

Instituto Tecnológico y de Estudios Superiores de Monterrey

A8-Series de tiempo no estacionarias. Tendencia

Profesores:

Ivan Mauricio Amaya Contreras

Blanca Rosa Ruiz Hernandez

Antonio Carlos Bento

Frumencio Olivas Alvarez

Hugo Terashima Marín

Julian Lawrence Gil Soares - A00832272

17 de Noviembre de 2023

```
In [ ]: import pandas as pd
        import matplotlib.pyplot as plt
        import statsmodels.api as sm
        data = {
            'Año': [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4],
             'Trimestre': [1, 2, 3, 4] * 4,
            'Ventas': [4.8, 4.1, 6.0, 6.5, 5.8, 5.2, 6.8, 7.4, 6.0, 5.6, 7.5, 7.8, 6.3, 5.9
        }
        df = pd.DataFrame(data)
        plt.plot(df.index, df['Ventas'], marker='o', linestyle='-', color='b')
        plt.title('Sales Over Time')
        plt.xlabel('Index')
        plt.ylabel('Sales (miles)')
        plt.legend()
        plt.show()
        result = sm.tsa.seasonal_decompose(df['Ventas'], model='multiplicative', period=4)
        result.plot()
        plt.show()
        df['Time'] = df.groupby('Año').cumcount() + 1
        X = sm.add_constant(df['Time'])
        model = sm.OLS(df['Ventas'], X).fit()
        plt.scatter(df['Time'], df['Ventas'], label='Actual Sales')
        plt.plot(df['Time'], model.predict(X), label='Linear Trend', color='red')
        plt.title('Linear Trend Model of Sales')
        plt.xlabel('Time')
        plt.ylabel('Sales (miles)')
        plt.legend()
        plt.show()
        print(model.summary())
        next_year_time = df['Time'].max() + 1
        next_year_sales = model.predict([1, next_year_time])[0]
        print(f'Predicted Sales for the Next Year: {next_year_sales}')
        plt.plot(df['Time'], df['Ventas'], label='Actual Sales')
        plt.scatter(next_year_time, next_year_sales, color='red', label='Predicted Sales')
        plt.title('Actual Sales and Predictions Over Time')
        plt.xlabel('Time')
        plt.ylabel('Sales (miles)')
        plt.legend()
        plt.show()
```

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called wit h no argument.

Linear Trend Model of Sales

/usr/local/lib/python3.10/dist-packages/scipy/stats/_stats_py.py:1806: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=16 warnings.warn("kurtosistest only valid for n>=20 ... continuing "

OLS Regression Results

Dep. Variable:		Venta	 as	R-sai	uared:		0.486
Model:			_S		R-squared:		0.450
Method:		Least Squares		F-statistic:			13.26
Date:		Fri, 17 Nov 2023		<pre>Prob (F-statistic):</pre>		c):	0.00267
Time:		06:20:22		Log-Likelihood:			-19.835
No. Observatio	ns:	1	L 6	AIC:			43.67
Df Residuals:		1	L4	BIC:			45.21
Df Model:			1				
Covariance Typ	e:	nonrobus	st				
=========	======		===	:=====		========	
	coe	f std err		t	P> t	[0.025	0.975]
const	4.562	 5 0.547		8.338	0.000	3.389	5.736
Time	0.727				0.003		
==========	======	==========	===	=====	========	========	
Omnibus:		0.92	27	Durb	in-Watson:		1.375
Prob(Omnibus):		0.62	29	Jarqı	ue-Bera (JB)	:	0.697
Skew:		-0.46	57	Prob	(JB):		0.706
Kurtosis:		2.58	33	Cond	. No.		7.47

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

Predicted Sales for the Next Year: 8.1999999999999

Actual Sales and Predictions Over Time


```
import pandas as pd
 data = {
     'Trimestre': [1, 2, 3, 4],
     '1': [1690, 940, 2625, 2500],
     '2': [1800, 900, 2900, 2360],
     '3': [1850, 1100, 2930, 2615]
 }
 df = pd.DataFrame(data)
 df['Promedio_Movil'] = df[['1', '2', '3']].mean(axis=1)
 df['Promedio Movil Centrado'] = df['Promedio Movil'].rolling(window=2, center=True)
 print(df[['Trimestre', '1', '2', '3', 'Promedio_Movil', 'Promedio_Movil_Centrado']]
 df['Promedio_Trimestre'] = df[['1', '2', '3']].mean(axis=1)
 df['Indice Estacional'] = df['1'] / df['Promedio Trimestre']
 df['Indice_Estacional_Acumulado'] = df['Indice_Estacional'].cumsum()
 max_estacional_trimestre = df.loc[df['Indice_Estacional'].idxmax(), 'Trimestre']
 print(f'El mayor indice estacional se obtiene en el trimestre {max_estacional_trime
  Trimestre
                1
                      2
                            3 Promedio_Movil_Centrado
          1 1690
                   1800
                         1850
                                  1780.000000
          2
                                   980.000000
                                                           1380.000000
              940
                    900 1100
2
          3 2625
                   2900
                         2930
                                  2818.333333
                                                           1899.166667
          4 2500 2360 2615
                                  2491.666667
                                                           2655.000000
3
```

El mayor índice estacional se obtiene en el trimestre 4.