# K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC CIRCUITS

Numerical 1: Find i and  $V_{\mathbf{o}}$  in the following circuit:



Figure 1: Circuit 1

#### Solution:

We will first use series - parallel reduction techniques to simplify the circuit. Then we will apply KVL to the loops generated to find i.

 $60\Omega$  and  $20\Omega$  are connected in parallel.

$$\therefore R_{\rm p} = 60 \mid\mid 20$$

$$= \frac{60 \times 20}{60 + 20}$$

$$= 150$$

... The circuit is simplified as shown in figure 2:



Figure 2: Simplified Circuit 1a for figure 1

 $25\Omega$  and  $15\Omega$  resistors are connected in series

$$\therefore R_{\rm s} = 25 \,+\, 15 = 40\Omega$$

... The circuit is further simplified as shown in figure 3:



Figure 3: Simplified Circuit 1b for figure 2

# We will now use Mesh Analysis to find i

Assume mesh currents I<sub>1</sub>, I<sub>2</sub> and I<sub>3</sub> flowing through loops 1, 2 and 3 in clockwise direction

Applying KVL to loop 1, we get:

$$20 - 80I_1 - 40(I_1 - I_2) = 0$$

$$\therefore -120I_1 + 40I_2 = -20 \qquad \dots \dots (i)$$

Applying KVL to loop 2, we get:

$$-24I_2 - 20(I_2 - I_3) - 40(I_2 - I_1) = 0$$
  
∴  $40I_1 - 84I_2 + 20I_3 = 0$  .....(ii)

Applying KVL to loop 3, we get:

$$-20(I_3 - I_2) - 50I_3 - 30I_3 = 0$$
  

$$\therefore 20I_2 - 100I_3 = 0$$
 .....(iii)

Solving (i), (ii), (iii) we get

$$I_1=0.2A,\,I_2=0.1A,\,I_3=0.02A$$

$$\therefore i = I_1 = 0.2A$$

$$\begin{aligned} \text{Now I}_{30\Omega} &= \text{I}_3 \\ \therefore V_o &= I_{30 \Omega} \times 30 \\ &= 0.2 \times 30 \\ &= 0.6 \text{V} \\ \therefore \mathbf{i} &= \mathbf{0.2A} \\ \therefore \mathbf{V_o} &= \mathbf{0.6V} \end{aligned}$$

# SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:



Figure 4: Circuit Schematic and Simulated Results

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| i          | 0.2A               | 0.2A             |
| $V_{o}$    | 0.6V               | 0.6V             |

Table 1: Numerical 1

Numerical 2: Obtain the equivalent resistance between the terminals a-b for each of the circuits:

(a)



Figure 5: Circuit 2a

# Solution:

We will use series - parallel and star-delta reduction techniques to obtain the equivalent resistance between terminals a and b.



Figure 6: Delta - Star Conversion

The resistors  $10\Omega$ ,  $10\Omega$  and  $20\Omega$  are connected in delta.

Converting delta to star, we have:

$$x = \frac{10 \times 20}{10 + 10 + 20} = 5\Omega$$
$$y = \frac{10 \times 10}{10 + 10 + 20} = 2.5\Omega$$
$$z = \frac{20 \times 10}{10 + 10 + 20} = 5\Omega$$

 $\therefore$  The circuit is simplified as shown in figure 7:



Figure 7: Simplified Circuit 2a.1 for figure 6

The resistors  $10\Omega$  and  $2.5\Omega$  are connected in series.

$$\therefore R_{\rm s} = 10 \,+\, 2.5 = 12.5\Omega$$

The resistors  $20\Omega$  and  $5\Omega$  are connected in series.

$$\therefore R_{\rm s} = 20 \, + \, 5 = 20\Omega$$

... The circuit is further simplified as shown in figure 8:



Figure 8: Simplified Circuit 2a.2 for figure 7

The resistors  $12.5\Omega$  and  $25\Omega$  are connected in parallel.

$$\therefore R_{\rm p} = 12.5 \mid\mid 25$$

$$= \frac{12.5 \times 25}{12.5 + 25}$$

$$= 8.33\Omega$$

 $\therefore$  The circuit is further simplified as shown in figure 9:



Figure 9: Simplified Circuit 2a.3 for figure 8

The resistors  $8.33\Omega$  and  $5\Omega$  are connected in series.

$$\therefore R_{\rm s} = 8.33 + 5 = 13.33\Omega$$

... The circuit is further simplified as showin figure 10:



Figure 10: Simplified Circuit 2a.4 for figure 9

The resistors  $30\Omega$  and  $13.33\Omega$  are connected in parallel.

$$\therefore R_{\rm ab} = 30 \mid\mid 13.33$$

$$= \frac{30 \times 13.33}{30 + 13.33}$$

$$= 9.23\Omega$$

$$\therefore R_{ab} = 9.23\Omega$$

# SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:



Figure 11: Circuit Schematic and Simulated Results

$$\therefore R_{\rm ab} = \frac{V1}{I(V1)} = \frac{10}{1.0833} = 9.2308\Omega$$

| Parameters      | Theoretical values | Simulated values |
|-----------------|--------------------|------------------|
| R <sub>ab</sub> | $9.23\Omega$       | $9.2308\Omega$   |

Table 2: Numerical 2a

(b)



Figure 12: Circuit 2b

# Solution:

We will use series - parallel and star-delta reduction techniques to obtain the equivalent resistance between terminals a and b.



Figure 13: Star - Delta Conversion

The resistors  $10\Omega$ ,  $20\Omega$  and  $5\Omega$  are connected in delta.

Converting star to delta, we have:

$$x = 10 + 20 + \frac{10 \times 20}{5} = 70\Omega$$

$$y = 10 + 5 + \frac{10 \times 5}{20} = 17.5\Omega$$

$$z = 20 + 5 + \frac{20 \times 5}{10} = 35\Omega$$

... The circuit is simplified as shown in figure 14:



Figure 14: Simplified Circuit 2b.1 for figure 13

The resistors  $30\Omega$  and  $70\Omega$  are connected in parallel.

