Введение в вариационное исчисление

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 17.10.2024

Задача управления

допустимых управлений.

Общая задача управления: максимизировать целевой функционал

$$J = \int_{t_0}^{t_1} I(\mathbf{x}, \mathbf{u}, t) + F(\mathbf{x}_1, t_1) \to \max_{\{\mathbf{u}(t)\}}$$

при условии, что $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, t); t_0, \mathbf{x}(t_0) = x_0$ фиксированы, $(\mathbf{x}(t), t) \in T$

при $t = t_1$ (T – конечная поверхность), $\{\mathbf{u}(t)\} \in U$.

 t_0 — начальный момент времени (фиксирован). t_1 — конечный момент времени (иногда требуется определить). $\mathbf{x}(t)$ — фазовые координаты (характеризуют состояние системы). $\{\mathbf{x}(t)\}=\{\mathbf{x}(t)\in\mathbb{R}^n\mid t_0\leq t\leq t_1\}$ — фазовая траектория. Непрерывная вектор-функция t. Определяется уравнением движения $\dot{\mathbf{x}}=f(\mathbf{x},\mathbf{u},t)$. $\mathbf{x}(t_0)=x_0$ — начальное состояние, $\mathbf{x}(t_1)=x_1$ — конечное состояние. $\mathbf{u}(t)=(u_1(t),\ldots,u_r(t))$ — вектор управляющих параметров (управляющий вектор). Каждый управляющий параметр — кусочнонепрерывная функция t; $\mathbf{u}(t)\in\Omega, t_0\leq t\leq t_1$ — множество, определяющее ограничения на управляющий вектор.

 $\{{\bf u}(t)\}$ – управление (траектория управления); $\{{\bf u}(t)\}\in U$ – множество

Виды задач управления

Задача Больца:

$$J = \int_{t_0}^{t_1} I(\mathbf{x}, \mathbf{u}, t) + F(\mathbf{x}_1, t_1) \to \max_{\{\mathbf{u}(t)\}}$$

 $F(\mathbf{x}_1,t_1)$ – функция конечных параметров (фиксирована и $C^1[t_0,t_1]$).

Задача Лагранжа:

$$J = \int_{t_0}^{t_1} I(\mathbf{x}, \mathbf{u}, t) \to \max_{\{\mathbf{u}(t)\}}$$

Задача Майера:

$$J = F(\mathbf{x}_1, t_1) \to \max_{\{\mathbf{u}(t)\}}$$

Задачи эквивалентны. Например, Больц \to Майер: введем фазовую координату x_{n+1} : $\dot{\mathbf{x}}_{n+1}(t)=I(\mathbf{x},\mathbf{u},t), x_{n+1}(t_0)=0$

 $I=I(\mathbf{x},\mathbf{u},t)$ – англ. instantaneous (running) cost, неотрицательный и выбирается так, чтобы наказывать (штрафовать) за нежелательное поведение, состояние. F – англ. terminal cost.

Пример задачи управления

Определение оптимальной траектории движения ракеты.

Управляющие параметры $\mathbf{u}(t)=(u_1(t),\dots,u_r(t))$ – моменты включения двигателей и длительность их работы, величина и направление силы тяги, которую следует приложить к ракете в каждый отдельный момент времени.

Режим работы двигателей выбирается в зависимости от ряда ограничений (например, от общего количества ракетного топлива на борту).

Фазовые переменные $\mathbf{x}(t)$, описывающие траекторию ракеты, – масса, положение и скорость относительно фиксированной системы координат. Зависимость фазовых координат от силы тяги выражается с помощью системы ДУ, полученных на основе законов физики.

Расчет траектории космического полета \equiv нахождение максимума *некото- рого* целевого функционала.

Цель – посадить корабль на Луну.

Максимизация полезной нагрузки последней ступени.

Известна конечная точка в пространстве и конечная скорость достаточно мала.

Важные частные случаи

Задача об оптимальном быстродействии (задача о минимальном времени перехода):

$$J = -(t_1 - t_0)$$

Классический пример: **задача о брахистохроне**. Материальная точка под силой тяжести скатывается (без трения) вдоль некоторой кривой из фиксированной верхней точки в фиксированную нижнюю. Какая кривая соответствует минимальному времени перехода?

