

AMENDMENTS

In the Claims:

This listing of claims replaces all prior versions and listings of claims in the application.

- 1 1. (Previously presented) A space-saving scanner assembly, comprising:
 - 2 a housing having a substantially vertical source-contact surface with a channel
 - 3 that protrudes from the housing, said channel having a first surface that is substantially
 - 4 parallel to, and opposed from, said source-contact surface, said channel having a second
 - 5 surface substantially orthogonal to the first surface; and
 - 6 a flap coupled to the source-contact surface, the flap having a source-backing
 - 7 surface substantially parallel to the source-contact surface of the housing, wherein the
 - 8 source-contact surface, the source-backing surface, and the first and second surfaces of
 - 9 the channel form an aperture for receiving an edge of a source to be scanned.
- 1 2. (Previously presented) The assembly of claim 1, wherein a portion of
2 the vertical source-contact surface of the housing comprises a platen to permit scanning
3 of a source document in a vertical position.
- 1 3. (Previously presented) The assembly of claim 1, wherein a front panel
2 of the housing includes an inclined surface adjacent to the aperture.
- 1 4. (Previously presented) The assembly of claim 1, wherein the flap
2 includes an inclined surface adjacent to the aperture.
- 1 5. (Previously presented) The assembly of claim 1, wherein the flap
2 includes a slot.
- 1 6. (Previously presented) The assembly of claim 1, wherein the source-
2 backing surface of the flap includes a clip arranged to receive a portion of a source
3 document to be scanned.

1 7. (Previously presented) The assembly of claim 1, wherein the housing
2 further comprises a recess configured to receive a portion of the channel when an
3 operator closely adjusts the source contact surface to the substantially vertical surface of
4 the housing.

1 8. (Previously presented) The assembly of claim 2, wherein the platen has
2 an upper edge, an opposing lower edge, a front edge relatively coexistent with a front
3 panel of the housing, and a distal edge and wherein the channel is adjacent to the lower
4 edge of the platen.

1 9. (Previously presented) The assembly of claim 3, wherein the channel
2 has a first end proximal to a front panel of the housing and a distal end that extends at
3 least to an edge of the platen.

1 10. (Previously presented) The assembly of claim 4, wherein the flap is
2 coupled to the housing with at least one post assembly having a plurality of spatially
3 separated detent positions.

1 11. (Previously presented) The assembly of claim 4, wherein the flap is
2 coupled to the housing with at least one adjustable fastener for closely contacting the
3 source-backing surface to the vertical source-contact surface.

1 12. (Previously presented) The assembly of claim 5, wherein the slot is
2 positioned to permit the placement of a relatively short source document on edge on the
3 channel wherein information to be scanned is aligned with at least a portion of a platen.

1 13. (Previously presented) The assembly of claim 7, wherein the housing is
2 configured to extend the channel from the vertical source-contact surface when an
3 operator adjusts the source-backing surface in relation to the vertical source-contact
4 surface of the housing to increase the width of the aperture.

1 14. (Previously presented) The assembly of claim 2, wherein the width of a
2 first end of the channel proximal to a front panel of the housing increases over that
3 portion of the channel that extends beyond the platen.

1 15. (Previously presented) The assembly of claim 9, wherein the channel is
2 coated with a layer of material having a relatively low coefficient of friction.

1 16. (Currently amended) A space-saving scanner assembly, comprising:
2 means for housing an optical scanner scanning means; and
3 means for forming an aperture configured to closely receive a leading edge of a
4 source, such that the source can be spatially arranged with the ~~means for optically optical~~
5 scanning means without adjusting the aperture, the source being supported along a
6 second edge of said source along a channel means when the source is aligned with the
7 means for optically scanning while in the aperture and spatially arranged with the means
8 for optically scanning, wherein said channel means protrudes from said means for
9 housing and comprises a source-retaining means substantially parallel to, and opposed
10 from, said optical scanner scanning means and a source support means substantially
11 orthogonal to said source retaining means.

1 17. (Previously presented) The assembly of claim 16, wherein the source
2 retaining means of said channel means extends vertically from a base of said channel
3 means and said source support means is substantially parallel to said base of said channel
4 means.

1 18. (Previously presented) The assembly of claim 16, wherein the means for
2 forming an aperture comprises a flap having a slot.

1 19. (Previously presented) The assembly of claim 16, wherein the means for
2 forming an aperture comprises a first inclined surface associated with a housing and a
3 second inclined surface associated with a flap.

