Table 5-3 8086 Memory Addressing Options Identified by the EA Abbreviations in Tables 5-4, 5-5, and 5-6

Shaded	Shaded			I/O Data	Branch	Instruction Fetch	Data	String	Stack	0.00	70 0			Memory	20	CS (A			ļ.	Memory
row applies	rows apply		_	Sd	cs	cs	ES	DS	SS	200 00 000	(Alternate*	SS	SG		1	(Alternate*	DS		Register	Seament
Shaded row applies to EA and LABEL	Shaded rows apply to EA and DADDR	Th.	77	DX	PC	PC	None	None	SP		₽		None		ВХ			None	Register	Roco
EL	DR.	These columns contribute to EA	These columns contribute to OEA	None	None	None	D	S	None	None	10	S	None	None	10	IS	DI	SI	Register	Touchan
X These an	* The segr	ntribute to EA.	ntribute to OEA							×	×	×	×	×	×	×	×	×	16-Bit Unsigned	
X These are displacements that can be used to compute memory addresses.	* The segment override allows DS or SS to be replaced by one of the other segment registers				×					×	×	×		×	×	×	×	×	8-Bit High-order Bit Extended	- coolers englishmenting
it can be use	s DS or SS to t registers										×	×		×	×	×	×	×	None	6110
d to compute	o be replaced	to be provided	This column																Canguage Operand Mnemonic	Assembly

E & & × < c 1-1 11= Not equal to The twos complement of the value under the -Contents of locations on each side of --- are exchanged Data on the right-hand side of the arrow is moved to the location on the left-hand side of the arrow Contents of the memory location addressed by the contents of the location enclosed in the double The source is a word operand (used only by the Assembler) The destination is a word operand (Used only by the Assembler) Status flag modified to reflect result Any number in the range 0 through 25510 Status flag modified, but undefined The contents of the location enclosed in the brackets

INSTRUCTION EXECUTION TIMES AND CODES

fetch time occurs concurrently with instruction execution time and thus has no effect on overall timing, except as tion from memory into the queue linstruction fetch time) is not shown in the table; because of queuing, instruction 8088, expressed in whole clock cycles. Execution time is the time required from beginning execution of an instruction specifically noted in the table that is in the queue to beginning execution of the next instruction in the queue. The time required to place an instruc-Table 5-5. lists instructions in alphabetical order, showing object codes and execution times, for the 8086 and the

Instruction object codes are represented as two hexadecimal digits for instruction bytes without variations

Instruction object codes are represented as eight binary digits for instruction bytes with variations for the instruction

8 The following notation is used in Tables 5-4 and 5-5. one bit choosing length: indicate an optional object code byte two bits choosing address length. in bit position 0 a=0 specifies 1 data byte; a=1 specifies 2 data bytes in bit position 1 a=0 specifies 2 data bytes: a=1 specifies 1 data byte two DISP bytes = 10, or 00 with bbb = 110 $\,$ 11 causes bbb to select a register, using the 3-bit code given below for reg. one DISP byte = 01 no DISP = 00

three bits choosing addressing mode 000 EA = (BX) + (SI) + DISP 001 EA = (BX) + (DI) + DISP 011 EA = (BP) + (DI) + DISP 111 EA = (BX) + DISP 110 EA = (BP) + DISP 101 EA = (DI) + DISP 100 EA = (SI) + DISP 010 EA = (BP) + (SI) + DISP

ddd

DISP 77 represents three binary digits identifying a destination register (see reg.) represents two hexadecimal digit memory displacement

two binary digits identifying a segment register

10 = SS 11 = DS 01 = CS 00 = ES

693 three binary digits identifying a register

0000 11000 D S B B C C AL B B C A AL B C

> PPQQ represents two hexadecimal data digits one bit choosing shift length: represents four hexadecimal digit memory address represents three binary digits identifying a source register (see regi don't care" bit 1 count = (CL) 0 count = 1

₹* one bit where z XOR (ZF) = 1 terminates loop represents four hexadecimal data digits

jumps, the lesser figure is when the test fails (no jump taken) includes up to eight clock cycles of overhead on each transfer due to queue maintenance. For conditional Execution time is less than or equal to instruction fetch time

Effective Address calculation and extra clock cycles

2 Add anoter 4 clock cycles for each 15-bit operand	(1) Add another 4 clock cycles for each 16-bit operand or an odd address boundary	16-51	8-bit im	111 + DISP16	110 + DISP8	101 or (8X)		(BP) +	011 (BP) +	(BP) +	010 (BP) +	010 IBPI +	010 (BP) +	001 (BX) +	001 (BX) +	001 (BX) +	+ (XB)	000 (BX) +	000 (BX) +	555	
or each	for each	16-bit immediate	8-bit immediate	16	8		(SI) ir (DII or (BD)	(DI) + DISP16	(DI) + DISP8	(DI)	(SI) + DISP16	(SI) + DISP8	(SI)	(DI) + DISP16	(DI) + DISP8	(DI)	(SI) + DISP16	(SI) + DISP8	(S))	EA	
		6	6	9	9		5	11	11	7	12	12	8	12	12	80	1	=	7	8086(1)	
		10	6	13	9		OT	15	11	7	16	12	00	16	12	8	5	=	7	8088(2)	

Substitute the clock cycles shown above wherever EA appears in Tables 5-4 and 5-5

į	Ç	1
	1	
	١	

9		Disconsistent literature	more services as	standy assum very series			3	St	atus	05				(** <u>1</u> 201)22444-041456267-04034-0
1 ype	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	т	s	z	A	Р	С	Operation Performed
	IN	AL,PORT	E4 YY	10	Г		T				7			[AL] — [PORT] Load one byte of data from I/O port PORT into AL
	IN	AL,[DX]	EC 1	8										[AL] — [PDX] Load into AL one byte of data from I/O port whose address is held in the I register
	IN	AX,PORT	E5 YY	10										[AL] — [PORT], [AH] — [PORT+1] Load 16 bits of data into AX, AL receives data from I/O port PORT, A receives data from I/O port PORT+1
	IN	AX.[DX]	ED	8										[AL] — [PDX], [AH] — [PDX+1] Load 16 bits of data into AX, AL receives data from I/O port whose address held in the DX register. AH receives data from the I/O port whose address one higher
0/1	OUT	AL,PORT	E6 YY	10						H				[PORT] — [AL] Output one byte of data from register AL to I/O port PORT
	OUT	AL,[DX]	EE 1	8										IPOX) — [ALI Output one byte of data from register AL to the I/O port whose address/s hi in the DX register
	OUT	AX,PORT	E7 YY	10										[PORT] — [AL], [PORT+1] — [AH] Output 16 bits of data. The AL register contents are output to I/O port PORT The AH register contents are output to I/O port PORT+1
	OUT	AX.[DX]	EF	8										[PORT] ← [PDX], [PORT+1] ← [PDX+1] Output 16 bits of data. The AL register contents are output to the I/O p. whose address is held in the DX register. The AH register contents is output to the I/O port whose address is one higher
001	LDS	RW,DADDR	C5 sesssbbb [DISP][DISP]	16+EA										[RW] — [EA], [DS] — [EA+2] Load 16 bits of data from the memory word addressed by DADDR in register RW. Load 16 bits of data from the next sequential memory word in the DS register.
Merera	LEA	RW,DADDR	8D aasssbbb (DISP)(DISP)	2+EA										[RW] — OEA Load into RW the 16-bit address displacement which, when added to t
rimary Memory Reference	LES	RW,DADDR	C4 sessebbb [DISP][DISP]	16+EA										segment register contents, creates the effective data memory address [RW] — [EA], [ES] — [EA+2] Load 16 bits of data from the memory word addressed by DADDR in register RW. Load 16 bits of data from the next sequential memory word in the ES register
Frim	MOV	RB,DADDR	8A sadddbbb [DISP][DISP]	8+EA										[RB] — [EA] Load one byte of data from the data memory location addressed by DADDR register RB

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

8								Sta	tuse	95			
1 100	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	т	s	z ,	A	PC	Operation Performed
	MOV	RW,DADDR	8B aadddbbb [DISP][DISP]	8+EA					1	1	1	Ī	[RW] — (EA) Load 16 bits of data from the data memory word addressed by DADDR
	MOV	DADDR,RB	88 aasssbbb (DISP)(DISP)	9+EA				1					register RW [EA] — [RB] Store the data byte from register RB in the memory byte addressed by DADD
	MOV	DADDR,RW	89 aasssbbb [DISP][DISP]	9+EA									[EA] ← [RW] Store the 16-bit data word from register RW in the memory word addresse by DADDR
	MOV	AL,LABEL	AO PPQQ	10									(AL) — [EA]
	MOV	AX,LABEL	A1 PPQQ	10									Load the data memory byte directly addressed by LABEL into register AL [AX] ← [EA] Load the 16-bit data memory word directly addressed by LABEL into regist
(Continued)	MOV	LABEL,AL	A2 PPQQ	10									AX [EA] — [AL] Store the 8-bit contents of register AL into the data memory byte directly a dressed by LABEL
nce Icon	MOV	LABEL,AX	A3 PPQQ	10								4	[EA] — [AX] Store the 16-bit contents of register AX into the data memory word direct addressed by LABEL
Memory Reference	MOV	SR,DADDR	8E sa0rrbbb [DISP][DISP]	8+EA									[SR] [EA] Load into Segment register SR the contents of the 16-bit memory word a
INCOME	MOV	DADDR,SR	8C aa0rrbbb [DISP][DISP]	9+EA									dressed by DADDR [EA] — [SR] Store the contents of Segment register SR in the 16-bit memory location a
remark.	XCHG	RB,DADDR	86 aaregbbb [DISP][DISP]	17+EA									dresed by DADDR [RB]
	XCHG	RW,DADDR	87 aaregbbb [DISP][DISP]	17+EA									addressed by DADDR [RW]
	XLAT		D7	11									addressed by DADDR [AL] — [[AL] + [BX]] Load into AL the data byte stored in the memory location addressed by surming initial AL contents with BX contents

0	- 10.1	s-saucentalle	15 577 17 WALLES	400000000000000000000000000000000000000				Stat	use	s				9207004 0012044 00 2014
Type	Vinemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	т :	3 7	z I	A	P	c	Operation Performed
	ADC	RB,DADDR	12 sadddbbb [DISP][DISP]	9+EA	×			3	()	1	х	×	×	[RB] — [EA] + [RB] + [C] Add the contents of the data byte addressed by DADDR, plus the Carry status, to register RB
	ADC	RW,DADDR	13 aadddbbb DISP (DISP	9+EA	х)	()	c :	×	X	X	
	ADC	DADDR,R8	10 asssabbb [DISP][DISP]	16+EA	×			>	,	<	X	X	х	1
	ADC	DADDR,RW	11 aassabbb [DISP][DISP]	16+EA	х			9	3	×	×	×	×	[EA] ← [EA] + [RW] + [C] Add the 16-bit contents of register RW, plus the Carry status, to the dat word addressed by DADDR
o bodo	ADD	RB,DADDR	02 sadddbbb [DISP][DISP]	9+EA	X			-						[R8] — [EA] + [R8] Add the contents of the data byte addressed by DADDR to register R8
1	ADD	RW,DADDR	O3 aadddbbb [DISP][DISP]	9+EA	X			-					X	Add the contents of the 16-bit word addressed by DADDR to register RW
Memory neighbors (Memory Spensor)	ADD	DADDR,RB	00 aasssbbb [DISP][DISP]	16+EA	×				K 3	×	×	Х	X	[EA] — [EA] + [RB] Add the 8-bit contents of register RB to the data memory byte addressed b DADDR
neiere.	ADD	DADDR,RW	01 aasssbbb DISP DISP	16+EA	×			8	X 2	×	X	Х	X	[EA] — [EA] + [RW] Add the 16-bit contents of register RW to the data memory word addresse by DADDR
A COLUMN	AND	RB,DADDR	22 aadddbbb [DISP][DISP]	9+EA	0			3	× ?	×	u	×	0	[RB] — [EA] AND [RB] AND the 8-bit contents of register RB with the data memory byte addresse by DADDR. Store the result in RB
Secondary	AND	RW,DADDR	23 aadddbbb [DISP][DISP]	9+EA	0				×	×	U	X	0	(RW) — (EA) AND (RW) AND the 16-bit contents of register RW with the data memory word as dressed by DADDR. Store the result in RW
o o	AND	DADDR,RB	20 aasssbbb [DISP][DISP]	16+EA	0				×	×	IJ	X	0	[EA] — [EA] AND [RB] AND the 8-bit contents of register RB with the data memory byte addresse by DADDR. Store the result in the addressed data memory byte
	AND	DADDR,RW	21 aasssbbb (DISP [DISP]	16+EA	0				×	X	U	×	0	[EA] — [EA] AND [RW] AND the 16-bit contents of register RW with the data memory word at dressed by DADDR. Store the result in the addressed data memory word.
	CMP	RB,DADDR	3A aadddbbb [DISP][DISP]	9+EA	×				×	X	×	×	×	[RB] - [EA] Subtract the contents of the data memory byte addressed by DADDR from the contents of register RB. Discard the result, but adjust status flags.
	CMP	RW,DADDR	38 aedddbbb DISP](DISP)	9+EA	×				X	×	X	×	Х	[RW] - [EA] Subtract the 16-bit contents of the data memory word addressed by DADD from the contents of register RW. Discard the result, but adjust status flag

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

Type	Mnemonic	Operand(s)	Object Code	Clock Cycles				Sta	tus	es				
-			Object Code	Clock Cycles	0	D	1	T	s	z	A	P	c	Operation Performed
	CMP	DADDR,RB	38 aasssbbb [DISP][DISP]	9+EA	×				×	-	X	×	×	[EA] - [RB] Subtract the 8-bit contents of register RB from the data memory byte a
	CMP	DADDR,RW	39 aasssbbb [DISP][DISP]	9+EA	×				×	х	х	×	х	dressed by DADDR. Discard the result, but adjust status flags [EA] – [RW] Subtract the 16-bit contents of register RW from the data memory word in
	DEC	DADDR	1111111# ae001bbb (DISP[[DISP]	15+EA	x				×	×	×	×		dressed by DADDR. Discard the result, but adjust status flags [EA] ← [EA] − 1 Decrement the contents of the memory location addressed by DADDR. It pending on the prior definition of DADDR, an 8-bit or a 16-bit memory for
Continued	DIV	AX,DADDR	F6 sel 10bbb [DISP](DISP]	(86-96 I+EA	U				u	U	U	U	u	tion may be decremented [AX] — [AX]/[EA] Divide the 16-bit contents of register AX by the 8-bit contents of the ments byte addressed by DADDR. Store the integer quotient in AL and the remains
ory Operate	VIO	DX,DADDR	F7 aa110bbb (DISP)(DISP)	(150-168)+EA	U			. 1	U	U	U	U	U	in AH. If the quotient is greater than FF16, execute a "divide by 0" intern. [DX] [AX] — [DX] [AX]/[EA] Divide the 32-bit contents of registers DX (high-order) and AX (low-order) the 16-bit contents of the memory word addressed by DADDR. Store the teger quotient in AX and the remainder in DX. If the quotient is greater the
Wellioty Reference Illiemory Operate	IDIV	AX,DADDR	F6 sa111bbb (DISP)[DISP]	(107-118)8+EA	U			1	J	υ	U	ü	U.	FFFF16, execute a "divide by 0" interrupt [AX] - [AX]/[EA] Divide the 16-bit contents of register AX by the 8-bit contents of the memo byte addressed by DADDR, treating both contents as signed binary number. Store the quotient, as a signed binary number, in AL. Store the remainder.
The state of the s	IDIV	DX,DADDR	F7 aa111bbb [DISP][DISP]	[171)-190I+EA	U			.1	J	U	Ü	U	U	an unsigned binary number, in AH. If the quotient is greater than 7F ₁₆ , or let than -8O ₁₆ , execute a "divide by 0" interrupt [DX] [AX] — [DX] [AX]/[EA] Divide the 32-bit contents of register DX (high-order) and AX (low-order) the 16-bit contents of the memory word addressed by DADDR. Treat be contents as signed binary numbers. Store the quotient, as a signed binary number, in AX. Store the remainder, as an unsigned binary number, in AH, the quotient is greater than 7FFF ₁₆ , or less than -8000 ₁₆ , execute a "divident is greater than 7FFF ₁₆ , or less than -8000 ₁₆ , execute a "divident is greater than 7FFF ₁₆ , or less than -8000 ₁₆ , execute a "divident is greater than 7FFF ₁₆ , or less than -8000 ₁₆ .
	IMUL	AL,DADDR	F6 aa101bbb [DISP][DISP]	(86-104)+EA	×			ı)	Ü	u	U	×	by 0" interrupt [AX] — [AL] • [EA] Multiply the 8-bit contents of register AL by the contents of the memory by addressed by DADDR. Treat both numbers as signed binary numbers. Storthe 16-bit product in AX
	IMUL	AX,DADDR	F7 sa101bbb [DISP][DISP]	(134-160)+EA	×			L	3 4	U	U	U	×	[DX] [AX] [AX] - [EA] Multiply the 16-bit contents of register AX by the 16-bit contents of the memory word addressed by DADDR. Treat both numbers as signed binar numbers. Store the 32-bit product in DX (high-order word) and AX (low-order word).

