```
In [1]: import numpy as np
  import pandas as pd
  import statsmodels.api as sm
  import seaborn as sns
  from scipy.stats import linregress
  import matplotlib.pyplot as plt
```

Loading set

Feature engineering

```
In [3]: #Age Normoilization
        df['Age'] = df['Year_Data_Collected'] - df['Year']
        print('Size of data is ',len(df),'rows and ',len(df.columns), 'columns :','\
        df.head()
       Size of data is 33137 rows and 7 columns :
        ['Price', 'Car Model', 'Year', 'Mileage', 'Transmission', 'Year Data Collec
       ted', 'Age']
Out[3]:
               Price Car_Model Year Mileage Transmission Year_Data_Collected A
                        Jaguar F-
                                 2022
        0 1999900.0
                                            0.0
                                                    Automatic
                                                                              2022
                        Pace SVR
                        Jaguar F-
                          Type R
        1 1999900.0
                                 2022
                                            0.0
                                                    Automatic
                                                                              2022
                            AWD
                      Convertible
                        Jaguar F-
        2 1989276.0
                                 2022
                                            0.0
                                                    Automatic
                                                                              2022
                        Pace SVR
                      Land Rover
                          Range
        3 1908634.0
                           Rover 2022
                                            0.0
                                                    Automatic
                                                                              2022
                       Sport HSE
                           TDV6
                         Audi 08
        4 1899995.0
                          55TFSI 2022
                                            0.0
                                                    Automatic
                                                                              2022
                         Quattro
```

The dataset is an aggregated ecommerce sales of cars collected over a span of 3 years

Mileage Regression

```
In [93]: # Extracting Age and Mileage for regression analysis
age_miles = df[df['Age']<20].groupby("Age")['Mileage'].aggregate(['mean','st</pre>
```

```
# Regression analysis for Average Miles vs Age
X = age miles['Age']
y = age miles['Average Miles']
# Add constant for intercept
X = sm.add constant(X)
model = sm.OLS(y, X).fit()
# Compute regression variables
result = linregress(age_miles['Age'], age_miles['Average_Miles'])
slope = result.slope
intercept = result.intercept
r value = result.rvalue
p value = result.pvalue
std err = result.stderr
# Scatter plot of actual data & regression line
sns.scatterplot(age miles, x = age miles['Age'], y = age miles['Average Mile
sns.lineplot(age miles,x = age miles['Age'],y = (slope*age miles['Age']+inte
# Labels and title
plt.xlabel("Age (Years)")
plt.ylabel("Mileage (Km)")
plt.title("Mileage vs. Age of Vehicle")
plt.legend()
plt.grid()
plt.show()
# Print regression results
print(f"Mileage Regression equation: y = {slope:.2f}x + {intercept:.2f}")
print(f"R^2 = \{r\_value**2:.3f\}",'|', f"P-value = \{p\_value:.3f\}",'|', f"Standart = \{p\_value:.3f\}",
print(model.summary())
```

Mileage vs. Age_of_Vehicle


```
Mileage Regression equation: y = 9640.15x + 29549.09

R^2 = 0.921 \mid P\text{-value} = 0.000 \mid Standard Error = 666.029 \mid Intercept = 29549.091 \mid Slope = 9640.152 \mid
```

OLS Regression Results

	=======	========	=====	=====	========	========	
== Dep. Varia 21	ble:	Average_Mi	les	R-squ	0.9		
Model:		0LS		Adj. I	0.9		
16 Method:		Least Squares		F-sta	20		
9.5 Date:		Mon, 16 Jun 2025		Proh	2.34e-		
11							
Time: 35		16:54:31		Log-L:	-222.		
No. Observations:		20		AIC:	44		
Df Residuals:		18		BIC:			45
0.7 Df Model:			1				
Covariance		nonrob	ust				
==		=========		======			
5]	coef	std err		t	P> t	[0.025	0.97
const 04	2.955e+04	7401.619	3	.992	0.001	1.4e+04	4.51e+
Age 04	9640.1524	666.029	14	.474	0.000	8240.877	1.1e+
=======							======
== Omnibus: 00			154	Durbin-Watson:			0.3
Prob(Omnibus):		0.125		Jarque-Bera (JB):			2.1
99 Skew:			556	Prob(JB):		0.3
33 Kurtosis:	irtosis: 1.816		816	Cond. No.			2
1.5	========	=========		======	========	.=======	=======
==							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [36]: age_price.keys()
```

Out[36]: Index(['Age', 'Average_Price', 'St_Dev_Price', 'Count'], dtype='object')

