Московский физико-технический институт Физтех-школа прикладной математики и информатики

АЛГЕБРА И ГЕОМЕТРИЯ БИЛЕТЫ К ЭКЗАМЕНУ

I CEMECTP

Лектор: Штепин Вадим Владимирович

Автор: Головко Денис Проект на Github

Аналитическая геометрия на плоскости и в пространстве.

- 1. Коллинеарные, компланарные векторы. Линейные операции с векторами и их свойства. Линейно зависимые и независимые системы векторов. Базис, координаты вектора в базисе. Описание базисов на плоскости и в пространстве. Действия над векторами в координатах. Связь между линейной зависимостью, коллинеарностью и компланарностью векторов. Изменение координат при замене базиса.
- 2. Общая декартова система координат, прямоугольная система координат. Связь между координатами направленного отрезка и координатами его конца и начала, задание отрезка и прямой в декартовой системе координат. Замена декартовой системы координат, формулы перехода.
- 3. Скалярное произведение, его свойства, выражение в ортонормированном и произвольном базисе. Формулы для определения расстояния между точками и угла между векторами.
- 4. Ориентация на плоскости и в пространстве. Ориентированные площадь и объем (смешанное произведение). Свойства ориентированных площади и объема. Выражение ориентированных площади и объема в произвольном базисе.
- 5. Векторное произведение, его свойства, выражение в правом ортонормированном базисе. Критерии коллинеарности и компланарности векторов. Двойное векторное произведение.
- 6. Понятние об уравнении множества. Алгебраические линии и поверхности. Пересечение и объединение алгебраических линий (поверхностей). Сохранение порядка при переходе к другой системе координат.
- 7. Прямая на плоскости, различные способы задания, их эквивалентность. Формула для расстояния от точки до прямой в прямоугольной системе координат. Условия пересечения и параллельности двух прямых. Пучок прямых.
- 8. Плоскость в пространстве, различные способы задания, их эквивалентность. Условие параллельности двух плоскостей. Направляющий вектор пересечения двух плоскостей. Пучок плоскостей.
- Прямая в пространстве, различные способы задания, их эквивалентность. Формулы для расстояния от точки до плоскости и расстояния между скрещивающимися прямыми в прямоугольной системе координат.
- 10. Эллипс, гипербола, парабола, их канонические уравнения. Теоремы о фокусах и директрисах. Асимптоты гиперболы. Сопряжённые диаметры.
- 11. Вывод общего уравнения касательной к кривой второго порядка. Касательные к эллипсу, параболе и гиперболе.

- 12. Классификация линий второго порядка. Приведение уравнения второго порядка с двумя переменными к каноническому виду в прямоугольной системе координат. Центр кривой второго порядка.
- 13. Инварианты кривой второго порядка.

Линейные пространства. Матрицы и определители.

- 1. Матрицы, операции с матрицами, их свойства.
- 2. Понятия группы, кольца и поля, примеры. Поле комплексных чисел. Характеристика поля, простое подполе. Группа перестановок, знак подстановки. Изоморфизм групп, теорема Кэли. Порядок элемента. Циклические группы, теорема об изоморфизме циклических групп, подгруппы циклических групп. Теорема Лагранжа о порядке подгруппы, её следствия.
- 3. Поле комплексных чисел. Модуль и аргумент комплексного числа.
- 4. Линейное пространство. Понятие линейно (не)зависимой системы векторов. Подпространство линейного пространства. Линейная оболочка системы векторов, её характеризация.
- 5. Системы линейных уравнений. Элементарные преобразования строк и столбцов матрицы, элементарные матрицы, их свойства. Приведение матрицы к ступенчатому и упрощенному виду. Метод Гаусса решения систем линейных уравнений. Основная лемма о линейной зависимости. Фундаментальная система решений и общее решение однородной системы линейных уравнений. Общее решение неоднородной системы.
- 6. Базис и размерность линейного пространства, их свойства. Теорема об изоморфизме. Дополнение линейно независимой системы векторов до базиса. Координаты вектора в базисе, запись операций над векторами через координаты. Изменение координат вектора при изменении базиса. Матрица перехода. Мощность конечного векторного пространства и конечного поля.
- 7. Ранг системы векторов, его связь с размерностью линейной оболочки. Ранг матрицы. Теорема о ранге матрицы. Ранг произведения матриц. Теорема о базисном миноре. Нахождение ранга с помощью элементарных преобразований. Теорема Кронекера-Капелли. Невырожденные и обратимые матрицы. Нахождение обратной матрицы при помощи элементарных преобразований.
- 8. Подпространства в линейном пространстве. Сумма и пересечение подпространств. Прямая сумма подпространств, её характеризации. Прямое дополнение подпространства. Связь размерностей суммы и пересечения подпространств.
- 9. Линейные функции (функционалы). Сопряжённое (двойственное) пространство, его размерность. Взаимный (биортогональный) базис, координаты в нём, замена координат при замене базиса. Канонический изоморфизм пространства и дважды сопряжённого к нему. Аннуляторные подпространства, их свойства.

- 10. Линейные отображения и линейные преобразования (операторы) линейного пространства. Их матрицы. Ядро и образ линейного отображения, их размерности. Критерий инъективности линейного отображения. Операции над линейными преобразованиями и их матрицами. Изменение матрицы линейного отображения и линейного преобразования при замене базисов.
- 11. Полилинейные и кососимметрические функции. Определитель матрицы, задание определителя его свойствами, явное выражение определителя через элементы матрицы. Поведение определителя при элементарных преобразованиях. Определитель произведения матриц и транспонированной матрицы. Определитель с углом нулей.
- 12. Миноры и их алгебраические дополнения. Теорема о произведении минора на его алгебраическое дополнение. Теорема Лапласа. Разложение определителя по строке, столбцу. Определитель Вандермонда. Теорема Крамера. Формула обратной матрицы.

Содержание

1	Ана	литическая геометрия на плоскости и в пространстве.	5
	1.1	Коллинеарные, компланарные векторы. Линейные операции с векторами и их свой-	
		ства. Линейно зависимые и независимые системы векторов. Базис, координаты век-	
		тора в базисе. Описание базисов на плоскости и в пространстве. Действия над век-	
		торами в координатах. Связь между линейной зависимостью, коллинеарностью и	
		компланарностью векторов. Изменение координат при замене базиса	5
	1.2	Общая декартова система координат, прямоугольная система координат. Связь	
		между координатами направленного отрезка и координатами его конца и нача-	
		ла, задание отрезка и прямой в декартовой системе координат. Замена декартовой	
		системы координат, формулы перехода.	10
	1.3	Скалярное произведение, его свойства, выражение в ортонормированном и про-	
		извольном базисе. Формулы для определения расстояния между точками и угла	
		между векторами	11
	1.4	Ориентация на плоскости и в пространстве. Ориентированные площадь и объем	
		(смешанное произведение). Свойства ориентированных площади и объема. Выра-	
		жение ориентированных площади и объема в произвольном базисе	14
	1.5	Векторное произведение, его свойства, выражение в правом ортонормированном	
		базисе. Критерии коллинеарности и компланарности векторов. Двойное векторное	
		произведение.	17
	1.6	Понятние об уравнении множества. Алгебраические линии и поверхности. Пересе-	
		чение и объединение алгебраических линий (поверхностей). Сохранение порядка	
		при переходе к другой системе координат	19
	1.7	Прямая на плоскости, различные способы задания, их эквивалентность. Формула	
		для расстояния от точки до прямой в прямоугольной системе координат. Условия	
		пересечения и параллельности двух прямых. Пучок прямых	21
	1.8	Плоскость в пространстве, различные способы задания, их эквивалентность. Усло-	
		вие параллельности двух плоскостей. Направляющий вектор пересечения двух плос-	
		костей. Пучок плоскостей	24
	1.9	Прямая в пространстве, различные способы задания, их эквивалентность. Форму-	
		лы для расстояния от точки до плоскости и расстояния между скрещивающимися	
		прямыми в прямоугольной системе координат.	27
	1.10	Эллипс, гипербола, парабола, их канонические уравнения. Теоремы о фокусах и	
		директрисах. Асимптоты гиперболы. Сопряжённые диаметры	29
	1.11	Вывод общего уравнения касательной к кривой второго порядка. Касательные к	
		эллипсу, параболе и гиперболе.	33

	1.12	Классификация линий второго порядка. Приведение уравнения второго порядка	
		с двумя переменными к каноническому виду в прямоугольной системе координат.	
		Центр кривой второго порядка	34
	1.13	Инварианты кривой второго порядка	36
2	Лин	нейные пространства. Матрицы и определители.	38
	2.1 2.2	Матрицы, операции с матрицами, их свойства	38
		физме циклических групп, подгруппы циклических групп. Теорема Лагранжа о порядке подгруппы, её следствия	40
	2.3	2 11 20 11 20 11 11 11 11 11 11 11 11 11 11 11 11 11	40 44
	2.4	Линейное пространство. Понятие линейно (не)зависимой системы векторов. Под- пространство линейного пространства. Линейная оболочка системы векторов, её	
	2.5	характеризация	45
		новная лемма о линейной зависимости. Фундаментальная система решений и общее решение однородной системы линейных уравнений. Общее решение неоднородной	47
	2.6	Базис и размерность линейного пространства, их свойства. Теорема об изоморфизме. Дополнение линейно независимой системы векторов до базиса. Координаты вектора в базисе, запись операций над векторами через координаты. Изменение координат вектора при изменении базиса. Матрица перехода. Мощность конечного	
		векторного пространства и конечного поля	49
	2.7	Ранг системы векторов, его связь с размерностью линейной оболочки. Ранг матрицы. Теорема о ранге матрицы. Ранг произведения матриц. Теорема о базисном миноре. Нахождение ранга с помощью элементарных преобразований. Теорема Кронекера-Капелли. Невырожденные и обратимые матрицы. Нахождение обратной	
			51
	2.8	Подпространства в линейном пространстве. Сумма и пересечение подпространств. Прямая сумма подпространств, её характеризации. Прямое дополнение подпро-	
	2.9	странства. Связь размерностей суммы и пересечения подпространств	54
	2.0	его размерность. Взаимный (биортогональный) базис, координаты в нём, замена	
		координат при замене базиса. Канонический изоморфизм пространства и дважды сопряжённого к нему. Аннуляторные подпространства, их свойства	56
		The state of the s	-

2.10	Линейные отображения и линейные преобразования (операторы) линейного про-	
	странства. Их матрицы. Ядро и образ линейного отображения, их размерности.	
	Критерий инъективности линейного отображения. Операции над линейными пре-	
	образованиями и их матрицами. Изменение матрицы линейного отображения и ли-	
	нейного преобразования при замене базисов.	59
2.11	Полилинейные и кососимметрические функции. Определитель матрицы, задание	
	определителя его свойствами, явное выражение определителя через элементы мат-	
	рицы. Поведение определителя при элементарных преобразованиях. Определитель	
	произведения матриц и транспонированной матрицы. Определитель с углом нулей.	61
2.12	Миноры и их алгебраические дополнения. Теорема о произведении минора на его	
	алгебраическое дополнение. Теорема Лапласа. Разложение определителя по строке,	
	столбцу. Определитель Вандермонда. Теорема Крамера. Формула обратной матрицы.	64

- 1 Аналитическая геометрия на плоскости и в пространстве.
- 1.1 Коллинеарные, компланарные векторы. Линейные операции с векторами и их свойства. Линейно зависимые и независимые системы векторов. Базис, координаты вектора в базисе. Описание базисов на плоскости и в пространстве. Действия над векторами в координатах. Связь между линейной зависимостью, коллинеарностью и компланарностью векторов. Изменение координат при замене базиса.

Определение 1.1. *Направленным отрезком* называется отрезок (на прямой, на плоскости или в пространстве), концы которого упорядоченны. Обозначение — \overline{AB} . Направленные отрезки \overline{AB} и \overline{CD} называются равными, если они сонаправлены и их длины равны.

Определение 1.2. Вектором называется класс эквивалентности направленных отрезков.

Определение 1.3. Основные операции с векторами:

- 1. Пусть $\overline{u}, \overline{v} \in V_n$. Отложим вектор \overline{u} от некоторой точки $A \in P_n$, получим $\overline{AB} = \overline{u}$. Теперь отложим \overline{v} от точки $B \in P_n$, получим \overline{BC} . Суммой векторов \overline{u} и \overline{v} называется такой класс $\overline{u} + \overline{v}$ с представителем \overline{AC} .
- 2. Пусть $\overline{u} \in V_n$. Отложим вектор \overline{u} от некоторой точки $A \in P_n$, получим $\overline{AB} = \overline{v}$. Вектором, полученным из \overline{u} умножением на скаляр λ , называется следующий класс эквивалентности $\lambda \overline{u}$:

```
\triangleright Если \lambda = 0, то \lambda \overline{u} = \overline{0}
```

- ightharpoonup Если $\lambda>0$, то $\lambda\overline{u}$ это класс с представителем \overline{AC} таким, что $AC=\lambda AB$ и $\overline{AC}\uparrow\uparrow\overline{AB}$
- ightharpoonup Если $\lambda < 0$, то $\lambda \overline{u}$ это класс с представителем \overline{AC} таким, что $AC = |\lambda|AB$ и $\overline{AC} \uparrow \downarrow \overline{AB}$

Утверждение 1.1. Операции с векторами обладают следующими свойствами:

```
\forall \overline{u}, \overline{v} \in V_n : \overline{u} + \overline{v} = \overline{v} + \overline{u}
```

$$\forall \overline{u}, \overline{v}, \overline{w} \in V_n : (\overline{u} + \overline{v}) + \overline{w} = \overline{u} + (\overline{v} + \overline{w})$$

$$\Rightarrow \exists \overline{0} \in V_n : \forall \overline{u} \in V_n : \overline{u} + \overline{0} = \overline{u}$$

$$\forall \overline{u} \in V_n : \exists (-\overline{u}) \in V_n : \overline{u} + (-\overline{u}) = \overline{0}$$

$$\forall \lambda, \mu \in \mathbb{R} : \forall \overline{u} \in V_n : (\lambda + \mu)\overline{u} = \lambda \overline{u} + \mu \overline{u}$$

$$\forall \lambda \in \mathbb{R} : \forall \overline{u}, \overline{v} \in V_n : \lambda(\overline{u} + \overline{v}) = \lambda \overline{u} + \lambda \overline{v}$$

$$\forall \lambda, \mu \in \mathbb{R} : \forall \overline{u} \in V_n : (\lambda \mu) \overline{u} = \lambda(\mu \overline{u})$$

$$\triangleright \ \forall \overline{u} \in V_n : 1\overline{u} = \overline{u}$$

Доказательство. Доказательство производится непосредственной проверкой. Приведем указания к доказательству некоторых из свойств:

- ⊳ Первое свойство сводится к использованию свойств параллелограмма.
- ▶ Для доказательства второго свойства достаточно показать, что оба случая представляют собой последовательное откладывание следующего вектора от конца предыдущего.
- ▶ Свойства, связанные с умножением на число, требуют рассмотрения всех случаев выбора знаков у чисел и во всех случаях очевидно выполняются.

Определение 1.4. Система $(\overline{v_1}, \dots, \overline{v_n})$ векторов из V_n называется линейно независимой, если для любых $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ выполнено следующее условие:

$$\sum_{i=1}^{n} \alpha_i \overline{v_i} = \overline{0} \Leftrightarrow \alpha_1 = \dots = \alpha_n = 0$$

Определение 1.5. Система $(\overline{v_1}, \dots, \overline{v_n})$ векторов из V_n называется линейно зависимой, если существует ее нетривиальная линейная комбинация, равная $\overline{0}$.

Утверждение 1.2.

- 1. Если система линейно независима, то любая ее подсистема тоже линейно независима.
- 2. Если система линейно зависима, то любая ее надсистема тоже линейно зависима.

Доказательство.

- 1. Пусть без ограничения общности у линейно независимой системы $(\overline{v_1}, \dots, \overline{v_n})$ есть линейно зависимая подсистема $(\overline{v_1}, \dots, \overline{v_k})$. Тогда существует нетривиальная линейная комбинация $\alpha_1 \overline{v_1} + \dots + \alpha_k \overline{v_k}$. Но если эту линейную комбинацию дополнить линейной комбинацией $0\overline{v_{k+1}} + \dots + 0\overline{v_n}$, то получится нетривиальная линейная комбинация векторов $(\overline{v_1}, \dots, \overline{v_n})$, равная $\overline{0}$ —противоречие.
- 2. Если система $(\overline{v_1}, \dots, \overline{v_n})$ линейно зависима, то ее нетривиальную линейную комбинацию, равную $\overline{0}$, можно аналогично дополнить до нетривиальной линейной комбинации любой ее надсистемы.

Утверждение 1.3. Система $(\overline{v_1}, \dots, \overline{v_n})$ линейно зависима \Leftrightarrow один из ее векторов выражается через остальные.

Доказательство.

 \Leftarrow Пусть без ограничения общности $\overline{v_n}$ выражается через остальные векторы системы, тогда существуют коэффициенты $\alpha_1, \dots, \alpha_{n-1} \in \mathbb{R}$ такие, что:

$$\overline{v_n} = \sum_{i=1}^{n-1} \alpha_i \overline{v_i}$$

Преобразуем это равенство:

$$\sum_{i=1}^{n-1} \alpha_i \overline{v_i} + (-1)\overline{v_n} = \overline{0}$$

Значит, система $(\overline{v_1},\ldots,\overline{v_n})$ линейно зависима.

 \Rightarrow Пусть без ограничения общности в нетривиальной линейной комбинации, равной $\overline{0}$, коэффициент α_n отличен от нуля. Тогда:

$$\sum_{i=1}^{n-1} \alpha_i \overline{v_i} + \alpha_n \overline{v_n} = \overline{0} \Rightarrow \overline{v_n} = \sum_{i=1}^{n-1} \left(-\frac{\alpha_i}{\alpha_n} \right) \overline{v_i}$$

Таким образом, вектор $\overline{v_n}$ выражается через остальные векторы системы.

Определение 1.6. Система векторов из V_n называется:

- ▶ Коллинеарной, если все ее векторы параллельны одной прямой
- ▶ Компланарной, если все ее векторы параллельны одной плоскости

Утверждение 1.4. Пусть $\overline{a}, \overline{b}, \overline{c}, \overline{d} \in V_3$. Выполнены следующие свойства:

- 1. Если $\overline{a} \neq \overline{0}$ и вектор \overline{b} коллинеарен вектору \overline{a} , то \overline{b} выражается через \overline{a}
- 2. Если $\overline{a},\overline{b}$ неколлинеарные векторы и вектор \overline{c} компланарен системе $(\overline{a},\overline{b}),$ то \overline{c} выражается через $\overline{a},\overline{b}$.
- 3. Если $\overline{a}, \overline{b}, \overline{c}$ некомпланарные векторы, то \overline{d} выражается через $\overline{a}, \overline{b}, \overline{c}$.

 \overline{A} оказательство. Отложим векторы $\overline{a}, \overline{b}, \overline{c}, \overline{d}$ от точки $O \in P_n$ и получим направленные отрезки $\overline{OA}, \overline{OB}, \overline{OC}, \overline{OD}$. Произведем следующие построения:

- 1. Если $\overline{a} \uparrow \uparrow \overline{b}$, то домножим \overline{OA} на $\frac{|\overline{b}|}{|\overline{a}|}$, иначе на $\left(-\frac{|\overline{b}|}{|\overline{a}|}\right)$, и получим \overline{OB} .
- 2. Проведем через C прямую l, параллельную \overline{b} . Пусть эта прямая пересекает OA в точке X. Тогда $\overline{OC} = \overline{OX} + \overline{XC}$, и по пункту (1) имеем, что \overline{OX} выражается через \overline{a} , а \overline{XC} через \overline{b} .
- 3. Проведем через D плоскость α , параллельную $(\overline{a}, \overline{b})$. Пусть эта плоскость пересекает OC в точке X. Тогда $\overline{OD} = \overline{OX} + \overline{XD}$, и по пунктам (1) и (2) имеем, что \overline{OX} выражается через \overline{c} , а \overline{XD} через $\overline{a}, \overline{b}$.

Теорема 1.1. Пусть $\overline{a}, \overline{b}, \overline{c}, \overline{d} \in V_n$, $n \leqslant 3$. Выполнены следующие свойства:

- 1. Система (\overline{a}) линейно независима $\Leftrightarrow \overline{a} \neq \overline{0}$
- 2. Cистема $(\overline{a},\overline{b})$ линейно независима \Leftrightarrow она неколлинеарна
- 3. Система $(\overline{a}, \overline{b}, \overline{c})$ линейно независима \Leftrightarrow она некомпланарна
- 4. Cucmema $(\overline{a}, \overline{b}, \overline{c}, \overline{d})$ всегда линейно зависима

Доказательство.

- 1. \Rightarrow Пусть $\overline{a} = \overline{0}$, тогда $1\overline{a} = \overline{0}$, и система (\overline{a}) линейно зависима.
 - \Leftarrow Если $\overline{a} \neq \overline{0}$, то при умножении этого вектора на любое число $\alpha \neq 0$ снова получится ненулевой вектор, то есть система (\overline{a}) линейно независима.
- 2. \Rightarrow Пусть система $(\overline{a}, \overline{b})$ коллинеарна. Если $\overline{a} = \overline{0}$, то вся система линейно зависима по пункту (1), иначе \overline{b} выражается через \overline{a} , тогда система тоже линейно зависима.
 - \Leftarrow Пусть система $(\overline{a},\overline{b})$ линейно зависима, тогда без ограничения общности \overline{b} выражается через \overline{a} , то есть эти векторы коллинеарны.
- 3. \Rightarrow Пусть система $(\overline{a}, \overline{b}, \overline{c})$ компланарна. Если система $(\overline{a}, \overline{b})$ коллинеарна, то вся система линейно зависима по пункту (2), иначе $-\overline{c}$ выражается через $\overline{a}, \overline{b}$, тогда система тоже линейно зависима.
 - \Leftarrow Пусть система $(\overline{a}, \overline{b}, \overline{c})$ линейно зависима, тогда без ограничения общности \overline{c} выражается через $\overline{a}, \overline{b}$, то есть эти векторы компланарны.
- 4. Если система $(\overline{a}, \overline{b}, \overline{c})$ компланарна, то вся система линейно зависима по пункту (3), иначе \overline{d} выражается через $\overline{a}, \overline{b}, \overline{c}$, тогда система тоже линейно зависима.

Определение 1.7. *Базисом* в V_n называется линейно независимая система векторов, через которую выражаются все векторы V_n .

Утверждение 1.5. Пусть $e=(\overline{e_1},\ldots,\overline{e_n})$ — базис в V_n . Тогда для любого вектора $\overline{v}\in V_n$ существует единственный столбец коэффициентов α такой, что $\overline{v}=e\alpha$.

Доказательство. По определению базиса, такой столбец α существует. Если также существует столбец $\alpha' \neq \alpha$, удовлетворяющий условию, то:

$$\overline{v} = e\alpha = e\alpha' \Rightarrow e(\alpha - \alpha') = \overline{0}$$

Так как e — линейно независимая система, то линейная комбинация $e(\alpha - \alpha')$ должна быть тривиальной, откуда $\alpha = \alpha'$.

Определение 1.8. Пусть e — базис в V_n , $\overline{v} = \alpha e \in V_n$. Столбец коэффициентов α называется координатным столбиом вектора \overline{v} в базисе e. Обозначение — $\overline{v} \leftrightarrow_e \alpha$.

Утверждение 1.6 (линейность сопоставления координат). Для любых $\overline{u}, \overline{v} \in V_n$ таких, что $\overline{u} \leftrightarrow_e \alpha, \overline{v} \leftrightarrow_e \beta$, выполнено следующее:

- 1. $\overline{u} + \overline{v} \leftrightarrow_e \alpha + \beta$
- 2. $\forall \lambda \in \mathbb{R} : \lambda \overline{u} \leftrightarrow_e \lambda \alpha$

Доказательство.

- 1. $\overline{u} + \overline{v} = e\alpha + e\beta = e(\alpha + \beta)$.
- 2. $\lambda \overline{u} = \lambda e \alpha = e(\lambda \alpha)$.

Теорема 1.2.

- 1. Базис в V_0 не существует.
- 2. Базис в V_1 это система из одного ненулевого вектора.
- 3. Базис в V_2 это система из двух неколлинеарных векторов.
- 4. Базис в V_3 это система из трех некомпланарных векторов.

Доказательство.

- 1. Единственный вектор в V_0 это $\overline{0}$, и он образует линейно зависимую систему.
- 2. В V_1 любая система из ≥ 2 векторов коллинеарна и потому линейно зависима. При этом вектор $\overline{a} \neq \overline{0}$ образует линейно независимую систему, и через него выражаются все векторы V_1 . Если же $\overline{a} = \overline{0}$, то он образует линейно зависимую систему.
- 3. В V_2 любая система из $\geqslant 3$ векторов компланарна и потому линейно зависима, а система из одного вектора коллинеарна и потому выражает не все векторы из V_2 . При этом неколлинеарная система $(\overline{a}, \overline{b})$ линейно независима, и через нее выражаются все векторы из V_2 . Если же система $(\overline{a}, \overline{b})$ коллинеарна, то она линейно зависима.
- 4. В V_3 любая система из $\geqslant 4$ векторов линейно зависима, а система из $\leqslant 2$ векторов компланарна и потому выражает не все векторы из V_3 . При этом некомпланарная система $(\overline{a}, \overline{b}, \overline{c})$ линейно независима, и через нее выражаются все векторы из V_3 . Если же система $(\overline{a}, \overline{b}, \overline{c})$ компланарна, то она линейно зависима.

Определение 1.9. Пусть e, e' — базисы в V_n . Тогда каждый вектор из e' раскладывается по базису e, то есть имеет место представление e' = eS для некоторой матрицы $S \in M_i$. Матрица S называется матрицей перехода от базиса e к базису e'.

Теорема 1.3. Пусть e, e' -базисы в $V_n, e' = eS, u$ пусть $\overline{v} \in V_n, \overline{v} \leftrightarrow_e \alpha, \overline{v} \leftrightarrow_{e'} \alpha'$. Тогда:

$$\alpha = S\alpha'$$

Доказательство. Заметим, что выполнены равенства $\overline{v}=e\alpha=e'\alpha'=eS\alpha'$. Значит, вектор \overline{v} имеет в базисе e координатные столбцы α и $S\alpha'$, но разложение вектора по базису единственно, поэтому $\alpha=S\alpha'$.

Определение 1.10. Базис в V_n называется:

- ▷ Ортогональным, если его векторы попарно ортогональны
- \triangleright *Ортонормированным*, если он ортогонален и все его векторы имеют длину 1

1.2 Общая декартова система координат, прямоугольная система координат. Связь между координатами направленного отрезка и координатами его конца и начала, задание отрезка и прямой в декартовой системе координат. Замена декартовой системы координат, формулы перехода.

Определение 1.11. Декартовой системой координат в P_n называется набор (O,e), где $O \in P_n$ —начало системы координат, e—базис в V_n . Точка $A \in P_n$ имеет координатный столбец α в данной системе координат, если $\overline{OA} \leftrightarrow_e \alpha$. Обозначение— $A \leftrightarrow_{(O,e)} \alpha$. Декартова система координат называется npsmoyronshoon, если базис e—ортонормированный.

