3.1

Vecteurs de l'espace

Maths Spé terminale - JB Duthoit

3.1.1 Définitions

Définition

Les points A et B étant distincts, le vecteur \overrightarrow{AB} est caractérisé par :

- sa direction
- son sens (de A vers B)
- sa norme, notée $\|\overrightarrow{AB}\|$, qui est la longueur AB.

Propriété

Soient A,B,C et D quatre points de l'espace.

- $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si $AB\underline{DC}$ est un parallélogramme.
- D est l'image de C par la translation de vecteurs \overrightarrow{AB} si et seulement si $\overrightarrow{AB} = \overrightarrow{CD}$
- Pour tout vecteur \vec{u} et tout point O, il existe un unique point M tel que $\overrightarrow{OM} = \vec{u}$

Remarque

- La translation qui transforme M en lui-même est la translation de vecteur \overrightarrow{MM} . Le vecteur \overrightarrow{MM} est appelé vecteur nul; on le note $\overrightarrow{0}$ ainsi $\overrightarrow{MM} = \overrightarrow{0}$.
- Deux vecteurs sont égaux s'ils ont même direction, même sens et même norme.

3.1.2 Opérations sur les vecteurs

Définition règle du parallélogramme

Soit \vec{u} et \vec{v} deux vecteurs de l'espace de représentants respectifs $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. La somme des vecteurs \vec{u} et \vec{v} est le vecteur noté $\vec{u} + \vec{v}$ de représentant \overrightarrow{AD} tel que \overrightarrow{ABDC} soit un parallélogramme.

Propriété - Relation de Chasles

Pour tous points A, B et C de l'espace, on a $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Définition - Produit d'un vecteur par un réel

Soient \vec{u} un vecteur non nul et k un réel non nul. Le vecteur $k\vec{u}$ est le vecteur qui a :

- la même direction que le vecteur \vec{u}
- le même sens que \vec{u} si k>0, le sens contraire de \vec{u} si k<0
- pour norme $|k| \times ||\vec{u}||$

Propriété

Pour tout vecteur \vec{u} et pour tout réel $k: 0\vec{u} = k\vec{0} = \vec{0}$

Propriété

Soit \vec{u} et \vec{v} deux vecteurs de l'espace. Soit k et k' deux réels.

•
$$k\vec{u} = \vec{0} \Leftrightarrow k = 0 \text{ ou } \vec{u} = \vec{0}$$

•
$$(k+k')\vec{u} = k\vec{u} + k'\vec{u}$$

•
$$k(k'\vec{u}) = kk'\vec{u}$$

•
$$k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$$

Définition

Soit \vec{u} et \vec{v} deux vecteurs de l'espace. On dit que \vec{u} et \vec{v} sont **colinéaires** s'il existe un réel k tel que $\vec{v} = k\vec{u}$

Remarque

- Deux vecteurs non nuls sont colinéaires si et seulement s'ils ont la même direction.
- Le vecteur nul est colinéaire à tout vecteur de l'espace

• Exercice 3.1

ABCDEFGH est le parallélépipè de rectangle représenté ci-contre.

I et J sont les centres respectifs des faces ADHE et BCGF.

- 1. Déterminer trois vecteurs de la figure égaux au vecteur \overrightarrow{FG}
- 2. Quelle est l'image du point I par la translation de vecteur \overrightarrow{FJ} ?
- 3. Compléter l'égalité suivante : $\overrightarrow{FC} \overrightarrow{BA} = \overrightarrow{E...}$

Exercice 3.2

On considère le tétraèdre ABCD représenté cicontre.

- 1. Construire les points M et N tels que $\overrightarrow{BM}=\frac{1}{3}\overrightarrow{BA}$ et $\overrightarrow{CN}=2\overrightarrow{BC}$
- 2. Démontrer que les vecteurs \overrightarrow{MC} et \overrightarrow{AN} sont colinéaires.

3.1.3 Combinaison linéaire de vecteurs

Définition

Dire que \vec{u} est une **combinaison linéaire** des vecteurs \vec{v}, \vec{w} et \vec{t} signifie qu'il existe des réels x, y et z tels que $\vec{u} = x\vec{v} + y\vec{w} + z\vec{t}$.

