

AD-A044 537 COLORADO STATE UNIV FORT COLLINS DEPT OF MICROBIOLOGY F/G 6/13  
CELL WALL LIPOPOLYSACCHARIDES OF 'YERSINIA PESTIS': CHEMICAL AN--ETC(U)  
JAN 77 T G TORNABENE DAMD17-74-C-4040  
UNCLASSIFIED NL

| OF |  
AD  
A044537



END  
DATE  
FILMED

10-77

DDC

AD A 044 537

(2)  
AD \_\_\_\_\_

Cell Wall Lipopolysaccharides of  
*Yersinia pestis*: Chemical and Serological Studies

Final Report

Thomas G. Tornabene

January, 1977

Supported by:

United States Army Medical Research and  
Development Command  
Washington, D.C. 20314

Contract Number: DAMD17-74-C4040

Colorado State University  
Fort Collins, Colorado 80523

DDC DISTRIBUTION STATEMENT

The findings in this report are approved  
for public release; distribution unlimited

AD No. \_\_\_\_\_  
DDC FILE COPY.



| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|
| 1. REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER                                                                    |
| 4. TITLE (and Subtitle)<br>Cell Wall Lipopolysaccharides of <i>Yersinia pestis</i> : Chemical and Serological Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 5. TYPE OF REPORT & PERIOD COVERED<br>Final Report 12/1/73 to 12/31/76                           |
| 7. AUTHOR(s)<br><br>Thomas G. Tornabene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | 6. PERFORMING ORG. REPORT NUMBER<br><br>DAMD17-74-C4040 <i>MGR</i>                               |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br><br>Department of Microbiology✓<br>Colorado State University<br>Fort Collins, Colorado 80523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br><br>61102B<br>3A161102B71Q.00.076 |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br><br>U.S. Army Medical Research and Development Command<br>Washington, D.C. 20314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 12. REPORT DATE<br><br>January, 1977                                                             |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 13. NUMBER OF PAGES<br><br>26                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 15. SECURITY CLASS. (of this report)<br><br>Unclassified                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                       |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>The findings in this report are approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                                                                                  |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                  |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                                                                                  |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br><br><i>Yersinia pestis</i> , <i>Pseudomonas maltophilia</i> , Lipopolysaccharides, Acidic polysaccharides, Lipids, proteins, glycoproteins, capsule, cell wall, virulence                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                  |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br><br>The research program characterized the macromolecular structures comprising the envelope of <i>Yersinia pestis</i> , the causative agent of bubonic plague. The unit protein structures of the macrocapsule, acidic polysaccharide of micro-capsule, and lipopolysaccharide of cell wall were elucidated and formulated into a model postulating the structural relationship of each entity. Studies on biochemical events and cellular factors were conducted and associated with the expression of virulence. A synergistic event between <i>Pseudomonas maltophilia</i> →<br>OVER |                       |                                                                                                  |

20. For its cellular exogenates and *Yersinia pestis* greatly enhanced the expression of virulence of the plague bacilli.

The lipopolysaccharide study showed that the lipopolysaccharide contents of *Yersinia pestis* strains were chemically similar and cannot be employed for differentiating strains of plague bacilli. This program also established that serological typing of *Y. pestis* cells will not be accomplished by a simple exploration of somatic cellular entities.

AD \_\_\_\_\_

(6) Cell Wall Lipopolysaccharides of  
*Yersinia pestis*: Chemical and Serological Studies.

(9) Final Report. 1 Dec 73-31 Dec 76,

(10) Thomas G. Tornabene

(11) Jan 22, 1977

(12) 26 p.

Supported by:

United States Army Medical Research and  
Development Command  
Washington, D.C. 20314

(15) Contract Number: DAMD17-74-C4040

Colorado State University  
Fort Collins, Colorado 80523

(16) 3A161102B71Q

DDC DISTRIBUTION STATEMENT

The findings in this report are approved  
for public release; distribution unlimited

(17) OO

407 318

mt

### Abstract

The research program characterized the macromolecular structures comprising the envelope of *Yersinia pestis*, the causative agent of bubonic plague. The unit protein structures of the macrocapsule, acidic polysaccharide of microcapsule, and lipopolysaccharide of cell wall were elucidated and formulated into a model postulating the structural relationship of each entity. Studies on biochemical events and cellular factors were conducted and associated with the expression of virulence. A synergistic event between *Pseudomonas maltophilia* or its cellular exogenates and *Yersinia pestis* greatly enhanced the expression of virulence of the plague bacilli.

