L3 Objectives

- Sie kennen die Unterschiede Layer-2 zu Layer-3 Adressierung
- Sie kennen die Strukturierung der Layer-3 Adressen in (Sub-) Netze
- Sie wissen, dass IP/Layer-3 ein paketvermittelndes Netz darstellt
- Sie verstehen das Konzept der Netzmasken und können es anwenden
- Sie wissen wie Layer-3 Pakete geroutet¹werden
- Sie wissen, dass IP/Layer-3 nach dem *best-effort* Prinzip arbeitet und die Zustellung der Pakete nicht garantiert ist

						n $ w $
$^{ m 1}$ Wegleitung im Internet		□ ▶ 4	₽ ▶ ∢	≣ ▶ 《 臺 ▶	₽	200
rolf.schmutz@fhnw.ch (FHNW)	Netzwerke und Datenkommunikation			18. März 201	12	1 / 16

ND04: IP Layer-3 Übersicht

L3 Stack

Header:

- global gültige End-zu-End (Geräte) Adressierung
- Header-Pr

 üfsumme²
- Flags, Fragment, "Lebensdauer", Untersützung für (einfache) Qualitätsicherung etc
- ... und natürlich das "upper-level-protocol"

 $\mathsf{n}|w$

L3 Factlets

- Layer-3 verbindet Systeme End-to-End ³ d.h. weltweit
- Layer-3 Adressen sind strukturiert in (Sub-) Netze⁴
- IP/Layer-3 ist ein *paketvermittelndes* Netz: die Nutzdaten werden paketisiert und gesondert übertragen
- verschiedene Layer-3 Netzwerke werden durch Router⁵ miteinander verbunden
- die Dateneinheit auf IP/Layer-3 ist das Paket "packet" ⁶
- die Zustellung der Pakete auf IP/Layer-3 ist nicht garantiert⁷

 7 im Gegensatz zu Ethernet/L2 kann aber L3 bereits Fehlermeldungen zum Kommunikationspartner auslösen – wenn die Header-Checksum stimmt...

 $\mathsf{n}|w$

rolf.schmutz@fhnw.ch (FHNW)

Netzwerke und Datenkommunikation

18. März 2012

3 / 16

ND04: IP Layer-3

Übersicht

Unterschiede Layer-2 zu Layer-3 Adressierung

- Layer-2 ist eine Geräte-Identifikation⁸ ohne Struktur/Lokationsinformation
- ein Internet⁹ wäre mit Layer-2 Adressen nicht möglich, da die Bridge-Tabellen zu gross würden
- Layer-3/IP fasst mehrere Geräte in einem IP-(Sub-) Netz zusammen¹⁰ und erlaubt so eine effiziente lokalisierung
- über Layer-3/IP ist so eine weltweite lokalisierung/addressierung von Endgeräten möglich

< □ > ∢집 > ∢혈 > ∢혈 > · 혈

³im Gegensatz zu Layer-2, das nur Teilstrecken/benachbarte Systeme verbindet

⁴wie z.B. das Telefon-Netzwerk

⁵oder "Gateway" (ungenauer)

⁶bei Layer-2 war das "frame"

⁸wie z.B. die AHV-Nummer

⁹weltweiter Netzwerkverbund

 $^{^{10}}$ wie bei den Telefonnummern die Landesvorwahl/Ortsvorwahl

Paketvermittelndes Netz

- Layer-3 unterteilt die Nutzdaten¹¹ in kleinere Einheiten und versendet diese gesondert über das Netz¹²
- Die Pakete können verloren gehen oder in anderer Reihenfolge¹³ am Ziel ankommen – die Wiederherstellung der Nutzdaten ist Aufgabe der oberen Layer
- ein paketvermittelndes Netz ist Fehlerresistent¹⁴
- ... und erlaubt eine effiziente Auslastung¹⁵ der Resourcen

 15 im Gegensatz zu leitungsvermittelnden Netzen – wo die Reservierung der Bandbreite unabhängig der tatsächlichen Ausnutzung erfolgt $\mathbf{n}|w$

rolf.schmutz@fhnw.ch (FHNW)

Netzwerke und Datenkommunikation

18. März 2012

5 / 16

ND04: IP Layer-3 Übersicht

Struktur der IP-Adressen "(Sub-) Netzwerke" 19

• IP-Adressen bestehen aus 32-Bit und werden üblicherweise im "dotted-decimal" ¹⁶ Format notiert: 194.41.161.1

- die 32-Bit werden in Netz- und Host-Anteil unterteilt¹⁷
 - Netz: entspricht etwa Landes-, Ortsvorwahl im Telefonnetz
 - ► Host: entspricht etwa Nummer des Telefonapparates ohne Vorwahl
- Das "routing" 18 wird aufgrund des Netz-Anteils bestimmt
 - ... wie beim Telenfonnetz...

