Bài tập 9.3

9.11. Giải các hệ thức đệ quy

a)
$$a_{n+1} - a_n = 2n + 3, a_0 = 1$$

c)
$$a_{n+1} - 2a_n = 5$$
, $a_0 = 1$

b)
$$a_{n+1} - a_n = 3n^2 - n$$
, $a_0 = 3$

d)
$$a_{n+1} - 2a_n = 2^n$$
, $a_0 = 1$

9.12. Lập quan hệ đệ quy cho tổng $a_n = \sum_{i=0}^n i^2$.

9.13. Giải các hệ thức đệ quy

a)
$$a_{n+2} + 3a_{n+1} + 2a_n = 3^n$$
; $a_0 = 0$, $a_1 = 1$

b)
$$a_{n+2} + 4a_{n+1} + 4a_n = 7$$
; $a_0 = 1$, $a_1 = 2$

9.14. Giải hệ thức đệ quy $a_{n+2} - 6a_{n+1} + 9a_n = 3 \cdot 2^n + 7 \cdot 3^n$; $a_0 = 1$, $a_1 = 4$

9.15. Tìm nghiệm tổng quát của quan hệ đệ quy $a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 3 + 5n$.

9.16. Nghiệm tổng quát của quan hệ đệ quy $a_{n+2} + b_1 a_{n+1} + b_2 a_n = b_3 n + b_4$, với các hằng số b_i , $1 \le i \le 4$, là $c_1 2^2 + c_2 3^n + n - 7$. Tìm b_i , $1 \le i \le 4$.

9.17. Giải các quan hệ đệ quy

a)
$$a_{n+2}^2 - 5a_{n+1}^2 + 6a_n^2 = 7n$$
, $a_0 = a_1 = 1$

b)
$$a_n^2 - 2a_{n-1} = 0$$
, $a_0 = 2$. [Gợi ý: đặt $b_n = \log_2 a_n$]

9.4 Phương pháp hàm sinh

Giả sử dãy a_n có quan hệ đệ quy. Xét hàm sinh $f(x) = \sum_{n=0}^{\infty} a_n x^n$. Căn cứ vào quan hệ đệ quy của a_n , bằng phép biến đổi phù hợp, ta biểu diễn được f(x) theo theo x và chính f(x). Từ đó, ta giải được f(x) là một hàm sơ cấp. Khi đó, a_n là hệ số của x^n trong khai triển MacLaurin của hàm này.

Ví dụ 9.23. Giải hệ thức đệ quy $a_n - 3a_{n-1} = n$, trong đó $a_0 = 1$.

Giải. Xét hàm sinh $f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + \sum_{n=1}^{\infty} a_n x^n$. Thay $a_n = 3a_{n-1} + n$, với $n \ge 1$, và $a_0 = 1$:

$$f(x) = 1 + \sum_{n=1}^{\infty} (3a_{n-1} + n)x^n = 1 + \sum_{n=1}^{\infty} 3a_{n-1}x^n + \sum_{n=1}^{\infty} nx^n.$$

Trong ví dụ 8.14, ta đã tính được $\sum_{n=1}^{\infty} nx^n = \sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2}.$ Suy ra

$$f(x) = 1 + 3x \sum_{n=1}^{\infty} a_{n-1} x^{n-1} + \frac{x}{(1-x)^2} = 1 + 3x \sum_{n=0}^{\infty} a_n x^n + \frac{x}{(1-x)^2}$$
$$= 1 + 3x \cdot f(x) + \frac{x}{(1-x)^2}.$$

Giải phương trình bậc nhất với ẩn là f(x), được phân thức

$$f(x) = -\frac{x + (x - 1)^2}{(x - 1)^2(3x - 1)}.$$

Phân tích f(x) thành tổng các phân thức đơn giản

$$f(x) = -\frac{7}{4(3x-1)} + \frac{1}{4(x-1)} - \frac{1}{2(x-1)^2}.$$

Viết các số hạng dưới dạng $(1 + x)^n$:

$$f(x) = \frac{7}{4}(1-3x)^{-1} - \frac{1}{4}(1-x)^{-1} - \frac{1}{2}(1-x)^{-2}.$$

