Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems

Yuyuan Ouyang

Mathematical and Statistical Sciences, Clemson University

Yangyang XuMathematical Sciences, Rensselaer Polytechnic Institute

August 06, 2019

What and why first-order methods

- First-order method only inquires gradient and/or function value information of a problem, and possibly other simple operations
- Generally, lower per-update complexity, lower memory requirement, and better scalability compared to second or higher order methods
- Difficult to achieve very high accuracy
- Favorable for very "big" problems that do not require high accuracy

Why lower complexity bounds

- provide understanding of the fundamental limit of a class of methods and the difficulty of a class of problems
- tell if existing methods could be improved
- guide to design "optimal" methods

First-order methods for smooth convex problems [Nesterov'04]

Consider problem

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} f(\mathbf{x})$$

• f is convex and L-smooth, i.e.,

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|, \, \forall \, \mathbf{x}, \mathbf{y}$$

• lower complexity bound: $f(\mathbf{x}^k) - f(\mathbf{x}^*) \geq \frac{3L\|\mathbf{x}^0 - \mathbf{x}^*\|^2}{32(k+1)^2}$ if $k \leq \frac{n-1}{2}$ and

$$\mathbf{x}^k \in \mathbf{x}^0 + \operatorname{span}\{\nabla f(\mathbf{x}^0), \nabla f(\mathbf{x}^1), \dots, \nabla f(\mathbf{x}^{k-1})\}$$

• upper complexity bound: $f(\mathbf{x}^k) - f(\mathbf{x}^*) \leq \frac{4L\|\mathbf{x}^0 - \mathbf{x}^*\|^2}{(k+1)^2}$

First-order methods for nonsmooth convex problems [Nesterov'04]

Consider problem

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} f(\mathbf{x})$$

• f is convex and M-Lipschitz continuous on $X = \{\mathbf{x} : \|\mathbf{x} - \mathbf{x}^0\| \le R\}$, i.e.,

$$|f(\mathbf{x}) - f(\mathbf{y})| \le M ||\mathbf{x} - \mathbf{y}||, \forall \mathbf{x}, \mathbf{y} \in X$$

• lower complexity bound: $f(\mathbf{x}^k) - f(\mathbf{x}^*) \geq \frac{MR}{2(1+\sqrt{k+1})}$ if $k \leq n-1$, and

$$\mathbf{x}^k \in \mathbf{x}^0 + \operatorname{span}\{\mathbf{g}^0, \mathbf{g}^1, \dots, \mathbf{g}^{k-1}\}$$

where $\mathbf{g}^t \in \partial f(\mathbf{x}^t)$

• upper complexity bound: $f(\mathbf{x}^k) - f(\mathbf{x}^*) \leq \frac{2MR}{\sqrt{k+1}}$

Remark: non-smooth problems are harder than smooth ones.

More examples

- first-order methods for stochastic convex problems [Agarwal et. al'12]
- first-order methods for finite-sum convex problems [Woodworth-Srebro'16]
- first-order and higher-order methods for nonconvex problems [Carmon et. al'17a, Carmon et. al'17b]

.

Diagram: iteration complexity analysis

This talk: convex-concave bilinear saddle-point problem

Problem setup:

$$\min_{\mathbf{x} \in X} \left\{ f(\mathbf{x}) + \max_{\mathbf{y} \in Y} \langle \mathbf{A}\mathbf{x} - \mathbf{b}, \mathbf{y} \rangle - g(\mathbf{y}) \right\}$$

where $X\subseteq\mathbb{R}^n$ and $Y\subseteq\mathbb{R}^m$ are simple closed convex sets, and f and g are closed convex functions.

