

Mark Scheme (Results)

October 2021

Pearson Edexcel International Advanced Level in Physics (WPH14) Paper 01 Physics Further Mechanics, Fields and Particles

Question Number	Answer	Mark
Nullibei	The only correct answer is C	
1	A is not correct because an atom consists of fundamental particles	
	B is not correct because a baryon consists of three quarks	1
	D is not correct because a pion is a meson	
	The only correct answer is A	
	B is not correct because KE is conserved	
2	C is not correct because momentum is conserved	1
	D is not correct because momentum is conserved	
	The only correct answer is C	
_	A is not correct because $2^2/2$ equals 2	
3	B is not correct because $2^2/2$ equals 2	1
	D is not correct because $2^2 / 2$ equals 2	
	The only correct answer is B	
_	A is not correct because when r increases by 2, E should decrease to \(\frac{1}{4} \)	
4	C is not correct because when r increases by 2, E should decrease to 1/4	1
	D is not correct because when r increases by 2, E should decrease to 1/4	
	The only correct answer is D	
_	A is not correct because the flux after the rotation is $-N\phi$	
5	B is not correct because the flux after the rotation is $-N\phi$	1
	C is not correct because the flux after the rotation is $-N\phi$	
	The only correct answer is B	
_	A is not correct because the gradient is zero	
6	C is not correct because the gradient is less than at B	1
	D is not correct because the gradient is less than at B	
	The only correct answer is C	
_	A is not correct because the work done by the battery is QV	
7	B is not correct because the work done by the battery is QV	1
	D is not correct because the energy stored on the capacitor is $QV/2$	
	The only correct answer is B	
o	A is not correct because high energies are required	1
8	C is not correct because electrons need to display wave behaviour	1
	D is not correct because wavelengths do need to be comparable to nuclei	
	The only correct answer is C	
0	A is not correct because pions consist of 2 quarks	1
9	B is not correct because pions consist of 2 quarks	1
	D is not correct because a meson has a quark antiquark	
	The only correct answer is B	
	A is not correct because BII $\sin\theta$ means the graph follows a sine curve	
10	C is not correct because BIl $\sin\theta$ means the graph follows the first	1
	quadrant of a sine curve	
	D is not correct because BII $\sin\theta$ means the graph follows a sine curve	

	Answer	Mark
Number		
11a	Recognises Q is 2 (× unit charge) (1)	3
	Use of $V = \frac{Q}{4\pi\varepsilon_0 r}$ (1)	
	V = 108 V (1)	
	$V = \frac{8.99 \times 10^{9} \text{ Nm}^{2} \text{C}^{-2} \times 2 \times 1.6 \times 10^{-19} \text{C}}{26.6 \times 10^{-12} \text{m}}$ $V = 108 \text{ V}$	
11b	the (electric) field is radial Or the nucleus can be regarded as a point (charge) Or no other charged particles are nearby Or distance is measured from the centre of the nucleus	1
	Total for question 11	4

Question Number	Answer		Mark
12a	Arrow upwards along wire labelled tension (accept <i>T</i>)	(1)	2
	A		
	Arrow downwards from bob labelled weight (accept <i>W</i> , <i>mg</i> , gravitational force, force due to gravity)	(1)	
12bi	Resolve vertically	(1)	4
12.01	$T\cos\theta = mg$	(1)	-
	Resolve horizontally		
	$T\sin\theta = m\omega^2 r \text{ Or } T\sin\theta = \frac{mv^2}{r}$	(1)	
	r = r = r = r		
	Use radius of circular path = $l \times \sin \theta$	(1)	
		(1)	
	Suitable algebra	(-)	
	Example of derivation		
	$T\cos\theta = mg$		
	$T\sin\theta = m\omega^2 r$		
	$T\sin\theta = ml\sin\theta \omega^2$		
	$\cos\theta = \frac{g}{l\omega^2}$		
	$\omega = \sqrt{\frac{g}{l\cos\theta}}$		
12bii	Use of $\omega = \sqrt{\frac{g}{l\cos\theta}}$	(1)	3
	$\int l \cos \theta = \int l \cos \theta$		
	Use of $T = \frac{2\pi}{C}$	(1)	
	ω		
	Confirmation of value of $T = 5.0$ (s) with conclusion		
	Or $l = 6.4$ (m) with conclusion		
	Or $\theta = 13.9$ (°) with conclusion		
	Or $g = 9.81$ (N kg ⁻¹) with conclusion		
	Or calculates $\omega = 1.26 (s^{-1})$ from both equations with conclusion	(1)	
	Example of calculation		
	$\omega = \frac{2\pi}{5.0s} = 1.26 s^{-1}$		
	$\omega = \sqrt{\frac{9.81 \text{ N kg}^{-1}}{6.4 \text{ m} \times \cos 13.9^{\circ}}}$		
	$\sqrt{6.4}$ m \times cos 13.9°		
	$\omega = 1.26 \mathrm{s}^{-1}$		
	Total for question 12		9