∴ 
$$R_{\rm p} = 30 \mid\mid 70$$
  
=  $\frac{30 \times 70}{30 + 70}$   
=  $21\Omega$ 

Similarly, the resistors  $35\Omega$  and  $15\Omega$  are connected in parallel.

$$\therefore R_{\rm p} = 35 \mid\mid 15$$

$$= \frac{35 \times 15}{35 + 15}$$

$$= 10.50$$

... The circuit is further simplified as shown in figure 15:



Figure 15: Simplified Circuit 2b.2 for figure 14

The resistors  $21\Omega$  and  $10.5\Omega$  are connected in series.

$$\therefore R_{\rm s} = 21 \,+\, 10.5 = 31.5\Omega$$

 $\therefore$  The circuit is further simplified as shown in figure 16:



Figure 16: Simplified Circuit 2b.3 for figure 15

The resistors  $17.5\Omega$  and  $31.5\Omega$  are connected in parallel.

$$\therefore R_{\rm p} = 17.5 \parallel 31.5$$

$$= \frac{17.5 \times 31.5}{17.5 + 31.5}$$

$$= 11.250$$

So, the circuit is further simplified as shown in figure 17:



Figure 17: Simplified Circuit 2b.4 for figure 16

The resistors  $25\Omega$  and  $11.25\Omega$  are connected in series.

$$\therefore R_{\rm ab} = 25 + 11.25 = 36.25\Omega$$

 $\therefore R_{ab} = 36.25\Omega$ 

# SIMULATED RESULTS:

The given circuit is simulated in LT spice and the results obtained are as follows:



Figure 18: Circuit Schematic and Simulated Results

$$\therefore R_{\rm ab} = \frac{V1}{I(V1)} = \frac{10}{0.275862} = 36.250\Omega$$

| Parameters      | Theoretical values | Simulated values |
|-----------------|--------------------|------------------|
| R <sub>ab</sub> | $36.25\Omega$      | $36.250\Omega$   |

Table 3: Numerical 2b

Numerical 3: For the circuit, use superposition theorem to find i and calculate the power delivered by the  $4\Omega$  resistor :



Figure 19: Circuit 3

# Solution:

We will use Superposition theorem to find i.

Case 1: We will first consider the 20V source alone and replace the other sources by their internal resistances



Figure 20: Case 1 - Considering only  $20\mathrm{V}$  source acting alone

#### We will now use Mesh Analysis to find i'

Assume mesh currents  $i_1$  and  $i_2$  flowing through loops 1 and 2 in clockwise direction

Applying KVL to loop 1, we get:

$$20 - 1(i_1 - i_2) - 3(i_1 - i_2) - 2i_1 = 0$$
  
 
$$\therefore -6i_1 + 4i_2 = -20$$
 .....(i)

Applying KVL to loop 2, we get:

$$-3(i_2 - i_1) - 1(i_2 - i_1) - 4i_2 = 0$$
  

$$\therefore 4i_1 - 8i_2 = 0$$
 .....(ii)

Solving (i) and (ii) we get

 $i_1 = 5A$  and  $i_2 = 2.5A$ ,

$$\therefore \mathbf{i}' = \mathbf{i}_1 \ - \mathbf{i}_2 \ = \mathbf{5} - \mathbf{2.5} = \mathbf{2.5A} \downarrow$$

# Case 2: We will now consider the 16V source alone and replace the other sources by their internal resistances



Figure 21: Case 2 - Considering only 16V source acting alone

#### We will now use Mesh Analysis to find i"

Assume mesh currents i<sub>1</sub> and i<sub>2</sub> flowing through loops 1 and 2 in clockwise direction

Applying KVL to loop 1, we get:

$$-2i_1 - 1(i_1 - i_2) - 3(i_1 - i_2) = 0$$
  

$$\therefore -6i_1 + 4i_2 = 0$$
 .....(i)

Applying KVL to loop 2, we get:

$$-3(i_2 - i_1) - 1(i_2 - i_1) - 4i_2 + 16 = 0$$
  

$$\therefore 4i_1 - 8i_2 = -16$$
 .....(ii)

Solving (i) and (ii) we get  $i_1 = 2A \text{ and } i_2 = 3A,$   $\therefore \mathbf{i}'' = \mathbf{i}_1 - \mathbf{i}_2 = -\mathbf{1}\mathbf{A} \downarrow$ 

Case 3: We will now consider the 2A source alone and replace the other sources by their internal resistances



Figure 22: Case 3 - Considering only 2A source acting alone

The resistors  $2\Omega$  and  $4\Omega$  are connected in parallel.

 $\therefore R_{\rm p} = 2 \mid\mid 4$   $= \frac{2 \times 4}{2 + 4}$   $= 1.333\Omega$ 

 $\therefore$  The circuit is simplified as shown in figure 23:



Figure 23: Simplified Circuit 3a for figure 22

... The circuit can be redrawn as shown in figure 24:



Figure 24: Simplified Circuit 3b for figure 23  $\,$ 

By current division rule, we get:

$$\therefore \mathbf{i}''' = \frac{2 \times 1}{1.333 + 3 + 1}$$

$$\therefore i''' = 0.3750 A \downarrow$$

$$\therefore i = i' + i'' + i'''$$

$$= 2.5 \downarrow + (-1) \downarrow + 0.3750 \downarrow$$

$$= 1.875A \downarrow$$

$$P = i^{2} \times R_{3}$$

$$= 1.875^{2} \times 3$$

$$= 10.546875W$$

$$\therefore i = 1.875A$$

 $\therefore$  P = 10.546875W

#### SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:



Figure 25: Circuit Schematic and Simulated Results

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| i          | 1.875A             | 1.8750A          |
| P          | 10.546875W         | 10.546875W       |

Table 4: Numerical 3

Numerical 4: For the given circuit shown in figure 26, use superposition theorem to find io.



