Das Ultimative Laser Handbuch*

Fabian Morón Zirfas University of Applied Sciences Potsdam (Germany) moron-zirfas@fh-potsdam.de

Zusammenfassung

Dies ist ein Step by Step Guide zur Bedienung des 100W C02 Lasers der Fachhochschule Potsdam.

Inhaltsverzeichnis

Einleitung	4
Grundlegende Voraussetzungen sind	4
Sicherheit	!
Feuer?	!
Notaus?	!
Pflege der Analge	(
Reinigung der Spiegel	(
Befreiung von Ruß	(
Reinigung des Gitters	(
Entsorgung der Schnittreste	6
Inbetriebnahme	6
Oberlicht Öffnen	6
Lüftung Einschalten	(
Arbeitsfläche leeren	9
Gitter Überprüfen	9
Hauptstrom	
Distanztaster Überprüfung	
Einschalten	12
Referenzfahrt	12
Z-Achse	12
Material Einlegen	12
Fokus Setzen	12
Null Null (Origin)	14
Laser Job	15
Die Parameter Verstehen	15
Daten Vorbereiten	15
Vektor Daten	15
Unterstützte Vektor Formate	20
Al DXF Export	20
Daten Trennen	22
Pixelbilder	23
Daten Import	2:

^{*}foo and bah

Art des Jobs
Schneiden
Gravieren
Perforieren
Material Bibliothek
Lüftung
Den Job Starten
Der Job Läuft
Abschaltung
Laserkopf in Ausgangspostion
Z-Achse Runter Fahren
Abschaltung Steuerung und Laser
Abschaltung Hauptstrom
Lüftung
Oberlicht Schließen
Materialien
Zugang zu Anlage, Schlüssel und Computer
Der Computer
Terminvergabe
Checklist
Über dieses Dokument
MacTex
Schriften
Dokument Generieren
Lizenz

Tabellenverzeichnis

Abbildungsverzeichnis

1	Das Oberlicht des Lüfters	7
2	Lüfter Steuerung	8
3	Hauptstrom	10
4	Laserkopf mit Distanztaster	11
5	Steuerung des Lasers	13
6	Adobe Illustrator GPU-Vorschau	16
7	Adobe Illustrator Pfad Ansicht	16
8	Adobe Illustrator Fläche offen GPU-Vorschau	17
9	Adobe Illustrator Fläche offen Pfadansicht	18
10	Adobe Illustrator versteckte Reste GPU-Vorschau	19
11	Adobe Illustrator versteckte Reste Pfadansicht	19
12	Adobe Illustrator Datei Export Dialog	20
13	Adobe Illustrator DXF Export Dialog	21
14	RDworks Software Oberfläche	23
15	RDWorks Ebeneneinstellungen Schneiden	24
16	RDWorks Ebeneneinstellung Gravur Vektorform	26
17	RDWorks Ebeneneinstellungen Perforieren	28
18	RDworks Materialbibliothek	29

Einleitung

Dieses Dokument ist der Versuch den gesamten Prozess der Bedienung der Laser Anlage an der Fachhochschule Potsdam zu dokumentieren. Es sollte aufmerksam gelesen werden bevor die Anlage durch Studierende in betrieb genommen wird. Am Ende des Dokuments befindet sich eine Checkliste die ausgedruckt und als Spickzettel beim Betrieb verwendet werden kann. In einigen Bereichen wie der Aufbereitung von Daten und der Bedienung der Software geht es nicht in die Tiefe. Wir hoffen das dies als ein "lebendes" Dokument genutzt wird und zukünftig um nützliche Bereiche erweitert wird. Anregungen, Fragen, Fehler können auf GitHub als Issue vorgebracht werden.

Viel Spaß mit dem "Ultimativen Laser Handbuch"¹!

Grundlegende Voraussetzungen sind...

- Die Unterzeichnung und Anerkennung der Werkstattordnung.
- · Die Teilnahme an der Sicherheitseinweisung durch Anne Boenisch und oder eine Freigabe durch sie.
- Der Laser wird immer in Gruppen von 2 oder mehr Personen betrieben.
- Der Laser wird nicht alleine gelassen während er Läuft.
- Die Werkstatt wird nach Nutzung wieder aufgeräumt.
- Es dürfen **KEINE** PVC haltigen oder leicht entflammbare Materialien geschnitten werden (siehe Abschnitt Materialien).

¹Ultimative ist vielleicht ein wenig übertrieben.

Sicherheit

Die Anlage darf nicht alleine Betrieben werden. Es müssen immer mindestens 2 Personen vor Ort sein.

Feuer?

Im Falle eines Feuers in der Anlage gilt es Ruhe zu bewahren. Folgende Schritte sind auszuführen.

- 1. Laservorgang stoppen! (Notaus oder Start/Stop Knopf)
- 2. Lüftung abschalten!
- 3. CO2 Feuerlöscher benutzen! (Falls es immer noch brennen sollte)
- 4. Die Feuerwehr rufen wenn der Brand nicht zu löschen ist!

Hinweise:

- Es sollte bis zum Einsatz des Feuerlöscher die Abdeckung nicht geöffnet werden.
- Es sollten niemals Flüssigkeiten verwendet werden um den Brand zu löschen.

Notaus?

