

### Bureau d'études

Résolution numérique du problème posé

CYTECH - PréING2



2021 - 2022





# Résolution numérique du problème posé

Reformulation de l'équation

Résolution de & Méthode de tir Fonction de tir

Méthodes numériques

Remarques supplémentaires





### Mise en situation

### Équation de SCHRÖDINGER dans un puits

$$\begin{cases}
\forall x \in [0, L], \frac{\hbar^2}{2m} \varphi''(x) + (E - V(x)) \cdot \varphi(x) = 0 \\
\varphi(0) = \varphi(L) = 0
\end{cases}$$

#### Problème

- ▶ Pour toute valeur de E,  $\varphi = 0$  est solution de  $(\mathscr{S})$ .
- Numériquement, la solution nulle vient naturellement. Donc une solution non nulle est difficile à trouver.
- ⇒ Nécessité d'introduire la condition de normalisation

$$\int_0^L \varphi(x)^2 \, \mathrm{d}x = 1$$





# Reformulation de l'équation





# <sub>TECH</sub> Objectif

### Équation étudiée

$$\begin{cases} \forall x \in [0, L], \frac{\hbar^2}{2m} \varphi''(x) + (E - V(x)) \cdot \varphi(x) = 0 \\ \varphi(0) = \varphi(L) = 0 \\ \int_0^L \varphi(x)^2 dx = 1 \end{cases} \tag{S_N}$$

# Formulation souhaitée avec $Y \in \mathcal{C}^1([0,L],\mathbb{R}^3)$

$$\begin{cases} \forall x \in [0,L], \ Y'(x) = f(x,Y(x)) \\ Y_i(0) = y_i^0 & \text{pour certains indices } i \\ Y_j(L) = y_j^f & \text{pour certains indices } j \end{cases}$$





### Premières transformations

### Étape 1 : équation différentielle

On pose  $\varphi_1 = \varphi'$ .

Alors 
$$\forall x \in [0, L]$$
, 
$$\begin{cases} \varphi'(x) = \varphi_1(x) \\ \varphi'_1(x) = \varphi''(x) = -\frac{2m}{\hbar^2} (E - V(x)) \cdot \varphi(x) \end{cases}$$

### Étape 2 : condition de normalisation

On note 
$$N: [0,L] \rightarrow \mathbb{R}$$

$$x \mapsto \int_0^x \varphi(\ell)^2 d\ell$$

#### Alors:

- $\forall x \in [0,L], N'(x) = \varphi(x)^2$
- ► N(0) = 0
- ► N(L) = 1





### Construction de Y

### Étape 3 : combinaison des étapes précédentes

$$\begin{cases} \varphi'(x) = \varphi_1(x) \\ \varphi'_1(x) = -\frac{2m}{\hbar^2} (E - V(x)) \cdot \varphi(x) \\ N'(x) = \varphi(x)^2 \\ \varphi(0) = 0 \text{ et } \varphi(L) = 0 \\ N(0) = 0 \text{ et } N(L) = 1 \end{cases}$$

$$(\mathcal{E})$$

### Étape 4 : construction de Y et f

$$\forall x \in [0, L], Y(x) = \begin{pmatrix} \varphi(x) \\ \varphi_1(x) \\ N(x) \end{pmatrix} \text{ et } f: \left(x, \begin{pmatrix} \varphi \\ \varphi_1 \\ N \end{pmatrix}\right) \mapsto \left(-\frac{2m}{\hbar^2} \left(E - V(x)\right) \cdot \varphi\right)$$





# Résolution de &





# Méthode de tir : principe

#### Problème « aux deux bouts »

$$\begin{cases} \forall x \in [0, L], \ Y'(x) = f(x, Y(x)) \\ Y_1(0) = 0 \text{ et } Y_1(L) = 0 \\ Y_3(0) = 0 \text{ et } Y_3(L) = 1 \end{cases}$$
 (£)

Pas de condition pour  $Y_2(0)$  et  $Y_2(L)$ 

### Problème à valeur initiale

$$\begin{cases} \forall x \in [0, L], \ Y'(x) = f(x, Y(x)) \\ Y_1(0) = 0 \\ Y_2(0) = Z \\ Y_3(0) = 0 \end{cases}$$
 (E<sub>Z</sub>)

Quelle valeur de z permet d'obtenir  $Y_1(L) = 0$  et  $Y_3(L) = 1$ ?





## Bien poser le problème

#### Méthode « de tir »?

- ► Inspiré de la balistique
- $ightharpoonup Y_2(0) \equiv angle de tir$
- $(Y_1(L), Y_3(L)) = (0,1) \equiv \text{cible à atteindre}$

### Inconnue(s) et équations

- ▶ Deux équations :  $Y_1(L) = 0$  et  $Y_3(L) = 1$
- ▶ Une inconnue : z... « Il en manque une!»
- L'autre inconnue est E:
  - ▶ seules certaines valeurs de *E* admettent une solution...
  - ...donc on cherche aussi cette quantité.





