Epreuve de Math Section Math Session de contrôle 2009

Exercice n°1

De quoi s'agit-il?

Nombres complexes-suites -fonction logarithme népérien-limites

CORRIGÉ

- 1) Réponse c -
- 2) Réponse a -
- 3) Réponse c -
- 4) Réponse c -

Exercice n°2

De quoi s'agit-il?

Fonction exponentielle - suites - calcul intégral.

CORRIGÉ

1) a- En posant t = -x on aura $\lim_{x \to +\infty} f(x) = \lim_{t \to -\infty} \left(-t - t e^t - e^t \right) = +\infty$.

b- En posant t = -x on aura $\lim_{x \to +\infty} (f(x) - x) = \lim_{t \to -\infty} (-t e^t - e^t) = 0$

Donc la droite Δ d'équation y = x est asymptote à la courbe (\mathscr{C}) au voisinage de $+\infty$.

c-Soit $x \in [0, +\infty[; f(x) - x = (x-1)e^{-x}]$

 \square sur [0,1] la courbe ($\mathscr C$) est située au dessous de Δ .

 \square sur $[1,+\infty[$ la courbe ($\mathscr C$) est située au dessus de Δ .

2) a- f est définie et strictement croissante sur $[0,+\infty[$ donc elle réalise une bijection de $[0,+\infty[$ sur $f([0,+\infty[)$

de plus f est continue sur $[0,+\infty[$ donc $f([0,+\infty[)=[-1,+\infty[$.

Comme $0 \in [-1, +\infty[$ donc l'équation f(x) = 0 admet dans $[0, +\infty[$ une solution unique α .

Puisque
$$f(0) = -1 < 0$$
, $f(\frac{1}{2}) = \frac{1}{2}(1 - \frac{1}{\sqrt{e}}) > 0$ donc $0 < \alpha < \frac{1}{2}$.

Conclusion: L'équation f(x) = 0 admet dans $[0, +\infty[$ une solution unique $\alpha \in]0, \frac{1}{2}[$.

b-D'après le tableau de variation de la fonction f on a : f'(0) = 3

donc la demi tangente à (ℰ) au point d'abscisse 0 est de coefficient directeur 3.

3) a-
$$u_1 = \int_a^1 f(x) dx = \int_a^1 (x + (x - 1)e^{-x}) dx = \int_a^1 x dx + \int_a^1 (x - 1)e^{-x} dx$$

Or
$$\int_{\alpha}^{1} x dx = \left[\frac{x^{2}}{2}\right]_{\alpha}^{1} = \frac{1}{2}(1 - \alpha^{2})$$

$$\int_{a}^{1} (x-1)e^{-x}dx \quad \text{on intègre par parties on pose} : \begin{cases} u(x) = x-1 & \to & u'(x) = 1 \\ v'(x) = e^{-x} & \to & v(x) = -e^{-x} \end{cases}$$

Par suite
$$\int_{\alpha}^{1} (x-1)e^{-x}dx = [-(x-1)e^{-x}]_{\alpha}^{1} + \int_{\alpha}^{1} e^{-x}dx = [-xe^{-x}]_{\alpha}^{1} = -\frac{1}{e} + \alpha e^{-\alpha}$$

donc
$$u_1 = \int_{\alpha}^{1} f(x) dx = \frac{1}{2} (1 - \alpha^2) - \frac{1}{e} + \alpha e^{-\alpha}$$
.

Interprétation : $f(x) \ge 0$ pour tout $x \in [\alpha, 1]$ donc u_1 représente l'aire, en unité d'aire, du domaine du plan limité par la courbe (\mathscr{C}) et les droites d'équations : y = 0, x = 1 et $x = \alpha$

b- sur [0,1] la courbe (\mathscr{C}) est situé au dessous de Δ donc pour tout réel $x \in [0,1]$, $f(x) \leq x$ de plus pour tout $x \in [\alpha,+\infty[$, $f(x) \geq 0$ et $\alpha < 1$ ainsi pour tout $x \in [\alpha,1]$ on a : $0 \leq f(x) \leq x$ par suite $0 \leq \int_a^1 [f(x)]^n dx \leq \int_a^1 x^n dx$

d'où
$$0 \le u_n \le \left[\frac{x^{n+1}}{n+1}\right]_0^1$$
 or $\left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1} - \frac{\alpha^{n+1}}{n+1} \le \frac{1}{n+1}$ donc $0 \le u_n \le \frac{1}{n+1}$

c-Comme
$$\lim_{n\to +\infty} \frac{1}{n+1} = 0$$
 et $0 \le u_n \le \frac{1}{n+1}$ donc $\lim_{n\to +\infty} u_n = 0$.