Der Notaus (siehe Abbildung 5) ist für den Notfall. Wenn dieser gedrückt würde. Sollte genau überlegt werden ob die Anlage wieder in Betrieb genommen werden kann ohne sie zu beschädigen. Im Zweifelsfalle sind die Administratoren zu kontaktieren. Wenn der nutaus gedrückt wurde und wieder rausgezogen wird, startet die gesamte Anlage neu. Der Laserkopf führt eine Referenzfahrt aus. Es gilt daruaf zu achten das der Kopf bei dieser Fahrt nicht beschädigt wird.

Pflege der Analge

Damit der Laser lange betreiben werden kann, muss er regelmäßig gereinigt werden. Dies passiert durch die Studierenden. Sie sind selber dazu angehalten dies zu organisieren.

Reinigung der Spiegel tbd Befreiung von Ruß tbd Reinigung des Gitters tbd Entsorgung der Schnittreste tbd

Inbetriebnahme

Die folgenden Punkte müssen in der angegebenen Reihenfolge ausgeführt werden.

Oberlicht Öffnen

Damit eine arbeitsgerechte Abluft stattfinden kann, muss das Oberlicht an das die Lüftung angeschlossen ist, geöffnet werden. Siehe Abbildung 1

Lüftung Einschalten

An der Lüftung gibt es den 4 Steuerungsbereiche(Siehe Abbildung 2).

- 1. Netz/Power
- 2. Filter
- 3. Start/Stop
- 4. Motor

Über den Hauptschalter in Bereich 1 wird die Lüftung aktiviert. Wenn im Bereich 2 die Status-LED OK (grün) anzeigt kann die Maschine in Betrieb genommen werden. Steht sie auf Prüfen oder Wechseln müssen zuallererst die zuständigen Personen kontaktiert werden. Die Anlage wird bis dahin **nicht** in Betrieb genommen.

Über den Start/Stop Knopf in Bereich 3 kann die Lüftung pausiert werden.

Um die Ohren zu schonen kann der Motor der Lüftung in Bereich 4 runter gedreht werden solange kein Job läuft. Dies darf jedoch nicht vergessen werden wieder zu aktivieren.

Abbildung 1: Das Oberlicht des Lüfters

Abbildung 2: Lüfter Steuerung

Arbeitsfläche leeren

Damit der Laserkopf bei der ersten Referenzfahrt in die rechte Obere Ecke nicht beschädigt wird, darf kein Material bei der Inbetriebnahme auf der Arbeitsfläche liegen.

Gitter Überprüfen

Das Gitter, dass in der Maschine liegt ist frei beweglich. Es muss vor der Inbetriebnahme sichergestellt werden, dass es nicht unter die Absätze links und rechts rutschen kann. Bei einem Autofokus könnte sonst die Ausrichtung der Z-Achse beschädigt werden.

Hauptstrom

Auf der Rückseite des Lasers ist ein großer rot gelber Hauptschalter (siehe Abbildung 3). Dieser muss aktiviert werden um der Maschine Strom zu geben.

Distanztaster Überprüfung

Am Laserkopf ist links der Distanztaster (siehe Abbildung 4).² Dieser dient dazu die Distanz des Lasers zur Oberfläche des Materials einzustellen.³ Vor dem einschalten der Lasersteuerung muss überprüft werden:

- 1. Ob der Taster sich bewegt.4
- 2. Ob der Taster über dem Gitter beziehungsweise den Lamellen steht und nirgendwo anstoßen kann bei einer Referenzfahrt.

²Der Taster ähnelt einem Kugelschreiber.

 $^{^3}$ Die Distanz beträgt 21,2mm.

 $^{^4\}mbox{Es}$ kann passieren, dass der Taster verrußt und dadurch nicht mehr reagiert.

Abbildung 3: Hauptstrom

Abbildung 4: Laserkopf mit Distanztaster

Einschalten

Wenn alle entsprechenden Überprüfungen stattgefunden haben, kann die Maschine über den Aus/Ein Drehschalter mit dem Schlüssel aktiviert werden (siehe Abbildung 5 unten). **Hierbei ist die eine Hand über dem Notaus**, für den Fall dass etwas unvorhergesehenes passiert.⁵

Referenzfahrt

Bei jedem Einschalten (oder nach einem Notaus) führt die Maschine eine Referenzfahrt in die rechte obere Ecke aus. Dies lässt sich nicht unterbinden. Aus diesem Grund ist es besonders wichtig beim Einschalten die Maschine im Falle eines Problems schnell wieder abschalten zu können. Um Probleme zu vermeiden ist es "Best Practice" den Laserkopf vor dem Abschalten in die rechte obere Ecke zu fahren und dort den "Origin" zu setzten. Dadurch können Probleme beim nächsten Anschalten des Anlage vermieden werden. Ebenfalls empfiehlt es sich die Z-Achse ein Stück abzusenken. Siehe Abschnitt "Gitter Überprüfen".

Z-Achse

Die Z-Achse des Tisches kann manuell herauf oder hinunter gefahren werden. Wenn zum Beispiel ein dickes Material eingelegt werden soll. Dazu muss an der Steuerung (siehe Abbildung 5) das Menu mit dem Z/U Knopf in der Mitte des Steuerkreuzes aktiviert werden. Dann können die \leftarrow und \rightarrow Tasten genutzt werden um mit \leftarrow die Z-Achse rauf zu fahren und mit \rightarrow runter zu fahren.

Material Einlegen

Wenn die Maschine betriebsbereit ist, kann das zu schneidende Material eingelegt werden. Die Arbeitsfläche der Anlage hat 1200 Millimeter (mm) Breite und 900mm Höhe. Abhängig von der Tiefe/Stärke des Materials ist jedoch die Fläche nicht komplett nutzbar.

