

METODE PEMULUSAN RATAAN BERGERAK SEDERHANA (RBS) & RATAAN BERGERAK GANDA (RBG)

Topik ke-2 Akbar Rizki, M.Si

OUTLINE

- 1. Sekilas Tentang Pemulusan
- 2. Rataan Bergerak Sederhana
- 3. Rataan Bergerak Ganda
- 4. Ilustrasi dengan R

OUTLINE

1. Sekilas Tentang Pemulusan

2. Rataan Bergerak Sederhana

3. Rataan Bergerak Ganda

4. Ilustrasi dengan R

1. SEKILAS TENTANG PEMULUSAN

- Prinsip dasar: pengenalan pola data dengan menghaluskan variasi lokal.
- Prinsip penghalusan umumnya berupa rata-rata.
- Beberapa metode penghalusan hanya cocok untuk pola data tertentu.

Metode yang akan dibahas:

- Single Moving Average
- Double Moving Average
- Single Exponential Smoothing
- Double Exponential Smoothing
- Metode Winter untuk musiman aditif
- Metode Winter untuk musiman multiplikatif

1. SEKILAS TENTANG PEMULUSAN

PERBEDAAN ANTARA NILAI RAMALAN (FORECAST VALUE) DAN NILAI DUGAAN (FITTED VALUE)

fitted value

Generally, we will need to distinguish between a forecast or predicted value of y_t that was made at some previous time period, say, $t - \tau$, and a fitted value of y_t that has resulted from estimating the parameters in a time series model to historical data. Note that τ is the forecast lead time. The forecast made at time period $t - \tau$ is denoted by $\hat{y}_t(t-\tau)$. There is a lot of interest in the lead -1 forecast, which is the forecast of the observation in period t, y_t , made one period prior, $\hat{y}_t(t-1)$. We will denote the fitted value of y_t by \hat{y}_t . forecast value

1. SEKILAS TENTANG PEMULUSAN

PERBEDAAN ANTARA FORECAST ERROR DAN RESIDUAL

We will also be interested in analyzing forecast errors. The forecast error that results from a forecast of y_t that was made at time period $t - \tau$ is the lead $-\tau$ forecast error

$$e_t(\tau) = y_t - \hat{y}_t(t - \tau)$$

For example, the lead – 1 forecast error is

$$e_t(1) = y_t - \hat{y}_t(t-1)$$

OUTLINE

- 1. Sekilas Tentang Pemulusan
- 2. Rataan Bergerak Sederhana
- 3. Rataan Bergerak Ganda
- 4. Ilustrasi dengan R

- Ide: data pada suatu periode dipengaruhi oleh data beberapa periode sebelumnya
- Cocok untuk pola data konstan/stasioner
- Prinsip dasar:
 - Data *smoothing* pada periode ke-t merupakan rata-rata dari m buah data dari data periode ke-t hingga ke-(t-m+1) \Rightarrow $S_t = \frac{1}{m} \sum_{i=1}^{t} X_i$
 - ➤ Data smoothing pada periode ke-t berperan sebagai nilai forecasting pada periode ke-t+1

$$F_t = S_{t-1} \operatorname{dan} F_{n,h} = S_n$$

• $Var(S_t) < Var(X_t)$

Bulan (<i>t</i>)	Data (X_t)
1	5
2	7
3	6
4	4
5	5
6	6
7	8
8	7
9	8
10	7

CONTOH:

Berikut data profit bulanan (dalam milyar) suatu perusahaan di bidang ekspor impor selama 10 bulan terakhir.

- a. Tentukan data termuluskan melalui teknik rataan bergerak sederhana dengan rentang m=3. kemudian buat time series plot nya bersama dengan data asal
- b. Tentukan ramalan besarnya profit pada setiap satu waktu ke depan. Berapa ramalan profit pada bulan ke-11 dan ke-12

a. Tentukan data termuluskan melalui teknik rataan bergerak sederhana dengan rentang m=3. kemudian buat time series plot nya bersama dengan data asal.

Bulan (t)	Data (X _t)	Smoothing (S_t)
1	5	-
2	7	-
3	6	6
4	4	5.6
5	5	5
6	6	5
7	8	6.3
8	7	7
9	8	7.6
10	7	7.3

$$S_t = \frac{1}{m} \sum_{i=t-m+1}^t X_i$$

$$S_3 = \frac{1}{3}(X_1 + X_2 + X_3) = \frac{1}{3}(5 + 7 + 6) = 6$$

$$S_4 = \frac{1}{3}(X_2 + X_3 + X_4) = \frac{1}{3}(7 + 6 + 4) = 5.6$$

a. Tentukan data termuluskan melalui teknik rataan bergerak sederhana dengan rentang m=3. kemudian buat time series plot nya bersama dengan data asal.

