Exercícios Resolvidos

```
1. Dada a função f(x) = 7x - 3, com D_f = \mathbb{R}, obtenha:
```

- a) f(2)
- b) f (6)
- c) f(0)
- d) f (-1)
- e) f (a + b)

• 1. Dada a função f(x) = 7x - 3, com $D_f = \mathbb{R}$, obtenha:

•
$$a) f(2) = 7.2 - 3 = 11$$

• b)
$$f(6) = 7.6 - 3 = 39$$

• c)
$$f(0) = -3$$

• d)
$$f(-1) = 7.(-1)-3 = -10$$

• e)
$$f(a + b) = 7.(a+b) - 3 = 7a + 7b - 3$$

- 2. Dada a função f(x) = 2x + 3, com $D_f = \mathbb{R}$, obtenha:
- a) f(3)
- *b)* f(-4)
- c) o valor de x tal que f(x) = 49
- d) o valor de x tal que f(x) = -11

2. Dada a função f(x) = 2x + 3, com $D_f = \mathbb{R}$, obtenha:

a)
$$f(3) = 2.3 + 3 = 9$$

b)
$$f(-4) = 2 \cdot (-4) + 3 = -5$$

• c) o valor de x tal que f(x) = 49

$$f(x) = 49 = 2x + 3$$
, então: $x = \frac{-3+49}{2} = 23$

• d) o valor de x tal que f(x) = -11

•
$$f(x) = -11 = 2x+3$$
. então: $x = \frac{-3-11}{2} = -7$

3. Dada a função com domínio real e f(x) = mx + 3, determine m sabendo-se que:

a)
$$f(1) = 6$$
.

$$b) f\left(-\frac{3}{2}\right) = 0$$

3. Dada a função com domínio real e f(x) = mx + 3, determine m sabendo-se que:

$$a) f(1) = 6.$$

$$f(1) = 6 = m.1 + 3$$
, então: $m = 3$

$$b) f\left(-\frac{3}{2}\right) = 0$$

$$f\left(-\frac{3}{2}\right) = 0 = m\left(-\frac{3}{2}\right) + 3$$
, então: $-3m = -3.2$, então: $m = 2$

4. Uma livraria vende uma revista por R\$ 5,00 a unidade. Seja x a quantidade vendida.

a) Obtenha a função receita R(x).

b) Calcule *R*(40).

c) Qual a quantidade que deve ser vendida para chegar a uma receita igual a R\$ 700,00?

4. Uma livraria vende uma revista por R\$ 5,00 a unidade. Seja x a quantidade vendida.

a) Obtenha a função receita R(x). (cada x unidades vendidas, tem-se R\$ 5 de lucro)

Função receita é dada por: R(x) = 5x

b) Calcule *R*(40).

$$R(40) = 5.40 = 200$$

c) Qual a quantidade que deve ser vendida para chegar a uma receita igual a R\$ 700,00?

$$R(x) = 5x = 700$$
, então: $x = \frac{700}{5} = 140$

5. O custo de fabricação de x unidades de um produto é dado pela função C(x) = 100 + 2x.

a) Qual o custo de fabricação de 10 unidades?

b) Se a empresa recebeu R\$ 200, quantas unidades foram fabricadas?

5. O custo de fabricação de x unidades de um produto é dado pela função C(x) = 100 + 2x.

a) Qual o custo de fabricação de 10 unidades?

$$C(x) = 100 + 2.10 = 120$$

b) Se a empresa recebeu R\$ 200, quantas unidades foram fabricadas?

$$C(x) = 200 = 100 + 2x$$
, então: $x = \frac{200 - 100}{2} = 50$

6. Chama-se *custo médio de fabricação* de um produto ao custo de produção dividido pela quantidade produzida. Indicando o custo médio correspondente a x unidades produzidas por Cme(x), teremos $Cme(x) = \frac{C(x)}{x}$

O custo de fabricação de x unidades de um produto é C(x) = 500 + 4x.

- a) Qual o custo médio de fabricação de 20 unidades?
- b) Se a empresa teve um custo médio de R\$ 54, quantas unidades foram fabricadas?

