CBЯТОЙ КПК #BlessRNG

Или как не сдохнуть на 4 семе из-за матана

Разработал

Никита Варламов @snitron

Почётный автор

Тимофей Белоусов @іморке

Вы в любой момент можете добавить любую недостающую теорему, затехав её и отправив код (фотографии письменного текста запрещены) в телегу любому из указанных авторов, или создав Pull Request в Git-репозиторий конспекта (click). Ваше авторство также будет указано, с вашего разрешения.

Содержание

1	Пер	риод Палеозойский						
	1.1	Важн	ые определения	4				
		1.1.1	Пространство $L^p(E,\mu)$	4				
		1.1.2	Пространство $L^{\infty}(E,\mu)$	4				
		1.1.3	Существенный супремум	4				
		1.1.4	Гильбертово пространство	4				
	1.2	Опред		5				
		1.2.1	Произведение мер	5				
		1.2.2	Сечения множества	5				
		1.2.3	Полная мера, сигма-конечная мера	5				
		1.2.4	Образ меры при отображении	5				
		1.2.5	Взвешенный образ меры	6				
		1.2.6	Плотность одной меры по отношению к другой	6				
		1.2.7	Условие L_{loc}	6				
		1.2.8	Интеграл комплекснозначной функции	6				
		1.2.9	Фундаментальная последовательность, полное пространство	6				
				7				
				7				
			V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7				
			Сходящийся ряд в гильбертовом пространстве	7				
	1.3		ые теоремы	8				
	1.5	1.3.1	Теорема Лебега о мажорированной сходимости для случая сходимости почти	O				
		1.0.1	везде	8				
		1.3.2	Теорема Лебега о мажорированной сходимости для случая сходимости по мере					
		1.3.2 $1.3.3$	Принцип Кавальери					
		1.3.3 $1.3.4$	Теорема Фубини	9				
		1.3.4 $1.3.5$	- · · · · · · · · · · · · · · · · · · ·	9				
	1 1	1.3.6	Теорема о гладкой замене переменной в интеграле Лебега					
	1.4	_	Mbl					
		1.4.1	Теорема об интегрировании положительных рядов					
		1.4.2	Абсолютная непрерывность интеграла					
		1.4.3	Теорема о произведении мер					
		1.4.4	Теорема Тонелли					
		1.4.5	Формула для бета-функции					
		1.4.6	Объем шара в \mathbb{R}^m					
		1.4.7	Теорема Фату. Следствия					
		1.4.8	Теорема о вычислении интеграла по взвешенному образу меры					
			Критерий плотности					
				16				
			, I I	17				
				17				
		1.4.13	Предельный переход под знаком интеграла при наличии равномерной схо-					
			11	17				
		1.4.14	Правило Лейбница дифференцирования интеграла по параметру	18				

1.4.15	Теорема о вложении пространств L^p	18					
1.4.16	Теорема о сходимости в L^p и по мере	19					
1.4.17	Полнота L^p	19					
1.4.18	Плотность в L^p множества ступенчатых функций	19					
1.4.19	Лемма Урысона	19					
1.4.20	Плотность в L^p непрерывных финитных функций	20					
1.4.21	Интегрирование по мере Бореля-Стильтьеса, порожденной функцией рас-						
	пределения (с леммой)	20					

1 Период Палеозойский

1.1 Важные определения

1.1.1 Пространство $L^{p}(E, \mu)$

$$1 \le p < +\infty, (X, \mathfrak{A}, \mu), E \in \mathfrak{A}$$

Тогда
$$\mathfrak{L}_p(E,\mu)=\{f:$$
 почти всех $E o\mathbb{R}(\mathbb{C}), f-$ измерима. $\int_E|f|^p<+\infty\}$

- 1. $\mathfrak{L}_p(E,\mu)$ линейное пространство
- 2. $f \equiv g$, если f = g почти всюду

 $L_p:=\mathfrak{L}_p/_{\equiv}$ — точки этого пространства

$$[f] = \{g : f \equiv g\} [f_1] + [f_2] = [f_1 + f_2]$$

И введём норму $||[f]|| = \left(\int_{E} |f|^{p}\right)^{\frac{1}{p}}$

1.1.2 Пространство $L^{\infty}(E,\mu)$

$$\mathfrak{L}^\infty(E,\mu)=\{f:$$
 почти всех $E\to\mathbb{R}(\mathbb{C}),$ измерима, ess $\sup|f|<+\infty\}$

 $||f||_{\infty} = \operatorname{ess\,sup} f$

Дописать всё

1.1.3 Существенный супремум

 $\operatorname{ess\,sup} f = \inf\{a : f \leq a \text{ почти всюду }\}$

a— существенная верхняя граница функции f,если при почти всех x $f(x) \leq a$ Ceoùcmea:

- 1. $\operatorname{ess\,sup} f(x) < \sup f(x)$
- 2. при почти всех $x: f(x) \le \operatorname{ess\,sup} f(x)$
- 3. f суммируемая, g измерима: ess sup $|g| < +\infty$

$$\left| \int_{E} fg \right| \le \operatorname{ess\,sup} |g| \cdot \int_{E} |f|$$

1.1.4 Гильбертово пространство

 \mathfrak{H} — линейное пространство, в котором задано скалярное произведение и соответствующая норма. Если \mathfrak{H} — полное, то оно называется гильбертовым.

1.2 Определения

1.2.1 Произведение мер

 $(X,\mathfrak{A},\mu),\,(Y,\mathfrak{B},\nu)$ — пространства с мерой.

Также, множества из $\mathcal{A} \times \mathcal{B}$ являются измеримыми прямоугольниками.

 $\mu, \nu - \sigma$ -конечные меры. Тогда стандартное продолжение m_0 (в смысле теоремы о продолжении меры (?)) с полукольца $\mathfrak{A} \times \mathfrak{B}$, определённой на некоторой σ -алгебре $\mathfrak{A} \otimes \mathfrak{B}$, и являющееся σ -конечной полной мерой — обзначается просто m.

И тогда m — и есть произведение мер μ и ν ($\mu \times \nu$).

Замечание:

$$(\mu \times \nu) \times \rho = \mu \times (\nu \times \rho)$$

1.2.2 Сечения множества

X, Y — множества. $C \subset X \times Y$

Тогда:

$$C_x := \{ y \in Y : (x, y) \in C \}$$

$$C^y := \{ x \in X : (x, y) \in C \}$$

— сечения множества C (1 и 2 рода)

Замечания:

$$\left(\bigcup_{\alpha \in A} C_{\alpha}\right)_{x} = \bigcup_{\alpha \in A} (C_{\alpha})_{x}$$

$$\left(\bigcap_{\alpha \in A} C_{\alpha}\right)_{x} = \bigcap_{\alpha \in A} \left(C_{\alpha}\right)_{x}$$

$$(C \setminus C')_x = C_x \setminus C'_x$$

1.2.3 Полная мера, сигма-конечная мера

См. конспект прошлого семестра

1.2.4 Образ меры при отображении

Пусть у нас есть $(X,\mathfrak{A},\mu), (Y,\mathfrak{B},)$ — пространства с мерой, $\Phi: X \to Y$.

- 1. $\forall \Phi \quad \Phi^{-1}(\mathfrak{B}) = \sigma$ -алгебра (это предлагается доказать как уражнение)
- 2. Пусть Φ "измеримо" $\left(\Phi^{-1}(\mathfrak{B})\subset\mathfrak{A}\right)$

Для $E\in\mathfrak{B}$ зададим $\nu R:=\mu\left(\Phi^{-1}(E)\right)=\int_{\Phi^{-1}(E)}1d\mu$

 ν — образ меры μ при отображении Φ

NB: ДОПИСАТЬ НА СЕССИИ, ТУТ ЕЩЁ ЕСТЬ ДОКАЗАТЕЛЬСТВО, ЧТО ЭТО МЕРА

1.2.5 Взвешенный образ меры

 $\omega:X\to\mathbb{R}\geq 0$, измерима на X

 $B\in \mathfrak{B}, \tilde{\nu}(B):=\int_{\Phi^{-1}(B)}\omega d\mu$ — тоже мера, это и есть взвешенный образ меры μ при отображении Φ

1.2.6 Плотность одной меры по отношению к другой

$$X = Y, \mathfrak{A} = \mathfrak{B}, \Phi = id$$

 $\nu b = \int_{B} \omega d\mu$ — ещё одна мера в X

Здесь ω называется плотностью меры ν относительно меры μ . И в этом случае:

$$\int_{X} f(x)d\nu(x) = \int f(x) \cdot \omega(x)d\mu(x)$$

1.2.7 Условие L_{loc}

 $f: X imes ilde{Y} o \overline{\mathbb{R}}, Y \subset ilde{Y}, a$ — предельная точка Y в $ilde{Y}.$

f удовлетворяет условию $L_{loc}(a): \exists g: X \to \overline{\mathbb{R}}$ — суммируемая, $\exists U(a): \forall$ почти всех $x \forall y \in U(a)$:

$$|f(x,y)| \le g(x)$$

1.2.8 Интеграл комплекснозначной функции

База базовая: $(X,\mathfrak{A},\mu), f:X\to\mathbb{C}$

$$\int_E f(z)d\mu = \int_E \operatorname{Re}(f(z))d\mu + i \int_E \operatorname{Im}(f(z))d\mu$$

Также измеримость и суммируемость следует из соттветствующих свойств реальной и мнимой частей функций.

1.2.9 Фундаментальная последовательность, полное пространство

 $A \subset X$ — нормированное пространство

A — (всюду) плотное в X

$$\forall x \in X \; \exists \varepsilon > 0 \quad B(x, \varepsilon) \cap A$$
— непусто

1.2.10 Мера Лебега-Стилтьеса, мера Бореля-Стилтьеса

1. $\mathcal{P}^1, g: \mathbb{R} \to \mathbb{R}$, возрастает, непрерывно

$$\mu_q[a,b) := g(b) - g(a)$$

- счётно аддитивная мера
- $2. \, g$ возрастает, не обязательно непрпрывно

$$\mu_g[a,b) = g(b-0) - g(a-0)$$

— мера

Запускаем теорему о продолжении, тогда

 $\exists \mathfrak{A} \supset \mathcal{P}^1 \exists$ продолжение $\mu_g \subset \mathcal{P}$ на \mathfrak{A}

 μ_g — полная мера на $\mathfrak A$ — мера Лебега-Стильтьеса

Если нассмотреть μ_g на борелевском $\mathfrak{B} \to \overline{\mathbb{R}}$ — мера Бореля

1.2.11 Функция распределения

 $(X,\mathfrak{A},\mu),\,h:X\to\overline{\mathbb{R}}$, измерима, вочти всюду конечна

$$\forall t \in \mathbb{R} \quad \mu X(h < t) < +\infty$$

Пусть $H(t) = \mu X(h < t)$ — возрастающая

H(t) — называется функцией распределенния по мере μ

1.2.12 Ортогональный ряд

Ряд $\sum a_k$ — ортогональный, если $\forall k, la_k \perp a_l$

1.2.13 Сходящийся ряд в гильбертовом пространстве

$$\sum a_n, a_n \in \mathfrak{H}$$

$$S_N:=\sum_{1\leq n\leq N}a_n,$$
 если $\exists S\in\mathfrak{H}:S_N\xrightarrow{\mathfrak{H}}S$

Такой ряд называется сходящимся.

1.3 Важные теоремы

1.3.1 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде

Формулировка:

- ullet (X, \mathfrak{A}, μ) пространство с мерой
- $f_n, f: X \to \overline{\mathbb{R}}$ измеримые
- $f_n \to f$ почти всюду
- $\exists g: X \to \overline{\mathbb{R}}$ суммируемая, и $\forall n$ и при почти всех $x \mid f_n(x) \mid \leq g(x)$

Тогда:

$$\int_X |f_n - f| d\mu \underset{n \to \infty}{\longrightarrow} 0$$

И, как очевидное ("уж тем более"):

$$\int_X f_n d\mu \underset{n \to \infty}{\longrightarrow} \int_X f d\mu$$

Доказательство:

1.3.2 Теорема Лебега о мажорированной сходимости для случая сходимости по мере

Формулировка (то же самое, что и выше, только сходится по мере теперь):

- (X,\mathfrak{A},μ) пространство с мерой
- $f_n, f: X \to \overline{\mathbb{R}}$ измеримые
- $f_n \Longrightarrow f$
- $\exists g: X \to \overline{\mathbb{R}}$ суммируемая, и $\forall n$ и при почти всех $x \ |f_n(x)| \leq g(x)$

Тогда:

$$\int_X |f_n - f| d\mu \underset{n \to \infty}{\longrightarrow} 0$$

1.3.3 Принцип Кавальери

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- \bullet $\mu, \nu \sigma$ -конечные меры
- $m = \mu \times \nu, \mathfrak{C} = \mathfrak{A} \otimes \mathfrak{B}$

Тогда:

- 1. при почти всех $x \in \mathfrak{B}$
- 2. $x \mapsto \nu C_X$ измеримо на C_x
- 3. $mC = \int_X \nu(C_x) d\mu(x)$

Аналогично для сечений C^y

Доказательство:

1.3.4 Теорема Фубини

Формулировка:

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечные меры
- $m = \mu \times \nu$
- $f: X \times Y \to \overline{\mathbb{R}}$, суммируема на $X \times Y$ по мере m

Тогда:

- 1. при почти всех x функция f_x суммируема на Y
- 2. $x\mapsto \varphi(x)=\int_Y f_x d\nu$ это суммируемая функция на X

3.

$$\int_{X\times Y} f dm = \int_X \varphi(x) d\mu(x) = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x)$$

1.3.5 Теорема о преобразовании меры при диффеоморфизме

Формулировка:

• $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$, диффеоморфизм

Тогда $\forall A \in \mathbb{M}^m, A \subset O$

$$\lambda \Phi(a) = \int_{A} |\det \Phi'(x)| dx$$

1.3.6 Теорема о гладкой замене переменной в интеграле Лебега

 Φ ормулировка:

- $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$, диффеоморфизм
- $\Phi(O) = O'$
- $f:O' \to \mathbb{R} \ge 0$ измерима

Тогда:

$$\int_{O'} f dx = \int_{O} f(\Phi(x)) \cdot |\det \Phi'(x) d\lambda(x)|$$

1.4 Теоремы

1.4.1 Теорема об интегрировании положительных рядов

Формулировка:

- (X,\mathfrak{A},μ) пространство с мерой
- $u_n: X \to \overline{\mathbb{R}}, u_n \geq 0$ (при почти всех x?)
- u_n измеримы на $E \in \mathfrak{A}$

Тогда:

$$\int_{E} \left(\sum_{n=1}^{\infty} u_n(x) \right) d\mu(x) = \sum_{n=1}^{\infty} \left(\int_{E} u_n(x) d\mu(x) \right)$$

Доказательство:

Подгоним под теорему Леви 3 (3 семестр). Пусть $S_N(x) = \sum_{n=1}^N u_n(x)$ — последовательность частичных сумм. Очевидно, что эта последовательность — монотонно неубывающая (так как функции у нас неотрицательные):

$$0 \le S_N \le S_{N+1} \le S_{N+2} \le \dots$$

Тогда, делаем предельный переход (вот тут есть вопрос, почему должен существовать предел, но если подумать: если его не существует, вообще вся эта теорема не имеет смысла (ну бесконечности, чел, смысл их интегрировать)). А так же, измеримость сохраняется, так как у нас исходные функции все были измеримы (ну и по теореме о пределе измеирмых функций):

$$S_N(x) \xrightarrow[N \to \infty]{} S(x)$$

Ну и всё, значи, по теореме Леви можем перейти к предельному преходу интегралов:

$$\int_{E} S_{N}(x) d\mu(x) \xrightarrow[N \to \infty]{} \int_{E} S(x) d\mu(x)$$

Левую часть можно расписать по линейности интеграла (там у нас конечное число членов):

$$\int_{E} S_N(x)d\mu(x) = \sum_{n=1}^{N} \int_{E} u_n(x)d\mu(x)$$

Ну, а раз интграл суммы стремится к интегралу предельной функции, то и сумма интегралов обязана туда стремиться.

$$\sum_{n=1}^{N} \int_{E} u_{n}(x) d\mu(x) \xrightarrow[N \to \infty]{} \sum_{n=1}^{\infty} \int_{E} u_{n}(x) d\mu(x)$$

ч. т. д.

Следствие:

- $u_n: X \to \mathbb{R}$, измеримы на $E \in \mathfrak{A}$
- $\sum \int_E |u_n(x)| d\mu < +\infty$ (конечна)

Тогда $\sum u_n(x)$ — абсолютно сходящийся при почти всех x

Доказательство:

Пусть:

$$S(x) = \int_{n=1}^{\infty} |u_n(x)|$$

Тогда, по предыдущей теореме:

$$\int_{E} S(x)d\mu = \sum_{n=1}^{\infty} \left(\int_{E} |u_{n}(x)| d\mu \right) < +\infty$$

Раз интеграл конечен, значит S(x) — суммируема, а это значит, что S(x) — почти везде конечна. Ну значит и сходится.

ч. т. д.

Пример:

- (x_n) вещественная последовательность
- $\sum a_n$ абсолютно сходящийся числовой ряд

Тогда функциональный ряд $\sum \frac{a_n}{\sqrt{|x-x_n|}}$ — абсолютно сходится при почти всех x (в $\mathbb R$ по мере Лебега)

Доказательство:

Во-первых, можно доказать, что если для $\forall A$ на [-A,A] абсолютно сходится почти везде, то и везде (на \mathbb{R}) почти везде сходится (лол). Счётное количество п. в. \Rightarrow п. в. (чтобы количество отрезков было счётным, надо чтобы A были хотя бы рациональными. Кажется, что это не сильная проблема, так как отрезки включают в себя и все вещественные числа на отрезке тоже).

Попробуем подогнать под предыдущую теорему:

$$\int_{[-A,A]} \frac{|a_n|}{\sqrt{|x-x_n|}} d\lambda = |a_n| \int_{-A}^A \frac{dx}{\sqrt{|x-x_n|}} \le$$

Так, стоп. А как мы перешли к определённому интегралу? Оказывается, что так можно делать, на доказано это будет позже (в курсе).

$$\leq \underset{x:=x-x_n}{\leq} |a_n| \int_{-A-x_n}^{A-x_n} \frac{dx}{\sqrt{|x|}} \leq |a_n| \int_{-A}^{A} \frac{dx}{\sqrt{|x|}} \leq$$

Почему верен последний переход? Посмотрим на картинке:

Ну, по ней очевидно, что мы откусили кусочек поменьше, а добавили побольше. Тогда оценим модуль:

$$\leq 2 \cdot |a_n| \int_0^A \frac{dx}{\sqrt{|x|}} = 4 \cdot \sqrt{A} \cdot |a_n|$$

Всё, абсолютный интеграл ограничен, значит сходится (при почти всех x).

ч. т. д.

1.4.2 Абсолютная непрерывность интеграла

Формулировка:

- (X,\mathfrak{A},μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$ суммируемая

Тогда:

$$\forall arepsilon > 0 \; \exists \delta > 0, \quad \forall E-$$
 измеримое $\mu E < \delta \qquad \left| \int_E f d\mu \right| < arepsilon$

Доказательство:

Следствие:

- $(e_n) \in \mathfrak{A}$ последовательность (?) множеств
- $\mu e_n \xrightarrow[n \to \infty]{} 0$
- f суммируемая на X

Тогда:

$$\int_{e_n} f d\mu \xrightarrow[n \to \infty]{} 0$$

1.4.3 Теорема о произведении мер

Формулировка:

- $(X,\mathfrak{A},\mu),\,(Y,\mathfrak{B},\nu)$ пространства с мерой
- Зададим $m_0(A \times B) = \mu A \cdot \nu B$

Тогда:

- 1. m_0 мера на $\mathfrak{A} \times \mathfrak{B}$
- $2.~\mu, \nu-\sigma$ -конечные меры $\Longrightarrow m_0-\sigma$ -конечная

Доказательство:

1.4.4 Теорема Тонелли

Формулировка:

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечные меры
- $m = \mu \times \nu$
- $f: X \times Y \to \overline{\mathbb{R}} \geq 0$, измерима относительно $\mathfrak{A} \otimes \mathfrak{B}$

Тогда:

- 1. при почти всех x функция f_x измерима на Y
- 2. $x\mapsto \varphi(x)=\int_Y f_x d\nu$ это измеримая функция на X

3.

$$\int_{X\times Y}fdm=\int_X\varphi(x)d\mu(x)=\int_X\left(\int_Yf(x,y)d\nu(y)\right)d\mu(x)$$

Доказательство:

1.4.5 Формула для бета-функции

Формулировка: Бета-функция задаётся следующим образом:

$$B(s,t) = \int_0^1 x^{s-1} (1-x)^{t-1} dx, \quad s, t > 0$$

Тогда:

$$B(s,t) = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}$$

1.4.6 Объем шара в \mathbb{R}^m

Формулировка:

- $B(0,R) = \{x \in \mathbb{R}^m : x_1^2 + x_2^2 + \ldots + x_m^2 \le R^2\}$
- $\alpha_m \lambda_m(B(0,1))$

Тогда:

$$\mu\left(B(0,R)\right) = \alpha_m R^m$$

Доказательство:

1.4.7 Теорема Фату. Следствия

 Φ ормулировка:

- (X,\mathfrak{A},μ) пространство с мерой
- $f_n \ge 0$ измерима
- \bullet $f_n o f$ почти везде
- Если $\exists C>0 \ \forall n \int_X f_n d\mu \leq C$

Тогда:

$$\int_X f d\mu \leq C$$

Доказательство:

Следствие:

То же самое, только меняем сходимость почти везде на:

- $f_n, f \ge 0$, измеримы, почти везде конечны
- $f_n \Longrightarrow_{\mu} f$

Следствие:

• $f_n \ge 0$, измеримы

Тогда:

$$\int_X \underline{\lim} f_n \le \underline{\lim} \int_X f_n$$

1.4.8 Теорема о вычислении интеграла по взвешенному образу меры

Формулировка:

• $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\underline{\hspace{0.1cm}})$ — пространства с мерой

ullet $\omega:X o\overline{\mathbb{R}}\geq 0$ — измеримо

• $\Phi: X \to Y$ — "измеримое"

• ν — взвешенный образ μ (с весом ω)

Тогда для $\forall f: Y \to \overline{\mathbb{R}} \geq 0$ — измеримых:

1. $f \circ \Phi$ — измеримо (относительно \mathfrak{A})

2. $\int_{Y} f d\nu = \int_{X} f(\Phi(x)) \cdot \omega(x) d\mu(x)$

Доказательство:

1.4.9 Критерий плотности

 Φ ормулировка:

• (X,\mathfrak{A},μ) — пространство с мерой

 \bullet ν — ещё одна мера на ${\mathfrak A}$

• $\omega: X \to \overline{\mathbb{R}} \ge 0$, измеримо

Тогда эквивалентно:

1. ω — плотность μ отностительно μ

2. $\forall A \in \mathfrak{A} \quad \inf_A \omega \cdot \mu A \leq \nu A \leq \sup_A \omega \cdot \mu A$

Доказательство:

1.4.10 Лемма о единственности плотности

Формулировка:

• f, g — суммируемы на X

• $\forall A$ — измеримое, $\int_A f = \int_A g$

Тогда f = g почти везде

Доказательство:

Cледcтвиe:

Плотность меры определяется однозначно с точностью до изменения на множестве меры 0.

1.4.11 Лемма об оценке мер образов малых кубов

Формулировка:

- $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- $\bullet \ \Phi \in C^1$
- $a \in O$
- Пусть $c > |\det \Phi'(a)| \neq 0$

Тогда $\exists \delta > 0 \ \forall \ \text{Куб} \ Q \subset B(a, \delta)$

$$\lambda \cdot \Phi(Q) < c \cdot \lambda Q$$

Доказательство:

1.4.12 Предельный переход по параметру в несобственном интеграле

Формулировка:

- $f: \langle a, b \rangle \times Y \to \overline{\mathbb{R}}$
- $Y \subset \tilde{Y}$ метризуемое
- $y_0 \in \tilde{Y}$ предельная точка Y
- 1. при почти всех $x \exists f_0(x) = \lim_{y \to y_0} f(x, y)$
- 2. $\forall t \in (a,b) \ \forall f(x,y_0), f(x,y)$ суммируемые по x на (a,t) и $\int_a^t f(x,y) dx \underset{y \to y_0}{\longrightarrow} \int_a^t f_0(x) dx$
- 3. $J(y)=\int_a^{\rightarrow b}f(x,y)$ равномерно сходящаяся при $y\in Y$

