

Image Classification

Chapter Goals

After completing this chapter, you should be able to understand:

- What is image classification
- How to build features for image classification
- Limitations of traditional approaches for image classification
- How to implement an image classification pipeline in python

Image classification

Classification

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0 (assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

Classification

Classification: Important for other tasks

Example: Object Detection

Classification: Important for other tasks

Example: Object Detection

Classification: Important for other tasks

Example: Object Detection

Background

Donut

Coffee

Person

Car

Data Classification

Label=F(features)

Versicolor (0) Setosa (1) Virginica (2)

- -Sepal length
- -Sepal width
- -Petal length
- -Petal width

Data Classification

Classical image classification

Classical image classification

Trained model

Label: Virginica

Classical image classification: Features

Trained model

Label: Virginica

Label=F(features)

No obvious way to choose features

Classical image classification: Features

We could try:

or

Or...

Label: Versicolor

Classical image classification: Features

Machine Learning

Deep Learning

Deep Learning Vs Machine Learning

Factors

Data Requirement

Accuracy

Training Time

Hardware Dependency

Hyperparameter Tuning

Deep Learning

Requires large data

Provides high accuracy

Takes longer to train

Requires GPU to train properly

Can be tuned in various different ways.

Machine Learning

Can train on lesser data

Gives lesser accuracy

Takes less time to train

Trains on CPU

Limited tuning capabilities

Image Classification Datasets: MNIST

10 classes: Digits 0 to 9 28x28 grayscale images 50k training images 10k test images

Results from MNIST often do not hold on more complex datasets

Image Classification Datasets: CIFAR10

10 classes
50k training images (5k per class)
10k testing images (1k per class)
32x32 RGB images

Image Classification Datasets: CIFAR100

100 classes

50k training images (500 per class)

10k testing images (100 per class)

32x32 RGB images

20 superclasses with 5 classes each:

Aquatic mammals: beaver, dolphin, otter, seal, whale

Trees: Maple, oak, palm, pine, willow

Image Classification Datasets: **ImageNet**

ILSVRC

1000 classes

~1.3M training images (~1.3K per class) 50K validation images (50 per class) -100K test images (100 per class) Performance metric: Top 5 accuracy Algorithm predicts 5 labels for each image; one of them needs to be right

Images have variable size, but often resized to 256x256 for training

SCHOOL OF HUMAN SCIENCES WOOdel performance

Accuracy Ratio of correctly predicted observation to the total observations. Accuracy is a good measure but only when values of false positive and false negatives are almost same. Therefore, you have to look at other parameters to evaluate the performance of your model.

Accuracy = TP+TN/TP+FP+FN+TN

Precision Ratio of correctly predicted positive observations to the total predicted positive observations. High Precision relates to the low false positive rate.

Precision = TP/TP+FP

Recall Ratio of correctly predicted positive observations to the all observations in actual class

Recall = TP/TP+FN

F1 score - F1 Score is the weighted average of Precision and Recall. Therefore, this score takes both false positives and false negatives into account.

F1 Score = 2*(Recall * Precision) / (Recall + Precision)

selected elements

How many selected items are relevant?

relevant elements

How many relevant items are selected?

- Algorithms are susceptible to variations in color, contrast, lighting, size, angle...
- This can be mitigated by image preprocessing, but can require a lot of work
- Techniques apply to entire array of pixels, but only some pixels describe the object you are trying to classify
- Can be heavily influenced by background pixels that have little or no effect on the class of object

