Théorème:

Soit $a > 0, \lambda \in \mathbb{R}$

Alors $\int_a^{+\infty} \frac{1}{t^{\lambda}} dt$ converge ssi $\lambda > 1$

$$f: [a; +\infty[\to \mathbb{R}$$

$$\overline{f: [a; +\infty[\to \mathbb{R} \\ t \mapsto \frac{1}{t^{\lambda}} (= e^{-\lambda \ln t})]}$$

est continue sur $[a; +\infty[$

Il suffit donc d'étudier l'existence d'une limite finie de $\int_{a}^{x} f(t) dt$ quand $x \to +\infty$

Cas où $\lambda \neq 1$

Soit x > a:

$$\int_{a}^{x} \frac{1}{t^{\lambda}} dt = \int_{a}^{x} t^{-\lambda} dt$$

$$= \left[\frac{t^{-\lambda+1}}{-\lambda+1} \right]_{a}^{x}$$

$$= \frac{1}{1-\lambda} x^{1-\lambda} - \frac{1}{1-\lambda} a^{1-\lambda}$$

$$\text{Or } x^{\alpha} \xrightarrow[x \to +\infty]{} \begin{cases} +\infty \text{ si } \lambda > 0 \\ 1 \text{ si } \lambda = 0 \\ 0 \text{ si } \lambda < 0 \end{cases}$$

$$\text{Ainsi } \int_{a}^{x} \frac{1}{t^{\lambda}} dt \xrightarrow[x \to +\infty]{} \begin{cases} -\frac{1}{1-\lambda} a^{1-\lambda} \in \mathbb{R} \text{ si } 1 - \lambda < 0 \Leftrightarrow \lambda < 1 \\ -\frac{1}{1-\lambda} a^{1-\lambda} \in \mathbb{R} \text{ si } 1 - \lambda < 0 \Leftrightarrow \lambda > 1 \end{cases}$$

$$\text{Soit } x > a, \int_{a}^{x} \frac{1}{1-\lambda} dt = \ln x - \ln a \longrightarrow +\infty$$

Ainsi $\int_{a}^{x} \frac{1}{t^{\lambda}} dt$ converge ssi $\lambda > 1$.

Soit x > a, $\int_{a}^{x} \frac{1}{t} dt = \ln x - \ln a \xrightarrow[x \to +\infty]{} + \infty$

Théorème:

Soit $a > 0, \lambda \in \mathbb{R}$

Alors $\int_0^a \frac{1}{t^{\lambda}} dt$ converge ssi $\lambda < 1$

$$f:]0; a] \rightarrow \mathbb{R}$$

$$t \mapsto \frac{1}{t^{\lambda}} \left(= e^{-\lambda \ln t} \right)$$

est continue sur]0;a]

Il suffit donc d'étudier l'existence d'une limite finie de $\int_{r}^{a} f(t) dt$ quand $x \to 0^{+}$

$$\int_{x}^{a} \frac{1}{t^{\lambda}} dt = \int_{x}^{a} t^{-\lambda} dt$$
$$= \left[\frac{t^{-\lambda+1}}{-\lambda+1} \right]_{x}^{a}$$
$$= \frac{1}{1-\lambda} a^{1-\lambda} - \frac{1}{1-\lambda} x^{1-\lambda}$$

$$\begin{split} & \text{Ainsi } \int_a^x \frac{1}{t^\lambda} dt \underset{x \to 0^+}{\longrightarrow} \left\{ \frac{1}{1-\lambda} a^{1-\lambda} \sin 1 - \lambda > 0 \Leftrightarrow \lambda < 1 \right. \\ & + \cos 1 - \lambda < 0 \Leftrightarrow \lambda > 1 \\ & - \underbrace{\text{Cas où } \lambda = 1}_{x \text{ of } t} dt = \ln a - \ln x \underset{x \to 0^+}{\longrightarrow} + \infty \end{split}$$

Soit
$$0 < x < a$$
, $\int_{x}^{a} \frac{1}{t} dt = \ln a - \ln x \xrightarrow[x \to 0^{+}]{} + \infty$

Ainsi $\int_a^x \frac{1}{t^{\lambda}} dt$ converge ssi $\lambda < 1$.

