UNIDAD 2

AMPLIFICADORES OPERACIONALES

El Amplificador Operacional

Los inicios del amplificador operacional, están en torno al año 1940 y fueron en aplicaciones de cálculo matemático (calculadoras).

Ejemplo de aplicaciones que puede

realizar este dispositivo son: la derivación, integración, funciones trigonométricas, suma,

resta, etc. Debido a estas aplicaciones se le denominó y se le sigue denominando

amplificador operacional

El Amplificador Operacional

- V₁: se corresponde con la entrada no inversora, de ahí viene su asignación del signo+. En la salida V₀ aparecerá la señal introducida en V₁ con su amplificación correspondiente.
- V₂: la entrada inversora como su nombre indica, va a producir que la señal que se le introduzca, aparezca a la salida V₀ además de amplificada, defasada o invertida 180°, equivalente a decir, que se ha sufrido un cambio de signo en la salida respecto a la entrada.

- V_o: es como ya hemos visto tensión de la salida respecto a masa.
- V_d: tensión diferencial de entrada, o diferencia entre las tensiones aplicadas entre la entrada inversora y la no inversora del amplificador

El Amplificador Operacional

El que solo deba responder a la diferencia de voltajes en sus terminales de entrada, se debe a que la etapa de entrada la constituye un amplificador diferencia o par diferencial, circuito base del amplificador operacional.

$$T_1 = T_2$$

$$R_{C_1} = R_{C_2}$$

 I_E : generador de corriente constante.

 V_{I1}, V_{I2} : entradas.

 $V_{01}, V_{02}:$ salidas respecto a tierra

Características del A.O

Amplificador Operacional Ideal

- Resistencia de entrada infinita (R₁=∞).
- Resistencia de salida nula (R₀=0).
- Ancho de banda infinito ($\Delta f = \infty$).
- Ganancia de tensión en lazo abierto infinita (ΔV=∞).
- Ganancia en modo común nula (A_C= 0).
- Ganancia en modo diferencial constante (A_d= K).
- Ausencia de desviación en las características con la temperatura.

Amplificador Operacional Real

- Ganancia de tensión en lazo abierto muy alta: 10³a 10⁶.
- Gran ancho de banda, desde la amplificación en corriente continua hasta varios cientos de MHz.
- Resistencia de entrada muy elevada, superior a 1 $M\Omega$.
- Resistencia de salida muy baja, del orden de unos pocos ohms.
- Ganancia en modo común distinta de cero, pero tiende a ser nula.

Tolerancias máximas

Voltaje de alimentación: +V_{cc}/ -V_{cc}

Es el voltaje máximo positivo que puede usarse para alimentar o polarizar el amplificador operacional.

Potencia interna de disipación P_d

Esta es la potencia máxima que el A. O es capaz de disipar, bajo condiciones de temperatura ambiente.

Voltaje diferencial de entrada V_d

Es el voltaje máximo que puede aplicarse a través de las entradas (+) y (-).

Voltaje de entrada

Es el voltaje máximo de entrada que puede aplicarse simultáneamente entre ambas entradas y tierra, también se refiere al voltaje en modo común.

Temperatura de operación T_a

Es la tolerancia de la temperatura ambiente en la que operaría el A. O conforme a las especificaciones del fabricante .

Temperatura de almacenamiento

Es la tolerancia de la temperatura ambiente solo de almacenamiento, comparada con la temperatura de operación siempre va a llegar a límites más extremos.

Duración del corto circuito a la salida

Es el tiempo que la salida puede estar en corto circuito, en este caso se entiende por corto circuito a la conexión directa de la salida a la tierra.

Temperatura en terminales

Se refiere a la temperatura de soldadura que en general es de 300 °C.

Parámetros característicos de algunos Amplificadores Operacionales

Condiciones: Ta = 25 $^{\circ}$ C, V_{cc} =+- 15V

	V _{io} max	l _{io} max	I _{ib} max	V_d	G _v min	f_T $A_v=1$	S_r $A_v=1$	V ₀ RL=10K	V _{cc} min	V _{cc} max	CMRR
	mV	nA	nA	V	V/V	Mhz	V/us	V	V		dB
LM741C	10	200	500	±30	200k	1	0.5	± <i>V_{cc}</i> ± 1.5	±3	±18	90
LF355	10	0.1	0.2	±30	200k	2.5	5	±5	±5	±18	100
LF356A	2	0.01	0.05	±40	200K	5	15	±13	±5	±22	100
LM3900	•	•	200	¤	2.8k	2.5	20	10	+4	+36	•
TL071	3	0.005	0.065	±30	25k	3	13	$\pm V_{cc} \pm 3$	±5	±18	100
TL074	3	0.005	0.065	±30	25k	4	13	± <i>V_{cc}</i> ± 3	±5	±18	100
TL082		0.005	0.05	±30	25k	4	13	± <i>V_{cc}</i> ± 3	±5	±18	86
TL084		0.005	0.03	±30	25k	4	13	± <i>V_{cc}</i> ± 3	±5	±18	86

[¤] Las entradas están protegidas por diodos derivadores

• Es un amplificador operacional Norton, o amplificador de corriente diferencial.

