Biology ES131

Unit - 1

Characteristics and purposes of Science and Engineering

What is Biology

Why do we need to know biology?

- First, to find solutions to challenges, that mankind face.
- Sustainability
- Nature is greatest Engineer
- Biological systems evolved to perfection over billions of years
- Applications in Engineering?

1. To find solutions to challenges

Historical: bird flight - airplanes

Sustainability

Biology has already found sustainable methods.

Life forms have evolved, and co-existed in harmony with their surroundings for millions of years.

If we need solutions, we just need to look at how biology does it.

Design through biomimicry: https://www.youtube.com/watch?v=ZODvr GzNc4

Biomimicry (sustainable) - Janine Benyus: https://www.youtube.com/watch?v=FBUpnG1G4yQ

Biomimicry (Janine Benyus - slightly old, but relevant): https://www.youtube.com/watch?v=k GFq12w5WU_

Sustainability, it's a very big aspect nowadays

- And, whatever we do, we like to do in a sustainable fashion, so that we don't spoil the our planet, and leave it for the next generations in the best state that we can.
- Bology has already found sustainable methods.
- This earth is probably 4.5 billion years old, primates developed about 65 million years ago, mankind, humans developed about 40 million years ago, round about that some million years ago.
- And, whereas earth itself has been around for billions of years, so about 4.5 billion years, and life evolved may be some billion years ago.
- And, over time, biology has found methods to do things in a sustainable fashion.
- Life forms have evolved, co-existed in harmony with their surroundings for millions of years atleast, or even billions of years.
- So it's all, all there, we just have to look at it and learn from biology and adopt those practices.

2. Biology is us. Can our wellness, both physical and mental, be better?

Through better understanding – cell, its processes, systems as a whole (e.g. obesity)

Artificial retina – Sheila Nirenberg: http://www.youtube.com/watch?v=wGDKDjHfhXQ

Brain-computer interface https://www.youtube.com/watch?v=7t84IGE5TXA

Engineering connection?

Each organ is an optimized machine

 So what we thought we would do, is pick up some aspects of biology, that, one would need to know as basic information, as to how life formed, how life evolved, they are very interesting aspects which could have a relevance to some of the things that we're dealing with nowadays. And the very fundamentals of biology, the basic biomolecules, how they interact with each other to certain extent may be. Some genetics which are, which helpful in, predicting diseases some aspects of DNA, RNA, and so on so forth.

Biological Engineering

The emerging discipline based biological engineering has the potential of using biological materials and living processes in designing systems that are more in harmony with nature.

Knowledge and accepted methods

- The body of knowledge for biological engineering includes fundamentals of engineering practice, including
 - Analysis
 - Computation
 - Design
- Skills, along with a working knowledge of the science of biology including
 - Methods,
 - Principles,
 - Properties
- Applicable to utilization. Biological engineering methods include
 - Systems approach
 - Modeling techniques
 - Black-box viewpoint

What is Science?

Study of the physical and natural world using theoretical models and data from experiments or observation

Ability to produce solutions in some problem domain

Research into questions posed by scientific theories and hypotheses

Models, Experiments, Observations, Research, Theory, Hypothesis

What is Science?

Concept: An abstract or general idea inferred or derived from specific instances

Hypothesis: A concept that is not yet verified but that if true would explain certain facts or phenomena

Theory: An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena

Law: A generalization that describes recurring facts or events in nature

Concept

Apples/fruit fall on the ground

Hypothe sis

• Earth attracts apple

Theory

• Newton's theory of gravity

Law

• Newton's Law of Gravity

Do you do Science? Why do you do Science? To understand the world better!

Research

RESEARCH PROCESS IN FLOW CHART

Where F = feed back (Helps in controlling the sub-system to which it is transmitted)
FF = feed forward (Serves the vital function of providing criteria for evaluation)

Systematized effort to gain new knowledge

Research

Research

1. The beginning of life Miller's experiment An electric spark simulates a lightning storm electric spark chamber Energy from the spark powers reactions among molecules thought to be CH4 NH3 H2 H2O present in Earth's early atmosphere Boiling water adds water vapor to the artificial atmosphere cool water When the hot gases in condenser flow the spark chamber are boiling chamber cooled, water vapor condenses and any water soluble molecules present are dissolved Organic molecules appear after a few days

Phylogeny

4 distinct phases

- A random phase: events occur by chance and observation occurs haphazardly. Electricity – Ben Franklin
 - Outcome: make the observers aware of the phenomenon being observed.
- 2. Descriptive phase: Genetics Gregor Mendel,
- Quantitative phase: Mechanics Aristotle Control phase:

TABLE 1.2.1 The Four Phases of Technology

Phase	Description	Physical Example	Biological Example
Random	Phenomena are encountered haphazardly	Heavenly bodies are observed to move	Differences and similarities are noted in animals and plants
Descriptive	Cause-and-effect relationships are established	Apparent heavenly movement appears to be related to seasonal changes	Genetic material is discovered and transgenic organisms are developed
Quantitative	Measurements are refined and dependencies are given numerical values	Kepler's laws describe planetary motion	Optimal microbial growth environments are determined
Control	Modeling and predictive equations lead to knowledge of useful substance amounts, design of systems, and applications to achieve desired ends	Satellites are orbited around the Earth, moon, and other planets	Transgenic microbial production of biochemicals becomes reality

Source: Johnson, A.T. and Davis, D.C., Eng. Educ., 80, 15, January/February 1990. With permission.

Motivation

Motivation for Scientists and Engineers

Methods

Scientist	Engineers
Perform experiments to ascertain facts	Attempt to predict or control the outcome
Experiments determined by observed facts	

FIGURE 1.2.1 Science (above) is largely inductive, with many accumulated experimental facts contributing to an overall general theory. Engineering (below) is usually deductive, with theory presented first, and predicted facts derived from the theory.

Contrast between Science & Engineering

	Science	Engineering
Phylogeny	Random phase through quantitative phase	Quantitative phase and control phase
Motivation	Objects of study	Objects of creativity
Methods	Inductive: large numbers of facts suggest a unifying concept	Deductive: a small set of basic principles leads to specifics
Literature	Incremental	Conceptual
Synthesis	Scientists need engineers to show eventual applications	Engineers need scientists to identify basic facts

Source: Johnson, A.T. and Phillips, W.M., J. Eng. Educ., 84, 311, 1995. With permission.

What is life?

Unit of life is a *cell*. Processes of living. (according to F. Harold, "The Way of the Cell," 2001)

- Flux of matter and energy
 - Chemical activities: absorb nutrients, produce biomass, eliminate waste products
- Adaptation

Structure and function evolve to promote organism survival

Organization

A bacterial cell consists of 300 million molecules, assembled non-randomly DNA → RNA → Protein is strategically planned and executed

Self-reproduction

Autonomously, not by external forces

How do these principles influence Biology?