1 20. (Previously presented) A method for saving space on a desktop,
2 comprising:

3 providing an optical scanner having a housing, the housing having a substantially
4 vertical source-contact surface with a channel protruding from the housing, the channel
5 having a surface that is substantially parallel to, and opposed from, said source-contact
6 surface, the vertical source-contact surface including a transparent platen portion,
7 wherein the channel is adjacent to a lower edge of the transparent platen portion and
8 further comprises a second surface substantially orthogonal to the first surface; and

9 providing a flap coupled to the source-contact surface, the flap having a source-
10 backing surface substantially parallel to the source-contact surface of the housing,
11 wherein the source-contact surface, the source-backing surface, and the and second
12 surfaces of the channel form an aperture for receiving a source to be scanned.

1 21. (Previously presented) The method of claim 20, further comprising
2 inserting a leading edge of a source to be scanned into the aperture formed by the source-
3 contact surface, the source-backing surface, and the channel such that the source is
4 supported along a second edge by the channel.

1 22. (Previously presented) The method of claim 21, further comprising
2 spatially arranging the flap and the housing wherein pressure is applied to a non-scan
3 surface of the source and the scan surface of the source closely contacts the transparent
4 platen portion.

1 23. (Previously presented) The method of claim 22, further comprising
2 enabling the optical scanner to scan the source.

1 24. (Previously presented) The method of claim 23, further comprising
2 spatially arranging the flap and the housing wherein pressure is removed from the non-
3 scan surface of the source.

1 25. (Previously presented) The method of claim 24, further comprising
2 removing the source from the aperture.

1 26. (Previously presented) A space-saving scanner assembly, comprising:
2 a housing having a substantially vertical source-contact surface;
3 a channel protruding from the housing, said channel having a first surface that is
4 substantially parallel to, and opposed from, said source-contact surface and a second
5 surface that is substantially orthogonal to the first surface; and
6 a flap coupled to the housing, the flap having a source-backing surface
7 substantially parallel to the source-contact surface of the housing, wherein the source-
8 contact surface, the source-backing surface, and the first and second surfaces of the
9 channel form an aperture for receiving an edge of a source to be scanned without
10 necessitating relative movement between the flap and the housing.

1 27. (Previously presented) The assembly of claim 26, wherein the housing
2 contains a front panel with an inclined surface adjacent to the opening, the inclined
3 surface forming a wider opening at the surface of the front panel.

1 28. (Previously presented) The assembly of claim 26, wherein the flap
2 includes an inclined surface adjacent to the opening, the inclined surface arranged to
3 increase the opening along a front edge of the flap, wherein the front edge is substantially
4 perpendicular to the source-backing surface.

1 29. (Previously presented) The assembly of claim 26, wherein the flap
2 includes a slot.

1 30. (Previously presented) The assembly of claim 29, wherein the slot is
2 positioned to permit the placement of a relatively short source document on edge on said
3 channel and wherein information to be scanned from the source document is aligned with
4 at least a portion of a platen.

1 31. (Previously presented) The assembly of claim 26, wherein the housing
2 further comprises a recess configured to receive a portion of said channel when the
3 source-backing surface is in close proximity to the source-contact surface.

1 32. (Previously presented) The assembly of claim 26, wherein said channel
2 has a first end proximal to a front panel of the housing and a distal end that extends at
3 least to a distal edge of a platen.

1 33. (Previously presented) The assembly of claim 26, wherein the flap is
2 coupled to the housing with at least one post assembly having a plurality of spatially-
3 separated detent positions.

1 34. (Previously presented) The assembly of claim 26, wherein the housing
2 is configured to extend said channel from the source-contact surface when an operator
3 adjusts the source-backing surface in relation to the source-contact surface to increase the
4 width of the aperture.

1 35. (Previously presented) The assembly of claim 26, wherein the width of
2 said channel at a first end of said channel proximal to a front panel of the housing
3 increases over that portion of said channel that extends beyond a platen.

1 36. (Previously presented) The assembly of claim 26, wherein said channel
2 is coated with a material having a relatively low coefficient of friction.

1 37. (Currently amended) A method for arranging a source in a scanner
2 comprising:

3 inserting a leading edge of the source into an aperture formed by a channel that
4 protrudes from a housing, the channel having a first surface that is substantially parallel
5 to, and opposed from, a platen of the scanner such that a surface of the source having
6 information thereon that is desired to be imaged by the scanner is adjacent to a sensor
7 arranged in a substantially vertical plane and such that a second edge of the source said
8 leading edge is supported by a base surface of said channel, said base surface extending
9 adjacent to an edge of said platen; and

10 adjusting the source such that the information desired to be imaged is aligned
11 with the sensor.

