HDFS Router-based Federation

Íñigo Goiri

Chao Sun

Microsoft

Uber

High-level HDFS setup

Microsoft

- 3 data centers
 - 2 more provisioning
- Harvested capacity [OSDI'16]
- Hadoop 2.7.1 (migrating to 2.9)
 - Many internal extensions
- Internal batch workloads

Uber

- 3 data centers
 - 4th is coming soon
- Thousands of servers
- 100+ PB of data
- Hadoop 2.8.2
 - Many custom and backported patches
- Serves applications
 - Fraud detection, ML/DL, ETA calculation...
- Foundation for Uber's data lake

Current architecture in HDFS

- NameNode scalability/performance issues
- Split into independent namespaces (subclusters)
 - Fragmentation
 - Users in charge of choosing subcluster
- ViewFS to unify subclusters

Setup at Uber

- Use client-side ViewFS config
- Split into 3 clusters (each DC)
 - Main production HDFS cluster
 - Hbase cluster
 - Tmp cluster (Hive scratch directory, Yarn application logs, etc).

Problems with ViewFS

- Hard to maintain per-client mount table
 - Many HDFS clients, libraries, configurations,...
 - Each client may have its own mount table
 - Requires infrastructure to distribute mount table updates
 - Adding more datacenters
- Manual balancing of subclusters
- Solution
 - "Centralize" the mount table
 - Introduce a routing layer: Router-Based Federation (RBF)

Our solution: RBF

"Centralize" the mount table

- Introduce a routing layer: Router-Based Federation (RBF)
 - Router: Proxy requests from users to the right NameNode
 - State Store: Shared mount table and other state

Router

- Unified view of the federation
- Performance improvements
 - Caching State Store data
 - Includes modified client to contact NameNodes

State Store

Shared information

```
• Mount table: /DC0-2 \rightarrow DC0-2, /
```

- Federation membership: DC0, DC0-1, DC0-2, DC0-3
- Router tracking: R1, R2, R11, R22,...
- Not critical for performance (cached in each Router)
- Implementations
 - ZooKeeper, HDFS, SQL server,...

HDFS RBF deployments

Microsoft

- 1 Router per Namenode
- All data centers
- ZooKeeper as the State Store
- Main workloads
 - Large deep learning
 - Application logs

Uber

- 2 routers
- 1 data center
- ZooKeeper as the State Store
- Workload
 - Hive traffic accessing scratch dir

Microsoft RBF deployment

- 23k servers
 - 8 subclusters
 - 28 NameNodes (4 per subcluster)
 - 28 Routers: load balancing
- Transparent access
 - RPC
 - WebHDFS
 - Web UI

Mount Table

Global path	Target nameservice	Target path	Order	Read only	Owner	Group	Permession	Quotathage	Date Modified	Date Created
6.	04	1		4	надоор	avpergroup	PM007-105-X	(NsOuota: →, 9sOuota: →)	2017/06/19 09/29/31	2017/06/19 09:29:31
/ade/logs	04	/app-logs		1	hadoop	hdts	7602-07-E	[NeQuate +: SeQuate +]	2010/04/16 09:48:50	2018/04/18 89:48:50
Anahes	04-temp	590		4	hadoop	Supergroup	PWHE-HE-E	jhoQuota +, SaQuota +)	2017/12/13 18:23:46	2017/12/13 18:23:46
Amp	04-	Δτήμ	HASH_ALL	1	hadoop	supergroup	PWHF-HF-E	[NoQuota + 8xQuota +]	2017/11/27 14:36:55	2017/11/27 14:36:55
departativ		Asserlati	HASH	4	hadoop	supergroup	flexif-xif-ii	[NsOutta +-, SsOutta +-]	2017/08/09 14:39:44	2017/08/09 14:38:37
(ser)manni		Adeljessem	HASH	4	hadoop	supergroup	TM007-00-0	(NeGueta	2017/00/10 15 29:26	2017/08/10

