Prowadząca: dr Iwona Mróz

Ćwiczenie nr 11

Wyznaczanie elipsoidy bezwładności bryły sztywnej

Spis treści

1	Wstęp teoretyczny		2	
2	Opi	Opis doświadczenia		
3		racowanie wyników pomiarów	4	
	3.1	Tabele pomiarowe	4	
	3.2	Moment bezwładności bryły wzorcowej	4	
	3.3	Moment bezwładności badanej bryły	4	
	3.4	Wyznaczanie elipsoidy bezwładności badanej bryły	5	
	3.5	Wyznaczanie momentu bezwładności względem osi niebędących głównymi osiami		
		bezwładności	5	
		3.5.1 Oś przechodząca przez środek masy (s)	5	
		3.5.2 Oś nieprzechodząca przez środek masy (t)		
	3.6	Porównanie momentów bezwładności obliczonych dwoma sposobami		
4	Oce	ena niepewności pomiaru	10	
5	Wn	ioski	11	

1 Wstęp teoretyczny

Pierwsza zasada dynamiki ruchu obrotowego

Pierwsza zasada dynamiki ruchu obrotowego stwierdza, że jeżeli na ciało nie działa wypadkowy moment siły, to ciało pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Matematycznie można to zapisać jako:

$$\sum_{i=1}^{n} M_i = 0 \Rightarrow \frac{d\vec{L}}{dt} = 0$$

gdzie M_i oznacza i-ty moment siły działający na ciało, a \vec{L} to moment pędu ciała. Moment pędu wyraża się wzorem:

$$\vec{L} = I\vec{\omega}$$

gdzie I oznacza moment bezwładności ciała, a $\vec{\omega}$ jego prędkość kątową.

Tensor momentu bezwładności

Moment bezwładności ciała zależy od wyboru osi obrotu. Do pełnego opisu własności bezwładnościowych ciała służy tensor momentu bezwładności, który ma postać macierzy:

$$I = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}$$

Elementy tego tensora definiuje się następująco:

$$I_{ij} = \sum_{k=1}^{n} m_k (r_k^2 \delta_{ij} - r_{ki} r_{kj})$$

gdzie m_k oznacza masę k-tego elementu ciała, r_{ki} to współrzędna k-tego elementu na osi i, a δ_{ij} to delta Kroneckera.

Elipsoida bezwładności

Elipsoida bezwładności to powierzchnia, której odległość r od środka masy w dowolnym kierunku jest powiązana z momentem bezwładności I względem tej osi zależnością:

$$I = \frac{1}{r^2}$$

Długości półosi elipsoidy są równe odwrotnościom pierwiastków kwadratowych z głównych momentów bezwładności:

$$a = \frac{1}{\sqrt{I_{xx}}}, \quad b = \frac{1}{\sqrt{I_{yy}}}, \quad c = \frac{1}{\sqrt{I_{zz}}}$$

Znajomość elipsoidy bezwładności umożliwia wyznaczenie momentu bezwładności dla dowolnej osi obrotu.

Wahadło torsyjne

Wahadło torsyjne to układ składający się z pręta zawieszonego na nici, który może wykonywać drgania skrętne. Po wychyleniu o kąt θ od położenia równowagi, na pręt działa moment siły sprężystości M:

$$M = -k\theta \tag{1}$$

gdzie k jest współczynnikiem sprężystości skrętnej. Okres drgań wahadła torsyjnego wyraża się wzorem:

$$T = 2\pi \sqrt{\frac{I}{k}} \tag{2}$$

gdzie:

- \bullet I moment bezwładności bryły
- k moment kierujący wahadła

Z powyższego wzoru można wyznaczyć moment bezwładności:

$$I = k \left(\frac{T}{2\pi}\right)^2 \tag{3}$$

Wstęp teoretyczny opracowano na podstawie monografii [1] (rozdział 19) oraz instrukcji do ćwiczenia [2].

2 Opis doświadczenia

Celem doświadczenia było wyznaczenie elipsoidy bezwładności bryły sztywnej metodą wahadła torsyjnego. Pomiary wykonano w następujących etapach:

1. Pomiar okresu drgań samej ramki

Zmierzono czas trwania 10 drgań pustej ramki wahadła torsyjnego (T_0) . Ramkę wychylano o ustalony kąt za pomocą elektromagnesu, a po jego wyłączeniu mierzono czas drgań układem elektronicznym.