Работа сервомеханизмов (автоматических следящих устройств): известны желаемые состояния объекта $x_0(t)$ в каждый момент определенного промежутка времени. Требуется обеспечить, чтобы фактические значения фазового вектора в каждый момент времени были достаточно близки к желаемым состояниям. Целевой функционал:

$$J = \int_{t_0}^{t_1} \varphi(\mathbf{x}^0(t) - \mathbf{x}(t)) dt$$

 $\varphi(\cdot)$ – функция, измеряющая отрицательный эффект от различия между фактическим и желаемым состоянием.

Виды управления

Управление по разомкнутому контуру: решение общей задачи управления (оптимальное управление) определяется как функция времени ${\bf u}^*(t)$.

- lacktriangle Управление полностью определяется в начальный момент времени $t_0.$
- lacktriangle Фазовая траектория $\{{f x}(t)\}$ находится в результате интегрирования уравнений движения при фиксированных начальных условиях.
- Все решения принимаются заранее.

Управление по замкнутому контуру (с обратной связью): определяется как функция текущих фазовых координат и времени $\mathbf{u}^*(\mathbf{x}(t),t)$. Решение можно пересматривать с учетом новой информации (в виде текущих фазовых координат).

Определение оптимального управления – задача синтеза.

Пример

сушилка для белья vs. отопление дома, денежная политика.

Обобщенная теорема Вейерштрасса

Автономную задачу управления можно рассматривать как задачу программирования в бесконечномерном пространстве:

$$\max_{\{\mathbf{u}(t)\}} J = \int_{t_0}^{t_1} I(x, u) \, dt, \dot{x} = f(x, u)$$

где t_0 , $x(t_0)=x_0$, t_1 – фиксированы, $\{{f u}(t)\}\in U$. В этой задаче один управляющий параметр и одна фазовая координата.

Разобьем промежуток времени: $\Delta=rac{t_1-t_0}{N}$.

Время дискретно: $t=t_0+q\Delta,\ q\in 0: \stackrel{\sim}{N}$. В эти моменты времени замеряются состояния и управления: $x^q=x(t_0+q\Delta), u^q=u(t_0+q\Delta).$ Рассмотрим задача программирования с N+1 переменной u^0,u^1,\dots,u^N :

$$\max_{u^0, u^1, \dots, u^N} J^N = \sum_{q=0}^N I(x^q, u^q) \Delta, x^{q+1} - x^q = f(x^q, u^q) \Delta$$

где
$$q\in 0:(N-1)$$
, $x_0=x^0$, $u^q\in \Omega.$ Тогда $\lim_{N\to\infty,\Delta\to 0, N\Delta=t_1-t_0}J^N=J.$

Теорема (Теорема Вейерштрасса)

Достаточные условия существования максимума. ЦФ – непрерывна, допустимое множество – компактно.

Теорема (Обобщенная теорема Вейерштрасса)

Обобщение на бесконечномерное пространство. Теорема о существовании для задач управления: решение общей задачи управления существует, если целевой функционал $J(\{\mathbf{u}\})$ непрерывен по функции управления и U — компактно.

Вариационное исчисление

Классическая задача вариационного исчисления:

$$J = \int_{t_0}^{t_1} I(x(t), \dot{x}(t), t) \to \max_{\{x(t)\}}$$

 $I(x(t),\dot{x}(t),t)$ — фиксированная непрерывно дифференцируемая функция. x_0,x_1,t_0,t_1 — фиксированы.

Можно трактовать как задачу Лагранжа (без функции конечных параметров). Задача зависит от одной фазовой координаты и от одного управляющего параметра — скорости изменения фазовой координаты.

Уравнение движения: $\dot{x}=u$.

Управляющий параметр может принимать любое значение $(\Omega=\mathbb{R})$. $\{x(t)\}$ — допустима, если удовлетворяет граничным условиям и x(t) — непрерывная, $\dot{x}(t)$ — кусочно-непрерывная функция времени.

