#### Student Names and IDs:

- Newton Kwan, nk150
- Joyce Choi, jc515
- Ashka Stephen, aas74

# Homework 9

# Part 1: Losses

# Problem 1.1

Use the formulas in the class notes to write functions with headers

```
def regressionLoss(z, delta):
def hingeLoss(y, delta):
```

that take a label  $z \in Z = \{0,1\}$  or  $y \in Y = \{-1,1\}$  and a value  $\delta$  for the signed distance from the separating hyperplane and compute the logistic-regression loss and the hinge loss as functions of label and  $\delta$ . Keep in mind that the logistic-regression loss is a composition of logistic function and cross-entropy loss.

Also write a function with header

```
def plotLosses(y):
```

that takes a label  $y \in Y = \{-1, 1\}$  and plots the two loss functions for  $-3 \le \delta \le 3$ . Show your code and the two plots that result from calling plotLosses, first with argument 1 and then with argument -1.

```
In [1]: import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        def regressionLoss(z, delta):
            This takes label z in \{0,1\} and a value delta for the signed distanc
        e from the separating
            hyperplane and computes the logistic-regression loss of label and de
        1ta
                                                      # logistic function p
            p = 1 / (1 + np.exp(-delta))
            x_{loss} = -z*np.log2(p) - (1-z)*np.log2(1-p) # cross entropy loss, z
         is the label {0,1}, p is the logistic function
            return x loss
        def hingeLoss(y, delta):
            this takes label y in {-1,1} and a value delta for the signed distan
        ce from the separating
            hyperplane and compute the hinge loss as functions of label and delt
        a.
            loss = max([0, 1 - y*delta])
            return loss
        def plotLosses(y):
            This function takes a label y in {-1, 1} and plots the two loss func
        tions
            for -3 <= delta <= 3
            # converting y's to z's for logistic regression function which takes
         z in {0, 1}
            if y == -1: # this takes y = -1 and makes z = 0
                z = 0
            if y == 1: # this takes y = 1 and makes z = 1
            deltas = np.linspace(-3, 3, 50) # generates a list of 50 deltas (sig
        ned distnaces) between -3 and 3
            reg losses = []
                                            # initialize list of logistic regres
        sion losses
                                             # initialize list of hinge losses
            hinge losses = []
            for delta in deltas:
                reg loss = regressionLoss(z, delta)
                reg losses.append(reg loss)
                hinge_loss = hingeLoss(y, delta)
                hinge losses.append(hinge loss)
            plt.plot(deltas, reg losses, label = "Logistic Regression", color =
```

```
"b")
    plt.plot(deltas, hinge_losses, label = "Hinge Loss", color = "r")
    plt.title("Losses")
    plt.xlabel("delta")
    plt.ylabel("Loss")
    plt.legend(loc = "upper right")

    return

# y = 1
test_y = 1
plotLosses(test_y)
```



```
In [2]: # y = -1
    test_y = -1
    plotLosses(test_y)
```



# Problem 1.2

Suppose that there is a single data outlier that is misclassified by a very large (negative) margin. Referring to the plots in Problem 1.1, which of the two losses is more sensitive to that outlier, and why?

#### **Answer**

The logistic regression loss is more sensitive to a very large (negative) margin because the loss is exponential decreasing or increasing and the hinge loss is either 0 or linear. On both graphs, the logistic regression loss is greater than the hinge loss.

# Part 2: SVMs

In [3]: import numpy as np import matplotlib.pyplot as plt import sklearn.datasets as ds from sklearn.model\_selection import train\_test\_split %matplotlib inline ns = 300 $data = \{\}$ data['x'], data['y'] = ds.make circles(n samples=ns, noise=0.2, factor=0.3, random\_state=1) testFraction = 0.6 $T, S = \{\}, \{\}$ T['x'], S['x'], T['y'], S['y'] = train\_test\_split(data['x'], data['y'], test\_size=testFraction, random\_state=0) p, n = S['x'][S['y']==1], S['x'][S['y']!=1]plt.figure(figsize=(10,10)) plt.plot(p[:, 0], p[:, 1], '.b', fillstyle='none') plt.plot(n[:, 0], n[:, 1], '.r', fillstyle='none') plt.axis('equal') plt.axis('off')

