gln Glu Leu Ser Cys Asp Leu Thr Ser Glu Thr Ser Asp Ile Gln 120 Glu Pro Tyr Tyr Gly Arg Val Arg Ala Ala Ser Ala Gly Ser Tyr Ser 135 Glu Trp Ser Met Thr Pro Arg Phe Thr Pro Trp Trp Glu Thr Lys Ile 155 150 Asp Pro Pro Val Met Asn Ile Thr Gln Val Asn Gly Ser Leu Leu Val 170 165 Ile Leu His Ala Pro Asn Leu Pro Tyr Arg Tyr Gln Lys Glu Lys Asn 190 185 Val Ser Ile Glu Asp Tyr Tyr Glu Leu Leu Tyr Arg Val Phe Ile Ile 200 205

Asn Asn Ser Leu Glu Lys Glu Gln Lys Val Tyr Glu Gly Ala His Arg
210

Ala Val Glu Ile Glu Ala Leu Thr Pro His Ser Ser Tyr Cys Val Val
225

Ala Glu Ile Tyr Gln Pro Met Leu Asp Arg Arg Ser Gln Arg Ser Glu
245

Glu Arg Cys Val Glu Ile Pro
260

<211> 259 <212> PRT <213> Homo sapiens <400> 43 Met Tyr Val Leu Ser Pro Val Glu Phe Ile Ile Leu Gln Leu Leu Phe Ile Gln Ala Ile Ser Ser Leu Lys Gly Phe Leu Ser Ala Met Arg 25 Leu Ala His Arg Gly Cys Asn Val Asp Thr Pro Val Ser Thr Leu Thr 40 Pro Val Lys Thr Ser Glu Phe Glu Asn Phe Lys Thr Lys Met Val Ile 55 Thr Ser Lys Lys Asp Tyr Pro Leu Ser Lys Asn Phe Pro Tyr Ser Leu 70 75 Glu His Leu Gln Thr Ser Tyr Cys Gly Leu Val Arg Val Asp Met Arg 85 90 Met Leu Cys Leu Lys Ser Leu Arg Lys Leu Asp Leu Ser His Asn His 100 105 Ile Lys Lys Leu Pro Ala Thr Ile Gly Asp Leu Ile His Leu Gln Glu 120 125 Leu Asn Leu Asn Asp Asn His Leu Glu Ser Phe Ser Val Ala Leu Cys 135 140 His Ser Thr Leu Gln Lys Ser Leu Arg Ser Leu Asp Leu Ser Lys Asn 155 Lys Ile Lys Ala Leu Pro Val Gln Phe Cys Gln Leu Gln Glu Leu Lys 165 170 Asn Leu Lys Leu Asp Asp Asn Glu Leu Ile Gln Phe Pro Cys Lys Ile 180 185 Gly Gln Leu Ile Asn Leu Arg Phe Leu Ser Ala Ala Arg Asn Lys Leu 200 205 Pro Phe Leu Pro Ser Glu Phe Arg Asn Leu Ser Leu Glu Tyr Leu Asp 215 220 Leu Phe Gly Asn Thr Phe Glu Gln Pro Lys Val Leu Pro Val Ile Lys 230 235 Leu Gln Ala Pro Leu Thr Leu Leu Glu Ser Ser Ala Arg Thr Ile Leu 250

<210> 44 <211> 416 <212> PRT

His Asn Arg

<210> 43

<213> Homo sapiens

<400> 44 Met Lys Leu His Cys Glu Val Glu Val Ile Ser Arg His Leu Pro Ala 52/53

1				5					10					15	
Leu	Gly	Leu		Asn	Arg	Gly	Lys		Val	Arg	Ala	Val	Leu 30	Ser	Leu
_		35					Gln 40					45	Phe		
Ile	Ser 50	Thr	Leu	Lys	Asp	Lys 55	Arg	Gly	Thr	Arg	Tyr 60	Glu	Leu	Arg	Glu
65	Ile				70	Thr	Lys			75					80
				85			Val		90					95	
			100				Leu	105					110		
		115					Val 120					125			
	130					135	Thr				140				
145					150		Phe			155					160
				165			Arg		170					175	
			180				Leu	185					190		
Pro	Ala	Thr 195	Ile	Gly	Asp	Leu	Ile 200	His	Leu	Gln	Glu	Leu 205	Asn	Leu	Asn
_	210					215	Ser				220				
225		-			230		Asp			235					240
				245			Leu		250					255	
_			260				Phe	265					270		
		275					Ala 280					285			
	290					295	Leu				300				
305					310		Leu			315					320
				325			Ala		330					335	
			340				Ile	345					350		
		355					Val 360					365			
	370					375					380				
385	Val	Leu			390		Gly			395					400
Tyr	Phe	Cys	Ser	Leu 405	Gly	Cys	Туr	Val	Asn 410		Ser	Asp	Met	Leu 415	Lys

