Nama : Eriko Amik Suwanto

NPM : 50424018 Kelas : 4ia19

Mata Kuliah : Pengolahan Paralel

Jelaskan bagaimana cara kerja dari algoritma paralel Matriks Transposisi pada Gambar?

Gambar 1. Perfect Shuffle 16 Prosesor

Jawab:

Algoritma paralel untuk transposisi matriks pada gambar ini melibatkan beberapa prosesor (P₀, P₁, ..., P₁₅) yang bekerja secara bersamaan untuk memindahkan elemen-elemen dari matriks input ke posisi yang benar dalam matriks output.

Berikut adalah penjelasan tentang cara kerja algoritma tersebut:

- 1. Pembagian Matriks Awal: Matriks 4 X 4 yang terdiri dari elemen a_{ji} dibagi ke dalam blokblok yang masing-masing dipegang oleh prosesor tertentu. Setiap prosesor P_i memulai dengan menyimpan satu elemen matriks. Misalnya, P₀ memegang a₁₁, P₁ memegang a₁₂, dan seterusnya.
- 2. Tujuan Transposisi: Tujuan dari transposisi adalah menukar baris dan kolom matriks. Elemen aji dari posisi awalnya (baris i, kolom j) harus dipindahkan ke posisi baru (baris j, kolom i).
- 3. Proses Pemindahan: Setiap prosesor bertanggung jawab untuk memindahkan elemen yang dipegangnya ke prosesor yang sesuai dengan posisi barunya. Misalnya:
 - P₀ memindahkan a₁₁ ke P₀ (tetap di tempatnya karena posisi baru a₁₁ adalah a₁₁₎.
 - P₁ memindahkan a₁₂ ke P₄ (karena posisi baru a₁₂ adalah a₂₁).
 - P₅ memindahkan a₁₃ ke P₈ (karena posisi baru a₁₃ adalah a₅).
 - Dan seterusnya.

- 4. Komunikasi Antar Prosesor: Prosesor melakukan komunikasi satu sama lain untuk memindahkan elemen-elemen matriks ke posisi yang benar. Pada gambar tersebut, panah menunjukkan arah komunikasi data antara prosesor.
- 5. Sinkronisasi: Setelah semua pemindahan elemen selesai, prosesor akan menyinkronkan untuk memastikan bahwa semua elemen telah dipindahkan ke posisi yang benar.
- 6. Hasil Akhir: Setelah langkah-langkah ini selesai, setiap prosesor akan memegang elemen yang benar dari matriks transposisi. Hasil akhir adalah matriks baru di mana elemen a_{ji} telah ditukar dengan elemen a_{ji}.

Berikut adalah tabel yang menunjukkan proses transposisi untuk setiap elemen dalam matriks 4 x 4 dengan Prosesor Pi yang sesuai:

Awal	Prosesor Awal	Baru	Prosesor Baru
a11	P ₀	a11	P_0
a ₁₂	P ₁	a ₂₁	P ₄
a13	P ₂	a31	P ₈
a 14	P ₃	a 41	P ₁₂
a 21	P ₄	a 12	P ₁
a ₂₂	P ₅	a ₂₂	P ₅
a23	P ₆	a32	P ₉
a ₂₄	P ₇	a42	P ₁₃
a31	P ₈	a13	P ₂
a32	P ₉	a23	P ₆
a33	P ₁₀	a33	P ₁₀
a^{34}	P ₁₁	a43	P ₁₄
a41	P ₁₂	a ₁₄	P ₃
a42	P ₁₃	a ₂₄	P ₇
a43	P ₁₄	a34	P ₁₁
a44	P ₁₅	a44	P ₁₅

Tabel ini menunjukkan bagaimana setiap elemen matriks awal a_{ij} ditransposisikan ke posisi baru a_{ji} dan bagaimana elemen tersebut dipindahkan dari satu prosesor ke prosesor lainnya. Sebagai contoh:

- Elemen a₁₁ tetap berada di prosesor P₀ karena posisinya tidak berubah.
- Elemen a₁₂ dipindahkan dari prosesor P₁ ke prosesor P₄, di mana elemen tersebut menjadi a₂₁.
- Elemen a₁₃ dipindahkan dari prosesor P₂ ke prosesor P₈, di mana elemen tersebut menjadi a₃₁.

Dan seterusnya untuk semua elemen dalam matriks.