Out[3]: (-1.409118932486272, 1.4707802536886163, -1.509294151919646, 1.4493604864382867)



# Problem 2.1

The data in T and S is obviously not linearly separable, so a linear classifier should not be expected to do well. To verify this, train sklearn.svm.svc with arguments kernel='linear', C=1 on T, show its zero-one training and test error rates (on S) as percentages with two decimal digits after the period, and plot the data in T and decision regions. Warning: Most points will be support vectors for this first plot. This is OK.

```
In [4]: from sklearn.svm import SVC
        from matplotlib import colors
        import math
        # train sklearn.svm.SVC with arguments kernel = 'linear', C = 1 on T
        # show its zero-one training and test error rates (on S) as percentages
         with two decimal places
        clf = SVC(C = 1, kernel = 'linear') # training a linear Support Vector C
        lassification
        clf.fit(T['x'], T['y'])
                                           # fit the classifier to the training
         data
        zero_one_training_rate = 1 - clf.score(T['x'], T['y'])
        test error rate = 1 - clf.score(S['x'], S['y'])
                                                                   # test the cla
        ssifier on the test set and get a score
        print("Zero-one training error rate: {:.2f}".format(zero_one_training_ra
        te*100), "%")
        print("Test error rate: {:.2f}".format(test_error_rate*100), "%")
        # plotting the data in T and the decision regions
        # find the maximum and minimum x and y value (4 numbers)
        max_y = -math.inf
        max x = -math.inf
        min y = math.inf
        min x = math.inf
        for i in range(len(p)):
            # min and max x
            if T['x'][i][0] < min x: # check if x value in T is less than our cu</pre>
        rrent lowest x value
                min_x = T['x'][i][0]
            if T['x'][i][0] > max x: # check if x value in T is greater than our
         current highest x value
                \max_{x} = T['x'][i][0]
            if T['x'][i][1] < min y: # check if y value in T is less than our cu</pre>
        rrent lowest y value
                min_y = T['x'][i][1]
            if T['x'][i][1] > max y: # check if y value in T is greater than our
         current highest y value
                max_y = T['x'][i][1]
        \max x = \max x + 0.5 \# add 0.5 to the \max x value
        min_x = min_x - 0.5 \# subtract 0.5 to the min x value
        max y = max y + 0.5 \# subtract 0.5 to the max y value
        min y = min y - 0.5 # subtract 0.5 from the min y value
        x range = np.linspace(min x, max x, (max x - min x) / 0.02) # create a 1
        ist of the x range
        y_range = np.linspace(min_y, max_y, (max_y - min_y) / 0.02) # create a 1
        ist of the y range
        X, Y = np.meshgrid(x range, y range) # create the meshgrid of X, Y
```

```
#flatten
X_flat = np.concatenate(X).ravel()
Y flat = np.concatenate(Y).ravel()
#stack x and y
XY = np.stack((X_flat, Y_flat), axis=-1)
predicted = clf.predict(XY).reshape((160, 193))
predicted_labels = clf.predict(T['x'])
a, b = T['x'][T['y']==1], T['x'][T['y']!=1]
# initialize the lists
true_pos_x = []
true_pos_y = []
true_neg_x = []
true_neg_y = []
false_pos_x = []
false_pos_y = []
false_neg_x = []
false_neg_y = []
svm_pos_x = []
svm_pos_y = []
svm neg x = []
svm_neg_y = []
svm indices = clf.support # indices for the support vectors
size\_of\_T = len(T['x'])
for sample index in range(size of T):
    sample = T['x'][sample_index]
                                    # sample coordinate
    true_label = T['y'][sample_index] # true label
    predicted label = predicted labels[sample index] # predicted label
    # check svm indices
    if sample index in svm indices:
        # current sample is an svm if this goes through
        if true label == 1:
            svm pos x.append(sample[0])
            svm pos y.append(sample[1])
        if true label != 1:
            svm neg x.append(sample[0])
            svm_neg_y.append(sample[1])
    # true positive
    if true label == 1 and predicted label == 1:
        true pos x.append(sample[0])
        true pos y.append(sample[1])
    # true negative
    if true_label != 1 and predicted_label != 1:
        true neg x.append(sample[0])
```

```
true neg y.append(sample[1])
    # false positive
    if true_label != 1 and predicted_label == 1:
        false pos x.append(sample[0])
        false pos y.append(sample[1])
    # false negatives
    if true label == 1 and predicted label != 1:
        false neg x.append(sample[0])
        false_neg_y.append(sample[1])
plt.figure(figsize=(10,10))
plt.plot(true_pos_x, true_pos_y, '.b', fillstyle ='none')
plt.plot(true_neg_x, true_neg_y, '.r', fillstyle ='none')
plt.plot(false_pos_x, false_pos_y, 'xr', fillstyle = 'none')
plt.plot(false_neg_x, false_neg_y, 'xb', fillstyle ='none')
plt.plot(svm_pos_x, svm_pos_y, 'sb', fillstyle = None)
plt.plot(svm_neg_x, svm_neg_y, 'sr', fillstyle = None)
plt.axis('equal')
plt.axis('off')
h = plt.contourf(X,Y,predicted, alpha=0.3, cmap = colors.ListedColormap
(['r','b'])) #check colors
```

