Homogoneons Ream an $a_n t_n + a_n t_n - t_n + a_k t_n - k = 0$ Inhomogonous Recurrences [hpm]
authta, thit = + 9ktn-k bis a constant and p(n) is a polynomial in n of degrad i.e tn-2tn-1= 2n Fibonacci if n=0, n=1 $f_n = \begin{cases} n & \text{if } n = 1 \\ f_{n-1} + f_{n-2} & \text{otherwise } n = 1 \end{cases}$ f_{2} f_{3} f_{4} f_{5} $f_{6} \Rightarrow f_{5} + f_{4}$ 1 2 3 5 8 \Rightarrow 5 + 3 $f_6 + f_5 \rightarrow 8 + 5 \Rightarrow 13$

M- 12-400 $f_n - f_{n-1} - f_{n-2} =$ $\frac{2}{100} = \frac{2}{100} = \frac{2}{100} = \frac{1}{2} = \frac{1}{2}$ General solution + (2 % 2 0 = fo = CI + C2 : n=

チィー Cいって、十一マングラー ユー and C 2, - $f_n = \frac{1}{15} \left(\frac{1+\sqrt{5}}{2} \right) - \left(\frac{1-\sqrt{5}}{2} \right)$ Golden vatio De Moitvrès formula 1+15/3 1.61803 of Fibronacci $f_i = 0$

molliplication as an operation

In grows exponentially in a number dose to p.

If hoose recurrinely. Sourcé: Fundamontals of Algo By Gilles Brassand & Paul Bratolly By. 120

characteristic equation for solving necross. Four steraps 1) Calculate thefirst fearalues of the recurrence 2) look for the regulatif 3) Gress a snitable general form 4) Finally prove by mater/constructive induction

 E_{X} . T_{X}) = $\begin{cases} 3 + (n/2) + n \end{cases}$ otherwise 1 2 4 8 16 32 TM) 1 5 19 65 211 665 $T(4) = 3 \times t(2) + 4$ 31172 $3^2 \times 1 + 3 \times 2 + 2$ $\frac{3}{3} \times 1 + \frac{3^2 \times 2}{3} + \frac{3}{3} \times \frac{2}{3} + \frac{2}{3}$

 $t(2^{K}) = 3^{K} + 3^{K-1} + 3^{K-2} = 1$ $3^{1}=0$ 3^{1