参数估计

李孟棠,朱彬

中山大学智能工程学院

limt29@mail.sysu.edu.cn, zhub26@mail.sysu.edu.cn

2021 年 x 月 x 日

主要内容

- 点估计
 - 矩估计法
 - 最大似然估计法
- ② 基于截尾样本的最大似然估计
- ③ 估计量的评选标准
- 4 区间估计
- ⑤ 正态总体均值与方差的区间估计
- 6 (0-1) 分布参数的区间估计
- **●** 単侧置信区间

本课程只介绍频率学派 (frequentist) 的统计推断方法,主要处理**参数估** 计和假设检验两类问题。

本章讨论总体(随机变量)分布的参数估计问题,主要分为点估计 (point estimation) 和区间估计 (interval estimation)。

注意频率学派关于未知参数的假设:存在一个确定性的 (deterministic/nonrandom) 真实参数值。

主要内容

- 点估计
 - 矩估计法
 - 最大似然估计法
- ② 基于截尾样本的最大似然估计
- ③ 估计量的评选标准
- 4 区间估计
- 5 正态总体均值与方差的区间估计
- 6 (0-1) 分布参数的区间估计
- 7 单侧置信区间

设总体 X 的分布函数形式已知,但它的一个或多个参数未知。借助总体的样本来估计分布函数中**未知参数值**的问题称为参数的点估计问题。

例

在某炸药制造厂,一天中发生着火现象的次数 X 是一个随机变量。假设 X 服从参数为 $\lambda>0$ 的 Poisson 分布, λ 未知。现有以下样本值,试估计参数 λ 。

着火次数
$$k$$
 0
 1
 2
 3
 4
 5
 6
 ≥ 7

 发生 k 次着火的天数 n_k
 75
 90
 54
 22
 6
 2
 1
 0
 $\sum = 250$

 $\mathbf{\underline{m}}$:由于 $X \sim \pi(\lambda)$,故 $\lambda = \mathbb{E}(X)$ 。很自然地,我们用样本均值来估计总体均值 $\mathbb{E}(X)$ 。计算得

$$\bar{x} = \frac{\sum_{k=0}^{6} k n_k}{\sum_{k=0}^{6} n_k} = \dots = 1.22.$$

因此 $\lambda = \mathbb{E}(X)$ 的估计为 1.22。

点估计问题一般表述为: 设总体 X 的分布函数 $F(x;\theta)$ 的形式已知, θ 是待估参数。为讨论方便,假设 $\theta \in \mathbb{R}$ 。 X_1,\ldots,X_n 是 X 的一组样本,相应的样本观察值为 x_1,\ldots,x_n 。构造一个合适的统计量 $\hat{\theta}(X_1,\ldots,X_n)$,用它的观察值 $\hat{\theta}(x_1,\ldots,x_n)$ 作为未知参数 θ 的近似值。

引入名词:

- 称 $\hat{\theta}(X_1, \dots, X_n)$ 为 θ 的估计器 (estimator, 书上称 "估计量"), 是 一个随机变量,
- 称 $\hat{\theta}(x_1,\ldots,x_n)$ 为 θ 的估计 (estimate, 书上称 "估计值"), 是估计器的观察值。

注意: 把两组不同的样本 (x_1,\ldots,x_n) 和 (y_1,\ldots,y_n) 放入同一个估计器,一般会得到不同的估计,即 $\hat{\theta}(x_1,\ldots,x_n)\neq\hat{\theta}(y_1,\ldots,y_n)$ 。例如一般而言,

$$\frac{x_1+\cdots+x_n}{n}\neq\frac{y_1+\cdots+y_n}{n}.$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

在第一个例子中,我们用样本均值来估计总体均值。此时估计器为

$$\hat{\lambda}(X_1,\ldots,X_n)=\widehat{\mathbb{E}(X)}=\frac{1}{n}\sum_{k=1}^n X_k, \ \ \mathbf{\sharp h} = 250,$$

估计为

$$\hat{\lambda}(x_1,\ldots,x_n) = \frac{1}{n} \sum_{k=1}^n x_k = 1.22.$$

主要内容

- 点估计
 - 矩估计法
 - 最大似然估计法
- ② 基于截尾样本的最大似然估计
- ③ 估计量的评选标准
- 4 区间估计
- ⑤ 正态总体均值与方差的区间估计
- 6 (0-1) 分布参数的区间估计
- 7 单侧置信区间

8/73

矩估计法

给定总体 X 的样本 X_1,\ldots,X_n ,基于**样本矩**来构造未知参数的估计。

- 若 X 为连续型随机变量,设其概率密度函数为 $f(x; \theta_1, \ldots, \theta_k)$;
- 若 X 为离散型随机变量,设其概率质量 (probability mass) 函数 (即分布律) 为 $P(X=x)=p(x;\theta_1,\ldots,\theta_k)$,

其中 $\theta_1, \ldots, \theta_k$ 为待估参数。

假设总体 X 的前 k 阶矩

$$\mu_\ell := \mathbb{E}(X^\ell) = \int_{-\infty}^\infty x^\ell f(x; \theta_1, \dots, \theta_k) \mathrm{d}x \, (X \,$$
为连续型)
或 $\mu_\ell := \mathbb{E}(X^\ell) = \sum_{x \in R_X} x^\ell p(x; \theta_1, \dots, \theta_k) \mathrm{d}x \, (X \,$ 为离散型)

存在,其中 R_X 表示 X 的值域 (range), $\ell=1,2,\ldots,k$ 。每个 μ_ℓ 都是参数 θ_1,\ldots,θ_k 的函数。

如此得到由 k 个方程组成的矩方程组

$$\begin{cases} \mu_1 &= g_1(\theta_1, \dots, \theta_k) \\ \mu_2 &= g_2(\theta_1, \dots, \theta_k) \\ \vdots & & \\ \mu_k &= g_k(\theta_1, \dots, \theta_k) \end{cases}$$

一般而言,这是一个包含 k 个未知量的非线性方程组。如果我们**足够幸运**,能够从中解出

$$\begin{cases}
\theta_1 &= h_1(\mu_1, \dots, \mu_k) \\
\theta_2 &= h_2(\mu_1, \dots, \mu_k) \\
\vdots & & & \\
\theta_k &= h_k(\mu_1, \dots, \mu_k)
\end{cases}$$
(1)

那么利用样本矩

$$A_{\ell} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{\ell}$$

代替(1)中的 μ_{ℓ} , $\ell=1,\ldots,k$, 就得到了参数 θ_{i} 的矩估计器。

李孟棠,朱彬(中大) 概率统计课件 2021 年 × 月 × 日 10 / 73

也就是说,对于 i = 1, ..., k, 定义估计器

$$\hat{\theta}_i = h_i(A_1, \dots, A_k),$$

其观察值称为**矩估计**。

采用矩估计器的理由:样本矩依概率收敛到总体矩,即

$$A_{\ell} \xrightarrow{P} \mu_{\ell}, \quad \ell = 1, \dots, k.$$

假设每个 h; 都是连续函数,那么由**连续映射定理**知

$$h_i(A_1,\ldots,A_k) \xrightarrow{P} h_i(\mu_1,\ldots,\mu_k),$$

即矩估计器 $\hat{\theta}_i \stackrel{P}{\to} \theta_i$ (参数的真实值), i = 1, ..., k。

◆ロト ◆個ト ◆差ト ◆差ト 差 める(*)

