	Teste de Matemá	Teste de Matemática A				
	2021 / 2022					
Teste N.º 5						
Matemática A						
12.º Ano de Escolaridade						
Nome do aluno:	N.º:	Turma:				
Utilize apenas caneta ou esferográfica de tinta azul	ou preta.					
Não é permitido o uso de corretor. Risque aquilo qu	ie pretende que não seja clas	sificado.				
permitido o uso de calculadora.						
Apresente apenas uma resposta para cada item.						
As cotações dos itens encontram-se no final do enu	ınciado.					

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

 $\frac{\alpha r^2}{2}$ (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: $\pi r g$ (r – raio da base;

$$g$$
 – geratriz)

Área de uma superfície esférica: $4 \pi r^2 (r - raio)$

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3} \pi r^3 (r - raio)$

Progressões

Soma dos n primeiros termos de uma progressão (u_n)

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a + b) = sen a cos b + sen b cos a

cos(a + b) = cos a cos b - sen a sen b

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \in n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n . u^{n-1} . u' (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u'. \operatorname{sen} u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'.e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \ (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \ (n \in \mathbb{N})$$

$$\lim_{x\to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \ (p \in \mathbb{R})$$

- 1. Numa turma de 12.º ano, nem todos os alunos estão inscritos no exame de Matemática A. Relativamente a essa turma, sabe-se que:
 - o número de raparigas é metade do número de alunos que estão inscritos no exame de Matemática A;
 - um terço dos alunos inscritos no exame de Matemática A são raparigas;
 - em cada sete rapazes, três não estão inscritos no exame de Matemática A.

Escolhe-se, ao acaso, um aluno da turma.

Determine a probabilidade de esse aluno ser um rapaz e estar inscrito no exame de Matemática A. Apresente o resultado na forma de percentagem.

- 2. Um saco contém nove cartões, indistinguíveis ao tato, numerados de 1 a 9.
 - **2.1.** Retiram-se, simultaneamente e ao acaso, quatro cartões do saco.

Qual é a probabilidade de a soma dos números saídos ser par?

(A) $\frac{61}{126}$

- **(B)** $\frac{65}{126}$
- (C) $\frac{10}{21}$
- (D) $\frac{11}{21}$
- 2.2. Colocam-se os nove cartões em cima de uma mesa, lado a lado, em linha reta.

Determine a probabilidade de, ao colocar os cartões, números que não sejam primos não ficarem em posições consecutivas. Apresente o resultado na forma de fração irredutível.

3. Seja g a função, de domínio $]-\pi,\pi[$, definida por $g(x)=4x+2\cos x+\cos^2 x.$

Resolva os itens seguintes, recorrendo a processos exclusivamente analíticos.

3.1. Considere o gráfico da função g representado num referencial o.n. Oxy.

Considere:

- A o ponto do gráfico de g de abcissa 0;
- r a reta tangente ao gráfico de g em A;
- s a reta perpendicular à reta r em A;
- $B \in C$ os pontos de interseção, respetivamente, da reta r e da reta s com o eixo das abcissas.

Determine o valor exato da área do triângulo [ABC].

3.2. Estude a função q quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de *g* tem a concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de *g* tem a concavidade voltada para cima;
- as abcissas do(s) ponto(s) de inflexão do gráfico de g.

- **4.** Seja f a função, de domínio \mathbb{R} , definida por $f(x) = \sin x \times \cos x$. Sem recorrer à calculadora, prove que a equação $f(x) + 4 \times f'(x) = -f''(x)$ é possível no intervalo $\left|\frac{\pi}{6}, \frac{\pi}{4}\right|$.
- **5.** Para um determinado número real positivo k, considere a função f, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} \frac{e^x - e^{-2}}{x^2 + 3x + 2} & \text{se} & x < -2\\ \log k & \text{se} & -2 \le x \le 0\\ x^2 \ln x + e^2 & \text{se} & x > 0 \end{cases}$$

Resolva os itens seguintes sem recorrer à calculadora.

- **5.1.** Seja a um número real positivo. Para qualquer valor de a, qual das expressões pode representar a taxa média de variação da função f no intervalo [a, 2a]?
 - **(A)** 3*a* ln (16*a*)
 - **(B)** $a \ln (16a^3)$
 - (C) $a \ln (4a^3)$
 - **(D)** $\ln (16a^4)$
- **5.2.** Averigue se existe algum valor real k tal que a função f seja contínua em x = -2. Em caso afirmativo, indique esse valor.
- **5.3.** Estude, no intervalo $]0, +\infty[$, a função f quanto à monotonia e quanto à existência de extremos relativos, e determine, caso exista(m), esse(s) extremo(s). Na sua resposta, apresente o(s) intervalo(s) de monotonia.
- **6.** Seja *k* um número real.

Considere a sucessão (u_n) de termo geral $u_n = \left(\frac{n+1}{n+2}\right)^{kn}$.

Sabe-se que o limite de (u_n) é solução da equação $e^{-\ln\left(\frac{e}{x}\right)} = \frac{1}{e^2}$.

Qual é o valor de *k*?

- **(A)** -1

- **(B)** 0 **(C)** 1 **(D)** 2
- 7. Determine, sem recorrer à calculadora, os números reais que são solução da inequação:

$$2x \ge \ln(3e^x - 2)$$

Apresente o resultado sob a forma de intervalo ou reunião de intervalos de números reais.

8. Seja f a função, de domínio \mathbb{R}^+ , tal que:

$$\bullet \lim_{x \to +\infty} \frac{f(x) + \ln x}{2x} = 1$$

$$\bullet \lim_{x \to +\infty} \left(2x - f(x) - \frac{x^2}{e^x} \right) = -1$$

Qual das equações seguintes pode representar a assíntota oblíqua ao gráfico de f?

(A)
$$y = 2x - 1$$

(B)
$$y = -2x + 1$$

(C)
$$y = 2x + 1$$

(D)
$$y = -2x - 1$$

9. Em C, conjunto dos números complexos, considere os números:

$$z_1 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i, \quad z_2 = \sqrt{2}e^{i\alpha} \quad \text{ e } \quad z_3 = 2\sqrt{2}e^{i(\alpha+\pi)}, \, \alpha \in \mathbb{R}$$

9.1. Determine, sem recorrer à calculadora, os valores de α que satisfazem a condição:

$$\overline{z_2} = z_2 \times z_1$$

9.2. Considere agora que $\alpha \in \left]\frac{\pi}{2}, \pi\right[$.

A qual dos quadrantes do plano complexo pertence o afixo do número complexo $z_2 + z_3$?

- (A) Primeiro
- (B) Segundo
- (C) Terceiro
- (D) Quarto

FIM

COTAÇÕES

Item														
Cotação (em pontos)														
1.	2.1.	2.2.	3.1.	3.2.	4.	5.1.	5.2.	5.3.	6.	7.	8.	9.1.	9.2.	Total
16	10	16	17	17	17	10	17	17	10	17	10	16	10	200