Fyzika I

Obsah

- <u>Kinematika</u>
- <u>Dynamika</u>
 - <u>Příklady sil</u>
 - Newtonovy pohybové zákony
 - <u>Příklady dynamiky</u>

Klasická mechanika hmotného bodu zkoumá mechanický pohyb – změnu vzájemné polohy tělese v prostoru a v čase, jeho popis v prostoru a v čase a jeho příčiny, kde rychlosti těles jsou mnohem menší než rychlost světla c. **Hmotný bod** je fiktivní objekt, který má všechny relevantní znaky tělesa, které reprezentuje a jeho geometrické rozměry jsou v daných souvislostech zanedbatelně malé.

Kinematika

Matematický popis pohybu v prostoru a v čase vzhledem k vhodné vztažné soustavě – kartézská, válcová a kulová. Mezi základní skalární veličiny patří dráha s, okamžitá rychlost v a okamžité zrychlení a, vedlejší vektorové patří vektor elementárního úhlového otočení φ , vektor úhlové rychlosti ω a vektor úhlového zrychlení ε .

Definujme střední průměrnou rychlost $v_s=\frac{\Delta s}{\Delta t}$ a okamžitou rychlost $v=\lim_{\Delta t\to 0}v_s=\frac{s}{dt}$, střední zrychlení $a_s=\frac{\Delta v}{\Delta t}$, okamžité zrychlení $a=\lim_{\Delta t\to 0}\frac{\Delta v}{\Delta t}=\frac{dv}{dt}$. V případě rovnoměrně zrychleného pohybu $a=\frac{dv}{dt}=konst.$, $v=\frac{ds}{dt}=at+v_0, s=\frac{1}{2}at^2+v_0t+s_0$. Pro **volný pád** platí $a=g,v_0=0, v=gt, s=\frac{1}{2}gt^2$, pro **svislý vrh dolů** platí $a=g,v_0\neq 0, v=v_0+gt, s=v_0t+\frac{1}{2}gt^2$ a pro **svislý vrh vzhůru** platí $a=-g,v_0\neq 0, v=v_0-gt, s=v_0t-\frac{1}{2}gt^2$.

Pro **vektorový popis hmotného bodu** zavádíme polohový vektor r=r(t), vektor průměrné rychlosti $v_s=\frac{\Delta r}{\Delta t}$ ve směru Δr sečny trajektorie, vektor okamžité rychlosti $v=\lim_{\Delta t\to 0}\frac{\Delta r}{\Delta t}=\frac{dr}{dt}=\frac{dx}{dt}i+\frac{dy}{dt}j+\frac{dz}{dt}k$ ve směru tečny k trajektorii, vektor okamžitého zrychlení $a=\frac{dv}{dt}=\frac{d^2r}{dt^2}$, zrychlení rozkládáme na tečnou a normálovou složku $a=\frac{dv}{dt}=\frac{d(v\tau)}{dt}=\frac{dv}{dt}\tau+\frac{d\tau}{dt}v=\frac{dv}{dt}\tau-\frac{v^2}{R}n=a_r+a_n$, kde τ je jednotkový vekotr ve směru tečny a n je jednotkový vektor ve směru normály k trajektorii pohybu a R je poloměr křivosti trajektorie. Platí, že $a_r=\frac{dv}{dt}, a_n=\frac{v^2}{R}, a=\sqrt{\left(\frac{dv}{dt}\right)^2+\left(\frac{v^2}{R}\right)^2}$. Dále zavádíme úhlovou rychlost $\omega=\frac{d\varphi}{dt}$, kde φ je úhlová dráha (středový úhel), o kterou se otočí průvodič hmotného bodu vedený ze středu kruhové dráhy. Zavádíme úhlové zrychlení $\varepsilon=\frac{d\omega}{dt}=\frac{d^2\varphi}{dt^2}$.