Квадратичная вариационная задача

Интегральный квадратичный функционал:

$$Q = \int_{a}^{b} \left\{ p(t) (x'(t))^{2} + q(t) (x(t))^{2} - 2f(t)x(t) \right\} dt$$

где $p,q,f\in C[a,b]$, $x\in C^1[a,b].$

Решаем оптимизационную задачу:

$$Q(x) \to \inf$$

$$x(a) = A, x(b) = B, x \in C^{1}[a, b]$$

Хотим найти такой $x_* \in \Omega$: $Q(x) \geq Q(x_*)$ для любого $x \in \Omega$.

Введем множество допустимых вариаций:

$$C_0^1[a,b] = \left\{ h \in C^1[a,b] \mid h(a) = 0, h(b) = 0 \right\}$$

и тогда $\forall x \in \Omega, h \in C^1_0[a,b] \Rightarrow x + \alpha h \in \Omega.$

Разложим

$$Q(x + \alpha h) = \int_{a}^{b} \left\{ p \cdot (x' + \alpha h')^{2} + q \cdot (x + \alpha h)^{2} - 2f \cdot (x + \alpha h) \right\} dt$$
$$= Q(x) + 2\alpha \int_{a}^{b} \left\{ px'h' + (qx - f)h \right\} dt + \alpha^{2} \int_{a}^{b} \left\{ p(h')^{2} + qh^{2} \right\} dt$$

Введем обозначения:

$$\ell(x,h) := \int_a^b \left\{ px'h' + (qx - f)h \right\} dt$$
$$D(h) := \int_a^b \left\{ p(h')^2 + qh^2 \right\} dt$$

и тогда
$$Q(x+\alpha h)=Q(x)+2\alpha\ell(x,h)+\alpha^2D(h)$$

3амечание Квадратичный член не зависит от x.

Достаточное условие неограниченности ЦФ

Лемма

Если существует $h_0 \in C_0^1[a,b]: D(h_0) < 0 \Rightarrow \inf Q(x) = -\infty.$

Док-во: Зафиксируем $x_0 \in \Omega$. Пусть $x_0 + \alpha h_0 \in \Omega$ для любого α .

Тогда $Q(x+\alpha h)=Q(x)+2\alpha\ell(x,h)+\alpha^2D(h)$ – квадратичный трехчлен от α , старший член D(h)<0, т.е. парабола с ветвями вниз. \square

Замечание

В дальнейшем считаем, что $D(h) \geq 0 \ \forall h \in C^1_0[a,b]$. Для этого достаточно, чтобы $p(t) \geq 0, q(t) \geq 0 \ \forall t \in [a,b]$.

Критерий оптимальности ЭЗ с $l(x_*,h)=0$

Теорема (Критерий оптимальности ЭЗ с обращением в ноль линейной части разложения)

 $x_* \in \Omega$ – оптимальный план $\Leftrightarrow \ell(x_*,h) = 0, \ \forall h \in C^1_0[a,b].$

Док-во: \Rightarrow : Фиксируем $h_0 \in C^1_0[a,b]$. Известно, что $x_* + \alpha h_0 \in \Omega$. Так что

$$0 \le Q(x_* + \alpha h_0) - Q(x_*) = 2\alpha \ell(x_*, h_0) + \alpha^2 D(h_0)$$

Делим на 2α и $\alpha \to +0$. Останется $\ell(x_*,h_0) \geq 0$.

Будет равенство, т.к. $-h_0\in C^1_0[a,b]$, ℓ – линейный функционал и $\ell(x_*,-h_0)\geq 0\Rightarrow -\ell(x_*,h_0)\geq 0.$

 \Leftarrow : Фиксируем $x\in\Omega.$ Обозначим $h_*=x-x_*\in C^1_0[a,b].$ Тогда

$$Q(x) = Q(x_* + h_*) = Q(x_*) + 2\underbrace{\ell(x_*, h_*)}_{=0} + \underbrace{D(h_*)}_{\geq 0} \ge Q(x_*)$$

Основная лемма вариационного исчисления

 \bigcap емма Π усть $u \in C[a,b]$. Тогда

$$\int_{a}^{b} uh' dt = 0 \ \forall h \in C_{0}^{1}[a, b] \Rightarrow u(t) \equiv \text{const}$$

