

Date	Planne	ed://_		Daily	Tutorial	Sheet - 4	Expe	ected Duratio	n : 90 Min
Actual Date of Attempt : / /			JEE Ad	JEE Advanced (Archive)			Exact Duration :		
*46.	Grour	nd state electronic	c configu	ration of nitroge	en atom	can be represe	nted by		(1999)
	(A)	1 1 1	1 1		(B)	1 1 1	11		
	(C)	1 1 1			(D)	1 1 1			
47 .	State	ment I: The fire	st ionisat	ion energy of B	e is grea	ter than that o	fB.		(2000)
		ment II: 2p-orb		-					
	(A)		nt I and	Statement II	are cor	rect; Statemen	t II is tl	ne correct exp	planation of
	(B)	Statement I Both Statemer	nt Land	Statement II aı	e corre	et: Statement I	I is not 1	the correct ex	nlanation of
	(2)	Statement I	it i ana	outement if u	c corre	ct, outcineit i	i is not	are correct ex	planadon o
	(C)		correct; S	Statement II is t	he incor	rect			
	(D)	Statement I is	incorrect	; Statement II is	s the cor	rect			
48.	The n	umber of nodal p	lanes in a	a p _x orbital is :					(2000)
	(A)	one	(B)	two	(C)	three	(D)	zero	
4 9.	The el	lectronic configur	ation of a	n element is 1s	s^2 , $2 s^2$, $2 s^2$	$2p^6, 3s^2, 3p^6, 3$	$3d^5, 4s^1.$	This represent	ts its : 🕟
	(A)	excited state	(B)	ground state	(C)	cationic form	(D)	anionic forn	ı (2000)
50 .	The w	avelength associa	ted with a	a golf ball weigh	ing 200	g and moving a	t a speed	of 5m/h is of	f the order :
	(A)	10^{-10} m	(B)	10 ⁻²⁰ m	(C)	10^{-30} m	(D)	10^{-40} m	(2001)
51.	The q	uantum numbers	+1/2 a	nd -1/2 for th	e electro	on spin represe	nt:		(2001)
	(A)	rotation of the	electron	in clockwise and	d anticlo	ockwise directio	ns respec	etively	
	(B)	rotation of the	electron	in anticlockwise	and clo	ockwise directio	ns respec	etively	
	(C)	magnetic mom	ent of the	e electron pointi	ng up a	nd down respec	etively		
	(D)	two quantum n	nechanic	al spin states w	hich ha	ve no classical	analogue		
52 .		erford's experimen	nt, which	established the	model o	of the atom, use	ed a bean	of:	(2002)
	(A)	-	_	ged on a metal					
	(B)	•		l on a metal foil	_				
	(C)			pinged on a me		_			
	(D)			ipinged on a me		_			
53.		nitrogen atom ha		_					
	groun	d state configura	tion 1s ²	2s ² 3p ³ , becaus	se the el	ectrons would l	be closer	to the nucleus	
		served because i							(2002)
	(A)	Heisenberg un	-		(B)	Hund's rule			
	(C)	Pauli exclusion			(D)	Bohr postula		-	
54 .		adius of which of						•	
	(A)	$He^+(n=2)$	(B)	$Li^{2+}(n=2)$	(C)	$Li^{2+}(n=3)$	(D)	$Be^{3+}(n=2)$	(2004)

55. The numbers of radial nodes of 3s and 2p orbitals are respectively:

(2005)

- **(A)** 2, 0
- **(B)** 0,
- 1, 2
- **(D)** 2, 1
- **56.** According to Bohr's theory E_n = Total energy, K_n = Kinetic energy, V_n = Potential energy R_n = Radius of nth orbit :

	Column I	Column II			
(A)	$V_n / K_n = ?$	(P)	0		
(B)	If radius of n^{th} orbit $\propto E_n^x$, $x = ?$	(Q)	-1		
(C)	Angular momentum in lowest orbital	(R)	-2		
(D)	$\frac{1}{r^n} \propto Z^y, y = ?$	(S)	1		

57. Match the entries in column I with the correctly related quantum number(s) in column II. (2008)

	Column I	Column II		
(A)	Orbital angular momentum of the electron in a hydrogen like atomic orbital	(P)	Principal quantum number	
(B)	A hydrogen-like one electron wave function obeying Pauli's principle	(g)	Azimuthal quantum number	
(C)	Shape, size and orientation of hydrogen-like atomic orbitals	(R)	Magnetic quantum number	
(D)	Probability density of electron at the nucleus in hydrogen like atom	(S)	Electron spin quantum number	

Paragraph for Question No. 58 - 60

1s

(2010)

The hydrogen-like species Li^{2+} is in a spherically symmetric state S_1 with one radial node. Upon absorbing light the ion undergoes transition to a state S_2 . The state S_2 has one radial node and its energy is equal to the ground state energy of the hydrogen atom.