Intraclass Variation

Fine-Grained Categories

Maine Coon

Ragdoll

American Shorthair

Background Clutter

Illumination Changes

Deformation

Occlusion

Classical image classification in Python

Classical image classification in Python

```
def prep data (folder):
    # iterate through folders, assembling feature, label, and classname data objects
    import os
    import numpy as np
    import matplotlib.pyplot as plt
    class id = 0
   features = []
   labels = np.array([])
    classnames = []
    for root, dirs, filenames in os.walk(folder):
       for d in sorted(dirs):
            print("Reading data from", d)
           # use the folder name as the class name for this label
            classnames.append(d)
           files = os.listdir(os.path.join(root,d))
            for f in files:
                # Load the image file
                imgFile = os.path.join(root,d, f)
                img = plt.imread(imgFile)
                # The image array is a multidimensional numpy array
                # - flatten it to a single array of pixel values for scikit-learn
                # - and add it to the list of features
                features.append(img.ravel())
                # Add it to the numpy array of labels
               labels = np.append(labels, class id )
            class id += 1
    # Convert the list of features into a numpy array
    features = np.array(features)
    return features, labels, classnames
# The images are in a folder named 'shapes/training'
training folder name = '../data/shapes/training'
# Prepare the image data
features, labels, classnames = prep data(training folder name)
print(len(features), 'features')
print(len(labels), 'labels')
print(len(classnames), 'classes:', classnames)
```

numpy.ravel

numpy.ravel(a, order='C')

[source]

Return a contiguous flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

example

```
>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.ravel(x)
array([1, 2, 3, 4, 5, 6])
```


Chapter Summary

- We reviewed the concept of image classification
- We saw some example commonly used image datasets
- •We saw how to build an image classification pipeline in python
- We experimented with the concept of feature engineering
- We applied concepts learned in previous session for feature engineering task

HOG Features: Histogram of Oriented Gradients

Definition

The **histogram of** oriented gradients (HOG) is a feature descriptor used in computer vision and image processing for the purpos of object detection. The technique counts occurrences of gradient orientation in localized portions of an image.

105 (7×15). Each block is 16×16

The basic concepts of Neural Networks

What is Deep Learning?

Teaching computers how to learn a task directly from raw data

Why Deep Learning, and Why Now?

Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the **underlying features** directly from data?

Lines & Edges

Eyes & Nose & Ears

Facial Structure

Why Now?

Neural Networks date back decades, so why the resurgence?

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

IM .GENET

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

The Perceptron: Forward Propagation

The Perceptron: Forward Propagation

The Perceptron: Forward Propagation

Activation Functions

$$\hat{y} = \mathbf{g} (w_0 + \mathbf{X}^T \mathbf{W})$$

· Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Common Activation Functions

Importance of Activation Functions

The purpose of activation functions is to **introduce non-linearities** into the network

What if we wanted to build a neural network to distinguish green vs red points?

Importance of Activation Functions

The purpose of activation functions is to **introduce non-linearities** into the network

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

Building Neural Networks With Perceptrons

Multi Output Perceptron

Building Neural Networks With Perceptrons

Building Neural Networks With Perceptrons

Single Layer Neural Network

Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions

$$\mathcal{L}\left(f\left(x^{(i)}; \boldsymbol{W}\right), \underline{y^{(i)}}\right)$$
Predicted Actual

Empirical Loss

The empirical loss measures the total loss over our entire dataset

Also known as:

Cost function

Empirical Risk

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(\mathbf{x}^{(i)}; \mathbf{W}), \mathbf{y}^{(i)})$$

Predicted

Actual

Training A Neural Network

Loss Optimization

We want to find the network weights that achieve the lowest loss

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(\boldsymbol{x}^{(i)}; \boldsymbol{W}), \boldsymbol{y}^{(i)})$$

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} J(\boldsymbol{W})$$

$$\downarrow$$
Remember:
$$\boldsymbol{W} = \{\boldsymbol{W}^{(0)}, \boldsymbol{W}^{(1)}, \dots\}$$

Gradient Descent

Gradient Descent

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- Loop until convergence:
- Compute gradient, $\frac{\partial J(W)}{\partial W}$ Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

How does a small change in one weight (ex. w_2) affect the final loss J(W)?

$$\frac{\partial J(\mathbf{W})}{\partial w_2} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

$$\frac{\partial J(W)}{\partial w_1} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_1}$$
Apply chain rule! Apply chain rule!

$$\frac{\partial J(\boldsymbol{W})}{\partial w_1} = \frac{\partial J(\boldsymbol{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

$$\frac{\partial J(\mathbf{W})}{\partial w_1} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Repeat this for every weight in the network using gradients from later layers