Exploratory Analysis of Rainfall Data in India for Agriculture

REPORT

Submitted by

Deebika G

Mahalakshmi R

Jesica S

Keerthi P

TEAM ID - PNT2022TMID28399

Bachelor of Technology

in **Information Technology**

Institution Mentor: Mr Karthi M **Industrial Mentor:** Lalitha Gayathri

1. INTRODUCTION

Project Overview

Purpose

2. LITERATURE SURVEY

Existing problem

References

Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

Empathy Map Canvas

Ideation & Brainstorming

Proposed Solution

Problem Solution fit

4. REQUIREMENT ANALYSIS

Functional requirement

Non-Functional requirements

5. PROJECT DESIGN

Data Flow Diagrams

Solution & Technical Architecture

User Stories

6. PROJECT PLANNING & SCHEDULING

Sprint Planning & Estimation

Sprint Delivery Schedule

Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

Feature 1

Feature 2

Database Schema (if Applicable)

8. TESTING

Test Cases

User Acceptance Testing

9. RESULTS

Performance Metrics

10. ADVANTAGES & DISADVANTAGES

11. CONCLUSION

12. FUTURE SCOPE

Source Code

GitHub & Project Demo Link

1. INTRODUCTION:

Project Overview:

With the changes in the climatic conditions and irregular pattern of weather conditions, predicting their occurrence for preventing lifeloss to humankind and environment is an utmost societal needed problem of the society. Drastic changes in climate have occurred over the past years and with change in revolution proper preventive measures are needed. Heavy rainfall can lead to floods. Flash floods are catastrophic. Climate change is increasing the frequency, intensity and magnitude of disasters, leading to a higher number of deaths and injuries, as well as increased property and economic losses. In the past 20 years, 90% of major disasters have been caused by weather-related events such as heatwaves, storms, floods and droughts, according to the UN Office for Disaster Risk Reduction (UNISDR). Natural disasters are increasing in strength and frequency. Shifting weather patterns make predictions and emergency planning difficult. Hence, we focus on the effective prediction of the probability of the flood occuring in a particular region and recommending an evacuation area nearby by performing an exploratory analysis of the data collected.

Purpose

To design a disaster management system by forecasting a flood event to control flood risk by recommending an evacuation area from flood hazard areas which ultimately helps to manage the environment and water resource system. This also serves a purpose of the Early warning system by training a model and selecting the best prediction algorithm among the classifiers. The occurrence of flash floods can cause catastrophic damage to the society. They first mainly affect the people living near to the riverbeds. Evacuating them from the hazard areas and providing them the shelter they needed. With the irregular change in climate patterns, it's been difficult to predict the occurrence of floods using traditional methods leading to massive destruction. Thus to cope with flash floods and to handle critical situations new methodologies are invented to overcome such difficulties.

Technology has to be more aware to reduce the loss that a flash flood would make. In the

modernizing era, it's made even easier to predict the occurrence of floods and recommend nearby evacuation areas. Hazard areas that are prone to destruction and devastating loss are monitored regularly and the rainfall readings are collected, integrated from multiple resources, curated, mined, analyzed and prediction is done over patterns. With the prediction, recommendation areas are listed for the society. Early warning systems are climate change adaptation measures that use integrated communication systems to help communities prepare for dangerous climate-related events. An early warning system's success saves lives and jobs, land and infrastructure, and supports long-term sustainability.

2. LITERATURE SURVEY:

Existing Solutions

This paper deals with the idea of predicting floods using the algorithm Artificial neural networks(ANN) and with the support of the Internet of Things. This system looks after the humidity, temperature, pressure, rainfall, and river water level periodically to the temporal correlative information for flood prediction analysis. Flood data is dynamic and non-linear in nature. The sensors read the data and inform the system. With those values, the prediction is done and the decision is taken on the occurrence of a flood.[1]

Precipitation in any form such as snow, rain or hail can affect the routine of the society. Therefore predicting the occurrence of rainfall beforehand and warning the society about the day's condition can be helpful in a lot more ways. Providing accurate results for forecasting rainfall has been a major issue with the drastic change in climatic conditions. Using a fusion of machine learning techniques can help in providing much more accurate results about the occurrence of rainfall. Four supervised learning algorithms has been used to get out the accurate results for prediction. The four effective algorithms that results in accurate prediction are decision tree, Naïve Bayes, K-nearest neighbors, and support vector machines. The effectiveness of the algorithm is checked by incorporating the technology known as fuzzy logic. A twelve year historical weather data of city lahore is considered for training , validating and for testing. In such a way that this fusion model outperformed other existing models. [2]

The drastic change in climatic conditions has caused severe impact on the society and environment. A country's economic and financial condition is mainly dependent on the country's agriculture. Farming and agriculture are considered to be India's backbone of economic conditions. In such a way any climate change affects the agricultural development which in directly affects the economic and financial conditions of the country. Therefore predicting the occurrence of rainfall is one of the most important aspect for the safety of the society as well as the country with its economic conditions. Loss in agriculture could lead to famine and create a huge economic crisis. Prediction made should be to the point. The traditional methods of predicting rainfall have gone out of control with the drastic change in climatic conditions and development of the country. With the rise in global warming conditions, rough humidity and change in the oceans predicting rainfall with any modest technologies that results in the precise results is an utmost need of the society. Applying machine learning classification algorithms to predict the accurate results of rainfall has been implemented. UCI repository dataset has been considered for training, validating and testing. [3]

