Final Presentation

July 10, 2017

Prerit Gupta Summer Intern Ravi Kiran Sarvadevabhatla PhD Student

Objective

- Visualization and Understanding of different CNN architectures: AlexNet,
 VGG-19, GoogLeNet, ResNet for sketch classification
- Understanding the Alexnet + GRU and Alexnet + LSTM architecture for classifying sketches utilizing the sequential stroke order.
- Comparing CNN and RNN architectures

Roadmap

Analysis through Deep Visualization Toolbox

- Software tool that provides a live, interactive visualization of every neuron in a trained convnet as it responds to a user-provided image or video.
- The tool displays forward activation values, preferred stimuli via gradient ascent, top images for each unit from the training set, deconv highlighting (Zeiler & Fergus, 2013) of top images, and backward diffs computed via backprop or deconv starting from arbitrary units.

Reference: J. Yosinki, Understanding Neural Networks through Deep Visualization, ICML

DL Workshop, 2015

Github Repository: https://github.com/yosinski/deep-visualization-toolbox

Link: http://yosinski.com/deepvis

Yosinki's Deep Visualization Toolbox is used to visualize different filters within selected layer for sketches.

Target Class: Airplane Predicted Probabilities:

- 0.96 Airplane
- 0.04 Flying Bird

Deep Visualization toolbox

Visualizing layers by finding the Maximum Activated Input Patch & perform Deconvolution

- Finding the top 9 patches from the input images in validation set which maximally activate a filter for a certain layer.
- To understand which kind of features are learned by filters in different layers and observe their sensitivity towards certain classes & localized patches with certain geometry.
- Perform deconvolution for the filters that are activated by maximally activating input patches.

AlexNet Visualization: Convolution Layer 3

Deconvolution of the activated patch

- 99 x 99 Input Patch for 284th filter in 3rd convolutional layer.
- Maximum Activation: 428.343414
- Filter sensitive to specific parts of sketches having circles.
- Classes with performance: head-phones 100.0 traffic light 92.86 scissors 100.0 wheelbarrow 92.86 wheelbarrow 92.86 car (sedan) 92.86 camera 85.71 train 78.57 radio 57.14

Plotting histograms to understand class preference in each layer

- The top 9 maximally activated images for every filter in a layer are traced back to the classes which they belong.
- For every rank of activation across all filters in a layer, a histogram is plotted to represent the count of class a filter prefers.
- Hence, for every layer 9 histograms are obtained on whose weighted summation a single histogram is obtained for every layer.
- Weight of rank 1 class -> 9, Rank 2 -> 8 & so on.... Rank 9 -> 1

Inference

Top 5 prefered classes:

- Tennis-racket
- Sun
- Telephone
- Cake
- Rainbow

Least 5 prefered classes:

- Baseball bat
- Nose
- Rifle
- Bed
- Bowl

Convolution Layer 5

Summary Plot with class performance(Alexnet with Imagenet Mean)

VGG-19: Conv5_4 Layer

Input Patch for Maximum Activation

Deconvolution of the activated patch

- 224 x 224 Input Patch for 352nd filter in Conv5_4 layer
- Maximum Activation: 575.805237
- Filter sensitive to animals like dog, sheep, pig.
- Classes with performance: dog 50.0 dog 50.0 sheep 92.86 dog 50.0 dog 50.0 dog 50.0 pig 85.71 dog 50.0 dog 50.0

Summary Plot (VGG-19 with Imagenet Mean)

Top 5 Classes Bottom 5 Classes Conv4_1 car (sedan) hedgehog nvelope ablelamp Conv4_2 Conv4_3 85.71 baseball bat Conv4_4 tennis-racket Conv5_1 0 0 92.86 wrist-watch Conv5 2 85.71 wrist-watch Conv5 3 85.71 zebra Conv5_4 FC person walking Softmax

First Layer Filter Visualizations

(AlexNet, GoogLeNet, VGG - 19, ResNet)

Code: http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb

Alexnet

Pretrained for images (Before fine-tuning)

Trained for sketches (After fine-tuning)

VGG-19

Pretrained for images (Before fine-tuning)

Trained for sketches (After fine-tuning)

GoogLeNet

Pretrained for images (Before fine-tuning)

Trained for sketches (After fine-tuning)

ResNet-50

Trained for sketches (After fine-tuning)

