ガンマ分布の中心極限定理とStirlingの公式

黒木玄

2016年5月1日作成*

http://www.math.tohoku.ac.jp/~kuroki/LaTeX/20160501StirlingFormula.pdf

目次

0	はじめに	3
1	ガンマ分布に関する中心極限定理からの"導出"	4
2	ガンマ分布の特性函数を用いた表示からの導出	5
	2.1 Stirling の公式の証明	5
	2.2 正規化されたガンマ分布の確率密度函数の各点収束	6
	2.3 Fourier 反転公式を用いない方法	7
	2.4 自由度が大きなカイ2乗分布が正規分布で近似できることとの関係	8
	2.5 一般の場合の中心極限定理に関する大雑把な解説	9
	2.6 二項分布の中心極限定理	9

^{*}最新版は下記 URL からダウンロードできる.飽きるまで継続的に更新と訂正を続ける予定である.2016 年5月1日 Ver.0.1. 2016年5月2日 Ver.0.2: 対数版の易しい Stirling の公式の節を追加した. 2016年5 月3日 Ver.0.3: 色々追加. 特に Fourier の反転公式に関する付録を追加した. 2016年5月4日 Ver.0.4: ガ ウス分布の Fourier 変換の付録と Gauss 積分の計算の付録を追加した. 2016 年 5 月 5 日 Ver.0.5: 誤りの 訂正と様々な追加 (全 17 頁). 2016 年 5 月 5 日 Ver.0.6: ファイル名を変更し, 対数版の易しい Stirling の 公式の微小な改良の節を追加した (全 18 頁). 2016年5月6日 Ver.0.7: ガンマ函数の正値性と対数凸性 と函数等式による特徴付けと無限乗積展開の証明の節や対数版の易しい Stirling の公式を改良して通常の Stirling の公式を導くことなどを色々追加した (全24頁). 2016年5月7日 Ver.0.8: 正弦函数の無限乗積展 開を $\cos(tx)$ の Fourier 級数展開を使って導く方法の解説を追加した (全 25 頁). 2016 年 5 月 8 日 Ver.0.9: Riemann-Lebesgue の定理の節と Fourier 変換の部分和と Fourier 級数の部分和の収束に関する解説を追加 (全 30 頁). 2016 年 5 月 9 日 Ver.0.10: 二項分布の中心極限定理の解説を追加 (全 33 頁). 2016 年 5 月 12 日 Ver.0.11: Laplace の方法による補正項の計算の仕方の解説と表 0.1 を追加 (全 37 頁). 2016 年 5 月 13 日 Ver.0.12(43 頁): 自由度の大きなカイ2乗分布が正規分布で近似できることと Stirling の公式が同値である というコメントを追加した. 様々な確率分布についての付録 (第9節) を追加した. Maxwell-Boltzmann 則 の導出も追加した (第9.5 節). 2016 年 5 月 14 日 Ver.0.13(46 頁): 細かい計算ミスを訂正し, MB 則の解説 を補充した. 2016 年 5 月 15~18 日 Ver.0.14(50 頁): ギャンブルに関する逆正弦法則 (脚注 59), Wigner の 半円則 (脚注 60), \sin^2 型分布が佐藤・Tate 予想に登場すること (脚注 61) のコメントを追加した. 二項分布 と第一種ベータ分布の関係 (第9.7節) と Poisson 分布とガンマ分布の関係 (第9.8節) の簡単で大雑把な解 説を追加した. Stirling の公式のよりシンプルな証明の筋道の解説 (第 2.3 節) を追加した. 細かな誤りを訂 正した.

2 目 次

3	Lap	place の方法による導出	12
	3.1	ガンマ函数の Gauss 積分による近似を使った導出	12
	3.2	ガンマ函数のガンマ函数を用いた近似で補正項を計算する方法	14
4	対数	対版の易しい Stirling の公式	16
	4.1	対数版の易しい Stirling の公式の易しい証明	17
	4.2	大学入試問題への応用例	17
	4.3	対数版の易しい Stirling の公式の改良	19
5	付銀	录: Fourier の反転公式	20
	5.1	Gauss 分布の場合	20
	5.2	一般の場合	21
	5.3	Riemann-Lebesgue の定理	22
	5.4	Fourier 変換の部分和の収束	23
	5.5	Fourier 級数の部分和の収束	25
6	付銀	录: ガウス分布の Fourier 変換	27
	6.1	熱方程式を使う方法	27
	6.2	両辺が同一の常微分方程式を満たしていることを使う方法	28
	6.3	項別積分で計算する方法	28
	6.4	Cauchy の積分定理を使う方法	29
7	付銀	禄: Gauss 積分の計算	29
	7.1	同一の体積の2通りの積分表示を用いた計算	29
	7.2	極座標変換による計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	7.3	Jacobian を使わずにすむ座標変換による計算	30
	7.4	ガンマ函数とベータ函数の関係を用いた計算	30
	7.5	他の方法	32
8	付銀	録: ガンマ函数	32
	8.1	ガンマ函数と正弦函数の関係式	32
	8.2	ガンマ函数の無限乗積展開	33
	8.3	正弦函数の無限乗積展開・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
	8.4	Wallis の公式	39
9	付銀	録:様々な確率分布について	39
	9.1	正規分布	39
	9.2	ガンマ分布とカイ2乗分布	40
	9.3	第二種ベータ分布と t 分布 \ldots	40
	9.4	第一種ベータ分布と F 分布 \dots	41
	9.5	n-1 次元球面上の一様分布と Maxwell-Boltzmann 則 (1)	42
	9.6	n-1 次元球面上の一様分布と Maxwell-Boltzmann 則 (2)	45
	9.7	二項分布と第一種ベータ分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
	9.8	Poisson 分布とガンマ分布	48
	9.9	基本的な数学用語の大雑把な説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

0 はじめに

Stirling の公式とは

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$
 $(n \to \infty)$

という階乗の近似公式のことである. ここで $a_n \sim b_n \ (n \to \infty)$ は $\lim_{n \to \infty} (a_n/b_n) = 1$ を意味する. より精密には

$$n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + O\left(\frac{1}{n^2}\right) \right) \qquad (n \to \infty)$$

が成立している¹. このノートではまず最初にガンマ分布に関する中心極限定理から Stirling の公式が "導出" されることを説明する. その後は様々な方法で Stirling の公式を導出する. 精密かつ厳密な議論はしない.

このノートの後半の付録群では関連の基礎知識の解説を行なう.このノートの全体は学生向けの Gauss 積分入門, ガンマ函数入門, ベータ函数入門, Fourier 解析入門になることを意図して書かれた雑多な解説の寄せ集めである.前の方の節で後の方の節で説明した結果を使うことが多いので読者は注意して欲しい.基本的な方針として易しい話しか扱わないことにする.

A U.I. Sulling のA A C S O 相 木の足 M									
n	n!	$A_n = n^n e^{-n} \sqrt{2\pi n}$	(誤差/n!)	$A_n(1+1/(12n))$	(誤差/n!)				
1	1	$0.92\cdots$	(7.78%)	$0.9989 \cdots$	(0.10%)				
3	6	$5.836 \cdots$	(2.73%)	$5.998\cdots$	(0.028%)				
10	3628800	$3598695.6\cdots$	(0.83%)	$3628684.7\cdots$	(0.0032%)				
30	$2.6525\cdots\times10^{32}$	$2.6451 \cdots \times 10^{32}$	(0.28%)	$2.6525 \cdots \times 10^{32}$	(3.7×10^{-6})				
100	$9.3326 \cdots \times 10^{157}$	$9.3248 \cdots \times 10^{157}$	(0.08%)	$9.3326\cdots\times10^{157}$	(3.4×10^{-7})				

表 0.1: Stirling の公式による階乗の近似

表 0.1 を見ればわかるように, $n^ne^{-n}\sqrt{2\pi n}$ による n! の近似の誤差は, n=3 の段階ですでに 3% を切っており, n=10 の段階では 1% を切っている. さらに 1/(12n) で補正すると誤差は劇的に小さくなり, n=1 の段階ですでに近似の誤差が 0.1% 程度と相当に小さい:

$$\frac{\sqrt{2\pi}}{e}\left(1+\frac{1}{12}\right) = 0.9989\dots \approx 1.$$

このように Stirling の公式は階乗の近似公式として非常に優秀である².

$$n! = \left[\left(n + \frac{1}{12n - \frac{1}{10n + \dots}} \right) \frac{1}{e} \right]^n \sqrt{2\pi n} = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n^2} + \frac{1}{1440n^4} + \dots \right)^n$$

は極めて優秀な近似公式である.

¹第3節を見よ

 $^{^2}$ Gergö Nemes, New aymptotic expansion for the $\Gamma(z)$ function, 2007 に階乗の様々な近似公式の比較がある. たとえば Nemes の公式

ガンマ分布に関する中心極限定理からの"導出" 1

ガンマ分布とは次の確率密度函数で定義される確率分布のことである3:

$$f_{\alpha,\tau}(x) = \begin{cases} \frac{e^{-x/\tau} x^{\alpha-1}}{\Gamma(\alpha)\tau^{\alpha}} & (x > 0), \\ 0 & (x \le 0). \end{cases}$$

ここで $\alpha, \tau > 0$ はガンマ分布を決めるパラメーターである⁴. 以下簡単のため $\alpha = n > 0$. $\tau = 1$ の場合のガンマ分布のみを扱うために $f_n(x) = f_{n,1}(x)$ とおく:

$$f_n(x) = \frac{e^{-x}x^{n-1}}{\Gamma(n)}$$
 $(x > 0).$

確率密度函数 $f_n(x)$ で定義される確率変数を X_n と書くことにする. 確率変数 X_n の平均 μ_n と分散 σ_n^2 は両方 n になる⁵:

$$\mu_n = E[X_n] = \int_0^\infty x f_n(x) \, dx = \frac{\Gamma(n+1)}{\Gamma(n)} = n,$$

$$E[X_n^2] = \int_0^\infty x^2 f_n(x) \, dx = \frac{\Gamma(n+2)}{\Gamma(n)} = (n+1)n,$$

$$\sigma_n^2 = E[X_n^2] - \mu_n^2 = n.$$

ゆえに確率変数 $Y_n = (X_n - \mu_n)/\sigma_n = (X_n - n)/\sqrt{n}$ の平均と分散はそれぞれ 0 と 1 に なり、その確率密度函数は

$$\sqrt{n}f_n(\sqrt{n}y+n) = \sqrt{n}\frac{e^{-(\sqrt{n}y+n)}(\sqrt{n}y+n)^{n-1}}{\Gamma(n)}$$

になる⁶. この確率密度函数で y=0 とおくと

$$\sqrt{n}f_n(n) = \sqrt{n}\frac{e^{-n}n^{n-1}}{\Gamma(n)} = \frac{n^n e^{-n}\sqrt{n}}{\Gamma(n+1)}$$

となる. n>0 が整数のとき $\Gamma(n+1)=n!$ なので、これが $n\to\infty$ で $1/\sqrt{2\pi}$ に収束する ことと Stirling の公式の成立は同値になる.

ガンマ分布が再生性を満たしていることより、中心極限定理を適用できるので、ℝ上の 有界連続函数 $\varphi(x)$ に対して, $n \to \infty$ のとき

$$\int_0^\infty \varphi\left(\frac{x-n}{\sqrt{n}}\right) f_n(x) \, dx = \int_0^\infty \varphi(y) \sqrt{n} f_n(\sqrt{n}y+n) \, dy \longrightarrow \int_{-\infty}^\infty \varphi(y) \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, dy.$$

³ガンマ函数は s>0 に対して $\Gamma(s)=\int_0^\infty e^{-x}x^{s-1}\,dx$ と定義される. 直接の計算によって $\Gamma(1)=1$ を、部分積分によって $\Gamma(s+1)=s\Gamma(s)$ を示せるので、0 以上の整数 n について $\Gamma(n+1)=n!$ となる. $^4\alpha$ は shape parameter と、 τ は scale parameter と呼ばれているらしい. ガンマ分布の平均と分散はそ

れぞれ $\alpha \tau$ と $\alpha \tau^2$ になる.

 $^{^5}$ 確率密度函数 f(x) を持つ確率変数 X に対して, 期待値汎函数が $E[g(X)] = \int_{\mathbb{R}} g(x)f(x)\,dx$ と定義さ れ、平均が $\mu = E[X]$ と定義され、分散が $\sigma^2 = E[(X - \mu)^2] = E[X^2] - \mu^2$ と定義される.

 $^{^6}$ 確率変数 X の確率分布函数が f(x) のとき, 確率変数 Y を Y=(X-a)/b と定めると, E[g(Y)]= $\int_{\mathbb{R}} g((x-a)/b) f(x) dx = \int_{\mathbb{R}} g(y) b f(by+a) dy$ なので、Y の確率分布函数は b f(by+a) になる.

 $\varphi(y)$ をデルタ函数 $\delta(y)$ に近付けることによって (すなわち確率密度函数の y に 0 を代入 することによって),

$$\sqrt{n}f_n(n) = \sqrt{n}\frac{e^{-n}n^{n-1}}{\Gamma(n)} = \frac{n^n e^{-n}\sqrt{n}}{\Gamma(n+1)} \longrightarrow \frac{1}{\sqrt{2\pi}} \qquad (n \to \infty)$$

を得る. この結果はStirlingの公式の成立を意味する.

以上の "導出" の最後で確率密度函数の y に 0 を代入するステップには論理的にギャップがある。このギャップを埋めるためには中心極限定理をブラックボックスとして利用するのではなく、中心極限定理の特性函数を用いた証明に戻る必要がある。そのような証明の方針については次の節を見て欲しい。

2 ガンマ分布の特性函数を用いた表示からの導出

前節では中心極限定理を便利なブラックボックスとして用いて Stirling の公式を "導出" した. しかし, その "導出"には論理的なギャップがあった. そのギャップを埋めるためには,中心極限定理が確率密度函数を特性函数 (確率密度函数の逆 Fourier 変換)の Fourier 変換で表示することによって証明されることを思い出す必要がある.

この節ではガンマ分布の確率密度函数を特性函数の Fourier 変換で表わす公式を用いて, 直接的に Stirling の公式を証明する⁷.

2.1 Stirling の公式の証明

ガンマ分布の確率密度函数 $f_n(x) = e^{-x}x^{n-1}/\Gamma(n)$ (x>0) の特性函数 (逆 Fourier 変換) $F_n(t)$ は次のように計算される8:

$$F_n(t) = \int_0^\infty e^{itx} f_n(x) \, dx = \frac{1}{\Gamma(n)} \int_0^\infty e^{-(1-it)x} x^{n-1} \, dx = \frac{1}{(1-it)^n}.$$

ここで、実部が正の複素数 α に対して

$$\frac{1}{\Gamma(n)} \int_0^\infty e^{-\alpha t} t^{n-1} dt = \frac{1}{\alpha^n}$$

となること使った. この公式は Cauchy の積分定理を使って示せる9.

Fourier の反転公式より¹⁰,

$$f_n(x) = \frac{e^{-x}x^{n-1}}{\Gamma(n)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} F_n(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itx}}{(1-it)^n} dt \qquad (x > 0).$$

この公式さえ認めてしまえば Stirling の公式の証明は易しい.

⁷筆者はこの証明法を https://www.math.kyoto-u.ac.jp/~nobuo/pdf/prob/stir.pdf を見て知った.

 $^{^8}$ 確率分布がパラメーター n について再生性を持つことと特性函数がある函数の n 乗の形になることは 同値である

 $^{^9}$ Cauchy の積分定理を使わなくても示せる. 左辺を $f(\alpha)$ と書くと, f(1)=1 でかつ部分積分によって $f'(\alpha)=-(n/\alpha)f(\alpha)$ となることがわかるので, その公式が得られる. 正の実数 α に対するこの公式は $t=x/\alpha$ という置換積分によって容易に証明される.

¹⁰Fourier の反転公式の証明の概略については第5節を参照せよ.

この公式より, $t = \sqrt{nu}$ と置換することによって,

$$\sqrt{n} f_n(n) = \frac{n^n e^{-n} \sqrt{n}}{\Gamma(n+1)} = \frac{\sqrt{n}}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itn}}{(1-it)^n} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-iu\sqrt{n}}}{(1-iu/\sqrt{n})^n} du.$$

Stirling の公式を証明するためには、これが $n\to\infty$ で $1/\sqrt{2\pi}$ に収束することを示せばよい. そのために被積分函数の対数の様子を調べよう:

$$\log \frac{e^{-iu\sqrt{n}}}{(1-iu/\sqrt{n})^n} = -n\log\left(1-\frac{iu}{\sqrt{n}}\right) - iu\sqrt{n}$$
$$= n\left(\frac{iu}{\sqrt{n}} - \frac{u^2}{2n} + o\left(\frac{1}{n}\right)\right) - iu\sqrt{n} = -\frac{u^2}{2} + o(1).$$

したがって, $n \to \infty$ のとき

$$\frac{e^{-iu\sqrt{n}}}{(1-iu/\sqrt{n})^n} \longrightarrow e^{-u^2/2}.$$

$$\sqrt{n} f_n(n) = \frac{n^n e^{-n} \sqrt{n}}{\Gamma(n+1)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-iu\sqrt{n}}}{(1 - iu/\sqrt{n})^n} du \longrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-u^2/2} du = \frac{1}{\sqrt{2\pi}}$$

となることがわかる 11 . 最後の等号で一般に正の実数 α に対して

$$\int_{-\infty}^{\infty} e^{-u^2/\alpha} \, du = \sqrt{\alpha \pi}$$

となることを用いた12. これで Stirling の公式が証明された.

2.2 正規化されたガンマ分布の確率密度函数の各点収束

確率密度函数 $f_n(x)=e^{-x}x^{n-1}$ を持つ確率変数を X_n と書くとき, $Y_n=(X_n-n)/\sqrt{n}$ の平均と分散はそれぞれ 0 と 1 になるのであった (前節を見よ). Y_n の確率密度函数は

$$\sqrt{n}f_n(\sqrt{n}y+n) = \sqrt{n}\frac{e^{-\sqrt{n}y-n}(\sqrt{n}y+n)^{n-1}}{\Gamma(n)} = \frac{e^{-n}n^{n-1/2}}{\Gamma(n)}\frac{e^{-\sqrt{n}y}(1+y/\sqrt{n})^n}{1+y/\sqrt{n}}$$

になる. そして, $n \to \infty$ のとき

$$\begin{split} \log\left(e^{-\sqrt{n}y}\left(1+\frac{y}{\sqrt{n}}\right)^n\right) &= n\log\left(1+\frac{y}{\sqrt{n}}\right) - \sqrt{n}y \\ &= n\left(\frac{y}{\sqrt{n}} - \frac{y^2}{2n} + o\left(\frac{1}{n}\right)\right) - \sqrt{n}y = -\frac{y^2}{2} + o(1) \end{split}$$

¹¹厳密に証明したければ、たとえば Lebesgue の収束定理を使えばよい.

 $^{^{12}}$ この公式は Gauss 積分の公式 $\int_{-\infty}^{\infty}e^{-x^2}dx=\sqrt{\pi}$ で $x=u/\sqrt{\alpha}$ と積分変数を変換すれば得られる. Gauss 積分の公式は以下のようにして証明される. 左辺を I とおくと $I^2=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}dx\,dy$ であり, I^2 は $z=e^{-(x^2+y^2)}$ のグラフと平面 z=0 で挟まれた「小山状の領域」の体積だと解釈される. その小山の高さ $0< z \leq 1$ における断面積は $-\pi \log z$ になるので,その体積は $\int_0^1 (-\pi \log z)\,dz = -\pi [z\log z-z]_0^1 = \pi$ になる. ゆえに $I=\sqrt{\pi}$. Gauss 積分の公式の不思議なところは円周率が出て来るところであり,しかもその平方根が出て来るところである. しかしその二乗が小山の体積であることがわかれば,その高さ z での断面が円盤の形になることから円周率 π が出て来る理由がわかる.平方根になるのは I そのものを直接計算したのではなく, I^2 の方を計算したからである.

なので, $n\to\infty$ で $e^{\sqrt{n}y}(1+y/\sqrt{n})^n\to e^{-y^2/2}$ となり, さらに $1+y/\sqrt{n}\to 1$ となる. ゆえに, 次が成立することと Stirling の公式は同値になる:

$$\sqrt{n}f_n(\sqrt{n}y+n) = \sqrt{n}\frac{e^{-\sqrt{n}y-n}(\sqrt{n}y+n)^{n-1}}{\Gamma(n)} \longrightarrow \frac{e^{-y^2/2}}{\sqrt{2\pi}} \qquad (n \to \infty).$$

すなわち Y_n の確率密度函数が標準正規分布の確率密度函数に各点収束することと Stirling の公式は同値である.

ガンマ分布について確率密度函数の各点収束のレベルで中心極限定理が成立していることと Stirling の公式は同じ深さにある.

