Organizační úvod

Úvod

Poznámka (Motivace)

Hledání řešení diferenciálních rovnic. (Např. nahradíme rovnici definicí operátoru a hledáme, kde je operátor identita. Tedy neřešíme rovnice, ale prostory, na kterých máme funkce.)

Definice 0.1

$$\mathbb{K} = \mathbb{C} \vee \mathbb{K} = \mathbb{R}.$$

1 Banachovy a Hilbertovy prostory

Definice 1.1 (Normovaný lineární prostor)

Nech
tXje vektorový prostor nad K. Funkci |
| \cdot || : $X \to [0, \infty)$ nazveme normou na
 X, pokud

$$||x|| = 0 \Leftrightarrow x = \mathbf{0},$$

$$||x + y|| \le ||x|| + ||y||,$$

$$||\alpha \cdot x|| = |\alpha| \cdot ||x||.$$

Tvrzení 1.1

Nechť $(X, ||\cdot||)$ je normovaný lineární prostor nad \mathbb{K} .

Funkce $\varrho(x,y) = ||x-y||$ je translačně invariantní metrika na X.

Norma je 1-lipschitzovská (a tedy spojitá) funkce na x.

 $Zobrazeni + : X \times X \to X \ a \cdot : \mathbb{K} \times X \to X \ jsou \ spojitá.$

 $D\mathring{u}kaz$

První část byla na MA3. Druhá: Zvol $x,y\in X$. Pak $||y||,||x||\leq ||x||+||x-y||,$ tudíž $|||x||-||y|||\leq ||x-y||.$

Třetí část: Připomenutí: Součin metrických prostorů s maximovou metrikou je metrický prostor. Důkaz tohoto i třetí části je pak jednoduché cvičení.

Definice 1.2 (Uzavřená a otevřená koule)

$$B_X(x,r) = \{ y \in X | ||x - y|| \le r \}.$$

$$U_X(x,r) = \{ y \in X | ||x - y|| < r \}.$$

$$S_X(x,r) = \{ y \in X | ||x - y|| = r \}.$$

$$B_X = B\left(0,1\right)$$

$$U_X = U\left(0,1\right)$$

$$S_X = S\left(0,1\right)$$

Definice 1.3 (Banachův prostor)

Banachův prostor je normovaný lineární prostor, který je úplný v metrice dané normou.

Dále se opakovaly metrické prostory. Úplnost, kompaktnost a Bairova věta.

Tvrzení 1.2

Nechť X je normovaný lineární prostor a Y jeho podprostor. Potom a) Je-li Y Banachův, pak je Y uzavřený v X. Pokud je naopak X Banachův, pak Y je Banachův právě tehdy, když je uzavřený.

Důkaz

Je-li (P, ϱ) úplný, pak $M \subseteq P$ je úplný $\Leftrightarrow M$ je uzavřený. To dává speciálně b).

 (P,ϱ) je MP, pak $M\subseteq P$ je úplný $\Longrightarrow M$ uzavřený. To dává speciálně a).

Například

 $(\mathbb{K}, ||\cdot||_p), L_p(\Omega, \mathcal{A}, \mu, \mathbb{K})$, kde funkce je $\Omega \to \mathbb{K}$ a norma je definována jako p-tá odmocnina z integrálu funkce na p. $l_p(l)$ resp. $l_p(l, \mathbb{K})$ je diskrétní verze předchozího (tj. se sumou). $\mathbb{C}(K)$, kde K je hausdorfův a kompaktní TP.

c jsou všechny posloupnosti se supremovou normou, c_0 jsou všechny posloupnosti konvergující k 0 se supremovou normou. c_{00} sestává z těch posloupností, kde je jen konečně mnoho nenulových prvků (norma je maximová), je to lineární prostor, ale není Banachův. $c_0(I)$ je zobecnění z $c_0(\mathbb{N})$ na libovolnou diskrétní množinu I, tj. obsahuje "posloupnosti", kde pro každé ε je pouze konečně mnoho členů větších než ε (pak $(c_0(I), ||\cdot||_{\infty})$ je Banachův).

 $\mathcal{L}^1([0,1],||\cdot||_{\mathcal{L}^1})$ (prostor hladkých funkcí na intervalu [0,1]), kde $||f||_{\mathcal{L}^1} = ||f||_{\infty} + ||f'||_{\infty}$. $\mathcal{M}(K) = \{\mu : Borel(K) \to \mathbb{K} | \mu \text{ regulární míra} \}, ||\mu|| := \sup \{\sum_{i=1}^{\infty} |\mu(B_i)|, \bigcup B_i = K, B_i \text{ Borelow} \}$

Věta 1.3

Na konečněrozměrném vektorovém prostoru jsou všechny normy ekvivalentní.

 $D\mathring{u}kaz$

Později.

Lemma 1.4

Nechť X je vektorový prostor, $||\cdot||_1$ a $||\cdot||_2$ jsou normy na X, $B_1 = B_{X,||\cdot||_1}$, $B_2 = B_{X,||\cdot||_2}$ a a,b>0. Pak $a||x||^2 \le ||x||_1 \le b||x||_2$ pro každé $x \in X$, právě když $aB_1 \subset B_2 \subset bB_1$. Speciálně $||\cdot||_1 = ||\cdot||_2$ právě tehdy, když $B_1 = B_2$.

Důkaz

 \Longrightarrow : Zvol $x\in aB_1,$ pak $||\frac{x}{a}||_1\leq 1\implies x\in B_2.$ Opačně: Zvol $x\in B_2,$ pak $||x||_2\leq 1\implies x\in B_1.$

 \Leftarrow : Pokud x=0, pak jsou nerovnosti jasné. Zvol $x\neq 0$. Pak $\frac{x}{||x||_1}\in B_1$. Pak $\frac{ax}{||x||_1}\in B_1\subseteq B_2\implies a||x||_2\leq ||x||_1$. Analogicky pro druhý směr.

Tvrzení 1.5

Nechť X je vektorový prostor a $||\cdot||_1$ a $||\cdot||_2$ jsou normy na X a B_1 a B_2 jako minule. Následující tvrzení jsou ekvivalentní:

- 1. Normy $||\cdot||_1$ a $||\cdot||_2$ jsou ekvivalentní.
- 2. Existují a, b > 0 taková, že $aB_1 \subset B_2 \subset bB_1$.
- 3. Zobrazení id: $(X, ||\cdot||_1) \to (X, ||\cdot||_2)$ je homeomorfismus.
- 4. Otevřené množiny v $(X, ||\cdot||_1) X$ splývají s otevřenými množinami $(X, ||\cdot||_2)$.
- 5. $||x_n x||_1 \to 0$, právě $když ||x_n x||_2 \to 0$ pro $\{x_n\} \subset X$, $x \in X$.

Důkaz

 $1\Leftrightarrow 2$ plyne z předchozího lemmatu. $3\Leftrightarrow 4\Leftrightarrow 5$ je lehké a platí ve všech MP. $1\implies 5$ jasné.

 $5 \implies 1$: Sporem posloupností jdoucí k 1. TODO

Definice 1.4

Nechť X je vektorový prostor. Řekneme, že množina $M \subset X$ je konvexní, pokud pro každé $x,y \in M$ a $\lambda \in [0,1]$ platí, že $\lambda x + (1-\lambda)y \in M$.

Poznámka (Fakt)

Koule v normovaném lineárním prostoru jsou konvexní množiny. (A naopak každá konvexní množina může být koulí v nějaké normě.)

Definice 1.5 (Konvexní obal)

Nechť X je vektorový prostor a $M\subset X$. Konvexním obalem M nazveme množinu conv $M=\bigcap\{C\supset M|C\subset X \text{ je konvexn}\}$.

Tvrzení 1.6

Nechť X je vektorový prostor a $M \subset X$. Pak

conv
$$M = \left\{ \sum_{i=1}^{n} \lambda_i x_i | x_i \in M, \lambda_i \ge 0, \sum \lambda = 1, n \in \mathbb{N} \right\}.$$

Důkaz

⊆: Stačí dokázat, že množina vpravo je konvexní. Přímočaré.

 \supseteq : Stačí dokázat, že každý prvek vlevo je v konvexním obalu. Indukcí podle n, přímočaré. $\hfill \Box$

Definice 1.6

Nechť X je vektorový prostor. Řekneme, že množina $M\subset X$ je symetrická, pokud -M=M.

Poznámka (Fakt)

Necht M je symetrická konvexní podmnožina normovaného lineárního prostoru X, která obsahuje U(x,r) respektive B(x,r) pro nějaké $x\in X$ a $r\geq 0$. Pak $U(0,r)\subset M$, resp. $B(0,r)\subset M$.

 $D\mathring{u}kaz$

Jednoduchý.

Definice 1.7

Nechť X je normovaný lineární prostor a $M\subset X$. Pak definujeme uzavřený lineární obal M jako

$$\overline{\operatorname{span}}M = \bigcap \{Y \supset M | Y \text{ uzavřený podprostor } X\}$$

a uzavřený konvexní obal jako $\overline{\text{conv}}M = \bigcap \{TODO\}.$

Poznámka (Fakt)

Nechť X je normovaný lineární prostor, Y je podprostor X a $C \subset X$ je konvexní. Pak \overline{Y} je podprostor X a \overline{C} je konvexní množina.

Poznámka (Fakt)

Necht X je normovaný lineární prostor a $M \subset X$. Pak $\overline{\operatorname{span}}M = \overline{\operatorname{span}}M$ a $\overline{\operatorname{conv}}M = \overline{\operatorname{conv}}M$.

Věta 1.7

Nechť X je normovaný lineární prostor, $Y \subset X$ uzavřený podprostor a $Z \subset X$ konečněrozměrný podprostor. Pak $\operatorname{span}(Y \cup Z)$ je uzavřený.

 $D\mathring{u}kaz$

Stačí dokázat pro dim Z=1 (pak indukcí). At $Z=\mathrm{span}(e),\,e\notin Y$. Ověřme, že $\mathrm{span}(Y\cup\{e\})=\{y+ke|k\in\mathbb{K}\}$ je uzavřený: At $x_n=y_n+k_ne\to x\in X$. Chci $x\in\mathrm{span}\,Y$.

1. krok: (t_n) je omezená. (Kdyby ne, pak má limitu nekonečno.) Pak ale $||\frac{y_{n_k}}{t_{n_k}} + e|| = \frac{1}{|t_{n_k}|}||x_{n_k}|| \to 0$, tedy $\frac{y_{n_k}}{t_{n_k}} \to -e \notin Y$, tedy Y není uzavřená. 4

Tedy existuje posloupnost (n_k) , že $t_{n_k} \to t \in \mathbb{K}$. Pak ale $y_{n_k} = x_{n_k} - t_{n_k} e \to x - t e \in Y$. Tedy $\exists z \in Y : x - t e = z$, tj. $x = z + t e \in \text{span}(Y \cup \{e\})$.

Důsledek

Nechť X je normovaný lineární prostor. Každý konečněrozměrný podprostor X je uzavřený v X.

TODO

Věta 1.8 (Test úplnosti)

Nechť X je normovaný lineární prostor. Pak X je Banachův, právě když každá absolutně konvergentní řada je konvergentní.

Důkaz

 \implies : At X je Borelovský, $\sum_{n=1}^{\infty} x_n$ je AK řada. $s_N = \sum_{n=1}^N x_n$. Chceme (s_n) je cauchy: Buď $\varepsilon > 0$. At $n_0 \in \mathbb{N}$ je takové, že $\sum_{n=N}^M ||x_n|| < \varepsilon$, $n_0 \leq N < M$. Pak ale pro $n_0 \leq N < M$ je

$$||s_N - s_M|| = ||\sum_{n=N+1}^M x_n|| \le \sum_{N+1}^M ||x_N|| < \varepsilon.$$

Tedy (s_n) je konvergentní.

 \Leftarrow : At (x_n) je cauchyovská. Indukcí najdeme podposloupnost, že $||x_{n_k} - x_{n_{k+1}}| < 2^{-k}$, $k \in \mathbb{N}$. Pak

$$z = \sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k}) = \lim_{k \to \infty} (x_{n_{k+1}} - x_{n_1})$$

$$\implies \lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} (x_{n_k} - x_{n_1} + x_{n+1}) = \lim(x_{n_k} - x_{n_1}) + \lim x_{n_1} = z + x_{n_1}.$$

Celkem $\exists (n_k) \nearrow$, že $\lim(x_{n_k})$ existuje. Značme $x = \lim_{k \to \infty} x_{n_k}$. Chceme $\lim_{n \to \infty} x_n = x$. V metrickém prostoru konverguje Cauchyovská posloupnost právě tehdy, pokud existuje její konvergentní podposloupnost.

Definice 1.8 (Zobecněná řada)

Nechť X je normovaný lineární prostor, Γ je množina a $\{x_{\gamma}\}_{{\gamma}\in\Gamma}$ je kolekce prvků prostoru X. Symbol $\sum_{{\gamma}\in\Gamma}x_{\gamma}$ nazveme zobecněnou řadou.

Dále $\mathcal{F}(\Gamma)$ značí systém všech konečných podmnožin Γ . Řekneme, že zobecněná řada … konverguje (též konverguje bezpodmínečně) k $x \in X$, pokud platí

$$\forall \varepsilon > 0 \ \exists F \in \mathcal{F}(\Gamma) \ \forall F' \in \mathcal{F}(\Gamma), F' \subseteq F : ||x - \sum_{\gamma \in F'} x_{\gamma}|| < \varepsilon.$$

Existuje-li $x \in X$, říkáme, že je zobecněná řada … (bezpodmínečně) konvergentn a x nazýváme jejím součtem. Konverguje-li zobecněná řada reálných čísel $\sum_{\gamma \in \Gamma} ||x_\gamma||$, pak se zobecněná řada $\sum_{\gamma \in \Gamma} x_\gamma$ nazývá absolutně konvergentní.

