Ruiheng Su

I am excited about exploring quantum materials with strongly correlated phases using novel transport or spectroscopic probes. <u>ruihengsu@gmail.com</u>

sillyPhotons.github.io

♠ 2355 East Mall, Vancouver, BC, Canada

EDUCATION

2024 Bachelor of Applied Science in Engineering Physics, University of British Columbia (UBC)

GPA: 87.7/100.0 (Letter Grade: A) Relevant coursework:

Graduate Condensed Matter I (PHYS 502, Grade: A+) Quantum Mechanics, Statistical Mechanics, Optics

PUBLICATIONS

1. <u>Su, R.,</u> Kuiri, M., Watanabe, K., Taniguchi, T., and Folk, J. Superconductivity in twisted double bilayer graphene stabilized by WSe₂. *Nat. Mater.* (2023). https://doi.org/10.1038/s41563-023-01653-7
Featured in: *News & Views - Nature Materials*

CONTRIBUTED TALKS

2024 (Submitted)

"Current-bias spectroscopy of in-plane magnetoresistance on the microtesla scale in twisted monolayer-trilayer graphene." APS March Meeting, Minneapolis, MN, March 3-8th (Speaker)

"Moiré-localized flat bands in a family of twisted Bernal-stacked graphene multilayers."

APS March Meeting, Minneapolis, MN, March 3-8th (Co-author, in collaboration with Prof. M. Yankowitz, University of Washington)

"Superconductivity in twisted double bilayer graphene stabilized by WSe₂." APS March Meeting, Las Vegas, NV, March 6-10th (Speaker)

POSTER PRESENTATIONS

First place award: "Superconductivity and Isospin Order in Twisted Double Bilayer Graphene on WSe₂." Stewart Blusson Quantum Matter Institute (SBQMI) International Scientific Advisory Board Meeting, September 19-20th

"Electronic phases of twisted double bilayer graphene on WSe₂." Canadian Institute for Advanced Research (CIFAR) Quantum Materials Program Spring School, Montreal, May 8-12th

AWARDS AND HONOURS

2023 Edward G. Auld Prize in Engineering Physics, UBC

Undergraduate Student Research Award, Natural Sciences and Engineering Research Council of Canada (NSERC)

First Place Poster Award, International Scientific Advisory Board Meeting, SBQMI, UBC

- 2022 Trek Excellence Scholarship, UBC
- 2018 Academic Bronze Medal, The Governor General of Canada

British Columbia Government Scholarship

Community Service Award, Knights of Columbus Council

RESEARCH EXPERIENCE

2021 -Electronic phases of multilayer graphene

Prof. Joshua Folk, UBC

Present Undergraduate Researcher

> Transport experiments: I have led several experiments through the efforts of nanofabrication (electron beam lithography), electronic instrumentation (in Bluefors LD/XLD dilution refrigerators and ICEoxford VTI), data analysis, figure preparation, and manuscript writing. This includes a first-author publication on superconductivity in twisted double bilayer graphene (TDBG) in Nature Materials (2023).

Other experimental observations I have led include:

- Unconventional sequence of finite-magnetic field Chern insulators in TDBG at integer and half-integer filling factors, inconsistent with a picture of sequential populations of |C| = 2 Chern bands

Collaborating with the group of Prof. Matthew Yankowitz, University of Washington, Seattle, I found:

- Quantum anomalous hall effect at v = 1/4 in twisted bilayer-trilayer graphene (T2+3), and independent control of orbital magnetic order by both an in-plane and out-of-plane magnetic field
- Anomalous hall effect at v = 3 in twisted mono-trilayer graphene (T1+3), and an associated extraordinary resistivity response to < 1 μ V of bias and <1 mT of in-plane magnetic field

These results are the subjects of manuscripts in preparation.

I often use low-field quantum oscillations to tell the material's Fermi surface degeneracy. I performed band structure calculations of AB-stacked tetralayer graphene and compared the theory to my measurements in an ultraclean sample.

