3

5

6

CLAIMS:

What is claimed is:

1. A method comprising:

2 measuring one or more performance characteristics associated with each of at least a

subset of a plurality of targets in a wireless communication system; and

selectively building one or more clusters, each cluster including one or more target(s) and

which share wireless communication channel(s), based at least in part on the performance

characteristics.

- 2. A method according to claim 1, wherein the performance characteristics include one or more of a signal to interference and noise ratio (SINR), a signal to noise ratio (SNR) a received signal strength indication (RSSI), a bit-error rate (BER) and/or a frame-error rate (FER).
- 3. A method according to claim 1, wherein each cluster is comprised of up to M targets and each communication channel accommodates up to N targets, the method of building one or more cluster(s) further comprising:

assigning at least a subset of up to N targets to a first communication channel resource;

and

selectively assigning subset(s) of a remaining (M-N) targets to share additional communication channel resource(s) within the cluster.

1

7

6

4. A method according to claim 1, wherein measuring the performance characteristics

2 comprises:

6
7
1
I
2
3
A STATE STATE STATE OF THE STAT
3

- initializing K sets of weights;
 estimating the signal to interference and noise ratio (SINR) for each target for each of the
 K weights; and
 selecting one of the K weights for each of the targets that maximizes each targets SINR,
 to produce K clusters of targets based, at least in part, on each target's SINR.

 A method according to claim 4, further comprising:
 identifying a target within each of the cluster(s) with a lowest SINR; and
 generating a new weight for each of the cluster(s) based, at least in part, on the SINR of
 - 6. A method according to claim 5, wherein the new weight is a least-squares weight associated with the identified target.
 - 7. A method according to claim 5, further comprising:

 estimating the performance characteristics of each of the target(s) within each of the cluster(s) using the generated new weight for each of the cluster(s); and regrouping targets according to the weights that provide the best SINR for each of the
- regrouping targets according to the weights that provide the best SINR for each of the targets.
 - 8. A method according to claim 7, further comprising:

the identified target within the cluster(s).

Ι
2
3
4
5
€
0
ū
£ 7
#-1
79
$\frac{1}{2}$
2
\mathbf{E}_{I}
74
11.07 1.2 n
2
The first start of the second
3
•
4

I

2

3

1

- iteratively repeating the steps of identifying, generating, estimating and regrouping until no significant improvement in the estimated performance characteristics of the target(s) is identified.
- 9. A method according to claim 8, further comprising:
- selectively monitoring at least a subset of target(s) for changing performance
- characteristics; and
- iteratively repeating the steps of identifying, generating, estimating and regrouping until no significant improvement in the estimated performance characteristics of the target(s) is identified.
 - 10. A storage medium comprising content which, when executed by an accessing computing appliance, implements a method according to claim 1.
 - 11. A communication station comprising:

wireless communication resources; and

- a communication agent, coupled with the wireless communication resources, to populate
- cluster(s) with one or more target(s) based, at least in part, on one or more estimated
- performance characteristics associated with the targets, and to develop a weighting value for at
- least a subset of the populated clusters to generate a transmission beam to target(s) within the
- 7 cluster(s) based, at least in part, on the developed weighting value.

1

I

- 1 12. A communication station according to claim 11, wherein the wireless communication resources include at least a transmitter subsystem.
- 13. A communication station according to claim 11, the communication agent comprising:
 2 a clustering engine, to measure one or more performance characteristics associated for
 3 each of at least a subset of a plurality of targets in a wireless communication system, and to
 4 selectively build one or more clusters, each cluster including one or more target(s) and sharing a
 5 wireless communication channel, based at least in part on the performance characteristics.
 - 14. A communication station according to claim 13, wherein the clustering engine initializes K sets of weights, estimates the signal to interference and noise ratio (SINR) for each target for each of the K weights, and selects one of the K weights for each of the targets that maximizes each targets SINR, to produce K clusters of targets based, at least in part, on each targets SINR.
 - 15. A communication station according to claim 14, further comprising the clustering engine identifies a target within each of the cluster with a lowest SINR, and dynamically generates a new set of weights based, at least in part, on the SINR of the identified target.
- 16. A communication station according to claim 15, wherein the clustering engine calculates
 the new weight as a least-squares weight associated with the identified target.
- 1 17. A communication station according to claim 15, wherein the clustering engine estimates
 2 the performance characteristics of each of the target(s) within each of the cluster(s) using the

