Předpokládejme, že známe tvar regresní funkce $y = \varphi(x, \beta)$ a neznámé $\beta = (\beta_1, ..., \beta_m)^T$.

K odhadu regresních koeficientů $\boldsymbol{\beta} = (\beta_1, ..., \beta_m)^T$ využijeme metodu nejmenších čtverců – minimalizujeme tzv. **reziduální součet čtverců**:

$$S^* = S_e = \sum_{i=1}^n (y_i - \varphi(\mathbf{x}_i, \boldsymbol{\beta}))^2$$

Tento součet lze brát jako funkci proměnných $\boldsymbol{\beta} = (\beta_1, ..., \beta_m)^T : S^* \equiv S^*(\beta_1, ..., \beta_m)$

A pomocí parciálních derivací hledáme její minimum: $\frac{\partial S^*}{\partial \beta_i} = 0$.

Dostaneme *m* rovnic pro *m* neznámých parametrů $\beta = (\beta_1, ..., \beta_m)^T$.