AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

1. (Original) A process for manufacturing macroelectronics comprising the steps of:

producing thin film active electronics on separate carrier substrates; and

combining said substrates using anisotropic electrical conductors or light guides.

- 2. (Original) The process of claim 1 wherein one of said substrates is a flexible foil.
- 3. (Original) The process of claim 1 wherein one of said substrates is a rigid plate.
- 4. (Original) The process of claim 2 wherein the material for one of said substrates is plastic.
- 5. (Original) The process of claim 3 wherein the material for one of said substrates is plastic.
- 6. (Original) The process of claim 2 wherein the material for one of said substrates is glass.
- 7. (Original) The process of claim 3 wherein the material for one of said substrates is glass.
- 8. (Original) The process of claim 2 wherein the material for one of said substrates is metal.

- 9. (Original) The process of claim 3 wherein the material for one of said substrates is metal.
- 10. (Original) The process of claim 1 wherein the thin film active electronics are produced continuously on separate carrier substrates.

cm³

- 11. (Original) The process of claim 4 wherein organic light emitting diodes are formed on the plastic substrate.
- 12. (Original) The process of claim 5 wherein organic light emitting diodes are formed on the plastic substrate.
- 13. (Original) The process of claim 6 wherein organic light emitting diodes are formed on the glass substrate.
- 14. (Original) The process of claim 7 wherein organic light emitting diodes are formed on the glass substrate.
- 15. (Original) The process of claim 6 wherein thin film transistors are formed on the glass substrate.
- 16. (Original) The process of claim 7 wherein thin film transistors are formed on the glass substrate.

17. (Amended) A process of making electronic circuits comprising the steps of:

forming at least two active circuits on separate carrier substrates; and

uns.

combining said active circuits by connecting them with a material which conducts in [only a single direction.] a direction perpendicular to the separate carrier substrates.

18. (Original) A method of manufacturing an electronic display comprising the steps of:

depositing a transparent conductor on a transparent substrate;

forming a thin film organic light emitting diode circuit on said transparent conductor;

forming a thin film transistor circuit; and

laminating said circuits to each other.

- 19. (Original) The method of claim 18 wherein said laminating step uses an adhesive anisotropic conductor.
- 20. (Original) The method of claim 19 wherein the conductor is an electrical or optical conductor.

21. (Original) The method of claim 19 wherein the bonding layer is the conductor.
22. (Original) A method of manufacturing an electronic circuit comprising the steps of:
forming a first active circuit on a first plane;
forming a second active circuit on a second plane; and
co-laminating said first and second planes with an anisotropic conductor in between.
23. (New) The process of claim 4, wherein the thin film active electronics comprise thin film
transistors.
24. (New) The process of claim 8, wherein the metal comprises steel.
25. (New) The process of claim 24, wherein the thin film active electronics comprise organic
light emitting diodes.