1202B, Union-find

J. Vander Meulen C. Damas

Avril 2018

Description de la structure

Représentation

Algorithmes

Application

Représenter des partitions d'un intervalle $E = [0 \dots n[$

Soit un intervalle fini E

$$E = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

Représenter des partitions d'un intervalle $E = [0 \dots n[$

Soit un intervalle fini E

$$E = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

On veut représenter et manipuler des partitions de E

$$(0 \ 3 \ 6 \ 7) \ (2) \ (1 \ 4)$$

À partir d'une partition initiale de E

- $\{e\} \mid e \in E\}$
- {{0},{3},{6},{7},{2},{1},{4},{5}}
- C'est la relation identité abordée durant le cours de mathématiques du bloc 1.

$$\Big\{\{0\},\{3\},\{6\},\{7\},\{2\},\{1\},\{4\},\{5\}\Big\}$$

$$\Big\{ \textcolor{red}{\mathbf{\{0,3\}}}, \textcolor{blue}{\mathbf{\{6\}}}, \textcolor{blue}{\mathbf{\{7\}}}, \textcolor{blue}{\mathbf{\{2\}}}, \textcolor{blue}{\mathbf{\{1\}}}, \textcolor{blue}{\mathbf{\{4\}}}, \textcolor{blue}{\mathbf{\{5\}}} \Big\}$$

$$\Big\{\{0,3\}, \textcolor{red}{\{6,7\}}, \{2\}, \{1\}, \{4\}, \{5\}\Big\}$$

$$\Big\{\{0,3,6,7\},\{2\},\{1\},\{4\},\{5\}\Big\}$$

$$\Big\{\{0,3,6,7\},\{2\},\{1\},\textcolor{red}{\pmb{\{4,5\}}}\Big\}$$

$$\Big\{\{0,3,6,7\},\{2\}, \textcolor{red}{\{1,4,5\}}\Big\}$$

Fusionner deux parties de la partition

$$\Big\{\{0,3,6,7\},\{2\},\{1,4,5\}\Big\}$$

Répondre à la question :

Deux éléments appartiennent-ils à la même partie?

$$\left\{\{0,3,\textcolor{red}{6},7\},\{2\},\{1,\textcolor{red}{4},5\}\right\} \Rightarrow \mathrm{Non}$$

5

Fusionner deux parties de la partition

$$\Big\{\{0,3,6,7\},\{2\},\{1,4,5\}\Big\}$$

Répondre à la question :

Deux éléments appartiennent-ils à la même partie?

$$\Big\{ \{ \textcolor{red}{0}, 3, \textcolor{red}{6}, 7 \}, \{ 2 \}, \{ 1, 4, 5 \} \Big\} \Rightarrow \mathrm{Oui}$$

5

Fusionner deux parties de la partition

$$\{\{0,3,6,7\},\{2\},\{1,4,5\}\}$$

Répondre à la question :

Deux éléments appartiennent-ils à la même partie?

$$\{\{0,3,6,7\},\{2\},\{1,4,5\}\}\Rightarrow \mathrm{Oui}$$

Compter le nombre d'éléments d'une partie

$$\#\{0,3,6,7\}=4$$

5

Les représentants des parties

Pour des raisons algorithmiques :

chaque partie est associée à un représentant

$$\Big\{\{0,3,\textcolor{red}{6},7\},\{\textcolor{red}{2}\},\{\textcolor{red}{1},4,5\}\Big\}$$

Description de la structure

Représentation

Algorithmes

Application

Une partition d'un intervalle E est représentée abstraitement par une forêt

 $\Big\{\{0,3,6,7\},\{2\},\{1,4,5\}\Big\}$

$$\{\{0,3,6,7\},\{2\},\{1,4,5\}\}$$

3	3	1	1	1	1	4	1	0
6	-1	-1	0	1	1	-1	0	1
0	1	2	3	4	5	6	7	

$$\Big\{\{0,3,6,7\},\{2\},\{1,4,5\}\Big\}$$

3	3	1	1	1	1	4	1	0
6	-1	-1	I ⁰	1	1	-1	0	1
	1	2	3	4	5	6	7	

$$\{\{0,3,6,7\},\{2\},\{1,4,5\}\}$$

3	3	1	1	1	1	4	1	0
6	-1	-1	0	1	1	-1	0	1
0	1	2	3	4	5	6	7	

$$\Big\{\{0,3,6,7\},\{2\},\{1,4,5\}\Big\}$$

$$\Big\{\{0,3,6,7\},\{2\},\{1,4,5\}\Big\}$$

Une partition d'un intervalle E est représentée abstraitement par une forêt

Les racines des arbres sont les représentants des ≠ parties

3	3	1	1	1	1	4	1	0
6	-1	-1	0	1	1	-1	0	1
0	1	2	3	4	5	6	7	

Description de la structure

Représentation

Algorithmes

Application

Trouver la racine d'un arbre

Une première opération interne, à partir d'un noeud de départ, on remonte jusqu'à la racine.

Trouver la racine d'un arbre

Une première opération interne, à partir d'un noeud de départ, on remonte jusqu'à la racine.

Trouver la racine d'un arbre

Une première opération interne, à partir d'un noeud de départ, on remonte jusqu'à la racine.

Trouver le représentant de la partie d'un nombre n (find)

 1) Trouver la racine R de l'arbre auquel le noeud N associé au nombre n appartient.

Le nombre associé à la racine R est le représentant de la partie du nombre n

2) Compresser le chemin allant de la racine de R à N

Pour compter le nombre d'éléments d'une partie P à laquelle un nombre n appartient

- $\#\{0,3,6,7\}=4$
- On trouve le représentant de la partie P (find)
- Ensuite, on trouve trivialement la taille de cette partie dans le tableau qui représente l'arbre de la partie P

Pour vérifier si deux nombres n_1 et n_2 appartiennent à la même partie

•
$$\{\{0,3,6,7\},\{2\},\{1,4,5\}\}\Rightarrow \text{Non}$$

•
$$\{\{0,3,6,7\},\{2\},\{1,4,5\}\} \Rightarrow \text{Oui}$$

- On trouve les représentants des deux parties de n₁ et de n₂
- Ensuite, on vérifie que ces deux représentants sont les mêmes

Pour fusionner deux parties P_1 et P_2 de la partition (union)

On trouve les représentants des deux parties P₁ et P₂

Pour fusionner deux parties P_1 et P_2 de la partition (union)

- On trouve les représentants des deux parties P₁ et P₂
- On « attache » la plus petite partie à la plus grande

Complexité

Si E = [0..n[et que l'on effectue m opérations find ou union :

$$\mathcal{O}(\alpha(n)m)$$

οù

- α est la fonction inverse de la fonction d'Ackermann
- α est une fonction qui croît extrêmement lentement

Complexité

Si E = [0..n[et que l'on effectue m opérations find ou union :

$$\mathcal{O}(\alpha(n)m)$$

οù

- α est la fonction inverse de la fonction d'Ackermann
- α est une fonction qui croît extrêmement lentement

En pratique

$$\approx \mathcal{O}(m)$$

Description de la structure

Représentation

Algorithmes

Application

Composantes fortement connexes d'un graphe

Composantes fortement connexes d'un graphe

