COMPARISON CNN

June 21, 2025

```
[1]: import tensorflow as tf
     from tensorflow.keras.utils import to_categorical
     import os
     from PIL import Image, UnidentifiedImageError
     import shutil
     # Configuration
     IMG SIZE = (28, 28)
     BATCH_SIZE = 32
     VALIDATION_SPLIT = 0.4
     SEED = 42
     ROOT_PATH = ''
     DATASET_PATH = os.path.join(ROOT_PATH,"raw_data")
     CORRUPT_PATH = os.path.join(ROOT_PATH,"corrupt_images")
     os.makedirs(CORRUPT_PATH, exist_ok=True)
     for root, dirs, files in os.walk(DATASET_PATH):
         for file in files:
             ext = os.path.splitext(file)[1].lower()
             if ext in [".jpg", ".jpeg", ".png", ".bmp", ".gif"]:
                 path = os.path.join(root, file)
                 try:
                     with Image.open(path) as img:
                         img.verify() # Check integrity
                 except (UnidentifiedImageError, OSError, IOError) as e:
                     # Move the corrupt image
                     print(f"Corrupt image found: {path} - moving to {CORRUPT_PATH}")
                     dest_path = os.path.join(CORRUPT_PATH, os.path.relpath(path,_
      →DATASET_PATH))
                     os.makedirs(os.path.dirname(dest_path), exist_ok=True)
                     shutil.move(path, dest_path)
     LANDMARK_DIR = os.path.join(ROOT_PATH,"data")
     RAW IMAGE DIR = os.path.join(ROOT PATH, "raw data")
     FILTERED_IMAGE_DIR = os.path.join(ROOT_PATH,"filtered_raw_data")
     DATASET PATH = FILTERED IMAGE DIR
     # Supported image extensions
```

```
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp']
# Create filtered output structure
os.makedirs(FILTERED_IMAGE_DIR, exist_ok=True)
for class_name in os.listdir(LANDMARK_DIR):
   if class name == 'debug':
        continue
   landmark class dir = os.path.join(LANDMARK DIR, class name)
   raw_class_dir = os.path.join(RAW_IMAGE_DIR, class_name)
   filtered class dir = os.path.join(FILTERED IMAGE DIR, class name)
   os.makedirs(filtered_class_dir, exist_ok=True)
   for file in os.listdir(landmark_class_dir):
        if not file.endswith("_landmarks.json"):
            continue
        # Get base filename without "_landmarks.json"
       base_name = file.replace("_landmarks.json", "")
        # Look for corresponding image in raw directory
       for ext in IMAGE EXTENSIONS:
            image_file = os.path.join(raw_class_dir, base_name + ext)
            if os.path.exists(image file):
                # Copy to filtered folder
                shutil.copy(image_file, os.path.join(filtered_class_dir, os.
 →path.basename(image_file)))
                break
# Load training dataset with validation split
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET PATH,
   validation_split=VALIDATION_SPLIT,
   subset="training",
   seed=SEED,
   color_mode="grayscale",
    image_size=IMG_SIZE,
   batch_size=BATCH_SIZE
num_classes = len(train_ds.class_names)
label_map = train_ds.class_names
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET_PATH,
   validation_split=VALIDATION_SPLIT,
    subset="validation",
   seed=SEED,
```

```
color_mode="grayscale",
         image_size=IMG_SIZE,
         batch_size=BATCH_SIZE
     test_ds = val_ds.shard(2,0)
     val ds = val ds.shard(2,1)
     # Normalize pixel values to [0, 1]
     normalization layer = tf.keras.layers.Rescaling(1./255)
     train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
     val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
     test_ds = test_ds.map(lambda x, y: (normalization_layer(x), y))
     # Cache and prefetch for performance
     AUTOTUNE = tf.data.AUTOTUNE
     train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
     val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
     test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)
    Found 1722 files belonging to 25 classes.
    Using 1034 files for training.
    Found 1722 files belonging to 25 classes.
    Using 688 files for validation.
