LECTURE 3

September 11, 2023

1. Mathematical Induction

Recall in the previous lecture, we started to introduce the concept of mathematical induction.

Theorem 1.1 (Principal of Mathematical Induction). Let S(n) be a statement about integers. Assume

- There exists an integer $k_0 \in \mathbb{Z}$ such that $S(k_0)$ is true.
- For any $k \ge k_0$ if S(k) is true, then S(k+1) must also be true. Then S(n) must be true for all $n \ge k_0$.

Example 1.2. Prove that for all $n \in \mathbb{N}$, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

SOLUTION. We first show that for the base case n=1, the statement is true. On the left side, we have $\sum_{k=1}^1 k=1$ and on the right side, we have $\frac{1\cdot(1+1)}{2}=\frac{2}{2}=1$, so the base case is true. Now assume that for $n\in\mathbb{N}$, $\sum_{k=1}^n k=\frac{n(n+1)}{2}$ holds. Then we want to show that for $n+1\in\mathbb{N}$, $\sum_{k=1}^{n+1} k=\frac{(n+1)(n+2)}{2}$. On the left side, we have that

$$\sum_{k=1}^{n+1} k = 1 + 2 + 3 + \dots + n + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

as desired. Therefore, by mathematical induction, we have shown that $\sum_{k=1}^n k = \frac{n(n+1)}{2}.$

THEOREM 1.3 (Second Principal of Mathematical Induction (Strong Induction)). Let S(n) be a statement about integers and assume the following:

- There exists some integer $k_0 \in \mathbb{Z}$ such that $S(k_0)$ is true.
- If $k \ge k_0$ is an integer such that $S(k_0)$, $S(k_0 + 1)$, ..., S(k) are all true, then S(k + 1) must also be true.

Then for all $n \geq k_0$, S(n) is true.

THEOREM 1.4 (Well-Ordering Principle). Let A be a nonempty subset of $\mathbb{N} = \{1, 2, 3, ...\}$. Then A has a least element, i.e. there exists an $a_0 \in A$ such that for all $a \in A$, $a_0 \le a$, or $a_0 = \min(A)$.

REMARK 1.5. \mathbb{Z} does not satisfy the Well-Ordering Principle (Theorem 1.4) since if we take \mathbb{Z} as a subset of itself, it does not have a least element.

PROOF. We will take for granted that 1 is the least element of \mathbb{N} . Take $A \subset \mathbb{N}$ and assume that $A \neq \emptyset$. We will prove using cases.

Case 1: Assume that $1 \in A$, then obvious, $1 = \min(A)$.

<u>Case 2:</u> Assume that $1 \notin A$. Assume A has no least element, i.e. for every $a \in A$, there exists an $a_1 \in A$ such that $a_1 < a$. We will perform a clever strong induction (Theorem 1.3) to show that $A = \emptyset$. This would be absurd. The statement S(n) will be " $n \notin A$ ". We verify the base case for when n = 1. Because we are in Case 2, $1 \notin A$, which is true. For the inductive hypothesis, let k > 1 such that $1 \notin A$, $2 \notin A$,..., $k \notin A$. Then we want to show that $k + 1 \notin A$. Assume that $k + 1 \in A$ (for contradiction). Since A has no least element, k + 1 is not the least element, therefore there is some $a \in A$ with a < k + 1, then $1 \le a \le k$, but by the inductive hypothesis, $a \notin A$, which is absurd, and therefore, we finished the induction and so $k + 1 \notin A$.

Therefore, by strong induction, for all $n \in \mathbb{N}$ with $n \notin A$, i.e. $A = \emptyset$. This is absurd.

Definition 1.6. Let $A \subset \mathbb{Z}$ be a nonempty set.

- An integer $k \in \mathbb{Z}$ is said to be a *lower bound* of A if for all $a \in A$, k < a.
- If there exists a $k \in \mathbb{Z}$ such that k is a lower bound for A, then we say that A is bounded below.

EXERCISE 1.7. Let $A \subset \mathbb{Z}$ be a nonempty subset and bounded below. Prove that A has a least element using strong induction.

EXERCISE 1.8. Formulate what it should mean that a subset of $\mathbb Z$ is bounded above.

EXERCISE 1.9. Prove that a nonempty subset $A \subset \mathbb{Z}$ and bounded above has a greatest element using strong element.

2. Division

NOTATION 2.1. For $a, b \in \mathbb{Z}$ with $a \neq 0$, we will say a divides b and write $a \mid b$ if b is an integer multiple of a, i.e. there exists some integer $k \in \mathbb{Z}$ such that b = ka.

Example 2.2. For example, we can consider $2 \mid 4$ and $3 \mid 27$, but $3 \mid /14$.

PROPOSITION 2.3. If $a, b, c, x, y \in \mathbb{Z}$ with $a \neq 0$, and $a \mid b$ and $a \mid c$, then $a \mid xb + yc$. To see this,

21

PROOF. Since $a \mid b$, there exists an integer $k \in \mathbb{Z}$ such that b = ka. Similarly, since $a \mid c$, there exists an integer $m \in \mathbb{Z}$ such that c = ma. Multiplying the first equation by x and multiplying the second equation by x we obtain xb = xka and yc = yma and so adding these two equations together, we obtain

$$xb + yc = xka + yma = (xk + ym)a$$

where $xk + ym \in \mathbb{Z}$ as well, and thus, by definition of divisibility, $a \mid xb + yc$ as desired.

PROPOSITION 2.4. If $a, b \in \mathbb{Z}$ with $a, b \neq 0$ such that $a \mid b$, then $|a| \leq |b|$.

PROOF. Indeed, since $a \mid b$, we have some integer $k \in \mathbb{Z}$ such that b = ka and so |b| = |k||a|. But since $b \neq 0$, then $k \neq 0$ and therefore, $|k| \geq 1$, implying that $|b| = |k||a| \geq 1 \cdot |a| = |a|$, as desired.

Theorem 2.5 (Division Algorithm). Let $a, b \in \mathbb{Z}$ with b > 0. Then there exists a unique $q, r \in \mathbb{Z}$ such that $0 \le r < b$ such that a = qb + r. We call q the quotient and r the remainder of the division a by b. By unique, we mean that there is exactly one q and one r that will make a = qb + r.

Remark 2.6. $a \equiv r \mod b$ since a - r = qb.