Definice 1.9 (Bolzanova-Cauchyova podmínka)

Řekneme, že zobecněná řada TODO

Věta 1.9 (Nutná podmínka konvergence)

Nechť $\sum_{\gamma \in \Gamma} x_{\gamma}$ je konvergentní zobecněná řada v normovaném lineárním prostoru X. Pak je její součet určen jednoznačně a $(||x_{\gamma}||)_{\gamma \in \Gamma} \in c_0(\Gamma)$.

Důkaz (Jednoznačnost)

At
$$\sum_{\gamma \in \Gamma} x_{\gamma} = x \neq y = \sum_{\gamma \in \Gamma} = \sum_{\gamma \in \Gamma} x_{\gamma}$$
. Pak $\forall \varepsilon > 0$:

$$\exists F_x \in \mathcal{F}(\Gamma) \ \forall F \supseteq F_x : ||x - \sum_{\gamma \in \Gamma} x_\gamma|| < \frac{\varepsilon}{2},$$

$$\exists F_y \in \mathcal{F}(\Gamma) \ \forall F \supseteq F_y : ||x - \sum_{\gamma \in \Gamma} x_{\gamma}|| < \frac{\varepsilon}{2}.$$

Pak pro
$$\varepsilon=||x-y||\leq ||x-\sum_{F_x\cup F_y}x_\gamma||+||\sum_{F_x\cup F_y}x_\gamma-y||<\varepsilon.$$
 7

Důkaz (Existence)

Chceme ($||x_{\gamma}||$) $\in c_0(\Gamma)$: Af $\varepsilon > 0$ libovolné. Najdeme

$$F \in \mathcal{F}(\Gamma) \ \forall F' \supset F : ||x - \sum_{\gamma \in F'} x_{\gamma}|| < \frac{\varepsilon}{2}.$$

Pak pro $\gamma_0 \notin F$ máme

$$||x_{\gamma_0}|| = ||\sum_{\gamma \in F \cup \{\gamma_0\}} x_{\gamma} - x + x - \sum_{\gamma \in F} x_{\gamma}|| \le ||\dots|| + ||\dots|| < \varepsilon.$$

Tedy $\{\gamma \in \Gamma | ||x_{\gamma}|| > \varepsilon\} \subseteq F \in \mathcal{F}(\Gamma) \implies (||x_{\gamma}||) \in c_0(\Gamma)$. (Je tam pouze konečný počet prvků větších než ε .)

Věta 1.10

Nechť X je Banachův prostor.

- 1. Zobecněná řada vX je konvergentní právě tehdy, když splňuje Bolzanovu-Cauchyovu podmínku.
- 2. Každá absolutně konvergentní zobecněná řada v X je konvergentní.
- 3. Je-li zobecněná řada $\sum_{\gamma \in \Gamma} x_{\gamma} \ v \ X$ konvergentní a $\Lambda \subset \Gamma$, pak je i zobecněná řada $\sum_{\gamma \in \Lambda} x_{\gamma}$ konvergentní.

 $D\mathring{u}kaz$ (1.) $\Longrightarrow: \mathrm{At} \, \sum_{\gamma \in \Gamma} x_{\gamma} \, \, \mathrm{je} \, \, \mathrm{konvergentn\'i.} \, \, \mathrm{Zvol} \, \, \varepsilon > 0. \, \, \mathrm{Zvol\'ime}$

$$F \in \mathcal{F}(\Gamma) \ \forall F' \supseteq F : ||\sum_{\gamma \in \Gamma} x_{\gamma} - \sum_{\gamma \in F'} x_{\gamma}|| < \frac{\varepsilon}{2}.$$

Pak pro $\tilde{F} \in \mathcal{F}(\Gamma)$, že $\tilde{F} \cap F = \emptyset$ máme:

$$||\sum_{\gamma \in \tilde{F}} x_{\gamma}|| = ||\sum_{\gamma \in F \cup \tilde{F}} x_{\gamma} - \sum_{\gamma \in \Gamma} x_{\gamma} + \sum_{\gamma \in \Gamma} x_{\gamma} - \sum_{\gamma \in F} x_{\gamma}|| \le ||\dots|| + ||\dots|| < \varepsilon.$$

 \Leftarrow : At $\sum_{\gamma \in \Gamma} x_{\gamma}$ splňuje B-C podmínku. Pak najdeme posloupnost $(F_n)_{n=1}^{\infty} \in \mathcal{F}(\Gamma)^{\mathbb{N}}$,

$$F_1 \subset F_2 \subset \ldots \land \forall F' \mathcal{F}(\Gamma) : F' \cap F_n = \emptyset : ||\sum_{\gamma \in F'} x_{\gamma}|| < \frac{1}{n}.$$

Označ $y_n = \sum_{\gamma \in F_n} x_{\gamma}$. 1. krok: (y_n) je cauchyovská. (Dokáže se snadno.) 2. krok: Tedy existuje $y \in X$: $\lim y_n = y$. Chceme $y = \sum_{\gamma \in \Gamma} x_{\gamma}$: Af $\varepsilon > 0$.

$$\forall F' \supset F: ||y - \sum_{\gamma \in F'} x_{\gamma}|| \le ||y_{n_0} - \sum_{\gamma \in F'} x_{\gamma}|| + ||y_{n_0} - y|| = \sum_{\gamma \in F' \setminus F_{n_0}} x_{\gamma} \le \frac{1}{n_0} + ||y_{n_0} - y|| < \varepsilon.$$

Víme, že $\sum_{\gamma \in \Gamma} ||x_{\gamma}||$ je konvergentní. Dle tvrzení níže tedy

$$\sum_{\gamma \in \Gamma} ||x_{\gamma}|| = S = \sup \left\{ \sum_{\gamma \in \Gamma} |||x_{\gamma}||| \ F \in \mathcal{F}(\Gamma) \right\}.$$

Ověříme, že $\sum x_{\gamma}$ splní B-C podmínku: At $\varepsilon > 0$. At $F \in \mathcal{F}(\Gamma)$ tak, že $S - \varepsilon < \sum_{\gamma \in F} ||x_{\gamma}||$. Pak $\forall F' \in \mathcal{F}(\Gamma)$, že $F' \cap F = \emptyset$:

$$||\sum_{\gamma \in F'} x_\gamma|| \leq \sum_{\gamma \in F'} ||x_\gamma|| = \sum_{\gamma \in F' \cup F} ||x_\gamma|| - \sum_{\gamma \in F} ||x_\gamma|| < \varepsilon.$$

Snadný důsledek 1., protože B-C podmínka se zjevně dědí na podmnožiny.

Tvrzení 1.11

 $Necht \sum_{\gamma \in \Gamma} a_{\gamma}$ je zobecněná řada nezáporných čísel. Pak tato řada konverguje, právě $kdy\check{z}$ $\sup \left\{ \sum_{\gamma \in F} a_{\gamma} : F \in \mathcal{F}(\Gamma) \right\} < +\infty. \ A \ nav\'ic \ plat\'i \sum_{\gamma \in \Gamma} a_{\gamma} = \sup \left\{ \sum_{\gamma \in F} a_{\gamma} : F \in \mathcal{F}(\Gamma) \right\}.$

Důkaz

 $\implies : \text{At } \sum_{\gamma \in \Gamma} a_{\gamma} \text{ konverguje. Pak zvolíme } F \in \mathcal{F}(\Gamma) \ \forall F' \supset F : || \sum_{\gamma \in \Gamma} a_{\gamma} - \sum_{\gamma \in F} a_{\gamma} || < 1. \text{ Pak } \forall H \in \mathcal{F}(\Gamma) : \sum_{\gamma \in H} a_{\gamma} \leq \sum_{\gamma \in H \cup F} a_{\gamma} \leq \sum_{\gamma \in \Gamma} a_{\gamma} + 1. \text{ Tedy sup } \ldots \leq \sum_{\gamma \in \Gamma} a_{p} + 1 < \infty.$

 \Leftarrow : At $S:=\sup\ldots<\infty$. Chceme $\sum_{\gamma\in\Gamma}a_{\gamma}=S$. At $\varepsilon>0$. At $H\in\mathcal{F}(\Gamma)$ (z definice suprema) taková, že $S-\varepsilon<\sum_{\gamma\in H}a_{\gamma}$. Pak pro $F'\supset H$ máme

$$|S - \sum_{\gamma \in F'} a_{\gamma}| = S - \sum_{\gamma \in F'} a_{\gamma} < S - \sum_{\gamma \in H} a_{\gamma} < \varepsilon.$$

Tedy
$$\sum a_{\gamma} = S$$
.

Tvrzení 1.12

Nechť X je normovaný lineární prostor a $\{x_n\} \subset X$. Pak zobecněná řada $\sum_{n \in \mathbb{N}} x_n$ je absolutně konvergentní, právě když řada $\sum_{n=1}^{\infty} x_n$ je konvergentní.

 $D\mathring{u}kaz$

 \Longrightarrow : At $\sum_{n=1}^{\infty} ||x_n|| =: S < \infty$. Pak

$$\sup_{F \in \mathbb{F}(\mathbb{N})} \sum_{n \in F} ||x_n|| \le \sup_{N \in \mathbb{N}} \sum_{n=1}^{N} ||x_n|| = \sum_{n=1}^{\infty} ||x_n|| = S < \infty,$$

neboť každá konečná množina v přirozených číslech má maximum (a odebráním kladných prvků sumu zmenšíme).

 \Leftarrow : Af $\sum_{n\in\mathbb{N}}||x_n||$ je konvergentní, pak dle předchozího tvrzení $S:=\sup_{F\in\mathcal{F}(\mathbb{N})}\sum_{n\in F}||x_n||<\infty$. Tedy

$$\sum_{n=1}^{\infty} ||x_n|| = \sup_{N \in \mathbb{N}} \sum_{n \in [N]} ||x_n|| \le S < \infty.$$

Věta 1.13

Nechť $\{x_n\}$ je posloupnost v Banachově (pro normovaný lineární prostor je důkaz složitější) prostoru X. Pak následující tvrzení jsou konvergentní:

- 1. $\sum_{n\in\mathbb{N}} x_n$ konverguje (říkáme $\sum_{n=1}^{\infty} x_n$ konverguje bezpodmínečně).
- 2. $\sum_{n=1}^{\infty} x_{\pi(n)}$ konverguje pro každou permutaci $\pi: \mathbb{N} \to \mathbb{N}$ ke stejnému součtu.
- 3. $\sum_{n=1}^{\infty} x_{\pi(n)}$ konverguje pro každou permutaci $\pi: \mathbb{N} \to \mathbb{N}$.

 $\begin{array}{l} D\mathring{u}kaz\\ 1\implies 2\colon \mathrm{Af}\ \varepsilon>0\ \mathrm{a}\ \pi\in\mathbb{S}(\mathbb{N}).\ \mathrm{Af}\ F\in\mathcal{F}(\mathbb{N})\ \mathrm{splňuje},\ \check{z}\mathrm{e}\ \forall F'\supseteq F:||\sum_{n\in F'}x_n-x||<\varepsilon,\\ \mathrm{kde}\ x=\sum_{n\in\mathbb{N}}x_n.\ \mathrm{Zvolme}\ n_0\in\mathbb{N}: F\subseteq\{\pi(1),\ldots,\pi(n_0)\}.\ \mathrm{Pak}\ \forall n\ge n_0:\ ||\sum_{i=1}^nx_{\pi(i)}-x||<\varepsilon.\ \mathrm{Tedy}\ \sum_{n=1}^nx_{\pi(n)}=x.\\ 2\implies 3\colon \mathrm{okam\check{z}it\check{e}}.\ 3\implies 1\colon \mathrm{Pro}\ \mathrm{spor}\ \mathrm{p\check{r}edpokl\acute{a}dejme},\ \check{z}\mathrm{e}\ \sum_{n=1}^\infty x_{\pi(n)}\ \mathrm{konverguje}\ \mathrm{pro}\ \mathrm{k}\check{a}\check{z}\mathrm{dou}\ \pi\in\mathbb{S}(\mathbb{N}),\ \mathrm{ale}\ \sum_{n\in\mathbb{N}}x_n\ \mathrm{nespl\check{n}uje}\ \mathrm{B-C}\ \mathrm{podm\acute{n}hku}.\ \mathrm{Zvolme}\ \varepsilon>0\ \mathrm{sv\check{e}d\check{c}}\check{c}\check{i}\ \mathrm{o}\ \mathrm{tom},\\ \check{z}\mathrm{e}\ \mathrm{B-C}\ \mathrm{podm\acute{n}hka}\ \mathrm{neni}\ \mathrm{spln\check{e}na}.\ \mathrm{Pak}\ \mathrm{existuje}\ (F_n)_{n=1}^\infty\in\mathcal{F}(\mathbb{N})^\mathbb{N},\ \check{z}\mathrm{e}\ F_n\cap F_m=\emptyset\ \forall n\ne m,\\ \mathrm{max}\ F_n<\mathrm{min}\ F_{n+1},\ n\in\mathbb{N}\ \mathrm{a}\ ||\sum_{i\in F_n}x_i||.\\ \mathrm{Zvolme}\ \pi\in\mathbb{S}(\mathbb{N})\ \mathrm{spl\check{n}uj\acute{e}}\check{i},\ \check{z}\mathrm{e}\ \mathrm{existuje}\ (n_k)\nearrow\mathrm{a}\ (p_k)_{k=1}^\infty\in\mathbb{N}^\mathbb{N},\ \check{z}\mathrm{e}\ \pi\left(\{n_k,n_k+1,\ldots,n_k+p_k\}\right)=\\ F_k\ \forall k\in\mathbb{N}.\ \mathrm{Tedy}\ \forall k\in\mathbb{N}:\ ||\sum_{i=n_k}^{n_k+p_k}x_{\pi(i)}||=||\sum_{i\in F_k}x_i||\ge\varepsilon.\ \mathrm{To}\ \mathrm{v\check{s}ak}\ \mathrm{znamen\acute{a}},\ \check{z}\mathrm{e}\\ \sum_{i=1}^\infty x_{\pi(i)}\ \mathrm{nespl\check{n}uje}\ \mathrm{B-C}\ \mathrm{podm\acute{n}hku},\ \mathrm{tedy}\ \mathrm{nen\acute{n}}\ \mathrm{konvergentn\acute{n}}.\ \mathsf{f}$

Věta 1.14 Každá absolutně konvergentní řada v Banachově prostoru je bezpodmínečně konvergentní. Důkaz Jasný z minulé věty. □

Navíc v \mathbb{R} platí ekvivalence.