Thermodynamic measurements: I also led instrumentation efforts to probe 2D materials using aluminum singleelectron transistors in both DC and phase-sensitive (AC) modes. I assembled the experiment set up, involving:

eliminating ground loops, optimizing passive circuits and feedback controllers to work in conjunction with DC voltage sources and lock-in amplifiers

to yield robust, direct measurements of the inverse electronic compressibility

May 2021 -Charge noise in GaAs/AlGaAs quantum wells

Prof. Joshua Folk, UBC

January 2022 Undergraduate Researcher

> Utilized the edge of a Coulomb blockade peak in a GaAs/AlGaAs quantum dot to obtain sensitive measurements of the noise power spectral density

- Optimized ohmic contacts to the quantum well and fabricated quantum dots

May - August X-ray Detection and Radiotherapy Response Modelling 2019

Prof. Geordi Pang, University of Toronto

Research Assistant

- Wrote C⁺⁺ programs to perform Monte-Carlo simulations of a MeV X-ray detector
- Implemented a mathematical model to simulate the external beam radiotherapy treatment response of nonsmall cell lung cancer patients, reproducing the results of a reference publication, involving developing heuristics to improve fitting to a model with 16 parameters, using parallelism to speed up calculations

May - August 2019

Measurement Interface for Silicon Photonics

Prof. Jeff Young, UBC

Research Assistant

Designed a Python-based web interface to measure photonic devices, implementing features such as:

- Global sample alignment, mapping design file coordinates to physical coordinates
- Closed-loop fine alignment using a modified gradient descent algorithm between an optical fiber array and grating couplers

TECHNICAL PROJECT EXPERIENCE

September -January 2020

Virtual Parking Attendant

Course Project, ENPH 353, UBC

- Combined classical and machine learning techniques in Python (OpenCV, TensorFlow) to develop a virtual parking attendant
- The system autonomously navigated a competition area, avoiding other vehicles and pedestrians, and performed license plate identification with 80% accuracy, achieving 2nd place in time required to complete competition tasks

May -September 2020

Autonomous Recycling Robot

Course Project, ENPH 480, UBC

Prototyped, constructed, and programmed a fully autonomous robot capable of detecting and retrieving randomly scattered soda cans to a 12-inch-tall recycling bin. Gained experience in:

- Assembling and troubleshooting of electronic circuits for noise-tolerant electromechanical systems
- State-machine programming of microcontrollers in C⁺⁺, including developing algorithms for sonar detection and retrieval of soda scans

SKILLS

Nanoscale sample preparation

- Electron beam/photolithography
- Dry (RIE)/wet etching (HF)
- Electron beam evaporation
- Wiring bonding/sample preparation
- Wafer dicing

2D materials

- Dry transfer
- Exfoliation

Programming /Software

- Python (including QCodes), Igor Pro, C⁺⁺, Java, MATLAB, LaTeX, Processing, Assembly
- Adobe Illustrator, Microsoft Office

Electro/Mechanical

- Machine shop: Lathe, Milling
- Experience with CAD, PCB design, Soldering

Language

English, Mandarin/Cantonese Chinese

ADDITIONAL WORK EXPERIENCE

August 2020

Teaching Assistant

PHYS 159 - Introductory Physics Laboratory for Engineers

Prof. Sarah Burke, UBC

- Created instructional materials and user interface features for an Arduino-based oscilloscope, supporting over 1,000 first-year engineering students in a swift transition to remote learning during the COVID-19 pandemic
- May 2017

District Electoral Officer

Elections British Columbia

May - August

Day Care Assistant

2017 CPE Force Vive, Laval, Québec (French Speaking)

2017, 2018

Customer Service Representative for PNE Vancouver, AMS UBC

COMMUNITY SERVICE

2012 - 2018

Sergeant and Bagpipe Instructor

Army Cadets of Canada

- Trained new army cadets, learned and taught the Scottish bagpipes to members of the marching band

2018 General Council Secretary

Engineering Undergraduate Society, UBC