

TrustSec

Course Introduction

<u>ine.com</u>

Piotr Kaluzny

CCIE #25665

pkaluzny@ine.com

in linkedin.com/in/piotrkaluzny

CCIE Security

- + ISE GUI
- + Basic wireless concepts

Course Prerequisites

Course Overview

- Module 1 Introduction to TrustSec

+ Module 2 Classification & SGT

+ Module 3Propagation & SXP

+ Module 4 Enforcement & SGACL

+ Module 5 TrustSec on IOS

+ Module 6 TrustSec on ASA

+ Module 7 TrustSec for Wireless Networks

Introduction to TrustSec

Module Overview

- ▶ Traditional network segmentation
- Cisco TrustSec
- TrustSec operations

Traditional Network Segmentation

- ▶Traditional access control relies on VLANs & ACLs
 - **► VLANs**
 - > Context-based allocation
 - > User department/role, device function/type, etc.
 - > Traffic filtering performed at the L3 edge
 - > The more ACEs (sources x destinations x permissions), the more problems
 - ▶ Downloadable ACLs (dACLs)
 - > Ingress enforcement after successful authentication
 - > Single source, but possibly multiple destinations & permissions
 - > May be problematic due to limited TCAM space
- ▶Not scalable, increased complexity

Cisco TrustSec

- ▶Next-generation segmentation for simplified access control
 - ► Controls are defined based on roles/context rather than IP addresses
 - > Security Groups
 - > E.g. Contractors, Employees-tablets or PCI-servers
 - ► Each Security Group is assigned a tag (label) for identification & filtering
 - Security Group Tag (SGT)
 - ► Filtering policy is defined through Security Group ACLs (SGACLs)
 - > Source SGT, destination SGT, action & protocol
 - > Contractors (10) -> PCI-servers (90): deny ip log
 - > The policy is scalable, "follows a user" and does not depend on the network topology
- Domain authentication (NDAC) & encryption (MACsec) is optional

TrustSec Operations

▶ Classification

- ➤ Assignment of a SGT to a session or resource
 - Usually performed ingress

▶ Propagation

➤ Distribution of IP-SGT mappings to enforcement points

▶Enforcement

- Application of configured (downloaded) policies
 - > Usually performed egress

Campus LAN Use Case

▶ Classification

- ➤ User connects to an access-layer switch & authenticates
 - > 802.1x, MAB or WebAuth
- ➤ Authorized session becomes associated with a SGT (ISE)

▶ Propagation

➤ The SGT is propagated from the access layer up to the DC

Enforcement

- ► Egress DC switch enforces policy via SGACL downloaded from ISE
 - Destination servers are SGT-mapped statically

Classification & SGT

Module Overview

- ▶ TrustSec classification
- ▶ SGT

Security Group Tag (SGT)

- ►A 16-bit numerical value representing a Security Group
 - ➤ Session, device or session context
- ▶SGT Considerations
 - ➤ The "Unknown" SGT corresponds to a numerical tag value 0
 - > Represents untagged traffic
 - ➤ Traffic originated by a network device can be tagged as well
 - > Work Centers -> TrustSec -> TrustSec Policy -> Network Device Authorization
- ▶ISE comes with a bunch of preexisting SGTs

Classification

- ▶ A process of associating SGTs with sessions or devices
 - ➤ Dynamic or Static
- ▶ Dynamic Classification
 - ➤ A result of 802.1x/MAB/Web authentication (AuthZ Profile)
 - > Users and/or endpoints
 - ➤ Via pxGrid or API calls
- - ► IP address, subnet, VLAN or Port
 - > IT infrastructure
 - ► Performed on ISE and/or NAD

Static Classification

- **⊳**ISE
 - ➤ Work Centers -> TrustSec -> Components -> IP SGT Static Mapping
- **⊳**IOS/ASA
 - ▶ cts role-based sgt-map
 - show cts role-based sgt-map

Propagation & SXP

Module Overview

- ▶ TrustSec propagation
- Inline Tagging
- SXP

Propagation

- ▶ A process of sharing SGT mappings with enforcement points
 - ► Inline (Native) Tagging
 - ▶ SGT Exchange Protocol (SXP)
 - ▶ pxGrid
 - > FTD, WSA or ecosystem vendor product

▶ Most deployments combine Inline Tagging with SXP

Inline Tagging

- ▶ Allows to carry SGT information in modified data frames
 - On Ethernet, Cisco Meta Data (CMD) header follows Src MAC (or 802.1q) field
 EtherType is set to 0x8909
 - ➤ The tag is maintained hop-by-hop allowing to enforce policies at any point
 - > If packet is to be allowed the last-hop device removes the tag
 - ➤ Similar logic is used in supported Virtual Private Network environments
 - IKEv2 IPsec, DMVPN, GETVPN & VXLAN

Pros & Cons

- No performance degradation
- Requires hardware support
 - TrustSec Platform Capability Matrix

Configuring Inline Tagging

- + IOS/ASA
- Enable the manual CTS mode on an interface
 - cts manual
- + Configure inline tagging
 - + Make sure **propagate sgt i**s on
 - policy static sgt [trusted]
- + Verify
 - + show cts interface

SGT Exchange Protocol (SXP)

- ▶ A Control Plane peering protocol used for SGT mapping propagation
 - ▶ Used for devices with no CTS hardware support
 - ► Runs over TCP port 64999
 - > No need for hop-hop peerings
 - ➤ Uses MD5 for authentication & integrity checks (TCP Option 19)
 - >BGP authentication considerations apply for cross-firewall peerings
 - A SXP peer can act as a Speaker (tx), Listener (rx), or both
 - ➤ Supported on network devices, ISE & OpenDaylight
 - Centralized peerings with ISE are common
 - > Using a standalone node is recommended

Configuring SXP

⊳IOS/ASA

- ► Enable SXP
 - > cts sxp enable
- ➤ Create password (optional)
 - > cts sxp default password
- ➤ Configure peering
 - > cts sxp connection peer
- ▶ Verify
 - > show cts sxp

Configuring SXP

⊳ISE

- ► Enable SXP on a node
 - > Administration -> System -> Deployment
- ➤ Configure SXP settings
 - > Work Centers -> TrustSec -> Settings -> SXP
- ► Add a peer
 - > Work Centers -> TrustSec -> SXP -> SXP Devices

Enforcement & SGACL

Module Overview

- ▶ TrustSec enforcement
- ▶ SGACLs

Enforcement

- Cisco TrustSec (CTS) policies can be enforced using two methods
 - ➤ Security Group ACL (SGACL)
 - > Centralized definition (ISE)
 - > Stateless
 - Security Group Firewall (SGFW)
 - Supported on ASA, FTD & IOS ZFW
 - > Local tag-based rules
 - > Regular syntax
 - > Stateful

Security Group ACL (SGACL)

- Stateless tag-based access control mechanism
 - ➤ CTS policy enforcement is represented as a spreadsheet (ISE Matrix View)
 - > Source SGT to Destination SGT
 - ► Each SGT pair ("cell") points to SGACL
 - > Action, protocol, port, "log"
 - > E.g. "permit icmp log" or "deny udp dst eq 3389"
- ▶SGACLs are normally configured on ISE
 - ➤ The policy must be downloaded by NADs
 - ► Local configuration (e.g. ASR 1k) is less common
 - ➤ Monitor mode allows to test the deployment without blocking traffic

Configuring SGACLs

- **⊳**ISE
 - ► Work Centers -> TrustSec -> Components -> Security Group ACLs
- ►ASR1k (only for your reference)
 - ▶ ip access-list role-based
 - > cts role-based permissions

TrustSec on IOS

Module Overview

- ▶ CTS integration
- Configuration syntax

IOS CTS Integration

- **>**

- CTS policy download requires NAD to enroll with ISE or a peer
- + Relies on EAP-FAST
 - Phase 0 distributes a PAC (Protected Access Credential) after authentication
 Catalysts 3750X support automatic PAC provisioning

