

Mariana Oleone, Daniel Souza, Alan Belleza, Levi Bortoni, Pedro Branquinho, Bruno Nunes, Enzo Matsumaga, Octávio Bogarim e Roberto Alvim.

Projeto de Telemetria de Foguetes

Mariana Oleone, Daniel Souza, Alan Belleza, Levi Bortoni, Pedro Branquinho, Bruno Nunes, Enzo Matsumaga, Octávio Bogarim e Roberto Alvim.

Projeto de Telemetria de Foguetes

Licença, Manual e Tutorial de Usuário sobre o projeto Telemetria de Foguetes da disciplina Computação Científica em Python

Universidade de São Paulo – USP Escola de Engenharia de Lorena Programa de Graduação

EEL-USP 2018

Agradecimentos

Os agradecimentos do grupo referido no projeto vão ao professor ministrante da disciplina *Computação Científica em Python*, Prof. Dr. Luíz T. F. Eleno, pela dedicação a primeira turma da disciplina, bem como sua dedicação ao esclarecimento de dúvidas e apoio ao projeto feito. .

Sumário

	Licença de <i>Software</i>	4
I	MANUAL DE USUÁRIO PARA O <i>SOFTWARE</i>	5
II	TUTORIAL DE USO	6
1	MANUAL DE USUÁRIO	7
1.1	O perfil de Usuário	7
1.2	O que o Software oferece	7
1.3	Formatação do Input	7
1.4	Interpretação do <i>Output</i>	8
2	TUTORIAL DE USO	9
2.1	Baixando o Software	9
2.2	A interface	9
2.3	Como fornecer os dados	10

Licença de Software

Copyright 1.0 2018

É concedida permissão, gratuitamente, a qualquer pessoa que obtém uma cópia desse software e cópia dos arquivos de documentação associados, para lidar com o software sem restrições, incluindo, sem limitação, os direitos de usar, copiar, modificar, mesclar, publicar, destribuir e/ou sublicenciar cópias do software e para permitir que as pessoas a quem o software esteja fornecido para tal, sujeito as seguintes condições:

O aviso de copyright acima e este aviso de permissão devem ser incluidos em todas as cópias ou partes substânciais do software.

O software é fornecido "como está", sem garantia de qualquer tipo, expressa e implícita, incluindo, mas não se limitando, às garantias de comercialização, aptidão, para uma finalidade específica e não violação. Em nenhuma circunstância, autores ou detentores dos direitos autorais serão responsabilizados por qualquer reclamação ou dano relacionado com o software ou uso de outras concessões no programa.

É importante ressaltar que qualquer cópia ou modificação deste *software* é expressamente proibida de comercialização.

Parte I

Manual de Usuário para o Software

Parte II Tutorial de Uso

1 Manual de Usuário

1.1 O perfil de Usuário

Esse software, chamado de Telemetria de Foguetes, desenvolvido por alunos cursando a disciplina Computação Científica em Python no curso Engenharia Física da Universidade de São Paulo, sendo open source (vide licença), tem o objetivo de ajudar os estudantes universitários em projetos de telemetria de foguetes, auxiliando com o cálculo da altura máxima, velocidade máxima, distância de solo - horizontal - e tempo de vôo a partir da aceleração experimental fornecida pelo acelerômetro implementado no foguete no input do software.

1.2 O que o *Software* oferece

O software oferece a capacidade de plotar gráficos que possibilitam ao usuário interpretar os dados de seu foguete somente com a aceleração experimental.

Ele calcula gráficos em 2D da posição em solo e da altura em função do tempo de vôo. Com isso, o usuário ficará informado sobre o vôo de seu foguete de teste somente com os dados do acelerômetro.

1.3 Formatação do *Input*

O input é um arquivo do tipo CSV que deve conter as coordenadas de tempo, eixo x, eixo y e eixo z, com os valores separados com vírgula, de acordo com a figura exemplo abaixo:

Vale ressaltar que seu arquivo só deve conter valores numéricos para o *software*, e estarem necessariamente na ordem mostrada acima na figura exemplo acima, sendo que Ax, Ay e Az são as acelerações nos três eixos, respectivamente. Todas as informações fornecidadas da aceleração devem estar em unidades do sistema internacional de medidas, ou seja, $\frac{m}{s^2}$ e devem ser valores constantes, isso é, medidos em intervalos de tempos iguais.

1.4 Interpretação do Output

Os gráficos 2D oferecerão uma representação visual da posição do foguete em solo e altura em função do tempo, onde cada ponto equivale a uma medição fornecida pelo usuário.

O gráfico de altura em função do tempo mostrará o desenvolvimento da trajetória vertical ao longo do vôo do foguete. Enquanto o gráfico de projeção em solo mostrará informações sobre a trajetória horizontal do foguete em relação ao ponto de lançamento, onde é possível encontrar o local de pouso do mesmo.

Os valores que serão fornecidos na interface representarão a altura máxima atingida, velocidade máxima alcançada, tempo de vôo do foguete e distância percorrida em relação ao ponto de lançamento.

2 Tutorial de Uso

2.1 Baixando o Software

O software esratá disponível em versão ZIP, onde será necessário que o usuário extraia o arquivo para sua área de trabalho. Logo em seguida é necessario abrir o prompt de comando do computador, digitando, na seguinte ordem as palavras cd desktop; cd telemetop; python; main.py, sendo que as duas primeiras palavras são necessárias clicar na tecla enter e entre a terceira e quarta palavra é necessário somente clicar na tecla espaço.

Com isso, uma interface irá aparecer em sua tela, contendo opções de botões para cada tipo de comando desejado pelo usuário.

2.2 A interface

A interface que aparecerá na tela do usuário será a imagem abaixo:

Onde existirão diferentes tipos de dados que o software pode oferecer com o arquivo CSV fornecido.

2.3 Como fornecer os dados

Na interface existem três opções para *input* dos arquivos, os botões *Valores Relevantes*, *Altura x Tempo e Projeção em Solo*. Ao selecionar uma dessas três opções, uma janela para importar arquivos do computador abrirá, onde deve-se escolher o arquivo com os valores das acelerações experimentais na formatação necessária descrita no Manual do Usuário.

O botão $\it Valores$ $\it Relevantes$ oferece quatro valores, de acordo com as imagens abaixo:

E os botões Altura x Tempo e Projeção em Solo oferecem dois gráficos 2D.

No canto superior esquerdo da interface, há o botão Ajuda, onde o usuário tem duas opções de uso, conforme imagem abaixo:

As opções $Sobre\ e\ Video$ direcionarão o usuário a esse arquivo PDF e um video no YouTube com um tutorial rápido sobre como executar o software.

Após coletar os dados com os valores experimentais, o usuário poderá fechar o programa apenas clicando no botão Sair, conforme figura abaixo:

 $\acute{\rm E}$ importante ressaltar que os dados apresentados nas figuras acima são dados genéricos de teste, sendo esses valores alterados dependendo do arquivo fornecido ao software.