$\left|\frac{\partial f}{\partial x_i} - \frac{\partial \hat{f}}{\partial x_i}\right| = \left|\alpha \frac{\partial h}{\partial x_i}\right|, \quad i=1,2,...,m$

となる。 にたがって、 Qの絶対値は、 †分小な選んでおけば、 $\stackrel{\mathcal{O}}{=} \left(\frac{\partial f}{\partial x_i} \right)^2 \times \stackrel{\mathcal{O}}{=} \left(\frac{\partial f}{\partial x_i} \right)^2$ の差は いくらでも小さくできる。 はじめに見ておいたように、 $\stackrel{\mathcal{O}}{=} \left(\frac{\partial f}{\partial x_i} \right)^2 = X + f$ は、 $P_2 \in \times P_E$ の間で、 最小値 $4 \in \mathbb{Z}^2$ つ をとるから、 Q が †分小さければ、 $\stackrel{\mathcal{O}}{=} \left(\frac{\partial f}{\partial x_i} \right)^2 = X + f$ は、 $P_2 \in \times P_E$ の間で、 最小値をもつ、 したがって、 円板 $P_2 \in \times P_E$ の間の部分で、 $\stackrel{\mathcal{O}}{=} \left(\frac{\partial f}{\partial x_i} \right)^2 = X + f$ は $P_2 \in \times P_E$ の間で、 $P_3 \in \times P_4$ は、 $P_4 \in \times P_4$ は $P_4 \in \times P_4$ に なるから、 $P_4 \in \times P_4$ であったとしても、 $P_4 \in \times P_4$ になっている。

この議論を続けていけば、すべての臨界点での関数値が異なるようにできることがわかる。 デが (C^2, ε) の意味ですに近いことの証明も、Morse関数の存在定理 2.20 の証明のなかで やった議論と同様である。

演習問題

- 21 点Poが関数f: M→Rの臨界点であることは、Poのまわりの局所座標系の取り方に無関係であることを示せ、
- [証明] 点 P_0 の まわりの 異なる局所 座標系 $(x_1, ..., x_m)$, $(y_1, ..., y_m)$ を Y_0 . 偏微分の 座標変換の公式 $\frac{Of}{Oxi}(p_0) = \frac{1}{12} \frac{Oy}{Oxi} \frac{Of}{Oyi}(p_0)$

から、Poが $(y_1, ..., y_m)$ で計算したとき fの 臨界点 $(\underset{\sim}{\text{ef}}_{y_1}(p_0) = ... = \underset{\sim}{\text{o}y_m}(p_0) = 0)$ であれば、 $(x_1, ..., x_m)$ で計算したときも、fの 臨界点 $(\underset{\sim}{\text{ef}}_{x_1}(p_0) = ... = \underset{\sim}{\text{o}x_m}(p_0) = 0)$ であることがわかる。270 座標系の役割を入れ替えても同じことが言えるから、 p_0 が fの 臨界点であることは同所座標系の取り方によらない。

- 2.2 $S^{m-1} = \{(x_1, ..., x_m) | x_1^2 + ... + x_n^2 = 1\}$ を $m | x_n$ 正球面とし、 $f: S^{m-1} \to \mathbb{R}$ を $f(x_1, ..., x_m) = x_m$ で定義される 「高さ関数」とすれば、 f は S^{m-1} の上 Morse 関数 である。これを証明し、かっ 臨界点とその指数を求めよ、(座標 ($\alpha_1, ..., \alpha_m$)は S^{m-1} の 局所座標系ではない、! また、 $m \ge 2$ とにない。)
- 「証明」臨界点は (0,…,±1)の2つだけである. その指数は (0,…,0,-1)が0, (0,…,0,1)がm-1である. 第1章例1.15参照 ■