Periode (t)	Data (X _t)	Smoothing (S_t)	Forecasting (F_t)
1	5	-	-
2	7	-	-
3	6	6	-
4	4	5.6	6
5	5	5	5.6
6	6	5	5
7	8	6.3	5
8	7	7	6.3
9	8	7.6	7
10	7	7.3	7.6
11			7.3
12			7.3

b. Tentukan ramalan besarnya profit pada setiap satu waktu ke depan. Berapa ramalan profit pada bulan ke-11 dan ke-12

PENGARUH PEMILIHAN NILAI m

MA dengan *m* yang lebih besar menghasilkan pola data yang lebih halus.

Akbar Rizki, M.Si – IPB University

OUTLINE

- 1. Sekilas Tentang Pemulusan
- 2. Rataan Bergerak Sederhana
- 3. Rataan Bergerak Ganda
- 4. Ilustrasi dengan R

- Mirip dengan single moving average
- Cocok untuk data yang berpola tren
- Proses penghalusan dengan rata-rata dilakukan dua kali
 - Tahap I:

$$S_{1,t} = \frac{1}{m} \sum_{i=t-m+1}^{t} X_{i}$$

Tahap II:

$$S_{2,t} = \frac{1}{m} \sum_{i=t-m+1}^{t} S_{1,i}$$

Forecasting dilakukan dengan formula

$$F_{2,t,t+h} = A_t + B_t(h)$$

dengan

$$A_{t} = 2S_{1,t} - S_{2,t}$$

$$B_{t} = \frac{2}{m-1} (S_{1,t} - S_{2,t})$$

CONTOH:

Berikut data omset bulanan (dalam milyar) suatu perusahaan selama 9 bulan terakhir.

- a. Tentukan data termuluskan melalui teknik rataan bergerak berganda dengan rentang m=3. kemudian buat time series plot nya bersama dengan data asal
- b. Tentukan ramalan besarnya omset pada setiap satu waktu ke depan. Berapa ramalan omset pada bulan ke-10, ke-11, dan ke-12

t	X_t
1	12.50
2	11.80
3	12.85
4	13.95
5	13.30
6	13.95
7	15.00
8	16.20
9	16.10

a. Tentukan data termuluskan melalui teknik rataan bergerak berganda dengan rentang m=3. kemudian buat time series plot nya bersama dengan data asal

t	X_t	S _{1,t}	$S_{2,t}$
1	12.50		
2	11.80		
3	12.85	12.38	
4	13.95	12.87	
5	13.30	13.37	12.87
6	13.95	13.73	13.32
7	15.00	14.08	13.73
8	16.20	15.05	14.29
9	16.10	15.77	14.97

$$S_{1,t} = \frac{1}{m} \sum_{i=t-m+1}^{t} X_i$$

$$S_{1,3} = \frac{1}{3} (X_1 + X_2 + X_3) = \frac{1}{3} (12.5 + 11.8 + 12.85) = 12.38$$

$$S_{1,4} = \frac{1}{3} (X_2 + X_3 + X_4) = \frac{1}{3} (11.8 + 12.85 + 13.95) = 12.87$$

$$S_{2,t} = \frac{1}{m} \sum_{i=t-m+1}^{t} S_{1,i}$$

$$S_{2,5} = \frac{1}{3} (S_{1,3} + S_{1,4} + S_{1,5}) = \frac{1}{3} (12.38 + 12.87 + 13.37)$$

$$= 12.87$$

$$S_{2,6} = \frac{1}{3} (S_{1,4} + S_{1,5} + S_{1,6}) = \frac{1}{3} (12.87 + 13.37 + 13.73)$$

