Problemas de Valor de Contorno para EDOs

Programa de Pós-Graduação em Engenharia Civil

1 Introdução

Definição. Problema de Valor de Contorno (PVC) para EDO: a EDO do tipo Ly=h (i), onde L é um operador diferencial definido no intervalo [a,b] e $h \in C^0[a,b]$ conjuntamente com condições de contorno na forma:

(ii)
$$\begin{cases} \alpha_1 y(a) + \alpha_2 y(b) + \alpha_3 y'(a) + \alpha_4 y'(b) = \gamma_1 \\ \beta_1 y(a) + \beta_2 y(b) + \beta_3 y'(a) + \beta_4 y'(b) = \gamma_2 \end{cases},$$

onde α_i , β_i e $\gamma_j \in R$ (i=1,2,3,4 e j=1,2), formam um PVC para EDO.

Obviamente, o problema consiste em encontrar todas as funções $y \in C^2[a,b]$ que satisfaçam (i) e (ii) simultaneamente.

Exemplo 1.1. A EDO y'' + y = 0, $com y(0) = y(\pi) = 0$ é um PVC para EDO no intervalo $[0, \pi]$.

Obs:

- 1. Ao menos uma das constantes α_i e uma das constantes β_i devem ser diferentes de zero.
- 2. Chamaremos de condições de contorno homogêneas quando $\gamma_1=\gamma_2=0$. Desta forma, dizemos que um subespaço S de $C^2[a,b]$ é o conjunto solução de Ly=h, ou escrito em forma de operador:

$$L: S \to C^0[a, b], S \subset C^2[a, b].$$

2 Problema de Autovalor em PVC para EDO

Em muitas situações, temos que considerar a solução do seguinte problema:

$$Ly = \lambda y$$
 (iii),

onde $L:S \to C^0[a,b]$ e λ é um parâmetro a se determinar. Neste caso, estamos interessados em encontrar todos os valores de λ para os quais (iii) não admite solução trivial em S, com condições de contorno homogêneas associadas.

Exemplo 2.1. $y'' + \lambda y = 0$ com y(0) = 0 e $y(\pi) = 0$.

3 OPERADORES AUTOADJUNTOS E PROBLEMAS DE STURM-LIOUVILLE (PSL)

Relembrando que um operador linear L é autoadjunto se:

$$(Ly_1) \cdot y_2 = (Ly_1, y_2) = y_1 \cdot Ly_2 = (y_1, Ly_2)$$

Vamos examinar o caso $L = -D^2$ do exemplo 2.1:

$$(Ly_1, y_2) = -\int_0^{\pi} y_1'' y_2 dx = -\left[y_1' y_2\right]_0^{\pi} + \int_0^{\pi} y_1' y_2' dx$$

Lembrando que as condições de contorno para $-D^2$ são $y(0)=y(\pi)=0$, temos: $(Ly_1,y_2)=\int_0^\pi y_1'y_2'dx$.

$$\mathsf{J} \mathsf{\acute{a}} \ (y_1, L y_2) \ = \ - \int_0^\pi y_1 y_2'' dx \ = \ - \left[y_1 y_2' \right]_0^\pi \ + \int_0^\pi y_1' y_2' dx \ = \ \int_0^\pi y_1' y_2' dx.$$

O que implica que $(-D^2y_1,y_2)=(y_1,-D^2y_2)$, ou seja, o operador $-D^2$ é autoadjunto pelo produto interno $(y_1,y_2)=\int_0^\pi y_1y_2dx$. Isso permite trazer de volta o corolário (4.1) da seção 4 da primeira parte do curso:

<u>Corolário 4.1</u>: Todo operador autoadjunto possui autovalores reais.

E o teorema (4.8):

<u>Teorema 4.8</u>: Seja λ_1 e λ_2 autovalores distintos de um operador autoadjunto, então os autovetores y_1 e y_2 associados à λ_1 e λ_2 são ortogonais.

Resta determinar sob quais condições de contorno o operador $L:S\to C^0[a,b]$, sendo $S\subset C^2[a,b]$ será autoadjunto.

