



### Rob J Hyndman

# Forecasting using



#### 12. Advanced methods

OTexts.com/fpp/2/5/

## **Outline**

- 1 Cross-validation
- 2 Time series with complex seasonality
- **3** Forecasting proportions
- 4 Some case studies
- **5** Forecasting resources

#### Standard cross-validation

- Select one observation for test set, and use remaining observations in training set.
   Compute error on test observation.
- Repeat using each possible observation as the test set.
- Compute accuracy measure over all errors.
- Does not work normally for time series because we cannot use future observations to build a model.

#### Standard cross-validation

- Select one observation for test set, and use remaining observations in training set.
   Compute error on test observation.
- Repeat using each possible observation as the test set.
- Compute accuracy measure over all errors.
- Does not work normally for time series because we cannot use future observations to build a model.

#### Standard cross-validation

- Select one observation for test set, and use remaining observations in training set.
   Compute error on test observation.
- Repeat using each possible observation as the test set.
- Compute accuracy measure over all errors.
- Does not work normally for time series because we cannot use future observations to build a model.

#### Standard cross-validation

- Select one observation for test set, and use remaining observations in training set.
   Compute error on test observation.
- Repeat using each possible observation as the test set.
- Compute accuracy measure over all errors.
- Does not work normally for time series because we cannot use future observations to build a model.

Assume k is the minimum number of observations for a training set.

- Select observation k + i for test set, and use observations at times 1, 2, ..., k + i 1 to estimate model. Compute error on forecast for time k + i.
- Repeat for i = 0, 1, ..., T k where T is total number of observations.
- Compute accuracy measure over all errors.

Also called **rolling forecasting origin** because the origin (k+i-1) at which forecast is based rolls forward in time

Forecasting using R Cross-validation

Assume k is the minimum number of observations for a training set.

- Select observation k + i for test set, and use observations at times 1, 2, ..., k + i 1 to estimate model. Compute error on forecast for time k + i.
- Repeat for i = 0, 1, ..., T k where T is total number of observations.
- Compute accuracy measure over all errors.

Also called **rolling forecasting origin** because the origin (k + i - 1) at which forecast is based rolls forward in time.

Forecasting using R Cross-validation

Assume k is the minimum number of observations for a training set.

- Select observation k + i for test set, and use observations at times 1, 2, ..., k + i 1 to estimate model. Compute error on forecast for time k + i.
- Repeat for i = 0, 1, ..., T k where T is total number of observations.
- Compute accuracy measure over all errors.

Also called **rolling forecasting origin** because the origin (k + i - 1) at which forecast is based rolls forward in time.

Forecasting using R Cross-validation

Assume k is the minimum number of observations for a training set.

- Select observation k + i for test set, and use observations at times 1, 2, ..., k + i 1 to estimate model. Compute error on forecast for time k + i.
- Repeat for i = 0, 1, ..., T k where T is total number of observations.
- Compute accuracy measure over all errors.

Also called **rolling forecasting origin** because the origin (k + i - 1) at which forecast is based rolls forward in time.

Assume k is the minimum number of observations for a training set.

- Select observation k + i for test set, and use observations at times 1, 2, ..., k + i 1 to estimate model. Compute error on forecast for time k + i.
- Repeat for i = 0, 1, ..., T k where T is total number of observations.
- Compute accuracy measure over all errors.

Also called **rolling forecasting origin** because the origin (k + i - 1) at which forecast is based rolls forward in time.





- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- **ETS** model applied to original data

- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- ETS model applied to original data

#### Which of these models is best?

- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- ETS model applied to original data

 $\blacksquare$  Set k=48 as minimum training set.

- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- ETS model applied to original data
  - **Set** k = 48 as minimum training set.
- Forecast 12 steps ahead based on data to time k + i = 1 for  $i = 1, 2, \dots, 2$ 
  - Compare MAE values for each forecast horizon

- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- ETS model applied to original data
- Set k = 48 as minimum training set.
- Forecast 12 steps ahead based on data to time k+i-1 for  $i=1,2,\ldots,156$ .
- Compare MAE values for each forecast horizon.

- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- **IDENTIFY** ETS model applied to original data
- Set k = 48 as minimum training set.
- Forecast 12 steps ahead based on data to time k+i-1 for  $i=1,2,\ldots,156$ .
- Compare MAE values for each forecast horizon.

- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- **IDENTIFY** ETS model applied to original data
- Set k = 48 as minimum training set.
- Forecast 12 steps ahead based on data to time k+i-1 for  $i=1,2,\ldots,156$ .
- Compare MAE values for each forecast horizon.





```
k <- 48
n < - length(a10)
mae1 <- mae2 <- mae3 <- matrix(NA.n-k-12.12)
for(i in 1:(n-k-12))
  xshort <- window(a10,end=1995+(5+i)/12)
  xnext < -window(al0.start=1995+(6+i)/12.end=1996+(5+i)/12)
  fit1 <- tslm(xshort ~ trend + season, lambda=0)
  fcast1 <- forecast(fit1,h=12)</pre>
  fit2 <- auto.arima(xshort,D=1, lambda=0)
  fcast2 <- forecast(fit2.h=12)</pre>
  fit3 <- ets(xshort)
  fcast3 <- forecast(fit3,h=12)</pre>
  mael[i,] <- abs(fcast1[['mean']]-xnext)</pre>
  mae2[i,] <- abs(fcast2[['mean']]-xnext)</pre>
  mae3[i,] <- abs(fcast3[['mean']]-xnext)</pre>
plot(1:12,colMeans(mae1),type="l",col=2,xlab="horizon",ylab="MAE",
     vlim=c(0.58.1.0)
lines(1:12.colMeans(mae2).tvpe="l".col=3)
lines(1:12,colMeans(mae3),type="l",col=4)
legend("topleft",legend=c("LM","ARIMA","ETS"),col=2:4,lty=1)
```

#### Variations on time series cross validation

Keep training window of fixed length.

```
xshort <- window(a10,start=i+1/12,end=1995+(5+i)/12)
```

Compute one-step forecasts in out-of-sample period.

```
for(i in 1:(n-k))
{
    xshort <- window(a10,end=1995+(5+i)/12)
    xlong <- window(a10,start=1995+(6+i)/12)
    fit2 <- auto.arima(xshort,D=1, lambda=0)
    fit2a <- Arima(xlong,model=fit2)
    fit3 <- ets(xshort)
    fit3a <- ets(xlong,model=fit3)
    mae2a[i,] <- abs(residuals(fit3a))
    mae3a[i,] <- abs(residuals(fit2a))
}</pre>
```

### **Outline**

- 1 Cross-validation
- 2 Time series with complex seasonality
- **3** Forecasting proportions
- 4 Some case studies
- **5** Forecasting resources

## **Examples**



## **Examples**



# **Examples**



#### **TBATS**

Trigonometric terms for seasonality
Box-Cox transformations for heterogeneity
ARMA errors for short-term dynamics
Trend (possibly damped)
Seasonal (including multiple and non-integer periods)

 $y_t$  = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega 
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

$$s_{t}^{(i)} = \sum_{i=1}^{k_{i}} s_{j,t}^{(i)} \qquad \qquad s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_{j}^{(i)} + \gamma_{1}^{(i)} d_{t} \ s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_{j}^{(i)} + \gamma_{2}^{(i)} d_{t}$$

 $y_t$  = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega 
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$\begin{split} y_t^{(\omega)} &= \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^M s_{t-m_i}^{(i)} + d_t \\ \ell_t &= \ell_{t-1} + \phi b_{t-1} + \alpha d_t \\ b_t &= (1 - \phi)b + \phi b_{t-1} + \beta d_t \\ d_t &= \sum_{i=1}^p \phi_i d_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t \\ s_t^{(i)} &= \sum_{j=1}^{k_i} s_{j,t}^{(i)} & s_{j,t-1}^{(i)} \cos \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_j^{(i)} + \gamma_1^{(i)} d_t \\ s_t^{(i)} &= -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t \end{split}$$

 $y_t$  = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega 
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

M seasonal periods

$$\begin{split} \ell_t &= \ell_{t-1} + \phi b_{t-1} + \alpha d_t \\ b_t &= (1 - \phi)b + \phi b_{t-1} + \beta d_t \\ d_t &= \sum_{i=1}^p \phi_i d_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t \\ s_t^{(i)} &= \sum_{i=1}^{k_i} s_{j,t}^{(i)} & s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_j^{(i)} + \gamma_1^{(i)} d_t \\ s_t^{(i)} &= -s_{i,t-1}^{(i)} \sin \lambda_i^{(i)} + s_{i,t-1}^{*(i)} \cos \lambda_i^{(i)} + \gamma_2^{(i)} d_t \end{split}$$

 $y_t$  = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega 
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

M seasonal periods

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$
  
$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

global and local trend

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

$$s_t^{(i)} = \sum_{j=1}^{k_i} s_{j,t}^{(i)} \qquad s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_j^{(i)} + \gamma_1^{(i)} d_t$$
$$s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t$$

