```
In [1]:
```

import pandas as pd
import numpy as np
bm=pd.read_csv('bigdatamart.csv')

In [2]:

bm

Out[2]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year
0	FDA15	9.300	Low Fat	0.016047	Dairy	249.8092	OUT049	1999
1	DRC01	5.920	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009
2	FDN15	17.500	Low Fat	0.016760	Meat	141.6180	OUT049	1999
3	FDX07	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	1998
4	NCD19	8.930	Low Fat	0.000000	Household	53.8614	OUT013	1987
8518	FDF22	6.865	Low Fat	0.056783	Snack Foods	214.5218	OUT013	1987
8519	FDS36	8.380	Regular	0.046982	Baking Goods	108.1570	OUT045	2002
8520	NCJ29	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	OUT035	2004
8521	FDN46	7.210	Regular	0.145221	Snack Foods	103.1332	OUT018	2009
8522	DRG01	14.800	Low Fat	0.044878	Soft Drinks	75.4670	OUT046	1997

8523 rows × 12 columns

•

In [3]:

bm.dtypes

Out[3]:

Item_Identifier object Item_Weight float64 Item Fat Content object float64 Item_Visibility Item Type object Item MRP float64 Outlet_Identifier object Outlet_Establishment_Year Outlet_Size int64 object Outlet_Location_Type object object Outlet_Type float64 Item_Outlet_Sales dtype: object

In [4]:

bm.columns

Out[4]:

```
'Outlet_Establishment_Year', 'Outlet_Size', 'Outlet_Location_Type', 'Outlet_Type', 'Item_Outlet_Sales'], dtype='object')
```

In [5]:

bm.describe()

Out[5]:

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
count	7060.000000	8523.000000	8523.000000	8523.000000	8523.000000
mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
std	4.643456	0.051598	62.275067	8.371760	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	8.773750	0.026989	93.826500	1987.000000	834.247400
50%	12.600000	0.053931	143.012800	1999.000000	1794.331000
75%	16.850000	0.094585	185.643700	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

In [6]:

bm.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):

Column Non-Null Count Dtype -----0 Item Identifier 8523 non-null object 1 Item_Weight 7060 non-null float64 object Item_Fat_Content 8523 non-null 3 Item Visibility 8523 non-null float64 Item_Type object 8523 non-null 4 5 Item MRP 8523 non-null float64 8523 non-null object 6 Outlet_Identifier 7 Outlet_Establishment_Year 8523 non-null int64 6113 non-null 8523 non-null Outlet_Size object 9 Outlet_Location_Type object 8523 non-null object 8523 non-null float64 10 Outlet_Type 11 Item Outlet Sales

dtypes: float64(4), int64(1), object(7)

memory usage: 799.2+ KB

In [7]:

import seaborn as sns
import matplotlib.pyplot as plt
sns.heatmap(bm.isnull())
plt.show()


```
Item_Fat_(
                                           Outlet_Locatio
                                   Outlet_Establishme
In [8]:
bm.Item Weight=bm.Item Weight.fillna(bm.Item Weight.mean())
In [9]:
bm['Outlet Size'].value counts()
Out[9]:
              2793
Medium
              2388
Small
               932
Name: Outlet_Size, dtype: int64
In [10]:
bm.Outlet_Size=bm.Outlet_Size.fillna(bm.Outlet_Size.fillna('Medium'))
In [11]:
bm.isnull().sum()
Out[11]:
Item_Identifier
                                           0
                                           0
Item Weight
Item_Fat_Content
                                           0
Item_Visibility
Item Type
Item MRP
Outlet Identifier
Outlet Establishment Year
Outlet Size
Outlet_Location_Type
Outlet_Type
                                           0
Item_Outlet_Sales
dtype: int64
In [12]:
sns.heatmap(bm.isnull())
plt.show()
                                                             0.100
 0
406
812
1218
1624
2030
2436
2842
3248
3654
4060
4466
6496
6992
7308
7714
8120
                                                            0.075
                                                             0.050
                                                             0.025
                                                             0.000
                                                             -0.025
                                                             -0.050
                                                             -0.075
                                                             -0.100
                       Item_Type
                           Item_MRP
                                           Jutlet_Location_Type
                                               Outlet_Type
            Item_Weight
               Item_Fat_Content
                                   Establishment_Year
                                       Outlet_Size
                                                   Item Outlet Sales
                   Item_Visibility
                               Outlet_Identifier
```

```
In [13]:
```