Věta 1.15

Pokud dim $X=+\infty$, pak $\exists (x_n): \sum_{n=1}^{\infty} ||x_n||$ konverguje, ale $\sum_{n\in\mathbb{N}} x_n$ není konvergentní.

2 Lineární operátory a funkcionály

Poznámka (Opakovali jsme) Lineární zobrazení (viz lingebra), dále:

Věta 2.1

Nechť X,Y jsou normované lineární prostory a $T:X\to Y$ je lineární zobrazení. Pak následující tvrzení jsou ekvivalentní:

- 1. T je spojité.
- 2. T je spojité v jednom bodě.
- 3. T je spojité v 0.
- 4. $\exists C \geq 0 \ tak, \ \check{z}e \ ||T(x)|| \leq C||x|| \ \forall x \in X.$
- 5. T je Lipschitzovské.
- 6. T je stejnoměrně spojité.
- 7. T(A) je omezená pro každou omezenou $A \subset X$.
- 8. $T(B_X)$ je omezená.
- 9. $T(U(0,\delta))$ je omezená pro nějaké $\delta > 0$.

Prostor $\mathcal{L}(X < Y)$ s normou $||T|| = \sup_{x \in B_x} ||T(x)||$ je normovaný lineární prostor.

Lemma 2.2

Nechť X, Y jsou normované lineární prostory a $T \in \mathcal{L}(X, Y)$.

- $||T(x)|| \le ||T|| \cdot ||x||$ pro každé $x \in X$.
- $||T|| = \sup_{x \in S_X} ||T(x)|| = \sup_{x \in X \setminus \{\mathbf{o}\}} \frac{||T(x)||}{||x||} = \sup_{x \in U_X} ||T(x)||.$
- $||T|| = \inf\{C \ge 0 ||T(x)|| \le C||x|| \forall x \in X\}.$

Důkaz

Pro $x \in X \setminus \{\mathbf{o}\}$ platí $||T(x)|| = ||T(\frac{x}{||x||})|| \cdot ||x|| \le ||T|| \cdot ||x||$.

 $S_X \subseteq B_X$, tedy $||T|| \ge \sup_{x \in S_X} ||T(x)||$. $\forall x \in X \setminus \{\mathbf{o}\}$:

$$\frac{||T(x)||}{||x||} = ||T(\frac{x}{||x||})|| \le \sup_{y \in S_X} ||T(y)||,$$

 $\begin{array}{l} \operatorname{tedy} \, \sup_{x \in S_X} \, ||T(x)|| \geq \sup_{x \in X \setminus \{\mathbf{o}\}} \frac{||T(x)||}{||x||} =: S_3. \text{ Pro } x \in U_X \setminus \{\mathbf{o}\} \text{ plati } ||T(x)|| \leq \frac{||T(x)||}{||x||} \leq S_3, \text{ tedy } \sup_{x \in U_X} \, ||T(x)|| \leq S_3. \text{ Konečně, pro } x \in B_x: \, ||T(x)|| \leftarrow ||T\left(\left(1 - \frac{1}{n}\right)x\right)|| \leq \sup_{x \in U_X} =: S_4, \text{ tedy } ||T_x|| = \lim_{n \to \infty} ||T\left(1 - \frac{1}{n}\right)x|| \leq S_4 \implies \sup_{x \in B(x)} ||T(x)|| \leq S_4. \end{array}$

Dle prvního bodu máme nerovnost "≥". Pro "≤" zvolme $\varepsilon > 0$ … at $\tilde{c} > 0$ je takové, že $\tilde{c} < \inf\{\ldots\} + \varepsilon$. Pak $||T|| = \sup_{x \in B_x} \frac{||T_x||}{||x||} \le \inf\{\ldots\}$.

Definice 2.1

Nechť X je normovaný lineární prostor nad \mathbb{K} . Prostor $\mathcal{L}(X,\mathbb{K})$ značíme X^* a nazýváme jej duálním prostorem k prostoru X.

TODO!!!

TODO!!!

TODO!!!

Poznámka (Kvocient)

Nechť X je vektorový prostor nad $\mathbb K$ a Y jeho podprostor. Definujeme relaci ekvivalence \sim na X jako $x \sim y \Leftrightarrow x - y \in Y$.

Pro $x \in X$ pak definujeme [x] jako třídu ekvivalence obsahující x.

Na množině $X/Y = \{[x] | x \in X\}$ definujeme operace [x] + [y] = [x + y] a $\alpha[x] = [\alpha x]$.

Definice 2.2 (Kvocient)

Nechť X je vektorový prostor a Y jeho podprostor. Pak vektorový prostor X/Y nazýváme faktoprostorem prostoru X podle Y nebo též kvocientem X podle Y. Dále definujeme tzv. kanonecké kvocientové zobrazení $q: X \to X/Y$ předpisem q(x) = [x].

Definice 2.3 (Norma na kvocientu)

Buď X normovaný lineární prostor a Y jeho uzavřený podprostor. Pak $(X/Y, ||\cdot||_{X/Y})$ je normovaný lineární prostor s normou

$$||[x]||_{X/Y} = \inf_{y \in [x]} ||y|| = \inf_{y \in Y} ||x + y|| = \inf_{y \in Y} ||x - y|| = \operatorname{dist}(x + Y, 0) = \operatorname{dist}(x, Y).$$

Tato norma se nazývá kanonická kvocientová norma.

Důkaz (Je to norma) Triviální.

Tvrzení 2.3

Nechť X je normovaný lineární prostor a Y jeho uzavřený podprostor. Pak kanonické kvocientové zobrazení $q: X \to X/Y$ je spojitý lineární operátor, který je na a splňuje $q(U_x) = U_{X/Y}$. Je-li Y vlastní, pak ||q|| = 1.

Důkaz Zřejmý.

Věta 2.4

Nechť X je Banachův prostor. Potom TODO!

 $D\mathring{u}kaz$

Přes test úplnosti (X je Banachův, právě když každá abs. konvergentní řada je konvergentní). At $\{[x]_n|n\in\mathbb{N}\}$ splňuje $\sum_{n=1}^{\infty}<\infty$. Chceme $\sum_{[x]_n}$. At $\{y_n|n\in\mathbb{N}\}\subseteq Y$ jsou takové, že $\sum_{n=1}^{\infty}||x_n+y_n||<\infty$. Pak $\sum(x_n+y_n)$ je konvergentní (podle testu úplnosti) a je prvkem X, tedy $q(\sum_{n=1}^{\infty}(x_n+y_n))=\sum_{n=1}^{\infty}q(x_n+y_n)=\sum_{n=1}^{\infty}[x_n]$. Tudíž $\sum_{n=1}^{\infty}[x_n]$ je v prostoru q(X)=X/Y.

Poznámka (Zajímavosti)

 l_{∞}/c_0 je docela zajímavý prostor (Rosemider? + Brech? 2012: Je nerozhodnutelné, zda l_{∞}/c_0 je izometricky univerzální Banachův prostor hustoty $|\mathbb{R}|$. Dokonce je nerozhodnutelné, zda takový prostor existuje.) $(l_{\infty}/c_0 \equiv \mathcal{C}(\beta \mathbb{N} \setminus \mathbb{N}))$

Definice 2.4 (Direktní součet)

Nechť X je vektorový prostor a A,B jsou jeho podprostory. Říkáme, že X je direktním (též algebraickým) součtem A a B (značíme $X=A\oplus B$) pokud $A\cap B=\{\mathbf{o}\}$ a $X=A+B=\mathrm{span}\,\{A\cup B\}$.

Definice 2.5 (Projekce)

Necht X je vektorový prostor. Lineární zobrazení $P:X\to X$ se nazývá (lineární) projekce, pokud $P^2=P\circ P=P$.

Tvrzení 2.5 (Fakt)

Nechť X je vektorový prostor.

- Je-li $P: X \to X$ lineární projekce, pak $P \in \text{Rang } P = \text{id}_{\text{Rang } P}$.
- Je-li Y podprostor X a $P: X \to Y$ lineární zobrazení splňující $P \hookrightarrow_Y = \mathrm{id}_Y$, pak P je projekce X na Y.

Důkaz Triviální.

Tvrzení 2.6

Nechť X je vektorový prostor. Jsou-li P_A a P_B projekce příslušné rozkladu $X = A \oplus B$, pak $P_A + P_B = \operatorname{id}_X$, Rang $P_A = A$, ker $P_A = B$, Rang $P_B = B$ a Ker $P_B = A$.

Důkaz Jednoduchý.

Na druhou stranu, je-li P lineární projekce v X, pak X = $A \oplus B$, kde $A = \operatorname{Rang} P$, $B = \operatorname{Ker} P$ a $P = P_A$.

Důkaz Jednoduchý.

Věta 2.7

 $Necht\ X\ je\ vektorový\ prostor\ a\ Y\ jeho\ podprostor.$

- Prostor Y má algebraický doplněk v X.
- Je-li A algebraický doplněk Y v X, je A algebraicky izomorfní s X/Y, speciálně $\dim(A) = \dim(X/Y)$.

Díky Zornovu lemmatu existuje algebraická báze $B \subset Y$ prostoru Y. Stejně tak existuje $B' \supset B$ báze X. Potom $Z = \operatorname{span}(B' \setminus B)$ je algebraický doplněk $Y \vee X$, neboli $X = Y \oplus X$.

At $X = Y \oplus A$. Pak chceme $q \upharpoonright_A : A \to X/Y$ je lineární izomorfismus: Víme q je lineární, q je prosté (at $x \in A, q(x) = 0$, pak $x \in Y$, tedy $x \in A \cap Y = \{\mathbf{o}\}$, takže $x = \mathbf{o}$) a q je na (At $x = y + a \in X$, pak q(x) = q(a), tedy $q(x) \in q|_A(A)$).

Definice 2.6 (Kodimenze)

Je-li X vektorový prostor a Y jeho podprostor, pak kodimenzí (značíme codimY?) Y rozumíme dimenzi libovolného algebraického doplňku Y (což je rovno dimenzi X/Y).

Definice 2.7

Je-li X normovaný lineární prostor a $X = A \oplus B$, pak říkáme, že X je topologickým součtem A a B, pokud jsou příslušné projekce P_A a P_B spojité. Tento fakt značíme $X = A \oplus_t B$. Je-li A podprostor X, pak každý podprostor $B \subset X$ splňující $A \oplus_t B = X$ se nazývá topologický doplněk A v X. Má-li A topologický doplněk, pak říkáme, že je komplementovaný (v X).

Věta 2.8

Nechť X je normovaný lineární prostor a Y, Z jsou jeho podprostory splňující $X = Y \oplus Z$. Pak $X = Y \oplus_t Z$, právě když zobrazení $T: X \to Y \oplus_1 Z$, $T(x) = (P_Y(x), P_Z(x))$ je izomorfismus.

Důkaz

 \implies : $\forall x \in X$: $||T(x)|| = ||P_Y x|| + ||P_Z x|| \le 2 \max(||P_Y||, ||P_Z||) ||x|| \le ||(P_Y + P_Z)x|| = ||x||$. Tedy T je izomorfismus.

 $\Leftarrow: \forall x \in X \colon ||P_y x|| \leq ||P_y x|| + ||P_z x|| = ||T x|| \leq ||T|| ||x||, \text{ tedy } ||P_y|| \leq ||T||. \qquad \Box$

Věta 2.9

Nechť X je Banachův prostor a $Y, Z \subset X$ jeho podprostory splňující $X = Y \oplus Z$. Pak $X = Y \oplus_t Z$, právě když Y a Z jsou uzavřené.

 $D\mathring{u}kaz$

Zatím bez důkazu.

Věta 2.10

Nechť X, Y jsou normované lineární prostory. Pak

• Y je isomorfní komplementovanému podprostoru X, právě když existují lineární operátory $S: X \to Y$ a $T: Y \to X$ splňující $S \circ T = \mathrm{id}_Y$.

• Y je isometrické 1-komplementovanému podprostoru X, právě když existují lineární operátory $S: X \to Y$ a $T: Y \to X$ splňující $S \circ T = \operatorname{id}_y$ a $\max\{||S||, ||T||\} \le 1$.

