Method of Maximum Likelihood: Practice Problems

January 2023

1. Consider a discrete random variable X that takes values 0, 1, 2, 3, ... Its probability mass function is defined as follows:

$$P(X = k) = \theta(1 - \theta)^{k}, k >= 0$$

where θ is an unknown parameter of the distribution, $0 < \theta < 1$.

- (a) Derive the maximum likelihood estimator $\hat{\theta}$ for the unknown parameter θ . First, define the likelihood function. Then, find the value of that maximises it.
- (b) A random sample of size n = 1000 from the distribution above gave $\sum_{i=1}^{n} X_i = 980$. What is the estimate of θ that the estimator from the previous step would provide?
- 2. Suppose that you want to model the maximum height of the waves (in meters) at a certain beach. You represent it by a random variable with the following density function:

$$p(x) = \frac{x}{\theta} e^{-\frac{x^2}{2\theta}}, \ x \ge 0, \ \theta > 0$$

- (a) Obtain the maximum likelihood estimator for the parameter θ from the random sample $\{X_1, X_2, \dots, X_n\}$ by completing the following steps:
 - i. Write down the likelihood function.
 - ii. Now, write down log-likelihood.
 - iii. Finally, maximize log-likelihood to obtain the maximum likelihood estimator for θ .
- (b) Suppose that the past six years, the following maximum heights were observed:

What would be the maximum likelihood estimate of θ in that case?

(c) Show that the estimator you obtained is unbiased.