Statistical foundation of Data Sciences

Practical-05

Roll number: GF202344767

Name: Ishita Mehta

Workflow summary:

- 1. Import pandas for data handling.
- 2. Read the file using pd.read_csv("teacher_ratings_updated.csv").
- 3. Use df.head() and df.columns to see the data and column names.
- 4. Find total number of records using len(df).

Calculate probability for Q1:

- 1. Filter rows where eval > 4.5.
- 2. Divide the count by total records.

Calculate probability for Q2:

- 1. Filter rows where eval is between 3.5 and 4.2.
- 2. Divide the count by total records.
- 3. Print the calculated probabilities for both cases.

Questionl 3: (Two-Tailed Z-Test)

- 1. Import math and scipy.stats.norm.
- 2. Define given data:
 - Population mean (µ) = 12
 - Population SD (σ) = 5.5
 - Sample mean $(\bar{x}) = 10.7$
 - Sample size (n) = 36
- 3. Form hypotheses:

 H_0 : μ = 12 (no difference)

 H_1 : $\mu \neq 12$ (difference exists)

- 4. Compute Z-score:
- 5. Use formula

$$Z=(x^--\mu)/(\sigma/\sqrt{n})$$

- 6. Find critical Z value: For $\alpha = 0.05$ (two-tailed), critical Z = ± 1.96 .
- 7. Decision rule:

If
$$|Z| > 1.96 \rightarrow \text{Reject H}_0$$

If $|Z| \le 1.96 \rightarrow \text{Fail to reject H}_0$

Github Repository link:

 $https://github.com/pineapplesdontbelongonpizza/CSU1658_practical1_Testing_Pandas_and_Numpy.git$