7.11

证明: 设无向图² G 是一自补图。由自补图定义知, $|E(\overline{G})| = |E(G)|$ 且 $|E(\overline{G})| + |E(G)| = |E(K_n)| = n(n-1)/2$ 。解得 |E(G)| = n(n-1)/4。

由 |E(G)| 是整数知,4 | n(n-1)。由于 n 和 n-1 中必有一个是奇数,故 4 整除另一个数,即有 4 | n 或 4 | n-1。从而有: n=4k 或 n=4k+1。

7.12

证明: 从 G 中任选一个顶点,记为 v_1 。由鸽巢原理知,G 的其它 5 个顶点中,要么至少有 3 个与 v_1 相邻,要么至少有 3 个与 v_1 不相邻(即,在 \overline{G} 中 v_1 与它们相邻)。

由对称性,不妨设至少有3个顶点在G中与 v_1 相邻,将这3个顶点分别记为 v_2,v_3,v_4 。

- (1) 若这 3 个顶点互不相邻,则这 3 个顶点在 \overline{G} 中就是彼此相邻的 3 个顶点。所证命题成立。
- (2) 若这 3 个顶点中有相邻的顶点,则这对相邻的顶点与 v_1 一起就构成了 G 中彼此相邻的 3 个顶点,命题同样成立。

7.13

证明: 反设 G 中仅有的两个奇度顶点分属的 G 的两个不同的连通分支 G_1 和 G_2 ,那么 G_1 中只有一个奇度顶点,从而 $\sum_{v \in G_1} d(v)$ 是奇数,与图论基本定理矛盾。

7.14 首先证明:

引理 7.4 对任意图(有向或无向) G, 若有

 $\forall u, v, w \in V(G)((u, v), (v, w) \in E(G) \Rightarrow (u, w) \in E(G))$

(若为有向图,则将引理中的无序对换成有序对即可),则该图的每一个(强)连通分支都是完全图。证明:只需证: $\forall (u,v \in V(G), u \neq v \land u \sim v \rightarrow (u,v) \in E(G))$ 为永真即可。

设 $\Gamma = w_0 w_1 \cdots w_{k-1} w_k$ 是 u 到 v 的一条最短通路 (其中 $w_0 = u$, $w_k = v$)。由于 $(u,v) \notin E(G)$,所以 $k \geq 2$ 。反设 $\forall u,v,w \in V(G)((u,v),(v,w) \in E(G) \implies (u,w) \in E(G))$ 。则由 $(w_0,w_1),(w_1,w_2) \in E(G)$ 就可推出 $(w_0,w_2) \in E(G)$,从而 $\Gamma' = w_0 w_2 \cdots w_{k-1} w_k$ 是一条更短的通路。矛盾。

上述证明中并未用到无序对的可交换性。因此,该证明对有向图的情形同样有效。 □

再证原题。

证明:若不然,由G是连通图和引理7.4可知,G是完全图,矛盾。

7.15

证明:构造一"极大路径" $\Gamma = v_0, v_1, \ldots, v_l$ 。由 Γ 是极大路径知, v_0 的所有邻接点都在 Γ 上。由 $\delta(G)$ 定义知,至少存在 $\delta(G)$ 个顶点 $v_{i_1}, v_{i_2}, \ldots, v_{i_\delta(G)}(i_1 < i_2 < \ldots < i_\delta(G))$ 与 v_0 相邻。且由 $\delta(G) \geq 2$ 知, $\delta(G) \neq 1$ 。从而由 Γ 是初级通路知, $v_{i_1} \neq v_{i_\delta(G)}$ 。于是有 $(v_{i_\delta(G)}, v_0)$ 不在 Γ 上。因此, $v_0, v_1, \ldots, v_{i_\delta(G)}, v_0$ 即为一个长度大于等于 $\delta(G) + 1$ 的圈。

7.16

证明:构造一个"极大路径" $\Gamma = v_0, v_1, \ldots, v_l$ 。

由 Γ 是极大路径知, v_0 的所有邻接点都在 Γ 上。

由 $\delta(G) \geq 3$ 可知,除 v_1 外,至少还有两个顶点 $v_i, v_j (2 \leq i < j \leq l)$ 与 v_0 相邻。

 $^{^2}$ 本题中的 G 必须是无向图。当 G 为有向图时,上述结论不成立。第 9 题中的 3 阶有向自补图 G_7 和 2 阶有向自补图 G_{18} 便是反例。