

6N137 EL26XX series

Features:

- High speed 10Mbit/s
- •10kV/µs min. common mode transient immunity (EL2611)
- Guaranteed performance from -40 to 85°C
- · Logic gate output
- High isolation voltage between input and output (Viso=5000 V rms)
- Pb free and RoHS compliant.
- UL approved (No. 214129)
- VDE approved (No. 132249)
- · SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CSA approved (No. 2037145)

Description

The 6N137, EL2601 and EL2611 are consists of an infrared emitting diode optically coupled to a high speed integrated photo detector logic gate with a strobable output.

It is packaged in a 8-pin DIP package and available in wide-lead spacing and SMD options.

Applications

- Ground loop elimination
- LSTTL to TTL, LSTTL or 5 volt CMOS
- · Line receiver, data transmission
- Data multiplexing
- · Switching power supplies
- Pulse transformer replacement
- · Computer peripheral interface

Truth Table (Positive Logic)

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	н
L	L	Н
Н	NC	L
L	NC	Н

1

Schematic

A 0.1µF bypass capacitor must be connected between pins 8 and 5 *3

Pin Configuration

- 1, No Connection
- 2, Anode
- 3, Cathode
- 4. No Connection
- 5. Gnd
- 6, Vout
- 7, V_E
- 8, V_{CC}

6N137 EL26XX series

Absolute Maximum Ratings (T_a=25 ℃)

	Parameter	Symbol	Rating	Unit
	Forward current	l _F	50	mA
Input	Enable input voltage Not exceed V _{CC} by more than 500mV	V _E	5.5	V
	Reverse voltage	V_{R}	5	V
	Power dissipation	P_D	100	mW
	Power dissipation	P_{C}	85	mW
	Output current	lo	50	mA
Output	Output voltage	V_{O}	7.0	V
	Supply voltage	V_{CC}	7.0	V
Output Po	wer Dissipation	Po	100	mW
Isolation v	oltage ^{*1}	V_{ISO}	5000	V rms
Operating	temperature	T _{OPR}	-40 ~ +85	∞
Storage te	mperature	T _{STG}	-55 ~ +125	∞
Soldering	temperature *2	T _{SOL}	260	∞

Notes

^{*1} AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1, 2, 3 & 4 are shorted together, and pins 5, 6, 7 & 8 are shorted together.

^{*2} For 10 seconds.

6N137 EL26XX series

Electrical Characteristics (T_a=-40 to 85 °C unless specified otherwise)

Input

Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Forward voltage	V _F	-	1.4	1.8	٧	I _F = 10mA
Reverse voltage	V_R	5.0	-	-	٧	$I_R = 10\mu A$
Temperature coefficient of forward voltage	$\Delta V_F / \Delta T_A$	-	-1.8	-	mV/℃	I _F =10mA
Input capacitance	C _{IN}	-	60	-	pF	V _F =0, f=1MHz

Output

Catpat						
Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
High level supply current	Іссн	-	7	10	mA	I _F =10mA, V _E =0.5V, V _{CC} =5.5V
Low level supply current	I _{CCL}	1	9	13	mA	$I_F=0$ mA, $V_E=0.5$ V, $V_{CC}=5.5$ V
High level enable current	I _{EH}	1	- 0.6	-1.6	mA	V _E =0.5V, V _{CC} =5.5V
Low level enable current	I _{EL}	1	- 0.8	-1.6	mA	V _E =2.0V, V _{CC} =5.5V
High level enable voltage	V_{EH}	2.0	-	-	V	I _F =10mA, V _{CC} =5.5V
Low level enable voltage*4	V_{EL}	ı	-	0.8	٧	I _F =10mA, V _{CC} =5.5V

Transfer Characteristics (T_a=-40 to 85 ℃ unless specified otherwise)

Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
HIGH Level Output Current	I _{OH}	-	2.1	100	uA	V _{CC} =5.5V, V _O =5.5V, I _F =250µA, V _E =2.0V
LOW Level Output Current	V_{OL}	-	0.35	0.6	V	$V_{CC} = 5.5V, I_F=5mA, V_E=2.0V, I_{CL}=13mA$
Input Threshold Current	I _{FT}	-	2.5	5	mA	V_{CC} = 5.5V, V_{O} =0.6V, V_{E} =2.0V, I_{OL} =13mA

6N137 EL26XX series

Switching Characteristics (T_a=-40 to 85 °C, V_{CC}=5V, I_F=7.5mA unless specified otherwise)

omitoring orial actorics	·•• (· a – · ·		, - 00-0 - ,			poemica canci mice,
Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Propagation delay time to output High level*5 (Fig.12)	T _{PHL}	-	35	75	ns	C _L = 15pF, R _L =350Ω, TA=25℃
Propagation delay time to output Low level* ⁶ (Fig.12)	T _{PLH}	-	40	75	ns	C _L = 15pF, R _L =350Ω, TA=25℃
Pulse width distortion	Tphl – Tplh	1	5	35	ns	$C_L = 15pF, R_L = 350\Omega$
Output rise time* ⁷ (Fig.12)	tr	-	40	-	ns	$C_L = 15pF, R_L = 350\Omega$
Output fall time* ⁸ (Fig.12)	tf	-	10	-	ns	$C_L = 15pF, R_L = 350\Omega$

Switching Characteristics (T_a=-40 to 85 °C, V_{CC}=5V, I_F=7.5mA unless specified otherwise)

