Propagació numèrica d'errors dels satèl·lits en òrbita terrestre

Víctor Ballester

Supervisor: Josep Maria Mondelo

Departament de Matemàtiques Facultat de Ciències

11 de juliol de 2023

Motivació

- Aproximadament 27 000 satèl·lits (actius i inactius) orbiten al voltant de la Terra.
- Diverses col·lisions involuntàries s'han produït en el passat.
- El model que considera la Terra com a massa puntual no és suficient. Necessitem un model més precís.

Motivació

- Aproximadament 27 000 satèl·lits (actius i inactius) orbiten al voltant de la Terra.
- Diverses col·lisions involuntàries s'han produït en el passat.
- El model que considera la Terra com a massa puntual no és suficient. Necessitem un model més precís.

Objectius:

- Desenvolupar un model per al potencial de la Terra.
- Predir la posició de satèl·lits considerant diverses pertorbacions.
- Estimar l'error de la trajectòria del satèl·lit.

Equació per a V

Sigui $\Omega \subseteq \mathbb{R}^3$ la regió que ocupa la Terra.

$$\mathbf{g} = -\int_{\Omega} G \frac{\mathbf{r} - \mathbf{s}}{\|\mathbf{r} - \mathbf{s}\|^3} \rho(\mathbf{s}) d^3 \mathbf{s} = \mathbf{\nabla} V$$
$$V = \int_{\Omega} G \frac{\rho(\mathbf{s})}{\|\mathbf{r} - \mathbf{s}\|} d^3 \mathbf{s}$$

Equació per a V

Sigui $\Omega \subseteq \mathbb{R}^3$ la regió que ocupa la Terra.

$$\mathbf{g} = -\int\limits_{\Omega} G rac{\mathbf{r} - \mathbf{s}}{\left\|\mathbf{r} - \mathbf{s}
ight\|^3}
ho(\mathbf{s}) \mathrm{d}^3 \mathbf{s} = \mathbf{\nabla} V$$

$$V = \int\limits_{\Omega} G rac{
ho(\mathbf{s})}{\left\|\mathbf{r} - \mathbf{s}
ight\|} \mathrm{d}^3 \mathbf{s}$$

Teorema

V satisfà el següent problema de valors de frontera exterior:

$$\begin{cases} \Delta V = 0 & a \Omega^c \\ V = f & a \partial \Omega \end{cases}$$
$$\lim_{\|\mathbf{r}\| \to \infty} V = 0$$

on $f:\partial\Omega\to\mathbb{R}$ és el potencial gravitatori a la superfície de la Terra.

Separació de variables: $V = R(r)\Theta(\theta)\Phi(\phi)$

Separation de variables:
$$V = R(r)\Theta(\theta)\Phi(\phi)$$

$$\begin{cases} \frac{(r^2R')'}{R} = n(n+1) \\ \frac{1}{\Theta}\Theta'' = -m^2 \\ \frac{\sin\phi}{\Phi}(\sin\phi\Phi')' + n(n+1)(\sin\phi)^2 = m^2 \end{cases}$$

 $n, m \in \mathbb{N} \cup 0, m < n$

Separació de variables: $V = R(r)\Theta(\theta)\Phi(\phi)$

$$\begin{cases} \frac{\left(r^2R'\right)'}{R} = n(n+1) \\ \frac{1}{\Theta}\Theta'' = -m^2 & n, m \in \mathbb{N} \cup 0, m \le n \\ \frac{\sin\phi}{\Phi}(\sin\phi\Phi')' + n(n+1)(\sin\phi)^2 = m^2 \end{cases}$$

Imposant condicions de frontera:

$$V = rac{GM_{\oplus}}{R_{\oplus}} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left(rac{R_{\oplus}}{r}
ight)^{n+1} (ar{\mathcal{C}}_{n,m} Y_{n,m}^{\mathrm{c}}(heta,\phi) + ar{\mathcal{S}}_{n,m} Y_{n,m}^{\mathrm{s}}(heta,\phi))$$

on

$$Y_{n,m}^{c}(\theta,\phi) = N_{n,m}P_{n,m}(\cos\theta)\cos(m\phi)$$
$$Y_{n,m}^{s}(\theta,\phi) = N_{n,m}P_{n,m}(\cos\theta)\sin(m\phi)$$

són els harmònics esfèrics.

