ZADANIA Z TOPOLOGII ALGEBRAICZNEJ 1 LISTA 1

Zakładamy, że wszystkie rozpatrywane przestrzenie topologiczne są drogowo spójne.

- 1. Uzasadnij, że składanie dróg spełnia następujący warunek skreśleń: jeśli $f_0 \cdot g_0 \simeq f_1 \cdot g_1$ oraz $g_0 \simeq g_1$ to $f_0 \simeq f_1$.
- 2. Pokaż bezpośrednio z definicji, że dla pętli f,g w X zbazowanych w $x_0 \in X$ zachodzi równoważność $f \sim g \Leftrightarrow f \cdot \overline{g} \sim \mathrm{const}_{x_0}$, gdzie const_{x_0} to pętla stała zbazowana w x_0 , zaś \overline{g} to pętla odwrotna do g zadana wzorem $\overline{g}(t) = g(1-t)$.
- 3. Uzasadnij, że dla dowolnej przestrzeni topologicznej X następujące trzy warunki są równoważne:
 - (a) każde odwzorowanie $S^1 \to X$ jest homotopijne ze stałym;
 - (b) każde odwzorowanie $S^1 \to X$ rozszerza się do odwzorowania $D^2 \to X$, gdzie D^2 to 2-wymiarowy dysk, ktrego brzegiem jest nasze S^1 ;
 - (c) $\pi_1(X, x_0) = 0$ dla dowolnego $x_0 \in X$.
 - Wywnioskuj stąd, że przestrzeń X jest jednospójna wtedy i tylko wtedy gdy wszystkie odwzorowania $S^1 \to X$ są homotopijne.
- 4. Jeśli $\pi_1 X = 0$ (grupa podstawowa jest trywialna) to każde dwie drogi łączące dowolnie wybrane dwa punkty $x_0, x_1 \in X$ są homotopijne.
- 5. Mówimy, że przestrzeń topologiczna X jest ściągalna, jeśli istnieje odwzorowanie F: $X \times I \to X$ takie, że F(x,0) = x oraz $F(x,1) = x_0$ dla dowolnego x oraz pewnego ustalonego x_0 . Uzasadnij, że jeśli X jest przestrzenią ściągalną to jest też drogowo spójna, oraz $\pi_1 X = 0$ (innymi słowy, X jest wtedy jednospójna).
- 6. Uzasadnij, że każdy wypukły podzbiór w \mathbb{R}^n jest ściągalny.
- 7. Niech T będzie skończonym drzewem, tzn. spójnym skończonym grafem nie zawierającym zamkniętych cykli krawędzi. Uzasadnij, że $\pi_1 T = 0$.
- 8. Uzasadnij, że homomorfizm $\varphi_d: \pi_1(X, x_0) \to \pi_1(X, x_1)$ (związany ze zmianą punktu bazowego) zależy tylko od klasy homotopii drogi d od x_0 do x_1 .
- 9. Niech G będzie grupą topologiczną, czyli grupą zaopatrzoną w topologię, dla której odwzorowania $m: G \times G \to G$ oraz $r: G \to G$ określone przez $m(g,h) = g \cdot h$ i $r(g) = g^{-1}$ są ciągłe. Uzasadnij, że $\pi_1(G,e)$ jest grupą przemienną.

Wolną homotopią pomiędzy pętlami f i g w X (zaczepionymi niekoniecznie w tym samym punkcie) nazywamy rodzinę pętli $f_t: t \in I$ w X zależną w sposób ciągły od t (tzn. taką że odwzorowanie $(s,t) \to f_t(s)$ jest ciągłe), taką że $f_0 = f$ i $f_1 = g$, zaś punkt zaczepienia pętli f_t może się zmieniać wraz z t.

- 10. Jeśli każda pętla w X jest wolno homotopijna z pewną pętlą stałą, to $\pi_1 X = 0$. UWAGA: na ogół, wolno homotopijne pętle zaczepione w tym samym punkcie nie muszą być homotopijne (porównaj następne zadanie).
- 11. Niech $[S^1,X]$ będzie zbiorem klas wolnej homotopii pętli w X (o dowolnym punkcie zaczepienia). Niech $\Phi: \pi_1(X,x_0) \to [S^1,X]$ będzie naturalnym odwzorowaniem zadanym przez fakt że każda homotopia pętli jest ich wolną homotopią. Uzasadnij, że (a) Φ jest surjekcją;
 - (b) $\Phi([f]) = \Phi([g])$ wtedy i tylko wtedy, gdy elementy [f] i [g] są sprzężone w grupie $\pi_1(X, x_0)$ (tzn. istnieje $h \in \pi_1(X, x_0)$ taki, że $[g] = h^{-1}[f]h$).

Dla podprzestrzeni $A \subset X$, **retrakcją** X **na** A nazywamy takie ciągłe odwzorowanie $r: X \to A$ dla którego $r|_A = \mathrm{id}_A$ (tzn. r(x) = x dla każdego $x \in A$).

- 12. Niech $A \subset X$ będzie retraktem, tzn. taką podprzestrzenią, dla której istnieje retrakcja $R: X \to A$. Uzasadnij, że dla dowolnego $x_0 \in A$ naturalne odwzorowanie $\pi_1(A, x_0) \to \pi_1(X, x_0)$ indukowane przez włożenie $A \to X$ jest różnowartościowe.
- Wywnioskuj z poprzedniego zadania, że podprzestrzeń o nietrywialnej grupie podstawowej nie może być retraktem przestrzeni jednospójnej.

Retrakcja deformacyjna to taka retrakcja $r: X \to A$, dla której istnieje homotopia $r_t: X \to X, t \in I$ (ciagła jako odwzorowanie $X \times I \to X$) taka, że: (1) $r_0 = id_X$, (2) $r_1 = r$, (3) dla każdego $t \in I$ mamy $r_t | A = id_A$.

- 14. Pokaż, że jeśli $r:X\to A$ jest retrakcją deformacyjną, to $r_*:\pi_1X\to\pi_1A$ jest izomorfizmem.
- 15. Wywnioskuj z poprzedniego zadnia, że gdy $\pi_1(Y, y_0) \neq 0$, to $X \times \{y_0\}$ nie jest retraktem deformacyjnym w produkcie $X \times Y$.
- 16. Z izomorfizmu $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$ wynika, że dwie pętle z podprzestrzeni $X \times \{y_0\}$ oraz $\{x_0\} \times Y$ reprezentują komutujące elementy w grupie podstawowej $\pi_1(X \times Y, (x_0, y_0))$. Opisz jawną homotopię pętli ilustrującą ten fakt.
- 17. Niech A będze drogowo spójnym podzbiorem przestrzeni X zawierającym punkt bazowy x_0 . Uzasadnij, że homomorfizm $i_*:\pi_1(A,x_0)\to\pi_1(X,x_0)$ indukowany przez włożenie $i:A\hookrightarrow X$ jest surjekcją wtedy i tylko wtedy gdy każda droga w X o końcach w A jest homotopijna z pewną drogą w A.