Утверждение 1.7. Пусть $A \leftrightarrow_{(O,e)} \alpha, B \leftrightarrow_{(O,e)} \beta$. Тогда:

$$\overline{AB} \leftrightarrow_e \beta - \alpha$$

Доказательство. Выполнены равенства $\overline{AB} = \overline{OB} - \overline{OA} = e\beta - e\alpha = e(\beta - \alpha)$.

Утверждение 1.8. Пусть $A \leftrightarrow_{(O,e)} \alpha$, $B \leftrightarrow_{(O,e)} \beta$, $u \ C \in AB$ — такая точка на отрезке AB, $u \ AC : BC = \lambda : (1 - \lambda)$ для некоторого $\lambda \in (0,1)$. Тогда:

$$C \leftrightarrow_{(O,e)} (1-\lambda)\alpha + \lambda\beta$$

Доказательство. По условию, $\overline{AC} = \lambda \overline{AB}$, тогда:

$$\overline{OC} = \overline{OA} + \overline{AC} = \overline{OA} + \lambda \overline{AB} = e\alpha + \lambda e(\beta - \alpha) = e((1 - \lambda)\alpha + \lambda\beta)$$

Теорема 1.4. Пусть (O, e), (O', e') — декартовы системы координат в P_n такие, что e' = eS и $O' \leftrightarrow_{(O,e)} \gamma$. Тогда, если $A \leftrightarrow_{(O,e)} \alpha$ и $A \leftrightarrow_{(O',e')} \alpha'$, то:

$$\alpha = S\alpha' + \gamma$$

Доказательство. Выполнены равенства $\overline{OA} = e\alpha = \overline{OO'} + \overline{O'A} = e\gamma + e'\alpha' = e\gamma + eS\alpha'$. Тогда, в силу единственности координатного столбца вектора \overline{OA} в базисе e, получим, что $\alpha = S\alpha' + \gamma$. \square

1.3 Скалярное произведение, его свойства, выражение в ортонормированном и произвольном базисе. Формулы для определения расстояния между точками и угла между векторами.

Определение 1.12. Скалярным произведением ненулевых векторов $\overline{a}, \overline{b} \in V_n$ называется следующая величина:

$$(\overline{a}, \overline{b}) := |\overline{a}| |\overline{b}| \cos \angle (\overline{a}, \overline{b})$$

Если один из векторов $\overline{a}, \overline{b}$ — нулевой, то скалярное произведение $(\overline{a}, \overline{b})$ считается равным 0. Другое обозначение скалярного произведения — $\overline{a} \cdot \overline{b}$.

Определение 1.13. Пусть $\overline{a}, \overline{b} \in V_n$, $\overline{b} \neq \overline{0}$, от точки $O \in P_n$ отложены направленные отрезки $\overline{OA} = \overline{a}$ и $\overline{OB} = \overline{b}$. Проекцией вектора \overline{a} на вектор \overline{b} называется такой класс эквивалентности, представителем которого является вектор $\overline{OA'}$, где A'—ортогональная проекция точки A на прямую OB.

Обозначение — $\operatorname{pr}_{\overline{b}} \overline{a}$.

Утверждение 1.9 (линейность проекции). Для любых $\bar{a}, \bar{b} \in V_n, \ \bar{b} \neq \bar{0}$, выполнено следующее:

- 1. $\operatorname{pr}_{\overline{b}}(\overline{a_1} + \overline{a_2}) = \operatorname{pr}_{\overline{b}}\overline{a_1} + \operatorname{pr}_{\overline{b}}\overline{a_2}$
- 2. $\forall \lambda \in \mathbb{R} : \operatorname{pr}_{\overline{b}}(\lambda \overline{a}) = \lambda \operatorname{pr}_{\overline{b}} \overline{a}$

Доказательство.

- 1. Пусть $\overline{OA_1} = \overline{a_1}$, $\overline{A_1A_2} = \overline{a_2}$, $\overline{OB} = \overline{b}$. Проведем через A_1 прямую l, параллельную отрезку OB. Пусть A_1' ортогональная проекция точки A_1 на OB, A_2' ортогональная проекция точки A_2 на l, A_2'' ортогональная проекция точки A_2' на OB. Тогда $l \perp (A_2A_2'A_2'')$, и, следовательно, $OB \perp A_2A_2''$. Значит, $\overline{OA_2''} = \operatorname{pr}_{\overline{b}}(\overline{a_1} + \overline{a_2})$, при этом $\overline{OA_2''} = \overline{OA_1} + \overline{A_1A_2''} = \overline{OA_1} + \overline{A_1A_2'} = \operatorname{pr}_{\overline{b}}\overline{a_1} + \operatorname{pr}_{\overline{b}}\overline{a_2}$.
- 2. Если $\lambda = 0$, то утверждение, очевидно, верно. Пусть теперь $\lambda \neq 0$, тогда рассмотрим направленные отрезки $\overline{OA_1} = \overline{a}$, $\overline{OA_2} = \lambda \overline{a}$, $\overline{OB} = \overline{b}$. Пусть A_1' ортогональная проекция точки A_1 на OB, A_2' ортогональная проекция точки A_2 на OB. По определению умножения вектора на скаляр, $\triangle A_1OA_1' \sim \triangle A_2OA_2'$, причем коэффициент подобия равен $|\lambda|$, откуда $\overline{OA_2'} = \lambda \overline{OA_1'}$, то есть $\operatorname{pr}_{\overline{b}}(\lambda \overline{a}) = \lambda \operatorname{pr}_{\overline{b}} \overline{a}$.

Теорема 1.5. Скалярное произведение обладает следующими свойствами:

- 1. $\forall \overline{a} \in V_n : \overline{a} \neq \overline{0} \Leftrightarrow (\overline{a}, \overline{a}) > 0$
- 2. $\forall \overline{a}, \overline{b} \in V_n : (\overline{a}, \overline{b}) = (\overline{b}, \overline{a})$ (симметричность)
- 3. $\forall \overline{a_1}, \overline{a_2}, \overline{b} \in V_n : (\overline{a_1} + \overline{a_2}, \overline{b}) = (\overline{a_1}, \overline{b}) + (\overline{a_2}, \overline{b})$ $\forall \lambda \in \mathbb{R} : \forall \overline{a}, \overline{b} \in V_n : (\lambda \overline{a}, \overline{b}) = \lambda(\overline{a}, \overline{b}) \text{ (линейность по первому аргументу)}$

Доказательство.

- 1. $\overline{a} \neq \overline{0} \Leftrightarrow |\overline{a}| > 0 \Leftrightarrow (\overline{a}, \overline{a}) = |\overline{a}|^2 > 0$
- 2. $(\overline{a}, \overline{b}) = |\overline{a}| |\overline{b}| \cos \angle (\overline{a}, \overline{b}) = (\overline{b}, \overline{a})$
- 3. Для случаев, когда $\bar{b} = \bar{0}$ или $\bar{a}_1 \parallel \bar{a}_2 \parallel \bar{b}$, утверждение, очевидно, верно. В других случаях воспользуемся следующими равенствами:

$$(\overline{a_1} + \overline{a_2}, \overline{b}) = (\operatorname{pr}_{\overline{b}}(\overline{a_1} + \overline{a_2}), \overline{b}) = (\operatorname{pr}_{\overline{b}}\overline{a_1} + \operatorname{pr}_{\overline{b}}\overline{a_2}, \overline{b})$$

Так как $\operatorname{pr}_{\overline{b}} \overline{a_1} \parallel \operatorname{pr}_{\overline{b}} \overline{a_2} \parallel \overline{b}$, то:

$$(\operatorname{pr}_{\overline{b}}\overline{a_1} + \operatorname{pr}_{\overline{b}}\overline{a_2}, \overline{b}) = (\operatorname{pr}_{\overline{b}}\overline{a_1}, \overline{b}) + (\operatorname{pr}_{\overline{b}}\overline{a_2}, \overline{b}) = (\overline{a_1}, \overline{b}) + (\overline{a_2}, \overline{b})$$

Доказательство второй части свойства аналогично.

Замечание. Линейность скалярного произведения относительно второго аргумента также верна в силу симметричности.

Утверждение 1.10. Пусть e — ортонормированный базис в V_n , \overline{a} , $\overline{b} \in V_n$, $\overline{a} \leftrightarrow_e \alpha$, $\overline{b} \leftrightarrow_e \beta$. Тогда выполнены следующие равенства:

$$(\overline{a}, \overline{b}) = \alpha^T \beta = \sum_{i=1}^n \alpha_i \beta_i$$

Доказательство.

$$(\overline{a}, \overline{b}) = \left(\sum_{i=1}^{n} \alpha_i \overline{e_i}, \sum_{j=1}^{n} \beta_j \overline{e_j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j (\overline{e_i}, \overline{e_j}) = \sum_{i=1}^{n} \alpha_i \beta_i$$

Получено требуемое.

Определение 1.14. Пусть $e = (\overline{e_1}, \dots, \overline{e_n})$ — базис в V_n . Матрицей Грама называется следующая матрица:

$$\Gamma := ((\overline{e_i}, \overline{e_j})) = \begin{pmatrix} (\overline{e_1}, \overline{e_1}) & (\overline{e_1}, \overline{e_2}) & \dots & (\overline{e_1}, \overline{e_n}) \\ (\overline{e_2}, \overline{e_1}) & (\overline{e_2}, \overline{e_2}) & \dots & (\overline{e_2}, \overline{e_n}) \\ \vdots & \vdots & \ddots & \vdots \\ (\overline{e_n}, \overline{e_1}) & (\overline{e_n}, \overline{e_2}) & \dots & (\overline{e_n}, \overline{e_n}) \end{pmatrix}$$

Утверждение 1.11. Пусть e- базис в V_n , \overline{a} , $\overline{b} \in V_n$, $\overline{a} \leftrightarrow_e \alpha$, $\overline{b} \leftrightarrow_e \beta$. Тогда выполнены следующие равенства:

$$(\overline{a}, \overline{b}) = \alpha^T \Gamma \beta$$

Доказательство. Выполнены следующие равенства:

$$\alpha^{T}(\Gamma\beta) = \alpha^{T} \begin{pmatrix} \sum_{j=1}^{n} \beta_{j}(\overline{e_{1}}, \overline{e_{j}}) \\ \sum_{j=1}^{n} \beta_{j}(\overline{e_{2}}, \overline{e_{j}}) \\ \vdots \\ \sum_{i=1}^{n} \beta_{i}(\overline{e_{n}}, \overline{e_{i}}) \end{pmatrix} = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i}\beta_{j}(\overline{e_{i}}, \overline{e_{j}}) = \left(\sum_{i=1}^{n} \alpha_{i}\overline{e_{i}}, \sum_{j=1}^{n} \beta_{j}\overline{e_{j}}\right) = (\overline{a}, \overline{b})$$

Получено требуемое.

Утверждение 1.12. Пусть e — ортонормированный базис в V_n , \overline{a} , $\overline{b} \in V_n$, $\overline{a} \leftrightarrow_e \alpha$, $\overline{b} \leftrightarrow_e \beta$. Тогда выполнены следующие равенства:

1.
$$|\overline{a}| = \sqrt{\alpha^T \alpha}$$

2. Ecnu
$$\overline{a}, \overline{b} \neq \overline{0}$$
, mo $\cos \angle (\overline{a}, \overline{b}) = \frac{\alpha^T \beta}{|\overline{a}||\overline{b}|}$

Доказательство.

1.
$$|\overline{a}|^2 = (\overline{a}, \overline{a}) \Rightarrow |\overline{a}| = \sqrt{(\overline{a}, \overline{a})} = \sqrt{\alpha^T \alpha}$$

2.
$$(\overline{a}, \overline{b}) = |\overline{a}| |\overline{b}| \cos \angle (\overline{a}, \overline{b}) \Rightarrow \cos \angle (\overline{a}, \overline{b}) = \frac{(\overline{a}, \overline{b})}{|\overline{a}| |\overline{b}|} = \frac{\alpha^T \beta}{|\overline{a}| |\overline{b}|}$$

Утверждение 1.13. Пусть (O,e) — прямоугольная декартова система координат в P_n , $A, B \in P_n$, $A \leftrightarrow_{(O,e)} \alpha$, $B \leftrightarrow_{(O,e)} \beta$. Тогда:

$$AB = \sqrt{(\beta - \alpha)^T (\beta - \alpha)}$$

 $\ensuremath{\mathcal{A}}$ оказательство. Заметим, что $\overline{AB} \leftrightarrow_e \beta - \alpha$, тогда:

$$AB = \sqrt{(\overline{AB}, \overline{AB})} = \sqrt{(\beta - \alpha)^T (\beta - \alpha)}$$

1.4 Ориентация на плоскости и в пространстве. Ориентированные площадь и объем (смешанное произведение). Свойства ориентированных площади и объема. Выражение ориентированных площади и объема в произвольном базисе.

Определение 1.15. Пусть плоскость P_2 вложена в пространство P_3 , и выделено одно из полупространств в P_3 относительно этой плоскости. Базис $(\overline{a}, \overline{b})$ в V_2 называется положештельно ориентированным, если поворот на кратчайший угол, который переводит вектор \overline{a} в вектор $\overline{a'} \parallel \overline{b}$, происходит против часовой стрелки при взгляде из выделенного полупространства. В противном случае базис называется отрицательно ориентированным.

Замечание. Базисы $(\overline{a},\overline{b})$ и $(\overline{b},\overline{a})$ всегда ориентированы по-разному.

Определение 1.16. Базис $(\overline{a}, \overline{b}, \overline{c})$ в V_3 называется *правой тройкой*, если базис $(\overline{a}, \overline{b})$ в плоскости V_2 , содержащей эти два вектора, ориентирован положительно относительно полупространства, содержащего вектор \overline{c} , отложенный от точки в P_2 . В противном случае базис называется *левой тройкой*.

Утверждение 1.14.

- 1. Базисы $(\overline{a}, \overline{b}, \overline{c})$ и $(\overline{b}, \overline{a}, \overline{c})$ в V_3 всегда ориентированы по-разному.
- 2. Базисы $(\overline{a}, \overline{b}, \overline{c})$ и $(\overline{a}, \overline{c}, \overline{b})$ в V_3 всегда ориентированы по-разному.

Доказательство.

- 1. Так как базисы $(\overline{a}, \overline{b})$ и $(\overline{b}, \overline{a})$ ориентированы по-разному, то базисы $(\overline{a}, \overline{b}, \overline{c})$ и $(\overline{b}, \overline{a}, \overline{c})$ тоже ориентированы по-разному.
- 2. Пусть $\overline{OA} = \overline{a}$, $\overline{OB} = \overline{b}$, $\overline{OC} = \overline{c}$. Будем поворачивать направленный отрезок \overline{OC} в плоскости (BOC), пока он не перейдет в такой направленный отрезок $\overline{OC'}$, что C и C' лежат по разные стороны от OB. Ориентация базиса $(\overline{a}, \overline{b}, \overline{c'})$ противоположна ориентации $(\overline{a}, \overline{b}, \overline{c})$, но совпадает с ориентацией $(\overline{a}, \overline{c}, \overline{b})$.

Замечание. В силу утверждения выше, всевозможные перестановки базиса $(\overline{a}, \overline{b}, \overline{c})$ делятся на два класса противоположной ориентации:

$$\rhd \ (\overline{a},\overline{b},\overline{c}), \ (\overline{c},\overline{a},\overline{b}) \ и \ (\overline{b},\overline{c},\overline{a})$$

$$ightharpoonup (\overline{b}, \overline{a}, \overline{c}), (\overline{c}, \overline{b}, \overline{a})$$
 и $(\overline{a}, \overline{c}, \overline{b})$

Определение 1.17. Пусть $\overline{a}, \overline{b} \in V_2$, и в плоскости V_2 задана ориентация. *Ориентированной площадью* $S(\overline{a}, \overline{b})$ называется площадь параллелограмма, построенного на этих векторах, взятая со знаком, соответствующим ориентации $(\overline{a}, \overline{b})$.

Определение 1.18. Пусть $\bar{a}, \bar{b}, \bar{c} \in V_3$. Ориентированным объемом $V(\bar{a}, \bar{b}, \bar{c})$ называется объем параллелепипеда, построенного на этих векторах, взятая со знаком, соответствующим ориентации $(\bar{a}, \bar{b}, \bar{c})$. Эта величина также называется *смешанным произведением* векторов $\bar{a}, \bar{b}, \bar{c}$ и обозначается через $(\bar{a}, \bar{b}, \bar{c})$.

Замечание. Определения выше корректны, поскольку в них не требуется определять ориентацию набора векторов, не являющегося базисом:

- 1. $S(\overline{a}, \overline{b}) = 0 \Leftrightarrow \overline{a}$ и \overline{b} коллинеарны.
- 2. $V(\overline{a}, \overline{b}, \overline{c}) = 0 \Leftrightarrow \overline{a}, \overline{b}$ и \overline{c} компланарны.

Утверждение 1.15.

- 1. Если базис $e=(\overline{e_1},\overline{e_2})$ в $V_2-ортонормированный, то <math>S(\overline{e_1},\overline{e_2})=\pm 1$.
- 2. Если базис $e=(\overline{e_1},\overline{e_2},\overline{e_3})$ в $V_3-ортонормированный, то <math>V(\overline{e_1},\overline{e_2},\overline{e_3})=\pm 1$.

Доказательство.

- 1. Параллелограмм, образованный векторами $\overline{e_1}$ и $\overline{e_2},$ —это квадрат со стороной 1, поэтому $|S(\overline{e_1},\overline{e_2})|=1.$
- 2. Параллелепипед, образованный векторами $\overline{e_1}$, $\overline{e_2}$ и $\overline{e_3}$, это куб со стороной 1, поэтому $|V(\overline{e_1},\overline{e_2},\overline{e_3})|=1$.

Теорема 1.6. Ориентированный объем обладает следующими свойствами:

- 1. $\forall \overline{a}, \overline{b}, \overline{c} \in V_n : V(\overline{a}, \overline{b}, \overline{c}) = -V(\overline{b}, \overline{a}, \overline{c}) = -V(\overline{a}, \overline{c}, \overline{b})$ (кососимметричность)
- 2. $\forall \overline{a_1}, \overline{a_2}, \overline{b}, \overline{c} \in V_n : V(\overline{a}, \overline{b}, \overline{c_1} + \overline{c_2}) = V(\overline{a}, \overline{b}, \overline{c_1}) + V(\overline{a}, \overline{b}, \overline{c_2})$ $\forall \lambda \in \mathbb{R} : \forall \overline{a}, \overline{b}, \overline{c} \in V_n : V(\overline{a}, \overline{b}, \lambda \overline{c}) = \lambda V(\overline{a}, \overline{b}, \overline{c}) \ ($ линейность по третьему аргументу)

Доказательство.

- 1. Если \overline{a} , \overline{b} и \overline{c} компланарны, то утверждение очевидно. Иначе объем параллепипеда при перестановке векторов базиса не меняется по модулю, но меняет знак при смене ориентации.
- 2. Если \overline{a} и \overline{b} коллинеарны, то утверждение очевидно. Пусть теперь это не так, тогда рассмотрим направленные отрезки $\overline{OA} = \overline{a}, \ \overline{OB} = \overline{b}, \ \overline{OC} = \overline{c}$. Обозначим через \overline{d} вектор такой, что $|\overline{d}| = 1, \ \overline{d} \perp (AOB)$ и $(\overline{a}, \overline{b}, \overline{d})$ —правая тройка, и пусть $\overline{OD} = \overline{d}$.

Заметим теперь, что $\forall \overline{c} \in V_n: V(\overline{a}, \overline{b}, \overline{c}) = |S(\overline{a}, \overline{b})|(\overline{c}, \overline{d})$, поскольку выполнены равенства $(\overline{c}, \overline{d}) = (\operatorname{pr}_{\overline{d}} \overline{c}, \overline{d}) = \pm |\operatorname{pr}_{\overline{d}} \overline{c}| = \pm h$, где h—высота параллелепипеда, а знак соответствует ориентации базиса $(\overline{a}, \overline{b}, \overline{c})$. Тогда линейность ориентированного объема следует из линейности скалярного произведения.

Теорема 1.7. Пусть $e=(\overline{e_1},\overline{e_2})-$ базис в $V_2,\ \overline{a},\overline{b}\in V_2,\ \overline{a}\leftrightarrow_e \alpha,\ \overline{b}\leftrightarrow_e \beta.$ Тогда верно следующее равенство:

$$S(\overline{a}, \overline{b}) = \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} S(\overline{e_1}, \overline{e_2})$$

Доказательство. В силу линейности ориентированной площади, имеем:

$$S(\overline{a}, \overline{b}) = S\left(\sum_{i=1}^{2} \alpha_{i} \overline{e_{i}}, \sum_{j=1}^{2} \beta_{j} \overline{e_{j}}\right) = \sum_{i=1}^{2} \sum_{j=1}^{2} \alpha_{i} \beta_{j} S(\overline{e_{i}}, \overline{e_{j}})$$

Поскольку для любого $i \in \{1,2\}$ выполнено $S(\overline{e_i},\overline{e_i}) = 0$, то:

$$S(\overline{a}, \overline{b}) = \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} S(\overline{e_1}, \overline{e_2})$$

Получено требуемое.

Теорема 1.8. Пусть $e = (\overline{e_1}, \overline{e_2}, \overline{e_3}) -$ базис в V_3 , \overline{a} , \overline{b} , $\overline{c} \in V_3$, $\overline{a} \leftrightarrow_e \alpha$, $\overline{b} \leftrightarrow_e \beta$, $\overline{c} \leftrightarrow_e \gamma$. Тогда верно следующее равенство:

$$V(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix} V(\overline{e_1}, \overline{e_2}, \overline{e_3})$$

Доказательство. В силу линейности ориентированного объема, имеем:

$$V(\overline{a}, \overline{b}, \overline{c}) = V\left(\sum_{i=1}^{3} \alpha_{i} \overline{e_{i}}, \sum_{j=1}^{3} \beta_{j} \overline{e_{j}}, \sum_{k=1}^{3} \gamma_{k} \overline{e_{k}}\right) = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \alpha_{i} \beta_{j} \gamma_{k} V(\overline{e_{i}}, \overline{e_{j}}, \overline{e_{k}})$$

Поскольку для любых $i,j,k\in\{1,2,3\}$ таких, что i=j,i=k или j=k, выполнено $V(\overline{e_i},\overline{e_j},\overline{e_k})=0$, то:

$$V(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix} V(\overline{e_1}, \overline{e_2}, \overline{e_3})$$

Получено требуемое.

Замечание. Из теорем выше следуют, в частности, такие свойства:

- ightharpoonup Если e положительно ориентированный ортонормированный базис в V_2 , то для любых $\overline{a}, \overline{b} \in V_2$ таких, что $\overline{a} \leftrightarrow_e \alpha$ и $\overline{b} \leftrightarrow_e \beta$, верно равенство $S(\overline{a}, \overline{b}) = |\alpha\beta|$.
- ightharpoonup Если e правый ортонормированный базис в V_3 , то для любых $\overline{a}, \overline{b}, \overline{c} \in V_3$ таких, что $\overline{a} \leftrightarrow_e \alpha$, $\overline{b} \leftrightarrow_e \beta$ и $\overline{c} \leftrightarrow_e \gamma$, верно равенство $V(\overline{a}, \overline{b}, \overline{c}) = |\alpha\beta\gamma|$.
- ightharpoonup Если e базис в $V_2, \, \overline{a}, \, \overline{b} \in V_2, \, \overline{a} \leftrightarrow_e \alpha, \, \overline{b} \leftrightarrow_e \beta, \,$ то векторы \overline{a} и \overline{b} коллинеарны $\Leftrightarrow |\alpha\beta| = 0.$
- ightharpoonup Если e базис в V_3 , \overline{a} , \overline{b} , $\overline{c} \in V_3$, $\overline{a} \leftrightarrow_e \alpha$, $\overline{b} \leftrightarrow_e \beta$, $\overline{c} \leftrightarrow_e \gamma$, то векторы \overline{a} , \overline{b} и \overline{c} компланарны $\Leftrightarrow |\alpha\beta\gamma| = 0$.

1.5 Векторное произведение, его свойства, выражение в правом ортонормированном базисе. Критерии коллинеарности и компланарности векторов. Двойное векторное произведение.

Определение 1.19. Пусть $\bar{a}, \bar{b} \in V_3$. векторным произведением векторов \bar{a} и \bar{b} называется единственный вектор $\bar{c} := [\bar{a}, \bar{b}]$ такой, что выполнены следующие условия:

- 1. $\overline{c} \perp \overline{a}$, $\overline{c} \perp \overline{b}$
- 2. $|\overline{c}| = |S(\overline{a}, \overline{b})|$
- 3. $(\overline{a}, \overline{b}, \overline{c})$ правая тройка

Другое обозначение — $\overline{a} \times \overline{b}$.

Теорема 1.9. Для любых $\overline{a}, \overline{b}, \overline{c} \in V_3$ выполнены равенства $(\overline{a}, \overline{b}, \overline{c}) = ([\overline{a}, \overline{b}], \overline{c}) = (\overline{a}, [\overline{b}, \overline{c}]).$

Доказательство. Докажем первое равенство. Если $\overline{a} \parallel \overline{b}$, то $(\overline{a}, \overline{b}, \overline{c}) = ([\overline{a}, \overline{b}], \overline{c}) = 0$. Если же $\overline{a} \not\parallel \overline{b}$, то выберем такой вектор \overline{d} , что $[\overline{a}, \overline{b}] = |S(\overline{a}, \overline{b})|\overline{d}$. Тогда, как уже доказывалось, $(\overline{a}, \overline{b}, \overline{c}) = |S(\overline{a}, \overline{b})|(\overline{c}, \overline{d})$, откуда:

$$(\overline{a}, \overline{b}, \overline{c}) = (|S(\overline{a}, \overline{b})|\overline{d}, \overline{c}) = ([\overline{a}, \overline{b}], \overline{c})$$

Для доказательства второго равенства заметим следующее:

$$(\overline{a}, [\overline{b}, \overline{c}]) = ([\overline{b}, \overline{c}], \overline{a}) = (\overline{b}, \overline{c}, \overline{a}) = (\overline{a}, \overline{b}, \overline{c})$$

Получено требуемое.

Замечание. Выполнены следующие равносильности:

- 1. $\overline{a} \parallel \overline{b} \Leftrightarrow S(\overline{a}, \overline{b}) = 0 \Leftrightarrow |[\overline{a}, \overline{b}]| = 0 \Leftrightarrow [\overline{a}, \overline{b}] = \overline{0};$
- 2. $(\overline{a},\overline{b},\overline{c})=0\Leftrightarrow V(\overline{a},\overline{b},\overline{c})=0\Leftrightarrow \overline{a},\,\overline{b}$ и \overline{c} компланарны.

