Aim: Study of Zener diode as a voltage regulator and use of IC 7805 voltage stabilizer..

Electronic Parts Required:

- (i) Power supply : $\pm 15 \text{ V}$
- (ii) $R_S = R_C = 2.2 \text{ K}\Omega = 2 \text{ Nos}$
- (iii) Load resistance = $R_L = 1.0 \text{ k}\Omega$ Potentio-meter, 1.0 W
- (iv) Zener diode = 1 No with $V_Z = 2.7$ or 3.9 or 5.1 V
- (v) LM7805 IC = 1 No
- (vi) Breadboard = 1 No
- (vii) Two DT-830D multi-meters for current measurements. One 8007 multimeter with probe for Voltage measurements.
- (viii) single stand wires = 6 Nos

Part A: Zener Diode as Voltage Regulators:

Circuit Diagram:

A Zener diode of break down voltage V_z is reverse connected to an input voltage source V_i across a load resistance R_L and a series resistor R_S . The voltage across the Zener will remain steady at its break down voltage V_Z for all the values of Zener current i_Z as long as the current remains in the breakdown region. In the above circuit, the Zener diode maintains a constant output voltage $V_0 = V_Z$ independent of variations in load resistance R_L or the variation of input voltage V_i ($> V_Z$) so long as the diode remains in the breakdown region and the input voltage remains within a minimum and maximum voltage.

From the circuit diagram we can write $\mathbf{i}_S = \mathbf{i}_Z + \mathbf{i}_L$

Where,
$$i_S = \frac{Vi - Vz}{Rs}$$
, and $i_L = \frac{Vo}{Rl}$

Basically there are two types of regulations such as:

(i) Line Regulation:

In line regulation, series resistance, R_S and load resistance, R_L are fixed, only input voltage, V_{in} is varied. Output voltage, V_0 remains the same at V_Z and i_L remains constant as long as the input voltage is maintained above a minimum value.

$$\delta i_{\rm Z} = \delta i_{\rm S}$$

Thus when load R_L is fixed and input voltage V_i varies then Zener current i_Z and total current i_S change in such to maintain i_L and hence V_0 constant. Any change in V_i appears across the series limiting resistance R_S .

Table – I [*Maximum Input voltage should be 20 V*]

Sl.	\mathbf{R}_{L}	\mathbf{V}_{i}	$i_{ m S}$	i_{Z}	V_0
No	(Ohm)	(Volts)	(mA)	(mA)	(Volts)
1.	1K or 2.2K	0 V			
2.	CONSTANT	-			
	"	-			
20.	"	20 V			

You can take more than 20 readings if you like to have smooth curve.

Graph -I

- (i) Plot graph between i_Z and i_S to show that $\delta i_Z = \delta i_S$ (Directly proportional)
- (ii) Plot graph between V_{in} and V_{out}. Find out the breakdown voltage (V_Z) of Zener diode.

(ii) Load Regulation:

In load regulation, input voltage, V_i remains constant and the load resistance, R_L is varied. Output voltage remains same, as long as the load resistance is maintained above a minimum value. Since the voltage V_Z across the Zener remains constant, i_S is *independent of load*. Hence in this case

$$\delta i_7 = -\delta i_1$$

Thus Zener current changes with change in load current due to change in \mathbf{R}_L but output remains constant at \mathbf{V}_Z .

Table – **II** (without R_C) : R_C = A current limiting constant resistor [*Maximum Input voltage* should be 15 V]

Sl.	\mathbf{V}_{i}	\mathbf{R}_{L}	$m{i}_{ m L}$	i_{Z}	V_0
No	(Volts)	(Ohm)	(mA)	(mA)	(Volts)
1.	15 V	0Ω			
2.	CONSTANT	-			
	"	-			
20.	"	1K Ω			

You can take more than 20 readings if you like to have smooth curve.

Graph -II

- (i) Plot graph between I_Z and I_L to show that $\delta I_Z = -\delta I_L$ (Inversely proportional)
- (ii) Plot graph between V_{out} and R_L . Find out the breakdown voltage ($V_{out} = V_Z$) of Zener diode.

Table – III (with $R_C = 2.2 \text{ K} \Omega$): $R_C = A$ current limiting constant resistor

Sl.	\mathbf{V}_{i}	\mathbf{R}_{L}	$i_{ m L}$	i_{Z}	V_0
No	(Volts)	(Ohm)	(mA)	(mA)	(Volts)
1.	"				
2.	CONSTANT				
	"				
20.	"				

Graph –III

- (i) Plot graph between I_Z and I_L to show that $\delta I_Z = -\delta I_L$ (Inversely proportional)
- (ii) Plot graph between V_{out} and R_L in the presence of R_C . Find out the breakdown voltage ($V_{out} = V_Z$) of Zener diode which was not possible in Table II because Load R_L draw more current.

Part B: Voltage Regulator IC 7805:

For LM7805 the minimum input voltage is 7.2 V and maximum input voltage is 35 V to get a stable 5.0 V output voltage. The maximum current the load can draw is about 1 Amp.

Circuit Diagram:

(i) Line Regulation:

In line regulation, output constant current limiting series resistance, R_C and load resistance, R_L are fixed, only input voltage, V_{in} is varied. Output voltage, V_0 remains the same at V_Z and \boldsymbol{i}_L remains constant as long as the input voltage is maintained above a minimum value.

Table – I [*Maximum Input voltage should be 20 V*]

Sl. No	$\mathbf{R}_{\mathrm{C}} + \mathbf{R}_{\mathrm{L}}$ (Ohm)	V _i (Volts)	<i>i</i> _l (mA)	V ₀ (Volts)
1.	2.2 K	0		
2.	CONSTANT	-		
	"	-		
20.	"	20		

You can take more than 20 readings if you like to have smooth curve.

Graph –I

(i) Plot graph between V_{in} and V_{out}. Find V_{min} input voltage for which V_{out} is constant to 5 V.

(ii) Load Regulation:

In load regulation, input voltage, V_i remains constant and the load resistance, R_L is varied. Output voltage remains same irrespective of load.

Table – II [*Maximum Input voltage should be 15 V, R_C = 2.2 K* Ω]

Sl. No	V _i (Volts)	R _L (Ohm)	<i>i_l</i> (mA)	V ₀ (Volts)
1.	15 V	0 Ω		
2.	CONSTANT	-		
	"	-		
20.	"	1Κ Ω		

You can take more than 20 readings if you like to have smooth curve.

Graph -II

(i) Plot graph between V_{out} and R_L .
