1906 AUTOMATON

open_minimum 5.302

DESCRIPTION LINKS **AUTOMATON**

Origin Derived from minimum

Constraint open_minimum(MIN, VARIABLES)

Arguments MIN : dvar

> : collection(var-dvar, bool-dvar) VARIABLES

Restrictions |VARIABLES| > 0

required(VARIABLES, [var, bool])

 ${\tt VARIABLES.bool} \geq 0$ ${\tt VARIABLES.bool} \leq 1$

Purpose

MIN is the minimum value of the variables VARIABLES[i].var, $(1 \le i \le |VARIABLES|)$ for which VARIABLES[i].bool = 1 (at least one of the Boolean variables is set to 1).

Example

```
bool -1,
var - 5
          bool -1.
          bool - 1
\mathtt{var}-5
```

The open_minimum constraint holds since its first argument MIN = 3 is set to the minimum value of values 3, 1, 7, 5, 5 for which the corresponding Boolean 1, 0, 0, 1, 1 is set to 1 (i.e., values 3, 5, 5).

Typical |VARIABLES| > 1

range(VARIABLES.var) > 1

Symmetries

- Items of VARIABLES are permutable.
- One and the same constant can be added to MIN as well as to the var attribute of all items of VARIABLES.

Remark

The open_minimum constraint is used in the reformulation of the tree_range constraint.

See also

comparison swapped: open_maximum.

hard version: minimum.

used in graph description: in_set. uses in its reformulation: tree_range.

Keywords

characteristic of a constraint: minimum, automaton, automaton without counters, reified automaton constraint.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint, open constraint, open automaton constraint.

20090506 1907

Automaton

Figure 5.638 depicts the automaton associated with the open_minimum constraint. Let VAR $_i$, B $_i$ be the i^{th} item of the VARIABLES collection. To each triple (MIN, VAR $_i$, B $_i$) corresponds a signature variable S_i as well as the following signature constraint: (B $_i = 1 \land \text{MIN} < \text{VAR}_i \Leftrightarrow S_i = 0$) \land (B $_i = 1 \land \text{MIN} = \text{VAR}_i \Leftrightarrow S_i = 1$) \land (B $_i = 1 \land \text{MIN} > \text{VAR}_i \Leftrightarrow S_i = 2$) \land (B $_i = 0 \land \text{MIN} < \text{VAR}_i \Leftrightarrow S_i = 3$) \land (B $_i = 0 \land \text{MIN} = \text{VAR}_i \Leftrightarrow S_i = 4$) \land (B $_i = 0 \land \text{MIN} > \text{VAR}_i \Leftrightarrow S_i = 5$).

Figure 5.638: Automaton of the open_minimum constraint

Figure 5.639: Hypergraph of the reformulation corresponding to the automaton of the open_minimum constraint