设总体 X 在 [a, b] 上服从均匀分布,参数 a, b 未知。 X_1, \ldots, X_n 是来自 X 的样本,试求 a, b 的矩估计器。

解: 根据均匀分布的定义,稍做计算可得

$$\mu_1 = \mathbb{E}(X) = \frac{a+b}{2},$$

$$\mu_2 = \mathbb{E}(X^2) = D(X) + \left[\mathbb{E}(X)\right]^2 = \frac{(b-a)^2}{12} + \frac{(a+b)^2}{4}.$$

整理得

$$\begin{cases} a+b &= 2\mu_1 \\ b-a &= \sqrt{12(\mu_2-\mu_1^2)} \end{cases}.$$

解该方程组得到

$$\mathbf{a} = \mu_1 - \sqrt{3(\mu_2 - \mu_1^2)}, \quad \mathbf{b} = \mu_1 + \sqrt{3(\mu_2 - \mu_1^2)}.$$

分别用 A_1, A_2 代替 μ_1, μ_2 得到 a 的矩估计器为

$$\hat{a} = A_1 - \sqrt{3(A_2 - A_1^2)} = \bar{X} - \sqrt{\frac{3}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2},$$

 \hat{b} 的表达式只相差一个符号。

4 U P 4 DF P 4 E P 4 E P E 9) 4 (9)

例

设总体 X 的均值 μ 及方差 $\sigma^2>0$ 都存在但均未知。又设 X_1,\ldots,X_n 是来自 X 的样本。试求 μ,σ^2 的矩估计器。

解:由一、二阶矩和方差的定义知

$$\begin{cases} \mu_1 &=& \mathbb{E}(X) = \mu \\ \mu_2 &=& \mathbb{E}(X^2) = D(X) + [\mathbb{E}(X)]^2 = \sigma^2 + \mu^2 \end{cases}.$$

解得

$$\mu = \mu_1, \quad \sigma^2 = \mu_2 - \mu_1^2.$$

分别以 A_1, A_2 代替 μ_1, μ_2 , 得到 μ 和 σ^2 的矩估计器分别为

$$\hat{\mu} = A_1 = \bar{X},$$

$$\widehat{\sigma^2} = A_2 - A_1^2 = \frac{1}{n} X_i^2 - \bar{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$
(2)

上述结果表明,总体均值和方差的矩估计器和总体分布的具体形式无关。例如,若 $X \sim N(\mu, \sigma^2)$,参数 μ, σ^2 未知,那么它们的矩估计器由(2)给出。

4 U P 4 DP P 4 E P 4 E P E 900

13 / 73

主要内容

- 点估计
 - 矩估计法
 - 最大似然估计法
- ② 基于截尾样本的最大似然估计
- ③ 估计量的评选标准
- 4 区间估计
- 5 正态总体均值与方差的区间估计
- 6 (0-1) 分布参数的区间估计
- 7 单侧置信区间

最大似然 (Maximum Likelihood) 估计法

如果总体 X 属于离散型,假设其概率质量函数

$$P{X = x} = p(x; \theta), \quad \theta \in \Theta \subset \mathbb{R}$$

的形式已知,其中 θ 为待估参数, Θ 为 θ 可能取值的范围。

设 X_1, \ldots, X_n 是来自 X 的样本,则它们的联合分布律为

$$P\{X_1 = x_1, \dots, X_n = x_n\} = \prod_{i=1}^n p(x_i; \theta).$$

给定样本的观察值 x_1, \ldots, x_n ,定义参数 θ 的似然函数 (likelihood function)

$$L(\theta) = L(\theta; x_1, \dots, x_n) := \prod_{i=1}^n p(x_i; \theta), \quad \theta \in \Theta,$$

其中 x_1,\ldots,x_n 是给定的样本值。

◆ロト ◆御 ト ◆ 差 ト ◆ 差 ・ 釣 へ (

李孟棠,朱彬 (中大)

最大似然估计

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmax}} \ L(\theta; x_1, \dots, x_n)$$
 (3)

也写作 $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$ 。 相应的统计量 $\hat{\theta}(X_1, \dots, X_n)$ 称为参数 θ 的最大似然估计器。

原理:直观上而言,最大似然法选择最优参数 $\hat{\theta}$ 使得**给定的样本观察值最有可能被取到**,也就是最大化参数对数据的"解释力度"或者数据对参数的"支持程度"。

类似地,如果总体 X 属于连续型,设其概率密度 $f(x;\theta), \theta \in \Theta$ 的形式已知。给定样本 X_1,\ldots,X_n ,它们的联合概率密度为 $\prod_{i=1}^n f(x_i;\theta)$ 。设样本观察值为 x_1,\ldots,x_n ,定义似然函数

$$L(\theta) = L(\theta; x_1, \dots, x_n) := \prod_{i=1}^n f(x_i; \theta), \quad \theta \in \Theta.$$

相应的最大似然估计仍然由(3)给出。

所以,求解最大似然估计问题就转化为微积分中的函数极值问题。

在很多情形下,概率质量函数 $p(x;\theta)$ 或密度函数 $f(x;\theta)$ 关于参数 θ 可微,此时 $\hat{\theta}$ 必满足驻点方程(一阶必要条件,但**不充分**)

$$\frac{\mathrm{d}}{\mathrm{d}\theta}L(\theta) = 0.$$

由于 \ln 函数的单调性, $L(\theta)$ 和 $\ln L(\theta)$ 的极值点相同,所以最大似然估计 $\hat{\theta}$ 也可以从**对数似然方程**

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\ln L(\theta) = 0$$

解得。

通常,我们处理对数似然 (log-likelihood) 函数更为方便。

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

例

设 $X \sim b(1, p)$,即参数为 p 的 (0-1) 分布, X_1, \ldots, X_n 是来自 X 的样本。试求参数 p 的最大似然估计器。

解:X 的分布律为

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P\{X=x\} & 1-p & p \end{array}$$

设 x_1, \ldots, x_n 是样本观察值,则似然函数为

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i},$$

而对数似然函数为

$$\ln L(p) = \left(\sum_{i=1}^{n} x_i\right) \ln p + \left(n - \sum_{i=1}^{n} x_i\right) \ln(1-p).$$

今

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{n - \sum_{i=1}^{n} x_i}{1 - p} = 0,$$

解得 p 的最大似然估计 $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$,相应的估计器为 $\hat{p} = \bar{X}$,与矩估计器相同。

最大似然法也适用于总体分布中含有多个未知参数 θ_1,\ldots,θ_k 的情形,此时分别令

$$\frac{\partial}{\partial \theta_i} L(\theta_1, \dots, \theta_k), \quad i = 1, \dots, k,$$

或

$$\frac{\partial}{\partial \theta_i} \ln L(\theta_1, \dots, \theta_k), \quad i = 1, \dots, k.$$
 (4)

求解上述包含 k 个未知量的 k 个方程,即可得到未知参数的最大似然估计。式(4)称为**对数似然方程组**。

一般而言,最大似然问题是一个关于多个参数 $\theta_1, \ldots, \theta_k$ 的**非线性、非** 凸优化问题,往往没有解析解,而需要采用数值方法求解(超出本课程范围)。在许多实际问题情境,最大似然估计是一个富有挑战性的问题。

例

设总体 $X \sim N(\mu, \sigma^2)$,参数 μ, σ^2 未知。 x_1, \ldots, x_n 是来自 X 的一组样本值。求 μ, σ^2 的最大似然估计。解 X 的概率密度为

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x - \mu)^2\right\}.$$

似然函数为

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} (x_i - \mu)^2\right\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right\}.$$

对应的对数似然函数为

$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2.$$

例 (续)

$$\begin{cases} \frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) &= \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - n\mu \right) = 0, \\ \frac{\partial}{\partial \sigma^2} \ln L(\mu, \sigma^2) &= -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0. \end{cases}$$

解得 $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x}$, $\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$ 因此 μ 和 σ^2 的最大似然估计器分别为

$$\hat{\mu} = \bar{X}, \quad \widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2,$$

再一次与矩估计器相同。

例

设总体 X 在 [a,b] 上服从均匀分布,其中参数 a,b 未知。 x_1,\ldots,x_n 为一组样本值。试求 a,b 的最大似然估计。

解: 记 $x_{\min} := \min\{x_1,\ldots,x_n\}$, $x_{\max} := \max\{x_1,\ldots,x_n\}$ 。 X 的概率密度为

$$f(x; a, b) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, &$$
其他.

