MATLAB, Lab 9 – Individual work

The table below presents the blood pressure registered in aorta during single heartbeat cycle.

time	pressure		
[s]	[mmHg]		
0	87.5		
0.04	86.8		
0.08	84.8		
0.12	83.3		
0.16	98.0		
0.20	111.0		
0.24	116.0		
0.28	120.4		
0.32	121.9		
0.36	119.8		
0.40	116.2		
0.44	109.5		
0.48	107.0		
0.52	106.8		
0.56	106.0		
0.60	104.2		
0.64	101.7		
0.68	99.6		
0.72	99.8		
0.76	96.3		
0.80	94.7		
0.84	94.7		
0.88	90.7		
0.92	89.4		
0.96	89.0		
1.00	88.2		
1.04	88.0		
1.08	87.8		
1.12	87.7		
1.16	87.6		
1.20	87.6		

1. Recalculate the pressure into Pascals. Plot the graph showing this dependency

Screenshot:

2. How many complex Fourier coefficients will be obtained after applying fft function to the data presented above? Are all of them necessary to obtain the complete set of Fourier coefficients a_n b_n ?

Answer:

We will obtain 31 complex Fourier coefficients but we need only initial value/C(0) = a0 and the coefficients between 1 and 15.Because they are complex conjugate.

3. Use fft function to obtain the full set of a_n and b_n coefficients. Add as many rows as necessary. Hint: it is not necessary to rewrite the values of coefficients manually, you may view any Matlab variable in a spreedsheat, copy and paste.

a1	11.8975	b1	-8.0151	
a2	-1.1318	b2	-5.7993	
a3	-4.5085	b3	-1.0345	
a4	-1.8142	b4	1.7990	
a5	0.1816	b5	1.0595	
a6	-0.1289	b6	0.9846	
a7	0.7872	b7	0.8257	
a8	0.7742	b8	-0.3614	
a9	0.5391	b9	-0.1794	
a10	-0.1202	b10	-0.4219	
a11	-0.1430	b11	-0.6692	
a12	-0.2989	b12	0.2292	
a13	-0.2666	b13	0.0795	
a14	-0.0280	b14	0.0320	
a15	-0.1105	b15	0.1973	

- 4. Create plot of the Fourier series containing first n elements a_n and b_n. Add data points from the first table and print the plot
 - a. n=3

b. n=6

Screenshot:			

c. all Fourier coefficients obtained in fft

d. with the use of function stem, create plots presenting the amplitudes a_n and b_n . Give some comments on number of amplitudes necessary to reconstruct the signal with reasonable accuracy.

Screenshots:

