互感的去耦等效 8-3

计算含有耦合电感电路有两种方法:

- ① 直接对含有耦合电感的电路采用支路电流法或回路法。
- ② 将含有耦合电感的电路通过去耦等效, 化成无耦合电感的电路。

1. 耦合电感串联的去耦等效

①顺接串联

②反接串联

互感的测量方法:

顺接一次,反接一次,就可以测出互感:
$$M = \frac{L_{\parallel} - L_{\parallel}}{4}$$

在正弦激励下:

(a) 顺接

$$\dot{U} = (R_1 + R_2)\dot{I} + j\omega(L_1 + L_2 + 2M)\dot{I}$$

(b) 反接

$$\dot{U} = (R_1 + R_2)\dot{I} + j\omega(L_1 + L_2 - 2M)\dot{I}$$

2. 耦合电感并联的去耦等效

①同侧并联

$$u = L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} + M \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

$$u = L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} + M \frac{\mathrm{d}i_1}{\mathrm{d}t}$$

$$i = i_1 + i_2$$

解得
$$u$$
, i 的关系 $u = \frac{(L_1L_2 - M^2)}{L_1 + L_2 - 2M} \frac{\mathrm{d}i}{\mathrm{d}t}$

等效电感: $L_{eq} = \frac{(L_1L_2 - M^2)}{L_1 + L_2 - 2M} \geqslant 0$

②异侧并联

$$u = L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} - M \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

$$u = L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} - M \frac{\mathrm{d}i_1}{\mathrm{d}t}$$

$$i = i_1 + i_2$$

解得
$$u$$
, i 的关系 $u = \frac{(L_1L_2 - M^2)}{L_1 + L_2 + 2M} \frac{\mathrm{d}i}{\mathrm{d}t}$

等效电感:
$$L_{eq} = \frac{(L_1L_2 - M^2)}{L_1 + L_2 + 2M} \geqslant 0$$

3. 耦合电感的T型等效

①同名端为共端的T型去耦等效

$$\dot{U}_{13} = j\omega L_1 \dot{I}_1 + j\omega M \dot{I}_2 = j\omega (L_1 - M) \dot{I}_1 + j\omega M \dot{I}$$

$$\dot{U}_{23} = j\omega L_2 \dot{I}_2 + j\omega M \dot{I}_1 = j\omega (L_2 - M) \dot{I}_2 + j\omega M \dot{I}$$

$$\dot{I} = \dot{I}_1 + \dot{I}_2$$

② 异名端为共端的T型去耦等效

$$\dot{U}_{13} = j\omega L_1 \dot{I}_1 - j\omega M \dot{I}_2 = j\omega (L_1 + M) \dot{I}_1 - j\omega M \dot{I}$$

$$\dot{U}_{23} = j\omega L_2 \dot{I}_2 - j\omega M \dot{I}_1 = j\omega (L_2 + M) \dot{I}_2 - j\omega M \dot{I}$$

$$\dot{I} = \dot{I}_1 + \dot{I}_2$$

例题1:

4. 受控源等效电路

$$\dot{U}_1 = j\omega L_1 \dot{I}_1 + j\omega M \dot{I}_2$$
$$\dot{U}_2 = j\omega L_2 \dot{I}_2 + j\omega M \dot{I}_1$$