Zero-one training error rate: 37.50 %
Test error rate: 41.11 %

/Users/joycechoi/anaconda3/lib/python3.6/site-packages/ipykernel\_launch er.py:43: DeprecationWarning: object of type <class 'numpy.float64'> ca nnot be safely interpreted as an integer.

/Users/joycechoi/anaconda3/lib/python3.6/site-packages/ipykernel\_launch er.py:44: DeprecationWarning: object of type <class 'numpy.float64'> ca nnot be safely interpreted as an integer.



# Problem 2.2

Do the same with kernel='rbf' (same value for C as before).

```
In [5]: from sklearn.svm import SVC
        from matplotlib import colors
        import math
        # train sklearn.svm.SVC with arguments kernel = 'rbf', C = 1 on T
        # show its zero-one training and test error rates (on S) as percentages
         with two decimal places
        clf = SVC(C = 1, kernel = 'rbf') # training a linear Support Vector Clas
        sification
        clf.fit(T['x'], T['y'])
                                            # fit the classifier to the training
         data
        zero_one_training_rate = 1 - clf.score(T['x'], T['y'])
        test error rate = 1 - clf.score(S['x'], S['y'])
                                                                   # test the cla
        ssifier on the test set and get a score
        print("Zero-one training error rate: {:.2f}".format(zero_one_training_ra
        te*100), "%")
        print("Test error rate: {:.2f}".format(test_error_rate*100), "%")
        # plotting the data in T and the decision regions
        # find the maximum and minimum x and y value (4 numbers)
        max_y = -math.inf
        max x = -math.inf
        min y = math.inf
        min x = math.inf
        for i in range(len(p)):
            # min and max x
            if T['x'][i][0] < min x: # check if x value in T is less than our cu</pre>
        rrent lowest x value
                min_x = T['x'][i][0]
            if T['x'][i][0] > max x: # check if x value in T is greater than our
         current highest x value
                \max_{x} = T['x'][i][0]
            if T['x'][i][1] < min y: # check if y value in T is less than our cu</pre>
        rrent lowest y value
                min_y = T['x'][i][1]
            if T['x'][i][1] > max y: # check if y value in T is greater than our
         current highest y value
                max_y = T['x'][i][1]
        \max x = \max x + 0.5 \# add 0.5 to the \max x value
        min_x = min_x - 0.5 \# subtract 0.5 to the min x value
        max y = max y + 0.5 \# subtract 0.5 to the max y value
        min y = min y - 0.5 # subtract 0.5 from the min y value
        x range = np.linspace(min x, max x, (max x - min x) / 0.02) # create a 1
        ist of the x range
        y_range = np.linspace(min_y, max_y, (max_y - min_y) / 0.02) # create a 1
        ist of the y range
        X, Y = np.meshgrid(x range, y range) # create the meshgrid of X, Y
