

Taller: Señales analógicas y digitales: procesamiento y análisis interactivo con Python

Parte 3

Ing. Axel A. SKRAUBA, Sr. Mariano D. RODRIGUEZ, Ing. Matías G. KRUJOSKI Departamento de Ing. Electrónica

REPRESENTACIÓN EN SERIES DE FOURIER

 Sumatoria de senos y cosenos armónicos para representar señales arbitrarias periódicas.

REPRESENTACIÓN EN SERIES DE FOURIER

 Sumatoria de senos y cosenos armónicos para representar señales arbitrarias periódicas.

REPRESENTACIÓN EN SERIES DE FOURIER

 Sumatoria de senos y cosenos armónicos para representar señales arbitrarias periódicas.

REPRESENTACIÓN EN SERIES DE FOURIER

$$a_0 = 0.5$$
 $a_1 = 0.6366 \cdot \sin(\omega_0 \cdot t)$
 $a_3 = 0.2122 \cdot \sin(3\omega_0 \cdot t)$
 $a_5 = 0.1273 \cdot \sin(5\omega_0 \cdot t)$

Amplitud	Frecuencia	Observación
0,5	0	Valor medio
0,6366	ω_0	Fundamental
0,2122	$3\omega_0$	3° armónico
0,1273	$5\omega_0$	5° armónico
a_k	$k\omega_0$	k° armónico

TRANSFORMACIÓN TIEMPO - FRECUENCIA

$$\omega_0 = \frac{2\tau}{\tau}$$

TRANSFORMACIÓN TIEMPO - FRECUENCIA

Transformación

$$x(t) = f(t)$$

$$X(f) = F(f)$$