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
list1=['Item_Fat_Content','Item_Type','Outlet_Size','Outlet_Type','Outlet_Location_Type']
for val in list1:
    bm[val]=le.fit_transform(bm[val].astype(str))
```

In [14]:

```
bm.dtypes
```

Out[14]:

```
Item_Identifier
                            object
Item Weight
                            float64
Item_Fat_Content
                             int32
Item Visibility
                            float64
Item Type
                             int32
                           float64
Item MRP
Outlet_Identifier
                           object
Outlet Establishment Year
                             int64
Outlet Size
                             int32
Outlet_Location_Type
                             int32
Outlet_Type
                             int32
Item_Outlet_Sales
                          float64
dtype: object
```

In [15]:

```
bm1=bm.drop(['Item_Identifier','Outlet_Identifier','Outlet_Establishment_Year'],axis=1)
```

In [16]:

```
bml.shape
```

Out[16]:

(8523, 9)

In [17]:

```
bm1.skew()
```

Out[17]:

```
0.090561
Item_Weight
Item Fat Content
                     0.994824
Item_Visibility
                      1.167091
Item_Type
                      0.101655
Item MRP
                      0.127202
Outlet Size
                     -0.087072
Outlet_Location_Type -0.209093
Outlet Type
                     0.927438
                     1.177531
Item Outlet Sales
dtype: float64
```

In [34]:

```
for col in bm1.columns:
    if bm1[col].skew()>0.55:
        bm1[col]=np.log1p(bm1[col])
```

In [35]:

```
bml.skew()
```

Out[35]:

0.090561 Item_Weight Item Fat Content -0.332843 Item_Visibility 1.015334 Item_Type 0.101655 Item MRP 0.127202 Outlet_Size -0.087072 Outlet_Location_Type -0.209093 Outlet_Type -0.236040 -0.882266 Item_Outlet_Sales dtype: float64

In [36]:

sns.pairplot(bm1)

Out[36]:

<seaborn.axisgrid.PairGrid at 0x20895dfc688>

In [37]:

1 1 //

Out[37]:

	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Size	Outlet_Location_Type	Outlet_1
Item_Weight	1.000000	-0.015940	-0.012044	0.028015	0.024756	-0.007225	0.004088	-0.00
Item_Fat_Content	-0.015940	1.000000	0.033649	-0.115934	0.002278	-0.011713	-0.006528	-0.002
Item_Visibility	-0.012044	0.033649	1.000000	-0.035995	-0.000701	0.067534	-0.027210	-0.220
Item_Type	0.028015	-0.115934	-0.035995	1.000000	0.032651	-0.001859	0.003084	0.00
Item_MRP	0.024756	0.002278	-0.000701	0.032651	1.000000	0.006059	0.000232	0.000
Outlet_Size	-0.007225	-0.011713	0.067534	-0.001859	0.006059	1.000000	-0.614311	-0.22
Outlet_Location_Type	0.004088	-0.006528	-0.027210	0.003084	0.000232	-0.614311	1.000000	0.389
Outlet_Type	-0.001187	-0.002072	-0.220345	0.003380	0.000053	-0.223204	0.389361	1.000
Item_Outlet_Sales	0.008059	0.007620	-0.188500	0.019914	0.509886	-0.122951	0.059030	0.574
1								Þ

In [38]:

```
corr_hmap=bm1.corr()
plt.figure(figsize=(8,7))
sns.heatmap(corr_hmap,annot=True)
plt.show()
```


In []:

In [39]:

