Die Zukunft unseres Sonnensystems

Wo liegen die Grenzen der Vorhersagbarkeit?

Referent: Leander Riefel / Betreuende Lehrkraft: Herr Weber / Referenzfach: Physik / Begleitfach: Informatik

Gliederung

Grundlagen Unser Sonnensystem

Grundlagen n-Körper-Problem

- Beispiel: Sonne-Erde-Mond; Sonnensystem
- Muss für " $n_{K\"{o}rper} > 2$ " numerisch gelöst werden
- Sehr hoher Rechenaufwand
- Allgemein nicht-periodisch und chaotisch

$$F = a * m = G \frac{m_1 m_2}{r^2}$$

×

$$\overrightarrow{a_i(t)} = G \sum_{i \neq j} \frac{m_j}{\left\| \overrightarrow{r_{ji}(t)} \right\|^3} \overrightarrow{r_{ji}(t)}$$

Vorhersagen

Chaos

Sensitive Abhängigkeit von den Anfangsbedingungen

"Schmetterlingseffekt"

Vorhersagen

- Kleine Fehler in den Anfangsbedingungen wachsen exponentiell
- Beschreibt Langzeitverhalten eines dynamischen Systems
- Im Allgemeinen nicht Periodisch
- Trotzdem noch Deterministisch
 - Gedankenexperiment: Laplacescher Dämon

Weitere Zukunftsaussichten

Chaos

Beispiel chaotisches System: Lorenz Attraktor

Chaos In unserem Sonnensystem

- Ebenfalls n-Körper-System
 - Sonne, Planeten, Asteroiden und Kometen, Einflüsse außerhalb des Sonnensystems
 - Besonderheit: Ein Körper wesentlich größer als alle anderen » Sonne
- Lyapunov-Zeit von ≈ 5 Millionen Jahren
 - Nach wenigen Lyapunov-Zeiten verschwinden genaue Vorhersagbarkeiten
- Vorhersagen mithilfe von Simulationen

$$\|\delta(t)\| \approx e^{\lambda t} \|\delta_0\|$$

 $\delta \cong$ Differenz zweier Systeme $\lambda \cong$ Lyapunov-Exponent


```
1 G = 6.6743e-11 # Gravitationskonstante in m<sup>3</sup> kg<sup>-1</sup> s<sup>-2</sup>
2 AU_to_m = 1.496e11 # Astronomische Einheit in Meter
3 AUday_to_ms = AU_to_m / 86400 # AU/Tag in m/s
5 with open("solar_system.json", "r") as f:
       data = json.load(f)
7 labels = [
        "Sun",
9
        "Mercury",
       "Venus",
       "Earth",
        "Mars",
        "Jupiter",
        "Saturn",
        "Uranus",
        "Neptune",
        "Pluto",
18
19 rows = []
20 for name in labels:
        if name in data:
           body = data[name]
           mass = body["mass"]
           pos = body["position"]
           vel = body["velocity"]
           row = [mass, pos["x"], pos["y"], pos["z"], vel["vx"], vel["vy"], vel["vz"]]
           rows.append(row)
28 # [mass, x, y, z, vx, vy, vz]
29 bodies = np.array(rows, dtype=np.float64)
30 bodies[:, 1:4] *= AU_to_m
31 bodies[:, 4:7] *= AUday_to_ms
33 dt = 86400 / 100  # Zeitschritt (in Sekunden) - 1/100 Tag
34 tolerance = 1e1 # Toleranz für die Simulation
35 axis_limit = 1e12 # Achsenlimit für die Plots
```

```
def update(frame):
       global bodies, sim_steps, display_index
       bodies_new, corrected_dt = rkdp45(bodies, dt)
       bodies[:] = bodies_new
       sim steps += 1
       sim time[sim steps] = sim time.get(sim steps - 1, 0) + corrected dt
6
7
       for i in range(bodies.shape[0]):
           history[i].append(bodies[i, 1:4].copy())
9
11
       # Update Slider-Bereich dynamisch
12
       slider.valmax = sim_steps
       slider.ax.set xlim(slider.valmin, slider.valmax)
13
14
15
       # Automatische Slider-Bewegung nur wenn nicht pausiert
       if not paused and not slider_active:
16
17
           display_index = sim_steps
            slider.set_val(display_index)
18
19
       update_display(display_index)
       return planets + trails + [time_text]
21
22
23
   ani = FuncAnimation(fig, update, interval=0, cache frame data=False)
25 plt.show()
```

```
def update(frame):
       global bodies, sim_steps, display_index
       bodies_new, corrected_dt = rkdp45(bodies, dt)
       bodies[:] = bodies new
       sim steps += 1
       sim time[sim steps] = sim time.get(sim steps - 1, 0) + corrected dt
6
7
       for i in range(bodies.shape[0]):
           history[i].append(bodies[i, 1:4].copy())
9
11
       # Update Slider-Bereich dynamisch
12
       slider.valmax = sim_steps
       slider.ax.set xlim(slider.valmin, slider.valmax)
13
14
15
       # Automatische Slider-Bewegung nur wenn nicht pausiert
       if not paused and not slider_active:
16
17
           display_index = sim_steps
            slider.set_val(display_index)
18
19
       update_display(display_index)
       return planets + trails + [time_text]
21
22
23
   ani = FuncAnimation(fig, update, interval=0, cache frame data=False)
25 plt.show()
```