似然函数为

$$L(a,b) = \begin{cases} \frac{1}{(b-a)^n}, & a \leq x_1, \dots, x_n \leq b, \\ 0, & 其他, \end{cases}$$

其中第一行条件等价于 $a \le x_{\min}$ 和 $x_{\max} \le b$,在此条件下,显然有

$$L(a,b) = \frac{1}{(b-a)^n} \le \frac{1}{(x_{\max} - x_{\min})^n}.$$

等号在 $a = x_{\min}$, $b = x_{\max}$ 时成立,即得到似然函数的最大值。

李孟棠,朱彬 (中大)

因此参数 a, b 的最大似然估计器为

$$\hat{a} = \min_{1 \le i \le n} X_i, \quad \hat{b} = \max_{1 \le i \le n} X_i.$$

注意,此处的解与矩估计器不同。

Proposition (最大似然估计的函数不变性 (functional invariance))

如果 $\hat{\theta}$ 是参数 θ 的最大似然估计, $g(\theta)$ 是 θ 的任意函数(不需要可逆),那么 参数 $u=g(\theta)$ 的最大似然估计为 $\hat{u}=g(\hat{\theta})$ 。

证明.

这里仅在函数 $g: \Theta \to \mathcal{U}$ 可逆的额外假设下进行证明。令 $h = g^{-1}: \mathcal{U} \to \Theta$ 。已知 $\hat{\theta} = h(\hat{u})$,且

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmax}} L(\theta; x_1, \dots, x_n).$$

因此, 根据定义有

$$\hat{u} = \underset{u \in \mathscr{U}}{\operatorname{argmax}} L(h(u); x_1, \dots, x_n).$$

函数不变性的应用:

在前面的一个例题中,我们知道正态总体的方差 σ^2 的最大似然估计为

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$

取 $g(\theta) = \sqrt{\theta}$ 。由此得到标准差 $\sigma = g(\sigma^2)$ 的最大似然估计为

$$\hat{\sigma} = g(\widehat{\sigma^2}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2}.$$

主要内容

- 点估计
 - 矩估计法
 - 最大似然估计法
- ② 基于截尾样本的最大似然估计
- ③ 估计量的评选标准
- 4 区间估计
- ⑤ 正态总体均值与方差的区间估计
- 6 (0-1) 分布参数的区间估计
- 7 单侧置信区间

研究某个产品的可靠性时,需要考察其寿命 T。这是个随机变量,为了对其分布进行统计推断,需要通过实验获取产品的寿命数据。

一个典型的寿命实验:将随机抽取的 n 个产品在时刻 t=0 时同时投入实验,直到每个产品都失效,记录每个产品的失效时间。这样得到的样本(即所有产品的失效时间 $0 \le t_1 \le t_2 \le \cdots \le t_n$)称为完全样本。

然而由于时间和财力的限制,我们很难得到完全样本。于是转而考虑**截 尾寿命实验**,主要分为以下两种。

• 定时截尾样本:随机抽取 n 个产品在 t=0 时同时投入实验,进行到事先规定的截尾时间 t_0 停止。如果停止时共有 m 个产品失效,失效时间(样本)分别为

$$0 \leq t_1 \leq t_2 \leq \cdots \leq t_m \leq t_0.$$

此时 *m* 是一个随机变量。

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

26 / 73

• 定数截尾样本: 随机抽取 n 个产品在 t=0 时同时投入实验,进行到有 m 个产品失效时停止,其中 m < n 为事先规定的数字。m 个失效产品的失效时间(样本)分别为

$$0 \leq t_1 \leq t_2 \leq \cdots \leq t_m.$$

此时 t_m (实际上, 所有的 t_i) 是随机变量。

下面考虑用截尾样本进行统计推断。设产品的寿命 T 服从指数分布, 其概率密度为

$$f(t) = \begin{cases} \frac{1}{\theta} e^{-t/\theta}, & t > 0, \\ 0, & t \le 0, \end{cases}$$

其中 $\theta > 0$ 为待估参数 (注意 $\mathbb{E}(T) = \theta$)。

我们用最大似然法估计 θ 。首先考虑上面的定数截尾样本。

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□P

在时间区间 $[0, t_m]$ 中有 m 个产品失效,其余 n-m 个产品在 t_m 时刻尚未失效(它们的寿命超过 t_m)。考虑这些事件的概率以确定似然函数。

- 一个产品在 $(t_i, t_i + dt_i]$ 失效的概率近似为 $f(t_i)dt_i = \frac{1}{\theta}e^{-t_i/\theta}dt_i$, $i = 1, \ldots, m$ 。
- 一个产品寿命超过 t_m 的概率为 $\int_{t_m}^{\infty} \frac{1}{\theta} e^{-t/\theta} dt = e^{-t_m/\theta}$.

所以上述观察结果出现的概率近似为

$$\begin{pmatrix} n \\ m \end{pmatrix} \left(\frac{1}{\theta} e^{-t_1/\theta} dt_1 \right) \left(\frac{1}{\theta} e^{-t_2/\theta} dt_2 \right) \cdots \left(\frac{1}{\theta} e^{-t_m/\theta} dt_m \right) \left(e^{-t_m/\theta} \right)^{n-m}$$

$$= \binom{n}{m} \underbrace{\frac{1}{\theta^m} e^{-\frac{1}{\theta} [t_1 + t_2 + \dots + t_m + (n-m)t_m]}}_{\text{取为似然函数}L(\theta)} dt_1 dt_2 \cdots dt_m,$$

其中 dt_1, \ldots, dt_m 为无穷小"常量"。

4□ > 4□ > 4 = > 4 = > = 90

得到对数似然函数为

$$\ln L(\theta) = -m \ln \theta - \frac{1}{\theta} \underbrace{\left[t_1 + t_2 + \dots + t_m + (n-m)t_m\right]}_{:=s(t_1,\dots,t_m)}.$$

令

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\ln L(\theta) = -\frac{m}{\theta} + \frac{1}{\theta^2}s(t_1,\ldots,t_m) = 0,$$

解得 θ 的最大似然估计为

$$\hat{\theta} = \frac{s(t_1,\ldots,t_m)}{m},$$

其中 $s(t_1,\ldots,t_m)$ 称为**总实验时间**,即直到时刻 t_m 为止,n 个产品试验时间的总和。

对于以 to 为截止时间的定时截尾样本

$$0 \leq t_1 \leq t_2 \leq \cdots \leq t_m \leq t_0,$$

我们可做类似分析,得到似然函数为

$$L(\theta) = \frac{1}{\theta^m} e^{-\frac{1}{\theta}[t_1 + t_2 + \dots + t_m + (n-m)t_0]}.$$

