Peer Grouping

Initial dataset

User	Role	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	
0 U1	Network Admin		10	5	5	2	5	2	0	0	0	0	0	0
1 U2	Network Admin		1000	5	5	2	5	2	0	0	0	0	0	0
2 U3	Software Eng		10	0	0	0	0	0	0	0	0	0	100	50
3 U4	Software Eng		10	0	0	0	0	0	0	0	0	0	100	10
4 U5	Finance Dept		5	0	0	0	0	0	10	2	0	0	0	0
5 U6	Finance Dept		5	0	0	0	0	0	6	5	0	0	0	0
6 U7	Exec Admin		5	0	0	0	0	0	0	0	0	0	0	0
7 U8	Manager		5	0	0	0	0	0	0	0	0	0	0	0
8 U9	Server Admin		10	0	0	0	0	0	10	2	10	2	0	0
9 U10	Server Admin		5	0	0	0	0	0	6	5	6	5	0	0
10 U11	HR Dept		5	0	0	0	0	0	0	0	10	2	0	0
11 U12	HR Dept		5	0	0	0	0	0	0	0	6	5	0	0
12 U13	HR Dept	1	0	0	0	0	0	0	0	0	0	0	0	1

Adjacency matrix

		U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	U11	U12	U13
	Role	Network Admin	Network Admin	Software Eng	Software Eng	Finance Dept	Finance Dept	Exec Admin	Manager	Server Admin	Server Admin	HR Dept	HR Dept	HR Dept
U1	Network Admin	0	1	0	0	0	0	0	0	0	0	0	0	0
U2	Network Admin	1	0	0	0	0	0	0	0	0	0	0	0	0
U3	Software Eng	0	0	0	1	0	0	0	0	0	0	0	0	0
U4	Software Eng	0	0	1	0	0	0	0	0	0	0	0	0	0
U5	Finance Dept	0	0	0	0	0	1	0	0	0	0	0	0	0
U6	Finance Dept	0	0	0	0	1	0	0	0	0	0	0	0	0
U7	Exec Admin	0	0	0	0	0	0	0	1	0	0	0	0	0
U8	Manager	0	0	0	0	0	0	1	0	0	0	0	0	0
U9	Server Admin	0	0	0	0	0	0	0	0	0	1	0	0	0
U10	Server Admin	0	0	0	0	0	0	0	0	1	0	0	0	0
U11	HR Dept	0	0	0	0	0	0	0	0	0	0	0	1	0
U12	HR Dept	0	0	0	0	0	0	0	0	0	0	1	0	0
U13	HR Dept	0	0	1	0	0	0	0	0	0	0	0	0	0

Neighborhood is computed using Euclidian distance but other distance measures can also be considered

Louvain clustering

		12.										-			
	User	Role	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11	C12	louvain clusters
0	U1	Network Admin	10	5	5	2	5	2	0	0	0	0	0	0	0
1	U2	Network Admin	1000	5	5	2	5	2	0	0	0	0	0	0	0
2	U3	Software Eng	10	0	0	0	0	0	0	0	0	0	100	50	1
3	U4	Software Eng	10	0	0	0	0	0	0	0	0	0	100	10	1
4	U5	Finance Dept	5	0	0	0	0	0	10	2	0	0	0	0	2
5	U6	Finance Dept	5	0	0	0	0	0	6	5	0	0	0	0	2
6	U7	Exec Admin	5	0	0	0	0	0	0	0	0	0	0	0	3
7	U8	Manager	5	0	0	0	0	0	0	0	0	0	0	0	3
8	U9	Server Admin	10	0	0	0	0	0	10	2	10	2	0	0	4
9	U10	Server Admin	5	0	0	0	0	0	6	5	6	5	0	0	4
10	U11	HR Dept	5	0	0	0	0	0	0	0	10	2	0	0	5
11	U12	HR Dept	5	0	0	0	0	0	0	0	6	5	0	0	5
12	U13	HR Dept	0	0	0	0	0	0	0	0	0	0	0	1	1

Comparing runtimes of various methods

index	method	runtime
1	louvain clustering	4.864s
2	jaccard + kmeans clustering	3.861s
3	KNN + kmeans clustering	0.031s
4	Cosine distance + kmeans	0.034s
5	KNN +louvain clustering	0.164s

Runtimes based on 60 users and 14 computers

- Louvain outperforms other clustering techniques on accuracy and repeatability
- Louvain on its own is the slowest in runtime
- Combining Louvain with KNN improves runtime significantly without giving up much in accuracy

Louvain algorithm procedure

- 1) collect user-computer access logs pertaining to successful logins [User_ID,Computer_ID/IP]
- 2) Drop repeated events
- 3) Use KNN to identify closest neighbor(s) to each user
- 3) Use nearest neighbors to form an adjacency matrix a_m
- 4) Use a_m as input for Louvain clustering
- 5) Obtain clusters from Louvain routine
- 6) If there are left over users un-clustered go back to step(3) and repeat until all users are clustered

Los Alamos dataset

- 1 day of los Alamos data = 2.3 M authentication events, 33K users and 9.5K computers
- Filtered out events users that have accessed < 5 machines, computers accessed by < 3 users how many left ??
- We used Jaccard distance to compute tightness of clusters
- It took 7 iterations using Louvain after which about 4 users were left un-clustered.
- Starting with higher number of neighbors leads to bigger clusters and less iterations to run Louvain.

