

DIALOG(R) File 351:Derwent WPI
(c) 2007 The Thomson Corporation. All rts. reserv.

0013062474

WPI ACC NO: 2003-142386/
XRPX Acc No: N2003-113082

Scalable content protection-enabled device e.g. audio/video receiver, authenticates destination device as strong/weakly protected device by verifying received certificate with certifying authority/local public key
Patent Assignee: BOUSIS L P F (BOUS-I); KONINK PHILIPS ELECTRONICS NV (PHIG)

Inventor: BOUSIS L P F

9 patents, 98 countries

Patent Family

Patent				Application			
Number	Kind	Date	Number	Kind	Date	Update	
EP 1271875	A1	20030102	EP 2001202382	A	20010621	200314	B
WO 2003001764	A1	20030103	WO 2002IB2415	A	20020620	200314	E
KR 2003027066	A	20030403	KR 2003702566	A	20030221	200353	E
BR 200205665	A	20030729	BR 20025665	A	20020620	200365	E
			WO 2002IB2415	A	20020620		
EP 1402701	A1	20040331	EP 2002735904	A	20020620	200424	E
			WO 2002IB2415	A	20020620		
AU 2002309194	A1	20030108	AU 2002309194	A	20020620	200460	E
US 20040187001	A1	20040923	WO 2002IB2415	A	20020620	200463	E
			US 2003480337	A	20031211		
JP 2004533194	W	20041028	WO 2002IB2415	A	20020620	200471	E
			JP 2003508037	A	20020620		
CN 1518825	A	20040804	CN 2002812382	A	20020620	200475	E

Priority Applications (no., kind, date): EP 2001202382 A 20010621

Patent Details

Number	Kind	Lan	Pg	Dwg	Filing Notes
EP 1271875	A1	EN	20	8	

Regional Designated States,Original: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI TR

WO 2003001764 A1 EN

National Designated States,Original: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Regional Designated States,Original: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZM ZW

BR 200205665 A PT PCT Application WO 2002IB2415

Based on OPI patent WO 2003001764

EP 1402701 A1 EN PCT Application WO 2002IB2415

Based on OPI patent WO 2003001764

Regional Designated States,Original: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI TR

AU 2002309194 A1 EN Based on OPI patent WO 2003001764

US 20040187001 A1 EN PCT Application WO 2002IB2415

Alerting Abstract EP A1

NOVELTY - An authentication unit (114) of a source device (110) authenticates a destination device (130) as a strongly protected device, when a certificate for public key from the destination device is verified successfully with available public key of a certifying authority (CAPK). The destination device is authenticated as weakly protected device, when the certificate is verified successfully with locally available public key (SPK).

DESCRIPTION - INDEPENDENT CLAIMS are included for the following:

1. Remote device authentication method; and
2. Computer program product for authenticating remote device.

USE - Scalable content protection enabled device such as audio/video receivers and players, set top boxes, general purpose computers, mobile telephones, Internet applications.

ADVANTAGE - By authenticating the devices as weakly protected and strongly protected devices, the data is transmitted securely between the devices. Hence, data transfer efficiency is enhanced.

DESCRIPTION OF DRAWINGS - The figure shows a schematic view of the scalable content protection enabled device.

110 Source device
114 Authentication unit
130 Destination device

Technology Focus

INDUSTRIAL STANDARDS - The connection between the source and destination devices is established according to IEEE 1394, 802.11, HIPERLAN or Bluetooth standards.

Original Publication Data by Authority**Original Abstracts:**

A first device (110) arranged for exchanging data with a second device (130). The first device (110) receives from the second device (130) a certificate comprising a public key (UPK) for the second device. The first device (110) then authenticates the second device (130) as a strongly protected device upon a successful verification of the received certificate with a public key (CAPK) of a Certifying Authority, if the public key of the Certifying Authority is available, and authenticates the second device (130) as a weakly protected device upon a successful verification of the received certificate with a locally available public key (SPK). The second device (130) does the same to achieve mutual authentication. Having authenticated each other, the devices (110, 130) can securely set up session keys and exchange data. The data preferably has associated DRM rules.

A first device (110) arranged for exchanging data with a second device (130). The first device (110) receives from the second device (130) a certificate comprising a public key (UPK) for the second device. The first device (110) then authenticates the second device (130) as a strongly protected device upon a successful verification of the received certificate

with a public key (CAPK) of a Certifying Authority, if the public key of the Certifying Authority is available, and authenticates the second device (130) as a weakly protected device upon a successful verification of the received certificate with a locally available public key (SPK). The second device (130) does the same to achieve mutual authentication. Having authenticated each other, the devices (110, 130) can securely set up session keys and exchange data. The data preferably has associated DRM rules.

A first device (**110**) arranged for exchanging data with a second device (**130**). The first device (**110**) receives from the second device (**130**) a certificate comprising a public key (UPK) for the second device. The first device (**110**) then authenticates the second device (**130**) as a strongly protected device upon a successful verification of the received certificate with a public key (CAPK) of a Certifying Authority, if the public key of the Certifying Authority is available, and authenticates the second device (**130**) as a weakly protected device upon a successful verification of the received certificate with a locally available public key (SPK). The second device (**130**) does the same to achieve mutual authentication. Having authenticated each other, the devices (**110, 130**) can securely set up session keys and exchange data. The data preferably has associated DRM rules.

A first device (110) arranged for exchanging data with a second device (130). The first device (110) receives from the second device (130) a certificate comprising a public key (UPK) for the second device. The first device (110) then authenticates the second device (130) as a strongly protected device upon a successful verification of the received certificate with a public key (CAPK) of a Certifying Authority, if the public key of the Certifying Authority is available, and authenticates the second device (130) as a weakly protected device upon a successful verification of the received certificate with a locally available public key (SPK). The second device (130) does the same to achieve mutual authentication. Having authenticated each other, the devices (110, 130) can securely set up session keys and exchange data. The data preferably has associated DRM rules.

Selon l'invention, un premier dispositif (110) est conçu pour échanger des données avec un deuxième dispositif (130). Le premier dispositif (110) reçoit du deuxième dispositif (130) un certificat contenant une clé publique (UPK) destinée au deuxième dispositif. Le premier dispositif (110) authentifie alors le deuxième dispositif (130) en tant que dispositif fortement protégé en cas de vérification réussie du certificat reçu contenant une clé publique (CAPK) d'un organisme de certification (si la clé publique de l'organisme de certification est disponible), et authentifie le deuxième dispositif (130) en tant que dispositif faiblement protégé en cas de vérification réussie du certificat reçu contenant une clé publique locale (SPK). Le deuxième dispositif (130) effectue les mêmes opérations afin de réaliser une authentification mutuelle. Lorsque ces deux dispositifs (110, 130) ont réalisé l'authentification mutuelle, ces derniers peuvent créer des clés de session de manière sécurisée et échanger des données. Ces données comportent de préférence des règles DRM.

Basic Derwent Week: 200314