Universal Turing machines

Arno Pauly

March 16, 2021

What we want to show today

Theorem

There is a Turing machine U (called universal TM) which can receive as input a description of a TM M and some word w, and then simulates whatever M would do on input w.

What is a description?

- ▶ Let the alphabet be $\{a, b, c, \bot\}$.
- ▶ We will use a,b for binary encoding, and c as separation marker.
- ► There is a lot of flexibility in the encoding, this one is just one convenient choice.

What is a description?

- ▶ Let $[n]_2$ denote the binary encoding of $n \in \mathbb{N}$ using a and b as digits. We also encode $d \in \{L, R, S\}$ as $[d]_D$ and $x \in \{a, b, c, \bot\}$ as $[x]_{\Sigma}$ using digits from $\{a, b\}$.
- ightharpoonup A state q_n shall be described by the word

$$w_n := [n]_2 c[m_a] c[x_a] c[d_a]_D c[m_b] c[x_b] c[d_b]_D c[m_c] c[x_c] c[d_c]_D \dots$$

$$\ldots c[m_{\perp}]c[x_{\perp}]c[d_{\perp}]_D$$

- , where the rules are "on reading an $\alpha \in \{a, b, c, \bot\}$, write the symbol x_{α} , move in direction d_{α} and go to the m_{α} -th state next".
- A TM having states q_1, \ldots, q_k is described by the word $w_1 ccw_2 cc \ldots ccw_k$.

How to built the universal TM

- ▶ *U* receives an input $\langle M \rangle cccw$, where $\langle M \rangle$ is a description of a TM.
- U uses three tapes, and begins with writing [1]₂ on the second tape (which will keep track of what state M would be in)
- and copies w to the third tape (which will play the role of M's tape), and move the head back to the start position.
- then U searches for the rules pertaining to the current state on the firs tape, acts on the third tape as prescribed, and copies the next state description to the second tape.
- ▶ *U* checks whether $[2]_2$ or $[3]_2$ is written on the second tape (assuming that $q_2 = q_{yes}$ and $q_3 = q_{no}$ and if so halts, otherwise it repeats from the previous step.

Something else

- Rather than having a TM just answering "yes"-"no" questions, we can have it compute functions.
- ▶ Instead of q_{yes} and q_{no} states we just have q_{halt} .
- ▶ On reaching q_{halt} , the output is determined as the longest \bot -free word on the tape including position 0.
- Practise task: Come up with a TM that performs addition in unary (easy) or in binary (harder). Assume that the inputs are separated by a separation symbol, and use three tapes.

Outlook

- Rather than having a TM deciding a language, we can have it recognize a language (by just requiring halting and saying "yes" for words in the language, and not caring about words outside of the language).
- The languages recognizable like this are the computably enumerable languages – the same generated by unrestricted grammars.
- There is no TM that decides, on input ⟨M⟩, whether M ever halts on input ε.