Vì a_n là hệ số của x_n trong khai triển MacLaurin của f(x), nên

$$a_n = \frac{7}{4} \binom{-1}{n} (-3)^n - \frac{1}{4} \binom{-1}{n} (-1)^n - \frac{1}{2} \binom{-2}{n} (-1)^n.$$
Theo ví dụ 8.2, $\binom{-1}{n} = (-1)^n$, $\binom{-2}{n} = (-1)^n \binom{2+n-1}{n} = (-1)^n (n+1)$, suy ra
$$a_n = \frac{7}{4} (-1)^n (-3)^n - \frac{1}{4} (-1)^n (-1)^n - \frac{1}{2} (-1)^n (n+1) (-1)^n$$

$$= \frac{7}{4} 3^n - \frac{1}{4} - \frac{n+1}{2} = \frac{7 \cdot 3^n - 2n - 3}{4}.$$

Sum(n * x**n, (n, 1, oo)).doit()

y = symbols('y') # dai diện cho f(x)

solve(-y + 1 + 3*x * y + x / (1-x)**2, y)

sol = _[0]

sol

sol.apart()

Ví dụ 9.24. Giải hệ thức đệ quy $a_{n+2} - 5a_{n+1} + 6a_n = 2$, trong đó $a_0 = 3$, $a_1 = 7$.

Giải. Xét

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=2}^{\infty} a_n x^n + a_0 + a_1 x = \sum_{n=0}^{\infty} a_{n+2} x^{n+2} + 3 + 7x$$

$$= \sum_{n=0}^{\infty} (5a_{n+1} - 6a_n + 2) x^{n+2} + 3 + 7x$$

$$= \sum_{n=0}^{\infty} 5a_{n+1} x^{n+2} - \sum_{n=0}^{\infty} 6a_n x^{n+2} + \sum_{n=0}^{\infty} 2x^{n+2} + 3 + 7x$$

$$= 5x \sum_{n=0}^{\infty} a_{n+1} x^{n+1} - 6x^2 \sum_{n=0}^{\infty} a_n x^n + 2x^2 \sum_{n=0}^{\infty} x^n + 3 + 7x$$

$$= 5x [f(x) - a_0] - 6x^2 f(x) + 2x^2 \frac{1}{1 - x} + 3 + 7x$$

Suy ra

$$f(x) = \frac{3 - 5x}{3x^2 - 4x + 1} = -\frac{2}{3x - 1} - \frac{1}{x - 1} = 2(1 - 3x)^{-1} + (1 - x)^{-1}$$

Do đó, hệ số của x^n trong khai triển Maclaurin của f(x) là

$$a_n = 2\binom{-1}{n}(-3)^n + \binom{-1}{n}(-1)^n = 2(-1)^n(-3)^n + (-1)^n(-1)^n = 2 \cdot 3^n + 1.$$

Ví dụ thứ ba, một kết quả quen thuộc về tổ hợp lặp.

Ví dụ 9.25. Với $n, r \in \mathbb{N}$, đặt c(n, r) là số cách chọn r vật, có lặp, từ n vật. Chứng minh

a) c(n, r) có hệ thức đệ quy c(n, r) = c(n - 1, r) + c(n, r - 1), $\forall n, r \ge 1$.

b)
$$c(n, r) = \binom{n+r-1}{r}$$
.

Giải. a) Với $n \ge 1$, đánh nhãn các vật là 1, 2,..., n. Chỉ có hai khả năng:

- 1) Vật 1 không được chọn. Khi đó r vật được chọn từ n-1 kia. Ta có c(n-1,r) cách.
- 2) Vật 1 được chọn ít nhất một lần. Khi đó ta cần chọn r 1 vật từ các vật 1, 2,..., n, rồi chọn tiếp một vật nhãn là 1 nữa. Ta có c(n, r – 1) cách.

Nguyễn Đức Thinh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn