Also published as:

EP1605069 (A1)

EP1605069 (B1)

CN1721560 (A)

US2006000527 (A1)

DE602005001976 (T2)

Pb-FREE BEARING FOR FUEL INJECTION PUMP

Publication number: JP2005350722 (A)

Publication date: 2005-12-22
Inventor(s): YOKOTA H

(inventor(s): YOKOTA HIROMI; YOSHITOME DAISUKE; HAYAKAWA HIROMI; INAYOSHI SHIGEHIKO; MURAKAMI YOICHI;

SUZUKI MASASHI; NOSU TAKAHIRO
Applicant(s): TAIHO KOGYO CO LTD: DENSO CORP

Classification:

- international: B22F5/00; C22C1/04; C22C9/00; C22C9/02; C22C9/06; C22C32/00; F16C33/12; F16C33/14; B22F5/00;

C22C1/04; C22C9/00; C22C9/02; C22C9/06; C22C32/00; F16C33/04; (IPC1-7): C22C9/00; B22F5/00; C22C1/04;

C22C9/02; C22C9/06; F16C33/12
- European: C22C32/00, C22C32/00G; F16C3

- European: C22C32/00, C22C32/00G; F16C33/12; F16C33/14

Application number: JP20040172349 20040610 Priority number(s): JP20040172349 20040610

Abstract of JP 2005350722 (A)

PROBLEM TO BE SOLVED. To make better the sinterability, seizure resistance, fatigue resistance and corrosion resistance of a Cu-Bi based sintered alloy used for a fuel injection pump component; SOLUTION: The Pb-free bearing has a composition comprising 1 to 30 mass/% Bi and 0 1 to 1 of mass/% hard material grains with an average grain size of 10 to 50 fmglm, and the balance Cu with inevitable impurities, and has a structure where a Bi phase having an average grain size smaller than that of the hard material grains is dispersed into a Cu matrix.; COPYRIGHT. (2)2008.PDGNICIP

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出顧公開番号 特開2005-350722

	(P2005-350722A)
431 公開日	平成17年12日22日(2025 40 00

- T				(43) 公開日	平成17年12月22日(2005.12.22
(51) Int. CI. 7 C22C B22F C22C C22C C22C	9/00 5/00 1/04 9/02 9/06	F1 C22C B22F C22C C22C C22C S2競技	5/00 1/04 9/02 9/06	C A 項の数 5 O	テーマコード (参考) 3 J O 1 1 4 K O 1 8
(21) 出願番号 (22) 出願日		特度2004-172349 (*2004-172349) 平成18年6月10日 (2004-6:10)	(71) 出願人 (71) 出願人 (74) 代理人 (72) 発明者	000207791 大愛工業株 受知0004260 株型原子20042260 株型ないでは、 では、 では、 では、 では、 では、 では、 では、 では、 では、	式会社 市線水丘3丁目65番地 ソソー 市昭利町1丁目1番地 中 卓線 所線水丘3丁目65番地 大豊 市政利町1丁目1番地 大豊 大豊 大貴

最終頁に続く

(54) 【発明の名称】燃料噴射ポンプ用 P b フリー軸受

(57) 【要約】

【課題】 燃料噴射ポンプ部品に使用されるCu-Bi系焼 結合金において焼結性、耐焼性、耐疲労性および耐食性 を良好にする。

【解決手段】 Bi1〜30質量%及び平均粒径が10〜50μ=
の硬質物粒子の1〜10質量%を含有し、疾部が0点び不可避的不熱勢からなる組成を有し、病症硬質物粒子より
平均粒径が小さいBi相がCuマトリックス中に分散する組織を有する。

【選択図】 図5

【特許請求の範囲】

【請求項1】

Bi1~30質量%及び平均粒径が10~50μ mの硬質物粒子0.1~10質量%を含有し、残部がCu 及び不可避的不純物からなる組成を有し、前記硬質物粒子より平均粒径が小さいBi相がCu マトリックス中に分散していることを特徴とする燃料噴射ポンプ用Pbフリー軸受。