Figure 26: Circuit 4

#### Solution:

We will use Superposition theorem to find  $i_o$ .

Case 1: We will first consider the 12V source alone and replace the other sources by their internal resistances



Figure 27: Case 1 - Considering only 12V source acting alone

The resistors  $3\Omega,\,2\Omega$  and  $5\Omega$  are connected in series.

$$\therefore R_{\rm s} = 3 + 2 + 5 = 10\Omega$$

 $\therefore$  The circuit is simplified as shown in figure 28:



Figure 28: Simplified Circuit 4a for figure 27

The resistors  $10\Omega$  and  $10\Omega$  are connected in parallel,

$$\begin{split} \therefore R_{\rm p} &= 10 \,||\, 10 \\ &= \frac{10 \times 10}{10 + 10} \\ &= 5\Omega \end{split}$$

... The circuit is further simplified as shown in figure 29:



Figure 29: Simplified Circuit 4b for figure 28

$$\therefore i_o' = \frac{12}{4+5} = 1.3333A$$

$$\therefore \mathbf{i_o}' = 1.3333\mathbf{A} \rightarrow$$

Case 2: We will now consider the 4A source alone and replace the other sources by their internal resistances



Figure 30: Case 2 - Considering only 4A source acting alone

The resistors  $2\Omega$  and  $5\Omega$  are connected in series.

- $\therefore R_{\rm s} = 2 + 5 = 7\Omega$
- ... The circuit is simplified as sjown in figure 31:



Figure 31: Simplified Circuit 4c for figure 30

# We will now use Mesh Analysis to find $i_o{''}$

Assume mesh currents  $i_1$ ,  $i_2$  and  $i_3$  flowing through loops 1, 2 and 3 in clockwise direction

From the figure, 
$$i_3 = -4A$$
 .....(i)

Applying KVL to loop 1, we get:

$$-4i_1 - 10(i_1 - i_2) = 0$$
  

$$\therefore -14i_1 + 10i_2 = 0$$
 .....(ii)

Applying KVL to loop 2, we get:

$$-10(i_2 - i_1) - 3(i_2 - i_3) - 7i_2 = 0$$
  

$$\therefore 10i_1 - 20i_2 = 12$$
 .....(iii)

Solving (i), (ii) and (iii) we get

$$i_1 = -0.6667A$$
 and  $i_2 = -0.9333A$ 

$$\therefore \mathbf{i_o}'' = \mathbf{i_1} = -0.6667 \mathbf{A} \rightarrow$$

# Case 3: We will now consider the 2A source alone and replace the other sources by their internal resistances



Figure 32: Case 3 - Considering only 2A source acting alone

# We will now use Mesh Analysis to find io'''

Assume mesh currents i<sub>1</sub>, i<sub>2</sub> and i<sub>3</sub> flowing through loops 1, 2 and 3 in clockwise direction

From the figure, 
$$i_3 = -2A$$
 .....(i)

Applying KVL to loop 1, we get:

$$-4i_1 - 10(i_1 - i_2) = 0$$
  

$$\therefore -14i_1 + 10i_2 = 0$$
 .....(ii)

Applying KVL to loop 2, we get:

$$-10(i_2 - i_1) - 3i_2 - 2i_2 - 5(i_2 - i_3) = 0$$
  

$$\therefore 10i_1 - 20i_2 = 10$$
 .....(iii)

Solving (i), (ii) and (iii) we get

$$\mathrm{i}_1 = -0.5556\mathrm{A}$$
 and  $\mathrm{i}_2 = -0.7778\mathrm{A}$ 

$$\therefore {\bf i_o}'''={\bf i_1}=-0.5556{\bf A}\rightarrow$$

$$\begin{split} \therefore i_o &= i_o{'} + i_o{''} + i_o{'''} \\ &= 1.3333 \rightarrow + (-0.6667) \rightarrow + (-0.5556) \rightarrow \\ &= 0.1111A \rightarrow \end{split}$$

$$:$$
  $i_o = 0.1111A$ 

#### SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:



Figure 33: Circuit Schematic and Simulated Results

| Parameters     | Theoretical values | Simulated values |
|----------------|--------------------|------------------|
| i <sub>o</sub> | 0.1111A            | 0.1111A          |

Table 5: Numerical 4

Numerical 5: Obtain the Thevenin's Equivalent at terminals a-b for the circuit shown in figure 34



Figure 34: Circuit 5

# Solution:

# I. Calculation of $V_{\rm th}$

We will consider open-circuit voltage  $V_{ab} = V_{th}$  across terminals a-b.

We will use mesh analysis to find the currents through the loops of the circuit.



Figure 35: Circuit for calculation of  $V_{\rm th}$ 

Assume mesh currents  $I_1$  and  $I_2$  flowing through loops 1 and 2 in clockwise direction From the figure 2, we can see that:

Applying KVL to loop 1, we get:

$$24 - 10I_1 - 10(I_1 - I_2) - 5I_1 = 0$$
  
∴  $-25I_1 + 10I_2 = -24$  .....(ii)

Solving (i) and (ii) we get

$$I_1 = -0.24A$$
 .....(iii)

Equation of  $V_{\rm th}$ :

$$5I_1 + 16I_2 = V_{\text{th}}$$

Using (i) and (iii) we get

$$\therefore\!V_{\rm th}=-49.2V$$

# II. Calculation of $R_{\rm th}$

Replacing all voltage and current sources by short and open circuit respectively we get,



Figure 36: Circuit for calculation of  $R_{\rm th}$ 

 $10\Omega$  and  $10\Omega$  resistors are connected in series

$$\therefore R_{\rm s} = 10 \, + \, 10 = 20\Omega$$

...The circuit is simplified as shown in figure 37:



Figure 37: Simplified Circuit 5a for figure 36

The resistors  $20\Omega$  and  $5\Omega$  are connected in parallel.

$$\therefore R_{\rm p} = 20 \mid\mid 5$$

$$= \frac{20 \times 5}{20 + 5}$$

$$= 4\Omega$$

...The circuit is simplified as shown in figure 38:



Figure 38: Simplified Circuit 5b for figure 37

The resistors  $4\Omega$  and  $16\Omega$  are connected in series.

$$\therefore R_{ab} = 4\Omega + 16\Omega = 20\Omega$$

$$\therefore \mathbf{R_{th}} = \mathbf{20}\Omega$$

... The Thevenin's Equivalent circuit is as shown in figure 39:



Figure 39: Thevenin's Equivalent Circuit

#### SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

# I. Simulation of circuit to find $V_{\rm th}$



Figure 40: Circuit Schematic for  $V_{\rm th}$  and Simulated Results

| Parameters  | Theoretical values | Simulated values |
|-------------|--------------------|------------------|
| $ m V_{th}$ | -49.2V             | -49.2V           |

Table 6: Numerical 5:- Calculation of  $V_{\rm th}$ 

# II. Simulation of circuit to find $R_{\rm th}$



Figure 41: Circuit Schematic for  $R_{\rm th}$  and Simulated Results

$${\rm R_{th}} = \frac{V1}{I(V1)} = \frac{10}{0.5} = 20\Omega$$

| Parameters   | Theoretical values | Simulated values |
|--------------|--------------------|------------------|
| $R_{\rm th}$ | $20\Omega$         | $20\Omega$       |

Table 7: Numerical 5:- Calculation of R<sub>th</sub>

**Numerical 6**: Obtain the Thevenin's Equivalent at terminals a-b for the circuit shown in figure 42



Figure 42: Circuit 6

# Solution:

# I. Calculation of $V_{\rm th}$

We will remove the  $6\Omega$  resistor and consider open-circuit voltage  $V_{ab}=V_{th}$  across terminals a-b.

We will use mesh analysis to find the currents through the loops of the circuit.



Figure 43: Circuit for calculation of  $V_{\rm th}$ 

Assume mesh currents  $I_1$  and  $I_2$  flowing through loops 1 and 2 in clockwise direction

From the figure 2, we can see that:

$$I_2 = -2A \qquad \qquad \dots \dots (i)$$

Applying KVL to loop 1, we get:

$$20 - 10I_1 - 10I_1 = 0$$

$$\therefore 20I_1 = 20$$

$$\therefore I_1 = 1A \qquad \qquad \dots \dots (ii)$$

Equation of  $V_{\rm th}$ :

$$-5I_2 - 10I_1 = V_{th}$$

Using (i) and (ii) we get

$$_{\dot{}}.V_{\rm th}=0V$$

# II. Calculation of $R_{\rm th}$

Replacing all voltage and current sources by short and open circuit respectively we get,



Figure 44: Circuit for calculation of R<sub>th</sub>

The resistors  $10\Omega$  and  $10\Omega$  are connected in parallel.

∴ 
$$R_{\rm p} = 10 \mid\mid 10$$
  
=  $\frac{10 \times 10}{10 + 10}$   
=  $5\Omega$ 

... The circuit is simplified as shown in figure 45



Figure 45: Simplified Circuit 6a for figure 44

The resistors  $5\Omega$  and  $5\Omega$  are connected in series.

$$\therefore R_{ab} = 5\Omega + 5\Omega = 10\Omega$$

$$: \mathbf{R_{th}} = \mathbf{10}\Omega$$

... The Thevenin's Equivalent circuit is as shown in figure 13:



Figure 46: Thevenin's Equivalent Circuit

$$i_{x} = \frac{V_{\text{th}}}{R_{\text{th}} + R_{\text{L}}} = \frac{0}{10 + 6} = 0A$$
$$\therefore i_{x} = 0A$$

# SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

# I. Simulation of circuit to find $V_{\rm th}$



Figure 47: Circuit Schematic for  $\mathrm{V}_{\mathrm{th}}$  and Simulated Results

$$V_{\rm th} = V_{\rm a} - V_{\rm b} = 10 - 10 = 0V$$

# Comparison of Theoretical and Simulated values:-

| Parameters  | Theoretical values | Simulated values |
|-------------|--------------------|------------------|
| $ m V_{th}$ | 0V                 | 0V               |

Table 8: Numerical 6:- Calculation of  $V_{\rm th}$ 

# II. Simulation of circuit to find R<sub>th</sub>



Figure 48: Circuit Schematic for R<sub>th</sub> and Simulated Results

$$R_{\rm th} = \frac{V1}{I(V1)} = \frac{10}{1} = 10\Omega$$

| Parameters        | Theoretical values | Simulated values |
|-------------------|--------------------|------------------|
| $R_{\mathrm{th}}$ | $10\Omega$         | $10\Omega$       |

Table 9: Numerical 6:- Calculation of  $R_{\rm th}$ 

# III. Simulation of circuit to find $i_x$



Figure 49: Circuit Schematic for i<sub>x</sub> and Simulated Results

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| $i_x$      | 0A                 | 0A               |

Table 10: Numerical 6:- Calculation of  $i_x$ 

Numerical 7: With the help of Norton's Theorem, find  $V_{\rm o}$  in the circuit shown in figure 50



Figure 50: Circuit 7

# Solution:

# I. Calculation of $I_{\rm sc}$

We will remove the  $4\Omega$  resistor and consider short-circuit current  $I_N=I_{sc}$ .

We will use mesh analysis to find the currents through the loops of the circuit.



