

Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Review

Viscosities, thermal conductivities and diffusion coefficients of CO₂ mixtures: Review of experimental data and theoretical models

Hailong Li a,b,*, Øivind Wilhelmsen , Yuexia Lvb, Weilong Wangb, Jinyue Yan b,c

- ^a SINTEF Energy Research, Kolbjørn Hejes vei 1A, 7465 Trondheim, Norway
- ^b Sustainable Development of Society and Technology, Mälardalen University, 72123 Västerås, Sweden
- ^c Energy Process, Royal Institute of Technology, 10044 Stockholm, Sweden

ARTICLE INFO

Article history: Received 30 April 2011 Received in revised form 14 July 2011 Accepted 15 July 2011 Available online 15 August 2011

Keywords: CO₂-mixtures Transport properties Viscosity Thermal conductivity Diffusion coefficient CO₂ capture and storage

ABSTRACT

Accurate experimental data on the thermo-physical properties of CO₂-mixtures are pre-requisites for development of more accurate models and hence, more precise design of CO₂ capture and storage (CCS) processes. A literature survey was conducted on both the available experimental data and the theoretical models associated with the transport properties of CO₂-mixtures within the operation windows of CCS. Gaps were identified between the available knowledge and requirements of the system design and operation. For the experimental gas-phase measurements, there are no available data about any transport properties of CO₂/H₂S, CO₂/COS and CO₂/NH₃; and except for CO₂/H₂O(/NaCl) and CO₂/amine/H₂O mixtures, there are no available measurements regarding the transport properties of any liquid-phase mixtures. In the prediction of gas-phase viscosities using Chapman-Enskog theory, deviations are typically <2% at atmospheric pressure and moderate temperatures. The deviations increase with increasing temperatures and pressures. Using both the Rigorous Kinetic Theory (RKT) and empirical models in the prediction of gas-phase thermal conductivities, typical deviations are 2.2-9%. Comparison of popular empirical models for estimation of gas-phase diffusion coefficients with newer experimental data for CO₂/H₂O shows deviations of up to 20%. For many mixtures relevant for CCS, the diffusion coefficient models based on the RKT show predictions within the experimental uncertainty. Typical reported deviations of the CO₂/H₂O system using empirical models are below 3% for the viscosity and the thermal conductivity and between 5 and 20% for the diffusion coefficients. The research community knows little about the effect of other impurities in liquid CO₂ than water, and this is an important area to focus in future work.

© 2011 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	duction		1120
2.	Operating windows and possible impurities in CCS processes			1120
3. Experimental data			1121	
	3.1.	Knowle	dge gaps	1121
3.2. The precision, consistency and reliability of the experimental data		cision, consistency and reliability of the experimental data	1123	
4. Available transport property models		port property models	1123	
	4.1.	Transpo	rt property models for pure CO ₂	1124
	4.2. Viscosity models for mixtures		y models for mixtures	1125
			Gas mixtures	
		4.2.2.	Liquid mixtures	1128
	4.3.	Thermal conductivity models		1128
			Semi-empirical models	
		4.3.2.	Empirical models	1129

E-mail address: lihailong@gmail.com (H. Li).

 $^{^{\}ast}$ Corresponding author at: Mälardalen University, PO Box 883, 72123 Västeras, Sweden. Tel.: +46 21 103159; fax: +46 21101480.