Exercice 3.3

REPRÉSENTATION DE COMBINAISONS LINÉAIRES DE VECTEURS

Sur la figure ci-dessus, MNPR est un tétra-èdre. S, T et U sont des points de l'espace tels que $\overrightarrow{MS} = \frac{1}{2}\overrightarrow{MR} + \frac{1}{4}\overrightarrow{RN}, \ \overrightarrow{PT} = \frac{3}{4}\overrightarrow{PM}$ et $\overrightarrow{PU} = \frac{3}{4}\overrightarrow{PR} + \frac{3}{4}\overrightarrow{PN}$.

- 1. Recopier la figure
- 2. Placer, en laissant les traits de construction, les points $S,\,T$ et U

Savoir-Faire 3.1

SAVOIR EXPRIMER UN VECTEUR COMME COMBINAISON LINÉAIRE DE VECTEURS

Sur la figure ci-contre, ABCD est un tétraèdre. On appelle I le milieu de [AB] et J le point tel que $\overrightarrow{CJ} = \frac{1}{4}\overrightarrow{CD}$.

- 1. Recopier la figure, puis placer, sur la figure les points I et J
- 2. Exprimer \overrightarrow{BJ} comme combinaison linéaire de \overrightarrow{BC} et \overrightarrow{BD}
- 3. Exprimer \overrightarrow{IB} en fonction de \overrightarrow{AB}
- 4. En déduire une expression de \overrightarrow{IJ} , comme combinaison linéaire de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD}

Exercice 3.4

SABCD est une pyramide de sommet S dont la base est le parallélogramme ABCD de centre I.

- 1. Exprimer le vecteur $\overrightarrow{SB} + \overrightarrow{SD}$ en fonction du vecteur \overrightarrow{SI}
- 2. En déduire une expression du vecteur \overrightarrow{SI} comme combinaison linéaire des vecteurs $\overrightarrow{BA},\overrightarrow{BC}$ et \overrightarrow{BS}

Savoir-Faire 3.2

SAVOIR EXPRIMER UN VECTEUR COMME COMBINAISON LINÉAIRE DE VECTEURS

Sur la figure ci-contre, ABCD est un tétraèdre. On appelle I le milieu de [AB] et J le point tel que $\overrightarrow{CJ} = \frac{1}{4}\overrightarrow{CD}$.

- 1. Recopier la figure, puis placer, sur la figure les points I et J
- 2. Exprimer \overrightarrow{BJ} comme combinaison linéaire de \overrightarrow{BC} et \overrightarrow{BD}
- 3. Exprimer \overrightarrow{IB} en fonction de \overrightarrow{AB}
- 4. En déduire une expression de \overrightarrow{IJ} , comme combinaison linéaire de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD}

Savoir-Faire 3.3

SAVOIR DÉMONTRER UN ALIGNEMENT AVEC LE CALCUL VECTORIEL

Sur la figure ci-contre, ABCDE est une pyramide de sommet A et de base le parallélogramme BCDE. On appelle I le milieu de [AC].

- 1. Recopier la figure, puis placer, sur la figure le point G tel que $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD}$.
- 2. Exprimer \overrightarrow{EG} comme combinaison linéaire de \overrightarrow{AE} , \overrightarrow{AB} et \overrightarrow{AD}
- 3. Exprimer \overrightarrow{EI} comme combinaison linéaire de \overrightarrow{AE} , \overrightarrow{AB} et \overrightarrow{AD}
- 4. En déduire que les points E, I et G sont alignés.

Exercice 3.5

Sur la figure ci-contre, ABCDEFGH est un parallélépipède et K est un point de l'espace tel que $\overrightarrow{BK} = \frac{1}{3}\overrightarrow{BD} + \frac{1}{3}\overrightarrow{BE}$

- 1. Démontrer que $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE} = 3\overrightarrow{AK}$
- 2. a) Exprimer \overrightarrow{AG} en fonction de \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE}
 - b) En déduire que A, K et G sont alignés.

Exercice 3.6

Dans le parallélépipè de rectangle ci-contre, M est le centre du rectangle $ABCD. \label{eq:barber}$

Exprimer les vecteurs \overrightarrow{CE} , \overrightarrow{MG} et \overrightarrow{MF} comme combinaison linéaire des vecteurs \overrightarrow{AM} , \overrightarrow{AB} et \overrightarrow{AE} .