ZADANIA Z TOPOLOGII ALGEBRAICZNEJ 1 LISTA 2

- 1. Pokaż, że każdy homomorfizm $\pi_1S^1 \to \pi_1S^1$ realizuje się jako indukowany homomorfizm φ_* dla pewnego odwzorowania $\varphi: S^1 \to S^1$.
- 2. Określmy odwzorowanie $f: S^1 \times I \to S^1 \times I$ wzorem $f(e^{i\theta}, s) = (e^{i(\theta+2\pi s)}, s)$ tak ,że na brzegowych okręgach $S^1 \times \{0\}$ i $S^1 \times \{1\}$ jest ono identycznością. Uzasadnij, że f jest homotopijne z identycznością przez homotopię f_t będącą identycznościa na okręgu $S^1 \times \{0\}$ dla wszystkich t, lecz nie jest homotopijne z identycznością przez homotopię f_t będącą dla każdego t identycznością na obu okręgach brzegowych. Wskazówka: rozważ co f robi ze zbiorem punktów $(1,s):s\in I$.
- 3. Pokaż, że nie istnieją retrakcje $r: X \to A$ gdy:
 - (a) $X = R^3$ zaś A jest dowolną podprzestrzenią homeomorficzną z S^1 ;
 - (b) $X = S^1 \times D^2$ jest pełnym torusem zaś $A = S^1 \times S^1$ jest jego brzegowym torusem;
 - (c) $X = S^1 \times D^2$, zaś A jest okręgiem jak na rysunku poniżej;

- (d) X jest sumą dwóch dysków D^2 połączonych jednym brzegowym punktem, zaś A jest sumą ich brzegowych okręgów.
- 4. Uzasadnij, że następujące pary przestrzeni nie są homeomorficzne:
 - (a) S^2 i D^2 ; (b) S^2 i S^n dla $n \neq 2$.
- 5. Niech X bedzie przestrzenią otrzymaną z dysku D^2 przez sklejenie dwóch różnych punktów brzegowych.
 - (a) Wykaż, że $\pi_1 X = Z$.
 - (b) Czy podzbiór $A\subset X$ otrzymany z brzegu dysku D^2 i homeomorficzny z dwoma okręgami sklejonymi jednym punktem jest retraktem X?
- 6. Czy brzeg wstegi Möbiusa jest retraktem całej wstęgi?
- 7. Uzasadnij, że każde otwarte spójne otoczenie U punktu x na płaszczyźnie, po usunięciu tego punktu, ma nietrywialną grupę podstawową.
- 8. Skorzystaj z podanego na wykładzie lematu pomocniczego do dowodu homotopijnej niezmienniczości grupy podstawowej i udowodnij następujący fakt. Niech $f_t: X \to X$ będzie homotopią, dla której odwzorowania f_0 i f_1 są identycznościami. Wówczas dlka dowolnego $x_0 \in X$ pętla $f_t(x_0)$ reprezentuje element z centrum grupy podstawowej $\pi_1(X, x_0)$.
- 9. Niech M będzie macierzą rozmiaru 3×3 o wszystkich wyrazach dodatnich. Uzasadnij, że macierz ta ma wektor własny o dodatniej wartości własnej. Wskazówka: rozważ trójkąt $T=\{(x,y,z): x+y+z=1, x\geq 0, y\geq 0, z\geq 0\}$ oraz odwzorowanie h:

 $T \to T$ będące złożeniem odwzorowania liniowego o macierzy m oraz rzutu centralnego względem punktu (0,0,0); zastosuj twierdzenie Brouwera.

Komentarz: jest to fragment tzw. twierdzenia Perrona-Frobeniusa.

- 10. Niech A będzie retraktem drogowo spójnej przestrzeni X, i załóżmy że $\pi_1 A$ jest podgrupą normalną w $\pi_1 X$. Uzasadnij, że wówczas $\pi_1 X = \pi_1 A \times [\pi_1 X/\pi_1 A]$.
- 11. Uzasadnij bezpośrednio, bez korzystania z twierdzenia van Kampena, że jeśli X jest sumą dwóch otwartych jednospójnych podzbiorów, $X = U \cup V$, których przekrój $U \cap V$ jest drogowo spójny, to $\pi_1 X = 0$.
- 12. Zastosuj poprzednie zadanie do alternatywnego dowodu jednospójności sfer S^n dla $n \geq 2.$
- 13. Uzasadnij, że dla $n \geq 3$ i dla dowolnego skończonego zbioru P punktów z R^n przestrzeń $R^n \setminus P$ jest jednospójna. Uzasadnij tą samą tezę dla sfery S^n występującej w miejsce przestrzeni R^n .
- 14. Niech X będzie sumą skończonej rodziny prostych w R^n przechodzących przez $0 \in R^n$. Uzasadnij, że dla $n \ge 4$ mamy $\pi_1(R^n \setminus X) = 0$.

Zadania dotyczące homotopijnej równoważności

Rozwiąż ćwiczenia (exercises) nr 1-6 oraz 9-13 ze stron 18-19 książki A. Hatchera "Algebraic Topology" (z zestawu ćwiczeń na końcu Chapter 0), oraz zadania poniżej.

Dla ciągłego odwzorowania $f: X \to Y$ rozważny przestrzeń zwaną cylindrem odwzorowania f, oznaczoną przez M_f , określoną jako iloraz sumy rozłącznej $(X \times [0,1]) \sqcup Y$ zadany utożsamieniami postaci $(x,1) \sim f(x): x \in X$ (z topologią ilorazową). Rozważmy też stożek odwzorowania f, oznaczony przez C_f , jako iloraz $C_f := M_f/(X \times \{0\})$, gdzie $X \times \{0\}$ traktujemy jako podzbiór w M_f .

- 15. Uzasadnij, że przestrzeń Y traktowana w naturalny sposób jako podprzestrzeń w cylindrze M_f (dla $f:X\to Y$) jest jego retraktem deformacyjnym. Dlaczego ten sam argument nie działa dla $Y\subset C_f$?
- 16. Wykorzystaj fakt, że $\pi_1(S^1) \neq 0$ dla pokazania, że dal odwzorowania $f: X \to Y$ stożek C_f na ogół nie jest homotopijnie równoważny z Y.
- 17. Uzasadnij, że jeśli $f:X\to Y$ jest homotopijną równoważnością, to odwzorowanie $h:X\to M_f$ zadane przez $h(x)=(x,0)\in X\times\{0\}\subset M_f$ także jest homotopijną równoważnością.
- 18. Uzasadnij, że jeśli odwzorowania $f,g:X\to Y$ są homotopijne, to stożki C_f i C_g są homotopijnie równoważne.
- 19. Uzasadnij bezpośrednio z definicji, że każdy spójny skończony graf X jest homotopijnie równowańy z bukietem $1-\chi(X)$ okręgów, gdzie $\chi(X)$ to charakterystyka Eulera grafu X. WSKAZÓWKA: na rozgrzewkę uzasadnij najpierw, że graf o kształcie litery θ jest homotopijnie równoważny z bukietem dwóch okręgów.

