# **Worksheet 12**

# To accompany Chapter 5.1 Defining the Fourier Transform

You can download this page as a PDF (../../worksheets/worksheet12.pdf).

We will step through this worksheet in class.

You are expected to have at least watched the video presentation of <u>Chapter 5.1</u> (<a href="https://cpjobling.github.io/eg-247-textbook/fourier\_transform/1/ft1">https://cpjobling.github.io/eg-247-textbook/fourier\_transform/1/ft1</a>) of the <a href="https://cpjobling.github.io/eg-247-textbook">notes</a> (<a href="https://cpjobling.github.io/eg-247-textbook">https://cpjobling.github.io/eg-247-textbook</a>) before coming to class. If you haven't watch it afterwards!

# Fourier Transform as the Limit of a Fourier Series

We start by considering the pulse train that we used in the last lecture and demonstrate that the discrete line spectra for the Fourier Series becomes a continuous spectrum as the signal becomes aperiodic.

This analysis is from Boulet pp 142—144 and 176—180.

Let  $\tilde{x}(t)$  be the Fourier series of the rectangular pulse train shown below:



## **Fourier Series**

In the <u>previous section (https://cpjobling.github.io/eg-247-textbook/fourier\_series/3/exp\_fs2)</u> we used

$$C_k = \frac{1}{2\pi} \int_{-\pi/w}^{\pi/w} A e^{-jk(\Omega_0 t)} d(\Omega_0 t) = \frac{A}{2\pi} \int_{-\pi/w}^{\pi/w} e^{-jk(\Omega_0 t)} d(\Omega_0 t)$$

to compute the line spectra.

## From the Time Point of View

If we instead take a time point-of-view and let A=1

$$C_k = \frac{1}{T} \int_{-t_0}^{t_0} e^{-jk\Omega_0 t} dt.$$

Let's complete the analysis in the whiteboard.



#### The Sinc Function

The function,  $\sin(\pi x)/\pi x$  crops up again and again in Fourier analysis. The Fourier coefficients  $C_k$  are scaled *samples* of the real continuous *normalized sinc* function defined as follows:

$$\operatorname{sinc} u := \frac{\sin \pi u}{\pi u}, \ u \in \mathbb{R}.$$

The function is equal to 1 at  $u=0^1$  and has zero crossings at  $u=\pm n,\ n=1,2,3,\ldots$  as shown below.

#### Plot the sinc function

Plots:

$$sinc(u) = \frac{\sin \pi u}{\pi u}, \ u \in \mathbb{R}$$

### In [2]:

```
x = linspace(-5,5,1000);
plot(x,sin(pi.*x)./(pi.*x))
grid
title('Graph of sinc function')
ylabel('sinc(u)')
xlabel('u')
```



### **Duty cycle**

- We define the duty cycle  $\eta = 2t_0/T$  of the rectangular pulse train as the fraction of the time the signal is "on" (equal to 1) over one period.
- The duty cycle is often given as a percentage.

The spectral coefficients expressed using the normalized sinc function and the duty cycle can be written as

$$C_k = \frac{2t_0}{T} \frac{\sin\left(\frac{\pi k 2t_0}{T}\right)}{\frac{\pi k 2t_0}{T}} = \frac{2t_0}{T} \operatorname{sinc}\left(\frac{k 2t_0}{T}\right)$$
$$C_k = \eta \operatorname{sinc}(k\eta)$$

## Normalize the spectral coefficients

Let us normalize the spectral coefficients of  $\tilde{x}(t)$  by mutiplying them by T, and assume  $t_0$  is fixed so that the duty cycle  $\eta=2t_0/T$  will decrease as we increase T:

$$TC_k = T\eta \operatorname{sinc}(k\eta) = 2t_0 \operatorname{sinc}\left(k\frac{2t_0}{T}\right)$$

Then the normalized coefficients  $TC_k$  of the rectangular wave is a sinc envelope with constant amplitude at the origin equal to  $2t_0$ , and a zero crossing at fixed frequency  $\pi/t_0$  rad/s, both independent of T.

In [3]:

open duty\_cycle

#### Demo

Run duty\_cycle with values of:

- 50% ( $\eta = 1/2$ )
- 25% ( $\eta = ?$ )

- 12.5% ( $\eta = ?$ )
- 5%  $(\eta = ?)$

#### **Comments**

- As the fundamental period increases, we get more spectral lines packed into the lobes of the sinc envelope.
- These normalized spectral coefficients turn out to be samples of the continuous sinc function on the spectrum of  $\tilde{x}(t)$
- The two spectra are plotted against the frequency variable  $k\omega_0$  with units of rad/s rather than index of harmonic component
- The first zeros of each side of the main lobe are at frequencies  $\omega = \pm \pi/t_0$  rad/s
- The zero-crossing points of sinc envelope are independent of the period T. They only depend on  $t_0$ .

## **Intuition leading to the Fourier Transform**

- An aperiodic signal that has been made periodic by "repeating" its graph every
   T seconds will have a line spectrum that becomes more and more dense as
   the fundamental period is made longer and longer.
- The line spectrum has the same continuous envelope.
- As T goes to infinity, the line spectrum will become a continuous function of  $\omega$ .
- The envelope is this function.

## **Doing the Maths**

See the <u>notes (https://cpjobling.github.io/eg-247-textbook/fourier\_transform/1/ft1)</u>.

#### **Inverse Fourier Transform:**

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega := \mathcal{F}^{-1} \{X(j\omega)\}$$

Similarly, given the expression we have already seen for an arbitrary x(t):

**Fourier Transform:** 

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt := \mathcal{F} \{x(t)\}.$$

#### **Fourier Transform Pair**

• The two equations on the previous slide are called the Fourier transform pair.