Теорема 1.10. Векторное произведение обладает следующими свойствами:

- 1. $\forall \overline{a}, \overline{b} \in V_3 : [\overline{a}, \overline{b}] = -[\overline{b}, \overline{a}]$ (кососимметричность)
- 2. $\forall \overline{a_1}, \overline{a_2}, \overline{b}, \overline{c} \in V_3 : [\overline{a_1} + \overline{a_2}, \overline{b}] = [\overline{a_1}, \overline{b}] + [\overline{a_2}, \overline{b}]$ $\forall \lambda \in \mathbb{R} : \forall \overline{a}, \overline{b}, \overline{c} \in V_3 : [\lambda \overline{a}, \overline{b}] = \lambda [\overline{a}, \overline{b}]$ (линейность по первому аргументу)

Доказательство.

- 1. Это свойство следует из определения векторного произведения.
- 2. Для доказательства первого равенства достаточно проверить, что для любого $\overline{c} \in V_3$ выполнено $([\overline{a_1} + \overline{a_2}, \overline{b}], \overline{c}) = ([\overline{a_1}, \overline{b}], \overline{c}) + ([\overline{a_2}, \overline{b}], \overline{c})$:

$$([\overline{a_1} + \overline{a_2}, \overline{b}], \overline{c}) = (\overline{a_1} + \overline{a_2}, \overline{b}, \overline{c}) = (\overline{a_1}, \overline{b}, \overline{c}) + (\overline{a_2}, \overline{b}, \overline{c}) = ([\overline{a_1}, \overline{b}], \overline{c}) + ([\overline{a_2}, \overline{b}], \overline{c})$$

Для доказательства второго равенства достаточно проверить, что для любого $\overline{c} \in V_3$ выполнено $([\lambda \overline{a}, \overline{b}], \overline{c}) = (\lambda [\overline{a}, \overline{b}], \overline{c})$:

$$([\lambda \overline{a}, \overline{b}], \overline{c}) = (\lambda \overline{a}, \overline{b}, \overline{c}) = \lambda(\overline{a}, \overline{b}, \overline{c}) = \lambda([\overline{a}, \overline{b}], \overline{c}) = (\lambda[\overline{a}, \overline{b}], \overline{c}) = (\lambda[\overline{a$$

Замечание. Линейность векторного произведения по второму аргументу также верна в силу кососимметричности.

Теорема 1.11. Пусть $e=(\overline{e_1},\overline{e_2},\overline{e_3})-$ базис в $V_3,\ \overline{a},\overline{b}\in V_3,\ \overline{a}\leftrightarrow_e\alpha,\ \overline{b}\leftrightarrow_e\beta.$ Тогда верно следующее равенство:

$$[\overline{a}, \overline{b}] = \begin{vmatrix} \overline{[e_{\overline{2}}, \overline{e_3}]} & \overline{[e_{\overline{3}}, \overline{e_1}]} & \overline{[e_{\overline{1}}, \overline{e_2}]} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix} = \begin{vmatrix} \alpha_2 & \alpha_3 \\ \beta_2 & \beta_3 \end{vmatrix} [\overline{e_2}, \overline{e_3}] + \begin{vmatrix} \alpha_3 & \alpha_1 \\ \beta_3 & \beta_1 \end{vmatrix} [\overline{e_3}, \overline{e_1}] + \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} [\overline{e_1}, \overline{e_2}]$$

Доказательство. В силу линейности векторного произведения, имеем:

$$[\overline{a}, \overline{b}] = \left[\sum_{i=1}^{3} \alpha_i \overline{e_i}, \sum_{j=1}^{3} \beta_j \overline{e_j} \right] = \sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_i \beta_j [\overline{e_i}, \overline{e_j}]$$

Поскольку для любого $i \in \{1, 2, 3\}$ выполнено $[\overline{e_i}, \overline{e_i}] = \overline{0}$, то:

$$[\overline{a}, \overline{b}] = \begin{vmatrix} \alpha_2 & \alpha_3 \\ \beta_2 & \beta_3 \end{vmatrix} [\overline{e_2}, \overline{e_3}] + \begin{vmatrix} \alpha_3 & \alpha_1 \\ \beta_3 & \beta_1 \end{vmatrix} [\overline{e_3}, \overline{e_1}] + \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} [\overline{e_1}, \overline{e_2}]$$

Получено требуемое.

Замечание. Если $e=(\overline{e_1},\overline{e_2},\overline{e_3})$ —правый ортонормированный базис в V_3 , то выполнены равенства $[\overline{e_1},\overline{e_2}]=\overline{e_3},\ [\overline{e_2},\overline{e_3}]=\overline{e_1},\ [\overline{e_3},\overline{e_1}]=\overline{e_2}$. Значит, в таком базисе для любых $\overline{a},\overline{b}\in V_3,\ \overline{a}\leftrightarrow_e \alpha,\ \overline{b}\leftrightarrow_e \beta$, верно следующее равенство:

$$[\overline{a}, \overline{b}] = \begin{vmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix}$$

Теорема 1.12. Для любых $\bar{a}, \bar{b}, \bar{c} \in V_3$ верно следующее равенство:

$$[\overline{a}, [\overline{b}, \overline{c}]] = \overline{b}(\overline{a}, \overline{c}) - \overline{c}(\overline{a}, \overline{b})$$

Доказательство. Для упрощения проверки выберем такой правый ортонормированный базис $e=(\overline{e_1},\overline{e_2},\overline{e_3})$ в V_3 , что $\overline{e_1}\parallel \overline{a}$, а векторы \overline{b} , $\overline{e_1}$ и $\overline{e_2}$ компланарны. Тогда координатные столбцы векторов $\overline{a},\overline{b},\overline{c}$ имеют вид $(\alpha,0,0)^T,(\beta_1,\beta_2,0)^T,(\gamma_1,\gamma_2,\gamma_3)^T.$ Найдем координатный столбец вектора $[\overline{b},\overline{c}]$:

$$[\overline{b}, \overline{c}] = \begin{vmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \\ \beta_1 & \beta_2 & 0 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{vmatrix} = (\beta_2 \gamma_3) \overline{e_1} + (-\beta_1 \gamma_3) \overline{e_2} + (\beta_1 \gamma_2 - \beta_2 \gamma_1) \overline{e_3} \leftrightarrow_e \begin{pmatrix} \beta_2 \gamma_3 \\ -\beta_1 \gamma_3 \\ \beta_1 \gamma_2 - \beta_2 \gamma_1 \end{pmatrix}$$

Положим $\delta_1 := \beta_2 \gamma_3$, $\delta_2 := -\beta_1 \gamma_3$, $\delta_3 := \beta_1 \gamma_2 - \beta_2 \gamma_1$, тогда:

$$[\overline{a}, [\overline{b}, \overline{c}]] = \begin{vmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \\ \alpha & 0 & 0 \\ \delta_1 & \delta_2 & \delta_3 \end{vmatrix} = 0\overline{e_1} + (-\alpha\delta_3)\overline{e_2} + (\alpha\delta_2)\overline{e_3} \leftrightarrow_e \begin{pmatrix} 0 \\ -\alpha\delta_3 \\ \alpha\delta_2 \end{pmatrix} = \begin{pmatrix} 0 \\ \alpha(\beta_2\gamma_1 - \beta_1\gamma_2) \\ -\alpha\beta_1\gamma_3 \end{pmatrix}$$

С другой стороны:

$$\overline{b}(\overline{a},\overline{c}) - \overline{c}(\overline{a},\overline{b}) \leftrightarrow_e \begin{pmatrix} \alpha\beta_1\gamma_1 \\ \alpha\beta_2\gamma_1 \\ 0 \end{pmatrix} - \begin{pmatrix} \alpha\beta_1\gamma_1 \\ \alpha\beta_1\gamma_2 \\ \alpha\beta_1\gamma_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \alpha(\beta_2\gamma_1 - \beta_1\gamma_2) \\ -\alpha\beta_1\gamma_3 \end{pmatrix}$$

Таким образом, $[\overline{a}, [\overline{b}, \overline{c}]] = \overline{b}(\overline{a}, \overline{c}) - \overline{c}(\overline{a}, \overline{b}).$

1.6 Понятние об уравнении множества. Алгебраические линии и поверхности. Пересечение и объединение алгебраических линий (поверхностей). Сохранение порядка при переходе к другой системе координат.

Определение 1.20. Одночленом, или мономом, от переменных x_1, \ldots, x_n называется выражение вида $\alpha x_1^{k_1} \cdots x_n^{k_n}$, где $\alpha \in \mathbb{R}, k_1, \ldots, k_n \in \mathbb{N} \cup \{0\}$. Многочленом, или полиномом, от переменных x_1, \ldots, x_n называется линейная комбинация одночленов от x_1, \ldots, x_n .

Определение 1.21. Несократимой записью многочлена $P(x_1, \ldots, x_n)$ называется представление этого многочлена в виде линейной комбинации одночленов $\alpha x_1^{k_1} \cdots x_n^{k_n}$ с ненулевыми коэффициентами α и попарно различными наборами степеней k_1, \ldots, k_n .

Следствие. Несократимая запись многочлена $P(x_1, ..., x_n)$ единственна.

Доказательство. Предположим, что у $P(x_1, ..., x_n)$ есть две различных несократимых записи P_1 и P_2 . Тогда несократимая запись разности $P_1 - P_2$ содержит хотя бы один моном, но эта же запись должна быть тождественно нулевой, что невозможно.

Определение 1.22. Степенью одночлена $\alpha x_1^{k_1} \cdots x_n^{k_n}$ с ненулевым коэффициентом α называется число $k_1 + \cdots + k_n$. Степенью многочлена называется наибольшая из степеней одночленов, входящих в его несократимую запись. Обозначение — deg P.

Утверждение 1.16. Для любых многочленов P,Q выполнено следующее неравенство:

$$deg(P+Q) \leq max\{deg P, deg Q\}$$

Доказательство. Сложим несократимые записи многочленов P и Q. Приводя подобные слагаемые, получим несократимую запись многочлена P+Q. В ней не будет мономов степени, превосходящей $\max\{\deg P,\deg Q\}$.

Утверждение 1.17. Для любых многочленов P,Q выполнено следующее равенство:

$$\deg PQ = \deg P + \deg Q$$

Доказательство. Перемножим несократимые записи многочленов P и Q, получим сумму мономов со степенями, не превосходящими $\deg P + \deg Q$, поэтому $\deg (PQ) \leqslant \deg P + \deg Q$. Далее рассмотрим в несократимой записи P моном $ax_1^{\alpha_1} \cdots x_n^{\alpha_n}, \ a \neq 0$, удовлетворяющий следующим условиям:

- $\triangleright \alpha_1 + \cdots + \alpha_n = \deg P$, то есть моном имеет наибольшую степень
- \triangleright Среди всех мономов, удовлетворяющих предыдущему пункту, показатель степени α_1 у данного монома наибольший
- \triangleright Среди всех мономов, удовлетворяющих предыдущему пункту, показатель степени α_2 у данного монома наибольший, и так далее

Аналогичным образом выберем в Q моном $bx_1^{\beta_1}\cdots x_n^{\beta_n},\ b\neq 0$. Произведение выбранных мономов дает моном $abx_1^{\alpha_1+\beta_1}\dots x_n^{\alpha_n+\beta_n},\ ab\neq 0$. Пусть моном с такими же показателями степеней появился как произведение мономов $cx_1^{\gamma_1}\dots x_n^{\gamma_n},\ c\neq 0$, из P и $dx_1^{\delta_1}\dots x_n^{\delta_n},\ d\neq 0$, из Q, тогда:

- $ho \gamma_1+\cdots+\gamma_n\leqslant \alpha_1+\cdots+\alpha_1$ и $\delta_1+\cdots+\delta_n\leqslant \beta_1+\cdots+\beta_1$, поэтому в обоих неравенствах имеет место равенство
- $\triangleright \gamma_1 \leqslant \alpha_1$ и $\delta_1 \leqslant \beta_1$, поэтому в обоих неравенствах имеет место равенство
- $\triangleright \gamma_2 \leqslant \alpha_2$ и $\delta_2 \leqslant \beta_2$, поэтому в обоих неравенствах имеет место равенство, и так далее

Таким образом, все степени в данных парах мономов совпадают, тогда, в силу несократимости записей, совпадают и эти мономы. Значит, после приведения подобных слагаемых моном $abx_1^{\alpha_1+\beta_1}\dots x_n^{\alpha_n+\beta_n},\ ab\neq 0$, степени $\deg P+\deg Q$ сократиться не мог, откуда $\deg (PQ)=\deg P+\deg Q$.

Определение 1.23. Алгебраической кривой (или поверхностью) называется множество M в V_2 (в V_3), заданное уравнением:

$$P(x,y) = 0 \ (P(x,y,z) = 0),$$

где P – многочлен над \mathbb{R} отличный от 0.

Определение 1.24. Порядком алгебраической кривой L называется наименьшая из возможных степеней многочленов P(x,y), задающих L.

Утверждение 1.18. Объединение и пересечение алгебраических кривых также являются алгебраическими кривыми.

Доказательство. Пусть две кривые задаются многочленами $P_1(x,y)$ и $P_2(x,y)$ соответственно. Тогда объединение кривых задается следующим уравнением:

$$P_1(x,y)P_2(x,y) = 0$$

Пересечение кривых задается следующим уравнением:

$$(P_1(x,y))^2 + (P_2(x,y))^2 = 0$$

Видно, что оба полученных выражения также являются многочленами.

Утверждение 1.19. Порядок алгебраической кривой (поверхности) не зависит от выбора декартовой системы координат в V_2 (в V_3).

Доказательство. Пусть алгебраическая линия L имеет в системе координат $(O, \overline{e_1}, \overline{e_2})$ уравнение P(x,y)=0 и порядок N. Перейдем к системе координат $(O, \overline{e_1}', \overline{e_2}')$:

$$\begin{pmatrix} x \\ y \end{pmatrix} = S_{e \to e'} \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix},$$

поэтому уравнение линии L в "новой" системе координат будет

$$P(S_{11}x' + S_{12}y' + \alpha_1, S_{21}x' + S_{22}y' + \alpha_2) = 0.$$

Отсюда следует, что $N\geqslant N'$, то есть при переходе к "новой"системе координат порядок алгебраической кривой не может повыситься. Применяя аналогичные рассуждения для обратного перехода от $(O,\overline{e_1}',\overline{e_2}')$ к $(O,\overline{e_1},\overline{e_2})$, получим $N\leqslant N'$ и, окончательно, N=N'.

1.7 Прямая на плоскости, различные способы задания, их эквивалентность. Формула для расстояния от точки до прямой в прямоугольной системе координат. Условия пересечения и параллельности двух прямых. Пучок прямых.

Определение 1.25. *Направляющим вектором* прямой $l \subset P_3$ называется вектор $\overline{a} \in V_3$, $\overline{a} \neq \overline{0}$, представителем которого является направленный отрезок, лежащий в l.

Определение 1.26. Пусть $l \subset P_2$ —прямая с направляющим вектором $\overline{a} \in V_2$, $M \in l$, и в декартовой системе координат (O,e) в P_2 выполнены соотношения $\overline{a} \leftrightarrow_e (\alpha_1,\alpha_2)^T$, $M \leftrightarrow_{(O,e)} (x_0,y_0)^T$, $\overline{r_0} := \overline{OM}$.

Векторно-параметрическим уравнением прямой называется следующее семейство уравнений:

$$\overline{r} = \overline{r_0} + t\overline{a}, t \in \mathbb{R}$$

⊳ Параметрическим уравнением прямой называется следующее семейство систем:

$$\begin{cases} x = x_0 + t\alpha_1 \\ y = y_0 + t\alpha_2 \end{cases}, t \in \mathbb{R}$$

▶ Каноническим уравнением прямой называется следующее уравнение:

$$\frac{x - x_0}{\alpha_1} = \frac{y - y_0}{\alpha_2}$$

Замечание. Множество точек $X \in P_2$ таких, что $X \leftrightarrow_{(O,e)} (x,y)^T$, $\overline{r} := \overline{OX}$, являющихся решениями любого из уравнений прямой выше, совпадает с прямой l. Действительно, $X \in l \Leftrightarrow MX \parallel l \Leftrightarrow \overline{MX} \parallel \overline{a}$.

Замечание. В случае канонического уравнения прямой, если без ограничения общности $\alpha_1 = 0$, то тогда $\alpha_2 \neq 0$, и следует считать, что исходное уравнение эквивалентно условию $x = x_0$. Отметим также, что каноническое уравнение прямой эквивалентно следующему такому уравнению:

$$\alpha_2 x - \alpha_1 y + (\alpha_1 y_0 - \alpha_2 x_0) = 0$$

Определение 1.27. Пусть $A, B, C \in \mathbb{R}$, $A^2 + B^2 \neq 0$. Общим уравнением прямой называется следующее уравнение:

$$Ax + By + C = 0$$

Теорема 1.13. $\Pi ycmb\ l_1: A_1x + B_1y + C_1 = 0,\ l_2: A_2x + B_2y + C_2 = 0.$

1.
$$l_1 \times l_2 \Leftrightarrow \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \neq 0;$$

2.
$$l_1 \parallel l_2 \Leftrightarrow \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = 0;$$

3. $l_1 = l_2 \Leftrightarrow ux$ уравнения пропорциональны.

Доказательство. 1. Следует из п.2;

2. Нормальные векторы прямых l_1 и l_2 имеют координаты (A_1,B_1) и (A_2,B_2) соответственно, а условие параллельности прямых запишется как $\begin{cases} A_1=tA_2 \\ B_1=tB_2 \end{cases}$, откуда и следует искомое.

3. Пусть $l_1=l_2$. Тогда $\begin{cases} A_2=\lambda A_1\\ B_2=\lambda B_1 \end{cases}$. Запишем уравнения прямых $l_1:A_1x+B_1y+C_1=0,$ $l_2:\lambda(A_1x+B_1y)+C_2=0.$ В частности, для общего решения (x_0,y_0) имеем: $A_1x_0+B_1y_0+C_1=0,$ $\lambda(A_1x_0+B_1y_0)+C_2=0.$ Домножим первое равенство на (-1) и прибавим ко второму, получим $C_2-\lambda C_1=0,$ $C_2=\lambda C_1.$ Заметим, что первые два пункта являются следствием теоремы Крамера.

Определение 1.28. Вектором нормали прямой $l \subset P_3$ называется вектор $\overline{n} \in V_3$, $\overline{n} \neq \overline{0}$, представителем которого является направленный отрезок, ортогональный прямой l.

Определение 1.29. Пусть $l \subset P_2$ — прямая с вектором нормали $\overline{n} \in V_2$, и пусть $M \in l$, $\overline{r_0} := \overline{OM}$. *Нормальным уравнением прямой* называется следующее уравнение:

$$(\overline{r} - \overline{r_0}, \overline{n}) = 0$$

Замечание. Множество точек $X \in P_2$, $\overline{r} := \overline{OX}$, являющихся решениями нормального уравнения прямой, совпадает с прямой l. Кроме того, это уравнение можно переписать в следующем виде при $\gamma := (\overline{r_0}, \overline{n})$:

$$(\overline{r}, \overline{n}) = \gamma$$

Замечание. Уравнения различного типа, задающие прямую, эквивалентны: из каждого из них можно получить любое другое.

Определение 1.30. Пучком прямых называется либо множество всех прямых в P_2 , проходящих через фиксированную точку $P \in P_2$, либо множество всех прямых, параллельных фиксированной прямой $l \subset P_2$.

Замечание. Любые две прямые в P_2 лежат ровно в одном пучке.

Теорема 1.14. Пусть в декартовой системе координат (O,e) в P_2 различные прямые l_1, l_2 заданы уравнениями $A_1x + B_1y + C_1 = 0$, $A_2x + B_2y + C_2 = 0$. Тогда прямая $l \subset P_2$ лежит в одном пучке с прямыми l_1 и $l_2 \Leftrightarrow$ прямая l задается уравнением следующего вида при некоторых $\alpha_1, \alpha_2 \in \mathbb{R}$:

$$\alpha_1(A_1x + B_1y + C_1) + \alpha_2(A_2x + B_2y + C_2) = 0$$

Доказательство.

- ← Возможны два случая:
 - 1. Если $l_1 \cap l_2 = \{P\}$, $P \in P_2$, то координаты точки P удовлетворяют требуемому уравнению, то есть $P \in l$.
 - 2. Если $l_1 \parallel l_2$, то из требуемого уравнения направляющий вектор прямой l параллелен направляющим векторам l_1 и l_2 . В этом случае уравнение задает прямую не при всех $\alpha_1, \alpha_2 \in \mathbb{R}$, но если задает, то лежащую в данном пучке.
- ⇒ Возможны два случая:
 - 1. Если $l \cap l_1 \cap l_2 = \{P\}$, $P \in P_2$, то выберем на l точку $Q \neq P$, $Q \leftrightarrow_{(O,e)} (x_0,y_0)^T$. Тогда Q удовлетворяет уравнению с коэффициентами $\alpha_1 := A_2x_0 + B_2y_0 + C_2$, $\alpha_2 := -(A_1x_0 + B_1y_0 + C_1)$. Хотя бы один из коэффициентов ненулевой, поскольку Q лежит не более, чем на одной из прямых l_1 , l_2 . Значит, такое уравнение задает l, так как ему удовлетворяют две различных точки этой прямой.
 - 2. Если $l \parallel l_1 \parallel l_2$, то аналогичным образом выберем любую точку $Q \in l$ и соответствующие коэффициенты, тогда полученное уравнение задает l при условии, что оно задает прямую. Но оно всегда задает прямую, поскольку множество его решений непусто и не содержит хотя бы одну из прямых l_1, l_2 .

Утверждение 1.20. Пусть в прямоугольной декартовой системе координат (O,e) в P_2 прямая l задана уравнением Ax + By + C = 0, $M \in P_2$, $M \leftrightarrow_{(O,e)} (x_0,y_0)^T$. Тогда расстояние ρ от точки M до прямой l равно следующей величине:

$$\rho = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Доказательство. Пусть $\overline{n}\in V_2,\ \overline{n}\leftrightarrow_e (A,B)^T$ — вектор нормали прямой $l,\ \overline{r_0}:=\overline{OM},$ и пусть $X\in l,\ \overline{r}:=\overline{OX}.$ Тогда:

$$\rho = |\operatorname{pr}_{\overline{n}}(\overline{r_0} - \overline{r})| = \left| \frac{(\overline{r_0} - \overline{r}, \overline{n})}{|\overline{n}|^2} \overline{n} \right| = \frac{|(\overline{r_0} - \overline{r}, \overline{n})|}{|\overline{n}|} = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

1.8 Плоскость в пространстве, различные способы задания, их эквивалентность. Условие параллельности двух плоскостей. Направляющий вектор пересечения двух плоскостей. Пучок плоскостей.

Определение 1.31. Пусть $\nu \subset P_3$ — плоскость, $\overline{a}, \overline{b} \in V_3$ — неколлинеарные векторы, представители которых лежат в ν , $M \in l$, и в декартовой системе координат (O, e) в P_3 выполнены соотношения $\overline{a} \leftrightarrow_e \alpha$, $\overline{b} \leftrightarrow_e \beta$, $M \leftrightarrow_{(O,e)} (x_0, y_0, z_0)^T$, $\overline{r_0} := \overline{OM}$.

ightharpoonup Векторно-параметрическим уравнением плоскости называется следующее семейство уравнений:

$$\overline{r} = \overline{r_0} + t\overline{a} + s\overline{b}, t, s \in \mathbb{R}$$

⊳ Параметрическим уравнением плоскости называется следующее семейство систем:

$$\begin{cases} x = x_0 + t\alpha_1 + s\beta_1 \\ y = y_0 + t\alpha_2 + s\beta_2, s, t \in \mathbb{R} \\ z = z_0 + t\alpha_3 + s\beta_3 \end{cases}$$

Замечание. Множество точек $X\in P_3$ таких, что $X\leftrightarrow_{(O,e)}(x,y,z)^T, \ \overline{r}:=\overline{OX},$ являющихся решениями любого из уравнений прямой выше, совпадает с плоскостью ν . Действительно, $X\in \nu\Leftrightarrow MX\parallel\nu\Leftrightarrow\overline{MX}$ компланарен системе $(\overline{a},\overline{b})\Leftrightarrow\overline{MX}$ выражается через $\overline{a},\overline{b}$.

Замечание. Векторно-параметрическое уравнение плоскости можно также переписать в следующем виде:

$$(\overline{r} - \overline{r_0}, \overline{a}, \overline{b}) = 0$$

Перепишем это уравнение, положив $\gamma := (\overline{r_0}, \overline{a}, \overline{b})$:

$$(\overline{r}, \overline{a}, \overline{b}) = \gamma$$

Если расписать смешанное произведение $(\overline{r}, \overline{a}, \overline{b})$ как определитель соответствующей матрицы, можно получить еще одно уравнение плоскости, определенное ниже.

Определение 1.32. Пусть $A,B,C,D\in\mathbb{R},\ A^2+B^2+C^2\neq 0.$ Общим уравнением плоскости называется следующее уравнение:

$$Ax + By + Cz + D = 0$$

Определение 1.33. Вектором нормали плоскости $\nu \subset P_3$ называется вектор $\overline{n} \in V_3$, $\overline{n} \neq \overline{0}$, представителем которого является направленный отрезок, ортогональный плоскости ν .

Определение 1.34. Пусть $\nu \subset P_3$ — плоскость с вектором нормали $\overline{n} \in V_3$, и пусть $M \in \nu$, $\overline{r_0} := \overline{OM}$. Нормальным уравнением плоскости называется следующее уравнение:

$$(\overline{r} - \overline{r_0}, \overline{n}) = 0$$

Замечание. Уравнения различного типа, задающие плоскость, эквивалентны: из каждого из них можно получить любое другое.

Замечание. В прямоугольной декартовой системе координат (O, e) в P_3 нормальное уравнение плоскости преобразуется к виду Ax + By + Cz + D = 0, поэтому вектором нормали этой плоскости является вектор $\overline{n} \in V_3$ такой, что $\overline{n} \leftrightarrow_e (A, B, C)^T$.

Утверждение 1.21. Пусть в декартовой системе координат (O,e) в P_3 плоскости ν_1, ν_2 заданы общими уравнениями $A_1x + B_1y + C_1z + D_1 = 0$, $A_2x + B_2y + C_2z + D_2 = 0$. Тогда:

- $\triangleright \nu_1 \cap \nu_2 \neq \varnothing \ u \ \nu_1 \neq \nu_2 \Leftrightarrow \overline{n_1} \not \parallel \overline{n_2}$
- $\triangleright \nu_1 \parallel \nu_2 \ u \ \nu_1 \neq \nu_2 \Leftrightarrow \overline{n_1} \parallel \overline{n_2}$, но уравнения плоскостей непропорциональны
- $\triangleright \nu_1 = \nu_2 \Leftrightarrow ypasнeния плоскостей пропорциональны$

Доказательство.

ightharpoonup Пусть $\overline{n_1} \not\parallel \overline{n_2}$, тогда без ограничения общности столбцы $(A_1, B_1)^T$ и $(A_2, B_2)^T$ непропорциональны. Рассмотрим следующую систему уравнений относительно x и y:

$$\begin{cases} A_1x + B_1y = -C_1z - D_1 \\ A_2x + B_2y = -C_2z - D_2 \end{cases}$$

По правилу Крамера, эта система имеет единственное решение при любом $z \in \mathbb{R}$. Значит, плоскости имеют общие точки, но не все их точки общие, и это означает, что они пересекаются.

