Predictive Modelling for Default Detection

EDA * FEATURE ENGINEERING * HYPER-PARAMETER TUNING * MODELLING

DIANE PARK // MENTOR: SRDJAN SANTIC

Introduction

- Aim: extract useful and meaningful information from data
- Goal: build a predictive model for unseen data
- Primary data: applications of the loan to a loan agency
- Supportive data: applicants' historical transaction data
 from agency itself, other credit card agency and others
- Importance of historical data:

agency to learn the applicant's behaviour and
to predict their repayment capability in the future
applicants to approve their credible attitude

Analysis plan

Explanatory data analysis (EDA):

Missing data management

Abnormality detection

Correlation of each pair of variables

Aggregate historical data by ID

Modelling:

Hyper-parameter tuning using cross-validation

Feature engineering using several different algorithms

Logistic regression and LGBM

Scoring using area under ROC curve (AUC)

Exploratory data analysis

Dataset	Num. of rows	Num. of columns	Max. NA %	NA indicator	Outlier	Encode	Aggregate
Application	307511	122	69.9	V	V	V	
CC balance	3840312	23	20.0				V
Bureau	1716428	17	71.5				V
Bureau balance	27299925	3	11.4			V	V
Instalments	13605401	8	0.0				V
POS balance	10001358	8	0.3				V

• Default percent: 8.1% with TARGET = 1

• Male applicants: 34%

• Homeowners: 69%

Outliers

Duration of employment

Social circles in 30 days and 60 days

• Income of 1.2e8, 1000 years of employment and 360 social circles

Implementation of outlier

Income

Duration of employment

Social circles in 30 days and 60 days

Abnormal values are replaced with NA

Missing data

	variable	na_percent	na_target_percent	no_na_target_percent
61	COMMONAREA_MODE	69.9	8.6	6.9
75	COMMONAREA_MEDI	69.9	8.6	6.9
47	COMMONAREA_AVG	69.9	8.6	6.9
83	NONLIVINGAPARTMENTS_MEDI	69.4	8.6	6.9
55	NONLIVINGAPARTMENTS_AVG	69.4	8.6	6.9
69	NONLIVINGAPARTMENTS_MODE	69.4	8.6	6.9
53	LIVINGAPARTMENTS_AVG	68.4	8.6	6.9
67	LIVINGAPARTMENTS_MODE	68.4	8.6	6.9
81	LIVINGAPARTMENTS_MEDI	68.4	8.6	6.9
85	FONDKAPREMONT_MODE	68.4	8.6	6.9

- Missing values in 65 variables as high as 70%
- na_target_percent: TARGET=1 percentage in missing group
- no_na_target_percent: TARGET=1 percentage in non-missing group

Difference of TARGET in groups

- Light-blue: missing percentage
- Dark-blue: TARGET=1 percent in missing group
- Red colour: TARGET=1 percent in non-missing group
- Chi-square tests: confirm significant differences for 63 variables
- Implement indicator variables

Correlation

Credit card balance

- Univariate distributions in histograms
- Bivariate distributions in scatter plots

Correlation: credit card balance

 Total receivables and mean balance: moderately strong correlation with the coefficient of 0.67

Other historical data

• (1) Bureau; (2) bureau balance; (3) instalment; (4) POS balance

• Entry pay mean days and Install mean days: r = 0.99

Feature engineering

- To 50 features from extra trees classifier
- Highest score: 0.032 (EXT_SOURCE_2)
- Second score: 0.028 (EXT_SOURCE_3)
- Select 137 features scoring greater than 0.002

Three algorithms for feature engineering

- Modelling for application data only
- Extra trees classifier, recursive feature elimination and k-best
- Total number of 257 features chosen from at least one algorithm
- Thirty one features chosen commonly in all three methods

AUC scores for three algorithms

- Hold 30% of data for the test and use 70% of data for the test
- Logistic regression algorithm
- AUC score: 0.74972 for Extra Trees Classifier → Use this
- AUC score: 0.74998 for REF
- AUC score: 0.74363 for K Best

Parameter tuning for logistic regression

- Modelling for all data together
- Tuning: penalty, tolerance and regularization parameter C
- Penalty range: (I1, I2)
- Tolerance range: (1e-3, 1e-4, 1e-5)
- C range: (0.01, 1, 100)
- Parameter tuning method: Grid search CV 5
- Steps: logReg 1 → pram tuning 1 → logReg 2 → feature selection 1 → pram tuning 2 → logReg 3 → feature selection 2 → pram tuning 3 → logReg 4
- Four AUC scores from four logistic regression models

Hyper-parameters

• Hyper-parameter tuning outcomes

Tuning	Penalty	Tolerance	С
Tuning 1	L2	1e-5	100
Tuning 2	L2	1e-5	100
Tuning 3	L1	1e-5	100

• Only difference in penalty at the third tuning

Feature selection

- Top 50 features from extra trees classifier
- Top score: 0.023 for EXT_SOURCE_2
- Second score: 0.017 for EXT_SOURCE_3
- Same top two as the feature engineering for application data

ROC curves for models

Logistic regression

LGBM

AUC score table for models

Model	Number of features	Score
Logistic: default	328	0.751996
Logistic: cv5 for all features	328	0.753654
Logistic: cv5 for 206 features	206	0.752088
Logistic: cv5 for 152 features	152	0.750948
LGBM: all features	328	0.767949
LGBM: 206 features	206	0.767316
LFBM: 152 features	152	0.767513

Discussion

- Project of the predictive modelling for the loan application data
- Serious issue in missing values in the application dataset
- Implementation of missingness indicators
- Aggregate historical data and merged with the application
- Three different feature engineerings for logReg on application data
- Extra trees classifier derive the competitive outcome
- Hyper-parameter tuning of logReg for whole data
- LGBM models for different feature selections
- Best AUC score: 0.76795 at the LGBM model with the full features

Limitations

- Lack of expertise on loan business
- Could not apply more sophisticated aggregation methods such as timewise weight or specified missing imputation methods
- Did not apply the hyper-parameter tuning for the LGBM
- Large number of parameters and computationally expensive
- Another project for these in the future

References

- [1] https://www.kaggle.com/c/home-credit-default-risk/data
- [2] https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html