此时参数 θ 的最大似然估计为

$$\hat{\theta} = \frac{s(t_1,\ldots,t_m,t_0)}{m},$$

其中 $s(t_1, \ldots, t_m, t_0) := t_1 + t_2 + \cdots + t_m + (n - m)t_0$ 也称为总实验时间,即直到时刻 t_0 为止,n 个产品试验时间的总和。

设一批电池的寿命服从指数分布,其概率密度为

$$f(t) = \begin{cases} \frac{1}{\theta} e^{-t/\theta}, & t > 0, \\ 0, & t \le 0, \end{cases}$$

其中参数 $\theta > 0$ 未知。随机取 50 只电池投入寿命实验,规定实验进行到有 15 只电池失效时结束。测得失效时间(以 h 计)为

试求电池的平均寿命 θ 的最大似然估计。

 \mathbf{m} : 这是一组定数截尾样本。对应前面的分析,我们有 n = 50, m = 15,

$$s(t_1,\ldots,t_m)=\cdots=8270.$$

所以 θ 的最大似然估计为

$$\hat{\theta} = \frac{s(t_1, \dots, t_m)}{m} = \frac{8270}{15} \approx 551.33$$
 (h).

主要内容

- 点估计
 - 矩估计法
 - 最大似然估计法
- ② 基于截尾样本的最大似然估计
- ③ 估计量的评选标准
- 4 区间估计
- ⑤ 正态总体均值与方差的区间估计
- 6 (0-1) 分布参数的区间估计
- 7 单侧置信区间

对于同一参数,不同估计方法求出的估计器可能不同。例如在均匀总体 的参数估计问题中,矩估计与最大似然估计的结果不同。

原则上,任何统计量都可以作为未知参数的估计。如何评价一个估计器 的优劣,标准有哪些?

常用的评价标准包括: 无偏性 (unbiasedness)、有效性 (efficiency)、一致性 (consistency, 书上称相合性)。

无偏性

设 X_1, \ldots, X_n 是总体 X 的一组样本, $\theta \in \Theta$ 是总体分布中的未知参数,其中 $\Theta \subset \mathbb{R}$ 是参数的取值范围。

如果估计器 $\hat{\theta}=\hat{\theta}(X_1,\dots,X_n)$ 的数学期望 $\mathbb{E}(\hat{\theta})$ 存在,且对于任意 $\theta\in\Theta$ 有

$$\mathbb{E}(\hat{\theta}) = \theta,$$

则称 $\hat{\theta}$ 是 θ 的无偏估计器。

含义: 对于某些样本观察值 (x_1,\ldots,x_n) , $\hat{\theta}$ 的观察值相对于真值来说偏大,有些则偏小。在不同的样本观察值上反复使用估计器 θ ,把得到的结果"平均"之后偏差(近似)为零。

在科学技术中 $\mathbb{E}(\hat{\theta})-\theta$ 常被称为估计器 $\hat{\theta}$ 的系统误差,所以无偏估计器满足系统误差为零。

例如,设总体 X 的均值 μ ,方差 $\sigma^2>0$ 均未知,由书本第六章 pp. 145–146 知

$$\mathbb{E}(\bar{X}) = \mu, \quad \mathbb{E}(S^2) = \sigma^2.$$

也就是说,无论总体服从什么分布,样本均值 \bar{X} 是总体均值 μ 的无偏估计;样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 是总体方差的无偏估计。

因此,估计器 $\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2$ **不是** σ^2 的无偏估计。一般我们更倾向于取 S^2 作为 σ^2 的估计器。

例

设总体 X 的 k 阶矩 $\mu_k = \mathbb{E}(X^k)$ 存在 $(k \ge 1)$ 。又设 X_1, \ldots, X_n 是 X 的一组 样本。试证明:无论总体服从什么分布,样本 k 阶矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ 是总体 k 阶矩 μ_k 的无偏估计器。

 \mathbf{M} : 因为 X_1, \ldots, X_n 和 X 同分布,所以

$$\mathbb{E}(X_i^k) = \mathbb{E}(X^k) = \mu_k, \quad i = 1, \dots, n.$$

因此

$$\mathbb{E}(A_k) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i^k) = \mu_k.$$

例(2)

设总体 X 服从指数分布 $\mathrm{Exp}(\theta)$,其概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

其中参数 $\theta > 0$ 未知。又设 X_1, \ldots, X_n 是 X 的一组样本。试证:X 和 $nZ = n \left(\min\{X_1, \ldots, X_n\}\right)$ 都是 θ 的无偏估计器。 解: 因为 $\mathbb{E}(\bar{X}) = \mathbb{E}(X) = \theta$,所以 $\bar{X} \in \theta$ 的无偏估计器。 而随机变量 $Z = \min\{X_1, \ldots, X_n\}$ 的分布函数为 (书本 p. 83)

$$F_{\min}(z) = 1 - [1 - F(z)]^n$$
, 其中 $F(x) = \begin{cases} 1 - e^{-x/\theta}, & x > 0, \\ 0, & x \le 0, \end{cases}$

为 X 的分布函数。等式两边求导得到 Z 的概率密度为

$$f_{\min}(z) = F'_{\min}(z) = nf(z) [1 - F(z)]^{n-1} = \begin{cases} \frac{n}{\theta} e^{-nz/\theta}, & z > 0, \\ 0, & z \le 0, \end{cases}$$

也就是 $Z \sim \text{Exp}(\theta/n)$ 。因此, $\mathbb{E}(Z) = \theta/n$, $\mathbb{E}(nZ) = \theta$,无偏性得证。

有效性

对于固定的样本容量 n,比较参数 θ 的两个无偏估计器 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 。如果 $\hat{\theta}_1$ 的观察值比 $\hat{\theta}_2$ 在真值 θ 附近更为"密集",我们就认为 $\hat{\theta}_1$ 更好。

对于无偏估计器 $\hat{\theta}$ (一个随机变量),方差 $D(\hat{\theta})$ 度量了它的取值和它数学期望 $\mathbb{E}(X)=\theta$ 之间的偏离程度,因此自然 $D(\hat{\theta})$ 越小越好。

定义 (有效性)

设 $\hat{\theta}_j = \hat{\theta}_j(X_1, \dots, X_n)$ 是 θ 的无偏估计器, j=1,2。 如果对于任意 $\theta \in \Theta$,有

$$D(\hat{\theta}_1) \leq D(\hat{\theta}_2),$$

且至少对于某一个 $\theta \in \Theta$ 上式中的不等号严格成立,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

例(2续)

设总体 X 服从指数分布 $\mathrm{Exp}(\theta)$, 其概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

其中参数 $\theta>0$ 未知。又设 X_1,\ldots,X_n 是 X 的一组样本,由前面的计算得知 \bar{X} 和 $nZ=n\left(\min\{X_1,\ldots,X_n\}\right)$ 都是 θ 的无偏估计器。证明:当n>1 时, \bar{X} 比 nZ 有效。

解: 由于 $D(X) = \theta^2$,故 $D(\bar{X}) = \theta^2/n$ 。类似地,由于 $D(Z) = \theta^2/n^2$,故 $D(nZ) = \theta^2$ 。易知当 n > 1 时, $D(\bar{X}) < D(nZ)$ 。因此 \bar{X} 比 nZ 有效。

一致性

讨论估计器的无偏性和有效性时,我们假设样本容量 n 固定。

随着样本容量的增大,我们希望估计器的(观察)值稳定于待估参数的 真值。

定义(一致性)

