HIGH POWER SWITCHING USE
INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

APPLICATION

Traction drives, High Reliability Converters / Inverters, DC choppers

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

MAXIMUM RATINGS

Symbol	Item	Conditions	Ratings	Unit
Vces	Collector-emitter voltage	$V_{GE} = 0V, T_j = 25$ °C	1700	V
VGES	Gate-emitter voltage	$V_{CE} = 0V, T_j = 25^{\circ}C$	± 20	V
Ic	Collector current	DC, Tc = 80°C	2400	Α
Ісм	Collector current	Pulse (Note 1)	4800	Α
lE	Emitter current (Note 2)	DC	2400	Α
ІЕМ	Limiter current (Note 2)	Pulse (Note 1)	4800	Α
Pc	Maximum power dissipation (Note 3)	T _c = 25°C, IGBT part	15600	W
Viso	Isolation voltage	RMS, sinusoidal, f = 60Hz, t = 1 min.	4000	V
Tj	Junction temperature		-40 ~ +150	Ŝ
Тор	Operating temperature		-40 ~ +125	°C
Tstg	Storage temperature		-40 ~ +125	°C
tpsc	Maximum short circuit pulse width	$Vcc = 1000V$, $Vce \le Vces$, $Vge = 15V$, $T_j = 125$ °C	10	μs

ELECTRICAL CHARACTERISTICS

Cumbal	Item Conditions				Limits		Unit	
Symbol	Item	Conditions		Min	Тур	Max	Offic	
Ices	Collector cutoff current	Vce = Vces. Vge = 0V	T _j = 25°C	_	_	9	mA	
		VCE = VCES, VGE = UV	Tj = 125°C	_	— 7.0	18	1 MA	
V _{GE(th)}	Gate-emitter threshold voltage	Vce = 10 V, Ic = 240 mA, T _j = 25°C		5.5	6.5	7.5	V	
Iges	Gate leakage current	VGE = VGES, VCE = 0V, Tj = 25°C		_	_	0.5	μΑ	
Cies	Input capacitance			_	396	_	nF	
Coes	Output capacitance	$V_{CE} = 10 \text{ V}, V_{GE} = 0 \text{ V}, f = 100 \text{ kHz}, T_j =$	25°C	_	21.6	_	nF	
Cres	Reverse transfer capacitance			_	6.3	_	nF	
Qg	Total gate charge	$Vcc = 900 \text{ V}, Ic = 2400 \text{ A}, Vge = \pm 15 \text{ V},$	T _j = 25°C	_	27.4	_	μС	
Vor.	Collector-emitter saturation	Ic = 2400 A (Note 4)	Tj = 25°C	_	2.10	2.70	v	
VCE(sat)	voltage	VgE = 15 V	Tj = 125°C	_	2.35	_	V	
td(on)	Turn-on delay time	Vac. 000 V Ia 2400 A Var. +15 V		_	_	1.50	μs	
tr	Turn-on rise time	$Vcc = 900 \text{ V}, Ic = 2400 \text{ A}, Vge = \pm 15 \text{ V}$	_	_	0.60	μs		
Eon(10%)	Turn-on switching energy (Note 5)	$R_{G(on)} = 0.8 \; \Omega, T_j = 125^{\circ} C, L_s = 80 \; nH$ Inductive load		_	0.65	_	J/P	
td(off)	Turn-off delay time	Vcc = 900 V, Ic = 2400 A, VGE = ± 15 V RG(off) = 1.1 Ω , Tj = 125°C, Ls = 80 nH Inductive load	_	_	3.00	μs		
tf	Turn-off fall time		_	_	0.60	μs		
Eoff(10%)	Turn-off switching energy (Note 5)		_	0.70	_	J/P		
VEC	Emitter-collector voltage	IE = 2400 A (Note 4)	Tj = 25°C	_	2.20	3.00	v	
VEC	(Note 2)	VGE = 0 V	Tj = 125°C	_	1.85	_	, '	
trr	Reverse recovery time (Note 2)	Vcc = 900 V, Ie = 2400 A, VgE = ± 15 V Rg(on) = 0.8 Ω , Tj = 125°C, Ls = 80 nH Inductive load		_	_	1.50	μs	
Qrr	Reverse recovery charge (Note 2)			_	750	_	μС	
Erec(10%)	Reverse recovery energy (Note 2), (Note 5)			_	0.50	_	J/P	