Lema 3.1. Identidade de Lagrange: se L = D(p(x)D) + q(x) é um operador diferencial linear autoadjunto em [a,b] e se y_1 e y_2 são duas vezes diferenciáveis em [a,b], vale:

$$y_1(Ly_2) - (Ly_1)y_2 = (p(y_1y_2' - y_2y_1'))'$$
 (iv)

A identidade de Lagrange pode ser escrita numa forma mais interessante se integrarmos os lados esquerdo e direito de a até b:

$$(y_1, Ly_2) - (Ly_1, y_2) = [p(y_1y_2' - y_2y_1')]_a^b$$

Teorema 3.1. Seja S um subespaço de $C^2[a,b]$ determinado pelo par de condições de contorno:

$$\alpha_1 y(a) + \alpha_2 y(b) + \alpha_3 y'(a) + \alpha_4 y'(b) = 0$$

$$\beta_1 y(a) + \beta_2 y(b) + \beta_3 y'(a) + \beta_4 y'(b) = 0$$

Seja L um operador (diferencial e linear) $L: S \to C^0[a,b]$. Então L será autoadjunto com relação ao produto interno padrão em $C^0[a,b]$ se e somente se: $\left[p(y_1y_2'-y_2y_1')\right]_a^b=0$, para todos y_1 e $y_2 \in S$. Ou seja, se e somente se,

$$p(b)[y_1(b)y_2'(b) - y_2(b)y_1'(b)] - p(a)[y_1(a)y_2'(a) - y_2(a)y_1'(a)] = 0.$$

Através da última forma da identidade, podemos cair em 3 casos:

- Caso 1: p(a) = p(b) = 0. A identidade é satisfeita sem restrições e $S = C^2[a,b]$
- Caso 2: S será o subespaço de todas as funções $y \in C^2[a,b]$ tal que:

$$\alpha_1 y(a) + \alpha_2 y'(a) = 0$$

$$\beta_1 y(b) + \beta_2 y'(b) = 0$$
, com

 $|\alpha_1|+|\alpha_2|\neq 0$ e $|\beta_1|+|\beta_2|\neq 0$. Se y_1 e $y_2\in S$, então:

$$y_1(a)y_2'(a) - y_2(a)y_1'(a) = 0$$

$$y_1(b)y_2'(b) - y_2(b)y_1'(b) = 0$$
.

Em outras palavras, um ODL é autoadjunto em todo subespaço $S\subset C^2[a,b]$ descrito por um par de condições de contorno não mistas.

• Caso 3 (condições de contorno periódicas): Seja p(a)=p(b) e S o subespaço de $C^2[a,b]$ consistindo de todas as funções y que satisfaçam a:

$$y(a) = y(b)$$

$$y'(a) = y'(b) .$$

Ou seja, um ODL será autoadjunto em $S \subset C^2[a,b]$ se for descrito por condições de contorno periódicas.

Exemplo 3.1. Se $L=-D^2$ e S o subespaço de $C^2[a,b]$ com condições de contorno $y(0)=y(\pi)=0$.

Exemplo 3.2. Se $L=-D^2$ e S o subespaço de $C^2[a,b]$ com condições de contorno $y(0)=y(2\pi)$ e $y'(0)=y'(2\pi)$.

Definição. Problema de Sturm-Liouville (PSL) para EDO: PVCs que envolvem ODLs autoadjuntos que possuam autofunções ortogonais e que podem ser escritos na forma

$$D(p(x) D)y + [q(x) - \lambda]y = 0$$

conjuntamente com condições de contorno homogêneas são chamados de PSL para EDOs.

Exemplo 3.3. Resolver o PSL: $y'' + \lambda y = 0$ com y(0) = 0 e $\alpha y(L) + y'(L) = 0$, α e L > 0.

4 PROBLEMAS DDE VALOR DE CONTORNO E EX-PANSÕES EM SÉRIES

Até o presente momento, todos os PVC's abordados eram EDO's homogêneas, porém em muitos casos recairemos em PVC's não homogêneos

$$Ly = h$$
,

acompanhado das devidas condições de contorno com $h\in C^0[a,b]$ e L um ODL de 2ª ordem tal que, $L:S\to C^0[a,b]$, sendo $S\subset C^2[a,b]$.