ZADANIA Z TOPOLOGII ALGEBRAICZNEJ 1 LISTA 3. Pomocnicze fakty algebraiczne.

Produkty wolne i prezentacje

- 1. Pokaż, że produkt wolny G*H nietrywialnych grup G i H ma trywialne centrum, i że zawiera elementy nieskończonego rzędu.
- 2. Uzasadnij, że
 - (a) $\langle S_1|R_1\rangle * \langle S_2|R_2\rangle = \langle S_1 \cup S_2|R_1 \cup R_2\rangle;$
 - (b) $\langle S_1|R_1\rangle \oplus \langle S_2|R_2\rangle = \langle S_1 \cup S_2|R_1 \cup R_2 \cup \{[s_1,s_2]: s_1 \in S_1, s_2 \in S_2\}\rangle$.
 - Uogólnij te obserwacje na produkt wolny i produkt prosty dowolnej liczby czynników. Wywnioskuj, że grupa Z^n ma prezentacje $\langle s_1, \ldots, s_n | [s_i, s_j] : 1 \le i < j \le n \rangle$.
- 3. Wykaż, że grupa cykliczna Z_n ma prezentację $\langle a|a^n\rangle$, zaś grupa permutacji S_3 ma prezentacje $\langle a,b|a^2,b^2,(ab)^3\rangle$.
- 4. Niech $G = \langle S|R \rangle$ i niech ρ będzie elementem grupy G wyrażonym za pomocą generatorów z S, i niech N będzie dzielnikiem normalnym grupy G generowanym przez element ρ . Uzasadnij, że $G/N \cong \langle S|R \cup \{\rho\} \rangle$.

Komutant i abelianizacja

Przypomnijmy, że dla dwóch elementów a, b grupy G ich komutatorem nazywamy element $aba^{-1}b^{-1}$ (ozn. [a, b]). Komutant grupy G to podgrupa generowana przez wszystkie komutatory, czyli podgrupa $[G, G] = \{[a, b] : a, b \in G\}$.

- 5. Pokaż, że komutant dowolnej grupy jest jej dzielnikiem normalnym. Wskazówka: najpierw pokaż że sprzeżenie dowolnego komutatora jest komutatorem (innych elementów).
- 6. Uzasadnij, że grupa ilorazowa G/[G,G] jest abelowa. Ogólniej, jeśli $[G,G] < N \triangleleft G$ to G/N jest abelowa.

Grupę G/[G,G] nazywamy abelianizacją grupy G, i oznaczamy też przez G^{ab} lub $\mathrm{Ab}(G)$.

- 7. Wykaż, że abelianizacja grupy wolnej F_S jest izomorficzna z grupą Z^S , czyli sumą prostą |S| kopii grupy Z (lub jeszcze inaczej, grupą wszystkich funkcji $S \to Z$ o skończonym nośniku, z mnożeniem punktowym). Wskazówka: rozważ naturalny homomorfizm $F_S \to Z^S$ i udowodnij, że jego jądro pokrywa się z komutantem grupy F_S .
- 8. Uzasadnij, że $Ab(G * H) = Ab(G) \times Ab(H)$, oraz ogólniej $Ab(*_{\alpha}G_{\alpha}) = \bigoplus_{\alpha} Ab(G_{\alpha})$.
- 9. Uzasadnij, że abelianizacja grupy o prezentacji $\langle S|R\rangle$ to grupa o prezentacji

$$\langle S|R \cup \{[s,s']: s,s' \in S\} \rangle.$$

ZADANIA Z TOPOLOGII ALGEBRAICZNEJ 1

LISTA 4. Zastosowania Twierdzenia van Kampena i nie tylko...

- 1. Niech X będzie spójnym skończonym grafem.
 - (a) Uzasadnij, że $\pi_1 X$ jest grupą wolną F_n , dla pewnego n. Wskazówka: rozważ dowolne drzewo maksymalne T w grafie X, oraz przedstawienie X jako sumy T oraz cykli C w X zawierających poszczeglne krawędzie X znajdujące się poza T (a dokładniej małe otwarte otoczenia T oraz cykli C w X); pomocne może być zastosowanie indukcji względem liczby krawędzi poza drzewem maksymalnym.
 - (b) Pokaż, że jeśli X jest zawarty w płaszczyźnie, to n jest równe liczbie ograniczonych komponent dopełnienia $R^2 \setminus X$.
 - (c) Udowodnij, że w ogólnym przypadku liczba n zależy tylko od charakterystyki Eulera grafu, i znajdź tą zależność.
- 2. Niech X będzie przestrzenią otrzymaną ze sfery S^2 przez utożsamienie bieguna północnego N z biegunem południowym S. Wyznacz $\pi_1 X$ albo stosując twierdzenie van Kampena, albo przedstawiając X jako 2-wymiarowy kompleks komórkowy, np. kompleks prezentacyjny dla pewnej prezentacji.
- 3. Niech Y będzie przestrzenią otrzymaną z drogowo spójnej przestrzeni X przez doklejenie n-wymiarowej komórki dla pewnego $n \geq 3$. Uzasadnij, że włożenie $X \to Y$ indukuje izomorfizm grup podstawowych (w szczególności, grupa podstawowa się nie zmienia). Zrób to samo dla operacji doklejenia naraz dowolnej rodziny n-wymiarowych komórek.

 $Butelka\ Kleina\ K$ to powierzchnia, którą otrzymuje się przez sklejenie boków kwadratu zgodnie z rysunkiem poniżej.

- 4. Uzasadnij, że grupa podstawowa butelki Kleina ma prezentację $\langle a, b | aba^{-1}b \rangle$.
- 5. Niech $G = \langle a, b | aba^{-1}b \rangle$ będzie grupą podstawową butelki Kleina.
 - (a) Stosując homomorfizm $G\to Z$ wyznaczony przez przyporządkowania $a\to 1$ oraz $b\to 0$ wykaż, że element wyznaczony przez a ma rząd nieskończony w G.
 - (b) Wykaż, że podgrupy $\langle a \rangle$ i $\langle b \rangle$ w G generowane przez elementy a i b są obie normalne.
 - (c) Sprawdź, że przyporządkowanie elementowi a funkcji rzeczywistej f(x) = -x, zaś elementowi b funkcji g(x) = x + 1 przedłuża się do homomorfizmu grupy G w grupę bijekcji zbioru liczb rzeczywistych.
 - (d) Wykorzystaj homomorfizm z punktu (c) do pokazania, że element b w grupie G ma nieskończony rząd.
 - (e) Uzasadnij, że okrąg odpowiadający pętli b w butelce Kleina K nie jest retraktem K. Skorzystaj z zadania 2 oraz poprzednich punktów tego zadania.

