3.3

Positions relatives de droites et de plans

Maths Spé terminale - JB Duthoit

3.3.1 Positions relatives de deux droites

Définition

Dans l'espace, deux droites peuvent être coplanaires ou non.

Si elles sont coplanaires, alors elles appartiennent à un même plan. Elles peuvent donc être sécantes (avoir un point d'intersection) ou parallèles (strictement parallèles ou confondues)

Remarque

🗘 Dans l'espace, des droites non sécantes ne sont pas nécessairement parallèles

Savoir-Faire 3.4

SAVOIR DÉCRIRE LA POSITION RELATIVE DE DEUX DROITES

ABCD est un tétraèdre. On définit le point I par $\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AB}$ et le point J qui est le milieu de [AC].

- 1. Démontrer que les droite (IJ) et (CB) sont sécantes.
- 2. Démontrer, en utilisant un raisonnement par l'absurde, que les droites (IJ) et (AD) ne sont pas parallèles.

Exercice 3.11

ABCDEFGH est un cube, K est le milieu de $\left[AE\right]$ et L est le milieu de $\left[EF\right]$

- 1. a) Justifier que K appartient au plan (ADH)
 - b) Justifier que les vecteurs \overrightarrow{AD} et \overrightarrow{KH} ne sont pas colinéaires
 - c) Que dire des droites (AD) et (KH)?
- 2. Démontrer, en utilisant un raisonnement par l'absurde, que les droites (AL) et (KH) ne sont pas parallèles.

3.3.2 Positions relatives d'une droite et d'un plan

Définition

Soit une droite $d(A, \vec{u})$ de l'espace et un plan $P(C, \vec{v}, \vec{w})$ de l'espace. La droite d est parallèle au plan P si \vec{u} , \vec{v} et \vec{w} sont coplanaires.

Définition

Exercice 3.12

ABCDEFGH est un cube. Compléter les pointillés avec le vocabulaire adéquat :

- La droite (GI) et le plan (ABC) sont en I.
- La droite (EG) est dans le plan (EFG).
- La droite (EG) et le plan (ABC) sont

3.3.3 Positions relatives de deux plans

Définition

Deux plans sont parallèles lorsqu'ils ont la même direction.

Définition

Remarque

Trois points non alignés définissent un plan!

Propriété

Deux plans déterminés par le même couple de vecteurs non colinéaires sont parallèles.

Conséquence

Pour montrer que deux plans sont parallèles, il suffit de montrer que deux vecteurs non colinéaires de l'un des plans sont respectivement colinéaires à deux vecteurs non colinéaires de l'autre plan.

Savoir-Faire 3.5

SAVOIR DÉTERMINER LA POSITION RELATIVE DE DEUX PLANS

ABCDEFGH est un parallélépipède rectangle de centre O. On définit les points I, J et K par $\overrightarrow{OI} = \frac{1}{3}\overrightarrow{OA}, \overrightarrow{BJ} = \frac{2}{3}\overrightarrow{BO}$ et $\overrightarrow{CK} = \frac{1}{3}\overrightarrow{CH}$.

- 1. Démontrer que les droite (IJ) et (AB) sont parallèles.
- 2. a) Exprimer \overrightarrow{BJ} en fonction de \overrightarrow{BH}
 - b) Démontrer que les plans (IJK) et (ABC) sont parallèles

Exercice 3.13

ABCDEFGH est le parallélépipède rectangle cicontre. Pour chacune des items suivants, préciser si les plans sont confondus, strictement parallèles ou sécants. S'ils sont sécants, préciser leur droite d'intersection.

- 1. (ABC) et (FGH)
- 2. (ABF) et (AEG)
- 3. (EFG) et (EHF)
- 4. (ADE) et (BFH)

Exercice 3.14

SABCD est une pyramide dont la base ABCD est un parallélogramme. Les points I,J et K sont tels que $\overrightarrow{SI}=\frac{1}{3}\overrightarrow{SA},\overrightarrow{SJ}=\frac{1}{3}\overrightarrow{SB}$ et $\overrightarrow{SK}=\frac{1}{3}\overrightarrow{SC}$

- 1. Justifier que les vecteurs \overrightarrow{IJ} et \overrightarrow{AB} sont colinéaires
- 2. Justifier que les vecteurs \overrightarrow{JK} et \overrightarrow{CB} sont colinéaires
- 3. Justifier que les plans (IJK) et (ABC) sont parallèles.

