

XXI Olimpiada Iberoamericana de Matemática Universitaria 2018

1. (3 puntos). Demostrar que la cantidad de soluciones en enteros positivos de la ecuación (a+b)(a+c)=abc es finita.

Solución Empezamos por reescribir la ecuación como

$$bc = a(bc - a - b - c).$$

Si denotamos d := bc - a - b - c > 0, entonces podemos reescribir esto como

$$a+b+c+d=ad=bc$$
.

Como la ecuación es simétrica podemos suponer sin pérdida de generalidad que $d = \min\{a, b, c, d\}$, de manera que $a = bc/d \ge \max\{b, c\}$, es decir, $a = \max\{a, b, c, d\}$. Es claro que $d \ne 1$, pues b+c>0, por lo que $d \ge 2$. Tenemos también que $ad = a+b+c+d \le 4a$, por lo que $d \le 4$. Reescribimos la ecuación como b+c+d=a(d-1) y obtenemos que

$$a = \frac{b+c+d}{d-1}$$
, $bc = a+b+c+d = \frac{b+c+d}{d-1} + (b+c+d) = \frac{d(b+c+d)}{d-1}$.

Multiplicando la última ecuación por $(d-1)^2$ y reordenando obtenemos que

$$((d-1)b-d)((d-1)c-d) = d^3.$$

Para $2 \le d \le 4$ esta ecuación admite una cantidad finita de soluciones para $\{b, c\}$, de donde se concluye que la cantidad de soluciones es finita.

Criterio de calificación del problema 1

- a) Llevar a cabo factorizaciones útiles (1 punto).
- b) Obtener cotas (1 punto).
- c) Concluir correctamente (1 punto).

2. (3 puntos). Sea G un grafo conexo con n vértices y P un camino en G de longitud k, suponga que G no contiene un camino de longitud mayor a k. Sea $Y = V(G) \setminus V(P)$ y sea $v \in Y$ un vértice adyacente a s vértices de P con $s \ge 1$, y suponga que el camino más largo usando solo los vértices de Y y empezando en v tiene longitud p. Pruebe que $s + p \le k/2$.

Nota: Un camino de longitud k en un grafo es una sucesión de k+1 vértices distintos v_0, v_1, \ldots, v_k tales que para cada $i=1, 2, \ldots, k$, los vértices v_{i-1} y v_i son adyacentes.

Solución Sean v_0, v_1, \ldots, v_k los vértices de P en orden, y sean $v_{i_1}, v_{i_2}, \ldots v_{i_s}$ los vértices de P conectados con v. Nótese que v no puede estar conectado con dos vértices consecutivos de P, v_i, v_{i+1} ya que en este caso se tendría que $v_1, \ldots, v_i, v, v_{i+1}, \ldots, v_k$ sería un camino de longitud k+1. Por lo tanto se tiene que $i_j+2 \leq i_{j+1}$ y por tanto $i_s \geq i_1+2s-2$ (*) Sea Q un camino en Y de longitud p con extremos v y u, entonces el camino que empieza en u conectado con $v_{i_s}, v_{i_s-1}, \ldots, v_0$ tiene longitud $p+1+i_s$ y el camino desde u formado al conectar Q con $v_{i_1}, v_{i_1+1}, \ldots, v_k$ tiene longitud $p+k-i_1+1$, como G no contiene caminos de longitud mayor a k, tenemos que $p+i_s+1 \leq k$ y $p+k-i_1+1 \leq k$, equivalentemente $i_s \leq k-p-1$ y $i_1 \geq p+1$. Combinando con (*) tenemos que $k-p-1 \geq i_s \geq i_1+2s-2 \geq p+2s-1$ y por lo tanto $k \geq 2s+2p$.

Criterio de calificación del problema 2

- a) Establecer la notación adecuada para vértices de P y vértices adyacentes (1 punto).
- b) Observar que v no puede conectar con dos vértices consecutivos de P (1 punto).
- c) Establecer las comparaciones (desigualdades) que den el resultado y concluir (1 punto).
- 3. (4 puntos). Determinar todos los vectores $u \in \mathbf{Z}^2$ para los que la recta $u \cdot v = 1$ interseca a algún círculo ||v|| = r en dos puntos con coordenadas enteras.

Solución Sea u=(a,b). Para que la recta contenga puntos enteros necesitamos que a,b sean coprimos. Por lo tanto deben existir (c,d) tales que ac+bd=1, y los puntos enteros de la recta $u \cdot v=1$ se pueden describir también por la parametrización v=(c+bm,d-am) con $m \in \mathbf{Z}$. Si esta recta interseca a un círculo en dos puntos tenemos que

$$(c+bm)^2 + (d-am)^2 = (c+bn)^2 + (d-an)^2,$$

para algún par de enteros distintos m,n. Luego de reacomodar y dividir por m-n obtenemos que

$$(a^2 + b^2)(m+n) = 2(ad - bc).$$

Tenemos que $(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2=1+(ad-bc)^2$, es decir, a^2+b^2 y ad-bc son coprimos. Por lo tanto a^2+b^2 divide a 2. En este caso es claro que existen soluciones a la ecuación anterior y por lo tanto círculos cuya intersección con la recta consiste en dos puntos con coordenadas enteras.