With nature being unpredictable the intensity of the rainfall varies according to the climatic conditions and the pressure of the wind. Under such conditions, urban floods can be a great disaster for society. This paper deals with a classification-based real-time flood prediction model with the support of a numerical analysis model based on hydraulic theory and the required machine learning models. The Flood database has been created beforehand with the help of the Environmental Protection Agency-Storm Water Management model and from a two-dimensional inundation model. Using the Latin hypercube sampling and probabilistic neural network are used for categorizing the flood depth data into five categories. This machine learning model is constructed to identify the respective cumulative volume if the observed rainfall data is entered. Therefore a system that's capable of generating a real-time flood map by cumulative volume of each grid to the cumulative volume using linear regression and nonlinear regression. The developed system can predict the rainfall-induced flooding potential in such a way that reduces the risk due to disaster and minimizes damage to health and properties. Therefore a useful disaster management system has been developed for preventing huge losses due to disasters.[4]

On a high note, research has been continuously carried out on achieving efficient and accurate prediction technology or systems. With the help of machine learning techniques and algorithms, prediction can be made easy to obtain accurate and earlier results such as making the required arrangements and evacuating people from the hazard areas. Over the two decades, neural networks have shown an extraordinary outcome in predicting the occurrence of floods with the given rainfall data providing better results and cost-effective solutions. This paper is novel in the way of analyzing databases by Multi-layer perceptron classifier to read data such as dynamic identification, deficit treatment, data validation, and data cleaning to be carried across the database.

Advancements in every note can provide better results based on the preprocessing of data.[5]

References

- [1] Swapnil Bande, Virendra V. Shete, "Smart flood disaster prediction system using IoT& neural networks", 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon)
- [2] Atta-ur Rahman, Sagheer Abbas, Mohammed Gollapalli, Rashad Ahmed, Shabib Aftab, Munir Ahmad, Muhammad Adnan Khan, Amir Mosav, "Rainfall Prediction System Using Machine Learning Fusion for Smart Cities", 2022 May National Library of Medicine
- [3] Vikas Kumar, Vishal Kumar Yadav, Er. Sandeep Dubey, "Rainfall Prediction using Machine Learning", Ijraset Journal For Research in Applied Science and Engineering Technology, 2022.
- [4] Ho Jun Keum, Kun Yeun Han & Hyun Il Kim, "Real-Time Flood Disaster PredictionSystem by Applying Machine Learning Technique", KSCE Journal of Civil Engineering 24, 2835-2848(2020)

[5] Thegeshwar Sivamoorthy, Asif Mohammed Ansari, Dr. B. Sivakumar, V.
Nallarasan, "Flood Prediction Using ML Classification Methods on Rainfall Data",
IJRASET Journal For Research in Applied Science and Engineering Technology

Problem Statement Definition

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1			Can't predict the heavy rainfall	The climate changes made difficult to make the season as usual	Sad and anxious
PS-2 Department agencies Continuous and good supply of the crops		The crops are destructed and are in shortage.	The heavy rainfall can't be predicted beforehand	Frustrated	

3. IDEATION AND PROPOSED SOLUTION:

Empathy Map Canvas:

Ideation and Brainstorming:

Proposed Solution:

S.No.	Parameter	Description
1.	Problem Statement	To analyze the rainfall data in India in order to help the growth of agriculture by predicting the heavy rainfall to prevent flooding and damage in crops.
2.	Idea / Solution description	In our analysis we are trying to understand the behavior of rainfall in India over the years, by months and different subdivisions. The trend analysis of Annual rainfall considering India as whole, show that it is

		important to study subdivision for better forecasting.
3.	Novelty / Uniqueness	Rainfall prediction is important as heavy rainfall can lead to many disasters. The prediction helps people to take preventive measures and moreover the prediction should be accurate. So, it is important to analyse rainfall in order to prevent damage in crops.
4.	Social Impact / Customer Satisfaction	India is an agricultural country and secondary agro based market will be steady with a good monsoon. Thus, the prediction of amount of rainfall can play a major role in agricultural field.
5.	Business Model (Revenue Model)	 To create customer value by satisfying needs of a farmer (i.e.) predicting when the rainfall is high and providing early warning. Marketing the product among farmers and farmers associations.

6.	Scalability of the Solution	The Scalability of the project is ensuring that model's high-performance computing can support agriculture by delivering more accurate predictions, using higher resolution and more complex modelling, greater use of ensembles and vastly increased volumes of data of all forms.
----	-----------------------------	---

Solution Fit

Project Title: Exploratory Analysis of Rainfall data in India for Agriculture Project D

Project Design Phase-I - Solution Fit

Team ID: PNT2022TMID21508

5. AVAILABLE SOLUTIONS 6. CUSTOMER CONSTRAINTS 1. CUSTOMER SEGMENT(S) An Exploratory Study on Occurrence and AS Impact of Climate Change on Agriculture in Budget Tamil Nadu, India - examine the occurrence of climate change in Tamil- -Nadu, and its impact Network connection in rural areas (1) Farmers and farming industries on rainfall pattern which is a primary Basic statistical knowledge constraint for agricultural production (2) Government departments and Flood forecasting using Internet of things and artificial neural networks - India is one of the agencies worst flood-affected countries in the world (3) Scientific journals. based on the annual rainfall. They use number of IOT and based techniques but the challenge is that no one has attempted the possibility of occurrence of flood rainfall intensity. 2. JOBS-TO-BE-DONE / PROBLEMS 9. PROBLEM ROOT CAUSE 7. BEHAVIOUR BE An important aspect to be understood The model's high-performance regarding the relationship between rainfall and agriculture is that rainfall is the major factor in • To create customer value by computing can support agriculture satisfying needs of a farmer (i.e.) by delivering more accurate the growth and production of food crops both predicting when the rainfall is predictions, using higher resolution at the germination and fruit development stage. But with a change in the world's climate, and more complex modelling, high and providing early warning. greater use of ensembles and vastly Marketing the product among temperatures will rise and rainfall will increase increased volumes of data of all in some places. In other places, rainfall will decrease. As a result of global warming, the farmers and farmers associations. world's climate is changing and its effect is being felt the world over. And one of the most important parameters of climate is rainfall. So inorder to find an effective solution for finding the right time for the cultivation of crops ,an algorithm is needed to predict the rainfall rate and derive an useful model out of it.

