Assignment 2.

7.(i) Given a20, -a70.

sy Archimedean property 7 notity St no(-a) 7 1 = -1 7 an

= -1 7 A

Also 7 m, & N & n, 7 - a

→ a 7 - M₁

Let $N = \max \{ m_1, n_0 \}$.

Then N (-1) > 1 , N 7 - a

implies -N La L - 1.

(ii) Let $S = \{-n : n \in \mathbb{N}\}$, claim: S is not bold below.

on the contrary, suppose Sis bold below i.e f not R& no <-n & nEN.

Hence by completeness axiom 7 m GR $m = \inf \{ -n : n \in \mathbb{N} \}$

given +70, m-+ < m <-n +n+n : m-+ <0 => +-m >0

and by Archimedean property F KEN 8- K7E-M

7 M-E 7-K

which contradicts that m is the infimum of the set $\{-n:n\in\mathbb{N}\}$. Hence the set $\{-n:n\in\mathbb{N}\}$ cannot be below.

iii. Given 470, by Ardimedean

property = n & N St My >1-8

If we prove that 2" > n & N & N & N

then using the fact that 470 and 8

we would have

 $2^{n}y > ny > 1$ $y > \frac{1}{2^{n}}$

By applying induction on n, me show that 2" >n + n + N.

For n=1, 271 is clearly true. Assume 2^M 7N + n & K.

.. $2^{K+1} = 2.2^K > 2.K > K+1 + K>1.$ Hence we see that given $y > 0, \exists$ n + N & $y > \frac{1}{2^n}$.

7(iv). If a, b & R are such that

a \(b + \L \) \(\tau \) \(\tau

We first snow that the given condition implies that $4 \, \epsilon \, 70$, $a \, \epsilon \, b + \epsilon$.

Notice given $\[\[\] \] \$ by Archimedean property $\[\] \] \$ $\[\] \$ $\[\] \] \$ $\[\] \$ $\[\] \] \$ $\[\] \] \$ $\[\] \] \$ $\[\] \] \$ $\[\] \] \$ $\[\] \] \$ $\[\] \] \[\] \] \$ that $\[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \] \[\] \[\$

: by given condition, $a \leq b + \frac{1}{n} \forall u \in \mathbb{N}$, ... we see that for f 70,

a \lefter b + \frac{1}{n_t} \lefter b + \epsilon.

Hence a \le b+t \t + 70.

If a f b, then by order axiom a>b, implying a-b >0.

in putting t = a-b we get a + b + a-b = a+b < a+a-a which is weird.

Hence a \le b.

8. Given XER, prove F! NEZ such that N-12x2 N.

For $x \in \mathbb{R}$, $|x| \ge 0$, by

Archimedean property $\exists n_0 \in \mathbb{N} \text{ st}$ No 7 |x|. Then by problem I(i), $-n_0 < x < n_0$.

Let $S_{N_0} = \{j \notin \mathbb{Z}: -n, \leq j \leq n_0\}$ Clearly S_{N_0} is a finite set. Let $S_{N_0}^{\infty} = \{j \notin S_{N_0}: j > \infty\}$ "Mo $\notin S_{N_0}^{\infty} = \{j \notin S_{N_0}: j \neq \infty\}$ bdd below by $\times :: \inf_{j \in S_{N_0}} S_{N_0}^{\infty} = \inf$

By problem 3(i), int Sho is unique.

: Such an integer mis unique.

Since x < m and x < x

.. $K \leq m-1$, This impulse $m-1 \in S_K$ but since $m-1 \leq m$ and $m = \inf S_K^2$. $m-1 \notin S_K^2$. Hence $m-1 \leq \infty$.

.. From the uniqueness of int S_{K}^{X} ib follows that given $2E_{K}$, F_{L}^{Y} $M \in \mathbb{N}$.

Such that $M-1 \leq 2 \leq M$.

9. Let $S \subseteq \mathbb{R}$, $S \neq \emptyset$.

Let $u \in \mathbb{R}$ be such that $u - \frac{1}{n}$ is not an upper bound of $S \neq n \in \mathbb{N}$;

and $u + \frac{1}{n}$ is an upper bound of S then. Claim: u = Sup S.

Since $u+\frac{1}{n}$ is an upper bound of S $v+\frac{1}{n}$ by completeness axiom Sup S enists and Sup C C U + L W m CM

Sups & u+ In + n & IN.

For 670, by Archimedean projerty 3 ME EN ST MEE 71

Hence SupS &u. - (i)

(otherwise if U < Snp 5 then

putting $t = \frac{Sup S - u}{2}$ we would get from \mathfrak{B} ,

 $\sup_{2} \zeta = \frac{1 + \sup_{2} \zeta - u}{2}$

which is weird.)

On the other hand: $u-\frac{1}{n}$ is not an upper bd for C,

:. u-In < sup S Lu + n E N.

:. u - sup S L In + n & IN. -(ii)

Using same argument as abone me see that tondition (ii) implies that to 670,

uzsnps+t and hence uzsnps.
—(iii)
Using (i) and (iii) we can now conclude

Using (1) and (111) we can now conclude that $u \leq cnp \leq \leq u$ $\therefore snp c = u$.

Conversely, if u = SupS, then t + t > 0u + t > u is an upper bound for s.

In particular: \frac{1}{20} > 0 \tag{Nn \text{CIN}},

u + \frac{1}{10} is an upper bound for \text{C.}

By defin of Enpression of a set S,
given t 70 F Let & St

U-t L Let SupS.

if for $n \in \mathbb{N}$, $\frac{1}{n} 70$, $\frac{1}{70}$, $\frac{1}{8} n \in SSI$ $u - \frac{1}{n} < 8n \in S upS$ implying that $u - \frac{1}{n}$ is not an upper bound of $S + m \in \mathbb{N}$.

Let $S_{a,b} = \{ a \in A : a < a < b \}$.

By Denseness of B in IR, $S_{a,b}$ is a non-empty subset of R. Since $S_{a,b}$ is

bold abone, Sup Saib exists.

If $S_{n,b}$ is finite then by problem 3(ii) $S_{n,b}$ $S_{n,b}$

(ii). We know for a, b & R & A & b

a + \(\sigma \) b + \(\sigma \) & R and

a + \(\sigma \) \(\sigma \) b + \(\sigma \)

By denseness of varionals in R, F

r \(\sigma \) & A

a+ 52 < r < b+ 52

= a < 8-12 < b

Claim: if r & B, then r-12 is an irrational number.

On the contrary assume

 $x = r - \sqrt{2}$ is rational then $y - x = \sqrt{2}$ would be rational which is not true.

Hence we see that given a, bEIR

F N EI of ackeb.

(iii). If a,b & R are such that a L b,
b-a > 0. ... given any real
number u > 0, by Archimedean
property & n & N & n (b-a) > u.
Now using the same proof as the
denseness of rationals in R it can be
shown that & r + B S +
a < r u < b.