

Lecture 5: Modern Techniques in SAT Solving

Jediah Katz jediahk@seas.upenn.edu


```
dpll(\varphi):
    if unit propagate() = CONFLICT: return UNSAT
    while not all variables have been set:
        let x = pick variable()
        create new decision level
        set x = T
        while unit propagate() = CONFLICT:
            if decision level = 0: return UNSAT
            backtrack()
            set x = F
   return SAT
```

Preprocessing

- Idea: make poly-time modifications to boolean formula before performing main DPLL search procedure
 - "Clean" redundant information
- Generally reduces size of formula, but not always
- Simple preprocessing: deduplication
 - Remove duplicate literals in clause: (1 v 2 v 1 v 3)
 - Remove duplicate clauses: (1 v 2) Λ (2 v 3) Λ (1 v 2)

- Literal x is **pure** in formula φ if \overline{x} doesn't appear in φ
- Pure literals can always be set to True
- Pure literal elimination: remove all clauses containing a pure literal from φ

$$(1 \lor \overline{2}) \land (3 \lor \overline{1} \lor \overline{4}) \lor (\overline{2} \lor 3 \lor 4)$$

 Until early 2000s, pure literal elimination was used in DPLL as a 2nd inference rule along with UP. Why do you think this stopped?

- Clause D is **subsumed by** clause C if $C \subseteq D$
 - If C is satisfied, then D is also satisfied
 - Can remove all subsumed clauses from formula

$$C: \left(1 \vee \overline{2} \vee 3\right)$$

$$D: \left(1 \vee \overline{2} \vee 3 \vee \overline{4} \vee \overline{5} \right) \mathsf{X}$$

- DPLL uses chronological backtracking: when we find a conflict, backtrack to the previous decision level
- **Issue:** might reach conflicts (contradictions) caused by the same underlying reason over and over again

$$\begin{pmatrix} \mathbf{1} \lor \mathbf{\overline{2}} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{\overline{1}} \lor \mathbf{\overline{3}} \lor \mathbf{4} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{\overline{1}} \lor \mathbf{\overline{3}} \lor \mathbf{\overline{4}} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{\overline{1}} \lor \mathbf{\overline{3}} \lor \mathbf{\overline{4}} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{\overline{1}} \lor \mathbf{\overline{3}} \lor \mathbf{\overline{4}} \end{pmatrix}$$

$$(1 \lor \overline{2})$$

$$(1 \lor 3 \lor 4)$$

$$(\boxed{1} \lor \boxed{3} \lor 4)$$

$$(\boxed{1} \lor 3 \lor \boxed{4})$$

$$(\overline{1} \vee \overline{3} \vee \overline{4})$$

$$\left(1 \vee \overline{2}\right)$$

$$(\overline{1} \vee 3 \vee 4)$$

UNSAT subformula

$$\begin{pmatrix}
\boxed{1} \lor 3 \lor 4
\end{pmatrix}$$

$$\begin{pmatrix}
\boxed{1} \lor \overline{3} \lor 4
\end{pmatrix}$$
UNSA

$$(\overline{1} \vee \overline{3} \vee \overline{4})$$

Chronological Backtracking

- Not every decision actually contributes to a conflict
- **Idea:** upon conflict, instead of backtracking one level to the last decision, **backjump** to an *important* decision
 - i.e., a decision that contributed to the conflict
- But how do we know what is an important decision?

- An **implication graph** *G* is a DAG whose vertices are literal assignments at a particular decision level
 - Ex: \overline{x} @3 represents setting x to False at level 3
 - Assignments can be decisions or due to unit propagation
- Can also contain special vertex \bot representing a conflict
- There is an edge $x@i \rightarrow y@j$ if the assignment x@i implied the assignment y@j
 - i.e., y@j was set by unit propagation from a clause containing \overline{x}


```
c_1: \overline{2} \vee \overline{3} \vee \overline{4}
```