The lipopolysaccharide study showed that the lipopolysaccharide contents of *Yersinia pestis* strains were chemically similar and cannot be employed for differentiating strains of plague bacilli. This program also established that serological typing of *Y. pestis* cells will not be accomplished by a simple exploration of somatic cellular entities.

|                                     |                                                   |
|-------------------------------------|---------------------------------------------------|
| ACCESSION NO.                       |                                                   |
| NTIB                                | White Section <input checked="" type="checkbox"/> |
| DDC                                 | Buff Section <input type="checkbox"/>             |
| UNANNOUCED <input type="checkbox"/> |                                                   |
| JUSTIFICATION                       |                                                   |
| BY                                  |                                                   |
| DISTRIBUTOR, AVAILABILITY CODES     |                                                   |
| DIST.                               | AVAIL. AND/OR SPECIAL                             |
| A                                   |                                                   |

TABLE OF CONTENTS

|                                                                                                                   | <u>Page</u> |
|-------------------------------------------------------------------------------------------------------------------|-------------|
| A. Narrative Report                                                                                               | 1           |
| Tables:                                                                                                           |             |
| I. Molar Composition of Four Strains of <i>Yersinia pestis</i>                                                    | 4           |
| II. Lipopolysaccharide Yields and Sugar Composition of Four <i>Yersinia pestis</i> Strains                        | 5           |
| III. Amino Sugar Composition of Lipopolysaccharide of Four <i>Yersinia pestis</i> Strains                         | 6           |
| IV. Fatty Acid Composition of Lipopolysaccharide of Four <i>Yersinia pestis</i> Strains                           | 7           |
| V. Composition of Rough-Lipopolysaccharide of Four <i>Yersinia pestis</i> Strains                                 | 8           |
| VI. Composition of Lipopolysaccharide of <i>Y. pestis</i> Pestoides Number 36                                     | 9           |
| VII. Chemical Composition of Acidic Polysaccharides                                                               | 10          |
| VIII. Lethality Test in Mice with <i>Yersinia pestis</i> and <i>Pseudomonas</i> Cells                             | 11          |
| IX. Lethality Test in Mice with <i>Yersinia pestis</i> Cells Enriched with Autolysate of <i>Pseudomonas</i> Cells | 12          |
| Figures:                                                                                                          |             |
| 1. Chromatographic Separation of Lipopolysaccharides of <i>Yersinia pestis</i>                                    | 13          |
| 2A. Radioautogram of Celluloseacetate Strip of Acidic Polysaccharide                                              | 14          |
| 2B. Electron Micrograph Acidic Polysaccharide Extending from Surface of <i>Yersinia pestis</i>                    | 14          |
| 3. Fractionation of Acidic Polysaccharides                                                                        | 15          |
| 4. Model Postulating the Chemical Orientation of Cell Envelope                                                    | 17          |

Table of Contents (Continued)

|                                 | <u>Page</u> |
|---------------------------------|-------------|
| B. Bibliography of Publications | 18          |
| C. Personnel                    | 19          |

The research program had the objectives of elucidating the detailed chemical composition and serological properties of proteins, polysaccharides and lipopolysaccharides of *Yersinia pestis*. These objectives have essentially been accomplished. A considerable quantity of fundamental data on cellular composition of plague bacillus is now realized. The ultimate goal of acquiring detailed data for the establishment of a system for chemo- or serological-typing of strains of plague bacilli has not been accomplished.

The studies now here summarized are those on somatic structures, namely macrocapsule, microcapsule, and outer cellular membrane, of five strains of *Y. pestis* and two strains of Pestoides. Attempts were made to present this summary program in a unified manner; even though it is somewhat naturally divided into specific studies dealing with respective cellular subfraction.

The composition of lipopolysaccharide (LPS) comprising the major portion of the outer cellular membrane received a great deal of attention. The chemical compositions are presented in Tables I-VI. The chemical entities comprising the LPS are essentially the same for all strains studied. The relative intensities of each entity are different; however, these same changes in relative intensities of a given composition from a single species were also observed when subjected to changes in age of cells, nature of cultivation medium, as well as to any physical chemical environmental changes. We have made extensive attempts at subfractionating LPS by column and thin-layer (Fig. 1) chromatography, sequential extractions, and so forth, to separate specific species of LPS, but to no avail. Chemical differences of each subfraction were observed only in the changes in relative intensities of the entities comprising the individual LPS subfractions. No specific serological differences could be detected between subfractionated, protein derivatized, cross-absorbed, and total LPS of the four *Y. pestis* strains studied.

