Análisis de Sistemas

♦ Análisis

Distinción y separación de las partes de un todo hasta llegar a conocer sus principios o elementos.

Análisis de Sistemas LTI en Tiempo

♦ Motivación

- ► Existen gran variedad de técnicas matemáticas para el análisis de sistemas LTI.
- ► Muchos sistemas prácticos son LTI o pueden aproximarse a sistemas LTI.

♦ Técnicas

Básicamente existen dos métodos

- ▶ Convolución
- **▶** Ecuaciones en diferencias
 - Método directo
 - Método indirecto

■ Principio

Cualquier señal discreta x(n) de excitación de un sistema puede descomponerse como una suma ponderada de impulsos unitarios desplazados $\delta(n-k)$.

Setiene,
$$x(n) \delta(n-k) = x(k) \delta(n-k)$$

Por lo tanto,
$$x(n) = \sum_{k=-\infty}^{\infty} x(k) \delta(n-k)$$

Ejemplo: Descomponer en una suma ponderada de impulsos la señal

$$x(n) = (-1)^n = \{..., -1, 1, -1, 1, -1, ...\}$$

Solución.

$$x(n) = \sum_{k=-\infty}^{\infty} (-1)^k \delta(n-k)$$

■ Principio ...

■ La respuesta del sistema lineal es la suma ponderada de respuestas a cada uno de los impulsos:

$$y(n) = T[x(n)] = T\left[\sum_{k=-\infty}^{\infty} x(k)\delta(n-k)\right] = \sum_{k=-\infty}^{\infty} x(k)T[\delta(n-k)]$$

■ Con $h(n,k) = T[\delta(n-k)]$, la expresión se reescribe como,

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n,k)$$

■ Principio ...

■ La ecuación

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n,k)$$

- Constituye la respuesta de un sistema lineal a cualquier entrada x(n).
- Dépende de x(n) y de las respuestas h(n,k) del sistema a los impulsos unitarios $\delta(n-k)$.
- Se aplica a cualquier sistema lineal en reposo (variante o invariante en el tiempo)

■ Principio ...

■ Para sistemas invariantes con el tiempo, la ecuación

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n,k)$$

se reescribe como,

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$

- Observación.
 - La expresión anterior se denomina convolución.
 - Los sistemas LTI en reposo quedan totalmente caracterizados por su respuesta al impulso unitario, h(n).

■ Definición Convolución

Expresión que da la respuesta y(n) de un sistema LTI como función de la señal de entrada x(n) y de la respuesta impulsional h(n).

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

La convolución involucra cuatro pasos: reflexión, desplazamiento, multiplicación, y suma de señales.

PSI Percepción y Sistemas Inteligentes

Ejemplo 1. Obtener por convolución la respuesta del sistema $h(n) = \{1 \ \underline{2} \ 1 \ -1\}$ cuando la entrada es $x(n) = \{\underline{1} \ 2 \ 3 \ 1\}$.

■ Solución

- Usando la definición $y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$
- Y considerando que:

Long
$$[y(n)] = long [x(n)] + long [h(n)] - 1$$

 $n_{inicio}[y(n)] = n_{inicio}[x(n)] + n_{inicio}[h(n)]$
 $n_{final}[y(n)] = n_{final}[x(n)] + n_{final}[h(n)]$

■ Solución ...

- $n_{inicio} = n_{inicio}[x(n)] + n_{inicio}[h(n)] = 0 + (-1) = -1$
- $n_{final} = n_{final}[x(n)] + n_{final}[h(n)] = 3 + 2 = 5$
- Con $x(n) = \{\underline{1} \ 2 \ 3 \ 1\}$ $h(n) = \{\underline{1} \ \underline{2} \ 1 \ -1\}$
- Para n = -1
 - $y(-1) = \sum_{k=0}^{3} x(k)h(-1-k)$
 - y(-1) = x(0)h(-1-0) + x(1)h(-1-1) + x(2)h(-1-2) + x(3)h(-1-3)
 - y(-1) = x(0)h(-1) + x(1)h(-2) + x(2)h(-3) + x(3)h(-4)
 - y(-1) = 1x1 + 2x0 + 3x0 + 1x0 = 1

PSI Percepción y Sistemas Inteligentes

■ Solución ...

