

FIG. 1

00000000000000000000000000000000

FIGURE 2

FIG. 2

FIG. 3

FIG. 3A

“T032130” E3446360

PIXEL	PIXEL	PIXEL
●	●	●
PIXEL 70	PIXEL 74	PIXEL
●	●	●

FIG. 4

PIXEL	PIXEL	PIXEL
●	●	●
PIXEL 72	PIXEL 74A	PIXEL 70
●	●	●

FIG. 5A

PIXEL	PIXEL	PIXEL
●	●	●
PIXEL 72	PIXEL 70	PIXEL
●	●	●

FIG. 5B

FIG. 6

FIG. 7

190 192 194 FIGURE 8

REGULAR GRID 190

PERTURBED
REGULAR GRID
192

194 STOCHASTIC
SPACING

FIG. 8

FIG. 9

FIG. 10

FIG. 11A

FIG. 11B

100 200 300 400 500 600

FIG. 11C

FIG. 12A

FIG. 12B

DRAFT - DO NOT CITE

FIG. 13

✓ 300

Sample 190

R = 120 FILTER
G = 200 VALUE = 0
B = 40
A = 150

✓ 302

Sample 192

R = 140 FILTER
G = 180 VALUE = 2
B = 50
A = 160

✓ 304

Sample 194

R = 150 FILTER
G = 170 VALUE = 4
B = 50
A = 180

✓ 306

Sample 196

R = 140 FILTER
G = 170 VALUE = 8
B = 60
A = 190

NORMALIZATION
VALUE = $0+2+4+8 = 14$

✓ 308

BIN 288D

✓ 310

UNNORMALIZED
OUTPUT PIXEL

R = 120*0
+140*2
+150*4
+140*8 = 2000

G = 200*0
+180*2
+170*4
+170*8 = 2400

B = 40*0
+50*2
+60*4 = 780

A = 150*0
+160*2
+180*4
+190*8 = 2560

NORMALIZED
OUTPUT PIXEL

R = 2000 / 14 = 142.9
G = 2400 / 14 = 171.4
B = 780 / 14 = 55.7
A = 2560 / 14 = 175.7

FIG. 14

FIG. 15

FIG. 16

FIG. 17

- FOVEAL REGION = 8 SAMPLES PER BIN
CONVOLUTION RADIUS TOUCHES 4 BINS
TOTAL = 32 SAMPLES MAY CONTRIBUTE
- MEDIAL REGION = 4 SAMPLES PER BIN
CONVOLUTION RADIUS TOUCHES 4 BINS
TOTAL = 16 SAMPLES MAY CONTRIBUTE
- PERIPHERAL REGION = 1 SAMPLE PER BIN
CONVOLUTION RADIUS TOUCHES 1 BIN
TOTAL = 1 SAMPLE MAY CONTRIBUTE
- PERIPHERAL REGION = 1 SAMPLE PER BIN
CONVOLUTION RADIUS TOUCHES 1 BIN
TOTAL = 1 SAMPLE MAY CONTRIBUTE
- PERIPHERAL REGION = 1 SAMPLE PER BIN
CONVOLUTION RADIUS TOUCHES 4 BINS
TOTAL = 32 SAMPLES MAY CONTRIBUTE

FIG. 18A

FIG. 18B

FIG. 19A

FIG. 19B

T 02200 " E 946350

FIG. 20

$$r_i^p = \sum_j c_j r_j^s$$

Eqn. 1

$$g_i^p = \sum_j c_j g_j^s$$

Eqn. 2

$$b_i^p = \sum_j c_j b_j^s$$

Eqn. 3

$$\alpha_i^p = \sum_j c_j \alpha_j^s$$

Eqn. 4

$$c_i^n = \frac{c_i}{\sum_j c_j}$$

Eqn. 5

$$r_i^p = \frac{\sum_j c_j r_j^s}{\sum_j c_j}$$

Eqn. 6

$$g_i^p = \frac{\sum_j c_j g_j^s}{\sum_j c_j}$$

Eqn. 7

$$b_i^p = \frac{\sum_j c_j b_j^s}{\sum_j c_j}$$

Eqn. 8

$$\alpha_i^p = \frac{\sum_j c_j \alpha_j^s}{\sum_j c_j}$$

Eqn. 9

Figure 21

FIG. 22A

TAKAO EKISADA

FIG. 22B

Fig. 23A**Fig. 23B**

Fig. 24A

Fig. 24B

Fig. 25A

Fig. 25B

Figure 26

Figure 27

Figure 28

Figure 29

Fig. 30A

Fig. 30B

Fig. 31

Fig. 32

Fig. 33A

Fig. 33B

Figure 33C

Fig. 34

Figure 35

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \quad \text{Eqn. 10}$$

$$d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 \quad \text{Eqn. 11}$$

Figure 36