Assumptions:

- ∇f is L_f -Lipschitz: $\|\nabla f(\mathbf{u}) \nabla f(\mathbf{x})\| \le L_f \|\mathbf{u} \mathbf{x}\|, \ \forall \mathbf{u}, \mathbf{x} \in X$
- g is a proximable function, i.e., easy proximal mapping $\mathbf{prox}_{\eta g}$
- large-scale: information of f through $f(\mathbf{x}), \nabla f(\mathbf{x})$, information of \mathbf{A} through $\mathbf{A}\mathbf{x}$ and $\mathbf{A}^{\top}\mathbf{y}$ for inquiry (\mathbf{x}, \mathbf{y})

Special cases:

• If $X=\mathbb{R}^n, Y=\mathbb{R}^m, \ g\equiv 0$: linearly constrained smooth convex optimization

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}), \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{b}$$

• If Y = dom(q):

$$\min_{\mathbf{x} \in X} \phi(\mathbf{x}) := f(\mathbf{x}) + g^*(\mathbf{A}\mathbf{x} - \mathbf{b})$$

convex composite optimization with two components; ϕ is usually nonsmooth due to g^{\ast}

Existing rate by smoothing [Nesterov'05]

Assume X and Y are both compact. Let

$$\begin{split} \phi(\mathbf{x}) &= f(\mathbf{x}) + \max_{\mathbf{y} \in Y} \langle \mathbf{A}\mathbf{x} - \mathbf{b}, \mathbf{y} \rangle - g(\mathbf{y}), \\ \psi(\mathbf{y}) &= \min_{\mathbf{x} \in X} f(\mathbf{x}) + \langle \mathbf{A}\mathbf{x} - \mathbf{b}, \mathbf{y} \rangle - g(\mathbf{y}). \end{split}$$

Then there is a first-order method such that

$$0 \le \phi(\mathbf{x}^k) - \psi(\mathbf{y}^k) \le \frac{4L_f D_X^2}{(k+1)^2} + \frac{4D_X D_Y ||\mathbf{A}||_2}{k+1}$$

- better than $O(1/\sqrt{k})$ that is a lower bound for nonsmooth problems
- but worse than $O(1/k^2)$ that is an upper bound for smooth problems
- unknown before if the rate is optimal

Rate for nonsmooth linearly constrained problems [X.'17]

For the problem

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) + g(\mathbf{x}), \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{b},$$

assume exact solvability to subproblem in the form of

$$\min_{\mathbf{x}} \langle \nabla f(\hat{\mathbf{x}}) + \mathbf{z}, \mathbf{x} \rangle + g(\mathbf{x}) + \frac{\beta}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2 + \frac{\eta}{2} ||\mathbf{x}||^2.$$

• Can have $\{\mathbf{x}^k\}$ such that

$$|f(\mathbf{x}^k) - f(\mathbf{x}^*)| + ||\mathbf{A}\mathbf{x}^k - \mathbf{b}|| = O\left(\frac{L_f ||\mathbf{x}^0 - \mathbf{x}^*||^2 + \frac{||\mathbf{y}^0 - \mathbf{y}^*||^2}{\gamma}}{k^2}\right)$$

where $\gamma>0$ is a constant, and k is the number of solved subproblems

- $\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$ can be further prox-linearized to achieve $O(1/k^2)$ if strong convexity assumed
- unknown before if $O(1/k^2)$ can be achieved with just convexity

roadmap

lower iteration complexity bounds

- 1. affinely constrained problems with iterate in spanned space of gradient
- 2. affinely constrained problems by any method based on first-order oracle
- 3. bilinear saddle-point problems by any method based on first-order oracle

comparison to existing upper complexity bounds

Case I: linearly constrained problems by linear span

linearly constrained problems by linear span

First consider

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}), \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{b}$$