Exercice n°3

De quoi s'agit-il?

Suites adjacentes

CORRIGÉ

1) Montrons, par récurrence, que pour tout $n \in \square$, $u_n \le v_n$.

 \Box vérification : pour n=1 l'inégalité $u_1 \le v_1$ est vraie (car $u_1 = \frac{1}{3}$ et $v_1 = \frac{2}{5}$)

 \square soit $n \in \square^*$, supposons que $u_n \le v_n$ et montrons que $u_{n+1} \le v_{n+1}$

Comme
$$u_{n+1} - v_{n+1} = \frac{2u_n + v_n}{3} - \frac{3u_n + 2v_n}{5} = \frac{u_n - v_n}{15} \le 0$$
 car $u_n - v_n \le 0$ donc $u_{n+1} \le v_{n+1}$

Conclusion: pour tout $n \in \square^*$, $u_n \le v_n$.

2) $\square u_{n+1} - u_n = \frac{2u_n + v_n}{3} - u_n = -\frac{u_n - v_n}{3} \ge 0$ car $u_n - v_n \le 0$ donc (u_n) est une suite croissante.

 $\square v_{n+1} - v_n = \frac{3u_n + 2v_n}{5} - v_n = \frac{3(u_n - v_n)}{5} \le 0 \text{ car } u_n - v_n \le 0 \text{ donc } (v_n) \text{ est une suite décroissante.}$

3)Première méthode

 \square pour tout $n \in \square$, $u_n \le v_n$ et (v_n) est une suite décroissante donc (v_n) est majoré par $v_0 = 1$ Donc pour tout $n \in \square$, $u_n \le 1$.

Ainsi (u_n) est une suite croissante et majoré par 1 donc converge.

 \square pour tout $n \in \square$, $v_n \ge u_n$ et (u_n) est une suite croissante donc (u_n) est minoré par $u_0 = 0$ Donc pour tout $n \in \square$, $v_n \ge 0$. Ainsi (v_n) est une suite décroissante et minoré par 0 donc converge.

$$\square$$
 On pose $\lim_{n \to +\infty} (u_n) = l$ et $\lim_{n \to +\infty} (v_n) = l$ '

$$\lim_{n \to +\infty} (u_n) = l \quad \text{donc} \quad \lim_{n \to +\infty} (u_{n+1}) = l$$

Comme $u_{n+1} = \frac{2u_n + v_n}{3}$ donc les opérations sur les limites des suites donnent $l = \frac{2l + l'}{3}$

D'où l = l'

Deuxième méthode

D'après ce qui précède on a : $u_{n+1} - v_{n+1} = \frac{1}{15} (u_n - v_n)$

Montrons par récurrence que pour tout $n \in \square$, $u_n - v_n = -\left(\frac{1}{1.5}\right)^n$

vérification : l'égalité $u_0-v_0=-\left(\frac{1}{15}\right)^0$ est vraie (car $u_0=0$, $v_0=1$ et $-\left(\frac{1}{15}\right)^0=-1$)

supposons que
$$u_n - v_n = -\left(\frac{1}{15}\right)^n$$

montrons que $u_{n+1} - v_{n+1} = -\left(\frac{1}{15}\right)^{n+1}$

on a:
$$u_{n+1} - v_{n+1} = \frac{1}{15} \left[-\left(\frac{1}{15}\right)^n \right] = -\left(\frac{1}{15}\right)^{n+1}$$

donc pour tout $n \in \square$, $u_n - v_n = -\left(\frac{1}{15}\right)^n$

Vu que
$$\lim_{n\to+\infty} \left[-\left(\frac{1}{15}\right)^n \right] = 0$$
 car $\left(\frac{1}{15}\right) \in \left] -1,1 \right[$ donc $\lim_{n\to+\infty} \left(u_n - v_n\right) = 0$

Compte tenu:

 \square pour tout $n \in \square$, $u_n \le v_n$.