Ein Beispiel: Beim Lasern einer diagonale über eine $5 \times 1000 \times 700$ mm (t \times b \times h) mitteldichten Faserplatte (MDF Platte) mit einer Geschwindigkeit von 5mm/s und einer Leistung von 95% ist der Laserstrahl bei ungefähr der Hälfte des Materials nicht mehr durchgegangen.

Das bedeutet: Je stärker das Material desto kleiner wird der Bereich in dem ein Schnitt gewährleistet ist. Es empfiehlt sich bei starken Materialien kleinere Nutzen anzulegen und mehrere Jobs auszuführen.

Fokus Setzen

Um den Laserkopf in seiner Distanz zur Oberfläche des Materials einzustellen, hat die Maschine eine Autofokus Funktion. Dazu wird der Distanztaster⁶ mit dem Steuerkreuz in die Mitte des Materials gefahren.

Achtung: Ein üblicher Fehler den es jedoch zu vermeiden gilt, ist dass nicht der Taster über das Material gesetzt wird sondern der Laserpunkt. Das könnte zur Folge haben, dass der Distanztaster im Gitter versenkt wird. Gegebenenfalls muss die Z-Achse noch runter gefahren werden, wenn dies nicht schon beim einlegen des Materials passiert ist (siehe Abschnitt "Z-Achse").

⁵Die Referenzfahrt stoppt nicht, es wurde vergessen Material aus der Arbeitsfläche zu nehmen o.ä.

⁶Der Taster ähnelt einem Kugelschreiber.

⁷Wenn der Distanztaster im Gitter steckt bleibt die Maschine Abgeschaltet und muss erst wird erst wieder durch die zuständigen Personen freigegeben werden.

Abbildung 5: Steuerung des Lasers

Wenn das Material unter dem Taster liegt kann das Menü über die Z/U Taste aktiviert werden. Mit dem Punkt "Autofocus" wird die Distanz automatisch auf 21,2mm eingestellt. Über die ↑ ↓ Tasten kann der Punkt Autofocus ausgewählt werden. Mit Enter wird er aktiviert.

Achtung: Beim einstellen des Autofokus sollte immer ein Finger auf dem ESC Knopf liegen, für den Fall, dass etwas unvorhergesehenes passiert (Der Taster bohrt sich durch das Material, der Taster reagiert nicht, der Taster ist doch nicht über dem Material).

Nach dem Autofokus Prozess liegt der Brennpunkt des Lasers auf der Oberfläche des Materials.⁸

Null Null (Origin)

Um die Maschine für den Laser Job bereits zu haben, kann nun der Laserkopf mit den $\leftarrow \uparrow \downarrow \rightarrow$ Tasten an die gewünschte Position gefahren werden. Um diese Position als Ausgangspunkt für einen Schnitt, eine Gravur oder eine Perforation zu setzten muss dies mit der Taste "Origin" bestätigt werden. Falls Unsicherheit besteht ob der Origin auch der aktuellen Position des Laserkopfes entspricht, kann über einen Druck auf die Taste ESC (Escape) der Kopf auf seinen letzten Origin zurückgesetzt werden.

Achtung: Vor dem Starten eines Jobs sollte nochmals sichergestellt werden, dass der Origin stimmt. Der Laser beginnt einen Job von dieser Position aus. Falls die Position vom Origin abweicht könnte das Material an einer anderen Stelle bearbeitet werden.

⁸Bei starken Materialien kann es nützlich sein den Fokus nicht auf der Oberfläche, sondern im Material zu haben. Um bei einem 10mm starken Material dies zu bewerkstelligen, bedarf es eines 5mm starken Materials. Auf dieses wird der Fokus gesetzt. Dann wird es durch das 10mm starke Material ausgetauscht. Hierbei ist jedoch drauf zu achten, dass der Taster nicht gegen das Material stoßen darf. Diese Methode ist nur ratsam für bereits erfahrene Benutzer.

⁹Die Taste bestätigt, dass sie gedrückt wurde mit einem Piep. Mehr nicht. Es empfiehlt sich vor einem Job mehrfach zu überprüfen ob der Origin auch gesetzt ist.

Laser Job

Die einfachste Methode einen Job zu starten ist über die USB Verbindung aus der RDWorks Software heraus mit der Start Taste. Es existiert auch die Möglichkeit Job Dateien aus RDWorks heraus auf ein USB Stick zu speichern und diesen direkt in die Maschine zu stecken. Dafür muss der Stick FAT formatiert sein und die Dateien müssen auf der untersten Ebene des Dateisystems liegen. Unterordner werden nicht erkannt. Im weiteren Verlauf dieses Handbuches wird diese Möglichkeit nicht berücksichtigt. Ebenfalls werden hier nur die minimalen Schritte beschrieben um einen Job mit RDWorks einzurichten und auszuführen. Ein komplette Übersicht würde den Rahmen diese Dokuments sprengen. Hierfür existiert ein Benutzerhandbuch das vom Hersteller der Software zusammen mit dieser ausgeliefert wird.

Die Parameter Verstehen

Die Parameter die zur Verfügung stehen sind

- 1. Die Geschwindigkeit des Laserkopfes gemessen in Millimieter pro Sekunde (mm/s).
- 2. Die Intensität des Laserstahls gemessen in Prozent (%).

Ausgehend von diesen beiden Parametern muss der Job eingerichtet werden. Ein 3mm Acrylplatte würde zum Beispiel bei 10mm/s und 90% Leistung geschnitten werden. Eine Gravur auf dieser Platte kann schon bei 80mm/s und 15% Leistung gut aussehen.