Concluimos que los posibles vectores u son $\pm\{(1,0),(0,1),(1,1),(1,-1)\}$.

Criterio de calificación del problema 3

- a) Establecer que las coordenadas de u deben ser primos relativos (1 punto).
- b) Obtener parametrización de los puntos de la recta (1 punto).
- c) Obtener la ecuación de los dos puntos con coordenadas enteras distintas (1 punto).
- d) Obtener el resultado (1 punto.)
- 4. (5 puntos). Determinar todas las funciones $f:(0,1)\to(0,+\infty)$ en $C^2(0,1)$, tales que todas las rectas tangentes a la curva intersecan a los semiejes positivos y determinan segmentos de longitud 1.

Solución La ecuación de la recta tangente en $(x_0, f(x_0))$ es

$$y - f(x_0) = f'(x_0)(x - x_0).$$

De esto se sigue que las intersecciones con los ejes son

$$\left(x_0 - \frac{f(x_0)}{f'(x_0)}, 0\right), \quad (0, f(x_0) - x_0 f'(x_0)).$$

Sea $\theta(x) \in (0, \pi/2)$ el ángulo entre la recta tangente por el punto (x, f(x)) y el eje x, de manera que

$$\cos \theta = x - \frac{f(x)}{f'(x)} = \frac{xf'(x) - f(x)}{f'(x)}, \quad \sin \theta = f(x) - xf'(x).$$

Esto implica que $f'(x) = -\tan \theta$, de manera que $\theta = -\arctan(f'(x)) \in C^1(0,1)$. Las ecuaciones se convierten en

$$x \sin \theta + f(x) \cos \theta = \sin \theta \cos \theta = \frac{1}{2} \sin(2\theta).$$

Derivando con respecto a x y usando que $f'(x) = -\tan \theta$ se obtiene que

$$(x\cos\theta - f(x)\sin\theta)\frac{d\theta}{dx} = \cos(2\theta)\frac{d\theta}{dx}.$$

Supongamos por el momento que $d\theta/dx \neq 0$ en un intervalo maximal $(a, b) \subseteq (0, 1)$. En este caso se tiene el sistema de ecuaciones

$$x \sin \theta + f(x) \cos \theta = \frac{1}{2} \sin(2\theta), \quad x \cos \theta - f(x) \sin \theta = \cos(2\theta).$$

Resolviendo el sistema se obtiene que

$$x = \frac{1}{2}\sin(2\theta)\sin\theta + \cos(2\theta)\cos\theta = \cos^3\theta, \quad f(x) = \frac{1}{2}\sin(2\theta)\cos\theta - \cos(2\theta)\sin\theta = \sin^3\theta,$$

es decir $f(x) = (1 - x^{2/3})^{3/2}$ para $x \in (a, b)$. Si $a \neq 0$ entonces $d\theta/dx = 0$ para x = a y si $b \neq 1$ entonces $d\theta/dx = 0$ para x = b. Sin embargo, para $x \in (a, b)$ se tiene que

$$\frac{d\theta}{dx} = \frac{-f''(x)}{1 + (f'(x))^2}.$$

La función $(1-x^{2/3})^{3/2}$ es estrictamente convexa en (0,1), es decir $[(1-x^{2/3})^{3/2}]'' \ge \epsilon_K > 0$ para cualquier compacto $K \subseteq (0,1)$. De esto se concluye que el intervalo maximal debe ser (0,1), y así la curva debe ser la astroide $f(x) = (1-x^{2/3})^{3/2}$ para todo $x \in (0,1)$.

Finalmente, si $d\theta/dx = 0$ para algún punto, entonces $d\theta/dx \equiv 0$ para todo $x \in (0,1)$. Por lo tanto $f''(x) = -\sec^2\theta d\theta/dx = 0$, es decir f debe ser una función lineal. En tal caso, cualquier función de la forma

$$f(x) = -\tan\theta(x - \cos\theta),$$

satisface las condiciones del problema.