- problem class I: ∇f is L_f -smooth, and $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $\|\mathbf{A}\|_2 = L_A > 0$
- problem class II: f is μ -strongly convex, and ${\bf A}$ with $\|{\bf A}\|_2=L_A>0$
- algorithm class:

$$\mathbf{x}^t \in \mathbf{x}^0 + \operatorname{Span}\{\nabla f(\mathbf{x}^0), \mathbf{A}^\top \mathbf{r}^0, \dots, \nabla f(\mathbf{x}^{t-1}), \mathbf{A}^\top \mathbf{r}^{t-1}\}$$
 (Span)

where $\mathbf{r}^t = \mathbf{A}\mathbf{x}^t - \mathbf{b}$

- Without loss of generality, assume that $\mathbf{x}^0 = \mathbf{0}$
- error measure: $|f(\mathbf{x}^t) f^*|$ and $||\mathbf{A}\mathbf{x}^t \mathbf{b}||$, or $||\mathbf{x}^t \mathbf{x}^*||^2$

lower complexity bound for convex case [Ouyang-X.'18]

Setting of problem class:

- given positive integers $m \leq n$, and $t < \frac{m}{2}$
- ullet given positive numbers L_A and L_f

Conclusion: there exists an instance of smooth linearly constrained problem such that

- ∇f is L_f -Lipschitz continuous, $\|\mathbf{A}\|_2 = L_A$
- it has a unique primal-dual solution $(\mathbf{x}^*, \mathbf{y}^*)$
- in addition, for (Span), it holds

$$|f(\mathbf{x}^t) - f(\mathbf{x}^*)| \ge \frac{3L_f \|\mathbf{x}^*\|^2}{64(t+1)^2} + \frac{\sqrt{3}L_A \|\mathbf{x}^*\| \cdot \|\mathbf{y}^*\|}{16(t+1)},$$
$$\|\mathbf{A}\mathbf{x}^t - \mathbf{b}\| \ge \frac{\sqrt{3}L_A \|\mathbf{x}^*\|}{4\sqrt{2}(t+1)}.$$

Worst-case instance

$$\underset{\mathbf{x}}{\text{minimize}} \frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x} - \mathbf{h}^{\top} \mathbf{x}, \text{ s.t. } \mathbf{A} \mathbf{x} = \mathbf{b}. \tag{QP-Inst}$$

Here,

$$\mathbf{H} = \frac{L_f}{4} \begin{bmatrix} \mathbf{B}^{\top} \mathbf{B} & \\ & \mathbf{I}_{n-2k} \end{bmatrix} \in \mathbb{R}^{n \times n}, \mathbf{h} = \frac{L_f}{2} \mathbf{e}_{2k,n}, \mathbf{A} = \frac{L_A}{2} \mathbf{\Lambda}, \mathbf{b} = \frac{L_A}{2} \mathbf{c},$$

and

$$oldsymbol{\Lambda} = \left[egin{array}{ccc} \mathbf{B} & \mathbf{O} \\ \mathbf{O} & \mathbf{G} \end{array}
ight] \in \mathbb{R}^{m imes n}, \ \mathbf{c} = \left[egin{array}{ccc} \mathbf{1}_{2k} \\ \mathbf{0} \end{array}
ight], \ \mathbf{B} := \left[egin{array}{cccc} & -1 & 1 \\ & \ddots & \ddots & \\ -1 & 1 & & \\ 1 & & & \end{array}
ight] \in \mathbb{R}^{2k imes 2k}$$

with $\mathbf{G} \in \mathbb{R}^{(m-2k) \times (n-2k)}$ is any matrix of full row rank such that $\|\mathbf{G}\| = 2$.

Remark: condition number of ${\bf B}$ proportional to k

Sketch of proof

1. primal-dual solution $(\mathbf{x}^*, \mathbf{y}^*)$:

$$x_i^* = \left\{ \begin{array}{ll} i, & \text{ if } 1 \leq i \leq 2k, \\ 0, & \text{ if } i \geq 2k+1, \end{array} \right. \quad y_i^* = \left\{ \begin{matrix} -\frac{L_f}{2L_A} & \text{ if } 1 \leq i \leq 2k \\ 0 & \text{ if } i \geq 2k+1. \end{matrix} \right.$$