Desviacions de l'eix de rotació de la Terra

- Precessió
- Nutació
- Rotació
- Moviment polar

Font: NASA Earth Orientation Animations

Altres pertorbacions

 ${f r}=$ posició del satèl·lit respecte al centre de masses de la Terra

• Pertorbacions d'altres cossos (Lluna i Sol):

$$\frac{GM}{\left\|\mathbf{s}-\mathbf{r}\right\|^2}(\mathbf{s}-\mathbf{r}) - \frac{GM}{\left\|\mathbf{s}\right\|^2}\mathbf{s}$$

Altres pertorbacions

 ${f r}=$ posició del satèl·lit respecte al centre de masses de la Terra

Pertorbacions d'altres cossos (Lluna i Sol):

$$\frac{GM}{\|\mathbf{s} - \mathbf{r}\|^2}(\mathbf{s} - \mathbf{r}) - \frac{GM}{\|\mathbf{s}\|^2}\mathbf{s}$$

• Fregament atmosfèric:

$$-\frac{1}{2}C_{\rm F}\frac{A}{m}\rho v_{\rm rel}\mathbf{v}_{\rm rel}$$

on $\mathbf{v}_{\mathrm{rel}} = \dot{\mathbf{r}} - oldsymbol{\omega}_{\oplus} imes \mathbf{r}$

Altres pertorbacions

 ${f r}=$ posició del satèl·lit respecte al centre de masses de la Terra

Pertorbacions d'altres cossos (Lluna i Sol):

$$\frac{GM}{\left\|\mathbf{s} - \mathbf{r}\right\|^2} (\mathbf{s} - \mathbf{r}) - \frac{GM}{\left\|\mathbf{s}\right\|^2} \mathbf{s}$$

• Fregament atmosfèric:

$$-\frac{1}{2}C_{\rm F}\frac{A}{m}\rho v_{\rm rel}\mathbf{v}_{\rm rel}$$

on
$$\mathbf{v}_{\mathrm{rel}} = \dot{\mathbf{r}} - oldsymbol{\omega}_{\oplus} imes \mathbf{r}$$

Pressió per radiació solar:

$$-\nu P_{\odot} C_{\rm R} \frac{A_{\odot}}{m} \frac{\mathbf{s}_{\odot} - \mathbf{r}}{\|\mathbf{s}_{\odot} - \mathbf{r}\|}$$

Sistema diferencial

Utilitzant el mètode de Runge-Kutta-Fehlberg d'ordre 7(8) integrarem el sistema diferencial:

$$\begin{cases} \dot{\mathbf{r}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{a}_{\mathrm{GP}} + \delta_{\mathrm{F}} \mathbf{a}_{\mathrm{F}} + \delta_{\mathrm{R}} \mathbf{a}_{\mathrm{R}} + \delta_{\mathrm{sol}} \mathbf{a}_{\mathrm{sol}} + \delta_{\mathrm{lluna}} \mathbf{a}_{\mathrm{lluna}} \end{cases}$$

Sistema diferencial

Utilitzant el mètode de Runge-Kutta-Fehlberg d'ordre 7(8) integrarem el sistema diferencial:

$$\begin{cases} \dot{\mathbf{r}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{a}_{GP} + \delta_{F}\mathbf{a}_{F} + \delta_{R}\mathbf{a}_{R} + \delta_{sol}\mathbf{a}_{sol} + \delta_{lluna}\mathbf{a}_{lluna} \end{cases}$$

Les condicions inicials provenen de **TLEs** (*Two Line Elements sets*).