 \square ($u_{\scriptscriptstyle n}$) est une suite croissante et ($v_{\scriptscriptstyle n}$) est une suite décroissante.

Les suites (u_n) et (v_n) sont adjacentes et par suite elles convergent vers la même limite

4) a- pour tout
$$n \in \square$$
, $w_{n+1} = 9u_{n+1} + 5v_{n+1} = 3(2u_n + v_n) + (3u_n + 2v_n) = 9u_n + 5v_n = w_n$

Donc (w_n) est une suite constante.

b- (w_n) est une suite constante donc pour tout $n \in \square$, $w_n = w_0 = 9u_0 + 5v_0 = 5$.

Par suite pour tout $n \in \square$, $9u_n + 5v_n = 5$.

Donc si L est la limite commune des suites (u_n) et (v_n) on aura 9L + 5L = 5

Ce qui donne
$$L = \frac{5}{14}$$
 ainsi $\lim_{n \to +\infty} (u_n) = \lim_{n \to +\infty} (v_n) = \frac{5}{14}$.

Exercice n°4

De quoi s'agit-il?

Similitudes-angles inscrits -symétrie orthogonale.

CORRIGÉ

1) a-
$$(\overrightarrow{CA}, \overrightarrow{CB}) \equiv (\overrightarrow{AC}, \overrightarrow{AD}) [2\pi]$$

$$\equiv \frac{\pi}{2} - (\overrightarrow{AB}, \overrightarrow{AC}) [2\pi]$$

$$\equiv \frac{\pi}{2} - \frac{\pi}{6} [2\pi] \qquad \text{donc} (\overrightarrow{CA}, \overrightarrow{CB}) \equiv \frac{\pi}{3} [2\pi]$$

De plus, comme ABC est un triangle rectangle en B donc $\frac{CB}{CA} = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$

D'où
$$\begin{cases} \frac{CB}{CA} = \frac{1}{2} \\ (\overline{CA}, \overline{CB}) = \frac{\pi}{3} [2\pi] \end{cases}$$
 ce qui justifie que $S(A) = B$

b-
$$\Box$$
 D'une part $(\overrightarrow{AC}, \overrightarrow{AE}) \equiv (\overrightarrow{AC}, \overrightarrow{AD})$ [2π]
$$\equiv (\overrightarrow{CA}, \overrightarrow{CB})$$
 [2π]
$$\equiv \frac{\pi}{3}$$
 [2π]
$$E = S_{(DC)}(A)$$
D'autre part $D = S_{(DC)}(D)$

$$C = S_{(DC)}(C)$$
 donc $(\overrightarrow{EC}, \overrightarrow{ED}) \equiv -(\overrightarrow{AC}, \overrightarrow{AD})$ [2π]

Ainsi
$$\begin{cases} (\overrightarrow{AC}, \overrightarrow{AE}) \equiv \frac{\pi}{3} \ [2\pi] \\ (\overrightarrow{EC}, \overrightarrow{EA}) \equiv (\overrightarrow{EC}, \overrightarrow{ED}) \ [2\pi] \end{cases}$$
 ce qui prouve que le triangle ACE est équilatéral.
$$\equiv -\frac{\pi}{3} \ [2\pi]$$

□ On a le triangle ACE est équilatéral et
$$O = A * C$$
 donc
$$\begin{cases} \frac{CO}{CE} = \sin \frac{\pi}{6} = \frac{1}{2} \\ (\overrightarrow{CE}, \overrightarrow{CO}) = \frac{\pi}{3} [2\pi] \end{cases}$$

Conclusion: S(E) = O.