Criterio de calificación del problema 4

- a) Encontrar la ecuación de la tangente y las intersecciones con los ejes (1 punto).
- b) Obtener una formulación matemática de que la longitud del segmento es 1 (1 punto).
- c) Obtener la ecuación de la astroide (2 puntos).
- d) Obtener las rectas (1 punto.)
- 5. (6 puntos). Sea p un número primo. Demostrar que existen infinitos enteros positivos n tales que el sistema de ecuaciones

$$a_2 = 4a_1$$
, $a_1 + a_3 = 4a_2$, ..., $a_{n-2} + a_n = 4a_{n-1}$, $a_{n-1} = 4a_n$,

sobre $\mathbb{Z}/p\mathbb{Z}$, admite al menos una solución con a_1, \ldots, a_n en $\mathbb{Z}/p\mathbb{Z}$, no todos nulos.

Solución Sea $p_n(x) = \det(xI_n - M_n) \in \mathbf{Z}[x]$ el polinomio característico de la matriz (casicirculante)

$$M_n = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 1 & 0 & 1 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix}.$$

La existencia de una solución no nula al sistema de ecuaciones, sobre $\mathbf{Z}/p\mathbf{Z}$, es equivalente a que $p_n(k) \in \mathbf{Z}$ sea divisible por p. Expandiendo el determinante por la primera columna obtenemos que

$$p_n(x) = xp_{n-1}(x) - p_{n-2}(x),$$

con $p_1(x) = x$ y $p_2(x) = x^2 - 1$. Sea $q_n = p_n(k)$, para algún k conveniente, de manera que la sucesión $\{q_n\}$ satisface la recurrencia

$$q_n - kq_{n-1} + q_{n-2} = 0, (1)$$

para $n \geq 3$, con $q_1 = k$ y $q_2 = k^2 - 1$. Es claro que la sucesión de residuos (módulo p) es pre-periódica (es decir, periódica a partir de cierto momento), pues deben haber dos pares congruentes en el conjunto $\{(q_1,q_2),(q_2,q_3),\ldots,(q_{p^2+1},q_{p^2+2})\}$. Como el coeficiente de q_{n-2} en (1) es 1, entonces la sucesión es "reversible". Esto implica que la sucesión debe ser periódica (no solo pre-periódica) y que tiene una extensión a ${\bf Z}$ dada por la recurrencia. La extensión también es periódica. Por lo tanto es suficiente demostrar que existe $n \in {\bf Z}$ tal que q_n es divisible por p. Tenemos que $q_0 = 1$ y $q_{-1} = 0$, y así concluye el problema.

Criterio de calificación del problema 5

- a) Describir la matriz del sistema de ecuaciones y ya sea el polinomio característico o bien el determinante del sistema (2 puntos).
- b) Encontrar la ecuación del determinante de forma iterativa (2 puntos).
- c) Observar que de la ecuación iterativa se puede obtener una iteración que describa $p_n(k)$ (para algún valor adecuado de k), obtener la periodicidad y la reversibilidad de la recurrencia, para que se pueda partir de cero y concluir (2 puntos).
- 6. (7 puntos). Considere la sucesión de Fibonacci $\{F_n\}$ definida por $F_1 = F_2 = 1$ y $F_n + F_{n+1} = F_{n+2}$ para $n \ge 1$. Sea p un polinomio trigonométrico finito de la forma

$$p(x) = \sum_{n=1}^{\infty} a_n \cos(2\pi F_{2n} x),$$

con $a_i \in \mathbb{C}$. Demostrar que si $\int_0^1 |p(x)|^2 dx \le 1$, entonces $\int_0^1 |p(x)|^4 dx < 3$.

Solución Empezamos por reescribir el polinomio trigonométrico como

$$p(x) = \sum_{n \in \mathbf{Z}} b_n e^{2\pi i n x},$$

con $b_n = a_N/2$ si $n = \pm F_{2N}$ para algún $N \ge 1$ y $b_n = 0$ en cualquier otro caso. Usando la ortonormalidad del conjunto $\{e^{2\pi i nx}\}$ obtenemos que

$$\int_0^1 |p(x)|^2 dx = \sum_{n \in \mathbf{Z}} |b_n|^2, \quad \int_0^1 |p(x)|^4 dx = \sum_{j,k,l,m \in \mathbf{Z}} b_j b_k \overline{b_l b_m} \delta_{j+k-l-m}.$$

Los términos que contribuyen a la segunda deben satisfacer que $j = \pm F_{2J}$, $k = \pm F_{2K}$, $l = \pm F_{2L}$ y $m = \pm F_{2M}$, con j + k - l - m = 0. Sin embargo, no hay tres términos

(pares) de la sucesión de Fibonacci cuya suma sea igual a otro término de la sucesión. Esto implica que la igualdad j + k - l - m = 0 debe darse en pares, es decir, se debe tener alguno de los casos

$$A:=\{j+k=l+m=0\},\ B:=\{j-l=m-k=0\},\ C:=\{j-m=l-k=0\}.$$

Tenemos que

$$A \cap B = \{(n, -n, n, -n)\}, \ B \cap C = \{(n, n, n, n)\}, \ C \cap A = \{(n, -n, -n, n)\}, \ A \cap B \cap C = \{(0, 0, 0, 0)\}.$$