[2]: from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, U
      →BatchNormalization, Input
     from tensorflow.keras.layers import Flatten, Dense, GlobalAveragePooling2D
     from tensorflow.keras.optimizers import Adam
     model = Sequential([
         Input((28, 28, 1)),
         Conv2D(16, (3, 3), activation='relu'),
         BatchNormalization(),
         MaxPooling2D(pool_size=(2, 2)),
         Dropout(0.1),
         Conv2D(32, (3, 3), activation='relu'),
         BatchNormalization(),
         MaxPooling2D(pool_size=(2, 2)),
         Dropout(0.2),
         GlobalAveragePooling2D(),
         Flatten(),
         Dense(128, activation='relu'),
         Dropout(0.2),
         Dense(num_classes, activation='softmax')
```

```
])
     model.compile(optimizer=Adam(1e-3),
                   loss='sparse_categorical_crossentropy',
                   metrics=['accuracy'])
[3]: history = model.fit(train_ds, validation_data=val_ds, epochs=50)
    Epoch 1/50
    33/33
                      4s 31ms/step -
    accuracy: 0.0330 - loss: 3.2906 - val_accuracy: 0.0536 - val_loss: 3.2048
    Epoch 2/50
    33/33
                      Os 8ms/step -
    accuracy: 0.1316 - loss: 2.9325 - val_accuracy: 0.0744 - val_loss: 3.1997
    Epoch 3/50
    33/33
                      Os 7ms/step -
    accuracy: 0.1729 - loss: 2.8238 - val_accuracy: 0.0387 - val_loss: 3.1962
    Epoch 4/50
    33/33
                      Os 7ms/step -
    accuracy: 0.1702 - loss: 2.7346 - val_accuracy: 0.0387 - val_loss: 3.2049
    Epoch 5/50
                      Os 7ms/step -
    33/33
    accuracy: 0.2110 - loss: 2.6178 - val_accuracy: 0.0387 - val_loss: 3.2202
    Epoch 6/50
    33/33
                      0s 7ms/step -
    accuracy: 0.2411 - loss: 2.5069 - val_accuracy: 0.0387 - val_loss: 3.2863
    Epoch 7/50
    33/33
                      0s 7ms/step -
    accuracy: 0.2843 - loss: 2.4128 - val_accuracy: 0.0387 - val_loss: 3.3748
    Epoch 8/50
    33/33
                      Os 7ms/step -
    accuracy: 0.3216 - loss: 2.2604 - val_accuracy: 0.0387 - val_loss: 3.4201
    Epoch 9/50
    33/33
                      Os 7ms/step -
    accuracy: 0.3249 - loss: 2.1878 - val_accuracy: 0.0387 - val_loss: 3.4895
    Epoch 10/50
    33/33
                      0s 7ms/step -
    accuracy: 0.3586 - loss: 2.1285 - val_accuracy: 0.0387 - val_loss: 3.5828
    Epoch 11/50
                      Os 7ms/step -
    accuracy: 0.4626 - loss: 1.9134 - val_accuracy: 0.0446 - val_loss: 3.4289
    Epoch 12/50
    33/33
                      0s 7ms/step -
    accuracy: 0.4390 - loss: 1.8934 - val_accuracy: 0.0446 - val_loss: 3.4718
    Epoch 13/50
    33/33
                      Os 7ms/step -
    accuracy: 0.4551 - loss: 1.8142 - val_accuracy: 0.0655 - val_loss: 3.5000
    Epoch 14/50
```

```
33/33
                 Os 7ms/step -
accuracy: 0.4899 - loss: 1.7235 - val_accuracy: 0.0625 - val_loss: 3.4196
Epoch 15/50
33/33
                 Os 7ms/step -
accuracy: 0.5198 - loss: 1.5872 - val accuracy: 0.1042 - val loss: 3.2784
Epoch 16/50
33/33
                 Os 7ms/step -
accuracy: 0.5113 - loss: 1.5855 - val_accuracy: 0.1071 - val_loss: 3.3172
Epoch 17/50
33/33
                 Os 8ms/step -
accuracy: 0.5756 - loss: 1.4017 - val accuracy: 0.1280 - val loss: 2.8988
Epoch 18/50
33/33
                 Os 8ms/step -
accuracy: 0.5982 - loss: 1.3808 - val_accuracy: 0.1548 - val_loss: 2.8156