Se L é autoadjunto e possui autovalores distintos $(\lambda_1, \lambda_2, \lambda_3, ...)$ então as autofunções $\phi_1(x), \phi_2(x), \phi_3(x), ...$ formam uma base para o espaço $C^0[a,b]$, além disso, sabemos que essas autofunções são mutualmente ortogonais e podemos tirar partido disso para escrever h(x) como:

$$h(x) = \sum_{n=1}^{\infty} c_n \phi_n(x)$$

Lembrando que essa série converge na média para h e que:

$$c_n = \frac{(h, \phi_n)}{||\phi_n||^2} = \frac{\int_a^b h(x)\phi_n(x)dx}{\int_a^b [\phi_n(x)]^2 dx}.$$

Utilizaremos uma expansão semelhante para y(x):

$$y(x) = \sum_{n=1}^{\infty} \alpha_n \phi_n(x)$$

e substituindo as expansões de h(x) e y(x) em Ly=h, chegamos à seguinte igualdade

$$L\left[\sum_{n=1}^{\infty} \alpha_n \phi_n(x)\right] = \sum_{n=1}^{\infty} c_n \phi_n(x) .$$

Tirando proveito da linearidade de L, temos:

$$\sum_{n=1}^{\infty} \alpha_n \lambda_n \phi_n(x) = \sum_{n=1}^{\infty} c_n \phi_n(x) ,$$

se essas duas séries são iguais, temos que ter $\alpha_n \lambda_n = c_n$, ou:

$$\alpha_n = \frac{c_n}{\lambda_n} \ ,$$

onde c_n e λ_n são parâmetros conhecidos, logo y(x) está completamente determinada

$$y(x) = \sum_{n=1}^{\infty} \frac{c_n}{\lambda_n} \phi_n(x).$$

Obs: Essa expansão leva em conta que $\lambda_n \neq 0$ e, neste caso, a solução é única. Porém, caso tenhamos algum $\lambda_k = 0$ (k inteiro positivo qualquer), o problema não tem solução se $c_k \neq 0$ e infinitas soluções se $c_k = 0$.

Exemplo 4.1. Resolver o PSL $-y'' = x \operatorname{com} y(0) = y(\pi) = 0$.

5 ORTOGONALIDADE E FUNÇÃO PESO

Podemos generalizar o problema de Sturm-Liouville escrevendo-o na seguinte forma:

$$D(p(x) D) y + [q(x) - \lambda r(x)] y = 0$$

definido no intervalo [a,b], além de um par de condições de contorno que servirão para determinar o domínio do operador L=D(p(x)D)+q(x). A função r(x) pertence ao espaço das funções contínuas em [a,b] $(C^0[a,b])$ e ela é não-negativa nesse intervalo.

Os valores λ que conferem à forma mais geral do PSL soluções não triviais são ainda chamados de autovalores e as soluções não triviais são ainda chamadas de autofunções.

Vamos analisar dois autovalores distintos (λ_1 e λ_2) e suas autofunções associadas (y_1 e y_2). Neste caso, valem as relações:

$$Ly_1 = \lambda_1 \ r(x) \ y_1(x)$$

$$Ly_2 = \lambda_2 \ r(x) \ y_2(x)$$

A identidade de Lagrange implica em:

$$(\lambda_1 - \lambda_2) r(x) y_1(x) y_2(x) = y_2(x) [Ly_1(x)] - y_1(x) [Ly_2(x)]$$

$$= D[p(x) [y_1(x)y_2'(x) - y_2(x)y_1'(x)]]$$

Integrando essa última expressão de a até b:

$$(\lambda_1 - \lambda_2) \int_a^b r(x)y_1(x)y_2(x)dx = p(x) \left[y_1(x)y_2'(x) - y_2(x)y_1'(x) \right]_a^b$$

