Design and Analysis of Algorithms

CS3230

Week 5

Hashing

Warut Suksompong

Assignments: Common mistakes

- Show that there exists an algorithm that makes at most k comparisons.
 - Upper bound: Giving one algorithm (that always makes at most k comparisons) suffices.
 - Lower bound: Need to rule out all possible algorithms that make at most k-1 comparisons. Usually done by an adversary argument.
- If f(n) = O(g(n)), is $2^{f(n)} = O(2^{g(n)})$?
 - Here is a proof attempt.
 - There exist c, n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.
 - So $2^{f(n)} \le 2^c \cdot 2^{g(n)}$ for all $n \ge n_0$.
 - Choosing $c' = 2^c$ and $n'_0 = n_0$, we get $2^{f(n)} = O(2^{g(n)})$.
 - What's wrong?

Asymptotic relations

- If $f(n) = \omega(g(n))$, then
 - $f(n) = \Omega(g(n))$
 - $f(n) \neq \Theta(g(n))$
 - $f(n) \neq O(g(n))$
 - $f(n) \neq o(g(n))$
- If f(n) = o(g(n)), then
 - f(n) = O(g(n))
 - $f(n) \neq \Theta(g(n))$
 - $f(n) \neq \Omega(g(n))$
 - $f(n) \neq \omega(g(n))$

Dictionary Data Structure

 x_1 Dictionary

Dictionary Data Structure

 $add(x_1)$

 $add(x_2)$

 x_1

 x_2

 χ_4

 x_3

Dictionary

 $add(x_3)$

 $add(x_4)$

 $delete(x_2)$

query (x_1)

query(x_2)

Dictionary Data Structure

- The most popular data structure in computer science!
- Often, items inserted are (key, val) pairs. Inserting a key already in dictionary overwrites the val. Query returns val if key exists.
 - Examples: language dictionaries, compilers, virtual memory, network routers
 - Less obvious applications in searching and streaming covered next lecture
- Static: set of inserted items fixed; only care about queries.

Insertion-only: Only insertions and queries.

Dynamic: Insertions, deletions, and queries.

First Try

- In static case, can store items in a sorted list.
 - Query: $O(\log N)$, where N is number of stored items

- In dynamic case, can use balanced search tree structures
 - Insertion, deletion, query: $O(\log N)$ worst-case

A different approach: Direct Access Tables

 $add(x_1)$

 $add(x_2)$

 $add(x_3)$

A different approach: Direct Access Tables

BIG PROBLEM: huge space requirement! Table size is that of the universe.

Typical universe size: 2²⁵⁶ !!

Hashing

×

 $[\chi_2]$

 $h(x_2)$

Hash Function: $h: U \to \{1, ..., M\}$ gives location of where to store in hash table.

Hashing

add
$$(x_1)$$

$$\begin{array}{c} \times \\ \times \\ \text{add}(x_2) \\ \text{add}(x_2) \\ \text{add}(x_3) \end{array}$$

$$\begin{array}{c} \times \\ [x_1, x_3] \\ \times \\ \times \\ \end{array}$$

×

 $[x_2]$

 $h(x_2)$

Hash Function: $h: U \to \{1, ..., M\}$ gives location of where to store in hash table.

A **collision** is when for two different keys x and y, h(x) = h(y). We resolve collisions by **chaining**. Other strategies possible, e.g., open addressing (see CLRS).

Desired properties

- Minimize collisions. query(x) and delete(x) take time $\Theta(|h(x)|)$. Worst case is when all inserted keys hash to the same location!
- Minimize storage space. Aim is to have M=O(N). [Here and later, N is number of stored items.]
- The function h should be easy to compute. For this lecture, we will assume h(x) computed in constant time, but in reality, this may be an issue.

Adversary strikes back!

- If U is large, then for any hash function with small M, there are many keys which all hash to the same location.
- Claim: If $|U| \ge (N-1)M+1$, for any $h: U \to [M]$, there is a set of N elements having the same hash value. Here and later, [M] denotes the set {1, 2, ..., M}.
- Proof: Pigeonhole principle. If every slot in the hash table had < N elements from U mapping to it, then $|U| \le (N-1)M$. Contradiction!

Key Idea: Randomization

- Fool the adversary by not fixing the hash function!
- Example: Suppose $U = \{a, b, c\}$ and M = 2. Consider two hash functions h_1 and h_2 .
 - $h_1(a) = 1$, $h_1(b) = 1$, $h_1(c) = 2$. Note: a and b collide.
 - $h_2(a) = 1, h_2(b) = 2, h_2(c) = 2$. Note: b and c collide.

If I randomly choose between h_1 and h_2 , for any pair of keys, with probability $\geq \frac{1}{2}$, there will be no collision.

Each hash function by itself is not random!

Universal Hashing

<u>Definition</u>: Suppose \mathcal{H} is a set of hash functions mapping U to [M]. We say \mathcal{H} is *universal* if for all $x \neq y$:

$$\frac{|h \in \mathcal{H} : h(x) = h(y)|}{|\mathcal{H}|} \le \frac{1}{M}$$

of hash functions for which x and y collide

For any $x \neq y$, if h is chosen uniformly at random from a universal \mathcal{H} , there's at most $\frac{1}{M}$ probability that h(x) = h(y).

Universal Hashing Examples

	a	b
h_1	0	0
h_2	0	1

	a	b
h_1	0	1
h_2	1	0

	a	b
h_1	0	0
h_2	1	0
h_3	0	1

Universal

	a	b
h_1	0	0
h_3	1	1

	a	b	c
h_1	0	0	1
h_2	1	1	0
h_3	1	0	1

Not Universal

Collision Analysis

<u>Claim</u>: Suppose \mathcal{H} is a *universal* family of hash functions mapping U to [M]. For any N elements x_1, \ldots, x_N , the expected number of collisions between x_N and the other elements is $<\frac{N}{M}$.

PROOF

- Indicator random variable (see supplementary material)
- For i < N, let $A_i = 1$ if $h(x_i) = h(x_N)$ and 0 otherwise.
- $\mathbb{E}[A_i] = 1 \cdot \Pr[A_i = 1] + 0 \cdot \Pr[A_i = 0] = \Pr[A_i = 1] \le \frac{1}{M}$.
- # of collisions with x_N is $\sum_{i < N} A_i$.
- $\mathbb{E}\left[\sum_{i < N} A_i\right] = \sum_{i < N} \mathbb{E}[A_i] \le \frac{N-1}{M} < \frac{N}{M}$.

Expected Cost

<u>Claim</u>: Suppose \mathcal{H} is a *universal* family of hash functions mapping U to [M]. For any sequence of N insertions, deletions and queries, if $M \geq N$, then the expected total cost for a random $h \in \mathcal{H}$ is O(N).

PROOF

- Each operation costs O(1) time in expectation by previous claim.
- By linearity of expectations, total cost is O(N).

Construction of universal family

- But can we actually get a universal family of hash functions with M = O(N)?
 - YES!
- Suppose U is indexed by u-bit strings, and $M=2^m$. For any binary matrix A with m rows and u columns: $h_A(x)=Ax \pmod 2$

Claim: $\{h_A: A \in \{0,1\}^{m \times u}\}$ is universal.

Construction of universal family: Example

• Suppose $U = \{00, 01, 10, 11\}$, and M = 2.

	00	01	10	11
h_{00}	0	0	0	0
h_{01}	0	1	0	1
h_{10}	0	0	1	1
h_{11}	0	1	1	0

Proof of Correctness

- If $x \neq y$, what is $\Pr_A[Ax = Ay] = \Pr_A[A(x y) = \mathbf{0}]$?
- Let z = x y. We know $z \neq \mathbf{0}$. Need to show $\Pr_A[Az = \mathbf{0}] \leq \frac{1}{M}$.
- Special case: Suppose z is 1 at the i-th coordinate but 0 everywhere else. Then Az equals the i-th column of A. Since the i-th column is uniformly random, $\Pr[Az = \mathbf{0}] = \frac{1}{2^m} = \frac{1}{M}$.

Proof of Correctness

- Warm-up for general case: If you flip a fair coin independently k times, what is the probability that the number of times it comes up heads is even?
- General case: Suppose z is 1 at the i-th coordinate. See lecture notes or presentation.

Universal Hashing: Wrap-up

- Can use \mathcal{H} for dictionaries. In addition to storing the hash table, dictionary also needs to store the matrix A.
 - Additional storage overhead $\Theta(\log N \cdot \log |U|)$ bits, if $M = \Theta(N)$.

 Other universal hashing constructions available, some with more efficient hash function evaluation.

Perfect Hashing

• Consider the static case: N fixed items in dictionary $x_1, x_2, ..., x_N$.

 QUESTION: Can we do all queries in worst-case constant time?

Perfect Hashing: Quadratic Space

Constant lookup time if no collisions.

<u>Claim</u>: If \mathcal{H} is *universal* and $M = N^2$, then if h is sampled uniformly from \mathcal{H} , the expected number of collisions is < 1.

PROOF

- For $i \neq j$, let A_{ij} equal 1 if $h(x_i) = h(x_j)$, and 0 otherwise.
- By universality, $\mathbb{E}[A_{ij}] = \Pr[A_{ij} = 1] \le 1/N^2$.
- $\mathbb{E}[\#\text{collisions}] = \sum_{i \neq j} \mathbb{E}[A_{ij}] \le {N \choose 2} \frac{1}{N^2} < 1.$

There is a hash function $h: U \to \lceil N^2 \rceil$ for which there are no collisions.

Perfect Hashing: 2-Level Scheme

- Choose $h: U \rightarrow [N]$ from a universal hash family.
- Let L_k be the number of x_i^\prime s for which

$$h(x_i) = k$$

- Choose h_1, \ldots, h_N second-level hash functions $h_k: [N] \to [L_k^2]$ such that there are no collisions among the L_k elements mapped to k by h.
 - These exist because of the previous claim!
- **Question**: What is $\mathbb{E}\left[\sum_k L_k^2\right]$?

Perfect Hashing: 2-Level Scheme

<u>Claim</u>: If \mathcal{H} is *universal*, then if h is sampled uniformly from \mathcal{H} :

$$\mathbb{E}\left[\sum_{k}L_{k}^{2}\right]<2N.$$

- For $1 \le i, j \le N$, define $A_{ij} = 1$ if $h(x_i) = h(x_j)$ and $A_{ij} = 0$ otherwise
- Crucial observation:

$$\sum_{k} L_k^2 = \sum_{i,j} A_{ij}$$

• $\mathbb{E}\left[\sum_{i,j} A_{ij}\right] = \sum_{i} \mathbb{E}[A_{ii}] + \sum_{i \neq j} \mathbb{E}[A_{ij}] \leq N \cdot 1 + N(N-1) \cdot \frac{1}{N} < 2N$

Acknowledgement

- The slides are modified from
 - the slides from Prof. David Woodruff
 - the slides from Prof. Arnab Bhattacharyya