Fancy Title of Your Thesis

by

First Last (姓名)

A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland May, 2019

© 2019 by First Last (姓名) All rights reserved

Abstract

This is your abstract.

Research Advisor: First1 Last1

Academic Advisor: First2 Last2

Thesis Committee

Primary Readers

First1 Last1

Astronomer Space Telescope Science Institute

First2 Last2

Assistant Professor Department of Physics & Astronomy Johns Hopkins Krieger School of Arts & Sciences

First3 Last3

Associate Professor Department of Physics & Astronomy Johns Hopkins Krieger School of Arts & Sciences

First4 Last4

Professor

Department of Physics & Astronomy Johns Hopkins Krieger School of Arts & Sciences

Alternate Readers

First5 Last5

Scientist

Johns Hopkins University Applied Physics Laboratory

First6 Last6

Associate Professor Department of Applied Mathematics & Statistics Johns Hopkins Whiting School of Engineering

Acknowledgments

Put your acknowledgements here.

Some mixed English and Chinese examples within pinyin:

Thank you my peers: Jane Doe, Zhāng Sān (张三), Lǐ Sì (李四), Wáng Wǔ (王五), and John Doe.

Table of Contents

Ta	ble o	f Conte	ents	vi
Li	st of	Tables		viii
Li	st of	Figures	;	ix
1	Intr	oductio	on	1
	1.1	Figure	e Examples	1
		1.1.1	One Figure	1
		1.1.2	One Horizontal Figure	2
		1.1.3	A Set of Subfigures	4
	1.2	Citing	Chapters	5
2	Cha	pter w	ith Citation in ApJ Style	6
	2.1	Citatio	on Examples	6
	2.2	Equat	ion and Table Examples	6
		2.2.1	Equation	7
		2.2.2	Long Table	7

	2.3	Appendix	ç
3	And	other Chapter in ApJ Style	11
	3.1	Table example	11
4	Con	aclusion	1 4
	4.1	Results	14
	4 2	Ongoing Work and Future Exploration	14

List of Tables

2.1	Short table description 1	7
3.1	Short table description 2	12

List of Figures

1.1	Short description of the figure 1.1.		•	 •	•	•	•	•	•	•	•	•	1
1.2	Short description of the figure 1.2.		•	 •								•	3
1.3	Short description of figure 1.3												4

Chapter 1

Introduction

1.1 Figure Examples

1.1.1 One Figure

Figure 1.1 shows Pluto's image captured by New Horizons.

Figure 1.1: Long description of figure 1 (Pluto captured by New Horizons). Note: there is a short description which will show on your list of figures. Image taken from https://images-assets.nasa.gov/image/PIA19708/PIA19708~orig.jpg.

1.1.2 One Horizontal Figure

Figure 1.2 is an example of landscape image, which is Ultima Thule captured by New Horizons extended mission.

Figure 1.2: Long description of figure 1.2 (Ultima Thule captured by New Horizons). Note: there is a short description which will show on your list of figures. Note: in the \includegraphics command, use \linewidth instead of \textwidth to occupy almost the entire field of view. Image taken from https://solarsystem.nasa.gov/system/news_items/main_images/819_MU69_1600.jpg.

1.1.3 A Set of Subfigures

Figure 1.3 is an example of a set of subfigures. You can cite the panels individually: Figure 1.3a, Figure 1.3b, and Figure 1.3c.

Figure 1.3: Long description of figure 1.3.

1.2 Citing Chapters

Chapter 2 has the citations in the Astrophysical Journal¹ (ApJ) style, it also shows how to use a long table. Chapter 3 has a normal table.

¹https://iopscience.iop.org/journal/0004-637X

Chapter 2

Chapter with Citation in ApJ Style

Abstract Put your abstract in.

2.1 Citation Examples

You can cite a reference using \citet{}, \citep{}, and \citealp{}. They will look like this:

```
Ren et al. (2018),
(Ren et al., 2018),
and Ren et al., 2018.
```

You can just copy the AAS bibtex entires from ADS¹, and paste them in the .bib file.