```

```
#flatten
X_flat = np.concatenate(X).ravel()
Y flat = np.concatenate(Y).ravel()
#stack x and y
XY = np.stack((X_flat, Y_flat), axis=-1)
predicted = clf.predict(XY).reshape((160, 193))
predicted_labels = clf.predict(T['x'])
a, b = T['x'][T['y']==1], T['x'][T['y']!=1]
# initialize the lists
true_pos_x = []
true_pos_y = []
true_neg_x = []
true_neg_y = []
false_pos_x = []
false_pos_y = []
false_neg_x = []
false_neg_y = []
svm_pos_x = []
svm_pos_y = []
svm neg x = []
svm_neg_y = []
svm indices = clf.support # indices for the support vectors
size\_of\_T = len(T['x'])
for sample index in range(size of T):
    sample = T['x'][sample_index]
                                    # sample coordinate
    true_label = T['y'][sample_index] # true label
    predicted label = predicted labels[sample index] # predicted label
    # check svm indices
    if sample index in svm indices:
        # current sample is an svm if this goes through
        if true label == 1:
            svm pos x.append(sample[0])
            svm pos y.append(sample[1])
        if true label != 1:
            svm neg x.append(sample[0])
            svm_neg_y.append(sample[1])
    # true positive
    if true label == 1 and predicted label == 1:
        true pos x.append(sample[0])
        true pos y.append(sample[1])
    # true negative
    if true label != 1 and predicted label != 1:
        true neg x.append(sample[0])
```

```
true neg y.append(sample[1])
    # false positive
    if true_label != 1 and predicted_label == 1:
        false pos x.append(sample[0])
        false pos y.append(sample[1])
    # false negatives
    if true label == 1 and predicted label != 1:
        false neg x.append(sample[0])
        false_neg_y.append(sample[1])
plt.figure(figsize=(10,10))
plt.plot(true_pos_x, true_pos_y, '.b', fillstyle ='none')
plt.plot(true_neg_x, true_neg_y, '.r', fillstyle ='none')
plt.plot(false_pos_x, false_pos_y, 'xr', fillstyle = 'none')
plt.plot(false_neg_x, false_neg_y, 'xb', fillstyle ='none')
plt.plot(svm_pos_x, svm_pos_y, 'sb', fillstyle = None)
plt.plot(svm_neg_x, svm_neg_y, 'sr', fillstyle = None)
plt.axis('equal')
plt.axis('off')
h = plt.contourf(X,Y,predicted, alpha=0.3, cmap = colors.ListedColormap
(['r','b'])) #check colors
```

Zero-one training error rate: 5.00 %
Test error rate: 3.33 %

/Users/joycechoi/anaconda3/lib/python3.6/site-packages/ipykernel\_launch er.py:43: DeprecationWarning: object of type <class 'numpy.float64'> ca nnot be safely interpreted as an integer.

/Users/joycechoi/anaconda3/lib/python3.6/site-packages/ipykernel\_launch er.py:44: DeprecationWarning: object of type <class 'numpy.float64'> ca nnot be safely interpreted as an integer.



# Problem 2.3

Each data point in T and S has two features,  $x_1$  and  $x_2$ . Augment these by adding the following redundant features