Док-во: Введем первообразную $u_1(t)=\int_a^t u(\tau)\,d\tau$ и интерполяционный полином $p_1(t)=c_0t+c_1$, $p_1(a)=u_1(a)$, $p_1(b)=u_1(b)$. Рассмотрим $h_1(t)=u_1(t)-p_1(t)$, $h_1\in C_0^1[a,b]$ и $h_1'=u-c_0$. Тогда

$$\begin{split} \int_a^b [u(t)-c_0]^2 \, dt &= \int_a^b [u(t)-c_0] h_1'(t) \, dt \\ &= \underbrace{\int_a^b u(t) h_1'(t) \, dt}_{=0 \text{ по условию}} - \underbrace{c_0 \int_a^b h_1'(t) \, dt}_{=0, \text{ т.к. } h_1 \in C_0^1[a,b]} \end{split}$$

Отсюда следует $u(t) \equiv \text{const.}$

Лемма Пусть $u,v \in C[a,b]$. Тогда

$$\int_{0}^{b} [uh' + vh] dt = 0 \ \forall h \in C_{0}^{1}[a, b] \Leftrightarrow u \in C^{1}[a, b], u'(t) \equiv v(t), t \in [a, b]$$

Док-во: \Rightarrow : Введем $v_1(t)=\int_a^t v(\tau)d\tau$ и рассмотрим

$$\int_{a}^{b} vhdt = \int_{a}^{b} v_{1}'hdt = \underbrace{v_{1}h|_{a}^{b}}_{=0} - \int_{a}^{b} v_{1}h'dt = -\int_{a}^{b} v_{1}h'dt \Rightarrow$$

$$0 = \int_{a}^{b} [uh' + vh] dt = \int_{a}^{b} uh' dt - \int_{a}^{b} v_{1}h' dt = \int_{a}^{b} (u - v_{1})h' dt, \ \forall h \in C_{0}^{1}[a, b]$$

Оказались в условиях предыдущей леммы. Значит $u(t)-v_1(t)=c_0$, $u(t) = v_1(t) + c_0 \Rightarrow u \in u \in C^1[a, b], u'(t) = v(t).$

$$\Leftarrow$$
: По условию $\int_a^b [uh'+vh]\,dt = \int_a^b [uh'+u'h]\,dt = \int_a^b (uh)'\,dt = uh|_a^b = 0,$ т.к. $h \in C_0^1[a,b].$

Критерий оптимальности с использованием уравнения Штурма-Лиувилля

По критерию оптимальности, $x_* \in \Omega$ — оптимальный план, тогда и только тогда, когда

$$\ell(x_*, h) = \int_a^b \left\{ \underbrace{px'_*}_u h' + \underbrace{(qx_* - f)}_v h \right\} dt = 0 \ \forall \ h \in C_0^1[a, b]$$

По основной лемме ВИ $x_*\in\Omega$ – оптимальный план, тогда и только тогда, когда $u'=v\colon px_*'\in C^1[a,b]$ и $(px_*')'=qx_*-f$.

Введем дифференциальный оператор $\mathcal{L}(x,t)\coloneqq -\frac{d}{dt} \left(p\frac{dx}{dt}\right) + qx$

Тогда x_{st} — решение квадратичной вариационной задачи тогда и только тогда, когда он удовлетворяет

$$\mathcal{L}(x,t) = f,$$

$$x(a) = A, x(b) = B$$

Уравнение Штурма-Лиувилля: $f=\mathcal{L}(x,t)=-rac{d}{dt}ig(prac{dx}{dt}ig)+qx$

Пример решения при помощи уравнения Штурма-Лиувилля

Решить вариационную задачу

$$Q(x) = \int_0^1 [(x')^2 + tx] dt \to \min$$
$$x(0) = x(1) = 0$$

Решение: $p(t) = 1, q(t) = 0, f(t) = -\frac{1}{2}t; p, q \ge 0 \Rightarrow D(h) \ge 0.$

Запишем уравнение $f = \mathcal{L}(x, t)$:

$$-x'' = f \Rightarrow x'' = \frac{1}{2}t \Rightarrow x' = \frac{1}{4}t^2 + C_1 \Rightarrow x = \frac{1}{12}t^3 + C_1t + C_2$$

Требуется найти $x(0) = 0 \Rightarrow C_2 = 0$ и $x(1) = 0 \Rightarrow C_2 = -\frac{1}{12}$.

Так что $x_*(t) = \frac{1}{12}t(t^2 - 1)$.