6. Chama-se *custo médio de fabricação* de um produto ao custo de produção dividido pela quantidade produzida. Indicando o custo médio correspondente a x unidades produzidas por Cme(x), teremos $Cme(x) = \frac{C(x)}{x}$ O custo de fabricação de x unidades de um produto é C(x) = 500 + 4x.

a) Qual o custo médio de fabricação de 20 unidades?

$$Cme(x) = \frac{C(x)}{x}$$
, então: $cme(20) = \frac{C(20)}{20} = \frac{500 + 4.20}{20} = \frac{580}{20} = 29$

b) Se a empresa teve um custo médio de R\$ 54, quantas unidades foram fabricadas?

$$cme(x) = \frac{C(x)}{x} = \frac{500 + 4x}{x} = 54$$
, então: $500 + 4x = 54x$, ou seja: $500 = 50x \implies x = 10$

- 7. Em determinado país, o imposto de renda é igual a 10% da renda, para ganhos até \$ 900,00. Para rendas acima de \$ 900,00, o imposto é igual a \$ 90,00 (10% de \$ 900,00) mais 20% da parte da renda que excede \$ 900,00.
- a) Qual o imposto para uma renda de \$ 600,00?
- b) Qual o imposto para uma renda de \$ 1.200,00?
- c) Chamando x a renda e y o imposto de renda, obtenha a expressão de y em função de x.

- 7. Em determinado país, o imposto de renda é igual a 10% da renda, para ganhos até \$ 900,00. Para rendas acima de \$ 900,00, o imposto é igual a \$ 90,00 (10% de \$ 900,00) mais 20% da parte da renda que excede \$ 900,00.
- a) Qual o imposto para uma renda de \$ 600,00? R\$ 600,00
- b) Qual o imposto para uma renda de \$ 1.200,00?

$$0,1.900 + 0,2.300 = 150,00$$

c) Chamando x a renda e y o imposto de renda, obtenha a expressão de y em função de x.

$$y(x) = \begin{cases} 0.1x & se \ x \le 900 \\ 90 + 0.2(x - 900) & se \ x > 900 \end{cases}$$

- 8. Um vendedor de assinaturas de uma revista ganha R\$ 2.000,00 de salário fixo mensal, mais uma comissão de R\$ 50,00 por assinatura. Sendo *x* o número de assinaturas vendidas por mês,
- a) Expresse seu salário total S como função de x.
- b) Se ele vendeu 12 assinaturas, quanto será seu salário?

8. Um vendedor de assinaturas de uma revista ganha R\$ 2.000,00 de salário fixo mensal, mais uma comissão de R\$ 50,00 por assinatura. Sendo *x* o número de assinaturas vendidas por mês

a) Expresse seu salário total S como função de x.

$$S(x) = 2000 + 50x$$

b) Se ele vendeu 12 assinaturas, quanto será seu salário?

$$S(12) = 2000 + 50.12 = 2600$$

- 9. Em determinada cidade, a tarifa mensal de água é cobrada da seguinte forma: para um consumo de até $10\ m^3$ mensais, a tarifa é um valor fixo de R\$ 8,00. A parte consumida no mês entre $10\ m^3$ e $20\ m^3$ paga uma tarifa de R\$ 1,00 por m^3 , e o que exceder $20\ m^3$ paga R\$ 1,40 por m^3 .
- a) Calcule a tarifa de quem consome 2 m^3 por mês.
- b) Calcule a tarifa de quem consome $15 \ m^3$ por mês.
- c) Calcule a tarifa de quem consome 37 m^3 por mês.
- d) Chamando x o consumo mensal (em m^3) e de y a tarifa, obtenha a expressão de y em função de x.

- 9. Em determinada cidade, a tarifa mensal de água é cobrada da seguinte forma: para um consumo de até $10\ m^3$ mensais, a tarifa é um valor fixo de R\$ 8,00. A parte consumida no mês entre $10\ m^3$ e $20\ m^3$ paga uma tarifa de R\$ 1,00 por m^3 , e o que exceder $20\ m^3$ paga R\$ 1,40 por m^3 .
- a) Calcule a tarifa de quem consome 2 m^3 por mês. R\$ 8,00
- b) Calcule a tarifa de quem consome $15 m^3$ por mês.

$$8 + 5.1 = 13$$
, R 13,00$

c) Calcule a tarifa de quem consome 37 m^3 por mês.

$$8 + 10.1 + 17.1,4 = 41,80, R$41,80$$

d) Chamando x o consumo mensal (em m^3) e de y a tarifa, obtenha a expressão de y em função de x.

$$y(x) = \begin{cases} 8, & se \ x \le 10 \\ 8 + 1(x - 10), & se \ 10 < x \le 20 \\ 18 + 1,4(x - 20), & se \ x > 20 \end{cases}$$

10. A seguir temos gráficos de relações de A em R. Quais podem e quais não podem ser gráficos de funções?

Funções Exponenciais e Logarítmicas:

Exemplo 1. O número de habitantes de uma cidade é hoje igual a 8 mil e cresce exponencialmente a uma taxa k ao ano. Se daqui a 20 anos o número de habitantes for 16 mil, qual a taxa de crescimento anual?

