

Université of Bordeaux 2013-2014

Projet d'Étude et de Recherche

Three-dimensional musical instrument

Supervisor: Aurélie Bugeau Clients: Myriam Desainte-Catherine, Joseph Larralde, and Florent Berthaut

Mohamed Bourara, Jean Bui-Quang, Omar Ourhi, Jean-Michaël Celerier, Marie Immacula Omiscar and Damien C

January 14, 2014

Contents

1	3D 1	musical instruments and 3D displays for performance	4				
	1.1	Subject presentation	4				
	1.2	What is a 3D musical instrument?	5				
	1.3	Immersion	6				
	1.4	Control	6				
2	Thr	ee-dimensional displays	8				
	2.1	Definition of a 3D display	8				
		2.1.1 The problem	8				
		2.1.2 Parameters	8				
		2.1.3 Presentation of common visual cues	8				
	2.2	Classification of the 3D displays	9				
		2.2.1 Criterions	9				
	2.3	In-depth presentation of some 3D display methods	9				
3	Presentation of 3D musical instruments						
	3.1	History of the 3D musical instruments	10				
	3.2	The DRILE	11				
		3.2.1 livelooping	11				
	3.3	Aerial Percussion	11				
4	Rea	lisation	12				
	4.1	Required work	12				
		4.1.1 Finding a display	12				
		4.1.2 Implementing suitable renderings	12				
		4.1.3 Customisation	12				
	4.2	Implementation	12				
		4.2.1 Chosen display techniques	13				
		4.2.2 DRILE Implementation	14				
		4.2.3 Aerial Percussion implementation	14				
Gl	ossa1	ry	16				

List of Figures

1.1	Picture of a musician using DRILE	 	 	 	 	5
2.1	Psychological cues	 	 	 	 	8

Introduction

A three-dimensional musical instrument might sound quite abstract for the bystander. One can think of it as a musical instrument taking place in the virtual reality or augmented reality domain. While an exact definition might be hard to settle because every instrument will be different in core features to others, a general definition might be an instrument which can have either:

- A visual representation in a three-dimensional space
- Interactions in a three-dimensional space

The two points are generally shared, however it is harder to display the instrument in 3D than to interact with it.

The display can have two goals: [BHDC10]

- Giving visual cues to the spectators of the musician's actions.
- Helping the musician to perform.

One of the main focuses of this exposé will be to assess the different display techniques suitables to a 3D instrument, and the other will explain how it can improve existing 3D instruments.

The last part of this report will be about the choices we had to make in order to setup our own 3D musical instrument.

3D musical instruments and 3D displays for performance

1.1 Subject presentation

3D Musical instruments

At the **SCRIME**¹ and **LABRI**², three-dimensional musical instruments have been implemented within the context of research in interactive virtual reality and music computing.

The **Drile** [BDCH⁺10] is a 3D musical instrument which allows manipulation of the structure of a song using live looping, in an immersive virtual reality scene.

The **Aerial Percussion** is a 3D musical instrument which generates sounds using the position in space of sensors which are put at the end of drumsticks. Virtual 3D shapes like cubes, cylinders, are positionned around the instrument and the musician. According to the position, the orientation, and the speed of the sensors, sounds are generated.

Required work

We were asked to implement a prototype of a 3D render and display device, for musical performance. It is necessary to take into account the constraints inherent to a musical performance environment, as well as the constraints of the instruments.

Here are some constraints for the performance :

- The musician has to be in front of the audience.
- The musician requires visual cues inherent to the utilisation of the instrument, and the audience must see the instrument to understand the gestures and actions of the musician.

To enact this implementation, a precise explanation of the nature of the 3D musical instruments is required.

Plan for this section

We will first make a short presentation of 3D musical instruments, present and will then define the concepts of immersivity and interactivity.

¹Studio de Création et de Recherche en Informatique et Musique Électroacoustique

²LAboratoire Bordelais de Recherche en Informatique

Figure 1.1: Picture of a musician using DRILE

1.2 What is a 3D musical instrument?

TODO a reformuler : bof le wikipédia

A 3D musical instrument, or an immersive virtual musical instrument, represents sound processes and their parameters as 3D entities of a virtual reality so that they can be perceived not only through auditory feedback but also visually in 3D and possibly through touch as well as haptic feedback, using 3D interface metaphors consisting of interaction techniques such as navigation, selection and manipulation.

Example for the Drile

For instance, the picture 1.1 shows a musician with special glasses, as well as joysticks with force-feedback haptic sensors (Piivert [BHDC10]). The user handles 3D shapes in a 3D environment to influence the music generation. A specific part of this report will be dedicated to a precise study of the **DRILE**.