2. Pomiar okresu drgań z bryłą wzorcową

Wykonano pomiar czasu 10 drgań ramki z zamocowanym walcem wzorcowym o masie 1330 g (T_w) . Zmierzono również wymiary walca niezbędne do obliczenia jego momentu bezwładności.

3. Pomiary dla badanej bryły

Dla badanej bryły wykonano serię pomiarów czasu 10 drgań (T_1) :

- względem trzech osi głównych przechodzących przez środek masy
- względem jednej dowolnie wybranej osi przechodzącej przez środek masy
- względem osi wskazanej przez prowadzącego, nieprzechodzącej przez środek masy

Układ pomiarowy składał się z wahadła torsyjnego z elektromagnetycznym mechanizmem wyzwalania drgań oraz elektronicznego układu pomiaru czasu.

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

- Błąd wskazania zerowego suwmiarki wyniósł 0.15 mm.
- Niepewność wzorcowania suwmiarki $\Delta_d D = 0.05$ mm.
- Kąt $\alpha = 30^{\circ}$.

Rodzaj układu	Czas 10 drgań [s]	Okres T [s]
Sama ramka	18.135	1.8135
Ramka + walec wzorcowy	25.192	2.5192

Tabela 1: Pomiar czasu drgań ramki i ramki z walcem wzorcowym

Oś obrotu	Czas 10 drgań [s]	Okres T [s]
Główna oś 1 (x)	23.001	2.3001
Główna oś 2 (y)	23.008	2.3008
Główna oś 3 (z)	22.937	2.2937
Dowolna oś przez środek masy (s)	23.006	2.3006
Dowolna oś nieprzechodząca przez środek masy (t)	22.573	2.2573

Tabela 2: Pomiar czasu drgań ramki z badaną bryłą dla różnych osi

Wielkość	Wartość [mm]	Po korekcie [mm]
Średnica podstawy d [mm]	60.15	60.00
Wysokość walca h [mm]	60.15	60.00
Masa walca m [g]	1330	1330

Tabela 3: Rozmiary bryły wzorcowej, wraz z korektą wskazania zerowego

3.2 Moment bezwładności bryły wzorcowej

Badaną bryłą jest walec o wymiarach w tabeli 3, moment bezwładności walca dla osi przechodzącej przez środki podstaw określa wzór:

$$I_w = \frac{1}{2}mr^2 = \frac{1}{2}m\left(\frac{d}{2}\right)^2 \tag{4}$$

Podstawiając dane z tabeli 3 otrzymujemy:

$$I_w = \frac{1}{2} \cdot 1,330 \cdot \left(\frac{0.06}{2}\right)^2 = 0.0060 \,\mathrm{kgm^2}$$
 (5)

3.3 Moment bezwładności badanej bryły

Dla samej ramki okres drgań na podstawie wzoru 2 wynosi:

$$T_0 = 2\pi \sqrt{\frac{I_0}{k}} \tag{6}$$

Stąd okres T_w drgań ramki z bryłą wzorcową o momencie bezwładności I_w wynosi:

$$T_w = 2\pi \sqrt{\frac{I_0 + I_w}{k}} \tag{7}$$

Zatem z równań (6) i (7) moment kierujący wahadła wynosi:

$$k = \frac{4\pi^2 I_w}{T_w^2 - T_0^2} \tag{8}$$

Z wzorów (3) i (8) otrzymujemy moment bezwładności I_x badanej bryły:

$$I_x = \frac{T_x^2 - T_0^2}{T_w^2 - T_0^2} \cdot I_w \tag{9}$$

Po podstawieniu okresów drgań z tabel 2 oraz 1 i momentu bezwładności walca I_w z wzoru (5) otrzymujemy:

Oś	Moment bezwładności $[kg \cdot m^2]$
I_x	0,000392
I_y	0,000392
I_z	0,000386
I_s	0,000392
I_t	0,000354

Tabela 4: Momenty bezwładności względem poszczególnych osi

Przykładowe obliczenia dla I_x :

$$I_x = \frac{(2,3001)^2 - (1,8135)^2}{(2,5192)^2 - (1,8135)^2} \cdot 0,005985 = 0,000392 \,\mathrm{kgm}^2$$

