

Statistics Formulas

Descriptive Statistics

Frequencies

Sample size *n* num of individuals in the sample.

Absolute frequency n_i (num of x_i in the sample)

Relative frequency $f_i = n_i/n$

Cumulative absolute freq $N_i = \sum_{k=0}^{i} n_i$

Cumulative relative freq $F_i = N_i/n$

Central tendency statistics

Mean
$$\bar{x} = \frac{\sum x_i n_i}{n}$$

Median me The value with cum.rel.freq. $F_{me} = 0.5$.

Mode mo The most frequent value.

Position statistics

Quartiles Q_1, Q_2, Q_3 divide the distribution into 4 equal parts. Their cum.rel.freqs. are $F_{Q_1}=0.25$, $F_{Q_2}=0.5$ and $F_{Q_3}=0.75$.

Percentiles P_1, P_2, \cdots, P_{99} divide the distribution into

The cum.rel.freq. is $F_{P_i} = i/100$.

Dispersion statistics

Interquartile range $IQR = Q_3 - Q_1$

Variance
$$s^2 = \frac{\sum (x_i - \bar{x})^2 n_i}{n} = \frac{\sum x_i^2 n_i}{n} - \bar{x}^2$$

Standard deviation $s = +\sqrt{s^2}$

Coefficient of variation $cv = \frac{s}{|\bar{x}|}$

Shape statistics

Coefficient of skewness $g_1 = \frac{\sum (x_i - \bar{x})^3 f_i}{s^3}$

Coefficient of kurtosis $\ g_2 = \frac{\sum (x_i - \bar{x})^4 f_i}{\epsilon^4} - 3$

Linear transformations

Linear transformation y = a + bx

$$\bar{y} = a + b\bar{x}$$

$$s_v = bs_x$$

Standarization $z = \frac{x - \bar{x}}{s_x}$

Regression and correlation

Linear regression

Covariance $s_{xy} = \frac{\sum x_i y_j n_{ij}}{n} - \bar{x}\bar{y}$

$$y$$
 on $x:y=ar{y}+rac{s_{xy}}{s_x^2}(x-ar{x})$

$$x$$
 on $y: x = \bar{x} + \frac{s_{xy}}{s_y^2}(y - \bar{y})$

Regression coefficients

$$(y ext{ on } x) b_{yx} = rac{s_{xy}}{s_x^2} \quad (x ext{ on } y) b_{xy} = rac{s_{xy}}{s_y^2}$$

Coefficient of determination

$$r^2 = \frac{s_{xy}^2}{s_x^2 s_y^2} \qquad 0 \le r^2 \le 1$$

Correlation coefficient

$$r = \frac{s_{xy}}{s_x s_y}. \qquad -1 \le r \le 1$$

Non-linear regression

Exponential model $y = e^{a+bx}$

Apply the logarithm to the dependent variable and compute the line $\log y = a + bx$.

Logarithmic model $y = a + b \log x$

Apply the logarithm to the independent variable and compute the line $y = a + b \log x$.

Potential model $y = ax^b$

Apply the logarithm to both variables and compute the line $\log y = a + b \log x$.

Probability

Event operations

Union

Intersection

Complement

Difference

Algebra of events

Idempotency $A \cup A = A$, $A \cap A = A$

Commutative $A \cup B = B \cup A$, $A \cap B = B \cap A$

Associative $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$

Distributive $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$, $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

 $\mbox{Neutral element} \ \ \mbox{$A \cup \varnothing = A$,} \ \ \ \mbox{$A \cap \Omega = A$}$

Absorbing element $A \cup \Omega = \Omega$, $A \cap \emptyset = \emptyset$.

Complementary symmetric element $A \cup \overline{A} = \Omega$, $A \cap \overline{A} = \emptyset$

Double contrary $\overline{\overline{A}} = A$

Morgan's laws $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Basic probability

Union $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Intersection $P(A \cap B) = P(A)P(B|A)$

Difference $P(A - B) = P(A) - P(A \cap B)$

Contrary $P(\overline{A}) = 1 - P(A)$

Conditional probability

Conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Independent events P(A|B) = P(A).

Total probability Theorem

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i)$$

Bayes Theorem

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$$

Risks

	Ε	Ē
Treatment	а	Ь
Control	С	d

Prevalence Proportion of individuals with E: P(E)

Incidence rate or absolute risk $R(E) = \frac{a}{a+b}$

Odds
$$O(E) = \frac{a}{b}$$

Odds ratio
$$OR(E) = \frac{a/b}{c/d} = \frac{a \cdot d}{b \cdot c}$$

Diagnostic tests

	Disease <i>D</i>	No disease $\overline{\mathcal{D}}$
Test +	V P	FP
Test -	FN	VN

Sensitivity
$$P(+|D) = \frac{VP}{VP + FN}$$

Specificity
$$P(-|\overline{D}) = \frac{VN}{FP + VN}$$

Positive Predictive Value (PPV)
$$P(D|+) = \frac{VP}{VP + FP}$$

Negative Predictive Value (NPV)
$$P(\overline{D}|-) = \frac{VN}{FN + VN}$$

Positive Likelihood Ratio (LR+)
$$\frac{P(+|D)}{P(+|\overline{D})}$$

Negative Likelihood Ratio (LR-)
$$\frac{P(-|D)}{P(-|\overline{D})}$$

Random Variables

Discrete

Binomial probability function B(n, p)

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x} = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

Poisson probability function $P(\lambda)$

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

Law of rare events $B(n,p) \approx P(np)$ for $n \geq 30$ and $p \leq 0.1$.

Continuous

Normal $N(\mu, \sigma)$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Standard normal N(0,1)

Chi-square $\chi^2(n)$

$$X = Z_1^2 + \cdots + Z_n^2,$$

where $Z_i \sim N(0,1)$.

Student's t T(n)

$$T = \frac{Z}{\sqrt{X/n}},$$

where $Z \sim N(0,1)$ and $X \sim \chi^2(n)$.

Fisher's F F(n, m)

$$F=\frac{X/m}{Y/n},$$

where $X \sim \chi^2(m)$ and $Y \sim \chi^2(n)$.