2.2 Equation and Table Examples

This is your section alpha.

¹https://ui.adsabs.harvard.edu

2.2.1 Equation

This is an equation sample taken from Ren et al. (2018):

$$T_{\text{NMF}} = D_{\text{NMF}} + S_{\text{NMF}}, \tag{2.1}$$

where the subscript $_{NMF}$ means performing the NMF modeling result for the stellar signal (S) or disk signal (D) alone.

You can refer to the equation as Equation (2.1).

2.2.2 Long Table

Table 2.1 is part of a long table that was previous presented in an ApJ paper (Ren et al., 2018). The format was changed from the deluxetable style in ApJ.

Table 2.1: Long description of table 1

Symbol	Expression	Dimension	Meaning
0	$(A \circ B)_{ij} =$		Element-wise (Hadamard) multi-
	$A_{ij}B_{ij}$		plication for matrices A and B of
			same dimension.
D		$1 \times N_{\rm pix}$	Flattened image of the astrophys-
		•	ical signal (i.e., no stellar infor-
			mation).
D	$T - \hat{f}T_{\text{NMF}}$	$1 \times N_{\rm pix}$	Reduced best image of the as-
		•	trophysical signal (D), obtained
			from BFF procedure.
D_f	$T - fT_{\text{NMF}}$	$1 \times N_{\rm pix}$	Reduced image of the astrophys-
,		•	ical signal with scaling factor f .
$D_{ m NMF}$	$\omega^{(D)}H$	$1 \times N_{\rm pix}$	NMF model of the astrophysical
		•	signal (D).
$\delta(\cdot)$			The change of the (·) item after
			one iteration.

(continued)

Table 2.1 – (continued)

· · · · · · · · · · · · · · · · · · ·			
Symbol	Expression	Dimension	Meaning
$F_{\rm disk}/F_{\rm star}$			Flux ratio between the disk and
			the star.
f			Scaling factor, where $0 < f < 1$.
\hat{f}			Optimum scaling factor obtained
			from the BFF procedure, corre-
			sponding with \hat{D} .
$H, H^{(k)}, H^{(k+1)}$	$[H_1^T,\cdots,H_n^T]^T$	$n \times N_{pix}$	NMF component matrix for the
			reference cube.
H_1 , H_i , H_n		$1 \times N_{\rm pix}$	The 1-st, <i>i</i> -th, and <i>n</i> -th NMF com-
		_	ponent for the reference cube (R) .
$(\cdot)^{(k)}$, $(\cdot)^{(k+1)}$ $\mu_f^{(k)}$	superscript		Iteration step number.
$\mu_f^{(k)}$			The median of the pixels in D_f at
,			iteration step k .
$N_{ m pix}$			Number of pixels in each image.
$N_{ m ref}$			Number of images in the refer-
			ence cube (R).

The above table crosses different pages automatically. If you find a way to use the deluxetable directly, please do not use this format since it takes a few minutes to do the conversion.

2.3 Appendix

This is your appendix for this chapter.

References

Ren, B., L. Pueyo, G. B. Zhu, J. Debes, and G. Duchêne (2018). "Non-negative Matrix Factorization: Robust Extraction of Extended Structures". In: *The Astrophysical Journal* 852, 104, p. 104. DOI: 10.3847/1538-4357/aaa1f2. arXiv: 1712.10317 [astro-ph.IM].

Chapter 3

Another Chapter in *ApJ* Style

Note: if you want italic font in your chapter title, use \textit{} rather than \it{} to have a better formatting in the Table of Contents.

Abstract This is your abstract.

3.1 Table example

Table 3.1 has been presented in Ren et al. (2017). It is not presented in Ren et al. (2018). I am citing two references just to show you that the Reference section for this table will have two entries.

In the .bib file, you do not have to arrange the entries by their citation order! And you can add more entries—they will **not** appear on the References section as long as you don't cite them.

