

Ogólnopolski Program Oceny Ryzyka Zachorowania na Nowotwory BadamyGeny.pl

Wynik Badania

Nazwisko i imię	Koperek Marta	Identyfikator:	1912022219829
Płeć:	Kobieta	Data urodzenia	1984-07-18
Rodzaj materiału:	Ślina	PESEL	84071801140
Data otrzymania materiału:	2019-12-10	Data wydania wyniku:	2020-02-27
Adres:	Konopczyńskiego 16 m.2	30-383	Kraków

Jakie geny zbadaliśmy?

		Liczba znanych		34	HNF1B	1
1	Nazwa	wariantów	Warianty chorobotwórcze	35	KIF1B	
Lp	genu	chorobotwórczych	znalezione u Ciebie	36	MAX	
		w bazach danych		37	MC1R	
1	ATM	1257	nie znaleziono	38	MEN1	2
2	BRCA1	3249	nie znaleziono	39	MET	
3	BRCA2	3717	nie znaleziono	40	MITF	
4	BRIP1	312	nie znaleziono	41	MLH1	1
5	CDH1	240	nie znaleziono	42	MLH3	
6	CHEK2	356	nie znaleziono	43	MRE11A	
7	NBN	245	nie znaleziono	44	MSH2	1
8	NF1	1317	nie znaleziono	45	MSH6	7
9	PALB2	604	nie znaleziono	46	MUTYH	1
10	PTEN	538	nie znaleziono	47	PIK3CA	1
11	RAD51C	141	nie znaleziono	48	PMS1	
12	RAD51D	97	nie znaleziono	49	PMS2	4
13	STK11	212	nie znaleziono	50	POLD1	
14	TP53	593	nie znaleziono	51	POLE	
15	AKT1	50	nie znaleziono	52	POT1	
16	APC	881	nie znaleziono	53	PRKAR1A	
17	ATP9B	135	nie znaleziono	54	PRSS1	
18	AXIN2	33	nie znaleziono	55	PTCH1	2
19	BARD1	188	nie znaleziono	56	RET	1
20	BMPR1A	150	nie znaleziono	57	SDHA	1
21	CDKN2A	182	nie znaleziono	58	SDHAF2	
22	CTNNA1	19	nie znaleziono	59	SDHB	1
23	CYP21A2	61	nie znaleziono	60	SDHC	
24	DIRC3	14	nie znaleziono	61	SDHD	
25	EPCAM	56	nie znaleziono	62	SMAD4	2
26	EXO1	56	nie znaleziono	63	TGFBR2	
27	FANCC	145	nie znaleziono	64	TMEM127	
28	FH	268	nie znaleziono	65	TSC1	2
29	FLCN	277	nie znaleziono	66	TSC2	4
30	GALNT12	27	nie znaleziono	67	VHL	3
31	GDNF	17	nie znaleziono	68	WT1	
32	GREM1	18	nie znaleziono	69	XRCC2	
33	HNF1A	107	nie znaleziono	70	XRCC3	

34	HNF1B	148	nie znaleziono	
35	KIF1B	34	nie znaleziono	
36	MAX	25	nie znaleziono	
37	MC1R	48	nie znaleziono	
38	MEN1	299	nie znaleziono	
39	MET	47	nie znaleziono	
40	MITF	50	nie znaleziono	
41	MLH1	1018	nie znaleziono	
42	MLH3	23	nie znaleziono	
43	MRE11A	17	nie znaleziono	
44	MSH2	1063	nie znaleziono	
45	MSH6	791	nie znaleziono	
46	MUTYH	190	nie znaleziono	
47	PIK3CA	133	nie znaleziono	
48	PMS1	18	nie znaleziono	
49	PMS2	402	nie znaleziono	
50	POLD1	16	nie znaleziono	
51	POLE	41	nie znaleziono	
52	POT1	24	nie znaleziono	
53	PRKAR1A	90	nie znaleziono	
54	PRSS1	64	nie znaleziono	
55	PTCH1	244	nie znaleziono	
56	RET	178	nie znaleziono	
57	SDHA	187	nie znaleziono	
58	SDHAF2	13	nie znaleziono	
59	SDHB	195	nie znaleziono	
60	SDHC	47	nie znaleziono	
61	SDHD	88	nie znaleziono	
62	SMAD4	229	nie znaleziono	
63	TGFBR2	87	nie znaleziono	
64	TMEM127	62	nie znaleziono	
65	TSC1	220	nie znaleziono	
66	TSC2	460	nie znaleziono	
67	VHL	319	nie znaleziono	
68	WT1	70	nie znaleziono	
69	XRCC2	72	nie znaleziono	
70	XRCC3	42	nie znaleziono	

Znalezione mutacje

W analizowanych genach <u>nie znaleziono</u> znanych wariantów patogennych lub potencjalnie patogennych, powiązanych ze zwiększonym ryzykiem zachorowania na nowotwory w dostępnych bazach danych.

