TA Lecture 03 - Random Variables

March 27 - 28

School of Information Science and Technology, ShanghaiTech University

Outline

Main Contents Recap

HW Problems

More Exercices

Random Variable

Definition

Given an experiment with sample space S, a random variable (r.v.) is a function from the sample space S to the real numbers R. It is common, but not required, to denote random variables by capital letters.

Random Variable

Definition

A random variable X is said to be *discrete* if there is a finite list of values a_1, a_2, \ldots, a_n or an infinite list of values a_1, a_2, \cdots such that $P(X = a_j \text{ for some } j) = 1$. If X is a discrete r.v., then the finite or countably infinite set of values x such that P(X = x) > 0 is called the *support* of X.

3

Random Variable

3.2.3. In writing P(X=x), we are using X=x to denote an *event*, consisting of all outcomes s to which X assigns the number x. This event is also written as $\{X=x\}$; formally, $\{X=x\}$ is defined as $\{s\in S: X(s)=x\}$, but writing $\{X=x\}$ is shorter and more intuitive. Going back to Example 3.1.2, if X is the number of Heads in two fair coin tosses, then $\{X=1\}$ consists of the sample outcomes HT and TH, which are the two outcomes to which X assigns the number 1. Since $\{HT,TH\}$ is a subset of the sample space, it is an event. So it makes sense to talk about P(X=1), or more generally, P(X=x). If $\{X=x\}$ were anything other than an event, it would make no sense to calculate its probability! It does not make sense to write "P(X)"; we can only take the probability of an event, not of an r.v.

Independence

Definition

Random variables X and Y are said to be independent if

$$P(X \le x, Y \le y) = P(X \le x) P(Y \le y),$$

for all $x, y \in \mathbb{R}$. In the discrete case, this is equivalent to the condition

$$P(X = x, Y = y) = P(X = x) P(Y = y)$$

for all x,y with x in the support of X and y in the support of Y.

5

Independence

Definition

Random variables X_1, \ldots, X_n are independent if

$$P(X_1 \leq x_1, \dots, X_n \leq x_n) = P(X_1 \leq x_1) \dots P(X_n \leq x_n)$$

for all $x_1, \dots, x_n \in \mathbb{R}$. For infinitely many r.v.s, we say that they are independent if every finite subset of the r.v.s is independent.

6

I.I.D.

We will often work with random variables that are independent and have the same distribution. We call such r.v.s independent and identically distributed, or i.i.d. for short.

- Independent & Identically Distributed
- Independent & NOT Identically Distributed
- Dependent & Identically Distributed
- Dependent & NOT Identically Distributed

PMF

Definition

The probability mass function (PMF) of a discrete r.v. X is the function p_X given by $p_X(x) = P(X = x)$. Note that this is positive if x is in the support of X, and 0 otherwise.

Theorem

Let X be a discrete r.v. with support $x_1, x_2,...$ (assume these values are distinct and, for notational simplicity, that the support is countably infinite; the analogous results hold if the support is finite). The PMF p_X of X must satisfy the following two criteria:

- Nonnegative: $p_X(x) > 0$ if $x = x_j$ for some j, and $p_X(x) = 0$ otherwise;
- Sums to 1: $\sum_{j=1}^{\infty} p_X(x_j) = 1$.

CDF

Theorem

The cumulative distribution function (CDF) of an r.v. X is the function F_X given by $F_X(x) = P(X \le x)$. When there is no risk of ambiguity, we sometimes drop the subscript and just write F (or some other letter) for a CDF.

CDF

Any CDF F has the following properties.

- Increasing: If $x_1 \le x_2$, then $F(x_1) \le F(x_2)$.
- Right-continuous: the CDF is continuous except possibly for having some jumps. Wherever there is a jump, the CDF is continuous from the right. That is, for any a, we have

$$F(a) = \lim_{x \to a^{+}} F(x).$$

Convergence to 0 and 1 in the limits:

$$\lim_{x \to -\infty} F(x) = 0$$
 and $\lim_{x \to \infty} F(x) = 1$

An experiment that can result in either a "success" or a "failure" (but not both) is called a *Bernoulli trial*. A Bernoulli random variable can be thought of as the *indicator of success* in a Bernoulli trial: it equals 1 if success occurs and 0 if failure occurs in the trial.

Suppose that n independent Bernoulli trials are performed, each with the same success probability p. Let X be the number of successes. The distribution of X is called the Binomial distribution with parameters n and p. We write $X \sim Bin(n,p)$ to mean that X has the Binomial distribution with parameters n and p, where n is a positive integer and 0 .

An urn is filled with w white and b black balls, then drawing n balls out of the urn

- with replacement: Bin(n, w/(w+b)) distribution for the number of white balls obtained
- without replacement: Hypergeometric distribution

Let C be a finite, nonempty set of numbers. Choose one of these numbers uniformly at random (i.e., all values in C are equally likely). Call the chosen number X. Then X is said to have the *Discrete Uniform distribution* with parameter C; we denote this by $X \sim \mathrm{DUnif}(C)$.

Random Variable: Geometric

Theorem

Suppose for any positive integer n, discrete random variable X satisfies

$$P(X \ge n + k | X \ge k) = P(X \ge n)$$

for $k = 0, 1, 2, ..., then X \sim Geom(p)$.

Random Variable: First Success

Definition

In a sequence of independent Bernoulli trials with success probability p, let Y be the number of trials until the first successful trial, including the success. Then Y has the First Success distribution with parameter p; we denote this by $Y \sim \mathrm{FS}(p)$.

Random Variable: Negative Binomial

In a sequence of independent Bernoulli trials with success probability p, if X is the number of failures before the r^{th} success, then X is said to have the Negative Binomial distribution with parameters r and p, denoted $X \sim NBin(r, p)$.

Random Variable: Negative Binomial

Theorem

Let $X \sim \mathrm{NBin}(r, p)$, viewed as the number of failures before the rth success in a sequence of independent Bernoulli trials with success probability p. Then we can write $X = X_1 + \cdots + X_r$ where the X_i are i.i.d. $\mathrm{Geom}(p)$.

Definition

An r.v. X has the Poisson distribution with parameter λ if the PMF of X is

$$P(X = k) = \frac{e^{-\lambda} \lambda^{k}}{k!}, \ k = 0, 1, 2, \cdots$$

We write this as $X \sim \text{Pois}(\lambda)$.

Theorem

If $X \sim \operatorname{Pois}(\lambda_1)$, $Y \sim \operatorname{Pois}(\lambda_2)$, and X is independent of Y, then $X + Y \sim \operatorname{Pois}(\lambda_1 + \lambda_2)$.

Let A_1, A_2, \dots, A_n be events with $p_j = P(A_j)$, where n is large, the p_j are small, and the A_j are independent or weakly dependent. Let

$$X = \sum_{j=1}^{n} I(A_j)$$

count how many of the A_j occur. Then X is approximately $\operatorname{Pois}(\lambda)$, with $\lambda = \sum_{j=1}^n p_j$.

Theorem

If $X \sim \operatorname{Pois}(\lambda_1)$, $Y \sim \operatorname{Pois}(\lambda_2)$, and X is independent of Y, then the conditional distribution of X given X + Y = n is $\operatorname{Bin}(n, \lambda_1/(\lambda_1 + \lambda_2))$.

Theorem

If $X \sim \operatorname{Bin}(n,p)$ and we let $n \to \infty$ and $p \to 0$ such that $\lambda = np$ remains fixed, then the PMF of X converges to the $\operatorname{Pois}(\lambda)$ PMF. More generally, the same conclusion holds if $n \to \infty$ and $p \to 0$ in such a way that np converges to a constant λ .

Outline

Main Contents Recap

HW Problems

More Exercices

Problem 1

Please reinterpret the following story from the Bayesian perspective.

Problem 1 Solution

Problem 2

A fair die is rolled repeatedly, and a running total is kept (which is, at each time, the total of all the rolls up until that time). Let p_n be the probability that the running total is ever exactly n (assume the die will always be rolled enough times so that the running total will eventually exceed n, but it may or may not ever equal n).

- (a) Write down a recursive equation for p_n (relating p_n to earlier terms p_k in a simple way). Your equation should be true for all positive integers n, so give a definition of p_0 and p_k for k < 0 so that the recursive equation is true for small values of n.
- (b) Find p_7 .
- (c) Give an intuitive explanation for the fact that p_n â 1/3.5 = 2/7 as $n \to \infty$.

Problem 2 Solution

Problem 3

A sequence of $n \ge 1$ independent trials is performed, where each trial ends in "success" or "failure" (but not both). Let p_i be the probability of success in the i^{th} trial, $q_i = 1 - p_i$, and $b_i = q_i - 1/2$, for i = 1, 2, ..., n. Let A_n be the event that the number of successful trials is even.

