Esame di Architetture - Canale MZ - 31/1/17

Esercizio 4 (14 punti).

Considerate un sistema con due livelli di cache:

- L1 è una cache **2-way** set-associativa con **8 set** e blocchi grandi **4 word** e strategia di rimpiazzo **LRU**.
- L2 è una cache **1-way** set-associativa con **4 set** e blocchi grandi **16 word** e strategia di rimpiazzo **LRU**.
- 1) Supponendo che gli indirizzi siano da 32 bit (indirizzamento al byte) e che all'inizio nessuno dei dati sia in cache, indicate quali degli accessi in memoria più sotto sono hit o miss in ciascuna delle due cache
- 2) per ciascuna MISS indicate se è di tipo Caricamento (L), Capacità (Cap) o Conflitto (Conf)

	Address	1120	545	129	1099	1100	2056	319	445	2060	538	131	318	130	528
L1	Block#	70	34	8	68	68	128	19	27	128	33	8	19	8	33
	Index	6	2	0	4	4	0	3	3	0	1	0	3	0	1
	Tag	8	4	1	8	8	16	2	3	16	4	1	2	1	4
	Hit/Miss	M	M	M	M	Н	M	M	M	Н	M	Н	Н	Н	Н
	Tipo miss	L	L	L	L		L	L	L		L				
L2	Block#	17	8	2	17		32	4	6		8				
	Index	1	0	2	1		0	0	2		0				
	Tag	4	2	0	4		8	1	1		2				
	Hit/Miss	M	M	M	Н		M	M	M		M				
	Tipo miss	L	L	L			L	L	L		Cap.				

La ultima miss in L2 è di Capacità perché anche se L2 fosse fully associative non sarebbe possibile ricordare più di 4 accessi e l'accesso precedente al blocco 8 è avvenuto 6 accessi (a blocchi diversi) prima.

3) calcolate le dimensioni in bit delle due cache L1, L2 compresi i bit di controllo Scrivete le soluzioni CON I PASSAGGI qui sotto continuando se necessario sul retro del foglio

Dimensioni L1:

```
dim. blocco = 4 word * 4 byte= 16 byte * 8 bit = 128 bit
offset = log2(16) = 4 bit index = log2(8) = 3 bit tag = 32 - offset - index = 32 - 4 - 3 = 25 bit
dimensioni L1 = 2 ways * 8 set * [V + D + U + blocco + tag] = 2 * 8 * [3 + 128 + 25] = 16 * 156 = 2496 bit
```

Dimensioni L2:

```
dim. blocco = 16 word * 4 byte= 64 byte * 8 bit = 512 bit offset = \log 2(64) = 6 bit index = \log 2(4) = 2 bit tag = 32 - \text{offset} - \text{index} = 32 - 6 - 2 = 24 bit dimensioni L2 = 1 ways * 4 set * [V + D + blocco + tag] = 1 * 4 * [2 + 512 + 24] = 4 * 538 = 2152 bit NOTA: il bit USED non è presente nelle cache direct-mapped
```

4) assumendo che il processore vada a **5Ghz** con **4 CPI** (Clock Per Instruction), che gli accessi in memoria impieghino **25ns**, che gli hit nella cache L1 impieghino **1ns** e gli hit nella cache L2 impieghino **5ns**, calcolate il **tempo medio** per questa sequenza di accessi e **quante istruzioni** vengono svolte nel tempo calcolato. Scrivete le soluzioni CON I PASSAGGI <u>qui sotto</u> continuando se necessario sul retro del foglio

Tempo totale:

6 hit L1 + 1 hit L2 + 7 miss L2 =
$$6 * 1ns + 1 * 5ns + 7 * 25ns = 6ns + 5 ns + 175ns = 186 ns$$

Tempo medio per accesso:

186 ns / 14 = 13.28 ns

Numero di istruzioni eseguite nel tempo medio:

Se la frequenza di clock è 5 GHz il periodo è $1/5*10^9 = 0.2$ ns, e una istruzione impiega 4*0.2ns = 0.8 ns quindi in 13.28 ns vengono svolte **13.28/0.8 = circa 17 istruzioni**