 Y_n の確率分布函数が標準正規分布の確率密度函数に各点収束することの直接的証明は $\sqrt{n}f(n)$ の収束の証明と同様に以下のようにして得られる:

$$\sqrt{n} f_n(\sqrt{n}y + n) = \frac{\sqrt{n}}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-it(\sqrt{n}y + n)}}{(1 - it)^n} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iuy} \frac{e^{-it\sqrt{n}}}{(1 - iu/\sqrt{n})^n} dt$$

$$\longrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iuy} e^{-u^2/2} du = \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \qquad (n \to \infty).$$

最後の等号で、Cauchy の積分定理より13

$$\int_{-\infty}^{\infty} e^{-iuy} e^{-u^2/2} \, du = \int_{-\infty}^{\infty} e^{-(u+iy)^2/2 - y^2/2} \, du = e^{-y^2/2} \int_{-\infty}^{\infty} e^{-v^2/2} \, dv = e^{-y^2/2} \sqrt{2\pi}$$

となることを用いた.

このように、ガンマ分布の確率密度函数の特性函数の Fourier 変換による表示を使えば確率密度函数の各点収束のレベルでの中心極限定理を容易に示すことができ、その結果は Stirling の公式と同値になっている.

2.3 Fourier 反転公式を用いない方法

ガンマ函数の定義より、

$$n! = \Gamma(n+1) = \int_0^\infty e^{-x} x^n \, dx.$$

積分変数を $x = n + \sqrt{n} y = n(1 + y/\sqrt{n})$ によって y に変換すると,

$$n! = n^n e^{-n} \sqrt{n} \int_{-\sqrt{n}}^{\infty} e^{-\sqrt{n}y} \left(1 + \frac{y}{\sqrt{n}}\right)^n dy.$$

ゆえに

$$c_n = \frac{n!}{n^n e^{-n} \sqrt{n}}, \qquad h_n(y) = \begin{cases} e^{-\sqrt{n}y} (1 + y/\sqrt{n})^n & (y > \sqrt{n}), \\ 0 & (y \le -\sqrt{n}). \end{cases}$$

¹³複素解析を使わなくても容易に証明される. たとえば, e^{-ity} の Taylor 展開を代入して項別積分を実行しても証明できる. もしくは, 両辺が f'(y) = -yf(y), $f(0) = \sqrt{2\pi}$ を満たしていることからも導かれる (左辺が満たしていることは部分積分すればわかる). Cauchy の積分定理を使えば形式的に u+iy (u>0) をv>0 で置き換える置換積分を実行したのと同じように見える証明が得られる.

とおくと、 $c_n=\int_{-\infty}^{\infty}h_n(y)\,dy$ となる. $\log h_n(y)$ の y=0 における Taylor 展開によって $\log h_n(y)=-y^2/2+o(1)$ $(n\to\infty)$ となることがわかるので、 $\lim_{n\to\infty}h_n(y)=e^{-y^2/2}$ となることがわかる。 さらに

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} h_n(y) \, dy = \int_{-\infty}^{\infty} e^{-y^2/2} \, dy$$

という積分と極限の順序の交換を示すことができれば 14 , $\lim_{n\to\infty}c_n=\sqrt{2\pi}$ が得られる. すなわち Stirling の公式

$$\lim_{n \to \infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1$$

が得られる.この筋道であればFourier解析の知識は必要ではなくなる.

2.4 自由度が大きなカイ2乗分布が正規分布で近似できることとの関係

独立な標準正規分布する確率変数 n 個の確率変数 X_1,\ldots,X_n によって $Y_n=X_1^2+\cdots+X_n^2$ と定義された確率変数 Y_n の確率分布を自由度 n のカイ 2 乗分布と呼ぶ.

自由度 n のカイ 2 乗分布は shape が $\alpha = n/2$ で scale が $\tau = 2$ のガンマ分布に等しい. 特に自由度 n のカイ 2 乗分布の確率密度函数は

$$f_{n/2,2}(y) = \begin{cases} \frac{e^{-y/2}y^{n/2-1}}{\Gamma(n/2)2^{n/2}} & (x > 0), \\ 0 & (y \le 0). \end{cases}$$

になり、その平均と分散はそれぞれnと2nになる. すなわち、

$$\int_0^\infty g(y) \frac{e^{-y/2} y^{n/2-1}}{\Gamma(n/2) 2^{n/2}} dy = \int_{\mathbb{R}^n} g(x_1^2 + \dots + x_n^2) \frac{e^{-(x_1^2 + \dots + x_n^2)/2}}{(2\pi)^{n/2}} dx_1 \cdots dx_n.$$

この事実を示すためには、ガンマ分布の再生性より、n=1 の場合を示せば十分である. n=1 の場合の計算は本質的にガウス積分と $\Gamma(1/2)$ の関係そのものである. 実際, x>0 で $x=\sqrt{y}$ と積分変数を置換することによって

$$\int_{-\infty}^{\infty} g(x^2) \frac{e^{-x^2/2}}{\sqrt{2\pi}} \, dx = 2 \int_{0}^{\infty} g(y) \frac{e^{-y/2}}{\sqrt{2\pi}} \frac{y^{-1/2}}{2} \, dy = \int_{0}^{\infty} g(y) \frac{e^{-y/2}y^{1/2-1}}{\Gamma(1/2)2^{1/2}} \, dy.$$

最後の等号で $\Gamma(1/2) = \sqrt{\pi}$ を使った.

統計学の世界では、自由度 n を大きくすると、カイ 2 乗分布は平均が n で分散が 2n の正規分布にゆっくり近付くことがよく知られている。その事実はガンマ分布の中心極限定理そのものである。そして、前節で示したように正規化されたガンマ分布の確率密度函数が標準正規分布に各点収束するという結果と Stirling の公式は同値 (同じ深さの結果) なのであった。以上をまとめると次のようにも言えることがわかる:

自由度 n のカイ 2乗分布を変数変換で平均 0, 分散 1 に正規化するとき, $n \to \infty$ でその確率密度函数が標準正規分布の確率密度函数に収束するという統計学においてよく知られている結果は Stirling の公式と同値である.

要するに統計学をよく知っている人は、Stirling の公式は $n \to \infty$ でカイ 2 乗分布が正規分布に近づくことと同じことを意味していると思ってよい.

 $^{^{14}}y \ge 0$ で $h_n(y) \le h_1(y) = e^{-y}(1+y)$ が, $y \le 0$ で $h_n(y) \le e^{-y^2/2}$ が成立しているので, Lebesgue の 収束定理を使えば容易に示すことができる. Lebesgue の収束定理を使わなくても, $|y| \le M$ で h_n が一様収束することを用いて示すこともできる.

2.5 一般の場合の中心極限定理に関する大雑把な解説

一般の場合の中心極限定理について大雑把にかつ簡単に解説する.

 X_1, X_2, X_3, \dots は独立で等しい確率分布を持つ確率変数の列であるとする. さらにそれらは平均 $\mu = E[X_k]$ と分散 $\sigma^2 = E[(X_k - \mu)^2] = E[X_k]^2 - \mu^2$ を持つと仮定する.

 $Y_n = (X_1 + \dots + X_n - n\mu)/\sqrt{n\sigma^2}$ とおくと Y_n の平均と分散はそれぞれ 0 と 1 になる. このとき $n \to \infty$ の極限で Y_n の確率分布が平均 0, 分散 1 の標準正規分布に (適切な意味で) 収束するというのが中心極限定理である.

記述の簡単のため X_k を $(X_k - \mu)/\sigma$ で置き換えることにする. このように置き換えても Y_n は変わらない. このとき X_k の平均と分散はそれぞれ 0 と 1 になるので, X_k の特性函数を $\varphi(t) = E[e^{itX_k}]$ と書くと,

$$\varphi(t) = 1 - \frac{t^2}{2} + o(t^2).$$

 $Y_n = (X_1 + \cdots + X_n)/\sqrt{n}$ とおくと Y_n の平均と分散もそれぞれ 0 と 1 になり, Y_n の特性函数の極限は次のように計算される:

$$E[e^{itY_n}] = \prod_{k=1}^n E[e^{itX_k/\sqrt{n}}] = \varphi\left(\frac{t}{\sqrt{n}}\right)^n$$
$$= \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^n \longrightarrow e^{-t^2/2} \qquad (n \to \infty).$$

ゆえに、Fourier の反転公式より 15 、 Y_n の確率密度函数 16 $f_n(y)$ は

$$f_n(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \varphi\left(\frac{t}{\sqrt{n}}\right)^n dt$$

になり、これは $n \to \infty$ で標準正規分布の確率密度函数

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} e^{-t^2/2} dt = \frac{e^{-y^2/2}}{\sqrt{2\pi}}$$

に収束する¹⁷.

2.6 二項分布の中心極限定理

以上では確率分布の「適切な意味での収束」についてほとんど何も説明しなかった.この節ではその点について二項分布を例に用いて大雑把に説明する¹⁸.

 X_n が二項分布する確率変数のとき, $g(X_n)$ の期待値は

$$E[g(X_n)] = \sum_{k=0}^{n} g(k) \binom{n}{k} p^k q^{n-k}$$

 $^{^{15}\}varphi(t/\sqrt{n})^n$ が可積分ならば Y_n に関する Fourier 反転公式の結果は函数になるが, 可積分でない場合には測度になり, 測度の収束を考えることになる.

¹⁶一般には ℝ 上の確率測度になる.

¹⁷厳密には適切な意味での収束を考える必要がある.

¹⁸アイデアの説明はするが、厳密な議論はしない.

と定義される. ここで 0 であり, <math>n は正の整数であるとし, $\binom{n}{k}$ は二項係数を表わす:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \qquad (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

 $E[g(X_n)]$ を積分の形式で書くためにはデルタ函数 (デルタ測度) $\delta(x-a) dx$ を使う必要がある δ^{19} :

$$E[g(X_n)] = \int_{\mathbb{R}} g(x) f_n(x) dx, \quad f_n(x) = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k} \delta(x-k).$$

このように、二項分布の確率密度函数 $f_n(x)$ はデルタ函数 (デルタ測度) を使って表わされると考えられ、通常の函数ではなく超函数 (より正確には測度) になってしまう. 特に確率密度函数の収束を通常の函数の各点収束で考えることはできなくなる.

そのような場合には確率密度函数の各点収束ではなく、期待値汎函数 $g \mapsto E[g(X)]$ の収束を考えればよい 20 .

具体的な議論では、一般の函数 g に対する E[g(X)] を扱うのではなく、ある特別な形の函数 g に関する E[g(X)] を扱い、その特別な場合の計算から一般の場合を導くというようなことがよく行われる。

その典型例が確率変数 X の特性函数 $\varphi_X(t)=E[e^{itX}]$ を扱うことである. 特性函数は \mathbb{R} 上で常に絶対値が 1 以下の一様連続函数になる:

$$\begin{split} |\varphi_X(t)| &= \left| E[e^{itX}] \right| \leq E\left[|e^{itX}| \right] = E[1] = 1, \\ \sup_{t \in \mathbb{R}} |\varphi_X(t+h) - \varphi(t)| &= \sup_{t \in \mathbb{R}} |E[e^{itX}(e^{ith} - 1)]| \leq E\left[|e^{ihX} - 1| \right] \longrightarrow 0 \quad (h \to 0). \end{split}$$

最後の 0 への収束では Lebesgue の収束定理を用いた. 函数 g(x) が

$$g(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{itx} \widehat{g}(t) dt$$

と表わされていたとする 21 . このとき, $E[\]$ と積分の順序を交換することによって

$$E[g(X)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{g}(t) E[e^{itX}] dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{g}(t) \varphi_X(t) dt.$$

この公式より、確率変数列 Y_n と確率変数 Y について、特性函数列 φ_{Y_n} が特性函数 φ_Y に各点収束していれば、適切なクラス 22 に含まれる任意の函数 g(y) に対して $E[g(Y_n)]$ は E[g(Y)] に収束することを示せる 23 . 離散型確率変数を含む一般の場合の中心極限定理はこのような形で定式化される.

注意. 確率変数 Y_n の特性函数 φ_{Y_n} が函数 φ に各点収束していても収束先の函数 φ がある確率変数の特性函数になっていない場合には確率変数 Y_n は確率変数に収束しない. 特性函数列 φ_{Y_n} が原点で連続な函数 φ に各点収束するならば, 特性函数 φ を持つ確率変数 Y が存在して, 確率変数列 Y_n が Y に弱収束することが知られている²⁴.

 $[\]overline{\ \ \ \ }^{19}$ デルタ函数 (デルタ測度) $\delta(x-a)\,dx$ は連続函数 f(x) に対して, $\int_{\mathbb{R}}g(x)\delta(x-a)\,dx=g(a)$ によって定義されていると考える.

²⁰この型の収束は弱収束と呼ばれる.

 $^{^{21}}$ たとえば g(x) が急減少函数であれば急減少函数 $\widehat{g}(t)$ でこのように g(x) を表示できる.

²²たとえば有界な連続函数の集合.

 $^{^{23}}$ 実際の証明では, g(y) が急減少函数であるような扱い易い場合に収束を示し, その極限として g(t) がより広い函数のクラス (例えば有界連続函数の集合) に含まれる場合の結果を導く.

²⁴Bochner の定理.

二項分布の中心極限定理を示そう. 二項分布の特性函数は

$$\varphi_{X_n}(t) = E[e^{itX_n}] = \sum_{k=0}^n e^{itk} \binom{n}{k} p^k q^{n-k}$$
$$= \sum_{k=0}^n \binom{n}{k} (pe^{it})^n q^{n-k} = (pe^{it} + q)^n$$

となる. 二項分布の平均と分散はそれぞれ $\mu_n=np$ と $\sigma_n^2=npq$ である. ゆえに確率変数

$$Y_n = \frac{X_n - \mu_n}{\sigma_n} = \frac{X_n - np}{\sqrt{npq}}$$

の平均と分散はそれぞれ0と1になり、その特性函数は

$$\varphi_{Y_n}(t) = E\left[e^{itY_n}\right] = E\left[e^{-itnp/\sqrt{npq}}e^{itX_n/\sqrt{npq}}\right]$$

$$= e^{-itnp/\sqrt{npq}}\varphi_{X_n}(t/\sqrt{npq}) = e^{-itnp/\sqrt{npq}}\left(pe^{it/\sqrt{npq}} + q\right)^n$$

$$= \left(pe^{itq/\sqrt{npq}} + qe^{-itp/\sqrt{npq}}\right)^n$$

となる²⁵. X_n の特性函数の公式を経由せずに, $X_n-np=X_n(p+q)-np=qX_n-p(n-X_n)$ を用いて, 直接的に

$$\varphi_{Y_n}(t) = E\left[e^{itY_n}\right] = E\left[e^{itqX_n/\sqrt{npq}}e^{-itp(n-X_n)/\sqrt{npq}}\right]$$

$$= \sum_{k=0}^n e^{itqk/\sqrt{npq}}e^{-itp(n-k)/\sqrt{npq}} \binom{n}{k} p^k q^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} \left(pe^{itq/\sqrt{npq}}\right)^k \left(qe^{-itp/\sqrt{npq}}\right)^{n-k}$$

$$= \left(pe^{itq/\sqrt{npq}} + qe^{-itp/\sqrt{npq}}\right)^n$$

と計算することもできる. これに

$$pe^{itq/\sqrt{npq}} = p + \frac{itpq}{\sqrt{npq}} - \frac{qt^2}{2n} + O\left(\frac{1}{n\sqrt{n}}\right),$$
$$qe^{-itp/\sqrt{npq}} = q - \frac{itpq}{\sqrt{npq}} - \frac{pt^2}{2n} + O\left(\frac{1}{n\sqrt{n}}\right)$$

を代入すると

$$\varphi_{Y_n}(t) = \left(1 - \frac{t^2}{2n} + O\left(\frac{1}{n\sqrt{n}}\right)\right)^n$$

なので

$$\lim_{n \to \infty} \varphi_{Y_n}(t) = e^{-t^2/2}$$

一方, 標準正規分布する確率変数 Y の特性函数は

$$\varphi_Y(t) = E[e^{itY}] = \int_{-\infty}^{\infty} e^{ity} \frac{e^{-y^2/2}}{\sqrt{2\pi}} dy = e^{-t^2/2}.$$

これより、適切なクラスに含まれる函数 26 g(y) について

$$\lim_{n \to \infty} E[g(Y_n)] = E[g(Y)]$$

となることを示せる. すなわち

$$\lim_{n \to \infty} \sum_{k=0}^{n} g\left(\frac{k - np}{\sqrt{npq}}\right) \binom{n}{k} p^k q^{n-p} = \int_{-\infty}^{\infty} g(y) \frac{e^{-y^2/2}}{2\pi} \, dy.$$

g(y) が $a \le y \le b$ のとき値が 1 になり、 そうでないとき 0 になる函数の場合には

$$\lim_{n \to \infty} P\left(a \le \frac{X_n - np}{\sqrt{npq}} \le b\right) = \int_a^b \frac{e^{-y^2/2}}{2\pi} \, dy.$$

以上が二項分布の確率変数 X_n の中心極限定理である.

3 Laplaceの方法による導出

前節までに説明した Stirling の公式の証明は本質的にガンマ函数 (ガンマ分布) が Gauss 積分 (正規分布) で近似されることを用いた証明だと考えられる. Gauss 積分による近似を Laplace の方法と呼ぶことがある.

3.1 ガンマ函数の Gauss 積分による近似を使った導出

ガンマ函数の値を Gauss 積分で直接近似することによって Stirling の公式を示そう. $\log(e^{-x}x^n) = n\log x - x$ を x = n で Taylor 展開すると

$$n \log x - x = n \log n - n - \frac{(x-n)^2}{2n} + \frac{(x-n)^3}{3n^2} - \frac{(x-n)^4}{4n^3} + \cdots$$

なので、n が大きなとき $n! = \Gamma(n+1) = \int_0^\infty e^{-x} x^n \, dx$ が

$$\int_{-\infty}^{\infty} \exp\left(n\log n - n - \frac{(x-n)^2}{2n}\right) dx = n^n e^{-n} \int_{-\infty}^{\infty} e^{-(x-n)^2/(2n)} dx = n^n e^{-n} \sqrt{2\pi n}$$

で近似されることがわかる. ゆえに

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$
 $(n \to \infty).$

この近似の様子を scilab で描くことによって作った画像をツイッターの過去口グで見ることができる. 無料の数値計算ソフト scilab については関連のツイートを参照して欲しい. 以上の証明法では Stirling の公式中の因子 n^ne^{-n} , $\sqrt{2\pi n}$ のそれぞれが $g_n(x) = \log(e^{-x}x^n) = n\log x - x$ の x = n における Taylor 展開の定数項と 2 次の項に由来していることがわかる. 3 次の項は $\int_{-\infty}^{\infty} y^3 e^{-y^2/\alpha} dy = 0$ なので寄与しない.

 $^{^{26}}$ この場合には有界な連続函数や $a \le y \le b$ で値が 1 にそうでないとき 0 になる函数など.

以上の方法を拡張して第 1 補正項の 1/(12n) まで導出してみよう²⁷. 準備. ガウス型積分とガンマ函数の関係は以下の通り:

$$\int_{-\infty}^{\infty} e^{-x^2/2} x^{2k} dx = 2 \int_{0}^{\infty} e^{-x^2/2} (x^2)^k dx = 2 \int_{0}^{\infty} e^{-t} (2t)^k \sqrt{2} \frac{t^{-1/2}}{2} dt$$
$$= 2^k \sqrt{2} \int_{0}^{\infty} e^{-t} t^{k-1/2} dt = 2^k \sqrt{2} \Gamma(k+1/2)$$
$$= 2^k \sqrt{2} \frac{1 \cdot 3 \cdots (2k-1)}{2^k} \sqrt{\pi} = 1 \cdot 3 \cdots (2k-1) \sqrt{2\pi}.$$

たとえば, $\int_{-\infty}^{\infty}e^{-x^2/2}\,dx=\int_{-\infty}^{\infty}e^{-x^2/2}x^2\,dx=\sqrt{2\pi}$

$$\int_{-\infty}^{\infty} e^{-x^2/2} x^4 dx = 3\sqrt{2\pi}, \qquad \int_{-\infty}^{\infty} e^{-x^2/2} x^6 dx = 15\sqrt{2\pi}.$$

これらの公式を以下で使う.

