Discriminant et racines I

Quelques calculs généraux pour commencer

Calcul 1.1

0000

Calculer les nombres suivants. On attend la forme la plus simple possible.

a)
$$\frac{10 - \sqrt{16}}{4}$$

c)
$$\frac{-6-\sqrt{12}}{2}$$

b)
$$\frac{5+\sqrt{9}}{6}$$

d)
$$\frac{8 + \sqrt{48}}{4}$$

Calcul 1.2

0000

Calculer les nombres suivants. On attend les résultats sous la forme d'une fraction irréductible.

a)
$$5^2 - 4 \times 5 \times \frac{3}{8}$$

c)
$$-7^2 - 8 \times \frac{1}{3} \times 27$$

b)
$$(-6)^2 + \frac{3}{5} \times (-7) \times 15$$

d)
$$\left(-\frac{5}{4}\right)^2 - 5 \times \frac{17}{32} \times \frac{24}{15} \dots$$

Premiers calculs

Calcul 1.3 — Premiers discriminants.

0000

Pour chacun des polynômes définis ci-dessous, calculer son discriminant :

a)
$$X^2 + 2X + 3$$

b)
$$-X^2 - 2X + 4$$

Calcul 1.4 — Calculs de discriminants.

Pour chacun des polynômes définis ci-dessous, calculer son discriminant :

a)
$$3X^2 - 4X + \frac{7}{4}$$

c)
$$\frac{4}{5}X^2 - \sqrt{7}X - \frac{5}{6}$$

b)
$$\frac{1}{2}X^2 + \frac{2}{3}X - \frac{3}{4}$$

d)
$$\frac{\sqrt{6}}{7}X^2 + \sqrt{3}X + \frac{\sqrt{2}}{\sqrt{3}}$$

Calcul 1	L .5 -	— Premières	racines.

0000

Déterminer les racines de chacun des polynômes suivants :

a)
$$X^2 + 2X - 4$$

b)
$$-X^2 - 3X + 2 \dots$$

Calcul 1.6 — Calculs de racines.

Déterminer les racines de chacun des polynômes suivants :

a)
$$4X^2 - 3X + \frac{1}{4}$$

b)
$$\frac{1}{2}X^2 + \frac{1}{2}X - 3$$

c)
$$2X^2 + \frac{1}{3}X - \frac{1}{3}$$

d)
$$3X^2 - 2\sqrt{2}X - \frac{2}{3}$$

Calcul 1.7 — Un polynôme paramétré.

Soit $b \in \mathbb{R}$. On considère le polynôme $P = X^2 + bX + 1$.

a) Lorsque
$$b = -2$$
, le polynôme P admet-il deux racines distinces?

c) Pour quelles valeurs de
$$b$$
 le polynôme admet-il deux racines distinctes? ...

Calcul 1.8 — Un deuxième polynôme paramétré.

Soit $a \in \mathbb{R}^*$, un réel non nul. On considère le polynôme $Q = aX^2 + 3X - 5$.

b) Pour quelles valeurs de
$$a$$
 le polynôme Q a-t-il exactement une racine?

Calcul 1.9 — Un troisième polynôme paramétré.

Soit $c \in \mathbb{R}$. On considère le polynôme $R = 2X^2 - 5X + c$.

Calcul 1.10 — Inéquations I.

Résoudre les inéquations suivantes. On attend le résultat sous la forme d'un intervalle ou de la réunion de deux intervalles.

- a) $2x^2 5x + 3 > 0$
- b) $y^2 + 3y \le 2$
- c) $-t^2 < 5t + 4$

Calcul 1.11 — Inéquations II.

Résoudre les inéquations suivantes. On attend le résultat sous la forme d'un intervalle ou de la réunion de deux intervalles.

- a) $4z \geqslant \frac{3}{4} z^2$
- b) $\frac{1}{3}u^2 + \frac{2}{5}u + \frac{3}{7} > 0$
- c) $v \sqrt{3} \ge v^2$

Calculs plus avancés

Calcul 1.12 — Propositions paramétrées I.

Soit $a \in \mathbb{R}$.

Pour quelle(s) valeur(s) de a la proposition « $\forall x \in \mathbb{R}, P(x) \geqslant 0$ » est-elle vraie?

