Lý thuyết Điều khiển tự động 1

Mô tả hệ thống rời rạc tuyến tính

ThS. Đỗ Tú Anh

Bộ môn Điều khiển tự động Khoa Điện, Trường ĐHBK HN

Hệ thống điều khiển số

Sơ đồ cấu trúc cơ bản

Hệ thống điều khiển số (tiếp)

Ưu điểm của bộ điều khiển số

- Có thể thay đổi tính năng của bộ đk một cách linh hoạt (nhờ khả năng lập trình)
- Hiệu suất tính toán cao
- Ưu việt hơn bộ đk tương tự ở các khía cạnh như: độ nhạy, nhiễu nội, độ tin cậy, ...

Nhược điểm

- Sai số khi lấy mẫu tín hiệu
- Sai số khi lượng tử hóa tín hiệu

Mô tả các hệ thống rời rạc

Hệ thống rời rạc có các tín hiệu vào/ra là các tín hiệu rời rạc

Biến đổi Z

 $z=e^{Ts}$

Ý nghĩa

- Là công cụ toán học giúp cho việc phân tích tín hiệu và hệ thống rời rạc một cách thuận tiện
- Đóng vai trò như biến đổi Laplace trong việc phân tích tín hiệu và hệ thống liên tục

Định nghĩa

Cho f(k) là tín hiệu nhân quả, tức là f(k) = 0 với k < 0, khi đó

$$F(z) = Z[f(k)] = \sum_{k=0}^{\infty} f(k)z^{-k}$$

Biến đổi Z ngược

$$f(kT) = Z^{-1}[F(z)] = \frac{1}{2\pi i} \oint F(z) z^{k-1} dz$$

(Xem phần Phụ lục ở cuối bài giảng)

Mô tả các hệ thống rời rạc tuyến tính

Phương trình sai phân

$$y(k) + a_1 y(k-1) + \dots + a_n y(k-n) = b_0 u(k) + b_1 u(k-1) + \dots + b_m u(k-m)$$

với các sơ kiện $y(-1), y(-2), \dots, y(-n)$

$$y(k) + a_1 y(k-1) = b_0 u(k) + b_1 u(k-1)$$

Mô tả các hệ thống rời rạc tuyến tính (tiếp)

Hàm truyền đạt

$$G(z) = \frac{Z[y(k)]}{Z[u(k)]} = \frac{Y(z)}{U(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{1 + a_1 z^{-1} + \dots + a_n z^{-n}}$$

trong đó u(k) = y(k) = 0 với k < 0

Đáp ứng xung

Đáp ứng xung g(k) là đáp ứng của hệ thống khi tín hiệu kích thích ở đầu vào là dãy xung đơn vị $\delta(k)$, giả thiết các sơ kiện bằng 0

$$G(z) = Z [g(k)]$$

Mô hình trạng thái

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k)$$
$$\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{D}\mathbf{u}(k)$$

$$G(z) = \mathbf{C}(z\mathbf{I}_{n} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

trong đó $\mathbf{u}(k) \in \mathbb{R}^m$, $\mathbf{x}(k) \in \mathbb{R}^n$, và $\mathbf{y}(k) \in \mathbb{R}^p$ lần lượt là các vector vào, vector trạng thái và vector ra. \mathbf{A} , \mathbf{B} , \mathbf{C} , \mathbf{D} là các ma trận hằng với kích thước thích hợp

Phụ lục

Các định lý và tính chất của biến đổi Z

Property or theorem	f(kT)	F(z)
1 Definition of Z-transform	f(kT)	$\sum_{k=0}^{\infty} f(kT)z^{-k}$
2 Definition of the inverse Z-transform	$\frac{1}{2\pi j} \oint F(z) z^{k-1} \mathrm{d}z$	F(z)
3 Linearity	$c_1 f_1(kT) + c_2 f_2(kT)$	$c_1 F_1(z) + c_2 F_2(z)$
4 Shift to the left (advance)	$f(kT + \sigma T)$	$z^{\sigma} \left(F(z) - \sum_{k=0}^{\sigma-1} f(kT) z^{-k} \right)$
5 Shift to the right (delay)	$f(kT - \sigma T)$	$z^{-\sigma}F(z)$
6 Change in z-scale	$a^{\mp kT}f(kT)$	$F(a^{\pm T}z)$

Phụ lục

Các định lý và tính chất của biến đổi Z (tiếp)

7 Change in
$$kT$$
-scale

$$F(z^{-m})$$

8 Multiplying by
$$k$$

$$-z\frac{\mathrm{d}}{\mathrm{d}z}F(z)$$

$$\sum_{k=0}^{m} f(kT)$$

$$\frac{z}{z-1}F(z)$$

$$f(kT) \times h(kT)$$

$$f(kT) = f(kT + pT)$$

$$\frac{z^p}{z^p-1}F_1(z)$$

$$\lim_{z\to\infty}F(z)$$

$$\lim_{k \to \infty} f(kT)$$

$$\lim_{z \to 1} (1 - z^{-1}) F(z)$$