

Edaphobase – current status, plans and ambitions

Dr. Andrey S. Zaytsev
Section Soil Biodiversity Modelling,
Senckenberg Museum of Natural History Goerlitz

Few facts

- Edaphobase is a non-commercial data infrastructure developed and hosted by the Senckenberg Museum of Natural History Görlitz in Germany.
- Edaphobase is a data provider to the Global Biodiversity Information Facility (GBIF).
- Initiated in 2009 by a group of enthusiasts inspired by Dr. David Russell.

Edaphobase **Current data distribution**

Edaphobase Global usage 2025 (log-ins to Edaphobase online portal)

Removing spatial disbalance between data provision and acquisition: GLOBAL AMBITION REQUIRING IMPROVED IMPORT PROCEDURE

Crassiclitellata (earthworms)
Enchytraeidae (potworms)
Nematoda (threadworms)
Oribatida (moss/beetle mites)
Gamasina (gamasid mites)
Collembola (springtails)
Chilopoda (centipedes)
Diplopoda (millipedes)
Isopoda (woodlice)

Development I: More taxa welcomed edapho

Development II: more active in-house data digitalization

Taxonomic group	Data sources	covered taxa	mentioned locations	data records
Lumbricidae (literature)	135	95	807	9.389
Lumbricidae (collection)	648	74	451	651
Lumbricidae (raw data)	19	58	478	10.021
Lumbricidae (total)	802	150	1.709	20.061
Enchytraeidae (literature)	31	125	128	4.309
Enchytraeidae (collection)	1	1	1	1
Enchytraeidae (raw data)	7	126	87	8051
Enchytraeidae (total)	39	156	236	12.361
Nematoda (literature)	216	1.311	712	36.718
Nematoda (collection)	1.630	506	1.120	1.630
Nematoda (raw data)	1	145	55	1.982
Nematoda (total)	1.846	1.706	1.830	38.348
Collembola (literature)	246	1.225	1.537	80.809
Collembola (collection)	8.492	565	840	11.885
Collembola (raw data)	17	273	346	12.331
Collembola (total)	8.755	1406	2.691	105.025
Oribatida (literature)	16	417	198	7.629
Oribatida (collection)	23.718	1.392	1.323	25.382
Oribatida (raw data)	6	274	59	11.202
Oribatida (total)	23.740	1.519	1.578	44.213

Development II: more active in-house data digitalization

Taxonomic group	Data sources	covered taxa	mentioned locations	data records
Gamasina (literature)	91	972	548	10.137
Gamasina (collection)	10.195	888	2.101	10.195
Gamasina (total)	10.286	1.493	2.642	20.332
Chilopoda (literature)	1.403	1.611	1.650	14.890
Chilopoda (collection)	25.927	752	5.165	26.759
Chilopoda (raw data)	12	34	54	798
Chilopoda (total)	27.342	2008	6.827	42.447
Diplopoda (literature)	1.703	2.002	3.052	21.980
Diplopoda (collection)	48.374	2.479	8.383	50.186
Diplopoda (raw data)	13	60	125	1.848
Diplopoda (total)	50.090	3.744	11.331	74.014
Isopoda (literature)	273	84	1.309	5.772
Isopoda (collection)	5.219	6058	1.824	5.219
Isopoda (raw data)	4	18	28	550
Isopoda (total)	5.496	94	2.845	11.541
Other (literature)	127	242	263	985
Other (collection)	5.563	858	1.708	5.563
Other (raw data)	2	102	20	2544
Other (total)	5.692	1.154	1.976	9.092

Development III: more systemic and automated outsourcing of taxonomic backbone and environmental data maintenance

world of biodiversity

Development V: From problems to solutions: data management and modelling

- Bridging taxonomic and functional data
- Linking soil fauna and environmental data
- Integrating advanced modelling (Edaphostat 2.0)
- Standardization and ontologies

Development VI: Data Import Wizard

*Corresponding author: achim.schmalenberger@ul.ie

Achim Schmalenberger: https://orcid.org/0000-0002-7455-3666

- Omnivorous in terms of data formats
- Many built-in data checking options
- BUT: Still hard to use without experience.

SENCKENBERG world of biodiversity

Development VII: In-house data analysis - Edaphostat

DATABASE.

Technical Report

Edaphostat: interactive ecological analysis of soil organism occurrences and preferences from the Edaphobase data warehouse

Jonas Hausen^{1,*}, Björn Scholz-Starke¹, Ulrich Burkhardt², Stephan Lesch², Sebastian Rick², David Russell², Martina Roß-Nickoll¹ and Richard Ottermanns¹

¹Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany and ²Senckenberg Museum of Natural History Görlitz, P.O. Box 300154, 02806 Görlitz, Germany

Rutgers et al. 2016 (Appl. Soil Ecol.)

Distribution modelling

Phillips et al. 2019 (Science)

Salako et al. 2023 (Biodiv. & Conserv.)

Niche space analyses

Römbke et al. 2013 (Soil Org.)

Jänsch et al. 2013 (Soil Org.)

Salako et al. 2023 (Biodiv. & Conserv.)

Hausen et al. 2017 (DataBase)

Soil Food Web Analyses

Marizidoviek et al. 2022 (Ecol. Modell.)

Hoogen et al. 2019 *(Nature)*

Applied

Lehmitz et al. 2016

Forest conversion sites

Russell & Gergocs 2019 (Forest Ecology & Management)

Russell & Salako (in prep.)

Usecase I: Knowledge delivery into practice: a BONARES case of supporting soil processes modelling

SENCKENBERG world of biodiversity

External environmental data and bonares data

Functional modelling

Processes

Species occurrences

SENCKENBERG world of biodiversity

Usecase II: Soil biogeography and distribution modelling for Enchytraeidae (Oligochaeta)

 Modelling enchytraeid species distribution ranges across northern Eurasia

Zaitsev et al., Applied Soil Ecology, in revision.

Systemic targets for the future

- Fast but reliable data import process not compromising data quality.
- Deeper integration within SGN's and external data and knowledge instruments landscape.
- Outsourcing taxonomic backbone.
- Increased visibility of soil invertebrate collections and related research and promoting SGN's data and knowledge through GBIF and other international platforms.
- Supporting spatially explicit ecological and biogeographic research
- Setting new level of standards for soil biodiversity data modelling and monitoring soil biodiversity loss.
- Bringing solid ground to address societal needs related to soil and its functions in light of the functional importance of soil biodiversity for soil health.

Thank you!

