MTH 9821 Numerical Methods for Finance – Homework 2

Wenli Dong, Bledar Kulemani, Avinash Oza, Bingcheng Wang, Xinlu Xiao September 6, 2016

1 Ch 8 #3

1.1 Subquestion i

The mid prices of the options are shown in Table 1.1.

Table 1.1: Mid Prices of Options

Ct:l. M: I D.: C-II M: I D : D :								
Strike	Mid Prices Call	Mid Prices Put						
1450	432.8	9.55						
1500	385.75	12.35						
1550	339.55	16.05						
1600	294.5	20.85						
1675	229.7	30.55						
1700	208.8	34.55						
1750	168.8	44.45						
1775	150.1	50.45						
1800	131.7	57.3						
1825	114.25	64.65						
1850	97.7	73.05						
1875	82.35	82.45						
1900	68.05	93.3						
1925	55.05	105.05						
1975	33.65	133.55						
2000	25.2	150.55						
2050	13	188.3						
2100	6.05	231.2						

The OLS formula is

$$y = PVF - disc \times K$$

where y = C - P, C is the mid prices of the call options, P is the mid prices of the put options, and K is the strike price. By using OLS, we get

$$y = 1869.4031 - 0.9972K$$

Thus PVF = 1869.4031, disc = 0.9972.

1.2 Subquestion ii

The original Black-Scholes Formula is

$$C_{BS}(S, K, T, \sigma, r, q) = Se^{-qT}N(d_1) - Ke^{-rT}N(d_2)$$

$$P_{BS}(S, K, T, \sigma, r, q) = -Se^{-qT}N(-d_1) + Ke^{-rT}N(-d_2)$$

where S is the spot price of the index corresponding to these options, q is the dividend rate, r is the risk-free rate. The function $N(\cdot)$ is the standard normal cdf, and

$$d_1 = \frac{\log(S/K) + (r - q + \sigma^2/2)T}{\sigma\sqrt{T}}$$
$$d_2 = \frac{\log(S/K) + (r - q - \sigma^2/2)T}{\sigma\sqrt{T}}$$

We can rewrite Black-Scholes formula using PVF and disc, then

$$C_{BS} = PVF \cdot N(d_1) - K \cdot disc \cdot N(d_2)$$

$$P_{BS} = -PVF \cdot N(-d_1) + K \cdot disc \cdot N(-d_2)$$

and

$$d_1 = \frac{\log\left(\frac{PVF}{K \cdot disc}\right)}{\sigma\sqrt{T}} + \frac{\sigma\sqrt{T}}{2}$$
$$d_2 = \frac{\log\left(\frac{PVF}{K \cdot disc}\right)}{\sigma\sqrt{T}} - \frac{\sigma\sqrt{T}}{2}$$

Let C_{BS} and P_{BS} be the mid prices of the call and put options. We can use Newton's method to calculate σ , which will be the implied volatility. The implied volatility is shown in Table 1.2.

Table 1.2: Implied Volatility

K	$\sigma^{2}_{\mathbf{imp}, \ \mathbf{c}}$	$\sigma^{2}_{\mathbf{imp}, \ \mathbf{p}}$			
1450	0.0473548237418695	0.047763472746148			
1500	0.0431902618976051	0.043488616065135			
1550	0.039308491461635	0.0395996294773441			
1600	0.0357431718481531	0.0359616052698727			
1675	0.0307945166866716	0.0307075462798457			
1700	0.0290614122800266	0.0289593032638681			
1750	0.0258423104463723	0.0257818527826046			
1775	0.0244890865947133	0.0242987325201529			
1800	0.0229048005647355	0.0229011137326154			
1825	0.0214286123535537	0.0213593275657909			
1850	0.0199790343583373	0.0199229868497235			
1875	0.0186480463469214	0.018513108797099			
1900	0.0173158231345902	0.0172811093183057			
1925	0.016049424826671	0.015938192074204			
1975	0.0138591431080441	0.0137615241485985			
2000	0.0128711121494107	0.0130099516032848			
2050	0.0112692419430679	0.0114918512531617			
2100	0.0101438878456743	0.0104521034753514			

From Table 1.2 we can see that under the same strike price, the implied volatilities of calls and puts are very close.