Uwaga: do grupy wariantów patogennych nie należy częsty w Polskiej populacji wariant Ile157Thr (rs17879961, NM_007194: c.470T>C) w genie *CHEK*2, z tego też względu jego obecności w niniejszym badaniu <u>nie raportujemy.</u>

Ryzyko ocenione w oparciu o dane kliniczne

Nowotwór	Ryzyko zachorowania	Kryterium
Rak piersi	średnie	Brak cech świadczących o podwyższonym ryzyku.
Rak jajnika	średnie	Brak cech świadczących o podwyższonym ryzyku.
Rak jelita grubego	średnie	Brak cech świadczących o podwyższonym ryzyku.

Twoje ryzyko zachorowania na raka piersi zostało ocenione jako 12% (choruje co 8 kobieta).

Oznacza to, że na podstawie przekazanych nam danych medycznych i wyniku badań genetycznych nie znaleźliśmy u Ciebie zagrożenia większego niż przeciętne (populacyjne).

--

Twoje ryzyko zachorowania na raka jajnika zostało ocenione jako 1% (choruje co 100 kobieta).

Oznacza to, że na podstawie przekazanych nam danych medycznych i wyniku badań genetycznych nie znaleźliśmy u Ciebie zagrożenia większego niż przeciętne (populacyjne).

--

Twoje ryzyko zachorowania na raka jelita grubego zostało ocenione jako 6% (choruje co 16 osoba).

Oznacza to, że na podstawie przekazanych nam danych medycznych i wyniku badań genetycznych nie znaleźliśmy u Ciebie zagrożenia większego niż przeciętne (populacyjne).

--

Zadbaj o siebie i zrób wszystko, żeby nie zachorować lub wykryć chorobę na tyle wcześnie, żeby można ją było skutecznie wyleczyć.

Warsaw Genomics sp. z o.o. spółka komandytowa 01-682 Warszawa, ul. Kiwerska 33A NIP: 7010479232 REGON: 361337464 KRS: 0000554477 Podmiot leczniczy Nr Z-178028-20150909 tel. poradnia +48 880 257 108 tel. +48 22 65 80 180 email: info@badamygeny.pl S0034 35

Działania profilaktyczne Co możesz zrobić, żeby zmniejszyć ryzyko zachorowania?

Samobadanie piersi: wykonuj co miesiąc w 3-5 dniu cyklu i zgłoś lekarzowi, jeśli wyczujesz jakiekolwiek odmienności

Badanie piersi przez lekarza: wykonuj co 3 lata, a po skończeniu 40 r.ż. co 1 rok

Mammografia: wykonaj pierwszy raz w 50 roku życia, a następnie co 2 lata

--

USG dopochwowe: wykonaj badanie w pierwszym możliwym terminie i powtarzaj co 2 lata

--

Badanie kału na krew utajoną: wykonaj pierwszy raz w 50 roku życia, a następnie wykonuj co 1 rok

Kolonoskopia: wykonaj pierwszy raz w 50 roku życia, a następnie co 10 lat

--

Cytologia: wykonuj co 2 lata

Badanie ogólne krwi (morfologia): wykonuj co 1 rok

--

Nowotwory często powstają w wyniku nieprawidłowego stylu życia lub czynników środowiskowych. Aby zminimalizować ryzyko zachorowania, warto przestrzegać poniższych zaleceń:

Nie palisz. Doskonale!

Twoje BMI wynosi: 22.6 **Świetnie!** Utrzymuj prawidłową wagę! Otyłość zwiększa ryzyko zachorowania na nowotwory.

Ćwiczenia i ruch zmniejszają ryzyko zachorowania na nowotwory. **Wchodź po schodach!** Codziennie 8 pięter w górę!

Unikaj opalania! Przed wyjściem na słońce stosuj filtry anty-UV! Intensywne światło słoneczne zwiększa ryzyko występowania raka skóry.