- 2. optimal objective: $f^* = -\frac{3L_f}{4}k$
- 3. property of iterate: if $\mathbf{x}^0 = \mathbf{0}$, then $\mathbf{x}^t \in \mathcal{K}_{k-1}$ for any $t \leq k$, where

$$\mathcal{J}_i := \operatorname{Span}\{\mathbf{c}, (\mathbf{\Lambda}\mathbf{\Lambda}^{\top})\mathbf{c}, (\mathbf{\Lambda}\mathbf{\Lambda}^{\top})^2\mathbf{c}, \dots, (\mathbf{\Lambda}\mathbf{\Lambda}^{\top})^i\mathbf{c}\}\$$

 $\mathcal{K}_i := \mathbf{\Lambda}^{\top}\mathcal{J}_i = \operatorname{Span}\{\mathbf{e}_{2k-i,n}, \mathbf{e}_{2k-i+1,n}, \dots, \mathbf{e}_{2k,n}\}$

4. objective value and feasibility at points in \mathcal{K}_{k-1} :

$$\min_{\mathbf{x} \in \mathcal{K}_{k-1}} f(\mathbf{x}) - f^* \ge \frac{3L_f \|\mathbf{x}^*\|^2}{64(k+1)^2} + \frac{\sqrt{3}L_A \|\mathbf{x}^*\| \cdot \|\mathbf{y}^*\|}{16(k+1)},$$

$$\min_{\mathbf{x} \in \mathcal{K}_{k-1}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \ge \frac{\sqrt{3}L_A \|\mathbf{x}^*\|}{4\sqrt{2}(k+1)}.$$

lower complexity bound for strongly convex case [Ouyang-X.'18]

Setting of problem class:

- given positive integers $m \leq n$, and $t < \frac{m}{2}$
- given positive numbers L_A and μ

Conclusion: there exists an instance of smooth linearly constrained problem such that

- ∇f is μ -strongly convex, $\|\mathbf{A}\|_2 = L_A$
- it has a unique primal-dual solution $(\mathbf{x}^*, \mathbf{y}^*)$
- in addition, for (Span), it holds

$$\|\mathbf{x}^t - \mathbf{x}^*\|^2 \ge \frac{5L_A^2 \|\mathbf{y}^*\|^2}{256\mu^2 (t+1)^2}.$$

Worst-case instance

$$\underset{\mathbf{x}}{\text{minimize}} \frac{\mu}{2} \mathbf{x}^{\top} \mathbf{x}, \text{ s.t. } \mathbf{A} \mathbf{x} = \mathbf{b}$$

where A and b are the same as in (QP-Inst).

Sketch of proof:

1. primal-dual solution $(\mathbf{x}^*, \mathbf{y}^*)$:

$$x_i^* = \left\{ \begin{array}{ll} i, & \text{ if } 1 \leq i \leq 2k, \\ 0, & \text{ if } i \geq 2k+1, \end{array} \right. \quad y_i^* = \left\{ \begin{array}{ll} \frac{\mu}{L_A} i(4k-i+1), & \text{ if } 1 \leq i \leq 2k, \\ 0, & \text{ if } i \geq 2k+1. \end{array} \right.$$

- 2. property of iterate: if $\mathbf{x}^0 = \mathbf{0}$, then $\mathbf{x}^t \in \mathcal{K}_{k-1}$ for any $t \leq k$
- 3. distance of iterate to optimal solution: $\|\mathbf{x}^k \mathbf{x}^*\|^2 \geq \sum_{i=1}^k i^2$

Case II: linearly constrained problems by general first-order methods

linearly constrained problems by general first-order methods

Still consider

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}), \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{b}$$

- problem class I: ∇f is L_f -smooth, and $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $\|\mathbf{A}\|_2 = L_A > 0$
- problem class II: f is μ -strongly convex, and ${\bf A}$ with $\|{\bf A}\|_2=L_A>0$
- algorithm class ($\{\mathcal{I}_t\}$ is a sequence of **fixed** rules):

$$\left(\mathbf{x}^{t+1}, \mathbf{y}^{t+1}\right) = \mathcal{I}_t\left(\boldsymbol{\theta}; \mathcal{O}(\mathbf{x}^0, \mathbf{y}^0), \dots, \mathcal{O}(\mathbf{x}^t, \mathbf{y}^t)\right), \ \forall \, t \geq 0,$$
 (FOM)

where $\mathcal{O}(\mathbf{x}, \mathbf{y}) := (\nabla f(\mathbf{x}), \mathbf{A}\mathbf{x}, \mathbf{A}^{\top}\mathbf{y}).$