设 $\hat{\theta}(X_1,\ldots,X_n)$ 为参数 θ 的一个估计器,若对于任意 $\theta\in\Theta$,当 $n\to\infty$ 时 $\hat{\theta}(X_1,\ldots,X_n)$ 依概率(或几乎肯定)收敛于 θ ,也就是说,对于任意 $\theta\in\Theta$,都有

$$\forall \varepsilon > 0: \lim_{n \to \infty} P\left\{|\hat{\theta} - \theta| < \varepsilon\right\} = 1,$$

或

$$P\left\{\lim_{n\to\infty}\hat{\theta}=\theta\right\}=1,$$

则称 $\hat{\theta}$ 为 θ 的一致估计器。

李孟棠,朱彬(中大)

一致性是对估计器的基本要求。不具有一致性的估计器通常不可取,因为不论样本容量 n 取多大,都不能将参数 θ 估计得足够准确。

例如在 7.1 节讲述的矩估计法中,假设待估参数可以表示为

$$\theta = \mathsf{g}(\mu_1, \mu_2, \dots, \mu_k),$$

其中,整数 $k \ge 1$, $\mu_k = \mathbb{E}(X^k)$ 为总体 X 的 k 阶矩,g 为连续函数。

构造矩估计器

$$\hat{\theta} = g(A_1, A_2, \dots, A_k),$$

其中 A_k 为样本 k 阶矩。

由大数定律知 $A_k \stackrel{P}{\to} \mu_k$,再由连续映射定理知 $\hat{\theta} \stackrel{P}{\to} \theta$,故矩估计器具有一致性。

再看**最大似然估计**,为什么采用这种方法?

- 其历史可以追溯到 Gauss、Laplace 等人;
- 在 1912 到 1922 年期间由 Fisher 在学界普及;
- 性质的严格证明则由美国统计学家 Samuel Wilks 在 1938 年完成。

在 i.i.d. 样本假设下,最大似然估计器具有如下性质:

● 渐近无偏

$$\lim_{N\to\infty}\mathbb{E}[\hat{\boldsymbol{\theta}}_{\mathsf{ML}}] = \boldsymbol{\theta},$$

其中 θ 为参数真值。

② 渐近一致,给定任意 $\varepsilon > 0$,有

$$\lim_{N\to\infty} P\left\{|\hat{\boldsymbol{\theta}}_{\mathsf{ML}} - \boldsymbol{\theta}| > \varepsilon\right\} = 0,$$

也就是依概率收敛到参数真值。

⑤ 渐近有效,也就是其方差达到 Cramér-Rao 下限。

例 (样本均值 \bar{X} 和样本方差 S^2 的一致性)

样本均值 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 的一致性由大数定律导出。

再考察高斯总体 $X \sim N(\mu, \sigma^2)$ 方差 σ^2 的最大似然估计:

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n} \left(\sum_{i} X_i^2 - n\bar{X}^2 \right)$$

$$= \frac{1}{n} \sum_{i} X_i^2 - \bar{X}^2$$

$$\to \mathbb{E}(X^2) - \mu^2 = \sigma^2 + \mu^2 - \mu^2 = \sigma^2.$$

显然

$$S^2 = \frac{n}{n-1} \widehat{\sigma^2} \to 1 \times \sigma^2 = \sigma^2.$$

所以样本方差 S^2 和有偏估计 $\widehat{\sigma^2}$ 都具有一致性。

主要内容

- 点估计
 - 矩估计法
 - 最大似然估计法
- ② 基于截尾样本的最大似然估计
- ③ 估计量的评选标准
- 4 区间估计
- ⑤ 正态总体均值与方差的区间估计
- 6 (0-1) 分布参数的区间估计
- 7 单侧置信区间

置信区间

点估计给出未知参数的一个近似值,**区间估计**给出未知参数的取值范围 (通常为一个区间,称为**置信区间**,confidence interval),以及这个范围 包含真实参数的可信程度。两类估计的取舍取决于实际应用场景。

Definition (置信区间)

设总体 X 的分布函数 $F(x;\theta)$ 含有一个未知参数 $\theta \in \Theta$, X_1, X_2, \ldots, X_n 是来自 X 的样本。对于给定值 $\alpha \in (0,1)$,如果两个统计量 $\theta(X_1, \ldots, X_n)$ 和 $\overline{\theta}(X_1, \ldots, X_n)$ ($\theta < \overline{\theta}$) 对于任意 $\theta \in \Theta$ 满足

$$P\left\{\underline{\theta}(X_1,\ldots,X_n)<\theta<\overline{\theta}(X_1,\ldots,X_n)\right\}\geq 1-\alpha,$$

则称随机区间 $(\underline{\theta}, \overline{\theta})$ 是参数 θ 以 $1-\alpha$ 为置信水平的置信区间, $\underline{\theta}$ 和 $\overline{\theta}$ 分别称为置信下限和置信上限。

◆ロト ◆個ト ◆意ト ◆意ト · 意 · かへで

给定 α 时置信区间的计算:

• 对于连续型随机变量 X, 我们总是按等式

$$P\{\underline{\theta} < \theta < \overline{\theta}\} = 1 - \alpha \tag{5}$$

求置信区间。

• 对于离散型随机变量 X,常常无法找到区间 $(\underline{\theta}, \overline{\theta})$ 使得上述等式严格成立。此时我们寻找 $(\underline{\theta}, \overline{\theta})$ 使得概率 $P\{\underline{\theta} < \theta < \overline{\theta}\}$ 尽可能接近 $1-\alpha$ 。

原因:我们希望置信区间尽可能窄,使得估计误差得到控制。

等式(5)的相对频率解读为:若固定样本容量 n 做反复抽样,每个样本观察值确定一个区间 $(\underline{\theta}, \overline{\theta})$ 。那么每个这样的区间包含真实参数 θ 这一事件可能发生或不发生。根据伯努利大数定律,重复抽样构造的多个区间中,包含 θ 真值的约占 $100(1-\alpha)\%$ 。

例如取 $\alpha = 0.01$,反复抽样 1000 次,那么构造的 1000 的区间中不包含 θ 真值的约有 10 个。

例

设总体 $X \sim N(\mu, \sigma^2)$,其中参数 σ^2 已知, μ 未知。又设 X_1, \ldots, X_n 是来自 X 的样本。求 μ 的置信水平为 $1-\alpha$ 的置信区间。

 \mathbf{M} : 我们知道样本均值 \bar{X} 是 μ 的无偏估计,且有

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

显然上面的分布不依赖于未知参数。按照标准正态分布上 α 分位数的定义,有

$$P\left\{\left|\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\right| < z_{\alpha/2}\right\} = 1 - \alpha,$$

即

$$P\left\{\bar{X} - \frac{\sigma}{\sqrt{n}}z_{\alpha/2} < \mu < \bar{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right\} = 1 - \alpha.$$

这样我们就得到了 μ 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(ar{X} - rac{\sigma}{\sqrt{n}} z_{lpha/2} \,,\, ar{X} + rac{\sigma}{\sqrt{n}} z_{lpha/2}
ight), \,\,$$
常记作 $\left(ar{X} \pm rac{\sigma}{\sqrt{n}} z_{lpha/2}
ight).$

如果取 $1-\alpha=0.95$ 即 $\alpha=0.05$,同时给定 $\sigma=1$,n=16,查表得 $z_{\alpha/2}=z_{0.025}=1.96$,那么我们得到一个置信水平为 0.95 的置信区间

$$\left(\bar{X} \pm \frac{1}{\sqrt{16}} \times 1.96\right) \mathbb{P}\left(\bar{X} \pm 0.49\right). \tag{6}$$

然后,如果由一组样本值计算得到 $\bar{x}=5.2$,则得到一个(非随机)区间

$$(5.2 \pm 0.49)$$
 即 $(4.71, 5.69)$.

我们仍称它为 μ 的置信水平为 0.95 的置信区间。

原因: 若固定样本容量 n = 16 反复抽样多次, 每组样本观察值按(6)确定一个区间。按照概率的相对频率解读, 这些区间中包含 μ 真值的约占 95%。因此上面的区间 (4.71,5.69) 包含 μ 的 "可信程度" 为 95%。

47 / 73

注意: 给定 $\alpha \in (0,1)$, 置信水平为 $1-\alpha$ 的置信区间并不唯一。

在上面的例子中,给定 $\alpha=0.05$,我们可以选取标准正态分布的分位数 使得

$$P\left\{-z_{0.04} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < z_{0.01}\right\} = 1 - \alpha,$$

即

$$P\left\{\bar{X} - \frac{\sigma}{\sqrt{n}}z_{0.01} < \mu < \bar{X} + \frac{\sigma}{\sqrt{n}}z_{0.04}\right\} = 1 - \alpha.$$

所以

$$\left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{0.01}, \, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{0.04}\right) \tag{7}$$

也是 μ 的置信水平为 0.95 的置信区间。

式(7)中的区间长度为 $\frac{\sigma}{\sqrt{n}}(z_{0.04}+z_{0.01})\approx 4.08\frac{\sigma}{\sqrt{n}}$,长于前面以"对称"方式构造的置信区间长度 $\frac{\sigma}{\sqrt{n}}\times 2z_{0.25}\approx 3.92\frac{\sigma}{\sqrt{n}}$ 。因此后者更优。

易知,如果概率密度类似 N(0,1) 分布那样满足单峰且对称(例如 t 分布),那么以"对称"方式构造的置信区间长度最短。

总结构造未知参数 θ 的置信区间的具体做法:

- 寻求一个样本 X_1, \ldots, X_n 和参数 θ 的函数 $W(X_1, \ldots, X_n; \theta)$,使得它的分布不依赖于 θ 和其他未知参数。具有这种性质的函数 W 称为枢轴量(pivotal quantity,也可译为"关键量")。
- ② 对于给定的置信水平 $1-\alpha$, 定出两个常数 a,b 使得

$$P\{a < W(X_1, ..., X_n; \theta) < b\} = 1 - \alpha.$$

如果能从不等式 $a < W(X_1, \ldots, X_n; \theta) < b$ 解出未知参数 θ 满足的不等式 $\underline{\theta} < \theta < \overline{\theta}$,其中 $\underline{\theta}(X_1, \ldots, X_n)$ 和 $\overline{\theta}(X_1, \ldots, X_n)$ 都是统计量,那么区间 $(\underline{\theta}, \overline{\theta})$ 就是 θ 以 $1-\alpha$ 为置信水平的置信区间。

枢轴量 $W(X_1, ..., X_n; \theta)$ 的构造通常从参数 θ 的点估计着手考虑。

主要内容

- 点估计
 - 矩估计法
 - 最大似然估计法
- ② 基于截尾样本的最大似然估计
- ③ 估计量的评选标准
- 4 区间估计
- 5 正态总体均值与方差的区间估计
- 6 (0-1) 分布参数的区间估计
- 7 单侧置信区间

单个正态总体 $N(\mu, \sigma^2)$ 的情况

给定置信水平 $1-\alpha$ 。设 X_1,\ldots,X_n 为总体 $N(\mu,\sigma^2)$ 的样本, \bar{X} 和 S^2 分别为样本均值和样本方差。

- 1. 均值 μ 的置信区间
- (1) σ^2 已知。由 7.4 节例子,采用枢轴量 $\frac{X-\mu}{\sigma/\sqrt{n}}$,得到 μ 的置信区间为

$$\left(\bar{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right).$$

(2) σ^2 未知。此时上式不适用,因为它包含了未知参数 σ 。考虑到 S^2 是 σ^2 的无偏估计,将上面枢轴量中的 σ 替换为 $S=\sqrt{S^2}$ 。由 6.3 节定理 4 知,

$$\frac{X-\mu}{S/\sqrt{n}}\sim t(n-1),$$

且右边的分布不依赖于任何未知参数。

51 / 73

因此可使用 $\frac{X-\mu}{S/\sqrt{n}}$ 作为枢轴量,得到

$$P\left\{-t_{\alpha/2}(\mathsf{n}-1) < \frac{\bar{X}-\mu}{\mathsf{S}/\sqrt{\mathsf{n}}} < t_{\alpha/2}(\mathsf{n}-1)\right\} = 1-\alpha,$$

即

$$P\left\{\bar{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1) < \mu < \bar{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right\} = 1 - \alpha.$$

于是得到 μ 的置信区间

$$\left(\bar{X}\pm rac{S}{\sqrt{n}}t_{lpha/2}(n-1)
ight).$$

在实际问题中,总体方差 σ^2 未知的情况居多,故上式更具实用价值。

有一大批糖果。现从中随机抽取 16 袋, 称得质量(以 g 计)如下:

设袋装糖果的质量近似地服从正态分布。试求总体均值 μ 的置信水平为 0.95 的置信区间

解: 这里 $1-\alpha=0.95$, $\alpha/2=0.025$, n-1=15。查表得 $t_{0.025}(15)=2.1315$ 。由给出的数据算得 $\bar{x}=503.75$, s=6.2022。根据 前面的分析,我们计算得到 μ 的一个置信水平为 0.95 的置信区间为

$$\left(503.75 \pm \frac{6.2022}{\sqrt{16}} \times 2.1315\right) \approx (500.4, 507.1).$$

也就是说,这批袋装糖果质量的总体均值在 500.4 g 和 507.1 g 之间的可信程度为 95%。如果以样本均值 \bar{x} (即置信区间中点)作为 μ 的近似值,其误差不超过 $\frac{6.2022}{\sqrt{16}} \times 2.1315 \approx 3.305$ g (即半区间长)。这个误差估计的可信程度为 95%。

2. 方差 σ^2 的置信区间。此处根据实际问题的需要,只介绍 μ 未知的情况。

由 6.3 节定理 3 知

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

且上式右端的分布不依赖于任何未知参数。故取 $\frac{(n-1)S^2}{\sigma^2}$ 作为枢轴量,得到

$$P\left\{\chi_{1-\alpha/2}^2({\it n}-1) < \frac{({\it n}-1){\it S}^2}{\sigma^2} < \chi_{\alpha/2}^2({\it n}-1)\right\} = 1-\alpha,$$

即

$$P\left\{\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right\} = 1 - \alpha$$

如此得到 σ^2 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right).$$

4 D F 4 DF F 4 Z F 4 Z F 2 V)U(*

顺便得到标准差 σ 的置信区间为

$$\left(\frac{\sqrt{n-1}S}{\sqrt{\chi_{\alpha/2}^2(n-1)}}, \frac{\sqrt{n-1}S}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}}\right).$$

注意,当概率密度函数不对称时,如 χ^2 分布和 F 分布,习惯上仍然取对称的分位数对确定置信区间。原则上,取不对称的分位数可以使置信区间更短。

例

求前面例题中总体标准差 σ 的置信水平为 0.95 的置信区间。

解: 现有 $\alpha/2=0.025,\ 1-\alpha/2=0.975,\ n-1=15$ 。查表得 $\chi^2_{0.025}(15)=27.488,\ \chi^2_{0.975}(15)=6.262$ 。前面算得 s=6.2022。代入上 面公式,得到标准差 σ 的一个置信水平为 0.95 的置信区间为

(4.58, 9.60).

