ALGEBRA BOOLEANA

AND (E)

- Multiplicação (conjunção)
- Tabela Verdade:

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

OR (OU)

- Soma (disjunção)
- Tabela Verdade:

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT (NÃO)

- Complemento (negação)
- Tabela Verdade:

Α	Ā
0	1
1	0

NAND (NÃO E)

- Mistura da função "NOT" com a função "AND".

NOR (NÃO OU)

- Mistura da função "NOT" com a função "OR".

XOR (OU Exclusivo)

- Mostra '1' na saída quando as entradas são diferentes.
- Tabela Verdade:

Α	В	S=A⊕B	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Resumo dos Blocos Lógicos Básicos

Nome	Símbolo Gráfico	Função Algébrica	Tabela Verdade
E (AND)	A S=A.B	S=A.B S=AB	A B S=A.B 0 0 0 0 1 0 1 0 0 1 1 1 1
OU (OR)	A B S=A+B	S=A+B	A B S=A+B 0 0 0 0 0 1 1 1 0 1 1 1 1
NÃO (NOT) Inversor	A S=Ā	S=Ā S=A' S= ¬ A	A S=Ā 0 1 1 0
NE (NAND)	$A \longrightarrow S = \overline{A.B}$	S= <u>A.B</u> S=(A.B)' S= ¬(A.B)	A B S=AB 0 0 1 0 1 1 1 0 1 1 1 0
NOU (NOR)	$A \longrightarrow S = \overline{A + B}$	S= A+B S=(A+B)' S= ¬(A+B)	A B S=Ā+B 0 0 1 1 0 1 0 1 0 0 1 1 0
XOR	$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} S = A \oplus B \end{array}$	S=A⊕B	A B S=A⊕B 0 0 0 0 1 1 1 0 1 1 1 0

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

DIFERENÇA ENTRE ARQUITETURA E ORGANIZAÇÃO

- Arquitetura: Atributos do computador que são visíveis ao programador, ou seja, são os atributos que possuem impacto direto na execução lógica de um programa.
 - Exemplos: número de bits, mecanismos de entrada e saída, conjunto de instruções.
- Especificar se um computador deve ter uma instrução de multiplicação é uma decisão de projeto de arquitetura.
- Organização: Unidades operacionais e suas interconexões que percebam as especificações de arquitetura, são atributos transparentes ao programador.
 - Exemplos: sinais de controle, interfaces entre o computador e os periféricos e a tecnologia de memória utilizada.
- Definir se a instrução de multiplicação do computador vai ser implementada por uma unidade específica de multiplicação ou por um mecanismo de soma é uma decisão de projeto de organização.

FAMÍLIAS E MODELOS DE COMPUTADORES

- O que muda nos modelos de computadores da mesma família é sua organização, e não sua arquitetura. Isso causa uma variação no desempenho e preço.
- Em microcomputadores, é normal vermos novas gerações com mudanças tanto na arquitetura quanto na organização, isso ocorre porque o custo de mudanças desses dois é menor nos microcomputadores.

ABORDAGENS DESCRITIVAS DO COMPUTADOR

- A descrição de um computador pode ter duas abordagens:

- Top-Down: Do mais geral para o mais específico (mais usado).
- **Bottom-up:** Do mais específico para o mais geral.

FUNÇÕES DE UM COMPUTADOR

- De forma geral, um computador tem quatro funções:
 - Processamento de Dados:
 - Armazenamento de Dados;
 - Entrada e Saída de Dados;
 - Controle;

ESTRUTURA DE UM COMPUTADOR

- Memória Principal;
- E/S Entrada e Saída;
- Interconexão do Sistema:
 - Uma Placa de Circuito Impresso, ou PCB (Printed Circuit Board) é uma placa que interconecta todos os outros componentes eletrônicos;
 - A principal Placa de Circuito Impresso de um computador é a Placa Mãe;

CPU (Central Processing Unit):

- Componente mais complexo, conhecido como Processador.
- Constituído principalmente por:
 - Unidade de Controle;
 - Unidade de Lógica e Aritmética (ULA);
 - Registradores;
 - Interconexão da CPU;
- Quando os processadores ficam em um único chip, é chamado de **computador multicore**.
- Cada unidade de processamento é chamada de core.
- Nos dias atuais é comum o uso de camadas de memória entre o processador e a memória principal, essas memórias são chamadas de memória cache.

EVOLUÇÃO DOS COMPUTADORES 3ª GERAÇÃO EM DIANTE

IBM SYSTEM/360

- Lançado em 1964, a família de produtos lançada pela IBM revolucionou o mercado.
- As máquinas da família tinham o mesmo SO e a mesma Arquitetura, mudando apenas em termos de organização (como quantidade de memória, tempo de ciclo do processador, etc.)

PDP-8

- Lançado paralelamente aos produtos da IBM, a empresa DEC lançou o PDP-8;
- Muito mais barato;
- Recebeu o nome de minicomputador, fazendo surgir um novo segmento no mercado.

LEI DE MOORE

- Afirmação de Gordon Moore, cofundador da Intel, em 1965: "o número de transistores em circuitos integrados dobrará a cada ano".
- A partir de 1970, o ritmo teve uma queda, levando 18 meses para que isso ocorra.
- Com essa afirmação, o custo dos chips se manteria, enquanto o desempenho aumentaria muito.

MICROCHIPS DA INTEL

- Em 1971 foi lançado o chip 4004, ele podia realizar somas de 4 bits.
- Em 1974, o chip 8080 foi lançado, com uma CPU de 8 bits e com propósito geral.
- No final da década de 70, foi lançado o 8086, de 16 bits
- Em 1985, a Intel lançou o 386, de 32 bits que ampliou muitos recursos.