- ightharpoonup Пусть $\overline{n_1} \parallel \overline{n_2}$ и уравнения непропорциональны. Поскольку столбцы $(A_1, B_1, C_1)^T$ и $(A_2, B_2, C_2)^T$ пропорциональны из коллинеарности векторов $\overline{n_1}$ и $\overline{n_2}$, можно без ограничения общности считать, что $A_1 = A_2$, $B_1 = B_2$, $C_1 = C_2$, но $D_1 \neq D_2$. Тогда уравнения плоскостей не имеют общих решений, откуда $\nu_1 \parallel \nu_2$ и $\nu_1 \neq \nu_2$.
- \triangleright Пусть уравнения плоскостей пропорциональны, тогда можно считать, что они совпадают. Тогда совпадают и множества их решений, то есть $\nu_1 = \nu_2$.

Утверждение 1.22. Пусть в декартовой системе координат (O, e) пересекающиеся плоскости ν_1, ν_2 заданы уравнениями $A_1x+B_1y+C_1z+D_1=0, A_2x+B_2y+C_2z+D_2=0$. Тогда направляющим вектором прямой их пересечения является вектор $\overline{v} \in V_3$ такой, что:

$$\overline{v} \leftrightarrow_e \left(\begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}, \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix}, \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \right)^T$$

Доказательство.

- 1. Поскольку $\nu_1 \not \parallel \nu_2$, то хотя бы один из определителей, указанных в координатном столбце вектора \overline{v} , ненулевой, откуда $\overline{v} \neq \overline{0}$.
- 2. Заметим, что выполнено следующее равенство:

$$A_1 \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} + B_1 \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix} + C_1 \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$$

Поскольку определитель матрицы не меняется при транспонировании, выполнено следующее:

$$\begin{vmatrix} A_1 & B_1 & C_1 \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix} = \begin{vmatrix} A_1 & A_1 & A_2 \\ B_1 & B_1 & B_2 \\ C_1 & C_1 & C_2 \end{vmatrix} = 0$$

Определитель в правой части равенства равен 0, поскольку он соответствует ориентированному объему от тройки векторов, среди которых есть два одинаковых. Получено следующее равенство:

$$A_1 \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} + B_1 \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix} + C_1 \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = 0$$

Значит, по критерию параллельности вектора и плоскости, $\overline{v} \parallel \nu_1$.

3. Аналогично пункту (2), выполнено $\bar{v} \parallel \nu_2$.

Определение 1.35. Пучком плоскостей называется либо множество всех плоскостей в P_3 , проходящих через фиксированную прямую $l \subset P_3$, либо множество всех плоскостей, параллельных фиксированной плоскости $\nu \subset P_3$.

Замечание. Любые две плоскости в P_3 ровно в одном пучке.

Теорема 1.15. Пусть в декартовой системе координат (O,e) в P_3 различные плоскости ν_1, ν_2 заданы уравнениями $A_1x + B_1y + C_1z + D_1 = 0$, $A_2x + B_2y + C_2z + D_2 = 0$. Тогда плоскость $\nu \subset P_2$ лежит в одном пучке с плоскостями ν_1 и $\nu_2 \Leftrightarrow$ плоскость ν задается уравнением следующего вида при некоторых $\alpha_1, \alpha_2 \in \mathbb{R}$:

$$\alpha_1(A_1x + B_1y + C_1z + D_1) + \alpha_2(A_2x + B_2y + C_2z + D_2) = 0$$

Доказательство.

- ← Возможны два случая:
 - 1. Если $\nu_1 \cap \nu_2 = l \subset P_3$, то координаты каждой точки P на прямой l удовлетворяют требуемому уравнению, откуда $l \subset \nu$.
 - 2. Если $\nu_1 \parallel \nu_2$, то из требуемого уравнения сопутствующий вектор плоскости ν паралленен сопутствующим векторам плоскостей ν_1 и ν_2 . В этом случае уравнение задает плоскость не при всех $\alpha_1, \alpha_2 \in \mathbb{R}$, но если задает, то лежащую в данном пучке.
- ⇒ Возможны два случая:
 - 1. Если $\nu \cap \nu_1 \cap \nu_2 = l \subset P_3$, то выберем на ν точку $Q \notin l$, $Q \leftrightarrow_{(O,e)} (x_0, y_0, z_0)^T$. Тогда Q удовлетворяет уравнению с коэффициентами $\alpha_1 := A_2 x_0 + B_2 y_0 + C_2 z_0 + D_2$, $\alpha_2 := -(A_1 x_0 + B_1 y_0 + C_1 z_0 + D_1)$. Хотя бы один из коэффициентов ненулевой, поскольку Q лежит не более, чем на одной из плоскостей ν_1 , ν_2 . Значит, такое уравнение задает ν , так как ему удовлетворяют все точки прямой l и точка, не лежащая на l.
 - 2. Если $\nu \parallel \nu_1 \parallel \nu_2$, то аналогичным образом выберем любую точку $Q \in \nu$ и соответствующие коэффициенты, тогда полученное уравнение задает ν при условии, что оно задает плоскость. Но оно всегда задает плоскость, поскольку множество его решений непусто и не содержит хотя бы одну из плоскостей ν_1, ν_2 .

1.9 Прямая в пространстве, различные способы задания, их эквивалентность. Формулы для расстояния от точки до плоскости и расстояния между скрещивающимися прямыми в прямоугольной системе координат.

Определение 1.36. Пусть $l \subset P_3$ —прямая с направляющим вектором $\overline{a} \in V_3$, $M \in l$, и в декартовой системе координат (O,e) в P_3 выполнены соотношения $\overline{a} \leftrightarrow_e \alpha$, $M \leftrightarrow_{(O,e)} (x_0,y_0,z_0)^T$, $\overline{r_0} := \overline{OM}$.

Векторно-параметрическим уравнением прямой называется следующее семейство уравнений:

$$\overline{r} = \overline{r_0} + t\overline{a}, t \in \mathbb{R}$$

⊳ Параметрическим уравнением прямой называется следующее семейство систем:

$$\begin{cases} x = x_0 + t\alpha_1 \\ y = y_0 + t\alpha_2, t \in \mathbb{R} \\ z = z_0 + t\alpha_3 \end{cases}$$

▶ Каноническим уравнением прямой называется следующая система уравнений:

$$\frac{x-x_0}{\alpha_1} = \frac{y-y_0}{\alpha_2} = \frac{z-z_0}{\alpha_3}$$

Замечание. Множество точек $X \in P_3$ таких, что $X \leftrightarrow_{(O,e)} (x,y,z)^T$, $\overline{r} := \overline{OX}$, являющихся решениями любого из уравнений прямой выше, совпадает с прямой l. Действительно, $X \in l \Leftrightarrow MX \parallel l \Leftrightarrow \overline{MX} \parallel \overline{a}$.

Замечание. Для канонического уравнения прямой имеют место следующие соглашения:

- \triangleright Если без ограничения общности $\alpha_1=0$ и $\alpha_2,\alpha_3\neq 0$, то следует считать, что исходное уравнение эквивалентно системе уравнений $x=x_0$ и $\frac{y-y_0}{\alpha_2}=\frac{z-z_0}{\alpha_3}$.
- \triangleright Если без ограничения общности $\alpha_1 = \alpha_2 = 0$, то тогда $\alpha_3 \neq 0$, и следует считать, что исходное уравнение эквивалентно системе уравнений $x = x_0$ и $y = y_0$.

Определение 1.37. Пусть $l \subset P_3$ — прямая с направляющим вектором \overline{a} , и пусть $M \in l$, $\overline{r_0} := \overline{OM}$. Векторным уравнением прямой называется следующее уравнение:

$$[\overline{r} - \overline{r_0}, \overline{a}] = \overline{0}$$

Замечание. Множество точек $X \in P_3$, $\overline{r} := \overline{OX}$, являющихся решениями векторного уравнения прямой, совпадает с прямой l. Кроме того, это уравнение можно переписать в следующем виде при $\overline{b} := [\overline{r_0}, \overline{a}]$:

$$[\overline{r},\overline{a}]=\overline{b}$$

Отметим также, что в пространстве прямую также можно задать как пересечение двух плоскостей.

Замечание. Уравнения различного типа, задающие прямую, эквивалентны: из каждого из них можно получить любое другое.

Замечание. Рассмотренные способы задания прямой и плоскости позволяют определить взаимное расположение прямой и плоскости в пространстве. Пусть в декартовой системе координат (O,e) в P_3 плоскость ν задана общим уравнением Ax + By + Cz + D = 0, и пусть прямая l задана векторно-параметрическим уравнением $\overline{r} = \overline{r_0} + t\overline{a}$, $\overline{r_0} \leftrightarrow_e (x_0, y_0, z_0)^T$, $\overline{a} \leftrightarrow_e \alpha$. Тогда:

$$ightarrow \ l \cap \nu
eq \varnothing$$
 и $l \not\subset \nu \Leftrightarrow \overline{a} \not\parallel \nu \Leftrightarrow A\alpha_1 + B\alpha_2 + C\alpha_3 \neq 0$

$$\triangleright l \parallel \nu \text{ и } l \not\subset \nu \Leftrightarrow \begin{cases} A\alpha_1 + B\alpha_2 + C\alpha_3 = 0 \\ Ax_0 + By_0 + Cz_0 + D \neq 0 \end{cases}$$

$$\triangleright l \subset \nu \Leftrightarrow \begin{cases} A\alpha_1 + B\alpha_2 + C\alpha_3 = 0 \\ Ax_0 + By_0 + Cz_0 + D = 0 \end{cases}$$

Утверждение 1.23. Пусть в прямоугольной декартовой системе координат (O,e) в P_3 плоскость ν задана уравнением $Ax+By+Cz+D=0, M\in P_3, M\leftrightarrow_{(O,e)}(x_0,y_0,z_0)^T$. Тогда расстояние ρ от точки M до плоскости ν равно следующей величине:

$$\rho = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Доказательство. Пусть $\overline{n} \in V_3$, $\overline{n} \leftrightarrow_e (A,B,C)^T$ — вектор нормали плоскости ν , $\overline{r_0} := \overline{OM}$, и пусть $X \in \nu$, $\overline{r} := \overline{OX}$. Тогда:

$$\rho = |\operatorname{pr}_{\overline{n}}(\overline{r_0} - \overline{r})| = \left| \frac{(\overline{r_0} - \overline{r}, \overline{n})}{|\overline{n}|^2} \overline{n} \right| = \frac{|(\overline{r_0} - \overline{r}, \overline{n})|}{|\overline{n}|} = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Утверждение 1.24. Пусть скрещивающиеся прямые $l_1, l_2 \subset P_3$ заданы уравнениями $\overline{r} = \overline{r_1} + \overline{a_1}t$, $\overline{r} = \overline{r_2} + \overline{a_2}t$. Тогда расстояние ρ между ними равно следующей величине:

$$\rho = \frac{|(\overline{a_1}, \overline{a_2}, \overline{r_1} - \overline{r_2})|}{|[\overline{a_1}, \overline{a_2}]|}$$

Доказательство. Искомое расстояние ρ является длиной высоты параллелепипеда, построенного на векторах $\overline{a_1}$, $\overline{a_2}$ и $\overline{r_1} - \overline{r_2}$, проведенной к грани, образованной векторами $\overline{a_1}$, $\overline{a_2}$ и имеющей площадь $|\overline{a_1}||\overline{a_2}|\sin\angle(\overline{a_1},\overline{a_2}) = |[\overline{a_1},\overline{a_2}]|$, из чего и следует требуемое.

1.10 Эллипс, гипербола, парабола, их канонические уравнения. Теоремы о фокусах и директрисах. Асимптоты гиперболы. Сопряжённые диаметры.

Определение 1.38. Пусть $A, B, C, D, E, F \in \mathbb{R}$, $A^2 + B^2 + C^2 \neq 0$. *Кривой второго порядка* называется алгебраическая кривая, которая в некоторой прямоугольной декартовой системе координат в P_2 задается следующим уравнением:

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$$

Определение 1.39. Эллипсом называется кривая второго порядка, которая в канонической системе координат (O, e) задается следующим уравнением:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ a \geqslant b > 0$$

- ightharpoonup Bершинами эллипса называются точки с координатами $(\pm a,0)^T$, $(0,\pm b)^T$ в системе (O,e). Число a называется длиной большой полуоси эллипса, число b длиной малой полуоси эллипса.
- ightharpoonup Фокусным расстоянием эллипса называется величина $c := \sqrt{a^2 b^2}$. Фокусами эллипса называются точки $F_1, F_2 \in P_2$ такие, что $F_1 \leftrightarrow_{(O,e)} (c,0)^T, F_2 \leftrightarrow_{(O,e)} (-c,0)^T$.
- $ightarrow \,\,$ Эксцентриситетом эллипса называется величина $arepsilon := rac{c}{a} = rac{\sqrt{a^2 b^2}}{a}.$
- ightarrow Директрисами эллипса называются прямые $d_1,d_2,$ задаваемые в системе (O,e) уравнениями $x=\pm rac{a}{arepsilon}.$

Теорема 1.16. Пусть эллипс задан в канонической системе координат (O,e), $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$. Тогда точка A лежит на эллипсе $\Leftrightarrow AF_1 = |a - \varepsilon x| \Leftrightarrow AF_2 = |a + \varepsilon x|$.

Доказательство. Докажем, что A лежит на эллипсе $\Leftrightarrow AF_1 = |a - \varepsilon x|$. Для этого заметим, что выполнены следующие равенства:

$$AF_1^2 - |a - \varepsilon x|^2 = (x - c)^2 + y^2 - |a - \varepsilon x|^2 = b^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right)$$

Значит, $AF_1=|a-\varepsilon x|\Leftrightarrow \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\Leftrightarrow A$ лежит на эллипсе. Аналогично доказывается, что $AF_2=|a+\varepsilon x|\Leftrightarrow A$ лежит на эллипсе.

Следствие. Пусть эллипс задан в канонической системе координат (O, e). Тогда он является геометрическим местом точек $A \in P_2$, $A \leftrightarrow_{(O, e)} (x, y)^T$, таких, что выполнены следующие равенства:

$$\frac{AF_1}{\rho(A,d_1)} = \frac{AF_2}{\rho(A,d_2)} = \varepsilon$$

Доказательство. Заметим, что выполнены следующие равенства:

$$\rho(A, d_1) = \left| x - \frac{a}{\varepsilon} \right| = \frac{1}{\varepsilon} |a - \varepsilon x|$$

Значит, A лежит на эллипсе $\Leftrightarrow |a - \varepsilon x| = AF_1 \Leftrightarrow \varepsilon \rho(A, d_1) = AF_1$. Аналогично доказывается, что A лежит на эллипсе $\Leftrightarrow \varepsilon \rho(A, d_2) = AF_2$.

Теорема 1.17. Пусть эллипс задан в канонической системе координат (O,e). Тогда он является геометрическим местом точек $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$, таких, что выполнено равенство $AF_1 + AF_2 = 2a$.

Доказательство.

- \Rightarrow Пусть A лежит на эллипсе, тогда $AF_1=a-\varepsilon x$ и $AF_2=a+\varepsilon x$, откуда $AF_1+AF_2=2a$.
- \Leftarrow Зафиксируем произвольное число $x_0 \in \mathbb{R}$ и заметим, что при движении точки $X \in P_2$, $X \leftrightarrow_{(O,e)} (x_0,0)^T$ вдоль прямой $x=x_0$ вверх или вниз величина XF_1+XF_2 строго возрастает. Рассмотрим возможные случаи:
 - 1. Если $|x_0| < a$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ две.
 - 2. Если $|x_0|=a$, то такая точка, что $XF_1+XF_2=2a$, на прямой $x=x_0$ одна.
 - 3. Если $|x_0| > a$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ нет.

Полученное точек совпадает с множеством точек эллипса.

Определение 1.40. *Гиперболой* называется кривая второго порядка, которая в канонической системе координат (O, e) задается следующим уравнением:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \ a, b > 0$$

- \triangleright Вершинами гиперболы называются точки с координатами $(\pm a,0)^T$ в системе (O,e). Число a называется длиной действительной полуоси гиперболы, число b- длиной мнимой полуоси гиперболы.
- ightharpoonup Фокусным расстоянием гиперболы называется величина $c := \sqrt{a^2 + b^2}$. Фокусами гиперболы называются точки $F_1, F_2 \in P_2$ такие, что $F_1 \leftrightarrow_{(O,e)} (c,0)^T, F_2 \leftrightarrow_{(O,e)} (-c,0)^T$.
- ightarrow Эксцентриситетом гиперболы называется величина $\varepsilon:=rac{c}{a}=rac{\sqrt{a^2+b^2}}{a}.$
- ightharpoonup Директрисами гиперболы называются прямые d_1, d_2 , задаваемые в системе (O, e) уравнениями $x = \pm \frac{a}{\varepsilon}$.

Теорема 1.18. Пусть гипербола задана в канонической системе координат $(O,e), A \in P_2, A \leftrightarrow_{(O,e)} (x,y)^T$. Тогда точка A лежит на гиперболе $\Leftrightarrow AF_1 = |a - \varepsilon x| \Leftrightarrow AF_2 = |a + \varepsilon x|$.

Доказательство. Докажем, что A лежит на гиперболе $\Leftrightarrow AF_1 = |a - \varepsilon x|$. Для этого заметим, что выполнены следующие равенства:

$$AF_1^2 - |a - \varepsilon x|^2 = (x - c)^2 + y^2 - |a - \varepsilon x|^2 = b^2 \left(\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1\right)$$

Значит, $AF_1 = |a - \varepsilon x| \Leftrightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Leftrightarrow A$ лежит на гиперболе. Аналогично доказывается, что $AF_2 = |a + \varepsilon x| \Leftrightarrow A$ лежит на гиперболе.

Следствие. Пусть гипербола задана в канонической системе координат (O, e). Тогда она является геометрическим местом точек $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$, таких, что выполнены следующие равенства:

$$\frac{AF_1}{\rho(A, d_1)} = \frac{AF_2}{\rho(A, d_2)} = \varepsilon$$

Доказательство. Заметим, что выполнены следующие равенства:

$$\rho(A, d_1) = \left| x - \frac{a}{\varepsilon} \right| = \frac{1}{\varepsilon} |a - \varepsilon x|$$

Значит, A лежит на гиперболе $\Leftrightarrow |a-\varepsilon x|=AF_1\Leftrightarrow \varepsilon \rho(A,d_1)=AF_1$. Аналогично доказывается, что A лежит на эллипсе $\Leftrightarrow \varepsilon \rho(A,d_2)=AF_2$.

Теорема 1.19. Пусть гипербола задана в канонической системе координат (O, e). Тогда она является геометрическим местом точек $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$, таких, что выполнено равенство $|AF_1 - AF_2| = 2a$.

Доказательство.

- \Rightarrow Пусть A лежит на гиперболе. Если без ограничения общности точка A лежит на правой ее ветви, то тогда $AF_1 = \varepsilon x a$ и $AF_2 = a + \varepsilon x$, тогда $|AF_1 AF_2| = 2a$.
- \Leftarrow Зафиксируем произвольное число $x_0 \in \mathbb{R}$ и заметим, что при движении точки $X \in P_2$, $X \leftrightarrow_{(O,e)} (x_0,0)^T$ вдоль прямой $x=x_0$ вверх или вниз величина $|XF_1-XF_2|$ строго убывает. Рассмотрим возможные случаи:
 - 1. Если $|x_0| > a$, то таких точек, что $|XF_1 XF_2| = 2a$, на прямой $x = x_0$ две.
 - 2. Если $|x_0|=a$, то такая точка, что $|XF_1-XF_2|=2a$, на прямой $x=x_0$ одна.
 - 3. Если $|x_0| < a$, то таких точек, что $|XF_1 XF_2| = 2a$, на прямой $x = x_0$ нет.

Полученное точек совпадает с множеством точек гиперболы.

Определение 1.41. Пусть гипербола задана в канонической системе координат (O, e). Асимптотами гиперболы называются прямые l_1, l_2 , задаваемые в этой же системе уравнениями $\frac{x}{a} \pm \frac{y}{b} = 0$.

Утверждение 1.25. Пусть гипербола задана в канонической системе координат (O, e), $A \in P_2$ — точка на гиперболе. Тогда выполнено следующее равенство:

$$\rho(A, l_1)\rho(A, l_2) = \frac{a^2b^2}{a^2 + b^2}$$

Доказательство. Пусть $A \leftrightarrow_{(O,e)} (x,y)^T$. По формуле расстояния от точки до прямой в плоскости, имеем:

$$\rho(A, l_1)\rho(A, l_2) = \frac{\left|\frac{x}{a} - \frac{y}{b}\right|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \frac{\left|\frac{x}{a} + \frac{y}{b}\right|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = \frac{b^2x^2 - a^2y^2}{a^2 + b^2} = \frac{a^2b^2\left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)}{a^2 + b^2} = \frac{a^2b^2}{a^2 + b^2}$$

Получено требуемое.

Определение 1.42. Параболой называется кривая второго порядка, которая в канонической системе координат (O, e) задается следующим уравнением:

$$y^2 = 2px, p > 0$$

- \triangleright Вершиной параболы называется точка с координатами $(0,0)^T$ в системе (O,e).
- \triangleright Фокусом параболы называется точка F такая, что $F \leftrightarrow_{(O,e)} \left(\frac{p}{2},0\right)^T$.
- \triangleright Эксцентриситетом параболы называется величина $\varepsilon:=1.$
- \triangleright Директрисой параболы называется прямая d, задаваемая в системе (O,e) уравнением $x=-\frac{p}{2}$.

Теорема 1.20. Пусть парабола задана в канонической системе координат (O, e), $A \in P_2$, $A \leftrightarrow_{(O,e)} (x,y)^T$. Тогда точка A лежит на параболе $\Leftrightarrow AF = \rho(A,d)$.

Доказательство. Заметим, что выполнены следующие равенства:

$$AF^{2} - \rho^{2}(A, d) = \left(x - \frac{p}{2}\right)^{2} + y^{2} - \left(x + \frac{p}{2}\right)^{2} = y^{2} - 2px$$

Значит, $AF = \rho(A,d) = |x + \frac{p}{2}| \Leftrightarrow y^2 = 2px \Leftrightarrow A$ лежит на параболе.

Определение 1.43. Пусть C – эллипс, гипербола или парабола, $\overline{v} \in V_2$, $\overline{v} \neq \overline{0}$ — вектор направления. Диаметром, сопряженным к направлению \overline{v} относительно кривой C, называется прямая, содержащая середины всех хорд C, параллельных вектору \overline{v} .

Замечание. Пусть C – эллипс, гипербола или парабола, C задана в канонической системе координат $(O,e), \ \overline{v} \in V_2, \ \overline{v} \neq \overline{0}$ — вектор направления, $\overline{v} \leftrightarrow_e \alpha$. Тогда уравнения диаметров, сопряженных к направлению \overline{v} , имеют следующий вид:

- ightharpoonup Если C эллипс, то прямая задается уравнением $\frac{\alpha_1 x}{a^2} + \frac{\alpha_2 y}{b^2} = 0$ и имеет направляющий вектор $\overline{a} \in V_2$, $\overline{a} \leftrightarrow_e (\frac{\alpha_2}{b^2}, -\frac{\alpha_1}{a^2})^T$
- ightharpoonup Если C гипербола, то прямая задается уравнением $\frac{\alpha_1 x}{a^2} \frac{\alpha_2 y}{b^2} = 0$ и имеет направляющий вектор $\overline{a} \in V_2$, $\overline{a} \leftrightarrow_e (\frac{\alpha_2}{b^2}, \frac{\alpha_1}{a^2})^T$
- ightharpoonup Если C парабола, то прямая задается уравнением $\alpha_2 y = \alpha_1 p$ и имеет направляющий вектор $\overline{a} \in V_2$, $\overline{a} \leftrightarrow_e (1,0)^T$

Утверждение 1.26. Пусть C — эллипс или гипербола, $\overline{v} \in V_2$, $\overline{v} \neq \overline{0}$ — вектор направления. Тогда если диаметр, сопряженный к \overline{v} , имеет направляющий вектор \overline{u} , то диаметр, сопряженный к \overline{u} , имеет направляющий вектор \overline{v} .

Доказательство. Рассмотрим случай, когда C — гипербола, поскольку в случае эллипса доказательство аналогично. Пусть C задана в канонической системе координат (O,e), и пусть $\overline{v} \leftrightarrow_e \alpha$. Диаметр, сопряженный к направлению \overline{v} , имеет направляющий вектор $\overline{u} \in V_2$, $\overline{u} \leftrightarrow_e (\frac{\alpha_2}{b^2}, \frac{\alpha_1}{a^2})^T$. Диаметр, сопряженный к направлению \overline{u} , имеет направляющий вектор $\overline{w} \in V_2$, $\overline{w} \leftrightarrow_e (\frac{\alpha_1}{a^2b^2}, \frac{\alpha_2}{a^2b^2})^T$. Остается заметить, что $\overline{w} \parallel \overline{v}$.

1.11 Вывод общего уравнения касательной к кривой второго порядка. Касательные к эллипсу, параболе и гиперболе.

Определение 1.44. *Касательной* к кривой C в точке $A \in C$ называется предельное положение секущей $AB, B \in C$, при $B \to A$.

Определение 1.45. *Особая точка* кривой второго порядка – это её центр, если центр принадлежит кривой. Кривые с особыми точками:

- ⊳ Пара пересекающихся действительных прямых;
- ⊳ Пара пересекающихся мнимых прямых;
- ⊳ Пара совпавших действительных прямых.

Замечание. В особой точке касательная не определена.

Замечание. Пусть точка — не особая. Если эта точка лежит на прямой, входящей в состав кривой C, то эта прямая — касательная.

Далее будем рассматривать C – эллипс, гипербола или парабола.

Теорема 1.21 (Вывод общего уравнения касательной). Пусть $F(x,y) := Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0, M(x_0, y_0) \in C$.

Пусть $F_1(x,y) = Ax + By + D$, $F_2(x,y) = Bx + Cy + E$. Секущая $l: x = x_0 + \alpha t$, $y = y_0 + \beta t$. Заметим, что при t = 0 $M \in C \cap l$. Найдем вторую точку пересечения.

$$A(x_0 + \alpha t)^2 + 2B(x_0 + \alpha t)(y_0 + \beta t) + C(y_0 + \beta t)^2 + 2D(x_0 + \alpha t) + 2E(y_0 + \beta t) + F = 0$$

$$t^2(A\alpha^2 + 2B\alpha\beta + C\beta^2) + 2t(Ax_0\alpha + Bx_0\beta + By_0\alpha + Cy_0\beta + D\alpha + E\beta) + F(x_0, y_0) = 0$$

- 1. $A\alpha^2 + 2B\alpha\beta + C\beta^2 = 0 \Rightarrow \overline{v} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, удовлетворяющие этому условию, называются асимптотическими направлениями.
 - $\delta < 0$ 2 направления;
 - $\delta = 0 1$ направление;
 - $\delta > 0$ θ направлений;
- 2. Пусть $\binom{\alpha}{\beta}$ не асимптотическое. Тогда существует t' корень и $t' \neq t_0$ и существует $M_1 \in l \cap C$. Если $M \to M_0$, то 0 двукратный корень. Но для этого

$$Ax_0\alpha + Bx_0\beta + By_0\alpha + Cy_0\beta + D\alpha + E\beta = 0$$

$$\alpha F_1(x_0, y_0) + \beta F_2(x_0, y_0) = 0,$$

но оба F_1 и F_2 не равны нулю одновременно, иначе M – особая точка. Тогда

$$k: \frac{x - x_0}{-F_2(x_0, y_0)} = \frac{y - y_0}{F_1(x_0, y_0)}$$

- уравнение касательной в точке М.

