4/14/2019 Calc Team

question 2 views

Daily Challenge 21.1

Evaluate each of the following integrals using substitutions of the form $x = \sin(u)$, $x = \cos(u)$, etc. You might need to use that

$$\int \sec(x) \ dx = \log(\sec(x) + \tan(x)),$$
$$\int \csc(x) \ dx = -\log(\csc(x) + \cot(x)).$$

- (a) $\int \frac{dx}{\sqrt{x^2-1}}$.
- (b) $\int \frac{dx}{x\sqrt{x^2-1}}$
- (c) $\int \frac{dx}{x\sqrt{1+x^2}}$
- (d) $\int \sqrt{1+x^2} \, dx$.

daily_challenge

Updated 4 months ago by Christian Ferko

the students' answer, where students collectively construct a single answer

As suggested by Christian, I look up https://en.wikipedia.org/wiki/Trigonometric_substitution .

(a): We let $x=\sec(\theta)$ and thus $dx=\sec\theta\tan\theta\;d\theta$ we then see that

(a). We let
$$x = \sec(\theta)$$
 and thus $dx = \sec(\theta)$

$$\int \frac{dx}{\sqrt{x^2 - 1}} = \int \frac{\sec \theta \tan \theta}{\sqrt{\sec^2(\theta) - 1}} d\theta$$

$$= \int \frac{\sec \theta \tan \theta}{\tan(\theta)} d\theta$$

$$= \int \sec(\theta) d\theta$$

$$= \log(\sec(\theta) + \tan(\theta)).$$

 $= \log(\sec(\theta) + \tan(\theta)).$

We need to substitute something for theta, so we shall assume that there does somehow exist a function rcsec such that $y=rcsec\sec(y+k2\pi)$ where $k\in\mathbb{Z}$. Then

$$\int \frac{dx}{\sqrt{x^2 - 1}} = \log(x + \tan(\operatorname{arcsec}(x))).$$

(b): Once again let $x=\sec(\theta)$ and thus $dx=\sec\theta\tan\theta\ d\theta$. Then we have (omitting the step involving substitution of $\sec(\theta)$ for x and simplifying)

$$\int \frac{dx}{x\sqrt{x^2 - 1}} = \int \frac{\sec \theta \tan \theta}{\sec(\theta) \tan(\theta)} d\theta$$
$$= \int 1 d\theta$$
$$= \theta$$
$$= \operatorname{arcsec}(x).$$

(c): Let x= an(heta) and thus $dx=\sec^2(heta)\;d heta$. We then see that

$$\int \frac{dx}{x\sqrt{1+x^2}} = \int \frac{\sec^2(\theta)}{\tan(\theta)\sqrt{1+\tan(\theta)^2}} d\theta$$

$$= \int \frac{\sec(\theta)}{\tan(\theta)} d\theta = \int \frac{1}{\cos(\theta)} \cdot \frac{\cos(\theta)}{\sin(\theta)}$$

$$= \int \csc(\theta) = -\log(\csc(\theta) + \cot(\theta))$$

We then see that we can substitute
$$\theta=\arctan(x)$$
 and conclude that
$$\int \frac{dx}{x\sqrt{1+x^2}} = -\log(\csc(\arctan(x))+1/x)$$

(d): Let $x=\tan(\theta)$ and thus $dx=\sec^2(\theta)\ d\theta$. We then see that

$$\int \sqrt{1+x^2} \ dx = \int \sec(heta) \ d heta = \log(\sec(\arctan(x)) + x)$$

Updated 2 months ago by Logan Pachulski

4/14/2019 Calc Team

the instructors' answer, where instructors collectively construct a single answer
Click to start off the wiki answer
followup discussions for lingering questions and comments