Тогда $\int_a^{\to b} f_0(x) dx$ — существует (как несобственный)

Доказательство:

1.4.13 Предельный переход под знаком интеграла при наличии равномерной сходимости или L_{loc}

Формулировка:

- $f: X \times \tilde{Y} \to \overline{\mathbb{R}}$
- X пространство с мерой, $\mu X < +\overline{\mathbb{R}}$
- ullet $ilde{Y}$ метрезуемое топологическое пространство
- $\bullet \ Y \subset \tilde{Y}$
- $a \in \tilde{Y}$ предельная точка Y

• $\forall y \in Y \quad x \mapsto f(x,y)$ — суммируема на X

• Пусть
$$f(x,y) \underset{y \to a}{\Longrightarrow} \varphi(x)$$

Тогда φ — суммируема на X и

$$\lim_{y \to a} \int_X f(x, y) d\mu(x) = \int_X \varphi(x) d\mu(x)$$

Доказательство:

1.4.14 Правило Лейбница дифференцирования интеграла по параметру

Формулировка:

• Y — промежуток $\subset \mathbb{R}$

• $f: X \times Y \to \mathbb{R}$

• $\forall f(x,y)$ — суммируемая функция от x

• При почти всех $x \ \forall y \exists f_y'(x,y)$

• f_y' — удовлетворяет условию $L_{loc}(y_0)$

Тогда:

• $J(y) = \int_X f(x,y) d\mu(x)$ — дифференцируема в y_0

• $J'(y_0) = \int_X f'_y(x,y)d\mu(x)$

Доказательство:

1.4.15 Теорема о вложении пространств L^p

Формулировка:

•
$$\mu E < +\infty, 1 \le s < r \le +\infty$$

Тогда:

1.
$$L_r(E,\mu) \subset L_s(E,\mu)$$

2.
$$||f||_s \le (\mu E)^{\frac{1}{s} - \frac{1}{r}} \cdot ||f||_r$$

fix

1.4.16 Теорема о сходимости в L^p и по мере

 Φ ормулировка:

 $1 \le p < +\infty$ $f_n \in L_p(E, \mu)$:

1.
$$f \in L_p \quad f_n \xrightarrow[L_p]{} f$$
, тогда $f_n \Longrightarrow_{\mu} f$

2.
$$f_n \Longrightarrow_{\mu} f$$
 [либо $f_n \to f$ почти всюду], $|f_n| \le g$ почти всюду, при всех n , где $g \in L^p$. Тогда $f_n \xrightarrow[L_p]{\mu} f$

Доказательство:

1.4.17 Полнота L^p

Формулировка:

$$L^p(E,\mu)$$
 — полное $(1 \le p < +\infty)$

Доказательство:

1.4.18 Плотность в L^p множества ступенчатых функций

Формулировка:

•
$$(X, \mathfrak{A}, \mu), 1 \leq p \leq +\infty$$

Тогда множество ступенчатых функций плотно в $L_p(X,\mu)$

Доказательство:

1.4.19 Лемма Урысона

- X нормированное топологическое пространство (например, \mathbb{R}^m)
- $F_0, F_1 \subset X$ замкнутое
- $F_0 \cap F_1 = \emptyset$

Тогда: $f:X \to \mathbb{R}, \quad 0 \le f \le 1$ — непрерывное

$$f|_{F_0} \equiv 0, \, f|_{F_1} \equiv 1$$

1.4.20	Плотность в	L^p	непрерывных	финитных	функций
1.4.40	TIMOTHOCID D	L/^	пепрерывных	фипитпых	фупкции

 Φ ормулировка:

•
$$(\mathbb{R}^m,\mathfrak{M}^m,\lambda_m)$$

Тогда $C_0(\mathbb{R}^m)$ плотно в $L^p(\mathbb{R}^m, \lambda_m)$

Доказательство:

1.4.21 Интегрирование по мере Бореля–Стильтьеса, порожденной функцией распределения (с леммой)

 Φ ормулировка:

•