Predicting Customer Responses to Phone Marketing Campaign

Rock Central DSA Case Study: **Neviya Prakash**

Business Objective

- This project aims to analyze the given data to identify data patterns & help the European banking institution to determine, in advance, clients who will be receptive to their phone marketing campaigns.
- We will try to identify factors affecting customer response & build a prediction model to determine if a customer will subscribe yes(1) or no(0) to a term deposit (y).

Approach

- Load data: Perform basic analysis verify number of rows, identify missing values, check the distribution of Dependent variables to the campaign outcome response.
- Data Cleaning: drop irrelevant columns, check for null/missing values, turn categorical columns into numeric using One hot encoding
- Exploratory Data Analysis: Identify patterns in the numeric and categorical columns with respect to response variable y
- Feature Selection: Identify methods to determine the relevant variables affecting the campaign.
- Machine learning algorithm: predict the marketing campaign outcome based on the relevant factors which affect the success of the campaign.

Work Flow

Data Cleaning

- Given dataset has 41188 records and 22 variables containing numeric & categorical data with y being the response
- Dataset has no Null values

	age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000
mean	40.02406	258.285010	2.567593	962.475454	0.172963	0.081886	93.575664	-40.502600	3.621291	5167.035911
std	10.42125	259.279249	2.770014	186.910907	0.494901	1.570960	0.578840	4.628198	1.734447	72.251528
min	17.00000	0.000000	1.000000	0.000000	0.000000	-3.400000	92.201000	-50.800000	0.634000	4963.600000
25%	32.00000	102.000000	1.000000	999.000000	0.000000	-1.800000	93.075000	-42.700000	1.344000	5099.100000
50%	38.00000	180.000000	2.000000	999.000000	0.000000	1.100000	93.749000	-41.800000	4.8 click to	expand output; o
75%	47.00000	319.000000	3.000000	999.000000	0.000000	1.400000	93.994000	-36.400000	4.961000	5228.100000
max	98.00000	4918.000000	56.000000	999.000000	7.000000	1.400000	94.767000	-26.900000	5.045000	5228.100000

Statistic distribution of Numeric variables

Exploratory Analysis

- 1. Target Variable distribution
- 88% of customers said no(0) and only 11% of customers said yes(1) to the campaign

Exploratory Analysis: Categorical Variables

Jobs vs Response y

Admin jobs have the highest **yes rate** of subscribing a term deposit, but they also have the highest no rate, since count of admin jobs are highest in our dataset.

Marital Status vs Response y

 Married customers seem to be more responsive to the campaign

Exploratory Analysis: Categorical Variables

Education vs Response y

- **University** education has the highest yes rate of subscribing a term deposit.
- Primary education seems to have the highest No rate, it could possibly be due to the lack of banking knowledge in the younger age group

Credit Default vs Response y

Customers with No default credit show a higher No rate to the campaign

Exploratory Analysis: Categorical Variables

House Loan vs Response y

Clients with Housing Loan have a higher No rate to the campaign

Personal Loan vs Response y

Clients with personal Loan have a higher No rate to the campaign

Exploratory Analysis: Numeric Variables

Age Distribution

Personal Loan vs Response y

Age category follows a normal distribution

Customers that subscribed or didn't subscribe to a term deposit, has a median age of around **38-40 years**

Correlation matrix of numerical features

- 0.8

- 0.6

-04

-0.2

-00

-0.2

- -0.4

- From the heatmap we can see that there are some numerical features with a high correlation, e.g nr.employed and euribor3m these features share a correlation value of 0.95
- euribor3m and emp.var.rate share a correlation of 0.97, which is very high compared to the other features that we see in the heatmap.

Feature selection: RFE (Recursive Feature Elimination)

	Rank	Feature		
24	1	poutcome_nonexistent		
26	1	contact_telephone		
25	1	poutcome_success		
47	1	default_unknown		
37	1	day_of_week_wed		
38	1	month_aug		
39	1	month_dec		
40	1	month_jul		
41	1	month_jun		
33	1	education_unknown		
16	1	job_student		

The **RFE** has helped us select the following features:

'poutcome_nonexistent','contact_telephone','poutco me_success','default_unknown','day_of_week_wed',' month_aug','month_dec', 'month_jul', 'month_jun','education_unknown','job_student', 'job_services','month_mar','day_of_week_mon','job_r etired','euribor3m','previous','job_blue-collar'

Feature selection: ExtraTreesClassifier

ExtraTree Classifier has given us the following variables:

['age','campaign','euribor3m','pdays','housing_yes','poutcome_success','nr.employed','loan_yes','emp.var.rate',

'marital_married','education_University','cons.c onf.idx','job_technician','marital_single',

'education_Primary_Ed','day_of_week_thu','con tact_telephone'

,'day_of_week_wed','day_of_week_tue','default
_unknown'}

ML Model : Logistic Regression

1. Model Fitting with all the variables

Results:

- **Test Accuracy Score** 0.8976 Train Accuracy Score: 0.900
- **F1 Score**: 0.29
- The LR algorithm achieves a test accuracy of 89.79% with all the features, suggesting high level of strength to classify the people who are more likely to say no
- 2. Model Fitting with Selected Important variables

Results:

- Test Accuracy Score 0.8981 Train Accuracy Score: 0.901
- **F1 Score**: 0.271
- The LR algorithm achieves a test accuracy of 89.79% with all the features, & 89.8% with Selected Important variables, suggesting high level of strength to classify the people who are more likely to say no

ML Model: Random Forest

1. Model Fitting with all the variables

Results:

- Test Accuracy Score 0.8942 Train Accuracy Score: 0.899.
- **F1 Score**: 0.276
- The LR algorithm achieves a test accuracy of 89.79% with all the features, suggesting high level of strength to classify the people who are more likely to say no
- 2. Model Fitting with Selected Important variables

Results:

- **Test Accuracy Score** 0.8999 Train Accuracy Score: 0.903
- **F1 Score**: 0.271
- The RF algorithm achieves a test accuracy of 89.4% with all the features & 89.9% with Selected Important variables

Result

-	Model Name	Test Accuracy	Train Accuracy
0	Logistic Regression with all	0.8976	0.9000
1	Logistic Regression with Selected	0.8981	0.9000
2	Random Forest with All	0.8942	0.8994
3	Random Forest with Selected	0.8990	0.9020

- Looking at the above table, we can see that **Random forest** with important selected features performed the **best** and gave better accuracy compared to all.
- We should go with Random Forest with important features as our final model as it has a better F1 score, Accuracy & Confusion Matrix

Conclusion

- We see that from the following parameters related to a target customer we were able to predict customers' response to the term deposit campaign.
 'age','campaign','euribor3m','pdays','housing_yes','poutcome_success','nr.employed','loan_yes','emp.var.rate','marital_married','education_University','cons.conf.idx','job_technician','marital_single'
- We see that customer's age affects campaign outcome as well. Future campaigns should concentrate on customers between 30 - 48 years old.
- Number of **calls** with the customer during the campaign is also important. Bank should avoid calling clients more than **6 times** as it could lead to customer dissatisfaction.

Thank You!

Any questions?

Contact me: neviya19@terpmail.umd.edu

LinkedIn: https://www.linkedin.com/in/neviyaprakash/

Github Notebook