```
In [ ]: # Extracting Age and Price for regression analysis
        age_price = df[df['Age']<40].groupby("Age")['Price'].aggregate(['mean','std'</pre>
        # Regression analysis for Average Miles vs Age
        X = age price['Age']
        y = age price['Average Price']
        # Add constant for intercept
        X = sm.add constant(X)
        model = sm.OLS(y, X).fit()
        # Compute regression variables
        result = linregress(age price['Age'], age price['Average Price'])
        slope = result.slope
        intercept = result.intercept
        r value = result.rvalue
        p_value = result.pvalue
        std_err = result.stderr
        # Scatter plot of actual data & regression line
        sns.scatterplot(age price, x = age price['Age'], y = age price['Average Price]
        sns.lineplot(age price,x = age price['Age'],y = (slope*age price['Age']+inte
        # Labels and title
        plt.xlabel("Age (Years)")
        plt.ylabel("Price (R)")
        plt.title("Price vs. Age of Vehicle")
        plt.legend()
        plt.grid()
        plt.show()
        # Print regression results
        print(f"Price Regression Eqaution: y = {slope:.2f}x + {intercept:.2f}")
        print(f''R^2 = \{r\_value^{**2}:.3f\}'', '|', f''P-value = \{p\_value:.3f\}'', '|', f''Standa''
        print(model.summary())
```



```
Price Regression Eqaution: y = 3888.22x + 208212.32

R^2 = 0.061 \mid P\text{-value} = 0.126 \mid Standard Error = 2482.859 \mid Intercept = 20821

2.325 \mid Slope = 3888.223 \mid
```

OLS Regression Results

=====		=====		====				=======
==			_		_			
	Variable:	ŀ	Average_Pr	ice	R-squa	ared:		0.0
Model	61		0LS	۸di [Adj. R-squared:			
36			ULS		Auj. r	0.0		
Method:		I	Least Squares		F-stat	2.4		
52	•							
Date:			025	Prob	(F-statisti	c):	0.1	
26	26							
Time:			:44	Log-Li	ikelihood:		-540.	
04								
	No. Observations:			40	AIC:			108
4.			38		BIC:			108
7.			20	DIC.			100	
Df Mo	del:			1				
	Covariance Type: nonrobust		ust					
=====		=====		====				=======
==								
	CO	ef	std err		t	P> t	[0.025	0.97
5]								
	2.082e+	05 5	5 63e+04		3 701	0 001	9.43e+04	3.22e+
05	2100201		71056.01		31701	0.001	31 130 101	312201
Age	3888.22	27 2	2482.859		1.566	0.126	-1138.062	8914.5
08								
=====	=========			====			=======	=======
==			_					
0mnib	us:		8.0	604	Durbir	n-Watson:		2.5
12 Deah /	Omnibus).		0. /	014	70,000.0	. Dawa (1D)	_	7 5
	Prob(Omnibus): 0.014		Jarque	e-Bera (JB)	:	7.5		
Skew:		0.986		Prob(3	0.02			
35			01.			, , , ,		0.02
Kurto	sis:		3.	783	Cond.	No.		4
4.5								
=====	=========	=====		====			=======	=======
==								

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is corre ctly specified.

References

https://ploomber.io/blog/jupyter-notebook-convert/

https://www.statology.org/how-to-perform-simple-linear-regression-with-statsmodels/

https://ukzn.ci.hr/applicant/index.php? controller=Listings&method=view&listingid=4e1bd2bb-8e74-4c29-9408-bc5fe448c11d

This notebook was converted with convert.ploomber.io