There is no doubt that the LPS extracts consist of a variety of LPS species, but to a large part these exist only as degrees of aggregated forms and to a lesser degree those with varying ratios of hydrophobic  $\longleftrightarrow$  hydrophilic portions of LPS molecule. There are also definite indications for the existence of numerous additional oligosaccharides included within the cell wall structures but with compositions resembling fragments of the classical LPS molecule. No serological differences could be denoted.

During the course of our study with the LPS, we studied the detailed composition of the capsule surrounding and perhaps integrated with the cell wall. The macrocapsule is comprised of two identical proteins, one of which differs from the other by containing an oligogalactan. The physical and chemical properties of these proteins were described in detail and were subsequently published (*J. Bacteriol.* 117 (1974) 48). Two other chemical fractions, lipids and acidic polysaccharide, were also separated from the envelope of the cell. The lipids were fully characterized and described and also published (*Biochim. Biophys. Acta.* 306 (1973) 173).

A great deal of time has been spent on the acidic polysaccharide fraction (APS) and effort is now underway to obtain financial support to complete this work. The multispecies comprising the APS fraction contain specific components that will serologically cross-react with anti-F<sub>1</sub> and those that will cross-react with anti-LPS. The composition of the APS is hexoses, hexuronic acids, sulfates, phosphates, and a

small percentage of unknowns. The composition closely resembles specific heparin molecules and chondroitin sulfates.

Through cultivation schemes and specific labelling procedures with  $^{14}\text{C}$ ,  $^{32}\text{P}$  and  $^{35}\text{S}$  atoms we have proven that *Y. pestis* cannot synthesize the APS in total and specifically incorporate and alter APS when they are available in the growth support medium.

In the course of the study we found that the APS was chemically similar to those that normally occur in all meat and agar preparations, respectively. However, we also found APS production by cells in synthetic media that originally contained no APS. In this synthetic media, through successive cultivations, we observed a contaminant in all our plague cultures. The contaminant, identified as *Ps. maltophilia*, consequently synthesized the APS that was found in *Y. pestis* cultivated in synthetic media. This is the first definitive demonstration of APS biosynthesis in bacteria. Purified cultures of *Y. pestis* produced no APS.

We are currently in the process of characterizing the APS contents from meat, agar, and *Pseudomonas*; after this is accomplished we will be able to complete our study on the chemical composition of APS of *Y. pestis*, after incorporation. We feel that it is a strange coincidence that APS are specifically incorporated into *Y. pestis* cells and that there is a specific and constant contamination problem that exists in our laboratory with an organism that has the unique ability to synthesize APS.

Other than the fact that the APS are specifically bound to *Y. pestis* cells, it requires trichloroacetic acid extraction procedure to remove it,

details of its role remain unclear. Fig. 2 shows the colloidal thorium precipitate approach to visualizing the APS on the capsules surface of cells by electron microscopy. From this data one projects that the APS has a structural role perhaps as a microcapsule that transverses the capsule to cell wall. The nature of the chemical contents of the entities comprising the APS fraction supports this intention (Table VIII and Figs. 2 and 3). These data along with the data now unfolding in this laboratory, supports the hypothetic model for envelope structure of *Y. pestis* shown in Fig. 4.

Not only is this data showing structural evidence for APS in cell envelope and specific requirement properties by *Y. pestis* cells, it logically suggests that APS has a functional role as well. Consequently, lethality tests were conducted to determine if the APS influenced pathogenic or invasive properties in *Y. pestis* cells adapted to laboratory media. Experiments with *Y. pestis* were conducted with the common and selective contaminants, *Ps. maltophilia* 195, or commercially obtained *Ps. maltophilia* ATCC strain, or their APS products. These data are shown in Tables VIII and IX. The data show that *Y. pestis* with *Ps. maltophilia* 195, natural contaminant of *Y. pestis* cultures in this laboratory, or its autolysate, are effective in rendering the preparations more lethal in mice.

The curious point in this laboratory is the occurrence of *Ps. maltophilia* as a contaminant in our cultures.

The specific points are:

1. its the only contaminant detected in *Y. pestis* cultures.
2. we have detected it in cultures maintained in this laboratory as well as others but only after successive subcultivation.
3. its the only bacterium for which APS are found (although yet unpublished).

4. that *Y. pestis* seeks APS from culture media.
5. that Kitasato first reported motile bacteria in *Y. pestis* cultures (Bact. Rev. 40 #3 Sept. 1976, p. 633).

It is very difficult to initially show *Ps. maltophilia* in *Y. pestis* cultures, especially when *Ps. maltophilia* is held in very low percentages during cultivation. I feel confident that there is a relationship between *Pseudomonas* and *Yersinia* and I am committed to proving it. In our laboratory we feel that Kitasato's original description of a typical plague isolate was the most accurate.