$$x_3 = x_1^2$$

$$x_4 = x_2^2$$

$$x_5 = x_1 x_2$$

Then repeat the experiment above with SVC(kernel='linear', C=1) on the augmented data. Of course, plot just  $x_1$  and  $x_2$ , not the other features, unless you have a 5D printer handy.

```
In [6]: # train sklearn.svm.SVC with arguments kernel = 'linear', C = 1 on aug T
        _x (Augmented training set T )
        # show its zero-one training and test error rates (on S) as percentages
         with two decimal places
        # finding the max and min along each dimension for plotting the contour
        x1 dimension = T['x'][:, 0] # get all the values of T['x'] along the x1
         dimension
        x2_dimension = T['x'][:, 1] # get all the values of T['x'] along the x2
         dimension
        \max x1 = \max(x1 \text{ dimension}) \# \max value of x1
        min x1 = min(x1 dimension) # min value of x1
        \max x^2 = \max(x^2 \text{ dimension}) \# \max value \ of \ x^2
        min_x2 = min(x2_dimension) # min_value of x2
        # add or subtract from each max or min respectively
        \max x1 = \max x1 + 0.5 \# add 0.5 to the \max x1 value
        min x1 = min x1 - 0.5 # subtract 0.5 to the min x1 value
        \max x2 = \max x2 + 0.5 \# add 0.5 to the \max x2 value
        min_x2 = min_x2 - 0.5 \# subtract 0.5 from the min_x2 value
        x1 range = np.linspace(min x1, max x1, (max x1 - min x1) / 0.02) # creat
        e a list of the x1 range
        x2_range = np.linspace(min_x2, max_x2, (max_x2 - min_x2) / 0.02) # creat
        e a list of the x2 range
        X1, X2 = np.meshgrid(x1 range, x2 range)
                                                                           # creat
        e the meshgrid of X1, X2
        #flatten X1 and X2 to make it useable in np.stack
        X1 flat = np.concatenate(X1).ravel()
        X2 flat = np.concatenate(X2).ravel()
        #stack X1 and X2. Creates an array an (dim(X1) x dim(X2), 2) array
        stack = np.stack((X1 flat, X2 flat), axis=-1)
        # augment the stack with x3, x4, and x5
        stack length = len(stack)
                                                             # stack length or nu
        mber of entries in stack
        augmented_training_set = np.zeros((len(T['x']), 5)) # the same length as
         T['x'] but 5-d as opposed to 2-d
        augmented_test_set = np.zeros((len(S['x']), 5)) # the same length as
         S['x'] but 5-d as opposed to 2-d
        augmented T length = len(augmented training set) # length of augmente
        d T
        augmented S length = len(augmented test set)
                                                            # length of augmente
        augmented stack = np.zeros((stack length, 5)) # initialize the aug
        mented stack
        \# loop through the stack to create x3, x4, and x5 and put those values i
        nto the augmented stack
        for sample index in range(stack length):
            x1 = stack[sample index][0]
            x2 = stack[sample index][1]
```

```
x3 = x1**2
    x4 = x2**2
    x5 = x1*x2
    augmented stack[sample index][0] = x1
    augmented stack[sample index][1] = x2
    augmented_stack[sample_index][2] = x3
    augmented stack[sample index][3] = x4
    augmented stack[sample index][4] = x5
for sample index in range(augmented T length):
    sample = T['x'][sample index]
    x1 = sample[0] # looks at the first coordinate x1 of the sample at s
ample index in T['x']
    x2 = sample[1] # looks at the second coordinate x2 of the sample at
 sample index in T['x']
   x3 = x1**2
    x4 = x2**2
    x5 = x1*x2
    augmented_training_set[sample_index][0] = x1
    augmented training set[sample index][1] = x2
    augmented training set[sample index][2] = x3
    augmented training set[sample index][3] = x4
    augmented training set[sample index][4] = x5
for sample_index in range(augmented_S_length):
    sample = S['x'][sample index]
