

Analysis of Disrupted Transportation Network in Multi-Hazard Scenario

Aditya Kasturi

Graduate Student
Data Science & Analytics | Gallogly College of Engineering

Final Presentation

The University of Oklahoma, Norman, OK, USA

• Introduction

- Background
 - Community Resilience
 - Methodology of Community Resilience
- Networks
- Transportation Network

- Introduction
- Objective

- Find Research Gap
- Fulfilling the Research Gap

- Introduction
- Objective
- Data

- INCORE
- DATASET
- Important Packages
- Visualizations of Dataset

- Introduction
- Objective
- Data
- Methodology

- Techniques
 - All pathways
 - Independent Pathway (IPW)
 - Example of IPW
- Procedure
 - Maximum Flow Optimization
 - Methods used to Implement

- Introduction
- Objective
- Data
- Methodology
- Results
- Conclusion
- References

Introduction: Community Resilience

• What is Community Resilience?

Introduction: Community Resilience

- What is Community Resilience?
- Methodologies of Community Resilience
 - Robustness
 - Rapidity
 - Redundancy
 - Resourcefulness

Introduction: Network

Introduction: Transportation Network

- What is Transportation Network?
- Types of Transportation Networks
 - Air Networks
 - Road Networks
 - Rail Networks
- Transportation Network for Community Resilience
 - Earthquakes
 - Severe Windstorms
 - Flooding
 - Terrorism
- Importance of Transportation Network

Objective

- The Goal of this project is to create an efficient way of computing the independent pathways (IPW) to work as a fitness function for a metaheuristic to support a prescriptive analytics framework
 - Network Analysis on Seaside Testbed

Objective

Data: INCORE

 Interdependent Networked Community Resilience Modeling Environment (INCORE) platform

Data: Original Dataset

- Interdependent Networked Community Resilience Modeling Environment (INCORE) platform
- Dataset from the Seaside testbed
 - 585 rows with 14 features

	FID	Link_ID	Shape *	id	highway	start_x	end_x	start_y	end_y	Length	start_xy	end_xy	Start_node	End_node
0	0	1	Polyline	246115483	residential	444201	444076	1565732	1565611	174.195189	4442011565732	4440761565611	284	272
1	1	2	Polyline	5309249	service	445331	445197	1568639	1568646	134.623826	4453311568639	4451971568646	364	350
2	2	3	Polyline	5309445	service	444382	444698	1563465	1563391	324.748323	4443821563465	4446981563391	300	316
3	3	4	Polyline	5309941	service	443375	442992	1565987	1566002	383.083680	4433751565987	4429921566002	240	212
4	4	5	Polyline	5312662	living_street	444187	444766	1560893	1560714	629.169338	4441871560893	4447661560714	280	325
580	580	581	Polyline	246250773	service	447326	447522	1569147	1569196	202.513348	4473261569147	4475221569196	421	424
581	581	582	Polyline	246251063	service	447667	447388	1568878	1567941	984.065756	4476671568878	4473881567941	425	423
582	582	583	Polyline	246251063	service	447388	447280	1567941	1568972	1155.337296	4473881567941	4472801568972	423	420
583	583	584	Polyline	246251063	service	447280	447667	1568972	1568878	402.781054	4472801568972	4476671568878	420	425
584	584	585	Polyline	246250787	service	446577	447280	1567398	1568972	1829.617221	4465771567398	4472801568972	408	420
585 rd	ws ×	14 columns	;											

Data: Original Dataset

Network of Seaside Dataset based on Geographic locations using NetworkX

Data: Geopandas

	id	highway	start_x	end_x	start_y	end_y	Length	start_xy	end_xy	Start_node	End_node	Link_ID	geometry
0	246115483	residential	444201	444076	1565732	1565611	174.195189	4442011565732	4440761565611	284	272	1	LINESTRING (444202.129 1565735.383, 444076.694
1	5309249	service	445331	445197	1568639	1568646	134.623826	4453311568639	4451971568646	364	350	2	LINESTRING (445331.908 1568642.190, 445197.463
2	5309445	service	444382	444698	1563465	1563391	324.748323	4443821563465	4446981563391	300	316	3	LINESTRING (444382.459 1563467.782, 444698.695
3	5309941	service	443375	442992	1565987	1566002	383.083680	4433751565987	4429921566002	240	212	4	LINESTRING (443375.774 1565990.045, 442993.006
4	5312662	living_street	444187	444766	1560893	1560714	629.169338	4441871560893	4447661560714	280	325	5	LINESTRING (444188.216 1560895.983, 444564.392
580	246250773	service	447326	447522	1569147	1569196	202.513348	4473261569147	4475221569196	421	424	581	LINESTRING (447326.833 1569150.054, 447523.257
581	246251063	service	447667	447388	1568878	1567941	984.065756	4476671568878	4473881567941	425	423	582	LINESTRING (447667.835 1568881.531, 447555.138
582	246251063	service	447388	447280	1567941	1568972	1155.337296	4473881567941	4472801568972	423	420	583	LINESTRING (447388.803 1567943.769, 447188.174
583	246251063	service	447280	447667	1568972	1568878	402.781054	4472801568972	4476671568878	420	425	584	LINESTRING (447280.905 1568975.071, 447420.290
584	246250787	service	446577	447280	1567398	1568972	1829.617221	4465771567398	4472801568972	408	420	585	LINESTRING (446578.068 1567401.421, 446985.843