The discovery of *Ps. maltophilia* in *Y. pestis* cultures compounded with the occurrence of APS, disrupted our research program for over one year during the tenure of United States Army Research Support. An additional year will be essentially lost before other sources of funding will be obtained. We have a wealth of data concerned with the plague diseases, much of which is presently disarticulated but it is only a matter of time before we acquire the necessary information and assemble the puzzle.

We feel that we have a unique system for studying at least one aspect of the complicated invasive and pathogenic properties of truly a unique bacterium, *Yersinia pestis*. These types of studies may appear to be afar from the original intent to chemo- or sero-type plague strain. But it is exactly these types of studies that will eventually reveal the route for which typing will be accomplished. We are convinced from these studies that typing of *Y. pestis* strains will not be accomplished by a simple exploration of somatic cellular entities.

Table I.

Molar compositions of Lipopolysaccharides (LPS) of four CDC strains of *Y. pestis*, nanomoles per mg.<sup>1</sup>

| LPS Fraction             | KDO | Nanomoles per mg lipopolysaccharide <sup>2</sup> |                            |                                 |              |              |                |
|--------------------------|-----|--------------------------------------------------|----------------------------|---------------------------------|--------------|--------------|----------------|
|                          |     | Total Fatty Acids                                | $\beta$ -hydroxy-myristate | Total Carbohydrate <sup>2</sup> | Total Sugars | Amino Sugars | GlCN + GlCN 6P |
| 28 C A1122 supernatant   | 53  | 29                                               | 12                         | 608                             | 139          | 130          |                |
| 28 C A1122 precipitate   | 78  | 148                                              | 107                        | 801                             | 299          | 299          |                |
| 37 C A1122 supernatant   | 98  | 12                                               | 4                          | 1635                            | 321          | 269          |                |
| 37 C A1122 precipitate   | --  | --                                               | --                         | --                              | --           | --           |                |
| 28 C Nairobi supernatant | 45  | 57                                               | 20                         | 2414                            | 216          | 146          |                |
| 28 C Nairobi precipitate | 22  | 41                                               | 37                         | 895                             | 115          | 105          |                |
| 37 C Nairobi supernatant | 53  | 98                                               | 20                         | 1503                            | 415          | 272          |                |
| 37 C Nairobi precipitate | 39  | 94                                               | 45                         | 602                             | 128          | 103          |                |
| 28 C Exu-5 supernatant   | 34  | 33                                               | 16                         | 890                             | 268          | 147          |                |
| 28 C Exu-5 precipitate   | 124 | 303                                              | 266                        | 1669                            | 148          | 130          |                |
| 37 C Exu-5 supernatant   | 78  | 74                                               | 61                         | 884                             | 89           | 77           |                |
| 37 C Exu-5 precipitate   | --  | --                                               | --                         | --                              | --           | --           |                |
| 28 C 195/P supernatant   | 122 | T                                                | T                          | ---                             | 526          | 524          |                |
| 28 C 195/P precipitate   | --  | --                                               | --                         | ---                             | ---          | ---          |                |
| 37 C 195/P supernatant   | 296 | T                                                | 0                          | 718                             | 185          | 165          |                |
| 37 C 195/P precipitate   | 284 | 381                                              | 344                        | 1486                            | 317          | 317          |                |

<sup>1</sup>Extracted by hot phenol-H<sub>2</sub>O procedure<sup>2</sup>Colorimetric determination based on glucose.

Abbreviations: GlCN, glucosamine; GlCN-6P, glucosamine-6-phosphate, T, trace.

Table II.

Lipopolysaccharide (LPS) yields and sugar composition from four CDC strains of *Y. pestis*.