• error measure: $|f(\mathbf{x}^t) - f^*|$ and $\|\mathbf{A}\mathbf{x}^t - \mathbf{b}\|$, or $\|\mathbf{x}^t - \mathbf{x}^*\|^2$

lower complexity bound for convex case [Ouyang-X.'18]

Setting of problem class:

- given positive integers $m \leq n$, and $t < \frac{m}{4} 1$
- given positive numbers L_A and L_f

Conclusion: for (FOM), there exists an instance of smooth linearly constrained problem such that

- ∇f is L_f -Lipschitz continuous, $\|\mathbf{A}\| = L_A$
- it has a unique primal-dual solution $(\mathbf{x}^*, \mathbf{y}^*)$
- in addition, it holds

$$f(\mathbf{x}^{t}) - f^{*} \ge \frac{3L_{f} \|\mathbf{x}^{*}\|^{2}}{64(2t+5)^{2}} + \frac{\sqrt{3}L_{A} \|\mathbf{x}^{*}\| \cdot \|\mathbf{y}^{*}\|}{16(2t+5)},$$
$$\|\mathbf{A}\mathbf{x}^{t} - \mathbf{b}\| \ge \frac{\sqrt{3}L_{A} \|\mathbf{x}^{*}\|}{4\sqrt{2}(2t+5)}.$$

Key proposition

Proposition 3.1 [Ouyang-X.'18]: let $\min_{\mathbf{x}} \{ f(\mathbf{x}), \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{b} \}$ be one instance. There is a rotated instance $\min_{\mathbf{x}} \{ \tilde{f}(\mathbf{x}), \text{ s.t. } \tilde{\mathbf{A}}\mathbf{x} = \mathbf{b} \}$ with

$$\tilde{f}(\mathbf{x}) = f(\mathbf{U}\mathbf{x}), \ \tilde{\mathbf{A}} = \mathbf{V}^{\top}\mathbf{A}\mathbf{U}, \ \mathbf{V}\mathbf{b} = \mathbf{b},$$

where ${f V}$ and ${f U}$ are orthogonal. In addition,

- $(\mathbf{x}^*, \mathbf{y}^*)$ is a primal-dual solution to the *original instance* if and only if $(\hat{\mathbf{x}}, \hat{\mathbf{y}}) := (\mathbf{U}^\top \mathbf{x}^*, \mathbf{V}^\top \mathbf{y}^*)$ is a primal-dual solution to the *rotated instance*.
- When (FOM) applied to the rotated instance, for any $1 \le t \le \frac{k}{2} 1$:

$$\begin{split} & \left| \tilde{f}(\mathbf{x}^t) - \tilde{f}^* \right| \ge \min_{\mathbf{x} \in \mathcal{K}_{k-1}} \left| f(\mathbf{x}) - f^* \right|, \\ & \left\| \tilde{\mathbf{A}} \mathbf{x}^t - \mathbf{b} \right\| \ge \min_{\mathbf{x} \in \mathcal{K}_{k-1}} \left\| \mathbf{A} \mathbf{x} - \mathbf{b} \right\|, \\ & \left\| \mathbf{x}^t - \hat{\mathbf{x}} \right\|^2 \ge \min_{\mathbf{x} \in \mathcal{K}_{k-1}} \left\| \mathbf{x} - \mathbf{x}^* \right\|^2, \end{split}$$