 c_2 : $\overline{3} \vee \overline{5} \vee \overline{6}$

 c_3 : 4 \vee 6 \vee 7

 c_4 : $\overline{7} \vee \overline{8}$

 c_5 : $\overline{1} \vee \overline{7} \vee \overline{9}$

 c_6 : $\overline{1} \vee 8 \vee 9$

 c_1 : $\overline{2} \vee \overline{3} \vee \overline{4}$

 c_2 : $\overline{3} \vee \overline{5} \vee \overline{6}$

 c_3 : 4 V 6 V 7

 c_4 : $\overline{7} \vee \overline{8}$

 c_5 : $1 \vee 7 \vee 9$

 c_6 : $1 \vee 8 \vee 9$

 c_1 : $\overline{2} \vee \overline{3} \vee \overline{4}$

 c_2 : $\overline{3} \vee \overline{5} \vee \overline{6}$

 c_3 : 4 V 6 V 7

 c_4 : $\overline{7} \vee \overline{8}$

 c_5 : $1 \vee 7 \vee 9$

 c_6 : **1** \vee 8 \vee 9

1@1

 c_1 : $2 \vee 3 \vee 4$

 c_2 : $\overline{3} \vee \overline{5} \vee \overline{6}$

 c_3 : 4 V 6 V 7

 c_4 : $\overline{7} \vee \overline{8}$

 c_5 : $1 \lor 7 \lor 9$

 c_6 : **1** \vee 8 \vee 9

1@1

2@2

 c_1 : $2 \vee 3 \vee 4$

 c_2 : $3 \lor 5 \lor 6$ c_3 : $4 \lor 6 \lor 7$

 c_4 : $\overline{7} \vee \overline{8}$

 c_5 : $\overline{1} \vee \overline{7} \vee \overline{9}$

 c_6 : **1** \vee 8 \vee 9

$$c_1$$
: $2 \vee 3 \vee 4$

$$c_2$$
: $3 \lor 5 \lor 6$
 c_3 : $4 \lor 6 \lor 7$

$$c_3$$
: 4 V 6 V 7

$$c_4$$
: $\overline{7} \vee \overline{8}$

$$c_5$$
: $1 \lor 7 \lor 9$

$$c_6$$
: **1** \vee 8 \vee 9

$$c_1$$
: $2 \vee 3 \vee 4$

$$c_2$$
: $3 \vee 5 \vee 6$

$$c_3$$
: 4 \vee 6 \vee 7

$$c_4$$
: $\overline{7} \vee \overline{8}$

$$c_5$$
: $\overline{1} \vee \overline{7} \vee \overline{9}$

$$c_6$$
: **1** \vee 8 \vee 9

 c_1 : $2 \vee 3 \vee 4$

 c_2 : $3 \vee 5 \vee 6$

 c_3 : 4 \vee 6 \vee 7

 c_4 : $\overline{7} \vee \overline{8}$

 c_5 : $\overline{1} \vee \overline{7} \vee \overline{9}$

 c_6 : **1** \vee 8 \vee 9

 c_1 : $2 \vee 3 \vee 4$

 c_2 : $3 \vee 5 \vee 6$

 c_3 : 4 V 6 V 7

 c_4 : $\overline{7} \vee \overline{8}$

 c_5 : $1 \vee 7 \vee 9$

 c_6 : $1 \vee 8 \vee 9$

$$c_2$$
: $3 \vee 5 \vee 6$

$$c_3$$
: 4 \vee 6 \vee 7

$$c_4$$
: $\overline{7} \vee \overline{8}$

$$c_5$$
: $1 \vee 7 \vee 9$

$$c_6$$
: $1 \vee 8 \vee 9$

 c_1 : $2 \vee 3 \vee 4$

 c_2 : $3 \vee 5 \vee 6$

 c_3 : 4 \vee 6 \vee 7

 c_4 : $\overline{7} \vee \overline{8}$

 c_5 : $1 \vee 7 \vee 9$

 c_6 : $\overline{1} \vee 8 \vee 9$ Conflict!