Figure 51: Circuit for calculation of  $I_{\rm sc}$ 

Assume mesh currents  $I_1$  and  $I_2$  flowing through loops 1 and 2 in clockwise direction

From the figure 2, we can see that:

Applying KVL to loop 2, we get:

$$-1(I_2 - I_1) - I_2 = 0$$
  
 $\therefore I_1 - 2I_2 = 0$  .....(ii)

Solving (i) and (ii) we get

$$I_2 = 7.5A \qquad \qquad \dots \dots (iii)$$

Applying KVL to loop 3, we get:

$$-4I_3 - 10 = 0$$

$$\therefore I_3 = -2.5A \qquad \qquad \dots \dots (iv)$$

Using (i) and (iv) we get

$$\begin{split} I_{sc} &= I_2 - I_3 \\ &= 7.5 - (-2.5) \end{split}$$

$$\therefore I_{\rm sc} = 10A$$

# II. Calculation of $R_N$

Replacing all voltage and current sources by short and open circuit respectively we get,



Figure 52: Circuit for calculation of R<sub>N</sub>

 $1\Omega$  and  $1\Omega$  resistors are connected in series

$$\therefore R_{\rm s} = 1 + 1 = 2\Omega$$

∴The circuit is simplified as shown in figure 53:



Figure 53: Simplified Circuit 7a for figure 52

The resistors  $2\Omega$  and  $4\Omega$  are connected in parallel.

$$\therefore R_{p} = 2 \mid\mid 4$$

$$= \frac{2 \times 4}{2 + 4}$$

$$= 1.3333\Omega$$

$$\therefore \mathbf{R_N} = 1.3333\Omega$$

 $\therefore$  The Norton's Equivalent circuit is as shown in figure 54:



Figure 54: Norton's Equivalent Circuit

.. By current division rule, we have

$$I_{(RL)} = \frac{10 \times 1.3333}{1.3333 + 4} = 2.5 A$$

$$\begin{split} \therefore V_o &= I_{(RL)} \times R_L \\ &= 2.5 \times 4 \\ &= 10 V \end{split}$$

$$\therefore \mathbf{V_o} = 10\mathbf{V}$$

# SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

# I. Simulation of circuit to find $I_{\rm sc}$



Figure 55: Circuit Schematic for  $I_{sc}$  and Simulated Results

$$I_{sc} = I_{R3} - I_{R2} = 2.5 - (-7.5) = 10A$$

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| $I_{sc}$   | 10A                | 10A              |

Table 11: Numerical 7:- Calculation of  $I_{\rm sc}$ 

# II. Simulation of circuit to find $\mathbf{R}_{\mathbf{N}}$



Figure 56: Circuit Schematic for  $R_N$  and Simulated Results

$${\rm R_{th}} = \frac{V1}{I(V1)} = \frac{10}{7.5} = 1.3333\Omega$$

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| $R_N$      | $1.3333\Omega$     | $1.3333\Omega$   |

Table 12: Numerical 7:- Calculation of  $R_N$ 

# III. Simulation of circuit to find $V_{\rm o}$



Figure 57: Circuit Schematic for  $V_{\rm o}$  and Simulated Results

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| $V_{o}$    | 10V                | 10V              |

Table 13: Numerical 7:- Calculation of  $V_o$ 

Numerical 8: For the circuit given in figure 58, calculate the current in the  $6\Omega$  resistor using Norton's theorem



Figure 58: Circuit 8

#### Solution:

# I. Calculation of $I_{\rm sc}$

We will remove the  $6\Omega$  resistor and consider short-circuit current  $I_N=I_{sc}$  across terminals A and B

We will use mesh analysis to find the currents through the loops of the circuit.



Figure 59: Circuit for calculation of  $I_{\rm sc}$ 

Assume mesh currents  ${\rm I}_1$  and  ${\rm I}_2$  flowing through loops 1 and 2 in clockwise direction

Applying KVL to loop 1, we get:

$$3 - 4I_1 - 4(I_1 - I_2) + 5 = 0$$
  
∴  $-8I_1 + 4I_2 = -8$  .....(i)

Applying KVL to loop 2, we get:

$$-2I_2 - 4 - 5 - 4(I_2 - I_1) = 0$$
  
 $\therefore 4I_1 - 6I_2 = 9$  .....(ii)

Solving (i) and (ii) we get,

$$I_1 = 0.375 A$$
 and  $I_2 = -1.25 A$ 

From the figure we see that

$$I_{sc} = -\ I_2$$

$$\therefore I_{sc} = 1.25A$$

# II. Calculation of $\mathbf{R}_{\mathbf{N}}$

Replacing all voltage sources by short circuit we get,



Figure 60: Circuit for calculation of R<sub>N</sub>

The resistors  $4\Omega$  and  $4\Omega$  resistors are connected in parallel and this combination is in series with  $2\Omega$ 

$$R_N = (4||4) + 2$$
  
=  $\frac{4 \times 4}{4 + 4} + 2$   
=  $4\Omega$ 

$$\therefore \mathbf{R_N} = \mathbf{4}\Omega$$

... The Norton's Equivalent circuit is as shown in figure 61:



Figure 61: Norton's Equivalent Circuit

... By current division rule, we have

$$I_{(RL)} = \frac{1.25 \times 4}{4+6} = 0.5A$$

$$\therefore I_{\rm (RL)} = 0.5A$$

#### SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

I. Simulation of circuit to find I<sub>sc</sub>



Figure 62: Circuit Schematic for  $\rm I_{sc}$  and Simulated Results

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| $I_{sc}$   | 1.25A              | 1.25A            |

Table 14: Numerical 8:- Calculation of  $I_{\rm sc}$ 

# II. Simulation of circuit to find $\mathbf{R}_{\mathbf{N}}$



Figure 63: Circuit Schematic for R<sub>N</sub> and Simulated Results

$$R_{\rm N} = \frac{V1}{I(V1)} = \frac{10}{2.5} = 4\Omega$$

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| $R_N$      | $4\Omega$          | $4\Omega$        |

Table 15: Numerical 8:- Calculation of R<sub>N</sub>

# III. Simulation of circuit to find $I_{(R3)}$



Figure 64: Circuit Schematic for  $I_{\rm R3}$  and Simulated Results

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| $I_{R3}$   | 0.5A               | 0.5A             |

Table 16: Numerical 8:- Calculation of I<sub>(R3)</sub>

Numerical 9: Obtain the Thevenin's and Norton's equivalent circuits at terminals a and b.



