

West Tambaram, Chennai - 44

SEM III

CS8391

DATA STRUCTURES (COMMON TO CSE &IT)

UNIT No. 4

NON - LINEAR DATA STRUCTURES

4.1 Definition -Representation of Graph-Types of Graph

4.1 Definition - Representation of Graphs-Types of Graph

Graph

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E. Vertices are referred to as nodes. The arcs between the nodes are referred to as edges. Each edge is a pair (v, w), where $v, w \in V$. Edges are sometimes referred to as arcs.

In the above graph V_1 , V_2 , V_3 , V_4 are the vertices and (V_1, V_2) , (V_2, V_3) , (V_3, V_4) , (V_4, V_1) , (V_1, V_3) , (V_2, V_4) are the edges.

Directed Graph (or) Digraph

Directed graph is a graph, which consists of directed edges, where each edge in E is unidirectional. In *directed* graph, the edges are directed or one way. it is also called as *digraphs*. If (v,w) is a directed edge, then $(v,w) \neq (w,v)$.

Undirected Graph

An undirected graph is a graph, which consists of undirected edges. In undirected graph, the edges are undirected or two way. If (v,w) is a undirected edge, then (v,w) = (w,v).

Weighted Graph

A graph is said to be weighted graph if every edge in the graph is assigned a weight or value. It can be directed or undirected.

Subgraph

A subgraph of a graph G = (V,E) is a graph G' = (V', E'') such that V' V and E'' E.

Symmetric digraph

A symmetric digraph is a directed graph such that for every edge vw there is also a reverse edge wv.

Symmetric undirected graph

Every undirected graph is a symmetric digraph where each undirected edge is considered as a pair of directed edges in opposite direction.

Complete Graph

A *complete graph* is a graph in which there is an edge between every pair of vertices. A complete graph with n vertices will have n(n-1)/2.

Number of vertices is 4

Number of edges is 6

There is a path from every vertex to every other vertex.

A complete graph is a strongly connected graph.

Strongly connected Graph

If there is a path from every vertex to every other vertex in a directed graph then it is said to be strongly connected graph. Otherwise, it is said to be weakly connected graph.

Path

A *path* in a graph is defined as a sequence of vertices $w_1, w_2, w_3, \ldots, w_n$ such that $(w_1, w_2, w_3, \ldots) \in E$. Where E is the number of edges in a graph. Path from A to D is $\{A, B, C, D\}$ or $\{A, C, D\}$ Path from A to C is $\{A, B, C\}$ or $\{A, C\}$

Length

The length of a path in a graph is the number of edges on the path, which is equal to N-1. Where N is the number of vertices.

Length of the path from A to B is $\{A, B\} = 1$

Length of the path from A to C is $\{A, C\} = 1 & \{A, B, C\} = 2$.

If there is a path from a vertex to itself with no edges then the path length is 0. Length of the path from A->A & B -> B is 0.

Loop

A loop in a graph is defined as the path from a vertex to itself. If the graph contains an edge (v,v) from a vertex to itself, then the path v, v is sometimes referred to as a loop.

Simple Path

A simple path is a path such that all vertices are distinct (different), except that the first and

last vertexes are same. Simple path for the above graph {A, B, C, D, A}. First and Last vertex are the same ie. A

Cycle

A cycle in a graph is a path in which the first and the last vertex are the same.

Cyclic Graph

A graph which has cycles is referred to as cyclic graph. A graph is said to be cyclic, if the edges in the graph should form a cycle.

Acyclic Graph

A graph is said to be acyclic, if the edges in the graph does not form a cycle.

Directed Acyclic Graph (DAG)

A directed graph is acyclic if it has no cycles, and such types of graph is called as Directed Acyclic Graph.

Degree

The number of edges incident on a vertex determines its degree. The degree of the vertex V is written as degree (V).

Indegree : The indegree of the vertex V, is the number of edges entering into the vertex V.

Outdegree: The outdegree of the vertex V, is the number of edges exiting from the vertex V.

Indegree of vertex $V_1 = 2$

Outdegree of vertex $V_1 = 1$

Indegree of vertex $V_2 = 1$

Outdegree of vertex $V_2 = 2$

Representation of Graph

A Graph can be represented in two ways.

- i. Adjacency Matrix
- ii. Adjacency List

Adjacency Matrix Representation

- i. Adjacency matrix for directed graph
- ii. Adjacency matrix for undirected graph
- iii. Adjacency matrix for weighted graph

Adjacency matrix for directed graph

One simple way to represent a graph is Adjacency matrix. The adjacency matrix A for a graph G = (V, E) with n vertices is an n x n matrix, such that

 $A_{ij} = 1$, if there is an edge V_i to V_j $A_{ij} = 0$, if there is no edge

0	1	1	0
0	0	0	1
0	1	0	0
0	0	1	0

Adjacency matrix for undirected graph

0	1	0	1
1	0	1	1
0	1	0	1
1	1	1	0

Adjacency matrix for weighted graph

0	3	9	00
00	0	oo	7
00	1	0	00
œ	00	8	0

Here $A_{ij} = C_{ij}$ if there exists an edge from V_i to V_j . (C_{ij} is the weight or cost). $A_{ij} = 0$, if there is no edge.

If there is no arc from i to j, $C[i,j] = \infty$, where $i \neq j$.

Advantage

Simple to implement.

Disadvantage

 \Box Takes $O(n^2)$ space to represents the graph.

 $^{\square}$ Takes $O(n^2)$ time to solve most of the problem.

Adjacency List Representation

In this representation, we store the graph as a linked structure. We store all vertices in a list and then for each vertex, we have a linked list of its adjacency vertices.

Adjacency List for directed unweighted graph

Disadvantage of Adjacency list representation

COMPUTER SCIENCE & ENGINEERING

CS8391

DATA STRUCTURES (COMMON TO CSE & IT)

It takes O(n) time to determine whether there is an arc from vertex i to vertex j, since there can be O(n) vertices on the adjacency list for vertex i.

