条统分析与控制

第十三次课

系统

数学模型

微分方程

传递函数

状态方程

频率特性

结构图

阶跃响应

分析

控制

系统

分析

计算响应

稳定性

可控性

稳态性能

动态性能

控制

系统

分析

控制

分析法

综合法

校正(频域法)

极点配置(时域法)

系统的数学模型

拉普拉斯变换性质

$$\mathbf{L}[f(t)] = F(s)$$

$$\mathbf{L}[af_1(t) + bf_2(t)] = aF_1(s) + bF_2(s)$$

$$\mathbf{L}[f'(t)] = \mathbf{s}F(s) - f(0)$$

$$\mathbf{L}[\int_0^t f(t)dt] = \frac{1}{s}F(s)$$

$$\mathbf{L}[f(t-\tau)] = e^{-\tau s} F(s)$$

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$$

系统的分析——稳定性

稳定性概念

暂态分量趋于0

应用

临界稳定,不稳定

劳斯判据(用法,意义)

系统的分析——能控性

研究系统这个"黑箱"的内部状态是否可由输入影响

 $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$

只对状态方程有用

能控性

$$u(t) \Rightarrow x(t)$$

$$S = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

典型输入的稳态误差

	阶跃	斜坡	抛物线
r = 0	$\frac{R}{1+K}$	00	∞
r = 1	C	$\frac{R}{K}$	∞
r=2	C	C	$\frac{R}{K}$

系统的分析——稳态性能

计算稳态误差的前提:系统是稳定的

积分环节越多,稳态性能越好

一般结构:终值定理

系统的分析--动态性能

超调量

过渡过程时间

上升时间

延迟时间

系统的分析——动态性能

一阶系统

无超调

二阶系统

欠阻尼

临界阻尼

过阻尼

有超调

无超调

无超调

系统的分析——频域方法

Tsinghua University

极坐标图

Nyquist判据

频率特性与时间响应之间的关系

频带越宽,响应时间越快

系统的分析——频域方法

Bode图

幅频

相频

优点

分析法

综合法

期望开环频率特性

如何根据给定的性能指标来确定期望的开环频率特性

超前校正

在不改变低频段的前提下改变中频段的形状。

增加相位裕量,

改善动态性能

滞后校正

在不改变中频段的前提下 改变低频段的形状。

改善稳态性能

超前滞后校正

利用超前校正改变中频段的形状, 改善动态性能

利用滞后校正改变低频段的形状,改善稳态性能

综合法基本步骤

- (1)确定 M_r ω_c
- (2)根据 M, 确定 h
- (3)确定转折频率 👵 💩
- (4)确定期望开环频率特性Q(s)
- (4)确定控制器 $D(s) = \frac{Q(s)}{G(s)}$

分析法基本步骤

- (1)确定 o_c γ
- (2)计算实际相位裕度 YG
- (3)确定需要补偿的相角 $\theta_m = \gamma \gamma_G$
- (4)引入滞后校正,保证稳态性能
- (5)校核性能,如果不满足要求,重新设计。

系统的控制——状态空间方法

状态反馈

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

$$u(t) = -Lx(t)$$

$$\dot{x}(t) = (A - BL)x(t)$$

$$|sI - (A - BL)| = (s - p_1)(s - p_2)$$

 p_1

采样系统

连续控制系统

离散控制系统

采样控制系统

数字控制系统

连续信号

离散信号

连续、离散信号

连续、离散信号,量化效应

采样系统

离散系统模型

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

$$\begin{cases} x(k+1) = Fx(k) + Gu(k) \\ y(k) = Cx(k) + Du(k) \end{cases}$$

$$F = e^{AT}$$
 $G = \int_0^T e^{At} dt$

在采样点之间,相当于开环控制

采样系统

采样控制系统分析

计算系统响应

稳定性

能控性

静态性能

动态性能

$$z = \frac{\omega + 1}{\omega - 1}$$

$$\frac{1}{(z-1)^r}$$

采样控制系统的设计

连续系统等效

指数变换

双线性变换

$$z = e^{sT}$$

$$z = \frac{1 + (T/2)\omega}{1 - (T/2)\omega}$$

采样控制系统的设计

控制器极点配置

$$z_i = e^{s_i T}$$

题目类型

简答题 (3*5)

回答简明扼要

选择题 (3*5)

写在答题纸上

计算题 (5道)

过程详细

携带

教材、计算器

2008题目

即使对于一般的闭环采样控制系统,为什么说在采样点之间仍然是开环控制?

对于有三个极点的线性连续系统,当这些极点在什么位置时该系统是不稳定的?

劳斯判据和Nyquist判据分别是判断系统稳定性的时域判据和频域判据。他们的用途有什么区别?

ITAE指标为什么不适用于零型系统?

为什么期望的频率特性的中频段应以-20分贝/10倍频程的斜率过0分贝线?

1. 在传递函数中,物理上不能实现的是()。

[A]
$$D(s) = \frac{s+1}{6s^2+11s+6}$$

[B]
$$D(s) = \frac{s+1}{11s+6}e^{-2s}$$

$$[C] D(z) = \frac{1}{z+2}$$

[D]
$$D(z) = \frac{z^2 + 1}{z + 11}$$

- 2. PID 控制器中,用于预测误差变化并做相应补偿的环节是()。
- [A] 比例环节
- [B] 积分环节
- [C] 微分环节
- [D] 比例环节、积分环节和微分环节

$$u(t) = \underline{K_P}e(t) + \underline{K_I}\int e(t)dt + \underline{K_D}\frac{de(t)}{dt}$$