Ф.		RECORD INCLUSION	452 (0.000) (0.000)	120000000000000000000000000000000000000				Sta	tus	es				Operation Performed
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	т	s	z	A	P	С	C Operation Performed
	INC	DADDR	11111118 88000bb [DISP][DISP]	15+EA	×				×	x	×	×		[EA] [EA] + 1 Increment the contents of the memory location addressed by DADDR. Do pending on the prior definition of DADDR, an 8-bit or a 16-bit memory loca- tion may be incremented.
	MUL	AL,DADDR	F6 aa100bbb [DISP][DISP]	(76-83)+EA	×				Ų	U	U	U	×	4.1 - J. S. B. J. S. B. S. S. B. S.
(Continued)	MUL	F7	F7 aa100bbb DISP][DISP]	(124-139)+EA	×				υ	U	U	U	×	X [DX] [AX] - [AX] - [EA] Multiply the 16-bit contents of register AX by the 16-bit contents of the memory word addressed by DADDR. Treat both numbers as unsigned bina numbers. Store the 32-bit product in DX (high-order word) and AX (low-ord word)
Operate/ (C	NEG	DADDR	1111011a as011bb [DISP][DISP]	16+EA	х				×	×	X	×	×	X (EA) — (EA) Twos complement the contents of the addressed memory location. Depening on the prior definition of DADDR, an 8-bit or 16-bit memory location memory be twos complemented.
INTERNOLA	NOT	DADDR	1111011a sa010bbb [DISP][DISP]	16+EA										[EA] — NOT [EA] Ones complement the contents of the addressed memory location. Depending on the prior definition of DADDR, an 8-bit or 16-bit memory location may ones complemented.
Secondary Memory Reference	OR	RB,DADDR	OA aadddbbb [DISP][DISP]	9+EA	×				×	×	U	×	×	X [RB] — [EA] OR [RB] OR the 8-bit contents of register RB with the data memory byte addressed DADDR. Store the result in RB
distory in	OR	RW.DADDR	OB aadddbbb [DISP][DISP]	9+EA	×				х	×	υ	×	×	X (RW) — [EA] OR [RW] OR the 16-bit contents of register RW with the data memory word address by DADDR. Store the result in RW
noary w	OR	DADDR,RB	08 aesssbbb [DISP][DISP]	16+EA	×				×	х	U	×	×	X [EA] — [EA] OR (RB) OR the 8-bit contents of register RB with the data memory byte addressed DADDR. Store the result in the data memory byte.
9900	OR	DADDR,RW	O9 aasssbbb [DISP[[DISP]	16+EA	×				×	×	U	×	×	X [EA] — [EA] OR (RW) OR the 16-bit contents of register RW with the data memory word address by DADDR. Store the result in the data memory word

Table 5-4. A Summary of 8086 and 8088 instructions (Continued)

RCL DADDR,N 110100va as011bbb 15+EA; N>1 4N+20+EA ROL DADDR,N 110100va as000bbb ROL DADDR,N 1101000bb ROL DADDR,N 110100bb ROL DADDR,N 110100bb ROL DADDR,N 110100bb ROL DADDR,N 110100bb				П		uses	Sta			Clock CI	Object Code	Operand(s)	Mnemonic
ROL DADDR,N 110100vs aa000bbb 15+EA; DADDR,N 110100vs aa000bbb 15+EA; C C EA		Operation Performed		С	AP	s z	Т	DI	0	Clock Cycles	object code		
OF DADDR, N 110100va aa001bbb [DISP](DISP] ROL DADDR, N 110100va aa000bbb [DISP](DISP] ROL DADDR, N 110100va aa000bbb [DISP](DISP] X As RCL, but rotate right X Rotate the contents of the data memory location addressed Move the left most bit into the Carry status. If N = 1, then rot tion. If N = CL, then register CL contents provides the number Depending on prior definition, DADDR may address a byte: C [EA] Or DADDR may address a word:	ed by DADDR is of set one bit position.	Word: [EA] JEA+1] data memory location addressed by the Carry status. If N = 1, then rotate of Contents provides the number of on, DADDR may address a byte. [EA]	Rotate the contents of the through the Carry status. If I register CL contents provide definition, DADDR may address a way or DADDR may address a way of the CL, but rotate right Rotate the contents of the class of the left most bit into the tion. If N = CL, then register Depending on prior definition	×	AP			D I	x	15+EA; N>1 4N+20+EA N=1 15+EA	as011bbb [DISP][DISP] 110100va as000bbb 110100va as001bbb [DISP][DISP] 110100va as000bbb	DADDR,N DADDR,N	ROL

0		(a) 100 f	CZRW SZENIO	REACT STREET			s	tatus	es				Operation Performed
1 ypo	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	s	z	A	Р	С	Operation Performed
	SAL	DADDR,N	110100va aa001bbb (DISP [DISP	N=1 15+EA	×							x	As ROL, but rotate right Shift the contents of the data memory location addressed by DADDR left Move the left most bit into the Carry status. If N = 1, then shift one bit position. If N = CL, then register CL contents provides the number of bit positions Depending on prior definition, DADDR may address a byte:
Secondary Memory Reference (Memory Operate) (Continued)	SAR	DADDR,N	110100va aa111bbb (DISP)(DISP)	N=1 15+EA; N>1 4N+20+EA	×			×	. >	K U	X	×	or DADDR may address a word: C
	SBB	RB,DADDR	1A aaddd bbb [DISP][DISP]	9+EA	×			2	× :	x s	××	×	[RB] — [RB] – [EA] – [C] Subtract the contents of the data byte addressed by DADDR from the co- tents of 8-bit register RB, using twos complement arithmetic. Decrement to
	SBB	RW,DADDR	18 aadddbbb [DISP][DISP]	9+EA	×				× :	×	××	×	result in RB if the Carry status was initially set

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

Lype	Mnemonic	Operand(s)	Object Code	01 1 0 1	L			Sta	tus	es				88 5000 - 420 day/00/17 - 1973
9	winemonic	Opesand(s)	Object Code	Clock Cycles	0	D	1	т	s	z	A	P	С	Operation Performed
	SBB	DADDR,RB	18 aasssbbb (DISP)[DISP]	16+EA	x				×	х	x	×	x	[EA] — [EA] — [RB] — [C] Subtract the contents of 8-bit register RB from the data byte addressed DADDR, using twos complement arithmetic. Decrement the result in data
	SBB	DADDR,RW	19 easssbbb [DISP][DISP]	16+EA	x				×	x	×	×	×	memory if the Carry status was initially set [EA] — [EA] — [RW] — [C] Subtract the contents of 16-bit register RW from the 16-bit data word a dressed by DADDR, using twos complement arithmetic. Decrement the res
	SHL	DADDR,N			×		П		×	x	U	×	×	in data memory if the Carry status was initially set This is an alternate mnemonic for SAL
ntinued	SHR	DADDR,N	110100va aa101bb [DISP][DISP]	N=1 15+EA; N>1 4N+20+EA	×				x	×	U	X	x	As SAL, but shift right:
(Memory Operate) (Continued)			tore Heror	SATEUTEA										O [EA] C
ance (memory														O [EA]
T HOLDING	SUB	RB,DADDR	2A sadddbbb [DISP][DISP]	9+EA	×				х	×	X	X	×	[RB] [RB] [EA] Subtract the contents of the data memory byte addressed by DADDR from till
NI GILLO	SUB	RW,DADDR	2B aadddbbb (DISP)[DISP]	9+EA	×				х	х	х	х	х	contents of 8-bit register RB, using twos complement arithmetic [RW] — [RW] — [EA] Subtract the contents of the 16-bit data memory word addressed by DADD
Secondary internory neterance	SUB	DADDR,R8	28 aasssbbb DISP	16+EA	×				х	×	×	×	×	from the contents of 16-bit register RW, using twos complement arithmet [EA] — [EA] – [RB] Subtract the contents of 8-bit register RB from the data memory byte ar
0	SUB	DADDR,RW	29 əasssbbb [DISP][DISP]	16+EA	×				х	×	х	x	×	dressed by DADDR, using twos complement arithmetic [EA] — [EA] – [RW] Subtract the contents of 16-bit register RW from the 16-bit data memo
	TEST	DADDR,RB	84 saregbbb [DISP][DISP]	9+EA	0				×	×	u	х	0	word addressed by DADDR, using twos complement arithmetic [EA] AND (RB] AND the 8-bit contents of the data memory location addressed by DADD with the contents of 8-bit register RB. Discard the result, but adjust state flags appropriately

