Recommendation System

MovieLens Dataset

Exploratory Data Analysis

Users Data

No. of users of the different profession

No of users of different generation

No. of users of different age groups

Ratings Data

No. Of Movies :- 1682

Top 20 rated movies

Top 20 most viewed movies

Items Dataset

No. of items :- 100000

Number of movies in different genres

Number of movies in different languages

Model Explanation

Train Test Split

Train Data=60 %
Test Data=20%
Validation Data = 20%

Cadidate Generation

- ★ Content-based filtering: Uses similarity between items to recommend items similar to what the user likes.
- ★ Collaborative Filtering: Uses similarities between queries and items simultaneously to provide recommendations.

COLLABORATIVE FILTERING

Main key points :-

- Embedding Space
- Similarity (Cosine, Dot product and Euclidean Distance)

Higher the similarity the more likely it is to recommend.

Collaborative Filtering

Objective Function :- $\lim_{U \in \mathbb{R}^{m \times d}} \sum_{V \in \mathbb{R}^{n \times d}} (A_{ij} - \langle U_i, V_j \rangle)^2$.

Uean X d is the feature embedding matrix of the item. Embeddings are learned such that the product UV is a good approximation of A function used here is Mean Minimization of the objective function is mainly done by :-- Stochastic Gradient Descent, Weighted Average Least Square or Adam.

MODEL ARCHITECTURE WITHOUT BIAS

Evaluation And Output

Training Vs. Evaluation

metrics

type training validation

Output

Evaluation:

NDCG@K: 0.36639 Precision@K: 0.33193 Recall@K: 0.4252

Collaborative Filtering

Here we will mainly use I2 regularisation techniques to add bias to the model. $\mathbf{W}_{\mathbf{O}}$ is the hyperparameter that needs to be trained well.

Loss Function: The loss function used here is Mean Squared Loss

Minimization of the objective function is mainly done by :--Stochastic Gradient Descent, Weighted Average Least Square or Adam.

MODEL ARCHITECTURE WITH BIAS

Evaluation And Output

Training Vs. Evaluation

Output

Evaluation:

NDCG@K: 0.50328 Precision@K: 0.42238 Recall@K: 0.47983

MODEL ARCHITECTURE DEEP MATRIX FACTORISATION 15 **Loss Function**: The loss function used here is Mean Biased embedding and Squared Loss flattening User Embedding and flattening Dense 2 Concat Dense 1 **Dropout** Dropout Add Bias Activation **Learning Rate:** 0.01 Item **Embedding** Optimizer :- Adam Layer Input Biased embedding and Layer flattening

Evaluation And Output

Training Vs. Evaluation

type training validation

Output

Evaluation:

NDCG@K: 0.5873 Precision@K: 0.5635 Recall@K: 0.5810

Deep Neural Network Models

Softmax Model: treats the problem as a multiclass prediction problem in which:

- Input -- User Query
- Output-- Probability vector with size equal to the number of items in the corpus

Input:

- Dense Features
- Sparse Features

Unlike Matrix Factorisation we can also include side features.

<u>Demo Of</u> <u>Mechanism :-</u>

Main Catchpoint:-

The Neural Network passes the last layer through a softmax layer to get the output in terms of probability.

MODEL ARCHITECTURE NEURAL NETWORK

Evaluation And Output

Training Vs. Evaluation

Evaluation:

NDCG@K: 0.65893 Precision@K: 0.6235 Recall@K: 0.50758

Output

Thank You

What Is NDCG?

Discounted cumulative gain is a measure of ranking quality. In information retrieval, it is often used to measure effectiveness of web search engine algorithms or related applications.

Search result lists vary in length depending on the query. Comparing a search engine's performance from one query to the next cannot be consistently achieved using DCG alone, so the cumulative gain at each position for a chosen value of should be normalized across queries. This is done by sorting all **relevant** documents in the corpus by their relative relevance, producing the maximum possible DCG through position, also called Ideal DCG (IDCG) through that position.

$$DCG_n = \sum_{i=1}^{n} \frac{rel_i}{\log_2^{i+1}},$$

$$NDCG_n = \frac{DCG_n}{IDCG_n},$$