Section 1 (Must run code - this is the selected model with best preprocessing method and best parameter)

Section 2

Optional you can run if you wish but make sure you read through all code in section 1 and run according to the instructions

Note: 1. please check the menu to see which model you wish to run

How to run for CNN, LR and SVM ipnyb file

DATA EXPLORATION

SECTION 1

just run the following code and stop at the part where you wish to stop

#libraries

Run section 1: Just follow the instructions and run the code, dont need to skip any lines of code

How to run for Data Exploration ipnyb file

```
from keras.datasets import cifar100
import matplotlib.pyplot as plt
import numpy as np
from keras.models import Sequential
from keras.layers.convolutional import Conv2D
from keras.layers.pooling import MaxPool2D
from keras.layers.core import Dense, Activation, Dropout, Flatten
from keras.utils import np utils
from keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
from tensorflow.keras import datasets, layers, models, optimizers
from sklearn.model selection import train test split
import statsmodels.api as sm
from statsmodels.formula.api import glm
import keras
# Download dataset of CIFAR-100
(x_train,y_train),(x_test,y_test) = cifar100.load_data()
#print shape of the dataset
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)
print('y_train shape:', y_train.shape)
print('y_test shape:', y_test.shape)
# print number of data set samples
print(x train.shape[0], 'train set')
print(x_test.shape[0], 'test set')
# Data type for train and test set
print(type(x test))
print(type(y test[0]))
     x train shape: (50000, 32, 32, 3)
     x test shape: (10000, 32, 32, 3)
     y_train shape: (50000, 1)
     y test shape: (10000, 1)
     50000 train set
     10000 test set
     <class 'numpy.ndarray'>
     <class 'numpy.ndarray'>
CIFAR-100 Labels
```

0: apple

1: aquarium_fish

2: baby

- 3: bear
- 4: beaver
- 5: bed
- 6: bee
- 7: beetle
- 8: bicycle
- 9: bottle
- 10: bowl
- 11: boy
- 12: bridge
- 13: bus
- 14: butterfly
- 15: camel
- 16: can
- 17: castle
- 18: caterpillar
- 19: cattle
- 20: chair
- 21: chimpanzee
- 22: clock
- 23: cloud
- 24: cockroach
- 25: couch
- 26: cra
- 27: crocodile
- 28: cup
- 29: dinosaur
- 30: dolphin
- 31: elephant

- 32: flatfish
- 33: forest
- 34: fox
- 35: girl
- 36: hamster
- 37: house
- 38: kangaroo
- 39: keyboard
- 40: lamp
- 41: lawn_mower
- 42: leopard
- 43: lion
- 44: lizard
- 45: lobster
- 46: man
- 47: maple_tree
- 48: motorcycle
- 49: mountain
- 50: mouse
- 51: mushroom
- 52: oak_tree
- 53: orange
- 54: orchid
- 55: otter
- 56: palm_tree
- 57: pear
- 58: pickup_truck
- 59: pine_tree
- 60: plain

- 61: plate
- 62: poppy
- 63: porcupine
- 64: possum
- 65: rabbit
- 66: raccoon
- 67: ray
- 68: road
- 69: rocket
- 70: rose
- 71: sea
- 72: seal
- 73: shark
- 74: shrew
- 75: skunk
- 76: skyscraper
- 77: snail
- 78: snake
- 79: spider
- 80: squirrel
- 81: streetcar
- 82: sunflower
- 83: sweet_pepper
- 84: table
- 85: tank
- 86: telephone
- 87: television
- 88: tiger
- 89: tractor

90: train

91: trout

92: tulip

93: turtle

94: wardrobe

95: whale

96: willow_tree

97: wolf

98: woman

99: worm

visualise some images

```
# Show sample random image 5x5
plt.figure(figsize=(10,10))
for i in range(25):
    rand_num=np.random.randint(0,100)
    cifar_image=plt.subplot(5,5,i+1)
    plt.imshow(x_train[rand_num])
    # Erase the value of x tick and y tick
    plt.xticks(color="None")
    plt.yticks(color="None")
    # remove the tick x-axis and y-axis
    plt.tick_params(length=0)
    # print label
    plt.title(y_train[rand_num])

plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\text.py:1165: FutureWarning: elem@
if s != self._text:

%%time
#flipping image

```
#preprocess dataset
Datagenerator = ImageDataGenerator()
```

```
x_test1 = Datagenerator.apply_transform(x=x_test, transform_parameters={'flip_horizontal':Tru

#add back to original input image
x_train = np.concatenate((x_train,x_train1))
x_test = np.concatenate((x_test,x_test1))
#append the label twice because the fiiped images is the same images just being flipped, it h
y_train = np.concatenate((y_train,y_train))
y test = np.concatenate((y_test,y_test))
```

x train1 = Datagenerator.apply transform(x=x train, transform parameters={'flip horizontal':T

Wall time: 460 ms

```
%%time
```

```
# Normalize taining and test set image to the range of 0-1
x_train = x_train.astype('float32')/255.0
x_test = x_test.astype('float32')/255.0

# convert the labels of y_train,y_test to One-Hot encoding
y_train = np_utils.to_categorical(y_train,100)
y_test = np_utils.to_categorical(y_test,100)
```

Wall time: 3.76 s

we learned how to construct the following code from

https://towardsdatascience.com/assumptions-of-logistic-regression-clearly-explained-44d85a22b290

running Box-Tidwell Test to test linearity assumption