Bil~30質量%と、Snl~15質量%、Ni0.1~5質量%及びP0.5質量%以下からなる群の少な くとも1種と、平均粒径が10~50μ mの硬質物粒子0.1~10質量%とを含有し、残部がCu及 び不可避的不純物からなる組成を有し、前記硬質物粒子より平均粒径が小さいBi相が銅合 金マトリックス中に分散していることを特徴とする燃料噴射ポンプ用Pbフリー軸受。

Bil~30質量%及び平均粒径が10~50μmの硬質物粒子0.1~10質量%を含有し、機部がCu 及び不可避的不鈍物からなる組成を有し、前配硬質物粒子と接しているBi相に関して、該 B i 相全周に対する硬質物粒子の接触長さ割合が 5 0 %以下である硬質物粒子の存在割合 が硬質物粒子側数の全体に対して70%以上であることを特徴とする燃料噴射ポンプ用Pb

【請求項4】

Bil~30質量%と、平均粒径が10~60μmの硬質物粒子0.1~10質量%と、Snl~15質量%、 Nio.1~5質量%、及び0.5質量%以下のPからなる群の少なくとも1種とを含有し、残部がC u及び不可避的不純物からなる組成を有し、前配硬質物粒子と接しているBi相に関して、 験 B i 相全周に対する硬質物粒子の接触長さ割合が 5 0 % 以下である硬質物粒子の存在割 合が硬質物粒子個数の全体に対して70%以上であることを特徴とする燃料噴射ポンプ用 Pbフリー軸受。

【請求項51

前記硬質物粒子はFe₂P、Fe₃P、FeB、Fe₂B、Fe₂BなどのFe系化合物である請求項1から4ま での何れか1項記載の燃料噴射ポンプ用Pbフリー軸受。 【発明の詳細な説明】

[技術分野]

[0001]

本発明は、燃料噴射ポンプ用軸受に関するものであり、さらに詳しく述べるならば、Pb を含有しなくとも摺動特性が優れた銅基焼結合金を用いた燃料噴射ポンプ用軸受に関する

【背景技術】

[0002]

ディーゼルエンジンの燃料噴射装置は、燃料を微粒化して空気との均一噴霧混合状態を 作り出し、かつ燃料噴射に必要な圧力を発生させ、エンジンの負荷・回転に応じた適切な 噴射量・噴射時間で燃焼室内へ燃料を噴射する役目をする。

燃料噴射ポンプは、通常、クランク軸によりベルト駆動され片持ち構造となるため、軸 受にはベルト張力による傷荷重がかかる。軸受はエンジンの燃料によって潤滑されるが、 粘度が低いことと偏荷重の負荷により境界調清状態になりやすい。このため軸受材には耐 摩耗性・耐焼付き性といった性能が要求される。最近では、ディーゼルエンジンにおいて 環境保護を目的に軽油燃料の低硫黄化が検討されており、潤滑性が低下するので特に耐靡 1000031

燃料噴射ポンプ用輪受としては、従来、鉛青銅系材料が多用されている。この組成は例 えばSn3.0%、Pb23.0%、Fe3.0%、P1.0%、残部Cuであり、これらの成分中Feが硬質物を 形成し、耐摩耗性を向上している。 [00041

燃料微粒化のためには、燃料噴射装置には高い圧力が求められる。しかし、従来の燃料 噴射装置では、エンジン回転速度に依存するため、低回転、高負荷時には高圧力が得られ

難い。また、高圧噴射で得られた微粒化噴霧を燃焼させると多量のNOx、騒音が発生する という問題が起こる。これらの問題に対し、コモンレール方式の燃料噴射装置が開発され 、現在さらに高圧化が進んでいる。

高圧化に対応するため, 燃料噴射ポンプにはアウタカム圧送方式を採用している.この 方式では内部にリングカムと呼ばれる部位があり、その摺動部には軸受が使用される.

