Dropout as a Bayesian Approximation

Jaewoo Park

Department of Applied Statistics, Yonsei University

Variational Inference (VI)

- Approximates the posterior through $q_{\xi}(W, b)$ (variational distribution)
- Find $q_{\xi}(W, b)$ that minimizes the Kullback–Leibler (KL) divergence between $q_{\xi}(W, b)$ and p(W, b|X, Y)
 - We need to set a class of distributions (e.g., Gaussian)
 - A practical option for BNN

Jaewoo Park (Yonsei) 2/19

Variational Inference (contd.)

• KL divergence is defined as

$$KL(q_{\boldsymbol{\xi}}(\boldsymbol{W},\boldsymbol{b})||p(\boldsymbol{W},\boldsymbol{b}|\boldsymbol{X},\boldsymbol{Y})) = \int \int q_{\boldsymbol{\xi}}(\boldsymbol{W},\boldsymbol{b}) \frac{q_{\boldsymbol{\xi}}(\boldsymbol{W},\boldsymbol{b})}{p(\boldsymbol{W},\boldsymbol{b}|\boldsymbol{X},\boldsymbol{Y})} d\boldsymbol{W} d\boldsymbol{b}$$

which is intractable due to $p(\mathbf{W}, \mathbf{b} | \mathbf{X}, \mathbf{Y})$ terms

 Minimizing the KL divergence is equivalent to maximizing evidence lower-bound (ELBO)

$$\mathsf{ELBO} = \int \int q_{\boldsymbol{\xi}}(\boldsymbol{W}, \boldsymbol{b}) \log p(\boldsymbol{Y}|\boldsymbol{X}, \boldsymbol{W}, \boldsymbol{b}) d\boldsymbol{W} d\boldsymbol{b} -$$

$$\mathsf{KL}(q_{\boldsymbol{\xi}}(\boldsymbol{W}, \boldsymbol{b}) || p(\boldsymbol{W}) p(\boldsymbol{b}))$$

Jaewoo Park (Yonsei) 3/19

Variational Inference (contd.)

• We don't need the posterior p(W, b|X, Y) when we compute ELBO

$$\begin{aligned} \mathsf{ELBO} &= \int \int q_{\boldsymbol{\xi}}(\boldsymbol{W}, \boldsymbol{b}) \log p(\boldsymbol{Y}|\boldsymbol{X}, \boldsymbol{W}, \boldsymbol{b}) d\boldsymbol{W} d\boldsymbol{b} - \\ & \mathsf{KL}(q_{\boldsymbol{\xi}}(\boldsymbol{W}, \boldsymbol{b}) || p(\boldsymbol{W}) p(\boldsymbol{b})) \end{aligned}$$

- All we need is
 - Prior: $p(\mathbf{W})p(\mathbf{b})$
 - Variational distribution: $q_{\xi}(W, b)$
 - Likelihood: p(Y|X, W, b)
- Still challenging for obtaining analytical solutions

Jaewoo Park (Yonsei) 4/19

Monte Carlo (MC) Dropout

- MC dropout (Gal and Ghahramani, 2016) is an practical option
 - Fit a neural network in a usual way
 - Based on the fitted model, apply different dropouts to make prediction
- We are fitting the model just a single time (not multiple times)
- MC dropout can approximate ELBO (see later)

Jaewoo Park (Yonsei) 5 / 19

Generating Monte Carlo Samples through Dropout

- Consider we have $\widehat{\boldsymbol{W}}, \widehat{\boldsymbol{b}}$ from SGD
- For given $\widehat{\pmb{W}}, \widehat{\pmb{b}}$, dropout randomly removes the connections from nodes
- For each dropout, we will have different output realizations (predictive distribution)

Jaewoo Park (Yonsei) 6/19

Dropout as a Bayesian Approximation

Go back to VI, we have

$$\mathsf{ELBO} = \int \int q_{\boldsymbol{\xi}}(\boldsymbol{W}, \boldsymbol{b}) \log p(\boldsymbol{Y}|\boldsymbol{X}, \boldsymbol{W}, \boldsymbol{b}) d\boldsymbol{W} d\boldsymbol{b} -$$

$$\mathsf{KL}(q_{\boldsymbol{\xi}}(\boldsymbol{W}, \boldsymbol{b}) || p(\boldsymbol{W}) p(\boldsymbol{b}))$$

