Calculations for the Gambler's Ruin Problem

e \(\forall^3\)

K

We consider a one-dimensional random walk with states 30,1,2,..., N3, with states 0 and N as absorbing states. He transition probability matrix

States	. 0	١	2			,	N-1	N
0	/ 1	0	0	•	,	,	0	0\
	9	0	P	A	4	•	0	0
	\circ	a	0		•	•	0	0
2		L	٥				Đ	0
	*	•	o				9	0/
.	٧	*	39				p	0/
N-1	0	0	0	r	٠	٥	0	P
N	0	0	0	,	d	,	0	1/

We solve two problems. The first is about the probability we are rulned. We assume $p \neq q$.

Define $u_i = P_i \times_n \text{ reaches 0 before } N / X_0 = i$ Clearly $u_0 = 1$ and $u_N = 0$

First step analysis tells us Uk = PUK+1 + 2Uk-1... 1

We will solve equation 1) with conditions $u_0=1$ and $u_N=0$.

Define $d_k = u_k - u_{k-1}$ ("d" for "difference").

Then equation 1 can be re-written as

Equation (2) tells us that $d_2 = \begin{pmatrix} 2 \\ p \end{pmatrix} d_1$, $d_3 = \begin{pmatrix} 2 \\ p \end{pmatrix} d_2 = \begin{pmatrix} 2 \\ p \end{pmatrix}^2 d_1$, ..., $d_N = \begin{pmatrix} 2 \\ p \end{pmatrix}^2 d_1$

p.2

So, in general, we have $d_k = (4)^{k-1} d_1 \dots (3)$

We need to relate ux with the d's:

Notice
$$u_{k} - u_{k-1}$$
 d_{k}
 $+ u_{k-1} - u_{k-2}$ $+ d_{k-1}$
 $+ u_{1} - u_{0}$ $+ d_{1}$
 $u_{k} - u_{0}$ $u_{k} - u_{0}$

Hence
$$u_k = 1 + \sum_{j=1}^{k} d_j$$

$$= 1 + d_i \sum_{j=1}^{k} (q_j)^{k} \text{ by equation } (3)$$

We are nearly finished, but we need to get rid of d_1 . Remember that $u_N = 0$, so

$$0 = u_{N} = 1 + d_{1} \sum_{j=1}^{N} \binom{q_{j}^{k-1}}{q_{j}^{k}}$$

$$\Rightarrow d_{1} = -\frac{1}{N} \binom{q_{j}^{k}}{q_{j}^{k-1}}$$

We can now express ux in terms of P,q, N only:

$$U_{k} = 1 - \frac{1 - (a/p)^{k}}{1 - (a/p)^{N}}$$

p.B

The second problem is about the expected time the walk lasts.

Define $V_i = \{i \in E[T] \mid X_o = i\}$, where T is the absorbing time. Clearly $V_o = 0$, and $V_N = 0$.

First step analysis tells us $V_k = 1 + pV_{k+1} + qV_{k-1} \dots \oplus 1$ which is very similar to equation O.

Define $d_k = V_k - V_{k-1}$ ("d" for difference") and equation (a) can be re-written as

pdk+1 - 2dk = -1 ... (5)

which is very similar to equation 2.

The solution to equation (5) (the derivation of which is non-examinable) is $d_k = \binom{q}{p}^{k-1} + \binom{1}{2-p} \cdot ... \cdot \binom{q}{p} \cdot ... \cdot \binom{q}{p}$

which is similar to equation 3, but with an additional constant.

We need to relate the Vz with the d's.

Notice $V_k - V_{k-1}$ $+ V_{k-1} - V_{k-2}$ $+ V_1 - V_2$ $+ V_1 - V_3$ $+ V_1 - V_3$ $V_2 - V_3$ $V_2 - V_3$ V_3 (Since $V_0 = 0$) V_k $= \begin{cases} \sum_{i=1}^{k} d_i \\ \sum_{i=1}^{k} d_i \end{cases}$

p3

Hence
$$V_{R} = \sum_{j=1}^{k} (\frac{C}{4}(\frac{C}{4})^{j-1} + \frac{1}{2-p})$$

$$= C = (1 - \frac{1}{4})^{k} + \frac{k}{2-p}$$

$$0 = V_N = (\frac{1}{4}) + \frac{N}{1-4}$$

$$=) \ \ (= -\frac{N}{2-P} \times \frac{(1-2)}{(1-(2)^{N})}$$

We can now express v_k in terms of p, q and N only:

$$V_{k} = \frac{k}{2-p} - \frac{N}{2-p} \frac{(1-\frac{2}{p})}{(1-\frac{2}{p})} \cdot \frac{(1-\frac{2}{p})}{(1-\frac{2}{p})}$$

and it we define $\theta = \%$ this simplifies to

$$V_{k} = \frac{1}{p(1-\theta)} \left[N \cdot \frac{(1-\theta^{k})}{(1-\theta^{N})} - k \right] a.$$

p4