図5は燃料噴射ポンプの一例を示し、図中1は偏心カム、2は軸受(ブシュ)、3はリ ングカムハウジングである。また4はハウジング、5は高圧パルブ、6はブランジャー、 7は吸引制御バルブ、8は供給ポンプ、9はカムシャフト、10は吸引バルブ、11は接 続管である。ここで使用される軸受は高圧化に伴い、軸受にかかる繰り返し面圧は高くな り、また、燃料による潤滑のため、治膜厚さ非常に薄い。これらの使用環境から軸受には 耐焼付き性、耐疲労性の向上が求められる。

このような燃料噴射ポンプ用軸受には現在Pb含有軸受あるいは樹脂軸受が使用されてい る。 [00051

さらに、非特許文献1(日本トライポロジ学会トライポロジ会議予稿集(東京2003-5) 、耐硫化軸受材の開発、B19)には、Cu-Ni-Zn系材料に0.4wt%P及び2~5%Cを添加し た燃料ポンプ用輪受材料の研究が発表され、主として高磁黄ガソリンに対する耐硫化性が 試験されている。ここで、焼結合金に複合化されている黒鉛(C)は低摩擦性を付与する ものであり、したがって、非特許文献1の材料は環境負荷物質であるPbを使用しない組成 [0006]

燃料噴射ポンプ用ブシュは、一般のブシュと比較して厳しい境界凋滑環境下で使用され るため、ブシュに要求される耐摩耗性・耐焼付き性・耐食性などは高いレベルであり、鉛 青銅が使われている。

摺動用銅合金に添加されるPbは摺動時の温度上昇によって摺動面において膨張・展伸す る結果、Pbは摺動面を冷却すると同時に、その優れた自己潤滑作用により焼付きを防止す る。さらに、Pbは軟質分散相であるから、なじみ性及び異物埋収性を有している。 [0007]

しかしながら、Pbは硫酸以外の酸に腐食され易く、Cu合金中に粗大粒子として存在する と、輪受の負荷能力が低下するために、特許文献1(特公平8-19945号公報)では 特定の計算式で表わされる微細粒子として分散させることを提案する。その式の意味は、 0.1mm² (10⁶ μ m²) の視野で観察される全Pb粒子の平均面積率が1個当たり 0.1%以下 であると解釈できる。この公報の実施例では、Cu-Pb-Snプレアロイ粉末が使用されており 、機結温度が低い方が微細Pb組織が得られると説明されているから、低温焼結によりPbの 析出・成長を押さえる手法が採用されていると考えられる。 100081

焼結鋼合金の耐摩耗性を高めるために、Cr2C3,Mo2C,WC,VC,NbCなどの炭化物を硬質物と して添加することは特許文献2(特公平7-9046号公報)より公知である。この公報 によると、平均粒径が10~100μmの鋼合金粉末及び平均粒径が5~150μmの硬質物粉末をV 型混合機で混合し、次に圧粉と焼結を行なっている。Pbは鋼粒子の粒界に存在するとの説 明 (第4欄第21~22行) は、PbはCuにほとんど固溶しないとの平衡状態図から導かれる知 見と矛盾はしていない。 [0009]

Cu-Pb系焼結合金と同等の摺動特性を達成するPbフリー合金は特許文献 3 (特開平 1 0 - 3 3 0 8 6 8 号公報)より公知であり、この公報の図から、Bi(合金)相の存在箇所は 粒界3重点及びこの近傍の粒界であることが分かる。 [0010]

焼結銅合金において、硬質物がPb、Bi相中に混在すると、Pb、Biの流出を防ぎ、Pb、Bi 相がクッションになって、硬質物の相手軸攻撃性を緩和する;脱落した硬質物をPb、Bi相 が再度捕捉し、アプレシブ摩耗を緩和することが特許文献4(特許第3421724号)

にて提案されている。この特許では、硬質物はBi相中に包み込まれたような状態で存在す るので、Bi相は硬質物よりも寸法が大きくなる。 [0011]

