Denavit-Hartenberg-Konventionen

Die Denavit-Hartenberg-Konventionen sind weit verbreitet und sollen die Durchführung der kinematischen Vorwärts- und Rückwärtstransformation erleichtern. Sie bestehen aus folgenden Teilen:

- •DH-Konventionen zur Festlegung der Koordinatensysteme
- •DH-Transformationen zur Erzeugung der Koordinatensysteme
- •DH-Parametern aus den Transformationen

Denavit-Hartenberg-Konventionen Festlegung der Koordinatensysteme

Die Festlegung der Koordinatensysteme erfolgt nach festen Regeln, um die nachfolgenden Schritte problemlos (?!) durchführen zu können.

Eine gewisse Wahlfreiheit bleibt trotzdem erhalten.

Diese Wahlfreiheit sollte so genutzt werden, dass möglichst viele DH-Parameter gleich Null werden. Dadurch werden die nachfolgenden Gleichungen und Berechnungen vereinfacht.

Festlegung des Koordinatensystems K₀ (Sockel)

- 1. Ursprung in die erste Gelenkachse, nah zur zweiten Achse
- 2. z₀-Achse in die Gelenkachse des Armteiles i legen (2 Möglichk.)
- 3. x₀- und y₀-Achse frei wählen (nach Sockel ausrichten)

Festlegung des Koordinatensystems K_i bei nicht-schneidenden nicht-parallelen Achsen (1)

- 1. Gemeinsame Normale zwischen den Gelenkachsen suchen
- 2. In den Schnittpunkt Normale Gelenkachse den Ursprung legen
- 3. zi Achse in die Gelenkachse legen (2 Möglichkeiten)

Festlegung des Koordinatensystems K_i bei nicht-schneidenden nicht-parallelen Achsen (2)

4. x_i wird in Richtung der gemeinsamen Normalen gelegt, von K_{i-1} wegweisend

5. yi zum Rechtssystem ergänzen

Festlegung des Koordinatensystems K_i bei parallelen Achsen (1)

Achse vorhergehendes Gelenk

- 1. Normale vom nächsten Gelenk suchen
- 2. Ursprung in den Schnittpunkt der Normalen mit der Achse legen
- 3. z_i-Achse in die Gelenkachse des Armteiles (i+1) legen (2 Möglichk.)

Festlegung des Koordinatensystems K_i bei parallelen Achsen (2)

Achse vorhergehendes Gelenk

- 4. x_i-Achse in die Normale vom nächsten Gelenk legen
- 5. y_i-Achse zum Rechtssystem ergänzen

Festlegung des Koordinatensystems K_i bei sich schneidenden Achsen (1)

Achse vorhergehendes Gelenk | Gelenkachse

- 1. Ursprung in den Schnittpunkt der Achsen legen
- 2. z_i-Achse in die Gelenkachse des Armteiles (i+1) legen (2 Möglichk.)

Festlegung des Koordinatensystems K_i bei sich schneidenden Achsen (2)

Achse vorhergehendes Gelenk | Gelenkachse

- 3. x_i-Achse senkrecht zu beiden Gelenkachsen legen
- 2. y_i-Achse zum Rechtssystem ergänzen

Festlegung der Handflanschkoordinaten K_N

- 1. Ursprung möglichst auf Achse des letzten Gelenks legen
- 2. z_N-Achse z.B. in Richtung von z_{N-1} legen
- 3. x_N- und y_N-Achse frei wählen, z.B. nach Befestigungslöchern richten

Nach der Festlegung der Koordinatensysteme werden die *Denavit Hartenberg-Transformationen* bestimmt. Sie erzeugen jedes Koordinatensystem (außer dem ersten) aus dem vorhergehenden.

So ergibt sich eine kinematische Kette:

ATO – AT1 – AT2 – AT3 – AT4 – AT5 – AT6

(AT=Armteil)

Jede Denavit-Hartenberg-Transformation besteht aus vier elementaren Transformationen:

- 1. Rotation um die x-Achse um α_i
- 2. Translation entlang x-Achse um ai
- 3. Translation entlang z-Achse um di
- 4. Rotation um die z-Achse um θ_i

1. Rotation um die x-Achse um α_i

1. Rotation um die x-Achse um α_i

- 1. Rotation um die x-Achse um α_i
- 2. Translation entlang x-Achse um ai

- 1. Rotation um die x-Achse um α_i
- 2. Translation entlang x-Achse um ai

- 1. Rotation um die x-Achse um α_i
- 2. Translation entlang x-Achse um ai
- 3. Translation entlang z-Achse um di

- 1. Rotation um die x-Achse um α_i
- 2. Translation entlang x-Achse um ai
- 3. Translation entlang z-Achse um di

- 1. Rotation um die x-Achse um α_i
- 2. Translation entlang x-Achse um ai
- 3. Translation entlang z-Achse um di

4. Rotation um die z-Achse um θ_i

Denavit-Hartenberg

-Transformation

- 1. Rotation um die x-Achse um α_i
- 2. Translation entlang x-Achse um ai
- 3. Translation entlang z-Achse um di

4. Rotation um die z-Achse um θ_i

- 1. Rotation um die x-Achse um α_i
- 2. Translation entlang x-Achse um ai
- 3. Translation entlang z-Achse um di

4. Rotation um die z-Achse um θ_i

Die Denavit-Hartenberg-Parameter

Die Denavit-Hartenberg-Transformation wird durch vier Parameter beschrieben:

- 1. α_i : konstruktiver Parameter
- 2. a_i: konstruktiver Parameter
- 3. d_i : konstruktiver Parameter bei Rotationsgelenken, variabel bei Lineargelenken
- 4. θ_i : konstruktiver Parameter bei Lineargelenken, variabel bei Rotationsgelenken

Die Denavit-Hartenberg-Parameter

Wenn die Koordinatensysteme festgelegt sind, müssen die Denavit-Hartenberg-Parameter bzw. die dazu gehörenden Transformationen gefunden werden.

Tipps:

- •Die beiden Translationen werden so gewählt, dass der Ursprung von K_{i-1} mit der abschließenden Rotation um z_{i-1} in den Ursprung von Ki gelangt.
- •Die erste Rotation (um x_{i-1}) muss so verlaufen, dass eine evtl. Achse in Richtung von z_{i-1} schon ihre Endlage erreicht.