2020 年高一年级 10 月联考

数学试卷

本试卷共 4 页,22 题。全卷满分 150 分,考试用时 120 分钟。

★祝考试顺利★

注意事项:

- 1. 答题前, 先将自己的姓名、准考证号填写在答题卡上, 并将准考证号条形码贴在答题卡上的指定 位置。
- 2. 选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。写在试题 卷、草稿纸和答题卡上的非答题区域无效。
- 3. 非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题 卡上的非答题区域无效。
 - 4. 考试结束后,请将答题卡上交。
- 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。
- 1. 下列所给对象能构成集合的是
 - A. 2020 年全国 I 卷数学试题的所有难题
 - B. 比较接近 2 的全体正数
 - C. 未来世界的高科技产品
 - D. 所有整数
- 2. 若 c > b, c > d,则下列不等关系中不一定成立的是

$$A/a-b>c-d$$

B.
$$a+c>b+d$$

$$C. a-c>b-c$$

B.
$$a+c>b+d$$
 C. $a-c>b-c$ D. $a-c< a-d$

3. 设集合 $A = \{x \mid \frac{x-1}{x-3} < 0\}, B = \{x \mid 2x-3 > 0\}, M \land A \cup B = 0\}$

A.
$$\{x \mid -3 < x < -\frac{3}{2}\}$$
 B. $\{x \mid -3 < x < \frac{3}{2}\}$ C. $\{x \mid 1 < x < \frac{3}{2}\}$ D. $\{x \mid x > 1\}$

B.
$$\{x \mid -3 < x < \frac{3}{2}\}$$

C.
$$\{x \mid 1 < x < \frac{3}{2}\}$$

D.
$$\{x | x > 1\}$$

4. 已知 $a \in \mathbb{R}$, $b \in \mathbb{R}$, 若集合 $\{a, \frac{b}{a}, 1\} = \{a^2, a-b, 0\}$, 则 $a^{2 \cdot 020} + (b+1)^{2 \cdot 020}$ 的值为

A. 2

$$C. -2$$

$$D-1$$

5. 襄阳五中组织强基计划选拔赛,某班共有30名同学参加了学校组织的数学、物理两科选拔,其中两科 都取得优秀的有6人,数学取得优秀但物理未取得优秀的有12人,物理取得优秀而数学未取得优秀 的有 4 人,则两科均未取得优秀的人数是

A. 8人

B. 6人

C.5人

D. 4 人

高一数学试卷 第1页(共4页)