1

2

- 3 generated new weight for each of the cluster(s), and regroups targets in clusters according to the
- weights that provide the best SINR for each of the targets.
- 18. A communication station according to claim 17, wherein the clustering engine iteratively
- 2 repeats the process until further re-grouping of targets fails to produce a significant improvement
- in the estimated performance characteristics of the targets.
- 1 19. A transceiver according to claim 18, the communications agent further comprising:
 - a beamforming engine, responsive to the clustering engine, to modify one or more attributes of a transmission signal to form a beam directed at target(s) within one or more cluster(s) based, at least in part, on the generated weight value(s) associated with each cluster.
 - 20. A communication station according to claim 11, further comprising:
 - a memory subsystem having stored therein content; and
 - control logic, coupled with the memory subsystem, to access and execute at least a subset of the stored content to implement the communications agent.
- In a wireless communication system implementing general packet radio services (GPRS),
- a method comprising:
- populating cluster(s) with one or more target(s) based, at least in part, on measured
- performance characteristics of each of the one or more target(s); and

2.45 5.45	1
7	1125
, F	2
To those	
7	i
314	Fresh P
House,	75117
The State	1
Zi:	_
T.	2
1	
	3
ï	- Sept.
	4
1	
	_

5		developing a weighting value for at least a subset of the populated clusters to generate a
6	transm	hission beam to target(s) within the cluster(s) based, at least in part, on the cluster spatial
7	signati	ure.
I		
1	22.	A method according to claim 21, further comprising:
2		modifying one or more parameters of a wireless communication link signal to form the
3	transm	hission beam to target(s) within the clusters based, at least in part, on the developed weight
4	values	•
1		
7	23.	A method according to claim 22, further comprising:
3		transmitting the formed transmission beam to an associated one or more cluster(s).
	24.	A method according to claim 21, wherein populating cluster(s) comprises:
		measuring one or more performance characteristics associated for each of at least a subset
	of a pl	urality of targets in a wireless communication system; and
<u> </u>		selectively building one or more clusters, each cluster including one or more target(s) and
5	sharin	g a wireless communication channel, based at least in part on the performance
6	charac	teristics.
1		
1	25.	A method according to claim 24, wherein measuring the performance characteristics
2	compr	ises:

EL034439547US

initializing K sets of weights;

estimating the signal to interference and noise ratio (SINR) for each target for each of the 4 K weights; and 5 selecting one of the K weights for each of the targets that maximizes each targets SINR, 6 to produce K clusters of targets based, at least in part, on each targets SINR. 7 1 A method according to claim 25, further comprising: 26. identifying a target within each cluster with a lowest SINR; and 2 generating a new weight for each of the cluster(s) based, at least in part, on the SINR of 3 the identified target. 27. A method according to claim 26, wherein the new weight is a least-squares weight associated with the identified target. 28. A method according to claim 26, further comprising: estimating the performance characteristics of each of the target(s) within each of the cluster(s) using the generated new weight for each of the cluster(s); and regrouping targets according to the weights that provide the best SINR for each of the targets. 5 1 29. A method according to claim 28, further comprising: 1 iteratively repeating the steps of identifying, generating, estimating and regrouping until 2 no significant improvement in the estimated performance characteristics of the target(s) is 3

identified.

1

1

- 1 30. A storage medium comprising content which, when executed by an accessing computing
- device, causes the device to implement a method according to claim 21.