

Today's Tasks

- Implement PID code.
- Closed-loop velocity control using proportional feedback, and study the effect of controller gain on transient and steady-state behavior.
- Elimination of steady-state error through the use of *integral* (I), and *proportional plus integral* (PI) control.
- Design and implement a PI controller according to given specifications.
- Extra Credit Task: Simulink simulation.
- Deliverable:
 - Lab 3 report (use the report template) to Gradescope by midnight.

Control System Comparison

Open-loop:

- The output variables do not affect the input variables
- The system will follow the desired reference commands if no unpredictable effects occur
- It can compensate for disturbances that are taken into account
- It does not change the system stability

Closed-loop:

- The output variables do affect the input variables in order to maintain a desired system behavior
- Requires measurements (controlled variables or other variables)
- Requires control error computed as the difference between the reference command and the controlled variable
- Computes control input based on the control error such that the control error is minimized
- Able to reject the effect of disturbances
- Can make the system unstable, where the controlled variables grow without bound

Open Loop Angular Velocity as a Function of PWM

Open Loop Step Responses

Closed-Loop Block Diagram

$$K = \frac{K_{dc}}{vc2pwm}$$

Voltage to PWM conversion factor:
$$vc2pwm = \frac{255 [PWM]}{5 [V]} = 51$$

Closed-Loop Transfer Function

 Closed-loop transfer function: The gain of a <u>single-loop feedback</u> <u>system</u> is given by the forward gain divided by 1 plus the loop gain (for negative feedback).

Closed-Loop Transfer Function: Proportional Control

$$G_{cl}(s) = \frac{\Omega(s)}{\Omega_r(s)} = \frac{K_p K}{\tau s + (1 + K_p K)} = \frac{\frac{K_p K}{(1 + K_p K)}}{\frac{\tau}{(1 + K_p K)} s + 1}$$
A new time of

A new time constant

Step Response Characteristics:

$$\tau' = \frac{\tau}{1 + K_p K}$$

$$\Omega_{SS} = \lim_{t \to \infty} \Omega(t) = \lim_{s \to 0} s\left(\frac{A}{s}\right) G_{cl}(s) = A\left(\frac{K_p K}{1 + K_p K}\right)$$

A = 1 for a unit step input

Measuring Time Constant and SS Error

10/3/21

Drawbacks of P Control

- Steady-state error
- Kp is limited by the saturation limit of the system
- Large Kp will also amplify noise and/or disturbances that may lead to instability

10/3/21 2.004 Fall 21' 10

P Control Steady-Sate Errors

In real world a set-point profile is often more complex than a simple step input.

$$\Omega_{ss} = \lim_{t \to \infty} \Omega(t) = \lim_{s \to 0} s\left(\frac{A}{s}\right) G_{cl}(s) = A\left(\frac{K_p K}{1 + K_p K}\right)$$

Steady-State Error and System Types

• The servomotor plant is a "Type 0" system that will always have steady-state error with proportional control.

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \left[\Omega_r(s) - G(s)\Omega_r(s)\right] = \lim_{s \to 0} s \left[1 - G(s)\right]\Omega_r(s)$$

$$\text{Closed-loop P control} \implies 1 - G_{cl}(s) = 1 - \frac{\sqrt{K_p K}}{\tau s + (1 + K_p K)} \neq 0$$

 A system type can be determined by the number of "free" integrations in the open-loop transfer function.

$$G_{ol}(s) = \frac{N(s)}{s^n D(s)}$$
 "Type n" system

- Type n system will produce zero steady-state error for input of the same order or less. For example,
 - Zero steady-state error for Type 1 system when given a step input.

I Control to Eliminate Steady-State Error

$$G_{cl}(s) = \frac{K(K_p s + K_i)}{\tau s^2 + (1 + K_p K)s + K_i K}$$
 One zero
Two poles

Steady-state

$$\Omega_{SS} = \lim_{t \to \infty} \Omega(t) = \lim_{s \to 0} s\left(\frac{A}{s}\right) G_{cl}(s) = A\left(\frac{K_i K}{K_i K}\right) = A$$

A = 1 for a unit step input

Differential Equation Analysis

P Control:
$$\tau \frac{d\Omega(t)}{dt} + \Omega(t) = K_p K(\Omega_r(t) - \Omega(t))$$

At steady state
$$\frac{d\Omega(t)}{dt} = 0$$
 $\Omega_{ss} = K_p K (\Omega_r - \Omega_{ss})$ $\Omega_{ss} = \frac{K_p K}{1 + K_p K} \Omega_r$

PI Control:
$$\tau \frac{d\Omega(t)}{dt} + \Omega(t) = K_p K(\Omega_r(t) - \Omega(t)) + K_i K \int (\Omega_r(t) - \Omega(t)) dt$$

Take derivative of above
$$\tau \frac{d^2\Omega}{dt^2} + \frac{d\Omega}{dt} = K_p K \frac{d(\Omega_r - \Omega)}{dt} + K_i K (\Omega_r - \Omega)$$

At steady state all derivatives go to zero

$$0 = K_i K(\Omega_r - \Omega_{SS}) \qquad \boxed{\Omega_{SS} = \Omega_r}$$

$$\Omega_{\rm ss} = \Omega_r$$

P, I, and PI Comparison

- P Control: steady-state error
- I Control: overshoot, longer transient, integrator windup

Integrator Windup

- Caused by the interaction of integral action and saturations, etc.
- Actuators have limitations such as: torque/speed of a motor, opening/closing of a valve, etc.
- When saturation occurs
 - Controller output reaches the actuator limits
 - Feedback loop is inactive
 - System operates in open loop (i.e., actuator output is fixed at its saturation value and independent of the system states/outputs)
- A controller with integral action
 - Error continues to be integrated
 - Integral term may become very large (it "winds up")
 - System may exhibit large transients when saturation occurs

Anti-Windup

- Limit set-point range so the actuator does not saturate.
 - Sets conservative bounds
 - Results in poor performance
 - Does not avoid windup caused by disturbances
- Avoid by maintaining the integral term to an appropriate value when the actuator saturates.

PI Controller Design

- Design a PI controller based on given transient specifications:
 - Critically damped
 - Natural frequency = 10 rad/s
- Implement your controller gains on the Arduino and acquire an actual response with a reference angular velocity $\Omega_r=15\ rad/s$.

Test The Controller

- Test the controller by observing the Stroboscopic effect.
- Determine the desired wheel velocity.
- Use your phone's camera app to observe the spokes of the wheel. Verify or set the frame rate to 30 frames per second (fps) in video mode.

Strobe Effect Example

Extra Credit Task: Simulink Simulation

FYI: Simscape Simulation

FYI: Analog Proportional Controller

FYI: Analog PID Controller

$$V_{out} = K_p V_{in} + K_d \frac{dV_{in}}{dt} + K_i \int_0^t V_{in} dt$$

