Software Platforms for Automotive Systems

Lecture 3: Reliability, Availability, and Safety

Alejandro Masrur 29th October 2015, TU Chemnitz

ECU Network = Control Tasks

Requirements on E/E Systems

- Harsh environmental conditions
 - EMI, wide temperature range, high humidity and vibration
- Relatively long product life cycles
 - Around 20 to 25 years
- Reliability and availability
 - Providing required functions in specified time interval
- Functional Safety
 - Risk analysis and criticality levels
 - Avoiding potential hazards for passengers and others

Safety Requirements

- Accidents may cause material and human losses
 - Need for E/E systems that help reduce and avoid accidents
- For safety-critical tasks of E/E systems
 - Analyzing and assessing the situation
 - Monitoring engine and outside temperature, etc.
 - Glaze warning, traffic jam, etc.
 - Suggesting an action
 - Navigation, warnings on the instrument panel, etc.
 - Accomplishing an action
 - Braking, Steering, turning on lights, etc.

Concepts

There are norms concerned with these topics

Reliability: DIN 40041

Availability: DIN 40042

Safety: DIN 31000

Some necessary nomenclature

System or subsystem:

"Any Software and/or hardware component needed for implementing functionality within a car."

Operational state:

"The condition of a system or subsystem by which it provides the required functions."

Definitions

Reliability:

"This is the property or ability of a system or subsystem of being operational according to specified operation conditions and for a specified time interval."

Availability:

"This is the probability that a system or subsystem is in operational state at a given point in time."

Unavailability:

"This is the probability that a system or subsystem is in nonoperational state at a given point in time."

Safety:

"This defines the state of affaires by which risk is kept within acceptable bounds."

Definitions

Fault or defect:

"This is an unacceptable deviation of one or more parameters of a system or subsystem making it behave different than expected."

Different kinds: design, software, hardware faults, etc.

Failure:

"This is an interruption in the normal operation of a system or subsystem which then stops being operational."

Different kinds: random, systemic, deterministic failures, etc.

Malfunction:

"This is a temporary interruption in the normal operation of a system or subsystem."

Fault vs. Failure/Malfunction

"A lamp burns out. Car's lights are unavailable."

- Hardware fault: filament burns out
- Failure: car's lights are unavailable...

"Routine addresses wrong RAM space. ACC resets."

- Software fault: wrong addressing
- Malfunction: ACC resets...

"Gas pedal gets trapped in carpet. Gas pedal blocks."

- Design defect: gas pedal gets trapped
- Malfunction/failure: Car accelerates without control...

Reliability

- Ideally a system should always be operational
 - However, this rarely happens in reality
- Need to model the failure behavior of systems
 - Statistical methods have established

Reliability Function

Empirical normalized sum of failures

$$\hat{F}(t) = \frac{n(t)}{N_0}$$

$$\begin{cases} n(t) = \text{number of failing systems} \\ N_0 = \text{total number of systems} \end{cases}$$

Empirical reliability function

$$\hat{R}(t) = \frac{N_0 - n(t)}{N_0}$$

Reliability Function

Failure probability function:

Reliability function

$$\hat{R}(t) = 1 - \frac{n(t)}{N_0} \xrightarrow{N_0 \to \infty} R(t) = 1 - F(t)$$
Probability system is operational

Failure Rate

Empirical failure rate

$$\hat{\lambda}(t) = \frac{n(t + \Delta t) - n(t)}{N_0 - n(t)} \times \frac{1}{\Delta t}$$
 $n(t) = \text{number of failing systems}$ $N_0 = \text{total number of systems}$

$$\hat{\lambda}(t) = \frac{\frac{n(t + \Delta t)}{N_0} - \frac{n(t)}{N_0}}{1 - \frac{n(t)}{N_0}} \times \frac{1}{\Delta t} \qquad N_0 \to \infty, \Delta t \to 0 \Rightarrow \hat{\lambda}(t) \to \lambda(t)$$

$$\lambda(t) = \frac{1}{R(t)} \frac{dR(t)}{dt} \qquad \text{Failure rate: number of failures per time unit}$$

Failure Rate over Time

- Early failures: fabrication defects
- Statistic failures: non-deterministic defects/faults
- Wear-out failures: aging effects

Statistic Failures

- Affect the system for a longer period of time
- Have (almost) constant nature

$$\lambda(t) = \frac{1}{R(t)} \cdot \frac{dR(t)}{dt} \xrightarrow{\lambda(t) = \lambda} R(t) = \frac{1}{\lambda} \cdot \frac{dR(t)}{dt} \implies R(t) = e^{-\lambda t}$$