1.3 Immersion

Definition

Immersion is a psychologic state where the subject stops about taking care of its own physical state. The immersion is quite important in virtual reality. For instance, for the Aerial Percussion, it would come down to the state the performer is when he stops thinking consciously of the disposition of the shapes he interacts with. The musician will then be immersed in the virtual 3D environment which consists in the shapes disposition.

Hence, to immerse an user, multiple parameters are accessible to the 3D instrument designer. They are mostly linked to the senses of the human body. In our project, we will mainly focus on vision, and more precisely on 3D display devices.

Interactivity is an important aspect of the immersion capacities of a musical system. The user is more likely to get an immersive feeling in a virtual world, if the world instantly reacts to his actions L'interactivité a une part importante dans l'aspect immersif d'un système. L'utilisateur a d'autant plus le sentiment d'immersion dans un monde virtuelle si celui ci réagit instantanément à ses actions. Ceci nous amène a définir les contrôles d'un instrument de musique 3D et l'importance de l'interactivité.

1.4 Control

Pour le contrôle de l'instrument de musique 3D, il est important de voir le système de deux manières. Dans un premier temps comme un instrument de musique, qui donc doit répondre à certaine contraintes qui permet d'assurer la précision et la qualité attendu par un musicien de son instrument. Et dans un second temps comme un système interactif immersif, c'est à dire une très grande interactivité et de tirer profits un maximum des caractéristiques de l'être humain (retour visuelle immersif et retour haptique).

Pour la manipulation d'un instrument de musique, la segmentation de la gestuel faite par Cadoz [Cad99] est très pertinente. Cadoz définit trois types de gestes:

- les gestes de sélection : action de sélection du musicien d'un composant de l'instrument plutôt qu'un autre, par exemple dans le cas d'un violon cela revient à choisir une corde plutôt qu'une autre.
- les gestes de modification : action qui modifit l'état de l'instrument, dans le cas d'une guitare cela revient à utiliser sa main gauche pour presser une ou des cordes sur l'une des cases du manche.
- les gestes d'excitation : action qui génère directement et physiquement le son, qui revient à pincer une corde dans le cas d'une guitare. C'est ce geste qui est soumis à l'expression de l'artiste.

Mais il ne faut pas oublier le caractère immersif du système, celui impose que l'utilisateur ait un certain confort de manipulation. L'immersion visuelle est souvent améliorer grâce à un suivi de tête à l'aide d'une Kinect. Ceci permet d'adapter la projection en fonction de la position de la tête de l'utilisateur et cela augmente l'impression d'immersion. Des boutons de pressions à retour haptique augmentent aussi la conscience des actions de l'utilisateur, donc sa précision d'action.

Nous verrons dans la suite de ce rapport que Florent Berthaut s'est posé toutes ces questions lorsqu'il a conçu Piivert [BHDC10] pour contrôler le DRILE.

Maintenant que le concept d'instrument de musique 3D est bien défini, nous allons pouvoir nous focaliser sur les techniques de rendu 3D qui nous intèressent plus particulièrement vis à vis de notre sujet.

Three-dimensional displays

2.1 Definition of a 3D display

While it is commonplace to hear about 3D display in television or smartphone advertisement nowadays, the distinction between 2D and 3D might be more difficult to settle.

2.1.1 The problem

If we take the simple definition: a 3D display is a display that can show 3D images, it is really ambiguous, because of what is supposed to be "3D". For instance, for years, video games have been advertising 3D engines and spectacular 3D graphics, even without what we now call 3D displays.

Hence, we have to qualify what is 3D and what is not.

2.1.2 Parameters

In the litterature ([Oko76], [PS12]), the main idea is to relate to the human brain and body capabilities. For instance, a big part of the "3D" feel is due to the fact of having two eyes that looks in the same direction, but from a slightly different angle, but it is not all.

The visual cues of 3D vision are separated in two families:

- Physiological cues. They will relate to the capabilities of the human body.
- Psychological cues. They will relate to the information inference capabilities of the human brain.

2.1.3 Presentation of common visual cues

Psychological cues
Occlusion
Linear perspective
Atmospheric perspective
Shading

Figure 2.1: Psychological cues

2.2 Classification of the 3D displays

One of the main problem while trying to find a proper display for a given application is to choose a relevant classification for the displays, that allows a choice with criterions relevant to the application.

2.2.1 Criterions

There was a lack of proper nomenclature in the literature for a long time [PS12]. However, some attemps have been made to find relevant criterions that would be general enough to cover the current display techniques, but also the ones that are not yet thought of.

