```
In [4]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import statsmodels.api as sm
          import seaborn as sns
          sns.set()
In [15]: raw_data = pd.read_csv('1.03. Dummies.csv')
In [16]: raw_data
Out[16]:
               SAT GPA Attendance
              1714
                    2.40
                                No
              1664
                    2.52
                                No
              1760
                    2.54
                                No
              1685
                    2.74
            3
                                No
              1693
                    2.83
                                No
                 ...
                     ...
                                 ...
           79
              1936
                    3.71
                                Yes
              1810
           80
                    3.71
                                Yes
           81
              1987
                    3.73
                                No
           82
              1962
                    3.76
                                Yes
           83
              2050
                    3.81
                                Yes
          84 rows × 3 columns
In [18]: data = raw_data.copy()
In [19]: data['Attendance'] = data['Attendance'].map({'Yes':1, 'No':0})
```

In [20]: data

Out[20]:

	SAT	GPA	Attendance
0	1714	2.40	0
1	1664	2.52	0
2	1760	2.54	0
3	1685	2.74	0
4	1693	2.83	0
79	1936	3.71	1
80	1810	3.71	1
81	1987	3.73	0
82	1962	3.76	1
83	2050	3.81	1

84 rows × 3 columns

```
In [21]: data.describe()
```

Out[21]:

	SAT	GPA	Attendance
count	84.000000	84.000000	84.000000
mean	1845.273810	3.330238	0.464286
std	104.530661	0.271617	0.501718
min	1634.000000	2.400000	0.000000
25%	1772.000000	3.190000	0.000000
50%	1846.000000	3.380000	0.000000
75%	1934.000000	3.502500	1.000000
max	2050.000000	3.810000	1.000000

```
In [26]: ## Regression
```

```
In [27]: y = data['GPA']
x1 = data[['SAT', 'Attendance']]
```

```
In [31]: x = sm.add_constant(x1)
    results = sm.OLS(y,x).fit()
    results.summary()
```

Out[31]:

OLS Regression Results

Dep. Variable: **GPA** R-squared: 0.565 Model: OLS Adj. R-squared: 0.555 Method: Least Squares F-statistic: 52.70 **Date:** Wed, 25 Aug 2021 Prob (F-statistic): 2.19e-15 Time: 23:17:05 Log-Likelihood: 25.798 No. Observations: AIC: -45.60 **Df Residuals:** 81 BIC: -38.30 Df Model: 2

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975] const 0.6439 0.358 1.797 0.076 -0.069 1.357 **SAT** 0.0014 0.000 7.141 0.000 0.001 0.002 Attendance 0.2226 0.041 5.451 0.000 0.141 0.304

 Omnibus:
 19.560
 Durbin-Watson:
 1.009

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 27.189

 Skew:
 -1.028
 Prob(JB):
 1.25e-06

 Kurtosis:
 4.881
 Cond. No.
 3.35e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.35e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [37]: plt.scatter(data['SAT'],y, c=data['Attendance'], cmap='RdYlGn_r')
    yhat_no = 0.6439 + 0.0014 * data['SAT']
    yhat_yes = 0.6439 + 0.2226 + 0.0014 * data['SAT']
    yhat = 0.0017 * data['SAT'] + 0.275
    fig = plt.plot(data['SAT'], yhat_no, lw=2, c='red', label='regression line 1')
    fig = plt.plot(data['SAT'], yhat_yes, lw=2, c='orange', label ='regression line 2
    fig = plt.plot(data['SAT'], yhat, lw=3, c='blue', label ='regressionline')
    plt.xlabel('SAT', fontsize=20)
    plt.ylabel('GPA', fontsize=20)
    plt.show()
```



```
In [ ]:
```