Theorem 1.6 is just a foreshadowing of the true state of affairs, however. As we shall show next, the curve y = e(x) must touch the lines $y = \pm E_n(f)$ alternately at least n + 2 times, and this property characterizes the best uniform approximation of a continuous function by a polynomial of degree at most n. A set of k + 1 distinct points x_0, \ldots, x_k , satisfying $a \le x_0 < x_1 < \cdots < x_{k-1} < x_k \le b$ is called an <u>alternating set</u> for the error function $f - p_n$ if

$$|f(x_j) - p_n(x_j)| = ||f - p_n||, \quad j = 0, ..., k$$
 (1.2.4)

and

$$[f(x_j) - p_n(x_j)] = -[f(x_{j+1}) - p_n(x_{j+1})], j = 0, ..., k-1.$$
(1.2.5)

THEOREM 1.7. Suppose $f \in C[a, b]$; p_n^* is a best uniform approximation on [a, b] to f out of P_n if and only if there exists an alternating set for $f - p_n^*$ consisting of n + 2 points.

Proof. (i) Suppose x_0, \ldots, x_{n+1} form an alternating set for $f - p_n^*$. We show that p_n^* is a best approximation. If it is not, then there exists $q_n \in P_n$ such that

$$||f - q_n|| < ||f - p_n^*||. (1.2.6)$$

Hence, in particular, since x_0, \ldots, x_{n+1} form an alternating set,

$$|f(x_j) - q_n(x_j)| < ||f - p_n^*|| = |f(x_j) - p_n^*(x_j)|, \quad j = 0, ..., n + 1.$$
(1.2.7)

(1.2.7) and (1.2.5) imply that the difference

$$[f(x_j) - p_n^*(x_j)] - [f(x_j) - q_n(x_j)] = q_n(x_j) - p_n^*(x_j)$$

alternates in sign as j runs from 0 to n + 1. Thus the polynomial $q_n(x) - p_n^*(x) \in P_n$ has a zero in each interval $(x_j, x_{j+1}), j = 0, \ldots, n$, for a total of n + 1 zeros, which implies $q_n = p_n^*$. This contradicts (1.2.6), hence implies that p_n^* is a best approximation and concludes the easier half of our proof.

(ii) Suppose that p_n^* is a best approximation to f and $f \notin P_n$. (If $f \in P_n$, the whole question is trivial.) Let a largest alternating set for $f - p_n^*$ consist of the k + 1 points x_0, \ldots, x_k satisfying $a \le x_0 < x_1 < \cdots < x_{k-1} < x_k \le b$. In view of Theorem 1.6, $k \ge 1$. We wish to prove that $k \ge n + 1$. Suppose, then, that $k \le n$, and let us put

$$||f - p_n^*|| = \rho$$
 (>0).

Let t_0, \ldots, t_s be points of [a, b] chosen so that $a = t_0 < t_1 < \cdots < t_s = b$ and so that $e(x) = f(x) - p_n^*(x)$ satisfies

$$|e(\xi) - e(\eta)| < \frac{1}{2}\rho \tag{1.2.8}$$