Weitere Vorhersagen Zukunftsaussichten

```
anb.njit(fastmath=True, parallel=True)
   def acceleration(bodies):
       n = bodies.shape[0]
       acc = np.zeros((n, 7))
       for i in range(n):
           acc[i, 0] = 0.0 # Massen-Ableitung = 0
           acc[i, 1:4] = bodies[i, 4:7] # dx/dt = vx, dy/dt = vy, dz/dt = vz
           for j in range(n):
9
               if i == j:
10
                   continue
               dx = bodies[j, 1] - bodies[i, 1]
11
               dy = bodies[j, 2] - bodies[i, 2]
               dz = bodies[j, 3] - bodies[i, 3]
13
               dist = np.sqrt(dx * dx + dy * dy + dz * dz)
14
               acc[i, 4] += G * bodies[j, 0] * dx / (dist**3)
15
               acc[i, 5] += G * bodies[j, 0] * dy / (dist**3)
17
               acc[i, 6] += G * bodies[j, 0] * dz / (dist**3)
        return acc
```


$$\overrightarrow{a_{i}(t)} = G \sum_{i \neq j} m_{i} \frac{r_{ji}(t)}{\|r_{ji}(t)\|^{3}}$$

$$Y_{o} = \begin{pmatrix} m \\ r \\ v \end{pmatrix} \qquad f(Y) = \begin{pmatrix} \dot{m} \\ \dot{r} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} 0 \\ v \\ a \end{pmatrix}$$

$$Y_{t+\Delta t} = {m \choose r} = \int_{t}^{t+\Delta t} f(Y) dY$$

Vorhersagen Weitere Fazit

```
2 def rkdp45(bodies, dt):
       # c-Werte (Zeitanteile)
      c2, c3, c4, c5, c6, c7 = 1 / 5, 3 / 10, 4 / 5, 8 / 9, 1.0, 1.0
4
       # Butcher-Tabellen-Koeffizienten:
      a21 = 1 / 5
      a31, a32 = 3 / 40, 9 / 40
      a41, a42, a43 = 44 / 45, -56 / 15, 32 / 9
      a51, a52, a53, a54 = 19372 / 6561, -25360 / 2187, 64448 / 6561, -212 / 729
      a61, a62, a63, a64, a65 = 9017 / 3168, -355 / 33, 46732 / 5247, 49 / 176, -5103 / 18656
       a71, a72, a73, a74, a75, a76 = 35 / 384, 0.0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84
       # Koeffizienten für 5. Ordnung (5th-Order Lösung):
      b1, b2, b3, b4, b5, b6 = 35 / 384, 0.0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84
       # b7 = 0.0 implizit
       # Koeffizienten für die 4. Ordnung (eingebettete Lösung):
       b1s, b2s, b3s, b4s, b5s, b6s, b7s = 5179 / 57600, 0.0, 7571 / 16695, 393 / 640, -92097 / 339200, 187 / 2100, 1 / 40
       k1 = acceleration(bodies)
       k2 = acceleration(bodies + dt * (a21 * k1))
       k3 = acceleration(bodies + dt * (a31 * k1 + a32 * k2))
      k4 = acceleration(bodies + dt * (a41 * k1 + a42 * k2 + a43 * k3))
       k5 = acceleration(bodies + dt * (a51 * k1 + a52 * k2 + a53 * k3 + a54 * k4))
      k6 = acceleration(bodies + dt * (a61 * k1 + a62 * k2 + a63 * k3 + a64 * k4 + a65 * k5))
       k7 = acceleration(bodies + dt * (a71 * k1 + a72 * k2 + a73 * k3 + a74 * k4 + a75 * k5 + a76 * k6))
      y5 = bodies + dt * (b1 * k1 + b2 * k2 + b3 * k3 + b4 * k4 + b5 * k5 + b6 * k6)
      y4 = bodies + dt * (b1s * k1 + b2s * k2 + b3s * k3 + b4s * k4 + b5s * k5 + b6s * k6 + b7s * k7)
       error = np.linalg.norm(y5 - y4)
       print("dt:", dt, "error:", error)
       if error > tolerance:
          dt = 0.99 * dt * (tolerance / error) ** 0.01
          return rkdp45(bodies, dt)
      return y5, dt
```