特許文献 5 (特開2001-220630号公報) は、Cu-Bi(Pb)系挽結合金において、耐摩耗性 向上のために添加された金属間化合物がBi又はPb相の周りに存在する組織とすることによ り、摺動中に金属間化合物が銅合金表面から突出し、Bi、Pb相及びCuマトリックスは凹ん でオイル溜まりとなり、耐焼付性及び耐疲労性に優れた摺動材料が得られることが開示さ れている。焼結条件の例としては、800~920℃で約15分が挙げられている。

【特許文獻1】特公平8-19945号公報

【特許文献 2】 特公平7-9046 号公報

【特許文献3】特開平10-330868号公報

【特許文献4】特許第3421724号

【特許文献 5】 特開 2 0 0 1 - 2 2 0 6 3 0 号公報

【特許文献 6】 特開 2 0 0 0 - 1 2 9 0 2 号公報

【非特許文献1】非特許文献1(日本トライボロジ学会トライボロジ会議予稿集(東京20 03-5)、耐硫化軸受材の開発、B19)

【発明の開示】

【発明が解決しようとする課題】

[0012]

従来の燃料噴射ポンプ用軸受は、Pbフリーでかつ従来材料と同等以上の性能を実現する ことはできない。続いて、特許文献1~6の材料につき問題点を説明する。 [0013]

Cu合金中のPb及びBiはCuマトリックスにほとんど固溶せず、また金属間化合物を生成し ないため、Cuマトリックスとは別の相を形成する。摺動用鋼合金のなじみ性はこの組織・ 性質を利用しているが、反面Pb、Bi相は低強度部分であるために、耐疲労性の低下を招い ている。 したがって、特許文献1が提案する低温焼結によるPb相の微細化はこの弊害を少 なくするために有効である。しかしながら、Pbの成長を抑えるために必要な低温は、銅合 金粒子どうしの結合力を低下させるという弊害もある。 [0014]

特許文献3,4.5で提案されているCu-Bi系合金中のBi相は高温中、あるいは劣化油中で使 用した場合、Biの発汗や腐食が起きて、添加したBi量に対し、Bi量が減少してしまうため 、摺動性能が低下する。また、Biは潤滑油に溶出することもある。しかし、Biが微細に分 散していると、個々のBi相の体積が小さいため、発汗や腐食、流出によるBi最の減少を抑 制できる。但し、Biの微細分散と銅合金の焼結性とは相反する関係にある。 [0015]

また、特許文献 4 及び特許文献 5 のBi含有Cu基合金では、焼結中にBi相が被相になる ためCuマトリックス中の成分がBi相に拡散し易くなり、金属間化合物がそこで生成する。 したがって、金属間化合物は常にBi相とCuマトリックスの境界に存在することになるため に、Cuマトリックスによる金属間化合物の保持効果が少なくなる。特許文献5で提案され た焼結鋼合金では、通常の焼結では所望の組織状態が得られないので、所望組織を得るた めの長時間焼結を行っている。この結果、特許文献 4 の図2に示されているようにBi相が 硬質粒子よりも寸法が大きくなり、かつ後述する硬質物存在率がほぼ100%となってい ると考えられる。また、特許文献5の図1においては、後述する硬質物接触率が高くなる 。このようなBi相はCu-Bi系焼結合金の耐疲労性や耐食性を低下させる原因となる。

【課題を解決するための手段】

[0016]

従来のCu-Bi系合金は、燃料噴射ポンプの軸受に使用された場合、なじみ性、耐疲労性 及び耐食性を高いレベルで両立させることができないので、本発明の第一は、Bil~30質 量 % 及 び 平 均粒径 が 10~50 μ mの 硬 質物 粒子 0.1~10 質量 % を含有 し、 残 部 が Cu及 び 不 可 遊 的不純物からなる組成を有し、前記硬質物粒子より平均粒径が小さいBi相がCuマトリック