3.4 Wyznaczanie elipsoidy bezwładności badanej bryły

Równanie elipsoidy ma postać:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\tag{10}$$

a, b, c to półosie elipsoidy, które są zdefiniowane jako:

$$a = \frac{1}{\sqrt{I_x}}, \quad b = \frac{1}{\sqrt{I_y}}, \quad c = \frac{1}{\sqrt{I_z}}$$

Podstawiając momenty bezwładności z tabeli 4 otrzymujemy:

$$a = 50,519636$$
m $b = 50,479042$ m $c = 50,894785$ m

3.5 Wyznaczanie momentu bezwładności względem osi niebędących głównymi osiami bezwładności

3.5.1 Oś przechodząca przez środek masy (s)

Znając momenty bezwładności względem głównych osi możemy obliczyć momenty bezwładności względem osi niebędących głównymi osiami bezwładności, korzystając z wzoru:

$$I_i = \frac{1}{R_i^2} \tag{11}$$

gdzie R_i to odległość między początkiem układu współrzędnych a punktem przebicia elipsoidy bezwładności przez wybraną oś:

$$R_i = \sqrt{x^2 + y^2 + z^2} \tag{12}$$

Wybrana oś przechodzi przez dwa przeciwległe wierzchołki sześcianu o boku a, stąd współrzędne jednego z punktów leżącego na osi s wynoszą:

$$x = \frac{a}{2}, \quad y = \frac{a}{2}, \quad z = \frac{a}{2}$$

Równanie prostej przechodzącej przez środek sześcianu (0, 0, 0) i punkt (a/2, a/2, a/2) ma postać:

$$\frac{x}{a/2} = \frac{y}{a/2} = \frac{z}{a/2} \Rightarrow x = y = z \tag{13}$$

Tworzymy układ równań (10) i (13) i rozwiązujemy go względem x, y, z:

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\\ x = y = z \end{cases}$$

$$\frac{x^2}{a^2} + \frac{x^2}{b^2} + \frac{x^2}{c^2} = 1$$

$$x^2 \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) = 1$$

$$x^2 = \frac{1}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}$$

$$x = \sqrt{\frac{1}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}}$$

Podstawiając wartości a, b, c otrzymujemy:

$$x = y = z = \sqrt{\frac{1}{\frac{1}{50,519636^2} + \frac{1}{50,479042^2} + \frac{1}{50,894785^2}}} = 29.2313 \,\mathrm{m}$$

Stąd podstawiając do wzoru (11) otrzymujemy:

$$\begin{split} I_{s,elip} &= \frac{1}{R_i^2} = \frac{1}{(\sqrt{x^2 + y^2 + z^2})^2} = \frac{1}{3x^2} \\ &= \frac{1}{3 \cdot 29.231314^2} = 0.0003901 \, \text{kgm}^2 \end{split}$$

3.5.2 Oś nieprzechodząca przez środek masy (t)

Wektor kierunkowy osi t to: oś t przechodzi przez punkty:

$$P = (\frac{-a}{2}, \frac{a}{2}, \frac{a}{2})$$
$$Q = (0, -\frac{a}{2}, -\frac{a}{2})$$

wektor kierunkowy osi t to:

$$\vec{t} = Q - P = (0, -\frac{a}{2}, -\frac{a}{2}) - (\frac{-a}{2}, \frac{a}{2}, \frac{a}{2}) = (\frac{a}{2}, -a, -a)$$

Wyznaczamy oś t' równoległą do osi t przechodzącą przez środek sześcianu (0, 0, 0):

$$t' = (0,0,0) + \vec{t} = (\frac{a}{2}, -a, -a)$$

Równanie prostej t' przechodzącej przez środek sześcianu $(0,\,0,\,0)$ o zwrocie wskazanym przez wektor kierunkowy \vec{t} to:

$$\begin{cases} x = s(\frac{a}{2}) \\ y = s(-a) \\ z = s(-a) \end{cases}$$

w postaci kanonicznej:

$$\frac{x}{\frac{a}{2}} = \frac{y}{-a} = \frac{z}{-a}$$

$$\Rightarrow \frac{2x}{a} = \frac{y}{-a} = \frac{z}{-a} / \cdot (a)$$

$$2x = -y = -z$$

Punkt przebicia elipsoidy bezwładności z osią t' obliczamy, rozwiązując układ równań (10) i (13):