6. 若关于 x 的不等式	$2x^2 - 8x - 4 + a \le 0$ 在 1 \le	$x \le 3$ 内有解,则实数 a	的取值范围是
	B. <i>a</i> ≤10		D. $a \geqslant 10$
7. 下列叙述正确的是			
N 1	$+\frac{4}{x+2}$ 的最小值是 2		
B. 已知 a,b 为实数	,则 $a > b$ 是 $\frac{1}{a} < \frac{1}{b}$ 的充要	条件	京型品牌。晚时时, 隨水鄉 马。 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
C. 已知 $x,y \in \mathbb{R}$, " x	xy<1"是"x,y 都小于 1"的		er e- hime a triber
	1,2x+1>3,则 p 的否定是		S. Land A. J.
8. 已知不等式 ax^2-b	$x-1$ ≥0 的解集是 $\{x -3$	$\leq x \leq -2$ },则不等式 x^2	+bx+a>0 的解集是
$A. \{x \mid x < -\frac{1}{6} \stackrel{?}{\text{d}} x$	>1}	B. $\{x x < -1$ 或.	$x > \frac{1}{6}$
C. $\{x x < -2 $ 或 $x > 0$	>3}	D. $\{x x < -3 $ 或	x>2
9. 已知 $0 < x < 1$,则 $\frac{1}{4x}$	$+\frac{1}{1-x}$ 的最小值为		
A. 9	B. $\frac{9}{4}$	C. 5	D. $\frac{5}{4}$
10. 中国宋代的数学家	· ·秦九韶曾提出"三斜求积;	术",即假设在平面内有。	一个三角形,边长分别为 a,b,c,
			为三角形周长的一半,这个公
			10,c=6,则此三角形面积的最
大值为	来/6間 4 24 7 26 17 1 二 7	1777 1772 1777	
A. 10	В. 11	C. 12	D. 13
	过 x 的最大整数,称为高	高斯取整函数,例如[3	.4]=3,[-4.2]=-5,方程
			$= \mathbf{R}$,则实数 a 的取值范围是
_		B. $-1 < a < 0$ 或 $\frac{3}{2}$	
$A1 \leqslant a \leqslant 0 \ \vec{\Im} \frac{3}{2} \leqslant$	≤a<2	B. 1 \(a \ \ 0 \) \(\frac{1}{2} \)	u \2
C. $-1 < a \le 0$ 或 $\frac{3}{2} \le$	<i>≤a</i> <2	D. -1 ≤ a ≤ 0 或 $\frac{3}{2}$	
12. $\forall a > 1, b > 1, ab = 0$	(a+b)=1,则下列结论正	确的是	日に、日本の (日本社) (日本社) (日本社)
①a+b有最小值 20		②a+b有最大值($(\sqrt{2}+1)^2$;
③ab 有最大值 3+2	$\sqrt{2}$; ω as a value.	④ab 有最小值 3-	$-2\sqrt{2}$.
А. ①③	В. ①④		D. ②④
二、填空题:本题共4小	题,每小题 5 分,共 20 分。		
13. 已知命题 p:∃m∈{	$(m \mid -1 \leq m \leq 1), a^2 - 5$	a+3 < m+2,若 p 是	假命题,则实数 a 的取值范围
是 .			
	$3 < 0, q: x^2 - (2m+1)x +$	$(m-1)(m+2) \leq 0.$ 若	$p \neq q$ 的充分不必要条件,则实
数 m 的取值范围是_			
15. 已知 x>0, y>0,且 a	$x+3y=xy$, $\ddagger t^2+4t < x$	+3y恒成立,则实数 t	的取值范围是

- 16. 设全集 $U=\{1,2,3,4,5,6\}$,用 U 的子集可表示由 0,1 组成的 6 位字符串,如: $\{2,5\}$ 表示的是从左往右第 2 个字符为 1,第 5 个字符为 1,其余均为 0 的 6 位字符串 010010,并规定空集表示的字符串为 000000.
 - (1)若 M={1,3,4},则 [_UM 表示 6 位字符串为_____.
- (2)若 $A = \{2,3\}$,集合 $A \cup B$ 表示的字符串为 011011,则满足条件的集合 B 的个数为______个. 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。
- -17.(10 分)已知集合 $A = \{x \mid x^2 6x 16 \le 0\}, B = \{x \mid -3 \le x \le 5\}.$
 - (1)若 $C = \{x \mid m+1 \le x \le 2m-1\}$, $C \subseteq (A \cap B)$, 求实数 m 的取值范围;
 - (2)若 $D = \{x \mid x > 3m+2\}$,且 $(A \cup B) \cap D = \emptyset$,求实数 m 的取值范围.

18. (12 分)(1)若关于x的不等式 $2x^2-(4+a)x+2a \le 0$ 的解集是 $\{x|x \ge 1\}$ 的子集,求实数a 的取值范围; (2)已知 a,b,c 均为正数,且 $\frac{abc}{a+b} = 16$,求a+b+c 的最小值.

19. (12 分)给定两个命题 p:对任意实数 x 都有 $ax^2 + ax + 1 > 0$ 恒成立,q:关于 x 的方程 $x^2 - x + a - 2 = 0$ 有实数根.

。仓林 日, 公司经小器, 摄水中央摄图·加克坡, 二

- (1)"a=0"是 p 的什么条件?
- (2)如果 p 与 q 中有且仅有一个为真命题,求实数 a 的取值范围.