 $y_t$  = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega 
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

M seasonal periods

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$
  
$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

global and local trend

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

ARMA error

$$s_{t}^{(i)} = \sum_{j=1}^{k_{i}} s_{j,t}^{(i)} \qquad s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_{j}^{(i)} + \gamma_{1}^{(i)} d_{t} s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_{j}^{(i)} + \gamma_{2}^{(i)} d_{t}$$

 $y_t$  = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega 
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

M seasonal periods

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$
  
$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

global and local trend

$$d_t = \sum_{i=1}^{p} \phi_i d_{t-i} + \sum_{j=1}^{q} \theta_j \varepsilon_{t-j} + \varepsilon_t$$

ARMA error

$$s_t^{(i)} = \sum_{j=1}^{k_i} s_{j,t}^{(i)}$$
  $s_{j,t}^{(i)} = s_{j,t-1}^{(i)} c_{terms}^{fourier-like seasonal}$   $s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t$ 

$$y_t =$$
 observation at time  $t$ 

$$y_t^{(\omega)} = \begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log \text{TBATS} \end{cases}$$

$$y_t^{(\omega)} = \ell_{t-1}$$
 Trigonometric Box-Cox  $\ell_t = \ell_{t-1}$  ARMA

$$egin{aligned} \ell_t &= \ell_{t-1} \ b_t &= (1 - 1) \end{aligned}$$
 ARMA

$$d_t = \sum_{i=1}^{p}$$
 **T**rend **S**easonal

$$s_t^{(i)} = \sum_{i=1}^{k_i} s_{j,t}^{(i)}$$

$$s_{j,t}^{(i)} = s_{j,t-1}^{(i)}$$
 Fourie

Box-Cox transformation

M seasonal periods

global and local trend

ARMA error

Fourier-like seasonal

$$s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t$$

# **Examples**



# **Examples**



# **Examples**



# **Outline**

- 1 Cross-validation
- 2 Time series with complex seasonality
- **3** Forecasting proportions
- 4 Some case studies
- **5** Forecasting resources

#### Simple approach

- Use a logit transformation on proportions:
  - $f(u) = \log\left(\frac{u}{1-u}\right)$
- Then build model and back-transform the forecasts

#### Simple approach

- Use a logit transformation on proportions:
  - $f(u) = \log\left(\frac{u}{1-u}\right)$
- Then build model and back-transform the forecasts.

#### More complicated:

 $\blacksquare$  Let  $y_t$  be a binary variable (e.g., water quality above

Forecasting using R

#### Simple approach

- Use a logit transformation on proportions:  $f(u) = \log \left(\frac{u}{1-u}\right)$
- Then build model and back-transform the forecasts.

- Let  $y_t$  be a binary variable (e.g., water quality above some threshold value on day t).
  - Use a generalized linear model with a latent
  - autocorrelated process. e.g.,  $\Pr(y_t) = f^{-1}(\alpha + \beta \mathbf{x}_t + u_t)$  where  $\mathbf{x}_t$  is a vector of predictors and  $u_t$  is a correlated process.
  - Theory and methodology not well developed and very little software available.

#### Simple approach

- Use a logit transformation on proportions:  $f(u) = \log \left(\frac{u}{1-u}\right)$
- Then build model and back-transform the forecasts.

- Let  $y_t$  be a binary variable (e.g., water quality above some threshold value on day t).
- Use a generalized linear model with a latent autocorrelated process. e.g.,  $\Pr(y_t) = f^{-1}(\alpha + \beta \mathbf{x}_t + u_t)$  where  $\mathbf{x}_t$  is a vector of predictors and  $u_t$  is a correlated process.
- Theory and methodology not well developed and very little software available.
- bild and gee packages allows some simple correlation structures.

#### Simple approach

- Use a logit transformation on proportions:  $f(u) = \log \left(\frac{u}{1-u}\right)$
- Then build model and back-transform the forecasts.

- Let  $y_t$  be a binary variable (e.g., water quality above some threshold value on day t).
- Use a generalized linear model with a latent autocorrelated process. e.g.,  $\Pr(y_t) = f^{-1}(\alpha + \beta \mathbf{x}_t + u_t)$  where  $\mathbf{x}_t$  is a vector of predictors and  $u_t$  is a correlated process.
- Theory and methodology not well developed and very little software available.
- bild and gee packages allows some simple correlation structures.

#### Simple approach

- Use a logit transformation on proportions:  $f(u) = \log \left(\frac{u}{1-u}\right)$
- Then build model and back-transform the forecasts.

