Course: Computer Vision

Unit 4: Object Recognition

Introduction to Deep Learning with Keras

Luis Baumela 2018 Universidad Politécnica de Madrid

Introduction to Deep Learning with Keras

- Brief review
 - Machine learning life cicle
 - Deep learning frameworks
- 2. Deep Learning with Keras
 - Overview
 - Main components and training steps
 - Convert and load data
 - Network definition
 - Solver definition
 - Training
- 3. Homework

Deep Learning with Caffe

The machine learning approach to computer vision
 Make machines that learn to "see".

Deep Learning with Caffe

• The deep learning life cicle

Deep Learning with Caffe

Some deep learning frameworks

- Main component
 - * model. Organized in layers. Stores weights and derivatives.

→ core layers.

keras.layers.Flatten(data_format=None)

- Main component
 - model. Organized in layers. Stores data and derivatives.
 - core layers. keras.layers.Dense(units, activation=None, use_bias=True, Arguments • units: Positive integer, dimensionality of the output space. activation: Activation function to use (see activations). If you don't specify anything, no activation is applied (ie. "linear" activation: a(x) = x). use blas: Boolean, whether the layer uses a bias vector. kernel initializer: Initializer for the kernel weights matrix (see initializers). bias initializer: Initializer for the bias vector (see initializers). units = 4 $\times 1$

- Hidden layers activation functions
 - Non-linear component in a multi-layer NN required to learn arbitrarily complex non-linear functions.
 - Saturating

- Used by initial NN models
- Vanising gradients
- Poor convergence

Non-saturating

- New DL insignts
- Do not saturate for x > 0
- Dying ReLUs problem

Hidden layers activation functions

- Non-linear component in a multi-layer NN required to learn arbitrarily comples non-linear functions.
- Saturating

- Used by initial NN models
- Vanising gradients
- Poor convergence

- Non-saturating
 - Leaky ReLUs never die parameter fixed, random or learned
 - Exponential Linear Unit (ELU)
 everywhere smooth
 nonzero gradient for x < 0
 average output closer to 0
 computationally expensive

$\begin{array}{c} \textbf{Leaky ReLU} \\ \max(0.1x,x) \end{array}$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

- Output layers activation functions
 - Softmax
 - NN output modeling a multinomial logistic
 - \rightarrow Generalization of the sigmoid (logistic) to c classes

$$\mathbf{S}(\mathbf{z}_i) = \frac{e^{\mathbf{z}_i}}{\sum_{j=1}^c e^{z_i^j}} =$$

such that

$$\mathbf{S}(z): \mathbb{R}^K \longmapsto \left\{ \mathbf{S} \in \mathbb{R}^K | S^i > 0, \sum_i S^i = 1 \right\}$$

- Weight initialization
 - Vanishing/exploding gradients

$$\mathbf{z}^l = \mathtt{W}^l \mathbf{R}(\ldots \mathtt{W}^3 \mathbf{R}(\mathtt{W}^2 \mathbf{R}(\mathtt{W}^1 \mathbf{x})))$$

if, for simplification, we assume $\,{\bf R}({\bf z})={\bf z}\,$ then

$$||\mathbf{z}^l|| pprox ||\mathbf{W}^l|| \dots ||\mathbf{W}^1|| \cdot ||\mathbf{x}|| pprox ||\mathbf{W}||^l \cdot ||\mathbf{x}||$$

so, for large enough l,

if
$$||\mathbf{W}|| > 1$$
 then $||\mathbf{z}^l|| \longrightarrow \infty$

if
$$||\mathbf{W}|| < 1$$
 then $||\mathbf{z}^l|| \longrightarrow 0$.

The same happens to the gradients, so learning may diverge or become stalled.

A partial solution is to carefully initialize the network weights

Weight initialization

For a proper behaviour we need that layers do not change the input data variance.

Sigmoid (Xavier or Glorot initialization)

$$W \sim \mathcal{N}\left(0, \sigma^2 = \frac{2}{n_{inputs} + n_{outputs}}\right)$$

ReLU, and its variants (He initialization)

$$W \sim \mathcal{N}\left(0, \sigma^2 = \frac{4}{n_{inputs} + n_{outputs}}\right)$$

- Main component
 - model. Organized in layers. Stores data and derivatives.
 - learning. Configure the learning process.

```
# For a multi-class classification problem
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
```

- Loss. We train the net by minimizing a loss
- Optimizer. Algorithm used to minimize the loss.
- Metrics. Information about the learning process displayed.

Loss functions

The loss optimized during the net training process.