- 20. (12 分)设集合 $A = \{x \mid x^2 4x + 3 = 0\}$, $B = \{x \mid x^2 2(a+2)x + a^2 + 3 = 0\}$.
 - (1)若 $A \cap B = \{1\}$,求实数a的值;
 - (2)若 $A \cap B = B$,求实数 a 的取值范围.

- 21. (12 分)已知不等式 $2x^2 + bx + c < 0$ 的解集是 $\{x \mid 0 < x < 5\}$.
 - (1)求 b,c 的值;
 - (2)不等式组 $\begin{cases} 2x^2 + bx + c > 0, \\ 2(x+k)^2 + b(x+k) + c < 0 \end{cases}$ 的正整数解只有一个,求实数 k 的取值范围;

(3)若对于任意实数 $x \in \{x \mid -1 \le x \le 1\}$,不等式 $t(2x^2 + bx + c) \le 2$ 恒成立,求实数 t 的取值范围.

- 22. (12 分)此前,美国政府颁布了针对中国企业华为的禁令,禁止各国及各国企业向华为出售含有美国技术或软件设计的产品,否则出售者本身也会受到制裁。这一禁令在 9 月 15 日正式生效,迫于这一禁令的压力,很多家企业被迫停止向华为供货,对华为电子设备的发展产生不良影响。为适应发展的需要,某企业计划加大对芯片研发部的投入,据了解,该企业研发部原有 100 名技术人员,年人均投入 a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员 x 名(x \in \mathbf{N} · 且 $45 \leqslant x \leqslant 75$),调整后研发人员的年人均投入增加 4x%,技术人员的年人均投入调整为 $a(m-\frac{2x}{25})$ 万元.
 - (1)要使这 100-x 名研发人员的年总投入不低于调整前 100 名技术人员的年总投入,求调整后的技术人员的人数最多多少人?
- (2)是否存在这样的实数 m,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入. 若存在,求出 m 的范围;若不存在,说明理由.

2020 年高一年级 10 月联考

数学参考答案

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	D	A	D	A	A	С	D	В	В	С	С	В

二、填空题:本题共4小题,每小题5分,共20分。

13.
$$\{a \mid a \le 0$$
 或 $a \ge 5\}$

14.
$$\{m \mid 1 \le m \le 2\}$$

15.
$$\{t \mid -6 < t < 2\}$$

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

②若
$$C \neq \emptyset$$
,则 $\begin{cases} m+1 \geqslant -2, & \therefore 2 \leqslant m \leqslant 3,$ 综上,实数 m 的取值范围为 $\{m \mid m \leqslant 3\}. & \dots 8$ 分 $2m-1 \leqslant 5, \end{cases}$

当
$$a \ge 4$$
 时,不等式的解集为 $\{x \mid 2 \le x \le \frac{a}{2}\}$,此时显然是 $\{x \mid x \ge 1\}$ 的子集,…………………… 3 分

当
$$a < 4$$
 时,不等式的解集为 $\{x \mid \frac{a}{2} \leqslant x \leqslant 2\}$,要使其为 $\{x \mid x \geqslant 1\}$ 的子集,则 $\frac{a}{2} \geqslant 1$, $\therefore 2 \leqslant a < 4$,

若
$$a \neq 0$$
,则 $ax^2 + ax + 1 > 0$ 恒成立

等价于判别式
$$\Delta = a^2 - 4a < 0$$
,且 $a > 0$,则 $0 < a < 4$, … 4 分

如果
$$p$$
 真 q 假,有
$$\begin{cases} 0 \leqslant a < 4, \\ a > \frac{9}{4}, \end{cases}$$
 得 $\frac{9}{4} < a < 4,$