Characterizing Visualizations in layers of GoogLeNet architecture

(Training of GoogLeNet uses mean file of ImageNet dataset)

conv1/7x7 s2

Input Patch for Maximum Activation

Deconvolution of the activated patch

- 33rd filter in 1st convolutional layer.
- Maximum activation: 3823.192627
- Filter sensitive to edge transition.
- Classes with performance: bicycle 100.0 baseball bat 78.57 trumpet 71.43 grapes 100.0 syringe 85.71 teapot 100.0 pear 100.0 bee 57.14 scorpion 71.43

conv2/3x3_reduce

Input Patch for Maximum Activation

Deconvolution of the activated patch

- Input Patch for 43rd filter.
- Maximum activation : 345.881775
- Filter sensitive to edge transition.
- Classes with performance: person sitting 71.43 kangaroo 64.29 pizza 92.86 radio 85.71 rainbow 100.0 calculator 85.71 octopus 92.86 rabbit 78.57 ladder 100.0

inception_3a/3x3

Input Patch for Maximum Activation

Deconvolution of the activated patch

- Input Patch for 2nd filter
- Maximum activation: 1011.357605
- Filter sensitive to curved patterns.
- Classes with performance: key 92.86 radio 85.71 tree 100.0 monkey 57.14 crab 78.57 monkey 57.14 shovel 92.86 mermaid 71.43 tree 100.0

inception_3b/5x5

Input Patch for Maximum Activation

Deconvolution of the activated patch

- Input Patch for 73rd filter.
- Maximum activation: 893.476807
- Filter sensitive to edge transition.
- Classes with performance: train 78.57 crown 64.29 train 78.57 rabbit 78.57 crab 78.57 person sitting 71.43 rollerblades 92.86 pineapple 92.86 fish 92.86

inception 4a/1x1

Input Patch for Maximum Activation

Deconvolution of the activated patch

- Input Patch for 79th filter
- Maximum activation: 800.211426
- Filter sensitive to triangular strokes.
- Classes with performance: umbrella 92.86 umbrella 92.86 umbrella 92.86 umbrella 92.86 umbrella 92.86 pizza 92.86 pizza 92.86 tent 92.86 sailboat 85.71

inception_4b/3x3

Input Patch for Maximum Activation

Deconvolution of the activated patch

- Input Patch for 87th filter
- Maximum activation: 515.481628
- Filter sensitive to animals.
- Classes with performance: cat 35.71 kangaroo 64.29 snowman 100.0 monkey 57.14 snowman 100.0 pig 64.29 squirrel 78.57 giraffe 100.0 owl 71.43

inception 4c/5x5

Input Patch for Maximum Activation

Deconvolution of the activated patch

- Input Patch for 45th filter
- Maximum activation : 611.922852
- Filter sensitive to some special classes.
- Classes with performance: angel 50.0 pizza 92.86 pizza 92.86 crown 64.29 mushroom 100.0 crown 64.29 church 100.0 angel 50.0 pizza 92.86

inception_4d/1x1

Input Patch for Maximum Activation

Deconvolution of the activated patch

- Input Patch for 97th filter
- Maximum activation: 375.478973
- Filter sensitive to dotted strokes.
- Classes with performance: wrist-watch 85.71 cactus 71.43 mermaid 71.43 telephone 71.43 telephone 71.43 cactus 71.43 person walking 100.0 wrist-watch 85.71 pizza 92.86

inception 4e/1x1

Input Patch for Maximum Activation

Deconvolution of the activated patch

- Input Patch for 12th filter
- Maximum activation: 291.59848
- Filter sensitive to spiral strokes.
- Classes with performance: snail 100.0 sna

inception_5a/3x3

- Deconvolution of the activated patch

- Input Patch for 228th filter
- Maximum activation: 163.456757
- Filter sensitive to specific classes.
- Classes with performance: computer-mouse 78.57 santa claus 78.57 santa claus 78.57 hamburger 85.71 santa claus 78.57 hamburger 85.71 hat 85.71 bell 85.71 teapot 100.0

inception_5b/5x5

Deconvolution of the activated patch

- Input Patch for 89th filter
- Maximum activation: 71.704094
- Filter sensitive to some specific classes.
- Classes with performance: pineapple 92.86 rabbit 78.57 rabbit 78.57 pineapple 92.86 rabbit 78.57 pineapple 92.86 carrot 100.0 bee 57.14 rabbit 78.57

loss3/loss3

- Input Patch for Maximum Activation
- - Deconvolution of the activated patch

- Input Patch for 1st filter
- Maximum activation: 800.211426
- Filter corresponding to airplane class

Characterizing Visualizations in RNN

(AlexNet + GRU and AlexNet + LSTM architectures)

RNN for Sketch Recognition

- Sequential nature of stroke by stroke hand-sketching improves overall learning rate.
- GRU models sequential data in natural fashion.

Recognition Results for different networks

Figure 2: Comparison of online recognition performance for various classifiers. Our architecture recognizes the largest % of sketches at all levels of sketch completion. Best viewed in color.

CNN	RECURRENT NETWORK	#HIDDEN	Avg. Acc
Alexnet-FC	GRU	3600	85.1%
Alexnet-FC	LSTM	3600	82.5%
SketchCNN [23]	5	-	81.4%
Alexnet-FT	5	17	83.9%
SketchCNN-Sch-FC	LSTM	3600	78.8%
SketchCNN-Sch-FC	GRU	3600	79.1%

Table 1: Average recognition accuracy (rightmost column) for various architectures. #Hidden refers to the number of hidden units used in recurrent network. We obtain state-of-the-art results for sketch object recognition.