#### More complicated:

- Let  $y_t$  be a binary variable (e.g., water quality above some threshold value on day t).
- Use a generalized linear model with a latent autocorrelated process. e.g.,  $\Pr(y_t) = f^{-1}(\alpha + \beta \mathbf{x}_t + u_t)$  where  $\mathbf{x}_t$  is a vector of predictors and  $u_t$  is a correlated process.
- Theory and methodology not well developed and very little software available.
- bild and gee packages allows some simple correlation structures.

18

#### Simple approach

- Use a logit transformation on proportions:  $f(u) = \log \left(\frac{u}{1-u}\right)$
- Then build model and back-transform the forecasts.

- Let  $y_t$  be a binary variable (e.g., water quality above some threshold value on day t).
- Use a generalized linear model with a latent autocorrelated process. e.g.,  $\Pr(y_t) = f^{-1}(\alpha + \beta \mathbf{x}_t + u_t)$  where  $\mathbf{x}_t$  is a vector of predictors and  $u_t$  is a correlated process.
- Theory and methodology not well developed and very little software available.
- bild and gee packages allows some simple correlation structures.

# **Outline**

- 1 Cross-validation
- 2 Time series with complex seasonality
- **3** Forecasting proportions
- 4 Some case studies
- **5** Forecasting resources

**Problem:** Want forecasts of each of hundreds of items. Series can be stationary, trended or seasonal. They currently have a large forecasting program written in-house but it doesn't seem to produce sensible forecasts. They want me to tell them what is wrong and fix it.



**Problem:** Want forecasts of each of hundreds of items. Series can be stationary, trended or seasonal. They currently have a large forecasting program written in-house but it doesn't seem to produce sensible forecasts. They want me to tell them what is wrong and fix it.



#### **Additional information**

Program written in COBOL making numerical calculations limited. It is not possible to do any optimisation.

**Problem:** Want forecasts of each of hundreds of items. Series can be stationary, trended or seasonal. They currently have a large forecasting program written in-house but it doesn't seem to produce sensible forecasts. They want me to tell them what is wrong and fix it.



- Program written in COBOL making numerical calculations limited. It is not possible to do any optimisation.
- Their programmer has little experience in numerical computing.

**Problem:** Want forecasts of each of hundreds of items. Series can be stationary, trended or seasonal. They currently have a large forecasting program written in-house but it doesn't seem to produce sensible forecasts. They want me to tell them what is wrong and fix it.



- Program written in COBOL making numerical calculations limited. It is not possible to do any optimisation.
- Their programmer has little experience in numerical computing.
- They employ no statisticians and want the program to produce forecasts automatically.

#### **Methods currently used**

- A 12 month average
- C 6 month average
- **E** straight line regression over last 12 months
- **G** straight line regression over last 6 months
- H average slope between last year's and this year's values.
   (Equivalent to differencing at lag 12 and
  - (Equivalent to differencing at lag 12 and taking mean.)
  - I Same as H except over 6 months.
- K I couldn't understand the explanation.



- Many drugs bought from pharmacies are subsidised to allow more equitable access to modern drugs.
- The cost to government is determined by the number and types of drugs purchased. Currently nearly 1% of GDP.
- The total cost is budgeted based on forecasts of drug usage.

- Many drugs bought from pharmacies are subsidised to allow more equitable access to modern drugs.
- The cost to government is determined by the number and types of drugs purchased. Currently nearly 1% of GDP.
- The total cost is budgeted based on forecasts of drug usage.

- Many drugs bought from pharmacies are subsidised to allow more equitable access to modern drugs.
- The cost to government is determined by the number and types of drugs purchased. Currently nearly 1% of GDP.
- The total cost is budgeted based on forecasts of drug usage.

- Many drugs bought from pharmacies are subsidised to allow more equitable access to modern drugs.
- The cost to government is determined by the number and types of drugs purchased. Currently nearly 1% of GDP.
- The total cost is budgeted based on forecasts of drug usage.



# ABC News Online



NewsRadio
Streaming audio news
LISTEN: WMP | Real

LISTEN. VVIVIE

Click "Refresh" or "Reload" on your browser for the latest edition.

This Bulletin: Wed, May 30 2001 6:22 PM AES

#### Top Stories PO

<u>Just In</u> World

Asia-Pacific

Business

Daoine

Sport

Arts Sci Tech

Indigenous

Weather

Rural

Local News

Broadband

Search

SPECIALS

Federal Election

#### <u>POLITICS</u>

# Opp demands drug price restriction after PBS budget blow-out

The Federal Opposition has called for tighter controls on drug prices after the Pharmaceutical Benefits Scheme (PBS) budget blew out by almost \$800 million.

The money was spent on two new drugs including the controversial anti-smoking aid Zyban, which dropped in price from \$220 to \$22 after it was listed on the PBS.

# Püblic Record

For full election coverage

FEATURES

# Püblic Record

Federal Election 2001

For a fresh perspective on the federal election, reach into ABC Online's campaign weblog, The Poll Vault.

Audio News Online

Forecasting using R Some case studies 24

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!







**Problem:** how to forecast passenger traffic on major routes.

- They can provide a large amount of data on previous routes.
- Traffic is affected by school holidays, special events such as the Grand Prix, advertising campaigns, competition behaviour, etc.
- They have a highly capable team of people who are able to do most of the computing.

**Problem:** how to forecast passenger traffic on major routes.

- They can provide a large amount of data on previous routes.
- Traffic is affected by school holidays, special events such as the Grand Prix, advertising campaigns, competition behaviour, etc.
- They have a highly capable team of people who are able to do most of the computing.

**Problem:** how to forecast passenger traffic on major routes.

- They can provide a large amount of data on previous routes.
- Traffic is affected by school holidays, special events such as the Grand Prix, advertising campaigns, competition behaviour, etc.
- They have a highly capable team of people who are able to do most of the computing.

**Problem:** how to forecast passenger traffic on major routes.

- They can provide a large amount of data on previous routes.
- Traffic is affected by school holidays, special events such as the Grand Prix, advertising campaigns, competition behaviour, etc.
- They have a highly capable team of people who are able to do most of the computing.

# **Outline**

- 1 Cross-validation
- 2 Time series with complex seasonality
- **3** Forecasting proportions
- 4 Some case studies
- **5** Forecasting resources

## Organization:

International Institute of Forecasters.

#### Conferences:

International Symposium on Forecasting. June 2014, Rotterdam.

#### Journals:

- International Journal of Forecasting
- Foresight

## Organization:

International Institute of Forecasters.

#### Conferences:

International Symposium on Forecasting. June 2014, Rotterdam.

#### Journals:

- International Journal of Forecasting
- Foresight



## Organization:

International Institute of Forecasters.

#### Conferences:

 International Symposium on Forecasting. June 2014, Rotterdam.

#### Journals:

- International Journal of Forecasting
- Foresight



## Organization:

International Institute of Forecasters.

#### Conferences:

International Symposium on Forecasting. June 2014, Rotterdam.

#### Journals:

- International Journal of Forecasting
- Foresight

Links to all of the above at www.forecasters.org.



- Revolution Analytics will send you course completion certificates.
- Please vote on the students who have made most contribution to class. You will receive a voting form by email. I will announce the results on Piazza.
- I will continue to answer questions on Piazza until Christmas.
- A discussion forum for forecasting planned for OTexts. Should be launched in early 2014.
- The FPP book will be available in print on Amazon by February 2014. Maybe a kindle version will follow.

- Revolution Analytics will send you course completion certificates.
- Please vote on the students who have made most contribution to class. You will receive a voting form by email. I will announce the results on Piazza.
- I will continue to answer questions on Piazza until Christmas.
- A discussion forum for forecasting planned for OTexts. Should be launched in early 2014.
- The FPP book will be available in print on Amazon by February 2014. Maybe a kindle version will follow

- Revolution Analytics will send you course completion certificates.
- Please vote on the students who have made most contribution to class. You will receive a voting form by email. I will announce the results on Piazza.
- I will continue to answer questions on Piazza until Christmas.
- A discussion forum for forecasting planned for OTexts. Should be launched in early 2014.
- The FPP book will be available in print on Amazon by February 2014. Maybe a kindle version will follow.

- Revolution Analytics will send you course completion certificates.
- Please vote on the students who have made most contribution to class. You will receive a voting form by email. I will announce the results on Piazza.
- I will continue to answer questions on Piazza until Christmas.
- A discussion forum for forecasting planned for OTexts. Should be launched in early 2014.
- The FPP book will be available in print on Amazon by February 2014. Maybe a kindle version will follow.

- Revolution Analytics will send you course completion certificates.
- Please vote on the students who have made most contribution to class. You will receive a voting form by email. I will announce the results on Piazza.
- I will continue to answer questions on Piazza until Christmas.
- A discussion forum for forecasting planned for OTexts. Should be launched in early 2014.
- The FPP book will be available in print on Amazon by February 2014. Maybe a kindle version will follow.