概率统计第六章习题课

2. 设总体 $X \sim U(a, b)$, a, b 未知, $\bar{x}(1)$ 参数a, b 的矩估计量.

(2) 设总体 $X \sim U(a, b)$, a, b 未知, $x_1,...x_n$ 是一个样本值, 求参数a, b 的极大似然估计量.

4 设总体 $X \sim G(p)$, $X_1,...X_n$ 是来自X的一个样本值, 试求参数p与EX的极大似然估计.

5. 设总体 X 的密度函数为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0, \\ 0 & x \le 0 \end{cases}$$

 $x_1,...x_n$ 是为X的一个样本。

求 θ 的极大似然估计量,并判断它是否无偏估计量.

6. 设 X_1, X_2, \dots, X_n 是取自总体 $N(\mu, \sigma^2)$ 的样本,求 C 的值,使 $S^2 = C\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ 是 σ^2 的无偏估计.

7. 设 X_1, X_2, \dots, X_n 是取自 $P(\lambda)$ 的样本,证明 \overline{X} ,

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \pi a \overline{X} + (1-a)S^{2} (0 \le a \le 1)$$

都是λ的无偏估计.

8. 设 $E(X)=\mu$, $D(X)=\sigma^2$

 $X_1,...X_n$ 为总体X的一个样本

(1) 设常数
$$c_i$$
, $i = 1, 2, \dots, n$.
$$\sum_{i=1}^{n} c_i = 1$$
.

证明 $\hat{\mu} = \sum_{i=1}^{n} c_i X_i$ 是 μ 的无偏估计量

(2) 证明
$$\hat{\mu} = \sum_{i=1}^{n} c_i X_i + \overline{X}$$
 最有效

13. 设
$$X \sim N(\mu, \sigma^2), x_1, x_2, \dots, x_{15}$$
为样本值,已知 $\sum_{i=1}^{15} x_i = 8.7$,

$$\sum_{i=1}^{15} x_i^2 = 25.05$$
, 分别求置信度为0.95的 μ 和 σ^2 的置信区间.

16. 随机地取某种炮弹9发做试验,得炮弹口速度的样本标准差为10.5(m/s). 设炮口速度服从正态分布. 求这种炮弹的炮口速度的标准差σ的置信度为0.95的置信区间.

15. 设 $X \sim N(\mu, \sigma_0^2)$, σ_0^2 已知,样本容量n 多大,才能使 μ 的置信度 $1-\alpha$ 的置信区间长度不大于常数 d?

19. 设考生的考试成绩 $X \sim N(\mu, \sigma^2)$,从中随机地抽取40位考生的成绩,算得平均成绩为68分,标准差为17分. 问在显著性水平0.05下,是否可以认为这次考试的平均成绩为72分?

21. 设鸡蛋售价 $X \sim N(\mu, 0.18)$,今年30个集市上平均价格为2.21元/500克,而往年平均价格为2元/500克,设方差不变,能否认为今年的鸡蛋价格明显高于往年? ($\alpha = 0.05$)

25. 货车有A,B两条行车路线,行车时间分别 服从 $N(\mu_i, \sigma_i^2)$, i = 1, 2. 每条路各跑50次,在A线上 $\bar{X} = 95$, $S_x = 20$; 在B线上 $\bar{Y} = 76$, $S_y = 15$. 问方差 是否一样,均值是否一样?($\alpha = 0.05$)

22. 已知某溶液中的水分 X 服从正态分布 10个测定值给出 $\overline{X} = 0.637\%$, $S^2 = 0.044\%$,在显著性水平 $\alpha = 0.05$ 情况下检验假设): $H_0: \sigma^2 = 0.045\%$; $H_1: \sigma^2 < 0.045\%$.