Numerical Python

Volodymyr Byelobrov

PyConPL 2019

September 15, 2019

Table of Contents

- Python as a numerical tool
- 2 NumPy
 - subpackages
 - ndarray
 - NumPy types
 - NumPy ufuncs

Guido van Rossum first intentions were to create a script language suitable for teaching purposes. Still because of his interest in Maths, a lot of mathematical features were implemented in the core of Python.

- Complex numbers
- 2 Logic operations
- Aggregation functions
 min(); max(); sum(); round()

Complex numbers in different languages

Build-in type	Standard library	No Standard library
Fortran	С	Java
Python	C++	
Go	Perl	
Common Lisp	Ruby	
	OCaml	
	Haskell	

https://en.wikipedia.org/wiki/Complex_data_type

Python is super

Major Languages

The major programming languages have relatively stable usage, and are mostly what you'd expect:

https://www.benfrederickson.com

Numerical Python is superb

Scientific Languages

There was one other fast-growing 'language' included in the results that I purposefully left out:

www.benfrederickson.com

Table of Contents

- Python as a numerical tool
- NumPy
 - subpackages
 - ndarray
 - NumPy types
 - NumPy ufuncs

NumPy in Data Science

www.jetbrains.com/research/python-developers-survey-2018

Python vs Matlab

NumPy is Everything

2447 packages depend on NumPy:

scipy, Keras, pandas, spacy, bokeh, dask, gym, netCDF4, numexpr, moviepy, textblob, nibabel, PyWavelets, autograd, tensorboardX, mxnet, folium, datasketch, rasterio, pymc3, ChatterBot, Bottleneck, thinc, OpenFisca-Core, holoviews, h5py, etc.

libraries.io/pypi/numpy/dependents

NumPy documentation

NumPy has a very rich official documentation, provided for both NumPy and SciPy

docs.scipy.org

Still, there is a huge number of books, courses, videos, and ect. Among numerous other authors I dare to sugeest Jacob VanderPlas. Here is a link to his page.

Numerical packages

NumPy

- np.ndarray
- 2 np.random
- basic Maths functions

SciPy

- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fftpack)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse Eigenvalue Problems with ARPACK
- Spatial data structures and algorithms (scipy.spatial)
- Statistics (scipy.stats)

numpy.ndarray(shape, dtype, buffer, offset, strides, order)

Parameters: **shape**: *tuple* of ints

Shape of created array.

dtype: data-type, optional

Any object that can be interpreted as a numpy data type.

buffer: object exposing buffer interface, optional

Used to fill the array with data.

offset: int, optional

Offset of array data in buffer.

interpreted only if **buffer** is an object exposing the buffer interf

strides: tuple of ints, optional

Strides of data in memory.

interpreted only if **buffer** is an object exposing

the buffer interface

order : { 'C', 'F'}, optional

Row-major (C-style) or column-major (Fortran-style) order.

interpreted only if buffer is an object exposing the buffer interf

NumPy supports a much greater variety of numerical types than Python does. They could be platform-dependent and independent. Here some former ones.

Numpy type	C type	Description
np.int8	int8_t	Byte(-128 to 127)
np.int16	int16_t	Integer(-32768 to 32767)
np.int32	int32_t	Integer(-2147483648 to 2147483647)
np.int64	int64_t	Integer (-9223372036854775808 to 9223372036854775807)
np.float32	float	
np.float64 / np.float $_{-}$	double	precision of the builtin python float
np.complex64	float complex	Complex number, represented by two 32-bit floats (real and imaginary)

NumPy ufuncs

A universal function (or ufunc for short) is a function that operates on ndarrays in an element-by-element fashion, supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a "vectorized" wrapper for a function that takes a fixed number of specific inputs and produces a fixed number of specific outputs.

- **1** Arithmetic Operations: + * @ / // % **
- **2** Bitwise Operations: & $| \quad \sim \quad \land \quad >> \quad <<$
- Mathematical Functions: np.sin, np.cos np.sqrt np.exp, np.log, np.log10, etc.
- and many, many more

Thank you for your attantion :)

the presentation is here