MTTF and **MTTR**

Mean Time To Failure (MTTF)

$$MTTF = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} TTF_{i} \xrightarrow{\lambda(t) = \lambda} MTTF = \frac{1}{\lambda}$$

Mean Time To Repair (MTTR)

$$MTTR = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} TTR_i \xrightarrow{definition} MTTR = \frac{1}{\rho}$$
Repair rate

Availability and Unavailability

Availability

$$p = \frac{MTTF}{MTTF + MTTR} = \frac{1}{1 + \frac{MTTR}{MTTF}} \implies \frac{1}{1 + \frac{\lambda}{\rho}}$$

Unavailability

$$q = 1 - p = 1 - \frac{MTTF}{MTTF + MTTR} = \frac{1}{1 + \frac{MTTF}{MTTR}} \implies \frac{1}{1 + \frac{\rho}{\lambda}}$$

Serial Connection of Systems

$$p_{total} = \prod_{i=1}^{n} p_i$$

Systems have to be Independent

$$p_{total} = 1 - q_{total} = \prod_{i=1}^{n} (1 - p_i) \xrightarrow{q_i < d} \approx 1 - \sum_{i=1}^{n} q_i$$

$$q_{total} = 1 - p_{total} = 1 - \prod_{i=1}^{n} p_i \quad \xrightarrow{p_i >>0} \approx \sum_{i=1}^{n} q_i$$

Parallel Connection of Systems

$$q_{total} = \prod_{i=1}^{n} q_i$$

Systems have to be independent

$$p_{total} = 1 - q_{total} = 1 - \prod_{i=1}^{n} q_{i}$$

Redundant Connection of Systems

$$q^2 + q_C << q$$
 Necessary requirement

$$q^2 << q$$
 Normally holds

$$\Rightarrow q_C << q - q^2$$
 Requirement for coupling

Mixed Connection of Systems

$$q_A \approx (q_1 + q_2 + ... + q_n)^2$$

Mixed Connection of Systems

$$q_B \approx (q_1^2 + q_2^2 + ... + q_n^2)$$

Which is Better?

$$q_A \approx (q_1 + q_2 + ... + q_n)^2$$

$$q_B \approx (q_1^2 + q_2^2 + ... + q_n^2)$$

$$q_A \approx ((q_1 + q_2) + (... + q_n))^2$$

$$q_A \approx (q_1 + q_2)^2 + 2(q_1 + q_2)(... + q_n) + (... + q_n)^2$$

$$q_A \approx q_B + 2(q_1q_2 + q_1q_n + q_2q_n + ...) > q_B$$

Safety

- DIN 31000 deals with safety aspects
 - Risk of potential damage to either material or humans
 - Risk in the automotive domain:
 - Probability of an accident vs. probability of damage

Analysis of Risk

- There are norms for analysis of risk
 - DIN 19250
 - IEC 61508
- The risk graph determines
 - Probability and frequency of a hazardous event
 - Level of damage and possibility of avoidance
 - Requirements class (RC) according to DIN
 - RC from 0 to 8
 - Safety Integrity Level (SIL) according to IEC
 - SIL from 0 to 4

Risk Graph

- Level of damage
 - L1: light
 - L2: severe
 - L3: extreme
 - L4: catastrophic
- Frequency:
 - F1: seldom often
 - F2: frequent-continuous
- Possibility of avoidance
 - A1: possible
 - A2: not possible
- Probability of occurrence
 - P1: rare
 - P2: low
 - P3: high
- RC <--> SIL

Example: E-Gas System

- Situation: convoy at high speed
- Potential hazard: undesired acceleration and crashing
- Risk Analysis
 - L3: injuries and possibly deaths of many people
 - F1: seldom up to often
 - P1: rare
- RC 4 and SIL 2

Monitoring and Diagnostics

Safety-Aware Systems

- Fail-Safe Systems
 - System is turned off to avoid damage
 - Very restrictive, but sometimes necessary
- Fail-Reduce Systems
 - System's functionalities are degraded to avoid damage
 - Degradation modes
 - Criticality level need to be defined
- Fail-Operational Systems
 - System continues operation in normal way
 - Redundancy required

Summary

Reliability

- Empirical functions and failure rate
- Reliability function

Availability

- Mean Time To Failure
- Mean Time To Repair
- Connections of Systems

Safety

- DIN norm, IEC norm and risk graph
- Safety level of classes and safety-aware systems