- (f) Wykaż, że grupa G jest niceabelowa.
- 6. Uzasadnij algebraicznie, że grupy zadane prezentacjami $\langle a,b|aba^{-1}b\rangle$ oraz $\langle c,d|c^2d^2\rangle$ są izomorficzne. Uzasadnij, że druga z tych grup jest grupą podstawową przestrzeni Y otrzymanej przez sklejenie dwóch wstęg Möbiusa za pomocą homeomorfizmu ich brzegów. Pokaż, że przestrzeń Y jest homeomorficzna z butelką Kleina, i wywnioskuj powyższą izomorficzność grup topologicznie.
- 7. (a) Niech X będzie przestrzenią otrzymaną z torusa T przez usunięcie wnętrza małego dysku $D\subset T$. Uzasadnij, że nie istnieje retrakcja X na brzegową krzywą zamknieta $\partial X=\partial D$.
 - (b) Zrób to samo dla orientowalnej powierzchni M_g dowolnego genusu g > 1.
- 8. (a) Niech C będzie krzywą zamkniętą rozdzielającą powierzchnię M_g na dwie komponenty homeomorficzne z powierzchniami M_h i M_k z usuniętymi wnętrzami dysków, gdzie $h \geq 1$ i $k \geq 1$ (patrz rysunek poniżej). Uzasadnij, że nie istnieje retrakcja M_g na C.
 - (b) Niech C' będzie zamkniętą krzywą nierozspajającą powierzchni M_g obejmującą jedną z rączek tej powierzchni, jak na rysunku poniżej. Pokaż, że C' jest retraktem M_g .

- 9. Uzasadnij, że z dysku z dwoma dziurami, sklejając ze sobą wszystkie trzy komponenty brzegu przez homeomorfizmy, można otrzymać dwie niehomeomorficzne przestrzenie. Użyj abelianizacji grup podstawowych do rozróżnienia tych przestrzeni.
- 10. Rozważ łuki α i β w cylindrze $D^2 \times I$, jak na rysunku poniżej. Krzywa γ jest oczywiście ściągalna do punktu w tym cylindrze, ale intuicja podpowiada, że nie jest ściągalna w dopełnieniu sumy łuków $\alpha \cup \beta$. Udowodnij ten fakt.

ZADANIA Z TOPOLOGII ALGEBRAICZNEJ 1

LISTA 5. Nakrycia, podniesienia i podgrupy odpowiadające nakryciom

- 1. Dla nakrycia $p:Y\to X$ oraz dla podprzestrzeni $A\subset X$, niech $B=p^{-1}(A)$. Pokaż, że obcięcie $p:B\to A$ jest nakryciem.
- 2. Niech $p_1: Y_1 \to X_1$ i $p_2: Y_2 \to X_2$ będą nakryciami. Uzasadnij, że odwzorowanie produktowe $p_1 \times p_2: Y_1 \times Y_2 \to X_1 \times X_2$ jest też nakryciem. Jaka jest krotność tego nakrycia (gdy X_1 i X_2 są spójne)?
- 3. Niech X będzie przestrzenią lokalnie spójną (tzn. w każdym otwartym otoczeniu dowolnego punktu z X zawiera się spójne otwarte otoczenie tego punktu). Niech $p:Y\to X$ będzie nakryciem. Uzasadnij, że obcięcie p do dowolnej komponenty spójności w Y jest też nakryciem X.
- 4. Niech $p:Y\to X$ będzie nakryciem, którego wszystkie włókna $p^{-1}(x),\ x\in X,$ są skończone. Uzasadnij, że jeśli X jest zwarta, to Y też jest zwarta.
- 5. Rozważmy podprzestrzeń $\Sigma \subset R^2$ (z topologią indukowaną), zwaną warszawskim okregiem, określoną we współrzędnych biegunowych (r, θ) jako

$$\Sigma := \{ (1 + \frac{1}{2} \sin \frac{4\pi^2}{\theta}, \theta) : \theta \in (0, 2\pi] \} \cup \{ (r, 0) : r \in [\frac{1}{2}, \frac{3}{2}] \}.$$

Odwzorowanie $(r,\theta) \to e^{i\theta}$ obcięte do Σ daje ciągłe odwzorowanie $f: \Sigma \to S^1$. Uzasadnij, że

- (a) Σ nie jest lokalnie drogowo spójna;
- (b) f nie podnosi się do nakrycia $R \to S^1$.

Korzystając z tego przykładu uzasadnij, że założenie lokalnej drogowej spójności jest istotne w kryterium istnienia podniesienia.

- Na przykładzie warszawskiego okręgu pokaż, że spójne nakrycie drogowo spójnej przestrzeni nie musi być drogowo spójne.
- Uzasadnij, że spójna i lokalnie drogowo spójna przestrzeń jest drogowo spójna. Wywnioskuj, że każde spójne nakrycie przestrzeni lokalnie drogowo spójnej jest drogowo spójne.
- 8. Rozważmy odw
zorowanie $p:C\setminus\{0\}\to C\setminus\{0\}$ (gdzie C to zbiór liczb
 zespolonych) zadane przez $p(z)=z^2.$
 - (1) Uzasadnij, że p jest nakryciem.
 - (2) Wybór podniesienia $x \in p^{-1}(u)$ liczby u względem nakrycia p to wybór jednego z jej pierwiastków kwadratowych (czyli spierwiastkowanie tej liczby). Niech X będzie spójną i lokalnie drogowo spójną przestrzenią, i niech $f: X \to C \setminus \{0\}$ będzie ciągłą funkcją zespoloną. Podaj warunek (w terminach topologioalgebraicznych) na to, by funkcja f dała się w sposób ciągły spierwiastkować.
- 9. Niech G będzie spójną i lokalnie drogowo spójną grupą topologiczną. Niech $p: \widetilde{G} \to G$ będzie dowolnym spójnym nakryciem G, i niech $\widetilde{e} \in p^{-1}(e)$.
 - (1) Niech $m: \widetilde{G} \times \widetilde{G} \to G$ bedzie zadane przez $m(x,y) = p(x) \cdot p(y)$. Uzasadnij, że $m_*[\pi_1(\widetilde{G} \times \widetilde{G}, (\tilde{e}, \tilde{e}))]$ zawiera się w $p_*[\pi_1(\widetilde{G}, \tilde{e})]$.
 - (2) Wywnioskuj, że na nakryciu \widetilde{G} istnieje (jednoznaczna) struktura grupy topologicznej, dla której \widetilde{e} jest jednością, i dla której p jest grupowym homomorfizmem.