- a) Avec $P = aX^2 + 3X 4$
- b) Avec $P = \frac{2}{5}X^2 + 2aX + \frac{1}{3}$
- c) Avec $P = \frac{3}{2}X^2 \frac{5}{7}X + \frac{a}{2}$

Calcul 1.13 — Propositions paramétrées II.

Soit $a \in \mathbb{R}$.

Pour quelle(s) valeur(s) de a la proposition « $\forall x \in \mathbb{R}, P(x) \geqslant 0$ » est-elle vraie?

a) Avec $P = aX^2 + 3aX - 4$

b) Avec $P = \frac{2a}{5}X^2 + 2X + \frac{a}{3}$

c) Avec $P = \frac{3}{2}X^2 - \frac{7}{5}aX + \frac{a}{6}$

Calcul 1.14 — Un système paramétré.

Soit $t \in \mathbb{R}$. On considère le système $\begin{cases} (x-5)^2 + (y-5)^2 = 5 \\ y = tx \end{cases}$ d'inconnues x et y.

Pour quelles valeurs de t le système précédent a-t-il des solutions?

$|-\infty,1[\,\cup\,\,]\frac{3}{2},+\infty[\qquad \frac{13}{7} \qquad \frac{35}{2} \qquad -1-\sqrt{5} \text{ et } -1+\sqrt{5} \qquad -\frac{43}{16} \qquad -5 \qquad \text{Non} \qquad -27$ $-3 \text{ et } 2 \qquad -8 \qquad 20 \qquad a \in \left[-\sqrt{\frac{2}{15}},\sqrt{\frac{2}{15}}\right] \qquad 25-8c \qquad \frac{-3+\sqrt{17}}{2} \text{ et } \frac{-3-\sqrt{17}}{2}$ $a \in \left[\frac{25}{147},+\infty[\qquad a \in \left[0,\frac{25}{49}\right] \qquad t \in \left[\frac{1}{2},2\right] \qquad \frac{29}{3} \qquad -3-\sqrt{3} \qquad a \in \left[\sqrt{\frac{15}{2}},+\infty[\qquad 2+\sqrt{3} \right] \right]$ $c \in \left[\frac{25}{8},+\infty[\qquad b^2-4 \qquad -\frac{9}{20} \qquad \frac{\sqrt{2}-2}{3} \text{ et } \frac{\sqrt{2}+2}{3}. \qquad \right] -\infty, -2-\frac{\sqrt{19}}{2} \right] \cup \left[-2+\frac{\sqrt{19}}{2},+\infty[\qquad b \in]-\infty, -2[\,\cup\,]2,+\infty[\qquad \text{Aucune} \qquad \frac{3-\sqrt{5}}{8} \text{ et } \frac{3+\sqrt{5}}{8} \qquad -121 \qquad 9+20a \qquad \frac{3}{2} \qquad -\frac{1}{2} \text{ et } \frac{1}{3}$ $\varnothing \qquad \text{Aucune} \qquad \left[\frac{-3-\sqrt{17}}{2},\frac{-3+\sqrt{17}}{2}\right] \qquad \frac{35}{18} \qquad]-\infty, -4[\,\cup\,]-1,+\infty[\qquad \mathbb{R} \qquad \frac{4}{3}]$