3.1.4 Vecteurs coplanaires

Définition

Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace non colinéaires.

Si \vec{w} est une combinaison linéaire des vecteurs \vec{u} et \vec{v} , cela signifie qu'il existe des réels a, b tels que $\vec{w} = a\vec{u} + b\vec{v}$.

On dit alors que les trois vecteurs \vec{u} , \vec{v} et \vec{w} sont **coplanaires** .

Propriété

- Trois vecteurs \vec{u} , \vec{v} et \vec{w} sont **coplanaires** s'il existe trois réels a, b et c non tous nuls tels que $a\vec{u} + b\vec{v} + c\vec{w} = \vec{0}$
- Trois vecteurs \vec{u} , \vec{v} et \vec{w} ne sont pas **coplanaires** si et seulement si l'égalité $a\vec{u} + b\vec{v} + c\vec{w} = \vec{0}$ implique a = b = c = 0.

Remarque

• Si deux des vecteurs \vec{u} , \vec{v} et \vec{w} de l'espace sont colinéaires alors ils sont tous trois coplanaires.

Savoir-Faire 3.4

SAVOIR MONTRER QUE DES VECTEURS SONT COPLANAIRES

Sur la figure ci-contre, ABCDEFGH est un parallélépipède. R est le milieu de [EF] et S le milieu de [EH].

Les points T et U sont définis par $\overrightarrow{AT} = \frac{2}{3}\overrightarrow{AD}$ et $\overrightarrow{AU} = \frac{1}{3}\overrightarrow{AC}$

- 1. Exprimer \overrightarrow{TU} , \overrightarrow{TR} et \overrightarrow{TS} en fonction de \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE}
- 2. Calculer $9\overrightarrow{TU} + 6\overrightarrow{TS}$
- 3. En déduire que les vecteurs \overrightarrow{TU} , \overrightarrow{TR} et \overrightarrow{TS} sont coplanaires.

Exercice 3.7

On considère le tétraèdre ABCD ci-contre. I,J,K et L sont les milieux respectifs de $[AB],[AC],\ [AD]$ et [CD].

- 1. Justifier que $\overrightarrow{IJ} = -\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$
- 2. Montrer que $\overrightarrow{KL} = \frac{1}{2}\overrightarrow{AC}$
- 3. En déduire que $\overrightarrow{IJ}, \overrightarrow{KL}$ et \overrightarrow{AB} sont coplanaires.

Exercice 3.8

On considère le tétraèdre \overrightarrow{ABCD} ci-contre. Le point E est tel que $\overrightarrow{AE} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{CD} - \frac{1}{2}\overrightarrow{BD}$. Montrer que les vecteurs \overrightarrow{AE} , \overrightarrow{AB} et \overrightarrow{AC} sont coplanaires.

Exercice 3.9

On considère le tétraèdre ABCD ci-contre. M,N,P et Q sont définis par $\overrightarrow{AM}=2\overrightarrow{AB}$, $\overrightarrow{AN}=3\overrightarrow{AC}$, $\overrightarrow{AP}=\frac{4}{3}\overrightarrow{AD}$ et $\overrightarrow{AQ}=-4\overrightarrow{AB}+18\overrightarrow{AC}-4\overrightarrow{AD}$.

- 1. Exprimer les vecteurs $\overrightarrow{MN}, \overrightarrow{MP}$ et \overrightarrow{MQ} en fonction des vecteurs $\overrightarrow{AB}, \overrightarrow{AC}$ et \overrightarrow{AD} .
- 2. Exprimer $6\overrightarrow{MN} 3\overrightarrow{MP}$ en fonction de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} .
- 3. Que dire des vecteurs \overrightarrow{MN} , \overrightarrow{MP} et \overrightarrow{MQ} ?

3.1.5 Vecteurs linéairement indépendants

Définition

Trois vecteurs de l'espace \vec{u} , \vec{v} et \vec{w} sont dits **linéairement indépendants** s'il n'est pas possible d'exprimer l'un comme combinaison linéaire des deux autres

Propriété

Les vecteurs \vec{u} , \vec{v} et \vec{w} sont linéairement indépendants si et seulement si l'égalité $a\vec{u}+b\vec{v}+c\vec{w}=\vec{0}$ implique a=b=c=0.