- Let P be a Finite set of passwords and H a pre-image resistant hash function.
- Goal: Given hash h, locate a password p in P such that H(p)=h, or no p in P
- Trivial solutions:
 - compute H(p) for all p in P until H(p)=h
 - PRO: no memory involved
 - <u>CONS</u>: compute hashes for all P in P.
 - Store all the possible pair (p,H(p)) of n-bitpasswords and their associated hash passwords
 - PRO: very fast to check
 - CONS: |P|n bits stored
 - Infeasible if P is large, for example $P=\{0,1\}^{80}$, i.e., all the strings of length n=80 ($|P|=2^{80}$)

Can we optimize the computation/space ratio?

Example

- P = 6-digit lowecase letters
- Hash H: 6-digit lowercase letters -> {0,1}³² (HEX repr.)

Idea: Define a Reduction function R: $\{0,1\}^{32}$ -> 6-digit lowercase letters (Not the inverse of H)

$$281 \mathtt{DAF40} \underset{R}{\longrightarrow} \mathtt{sgfnyd}$$

- Choose a random subset of words in P
- Compute a chain of length k and save only the first and the last element for each chain, for example, if we have

$$\underbrace{\texttt{aaaaaa}}_H \longrightarrow 281 \texttt{DAF40} \underset{R}{\longrightarrow} \texttt{sgfnyd} \underset{H}{\longrightarrow} 920 \texttt{ECF10} \underset{R}{\longrightarrow} \texttt{kiebgt}$$

we need to only store (aaaaaa, kiebgt).

Let h=920ECF10, applying R we see that 920ECF10 \xrightarrow{R} kiebgt

By reapplying the H,R,... from aaaaaa we notice that sgfnyd is a correct password: $sgfnyd \longrightarrow 920ECF10$

• Chains could merge, for example FB107E70 also leads to kiebgt

$$\begin{array}{c} \mathtt{FB107E70} \mathop{\longrightarrow}\limits_{R} \mathtt{bvtdll} \mathop{\longrightarrow}\limits_{H} \mathtt{0EE80890} \mathop{\longrightarrow}\limits_{R} \mathtt{kiebgt} \\ \end{array}$$

- The chain starting from aaaaaa will never reach FB107E70
- **False alarm**: the chain of FB107E70 will be extended for another match
- No match found: password never produced by any of the chains

- Longer chains: more computation
 - Trade-off: chain length, lookup table size
- Problems
 - collisions
 - Same value in different chain at different position
 - Pick the correct R
 - Depends on the plaintext distribution

Rainbow Tables

- Idea to avoid collision:
 - Replace R with a sequence $R_1,...,R_k$ to reduce the prob. that an hash is a result of the same reduction function
 - To collide: same value in the same iteration
- To find an hash, compute one of the following until an entry in the rainbow table is found
 - \bullet R_k
 - $R_{k-1} \rightarrow H \rightarrow R_k$
 - $R_{k-2} \rightarrow H \rightarrow R_{k-1} \rightarrow H \rightarrow R_k$
 - ..

Rainbow Tables

- Reduction functions R₁ R₂ R₃
- h=re3xes

Source: Wikipedia

Countermeasures

- Use salt, for example H(pwd+salt) or H(H(pwd))+salt
 - Large salt: need to precompute a table for each salt
 - Public salt
- Key stretching: hash multiple times with salts and intermediate values
 - More time to verify hash: Brute-force attacks harder
- Key strenghtening: private salt
- Longer passwords: 14 characters.