Grundlagen Chaos Simulation Vorhersagen Zukunftsaussichten Fazit

Vorhersagen

- Laskar 2008
 - Statistische Wahrscheinlichkeiten für Instabilitäten
 - Einfluss von relativistischen Effekten
 - 1001 Durchführen
- Laskar 2012
 - Erklärt historischen Kontext
 - Zusammenfassung früherer Studien und deren Aussagen

Vorhersagen Weitere Zukunftsaussichten Fazit

Vorhersagen

- Brown & Rein 2020
 - Öffentlicher Datensatz zu 96 Durchführungen
 - Volle N-Körper-Integration mit Open-Source-Tools
- Brown & Rein 2022
 - 2880 Durchführungen mit Open-Source Code

Weitere Fazit
Zukunftsaussichten

Vorhersagen

Vorhersagen Innere & Äußere Planeten

Gyr interval. As it was mentioned before, (Laskar, 1990, 1994), there is practically no diffusion for the outer planet system that behaves nearly as a quasiperiodic and regular system. On the opposite, there is a significant diffusion of the eccentricities and inclinations of the inner planets. The statistics on the maximum values reached by the ec-

Vorhersagen Innere & Äußere Planeten

Grundlagen Chaos Simulation Vorhersagen Zukunftsaussichten Fazit

Vorhersagen Merkur

 $e \gtrsim 0.8 \rightarrow Gefahr \ Kollision \ mit \ Venus$ $e \gtrsim 0.95 \rightarrow Gefahr \ Kollision \ mit \ Sonne$ $e > 1 \rightarrow Rauswurf$

Abb. 3: Laskar Diagramme der inneren Planeten

Vorhersagen Merkur

Vorhersagen Newton vs. Relativität

Newtonsche Mechanik

e_{m0}	500	1000	1500	2000	3000	4000	5000
0.35	130	341	478	558	692	763	812
0.40	75	249	373	449	589	684	747
0.50	24	118	226	306	442	552	640
0.60	16	76	169	238	364	476	564
0.70	14	67	150	218	343	454	541
0.80	12	63	141	209	331	442	531
0.90	12	61	138	202	325	441	530

Allgemeine Relativitätstheorie

e_{m0}	500	1000	1500	2000	3000	4000	5000
0.35	25	75	128	165	280	366	427
0.40	4	21	38	52	113	180	243
0.50	0	0	0	0	6	19	33
0.60	0	0	0	0	0	6	10
0.70	0	0	0	0	0	6	10
0.80	0	0	0	0	0	2	8
0.90	0	0	0	0	0	0	2

Abb. 4: Laskar Diagramme – Vergleich Newton vs. GR

Vorhersagen Säkulare Resonanzen

Abb. 3: Laskar Diagramme der inneren Planeten

Grundlagen Chaos Simulation Vorhersagen Zukunftsaussichten Fazit

Vorhersagen Auf einen Blick

- Chaotische Effekte setzen nach ≈ 100 Myr ein
- Kollision Merkurs ≈ 1% nach 5 Gyr
 - Ohne relativistische Effekte ≈ 60%
 - Hauptsächlich durch Merkur-Jupiter-Resonanz
- Kollision Mars-Erde sehr unwahrscheinlich
 - < 0,2%