ガンマ函数の積分表示の積分変数 x に $n(1+x/\sqrt{n})$ を代入すると

$$n! = \Gamma(n+1) = \int_0^\infty e^{-x} x^n dx$$

$$= n^n e^{-n} \sqrt{n} \int_{-\sqrt{n}}^\infty e^{-\sqrt{n}x} \left(1 + \frac{x}{\sqrt{n}}\right)^n dx$$

$$\sim n^n e^{-n} \sqrt{n} \int_{-1}^1 e^{-\sqrt{n}x} \left(1 + \frac{x}{\sqrt{n}}\right)^n dx \qquad (n \to \infty).$$

被積分函数の対数を $\phi_n(x)$ と書くと:

$$\phi_n(x) = n \log \left(1 + \frac{x}{\sqrt{n}} \right) - \sqrt{n} \, x = -\frac{x^2}{2} + \frac{x^3}{3\sqrt{n}} - \frac{x^4}{4n} + o\left(\frac{1}{n}\right) \qquad (n \to \infty).$$

最後の o(1/n) の部分は n をかけた後に $n\to\infty$ とすると $|x|\le 1$ で 0 に一様収束する. ゆえに $|x|\le 1$ において一様に

$$e^{-\sqrt{n}x} \left(1 + \frac{x}{\sqrt{n}} \right)^n = e^{-x^2/2} \exp\left(\frac{x^3}{3\sqrt{n}} - \frac{x^4}{4n} + o\left(\frac{1}{n}\right) \right)$$

$$= e^{-x^2/2} \left(1 + \frac{x^3}{3\sqrt{n}} - \frac{x^4}{4n} + \frac{1}{2} \left(\frac{x^3}{3\sqrt{n}} \right)^2 + o\left(\frac{1}{n}\right) \right)$$

$$= e^{-x^2/2} \left(1 + \frac{x^3}{3\sqrt{n}} - \frac{x^4}{4n} + \frac{x^6}{18n} + o\left(\frac{1}{n}\right) \right).$$

o(1/n) の部分に含まれる n の半整数乗分の 1 の項の係数は x について奇函数になることに注意せよ. 奇函数と $e^{-x^2/2}$ の積の $-1 \le x \le 1$ での積分は消えるので, 上で準備して

 $^{^{27}}$ 一松信, Stirling の公式の第 1 剰余項までの初等的証明, 数学 Vol. 31 (1979) No. 3, 262 -263 では Wallis の公式の精密化によって第 1 補正項を得る方法が解説されている. 第 1 補正項付きの Stirling 公式の易しい証明については, 鍋谷清治, 連続変数に対する Stirling の公式の初等的証明, 数学 Vol. 36 (1984) No. 2, 175 -178 という文献がある. 後者の文献の解説を以下では参考にした.

おいた公式によって次が得られる:

$$\int_{-1}^{1} e^{-\sqrt{n}x} \left(1 + \frac{x}{\sqrt{n}} \right)^{n} dx \sim \int_{-\infty}^{\infty} e^{-x^{2}/2} \left(1 - \frac{x^{4}}{4n} + \frac{x^{6}}{18n} \right) dx + O\left(\frac{1}{n^{2}}\right)$$

$$= \sqrt{2\pi} - \frac{3\sqrt{2\pi}}{4n} + \frac{15\sqrt{2\pi}}{18n} + O\left(\frac{1}{n^{2}}\right)$$

$$= \sqrt{2\pi} \left(1 + \frac{1}{12n} + O\left(\frac{1}{n^{2}}\right) \right).$$

ゆえに

$$n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + O\left(\frac{1}{n^2}\right) \right) \qquad (n \to \infty).$$

これで第 1 補正項 1/(12n) が得られた²⁸ 第 1 補正項 1/(12n) は, n が大きなとき, n! の $n^n e^{-n} \sqrt{2\pi n}$ による近似の誤差は n が大きなとき n! の値の 12n 分の 1 程度になることを意味している.

3.2 ガンマ函数のガンマ函数を用いた近似で補正項を計算する方法

Laplace の方法による Stirling の公式の証明とその一般化に関しては Gergö Nemes, Asymptotic expansions for integrals, 2012, M. Sc. Thesis, 40 pages が詳しい. 以下で説明する方法の詳細はこの論文の Example 1.2.1 にある. そこに書いてある方法を使っても, Stirling の公式の補正項 1/(12n) を容易に得ることができる.

次の公式を使うことを考える: 任意の a > 0 ($a = \infty$ を含む) に対して,

$$\int_0^a e^{-nt} t^{s-1} dt = \frac{1}{n^s} \int_0^{an} e^{-x} x^{s-1} dx \sim \frac{\Gamma(s)}{n^s} \qquad (n \to \infty).$$

t = x/n と積分変数を置換した. この公式を使えば、

$$\int_0^a e^{-nt} (\alpha_1 t^{s_1 - 1} + \alpha_2 t^{s_2 - 1} + \cdots) dt = \frac{\alpha_1 \Gamma(s_1)}{n^{s_1}} + \frac{\alpha_2 \Gamma(s_2)}{n^{s_2}} + \cdots \qquad (n \to \infty)$$

のような計算が可能になる. これを用いて Stirling の公式の最初の補正項 1/(12n) を得てみよう.

函数 f(x) を

$$f(x) = x - \log(1+x) \qquad (x > -1)$$

と定め、積分変数を y = n(1+x) と置換することによって、

$$n! = \Gamma(n+1) = \int_0^\infty e^{-y} y^n \, dy$$
$$= \int_{-1}^\infty e^{-n-nx} n^n (1+x)^n n \, dx = n^{n+1} e^{-n} \int_{-1}^\infty e^{-nf(x)} \, dx.$$

さらに積分を x > 0 と x < 0 に分けることによって

$$\frac{n!}{n^{n+1}e^{-n}} = \int_0^\infty e^{-nf(x)} dx + \int_0^1 e^{-nf(-x)} dx.$$

²⁸高次の補正項も同様にして得られる.

もしも f(x) = t もしくは f(-x) = t と積分変数を置換できれば、積分の形が上で説明した形になりそうである.

実際にそれが可能なことを確認しよう. $f(x) = x - \log(1+x)$ の導函数は

$$f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x}$$

なので x>0 で f'(x)>0 となり、-1< x<0 で f'(x)<0 となる. f(x) は x=0 で 最低値 f(0)=0 を持ち、x>0 で単調増加し、x<0 で単調減少する. ゆえに x>0 と -1< x<0 のそれぞれで t=f(x) は逆函数 x=x(t) を持つ. x=x(t) の原点近くでの 振る舞いを調べるために、

$$x = \alpha t^{1/2} + \beta t + \gamma t^{3/2} + \cdots$$

とおいて

$$t = f(x) = x - \log(1+x) = \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} - \dots$$

に代入して 29 , α , β , γ を求めてみよう. 実際に代入すると,

$$t = \frac{\alpha^2}{2}t + \left(\alpha\beta + \frac{\alpha^3}{3}\right)t^{3/2} + \left(\alpha\gamma + \frac{\beta^2}{2} + \alpha^2\beta + \alpha^4\right)t^2 + \cdots$$

両辺を比較して α, β, γ を求めると,

$$\alpha = \sqrt{2}, \qquad \beta = \frac{2}{3}, \qquad \gamma = \frac{\sqrt{2}}{18}$$

を得る. すなわち

$$x = \sqrt{2}t^{1/2} + \frac{2}{3}t + \frac{\sqrt{2}}{18}t^{3/2} + \cdots$$

とおくと f(x)=t となる. x>0 ではこの表示をそのまま用いる. x<0 では $t^{1/2}$ を $-t^{1/2}$ で置き換え, さらに x を -x で置き換えた表示を用いる. すなわち

$$x = \sqrt{2}t^{1/2} - \frac{2}{3}t + \frac{\sqrt{2}}{18}t^{3/2} - \cdots$$

とおくと f(-x) = t となる. 以上のそれぞれの場合において, おいて

$$\frac{dx}{dt} = \frac{\sqrt{2}}{2} t^{1/2-1} \pm \frac{2}{3} t^{1-1} + \frac{\sqrt{2}}{12} t^{3/2-1} \pm \cdots$$

以上の2つの場合でtの整数次の項には-1倍の違いがある。準備が整った。

f(x) = t と積分変数を置換することによって, $n \to \infty$ のとき

$$\int_0^\infty e^{-nf(x)} dx = \int_0^\infty e^{-nt} \frac{dx}{dt} dt$$

$$= \int_0^\infty e^{-nt} \left(\frac{\sqrt{2}}{2} t^{1/2 - 1} + \frac{2}{3} t^{1 - 1} + \frac{\sqrt{2}}{12} t^{3/2 - 1} + \cdots \right) dt$$

$$= \frac{\sqrt{2}\Gamma(1/2)}{2n^{1/2}} + \frac{2\Gamma(1)}{3} + \frac{\sqrt{2}\Gamma(3/2)}{12n^{3/2}} + \cdots$$

$$= \frac{\sqrt{2\pi}}{2n^{1/2}} + \frac{2}{3n} + \frac{\sqrt{2\pi}}{24n^{3/2}} + \cdots$$

[|]x| < 1 における Taylor 展開 $\log(1+x) = x - x^2/2 + x^3/3 - x^4/4 + \cdots$ は非常によく使われる.

となる. 最後に $\Gamma(1/2)=\sqrt{\pi}$, $\Gamma(1)=1$, $\Gamma(3/2)=(1/2)\Gamma(1/2)=\sqrt{\pi}/2$ を使った. もう一方の積分についても, f(-x)=t と積分変数を置換することによって同様にして, $n\to\infty$ のとき

$$\int_0^1 e^{-nf(-x)} dx = \frac{\sqrt{2\pi}}{2n^{1/2}} - \frac{2}{3n} + \frac{\sqrt{2\pi}}{24n^{3/2}} - \cdots$$

となる. 以上の2つを足し合わせると, n の整数乗分の1の項がすべてキャンセルし, 次が得られる:

$$\frac{n!}{n^{n+1}e^{-n}} = \frac{\sqrt{2\pi}}{n^{1/2}} + \frac{\sqrt{2\pi}}{12n^{3/2}} + O\left(\frac{1}{n^{5/2}}\right) \qquad (n \to \infty).$$

これは次のように書き直される:

$$n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + O\left(\frac{1}{n^2}\right) \right) \qquad (n \to \infty).$$

これで第1の補正項 1/(12n) も Laplace の方法で求められることがわかった. 第2の補正項以降も同様にして求められる.

注意. 以上の計算において "+···" と書いた部分については注意が必要である. そのことは以下の計算例を見ればわかる.

$$\frac{1}{1+t} = 1 - t + t^2 - t^3 + \dots + (-1)^{k-1} t^{k-1} + (-1)^k \frac{t^k}{1+t}$$

なので

$$\int_0^\infty \frac{e^{-nt} dt}{1+t} = \frac{\Gamma(1)}{n} - \frac{\Gamma(2)}{n^2} + \dots + (-1)^{k-1} \frac{\Gamma(k)}{n^k} + (-1)^k \int_0^\infty \frac{e^{-nt} t^k dt}{1+t}$$
$$= \frac{0!}{n} - \frac{1!}{n^2} + \dots + (-1)^{k-1} \frac{(k-1)!}{n^k} + (-1)^k \int_0^\infty \frac{e^{-nt} t^k dt}{1+t}.$$

上の議論ではこのような和の途中から先を "+・・・" と略記して来た. すぐ上の式は正しい 公式だが、

$$\int_0^\infty \frac{e^{-nt} dt}{1+t} = \sum_{k=1}^\infty (-1)^{k-1} \frac{(k-1)!}{n^k}$$

は通常の意味で正しい公式ではない. なぜならば右辺はどんなに大きな n に対しても収束しないからである. " $+\cdots$ " の部分は "無限和" を意味すると解釈するのではなく, "有限和+剰余項" を意味すると解釈しておかなければいけない.

4 対数版の易しい Stirling の公式

Stirling の公式は次と同値である:

$$\log n! - (n+1/2)\log n + n \longrightarrow \log \sqrt{2\pi} \qquad (n \to \infty).$$

これより、次の弱い結果が導かれる:

$$\log n! = n \log n - n + o(n) \qquad (n \to \infty).$$

ここで o(n) は n で割った後に $n \to \infty$ とすると 0 に収束する量を意味する. これをこの節では対数版の易しい Stirling の公式と呼ぶことにする. この公式であれば以下で説明するように初等的に証明することができる 30 .

4.1 対数版の易しい Stirling の公式の易しい証明

単調増加函数 f(x) について $f(k) \leq \int_k^{k+1} f(x) dx \leq f(k+1)$ が成立しているので、 $f(1) \geq 0$ を満たす単調増加函数 f(x) について、

$$f(1) + f(2) + \dots + f(n-1) \le \int_1^n f(x) dx \le f(1) + f(2) + \dots + f(n).$$

ゆえに

$$\int_{1}^{n} f(x) dx \le f(1) + f(2) + \dots + f(n) \le \int_{1}^{n} f(x) dx + f(n).$$

これを $f(x) = \log x$ に適用すると

$$\int_{1}^{n} \log x \, dx = [x \log x - x]_{1}^{n} = n \log n - n + 1, \qquad \log 1 + \log 2 + \dots + \log n = \log n!$$

なので

$$n\log n - n + 1 \le \log n! \le n\log x - n + 1 + \log n.$$

すなわち

$$1 \le \log n! - n \log n + n \le 1 + \log n.$$

したがって

$$\log n! = n \log n - n + O(\log n) = n \log n - n + o(n) \qquad (n \to \infty).$$

ここで $O(\log n)$ は $\log n$ で割ると有界になるような量を意味している.

4.2 大学入試問題への応用例

対数版の易しい Stirling の公式を使うと, an 個から bn 個取る組み合わせの数 (二項係数) の対数は

$$\log \binom{an}{bn} = \log(an)! - \log(bn)! - \log((a-b)n)!$$

$$= an \log a + an \log n - an + o(n)$$

$$- bn \log b - bn \log n + bn + o(n)$$

$$- (a-b)n \log(a-b) - (a-b)n \log n + (a-b)n + o(n)$$

$$= n \log \frac{a^a}{b^b(a-b)^{a-b}} + o(n).$$

 $^{^{30}}$ 以下の証明を見ればわかるように o(n) の部分は $O(\log n)$ であることも証明できる. ここで $O(\log n)$ は $\log n$ で割った後に有界になる量を意味している.

となる. ゆえに

$$\log \binom{an}{bn}^{1/n} \longrightarrow \log \frac{a^b}{b^b(a-b)^{a-b}} \qquad (n \to \infty).$$

すなわち

$$\lim_{n \to \infty} \binom{an}{bn}^{1/n} = \lim_{n \to \infty} \left(\frac{(an)!}{(bn)!((a-b)n)!} \right)^{1/n} = \frac{a^a}{b^b(a-b)^{a-b}}.$$

要するに an 個から bn 個取る組み合わせの数の n 乗根の $n \to \infty$ での極限は二項係数部分の式の分子分母の (kn)! を k^k で置き換えれば得られる.

この結果を使えば次の東工大の1988年の数学の入試問題を暗算で解くことができる:

$$\lim_{n\to\infty} \left(\frac{{}_{3n}C_n}{{}_{2n}C_n}\right)^{1/n}$$
 を求めよ.

この極限の値は

$$\frac{3^3/(1^12^2)}{2^2/(1^11^1)} = \frac{3^3}{2^4} = \frac{27}{16}.$$

入試問題を作った人は、まずStirlingの公式を使うと容易に解ける問題を考え、その後に高校数学の範囲内でも解けることを確認したのだと思われる.

注意. 上で示したことより,

$$\lim_{n \to \infty} \binom{2n}{n}^{1/n} = \frac{2^2}{1^1 1^1} = 2^2.$$

これは次を意味している (o(n) は n で割ると $n \to \infty$ で 0 に収束する量):

$$\binom{2n}{n} = 2^{2n} e^{o(n)} \qquad (n \to \infty).$$

Wallis の公式 (第 8.4 節)

$$\binom{2n}{n} \sim \frac{2^{2n}}{\sqrt{\pi n}} \qquad (n \to \infty)$$

はその精密化になっている.

注意. 東工大では1968年にも次の問題を出しているようだ:

$$\lim_{n\to\infty} \frac{1}{n} \sqrt[n]{2nP_n} を求めよ. (答えは 2^2 e^{-1}.)$$

この問題も明らかに元ネタはStirlingの公式である. より一般に次を示せる:

$$\lim_{n \to \infty} \frac{((an)!)^{1/n}}{n^a} = a^a e^{-a}.$$

なぜならば

$$\log \frac{((an)!)^{1/n}}{n^a} = \frac{1}{n} \log(an)! - a \log n$$

$$= \frac{1}{n} (an \log a + an \log n - an + o(n)) - a \log n$$

$$= a \log a - a + o(1)$$

$$= \log(a^a e^{-a}) + o(1).$$

やはり Stirling の公式を使えば容易に示せる結果を高校数学の範囲内で解けるように調節して入試問題にしているのだと思われる.

4.3 対数版の易しい Stirling の公式の改良

少し工夫すると次を示せる. ある定数 c が存在して,

$$\log n! = n \log n + \frac{1}{2} \log n - n + c + o(1) \qquad (n \to \infty).$$

以下ではこの公式を証明しよう31.

第 4.1 節で証明した対数版の易しい Stirling の公式と上の公式の違いは $(1/2)\log n$ の項と定数項 c を付け加えて改良しているところである。それらの項を出すアイデアは次の通り、 $\int_1^n\log x\,dx=[x\log x-x]_1^n=n\log n-n+1$ を $k=1,2,3,\ldots,n-1$ に対する長方形 $[k-1/2,k+1/2]\times[0,\log k]$ の面積の総和と長方形 $[n-1/2,n]\times[0,\log n]$ の面積の和 $\log(n-1)!+(1/2)\log n=\log n!-(1/2)\log n$ で近似すれば、自然に $(1/2)\log n$ の項が得られる。さらに、それらの長方形の和集合と領域 $\{(x,y)\mid 1\le x\le n,\ 0\le y\le \log x\}$ の違いを注意深く分析すれば、 $\int_1^n\log x\,dx$ と長方形の面積の総和の差が $n\to\infty$ である定数に収束することがわかり、定数項も得られる。

 $\log x$ は単調増加函数なので正の実数 α_k, β_k を

$$\alpha_k = \int_k^{k+1/2} \log x \, dx - \frac{1}{2} \log k, \qquad \beta_k = \frac{1}{2} \log k - \int_{k-1/2}^k \log x \, dx$$

と定めることができる. このとき,

$$\log n! - \frac{1}{2}\log n - \int_{1}^{n}\log x \, dx = \sum_{k=1}^{n-1}\log k + \frac{1}{2}\log n - \int_{1}^{n}\log x \, dx$$
$$= -\alpha_{1} + \beta_{2} - \alpha_{2} + \beta_{3} - \dots + \beta_{n-1} - \alpha_{n-1} + \beta_{n}.$$

この交代和が $n \to \infty$ で収束することを示したい.

 $\log x$ が上に凸であることより、数列 $\alpha_1,\beta_2,\alpha_2,\beta_3,\alpha_3,\ldots$ が単調減少することがわかり、 $\log x$ の導函数が $x\to\infty$ で 0 に収束することより、その数列は 0 に収束することもわかる. ゆえに上の交代和は $n\to\infty$ で収束する³². その収束先を a と書き、c=1+a とおくと、 $n\to\infty$ のとき

$$\log n! = \frac{1}{2}\log n + \int_{1}^{n}\log x \, dx + a + o(1) = n\log n + \frac{1}{2}\log n - n + c + o(1).$$

 $c=\log\sqrt{2\pi}$ であることを Wallis の公式 (第8.4節) を使って証明しよう. $n!=n^{n+1/2}e^{-n}e^ce^{o(1)}$ を Wallis の公式

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{2^{2n} (n!)^2}{(2n)! \sqrt{n}}$$

に代入すると.

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{2^{2n} n^{2n+1} e^{-2n} e^{2c}}{2^{2n+1/2} n^{2n+1} e^{-2n} e^{c}} = \frac{e^c}{\sqrt{2}}.$$

ゆえに $e^c = \sqrt{2\pi}$ である.

これで Wallis の公式を使えば、対数版の易しい Stirling の公式を改良することによって、通常の Stirling の公式 $n! \sim n^n e^{-n} \sqrt{2\pi n}$ が得られることがわかった.

 $^{^{31}}$ 定数 c が $\log\sqrt{2\pi}$ であることは既知であるが、Wallis の公式を使えば $e^c=\sqrt{2\pi}$ であることを示せる. 32 0 以上の実数で構成された 0 に収束する単調減少列 a_n が定める交代級数 $\sum_{k=1}^\infty (-1)^{k-1}a_k$ は収束する. (絶対収束するとは限らない.)

5 付録: Fourier の反転公式

厳密な証明をするつもりはないが、Fourierの反転公式の証明の概略について説明しよう. 函数 f(x) に対してその逆 Fourier 変換 F(p) を

$$F(p) = \int_{-\infty}^{\infty} e^{ipx} f(x) \, dx$$

と定める. このとき函数 f について適切な条件を仮定しておくと, それに応じた適切な意味で

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F(p) dp$$

が成立する. これを Fourier の反転公式と呼ぶ.

5.1 Gauss 分布の場合

a > 0 であるとし、

$$f(x) = e^{-x^2/(2a)}$$

とおき, F(p) はその逆 Fourier 変換であるとする. このとき

$$F(p) = \int_{-\infty}^{\infty} e^{ipx} e^{-x^2/(2a)} dx = e^{-p^2/(2a^{-1})} \sqrt{2a\pi}$$

が容易に得られる³³. この公式で x, a のそれぞれと p, a^{-1} の立場を交換することによって

$$\int_{-\infty}^{\infty} e^{-ipx} e^{-p^2/(2a^{-1})} dp = e^{-x^2/(2a)} \sqrt{2a^{-1}\pi}$$

が得られる. 以上の2つの結果を合わせると、

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F(p) \, dp$$

が得られる. すなわち $f(x) = e^{-x^2/(2a)}$ については Fourier の反転公式が成立している.

