Foundations of Computing Lecture 21

Arkady Yerukhimovich

April 8, 2025

Outline

- 1 Lecture 20 Review
- $oldsymbol{2}$ A Review of ${\cal P}$ and ${\cal NP}$
- 3 Polynomial-Time Reductions
- $4 \mathcal{NP}$ -Completeness
- 5 \mathcal{NP} -Completeness Using Reductions

Lecture 20 Review

- Verifying vs. Deciding
- ullet The Complexity Class \mathcal{NP}

$$\mathcal{NP} = \bigcup_{k} NTIME(n^k)$$

Outline

- 1 Lecture 20 Review
- $oldsymbol{2}$ A Review of ${\cal P}$ and ${\cal NP}$
- 3 Polynomial-Time Reductions
- $4 \mathcal{NP}$ -Completeness
- 5 \mathcal{NP} -Completeness Using Reductions

• $L \in \mathcal{P}$ if there is a poly-time DTM M that decides L:

- $L \in \mathcal{P}$ if there is a poly-time DTM M that decides L:
 - For $x \in L$, M(x) halts and outputs 1

- $L \in \mathcal{P}$ if there is a poly-time DTM M that decides L:
 - For $x \in L$, M(x) halts and outputs 1
 - For $x \notin L$, M(x) halts and outputs 0

- $L \in \mathcal{P}$ if there is a poly-time DTM M that decides L:
 - For $x \in L$, M(x) halts and outputs 1
 - For $x \notin L$, M(x) halts and outputs 0
 - Runtime of M is O(poly(|x|)) for all x worst case

- $L \in \mathcal{P}$ if there is a poly-time DTM M that decides L:
 - For $x \in L$, M(x) halts and outputs 1
 - For $x \notin L$, M(x) halts and outputs 0
 - Runtime of M is O(poly(|x|)) for all x worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:

${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

- $L \in \mathcal{P}$ if there is a poly-time DTM M that decides L:
 - For $x \in L$, M(x) halts and outputs 1
 - For $x \notin L$, M(x) halts and outputs 0
 - Runtime of M is O(poly(|x|)) for all x worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:
 - For $x \in L$, there exists $w \in \{0,1\}^{poly(|x|)}$ s.t. V(x,w) = 1

${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

- $L \in \mathcal{P}$ if there is a poly-time DTM M that decides L:
 - For $x \in L$, M(x) halts and outputs 1
 - For $x \notin L$, M(x) halts and outputs 0
 - Runtime of M is O(poly(|x|)) for all x worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:
 - For $x \in L$, there exists $w \in \{0,1\}^{poly(|x|)}$ s.t. V(x,w) = 1
 - For $x \notin L$, for all $w \in \{0,1\}^{poly(|x|)}$, V(x,w) = 0

${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

- $L \in \mathcal{P}$ if there is a poly-time DTM M that decides L:
 - For $x \in L$, M(x) halts and outputs 1
 - For $x \notin L$, M(x) halts and outputs 0
 - Runtime of M is O(poly(|x|)) for all x worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:
 - For $x \in L$, there exists $w \in \{0,1\}^{poly(|x|)}$ s.t. V(x,w) = 1
 - For $x \notin L$, for all $w \in \{0,1\}^{poly(|x|)}$, V(x,w) = 0
 - w is a witness to $x \in L$

$\mathcal P$ and $\mathcal N\mathcal P$

- $L \in \mathcal{P}$ if there is a poly-time DTM M that decides L:
 - For $x \in L$, M(x) halts and outputs 1
 - For $x \notin L$, M(x) halts and outputs 0
 - Runtime of M is O(poly(|x|)) for all x worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:
 - For $x \in L$, there exists $w \in \{0,1\}^{poly(|x|)}$ s.t. V(x,w) = 1
 - For $x \notin L$, for all $w \in \{0,1\}^{poly(|x|)}$, V(x,w) = 0
 - w is a witness to $x \in L$

Why Do We Study These?

- $L \in \mathcal{P}$ if there is a poly-time DTM M that decides L:
 - For $x \in L$, M(x) halts and outputs 1
 - For $x \notin L$, M(x) halts and outputs 0
 - Runtime of M is O(poly(|x|)) for all x worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:
 - For $x \in L$, there exists $w \in \{0,1\}^{poly(|x|)}$ s.t. V(x,w) = 1
 - For $x \notin L$, for all $w \in \{0,1\}^{poly(|x|)}$, V(x,w) = 0
 - w is a witness to $x \in L$

Why Do We Study These?