Figure 65: Circuit 9

### Solution:

THEVENIN'S EQUIVALENT CIRCUIT:-

# I. Calculation of $V_{\rm th}$

Consider open-circuit voltage  $V_{ab} = V_{th}$  across terminals a-b.

We will use mesh analysis to find the currents through the loops of the circuit.



Figure 66: Circuit for calculation of  $V_{\rm th}$ 

Assume mesh currents  ${\rm I}_1,\,{\rm I}_2$  and  ${\rm I}_3$  flowing through loops 1, 2 and 3 in clockwise direction

Applying KVL to loop 1, we get:

$$-2I_1 + 12 - 6(I_1 - I_2) - 6(I_1 - I_3) + 12 = 0$$
  
∴ 
$$-14I_1 + 6I_2 + 6I_3 = -24$$
 .....(i)

Applying KVL to loop 2, we get:

$$-2I_2 - 6(I_2 - I_3) - 6(I_2 - I_1) = 0$$
  

$$\therefore 6I_1 - 14I_2 + 6I_3 = 0$$
 .....(ii)

Applying KVL to loop 3, we get:

$$-12 - 2I_3 - 12 - 6(I_3 - I_1) - 6(I_3 - I_2) = 0$$
  
∴  $6I_1 + 6I_2 - 14I_3 = 24$  .....(iii)

Solving (i), (ii) and (iii) we get,

$$I_1 = 1.2A, I_2 = 0A \text{ and } I_3 = -1.2A$$

Equation of  $V_{\rm th}$ :

$$-2I_3 + 12 = V_{th}$$

$$\therefore V_{\rm th} = 9.6V$$

# II. Calculation of $R_{\rm th}$

Replacing all voltage and current sources by short and open circuit respectively we get,



Figure 67: Circuit for calculation of  $R_{\rm th}$ 

The resistors  $6\Omega$ ,  $6\Omega$  and  $2\Omega$  are connected in delta.



Figure 68: Delta - Star Conversion

Converting delta to star, we have:

$$x = \frac{6 \times 2}{6 + 2 + 6} = 0.8751\Omega$$
$$y = \frac{2 \times 6}{2 + 6 + 6} = 0.8571\Omega$$
$$z = \frac{6 \times 6}{6 + 20} = 2.5714\Omega$$

... The circuit is simplified as shown in figure 69:



Figure 69: Simplified Circuit 9a for figure 67

The resistors  $6\Omega$  and  $2.5714\Omega$  are connected in series.

$$\therefore R_{\rm s} = 6 + 2.5714 = 8.5714\Omega$$

Similarly, the resistors  $2\Omega$  and  $0.8571\Omega$  are connected in series.

$$\therefore R_{\rm s} = 2 + 0.8571 = 2.8571\Omega$$

... The circuit is simplified as shown in figure 70:



Figure 70: Simplified Circuit 9b for figure 69

The resistors  $8.5714\Omega$  and  $2.8571\Omega$  are connected in parallel.

$$\therefore R_{\rm p} = 8.5714 \mid\mid 2.8571$$

$$= \frac{8.5714 \times 2.8571}{8.5714 + 2.8571}$$

$$= 2.1428 \Omega$$

 $\therefore$  The circuit is simplified as shown in figure 71:



Figure 71: Simplified Circuit 9c for figure 70

The resistors  $2.1428\Omega$  and  $0.8571\Omega$  are connected in series.

$$\therefore R_{\rm s} = 0.8571 + 2.1428 = 3\Omega$$

... The circuit is simplified as shown in figure 72:



Figure 72: Simplified Circuit 9d for figure 71

The resistors  $3\Omega$  and  $2\Omega$  are connected in parallel.

$$\therefore R_{\rm p} = 3 \parallel 2$$

$$= \frac{3 \times 2}{3 + 2}$$

$$= 1.2\Omega$$

 $\therefore$  The circuit is simplified as shown in figure 73:



Figure 73: Simplified Circuit 9e for figure 72

The resistors  $1\Omega$  and  $1.2\Omega$  are connected in series.

$$\therefore R_{\rm s} = 1 + 1.2 = 2.2\Omega$$

$$\therefore \mathbf{R_{th}} = \mathbf{2.2}\Omega$$

... The Thevenin's Equivalent circuit is as shown in figure 74:



Figure 74: Thevenin's Equivalent Circuit

### NORTON'S EQUIVALENT CIRCUIT:-

### I. Calculation of $I_{\rm sc}$

Consider short-circuit current  $I_{\rm N}=I_{\rm sc}$  between terminals a and b.

We will use mesh analysis to find the currents through the loops of the circuit.