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\\ 2x = -y = -z \end{cases}$$

Rozwiązanie układu równań:

$$\begin{cases} x = \pm \frac{1}{\sqrt{\frac{1}{a^2} + \frac{4}{b^2} + \frac{4}{c^2}}} \\ y = \mp 2 \frac{1}{\sqrt{\frac{1}{a^2} + \frac{4}{b^2} + \frac{4}{c^2}}} \\ z = \mp 2 \frac{1}{\sqrt{\frac{1}{a^2} + \frac{4}{b^2} + \frac{4}{c^2}}} \end{cases}$$

Wybierając jeden z dwóch punktów:

$$\begin{cases} x = +\frac{1}{\sqrt{\frac{1}{a^2} + \frac{4}{b^2} + \frac{4}{c^2}}} \\ y = -2\frac{1}{\sqrt{\frac{1}{a^2} + \frac{4}{b^2} + \frac{4}{c^2}}} \\ z = -2\frac{1}{\sqrt{\frac{1}{a^2} + \frac{4}{b^2} + \frac{4}{c^2}}} \end{cases}$$

Podstawiając wartości a, b, c otrzymujemy:

$$\begin{cases} x \approx 16.89 \text{ m} \\ y \approx -33.78 \text{ m} \\ z \approx -33.78 \text{ m} \end{cases}$$

Moment bezwładności względem osi t obliczamy z wzoru:

$$I_t = \frac{1}{x^2 + y^2 + z^2}$$

gdzie:

$$x = 16.889036632620389$$

 $y = -33.77807326524078$
 $z = -33.77807326524078$

Podstawiając wartości x, y i z:

$$I_t = \frac{1}{(16.8890)^2 + (-33.7780)^2 + (-33.7780)^2}$$

$$= \frac{1}{285.2397 + 1140.9588 + 1140.9588}$$

$$= \frac{1}{2567.1573}$$

$$\approx 0.0003895$$

Zatem moment bezwładności względem osi t' wynosi około $0.0003895 \,\mathrm{kgm}^2$.

Aby obliczyć moment bezwładności względem osi t należy zastosować twierdzenie Steinera

Obliczenie odległości między osiami t i t'

Oś t przechodzi przez punkty $P = \left(\frac{-a}{2}, \frac{a}{2}, \frac{a}{2}\right)$ oraz $Q = \left(0, -\frac{a}{2}, -\frac{a}{2}\right)$. Oś t' przechodzi przez początek układu współrzędnych O = (0,0,0) i jest równoległa do osi t.

Wektor kierunkowy osi t oznaczamy jako t i obliczamy, odejmując współrzędne punktu Pod współrzednych punktu Q:

$$\vec{t} = Q - P = \left(0 - \left(\frac{-a}{2}\right), -\frac{a}{2} - \frac{a}{2}, -\frac{a}{2} - \frac{a}{2}\right) = \left(\frac{a}{2}, -a, -a\right)$$

Wybieramy punkt $P=\left(\frac{-a}{2},\frac{a}{2},\frac{a}{2}\right)$, który należy do osi t. Wybieramy punkt O=(0,0,0) na osi t'. Wektor łączący P z O oznaczamy jako \vec{v} i obliczamy, odejmując współrzędne punktu P od współrzędnych punktu O:

$$\vec{v} = O - P = \left(0 - \left(\frac{-a}{2}\right), 0 - \frac{a}{2}, 0 - \frac{a}{2}\right) = \left(\frac{a}{2}, -\frac{a}{2}, -\frac{a}{2}\right)$$

Iloczyn wektorowy $\vec{t} \times \vec{v}$ jest dany przez wyznacznik:

$$\vec{t} \times \vec{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{a}{2} & -a & -a \\ \frac{a}{2} & -\frac{a}{2} & -\frac{a}{2} \end{vmatrix} = \mathbf{i}((-a)(-\frac{a}{2}) - (-a)(-\frac{a}{2})) - \mathbf{j}((\frac{a}{2})(-\frac{a}{2}) - (-a)(\frac{a}{2})) + \mathbf{k}((\frac{a}{2})(-\frac{a}{2}) - (-a)(\frac{a}{2}))$$

$$= \mathbf{i}\left(\frac{a^2}{2} - \frac{a^2}{2}\right) - \mathbf{j}\left(-\frac{a^2}{4} + \frac{a^2}{2}\right) + \mathbf{k}\left(-\frac{a^2}{4} + \frac{a^2}{2}\right) = 0\mathbf{i} - \frac{a^2}{4}\mathbf{j} + \frac{a^2}{4}\mathbf{k} = \left(0, -\frac{a^2}{4}, \frac{a^2}{4}\right)$$