Question	Answer					Mark
Number *13a						6
		ssesses a student's er with linkages an			gically	
	Marks are awar	ded for indicative of hows lines of reason	content and for	_	S	
		able shows how the		be awarded for in	ndicative	
	content.					
	Number of indicative marking points seen in answer	Number of marks awarded for indicative marking points	Max linkage mark availabl	Max final e mark		
	6	4	2	6		
	5	3	2	5		
	4	3	1	4		
	3	2	1	3		
	2	2	0	2		
	1	1	0	1		
	0	0	0	0		
		able shows how the	d lines	Tumber of marks arructure of answer	r and	
				2		
	Answer is part	ially structured with		1		
	Answer has no points and is t	o linkages between instructured		0		
	content should answer with five some linkages a content and 1 m reasoning). If the marking points	w the mark scheme be added to the mark e indicative marking and lines of reasoning ark for partial structures are no linkages would yield an over marks for linkages)	rk for lines of reag points which ng scores 4 marcture and some a between points rall score of 3 r	easoning. For exa is partially struct ks (3 marks for in linkages and lines s, the same five in	mple, an ured with ndicative s of ndicative	

	Indicative content:		
	IC1 plum pudding model of atom prior to experiment Or J J Thomson model of atom prior to experiment Or atom believed to have an equally distributed mass/charge throughout	(1)	
	IC2 alpha particles expected to go straight through Or alpha particles expected to have only a small deflection	(1)	
	IC3 a small number of alphas deflected through very large angles Or a small proportion of alphas come straight back	(1)	
	IC4 (changed to) model of the atom having very small nucleus Or (changed to) model of atom where most is empty space	(1)	
	IC5 nucleus contains (almost) all the mass	(1)	
	IC6 nucleus is charged	(1)	
13(b)	Either a thin sheet would contain few layers of atoms	(1)	2
	so alpha particles would be less likely to undergo multiple deflections Or		
	so alpha particles would be less likely to be absorbed	(1)	
	OR alpha particles are strongly ionising	(1)	
	so alpha particles can only penetrate a thin sheet or so alpha particles have low penetration	(1)	
	Total for question 13		8

Question Number	Answer		Mark
14a	The capacitor stores charge/energy	(1)	3
	(if the switch is open) the capacitor discharges through resistor/controller Or (if the switch is open) the p.d across the resistor/controller is maintained by the capacitor	(1)	
	p.d. across capacitor will remain high enough to operate the controller for a short time Or		
	current in circuit will remain high enough to operate the controller for a short time Or charge/energy stored is limited and will only last for a short time	(1)	
14b		(1)	
	illo	(1)	2
	Example of calculation		
	$\ln 4 = \ln 12 - \frac{t}{470 \times 47 \times 10^{-3} \text{s}}$		
	t = 24.3 s		
14c	Horizontal line of non-zero <i>I</i> from 0 to 20 s	(1)	4
	(Initial value of) $I = 26 \text{ mA}$	(1)	
	(From 20 s) approximate exponential decrease	(1)	
	Approximately drops to 1/3 after about 44 s (24 s after start of decrease)	(1)	
	ECF depending on calculation from (b)		
	Example of calculation		
	$I = 12 \text{ V} / 470 \Omega = 0.026 \text{ A}$		
	1/mA		
	26 20 40 t7 s		
	Total for question 14		9

