G. Parmeggiani

Scuola di Scienze - Corso di laurea: Informatica

Esercizi per casa 10

$$\boxed{\mathbf{1}} \text{ Sia } \mathbf{A}(\alpha) = \begin{pmatrix} 2 & i \\ i & \alpha \end{pmatrix}, \quad \text{ dove } \alpha \in \mathbb{C} \text{ (come nell'esercizio 11 del foglio 9)}.$$

- (a) Per quali $\alpha \in \mathbb{C}$ si ha che di $\mathbf{A}(\alpha)$ è unitariamente diagonalizzabile?
- (b) Sia $\mathbf{A} = \mathbf{A}(2)$ la matrice che si ottiene ponendo $\alpha = 2$. Si trovi una diagonalizzazione unitaria $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^H$ per \mathbf{A} .
- (c) Sia $\mathbf{A} = \mathbf{A}(2)$ la matrice che si ottiene ponendo $\alpha = 2$. Si scriva \mathbf{A} nella forma $\mathbf{A} = \lambda_1 \mathbf{P}_1 + \lambda_2 \mathbf{P}_2$, con λ_1 e λ_2 autovalori di \mathbf{A} , e \mathbf{P}_1 e \mathbf{P}_2 matrici di proiezione su $E_{\mathbf{A}}(\lambda_1)$ ed $E_{\mathbf{A}}(\lambda_2)$ rispettivamente.
- (d) Sia $\mathbf{A} = \mathbf{A}(2)$ la matrice che si ottiene ponendo $\alpha = 2$. Posto $z_1 = (2+i)^{300}$ e $z_2 = (2-i)^{300}$, si scriva \mathbf{A}^{300} in funzione di z_1 e z_2 .

- (a) Per quali $\alpha \in \mathbb{R}$ si ha che di $\mathbf{A}(\alpha)$ è unitariamente diagonalizzabile?
- (b) Sia $\mathbf{A} = \mathbf{A}(-4)$ la matrice che si ottiene ponendo $\alpha = -4$. Si trovi una diagonalizzazione unitaria $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^H$ per \mathbf{A} .
- (c) Sia $\mathbf{A} = \mathbf{A}(-4)$ la matrice che si ottiene ponendo $\alpha = -4$. Si scriva \mathbf{A} nella forma $\mathbf{A} = \lambda_1 \mathbf{P}_1 + \lambda_2 \mathbf{P}_2 + \lambda_3 \mathbf{P}_3$, con λ_1 , λ_2 , λ_3 autovalori di \mathbf{A} , e \mathbf{P}_1 , \mathbf{P}_2 , \mathbf{P}_3 matrici di proiezione su $E_{\mathbf{A}}(\lambda_1)$, $E_{\mathbf{A}}(\lambda_2)$, $E_{\mathbf{A}}(\lambda_3)$ rispettivamente.

3 Sia
$$\mathbf{A}(\alpha) = \begin{pmatrix} 0 & 0 & -3i \\ 0 & -3 & 0 \\ -3i\alpha & 0 & 0 \end{pmatrix}$$
, dove α è un numero reale non positivo. (come nell'esercizio 13 del foglio 9).

- (a) Per quali α numeri reali noon positivi si ha che di $\mathbf{A}(\alpha)$ è unitariamente diagonalizzabile ?
- (b) Sia $\mathbf{A} = \mathbf{A}(-1)$ la matrice che si ottiene ponendo $\alpha = -1$. Si trovi una diagonalizzazione unitaria $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^H$ per \mathbf{A} .