BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI- HYDERABAD CAMPUS

FIRST SEMESTER 2023-2024 Course Handout (Part II)

Date: 11/08/2023

In addition to Part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : ME F211

Course Name: Mechanics of Solids **Instructor-in-charge:** AMIT KUMAR GUPTA

Instructors: A K Gupta, Aditya Nema, TBA-1, TBA-2, TBA-3

Lecture schedule: Mon, Wed, Fri – 3 (10-11 AM) @ F-103

Tutorial schedule: Tue -1 (8-9 AM) @ F-102

1. Course Description:

Fundamental principles of mechanics, introduction of mechanics of deformable bodies, force and moment transmitted by slender members (2D truss, frame, beam), stress and strain, stress-strain-temperature relations, torsion of circular member, stress and deflection due to bending, buckling of columns, theories of failure.

2. Scope and Objective:

The subject of mechanics of solids deals with determination of strength, deformation and stability of structural and machine elements. The methods are based on Laws of Newtonian mechanics, applied to bodies in static equilibrium, geometry and experimentation. These laws are applied to simple situations with engineering judgment to arrive at results of significance to the designer. At the end of the course the student will be in a position to design and analyze simple structural elements, which involve calculation of stress, strain and deformation. This is an essential feature in any design process.

3. Text Books:

S. H. Crandall et al., An Introduction to the Mechanics of Solids (in SI units) TMH, 3rd ed., 2012

4. Reference Books:

- 1. Mechanics of Materials; F. P. Beer, E. R. Johnston and J. T. DeWolf, Third Edition, 2002, McGraw-Hill International Edition.
- 2. Mechanics of Solids, AN INTRODUCTION, T. J. Lardner, R R Archer, International Edition, 1994. McGraw-Hill
- 3. Introduction to Solid Mechanics by I. H. Shames, 2nd Edition, 1980, Prentice Hall of India Private Ltd. New Delhi.

5. Course Plan:

Lecture	Learning Objectives	Topics to be covered	Reference
No.			Chap./Sec.
1-3	Fundamental principles of	Introduction, principles of mechanics, concept of	1.1-1.7
	mechanics	force & moment, equilibrium conditions, concept	(TB)
		of 2 & 3 force members, free body diagram	
4-8	Introduction to mechanics	Analysis of deformable bodies, uniaxial loading	2.1-2.5
	of deformable bodies	& deformation, statically determinate &	2.7
		indeterminate situations, Castigliano's theorem.	(TB)
9-11	Forces & moments	Introduction forces & moments acting on a	3.1-3.4
	transmitted by slender	section of a member, distributed loads &	(TB)
	members	resultant of distributed loads	
12-14	Forces & moments	Differential equilibrium approach, Singularity	3.5-3.6
	transmitted by slender	functions	(TB)
	members		

15-17	Stress & Strain	Introduction, stress, plane stress, equilibrium of a element in plane stress, Mohr circle	4.1-4.7 (TB)		
		representation of a plane stress, general state of	(1D)		
		1			
10.00		stress.	4.8-4.13		
18-20	Stress & Strain	Analysis of deformations, strain components,			
		relation between strain & displacement, strain	(TB)		
		component associated with arbitrary set of axis,			
		Mohr circle representation of plane strain,			
		general state of strain			
21-22	Stress-Strain-Temperature	Introduction, tensile test, idealization of stress	5.1-5.4		
	relations	strain curve, elastic stress strain relation	(TB)		
23-25	Stress-Strain-Temperature	Thermal strain, complete equations of elasticity,	5.5-5.6,		
	relations	strain energy in a elastic body, criteria of initial	5.8,5.11		
		yielding	(TB)		
26-29	Torsion	Introduction, geometry of deformation of a	6.1-6.9		
		twisted circular shaft, stress strain relations,	(TB)		
		equilibrium requirements, stresses &	(12)		
		deformations in twisted elastic circular shaft,			
		torsion of elastic hollow circular shaft, combined			
		stresses, strain energy due to torsion, yielding in			
		torsion			
30-31	Stranger due to handing	Introduction, deformation in pure bending,	7.1-7.5		
30-31	Stresses due to bending	1			
		stress-strain relations, equilibrium requirements,	(TB)		
22.24		stresses & deformations in pure bending			
32-34	Stresses due to bending	Stresses due to shear force and bending moment,	7.6-7.9		
		combined stresses, strain energy due to bending,	(TB)		
		yielding in bending			
35-36	Deflections due to bending	Introduction, moment-curvature-relations,	8.1-8.4		
		integration of moment-curvature relations,	(TB)		
		superposition			
37-38	Deflections due to bending	Load-deflection differential equation, Energy	8.5-8.6		
		Methods	(TB)		
39-40	Stability of equilibrium	Introduction, elastic stability, examples of	9.1-9.4		
	buckling	instability, elastic stability of flexible columns	(TB)		
		-			

6. Evaluation Scheme:

EC No.	Evaluation Component	Duration	Weightage	Date & Time	CB/OB
1.	Mid-Sem. Test	90 min	25 %	11/10 - 9.30 -	СВ
				11.00AM	
2.	Lecture class participation		10 %		OB
3.	Tutorial class participation		15 %		OB
4.	Quizzes		10 %		OB
5.	Compre. Exam.	180 min	40 %	12/12 FN	СВ

- **7. Chamber Consultation Hour:** Every Tuesday 4 5 PM
- **8. Notices:** All notices will be displayed on the **CMS.**
- **9. Make up Policy:** Make-up will be granted only to genuine cases with prior permission from the IC. For cases related to illness, proper documentary evidence is essential. No makeup is allowed for EC2, EC3, & EC4.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester. Any form of academic dishonesty would lead to serious actions.

Instructor-in-charge ME F211