Théorème (IPP généralisée):

Soient $u,v:I\to\mathbb{R}$ ou \mathbb{C} de classe C^1 . Si l'intégrale $\int_{\alpha}^{\beta}u(t)v'(t)\,dt$ converge et si la fonction uvadmet des limites finies en α^+ et β^- , alors $\int_{\alpha}^{\beta} u'(t)v(t) dt$ converge et on a :

$$\int_{\alpha}^{\beta} u'(t)v(t) dt = [uv]_{\alpha}^{\beta} - \int_{\alpha}^{\beta} u(t)v'(t) dt$$

Démonstration:

Comme u, v sont de classe C^1 sur I, uv est dérivable sur I et (uv)' = u'v + uv'.

Notons G une primitive de uv', alors H = uv - G est une primitive de u'v (car H est dérivable sur I) et H' = u'v.

Comme $\int_{\alpha}^{\beta} u(t)v'(t) dt$ converge, G admet des limites finies en α^+ et β^- , comme uv (par hypothèse), donc H admet aussi des limites finies en α^+ et β^- , donc $\int_{\alpha}^{\beta} u'(t)v(t) dt$ converge.

De plus,
$$\int_{\alpha}^{\beta} u'(t)v(t) dt = [H]_{\alpha}^{\beta}$$

$$= [uv]_{\alpha}^{\beta} - [G]_{\alpha}^{\beta}$$

$$= [uv]_{\alpha}^{\beta} - \int_{\alpha}^{\beta} u(t)v'(t) dt$$

Exemples de fonctions intégrables

- 1) Soit $a > 0, \lambda \in \mathbb{R}$. La fonction de Riemann $t \mapsto \frac{1}{t^{\lambda}}$ est intégrable sur $[a; +\infty[$ ssi $\lambda > 1$ et intégrable sur [0; a] ssi $\lambda < 1$.
- 2) La fonction $f: t\mapsto e^{-t}$ est intégrable sur \mathbb{R}_+ . En effet, f est continue positive, donc |f|=f. Une primitive de f est $F: t\mapsto -e^{-t}$, avec $F(x) \xrightarrow[x\to +\infty]{} 0$ et $F(x) \xrightarrow[x\to +\infty]{} -1$ Donc $\int_0^{+\infty} |f(t)| \, dt$ converge (et vaut 1).
- 3) Toute fonction continue sur un segment est intégrable sur ce segment.

<u>Propriété</u>: Soient J un intervalle de \mathbb{R} , a un point adhérent à J, et f, g: $J \to \mathbb{C}$

- 1. Si f(x) = o(g(x)), alors f(x) = O(g(x))
- 2. Si $f(x) \sim g(x)$, alors $f(x) = \mathcal{O}(g(x))$ et $g(x) = \mathcal{O}(f(x))$

Démonstration :

1. Si $f(x) = \circ (g(x))$, alors $\exists \varepsilon$ définie sur un voisinage V de a tel que $\forall x \in V$, $f(x) = g(x)\varepsilon(x)$, avec $\varepsilon(x) \underset{x \to a}{\longrightarrow} 0$.

Alors
$$\exists W \subset V$$
 tel que $\forall x \in W, |\varepsilon(x)| \le 1$
D'où $\forall x \in W, |f(x)| = |g(x)||\varepsilon(x)|$

$$\leq 1 \times |g(x)|$$

Donc
$$f(x) = \mathcal{O}(g(x))$$
.

2. Supposons que $f(x) \sim g(x)$

Alors $\exists \varepsilon$ définie sur un voisinage V de a tel que $\forall x \in V, f(x) = g(x)(1 + \varepsilon(x)),$

avec
$$\varepsilon(x) \xrightarrow[x \to a]{} 0$$
.

Alors $\exists W \subset V$ tel que $\forall x \in W, |\varepsilon(x)| \leq 1$

D'où
$$\forall x \in W, |f(x)| = |g(x)||1 + \varepsilon(x)|$$

 $\leq |g(x)|(1 + |\varepsilon(x)|)$
 $\leq 2|g(x)|$

Donc
$$f(x) = \mathcal{O}(g(x))$$
.

Et comme la relation d'équivalence est symétrique, on a bien $g(x) = \mathcal{O}(f(x))$