585 rows x 13 columns

Data: Geopandas

Original Map of the Seaside Testbed without any Implementation

Implementation of Linestrings on Seaside Map using GeoPandas

Data: Geopandas

Representation of Emergency Locations in the Seaside Testbed using GeoPandas

Implementation of Linestrings on Seaside Map using GeoPandas

Data: Momepy

Data: Momepy

- Background of the Research: Resilience based risk mitigation for road networks
 - Weili Zhang and Naiyu Wang (2016)
- All Pathways (APW)

- Background of the Research: Resilience based risk mitigation for road networks
 - Weili Zhang and Naiyu Wang
 - 2016
- All Pathways (APW)
- Independent Pathways (IPW)

- Background of the Research: Resilience based risk mitigation for road networks
 - Weili Zhang and Naiyu Wang
 - 2016
- All Pathways (APW)
- Independent Pathways (IPW)
- Dijkstra Algorithm
- ShortestPath Method
- On 30 Nodes and 35 Edges
- 30 minutes execution time
- Virtual Data

- Limitations of this Technique:
 - Inefficient Approach
 - Too Long Time
 - Real Data is much larger and complicated
- My Approach
 - Independent Pathways (IPW)
 - Maximum Flow algorithm
 - On Real Data

Methodology: Procedure

- Maximum Flow
- Different algorithm
 - Preflow_push
 - Shortest Augmenting Path
 - Dinic's Algorithm
 - Edmond Karp Algorithm
- Seaside Testbed
 - 438 nodes
 - 583 edges

Methodology: Procedure

Maximum Flow Algorithm Used	Average all pairs maximum Flow = (IPW)	Total Time is taken to execute this Network (in seconds)
Max_Flow with Preflow_push	2.073661	1441.01
Shortest_augmeting Path	2.073661	1.331.25
Dinic's Algorithm	2.073661	425.06
Edmond Karp Algorithm	<mark>2.073661</mark>	<mark>366.38</mark>

Results

- Evacuation Points
 - Eight Evacuation points
- Applied Maximum
 - Edmond Karp Algorithm

Final Result: 19.682 seconds

Results

- Original Results = Shortest Path Problem and Dijkstra algorithm
- Reproduced New results = Maximum Flow using Edmond Karp Algorithm

	Nodes	Edges	Time
Original Results	30	37	30 minutes
Reproduced New Results	438	583	366.38 seconds

For eight evacuation points

	Evacuation Points	Time
Reproduced New Results For 8 evacuation points	8	19.683 seconds

Conclusion

- Transportation networks in community resilience are critical
- Independent Pathways (IPW) metric is introduced
- A vital measure is necessary
- The IPW efficiently measures a network's ability to execute in the face of a potential hazard
- Calculating the IPW efficiently so they can be used to support a prescriptive analytics framework for metaheuristics
- Maximum Flow is used for IPW
- Based on the results, Maximum Flow approach is quite efficient than the traditional approach
- Decision-makers can decide on the resilience strategies associated with various hazard scenarios
- Insurers and policymakers can use the approach presented to manage bridges against multiple hazards throughout their lifetimes

References

- Center for Risk-Based Community Resilience Planning. (2022). Retrieved June 28, 2022, from http://resilience.colostate.edu/
- Community Resilience Program | NIST. (2022). Retrieved July 12, 2022, from https://www.nist.gov/programs-projects/community-resilience-program
- GeoPandas 0.11.0 GeoPandas 0.11.0+0.g1977b50.dirty documentation. (2022). Retrieved July 14, 2022, from https://geopandas.org/en/stable/
- IN-CORE. (n.d.). Retrieved July 12, 2022, from https://incore.ncsa.illinois.edu/
- momepy documentation momepy 0.5.3 documentation. (2022). Retrieved July 14, 2022, from http://docs.momepy.org/en/stable/
- NetworkX NetworkX documentation. (2022). Retrieved July 14, 2022, from https://networkx.org/
- Zhang, W., & Wang, N. (2016). Resilience-based risk mitigation for road networks. *Structural Safety*, 62, 57-65. https://doi.org/10.1016/j.strusafe.2016.06.003
- Zhang, W., Wang, N., & Nicholson, C. (2017). Resilience-based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering, 13(11), 1404-1413. https://doi.org/10.1080/15732479.2016.1271813

Acknowledgement

Dr. Charles NicholsonAssociate Professor
School of Industrial and Systems
Engineering, The University of
Oklahoma

Dr. Andrés D. GonzálezAssistant Professor
School of Industrial and Systems
Engineering, The University of
Oklahoma

Himadri Sen Gupta
Ph.D. Student
School of Industrial and Systems Engineering,

The University of Oklahoma

Ahmad Ghasemkhani Ph.D. Student School of Industrial and Systems Engineering, The University of Oklahoma

THANK YOU!

adityakasturi@ou.edu

(BACKUP) Maximum Flow: Time Complexities

Preflow_push	O(n2 m)
Dinics algorithm	O(n2m)
Edmond Karp Algorithm	O(nm2)
Shortest Augmenting Path	O(n2m)