Kruhový pohyb je zvláštním případem křivočarého pohybu v jedné rovině. Pro elementární úhlovou dráhu platí vztah $d\varphi=\frac{ds}{R}$ a pro úhlovou rychlost $\omega=\frac{d\varphi}{dt}=\frac{ds}{Rdt}$ a pro obvodovou rychlost $v=\omega R$, pro úhlové zrychlení $\varepsilon=\frac{d\omega}{dt}=\frac{a}{R}$. V případě rovnoměrného kruhového pohybu platí $\omega=\frac{d\varphi}{dt}, \omega'=0, \varphi(t)=\omega t+\varphi_0, T=\frac{2\pi R}{v}=\frac{2\pi}{\omega}=\frac{1}{f}$ V případě rovnoměrně zrychleného kruhového pohybu platí $\varepsilon=konst., \omega=\varepsilon t+t_0, \varphi=\frac{1}{2}\varepsilon t^2+\omega_0 t+\varphi_0.$

Vektorové vyjádření křivočarého pohybu: mějme polohové vektory r(t) a r(t+dt), které svírají úhel $d\varphi$. Tomuto úhlu přiradíme vektor tak $d\varphi$ tak, aby byl kolmý na vektory r(t) a r(t+dt) a jeho velikost byla $d\varphi$. Pro elementární změnu platí $dr=d\varphi\times r$. Zavádíme vektor úhlové rychlosti $\omega=\frac{d\varphi}{dt}$, vektor obvodové rychlosti $v=\omega\times r$, vektor úhlového zrychlení $\varepsilon=\frac{d\omega}{dt}$ a vektor obvodového zrychlení $a=\frac{dv}{dt}=\varepsilon\times r+\omega\times v=\varepsilon\times r-R\omega^2 n$, kde n je jednotkový vektor vnější normály. Tudíž definujeme tečné zrychlení $a_r=\varepsilon\times r$ a normálové zrychlení $a_n=-R\omega^2 n$.

Dynamika

Hmotnost je skalární kvantitativní míra tíhových a setrvačných vlastností tělesa, je dána vnitřní strukturou těles, nezávisí na volbě vztažné soustavy a platí zákon zachování celkové hmotnosti. Jednotkou hmotnosti je 1 kg. **Hybnost** je vektorová kvantitativní míra mechanického pohybu, je rovnoběžná s vektorem rychlosti a charakterizuje míru mechanického pohybu z hlediska interakcí.

Síla je vektorová kvantitativní míra vzájemného působení těles, které má za následek buďto změnu jejich pohybového stavu nebo jejich deformaci. Jedná se o klouzavý vektor – pojem síly je abstrakcí, nemůže reálně existovat bez hmotných objektů, protože vyjadřuje míru jejich působení. Silové působení – interakci – mezi materiální objekty je projevem existence polí. Rozlišujeme pole gravitační, elektromagnetické, jaderných sil a slabých interakcí. Částice působí ve čtyřech typech:

- 1. Silné interakce charakterizují vzájemné působení mezi nukleony výměnou mezonů.
- 2. Elektromagnetické interakce nabitých částic jsou provázeny výměnou fotonů.
- 3. Slabé interakce vedou k přeměně částic na jiné těžké částice, přitom se uvolňují elektrony a neutrina.
- 4. Gravitační interakce probíhá mezi elektricky neutrálními částicemi a je zprostředkována výměnou částic gravitačního pole gravitonů.

Příklady sil

- **Tíhová síla** G = mg, kde g je vektor zemského tíhového zrychlení.
- **Síla odporu prostředí** F_r , která působí při pohybu těles ve vazkém prostředí. Je rovnoběžná s vektorem rychlosti a má opačný smysl. $F_r=\frac{1}{2}\varrho C_x v^n$.
- **Síla smykového tření** F_t vzniká při smýkání pevného tělesa po podložce. Jestliže není pohyb ve svislém směru. $N+G=0, N=G, F_t=\mu N$, kde μ je součinitel smykového tření.

Newtonovy pohybové zákony

- Zákon setrvačnosti těleso setrvává ve stavu rovnoměrného přímočarého pohybu nebo klidu pokud není nuceno působením jiných těles tento stav změnit.
- Zákon síly časová změna hybnosti hmotného bodu je rovna výsledné síle, která na těleso působí. $F=rac{dp}{dt}$, pokud je hmotnost konstantní, pak $F=m\cdot rac{dv}{dt}=ma$.
- Zákon akce a reakce jestliže těleso A

Příklady dynamiky

• Nakloněná rovina pod sklonem lpha, platí pohybová rovnice $ma=\sum F_i=G+N+T$, kde $ma_x=m\cdot rac{d^2x}{dt^2}=G\sinlpha-T$, $ma_y=rac{d^2y}{dt^2}=0=-G\coslpha+N$ a $T=\mu N$. Pro $N=G\coslpha$