Réponses mélangées

► Réponses et corrigés page 5

Fiche nº 1. Discriminant et racines I

Réponses

1.1 a) $\boxed{\frac{3}{2}}$	1.7 b)
	1.7 c) $b \in]-\infty, -2[\cup]2, +\infty[$
1.1 b)	1.8 a)
1.1 c)	1.8 b)
1.1 d)	1.9 a)
1.2 a) $\frac{35}{2}$	1.9 b) $c \in \left] \frac{25}{8}, + \infty \right[$
1.2 b)	7.0
1.2 c)	1.10 a) $\left]-\infty, 1[\cup] \frac{3}{2}, +\infty \right $
1.2 d)	1.10 b) $\left[\frac{-3-\sqrt{17}}{2}, \frac{-3+\sqrt{17}}{2}\right]$
1.3 a)	
1.3 b)	1.10 c)
1.4 a)	1.11 a) $\left \right -\infty, -2 - \frac{\sqrt{19}}{2} \right \cup \left[-2 + \frac{\sqrt{19}}{2}, +\infty \right[\left \right $
1.4 b) $ \frac{35}{18} $	1.11 b)
1.4 c)	1.11 c)
	1.12 a) Aucune
1.4 d)	1.12 b) $a \in \left[-\sqrt{\frac{2}{15}}, \sqrt{\frac{2}{15}} \right]$
1.5 a)	
1.5 b) $ \frac{-3 + \sqrt{17}}{2} $ et $ \frac{-3 - \sqrt{17}}{2} $	1.12 c) $a \in \left[\frac{25}{147}, +\infty\right[$
	1.13 a)
1.6 a) $\left \frac{3 - \sqrt{5}}{8} \text{ et } \frac{3 + \sqrt{5}}{8} \right $	Г / Г
1.6 b)	1.13 b) $a \in \left[\sqrt{\frac{15}{2}}, +\infty\right[$
1.6 c)	1.13 c) $a \in \left[0, \frac{25}{49}\right]$
1.6 d) $ \frac{\sqrt{2}-2}{3} $ et $ \frac{\sqrt{2}+2}{3} $.	1.14 $t \in \left\lceil \frac{1}{2}, 2 \right\rceil$
1.7 a)	

Corrigés

1.1 a) On a
$$\frac{10 - \sqrt{16}}{4} = \frac{10 - 4}{4} = \frac{3}{2}$$
.

1.1 b) On a
$$\frac{5+\sqrt{9}}{6} = \frac{5+3}{6} = \frac{4}{3}$$
.

1.1 c) On a
$$\frac{-6 - \sqrt{12}}{2} = \frac{-6 - 2\sqrt{3}}{2} = -3 - \sqrt{3}$$
.

1.1 d) On a
$$\frac{8+\sqrt{48}}{4} = \frac{8+4\sqrt{3}}{4} = 2+\sqrt{3}$$
.

1.2 a) On a
$$5^2 - 4 \times 5 \times \frac{3}{8} = 25 - \frac{15}{2} = \frac{35}{2}$$
.

1.2 b) On a
$$(-6)^2 + \frac{3}{5} \times (-7) \times 15 = 36 - 63 = -27$$
.

1.2 c) On a
$$-7^2 - 8 \times \frac{1}{3} \times 27 = -49 - 72 = -121$$
.

1.2 d) On a
$$\left(-\frac{5}{4}\right)^2 - 5 \times \frac{17}{32} \times \frac{24}{15} = \frac{25}{16} - \frac{17}{4} = -\frac{43}{16}$$
.

1.4 b) Le discriminant vaut
$$\left(\frac{2}{3}\right)^2 - 4 \times \frac{1}{2} \times \frac{-3}{4} = \frac{4}{9} + \frac{3}{2} = \frac{35}{18}$$
.

1.4 c) Le discriminant vaut
$$(-\sqrt{7})^2 - 4 \times \frac{4}{5} \times \frac{-5}{6} = 7 + \frac{8}{3} = \frac{29}{3}$$
.

1.4 d) Le discriminant vaut
$$(\sqrt{3})^2 - 4 \times \frac{\sqrt{6}}{7} \times \frac{\sqrt{2}}{\sqrt{3}} = 3 - \frac{8}{7} = \frac{13}{7}$$
.

1.5 a) Le discriminant vaut 20. Le polynôme a deux racines
$$x_1 = \frac{-2 - \sqrt{20}}{2} = \frac{-2 - 2\sqrt{5}}{2} = -1 - \sqrt{5}$$
 et $x_2 = -1 + \sqrt{5}$.

1.6 a) Le discriminant vaut 5. Le polynôme a deux racines
$$x_1 = \frac{3 - \sqrt{5}}{2 \times 4} = \frac{3 - \sqrt{5}}{8}$$
 et $x_2 = \frac{3 + \sqrt{5}}{8}$.

1.6 b) Le discriminant vaut
$$\frac{25}{4}$$
. Le polynôme a deux racines $x_1 = \frac{\frac{1}{1} - \frac{5}{2}}{2 \times \frac{1}{2}} = \frac{-\frac{6}{2}}{1} = -3$ et $x_2 = 2$.