ス中に分散されていることを特徴とする燃料噴射ポンプ用Pbフリー軸受を提供し、本発明 の第二は、Bi1~30質量%及び平均粒径が10~50μmの硬質物粒子0.1~10質量%を含有し 、残部がCu及び不可避的不純物からなる組成を有し、前記硬質物粒子と接しているBi相に 閱して、該Bi相全周に対する硬質物粒子の接触長さ割合が50%以下である硬質物粒子 の存在割合が硬質物粒子個数の全体に対して70%以上であることを特徴とする燃料噴射 ポンプ用Pbフリー軸受を提供する。

以下、本発明を詳しく説明する。

[0017]

(1) 合金組成

本発明のCu-Bi系焼結合金において、Bi含有量が、1質量%未満であると耐焼付性が劣り 、一方、30質量%を超えると強度が低下し、耐疲労性が劣るために、Bi含有量は1~30質 量%である。好ましいBi含有量は1~15質量%である。 [0018]

本発明において硬質物粒子とは、特許文献2で提案されたものであってもよいが、網合 金における焼結性が優れたFe₂P、Fe₃P、FeB、Fe₂B、Fe₃BなどのFe系化含物が好ましい。 さらに、Fe系化合物はBiとの濡れ性が低く、逆にCuとは濡れ性が高いので、Bi相と硬質粒 子が接する割合が小さく、Cuマトリックスに保持され易くなる。これにより、硬質物の脱 落や欠けが生じにくくなり、耐摩耗性、耐焼付き性が低下するのを抑えることができる。 硬質物の含有量が0.1質量%未満であると耐焼付性、耐摩耗性が劣り、一方、10質量%を 超えると強度が低下し、耐疲労性が劣るとともに、相手材を傷つけたり、焼結性を低下さ せる。好ましい硬質物粒子の含有量は1~5質量%である。

上記組成の残部は不可避的不純物とCuである。不純物は通常のものであるが、その中で もPbも不純物レベルとなっている。 [0019]

必要により、銅合金への添加元素を添加してもよい。例えば、Cuの融点を下げ、焼結性 を高めるPを 0.5質量%以下添加することができる。P含有量が0.5質量%を超えると銅 合金が脆くなる。また、強度及び耐疲労性を高めるSnを1~15質量%添加することがで きる。Sn含有量が1質量%未満であると、強度向上の効果が少なく、一方15質量%を超 えると金属間化合物が生成し易くなり、合金が脆くなる。また、強度及び耐食性を高める ために、0.1~5%のNiを添加することもできる。Ni含有量が0.1%未満であると、強度向 上の効果が少なく、一方5質量%を超えると金属間化合物が生成し易くなり、合金が脆く なる。これら元素はCuに合金化されて銅合金マトリックスを構成する。

さらに、銅合金に対する複合成分として、MoS₂、黒鉛などの固体潤滑剤を5質量%以下 添加することができる。 [0:020]

(2) 合金組織

本発明の第一及び第二において、硬質物粒子の平均粒径は10~50μmである。平均粒径 が10μα未満であると、耐摩耗性に対する硬質物の効果が小さく、50μαを超えると焼結銅 合金の強度が低下する。好ましい硬質物粒子の平均粒径は15~30μmである。

本発明の合金組織は、銅合金の焼結中に硬質物粒子とBi相が接するような後者の流動を できるだけ阻止することである。 [0021]

この結果を本発明の第一においては、Bi相の平均粒径(Bi相の円相当径)(Dai)は添 加した硬質物の平均粒径 (D_{B}) より小さい (D_{B}) にとである規定している。

また、本発明の第二においては、硬質物粒子と接しているBi相に関して、該硬質物粒子 の全周に対するBi相の接触長さ割合が50%以下である硬質物粒子の存在割合が硬質物 粒子個数の全体に対して70%以上であると規定している。ここで、「硬質物粒子の全周 に対するBi相の接触長さ割合」を『硬質物接触比率』ということにする。硬質物接触比 率が100%であると、特定の1個のBi相と接している1又は2以上の硬質物粒子のそ