Accuracy

Accuracy	LSTM	GRU
Final prediction	80.13	82.72
Max pooling over predictions	77.90	79.42
Average pooling over predictions	75.71	77.19
Weighted Accuracy	80.58	83.39

Time Step Histogram

Alexnet + GRU

Alexnet + LSTM

	Alexnet + GRU (80.13%)		Alexnet + LSTM (82.72%)	
	Categories	Accuracy(%)	Categories	Accuracy(%)
Тор	backpack, baseball, candle, castle, giraffe, ladder, snail, spoon, t-shirt, tractor, trouser,zebra, etc.	100	Apple, bowl, candle, church, door, ear, envelope, giraffe, ladder, pear, sponge, t-shirt, wineglass	100
Mid	Book, crown, frog, mailbox, nose, rabbit, radio, saxophone, spider, trumpet, violin, windmill, etc.	71.43	Alarm, banana, cactus, flower, horse, knife, present, radio, scissors, train, wristwatch, etc.	78.57
Bottom	dog	28.57	computer-mouse	21.43

Predict at around which time sequence does the LSTM model predicts correct accuracy.

Class: Zebra

At t = 14 (xtick: 1400), the model predicts it correct

Predict at around which time sequence does the model predicts correct accuracy.

Class: crocodile

At t = 11 (xtick: 1100), the model predicts it correct

Predict at around which time sequence does the model predicts correct accuracy.

At t = 17 (xtick : 1700), the model predicts it correct

Predict at around which time sequence does the model predicts correct accuracy.

At t = 11 (xtick: 1100), the model predicts it correct

Comparing CNN with RNN

(CNN: AlexNet, RNN: LSTM, GRU)

Comparing Confusion Matrices

CNN vs RNN correctly classified sketches

CNN: AlexNet	RNN: LSTM	No. of sketches
Correct	Correct	1732
Correct	Incorrect	173
Incorrect	Correct	63
Incorrect	Incorrect	272

CNN: AlexNet	RNN: GRU	No. of sketches
Correct	Correct	1772
Correct	Incorrect	133
Incorrect	Correct	81
Incorrect	Incorrect	254

Finding Human classification time steps from subjects through GUI

- Human evaluation setup:
 - Shortlist 10 random sketches from top-3 correct-from-first-stroke categories. Let the categories here be C-1
 - Shortlist 10 random sketches from top-3 correct-from-second-stroke categories. Let the categories here be C-2
 - Shortlist 10 random sketches from top-3 misclassified categories. Let the categories here be C-3.
 - Mix a random set of x other categories to have a total of 30 categories from the drop-down list.
 Include (x+1) as 'Not Sure' and make this default in the GUI tool.
 - GUI tool: Show subjects the sketches and ask them to make selection from this. Randomly shuffle
 the drop-down list each time.
 - o Analysis:
 - Correctly recognized = More than half people correctly recognize a sketch.
 - How many C-1 category sketches are correctly recognized by people at first stroke?
 - How many C-2 category sketches are correctly recognized by people at second stroke?
 - How many C-3 category sketches are correctly recognized (at some stroke)?

Human Annotation for Sketch recognition

Enter the login ID:

Start

Sample Test

Read the instructions carefully:

- (1) Enter your login ID & click on Start.(2) Click on select option in the drop down menu below.
- (3) Select None of these if the predicted class does not matches in the list and input the class name in the dialogue
- (3) Click "Enter" after selecting the most likely option from the drop down list.
- (4) Do not guess the class. Select "Not Sure" for the next stroke hint.
- (5) Press "Enter" only if you are sure of the correct class as the answer entered will be finally accepted and there is no way back changing it to avoid human biasness from the next stroke hint.
- (6) Always use Save & Exit to checkout.

Click Start for options

Enter

Not Sure

Save & Exit

References

[1] Zeiler and Fergus paper

- https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf (paper)
- http://vision.cse.psu.edu/people/chrisF/deep-learning/DL_pres.pdf (slides)
- https://www.youtube.com/watch?v=ta5fdaqDT3M (video)
- [2] A Taxonomy and Library for Visualizing Learned Features in CNNs (http://icmlviz.github.io/assets/papers/20.pdf)
- [3]Yang et. al., Sketch-a-Net; a Deep Neural network that beats humans: http://www.eecs.gmul.ac.uk/~yzs/yu2016sketchanet.pdf
- [4] R.K. Sarvadevabhatla, J. Kundu & V. Babu R, Enabling My Robot To Play Pictionary: Recurrent Neural Networks For Sketch
- Recognition, URL: https://arxiv.org/pdf/1608.03369.pdf
- [5] Yosinski's Deep Visualization Toolbox : https://github.com/yosinski/deep-visualization-toolbox
- [6] LSTMViz toolbox http://blog.echen.me/2017/05/30/exploring-lstms/
- [7] Visualizing and Understanding RNNs: https://arxiv.org/pdf/1506.02078
- [8] Visualization Analysis for recurrent networks http://cslt.riit.tsinghua.edu.cn/mediawiki/images/6/6a/Visual.pdf

Thank You

