第 3 节 等高线问题 (★★★☆)

强化训练

小值为____.

答案: 2

解析: 欲求 $x_2 - x_1$ 的最小值, 先通过设 t 将变量统一起来, 设 $f(x_1) = f(x_2) = t$, 如图, 由图可知 $0 \le t < \frac{3}{2}$,

且 $x_1 < 1 \le x_2$,所以 $f(x_1) = \frac{1}{e}(x_1 + 2) = t \Rightarrow x_1 = et - 2$, $f(x_2) = \ln x_2 = t \Rightarrow x_2 = e^t$,从而 $x_2 - x_1 = e^t - et + 2$,

这样变量就统一起来了,接来下将右侧构造成函数,求导研究最值,

设 $\varphi(t) = e^t - et + 2(0 \le t < \frac{3}{2})$,则 $\varphi'(t) = e^t - e$,所以 $\varphi'(t) > 0 \Leftrightarrow 1 < t < \frac{3}{2}$, $\varphi'(t) < 0 \Leftrightarrow 0 \le t < 1$,

从而 $\varphi(t)$ 在[0,1)上〉,在 $(1,\frac{3}{e})$ 上之,故 $\varphi(t)_{\min} = \varphi(1) = 2$,即 $x_2 - x_1$ 的最小值为 2.

2. (★★★★)已知函数 $f(x) = \begin{cases} \frac{1}{2}x + 1, x \le 0 \\ 1 \text{ or } x > 0 \end{cases}$, 若存在不相等的实数 a, b, c, d满足|f(a)| = |f(b)| = |f(c)| = |f(d)|,

则a+b+c+d的取值范围为(

$$(A) (0,+\infty)$$

(A)
$$(0,+\infty)$$
 (B) $(-2,\frac{81}{10}]$ (C) $(-2,\frac{61}{10}]$ (D) $(0,\frac{81}{10}]$

(C)
$$\left(-2, \frac{61}{10}\right]$$

(D)
$$(0, \frac{81}{10}]$$

答案: C

解析:条件给的是函数y=|f(x)|在a,b,c,d处函数值相等,故用y=|f(x)|的图象来分析问题,先画图,

函数 y = f(x) 的大致图象如图 1, y = |f(x)| 的大致图象如图 2,设 |f(a)| = |f(b)| = |f(c)| = |f(d)| = t,

不妨设a < b < c < d, 由图 2 知 $0 < t \le 1$, 0 < c < 1 < d,

直线 y=t 与 y=|f(x)|的图象在 y 轴左侧的两个交点关于直线 x=-2 对称,所以 a+b=-4,

再来看c和d,可将|f(c)|=t和|f(d)|=t代入解析式,把c,d用t表示,从而统一变量,

因为0 < c < 1,所以 $\lg c < 0$,从而 $|f(c)| = |\lg c| = -\lg c = t$,故 $c = 10^{-t}$,

又因为d>1,所以 $\lg d>0$,从而 $\left|f(d)\right|=\left|\lg d\right|=\lg d=t$,故 $d=10^t$,所以 $a+b+c+d=-4+10^{-t}+10^t$,

注意到 $10^{-t} = \frac{1}{10^t}$,故将 10^t 换元,可简化表达式,令 $u = 10^t$,则 $1 < u \le 10$,且 $a + b + c + d = -4 + \frac{1}{u} + u$,

设 $\varphi(u) = -4 + \frac{1}{u} + u(1 < u \le 10)$,则 $\varphi'(u) = -\frac{1}{u^2} + 1 > 0$,所以 $\varphi(u)$ 在 (1,10] 上 \nearrow ,

又 $\varphi(1) = -2$, $\varphi(10) = \frac{61}{10}$,所以 $\varphi(u)$ 的值域为 $(-2, \frac{61}{10}]$,故a+b+c+d的取值范围是 $(-2, \frac{61}{10}]$.

【反思】题干中关于|f(a)|的连等式容易让人困扰,但为了使该条件与已知函数形式统一,自然会想到研究函数 y = |f(x)|;另外,如果函数具有对称性,结合该性质往往可以简化步骤,本题 a + b 就是通过对称性快速求出的.

《一数•高考数学核心方法》