Stärkere Materialien bedürfen mehr Leistung und eine langsamere Bewegung. Dünne Materialien können bei einer schnellen Fahrt auch schon mit geringer Leistung geschnitten werden. Wobei eine zu hohe Geschwindigkeit sich auch auf die Qualität von Kurven und Ecken auswirkt. Es gilt hier eigenen Erfahrungswerte zu sammeln. Ebenfalls können die Außentemperatur, die Feuchtigkeit des Materials oder auch die Reinigung der Umwerfspiegel die Werte beeinflussen.

Daten Vorbereiten

Die Steuerungssoftware RDWorks kann mit zwei unterschiedlichen Dateitypen umgehen.

- 1. Vektor Daten
- 2. Pixel Bilder

Vektor Daten

Vektor Daten können für das Schneiden, Perforieren und Gravieren genutzt werden. Es existieren einige Applikationen zum erstellen von Vektordaten. Adobe Illustrator (AI), Inkscape, Affinity Designer, Sketch. Hier werden Beispiele aus AI gezeigt.

Für Schnitt und Perforation können Pfade angelegt werden die offen sind. Diese werden von dem Laserkopf nachgefahren. Hierbei ist zu beachten, dass die Software jeden Pfad erkennt der im Dokument liegt. Es werden nur Pfade erkannt, keine Konturen. In Abbildung 6 ist die GPU-Vorschau von Al zu sehen. Dies ist jedoch nicht was der Laser erkennt.

Was in Abbildung 7 zu sehen ist, entspricht dem was von dem Laserkopf nach fahren würde. Die Abbildung zeigt die Pfadansicht. Um zwischen GPU-Vorschau und Pfadansicht zu wechseln kann die Tastenkombination • Y (macOS) oder Strg Y (Win) genutzt werden.¹⁰

¹⁰Im weiteren Verlauf dieses Handbuchs wird nur die macOS Variante • dargestellt. Für Windows muss dies durch Strg ersetzt werden. Falls Abweichungen existieren wird darauf hingewiesen.

Abbildung 6: Adobe Illustrator GPU-Vorschau

Abbildung 7: Adobe Illustrator Pfad Ansicht

Für die Gravuren funktionieren nur geschlossene Vektorpfade. In Abbildung 8 sieht es so aus als ob beide Flächen geschlossen sind. Die Pfadansicht zeigt jedoch, dass die rechte Form nicht geschlossen ist Abbildung 9. Somit würde die rechte Form für eine Gravur nicht beachtet werden.

Abbildung 8: Adobe Illustrator Fläche offen GPU-Vorschau

Abbildung 9: Adobe Illustrator Fläche offen Pfadansicht

Grundsätzlich sollte ein Al Dokument so angelegt werden, dass

- keine Überreste von Pfadpunkten in ihm liegen.
- keine Ebenen ausgeblendet werden.
- keine Daten außerhalb der Arbeitsfläche liegen.

In Abbildung 10 und Abbildung 11 sind in der Pfadansicht Reste zu sehen die optisch in der GPU-Vorschau nicht zu erkennen wären. Die Maschine würde diese Pfadpunkte und Pfade dennoch in Betracht ziehen.

Abbildung 10: Adobe Illustrator versteckte Reste GPU-Vorschau

Abbildung 11: Adobe Illustrator versteckte Reste Pfadansicht

Unterstützte Vektor Formate

Die Software RDworks unterstützt viele Formate. Die besten Ergebnisse wurden bisher mit folgenden Formaten erzielt.¹¹

- .ai (Version 3)
- .dxf (R14)

Bei allen Formaten ist zu beachten, dass die voreingestellte Einheit mm sein sollte.

AI DXF Export

Abbildung 12: Adobe Illustrator Datei Export Dialog

DXF Dateien können aus AI unter Datei>Exportieren>Exportieren als... ausgegeben werden. Dazu muss am unteren Rand des Datei Dialogs die Option AutoCAD-Interchange-Format (DXF) gewählt werden. Siehe Abbildung 12.

Dies öffnet einen weiteren Dialog für die Einstellungen der DXF Datei. Hier ist drauf zu achten, dass

- die AutoCAD Version R14/LT98/LT97 ist.
- im Abschnitt Bildmaterialskalierung die Einheiten richtig von 1 mm in 1 Einheit skaliert werden.

Alle weiteren Einstellungen können so bleiben wie sie sind. Siehe Abbildung 13

¹¹Weiter Informationen zu Formaten sind im Handbuch der Software zu finden.

Abbildung 13: Adobe Illustrator DXF Export Dialog

Daten Trennen

Wenn in einer Datei mehrere Arten von Schnitt, Perforation oder Gravur angelegt werden sollen können die einzelnen Objekte getrennt werden indem ihnen eine eigene Farbe zugeordnet wird. Ebenen werden beim Export nicht berücksichtigt.

Pixelbilder

Es können ebenfalls Pixelbilder genutzt werden um Gravuren zu erzeugen. Hierbei besteht die Möglichkeit die Graustufen des Bildes zu verwenden um die Intensität des Lasers zu steuern. Die Bilder können maximal einen Auflösung von 1000 "dots per inch" (dpi) haben. Ab 300dpi können bereits sehr gute Ergebnisse erzielt werden. Unterhalb von 300dpi wird die Auflösung der Gravur roh. Gerade bei Schriften sollte wenn möglich entweder eine hohe Auflösung genutzt werden oder auf Vektoren zurückgegriffen werden.

