

Licence 1ère année, 2012-2013, MATHÉMATIQUES ET CALCUL 1 (MC1)

Feuille de TD n° 3 : Limites - Continuité

Exercice 1

1) Déterminer le domaine de définition naturel des fonctions définies par les formules suivantes

$$f(x) = \sqrt{\frac{1+2x}{4-3x}}, \ g(x) = \sqrt{x^2+3x-4}, \ h(x) = \ln(2x+5)$$

2) Pour chacune des fonctions suivantes, décrire le domaine D de définition naturel, puis détailler les opérations algébriques et les compositions en jeu pour justifier la continuité de la fonction sur D.

a)
$$f(x) = \sqrt{x^3 - 2}$$
; b) $g(x) = \ln\left\{ (x - 1)^2 (x + 2)^4 \right\}$; c) $h(x) = \frac{x}{\sqrt{x^2 + 1} - 3}$;

Exercice 2 Déterminer les limites suivantes quand elles existent.

a)
$$\lim_{x \to +0} \frac{1}{x} (\sqrt{1+x+x^2} - 1)$$
, b) $\lim_{x \to +\infty} \frac{x^2 - 4}{x^2 - 3x + 2}$, c) $\lim_{x \to 0} \frac{x^2 + 2|x|}{x}$

d)
$$\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x-4}$$
, e) $\lim_{x \to 1} \frac{1}{1-x} - \frac{2}{1-x^2}$, f) $\lim_{x \to +\infty} x + \sqrt{x} \sin(x)$

Exercice 3

1) a - En utilisant la définition de la dérivée en 0 de la fonction $f(y) = \ln(1+y)$, montrer que

$$\lim_{y \to 0} \frac{\ln(1+y)}{y} = 1.$$

b - En déduire $\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^x$.

2) a - Déterminer la limite suivante $\lim_{x\to 0} \frac{\sin x}{x}$.

b - En déduire $\lim_{x\to 0} \left(\frac{x}{\sin x}\right)^{\frac{\sin x}{x-\sin x}}$.

Exercice 4 Déterminer les limites suivantes quand elles existent.

a)
$$\lim_{x \to 1} \frac{x-1}{x^n-1}$$
, b) $\lim_{x \to 0} \frac{\sin(3x)}{\sin(2x)}$, c) $\lim_{x \to \pi/2} (\pi-2x) \tan x$, d) $\lim_{x \to +\infty} x \sin x$, e) $\lim_{x \to 0} \frac{\sin x}{1-\cos x}$

Exercice 5

1) Etudier les limites suivantes:

$$a) \quad \lim_{x \to 1} \frac{1}{x-1} - \frac{2}{x^2-1}, \quad b) \quad \lim_{x \to 0} \frac{\sqrt{1+x}-1}{x}, \quad , c) \quad \lim_{x \to 0} \frac{\sin 4x}{\tan 5x}, \quad d) \quad \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x-\frac{\pi}{2}}, \quad e) \quad \lim_{x \to 0} \frac{\tan x}{x}.$$

2) Etudier les limites suivantes en fonction des valeurs du paramètre $\lambda \in \mathbb{R}$.

$$a)\quad \lim_{x\to +\infty}\left(\lambda x+\sqrt{x^2+1}\right),\quad b)\quad \lim_{x\to 2^+}\left(\frac{1}{x-\lambda}-\frac{1}{\left(x-2\right)^2}\right),\qquad \lim_{x\to 1^+}\frac{x^2+\lambda x+1}{x^2-1}$$

Exercice 6 Montrer que les équations suivantes ont au moins une racine dans l'intervalle I:

1)
$$x^7 - x^2 + 1 = 0$$
, $I = [-2, 0]$.

2)
$$\sqrt[3]{x^3+6x+1}-3x=2$$
, $I=\mathbb{R}$.

3)
$$\tan x = \frac{3}{2}x$$
, $I = \left| \frac{\pi}{4}, \frac{\pi}{2} \right|$.

4)
$$e^x - 3\sqrt{x} = 0$$
, $I = [0, 1]$.

5)
$$x + \sin x = \frac{1}{x^2 + 4}$$
, $I = [0, \pi]$.

Exercice 7 Vrai ou faux? Donner une preuve ou un contre-exemple.

