RISK ESTIMATION FOR HIGH-DIMENSIONAL LASSO REGRESSION

Daniel J. McDonald Indiana University, Bloomington mypage.iu.edu/~dajmcdon Joint with Darren Homrighausen

2 August 2016

MOTIVATION

DATA MODEL

- Observe Y_i , i = 1, ..., n real-valued response variables.
- Let X_i be a p-vector of predictors, $p \gg n$.
- Suppose

$$Y_i \sim \mathcal{N}(X_i^{\top} \beta_*, \ \sigma^2)$$

for some $\sigma > 0$, $\beta_* \in \mathbb{R}^p$.

- Concatenate predictors into the design matrix $\mathbb{X} \in \mathbb{R}^{n \times p}$
- \blacksquare Observations in the *n*-vector *Y*.

USUAL GOAL

- Choose some procedure that does one or more of the following:
 - 1 Predicts new values Y from the same distribution
 - **2** Estimates β_* with small error
 - 3 Finds the support of β_*
- Since *p* is big, we regularize by minimizing a sum of the training error plus the lasso penalty:

$$\widehat{\beta}(\lambda) = \underset{\beta}{\operatorname{argmin}} \frac{1}{n} \left| \left| Y - \mathbb{X}\beta \right| \right|_{2}^{2} + \lambda \left| \left| \beta \right| \right|_{1}.$$

■ The problem is that we need to choose λ in some principled manner.

SELECTING TUNING PARAMETERS

- Cross-validation
- 2 Information criteria
- 3 Stein's unbiased risk estimation
- 4 Computational tricks

INFORMATION CRITERIA

$$\begin{split} \inf (C_n, \ g) &:= \log \left(\widehat{\text{train}}\right) + C_n g(\text{df}) \\ \widehat{\text{train}} &:= \frac{1}{n} \left| |Y - \mathbb{X}\beta| \right|_2^2. \\ \text{df} &:= \frac{1}{\sigma^2} \sum_{i=1}^n \operatorname{Cov}(\widehat{Y}_i, \ Y_i) \end{split}$$

- AIC: $C_n = 2/n, \ g(z) = z$
- BIC: $C_n = \log n$, g(z) = z
- log GCV: $C_n = -2/n, \ g(z) = 1 z/n$

Choose λ to minimize info (C_n, g)

PROBLEM!

$$info(C_n, g) = log(\widehat{train}) + C_n g(df)$$

- If $p \gg n$, then as $\lambda \to 0$, $\log(\widehat{\text{train}}) \to -\infty$
- Unless $C_n g(df) \to \infty$ increases at a faster rate, we'll always select $\lambda = 0$.

REALLY DUMB EXAMPLE

Don't use the usual AIC, do something else

STEIN'S UNBIASED RISK ESTIMATION

Under our model, the prediction risk of β can be written

$$\begin{split} \frac{1}{n} \mathbb{E} \left| |\mathbb{X}\beta - \mathbb{X}\beta_*| \right|_2^2 &= \frac{1}{n} \mathbb{E} \left| |\mathbb{X}\beta - Y| \right|_2^2 - \sigma^2 + \frac{2}{n} \sum_{i=1}^n \operatorname{Cov}(\widehat{Y}_i, Y_i) \\ &= \frac{1}{n} \mathbb{E} \left| |\mathbb{X}\beta - Y| \right|_2^2 - \sigma^2 + \frac{2}{n} \sigma^2 \mathrm{df} \end{split}$$

Estimate the risk with

$$\frac{1}{n} ||\mathbb{X}\beta - Y||_2^2 - \widehat{\sigma}^2 + C_n \widehat{\sigma}^2 \widehat{\mathrm{df}},$$

where $\hat{\sigma}^2$ is an estimator of σ^2 , C_n is a constant that is allowed to depend on n, and \hat{df} is an estimator of the degrees of freedom.

APPROPRIATE ESTIMATORS

For lasso, use

$$\widehat{\mathrm{df}} := \#\{\widehat{\beta} \neq 0\}.$$

- For σ^2 , we can't use $\widehat{\text{train}}$.
- We tried 3 different high dimensional variance estimators (see Reid, Tibshirani, Friedman 2016):
 - I Choose $\hat{\lambda}$ by cross validation. Produce,

$$\widehat{\sigma}_{CV}^2 := \frac{1}{n - \widehat{\operatorname{df}}} \left| \left| Y - \mathbb{X} \widehat{\beta} \right| \right|_2^2.$$

2 Choose $\hat{\lambda}$ by cross validation. Produce,

$$\widehat{\sigma}_{RMLE}^2 := \frac{1}{n - \widehat{\operatorname{df}}} \left| \left| H^{\perp} Y \right| \right|_2^2.$$

3 Split the data in half, do (1) on each half and average. This is $\hat{\sigma}_{RCV}^2$ (refitted cross validation, see Fan, Guo, Hao 2012).

Did some simulations

PREDICTING NEW RESPONSES

Estimating β_*

FINDING THE RIGHT SUPPORT OF β_*

ESTIMATING THE PREDICTION RISK

CONCLUSIONS

- Don't use regular AIC/BIC in high dimensions
- You need a high-dimensional variance estimator
- Generally (across many simulations not shown) $\hat{\sigma}_{CV}^2$ works well
- Can still do AIC/BIC like things
- Thanks to NSF and INET for support.