Information-theoretic Analysis of Brain Dynamics

Neural Network Models Informed by Information Theory

Supervisors: Prof. Simon Schultz Dr. Pedro Mediano

Jess Yu

PhD Candidate in Computational Neurodynamics

Research interest:

- Information theory in neuroscience
- Information theory in machine learning

Deciphering the Dynamics of Memory Encoding and Recall in the Hippocampus using Information theory

Information Theory

Information Theory

Information Theory

Neural Community

Neural Network Models Informed by Information Theory

A General Framework for Interpretable Neural Learning

RELATING TRANSFORMERS TO MODELS AND NEURAL REPRESENTATIONS OF THE HIPPOCAMPAL FORMATION

RELATING TRANSFORMERS TO MODELS AND NEURAL REPRESENTATIONS OF THE HIPPOCAMPAL FORMATION

? Analyzing Hippocampal Representations Using Transformer Models and Partial Information Decomposition

- How transformer-based neural network models can replicate and elucidate the information processing mechanisms of the hippocampus, with a focus on spatial representations
- Employing Partial Information Decomposition (PID) to dissect the contributions of individual neurons or neural assemblies to the overall information structure