Conflicts

- A **conflict set** of assignments (collectively) imply a conflict
- A **conflict cut** in an implication graph is a bipartition of the vertices $V = R \cup C$ such that:
 - Reason side R contains all decisions (source nodes)
 - Conflict side C contains the conflict node (a sink)
 - No edges cross $C \to R$, only $R \to C$
- The set of vertices with an outgoing edge crossing a given conflict cut forms a conflict set

Ex: Conflict Cuts

Conflict set: $\{1, 2, 3, 5\}$ Conflict set: $\{1, \overline{4}, \overline{6}\}$

And more...

- **Observation:** Given a conflict set $\{x_1, x_2, ..., x_k\}$, we know at least one literal in the set must be False
- Can derive the **conflict clause** $(\overline{x_1} \vee \overline{x_2} \vee \cdots \vee \overline{x_k})$
- Conflict-driven clause learning (CDCL): add conflict clauses to the original CNF we're solving
 - Introduced by GRASP (1996); revolutionized SAT solving
 - Many solvers have aggressive deletion policy for long, "inactive,"
 "unhelpful" learned clauses avoid explosion in CNF size

- Many conflict cuts how do we decide which to choose to build a conflict clause?
- Goal: after backjumping, be able to apply new knowledge from learned clause right away
 - Want learned clause to become a unit clause right after backjumping

Asserting Clauses

- A learned clause is asserting if it contains only one variable set on the same decision level as conflict
 - Is it possible for any conflict clause to contain zero?
- Observation: iff a clause is asserting, it will become a unit clause after backtracking
- How far can we backjump and still have asserting clauses become unit clauses?
 - Backjump to second-largest (i.e., deepest) decision level in asserting clause (or zeroth level if asserting clause has size 1)
 - i.e., return to that decision level (don't undo the decision)
 - Called the asserting level


```
cdcl(\varphi):
    if unit propagate() = CONFLICT: return UNSAT
    while not all variables have been set:
        let x = pick variable()
        create new decision level; set x = T
        while unit propagate() = CONFLICT:
             if level = 0: return UNSAT
             let (conflict cls, assrt lvl) = analyze conflict()
             let \varphi = \varphi \cup \{ \text{ conflict cls } \}
             # discard all assignments after asserting level
             backjump(assrt lvl)
     return SAT
```


 c_3 : 4 \vee 6 \vee 7

 c_4 : 7 \vee 8

 c_5 : $1 \vee 7 \vee 9$

 c_6 : $\overline{1} \vee 8 \vee 9$ Conflict!

$$c_1: \ \ \overline{2} \lor \overline{3} \lor \overline{4}$$

$$c_2: \ \ 3 \lor 5 \lor 6$$

$$c_3$$
: 4 \vee 6 \vee 7

$$c_4$$
: 7 \vee 8

$$c_5$$
: $1 \vee 7 \vee 9$

$$c_6$$
: $1 \vee 8 \vee 9$

$$c: \overline{1} \vee \overline{2} \vee \overline{3} \vee \overline{5}$$

$$c_1$$
: $\overline{2} \vee \overline{3} \vee \overline{4}$

$$c_2$$
: $3 \vee 5 \vee 6$
 c_3 : $4 \vee 6 \vee 7$

$$c_3$$
: 4 V 6 V 7

$$c_4$$
: 7 V 8

$$c_5$$
: $1 \vee 7 \vee 9$

$$c_6$$
: 1 $\vee 8 \vee 9$

$$c: \quad \overline{1} \vee \overline{2} \vee \overline{3} \vee \overline{5}$$

Backjump!

$$c_2$$
: $3 \vee 5 \vee 6$
 c_3 : $4 \vee 6 \vee 7$

$$c_3$$
: 4 \vee 6 \vee 7

$$c_{\Lambda}$$
: $\overline{7} \vee \overline{8}$

$$c_5$$
: $\overline{1} \vee \overline{7} \vee \overline{9}$

$$c_6$$
: 1 $\vee 8 \vee 9$

$$c_1: \ \ \overline{2} \lor \overline{3} \lor \overline{4}$$

$$c_2$$
: $3 \lor 5 \lor 6$
 c_3 : $4 \lor 6 \lor 7$

$$c_3$$
: 4 V 6 V 7

$$c_4$$
: $\overline{7} \vee \overline{8}$

$$c_5$$
: $\overline{1} \vee \overline{7} \vee \overline{9}$

$$c_6$$
: $1 \vee 8 \vee 9$

Wait a second... same outcome as backtracking with DPLL.