= 13.32

Akbar Rizki, M.Si – IPB University

a. Tentukan data termuluskan melalui teknik rataan bergerak berganda dengan rentang m=3. kemudian buat time series plot nya bersama dengan data asal

t	X_t	S _{1,t}	$S_{2,t}$	A_t	B_t	$F_{2,t}$	A_t
1	12.50						
2	11.80						$A_{5} = 13$
3	12.85	12.38					
4	13.95	12.87					B_{t}
5	13.30	13.37	12.87	13.87	0.50		
6	13.95	13.73	13.32	14.14	0.41	14.37	_
7	15.00	14.08	13.73	14.43	0.35	14.55	B_5
8	16.20	15.05	14.29	15.81	0.76	14.78	$=\frac{2}{2}$
9	16.10	15.77	14.97	16.57	0.80	16.57	
10						17.37	$F_{2,t}$
11						18.17	$F_{2,9}$
12						18.97	=18.9

$$A_{t} = 2S_{1,t} - S_{2,t}$$

$$A_{5} = 2S_{1,5} - S_{2,5} = 2(13.37) - 12.87$$

$$= 13.87$$

$$B_{t} = \frac{2}{m-1} \left(S_{1,t} - S_{2,t} \right)$$

$$B_{5} = \frac{2}{3-1} \left(S_{1,5} - S_{2,5} \right)$$

$$= \frac{2}{2} (13.37 - 12.87) = 0.5$$

$$F_{2,t,t+h} = A_{t} + B_{t}(h)$$

$$F_{2,9,12} = A_{9} + B_{9}(3) = 16.57 + 0.8(3)$$

OUTLINE

- 1. Sekilas Tentang Pemulusan
- 2. Rataan Bergerak Sederhana
- 3. Rataan Bergerak Ganda
- 4. Ilustrasi dengan R

Sebagai ilustrasi, tersedia data bagi hasil suatu bank syariah per bulan (**File excel Moving Average.csv**). Data ini dicatat setiap tanggal 1 di masing-masing bulan. Periodenya dari Januari 1989 hingga Desember 1992, sehingga terdapat 48 pengama¹

Data Contoh: SMA

SMA dengan R

Sintaks R Output R

```
library("forecast")
library("TTR")
library("graphics")
Data1<-read.csv("D:/campus/work/Bahan Mandiri/Moving Average.csv",
header=TRUE)
#membentuk objek time series
Data1.ts<-ts(Data1)
#melakukan Single Moving Average dengan n=3
Data1.sma<-SMA(Data1.ts, n=3)
ramal.sma<-c(NA,Data1.sma)
Data<-cbind (bagihasil_aktual=c (Data1.ts,NA),pemulusan=c
(Data1.sma,NA),ramal.sma)
```

```
bagihasil aktual pemulusan ramal.sma
[1,]
               99.72244
                                            NA.
 [2,]
               98.38826
                                 NA
                                            NA
               97.57348
                          98.56139
 [3,]
                                            NA.
                                     98.56139
               97.75673
                          97.90616
 [4,]
                          98.15268
                                     97.90616
 [5,]
               99.12783
 [6,]
               99.65564
                          98.84673
                                     98.15268
              100.21011
                          99.66453
                                     98.84673
 [7,]
 [8,]
               98.79006
                          99.55194
                                     99.66453
 [9,]
               97.99188
                          98.99735
                                     99.55194
[10,]
               97.68087
                          98.15427
                                     98.99735
[11,]
               97.93829
                          97.87034
                                     98.15427
               97.37835
                          97.66583
                                     97.87034
[12,]
               96.68437
[13,]
                          97.33367
                                     97.66583
               97.62021
                          97.22764
[14,]
                                     97.33367
[15,]
               98.92994
                          97.74484
                                     97.22764
[44,]
                           98,91963
                                      98.56444
                98.81002
[45,]
              100.26684
                           99.40174
                                      98.91963
[46,]
                98.68675
                           99.25453
                                      99,40174
[47,]
               97.75455
                           98.90271
                                      99.25453
               99.84867
                           98.76332
                                      98.90271
[48,]
```

NA

[49,]

98.76332

SMA dengan R

Sintaks R

```
#membuat plot

ts.plot (Data1.ts,xlab="periode waktu",ylab="Bagi hasil",

col="blue",lty=3)

points(Data1.ts)

lines (Data1.sma,col="red",lwd=2)

lines (ramal.sma,col="black",lwd= 2)

title("Rataan bergerak Sederhana n=3",cex.main=1,font.main=4

,col.main="black")

legend(locator(1),legend=c ("Data aktual","Pemulusan

SMA","Ramalan SMA"),lty=1:3,col=c ("blue","red","black"))
```

Output R Rataan bergerak Sederhana n=3

Mencari nilai keakuratan

Mean Absolute Percentage Error (MAPE):

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{x_t - \hat{x}_t}{x_t} \right| x100\%$$

Sintaks R

#menghitung nilai keakuratan

error<-Data1.ts-ramal.sma[1:length(Data1.ts)]

