EE240: Power Engineering LAB

Power measurement in balanced 3 phase circuit and power factor improvement

Instructor

Prof. B. G. Fernandes

19/1/2021, Tuesday

Power in $1-\phi$ circuit:

Let
$$v = \sqrt{2}V sin(\omega t)$$

 $\overline{V} = V \angle 0$ is the applied voltage & $i = \frac{v}{Z} = \sqrt{2}I sin(\omega t - \theta)$, $\overline{I} = \frac{\overline{V} \angle - \theta}{Z} = Ie^{-j\theta}$

Instantaneous power delivered to the load,

 $= VI \cos \theta - VI \cos \theta \cos 2\omega t - VI \sin \theta \sin 2\omega t$

 \therefore Average power, $P = VI \cos \theta \ W$

$$\cos\theta = \frac{P}{VI}$$

- $\Rightarrow \theta = 0$, load = R, 'p' is always +ve
- $\Rightarrow \theta \neq 0$, instantaneous power is negative, even though load is passive

- ⇒ Energy stored in L/C is returned back to source
- \Rightarrow 'p' pulsates at 2f. Load may experience vibration
- ⇒ Requires resilient mountings

Complex power: $\underline{S} = P + jQ$

Dimensions same as P & Q

EE240: Power Engineering LAB

⇒VA (Volt-Ampere)

$$S = VI\cos\theta + jVI\sin\theta$$
$$= VIe^{j\theta} = VI^*$$

Inductive circuit: Source supplies 'Q'

Capacitive circuit: Source receives 'Q'

Three Phase AC Circuits

- \Rightarrow Generation, Transmission, Distribution & utilization of large blocks of power are accomplished by means of 3- \emptyset circuits.
- \Rightarrow 1-Ø supply is generated from 3-Ø supply.
- ⇒ A balanced 3-Ø system consists of 3 single phase voltages having same amplitude & f, but out of phase with each other by 120°.

- ⇒ 'v' in coil AA' reaches peak followed by BB' & CC'
- ⇒ Phase relationship is ABC
- ⇒ Also known as 'phase sequence'
- \Rightarrow phase relationship is ACB \Rightarrow

$$v_{aa'} = \sqrt{2}V\sin\omega t$$
 $\overline{V}_{aa'} = V\angle 0 = \overline{V}_a$

$$v_{bb'} = \sqrt{2}V\sin(\omega t - \frac{2\pi}{3}) \qquad \overline{V}_{bb'} = V\angle - \frac{2\pi}{3} = \overline{V}_b$$

$$v_{cc'} = \sqrt{2}V\sin(\omega t - \frac{4\pi}{3}) \qquad \overline{V}_{cc'} = V\angle - \frac{4\pi}{3} = \overline{V}_c$$

$$v_{aa} + v_{bb} + v_{cc} = 0$$
 or $\overline{V}_a + \overline{V}_b + \overline{V}_c = 0$

⇒ In balanced 3-phase system, sum of three phase voltages is zero

Three Phase connection

Y Connection:

⇒ Potential difference between any line and common point (also known as neutral) known as phase voltage

$$\overline{V}_{an}$$
, \overline{V}_{bn} & \overline{V}_{cn}

⇒ Potential difference between any two lines = Line voltage or line-line voltage

$$\overline{V}_{AB} = pot. \ of \ A \ w.r.t \ B$$

$$= -V_{bn} + V_{an} = V_{an} - V_{bn}$$

$$V_{BC} = V_{bn} + V_{nc}, \quad V_{CA} = V_{cn} + V_{na}$$

Y connected load -Balanced Load:

Magnitude & phase angle are the same in all 3 phases

Assume ABC phase sequence and $V_{AN} = V \angle 0$ as the reference phasor

$$V_{AN} = V \angle 0$$

$$V_{BN} = V \angle \frac{-2\pi}{3}$$

$$V_{CN} = V \angle \frac{-4\pi}{3}$$

$$V_{CN} = V \angle \frac{-4\pi}{3}$$

$$V_{CN} = V \angle \frac{-4\pi}{3}$$

$$\overline{I}_B = \frac{\overline{V}_{BN}}{Z_B} = I \angle -(\frac{2\pi}{3} + \theta)$$

$$\overline{I}_C = \frac{\overline{V}_{CN}}{Z_C} = I \angle -(\frac{4}{3} + \theta)$$

 \Rightarrow Line 'l' = Phase 'l'

Δ-Connection:

Line V = Phase V

Assume, $V_{AB} = V \angle 0$,

$$V_{BC} = V \angle -2\pi/3$$
, $V_{CA} = V \angle -4\pi/3$

Load connection:

$$\overline{I}_{AB} = \frac{V_{AB}}{Z_{AB}} = \frac{V \angle 0}{Z \angle \theta} = I \angle -\theta$$

$$\overline{I}_{BC} = \frac{\overline{V}_{BC}}{Z_{BC}} = I \angle -(\frac{2\pi}{3} + \theta)$$

$$\overline{I}_{CA} = \frac{\overline{V}_{CA}}{Z_{CA}} = I \angle -(\frac{4\pi}{3} + \theta)$$

$$\overline{I}_{CA} = \frac{\overline{V}_{CA}}{Z_{CA}} = I \angle -(\frac{4\pi}{3} + \theta)$$

Line I lags the phase I by $\pi/6$

Power in 3-Ф circuits:

- \Rightarrow Recall p in 1 Φ circuits pulsates at 2f
- ∴ 1-Ф motors require special resilient mountings

$$v_a = \sqrt{2}V \sin \omega t, \ v_b = \sqrt{2}V \sin(\omega t - \frac{2\pi}{3}), v_c = \sqrt{2}V \sin(\omega t - \frac{4\pi}{3})$$

$$i_a = \sqrt{2} Isin(\omega t - \theta), i_b = \sqrt{2} Isin\left(\omega t - \frac{2\pi}{3} - \theta\right), i_c = \sqrt{2} Isin\left(\omega t - \frac{4\pi}{3} - \theta\right)$$

:. Instantaneous power

$$p_{a} = v_{a}i_{a} = VI \left[\cos \theta - \cos(2\omega t - \theta) \right]$$

$$p_{b} = v_{b}i_{b} = VI \left[\cos \theta - \cos(2\omega t - \theta - 240^{\circ}) \right]$$

$$p_{c} = v_{c}i_{c} = VI \left[\cos \theta - \cos(2\omega t - \theta - 480^{\circ}) \right]$$

∴ Total instantaneous 3- Φ power = 3VI cos θ

$$= 3V_{ph}I_{ph}cos\theta$$

$$\theta = \angle V_{ph}^{I_{ph}}$$

= Average power

= Constant

If system is 'Y' connected

$$v_{ph} = \frac{v_L}{\sqrt{3}}, \quad I_{ph} = I_L \quad \therefore P = \sqrt{3}V_L I_L \cos\theta$$

If Load is delta connected $V_L = V_{Ph}$, $I_L = \sqrt{3}I_{Ph}$ $\therefore P = \sqrt{3} \ V_I I_I \cos\theta \ W$

Independent of type of connection

$$\therefore Q = \sqrt{3} V I \sin \theta \text{ VAr} \qquad S = \sqrt{3} V I^* \text{ VA}$$

Measurement of Power

⇒ Using wattmeter

⇒ Has 2 coils: — Current coil

Voltage coil

 $M \rightarrow Mains$

 $L \rightarrow Load$

 $C \rightarrow Common$

 $V \rightarrow Voltage$

$$\text{'W' reading} = I_{\text{Flowing}} V_{\text{Applied}} cos \angle_{V_{\text{Applied}}}^{I_{\text{Flowing}}}$$

In case of 3-phase 3 wire load:

Two wattmeter method:

Observations:

If load is balanced

$$\Rightarrow \sqrt{3}V_L I_L \cos\theta = W_1 + W_2$$

If load is unbalanced

$$\theta = \angle I_{ph}^{I_{ph}} \qquad W_1 + W_2 = P_A + P_B + P_C \neq \sqrt{3}V_L I_L \cos \theta$$
Power in phase A

$$W_1 = V_{AB}I_A \cos \angle_{V_{AB}}^{I_A}$$
$$= V_L I_L \cos(30 + \theta)$$

$$W_2 = V_{CB}I_C \cos \angle_{V_{CB}}^{I_C}$$
$$= V_L I_L \cos(30 - \theta)$$

If $\theta = 0 \Rightarrow$ Load is 'R', $W_1 = W_2$ If $\theta = \pi/3$, one of the Wattmeter would read zero

 \Rightarrow If θ > π /3, read -ve (interchange M & L)

$$\theta = \tan^{-1} \sqrt{3} \left[\frac{W_2 - W_1}{W_1 + W_2} \right]$$

Note: Phase sequence & lines in which they are connected should be known to determine whether θ is +ve or -ve

Concept of Reactive Power

1 kVA, 200V, 50 Hz Generator

- \Rightarrow Rated current = 5A
- \Rightarrow Assume load = 1 kVAr, 200V
- ⇒ Current drawn by the load = 5A
 = rated current of generator
- \Rightarrow Power consumed by the load =0

Assume generator is ideal (losses = 0)

- \therefore Input power = o/p power + loss = 0
- \Rightarrow No input is required.

- ⇒ Source has the capability to supply P
- ⇒ If additional load (P) is connected
- ⇒ If losses are taken into account, I/P power = losses

For any
$$I \neq 0 \implies I_s = \sqrt{I_a^2 + 5^2} \ge 5$$

- \Rightarrow Fuse will operate
- \Rightarrow Else I²R losses \uparrow , RMS value
- \Rightarrow Temperature rise
- ⇒ Cooling requirement

- ⇒ Though 'L' does not consume any P, source capacity can not be utilized to cater other loads
- \Rightarrow Energy meter reading α power α VI $\cos\theta$ α I $\cos\theta$

Load is drawing I_L

- \Rightarrow Energy Meter reading $\alpha I_L cos\theta$
 - ∴ Tariff α I_Lcos θ

Who pays for $I_L \sin\theta$?

⇒ Fuel (power input) to supply Q may not be required

- ⇒ Utilities may not be able to cater other loads
- ⇒ Returns are low
- ⇒ Utilization and returns are maximum at unity p.f
- ⇒ Load requires reactive power
- ⇒ Generate reactive power locally
- ⇒ Capacitor draws leading I
- \Rightarrow If $I_C = I_L \sin\theta$, $I_S = I_L \cos\theta$
- ⇒ Overhead line loss & drop
- ⇒ Voltage profile at the load end also improves

Power factor Correction

- In DC, if P & V are known, I can be determined
- However in AC, P, V & cosΘ or V & S should be known to determine I

For a given P

- I drawn by load \uparrow as cos θ (P.F.) \downarrow
- \Rightarrow Drop in the line \uparrow
- \Rightarrow I²R , I²X in the line 1 and therefore 'S' of source 1

- \Rightarrow I² R loss in source also increases
- V_L< V_s for lagging & unity P.F.
- $V_L \le V_S$ or $V_L > V_S$ for leading P.F.