Unique Implication Points

- Unique implication point (UIP): a node in the implication graph that all paths from the most recent decision variable to the conflict must pass through
- **Intuition:** at the decision level of the conflict, the UIP is a literal that, by itself, implies a contradiction

The 1-UIP Scheme

- The "first" UIP is the closest UIP to the conflict node
 - i.e., the "rightmost"
- When we reach a conflict, cut after the first UIP
 - Generally produces shortest learned clauses

$$c_3$$
: 4 \vee 6 \vee 7

$$c_4$$
: 7 \vee 8

$$c_5$$
: $1 \vee 7 \vee 9$

$$c_6$$
: $\overline{1} \vee 8 \vee 9$ Conflict!

$$c_2$$
: $3 \vee 5 \vee 6$

$$c_3$$
: 4 V 6 V 7

$$c_4$$
: $7 \vee 8$

$$c_5$$
: $1 \vee 7 \vee 9$

$$c_6$$
: $\overline{1} \vee 8 \vee 9$ Conflict!

c: $1 \vee 7$

$$c_1$$
: $\overline{2} \vee \overline{3} \vee \overline{4}$

$$c_2$$
: $\overline{3} \vee \overline{5} \vee \overline{6}$

$$c_3$$
: 4 V 6 V 7

$$c_4$$
: $\overline{7} \vee \overline{8}$

$$c_5$$
: $1 \vee 7 \vee 9$

$$c_6$$
: 1 $\vee 8 \vee 9$

$$c: \overline{1} \vee \overline{7}$$

Backjump!

$$c_1$$
: $\overline{2} \vee \overline{3} \vee \overline{4}$

$$c_2$$
: $\overline{3} \vee \overline{5} \vee \overline{6}$
 c_3 : $4 \vee 6 \vee 7$

$$c_3$$
: 4 V 6 V 7

$$c_4$$
: $\overline{7} \vee \overline{8}$

$$c_5$$
: $1 \vee 7 \vee 9$

$$c_6$$
: $1 \vee 8 \vee 9$

$$C: \overline{1} \vee \overline{7}$$
 Unit

Restarts

- Problem: if we make bad early guesses, can get stuck in fruitless areas of search tree
- Solution: periodically restart the search throw away the current partial assignment
 - Modern solvers favor aggressive restart policy
 - MiniSAT, PicoSAT: every ~100 conflicts
- Key idea: CDCL is deterministic, so why won't we end up back where we were?
 - Learned clauses remain in formula after restart

CDCL solvers give us a new method in our toolkit!

 $add_clause(C)$: add clause C to the formula

- New clauses can only rule out previously satisfying assignments
- Can re-solve CNF with new clauses added
- Key: keep learned clauses generated during last call to solve()
- Simple use case: generating all satisfying assignments

VSIDS Decision Heuristic

- Variable State Independent Decaying Sum (VSIDS)
 - \circ For each literal x, maintain a score s(x)
 - o Initially, let s(x) be total number of occurrences of x
 - \circ **Bump:** when x appears in a learned clause, increment s(x)
 - Decay: periodically, divide all scores by a constant
 - Typically 2
 - "Periodically": every k conflicts
 - Select literal with highest score
- Persists across restarts as well

- Intuition: select literals that caused recent conflicts, and thus should be reassigned
- VSIDS is cheap: when we assign a variable, only need to update literals in learned clause
- Not only is it dynamic, it is non-memoryless: learns from the path to current state
 - All the dynamic heuristics we've seen only take into account current state

Let's conclude with a brief tour of the latest research!

Success stories from the past 10 years

Why is CDCL so successful?