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

THERMAL CHARACTERISTICS

Symbol	Item	Conditions		Limits		Unit
		Conditions	Min	Тур	Max	Offic
Rth(j-c)Q	Thermal resistance	Junction to Case, IGBT part	_	_	8.0	K/kW
Rth(j-c)R	Thermal resistance	Junction to Case, FWDi part	_	_	12.0	K/kW
Rth(c-f)	Contact thermal resistance	Case to Fin, λgrease = 1W/m·K, D(c-f) = 100 μm	_	6.0	_	K/kW

MECHANICAL CHARACTERISTICS

Symbol	Item	Conditions		Limits		Unit
		Conditions	Min	Тур	Max] Unit]
Mt	Mounting torque	M8: Main terminals screw	7.0	_	13.0	N⋅m
Ms		M6: Mounting screw	3.0	_	6.0	N⋅m
Mt		M4: Auxiliary terminals screw	1.0	_	2.0	N⋅m
m	Mass		_	1.5	_	kg
CTI	Comparative tracking index		600	_	_	_
da	Clearance		19.5	_	_	mm
ds	Creepage distance		32.0	_	_	mm
LP CE	Parasitic stray inductance		_	10	_	nH
Rcc'+EE'	Internal lead resistance	Tc = 25°C	_	0.18	_	mΩ

Note 1. Pulse width and repetition rate should be such that junction temperature (Tj) does not exceed Topmax rating (125°C).

2. The symbols represent characteristics of the anti-parallel, emitter to collector free-wheel diode (FWDi).

3. Junction temperature (Tj) should not exceed Tjmax rating (150°C).

4. Pulse width and repetition rate should be such as to cause negligible temperature rise.

- 5. Eon(10%) / Eoff(10%) / Erec(10%) are the integral of 0.1VcE x 0.1lc x dt.

HIGH POWER SWITCHING USE INSULATED TYPE

PERFORMANCE CURVES

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 5000 VGE = 15V 4000 4000 2000 1000 Tj = 25°C --- Tj = 125°C --- Tj = 125°C COLLECTOR-EMITTER SATURATION VOLTAGE (V)

HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

Sep. 2009

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL) VCC = 900V, $VGE = \pm 15V$ RG (on) = 0.8Ω , RG (off) = 1.1Ω Fon $T_j = 125^{\circ}C$, Inductive load 2.0 SWITCHING ENERGIES (J/P) Foff 1.5 1.0 Erec 0.5 2000 3000 4000 5000 COLLECTOR CURRENT (A)

CHARACTERISTICS (TYPICAL) 10 $VCC = 900V, VGE = \pm 15V$ $RG (on) = 0.8\Omega, RG (off) = 1.1\Omega$ 5 Tj = 125°C, Inductive load td(off) 2 SWITCHING TIMES (µs) 10⁰ td(on) 7 5 2 10⁻¹ tr 5 3 10⁻² L 3 4 5 7 10³ COLLECTOR CURRENT (A)

HALF-BRIDGE SWITCHING TIME

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

FREE-WHEEL DIODE REVERSE RECOVERY SAFE OPERATING AREA (RRSOA) $3000 \qquad \qquad Vcc \le 1200V, \, di/dt \le 9000A/\mu s$ $T_j = 125^{\circ}C$ $2500 \qquad \qquad 1500$ $1500 \qquad \qquad 0$ $0 \qquad 500 \qquad 1000 \qquad 1500 \qquad 2000$ COLLECTOR-EMITTER VOLTAGE (V)