れぞれが、全周でBi相と接していることであり、これはとりもなおさず、硬質物粒子が Bi相中に埋め込まれている状態である。一方硬質物接触比率が100%未満であり、0 でないとすると、硬質物粒子はBi相外にはみ出した部分を必ず有しており、この部分は 銅合金と接していることになる。本発明において、硬質物接触比率を50%以下としたの は、硬質物粒子とBi相との接触をできるだけ少なくすることにより、それぞれの特性を 十分に発揮させるためである。次に、50%以下の硬質物接触比率の硬質粒子が硬質物全 体に対して存在する個数割合を『硬質物存在率』ということにする。硬質物存在率が10 0%であると、すべての硬質物接触比率が50%以下である。一方、硬質物存在比率が0 %であると、すべての硬質物粒子に関して硬質物接触比率が50%を超えることになる。 本発明においては硬質物存在比率を70%以上に限定したのは、接触が少ないBi相と硬 質粒子を相対的に多くすることにより、それぞれの特性を十分に発揮させるためである。

このような焼結過程をもたらすためには、Cu-Bi合金アトマイズ粉末あるいはCu-Biアト マイズ粉末との混合粉末を焼結温度での保持時間が2分以下の短時間焼結を行なうことが 好ましい。このような短時間焼結は特許文献6(特闕2002-12902号公報)で本 出願人が提案した高周波焼結により行なうことができる。

[0024]

(3) 合金の性質 本発明の銅基焼結合金は、一般的にいうと、Bi相はなじみ性を発揮し、硬質物粒子がCu マトリックスに強固に保持され、その脱蒂が起こりがたく、耐摩耗性及び耐焼付き性が向 上するとともに、強度や耐疲労性が良好になる。

Bi相は焼結合金全体において微細に分散しているために、材料自体のパルク性 (1) 質が耐疲労性、耐食性及び強度の点で優れている。

(ロ) 硬質物粒子は殆どがCuもしくは銅合金マトリックスに保持されているので、摺 動面における材料は耐摩耗性に優れている。

摺動面に存在するBi相によりPbフリーでも優れたなじみ性が達成される。

(=)微細に分散されたBi相が優れた非凝着性と耐焼付性をもたらす。 [0025]

(4) ブシュの製法

Cu-Bi粉末をアトマイズ法により粉末とし、上記組成になるように褒賞物粉末、他の金 魔成分を含む粉末を混合する。 硬質物以外の成分はアトマイズにより得られる合金粉末で も良い。鋼板上に混合した粉末を均一の厚さに散布し、上記短時間焼結を行う。ロールで 圧延し,再度短時間燒結した後,必要に応じてロールで圧延する。得られたパイメタル材 を所定の大きさに切断し、円筒形になるように曲げ加工を行い、ブシュを製造する。 以下、実施例により本発明をより詳しく説明する。

【発明を実施するための最良の形骸】

[0026]

表1に組成を示すCu-Bi合金粉末(粒径150μm以下、アトマイズ粉末)と硬質物粉末 (平均粒径一表1に示す)を混合し、鋼板上に約1mmの厚さになるように散布した後、750 ~1000℃、焼結時間20~1800秒、水素遼元雰囲気中で1次焼結を行った。その後圧延加工 を行い、同じ条件で二次焼結を行って得られた焼結材を供飮材とした。焼結時間範囲内の 長時間燒結はBi相の拡散を促進して本発明外の比較例を調製するための条件である。 [0027]

耐烧付性試験方法

______ 上記方法により調製された銅合金表面をペーパーでラップして表面粗さ(十点平均粗さ)を1.0μm以下にした供試材に鋼球をあて、荷重をかけて一方向に滑らせる。滑らせた後 の網球を観察し、鋼球に凝着しているCu合金の面積を測定する。凝着し易い材料は耐焼付 き性に劣るため、凝着面積が小さいものが耐焼付性に優れる。 試験機:スティックスリップ試験機

荷重:500g

50

轴材質:SUJ2

凋滑油:なし

温度:室温~200℃渐增

[0028]