Switch

Start with regular 802.1x configuration (global) aaa new-model aaa authentication dot1x default group radius aaa authorization network default group radius aaa accounting dot1x default start-stop group radius radius server ISE address ipv4 10.1.1.100 auth-port 1812 acct-port 1813 aaa server radius dynamic-author client 10.1.1.100 server-key cisco radius-server vsa send authentication radius-server vsa send accounting dot1x system-auth-control

⊳Switch

➤ Start with regular 802.1x configuration (interface) interface GigabitEthernet1/0/1 switchport mode access authentication order dot1x mab authentication priority dot1x mab authentication port-control auto authentication host-mode multi-auth mab dot1x pae authenticator

▶Switch

- ➤ Configure CTS settings
 - > Specify which server stores the CTS policy
 - > aaa authorization network *name* group [radius | *gname*]
 - >cts authorization list name
 - Configure CTS device-ID & password
 - >cts credentials id
 - > Add Radius PAC key
 - > pac key
 - > Enforce downloaded policies
 - > cts role-based enforcement, cts role-based enforcement vlan-list
 - Verify
 - > show cts pac, show cts environment-data, show cts role-based

- + Switch (3750-X)
 - + Enable Device Tracking globally AND at the interface level
 - ip device tracking (global), ip device tracking maximum (interface)
 - + For the policy to be enforced, entries must exist for sources & destinations
- + ISE
 - Configure TrustSec settings on NADs
 - + Advanced TrustSec Settings
 - Other TrustSec configuration, such as SXP, may be needed
- + TrustSec Troubleshooting Guide
 - +https://community.cisco.com/t5/security-documents/trustsec-troubleshooting-guide/ta-p/3647576#toc-hld-1418373399

TrustSec on ASA

Module Overview

- ▶ CTS integration
- Configuration syntax

ASA CTS Integration

- ► ASA requires manual PAC provisioning
 - ► PAC is generated on ISE and downloaded OOB
 - > cts import-pac
- ► ASA cannot use or download SGACLs
 - ➤ Only part of environment data is downloaded
 - > SGTs & Security Group names

TrustSec ASA Configuration

ISE

➤ Configure TrustSec settings on NADs (Advanced TrustSec Settings)

SASA

- ➤ Configure ISE server
 - > aaa-server *name* protocol radius
 - > aaa-server name (interface) host ISE_IP
 - >key password
- ► Import PAC & designate server for CTS
 - > cts import-pac, cts server-group name
 - > Verify with show cts environment-data sg-table
- ➤ Configure SXP & security policy

TrustSec for Wireless Networks

Module Overview

▶ GUI configuration

TrustSec WLC Configuration

⊳WLC

- ► Enable PAC provisioning for the RADIUS server
 - > Security -> AAA -> RADIUS -> Authentication
- ► Integrate with ISE for CTS
 - > Security -> TrustSec -> General
 - > Refresh Env Data
- ► Configure WLAN AAA settings
 - > Advanced -> Allow AAA Override
 - Advanced -> NAC State -> ISE NAC
- ➤ Verify the CTS policy
 - Security -> TrustSec -> Policy

TrustSec WLC Configuration

⊳WLC

- ➤ SXP Configuration
 - Security -> TrustSec -> SXP Config
 - > FlexConnect Mode
 - > Wireless -> Access Points -> All APs -> Trusted Security

⊳ISE

- ➤ Configure TrustSec settings on NADs
 - Advanced TrustSec Settings

TrustSec

Course Conclusion

<u>ne.com</u>

Course Conclusion

- + Traditional network segmentation might not be scalable
- + Classification associates a SGT with a resource
- + Propagation distributes IP-SGT mappings to policy nodes
- + Enforcement is typically performed with the aid of SGACLs
- + Implementation details depend on the underlying platform

Thank You INE