Both ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$ contain many useful languages

F

 \bullet ${\cal P}$ captures the class of efficiently decidable languages

F

- ullet ${\cal P}$ captures the class of efficiently decidable languages
- Can determine membership in L for all inputs

F

- ullet ${\cal P}$ captures the class of efficiently decidable languages
- Can determine membership in L for all inputs

\mathcal{NP}

• \mathcal{NP} captures the class of problems where there exists a short proof that $x \in \mathcal{L}$

F

- ullet ${\cal P}$ captures the class of efficiently decidable languages
- Can determine membership in L for all inputs

\mathcal{NP}

- \mathcal{NP} captures the class of problems where there exists a short proof that $x \in \mathcal{L}$
- Can prove $x \in L$ for all inputs, but can't lie that a string not in L is in the language

P

- ullet ${\cal P}$ captures the class of efficiently decidable languages
- Can determine membership in L for all inputs

$\mathcal{N}\mathcal{P}$

- \mathcal{NP} captures the class of problems where there exists a short proof that $x \in \mathcal{L}$
- Can prove $x \in L$ for all inputs, but can't lie that a string not in L is in the language

\mathcal{NP} -Completeness

There are problems in \mathcal{NP} that are as hard as any other problem in \mathcal{NP}

Outline

- Lecture 20 Review
- ② A Review of $\mathcal P$ and $\mathcal {NP}$
- Polynomial-Time Reductions
- $4 \mathcal{NP}$ -Completeness
- 5 \mathcal{NP} -Completeness Using Reductions

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B $(A \leq_P B)$ if there is a poly-time computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B $(A \leq_P B)$ if there is a poly-time computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

 Poly-time reductions give an efficient way to convert membership testing in A to membership testing in B

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B $(A \leq_P B)$ if there is a poly-time computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

- Poly-time reductions give an efficient way to convert membership testing in A to membership testing in B
- If B has a poly-time solution so does A

Poly-time Mapping Reductions

f runs in time poly(|x|) on all inputs x

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

Proof:

ullet Let M be the poly-time TM deciding B

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B
- Can construct M' deciding A:

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B
- Can construct M' deciding A:
 M' = On input x:
 - ① Compute f(x)
 - 2 Run M(f(x)) and output whatever M outputs

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B
- Can construct M' deciding A:
 M' = On input x:
 - **①** Compute f(x)
 - ② Run M(f(x)) and output whatever M outputs
 - If $x \in A$, $f(x) \in B$ so M accepts

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B
- Can construct M' deciding A:
 M' = On input x:
 - **①** Compute f(x)
 - ② Run M(f(x)) and output whatever M outputs
 - If $x \in A$, $f(x) \in B$ so M accepts
 - If $x \notin A$, $f(x) \notin B$, so M rejects

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B
- Can construct M' deciding A:
 M' = On input x:
 - **1** Compute f(x)
 - ② Run M(f(x)) and output whatever M outputs
 - If $x \in A$, $f(x) \in B$ so M accepts
 - If $x \notin A$, $f(x) \notin B$, so M rejects
 - Since both f and M are poly-time, M(f(x)) is also poly-time

Using Poly-Time Reductions to Prove Hardness

Theorem

If $A \leq_P B$ and $A \notin \mathcal{P}$, then $B \notin \mathcal{P}$

Outline

- 1 Lecture 20 Review
- $oldsymbol{2}$ A Review of ${\cal P}$ and ${\cal NP}$
- 3 Polynomial-Time Reductions
- \P \mathcal{NP} -Completeness
- 5 \mathcal{NP} -Completeness Using Reductions

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- ullet B is "as hard" as any language in \mathcal{NP}

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- ullet B is "as hard" as any language in \mathcal{NP}
- \bullet To study hardness of $\mathcal{NP},$ enough to study hardness of some $\mathcal{NP}\text{--complete}$ problem

$\mathcal{NP} ext{-}\mathsf{Completeness}$

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- ullet B is "as hard" as any language in \mathcal{NP}
- \bullet To study hardness of $\mathcal{NP},$ enough to study hardness of some $\mathcal{NP}\text{-complete}$ problem