Obliczmy masę sześcianu m

$$m = \frac{6I_x}{a^2}$$

Podstawiamy wartości:

$$m = \frac{6 \cdot 0.000392}{(0.05)^2}$$

Ostatecznie:

$$m \approx 0.941 \text{ kg}$$

Długość wektora $\vec{t} \times \vec{v}$ jest dana wzorem:

$$|\vec{t} \times \vec{v}| = \sqrt{0^2 + \left(-\frac{a^2}{4}\right)^2 + \left(\frac{a^2}{4}\right)^2} = \sqrt{0 + \frac{a^4}{16} + \frac{a^4}{16}} = \sqrt{\frac{2a^4}{16}} = \sqrt{\frac{a^4}{8}} = \frac{a^2}{2\sqrt{2}} = \frac{a^2\sqrt{2}}{4}$$

Długość wektora kierunkowego \vec{t} jest dana wzorem:

$$|\vec{t}| = \sqrt{\left(\frac{a}{2}\right)^2 + (-a)^2 + (-a)^2} = \sqrt{\frac{a^2}{4} + a^2 + a^2} = \sqrt{\frac{a^2}{4} + \frac{4a^2}{4} + \frac{4a^2}{4}} = \sqrt{\frac{9a^2}{4}} = \frac{3|a|}{2}$$

Ponieważ a jest długością boku sześcianu, jest dodatnie, więc $|\vec{t}| = \frac{3a}{2}$.

Odległość d między prostymi jest równa ilorazowi długości iloczynu wektorowego i długości wektora kierunkowego:

$$d = \frac{|\vec{t} \times \vec{v}|}{|\vec{t}|} = \frac{\frac{a^2\sqrt{2}}{4}}{\frac{3a}{2}} = \frac{a^2\sqrt{2}}{4} \times \frac{2}{3a} = \frac{2a^2\sqrt{2}}{12a} = \frac{a\sqrt{2}}{6}$$

Podstawiając a = 0.05, otrzymujemy:

$$d = \frac{0.05 \times \sqrt{2}}{6} \approx \frac{0.05 \times 1.4142}{6} \approx \frac{0.07071}{6} \approx 0.011785$$

Zatem odległość między osiami t i t' wynosi około 0.011785.

Moment bezwładności względem osi $t\left(I_{t}\right)$ możemy obliczyć, korzystając z twierdzenia Steinera:

$$I_t = I_{t'} + m \cdot d^2$$

gdzie:

$$I_{t'} = 0.00038953 \text{ kgm}^2$$
 (moment bezwładności względem osi t')
 $m = 0.9408 \text{ kg}$ (masa bryły)
 $d = 0.011785 \text{ m}$ (odległość między osiami t i t')

Podstawiajac te wartości do wzoru:

$$I_t = 0.00038953 \text{ kgm}^2 + 0.9408 \text{ kg} \cdot (0.011785 \text{ m})^2$$

$$I_t \approx 0.0005203012 \text{ kgm}^2$$

Zatem moment bezwładności względem osi t wynosi około $0.0005203~[kgm^2]$.

Moment bezwładności osi T sposób 2

Ze specyfiki sześcianu dowiadujemy się, że moment bezwładności dowolnej osi przechodzącej przez jego środek masy wyraża się:

 $I = \frac{ma^2}{6}$

Wiedząc, że oś t przechodzi przez środek, także może zostać wyrażona w ten sposób. Natomiast oś t jest do niej równoległa, zatem możemy zastosować tw. Steinera:

$$I_t = I_0 + md^2$$

gdzie d to odległość osi t'. Podstawiamy:

$$I_t = \frac{0.9408 \cdot (0.05)^2}{6} + 0.9408 \cdot (0.011785113019775794)^2$$

$$I_t \approx 0.000392 + 0.00013078 \approx 0.0005228$$

3.6 Porównanie momentów bezwładności obliczonych dwoma sposobami

Moment bezwładności obliczony z wzoru (9) wartość z tabeli 4 wynosi $I_s = 0.0003923 \,\mathrm{kgm}^2$. Porównując metodę elipsoidy (11) z metodą na podstawie okresu drgań wzoru (9) otrzymujemy:

$$\frac{I_s - I_{s,elip}}{I_s} = \frac{0.0003923 - 0.0003901}{0.0003923} = 0.0055$$

Wartość obliczona z elipsoidy bezwładności jest mniejsza o 0.55% od wartości obliczonej z wzoru (9).