 $D\mathring{u}kaz$

 \Leftarrow : Polož $p:=T\circ S:X\to X$. Pak p je zřejmě lineární a $||p||\leq ||T||\cdot ||S||$, navíc $p^2=(T\circ S)\circ (T\circ S)=p$, tedy p je projekce. Zároveň p(X)=T(S(X)), jelikož $S\circ T$ je identita, tak S je na a $p(X)=T(Y)=\mathrm{Rang}\, T$. Zbývá si uvědomit, že T je izomorfismus (izometrie, pokud $||S||, ||T||\leq 1$): Máme

$$\forall x \in X : ||Sx|| = ||STSx|| \le ||S|| \cdot ||TSx||,$$

tedy (protože S je na):

$$\forall y \in Y : ||y|| \frac{1}{||S||} \le ||Ty||,$$

tudíž T je izomorfismus.

$$\Longrightarrow: \text{At }P:X\to X \text{ je projekce, }L:P(X)\to Y \text{ izomorfismus na. Položíme }S:=L\circ P,\\ T:=L^{-1}, \text{ pak }S\circ T=L\circ P\circ L^{-1}=\text{id.}$$

Poznámka (Zajímavosti pro všechny (nezkouší se)) Ví se (dim $X = +\infty$, X Banach)

- X lze komplementovaně vnořit do $l_p \implies X \cong l_p, p \in [1, \infty].$
- X lze komplementovaně vnořit do $c_0 \implies X \cong l_0$.
- Existuje nespočetně neizomorfních podprostorů $L_p, p \in (1, \infty)$.

Neví se:

- X lze komplementovaně vnořit do $L_1 \implies X \in \{l_1, L_1\}.$
- X lze komplementovaně vnořit do $\mathcal{C}([0,1]) \implies X \cong \mathcal{C}(k?).$

Ví se:

• $X \cong l_2 \Leftrightarrow (\forall Z, \dim Z = +\infty, ZBanach, Z \hookrightarrow l_2 \implies Z \cong l_2).$

Neví se, zda platí izometrická varianta předchozího.

3 Hilbertovy prostory

Lemma 3.1

 A^{\perp} je uzavřený podprostor.

 $D\mathring{u}kaz$

Pro $y \in X$ at $f_y(x) = \langle x, y \rangle$. Pak f_y je lineární a spojité (z Cauchy-Swartze). $A^{\perp} = \bigcap_{y \in A} f_y^{-1}(0)$.

Definice 3.1

Prostor se skalárním součinem $(X, <\cdot, \cdot>)$ se nazývá Hilbertův prostor, pokud je úplný v metrice indukované skalárním součinem, tj. pokud $(X, ||\cdot||)$ je Banachův prostor, kde $||x|| = \sqrt{< x, x>}$.

Například • $l_2 \dots < x, y > := \sum_{n=1}^{\infty} x_n \overline{y_n}$.

• $L_2([0,1])$... $\langle f,g \rangle := \int_0^1 f(x) \overline{g(x)} dx$.

Tvrzení 3.2

 $Necht(X, <\cdot, \cdot>)$ je prostor se skalárním součinem nad \mathbb{K} . Pak funkce $<\cdot, \cdot>: X\times X\to \mathbb{K}$ je lipschitzovská na omezených množinách (a tedy spojitá).

Důkaz

Přímočarý s použitím Cauchy-Swartze.

Tvrzení 3.3 (Polarizační vzorec)

Nechť X je prostor se skalárním součinem. Pak pro všechna $x, y \in X$ platí

$$\langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2)$$

v reálném případě, resp.

$$\langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2)$$

v komplexním.

 $D\mathring{u}kaz$ (Reálný případ, v $\mathbb C$ analogicky)

$$4 < x, y >= 2 < x, y > -2 < x, -y >= ||x+y||^2 - ||x||^2 - ||y||^2 - ||x-y||^2 + ||x||^2 + ||-y||^2 = ||x| + ||x||^2 - ||x-y||^2 + ||x||^2 + ||x$$

Důsledek

Nechť X,Y jsou prostory se skalárním součinem a $T:X\to Y$ je lineární izometrie do. Pak T zachovává skalární součin, tj. < T(x), T(y) > = < x, y > pro každé $x,y\in X$.

 $D\mathring{u}kaz$

Izometrie zachovává pravé strany v polarizačním vzorci.

TODO!

Věta 3.4

 $(X, ||\cdot||)$ je NLP. Pak $||x|| = \sqrt{\langle x, x \rangle}$ pro skalární součin $\langle \cdot, \cdot \rangle \Leftrightarrow plati$:

$$\forall x, y \in X : ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Důkaz (Reálný případ, komplexní analogicky)

 \implies z Polarizačního vzorce. Pro \Leftarrow položme $\langle x,y\rangle:=\frac{1}{4}\left(||x+y||^2-||x-y||^2\right), x,y\in X.$ Následně ověříme podmínky (kromě linearity (speciálně aditivity) je ověření triviální).

Aditivita: Chceme

$$LS = \forall x, y, z \in X : \langle x + y, z \rangle + \langle x - y, z \rangle = 2 \langle x, z \rangle = PS$$

$$LS = \frac{1}{4} \left(\underline{||x+y+z||^2} - ||x+y-z||^2 + \underline{||x-y+z||^2} - ||x-y-z||^2 \right) = \frac{1}{4} \left(\underline{||x+y+z||^2} -$$

$$\stackrel{\text{z p\'redpokladu}}{=} \frac{1}{4} \left(2 \left(||x+z||^2 + ||y||^2 \right) - 2 \left(||x-y||^2 + ||y||^2 \right) \right) = \frac{1}{2} \left(||x+z||^2 - ||x-z||^2 \right) = PS.$$

Tuto rovnost aplikujeme na x=y: $\langle 2x,z\rangle=2\,\langle x,z\rangle,$ a na $\tilde{x}=\frac{1}{2}(x+y),\,\tilde{y}=\frac{1}{2}(x-y)$:

$$\langle x, z \rangle + \langle y, z \rangle = 2 \left\langle \frac{1}{2} (x+y), z \right\rangle = \langle x+y, z \rangle.$$

Věta 3.5 (Frigyes Riesz, 1934)

Nechť C je uzavřená neprázdná konvexní množina v Hilbertově prostoru H. Pak pro každé $x \in H$ existuje právě jedno $y \in C$ tak, že $||x - y|| = \operatorname{dist}(x, C)$.

 $D\mathring{u}kaz$

Zvolme $(y_n)_{n=1}^{\infty}$ posloupnost v C, že $\lim_{n\to\infty} ||y_n-x||=d(x,C)$. Chceme, že $(y_n)_{n=1}^{\infty}$ je cauchyovská. Tedy, protože C je uzavřená, existuje $y\in C:y_n\to y$. Pak ale d(x,c)=||x-y||.

Zbývá jednoznačnost: A
ť $y,z\in C$ taková, že $||x-y||=||x-z||=\mathrm{dist}(x,C).$ Pak
 $||y-z||^2\leq 0,$ tedyy=z.

Věta 3.6 (Frigyes Riesz, 1934)

Nechť X je prostor se skalárním součinem, Y jeho podprostor a $x \in X$. Pak $y \in Y$ splňuje $||x-y|| = \operatorname{dist}(x,Y)$ právě tehdy, $když\ x-y \in Y^{\perp}$.

 $D\mathring{u}kaz$

Jednoduchý.

Věta 3.7 (Frigyes Riesz, 1934)

Nechť Y je uzavřený podprostor Hilbertova prostoru H. Pak $H = Y \oplus_t Y^{\perp}$ a projekce $P_u: H \to Y$ příslušná rozkladu $H = Y \oplus Y^{\perp}$ má následující vlastnosti:

- $||P_Y(x) x|| = \operatorname{dist}(x, Y) \le ||x|| \text{ pro každ\'e } x \in H,$
- $||P_Y|| \le 1$.

 $D\mathring{u}kaz$

$$Y \cap Y^{\perp} = \{\mathbf{o}\}$$
: At $x \in Y \cap Y^{\perp}$. Pak $\langle x, x \rangle = 0 \implies x = 0$.

 $H=Y+Y^\perp$: Zvol $x\in H.$ Dle vět výše existuje právě jedno $y\in Y:x-y\in Y^\perp.$ Pak $x=y+x-y\in Y+Y^\perp.$

Tedy, $H = Y \oplus Y^{\perp}$, a zároveň z důkazu víme, že

$$P_Y(x) =$$
 "jediný prvek $y \in Y$, že $x - y \in Y^{\perp}$ " = "j. p. $y \in Y$, že $||x - y|| = d(x, Y)$ ".

Tedy
$$||P_Y(x) - x|| = d(x, y) \le ||x||$$
. Zbývá $||P_y|| \le 1$: $||P_y x||^2 = \Box$

Věta 3.8

Nechť H je Hilbertův prostor a $\{x_n\}_{n=1}^{\infty} \subset H$ je podposloupnost navzájem ortogonálních prvků. Pak řada $\sum_{n=1}^{\infty} x_n$ konverguje bezpodmínečně, právě když konverguje.

Důkaz

 \implies už víme. \Leftrightarrow : Víme $\sum_{n=1}^{\infty}x_n$ splňuje B-C podmínku. Tedy pro $\varepsilon>0 \exists n_0 \in \mathbb{N}:$

$$\forall m > n \ge n_0 : || \sum_{k=n+1}^m x_k || < \varepsilon.$$

Polož $F = \{1, ..., n_0\}$. Zvol $F' \in \mathcal{F}(\mathbb{N}) : F' \cap F = \emptyset$. Pak

$$||\sum_{k \in F'} x_k||^2 \stackrel{\text{Pyt. věta}}{=} = \sum_{k \in F'} ||x_k||^2 \le \sum_{k \in \min F'}^{\max F'} ||x_k||^2 = ||\sum_{m}^{m} x_k||^2 < \varepsilon.$$

Definice 3.2 (Ortogonální, ortonormální, maximální ortonormální, úplný ortonormální, ortonormální, baze)

Je-li X prostor se skalárním součinem a $A \subset X$, řekneme, že množina A je

- ortogonální, pokud $x \perp y$ pro všechna $x, y \in A, x \neq y$.
- ortonormální, pokud A je ortogonální a $A \subset S_X$.
- maximální ortonormální, pokud A je ortonormální a neexistuje ortonormální množina obsahující A různá od A.
- úplný ortonormální, pokud A je ortonormální a $\overline{\text{span}}A = X$.
- ortonormální báze, pokud $A = \{e_{\gamma} | \gamma \in \Gamma\}$ je ortonormální množina a každé $x \in X$ lze vyjádřit jako $x = \sum_{\gamma \in \Gamma} x_{\gamma} e_{\gamma}$ pro nějaké skaláry x_{γ} .

TODO

Tvrzení 3.9 (Fakt)

Je-li A ortonormáľní množina v prostoru se skalárním součinem, pak $||x-y||=\sqrt{2}$ prokaždé dva prvky $x,y\in A,\ x\neq y.$

Důkaz

$$||x - y||^2 = ||x||^2 + ||y||^2.$$

Poznámka

Tedy, pokud X je separabilní se skalárním součinem \implies každý ON-systém je spočetný.

Věta 3.10

Každý prostor se skalárním součinem obsahuje maximální ortonormální systém.

Důkaz

 $\mathcal{P} = \{A \subset X | A \text{ je ON-systém}\}$ s uspořádaním inkluzí. Zvol $\mathcal{O} \subset \mathcal{P}$ lineárně uspořádané, pak $\bigcup \mathcal{O} \in \mathcal{P}$ je horní závora $\mathcal{O} \implies (z \text{ Zornova lemmatu}) \exists A \in \mathcal{P}$ maximální. To je hledaný maximální ON-systém.

Věta 3.11 (Besselova nerovnost)

 $Je-li\left\{e_{\gamma}\right\}_{\gamma\in\Gamma}$ ortonormální soustava v prostoru X se skalárním součinem, platí $\sum_{\gamma\in\Gamma}|\langle x,e_{\gamma}\rangle|^2\leq ||x||^2$ pro každé $x\in X$.

 $D\mathring{u}kaz$

At $F \in \mathcal{F}(\Gamma)$, $x_F := \sum_{\gamma \in F} \langle x, e_\gamma \rangle e_\gamma$. Pak $||x||^2 = ||x - x_F||^2 + ||x_F||^2$ podle Pythagorovy věty $(x - x_F \perp x_F : \forall i \in F : \langle x - x_F, e_i \rangle = \langle x, e_i \rangle - \langle x_F, e_i \rangle = \langle x, e_i \rangle - \langle \langle x, e_i \rangle e_i, e_i \rangle = 0)$. Tj. $||x||^2 \ge ||x_F||^2 = \sum_{\gamma \in F} |\langle x, e_\gamma \rangle|^2$. Tedy máme omezení pro všechny konečné součty, tudíž celý součet bude omezen stejně (celý součet je supremum z konečných podle tvrzení někde výše).

Věta 3.12

Nechť H je Hilbertův prostor a $\{e_{\gamma}\}_{{\gamma}\in\Gamma}$ je ortonormální systém v H. Pak následující tvrzení jsou ekvivalentní:

- 1. $||x||^2 = \sum_{\gamma \in \Gamma} |\langle x, e_{\gamma} \rangle|^2$ pro každé $x \in H$ (tzv. Parsevalova rovnost).
- 2. $x = \sum_{\gamma \in \Gamma} \langle x, e_{\gamma} \rangle e_{\gamma} \text{ pro každ\'e } x \in H.$
- 3. $\{e_{\gamma}\}$ je ortonormální báze.
- 4. $H = \overline{\operatorname{span}} \{ e_{\gamma} | \gamma \in \Gamma \}.$
- 5. $\{e_{\gamma}\}$ je maximální ortonormální systém.

 $1 \Longrightarrow 2$: Nechť $\varepsilon > 0$. Zvolíme $F \in \mathcal{F}(\Gamma)$: $||x||^2 - \varepsilon < \sum_{\gamma \in F} |\langle x, e_\gamma \rangle|^2$. Zvolíme $F' \supset F$, $F' \in \mathcal{F}(\Gamma)$. Pak

$$||x - \sum_{\gamma \in F'} \langle x, e_{\gamma} \rangle e_{\gamma}||^{2 \cos + \operatorname{Pythagorova}} \stackrel{\text{věta}}{=} ||x||^{2} + \sum_{\gamma \in F'} |\langle x, e_{\gamma} \rangle|^{2} - 2\Re \left\langle x, \sum_{\gamma \in F' \langle x, e_{\gamma} \rangle e_{\gamma}} \right\rangle =$$

$$= \ldots + \ldots - 2\Re \sum_{\gamma \in F'} \overline{\langle x, e_{\gamma} \rangle} \langle x, e_{\gamma} \rangle = ||x||^{2} - \sum_{\gamma \in F'} |\langle x, e_{\gamma} \rangle| < \varepsilon.$$

 $2 \implies 3: \text{Triviální.} \ 3 \implies 4: \text{Triviální.} \ 4 \implies 1: \text{Necht} \ x \in H \text{ a } F \in \mathcal{F}(\Gamma), \text{ že existuje} \\ \sum_{\gamma \in F} a_{\gamma} e_{\gamma} \text{ splňující } ||x - \sum_{\gamma \in F} a_{\gamma} e_{\gamma}|| < \varepsilon. \text{ Položme } y := \text{span}(e_{\gamma}, \gamma \in F), \text{ pak } d(x,y) \leq \\ ||x - \sum_{\gamma \in F} a_{\gamma} e_{\gamma}|| < \varepsilon. \text{ (Jelikož } d(x,y) = ||x - \sum_{\gamma \in F} \langle x, e_{\gamma} \rangle e_{\gamma}||, \text{ nebot z lemmatu někde} \\ \text{výše stačí ověřit } y \perp x - \sum_{\gamma \in F} \langle x, e_{\gamma} \rangle e_{\gamma}, \text{ tj. stačí } \forall i \in F : \left\langle x - \sum_{\gamma \in F} \langle x, e_{\gamma} \rangle e_{\gamma}, e_{i} \right\rangle = 0, \\ \text{což je jednoduché.)}$

Tedy $||x|| \leq \varepsilon + ||\sum_{\gamma \in F(x,e_{\gamma})e_{\gamma}}||$ (z Bsselovy nerovnosti víme, že suma konverguje a navíc víme, že v 1 platí \geq , tj. stačí dokázat \leq)

$$||x||^2 \le \left(\varepsilon + ||\sum_{\gamma \in F\langle x, e_\gamma \rangle e_\gamma}||\right)^2 = \varepsilon^2 + 2\varepsilon ||x|| + \sum_{\gamma \in F} ||\langle x, e_\gamma \rangle e_\gamma|| \le \varepsilon^2 + 2\varepsilon ||x|| + \sum_{\gamma \in \Gamma} |\langle x, e_\gamma \rangle|^2.$$

 $2 \implies 5$: At $x \in \{e_{\gamma} | \gamma \in \Gamma\}^{\perp}$ (chceme, že x = 0). Z 2. víme, že $x = \sum_{\gamma \in \Gamma} \langle x, e_{\gamma} \rangle e_{\gamma} = \sum_{\gamma \in \Gamma} \langle x, e_{\gamma} \rangle e_{\gamma}$

5 \Longrightarrow 4: At $Y = \overline{\operatorname{span}}(e_{\gamma}, \gamma \in \Gamma)$. Pak $H = Y \oplus_t Y^{\perp}$ (zde se používá úplnost jako předpoklad věty, ze které toto plyne). $H = Y \oplus_t \{e_{\gamma} | \gamma \in \Gamma\}^{\perp} \stackrel{5}{=} Y \oplus_t \{\mathbf{o}\}$.

Poznámka

Bez úplnosti jsou ekvivalentní 1, 2, 3 a 4 a vyplývá z nich 5.

TODO!

Věta 3.13 (Ernst Sigismund Fisher (1907), Frigyes Riesz (1907))

TODO!!!

Věta 3.14 (?)

TODO!!!

Věta 3.15 (Heinrich Löwig (1934), F. Riesz (1934))

Nechť H je Hilbertův prostor. Pro každé $y \in H$ označme $f_y \in H^*$ funkcionál definovaný jako $f_y(x) = \langle x, y \rangle$ pro $x \in H$. Pak zobrazení $l : H \to H^*$, $l(y) = f_y$ je sdruženě lineární

 $(I(\alpha y) = \overline{\alpha}I(y))$ izometrie H na H^* .

 $D\mathring{u}kaz$

 $\forall y \in H \text{ máme: } f_y \text{ je lineární, } \forall x \in H \text{: } f_y(x) \leq ||x|| \cdot ||y|| \text{, tedy } f_y \text{ je spojité a } ||f_y|| \leq ||y||, \\ f_y\left(\frac{y}{||y||}\right) = \left\langle\frac{y}{||y||}, y\right\rangle = ||y|| \implies ||f_y|| = ||y||, \\ y \in H. \implies I \text{ je izometrie, sdruženě lineární. Zbývá "na". To se dokáže z následujícího lemmatu:}$

Zvol $f \in H^*$, pak $H = \operatorname{Ker} f \oplus (\operatorname{Ker} f)^{\perp}$. Tedy existuje $z \in (\operatorname{Ker} f)^{\perp}$ splňující $H = \operatorname{Ker} f \oplus_t \operatorname{span} \{z\}$. Položme y := f(z)z. Pak I(y) = f, jelikož:

$$\forall x \in H : I(y)(x) = \langle x, y \rangle = \langle x_{\text{Ker } f} + \alpha_x z, y \rangle = \langle \alpha_x z, y \rangle = \alpha_x \left\langle z, \overline{f(z)}z \right\rangle = f(\alpha_x z) = f(x).$$

Lemma 3.16

Nechť X je vektorový prostor, f je lineární forma na X a $x \in X \setminus \operatorname{Ker} f$. Pak $X = \operatorname{Ker} f \oplus \operatorname{span} \{x\}$. Tedy codim $\operatorname{Ker} f = 1$.

 $D\mathring{u}kaz$

 $\operatorname{Ker} f \cap \operatorname{span} \{x\} = \{\mathbf{o}\}: \operatorname{At} \alpha \in \mathbb{K}, \operatorname{pak} \operatorname{pokud} \alpha x \in \operatorname{Ker} f, \operatorname{pak} \alpha f(x) = f(\alpha x) = 0, \operatorname{tedy} \alpha = \mathbf{o}.$

At
$$y \in X$$
. Pak $y = \left(y - \frac{f(y)}{f(x)}x\right) + \frac{f(y)}{f(x)}x$.

Definice 3.3

Nechť X je komplexní normovaný lineární prostor. Symbolem X_R označme prostor X uvažovaný jako reálný. Tj. X_R je tatáž množina jako X uvažovaná s operací sčítání jako v X, s násobením reálným číslem jako v X a stejně definovanou normou.

Věta 3.17 (Reálná verze komplexního normovaného lineárního prostoru)

Nechť Z je komplexní normovaný lineární prostor. Pak platí

- 1. X_R je reálný normovaný lineární prostor. (Zřejmé.)
- 2. X_R je úplný, právě když X je úplný. (Norma je pořád tatáž.)
- 3. $\varphi: X \to \mathbb{C}$ je lineární, právě když $\Re \varphi: X_R \to \mathbb{R}$ je lineární a $\Im \varphi(x) = -\Re \varphi(ix)$ pro každé $x \in X$.
- 4. Je-li $\varphi \in X^*$, pak funkcionál $\psi(x) = \Re \varphi(x)$, $x \in X_R$, patří do $(X_R)^*$ a platí $||\psi|| = ||\varphi||$.
- 5. Je-li $\psi \in (X_R)^*$, pak existuje právě jeden funkcionál $\varphi \in X^*$ takový, že $\psi(x) = \Re \varphi(x)$ pro $x \in X_R$. Je dán vzorcem $\varphi(x) = \psi(x) i\psi(ix)$ a splňuje $||\psi|| = ||\varphi||$.

6. Prostory $(X_R)^*$ a $(X^*)_R$ jsou izometrické.

Důkaz
TODO.

Definice 3.4

Nechť X je reálný normovaný lineární prostor. Na $X \times X$ definujeme:

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \qquad x_1, x_2, y_1, y_2 \in X,$$

$$(\alpha_1 + i\alpha_2) \cdot (x_1, x_2) = (\alpha_1 x_1 - \alpha_2 x_2, \alpha_1 x_2 + \alpha_2 x_1), \qquad \alpha_1, \alpha_2 \in \mathbb{R}, x_1, x_2 \in X,$$

$$||(x_1, x_2)||_{X_C} = \sup \{||(\cos \alpha) x_1 + (\sin \alpha) x_2||_X | \alpha \in [0, 2\pi)\}, \qquad x_1, x_2 \in X.$$

Symbolem $(X_C, ||\cdot||)$ značíme komplexní normovaný lineární prostor $(X \times X, +, \cdot, ||\cdot||_{X_C})$.

Věta 3.18 (Komplexifikace)

Je-li X reálný normovaný lineární prostor, pak je $(X_C, ||\cdot||)$ komplexní normovaný lineární prostor. Je-li navíc X Banachův, pak je X_C Banachův.

 $D\mathring{u}kaz$

Linearitu nebudeme dokazovat (definice je zvolena tak, aby to vycházelo, lehké cvičení). Norma je taktéž jednoduchá, nejtěžší je dokázat, že lze vytýkat konstanty.

 X_C je Banachův plyne z toho, že $X \oplus_{\infty} X$ je Banach a norma $||\cdot||_{X_C}$ je ekvivalentní (konstanty 1 a 2) maximové normě, která je v definici součinu metrických prostorů a součin úplných metrických prostorů je úplný.

Definice 3.5 (Sublineární funkcionál, pseudonorma)

TODO!

Věta 3.19 (Hans Hanh (1927), Stefan Banach (1929))

Nechť X je vektorový prostor a Y je podprostor.

- Je-li X reálný, p je sublineární funkcionál na X a f je lineární forma na Y splňující f(x) ≤ p(x) pro každé x ∈ Y, pak existuje lineární forma F na X taková, že F|_Y = f a F(x) ≤ p(x) pro každé x ∈ X.
- Je-li p pseudonorma na X a t je linearní forma na Y splňující $|f(x)| \leq p(x)$ pro každé $x \in Y$, pak existuje lineární forma F na X taková, že $F|_Y = f$ a $|F(x)| \leq p(x)$, $x \in X$.

 $D\mathring{u}kaz$ (1. bod)

1. krok: rozšíříme f o jednu dimenzi, tj. na $Z = Y \oplus \text{span}(x)$, kde $x \notin Y$. Položme $F(y+tx) := f(y) + t\alpha$, $y \in Y$, $t \in \mathbb{R}$, kde $\alpha \in \mathbb{R}$ je vhodně zvolená: Linearita f vyplývá z definice, tedy stačí $f(y) + t\alpha \leq p(y+t\alpha)$, $y \in Y$, $t \in R \Leftrightarrow$

$$\Leftrightarrow \forall t>0: \alpha \leq \frac{1}{t}(p(y+tx)-f(y)) \wedge \forall t<0: \alpha \geq \frac{1}{2}(p(y+tx)-f(y)), y \in Y \Leftrightarrow 0 \leq \frac{1}{t}(p(y+tx)-f(y)) \leq \frac{1}{t}(p(y+tx)-f$$

$$\Leftrightarrow \forall t > 0 : \alpha \le p(\frac{y}{t} + x) - f(\frac{y}{t}) \land \forall t < 0 : \alpha \ge f(\frac{-y}{t}) - p(\frac{-y}{t} - x), y \in Y \Leftrightarrow$$

$$\Leftrightarrow \forall y \in Y : \alpha \in [f(y) - p(y - x), p(y + x) - f(y)] \Leftrightarrow$$

$$\Leftrightarrow \forall y, z \in Y : f(y) - p(y - x) < p(z + x) - f(z),$$

tedy máme $f(y)+f(z)=f(y+z)\leq p(y+z)\leq p(y-x)+p(z+x)$. Tedy α můžeme volit libovolně z intervalu $[\sup_y f(y)-p(y-x),\inf_y p(y-x)-f(y)]$.