1.12 Классификация линий второго порядка. Приведение уравнения второго порядка с двумя переменными к каноническому виду в прямоугольной системе координат. Центр кривой второго порядка.

Теорема 1.22. Любое уравнение кривой второго порядка в некоторой прямоугольной декартовой системой координат в P_2 имеет один из девяти канонических видов:

▶ Кривые эллиптического типа:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $a \geqslant b > 0$, — эмипс

2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
, $a \ge b > 0$, — точка

3.
$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=-1,\ a\geqslant b>0,$$
 — мнимый эмлипс

⊳ Кривые гиперболического типа:

1.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $a, b > 0$, — гипербола

2.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
, $a, b > 0$, — пара пересекающихся прямых

▶ Кривые параболического типа:

1.
$$y^2 = 2px, p > 0, - парабола$$

2.
$$\frac{y^2}{a^2} = 1$$
, $a > 0$, — пара парамельных прямых

3.
$$\frac{y^2}{a^2} = 0$$
, $a > 0$, — пара совпадающих прямых

4.
$$\frac{y^2}{a^2} = -1$$
, $a > 0$, — пара мнимых парамельных прямых

Доказательство. Пусть в исходной прямоугольной декартовой системе координат в P_2 кривая второго порядка задается уравнением $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$. Процесс перехода в искомую систему координат происходит в три этапа:

1. Если $B \neq 0$, избавимся от монома 2Bxy. Для этого произведем поворот системы координат на угол α против часовой стелки. Матрица перехода S при таком преобразовании имеет следующий вид:

$$S = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Тогда, по свойству замены координат:

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}$$

Определим значение α , при котором коэффициент при x'y' обращается в 0:

$$-2A\sin\alpha\cos\alpha + 2B(\cos^2\alpha - \sin^2\alpha) + 2C\sin\alpha\cos\alpha = 0 \Rightarrow 2B\cos2\alpha = (A - C)\sin2\alpha$$

Если A=C, то выберем $\alpha=\frac{\pi}{4}$, иначе — такой α , что tg $2\alpha=\frac{2B}{A-C}$. В новой системе координат получим выражение вида $A'x'^2+C'y'^2+2D'x'+2E'y'+F'=0$.

2. Если $A' \neq 0$, избавимся от монома 2D'x'. Для этого произведем следующий сдвиг системы координат:

$$\begin{cases} x' = x'' + \frac{D'}{A'} \\ y' = y'' \end{cases}$$

После этого получим выражение $A''x''^2 + C''y''^2 + 2E''y'' + F'' = 0$.

3. Если $C'' \neq 0$, избавимся от монома 2E''y'', аналогично пункту (2).

Опустим штрихи в записи уравнения в полученной системе координат. После того, как произведены операции выше, могут быть получены три различных результата:

1. Если AC>0, то ни один из мономов x^2 , y^2 не сократился, и полученное уравнение имеет вид $Ax^2+Cy^2+F=0$. Если A,C<0, домножим уравнение на -1. Перенесем F в другую часть и, если $F\neq 0$, разделим уравнение на |F|. После данных операций получим уравнение следующего вида:

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \varepsilon, \ a, b > 0, \ \varepsilon \in \{-1, 0, 1\}$

Если a < b, то поменяем координаты местами. Получено уравнение кривой эллиптического типа.

2. Если AC < 0, то ни один из мономов x^2 , y^2 не сократился, и полученное уравнение имеет вид $Ax^2 + Cy^2 + F = 0$. Аналогичными описанным в предыдущем пункте преобразованиями, получим уравнение следующего вида:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \varepsilon, \ a, b > 0, \ \varepsilon \in \{0, 1\}$$

Получено уравнение кривой гиперболического типа.

3. Если AC=0, то одно из чисел A,C осталось ненулевым, поскольку многочлен в уравнении должен иметь степень 2. Заменой системы координат можно добиться того, чтобы это было число C. Тогда полученное уравнение имеет вид $Cy^2+2Dx+F=0$. Если $D\neq 0$, то сдвиг системы координат позволяет избавиться от F и получить уравнение следующего вида:

$$y^2 = 2px, \, p > 0$$

Если же D = 0, то уравнение можно привести к следующему виду:

$$\frac{y^2}{a^2}\varepsilon, \ a > 0, \ \varepsilon \in \{-1, 0, 1\}$$

Получено уравнение кривой параболического типа.

Определение 1.46. *Центром многочлена* P(x,y) в декартовой системе координат (O,e) в P_2 называется такая точка $A \in P_2$, $A \leftrightarrow_{(O,e)} \alpha$, что для любых чисел $x,y \in \mathbb{R}$ выполнено равенство $P(\alpha_1 - x, \alpha_2 - y) = P(\alpha_1 + x, \alpha_2 + y)$.

Утверждение 1.27. Пусть $A \in P_2$, в декартовой системе координат (O, e) в P_2 выполнено $A \leftrightarrow_{(O, e)} \alpha$, и пусть $P(x, y) = Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F$. Тогда:

$$A-$$
 центр многочлена $P(x,y)\Leftrightarrow egin{cases} Alpha+Beta+D=0\ Blpha+Ceta+E=0 \end{cases}$

upd: y математиков закончились буквы, $A \neq A$.

Доказательство. Доказательство производится непосредственной проверкой.

1.13 Инварианты кривой второго порядка.

$$P(x,y) = Ax^{2} + 2Bxy + Cy^{2} + 2Dx + 2Ey + F.$$

Определение 1.47. Инвариантом кривой второго порядка называется F(A, ..., F), которая сохраняет свое значение при переходе от одной ПДСК к другой.

Теорема 1.23. Следующие величины являются инвариантами кривой второго порядка:

$$\Delta = \begin{vmatrix} A & B & D \\ B & C & E \\ D & E & F \end{vmatrix}, \ \delta = \begin{vmatrix} A & B \\ B & C \end{vmatrix}, \ I = A + C$$

Доказательство. Запишем матричное уравнение кривой второго порядка

$$\begin{pmatrix} x & y & z \end{pmatrix} \cdot \begin{pmatrix} A & B & D \\ B & C & E \\ D & E & F \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} \bigg|_{z=1} = 0.$$
 (I)

Так же запишем формулу перехода

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix}, (1)$$

от $(0, \overline{e_1}, \overline{e_2})$ к $(0', \overline{e_1}', \overline{e_2}')$. Наряду с (1) рассмотрим преобразование в пространстве

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi & \gamma_1 \\ \sin \varphi & \cos \varphi & \gamma_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}, (2)$$

при этом z = z' = 1. После преобразования в пространстве (2) ур-ие (I) примет вид:

$$\begin{pmatrix} x' & y' & z' \end{pmatrix} \begin{pmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ \gamma_1 & \gamma_2 & 1 \end{pmatrix} \begin{pmatrix} A & B & D \\ B & C & E \\ D & E & F \end{pmatrix} \begin{pmatrix} \cos \varphi & -\sin \varphi & \gamma_1 \\ \sin \varphi & \cos \varphi & \gamma_2 \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \Big|_{z'=1} = 0.$$

Обозначим
$$R' = \begin{pmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ \gamma_1 & \gamma_2 & 1 \end{pmatrix}, \ R = \begin{pmatrix} \cos \varphi & -\sin \varphi & \gamma_1 \\ \sin \varphi & \cos \varphi & \gamma_2 \\ 0 & 0 & 1 \end{pmatrix}$$
. Тогда

$$\Delta = \begin{vmatrix} R' \begin{pmatrix} A & B & D \\ B & C & E \\ D & E & F \end{pmatrix} R = |R'|\Delta|R| = \Delta.$$

Обозначим
$$R(-\varphi) = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}, \, R(\varphi) = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
. Тогда

$$\delta' = \left| R(-\varphi) \begin{pmatrix} A & B \\ B & C \end{pmatrix} R(\varphi) \right| = \left| R(-\varphi) \right| \delta \left| R(\varphi) \right| = \delta.$$

Заметим, что $I=A+C=tr\begin{pmatrix}A&B\\B&C\end{pmatrix}$ (tr(A) – след матрицы \Leftrightarrow сумма элементов на главной диагонали). Тогда

$$I' = tr \begin{pmatrix} A' & B' \\ B' & C' \end{pmatrix} = tr \left(R(-\varphi) \begin{pmatrix} A & B \\ B & C \end{pmatrix} R(\varphi) \right) = I.$$

Утверждение 1.28. Классификация кривых второго порядка относительно инвариантов.

▶ Кривые эллиптического типа:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $a \geqslant b > 0$, $-$ insular $\Leftrightarrow \delta > 0$, $I \cdot \Delta < 0$.

2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
, $a \geqslant b > 0$, — napa мнимых прямых $\Leftrightarrow \delta > 0$, $\Delta = 0$.

3.
$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=-1,~a\geqslant b>0,$$
 — мнимый эллипс $\Leftrightarrow \delta>0,~I\cdot\Delta>0.$

⊳ Кривые гиперболического типа:

1.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $a, b > 0$, — гипербола $\Leftrightarrow \delta < 0$, $\Delta \neq 0$.

2.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
, $a,b>0$, — пара пересекающихся прямых $\Leftrightarrow \delta < 0$, $\Delta = 0$.

▶ Кривые параболического типа:

1.
$$y^2 = 2px$$
, $p > 0$, — парабола $\Leftrightarrow \delta = 0$, $\Delta \neq 0$.

2.
$$\frac{y^2}{a^2}=1,\ a>0,$$
 — пара парамельных прямых $\Rightarrow \delta=0,\ \Delta=0.$

3.
$$\frac{y^2}{a^2}=0,~a>0,$$
 — пара совпадающих прямых $\Rightarrow \delta=0,~\Delta=0.$

4.
$$\frac{y^2}{a^2}=-1,\ a>0,$$
 — пара мнимых парамлельных прямых \Rightarrow $\delta=0,\ \Delta=0.$

2 Линейные пространства. Матрицы и определители.

2.1 Матрицы, операции с матрицами, их свойства.

Определение 2.1. *Матрицей размера* $n \times k$ называется таблица из n строк и k столбцов, заполненная числами (или другими элементами):

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} = (a_{ij})$$

Обозначение множества числовых матриц данного размера — $M_{n \times k}$, множества квадратных числовых матриц размера $n \times n - M_n$

Определение 2.2. *Подматрицей* матрицы $A \in M_{n \times k}$ называется матрица, полученная из A удалением некоторых ее строк или столбцов.

Определение 2.3. Ниже перечислены основные операции над матрицами:

1. Пусть $A = (a_{ij}), B = (b_{ij}) \in M_{n \times k}$. Суммой матриц A u B называется матрица $A + B \in M_{n \times k}$ следующего вида:

$$A + B := (a_{ij} + b_{ij})$$

2. Пусть $A = (a_{ij}) \in M_{n \times k}, A, \lambda \in \mathbb{R}$. Матрицей, полученной из A умножением на скаляр λ , называется матрица $\lambda A \in M_{n \times k}$ следующего вида:

$$\lambda A := (\lambda a_{ij})$$

3. Пусть $A = (a_{ij}) \in M_{n \times k}$. Матрицей, полученной из A транспонированием, называется матрица $A^T \in M_{k \times n}$ следующего вида:

$$A^{T} := \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \dots & a_{nk} \end{pmatrix} = (a_{ji})$$

4. Пусть $a_{1*} \in M_{1 \times n}$ — строка длины $n, b_{*1} \in M_{n \times 1}$ — столбец высоты n. Произведением строки A и столбиа B называется следующая величина:

$$a_{1*}b_{*1} := \sum_{i=1}^{n} a_{1i}b_{i1}$$

Величину AB можно считать как числом, так и матрицей размера 1×1 .

5. Пусть $A=(a_{ij})\in M_{n\times k},\ B=(b_{ij})\in M_{k\times m}.$ Произведением матриц $A\ u\ B$ называется матрица $AB\in M_{n\times m}$ следующего вида:

$$AB := (a_{i*}b_{*j}) = \left(\sum_{t=1}^{k} a_{it}b_{tj}\right)$$

Утверждение 2.1. Сложение матриц обладают следующими свойствами:

- $ightharpoonup orall A, B \in M_{n imes k} : A + B = B + A \ (коммутативность)$
- $\triangleright \forall A, B, C \in M_{n \times k} : (A + B) + C = A + (B + C) \quad (accognamus + accounts)$
- $ightharpoonup \exists 0 \in M_{n \times k} : \forall A \in M_{n \times k} : A + 0 = A \ (существование нейтрального элемента)$
- $ightharpoonup orall A \in M_{n imes k}: \exists (-A) \in M_{n imes k}: A + (-A) = 0$ (существование противоположного элемента)

Доказательство. Доказательство производится непосредственной проверкой. Отметим только, что $0 \in M_{n \times k}$ — это матрица из нулей, а $(-A) \in M_{n \times k}$ — матрица, каждый элемент которой является противоположным соответствующему элементу A.

Утверждение 2.2. Умножение матрицы на число обладает следующими свойствами:

- $\triangleright \ \forall \lambda \in \mathbb{R} : \forall A, B \in M_{n \times k} : \lambda(A+B) = \lambda A + \lambda B \ (\partial u cmpu бутивность умножения матрицы на число относительно сложения)$
- $\triangleright \forall \lambda, \mu \in \mathbb{R} : \forall A \in M_{n \times k} : (\lambda + \mu)A = \lambda A + \mu A$ (дистрибутивность умножения матриц относительно сложения)
- $\triangleright \ \forall \lambda, \mu \in \mathbb{R} : \forall A \in M_{n \times k} : (\lambda \mu) A = \lambda(\mu A)$
- $\triangleright \ \forall A \in M_{n \times k} : 1A = A$

Доказательство. Доказательство производится непосредственной проверкой.

Утверждение 2.3. Транспонирование обладает следующими свойствами:

- $ightharpoonup orall A, B \in M_{n imes k} : (A+B)^T = A^T + B^T \ (\partial и cmp u бутивность транспонирования относительно сложения матриц)$
- $\forall \lambda \in \mathbb{R} : \forall A \in M_{n \times k} : (\lambda A)^T = \lambda A^T$
- $\, \triangleright \, \, \forall A \in M_{n \times k} : (A^T)^T = A$
- $\forall A, B \in M_{n \times k} : (AB)^T = B^T A^T$

Доказательство. Доказательство производится непосредственной проверкой.

Утверждение 2.4. Умножение матриц обладает следующими свойствами:

- $\triangleright \ \forall A \in M_{n \times k} : \forall B \in M_{k \times m} : \forall C \in M_{m \times l} : (AB)C = A(BC) \ (accoyuamus ность)$
- $ightarrow \exists E_n \in M_n: \exists E_k \in M_k: \forall A \in M_{n \times k}: E_n A = A E_k = A$ (существование нейтрального элемента)
- $\forall A, B \in M_{n \times k} : \forall C \in M_{k \times m} : \forall D \in M_{m \times n} : (A+B)C = AC + BC \ u \ D(A+B) = DA + DB$ (дистрибутивность относительно сложения матриц)
- $\forall \lambda \in \mathbb{R} : \forall A \in M_{n \times k} : \forall B \in M_{k \times m} : \lambda(AB) = (\lambda A)B = A(\lambda B)$

Доказательство. Доказательство производится непосредственной проверкой. Отметим только, что матрица $E_m \in M_m$ имеет следующий вид:

$$E_m := \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Определенная таким образом единичная матрица произвольного размера удовлетворяет условию. \Box

2.2 Понятия группы, кольца и поля, примеры. Поле комплексных чисел. Характеристика поля, простое подполе. Группа перестановок, знак подстановки. Изоморфизм групп, теорема Кэли. Порядок элемента. Циклические группы, теорема об изоморфизме циклических групп, подгруппы циклических групп. Теорема Лагранжа о порядке подгруппы, её следствия.

Определение 2.4. *Группой* называется множество G с определенной на нем бинарной операцией *умножения* $\cdot : G \times G \to G$, удовлетворяющей следующим условиям:

- $\triangleright \forall a, b, c \in G : (ab)c = a(bc)$ (ассоциативность)
- $ightarrow \exists e \in G : \forall a \in G : ae = ea = a$ (существование нейтрального элемента)
- $\forall a \in G : \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e$ (существование обратного элемента)

Определение 2.5. Группа называется (G,\cdot) *абелевой*, если умножение в ней коммутативно, то есть для любых $a,b\in G$ выполнено ab=ba.

Определение 2.6. Кольцом называется множество R с определенными на нем бинарными операциями сложения $+: R \times R \to R$ и умножения $\cdot: R \times R \to R$, удовлетворяющими следующим условиям:

- $\,\rhd\,(R,+)\,-$ абелева группа, нейтральный элемент в которой обозначается через 0
- $\triangleright \forall a, b, c \in R : (ab)c = a(bc)$ (ассоциативность умножения)
- $\forall a,b,c \in R: a(b+c) = ab+ac$ и (a+b)c = ac+bc (дистрибутивность умножения относительно сложения)

Определение 2.7. Пусть $(R,+,\cdot)$ — кольцо. Элемент $a\in R$ называется *обратимым*, если существует $a^{-1}\in R$ такой, что $aa^{-1}=a^{-1}a=1$. Группой обратимых элементов кольца $(R,+,\cdot)$ называется множество R^* его обратимых элементов.

Определение 2.8. Полем называется такое коммутативное кольцо $(F, +, \cdot)$, для которого выполнено равенство $F^* = F \setminus \{0\}$.

Пример. Рассмотрим несколько примеров:

- $\triangleright (\mathbb{Q},+,\cdot), (\mathbb{R},+,\cdot), (\mathbb{C},+,\cdot)$ являются полями;
- \triangleright ($\mathbb{Z},+,\cdot$), ($\mathbb{Q},+,\cdot$), ($\mathbb{R},+,\cdot$), ($\mathbb{C},+,\cdot$) являются коммутативными кольцами;
- \triangleright (\mathbb{Z} , +), (\mathbb{Q} , +), (\mathbb{R} , +), (\mathbb{C} , +) являются абелевыми группами.

Определение 2.9. *Подполем* поля $(F,+,\cdot)$ называется такое его непустое подмножество $S\subset F,$ что выполнены следующие условия:

- $ightharpoonup (S,+,\cdot)$ подкольцо в $(F,+,\cdot)$
- $\Rightarrow \forall a \in S \setminus \{0\} : a^{-1} \in S$

Замечание. Имеет место эквивалентное определение подполя, согласно которому подполем поля $(F, +, \cdot)$ называется такое его непустое подмножество $S \subset F$, что $(S, +, \cdot)$ тоже является полем.

Определение 2.10. Пусть F — поле. Его xарактеристикой называется наименьшее число $k \in \mathbb{N}$ такое, что в поле F выполнено равенство k=0. Если такого k не существует, то характеристика поля считается равной 0. Обозначение — char F.

Утверждение 2.5. Пусть F-nоле. Тогда если $\operatorname{char} F>0$, то $\operatorname{char} F-n$ ростое число.

Доказательство. Пусть char F = n. Если n = 1, то элементы 0 и 1 в F совпадают, откуда $F^* = F$, что невозможно. Пусть теперь n—составное число, то есть n = ab для некоторых $a, b \in \mathbb{N}$ таких, что a, b > 1. Тогда в поле F числа a, b отличны от нуля, но ab = 0. Умножая обе части равенства на a^{-1} , получим, что b = 0, — противоречие. Значит, возможен только случай простого числа n.

Определение 2.11. Поле называется *простым*, если оно не имеет подполей, отличных от него самого.

Теорема 2.1 (о простом подполе). Пусть F - none. Тогда:

- 1. Если $\operatorname{char} F = p > 0$, то в F существует подполе, изоморфное \mathbb{Z}_p
- 2. Если char F=0, то в F существует подполе, изоморфное $\mathbb Q$

Доказательство.

1. Пусть char F = p. Определим K как множество всех целых чисел в F, и зададим отображение $\varphi : \mathbb{Z}_p \to K$ как $\varphi(\overline{a}) := a$ для каждого $\overline{a} \in \mathbb{Z}_p$. Покажем, что отображение определено корректно. Пусть $\overline{a} = \overline{a'}$ для некоторых $a, a' \in \mathbb{Z}$, тогда a' = a + kp для некоторого $k \in \mathbb{Z}$, откуда в поле F выполнены равенства a' = a + kp = a. Ясно, что определенное таким образом отображение φ сохраняет операции сложения и умножения.

Сюръективность отображения φ очевидна, проверим его инъективность. Пусть для некоторых $\overline{a}, \overline{b} \in Z_p$ выполнено $\varphi(\overline{a}) = \varphi(\overline{b})$. Без ограничения общности можно считать, что $a,b \in \{0,\ldots,p-1\}$ и $a \geqslant b$, тогда $\varphi(\overline{a-b}) = \varphi(\overline{a}) - \varphi(\overline{b}) = 0$. Но это возможно только в том случае, когда $p \mid (a-b)$, откуда a = b.

Из доказанного также следует, что K — подполе в F. Например, замкнутость относительно взятия обратного элемента по умножению можно показать, используя свойства отображения φ . Пусть $a \in K \setminus \{0\}$, тогда обратным к нему является элемент $\varphi(\overline{a}^{-1})$:

$$\varphi(\overline{a}^{-1})a = \varphi(\overline{a}^{-1})\varphi(\overline{a}) = \varphi(\overline{1}) = 1$$

Проверка остальных свойств подполя позволяет убедиться, что K является полем, тогда отображение φ является изоморфизмом полей.

2. Пусть char F = 0. Определим K как множество всех выражений вида $\frac{a}{b} = ab^{-1}$, где $a, b \in F$ — целые числа в поле F, $b \neq 0$, и зададим $\varphi : \mathbb{Q} \to K$ как $\varphi(\frac{a}{b}) := \frac{a}{b}$ для каждого $\frac{a}{b} \in \mathbb{Q}$. Покажем, что отображение определено корректно. Пусть $\frac{a}{b} = \frac{a'}{b'}$ для некоторых $a, a', b, b' \in \mathbb{Z}$, $b, b' \neq 0$, тогда a'b = ab', откуда в поле F выполнены равенства $ab^{-1} = (aa')(a'b)^{-1} = (aa')(ab')^{-1} = a'b'^{-1}$. Ясно, что определенное таким образом отображение φ сохраняет операции сложения и умножения.

Сюръективность отображения φ очевидна, проверим его инъективность. Пусть для некоторых $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ выполнено $\varphi(\frac{a}{b}) = \varphi(\frac{c}{d})$, тогда $\varphi(\frac{ad-bc}{bd}) = \varphi(\frac{a}{b}) - \varphi(\frac{c}{d}) = 0$. Но это возможно только в том случае, когда ad-bc=0, откуда $\frac{a}{b} = \frac{c}{d}$.

Из доказанного также следует, что K — подполе в F. Например, замкнутость относительно взятия обратного элемента по умножению можно показать, используя свойства отображения φ . Пусть $\frac{a}{b} \in K \setminus \{0\}$, тогда $a \neq 0$, и обратным к элементу $\frac{a}{b}$ является элемент $\varphi(\frac{b}{a})$:

$$\frac{a}{b} \varphi\left(\frac{b}{a}\right) = \varphi\left(\frac{a}{b}\right) \varphi\left(\frac{b}{a}\right) = \varphi(1) = 1$$

Проверка остальных свойств подполя позволяет убедиться, что K является полем, тогда отображение φ является изоморфизмом полей.

Определение 2.12. Группой перестановок S_n называется следующее множество:

$$S_n := \{\sigma: \{1,\ldots,n\}
ightarrow \{1,\ldots,n\}: \sigma$$
 — биекция $\}$

Данное множество является группой с операцией композиции \circ . Элементы группы S_n называются $nepecmanos \kappa a m u$.

Определение 2.13. Беспорядком, или инверсией, в перестановке $\sigma \in S_n$ называется пара индексов $(i,j), i,j \in \{1,\ldots,n\}$ такая, что i < j, но $\sigma(i) > \sigma(j)$. Числа беспорядков в σ обозначается через $N(\sigma)$. Знаком перестановки $\sigma \in S_n$ называется величина $(-1)^{N(\sigma)}$. Обозначения — $\operatorname{sgn} \sigma, (-1)^{\sigma}$.

Определение 2.14. Перестановка $\sigma \in S_n$ называется:

- \triangleright Четной, если $\operatorname{sgn} \sigma = 1$
- \triangleright *Нечетной*, если $\operatorname{sgn} \sigma = -1$

Определение 2.15. Гомоморфизмом групп G и H называется отображение $\varphi: G \to H$ такое, что для любых $a,b \in G$ выполнено равенство $\varphi(ab) = \varphi(a)\varphi(b)$. Изоморфизмом групп G и H называется биективный гомоморфизм $\varphi: G \to H$. Пространства G и H называются изоморфиыми, если между ними существует изоморфизм. Обозначение $-G \cong H$.

Теорема 2.2 (Кэли). Пусть G — конечная группа, |G| = n. Тогда существует подгруппа $H \leq S_n$ такая, что $H \cong G$, то есть группа G вкладывается в группу S_n .

Доказательство. Рассмотрим группу S(G) перестановок множества G, тогда $S(G) \cong S_n$, поскольку имеет место биекция между G и $\{1,\ldots,n\}$. Найдем требуемую подгруппу в S(G). Для каждого элемента $a \in G$ определим перестановку $\sigma_a \in S(G)$ такую, что для любого $b \in G$ выполнено $\sigma_a(b) := ab$. Положим $H := \{\sigma_a \in S(G) : a \in G\}$. Проверим, что $H \leqslant S(G)$:

- $\triangleright H \neq \varnothing$, поскольку $\sigma_e = \mathrm{id} \in H$
- $\triangleright \ \forall a, b \in G : \sigma_a \circ \sigma_b = \sigma_{ab} \in H$
- $\triangleright \forall a \in G : (\sigma_a)^{-1} = \sigma_{a^{-1}} \in H$

Определим отображение $\varphi: G \to H$ для каждого $a \in G$ как $\varphi(a) := \sigma_a$. Очевидно, это гомоморфизм, причем сюръективный. Он также инъективен, поскольку для различных $a,b \in G$ выполнено $\sigma_a(e) \neq \sigma_b(e)$. Таким образом, $G \cong H \leqslant S(G) \cong S_n$.

Определение 2.16. Порядком элемента a называется наименьшее $n \in \mathbb{N}$ такое, что $a^n = e$. Если такого n не существует, то порядок считается равным ∞ . Обозначение — ord a.

Утверждение 2.6. Пусть G – группа, $a \in G$. Тогда ord $a = |\langle a \rangle|$.