Del principio de inclusión-exclusión y la paridad de los coeficientes $\{b_n\}$ se concluye que

$$\begin{split} \sum_{j,k,l,m\in\mathbf{Z}} b_j b_k \overline{b_l b_m} \delta_{j+k-l-m} &= \sum_{j,l\in\mathbf{Z}} b_j b_{-j} \overline{b_l b_{-l}} + \sum_{j,k\in\mathbf{Z}} b_j b_k \overline{b_j b_k} + \sum_{j,k\in\mathbf{Z}} b_j b_k \overline{b_k b_j} \\ &- \sum_{n\in\mathbf{Z}} b_n b_{-n} \overline{b_n b_{-n}} - \sum_{n\in\mathbf{Z}} b_n b_n \overline{b_n b_n} - \sum_{n\in\mathbf{Z}} b_n b_{-n} \overline{b_{-n} b_n} \\ &= \biggl| \sum_{n\in\mathbf{Z}} b_n^2 \biggr|^2 + 2 \biggl(\sum_{n\in\mathbf{Z}} |b_n|^2 \biggr)^2 - 3 \sum_{n\in\mathbf{Z}} |b_n|^4 < 3 \biggl(\sum_{n\in\mathbf{Z}} |b_n|^2 \biggr)^2 \leq 3. \end{split}$$

Criterio de calificación del problema 6

- a) Escribir la serie de Fourier compleja (en términos de la exponencial) (1 punto).
- b) Usar la ortogonalidad para obtener la igualdad de los coeficientes que corresponden (2 puntos).
- c) Usar propiedades de la sucesión de Fibonacci para establecer las igualdades por pares (2 puntos).
- d) Concluir (Ecuación de las paridades de los coeficientes para obtener la cota) (2 puntos.)
- 7. (7 puntos). Sea p(x) un polinomio con coeficientes reales tal que

$$grado(p) \le 2018$$
, y $|p(x)| \le \frac{1}{|x - \sqrt{3}|}$ para $x \in [-2, 2]$.

Probar que

$$\left| p(\sqrt{3}) \right| \le 2019.$$

Solución Primero construimos un polinomio de referencia r(x) que satisface las condiciones y que $r(\sqrt{3}) = 2019$.

Denotamos por $T_n(x)$ al n-ésimo polinomio de Chebyshev de primer tipo definido por $T_n(\cos t) = \cos nt$. Sea

$$r(x) = \frac{T_{2019}(x/2)}{x - \sqrt{3}}.$$

Nótese que

$$T_{2019}(\sqrt{3}/2) = T_{2019}(\cos\frac{\pi}{6}) = \cos\frac{2019\pi}{6} = 0$$

por lo que r es de hecho un polinomio. Además,

$$r(\sqrt{3}) = \lim_{x \to \sqrt{3}} \frac{T_{2019}(x/2)}{x - \sqrt{3}} = \lim_{t \to \frac{\pi}{6}} \frac{T_{2019}(\cos t)}{2\cos t - \sqrt{3}} = \lim_{t \to \frac{\pi}{6}} \frac{\cos 2019t}{2\cos t - \sqrt{3}} = \frac{\sin 2019\frac{\pi}{6}}{2\sin\frac{\pi}{6}} = 2019.$$

Supongamos que la concluisión es falsa, sin pérdida de generalidad y, $p(\sqrt{3}) > 2019$. Consideremos los puntos

$$\left\{2 = x_0 < x_1 < \dots < x_{2019} = 2\right\} = \left\{2\cos\frac{i}{2019} : 0 \le i \le 2019\right\} \cup \left\{\sqrt{3}\right\}.$$

Para $x=2\cos\frac{i}{2019}$ tenemos que $|r(x)|=\frac{1}{|x-\sqrt{3}|}>f(x)$; para $x=\sqrt{3}$ tenemos p(x)>|r(x)|.

Tomemos $\varepsilon > 0$ pequeño, y consideremos el polinomio

$$f(x) = r(x) - (1 - \varepsilon)p(x).$$

Si ε es suficientemente pequeño entonces a lo largo de la sucesión $x_0, x_1, \dots, x_{2019}$ el signo de f es alternante. Pero esto es una contradicción porque grado $(f) \le 2018$.

Criterio de calificación del problema 7

- a) Observar que existe un polinomio de referencia r(x) (1 punto).
- b) Encontrar explícitamente el polinomio de referencia que alcanza $r(\sqrt{3}) = 2019$ (3 puntos).
- c) Usar el polinomio de referencia para acotar el valor en $\sqrt{3}$ de cualquier otro polinomio que satisfaga las condiciones (3 punto).