 Table 3.1: Long table description 2.

Proposed Aperture Name Number of Flat-Fielded Files 1 BAR10 116 2 WEDGE A0.6 228 3 WEDGE A1.0 493 4 WEDGE A1.8 86 5 WEDGE A2.0 39 6 WEDGE A2.5 1 7 WEDGE A2.8 5 8 WEDGE B1.0 37 9 WEDGE B1.8 8 10 WEDGE B2.0 9 11 WEDGE B2.5 116 12 WEDGE B2.8 5			
2 WEDGE A0.6 228 3 WEDGE A1.0 493 4 WEDGE A1.8 86 5 WEDGE A2.0 39 6 WEDGE A2.5 1 7 WEDGE A2.8 5 8 WEDGE B1.0 37 9 WEDGE B1.8 8 10 WEDGE B2.0 9 11 WEDGE B2.5 116		Proposed Aperture Name	Number of Flat-Fielded Files
3 WEDGE A1.0 493 4 WEDGE A1.8 86 5 WEDGE A2.0 39 6 WEDGE A2.5 1 7 WEDGE A2.8 5 8 WEDGE B1.0 37 9 WEDGE B1.8 8 10 WEDGE B2.0 9 11 WEDGE B2.5 116	1	BAR10	116
4 WEDGE A1.8 86 5 WEDGE A2.0 39 6 WEDGE A2.5 1 7 WEDGE A2.8 5 8 WEDGE B1.0 37 9 WEDGE B1.8 8 10 WEDGE B2.0 9 11 WEDGE B2.5 116	2	WEDGE A0.6	228
5 WEDGE A2.0 39 6 WEDGE A2.5 1 7 WEDGE A2.8 5 8 WEDGE B1.0 37 9 WEDGE B1.8 8 10 WEDGE B2.0 9 11 WEDGE B2.5 116	3	WEDGE A1.0	493
6 WEDGE A2.5 1 7 WEDGE A2.8 5 8 WEDGE B1.0 37 9 WEDGE B1.8 8 10 WEDGE B2.0 9 11 WEDGE B2.5 116	4	WEDGE A1.8	86
7 WEDGE A2.8 5 8 WEDGE B1.0 37 9 WEDGE B1.8 8 10 WEDGE B2.0 9 11 WEDGE B2.5 116	5	WEDGE A2.0	39
8 WEDGE B1.0 37 9 WEDGE B1.8 8 10 WEDGE B2.0 9 11 WEDGE B2.5 116	6	WEDGE A2.5	1
9 WEDGE B1.8 8 10 WEDGE B2.0 9 11 WEDGE B2.5 116	7	WEDGE A2.8	5
10 WEDGE B2.0 9 11 WEDGE B2.5 116	8	WEDGE B1.0	37
11 WEDGE B2.5 116	9	WEDGE B1.8	8
	10	WEDGE B2.0	9
12 WEDGE B2.8 5	11	WEDGE B2.5	116
	12	WEDGE B2.8	5

References

- Ren, B., L. Pueyo, M. D. Perrin, J. H. Debes, and É Choquet (2017). "Post-processing of the HST STIS coronagraphic observations". In: *Techniques and Instrumentation for Detection of Exoplanets VIII*. Vol. 10400. Proceedings of the SPIE, p. 1040021. DOI: 10.1117/12.2274163. URL: http://dx.doi.org/10.1117/12.2274163.
- Ren, B., L. Pueyo, G. B. Zhu, J. Debes, and G. Duchêne (2018). "Non-negative Matrix Factorization: Robust Extraction of Extended Structures". In: *The Astrophysical Journal* 852, 104, p. 104. DOI: 10.3847/1538-4357/aaa1f2. arXiv: 1712.10317 [astro-ph.IM].

Chapter 4

Conclusion

4.1 Results

Blah blah blah. Blah blah blah. Blah blah blah.

4.2 Ongoing Work and Future Exploration

Tackling Some Exciting Problems Blah blah blah.