4. REQUIREMENT ANALYSIS:

Functional Requirements

S.No	Component	Description	Technology
1.	User Interface	The user interacts with the application through a web UI and a chatbot	HTML, CSS, python, Flask
2.	Application Logic-1	Logic for registration Registration	Python
3.	Application Logic-2	Logic for login to the application	Python

4.	Application Logic-3	Integrating machine learning model and the webpage	Flask
5.	Database	Numeric data	MySQL
6.	File Storage	To store files such as prediction report	Local Filesystem
7.	External API	Allows developers access to critical forecasts, alerts, and observations, along with other weather data.	IBM Weather API
8.	Machine Learning Model	Predictive modeling is a statistical technique using machine learning and data mining to predict and forecast likely future outcomes with the aid of historical and existing data	Predictive modeling
9.	Infrastructure (Server)	Application Deployment on Local System Local Server Configuration: built-in flask web server	Flask web server

Non Functional Requirements

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Flask	Micro web framework written in Python
2.	Security Implementations	Basic HTTP authentication, Session based authentication, User Registration, Login Tracking	Flask Security
3.	Scalable Architecture	Size is everything, and Flask's status as a microframework means that you can use it to grow a tech project such as a web app incredibly quickly. Its simplicity of use and few dependencies enable it to run smoothly even as it scales up and up.	Flask
4.	Availability	Higher compatibility with latest technologies and allows customization	Flask

5.	Performance	 Integrated support for unit testing. 	Flask
		 RESTful request dispatching. Uses Jinja templating. 	
		 Support for secure cookies (client side sessions) 	
		• 100% WSGI 1.0 compliant.	

5. PROJECT DESIGN:

Data Flow Diagram:

Solution And Technical Architecture:

User Stories:

User Type	Functional Requirement (Epic)	User Story Num ber	User Story / Task	Acceptance criteria	Priori ty	Release
Customer (web user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
	Registration	USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmatio n email & click confirm	Medi um	Sprint-2
	Login	USN-3	As a user, I can log into the application by entering email & password	I can access the system	High	Sprint-1
	Dashboard	USN-4	As a user, I can view the details about the system and can navigate through the pages.	I can navigat e through pages	High	Sprint-3
	Prediction	USN-5	As a user, I can enter the rainfall amount and get the prediction results	I can get the predictio n result	High	Sprint-4

	News	USN-6	As a user, I can view latest news articles related to agriculture	I can view the articles	Medi um	Sprint-3
Customer Care Executive	Contact	USN-7	As a user, I can ask queries regarding the system	I can clarify my doubts	High	Sprint-3
	Chat bot	USN-8	As a user, I can interact with chatbot to ask queries	I can get my queries clear instantly	Low	Sprint-4
Administrato r	Login	USN-9	As a user, I can register for the application by entering my email, password, and confirming my password.	I can view and update the system	High	Sprint-1
	Prediction	USN-1 0	As a user, I can see the prediction result from the model trained by the system administrator	I can train the prediction model	High	Sprint-3

6. PROJECT PLANNING & SCHEDULING:

Planning & Estimation:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Prio rity	Team Members
	Dataset Analysis	USN-1	Download the weather dataset and analyze it.	1	High	Shahithya L
Sprint-1	Dataset preprocessing	USN-2	Examine the dataset and perform preprocessing steps	1	High	Riddhi S
	Model Creation and Training	USN-3	Create a model from the training data	2	High	Jeya Devi K J
Sprint-2	Registration	USN-4	As a user, I can register for the application.	2	Low	Kanishta G
	Login	USN-5	As a user, I can log into the application by entering email & password	1	Low	Shahithya L
	Dashboard	USN-6	As a user, once I log in, I can view the Rainfall Prediction page	1	High	Jeya Devi K J
Sprint-3	Predictor	USN-7	As a user, I can specify all the values for prediction and get accurate results	1	High	Kanishta G
	Base Flask App	USN-8	Integrate Flask and the built model	2	High	Riddhi S
	Integration	USN-9	Integrate the app on IBM cloud	2	High	Jeya Devi K J
Sprint - 4	Help page	USN-10	As a user, I can get directions on how to use the predictor to gain valuable insights	1	Medi um	Shahithya L
	Contact page	USN-11	As a user, I can get my queries clarified by the admin	1	Medi um	Kanishta G
	Visualization	USN-12	As a user, I can visualize the data using various plots	2	Medi um	Riddhi S

Sprint Delivery Schedule:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

PROJECT VELOCITY:

a) **Sprint - 1:**

AV = sprint duration / points per sprint = 6/10 = 0.6

b) Sprint - 2:

AV = sprint duration / points per sprint = 6/10 = 0.6

c) **Sprint - 3:**

AV = sprint duration / points per sprint = 6/10 = 0.6

d) Sprint - 4:

