

# DM & ML Ensemble learning

#### **Gergely Lukács**

Pázmány Péter Catholic University Faculty of Information Technology Budapest, Hungary lukacs@itk.ppke.hu

#### Combining multiple models

"Crowd can be smarter than the individuals"

- Basic idea of "meta" learning schemes: build different "experts" – or crowd -- and let them vote
  - Sufficiently diverse crowd...
- •Advantage:
  - often very good predictive performance
- •Disadvantage:
  - interpretation of model ? (black box…)

### Stacking / 1

- Train different machine learning models on same dataset
  - Level-0 Models (Base-Models)
    - (Different algorithms)
  - Standard ML algorithms
     (e.g., Decision tree, Bayesian network)
  - Special algorithms of the application area (e.g. Natural Language Processing, parsing)
  - Models of different teams in competitions ("team merging")
- Combine the results of those models
  - Level-1 Model (Meta-Model)
  - Often simple model (in principle: any model)
  - David Wolpert: "relatively global, smooth" model
    - Base learners do most of the work
    - Reduces risk of overfitting

## Stacking / 2

- Output of Level-0 models
  - Classification: label
    - Even better: also probabilities!
  - Numeric prediction ("Regression"): Value
  - These are used to train Level-1 model
    - Optional: additionally attributes of data as additional context

#### Stacking / 3

- Data used for training level-0 models not to be used to train level-1 model! – overfitting!
  - Cross-validation-like scheme is employed
- Training of Level-0 models
  - Some sort of validation, typical: cross validation
    - for training Level-1 model
  - Finally: all data used for training
- Training of Level-1 model
  - Data not used to train Level-0 models

## Bagging

- Same algorithm (learning scheme) for all classifiers
- Different datasets
- "Idealized" version:
  - Sample several training sets of size n
     (instead of just having one training set of size n)
  - Build a classifier for each training set
- Combining predictions by voting/avera
  - Simplest way (e.g. each model receives equal weight)
  - Reduces variance by voting/averaging, thus reducing the overall expected error



# Bagging – creating several datasets

- Problem: we only have one dataset!
- Solution: generate new datasets of size *n* by sampling with replacement from original dataset
  - B-Agging = Bootstrap aggregating

#### Bagging classifiers

```
model generation

Let n be the number of instances in the training data.

For each of t iterations:

Sample n instances with replacement from training set.

Apply the learning algorithm to the sample.

Store the resulting model.
```

#### classification

For each of the t models:

Predict class of instance using model.

Return class that has been predicted most often.

## Bagging

#### More on bagging

- Learning scheme is unstable (Small change in training data can make big change in model;e.g. decision trees)
  - -> almost always improves performance
- Theoretically, bagging would reduce variance without changing bias
  - In practice, bagging can reduce both bias and variance
    - For high-bias classifiers, it can reduce bias
    - For high-variance classifiers, it can reduce variance
  - Usually, the more classifiers the better
  - Can help a lot if data is noisy
  - In the case of classification there are pathological situations where the overall error might increase

#### Bagging with costs

- good probability estimates
  - instead of voting, the individual classifiers' probability estimates are averaged
- also for learning problems with costs

#### Randomization

- Can randomize learning algorithm instead of data
- Some algorithms already have a random component:
  - e.g. initial weights in neural net
- Most algorithms can be randomized, e.g. greedy algorithms:
  - Pick from the N best options at random instead of always picking the best options
  - E.g.:
    - attribute selection in decision trees
    - random subspaces: random subsets of attributes in nearest-neighbor scheme
- Can be combined with bagging

#### Random forest

- "Forest" multiple decision trees
- Random:
  - Feature randomness:
     Only considers attributes in a random subset of all attributes for a split (instead of all attributes)
  - Data randomness: usually bootstrapping data (sampling with replacement)
- Voting

#### Rotation forest

#### accurate and diverse ensemble members

(2006, Rodríguez at al.)

