	TASK							
	TI	TIMELINE			TASK	TOTAL		
	1	R1		R2	ASSIGNMENTS	_	(8)	\$
TASK TITLES	1 2	3 4	1 2	2 3 4	id #wks	\sum		
A.D. O II. II. II. II. II. III. III. I								
A Refine the distance to UGC 7346								
A1 Generate model-subtracted images free of large-scale residuals					pm 1; ab 0.5	0.03	0.01	0.02
A2 Photometry on resolved stellar pop to compute distance via tip					piii i, ab 0.5	0.02	0.00	0.02
of RGB					pm 1; ab 0.2	0.02	0.00	0.02
A3 Derive point spread function using resolved stars						0.04	0.04	
					ab 0.5; T 0.3			0.01
A4 Stellar pop analysis using IFU data					1 11 0 0 1 0 0	0.03	0.03	0.00
15 G					pa 1; jk 0.2; jr 0.2	0.05	0.00	0.00
A5 Construct spatial power spectrum and compute inferred distance					pm 1.5; ab 1; jk 0.1	0.05	0.02	0.03
A6 Paper 1: An accurate distance for UGC 7346: Virgo Cluster						0.16	0.12	
member?					pa 3; pm 2.5; ab 1;			0.05
					T 1.5			
B Derive globular cluster (GC) luminosity function								
B1 F814W-F606W colors to identify GC candidates in					1. : 0 0. :1 0 1	0.03	0.03	0.00
model-subtracted maps					pa 1; jr 0.2; jk 0.1			0.00
B2 Use TINY TIM HST PDF models to deconvolve images					ab 0.5; pa 0.2; jr 0.1	0.02	0.02	0.00
B3 Fit 2D King models using GALFIT to derive core radii for GC					ab 0.5, pa 0.2, Ji 0.1	0.03	0.03	0.00
candidates					pa 1; jr 0.5; jk 0.1	0.03	0.00	0.00
B4 Bayesian statistical analysis to reject interlopers with unphysical						0.05	0.05	
color/size					pa 1.5; ab 1; jk 0.2	0.00	0.00	0.00
B5 Compute GC luminosity function using validated GCs						0.02	0.02	
20 compare de lammostry lancoten asing variation des					pa 0.5; jk 0.2; ab 0.2			0.00
B6 Paper 2: Tracing the full luminosity function of UGC 7346					0.11.0	0.13	0.12	0.00
C Donform anoticl atmeetingl analysis					pa 3; jk 3; pm 1			0.02
C Perform spatial structural analysis						0.02	0.02	
C1 Identify morphological features indicative of galaxy merger					pa 0.5; sc 0.2; rp 0.2	0.02	0.02	0.00
C2 Use IFU data to derive kinematics of central region of galaxy						0.04	0.04	
					pa 1.5 ; rp 0.5 ; sc 0.1			0.00
C3 Spatially correlate kinematics with features					pa 1; sc 0.2; rp 0.1	0.03	0.03	0.00
C4 Paper 3: Is GC system in act of collapsing?					pa 1; sc 0.2; rp 0.1	0.00	0.09	0.00
04 Laper 0; 18 GO system in act of conapsing:					pa 2; rp 2; jk 0.5	0.09	0.09	0.00
<u>(X)</u>			_			-		

Table 1. Resource-loaded project schedule, where:

=Not funded by this grant,

=funded by this grant,