* Eva Mulla (Saturday & maid might
* Exam Muligan! Saturday & midnight Typo The Nomework (fixed!)
Today: Study polynomials via their splitting fields and Galois groups
Recall: a splitting field for a polynomial $p(x) \in F[x]$ is a minimal field extension E^2F satisfying $p(x) = (x-a_1)(x-a_2)(x-a_n)$; $a_1,a_2,,a_n \in E$
Duf: If $p(x) \in F(x)$ and E is a splitting field of $p(x)$, then $G(E/F)$ is called the G alois group of $p(x)$.
Remark: the Galois group is the same (up to 150.) regardless of the choice of splitting field.
$E_{x}: p(x) = x^{2} - 2 \in \mathbb{Q}[x]$
• $\mathbb{Q}[iz]$ is a splitting field • $\mathbb{Q}[t]/(t^2-2)$ is a splitting field
Galois fantastic idea: Use the structure of the Galois group of p(x) to study the roots of p(x)
When can we write the rosts of p(x) as some soxt of crazy radicals?
29. 4 1- 13- 15
Polynomials w/ roots of this form are

called solvable by radicals.
Theorem: p(x) is solvable by radicals Theorem: p(x) is solvable by radicals.
Def: A fruite group & 13 solvable if it has a charm of normal subgroups
dez=Hn & Hn-1 & Hn-2 4 & H1 & H0= 6
with H_{K}/H_{K+1} abolian for all $n>k\geq 0$.
Ex: S3 = {e, (123), (132), (12), (13), (23)}
$A_3 = 4e, (123), (132)$ normal subgroup
$\begin{pmatrix} \ker : S_3 \longrightarrow \S \pm 1 \\ S \longmapsto sqn(S) \end{pmatrix}$
S3/A3 = abdion group!
Az = abelian group!
[{e} 4 A3 4 S3]
$A_3/ge_3 = A_3$ (abelian) $S_3/A_3 = group of order 2 (abdis)$
13/ get = Hz (aselian) 3/ Hz group of ording
Ex: Sn for n75 is simple. (no nontrivial
NOT SOLUABLE (Subgroups)
$Se3 \leq S_5 = S_6$ not abolion

If we find a polynomial w/ Galois group S3, we know the polynomial will be solvable by radicals? $\frac{E_{x}}{A}$: $p(x) = x^{3} + 13x^{2} + 14x + 27$ has Galots group S_{3} , so we know it is solvable by radicals. This knd of seems for-fetched! What's the connection between the Galars group and the roots? Prop: Let p(x) = c_nx^n + ... + c_1 x + c_E F[x] and let E be a splitting Gold for F. Then $\delta \in G(E/F)$ will permute the note a, az, ..., an EE of t(x). Proof: We know $p(a_j) = 0$ for all $1 \le j \le n$. ∑ crai = 0 PEF[x] ⇒ co,..., cn ∈ F 5 (\frac{7}{2} Cua;) = 0(0) σ = G(E/F) 2 δ(ckak) = 0 = {se Aut(E) o(a)=a Yaff? 2 o (ce) o (a.k) = 0 n 5 & (Ck) & (a;) k = 0

Corollary: If E is the

Sphittry field of a readed

[G(E/F)] = [E:F]

Ex: F = Q

Ex: F = Q

[E:F] = 4 So we know G(E/F) = 4. We actually saw that a while back. Counting roots and Separability: We know a polynomial with always have a splitting field E $p(x) \in F[xJ]$, $p(x) = (x-a_1)^r (x-a_2)^2 ... (x-a_m)^m$ for some distinct $a_1, a_2, ..., a_m \in E$ and rutegues r_1, r_2, r_m all greater them o. Def: The multiplicity of a root a; 75 the value of the exponent r;. A toot 13 called 5mple if its multiplicity 13 L. Ex: $p(x) = x^2 + 2x + 1$ -1 75 a root ω / multiplicity 2 $q(x) = x^3 - 1$ Thum 1, $e^{2\pi i/3}$, $e^{4\pi i/3}$ are all simple roots Quest: can irreducible polynomials have non-somple voots? Ans: mostly no. (except over very wind filds)