```
# Add constant term
xt = x_train.reshape(x_train.shape[0],x_train.shape[1]*x_train.shape[2]*x_train.shape[3])
X_lt = sm.add_constant(xt, prepend=False)

# Building model and fit the data (using statsmodel's Logit)
logit_results = sm.GLM(y_train100, X_lt, family=sm.families.Poisson()).fit()

# Display summary results
print(logit_results.summary())
```

Generalized Linear Model Regression Results

```
______
                              No. Observations:
Dep. Variable:
                                                       70000
Model:
                         GLM
                              Df Residuals:
                                                       66927
Model Family:
                      Poisson Df Model:
                                                        3072
Link Function:
                         log
                              Scale:
                                                      1.0000
Method:
                         IRLS
                              Log-Likelihood:
                                                  -8.4078e+05
               Wed, 27 Oct 2021
                              Deviance:
                                                   1.3022e+06
Date:
```

Time: 12:13:29 Pearson chi2: 1.13e+06

No. Iterations: 5
Covariance Type: nonrobust

Covariance Type:		nonrobust				
=======	coef		z	P> z	[0.025	0.975]
x1	-0.2702	0.050	-5.442	0.000	-0.368	-0.173
x2	0.2916	0.060	4.872	0.000	0.174	0.409
x3	0.0366	0.043	0.849	0.396	-0.048	0.121
x4	0.7708	0.071	10.917	0.000	0.632	0.909
x5	-0.9618	0.082	-11.673	0.000	-1.123	-0.800
x6	0.1928	0.063	3.084	0.002	0.070	0.315
x7	-0.6792	0.073	-9.337	0.000	-0.822	-0.537
x8	0.9508	0.085	11.187	0.000	0.784	1.117
x9	-0.1334	0.065	-2.049	0.040	-0.261	-0.006
x10	0.7473	0.074	10.151	0.000	0.603	0.892
x11	-0.9163	0.087	-10.592	0.000	-1.086	-0.747
x12	0.0421	0.066	0.637	0.524	-0.088	0.172
x13	-0.5523	0.076	-7.242	0.000	-0.702	-0.403
x14	0.8106	0.088	9.160	0.000	0.637	0.984
x15	-0.2046	0.067	-3.050	0.002	-0.336	-0.073
x16	-0.0151	0.077	-0.195	0.845	-0.167	0.136
x17	-0.2155	0.090	-2.386	0.017	-0.393	-0.038
x18	0.2535	0.068	3.749	0.000	0.121	0.386
x19	0.0867	0.078	1.117	0.264	-0.065	0.239
x20	0.1257	0.091	1.388	0.165	-0.052	0.303
x21	-0.2557	0.068	-3.786	0.000	-0.388	-0.123
x22	-0.0637	0.075	-0.854	0.393	-0.210	0.082
x23	-0.2465	0.088	-2.789	0.005	-0.420	-0.073
x24	0.2671	0.066	4.047	0.000	0.138	0.397
x25	0.2777	0.074	3.778	0.000	0.134	0.422
x26	0.3217	0.087	3.688	0.000	0.151	0.493
x27	-0.4441	0.066	-6.745	0.000	-0.573	-0.315
x28	-0.3370	0.073	-4.629	0.000	-0.480	-0.194
x29	-0.2056	0.085	-2.428	0.015	-0.372	-0.040
x30	0.5127	0.065	7.937	0.000	0.386	0.639
x31	0.3097	0.072	4.307	0.000	0.169	0.451
x32	0.0277	0.084	0.330	0.742	-0.137	0.192
x33	-0.3321	0.064	-5.187	0.000	-0.458	-0.207
x34	-0.0209	0.069	-0.303	0.762	-0.156	0.114
x35	-0.2585	0.081	-3.191	0.001	-0.417	-0.100
x36	0.2529	0.061	4.149	0.000	0.133	0.372
x37	-0.3347	0.068	-4.926	0.000	-0.468	-0.202
x38	0.3476	0.082	4.263	0.000	0.188	0.507
x39	0.0472	0.061	0.771	0.441	-0.073	0.167
x40	0.4479	0.069	6.474	0.000	0.312	0.584
x41	-0.2058	0.082	-2.496	0.013	-0.367	-0.044
x42	-0.2741	0.062	-4.397	0.000	-0.396	-0.152
x43	-0.1329	0.070	-1.911	0.056	-0.269	0.003
x44	-0.3669	0.083	-4.435	0.000	-0.529	-0.205
x45	0.3789	0.063	6.030	0.000	0.256	0.502

Code learned from website: https://towardsdatascience.com/how-to-create-fast-and-accurate-scatter-plots-with-lots-of-data-in-python-a1d3f578e551

```
#plot scatter plot input data map with output labels
(x_train1, y_train1), (x_test1, y_test1) = keras.datasets.cifar100.load_data()
assert x_train1.shape == (50000, 32, 32, 3)
assert x_test1.shape == (10000, 32, 32, 3)
assert y_train1.shape == (50000, 1)
assert y_test1.shape == (10000, 1)

plt.figure()
train = x_train1.reshape(x_train1.shape[0],x_train1.shape[1]*x_train1.shape[2]*x_train1.shape
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
proj = pca.fit_transform(train)
plt.scatter(proj[:, 0], proj[:, 1], c=y_train1, cmap="Paired")
plt.colorbar()
```

<matplotlib.colorbar.Colorbar at 0x17f5b54a4c0>