INTERNATIONAL SEARCH REPORT

Intentional application No.
PCT/US01/19929

	SIFICATION OF SUBJECT MATTER							
	C07K 14/47; C12N 5/10, 5/16, 15/12, 15/63, 15/64 Please See Extra Sheet.	t						
	International Patent Classification (IPC) or to both	national classification and IPC						
B. FIEL	DS SEARCHED							
Minimum do	ocumentation searched (classification system followed	by classification symbols)						
U.S. :	530/350; 536/23.1, 23.5; 435/69.1, 71.1, 71.2, 325,	171, 320.1, <i>252.3</i> , <i>254</i> .11						
Documentati seakchede	ion searched other than minimum documentation to	the extent that such documents are in	ncluded in the fields					
Electronic d	ata base consulted during the international search (n	ame of data base and, where practicable	e, search terms used)					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.					
A	WO 92/05256 A1 (GENETICS INSTITUTE) 02 April 1992 (02/04/92		1-7					
		•						
Furth	ner documents are listed in the continuation of Box	C. See patent family annex.						
_	reial categories of cited documents:	"I" later document published after the inte date and not in conflict with the appl the principle or theory underlying the	lication but oiled to understand					
tol	be of particular relevance lier document published on or after the international filing date	"X" document of particular relevance; the	e claimed invention cannot be					
cit	cument which may throw doubts on priority claim(s) or which is not to establish the publication date of another citation or other and manner (see specified)	when the document is taken alone "Y" document of particular relevance; th	e claimed invention cannot be					
"O" doc	document referring to an oral disclosure, use, exhibition or other with one or more other such documents, such combined obvious to a person skilled in the art							
	cument published prior to the international filing date but later on the priority date claimed	"&" document member of the same patent						
Date of the	actual completion of the international search	Date of mailing of the international se	arch report					
16 AUGU		09 NOV 2001						
Commission Box PCT	nailing address of the ISA/US ner of Patents and Trademarks n, D.C. 20231	PREMA MERTZ	CC For					
Facsimile N	lo. (703) 305-3230	Telephone No. (703) 308-0196						
TO . DOWN!	TOA /ara /araan d abasah /balm zanoha							

INTERNATIONAL SEARCH REPORT

Intertional application No.
PCT/US01/19929

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
S. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-7 (SEQ ID NO:1, 23)
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)*

INTERNATIONAL SEARCH REPORT

In national application No. PCT/US01/19929

A.-CLASSIFICATION OF SUBJECT MATTER: US CL:

530/350; 536/23.1, 23.6; 435/69.1, 71.1, 71.2, 325, 471, 320.1, 252.3, 254.11

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 18.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Groups 1-22, claims 1-7, drawn to an isolated nucleic acid of SEQ ID NO X or a peptide of SEQ ID NO NO: Y, wherein X and Y are values that correlate to those listed in Table 1 on page 24, and correspond to one of the GSK Gene ID, respectively. For example,

If group 1 is elected, this correlates to Gene no 287163, of Table 1, wherein X is 1 and Y is 23. If group 2 is elected, this correlates to Gene No 251170, of Table 1, wherein X is 2 and Y is 24.

The inventions listed as Groups 1-22 do not relate to a single inventive concept under PCT Rule 18.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Pursuant to 87 C.F.R. § 1.475 (d), the ISA/US considers that where multiple products and processes are claimed, the main invention shall consist of the first invention of the category first mentioned in the claims and the first recited invention of each of the other categories related thereto. Accordingly, the main invention (Group I) comprises the first-recited product, a nucleic acid of SEQ ID NO:1, encoding a protein of SEO ID NO:23, a vector, a host cell, a method of making the protein of SEQ ID NO:23, and the protein of SEQ ID NO:23. Further pursuant to 37 C.F.R. § 1.475 (d), the ISA/US considers that any feature which the subsequently recited products and methods share with the main invention does not constitute a special technical feature within the meaning of PCT Rule 18.2 and that each of such products and methods accordingly defines a separate invention.

Form PCT/ISA/210 (extra sheet) (July 1998)*