Name : Kesia Sara Koshy

Prediction Using Supervised ML

Aim:

To predict the percentage of a student based on the no.of study hours.

What will be predicted score if a student studies for 9.25 hrs/ day?

What is ML?

Machine Learning is a subset of Artificial Intelligence, it may be defined as the process or study of computer algorithms in such a way that it helps to predict a potential decision or optimum decision based on data provided and scenarios.

Supervised ML

Supervised Machine Learning is a method where the models are trained using labeled data, it needs supervision to train the model.

Procedure & Analysis

The first step is to import the libraries that are required for the implementation of the code operation. Here we import the Pandas to import and analyze data, NumPy to perform the multi-dimensional operation, and matplotlib to perform graphical plot into the context.

```
In [1]: # Importing all libraries required in this procedure
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  %matplotlib inline
```

In [2]: data = pd.read_csv('TSF.csv')
data.head(10) #loading the data to perform the desired operation

Out[2]:

	Hours	Scores		
0	2.5	21		
1	5.1	47		
2	3.2	27		
3	8.5	75		
4	3.5	30		
5	1.5	20		
6	9.2	88		
7	5.5	60		
8	8.3	81		

In [3]: data.shape #To understand the data

25

Out[3]: (25, 2)

9 2.7

dtype: int64

From the above operation, we can see that there are 25 rows and 2 columns

From the above function, we can see that there are no null values. Which conclude that our data is a cleaned data.

```
In [5]: data.describe() #this function allows us to get its summary statistics
```

Out[5]:

	Hours	Scores	
count	25.000000	25.000000	
mean	5.012000	51.480000	
std	2.525094	25.286887	
min	1.100000	17.000000	
25%	2.700000	30.000000	
50%	4.800000	47.000000	
75%	7.400000	75.000000	
max	9.200000	95.000000	

```
In [6]: data.plot(x='Hours', y='Scores', style='o')
  plt.title('Hours vs Percentage')
  plt.xlabel('The Hours Studied')
  plt.ylabel('The Percentage Score')
  plt.show()
```


regression model.

From the above graph, we can see a linear relationship between the two variables. Therefore, it suggests us a simple linear

To perform a Simple Linear Regression model

```
In [8]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [9]: #splitting the data
X = data.iloc[:, :-1].values
y = data.iloc[:, 1].values

# Spliting the Data in two
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
In [10]: regression = LinearRegression()
```

Out[10]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

To predict the percentage

regression.fit(X_train, y_train)

```
In [11]: pred_y = regression.predict(X_test)
    prediction = pd.DataFrame({'Hours': [i[0] for i in X_test], 'Predicted Marks': [k for k in p
    red_y]})
    prediction
Out[11]:
```

Out[11]

0	1.5	16.844722
1	3.2	33.745575
2	7.4	75.500624
3	2.5	26.786400
4	5.9	60.588106
5	3.8	39.710582
6	1.9	20.821393
		•

Hours Predicted Marks

Comparing predicted marks with actual marks In [12]: compare_scores = pd.DataFrame({'Actual Marks': y_test, 'Predicted Marks': pred_y})

Actual Marks | Predicted Marks

```
Out[12]:
```

Out[12

	0	20	16.844722
	1	27	33.745575
	2	69	75.500624
	3	30	26.786400
	4	62	60.588106
	5	35	39.710582
	6	24	20.821393
_			
	,,	1/2 7	the chave

```
In [13]: # Visvalising the above
plt.scatter(x=X_test, y=y_test, color='blue')
plt.plot(X_test, pred_y, color='Black')
plt.title('Actual vs Predicted', size=20)
plt.ylabel('Marks Percentage', size=12)
plt.xlabel('Hours Studied', size=12)
plt.show()
Actual vs Predicted
```


What will be the predicted score of a student if he/she studies for 9.25 hrs/day?

```
In [14]: hours = [9.25]
answer = regression.predict([hours])
print("Score = {}".format(round(answer[0],3)))

Score = 93.893
```

Therefore we can say that, if a student studies for 9 hrs and 25 mins a day, he/she is likely to score 93.893 marks.