耐疲労性

疲労強度と引張強度はよい相関にあり、引張強度が高いものが耐疲労性に優れている ため、Cu-Bi合金の材料強度(引張強度)をJISに準拠した引張試験により行ない、これを 疲労強度の代替特性とした。 [0029]

硬質物存在率並びに上記特性の試験の結果を表1に示す。

[0030]

【表1】

		Bi 量 (質量%)	Bi 相	硬質物量(質量%)			硬質物	硬質物	耐焼付き性	耐疲労性	1
			円相当径 (μm)	Fe ₃ P	Fe _s P	FeB	平均粒径 µm	粒子の存 在割合 %	凝着面積 µm²	材料強度 MPa	
実施例	1	3	5	2	1	-	15	89	12		
	2	5	5	3	2		25	94		264	
	3	5	8	4	-	_	25	91	15	257	
	4	10	7	2	1	_	15		11	262	
	5	10	12	4	-		25	92	12	252	
	6	10	14	4	1		25	86	8	230	
	7	10	18			5		89	8	225	
	8	15	8	2	_		24	84	6	220	
	9	15	17	2	3		15	93	0	238	
	10	15	14				25	91	0	214	
	11	15	13			4	24	92	0	228	
	12	20	22		3		25	91	0	232	
ŀ	13	20		3 .	2	_	25	88	0	198	
比較例	1	- 20	28	7	3	-	32	86	0	176	
	2					- 1	- 1	-	100	348	
	3	5	81	5 .		-	25	55	12	184	
		10	52	8 ;	- 1	- T	25	32	25		
	4	10	105	3	2	-	25	18	50	175	
	5	15	68	2	1	-	25	25	50	152	
	6	20	127	5	-	_	25	12	50	145	

10

表1より本発明実施例は耐焼付性、耐疲労性及び耐食性を兼備していることが明らかで ある。 [0032]

図1及び 2 に本発明実施例No. 4 の 2 0 0 倍及び 5 0 0 倍の顕微鏡組織写真を示し、同様 に図3及び4に比較例No.3の200倍及び500倍の顕微鏡組織写真を示す。前者の図1

, 2は硬質物とBi相の接触割合が少なく、後者の図3, 4は硬質物とBi相の接触割合が大 きいことが分かる。 [0033]

実施例 2

実施例1の比較例材料No.4,実施例材料No.6を円筒形に曲げ、プシュ形状に加工した後 、ディーゼル燃料噴射ポンプに組み込んで耐久性試験を行なった。潤滑油として、JIS2号

軽油を使用した。実施例材料No6は特に損傷が見られず、1000hェの試験を終了した

50

【産業上の利用可能性】

[0034]

本発明に係る燃料噴射ポンプ用軸受は、Pbフリーであるにも拘わらず耐焼付性及び耐疲 労性が優れているので、高圧力で作動されるポンプの軸受としてすぐれている。

【図面の簡単な説明】

[0035]

【図1】本発明の一実施例に係る焼結鍋合金の顕微鏡組織を示す写真である(200倍)

【図2】本発明の一実施例に係る焼結鋼合金の顕微鏡組織を示す写真である(500倍)

【図3】比較例に保る焼結銅合金の顕微鏡組織を示す写真である(200倍)。

【図4】比較例に係る焼結銅合金の顕微鏡組織を示す写真である(500倍)。

【図5】燃料噴射ポンプの一例を示す図である。

[図5]

フロントページの続き

(51) Int. Cl. 7

FΙ

テーマコード (参考)

F 1 6 C 33/12

F 1 6 C 33/12

(72)発明者 早川 宏明

愛知県豊田市緑ヶ丘3丁目65番地 大豊工業株式会社内

(72)発明者 稲吉 成彦

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

(72)発明者 村上 洋一

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

(72)発明者 鈴木 雅詞 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

(72)発明者 野須 敬弘

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

Fターム(参考) 3J011 AA07 BA02 DA01 KA02 LA01 SB03 SB19 SE10

4K018 AA04 AA05 AB04 AB10 AC01 BB04 BC12 CA37 DA11 DA21 DA31 HA03 JA22 KA03