Figure 75: Circuit for calculation of I<sub>sc</sub>

Assume mesh currents  $I_1$ ,  $I_2$ ,  $I_3$  and  $I_4$  flowing through loops 1, 2, 3 and 4 in clockwise direction

Applying KVL to loop 1, we get:

$$-2I_1 + 12 - 6(I_1 - I_2) - 6(I_1 - I_3 + 12) = 0$$
  
∴  $-14I_1 - 6I_2 + 6I_3 = -24$  .....(i)

Applying KVL to loop 2, we get:

$$-2I_2 - 6(I_2 - I_3) - 6(I_2 - I_1) = 0$$
  

$$\therefore 6I_1 - 14I_2 + 6I_3 = 0 \qquad \dots \dots (ii)$$

Applying KVL to loop 3, we get:

$$-12 - 2(I_3 - I_4) - 12 - 6(I_3 - I_1) - 6(I_3 - I_2) = 0$$
  
∴  $6I_1 + 6I_2 - 14I_3 + 2I_4 = 24$  .....(iii)

Applying KVL to loop 4, we get:

$$-I_4 - 2(I_4 - I_3) + 12 = 0$$
  
 $\therefore 2I_3 - 3I_4 = 24$  .....(iv)

Solving (i), (ii), (iii) and (iv) we get,

$$I_1 = 2.5090 A,\, I_2 = 1.3090 A,\, I_3 = 0.5454 A \text{ and } I_4 = 4.3636 A$$

$$\therefore \mathbf{I_{sc}} = \mathbf{I_4} = 4.3636\mathbf{A}$$

#### II. Calculation of $R_N$

The value of  $R_{\rm th}$  and  $R_{\rm N}$  will be same.

$$\therefore R_{N} = R_{\rm th} = 2.2\Omega$$

... The Norton's Equivalent circuit is as shown in figure 76:



Figure 76: Norton's Equivalent Circuit

#### SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

# I. Simulation of circuit to find $V_{\rm th}$



Figure 77: Circuit Schematic for  $V_{\rm th}$  and Simulated Results

| Parameters  | Theoretical values | Simulated values |
|-------------|--------------------|------------------|
| $V_{ m th}$ | 9.6V               | 9.6V             |

Table 17: Numerical 9:- Calculation of  $V_{\rm th}$ 

# II. Simulation of circuit to find $R_{\rm th}$



Figure 78: Circuit Schematic for R<sub>th</sub> and Simulated Results

$${\rm R_{th}} = \frac{V1}{I(V1)} = \frac{10}{4.5454} = 2.2\Omega$$

| Parameters   | Theoretical values | Simulated values |
|--------------|--------------------|------------------|
| $R_{\rm th}$ | $10\Omega$         | $10\Omega$       |

Table 18: Numerical 9:- Calculation of  $R_{\rm th}$ 

# III. Simulation of circuit to find $I_{\rm sc}$



Figure 79: Circuit Schematic for  $I_{sc}$  and Simulated Results

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| $I_{sc}$   | 4.3636A            | 4.3636A          |

Table 19: Numerical 9:- Calculation of  $I_{\rm sc}$ 

Numerical 10: For the circuit given in figure 80, find the maximum value of R<sub>L</sub>



Figure 80: Circuit 10

#### Solution:

We will use Thevenin's Theorem to calculate  $V_{\rm th}$  and  $R_{\rm th}$ 

# I. Calculation of $V_{\rm th}$

We will remove  $R_L$  and consider open-circuit voltage  $V_{\rm th}$  across terminals.

We will use mesh analysis to find the currents through the loops of the circuit.



Figure 81: Circuit for calculation of  $V_{\rm th}$ 

Assume mesh currents  $I_1$ ,  $I_2$  and  $I_3$  flowing through loops 1, 2 and 3 in clockwise direction

Applying KVL to loop 1, we get:

$$10 - 20I_1 - 90(I_1 - I_2) = 0$$
  

$$\therefore -110I_1 + 90I_2 = -10$$
 .....(i)

Applying KVL to loop 2, we get:

$$-90(I_2 - I_1) - 60(I_2 - I_3) = 0$$
  
∴  $90I_1 - 150I_2 + 60I_3 = 0$  .....(ii)

Applying KVL to loop 
$$3$$
 , we get:

$$-60(I_3 - I_2) - 180I_3 = 0$$
  
∴  $60I_2 - 240I_3 = -0$  .....(iii)

Solving (i), (ii) and (iii) we get

$$I_1 = 0.2A, I_2 = 1.3333A$$
 and  $I_3 = 0.3333A$ 

Equation of  $V_{\rm th}$ :

$$10 - 20I_1 = V_{th}$$

Using (i) we get

$$\therefore V_{\rm th} = 6V$$

# II. Calculation of $R_{\rm th}$

Replacing all voltage and current sources by short and open circuit respectively we get,



Figure 82: Circuit for calculation of R<sub>th</sub>

The resistors  $20\Omega$  and  $90\Omega$  are connected in parallel.

∴ 
$$R_{\rm p} = 20 \mid \mid 90$$
  
=  $\frac{20 \times 90}{20 + 90}$   
=  $16.3636\Omega$ 

.:. The circuit is simplified as shown in figure 83:



Figure 83: Simplified Circuit 10a for figure 82

The resistors  $16.3636\Omega$  and  $60\Omega$  are connected in parallel.

$$\therefore R_{\rm p} = 16.3636 \mid\mid 60$$

$$= \frac{16.3636 \times 60}{16.3636 + 60}$$

$$= 12.8571\Omega$$

...The circuit is simplified as shown in figure 84:



Figure 84: Simplified Circuit 10b for figure 83

The resistors  $12.8571\Omega$  and  $180\Omega$  are connected in parallel.

$$\therefore R_{\rm p} = 12.8571 \mid\mid 180$$

$$= \frac{12.8571 \times 180}{12.8571 + 180}$$

$$= 12\Omega$$

 $\therefore \mathbf{R_{th}} = \mathbf{12}\Omega$ 

According to Maximum Power Transfer Theorem, for maximum power transfer,  $R_{th}=R_L$   $\therefore R_L=12\Omega$ 

 $\therefore$  The Thevenin's Equivalent circuit is as shown in figure 85:



Figure 85: Thevenin's Equivalent Circuit

$$\therefore P_{\text{max}} = \frac{V_{\text{th}}^2}{4 \times R_{\text{L}}}$$

$$= \frac{6^2}{4 \times 12}$$

$$= 0.75 \text{W}$$

$$= 750 \text{mW}$$

### SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

# I. Simulation of circuit to find $\mathbf{V}_{\mathrm{th}}$



Figure 86: Circuit Schematic for  $V_{\rm th}$  and Simulated Results

| Parameters  | Theoretical values | Simulated values |
|-------------|--------------------|------------------|
| $ m V_{th}$ | 6V                 | 6V               |