- All we need is
 - Prior: $p(\mathbf{W})p(\mathbf{b}) o \text{standard normal prior}$
 - ullet Variational distribution: $q_{m{\xi}}(m{W},m{b})=q_{m{\xi}}(m{W})q_{m{\xi}}(m{b})
 ightarrow {\sf mixture}$ normal
 - Likelihood: $p(Y|X, W, b) \rightarrow (nested)$ Gaussian process

Jaewoo Park (Yonsei) 7/19

Dropout as a Bayesian Approximation: q(W, b)

We use a mixture normal distribution as

$$q_{\xi}(\mathbf{W}) = \prod_{\forall i} q_{\xi}(w_i), \quad q_{\xi}(\mathbf{b}) = \prod_{\forall i} q_{\xi}(b_i)$$

$$q_{\xi}(w_i) = pN(\mu_i^w, \sigma^2) + (1 - p)N(0, \sigma^2)$$

$$q_{\xi}(b_i) = pN(\mu_i^b, \sigma^2) + (1 - p)N(0, \sigma^2)$$

- Bayesian variable selection (dropout)
 - $p \to 0$: likely to drop $(w_i, b_i = 0)$ parameters
 - $p \to 1$: likely to include $(w_i, b_i \neq 0)$ parameters

8/19

Dropout as a Bayesian Approximation: p(Y|X, W, b)

- How can we define a likelihood function?
- Let's use a nested Gaussian process

$$F_I|F_{I-1} \sim N(0, \Sigma_I), \quad I = 2, \dots, L$$

 $Y|F_L \sim p(Y|F_L)$

Here $p(\cdot|\mathbf{F}_L)$ is a exponential family distribution

Jaewoo Park (Yonsei) 9 / 19

Dropout as a Bayesian Approximation: ELBO

Remind:

$$\mathsf{ELBO} = \int \int q_{\boldsymbol{\xi}}(\boldsymbol{W}) q_{\boldsymbol{\xi}}(\boldsymbol{b}) \log p(\boldsymbol{Y}|\boldsymbol{X}, \boldsymbol{W}, \boldsymbol{b}) d\boldsymbol{W} d\boldsymbol{b} -$$

$$\mathsf{KL}(q_{\boldsymbol{\xi}}(\boldsymbol{W}) q_{\boldsymbol{\xi}}(\boldsymbol{b}) || p(\boldsymbol{W}) p(\boldsymbol{b}))$$

We can approximate this as

$$\mathcal{L}_{\mathsf{GP-MC}} := rac{1}{M} \sum_{m=1}^{M} \log p(\mathbf{Y}|\mathbf{X}, \widehat{\mathbf{W}}_m, \widehat{\mathbf{b}}_m) - \mathsf{KL}(q_{\boldsymbol{\xi}}(\mathbf{W})q_{\boldsymbol{\xi}}(\mathbf{b})||p(\mathbf{W})p(\mathbf{b}))$$

where $\{\widehat{\boldsymbol{W}}_m, \widehat{\boldsymbol{b}}_m\}_{m=1}^M$ are MC samples from $q_{\mathcal{E}}(\boldsymbol{W})q_{\mathcal{E}}(\boldsymbol{b})$

10 / 19

Dropout as a Bayesian Approximation: Prediction

• The predictive distribution is

$$q(\mathbf{Y}^*|\mathbf{X}^*) = \int \int p(\mathbf{Y}^*|\mathbf{X}^*, \mathbf{W}, \mathbf{b}) q_{\xi}(\mathbf{W}) q_{\xi}(\mathbf{b}) d\mathbf{W} d\mathbf{b}$$

• For given unobserved **X***, **Y***

$$\mathbb{E}_{q}(\boldsymbol{Y}^{*}) = \int \boldsymbol{Y}^{*}q(\boldsymbol{Y}^{*}|\boldsymbol{X}^{*})d\boldsymbol{Y}^{*} \approx \frac{1}{M}\sum_{m=1}^{M}\widehat{\boldsymbol{Y}}_{m}^{*}$$

where $\hat{\boldsymbol{Y}}_{m}^{*}$ is sampled from $q(\boldsymbol{Y}^{*}|\boldsymbol{X}^{*})$