| LPS Fraction             | Yield (% Dry Cell Weight) | AraN | Man  | Gal  | Sugar Composition (Mole %) |        |        |
|--------------------------|---------------------------|------|------|------|----------------------------|--------|--------|
|                          |                           |      |      |      | Glc                        | DD Hep | LD Hep |
| 28 C Al122 supernatant   | 1.7                       | 21.8 | 1.4  | 13.2 | 19.6                       | 9.6    | 34.3   |
| 28 C Al122 precipitate   | 0.5                       | 3.4  | 3.9  | 17.0 | 25.7                       | 10.7   | 39.3   |
| 37 C Al122 supernatant   | 0.1                       | 4.5  | 0.2  | 17.3 | 27.3                       | 12.1   | 38.7   |
| 37 C Al122 precipitate   | 0.7                       | 1.7  | 1.0  | 29.0 | 43.5                       | 5.6    | 19.1   |
| 28 C Nairobi supernatant | 3.7                       | 8.9  | 0    | T    | 83.1                       | 2.4    | 5.6    |
| 28 C Nairobi precipitate | 0.4                       | 0.1  | 0.3  | 0    | 90.6                       | 2.0    | 7.0    |
| 37 C Nairobi supernatant | 0.1                       | T    | 42.4 | 23.2 | 25.9                       | 2.4    | 6.1    |
| 37 C Nairobi precipitate | 1.4                       | 11.9 | 27.1 | 0.6  | 55.9                       | 2.3    | 2.3    |
| 28 C Exu-5 supernatant   | 0.6                       | 37.9 | T    | 16.5 | 26.3                       | 4.5    | 14.7   |
| 28 C Exu-5 precipitate   | 0.5                       | 1.9  | 0.5  | 16.0 | 28.2                       | 11.7   | 41.7   |
| 37 C Exu-5 supernatant   | 0.1                       | 15.8 | 1.4  | 17.6 | 31.1                       | 8.3    | 25.7   |
| 37 C Exu-5 precipitate   | 0.2                       | 3.8  | 2.7  | 16.5 | 42.4                       | 7.0    | 27.5   |
| 28 C 195/P supernatant   | 0.1                       | 0    | 0    | 18.6 | 64.3                       | 5.7    | 11.4   |
| 28 C 195/P precipitate   | 0.1                       | T    | 0    | 24.8 | 59.8                       | 10.3   | 5.1    |
| 37 C 195/P supernatant   | 0.1                       | 7.5  | 2.8  | 14.0 | 25.2                       | 12.1   | 38.3   |
| 37 C 195/P precipitate   | 0.4                       | 1.6  | 2.4  | 16.9 | 29.8                       | 12.9   | 36.3   |

<sup>1</sup>Extracted by hot phenol-H<sub>2</sub>O procedure.

Abbreviations: AraN, Arabinosamine; Man, Mannose; Gal, galactose; Glc, glucose; DD-Hep, DD-heptose; LD-Hep, LD-heptose.

Table III.

Amino sugar composition of Lipopolysaccharide (LPS) from four CDC strains of *Y. pestis*.<sup>1</sup>

| LPS Fraction <sup>2</sup> | Nanomoles per mg lipopolysaccharide |      |      |              |              |      |
|---------------------------|-------------------------------------|------|------|--------------|--------------|------|
|                           | GlcN 6P                             | GlcN | GalN | 6-deoxy GlcN | 6-deoxy GalN | EthN |
| 28 C Al122 supernatant    | 4                                   | 126  | 1    | 0            | 8            | 4    |
| 28 C Al122 precipitate    | 84                                  | 215  | 0    | 0            | 0            | 0    |
| 37 C Al122 supernatant    | 2                                   | 267  | 35   | 4            | 13           | 0    |
| 37 C Al122 precipitate    | --                                  | --   | --   | --           | --           | -    |
| 28 C Nairobi supernatant  | 6                                   | 140  | 37   | 27           | 6            | 0    |
| 28 C Nairobi precipitate  | 27                                  | 78   | 0    | 0            | 10           | 0    |
| 37 C Nairobi supernatant  | 32                                  | 240  | 133  | 0            | 10           | 0    |
| 37 C Nairobi precipitate  | 33                                  | 70   | 8    | 0            | 17           | 0    |
| 28 C Exu-5 supernatant    | 5                                   | 142  | 69   | 52           | 0            | 1    |
| 28 C Exu-5 precipitate    | 0                                   | 130  | 12   | 0            | 6            | 0    |
| 37 C Exu-5 supernatant    | 12                                  | 65   | 1    | 0            | 11           | 0    |
| 37 C Exu-5 precipitate    | --                                  | --   | --   | --           | --           | -    |
| 28 C 195/P supernatant    | 152                                 | 372  | 0    | 0            | 2            | 3    |
| 28 C 195/P precipitate    | --                                  | --   | --   | --           | --           | -    |
| 37 C 195/P supernatant    | 0                                   | 165  | 23   | 0            | 7            | 0    |
| 37 C 195/P precipitate    | 67                                  | 250  | 0    | 0            | 0            | 6    |

<sup>1</sup>Automated analysis by M. Yaguchi.<sup>2</sup>Extracted by hot phenol-H<sub>2</sub>O procedure.