AV = sprint duration / points per sprint = 6/10 = 0.6

Reports From Jira

7. CODE AND SOLUTIONING:

Feature 1: To retrieve information from IBM cloud account using API Key

```
import requests import
json

API_KEY = "PQBr9MBF7mFuSh2VVLfOE-liIA04VH-h5VEk8EfjFIuw"

token_response = requests.post('https://iam.cloud.ibm.com/identity/token',
    data={"apikey": API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})

mltoken = token_response.json()["access_token"]

print("ML Token",mltoken)

header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
```

Feature 2: To get predictions when the user enters the values and connecting to the deployed ML model using scoring end point

```
def predict():
 res = " "
  # If a form is submitted
 if request.method == "POST":
   Location = request.form.get('Location')
   MinTemp = request.form['MinTemp']
   MaxTemp = request.form['MaxTemp']
   Rainfall = request.form['Rainfall']
   WindGustSpeed = request.form['WindGustSpeed']
   WindSpeed9am = request.form['WindSpeed9am']
   WindSpeed3pm = request.form['WindSpeed3pm']
   Humidity9am = request.form['Humidity9am']
   Humidity3pm = request.form['Humidity3pm']
   Pressure9am = request.form['Pressure9am']
   Pressure3pm = request.form['Pressure3pm']
   Temp9am = request.form['Temp9am']
   Temp3pm
                      request.form['Temp3pm']
                 =
   RainToday = request.form.get('RainToday')
   WindGustDir = request.form.get('WindGustDir')
   WindDir9am = request.form.get('WindDir9am')
   WindDir3pm = request.form.get('WindDir3pm')
   new row =
   {'Location':Location,'MinTemp':MinTemp,'MaxTemp':MaxTemp,'Rainfall':Rainfall,'Wind
```

GustSpeed':WindGustSpeed,'WindSpeed9am':WindSpeed9am,'WindSpeed3pm':WindSpeed3pm,'Humidity9am':Humidity9am,'Humidity3pm':Humidity3pm,'Pressure9am':Pressure9am,'Pressure3pm,'Temp9am':Temp9am,'Temp3pm':Temp3pm,'RainToday':RainToday,'WindGustDir':WindGustDir,'WindDir9am':WindDir9am,'WindDir3pm':WindDir3pm}

```
print(new row)
  new df =
 pd.DataFrame(columns=['Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'WindGustSpeed', '
 WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Press
 ure3pm', 'Temp9am', 'Temp3pm', 'RainToday', 'WindGustDir', 'WindDir9am', 'WindDir3p m'])
  new df = new df.append(new row,ignore index=True)
 labeled =
 new df[['Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'WindGustSpeed', 'WindSpeed9am', '
 WindSpeed3pm', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Temp9a
 m', 'Temp3pm', 'RainToday', 'WindGustDir', 'WindDir9am', 'WindDir3pm']]
  X = labeled.values
  print(X)
 payload_scoring = {"input_data": [{"field":
 [['Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'WindGustSpeed', 'WindSpeed9am', 'WindSp
 eed3pm', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Temp9am', 'Tem
 p3pm','RainyToday','WindGustDir','WindDir9am','WindDir3pm']], "values":
 X.tolist()}]}
 response scoring =
 requests.post('https://us-south.ml.cloud.ibm.com/ml/v4/deployments/73230b85-5 1ea-
 45db-baa7-e86b5d528fbe/predictions?version=2022-11-14',
 json=payload_scoring,headers={'Authorization': 'Bearer ' + mltoken})
  print("Scoring response")
  predictions = response_scoring.json() print(predictions)
  output = predictions['predictions'][0]['values'][0][0]
  print(output)
else:
```

```
output = ""
if output == 1:
    return redirect(url_for('chance')) elif
output == 0:
    return redirect(url_for('nochance'))
return render_template("index.html", output = res)
```

Feature 3: To navigate between pages

Home page:

Prediction Page:

Chance Page:

No Chance Page:

Help Page:

Contact Page:

8. TESTING:

Test Cases

Test case ID	Feature Type	Comp	Test Scenario	Prerequisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Com ments	TC for Automat ion(Y/N)	BUG ID	Executed by
HomePa ge_TC_0 01	UI	Home Page	Verify all the UI elements in Home page rendered properly	HTML	Enter URL and click go Verify all the UI elements displayed or not		All the UI elements rendered properly	Working as expected	Pass		N		Shahithya L
HomePa ge_TC_0 02	Functiona I	Home page	Verify the Data Entry page can be reachable.	HTML, CSS	1. click the predict tab in navigation bar. 2. Verify all the UI elements displayed or not.		User should navigate to Predictor page	Working as expected	Pass		N		Kanishta G
Predict_ Page_TC _003	UI	Predic t Page	Verify all the UI elements in Predict page rendered properly	HTML,CSS	Enter URL and click go Verify all the UI elements displayed or not		All the UI elements rendered properly	Working as expected	Pass		N		Riddhi S
PredictP age_TC_ 004	Functiona I	Predic t Page	Enter all the values and verify the prediction	Flask	1. Enter URL and click go 2. Enter the values for 17 attributes 3. Click Predict	NewCastl § 13.4 22.6 0.6 44 21 24 70 78 1007.7 1007.1 34 32 Yes WSW NNW ESE	Redirect to correspon ding html page (chance/n o chance)	Working as expected	Pass		N		JęvaDęvi K J
OutputP age_TC_ 005	Functiona I	Chanc e Page	Verify whether it is redirected to chance page		1. Enter URL and click go 2. Enter the values and click predict button	Predictio n = 1	Redirect to chance page	Working as expected	Pass		N		Shahithya L
					If prediction equals one,								
					chance page is displayed.								
OutputP age_TC_ 006	Functiona I	No chanc e Page	Verify whether it is redirected to no chance page		1. Enter URL and click go 2. Enter the values and click predict button 3. If prediction equals zero, no chance page is displayed.	Predictio n = 0	Redirect to no chance page	Working as expected	Pass		N		Kanishta G

