<u>Lyfter - Sprint 2</u>

Group 20

A. Requirements Engineering

(Sprint 1 requirements still hold)

Additional Functional Requirements:

- Carpooling/driver can pick up multiple riders in a single car (within a 5 minute wait time)
- Require the least number of drivers

B. System Modeling

Grouping Riders Model:

						R6	R7
					R10	R9	R8
R5	R1						
		R3		R4			
			R2				

C. Architectural Design

Carpooling Activity Diagram

One Driver to One Rider Activity Diagram

D. Design and Implementation

Jira Product Backlog:

In order to find the best optimized solution we gave the option to select whether car pooling or private car method was desired. The program will then prompt which user text file containing all of the randomized coordinates of riders.

We implemented a grouping algorithm to carpool and we made different rider txt files to test different cases. There are drivers spawning next to a rider so that the driver can reach the group of riders in 5 minutes or less through carpooling. We also have a 1 to 1 algorithm for private riding that needs the starting and ending points for each rider and if the driver can pick up and drop off a rider and still get to another rider in 5 minutes or less, the number of drivers can be optimized.

Code in the github https://github.com/radical-teach/minor-project-group-20 (most recent version)

E. Software Testing

Carpooling

Txt file	# of users	Drawing	Expected Output	Actual Output	
testTen1.txt	10	See Output3	4	4	
testTen2.txt	10	See Output4	5	5	

testFifty.txt	50	37	37
testHundred1.txt	100	83	83
testHundred2.txt	100	84	84

Output3:

Output4:

One Rider to One Driver

Txt file	# of users	Drawing	Expected Output	Actual Output	
user.txt	5	See Output8	4	4	
usersidk.txt	20	See Output9	19	19	

Output8:

0	0	END5	END3	0
END1	RØ	R2	0	0
0	0	END2	R1	0
R4	END4	R3	END0	0
0	0	R5	0	0

Output9:

0	0	0	0	END6	END13	R4	0	0	0
VEND7	0	0	0	END2	0	R15	END8	0	0
RØ	0	R11	R7	R8	R3	R19	0	0	0
0	0	END12	R13	0	0	R2	0	0	R18
0	0	0	0	END11	R16	0	0	0	0
0	0	END10	0	0	0	END15	0	R10	0
0	END19	0	0	0	0	0	0	END4	R1
END16	0	0	R17	R5	0	0	END18	0	END5
END14	0	0	R9	END9	0	R12	0	0	0
END3	END17	END1	END0	Ø	0	0	R6	0	R14

F. Evaluation

Verification:

In order to verify the code, multiple tests were ran with as many variables as possible being changed. Some of the variables that were changed include the number of riders, locations of riders, and the size of the grid. Testing that would cause errors was also completed, ensuring that the expected error would occur.

Validation:

In order to fully validate the code, the requirements were consistently being compared to the results and the system. Ensuring that the requirements were all being fulfilled was one of the core parts of each Scrum, with a much more detailed version being done at the beginning and end of each Sprint.