Key idea of proving proposition: rotation

- Without linear span assumption, the property $\mathbf{x}^t \in \mathcal{K}_{t-1}$ does not hold any more.
- Fact: $\mathcal{X} \subsetneq \bar{\mathcal{X}} \subseteq \mathbb{R}^p$ be two subspaces. For any $\bar{\mathbf{x}} \in \mathbb{R}^p$, there is an orthogonal V such that

$$\mathbf{V}\mathbf{x} = \mathbf{x}, \ \forall \mathbf{x} \in \mathcal{X}, \ \mathbf{V}\bar{\mathbf{x}} \in \bar{\mathbf{X}}$$

- If $\mathbf{x}^t \not\in \mathcal{K}_{t-1}$, rotate it by an orthogonal matrix \mathbf{U}_t such that $\mathbf{U}_t \mathbf{x}^t \in \mathcal{K}_{t-1}$ and thus $\mathbf{x}^t \in \mathbf{U}_t^{\top} \mathcal{K}_{t-1}$
- similarly, apply rotation to dual iterate
- repeatedly use the Fact and rotation:

$$\mathbf{x}^i \in \mathbf{U}^{\top} \mathcal{K}_{2t+1}, \ \mathbf{y}^i \in \mathbf{V}^{\top} \mathcal{J}_{2t+1}, \ \forall i \leq t$$

lower complexity bound for strongly convex case [Ouyang-X.'18]

Setting of problem class:

- given positive integers $m \leq n$, and $t < \frac{m}{4} 1$
- given positive numbers L_A and μ

Conclusion: for (FOM), there exists an instance of smooth linearly constrained problem such that

- ∇f is μ -strongly convex, $\|\mathbf{A}\| = L_A$
- it has a unique primal-dual solution $(\mathbf{x}^*, \mathbf{y}^*)$
- in addition, it holds

$$\|\mathbf{x}^t - \mathbf{x}^*\|^2 \ge \frac{5L_A^2 \|\mathbf{y}^*\|^2}{256\mu^2 (2t+5)^2}$$

saddle-point problems by general first-order methods

Finally consider

$$\min_{\mathbf{x} \in X} \phi(\mathbf{x}) := \left\{ f(\mathbf{x}) + \max_{\mathbf{y} \in Y} \langle \mathbf{A}\mathbf{x} - \mathbf{b}, \mathbf{y} \rangle - g(\mathbf{y}) \right\}$$

where q is closed convex and proximable.

- problem class I: ∇f is L_f -smooth, and $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $\|\mathbf{A}\|_2 = L_A > 0$
- problem class II: f is μ -strongly convex, and \mathbf{A} with $\|\mathbf{A}\|_2 = L_A > 0$
- algorithm class: general oracle-based first-order method (FOM)
- ullet error measure: primal-dual gap $\phi(\mathbf{x}^t) \psi(\mathbf{y}^t)$

lower complexity for convex saddle-point problems [Ouyang-X.'18]

Setting of problem class:

- \bullet given positive integers $m \leq n$, and $t < \frac{m}{4} 1$
- given positive numbers L_A and L_f

Conclusion: for (FOM), there exists an instance of convex-concave bilinear saddle-point problem such that

- ∇f is L_f -Lipschitz continuous, $\|\mathbf{A}\| = L_A$
- X and Y are Euclidean balls with radii R_X and R_Y
- it has a unique primal-dual solution $(\mathbf{x}^*, \mathbf{y}^*)$
- in addition, it holds

$$\phi(\mathbf{x}^{(t)}) - \psi(\mathbf{y}^{(t)}) \ge \frac{L_f R_X^2}{4(4t+5)^2} + \frac{L_A R_X R_Y}{4(4t+5)},$$

where ϕ and ψ are the associated primal and dual objective functions.