Configuraciones Básicas

• La función que realiza un Amplificador Operacional es entregar un voltaje proporcional al producto de la ganancia de lazo abierto $A_{\rm o}$, con la diferencia de potencial de la terminal no inversora a la terminal inversora igual a:

$$V_d = (V_y - V_x)A_o = V_d A_o$$

1°. El nodo x en la siguiente figura actúa como tierra virtual, ya que la retroalimentación negativa impide que el voltaje cambie en ese punto.

- 2°. Un segundo aspecto básico del A.O ideal es el de suponer una impedancia de entrada infinita. Debido a esto la corriente de entrada es cero. Cualquier corriente que llegue al nodo x como resultado de una señal aplicada a la entrada, necesariamente debe fluir a través de la resistencia de retroalimentación *Rf*, Resumiendo con los siguientes axiomas:
- 1. Cuando se aplica retroalimentación negativa al A.O ideal, el voltaje de entrada diferencial Vd se aproxima a cero.
- 2. La corriente *I* es cero en cualquiera de las terminales de entrada del A.O.

Amplificador Inversor

 En cada una de las resistencias presentes en la configuración del A.O inversor, las corrientes están determinadas por:

$$I_i = \frac{V_i - V_x}{R_i}$$
 e $I_f = \frac{V_x - V_0}{R_f}$

Pero en el nodo x

 $I_i = I_f$ tenemos que:

$$\frac{V_i - V_{\chi}}{R_i} = \frac{V_{\chi} - V_0}{R_f}$$

Inversor

$$V_{y}-V_{x}=0$$

$$V_y = V_x$$

$$Si V_y = 0$$

entonces

$$V_x = 0$$

$$\frac{V_i}{R_i} = \frac{-V_0}{R_f}$$

La ganancia en voltaje está definida como $\frac{V_0}{V_i}$

$$\frac{V_0}{V_i} = \frac{-R_f}{R_i}$$

Simulación del A.O inversor

A.O No inversor

En este circuito el voltaje V_i se aplica a la entrada no inversora (+) y una fracción de la señal de salida V_0 es aplicada a la entrada inversora (-), a través del divisor de voltaje conformado por R_1 y R_2 , esto último con el axioma 2 donde $I_s=0$. Tenemos que:

$$V_y = V_i$$

$$V_x = \frac{V_0}{R_1 + R_2} R_1$$

$$V_d = V_y - V_x$$

El axioma 1 indica que Vd=0, lo que implica q <u>L</u>

$$V_i = \frac{V_0}{R_1 + R_2} R_1$$

La ganancia

$$A_{v} = \frac{V_0}{V_i} = 1 + \frac{R_2}{R_1}$$

Seguidor de Voltaje

En esta configuración la señal de salida sigue exactamente en amplitud y fase a la señal de entrada. Si se habla de voltaje, se refiere a un amplificador en el que la resistencia de entrada debe ser muy grande, en lo posible cercana a lo infinito, con el fin de no cargar a la etapa anterior, con lo cual la señal de entrada no se alterará. Por otro lado la salida debe comportarse como una fuente ideal de voltaje.

Seguidor de voltaje

Para lograr estas características, se toma como base el amplificador de voltaje no inversor, tomando la ecuación de la ganancia.

$$A_{v} = \frac{V_0}{V_i} = 1 + \frac{R_2}{R_1}$$

Para que la ganancia A_v sea unitaria. R_2 puede ser cero, R_1 infinita o ambas condiciones simultaneamente

Donde:

$$A_{v} = \frac{V_0}{V_i} = 1$$

Por lo tanto $V_o = V_i$

Sumador inversor

Para lograr esta configuración, debemos utilizar la singularidad de tierra virtual en el nodo de suma (x).

Aplicamos nuevamente los dos axiomas:

$$V_d = V_y - V_x$$
$$I_s = 0$$

Describiendo las corrientes en cada una de las ramas del circuito sumador inversor tenemos:

$$V_x = V_y$$
 ------ecu(1)
 $I_1 + I_2 = I_f$ ------ ecu(2)
 $I_1 = \frac{V_1 - V_x}{R_1}$, $I_2 = \frac{V_2 - V_x}{R_2}$, $I_f = \frac{V_x - V_0}{R_f}$

Sustituyendo las corrientes en la ecuación (2):

$$\frac{V_1 - V_x}{R_1} + \frac{V_2 - V_x}{R_2} = \frac{V_x - V_0}{R_f}$$
 -----ecu (3)

Considerando que Vx=0, la ecu(3) se simplifica a:

$$\frac{V_1}{R_1} + \frac{V_2}{R_2} = \frac{-V_0}{R_f}$$

Sumador Inversor

Despejando V₀

$$V_0 = -R_f \left[\frac{V_1}{R_1} + \frac{V_2}{R_2} \right]$$

Si $R_1 = R_2 = R$, la expresión queda de la siguiente manera:

$$V_0 = -\frac{R_f}{R} [V_1 + V_2]$$

Este circuito se le conoce también como sumador de escala y ofrece una gran ventaja cuando se desean sumar señales dimensionales distintas.