2. krok: přidáme všechny dimenze (transfinitní) indukcí. (Hanh-Banachova věta je ekvivalentní axiomu výběru.) $\hfill\Box$

Důkaz (2. bod)

- 1. krok: Pro $\mathbb{K}=\mathbb{R}$ aplikujeme první bod: VIme, že existuje $F:X\to\mathbb{R}$ lineární, že $F|_Y=f$. Pak ale $F(x)\leq p(x),\,x\in X \land -F(x)=F(-x)\leq p(-x)=p(x),x\in X$ $\Longrightarrow |F(x)\leq p(x),x\in X|$.
- 2. krok: Pro $\mathbb{K}=\mathbb{C}$: Polož $g=\Re f$. Pak podle 1. části $\exists G:X_R\to\mathbb{R}$ lineární, že $G|_Y=g\wedge|G(x)|\leq p(x), x\in X$. Pak máme $f(x)=g(x)-ig(ix), x\in X$ a položíme $F(x):=G(x)-iG(ix), x\in X$. Pak $f|_Y=f$, F je lineární a pro $x\in X$ máme:

Zvolme $|\lambda|=1, \ \lambda\in\mathbb{C}: |F(x)|=\lambda F(x), \ \mathrm{pak}\ |F(x)|=F(\lambda x)=G(\lambda x)-iG(i\lambda x)=G(\lambda x)\leq P(\lambda x)\leq p(x).$

Věta 3.20 (Hahnova-Banachova)

Nechť X je normovaný lineární prostor, Y je podprostor X a $f \in Y^*$. Pak existuje $F \in X^*$ takové, že $F|_Y = f$ a ||F|| = ||f||.

 $D\mathring{u}kaz$

Aplikujeme předchozí větu na $p(x) := ||f|| \cdot ||x||, x \in X$. Pak $|f(x)| \leq ||f|| \cdot ||x|| = p(x)$, $x \in Y \implies \exists F : X \to \mathbb{K}$ lineární, $F|_y = f$, $|F| \leq p$. Pak $|F(x)| \leq p(x) = ||f|| \cdot ||x||$, $x \in X$, tedy $||F|| \leq ||f||$ (opačná nerovnost triviální).

Důsledek

Nechť X je netriviální normovaný lineární prostor. Pro každé $x \in X$ existuje $f \in S_{X^*}$ takové, že f(x) = ||x||. Odtud plyne, že jsou-li $x, y \in X$ různé body, pak existuje $f \in X^*$ takový, že $f(x) \neq f(y)$ (říkáme, že X^* odděluje body X).

Zvol $x\in X$. BÚNO $x\neq \mathbf{o}$. Polož $Y=\mathrm{span}(x),\ g:Y\to\mathbb{K}$ definujeme předpisem $g(tx):=t||x||,\ \forall t\in\mathbb{K}$. Pak g je zřejmě lineární a ||g||=1, protože

$$|g(tx)| = |t| \cdot ||x|| = ||tx||, \forall t \in \mathbb{K}.$$

Podle H-B $\exists f \in X^* : f|_Y = g, ||f|| = ||y|| = 1. \text{ Pak } f(x) = ||x||.$

Ad "speciálně": Zvol x+y. Najdi $f \in S_{X^*}: f(x-y)=||x-y||$, pak $f(x) \neq f(t)$, protože $||x-y|| \neq 0$.

Důsledek

Je-li X normovaný lineární prostor a $x \in X$, pak $||x|| = \max_{t \in B_{X^*}} |f(x)|$.

 $D\mathring{u}kaz$

Triviální.

Důsledek (Oddělování bodu a podprosotru)

Necht X je normovnaný lineární prostor, Y je uzavřený podprostor X a $x \notin Y$. Pak existuje $f \in S_{X^*}$ tak, že $f|_Y = 0$ a $f(x) = \operatorname{dist}(x, Y) > 0$.

 $D\mathring{u}kaz$

Zvolme $Z := Y \oplus \operatorname{span}(x) \subset X$. $f(y + \alpha x) := \alpha \operatorname{dist}(x, Y), y \in Y, \alpha \in \mathbb{K}$. Pak $f : Z \to \mathbb{K}$ je lineární. ||f|| = 1: $|f(y + \alpha x)| = |\alpha| \operatorname{dist}(x, Y) \le |\alpha| \cdot ||x + \frac{y}{\alpha}|| = ||\alpha x + y||, y \in Y$, $\alpha \in \mathbb{K}$. Zvolme $(y_n)_{n=1}^{\infty}$ v Y, že $d(x, Y) = \lim_{n \to \infty} ||x - y_n||$. Pak $\frac{|f(y_n + x)|}{||y_n + x||} = \frac{d(x, Y)}{||y_n + x||} \to 1$.

Nyní z H-B věty rozšíříme na celé $Y : \exists F \in X^X : F|_z = f \land ||F|| = 1.$

Věta 3.21 (Oddělování konvexních množín)

Nechť X je normovaný lineární prostor a $A,B\subset X$ jsou disjuktní konvexní množiny. Pak platí následující tvrzení

- Je-li A otevřená, pak existuje $f \in X^*$ takový, že $\Re f(x) < \inf_B \Re f$ pro každé $x \in A$.
- Je-li A uzavřená a B kompaktní, pak existuje $f \in X^*$ takový, že $\sup_A \Re f < \inf_B \Re f$.

Poznámka

Ekvivalentní H-B větě.

BÚNO X je nad \mathbb{R} . BÚNO $A \neq \emptyset \neq B$. První bod: Zvolíme $a \in A, b \in B$. Polož w = b - a a C = w + A - B. Pak $w \notin C$, $\mathbf{o} \in C$, C je konvexní (A i B jsou konvexní, takže i jejich posunutý rozdíl je konvexní) a otevřená (A je otevřená, posunutý rozdíl otevřené a libovolné je otevřená). Položme $p_c(x) := \inf\{t > 0 | x \in tC\}$ (lehce se ověří, že p_c , tzv. Minkowského funkcionál, je sublineární). $p_c(x) < +\infty$ (protože C obsahuje nulu a z otevřenosti i kouli kolem ní a každé x se vejde do dostatečně nafouklé koule). $p_c \leq 1$ na C a $p_c(w) \geq 1$.

Položme $Y:=\mathrm{span}(w),\ g(\alpha w):=\alpha,\ \alpha\in\mathbb{R},\ g:Y\to\mathbb{R}$ (pak $g\le p_c$). Z H-B tedy plyne:

$$\exists G: X \to \mathbb{R} \text{ lineární }, G|_Y = g, G \leq p_c.$$

Pak $G \in X^*$ protože $G \leq p_c \leq 1$ na C, ale to obsahuje kouli, takže je G omezené na nějaké kouli \implies je spojité.

Konečně $\forall x \in A \ \forall y \in B : G(x) = G(y) + G(x - y + w) - G(w) \le G(y) + 1 - 1 = G(y)$. Rovnost nemůže nastat, protože A je otevřené.

TODO

Poznámka (Nevím, kam patří) Nějaký důsledek H-B, viz foto.

 $D\mathring{u}kaz$

Z kompaktnosti máme $\max_B g < \inf_A f$. Zvol f = -g a to je ta hledaná funkce.

Důsledek (H-B věty)

X je NLP, $Y\subset X$ podprostor. Buď $\dim Y<\infty$ nebo codim $Y<\infty.$ Pak $Y\overset{C}{\hookrightarrow}X.$ (Tj. $\exists P:X\to Y$ spojitý, že $P|_Y=\mathrm{id}_Y.)$

 $\dim Y < \infty$: At $\{e_1, \dots, e_n\}$ je báze Y, $\{f_1, \dots, f_n\}$ je duální báze Y. Pak f_1, \dots, f_n : $Y \to \mathbb{K}$ jsou spojité (Y má konečnou dimenzi). Z H-B $\exists F_1, \dots, F_n : X \to \mathbb{K}$ spojité, $||F_i|| = ||f_i||$, $F_i \supset f_i$. Definujme $P: X \to Y$ předpisem $P(x) := \sum_{i=1}^n F_i(x)e_i \in Y$. P je lineární,

$$||Px|| \le \sum_{i=1}^{n} ||F_i(x)|| \cdot ||e_i|| \le \sum_{i=1}^{n} ||F_i|| \cdot ||x|| \cdot ||e_i|| \le \left(n \cdot \max_{i \in [n]} ||F_i|| \cdot ||e_i||\right) \cdot ||x||.$$

P je tedy spojité. Zbývá ověřit $P_y = \mathrm{id}_n$.

$$\forall y \in Y : P(y) = P(\sum_{i=1}^{n} f_i(y)e_i) = \sum_{i=1}^{n} f_i(Y)P(e_i) = \sum_{i=1}^{n} f_i(y)\sum_{j=1}^{n} F_j(e_i)e_j = \sum_{i=1}^{n} f_i(y)e_i = y.$$

 $\operatorname{codim} Y < \infty$: $(\operatorname{codim} Y = \operatorname{dim}(X/Y))$ at $\{q(e_1), \dots, q(e_n)\}$ je báze X/Y $(q: x \mapsto [x])$ a $\{f_1, \dots, f_n\}$ duální funkcionály. Ty jsou spojité. Polož $F_i = f_i \circ q$ $(i \in [n])$, což je složení dvou spojitých funkcionálů, tedy spojitý funkcionál. Definujeme $P: X \to \operatorname{span}(e_1, \dots, e_n)$, $P(x) := \sum_{i=1}^n F_i(x)e_i, \ x \in X$. "P je lineární" je jasné, stejně tak spojitost P (podobně jako v první části).

 $P|_{\operatorname{span}(e_1,\ldots,e_n)} = \operatorname{id}:$

$$\forall i \in [n] : P(e_i) = \sum_{j=1}^n F_j(e_i)e_j = \sum_{j=1}^n f_j(q(e_j))e_j = e_i.$$

Tedy P je spojitá lineární projekce a navíc Ker P=Y: $Px=0 \Leftrightarrow F_i(x)=0 \forall in \in [n] \Leftrightarrow f_i(q(x))=0, \Leftrightarrow q(x)=0$. Máme $X=\operatorname{Rang} P \oplus_t \operatorname{Ker} P$. Položíme $Q=\operatorname{id} -P$, pak $\operatorname{Rang} Q=\operatorname{Ker} P=Y, Q$ spojitá projekce.

Definice 3.6

Necht X,Y jsou normované lineární prostory a $T \in \mathcal{L}(x,Y)$. Operátor $T^*: Y^* \to X^*$ definovaný předpisem $T^*f(x) = f(Tx)$ pro $f \in Y^*$ a $x \in X$ se nazývá duální (nebo též adjungovaný) operátor k T.

Operátor $(T^*)^*$ značíme T^{**} .

Věta 3.22

Nechť X, Y, Z jsou normované lineární prostory.

- 1. Je-li $T \in \mathcal{L}(X,Y)$, je $T*f \in X^*$ pro každé $f \in Y^*$. Dále $T^* \in \mathcal{L}(Y^*,X^*)$ a $||T^*|| = ||T||$.
- 2. Zobrazení $T \mapsto T^*$ je lineární izometrie z $\mathcal{L}(X,Y)$ do $\mathcal{L}(Y^*,X^*)$.

3. $T \in \mathcal{L}(X,Y)$ a $S \in \mathcal{L}(Y,Z)$. Pak $(S \circ T) * = T^* \circ S^*$. Dále $\mathrm{id}_X^* = \mathrm{id}_{X^*}$.

 $D\mathring{u}kaz$

1. Spojitost T*f je zřejmá z definice (složení dvou lineárních funkcí), stejně tak linearita T. Dále

$$\forall y^* \in B_{Y^*} : ||T^*y^*|| = \sup_{x \in B_X} |T^*y^*(x)| = \sup_{x \in B_X} |y^*(Tx)| \le \sup_{x \in B_X} ||Tx|| = ||T||,$$

tedy $||T^*|| \le ||T||$ a T je spojité. Zbývá $||T|| \le ||T^*||$. (Dokazujeme opačnou nerovnost k té výše.) Zvolme $x \in B_X$. Najdi (z jednoho z důsledků H-B) $y^* \in S_{Y^*}$. $||T_x|| = |y^*(Tx)|$. Pak

$$||Tx|| = |y^*(Tx)| = |T^*y^*(x)| \le ||T^*|| \cdot ||y^*|| \cdot ||x|| \le ||T^*||.$$

Tj. $||T|| \le ||T^*||$.

- 2. Linearita zobrazení plyne z předpisu a izometrie pak plyne z prvního bodu.
- $3. \ \forall z^* \in Z^* \ \forall x \in X:$

$$((S \circ T)^*z^*)(x) = z^*(S(T(x))) = S^*z^*(Tx) = (T^*S^*z^*)(x).$$

A to platí pro všechna x a z^* , tedy funkcionály na ně aplikované musí být tytéž. Identita je triviální z definice.

Věta 3.23

Nechť H_1, H_2 jsou Hilbertovy prostory a $T \in \mathcal{L}(H_1, H_2)$. Pak existuje jednoznačně určený operátor $T^* \in \mathcal{L}(H_2, H_1)$ takový, že pro každé $y \in H_2$ a $x \in H_1$ platí

$$\langle Tx, y \rangle_{H_2} = \langle x, T^{\bigstar}y \rangle_{H_1}.$$

Dále platí, že $T^* = I_1^{-1} \circ T^* \circ I_2$, kde $I_j : H_j \to H_j^*$, j = 1, 2 jsou příslušné sdružené lineární izometrie z věty výše (89 ve skriptech). $(I_i : y \mapsto \langle \cdot, y \rangle \in H_1^*$.)

 $D\mathring{u}kaz$

Zvol $x \in H_1$, $y \in H_2$. Uvažuj $g \in (H_1)^*$ definované předpisem $\langle Tx, y \rangle_{H_1}$. Dle věty 89 ve skriptech, $\exists ! z \in H_1 : g(x) = \langle x, z \rangle, \, x \in H_1$. Tedy rovnost z věty platí $\Leftrightarrow T^*y = z$. Celkem $\exists ! T^* : H_2 \to H_1$, pro které platí rovnost ze znění.