- 10. Niech X będzie przestrzenią spójną i lokalnie drogowo spójną, i niech \widetilde{X} będzie jednospójnym nakryciem X.
 - (1) Uzasadnij, że X jest jednoznaczna z dokładnością do izomorfizmu zbazowanych nakryć.
 - (2) Uzasadnij, że każde spójne nakrycie X jest nakrywane przez \widetilde{X} (stąd nazwa nakrycie uniwersalne).
- 11. Opisz spójne i jednospójne nakrycia nastepujących przestrzeni (wraz z odwzorowaniami nakrywającymi):
 - (a) suma sfery S^2 oraz jednej z jej średnic;
 - (b) torus $S^1 \times S^1$ z wklejonym dyskiem $D^2 \times \{s_0\}$;
 - (c) suma sfery i przecinającego ją w dwóch punktach okręgu;
 - (d) iloraz sfery S^2 powstay poprzez sklejenie bieguna północnego z południowym.
- 12. Niech $p: Y \to X$ będzie drogowo spójnym nakryciem, i niech $y_0, y_1 \in p^{-1}(x_0)$. Uzasadnij, że podgrupy $p_*(\pi_1(Y, y_0))$ i $p_*(\pi_1(Y, y_1))$ są sprzężone w grupie $\pi_1(X, x_0)$.
- 13. Niech $p:Y\to X$ będzie jednospójnym nakryciem, niech $A\subset X$ będzie spójną i lokalnie drogowo spójną podprzestrzenią, i niech B będzie komponentą drogowej spójności w $p^{-1}(A)$. Wykaż, że obcięcie $p:B\to A$ jest nakryciem, i że związana z nim podgrupa $p_*(\pi_1 B)<\pi_1 A$ pokrywa się z jądrem homomorfizmu $\pi_1 A\to \pi_1 X$ indukowanego przez włożenie.
- 14. Niech S_n będzie okręgiem o środku $(0, \frac{1}{n})$ i promieniu $\frac{1}{n}$, i niech $X = \bigcup_{n=1}^{\infty} S_n$, z topologią indukowaną z topologii płaszczyzny (jest to tzw. hawajski kolczyk). Uzasadnij, że X nie posiada spójnego i jednospójnego nakrycia.
- 15. Rozważmy nakrycie $p: Y \to X \times [0, 1]$ przestrzeni produktowej $X \times [0, 1]$. Uzasadnij, że dla i = 0, 1 obcięte nakrycia $p_i: p^{-1}(X \times \{i\}) \to X \times \{i\}$ są izomorficzne jako nakrycia X (względem naturalnych utożsamień przestrzeni $X \times \{i\}$ z przestrzenią X).
- 16. Niech $p:\widetilde{X}\to X$ będzie nakryciem, i niech $f:Y\to X$ będzie ciągłym odwzorowaniem. Zdefiniujmy przestrzeń

$$f^*(\widetilde{X}) = \{(y, z) \in Y \times \widetilde{X} \mid f(y) = p(z)\},\$$

z indukowaną z produktu topologią. Określmy też odwzorowanie $f^*(p): f^*(\widetilde{X}) \to Y$, jako obciecie rzutowania $Y \times \widetilde{X} \to Y$.

- (1) Uzasadnij, że $f^*(p): f^*(\widetilde{X}) \to Y$ jest nakryciem. Nakrycie to nazywa się cofnieciem (pullback) nakrycia $p: \widetilde{X} \to X$ względem f.
- (2) Pokaż, że jeśli $f, f': Y \to X$ są odwzorowaniami homotopijnymi, to cofnięcia nakrycia $p: \widetilde{X} \to X$ względem f oraz f' są nakryciami izomorficznymi.
- (3) Uzasadnij, że jeśli odwzorowanie $f:Y\to X$ jest homotopijne z odwzorowaniem stałym to cofnięcie nakrycia $p:\widetilde X\to X$ względem f jest nakryciem trywialnym.
- (4) Niech $y_0 \in Y$, $x_0 = f(y_0)$, oraz niech $\tilde{x}_0 \in p^{-1}(x_0)$. Uzasadnij, że podgrupa w $\pi_1(Y, y_0)$ odpowiadająca cofniętemu nakryciu $f^*(p) : (f^*(\widetilde{X}), (y_0, \tilde{x}_0)) \to (Y, y_0)$ ma postać

$$[f^*(p)]_*[\pi_1(f^*(\widetilde{X}),(y_0,\widetilde{x}_0))] = f_*^{-1}[p_*(\pi_1(\widetilde{X},\widetilde{x}_0))],$$

gdzie $f_*: \pi_1(Y, y_0) \to \pi_1(X, x_0)$ jest homomorfizmem indukowanym przez odwzorowanie f.

ZADANIA Z TOPOLOGII ALGEBRAICZNEJ 1

LISTA 6. Klasyfikacje nakryć, reprezentacje permutacyjne, nakrycia normalne, działania nakrywające.

