LOAN PREDICTION

CREATED BY SANDEEP GUPTA

- TASK 1: IMPORTING LIBRARIES AND EXPLORING THE DATASET.
- TASK 2: DEFININING EXPLORATORY DATA ANALYSIS WITH AN OVERVIEW OF THE WHOLE PROJECT.
- TASK 3: CHECKING MISSING VALUES AND OUTLIERS & CREATING VISUAL METHODS TO ANALYZE THE DATA.
- TASK 4: CREAT A MODEL THAT FITS THE DATA
- TASK 5: CREATING AN ACCURACY TABLE

WE ARE GOING TO CREATE AN ACCURACY TABLE FOR EACH MODEL SEPARATELY

TASK 1: IMPORTING LIBRARIES AND EXPLORING THE DATASET.

```
In [605]: # Importante Required Libraries
          import pandas as pd
          from sklearn.linear_model import LogisticRegression
          from sklearn.svm import SVC
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.preprocessing import OrdinalEncoder
          from sklearn.model_selection import train_test_split
          from sklearn.preprocessing import StandardScaler
          from sklearn.preprocessing import LabelEncoder
          from sklearn.metrics import accuracy_score
          from sklearn.metrics import classification_report
          import matplotlib.pyplot as plt
          import seaborn as sns
          from sklearn import metrics
          from sklearn.neighbors import KNeighborsClassifier
          import numpy as np
          import joblib
          import pickle
```

```
In [607]: # Read The Dataset
    data = pd.read_csv('loan_data.csv')
    data.head()
```

Out[607]:

•		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
	0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0
	1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0
	2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0
	3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0
	4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0

TASK 2: <u>DEFINING EXPLORATORY DATA ANALYSIS WITH AN</u> OVERVIEW OF THE WHOLE PROJECT

In [610]: data.describe()

Out[610]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

• DATA VISUALIZATION USING PIECHART AND COUNTPLOT FOR CATEGORICAL ATTRIBUTES (COLUMNS).

```
In [612]: data.groupby('Gender').size().plot(kind='pie', autopct='%.2f', colors=['red', 'blue'], title="Gener")
Out[612]: <AxesSubplot: title={'center': 'Gener'}>
                                Gener
                                                    Female
                                          18.64
             Male
```

MATRIX FORM FOR CORRELATION DATA "HEATMAP"

• TASK 3: CHECKING MISSING VALUES AND OUTLIERS & CREATING VISUAL METHODS TO ANALYZE THE DATA.

Check the nulls in data

```
In [620]: data.isnull().sum()
Out[620]: Loan_ID
                                 0
          Gender
                               13
          Married
          Dependents
                               15
          Education
          Self_Employed
          ApplicantIncome
          CoapplicantIncome
          LoanAmount
                                22
                               14
          Loan_Amount_Term
          Credit History
                                50
          Property Area
                                 0
          Loan_Status
                                 0
          dtype: int64
```