◆□ > ◆圖 > ◆ 臺 > ◆ 臺 → ⑤ Q ○

两个总体 $N(\mu_1, \sigma_1^2)$, $N(\mu_2, \sigma_2^2)$ 的情况

在实际中我们常遇到以下问题:已知产品的某一质量指标服从正态分布,但由于原料、设备条件、操作人员不同或工艺过程改变等因素,引起总体均值和方差有所改变。

我们需要知道这些变化有多大,此时要考虑两个正态总体均值差或方差比的估计问题。

设给定置信水平 $1-\alpha$ 。并设 X_1,\ldots,X_{n_1} 是来自第一个总体的样本, Y_1,\ldots,Y_{n_2} 是来自第二个总体的样本,且两组样本相互独立。

设 \bar{X} , \bar{Y} 分别是第一、第二个总体的样本均值, S_1^2 , S_2^2 分别是第一、第二个总体的样本方差。

- 1. 两个总体均值差 $\mu_1 \mu_2$ 的置信区间 (1) σ_1^2, σ_2^2 均为已知。
 - \bar{X}, \bar{Y} 分别是 μ_1, μ_2 的无偏估计 $\implies \bar{X} \bar{Y}$ 是 $\mu_1 \mu_2$ 的无偏估计。
 - 由 $\bar{X} \sim N(\mu_1, \sigma_1^2/n_1)$, $\bar{Y} \sim N(\mu_2, \sigma_2^2/n_2)$ 以及 \bar{X} , \bar{Y} 的独立性知

$$ar{X} - ar{Y} \sim N\left(\mu_1 - \mu_2, rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}
ight),$$

或

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1).$$

取上式左边为枢轴量,即得到 $\mu_1 - \mu_2$ 的置信区间为

$$\left(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right).$$

(2) $\sigma_1^2=\sigma_2^2=\sigma^2$,但 σ^2 未知。此时由 6.3 节定理 5 知

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

取上式左边为枢轴量,可得 $\mu_1 - \mu_2$ 的置信区间为

$$\left(\bar{X} - \bar{Y} \pm t_{\alpha/2}(n_1 + n_2 - 2)S_W\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$$

其中

$$S_W^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}, \quad S_W = \sqrt{S_W^2}.$$

58 / 73

为比较 1、11 两种型号步枪子弹的枪口速度, 随机取 1 型子弹 10 发, 得 到枪口速度的平均值为 $\bar{x}_1 = 500 \text{ m/s}$,标准差 $s_1 = 1.10 \text{ m/s}$;随机取 II 型子弹 20 发,得到枪口速度的平均值为 $\bar{x}_2 = 496 \text{ m/s}$,标准差 $s_2 = 1.20 \text{ m/s}$ 。假设两总体都近似服从正态分布,且由生产过程可认为 方差相等。求两总体均值差 $\mu_1 - \mu_2$ 的一个置信水平为 0.95 的置信区 间。

解: 按实际情况,可假设来自两个总体的样本相互独立。由于两总体的 方差相等月未知,故可采用第二种方法求均值差的置信区间。这里 $1-\alpha=0.95$, $\alpha/2=0.025$, $n_1=10$, $n_2=20$, $n_1+n_2-2=28$, 查表 得 $t_{0.025}(28) = 2.0484$, $s_{w}^2 = (9 \times 1.1^2 + 19 \times 1.2^2)/28$,

 $s_w = \sqrt{s_w^2} = 1.1688$ 。因此所求置信区间为

$$\left(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2 \pm t_{0.025}(28) \times \mathbf{s}_w \sqrt{\frac{1}{10} + \frac{1}{20}}\right) = (4 \pm 0.93),$$

即 (3.07, 4.93)。该区间的下限大于零,在实际中我们就认为 $\mu_1 > \mu_2$ 。

李孟棠, 朱彬 (中大) 概率统计课件 2021 年 × 月 × 日 59 / 73

例

为提高某一化学生产过程的得率,工厂试图采用一种新的催化剂。为慎重起见,首先对此进行实验。设采用原来的催化剂进行了 $n_1=8$ 次试验,得到得率的平均值 $\bar{x}_1=91.73$,样本方差 $s_1^2=3.89$;又采用新的催化剂进行了 $n_2=8$ 次试验,得率的平均值为 $\bar{x}_2=93.75$,样本方差 $s_2^2=4.02$ 。假设两总体都服从正态分布且方差相等,两组样本独立。试求两总体均值差 $\mu_1-\mu_2$ 的置信水平为 0.95 的置信区间。

解: 采用和上一题一样的做法,最终所求置信区间为 (-4.15,0.11)。由于该区间包含零,在实际中我们就认为采用这两种催化剂得率的均值没有显著差别(即差值"近似"为零)。

2. 两个总体方差比 σ_1^2/σ_2^2 的置信区间 仅讨论总体均值 μ_1,μ_2 均为未知的情况。由 6.3 节定理 5 知

$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$$

其中右端分布不依赖任何未知参数。因此取 $rac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}$ 为枢轴量得

$$P\left\{F_{1-\alpha/2}(\mathbf{n}_1-1,\mathbf{n}_2-1)<\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}< F_{\alpha/2}(\mathbf{n}_1-1,\mathbf{n}_2-1)\right\}=1-\alpha,$$

即

$$P\left\{\frac{S_1^2}{S_2^2}\frac{1}{F_{\alpha/2}(n_1-1,n_2-1)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2}\frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right\} = 1 - \alpha.$$

于是得到 σ_1^2/σ_2^2 的置信区间为

$$\left(\frac{S_1^2}{S_2^2}\frac{1}{F_{\alpha/2}(n_1-1,n_2-1)},\frac{S_1^2}{S_2^2}\frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right).$$

例

为研究由机器 A 和机器 B 生产钢管的内径(以 mm 计),随机抽取机器 A 生产的管子 18 只,测得样本方差 $s_1^2=0.34$;随机抽取机器 B 生产的管子 13 只,测得样本方差 $s_2^2=0.29$ 。设两组样本相互独立,且由机器 A 和机器 B 生产的钢管内径分别服从正态分布 $N(\mu_1,\sigma_1^2)$ $N(\mu_2,\sigma_2^2)$,其中 μ_1,σ_i^2 (i=1,2) 均未知。试求方差比 σ_1^2/σ_2^2 的置信水平为 0.90 的置信区间。

解: 根据题意,有 $n_1=18$, $n_2=13$, $\alpha=0.1$, 查表得 $F_{0.05}(17,12)=2.59$, $F_{0.95}(17,12)=\frac{1}{F_{0.05}(12,17)}=\frac{1}{2.38}$ (F 分布的性质, 见书本 P. 145)。于是由前面分析得到所求置信区间为

$$\left(\frac{0.34}{0.29} \times \frac{1}{2.59}, \frac{0.34}{0.29} \times 2.38\right),$$

即 (0.45, 2.79)。由于该区间包含 1,在实际中我们就认为 σ_1^2, σ_2^2 两者没有显著差别(即比值"近似"为 1)。

主要内容

- 点估计
 - 矩估计法
 - 最大似然估计法
- ② 基于截尾样本的最大似然估计
- ③ 估计量的评选标准
- 4 区间估计
- ⑤ 正态总体均值与方差的区间估计
- 7 单侧置信区间

设有一组容量 n > 50 的大样本,它来自服从 (0-1) 分布的总体 X,分布律(概率质量函数)为

$$f(x; p) := P\{X = x\} = p^{x}(1-p)^{1-x}, \quad x = 0, 1,$$

其中 $p \in (0,1)$ 为未知参数。试求 p 的置信水平为 $1-\alpha$ 的置信区间。

已知 (0-1) 分布的均值和方差分别为

$$\mu = p$$
, $\sigma^2 = p(1-p)$.

