Introduction and technological Fundamentals Basic Antenna Concepts

Content - Fundamentals - Basic Antenna Concepts

- Isotropic Antennas (Point Radiators)
- Simple Dipole Antennas
- Directional Antennas and Sector Antennas
- Antenna Arrays

Isotropic Antennas (Point Radiators)

- Antennas are used to emitt and receive electromagnetic waves
- The antenna pattern is characterized by the directional diagram of the antenna (= antenna diagram); the directional diagram is determined by power measurements around the antenna
- An isotropic antenna is an ideal point antenna, which emitts power equally in all directions - it is used as a theoretical reference antenna
- Directional diagram of an ideal isotropic antenna:

Real antennas always have a vertical and/or horizontal directivity

Simple Dipole Antennas

 Real antennas are not isotropic radiators but e.g. λ/4 radiators (on a conductive surface, e.g. a car roof) or λ/2 dipoles; the size of a antenna is proportional to the wave length λ

Example: antenna diagram of a simple dipole antenna

 Definition of the antenna gain: ratio of the transmit power density in the direction of the antenna main lobe and the transmit power density of a reference antenna (that transmits with equal mean power)

Directional Antennas and Sector Antennas

- These types of antennas are used frequently for point-to point microwave links and in cellular mobile systems
- Examples:

Antenna Arrays

- Antenna arrays are build by grouping of two or more antennas
 - antenna placement in a circle → Circular Array
 - antenna placement in a plane → Linear Array

- Transmit Diversity: parallel transmission of the same signal with multiple antennas
- Spatial Multiplexing:
 - the original signal is transmitted with multiple antennas on different paths (inverse multiplexing in space)
- Beamforming:
 - the same signal transmitted on all antennas but with an individual phase-shift → creation of directional antenna beams (SDMA)
- Multi-User Detection / Interference Mitigation

 $\begin{array}{c|c} \uparrow & -\lambda/2 & -\lambda/2 \\ \hline & \downarrow & \\ &$

Antenna Arrays - Transmit/Receive Diversity

Receive Diversity

- reception with multiple antennas and combination of the received signals
- combination schemes:
 - Selection Combining: switching/selecting of one antenna element the antenna that receives the best signal is chosen
 - Maximum Ratio Combining: the signals of all antenna elements are used weighted, coherent addition of the signals

Antenna Arrays - Transmit/Receive Diversity

- Transmit Diversity
 - parallel transmission of the same signal with multiple antennas
 - variants: Open / Closed Loop Transmit Diversity
 - example for open loop transmit diversity: Space Time Block Coding (Alamouti scheme)

Antenna Arrays - Spatial Multiplexing

Spatial Multiplexing:

- the original signal is transmitted on different paths (inverse multiplexing in space); thus, each antenna transmits a individual (and different) signal
- perquisite: the receiver also has an antenna array (MIMO-Transmission)
- advantage: increasing the throughput in case of bad SNR by using multipath propagation (assuming that the fading on the paths occurs independently)

Antenna Arrays - Beamforming

- Beamforming:
 - Space Division Multiple Access (SDMA)
 - Beamforming variants:
 - fixed/switched-beam Beamforming:
 - fixed Beamforming: switching between pre-configured directional antennas
 - switched-beam Beamforming: switching between different pre-configured beam patterns of the antenna array
 - adaptive Beamforming: dynamic variation of the antenna characteristic
 - optimal Beamforming: steering beams according to an optimality criterion
 - Null-Steering Beamforming: blocking (nulling) interferers from certain directions