- A sequência de processadores Intel fabricados desde o 8086 ficou com o nome de x86.
- Na década de 1990, a Intel lançou o Pentium, no qual foram introduzidas muitas tecnologias novas, como a arquitetura superescalar.
- A partir dos anos 2000, muitas tecnologias novas foram adotadas, como os processadores de 64 bits, a inclusão de mais de um núcleo de processamento em um mesmo chip, etc.

Questões de Desempenho

A melhora no desempenho dos computadores é buscado pela adição de novos recursos como:

- Pipeline;
- Execução especulativa e superescalar;
- Memória Cache.

BALANÇO DE DESEMPENHO OU TRADE-OFF

- Trade-off: Deixar de ganhar em algum recurso para favorecer outro.
- O problema criado por essas diferenças é particularmente importante na relação entre processador e memória principal;

MELHORIAS NOS COMPUTADORES

Técnicas para aumentar a velocidade do processador:

- Aumentar a velocidade de hardware do processador;
- melhorar as caches interpostas entre o processador e a memória principal;
- Fazer mudanças na arquitetura e organização do processador.

Melhorar um chip (melhorando sua velocidade de clock, etc), faz com que alguns problemas tornem-se mais significativos:

- **Potência (temperatura):** A liberação de mais potência, ou seja, calor. Podem fazer com que o chip super-aqueça.
- Atraso de RC: A resistência e a capacitância podem 'barrar' a melhora na velocidade;
- **Latência da memória:** A velocidade de acesso à memória pode muitas vezes limitar as velocidades do processador.

MULTICORE (MIC)

Uma forma de aumentar o desempenho dos chips sem aumentar a frequência do clock é utilizando diversos processadores em um único chip.

LEI DE AMDAHL

Esta lei lida com o potencial de speedup de um programa usando múltiplos cores, em comparação com um único.

Speedup = Tempo para executar em um único processador / Tempo para executar com N processadores paralelos.

$$= \frac{T(1-f) + Tf}{T(1-f) + \frac{Tf}{N}} = \frac{1}{(1-f) + \frac{f}{N}}$$

A Lei de Amdahl serve para calcular a melhora após o aumento em qualquer característica do PC, podendo ser expresso como:

^{*}Se menor que 1, não houve melhora.

MEDIDAS BÁSICAS DE DESEMPENHO DE UM COMPUTADOR

- Frequência de Clock: Dada em ciclos por segundo, calculada em Hertz.
- Ciclos por Instrução (CPI): Quantidade de ciclos para que uma instrução seja executada;
- Tempo de Ciclo: Tempo de duração de 1 ciclo, podendo ser obtido com:

1 GHz = 1.10⁹

1 Picosegundo = 1.10^{-12}

COMPARAÇÃO DE DESEMPENHO ENTRE CPU

Para saber o quanto um computador 'x' é melhor que um computador 'y', basta fazer:

(Quanto maior o resutado, melhor o computador 'x' é)

(Se n<1, então o computador y é melhor)

PERGUNTAS

1) Indique o símbolo gráfico, nome e operador das funções 'AND' e 'OR'.

R:

- AND:

- Nome: Conjunção

- Operador: Multiplicação (.)

Símbolo Gráfico:

- OR:

Nome: Disjunção

- Operador: Adição (+)

- Símbolo Gráfico:

2) Indique a Diferença entre 'Arquitetura' e 'Organização', dê exemplos.

R: Arquitetura é o que o computador vai ter (como por exemplo, se ele vai ter um sistema de multiplicação), basicamente, é tudo aquilo que o programador tem contato direto.

Organização é como o computador vai ter as coisas (como por exemplo, como vai ser o sistema de multiplicação do computador), basicamente, é tudo aquilo que o programador não tem contato direto.

3) Quais são as funções básicas de um computador?

R: Processar e Armazenar Dados, Entrada e Saída de Dados e Controle.

4) Do que é composta a estrutura de um computador?

R: CPU (Central Processing Unit);

Interconexões do Sistema;

E/S - Entrada e Saída;

Memória Principal.

5) Do que é constituído o Processador?

R: Unidade de Controle;

Unidade de Lógica e Aritmética (ULA);

Registradores;

Interconexões da CPU;

Quando existem mais de um núcleo em um mesmo chip, é chamado de Multicore.

6) Quais foram os dois computadores da 3ª Geração que tiveram grande impacto na história?

R: IBM SYSTEM/360 e PDP-8, sendo este segundo muito menor e mais barato.

7) O que dizia a Lei de Moore?

R: A Lei de Moore dizia que a quantidade de transistores em circuitos integrados iria dobrar a cada ano, esta lei chegou bem próximo da realidade, com isto acontecendo a cada 18 meses a partir de 1970.

8) Quais foram os principais processadores lançados pela Intel e suas diferenças?

R: 4004 - Primeiro Processador da Intel, com 4 bits de processamento;

8080 - Processador que sucedeu o 4004 e o 8008, com 8 bits de processamento e propósito geral (os anteriores eram de propósito específico);

8086 - Com 16 bits de processamento;

(Os processadores lançados após o 8086 ficaram conhecidos pelo nome de x86)

386 - Com 32 bits de processamento, ampliou muitos recursos;

Pentium - Muitas tecnologias novas foram introduzidas, incluindo a arquitetura superescalar;

A partir dos anos 2000, muitas tecnologias foram adotadas como: 64 bits de processamento e mais núcleos em um mesmo chip.