Abbreviations: GlcN-6P, glucosamine-6-phosphate; GlcN, glucosamine; GalN, galactosamine; 6-deoxy GlcN, 6-deoxy glucosamine; 6-deoxy GalN, 6-deoxy galactosamine; EthN, Ethanolamine.

Table IV.

Fatty acid composition of lipopolysaccharides of four OTC strains of *Y. pestis*, nanomoles per mg.<sup>1</sup>

|              |                          | Ester linked |    | Amide linked                 |     |                     |    |
|--------------|--------------------------|--------------|----|------------------------------|-----|---------------------|----|
|              |                          |              |    |                              |     |                     |    |
|              |                          |              |    | B-Hydroxytetra-decanoic acid |     | Others <sup>2</sup> |    |
|              |                          |              |    | Octadecenoic acid            |     | 1                   | 2  |
|              |                          |              |    | Octadecanoic acid            | 1   | 1                   | 12 |
|              |                          |              |    | Hexadecenoic acid            | 1   | 1                   | 0  |
|              |                          |              |    | Hexadecanoic acid            | 2   | 1                   | 70 |
|              |                          |              |    | Others <sup>2</sup>          | 8   | 1                   | 7  |
|              |                          |              |    | B-Hydroxytetra-decanoic acid |     |                     |    |
|              |                          |              |    | Octadecenoic acid            |     |                     |    |
|              |                          |              |    | Octadecanoic acid            |     |                     |    |
|              |                          |              |    | Hexadecenoic acid            |     |                     |    |
|              |                          |              |    | Hexadecanoic acid            |     |                     |    |
|              |                          |              |    | Others <sup>2</sup>          |     |                     |    |
|              |                          |              |    | B-Hydroxytetra-decanoic acid |     |                     |    |
|              |                          |              |    | Octadecenoic acid            |     |                     |    |
|              |                          |              |    | Octadecanoic acid            |     |                     |    |
|              |                          |              |    | Hexadecenoic acid            |     |                     |    |
|              |                          |              |    | Hexadecanoic acid            |     |                     |    |
|              |                          |              |    | Others <sup>2</sup>          |     |                     |    |
| 28 C A 1122  | supernatant              | 3            | 1  | 2                            | 3   | 0                   | 0  |
| 28 C A 1122  | precipitate              | 2            | 19 | 1                            | 37  | 8                   | 2  |
| 37 C A 1122  | supernatant              | 2            | 0  | 2                            | 1   | 0                   | 1  |
| 37 C A 1122  | precipitate <sup>3</sup> | -            | -  | -                            | P   | -                   | P  |
| 28 C Nairobi | supernatant              | 2            | 2  | 0                            | 7   | 29                  | 1  |
| 28 C Nairobi | precipitate              | 1            | 2  | 0                            | 15  | 0                   | 0  |
| 37 C Nairobi | supernatant              | 7            | 1  | 1                            | 13  | 37                  | 1  |
| 37 C Nairobi | precipitate              | 7            | 2  | 2                            | 12  | 21                  | 3  |
| 28 C Exu-5   | supernatant              | 1            | 1  | 1                            | 3   | 0                   | 0  |
| 28 C Exu-5   | precipitate              | 2            | 11 | 1                            | 97  | 12                  | 3  |
| 37 C Exu-5   | supernatant              | 3            | 2  | 1                            | 14  | 2                   | 1  |
| 37 C Exu-5   | precipitate <sup>3</sup> | -            | -  | -                            | P   | --                  | -  |
| 28 C 195/P   | supernatant <sup>3</sup> | -            | -  | -                            | P   | --                  | -  |
| 28 C 195/P   | precipitate <sup>3</sup> | -            | -  | -                            | P   | --                  | -  |
| 37 C 195/P   | supernatant              | 1            | 0  | 0                            | 0   | 1                   | 0  |
| 37 C 195/P   | precipitate              | 6            | 4  | 1                            | 116 | 13                  | 4  |

<sup>1</sup>Determined by GLC.<sup>2</sup>As hexadecanoic acid.<sup>3</sup>Quantities of sample were insufficient for quantitation. "P" signifies "present".

Table V.