Theorem

If B is \mathcal{NP} -complete and $B \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- ullet B is "as hard" as any language in \mathcal{NP}
- \bullet To study hardness of $\mathcal{NP},$ enough to study hardness of some $\mathcal{NP}\text{-complete}$ problem

Theorem

If B is \mathcal{NP} -complete and $B \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$

Theorem

If B is \mathcal{NP} -complete and $B \leq_P C$ for $C \in \mathcal{NP}$, then C is \mathcal{NP} -complete

SAT Problem

 $SAT = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula}\}$

SAT Problem

$$SAT = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

SAT Problem

$$SAT = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula}\}$$

Proof Idea:

SAT Problem

$$SAT = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula}\}$$

- ② For each $A \in \mathcal{NP}$, $A \leq_P SAT$

SAT Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

- ② For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT

SAT Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

- ② For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - ullet f takes an input x and produces formula ϕ

SAT Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

- ② For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - \bullet f takes an input x and produces formula ϕ
 - If $x \in A$ then ϕ is satisfiable

SAT Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

- ② For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - ullet f takes an input x and produces formula ϕ
 - If $x \in A$ then ϕ is satisfiable
 - If $x \notin A$ then ϕ is not satisfiable

SAT Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

- ② For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - f takes an input x and produces formula ϕ
 - If $x \in A$ then ϕ is satisfiable
 - If $x \notin A$ then ϕ is not satisfiable
 - ullet Idea: Let ϕ be a formula simulating \mathcal{NP} machine for A on input x

SAT Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

- ② For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - ullet f takes an input x and produces formula ϕ
 - If $x \in A$ then ϕ is satisfiable
 - If $x \notin A$ then ϕ is not satisfiable
 - ullet Idea: Let ϕ be a formula simulating \mathcal{NP} machine for A on input x
 - \bullet That is, ϕ corresponds to the Boolean logic done by this machine

SAT Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

- ② For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - ullet f takes an input x and produces formula ϕ
 - If $x \in A$ then ϕ is satisfiable
 - If $x \notin A$ then ϕ is not satisfiable
 - ullet Idea: Let ϕ be a formula simulating \mathcal{NP} machine for A on input x
 - \bullet That is, ϕ corresponds to the Boolean logic done by this machine
 - Since any computation can be represented as a Boolean computation, this is always possible

#	q_0	<i>x</i> ₁	<i>X</i> ₂	 Xn	Ш	 Ш	#
#							#
#							#
#							#

Table: Tableau of configurations of M

#	q 0	<i>x</i> ₁	<i>x</i> ₂	• • •	Xn	Ш	 Ш	#
#								#
#								#
#								#

Table: Tableau of configurations of M

ullet Every row is a configuration of M

#	q 0	<i>x</i> ₁	<i>X</i> ₂	 Xn	Ш	 Ш	#
#							#
#							#
#							#

Table: Tableau of configurations of *M*

- ullet Every row is a configuration of M
- Two consecutive rows represent a valid transition if they follow rules of M

#	q_0	<i>x</i> ₁	<i>X</i> ₂	 Xn	Ш	 Ш	#
#							#
#							#
#							#

Table: Tableau of configurations of *M*

- ullet Every row is a configuration of M
- Two consecutive rows represent a valid transition if they follow rules of M
- Every cell contains #, or a state $q \in Q$, or a tape symbol $\in \Gamma$

#	q_0	<i>x</i> ₁	<i>X</i> ₂	 Xn	Ш	 Ш	#
#							#
#							#
#							#

Table: Tableau of configurations of M

- ullet Every row is a configuration of M
- Two consecutive rows represent a valid transition if they follow rules of M
- Every cell contains #, or a state $q \in Q$, or a tape symbol $\in \Gamma$
- M accepts x if a row of this tableau is in q_{accept}

Given input x that we want to check if $x \in A$ We need to build a formula ϕ that checks the following four things:

• Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
- 2 Top row is the start configuration (on input x)

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
- 2 Top row is the start configuration (on input x)
- 3 Some row is in q_{accept}

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
- 2 Top row is the start configuration (on input x)
- Some row is in q_{accept}
- Every pair of adjacent rows represents a valid transition of M

• Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
 - For $1 \le i, j \le n^k$, and $s \in C$, let $x_{i,j,s} = 1$ if cell[i,j] = s