1 38. (Previously presented) The method of claim 37, further comprising:
2 inserting a plug into a slot formed in a flap, the flap substantially parallel with the
3 platen of the scanner; and
4 enabling the sensor to scan the information.

1 39. (Previously presented) The method of claim 38, further comprising:
2 removing the plug; and
3 removing the source from the aperture.

1 40. (New) A space-saving scanner assembly, comprising:
2 a housing having a substantially vertical source-contact surface;
3 a flap coupled to the source-contact surface, the flap having a source-backing
4 surface substantially parallel to the source-contact surface of the housing; and
5 a support track interposed between said housing and said flap, said support track
6 comprising a first member in juxtaposition with the substantially vertical source-contact
7 surface and the source-contact surface, wherein the source-contact surface, the source-
8 backing surface, and said support track form an aperture for receiving an edge of a source
9 to be scanned.

1 41. (New) The assembly of claim 40, wherein a portion of the vertical
2 source-contact surface of the housing comprises a platen to permit scanning of a source
3 document in a vertical position.

1 42. (New) The assembly of claim 41, wherein the platen has an upper
2 edge, an opposing lower edge, a front edge relatively coexistent with a front panel of the
3 housing, and a distal edge and wherein said support track is adjacent to the lower edge of
4 the platen.

1 43. (New) The assembly of claim 42, wherein said support track has a first
2 end proximal to the front panel of the housing and a distal end that extends at least to the
3 distal edge of the platen.

1 44. (New) The assembly of claim 42, wherein the width of a first end of
2 said support track proximal to the front panel of the housing increases over that portion
3 of said support track that extends beyond the platen.

1 45. (New) The assembly of claim 40, wherein said housing comprises a
2 front panel having an inclined surface adjacent to the aperture.

1 46. (New) The assembly of claim 40, wherein the flap comprises an
2 inclined surface adjacent to the aperture.

1 47. (New) The assembly of claim 40, wherein the flap comprises a slot.

1 48. (New) The assembly of claim 47, wherein the slot is positioned to
2 permit the placement of a relatively short source document on edge on said support track
3 wherein information to be scanned is aligned with at least a portion of a platen.

1 49. (New) The assembly of claim 40, wherein the flap is coupled to the
2 housing with at least one post assembly having a plurality of spatially separated detent
3 positions.

1 50. (New) The assembly of claim 40, wherein the flap is coupled to the
2 housing with at least one adjustable fastener for closely contacting the source-backing
3 surface to the vertical source-contact surface.

1 51. (New) The assembly of claim 40, wherein the source-backing surface
2 of the flap comprises a clip arranged to receive a portion of a source document to be
3 scanned.

1 52. (New) The assembly of claim 40, wherein the housing further
2 comprises a recess configured to receive a second member of said support track when an
3 operator closely adjusts the source contact surface to the substantially vertical surface of
4 the housing.

1 53. (New) The assembly of claim 52, wherein the housing is configured to
2 extend said support track from the vertical source-contact surface when an operator
3 adjusts the source-backing surface in relation to the vertical source-contact surface of the
4 housing to increase the width of the aperture.

1 54. (New) The assembly of claim 40, wherein said support track is coated
2 with a layer of material having a relatively low coefficient of friction.

1 55. (New) A space-saving scanner assembly, comprising:
2 means for housing an optical scanning means; and
3 means for forming an aperture configured to closely receive a leading edge of a
4 source along a plane substantially orthogonal to a front surface of the means for housing,
5 such that the source can be spatially arranged with the optical scanning means without
6 adjusting the aperture, the source being supported along a second edge of said source by
7 a support means in the aperture, wherein said support means is interposed between a first
8 source-retaining means and said optical scanning means.

1 56. (New) The assembly of claim 55, wherein said support means
2 comprises a second source retaining means substantially parallel to the optical scanning
3 means.

1 57. (New) The assembly of claim 55, wherein the first source retaining
2 means comprises a flap having a slot.

1 58. (New) The assembly of claim 55, wherein the means for forming an
2 aperture comprises a first inclined surface associated with said means for a housing and a
3 second inclined surface associated with the first source retaining means.