Epoch 19/50
33/33
                 Os 8ms/step -
accuracy: 0.6177 - loss: 1.3102 - val_accuracy: 0.2500 - val_loss: 2.3193
Epoch 20/50
33/33
                 0s 7ms/step -
accuracy: 0.6163 - loss: 1.2898 - val_accuracy: 0.2857 - val_loss: 2.3503
Epoch 21/50
33/33
                 Os 7ms/step -
accuracy: 0.6569 - loss: 1.1560 - val_accuracy: 0.5030 - val_loss: 1.8065
Epoch 22/50
33/33
                 Os 8ms/step -
accuracy: 0.6720 - loss: 1.0999 - val_accuracy: 0.3333 - val_loss: 2.0837
Epoch 23/50
33/33
                 Os 8ms/step -
accuracy: 0.6643 - loss: 1.1010 - val_accuracy: 0.4732 - val_loss: 1.6617
Epoch 24/50
33/33
                 0s 8ms/step -
accuracy: 0.7202 - loss: 0.9765 - val_accuracy: 0.3631 - val_loss: 2.1200
Epoch 25/50
33/33
                 Os 8ms/step -
accuracy: 0.7117 - loss: 0.9863 - val accuracy: 0.3929 - val loss: 1.8804
Epoch 26/50
33/33
                 Os 8ms/step -
accuracy: 0.7427 - loss: 0.8931 - val_accuracy: 0.3661 - val_loss: 1.9151
Epoch 27/50
                 0s 7ms/step -
33/33
accuracy: 0.7171 - loss: 0.9346 - val_accuracy: 0.5238 - val_loss: 1.5425
Epoch 28/50
33/33
                 Os 8ms/step -
accuracy: 0.7127 - loss: 0.9039 - val_accuracy: 0.4494 - val_loss: 1.8013
Epoch 29/50
33/33
                 Os 7ms/step -
accuracy: 0.7170 - loss: 0.8738 - val_accuracy: 0.6280 - val_loss: 1.3445
Epoch 30/50
```

```
33/33
                 Os 8ms/step -
accuracy: 0.7233 - loss: 0.8256 - val_accuracy: 0.6488 - val_loss: 1.2111
Epoch 31/50
33/33
                 Os 8ms/step -
accuracy: 0.7410 - loss: 0.8019 - val accuracy: 0.5863 - val loss: 1.3743
Epoch 32/50
33/33
                 Os 8ms/step -
accuracy: 0.8014 - loss: 0.6540 - val_accuracy: 0.6042 - val_loss: 1.2813
Epoch 33/50
33/33
                 Os 9ms/step -
accuracy: 0.7509 - loss: 0.7777 - val_accuracy: 0.6458 - val_loss: 1.1719
Epoch 34/50
33/33
                 Os 7ms/step -
accuracy: 0.7982 - loss: 0.6895 - val_accuracy: 0.6607 - val_loss: 1.0779
Epoch 35/50
33/33
                 Os 8ms/step -
accuracy: 0.7980 - loss: 0.6757 - val_accuracy: 0.5833 - val_loss: 1.3448
Epoch 36/50
33/33
                 Os 8ms/step -
accuracy: 0.8026 - loss: 0.6616 - val_accuracy: 0.5982 - val_loss: 1.3248
Epoch 37/50
33/33
                 Os 7ms/step -
accuracy: 0.8144 - loss: 0.6013 - val_accuracy: 0.6607 - val_loss: 1.0365
Epoch 38/50
33/33
                 Os 8ms/step -
accuracy: 0.8182 - loss: 0.5962 - val_accuracy: 0.6964 - val_loss: 0.9699
Epoch 39/50
33/33
                 Os 8ms/step -
accuracy: 0.7942 - loss: 0.6368 - val_accuracy: 0.6815 - val_loss: 0.9876
Epoch 40/50
33/33
                 Os 8ms/step -
accuracy: 0.8179 - loss: 0.5917 - val_accuracy: 0.5774 - val_loss: 1.3849
Epoch 41/50
33/33
                 Os 8ms/step -
accuracy: 0.7977 - loss: 0.6398 - val accuracy: 0.6429 - val loss: 1.2568
Epoch 42/50
33/33
                 Os 8ms/step -
accuracy: 0.8297 - loss: 0.5400 - val_accuracy: 0.7143 - val_loss: 0.9835
Epoch 43/50
                 0s 8ms/step -
33/33
accuracy: 0.8315 - loss: 0.5463 - val_accuracy: 0.6458 - val_loss: 1.1713
Epoch 44/50
33/33
                 Os 8ms/step -
accuracy: 0.8401 - loss: 0.5246 - val_accuracy: 0.7440 - val_loss: 0.8725
Epoch 45/50
33/33
                 Os 8ms/step -
accuracy: 0.8518 - loss: 0.4858 - val_accuracy: 0.5655 - val_loss: 1.4858
Epoch 46/50
```

```
33/33
                      Os 9ms/step -