- 1. Znajdź wszystkie spójne nakrycia przestrzeni $(S^1\times S^1)\cup (D^2\times \{s_0\}).$
- 2. Niech a i b będą generatorami grupy $\pi_1(S^1\vee S^1)$ odpowiadającymi poszczególnym S^1 -skadnikom bukietu.
 - (1) Niech Θ_4 będzie grafem o dwóch wierzchołkach, i o czterech krawędziach, z których każda łączy oba te wierzchołki. Opisz odwzorowanie nakrycia $p:\Theta_4\to S^1\vee S^1$ i uzasdanij, że pogrupa w grupie wolnej $\pi_1(S^1\vee S^1)=F_{a,b}$ odpowiadająca temu nakryciu to podgrupa Q składająca się z wszystkich elementów reprezentowanych słowami nad alfabetem a,b,a^{-1},b^{-1} o parzystej długości.
 - (2) Znajdź nakrycie bukietu $S^1 \vee S^1$ odpowiadające podgrupie normalnej generowanej przez elementy a^2, b^2 i (ab^4) , wraz z uzasadnieniem.
- 3. Niech $p: X \to X$ będzie spójnym, lokalnie drogowo spójnym i półlokalnie jedospójnym nakryciem, i niech ρ będzie reprezentacją permutacyjną tego nakrycia, jako działaniem grupy podstawowej $\pi(X, x_0)$ przez permutacje na włóknie $p^{-1}(x_0)$.
 - (1) Pokaż, że komponenty spójności nakrycia \widetilde{X} odpowiadają orbitom działania grupy $\pi_1(X, x_0)$ na $p^{-1}(x_0)$. W szczególności, \widetilde{X} jest spójne dokładnie wtedy gdy działanie $\pi_1(X, x_0)$ na $p^{-1}(x_0)$ jest tranzytywne.
 - (2) Niech $\tilde{x}_0 \in p^{-1}(x_0)$, i niech \widetilde{X}_0 będzie komponentą \widetilde{X} zawierającą \tilde{x}_0 . Uzasadnij, że $p|_{\widetilde{X}_0}: (\widetilde{X}_0, \tilde{x}_0) \to (X, x_0)$ jest nakryciem. Pokaż, że podgrupa w $\pi_1(X, x_0)$ odpowiadająca temu nakryciu pokrywa się ze stabilizatorem \tilde{x}_0 , tzn. z podgrupą złożoną z tych wszystkich elementów $g \in \pi_1(X, x_0)$, dla których $\rho(g)(\tilde{x}_0) = \tilde{x}_0$.
- 4. Znajdź wszystkie spójne 2-krotne i 3-krotne nakrycia bukietu $S^1 \vee S^1$ z dokładnością do izomorfizmu nakryć bez punktów bazowych, a także z dokładnością do izomorfizmu z punktem bazowym. Zrób to dwoma sposonami: (1) ręcznym elementarnym sposobem ad hoc, (2) korzystając z permutacyjnych reprezentacji nakryć o ustalonej krotności.
- 5. Przypomnijmy, że płaszczyzna rzutowa RP^2 ma grupę podstawową dwuelementową, $\pi_1RP^2=Z_2$, i że jej spójnym dwukrotnym nakryciem jest sfera S^2 . Znajdź wszystkie spójne nakrycia bukietu $RP^2\vee RP^2$ dwóch płaszczyzn rzutowych. Które spośród tych nakryć nie są normalne?
- 6. Skonstruuj nienormalne (nieregularne) nakrycia butelki Kleina torusem oraz butelki Kleina butelka Kleina.
- 7. Niech X będzie spójną, lokalnie drogowo spójną i półlokalnie jednospójną przestrzenią. Powiemy, że spójne nakrycie $\widetilde{X} \to X$ jest abelowe, jeśli jest normalne i ma abelową grupę deck-transformacji. Uzasadnij, że X posiada takie abelowe nakrycie, które jest nakryciem każdego innego abelowego nakrycia X, i że nakrycie o takiej własności jest jednoznaczne z dokładnością do izomorfizmu. Będziemy je nazywać uniwersalnym abelowym nakryciem. Opisz abelowe uniwersalne nakrycia bukietów $S^1 \vee S^1$ oraz $S^1 \vee S^1 \vee S^1$. Opisz też wszystkie abelowe nakrycia bukietu płaszczyzn rzutowych $RP^2 \vee RP^2$, w tym abelowe nakrycie uniwersalne.

8. Mając dane nakrywające działania grupy G_1 na przestrzeni X_1 oraz grupy G_2 na przestrzeni X_2 , rozważmy działanie $G_1 \times G_2$ na $X_1 \times X_2$ zdefiniowane przez

$$(g_1, g_2)(x_1, x_2) := (g_1(x_1), g_2(x_2)).$$

- Uzasadnij, że jest to także działanie nakrywające. Pokaż, że iloraz $(X_1 \times X_2)/(G_1 \times G_2)$ jest homeomorficzny z produktem ilorazów $(X_1/G_1) \times (X_2/G_2)$.
- 9. Mając dane nakrywające działanie grupy G na spójnej lokalnie drogowo spójnej przestrzeni X, każda podgrupa H < G wyznacza nakrycia $X \to X/H$ oraz $X/H \to X/G$. Uzasadnij, że
 - (a) każde spójne nakrycie pośrednie pomiędzy X i X/G jest izomorficzne (jako nakrycie X/G) z $X/H \to X/G$, dla pewnej podghrupy H < G;
 - (b) dwa nakrycia X/H_1 i X/H_2 jak wyżej są izomorficzne dokładnie wtedy gdy podgrupy H_i są sprzężone w G;
 - (c) nakrycie $X/H \to X/G$ jest normalne dokładnie wtedy gdy H jest normalną podgrupą w G, a grupą deck-transformacji tego nakrycia jest wtedy grupa ilorazowa G/H.
- 10. Dane jest nakrycie $p: \widetilde{X} \to X$ spójnej lokalnie drogowo spójnej półlokalnie jednospójnej przestrzeni X, z reprezentacją permutacyjną $\rho_p: \pi_1(X, x_0) \to \operatorname{Sym}[p^{-1}(x_0)]$. Niech $f: (Y, y_0) \to (X, x_0)$ będzie odwzorowaniem ciągłym określonym na spójnej lokalnie drogowo spójnej półlokalnie jednospójnej przestrzeni Y.
 - (1) Uzasadnij, że włókno $[f^*(p)]^{-1}(y_0)$ cofniętego nakrycia $f^*(p): f^*(\widetilde{X}) \to Y$ ma naturalne utożsamienie z włóknem $p^{-1}(x_0)$.
 - (2) Opisz reprezentację prezentacyjna $\rho_{f^*(p)}: \pi_1(Y, y_0) \to \operatorname{Sym}[f^*(p)^{-1}(y_0)]$ cofniętego nakrycia $f^*(p): f^*(\widetilde{X}) \to Y$, w terminach reprezentacji ρ_p , korzystając z utożsamienia włókien z punktu (1).

Algebraic Topology 2. Exercises. List 1.

- 0. Let $\sigma, \sigma' : \Delta^n \to X$ be any two maps whose restrictions to the boundary of Δ^n coincide. Show that $\sigma \sigma'$ is then an *n*-cycle in X.
- 1. Let $s:[0,1] \to X$ be any path in a topological space X. Consider the following two singular 1-simplices $\sigma_i: \Delta^1 \to X$, i=1,2: $\sigma_1((1-t)e_0+te_1)=s(t)$ and $\sigma_2((1-t)e_0+te_1)=s(1-t)$.
 - (1) Prove that $\sigma_1 + \sigma_2$ is a 1-cycle.
 - (2) Prove that $\sigma_1 + \sigma_2$ is null-homologous, by describing an explicit 2-chain $a \in C_2X$ with $\sigma_1 + \sigma_2 = \partial a$.
- 2. A singular 1-simplex $\sigma: \Delta^1 \to X$ is called a *loop* if $\sigma(e_0) = \sigma(e_1)$.
 - (a) Show that each loop is a 1-cycle.