9	23 8	2 7/1	W 530 25.3	78 F S S	1			St	atu	505				
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	т	s	z	A	Р	С	Operation Performed
9 (TEST	DADDR,RW	85 sareg bbb (DISP)[DISP]	9+EA	0				x	×	U	×	0	AND the 16-bit contents of the data memory word addressed by DADDR with the contents of 16-bit register RW. Discard the result, but adjust status flags
Secondary Memory Reference (Memory Operate) (Continued)	XOR	RB,DADDR	32 aadddbbb DISP (DISP	9+EA	0				x	×	U	х	0	appropriately [RB] (RB] XOR (EA) Exclusive OR the 8-bit contents of register RB with the data memory byte addressed by DADDR. Store the result in RB
viemory serate) ((XOR	RW,DADDR	33 sadddbbb [DISP][DISP]	9+EA	0				×	×	U	×	0	RW — RW XOR [EA] Exclusive OR the 16-bit contents of register RW with the 16-bit data memory word addressed by DADDR. Store the result in RW
emory Op	XOR	DADDR,RB	30 aassabbb (DISP)[DISP]	16+EA	0				x	х	υ	×	0	[EA] EXPLICITE [EA] EXPLICITE EXCLUSIVE OR the 8-bit contents of register RB with the data memory byte addressed by DADDR. Store the result in the addressed data memory byte.
We	XOR	DADDR,RW	31 aasssbbb [DISP][DISP]	16+EA	0				×	×	u	×	0	IEA] — [RW] XOR [EA] Exclusive OR the 16-bit contents of register RW with the data mergory word addressed by DADDR. Store the result in the addressed data memory word
	MOV	DADDR, DATA8	C6 as000bbb (DISP)[DISP] YY	10+EA					100				Ī	[EA] — DATA8 Load the immediate data byte DATA8 into the data memory byte addressed by DADDR
mmediate	MOV	DADDR. DATA16	C7 sa000bbb [DISP][DISP] YYYY	10+EA										[EA] - DATA16 Load the immediate 16-bit data word DATA16 into the data memory word addressed by DADDR
Imm	MOV	RB,DATA8	10110ddd YY	4*										[RB] — DATA8 Load the immediate data byte DATA8 into 8-bit register RB
f	MOV	RW,DATA16	10111ddd YYYY	4*										(RW) — DATA16 Load the immediate 16-bit data word DATA16 into 16-bit register RW
	JMP	BRANCH	111010a1 DISP [DISP]	15**										[PC] ← [PC] + DISP Jump direct to program memory location identified by label BRANCH. The displacement DISP which must be added to the Program Counter will be com- puted as an 8-bit or 16-bit signed binary number, as needed, by the assemble
Jump	JMP	BRANCH, SEGM	EA PPQQ PPQQ	15**										[PC] — DATA16, [CS] — DATA16 Jump direct into a new segment. BRANCH is a tabel which becomes a 16-bit unsigned data value which is loaded into PC. SEGM is a tabel which becomes another 16-bit unsigned data value that is loaded into the CS segmen
	JMP	DADDR	FF as100bbb [DISP][DISP]	18+EA**										register [PC] [EA] Jump indirect in current segment. The 16-bit contents of the data memory word addressed by DADDR is loaded into PC

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

Type	Managair	Operand(s)	Object Code	01-1-0-1-				Sta	tuse	85				
7	Willethotho	Operand(s)	Object Code	Clock Cycles	0	D	1	т	s	z	A	P	С	Operation Performed
Jump (Cont.)	JMP	DADDR,CS RW	FF aa101bbb [DISP][DISP] FF 11100reg	24+EA**										[PC] — [EA], [CS] — [EA+2] Jump indirect into a new segment. The 16-bit contents of the data memor word addressed by DADDR is loaded into PC. The next sequential 16-bit dat memory word's contents is loaded into the CS segment register [PC] — [RW] Jump to memory location whose address is contained in register RW.
	CALL	BRANCH	E8 DISP DISP	19**				Ī		1		T		[[SP]] [PC], [SP] [SP] -2, [PC] [PC] + DISP
	CALL	BRANCH, SEGM	9A PPQQ PPQQ	28**										Call a subroutine in the current program segment using direct addressing [ISP] — (CS), (SP) — [SP] −2, ([SP]] — [PC], [SP] → [SP] −2, [PC] → DATA16, [CS] — DATA 16 Call a subroutine in another program segment using direct addressing BRANCH and SEGM are labels that become different 16-bit data words, the are loaded into PC and CS, respectively
	CALL	DADDR	FF aaO10bbb (DISP)[DISP)	21+EA**										[[SP]] → [PC], [SP] → [SP] → [PC] → [EA] Call a subroutine in the current program segment using indirect addressing The address of the subroutine called is stored in the 16-bit data memor word addressed by DADDR
Subjourne call and Heturn	CALL	DADDR,CS	FF aaO11bbb [DISP][DISP]	37+EA**										[[SP]] ← [CS], [SP] ← [S2] −2, [[SP]] ← [PC], [SP] ← [SP] −2, [PC] ← [EA [CS] ← [EA+2] Call a subroutine in a different program segment using indirect addressing. The address of the subroutine called is stored in the 16-bit data memor word addressed by DADDR. The new CS register contents is stored in the
arma arma	CALL	RW	FF 11010reg	16**									1	next sequential program memory word [SP] — [PC],[SP] — [SP-2], [PC] — [RW]
anne	RET		С3	8			1							Call a subroutine whose address is contained in register PVV. [PC] — [[SP]], [SP] — [SP] + 2
	RET	cs	CB	12"				1						Return from a subroutine in the current segment [PC] — [[SP]], [SP] — [SP] +2, [CS] — [[SP]], [SP] — [SP] +2.
	RET	DATA16	C2 YYYY	17."										Return from a subroutine in another segment [PC] — [[SP]], [SP] — [SP] +2 +DATA16 Return from a subroutine in the current segment and add an immediate dis- placement to SP
	RET	CS.DATA16	CA YYYY	18**										IPCI ← [[SP]], [SP] ← [SP] +2, [CS] ← [[SP]], [SP] ← [SP] +2 +DATA16 Return from a subroutine in another segment and add an immediate displacement to SP