    x1 = sample[0] # looks at the first coordinate x1 of the sample at s
ample index in S['x']
    x2 = sample[1] # looks at the second coordinate x2 of the sample at
 sample index in S['x']
    x3 = x1**2
   x4 = x2**2
    x5 = x1*x2
    augmented test set[sample index][0] = x1
    augmented_test_set[sample index][1] = x2
    augmented test set[sample index][2] = x3
    augmented_test_set[sample_index][3] = x4
    augmented test set[sample index][4] = x5
clf = SVC(C = 1, kernel = 'linear')
  # training a linear Support Vector Classification
clf.fit(augmented training set, T['y'])
  # fit the classifier to the training data
zero one training rate = 1 - clf.score(augmented training set, T['y'])
  # train the classifier on augmented training set aug_T_x and get error
test error rate = 1 - clf.score(augmented test set, S['y'])
  # test the classifier on the augmented test set aug S x and get error
 rate
print("Zero-one training error rate: {:.2f}".format(zero one training ra
te*100), "%")
print("Test error rate: {:.2f}".format(test error rate*100), "%")
predicted = clf.predict(augmented stack).reshape(X1.shape) # train the c
lassifier on the augmented stack
predicted_labels = clf.predict(augmented_training_set)
                                                          # get the pre
```

```
dictions of the classifier on the augmented training set
# initialize the different categories of data points
true pos x = []
true_pos_y = []
true_neg_x = []
true_neg_y = []
false_pos_x = []
false_pos_y = []
false_neg_x = []
false_neg_y = []
svm pos x = []
svm_pos_y = []
svm neg x = []
svm neg y = []
svm_indices = clf.support # indices for the support vectors
# correctly place each data point into one of the 6 categories:
# true positive, true negative, false positive, false negatives, svm pos
itive, svm negative
size of T = len(augmented training set)
for sample index in range(size of T):
    sample = augmented training set[sample index]
                                                                     # sa
mple coordinate
    true label = T['y'][sample index]
                                                      # true label
    predicted label = predicted labels[sample index] # predicted label
    # check svm indices
    if sample index in svm indices:
        # current sample is an svm if this goes through
        if true label == 1:
                                          # put the sample into the posit
ive svm list
            svm pos x.append(sample[0])
            svm pos y.append(sample[1])
        if true label != 1:
                                         # put the sample into the negat
ive svm list
            svm neg x.append(sample[0])
            svm neg y.append(sample[1])
    # true positive
    if true label == 1 and predicted label == 1:
        true_pos_x.append(sample[0])
        true_pos_y.append(sample[1])
    # true negative
    if true label != 1 and predicted label != 1:
        true neg x.append(sample[0])
        true neg y.append(sample[1])
    # false positive
    if true label != 1 and predicted label == 1:
        false pos x.append(sample[0])
```

```
false_pos_y.append(sample[1])
    # false negatives
    if true label == 1 and predicted label != 1:
        false neg x.append(sample[0])
        false_neg_y.append(sample[1])
plt.figure(figsize=(10,10))
# plot the data points from the 6 categories
plt.plot(true_pos_x, true_pos_y, '.b', fillstyle ='none')
plt.plot(true_neg_x, true_neg_y, '.r', fillstyle ='none')
plt.plot(false_pos_x, false_pos_y, 'xr', fillstyle ='none')
plt.plot(false_neg_x, false_neg_y, 'xb', fillstyle = 'none')
plt.plot(svm_pos_x, svm_pos_y, 'sb', fillstyle = None)
plt.plot(svm_neg_x, svm_neg_y, 'sr', fillstyle = None)
# specifiy some plotting things
plt.axis('equal')
plt.axis('off')
# plot the decision boundary
h = plt.contourf(X1,X2,predicted, alpha=0.3, cmap = colors.ListedColorma
p(['r','b'])) #check colors
```

