CLASS 4, FEBRUARY 11TH: EXISTENCE OF MAXIMAL IDEALS

Today we will study Zorn's Lemma, a result from logic, and show that every ring has a maximal ideal (and potentially many).

Lemma 4.1 (Zorn's Lemma). Let S be a non-empty partially ordered set, with the property that every ascending chain has an upper bound. Then there exists a maximal element.

There is a little bit of information to unravel here. I state the definitions formally for your convenience.

Definition 4.2. A partially ordered set, or poset, is a collection S with an binary relation \leq (not applicable to all elements, thus partially) on $S \times S$ satisfying the following properties for every $a, b, c \in S$:

- 1) $a \leq a$
- 2) If $a \leq b$ and $b \leq a$, then a = b.
- 3) If $a \le b$ and $b \le c$, then $a \le c$.

An ascending chain in a poset S are elements $a_i \dots \in S$ satisfying

$$a_1 \leq a_2 \leq a_3 \leq \dots$$

An **upper bound** for such a chain is an element $b \in S$ such that $a_i \leq b \ \forall i \in \mathbb{N}$. Finally, a **maximal element** of S is an element $M \in S$ such that the only $N \in S$ such that $M \leq N$ is N = M.

The result of Zorn's lemma is quite general and has applications throughout mathematics. However, instead of doing a deep dive into transfinite induction, we simply use this result to show the following result:

Theorem 4.3. If $R \neq 0$ is a ring, then there exists $\mathfrak{m} \subsetneq R$ a maximal ideal.

Setup 4.4. Let $S = \{I \subseteq R \text{ an ideal}\}\$, and let \leq denote inclusion of ideals; i.e. $I \leq J$ if and only if $I \subseteq J$. For simplicity I will refer in the following proof only to the latter operation \subseteq .

Proof. Note that for any ring $R \neq 0$, the set S is non-empty. Given $I_1 \subseteq I_2 \subseteq ...$ an ascending chain of ideals in S, consider the set

$$I = \bigcup_{i=1}^{\infty} I_i$$

I claim that this is an ideal. Suppose $a, b \in I$. Then $a \in I_i$ and $b \in I_j$ for some $i, j \in \mathbb{N}$, and therefore $a, b \in I_{\max(i,j)}$. But this is an ideal, and therefore, $a + b \in I_{\max(i,j)} \subseteq I$.

Similarly, if $r \in R$ and $a \in I_i \subseteq I$, then $r \cdot a \in I_i \subseteq I$ since I_i is an ideal.

Finally, note that a subset $I \subseteq R$ satisfying these properties is *equal* to R if and only if it contains 1. Since I_i are ideals, none of them contain 1, and therefore I also doesn't contain 1. Therefore I is an upper bound for the above chain.

As a result of Lemma 4.1, we see that the set S contains a maximal element, which is exactly the definition of a maximal ideal.

Note that with a subtle manipulation to our setup, we can prove a greater result.

Theorem 4.5. Given $I \subsetneq R$ an ideal, there exists $\mathfrak{m} \subsetneq R$ a maximal ideal containing I.

Proof. The same proof goes through replacing $S = S_I = \{J \subseteq R \text{ an ideal } | I \subset J\}.$

This gives us a very nice way to break up the structure of a ring:

Corollary 4.6. Given $R \neq 0$ a ring, we have that

$$R = R^{\times} \cup \bigcup_{\mathfrak{m} \in m\text{-}\operatorname{Spec}(R)} \mathfrak{m} = R^{\times} \cup \bigcup_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}$$

The \cup are in fact disjoint unions.

Here I am denoting by R^{\times} the set of (multiplicative) units in R.

Proof. Given $f \in R$, f is a unit if and only if $f \cdot g = 1$ for some $g \in R$, which occurs if and only if $\langle f \rangle = R$.

As a result, if $f \notin R^{\times}$, then $\langle f \rangle \neq R$ is an ideal. Thus there exists some maximal ideal \mathfrak{m} containing $\langle f \rangle$. So $f \in \bigcup_{\mathfrak{m} \in m--\operatorname{Spec}(R)} \mathfrak{m}$.

The second equality is trivial, since each $\mathfrak{p} \subseteq \mathfrak{m}$ for some $\mathfrak{m} \in \mathrm{m--Spec}(R)$.

As one final application of Zorn's Lemma, we have a powerful result that will tell us the structure of certain *localized* rings later on.

Theorem 4.7. Let $R \neq 0$ be a ring, and S a multiplicative subset (c.f. Homework 1 #3). Then if I is an ideal of R disjoint from S (meaning $I \cap S = \emptyset$), then there exists a prime ideal $\mathfrak{p} \in \operatorname{Spec}(R)$ such that \mathfrak{p} is disjoint from S and $I \subseteq \mathfrak{p}$.

Proof. First, consider the set $S = \{I \subseteq R \text{ an ideal } | S \cap I = \emptyset\}$. It is clear that this set is non-empty, since it contains I. Similar to the previous proof, given $I_1 \subseteq I_2 \subseteq ...$ an ascending chain in S, we have that $I = \bigcup_{i=1}^{\infty} I_i$ is again an ideal in S. Therefore, there exists a maximal element $\mathfrak{p} \in S$.

I assert that \mathfrak{p} is a prime ideal. Suppose $f, g \notin \mathfrak{p}$ but $f \cdot g \in \mathfrak{p}$. Then we can consider

$$\mathfrak{p} + \langle f \rangle = \{ a + r \cdot f \mid r \in R, a \in \mathfrak{p} \}$$

and similarly $\mathfrak{p} + \langle g \rangle$. These are again ideals, and they contain \mathfrak{p} . Therefore, by assumption of maximality, we have that $\exists a + rf \in S \cap \mathfrak{p} + \langle f \rangle$ and $\exists b + r'g \in S \cap \mathfrak{p} + \langle g \rangle$. But S is a multiplicative set, so

$$(a+rf)(b+r'g) = ab + ar'g + brf + rr'fg \in S$$

Note that $ab, ar'g, brf \in \mathfrak{p}$ since $a, b \in \mathfrak{p}$. Similarly, $rr'fg \in \mathfrak{p}$ since $fg \in \mathfrak{p}$ by assumption. So $(a+rf)(b+r'g) \in \mathfrak{p} \cap S$, contradicting our assumptions. This proves the result.

Example 4.8. R = K[x, y] and $S = \{1, x, x^2, x^3, x^4, \ldots\}$. Then an example of an ideal disjoint from S not contained in a larger ideal is $\langle y - \alpha \rangle$ and $\langle x - \beta \rangle$ for $\beta \neq 0$, which are indeed prime. Other examples are also possible, and in fact one can detect that

$$\{\mathfrak{p}\in\operatorname{Spec}(R)\mid S\cap\mathfrak{p}=\emptyset\}=\{\mathfrak{p}\in\operatorname{Spec}(R)\mid x\notin\mathfrak{p}\}$$