 $f(t) = 8(1 + k)^t$ (função que calcula o número de habitantes em função do tempo que cresce com uma taxa k, dada uma população inicial, que no nosso caso, é 8 mil)

Se daqui a 20 anos a população é 16 mil , temos: $f(20) = 8(1+k)^{20} = 16$, $(1+k)^{20} = 2$

$$1 + k = \sqrt[20]{2}$$
, ou seja: $k = \sqrt[20]{2} - 1 \approx 0,0353$

 $Taxa \in k \approx 3,53\%$

Exemplo 2. Um imóvel vale hoje R\$ 150.000,00 e a cada ano sofre uma desvalorização de 3% ao ano. Qual seu valor daqui a 10 anos?

$$f(t) = 150000(1 - 0.03)^t$$

$$f(10) = 150000(0.97)^{10} \approx 110.613.62$$

Em 10 anos é imóvel será : *R*\$ 110.613,62

Curva de aprendizagem. A curva de aprendizagem é o gráfico de uma Função frequentemente utilizada para relacionar a eficiência de trabalho de uma pessoa em função de sua experiência. A expressão matemática dessa função é $f(t) = A - Be^{-kt}$, em que t representa o tempo e f(t) a eficiência. Os valores A, B e k são

constantes positivas e dependem intrinsecamente do problema em questão. Veja o gráfico da Figura ao lado:

Exemplo 3: Suponha que após t meses de experiência um Operário consiga montar p peças por hora. Suponha ainda que $p(t) = 40 - 20e^{-0.4t}$

- a) Quantas peças ele montava por hora quando não tinha experiência?
- b) Quantas peças montará por hora após 2,5 meses de experiência?

Dado: $e^{-1} = 0.37$.

c) Quantas peças, no máximo, conseguirá montar por hora?

a) Quantas peças ele montava por hora quando não tinha experiência?

Sem experiência
$$t = 0$$
: $p(0) = 40 - 20e^{-0.4(0)} = 40 - 20 = 20$

b) Quantas peças montará por hora após 2,5 meses de experiência?

Dado: $e^{-1} = 0.37$.

$$t = 2,5$$
, ou seja: $p(2,5) = 40 - 20e^{-0,4(2,5)} = 40 - 20e^{-1} = 40 - 20(0,37) = 32,6$

c) Quantas peças, no máximo, conseguirá montar por hora?

Note que quando t cresce (experiência cresce) muito, $e^{-0.4t}$ vai tendendo a zero. Então:

 $p(t) = 40 - 20e^{-0.4t} = 40$ para t suficientemente grande.

Exemplo 4: Estudos demográficos feitos em certo país estimaram que sua população daqui a t anos será $P=40(1,05)^t$ milhões de habitantes. Daqui a quanto tempo a população dobrará?

Dados $\log 2 = 0.3 e \log 1.05 = 0.02$.

Note que a população inicial é 40 milhões de habitantes. Então o dobro é 80 milhões.

Ou seja, temos ter: $40(1,05)^t = 80$, então: $(1,05)^t = 2$, agora aplicamos o log dos dois lados para isolar t:

$$\log(1,05)^t = \log 2$$
, ou seja: t $\log(1,05) = \log 2$, ou seja: $t = \frac{\log 2}{\log(1,05)} = \frac{0,3}{0,02} = 15$

A população dobrará em 15 anos.

Exemplo 5. Considere a curva de aprendizagem $f(t) = 10 - Be^{-kt}$ Sabendo que f(1) = 5 e f(2) = 6 obtenha B e k. Dado ln1,25 = 0,22.

$$f(1) = 5 = 10 - Be^{-k}$$
 e portanto: $B = 5e^{k}$

$$f(2)=6=10-Be^{-2k}$$
 , então: $-4=-5e^ke^{-2k}$ \Longrightarrow

$$\frac{4}{5} = e^{-k} \left(aplicar \ln dos dois \, lados \right) \Rightarrow k = \ln \left(\frac{5}{4} \right) = \ln(1, 25) = 0,22$$

Lembrando que: $B = 5e^k = 5e^{0.22} \approx 6.25$