¹⁹im Folgenden werden "Subnetze" und "Netze" weitgehend Synonym verwendet 🗆 🕨 🗸 🗗 🕨 🔻 🚆 🕨 rolf.schmutz@fhnw.ch (FHNW)

¹¹z.B. Webseiten oder Bild- und Tondaten

¹²wie auch schon auf Laver-2

¹³oder auch *verdoppelt* werden

 $^{^{14}}$ solange die oberen Layer für die garantierte Zustellung aufkommen. Der Ausfall einzelner Verbindungen/L 2 im Internet ist üblicherweise kein Problem

¹⁶4-Bytes im Dezimalformat 0-255 getrennt durch "."

¹⁷manchmal zusätzlich in Sub-Netz-Anteil

Netz-Anteil

- der Netz-Anteil kann mittels *Netzmasken* oder *Präfixlängen* angegeben werden:

 - ► Präfixlänge (Anzahl gesetzter="1" Bits²⁰ in der Maske): /24
- Netzzugehörigkeit: wird mittels der logischen "Bitwise-And" Operation durchgeführt
 - ▶ IP-Adresse in binäres Format umrechnen, eg: $192.168.1.5_{10} \rightarrow 11000000.10101000.0000001.00000101_2$

 $11000000.10101000.00000001.00000\textbf{0}\textbf{0}\textbf{0}\textbf{0} \rightarrow 192.168.1.\textbf{0}\textbf{1}\textbf{0}$

- ...die so gewonnene Adresse wird als Netzbasisadresse bezeichnet und kann nicht für ein Endgerät/Node verwendet werden
- der Host-Anteil kann auf gleiche Weise gewonnen werden, wenn die Maske zuerst invertiert²¹ wird

²⁰ "consecutive 1-bits from MSB"			!	n $ w\>$
²¹ "one's-complement"	4		◆ ≧ → ≥	990
rolf.schmutz@fhnw.ch(FHNW)	Netzwerke und Datenkommunikation	18	. März 2012	7 / 16

ND04: IP Layer-3 Übersicht

Interlude

- finden Sie die IP-Adresse und die Netzmaske Ihres Laptops²²
- bestimmen Sie aus diesen Informationen die Netzbasisadresse und den Host-Anteil
- bestimmen Sie ob die beiden IP-Adressen 192.168.2.126 und 192.168.2.130 bei Verwendung einer Netzmaske (für beide) von 255.255.255.128 im selben Netz liegen
- bestimmen Sie die Anzahl möglicher²³ IP-Adressen bei Verwendung der Netzmasken 255.255.255.0 und 255.255.254.0
- berechnen Sie die "längste" ²⁴ Netzmaske wenn rund 2000 Adressen im selben Netz benötigt werden

 $\mathbf{n}|w$

 $^{^{22}}$ ifconfig/ipconfig, netstat -r

 $^{^{23}\}mathrm{Gesamtanzahl}$ minus zwei: broadcast und base

²⁴d.h. das eben gerade ausrechende kleinste Netzwerk

Aufteilung des Adressbereichs

- bis ca 1993 "chaotisch":
 - http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
- seither (CIDR) in geographisch/institutionell hierarchischer Weise über "Unterverteiler" RIR²⁵, private Provider²⁶

²⁵ regional-internet-registry, z.B. http://www.ripe.net/			n w
²⁶ z.B. 212.x.x.x und 213.x.x.x sind beid	de "Europa" – ähnlich wie "Landesvorwahl" 🛭		999
rolf.schmutz@fhnw.ch (FHNW)	Netzwerke und Datenkommunikation	18. März 2012	9 / 16