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

								Sta	tus	es				Operation Performed
i ype	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	T	s	z	A	Р	С	Operation Performed
i	ADD	AL DATAS	04 YY	4*	х		Г		X	X	X	X	X	[AL] [AL] + DATA8
											l.		Π	Add 8-bit immediate data to the AL register
	ADD	AX,DATA16	05 YYYY	4.	X		1		х	X	X	X	X	
	050	0.87							::11	386	550	1233		Add 16-bit immediate data to the AX register
	ADD	RB,DATA8	80 11000ddd YY	4*	X				Х	X	×	X	Х	
	100000						П							Add 8-bit immediate data to the RB register [RW] — [RW] + DATA16
	ADD	RW,DATA16	81 11000ddd YYYY	4*	X				X	X	*	×.	X	Add 16-bit immediate data to the RW register
	ADD	DADDR.	80 aa000bbb	17+EA	X				X	X	X	X	X	[EA] ← [EA] + DATA8
	100000000000000000000000000000000000000	DATAB	[DISP][DISP] YY											Add 8-bit immediate data to the data memory byte addressed by DADDR
	ADD	DADDR,	81 aa000bbb	17+EA	X	1	П		X	X	X	X	X	[EA] — [EA] + DATA16
	Colores Colores	DATA16	[DISP][DISP] YYYY										١.,	Add 16-bit immediate data to the data memory word addressed by DADDF
	ADC	AL,DATA8	14 YY	4*	X				X	×	×	×	X	(AL) — [AL] + DATA8 + [C] Add 8-bit immediate data, plus carry, to the AL register
	528	personal case	-25000000000000	13025	10	l.			×		10	×		
	ADC	AX,DATA16	15 YYYY	4*	×				×	×	1.	^	X	Add 16-bit immediate data, plus carry, to the AX register
	77			4.	×				x	×	×	l.	×	
0	ADC	B,DATA8	80 11010ddd YY	355	^	1			0	-	12	^	10	Add 8-bit immediate data, plus carry, to the RB register
919	2100	RW,DATA16	81 11010ddd	4.	×	1			×	×	×	×	×	
o o	ADC	RW,DATATO	YYYY	100801	^				-	1	1	1	1/2	Add 16-bit immediate data, plus carry, to the RW register
10	ADC	DADDR,	80 aa010bbb	17+EA	l _x		1		×	X	×	X	X	[EA] ← [EA] + DATAB + [C]
Immediate Operate	ADC	DATA8	[DISP][DISP] YY	17.000	1						1		1	Add 8-bit immediate data, plus carry, to the data memory byte addressed b
H.	10000	remedes.	28087 - 622328004V	10000000	100	1	1		10		155	12	10	DADDR [EA] [EA] + DATA16 + [C]
-	ADC	DADDR.	81 aa010bbb	17+EA	×	1	1		×		\^	1.	^	Add 16-bit immediate data, plus carry, to the data memory word addresse
		DATA16	[DISP][DISP] YYYY									1	1	by DADDR
	938923		24 YY	4.	0	Т			X	l v	10	l v	10	IALI — IALI AND DATAS
	AND	AL,DATA8	24 11	7.0	1~		1		1	1^	1	T^	1	AND 8-bit immediate data with Al, register contents
	AND	AX.DATA16	25 YYYY	4.	0	Ш			X	×	i	ıl×	0	(AX) (AX) AND DATA16
	Albio.	AA,UATATO	23 1111	3570	18	1			100	100		100		AND 16-bit immediate data with AX register contents
	AND	RB.DATA8	80 11100ddd YY	4"	0		1		X	X	L	ı x	0	[RB] ← [RB] AND DATA8
	8,90000		177002-1415-14245-05515-14-14	N-000			1		Tî.				1	AND 8-bit immediate data with RB register contents
	AND	RW,DATA16	81 11100ddd	4*	0)			X	×	L	1 >	0	
	1		YYYY			1	1					1	1	AND 16-bit immediate data with RW register contents
	AND	DADDR,8	80 aa 100bbb	17+EA	-0)			X	×	1	1 >	0	[EA] [EA] AND DATA8
			(DISP) DISP) YY				4							AND 8-bit immediate data with contents of data memory byte addressed to
	2.3352	Laurence (1-182-164 (1-182-164)	15827348990	1					4.			1	DADDR
	AND	DADDR,	81 aa100bbb	17+EA	10	2			1×	×	1,	11'	10	[EA] — [EA] AND DATA16 AND 16-bit immediate data with contents of 16-bit data memory word at
		DATA16	[DISP][DISP] YYYY									1		dressed by DADDR

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

Type	Mnemonic	Operand(s)	Object Code	Clock Cycles				Sta	tus	es				
ŕ			Suject code	Glock Cycles	0	D	1	Т	s	z	A	P	c	Operation Performed
	CMP	AL,DATA8	3C YY	4*	x				×	×	×	×	×	[AL] - DATA8 Subtract 8-bit immediate data from AL register contents. Discard result, b
	CMP	AX,DATA16	3D YYYY	:45	×				×	x	×	×	×	adjust status flags (AX) - DATA16
	CMP	RB,DATA8	80 11111ddd YY	4*	×				×	×	x	×	×	Subtract 16-bit immediate data from AX register contents. Discard result, t adjust status flags [RB] — DATA8 Subtract 8-bit immediate data from RB register contents. Discard result, b
	CMP	RW,DATA16	100000a1 1111ddd YY [YY]	4*	×				×	×	×	×	x	adjust status flags [RW] - DATA16 Subtract 16-bit immediate data from RW register contents. Discard resu
	CMP	DADDR, DATA8	80 aa111bbb [DISP][DISP] YY	10+EA	×			1/200	×	X	×	x	×	but adjust status flags [EA] — DATA8 Subtract 8-bit immediate data from contents of data memory byte address:
Immediate Operate (Continued)	СМР		100000a1 aa111bbb	10+EA	×			S	×	X	х	×	x	by DADDR. Discard result, but adjust status flags [EA] - DATA16 Subtract 16-bit immediate data from contents of 16-bit data memory wo
e (Co	OR	AL,DATA8	[DISP][DISP] YY[YY] OC YY	4'	0				ĸ	×	Ú	x	0	addressed by DADDR. Discard result, but adjust status flags [AL] — [AL] OR DATA8
Deera	OR	AX,DATA16	OD YYYY	4*	0				x	×	ŭ	×	0	OR 8-bit immediate data with AL register contents [AX] — [AX] OR DATA18
listo c	OR	RB,DATAS	80 11001ddd YY	4*	0		1	3	<	×	U	×	0	OR 16-bit immediate data with AX register contents [RB] — [RB] OR DATA8
mmed	OR	RW,DATA16	81 11001ddd YYYY	4*	0			9		x	U	×	α	OR 8-bit immediate data with RB register contents [RW] ← [RW] OR DATA 16
	OR	DADDR. DATA8	80 ae001bbb [DISP][DISP] YY	17+EA	0.			3		х	U	×	0	OR 16-bit immediate data with RW register contents [EA] — [EA] OR DATA 8 OR 8-bit immediate ata with contents of data memory byte addressed I
	OR	DADDR, DATA16	81 aa001bbb [DISP][DISP] YYYY	17+EA	0			3	<	×	u	X	0	DADDR [EA] — [EA] OR DATA16 OR 16-bit immediate data with contents of 16-bit data memory word a
	SBB	AL.DATA8	1C YY	4*	×			>		×	×	×	×	dressed by DADDR [AL] — [AL] — DATA8 — [C] Subtract 8-bit immediate signed binary data from AL register contents usin twos complement arithmetic. If the Carry status was originally 1 decreme the result.
	SB8	AX,DATA16.	1D YYYY	4*	×			3	ς .	×	×	×	×	[AX] — [AX] — DATA16 — [C] Subtract 16-bit immediate signed binary data from AX register contenusing twos complement arithmetic. If the Carry status was originally 1 decrement the result

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

9		2 22	200					St	itus	05				
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	т	s	z	A	P	С	Operation Performed
	SBB	RB,DATA8	80 11011ddd YY	4*	х				×	X	х	×	×	[RB] — [RB] — DATA8 — [C] Subtract 8-bit immediate signed binary data from RB register contents using twos complement arithmetic. If the Carry status was originally 1 decrement the result.
	SBB	RW,DATA16	100000a1 11011ddd YY [YY]	4*	х				х	×	×	х	×	[RW] ← [RW] − DATA16 − [C] Subtract 16-bit immediate signed binary data from RW register conten- using twos-complement arithmetic. If the Carry status was originally 1 decrement the result.
	SBB	DADDR, DATA8	80 aa011bbb [DISP](DISP] YY	17+EA	×				х	×	X	×	×	[EA] [EA] - DATAB - [C] Subtract 8-bit immediate signed binary data from contents of data memory byte addressed by DADDR using twos complement arithmetic. If the Cari status was originally 1 decrement the result.
man	SBB	DADDR, DATA16	100000a1 aa011bbb [DISP](DISP] YY (YY)	17+EA	×				X	×	X	×	×	[EA] — [EA] — DATA16 — [C] Subtract 16-bit immediate signed binary data from contents of 16-bit damemory word addressed by DADDR using two complement arithmetic. If the Carry status was originally 1 decrement the result.
manus de la compansa	SUB	AL,DATA8	2C YY	4*	×				X	X	×	×	×	[AL] ← [AL] – DATA8: Subtract the 8-bit immediate signed binary data from AL register contenusing twos complement arithmetic
immediate Operate	SUB	AX,DATA16	20 YYYY	4*	×				×	×	×	×	×	[AX] [AX] DATA16 Subtract the 16-bit immediate signed binary data from AX register contenusing twos complement arithmetic
e de la constante	SUB	RB,DATA8	80 11101ddd YY	4*	×				×	X	X	Х	X	[RB] — [RB] — DATAB Subtract the 8-bit immediate signed binary data from RB register conter using twos complement arithmetic
	SUB	RW,DATA16	81 11101ddd YYYY	41	X				×	X	X	Х	х	[RW] — [RW] — DATA16 Subtract the 16-bit immediate signed binary data from RW register contenuating twos complement arithmetic
	SUB	DADDR, DATA8	80 aa101bbb [DISP][DISP] YY	17+EA	×				×	×	×	×	×	[EA] — [EA] — DATA8 Subtract the 8-bit immediate signed binary data from the contents of the da memory byte addressed by DADDR using twos complement arithmetic
	SUB	DADDR. DATA16	100000a1 aa101bbb [DISP][DISP]YY[YY]	17+EA	×		0		×	×	×	Х	х	
	TEST	AL,DATA8	YY 8A	4.					×	×	U	×	0	IAL] AND DATA8 AND the 8-bit immediate data and AL register contents. Discard the result b adjust status s

