Seminar 7 - Criteria

DEDP

- 1. A vehicle airbag system detects a crash by evaluating a sensor which provides two values: $s_0(t) = 0$ (no crash) or $s_1(t) = 5$ (crashing) The signal is affected by gaussian noise \mathcal{N} ($\mu = 0, \sigma^2 = 1$). The costs of the scenarios are: $C_{00} = 0$, $C_{01} = 100, C_{10} = 10, C_{11} = -100$
 - a. Find the decision taken based on a sample r = 3.1
 - b. Find the decision regions R_0 and R_1 .
- 2. An information source provides two messages with probabilities $p(a_0) = \frac{2}{3}$ and $p(a_1) = \frac{1}{3}$. The messages are encoded as constant signals with values -5 (a_0) and 5 (a_1) . The signals are affected by noise with uniform distribution U[-5,5]. The receiver takes one sample r.
 - a. Find the decision regions according to the Neymar-Pearson criterion, considering $P_{fa} \leq 10^{-2}$
 - b. What is the probability of correct detection, in this case?
- 3. Consider the detection of a signal with two possible levels, 0 (hypothesis H_0) or 6 (hypothesis H_1). The signal is affected by noise with triangular distribution [-5, 5]. The receiver takes one sample r = 3.5.
 - a. Find the decision for the sample r = 3.5 considering the following criteria:
 - Maximum Likelihood criterion.

 - Minimum probability of error criterion, if P(H₀) = ³/₄ and P(H₁) = ¹/₄.
 Minimum risk criterion, if P(H₀) = ³/₄ and P(H₁) = ¹/₄ and the costs are:
 - $-C_{00}=0$
 - $-C_{11}=0$
 - $-C_{01}=5$
 - $-C_{10}=2$
 - b. What is the probability of false alarm, $P(D_1 \cap H_0)$, for the third criterion
- 4. An information source provides two messages with probabilities $p(a_0) = \frac{2}{3}$ and $p(a_1) = \frac{1}{3}$. The messages are encoded as constant signals with values -5 (a_0) and 5 (a_1) . The signals are affected by noise with triangular distribution [-10, 10]. The

receiver takes one sample r. Decision is done by comparing r with a threshold value T.

- a. Find the threshold value T according to the Neymar-Pearson criterion, considering $P_{fa} \leq 10^{-2}$ b. What is the probability of correct detection, $P(D_1 \cap H_1)$?