0.0.1 A Reconstruction

The following cuts, in addition to the misidentification and shared daughter cuts presented in Sec. ??, were used to select good $\Lambda(\bar{\Lambda})$ candidates:

Λ reconstruction		
$- \eta $		< 0.8
p_{T}		> 0.4 GeV/c
$ m_{\mathrm{inv}} - m_{\mathrm{PDG}} $		< 3.8 MeV
DCA to prim. vertex		< 0.5 cm
Cosine of pointing angle		> 0.9993
OnFlyStatus		false
Decay Length		< 60 cm
Shared Daughter Cut		true
Misidentification Cut		true
Daughter Cuts (π and p)		
$ \eta $		< 0.8
Number of clusters in the TPC		> 80
Daughter status		kTPCrefit
DCA πp Daughters		< 0.4 cm
π -specific cuts		
p_{T}		> 0.16 GeV/c
DCA to prim vertex		> 0.3 cm
TPC and TOF N σ Cuts		
p < 0.5 GeV/c		$N\sigma_{TPC} < 3$
p > 0.5 GeV/c	if TOF & TPC available	$N\sigma_{TPC} < 3 \& N\sigma_{TOF} < 3$
	else	$N\sigma_{TOF} < 3$
p-specific cuts		
<i>p</i> T		$> 0.5(p) [0.3(\bar{p})] \text{ GeV/}c$
DCA to prim vertex		> 0.1 cm
TPC and TOF N σ		
p < 0.8 GeV/c		$N\sigma_{TPC} < 3$
p > 0.8 GeV/c	if TOF & TPC available	$N\sigma_{TPC} < 3 \& N\sigma_{TOF} < 3$
	else	$N\sigma_{TOF} < 3$

Table 1: A reconstruction

Figure 1a shows the mass assuming K_S^0 hypothesis for the Λ collection, i.e. assume the daughters are $\pi^+\pi^-$ instead of $p^+\pi^-$. Figure 1b is a similar plot, but is for the $\bar{\Lambda}$ collection, i.e. assume the daughters are $\pi^+\pi^-$ instead of $\pi^+\bar{p}^-$. The K_S^0 contamination is visible, although not profound, in both, in the slight peaks around $m_{\rm inv}=0.497~{\rm GeV}/c^2$. If one simply cuts out the entire peak, good Λ particles will be lost. Ideally, the Λ selection and K_S^0 misidentification cuts are selected such that the peak is removed from this plot while leaving the underlying distribution continuous. To attempt to remove these K_S^0 contaminations without throwing away good Λ and $\bar{\Lambda}$ particles, the misidentification cuts introduced in Sec. ?? were imposed.

Fig. 1: Mass assuming K_S^0 -hypothesis for V0 candidates passing all Λ (1a) and $\bar{\Lambda}$ (1b) cuts. The "NoMisID" distribution (black triangles) uses the V0 finder without any attempt to remove misidentified K_S^0 The slight peak in the "NoMisID" distribution around $m_{\rm inv}=0.5~{\rm GeV}/c^2$ contains misidentified K_S^0 particles in our $\Lambda(\bar{\Lambda})$ collection. "SimpleMisID" (pink squares) simply cuts out the entire peak, which throws away some good Λ and $\bar{\Lambda}$ particles. "MisID_NoM_{inv}Comp" (green squares) uses the misidentification cut outlined in the text, but does not utilize the final invariant mass comparison step. "MisID_M_{inv}Comp" (red circles) utilizes the full misidentification methods, and is currently used for this analysis. "N_{pass}/N_{ev}" is the total number of $\Lambda(\bar{\Lambda})$ particles found, normalized by the total number of events. The purity of the collection is also listed.