ND04: IP Layer-3 Übersicht

IP-Adressbereich als Klassen "" the olbe "" 1/2

 $\mathbf{n}|w$

IP-Adressbereich als Klassen "" Ut ville "" 2/2

- es werden mit *ID-Bits* identifizierte Adressbereiche für grosse, mittlere und kleine Netze gebildet
- ... "it seemed a good idea in the 80"
- Problem-1: nur 128 Netze belegen die Hälfte des Addressraums (aber können 16 Millionen Hosts aufnehmen)
- Problem-2: keine topographisch/hierarchische²⁷ Aufteilung
- Problem-3²⁸: Router müssen im schlechtesten Fall etwas über 2 Millionen Netze kennen

²⁷ wie z.B. das Telefonnetz			n w
²⁸ big, fat	∢ □		■
rolf.schmutz@fhnw.ch (FHNW)	Netzwerke und Datenkommunikation	18. März 2012	11 / 16

ND04: IP Layer-3 Übersicht

CIDR "Classless Inter-Domain Routing" (the new way) 1/2

- Neustrukturierung²⁹ des Adressbereichs
- Klassen werden *nicht* mehr beachtet
- Bildung von Supernetzen für effizientes hierarchies routing 30 \rightarrow kleine Routing-Tables
- Bessere Ausnutzung des Adressbereichs durch Aufteilung der A- und B-Klassen in kleinere Einheiten
- Notation als $Pr\ddot{a}fixl\ddot{a}nge^{31}$: 255.255.240.0 \rightarrow /20

31 "slash" - Notation

²⁹ soweit möglich... Bereits zugewiesene Netze können nicht entfernt werden

 $^{^{30}}$ eg. 212/7→Europa

CIDR "Classless Inter-Domain Routing" (the new way) 2/2


```
#!/usr/bin/env gnuplot -persist
set grid
set xdata time
set timefmt "%s"
set format x "%Y"
set title "BGP-Table Growth"
set ylabel "num-prefixes"
set xlabel "date"
plot "<curl http://bgp.potaroo.net/as2.0/bgp-active.txt" using 1:2 title "bgp-table growth" with lines
rolf.schmutz@fhnw.ch (FHNW) Netzwerke und Datenkommunikation 18. März 2012 13 / 16
```

ND04: IP Layer-3 Übersicht

... noch mehr Spass mit Bits

- Berechnen Sie zu der CIDR-Präfixlänge /20 die entsprechende Netzmaske
- ... und umgekehrt zu der Netzmaske 255.255.192.0 die Präfixlänge
- wieviele mögliche IP-Adressen können in /21 untergebracht werden?
- Bestimmen Sie ob die beiden IP-Adressen 172.17.71.5/23 und 172.17.70.240 im selben Netz liegen

Routing und Routing-Table

- die Wegleitung "routing" im Internet:
 - wird bei jedem Router³² neu entschieden und dann an den nächsten Router oder an den Zielhost zugestellt
 - entschieden wird der "next-hop" über die Routing-Tabelle³³
- die Routing-Tabelle enthält (mindestens):
 - Ziel-Netz (dest-net)
 - Ziel-Maske oder Ziel-Präfixlänge (dest-mask, prefixlength)
 - Nächster-Router (next-hop oder gateway)
- der Routing-Vorgang (forwarding): findet den "next-hop" für eine gegeben/empfangene IP-Ziel-Adresse (target-ip)
 - RT-Eintrag "passt", wenn: (target-ip & dest-mask;) = dest-net;, dann wird das Paket an next-hop; weitergeleitet
 - ▶ die RT wird nach Präfixlänge in absteigender Reihenfolge konsultiert
 - ▶ die "Default-Route" ist 0.0.0.0/0

32 "hop-by-hop" und "next-hop"			$\mathbf{n} \boldsymbol{w}$
³³ im Folgdenen "routing-table" oder R	T – eigentlich ist das die FIB		■
rolf.schmutz@fhnw.ch (FHNW)	Netzwerke und Datenkommunikation	18. März 2012	15 / 16

ND04: IP Layer-3 Übersicht

References

- http://en.wikipedia.org/wiki/IPv4_subnetting_reference
- http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
- Route-servers: http://www.traceroute.org/#Route%20Servers
- BGP-routing-table growth: http://bgp.potaroo.net/as2.0/bgp-active.html, andere lustige Informationen: http://bgp.potaroo.net/as2.0/
- CIDR: http://books.google.ch/books?id=axiW1d8GosIC&lpg=PA125&pg=PA101#v=onepage&q=&f=false
- IP-address landscape: http://xkcd.com/195/