4. 在下列传递函数描述的系统中,其阶跃响应超调量最大的是()。

[A]
$$\frac{1}{s+2}$$

[B]
$$\frac{1}{s^2 + 1.4s + 1}$$

[C]
$$\frac{2}{(s+1)(s+2)}$$

$$[D] \frac{4}{s^2 + 4s + 4} \longrightarrow \frac{1}{(s+2)^2}$$

- 5. 下列选项中,极点能任意配置的必要条件是()。
- [A] 系统是稳定的;
- [B] 系统是能控的;
- [C] 系统是能观的;
- [D] 系统输出可以测量。

$$L = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}^{-1} \alpha_c(A)$$

[A]其稳定性与采样频率无关;

[B]其稳态误差与采样频率无关;

[C]其动态性能与采样频率无关;

[D]以上说法都不对

35

4. 单位负反馈控制系统的开环传递函数为 $G(s)=\dfrac{100}{s(s+10)}$, 在单位加速度信号作用下,系统的稳态误差为

[A] 0.1; [B] 0.01; [C] 0; [D] ∞

5. 某二阶系统无零点,极点为 $-1\pm j\sqrt{3}$,则在单位阶跃信号作用下,系统的超调量为() [A]36.7%,[B]17.7%,[C]16.3%,[D] 以上答案都不对。

$$s_{1,2} = \begin{cases} -\zeta \boldsymbol{\omega}_n \pm j \boldsymbol{\omega}_n \sqrt{1 - \zeta^2}, |\zeta| \le 1 \\ -\zeta \boldsymbol{\omega}_n \pm \boldsymbol{\omega}_n \sqrt{1 - \zeta^2}, |\zeta| \ge 1 \end{cases}$$

$$y(t) = \begin{cases} 1 - \frac{e^{-\zeta \varpi_{n}t}}{\sqrt{1 - \zeta^{2}}} \sin(\sqrt{1 - \zeta^{2}} \varpi_{n}t + \arccos \zeta), & \zeta < 1 \\ 1 - (1 + \zeta \varpi_{n}t)e^{-\zeta \varpi_{n}t}, & \zeta = 1 \\ 1 - \frac{\zeta + \sqrt{\zeta^{2} - 1}}{2\sqrt{\zeta^{2} - 1}} e^{-(\zeta - \sqrt{\zeta^{2} - 1})\varpi_{n}t} + \frac{\zeta - \sqrt{\zeta^{2} - 1}}{2\sqrt{\zeta^{2} - 1}} e^{-(\zeta + \sqrt{\zeta^{2} - 1})\varpi_{n}t}, & \zeta > 1 \end{cases}$$

2012 年《系统分析与控制》试题(A 卷)₽

答题说明: ↩

- a. 所有考题在答题册上回答(请标明题号)。↓
- b. 交卷时请把试题、答题册和演算纸都交上来。 ↩
- c. 考试时间: 120 分钟。₽

ŀ.

- ■一 简答题 (每小题 3 分, 共 15 分)√
 - 1. 试解释为什么系统的频带越宽,则其响应越快。↩
 - Z 平面中的变量与 S 平面中的变量的对应关系是 z = esT, Z 平面上的虚轴对应 S 平面的什么线? √
 - 3. 为什么说系统传递函数等于系统的单位脉冲响应的拉普拉斯变换?↓
 - 4. 举例说明什么信号的 Z 变换与采样周期无关。₽
 - 5. PID 控制器 $K_p + K_I \frac{1}{s} + K_{D^S}$ 为什么不可实现? 试将其改造成为可以实现的形式。↓

₽

- ■二 单项选择题(每小题 3 分, 共 15 分)√
 - 1. 一个开环不稳定的系统,其负反馈闭环系统()。↩
 - [A] 一定不稳定; ↓
 - [B] 一定稳定; ↓
 - [C] 不一定不稳定; +
 - [D] 一定临界稳定。₽

₽

₽

2. 如下四个系统中₽

$$G(z) = \frac{z+1}{z(z+2)}$$
, $G(s) = \frac{s+1}{s^2(s+4)}$, $G(z) = \frac{1}{(z-1)(z+2)}$, $G(s) = \frac{s}{s+2}$

临界稳定的系统有()个。₽

[A] 0 个; [B] 1 个; [C] 2 个; [D] 3 个↓

₽J.

- 4. 下列传递函数中,起超前校正作用的是()。↩
- [A] $\frac{0.1s+1}{10s+1}$; [B] $\frac{5s+1}{2s+1}$; [C] $\frac{5s^2}{s+2}$; [D] 以上答案都不对。 \rightarrow

Ų

- 单项选择题(每小题 3 分, 共 15 分)₽
 - 1. 系统开环增益的变化()。₽
 - [A] 仅影响幅频特性; +
 - [B] 仅影响相频特性; ↓
 - [C] 既影响幅频特性,又影响相频特性; +
 - [D] 既不影响幅频特性,又不影响相频特性。↩

- 2. 若希望离散系统具有良好的动态性能,设计离散系统时,应尽可能地使闭环极点处于 (). ₽
- [A] z 平面单位圆外,右半实轴上; +
- [B] z 平面单位圆内,左半实轴上; ゼ
- [C] z 平面单位圆上,右半实轴上; +
- [D] z 平面单位圆内,右半圆内,靠近原点。₽

3. 下列串联校正装置的传递函数中,能在 $ω_{\epsilon} = 1$ 处提供最大相位超前角的是()。↔

[A]
$$\frac{10s+1}{s+1}$$

[B]
$$\frac{10s+1}{0.1s+1}$$

[C]
$$\frac{2s+1}{0.5s+1}$$

[A]
$$\frac{10s+1}{s+1}$$
 [B] $\frac{10s+1}{0.1s+1}$ [C] $\frac{2s+1}{0.5s+1}$ [D] $\frac{0.1s+1}{10s+1}$