1 59. (New) A method for saving space on a desktop, comprising:
2 providing an optical scanner within a housing, the housing having a substantially
3 vertical source-contact surface with a support track protruding from the housing, the
4 support track having a first member comprising a first source-backing surface
5 substantially parallel to, and opposed from, said source-contact surface; and
6 providing a flap coupled to the source-contact surface, the flap having a second
7 source-backing surface substantially parallel to the source-contact surface of the housing,
8 the second source-backing surface substantially parallel to and opposed from, a second
9 surface of the first member, the second source-backing surface also opposed to said first
10 source-backing surface, wherein the source-contact surface, the second source-backing
11 surface, and the first source-backing surface form an aperture for receiving a source to be
12 scanned.

1 60. (New) The method of claim 59, further comprising inserting a leading
2 edge of a source to be scanned into the aperture formed by the source-contact surface, the
3 second source-backing surface, and the support track such that the source is supported
4 along a second edge by the support track.

1 61. (New) The method of claim 60, further comprising spatially arranging
2 the flap and the housing wherein the second source-backing surface and the first source-
3 backing surface are juxtaposed to a non-scan surface of the source and a scan surface of
4 the source is juxtaposed to the source-contact surface.

1 62. (New) The method of claim 61, further comprising enabling the optical
2 scanner to scan the source.

1 63. (New) The method of claim 62, further comprising removing the
2 source from the aperture.

1 64. (New) A space-saving scanner assembly, comprising:
2 a housing having a substantially vertical source-contact surface comprising a
3 platen;
4 a flap coupled to the housing, the flap having a source-backing surface
5 substantially parallel to the source-contact surface of the housing; and
6 a support track interposed between the source-contact surface and the source-
7 backing surface proximal to a perimeter segment of the platen, said support track
8 comprising a first member having a first surface juxtaposed from the source-contact
9 surface and a second surface juxtaposed from the source-backing surface and a support
10 member, wherein the source-contact surface, the source-backing surface, and the support
11 track form an aperture for receiving a first edge of a source to be scanned without
12 necessitating relative movement between the flap and the housing to align a second edge
13 of the source with the perimeter segment of the platen.

1 65. (New) The assembly of claim 64, wherein the housing contains a front
2 panel with an inclined surface adjacent to the aperture, the inclined surface arranged such
3 that the aperture is larger adjacent to the front panel.

1 66. (New) The assembly of claim 64, wherein the flap includes an inclined
2 surface adjacent to the aperture, the inclined surface arranged such that the aperture is
3 larger adjacent to a front edge of the flap, wherein the front edge is substantially
4 perpendicular to the source-backing surface.

1 67. (New) The assembly of claim 64, wherein the flap includes a slot.

1 68. (New) The assembly of claim 67, wherein the slot is positioned to
2 permit the placement of a relatively short source document on edge on said support track
3 and wherein information to be scanned from the source document is aligned with at least
4 a portion of the platen.

1 69. (New) The assembly of claim 64, wherein the housing further
2 comprises a recess configured to receive a portion of said support track when the source-
3 backing surface is in close proximity to the source-contact surface.

1 70. (New) The assembly of claim 64, wherein said support track has a first
2 end proximal to a front panel of the housing and a distal end that extends at least to a
3 distal edge of the platen.

1 71. (New) The assembly of claim 64, wherein the flap is coupled to the
2 housing with at least one post assembly having a plurality of spatially-separated detent
3 positions.

1 72. (New) The assembly of claim 64, wherein the housing is configured to
2 extend said support track from the source-contact surface when an operator adjusts the
3 source-backing surface in relation to the source-contact surface to increase the width of
4 the aperture.

1 73. (New) The assembly of claim 64, wherein the width of said support
2 track at a first end of said support track proximal to a front panel of the housing increases
3 over that portion of said support track that extends beyond the platen.

1 74. (New) The assembly of claim 64, wherein an upper surface of said
2 support member is coated with a material having a relatively low coefficient of friction.

1 75. (New) A method for arranging a source in a scanner comprising:
2 inserting a leading edge of the source into an aperture formed by a support track
3 that protrudes from a housing, the support track comprising a first member and a second
4 member, the first member having a surface that is substantially parallel to, and opposed
5 from, a platen of the scanner such that a surface of the source having information thereon
6 that is desired to be imaged by the scanner is adjacent to a sensor arranged in a
7 substantially vertical plane and such that said leading edge is supported by an upper
8 surface of the second member, said upper surface extending adjacent to an edge of said
9 platen; and
10 adjusting the source such that the information desired to be imaged is aligned
11 with the sensor.

1 76. (New) The method of claim 75, further comprising:
2 inserting a plug into a slot formed in a flap, the flap substantially parallel with the
3 platen of the scanner; and
4 enabling the sensor to scan the information.

1 77. (New) The method of claim 76, further comprising:
2 removing the plug; and
3 removing the source from the aperture.