Vorhersagen

Weitere Zukunftsaussichten

Tod der Sonne – Sonne als Roter Riese

- Wasserstoffbrennende Phase endet in ≈ 5 (±0,5)
 Gyr
 - Vollständige Verbrauch von Wasserstoffatomen
 - Maximum von vielen Simulationen
- Anstieg des Radius auf ≈ 0,75 AE
 - Entspricht der Umlaufbahn von Venus
- Verliert über Sonnenwinde ca. 28% ihrer Masse

Graduelle Erwärmung

Abb. 5: Lebenszyklus der Sonne

Planetarer Nebel

Weitere Zukunftsaussichten

Asteroiden und Kometen

- Lyapunov-Zeiten von 100 100.000 Jahren
- Für die Erde gefährliche Objekte früh genug erkannt
- Kollisionen mit Planeten können Simulationen verfälschen
- Einschlaghäufigkeiten
 - " $d_{Objekt} \ge 1km$ " ca. alle 0,5 Myr
 - " $d_{Objekt} \approx 5km$ " ca. alle 20 Myr
 - " $d_{Objekt} \approx 10 km$ " ca. alle 100 Myr

Abb. 2: Asteroidengürtel & Positionen

Wo liegen die Grenzen der Vorhersagbarkeit?

Weitere Fazit
Zukunftsaussichten

Fazit

Nächste ≈ 100 Millionen Jahre

- Quasiperiodische Planetenbahnen
 - Keine Kollisionen & Auswürfe
- Kleine Unsicherheiten von Asteroiden & Kometen
 - Allerdings > 96% aller NEAs bereits bekannt
 - Ablenkbar und Berechenbar
- Hohe Vorhersagbarkeit in naher Zukunft

100 Millionen – 5 Milliarden Jahre

- Chaotische Effekte
 - Nur noch statistische Aussagen möglich
 - 0,38mm Änderung
 -> völlig andere Bahnen nach ≈ 200 Myr
- Unvorhersagbare Sterneneinflüsse
- Lebenszyklus der Sonne sicher bekannt
- Vorhersagbarkeit nimmt mit der Zeit stark ab

Quellen

- https://doi.org/10.48550/arXiv.2012.05177
- https://doi.org/10.48550/arXiv.0802.3371
- https://doi.org/10.48550/arXiv.1209.5996
- https://doi.org/10.48550/arXiv.1705.00527
- https://doi.org/10.48550/arXiv.1506.01084
- https://zenodo.org/records/4299102
- https://doi.org/10.1051/0004-6361/202140989
- https://orbital-mechanics.space/
- https://rebound.readthedocs.io/en/latest/integrators/#whfast
- https://eyes.nasa.gov/apps/solar-system/
- https://science.nasa.gov/solar-system/
- https://ssd.jpl.nasa.gov/horizons/app.html

Quellen

- https://en.wikipedia.org/wiki/Ergodicity
- https://en.wikipedia.org/wiki/Two-body_problem
- https://en.wikipedia.org/wiki/Three-body_problem
- https://en.wikipedia.org/wiki/Liouville%E2%80%93Arnold_theorem
- https://en.wikipedia.org/wiki/Orbital_resonance
- https://en.wikipedia.org/wiki/Stability_of_the_Solar_System
- https://en.wikipedia.org/wiki/Lagrange_point
- https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
- https://en.wikipedia.org/wiki/Orbital_period
- https://en.wikipedia.org/wiki/Lyapunov_time
- https://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method
- https://en.wikipedia.org/wiki/Bessel_function
- https://en.wikipedia.org/wiki/Kepler%27s_equation
- https://en.wikipedia.org/wiki/Ellipse
- https://en.wikipedia.org/wiki/Orbit_equation
- https://en.wikipedia.org/wiki/Newton%27s_method
- https://en.wikipedia.org/wiki/Hamiltonian_mechanics
- https://en.wikipedia.org/wiki/Verlet_integration
- https://en.wikipedia.org/wiki/Numerical_integration
- https://en.wikipedia.org/wiki/Periodic_function

Quellen

- Abb. 1: https://commons.wikimedia.org/wiki/File:Kepler%27s_equation_scheme_German.svg
- Abb. 2: https://www.spektrum.de/news/asteroidenguertel-um-sonne-gesteinsbrocken-zwischen-jupiter-und-mars/982787
- Abb. 3 & 4: https://doi.org/10.48550/arXiv.0802.3371
- Abb. 5: https://www.studysmarter.de/schule/physik/astronomie/sonne/