1.6 c) Le discriminant vaut
$$\frac{25}{9}$$
. Le polynôme a deux racines $x_1 = \frac{-\frac{1}{3} - \frac{5}{3}}{2 \times 2} = \frac{-\frac{6}{3}}{4} = -\frac{2}{4} = -\frac{1}{2}$ et $x_2 = \frac{1}{3}$.

1.6 d) Le discriminant vaut 16. Le polynôme a deux racines
$$x_1 = \frac{2\sqrt{2} - 4}{2 \times 3} = \frac{\sqrt{2} - 2}{3}$$
 et $x_2 = \frac{\sqrt{2} + 2}{3}$.

Lorsque b = -2, on a $P = X^2 - 2X + 1 = (X - 1)^2$ donc le polynôme P admet 1 pour racine double. Donc P n'admet pas deux racines distinctes lorsque b = -2.

.....

1.7 c) Le polynôme P admet deux racines distinctes si et seulement son discriminant $\Delta = b^2 - 4$ est > 0. Or, on a $\Delta > 0 \iff b^2 > 2^2$ ce qui donne b < -2 ou b > 2. Donc, le polynôme P admet deux racines distinctes si et seulement si $b \in]-\infty, -2[\cup]2, +\infty[$.

.....

1.8 b) Le polynôme admet exactement une racine si et seulement si son discriminant Δ vaut 0. Or, on a $\Delta = 0 \iff 9 + 20a = 0$, ce qui donne $a = -\frac{9}{20}$.

1.9 b) Le polynôme n'admet aucune racine si et seulement si son discriminant Δ est < 0.

Or, on a $\Delta < 0 \iff 25 - 8c < 0 \iff c > \frac{25}{8}$. Ainsi, R n'a aucune racine si et seulement si $c \in \left] \frac{25}{8}, +\infty \right[$.

1.10 a) Les racines sont $x_1 = 1$ et $x_2 = \frac{3}{2}$ donc l'ensemble des solutions est $]-\infty, 1[\cup]\frac{3}{2}, +\infty[$.

1.10 b) On a $y^2 + 3y \le 2 \iff y^2 + 3y - 2 \le 0$. Le discriminant vaut 17 et les racines sont $x_1 = \frac{-3 - \sqrt{17}}{2}$ et $x_2 = \frac{-3 + \sqrt{17}}{2}$ donc l'ensemble des solutions est $\left[\frac{-3 - \sqrt{17}}{2}, \frac{-3 + \sqrt{17}}{2}\right]$.

1.10 c) On a $-t^2 < 5t + 4 \iff t^2 + 5t + 4 > 0$. Le discriminant vaut 9 et les racines sont $x_1 = -4$ et $x_2 = -1$ donc l'ensemble des solutions est $]-\infty, -4[\cup]-1, +\infty[$

- **1.11** a) On a $4z \geqslant \frac{3}{4} z^2 \iff z^2 + 4z \frac{3}{4} \geqslant 0$. Le discriminant vaut 19 et les racines sont $x_1 = -2 \frac{\sqrt{19}}{2}$ et $x_2 = -2 + \frac{\sqrt{19}}{2}$ donc l'ensemble des solutions est $\left] -\infty, -2 \frac{\sqrt{19}}{2} \right] \cup \left[-2 + \frac{\sqrt{19}}{2}, +\infty \right[$.
- **1.11** b) Le discriminant vaut $-\frac{72}{175} < 0$ donc il n'y a pas de racine. Comme le coefficient $\frac{1}{3}$ est positif, on sait que l'expression est toujours positive. Donc l'ensemble des solutions est \mathbb{R} .

1.11 c) On a $v - \sqrt{3} \ge v^2 \iff -v^2 + v - \sqrt{3} \ge 0$. Le discriminant vaut $1 - 4\sqrt{3} < 0$ donc il n'y a pas de racine. Le coefficient -1 est négatif, l'expression est donc toujours négative. Ainsi, l'ensemble des solutions est \emptyset .

1.12 a) La proposition est vraie si et seulement si a > 0 et le discriminant Δ est ≤ 0 . Or $\Delta = 9 + 16a$ donc

$$\Delta \leqslant 0 \iff 9 + 16a \leqslant 0 \iff a \leqslant -\frac{9}{16}$$
.