```
bml.plot(kind='box',subplots=True,layout=(2,5))
```

Out[39]:

Item_Weight
Item_Fat_Content
Item_Visibility
Item_Type

AxesSubplot(0.125,0.536818;0.133621x0.343182)
AxesSubplot(0.285345,0.536818;0.133621x0.343182)
AxesSubplot(0.44569,0.536818;0.133621x0.343182)
AxesSubplot(0.606034,0.536818;0.133621x0.343182)

Item_MRP
Outlet_Size
Outlet_Location_Type
Outlet_Type
Item_Outlet_Sales
dtype: object

AxesSubplot(0.766379,0.536818;0.133621x0.343182)
 AxesSubplot(0.125,0.125;0.133621x0.343182)
 AxesSubplot(0.285345,0.125;0.133621x0.343182)
 AxesSubplot(0.44569,0.125;0.133621x0.343182)
 AxesSubplot(0.606034,0.125;0.133621x0.343182)

In [40]:

bm1.shape

Out[40]:

(8523, 9)

In [41]:

bm1.head()

Out[41]:

	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Size	Outlet_Location_Type	Outlet_Type	Item_Outlet_S
0	9.30	0.693147	0.015920	4	249.8092	1	0	0.693147	8.225
1	5.92	1.098612	0.019095	14	48.2692	1	2	1.098612	6.096
2	17.50	0.693147	0.016621	10	141.6180	1	0	0.693147	7.648
3	19.20	1.098612	0.000000	6	182.0950	1	2	0.000000	6.597
4	8.93	0.693147	0.000000	9	53.8614	0	2	0.693147	6.903
4									Þ

In [42]:

#Removing outliers
from scipy.stats import zscore
z_score=abs(zscore(bm1))
print(bm1.shape)
bmr=bm1.loc[(z_score<3).all(axis=1)]
print(bmr.shape)</pre>

(8523, 9) (8075, 9)

In [43]:

x1=bmr.iloc[:,0:-1]
x1.head()

Out[43]:

	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Size	Outlet_Location_Type	Outlet_Type
0	9.30	0.693147	0.015920	4	249.8092	1	0	0.693147
1	5.92	1.098612	0.019095	14	48.2692	1	2	1.098612

```
Item_Visibility
                                     Item_Weight Item_Fat_Content
3
        19.20
                   1.098612
                              0.000000
                                               182.0950
                                                                               2
                                                                                   0.000000
        8.93
                   0.693147
                              0.000000
                                                53.8614
                                                                               2
                                                                                   0.693147
                                                              0
In [44]:
y=bmr.iloc[:,-1]
y.head()
Out[44]:
    8.225808
1
    6.096776
    7.648868
   6.597664
   6.903451
Name: Item Outlet Sales, dtype: float64
In [45]:
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x=sc.fit transform(x1)
x=pd.DataFrame(x,columns=x1.columns)
In [46]:
x.shape
Out[46]:
(8075, 8)
In [47]:
y.shape
Out[47]:
(8075,)
In [48]:
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean squared error
from sklearn.metrics import r2_score
from sklearn import linear model
from sklearn.linear_model import LinearRegression
max_r_score=0
for r state in range (40,3000):
    x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=r_state,test_size=.20)
    regr=linear_model.LinearRegression()
   regr.fit(x_train,y_train)
    y_pred=regr.predict(x_test)
    r scr=r2_score(y_test,y_pred)
    if r scr>max r score:
        max_r_score=r_scr
        final r state=r state
print("max r2 score corresponding to ",final_r_state,"is",max_r_score)
max r2 score corresponding to 1007 is 0.6635535994155548
```

from sklearn.linear_model import LinearRegression,Lasso,Ridge,ElasticNet

In [49]:

from sklearn.svm import SVR

from eklaarn naighbore import KNaighbore Pagrassor

```
TIOM SATEGIN. HELYHDOLS IMPOLU AMELYHDOLSAGYLESSOL
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross val score
import warnings
warnings.filterwarnings('ignore')
In [51]:
model=[LinearRegression(),DecisionTreeRegressor(),KNeighborsRegressor(),SVR(),Lasso(),Ridge(),Elast
for m in model:
    x_train,x_test,y_train,y_test=train_test_split(x,y,random state=1007,test size=.20)
    m.fit(x train,y train)
    print('Score of',m,'is:',m.score(x_train,y_train))
    predm=m.predict(x test)
    print('Error:')
    print('Mean Absolute Error :', mean absolute error(y test, predm))
    print('Mean Squared Error :', mean squared error(y test,predm))
    print('r2_score', r2_score(y_test, predm))
print('*******************
    print('\n')
Score of LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) is: 0.600
214607780897
Mean Absolute Error: 0.4508819407140201
Mean Squared Error: 0.3247586052585833
r2 score 0.6635535994155548
Score of DecisionTreeRegressor(ccp alpha=0.0, criterion='mse', max depth=None,
                      max features=None, max leaf nodes=None,
                      min impurity decrease=0.0, min impurity split=None,
                      min samples leaf=1, min samples split=2,
                      min_weight_fraction_leaf=0.0, presort='deprecated',
                      random state=None, splitter='best') is: 0.999999999632032
Error:
Mean Absolute Error : 0.5884126471575293
Mean Squared Error: 0.5707892595472069
r2 score 0.4086685040600848
Score of KNeighborsRegressor(algorithm='auto', leaf size=30, metric='minkowski',
                    metric params=None, n jobs=None, n neighbors=5, p=2,
                    weights='uniform') is: 0.7533811194825271
Error:
Mean Absolute Error : 0.43385052978471444
Mean Squared Error: 0.31178630884849357
r2 score 0.6769927581131789
Score of SVR(C=1.0, cache size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='scale',
   kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) is: 0.7232454766131324
Mean Absolute Error: 0.3854120441409365
Mean Squared Error: 0.26050879263308246
r2 score 0.730115709998777
Score of Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,
      normalize=False, positive=False, precompute=False, random state=None,
      selection='cyclic', tol=0.0001, warm_start=False) is: 0.0
Mean Absolute Error: 0.7948631810569567
```

