Medical Image Processing for Diagnostic Applications

Parallel Beam - Filtered Backprojection

Online Course – Unit 31 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Idea for Reconstruction

Filtered Backprojection

Summary

Take Home Messages Further Readings

Idea for Reconstruction

Figure 1: By projections the Fourier space is sampled, by inverse Fourier transform an image of the object can be reconstructed (Zeng, 2009).

Topics

Idea for Reconstruction

Filtered Backprojection

Summary

Take Home Messages Further Readings

Filtered Backprojection

The inverse Fourier transform of the 2-D Fourier measurement F(u, v):

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{2\pi i (ux+vy)} du dv$$

can be written in polar coordinates:

$$f(x,y) = \int_{0}^{\pi} \int_{-\infty}^{\infty} F_{\text{polar}}(\omega,\theta) |\omega| e^{2\pi i \omega(x \cos \theta + y \sin \theta)} d\omega d\theta.$$

According to the Fourier slice theorem $P(\omega, \theta) = F(\omega \cos \theta, \omega \sin \theta) = F_{polar}(\omega, \theta)$ this yields:

$$f(x,y) = \int_{0}^{\pi} \int_{-\infty}^{\infty} P(\omega,\theta) |\omega| e^{2\pi i \omega(x \cos \theta + y \sin \theta)} d\omega d\theta.$$

Filtered Backprojection

ram filter weights down the center, since the density is biggest there

The inner integral in the last equation:

$$f(x,y) = \int_{0}^{\pi} \left(\int_{-\infty}^{\infty} P(\omega,\theta) |\omega| e^{2\pi i \omega(x \cos \theta + y \sin \theta)} d\omega \right) d\theta$$

represents the 1-D inverse Fourier transform of the product $P(\omega,\theta)|\omega|$.

According to the convolution theorem this corresponds to a convolution in spatial domain:

$$f(x,y) = \int_{0}^{\pi} p(s,\theta) * h(s)|_{s=x\cos\theta+y\sin\theta} d\theta,$$

where h(s) denotes the corresponding inverse Fourier transform of $|\omega|$.

Filtered Backprojection: Practical Algorithm

1. Apply filter on the detector row:

q -> filtered data

$$q(s,\theta) = p(s,\theta) * h(s).$$

2. Backproject $q(s, \theta)$:

$$f(x,y) = \int\limits_0^\pi q(s, heta)|_{s=x\cos heta+y\sin heta} \,\mathrm{d} heta.$$
 this is still simple backprojection

Topics

Idea for Reconstruction

Filtered Backprojection

Summary

Take Home Messages Further Readings

Take Home Messages

- The central slice theorem allows a very practical reconstruction algorithm for parallel beam geometry.
- The workflow includes filtering on the detector rows and successive backprojection.

Further Readings

The derivation of the filtered backprojection formula can also be found here (bibsource):

Joachim Hornegger, Andreas Maier, and Markus Kowarschik. "CT Image Reconstruction Basics". In: MR and CT Perfusion and Pharmacokinetic Imaging: Clinical Applications and Theoretical Principles. Ed. by Roland Bammer. 1st ed. Alphen aan den Rijn, Netherlands: Wolters Kluwer, 2016, pp. 01-09

The concise reconstruction book from 'Larry 'Zeng:

Gengsheng Lawrence Zeng. Medical Image Reconstruction – A Conceptual Tutorial. Springer-Verlag Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-05368-9

If you want to learn more about applications of the Fourier transform:

Ronald N. Bracewell. The Fourier Transform and Its Applications. 3rd ed. Electrical Engineering Series.

Boston: McGraw-Hill, 2000