Round 1 clustering results

cluster size	cluster count
1	703
2	208
3	95
4	55
5	28
6	24
7	19
8	12
11	5
9	4
13	3
15	3
12	2
10	2
25	2
77	1
18	1
21	1
26	1
27	1
118	1

Round 2

cluster size	cluster count
1	282
2	66
3	27
4	17
5	6
8	3
21	1
18	1
16	1
13	1
12	1
6	1

Round 3

cluster size	cluster count
1	127
2	29
3	6
4	3
8	2
6	2
27	1
7	1
5	1

Break down of all rounds

Iterations	unique users count	unique computer count
1	2693	4333
2	703	3073
3	282	2294
4	127	1917
5	51	1609
6	16	1448
7	9	1309

There is a list of 4 users that are left over and not able to be clustered

Toy problem 1

User	Role	DC-R	DC-A	RTR-R	RTR-A	FW-R	FW-A	FIN-R	FIN-A	HR-R	HR-A	SVN-R	SVN-A
U1	Network Admin	10	5	5	2	5	2	0	0	0	0	0	0
U2	Network Admin	1000	5	5	2	5	2	0	0	0	0	0	0
U3	Software Eng	10	0	0	0	0	0	0	0	0	0	100	50
U4	Software Eng	10	0	0	0	0	0	0	0	0	0	100	10
U5	Finance Dept	5	0	0	0	0	0	10	2	0	0	0	0
U6	Finance Dept	5	0	0	0	0	0	6	5	0	0	0	0
U7	Exec Admin	5	0	0	0	0	0	0	0	0	0	0	0
U8	Manager	5	0	0	0	0	0	0	0	0	0	0	0
U9	Server Admin	10	0	0	0	0	0	10	2	10	2	0	0
U10	Server Admin	5	0	0	0	0	0	6	5	6	5	0	0
U11	HR Dept	5	0	0	0	0	0	0	0	10	2	0	0
U12	HR Dept	5	0	0	0	0	0	0	0	6	5	0	0
U13	HR Dept	0	0	0	0	0	0	0	0	0	0	0	1

Toy problem 1 – Louvain + KNN clustered

User	Role	DC-R	DC-A	RTR-R	RTR-A	FW-R	FW-A	FIN-R	FIN-A	HR-R	HR-A	SVN-R	SVN-A	clusters
U1	Network Admin	10	5	5	2	5	2	0	0	0	0	0	0	0
U2	Network Admin	1000	5	5	2	5	2	0	0	0	0	0	0	0
U3	Software Eng	10	0	0	0	0	0	0	0	0	0	100	50	1
U4	Software Eng	10	0	0	0	0	0	0	0	0	0	100	10	1
U5	Finance Dept	5	0	0	0	0	0	10	2	0	0	0	0	2
U6	Finance Dept	5	0	0	0	0	0	6	5	0	0	0	0	2
U7	Exec Admin	5	0	0	0	0	0	0	0	0	0	0	0	3
U8	Manager	5	0	0	0	0	0	0	0	0	0	0	0	3
U9	Server Admin	10	0	0	0	0	0	10	2	10	2	0	0	4
U10	Server Admin	5	0	0	0	0	0	6	5	6	5	0	0	4
U11	HR Dept	5	0	0	0	0	0	0	0	10	2	0	0	5
U12	HR Dept	5	0	0	0	0	0	0	0	6	5	0	0	5
U13	HR Dept	0	0	0	0	0	0	0	0	0	0	0	1	1

Calculate accuracy of detection

Cls _{ts}	C_d
ts	ď

Users	cluster	trusted computers - training	new accesses - detection	TP	FP	PPV	FDR
U1,U2	0	DC-R,DC-A,RTR-R,RTR-A,FW-R,FW-A	U2> DC-R,DC-A,FIN-A	2	1	0.67	0.33
U3,U4,U13	1	DC-R, SVN-R,SVN-A	U4> SVN-R,SVN-A	2	0	1.00	0.00
U5,U6	2	DC_R,FIN-R,FIN-A	U5> SVN-R,SVN-A	0	2	0.00	1.00
U7,U8	3	DC_R	U7> SVN-R,SVN-A,DC-R	1	2	0.33	0.67
U9,U10	4	DC_R,FIN-R,FIN-A,HR-R,HR-A	U9> DC-R,DC-A,RTR-R,RTR-A,FW-R,FW-A	1	5	0.17	0.83
U11,U12	5	DC-R,HR-R,HR-A	U11> DC-R,HR-R,HR-A	3	0	1.00	0.00

TP – computer accessed in detection and belongs to trusted computer set

FP – computer accessed in detection but does not belong to trusted computer set

PPV (positive predictive value) =
$$TP/(TP + FP)$$
 worst = 0, best = 1
FDR (False discovery rate) = $1.0 - PPV$ OR $FP/(TP + FP)$ best = 0, worst = 1

We can use a threshold on PPV or FDR to identify high number False Positives

Detection pseudocode

After Training

- For each cluster
 - for all users in cluster
 - combine all computers accessed to form a trusted set Cls_{ts}

User	Cluster	trusted_set
U1	0	C1
U2	0	C1
U3	1	C3

Detection

- For each user
 - Match user to cluster
 - Get new user computer accesses C_d
 - Use Cls_{ts} and C_d to calculate FDR:
 - Computers common between Cls_{ts} and C_d = TP
 - Computers in C_d and not in Cls_{ts} = FP
 - FDR = FP/(TP + FP)
- · Create alert based on FDR
- Need to think of how to handle special cases