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
 - For $1 \le i, j \le n^k$, and $s \in C$, let $x_{i,j,s} = 1$ if cell[i,j] = s
 - ullet The following equation $\phi_{i,j}^{cell}$ guarantees that a cell has a valid value

$$\phi_{i,j}^{\textit{cell}} = \underbrace{\left(\bigvee_{s \in C} x_{i,j,s}\right)}_{\text{cell } i,j \text{ has at least } 1 \text{ value}} \land \underbrace{\left(\bigwedge_{s,t \in C, s \neq t} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})\right)}_{\text{cell } i,j \text{ has at most } 1 \text{ value}}$$

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
 - For $1 \le i, j \le n^k$, and $s \in C$, let $x_{i,j,s} = 1$ if cell[i,j] = s
 - \bullet The following equation $\phi_{i,j}^{cell}$ guarantees that a cell has a valid value

$$\phi_{i,j}^{\textit{cell}} = \underbrace{\left(\bigvee_{s \in C} x_{i,j,s}\right)}_{\text{cell } i,j \text{ has at least 1 value}} \land \underbrace{\left(\bigwedge_{s,t \in C, s \neq t} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})\right)}_{\text{cell } i,j \text{ has at most 1 value}}$$

• Now, we just take the AND over all n^{2k} cells in the tableau

2 Top row is the start configuration

- 2 Top row is the start configuration
- Define a formula $\phi_{\it start}$ that checks that all the cells in the top row are correct

$$\phi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \cdots \wedge x_{1,n^k,\#}$$

3 Some row is in q_{accept}

- 3 Some row is in q_{accept}
 - ullet Define a formula $\phi_{\it accept}$ that checks that some row contains $q_{\it accept}$

$$\phi_{\mathit{accept}} = \bigvee_{1 \leq i, j \leq n^k} x_{i, j, q_{\mathit{accept}}}$$

lacktriangle Every pair of adjacent rows represents a valid transition of M

- Every pair of adjacent rows represents a valid transition of M
 - We need to define what is a valid move between two configurations

- Every pair of adjacent rows represents a valid transition of M
 - We need to define what is a valid move between two configurations
- If the control head is not next to some cell, that cell will not change

- Every pair of adjacent rows represents a valid transition of M
 - We need to define what is a valid move between two configurations
- If the control head is not next to some cell, that cell will not change
- For cells after control head, can write to the cell and move left or right (depending on M)

- Every pair of adjacent rows represents a valid transition of M
 - We need to define what is a valid move between two configurations
- If the control head is not next to some cell, that cell will not change
- For cells after control head, can write to the cell and move left or right (depending on M)
- ullet Every 2 imes 3 cell window can be checked to follow these rules

- Every pair of adjacent rows represents a valid transition of M
 - We need to define what is a valid move between two configurations
- If the control head is not next to some cell, that cell will not change
- For cells after control head, can write to the cell and move left or right (depending on M)
- ullet Every 2 imes 3 cell window can be checked to follow these rules
- Now just take the ∧ over all possible 6-cell windows

• Finally, need to check that this reduction runs in poly time (in n = |x|)

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells
- ϕ_{cell} has fixed size for each cell, so $O(n^{2k})$ total

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells
- ϕ_{cell} has fixed size for each cell, so $O(n^{2k})$ total
- ϕ_{start} has fixed size for each cell in top row, so $O(n^k)$ total

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells
- ϕ_{cell} has fixed size for each cell, so $O(n^{2k})$ total
- ϕ_{start} has fixed size for each cell in top row, so $O(n^k)$ total
- ullet ϕ_{move} and ϕ_{accept} have fixed size for each cell, so $O(n^{2k})$ total

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells
- ϕ_{cell} has fixed size for each cell, so $O(n^{2k})$ total
- ϕ_{start} has fixed size for each cell in top row, so $O(n^k)$ total
- ullet ϕ_{move} and ϕ_{accept} have fixed size for each cell, so $O(n^{2k})$ total
- Summing up, we see $|\phi| = O(n^{2k})$

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells
- ϕ_{cell} has fixed size for each cell, so $O(n^{2k})$ total
- ϕ_{start} has fixed size for each cell in top row, so $O(n^k)$ total
- ullet ϕ_{move} and ϕ_{accept} have fixed size for each cell, so $O(n^{2k})$ total
- Summing up, we see $|\phi| = O(n^{2k})$
- Since k = O(1), this is polynomial in n

Outline

- 1 Lecture 20 Review
- 2 A Review of $\mathcal P$ and $\mathcal {NP}$
- 3 Polynomial-Time Reductions
- $4 \mathcal{NP}$ -Completeness
- 5 \mathcal{NP} -Completeness Using Reductions