# **Properties of the Fourier Transform**

Again, we will provide any properties that you might need in the examination.

You will find a number of these in the accompanying notes.

# **Table of Properites of the Fourier Transform**

As was the case of the Laplace Transform, properties of Fourier transforms are usually summarized in Tables of Fourier Transform properties. For example this one: <a href="https://en.wikipedia.org/wiki/Fourier\_transform/">Properties of the Fourier Transform (Wikpedia)</a> (<a href="https://en.wikipedia.org/wiki/Fourier\_transform#Properties">https://en.wikipedia.org/wiki/Fourier\_transform#Properties</a> of the Fourier transform and Table 8.8 in Karris (page 8-17).

More detail and some commentry is given in the printable version of these notes.

|                                                          | f(t)                                           | Name                       |    |
|----------------------------------------------------------|------------------------------------------------|----------------------------|----|
| $a_1F_1(j\omega) + a_2F_2(j\omega) + \cdots +$           | $a_1 f_1(t) + a_2 f_2(t) + \dots + a_n f_n(t)$ | Linearity                  | 1  |
|                                                          | $2\pi f(-j\omega)$                             | Symmetry                   | 2  |
| $\frac{1}{ \alpha }F\left(j\frac{\omega}{\alpha}\right)$ | $f(\alpha t)$                                  | Time and frequency scaling | 3. |

4. Time shifting  $f(t-t_0)$   $e^{-j\omega t_0}F(j\omega)$ 

5. Frequency shifting 
$$e^{j\omega_0 t}f(t)$$
  $F(j\omega-j\omega_0)$ 

6. Time  $\frac{d^n}{dt^n}f(t)$   $(j\omega)^n F(j\omega)$ 

7. Frequency  $(-jt)^n f(t)$   $\frac{d^n}{d\omega^n}F(j\omega)$ 

8. Time integration  $\int_{-\infty}^t f(\tau)d\tau$   $\frac{F(j\omega)}{j\omega} + \pi F(0)\delta(a)$ 

9. Conjugation  $f^*(t)$   $F^*(-j\omega)$ 

10. Time convolution  $f_1(t) * f_2(t)$   $f_1(t) * f_2(t)$   $f_2(t)$   $f_3(t) * f_4(t) * f_4(t)$ 

11. Frequency convolution  $f_1(t) * f_2(t)$   $f_4(t) * f_4(t)$   $f_4(t) * f_4(t)$   $f_4(t) * f_4(t)$ 

12. Area under 
$$\int_{-\infty}^{\infty} f(t) dt = F(0)$$

13. Area under 
$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) d\omega$$

14. Energy- 
$$E_{[\omega_1,\omega_2]}:=\frac{1}{2\pi}\int_{\omega_1}^{\omega_2}\left|F(j\omega)\right|^2d\omega.$$
 Spectrum

15. Parseval's theorem 
$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(j\omega)|^2 d\omega.$$

See also: <u>Wikibooks: Engineering Tables/Fourier Transform Properties</u>
(<a href="http://en.wikibooks.org/wiki/Engineering Tables/Fourier Transform Properties">http://en.wikibooks.org/wiki/Engineering Tables/Fourier Transform Properties</a>) and Fourier Transform—WolframMathworld
(<a href="http://mathworld.wolfram.com/FourierTransform.html">http://mathworld.wolfram.com/FourierTransform.html</a>) for more complete

# **Examples**

- 1. Amplitude Modulation
- 2. Impulse response
- 3. Energy computation

| Examp | le 1: | Am                                           | plitud | e M          | odul       | lation   | ì |
|-------|-------|----------------------------------------------|--------|--------------|------------|----------|---|
|       |       | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | piitaa | <b>U</b> 111 | <b>Jua</b> | ia ti Oi |   |

| Example 1: Amplitude Modulation                                                             |
|---------------------------------------------------------------------------------------------|
| Compute the result of multiplying a signal $f(t)$ by a carrier waveform $\cos \omega_c t$ . |
| Hint use Euler's identity and the frequency shift property                                  |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |

# **Example 2: Impulse response**

A system has impulse response  $f(t) = e^{-t}u_0(t)$ . Compute the frequency sprectrum of this system.

| Exa  | mple 3: Energy computation                                                                                                 |
|------|----------------------------------------------------------------------------------------------------------------------------|
|      | -                                                                                                                          |
| An a | periodic real signal $f(t)$ has Fourier transform $F(i\omega)$ . Compute the energy                                        |
|      | periodic real signal $f(t)$ has Fourier transform $F(j\omega)$ . Compute the energained the signal between 5kHz and 10kHz. |
|      | periodic real signal $f(t)$ has Fourier transform $F(j\omega)$ . Compute the energained the signal between 5kHz and 10kHz. |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |
|      |                                                                                                                            |

# **Computing Fourier Transforms in Matlab**

MATLAB has the built-in **fourier** and **ifourier** functions that can be used to compute the Fourier transform and its inverse. We will explore some of thes in the next lab.

For now, here's an example:

## **Example**

Use Matlab to confirm the Fourier transform pair:

$$e^{-\frac{1}{2}t^2} \Leftrightarrow \sqrt{2\pi}e^{-\frac{1}{2}\omega^2}$$

```
In [ ]:
```

```
syms t v omega x;
ft = exp(-t^2/2);
Fw = fourier(ft,omega)
```

```
In [ ]:
```

```
pretty(Fw)
```

Check by computing the inverse using ifourier

```
In [ ]:
```

```
ft = ifourier(Fw)
```