Core-sets for Fair and Diverse Data Summarization

Sepideh Mahabadi and Stojan Trajanovski

Constrained / Fair Diversity Maximization

Input:

sets of vectors $P_1, \dots, P_m, P = \bigcup_i P_i$ and $k_1, \dots, k_m \leq d, k = \sum_i k_i$

Goal: pick k_i points $S_i \subset P_i$ s.t. the diversity of the picked points $S = \bigcup_i S_i$ is maximized

Diversity measures for a subset S of points

- $ightharpoonup MIN-PAIRWISE DIST = \min_{p,q \in S} dist(p,q)$
- ightharpoonup SUM-PAIRWISE DIST $=\sum_{p,q\in S}dist(p,q)$
- $ightharpoonup ext{SUM-NN DIST} = \sum_{p \in S} \min_{q \in S \setminus \{p\}} dist(p,q)$

Applications in Summarization

Modeling recency in user's feed generation

- > Each message has a timestamp being posted
- Show a "diverse" summary to the user
- > Goal: show more recent messages and less of old messages
- Divide the messages in a month into four groups based on the week they have been posted
- \triangleright Set k_i to be higher for more recent weeks

Recommendation System

Different Movie Genres

Core-sets for Diversity Maximization

Input:

A point set P_i along with k_i

Goal: a summarization algorithm \mathcal{A}

- \triangleright Processes each P_i independently
- \triangleright produces a small summary $S_i = \mathcal{A}(P_i) \subseteq P_i$

Main Property

Fair diversity of the data is approximately preserved, i.e.,

$$div_{k_1,k_2,\cdots,k_m}(S) \ge \frac{1}{\alpha} div_{k_1,k_2,\cdots,k_m}(P)$$

where S is the union of all core-sets $S = \bigcup_i S_i$ and

 $div_{k_1,k_2,\cdots,k_m}(P) = \max_{T_1 \subseteq P_1,\dots,T_k \subseteq P_k, |T_i| = k_i} div\left(\bigcup_i T_i\right)$

Theoretical results

Table 1.

Diversity Nation	EDM	Core-set setting			
Diversity Notion	FDM	Approx.	Core-set size	Reference	
Min-Pairwise Dist	\theta(m) [MMM20, AMMM22]	0(1)	O(k) per group	[MMM20]	
Sum-Pairwise Dist	θ(1) [AMT13]	$(1+\epsilon)$	depends on n or aspect ratio	[CPP18]	
		0(1)	$O(k_i^2)$ per group	[This work]	
Sum-NN Dist	θ (1) [BGMS16]	$O(m \cdot \log k)$	$O(k^2)$ per group	[This work]	

Algorithm 1 Core-set Construction Algorithm for SUM-PAIRWISE

Input a point set P_i , together with parameters k_i and k (where $k = k_1 + \cdots + k_m$) **Output** a subset $S_i \subseteq P_i$

```
1: S_i = \{p_1, \dots, p_{k_i}\} \leftarrow \text{GMM}(P_i, k_i)
2: T \leftarrow \emptyset
```

- 3: $\mathbf{for} \ p \in S_i \ \mathbf{do}$
- 4: **for** j = 1 **to** k_i **do** 5: $T \leftarrow T \cup \text{ any point } p_j \in P_i \setminus T \text{ s.t. } \operatorname{argmin}_{g \in S_i} \operatorname{dist}(p_j, q) = p.$
- 6: **end for**
- 7: **end for**
- 8: $S_i \leftarrow S_i \cup T$
- 9: **return** S_i

Algorithm 2 Core-set Construction Algorithm for SUM-NN

Input a point set P_i , together with parameters k_i and k (where $k = k_1 + \cdots + k_m$)
Output a subset $S_i \subseteq P_i$

- 1: $S_i \leftarrow \emptyset$ 2: **for** j = 1 **to** k **do**
- 3: $G_i = \{p_1, \dots, p_{k+1}\} \leftarrow \text{GMM}(P_i, k+1)$ 4: $S_i \leftarrow S_i \cup G_i$
- $5: \quad P_i \leftarrow P_i \setminus G_i$
- 6: end for
- 7: return S_i

Experiments

Our experiments show the effectiveness of our core-set approach.

