PROBABILISTIC INFERENCE AND LEARNING LECTURE 08 GAUSSIAN PROCESS REGRESSION: AN EXTENSIVE EXAMPLE

Philipp Hennig 12 November 2018

UNIVERSITÄT TÜBINGEN

FACULTY OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
CHAIR FOR THE METHODS OF MACHINE LEARNING

Last Lecture: Debrief

eberhard karls UNIVERSITÄT TÜBINGEN

Feedback dashboa

Last Lecture: Debrief

eberhard karls UNIVERSITÄT TÜBINGEN

Things you did not like:

- + the math
- not enough math!
- "please upload slides before lecture"
- "too fast toward the end"

Things you did not understand:

- + the math
- + the RKHS bit
- the final third

Things you enjoyed:

- + the math
- explanations at beginning
- frequent repetition of "simple" concepts for added clarity
- that the slides were uploaded before the lecture
- links to background
- the RKHS explanations

Overview of Lectures so far:

- 0. Introduction to Reasoning under Uncertainty
- 1. Probabilistic Reasoning
- 2. Probabilities over Continuous Variables
- 3. Gaussian Probability Distributions
- 4. Gaussian Parametric Regression
- 5. More on Parametric Regression Connections to Deep Learning
- 6. Gaussian Processes
- 7. More on Kernels & GPs

Today:

+ a concrete example of GP regression

today's lecture:

- + getting our hands dirty with a simple but realistic problem
- + mostly code
- + a simple (1D) dataset, but with significant structure

Bayesian Intermittent Demand Forecasting for Large Inventories

Matthias Seeger, David Salinas, Valentin Flunkert

Amazon Development Center Germany
Krausenstrasse 38
10115 Berlin
matthis@amazon.de, dsalina@amazon.de, flunkert@amazon.de

Abstract

We present a scalable and robust Bayesian method for demand forecasting in the context of a large e-commerce platform, paying special attention to intermittent and bursty target statistics. Inference is approximated by the Newton-Raphson algorithm, reduced to linear-time Kalman smoothing, which allows us to operate on several orders of magnitude larger problems than previous related work. In a study on large real-world sales datasets, our method outperforms competing approaches on fast and medium moving items.

Matthias Seeger Principal Applied Scientist, Amazon MPI Tübingen, 2006–2011

http://papers.nips.cc/paper/6313-bayesian-intermittent-demand-forecasting-for-large-inventories

http://papers.nips.cc/paper/6313-bayesian-intermittent-demand-forecasting-for-large-inventories

	Parts	EC-sub	EC-all
# items	19874	39700	534884
Unit t	month	day	day
Median CV^2	2.4	5.8	9.7
Freq. $z_t = 0$	54%	46%	83%
In-stock ratio	100%	73%	71%
Avg. size series	33	329	293
# item-days	656K	13M	157M

- + An unstructured kernel regression model can only do so much. **Extrapolation** and extracting structural knowledge require prior knowledge about causal process
- + Linear models with elaborate features can be quite expressive, while remaining interpretable (try doing this example with a deep network!)
- + Physical processes have units
- Complicated processes require complicated (and questionable!) prior assumptions
- + analogous process in business environments
 - + demand and supply forecasting
 - + financial engineering
 - + ad placement (with minor variations)

The ability to build structured predictive models is a key skill. Everyone can run a TensorFlow script! Masters of structured probabilistic inference are highly sought after.