/Users/joycechoi/anaconda3/lib/python3.6/site-packages/ipykernel\_launch er.py:20: DeprecationWarning: object of type <class 'numpy.float64'> ca nnot be safely interpreted as an integer.

/Users/joycechoi/anaconda3/lib/python3.6/site-packages/ipykernel\_launch er.py:21: DeprecationWarning: object of type <class 'numpy.float64'> ca nnot be safely interpreted as an integer.

Zero-one training error rate: 4.17 %
Test error rate: 3.89 %



# Problem 2.4

Explain carefully why this type of data augmentation works well for this specific data set.

When we change the dimensions of the data to 5 dimensions, the points are still plotted in the same locations but now the linear classifier has 3 more dimensions worth of information which is why it's able to more closely follow the data and make a circular curve.

In this case, we augment with values  $x_1^2$ ,  $x_2^2$ ,  $(x_1)*(x_2)$ , which are the transformations that give an ellipse (as  $x_1^2 + x_2^2 + (x_1)*(x_2) = r$  is the equation for an ellipse). Therefore, augmenting the original points allows us to get a distribution of points that are separable in a higher dimension, which is why augmenting the data works to generate the SVM in this particular data set.

# Problem 2.5

Try the experiment in Problem 2.3 with sklearn.linear\_model.LogisticRegression. Use parameters C=1e5, solver='lbfgs', multi\_class='multinomial', random\_state=0.

```
In [7]: from sklearn.linear_model import LogisticRegression
        # train sklearn.svm.SVC with arguments kernel = 'linear', C = 1 on aug T
         x (Augmented training set T )
        # show its zero-one training and test error rates (on S) as percentages
         with two decimal places
        # finding the max and min along each dimension for plotting the contour
        x1_dimension = T['x'][:, 0] # get all the values of T['x'] along the x1
         dimension
        x^2 dimension = T['x'][:, 1] # get all the values of T['x'] along the x^2
         dimension
        \max x1 = \max(x1 \text{ dimension}) \# \max value of x1
        min_x1 = min(x1_dimension) # min value of x1
        \max x^2 = \max(x^2 \text{ dimension}) \# \max value \text{ of } x^2
        min_x2 = min(x2_dimension) # min value of x2
        # add or subtract from each max or min respectively
        \max x1 = \max x1 + 0.5 \# add 0.5 to the \max x1 value
        min_x1 = min_x1 - 0.5 \# subtract 0.5 to the min_x1 value
        max_x^2 = max_x^2 + 0.5 \# add 0.5 to the max x^2 value
        min x2 = min x2 - 0.5 # subtract 0.5 from the min x2 value
        x1_range = np.linspace(min_x1, max_x1, (max_x1 - min_x1) / 0.02) # creat
        e a list of the x1 range
        x2 range = np.linspace(min x2, max x2, (max x2 - min x2) / 0.02) # creat
        e a list of the x2 range
        X1, X2 = np.meshgrid(x1 range, x2 range)
                                                                           # creat
        e the meshgrid of X1, X2
        #flatten X1 and X2 to make it useable in np.stack
        X1 flat = np.concatenate(X1).ravel()
        X2 flat = np.concatenate(X2).ravel()
        #stack X1 and X2. Creates an array an (dim(X1) \times dim(X2), 2) array
        stack = np.stack((X1 flat, X2 flat), axis=-1)
        # augment the stack with x3, x4, and x5
        stack length = len(stack)
                                                             # stack length or nu
        mber of entries in stack
        augmented training set = np.zeros((len(T['x']), 5)) # the same length as
         T['x'] but 5-d as opposed to 2-d
        augmented test set = np.zeros((len(S['x']), 5)) # the same length as
         S['x'] but 5-d as opposed to 2-d
        augmented_T_length = len(augmented_training_set) # length of augmente
        augmented S length = len(augmented test set) # length of augmente
        augmented_stack = np.zeros((stack_length, 5))  # initialize the aug
        mented stack
        \# loop through the stack to create x3, x4, and x5 and put those values i
        nto the augmented stack
        for sample index in range(stack length):
```

```
x1 = stack[sample index][0]
    x2 = stack[sample index][1]
    x3 = x1**2
    x4 = x2**2
    x5 = x1*x2
    augmented_stack[sample_index][0] = x1
    augmented stack[sample index][1] = x2
    augmented stack[sample index][2] = x3