Daten Import

Vektor Dateien und Pixelbilder werden über den Befehl Datei>Import in die Software eingeladen.

Art des Jobs

Die Art des Laserjobs bestimmt auch mit welche Möglichkeiten zur Verfügung stehen.

- Schneiden
- Gravieren
- Perforieren

Abbildung 14: RDworks Software Oberfläche

Schneiden

Um einen Schnitt einzurichten kann mit einem Doppelklick auf die entsprechende Ebene in der Ebenenpalette rechts oben (siehe Abbildung 14) das Menü für die Einstellungen aufgerufen werden. Siehe Abbildung 15. Hier kann eingestellt werden wie schnell der Laserkopf gefahren werden soll und mit welcher Intensität der Schnitt stattfinden soll. Dazu muss:

1. Die Ausgabe auf Ja stehen.

- 2. In Geschw. (mm/s) der gewünschte Wert eingetragen werden.
- 3. Der Lasermodus auf Schneiden stehen.
- 4. Im Feld mit der 1 und der Checkbox in Min Leist (%) und Max Leist. (%) der gleiche Wert eingetragen werden. 12

Alle weiteren Möglichkeiten sind zur Feineinstellung. Hierfür sollte das Handbuch der Software zu Rate gezogen werden.

Abbildung 15: RDWorks Ebeneneinstellungen Schneiden

¹²Die Software nutzt den Max Wert. Um Verwirrung zu vermeiden sollte jedoch in beide Felder der gleiche Wert eingetragen werden.

Gravieren

Um eine Gravur einzurichten kann mit einem Doppelklick auf die entsprechende Ebene in der Ebenenpalette rechts oben (siehe Abbildung 14) das Menü für die Einstellungen aufgerufen werden. Siehe Abbildung 16. Hier können verschieden Paramter der Gravur definiert werden. Dazu muss:

- 1. Die Ausgabe auf Ja stehen.
- 2. In Geschw. (mm/s) der gewünschte Wert eingetragen werden.
- 3. Der Lasermodus auf Gravur/Scan stehen.
- 4. Das Feld Graustufen ausgeb gewählt sein oder nicht. 13
- 5. Die Leistung eingestellt werden
 - 1. Wenn einheitlich graviert werden soll, muss im Feld mit der 1 und der Checkbox in Min Leist (%) und Max Leist. (%) der gleiche Wert eingetragen werden. 14. In diesem Fall sollte Graustufen ausgeben nicht gewählt sein.
 - Wenn abhängig von den Graustufen des Bildes graviert werden soll. muss im Feld mit der 1 und der Checkbox in Min Leist (%) die Leistung für das schwächste Grau eingetragen werden und im Feld Max Leist. (%) die Leistung für das tiefste Schwarz eingetragen werden.¹⁵
- 6. Für den Gravurmodus gewählt werden ob 16
 - 1. X nur in eine Richtung graviert werden soll.
 - 2. X in beide Richtungen graviert werden soll.
 - 3. Y nur in eine Richtung graviert werden soll.
 - 4. Y in beide Richtungen graviert werden soll.
- 7. In Zeilenabst. (mm) der Abstand zwischen den einzelnen Gravurzeilen eingegeben werden. Der Standard ist 0,1mm. Dies kann aber noch weiter reduziert werden.

Alle weiteren Möglichkeiten sind zur Feineinstellung. Hierfür sollte das Handbuch der Software zu Rate gezogen werden.

¹³ Im Fall von Vektoren als Vorlage kann nur ein einheitlicher Wert gewählt werden. Das Feld ist dann nicht anwählbar.

¹⁴Die Software nutzt den Max Wert. Um Verwirrung zu vermeiden sollte jedoch in beide Felder der gleiche Wert eingetragen werden.

 $^{^{15}\}mathrm{Aus}$ Erfahrung hat sich ergeben, dass Werte unterhalb von 10% Leistung kaum Ergebnis haben.

¹⁶Die Gravurmodi bestimmen wie der Laser die Punkte abfährt. Zum Beispiel würde bei X beide Richtungen der Laser von Links anfahren, gravieren, auslaufen. Von Rechts wieder anfahren, gravieren, auslaufen und so weiter. Bei kleinen Schriften kann dieser Modus Treppen erzeugen. Es empfiehlt sich, wenn kleine Formen graviert werden sollen, den Laser nur aus einer Richtung gravieren zu lassen. Dadurch verdoppelt sich die Laufzeit für die Gravur.

Abbildung 16: RDWorks Ebeneneinstellung Gravur Vektorform

Perforieren

Um eine Perforation einzurichten kann mit einem Doppelklick auf die entsprechende Ebene in der Ebenenpalette rechts oben (siehe Abbildung 14) das Menü für die Einstellungen aufgerufen werden. Siehe Abbildung 17. Hier kann eingestellt werden wie schnell der Laserkopf gefahren werden soll, mit welcher Intensität die Perforiation stattfinden soll und wie das Verhältnis zwischen Schnitt – Lücke – Schnitt – Lücke – etc. sein soll. Dazu muss:

- 1. Die Ausgabe auf Ja stehen.
- 2. In Geschw. (mm/s) der gewünschte Wert eingetragen werden.
- 3. Der Lasermodus auf Schneiden stehen.
- 4. Im Feld mit der 1 und der Checkbox in Min Leist (%) und Max Leist. (%) der gleiche Wert eingetragen werden. ¹⁷
- 5. Das Interval auf einen mm Wert definiert werden.
- 6. Die Punktlänge auf einen mm Wert definiert werden.