Namenode Information

Nametode				Capacity		Blocks				Nodes				
		Web address	Last Contact		Files	Total	Missing	Under- Replicated	Live	Dead	Progress	Live	Dead	
O	04-0	ans		7	18.06 PB	8150HQ	2 1389281	8 0	ū	2955	2	5	2	0
0	040	nn2		38.	10.06 PB	615002	4 1389281	9 0	0	2955	40	.)	5.	3
8	044	mà		4	18.00 PB	815000	4 1389281	0 0	0	2955	169	0	2	21
0	04-0	nn4			18.06 PB	e15000	2 1388281	0 0	0	2954	43	1	4	5
0	041	ant		(100)	23.16 PB	992836	8 1612626	7.0	0.00	3850	159.	0	4	25
O	04-1	lm2			23 17 PB	992883	4 1612574	0 0	0	3018	100	0	4	25
O	04-1	883			23.16 PB	992900	1 1012082	5 0	D	3858	347	0	4	41
1	041	m4		6	23.17 PB	992925	4 1012893	3 0	597	3859	391	1	A.	42
0	04-2	nn1		6	20.94 PB	239100	07 3135193	2 0	0	3561	107	1	4	9
0	042	m12		16	20,94 PB	239100	07 3138193	2 0	0	3961	88	3	4	
0	042	nn3		7	20 94 PB	239100	07 3135193	2 0	0	3561	41	1	4	2
	042	004		7	20.94 PB	239100	10 3136193	5.0	181	3561	183	1		18.
0	04-3	ans		6	18 18 PB	914790	52 8591236	7 0	0	2993	30	10	1	Ξï
	04-3	nn2			18.18 PB	914790	52 8591236	7 1	1340841	2993	67	8	3	11

Router adds latency

Performance and scalability

NN vs R→NN

4NN vs 12R → 4NN

Read metadata (cheapest access → worst case for Router)

Tuning Router RPC client

- Router uses a connection pool for each <user, namenode> pair
 - Connection creation/cleanup is done asynchronously
 - Hard to configure: Connection pool size, creator queue size,...
- Default IPC client is a bottleneck
 - Router forwarding many requests to NameNodes
 - HADOOP-13144 allow multiple concurrent client/connections
 - <u>HDFS-13274</u> leverage concurrent connections

Active development

- Many contributors
 - VipShop, Uber, Huawei,...
- Bug fixes
- New features:
 - WebHDFS
 - Better subcluster isolation
 - Federated quotas
 - Tracking the state of the Routers
 - Spreading mount points across subclusters

Spreading mount points across subclusters

- Large jobs processing data spanning multiple subclusters
- Similar to merge mount points (HADOOP-8298)
- Policies to decide the subcluster to write a file
 - Consistent hashing, available space, local subcluster,...
- Limitations
 - Needs to find files in multiple subclusters
 - Renaming has some inefficiencies
 - Subcluster unavailability is hard to manage

Open issues

- Router → Namenode connections (<u>HDFS-13274</u>)
- Security (HDFS-13532)
 - Manage delegation tokens
 - LinkedIn driving this effort
- Rebalancer (HDFS-13123)
- inodes (HDFS-13469)
 - We need to identify the nameservice
- Other issues tracked in HDFS-12615

Rebalancer

- Subclusters can get unbalanced
 - Load, space,...
- Manually move files/folders between subclusters
 - Hard to provide strong consistency
- Transparent data movement between subclusters
 - Service to monitor if subclusters balanced
 - Policies to decide what to move and trigger rebalancing [ATC'17]
- Rebalancer
 - Move data: DistCp, Tiered storage, DN block linking,...
 - Change namespace (mount table) consistently

Uber future plan: overview

Uber future plan: detailed

- Routers on top of all HDFS clusters
- Service to initiate data movement between hot and warm clusters
 - Similar to Rebalancer, implemented in Golang
- Service to track dataset temperature and initiate data movement
- Observer (ReadOnly) NameNodes to serve stale read requests
 - HDFS-12943
 - > 90% traffic are read RPC requests
 - Mostly for Presto queries

New ideas/brainstorming

- Federating federations
 - 1. Creating a hierarchy: putting Routers in front of other Routers
 - 2. Large federation: sharing State Store across deployments
- Connecting DataNodes to RBF
 - DNs need to be configured to join subclusters
 - Can DNs use the Routers to join subclusters?
 - 1. Heartbeat through the Router
 - 2. Find the Datanodes through the Router