MAPE<-

mean(abs((error[4:length(Data1.ts)]/ramal.sma[4:length(Data1.ts)])*100))

Output R

> MAPE [1] 0.82229

DMA dengan R

Sintaks R

bagihasil.dma<-SMA(Data1.sma,n=3)
At<-2*Data1.sma-bagihasil.dma
Bt<-Data1.sma-bagihasil.dma
pemulusan.dma<-At+Bt
ramal.dma<-c(NA,pemulusan.dma)
Data.dma<cbind(bagihasil_aktual=c(Data1.ts,NA),pemulusan
.dma=c(pemulusan.dma,NA),ramal.dma)

Output R

```
bagihasil aktual pemulusan.dma ramal.dma
              99.72244
[1,]
                                     NA.
                                                NA
[2,]
              98.38826
                                     NA
                                                NA
[3,]
              97.57348
                                                NA
                                     NA
[4,]
              97.75673
                                     NA
                                                NA
[5,]
              99.12783
                                                NA
                              98.04455
[6,]
              99.65564
                              99.93649
                                         98.04455
             100.21011
                             101.21762
                                         99.93649
[8,]
              98.79006
                              99.94702
                                        101.21762
[9,]
              97.99188
                              98.18284
                                         99.94702
.
               97,75455
[47,]
                              98.33548
                                          99.37967
[48,]
               99.84867
                              98.34292
                                          98.33548
[49,]
                     NA.
                                     NA
                                         98.34292
```

DMA dengan R

Sintaks R

```
#membuat plot
ts.plot (Data1.ts,xlab="periode waktu",ylab="Bagi
hasil", col="blue",lty=3)
points(Data1.ts)
lines (pemulusan.dma,col="red",lwd=2)
lines (ramal.dma,col="black",lwd= 2)
title("Rataan bergerak Berganda
n=3",cex.main=1,font.main=4,col.main="black")
legend(locator(1),legend=c ("Data
aktual","Pemulusan","Ramalan"),lty=1:3,col=c
("blue","red","black"))
```


Perbandingan SMA dan DMA

Sintaks R

#perbandingan SMA dan DMA
ts.plot (Data1.ts,xlab="periode waktu",ylab="Bagi
hasil", col="blue",lty=3)
points(Data1.ts)
lines (pemulusan.dma,col="red",lwd=2)
lines (Data1.sma,col="black",lwd= 2)
title("Perbandingan SMA dan
DMA",cex.main=1,font.main=4,col.main="black")
legend(locator(1),legend=c ("Data
aktual","Pemulusan SMA","Pemulusan
DMA"),lty=1:3,col=c ("blue","black","red")

Output R

MAPE: 0.82229 0.8887221

Akbar Rizki, M.Si – IPB University

TUGAS PRAKTIKUM 1

Gunakan data (the sales of mature pharmaceutical product) di dalam buku Montgomery (Appendix B, Table B.2, halaman 587)

- a. Tentukan data termuluskan melalui teknik rataan bergerak sederhana dengan rentang m=4. hitung ramalan untuk 5 waktu ke depan.
- b. Tentukan data termuluskan melalui teknik rataan bergerak sederhana dengan rentang m=6. hitung ramalan untuk 5 waktu ke depan.
- c. Buat time series plotnya masing-masing dengan data asal.
- d. Tentukan nilai SSE, MSE, dan MAPE masing-masing untuk (a) dan (b). Apa kesimpulan Anda.

Catatan: Kerjakan terlebih dahulu poin (a) s.d (d) di atas menggunakan Excel. Kemudian bandingkan hasilnya dengan keluaran dari program R.

TUGAS PRAKTIKUM 2

Gunakan data (the sales of mature pharmaceutical product) di dalam buku Montgomery (Appendix B, Table B.2, halaman 587)

- a. Tentukan data termuluskan melalui teknik rataan bergerak berganda dengan rentang m=4. hitung ramalan untuk 5 waktu ke depan.
- b. Tentukan data termuluskan melalui teknik rataan berganda sederhana dengan rentang m=6. hitung ramalan untuk 5 waktu ke depan.
- c. Buat time series plotnya masing-masing dengan data asal.
- d. Tentukan nilai SSE, MSE, dan MAPE masing-masing untuk (a) dan (b) serta bandingkan pula dengan hasil pada tugas praktikum 1. Apa kesimpulan Anda.

Catatan: Kerjakan terlebih dahulu poin (a) s.d (d) di atas menggunakan Excel. Kemudian bandingkan hasilnya dengan keluaran dari program R.