Question Number	Answer		Mark
15ai	Use of $F\Delta t = \Delta p$ and $p = mv$ Or Use of $F = ma$ and $v = at$	(1)	2
	$v = 42 \text{ m s}^{-1}$	(1)	
	Example of calculation $109000 \text{ N} \times 2.9 \text{ s} = 7500 \text{ kg} \times v$ $v = 42 \text{ m s}^{-1}$		
15aii	Use of $E_k = \frac{1}{2} mv^2$ (ecf for v from part ai)	(1)	3
	Use of $\Delta E_{grav} = mg\Delta h$	(1)	
	It reaches the top of the tower as initial $E_k = 6.6 \times 10^6 \mathrm{J}$ is greater than energy required, $\Delta E_{grav} = 6.0 \times 10^6 \mathrm{J}$ Or It reaches the top of the tower as it can reach a height of 90 m which is greater than the required 81 m Or It reaches the top of the tower because 42 m s ⁻¹ is greater than the required speed of 40 m s ⁻¹ Or It reaches the top of the tower because speed at top is 13 m s ⁻¹ so it is still moving (Do not award marks for use of equations of motion for uniform acceleration) $\frac{\text{Example of calculation}}{2}$ $E_k = \frac{7500 \mathrm{kg} \times (42 \mathrm{ms}^{-1})^2}{2}$ $E_k = 6.6 \times 10^6 \mathrm{J}$ $\Delta E_{grav} = 7500 \mathrm{kg} \times 9.81 \mathrm{m} \mathrm{s}^{-2} \times 81 \mathrm{m} = 6.0 \times 10^6 \mathrm{J}$ Use of show that gives $E_k = 6.0 \times 10^6 \mathrm{J}$	(1)	
15b	There is a change in flux linkage of the magnetic field and the metal fin Or		5
	The fin cuts magnetic field/flux	(1)	
	This <u>induces</u> an <u>emf</u> (across the fin)	(1)	
	Current is produced in the fin (accept eddy current)	(1)	
	Force acts on the fin, as there is a current in a magnetic field Or field due to current in fin interacts with field due to magnets to cause force on fin	(1)	
	The force opposes the motion due to Lenz's law Or Energy dissipated by current comes from (reduction in) kinetic energy of vehicle	(1)	
	Total for question 15		10

Question Number	Answer		Mark
16a	At least three parallel vertical lines touching the plates at top and bottom	(1)	3
	Lines equi-spaced	(1)	
	Arrow on at least one line pointing down	(1)	
	(Ignore whatever is drawn at left and right edges of the plates)		
16bi	Use of $E = V/d$	(1)	3
	Use of $E = F/Q$	(1)	
	$F = 2.63 \times 10^{-13}$ (N) (more than 2 s.f.)	(1)	
	Example of calculation $F = 1.6 \times 10^{-19} \text{C} \times \frac{10500 \text{ V}}{0.0064 \text{ m}}$		
	$F = 2.625 \times 10^{-13} \mathrm{N}$		
16bii	Use of $\Delta W = F \Delta s$	(1)	2
	$\Delta W = 5.3 \times 10^{-20}$ J so less than ionisation energy so does not cause further ionisation Or required force = 1.95×10^{-12} N, which is greater than 2.6×10^{-13} N, so does not Or required distance = 1.5×10^{-6} m, which is greater than 0.2×10^{-6} m,		
	so does not	(1)	
	Example of calculation		
	$\Delta W = 2.6 \times 10^{-13} \text{ N} \times 0.2 \times 10^{-6} \text{ m} = 5.26 \times 10^{-20} \text{ J}$		
16c	muons travelling close to speed of light	(1)	3
	relativistic effect increases particle lifetime (for observer)	(1)	
	so travels further than normally expected (before decaying)	(1)	
	Total for question 16		11