Table 5-4 A Summary of 8086 and 8088 Instructions (Continued)

			Lancountry a separation	CONTRACTOR OF THE				Sta	tus	05				Operation Performed
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	т	s	z	A	P	С	Operation Performed
	TEST	AX,DATA16	A9 YYYY	4*	0				×	X	U	×	0	[AX] AND DATA16 AND the 16-bit immediate data and AX register contents. Discard the resul
	TEST	RB,DATA8	F6 11000ddd YY	5*	0				×	X	U	×	0	but adjust status flags [RB] AND DATAB AND the 8-bit immediate data and flB register contents. Discard the result bu
	TEST	RW,DATA16	F7 11000ddd YYYY	5*	0				×	x	υ	×	0	adjust status flags [RW] AND DATA16 AND the 16-bit immediate data and RW register contents. Discard the result but adjust status flags
(Continued)	TEST	DADDR, DATA8	F6 aa000bbb [DISP][DISP] YY	11+EA	0				×	х	υ	×	0	[EA] AND DATA8 AND the 8-bit immediate data and the contents of the data memory location addressed by DADDR. Discard the result but adjust status flags
	TEST	DADDR. DATA16	F7 aa000bbb [DISP][DISP]YYYY	11+EA	0				×	х	U	×	0	[EA] AND DATA16 AND the 16-bit immediate data and the contents of the 16-bit data memory word addressed by DADDR, Discard the result but adjust status flags
Oper	XOR	AL,DATA8	34 YY	4*	0				×	х	u	×	0	[AL] ← [AL] XOR DATA8 Exclusive OR 8-bit immediate data with AL register contents
immediate Operate	XOR	AX,DATA16	35 YYYY	4*	0				х	×	U	×	0	[AX] [AX] XOR DATA16 Exclusive OR 16-bit immediate data with AX register contents
Imme	XOR	RB,DATAB	80 11110ddd YY	4*	0				×	×	u	×	0	[RB] — [RB] XOR DATA8 Exclusive OR 8-bit immediate data with RB register contents
	XOR	RW,DATA16	81 11110ddd YYYY	4*	0				×	×	U	×	0	[RW] — [RW] XOR DATA16 Exclusive OR 16-bit immediate data with RW register contents
	XOR	DADDR, DATA8	80 aa010bbb [DISP][DISP] YY	17+EA	0				x	×	U	×	0	[EA] — [EA] XOR DATA8 Exclusive OR 8-bit immediate data with contents of the data memory byte addressed by DADDR
	XOR	DADDR, DATA16	81 aa010bbb [DISP][DISP] YYYY	17+EA	0				×	×	U	×	0	[EA] [EA] XOR DATA16 Exclusive OR 16-bit immediate data with contents of the 16-bit data memor word addressed by DADDR
	LOOP	DISP8	E2 DISP	5 or 17**				Г						[CX] ← [CX] −1 If [CX] ≠0 then [PC] ← [PC] + DISP8 Decrement CX register and branch if CX contents are not 0
Condition	LOOPE	DISPB	E1 DISP	6 or 18**										[CX] — [CX] −1 If [CX] ≠0 and [Z] = 1 then [PC] + DISP8 Decrement CX register and branch if CX contents is not 0 and Z status is
On Con	LOOPNE	DISPB	EO DISP	5 or 19**										[CX] ← (CX −1 If [CX] ≠0 and [Z] = 0 then [PC] ← [PC] + DISP8 Decrement CX register and branch if CX contents is not 0 and Z status is
Branch (LOOPNZ LOOPZ JA	DISP8 DISP8 DISP8	77 DISP	4 or 16**										See LOOPNE See LOOPE [PC] +- [PC] + DISP8 Branch if C or Z is 0

Table 5-4, A Summary of 8086 and 8088 Instructions (Continued)

	II.		Distriction to become the	and the second second				Stat	tuse	S				Operation Performed	
1 ype	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	т	s	Z	A	Р	С	27724.0000000000000000000000000000000000	
	JAE	DISP8	73 DISP	4 or 16**						T			1	[PC] [PC] + DISP8 Branch if C is 0	
	1 S5/1101	200		4 or 16**						1		1	١	Pranch IT C IS 0 (PC) ← [PC] + DISP8	
	JB	DISPB	72 DISP	4 01 10					- 1	4			1	Branch if C is 1	
	JBE	DISPB	76 DISP	4 or 16"				- 1					1	[PC] ← [PC] + DISP8	
	300	2000					П			- 1		- 1		Branch if C or Z is 1 [PC] ← [PC] + DISP8	
	JCXZ	DISP8	E3 DISP	6 or 18**			Н					-		Branch if the CX register contents is 0	
		DISPB	74 DISP	4 or 16**	1	1	П				- 1	1		[PC] ← [PC] + DISP8	
	JE	Disra	, 4 615	M000000			Ш				- 7	-1		Branch if 2 is 1	
	JG	DISP8	7F DISP	4 or 16**	1	1	Ш	0						[PC] ← [PC] + DISP8 Branch if Z is 0 or the S and 0 statuses are the same	
		555586	25/2/025	4 or 16**			П					- 1		[PC] ← [PC] + DISP8	
	JGE	DISP8	7D DISP	4 01 10										Branch if the 5 and 0 statuses are the same	
_	30	DISP8	7C DISP	4 or 16**	1									[PC] [PC] + DISP8	1
Beanch On Condition (Continued)		0.00	3727	10 VARIET										Branch if the S and O statuses differ [PC] ← [PC] + DISP8	
E	JLE	DISP8	7E DISP	4 or 16**	1	1								Branch if Z is 1 or the S and O statuses differ	
000	1117	0,000		0	1	1								See JBE	
uo	JNA	DISP8								6	8			See JB	
100	JNAE	DISP8			Т					1				See JAE	
no o	JNBE	DISP8		0			1	1						See JA	
0	JNE	DISP8	75 DISP	4 or 16**	ш		11		1					[PC] [PC] + DISP8	
C	3446	100000	1.930,000,00				1	Н						Branch if Z is 0	
200	JNG.	DISP8				- 10				1				See JLE See JL	
0,0	JNGE	DISP8							1	1	L			See JCE	
	JNL	DISP8										1		See JG	
	jnle	disp8	PAY 1/2/2002 12/21	0007770-9-4000						1	1			(PC) ← IPCI + DISP8	
	JNO	DISPB	71 DISP	4 or 16**						1		1		Branch if O is 0	
		10000	5.555.555	4 1011										[PC] ← [PC] + DISP8	
	JNP	DISPB	78 DISP	4 or 16**						1		1		Branch if P is 0	
	- WIC	DISP8	79 DISP	4 or 16**							1	1		[PC] [PC] + DISP8	
	JNS	Diar 6	13.003	HAT-AMILIAN										Branch if S is 0	
	JNZ	DISP8												See JNE [PC] — [PC] + DISP8	
	- JO	DISP8	70 DISP	4 or 16**						1				Branch if O is 1	
		100	71.0000	4 or 16**										[PC] [PC] + DISP8	
	JP	DISP8	7A DISP	4 01 10										Branch if P is 1	
1	JPE	DISP8			-1								1	See JP	

Table 5-4: A Summary of 8086 and 8088 Instructions (Continued)