Handle categorical missing data

We replace missing data with mode

TASK 4: CREATE A MODEL THAT FITS THE DATA

Convert the categorical data into numerical data

- Now, we must encode the data which means converting the categorical variables into a numeric form to convert it to a machine-readable form, and this
 can be done through using LabelEncoder () from Sklearn.preprocessing library, and also using OrdinalEncoder() from Sklearn.preprocessing library also.
- There are a lot of ways to convert the data into numerical data but I will mention these two ways Only.

```
# Label Encode The Target Variable
In [631]:
                                       encode = LabelEncoder()
                                       data.Loan Status = encode.fit transform(data.Loan Status)
In [632]: # Ordinal Encode The features
                                       enc = OrdinalEncoder()
                                       data[["Gender", 'Married', 'Education', 'Self_Employed', 'Property_Area', 'Loan_Status', 'Dependents']] = enc.fit_transform(data[["Gender", 'Married', 'Education', 'Self_Employed', 'Property_Area', 'Loan_Status', 'Dependents']] = enc.fit_transform(data["Gender", 'Married', 'Education', 'Self_Employed', 'Property_Area', 'Loan_Status', 'Dependents']] = enc.fit_transform(data["Gender", 'Married', 'Marri
                                       data.head()
Out[632]:
                                                        Loan ID Gender Married Dependents Education Self Employed ApplicantIncome CoapplicantIncome LoanAmount Loan Amount Term Credit History
                                          0 LP001002
                                                                                                                             0.0
                                                                                                                                                                      0.0
                                                                                                                                                                                                         0.0
                                                                                                                                                                                                                                                           0.0
                                                                                                 1.0
                                                                                                                                                                                                                                                                                                       5849.0
                                                                                                                                                                                                                                                                                                                                                                              0.0
                                                                                                                                                                                                                                                                                                                                                                                                                    128.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    360.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.0
                                          1 LP001003
                                                                                                 1.0
                                                                                                                             1.0
                                                                                                                                                                     1.0
                                                                                                                                                                                                         0.0
                                                                                                                                                                                                                                                           0.0
                                                                                                                                                                                                                                                                                                       4583.0
                                                                                                                                                                                                                                                                                                                                                                    1508.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.0
                                                                                                                                                                                                                                                                                                                                                                                                                    128.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    360.0
                                          2 LP001005
                                                                                                  1.0
                                                                                                                             1.0
                                                                                                                                                                      0.0
                                                                                                                                                                                                         0.0
                                                                                                                                                                                                                                                           1.0
                                                                                                                                                                                                                                                                                                       3000.0
                                                                                                                                                                                                                                                                                                                                                                              0.0
                                                                                                                                                                                                                                                                                                                                                                                                                       66.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   360.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.0
                                          3 LP001006
                                                                                                 1.0
                                                                                                                             1.0
                                                                                                                                                                                                         1.0
                                                                                                                                                                                                                                                           0.0
                                                                                                                                                                                                                                                                                                       2583.0
                                                                                                                                                                                                                                                                                                                                                                                                                   120.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   360.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.0
                                                                                                                                                                      0.0
                                                                                                                                                                                                                                                                                                                                                                    2358.0
                                          4 LP001008
                                                                                                                                                                                                                                                          0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.0
                                                                                                  1.0
                                                                                                                             0.0
                                                                                                                                                                      0.0
                                                                                                                                                                                                         0.0
                                                                                                                                                                                                                                                                                                       6000.0
                                                                                                                                                                                                                                                                                                                                                                              0.0
                                                                                                                                                                                                                                                                                                                                                                                                                   141.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   360.0
```

LOGISTIC REGRESSION MODEL

```
In [638]: LR = LogisticRegression()
    LR.fit(x_train,y_train)
    predict = LR.predict(x_test)
    print(classification_report(y_test, predict))
    LRAcc = accuracy_score(predict,y_test)
    print('Logistic Regression accuracy is: {:.2f}%'.format(LRAcc*100))
```

	precision	recall	f1-score	support
0.0	0.91	0.41	0.57	51
1.0	0.81	0.99	0.89	134
accuracy			0.83	185
macro avg	0.86	0.70	0.73	185
weighted avg	0.84	0.83	0.80	185

Logistic Regression accuracy is: 82.70%

CONFUSION MATRIX

```
In [639]: # Confusion Matrix for Logistic Regression
          cm = metrics.confusion_matrix(y_test, predict)
          print('Confusion Matrix for Logistic Regression :\n', cm, '\n')
          fig, ax = plt.subplots(figsize=(5, 5))
          ax.matshow(cm, cmap=plt.cm.Blues, alpha=0.5)
          for i in range(cm.shape[0]):
              for j in range(cm.shape[1]):
                  ax.text(x=j, y=i,s=cm[i, j], va='center', ha='center', size='xx-large')
          plt.xlabel('Predictions', fontsize=18)
          plt.ylabel('Actuals', fontsize=18)
          plt.title('Confusion Matrix of Logistic Regression', fontsize=14)
          plt.show()
          Confusion Matrix for Logistic Regression :
           [[ 21 30]
             2 132]]
```