一般に f(x) について Fourier の反転公式が成立していれば f(x) を平行移動して得られる函数 $f(x-\mu)$ についても Fourier の反転公式が成立していることが容易に示される. 実際, F(p) を f(x) の逆 Fourier 変換とすると, $f(x-\mu)$ の逆 Fourier 変換は

$$\int_{-\infty}^{\infty} e^{ipx} f(x - \mu) \, dx = \int_{-\infty}^{\infty} e^{ip(x' + \mu)} f(x') \, dx' = e^{ip\mu} F(p)$$

になり,

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{ip\mu} F(p) \, dp = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ip(x-\mu)} F(p) \, dp = f(x-\mu).$$

以上によって, $f(x-\mu)=e^{-(x-\mu)^2/(2a)}$ についても Fourier の反転公式が成立することがわかった.

逆 Fourier 変換および Fourier 変換の線形性より, $f(x-\mu)=e^{-(x-\mu)^2/(2a)}$ の形の函数の線形和についても Fourier の反転公式が成立していることがわかる34.

³³Cauchy の積分定理を使う方法, e^{ipx} の Taylor 展開を代入して項別積分する方法, 左辺と右辺が同じ微分方程式を満たしていることを使う方法など複数の方法で容易に計算可能である.

³⁴ "任意の函数" はそのような線形和の "極限" で表わされる. したがって, Fourier の反転公式の証明の本質的部分はこれで終了しているとみなせる.

5.2. 一般の場合 21

5.2 一般の場合

a>0 に対して函数 $\rho_a(x)$ を

$$\rho_a(x) = \frac{1}{\sqrt{2\pi a}} e^{-x^2/(2a)}$$

と定める. これは $\rho_a(x)>0$ と $\int_{-\infty}^{\infty}\rho_a(x)\,dx=1$ を満たしている. そして前節の結果によって, $\rho_a(x-\mu)$ は Fourier の反転公式を満たしている.

函数 f(x) に対して函数 $f_a(x)$ を ρ_a との畳み込み積によって函数 $f_a(x)$ を定める:

$$f_a(x) = \int_{-\infty}^{\infty} \rho_a(x - y) f(y) \, dy.$$

このとき $f_a(x)$ については Fourier の反転公式が成立している³⁵. 実際, $f_a(x)$ の逆 Fourier 変換 $F_a(p)$ と書くと,

$$F_a(p) = \int_{-\infty}^{\infty} e^{ipx} f_a(x) dx = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} e^{ipx} \rho_a(x - y) dx \right) f(y) dy$$

なので

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F_a(p) dp = \int_{-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} \left(\int_{-\infty}^{\infty} e^{ipx'} \rho_a(x'-y) dx' \right) dp \right) f(y) dy$$
$$= \int_{-\infty}^{\infty} \rho_a(x-y) f(y) dy = f_a(x).$$

2つ目の等号で $\rho_a(x-\mu)$ について Fourier の反転公式が成立することを使った. さらに

$$\int_{-\infty}^{\infty} e^{ipx} \rho_a(x-y) \, dx = e^{ipy} e^{-ap^2/2}$$

なので

$$F_a(p) = \int_{-\infty}^{\infty} e^{ipy} e^{-ap^2/2} f(y) \, dy = e^{-ap^2/2} F(p)$$

となる³⁶. ゆえに

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F_a(p) \, dp = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{-ap^2/2} F(p) \, dp.$$

したがって

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{-ap^2/2} F(p) \, dp = \int_{-\infty}^{\infty} \rho_a(x-y) f(y) \, dy = f_a(x).$$

もしも F(p) が可積分ならば, Lebesgue の収束定理より, 左辺について

$$\lim_{a \to 0} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{-ap^2/2} F(p) \, dp = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F(p) \, dp$$

 $[\]overline{}^{35}f_a(x)$ は Fourier の反転公式が成立している函数 $\rho_a(x-\mu)$ の重み $f(\mu)$ での重ね合わせなので、これはほとんど明らかである.

³⁶これは畳み込み積の逆 Fourier 変換が逆 Fourier 変換の積に等しいことの特殊な場合にすぎない.

が言える. あとは, 函数 f(x) について適切な条件を仮定したとき, $a\to 0$ のとき函数 $f_a(x)$ が適切な意味で函数 f(x) に収束することを示せれば, f(x) 自身が適切な意味で Fourier の反転公式を満たすことがわかる³⁷.

たとえば、f は有界かつ点 x で連続だと仮定する。ある M>0 が存在して $|f(y)-f(x)| \le M$ $(y\in\mathbb{R})$ となる。 任意に $\varepsilon>0$ を取る。 ある $\delta>0$ が存在して $|y-x|\le\delta$ ならば $|f(y)-f(x)|\le\varepsilon/2$ となる。 函数 ρ_a の定義より、a>0 を十分小さくすると $\int_{|y-x|>\delta}\rho_a(x-y)\,dy\le\varepsilon/(2M)$ となることもわかる。以上の状況のもとで

$$|f_a(x) - f(x)| = \left| \int_{-\infty}^{\infty} \rho_a(x - y)(f(y) - f(x)) \, dy \right|$$

$$\leq \int_{-\infty}^{\infty} \rho_a(x - y)|f(y) - f(x)| \, dy$$

$$\leq \int_{|y - x| \leq \delta} \rho_a(x - y) \frac{\varepsilon}{2} \, dy + \int_{|y - x| > \delta} \rho_a(x - y) M \, dy$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2M} M = \varepsilon.$$

これで $\lim_{a\to 0} f_a(x) = f(x)$ が示された.

筆者は実解析一般については次の教科書をおすすめする.

猪狩惺, 実解析入門, 岩波書店 (1996), xii+324頁, 定価 3,800 円.

筆者は学生時代に猪狩惺先生の授業で Lebesgue 積分論や Fourier 解析について勉強した. 信じられないほどクリアな講義であり, 数学の分野の中で実解析が最もクリアな分野なのではないかと思えて来るほどだった. 上の教科書が 2016 年 5 月 3 日現在品切れ中であり, プレミア価格のついた中古本しか手に入らないことはとても残念なことである.

5.3 Riemann-Lebesgue の定理

f(x) は $\mathbb R$ 上の可積分函数 ** であるとする. このとき,その Fourier 変換 $\widehat{f}(p)=\int_{-\infty}^{\infty}e^{-ipx}f(x)\,dx$ は連続函数になり, $|p|\to\infty$ で 0 に収束する.特に

$$\lim_{|p| \to \infty} \int_{-\infty}^{\infty} e^{-ipx} f(x) \, dx = 0.$$

これは Riemann-Lebesgue の定理 (リーマン・ルベーグの定理) と呼ばれている.

 $^{^{37}\}rho_a(x)$ の $a\to 0$ での様子のグラフを描けば, $\rho_a(x)$ が Dirac のデルタ函数 (超函数) に "収束" しているように見えることから、これもほとんど明らかだと言える.

 $^{^{38}}$ R 上の可測函数で $\int_{\mathbb{R}} |f(x)| dx < \infty$ を満たすものを R 上の可積分函数と呼ぶ。可測函数の定義を知らない人は以下のように考えてよい。区間 I=[a,b] に対して I 上で 1 になり I の外で 0 になる函数を 1_I と書く。数 α_i と区間 I_i たちによって $\sum_{i=1}^n \alpha_i 1_{I_i}$ と表される函数は階段函数と呼ばれる。階段函数の全体は和とスカラー倍で閉じており,自然にベクトル空間をなす。階段函数 $f=\sum_{i=1}^n \alpha_i 1_{I_i}$, $I_i=[a_i,b_i], a_i < b_i$ の積分が $\int_{\mathbb{R}} f(x) dx = \sum_{i=1}^n \alpha_i (b_i-a_i)$ と定義することができる。階段函数列 $f_n(x)$ は $\int_{\mathbb{R}} |f_m(x)-f_n(x)| dx \to 0$ $(m,n\to\infty)$ を満たおり,ほとんどすべての $x\in\mathbb{R}$ について $f_n(x)$ は収束していると仮定する。(前者の仮定からほとんどいたる所収束する部分列を取れることを示せる。) このとき $f(x)=\lim_{n\to\infty} f_n(x)$ で函数 f(x) が定まる (収束しない x における f の値は任意に決めておく)。このとき $|\int_{\mathbb{R}} f_m(x) dx - \int_{\mathbb{R}} f_n(x) dx | \leq \int_{\mathbb{R}} |f_m(x)-f_n(x)| dx \to 0$ $(m,n\to\infty)$ なので $\int_{\mathbb{R}} f_n(x) dx$ は $n\to\infty$ で収束する。その収束先の値を $\int_{\mathbb{R}} f(x) dx$ と書く。このような函数 f(x) を可積分函数と呼んでよい。さらにそのとき $|\int_{\mathbb{R}} |f_m(x)| dx - \int_{\mathbb{R}} |f_n(x)| dx | \leq \int_{\mathbb{R}} |f_m(x)-f_n(x)| dx \to 0$ $(m,n\to\infty)$ でもあるので, $\int_{\mathbb{R}} |f_n(x)| dx$ は有限の値に収束し、 $\int_{\mathbb{R}} |f(x)| dx < \infty$ も成立している。

 $\hat{f}(p)$ の連続性はLebesgue の収束定理³⁹によって示される. 実際, $|e^{ihx}-1||f(x)| \le 2|f(x)|$ でかつ |f(x)| は可積分なので,

$$|\widehat{f}(x+h) - \widehat{f}(x)| \le \int_{\mathbb{R}} |e^{ihx} - 1||f(x)| dx \longrightarrow 0 \qquad (h \to 0).$$

これで \hat{f} の連続性が示された.

Riemann-Lebesgue の定理の証明は可積分函数が階段函数列で L^1 近似されることからただちに得られる. 区間 I = [a, b] 上で 1 になり、その外で 0 になる函数を 1_I と書くと、

$$\widehat{1}_I(p) = \int_a^b e^{-ipx} dx = \frac{e^{-ipb} - e^{-ipa}}{-ip}$$

なので, $\widehat{I}_I(p) \to 0 \ (|p| \to \infty)$. 一般の可積分函数に関する結果はこれよりしたがう.

5.4 Fourier 変換の部分和の収束

N > 0 とする.

 \mathbb{R} 上の可積分函数 f の Fourier 変換 $\widehat{f}(p) = \int_{-\infty}^{\infty} e^{-ipy} f(y) dx$ に対して,

$$s_N(f)(x) = \frac{1}{2\pi} \int_{-N}^{N} e^{ipx} \widehat{f}(p) dp$$

を Fourier 変換の N 部分和と呼ぶ. N 部分和は次のように変形される:

$$s_{N}(f)(x) = \int_{-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-N}^{N} e^{ip(x-y)} dp\right) f(y) dy$$

$$= \int_{-\infty}^{\infty} \frac{e^{iN(x-y)} - e^{e^{-iN(x-y)}}}{2\pi i(x-y)} f(y) dy$$

$$= \int_{-\infty}^{\infty} \frac{\sin(N(x-y))}{\pi(x-y)} f(y) dy.$$

$$= \int_{0}^{\infty} \frac{\sin(Ny)}{\pi y} (f(x+y) + f(x-y)) dy$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \sin(Ny) \frac{f(x+y) + f(x-y)}{y} dy.$$

4つ目の等号で y を x+y でおきかえ, $\sin(Ny)/y$ が偶函数であることを使った.

 $\delta>0$ を任意に取る. $y\geqq\delta$ で (f(x+y)+f(x-y))/y は可積分である. ゆえに Riemann-Lebesgue の定理より,

$$\lim_{N \to \infty} \int_{\delta}^{\infty} \sin(Ny) \frac{f(x+y) + f(x-y)}{y} \, dy = 0.$$

したがって N 部分和 $s_N(f)(x)$ が $N \to \infty$ で収束することと,

$$\frac{1}{\pi} \int_0^\delta \sin(Ny) \frac{f(x+y) + f(x-y)}{y} \, dy$$

³⁹ Lebesgue の収束定理とは次の結果のことである. f_n はほとんどいたる所収束する可積分函数列であり、ある可積分函数 $\varphi \geq 0$ で $|f_n| \leq \varphi$ を満たすものが存在するとき、積分 $\int_{\mathbb{R}} f_n(x) \, dx$ は $n \to \infty$ で収束する. この定理は非常に便利なので空気のごとく使われる.

が $N \to \infty$ で収束することは同値になり、それらが収束するときそれらの値は一致する. 以上の結果を Riemann の局所性定理と呼ぶ.

以上の結果を $f(x) = e^{-x^2/2}$ の場合に適用することによって Dirichlet 積分 (ディリクレ積分) の公式

$$\lim_{R \to \infty} \int_0^R \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

を証明できる. $f(x)=e^{-x^2/2}$ とおく. このとき, 第 6 節での計算より, $\widehat{f}(p)=e^{-p^2/2}\sqrt{2\pi}$ でかつ

$$\lim_{N \to \infty} s_N(f)(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ipx} \widehat{f}(p) \, dp = f(x).$$

ゆえに、Riemann の局所性定理を x=0 の場合に適用すると、任意の $\delta>0$ について

$$\lim_{N \to \infty} s_N(f)(x) = \lim_{N \to \infty} \frac{1}{\pi} \int_0^{\delta} \sin(Ny) \frac{2e^{-y^2/2}}{y} \, dy = e^{-0^2/2} = 1.$$

ゆえに

$$\lim_{N \to \infty} \left(\int_0^{\delta} \frac{\sin(Ny)}{y} \, dy + \int_0^{\delta} \sin(Ny) \frac{e^{-y^2/2} - 1}{y} \, dy \right) = \frac{\pi}{2}.$$

左辺の後者の積分の極限は Riemann-Lebesgue の定理より 0 に収束する. したがって

$$\lim_{N \to \infty} \int_0^{\delta} \frac{\sin(Ny)}{y} \, dy = \frac{\pi}{2}.$$

さらに y = x/N と積分変数を変換することによって,

$$\frac{\pi}{2} = \lim_{N \to \infty} \int_0^{N\delta} \frac{\sin x}{x} \, dx = \lim_{R \to \infty} \int_0^R \frac{\sin x}{x} \, dx.$$

このように Dirichlet 積分の公式は Riemann の局所性定理と Riemann-Lebesgue の定理と $e^{-x^2/2}$ の Fourier 変換の計算から得られる 40 . Dirichlet 積分の公式で積分変数 x を Nx で 置換することによって

$$\lim_{R \to \infty} \int_0^R \frac{\sin(Nx)}{x} \, dx = \frac{\pi}{2}.$$

という公式が得られる.

 \mathbb{R} 上の可積分函数 f と $x \in \mathbb{R}$ に対して, ある $\delta > 0$ が存在して

$$\frac{(f(x+y)+f(x-y))/2-f(x)}{y}$$

が $0 < y < \delta$ で可積分になるならば 41 , Fourier 変換の N 部分和の x における値は f(x) に収束する:

$$\lim_{N \to \infty} s_N(f)(x) = f(x).$$

この事実は上で述べたことを合わせると容易に導かれる. Riemann の局所性定理より, 任 意の $\delta>0$ について, $N\to\infty$ のとき

$$s_N(f)(x) = \frac{1}{\pi} \int_0^{\delta} \sin(Nx) \frac{f(x+y) + f(x-y)}{y} dy + o(1).$$

⁴⁰複素解析を使った証明もある。

⁴¹この条件は Dini の条件と呼ばれている.

Dirichlet 積分の公式の証明より, $N \to \infty$ のとき

$$f(x) = \lim_{N \to \infty} \frac{2}{\pi} \int_0^{\delta} \frac{\sin(Ny)}{y} \, dy \, f(x) = \frac{2}{\pi} \int_0^{\delta} \sin(Ny) \frac{f(x)}{y} \, dy + o(1).$$

ゆえに

$$s_N(f)(x) - f(x) = \frac{2}{\pi} \int_0^{\delta} \sin(Ny) \frac{(f(x+y) + f(x-y))/2 - f(x)}{y} \, dy + o(1).$$

もしも [(f(x+y)+f(x-y))/2-f(x)]/y が $0 < y < \delta$ で可積分ならば Riemann-Lebesgue の定理より, 右辺は $N \to \infty$ で 0 に収束する. これで示すべきことが示された.

例. 可積分函数 f が x で微分可能ならば、十分小さな $\delta>0$ について、 $[(f(x+y)+f(x-y))/2-f(x)]/y \ \text{t} \ 0< y<\delta \ \text{で有界になる}.$ したがって $\lim_{N\to\infty} s_N(f)(x)=f(x)$ が成立する.

例. 可積分函数 f の値の点 x における左右からの極限

$$f(x-0) = \lim_{\varepsilon \searrow 0} f(x-\varepsilon), \qquad f(x+0) = \lim_{\varepsilon \searrow 0} f(x+\varepsilon)$$

が存在し, f(x) = (f(x+0) + f(x-0))/2 であると仮定する. さらに点 x における左右の 微係数

$$f'(x-0) = \lim_{\varepsilon \searrow 0} \frac{f(x-\varepsilon) - f(x-0)}{-\varepsilon}, \qquad f'(x+0) = \lim_{\varepsilon \searrow 0} \frac{f(x+\varepsilon) - f(x+0)}{\varepsilon}$$

が存在すると仮定する. このとき、十分小さな $\delta > 0$ について、

$$\frac{(f(x+y) + f(x-y))/2 - f(x)}{y} = \frac{1}{2} \left[\frac{f(x+y) - f(x+0)}{y} - \frac{f(x-y) - f(x-0)}{-y} \right]$$

は $0 < y < \delta$ で有界になる. したがって

$$\lim_{N \to \infty} s_N(f)(x) = \lim_{N \to \infty} \frac{1}{2\pi} \int_{-N}^{N} e^{ipx} \widehat{f}(p) \, dp = f(x) = \frac{f(x+0) + f(x-0)}{2}$$

となる.

5.5 Fourier 級数の部分和の収束

以下, f は \mathbb{R} 上の周期 2π を持つ函数であり, $0 \le x \le 2\pi$ で可積分であると仮定する. このとき f の Fourier 係数 a_n $(n \in \mathbb{Z})$ が

$$a_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-iny} f(y) \, dy$$

と定義される. 正の整数 N に対して、次を f の Fourier 級数の N 部分和と呼ぶ:

$$s_N(f)(x) = \sum_{n=-N}^{N} a_n e^{inx}.$$

N 部分和は次のように変形される:

$$s_{N}(f)(x) = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\sum_{n=-N}^{N} e^{in(x-y)} \right) f(y) \, dy$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{i(N+1)(x-y)} - e^{-iN(x-y)}}{e^{i(x-y)} - 1} f(y) \, dy$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{i(N+1/2)(x-y)} - e^{-i(N+1/2)(x-y)}}{e^{i(x-y)/2} - e^{-i(x-y)/2}} f(y) \, dy$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\sin((N+1/2)(x-y))}{\sin((x-y)/2)} f(y) \, dy$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\sin((N+1/2)y)}{\sin(y/2)} f(x+y) \, dy$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} \frac{\sin((N+1/2)y)}{\sin(y/2)} (f(x+y) + f(x-y)) \, dy$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \sin((N+1/2)y) \frac{y/2}{\sin(y/2)} \frac{f(x+y) + f(x-y)}{y} \, dy.$$

5つ目の等号で y を x+y で置き換え, $\sin(\alpha x)/\sin(\beta x)$ が偶函数であることを使い, さら に 6 つ目の等号で被積分函数の周期性を使った.

 $\lim_{t\to 0}(t/\sin t)=1$ に注意すれば、第 5.4 節とまったく同様にして、N 部分和の収束に関する類似の結果が得られることがわかる.