Доказательство. Если ord $a=n\in\mathbb{N}$, то $\langle a\rangle=\{a^k:k\in\mathbb{Z}\}=\{e,a,\ldots,a^{n-1}\}$, поэтому $|\langle a\rangle|\leqslant n$. Кроме того, все элементы различны e,a,\ldots,a^{n-1} . Действительно, если для некоторых $r,s\in\{1,\ldots,n-1\},\ r< s$ выполнено $a^r=a^s$, то $a^{s-r}=e$, откуда s-r=0 в силу минимальности порядка n. Значит, $|\langle a\rangle|=n$. Если же ord $a=\infty$, то для любых $\forall r,s\in\mathbb{Z},\ r< s$, выполнено $a^r\neq a^s$ из аналогичных соображений, тогда $|\langle a\rangle|=\infty$.

Определение 2.17. Пусть G—группа, $X \subset G$. Подгруппой, порожденной множеством X, называется следующая подгруппа:

$$\langle X \rangle := \bigcap_{H \leqslant G, X \subset H} H$$

Замечание. (X) — наименьшая по включению подгруппа в G, содержащая множество X.

Определение 2.18. Группа G называется *циклической*, если существует элемент $\exists a \in G$ такой, что $\langle a \rangle = G$.

Пример. Рассмотрим несколько примеров циклических групп:

- $\triangleright \mathbb{Z} = \langle 1 \rangle$
- $\triangleright \mathbb{Z}_n = \langle \overline{1} \rangle$

Теорема 2.3. Любые две циклических группы одного порядка изоморфны.

Доказательство. Пусть G — циклическая группа, $a \in G$, $G = \langle a \rangle$.

- ightharpoonup Пусть $|G|=\infty$. Докажем, что тогда $G\cong\mathbb{Z}$. Рассмотрим отображение $\varphi:\mathbb{Z}\to G$, для каждого $k\in\mathbb{Z}$ имеющее вид $\varphi(k):=a^k$. Очевидно, это гомоморфизм, причем сюръективный. Докажем его инъективность. Пусть для некоторых $k,l\in\mathbb{Z}$ выполнено равенство $a^k=a^l$, тогда $a^{k-l}=e$, что возможно только при k=l. Таким образом, получен изоморфизм между \mathbb{Z} , и G
- ⊳ Пусть $|G| = n \in \mathbb{N}$. Докажем, что тогда $G \cong \mathbb{Z}_n$. Рассмотрим отображение $\varphi : \mathbb{Z}_n \to G$, для каждого $\overline{k} \in \mathbb{Z}_n$ имеющее вид $\varphi(\overline{k}) := a^k$. Отображение φ определено корректно, поскольку если $a^k = a^l$ для некоторых $k, l \in \mathbb{Z}$, то $a^{k-l} = e$, откуда $n \mid (k-l)$ и $\overline{k} = \overline{l}$. Очевидно тогда, что это гомоморфизм, причем инъективный в силу уже доказанного и сюръективный. □

Теорема 2.4 (Лагранжа). Пусть G- конечная группа, $H\leqslant G$. Тогда выполнены следующие равенства:

$$|G| = |H||G/H| = |H||H\backslash G|$$

Доказательство. Если смежные классы в G пересекаются хотя бы по одному элементу, то они совпадают. Тогда, поскольку для любого $a \in G$ выполнено $a \in aH$, вся группа G разбивается на непересекающиеся смежные классы порядка |H|, откуда и следует требуемое равенство.

Следствие. Пусть G — конечная группа, $a \in G$. Тогда:

- 1. ord $a \mid |G|$
- 2. $a^{|G|} = e$

Доказательство.

- 1. По теореме Лагранжа, ord $a = |\langle a \rangle| |G|$
- 2. Пусть ord a=k, тогда $k\mid |G|$ в силу пункта (1), откуда $a^{|G|}=e$

Следствие (малая теорема Ферма). Пусть p — простое число, $a \in \mathbb{Z}$, $p \nmid a$. Тогда $a^{p-1} \equiv_p 1$.

Доказательство. Рассмотрим группу $(\mathbb{Z}_p \setminus \{\overline{0}\}, \cdot)$, $|\mathbb{Z}_p \setminus \{\overline{0}\}| = p-1$, и применим пункт (2) следствия выше. Получим, что $\overline{a}^{p-1} = \overline{1}$.

2.3 Поле комплексных чисел. Модуль и аргумент комплексного числа.

Пусть F – поле, такое что $x^2 + y^2 = 0$ имеет в F только тривиальное решение x = y = 0. (I)

Утверждение 2.7. Поле F, обладающее свойством (I), можно вложить в поле K так, что $\dim_F K = 2$ и в поле K уравнение $x^2 = -1$ имеет решение.

Доказательство. Рассмотрим следующее множество матриц:

$$K := \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in M_2(F) \right\}$$

- 1. Непосредственная проверка позволяет убедиться, что (K, +) является подгруппой в $(M_2(F), +)$, причем K замкнуто относительно умножения и содержит нейтральный относительно умножения элемент матрицу $E \in M_2(F)$. Значит, K является подкольцом в $M_2(F)$.
- 2. Покажем теперь, что K- поле. Для этого следует проверить, что $K^*=K\backslash\{0\}$. Действительно, если $a,b\in F$, и эти элементы не равны нулю одновременно, то без ограничения общности $b\neq 0$, тогда:

$$\begin{vmatrix} a & b \\ -b & a \end{vmatrix} = a^2 + b^2 = b^2(1 + (ab^{-1})^2) \neq 0$$

Итак, согласно формуле Крамера, матрица выше обратима, причем выполнено следующее равенство:

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in K$$

- 3. Поле K содержит подполе $F' := \{aE : a \in F\}$, изоморфное полю F. Легко проверить, что операции с его элементами этого подполя соответствуют операциям с элементами поля F.
- 4. В поле K есть элемент i следующего вида:

$$i := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in K$$

Тогда $i^2 = (-1)E$, и матрица (-1)E соответствует числу -1 в подполе F'.

Получено требуемое.

Следствие. Если $F = \mathbb{R}$, то полученное поле изоморфно \mathbb{C} , причем изоморфизм имеет следующий вид:

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mapsto a + bi$$

Определение 2.19. *Модулем* комплексного числа z = x + iy называется неотрицательное вещественное число $\sqrt{x^2 + y^2}$.

Определение 2.20. Пусть угол φ – угол между положительным направлением оси абсцисс и направлением из начала координат на z. Угол φ называется *аргументом* числа z и обозначается $\arg z = \varphi$. При заданном r = |z| углы, отличающиеся на целое кратное 2π , соответствуют одному и тому же комплексному числу.

Замечание. Аргумент не определен для числа 0 с модулем |0| = 0. Отношения больше/меньше бессмысленны в применении к комплексным числам, то есть их нельзя соединять знаком неравенства: в отличие от вещественных чисел, комплексные числа не упорядочены.

2.4 Линейное пространство. Понятие линейно (не)зависимой системы векторов. Подпространство линейного пространства. Линейная оболочка системы векторов, её характеризация.

Определение 2.21. Линейным пространством, или векторным пространством, над полем F называется абелева группа (V, +), на которой определено умножение на элементы поля $\cdot : F \times V \to V$, удовлетворяющее следующим условиям:

- $\forall \alpha, \beta \in F : \forall \overline{v} \in V : (\alpha + \beta)\overline{v} = \alpha \overline{v} + \beta \overline{v}$
- $\quad \triangleright \ \forall \alpha \in F : \forall \overline{u}, \overline{v} \in V : \alpha(\overline{u} + \overline{v}) = \alpha \overline{u} + \alpha \overline{v}$
- $\triangleright \ \forall \alpha, \beta \in F : \forall \overline{v} \in V : (\alpha\beta)\overline{v} = \alpha(\beta\overline{v})$
- $\, \triangleright \, \, \forall \overline{v} \in V : 1 \overline{v} = \overline{v}$

Элементы поля F называются ckannpamu, элементы группы $V-\epsilon knnpamu$.

Пример. Рассмотрим несколько примеров линейных пространств:

- $\triangleright V_1, V_2, V_3$ являются линейными пространствами над \mathbb{R}
- ho $F^n:=M_{n imes 1}(F)$ является линейным пространством над полем F
- $\triangleright M_{n \times k}(F)$ является линейным пространством над полем F
- $\triangleright F[x]$ множество многочленов от переменной x с коэффициентами из F является линейным пространством над полем F
- ightharpoonup Поле F является линейным пространством над своим подполем K

Напоминание. Система $(\overline{v_1}, \dots, \overline{v_n})$ векторов из V_n называется линейно независимой, если для любых $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ выполнено следующее условие:

$$\sum_{i=1}^{n} \alpha_i \overline{v_i} = \overline{0} \Leftrightarrow \alpha_1 = \dots = \alpha_n = 0$$

Система $(\overline{v_1}, \dots, \overline{v_n})$ векторов из V_n называется *линейно зависимой*, если существует ее нетривиальная линейная комбинация, равная $\overline{0}$.

Определение 2.22. Подпространством линейного пространства V над полем F называется такое его непустое подмножество $U \subset V$, что выполнены следующие условия:

- $\triangleright (U, +)$ подгруппа в (V, +)
- $\, \triangleright \, \, \forall \alpha \in F : \forall \overline{u} \in U : \alpha \overline{u} \in U$

Обозначение — $U \leqslant V$.

Определение 2.23. Пусть V — линейное пространство над $F, \overline{v_1}, \dots, \overline{v_k} \in V$. Линейной оболочкой векторов $\overline{v_1}, \dots, \overline{v_k}$ называется множество линейных комбинаций этих векторов:

$$\langle \overline{v_1}, \dots, \overline{v_k} \rangle := \left\{ \sum_{i=1}^k \alpha_i \overline{v_i} : \alpha_1, \dots, \alpha_k \in F \right\}$$

Замечание. Линейную оболочку можно определить и для бесконечного набора векторов. В этом случае следует брать всевозможные линейные комбинации конечного числа векторов из набора.

Утверждение 2.8. Пусть V — линейное пространство, $\overline{v_1}, \ldots, \overline{v_k} \in V$, $U := \langle \overline{v_1}, \ldots, \overline{v_k} \rangle$. Тогда $U \leqslant V$, u, более того, U является наименьшим по включению подпространством в V, содержащим все векторы $\overline{v_1}, \ldots, \overline{v_k}$.

- ightharpoonup Множество U замкнуто относительно сложения и взятия обратного элемента п осложению, поэтому (U,+) подгруппа в (V,+)
- $\triangleright U$ замкнуто относительно умножения на скаляр

Наконец, если
$$W \leqslant V$$
 и $\overline{v_1}, \dots, \overline{v_k} \in W$, то и $U = \langle \overline{v_1}, \dots, \overline{v_k} \rangle \subset W$.

2.5 Системы линейных уравнений. Элементарные преобразования строк и столбцов матрицы, элементарные матрицы, их свойства. Приведение матрицы к ступенчатому и упрощенному виду. Метод Гаусса решения систем линейных уравнений. Основная лемма о линейной зависимости. Фундаментальная система решений и общее решение однородной системы линейных уравнений. Общее решение неоднородной системы.

Определение 2.24. Пусть $A = (a_{ij}) \in M_{k \times n}(F)$, $b = (b_i) \in F^n$. Системой линейных уравнений Ax = b называется следующая система:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = b_k \end{cases}$$

Матрица A называется матрицей системы, матрица (A|b) — pacширенной матрицей системы.

Определение 2.25. Система линейных уравнений Ax = b называется:

- ightharpoonup Oнородной, если b=0
- ⊳ Совместной, если множество ее решений непусто

Определение 2.26. Элементарными преобразованиями строк матрицы $A \in M_{n \times k}(F)$ называются следующие операции:

- ightharpoonup Прибавление к i-й строке j-й строки, умноженной на скаляр $\alpha \in F, i, j \in \{1, \dots, n\}, i \neq j$
- \triangleright Умножение *i*-й строки на скаляр $\lambda \in F^*$, $i \in \{1, \ldots, n\}$
- ightharpoonup Перестановка i-й и j-й строк местами, $i,j\in\{1,\ldots,n\},\,i\neq j$

Определение 2.27. Элементарными матрицами порядка $n \in \mathbb{N}$ называются матрицы, умножение слева на которые приводит к осуществлению соответствующего элементарного преобразования строк над матрицей с n строками:

$$D_{ij}(\alpha) := E + \alpha E_{ij}, i, j \in \{1, \dots, n\}, i \neq j$$

$$ightharpoonup T_i(\lambda) := E + (\lambda - 1)E_{ii}, i \in \{1, ..., n\}$$

$$P_{ij} := E - (E_{ii} + E_{jj}) + (E_{ij} + E_{ji}), i, j \in \{1, \dots, n\}, i \neq j$$

Определение 2.28. Матрица $A \in M_{n \times k}(F)$ имеет *ступенчатый вид*, если номера главных элементов ее строк строго возрастают. При этом если в матрице есть нулевые строки, то они расположены внизу матрицы.

Теорема 2.5 (метод Гаусса). Любую матрицу $A \in M_{n \times k}(F)$ элементарными преобразованиями строк можно привести к ступенчатому виду.

Доказательство. Предъявим алгоритм приведения к ступенчатому виду:

- 1. Если A = 0, то она уже имеет ступенчатый вид, тогда завершим процедуру.
- 2. Пусть $j \in \{1, \dots, k\}$ наименьший номер ненулевого столбца. Переставим строки так, чтобы a_{1j} стал ненулевым.

- 3. Для всех $i \in \{2, ..., n\}$ к i-й строке прибавим первую, умноженную на $-a_{ij}(a_{1j})^{-1}$. Тогда все элементы $a_{2j}, ..., a_{nj}$ станут нулевыми.
- 4. Пусть матрица A была приведена к виду A'. Повторим шаги $(1), \ldots, (4)$ для подматрицы B, расположенной на пересечении строк с номерами $2, \ldots, n$ и столбцом с номерами $j+1, \ldots, k$. Дальнейшие преобразования не изменят элементов за пределами этой подматрицы.

Теорема 2.6 (основная лемма о линейной зависимости). Пусть V — линейное пространство над полем F, u $V = \langle \overline{v_1}, \ldots, \overline{v_k} \rangle$ для некоторых $\overline{v_1}, \ldots, \overline{v_k} \in V$. Тогда для любых векторов $\overline{u_1}, \ldots, \overline{u_n} \in V$, n > k, система $(\overline{u_1}, \ldots, \overline{u_n})$ линейно зависима.

Доказательство. Векторы $\overline{u_1}, \ldots, \overline{u_n}$ выражаются через $\overline{v_1}, \ldots, \overline{v_k}$, поскольку лежат в их линейной оболочке $\langle \overline{v_1}, \ldots, \overline{v_k} \rangle = V$. Следовательно, $(\overline{u_1}, \ldots, \overline{u_n}) = (\overline{v_1}, \ldots, \overline{v_k}) A$ для некоторой матрицы $A \in M_{k \times n}(F)$. Но n > k, поэтому существует такой ненулевой столбец $\gamma \in F^n$, что $A\gamma = 0$, тогда $(\overline{u_1}, \ldots, \overline{u_n})\gamma = (\overline{v_1}, \ldots, \overline{v_k}) A\gamma = \overline{0}$. Значит, система линейно зависима.

Определение 2.29. Матрица $A \in M_{n \times k}(F)$ имеет *упрощенный вид*, если она является ступенчатой, и всякий ее столбец, содержащий главный элемент, состоит из одной единицы, соответствующей главному элементу, и нулей.

Теорема 2.7. Любую матрицу $A \in M_{n \times k}(F)$ элементарными преобразованиями строк можно привести к упрощенному виду.

Доказательство. Сначала приведем матрицу A к ступенчатому виду, затем запустим следующий алгоритм:

- \triangleright Если A = 0, она уже имеет упрощенный вид.
- \triangleright Пусть $i \in \{1, ..., n\}$ наибольший номер ненулевой строки, a_{ik} главный элемент в ней. Умножим i-ю строку на $(a_{ik})^{-1}$, чтобы коэффициент a_{ik} стал равным 1.
- \triangleright Для всех $j \in \{1, \dots, i-1\}$ к j-й строке прибавим i-ю, умноженную на $-a_{jk}$. Тогда все элементы $a_{1k}, \dots, a_{(i-1)k}$ станут нулевыми.
- \triangleright Пусть матрица A была приведена к виду A'. Повторим шаги $(1), \ldots, (4)$ для подматрицы B, расположенной на пересечении строк $1, \ldots, i-1$ и столбцов $1, \ldots, k-1$. Дальнейшие преобразования не изменят элементов за пределами этой подматрицы.

Определение 2.30. Фундаментальной системой решений однородной системы Ax=0 называется базис пространства ее решений. Матрица, образованная столбцами фундаментальной системы решений, называется фундаментальной матрицей системы и обозначается через Φ .

Определение 2.31. Совокупность всех решений совместной системы называется *общим решением*.

Утверждение 2.9. Пусть Ax = b - coвместная система, $x_0 \in F^n - peшение$ системы, V - npocmpancmbo peшений однородной системы <math>Ax = 0. Тогда множество решений системы Ax = b имеет вид $x_0 + V = \{x_0 + v : v \in V\}$.

Доказательство. Пусть U — множество решений системы Ax = b.

- ightharpoonup Если $v\in V$, то $A(x_0+v)=Ax_0+Av=b$, откуда $x_0+v\in U$
- ightharpoonup Если $u\in U$, то $A(u-x_0)=0$, откуда $u-x_0\in V$

Таким образом, $U = x_0 + V$.

2.6 Базис и размерность линейного пространства, их свойства. Теорема об изоморфизме. Дополнение линейно независимой системы векторов до базиса. Координаты вектора в базисе, запись операций над векторами через координаты. Изменение координат вектора при изменении базиса. Матрица перехода. Мощность конечного векторного пространства и конечного поля.

Определение 2.32. *Базисом* в линейном пространстве V называется такая линейно независимая система $(\overline{v_1}, \dots, \overline{v_n})$ векторов из V, что $\langle \overline{v_1}, \dots, \overline{v_n} \rangle = V$.

Замечание. Пусть e — базис в линейном пространстве V над полем F. Аналогично случаю V_n , для любого вектора $\overline{v} \in V$ определяется его координатный столбец в базисе e: если $\overline{v} = e\alpha$ для некоторого $\alpha \in F^n$, то $\overline{v} \leftrightarrow_e \alpha$. Координатный столбец каждого вектора существует и единственен, а сопоставление координат линейно.

Определение 2.33. Пусть V — конечнопорожденное линейное пространство. Его размерностью называется количество векторов в любом его базисе. Обозначение — $\dim V$. Если линейное пространство имеет конечный базис, его размерность конечна и оно называется конечномерным, в противном случае его размерность бесконечна, и пространство называется бесконечномерным.

Утверждение 2.10. Пусть V — линейное пространство, $\dim V = n$. Тогда:

- 1. Если $V = \langle \overline{v_1}, \dots, \overline{v_n} \rangle$, то система $(\overline{v_1}, \dots, \overline{v_n})$ является базисом
- 2. Если система $(\overline{v_1}, \dots, \overline{v_n})$ линейно независима, то она является базисом

Доказательство.

- 1. Пусть $(\overline{v_1}, \dots, \overline{v_n})$ не является базисом. Тогда она линейно зависима, и без ограничения общности вектор $\overline{v_n}$ выражается через $(\overline{v_1}, \dots, \overline{v_{n-1}})$. Значит, $V = \langle \overline{v_1}, \dots, \overline{v_{n-1}} \rangle$, но тогда в V нет линейно независимых систем из n векторов противоречие с тем, что dim V = n.
- 2. Предположим $(\overline{v_1}, \ldots, \overline{v_n})$ не является базисом. Следовательно, она выражает не все векторы пространства V, то есть существует $\overline{v} \in V$ такой, что $\overline{v} \notin \langle \overline{v_1}, \ldots, \overline{v_n} \rangle$. Но тогда система $(\overline{v_1}, \ldots, \overline{v_n}, \overline{v})$ тоже линейно независима противоречие с тем, что $\dim V = n$.

Утверждение 2.11. Пусть V — конечнопорожденное линейное пространство, $U \leqslant V$. Тогда пространство U — тоже конечнопорожденное, причем $\dim U \leqslant \dim V$.

Доказательство. Будем выбирать из U векторы $\overline{u_1}, \overline{u_2}, \ldots$ так, чтобы система $(\overline{u_1}, \overline{u_2}, \ldots)$ оставалась линейно независимой. Процесс закончится не позднее, чем за $n := \dim V$ шагов, поскольку в V нет линейно независимой системы из n+1 вектора. Пусть полученная система $-(\overline{u_1}, \ldots, \overline{u_k}),$ $k \le n$. Она линейно независима по построению, и для любого $\overline{u} \in U$ система $(\overline{u_1}, \ldots, \overline{u_k}, \overline{u})$ уже линейно зависима, откуда $U = \langle \overline{u_1}, \ldots, \overline{u_k} \rangle$. Значит, полученная система образует базис в U. \square

Теорема 2.8. Пусть U и V — конечнопорожденные линейные пространства над полем F. Тогда $U\cong V\Leftrightarrow \dim U=\dim V$.

Доказательство.

 \Rightarrow Пусть $(\overline{e_1}, \dots, \overline{e_n})$ — базис в U. Рассмотрим изоморфизм $\varphi: U \to V$ и покажем, что система $(\varphi(\overline{e_1}), \dots, \varphi(\overline{e_n}))$ образует базис в V. Проверим, что она линейно независима. Действительно, для любого $\gamma \in F^n$, $\gamma \neq \overline{0}$, выполнено следующее:

$$(\varphi(\overline{e_1}), \dots, \varphi(\overline{e_n}))\gamma = \varphi((\overline{e_1}, \dots, \overline{e_n})\gamma) \neq \varphi(\overline{0}) = \overline{0}$$

Кроме того, для любого вектора $\overline{v} \in V$ существует $\overline{u} \in U$ такой, что $\varphi(\overline{u}) = \overline{v}$, и существуют $\alpha_1, \ldots, \alpha_n \in F$ такие, что $\overline{u} = \sum_{i=1}^n \alpha_i \overline{e_i}$, тогда:

$$\overline{v} = \varphi(\overline{u}) = \varphi\left(\sum_{i=1}^{n} \alpha_i \overline{e_i}\right) = \sum_{i=1}^{n} \alpha_i \varphi(\overline{e_i})$$

Таким образом, $(\varphi(\overline{e_1}), \dots, \varphi(\overline{e_n}))$ — базис в V, поэтому $\dim U = \dim V = n$.

 \Leftarrow Пусть $n:=\dim U=\dim V$, тогда $U\cong F^n$ и $V\cong F^n$, откуда $U\cong V$.

Утверждение 2.12. Пусть V — конечнопорожденное линейное пространство размерности n, векторы $\overline{v_1}, \ldots, \overline{v_k} \in V$, k < n, образуют линейно независимую систему. Тогда систему $(\overline{v_1}, \ldots, \overline{v_k})$ можно дополнить до базиса в V.

Доказательство. Выберем вектор $\overline{v_{k+1}} \in V$ такой, что $\overline{v_{k+1}} \notin \langle \overline{v_1}, \dots, \overline{v_k} \rangle$, тогда система $(\overline{v_1}, \dots, \overline{v_{k+1}})$ остается линейно независимой. Затем аналогично выберем вектор $\overline{v_{k+2}} \in V$ такой, что $\overline{v_{k+2}} \notin \langle \overline{v_1}, \dots, \overline{v_{k+1}} \rangle$, и так далее. Процесс будет продолжаться, пока не будет получена система $(\overline{v_1}, \dots, \overline{v_n})$, которая и является базисом. Он не может остановиться раньше, потому что пока в системе менее n векторов, она не выражает все пространство V, и не может продолжиться дольше, потому что в V нет линейно независимой системы из n+1 вектора.

Напоминание. Пусть e — базис в V_n , $\overline{v}=\alpha e\in V_n$. Столбец коэффициентов α называется κo -opduнamным $cmon\delta uom$ вектора \overline{v} в базисе e. Обозначение — $\overline{v}\leftrightarrow_e \alpha$. Пусть $\overline{u},\overline{v}\in V_n$ такие, что $\overline{u}\leftrightarrow_e \alpha, \overline{v}\leftrightarrow_e \beta$. Тогда

- 1. $\overline{u} + \overline{v} \leftrightarrow_e \alpha + \beta$
- 2. $\forall \lambda \in \mathbb{R} : \lambda \overline{u} \leftrightarrow_e \lambda \alpha$

Замечание. Аналогично случаю V_n , для базисов e и e' векторного пространства V над полем F определяется матрица перехода от e к e', то есть такая матрица $S \in M_n(F)$, что e' = eS. Если для некоторого вектора $\overline{v} \in V$ выполнено $\overline{v} \leftrightarrow_{e} \alpha$ и $\overline{v'} \leftrightarrow_{e'} \alpha'$, то $\alpha = S\alpha'$.

Утверждение 2.13. Пусть V — линейное пространство над полем F, e,e' — базисы в V. Тогда матрица перехода $S \in M_n(F)$ от $e \kappa e'$ обратима.

Доказательство. Поскольку возможен также обратный переход от e' к e, то существует матрица $T \in M_n(F)$ такая, что e = e'T = e(ST), откуда ST = E в силу единственности координатных столбцов векторов из в базисе e. Аналогично, e' = eS = e'(TS), откуда ST = TS = E.

Теорема 2.9. Пусть F – конечное поле, char F = p, r de p – простое число. Тогда существует $n \in \mathbb{N}$ такое, что $|F| = p^n$.

Доказательство. У поля F есть простое подполе $D \cong \mathbb{Z}_p$. Всякое поле F является линейным пространством над любым своим подполем $\Rightarrow \exists \ e = (e_1, ..., e_n)$ – базис в $F \Rightarrow F \cong D^n \Rightarrow |F| = p^n$.

Следствие. Пусть V – линейное пространство над F, $|F| = p^n$. Тогда $|V| = p^{nm}$, где $m = \dim V$.

Доказательство. $a \in V, a \leftrightarrow \alpha$. Тогда $|V| = |\alpha| = p^{nm}$.

2.7 Ранг системы векторов, его связь с размерностью линейной оболочки. Ранг матрицы. Теорема о ранге матрицы. Ранг произведения матриц. Теорема о базисном миноре. Нахождение ранга с помощью элементарных преобразований. Теорема Кронекера-Капелли. Невырожденные и обратимые матрицы. Нахождение обратной матрицы при помощи элементарных преобразований.

Определение 2.34. Пусть V- конечнопорожденное линейное пространство, $X\subset V.$ Рангом системы X называется наибольший размер линейно независимой подсистемы в X. Обозначение — $\operatorname{rk} X.$

Утверждение 2.14. Пусть V- конечнопорожденное линейное пространство, $X\subset V.$ Тогда $\operatorname{rk} X=\dim \langle X\rangle.$

Доказательство. Пусть $k:=\operatorname{rk} X$ и $(\overline{v_1},\ldots,\overline{v_k})$ — линейно независимая система в X. Тогда для любого $\overline{v}\in X$ система $(\overline{v_1},\ldots,\overline{v_k},\overline{v})$ линейно зависима, откуда $X\subset \langle \overline{v_1},\ldots,\overline{v_k}\rangle$. Но тогда $\langle X\rangle\subset \langle \overline{v_1},\ldots,\overline{v_k}\rangle\subset \langle X\rangle$, откуда $\langle X\rangle=\langle \overline{v_1},\ldots,\overline{v_k}\rangle$. Значит, $(\overline{v_1},\ldots,\overline{v_k})$ — базис в $\langle X\rangle$, поэтому $\dim\langle X\rangle=k=\operatorname{rk} X$.

