Linear Algebra

枫聆

2020年12月21日

目录

1 Vector S		tor Space	1	
	1.1	Definition of Vector Space	1	
	1.2	Subspace	4	
	Vector Space			
Definition of Vector Space				
De	Definition 1.1. vector spaces 是一个具有加法 (addition) 和数量乘法 (salar multiplication) 的集合 V			

- 加法是指对任意的元素 $u,v \in V$, 有 $u+v \in V$
- 数量乘法是指对任意的元素 $\lambda \in F$ 和 $v \in V$, 有 $\lambda v \in V$ 同时它们存在下面的属性:
- 加法交换律 $\forall u, v \in V, u + v = v + u$
- 结合律 $\forall u,v,w,(u+v)+w=u+(v+w)$ 和 $\forall a,b\in F,(ab)v=a(bv)$
- 加法单位元 $\forall v \in V, v+0=v$
- 加法逆元 $\forall v \in V, \exists v^{-1}, v + v^{-1} = 0$
- 数量乘法的单位元 $\forall v \in V, 1v = v$
- 分配律 $\forall v, w \in V, \forall a, b \in F, a(u+v) = au + av, (a+b)v = av + bv$

vector spaces 背后的直觉是什么?《linear algebra done right》上说来自于 F^n 上的 addition 和 scalar multiplication. 很明显 addition 包含了 abelian group 的所有性质,vector space 是 R-module 的特殊化,R-module 从结构上来说,要比 Ring(带单位元) 的性质要弱一些,主要体现在乘法上,弱化为数量乘法,表示把一个环作用在一个 abelian group 上,而不是环上的乘法,这样可以把 ideal 和商环都归纳进来,一般情况下它们都不是子环,但是有了 R-module 之后让环也有类似于群那样例如正规子群是一个子群优美性质。

我想这里多记录一些 R-module 的东西,如何把一个环弱化成一个模结构呢? 首先我们需要一个 abelian group M,定义 "the left-action of a ring R on M" 为

$$\sigma \colon R \to \mathsf{End}_{Ab}(M)$$

是一个环同态,为什么这是一个环同态呢?首先为什么 $\operatorname{End}_{Ab}(M)$ 是一个环结构?首先这个环里面的元素都是关于 M 的 endomorphisms,乘法定义为 endomorphisms 之间的复合,加法定义为 (f+g)(a)=f(a)+g(a),其中 $f,g\in\operatorname{End}_{Ab}(M)$,然后呢?。我们说 σ 把 M 变成了一个 left-R-module, σ 这个映射可以理解为 left-R-module structure(算子),

$$\sigma(r)(m) \in_R M$$

间接的定义了数量乘法,并且有一些有趣的性质:

- 分配律 $\sigma(r)(m_1 + m_2) = \sigma(r)(m_1) + \sigma(r)(m_2)$
- 分配律 $\sigma(r_1+r_2)(m)=\sigma(r_1)(m)+\sigma(r_2)(m)$ (环同态下可以保证)
- 结合性 $\sigma(r_1r_2)(m) = \sigma(r_1)(\sigma(r_2)(m))$
- 单位元 $\sigma(1)(m) = m$

如果要定义更清楚一点, 可以这样

$$\rho \colon R \times M \to M$$

 $,\rho$ 和 σ 的关系为

$$\rho(r,m) = \sigma(r)(m)$$

- ,但是这里不是环同态无法保证上面的一些性质, 所以需要额外规定一些东西
 - $\rho(r_1 + r_2, m) = \rho(r_1, m) + \rho(r_2, m)$ (分配律)
 - $\rho(r, m_1 + m_2) = \rho(r, m_1) + \rho(r, m_2)$ (分配律)
 - $\rho(r_1r_2, m) = \rho(r_1, \rho(r_2, m))$ (结合率)
 - $\rho(1,m) = m$ (单位元)

把 vector space 一般化的感觉是不是很爽? 其实 R-module 在一定程度要比 vector space 更复杂,当用更抽象方式去理解 vector space,我们定义了一个 σ 环同态,这个环同态很精妙的把环作用在 abelian group 的 action 表示出来,所以我们用理解 R-module 的方式去理解 vector space,就是首先我们要有一个 abelian group 定义了加法,然后把一个 field 作用在了它之上,定义为数量乘法,最后我们就得到了这样的一个结构。

这篇 note 既然是在《linear algebra done right》的基础上记录的,我会尽可能的记录一些抽象的延伸的东西,让自己对 linear algebra 有一个不同于大学的颠覆性的认知。

Subspace

Definition 1.2. 如果 V 中的子集 U 是一个子空间, 当且仅当满足一下条件:

- 1. $0 \in U$
- $2. u, w \in U$ 蕴含 $u + w \in U$
- $3. \ a \in F.u \in U$ 蕴含 $au \in U$

也就是说, V 下子空间一定是子集, 包含加法单位元, 且在加法和数量乘法下封闭。

Definition 1.3. 定义 U_1, \dots, U_m 是 V 的子集. 这些子集的和表示为

$$U_1+\cdots+U_m=\{\,u_1+\cdots+u_m\mid u_1\in U_1,\cdots,u_m\in U_m\,\}$$

定义子集和,是为了引入下面这个性质

Proposition 1.4. 定义 U_1, \dots, U_m 都是 V 中的子空间,则 $U_1 + \dots + U_m$ 是包含 U_1, \dots, U_m 的最小子空间.

证明. 最小的就是指 V 里面任意包含 U_1, \cdots, U_m 的子空间都包含 $U_1 + \cdots + U_m$,首先得证明一下 $U_1 + \cdots + U_m$ 是一个子空间,按照子空间的定义,加法单位元和封闭性都很显然,满足上述条件的子空间很也显然需要包含所有子空间对应的子集和。

Definition 1.5. 定义 U_1, \dots, U_m 都是 V 中的子空间,如果 $U_1 + \dots + U_m$ 中的每个元素都有唯一表示形式即 u_1, \dots, u_m ,则 $U_1 + \dots + U_m$ 是直和 (direct sum),用 $U_1 \oplus \dots \oplus U_m$ 表示。

那怎么判定一个子集合是不是直和呢?

Proposition 1.6. 定义 U_1, \cdots, U_m 都是 V 中的子空间,如果 $U_1 + \cdots + U_m$ 是直和当且仅当 $u_1 + \cdots + u_m = 0$ 时, $u_1 = \ldots = u_m = 0$ 。

即只需要 0 有唯一的表示形式就够了,来证明一下

证明. 假设

$$u_1 + \dots + m = u_1' + \dots + u_m'$$

,整理一下

$$(u_1 - u_1') + \dots + (u_m - u_m') = 0$$

,0 有唯一的表示方式,则 $u_1=u_1',\ldots,u_m=u_m'(u_1-u_1'\in U_1,\ldots,u_m-u_m'\in U_m)$

下面再来个特殊情况,只有两个子空间,怎么判定它们的子集和是不是直和

Proposition 1.7. 定义 U 和 W 是 V 中的两个子空间,如果 U+W 是直和当且仅当 $U\cap W=0$.

证明. 如果 U+W 是直和, 任取 $v\in U\cap W$, 则 $-v\in U\cap W$, 而 0=v+(-v), 所以 v 只能是 0.

如果 $U\cap W=\{0\}$,我们假设还有 0=v+w,其中 v,w 不为 0,则 w=(-v),则 $v\in U\cap W$,与前提矛盾. 所以 0 有唯一表示。