Classification problems.
 {categorical, binary}_crossentropy

$$\mathcal{L}(\mathbf{g}, \mathcal{D}) = -\frac{1}{n} \sum_{i=1}^{n} \log(\mathbf{x}^{l})^{y_{i}}$$

Regression problems.
 mean_{squared, absolute}_error

$$\mathcal{L}(\mathbf{g}, \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} [y_i - x_i]^2$$

- Optimizers
 - Stochastic gradient descent

Minimize the loss by

$$W_{t+1} = W_t - \alpha \nabla_W \mathcal{L}(W, \mathcal{D})$$

where α is the **learning rate**.

 \rightarrow Effect of α in the learning process

- Optimizers
 - Stochastic gradient descent

Tuning the learning rate

- 1. Start with a fixed value (e.g. 0.01)
 - → If error increases or has large oscilations → decrease
 - → If error decreases too slowly → increase

Optimizers

Stochastic gradient descent

Tuning the learning rate

- Start with a fixed value (e.g. 0.01)
 If error increases or has large oscilations → decrease
 If error decreases too slowly → increase
- 2. During traning

Whenever error stabilizes → decrease

Do not turn down the learning rate too soon!

Optimizers

Stochastic gradient descent

Sometimes the steepest descent direction might not be the best choice.

Descending along narrow valleys is tough ... the narrower, the tougher.

Optimizers

Gradient descent with momentum

Weights are updated using a "velocity" term, V

$$W_{t+1} = W_t + V_{t+1}$$

$$V_{t+1} = \mu V_t - \alpha \nabla_W \mathcal{L}(W_t, \mathcal{D})$$

where, α is the learning rate and $\mu < 1.0$ the **momentum**.

Now gradient influences velocity, V, that has an effect on the position in weight space, W.

Optimizers

Gradient descent with momentum

Weights are updated using a "velocity" term, V

$$W_{t+1} = W_t + V_{t+1}$$

$$V_{t+1} = \mu V_t - \alpha \nabla_W \mathcal{L}(W_t, \mathcal{D})$$

where, α is the learning rate and $\mu < 1.0$ the **momentum**.

The momentum averages out opposing gradient components and builds up velocity in directions with consistent gradient

- Optimizers
 - Gradient descent with momentum

Weights are updated using a "velocity" term, V

$$W_{t+1} = W_t + V_{t+1}$$
$$V_{t+1} = \mu V_t - \alpha \nabla_W \mathcal{L}(W_t, \mathcal{D})$$

Tunning μ

- 1.Start with a small value (e.g. 0.5).
- 2. After a few iterations, when the optimization is caught in a valley, slowly increase it to a constant value (0.9 or 0.99).
- 3. Beware that α and μ interact. At $t=\infty$

$$V = -\frac{\alpha}{1 - \mu} \nabla_W \mathcal{L}(W, \mathcal{D})$$

so, if we increase μ we also may decrease α accordingly

- Optimizers
 - Gradient descent with Nesterov momentum

Weights are updated using a "velocity" term, V

$$W_{t+1} = W_t + V_{t+1}$$

$$V_{t+1} = \mu V_t - \alpha \nabla_W \mathcal{L}(W_t + \mu V_t, \mathcal{D})$$

computes the gradient after the long "jump" in V_t direction

- Optimizers
 - Adaptive learning rate algorithms

Scale down the gradient along the steepest direction.

AdaGrad

$$W_{t+1} = W_t - \alpha \nabla_W \mathcal{L}(W, \mathcal{D}) / \sqrt{s + \epsilon}$$

$$s_{t+1} = s_t + \nabla_W \mathcal{L}(W_t, \mathcal{D}) \cdot \nabla_W \mathcal{L}(W_t, \mathcal{D})$$

RMSProp idem W, but

$$s_{t+1} = \beta s_t + (1 - \beta) \nabla_W \mathcal{L}(W_t, \mathcal{D}) \otimes \nabla_W \mathcal{L}(W_t, \mathcal{D})$$

• Adam (RMSProp + momentum)

Optimizers

Adaptive learning rate algorithms

Discussion

These algoritms

- Adaptively scale the learning rate of each W_i so that it decays faster for steep directions.
- ullet They require less tuning of the lpha parameter
- Adam is the preferred algorithm.
 It is typically used with the default learning paramters.
- In some problems they may lead to solutions worse than a carefully tuned SGD with Nesterov momentum.

- Optimizers
 - Setting optimizer parameters

```
from keras import optimizers

model = Sequential()
model.add(Dense(04, kernel_initializer='uniform', input_shape=(10,)))
model.add(Activation('softmax'))

sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mean_squared_error', optimizer=sgd)

You can either instantiate an optimizer before passing it to model.compile() , as in the above example, or you can call it by its name. In the latter case, the default parameters for the optimizer will be used.

# pass optimizer by name: default parameters will be used model.compile(loss='mean_squared_error', optimizer='sgd')
```