Ceci n'est pas compatible avec a > 0. Ainsi, il n'existe pas de valeur de a pour laquelle la proposition est vraie.

......

1.12 b) La proposition est vraie si et seulement si le discriminant Δ est \leq 0. Or $\Delta = 4a^2 - \frac{8}{15}$. Donc, on a $\Delta \leq 0 \iff 4a^2 - \frac{8}{15} \leq 0$. On obtient $a^2 \leq \frac{2}{15} \iff a \in \left[-\sqrt{\frac{2}{15}}, \sqrt{\frac{2}{15}}\right]$.

1.12 c) La proposition est vraie si et seulement si le discriminant Δ est \leq 0. Or $\Delta = \frac{25}{49} - 3a$. Donc, on a $\Delta \leq 0 \iff \frac{25}{49} - 3a \leq 0$ ce qui donne $-3c \leq -\frac{25}{49} \iff c \geq \frac{25}{147}$.

.....

1.13 a) La proposition est vraie si et seulement si a > 0 et le discriminant Δ est ≤ 0 . Or $\Delta = 9a^2 + 16a$. C'est une expression du second degré en a dont les racines sont 0 et $-\frac{16}{9}$ et de coefficient du second degré positif, donc le discriminant est négatif ou nul si et seulement si $a \in \left[-\frac{16}{9}, 0\right]$. Ceci n'est pas compatible avec a > 0, par conséquent, il n'existe pas de valeur de a pour laquelle la proposition est vraie.

.....

1.13 b) La proposition est vraie si et seulement si a>0 et le discriminant Δ est $\leqslant 0$. Or $\Delta=4-\frac{8a^2}{15}$. C'est une expression du second degré en a dont les racines sont $-\sqrt{\frac{15}{2}}$ et $\sqrt{\frac{15}{2}}$ et de coefficient du second degré négatif, donc le discriminant est négatif ou nul si et seulement si $a\in \left]-\infty,-\sqrt{\frac{15}{2}}\right]\cup\left[\sqrt{\frac{15}{2}},+\infty\right[.$

On en déduit que la proposition est vraie si et seulement si $a \in \left[\sqrt{\frac{15}{2}}, +\infty\right[$.

1.13 c) La proposition est vraie si et seulement si le discriminant Δ est \leq 0. Or $\Delta = \frac{49}{25}a^2 - a$. Donc, on a $\Delta \leq 0 \iff \frac{49}{25}a^2 - a \leq 0$. C'est une inéquation du second degré en a dont les racines sont 0 et $\frac{25}{49}$ et de coefficient du second degré positif, donc $\Delta \leq 0 \iff a \in \left[0, \frac{25}{49}\right]$.

1.14 Soit $t \in \mathbb{R}$. On a

$$\begin{cases} (x-5)^2 + (y-5)^2 = 5 \\ y = tx \end{cases} \iff \begin{cases} (x-5)^2 + (tx-5)^2 = 5 \\ y = tx. \end{cases}$$

Le système admet des solutions si et seulement si la première équation, d'inconnue x, admet des solutions. Or, on a

$$(x-5)^2 + (tx-5)^2 = 5 \iff x^2 - 10x + 25 + t^2x^2 - 10tx + 25 = 5 \iff (1+t^2)x^2 - 10(1+t)x + 45 = 0.$$

On reconnaît une équation du second degré en x de discriminant

$$\Delta = 100(1+t)^2 - 180(1+t^2) = 100 + 200t + 100t^2 - 180 - 180t^2 = -80t^2 + 200t - 80.$$

L'équation admet des solutions si et seulement si $\Delta \geqslant 0$.

Or, on a

$$\Delta \geqslant 0 \iff -80t^2 + 200t - 80 \geqslant 0 \iff 2t^2 - 5t + 2 \leqslant 0.$$

On reconnaît une inéquation du second degré de discriminant $\delta = 9$ dont les racines sont $t_1 = \frac{1}{2}$ et $t_2 = 2$.

Puisque le coefficient du second degré de l'inéquation est positif, l'ensemble des solutions de l'inéquation est $\left[\frac{1}{2},2\right]$. Ainsi, le système initial admet des solutions si et seulement si $t \in \left[\frac{1}{2},2\right]$.

Ce système correspond à l'étude de l'intersection d'un cercle et d'une droite.

.....