Efficiency

Goals

- Learn practical approaches to improve training and efficiency
- Understand CUDA architecture fundamenta memory hierarchy
- Master GPU memory management and optin techniques

! Problems

- GPU Memory
- Training Speed (Compute/Memory/Disk bottlenecks)

- Good GPU memory size for NN training: 80G
- Llama3.18B: 1M tokens is a good batch size
- 100M Batch size requires **2TB** GPU memory training realization) **(3)**

Model	GPU-Hours
Llama3.18B	1.46M
Llama3.1 70B	7.0M
Llama3.1 405B	30.84M

1 Single-GPU Training

Iraining speed	Memory u
✓	✓
X	
X	
✓!	
V	
✓	X
X	
V	X
X	✓
✓	✓

1 Single-GPU Training

HF GPU Perf Guide

Batch size

Why does it matter ? Why large batch size say
 computations ?

Batch size

- Why does it matter ? Why large batch size say
 computations ?
 - GPUs are optimized for high parallelizat
 - Varge batch size allows for more paralle
 - Small batch size requires more iteration converge.
 - Sometimes Model Params are larger the processed data. Model params loading mal
 Memory-bound not Compute-bound

Gradient Accumulatio

Idea: Split batch into smaller chunks and accum gradients.

```
for i, batch in enumerate(dataloader):
    loss = model(batch)
    loss.backward()
    if (i + 1) % accumulation_steps == 0:
        optimizer.step()
        optimizer.zero grad()
```


Gradient Accumulation

Idea: Split batch into smaller chunks and accum gradients.

HF Trainer:

```
training args = TrainingArguments(
    gradient accumulation steps=4,
)
```

Gradient Checkpointir

Idea: Save memory by checkpointing intermediactivations and recomputing them at backward

? Why do we need to save and even recompute activations at backward pass?

Idea: Use lower precision for some model modu speed up training.

torch.amp

```
with torch.autocast(device type="cuda", dtype=torch.float1
    loss = model(batch)
```

HF Trainer:

fp16/bf16

```
training args = TrainingArguments(
    fp16=True,
    # bf16=True,
```


Y Automatic Mixed Precision

torch.amp

CUDA Ops that can autocast to float 16

```
matmul , addbmm, addmm, addmv, addr, baddbmm, bmm, chair
multi dot, convld, conv2d, conv3d, conv transposeld,
conv transpose2d, conv transpose3d, linear,
matmul, mm, mv,
... and more
```

CUDA Ops that can autocast to float32

```
__pow__, __rdiv__, __rpow__, __rtruediv__,
acos, asin, cosh,
binary_cross_entropy_with_logits, cosine_embedding loss,
log, log softmax, log10, log1p, log2,
mse_loss, multilabel_margin_loss, multi_margin_loss, 11 lo
norm, normalize,
... and more
```


- float32 vs float16 vs bfloat16 vs int8
- Trade-offs: Precision, speed

Note:

bfloat16 issues - bf16 works worse than fp16
 Llama3.1 models

There is a set of floating-point numbers. We need to calculate the sum of these values.

Naive approach

```
sum = 0
for value in values:
    sum += value
```

Any Problems ?

Sort Values

```
sum = 0
for value in sorted(values):
    sum += value
```


Maintain Sorted Order

```
import bisect
sum keep sorted optim = 0
sorted floats optim = float array.tolist()
for in tqdm(range(len(sorted floats optim) - 1)):
    sum least elements = sorted floats optim.pop(0) + sort
    bisect.insort left(sorted floats optim, sum least elem
    if len(sorted floats optim) == 1:
        sum keep sorted optim = sorted floats optim[0]
```

Optimizers

- Adafactor memory efficient optimizer
- 8-bit Adam Keeps Quantized Weights in me

DataLoaders

- num_workers
 - Disk IO bottlenecks
- prefetch_factor
- Data collators
- Dataset caching and lazy loading
- Memory pinning

Øtorch_empty_cache_s

- Saves memory by clearing CUDA cache
- Slows down training (up to 2x)
- Why it slows down ?