Question Number	Answer		Mark
17a	The beam/electron/positron is gaining speed	(1)	4
	The length of tubes increases or the length of gaps between tubes increases	(1)	
	So time between beam exiting (successive) tubes is constant Or time spent in each tube is constant		
	Or time spent between (each successive pair of) tubes is constant	(1)	
	The p.d. has to reverse in this time period and hence frequency is constant	(1)	
17bi	Use of $m_{\Omega} = 3272 \times m_{\rm e}$	(1)	4
	Use of $\Delta E = c^2 \Delta m$	(1)	
	Use of conversion factor for eV	(1)	
	mass of omega baryon = 1680 MeV/c^2	(1)	
	Example of calculation mass= $3272 \times 9.11 \times 10^{-31}$ kg Energy = 2.981×10^{-27} kg× $(3 \times 10^8 \text{ ms}^{-1})^2$		
	Energy = $\frac{2.68 \times 10^{-10} \text{J}}{1.6 \times 10^{-19} \text{JeV}^{-1}}$ mass = 1677 MeV/c^2		
17bii	Total energy of electron and positron = 29 GeV Or total energy available for each omega baryon = 14.5 GeV Or $\Delta E = c^2 \Delta m$ for omega rest mass energy Or Use of conversion factor for GeV to J for electron and positron energy		3
	(ignore rest mass of electron and positron)	(1)	
	Uses Kinetic Energy = Total Energy – Rest mass energy of baryon	(1)	
	Kinetic energy of either omega = 12.8 GeV Or Kinetic energy of either omega = $2.05 \times 10^{-9} \text{ J}$	(1)	
	Example of calculation		
	Kinetic energy of both omegas = $29 \text{ GeV} - 2 \times 1.7 \text{ GeV} = 25.6 \text{ GeV}$		
	So kinetic energy of either omega baryon = 12.8 GeV		
17c	If both omega, it would break the conservation of baryon number	(1)	3
	Must be omega and anti-omega	(1)	
	Further detail of baryon number: If both omega, before collision baryon number = 0 and after collision baryon number = 2 (which breaks conservation law) Or		
	If omega and anti-omega before collision baryon number = 0 and after $1 - 1 = 0$ (which obeys conservation law)	(1)	
	Total for question 17		14

Question Number	Answer		Mark
18a	(to conserve charge, as) no other charged particle is produced	(1)	2
	Or no other track is produced	, ,	
	It has the same direction of engagement (or the mich twody)	(1)	
	It has the same direction of curvature (as the pion track)		
18b	The radius of the (spiral) path decreases (following it clockwise)	(1)	3
	The momentum/velocity/speed of the particle is decreasing	(1)	
	The momentum velocity/speed of the particle is decreasing	(1)	
	as energy is transferred from the anti-muon (by ionisation and	(1)	
18c	electromagnetic radiation) out of page	(1)	1
100	out of page	(1)	1
18d	Use of $r = p/BQ$	(1)	3
	Substitute $Q = 1.6 \times 10^{-19} \text{ C}$	(1)	
		(1)	
	radius = 0.21 m	(1)	
	Example of calculation		
	$r = \frac{1.2 \times 10^{-19} \text{ Ns}}{3.5 \text{T} \times 1.6 \times 10^{-19} \text{ C}}$		
	$3.5T \times 1.6 \times 10^{-19} \mathrm{C}$		
	r = 0.21 m $\pi^+ \to (\mu^+) + \nu_{(\mu)}$		
18ei		(1)	1
	$\mathbf{Or} \atop \pi^+ \to \bar{\mu} + \nu_{(\mu)}$		
	(accept anything reasonable for "muon")		
18eii	draws a straight line labelled for any of pion, muon or neutrino	(1)	5
	(accept momentum values)	(1)	
	uses a recognisable scale e.g. 7.5 cm for muon or 12 cm for pion or		
	5.4 cm for neutrino	(1)	
	vectors drawn correctly end to end	(1)	
	Toolers arawn correctly one to one	(1)	
	correct arrows on at least two vectors (dependent on MP3)	(1)	
	statement such as the three lines form a closed triangle so follows		
	conservation of momentum (requires 3 arrows in correct direction)		
	Or conclusion that a quantity resulting from scale drawing has the		
	correct value (e.g. sss → correct angle or sas → correct length) (accept calculations showing conservation of momentum)	(1)	
	((-)	