```
r2 score -0.00045426775091050864
Score of Ridge(alpha=1.0, copy X=True, fit intercept=True, max iter=None,
     normalize=False, random state=None, solver='auto', tol=0.001) is: 0.6002145775289626
Mean Absolute Error : 0.4508975355779774
Mean Squared Error : 0.3247723336567663
r2 score 0.6635393769436028
Score of ElasticNet(alpha=1.0, copy X=True, fit intercept=True, 11 ratio=0.5,
         max_iter=1000, normalize=False, positive=False, precompute=False,
          random state=None, selection='cyclic', tol=0.0001, warm start=False) is: 0.0136490887641
72033
Error:
Mean Absolute Error: 0.7901526790960364
Mean Squared Error : 0.9522511621278656
r2 score 0.013478101080101279
***************************
4
In [50]:
from sklearn.model selection import cross val score
for m in model:
   score=cross_val_score(m,x,y,cv=5,scoring='r2')
   print('Score of',m,'is:',score)
   print('Mean score:',score.mean())
   print('Standard deviation:',score.std())
*******)
   print('\n')
Score of LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) is: [0.61
996276 0.61721137 0.5959433 0.6043708 0.62295103]
Mean score: 0.6120878533559326
Standard deviation: 0.010261312117869494
Score of DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None,
                   max_features=None, max_leaf_nodes=None,
                    min_impurity_decrease=0.0, min_impurity_split=None,
                    min_samples_leaf=1, min_samples_split=2,
                    min weight fraction leaf=0.0, presort='deprecated',
                    random state=None, splitter='best') is: [0.39766214 0.38597254 0.43708902 0.3
6506107 0.468370091
Mean score: 0.41083097007516045
Standard deviation: 0.037111936346064814
Score of KNeighborsRegressor(algorithm='auto', leaf size=30, metric='minkowski',
                 metric_params=None, n_jobs=None, n_neighbors=5, p=2,
                  weights='uniform') is: [0.62508417 0.62123307 0.63672728 0.6221901 0.66677253]
Mean score: 0.6344014303310026
Standard deviation: 0.01710339692739742
                  ******************
Score of SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='scale',
   kernel='rbf', max iter=-1, shrinking=True, tol=0.001, verbose=False) is: [0.69155112
0.69128264 0.69045974 0.6902548 0.7212101 ]
```

Mean Squared Error: 0.9656995350682439

```
Mean score: 0.6969516795613064
Standard deviation: 0.012138934896551306
Score of Lasso(alpha=1.0, copy X=True, fit intercept=True, max iter=1000,
     normalize=False, positive=False, precompute=False, random state=None,
     selection='cyclic', tol=0.0001, warm_start=False) is: [-6.48365130e-05 -1.14887371e-03 -1.54
616990e-03 -1.39153574e-04
 -5.70222568e-04]
Mean score: -0.0006938512524821139
Standard deviation: 0.0005748261686497952
                   *****************
Score of Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
     normalize=False, random state=None, solver='auto', tol=0.001) is: [0.61995312 0.61721265
0.59595595 0.60437558 0.62294499]
Mean score: 0.6120884577627396
Standard deviation: 0.010253982393208405
Score of ElasticNet(alpha=1.0, copy_X=True, fit_intercept=True, l1_ratio=0.5,
          max_iter=1000, normalize=False, positive=False, precompute=False,
          random_state=None, selection='cyclic', tol=0.0001, warm_start=False) is: [0.02085523 0.0]
1936004 0.02182611 0.01882532 0.0085976 ]
Mean score: 0.017892861016483685
Standard deviation: 0.004768018566463891
4
In [52]:
import joblib
joblib.dump(DecisionTreeRegressor, 'bigmartdata.pkl')
Out[52]:
['bigmartdata.pkl']
In [ ]:
```