

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی بهار ۱۴۰۳

ناحیهبندی معنایی

Semantic Segmentation

شبكههاى كاملا كانولوشني

- برای داشتن میدان تاثیر بزرگ، باید از فیلترهای بزرگ و/یا عمق زیاد استفاده کنیم
 - حافظه مورد نیاز و حجم محسابات بسیار زیاد خواهد بود!

شبكههاى كاملا كانولوشني

- می توان مشابه با شبکههای متداول، ابعاد مکانی را در طول شبکه کاهش داد و مجدد ابعاد مکانی را به صورت تدریجی افزایش داد
 - برای کاهش ابعاد مکانی میتوان از Pooling استفاده کرد
 - چطور می توان ابعاد را افزایش داد؟

افزایش ابعاد (Unpooling)

نزدیک ترین همسایه

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

Bed of Nails

1	0	2	0
0	0	0	0
3	0	4	0
0	0	0	0

افزایش ابعاد (Max Unpooling)

افزایش ابعاد (Max Unpooling)

0	5	2	1
1	0	6	2
7	1	2	0
1	0	0	8

0	1	0	0
0	0	2	0
3	0	0	0
0	0	0	4

SegNet

U-Net


```
img size = (200, 200, 3)
num classes = 10
filters = 32
# function that defines 2D transposed convolutional (Deconvolutional) layer
def deconv(x, filters, kernel size=3):
    x = keras.layers.UpSampling2D(size=(2,2), interpolation='nearest')(x)
    x = keras.layers.Conv2D(filters=filters, kernel size=kernel size, activation='relu', padding='same')(x)
    return x
# define input layer
input = keras.layers.Input(shape=img size)
# begin with contraction part
conv1 = keras.layers.Conv2D(filters=filters*1, kernel size=5, activation='relu', padding='same')(input)
pool1 = keras.layers.MaxPool2D(pool size=(2,2), strides=(2,2))(conv1)
conv2 = keras.layers.Conv2D(filters=filters*2, kernel size=5, activation='relu', padding='same') (pool1)
pool2 = keras.layers.MaxPool2D(pool size=(2,2), strides=(2,2))(conv2)
conv3 = keras.layers.Conv2D(filters=filters*4, kernel size=5, activation='relu', padding='same')(pool2)
# expansive path
up4 = deconv(conv3, filters*2)
up4 = keras.layers.Concatenate()([conv2, up4])
conv4 = keras.layers.Conv2D(filters=filters*2, kernel size=5, activation='relu', padding='same')(up4)
up5 = deconv(conv4, filters*1)
up5 = keras.layers.Concatenate()([conv1, up5])
conv5 = keras.layers.Conv2D(filters=filters*1, kernel size=5, activation='relu', padding='same')(up5)
# define output layer
output = keras.layers.Conv2D(filters=num classes, kernel size=1, activation='softmax')(conv5)
# create model
model = keras.models.Model(inputs=input, outputs=output)
```

Ground truth pixels in class pixels in class FN TP FP

Dice coefficient $(A, B) = \frac{2 \times |A \cap B|}{|A| + |B|}$

Table 1: Segmentation results. Intersection over Union (IoU) and Dice coefficient (Dice) are in % and inference time (Time) is in ms.

Model	IOU	Dice	Time
U-Net	73.18	83.06	30
TernausNet-11	74.94	84.43	51
TernausNet-16	73.83	83.05	60
AlbuNet-34	75.35	84.98	21

تشخیص اشیاء

Object Detection

مسئلههای بینایی کامپیوتر

تشخیص اشیاء (Object Detection)

ناحیهبندی نمونهها (Instance Segmentation)

دستەبندى + مكان يابى

ناحیهبندی معنایی (Semantic Segmentation)

دستهبندی و مکانیابی