TUGAS PRAKTIKUM

Week	Sales (In Thousands)						
1	10618.1	31	10334.5	61	10538.2	91	10375.4
2	10537.9	32	10480.1	62	10286.2	92	10123.4
3	10209.3	33	10387.6	63	10171.3	93	10462.7
4	10553.0	34	10202.6	64	10393.1	94	10205.5
5	9934.9	35	10219.3	65	10162.3	95	10522.7
6	10534.5	36	10382.7	66	10164.5	96	10253.2
7	10196.5	37	10820.5	67	10327.0	97	10428.7
8	10511.8	38	10358.7	68	10365.1	98	10615.8
9	10089.6	39	10494.6	69	10755.9	99	10417.3
10	10371.2	40	10497.6	70	10463.6	100	10445.4
11	10239.4	41	10431.5	71	10080.5	101	10690.6
12	10472.4	42	10447.8	72	10479.6	102	10271.8
13	10827.2	43	10684.4	73	9980.9	103	10524.8
14	10640.8	44	10176.5	74	10039.2	104	9815.0
15	10517.8	45	10616.0	75	10246.1	105	10398.5
16	10154.2	46	10627.7	76	10368.0	106	10553.1
17	9969.2	47	10684.0	77	10446.3	107	10655.8
18	10260.4	48	10246.7	78	10535.3	108	10199.1
19	10737.0	49	10265.0	79	10786.9	109	10416.6
20	10430.0	50	10090.4	80	9975.8	110	10391.3
21	10689.0	51	9881.1	81	10160.9	111	10210.1
22	10430.4	52	10449.7	82	10422.1	112	10352.5
23	10002.4	53	10276.3	83	10757.2	113	10423.8
24	10135.7	54	10175.2	84	10463.8	114	10519.3
25	10096.2	55	10212.5	85	10307.0	115	10596.7
26	10288.7	56	10395.5	86	10134.7	116	10650.0
27	10289.1	57	10545.9	87	10207.7	117	10741.6
28	10589.9	58	10635.7	88	10488.0	118	10246.0
29	10551.9	59	10265.2	89	10262.3	119	10354.4
30	10208.3	60	10551.6	90	10785.9	120	10155.4

TUGAS PRAKTIKUM 3

Gunakan data profit sebuah perusahaan berikut ini:

- Tentukan data termuluskan melalui teknik rataan bergerak sederhana dengan rentang m=4. hitung ramalan untuk 5 waktu ke depan.
- b. Tentukan data termuluskan melalui teknik rataan bergerak sederhana dengan rentang m=6. hitung ramalan untuk 5 waktu ke depan.
- c. Buat time series plotnya masing-masing dengan data asal.
- d. Tentukan nilai SSE, MSE, dan MAPE masingmasing untuk (a) dan (b). Apa kesimpulan Anda.

Catatan: Kerjakan terlebih dahulu poin (a) s.d (d) di atas menggunakan Excel. Kemudian bandingkan hasilnya dengan keluaran dari program R.

t
7.7
9.8
5.5
6.9
2.1
6.3
5.8
293
3.6
8.9

TUGAS PRAKTIKUM 4

Gunakan data profit sebuah perusahaan berikut ini:

- a. Tentukan data termuluskan melalui teknik rataan bergerak ganda dengan rentang m=4. hitung ramalan untuk 5 waktu ke depan.
- b. Tentukan data termuluskan melalui teknik rataan bergerak ganda dengan rentang m=6. hitung ramalan untuk 5 waktu ke depan.
- c. Buat time series plotnya masing-masing dengan data asal.
- d. Tentukan nilai SSE, MSE, dan MAPE masingmasing untuk (a) dan (b) serta bandingkan pula dengan hasil pada tugas praktikum 3. Apa kesimpulan Anda.

Catatan: Kerjakan terlebih dahulu poin (a) s.d (d) di atas menggunakan Excel. Kemudian bandingkan hasilnya dengan keluaran dari program R.

periode	profit	periode	profit	periode	profit
1	140385.5	11	151378	21	205837.7
2	134759.9	12	135571	22	215129.8
3	129560.6	13	141933.1	23	219035.5
4	133791.5	14	135256.7	24	227126.9
5	144560.6	15	168587.7	25	228542.1
6	147848.8	16		26	
7	150515.9		173212.5	27	238975.8
8	142275.6	18		28	243293
9	150644.6	19	196898.5	29	239453.6
10	148968.9	20	199971.6	30	238108.9

TERIMAKASIH

