Second Class Test for Industrial Instrumentation (EE60031/EE41001)

Answer ALL questions. State your assumptions. Follow the instructions provided.

- 1. (a) Explain the operation of an LVDT and the need for phase sensitive demodulation of its output [10+10]
 - (b) The circuit in the figure below is for phase sensitive demodulation of the LVDT output. Sketch the waveforms at A, B, C, D and E assuming sinusoidal high frequency (ω_s) excitation at the LVDT primary, for a displacement function which is sinusoidal at a low frequency (ω_m) [25]

2. The circuit of figure below uses an AD532 temperature-to-current sensor instead of an ice bath as a temperature reference for an Iron-Constantan thermocouple. For $V_{SS} > 4V$, the dc current sourced by the AD532 IC is given by: $I(T) = (T + 273)10^{-6} A$. T is in °C. Assume the op-amp is ideal. $R_F = 9 k\Omega$, $R_1 = 1 k\Omega$, The thermoelectric sensitivities of the various materials involved in the circuit below are given as : $S_{Fe} = 18.5 \mu V/^{\circ}C$, $S_{Con} = -35.0 \mu V/^{\circ}C$, $S_{Cu} = 6.5 \mu V/^{\circ}C$, which may be assumed to be constant over the range of measurement. Assume all components of the electronic circuit and the copper wires to be at temperature T_A .

- (a) Derive a general algebraic expression for $V_0 = f(T_m, T_A, \text{ circuit parameters})$.
- (b) Find numerical values for R_C and V_2 that will make the expression of $V_0 = KT_m$ exactly, that is proportional to T_m and independent of T_A . [15]

[15]

(c) Find the numerical value of K. [15]