高等数学A1 2010年

1. 单项选择题(每小题3分,共15分)
(1) $f(x)$ 在 a 点连续,且 $\lim_{x\to a} \frac{f(x)-f(a)}{(x-a)^4} = 3$,则 (B)
A. a 是 $f(x)$ 的极大值点; B. a 是 $f(x)$ 的极小值点;
C. a 不是 $f(x)$ 的极值点; D. 不能判断 a 是否 $f(x)$ 的极值点.
(2) $f(x)$, $g(x)$ 均为可微函数, 且 $f'(x)g(x) + g'(x)f(x) > 0$, 则当 $x > a$ 时, 成立 (A
A.f(x)g(x) > f(a)g(a); B. $f(x)g(a) > f(a)g(x);$
C.f(a)g(x) > f(x)g(a); $D. f(a)g(a) > f(x)g(x).$
(3) 函数 $f(x) = \lim_{n \to \infty} \sqrt[n]{1 + x^{2n}} $ 在 $(-\infty, +\infty)$ 连续且 (C)
A.处处可导; B. 仅有一个不可导点;
C.仅有两个不可导点; D.至少有三个不可导点.
$(4) \int_{-1}^{1} \frac{1+x\sin^2 x}{1+x^2} dx = \tag{B}$
$A.\frac{\pi}{4};$ $B.\frac{\pi}{2};$ $C.\pi;$ $D.0.$
(5)下列反常积分收敛的是 (D)
A. $\int_3^{+\infty} \frac{\ln x}{x} dx$ B. $\int_3^{+\infty} \frac{dx}{x\sqrt{\ln x}}$ C. $\int_3^{+\infty} \frac{dx}{x \ln x}$ D. $\int_3^{+\infty} \frac{dx}{x(\ln x)^2}$
2. (每小题3分, 共15分)填空题
(1) 已知 $\lim_{x\to 2} \frac{x^2 - 3x + a}{x - 2} = b$,则 $a + b = 3$
(2) 设函数 $y = \arcsin x + \arctan x$,则 $\frac{dy}{dx} = $
(3) $\int_0^2 \sqrt{4 - x^2} dx = $
(4) 当 $x \to 0$ 时, $1 - \cos x$ 是 βx^{α} 的等价无穷小,则 $\alpha \beta = $
(5)设 $f(x)$ 为连续函数, $F(x) = \int_0^{2x} f(x+t)dt$,则 $F'(x) = $
3. (10分) 求极限 (每小题5分,共10分)
$(1)\lim_{x\to\infty} (\frac{2+x}{1+x})^x;$ $(2)\lim_{x\to 0^+} (\sin x)^x.$
4. (10分) 求导数或微分(每小题5分, 共15分)
(1) 设函数 $y = f(x)$ 由 $\begin{cases} x = 2t + 3t^2 \\ y = t^2 + 2t^3 \end{cases}$ 所确定,求 $\frac{dy}{dx}$;
(2) 设 $y = \arctan \frac{1+x}{1-x}$,求 dy .
(3) 设函数 $y = f(x)$ 由方程 $x^y + y^x = 1$ 所确定,求 $\frac{dy}{dx}$.
5. 计算下列积分(每小题5分,共15分)
$(1) \int x(e^x + \ln x) dx; \qquad (2) \int_0^1 x \sqrt{1 + x^2} dx \qquad (3) \int_0^\pi \sin x - \cos x dx.$
6. (10分) 解下列方程(每小题5分,共10分)
(1) $y' + y = e^{-x}$; (2) $y' = 1 + x + y + xy$.

7. 应用题 (每小题10分, 共20分)

- (a)确定常数 a, b, c, 使三次曲线 $y = ax^3 + bx^2 + cx$ 有拐点(1, 2),且在该拐点处的切线斜率为-1.
- (b)欲制造一个容积为 $2\pi m^3$ 的圆柱形带盖的封闭储油桶,试问它的半径r和高h各为多少时才能用料最省?说明理由.