Molar % composition of rough-lipopolysaccharides (LPS) of four strains of *Y. pestis*.

| LPS Fraction <sup>1</sup> | Rhamnose and<br>fucose | Ribose | AraN <sup>2</sup> | Man | Gal  | Glc | DD-Hep | DL-Hep | GlcN |
|---------------------------|------------------------|--------|-------------------|-----|------|-----|--------|--------|------|
| All22                     | 0                      | 0      | 0                 | 0   | 0    | 31  | 10     | 4.8    | P    |
| Nairobi                   | 16.1                   | P      | 0                 | 9.1 | 34.3 | 4.6 | 7.9    | 27.9   | P    |
| Exu-5                     | 0                      | 0      | 0                 | 0   | 25.3 | 31  | 0      | 43.7   | P    |
| 195/P                     | 0                      | 1.6    | 0                 | 0   | 9.0  | 30  | 3.8    | 30     | 25.9 |

<sup>1</sup> Extraction by petroleum ether-phenol-chloroform method.<sup>2</sup> Abbreviations: AraN, Arabinosamine; Man, Mannose; Gal, galactose; Glc, glucose; DD-Hep, DD-heptose; LD-Hep, LD-heptose; GlcN, glucosamine.

Table VI.

Composition of lipopolysaccharide (LPS) of *Y. pestis* pestoices number 36.

| LPS Fraction        | Total Carbohydrate | Total Hexosamine | Total KDO | Total Deoxysugar | Man <sup>3</sup> | Gal  | Glc  | DL-Hep | Glc-N |
|---------------------|--------------------|------------------|-----------|------------------|------------------|------|------|--------|-------|
| R-LPS <sup>1</sup>  | ---                | ---              | ---       | ---              | ---              | ---  | 12.8 | 34.5   | 51.7  |
| SS-LPS <sup>2</sup> | 18.4               | 0.5              | 1.5       | 18.4             | 5.1              | 11.9 | 36.0 | 17.7   | 0     |
| SS-LPS <sup>2</sup> | 17.4               | 1.8              | 4.8       | 2.3              | 0.9              | 8.4  | 22.2 | 18.4   | 45.6  |

<sup>1</sup>Rough-LPS extracted by petroleum ether-phenol-chloroform method.<sup>2</sup>Smooth supernatant (SS-LPS)-and smooth-pellet (SP-LPS) extracted by hot phenol-H<sub>2</sub>O method and separated by centrifugation.<sup>3</sup>Abbreviations: Man, Mannose; Gal, galactose; Glc, glucose; DL-Hep, DL-heptose; Glc-N, glucosamine.

Table VII. Composition of Hydroxylapatite Fractions of acidic polysaccharides of *Y. pestis* 195/P.

|        | Percent<br>Carbohydrate <sup>a</sup> | gal | glc | man <sup>b</sup> | Percent<br>Uronic<br>Acid <sup>c</sup> | Percent<br>Protein <sup>d</sup> | Percent<br>Phosphate | Percent<br>Sulfate |
|--------|--------------------------------------|-----|-----|------------------|----------------------------------------|---------------------------------|----------------------|--------------------|
| HA I   | 74                                   | 100 | -   | -                | 1.8                                    | 17*                             | 1.7                  | 0.5                |
| HA II  | 72                                   | 70  | 25  | 5                | 2.8                                    | 11                              | 1.3                  | 1.2                |
| HA III | 68                                   | 45  | 43  | 12               | 2.8                                    | --                              | 2.8                  | 2.2                |
| HA IV  | 54                                   | 20  | 65  | 15               | 7.0                                    | 13                              | nil                  | 3.4                |
| HA V   | 43                                   | --- | 67  | 33               | 7.3                                    | 10                              | 0.5                  | 7.6                |
| HA VI  | 37                                   | --- | 67  | 33               | 9.7                                    | 9                               | 0.9                  | 8.0                |

<sup>a</sup>phenol-sulfuric acid assay; measured as galactose.<sup>b</sup>measured as acetate derivatives by GLC<sup>c</sup>measured as glucuronic acid.<sup>d</sup>calculated from amino acid analyses data.

\*HA I contained five to seven percent Fraction 1 protein in addition to the other protein.

Table VIII.

Lethality tests with laboratory adapted<sup>1</sup> *Y. pestis* and *Ps. maltophilia* cells or acidic polysaccharides from *Ps. maltophilia*.

| Hours<br>Post<br>Injection | <i>Y. pestis</i> 195/P $3.54 \times 10^7$ | <i>Ps. maltophilia</i> 195/P $1.3 \times 10^8$ | Synthetic mixture mixed prior to inoculation $3.28 \times 10^7$ <i>Y. pestis</i> + $2.3 \times 10^7$ <i>Ps. maltophilia</i> 175/P | Natural mixture of <i>Ps. maltophilia</i> in stock <i>Y. pestis</i> 195/P; $4.3 \times 10^7$ organism |
|----------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 15                         | 0/5*                                      | 0/5                                            | 3/5                                                                                                                               | 5/5                                                                                                   |
| 18                         | 0/5                                       | 0/5                                            | 4/5                                                                                                                               |                                                                                                       |
| 24                         | 1/5                                       | 0/5                                            | 5/5                                                                                                                               |                                                                                                       |
| 31                         | 2/5                                       | 0/5                                            |                                                                                                                                   |                                                                                                       |
| 41                         | 3/5                                       | 0/5                                            |                                                                                                                                   |                                                                                                       |
| 50                         | 4/5                                       | 0/5                                            |                                                                                                                                   |                                                                                                       |
| 90                         | 5/5                                       | 0/5                                            |                                                                                                                                   |                                                                                                       |