Dirichlet 積分の公式の代わりに次の公式を使わなければいけない:

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{\sin((N+1/2)y)}{\sin(y/2)} \, dy = s_N(1)(0) = 1.$$

さらに非積分函数の周期性と偶函数性より,

$$\frac{1}{\pi} \int_0^{\pi} \frac{\sin((N+1/2)y)}{\sin(y/2)} \, dy = 1.$$

 $s_N(1)(0) = 1$ の証明は次の通り:

$$s_N(1)(0) = \sum_{n=-N}^{N} \frac{1}{2\pi} \int_0^{2\pi} e^{-iny} dy = \sum_{n=-N}^{N} \delta_{n0} = 1.$$

 $e^{-i0y} = 1$ 以外の e^{-iny} の 0 から 2π までの積分が消えることを使った. 上の公式を使うと、

$$f(x) = \frac{1}{\pi} \int_0^{\pi} \frac{\sin((N+1/2)y)}{\sin(y/2)} \, dy \, f(x) = \frac{1}{\pi} \int_0^{\pi} \sin((N+1/2)y) \frac{y/2}{\sin(y/2)} \frac{2f(x)}{y} \, dy.$$

ゆえに上の $s_N(f)(x)$ の表示より,

$$s_N(f)(x) - f(x) = \frac{2}{\pi} \int_0^{\pi} \sin((N+1/2)y) \frac{y/2}{\sin(y/2)} \frac{(f(x+y) + f(x-y))/2 - f(x)}{y} dy.$$

右辺の積分の被積分函数の $\sin((N+1/2)y)$ 以外の部分は $\delta \leq y < \pi$ で可積分なので Riemann-Lebesgue の定理より, $\delta > 0$ に対して,

$$\lim_{N \to \infty} \int_{\delta}^{\pi} \sin((N+1/2)y) \frac{y/2}{\sin(y/2)} \frac{(f(x+y) + f(x-y))/2 - f(x)}{y} \, dy = 0.$$

ゆえに, $N \to \infty$ のとき,

$$s_N(f)(x) - f(x)$$

$$= \frac{2}{\pi} \int_0^{\delta} \sin((N+1/2)y) \frac{y/2}{\sin(y/2)} \frac{(f(x+y) + f(x-y))/2 - f(x)}{y} dy + o(1).$$

ゆえに $0 < y < \delta$ で

$$\frac{(f(x+y) + f(x-y))/2 - f(x)}{y}$$

が可積分ならば $N \to 0$ で $s_N(f)(x) - f(x)$ が 0 に収束し, $\lim_{N\to\infty} s_N(f)(x) = f(x)$ が成立することがわかる. この条件が成立するための簡単な十分条件の例も第 5.4 節 と同様である.

6 付録: ガウス分布の Fourier 変換

t>0 に対して次の公式が成立している:

$$\int_{-\infty}^{\infty} e^{-ipx} \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}} dx = e^{-tp^2/2}.$$
 (*)

この公式が成立していることを複数の方法で示そう.

6.1 熱方程式を使う方法

函数 u = u(t, x) を次のように定める:

$$u(t,x) = \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}}.$$

この函数 u = u(t, x) は熱方程式の基本解になっている:

$$u_t = \frac{1}{2}u_{xx}, \qquad \lim_{t \to 0} \int_{-\infty}^{\infty} f(x)u(t,x) dx = f(0).$$

ここで f(x) は有界な連続函数である. u=u(t,x) が熱方程式を満たすことは偏微分の計算で容易に示される. 後者の極限の証明は実質的に第5.2 節の終わりに書いてある.

ゆえに,
$$U(t,p) = \int_{-\infty}^{\infty} e^{-ipx} u(t,x) \, dx$$
 とおくと

$$\frac{\partial}{\partial t}U(t,p) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-ipx} \frac{\partial^2 u(t,x)}{\partial x^2} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\partial^2 e^{-ipx}}{\partial x^2} u(t,x) dx = -\frac{p^2}{2} U(t,p).$$

2つ目の等号で部分積分を2回行なった. さらに

$$\lim_{t \to 0} U(t, p) = \lim_{t \to 0} \int_{-\infty}^{\infty} e^{-ipx} u(t, x) \, dx = e^{-ip0} = 1.$$

したがって

$$U(t,p) = e^{-tp^2/2}$$

となることがわかる. これで公式(*)が示された.

6.2 両辺が同一の常微分方程式を満たしていることを使う方法

前節の記号をそのまま使うと,

$$\begin{split} \frac{\partial}{\partial p} U(t,p) &= \int_{-\infty}^{\infty} (-ix) e^{-ipx} u(t,x) \, dx = it \int_{-\infty}^{\infty} e^{-ipx} \frac{\partial}{\partial x} u(t,x) \, dx \\ &= -it \int_{-\infty}^{\infty} \left(\frac{\partial}{\partial x} e^{-ipx} \right) u(t,x) \, dx = -it \int_{-\infty}^{\infty} (-ip) e^{-ipx} u(t,x) \, dx \\ &= -tp U(t,p). \end{split}$$

2つ目の等号で $u_x = -(x/t)u$ を使い、3つ目の等号で部分積分を使った. さらに

$$U(t,0) = \int_{-\infty}^{\infty} u(t,x) dx = 1$$

となる. これらより $U(t,p)=e^{-tp^2/2}$ となることがわかる. この方針であれば u(t,x) が熱方程式の基本解であることを使わずにすむ.

6.3 項別積分で計算する方法

もしも t=1 の場合の公式 (*)

$$\int_{-\infty}^{\infty} e^{-ipx} \frac{e^{-x^2/2}}{\sqrt{2\pi}} \, dx = e^{-p^2/2} \tag{**}$$

が示されたならば, x, p をそれぞれ x/\sqrt{t} , $\sqrt{t}p$ で置換することによって一般の t>0 に関する公式 (*) が得られる. ゆえに公式 (*) を示すためには公式 (**) を証明すれば十分である.

さらに $\sin(px)$ は奇函数なので $\int_{-\infty}^{\infty}e^{-x^2/2}\sin(px)\,dx=0$ となる. ゆえに

$$\int_{-\infty}^{\infty} e^{-x^2/2} \cos(px) \, dx = e^{-p^2/2} \sqrt{2\pi}$$

を示せば十分である. 左辺の $\cos(px)$ にその Taylor-Maclaulin 展開を代入した後に項別積分することによってこの公式を示そう.

準備. まず $\int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} dx$ を計算しよう. 部分積分によって

$$\int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} dx = \int_{-\infty}^{\infty} \left(-e^{-x^2/2} \right)' x^{2n-1} dx$$
$$= \int_{-\infty}^{\infty} e^{-x^2/2} (x^{2n-1})' dx = (2n-1) \int_{-\infty}^{\infty} e^{-x^2/2} x^{2n-2} dx.$$

ゆえに帰納的に n = 0, 1, 2, ... に対して

$$\int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} \, dx = (2n-1)\cdots 5 \cdot 3 \cdot 1\sqrt{2\pi} = \frac{(2n)!}{2^n n!} \sqrt{2\pi}.$$

2つ目の等号は左辺の分子分母に $2n \cdots 4 \cdot 2 = 2^n n!$ をかけることによって得られる.

上で準備した結果を用いると、

$$\int_{-\infty}^{\infty} e^{-x^2/2} \cos(px) \, dx = \int_{-\infty}^{\infty} e^{-x^2/2} \sum_{n=0}^{\infty} (-1)^n \frac{(px)^{2n}}{(2n)!} \, dx$$
$$= \sum_{n=0}^{\infty} \frac{(-p^2)^n}{(2n)!} \int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} \, dx = \sum_{n=0}^{\infty} \frac{(-p^2/2)^n}{n!} \sqrt{2\pi} = e^{-p^2/2} \sqrt{2\pi}.$$

これで公式 (**) が示された.

6.4 Cauchy の積分定理を使う方法

複素解析を知っている人であれば詳しい説明は必要ないと思うので、以下の説明では大幅に手抜きをする。 Cauchy の積分定理を使うと実数 p に対して

$$\int_{-\infty}^{\infty} e^{-(x+ip)^2/2} dx = \int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$$

となることを示せる. ゆえに

$$\int_{-\infty}^{\infty} e^{-ipx} e^{-x^2/2} dx = \int_{-\infty}^{\infty} e^{-(x+ip)^2/2 - p^2/2} dx = e^{-p^2/2} \int_{-\infty}^{\infty} e^{-(x+ip)^2/2} dx = e^{-p^2/2} \sqrt{2\pi}.$$

これで公式(**)が示された.

7 付録: Gauss 積分の計算

次の公式の様々な証明の仕方を解説しよう:

$$I := \int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.$$

この公式の面白いところ (不思議なところ) は円周率の気配が見えない積分の値が円周率の平方根になっていることである. 実際の証明では

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-(x^{2} + y^{2})} dx dy = \pi$$

を示すことになる.

7.1 同一の体積の2通りの積分表示を用いた計算

 $I^2 = \iint_{\mathbb{R}^2} e^{-(x^2+y^2)} \, dx \, dy$ は $z = e^{-(x^2+y^2)}$ の小山状のグラフと平面 z = 0 に挟まれた部分の体積を表わしている. その体積は高さ z の断面の面積 42 $\pi(-\log z)$ を $0 < z \le 1$ で積分することによっても求められる. ゆえに

$$I^{2} = \int_{0}^{1} \pi(-\log z) \, dz = -\pi [z \log z - z]_{0}^{1} = \pi.$$

おそらくこの方法が最も簡明である.

$$\frac{4^2z=e^{-(x^2+y^2)},\,r^2=x^2+y^2}{2}$$
 とおくと $,\,\pi r^2=\pi(-\log z)$ となる.

7.2 極座標変換による計算

 $x = r\cos\theta$, $y = r\sin\theta$ と極座標変換すると,

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-(x^{2} + y^{2})} dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-r^{2}} r dr = 2\pi \left[\frac{e^{-r^{2}}}{-2} \right]_{0}^{\infty} = \pi.$$

2つ目の等号で極座標変換の Jacobian がr になることを使った. もしくは

$$dx \wedge dy = (\cos\theta \, dr - r\sin\theta \, d\theta) \wedge (\sin\theta \, dr + r\cos\theta \, d\theta) = r \, dr \wedge d\theta$$

なので, $K = \{ (r, \theta) \mid r > 0, 0 \le \theta < 2\pi \}$ とおくと,

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-(x^{2}+y^{2})} dx \wedge dy = \iint_{K} e^{-r^{2}} r dr \wedge d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-r^{2}} r dr = \pi.$$

7.3 Jacobian を使わずにすむ座標変換による計算

y から θ に $y = x \tan \theta$ によって積分変数を変換すると,

$$I^{2} = 4 \int_{0}^{\infty} \left(\int_{0}^{\infty} e^{-(x^{2} + y^{2})} dy \right) dx = 4 \int_{0}^{\infty} \left(\int_{0}^{\pi/2} e^{-x^{2} \cos^{2} \theta} x \cos^{2} \theta d\theta \right) dx$$
$$= 4 \int_{0}^{\pi/2} \left(\int_{0}^{\infty} e^{-x^{2} \cos^{2} \theta} x \cos^{2} \theta dx \right) d\theta = 4 \int_{0}^{\pi/2} \left[\frac{e^{-x^{2} \cos^{2} \theta}}{-2} \right]_{x=0}^{x=\infty} d\theta$$
$$= 4 \int_{0}^{\pi/2} \frac{1}{2} d\theta = \pi.$$

3つ目の等号で積分の順序交換を行なった。

7.4 ガンマ函数とベータ函数の関係を用いた計算

前節ではJacobianが出て来ない1変数の積分の置換積分のみを用いてGauss 積分を計算する方法を説明した。それと似たような方法によって、ガンマ函数とベータ函数の関係式を1変数の積分の置換積分のみを用いて証明することができて、その関係式の特別な場合としてGauss 積分の値を計算することもできる。この節の内容は前節の内容の一般化であると考えられる。統計学でよく使われる確率密度函数の記述にはガンマ函数やベータ函数を与える積分の被積分函数が現われる(第9節)。だから、統計学に興味がある読者はGauss 積分の計算の一般化としてガンマ函数とベータ函数についても学んでおいた方が効率が良いとも考えられる。

s, p, q > 0 (もしくは実部が正の複素数 s, p, q) に対して,

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$$
 $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$

によってガンマ函数 $\Gamma(s)$ とベータ函数 B(p,q) が定義される⁴³.

⁴³他にもたくさんの同値な定義の仕方がある.以下では解析接続については扱わない.

部分積分によって $\Gamma(s+1)=s\Gamma(s)$ であることがわかり, $\Gamma(1)=1$ なので, 0 以上の整数 n に対して $\Gamma(n+1)=n!$ となる.

Gauss 積分 I は $\Gamma(1/2)$ に等しい:

$$I = 2 \int_0^\infty e^{-x^2} dx = 2 \int_0^\infty e^{-t} \frac{t^{-1/2}}{2} dt = \int_0^\infty e^{-t} t^{1/2-1} dt = \Gamma(1/2).$$

2つ目の等号で $x=\sqrt{t}$ とおいた. したがって $\Gamma(1/2)^2=\pi$ を証明できれば Gauss 積分が計算できたことになる.

ベータ函数は以下のような複数の表示を持つ:

$$B(p,q) = 2 \int_0^{\pi/2} \cos^{2p-1}\theta \, \sin^{2q-1}\theta \, d\theta = \int_0^\infty \frac{t^{p-1} \, dt}{(1+t)^{p+q}} = \frac{1}{p} \int_0^\infty \frac{du}{(1+u^{1/p})^{p+q}}.$$

 $x=\cos^2\theta=t/(1+t),\,t=u^{1/p}$ と変数変換した. 3つ目の (最後の) 表示の p=1/2 の場合の被積分函数が t 分布の確率密度函数の表示で使用され, 2つ目の表示の被積分函数は F 分布の確率密度函数の表示で使用される. $\Gamma(1/2)$ の Gauss 積分による表示の被積分函数は正規分布の確率密度函数の表示で使用され、ガンマ函数の定義式の被積分函数は χ^2 分布の被積分函数の表示で使用される. このようにガンマ函数とベータ函数は実用的によく利用される確率分布を理解するためには必須の教養になっている (第9節).

特に最初の表示より $B(1/2,1/2) = \pi$ となることがわかる. ゆえに, もしも

$$\Gamma(p)\Gamma(q) = \Gamma(p+q)B(p,q)$$

が示されたならば, $\Gamma(1/2)^2 = B(1/2,1/2) = \pi$ となることがわかる. したがって Gauss 積分の計算はガンマ函数とベータ函数のあいだの関係式を示すことに帰着される.

ガンマ函数とベータ函数のあいだの関係式は1変数の置換積分と積分順序の交換のみを使って証明可能である. 以下でそのことを簡単に説明しよう. 条件 A に対して, x,y が A をみたすとき値が1 になり, それ以外のときに値が0 になる x,y の函数を $1_A(x,y)$ と書くことにすると,

$$\begin{split} \Gamma(p)\Gamma(q) &= \int_0^\infty \left(\int_0^\infty e^{-(x+y)} x^{p-1} y^{q-1} \, dy \right) \, dx \\ &= \int_0^\infty \left(\int_x^\infty e^{-z} x^{p-1} (z-x)^{q-1} \, dz \right) \, dx \\ &= \int_0^\infty \left(\int_0^\infty 1_{x < z} (x,z) e^{-z} x^{p-1} (z-x)^{q-1} \, dz \right) \, dx \\ &= \int_0^\infty \left(\int_0^\infty 1_{x < z} (x,z) e^{-z} x^{p-1} (z-x)^{q-1} \, dx \right) \, dz \\ &= \int_0^\infty \left(\int_0^z e^{-z} x^{p-1} (z-x)^{q-1} \, dx \right) \, dz \\ &= \int_0^\infty \left(\int_0^1 e^{-z} (zt)^{p-1} (z-zt)^{q-1} z \, dt \right) \, dz \\ &= \int_0^\infty e^{-z} z^{p+q-1} \, dz \, \int_0^1 t^{p-1} (1-t)^{q-1} \, dt = \Gamma(p+q) B(p,q). \end{split}$$

2つ目の等号で y=z-x と置換積分し、4つ目の等号で積分の順序を交換し、6つ目の等号で x=zt と置換積分した.

7.5 他の方法

他の方法については Hirokazu Iwasawa, Gaussian Integral Puzzles, The Mathematical Intelligencer, Vol. 31, No. 3, 2009, pp. 38-41 および Steven R. Dunbar, Evaluation of the Gaussian Density Integral, October 22, 2011 を参照して欲しい.

8 付録: ガンマ函数

第7.4節でガンマ函数について簡単に解説した. 以下ではそこでは解説できなかったガンマ函数の性質について説明しよう.

8.1 ガンマ函数と正弦函数の関係式

第7.4 節で示した $\Gamma(1/2)^2 = B(1/2,1/2) = \pi$ は次の有名な公式の特別な場合である:

$$\Gamma(s)\Gamma(1-s) = B(s, 1-s) = \frac{\pi}{\sin(\pi s)}.$$

この公式にも複数の証明法がある. 1つ目の方法は $\sin z$ と $\Gamma(s)$ の無限乗積展開

$$\sin z = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 n^2} \right), \qquad i.e. \quad \frac{\sin(\pi s)}{\pi} = s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2} \right),$$
$$\frac{1}{\Gamma(s)} = \lim_{n \to \infty} \frac{s(s+1)\cdots(s+n)}{n!n^s} = e^{\gamma s} s \prod_{n=1}^{\infty} \left[\left(1 + \frac{s}{n} \right) e^{-s/n} \right]$$

を使う方法である 44 . ここで γ は Euler 定数

$$\gamma = \lim_{n \to \infty} \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} - \log n \right)$$

である. これらの公式を認めると,

$$\frac{1}{\Gamma(s)\Gamma(1-s)} = \frac{1}{\Gamma(s)(-s)\Gamma(-s)} = \frac{s(-s)}{-s} \prod_{n=1}^{\infty} \left[\left(1 + \frac{s}{n}\right) \left(1 - \frac{s}{n}\right) \right] = \frac{\sin(\pi s)}{\pi}.$$

2つ目の方法は次の定積分を複素解析を用いて計算することである:

$$\Gamma(s)\Gamma(1-s) = B(s, 1-s) = \int_0^\infty \frac{t^{s-1}}{1+t} dt.$$

0 < s < 1 であると仮定し, $0 < \varepsilon < 1 < R$ に対して定まる次の積分経路を C と書く: まず ε から R までまっすぐに進む. 次に複素平面上の原点を中心とする半径 R の円周上を反時計回りで 1 周する. そして R から ε までまっすぐに進む. 最後に複素平面上の原点を中心とする半径 ε の円周上を時計回りで 1 周する. このとき $\int_C z^{s-1} \, dz/(1+z)$ は $z^{s-1} \, dz/(1+z)$ の z=-1 での留数の $2\pi i$ 倍に等しい:

$$\int_C \frac{z^{s-1} \, dz}{1+z} = -2\pi i e^{\pi i s}.$$

 $^{^{44}\}Gamma(s)\Gamma(1-s)=\pi/\sin(\pi s)$ を先に証明しておいて (たとえば複素解析を使えば容易に示せる), ガンマ函数の無限乗積展開から $\sin z$ の無限乗積展開を導出することもできる.

 $\varepsilon \to 0,\, R \to \infty$ の極限を考えることによって $\int_C z^{s-1}\,dz/(1+z)$ は $\int_0^\infty t^{s-1}\,dt/(1+z)$ からそれ自身の $e^{2\pi is}$ 倍45 を引いた結果に等しいこともわかる:

$$\int_C \frac{z^{s-1} dz}{1+z} = (1 - e^{2\pi i s}) \int_0^\infty \frac{t^{s-1} dt}{1+t}.$$

以上の2つの結果を比較することによって

$$B(s, 1 - s) = \int_0^\infty \frac{t^{s-1} dt}{1 + t} = \frac{-2\pi i e^{\pi i s}}{1 - e^{2\pi i s}} = \frac{2\pi i}{e^{\pi i s} - e^{-\pi i s}} = \frac{\pi}{\sin(\pi s)}.$$

この積分は $t=u^{1/s}$ とおくことによって $s^{-1}\int_0^\infty du/(1+u^{1/s})$ に変形できる. ゆえに, 次の公式も得られたことになる:

$$B(1+s, 1-s) = sB(s, 1-s) = \int_0^\infty \frac{du}{1+u^{1/s}} = \frac{\pi s}{\sin(\pi s)}.$$

この公式を直接示すこともできる. R>1 であるとし、複素平面上を原点から R までまっすぐ進み、次に時計回りに角度 $2\pi s$ だけ回転して $Re^{2\pi is}$ まで進み、そこから原点までまっすぐに戻る経路を C と書くと、 $\int_C dz/(1+z^{1/s})$ は $dz/(1+z^{1/s})$ の $z=e^{\pi is}$ における留数 $-se^{\pi is}$ の $2\pi i$ 倍に等しく、 $R\to\infty$ の極限で $\int_C dz/(1+z^{1/s})$ は $\int_0^\infty du/(1+u^{1/s})$ からそれ自身の $e^{2\pi is}$ 倍を引いたものに等しい⁴⁶. ゆえに

$$\int_0^\infty \frac{du}{1+u^{1/s}} = \frac{-2\pi i s e^{\pi i s}}{1-e^{2\pi i s}} = \frac{2\pi i s}{e^{\pi i s}-e^{-\pi i s}} = \frac{\pi s}{\sin(\pi s)}.$$

定積分を計算した結果に円周率倍がよく現われるのは極の周囲を1周する積分が留数の $2\pi i$ 倍になるからである.

複素解析と初等函数とガンマ函数の解説については, 高木貞治『解析概論』(岩波書店) の第5章(201-267頁)をおすすめする. 複素函数論の一般論だけではなく, 具体的な函数の性質の詳しい解説も含めて67頁におさまっているのは驚異的だと思う.