Zbývá: $T^* = I_1^{-1} \circ T^* \circ I_2$ (pak operátor T^* je lineární a spojitý). Stačí jen, že $I_1^{-1} \circ T^* \circ I_2$ splňuje rovnost ze zadání, protože existuje právě jeden takový operátor. Z definice I_i a přelévání písmenek (definice sdruženého operátoru) tedy:

$$\forall x \in H_1 \ \forall y \in H_2 : \left\langle x, \left(I_1^{-1} \circ T^* \circ I_2 \right) (y) \right\rangle_{H_1} =$$

$$(I_1(I_1^{-1} \circ T^* \circ I_2))(x) = (T^* \circ I_2)(x) = (I_2y)(Tx) = \langle Tx, y \rangle.$$

Definice 3.7 (Hilbertovsky adjungovaný operátor)

Operátor T^* z předcházející věty nazýváme hilbertovsky adjungovaným operátorem k T.

Věta 3.24

Necht H_1, H_2, H_3 jsou Hilbertovy prostory.

- 1. Je-li $T \in \mathcal{L}(H_1, H_2)$, je $T^{**} = (T^*)^* = T$.
- 2. Zobrazení $T \mapsto T^*$ je sdruženě lineární izometrie $\mathcal{L}(H_1, H_2)$ na $\mathcal{L}(H_2, H_1)$.
- 3. Necht $T \in \mathcal{L}(H_1, H_2)$ a $S \in \mathcal{L}(H_2, H_1)$. Pak $(S \circ T)^* = T^* \circ S^*$. Dále $(\mathrm{id}_{H_1})^* = \mathrm{id}_{H_1}$.

Důkaz

1. Máme

$$\forall x \in H_1 \ \forall y \in H_2 : \left\langle T^{\bigstar \bigstar} x, y \right\rangle_{H_2} = \left\langle x, T^{\bigstar} y \right\rangle_{H_1} = \left\langle Tx, y \right\rangle_{H_2}.$$

Tedy pro každé x, y jsou tyto operátory stejné, tedy $T^{**} = T$.

2. Sdružená linearita: Zachování "+" plyne ze vzorce, "zachování" "·":

$$\forall x, y \ \forall \alpha \in \mathbb{K} : \langle x, T^{\bigstar} \alpha y \rangle = \langle Tx, \alpha y \rangle = \overline{\alpha} \langle Tx, y \rangle = \overline{\alpha} \langle x, T^{\bigstar} y \rangle$$

Izometrie plyne z toho, že T^* je složení izometrií. To že je na plyne z 1.

$$3.\forall x, y: \left\langle x, (S \circ T)^{\bigstar} y \right\rangle = \left\langle S(Tx), y \right\rangle - \left\langle Tx, S^{\bigstar} y \right\rangle = \left\langle x, T^{\bigstar} S^{\bigstar} y \right\rangle.$$

Definice 3.8 (Sdružený exponent)

Nechť $p \in \mathbb{R}$, $p \ge 1$, nebo $p = \infty$. Číslo $q \in \mathbb{R}$, $q \ge 1$, nebo $q = \infty$ nazýváme sdruženým exponentem k p, pokud platí $\frac{1}{p} + \frac{1}{q} = 1$.

Věta 3.25 (Reprezentace duálů ke klasickým prostorům)

Nechť $I \neq \emptyset$.

1. Prostor $c_0(I)*$ je lineárně izometrický s prostorem $l_1(I)$ pomocí zobrazení $I:l_1(I)\to c_0(I)*$, $I(y)=f_y$, kde

$$f_y(x) = \sum_{i \in I} x_i y_i.$$

2. Je-li $1 \leq p < \infty$ a q je sdružený exponent k p, pak prostor $l_p(I)^*$ je lineárně izometrický

s prostorem $l_q(I)$ pomocí zobrazení $I: l_q(I) \to l_p(I)^*, I(y) = f_y, kde$

$$f_y(x) = \sum_{i \in I} x_i y_i.$$

3. Je-li (Ω, S, μ) libovolný prostor s mírou $1 a q je sdružený exponent k p, pak prostor <math>L_p(\mu)^*$ je lineárně izometrický s prostorem $L_q(\mu)$ pomocí zobrazení $I: L_q(\mu) \to L_p(\mu)^*$, $I(g) = \varphi_g$, kde

$$\varphi_g(f) = \int_{\Omega} f \cdot g d\mu.$$

4. Je-li (Ω, S, μ) prostor se σ -konečnou mírou, pak prostor $L_1(\mu)^*$ je lineárně izometrický s prostorem $L_{\infty}(\mu)$ pomocí zobrazení $I: L_{\infty}(\mu)$ pomocí zobrazení $I: L_{\infty}(\mu) \to L_1(\mu)^*$, $l(g) = \varphi_g$, kde

$$\varphi_g(f) = \int_{\Omega} f \cdot g d\mu.$$

 $D\mathring{u}kaz$ (1.) $||I|| \le 1$:

 $\forall y \in l_1(I) \ \forall x \in c_0(I) \ \forall F \in \mathcal{F}(I) : |\sum_{i \in F} y_i x_i| \le \sum_{i \in F} |y_i x_i| \le ||x||_{\infty} \cdot \sum_{i \in F} |y_i| \le ||x||_{\infty} \cdot ||y||_1 \implies$

$$\implies |I(y)(x)| \le ||x||_{\infty} \cdot ||y||_{1},$$

takže opravdu $I(y) \in c_0(I)^*$ a navíc $||I(y)|| \le ||y||_1$, tedy I je lineární, dobře definované, $||I|| \le 1$.

Izometrie: Zvol $y \in l_1(I)$, zvol $F \in \mathcal{F}(I)$. Polož $x_F := \sum_{i \in F, y(i) \neq 0} \frac{|y(i)|}{y(i)} e_i \in B_{c_0(I)}$. Pak

$$||I(Y)|| \ge |I(y)(x_F)| = |\sum_{i \in F, y(i) \ne 0} y(i) \cdot \frac{|y(i)|}{y(i)}| = \sum_{i \in F} |y(i)|.$$

Tedy, protože $||y||_1 = \sup_{F \in \mathcal{F}(I)} \sum_{i \in F} y(i)$, dostáváme $||I(y)|| \ge ||y||$.

Zbývá už jen "na": Zvol $f \in c_0(I)^*$. Polož $y(i) := f(e_i), i \in I$. Pak $y \in l_1(I)$: Zvol $F \in \mathcal{F}(I)$. Pak

$$\sum_{i \in F} |y(i)| = \sum_{i \in F, y(i) \neq 0} y(i) \cdot \frac{|y(i)|}{y(i)} = \sum_{i \in F, y(i) \neq 0} f(e_i) \cdot \frac{|y(i)|}{y(i)} = f\left(\sum_{i \in F, y(i) \neq 0} \frac{|y(i)|}{y(i)} \cdot e_i\right) \leq ||f||.$$

Tudíž $y \in l_1(I)$ (a $||y||_1 \le ||f||$).

Chceme I(y) = f: Máme $\forall i \in I : I(y)(e_i) = y(i) = f(e_i)$. Tedy I(y) = f na e_i , takže z linearity a spojitosti na $\overline{\operatorname{span}}(e_i, i \in I) = c_0(I)$.

Důkaz (2.)

Případ p = 1: $||I|| \le 1$ se dokáže jako v důkazu 1:

$$\forall y \in l_{\infty}(I) \ \forall x \in l_{1}(I) \ \forall F \in \mathcal{F}(I) : \sum_{i \in F} |y_{i}x_{i}| \leq ||y||_{\infty} \cdot ||x||_{1}.$$

I izometrie: Af $y \in l_{\infty}(I)$, pak

$$\forall i \in I: ||I(y)|| \ge |I(y)(e_i)| = |y(i)| \implies ||I(y)|| \ge \sup_i |y(i)| = ||y||_{\infty}.$$

Ije na: A
t $f\in l_1(I)^*.$ Polož $y(i):=f(e_i),\,i\in I.$ Pak
 $y\in l_\infty(I)$:

$$\forall i \in I : |y(i)| = |f(e_i)| \le ||f|| \implies ||y||_{\infty} \le ||f||.$$

I(y) = f je totožné jako v důkazu 1.

2. Případ p > 1: $||I|| \le 1$ se dokáže podobně jen se použije Hölder:

$$\forall y \in l_q(I) \ \forall x \in l_p(I) \ \forall F \in \mathcal{F}(I) : \sum_{i \in F} |y_i x_i| \le ||y||_q \cdot ||x||_p.$$

I izometrie: At $y \in l_q(I)$. Polož $x_F = \frac{\sum_{i \in F, y(i) \neq 0} \frac{|y(i)|}{y(i)} e_i}{||---||---||_p} \in S_{l_p(I)}$ (BÚNO $\exists i \in F : y(i) \neq 0$).

$$x_F = \left(\sum |y(i)|^{p(q-1)}\right)^{-\frac{1}{p}} \cdot \sum_{i \in F, y(i) \neq 0} \frac{|y(i)|^q}{y(i)} e_i$$

a zároveň

$$||I(y)|| \ge I(y)(x_F) = \left(\sum |y(i)|^{p(q-1)}\right)^{-\frac{1}{p}} \cdot \sum_{i \in F} |y(i)|^q = ||y(i)||_q.$$

I je na: Af $f \in l_p(I)^*$. Polož $y(i) := f(e_i), i \in I$. Pak $y \in l_q(I)$: Zvol $F \in \mathcal{F}(I)$. Pak polož $x_F = \sum_{i \in F, y(i) \neq 0} \frac{|y(i)|^q}{y(i)} e_i$.

$$\sum_{i \in F} |y(i)|^q = \sum_{i \in F} f(e_i) x_F(i) = f(\sum_{i \in F} x_F(i) \cdot e_i) \le ||f|| \cdot ||x_F||_p = ||f|| \left(\sum_{i \in F} |y(i)|^q\right)^{\frac{1}{p}}$$

. Celkem

$$\inf_{F \in \mathcal{F}(i)} \left(\sum_{i \in F} |y(i)|^q \right)^{1 - \frac{1}{p}} \le ||f||,$$

tedy $y \in l_q(I)$ a $||y||_q \le ||f||$.

Důkaz (3, 4)

1. krok μ konečná: I je spojitý, lineární a $||I|| \le 1$: p = 1:

$$|I(f)(g)| \le \int_{\Omega} |fg| d\mu \le ||f||_{\infty} \int_{\Omega} |g| d\mu = ||f||_{\infty} \cdot ||g||_{1}.$$

Tedy I je dobře definované, lineární a $||I|| \le 1$. p > 1:

$$|I(f)(g)| \le \int_{\Omega} |fg| d\mu \le ||f||_q \cdot ||g||_p.$$

Tedy I je dobře definované, lineární a $||I|| \le 1$.

I je izometrie: p > 1: At $f \in L_q(\Omega)$, BÚNO $f \neq 0$. Zvol

$$g(x) := \frac{\frac{|f(x)|^q}{f(x)} \chi_{\{x|f(x) \neq 0\}}}{||--||--||} \in S_{L_p(\mu)} = \left(\int_{\Omega} |f(x)|^{p(q-1)} dx \right)^{\frac{1}{p}} \cdot \frac{|f(x)|^q}{f(x)} \chi_{\{x|f(x) \neq 0\}},$$

$$||f|| \ge ||I(f)|| \ge I(f)(g) = \left(\int_{\Omega} |f(x)|^q d\mu(x)\right)^{-\frac{1}{p}} \cdot \int_{\Omega} |f(x)|^q d\mu(x) = ||f||_q.$$

Tedy ||I(f)|| = ||f|| a I je izometrie.

p=1: At $f\in L_{\infty}(r),$ BÚNO $f\neq 0.$ Zvol $||f||_{\infty}>\ \varepsilon>0$ je libovolné, at

$$A = \{x | f(x) > ||f||_{\infty} - \varepsilon\}.$$

Pak $\mu(A)>0$. At $\mu(A)<\infty$ (v případě σ -konečné míry můžeme A aproximovat). Polož $g(x):=\frac{|f(x)|}{|f(x)|}\frac{\chi_A}{\mu(A)}\in B_{L_{1,\mu}}$. Pak

$$||f|| \ge ||I(f)|| \ge I(f)(g) = \int_{\Omega} |f(x)| \chi_A(x) \cdot \frac{1}{\mu(A)} d\mu(x) > \frac{||f||_{\infty} - \varepsilon}{\mu(A)} \int_A 1 d\mu(x) = ||f||_{\infty} - \varepsilon.$$

I je na: Ať $x^* \in (L_p)^*$. Položme $\nu(A) := x^*(\chi_A), A \in \mathcal{A}$. Pak ν je \mathbb{K} -hodnotová míra: $\nu(\emptyset) = x^*(0) = 0$. Ať $(A_j)_{j=1}^{\infty}$ posloupnost množin z \mathcal{A} , po 2 disjunktní. Pak

$$||\chi_{\bigcup_{j=1}^{\infty} A_j} - \chi_{\bigcup_{j=1}^{n} A_j}||_p = \mu(TODO)$$

Tedy

$$\nu(\bigcup_{j=1}^{\infty} A_j) = x^*(\chi_{\bigcup_{j=1}^{\infty} A_j}) = \lim_{n \to \infty} x^*(\chi_{\bigcup_{j=1}^{\infty} A_j}) = \lim_{n \to \infty} x^*(\chi_{A_1}) + \ldots + x^*(\chi_{A_n}) = \lim_{n \to \infty} x^*(\chi_{A_1}) + \ldots + x^*(\chi_{A_n}) = \lim_{n \to \infty} x^*(\chi_{A_1}) + \ldots + \chi_{A_n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \nu(A_i) = \sum_{i=1}^{\infty} \nu(A_i).$$

Zároveň $\nu \ll \mu$:

$$\mu(A) = 0 \implies \chi_A = 0$$
 skoro všude $\implies x^*(\chi_A) = 0$.

