

Industrial Edge IoT the Open Source Way

MANUfacturing Edge Lightweight Accelerator

<speaker>

Red Hat for Edge Computing

Brief Introduction

Edge Computing

MOTIVATION

CHALLENGES

NEW TECHNOLOGIES

BANDWIDTH & LATENCY

RESILIENCE

SECURITY & SOVEREIGNTY

COST SAVINGS

SCALE

INTEROPERABILITY

MANAGEMENT

PEOPLE & EXPERTISE

OPERATIONAL COST

Edge is part of our open hybrid cloud strategy

Any workload, any footprint, **any location**

THE EDGE COMPUTING VISION

Extending the Open Hybrid Cloud Vision with Edge Computing

Any workload, any footprint, any location.

The edge computing opportunity in several industries

Telecommunications

Manufacturing

Energy

Use cases

V/C-RAN
Multi-access edge
computing

Predictive maintenance Factory automation AR + remote export Product optimization
Process control
Environment monitoring

Benefits

Better user experience Scale to meet demand Greater network flexibility Improved resilience Reduced downtime
Increased productivity
Longer asset lifetime
Improved factory safety

Reduced downtime
Lower OpEx and CapEx
Lower workforce risk
Less environmental impact

Red Hat for Edge Computing

Who is doing Edge Computing?

Red Hat Strategy

Single, edge-enabled portfolio delivering consistency for development and operations

Industrial Edge Computing

A path to accelerated agility

Industrial Edge

Device Actuator, Sensor PLC ~100.000

Line Server Ruggedized Industry PC, PLC, HMI, SCADA ~1000

Plant Data Center Racks in IT room SCADA, PPS, MES, PLM ~100

Regional Data Center Country Specific PPS, MES, PLM, ERP ~20-50

Headquarter Data Center

MES, PLM, ERP ~1-3

Operational Technology (OT)

Information Technology (IT)

EDGE

CORE

How does Industrial Edge differ from other Edge Computing use cases?

- Low Latency / Low Jitter / Near Realtime
- Disconnected / Offline situations
- High Throughput / Bandwidth
- Long-livety (5-15+ years)
- Separate Network Zones
- Software Deployment & Configuration from central DC (push vs. pull)
- Update & Patch Management cross Firewalls
- Non-HA applications need to be run highly available
- High availability (production downtime is a big no no)
 - Old Applications Infrastructure HA
 - 3 Datacenters? Be glad if you have two separate rooms!

	Telco Edge	Factory Edge
Topology	Distributed Compute Node	Standalone Cluster
Control Plane	central	local
Impact of edge outage	minor (high probability of cell overlap)	major (car assembly line shutdown)
Upstream connectivity	fast and stable	slow and unstable
laaS Provider probably	OpenStack	RHHI-V / RHHI.NEXT / OSP RT-KVM
PaaS Provider probably	OpenShift (Central)	OpenShift (Federated)
Tenancy	Single	Multi

A path to accelerated agility

How can I ...

Achieve real-time transparency as foundation for successful optimization, planning and control of production?

Optimize the roll-out of configuration across 100s of manufacturing plants?

Benefit from AI/ML to improve quality in production?

Leverage big data technology for traceability and analytics on the shopfloor?

Speed up software development and release cycles for manufacturing operations management system?

A path to accelerated agility

What is needed?

Accelerate software driven production optimizations

- Develop new features, test, QA and simulate in a production-like environment
- Leverage container technology to improved quality and speed up releases
- Scale controlled and auditable release deployments to production

Declarative configuration management for multi-tier production lines

- Enable agile, controlled configuration and software rollouts
- Define and enforce desired state. Audit and log changes
- Efficient scale to hundreds production lines, support firewalled environments via pull model

Real-time transparency for successful optimization

- Real-time insights and actionable data
- Robust and fast data processing, analytics and visualization
- Scalable and reliable messaging. Open, industry standards protocols.

Leverage big data & ML technology for traceability and analytics

- Collect, normalized, visualize data to optimized production e.g. for predictive maintenance
- Enable data scientist to analyze production data
- Develop, test and deploy machine learning models to production

Factory Edge: Customer needs addressed

Coding, Simulation & deployment to production

Container based CI/CD from data center the edge

Declarative configuration management

End to end GitOps for distributed environments

Data processing from sensors to analytics

Open source middleware and AI/ML stacks

ML model training and deployment to production

Open Data Hub enabled CI/CD

Server

Enterprise Core

Factory Edge

Draft Red Hat Manufacturing Reference Architecture (WIP)

MANUela

MANUfacturing Edge Lightweight Accelerator

Goals of the Demo

- Demonstrate how the challenges mentioned before can be addressed
- Use Red Hat technology in an integrated way, with a context the customer feels "Yes, that's me"
- Apply as much best practises as possible. This should work in the real world, not only demo world
- Provide a blueprint / reference architecture to start from
- Be modular, no need to show all aspects/parts, mix and match to what the current situation needs
- Be adaptive, to transport easily to other verticals (e.g. retail)
- Be flexible on demo setup from single cluster laptop to 4 cluster distributed onprem and public cloud
- Learning vehicle for all people that contribute to the demo

Red Hat Products Involved

THIS DEMO IS NOT ABOUT PRODUCTS

(there are lots of Red Hat products involved)

THIS IS A STORY TO TELL

Factory Edge IoT

OT OPS Manager

Security

Personas

App Dev System Architect Defines High Level Architecture + Deployment Template

App Developer Develops Manufacturing Application incl. Unit Tests

QA Engineer Responsible for System Verification, Load Tests, ...