8.2 ガンマ函数の無限乗積展開

函数 f(s) (s>0) は以下の3つの条件を満たしていると仮定する:

- 正値性: $f(s) > 0 \ (s > 0)$,
- 函数等式: f(s+1) = sf(s) (s>0),
- 対数凸性: $\log f(s)$ は s > 0 の下に凸な函数である.

この3つの条件を満たす函数は次の表示を持つ:

$$f(s) = f(1) \lim_{n \to \infty} \frac{n! n^s}{s(s+1)\cdots(s+n)} \qquad (s > 0).$$
 (*)

 $^{^{45}}z^s$ の値は原点の周囲を反時計回りに 1 周すると $e^{2\pi is}$ 倍になる.

 $^{^{46}}z^{1/s}$ は z を $e^{2\pi is}$ 倍しても不変だが, dz は $e^{2\pi is}$ 倍になる.

特に $\Gamma(s)$ が上の 3 つの条件と $\Gamma(1)=1$ を満たしていることから, Gauss の公式

$$\Gamma(s) = \lim_{n \to \infty} \frac{n! n^s}{s(s+1)\cdots(s+n)}$$

が成立しており、上の3つの条件を満たしている函数は $\Gamma(s)$ の定数倍になることもわかる. 以上で述べたことを証明しよう.

まず、(*)の極限の分子分母をひっくり返して得られる極限

$$\lim_{n \to \infty} \frac{s(s+1)\cdots(s+n)}{n!n^s}$$

が常に収束することを示そう.

$$\frac{s(s+1)\cdots(s+n)}{n!n^s} = s\left(1+\frac{s}{1}\right)\left(1+\frac{s}{2}\right)\cdots\left(1+\frac{s}{n}\right)e^{-s\log n} = s\left(1+\frac{s}{1}\right)e^{-s}\left(1+\frac{s}{2}\right)e^{-\frac{s}{2}}\cdots\left(1+\frac{s}{n}\right)e^{-\frac{s}{n}}e^{s\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right)}$$

 $1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n$ は $n\to\infty$ で Euler 定数 γ に収束する 47 . ゆえに $\prod_{k=1}^n(1+s/k)e^{-s/k}$ が $n\to\infty$ で収束することを示せばよい. z の複素正則函数 $(1+z)e^{-z}-1$ は原点 z=0 で 2位の零点を持つので, $(1+z)e^{-z}=1+O(z^2)$ $(z\to0)$ となる. ゆえに $(1+s/k)e^{-s/k}=1+O(s^2/k^2)$ $(k\to\infty)$. これより無限積 $\prod_{k=1}^\infty(1+s/k)e^{-s/k}$ が収束することがわかる. まとめ:

$$\lim_{n \to \infty} \frac{s(s+1)\cdots(s+n)}{n!n^s} = e^{\gamma s} s \prod_{n=1}^{\infty} \left[\left(1 + \frac{s}{n} \right) e^{-s/n} \right]$$

は常に収束する 48 . 右辺の無限積が $1/\Gamma(s)$ に等しいという公式を Weierstrass の公式と呼ぶことがある.

この極限の逆数を F(s) と書くと,

$$F(s+1) = \lim_{n \to \infty} \frac{ns}{s+1+n} \frac{n!n^s}{s(s+1)\cdots(s+n)} = sF(s), \quad F(1) = \frac{n!n}{(n+1)!} = 1.$$

ゆえに目標である (*) の公式 f(s) = f(1)F(s) (s > 0) を示すためには, 0 < s < 1 のとき f(s) = f(1)F(s) となることを示せば十分である.

次に, f(s) の正値性と対数凸性を用いて, 2以上の整数 n と 0 < s < 1 について, f(n+s) の大きさを f(n-1), f(n), f(n+1) を用いて上下から評価する不等式

$$\left(\frac{f(n)}{f(n-1)}\right)^{s} f(n) \le f(n+s) \le \left(\frac{f(n+1)}{f(n)}\right)^{s} f(n) \qquad (0 < s < 1) \tag{\#}$$

を示そう. 一般に下に凸な函数 g(s) は a < b < c に対して

$$\frac{g(b) - g(a)}{b - a} \le \frac{g(c) - g(a)}{c - a} \le \frac{g(c) - g(b)}{c - b}$$

 $^{^{47}1/}x$ は単調減少函数なので、 $1+1/2+\cdots+1/n-\log n \geq \int_1^{n+1} dx/x-\log n = \log(n+1)-\log n \geq 0$ でかつ $1/(n+1) \leq \int_n^{n+1} dx/x = \log(n+1)-\log n$ なので、 $1+1/2+\cdots+1/n-\log n$ は有界かつ単調減少する. ゆえに収束する.

 $^{^{48}}$ この極限を $1/\Gamma(s)$ の定義とすることもできる. この方法であれば最初から $1/\Gamma(s)$ が複素平面全体で定義されており, $\Gamma(s)$ の極が $s=0,-1,-2,\ldots$ のみにあることも自明になる.

を満たしている⁴⁹. これの左半分を $g(s) = \log f(s), (a,b,c) = (n,n+s,n+1)$ に適用すると、

$$\frac{\log f(n+s) - \log f(n)}{s} \le \log f(n) - \log f(n+1).$$

右半分を (a,b,c) = (n-1,n,n+s) に適用すると、

$$\log f(n) - \log f(n-1) \le \frac{\log f(n+s) - \log f(n)}{s}.$$

以上の2つの不等式を整理し直すと f(n+s) の評価 (#) が得られる. f(n+s) の評価 (#) に f の函数等式を適用しよう. f の函数等式より

$$\frac{f(n+1)}{f(n)} = n, \quad f(s+n) = (s+n-1)\cdots(s+1)sf(s), \quad f(n) = (n-1)!f(1)$$

などが成立している. (#) の左半分で n を n+1 に置き換えると,

$$n^s n! f(1) \leq (n+s)(n-1+s) \cdots s f(s), \qquad \therefore \quad \frac{f(0)n! n^s}{s(s+1) \cdots (s+n)} \leq f(s).$$

(#)の右半分より、

$$f(s) \le \frac{f(1)(n-1)!n^s}{s(s+1)\cdots(s+n-1)} = \frac{n+s}{n} \frac{f(1)n!n^s}{s(s+1)\cdots(s+n)}.$$

以上をまとめると

$$\frac{f(1)n!n^s}{s(s+1)\cdots(s+n)} \le f(s) \le \frac{n+s}{n} \frac{f(1)n!n^s}{s(s+1)\cdots(s+n)}.$$

これより、示したかった(*)が得られる.

ガンマ函数が 3 つの条件 (正値性, 函数等式, 対数凸性) を満たしていることを証明しよう. 正値性は定義 $\Gamma(s)=\int_0^\infty e^{-x}x^{s-1}\,dx$ より明らかであり, 函数等式は部分積分によって容易に証明される. 対数凸性を示すためには $g(s)=\log\Gamma(s)$ とおくとき, $g''(s)\geq 0$ を示せば十分である. より一般に次のように定義される函数 f(s) に対して $g(s)=\log f(s)$ とおくと $g''(s)\geq 0$ となることを示そう:

$$f(s) = \int_a^b e^{s\phi(x) + \psi(x)} dx.$$

ここで $\phi(x)$, $\psi(x)$ は実数値函数であり, s に関する積分記号化の微分が可能だと仮定しておく. $(a,b)=(0,\infty)$, $\phi(x)=\log x$, $\psi(x)=-x-\log x$ のとき $f(s)=\Gamma(s)$ となる⁵⁰. このとき, $g(s)=\log f(s)$ とおくと

$$g'' = \frac{d}{ds} \frac{f'}{f} = \frac{ff'' - f'^2}{f^2}.$$

⁴⁹図を描けば直観的に明らかだろう.

 $^{^{50}(}a,b)=(0,1),\ \psi(x)=\log x\ \phi(x)=t\log(1-x)$ のとき f(s)=B(s,t) となる. B(s,t) も s の函数 として対数凸になる. ゆえに $F(s)=\Gamma(s+t)B(s,t)$ も s の函数として対数凸になる. $F(s+1)=sF(s),\ F(1)=\Gamma(t)$ なので $F(s)=\Gamma(s)\Gamma(t)$ であることがわかる. このようにガンマ函数の特徴付けによってガンマ函数とベータ函数の関係式を証明することもできる.

ゆえに $f'^2 - ff'' \le 0$ を示せばよい. f(s) の定義より,

$$f(s)\lambda^{2} + 2f'(s)\lambda + f''(s) = \int_{a}^{b} e^{s\phi(x) + \psi(x)} (\lambda^{2} + 2\phi(x)\lambda + \phi(x)^{2}) dx$$
$$= \int_{a}^{b} e^{s\phi(x) + \psi(x)} (\lambda + \phi(x))^{2} dx \ge 0.$$

ゆえに $f'^2 - ff'' \le 0$ となる. 特に $\Gamma(s)$ も対数凸である.

これでガンマ函数の Gauss の公式と無限乗積展開も証明されたことになる.

補足. 以上で説明したガンマ函数に関する Gauss の公式の証明はガンマ函数そのものではなく、正値対数凸でガンマ函数と同じ函数等式を満たす函数に対して証明されたのであった. 積分で定義されたガンマ函数に関する Gauss の公式を以下のようにして直接的に証明することもできる. 函数 $n^sB(s,n+1)$ について、

$$n^{s}B(s, n+1) = \frac{n^{s}\Gamma(s)\Gamma(n+1)}{\Gamma(s+n+1)} = \frac{n^{s}n!}{s(s+1)\cdots(s+n)}$$

でかつ

$$n^{s}B(s, n+1) = n^{s} \int_{0}^{1} x^{s-1} (1-x)^{n} dx = \int_{0}^{n} t^{s-1} \left(1 - \frac{t}{n}\right)^{n} dt$$

2つ目の等号で x = t/n とおいた. ゆえに, $n \to \infty$ のとき,

$$\frac{n^s n!}{s(s+1)\cdots(s+n)} = \int_0^n t^{s-1} \left(1 - \frac{t}{n}\right)^n dt \longrightarrow \int_0^\infty t^{s-1} e^{-t} dt = \Gamma(s).$$

最後のステップを別の方法で証明することもできる. 評価 (#) を $f(s) = \Gamma(s)$ の場合に適用すると, 0 < s < 1 のとき

$$\Gamma(s+n+1) \sim n^s \Gamma(n+1)$$
 $(n \to \infty).$

ガンマ函数の函数等式より、これは任意の s>0 で成立している. ゆえに

$$\frac{n^s n!}{s(s+1)\cdots(s+n)} = \frac{n^s \Gamma(s)\Gamma(n+1)}{\Gamma(s+n+1)} \longrightarrow \Gamma(s) \qquad (n \to \infty).$$

このように, ガンマ函数の正値性, 対数凸性, 函数等式による特徴付けを経由せずに, 直接的にガンマ函数に関する Gauss の公式を (したがって無限乗積展開も) 得ることは易しい. 以上によって次の公式も証明されたことになる:

$$\lim_{n \to \infty} n^s B(s, n+1) = \Gamma(s).$$

まとめ:

$$\Gamma(s) = \lim_{n \to \infty} n^s B(s, n+1) = \lim_{n \to \infty} \frac{n^s n!}{s(s+1) \cdots (s+n)} = \frac{1}{e^{\gamma s} s} \prod_{n=1}^{\infty} \left[\left(1 + \frac{s}{n} \right) e^{-s/n} \right]^{-1}.$$

ここで γ は Euler 定数である.

8.3 正弦函数の無限乗積展開

ガンマ函数の無限乗積展開の応用として $\sin z$ の無限乗積展開を証明しよう. 積分の順序交換を用いて証明されるガンマ函数とベータ函数の関係と複素解析を用いて証明されるベータ函数と正弦函数の関係より

$$\Gamma(s)\Gamma(1-s) = B(s, 1-s) = \frac{\pi}{\sin(\pi s)}.$$

一方, ガンマ函数の無限乗積展開より.

$$\frac{1}{\Gamma(s)\Gamma(1-s)} = \frac{1}{\Gamma(s)(-s)\Gamma(-s)} = s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2}\right).$$

以上を比較すると.

$$\sin(\pi s) = \pi s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2} \right), \qquad \therefore \quad \sin z = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 n^2} \right).$$

このように, $\sin(\pi s) = \pi/(\Gamma(s)(-s)\Gamma(-s))$ なのでガンマ函数の無限乗積展開⁵¹から正弦函数の無限乗積展開が得られるのである.

正弦函数の無限乗積展開を直接示すためには、sin z の対数微分 cot z の部分分数展開

$$\cot z = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z - n\pi} + \frac{1}{z + n\pi} \right)$$

を複素解析を用いて証明し、項別に積分すればよい. 詳しくは高木貞治『解析概論』の 235 頁を見よ.

以下では、複素解析ではなく、Fourier 級数の理論を使って正弦函数の無限乗積展開を得る方法を紹介しておこう⁵².

まず x の函数 $\cos(tx)$ の $-\pi \le x \le \pi$ での値の Fourier 級数展開を求め、そこから $\cot(\pi t)$ の部分分数展開が得られることを示そう⁵³. e^{itx} の Fourier 係数は

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} e^{itx} dx = \frac{1}{2\pi} \left[\frac{e^{-inx} e^{itx}}{i(t-n)} \right]_{x=-\pi}^{x=\pi}$$
$$= \frac{(-1)^n (e^{i\pi t} - e^{-i\pi t})}{2\pi i (t-n)} = (-1)^n \frac{\sin(\pi t)}{\pi} \frac{1}{t-n}$$

なので, e^{itx} の Fourier 級数展開は

$$e^{itx} = \lim_{N \to \infty} \sum_{n = -N}^{N} a_n e^{inx} = \frac{\sin(\pi t)}{\pi} \lim_{N \to \infty} \sum_{n = -N}^{N} \frac{(-1)^n e^{inx}}{t - n}$$

$$= \frac{\sin(\pi t)}{\pi} \left[\frac{1}{t} + \sum_{n = 1}^{\infty} (-1)^n \left(\frac{e^{inx}}{t - n} + \frac{e^{-inx}}{t + n} \right) \right]$$

$$= \frac{\sin(\pi t)}{\pi} \left[\frac{1}{t} + \sum_{n = 1}^{\infty} (-1)^n \left(\frac{2t \cos(nx)}{t^2 - n^2} + i \frac{2n \sin(nx)}{t^2 - n^2} \right) \right]$$

⁵¹直接証明すれば易しい.

⁵²以下では厳密な議論はしないが, Fourier 級数の収束については第 5.5 節を参照せよ.

 $^{^{53}}x$ の偶函数 $\cos(tx)$ の $-\pi \le x \le \pi$ での値を周期 2π で $\mathbb R$ 全体に拡張して得られる連続周期函数 $f_t(x)$ の Fourier 級数を考える. $\cos(tx)$ の $0 \le x < 2\pi$ での値を周期 2π で拡張するのではないことに注意せよ.

になる. ゆえに $\cos(tx)$ の Fourier 級数展開は

$$\cos(tx) = \frac{\sin(\pi t)}{\pi} \left[\frac{1}{t} + \sum_{n=1}^{\infty} (-1)^n \frac{2t \cos(nx)}{t^2 - n^2} \right]$$

になる. したがって.

$$\pi \cot(tx) = \frac{\pi \cos(\pi t)}{\sin(\pi t)} = \frac{1}{t} + \sum_{n=1}^{\infty} (-1)^n \frac{2t \cos(nx)}{t^2 - n^2}$$

両辺の $x \to \pi$ での極限を取ることによって,

$$\pi \cot(\pi t) = \frac{1}{t} + \sum_{n=1}^{\infty} \frac{2t}{t^2 - n^2} = \frac{1}{t} + \sum_{n=1}^{\infty} \left(\frac{1}{t - n} + \frac{1}{t + n} \right)$$

を得る⁵⁴. $\sin(\pi t)$ の対数微分は $\pi \cot(\pi t)$ に等しいので,

$$\frac{d}{dt}\log\frac{\sin(\pi t)}{\pi t} = \sum_{n=1}^{\infty} \left(\frac{1}{t-n} + \frac{1}{t+n}\right) = \sum_{n=1}^{\infty} \left(\frac{-1/n}{1-t/n} + \frac{1/n}{1+t/n}\right).$$

両辺を t=0 から t=s まで積分すると,

$$\log \frac{\sin(\pi s)}{\pi s} = \sum_{n=1}^{\infty} \left(\log \left(1 - \frac{s}{n} \right) + \log \left(1 + \frac{s}{n} \right) \right) = \log \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2} \right)$$

したがって、次が得られる⁵⁵

$$\sin(\pi s) = \pi s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2} \right).$$

 \sin の無限乗積展開とガンマ函数の無限乗積展開の公式を認めて使うことを許せば、 $1/(\Gamma(s)\Gamma(1-s))$ と $\sin(\pi s)$ を比較することによって

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$

を示せる. さらに $\Gamma(p)\Gamma(q)=\Gamma(p+q)B(p,q)$ を 1 変数の積分の置換積分と積分の順序交換のみを用いて容易に証明できることを使えば、次の公式も得られる:

$$\frac{\pi}{\sin(\pi s)} = B(s, 1 - s) = \int_0^1 x^s (1 - x)^{1 - s} dx = \int_0^\infty \frac{t^{s - 1} dt}{1 + t} = \frac{1}{s} \int_0^\infty \frac{du}{1 + u^{1/s}}.$$

これらの公式はどれか一つを証明できれば他も芋づる式に得られるようになっている.

$$^{54}\coth z = -i\cot(-iz) \, \, \sharp \, \, \mathcal{V} \,, \, \coth(\pi t) = -i\pi\cot(-\pi it) = \frac{1}{t} + \sum_{n=1}^{\infty} \frac{2t}{t^2 + n^2}.$$

$$^{55}\sinh z = i\sin(-iz) \, \, \sharp \, \, \mathcal{V} \,, \, \sinh(\pi s) = \pi s \prod_{n=1}^{\infty} \left(1 + \frac{s^2}{n^2}\right).$$

8.4. Wallis の公式 39

8.4 Wallis の公式

次の公式は Wallis の公式と呼ばれている:

$$\lim_{n\to\infty}\frac{2^{2n}(n!)^2}{(2n)!\sqrt{n}}=\sqrt{\pi}, \qquad i.e. \quad \binom{2n}{n}\sim\frac{2^{2n}}{\sqrt{\pi n}}.$$

Wallis の公式の面白いところは円周率の平方根が整数の比の極限で表わされているところである. Wallis の公式はガンマ函数に関する Gauss の公式に s=1/2 を代入すれば得られる:

$$\sqrt{\pi} = \Gamma(1/2) = \lim_{n \to \infty} \frac{n^{1/2} n!}{(1/2)(1/2+1)\cdots(1/2+n)}$$

$$= \lim_{n \to \infty} \frac{2^{n+1} n^{1/2} n!}{1 \cdot 3 \cdots (2n+1)} = \lim_{n \to \infty} \frac{2^{n+1} n^{1/2} n!}{1 \cdot 3 \cdots (2n+1)} \frac{2^n n!}{2 \cdot 4 \cdots (2n)}$$

$$= \lim_{n \to \infty} \frac{2^{2n+1} n^{1/2} (n!)^2}{(2n+1)!} = \lim_{n \to \infty} \frac{2^{2n} (n!)^2}{(2n)!} \frac{2n^{1/2}}{2n+1} = \lim_{n \to \infty} \frac{2^{2n} (n!)^2}{(2n)! \sqrt{n}}.$$

次の公式も Wallis の公式と呼ばれている:

$$\prod_{n=1}^{\infty} \frac{2n \cdot 2n}{(2n-1)(2n+1)} = \frac{\pi}{2}.$$

この公式は次の公式で s=1/2 とおけば得られる:

$$\sin(\pi s) = \frac{\pi}{\Gamma(s)\Gamma(1-s)} = \pi s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2}\right).$$

実際,

$$1 = \sin\left(\frac{\pi}{2}\right) = \frac{\pi}{2} \prod_{n=1}^{\infty} \left(1 - \frac{1}{(2n)^2}\right) = \frac{\pi}{2} \prod_{n=1}^{\infty} \frac{(2n-1)(2n+1)}{2n \cdot 2n}.$$

9 付録:様々な確率分布について

9.1 正規分布

次の確率密度函数で定義される確率分布を平均 μ, 分散 σ の正規分布と呼ぶ:

$$f_{\mu,\sigma}(x) dx = \frac{e^{-(x-\mu)^2/(2\sigma^2)}}{\sqrt{2\pi\sigma^2}} dx.$$

平均 0, 分散 1 の正規分布を標準正規分布と呼ぶ.

再生性 独立な確率変数 X,Y がそれぞれ平均 μ_X,μ_Y , 分散 σ_X^2,σ_Y^2 の正規分布にしたがうとき, X+Y は平均 $\mu_X+\mu_Y$, 分散 $\sigma_X^2+\sigma_Y^2$ の正規分布にしたがう.