- Bagging creates ensembles of accurate classifiers with relatively low diversity
  - Bootstrap sampling creates training sets with a distribution that resembles the original data
- Randomness in the learning algorithm increases diversity but sacrifices accuracy of individual ensemble members
- Accuracy-diversity dilemma
- Rotation forests have the goal of creating accurate and diverse ensemble members

#### Rotation forest/2

- An iteration involves
  - Randomly dividing the input attributes into k disjoint subsets
  - Applying PCA to each of the k subsets in turn
    - (all attributes are kept; it preserves all information!)
  - Learning a decision tree from the k sets of PCA directions

#### Rotation forest/3

- "Rotation forest"
  - Base classifier: decision tree → "forest"
  - PCA is a simple rotation of the coordinate axes → "rotation"
- Rotation forest has the potential to improve on diversity significantly without compromising the individual accuracy

#### Boosting

- Boosting: explicitely seeks models that complement one another
- Works well with weak models

#### Boosting 2

- Similar to Bagging
  - Voting (classification), averaging (numeric prediction)
  - Models of the same type (e.g. decision trees)
- Different from bagging
  - Iterative, models not built separately
  - New model is encouraged to become expert for instances classified incorrectly by earlier models
    - Intuitive justification: models should be experts that complement each other
  - Weighted voting!
- There are several variants of this algorithm











Final classifier is a combination of single classifiers



#### AdaBoost.M1

#### **Model Generation**

```
Assign equal weight to each training instance.
For each of t iterations:
  Apply learning algorithm to weighted dataset and
  store resulting model.
  Compute error e of model on dataset and store error.
  If e equal to zero, or e greater or equal to 0.5
    Terminate model generation.
  For each instance in dataset:
    If instance classified correctly by model
       Multiply weight of instance by e / (1 - e).
  Normalize weight for all instances.
Classification
```

Assign weight of zero to all classes. For each of the t (or less) models: Add  $-\log(e/(1-e))$  to weight of class model predicts. Return class with highest weight.

#### More on boosting

- Theoretical result:
  - Upper limit for training error decreases exponentially
  - Boosting works with weak learners only condition: error doesn't exceed 0.5
    - Week learner: only slightly better, than random predictor
- Practical issue: Boosting needs weights
  - adapting learning algorithm to use weights
  - resample with probability determined by weights
- AdaBoost in fact
  - Additive model
  - Particular loss function (exponential loss)

#### MIT OpenCourseWare:

## (17. Learning: Boosting)

https://www.youtube.com/watch?
 v=UHBmv7qCey4&t=2752s

### **Gradiant Boosting**

- AdaBoost: adjusting weights of data points...
- Difference between the prediction and the ground truth.
  - Optimization problem
    - on suitable cost function
    - over function space
  - Iterative, greedy
  - by choosing function pointing in negative gradient direction

#### **Elements of Learning**

Example: Linear regression

$$\hat{y}_i = \sum_j heta_j x_{ij}$$

- Model
  - Parameters
- Objective Function
  - Training loss

$$L( heta) = \sum_i (y_i - \hat{y}_i)^2$$

- + regularisation!!!

$$\operatorname{obj}(\theta) = L(\theta) + \Omega(\theta)$$

# XGBoost – theoretical advantages

- Decision tree ensembles
- Regularisation!
  - Formalizes complexity of tree classifiers overfitting reduced!!
- Custom optimization objectives and evaluation criteria
- +... (handling missing values, built-in cross validation, continue existing model...)

# XGBoost – computing advantages

- Use of sparse matrices with sparsity aware algorithms
- Improved data structures for better processor cache utilization which makes it faster.
- Better support for multicore processing which reduces overall training time.

#### XGBoost – Parameter Tuning!

 https://www.analyticsvidhya.com/blog/201 6/03/complete-guide-parameter-tuning-xgb oost-with-codes-python/



#### XGBoost vs Deep learning

Start with simple models!!

- XGBoost
  - Easier to train
  - Less computational resources
  - Better if categorical + numeric features
- Deep learning
  - Image Recognition, Computer Vision, Natural Language Processing (some sort of structure, space)

# Comparison

| Stacking                             | Bagging                                 | Boosting               |
|--------------------------------------|-----------------------------------------|------------------------|
| Data1 = Data2 = =<br>Data m          | Data1 $\neq$ Data2 $\neq$ $\neq$ Data m |                        |
|                                      | Resample training data                  | Reweight training data |
| Learner1 ≠ Learner2 ≠<br>≠ Learner m | Learner1 = Learner2 = = Learner m       |                        |
| Level-1 model                        | Vote                                    | Weighted vote          |

#### Summary/concepts/questions

- Bias-variance decomposition
- Stacking
- Bagging
- Randomization
  - Random Forest
  - Rotation forest
- Boosting
  - AdaBoost
  - Gradient Boosting
    - XGBoost