Jaewoo Park (Yonsei) 11 / 19

A Bayesian Convolutional Neural Network-based Generalized Linear Model (Bayes CGLM)

- ullet Goal: Analyze relationships between a response $oldsymbol{Y}$ and inputs $oldsymbol{X},oldsymbol{Z}$
- Statistical Methods:
 - Provide interpretation through regression coefficients
 - Quantify uncertainties in estimates/predictions
 - Hard to analyze high-dimensional variables (e.g., image)
- Deep Learning Methods:
 - Popular for high-dimensional variables with high accuracy
 - Hard to interpret the impact of covariates
 - Uncertainty quantification is not trivial
- Jeon et al., (2023) combine statistical and deep learning models

Jaewoo Park (Yonsei)

Bayes CGLM

- Step 1: From \boldsymbol{X} , Extract $\{\Phi^{(m)}\}_{m=1}^{M}$ via Bayes CNN
- Step 2: Fit Bayes GLMs by regressing \mathbf{Y} on $[\mathbf{Z}, \Phi^{(m)}]$
- Step 3: Construct an ensemble-posterior distribution

Jaewoo Park (Yonsei)

Part 1: Extract Feature Information

- Idea: Monte Carlo dropout (Gal and Ghahramani 2015, 2016)
 - A deep Gaussian process (Damianou and Lawrence, 2013) can represent complex DNN
 - Dropout can approximate the deep Gaussian process
 - We extract MC samples $\{\Phi^{(m)}\}_{m=1}^{M}$ (features) from the last layer of **Bayes CNN**
- Benefits:
 - Reduce the dimension of high-dimensional X
 - Simultaneously analyze both X and Z with appropriate uncertainty quantification

14 / 19

Part 2: Fit Bayes GLMs

- Obtain mth feature-posterior:
 - Model:

$$E[Y|Z,\Phi^{(m)}] = Z\gamma_m + \Phi^{(m)}\delta_m = A^{(m)}\beta_m$$

- Z: covariate matrix
- $\Phi^{(m)}$: extracted feature from mth dropout sample
- Fit Bayes LM by regressing \mathbf{Y} on $\mathbf{A}^{(m)} = [\mathbf{Z}, \Phi^{(m)}]$

Jaewoo Park (Yonsei) 15/19

Part 3: An Ensemble Posterior

- We obtain *M* number of feature-posterior
- We combine them to construct the aggregated posterior
 - ullet You can simply combine posterior samples from each m
- Such aggregation can fully account for uncertainties in the feature extraction (Step 1)

Jaewoo Park (Yonsei) 16/19

Brain Tumor Image Data

The dataset is collected from Brain Tumor Image Segmentation Challenge (BRATS)

- Y: Binary response (brain tumor or not)
- X: 240 × 240 pixel gray images of brains
- Z: Vector covariates (first and second order features)
- N = 2,508 for training and $N_{cv} = 2,007$ for validation

Jaewoo Park (Yonsei) 17 / 19

Brain Tumor Image Data (contd.)

	BayesCGLM(M=500)	Bayes CNN	GLM
γ_1 (first order feature)	-5.332	0.248	-2.591
	(-7.049,-3.704)	-	(-2.769, -2.412)
γ_2 (second order feature)	4.894	0.160	2.950
	(3.303, 6.564)	-	(2.755, 3.144)
Accuracy	0.924	0.867	0.784
Recall	0.929	0.787	0.783
Precision	0.901	0.907	0.715
Time	293.533	103.924	0.004

Table: For all methods, the posterior mean of γ , 95% HPD interval, accuracy, recall, precision, and computing time (min) are reported in the table.

Jaewoo Park (Yonsei) 18/19

Discussion

Bayes CNN-basd GLM (BayesCGLM)

- Extract the important feature of the high-dimensional variables
- Simultaneously utilize covariates with different data structures (e.g., vector and image)
- Provide accurate inference with uncertainty quantification in both estimation/prediction
- Provide interpretation of the impact of covariates
- Computationally efficient due to parallelization

Jaewoo Park (Yonsei)