

Name: Ayush Jain SAP ID: 60004200132

	SAP ID: 60004200132
31 112 2021	MAEER'S MIT
	Tutorial 8
>	Find the Inverse Fourier Transform of F(x): e sinx
2>	Find the value of $\int_{0}^{\infty} \frac{e^{-x^2/2}}{e^{-x^2+1}}$
3>	Find finite fourier sine Transform of sinha(TT-x), sinhaTT
	0 ≤ 2 < π
	Solutions:
1>	First find]- [c-1x1] and] [sinx] seperately.
	:]- [e- x] = 1 00 - x - ixx dx
•	= 1 S C ex - inx on - inx dx }
	$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{x(1-ix)} dx + \int_{0}^{\infty} e^{-x(1+ix)} dx$
	$= \frac{1}{\sqrt{2\pi}} \left\{ \begin{bmatrix} e^{x(1-ix)} \\ 1-ix \end{bmatrix} $
	$= \frac{1}{\sqrt{2\pi}} \left[\frac{1}{1-ix} + \frac{1}{1+ix} \right]$

MAEER'S MIT

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left(\frac{1}{1+x^2} \right)$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left(\frac{1}{1+x^2} \right)$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left(\frac{1}{1+x^2} \right)$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left(\frac{1}{1+x^2} \right)$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left(\frac{1}{1+x^2} \right)$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right] : \sqrt{\frac{1}{2}} \left[e^{-|K|} \right]$$

$$\frac{1}{3} \left[e^{-|K|} \right] :$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{1} \frac{1}{(x-t)^{2}} dt$$

$$\frac{1}{\sqrt{2\pi}} \left[\frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} \right) \right]_{\infty}^{2\pi} \right]$$

$$\frac{3^{-1}\left[e^{-1\alpha 1}\sin\alpha\right]}{\alpha} = \frac{-1}{\sqrt{2\pi}}\left[\tan^{-1}x - \tan^{-1}(x-1)\right]$$

$$2 > \text{let } +(x) = e^{-x^2/2}$$

:.
$$\exists c [e^{-x^2/2}] = e^{-x^2/2} = F_c(x)$$

$$\int_{0}^{\infty} e^{-x^{2}/2} e^{-x} dx = \int_{0}^{\infty} e^{-x^{2}/2} \sqrt{\frac{2}{\pi}} \cdot 1 dx$$

$$\frac{x^{2}}{e^{2}} = \sqrt{\frac{\pi}{2}} = \sqrt{\frac{\pi}{2}}$$

$$= \sqrt{\frac{11}{2}} \int_{0}^{\infty} e^{-\left(\frac{1+x}{\sqrt{2}}\right)^{2} + 1/2} dx$$

Put
$$(1+2)^{\circ} = 0$$
, $(1+2) = \sqrt{20}$

$$d2 = d0$$

$$\sqrt{2} \sqrt{5}$$

$$\int_{0}^{\infty} \frac{-x^{2}/2}{2!} = \sqrt{\pi e} \int_{0}^{\infty} \frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{1}$$

$$= \sqrt{\frac{\pi e}{2}} \left\{ \frac{1}{\sqrt{2}} \left[\frac{1}{2} - \frac{1}{2} \frac{e^{-v}}{\sqrt{2}v} \right] \right\}$$

$$\int_{0}^{\infty} \frac{-x^{2}/2}{e^{2}} = \frac{\pi}{2} \sqrt{e} - \frac{1}{2} \sqrt{e} \frac{1}{2} e^{-\frac{\pi}{2}} du$$

SinhalT =
$$e^{0x} + e^{-ax} - \cot na\pi \left[e^{0x} - e^{-ax} \right]$$

MAEER'S MIT

$$\frac{1}{1} \left[\frac{e^{\alpha x}}{e^{\alpha x}} e^{-\alpha x} \right] e^{\alpha x} n \times dx - \coth n \prod_{\alpha} \left[\frac{e^{\alpha x}}{e^{\alpha x}} - \frac{e^{\alpha x}}{e^{\alpha x}} \right] e^{\alpha x} n \times dx$$

$$= \frac{1}{2} \left[\frac{e^{\alpha x}}{e^{\alpha x} n^{2}} \left[\frac{e^{\alpha x}}{e^{\alpha x} n^{2}} - \frac{e^{\alpha x}}{e^{\alpha x} n^{2}} - \frac{e^{\alpha x}}{e^{\alpha x} n^{2}} - \frac{e^{\alpha x}}{e^{\alpha x} n^{2}} \right] - \frac{e^{\alpha x}}{e^{\alpha x} n^{2}} \left[\frac{e^{\alpha x}}{e^{\alpha x} n^{2}} - \frac{e^{\alpha x}}{e^{\alpha x} n^{2}} - \frac{e^{\alpha x}}{e^{\alpha x} n^{2}} \right] - \frac{e^{\alpha x}}{e^{\alpha x} n^{2}} \left[\frac{e^{\alpha x}}{e^{\alpha x} n^{2}} - \frac{e^{\alpha x}}{e^{\alpha x} n^{2}} - \frac{e^{\alpha x}}{e^{\alpha x} n^{2}} \right] - \frac{e^{\alpha x}}{e^{\alpha x} n^{2}} - \frac{e^{\alpha x}}{e^{\alpha x} n$$