Alle weiteren Möglichkeiten sind zur Feineinstellung. Hierfür sollte das Handbuch der Software zu Rate gezogen werden.

¹⁷Die Software nutzt den Max Wert. Um Verwirrung zu vermeiden sollte jedoch in beide Felder der gleiche Wert eingetragen werden.

Abbildung 17: RDWorks Ebeneneinstellungen Perforieren

Material Bibliothek

Bei allen drei Arten von Jobs ist die Einstellung von Leistung und Geschwindigkeit abhängig von dem Material. Glücklicherweise bietet die Software bietet die Möglichkeit Einstellungen zu speichern. Diese können in der Materialbibliothek abgelegt werden. Um diese zu offen muss mit einem Doppelklick erst die Einstellung der Ebenen geöffnet werden. Im oberen Bereich befindet sich ein Knopf (siehe zum Beispiel Abbildung 17) für die Materialbibliothek. Abbildung 18. Von dort aus können Einstellungen geladen oder die aktuellen unter einem neuen Namen gespeichert werden. Hierbei ist es ratsam einen aussagekräftigen Namen zu wählen. Als Standard sollte folgendes Muster gelten.

Material Stärke Jobtyp

Dies würde bei einer Gravur auf einer 3mm Hochdichte Faserplatte (HDF) zu HDF 3mm Gravur werden.

Abbildung 18: RDworks Materialbibliothek

¹⁸Wenn der Name bereits existiert wird die alte Variante überschrieben.

Lüftung

Achtung: Das aktivieren der Lüftung darf nicht vergessen werden.

Den Job Starten

Wenn der Job in RDWorks soweit eingerichtet ist wird es Zeit ihn zu starten. Vorher sollte noch folgende Punkte ein letztes mal überprüft werden.

- 1. Ist der Fokus richtig gesetzt?
- 2. Steht der Laserkopf auf dem Origin (Null/Null) und ist der Origin richtig?
- 3. Ist die Lüftung aktiviert?
- 4. Ist die Abdeckung des Lasers geschlossen?
- 5. Passen die Daten auf das eingelegte Material?
- 6. Wurde die Zustimmungstaste gedrückt?

Zu 1):

Es sollte ein letztes mal überlegt werden ob der Fokus richtig gesetzt wurde. Im Zweifelsfall sollte dieser Arbeitsschritt nochmal ausgeführt werden.

Zu 2):

Der Laserkopf muss an seinem 0/0 Punkt stehen. Über einen Druck auf die Taste ESC wird der Kopf auf seinen letzten Origin zurückgesetzt.

Zu 3):

Die Lüftung muss aktiviert sein. Gerade bei Holz Materialien kann es zu einer starken Rauchentwicklung kommen.

Zu 4):

Die Abdeckung des Lasers muss geschlossen sein damit der Job gestartet werden kann.

Zu 5):

Ob die Daten auf das Material passen, kann aus der Software heraus überprüft werden. Rechts unten in RDWorks (siehe Abbildung 14) gibt es die Möglichkeit den Laserkopf die äußeren Kanten der Vorlage abfahren zu lassen.

Zu 6):

Die Lasersteuerung weiß nicht ob der Laser aktiviert ist oder nicht. Daher kann ein Job gestartet werden ohne das ein Schnitt, eine Gravur oder eine Perforation zu Stande kommt. Um den Laser zu aktivieren muss:

- 1. Die Abdeckung geschlossen sein.
- 2. Die Zustimmungstaste gedrückt werden(siehe Abbildung 5).

Wenn all diese Maßnahmen getroffen wurden kann über die Schaltfläche Start in der Software der Job an den Laser gesendet werden.

Der Job Läuft

Während ein Laser Job läuft darf die Anlage nicht unbeaufsichtigt bleiben. Ebenfalls sollte die Abdeckung nicht geöffnet werden. Falls es nötig ist die Abdeckung zu öffnen wird der Job pausiert. Fall ab dem aktuellen Punkt weitergelasert werden soll, kann dies über die Start/Pause Taste veranlasst werden. Dabei ist drauf zu achten, dass nochmals die Zustimmungstaste gedrückt werden muss. Sonst fährt der Laserkopf weiter aber der Laser wird nicht wieder aktiviert.

Abschaltung

Der Prozess der Abschaltung ist grundsätzlich die umgekehrte Variante der Inbetriebnahme bis auf einige Ausnahmen

Laserkopf in Ausgangspostion

Da der Laser nach dem Anschalten sofort eine Referenzfahrt macht, sollte vor dem Abschalten der Laserkopf in die rechte obere Ecke der Arbeitsfläche gefahren werden und dort seinen letzten Origin erhalten. Damit kann verhindert werden, dass die/der nächste Nutzer/in den Laserkopf beschädigt weil Material auf der Arbeitsfläche vergessen wurde oder das Gitter dem Distanztaster im weg ist.

Z-Achse Runter Fahren

Um die Inbetriebnahme weiter zu vereinfachen sollte die Z-Achse ein Stück runter gefahren werden. Nicht so weit, dass das Gitter unter den Absatz rutschen kann. Jedoch so weit, dass optisch direkt sichtbar ist, dass der Taster nicht gegen das Gitter stoßen kann.