No caso de termos o lado direito nulo, chegamos a:

$$\int_a^b r(x)y_1(x)y_2(x)dx = 0$$

O que implica que as autofunções y_1 e y_2 são ortogonais com respeito à função r(x) em $C^0[a,b]$. Chamaremos r(x) de função peso e definimos o produto interno:

$$(f,g) = \int_a^b f(x)g(x)r(x)dx$$
 (i)

Teorema 5.1. Seja L um ODL autoadjunto no intervalo [a,b] e r(x) uma função peso [a,b] e S o subespaço de $C^2[a,b]$ que é o domínio de L, então:

$$p(x) [y_1(x)y_2'(x) - y_2(x)y_1'(x)]_a^b = 0$$

para qualquer par de funções y_1 e y_2 em S. Então qualquer conjunto de autofunções associadas a distintos autovalores do PSL:

$$Ly = \lambda r(x)y$$

é ortogonal em $C^0[a,b]$ com relação ao produto interno definido em (i).

Exemplo 5.1. Solucione o PSL $y'' + 4y' + (4 - 9\lambda)y = 0$, com y(0) = y(a) = 0.

Exemplo 5.2. Determinar a autofunção normalizada de $y'' + \lambda y = 0$, y(0) = y(1) = 0.

Exemplo 5.3. Resolver o PSL: $y'' + \lambda y = 0$, com y(0) = 0 e y'(1) + y(1) = 0.

Para PSL's com funções peso não homogêneas, podemos proceder como o caso de PSL's não homogêneas sem a função peso:

$$Ly = D(p(x))Dy + q(x)y = \mu r(x)y + f(x),$$
 (ii)

com as condições de contorno associadas e definido em [a,b]. Seja λ o autovalor de L:

$$Ly = \lambda r(x)y.$$

Vamos supor que se a solução de y(x) da eq. (ii) seja escrita como

$$y(x)=\sum_{n=1}^{\infty}b_n\phi_n(x), \text{ com } b_n=\int_a^br(x)y(x)\phi_n(x)dx$$
 (iii)

$$Ly(x) = \mu r(x)y(x) + f(x) = \sum_{n=1}^{\infty} b_n \lambda_n r(x)\phi_n(x)$$
 (iv)

Se
$$\frac{f(x)}{r(x)} = \sum_{n=1}^{\infty} c_n \phi_n(x)$$
 e usando $\frac{f(x)}{r(x)}$ no lugar de y em (iii):

$$c_n = \int_a^b r(x) \frac{f(x)}{r(x)} \phi_n(x) dx = \int_a^b f(x) \phi_n(x) dx \quad n = 1, 2, ...$$

Juntando tudo em (iv):

$$\sum_{n=1}^\infty b_n\lambda_n r(x)\phi_n(x)=\mu r(x)\sum_{n=1}^\infty b_n\phi_n(x)+r(x)\sum_{n=1}^\infty c_n\phi_n(x) \text{ , temos}$$

$$\sum_{n=1}^{\infty} \left[(\lambda_n - \mu) b_n - c_n
ight] \phi_n(x) = 0$$
 , o que implica que

$$(\lambda_n-\mu)b_n-c_n=0\Rightarrow b_n=rac{c_n}{\lambda_n-\mu}$$
 , e a solução é:

$$y(x) = \sum_{n=1}^{\infty} \frac{c_n}{\lambda_n - \mu} \phi_n(x)$$

Temos que nos preocupar agora com a convergência dessa série que expande y(x). O teorema a seguir aborda o tema.

Teorema 5.2. O PSL não homogêneo generalizado tem solução única para toda função f(x) contínua se μ for diferente dos autovalores λ_n do problema homogêneo associado. A série convergirá para todo $x \in [a,b]$. Se μ for igual a um autovalor λ_k (k inteiro positivo qualquer), então o PSL não homogêneo com função peso não tem solução, a não ser que $\int_a^b f(x)\phi_k dx = 0$, ou seja, f(x) e $\phi_k(x)$ são ortogonais e, neste caso, a solução é única e contém um múltiplo arbitrário de $\phi_k(x)$.

Exemplo 5.4. Determine a solução de $y'' + 2y = -x \operatorname{com} y(0) = 0$ e y(1) + y'(1) = 0.