Deployer Responsible to deploy an application instances to Edge locations

Infrastructure Owner of the factory, owns LDS and Firewalls

Reviews & Approves overall security architecture

Single Cluster Quickstart deployment

OT Ops ArgoCD Line dashboard Factory quickstart-line-dashboard argocd datacenter AMQ Consumer Broker quickstart-messaging Machine Operator Sensor 1 Sensor 2 Line Data Server quickstart-machine-sensor

Dev Environment

MANUela Demo

Modules / Flows

#1 - Basic GitOps Deployment

Demo Flow

- Application Instance is not deployed
- Deployer reviews environment incl. Firewall
- Deployer reviews application template
- Deployer prepares application instance configuration & deployment information & OT Ops Manager reviews it
- Deployer deploys application components to their respective execution environments
- Application is instantiated without direct interaction with the target cluster(s)
- Firewall rules have been added where necessary

- Application Instance configuration can be reviewed before instantiation (OT Ops Manager)
- Instance Configuration can reference specific commits which are frozen in time.
- Deployment without access to runtime environment, can be behind firewall (Deployer, Security, OT Ops Manager)

#2 - GitOps Configuration Change

Demo Flow

- Application Instance is deployed
- OT Ops Manager identifies the need for a config change
- Deployer adjusts configuration in GitOps repo
- Application is reconfigured without direct interaction with the target cluster(s)
- Configuration Change can be reviewed in Git(Hub) history

- Git revision history makes transparent who caused which change (OT Ops Manager)
- GitHub (or other) workflow can even do multi-stage approvals (OT Ops Manager)
- Config Change without access to runtime environment, can be behind firewall (Deployer, Security, OT Ops Manager)

#3 - Code Change with Cloud IDE

Demo Flow

- Application Instance is deployed
- A bug is being detected: unnecessary
 Fahrenheit->Celsius Conversion leading to wrong values and false alarms
- Developer reproduces the bug in her Cloud IDE Development Environment and creates a fix (by simply commenting out the unnecessary conversion).
- New Code is pushed to git

- Fast setup of development environment (minutes instead of days)
- Easy Development using Cloud IDE
- Secured Development Environment (no developer laptop can be lost)

#4 - Continuous Integration Pipeline

Demo Flow

- CI Pipeline based on Tekton is triggered to build a new version of the affected component. New Container image is deployed and tested in the central datacenter.
- Once all tests are completed, new version is made available in enterprise registry. OT Ops manager is notified via a pull request.
- OT Ops Manager can decide to deploy new version to his edge cluster by merging the pull request.
- CD via GitOps ensures deployment (see next Demo Module)

- Secure Enterprise Container Registry allowing for Security Scans
- State of the Art, Kubernetes Native CI tooling
- Full version control with semantic versioning (so the ops guy can easily blame development)
- Full control for the OPS people, which version is running where.
- Edge Clusters fully operational even disconnected thanks to local registry

#5 - Infrastructure Operator Development

Demo Flow

- Create new ansible-operator from scratch via operator-sdk
- Adjust generated project contents:
 - Build to include requisite modules
 - deployment info to include access secrets to external firewall
 - Ansible code to mirror custom resource data in firewall rules
- Deploy operator to cluster & Test it
- Alternatively: Review existing operator code

- Manage IT infrastructure via declarative kubernetes model
- Quick and efficient operator development through code generation and ansible automation
- Leverage the rich ansible ecosystem, modules are available to manage almost any IT infrastructure element

#6 - Multi Cluster Management

Demo Flow

- Show cloud.redhat.com cluster manager
 - Overview of all clusters
 - Review Update Status
 - Drill down to view cluster details

- Stay in control of hundreds of k8s clusters
- SaaS service no additional operations required

#7 - Enterprise Container Handling and Security

Demo Flow

- Show <u>Slide#32</u> and elaborate on the role of the image registry
- Show quay.io and the <u>manuela repo</u> there
- Highlight container security scanning in quay
- Show an image stream in the "remote" cluster (e.g. for <u>line-dashboard</u>)
- Elaborate on how it pulls through the images to ensure availability even when disconnected ("Reference Policy: local")

- Enable geo- / cross cluster replication of images
- Secure the container supply chain
- Enhanced image availability for disconnected ops

#8 - Machine Learning / Al

Demo Flow

- Data Scientist is chartered to build ML model for detection vibration anomalies to avoid unplanned outages.
- ML Model is developed in a Jupyter notebook using Open Data Hub.
- The ML model is baked into a container and served with Seldon
- The consumer component calls the Seldon web service and creates alerts when the ML model detection an anomaly

Benefits

- Open Data Hub is a OpenShift powered Data Scientist workbench
- Fully integrated CI/CD and GitOps approach for ML models

Vibration anomalies

Story

ML Demo flow

#8 - Machine Learning / Al

Integration & test

Data Scientist gets raw data

#9 - ???

Demo Flow

•

• ...

Benefits

lacktriangle

• ...

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

- in linkedin.com/company/red-hat
- f facebook.com/redhatinc
- youtube.com/user/RedHatVideos
- twitter.com/RedHat