9.2 ガンマ分布とカイ2乗分布

次の確率密度函数で定義される確率分布を shape $\alpha>0$, scale $\tau>0$ のガンマ分布と呼ぶ:

$$f_{\alpha,\tau}(x) dx = \frac{e^{-x/\tau} x^{\alpha-1}}{\Gamma(\alpha)\tau^{\alpha}} dx = \frac{e^{-x/\tau} (x/\tau)^{\alpha}}{\Gamma(\alpha)} \frac{dx}{x} \qquad (x > 0).$$

平均は $x = \alpha \tau$, 分散は $\alpha \tau^2$ であり, $\alpha \ge 0$ のとき最頻値は $x = (\alpha - 1)\tau$ になる.

再生性 独立な確率変数 X,Y がそれぞれ shape α_X,α_Y , scale τ,τ のガンマ分布にしたがうとき, X+Y は shape $\alpha_X+\alpha_Y$, scale τ のガンマ分布にしたがう.

カイ2乗分布 (χ^2 分布) はガンマ分布の特別な場合である. すなわち, shape n/2, scale 2 のガンマ分布を自由度 n のカイ2乗分布 (χ^2 分布) と呼ぶ. カイ2乗分布は自由度 n について再生性を持つ.

確率変数 X_1, \ldots, X_n が標準正規分布にしたがうとき, $Y = X_1^2 + \cdots + X_n^2$ は自由度 n のカイ 2 乗分布にしたがう.

9.3 第二種ベータ分布と t 分布

次の確率密度函数で定義される確率分布をパラメーター $\alpha, \beta > 0$ を持つ第二種ベータ 分布 (Beta distribution of the second kind もしくは Beta prime distribution) と呼ぶ:

$$\tilde{f}_{\alpha,\beta}(x) dx = \frac{1}{B(\alpha,\beta)} \frac{x^{\alpha-1}}{(1+x)^{\alpha+\beta}} dx \qquad (x>0).$$

 $\beta>1$ ならば平均は $\alpha/(\beta-1)$ になり, $\beta>2$ ならば分散は $(\alpha(\alpha+\beta-1))/((\beta-2)(\beta-1)^2)$ になる.

第 2 種ベータ分布の確率密度函数に $x=t^2/\gamma$ $(\gamma>0)$ を代入して, 確率分布を $-\infty< t<\infty$ に拡張すると, 確率密度函数は次の形になる:

$$\tilde{f}_{\alpha,\beta}\left(\frac{t^2}{\gamma}\right)\frac{t}{\gamma}dt = \frac{1}{\gamma^{\alpha}B(\alpha,\beta)}\frac{t^{2\alpha-1}}{(1+t^2/\gamma)^{\alpha+\beta}}dt$$

n>0 に対して, $\alpha=1/2$, $\beta=n/2$, $\gamma=n$ のとき, この確率密度函数で定義される確率分布を自由度 n の t 分布と呼ぶ. すなわち, 自由度 n の t 分布とは次の確率密度函数で定義される確率分布のことである:

$$\tilde{g}_n(t) dt = c_n \left(1 + \frac{t^2}{n} \right)^{-(n+1)/2} dt.$$

ここで

$$c_n = \frac{1}{n^{1/2}B(1/2, n/2)} = \frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)}.$$

自由度が n>1 ならば t 分布は平均 0 を持つ. 自由度が $n\le 1$ のとき t 分布は平均を持たない. 自由度が n>2 ならば t 分布は分散 n/(n-2) を持つ. 自由度を無限大にする極限で t 分布の平均と分散はそれぞれ 0 と 1 に収束する. 自由度が $n\le 2$ ならば t 分布の分散は無限大になる.

独立な確率変数 X_1, \ldots, X_n がどれも平均 μ , 分散 σ^2 の正規分布にしたがうとき,

$$M = \frac{1}{n} \sum_{k=1}^{n} X_k, \qquad S^2 = \frac{1}{n-1} \sum_{k=1}^{n} (X_k - M)^2, \qquad T = \frac{M - \mu}{S/\sqrt{n}}$$

とおくと, T は自由度 n-1 の t 分布にしたがう.

注意. すぐ上の設定のもとで, $E[S^2]=\sigma^2$ となる. S^2 は不偏分散と呼ばれている. 正規分布の再生性より, M は平均 μ , 分散 σ^2/n の正規分布にしたがう. ゆえに T に類似の確率変数

$$Z = \frac{M - \mu}{\sigma / \sqrt{n}}$$

は標準正規分布にしたがう. 上で述べたことは, 分母の σ を確率変数 S で置き換えると標準正規分布ではなく, 自由度 n-1 の t 分布にしたがうということである. すでに母分散 σ^2 がわかっている場合には Z を利用できるが, 母分散がわかっていない場合には Z を利用できない. そこで母分散 σ^2 の代わりに不偏分散 S^2 を使用すると, 確率分布は正規分布からずれた t 分布になってしまうのである.

9.4 第一種ベータ分布と F 分布

次の確率密度函数で定義される確率分布をパラメーター $\alpha, \beta > 0$ を持つ第一種ベータ 分布 (Beta distribution of the first kind もしくは単にベータ分布) と呼ぶ:

$$f_{\alpha,\beta}(x) dx = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1} dx$$
 $(0 < x < 1).$

平均は $x = \alpha/(\alpha + \beta)$, 分散は $(\alpha\beta)/((\alpha + \beta)^2(\alpha + \beta + 1))$ になり, $\alpha, \beta > 1$ のとき最頻値は $x = (\alpha - 1)/(\alpha + \beta - 2)$ になる.

m,n>0 とし、第一種ベータ分布の確率密度函数の x に mx/(mx+n) (x>0) を代入すると、

$$f_{\alpha,\beta}\left(\frac{mx}{mx+n}\right)\frac{mn}{(mx+n)^2}dx = \frac{1}{B(\alpha,\beta)}\left(\frac{mx}{mx+n}\right)^{\alpha}\left(1 - \frac{mx}{mx+n}\right)^{\beta}\frac{dx}{x} \quad (x > 0)$$

と整理される (1-mx/(mx+n)=b/(mx+n) を用いた). これは $\alpha=m/2,\,\beta=n/2$ のとき次の形になる:

$$g_{m,n}(x) dx = \frac{1}{B(m/2, n/2)} \left(\frac{mx}{mx+n}\right)^{m/2} \left(1 - \frac{mx}{mx+n}\right)^{n/2} \frac{dx}{x} \qquad (x > 0).$$

この確率密度函数で定義される確率分布をパラメーター m,n の F 分布と呼ぶ. F 分布は n>2 のとき平均が n/(n-2) になり, n>4 のとき分散が $(2n^2(m+n-2))/(m(n-2)^2(n-4))$ になる.

F 分布の定義より, X がパラメーター m,n の F 分布にしたがうならば, mX/(mX+n) はパラメーター m/2,n/2 の第一種ベータ分布にしたがう.

独立な確率変数 U_1 , U_2 がそれぞれ自由度 d_1 , d_2 のカイ2乗分布にしたがうとき,

$$X = \frac{U_1/d_1}{U_2/d_2}$$

はパラメーター d_1, d_2 の F 分布にしたがう. すなわち, $X_1^{(i)}, \ldots, X_{d_i}^{(i)}$ (i=1,2) がすべて独立な確率変数であり, 各々の $X_k^{(i)}$ は平均 0, 分散 σ_i^2 の正規分布にしたがうとき,

$$s_i^2 = \frac{1}{d_1} \sum_{k=1}^{d_i} (X_k^{(i)})^2, \qquad X = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$$

とおくと, X はパラメーター d_1, d_2 の F 分布にしたがう.

第一種ベータ分布の確率密度函数 $f_{\alpha,\beta}(x)$ dx の x に x/(1+x) を代入したものは, 第二種ベータ分布の確率密度函数 $\tilde{f}_{\alpha,\beta}(x)$ dx に一致する. さらに第二種ベータ分布の確率密度函数に $x=t^2/n$, $\alpha=1/2$, $\beta=n/2$ を代入したものは自由度 n の t 分布の確率密度函数になるのであった. このことから確率変数 T が自由度 n の t 分布にしたがうとき, T^2 はパラメーター 1,n の F 分布にしたがい, T^{-2} はパラメーター n,1 の F 分布にしたがうことがわかる. この意味で T 分布は本質的に片方の自由度が 1 の場合の F 分布であることがわかる. このことは以下の直接的な計算によっても確かめられる. F 分布の確率密度函数は次のように書き直される:

$$g_{m,n}(x) dx = \frac{(m/n)^{m/2}}{B(m/2, n/2)} \frac{x^{m/2-1}}{(1+mx/n)^{(m+n)/2}} dx.$$

m=1 を代入すると、

$$g_{1,n}(x) dx = \frac{1}{\sqrt{n} B(1/2, n/2)} \frac{x^{-1/2}}{(1+x/n)^{(n+1)/2}} dx.$$

さらに $x=t^2$ を代入して、分布を $-\infty < t < \infty$ に拡張したものの確率密度函数は

$$g_{1,n}(t^2)t dt = \frac{1}{\sqrt{n} B(1/2, n/2)} \frac{dt}{(1+t^2/n)^{(n+1)/2}}$$

になる. これは t 分布の確率密度函数 $\tilde{q}_n(t) dt$ に一致する.

9.5 n-1 次元球面上の一様分布と Maxwell-Boltzmann 則 (1)

 X_i 達は独立な標準正規分布であるとし, $R_n=\sqrt{X_1^2+\cdots+X_n^2},\,Z_i^{(n)}=X_i/R_n$ とおく、このとき $(Z_1^{(n)},\ldots,Z_n^{(n)})$ は n-1 次元単位球面上の一様分布になる 56 . 確率変数 $Z_i^{(n)}$ の確率密度函数は

$$g_n(z) dz = c_n^{-1} (1 - z^2)^{(n-3)/2} dz \qquad (-1 < z < 1),$$

$$c_n = \int_{-1}^{1} (1 - z^2)^{(n-3)/2} dz = B\left(\frac{1}{2}, \frac{n-1}{2}\right) = 2^{n-2} B\left(\frac{n-1}{2}, \frac{n-1}{2}\right)$$

になる. 以下, これを示そう.

n-2 次元単位球面 $S^{n-2}=\{(x_2,\ldots,x_n)\mid x_2^2+\cdots+x_n^2=1\}$ の面積要素を $d\omega'$ と書き, $r'=\sqrt{x_2^2+\cdots+x_n^2}$ と置き, x_2,\ldots,x_n から r' と n-2 次元単位球面上の座標の組に変数変換すると, 半径 r' の n-2 次元球面の面積は r'^{n-2} に比例するので,

$$dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n = r'^{n-2} dx_1 \wedge dr' \wedge d\omega'.$$

⁵⁶この方法を使えば標準正規正規分布する乱数から球面上一様分布する乱数が得られる.

さらに、r' から $r=\sqrt{x_1^2+\cdots+x_n^2}$ に変数変換すると、 $r'=\sqrt{r^2-x_1^2}$ 、 $\partial r'/\partial r=r/r'$ なので、

$$dx_1 \wedge dx_2 \wedge \dots \wedge dx_n = r(r^2 - x_1^2)^{(n-3)/2} dx_1 \wedge dr \wedge d\omega'.$$

最後に x_1 から $z = x_1/r$ に変数変換すると,

$$dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n = r^{n-1} (1 - z^2)^{(n-3)/2} dz \wedge dr \wedge d\omega'.$$

したがって, \mathbb{R}^n 上の球対称な確率密度函数 $\rho(r)$ に対して,

$$\int_{\mathbb{R}^n} g(z)\rho(r) dx_1 \cdots dx_n = \int_{-1}^1 g(z)(1-z^2)^{(n-3)/2} dz \int_0^\infty r^{n-1}\rho(r) dr \int_{S^{n-2}} d\omega'.$$

後ろの2つの積分の積を c_n^{-1} と書くと,

$$c_n = \int_{-1}^{1} (1 - z^2)^{(n-3)/2} dz$$

 c_n を 2 通りの方法で計算しよう. 1 つ目は $z=t^{1/2},\,dz=t^{-1/2}\,dt/2$ と変数変換する方法である:

$$c_n = 2 \int_0^1 (1 - z^2)^{(n-3)/2} dz = \int_0^1 t^{-1/2} (1 - t)^{(n-3)/2} dt = B\left(\frac{1}{2}, \frac{n-1}{2}\right).$$

2つ目は $(1-z^2)=(1+z)(1-z)$ と因数分解し, z=2t-1, $dz=2\,dt$ と変数変換する方法である:

$$c_n = \int_0^1 2^{(n-3)/2} t^{(n-3)/2} 2^{(n-3)/2} (1-t)^{(n-3)/2} 2 dt = 2^{n-2} B\left(\frac{n-1}{2}, \frac{n-1}{2}\right).$$

これで示すべきことがすべて示された.

副産物として、ガンマ函数の duplication formula も得られていることを注意しておこう. (n-1)/2 を任意の正の実数 s に置き換えても c_n の二通りの表示は成立している:

$$\int_{-1}^{1} (1 - z^2)^{s-1} dz = B(1/2, s) = 2^{2s-1}B(s, s).$$

ベータ函数にガンマ函数を代入すると

$$\frac{\Gamma(1/2)\Gamma(s)}{\Gamma(s+1/2)} = \frac{2^{2s-1}\Gamma(s)^2}{\Gamma(2s)}.$$

$$\Gamma(2s) = \frac{2^{2s-1}}{\sqrt{\pi}} \Gamma(s) \Gamma(s+1/2).$$

この公式は (Legendre's) duplication formula と呼ばれている⁵⁷.

 $Z_i^{(n)}$ の確率密度函数の例⁵⁸:

$$\Gamma(ns) = \frac{n^{ns-1/2}}{(2\pi)^{(n-1)/2}} \Gamma(s) \Gamma(s+1/n) \Gamma(s+2/n) \cdots \Gamma(s+(n-1)/n).$$

たとえば $\Gamma(3s)=3^{3s-1/2}\Gamma(s)\Gamma(s+1/3)\Gamma(s+2/3)/(2\pi)$. 58 これらは本質的に第一種ベータ分布の特別な場合である.

 $^{^{57} \}rm Legendre's$ duplication formula は任意の正の整数 n に対する次の Gauss's multiplication theorem に一般化される:

 $z=\sin\theta$ を代入すると, $\frac{1}{\pi}d\theta$ $(-\pi/2 \le \theta \le \pi/2)$ と一様分布になる (当たり前). ゆえに累積分布函数は $1/2+\theta/\pi=1/2+(\arcsin z)/\pi$ $(-1 \le z \le 1)$ になる. 逆正弦函数が出て来るのでこの分布は逆正弦分布と呼ばれる 59 .

- $g_3(z) dz = \frac{1}{2} dz$ $(-1 \le z \le 1)$. 平均 0, 分散 1/3. 2 次元球面上の一様分布の原点を通る直線上への射影は一様分布になる.
- $g_4(z) dz = \frac{2}{\pi} \sqrt{1-z^2} dz$ $(-1 \le z \le 1)$. 平均 0, 分散 1/4. $z = -\cos\theta$ を代入すると, $\sin^2 2 \pi \cot^2 \theta$ $d\theta$ $(0 \le \theta \le \pi)$ になる $(0 \le$

 $n \ge 4$ のとき $g_n(z)$ はグラフが釣鐘型の函数になる. 平均はどれも 0 で分散は以下で示すように 1/n になる.

 $Z_i^{(n)}$ の平均は 0 である. さらにベータ函数とガンマ函数の関係およびガンマ函数の函数等式より $c_n/c_{n+2}=(n-1)/n=1-1/n$ となることがわかる. そのことを使うと, $Z_i^{(n)}$

 60 半円分布は行列模型における固有値の分布密度に関する **Wigner の半円**則に現われる. N 次実対称行列に値を持つ確率変数 M の確率密度函数は $\prod_i e^{-M_{ii}^2/2}dM_{ii}\prod_{i< j}e^{-M_{ij}^2/2}dM_{ij}$ に比例していると仮定し、ランダムな実対称行列 M の固有値の確率分布を考える. そのとき、スケール変換によって分散が 1/4 になるように規格化すると、その確率分布は $N\to\infty$ で分散 1/4 の半円分布に収束するというのが Wigner の半円則である.

半円分布は量子中心極限定理における収束先として現われる典型的な確率分布である. たとえば, 尾畑伸明, 量子確率論とその応用, 無限次元解析特論 (名城大学, 2013.10) に解説がある.

 61 佐藤・Tate 予想にこの型の分布が登場する. 佐藤・Tate 予想とは「有理数体上定義された虚数乗法を持たない楕円曲線の素数位数 p の有限体上での有理点の個数から p+1 を引いて $2\sqrt{p}$ で割って得られる数値の分布が \sin^2 型分布になる」という内容の 1960 年代に独立に発見された予想である. 現在では完全に解決されているらしい. R=Tの最近の発展についての勉強会 (2008) の報告集にまとまった解説がある.

佐藤幹夫氏の側がどのように「佐藤 sin² 予想」を発見したかについては、難波莞爾、Dedekind n 関数と佐藤 sin²-予想、第 16 回数学史シンポジウム、津田塾大学 (2005) に詳しい. 当時まだ大学院生だった難波莞爾さんがコンピューターで遊んでいることを佐藤先生らにビアガーデンで話したときについて「少し意味のある計算をやってみませんか、ということになった。それで、楕円母数形式、志村・谷山…などの概念や文字列と遭遇することになったのである」と書いてある。その「少し意味のある計算」の積み重ねによって「佐藤 sin² 予想」が発見された.

SU(2) 上の一様分布 (Haar 測度) から誘導される SU(2) の共役類全体の空間上の分布は \sin^2 型分布になる. その理由は以下の通り. $A \in SU(2)$ の共役類は $-1 \le \operatorname{tr}(A)/2 \le 1$ で一意に特徴付けられる. (一般に $GL_r(\mathbb{C})$ のコンパクト Lie 部分群の元の共役類はその特性多項式 (すなわち固有値たち) で一意に特徴づけられる.) $A \in SU(2)$ に $\operatorname{tr}(A)/2$ を対応させる写像は, $SU = S^3 \subset \mathbb{R}^4$ という同一視のもとで, S^3 から \mathbb{R}^4 の 1 次元部分空間への射影に一致している. このことから SU(2) 上の一様分布がその共役類全体の空間上に誘導する分布は確率密度函数は \sin^2 型分布になることがわかる.

佐藤・Tate 予想は「有理数体上の虚数乗法を持たない楕円曲線から各素数 p ごとに得られる SU(2) の 共役類達が 3 次元球面 $S^3=SU(2)$ 上の一様分布から誘導される分布にしたがっている」という話であるとみなせる.

⁵⁹ギャンブルをやり続けるとき,トータルで勝ち越している状態の時間の長さの総和から負け越している 状態の時間の長さの総和を引いた結果の確率分布は適当に規格化すると逆正弦分布に近付くことが知られ ている.これは**逆正弦法則**と呼ばれている.逆正弦分布の確率密度函数は両端に近付くほど大きくなり,真 ん中の 0 付近は小さくなる.ゆえに,逆正弦法則は勝ち越している時間と負け越している時間の差の絶対値 は 0 付近に留まらずに大きくなる傾向が強いということを意味している.ギャンブル好きならばこの事実 を経験的によく知っているはずである.単なる偶然で,勝ち続けたり,負け続けたりすることの方が多い.

の分散が 1/n になることを示せる:

$$c_n^{-1} \int_{-1}^{1} z^2 (1-z^2)^{(n-3)/2} dz = c_n^{-1} (c_n - c_{n+2}) = 1 - \frac{c_n}{c_{n+1}} = \frac{1}{n}.$$

ここで z^2 に $1-(1-z^2)$ を代入する計算を行った.