- (a) Show that for n = 2, $P(A_2) = 1/2 + 2b_1b_2$.
- (b) Show by induction that $P(A_n) = 1/2 + 2^{n-1}b_1b_2...b_n$ (This result is very useful in cryptography. Also, note that it implies that if n coins are flipped, then the probability of an even number of Heads is 1/2 if and only if at least one of the coins is fair.) Hint: Group some trials into a super-trial.
- (c) Check directly that the result of (b) is true in the following simple cases: $p_i = 1/2$ for some i; $p_i = 0$ for all i; $p_i = 1$ for all i.

Problem 3 Solution

Problem 4

A message is sent over a noisy channel. The message is a sequence $x_1, x_2, ..., x_n$ of n bits $(x_i \in \{0,1\})$. Since the channel is noisy, there is a chance that any bit might be corrupted, resulting in an error $(a_0$ becomes a_1 or vice versa). Assume that the error events are independent. Let p be the probability that an individual bit has an error $(0 . Let <math>y_1, y_2, ..., y_n$ be the received message (so $y_i = x_i$ if there is no error in that bit, but $y_i = 1 - x_i$ if there is an error there).

To help detect errors, the n th bit is reserved for a parity check: x_n is defined to be 0 if $x_1 + x_2 + ... + x_{n-1}$ is even, and 1 if $x_1 + x_2 + ... + x_{n-1}$ is odd. When the message is received, the recipient checks whether y_n has the same parity as $y_1 + y_2 + ... + y_{n_1}$. If the parity is wrong, the recipient knows that at least one error occurred; otherwise, the recipient assumes that there were no errors.

Problem 4 Continued

- (a) For n = 5, p = 0.1, what is the probability that the received message has errors which go undetected?
- (b) For general *n* and *p*, write down an expression (as a sum) for the probability that the received message has errors which go undetected.
- (c) Give a simplified expression, not involving a sum of a large number of terms, for the probability that the received message has errors which go undetected.

Problem 4 Solution

Problem 5

For X and Y binary digits (0 or 1), let $X \oplus Y$ be 0 if X = Y and 1 if $X \neq Y$ (this operation is called exclusive or (often abbreviated to XOR), or addition mod 2).

(a) Let $X \sim \mathrm{Bern}(p)$ and $Y \sim \mathrm{Bern}(1/2)$, independently. What is the distribution of $X \oplus Y$

Problem 5 Solution

Problem 5 Continued

(b) With notation as in sub-problem(a), is $X \oplus Y$ independent of X? Is $X \oplus Y$ independent of Y? Be sure to consider both the case p = 1/2 and the case $p \neq 1/2$.

Problem 5 Solution

Problem 5 Continued

(c) Let $X_1, ..., X_n$ be i.i.d. (i.e., independent and identically distributed) Bern(1/2) R.V.s. For each nonempty subset J of $\{1, 2, ..., n\}$, let

$$Y_J = \bigoplus_{Y \in J} X_J$$
.

Show that Y_J Bern(1/2) and that these $2^n - 1$ R.V.s are pairwise independent, but not independent.

Problem 5 Solution

Problem 6

By LOTP for problems with recursive structure, we generate many difference equations. To solve the difference equation in the form of

$$f_{i+1} = b \cdot f_i + a \cdot f_{i-1}, i \ge 1.$$
 (1)

where a and b are constants, we turn to the so-called characteristic equation:

$$x^2 = bx + a. (2)$$

Problem 6 Continued

If such equation has two distinct roots r_1 and r_2 , then the general form of f_i is

$$f_i = c \cdot r_1^i + d \cdot r_2^i, \tag{3}$$

If there is only one distinct root r, then the general form of f_i is

$$f_i = c \cdot r^i + d \cdot i \cdot r^i. \tag{4}$$

Show the mathematical principle behind the method of characteristic equation.

Problem 6 Solution

Outline

Main Contents Recap

HW Problems

More Exercices

BH CH2 #62: Difference Equation

There are n types of toys, which you are collecting one by one. Each time you buy a toy, it is randomly determined which type it has, with equal probabilities. Let $p_{i,j}$ be the probability that just after you have bought your i^{th} toy, you have exactly j toy types in your collection, for $i \geq 1$ and $0 \leq j \leq n$. (This problem is in the setting of the coupon collector problem, a famous problem which we study in Example 4.3.11.)

- (a) Find a recursive equation expressing p_{ij} in terms of $p_{i-1,j}$ and $p_{i-1,j-1}$, for $i \geq 2$ and $1 \leq j \leq n$.
- (b) Describe how the recursion from (a) can be used to calculate $p_{i,j}$.

Solution