LISTA 5 – Pochodne cząstkowe. Pochodna kierunkowa. Różniczka funkcji wielu zmiennych.

- 1. Korzystając z definicji obliczyć pochodne czastkowe funkcji w podanym punkcie
 - (a) $f(x,y) = x + y^2$, $(x_0, y_0) = (3,4)$,
 - (b) $f(x,y) = 2\sqrt{x^2 + y^2}$, $(x_0, y_0) = (0,0)$,
 - (c) $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 1, & (x,y) = (0,0) \end{cases}$, $(x_0, y_0) = (0,0)$.
- 2. Obliczyć pochodne cząstkowe funkcji

 - (a) $f(x,y) = \arctan \frac{x}{y}$, (c) $f(x,y) = \ln(x + \sqrt{x^2 + y^2})$, (e) f(x,y,z) = xyz, (b) $f(x,y) = e^{x^2 \sin y}$, (d) $f(x,y) = \arcsin \frac{xy}{x+y}$, (f) $f(x,y,z) = x^{y^z}$.
- 3. Wyznaczyć pochodne cząstkowe drugiego rzędu dla funkcji z zadania 2(a), 2(c), 2(e).
- $\frac{\partial^5 f}{\partial x \partial u^2 \partial z^2}$ funkcji $f(x, y, z) = e^{xy+z}$. 4. Obliczyć pochodną cząstkową
- 5. Obliczyć pochodną kierunkową funkcji f w danym punkcie A w kierunku wektora \overrightarrow{v}
 - (a) $f(x,y) = x^2 + y^2 + 2xy + 1$, A = (1,2), $\overrightarrow{v} = (1,0)$,
 - (b) $f(x,y) = x^2 + y^2 + 2xy + 1$, A = (1,2), $\overrightarrow{v} = (0,1)$.
 - (c) $f(x,y) = x^2 + y^2 + 2xy + 1$, A = (1,2), $\overrightarrow{v} = (3,-1)$,
 - (d) $f(x,y) = \ln(x^2 + y^2)$, A = (1,1), $\overrightarrow{v} = (1,1)$,
 - (e) f(x,y) = 2|x| + |y|, A = (0,0), $\overrightarrow{v} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
- 6. Pokazać, że funkcja $f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2} & \text{dla } (x,y) \neq (0,0) \\ 0 & \text{dla } x=y=0 \end{cases}$ ma w punkcie (0,0) pochodną kierunkowa w dowolnym kierunku.
- 7. Zbadać różniczkowalność funkcji:

(a)
$$f(x,y) = 2x + y$$
, (b) $f(x,y) = 2\sqrt{x^2 + y^2}$.

8. Zbadać różniczkowalność funkcji f w punkcie (0,0)

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{dla } (x,y) \neq (0,0) \\ 0 & \text{dla } x = y = 0 \end{cases}.$$

- 9. Napisać równanie płaszczyzny stycznej do wykresu funkcji
 - (a) $f(x,y) = x^2 + y^2 + 1$ w punkcie A = (1,-1,f(1,-1)),
 - (b) $f(x,y) = \sqrt{x^2 + y^2}$ w punkcie A = (3, -4, f(3, -4)).

10. Sprawdzić, czy funkcja

(a)
$$f(x,y) = \ln(x^2 + y^2)$$
,

(b)
$$f(x,y) = \cos x \cosh y$$

spełnia równanie różniczkowe Laplace'a

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$