Methodology: Blah blah blah.

Expected Results: Blah blah blah.

John Doe

Resumé title

Some quote

Born on June 26th, 2014 in Ultima Thule, Solar System.

Education

year-year **Degree**, Institution, City, Grade.

Description

year-year **Degree**, Institution, City, Grade.

Description

Master thesis

title *Title*

supervisors Supervisors

description Short thesis abstract

Experience

Vocational

year-year Job title, Employer, City.

General description no longer than 1–2 lines.

Detailed achievements:

- Achievement 1;
- Achievement 2, with sub-achievements:
 - Sub-achievement (a);
 - Sub-achievement (b), with sub-sub-achievements (don't do this!);
 - · Sub-sub-achievement i;
 - · Sub-sub-achievement ii;
 - · Sub-sub-achievement iii;
 - Sub-achievement (c);
- Achievement 3.

year-year **Job title**, Employer, City.

Description line 1 Description line 2

Miscellaneous

year-year Job title, Employer, City.

Description

Languages

Language 1 Skill level

Comment

Comment

Language 2 Skill level Language 3 Skill level

Comment

Computer skills

category 1 XXX, YYY, ZZZ

category 4 XXX, YYY, ZZZ

category 2 XXX, YYY, ZZZ

category 5 XXX, YYY, ZZZ

category 3 XXX, YYY, ZZZ

category 6 XXX, YYY, ZZZ

Interests

hobby 1 Description

hobby 2 Description

hobby 3 Description

Extra 1

- o Item 1
- o Item 2
- Item 3. This item is particularly long and therefore normally spans over several lines. Did you notice the indentation when the line wraps?

Extra 2

• Item 1

• Item 4

o Item 2

• Item 5[?]

• Item 3

• Item 6. Like item 3 in the single column list before, this item is particularly long to wrap over several lines.

References

Category 1	Category 2	All the rest & some more
• Person 1	Amongst others:	That person, and those also (all avail-
• Person 2	• Person 1, and	able upon request).
• Person 3	• Person 2	
	(more upon request)	

Publications of the Template Creator

1st Authored Journals

- [1] B. Ren, R. Dong, T. M. Esposito, L. Pueyo, J. H. Debes, C. A. Poteet, É. Choquet, M. Benisty, E. Chiang, C. A. Grady, D. C. Hines, G. Schneider, and R. Soummer. A Decade of MWC 758 Disk Images: Where Are the Spiral-arm-driving Planets? The Astrophysical Journal Letters, 857:L9, April 2018.
- [2] **B. Ren**, L. Pueyo, G. B. Zhu, J. Debes, and G. Duchêne. Non-negative Matrix Factorization: Robust Extraction of Extended Structures. *The Astrophysical Journal*, 852:104, January 2018.
- [3] **B. Ren**, T. Fang, and D. A. Buote. X-Ray Absorption by the Warm-hot Intergalactic Medium in the Hercules Supercluster. *The Astrophysical Journal Letters*, 782:L6, February 2014.

2nd Authored Journals

 Y. Mo, B. Ren, W. Yang, and J. Shuai. The 3-dimensional cellular automata for HIV infection. *Physica A Statistical Mechanics and its Applications*, 399:31–39, April 2014.

