A Homomorphism between SL(2,C) and Lorentz Group

Shi Feng

A homomorphism exist between $SL(2,\mathbb{C})$ and Lorentz group. Let $M=\mathbb{R}^4$ be the 4-d Minkowski space with Lorentz metric:

$$||x||^2 = x_0^2 - x_1^2 - x_2^2 - x_3^2$$
, with $x = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}$ (1)

that is, M is the ordinary Minkowski space of special relativity, and we have chosen the speed of light to be unity. A Lorentz transformation, B, is a linear transformation of M into itself which preserves the Lorentz metric:

$$||Bx||^2 = ||x||^2$$
, for all $x \in M$ (2)

We let L denote the group of all Lorentz transformations, and call it Lorentz group.

We now decribe a homomorphism from $SL(2,\mathbb{C})$ to L. For this purpose we shall identity every point x in M with a 2-by-2 self-adjoint matrix:

$$x := \begin{pmatrix} x_0 + x_3 & x_1 - ix_2 \\ x_1 + ix_2 & x_0 - x_3 \end{pmatrix} = x_0 \mathbb{1} + x_1 \sigma_1 + x_2 \sigma_2 + x_3 \sigma_3$$
 (3)

which satisfies $x^{\dagger} = x$ and $\det(x) = ||x||^2 = x_0^2 - x_1^2 - x_2^2 - x_3^2$. In this notation, we have $x_0 = 1/2 \operatorname{tr}(x)$, $x_3 = 1/2 \operatorname{tr}(x)$ where \tilde{tr} means the difference of the diagonal.

Now let A be any 2 - by - 2 matrix. We define the action of the matrix A on the self-adjoint matrix x by

$$x \to AxA^{\dagger} \equiv \phi(A)x$$

where we denoted the corresponding concrete action on the vector x by $\phi(A)x$. The nicity can be seen from the fact

$$\left(AxA^{\dagger}\right)^{\dagger} = A^{\dagger\dagger}x^{\dagger}A^{\dagger} = AxA^{\dagger}.$$

so the new AxA^{\dagger} is also self-adjoint. Notice also that

$$\|\phi(A)x\|^2 = \det(AxA^{\dagger}) = |\det(A)|^2 \det(x)$$
(4)

is $A \in SL(2,\mathbb{C})$, then

$$\|\phi(A)x\|^2 = \|x\|^2 \tag{5}$$

Therefore if A is in $SL(2,\mathbb{C})$, $\phi(A)$ represents a Lorentz transformation. Notice also that

$$ABx(AB)^{\dagger} = ABxB^{\dagger}A^{\dagger} = A(BxB^{\dagger})A^{\dagger}.$$

so that

$$\phi(AB)x = \phi(A)\phi(B)x\tag{6}$$

Thus ϕ is a homomorphism! Also note that $\phi(-A) = \phi(A)$ so this map is not one-to-one, i.e. $\pm A$ shall be mapped to the same Lorentz transformation by ϕ .