Определение 2.35. Пусть $A \in M_{n \times k}(F)$.

- ightharpoonup Строчным рангом матрицы A называется ранг $\operatorname{rk}_r A$ системы ее строк
- ightharpoonup Столбиовым рангом матрицы A называется ранг $\operatorname{rk}_c A$ системы ее столбиов

Утверждение 2.15. Для любых матриц $A \in M_{n \times k}(F)$ и $B \in M_{k \times m}(F)$ выполнены неравенства $\operatorname{rk}_c AB \leqslant \operatorname{rk}_c A$ и $\operatorname{rk}_r AB \leqslant \operatorname{rk}_r B$.

Доказательство. Докажем первое неравенство, поскольку второе неравенство доказывается аналогично. Пусть U — линейная оболочка столбцов матрицы A, V — линейная оболочка столбцов матрицы AB. Уже было доказано, что столбцы матрицы AB являются линейными комбинациями столбцов матрицы A, поэтому $V \leq U$. Следовательно, $\operatorname{rk}_r(AB) = \dim V \leq \dim U = \operatorname{rk}_r A$.

Теорема 2.10 (о ранге матрицы). Для любой матрицы $A \in M_{n \times k}(F)$ выполнено следующее равенство:

$$\operatorname{rk}_r A = \operatorname{rk}_c A$$

Доказательство. Пусть $r := rk_c A$, тогда столбцы матрицы A выражаются через некоторые r столбцов. Составим из этих r столбцов матрицу B, тогда каждый столбец матрицы A имеет вид $B\gamma$ для некоторого $\gamma \in F^r$. Следовательно, A можно представить в виде $B(\gamma_1|\dots|\gamma_k)$. По уже доказанному, $\mathrm{rk}_r A \leqslant \mathrm{rk}_r(\gamma_1|\dots|\gamma_k) \leqslant r$, поскольку в матрице $(\gamma_1|\dots|\gamma_k)$ ровно r строк. Аналогично показывается, что $\mathrm{rk}_c A \leqslant \mathrm{rk}_r A$. Таким образом, $\mathrm{rk}_r A = \mathrm{rk}_c A$.

Определение 2.36. Рангом матрицы $A \in M_{n \times k}(F)$ называется ее строчный или столбцовый ранг. Обозначение — $\operatorname{rk} A$.

Теорема 2.11 (о ранге произведения матриц).

$$\begin{cases} \operatorname{rk}(AB) \leqslant \operatorname{rk}(A) \\ \operatorname{rk}(AB) \leqslant \operatorname{rk}(B) \end{cases}$$

Доказательство. Пусть C=AB. i-ый столбец матрицы C является линейной комбинацией столбцов матрицы A с коэффициентами из i-ого столбца матрицы B, а j-ая строка матрицы C является линейной комбинацией строк матрицы B с коэффициентами из j-ой строки матрицы A. Таким образом, система столбцов матрицы C линейно выражается через систему столбцов

матрицы A, и ранг системы столбцов C не превышает ранга системы столбцов A и $\mathrm{rk}(C) \leqslant \mathrm{rk}(A)$. Аналогично, система строк матрицы C линейно выражается через систему строк матрицы B, и ранг системы строк C не превышает ранга системы строк B и $\mathrm{rk}(C) \leqslant \mathrm{rk}(B)$.

Теорема 2.12 (о базисном миноре). Пусть $A \in M_{n \times k}(F)$, $\operatorname{rk} A = r$. Тогда в A найдется подматрица размера $r \times r$ ранга r. Более того, если выбрать линейно независимую систему из r строк матрицы A и линейно независимую систему из r столбцов матрицы A, то искомая матрица будет расположена на их пересечении.

Доказательство. Докажем сразу вторую часть утверждения. Без ограничения общности можно считать, что подматрица M на пересечении r линейно независимых строк и столбцов расположена в левом верхнем углу матрицы A. Пусть $R \in M_{r \times k}$ — подматрица из первых r строк $A, C \in M_{n \times r}$ — подматрица из первых r столбцов A.

Столбцы матрицы A выражаются через столбцы матрицы C, поэтому A=CB для некоторой $B\in M_{r\times n}(F)$. Но тогда столбцы матрицы R выражаются через столбцы матрицы M с теми же коэффициентами, то есть R=MB. Кроме того, строки матрицы A выражаются через строки матрицы R, то есть A=SR для некоторой $S\in M_{n\times r}(F)$. Таким образом, A=SMB, тогда $r=\operatorname{rk} A\leqslant \operatorname{rk} M\leqslant r$, откуда $\operatorname{rk} M=r$.

Утверждение 2.16. Пусть $A \in M_{n \times k}(F)$, и $D \in M_n(F)$ — обратимая матрица. Тогда столбцы матрицы A с некоторыми номерами линейно зависимы \Leftrightarrow столбцы матрицы DA с теми жее номерами линейно зависимы.

Доказательство. Пусть $\gamma \in F^k$, тогда:

$$A\gamma = 0 \Rightarrow DA\gamma = 0$$

$$DA\gamma = 0 \Rightarrow D^{-1}DA\gamma = 0 \Rightarrow A\gamma = 0$$

Значит, столбцы с одинаковыми номерами в A и DA образуют или не образуют линейно зависимую систему одновременно. \square

Следствие. При элементарных преобразованиях строк матрицы $A \in M_{n \times k}(F)$ не меняется ее ранг и линейная зависимость столбцов.

Теорема 2.13 (Кронекера-Капелли). Система Ax = b совместна \Leftrightarrow rk $A = \operatorname{rk}(A|b)$.

Доказательство. Приведем расширенную матрицу системы (A|b) к упрощенному виду (A'|b'). Поскольку перестановки столбцов не происходит, то матрица A' — это упрощенный вид матрицы A. Тогда система совместна \Leftrightarrow в (A'|b') нет ступеньки, начинающейся в столбце b', \Leftrightarrow у A' и (A'|b') одно и то же число ступенек \Leftrightarrow rk A = rk (A|b).

Определение 2.37. Матрица $A \in M_n(F)$ называется *обратимой*, если существует матрица $A^{-1} \in M_n(F)$ такая, что $AA^{-1} = A^{-1}A = E$.

Определение 2.38. Матрица $A \in M_n(F)$ называется *невырожденной*, если $\operatorname{rk} A = n$.

Теорема 2.14. Пусть $A \in M_n(F)$. Тогда следующие условия эквивалентны:

- 1. Матрица А невырожденна
- $2. \ \ Mampuua \ A$ элементарными преобразованиями строк приводится к E
- 3. Матрица А является произведением элементарных матриц
- 4. Матрица А обратима

5. Матрица A обратима слева, то есть существует матрица $B \in M_n(F)$ такая, что BA = E, или справа

Доказательство.

- \triangleright (1 \Rightarrow 2) Приведем A к упрощенному виду A'. Так как $\mathrm{rk}\,A' = \mathrm{rk}\,A = n$, то A' = E.
- $\triangleright (2 \Rightarrow 3)$ Пусть последовательности преобразований, приводящих A к E, соответствует последовательность элементарных матриц $M_1, \ldots, M_k \in M_n(F)$, тогда:

$$M_k \dots M_1 A = E \Rightarrow A = M_1^{-1} \dots M_k^{-1}$$

- $ightarrow (3\Rightarrow 4)\;\;$ Если $A=M_1^{-1}\dots M_k^{-1},$ то A обратима, причем $A^{-1}=M_k\dots M_1.$
- $\triangleright (4 \Rightarrow 5)$ Если A обратима, то, в частности, A обратима слева или справа.
- \triangleright $(5 \Rightarrow 1)$ Пусть без ограничения общности A обратима слева, тогда существует матрица $B \in M_n(F)$ такая, что BA = E. Тогда $n = \operatorname{rk} E = \operatorname{rk} BA \leqslant \operatorname{rk} A$, откуда $\operatorname{rk} A = n$.

Следствие. Пусть A — невырожденная матрица, и матрица (A|E) приводится к упрощенному виду (E|C). Тогда матрица C является обратной к A.

Доказательство. Пусть последовательности преобразований, приводящих (A|E) к (E|C), соответствует последовательность элементарных матриц $M_1, \ldots, M_k \in M_n(F)$, то есть $M_k \ldots M_1(A|E) = (E|C)$. Тогда:

$$M_k \dots M_1(A|E) = (M_k \dots M_1 A | M_k \dots M_1 E) = (M_k \dots M_1 A | M_k \dots M_1)$$

Следовательно, $M_k \dots M_1 = C$ и CA = E.

2.8 Подпространства в линейном пространстве. Сумма и пересечение подпространств. Прямая сумма подпространств, её характеризации. Прямое дополнение подпространства. Связь размерностей суммы и пересечения подпространств.

Утверждение 2.17. Пусть V — линейное пространство, $U_1, U_2 \leqslant V$. Тогда $U_1 \cap U_2 \leqslant V$.

Доказательство.

- $\triangleright U_1 \cap U_2 \neq \emptyset$, поскольку $\overline{0} \in U_1 \cap U_2$
- ightharpoonup Если $\overline{u},\overline{v}\in U_1\cap U_2$, то $\overline{u}\in U_1,U_2$ и $\overline{v}\in U_1,U_2$, откуда $\overline{u}+\overline{v}\in U_1,U_2$
- ightharpoonup Если $\overline{u} \in U_1 \cap U_2$, то $\overline{u} \in U_1, U_2$, откуда $\forall \alpha \in F : \alpha \overline{u} \in U_1, U_2$

Определение 2.39. Пусть V — линейное пространство, $U_1, U_2 \leqslant V$. Суммой подпространств U_1, U_2 называется следующее множество:

$$U_1 + U_2 := \{ \overline{u_1} + \overline{u_2} : \overline{u_1} \in U_1, \overline{u_2} \in U_2 \}$$

Аналогично определяется сумма k подпространств $U_1, \ldots, U_k \leqslant V$.

Утверждение 2.18. Пусть V — линейное пространство над полем F, $U_1, \ldots, U_k \leqslant V$. Тогда $U_1 + \cdots + U_k \leqslant V$.

Доказательство. Сначала докажем справедливость утверждения для $U_1 + U_2$:

- $\triangleright U_1 + U_2 \neq \emptyset$, поскольку $\overline{0} \in U_1 + U_2$
- ightharpoonup Если $\overline{u_1} + \overline{u_2}, \overline{v_1} + \overline{v_2} \in U_1 + U_2$, то $\overline{u_1} + \overline{u_2} + \overline{v_1} + \overline{v_2} = (\overline{u_1} + \overline{v_1}) + (\overline{u_2} + \overline{v_2}) \in U_1 + U_2$
- ightharpoonup Если $\overline{u_1} + \overline{u_2} \in U_1 + U_2$, то $\forall \alpha \in F : \alpha(\overline{u_1} + \overline{u_2}) = \alpha \overline{u_1} + \alpha \overline{u_2} \in U_1 + U_2$

Чтобы обобщить утверждение на $U_1, \ldots, U_k \leqslant V$, заметим, что сложение подпространств ассоциативно в силу ассоциативности сложения в V. Тогда, по индукции, сумма любого числа подпространств образует подпространство в V.

Замечание. Определить сумму $U_1 + \cdots + U_k$ можно и другим эквивалентным способом:

$$U_1 + \cdots + U_k = \langle U_1 \cup \cdots \cup U_k \rangle$$

Определение 2.40. Пусть V — линейное пространство, $U_1, \ldots, U_k \leqslant V$. Сумма подпространств $U := U_1 + \cdots + U_k$ называется *прямой*, если для любого вектора $\overline{u} \in U$ существует единственный набор векторов $\overline{u_1} \in U_1, \ldots, \overline{u_k} \in U_k$ такой, что $\overline{u} = \overline{u_1} + \cdots + \overline{u_k}$. Обозначение — $U = U_1 \oplus \cdots \oplus U_k$.

Утверждение 2.19. Пусть V — линейное пространство, $U_1, \ldots, U_k \leqslant V$. Тогда сумма $U_1 + \cdots + U_k$ — прямая \Leftrightarrow существует единственный набор векторов $\overline{u_1} \in U_1, \ldots, \overline{u_k} \in U_k$ такой, что $\overline{u_1} + \cdots + \overline{u_k} = \overline{0}$.

Доказательство.

- \Rightarrow По определению прямой суммы, вектор $\overline{0}$ имеет единственное представление в виде суммы векторов из U_1, \ldots, U_k , и оно имеет вид $\overline{0} = \overline{0} + \cdots + \overline{0}$.
- \Leftarrow Пусть для вектора $\overline{u} \in U$ и наборов $\overline{u_1} \in U_1, \dots, \overline{u_k} \in U_k$ и $\overline{w_1} \in U_1, \dots, \overline{w_k} \in U_k$ выполнены следующие равенства:

$$\overline{u} = \overline{u_1} + \dots + \overline{u_k} = \overline{w_1} + \dots + \overline{w_k}$$

Вычитая третью часть равенства из выше из второй, получим:

$$\overline{0} = (\overline{u_1} - \overline{w_1}) + \cdots + (\overline{u_k} - \overline{w_k})$$

Ho вектор $\overline{0}$ имеет единственное представление в виде суммы векторов из U_1, \ldots, U_k , поэтому $\overline{u_1} = \overline{w_1}, \ldots, \overline{u_k} = \overline{w_k}$.

Определение 2.41. Пусть V — линейное пространство над полем $F,\ U\leqslant V$. Подпространство $W\leqslant V$ называется *прямым дополнением* подпространства U в пространстве V, если сумма U+W — прямая и $U\oplus W=V.$

Утверждение 2.20. Пусть V — линейное пространство, $U \leqslant V$. Тогда существует прямое дополнение подпространства U в пространстве V.

Доказательство. Выберем базис $(\overline{e_1}, \dots, \overline{e_k})$ — базис в U. Линейно независимую систему e можно дополнить до базиса в V. Обозначим через $\overline{e_{k+1}}, \dots, \overline{e_n} \in V$ векторы, дополняющие e до базиса, и рассмотрим $W := \langle \overline{e_{k+1}}, \dots, \overline{e_n} \rangle$. Тогда U + W = V, и объединение базисов U и W является базисом в V, поэтому сумма $U \oplus W$ — прямая.

Теорема 2.15. Пусть $U_1, U_2 \leqslant V$. Тогда выполнено следующее равенство:

$$\dim (U_1 + U_2) = \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2)$$

Доказательство. Пусть $U:=U_1\cap U_2\leqslant U_1, U_2$. Выберем W_1,W_2 —прямые дополнения подпространства U в U_1,U_2 соответственно, тогда выполнены следующие равенства:

$$\dim U + \dim W_1 = \dim U_1$$
$$\dim U + \dim W_2 = \dim U_2$$

Докажем, что $U_1+U_2=U\oplus W_1\oplus W_2$. Равенство $U_1+U_2=U+W_1+W_2$ очевидно, поэтому достаточно проверить, что эта сумма—прямая. Пусть $\overline{0}=\overline{u}+\overline{w_1}+\overline{w_2}$ для некоторых $\overline{w_1}\in W_1,\overline{w_2}\in W_2,\overline{u}\in U$, тогда:

$$-\overline{w_1} = \overline{u} + \overline{w_2} \Rightarrow \overline{w_1} \in W_1 \cap U_2 = W_1 \cap U \Rightarrow \overline{w_1} = \overline{0}$$
$$-\overline{w_2} = \overline{u} + \overline{w_1} \Rightarrow \overline{w_2} \in W_2 \cap U_1 = W_2 \cap U \Rightarrow \overline{w_2} = \overline{0}$$

Значит, и $\overline{u} = \overline{0}$, поэтому сумма $U + W_1 + W_2$ — прямая. Тогда:

$$\dim (U_1 + U_2) = \dim U + \dim W_1 + \dim W_2 = \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2)$$

2.9 Линейные функции (функционалы). Сопряжённое (двойственное) пространство, его размерность. Взаимный (биортогональный) базис, координаты в нём, замена координат при замене базиса. Канонический изоморфизм пространства и дважды сопряжённого к нему. Аннуляторные подпространства, их свойства.

Определение 2.42. Пусть V — линейное пространство над полем F. Линейной функцией на V, или линейным функционалом на V, называется отображение $f:V\to F$, обладающее свойством линейности:

$$\triangleright \ \forall \overline{v_1}, \overline{v_2} \in V : f(\overline{v_1} + \overline{v_2}) = f(\overline{v_1}) + f(\overline{v_2})$$

$$\forall \alpha \in F : \forall \overline{v} \in V : f(\alpha \overline{v}) = \alpha f(\overline{v})$$

Определение 2.43. Пусть V — линейное пространство над полем F. Множество линейных функционалов на V называется *пространством*, *сопряженным* κ V. Обозначение — V^* . На определены операции сложения и умножения на скаляр:

$$\triangleright \forall \overline{f_1}, \overline{f_2} \in V^* : \forall \overline{v} \in V : (f_1 + f_2)(\overline{v}) := f_1(\overline{v}) + f_2(\overline{v})$$

$$\forall \alpha \in F : \forall \overline{f} \in V^* : \forall \overline{v} \in V : (\alpha f)(\overline{v}) = \alpha f(\overline{v})$$

Утверждение 2.21. Пусть V — линейное пространство над полем F. Тогда сопряженное пространство V^* тоже является линейным пространством над F.

Доказательство. Покажем сначала, что $(V^*,+)$ — абелева группа:

- \triangleright Ассоциативность и коммутативность следуют из соответствующих свойств в (F, +)
- ightharpoonup Нейтральный элемент нулевой функционал 0 такой, что $\forall \overline{v} \in V: 0(\overline{v}) = \overline{0}.$
- \triangleright Обратный к $f \in V^*$ элемент это (-1)f.

Свойства линейного пространства проверяются непосредственно.

Определение 2.44. Пусть V — линейное пространство, $e = (e_1, \ldots, e_n)$ — базис в V. Тогда для каждого $i \in \{1, \ldots, n\}$ определим $f_i \in V^*$ следующим образом: для любого $\overline{v} \in V$, $\overline{v} \leftrightarrow_e \alpha$, положим $f_i(\overline{v}) := \alpha_i$.

Утверждение 2.22. Пусть V — линейное пространство, $e = (e_1, \ldots, e_n)$ — базис в V. Тогда (f_1, \ldots, f_n) — базис в V^* .

Доказательство. Сначала докажем, что система (f_1, \ldots, f_n) линейно независима. Действительно, если существует нетривиальная линейная комбинация $\lambda_1 f_1 + \cdots + \lambda_n f_n$, равная нулю, то, в частности, она принимает нулевое значение на базисных векторах e. Но для любых $i, j \in \{1, \ldots, n\}$ выполнено следующее:

$$f_i(\overline{e_j}) = \delta_{ij} = egin{cases} 1, & ext{если } i = j \ 0, & ext{если } i
eq j \end{cases}$$

Значит, $\lambda_1 = \cdots = \lambda_n = 0$, поэтому система линейно независима. Теперь покажем, что $\langle f_1, \ldots, f_n \rangle = V^*$. Выберем произвольный функционал $f \in V^*$ и вектор $\overline{v} \in V$, $\overline{v} \leftrightarrow_e \alpha$, тогда выполнены следующие равенства:

$$f(\overline{v}) = f\left(\sum_{i=1}^{n} \alpha_i \overline{e_i}\right) = \sum_{i=1}^{n} \alpha_i f(\overline{e_i}) = \sum_{i=1}^{n} f(\overline{e_i}) f_i(\overline{v}) = \left(\sum_{i=1}^{n} f(\overline{e_i}) f_i\right) (\overline{v})$$

Для каждого функционала f значения $f(\overline{e_i})$ фиксированы, поэтому каждый функционал f представим в виде линейной комбинации функционалов f_1, \ldots, f_n . Таким образом, (f_1, \ldots, f_n) — базис в V^* .

Следствие. Если V — линейное пространство, то $\dim V^* = \dim V$.

Определение 2.45. Пусть V — линейное пространство, $e = (\overline{e_1}, \dots, \overline{e_n})$ — базис в V. Базис $\mathcal{F} = (f_1, \dots, f_n)^T$ в V^* называется взаимным, или (биортогональным), к базису e в V.

Замечание. Если в пространстве V базисные векторы записываются в строку, а координаты — в столбец, то в пространстве V^* удобнее делать это наоборот.

Утверждение 2.23. Пусть V — линейное пространство над полем F, e, e' — базисы в V, \mathcal{F} , \mathcal{F}' — взаимные κ ним базисы в V^* , u e' = eS, $S \in M_n(F)$. Тогда $\mathcal{F} = S\mathcal{F}'$.

Доказательство. Рассмотрим произвольный вектор $\overline{v} \in V$ с координатными столбцами α, α' в базисах e, e' соответственно, тогда $\overline{v} = e\alpha = e'\alpha', \ \alpha = S\alpha'$. Тогда:

$$\mathcal{F}(\overline{v}) = (f_1(\overline{v}), \dots, f_n(\overline{v}))^T = (\alpha_1, \dots, \alpha_n)^T = \alpha$$
$$(S\mathcal{F}')(\overline{v}) = S(f_1'(\overline{v}), \dots, f_n'(\overline{v}))^T = S(\alpha_1', \dots, \alpha_n')^T = S\alpha' = \alpha$$

Значения функционалов из \mathcal{F} и $S\mathcal{F}'$ на любом векторе совпадают, поэтому выполнено равенство $\mathcal{F} = S\mathcal{F}'$.

Определение 2.46. Пусть V — линейное пространство над полем F. Пространством, $\partial \epsilon a \varkappa c \partial u$ $conps \varkappa cenhum$ к V, называется пространство $V^{**} := (V^*)^*$.

Определение 2.47. Пусть V — линейное пространство над полем $F, \overline{v} \in V$. Определим $v^{**} \in V^{**}$ следующим образом: для любого $f \in V^*$ положим $v^{**}(f) := f(\overline{v})$.

Замечание. Определение выше корректно, поскольку v^{**} действительно является линейным функционалом:

$$\forall f_1, f_2 \in V^* : v^{**}(f_1 + f_2) = (f_1 + f_2)(\overline{v}) = f_1(\overline{v}) + f_2(\overline{v}) = v^{**}(f_1) + v^{**}(f_2)$$

$$\forall \alpha \in F : \forall f \in V^* : v^{**}(\alpha f) = (\alpha f)(\overline{v}) = \alpha f(\overline{v}) = \alpha v^{**}(f)$$

Теорема 2.16. Пусть V — линейное пространство над полем F. Тогда отображение $\varphi:V\to V^{**}$ такое, что $\varphi(\overline{v}):=v^{**}$ для любого $\overline{v}\in V$, является изоморфизмом линейных пространств V и V^{**} .

Доказательство. Линейность отображения проверяется непосредственно. Докажем, что φ — биекция. Зафиксируем базис $e=(\overline{e_1},\ldots,\overline{e_n})$ в V и проверим, что система $(e_1^{**},\ldots,e_n^{**})$ линейно независима. Если ее линейная комбинация с коэффициентами $\alpha_1,\ldots,\alpha_n\in F$ равна нулю, то для любого $f\in V^*$ выполнены равенства:

$$0 = \left(\sum_{i=1}^{n} \alpha_i e_i^{**}\right)(f) = f\left(\sum_{i=1}^{n} \alpha_i \overline{e_i}\right) = \sum_{i=1}^{n} \alpha_i f(\overline{e_i})$$

Равенство должно выполняться, в частности, для функционалов из базиса \mathcal{F} , взаимного к e, поэтому $\alpha_1 = \cdots = \alpha_n = 0$, и система линейно независима. Но $\dim V = \dim V^* = \dim (V^*)^* = n$, поэтому $(e_1^{**}, \ldots, e_n^{**})$ —базис в V^{**} . Наконец, φ отображает вектор $\overline{v} \in V$, $\overline{v} \leftrightarrow_e \alpha$ в вектор $v^{**} \in V^{**}$, $v^{**} \leftrightarrow_{e^{**}} \alpha$, поэтому φ —биекция.

Определение 2.48. Пусть V — линейное пространство. Изоморфизм V и V^{**} такой, что $\overline{v} \mapsto v^{**}$, называется *каноническим изоморфизмом* пространств V и V^{**} .

Замечание. Изоморфизм φ называется каноническим потому, что он построен инвариантно, то есть не опирается на выбор базиса. Благодаря каноническому изоморфизму, можно отождествить вектор $\overline{v} \in V$ с вектором $v^{**} \in V^{**}$, тогда для любого $f \in V^{*}$ выполнены следующие равенства:

$$f(\overline{v}) = v^{**}(f) = \overline{v}(f)$$

Определение 2.49. Пусть V — линейное пространство над полем F.

 \triangleright Аннулятором подпространства $W \leqslant V$ называется следующее множество:

$$W^0 := \{ f \in V^* : f(W) = \{0\} \}$$

 \triangleright Аннулятором подпространства $U \leqslant V^*$ называется следующее множество:

$$U^0 := \{ v^{**} \in V^{**} : v^{**}(U) = \{0\} \} = \{ \overline{v} \in V : \forall f \in V^* : f(\overline{v}) = 0 \}$$

Замечание. Аннуляторы $W^0 \leqslant V^*$ и $U^0 \leqslant V$ являются подпространствами в соответствующих пространствах как пространства решений однородных систем линейных уравнений. Однако их замкнутость относительно сложения и умножения на скаляры можно проверить и непосредственно.

Теорема 2.17. Пусть V — линейное пространство, $\dim V = n$, $W \leq V$. Тогда выполнено следующее равенство:

$$\dim W + \dim W^0 = n$$

 \mathcal{A} оказательство. Пусть $\dim W = k$, и $(\overline{e_1}, \dots, \overline{e_k})$ — базис в W. Дополним его до базиса $e = (\overline{e_1}, \dots, \overline{e_n})$ в V и выберем взаимный к нему базис $\mathcal{F} = (f_1, \dots, f_n)$ в V^* . Пусть $f \in V^*$, $f \leftrightarrow_{\mathcal{F}} \alpha$. Тогда:

$$f \in W^0 \Leftrightarrow f(\overline{e_1}) = \dots = f(\overline{e_k}) = 0 \Leftrightarrow \alpha_1 = \dots = \alpha_k = 0 \Leftrightarrow f \in \langle f_{k+1}, \dots, f_n \rangle$$

Таким образом, $W^0 = \langle f_{k+1}, \dots, f_n \rangle$, причем система (f_{k+1}, \dots, f_n) образует базис в W^0 , тогда $\dim W^0 = n - k$.

Теорема 2.18. Пусть V — линейное пространство, $W, W_1, W_2 \leqslant V$. Тогда выполнены следующие свойства:

- 1. $(W^0)^0 = W$
- 2. $W_1 \leqslant W_2 \Leftrightarrow W_2^0 \leqslant W_1^0$
- 3. $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$
- 4. $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$

Доказательство.