- Con $x(n) = \{\underline{1} \ 2 \ 3 \ 1\}$ $h(n) = \{\underline{1} \ \underline{2} \ 1 \ -1\}$
- \blacksquare Para n=0
 - $y(0) = \sum_{k=0}^{3} x(k)h(0-k)$
 - y(0) = x(0)h(0-0) + x(1)h(0-1) + x(2)h(0-2) + x(3)h(0-3)
 - y(0) = x(0)h(0) + x(1)h(-1) + x(2)h(-2) + x(3)h(-3)
 - $y(0) = 1x^2 + 2x^1 + 3x^0 + 1x^0 = 4$
- \blacksquare Para n=1
 - $y(1) = \sum_{k=0}^{3} x(k)h(1-k)$
 - y(1) = x(0)h(1-0) + x(1)h(1-1) + x(2)h(1-2) + x(3)h(1-3)
 - y(1) = x(0)h(1) + x(1)h(0) + x(2)h(-1) + x(3)h(-2)
 - y(1) = 1x1 + 2x2 + 3x1 + 1x0 = 8

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

PSI Percepción y Sistemas Inteligentes

■ Solución ...

- Con $x(n) = \{\underline{1} \ 2 \ 3 \ 1\}$ $h(n) = \{\underline{1} \ \underline{2} \ 1 \ -1\}$
- \blacksquare Para n=2
 - $y(2) = \sum_{k=0}^{3} x(k)h(2-k)$
 - y(2) = x(0)h(2) + x(1)h(1) + x(2)h(0) + x(3)h(-1)
 - y(2) = 1x(-1) + 2x1 + 3x2 + 1x1 = 8
- Para n = 3 $y(3) = \sum_{k=0}^{3} x(k)h(3-k) = 3$
- Para n = 4 $y(4) = \sum_{k=0}^{3} x(k)h(4-k) = -2$
- Para n = 5 $y(5) = \sum_{k=0}^{3} x(k)h(5-k) = -1$
- **Luego:** $y(n) = \{1 \ \underline{4} \ 8 \ 8 \ 3 \ -2 \ -1\}$

Ejemplo 2: Determine la respuesta del sistema LTI mediante el método tabular

Respuesta impulsional: $h(n) = \{1, 2, 1, -1\}$

Señal de entrada : $x(n) = \left\{ 1, 2, 3, 1 \right\}$

PEII Percepción y Sistemas Inteligentes

Solución: Por convolución $y(n) = \sum_{k=0}^{\infty} x(k)h(n-k)$

n:	-1	0	1	2	3	<u>=</u> −∞ 4	5
x(n):		1	2	3	1		
h(n):	1	2	1	-1			
	1*1=1	1*2=2	1*3=3	1 *1=1			
		2 *1=2	2 *2=4	2*3=6	2 *1=2		
			1*1=1	1*2=2	1*3=3	1*1=1	
				(-1)*1=-1	(-1)*2=- 2	(-1)*3=- 3	(-1)*1=- 1
y(n):	1	4	8	8	3	-2	-1

$$y(n) = \{1, 4, 8, 8, 3, -2, -1 \}$$

Método Tabular

Long
$$[y(n)] = long [x(n)] + long [h(n)] - 1 = 4 + 4 - 1 = 7$$

 $n_{inicio}[y(n)] = n_{inicio}[x(n)] + n_{inicio}[h(n)] = 0 + (-1) = -1$
 $n_{final}[y(n)] = n_{final}[x(n)] + n_{final}[h(n)] = 3 + 2 = 5$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Ejemplo 3: Obtener por convolución la salida del sistema h(n) = u(n-1) cuando la entrada es $x(n) = (1/3)^{-n} u(-n-1)$.

■ Solución:

- Aplicando la definición $y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$
- Se tiene:

$$y(n) = \sum_{k=-\infty}^{\infty} (1/3)^{-k} u(-k-1) u(n-k-1)$$

■ Descomponiendo en dos partes la sumatoria, se llega a:

$$y(n) = \sum_{k=0}^{\infty} x(k)h(n-k) + \sum_{k=-\infty}^{-1} x(k)h(n-k)$$

■ Solución...

■ Descomponiendo en dos partes la sumatoria, se llega a:

$$y(n) = y(n)_{k \ge 0} + y(n)_{k < 0}$$

■ Analizando la sumatoria para $k \ge 0$

$$y(n)_{k\geq 0} = \sum_{k=0}^{\infty} (1/3)^{-k} u(-k-1) u(n-k-1)$$

■ Se observa que siempre u(-k-1) = 0, por lo tanto:

$$y(n)_{k\geq 0}=0$$

■ Solución...

