δ -rings

Fix a prime p. We want to discuss some aspects of the theory of δ -rings. This theory provides a good language to talk about rings with a lift of Frobenius modulo p. note

$$\delta(a^{p}) = \delta(a)a^{(p-1)p} + (a+p\delta(a))\delta(a^{p-1}) = \delta(a)a^{(p-1)p} + (a+p\delta(a))(\delta(a)a^{(p-2)p} + (a+p\delta(a))\delta(a^{p-2})$$
$$\delta(a^{p}) = 2\delta(a)a^{(p-1)p} + p\delta(a)^{2}a^{(p-2)p} + (a+p\delta(a))^{2}\delta(a^{p-2}) + \delta(a^{p-2})$$
$$\delta(a^{2}) = 2\delta(a)(a^{2} + \delta(a))$$

1 Definition and Examples

Definition 1.1. A δ **-ring** is a pair (A, δ) where A is a commutative ring and $\delta: A \to A$ is a map of sets with $\delta(0) = \delta(1) = 0$ satisfying the following two identities:

1. for all $a, b \in A$ we have

$$\delta(ab) = \delta(a)b^p + a^p\delta(b) + p\delta(a)\delta(b).$$

2. for all $a, b \in A$ we have

$$\delta(a+b) = \delta(a) + \delta(b) + \frac{a^p + b^p - (a+b)^p}{p} = \delta(a) + \delta(b) - \sum_{i=1}^{p-1} \frac{1}{p} \binom{p}{i} a^i b^{p-i}.$$

There is an evident category of δ -rings. If the δ -stucture on A is clear from context, we often supress it from the notation and simply call A as δ -ring.

Suppose *A* is a commutative ring equipped with a map ϕ : $A \to A$ that lifts the Frobenius on A/p. Then for each $a \in A$, we have an equation of the form

$$\phi(a) = a^p + p\delta(a)$$

where δ : $A \to A$. In fact, we claim that equipping A with δ gives it the structure of a δ -ring. Indeed, we clearly have $\delta(0) = \delta(1) = 0$. Also, since

$$a^{p}b^{p} + p\delta(ab) = \phi(ab)$$

$$= \phi(a)\phi(b)$$

$$= (a^{p} + p\delta(a))(b^{p} + p\delta(b))$$

$$= a^{p}b^{p} + p(a^{p}\delta(b) + b^{p}\delta(a) + p\delta(a)\delta(b)).$$

Thus we must have $\delta(ab) = a^p \delta(b) + b^p \delta(a) + p \delta(a) \delta(b)$. Similarly we have

$$\delta(a+b) = \frac{\phi(a+b) - (a+b)^p}{p}$$

$$= \frac{\phi(a) + \phi(b) - (a+b)^p}{p}$$

$$= \frac{a^p + b^p + p(\delta(a) + \delta(b)) - (a+b)^p}{p}$$

$$= \delta(a) + \delta(b) + \frac{a^p + b^p - (a+b)^p}{p}.$$

We can also go backwards:

Lemma 1.1. *Let A be a commutative ring.*

1. If $\delta \colon A \to A$ provides a δ -structure on A, then the map $\phi \colon A \to A$ defined by

$$\phi(a) = a^p + p\delta(a)$$

for all $a \in A$, is an endomorphism of A which lifts the Frobenius on A/p.

2. When A is p-torsionfree, the construction (1) gives a bijective correspondence between δ -structures on A and Frobenius lifts on A.

Remark. If *A* is not necessarily *p*-torsionfree, it is better to record δ instead of ϕ .