如果
$$p$$
 真 q 假, 有
$$\begin{cases} 0 \leqslant a < 4, \\ a > \frac{9}{4}, \end{cases}$$
 得 $\frac{9}{4} < a < 4,$ 如果 p 假 q 真, 有
$$\begin{cases} a < 0 \text{ 或 } a \geqslant 4, \\ a \leqslant \frac{9}{4}, \end{cases}$$
 得 $a < 0,$

```
A \cap B = \{1\}, L \in B.
  把 x=1 代入方程 x^2-2(a+2)x+a^2+3=0 得
  a=0 时 B=\{1,3\}不符题意舍,a=2 时 B=\{1,7\}符合,
  (2) : A \cap B = B, : B \subseteq A. ....
  ② 当 B \neq \emptyset时,B = \{1\}或 B = \{3\}或 B = \{1,3\},
  若 B = \{1\}或 B = \{3\},则 \Delta = [-2(a+2)]^2 - 4(a^2+3) = 0,解得 a = -\frac{1}{4},此时 B = \{\frac{7}{4}\},不符合题意;……
  若 B=\{1,3\},则由根与系数的关系定理可得\left\{\begin{array}{l} 2(a+2)=1+3,\\ a^2+3=1\times 3, \end{array}\right.可得 a=0,
  21. (1)因为不等式 2x^2 + bx + c < 0 的解集是\{x \mid 0 < x < 5\},
  所以 0,5 是一元二次方程 2x^2+bx+c=0 的两个实数根,
  可得 \begin{cases} 0+5=-\frac{b}{2}, \\ 0\times 5=\frac{c}{2}, \end{cases} 解得 \begin{cases} b=-10, \\ c=0, \end{cases}
  (2)不等式组 \begin{cases} 2x^2 - 10x > 0, \\ 2(x^2 + 2kx + k^2) - 10(x+k) < 0, \end{cases} 
  解得\begin{cases} x < 0 \text{ 或 } x > 5, \\ -b < x < 5 - b \end{cases}
  因为不等式组的正整数解只有一个,可得该正整数解就是6,
  可得 6 < 5 - k \le 7,解得-2 \le k < -1,
  (3)t(2x^2+bx+c) \le 2, \mathbb{H} t(2x^2-10x) \le 2, \mathbb{H} tx^2-5tx-1 \le 0,
  当 t\neq 0 时,
  tx^2 - 5tx - 1 \le 0 中二次函数 y = tx^2 - 5tx - 1 的对称轴为 x = \frac{5}{2},又-1 \le x \le 1,
  : \begin{cases} t + 5t - 1 \leq 0, \\ t - 5t - 1 \leq 0. \end{cases}
  解得-\frac{1}{4} \leqslant t \leqslant \frac{1}{6}且 t \neq 0,
  综上,t 的取值范围是\{t \mid -\frac{1}{4} \leq t \leq \frac{1}{6}\}.
22. (1)依题意得:(100-x)(1+4x\%)a \ge 100a (a > 0)
```

数学参考答案 第2页(共3页)

解得 $x \le 75$,所以调整后的技术人员的人数最多 75 人, 2 分
(2) 由技术人员年人均投入不减少有
$ a(m-\frac{2}{25}x) > a$,得 $m > \frac{2x}{25} + 1$,
由研发人员的年总投入始终不低于技术人员的年总投入有
$\ (100-x)(1+4x\%)a \ge x(m-\frac{2x}{25})a$,
两边除以 ax 得
$(\frac{100}{x}-1)(1+\frac{x}{25}) \geqslant m-\frac{2x}{25},$
整理得 $m \leqslant \frac{100}{x} + \frac{x}{25} + 3$,
故有 $\frac{2x}{25} + 1 \leqslant m \leqslant \frac{100}{x} + \frac{x}{25} + 3$,
$\frac{100}{x} + \frac{x}{25} + 3 \geqslant 2\sqrt{\frac{100}{x} \cdot \frac{x}{25}} + 3 = 7$, 当且仅当 $x = 50$ 时取等号, $\therefore m \leqslant 7$,
又因为 $45 \leqslant x \leqslant 75$,当 $x = 75$ 时, $\frac{2x}{25} + 1$ 取得最大值 7 , $\therefore m \geqslant 7$,
∴ $7 \le m \le 7$,即存在这样的 m 满足条件,其范围为 $m \in \{7\}$