S.NO	Test Scenerios				
1	Verify all the UI elements in Home page rendered properly.				
2	Verify the Data Entry page can be reachable.				
3	Verify all the UI elements in Predict page rendered properly				
4	Enter all the values and verify the prediction				
5	Verify whether it is redirected to chance page				
6	Verify whether it is redirected to no chance page				

User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Project Exploratory Analysis of Rainfall data in India for Agriculture at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	0	0	0	0
Duplicate	0	0	0	0	0
External	0	0	0	0	0
Fixed	0	0	0	0	0
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	0	0	0	0	0

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Home Page	2	0	0	2
Predict Page	4	0	0	4

9. RESULTS:

Performance Metrics

2 Tune the Model	Hyper parameter Tuning & Validation Method - RandomizedSearchCV	Hyperparamater Tuning		
		from sklearn.ensemble import RandomForestAsgressor rF - Random ore st Regress or(randoo space • -12) lboa ppr1nt import ppr1nt		
		<pre>ur'i t('ru"uretc «s curr't+Lly i,i use:'u+') pprlntrf,get_params))</pre>		
		Parameter S Current ty 1n use:		
		<pre>{'OoOt SI rap': True, 'ccp_zi pua': e. a, ' criterion' • 'ase', 'sax Oepth': None, 'sax_teaTures': 'Auto', 'max_Jeaf_nodes': wone, 'maa_samp]es': none, 'nin impurity decrease'' 0.8, 'cm Impurity split': done, 'e1n_sampJes_teaT': 1, 'ncln samples_splIt' - Z, 'a1n_we1ght_f ract1on_leaf': 8.8, 'n_estimators': 100, 'n,}obs'. None, 'oob score': False, "random_s £ ace' 42, 'verbose': B, 'uara_start' • False)</pre>		

10. ADVANTAGES & DISADVANTAGES:

Advantages:

- As Weather conditions have been changing for the time being this helps people to know about the rainfall prediction
- To avoid unnecessary floods by opening dams with the help of rainfall prediction
- Farmers and fisherman will get the most advantage of these rainfall details so that we they can plan accordingly
- During the monsoon days it helps the government to find the evacuation areas to avoid loss of human life and costly things

Disadvantages:

- As the data was collected from limited places so it helps only for the people who
 located in those areas.
- In case the data was collected being wrong the algorithm will produce the wrong prediction
- As of now have collecting only a limited number of data set, In feature, we will
 make the algorithm to work worldwide

11. CONCLUSION:

Floods are the most common natural disasters and have widespread effect flood forecasting is hence an important research area and various possible solutions have been presented in literature to this end the input data were selected based on a correlation and uncertainty analysis of the rainfall and flood data and a classification based real-time flood prediction model was developed heavy rainfall that may occur in urban areas was analyzed in advance and the expected range of an urban flood was predicted in real time using the proposed model

12. FUTURE SCOPE:

With the change in climatic conditions and rainfall patterns this can lead to flash floods causing catastrophic damage to the environment. The system can be further enhanced with a flood prediction system along with rainfall prediction. Evacuation areas can be included along with the flood prediction system in such a way that the system recommends the user as well as to the community if there might be an occurrence of flood. A recommendation system integrated with the prediction system shall sound good for society.

Source code:

IBM deployment of ML model using Flask:

from pyexpat import features, model import numpy import pickle from sklearn.preprocessing import LabelEncoder import pandas as pd from flask import Flask, request, jsonify, render_template, redirect, url_for import requests import json

```
# NOTE: you must manually set API KEY below using information retrieved from your IBM Cloud
account.
API_KEY = "PQBr9MBF7mFuSh2VVLfOE-liIA04VH-h5VEk8EfjFluw"
token response = requests.post('https://iam.cloud.ibm.com/identity/token', data={"apikey":
API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
mltoken = token_response.json()["access_token"]
print("ML Token",mltoken)
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
# Declare a Flask app
app = Flask( name ,template_folder='template')
scale = pickle.load(open("scale.pkl",'rb'))
@app.route('/')
def home():
  return render_template("home.html")
@app.route('/chance/',methods=['GET', 'POST'])
def chance():
  return render_template("chance.html")
@app.route('/nochance/',methods=['GET', 'POST'])
def nochance():
  return render template("noChance.html")
@app.route('/help/')
def help():
  return render_template("help.html")
@app.route('/contact/')
def contact():
  return render_template("contact.html")
@app.route('/about/')
def about():
  return render_template("about.html")
@app.route('/predict',methods=['POST','GET'])
def predict():
  res = " "
  # If a form is submitted
  if request.method == "POST":
     Location = request.form.get('Location')
```

```
MinTemp = request.form['MinTemp']
    MaxTemp = request.form['MaxTemp']
    Rainfall = request.form['Rainfall']
    WindGustSpeed = request.form['WindGustSpeed']
    WindSpeed9am = request.form['WindSpeed9am']
    WindSpeed3pm = request.form['WindSpeed3pm']
    Humidity9am = request.form['Humidity9am']
    Humidity3pm = request.form['Humidity3pm']
    Pressure9am = request.form['Pressure9am']
    Pressure3pm = request.form['Pressure3pm']
    Temp9am = request.form['Temp9am']
    Temp3pm = request.form['Temp3pm']
    RainToday = request.form.get('RainToday')
    WindGustDir = request.form.get('WindGustDir')
    WindDir9am = request.form.get('WindDir9am')
    WindDir3pm = request.form.get('WindDir3pm')
    new_row =
{'Location':Location,'MinTemp':MinTemp,'MaxTemp':MaxTemp,'Rainfall':Rainfall,'WindGustSpeed':
WindGustSpeed, 'WindSpeed9am': WindSpeed9am, 'WindSpeed3pm': WindSpeed3pm, 'Humidity9a
m':Humidity9am,'Humidity3pm':Humidity3pm,'Pressure9am':Pressure9am,'Pressure3pm':Pressur
e3pm,'Temp9am':Temp9am,'Temp3pm':Temp3pm,'RainToday,'WindGustDir':WindGust
Dir, 'WindDir9am': WindDir9am, 'WindDir3pm': WindDir3pm'
    print(new row)
    new_df =
pd.DataFrame(columns=['Location','MinTemp','MaxTemp','Rainfall','WindGustSpeed','WindSpeed9
am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Temp9am', 'Temp
p3pm','RainToday','WindGustDir','WindDir9am','WindDir3pm'])
    new df = new df.append(new row,ignore index=True)
    labeled =
new_df[['Location','MinTemp','MaxTemp','Rainfall','WindGustSpeed','WindSpeed9am','WindSpeed
3pm', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Temp9am', 'Temp3pm', 'RainToda
y','WindGustDir','WindDir9am','WindDir3pm']]
    X = labeled.values
    print(X)
    payload scoring = {"input data": [{"field":
[['Location','MinTemp','MaxTemp','Rainfall','WindGustSpeed','WindSpeed9am','WindSpeed3pm','H
umidity9am','Humidity3pm','Pressure9am','Pressure3pm','Temp9am','Temp3pm','RainyToday','Win
dGustDir', 'WindDir9am', 'WindDir3pm']], "values": X.tolist()}]}
    response_scoring =
requests.post('https://us-south.ml.cloud.ibm.com/ml/v4/deployments/73230b85-51ea-45db-baa7-e
86b5d528fbe/predictions?version=2022-11-14', json=payload_scoring,headers={'Authorization':
```

'Bearer ' + mltoken})

```
print("Scoring response")
     predictions = response_scoring.json()
     print(predictions)
     output = predictions['predictions'][0]['values'][0][0]
     print(output)
  else:
    output = ""
  if output == 1:
    return redirect(url_for('chance'))
  elif output == 0:
     return redirect(url_for('nochance'))
  return render_template("index.html", output = res)
#Running the app
if __name__== "___main___":
  app.run(debug = True,host='0.0.0.0',port=80)
Home.html
<!DOCTYPE html>
<html>
  <head>
     <meta charset="utf-8">
     <title>Rainfall Prediction Webpage</title>
     k rel="stylesheet" href="{{ url_for('static', filename='css/home.css') }}">
  k rel="preconnect" href="https://fonts.googleapis.com">
  k rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
  k
href="https://fonts.googleapis.com/css2?family=Raleway&family=Roboto:wght@100;500&display
=swap" rel="stylesheet">
  <style type="text/css"></style>
  </head>
<body>
<header>
  <div class="header1">
     <img src="{{url_for('static', filename='css/logo.png')}}" alt="logo" />
```

```
</div>
    <div class="navbar">
    <div class="nav"><a href="">HOME</a></div>
       <div class="nav"><a href="{{ url_for('predict') }}">PREDICTOR</a></div>
       <div class="nav"><a href="{{ url_for('help') }}">HELP</a></div>
       <div class="nav"><a href="{{ url_for('contact') }}">CONTACT</a></div>
    </div>
  </header>
  <div>
    <div class="head1">
    Forecast Rainfall
  </div>
  <div class="body1">
    We serve as an early warning system to exactly determine the rainfall for effective use of
water resources.
    crop productivity, and pre-planning of water structures.
  </div>
  </div>
  </body>
  <footer>IBM - Nalaiya Thiran</footer>
  </html>
```