■ Analizando la sumatoria para k < 0

$$y(n)_{k<0} = \sum_{k=-\infty}^{-1} (1/3)^{-k} u(-k-1) u(n-k-1)$$

■ Se observa que siempre u(-k-1) = 1, por lo tanto:

$$y(n)_{k<0} = \sum_{k=-\infty}^{-1} (1/3)^{-k} \ u(n-k-1)$$

■ Haciendo k = -k, la expresión se reescribe como,

$$y(n)_{k<0} = \sum_{k=1}^{\infty} (1/3)^k \ u(n+k-1)$$

- Solución...
 - Por lo tanto la respuesta total se reduce a:

$$y(n) = \sum_{k=1}^{\infty} (1/3)^k \ u(n+k-1)$$

■ Aplicando el cambio de variables m = n + k - 1 se tiene:

$$y(n) = (1/3)^{-n+1} \sum_{m=n}^{\infty} (1/3)^m \ u(m)$$

■ La sumatoria resuelve en dos partes: para $n \ge 0$ y n < 0.

■ Solución...

■ Análisis para $n \ge 0$

Recordando que
$$\sum_{n=k}^{\infty} r^n = \frac{r^k}{1-r}$$
 : $|r| < 1$

• Se llega a:

$$y(n)_{n\geq 0} = (1/3)^{-n+1} \sum_{m=n}^{\infty} (1/3)^m \ u(m) = \frac{1/3}{1-1/3}$$
$$y(n)_{n\geq 0} = \frac{1}{2}$$

■ Solución...

- Análisis para n < 0
 - Puesto que *n* es negativo, el índice *m* de la sumatoria empieza con un valor negativo, pasa por cero y continua con valores positivos hasta infinito. Es decir,

$$y(n)_{n<0} = (1/3)^{-n+1} \left[\sum_{m=-|n|}^{-1} (1/3)^m \ u(m) + \sum_{m=0}^{\infty} (1/3)^m \ u(m) \right]$$

Luego,

$$y(n)_{n<0} = (1/3)^{-n+1} \sum_{m=0}^{\infty} (1/3)^m \ u(m)$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■ Solución...

- Análisis para n < 0 ...
 - Luego,

$$y(n)_{n<0} = (1/3)^{-n+1} \sum_{m=0}^{\infty} (1/3)^m \ u(m)$$

- Recordando que $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} : |r| < 1$
- Se llega a:

$$y(n)_{n<0} = (1/3)^{-n+1} \left| \frac{1}{1-1/3} \right| = \frac{3^n}{2}$$

- Solución...
 - **■** Finalmente,

$$y(n) = \begin{cases} \frac{1}{2} & n \ge 0\\ \frac{3^n}{2} & n < 0 \end{cases}$$

Propiedades de la Convolución

♦ Introducción:

Desde un punto de vista físico las **propiedades** pueden interpretarse como diferentes formas de **interconectar un sistema** para obtener el mismo resultado.

▶ Notación:

$$y(n) = x(n) * h(n) \equiv \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$x(n)$$
 $y(n)=x(n)*h(n)$

Propiedades de la Convolución...

→ Propiedad Conmutativa:

$$x(n)*h(n) = h(n)*x(n)$$

$$y(n) = h(n) * x(n) \equiv \sum_{k=-\infty}^{\infty} h(k) x(n-k)$$

Propiedades de la Convolución

Propiedad Asociativa: $[x(n)*h_1(n)]*h_2(n)=x(n)*[h_1(n)*h_2(n)]$

$$x(n)$$
 $[x(n)*h_1(n)]$ $y(n)=[x(n)*h_1(n)]*h_2(n)$

$$x(n)$$
 $y(n)=x(n)*[h_1(n)*h_2(n)]$ $[h_1(n)*h_2(n)]$

Propiedades de la Convolución...

Propiedad Distributiva: $x(n)*[h_1(n)+h_2(n)]=x(n)*h_1(n)+x(n)*h_2(n)$

Causalidad en sistemas LTI

■ Introducción

■ Para sistemas LTI la causalidad se traduce en una determinada condición que ha de cumplir h(n).

