BIOESTATÍSTICA

M.I. Eng. Biomédica

2015-2016

Aula Teórica 10

• Exemplo:

- Numa amostra de 10000 mulheres americanas, com idades compreendidas entre os 50 e os 54 anos, 400 delas cujas mães tinham tido cancro da mama apresentavam elas próprias cancro da mama.
- Sabendo que a prevalência de cancro da mama é de 2%
 qual a relevância da prevalência de cancro da mama
 quando existem casos familiares prévios?

- Exemplo:
 - Outra forma de colocar a questão é sob a forma de hipóteses:

$$\begin{cases} H_0: & p = 0,02 = p_0 \\ H_1: & p \neq 0.02 \end{cases}$$

- O teste é então efectuado à proporção.
 - □ Assumindo uma aproximação à distribuição normal (o que é razoável, dado que $np_0q_0 \ge 5$)

$$\hat{p} \sim N\left(p, \frac{p_0 q_0}{n}\right)$$

Mas, sob H_o

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0 / n}} \sim N(0, 1)$$

- O teste é então:
 - Determinar z;
 - Se z < $z_{\alpha/2}$ ou z > $z_{1-\alpha/2}$ rejeita-se H_0 ;
 - □ Se $z_{\alpha/2} \le z \le z_{1-\alpha/2}$ não se rejeita H_0 ;

• Nota: o teste é válido se $np_0q_0 \ge 5$

• Graficamente:

in Fundamentals of Biostatistics, B. Rossner, pp 245

- Método exacto:
 - Seja X uma variável aleatória que segue uma distribuição binomial de parâmetros n e p_o;
 - Seja $\hat{p} = x/n$, em que x é o número de eventos observados;

Método exacto

• Se
$$\hat{p} \leq p_0$$
:

$$p/2 = P(\le x \text{ sucessos em n tentativas} | H_0)$$

$$= \sum_{k=0}^{x} \binom{n}{k} p_0^k (1 - p_0)^{n-k}$$

Método exacto

• Se
$$\hat{p} > p_o$$
:

$$p/2 = P(\ge x \text{ sucessos em n tentativas} | H_0)$$

$$= \sum_{k=1}^{n} {n \choose k} p_0^k (1 - p_0)^{n-k}$$

Exemplo de aplicação:

Suppose, for example, that 13 deaths have occurred among 55- to 64-year-old male workers in a nuclear-power plant and that in 5 of them the cause of death was cancer. Assume, based on vital-statistics reports, that approximately 20% of all deaths can be attributed to some form of cancer. Is this result significant?

in Fundamentals of Biostatistics, B. Rossner, pp 248

Exemplo de aplicação:

$$n p_0 q_0 = 13 \times 0, 2 \times 0, 8 = 2, 1 < 5$$

$$\hat{p} = \frac{5}{13} = 0,38 > 0,20$$

$$p = 2\sum_{k=5}^{13} {13 \choose k} 0, 2^k 0, 8^{13-k} = 2 \left[1 - \sum_{k=0}^{4} {13 \choose k} 0, 2^k 0, 8^{13-k} \right] = 0,198$$

 Logo, a proporção de mortes por cancro não é significativamente diferente à obtida para outros trabalhadores da mesma idade;

• Exemplo:

Para testar a hipótese de que o risco de sofrer de cancro da mama pode estar relacionado com o intervalo de tempo entre a menarca e o 1º filho, foram constituídos dois grupos de mulheres com e sem cancro da mama. Em ambos os grupos foi determinada a proporção de mulheres que deu à luz o 1º filho depois dos 30 anos de idade.

- Exemplo:
 - Pretende-se saber se as proporções são diferentes nos dois grupos.

$$\begin{cases} H_0: & p_1 = p_2 = p \\ H_1: & p_1 \neq p_2 \end{cases} \quad \text{ou} \quad \begin{cases} H_0: & p_1 - p_2 = 0 \\ H_1: & p_1 - p_2 \neq 0 \end{cases}$$

• Sob H_0 :

$$\hat{p}_1 \sim N(p, p q/n_1)$$

$$\hat{p}_2 \sim N(p, pq/n_2)$$

$$\hat{p}_1 - \hat{p}_2 \sim N\left(0, p \, q \left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right)$$

• Sob H_0 :

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{p \, q \left(1/n_1 + 1/n_2\right)}} \sim N(0,1)$$

· como p é desconhecido, o melhor estimador é

$$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{x_1 + x_2}{n_1 + n_2}$$

 Para melhor aproximação da distribuição normal à distribuição binomial usa-se uma correcção de continuidade

$$z = \frac{|\hat{p}_1 - \hat{p}_2| - \frac{1}{2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}{\sqrt{p \, q \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

- O teste é então:
 - Determinar z;
 - Se $z > z_{1-\alpha/2}$ rejeita-se H_0 ;
 - □ Se z ≤ $z_{1-\alpha/2}$ não se rejeita H_0 ;

• Nota: o teste é válido se $n_1 \hat{p} \hat{q} \ge 5$ e $n_2 \hat{p} \hat{q} \ge 5$

• Graficamente:

in Fundamentals of Biostatistics, B. Rossner, pp 355

Tabela de contigência

Data for the international study in Example 10.4 comparing age at first birth in breast-cancer cases with comparable controls

	Age at first birth		
Status	≥30	≤29	Total
Case	683	2537	3220
Control	1498	8747	10,245
Total	2181	11,284	13,465

Source: Reprinted with permission from WHO Bulletin, 43, 209-221, 1970.

