Name PID

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Electrical and Computer Engineering Department

ECE 65 - Fall 2020

Components and Circuits lab

Midterm Exam2

You should submit your handwritten solutions in a PDF format to Gradescope by Monday, 11/9, at 11:50 am (Pacific Time).

Name PID

Problem 1.

Find the node voltages at the drain, source, and gate terminals of both MOSFETs in the below circuit. Make sure to check if the MOSFETs are in cut-off or not.

Assume the MOS transistors in the following circuit have $\mu_n C_{ox}=2~\mu_p C_{ox}=320~\mu A/V^2$, $|V_t|=1~V$, $\lambda=0~L=1~\mu m$, and $W=3~\mu m$.

Show your work.

Assume Q_1 and Q_2 are in cut-off: $I_{D_1}=0$, $I_{D_2}=0$, $V_{SG_1} \langle [V_{tp}]$, $V_{GS_2} \langle V_{tn}|$

+
$$\frac{V_{SG_1} \langle V_{tp}|}{V_{GS_2} \langle V_{tn}|}$$

 $V_{SG_1} + V_{GS_2} < V_{tn} + |V_{tp}| \rightarrow V_{SG_1} + V_{GS_2} < 2$

according to $KVL1: V_{SG_1} + V_{GS_2} = 5V$. This contradics the assumption, so MOSFETs are not in cut-off.

Name PID

$$V_{G_1} = V_{D_1} \longrightarrow V_{SG_1} = V_{SD_1} \longrightarrow V_{SD_1} > V_{SG_1} - |V_{tp}|$$

$$V_{G_2} = V_{D_2} \longrightarrow V_{GS_2} = V_{DS_2} \longrightarrow V_{DS_2} > V_{GS_2} - V_{tn}$$

so, both transistors are in saturation.

The gate current is zero.

KCL at the drain node: ID, = ID2

$$I_{D_{i}} = \frac{1}{2} \int_{P}^{\mu} C_{ox} \frac{W}{L} V_{ov_{P}}^{2}$$

$$I_{D_2} = \frac{1}{2} \int_{n}^{n} C_{ou} \frac{w}{L} V_{ov_n}^2$$

$$I_{O_{1}} = I_{D_{2}} \longrightarrow \frac{1}{2} \stackrel{\mu}{/}_{P} \stackrel{\omega}{}_{OVP} = \frac{1}{2} \stackrel{\mu}{/}_{N} \stackrel{\omega}{}_{OVP} = \frac{1}{2} \stackrel{\mu}{/}_{N} \stackrel{\omega}{}_{OVP} = \frac{1}{2} \stackrel{\omega}{/}_{N} \stackrel{\omega}{}_{OVP} = \frac{1}{2} \stackrel{\omega}{/}_{OVP} \qquad , \stackrel{V_{OVP}}{}_{OVP} > 0$$

From
$$kVL1$$
: $V_{SG_1} + V_{GS_2} = 5V$ $\rightarrow V_{OVp} + |V_{tp}| + V_{OVn} + |V_{tn}| = 5V$

$$\rightarrow V_{OVp} + V_{OVn} = 3V$$

$$V_{ovp} = \sqrt{2} \quad V_{ov_n}$$

$$\rightarrow (1 + \sqrt{2}) \quad V_{ov_n} = 3 \quad V$$

$$V_{ovp} + V_{ov_n} = 3 \quad V$$

$$V_{ovp} = 1.76 \quad V$$

 $V_{oV_n} > 0$

Name

PID

both transistors are in saturation

$$I_{D_1} = I_{D_2} = \frac{1}{2} \int_n^\mu C_{\text{old}} \frac{W}{L} V_{\text{oly}}^2 \simeq 0.74 \text{ mA}$$

$$V_{ov_n} = 1.24 \quad V \longrightarrow V_{GS_2} = V_{ov_n} + V_{t_n} = 2.24 V$$

$$V_{G_2} - V_{S_2} = V_{G_2} - 0 = 2.24V \longrightarrow V_{G_2} = 2.24V$$

$$V_{G_2} = V_{D_2} = V_{G_1} = V_{D_1} = 2.24V$$

$$V_{S_2} = 0 \ V$$
 , $V_{S_1} = 5 \ V$