La finalidad del circuito sumador es entregar una señal de salida proporcional a la suma de las entradas y, en este caso con una inversión de fase adicional de 180 grados.

A.O Restador o de Diferencia

Este circuito tiene como finalidad proporcionar un voltaje de salida V_0 , igual a la diferencia entre el voltaje o señal aplicada a la entrada no inversora (+) y el aplicado a la entrada inversora (-), multiplicado por una ganancia que va a depender de los resistores de entrada y el resistor de retroalimentación. Para hacer el análisis los valores de los resistores de entrada se proponen del mismo valor , al igual que el de retroalimentación y el resistor de la terminal de entrada no inversora que va a tierra.

 V_1 R_1 V_2 R_1 V_2 R_1 V_2 R_1 R_2 R_3 R_4 R_5 R_6 R_6 R_7 R_8 R_9 R_9 R_9 R_9 R_9

Partimos del axioma que:
$$I_s = 0$$
 y por lo tanto $I_1 = I_f$

Las corrientes están definidas por:

$$I_1 = \frac{V_1 - V_{\chi}}{R_1} ; I_f = \frac{V_{\chi} - V_0}{R_f}$$

Igualando las corrientes: $\frac{V_1 - V_x}{R_1} = \frac{V_x - V_0}{R_f}$ ----- ecu (1)

$$R_f(V_1 - V_x) = R_1(V_x - V_0)$$

Despejando VO tenemos:

$$V_0 R_1 = V_x (R_1 + R_f) - R_f V_1 - ecu (2)$$

Por otro lado el voltaje en la terminal no inversora está dado por el siguiente divisor de voltaje:

$$V_y = \frac{V_2 R_f}{R_1 + R_f}$$
 ----- ecu (3)

Por lo tanto $V_y = V_x$

Sustituyendo la ecu (3) en la ecu (2) tenemos:

$$V_0 R_1 = \frac{V_2 R_f}{(R_1 + R_f)} (R_1 + R_f) - R_f V_1$$

$$V_0 R_1 = V_2 R_f - R_f V_1$$

Despejando V₀

$$V_0 = \frac{R_f}{R_1} (V_2 - V_1)$$
 Si $R_f = R_1$

$$V_0 = (V_2 - V_1)$$

A. O Integrador

Este circuito emplea como elemento de retroalimentación un capacitor y a la entrada un resistor, este circuito entrega una señal de salida que es la integral de la señal que se aplica en la entrada.

De la siguiente figura:

Nuevamente consideramos que: $V_y - V_x = 0$; $I_i = I_f$

$$V_{\nu} - V_{\nu} = 0$$
;

$$I_i = I_f$$

La corriente de entrada esta dada por: $I_i = \frac{V_i - V_x}{R_i}$ si $V_x = 0$

si
$$V_x = 0$$

$$I_{i} = \frac{V_{i}}{R_{i}}$$

A. O Integrador

El calculo de I_f se realiza a partir del voltaje que existe entre las terminales del capacitor C_f y este voltaje esta dado por:

$$V_{\mathcal{X}} - V_0 = \frac{q}{c_f}$$

Donde: $q = -V_0 C_f$

Derivando la ecuación anterior

$$\frac{dq}{dt} = -C_f \frac{d(V_0)}{dt}$$

Por definición $i(t) = \frac{dq}{dt}$

Igualando las corrientes $\frac{V_i}{R_i} = -C_f \frac{d(V_0)}{dt}$

$$\frac{V_i}{R_i} = -C_f \frac{d(V_0)}{dt}$$

Para obtener V_o se integran ambos miembros de la ecuación

$$V_0 = -\frac{1}{R_i C_f} \int V_i dt + k$$

A.O Derivador

A este circuito se le conoce por varios nombres como: circuito de primera derivada, amplificador de diferenciación, filtro pasa altas. Un derivador ideal produce un voltaje de salida proporcional a las variaciones del voltaje de entrada en el tiempo, entregando un voltaje de salida instantáneo que se relaciona con la derivada del voltaje de entrada.

A.O Derivador

$$V_{x} = V_{y} = 0$$
$$I_{i} = I_{f}$$

La corriente de entrada se determina a partir del voltaje que existe a través del capacitor C_i.

$$I_i = C_i \frac{d}{dt} (V_i - V_x)$$

$$I_i = C_i \frac{dV_i}{dt}$$

La corriente que fluye por la resistencia de retroalimentación Rf es:

$$I_f = \frac{V_{\mathcal{X}} - V_0}{R_f}$$

A.O Derivador

Pero
$$V_x = 0$$

$$I_f = \frac{-V_0}{R_f}$$

Igualando las corrientes tenemos:

$$-\frac{V_0}{R_f} = C_i \frac{dV_i}{dt}$$

Despejando V_o

$$V_0 = -R_f C_i \frac{dV_i}{dt}$$

El voltaje de salida para un derivador es:

$$V_0(t) = -R_f C_i \frac{dV_i(t)}{dt}$$