2 Ch 8 #7

2.1 Subquestion i

By using OLS regression, we get

$$T_{3.LR} = 0.0123 + 0.1272T_2 + 0.3340T_5 + 0.5298T_{10}$$

The approximation error

$$\operatorname{error}_{LR} = ||T_3 - T_{3,LR}|| = 0.04301298$$

2.2 Subquestion ii

By using linear interpolation, we get $T_{3,linear_interp} = [4.650000, 4.770000, 4.773333, 4.783333, 4.783333, 4.786667, 4.780000, 4.786667, 4.810000 4.790000, 4.803333, 4.800000, 4.783333, 4.760000, 4.763333]. Thus the approximation error$

$$\operatorname{error}_{linear_interp} = ||T_3 - T_{3,linear_interp}|| = 0.2066129$$

2.3 Subquestion iii

By using cubic spline interpolation, we get $T_{3,cubic_interp} = [4.641333, 4.762000, 4.765889, 4.780889, 4.781222, 4.789111, 4.773667, 4.781778, 4.805667, 4.786000, 4.799556, 4.795333, 4.779556, 4.756333, 4.758222].$

Thus the approximation error

$$\operatorname{error}_{cubic_interp} = ||T_3 - T_{3,cubic_interp}|| = 0.1864353$$

2.4 Subquestion iv

The OLS regression has the least approximation error, and the linear interpolation has the approximation error. That is because OLS estimator is BLUE. It has very little residual, while linear interpolation is very rough.

3 Ch 8 #8

3.1 Subquestion i

The weekly percentage returns of these stocks are listed in Table 3.1.

3.2 Subquestion ii

By using OLS regression, we get

$$JPM = -0.003222 + 0.755635 \; GS - 0.064294 \; MS + 0.302755 \; BAC + 0.227142 \; RBS \\ -0.094029 \; CS - 0.398494 \; UBS + 0.147026 \; RY + 0.010758 \; BCS$$

where those tickers represent the weekly returns of the corresponding tickers.

The approximation error is 0.1319426.

3.3 Subquestion iii

By using OLS regression, we get

$$JPM = -0.001105 + 0.614013 \ GS - 0.067123 \ MS + 0.251915 \ BAC$$

where those tickers represent the weekly returns of the corresponding tickers.

The approximation error is 0.1514875.

3.4 Subquestion iv

$$JPM = 8.83982 + 0.05480 \; GS - 0.06069 \; MS + 1.46197 \; BAC + 0.93938 \; RBS \\ 0.85709 \; CS - 2.24728 \; UBS + 0.28110 \; RY - 0.07965 \; BCS$$

where those tickers represent the prices of the corresponding tickers.

The approximation error is 6.443954. Compared to subquestion ii, the approximation error is much larger.