Tabela de contigência

- A significância estatística resulta da comparação entre os valores observados e valores esperados;
- A tabela de valores esperados é calculada a partir dos valores marginais;
 - O valor esperado na célula, E_{i,j}, é obtido pelo produto da margem da linha i pela margem da coluna j, dividido pelo total;

Teste de qui-quadrado

- Resumindo:
 - Determinar

$$X^{2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(\left| O_{ij} - E_{ij} \right| - 0, 5 \right)^{2}}{E_{ij}} \sim \chi_{1}^{2} \qquad E_{ij} = \frac{L_{i} \times C_{j}}{N}$$

• Se
$$X^2 > \chi_{1,1-\alpha}^2$$
 rejeita-se H_0

• Pode ser aplicado se nenhum $E_{ij} < 5$

Teste Exacto de Fisher

- Quando não é possível usar a aproximação à distribuição normal, é possível, para tabelas 2x2, determinar os níveis exactos de significância;
- Fixando os valores marginais pode determinarse a probabilidade exacta de observar uma determinada tabela com determinadas margens;

Teste Exacto de Fisher

• Dada a tabela:

Variável	Amostras ou grupos		Linhas
	1	2	
1	а	b	a+b
2	С	d	c+d
Colunas	a+c	b+d	N

Teste Exacto de Fisher

• A probabilidade de observar a tabela é:

$$P(a,b,c,d) = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!}$$

Tabela de contigência LxC

Teste Qui-quadrado (χ²)

$$Z = \sum_{i=1}^{L} \sum_{j=1}^{C} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} \sim \chi^{2}_{(L-1)\times(C-1)} \qquad E_{ij} = \frac{L_{i} \times C_{j}}{N}$$

- Só pode ser aplicado se (regras Cochran):
 - $E_{ij} > 1$
 - Pelo menos $80\% E_{ij} \ge 5$

Métodos não paramétricos

• Testes paramétricos – dados cujas distribuições subjacentes são conhecidas (binomial, normal);

- Teste não-paramétricos a distribuição da população não é conhecida (ou a família especificada é posta é dúvida) e as inferências processam-se em quadro menos restritivo;
 - Podem aplicar-se em variáveis ordinais
 - Comparam-se postos, ordenações e medianas

Teste do sinal

- O teste de sinal é um dos teste mais conhecidos e dá uma resposta independente da função de distribuição.
- Seja μ_e a mediana de uma população que como é usual:

E considere-se o teste

$$H_0: \mu_e = \mu_{e0}$$

$$H_1: \mu_e \neq \mu_{e0}$$

Realize-se ainda a transformação:

$$(X_1, X_2, ..., X_n) \rightarrow (Z_1, Z_2, ..., Z_n), Z_i = X_i - \mu_{e0}$$

Teste do sinal

• O teste pode então ser reformulado:

$$H_0: \Delta = 0$$

$$H_1: \Delta \neq 0$$

- Com Δ a mediana de Z.
- Para $n \ge 20$ e $C = número de <math>Z_i > 0$
- Se

$$C > c_2 = \frac{n}{2} + \frac{1}{2} + z_{1-\alpha/2} \sqrt{n/4}$$
 ou
 $C < c_1 = \frac{n}{2} - \frac{1}{2} - z_{1-\alpha/2} \sqrt{n/4}$

• H_o é rejeitada.

Teste do sinal

in Fundamentals of Biostatistics, B. Rossner, pp 330

- O teste de Wilcoxon ou de ordem-sinal utiliza-se para testar uma hipótese sobre a mediana quando se considera a distribuição simétrica.
- O teste de Wilcoxon representa uma melhoria relativamente ao teste de sinal pois não despreza a informação contida na ordem das diferenças.
- O teste de Wilcoxon baseia-se na estatística do mesmo nome e baseia-se na obtenção das diferenças e da sua ordem.

• Seja $Z_i = 1$ ($Z_i = 0$) se o i-ésimo valor da sucessão ordenada dos módulos está associado a uma diferença Z_i positiva (negativa) e

$$Z = \sum_{i=1}^{n} Z_i \qquad R = \sum_{i=1}^{n} i Z_i$$

• Quando existem valores iguais de $|Z_i|$ (empates), atribui-se a cada um deles um número de ordem igual à média das ordens que lhe caberia.

- |Zi| = 1.1, 1.1, 2.2, 3.4, 3.4, 3.4
- As ordens neste caso seriam
- 1.5,1.5,3,5,5,5

• Se R ≠ n(n+1)/4 e não há empates então

$$T = \left[\left| R - \frac{n(n+1)}{4} \right| - \frac{1}{2} \right] / \sqrt{n(n+1)(2n+1)/24}$$

• Se R ≠ n(n+1)/4 e há empates então

$$T = \left[\left| R - \frac{n(n+1)}{4} \right| - \frac{1}{2} \right] / \sqrt{n(n+1)(2n+1)/24 - \sum_{i=1}^{g} \left(t_i^3 - t_i\right)/48}$$

• com t_i o número de diferenças com o mesmo valor no grupo empatado i e g é o número de empates.

• Se R = n(n+1)/4 então T = 0.

• Finalmente, se

$$T > z_{1-\alpha/2}$$

- Então rejeita-se H_o.
- O valor de p é dado por:

$$p = 2 \times [1 - \Phi(T)]$$

• Nota: este teste deve ser usado se o número de diferenças não nulas é superior a 16 e se a distribuição subjacente é simétrica