

Clasificación

¿Qué es la clasificación?

Tipos de clasificación

Binaria	Multiclase	
Multilabel	Multi-output	

Clasificación binaria

Clasificación multiclase

Clasificación multilabel

Clasificación multi-output

Medidas de desempeño

Matriz de confusión

		Predicción	
		Positivos	Negativos
Observación	Positivos	Verdaderos Positivos (TP)	Falsos Negativos (FN)
	Negativos	Falsos Positivos (FN)	Verdaderos Negativos (TN)

Precisión y Sensibilidad (Recall)

Precisión Recall

$$\frac{TP}{TP + FP} \qquad \qquad \frac{TP}{TP + FN}$$

La curva ROC (Reveiver Operating Characteristic)

Algoritmos de clasificación

K Nearest Neighbours (KNN)

- Llega una instancia sin clasificar
- 2. Calculamos la DISTANCIA entre la nueva instancia y TODAS las instancias de entrenamiento
- 3. Elegimos los K vecinos más cercanos
- 4. Calculamos la clase que aparece más entre los K vecinos más cercanos

KNN

KNN

Pros

- Simple y efectivo
- No asume nada sobre la distribución de los datos
- Fase de entrenamiento rápida

Contras

- No crea un modelo
- Fase de clasificación lenta

Árboles de decisión

Árboles de decisión

Pros

- Fáciles de entender e interpretar
- Podemos sacar reglas del modelo
- Pueden usar datos numéricos y categóricos

Contras

- Overfitting
- Si las clases no están balanceadas hay sesgos
- Encontrar un árbol de decisión óptimo es NP

Naive Bayes

$$P(y|X) = \frac{P(X|y)P(y)}{P(X)}$$

Naive Bayes

Pros

- Es barato computacionalmente y simple
- Funciona bien con pocos datos
- Es muy usado para clasificar texto

Contras

 Asume que las características son independientes, lo que muy rara vez ocurre con datos reales

Support Vector Machines (SVM)

SVM

SVM

Pros

- Funcionan con altas dimensiones (incluso con más dimensiones que instancias)
- Versátiles
- Eficientes en memoria

Contras

Overfitting

Funciones Kernel