KNN MODEL

To find a optimum value of K we plot a graph of error rate vs K value ranging from 0 to 40

```
In [640]:
          error_rate = []
          for i in range(1,40):
              kNN = KNeighborsClassifier(n_neighbors=i)
              kNN.fit(x_train,y_train)
              predict_i = kNN.predict(x_test)
              error_rate.append(np.mean(predict_i != y_test))
          plt.figure(figsize=(10,6))
          plt.plot(range(1,40),error_rate,color='blue', linestyle='dashed', marker='o',
                   markerfacecolor='red', markersize=10)
          plt.title('Error Rate vs. K Value', fontsize=18)
          plt.xlabel('K', fontsize=18)
          plt.ylabel('Error Rate', fontsize=18)
          plt.show()
```


SVC MODEL

Confusion Matrix for SVC Model

```
cm = metrics.confusion_matrix(y_test, predict_svc)
print('Confusion Matrix for SVC :\n', cm, '\n')
fig, ax = plt.subplots(figsize=(5, 5))
ax.matshow(cm, cmap=plt.cm.Blues, alpha=0.5)
for i in range(cm.shape[0]):
    for j in range(cm.shape[1]):
        ax.text(x=j, y=i,s=cm[i, j], va='center', ha='center', size='xx-large')
plt.xlabel('Predictions', fontsize=18)
plt.ylabel('Actuals', fontsize=18)
plt.title('Confusion Matrix of SVC', fontsize=15)
plt.show()
Confusion Matrix for SVC :
 [[ 21 30]
  [ 2 132]]
```


RANDOM FOREST MODEL

```
In [647]: clf=RandomForestClassifier(n estimators=800)
          clf.fit(x train,y train)
          y pred rf=clf.predict(x test)
          print(classification_report(y_test, y_pred_rf))
          rfAcc = accuracy score(y pred rf,y test)
          print('ID3 model accuracy is: {:.2f}%'.format(rfAcc*100))
                        precision
                                     recall f1-score support
                   0.0
                             0.71
                                       0.43
                                                 0.54
                                                             51
                   1.0
                             0.81
                                       0.93
                                                 0.87
                                                            134
                                                 0.79
                                                            185
              accuracy
                             0.76
                                                 0.70
                                                            185
             macro avg
                                       0.68
          weighted avg
                             0.78
                                       0.79
                                                 0.78
                                                            185
          ID3 model accuracy is: 79.46%
```

Confusion Matrix for Random Forest

```
In [648]: cm = metrics.confusion_matrix(y_test, y_pred_rf)
    print('Confusion Matrix for ID3 :\n', cm, '\n')
    fig, ax = plt.subplots(figsize=(5, 5))
    ax.matshow(cm, cmap=plt.cm.Blues, alpha=0.5)
    for i in range(cm.shape[0]):
        for j in range(cm.shape[1]):
            ax.text(x=j, y=i,s=cm[i, j], va='center', ha='center', size='xx-large')

plt.xlabel('Predictions', fontsize=18)
    plt.ylabel('Actuals', fontsize=18)
    plt.title('Confusion Matrix of ID3', fontsize=15)
    plt.show()

Confusion Matrix for ID3 :
    [[ 22     29]
    [ 9 125]]
```


LOAD THE LOGISTIC REGRESSION MODEL

Load Random Forest Model with Joblib

```
In [649]: joblib_file = "loan_predition_model_RF"
    joblib.dump(clf, joblib_file)
    loaded_model = joblib.load(open(joblib_file, 'rb'))
    pred_y = loaded_model.predict(x_test)
    result = np.round(accuracy_score(y_test, pred_y), 2)
    print(result)

0.79
```

Load Logistic Regression model with Pickle

```
In [650]: file = "loan_predition_model_LR.pkl"
    pickle.dump(LR, open(file, 'wb'))

loaded_model = pickle.load(open(file, 'rb'))

pred_Y = loaded_model.predict(x_test)
    result = np.round(accuracy_score(y_test, predict) ,2)
    print(result)

0.83
```

Conclusion:

From previos code we will notice we've chose Logistic Regression model to load and that because this model make the best prediction as the accuracy of it is the highest. but we are going to load Random Forest either to just comparing the two models (The highest and the lowest).

We now done. I hope this simple project will make you feel satisfaction with your hard work during this workshop and I hope I explain every point in this notebook and being a reference for my fellow students.