Two loops σ_0, σ_1 are freely homotopic if there is a continuous map $F: \Delta^1 \times [0,1]$ such that

- for each $x \in \Delta^1$ we have $F(x,0) = \sigma_0(x)$ and $F(x,1) = \sigma_1(x)$,
- for each $t \in [0,1]$ the map $\sigma_t : \Delta^1 \to X$ given by $\sigma_t(x) := F(x,t)$ is a loop.
- (b) Prove that any two freely homotopic loops are homologous, i.e. they induce the same element in the homology group H_1X .

A 1-chain $\sigma_0 + \ldots + \sigma_{r-1}$ such that $\sigma_i(e_0) = \sigma_{i-1}(e_1)$ for each $i \in \mathbb{Z}/r\mathbb{Z}$ is called an elementary 1-cycle.

- (c) Prove that each elementary 1-cycle is a 1-cycle.
- (d) Prove that each elementary 1-cycle is homologous with some loop.
- (e) Show that the elements in the homology group H_1X induced by loops generate this group.
- (f) Prove that if X is path-wise connected then each element in the homology group H_1X is induced by a loop.
- (g) Prove that if X is path-wise connected, and if $\pi_1 X = 0$, then $H_1 X = 0$.
- 3. Prove that the homomorphisms $H_kX \to H_kY$, for k > 0, induced by the maps $f: X \to Y$ which are constant, are trivial.
- 4. Let $A \subset X$ be a retract, and let $r: X \to A$ be a retraction map, i.e. a continuous map such that r(x) = x for all $x \in A$. Denote also by $i: A \to X$ the corresponding inclusioon map. For each integer $k \geq 0$, denote by $r_k: H_kX \to H_kA$ and $i_k: H_kA \to H_kX$ the homomorphisms induced by r and i, respectively.
 - (1) Show that each i_k is injective.
 - (2) Show that for each $k \geq 0$ we have $H_k X \cong H_k A \oplus \ker(r_k)$.
- 5. Verify that for homotopic maps f, g the induced homomorphisms f_*, g_* of **reduced** homology groups coincide.
- 6. Verify that chain homotopy is an equivalence relation.
- 7. Check, both directly from the definition and by applying the exact sequence for pairs, what is the relationship between the homology groups H_nX and $H_n(X,x)$, where $x \in X$ is any point.

Exercises 15,16, 17(a), 20, 21, 27 and 29 from pages 132-133 of Hatcher's book "Algebraic Topology".

Algebraic Topology 2. Exercises. List 1 continued.

- 1. Check that for continuous maps of pairs $f:(X,A)\to (Y,B)$ and $g:(Y,B)\to (Z,C)$ we have $g_*f_* = (gf)_*$ for induced homomorphisms of relative homologies.
- 2. Show that for $B \subset A \subset X$ and for any fixed n the sequence of homomorphisms

$$0 \to C_n(A, B) \to C_n(X, B) \to C_n(X, A) \to 0$$

induced by inclusions is exact.

- 3. Justify that the quotient homomorphisms $j: C_nX \to C_n(X,A) = C_nX/C_nA$ form a chain map between the corresponding singular chain complexes (verify that they commute with boundary homomorphisms).
- 4. Let X be a topological space and let \mathcal{U} be any family of its subsets.

(0) Show that the subset
$$C_n^{\mathcal{U}}X \subset C_nX$$
 given by
$$C_n^{\mathcal{U}}X := \{\sum n_i \sigma_i | \forall i \exists U \in \mathcal{U} : \operatorname{im}(\sigma_i) \subset U\}$$
 is a subgroup in C_nX .

- (1) Show that the boundary homomorphism restricted to $C_n^{\mathcal{U}}X$ has its image in
- (2) Show that for the inclusion homomorphisms $\iota: C_n^{\mathcal{U}}X \to C_nX$ form a chain map of chain complexes.
- (3) Show that if \mathcal{U} is a covering of X by not necessarily open sets then the induced homomorphisms of homology groups $\iota_*: H_n^{\mathcal{U}}X \to H_nX$ need not be isomorphisms.
- 5. Let X be a contractible space. Motivated by the cone operator $b: LC_nE \to LC_{n+1}E$ from the proof of excision theorem, for each $n \geq 1$ describe some homomorphism $\Sigma: C_nX \to C_{n+1}X$ which is a chain homotopy between the identity and the zero homomorphisms $C_nX \to C_nX$. Deduce that $H_nX = 0$ for $n \ge 1$. Why this argument does not work for n = 0, and what happens instead?
- 6. Check in detail that the following subsequence of the long exact sequence for pairs is indeed exact

$$H_nA \to H_nX \to H_n(X,A)$$
.

7. Motivated by the prism operator, for any two topological spaces X, Y describe some nontrivial homomorphism $p: C_1X \times C_1Y \to C_2(X \times Y)$ and show that it maps pairs of cycles into cycles. Check also that if one of the cycles in the argument is a boundary then the image is a boundary too.

Algebraic Topology 2. Exercises. List 2.

- 1. Let $\rho: \Delta^n \to D^n$ be a homeomorphism (which maps $\partial \Delta^n$ onto $\partial D^n = S^{n-1} \subset D^n$). Further, let $\tau: \partial \Delta^{n+1} \to S^n$ be a homeomorphism, and view it as a chain in $C_n S^n$ (taking formally $\tau = \sum_{i=0}^{n+1} (-1)^i \tau|_{[e_0, \dots, \hat{e}_i, \dots, e_{n+1}]}$). Given some basepoint $x_0 \in S^n$, let $\nu: \partial \Delta^{n+1} \to S^n$ be a continuous map with the following properties:
 - ν maps the interior of the face $[e_1, \ldots, e_{n+1}]$ of Δ^{n+1} homeomorphically onto $S^n \setminus \{x_0\}$, and it maps the boundary of this face onto x_0 ;
 - ν maps all other faces of Δ^{n+1} onto x_0 .

View ν as a chain in C_nS^n , by taking $\nu = \sum_{i=0}^{n+1} (-1)^i \nu|_{[e_0,\dots,\hat{e}_i,\dots,e_{n+1}]}$ Finally, let $\mu: \Delta^n \to S^n$ be a continuous map which sends the interior of Δ^n homeomorphically onto $S^n \setminus \{x_0\}$, and which maps the boundary of Δ^n onto x_0 ; view μ as a chain in C_nS^n .

- (a) Check that ρ is a relative cycle in (D^n, S^{n-1}) , and show that it induces a generator in the homology group $H_n(D^n, S^{n-1}) \cong Z$.
- (b) Check that τ is a cycle in C_nS^n , and show that it induces a generator in the homology group $H_n(S^n) \cong Z$.
- (c) Check that, for $n \geq 1$, ν is a relative cycle in $(S^n, \{x_0\})$, and show that it induces a generator in the homology group $H_n(S^n, \{x_0\}) \cong Z$.
- (d) Check that, for $n \ge 1$, μ is a relative chain in $(S^n, \{x_0\})$, and show that it induces a generator in the homology group $H_n(S^n, \{x_0\}) \cong Z$.