- 1) Soit $f:[a,b]\to\mathbb{R}$ une fonction continue et positive. Si f(a)=0, il existe $c\in[a,b]$ tel que f soit croissante sur [a,c].
- 2) Une fonction continue et injective sur un intervalle est strictement monotone.
- 3) Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$, alors f atteint sa borne inférieure sur \mathbb{R} .
- 4) Soit $f: \mathbb{R} \to \mathbb{R}$ continue et bornée, alors $f(\mathbb{R})$ est un segment.
- 5) Soit $f[a, b] \to \mathbb{R}$ continue, alors f est bornée.

Exercice 8 Soit P un polynôme à coefficients réels de degré impair. Montrer que P admet une racine réelle.

Exercice 9 Soit $P(x) = x^3 - 2x^2 + 2$.

- 1) Calculer P(-1) et P(1). En déduire que P possède au moins une racine dans [-1,1].
- 2) P possède-t-il une racine dans [0, 1]?

Exercice 10 Soit $P(x) = x^3 - 5x^2 + 2x + 1$.

Montrer que P admet 3 zéros réels et encadrer chacun d'eux par deux entiers relatifs consécutifs.

Exercice 11 Soit $f:[a,b] \to [a,b]$ une application continue.

- 1) En étudiant l'application g définie sur [a,b] par g(x)=f(x)-x, montrer que f admet au moins un point fixe (i.e. un réel c dans [a,b] tel que f(c)=c).
- 2) On suppose de plus que |f(x) f(y)| < |x y| pour tout $x \neq y$ dans [a, b]. Montrer que f admet un seul point fixe.

Exercice 12 Soit $\alpha > 0$ et la fonction $f : \mathbb{R}_+^* \to \mathbb{R}$ telle que $f(x) = \frac{\sin x}{x^{\alpha}}$.

- 1) Etudier la continuité de f sur son intervalle de définition.
- 2) Pour quels paramètres α la fonction f peut-elle être prolongée par continuité en 0?

Exercice 13 Soit la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ telle que $f(x) = x^{1/x}$

- 1) Etudier la continuité de f sur son intervalle de définition.
- 2) La fonction f peut-elle être prolongée par continuité en 0?

On rappelle que pour tout réel x, la partie entière de x est le plus grand entier relatif inférieur ou égal à x.

- 1) Tracer la courbe de f. En quels points est-elle continue? Parmi ses points de discontinuité, en quels points est-elle continue à gauche? continue à droite?
- 2) Etudier la continuité de la fonction $g: \mathbb{R} \to \mathbb{R}$ $x \to \lfloor x \rfloor + (x \lfloor x \rfloor)^2$ et tracer la courbe de g.

Exercice 15 On considère la fonction $f(x) = \sin \frac{1}{x}$ définie sur $]0, +\infty[$.

- 1) Soient les suites $u_n = \frac{1}{2\pi(n+1)}$ et $v_n = \frac{1}{2\pi(n+1/4)}$. Que valent $f(u_n)$ et $f(v_n)$?
- 2) Que peut-on en déduire pour la limite de f en 0^+ ?

Exercice 16 On rappelle que tout réel est limite d'une suite de rationnels, c'est-à-dire que pour tout $x \in \mathbb{R}$, il existe une suite (x_n) d'éléments de \mathbb{Q} telle que $\lim_{n \to +\infty} x_n = x$. Soient f et g deux fonctions continues sur \mathbb{R}

- 1) Montrer que si f est nulle sur \mathbb{Q} , alors f est identiquement nulle.
- 2) Si f et g sont égales sur \mathbb{Q} , que peut-on dire de f et g?

Exercice 17 On s'intéresse aux fonctions continues $f: \mathbb{R} \to \mathbb{R}$ telles que f(x+y) = f(x) + f(y) pour tous x et y réels.

- 1) Montrer qu'il existe un réel a tel que f(n) = an pour tout n entier naturel, puis pour tout n entier relatif.
- 2) Montrer que f(x) = ax pour pour tout x rationel, puis pour tout x réel (on rappelle que tout réel est limite d'une suite de rationnels).
- 3) Déterminer toutes les fonctions continues $g: \mathbb{R} \to \mathbb{R}$ telles que g(x+y) = g(x)g(y) pour tous x et y réels (indication: commencer par démontrer que $f(x) \ge 0$ pour tout x réel, puis on examiner le cas où f s'annule).