Abschaltung Steuerung und Laser

Ist der Laserkopf in der Ausgangsposition und der Origin wurde gesetzt kann mit der Laser auf Aus gestellt werden und die Steuerung ebenfalls (siehe Abbildung 5).

Abschaltung Hauptstrom

Nach dem letzten setzten der Ausgangsposition, der Anpassung der Z-Achse und dem Abschalten der Anlage, kann der Hauptstrom abgeschaltet werden (siehe Abbildung 3).

Lüftung

Jetzt kann die Lüftung in Bereich 1 (siehe Abbildung 2) ausgeschaltet werden.

Oberlicht Schließen

Zuletzt wird das Oberlicht an dem die Lüftung hängt geschlossen.

Materialien

In dem Laser dürfen keine PVC-haltigen Materialien geschnitten werden! PVC-haltige Material erzeugen Chlor-wasserstoffgase die höchst giftig sind und auch die Maschine angreifen. Wenn es nötig ist Polymere zu identifizieren, kann dieses Paper ("Identification Of Polymers") von David A. Katz ebenfalls zu Rate gezogen werden.

Das FabLab München hat in seinem Wiki eine umfassende Liste von möglichen und unmöglichen Materialien und das Wiki des ATX Hackerspace ist ebenfalls eine gute Quelle.

Schneidbare Materialien:

- Holz (bis ca. 6mm Dicke)
- Papier
- Karton/Pappe
- · Acryl/Plexiglas (bis ca. 6mm Dicke) bzw. PMMA (Polymethylmethacrylat)
- Stoffe
- Leder
- Linoleum
- Pertinax
- Schleifpapier (von der Rückseite her)
- · Elfenbein / Horn
- Seide
- Delrin (POM, acetal)
- Mylar (polyester)
- PETG (polyethylene terephthalate glycol)

Gravierbar sind dieselben Materialien plus:

- lackierte Metalle
- Edelstahl (mit speziellem Sprüh-Lack)
- eloxiertes Alu
- Glas
- · Stein (beschränkt)
- · Marmor (beschränkt)
- Gips
- Fleece

Auf keinen Fall dürfen geschnitten werden:

- PVC/Vinyl, Neopren und sämtliche andere chlorhaltigen Stoffe! Entwickelt giftige Dämpfe! Außerdem geht die Maschine kaputt.
- hoch entzündliche/explosive Materialien (versteht sich von selbst)
- · ABS (acrylonitrile butadiene styrene) stinkt gewaltig und erzeugt giftige Gase
- · halogenierten Monomeren bestehende Kunststoffe wie , Vinyl, Polydibromstyrol, (Teflon)
- Bakelit Bitte nicht lasern siehe Link

Funktioniert nicht gut, besser nicht verwenden:

- Polykarbonat (PC, Lexan) schlechter Schnitt, verfärbt sich, fängt Feuer
- High density polyethylene (HDPE) schmilzt
- Polypropylene (PP) schmilzt (dünne Folien bis 1mm OK)
- Polystyrol (PS) schmilzt (dünne Platten OK)
- Polyethylene (PE) schmilzt
- Styrodur schmilzt
- Nylon schmilzt

- Moosgummi Würde ich nicht empfehlen wenn Benzol zum Aufschäumen verwendet wurde siehe Link>
- Schellack auch hier ist die Beschaffenheit der Politur bzw der Beschichtung zu wissen, im Zweifel eher nicht.
- Kapton tape (Polyamide) muss nachgefragt werden siehe Link

Materialien die unser Laser nicht schneiden kann:

- · Metalle aller Art
- Kohlefaser
- Glas
- Fiberglas
- Platinen

Quelle

Zugang zu Anlage, Schlüssel und Computer

Der Zugang zur Anlage wird über dieses Google Doc geregelt.¹⁹ Dort sind alle Personen eingetragen die sich am Informationsstand im Hauptgebäude gegen Unterschrift den Schlüsselbund abholen dürfen. An diesem Bund ist:

- · ein Schlüssel für die Steuerung
- · ein Schlüssel für den Laser
- ein Schlüssel für Spind Nummer 19
- ein Dongel für LW 022

Um die Zugangsberechtigung zu erwerben muss:

- eine Einweisung an der Anlage stattgefunden haben.
- eine Abnahme durch die Administratoren stattgefunden haben.
- die jährliche Sicherheitseinweisung der Modellbauwerkstätten besucht worden sein.
- die Werkstattordnung gelesen und gegengezeichnet worden sein.

Der Computer

Die FHP stellt seinen Studierenden einen Computer zur Verfügung. Auf diesem Computer ist nur die Software RD-Works und Inkscape installiert. Da das Betriebssystem veraltet ist, sollte davon abgesehen werden diesen Rechner an das Internet anzuschließen. Daten müssen per USB Stick übertragen werden. Die FHP führt keine Backups dieses Rechners aus und behält sich vor alle dort abgelegten Daten zu löschen, falls es notwendig sein sollte. Es existiert eine Partition E (Daten) auf der eigene Ordner angelegt werden dürfen.

Terminvergabe

Die Terminvergabe läuft über die Terminfunktion des Incom.org Workspaces Laser KNLG Base · FHP und nach dem "First Come First Serverd" Prinzip. Termine sind bindend und müssen dort vorab eingestellt werden. Wenn Termine nicht wahrgenommen werden können, müssen sie dort auch wieder gelöscht werden. Mehr als 2 Termine an einem Tag ist aus Erfahrungswerten kaum zu handhaben.

 $^{^{19}}$ Achtung die Adresse des Google Docs könnte sich ändern.