n-th Authored Journals

- [1] T. M. Esposito, G. Duchêne, P. Kalas, M. Rice, É. Choquet, B. Ren, M. D. Perrin, C. H. Chen, P. Arriaga, E. Chiang, E. L. Nielsen, J. R. Graham, J. J. Wang, R. J. De Rosa, K. B. Follette, S. M. Ammons, M. Ansdell, V. P. Bailey, T. Barman, J. Sebastián Bruzzone, J. Bulger, J. Chilcote, T. Cotten, R. Doyon, M. P. Fitzgerald, S. J. Goodsell, A. Z. Greenbaum, P. Hibon, L.-W. Hung, P. Ingraham, Q. Konopacky, J. E. Larkin, B. Macintosh, J. Maire, F. Marchis, C. Marois, J. Mazoyer, S. Metchev, M. A. Millar-Blanchaer, R. Oppenheimer, D. Palmer, J. Patience, L. Poyneer, L. Pueyo, A. Rajan, J. Rameau, F. T. Rantakyrö, D. Ryan, D. Savransky, A. C. Schneider, A. Sivaramakrishnan, I. Song, R. Soummer, S. Thomas, J. K. Wallace, K. Ward-Duong, S. Wiktorowicz, and S. Wolff. Direct Imaging of the HD 35841 Debris Disk: A Polarized Dust Ring from Gemini Planet Imager and an Outer Halo from HST/STIS. The Astronomical Journal, 156:47, August 2018.
- [2] É. Choquet, G. Bryden, M. D. Perrin, R. Soummer, J.-C. Augereau, C. H. Chen, J. H. Debes, E. Gofas-Salas, J. B. Hagan, D. C. Hines, D. Mawet, F. Morales, L. Pueyo, A. Rajan, B. Ren, G. Schneider, C. C. Stark, and S. Wolff. HD 104860

```
street \ and \ number - postcode \ city - country \\ \$) +1 \ (234) \ 567 \ 890 \\ \bullet \quad \textcircled{2} \ +2 \ (345) \ 678 \ 901 \\ \bullet \quad \textcircled{1} \ +3 \ (456) \ 789 \ 012 \\ \boxdot \ john@doe.org \\ \bullet \quad \textcircled{2} \ www.johndoe.\ref{20} \\ \bullet \quad jdoe \\ \bullet \quad additional \ information \\ Page \ 3 \ of \ 5
```

and HD 192758: Two Debris Disks Newly Imaged in Scattered Light with the Hubble Space Telescope. *The Astrophysical Journal*, 854:53, February 2018.

Conference Proceedings

[1] **B. Ren**, L. Pueyo, M. D. Perrin, J. H. Debes, and É. Choquet. Post-processing of the HST STIS coronagraphic observations. In *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*, volume 10400 of *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*, page 1040021, September 2017.

Company Recruitment team

January 01, 1984

Company, Inc. 123 somestreet some city

Dear Sir or Madam,

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis ullamcorper neque sit amet lectus facilisis sed luctus nisl iaculis. Vivamus at neque arcu, sed tempor quam. Curabitur pharetra tincidunt tincidunt. Morbi volutpat feugiat mauris, quis tempor neque vehicula volutpat. Duis tristique justo vel massa fermentum accumsan. Mauris ante elit, feugiat vestibulum tempor eget, eleifend ac ipsum. Donec scelerisque lobortis ipsum eu vestibulum. Pellentesque vel massa at felis accumsan rhoncus.

Suspendisse commodo, massa eu congue tincidunt, elit mauris pellentesque orci, cursus tempor odio nisl euismod augue. Aliquam adipiscing nibh ut odio sodales et pulvinar tortor laoreet. Mauris a accumsan ligula. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Suspendisse vulputate sem vehicula ipsum varius nec tempus dui dapibus. Phasellus et est urna, ut auctor erat. Sed tincidunt odio id odio aliquam mattis. Donec sapien nulla, feugiat eget adipiscing sit amet, lacinia ut dolor. Phasellus tincidunt, leo a fringilla consectetur, felis diam aliquam urna, vitae aliquet lectus orci nec velit. Vivamus dapibus varius blandit.

Duis sit amet magna ante, at sodales diam. Aenean consectetur porta risus et sagittis. Ut interdum, enim varius pellentesque tincidunt, magna libero sodales tortor, ut fermentum nunc metus a ante. Vivamus odio leo, tincidunt eu luctus ut, sollicitudin sit amet metus. Nunc sed orci lectus. Ut sodales magna sed velit volutpat sit amet pulvinar diam venenatis.

Albert Einstein discovered that $e = mc^2$ in 1905.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Yours faithfully,

John Doe

Attached: curriculum vitæ

John Doe