Different classifications

The first classification was in [Oko76], and it was really based upon the different kinds of displays:

- Lens-sheet three dimensional pictures.
- Projection-type three dimensional displays.
- · Holography.

However, it did not hold well against the emergence of new techniques, like volumetric displays for instance.

«««< HEAD Other classifications would limit themselves to only a subset of 3D displays.
====== Other classifications [?] would limit themselves to only a subset of 3D displays.</pre>

»»»> 79dd2c9a3ce1222897afafb9416e3ffde83706c7

Hence the need for a classification that would not base itself on the different technologies, but on criterions that would be inherent to the idea of display and human vision.

Chosen classification

In [PS12], the main idea is to classify the displays according to two axes:

- The display depth (flat or deep).
- The number of points of view from which the image can be seen (duoscopic, multiscopic, or omniscopic).

2.3 In-depth presentation of some 3D display methods

Pepper's Ghost

Glasses

Head-mounted displays

Hologram

Autostereoscopic screen

Presentation of 3D musical instruments

3.1 History of the 3D musical instruments

De nombreux instruments de musiques immersifs se concentrent sur la navigation dans un environnements 3D virtuelle. Tout d'abord le projet Phase [RLC+05] explore la génération, la prise en main et le controle de son ou de musique à l'aide d'un capteur haptique et d'une représentation visuelle pouvant guidée l'utilisateur. Un second projet, Plumage [JAC+07], est une interface pour le contrôle interactif de la composition audio spatialisées. Des plumes dispersées dans une scène 3D représente des grains sonores, générent du son lorsque des têtes de lectures les parcours. Les têtes de lectures sont contrôlées directement par l'utilisateur. Néanmoins ces deux projets ne permettent pas de manipuler directement la structure de la synthèse sonore, mais seulement de la manipuler.

Une autre gamme d'instrument 3D se concentre sur une unique synthèse sonore. Dans ce cas nous pouvons trouver par exemple le *Virtual Xylophone*, le *Virtual Membrane* ou encore la *Virtual Air Guitar* [MPLKT05]. Un autre exemple d'interaction 3D avec une synthèse sonore unique est celle de Mike Wozniewski [WSC06]. Son application permet a un utilisateur de naviguer dans une scène 3D comportant à certain point précis des générations de son. L'utilisateur entend les sons en fonction de sa position et de son orientation dans la scène 3D.

La percussion aérienne est un intstrument 3D que nous pourrions mettre dans cette classe d'instrument.

Le DRILE propose une nouvelle utilisation de la 3D. Le DRILE utilise l'interaction 3D pour pouvoir manipuler plus aisément la structure même d'une musique.

Le DRILE et la percussion aérienne ont été conçu pour la performance musicale.

- 3.2 The DRILE
- 3.2.1 livelooping
- 3.3 Aerial Percussion

Realisation

4.1 Required work

Apart from the research work, the application of our research to two musical instruments (the DRILE and the Aerial Percussion) is required.

The goal of our work is to enact a live show with these two instruments, that allows for both the performer and the spectators to see the musical instrument in three dimensions.

4.1.1 Finding a display

The first task is to find a suitable display method that would allow:

- The performer to interact with the instrument
- The spectators to see the performer as if he was part of the 3D scene
- If possible, a stereoscopic feel.

4.1.2 Implementing suitable renderings

There is already some existing work for the rendering engine of the DRILE, however there is nothing for the aerial percussion.

We have to make renders from two different viewpoints : one for the performer, antoher for the spectators.

4.1.3 Customisation

If we have time left, we are to add some customisations to the aerial percussion rendering, in order to make it look like a real show, with special effects, flares, particles, textures...

4.2 Implementation

We will describe here the multiple choices that have been made during this project, and the reason behind these choices, as well as the result of our implementation.

4.2.1 Chosen display techniques

There are multiple factors to take into account:

- 1. The availability of the technology.
- 2. The potential price of the required materials.
- 3. The time to setup the display.
- 4. The scaling for a medium-sized audience.
- 5. The compatibility with the double requirement: a view for the performer, and another for the spectators.

We are now going to study these requirements point by point.

Availability

This is the main problem: many of the display devices presented in 2 have only been the subject of research and not of a real implementation sold by a company (e.g. holograms). Also, the development state of some technologies might not be sufficient for what we are striving for (e.g. autostereoscopic displays which are only present in very small screens like smartphones).

Price

Some technologies might be irrelevant only because of the amount of money needed to get a working implementation. For instance, an active 84" 3D HDTV generally costs more than ten thousand dollars, which is unsuitable to this project.