Table 3.1: Weekly returns of some stocks

Table 3.1: Weekly returns of some stocks											
date	JPM	$\mathbf{G}\mathbf{S}$	MS	\mathbf{BAC}	RBS	\mathbf{CS}	\mathbf{UBS}	RY	BCS		
2012-01-23	0.0359	0.13	0.119	0.103	0.183	0.183	0.178	0.0391	0.139		
2012-01-30	0.0289	0.0515	0.0944	0.0758	0.0436	0.0441	0.0438	0.0248	0.0718		
2012-02-06	-0.0176	-0.029	-0.0317	0.0294	-0.0352	-0.0768	-0.0523	-0.00343	-0.019		
2012-02-13	0.0231	0.0157	-0.0256	-0.00622	0.00912	0.0422	0.0305	-0.00134	0.0704		
2012-02-20	0	0	0	0	0	0	0	0	0		
2012-02-27	0.0561	0.0381	-0.0152	0.015	-0.00226	0.017	-0.0324	0.0689	0.0316		
2012-03-05	0.00981	-0.0223	-0.0261	-0.00986	-0.0668	-0.0303	-0.0284	0.00501	-0.0625		
2012-03-12	0.0862	0.0481	0.063	0.217	0.091	0.116	0.0719	0.0214	0.0667		
2012-03-19	0.0133	0.0264	0.0407	0.00512	-0.00222	-0.014	-0.014	-0.00872	-0.0212		
2012-03-26	0.0181	-0.0143	-0.0337	-0.0275	-0.0145	-0.0238	-0.0149	-0.000352	-0.0421		
2012-04-02	-0.0294	-0.0513	-0.0636	-0.0356	-0.0939	-0.0655	-0.0655	-0.0137	-0.0827		
2012-04-09	-0.0254	-0.0246	-0.0608	-0.0597	-0.0187	-0.0342	-0.0477	-0.0212	-0.0218		
2012-04-16	-0.0113	-0.023	0.0117	-0.037	-0.0267	0.0133	0.00162	0.0283	0.00446		
2012-04-23	0.0145	0.0175	-0.0276	-0.0132	0.0392	-0.0549	0.0161	0.0186	0.0636		
2012-04-30	-0.0368	-0.0474	-0.0557	-0.062	-0.00881	-0.0883	-0.0214	-0.0506	-0.0709		
2012-05-07	-0.115	-0.063	-0.0659	-0.0246	-0.0698	-0.0277	-0.0114	-0.0229	-0.0404		
2012-05-14	-0.094	-0.065	-0.107	-0.0704	-0.145	-0.0707	-0.0755	-0.0606	-0.134		
2012-05-21	0.000303	0.0127	-0.00752	0.0186	0.0399	0.00715	0.0266	-0.0356	0.0243		
2012-05-28	0	0	0	0	0	0	0	0	0		
2012-06-04	0.00546	-0.0176	0.0348	0.0589	0.0706	0.0264	0.013	0.00352	0.0431		
2012-06-11	0.0401	0.0118	0.0425	0.045	0.122	-0.0697	0.0239	0.0243	0.0649		
2012-06-18	0.0273	-0.0212	-0.0105	0.00507	-0.0268	-0.00425	-0.00334	0.0101	-0.00713		
2012-06-25	-0.00734	0.0238	0.0312	0.0303	-0.108	-0.0245	-0.0201	0.0102	-0.183		
2012-07-02	-0.0432	-0.00409	-0.0303	-0.0636	-0.0779	-0.0262	-0.0589	0.0124	-0.00293		
2012-07-09	0.0642	0.0205	-0.00639	0.0209	0.0319	-0.0213	-0.0299	-0.00234	-0.00294		
2012-07-16	-0.0603	-0.0335	-0.0907	-0.096	-0.0124	-0.0287	-0.0505	0	-0.0324		
2012-07-23	0.0883	0.0795	0.0597	0.034	0.0814	0.0543	0.0798	0.00665	0.066		
2012-07-30	-0.0216	-0.00652	0.0215	0.0164	-0.0145	-0.0364	-0.0173	-0.000194	0.0105		
2012-08-06	0.0243	0.0202	0.0602	0.0418	0.0338	0.0221	0.0121	0.00369	0.0858		
2012-08-13	0.000272	0.00565	-0.00137	0.0336	0.0355	0.0381	0.0128	0.0557	0.0477		
2012-08-20	0.00518	0.0131	-0.00206	0.02	-0.0274	0.0526	0.0145	-0.00623	-0.0174		
2012 - 08 - 27	-0.000813	0.0117	0.0302	-0.0209	0.0141	0.0026	-0.00446	0.033	-0.0194		
2012-09-03	0	0	0	0	0	0	0	0	0		
2012-09-10	0.119	0.148	0.216	0.197	0.253	0.2	0.209	0.0318	0.273		
2012-09-17	-0.0167	-0.0382	-0.0636	-0.0461	-0.0111	-0.00995	-0.0415	-0.00658	-0.0263		
2012-09-24	-0.00986	-0.026	-0.0199	-0.0307	-0.0662	-0.0756	-0.0573	0	-0.0381		
2012-10-01	0.0381	0.0495	0.0454	0.0555	0.0168	0.0671	0.0509	0.0223	0.0454		
2012-10-08	-0.00216	0.00746	-0.0109	-0.0215	0.0213	-0.0062	-0.0148	-0.0123	0.0193		
2012-10-15	0.0168	0.0285	0.0127	0.0351	0.0347	0.0473	0.0349	0.0162	0.0088		