HW3

Shane Drafahl

20 October,2017

1. (a)

First we will replace the removed element with the last element in the tree

(b):

Then we must heapify the data structure

The max heap is now been heapified.

- 2. Solve the following recurrences. You can not use master theorem to solve them. You must show the steps in your derivation.
 - (a): If we draw out a 3 iterations then we would get

 $[cn]_1 + [\frac{cn}{3} + \frac{2cn}{3}]_2]_2 + [\frac{cn}{9} + \frac{2cn}{9} + \frac{2cn}{9} + \frac{4cn}{9}]_3$ where the brackets represent the layers this can be reduced to $[cn]_1 + [cn]_2 + \frac{cn}{9} + \frac{2cn}{9} + \frac{2cn}{9} + \frac{2cn}{9} + \frac{4cn}{9}$ $[cn]_3 + ...$ for all iterations. So now we just need to find the number of iterations. Every iteration divides n by 3 or by $\frac{2}{3}$. So there should be logarithmic number of iterations. So T(n) = cnlog(n).

(b): First we will draw out a few iterations to find what the infinite series would be.

The sum of the the function would be $cn + \frac{cn}{5} + \frac{cn}{25} + \dots$

Notice that the denominator 5^i where i is the iteration number. So we can write this as an infinite series.

 $\sum_{i=1}^{\infty} \left(\frac{cn}{5}\right)^{i}.$

From this we can determine that the total sum is $\frac{5nc}{4}$. This means that this function is O(n).

(c): We will draw out the first few iterations again. $[n^{log_5(7)}]_0 + [\frac{n^{log_5(7)}}{2} + \frac{n^{log_5(7)}}{2}]_1 + [\frac{n^{log_5(7)}}{4} + \frac{n^{log_5(7)}}{2}]_4 + \frac{n^{log_5(7)}}{2}]_4 + \frac{n^{log_5(7)}}{2}]_4]_2 + \dots$ As we can tell this can ben reduced to $n^{log_5(7)} + n^{log_5(7)} + n^{log_5(7)} + \dots$ so

that means we just have to find the height of the tree.

Notice the denominator's value is 2^i where i is value of the iteration. So we know the last iteration is when $\frac{n}{2^i} = 1$ so there will be $log_2(n)$ iterations. So the sum is $log_2(n) * n^{log_5(7)}$