

- Henry Louis Le Châtelier
- Karl Ferdinand Braun

 examined what would happen to a system <u>already</u> <u>at equilibrium</u> if the system or surroundings were disturbed

If an outside influence upsets an equilibrium, the system undergoes a change in the direction that counteracts the disturbing influence, and, the system reaches a new state of equilibrium.

 disturbances to the equilibrium are said to shift to the right (forward) or to the left (backward)

Factors Affecting Equilibrium

1. concentration of reactants / products

2. Pressure

- 3. Addition of inert gases
- 4. Presence of catalysts

5. Temperature

1. Concentration

$$2 HI_{(g)} <===> H_{2(g)} + I_{2(g)}$$

Given the equilibrium above, if more HI is added to the system, how will the reaction rates respond to achieve a new equilibrium?

Equilibrium shifts to the right to increase concentration of products and offset the added HI.

1. Concentration

$$2 HI_{(g)} <===> H_{2(g)} + I_{2(g)}$$

What happens to the equilibrium if H₂ is removed from the system?

Equilibrium shifts to the right to restore the H₂ that was lost.

1. Concentration

The equilibrium will always shift to consume the substance that is added or to replace a substance that is removed.

1. Concentration

Example #1

$$Cu(H_2O)_4^{2+}_{(aq)} + 4 Cl_{(aq)}^{-} <===> CuCl_4^{2-}_{(aq)} + 4 H_2O$$

- 1.What happens when Cl⁻ is added? *Equilibrium shifts to the right*
- 2.What happens when CuCl₄²⁻ is removed? *Equilibrium shifts to the right*

1. Concentration

Example #2

$$Cu(H_2O)_4^{2+}_{(aq)} + 4 Cl_{(aq)}^{-} <===> CuCl_4^{2-}_{(aq)} + 4 H_2O$$

What happens when Ag⁺ ions are added? (Hint: examine your solubility rules)

$$Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)}$$

Equilibrium shifts to the left

2. Pressure

 pressure is changed if volume is changed

 pressure changes have limited effect on liquids or solids

2. Pressure

$$2 \text{ NO}_{2(g)} <===> N_2O_{4(g)} + \text{energy}$$

Given the equilibrium above, if the pressure on the system is increased, how will the reaction rates respond to achieve a new equilibrium?

Equilibrium shifts to the right to consume particles and relieve pressure in the system.

2. Pressure

The equilibrium will always shift to relieve an increase in pressure or to fill up space when pressure is decreased.

2. Pressure

Example #3

$$3 H_{2(g)} + N_{2(g)} <===> 2 NH_{3(g)}$$

What happens if the volume of the system is reduced?

Equilibrium shifts to the right

2. Pressure

Example #4

$$H_{2(g)} + I_{2(g)} <===> 2 HI_{(g)}$$

What happens if the volume of the system is increased?

Nothing. Both reaction directions are equally affected. (# of moles reactants = # of moles products)

3. Addition of inert gases

Example #5

$$3 H_{2(g)} + N_{2(g)} <===> 2 NH_{3(g)}$$

What happens if neon gas is added?

Nothing. A gas that cannot react with the chemicals in the system will not change the equilibrium position of the system.

4. Presence of catalysts

Example #6

$$3 H_{2(g)} + N_{2(g)} <===> 2 NH_{3(g)}$$

What happens when a catalyst is

added?

Nothing. Catalysts speed up both the forward and reverse reactions, so the equilibrium will not change.

5. Temperature

Example #7:

$$2 \text{ NO}_{2(g)} <===> N_2O_{4(g)} + \text{energy}$$

How does the system compensate when the temperature is increased?

Equilibrium shifts to the left.

5. Temperature

Example #8:

$$2 SO_{3(g)} + energy <===> 2 SO_{2(g)} + O_{2(g)}$$

How does the system compensate when the temperature is decreased?

Equilibrium shifts to the left.