index.html

```
<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>Rainfall prediction Webpage</title>
    k rel="stylesheet" href="{{ url for('static', filename='css/index.css') }}">
  </head>
<body>
  <div class="login">
    <div>
      <div class="head1">
      RAINFALL PREDICTION
      <form action="{{ url_for('predict')}}"method="post">
    <br>
    <br>
    <div class="body1">
    <label for="Location">Location:</label>
     <select id="Location" name="Location">
      <option value=2>Albury
      <option value=4>Badgeryscreek</option>
      <option value=10>Cobar</option>
      <option value=11>CoffsHarbour</option>
      <option value=21>Moree
      <option value=24>Newcastle</option>
      <option value=26>NorahHead</option>
      <option value=27>Norfolksland
      <option value=30>Penrith</option>
      <option value=34>Richmond</option>
      <option value=37>Sydney</option>
      <option value=38>SydneyAirport</option>
      <option value=42>Waggawagga</option>
      <option value=45>Williamtown</option>
      <option value=47>Wollongong</option>
      <option value=9>Canberra</option>
      <option value=40>MountGinini</option>
      <option value=5>Ballarat
      <option value=6>Bandigo</option>
      <option value=35>Sale
      <option value=19>MelborneAirport
```

```
<option value=18>Melborne</option>
      <option value=20>Mildura</option>
      <option value=25>Nhill
      <option value=33>Portland</option>
      <option value=44>Watsonia
     </select>
     <label for="MinTemp">MinTemp:</label>
     <input type = "number" step="any" id="MinTemp" name="MinTemp" value="MinTemp">
     <label for="MaxTemp">MaxTemp:</label>
     <input type = "number" step="any" id="MaxTemp" name="MaxTemp" value="MaxTemp">
     <label for="Rainfall">Rainfall:</label>
     <input type = "number" step="any" id="Rainfall" name="Rainfall" value="Rainfall">
     <label for="WindGustSpeed">WindGustSpeed:</label>
     <input type = "number" step="any" id="WindGustSpeed" name="WindGustSpeed"</pre>
value="WindGustSpeed">
<br>
<br>
     <label for="WindSpeed9am">WindSpeed9am:</label>
     <input type = "number" step="any" id="WindSpeed9am" name="WindSpeed9am"</pre>
val="WindSpeed9am">
     <label for="WindSpeed3pm">WindSpeed3pm:</label>
     <input type = "number" step="any" id="WindSpeed3pm" name="WindSpeed3pm"</pre>
val="WindSpeed3pm">
     <label for="Humidity9am">Humidity9am:</label>
     <input type = "number" step="any" id="Humidity9am" name="Humidity9am"
val="Humidity9am">
     <label for="Humidity3pm">Humidity3pm:</label>
     <input type = "number" step="any" id="Humidity3pm" name="Humidity3pm"
val="Humidity3pm">
<hr>
<br>
     <label for="Pressure9am">Pressure9am:</label>
     <input type = "number" step="any" id="Pressure9am" name="Pressure9am"
val="Pressure9am">
     <label for="Pressure3pm">Pressure3pm:</label>
```

```
<input type = "number" step="any" id="Pressure3pm" name="Pressure3pm"
val="Pressure3pm">
     <label for="Temp9am">Temp9am:</label>
     <input type = "number" step="any" id="Temp9am" name="Temp9am" val="Temp9am">
     <label for="Temp3pm">Temp3pm:</label>
     <input type = "number" step="any" id="Temp3pm" name="Temp3pm" val="Temp3pm">
<br>
<br>
<label for="RainToday">RainToday
<select id="RainToday" name="RainToday">
  <option value="1">Yes</option>
  <option value="2">No</option>
</select>
<label for="WindGustDir">WindGustDir
  <select id="WindGustDir" name="WindGustDir">
    <option value=14>W</option>
    <option value=15>WNW</option>
    <option value=0>WSW</option>
    <option value=7>NE</option>
    <option value=13>NNW</option>
    <option value=10>N</option>
    <option value=2>NNE</option>
    <option value=1>SW</option>
    <option value=6>ENE</option>
    <option value=11>SSE</option>
    <option value=12>S</option>
    <option value=9>NW</option>
    <option value=3>SE</option>
    <option value=8>ESE</option>
    <option value=5>E</option>
    <option value=5>NA</option>
    <option value=4>SSW</option>
  </select> &nbsp;&nbsp;
  <label for="WindDir9am">WindDir9am
  <select id="WindDir9am" name="WindDir9am">
    <option value=14>W</option>
    <option value=15>NNW</option>
    <option value=0>SE</option>
```

```
<option value=13>SW</option>
    <option value=10>SSE</option>
    <option value=2>S</option>
    <option value=1>NE</option>
    <option value=6>NA</option>
    <option value=11>SSW</option>
    <option value=12>N</option>
    <option value=9>WSW</option>
    <option value=3>ESE</option>
    <option value=8>E</option>
    <option value=5>NW</option>
    <option value=4>WNW</option>
    <option value=4>NNE</option>
  </select> &nbsp;&nbsp;
<label for="WindDir3pm">WindDir3pm</label>
  <select id="WindDir3pm" name="WindDir3pm">
    <option value=14>WNW</option>
    <option value=15>WSW</option>
    <option value=0>E</option>
    <option value=7>NW</option>
    <option value=13>W</option>
    <option value=10>SSE</option>
    <option value=2>ESE</option>
    <option value=1>ENE</option>
    <option value=6>NNW</option>
    <option value=11>SSW</option>
    <option value=12>SW</option>
    <option value=9>SE</option>
    <option value=3>N</option>
    <option value=8>S</option>
    <option value=5>NNE</option>
    <option value=5>NA</option>
    <option value=4>NE</option>
  </select> &nbsp;&nbsp;
  </div>
<br>
<br>><br>>
<center><button class="button-3" role="button">PREDICT</button></center>
</form>
```

<option value=7>ENE</option>

```
<br>
  {{output}}
  <br>
  <br>
  <img src="data:image/png;base64,{{url_3}}" alt="Submit Form" height="180" width="233"</pre>
onerror="this.style.display='none'"/>
  <img src="data:image/png;base64,{{url_1}}" alt="Submit Form" height="180" width="233"</pre>
onerror="this.style.display='none'"/>
  <img src="data:image/png;base64,{{url_4}}" alt="Submit Form" height="180" width="233"</pre>
onerror="this.style.display='none'"/>
  <br>
  <br>
  <img src="data:image/png;base64,{{url_2}}" alt="Submit Form" height="150" width="711"</pre>
onerror="this.style.display='none'"/>
  </div>
  </body>
  <footer>IBM - Nalaiya Thiran</footer>
</html>
```