Setup time

Some methods might require a very long time to setup. While we don't have a required maximum time to setup the show, we should try to keep it as low as possible. For instance, the Pepper's Ghost technique is quite long to setup, because there is a lot of massive hardware, videoprojectors, screens, to setup.

Scaling

Since this is for a show, we need a system that will allow everybody in the room to enjoy the performance. The estimate is at about 40 persons: we need a display that provides big enough viewing angles and is big enough for everybody to be able to enjoy it. A square display with a side of two meters would be ideal to enable complete immersion.

Double-view requirement

This is one of the hardest requirements, because it can easily double the quantity of required hardware. For instance, if we were to use 3D TVs, we would need one TV for the viewers and one for the performer.

4.2.2 DRILE Implementation

Technologies used

Pictures

4.2.3 Aerial Percussion implementation

Technologies used

Displaying the data

Truc sur les angles

Pictures

Conclusion

Glossary

atmospheric perspective the impression of depth given by the refraction of the air. For instance, we can say that mountains are far because they appear more blue than close mountains.. 8

display something that can convert data as a byte stream into light, in order to be perceived by an human eye. 8

linear perspective the way our visual perception of objects are affected by their position and dimension. 8

live looping A REMPLIR. 4

occlusion when an object is hidden by another.. 8

- L'article [HDFP11]
- L'article [PS12]
- L'article [MPWL13]
- L'article [KHY⁺12]
- L'article [Cad99]
- L'article [BHDC10]
- Le livre [Oko76]
- L'article [RLC⁺05]
- L'article [JAC⁺07]
- L'article [MPLKT05]
- L'article [WSC06]

Bibliography

- [BDCH⁺10] Florent Berthaut, Myriam Desainte-Catherine, Martin Hachet, et al. Drile: an immersive environment for hierarchical live-looping. *Proceedings of New Interface for Musical Expression* 2010, 2010.
 - [BHDC10] Florent Berthaut, Martin Hachet, and Myriam Desainte-Catherine. Piivert: Percussion-based interaction for immersive virtual environments. In 3D User Interfaces (3DUI), 2010 IEEE Symposium on, pages 15–18. IEEE, 2010.
 - [Cad99] Claude Cadoz. Musique, geste, technologie. *Les nouveaux gestes de la musique*, pages 47–92, 1999.
 - [HDFP11] Nicolas S Holliman, Neil A Dodgson, Gregg E Favalora, and Lachlan Pockett. Three-dimensional displays: a review and applications analysis. *Broadcasting*, *IEEE Transactions on*, 57(2):362–371, 2011.
 - [JAC⁺07] Christian Jacquemin, Rami Ajaj, Roland Cahen, Yoan Olivier, and Diemo Schwarz. Plumage: Design d'une interface 3d pour le parcours d'échantillons sonores granularisés. In *Proceedings of the 19th International Conference of the Association Francophone D'Interaction Homme-Machine*, pages 71–74. ACM, 2007.
 - [KHY⁺12] Youngmin Kim, Keehoon Hong, Jiwoon Yeom, Jisoo Hong, Jae-Hyun Jung, Yong Wook Lee, Jae-Hyeung Park, and Byoungho Lee. A frontal projection-type three-dimensional display. *Opt. Express*, 18(20):20130–20138, 2012.
- [MPLKT05] Teemu Mäki-Patola, Juha Laitinen, Aki Kanerva, and Tapio Takala. Experiments with virtual reality instruments. In *Proceedings of the 2005 Conference on New Interfaces for Musical Expression*, pages 11–16. National University of Singapore, 2005.
- [MPWL13] Mostafa Mehrabi, Edward M Peek, Burkhard C Wuensche, and Christof Lutteroth. Making 3d work: A classification of visual depth cues, 3d display technologies and their applications. 2013.
 - [Oko76] Takanori Okoshi. Three-dimensional imaging techniques. Academic Press, 1976.
 - [PS12] Waldir Pimenta and Luis Paulo Santos. A comprehensive taxonomy for three-dimensional displays. WSCG 2012 Communication Proceedings, pages 139–146, 2012.
 - [RLC⁺05] Xavier Rodet, Jean-Philippe Lambert, Roland Cahen, Thomas Gaudy, Fabrice Guedy, Florian Gosselin, and Pascal Mobuchon. Study of haptic and visual

interaction for sound and music control in the phase project. In *Proceedings* of the 2005 conference on New interfaces for musical expression, pages 109–114. National University of Singapore, 2005.

[WSC06] Mike Wozniewski, Zack Settel, and Jeremy R Cooperstock. A spatial interface for audio and music production. In *Proceedings of the International Conference on Digital Audio Effects (DAFx)*, volume 2006, 2006.