Table 20: Numerical 10 :- Calculation of  $V_{\rm th}$ 

# II. Simulation of circuit to find $R_{\rm th}$



Figure 87: Circuit Schematic for R<sub>th</sub> and Simulated Results

$$R_{\rm th} = \frac{V1}{I(V1)} = \frac{10}{0.83333} = 12\Omega$$

| Parameters   | Theoretical values | Simulated values |
|--------------|--------------------|------------------|
| $R_{\rm th}$ | $12\Omega$         | $12\Omega$       |

Table 21: Numerical 10:- Calculation of  $R_{\rm th}$ 

# II. Simulation of circuit to find $P_{\rm max}$



Figure 88: Circuit Schematic for  $P_{\rm max}$  and Simulated Results

$$P_{max} = I^2 \times R = 0.25^2 \times 12 = 750 mW$$

| Parameters | Theoretical values | Simulated values  |
|------------|--------------------|-------------------|
| $P_{max}$  | $750 \mathrm{mW}$  | $750 \mathrm{mW}$ |

Table 22: Numerical 10:- Calculation  $P_{max}$ 

**Numerical 11**: a) For the circuit given in figure 89, obtain the Thevenin equivalent at terminals a-b.

- b) Calculate the current for  $R_L = 8\Omega$
- c) Find  $R_{\rm L}$  for maximum power deliverable to  $R_{\rm L}$
- d) Determine that maximum power



Figure 89: Circuit 11

#### Solution:

# a) I. Calculation of $V_{\rm th}$

We will remove the  $R_{\rm L}$  and consider open-circuit voltage  $V_{\rm th}$  across terminals a-b.

We will use mesh analysis to find the currents through the loops of the circuit.



Figure 90: Circuit for calculation of  $V_{\rm th}$ 

Assume mesh currents  ${\rm I}_1$  and  ${\rm I}_2$  flowing through loops 1 and 2 in clockwise direction

From the figure, we can see that  ${\rm I}_1=4{\rm A}$  and  ${\rm I}_2=2{\rm A}$ 

Equation of  $V_{\rm th}$ :

$$2I_1 + 10I_1 + 20 = V_{\text{th}}$$

Substituting values of  $I_1$  and  $I_2$  we get

$$_{..}V_{\rm th}=40V$$

# II. Calculation of $R_{\rm th}$

Replacing all current sources by open circuit we get,



Figure 91: Circuit for calculation of  $R_{\rm th}$ 

The resistors  $2\Omega$ ,  $4\Omega$  and  $6\Omega$  are connected in series.

$$\therefore R_{ab} = 2\Omega + 4\Omega + 6\Omega = 12\Omega$$

$$: \mathbf{R_{th}} = \mathbf{12}\Omega$$

... The Thevenin's Equivalent circuit is as shown in figure 92:



Figure 92: Thevenin's Equivalent Circuit

- b) The value of  $R_L$  is to be taken as  $8\Omega$
- ... The Thevenin's Equivalent circuit for  $R_{\rm L}=8\Omega$  is as shown in figure 92:



Figure 93: The venin's Equivalent Circuit for  $R_L=8\Omega$ 

$$\begin{split} \mathbf{I_L} &= \frac{V_{\mathrm{th}}}{R_{\mathrm{th}} + R_{\mathrm{L}}} = \frac{40}{12 + 8} = 2\mathbf{A} \\ \therefore \mathbf{I_L} &= \mathbf{2A} \end{split}$$

c) According to Maximum Power Transfer Theorem, for maximum power to be delivered,  $R_{\rm th}=R_{\rm L}$ 

 $\therefore R_L = 12\Omega$ 

... The Thevenin's Equivalent circuit for  $R_L=12\Omega$  is as shown in figure 94:



Figure 94: Thevenin's Equivalent Circuit for  $R_L = 12\Omega$ 

$$\therefore \mathbf{P}_{\text{max}} = \frac{V_{\text{th}}^2}{4 \times R_{\text{L}}}$$
$$= \frac{40^2}{4 \times 12}$$
$$= 33.33 \text{W}$$

# SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

# I. Simulation of circuit to find $V_{\rm th}$



Figure 95: Circuit Schematic for  $V_{\rm th}$  and Simulated Results

$$\therefore V_{\rm th} = V_{\rm a} - V_{\rm b} = 20 - (-20) = 40V$$

### Comparison of Theoretical and Simulated values:-

| Parameters  | Theoretical values | Simulated values |
|-------------|--------------------|------------------|
| $V_{ m th}$ | 40V                | 40V              |

Table 23: Numerical 11:- Calculation of  $V_{\rm th}$ 

# II. Simulation of circuit to find $R_{\rm th}$



Figure 96: Circuit Schematic for  $R_{\rm th}$  and Simulated Results

$$R_{\rm th} = \frac{V1}{I(V1)} = \frac{10}{0.83333} = 12\Omega$$

| Parameters      | Theoretical values | Simulated values |
|-----------------|--------------------|------------------|
| R <sub>th</sub> | $12\Omega$         | $12\Omega$       |

Table 24: Numerical 11:- Calculation of  $R_{\rm th}$ 

# III. Simulation of circuit to find $P_{\rm max}$



Figure 97: Circuit Schematic for  $P_{max}$  and Simulated Results

$$P_{\rm max} = I^2 \times R = 1.6667^2 \!\! \times 12 = 33.33 W$$

| Parameters | Theoretical values | Simulated values |
|------------|--------------------|------------------|
| $P_{max}$  | 33.33W             | 33.33W           |

Table 25: Numerical 11:- Calculation P<sub>max</sub>