Checklist

Dies ist eine kurze Checkliste für den gesamten Betriebsprozess. Sie sollte ausgedruckt und als Referenz griffbereit sein.

Inbetriebnahme

- [] Oberlicht öffnen
- [] Lüftung anschalten
- [] Abdeckung öffnen
- [] Hauptstrom anschalten
- [] Arbeitsfläche leeren
- [] Laserkopf höher als das Gitter?
- [] Gitter nicht unter dem Absatz?
- [] Distanztaster ist nicht verrußt?
- [] Distanztaster bewegt sich leicht und verkantet nicht?
- [] Hand über den Notaus!
- [] Steuerung mit Schlüssel anschalten
- [] Laserkopf beobachten bis die Referenzfahrt vorbei ist

Laser Job

- [] Daten einrichten
- [] Autofokus setzten. Der Distanztaster ist relevant nicht der Laserpunkt!
- [] Material final positionieren
- [] Origin setzten
- [] Laser mit dem Schlüssel anschalten
- [] Passt die Vorlage auf das Material? Umrisse zeigen.
- [] Ist die Lüftung an?
- [] Abdeckung schließen
- [] Zustimmungstaste drücken
- [] In der Software Start drücken
- [] Laser beobachten (im Falle eines Feuers Ruhe bewahren)

Feuer

- [] Abdeckung NICHT öffnen
- [] Laserjob stoppen
- [] Lüftung abschalten
- [] Feuerlöscher verwenden
- [] Feuerwehr rufen

Abschaltung

- [] Arbeitsfläche frei räumen
- [] Kleiner Materialreste entfernen
- [] Laserkopf in die rechte obere Ecke fahren
- [] Origin dort setzten
- [] Z-Achse runter fahren
- [] Z-Achse nicht tiefer als den Absatz fahren
- [] Maschine reinigen
- [] Laser abschalten
- [] Steuerung abschalten
- [] Hauptstrom abschalten
- [] Abdeckung schließen
- [] Lüftung abschalten
- [] Oberlicht schließen
- [] Computer und Kiste zurück in Spind Nummer 19
- [] Werkstatt verriegeln
- [] Schlüssel beim Pförtner abgeben

Über dieses Dokument

MacTex

brew cask install mactex

Schriften

Es werden die Schriften Camingo Code von Jan Fromm und Open Sans von Steve Matteson verwendet. Diese müssen installiert und aktiviert sein. Es reicht nicht die Schrift Dateien im Benutzer Ordner /Users/you/Library/Fonts/zu haben. Auf dem System auf dem dieses PDF generiert wurde mussten diese unter /Library/Fonts/ installiert sein.

Dokument Generieren

Das Dokument ist überwiegend in Pandoc Markdown [MI] geschrieben.²⁰ Dort wo [MI] nicht mehr weiter kommt wurde Lagenutzt. Um das finale PDF zu generieren muss Pandoc mit dem dem fignos Filter installiert sein. Um die Ausführung zu vereinfachen wurde das entsprechende Shell Befehl in ein npm script gespeichert.

```
brew install pandoc
pip install pandoc-fignos
git clone git@github.com:FH-Potsdam/the-ultimate-laser-guide.git
cd ./the-ultimate-laser-guide
npm install
npm run pandoc
```

- Pandoc About pandoc
- tomduck/pandoc-fignos: A pandoc filter for numbering figures and figure references.

Lizenz

Dieses Dokument und alle Bilder, soweit nicht anders gekennzeichnet, sind unter MIT Lizenz.

Copyright (c) 2017 Fabian Morón Zirfas & Fachhochschule Potsdam

DE:

Hiermit wird unentgeltlich jeder Person, die eine Kopie der Software und der zugehörigen Dokumentationen (die "Software") erhält, die Erlaubnis erteilt, sie uneingeschränkt zu nutzen, inklusive und ohne Ausnahme mit dem Recht, sie zu verwenden, zu kopieren, zu verändern, zusammenzufügen, zu veröffentlichen, zu verbreiten, zu unterlizenzieren und/oder zu verkaufen, und Personen, denen diese Software überlassen wird, diese Rechte zu verschaffen, unter den folgenden Bedingungen:

Der obige Urheberrechtsvermerk und dieser Erlaubnisvermerk sind in allen Kopien oder Teilkopien der Software beizulegen.

DIE SOFTWARE WIRD OHNE JEDE AUSDRÜCKLICHE ODER IMPLIZIERTE GARANTIE BEREITGESTELLT, EINSCHLIESS-LICH DER GARANTIE ZUR BENUTZUNG FÜR DEN VORGESEHENEN ODER EINEM BESTIMMTEN ZWECK SOWIE JEG-LICHER RECHTSVERLETZUNG, JEDOCH NICHT DARAUF BESCHRÄNKT. IN KEINEM FALL SIND DIE AUTOREN ODER

 $^{^{20}\}mbox{Es}$ wurden wenige $\mbox{\footnotemark}{ETE}\mbox{\footnotemark}{Befehle}$ verwendet für ein besseres Layout.

COPYRIGHTINHABER FÜR JEGLICHEN SCHADEN ODER SONSTIGE ANSPRÜCHE HAFTBAR ZU MACHEN, OB INFOLGE DER ERFÜLLUNG EINES VERTRAGES, EINES DELIKTES ODER ANDERS IM ZUSAMMENHANG MIT DER SOFTWARE ODER SONSTIGER VERWENDUNG DER SOFTWARE ENTSTANDEN.

ΕN

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.