Línia		Número satèl·lit		Classe	i	Designador internacional Any Llanç. Pe					A	ny	1			_				гс	_	rac	cić	5)				[re	ή/ v/e		2]						[re		/6 di	a ³]						err		de ent			Model	Model		úme TLI		Checksum			
1	2	3 4	5	6	7 1	s 9	10 1	11 1			1 1:	10	18		20	21	22		24	23	20				30		32	33	34		36		38	29 4		1 4	2 4	3 44	45	46	47	48			51		53 5	4 5	56		58			61	62 6	3 6	65	66 67	7 68	69
	П	Т	Т	П	Т	т	П	Т	Т	Т	Т	Т	П	Г			Г	П	Г	Т	Т	Т	Т	Т	Т	Т	Т	П	S	П	П	П	П	Т	Т	Т	Т	Т	IS	Г	П	П	П			П	- 15	S.	Т		П	П	\mathbf{S}	E	т	Т	Т	П		П
1		5 5	5 1	2	4 l	J	9 8	8 () (5 7	τ	R		2	3	0	8	6		1	6	ı	7	8	9	9	4				0	1	5	4) 4	1 (7			1	4	1	0	2	-	2		2	6	6	3	4	-	2	(0		9 9	9	1
Línia	Número satèl·lit				I	ncl	lin [°	aci]	ó			As	ce	ns Ω		re	ct	а		I	E	ce	nt:	ric	ita	t				Arg				3		A	nc		alia M			jaı	na							nt n /da		tjà			de	mbr revo	0-	Checksum		
1	2	3 4	5	6	7	s 9	П	T	T	Т	Т	Т	18	19	20					21	20	T	Т	Т	Т	Т	Т	П	П	П	П	П	\neg	\top	Т	Т	Т	3 44	45	46		Г	П		П	\neg	\top		Т	Т	Т		П	П	\neg		Т	66 67	П	П
2		5 5	1	2	4		5	1	. 0	3 2	3	7			5		0	0	1	7	1	() (1	0	7	5	7		1	8	8		3	3 6	3 8)	1	7	1	١.	6	9	6	3	_	1 6	6.	0	1	8	7	8	1	9 9	9	1	3 7	9	2

Resultats - LEO (Low Earth Orbit)

- L'ISS fa aproximadament 16 òrbites al dia.
- Els satèl·lits LEO interactuen amb l'atmosfera.
- És difícil de predir el fregament atmosfèric.

Resultats - GEO (Geostationary Earth Orbit)

TDRS-3

- Afegint-hi la Lluna i el Sol, els errors es redueixen.
- La pressió per radiació solar augmenta les oscil·lacions.
- Maniobra al voltant del dia 13.

Conclusions

- El model de la Terra com a massa puntual no és suficient per predir l'òrbita d'un satèl·lit durant uns quants dies.
- Afegint-hi la Lluna i el Sol, la variabilitat dels errors es redueix.
- La pressió per radiació solar n'augmenta les oscil·lacions.

Conclusions

- El model de la Terra com a massa puntual no és suficient per predir l'òrbita d'un satèl·lit durant uns quants dies.
- Afegint-hi la Lluna i el Sol, la variabilitat dels errors es redueix.
- La pressió per radiació solar n'augmenta les oscil·lacions.

Possibles refinaments:

- Millorar el modelatge del fregament atmosfèric i la pressió per radiació solar.
- Estudiar la influència de la inclinació i l'excentricitat en els errors.

Extres

Esfera celeste

- Esfera abstracta de radi infinit centrada en la Terra.
- Tots els objectes celestes s'hi projecten de forma natural.

Eix mitjà de rotació: eix de rotació quan les pertorbacions de nutació es promitgen.

Equador mitjà: pla perpendicular a l'eix mitjà de rotació.

Equinocci vernal mitjà $(\widehat{\Upsilon})$: el punt d'intersecció entre l'equador mitjà amb l'eclíptica on el Sol creua l'equador celeste de sud a nord.

Sistemes de referència inercials i no inercials

Data J2000: 1 de gener de 2000 a les 12:00 TT.

Quasi-inercial:

- Eix x: apuntant cap a $\overline{\Upsilon}$ de la data J2000
- Eix z: perpendicular a l'equador mitjà de la data J2000

No inercial (fix amb la Terra):

- Eix z: apuntant cap a l'IRP (International Reference Pole)
- Eix x: apuntant cap al meridià zero i situat en el pla perpendicular a l'eix z

En ambdós sistemes, l'eix y s'escull de manera que la base (x, y, z) sigui positiva.

Resultats

Esquema de la nostra simulació:

Resultats

Esquema de la nostra simulació:

Zones que hem estudiat:

- Satèl·lits d'òrbita baixa (LEO)
- Satèl·lits d'òrbita mitjana (MEO)
- Satèl·lits d'òrbita geoestacionària (GEO)

Resultats - MEO

- El model geopotential és molt oscil·latori.
- La Lluna i el Sol redueixen les oscil·lacions.
- La pressió per radiació solar augmenta les oscil·lacions.