Ograniczaj spożycie alkoholu! Nadmiar alkoholu sprzyja wielu chorobom, w tym również chorobom nowotworowym.

Masz pytania? Umów się na konsultację lekarską!

PORADNIA GENETYCZNA WARSAW GENOMICS Zapisy na konsultacje pod numerem +48 880 257 108 Adres: 00-359 Warszawa, ul. Mikołaja Kopernika 21 https://warsawgenomics.pl/index.php/poradnia

Warsaw Genomics sp. z o.o. spółka komandytowa 01-682 Warszawa, ul. Kiwerska 33A NIP: 7010479232 REGON: 361337464 KRS: 0000554477 Podmiot leczniczy Nr Z-178028-20150909 tel. poradnia +48 880 257 108 tel. +48 22 65 80 180 email: info@badamygeny.pl S0034 35

Zastosowana technologia

Badanie jest wykonywane przy użyciu sekwencjonowania nowej generacji (NGS), dzięki czemu uzyskujemy pełne sekwencje zleconych genów, nie ograniczając się do wybranych punktów w tych genach. Do oceny ryzyka zachorowania na nowotwory dziedziczne wykorzystywane są jedynie informacje odnoszące się do znalezionych wariantów genetycznych (substytucji, punktowych delecji i insercji), określonych jako **patogenne i potencjalnie patogenne w dostępnych bazach danych**. Stosowana metoda nie daje możliwości zidentyfikowania dużych delecji/insercji i rearanżacji badanych genów.

Ograniczenia metody

Wszystkie technologie sekwencjonowania mają swoje ograniczenia. Niniejsza analiza została wykonywana z wykorzystaniem sekwencjonowania nowej generacji (NGS) i miała na celu zbadanie regionów kodujących i splicingowych zleconych genów. Chociaż stosowane techniki sekwencjonowania oraz późniejsze analizy bioinformatyczne są ukierunkowane na ograniczenie znaczenia sekwencji pseudogenów, to jednak obecność wysoce homologicznych sekwencji genowych może nadal sporadycznie zakłócać zdolność identyfikacji patogennych alleli, jak i delecji/duplikacji. Wykonane analizy nie są przeznaczone do wykrywania pewnych typów zmian genomowych, jak translokacje, inwersje, mutacje dynamiczne (np. zwiększenie ilości powtórzeń trzynukleotydowych), zmian w regionach regulatorowych czy intronowych. Nie ma możliwości wykluczenia obecności mutacji w genach i rejonach innych, niż objęte niniejszym badaniem, a także zmian liczby kopii genu. W niniejszym raporcie przedstawiono informację na temat zmian w sekwencji genów zidentyfikowanych w oparciu o porównanie z aktualnymi sekwencjami referencyjnymi, zdeponowanymi w bazach danych NCBI Nucleotide i Ensembl. Test opracowano w *Warsaw Genomics* do celów klinicznych. Wszystkie otrzymywane wyniki badań są interpretowane i analizowane przez ekspertów naukowych i medycznych *Warsaw Genomics*.

Wynik autoryzowała dr med. Monika Kolanowska, diagnosta laboratoryjny

Badanie wykonały: dr med. Monika Kolanowska, dr med. Marta Kotlarek-Łysakowska oraz pod nadzorem diagnosty laboratoryjnego: dr Julia Staręga-Rosłan, mgr inż. Ewelina Użarowska.

Zespół diagnostów laboratoryjnych: dr med. Monika Kolanowska, dr med. Marta Kotlarek-Łysakowska

Zespół lekarzy, specjalistów genetyki klinicznej: dr med. Piotr Iwanowski, dr med. Paweł Szyld, lek. Natalia Braun-Walicka

Kierownik Programu BadamyGeny.pl: Prof. dr hab. med. Krystian Jażdżewski

Dokument opatrzony podpisem elektronicznym weryfikowanym certyfikatem kwalifikowanym KIR S.A. dr med. Monika Kolanowska, diagnosta laboratoryjny

Wykres drzewa rodziny stanowi integralną część wyniku badania i oceny ryzyka zachorowania na nowotwory. Rodowód generowany automatycznie na podstawie danych wpisanych do systemu przez Pacjenta.

badamygeny.pl www.badamygeny.pl info@badamygeny.pl tel.+48 880 257 108