    augmented stack[sample index][3] = x4
    augmented stack[sample index][4] = x5
for sample_index in range(augmented_T_length):
    sample = T['x'][sample index]
    x1 = sample[0] # looks at the first coordinate x1 of the sample at s
ample index in T['x']
    x2 = sample[1] # looks at the second coordinate x2 of the sample at
 sample index in T['x']
   x3 = x1**2
    x4 = x2**2
    x5 = x1*x2
    augmented training set[sample index][0] = x1
    augmented training set[sample index][1] = x2
    augmented training set[sample index][2] = x3
    augmented training set[sample_index][3] = x4
    augmented training set[sample index][4] = x5
for sample index in range(augmented S length):
    sample = S['x'][sample index]
    x1 = sample[0] # looks at the first coordinate x1 of the sample at s
ample index in S['x']
    x2 = sample[1] # looks at the second coordinate x2 of the sample at
 sample index in S['x']
   x3 = x1**2
    x4 = x2**2
    x5 = x1*x2
    augmented test set[sample index][0] = x1
    augmented test set[sample index][1] = x2
    augmented test set[sample index][2] = x3
    augmented test set[sample index][3] = x4
    augmented test set[sample index][4] = x5
clf = LogisticRegression(C=1e5, solver='lbfgs', multi class='multinomia
1', random_state=0)
clf.fit(augmented training set, T['y'])
  # fit the classifier to the training data
zero one training rate = 1 - clf.score(augmented training set, T['y'])
  # train the classifier on augmented training set aug T x and get error
 rate
test_error_rate = 1 - clf.score(augmented_test_set, S['y'])
  # test the classifier on the augmented test set aug S x and get error
 rate
print("Zero-one training error rate: {:.2f}".format(zero one training ra
te*100), "%")
print("Test error rate: {:.2f}".format(test error rate*100), "%")
predicted = clf.predict(augmented stack).reshape(X1.shape) # train the c
```

```
lassifier on the augmented stack
predicted labels = clf.predict(augmented training set)
                                                          # get the pre
dictions of the classifier on the augmented training set
# initialize the different categories of data points
true_pos_x = []
true pos y = []
true neg x = []
true neg y = []
false_pos_x = []
false_pos_y = []
false_neg_x = []
false_neg_y = []
# correctly place each data point into one of the 4 categories:
# true positive, true negative, false positive, false negatives
size_of_T = len(augmented_training_set)
for sample index in range(size of T):
    sample = augmented_training_set[sample_index]
                                                                     # sa
mple coordinate
    true_label = T['y'][sample_index]
                                                      # true label
    predicted label = predicted labels[sample_index] # predicted label
    # true positive
    if true label == 1 and predicted label == 1:
        true_pos_x.append(sample[0])
        true pos y.append(sample[1])
    # true negative
    if true label != 1 and predicted label != 1:
        true_neg_x.append(sample[0])
        true neg y.append(sample[1])
    # false positive
    if true label != 1 and predicted label == 1:
        false pos x.append(sample[0])
        false pos y.append(sample[1])
    # false negatives
    if true label == 1 and predicted label != 1:
        false neg x.append(sample[0])
        false neg y.append(sample[1])
plt.figure(figsize=(10,10))
# plot the data points from the 6 categories
plt.plot(true_pos_x, true_pos_y, '.b', fillstyle ='none')
plt.plot(true_neg_x, true_neg_y, '.r', fillstyle ='none')
plt.plot(false_pos_x, false_pos_y, 'xr', fillstyle ='none')
plt.plot(false_neg_x, false_neg_y, 'xb', fillstyle ='none')
# specifiy some plotting things
plt.axis('equal')
plt.axis('off')
```

# plot the decision boundary
h = plt.contourf(X1,X2,predicted, alpha=0.3, cmap = colors.ListedColorma
p(['r','b'])) #check colors

Zero-one training error rate: 4.17 %
Test error rate: 5.56 %

/Users/joycechoi/anaconda3/lib/python3.6/site-packages/ipykernel\_launch er.py:22: DeprecationWarning: object of type <class 'numpy.float64'> ca nnot be safely interpreted as an integer.

/Users/joycechoi/anaconda3/lib/python3.6/site-packages/ipykernel\_launch er.py:23: DeprecationWarning: object of type <class 'numpy.float64'> ca nnot be safely interpreted as an integer.