设 X_1, \ldots, X_n 为一组样本。由于样本容量 n 较大,由中心极限定理知

$$\frac{\sum_{i=1}^{n} X_i - np}{\sqrt{np(1-p)}} = \frac{n\bar{X} - np}{\sqrt{np(1-p)}} \stackrel{\text{if } (0,1)}{\sim} N(0,1).$$

64 / 73

于是有

$$P\left\{-\mathbf{z}_{\alpha/2} < \frac{n\bar{\mathbf{X}} - n\mathbf{p}}{\sqrt{n\mathbf{p}(1-\mathbf{p})}} < \mathbf{z}_{\alpha/2}\right\} \approx 1 - \alpha.$$

花括号中的不等式等价于

$$(n + z_{\alpha/2}^2)p^2 - (2n\bar{X} + z_{\alpha/2}^2)p + n\bar{X}^2 < 0.$$
 (8)

把左边关于 p 的二次函数的系数记作

$$a = n + z_{\alpha/2}^2, \quad b = -(2n\bar{X} + z_{\alpha/2}^2), \quad c = n\bar{X}^2,$$

则由求根公式定义

$$p_{1,2} = rac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

即得到(8)的解为 $p_1 .$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

因此,

$$P\{p_1$$

也就是说,p 的一个置信水平近似为 $1-\alpha$ 的置信区间为 (p_1, p_2) 。

例

在一大批产品的 100 个样品中,检测得到一级品 60 个。求这批产品的一级品率 p 的置信水平为 0.95 的置信区间。

 \mathbf{m} : 一级品率 p 是 (0-1) 分布的参数。此处的样本空间为这一批的所有产品,随机变量

$$X(e) = egin{cases} 1 & \mathbf{y} = \mathbf{y} - \mathbf{y} = \mathbf{y} \\ 0 & \mathbf{y} = \mathbf{y} = \mathbf{y} = \mathbf{y} \end{cases}$$

本题 n=100, $\bar{x}=60/100=0.6$, $1-\alpha=0.95$, $\alpha/2=0.025$, $z_{\alpha/2}=1.96$ 。 按上面的分析来求 p 的置信区间,其中

$$a = n + z_{\alpha/2}^2 = 103.84, \quad b = -(2n\bar{X} + z_{\alpha/2}^2) = -123.84, \quad c = n\bar{X}^2 = 36.$$

于是得到 $p_1 = 0.50$, $p_2 = 0.69$ 。故 p 的一个近似置信区间为 (0.50, 0.69)。

4 1 2 4 1 2 7 4 2 7

Ex. 证明: 不等式(8)左侧的二次函数有两个实根 $p_{1,2}$ 且满足 $0 < p_1 < p_2 < 1$ 。因此 (p_1, p_2) 作为 (0,1) 的子区间,确实能成为参数 $p \in (0,1)$ 的置信区间。

提示: 在大样本假设下 (即 n 充分大),根据大数定律,有 $\bar{X} \rightarrow \mu = p < 1$.

主要内容

- 点估计
 - 矩估计法
 - 最大似然估计法
- ② 基于截尾样本的最大似然估计
- ③ 估计量的评选标准
- 4 区间估计
- ⑤ 正态总体均值与方差的区间估计
- 6 (0-1) 分布参数的区间估计
- 7 单侧置信区间

在前面的讨论中,我们给出了未知参数 θ 的**双侧**置信区间 $(\underline{\theta}, \overline{\theta})$,其中 $\underline{\theta}, \overline{\theta}$ 为两个统计量。但在一些实际问题中,我们只关心单侧置信区间。

例如对于设备、原件的寿命,我们关心其平均值的下限;而考虑化学药品中的杂质含量时,我们关心其上限。

Definition (单侧置信区间)

对于给定值 $\alpha \in (0,1)$,若由样本确定的统计量 $\underline{\theta} = \underline{\theta}(X_1 \ldots, X_n)$ 对于任意 $\theta \in \Theta$ 都满足

$$P\{\theta > \underline{\theta}\} \ge 1 - \alpha$$
,

则称随机区间 $(\underline{\theta},\infty)$ 是 θ 的置信水平为 $1-\alpha$ 的单侧置信区间, $\underline{\theta}$ 为单侧置信下限。

类似地,若统计量 $\bar{\theta} = \bar{\theta}(X_1 \ldots, X_n)$ 对于任意 $\theta \in \Theta$ 都满足

$$P\{\theta < \overline{\theta}\} \ge 1 - \alpha,$$

则也称随机区间 $(-\infty, \overline{\theta})$ 是 θ 的置信水平为 $1-\alpha$ 的单侧置信区间, $\overline{\theta}$ 为单侧置信上限。

4 D > 4 D > 4 E > 4 E > 9 Q

例如,设 X_1,\ldots,X_n 是来自正态总体 X 的样本,其中总体均值 μ 和方差 σ^2 均未知。由

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

知

$$P\left\{\frac{\bar{X}-\mu}{S/\sqrt{n}} < t_{\alpha}(n-1)\right\} = 1 - \alpha,$$

即

$$P\left\{\mu>\bar{X}-\frac{\mathcal{S}}{\sqrt{n}}t_{\alpha}(n-1)\right\}=1-\alpha.$$

由此得到 μ 的置信水平为 $1-\alpha$ 的单侧置信区间

$$\left(\bar{X} - \frac{S}{\sqrt{n}}t_{\alpha}(n-1), \infty\right),$$

其中单侧置信下限

$$\underline{\mu} = \bar{X} - \frac{S}{\sqrt{n}} t_{\alpha}(n-1).$$

又由

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

知

$$P\left\{\frac{(\mathsf{n}-1)\mathsf{S}^2}{\sigma^2}>\chi^2_{1-\alpha}(\mathsf{n}-1)\right\}=1-\alpha,$$

即

$$P\left\{\sigma^2<\frac{(\mathsf{n}-1)\mathsf{S}^2}{\chi^2_{1-\alpha}(\mathsf{n}-1)}\right\}=1-\alpha.$$

由此得到 σ^2 的置信水平为 $1-\alpha$ 的单侧置信区间

$$\left(0, \frac{(n-1)S^2}{\chi_{1-\alpha}^2(n-1)}\right),\,$$

其中单侧置信上限为

$$\overline{\sigma^2} = \frac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)}.$$

例

从一批灯泡中随机取 5 只做寿命试验,测得寿命(以 h 计)为

1050 1100 1120 1250 1280

设灯泡寿命服从正态分布(评论:假设不合理,因为寿命非负)。求灯泡 寿命均值的置信水平为 0.95 的单侧置信下限。

解: 本题 $1 - \alpha = 0.95$, n = 5, 计算得 $\bar{x} = 1160$, $s^2 = 9950$, 查表得 $t_{0.05}(4) = 2.1318$ 。把数据代入前面的分析结果,得到总体均值 μ 的单侧置信下限为

$$\underline{\mu} = \bar{x} - \frac{s}{\sqrt{n}} t_{0.05}(4) = 1065.$$

The End

本章作业: TBA...