2) a-

- b- ACE est un triangle équilatéral et O = A * C donc la droite (OE) est la médiatrice du segment [AC] et puisque $I \in [OE] \setminus \{O, E\}$ donc IA = IC or (Γ) est le cercle de centre Γ et le rayon Γ donc Γ et le rayon Γ et le rayon Γ donc Γ et le rayon Γ et le rayon Γ et le rayon Γ donc Γ et le rayon Γ et le rayon
- 3) a- $(\overrightarrow{MP}, \overrightarrow{MC})$ et $(\overrightarrow{AP}, \overrightarrow{AC})$ sont deux angles inscrits dans (Γ) interceptant le même arc orienté \overrightarrow{PC} Donc $(\overrightarrow{MP}, \overrightarrow{MC}) = (\overrightarrow{AP}, \overrightarrow{AC})$ $[2\pi]$ or $(\overrightarrow{AP}, \overrightarrow{AC}) = \frac{\pi}{6}$ $[2\pi]$ donc $(\overrightarrow{MP}, \overrightarrow{MC}) = \frac{\pi}{6}$ $[2\pi]$.

b- Comme
$$\begin{cases} (\overrightarrow{MN}, \overrightarrow{MC}) = \frac{\pi}{6} \quad [2\pi] \\ (\overrightarrow{NC}, \overrightarrow{NM}) = \frac{\pi}{2} \quad [2\pi] \end{cases} \quad \text{donc} \quad (\overrightarrow{CM}, \overrightarrow{CN}) = \frac{\pi}{3} \quad [2\pi] \quad (1)$$

de plus on a
$$\frac{CN}{CM} = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
 (II)

d'après (I) et (II) on en déduit S(M) = N

4)
$$M \in (AD)$$
 et $E \in (AD)$ donc A , E et M sont alignés de plus $S(E) = O$

$$S(M) = N$$

et comme toute similitude conserve l'alignement donc B, O et N sont alignés.

D'où $N \in (OB)$ et puisque $D \in (OB)$ on en déduit alors que B, D et N sont alignés.

Exercice n°5

De quoi s'agit-il?

Résolution dans Z^2 d'une équation du type ax + by = c - détermination des points d'une droite à coordonnées entières

CORRIGÉ

1) a-
$$3 \times 0 + 4 \times (-2) = -8$$
 donc $(0,-2)$ est solution de (E).

b- Soit $(x, y) \in \square \times \square$ solution de (E).

On a:
$$\begin{cases} 3 \times x + 4 \times y = -8 \\ 3 \times 0 + 4 \times (-2) = -8 \end{cases}$$
 donc $3 \times x = -4 \times (y+2)$

comme
$$3/-4 \times (y+2)$$
 $3 \wedge (-4) = 1$ alors d'après Gauss $3/(y+2)$ ainsi $y = 3k-2$ où $k \in \square$

par suite
$$3 \times x = -4 \times (3k)$$
 d'où $x = -4k$ ainsi $(x, y) = (-4k, 3k - 2)$ où $k \in \square$

réciproquement : soit
$$(x, y) = (-4k, 3k - 2)$$
 où $k \in \square$

on a:
$$3 \times (-4k) + 4 \times (3k - 2) = -8$$
 donc (x, y) est solution de (E).

Conclusion:
$$S_{\square \times \square} = \{ (-4k, 3k - 2), k \in \square \}$$

2) a-
$$\begin{cases} M(x,y) \in \Delta \\ (x,y) \in \square \times \square \end{cases}$$
 signifie
$$\begin{cases} 3x + 4y = -8 \\ (x,y) \in \square \times \square \end{cases}$$
 signifie
$$(x,y) = \{ (-4k, 3k - 2), k \in \square \}$$

Donc
$$AM = \sqrt{(-4k)^2 + (3k)^2} = 5 \times |k|$$
 où $k \in \square$

Par suite AM est un multiple de 5.

b- $N(x, y) \in \Delta$ signifie 3x + 4y = -8 signifie $y = -\frac{8+3x}{4}$

Donc
$$AN^2 = x^2 + \left(-\frac{3x}{4}\right)^2 = \frac{25}{16}x^2$$
 par suite $AN = \frac{5}{4}|x|$.

c-Si AN est un multiple de 5 alors il s'écrit sous la forme AN = 5|k| où $k \in \square$

Donc
$$\frac{5}{4}|x| = 5|k|$$
 où $k \in \square$ ainsi $|x| = 4|k|$ où $k \in \square$ d'où x est un entier

Comme
$$y = -\frac{8+3x}{4} = -2 - \frac{3x}{4}$$
 donc $y = -2+3k$ où $k \in \square$ d'où y est un entier

Conclusion : Si AN est un multiple de 5 alors x et y sont des entiers.