4 Ocena niepewności pomiaru

Niepewność pomiaru czasu

Obliczono niepewność standardową typu B $u_B(x)$ obliczoną ze wzoru 14. Niepewność wzorcowania $\Delta_d t$ dla stopera wynosi 0.001 s.

$$u_B(x) = \frac{\Delta_d x}{\sqrt{3}} \tag{14}$$

Podstawiając wartości, otrzymano:

$$u_B(t) = \frac{0.001}{\sqrt{3}} = 0.000577 \,\mathrm{s}$$

Niepewność pomiaru okresu

Niepewność okresu obliczono na podstawie praw przenoszenia niepewności:

$$u_c(E) = \sqrt{\sum_{k=1}^{K} \left(\frac{\partial E}{\partial x_k}\right)^2 u^2(x_k)}.$$
 (15)

Okres T wyrażony jest wzorem:

$$T = \frac{t}{N}$$

gdzie N=10 to liczba pełnych okresów. Przekształcając wzór, otrzymujemy:

$$u(T) = \sqrt{\left(\frac{\partial}{\partial t}T\right)^2 u^2(t)} = \sqrt{\left(\frac{\partial}{\partial t}\frac{t}{N}\right)^2 u^2(t)} = \sqrt{\frac{1}{N^2} \cdot u^2(t)} = \frac{u_b(t)}{N} = \frac{0.000577}{10} = 0.0000577 \,\mathrm{s}$$

Niepewność standardowa momentu bezwładności

5 Wnioski

Na podstawie przeprowadzonych pomiarów i analizy wyników można sformułować następujące wnioski:

- 1. Porównanie metody wahadła torsyjnego i metody elipsoidy bezwładności dla osi s (przechodzącej przez środek masy) wykazało różnicę zaledwie 0,55%. Ta zgodność potwierdza poprawność przyjętych założeń teoretycznych oraz dokładność wykonanych pomiarów dla osi przechodzącej przez środek masy.
- 2. W przypadku osi t (nieprzechodzącej przez środek masy) zaobserwowano znaczącą rozbieżność (około 47-48%) między momentem bezwładności zmierzonym metodą wahadła torsyjnego a wartością obliczoną teoretycznie z wykorzystaniem twierdzenia Steinera.
- 3. Zgodnie z twierdzeniem Steinera, moment bezwładności względem osi nieprzechodzącej przez środek masy powinien być większy od momentu bezwładności względem osi równoległej przechodzącej przez środek masy o składnik md^2 . Nasze obliczenia za pomocą elipsoidy bezwładności potwierdzają tę zależność, jednak wartość uzyskana metodą wykorzystującą okres drgań jest mniejsza, co wskazuje na prawdopodobne błędy pomiarowe. Możliwe przyczyny tej rozbieżności to niedokładności w pomiarze okresu drgań dla osi t.
- 4. Badana bryła (sześcian) charakteryzuje się niemal identycznymi momentami bezwładności względem trzech głównych osi przechodzących przez środek masy ($I_x \approx I_y \approx I_z \approx 0,000392 \text{ kgm}^2$).
- 5. Elipsoida bezwładności wyznaczona dla badanej bryły ma kształt zbliżony do kuli, co jest konsekwencją bardzo małych różnic między momentami bezwładności względem głównych osi.

Literatura

- [1] Tadeusz Dryński. *Ćwiczenia laboratoryjne z fizyki*. Państwowe Wydawnictwo Naukowe, Warszawa, 5 edition, 1976.
- [2] Instytut Fizyki Doświadczalnej UWr. Wyznaczanie elipsoidy bryły sztywnej. https://wfa.uwr.edu.pl/wp-content/uploads/sites/216/2023/10/Mech.11-2023.pdf, 2023. Wstęp do ćwiczenia nr 11, I Pracownia Fizyczna.