COL 726 Homework 3

Due date: Friday, 1 March, 2019

Questions 1-5 are worth 3 marks each. Question 6 is worth 5 marks.

- 1. Suppose **A** is an $m \times m$ "banded" matrix, i.e. a matrix whose entries a_{ij} are nonzero only if $-l \le j i \le u$ for some constants l and u. For example, a banded matrix with l = 2, u = 1 is shown on the right.
- (a) Give an algorithm for computing the LU decomposition of A without pivoting in O(lum) flops. Count the number of flops it takes, to leading order in m.
- (b) The banded structure may not be maintained if pivoting is performed. Find a 5×5 matrix **A** with l = u = 1 such that, after LU decomposition with partial pivoting, the factor **L** has a nonzero value in its bottom left entry. Give all the matrices **P**, **L**, **U** in the factorization.
- 2. Suppose I have already have the Cholesky factorization $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ of an $m \times m$ SPD matrix \mathbf{A} . Now I enlarge \mathbf{A} to an $(m+1) \times (m+1)$ matrix $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{b}^T & c \end{bmatrix}$, where $\mathbf{b} \in \mathbb{R}^m$ and $c \in \mathbb{R}$. How can the Cholesky factorization of \mathbf{M} be computed in $O(m^2)$ time? Give a mathematical justification as well as all the steps of the final algorithm.
- 3. Let Ax = b be an $m \times m$ system of equations. Consider the following algorithm:

choose a guess for the values x_1, x_2, \ldots, x_m

repeat

for $k \leftarrow 1, ..., m$ **do** solve equation k to update variable k, i.e. $x_k \leftarrow \frac{1}{a_{kk}}(b_k - \sum_{j \neq k} a_{kj}x_j)$ **end for**

until convergence

- (a) Express one complete execution of the **for** loop as a formula for the new guess $\mathbf{x}^{(n+1)}$ in terms of the old guess $\mathbf{x}^{(n)}$. What iterative method does this perform?
- (b) Suppose I choose two permutations of the set $\{1, \ldots, m\}$, namely (p_1, \ldots, p_m) and (q_1, \ldots, q_m) . At the kth step of the **for** loop, I solve equation p_k to update variable q_k . How can this method be expressed in similar terms as (a)?
- 4. Consider an $m \times m$ matrix **A** with all eigenvalues real, distinct, and nonzero. Suppose **b** lies in the span of only n eigenvectors of **A**, where n < m. Show that the Arnoldi iteration "breaks down" in at most n steps, i.e. \mathbf{Aq}_k lies in the previous Krylov subspace $\mathcal{K}_k = \langle \mathbf{q}_1, \dots, \mathbf{q}_k \rangle$ for some $k \leq n$. Then, show that GMRES can find the solution \mathbf{x}_* to the equation $\mathbf{Ax} = \mathbf{b}$ even in this case.
- 5. Let A be a symmetric positive definite matrix with $\|\mathbf{A} \mathbf{I}\|_2 = 0.6$.
 - (a) Prove that all eigenvalues of A lie in the interval [0.4, 1.6]. Consequently, give an upper bound on the relative error norm $\|\mathbf{e}_n\|_{\mathbf{A}}/\|\mathbf{e}_0\|_{\mathbf{A}}$ after n iterations of conjugate gradients on a linear

system Ax = b.

- (b) Suppose A has an eigenvalue $\lambda_1 = 1$ with an associated unit eigenvector \mathbf{v}_1 , and the remaining eigenvalues are $\lambda_2, \ldots, \lambda_m$. Let $\mathbf{B} = \mathbf{A} + \mathbf{w}\mathbf{w}^T$ where $\mathbf{w} = 7\mathbf{v}_1$. Verify that B has the same eigenvectors as A, and find all its eigenvalues. (Note: $\lambda_1, \ldots, \lambda_m$ are not in any sorted order.)
- (c) Consider the conjugate gradient method applied to a linear system $\mathbf{B}\mathbf{x} = \mathbf{y}$. Give an upper bound on $\|\mathbf{e}_n\|_{\mathbf{B}}/\|\mathbf{e}_0\|_{\mathbf{B}}$ after n iterations. Your answer should depend only on n, and when evaluated at n=2 should result in a number less than 0.8.
- 6. Sparse matrices often arise in the analysis of networks. Here, we will consider electrical networks of nodes connected by resistors.

Suppose you are given a network of m nodes and O(m) resistors as a list of tuples of the form (i, j, R_{ij}) , indicating that nodes i and j are connected by a resistance R_{ij} . Also assume that the first and last nodes are connected via unit resistors to a voltage source V = 1 and ground V = 0 respectively. Some example networks can be constructed using the function makeNetwork provided on the course webpage; make sure to read its comments for more details.

(a) The net outgoing current from any node *i* is given by

$$I_i = \left(\sum_{j \text{ connected to } i} \frac{V_i - V_j}{R_{ij}}\right) + I_i^{\text{out}},$$

where I_i^{out} is $-(1 - V_i)$ for the first node, V_i for the last node, and 0 otherwise. The network is solved by finding the unknown node voltages $\mathbf{v} = [\dots, V_i, \dots]^T$ such that all net currents $\mathbf{i} = [\dots, I_i, \dots]^T$ are zero. Find a way to express \mathbf{i} in the form $\mathbf{i} = \mathbf{A}\mathbf{v} + \mathbf{b}$, where the matrix \mathbf{A} and vector \mathbf{b} depend only on the network and not on \mathbf{v} . In your report, define the entries a_{ij} of \mathbf{A} and show that the matrix is symmetric. In your program, write a function applyA(network, \mathbf{v}) that maps \mathbf{v} to $\mathbf{A}\mathbf{v}$ in O(m) time, and a function getB(network) that returns \mathbf{b} .

- (b) Implement a function cg(Afun, b, tolerance) that performs conjugate gradient iterations to solve a linear system Ax = b. The first argument of cg should be a <u>function</u> such that Afun(x) = Ax. Terminate the iterations when $||\mathbf{r}_n||_2/||\mathbf{b}||_2 \le \text{tolerance}$, and return the final iterate \mathbf{x}_n and the history of residual norms $[||\mathbf{r}_0||_2/||\mathbf{b}||_2, \ldots, ||\mathbf{r}_n||_2/||\mathbf{b}||_2]$. Then, you should be able to solve $\mathbf{i} = A\mathbf{v} + \mathbf{b} = \mathbf{0}$ for a network by calling cg(lambda v: applyA(network, v), -getB(network), tolerance). Test it out on makeNetwork('wheatstone').
- (c) Implement a function getDiag(network) that returns the diagonal of A as a vector d. Then implement a function pcg(Afun, b, d, tolerance) that performs conjugate gradients with symmetric preconditioning using the preconditioner $M = \operatorname{diag}(d)$. Your function pcg should not perform any iterations itself, just call cg with a modified Afun and a modified b.

Try running cg on makeNetwork('random1', 1000) with tolerance 10^{-6} . Visualize the convergence of the method by plotting $\|\mathbf{r}_n\|_2/\|\mathbf{b}\|_2$ on a log scale as a function of n, and include the plot in your report. Then run cg and pcg on makeNetwork('random2', 1000) with tolerance 10^{-6} , plot the convergence of both methods on the same plot, and include it as well.