금융공학프로그래밍 I 기말고사

2019. 03. 27

- 1. (40점) "tips.xlsx" 파일의 데이터를 이용해 다음을 구하는 코드를 작성하시오.
 - (1) (10점) 성별(sex) 별로 관측치의 개수와 total_bill 대비 tip의 비율의 (tip/total_bill) 평균값을 계산하시오.
 - (2) (10점) size와 total_bill의 상관계수를 전체 데이터를 이용해 계산한 결과와 time에 따라 Dinner와 Lunch로 구분해서 각각 계산한 결과를 구하시오.
 - (3) (10점) total_bill 금액의 상위 20개와 하위 20개 데이터로 구분하여 각각의 데이터에서 smoker의 비율을 계산하시오.
 - (4) (10점) day가 토요일 또는 일요일인 데이터의 total_bill (x축)과 tip (y축)의 scatter plot을 도시하시오.

출력예시

(1)
 ratio
 count mean
sex
Female 87 0.166491

Male 157 0.157651

(2)

Overall = 0.5983151309049025 Dinner = 0.5570150298349682 Lunch = 0.7086620012734175

4-1

(3) Bottom 20 = 0.35 Top 20 = 0.5

(4)

2. (35점) A은행에서 대출을 받은 10명의 고객이 있다. 각 고객이 1년 이내에 디폴트(연체 또는 상환 불능)가 될 확률은 20%로 동일하다. 고객 i의 디폴트는 표준정규분포를 따르는 확률변수 x_i 에 의해서 다음과 같이 결정되며, x_i 와 x_j 의 상관계수는 ρ 로 모든 (i,j)에 대해 동일하다고 가정한다.

- (1) (10점) 각 고객의 부도확률이 20%가 되도록하는 z의 값을 계산하시오. Hint: 표준정규분포의 cdf가 20%가 되는 z 값을 해찾기로 찾으시오. 정답은 -0.8416212임. 소수점 7자리까지 출력하시오. (주의: 표준정규분포 cdf의 역함수를 직접 호출하여 계산하지 마시오.)
- (2) (15점) 상관계수가 0.1일 때, 몬테카를로 시뮬레이션으로 10명의 고객 중 디폴트가 발생한 고객수의 분포를 그래프로 도시하시오. 100,000회 시뮬레이션하고 각각의 시나리오에서 디폴트 발생 고객의 수를 카운트한다. (주의: for, while 등의 반복문을 사용하지 않을 것. 사용한 경우 50% 감점)
- (3) (10점) 상관계수가 -0.1 부터 +0.9 까지 0.1단위로 변화할 때 (11개 상관계수), 위의 (2)번의 시뮬레이션에서 최소 1명 이상의 디폴트가 발생할 확률을 각각의 상관계수에 대해 계산하시오.

출력예시

(1) z-value = -0.8416212

(2)

(3)
-0.1 : 95.46%
0.0 : 89.16%
0.1 : 83.46%
0.2 : 78.05%
0.3 : 72.48%
0.4 : 66.99%
0.5 : 61.46%
0.6 : 55.96%
0.7 : 49.74%
0.8 : 43.41%
0.9 : 35.59%

- 3. (15점) 비밀번호는 서로 다른 digit 3개로 구성된 3자리 숫자이다.(맨 앞자리 0 가능) 비밀번호를 맞추기 위해서 서로 다른 3자리 숫자를 임의로 생성하여 비밀번호와 비교하고 비교 결과를 다음과 같이 리턴하는 함수를 작성하시오.
 - □ 각 자리의 숫자가 비밀번호의 해당 자리 숫자와 일치하는 경우 +1S
 - □ 각 자리의 숫자가 비밀번호의 해당 자리 숫자와 일지하지 않으나 다른 자리에 있는 경우 +1B

예를 들어 비밀번호가 123 인데 생성된 난수가 421인 경우 2는 자릿수가 일치하고, 1은 자릿수는 일치하지 않으나 포함되어 있으므로 1S1B임.

생성 난수	결과
456	0S0B
312	0S3B
132	1S2B

비밀번호 "123"에 대해서 위의 함수를 10,000번 호출하여 나온 각각의 결과의 개수를 카운트하여 출력하시오.

출력예시

0S1B : 35.35% 1S0B : 17.15% 0S2B : 8.56% 0S0B : 29.15% 1S2B : 0.43% 1S1B : 5.80% 2S0B : 3.11% 0S3B : 0.32% 3S0B : 0.13%

4. (10점) 임의의 정수 (int 타입) 를 입력받아 +n 또는 -n을 해서 모든 자리 숫자가 짝수가 되는 n의 최소값을 구하는 함수를 만드시오.

예를 들어, 입력한 숫자가 123인 경우 1과 3이 홀수이다. +77을 하면 200으로 모든 자리 숫자가 짝수가 되고, -35를 하면 88로 역시 모든 자리 숫자는 짝수이다. 이 경우 +77과 -35 중절대값이 작은 숫자인 -35를 리턴한다.

"numbers.txt"에 입력된 정수를 읽고 각 정수에 대해 계산 결과를 출력하시오.

<u>출력예시</u>

6847	(+)	1	(=)	6848
5754	(+)	246	(=)	6000
71081	(+)	-2193	(=)	68888
23885	(+)	115	(=)	24000
40944	(+)	-56	(=)	40888
70943	(+)	-2055	(=)	68888
39292	(+)	708	(=)	40000
63214	(+)	-326	(=)	62888
34501	(+)	5499	(=)	40000
123	(+)	-35	(=)	88