JIT - Just-In-Time compilation

How it works:

- Python-level tracing mechanism (TorchDy
- Compiles captured operations to fused Cl kernels
- Caches compiled graphs
- Reuses compiled graphs
 - If input shapes/types are the same

Pros:

- Reduces GPU memory usage (why ?)
- Speeds up training

Cons:

- Graph compilation first steps could be slo
- Graph recomputation if input shape chang

torch.compile

```
model = torch.compile(model)
```

HF Trainer:

Resources:

- Look Ma, No Bubbles single-kernel GPT
- torch.compile docs

- Soft Prompts
- LoRA

PEFT: Soft Prompts

Feature	Prompt Tuning	Prefix Tuning	P-T
Affects All Transformer Layers?	XNo	Yes	
Learnable parameters type	Soft token embeddings	MLP over soft embeddings	ML ove

Tok

PEFT: Soft Prompts

- What is the difference between Soft Prompt Hard Prompt?
- Why do we need MLP or LSTM over Soft Token

Idea:

- Add trainable shift for MLPs output
- Trainable params should be small

PEFT: LoRA

The first rule of optimization: Don't do it

The first rule of optimization: Don't do it

Are you sure your task was never solved before

Implementation Efficie

Low-level optimizations checklist:

- Write dummy PyTorch implementation
- Vuse torch.compile
- ✓Ask ChatGPT to optimize it
- Use Triton
- Use C++/CUDA

Still think you need to write C++/CUDA code ?

Implementation Efficie

Implementation Efficie

Topics:

- CUDA Async Nature
- CUDA Architecture
- CUDA Memory Hierarchy
- CUDA Kernel Life Cycle
- CUDA Kernel fusion
- CUDA kernels with Triton
- CUDA kernels with C++/CUDA

Resources:

Asynchronous Execution (Torch Docs)

This code measures only CPU time for kerne

```
start_time = time.time()
module.forward(x)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds")
```

use torch.cuda.synchronize()

- When do we need to run async streams?
- Could we benefit from async streams in case parallel compute-bound tasks that utilizes all cores ?

CUDA Architecture

• Grid > Block > Thread

Grid (Device)

CUDA Architecture

Level	What It Is	Can Communicate?
Thread	Basic execution unit	With other threads in b
Block	Group of threads	Within the block only
Grid	Group of blocks	No direct communication

Resources:

- CUDA Programming Guide
- GPU Compute and Memory Architecture

- Off-chip memory
- On-chip memory

Grid (Device)

Off-chip memory

Memory Type	Size	Latency / Bandwidth	Notes
Global Memory	~80 GB	High latency, low bandwidth	Main memory fo data; read/write
Local Memory	Per- thread	High latency	Private memory a thread; stored memory
Constant Memory	~64 KB	Low latency, high bandwidth	Read-only on GP optimized via cad

On-chip memory

Memory	Size	Latency /	Notes
Type	(typical)	Bandwidth	
Shared	~16 KB /	Low latency,	Enables inter-th communication
Memory	SM	high bandwidth	
Registers	~8 KB / SM	Very low latency	Fastest memory thread-local var

- How should we use this knowledge ?
- Is there any parallels with CPU memory hiera

Outlines

- Off-chip memory → larger but slower.
- On-chip memory → faster but very limited.
- Shared memory allows collaboration within a while global memory is accessible across blo

CUDA Kernel Life Cycle

Stage	Where it Happens	Output For
Writing Kernel Code	Developer (CPU)	• cu file
Compiling	CPU	Host obj + F
Loading	CPU → GPU	PTX/SASS
Execution	GPU	Running ke
Data Handling	$CPU \leftrightarrow GPU$	Raw memo

CUDA Kernel Fusion

What is kernel fusion ?

Original:

```
__global__ void kernelA(...) { }
__global__ void kernelB(...) { ... }
```

Fused:

```
__global__ void fusedKernel(...) {
    // do A's work
    // do B's work
}
```

CUDA Kernel Fusion

Benefit	Explanation
Less kernel launch overhead	Reduces CPU-GPU sync and s
Better memory locality	Intermediate data kept in fast
Less global memory traffic	Avoids slow reads/writes to D

Out of scope:

- Extreme low-bit quantization
 - AWQ
 - Quantization-aware training
- Distributed training
 - HF Distributed Training
 - HF Perf Training Many GPUs
 - Ultrascale Playbook
- Pytorch internals
 - Pytorch Internals
 - A Tour of Pytorch Internals