Causalidad en sistemas LTI

■ Introducción ..

La convolución para un instante n_0 está dada por:

$$y(n_0) = \sum_{k=-\infty}^{\infty} h(k)x(n_0 - k)$$

ó,

$$y(n_0) = \sum_{k=0}^{\infty} h(k)x(n_0 - k) + \sum_{k=-\infty}^{-1} h(k)x(n_0 - k)$$

■ De donde,

$$y(n_0) = [h(0)x(n_0) + h(1)x(n_0 - 1) + h(2)x(n_0 - 2) + \cdots] + [h(-1)x(n_0 + 1) + h(-2)x(n_0 + 2) + h(-3)x(n_0 + 3) + \cdots]$$

Causalidad en sistemas LTI...

Para que y(n) dependa sólo de las muestras **pasadas y presentes** de la entrada, la respuesta impulsional debe **satisfacer** la condición:

$$h(n) = 0$$
 para $n < 0$

>> Un sistema LTI es causal si y sólo si su respuesta impulsional es cero para valores negativos de n.

Causalidad en Sistemas LTI

Percepción y Sistemas Inteligentes

- **Ejemplo**. Determinar si los siguientes sistemas representados por su respuesta impulsional son causales.

 - $h_3(n) = \{ 3.2 \quad 4.4 \quad -5.5 \quad 7.1 \quad 8.4 \quad \dots \}$

 - $h_5(n) = u(n)$
 - $h_6(n) = 0.5^n u(n)$
 - $h_7(n) = u(n+2) u(n-2)$
 - $h_8(n) = \delta(n)$

■ Introducción

■ Un sistema en reposo es estable (BIBO) si y sólo si su secuencia de salida y(n) está acotada para cualquier entrada acotada x(n).

- Si x(n) está acotada, existe una constante M_x tal que:
- $|x(n)| \leq M_x < \infty$
- Si y(n) está acotada, existe una constante M_y tal que: $|y(n)| \le M_y < \infty$

■ Introducción ...

■ Tomando el **valor absoluto** en ambos lados de la fórmula de convolución, se obtiene,

$$|y(n)| = \left| \sum_{k=-\infty}^{\infty} h(k) x(n-k) \right|$$

■ Puesto que el **valor absoluto** de una suma es **siempre menor o igual** que la suma de los valores absolutos de sus términos:

$$|y(n)| \le \sum_{k=-\infty}^{\infty} |h(k)| |x(n-k)|$$

■ Introducción ...

■ Como la entrada es acotada $|x(n)| \le M_x$, puede **sustituirse** el límite superior para x(n) en la expresión anterior y obtener:

$$|y(n)| \le M_x \sum_{k=-\infty}^{\infty} |h(k)|$$

■ Se puede concluir que la **salida está acotada** si la respuesta impulsional del sistema satisface la **condición**:

$$S_h \equiv \sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

■ Introducción ...

- En consecuencia, un sistema LTI es estable si su respuesta impulsional es *absolutamente sumable*.
 - Condición necesaria y suficiente para garantizar la estabilidad del sistema.
 - Para sistemas causales, el **límite inferior** en la sumatoria de la condición de estabilidad es cero (k=0).

Ejemplo: Determinar el rango de valores del parámetro a para el cual el sistema LTI de respuesta $\mathbf{h}(\mathbf{n}) = a^{\mathbf{n}} u(\mathbf{n})$ es estable.

Solución

► De la definición:

$$S_h \equiv \sum_{k=0}^{\infty} |h(k)| < \infty$$

$$\sum_{k=0}^{\infty} |a^{k}| = \sum_{k=0}^{\infty} |a|^{k} = 1 + |a| + |a|^{2} + \dots$$

► Claramente, esta serie geométrica converge a:

$$\sum_{k=0}^{\infty} \left| a \right|^k = \frac{1}{1 - \left| a \right|}$$

siempre que |a| < 1.

Por lo tanto, el sistema es estable si |a| < 1.

PEU Percepción y Sistemas Inteligentes

Ejemplo 2: Determinar el rango de valores de los parámetros a y b para el cual el sistema LTI de respuesta impulsional h(n) es estable.

$$h(n) = \begin{cases} a^n, & n \ge 0 \\ b^n, & n < 0 \end{cases}$$

>> Solución

El sistema no es causal. Por lo tanto, de la condición de estabilidad se tiene:

$$\sum_{k=-\infty}^{\infty} |h(k)| = \sum_{k=0}^{\infty} |a|^k + \sum_{k=-\infty}^{-1} |b|^k$$

 \blacktriangleright Del ejemplo anterior, la primera suma converge si |a| < 1.