### Construction de la fonction de tir S

### Description algorithmique

1. Paramètres en entrée de S

$$\begin{pmatrix} E \\ z \end{pmatrix} = \begin{pmatrix} E \\ Y_2(O) \end{pmatrix} = \begin{pmatrix} E \\ \varphi'(O) \end{pmatrix}$$

- 2. Résoudre  $(\mathscr{E}_Z) \Longrightarrow$  solution Y sur [0,L]
- 3. Résultat de la fonction S

$$S\begin{pmatrix} E \\ z \end{pmatrix} = \begin{pmatrix} Y_1(L) \\ Y_3(L) - 1 \end{pmatrix}$$

### **Important**

Si 
$$S\binom{E}{z} = 0$$
:

- ▶ la solution Y de  $(\mathscr{E}_Z)$  vérifie  $Y_1(L) = 0$  et  $Y_3(L) = 1$ ;
- $\triangleright$  Y est donc une solution de ( $\mathscr{E}$ ).





# Méthodes numériques





### De quoi a-t-on besoin?

### Résoudre S(E,z) = 0

- Résolution d'un système d'équations non-linéaires
- Dériver S par rapport à E ou z...
   ⇒ Utiliser une méthode ne nécessitant pas la dérivée

Méthode retenue : **méthode hybride de Powell** 

#### Calcul de S

- Résolution numérique d'une équation différentielle ordinaire
- ▶ Importance de la précision du calcul de S et donc de la résolution de  $(\mathscr{E}_z)$ 
  - ⇒ Importance du choix de la méthode de résolution

Méthode retenue : **RKF45** 





### Précision des méthodes utilisées

### Résoudre S(E,z) = 0

Précision  $\varepsilon\equiv$  valeur de S en-dessous de laquelle on considère qu'une solution est trouvée

### Résoudre ( $\mathscr{E}_Z$ )

Précision  $\varepsilon_S \equiv$  erreur maximale permise sur la valeur de Y(L)  $\Longrightarrow$  erreur maximale commise sur la valeur de S

### Conséquence

- ▶ La précision demandée sur le calcul de S doit être plus petite que celle sur la recherche de son zéro :  $\varepsilon_S \le \varepsilon$
- ▶ Dans la pratique, on conseille  $\varepsilon_S \le 10^{-2}\varepsilon$ . (Exemple :  $\varepsilon_S = 10^{-8}$  et  $\varepsilon = 10^{-6}$ )





# Présentation des méthodes numériques utilisées





# Remarques supplémentaires





## Conseils spécifiques au problème posé

### Rappel : cas $V(x) = 0, \forall x \in [0, L]$

Résolution théorique possible

- ⇒ Solution connue pour chaque niveau *n* d'énergie
- $\Rightarrow$  Valeurs correspondantes  $(E_n, z_n)$  connues

### Résolution de S(E,z) = 0

Utiliser les valeurs  $(E_n, z_n)$  comme initialisation

- Résolution numérique dans le cas V = 0
  - ⇒ une seule itération doit suffire
  - ⇒ Validation expérimentale (mais partielle) du code
- Résolution numérique dans les autres cas de potentiel
  - Faire varier n pour obtenir des solutions associés à différents niveaux d'énergie





## Conseils spécifiques au problème posé

Rappel : cas  $V(x) = 0, \forall x \in [0, L]$ 

Résolution théorique possible

 $\Rightarrow$  Solution de ( $\mathscr{E}_z$ ) connue pour tout couple (E,z)

### Calcul de S

- ▶ Résolution numérique dans le cas V = 0Comparer avec les solutions théoriques
  - ⇒ Validation expérimentale (mais partielle) du code
- Résolution numérique dans les autres cas de potentiel
   Discontinuité finie des potentiels
  - $\Rightarrow$  Solution  $\varphi$  de classe  $\mathscr{C}^1$
  - $\Rightarrow \varphi$  et  $\varphi'$  continues (ainsi que N)
  - ⇒ Y continue
  - ⇒ Résoudre l'équation différentielle sur chaque morceau en partant de la valeur finale du morceau précédent





# Calculs numériques et ordre de grandeur

### Ordre de grandeur des valeurs numériques

(en unités du Système International)

- $L: 10^{-9} \,\mathrm{m} \,(\mathrm{nm})$
- ► E:10<sup>-19</sup> J (eV)
- $ightharpoonup m: 10^{-30}$  kg (masse d'un électron)
- ►  $\hbar \simeq 1,05 \times 10^{-34} \text{Js}$

# Il est numériquement préférable de manipuler des quantités dont l'ordre de grandeur est proche de 1.

### Pourquoi?

```
printf("%e\n", (1.0 + 1.0e-16) - 1.0 ); printf("%e\n", (1.0e16 + 1.0 ) - 1.0e16); \rightarrow 0.000000e+00 \qquad !!!
```





# Calculs numériques et ordre de grandeur

### Faire les calculs dans d'autres unités plus adaptées

- ▶ *L*:nm
- ▶ *E* : eV
- temps: choix arbitraire (on étudie ici un phénomène stationnaire)
- ▶ m : en fonction des unités utilisées pour L, E et le temps ⇒ choisir l'unité de temps afin que la masse d'un électron ait un ordre de grandeur proche de 1

#### Attention!

- Lors des calculs, il faut aussi convertir ħ!
- Dans le rapport, il pourra être nécessaire de revenir dans les unités SI.