Type	Mnemonic	Operand(s)	Object Code	Clear Overlan	Г			St	atu	ses	5			ASSUMPTION OF THE PROPERTY OF
F		Operana(a)	Object Code	Clock Cycles	0	D	1	T	s	z	1	A F	c	Operation Performed
BOC (Cont.)	JPO JS JZ	DISP8 DISP8	78DISP	4 or 16**										See JNP [PC] → [PC] + DISP8 Branch if S is 1 See JE
Register - Register Move	MOV MOV MOV XCHG XCHG	RBD,RBS RWD,RWS SR,RW RW,SR AX,RW RB,RB RW,RW	8A11dddsss 8B 11dddsss 8E 110mss 8C 110mddd 10010reg 86 11regreg 87 11regreg	2° 2° 2° 3° 4° 4°										[RBD] ← [RBS] Move the contents of any RB register to any RB register [RWD] ← [RWS] Move the contents of any RW register to any RW register [SR] ← [RWS] Move the contents of any RW register to any Segment register [RWD] ← [SR] Move the contents of any Segment register to any RW register [AX] ← → [RW] Exchange the contents of AX and any RW register [RB] ← → [RB] Exchange the contents of any two RB registers [RW] ← → (RW) Exchange the contents of any two RW registers
	CMPS	BD,B\$	A6 A7	22	1.30	1/D								[(Si)] - [(DI)], (Si] → [SI] ± 1, (DI) → [DI] ± 1 Compare the data bytes addressed by the SI and DI Index registers usin string data addressing* [[SI]] - ((DI)], [SI] → [SI] ± 2, (DI) → [DI] ± 2
and Search	LODS	BD,BS WD,WS	AC AD	12		I/D								Compare the 16-bit data words addressed by the SI and DI Index register using string data addressing* [AL] — [(SI)], [SI] — [SI] ± 1 Move a data byte from the location addressed by the SI Index register to the AL register using string data addressing [AX] — [(SI)], [SI] — [SI] ± 1
Block Transfer	Movs	BD,BS	A4	18		1/D								Move a data word from the 16-bit location addressed by the SI Index registre to the AX register using string data addressing [[Dit] - [[Sit]], [Sit] - [Sit] ± 1, [Dit] - [Dit] ± 1 Move a data byte from the location addressed by the SI Index register to the extra segment location addressed by the DI register using string data addressed.
	MOVS	WD,WS	A5	18		1/D								ing* [[OI]] — [[SI]], [SI] — [SI] ± 2, [DI] — [DI] ± 2 Move a 16-bit data word from the location addressed by the SI Index register to the extra segment location addressed by the DI Index register using strindata addressing* * For these instructions, the default destination segment register cannot be overriden.

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

0	(a)	Se 2015	223 575 52	220000200200			St	atus	es				ı	Operation Performed
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	DI	T	s	Z	A	P	c	1	Operation renormed
Iransfer and Search (Continued)	REP	N	1111001z	+2 per loop		I/D								Repeat the next sequential instruction (which must be a Block Transfer and Search instruction) until CX contents decrements to 0. Decrement CX contents on each repeat. If the next instruction is CMPB, CMPW, SCAB, or SCAW then repeat until CX contents decrements to 0 or Z status does not equal N.
	SCAS	BD,BS	AE	15	×	I/D		X	X	Х	х	×	1	ALT - [[DI]], [DI] [DI] ± 1 Compare AL register contents with the extra segment data byte addressed b the DI Index register using string data addressing
ann co	SCAS	WD,WS	AF	15	×	I/D		×	X	×	×	×	1	AX] = [[DI]], [DI] == [DI] ± 2 Compare AX register contents with the extra segment 16-bit data and ecdessed by the DI Index register using string data addressing
c Iransier	STOS	BO,BS	AA	11	×	I/D		×	×	x	×	×	1	DI
BIOCK	STOS	WD,WS	AB	11	X	II/D		×	×	Х	X	×	1	[DII] — [AX], [DI] — [DII] ± 2 Store the AX register contents in the extra segment 16-bit data memory wor addressed by the DI Index register using string data addressing
i	ADC	RBD,RBS	12 11dddsss	3*	×			×	х	×	×	×	T	[RBD] — [RBD] + [RBS] + [C] Add the 8-bit contents of register RBS, plus the Carry status, to register RB
	ADC	RWD,RWS	13 11dddsss	3*	X			×	×	×	х	×	1	[RWD] — [RWD] + [RWS] + [C] Add the 16-bit contents of register RWS, plus the Carry status, to regist RWD
	ADD	RBD,RBS	02 11dddsss	3.	×			×	Х	×	×	>	1	[RBD] [RBD] + [RBS] Add the 8-bit contents of register RBS to register RBD
erate	ADD	RWD,RWS	03 11dddsss	3*	×			×	×	×	×	1	9	[RWD] — [RWD] + [RWS] Add the 16-bit contents of register RWS to register RWD
er Op	AND	ABD,RBS	22 11dddsss	3.	0			×	×	Ü	×	0		[RBD] ← [RBD] AND [RBS] AND the 8-bit contents of register RBS with register RBD
Register Operate	AND	RWD,RWS	23 11dddsss	3.	0			×	×	U	×	9	2	(RWD) — [RWD] AND [RWS] AND the 16-bit contents of register RWS with register RWD
	CBW		98	2*										[AH] — [AL7] Extend AL sign-bit into AH
Register-	CMP	RBD,RBS	3A 11dddsss	3*	×			×	×	×	×	3	¢	[RBD] - (RBS) Subtract the contents of register RBD from register RBS. Discard the result adjust status flags
	CMP	RWD,RWS	3B 11dddsss	3,	>			×	Х	×	,	1	K	[RWD] — [RWS] Subtract the contents of register RWD from register RWS. Discard the result adjust status flags
	CWD		99	5										[DX] — [AX15] Extend AX sign bit into DX

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

1 yp	Mnemonic	Operand(s)	Object Code	Clock Cycles	_			, tall		7				
-			- Opinion Code	Olouk Oycles	0	D	1	T S	2	2	A	P	С	Operation Performed
1	DIV	RBS	F6 11110sss	80-90	U	П	T	L	ı	j	u	U	U	[AX] [AX]/[RBS]
	DIV	RWS	F7 11110sss	144-162	U			u		n	J	U	υ	Divide the 16-bit contents of AX by the 8-bit contents of RBS. Store the teger quotient in AL and the remainder in AH. If the quotient is greater th FF16, execute a "divide by 0" interrupt [DX] [AX] — [DX] [AX]/[RWS] Divide the 32-bit contents of registers DX [high-order] and AX (low-order) the 16-bit contents of RWS. Store the integer quotient in AX and the
1	IDIV	RBS	F6 11111sss	101-112	υ			U	U	1 1	u	U	u;	mainder in DX. If the quotient is greater than FFFF ₁₆ , execute a "divide by interrupt" [AX] — [AX]/[RBS] Divide the 16-bit contents of register AX by the 8-bit contents of RBS, treating the second seco
Section of the sectio	IDIV	RWS	F7 11111sss	165-184	U									ing both contents as signed binary numbers. Store the quotient, as a sign binary number, in AL. Store the remainder, as an unsigned binary number, AX. Store the remainder, as an unsigned binary number, in AH. If the quotie is greater than 75% or less than -80% a execute a "divide by O" interest.
		Mo	77 11111555	100-184	U			l n		111		U	U	IDX [AX] ← [DX [AX]/[RWS] Divide the 32-bit contents of register DX (high-order) and AX (low-order) the 16-bit contents of RWS. Treat both contents as signed binary number. Store the quotient, as a signed binary number, in AX. Store the remainder, an unsigned binary number, in AH. If the quotient is greater than 7FFF 16-less than -800016, execute a "divide by 0" interrupt.
l	IMUL	RBS	F6 11101sss	80-98	x			Ú	U	L	1	u	×	(AX) — [AL] • [RBS] Multiply the 8-bit contents of register AL by the contents of RBS. Treat bo
I	IMUL	RWS	F7 11101sss	128-154	×			u	u	1) 1	u	×	numbers as signed binary numbers. Store the 16-bit product in AX [DX] [AX] — [AX] • [RWS]
	MUL	RBS	F6 11100sss	70-77	×			11	111				ا	Multiply the 16-bit contents of register AX by the 16-bit contents of RW. Treat both numbers as signed binary numbers. Store the 32-bit product in D (high-order word) and AX (low-order word) [AX] — [AL] • [RBS]
l	MUL	RWS	F7 11100sss	118-133	×									Multiply the 8-bit contents of register AL by the contents of RBS. Treat bo numbers as unsigned binary numbers. Store the 16-bit product in AX
			av at rationsss.	110-133	^			0	U	0	1		×	[DX] [AX] — [AX] • [RWS] Multiply the 16-bit contents of register AX by the 16-bit contents of RW Treat both numbers as unsigned binary numbers. Store the 32-bit product
ı	OR	RBD,RBS	OA 11dddsss	3+	0			×	×	U)		٥	DX (high-order word) and AX (low-order word) [RBD] [RBD] OR [RBS]
	OR	RWD,RWS	OB 11dddsss	3*	0			х	x	U	L			OR the 8-bit contents of register RBS with register RBD [RWD] — [RWD] OR [RWS] OR the 16-bit contents of register RWS with register RWD