- CDCL gives massive improvement on large, industrial instances
- Attempts to explain success of CDCL by graph community structure
 - O Nodes (variables) share an edge if they appear together in a clause

COMMUNITY STRUCTURE IN GRAPHS VARIABLE-INCIDENCE GRAPH OF NON-RANDOM FORMULA

COMMUNITY STRUCTURE IN GRAPHS VARIABLE-INCIDENCE GRAPH OF RANDOM FORMULA

CDCL + Community Structure

- "Easier" to solve instances with highly isolated communities
- Empirically: learned clauses link few communities
- Empirically: VSIDS bumps "bridge variables" that link communities
 - When these variables are picked by VSIDS, breaks links between communities
- **Caution:** community structure doesn't tell the whole story!

COMMUNITY STRUCTURE IN GRAPHS
VARIABLE-INCIDENCE GRAPH OF NON-RANDOM FORMULA

- Lookahead heuristics: for each unassigned variable x, try unit propagation from x = T and x = F
 - Pick variable that reduces the formula most on both sides
- Highly global heuristic: good even for hard formulas
 - Good at making decisions that will partition the hard formulas into easier subproblems
- **Issue:** too expensive to be practical for large formulas

- Cube and conquer (2012): combine lookaheads and CDCL
- Use lookaheads to guide initial search
- Partition formula into many easier subproblems
 - Many thousands (or millions) of subproblems
- Then solve those subproblems with CDCL...
 - ...possibly in parallel!

Cube and Conquer

4. If a subproblem is SAT,

we are done.

1. Use lookaheads to guide search and partition into many subproblems.

CDC

2. Once we are deep enough in the search tree, pass subproblems off to CDCL solver. (Easily parallelizable!) olems. T F

3. If a subproblem is UNSAT, carry over relevant learned clauses and solve the next subproblem.

LRB Decision Heuristic

- Learning rate branching (2016): use ML/reinforcement learning techniques to pick next decision
- Give each variable a score that captures its likelihood of generating learned clauses over time
- Multi-Armed Bandit problem: maximize expected winnings from playing different slot machines, where the reward distribution of the machines is unknown and can change
- Solve MAB using RL assigning a variable corresponds to playing on a slot machine

References

A. Biere, Handbook of satisfiability. Amsterdam: IOS Press, 2009.

E. Torlak, "A Modern SAT Solver," *CSE507: Computer-Aided Reasoning for Software Engineering.* [Online]. Available: https://courses.cs.washington.edu/courses/cse507/.

V. Ganesh, On the Unreasonable Effectiveness of Boolean SAT Solvers. Saarbrücken, Germany: Max Planck Institute, 2017. Available:

https://docs.google.com/a/gsd.uwaterloo.ca/viewer? a=v&pid=sites&srcid=Z3NkLnV3YXRlcmxvby5jYXxtYXBsZXNhdHxneDozYzQ3NDJjYjk4YWE4YTA0

Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, and L. Simon. "Impact of Community Structure on SAT Solver Performance." *Lecture Notes in Computer Science Theory and Applications of Satisfiability Testing – SAT 2014*, 2014, 252–68. https://doi.org/10.1007/978-3-319-09284-3_20.

J. Liang, V. Ganesh, E. Zulkoski, A. Zaman, and K. Czarnecki. "Understanding VSIDS Branching Heuristics in Conflict-Driven Clause-Learning SAT Solvers." *Hardware and Software: Verification and Testing Lecture Notes in Computer Science*, 2015, 225–41. https://doi.org/10.1007/978-3-319-26287-1_14.

M. Heule, O. Kullmann, S. Wieringa, and A. Biere. "Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads." *Hardware and Software: Verification and Testing Lecture Notes in Computer Science*, 2012, 50–65. https://doi.org/10.1007/978-3-642-34188-5_8.

J. Liang, V. Ganesh, P. Poupart, and K. Czarnecki. "Learning Rate Based Branching Heuristic for SAT Solvers." *Theory and Applications of Satisfiability Testing – SAT 2016 Lecture Notes in Computer Science*, 2016, 123–40. https://doi.org/10.1007/978-3-319-40970-2_9.