Chance.html

```
<!DOCTYPE html>
<html>
<head>
   <title>Rainfall Prediction</title>
</head>
<body>
  <div class="icon">
    <img src="{{url_for('static', filename='css/raincloud.png')}}" alt="logo" />
<center><h1>CHANCES OF RAIN TOMORROW</h1>
<br>
<h2>YOU CAN FOLLOW ANY OF THE FOLLOWING PROCESS FOR EFFECTIVE
AGRICULTURE!</h2></center>
<div class="responsive">
 <div class="gallery">
  <a target="_blank"
href="https://affordabletreeservice.com.au/shared/content/uploads/Land-clearing-hero-1-1024x55"
0.jpg">
src="https://affordabletreeservice.com.au/shared/content/uploads/Land-clearing-hero-1-1024x550.
jpg" alt="Cinque Terre" width="600" height="400">
  </a>
  <div class="desc">Land Clearing</div>
 </div>
</div>
<div class="responsive">
 <div class="gallery">
  <a target=" blank"
href="https://www.britannica.com/explore/savingearth/wp-content/uploads/sites/4/2019/04/000015
6670-1024x681.jpg ">
   <img
src="https://www.britannica.com/explore/savingearth/wp-content/uploads/sites/4/2019/04/0000156
670-1024x681.jpg" alt="Forest" width="600" height="400">
  <div class="desc">Ensure proper drainage</div>
 </div>
</div>
```

```
<div class="responsive">
 <div class="gallery">
  <a target="_blank"
href="https://4.imimg.com/data4/VQ/KS/MY-3597886/img_0112-500x500.jpg">
   <img src="https://4.imimg.com/data4/VQ/KS/MY-3597886/img_0112-500x500.jpg"</pre>
alt="Northern Lights" width="600" height="400">
  </a>
  <div class="desc">Set up a rain cover</div>
 </div>
</div>
<div class="responsive">
 <div class="gallery">
  <a target="_blank"
href="https://soilsmatter.files.wordpress.com/2015/02/sensor-based-nitrogen-application-to-corn-
maize-in-the-midwest-photo-raun.jpg?w=1200">
src="https://soilsmatter.files.wordpress.com/2015/02/sensor-based-nitrogen-application-to-corn-m
aize-in-the-midwest-photo-raun.jpg?w=1200" alt="Mountains" width="600" height="400">
  <div class="desc">Pre-plant Fertilizer</div>
 </div>
</div>
</body>
</html>
```


CHANCES OF RAIN TOMORROW

YOU CAN FOLLOW ANY OF THE FOLLOWING PROCESS FOR EFFECTIVE AGRICULTURE!

a rain cover

noChance.html

```
<!DOCTYPE html>
<html>
<head>
   <title>Rainfall Prediction</title>
</head>
<body>
 <div class="icon">
  <img src="{{url_for('static', filename='css/sun.png')}}" alt="logo" />
 </div>
<center><h1>NO CHANCE OF RAIN TOMORROW</h1>
<br>
<h2>YOU CAN FOLLOW ANY OF THE FOLLOWING PROCESS FOR EFFECTIVE
AGRICULTURE!</h2></center>
<div class="responsive">
 <div class="gallery">
  <a target=" blank"
href="https://westafricanagri.com/wp-content/uploads/2020/06/Irrirgating.jpg">
   <img src="https://westafricanagri.com/wp-content/uploads/2020/06/Irrirgating.jpg" alt="Cinque</p>
Terre" width="600" height="400">
  </a>
  <div class="desc">Calculate the water needed for Irrigation</div>
</div>
<div class="responsive">
 <div class="gallery">
  <a target=" blank"
href="https://media.istockphoto.com/id/1126541751/photo/hands-planting-the-seeds-into-the-dirt.j
pg?s=612x612&w=0&k=20&c=aVUr7F_H4ZSJX89Nmiw59F8WvneKeg-YsBoOiDQw0SA= ">
   <img
src="https://media.istockphoto.com/id/1126541751/photo/hands-planting-the-seeds-into-the-dirt.jp
g?s=612x612&w=0&k=20&c=aVUr7F_H4ZSJX89Nmiw59F8WvneKeg-YsBoOiDQw0SA="
alt="Forest" width="600" height="400">
  </a>
  <div class="desc">Sowing</div>
 </div>
</div>
<div class="responsive">
```

```
<div class="gallery">
  <a target="_blank"
href="https://media.istockphoto.com/id/1151784210/photo/ripe-rice-field-and-sky-background-at-s
unset.jpg?s=612x612&w=0&k=20&c=DZz4wxlbPXnMhmoTsEV06uYKup9MEZTtRFe2XkDb0mY=
">
   <img
src="https://media.istockphoto.com/id/1151784210/photo/ripe-rice-field-and-sky-background-at-su
nset.jpg?s=612x612&w=0&k=20&c=DZz4wxlbPXnMhmoTsEV06uYKup9MEZTtRFe2XkDb0mY="
alt="Northern Lights" width="600" height="400">
  </a>
  <div class="desc">Sundrying / Threshing of crops</div>
 </div>
</div>
<div class="responsive">
 <div class="gallery">
  <a target="_blank"
href="https://static.vecteezy.com/system/resources/previews/010/508/297/large_2x/old-farmers-sp
ray-fertilizer-or-chemical-pesticides-in-the-rice-fields-chemical-fertilizers-free-photo.jpg">
   <imq
src="https://static.vecteezy.com/system/resources/previews/010/508/297/large_2x/old-farmers-spr
ay-fertilizer-or-chemical-pesticides-in-the-rice-fields-chemical-fertilizers-free-photo.jpg"
alt="Mountains" width="600" height="400">
  </a>
  <div class="desc">Apply Agricultural chemicals</div>
 </div>
</div>
</body>
</html>
```

