# Linear First-Order ODEs: The Standard Method

ODE 1 - Prof. Adi Ditkowski

Lesson 14

### 1 Introduction and Motivation

Linear first-order ODEs form the backbone of differential equations theory. They appear in countless applications: population dynamics, RC circuits, mixing problems, radioactive decay, and Newton's law of cooling.

**Definition 1** (Linear First-Order ODE). A linear first-order ODE has the form:

$$a_1(t)\frac{dy}{dt} + a_0(t)y = g(t) \tag{1}$$

where  $a_1(t) \neq 0$  on the interval of interest. The **standard form** is:

$$\frac{dy}{dt} + p(t)y = g(t) \tag{2}$$

where  $p(t) = a_0(t)/a_1(t)$  and the right-hand side has been divided by  $a_1(t)$ .

The equation is called **linear** because y and y' appear to the first power only, with no products like yy' or nonlinear terms like  $y^2$ ,  $\sin(y)$ , etc.

### 2 Classification

**Definition 2** (Homogeneous vs Non-homogeneous). • *Homogeneous*: y' + p(t)y = 0 (when  $g(t) \equiv 0$ )

• Non-homogeneous: y' + p(t)y = g(t) (when  $g(t) \not\equiv 0$ )

## 3 Solution of Homogeneous Equation

For y' + p(t)y = 0, we can use separation of variables:

$$\frac{dy}{dt} = -p(t)y\tag{3}$$

$$\frac{dy}{y} = -p(t)dt \tag{4}$$

$$ln |y| = -\int p(t)dt + C_1$$
(5)

$$y = Ce^{-\int p(t)dt} \tag{6}$$

where  $C = \pm e^{C_1}$  (or C = 0 if  $y \equiv 0$ ).

Homogeneous Solution:  $y_h = Ce^{-\int p(t)dt}$ 

# 4 The Integrating Factor Method

**Theorem 1** (Integrating Factor Method). For the equation y' + p(t)y = g(t), the integrating factor

$$\mu(t) = e^{\int p(t)dt}$$

transforms the equation into an exact derivative:

$$\frac{d}{dt}[\mu(t)y] = \mu(t)g(t)$$

*Proof.* Starting with y' + p(t)y = g(t), multiply both sides by  $\mu(t)$ :

$$\mu(t)y' + \mu(t)p(t)y = \mu(t)g(t)$$

We want the left side to equal  $\frac{d}{dt}[\mu(t)y]$ . Computing this derivative:

$$\frac{d}{dt}[\mu(t)y] = \mu'(t)y + \mu(t)y'$$

For these to be equal:

$$\mu'(t)y + \mu(t)y' = \mu(t)y' + \mu(t)p(t)y$$

This requires  $\mu'(t) = \mu(t)p(t)$ , or  $\frac{\mu'(t)}{\mu(t)} = p(t)$ . Integrating:  $\ln |\mu(t)| = \int p(t)dt$ , giving  $\mu(t) = e^{\int p(t)dt}$ .

## 5 Complete Solution Algorithm

**Method 1** (Solving Linear First-Order ODEs). 1. Convert to standard form: y'+p(t)y = g(t)

2. Compute integrating factor:  $\mu(t) = e^{\int p(t)dt}$ 

- 3. Multiply equation by  $\mu(t)$ :  $\mu(t)y' + \mu(t)p(t)y = \mu(t)g(t)$
- 4. Recognize:  $\frac{d}{dt}[\mu(t)y] = \mu(t)g(t)$
- 5. Integrate:  $\mu(t)y = \int \mu(t)g(t)dt + C$
- 6. Solve for y:  $y = \frac{1}{\mu(t)} \left[ \int \mu(t)g(t)dt + C \right]$

#### Common errors:

- Adding a constant when computing  $\mu(t)$  (don't!)
- Forgetting absolute values in logarithms
- Not checking continuity of p(t) and g(t)
- Missing the arbitrary constant in the final integration

# 6 Examples

**Example 1** (Constant Coefficients). Solve  $y' + 2y = e^{3t}$  with y(0) = 1. Solution:

- p(t) = 2, so  $\mu(t) = e^{2t}$
- Multiplying:  $e^{2t}y' + 2e^{2t}y = e^{5t}$
- This is  $\frac{d}{dt}[e^{2t}y] = e^{5t}$
- Integrating:  $e^{2t}y = \frac{1}{5}e^{5t} + C$
- Therefore:  $y = \frac{1}{5}e^{3t} + Ce^{-2t}$
- Using y(0) = 1:  $1 = \frac{1}{5} + C$ , so  $C = \frac{4}{5}$
- Final answer:  $y = \frac{1}{5}e^{3t} + \frac{4}{5}e^{-2t}$

**Example 2** (Variable Coefficients). Solve  $ty' + 2y = t^2$  for t > 0. Solution:

- Standard form:  $y' + \frac{2}{t}y = t$
- $p(t) = \frac{2}{t}$ , so  $\mu(t) = e^{2 \ln t} = t^2$
- Multiplying:  $t^2y' + 2ty = t^3$
- This is  $\frac{d}{dt}[t^2y] = t^3$
- Integrating:  $t^2y = \frac{t^4}{4} + C$
- Therefore:  $y = \frac{t^2}{4} + \frac{C}{t^2}$

#### 7 Solution Structure

**Theorem 2** (Superposition Principle). The general solution of y' + p(t)y = g(t) can be written as:

$$y = y_h + y_p$$

where  $y_h$  is the general solution of the homogeneous equation and  $y_p$  is any particular solution of the non-homogeneous equation.

This structure appears in ALL linear ODEs, regardless of order. Understanding it here prepares you for second-order and higher-order linear equations.

# 8 Existence and Uniqueness

**Theorem 3** (Existence and Uniqueness for Linear First-Order). If p(t) and g(t) are continuous on an interval I containing  $t_0$ , then for any initial condition  $y(t_0) = y_0$ , there exists a unique solution defined on all of I.

Prof. Ditkowski often asks about solution intervals. Remember:

- Solutions exist wherever p(t) and g(t) are continuous
- Discontinuities create natural boundaries for solution domains
- Always state the interval of validity for your solution

## 9 Connection to Exact Equations

After multiplying by  $\mu(t)$ , the equation becomes:

$$\mu(t)y' + \mu(t)p(t)y = \mu(t)g(t)$$

This is exact with  $M = \mu(t)p(t)y - \mu(t)g(t)$  and  $N = \mu(t)$ .

# 10 Physical Applications

#### 10.1 RC Circuit

For a resistor-capacitor circuit with voltage source V(t):

$$\frac{dQ}{dt} + \frac{1}{RC}Q = \frac{V(t)}{R}$$

### 10.2 Mixing Problem

For a tank with volume V, inflow rate  $r_{in}$ , outflow rate  $r_{out}$ , and input concentration  $c_{in}(t)$ :

$$\frac{dy}{dt} + \frac{r_{out}}{V}y = \frac{r_{in}}{V}c_{in}(t)$$

### 10.3 Newton's Law of Cooling

For temperature T(t) in ambient temperature  $T_a$ :

$$\frac{dT}{dt} + kT = kT_a$$

# 11 Summary Flowchart