 $Y_i^{(n)} = \sqrt{n} Z_i^{(n)}$ は平均 0,分散 1 の確率変数になり,その確率密度函数は

$$g_n\left(\frac{y}{\sqrt{n}}\right)\frac{dy}{\sqrt{n}} = \frac{1}{\sqrt{n}\,c_n}\left(1 - \frac{y^2}{n}\right)^{(n-3)/2}dy$$

になる. $n \to \infty$ のとき, $\nu = (n-1)/2$ とおくと,

$$\left(1 - \frac{y^2}{n}\right)^{(n-3)/2} = \left(1 - \frac{y^2}{n}\right)^{-3/2} \left(1 - \frac{y^2/2}{n/2}\right)^{n/2} \longrightarrow e^{-y^2/2}$$

$$\sqrt{n} \, c_n = \sqrt{2\nu + 1} \, 2^{2\nu - 1} B(\nu, \nu) \sim \sqrt{2\nu} \, 2^{2\nu - 1} \frac{2}{\nu} \frac{\sqrt{\pi\nu}}{2^{2\nu}} = \sqrt{2\pi}$$

となる⁶². 途中の計算で Wallis の公式より

$$B(\nu,\nu) = \frac{\Gamma(\nu)^2}{\Gamma(2\nu)} = \frac{2\nu}{\nu^2} \frac{\Gamma(\nu+1)^2}{\Gamma(2\nu+1)} = \frac{2}{\nu} {2\nu \choose \nu}^{-1} \sim \frac{2}{\nu} \frac{\sqrt{\pi\nu}}{2^{2\nu}}$$

となることを使った 63 . したがって, $Y_i^{(n)}$ は $n \to \infty$ の極限で標準正規分布にしたがう確率変数に収束する:

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} g_n \left(\frac{y}{\sqrt{n}} \right) = \lim_{n \to \infty} \frac{(1 - y^2/n)^{(n-3)/2}}{\sqrt{n} \, 2^{n-2} B\left(\frac{n-1}{2}, \frac{n-1}{2}\right)} = \frac{e^{-y^2/2}}{\sqrt{2\pi}}.$$

以上をまとめると、実数 y の有界連続函数 q(y) について、

$$C_n^{-1} \int_{\sqrt{n} S^{n-1}} g(y_i) d\omega_n \longrightarrow \int_{\mathbb{R}} g(y) \frac{e^{-y^2/2}}{\sqrt{2\pi}} dy \qquad (n \to \infty).$$

ここで, $\sqrt{n} S^{n-1} = \{ (y_1, \dots, y_n) \in \mathbb{R}^n \mid y_1^2 + \dots + y_n^2 = n \}$ は半径 \sqrt{n} の n-1 次元球面であり, C_n はその球面の表面積であり, $d\omega_n$ はその球面上の面積要素である. この結果は物理的には Maxwell-Boltzmann 則としてよく知られている.

$oldsymbol{9.6} \quad n-1$ 次元球面上の一様分布と $oldsymbol{ ext{Maxwell-Boltzmann}}$ 則 $oldsymbol{(2)}$

前節では半径 \sqrt{n} の n-1 次元球面上の一様分布の x_i 軸への射影の極限が標準正規分布になることを証明した.

同様の方法で、半径 \sqrt{n} の n-1 次元球面上の一様分布の m 次元部分空間への射影が m 次元の標準正規分布に収束することも示せる. 以下でその筋道を簡単に説明しておく. 前節の記号をそのまま引き継ぐ.

 $[\]overline{\frac{62\sqrt{n}\,c_n}} = \int_{-1}^1 (1-y^2/n)^{(n-3)/2}\,dy$ なので、前者の $\lim_{n\to\infty} (1-y^2/n)^{(n-3)/2} = e^{-y^2/2}$ から後者の $\lim_{n\to\infty} \sqrt{n}\,c_n = \sqrt{2\pi}$ を導くこともできる.実際、そうした方が簡単だろう.

⁶³以上の計算を逆にたどることによって、逆に Wallis の公式を証明することもできる.

n-m-1 次元単位球面 $S^{n-m-1}=\{\,(x_{m+1},\ldots,x_n)\mid x_{m+1}^2+\cdots+x_n^2=1\,\}$ の面積要素を $d\omega'$ と書き, $r'=\sqrt{x_{m+1}^2+\cdots+x_n^2}$ と置き, x_{m+1},\ldots,x_n から r' と n-m-1 次元単位球面上の座標の組に変数変換すると

$$dx_1 \wedge \cdots \wedge dx_n = r'^{n-m-1} dx_1 \wedge \cdots \wedge dx_m \wedge dr' \wedge d\omega'.$$

さらに、r' から $r=\sqrt{x_1^2+\cdots+x_n^2}$ に変数変換すると、 $r'=\sqrt{r^2-x_1^2-\cdots-x_m^2}$ かつ $\partial r'/\partial r=r/r'^{-1}$ なので、

$$dx_1 \wedge \cdots \wedge dx_n = r(r^2 - x_1^2)^{(n-m-2)/2} dx_1 \wedge \cdots \wedge dx_m \wedge dr \wedge d\omega'.$$

最後に x_i (i = 1, ..., m) から $z_i = x_1/r$ (i = 1, ..., m) に変数変換すると,

$$dx_1 \wedge \dots \wedge dx_n = r^{n-1} (1 - z_1^2 - \dots - z_m^2)^{(n-m-2)/2} dz \wedge dr \wedge d\omega'.$$

したがって、球対称な確率密度函数 $\rho(r)$ に対して、

$$\int_{\mathbb{R}^n} g(z_1, \dots, z_m) \rho(r) \, dx_1 \cdots dx_n$$

$$= c_m^{(n)^{-1}} \int_{z_1^2 + \dots + z_m^2 < 1} g(z_1, \dots, z_m) (1 - z_1^2 - \dots - z_m^2)^{(n-m-2)/2} \, dz_1 \cdots dz_m. \tag{*}$$

ここで

$$c_m^{(n)-1} = \int_0^\infty r^{n-1} \rho(r) dr \int_{S^{n-m-1}} d\omega'$$

である。もっとも極端な場合として m=0 の場合を考えると $c_0^{(n)}=1$ となる。このことより, $\rho(r)=e^{-r^2/2}/(2\pi)^{n/2}$ とすることによって,n-1 次元単位球面の面積は

$$\int_{S^{n-1}} d\omega = (2\pi)^{n/2} \left(\int_0^\infty r^{n-1} e^{-r^2/2} dr \right)^{-1} = \frac{2^{n/2} \pi^{n/2}}{2^{n/2-1} \Gamma(n/2)} = \frac{2\pi^{n/2}}{\Gamma(n/2)} = \frac{n\pi^{n/2}}{\Gamma(n/2+1)}$$

と計算される ($d\omega$ は n-1 次元単位球面 S^{n-1} の面積要素). 次の公式を使った:

$$\int_0^\infty r^{s-1}e^{-r^2/2}\,dr = \int_0^\infty e^{-t}(2t)^{(s-2)/2}\,dt = 2^{s/2-1}\Gamma(s/2).$$

積分変数を $r^2/2=t$, $r\,dr=dt$, $r^{s-1}\,dr=r^{s-2}\,r\,dr$ と変換すればこの公式が得られる. 以上より, $\int_0^\infty r^{n-1}\rho(r)\,dr$ は常に n-1 次元単位球面の面積の逆数になることもわかる. したがって,

$$c_m^{(n)} = rac{\int_{S^{n-1}} d\omega}{\int_{S^{n-m-1}} d\omega'} = rac{(n-1) 次元単位球面の面積)}{(n-m-1) 次元単位球面の面積)}.$$

これが定数 $c_m^{(n)}$ の幾何学的意味である.

定数 $c_m^{(n)}$ は以下のように計算される 64 :

$$c_m^{(n)} = \int_{z_1^2 + \dots + z_m^2 < 1} (1 - z_1^2 - \dots - z_m^2)^{(n - m - 2)/2} dz_1 \dots dz_m.$$

$$= \int_{t_i > 0, \sum_{i=1}^m t_i < 1} t_1^{-1/2} \dots t_m^{-1/2} (1 - t_1 - \dots - t_m)^{(n - m - 2)/2} dt_1 \dots dt_m$$

$$= \frac{\Gamma(1/2)^m \Gamma((n - m)/2)}{\Gamma(n/2)}.$$

⁶⁴n=m+2 のとき $c_m^{(m+2)}=\pi^{m/2}/\Gamma(m/2+1)$ は m 次元単位球体の体積に等しい.

2つ目の等号で $z_i = \sqrt{t_i}$ と変数変換し、最後の等号で次の公式を使った: $p_i > 0$ に対して、

$$\frac{\Gamma(p_1)\cdots\Gamma(p_{m+1})}{\Gamma(p_1+\cdots+p_{m+1})} = \int_{t_i>0,\sum_{i=1}^m t_i<1} t_1^{p_1-1}\cdots t_m^{p_m-1} (1-t_1-\cdots-t_m)^{p_{m+1}-1} dt_1\cdots dt_m.$$

証明の方法はガンマ函数とベータ函数の関係とまったく同様である. もしくは右辺を $B(p_1,\ldots,p_{m+1})$ と書くと,

$$B(p_1, \dots, p_{m+1}) = B(p_1, \dots, p_{m-1}, p_m + p_{m+1})B(p_m, p_{m+1})$$
(B)

が成立することから、帰納法で証明することもできる.実際、 $t_m=(1-t_1-\cdots-t_{m-1})u$ によって t_m から u に変数変換すると

$$B(p_1, \dots, p_m, p_{m+1})$$

$$= \int_{t_i > 0, \sum_{i=1}^{m-1} t_i < 1} dt_1 \cdots dt_{m-1} \int_{-1}^{1} du$$

$$t_1^{p_1 - 1} \cdots t_{m-1}^{p_{m-1} - 1} (1 - t_1 - \dots - t_{m-1})^{p_m + p_{m+1} - 1} u^{p_m - 1} (1 - u)^{p_{m+1} - 1}.$$

これより上の公式(B)が成立することがわかる.

公式 (*) より, ベクトル値確率変数 $(Z_1^{(n)},\ldots,Z_m^{(n)})$ の確率密度函数は

$$g_n(z_1, \dots, z_m) dz_1 \cdots dz_m = c_m^{(n)^{-1}} (1 - z_1^2 - \dots - z_m^2)^{(n-m-2)/2} dz_1 \cdots dz_m$$

である.

これより, $\sigma > 0$ に対して, $(Y_1^{(n)}, \dots, Y_m^{(n)}) = \sqrt{n} \sigma(Z_1^{(n)}, \dots, Z_m^{(n)})$ の確率密度函数は

$$\left(1 - \frac{1}{n\sigma^2} \sum_{i=1}^m y_i^2\right)^{(n-m-2)/2} dy_1 \cdots dy_m$$

の定数倍になる⁶⁵. そして,

$$\lim_{n \to \infty} \left(1 - \frac{1}{n\sigma^2} \sum_{i=1}^m y_i^2 \right)^{\frac{n-m-2}{2}} = \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^m y_i^2 \right)$$

なので $(Y_1^{(n)}, \ldots, Y_m^{(n)})$ は $n \to \infty$ で m 次元の正規分布にしたがうベクトル値確率変数 に収束する 66 . すなわち.

$$\frac{1}{C_n(\sqrt{n}\,\sigma)} \int_{\sqrt{n}\,\sigma\,S^{n-1}} g(y_1,\ldots,y_m) \,d\omega_n$$

$$\longrightarrow \frac{1}{(2\sigma^2)^{m/2}} \int_{\mathbb{R}^m} g(y_1,\ldots,y_m) \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^m y_i^2\right) \,dy_1 \cdots dy_m.$$

ここで, $\sqrt{n}\sigma S^{n-1}=\{(y_1,\ldots,y_n)\in\mathbb{R}^n\mid y_1^2+\cdots+y_n^2=n\sigma^2\}$ は半径 $\sqrt{n}\sigma$ の n-1 次元球面であり, $C_n(\sqrt{n}\sigma)$ はその球面の表面積であり, $d\omega_n$ はその球面上の面積要素である. これは物理的には **Maxwell-Boltzmann** 則としてよく知られており, 分散 σ^2 は絶対温度の Boltzmann 定数倍 kT だと解釈される.

 $^{^{65}}Y_{i}^{(n)}$ たちは独立ではないことに注意せよ.

 $^{^{66}}Y_{i}^{(n)}$ 達は有限な n で独立ではないが, $n \to \infty$ の極限で独立な標準正規分布に収束する.

9.7 二項分布と第一種ベータ分布

0 とする. <math>n は非負の整数であるとする. 離散型確率変数 $B_{p,n}$ がパラメーター n と p の二項分布にしたがうとは

$$P(B_{p,n} = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 $(k = 0, 1, 2, ..., n)$

が成立することであると定める。平均と分散はそれぞれ np と np(1-p) になり、特性函数は $E[e^{itB_{p,n}}=(pe^{it}+q)^n$ となる。二項分布はパラメーター n に関して再生性を持つ。ゆえに中心極限定理より、p を一定のまま n を大きくすると、 $(B_{p,n}-np)/\sqrt{np(1-p)}$ は標準正規分布にしたがう確率変数で近似される。

二項分布と第一種ベータ分布の関係は以下の通り.

 $\Gamma(s+1) = s!, \binom{s}{t} = s!/(t!(s-t)!)$ と書くことにすると

$$\frac{1}{B(\alpha,\beta)} = \frac{(\alpha+\beta-1)!}{(\alpha-1)!(\beta-1)!} = (\alpha+\beta-1) \binom{\alpha+\beta-2}{\alpha-1}$$

なので、パラメーター $\alpha, \beta > 0$ を持つ第一種ベータ分布の確率密度函数は

$$f_{\alpha,\beta}(p) dp = (\alpha + \beta - 1) {\alpha + \beta - 2 \choose \alpha - 1} p^{\alpha - 1} (1 - p)^{\beta - 1} dp$$
 $(0$

と表される. 平均は $\alpha/(\alpha+\beta)$, 分散は $(\alpha\beta)/((\alpha+\beta)^2(\alpha+\beta+1))$ になり, $\alpha,\beta>1$ のとき最頻値は $p=(\alpha-1)/(\alpha+\beta-2)$ になるのであった.

ゆえに $\alpha + \beta - 2 = n$, $\alpha - 1 = k$ のとき, 第一種ベータ分布の確率密度函数は

$$f_{k+1,n-k+1}(p) dp = (n+1) \binom{n}{k} p^k (1-p)^{n-k} dp$$
 $(0$

となり、平均値は p=(k+1)/(n+2)、分散は $((k+1)(n-k+1))/((n+2)^2(n+2))$ 、最類値は p=k/n になる 67 .

以上の結果から、A が B と n 回対戦して k 回勝ったとき、A が B に勝つ確率はパラメーターが $\alpha=k+1$ 、 $\beta=n-k+1$ の第一種ベータ分布にしたがっているとみなすと便利なことがわかる 68 .

9.8 Poisson 分布とガンマ分布

離散型確率変数 $N_{\lambda T}$ がパラメーター $\lambda T > 0$ の Poisson 分布にしたがうとは

$$P(N_{\lambda T} = k) = \frac{e^{-\lambda T} (\lambda T)^k}{k!}$$
 $(k = 0, 1, 2, 3, ...)$

が成立することであると定める. 平均と分散はどちらも λT になる. T は測定する時間の長さを, λ は単位時間あたりにまれな事象が起こる回数の期待値を意味している. 特性函数は $E[e^{itN_{\lambda T}}]=e^{\lambda T(e^{it}-1)}$ となる. Poisson 分布は λT について再生性を持つ. ゆえに中

 $^{^{67}}k\sim np~(n\to\infty,\,p$ は一定) ならば, $n\to\infty$ で平均値と最頻値は p に収束し, 分散は 0 に収束する. 68 共役事前分布の話.

心極限定理より、 λT を大きくすると、 $(N_{\lambda T} - \lambda T)/\sqrt{\lambda T}$ は標準正規分布にしたがう確率 変数で近似される.

Poisson 分布とガンマ分布の関係は以下の通り.

次の確率密度函数で定義される確率分布を shape $\alpha = k+1 > 0$, scale $\tau = 1/T$ のガン マ分布と呼ぶのであった:

$$f_{k+1,1/T}(\lambda) d\lambda = \frac{e^{-\lambda T} (\lambda T)^k}{k!} d\lambda \qquad (\lambda > 0).$$

平均は $\lambda = (k+1)/T$, 分散は $(k+1)/T^2$ になり, 最頻値は $\lambda = k/T$ になる⁶⁹.

このことから、T 単位時間の観測でまれな事象が k 回起こったならば、単位時間あたり にまれな事象が起こる回数の平均値 λ の推定値が shape $\alpha = k+1$, scale $\tau = 1/T$ のガン マ分布にしたがっているとみなすことが十分に合理的なことがわかる.

9.9 基本的な数学用語の大雑把な説明

確率変数にその期待値 (平均) を対応させる汎函数 $E[\]$ は以下を満たしている 70 :

- $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$ (線形性).
- $f \ge 0$ ならば $E[f(X)] \ge 0$ (単調性).
- E[1] = 1 (規格化条件).

たったこれだけの性質だけからかなりのことが言える.

確率変数 X の平均値 (期待値) が存在するとは $E[|X|] < \infty$ となることである. その とき $\mu_X = E[X]$ を X の平均値もしくは期待値と呼ぶ. X の平均値 μ_X が存在するとき, $(X - \mu_X)^2$ の平均値を X の分散と呼び, σ_X^2 と表わし, 分散の平方根 σ_X を標準偏差と呼 ぶ. 分散と標準偏差は無限大になることがありえる.

もしも $E[|X|^r] < \infty$ ならば X の r 次のモーメントが存在すると言い, $E[X^r]$ を X の r 次のモーメントと言う. X の 1 次のモーメントは X の平均 $\mu_X = E[X]$ であり, 2 次の モーメントについて $E[X^2] = \sigma_X^2 + \mu_X^2$ なので $\sigma_X^2 = E[X^2] - E[X]^2$ となる.

確率変数 X に対して $\varphi_X(t) = E[e^{itX}]$ を X の特性函数と呼ぶ. 特性函数は t について 一様連続函数になる. 特性函数が等しい確率変数は確率分布を持つ 71 . 確率変数 X,Y が 同じ確率分布を持つとき, $X \sim Y$ と書くことにする.

X の r 次以下のモーメントがすべて存在するとき, 特性函数 $\varphi_X(t)$ は t=0 で r 回微 分可能になり, $\varphi_X^{(k)}(0) = E[X^k]$ (k = 0, 1, ..., r) となる.

XとYは平均値と有限の分散を持つ確率変数であるとする. このとき Cauchy-Schwarz の不等式より, $E[|(X - \mu_X)(Y - \mu_Y)| \le \sigma_X \sigma_Y$ となるので, $\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$

 $^{^{69}}k\sim\lambda T~(T\to\infty,\lambda$ は一定) ならば $T\to\infty$ で平均と最頻値は λ に収束し、分散は 0 に収束する.

 $^{^{70}}$ 確率空間 $(\Omega, \mathcal{F}, \mu)$ 上の可測函数 X を確率変数と呼ぶ. 可積分函数 X に $\int_{\Omega} X(x) \, \mu(dx)$ を対応させる 汎函数を期待値汎函数と呼び E[]と表わす.

 $^{^{71}}$ 確率変数とは確率空間 $(\Omega, \mathcal{F}, \mu)$ 上の実数値可測函数 $X:\Omega\to\mathbb{R}$ のことである. \mathbb{R} の Borel 部分集合 A に対して $\mu_X(A) = \mu(X^{-1}(A))$ と定めることによって、 $\mathbb R$ 上の確率測度 μ_X が定まる. μ_X を確率変数 X の確率分布と呼ぶ. もしも μ_X が Lebesgue 測度の函数 f(x) 倍と表示されるとき, f(x) を確率変数 Xの確率密度函数と呼ぶ. \mathbb{R} 上の可測函数 g(x) に対して X と g の合成を g(X) と書く. g(X) も確率変数に なる. g(x) が有界連続関数のとき, g(X) の期待値は $E[g(X)] = \int_{\mathbb{R}} g(x) \mu_X(dx)$ と表わされる. X の確率 密度函数 f(x) が存在するならば $E[g(X)] = \int_{\mathbb{R}} g(x)f(x) dx$.

が well-defined になり, $\left|E[(X-\mu_X)(Y-\mu_Y)]\right| \leq \sigma_X \sigma_Y$ となる. σ_{XY} を X と Y の共分散と呼ぶ. $\rho_{XY} = \sigma_{XY}/(\sigma_X \sigma_Y)$ を X と Y の相関係数と呼ぶ. 相関係数の絶対値は 1 以下になる.

共分散は線形代数での「ベクトルの内積」に対応し、相関係数は「ベクトルのあいだの角度を θ と書くときの $\cos\theta$ 」に対応している。確率変数Xを平均が0になるように値を平行移動した $X-\mu_X$ はベクトルの類似物であり, $E(X-\mu_X)(Y-\mu_Y)$]が内積の類似物であることを理解できれば、線形代数学で学んだことがすべて役に立つ。

確率変数たち X_i が独立であるとは, i_1, \ldots, i_r が互いに異なるとき,

$$E[f_1(X_{i_1})\cdots f_r(X_{i_r})] = E[f_1(X_{i_1})]\cdots E[f_r(X_{i_r})]$$

が成立することである $(f_k$ たちは有界な連続函数). X と Y が独立ならば X と Y の共分散と相関係数は 0 になるが、逆は成立しない.

 D_{α} はパラメーター $\alpha>0$ を持つ確率変数であるとし, $X\sim D_{\alpha}$, $Y\sim D_{\beta}$ であり, X,Y は独立であるとする. このとき, もしも $X+Y\sim D_{\alpha+\beta}$ が成立するとき, D_{α} の確率分布は再生性を持つと言う.

確率変数 X_1, \ldots, X_r が独立であるとき, $\varphi_{X_1+\cdots+X_r} = \prod_{i=k}^r \varphi_{X_k}$ が成立する. ゆえに, $\varphi_{D_\alpha} = \phi^\alpha$ が成立することと, D_α の確率分布は再生性を持つことは同値である.