1. С одной стороны, если $\overline{v} \in W$, то для любого $f \in W^0$ выполнено $f(\overline{v}) = 0 \Leftrightarrow \overline{v}(f) = 0$, поэтому $\overline{v} \in (W^0)^0$. Значит, $W \subset (W^0)^0$. С другой стороны, выполнено следующее:

$$\dim W + \dim W^{0} = \dim V = \dim V^{*} = \dim W^{0} + \dim (W^{0})^{0} \Rightarrow \dim W = \dim (W^{0})^{0}$$

Значит, имеет место равенство $W = (W^0)^0$.

- 2. \Rightarrow Пусть $W_1\leqslant W_2$, тогда для любого $f\in W_2^0$ выполнено $f(W_1)\subset f(W_2)=\{0\}$, откуда $f\in W_1^0$, то есть $W_2^0\leqslant W_1^0$
 - \Leftarrow Пусть $W_2^0 \leqslant W_1^0$, тогда $W_1 = (W_1^0)^0 \leqslant (W_2^0)^0 = W_2$.
- 3. \leqslant Поскольку $W_1 \leqslant W_1 + W_2$, то, в силу пункта (2), выполнено $(W_1 + W_2)^0 \leqslant W_1^0$. Аналогично, $(W_1 + W_2)^0 \leqslant W_2^0$, поэтому $(W_1 + W_2)^0 \leqslant W_1^0 \cap W_2^0$
 - \geqslant Если $f \in W_1^0 \cap W_2^0$, то для любых $\overline{w_1} \in W_1$, $\overline{w_2} \in W_2$ выполнены равенства $f(\overline{w_1}) = f(\overline{w_2}) = \overline{0}$, откуда $f(\overline{w_1} + \overline{w_2}) = 0$, тогда $f \in (W_1 + W_2)^0$. Следовательно, $W_1^0 \cap W_2^0 \leqslant (W_1 + W_2)^0$.
- 4. Выполнены равенства $W_1^0 + W_2^0 = ((W_1^0 + W_2^0)^0)^0 = ((W_1^0)^0 \cap (W_2^0)^0)^0 = (W_1 \cap W_2)^0.$

2.10 Линейные отображения и линейные преобразования (операторы) линейного пространства. Их матрицы. Ядро и образ линейного отображения, их размерности. Критерий инъективности линейного отображения. Операции над линейными преобразованиями и их матрицами. Изменение матрицы линейного отображения и линейного преобразования при замене базисов.

Определение 2.50. Пусть U, V — линейные пространства над полем F. Линейным отображением, или линейным оператором, называется отображение $\varphi: U \to V$, обладающее свойством линейности:

- $\forall \overline{u_1}, \overline{u_2} \in U : \varphi(\overline{u_1} + \overline{u_2}) = \varphi(\overline{u_1}) + \varphi(\overline{u_2})$
- $\, \triangleright \, \, \forall \alpha \in F : \forall \overline{u} \in U : \varphi(\alpha \overline{u}) = \alpha \varphi(\overline{u})$

Линейное отображение $\varphi: V \to V$ называется линейным преобразованием.

Определение 2.51. Матрицу $A = (a_1, ..., a_n)$, составленную из координатных столбцов векторов $f(e_1), ..., f(e_n)$ в базисе $e = (e_1, ..., e_n)$, называют матрицей линейного оператора f в базисе e.

Замечание. Сопоставление линейным отображениям их матриц в фиксированной паре базисов взаимно однозначно: каждому отображению соответствует некоторая матрица, различным отображениям — различные матрицы, и, более того, каждой матрице соответствует некоторое отображение.

Определение 2.52. Пусть $\varphi: U \to V$ — линейное отображение.

- ightharpoonup Образом отображения φ называется $\operatorname{Im} \varphi := \varphi(U)$.
- ho Ядром отображения φ называется $\operatorname{Ker} \varphi := \{\overline{u} \in U : \varphi(\overline{u}) = \overline{0}\}$

Теорема 2.19. Пусть $\varphi: U \to V$ — линейное отображение. Тогда выполнено следующее равенство:

$$\dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi = \dim U$$

Доказательство. Выберем $W\leqslant U$ такое, что $\operatorname{Ker}\varphi\oplus W=U$, тогда $W\cong \operatorname{Im}\varphi$. По свойству прямой суммы, $\dim U=\dim \operatorname{Ker}\varphi+\dim W=\dim \operatorname{Ker}\varphi+\dim \operatorname{Im}\varphi$.

Утверждение 2.24. Пусть $\varphi: U \to V$ — линейное отображение. Тогда отображение φ инъективно $\Leftrightarrow \operatorname{Ker} \varphi = \{\overline{0}\}.$

Доказательство.

- \Rightarrow Если φ инъективно, то существует единственный вектор $\overline{0} \in U$, для которого $\varphi(\overline{u}) = \overline{0}$
- \Leftarrow Пусть для некоторых $\overline{u_1},\overline{u_2}\in U$ выполнено $\varphi(\overline{u_1})=\varphi(\overline{u_2}),$ тогда $\varphi(\overline{u_1}-\overline{u_2})=\overline{0},$ откуда $\overline{u_1}-\overline{u_2}=\overline{0}\Rightarrow \overline{u_1}=\overline{u_2}$

Теорема 2.20 (операции над линейными преобразованиями). Пусть V – линейное пространство, e – базис и заданы линейные преобразования $\varphi \leftrightarrow_e A$ и $\psi \leftrightarrow_e B$. Тогда

- $(\varphi + \psi)\overline{v} = \varphi \overline{v} + \psi \overline{v};$
- $\triangleright (\varphi \psi)\overline{v} = \varphi(\psi \overline{v})$
- $\triangleright (\psi \circ \varphi) \leftrightarrow_e BA.$

Доказательство. Доказательство первых двух пунктов по определению. Докажем третье утверждение. Линейность композиции очевидна. Поскольку $\varphi(\mathbf{e}) = \mathbf{e}A, \ \psi(\mathbf{e}) = \mathbf{e}B,$ выполнены следующие равенства:

$$(\psi \circ \varphi)(e) = \psi(\varphi(e)) = \psi(eA) = \psi(e)A = eBA.$$

Утверждение 2.25. Пусть $\varphi: U \to V$ — линейное отображение, W — прямое дополнение подпространства $\operatorname{Ker} \varphi$ в U. Тогда сужение $\varphi|_W: W \to V$ осуществляет изоморфизм между W и $\operatorname{Im} \varphi$.

Доказательство. Отображение $\varphi|_W$ линейно в силу линейности отображения φ , проверим его биективность. Оно инъективно, поскольку $\operatorname{Ker} \varphi|_W = \operatorname{Ker} \varphi \cap W = \{\overline{0}\}$. Докажем, что оно также сюръективно. Пусть $\overline{v} \in \operatorname{Im} \varphi$, тогда для некоторого $\overline{u} \in U$ выполнено равенство $\varphi(\overline{u}) = \overline{v}$, при этом вектор \overline{u} можно представить в виде $\overline{u} = \overline{k} + \overline{w}$, где $\overline{k} \in \operatorname{Ker} \varphi$, $\overline{w} \in W$. Тогда $\varphi(\overline{u}) = \varphi(\overline{k}) + \varphi(\overline{w}) = \varphi(\overline{w})$, поэтому $\overline{v} = \varphi(\overline{w})$, что и требовалось.

Теорема 2.21. Пусть $\varphi: U \to V$ — линейное отображение. Тогда существуют базисы е в U и \mathcal{F} в V такие, что выполнено следующее:

$$\varphi \leftrightarrow_{e,\mathcal{F}} \left(\frac{E \mid 0}{0 \mid 0} \right)$$

Доказательство. Рассмотрим $\operatorname{Ker} \varphi \leqslant U$ и выберем W — прямое дополнение подпространства $\operatorname{Ker} \varphi$ в U. Пусть $(\overline{e_1}, \ldots, \overline{e_s})$ — базис в W, $(\overline{e_{s+1}}, \ldots, \overline{e_k})$ — базис в $\operatorname{Ker} \varphi$, тогда $e = (\overline{e_1}, \ldots, \overline{e_k})$ — базис в U. Уже было доказано, что $\varphi|_W$ — изоморфизм между W и $\operatorname{Im} \varphi$, тогда $(\varphi(\overline{e_1}), \ldots, \varphi(\overline{e_s})) = (\overline{f_1}, \ldots, \overline{f_s})$ — базис в $\operatorname{Im} \varphi$. Дополним его до базиса $\mathcal{F} = (\overline{f_1}, \ldots, \overline{f_n})$ в V. Тогда базисы e и \mathcal{F} и являются искомыми.

Утверждение 2.26. Пусть U, V — линейные пространства над полем F, e, e' — два базиса в U, e' = eS, $S \in M_k(F)$, $\mathcal{F}, \mathcal{F}'$ — два базиса в V, $\mathcal{F}' = \mathcal{F}T$, $T \in M_n(F)$. Пусть также $\varphi : U \to V$ — линейное отображение, $\varphi \leftrightarrow_{e,\mathcal{F}} A$, $\varphi \leftrightarrow_{e',\mathcal{F}'} A'$. Тогда выполнено следующее равенство:

$$A' = T^{-1}AS$$

Доказательство. Уже известно, что $\varphi(e) = \mathcal{F}A$, $\varphi(e') = \mathcal{F}'A'$. С другой стороны, в силу линейности выполнены равенства $\varphi(e') = \varphi(eS) = \varphi(e)S$, тогда $\varphi(e') = \mathcal{F}AS = \mathcal{F}'T^{-1}AS$, значит, $A' = T^{-1}AS$.

2.11 Полилинейные и кососимметрические функции. Определитель матрицы, задание определителя его свойствами, явное выражение определителя через элементы матрицы. Поведение определителя при элементарных преобразованиях. Определитель произведения матриц и транспонированной матрицы. Определитель с углом нулей.

Определение 2.53. Пусть V — линейное пространство над F. Отображение $g:V^n\to F$ называется *полиминейным*, если оно линейно по каждому из n аргументов.

Определение 2.54. Пусть V — линейное пространство над F. Отображение $g:V^n \to F$ называется *кососимметричным*, если для любых позиций аргументов $i,j \in \{1,\ldots,n\}, i < j$, выполнены следующие условия:

1.
$$\forall \overline{v_i}, \overline{v_j} \in V : g(\ldots, \overline{v_i}, \ldots, \overline{v_j}, \ldots) = -g(\ldots, \overline{v_j}, \ldots, \overline{v_i}, \ldots);$$

2.
$$\forall \overline{v} \in V : g(\ldots, \overline{v}, \ldots, \overline{v}, \ldots) = 0.$$

Теорема 2.22. Пусть V — линейное пространство над F, $e = (\overline{e_1}, \ldots, \overline{e_n})$ — базис в V, $C \in F$. Тогда существует единственное полилинейное кососимметричное отображение $g: V^n \to F$ такое, что $g(\overline{e_1}, \ldots, \overline{e_n}) = C$. Более того, если $(\overline{v_1}, \ldots, \overline{v_n}) = (\overline{e_1}, \ldots, \overline{e_n})A$ для некоторой матрицы $A = (a_{ij}) \in M_n(F)$, то выполнено следующее равенство:

$$g(\overline{v_1}, \dots, \overline{v_n}) = C \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

Доказательство. Покажем сначала, что отображение задается не более, чем однозначно. Действительно, если g удовлетворяет условиям теоремы, то для любого набора $(\overline{v_1}, \ldots, \overline{v_n})$ такого, что $(\overline{v_1}, \ldots, \overline{v_n}) = (\overline{e_1}, \ldots, \overline{e_n})A$, $A = (a_{ij}) \in M_n(F)$, выполнены следующие равенства:

$$g(\overline{v_1}, \dots, \overline{v_n}) = g\left(\sum_{i=1}^n a_{i1}\overline{e_i}, \sum_{i=1}^n a_{i2}\overline{e_i}, \dots, \sum_{i=1}^n a_{in}\overline{e_i}\right) =$$

$$= \sum_{i_1, \dots, i_n \in \{1, \dots, n\}} a_{i_11}a_{i_22} \dots a_{i_nn}g(\overline{e_{i_1}}, \overline{e_{i_2}}, \dots, \overline{e_{i_n}})$$

В силу кососимметричности, слагаемые, в которых у g совпадают хотя бы два аргумента, обращаются в 0, значит, остаются только слагаемые, где все i_1, \ldots, i_n различны. Каждому такому набору индексов соответствует перестановка $\sigma \in S_n$ такая, что $\sigma(i_j) = j$ для всех $j \in \{1, \ldots, n\}$, и это соответствие биективно. Тогда:

$$g(\overline{v_1}, \dots, \overline{v_n}) = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} g(\overline{e_{\sigma^{-1}(1)}}, \overline{e_{\sigma^{-1}(2)}}, \dots, \overline{e_{\sigma^{-1}(1)}}) =$$

$$= \sum_{\sigma \in S_n} (-1)^{\sigma^{-1}} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} g(\overline{e_1}, \dots, \overline{e_n})$$

Итак, если искомое отображение g существует, то обязано следующий вид:

$$g(\overline{v_1}, \dots, \overline{v_n}) = C \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

Проверим, что полученное отображение удовлетворяет всем условиям:

ightharpoonup Проверим линейность g только по первому аргументу, поскольку линейность по остальным аргументам проверяется аналогично. Для этого заметим, что для любого набора $(\overline{v_1}, \dots, \overline{v_n})$

такого, что $(\overline{v_1},\ldots,\overline{v_n})=(\overline{e_1},\ldots,\overline{e_n})A,\,A=(a_{ij})\in M_n(F),$ выполнено следующее равенство:

$$g(\overline{v_1},\ldots,\overline{v_n}) = \sum_{i=1}^n a_{i1}U_i$$

Значения U_1, \ldots, U_n не зависит от первого столбца матрицы A, тогда, в силу линейности сопоставления координат, отображение g линейно по первому столбцу A.

- \triangleright Уже было доказано, что в случае, если g полилинейно, достаточно проверять свойство (2) из определения кососимметричности. Пусть в матрице A совпадают столбцы a_{*i} и a_{*j} , $i, j \in \{1, \ldots, n\}, i \neq j$. Разобьем все перестановки в S_n на пары $(\sigma, (i, j)\sigma)$ и заметим, что значения слагаемых, соответствующих таким перестановкам, равны по модулю и противоположны по знаку, поэтому их сумма равна нулю.
- ightharpoonup Проверим, что $g(\overline{e_1}, \dots, \overline{e_n}) = C$. Поскольку e = eE, то, поэтому единственная перестановка, которой будет соответствовать ненулевое слагаемое в определении отображения g это id, тогда:

$$g(\overline{e_1}, \dots, \overline{e_n}) = C \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} = C(-1)^{id} a_{11} a_{22} \dots a_{nn} = C$$

Получено требуемое.

Определение 2.55. Пусть $A = (a_{ij}) \in M_n(F)$. Определителем, или детерминантом, матрицы A называется следующая величина:

$$\det A := \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

Определителем матрицы A называется сумма n! слагаемых, каждое из которых представляет собой произведение элементов матрицы взятым по одному и ровно одному из каждой строки и каждого столбца. Знак перед слагаемым определяется в зависимости от чётности подстановки.

Теорема 2.23. Для любой матрицы $A \in M_n(F)$ выполнено равенство $\det A^T = \det A$.

Доказательство. Имеют место следующие равенства:

$$\det A = \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$
$$\det A^T = \sum_{\sigma \in S_n} (-1)^{\sigma} a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)n}$$

Заменим в выражении для $\det A^T$ переменную суммирования σ на $\tau := \sigma^{-1}$, тогда:

$$\det A^T = \sum_{\tau \in S_n} (-1)^{\tau^{-1}} a_{1\tau(1)} a_{2\tau(2)} \dots a_{n\tau(n)} = \sum_{\tau \in S_n} (-1)^{\tau} a_{1\tau(1)} a_{2\tau(2)} \dots a_{n\tau(n)} = \det A \qquad \Box$$

Замечание. Определитель полилинеен и кососимметричен как функция столбцов матрицы.

Теорема 2.24. Для любых матриц $A, B \in M_n(F)$ выполнено следующее равенство:

$$\det AB = \det A \det B$$

Доказательство. Если хотя бы одна из матриц A, B вырожденна, то ее определитель равен нулю, и, кроме того, $\operatorname{rk} AB < n$, тогда $\det AB = 0 = \det A \det B$. Если же A и B невырожденны, то они

представимы в виде произведений элементарных матриц. Пусть $A=U_1\dots U_k,\ B=S_1\dots S_l,$ тогда:

$$\det AB = \prod_{i=1}^k \det U_i \prod_{i=1}^l \det S_i = \det A \det B$$

Теорема 2.25 (об определителе с углом нулей). Пусть матрица $A \in M_n(F)$ имеет следующий $eu\partial$:

$$A = \begin{pmatrix} B & C \\ \hline 0 & D \end{pmatrix}, B \in M_k(F), D \in M_{n-k}(F)$$

 $Tor \partial a \det A = \det B \det D.$

Доказательство. Рассмотрим функцию $f: M_k(F) \to F$ такую, что для любой матрицы $X \in M_k(F)$ выполнено следующее равенство:

$$f(X) := \left| \frac{X \mid C}{0 \mid D} \right|$$

Заметим, что функция f является полилинейной и кососимметричной функцией от столбцов матрицы X, тогда:

$$f(X) = f(E) \det X = \begin{vmatrix} E & C \\ 0 & D \end{vmatrix} \det X$$

Аналогично, рассмотрим функцию $g:M_{n-k}(F)\to F$ такую, что для любой матрицы $Y\in M_{n-k}(F)$ выполнено следующее равенство:

$$g(Y) := \left| \frac{E \mid C}{0 \mid Y} \right|$$

Заметим, что функция g является полилинейной и кососимметричной функцией от строк матрицы Y, тогда:

$$g(X) = g(E) \det Y = \begin{vmatrix} E & C \\ 0 & E \end{vmatrix} \det Y = \det Y$$

Итак, $\det A = f(B) = \det Bg(D) = \deg B \det D$.

2.12 Миноры и их алгебраические дополнения. Теорема о произведении минора на его алгебраическое дополнение. Теорема Лапласа. Разложение определителя по строке, столбцу. Определитель Вандермонда. Теорема Крамера. Формула обратной матрицы.

Определение 2.56. Пусть $A \in M_n(F)$. Минором порядка k матрицы A называется определитель некоторой ее подматрицы размера $k \times k$.

Замечание. Теорему о базисном миноре можно переформулировать так: ранг матрицы $A \in M_{n \times k}(F)$ равен наибольшему из порядков его ненулевых миноров.

Определение 2.57. Пусть $A = (a_{ij}) \in M_n(F), i, j \in \{1, ..., n\}.$

- \triangleright Минором, *дополнительным* к элементу a_{ij} , называется величина $M_{ij} := \det A'$, где матрица A' получена из A удалением i-й строки и j-го столбца
- ightharpoonup Алгебраическим дополнением к элементу a_{ij} называется величина $A_{ij}:=(-1)^{i+j}M_{ij}$

Теорема 2.26 (о произведении минора на его алгебраическое дополнение). Пусть $A \in M_{n \times n}(F)$. Произведение любого слагаемого минора $M_{j_1,...,j_k}^{i_1,...,i_k}$ на любое слагаемое его алгебраического дополнения $A_{j_1,...,j_k}^{i_1,...,i_k}$ является слагаемым $\det(A)$.

 \mathcal{A} оказательство. Рассмотрим $A_0 = A = \begin{pmatrix} * & 0 & * \\ 0 & M & 0 \\ * & 0 & * \end{pmatrix}$. Покажем, что $MA = \det(A_0)$. Применяя

элементарные преобразования строк, добьемся того, что минор M располагается в первых k строках. Так, мы проделали $(i_1-1)+(i_2-2)+...+(i_k-k)$ элементарных преобразований II типа. Аналогично, сделаем $(j_1-1)+(j_2-2)+...+(j_k-k)$ элементарных преобразований II типа и получим $\det(A)=(-1)^{i_1+...+i_k+j_1+...+j_k}\det(A_0)$, где $A'=A=\begin{pmatrix} M&0\\0&\overline{M} \end{pmatrix}$. Тогда $\det(A')=M\overline{M}$, $\det(A_0)=M(-1)^{S_m}\overline{M}=MA$. Так, мы показали, что MA тоже входит в состав $\det(A)$.

Теорема 2.27 (Лапласа). Пусть $A \in M_{n \times n}(F)$ и зафиксированы строки $i_1, ..., i_k$. Тогда определитель матрицы A равен сумме всевозможных произведений миноров k-ого порядка, расположенных в этих строках, на их алгебраические дополнения.

$$\det(A) = \sum_{j_1 < \dots < j_k} M^{i_1, \dots, i_k}_{j_1, \dots, j_k} A^{i_1, \dots, i_k}_{j_1, \dots, j_k}$$

Доказательство. Рассмотрим произвольное слагаемое в этой сумме $M^{i_1,\dots,i_k}_{j_1,\dots,j_k}A^{i_1,\dots,i_k}_{j_1,\dots,j_k}$. Минор $M^{i_1,\dots,i_k}_{j_1,\dots,j_k}$ содержит k! слагаемых, $A^{i_1,\dots,i_k}_{j_1,\dots,j_k}$ содержит (n-k)! слагаемых. Получаем k!(n-k)! слагаемых, входящих в $\det(A)$. Выбрать минор M мы можем C^k_n способами.

$$C_n^k k!(n-k)! = n!.$$

Тем самым мы получили все n! слагаемых определителя $\det(A)$.

Теорема 2.28 (о разложении по строке или столбцу). Пусть $A = (a_{ij}) \in M_n(F)$. Тогда выполнены следующие равенства:

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{j=1}^{n} a_{ij} A_{ij}$$

Доказательство. Докажем без ограничения общности вторую формулу, поскольку первая может быть получена из второй транспонированием. Представим i-ю строку матрицы A в следующем виде:

$$a_{i*} = (a_{i1}, a_{i2}, \dots, a_{in}) = (a_{i1}, 0, \dots, 0) + (0, a_{i2}, \dots, 0) + \dots + (0, 0, \dots, a_{in})$$

Тогда, в силу линейности определителя как функции от строк A, получим:

$$det A = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

Теорема 2.29 (определитель Вандермонда). Определителем Вандермонда называется

$$\begin{vmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i \le j \le n} (x_j - x_i).$$

 \mathcal{A} оказательство. Индукция по размеру матрицы m. База индукции: m=2 — очевидно. Пусть утверждение верно для размера m-1. Тогда, вычтем из последнего столбца предпоследний, умноженный на x_1 , из m-2-го — m-3-й, умноженный на x_1 , из i-го — i-1-й, умноженный на x_1 и так далее для всех столбцов. Эти преобразования не меняют определитель матрицы. Получим

$$\begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & x_2 - x_1 & x_2(x_2 - x_1) & \dots & x_2^{m-2}(x_2 - x_1) \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_m - x_1 & x_m(x_m - x_1) & \dots & x_m^{m-2}(x_m - x_1) \end{vmatrix}$$

Раскладывая этот определитель по элементам первой строки, получаем, что он равен следующему определителю:

$$\begin{vmatrix} x_2 - x_1 & x_2(x_2 - x_1) & \dots & x_2^{m-2}(x_2 - x_1) \\ \dots & \dots & \dots & \dots \\ x_m - x_1 & x_m(x_m - x_1) & \dots & x_m^{m-2}(x_m - x_1) \end{vmatrix}$$

Для всех i от 1 до m-1 вынесем из i-й строки множитель $x_{i+1}-x_1$. Получим

$$(x_2 - x_1)(x_3 - x_1)...(x_m - x_1) \begin{vmatrix} 1 & x_2 & \dots & x_2^{m-1} \\ \dots & \dots & \dots \\ 1 & x_m & \dots & x_m^{m-1} \end{vmatrix}$$

Подставим значение имеющегося в предыдущей формуле определителя, известного из индукционного предположения:

$$(x_2 - x_1)(x_3 - x_1)...(x_m - x_1) \prod_{2 \le i \le j \le m} (x_j - x_i) = \prod_{1 \le i \le j \le m} (x_j - x_i).$$

Теорема 2.30 (Крамера). Пусть $A \in M_n(F)$, причем $\Delta := \det A \neq 0$, $b \in F^n$. Для каждого $i \in \{1, \ldots, n\}$ положим $\Delta_i := \det(a_{*1}, \ldots, a_{*i-1}, b, a_{*i+1}, \ldots, a_{*n})$. Тогда система Ax = b имеет единственное решение x, u это решение имеет следующий вид:

$$x = \left(\frac{\Delta_1}{\Delta}, \dots, \frac{\Delta_n}{\Delta}\right)^T$$

Доказательство. Матрица A невырожденна и потому обратима, тогда $x:=A^{-1}b$ — единственное решение системы. Заметим, что для этого решения и каждого $i\in\{1,\ldots,n\}$ выполнены следую-

щие равенства:

$$\Delta_{i} = \det \left(a_{*1}, \dots, a_{*i-1}, \sum_{j=1}^{n} x_{j}(a_{*j}), a_{*i+1}, \dots, a_{*n} \right) =$$

$$= \sum_{j=1}^{n} x_{j} \det \left(a_{*1}, \dots, a_{*i-1}, a_{*j}, a_{*i+1}, \dots, a_{*n} \right) =$$

$$= x_{i} \det \left(a_{*1}, \dots, a_{*i-1}, a_{*i}, a_{*i+1}, \dots, a_{*n} \right) = x_{i} \Delta$$

Таким образом, для любого $i \in \{1, \ldots, n\}$ выполнено $x_i = \frac{\Delta_i}{\Lambda}$.

Утверждение 2.27. Пусть $A \in M_n(F)$, $\Delta := \det A = 0$, но существует $i \in \{1, ..., n\}$ такое, что $\Delta_i \neq 0$. Тогда система несовместна.

Доказательство. Поскольку $\Delta = 0$, то A вырожденна, то есть $\mathrm{rk}\,A < n$. При этом существует $i \in \{1,\ldots,n\}$ такой, что $\Delta_i \neq 0$, поэтому в (A|b) существует система из n линейно независимых столбцов, тогда $\mathrm{rk}(A|b) > \mathrm{rk}\,A$. Значит, по теореме Кронекера-Капелли, система несовместна. \square

Следствие (формула Крамера). Пусть $A = (a_{ij}) \in M_n(F)$ — обратимая матрица, и пусть $B = (b_{ij}) \in M_n(F)$ — обратная к ней матрица. Тогда для любых $i, j \in \{1, \ldots, n\}$ выполнено следующее равенство:

$$b_{ij} = \frac{A_{ji}}{\det A}$$

upd: A_{ij} – это не a_{ij} .

Доказательство. Каждый столбец b_{*j} матрицы B является единственным решением системы линейных уравнений $Ab_{*j}=e_{*j}$, где $e_{*j}-j$ -й столбец единичной матрицы. Тогда:

$$b_{ij} = \frac{\det(a_{*1}, \dots, a_{*i-1}, e_{*j}, a_{*i+1}, \dots, a_{*n})}{\det A}$$

По уже доказанному утверждению, определитель в выражении выше равен A_{ii} .