- $\mathbf{0}$ $L \in \mathcal{NP}$
- ② L is no easier than an \mathcal{NP} -Complete problem

- $\mathbf{0}$ $L \in \mathcal{NP}$
- 2 L is no easier than an \mathcal{NP} -Complete problem

$$SAT <_P L$$

• Recall that SAT asks if a Boolean formula has a satisfying assignment

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

• A literal is a (possibly negated) Boolean variable – x or \overline{x}

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

- A literal is a (possibly negated) Boolean variable x or \overline{x}
- A clause is several literals connected with \lor 's $x_1 \lor \overline{x_2} \lor x_3$

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

- A literal is a (possibly negated) Boolean variable x or \overline{x}
- A clause is several literals connected with \lor 's $x_1 \lor \overline{x_2} \lor x_3$
- A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses connected by ∧'s

$$(x_1 \vee \overline{x_2} \vee x_3 \vee x_4) \wedge (\overline{x_3} \vee x_5)$$

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

- A literal is a (possibly negated) Boolean variable x or \overline{x}
- A clause is several literals connected with \lor 's $x_1 \lor \overline{x_2} \lor x_3$
- \bullet A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses connected by \land 's

$$(x_1 \vee \overline{x_2} \vee x_3 \vee x_4) \wedge (\overline{x_3} \vee x_5)$$

A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_3} \vee x_4 \vee x_5) \wedge (\overline{x_1} \vee x_4 \vee x_2)$$

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

- A literal is a (possibly negated) Boolean variable x or \overline{x}
- A clause is several literals connected with \lor 's $x_1 \lor \overline{x_2} \lor x_3$
- \bullet A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses connected by \wedge 's

$$(x_1 \vee \overline{x_2} \vee x_3 \vee x_4) \wedge (\overline{x_3} \vee x_5)$$

A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_3} \vee x_4 \vee x_5) \wedge (\overline{x_1} \vee x_4 \vee x_2)$$

3-SAT

 $3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3-CNF formula} \}$

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

- A literal is a (possibly negated) Boolean variable x or \overline{x}
- A clause is several literals connected with \lor 's $x_1 \lor \overline{x_2} \lor x_3$
- \bullet A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses connected by \wedge 's

$$(x_1 \vee \overline{x_2} \vee x_3 \vee x_4) \wedge (\overline{x_3} \vee x_5)$$

A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_3} \vee x_4 \vee x_5) \wedge (\overline{x_1} \vee x_4 \vee x_2)$$

3-SAT

 $3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3-CNF formula} \}$

Can show that 3SAT is \mathcal{NP} -complete using similar proof to SAT

Recall The Clique Problem

Clique

A clique in and undirected graph is a subset of nodes s.t. every two nodes are connected by an edge. A k-clique is a clique containing k nodes

 $CLIQUE = \{\langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique}\}$

Goal:

Prove that CLIQUE is $\mathcal{NP}\text{-complete}$

Recall The Clique Problem

Clique

A clique in and undirected graph is a subset of nodes s.t. every two nodes are connected by an edge. A k-clique is a clique containing k nodes

 $\mathit{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique} \}$

Goal:

Prove that CLIQUE is $\mathcal{NP}\text{-complete}$

- 3SAT <_P CLIQUE

$\overline{3SAT} \leq_P CLIQUE$

• Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

- \bullet Need to show reduction f from 3SAT formula ϕ to $\langle {\it G}, {\it k} \rangle$ where
 - ullet If ϕ is satisfiable, G has a clique of size k

- ullet Need to show reduction f from 3SAT formula ϕ to $\langle G,k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - ullet If ϕ is not satisfiable, ${\it G}$ has no clique of size ${\it k}$

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - ullet If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

 $\begin{pmatrix} x_1 \end{pmatrix}$

 (x_1)

 (x_2)

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - ullet If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

 $\begin{pmatrix} x_1 \end{pmatrix}$

 (x_1)

 (x_2)

ullet If ϕ is satisfiable then ${\it G}$ has a ${\it k}$ -clique

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

 $\begin{pmatrix} x_1 \end{pmatrix}$

 (x_1)

 (x_2)

- If ϕ is satisfiable then G has a k-clique
- If G has a k-clique then ϕ is satisfiable