    accuracy: 0.8310 - loss: 0.5130 - val_accuracy: 0.7351 - val_loss: 0.8360
    Epoch 47/50
    33/33
                      0s 8ms/step -
    accuracy: 0.8480 - loss: 0.5035 - val accuracy: 0.5327 - val loss: 1.6933
    Epoch 48/50
    33/33
                      0s 8ms/step -
    accuracy: 0.8549 - loss: 0.4719 - val_accuracy: 0.6756 - val_loss: 1.0504
    Epoch 49/50
    33/33
                      0s 7ms/step -
    accuracy: 0.8405 - loss: 0.5182 - val accuracy: 0.6786 - val loss: 1.0258
    Epoch 50/50
    33/33
                      Os 8ms/step -
    accuracy: 0.8666 - loss: 0.4545 - val_accuracy: 0.7649 - val_loss: 0.8380
[4]: test_loss, test_accuracy = model.evaluate(test_ds)
     print(f"Test Accuracy: {test_accuracy:.4f}")
     print(f"Test Loss: {test_loss:.4f}")
    11/11
                      Os 13ms/step -
    accuracy: 0.7739 - loss: 0.7912
    Test Accuracy: 0.7784
    Test Loss: 0.7928
[5]: import matplotlib.pyplot as plt
     from sklearn.metrics import classification_report, confusion_matrix
     import seaborn as sns
     import numpy as np
[6]: plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
     plt.plot(history.history['accuracy'])
     plt.plot(history.history['val_accuracy'])
     plt.title('Model accuracy')
     plt.ylabel('Accuracy')
     plt.xlabel('Epoch')
     plt.legend(['Train', 'Validation'], loc='upper left')
     # Plot training & validation loss values
     plt.subplot(1, 2, 2)
     plt.plot(history.history['loss'])
     plt.plot(history.history['val_loss'])
     plt.title('Model loss')
     plt.ylabel('Loss')
     plt.xlabel('Epoch')
     plt.legend(['Train', 'Validation'], loc='upper left')
     plt.show()
```



```
[7]: y_true, y_pred = [], []
     target_names = [label_map[i] for i in range(len(label_map))]
     for X_batch, y_batch in test_ds:
         y_true.append(y_batch.numpy())
         batch pred = model.predict(X batch, verbose=0)
         y_pred.append(np.argmax(batch_pred, axis=1))
     y_true = np.concatenate(y_true)
     y_pred = np.concatenate(y_pred)
     print(classification_report(
         y_true, y_pred,
         digits=3,
         target_names=target_names
     ))
     cm = confusion_matrix(y_true, y_pred, labels=range(len(label_map)))
     labels = [label_map[i] for i in range(len(label_map))]
     plt.figure(figsize=(10, 8))
     sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
                 xticklabels=labels, yticklabels=labels)
     plt.xlabel("Predicted Label")
     plt.ylabel("True Label")
     plt.title("Confusion Matrix - Test Set")
     plt.show()
```

	precision	recall	f1-score	support
baca	0.857	0.667	0.750	9
bantıı	1.000	0.286	0.444	7

bapak	0.688	0.917	0.786	12
buangairkecil	1.000	0.800	0.889	5
buat	0.778	0.583	0.667	12
halo	0.455	0.909	0.606	11
ibu	0.375	1.000	0.545	3
kamu	0.842	0.696	0.762	23
maaf	0.762	0.889	0.821	18
makan	1.000	0.700	0.824	10
mau	0.950	0.905	0.927	21
nama	0.667	0.706	0.686	17
pagi	0.870	0.833	0.851	24
paham	0.941	0.762	0.842	21
sakit	1.000	0.333	0.500	6
sama-sama	0.846	0.786	0.815	28
saya	0.500	0.600	0.545	5
selamat	0.750	0.714	0.732	21
siapa	0.786	0.846	0.815	13
tanya	0.704	0.905	0.792	21
tempat	1.000	0.500	0.667	4
terima-kasih	0.857	0.750	0.800	24
terlambat	0.786	0.786	0.786	14
tidak	0.778	0.933	0.848	15
tolong	0.889	1.000	0.941	8
accuracy			0.778	352
macro avg	0.803	0.752	0.746	352
weighted avg	0.812	0.778	0.779	352