58. The state S_1 is:

- (A)
- **(B)** 2s
- (C) 2 p
- **(D)** 3s
- **59.** Energy of the state S_1 in units of the hydrogen atom ground state energy is :

 \odot

- **(A)** 0.75
- **(B)** 1.50
- **(C)** 2.25
- **(D)** 4.50
- **60.** The orbital angular momentum quantum number of the state $\,{\rm S}_{\!2}\,$ is :

lacksquare

- **(A)** 0
- **(B)** 1
- 2)
- **(D)** 3
- **61.** The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is $[a_0]$ is Bohr radius]:
 - (A) $\frac{h^2}{4\pi^2 ma_0^2}$

(B) $\frac{h^2}{16\pi^2 m a_0^2}$

(2012)

(C) $\frac{h^2}{32\pi^2 ma_0^2}$

(D) $\frac{h^2}{64\pi^2 \text{ma}_0^2}$

62. P is the probability of finding the 1s electron of hydrogen atom in a spherical shell of infinitesimal thickness, dr, at a distance r from the nucleus. The volume of this shell is $4\pi r^2 dr$. The qualitative sketch of the dependence of P on r is:

Paragraph for Question No. 63 - 65

(2017)

(

The wave function, $\psi_{n,\,l,\,m_l}$ is a mathematical function whose value depends upon spherical polar coordinates $(r,\,\theta,\,\phi)$ of the electron and characterized by the quantum numbers $n,\,l$ and m_l . Here r is distance from nucleus, θ is colatitude and ϕ is azimuth. In the mathematical functions given in the Table, Z is atomic number and a_0 is Bohr radius.

(Column 1	Column 2			Column 3		
(1)	1s orbital	(i)	$\psi_{n,l,m_l} \propto \left(\frac{Z}{a_0}\right)^{3/2} e^{-\left(\frac{Zr}{a_0}\right)}$	(P)	(1)\(\frac{(1)^{\int_1/10}}{\tau_1/10}\)		
(II)	2s orbital	(ii)	One radial node	(Q)	Probability density at nucleus $\propto \frac{1}{a_0^3}$		
(III)	$2p_z$ orbital	(iii)	$\psi_{\mathrm{n},l,\mathrm{m}_l} \propto \left(\frac{Z}{\mathrm{a}_0}\right)^{\frac{5}{2}} \mathrm{re}^{-\left(\frac{Z\mathrm{r}}{\mathrm{2a}_0}\right)} \cos\theta$	(R)	Probability density is maximum at nucleus		
(IV)	$3d_z^2$	(iv)	xy-plane is a nodal plane	(S)	Energy needed to excite electron from		
	orbital				n = 2 state to $n = 4$ state is $27/32$		
	0181001				times the energy needed to excite		
					electron from $n = 2$ state to $n = 6$		
					state		

- **63.** For He⁺ ion, the only **INCORRECT** combination is:
 - ion, the only **INCORRECT** combination is:
 (I) (iii) (R) (B) (II) (ii) (Q) (C) (I) (i) (R) (D) (I) (i) (S)
- (A) (I) (iii) (R) (B) (II) (ii) (Q) (C) (I) (i) (R) (D) (I) (i) (S)

 64. For hydrogen atom, the only CORRECT combination is:

 (A) (II) (i) (Q) (B) (I) (i) (P) (C) (I) (iv) (R) (D) (I) (i) (S)

65 .	For the	given orbital in	Column	1, the only	CORRECT	combination fo	r any hydi	rogen-like species is:	\odot
	(A)	(I) (ii) (S)	(B)	(IV) (iv) (R)	(C)	(II) (ii) (P)	(D)	(III) (iii) (P)	

66. Consider the Bohr's model of a one-electron atom where the electron moves around the nucleus. In the following, List-I contains some quantities for the n^{th} orbit of the atom and List-II contains options showing how they depend on n. (2019)

	List-I		List-II
(I)	Radius of the n^{th} orbit	(P)	$\propto n^{-2}$
(II)	Angular momentum of the electron in the n^{th} orbit	(Q)	$\propto n^{-1}$
(III)	Kinetic energy of the electron in the $n^{\rm th}$ orbit	(R)	$\propto n^0$
(IV)	Potential energy of the electron in the $n^{\rm th}$ orbit	(S)	$\propto n^1$
		(T)	$\propto n^2$
		(U)	$\propto n^{1/2}$

Which of the following options has the correct combination considering List-I and List-II?

- (A) (IV), (U) (B) (IV), (Q) (C) (III), (P) (D) (III), (S)
- *67. The ground state energy of hydrogen atom is -13.6 eV. Consider an electronic state ψ of He⁺ whose energy, azimuthal quantum number and magnetic quantum number are -3.4 eV, 2 and 0, respectively. Which of the following statement(s) is(are) true for the state ψ ? (2019)
 - (A) It has 3 radial nodes
 - (B) It has 2 angular nodes
 - (C) The nuclear charge experienced by the electron in this state is less than 2e, where e is the magnitude of the electronic charge
 - **(D)** It is a 4d state