Ejemplo 2: ...

La segunda suma puede escribirse como,

$$\sum_{k=-\infty}^{-1} |b|^k = \sum_{k=1}^{\infty} \frac{1}{|b|^k} = \frac{1}{|b|} \left(1 + \frac{1}{|b|} + \frac{1}{|b|^2} + \dots \right) = \frac{1/|b|}{1 - 1/|b|}$$

donde 1/|b| < 1 para que la serie converja.

 \blacktriangleright En consecuencia, el sistema es estable si |a| < 1 y |b| > 1.

Sistemas LTI FIR e IIR

■ Introducción

- Los sistemas LTI quedan caracterizados completamente por su respuesta impulsional h(n).
- Según la duración de h(n) se clasifican en FIR e IIR.
 - FIR: Finite-duration Impulse Reponse
 - IIR: Infinite-duration Impulse Reponse
- La duracción de h(n) suministra información sobre las características del sistema.

Sistemas LTI FIR e IIR

■ Sistema FIR

- \blacksquare h(n) está definida en un intervalo finito de tiempo.
- Presenta una memoria finita, de longitud igual al intervalo de definición.

Sistemas LTI FIR e IIR

■ Sistema IIR

- h(n) considera la muestra presente y las pasadas de la señal de entrada para calcular la salida por *convolución*.
- Presenta memoria infinita.

Sistemas Recursivos y No Recursivos

■ Definiciones

>> Sistemas recursivos

y(n) en el instante n depende de los valores anteriores de la misma salida, y(n-1), y(n-2),

$$y(n) = F[y(n-1), y(n-2),..., y(n-N), x(n), x(n-1),..., x(n-M)]$$

>> Sistemas no recursivos

y(n) depende sólo de los valores presentes y/o pasados de la señal de entrada x(n).

$$y(n) = F[x(n), x(n-1), ..., x(n-M)]$$

Sistemas Recursivos y No Recursivos

■ Observaciones:

- ► La implementación de muchos sistemas discretos prácticos requiere de la recursividad.
- Los sistemas recursivos se diferencian de los no recursivos por la presencia de lazos de realimentación y/o atrasos entre la entrada y la salida.

La salida de un sistema **recursivo** debe calcularse **consecutivamente** mientras que la salida de un sistema **no recursivo** se puede calcular en **cualquier orden**.

Ejemplo 1:

■ Problema: Obtener un sistema recursivo a partir del sistema de promedio acumulado de una señal x(n) en el intervalo $0 \le k \le n$.

$$y(n) = \frac{1}{n+1} \sum_{k=0}^{n} x(k)$$
 $n = 0,1,....$

>> Solución: Modificando la expresión anterior es posible obtener un sistema recursivo que requiere mucho menos memoria.

$$(n+1)y(n) = \sum_{k=0}^{n-1} x(k) + x(n) = n \ y(n-1) + x(n)$$
$$y(n) = \frac{n}{n+1} y(n-1) + \frac{1}{n+1} x(n)$$

Ejemplo 1:

■ Diagrama de Bloques

$$y(n) = \frac{n}{n+1}y(n-1) + \frac{1}{n+1}x(n)$$

Ejemplo 2:

PSI Percepción y Sistemas Inteligentes

■ **Problema:** Encontrar que operación realiza el siguiente sistema recursivo.

$$y(n) = \frac{1}{2} \left[y(n-1) + \frac{x(n)}{y(n-1)} \right]$$

- **■** Respuesta:
 - Dbtiene la raíz cuadrada de un número positivo A:
 - ▶ y(-1) debe ser igual a una estimación de \sqrt{A} y x(n)=A u(n).
 - >> Verificación:

Con **A=2**,
$$y(-1)=1 \implies x(n) = 2 u(n)$$

Resultado: y(0)=3/2, y(1)=1.4166667, y(2)=1.4142157.

Ejemplo 2:

■ Diagrama de Bloques:

$$y(n) = \frac{1}{2} \left[y(n-1) + \frac{x(n)}{y(n-1)} \right]$$