0		6. 6.4	5500 55 Vi	28/19/22/19				St	atus	es				50000000 Text (500000)
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	т	s	z	A	Р	С	Operation Performed
Ī	SBB	RBD,RBS	1A 11dddsss	3*	×		T	Г	×	×	×	×	×	[RBD] ← [RBD] − [RBS] − [C] Subtract the 8-bit contents of register RBS from RBD using twos complement
(pe	SBB	RWD,RWS	1B 11dddsss	3*	Х				×	X	×	x	x	arithmetic. If the Carry status was originally 1 decrement the result [RWD] — [RWD] — [RWS] — [C] Subtract the 16-bit contents of register RWS from RWD using twos completes.
(Continued)	SUB	RBD,RBS	2A 11dddsss	3*	×				×	×	x	×	×	ment arithmetic. If the Carry status was originally 1 decrement the result [RBD] — [RBD] = [RBS] Subtract the 8-bit contents of register RBS from RBD using twos compleme
Operate	SUB	RWD,RWS	28 11dddsss	3+	×				×	х	×	x	×	arithmetic RWD RWD RWS Subtract the 16-bit contents of register RWS from RWD using twos compl
Register	TEST	RBD,RBS	84 11regreg	3*	0	j			×	×	U	х	0	ment arithmetic [RBD] AND [RBS] AND the 8-bit contents of register d and register RBS. Discard the result, b
Register - Register Operate	TEST	RWD,RWS	85 11 regrég	3*	0				×	×	U	×	0	adjust status flags [RWD] AND (RWS] AND the 16-bit contents of register RWD and register RWS. Discard to result, but adjust status flags.
œ	XOR	RBD,RBS	30 11dddsss	3.	0				×	х	U	×	0	
	XOR	RWD,RWS	31 11dddsss	3.	0				×	×	U	X	a	RWD — RWD XOR (RWS) Exclusive OR the 16-bit contents of register RWS with register RWD
_	AAA		37	4*	U	1	1 678	T	U	U	×	U	×	ASCII adjust Al register contents for addition (as described in accompany) text)
	AAD		D5 0A	60	U				×	×	U	×	U	H [
10	AAM		D4 0A	83	Ú				×	×	U	X	U	
Register Operate	AAS		3F	4*	U				U	u	×	Ü	×	After subtracting two unpacked decimal numbers, adjust the difference in a so that it too is an unpacked decimal number. (See accompanying text to details)
Regist	DAA		27	4*	U				×	Х	Х	×	×	After adding two packed decimal numbers, adjust the sum in AL so that it to is a packed decimal number. (See accompanying text for details)
	DAS		2F	4*	Į,	1			×	X	Х	X	×	After subtracting two packed decimal numbers, adjust the difference in AL that it too is a packed decimal number. ISee accompanying text for detail
	DEC	RB	FE 11001ddd	3*	×	5			×	×	×	×		[RB] — [RB] = 1 Decrement the 8-bit contents of register RB
	DEC	RW	01001ddd	2*	>				×	×	×	×		[RW] — [RW] - 1 Decrement the 16-bit contents of register RW

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

Type	Mnemonic	Operand(s)	Object Code	Clock Cycles		Т		St	atu	ies		Т		
+		1000	Golder con	Glock Cycles	0	D	1	Т	5	z	A	P	C	Operation Performed
	INC	RB	FE 11000ddd	3*	×				X	×	×	×		[RB] [RB] +1
	INC	RW	01000ddd	2*	×				×	×	x	×		Increment the 8-bit contents of register RB [RW] — [RW] +1
	NEG	RB	F6 11011ddd	3*	×				×	×	×	X	×	Increment the 16-bit contents of register RW [RB] — [RB] +1
	NEG	RW	F7 11011ddd	3*	×				х	×	×	×	x	Twos complement the 8-bit contents of register RB [RW] [RW] + 1
(pa	NOT	RB	F6 11010ddd	3*										Twos complement the 16-bit contents of register RW [RB] [RB]
ontino	NOT	RW	F7 11010ddd	3*										Ones complement the 8-bit contents of register RB [RW] [RW]
Register Operate (Continued)	RCL RCR RCR ROL ROL ROR ROR SAL SAL SAR SHL SHR SHR	RW,N RBN RW,N RB,N RW,N RB,N RB,N RW,N RB,N RW,N RB,N RB,N RB,N RB,N RB,N	110100v0 11010ddd 110100v1 11011ddd 110100v0 11011ddd 110100v1 11001ddd 110100v1 11000ddd 110100v1 11001ddd 110100v1 11001ddd 110100v1 11001ddd 110100v1 11100ddd 110100v1 11110ddd 110100v1 11111ddd 110100v1 11111ddd	N=1 2* N>1 4N+8 N=1 2* N>1 4N+8	× × × × × × × × × × × × × × × × × × ×				×××××	×××××	0000	X X X X	××××	Ones complement the 16-bit contents of register RW Rotate left through Carry the 8-bit contents of RB register, or the 16-bit contents of RW register, as illustrated for memory operate Rotate right through Carry the 8-bit contents of RB register, or the 16-bit contents of RW register, as illustrated for memory operate Rotate left the 8-bit contents of RB register, or the 16-bit contents of RW register as illustrated for memory operate Rotate right the 8-bit contents of RB register, or the 16-bit contents of RV register, as illustrated for memory operate Shift left the 8-bit contents of RB register, or the 16-bit contents of RW register, as illustrated for memory operate Shift right the 8-bit contents of register RB, or the 16-bit contents of register RW, as illustrated for memory operate See SAL See SAL Shift right the 8-bit contents of register RB, or the 16-bit contents of register
Union o	POP POP POPF	DADDR RW SR DADDR	8F aa000bbb [DISP](DISP] 01011ddd 000rr111 9D FF aa110bbb [DISP][DISP]	17+EA 8 8	×	X 3	× ()						×	RW, as illustrated for memory operate [EA] — [[SP]], [SP] — [SP] + 2 Load the 16-bit Stack word, addressed using Stack addressing, into the 16-bit data memory word addressed by DADDR. Increment SP by 2 [RW or SR] — [[SP]], [SP] — [SP] + 2 Load the 16-bit Stack word, addressed using Stack addressing, into the specified 16-bit register. Increment SP by 2. [SFR] — [[SP]], [SP] — [SP] + 2 Load the 16-bit Stack word, addressed using Stack addressing, into the Status Flags register [SP] — [SP] = 2, [[SP]] — [EA] Store the 16-bit contents of the data memory word addressed by DADDR in the 16-bit Stack word addressed using Stack addressing. Decrement SP by 2.

Type			d(s) Object Code	Clock Cycles		Statuses								1	Operation Performed		
	Mnemonic	Operand(s)			0	D	1	т	s	Z	A	P	c		72.00 5 440		
Stack (Cont.)	PUSH PUSH PUSHF	RW SR 9C	01010rrr 000rr110	11 10										١	[SP] — [SP] −2, [[SP]] — [RW or SR] Store the contents of the specified 16-bit register in the 16-bit Stack word addressed using Stack addressing. Decrement SP by 2 [SP] ← [SP] +2, [[SP]] ← [SFR] Store the Status flags register contents in the 16-bit Stack word addressed using Stack addressing. Decrement SP by 2		
Interrupts	INT INT INTO	3 V	CC CD YY CE CF	52 51 4 or 53			0 0	0 0 0	1						Execute a software interrupt and vector through table entry 3 Execute a software interrupt and vector through table entry V If the O status is 1, execute a software interrupt and vector through table entry 10 ₁₆ Return from interrupt service routine		
	CLC CLD CLI CMC LAHF		F8 FC FA F5 9F	2° 2° 2° 4°		c	0			×	×	×		×	C - 0 Clear Carry status O - 0 Clear Decrement/Increment select II - 0 Clear Interrupt enable status, disabling all interrupts C - C Complement Carry status Transfer flags to AH register as follows:		
	STC STD STI		F9 FD FB	2* 2*			1	1							1 C - 1 Set Carry status to 1 D - 1 Set Decrement/Increment status to 1 II - 1 Set interrupt enable status to 1, enabling all interrupts		

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

Туре	Mnemonic	Operand(s)	Object Code	Clock Cycles	Statuses									
F					0	D	1	т	s	z	A	Р	C	Operation Performed
	ESC	DADDR	11011xxx aaxxxbbb	8+EA	П									7 [EA] The contents of the data memory location addressed by DADDR is read out.
Other	HLT		[DISP][DISP] F4 F0	2* CPU Halt Guarantee the CPU bus control during a	memory and placed on the data bus; however, it is not input to the CPU									
0	SEG	SR	001reg110	+ 2	П									Struction The next sequential allowed memory reference instruction accesses the segment identified by Segment register SR. See Table 20-1 for allowed memor reference instructions CPU enters the WAIT state until TEST pin receives a high input signal No operation (This is the same object code as XCHG, AX, AX.)
	WAIT NOP		9B 90	3+5n 3*										
	0 -													
														· ·
													1	