# **Unidad 1 - Conceptos**

### 1. Conceptos y Definiciones

### 1.1. Computadora

Segun la RAE: Maquina electrónica capaz de realizar un tratamiento automático de la información y de resolver con gran rapidez problemas matemáticos y lógicos mediante programas informáticos.

Segun Wikipedia: Una máquina digital que lee y realiza operaciones para convertirlos en datos convenientes y útiles que posteriormente se envían a las unidades de salida.

En esta materia: Una máquina que **recibe y procesa** datos a partir de un conjunto predefinido de ordenes, para convertirlos en información útil que luego puede ser **presentada**, **almacenada o transmitida**.

#### 1.2. Niveles de Abstracción

Las computadoras se organizan en niveles de abstracción. Desde el punto de vista de esta materia vamos a considerar al nivel más alto de abstracción al correspondiente al usuario que ejecuta los programas, mientras que el más bajo corresponde al nivel físico.

### 1.3. Arquitectura de las Computadoras

Estudia las relaciones funcionales en el comportamiento de una computadora desde la perspectiva del software (también llamada lógica).

### 1.4. Organización de las Computadoras

Lo mismo pero desde la perspectiva del hardware (circuitos electrónicos).

#### Usuarios Software de **Programas** Programadores Sistema operativo Dispositivos Drivers **Programadores** Instrucciones arquitectura Controladore Sumadores Lógica Combinacional Memoria **Amplificadores** analógicos Filtros Diseñadores Dispositivos **Transistores** Componentes físicos

Niveles de abstracciones y usuarios

#### 2. Historia

Ver diapositivas y video

## 3. Organización de la Computadora

### 3.1. Componentes

Desde el punto de vista funcional, la computadora posee:

- Unidad Central de Procesamiento: procesa la información, esta compuesta por:
  - Unidad Aritmético Lógica: realiza las operaciones aritmético lógicas.
  - Unidad de Control: controla, interpreta y ejecuta las operaciones realizadas por la CPU.



Organización de la Computadora

- Memoria: almacena las instrucciones y los datos utilizados. Consta de celdas numeradas.
- **Dispositivos de entrada y Salida**: dispositivos independientes por los cuales la computadora se comunica con "el mundo", los sistemas de almacenamiento y sistemas con los que se comunica con otras computadoras.
- **Buses**: son lineas que transportan las señales entre los diferentes componentes. Dependiendo de la información que transportan, son:
  - **Bus de direcciones**: establece la dirección de memoria del dato en tránsito. La cantidad de bits que lo conforman determinan la capacidad de memoria que se puede direccionar.
  - Bus de datos: donde se mueven los datos entre dispositivos, la memoria y la unidad de procesamiento.
  - Bus de control: gobierna la operación de los módulos de una computadora. La señales de control transmiten órdenes e información de temporización (o sincronización) entre módulos. Si una dirección corresponde a memoria o periféricos, si es una operación de escritura o lectura, si hay pedido de interrupción del programa, si se acepta el pedido de interrupción, y otras.

### 3.2. Arquitectura

Existen dos modelos de arquitectura de computadoras:

#### 3.2.1. Arquitectura Harvard

La **Memoria de Instrucciones** y la **Memoria de Datos** estan separadas y se conectan a la **Unidad Central de Procesamiento** por buses distintos, lo que permite operaciones de lectura de datos e instrucciones simultaneas y mayor velocidad, además de la posibilidad de diseñar buses especificos para cada necesidad (por ejemplo, 24 bits para el bus de instrucciones y 32 para el bus de datos).

#### 3.2.2. Arquitectura Von Neumann

La Memoria de Instrucciones y la Memoria de Datos están juntas en lo que se denomina **Memoria Central** y comparten el sistema de buses, por lo que solo podemos o bien leer una instrucción o bien leer/escribir en la memoria de datos. La ventaja de esto es que el diseño del hardware es más sencillo y económico.

## **ARQUITECTURA HARVARD**



## ARQUITECTURA VON NEUMANN



Harvard vs Von Neumann

### 3.2.3. Clasificación

Vamos a clasificar las arquitecturas según el flujo de instrucciones y datos disponibles:

- Una Instrucción un Datos (SISD)
- Múltiples Instrucciones un Dato (MISD)
- Una Instrucción Múltiples Datos (SIMD)
- Múltiples Instrucciones Múltiples Datos (MIMD)
- Un Programa Múltiples Datos (SPMD): múltiples procesadores autónomos trabajando simultaneamente sobre el mismo conjunto de instrucciones.
- Múltiples Programas Múltiples Datos (MPMD): múltiples procesadores trabajando sobre múltiples programas independientes.



Paralelismo de Instrucciones y Datos