CAAM/STAT 31310, Autumn 2024, U Chicago

CAAM 31310: Homework 2

Due Oct 27, '24 (11:59 pm ET) on Gradescope

Cite any sources and collaborators; do not copy. See syllabus for policy.

In this homework, we explore perturbations of contraction maps. Let F be a contraction map on a complete normed space M with contraction coefficient $\lambda \in (0,1)$.

Part 1 (5 points)

(Variation of Proposition 1.1.5 Katok-Hasselblatt) Prove the following statement. For every $\delta>0$, there exists an $\epsilon\in(0,2(1-\lambda))$ such that for any map G with $\|F-G\|_{\infty}+\|F-G\|_{0,1}<\epsilon$, where $\|F\|_{0,1}:=\sup_{x,y\in M,x\neq y}\|F(x)-F(y)\|/\|x-y\|$ is a Lipschitz semi-norm, for any $x\in M$, the orbits of F and G are δ -close for all time. That is, $\|F^n(x)-G^n(x)\|\leq \delta$, for all n. In particular, $\|x_F^*-x_G^*\|\leq \delta$, where x_F^* is the fixed point of F. (Hint: first show that G is a contraction)

Part 2 (3 points)

Consider a flow $d\varphi^t(x)/dt = v(t, \varphi^t(x))$ in \mathbb{R}^d . Assume that the vector field $(t, x) \to v(t, x) \in \mathbb{R}^d$ is continuous in t and differentiable on M for all time \mathbb{R} . Show that the flow exists in M for some time interval. This is the Picard-Lindelöf theorem (2 points). Give sufficient conditions on $x \to v(t, x)$ for the flow to exist for all time. (1 point)

Part 3 (2 points)

Suppose $(t,x) \to v(t,x)$ is not known exactly and should be estimated from data. Let v_{θ} be the vector field that is parameterized by θ to approximate $v := v_{\theta^*}$. Use Parts 1 and 2 to give sufficient conditions on v_{θ^*} and θ under which the learned and true flows are arbitrarily close (for any x_0) for all time.

Part 4

1. Let F be a contraction map on the space of continuous functions on \mathbb{R} with values in M whose fixed point is the orbit $t \to \varphi^t(x_0)$. Use your definition of F from Part 2. Define a map G by replacing the integral in the definition of F with a quadrature scheme such that G is a contraction. (2 points)

- 2. Solve $\varphi^t(x_0)$ numerically for $v(t, [x_1, x_2, x_3]) = [-k_1x_1 + k_2x_2x_3, k_1x_1 k_2x_2x_3 k_3x_2^2, k_3x_2^2]^{\top}$ with $k_1 = 0.04, k_2 = 10^4, k_3 = 3 \times 10^7$. (Source: H. Robertson, "The solution of a set of reaction rate equations," in Numerical Analysis: Introduction (Thompson, 1966), pp. 178–182). Submit your plot of solutions starting from $[1,0,0]^{\top}$ over time upto 10^5 . Explain your ODE integrator and give an estimate of the numerical error as a function of time (5 points).
- 3. Is your ODE integrator a contraction map on a space of continuous functions/bounded sequences? (1 point)
- 4. Solve the same equations from 2. now using Picard iteration, wherein you replace time integration with quadrature. Use your *G* from 1. Submit the plot and explain your observations. (5 points)