Důkaz (Pokračování 3, 4)

Tedy z R-M věty $\exists g \in L_1(\mu)$: $\nu(A) = \int_A g d\mu$, $A \in \mathcal{A}$. Pak $x^*(s) = \int_\Omega g \cdot s d\mu$, pro s jednoduchou funkci. Tedy pro $f \in (L_p(\mu))$ najdu $s_k \to f$, $|s_k| \le 4f$, s_k jednoduché. Pak ale $s_k \stackrel{L_p}{\to} f$ (z Lebesgueovy věty, jelikož 5f je integrovatelná majoranta). Tedy

$$x^*(f) = \lim_k x^*(s_k) = \lim_k \int_{\Omega} g \cdot s_k d\mu = \int_{\Omega} g \cdot f d\mu.$$

Poslední věc, co zbývá je $g \in L_q(\mu)$: p=1: Chceme $|g(x)| \le ||x^*||$ skoro všude. Pokud ne, pak $A=\{x||g(x)|>||x^*||\}$ má kladnou míru. At $A_+=\{x||g(x)>||x^*||\}$ má kladnou míru. Pak

$$||x^*||\mu(A_+) \le |\int_{A_+} gd\mu| = |x^*(\chi_{A_+})| \le ||x^*||\mu(A_+).4.$$

Podobně pro $A_- := \{x|g(x) < -||x^*||\}. p > 1$ vynecháme.

Další kroky byly vynechány.

Věta 3.26

Nechť X,Y jsou normované lineární prostory a $1 \le p \le \infty$. Nechť q je sdružený exponent k p. Pak zobrazení $I: X^* \oplus_q Y^* \to (X \oplus_p Y)^*$ dané předpisem

$$I(f,q)(x,y) = f(x) + q(y)$$

 $je \ line \'arn\'i\ izometrie\ X^* \oplus_q Y^*\ na\ (X \oplus_p Y)^*.$

Důkaz

I(f,g) lineární pro $(f,g)\in X^*\oplus_q Y^*$ lehké. Zvol $(f,g)\in X^*\oplus_q Y^*$. Pak

$$||I(f,g)|| = \sup_{(x,y) \in B_{X \oplus_p Y}} |f(x) + g(y)| \le \sup_{(x,y) \in B_{X \oplus_p Y}} (||f|| \cdot ||x|| + ||g|| \cdot ||y||) =$$

$$= \sup_{(\alpha,\beta)\in B_{(\mathbb{K}^2,||\cdot||_p)}} \tilde{I}(||f||,||g||)(\alpha,\beta) = ||\tilde{I}(||f||,||g||)|| = ||(||f||,||g||)||_q = \sqrt[q]{||f||^q + ||g||^q} = ||f||_{(\alpha,\beta)\in B_{(\mathbb{K}^2,||\cdot||_p)}} \tilde{I}(||f||,||g||)(\alpha,\beta) = ||\tilde{I}(||f||,||g||)||_q = ||f||_{(\alpha,\beta)\in B_{(\mathbb{K}^2,||\cdot||_p)}} \tilde{I}(||f||,||g||)(\alpha,\beta) = ||\tilde{I}(||f||,||g||)||_q = ||f||_{(\alpha,\beta)\in B_{(\mathbb{K}^2,||\cdot||_p)}} \tilde{I}(||f||,||g||)(\alpha,\beta) = ||\tilde{I}(||f||,||g||)||_q = ||f||_q = ||$$

$$= ||(f,g)||_{X^* \oplus_g Y^*}.$$

Tedy $||I|| \leq 1$.

Ije izometrie: At $(f,g)\in X^*\oplus_q Y^*,$ BÚNO $(f,g)\neq 0.$ Zvol $\varepsilon>0$ libovolné. At $\eta>0$ je "dost malé": Zvolme

$$x \in B_x : |f(x)| > ||f|| - \eta, |\alpha| = 1, |f(x)| = \alpha f(x),$$

$$y \in B_y : |f(y)| > ||f|| - \eta, |\beta| = 1, |f(x)| = \beta f(y).$$

Položme

$$u = \frac{(||f||^{q-1}\alpha x, ||g||^{q-1}\beta y)}{(||f||^q + ||g||^q)^{\frac{1}{p}}} = \frac{\dots}{C}.$$

$$||u|| = \left(\frac{1}{C}||f||^{p(q-1)}||\alpha x||^p + ||g||^{p(q-1)||\beta y||^p}\right)^{\frac{1}{p}} \le \frac{1}{C}(||f||^q + ||g||^q)^{\frac{1}{p}} = 1,$$

tedy $u \in B_{\dots}$. Pak ale

$$||I(f,g)|| \ge I(f,g)(u) = \frac{1}{c}(||f||^{q-1}f(\alpha x) + ||g||^{q-1}g(\beta y)) \ge$$

$$\geq \frac{1}{C}(||f||^{q-1}(||f||-\eta)+||g||^{q-1}(||g||-\eta)) \to \frac{1}{C} \cdot (||f||^q+||g||^q) = ||(f,g)||.$$

I je na: At $\varphi \in (X \oplus_p Y)^*$. Polož $f(x) := \varphi(x,0), x \in X$ a $g(x) := \varphi(0,y), y \in Y$. Pak $f \in X^*, g \in Y^*$ a $I(f,g) = \varphi$.

Definice 3.9

Nechť K je kompaktní prostor. Řekneme, že lineární funkcionál Λ na C(K) je nezáporný, jestliže $\Lambda(f) \geq 0$ pro každou nezápornou funkci $f \in C(K)$.

Věta 3.27 (O reprezentaci nezáporných lineárních funkcionálů na C(K))

Nechť K je kompaktní prostor a Λ je nezáporný lineární funkcionál na C(K). Pak existuje jednoznačně určená regulární borelovská nezáporná míra μ na K splňující $\Lambda(f) = \int_K f d\mu$ pro každé $f \in C(K)$.

Věta 3.28 (Rieszova věta o reprezentaci $C(K)^*$)

Je-li K kompaktní prostor, pak prostor $C(K)^*$ je lineárně izometrický s prostorem M(K) všech regulárních borelovských komplexních (resp. znaménkových) měr na K pomocí zobrazení $I: M(K) \to C(K)^*$, $I(\mu)_k = \varphi_k$, kde

$$\varphi_{\mu}(f) = \int_{K} f d\mu.$$

Důkaz

Bez důkazu.

4 Anihilátory, dualita kvocientů a podprostorů

Definice 4.1 (Horní a dolní anihilátor)

Je-li X normovaný lineární prostor a $A\subset X$, pak definujeme tzv. anihilátor množiny A jako

$$A^{\perp} = \{ f \in X^* | f(x) = 0 \ \forall x \in A \}.$$

Poznámka

Vlastně je to zobecnění kolmého prostoru (v Hilbertových prostorech je to "totéž").

Pro množinu $B \subset X^*$ pak definujeme tzv. zpětný anihilátor jako

$$B_{\perp} = \{ x \in X | f(x) = 0 \ \forall f \in B \}.$$

Lemma 4.1

Nechť X je normovaný lineární prostor a $A\subset X,\ B\subset X^*.$ Pak

- A[⊥] je uzavřený podprostor X*,
- B_{\perp} je uzavřený podprostor,
- $(A^{\perp})_{\perp} = \overline{\operatorname{span}}A$,
- $(B_{\perp})^{\perp} \supset \overline{\operatorname{span}}B$.

První dva body triviální cvičení. Další dva body jsou lehké.

Věta 4.2

Nechť X je normovaný lineární prostor a Y jeho podprostor.

1. Nechť Y je uzavřený. Zobrazení $I: Y^{\perp} \to (X/Y)^*$ dané předpisem

$$I(f)(\hat{x}) = f(x)$$

je lineární izometrie Y^{\perp} na $(X/Y)^*$.

2. Zobrazení $I: X^*/Y^{\perp} \to Y^*$ dané předpisem

$$I(\hat{f}) = f|_{Y}$$

je lineární izometrie X^*/Y^{\perp} na Y^* .

Důkaz

1. a) I(f) je dobře definované: At $\hat{x} = \hat{y}$, pak $x - y \in Y$ a $f \in Y^{\perp}$ (tj. f(x - y) = 0), tedy f(x) = f(y).

b) Zároveň $||I(f)|| = \sup_{\hat{x}U_{X/Y}} |I(f)(\hat{x})| = \sup_{x \in U_x} |I(f)(\hat{x})| = \sup_{x \in U_x} |f(x)| = ||f||$, tedy I je spojité a izometrie (linearita je triviální).

c) At $\varphi \in (X/Y)^*$. Pak $\varphi \circ q \in X^*$ a $I(\varphi \circ q) = \varphi \land \varphi \circ q \in Y^{\perp}$: $\forall y \in Y : \varphi(q(y)) = \varphi(\hat{0}) = 0$. Tedy $\varphi \circ q \in Y^{\perp}$. $\forall \hat{x} \in X/Y : I(\varphi \circ q)(\hat{x}) = (\varphi \circ q)(x) = \varphi(\hat{x})$, tedy $I(\varphi \circ q) = \varphi$.

2. a) $I(\hat{f})$ je dobře definované: At $\hat{f} = \hat{g}$, pak $f - g \in Y^{\perp}$, tedy $f|_{Y} = g|_{Y}$.

b) Izřejmě lineární. Zároveň $||I(\hat{f})||=\sup_{y\in B_y}||f(y)||=||f|_Y||\leq\inf_{h\in\hat{f}}||h||=||\hat{f}||.$

c) I je izometrie: At $\hat{f} \in X^*/Y^{\perp}$. Zvol $g \in X^* : g|_Y = f|_Y \wedge ||g|| = ||f|_Y||$ z H-B věty. Pak $\hat{g} = \hat{f}$ a $||I(\hat{f})|| = ||I(\hat{g})|| = ||g|_Y|| = ||g|| \ge \inf_{h \in \hat{f}} ||h|| = ||f|_Y||$.

d) I je na: At $\varphi \in Y^*$. Z H-B věty existuje $f \in X^*$: $f|_Y = \varphi$. Pak $I(\hat{f}) = f|_Y = \varphi$. \square

Věta 4.3

Jsou-li X, Y normované lineární prostory a $T \in \mathcal{L}(X, Y)$, pak platí

1. Ker $T^* = (\operatorname{Rang} T)^{\perp}$,

2. Ker $T = (\operatorname{Rang} T^*)_{\perp}$,

- 3. $\overline{\operatorname{Rang} T} = (\operatorname{Ker} T^*)_{\perp}$
- 4. T* je prostý, právě když Rang T je hustý.

- 1. $y^* \in \operatorname{Ker} T^* \Leftrightarrow T^* y^* = 0 \Leftrightarrow y^* \circ T = 0 \Leftrightarrow y^*|_{\operatorname{Rang} T} = 0$.
- 2. $x \in \operatorname{Ker} T \Leftrightarrow Tx = 0 \Leftrightarrow \forall y^* \in Y^* : y^*(Tx) = 0 \Leftrightarrow \forall y^* \in Y^* : T^*y^*(x) = 0 \Leftrightarrow x \in (\operatorname{Rang} T^*)_{\perp}$.
 - 3. $\overline{\operatorname{Rang} T} = ((\operatorname{Rang} T)^{\perp})_{\perp} = (\operatorname{Ker} T^*)_{\perp}.$
- 4. T^* prostý \Leftrightarrow Ker $T = \{\mathbf{o}\}$, ale $\{\mathbf{o}\} \perp = Y$, tedy dle 3. $\overline{\operatorname{Rang}} R = Y$. Naopak sporem: At $\exists x \in Y / \overline{\operatorname{Rang}} T$. Potom dle H-B věty $\exists f \in Y^* : f(x) \neq 0 \land f|_{\operatorname{Rang}} T = 0$. Pak ale

$$T^*f(x_0) = f(Tx_0) = 0, \forall x_0 \in X \implies T^*f = 0 \implies f \in \operatorname{Ker} T^*.4.$$

Definice 4.2 (Druhý duál, evaluační funkcionál)

Necht X je normovaný lineární prostor. Symbolem X^{**} značíme $(X^*)^*$, tj. duál k prostoru X^* . Tento prostor nazýváme druhým duálem.

Je-li $x \in X$, pak definujeme tzv. evaluační funkcionál $\varepsilon_x \in X^{**}$ předpisem $\varepsilon_x(f) = f(x)$ pro každé $f \in X^*$. Zobrazení $\varepsilon : X \to X^{**}$ dané předpisem $\varepsilon(x) = \varepsilon_x$ se nazývá kanonické vnoření X do X^{**} .

Tvrzení 4.4

Nechť X je normovaný lineární prostor. Pak kanonické vnoření $\varepsilon: X \to X^{**}$ je lineární izometrie do. Je-li tedy navíc X Bansachův, pak $\varepsilon(X)$ je uzavřený podprostor X^{**} .

 $D\mathring{u}kaz$

Linearita zřejmá. Izometrie

$$||\varepsilon_x|| = \sup_{x^* \in B_{X^*}} |\varepsilon_*(x^*)| = \sup_{x^* \in B_{X^*}} |x^*(x)| = ||x||.$$

Dusledek

TODO.

Tvrzení 4.5 (J. P. Schauder, 1930)

Nechť X, Y jsou normované lineární prostory, $\varepsilon_X: X \to X^{**}$ a $\varepsilon_Y:$