Enable Propagation Time to Output His (Fig.13)		t _{ELH}	-	15	-	ns	$\begin{aligned} I_F &= 7.5 \text{mA} \;,\; V_{EH} \!\!=\! 3.5 \text{V}, \\ C_L &= 15 \text{pF}, \; R_L \!\!=\! 350 \Omega \end{aligned}$
Enable Propagation Delay Time to Output Low Level* ¹⁰ (Fig.13)		t _{EHL}	-	15	-	ns	$I_{F} = 7.5 mA , V_{EH} = 3.5 V,$ $C_{L} = 15 pF, R_{L} = 350 \Omega$
Common Mode Transient	6N137	СМн	-	-	-	V/μS	$\begin{array}{l} I_F = 7.5 mA \;,\; V_{OH} = 2.0 V, \\ R_L = 350 \Omega,\; TA = 25 ^{\circ}\!C \\ V_{CM} = 10 Vp\text{-}p \; (Fig.14) \end{array}$
	EL2601		5,000	-	-		$\begin{array}{l} I_F = 7.5 \text{mA} \;, \; V_{OH} = 2.0 \text{V}, \\ R_L = 350 \Omega, \; TA = 25 ^{\circ}\text{C} \\ V_{CM} = 50 \text{Vp-p} \; (\text{Fig.14}) \end{array}$
Immunity at Logic High *11	EL2611		10,000	1	-		$\begin{split} I_F &= 7.5 \text{mA} \;,\; V_{OH} = 2.0 \text{V}, \\ R_L &= 350 \Omega, \; TA = 25 ^{\circ}\text{C} \\ V_{CM} &= 400 \text{Vp-p} \; (\text{Fig.14}) \end{split}$
	EL2611		20,000	-	-		I_F = 7.5mA , V_{OH} =2.0V, R_L =350Ω, TA=25 °C V_{CM} =400Vp-p (Fig.15)
	6N137		-	ı	-		$I_F = 0mA$, $V_{OL} = 0.8V$, $R_L = 350\Omega$, $TA = 25$ °C $V_{CM} = 10Vp-p$ (Fig.14)
Common Mode Transient	EL2601	CM_L	5,000	-	-	V/µS	$I_F = 0 \text{mA} \text{ , } V_{OL} = 0.8 \text{V},$ $R_L = 350 \Omega, \text{ TA} = 25 ^{\circ}\text{C}$ $V_{CM} = 50 \text{Vp-p (Fig.14)}$
Immunity at Logic Low *12	EL2611		10,000	-	-		$I_F = 0mA$, $V_{OL} = 0.8V$, $R_L = 350\Omega$, $TA = 25$ °C $V_{CM} = 400Vp$ -p (Fig.14)
	EL2611		20,000	-	-		$ \begin{aligned} & I_{\text{F}} = 7.5 \text{mA} \;,\; V_{\text{OH}} = 2.0 \text{V}, \\ & R_{\text{L}} = 350 \Omega, \; \text{TA} = 25 ^{\circ}\!\text{C} \\ & V_{\text{CM}} = 400 \text{Vp-p} \; (\text{Fig.15}) \end{aligned} $

6N137 EL26XX series

Typical Performance Curves

6N137 EL26XX series

6N137 EL26XX series

Fig. 12 Test circuit and waveforms for t_{PHL}, t_{PLH}, t_r, and t_f

Fig. 13 Test circuit and waveform for tehland telh

6N137 EL26XX series

Fig. 14 Test circuit Common mode Transient Immunity

Fig. 15 Recommended drive circuit for ELW2611 families for high-CMR

6N137 EL26XX series

Notes:

- *3 The VCC supply must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package VCC and GND pins
- *4. Enable Input No pull up resistor required as the device has an internal pull up resistor.
- *5. tPLH Propagation delay is measured from the 3.75mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- *6. tPHL Propagation delay is measured from the 3.75mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- *7. tr Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.
- *8. tf Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.
- *9. tELH Enable input propagation delay is measured from the 1.5V level on the HIGH to LOW transition of the input voltage pulse to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.
- *10. tEHL Enable input propagation delay is measured from the 1.5V level on the LOW to HIGH transition of the input voltage pulse to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.
- *11 CMH- The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the HIGH state (i.e., VOUT > 2.0V).
- *12 CML— The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the LOW output state (i.e., VOUT < 0.8V).

Order Information

Part Number

6N137Y(Z)-V or EL26XXY(Z)-V

Note

X = (01 or 11) for EL26 part no.

Y = Lead form option (S, S1, M or none)

Z = Tape and reel option (TA, TB or none).

V = VDE (optional)

Option	Description	Packing quantity
None	Standard DIP-8	45 units per tube
М	Wide lead bend (0.4 inch spacing)	45 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel

6N137 EL26XX series

2.54 TYP.

Package Drawing

(Dimensions in mm)

Standard DIP Type

Option M Type

6N137 EL26XX series

Option S Type

Option S1 Type

6N137 EL26XX series

Recommended pad layout for surface mount leadform

Device Marking

Notes

6N137 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE (optional)

6N137 EL26XX series

Tape & Reel Packing Specifications

Direction of feed from reel

Direction of feed from reel

Tape dimensions

Dimension No.	Α	В	Do	D1	E	F
Dimension(mm)	10.4±0.1	10.0±0.1	1.5±0.1	1.5±0.1	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	W	К
					16.0+0.3/	

6N137 EL26XX series

Solder Reflow Temperature Profile

6N137 EL26XX series

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.