- [need for FDM] We demonstrate why we need to resort to FDM as DM outcome does not provide the desired fairness (Figure 1);
- [price of fairness (balancedness)] Applying FDM, we have a small loss of diversity while we achieve the desired fairness (Table 2);
- ➤ [effectiveness of our core-sets] We achieve a 100x speed-up while losing the diversity by only a few percent (Table 3) when applying FDM to the union of core-sets vs. FDM on the full data.

Experimental results

Figure 1. DM algorithm outcomes with equidistant time periods as colors (m=4) with k=20.

Table 2. The loss of diversity (% Div. loss) between DM vs. FDM for the Reddit dataset.

DM vs. FDM		SUM-PAIRWISE	SUM-NN	MIN-PAIRWISE	
colors k_i	$\sum k_i$	% Div. loss	% Div. loss	% Div. loss	
[2, 2, 2, 2] $[3, 3, 3, 3]$ $[4, 4, 4, 4]$ $[5, 5, 5, 5]$ $[6, 6, 6, 6]$	8 12 16 20 24	1.22% $0.98%$ $0.50%$ $0.47%$ $0.19%$	9.66% 14.27% 13.72% 18.96% 9.48%	51.57% 49.99% 48.78% 48.05% 47.20%	
[2, 4, 6, 8] $[3, 6, 9, 12]$ $[4, 8, 12, 16]$ $[5, 10, 15, 20]$ $[6, 12, 18, 24]$	20 30 40 50 60	0.42% $0.29%$ $0.25%$ $0.16%$ $0.12%$	15.40% 13.29% 1.98% 9.62% 3.98%	48.05% 46.34% 45.52% 44.48% 43.60%	

Table 3. The *loss* of diversity (% Div. loss), and the running time *gains* (x times faster) of the FDM when applied to the union of core-sets compared to FDM applied to the full data.

FDM full data vs. core-sets		SUM-PAIRWISE		SUM-NN		Min-Pairwise	
colors k_i	$\sum k_i$	% Div. loss	Time gain (\times)	% Div. loss	Time gain (\times)	% Div. loss	Time gain (\times)
[2, 2, 2, 2]	8	1.35%	196.24	2.22%	1769.70	0.00%	208.64
[3, 3, 3, 3]	12	0.67%	333.13	0.29%	888.55	0.00%	152.48
[4, 4, 4, 4]	16	1.21%	539.69	-1.59%	474.26	0.00%	122.29
[5, 5, 5, 5]	20	1.17%	432.68	-0.44%	294.23	0.00%	89.08
[6, 6, 6, 6]	24	0.94%	130.87	-3.03%	183.28	0.00%	63.69
[2, 4, 6, 8]	20	1.50%	845.98	-1.80%	285.68	0.00%	91.44
[3, 6, 9, 12]	30	1.06%	134.76	2.27%	110.36	0.00%	53.05
[4, 8, 12, 16]	40	1.02%	182.06	-0.88%	57.88	0.00%	36.51
[5, 10, 15, 20]	50	1.16%	194.36	0.71%	34.90	0.00%	26.97
[6, 12, 18, 24]	60	1.27%	172.25	-0.49%	23.71	0.00%	20.53

References

[MMM20] Moumoulidou *et al.*, Diverse Data Selection under Fairness Constraints. arXiv, 2020. [AMMM22] Addanki *et al.*, Improved Approximation and Scalability for Fair Max-Min Diversification. arXiv, 2022.

[AMT13] Abbassi *et al.*, Diversity Maximization Under Matroid Constraints. In KDD'13. [BGMS16] Bhaskara *et al.*, Linear Relaxations for Finding Diverse Elements in Metric Spaces. In NIPS'16.

[CPP18] Ceccarello *et al.*,.Fast Coreset-based Diversity Maximization under Matroid Constraints. In WSDM'18.