HINTS: the assertions of (a)-(d) should be proved simultaneously, using induction over the dimension n, by the arguments similar to those used to calculate H_nS^n and $H_n(D^n, S^{n-1})$. Use also, without proof, the intuitive fact that any map τ is homotopic to some map ν as above, and vice versa.

- 2. Let $r: S^n \to S^n$ be a reflection with respect to some equatorial $S^{n-1} \subset S^n$, and let H^n_+, H^n_- be the hemi-spheres of S^n bounded by this S^{n-1} . Let $\sigma: \Delta^n \to H^n_+$ be a homeomorphism (which sends $\partial \Delta^n$ onto $S^{n-1} = \partial H^n_+$). Check that, for $n \geq 1$, the chain $c = \sigma (r \circ \sigma) \in C_n S^n$ is a cycle, and show that it induces a generator in the homology group $H_n S^n \cong Z$.
 - HINT: let x_0 be the pole of S^n contained in the interior of H^n_- , and let $h: S^n \to S^n$ be some map, homotopic to the identity, which sends the interior of H^n_+ homeomorphically onto $S^n \setminus \{x_0\}$, and sends all of H^n_- onto x_0 (such a map clearly exists); consider then the cycle $h_\#(c)$ homologous to c, and compare it with the cycle ν of exercise 1(c); finally, use the assertion of exercise 1(c).
- 3. By using a local homology argument, show that given a finite graph Γ (viewed as a topological space), there is no homeomorphism of Γ that sends a vertex of Γ to a vertex with different degree. (Clearly, there are easier arguments to show this fact, but we want to practice local homology.)

Exercises 1-4 and 7-8 from page 155 of Hatcher's book "Algebraic Topology".

Algebraic Topology 2. Exercises. List 3.

Local degree

- 1. For any $x \in S^n$ the group $H_n(S^n, S^n \setminus \{x\})$ can be naturally identified with the group H_nS^n , via the homomorphism $j_*: H_nS^n \to H_n(S^n, S^n \setminus \{x\})$ in the long exact sequence of the pair $(S^n, S^n \setminus \{x\})$. This allows to define the *local degree* at a point $x \in U$ for any homeomorphism $h: U \to V$ between open subsets of S^n , by using excision.
 - (a) Show that for such local degree we always have $deg(h|x) = \pm 1$.
 - (b) Show that if $r: S^n \to S^n$ is any reflection with respect to some equatorial $S^{n-1} \subset S^n$ then $\deg(r \circ h|x) = \deg(h \circ r|r(x)) = -\deg(h|x)$.
 - (c) Show that the local degree deg(h|x) does not depend on the choice of $x \in U$.

Computations of cellular homology

Exercises 17 and 28-29 from page 132, and exercises 9, 10, 12, 14, 19 from page 156 of Hatcher's book "Algebraic Topology".

Algebraic Topology 2. Exercises. List 4.

CW-complexes, cellular homology, simplicial homology

- 1. Verify that for any CW-complex X the pair (X^n, X^{n-1}) is a good pair of spaces.
- 2. Provide details of the (inductive) argument for showing that any compact subset of a CW-complex X is contained ion some finite subcomplex of X.
- 3. Check that if the image of the characteristic map φ_{α} for a cell e_{α}^{n+1} is disjoint with the (interior of) a cell e^n_{β} then the incidence coefficient vanishes, i.e. $i_{\alpha,\beta}=0$.
- 4. For a given finite CW-complex X the cellular boundary map $\partial^{CW}: C_{n+1}^{CW}X \to C_n^{CW}X$ is the "linear" map given by the matrix with integer coefficients $i_{\alpha,\beta}$ (incidence coefficients for pairs of (n+1)- and n-cells). Check how is this matrix modified if one canges
 - (a) the orientation of one of the (n+1)-cells,
 - (b) the orientation of one of the n-cells.
- 5. Given a cellular map $f:(X,A)\to (Y,B)$ between CW-pairs, describe (in terms of the associated
- degrees f_{α,β}) the induced chain homomorphism f_#: C_x^{CW}(X, A) → C_x^{CW}(Y, B).
 Recall that we have identifications C_n^{CW} X = H_n(Xⁿ, Xⁿ⁻¹), and that under these identifications the cellular boundary map ∂_{n+1}^{CW}: C_{n+1}^{CW} X → C_n^{CW} X is given as the composition j_n∂_{n+1} of the maps ∂_{n+1}: H_{n+1}(Xⁿ⁺¹, Xⁿ) → H_nXⁿ and j_n: H_nXⁿ → H_n(Xⁿ, Xⁿ⁻¹).
 (a) Show that vthe map ∂_{n+1}^{CW}, viewed as a homomorphism H_{n+1}(Xⁿ⁺¹, Xⁿ) → H_n(Xⁿ, Xⁿ⁻¹), coincides with the boundary map in the long exact sequence of the triple (Yⁿ⁺¹, Yⁿ, Yⁿ⁻¹).
 - coincides with the boundary map in the long exact sequence of the triple (X^{n+1}, X^n, X^{n-1}) .
 - (b) Using part (a) and naturality of exact sequences of triples, show that for any cellular map $f:X\to Y$ the cellular induced homomorphisms $f_\#^{CW}:C_n^{CW}X\to C_n^{CW}Y$ commute with the cellular boundary homomorphisms ∂^{CW} (i.e. they form a morphism of cellular chain
- 7. Consider a closed connected n-dimensional manifold M with a fixed triangulation. Suppose that this manifold is orientable, i.e. the n-simplices of its triangulation can be oriented consistently, which means that for any (n-1)-simplex τ of this triangulation the orientations induced from the orientations of the two *n*-simplices containing τ are opposite.
 - (a) Using simplicial homology, show that $H_nM=Z$.
 - (b) Suppose M is closed, connected, n-dimensional, triangulated and non-orientable. Show that then $H_n M = 0$.
- 8. Let K(3,3,3) be a 2-dimensional simplicial complex described as follows. Consider sets A,B,Cconsisting of 3 elements. Identify the vertex set of K(3,3,3) with the disjoint union $A \sqcup B \sqcup C$, and the set of 2-simplices with the family of all such subsets $T \subset A \sqcup B \sqcup C$ which have precisely one element in each of A, B and C. Compute the simplicial homology of K(3,3,3).

Cellular homology and Euler characteristic

Exercises 15–16 and 20–24 from pages 156–156 of Hatcher's book "Algebraic Topology".

Mayer-Vietoris sequences

Exercises 28–29 and 31–33 from pages 157–158 of Hatcher's book "Algebraic Topology".

9. Give an elementary derivation for the Mayer-Vietoris sequence in simplicial homology for a simplicial complex X decomposed as the union of subcomplexes A and B.