Idea of proof

- Note that R_X and R_Y are not fixed.
- Set $g(\mathbf{y}) = \lambda \|\mathbf{y}\|$ and choose R_X, R_Y such that the primal-dual solution $(\mathbf{x}^*, \mathbf{y}^*)$ of previous worst-case of linearly constrained problems is in $X \times Y$.
- Hence, $(\mathbf{x}^*, \mathbf{y}^*)$ is also the solution of the saddle-point problem

$$\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in Y} \left\{ f(\mathbf{x}) + \langle \mathbf{A}\mathbf{x} - \mathbf{b}, \mathbf{y} \rangle \right\}$$

- Also, note $\phi^* \leq f(\mathbf{x}^*) + \langle \mathbf{A}\mathbf{x}^* \mathbf{b}, \mathbf{y}^* \rangle = f(\mathbf{x}^*)$
- Choose $\lambda > 0$: $\phi(\mathbf{x}) = f(\mathbf{x}) + R_Y(\|\mathbf{A}\mathbf{x} \mathbf{b}\| \lambda)$ for all $\mathbf{x} \in \mathcal{K}_{k-1}$
- Then estimate the bound $\min_{\mathbf{x} \in \mathcal{K}_{k-1}} \phi(\mathbf{x}) \phi^*$

lower complexity for strongly convex SP problems [Ouyang-X.'18]

Setting of problem class:

- \bullet given positive integers $m \leq n$, and $t < \frac{m}{4} 1$
- given positive numbers L_A and μ

Conclusion: for (FOM), there exists an instance of convex-concave bilinear saddle-point problem such that

- ∇f is μ -strongly convex, $\|\mathbf{A}\| = L_A$
- ullet X and Y are Euclidean balls with radii R_X and R_Y
- it has a unique primal-dual solution $(\mathbf{x}^*, \mathbf{y}^*)$
- in addition, it holds

$$\phi(\mathbf{x}^t) - \psi(\mathbf{y}^t) \ge \frac{5L_A^2 R_Y^2}{512\mu(4t+5)^2},$$

existing upper complexity bounds

Near tightness of established bounds

 For linearly constrained problems, the rate of an accelerated linearized ADMM [Ouyang et. al'15] is

$$f(\mathbf{x}^t) - f^* \le \frac{2L_f D_X^2}{t(t+1)} + \frac{2D_X D_Y ||\mathbf{A}||_2}{t+1}$$

2. For smooth and strongly convex equality and inequality constrained problems, to have an ε -solution, i.e., $|f(\bar{\mathbf{x}}) - f^*| \le \varepsilon$ and $\|\mathbf{A}\bar{\mathbf{x}} - \mathbf{b}\| + \|[\mathbf{f}(\bar{\mathbf{x}})]_+\| \le \varepsilon$, the iteration complexity by inexact ALM [X.'17] is

$$t \leq 2\left(\sqrt{\frac{L_f}{\mu}} + \frac{2L_A \|\mathbf{y}^*\|}{\mu\sqrt{\varepsilon}}\right)\left(O(1) + \log\frac{1}{\varepsilon}\right)$$

3. For bilinear saddle-point problems, the rate of a first-order method by smoothing [Nesterov'05] is

$$\phi(\mathbf{x}^k) - \psi(\mathbf{y}^k) \le \frac{4L_f D_X^2}{(k+1)^2} + \frac{4D_X D_Y ||\mathbf{A}||_2}{k+1}$$

Open questions

- 1. How should feasibility lower bound depend on constraint and also objective?
- 2. If the number of gradient evaluation is constrained, what is the lower bound of matrix-vector multiplication $\mathbf{A}\mathbf{x}, \mathbf{A}^{\top}\mathbf{y}$?
- 3. How should the lower bound depend on condition number for strongly convex case?

Conclusions

- 1. reviewed lower complexity bounds of first-order methods for a few classes of problems
- 2. established lower complexity bounds of
 - gradient type first-order method for linearly constrained problems
 - general first-order method for linearly constrained problems
 - general first-order method for bilinear saddle-point problems
- 3. showed near tightness of the established lower bounds

References

Y. Ouyang and Y. Xu. Lower complexity bound of first-order methods for bilinear saddle-point problems, Accepted in MPA, arXiv:1808.02901, 2018.

Thank you!!!