<sup>1</sup>Laboratory adapted strains refers to the organism maintained on trypticase soy agar for an extended period of time to emper the lethality of the test organism.

\*Numbers represent total dead/number injected.

Table IX. Lethality test in mice with Y. pestis 195/P cultivated in trypticase soy broth enriched with autolysates of *P. ps.* *malophilia* ATCC or 195\*.

| sterile<br>Controls             | Trial 1 |                         |                        | Trial 2             |                         |                        | Trial 3             |                         |                        | Total               |                         |                        |
|---------------------------------|---------|-------------------------|------------------------|---------------------|-------------------------|------------------------|---------------------|-------------------------|------------------------|---------------------|-------------------------|------------------------|
|                                 | T-SOY   | T-SOY + ATCC autolysate | T-SOY + 195 autolysate | T-SOY               | T-SOY + ATCC autolysate | T-SOY + 195 autolysate | T-SOY               | T-SOY + ATCC autolysate | T-SOY + 195 autolysate | T-SOY               | T-SOY + ATCC autolysate | T-SOY + 195 autolysate |
| Hours<br>Post<br>Challenge      |         |                         |                        |                     |                         |                        |                     |                         |                        |                     |                         |                        |
| 24                              | 0/5     | 0/5                     | 0/7                    | 0/7                 | 0/10                    | 0/10                   | 0/12                | 0/12                    | 0/12                   | 0/29                | 0/29                    | 0/29                   |
| 48                              | 0/5     | 0/5                     | 4/7                    | 0/7                 | 7/7                     | 0/10                   | 3/10                | 0/12                    | 1/12                   | 4/29                | 2/29                    | 15/29                  |
| 72                              | 0/5     | 0/5                     | 5/7                    | 4/7                 | 1/10                    | 3/10                   | 9/10                | 3/12                    | 2/12                   | 12/29               | 9/29                    | 28/29                  |
| 96                              | 0/5     | 0/5                     | 6/7                    | 5/7                 | 4/10                    | 5/10                   | 10/10               | 8/12                    | 6/12                   | 18/29               | 16/29                   | 29/29                  |
| 120                             | 0/5     | 0/5                     | 7/7                    | 6/7                 | 5/10                    | 6/10                   | 9/12                | 8/12                    | 8/12                   | 21/29               | 21/29                   |                        |
| 144                             | 0/5     | 0/5                     |                        | 6/7                 | 7/10                    | 8/10                   |                     | 12/12                   | 10/12                  | 25/29               | 24/29                   |                        |
| 168                             | 0/5     | 0/5                     |                        | 7/7                 | 8/10                    | 8/10                   |                     |                         | 10/12                  | 27/29               | 25/29                   |                        |
| Number<br>Organisms<br>Injected | 0       | 0                       | 6.1x10 <sup>6</sup>    | 5.8x10 <sup>6</sup> | 4.1x10 <sup>6</sup>     | 1.5x10 <sup>6</sup>    | 2.1x10 <sup>6</sup> | 1.5x10 <sup>6</sup>     | 2.6x10 <sup>5</sup>    | 3.1x10 <sup>6</sup> | 2.10x10 <sup>6</sup>    |                        |
| Mean<br>Death<br>Time           | 68.6    | 96                      | 48                     | 117                 | 99                      | 67.2                   | 104                 | 109                     | 62                     | 98.7                | 98.9                    | 60.4                   |

\**Ps. malophilia* 195 is that isolated as natural contaminant first isolated from Y. pestis 195/P culture.  
Number in ratios represent total dead/number injected.



Fig. 1

Thin-layer chromatography of lipopolysaccharide preparations from pestoides, Al122, and 195/P reading clockwise. TLC plates were coated with Biosil A and developed in  $\text{CHCl}_3$ ; MeOH;  $\text{H}_2\text{O}$ ;  $\text{NH}_4\text{OH}$  (100:50:8:4). Compounds were visualized with  $\text{H}_2\text{O}$  vapors.





FIG. 2

Radioautogram of Hydroxyapatite fraction HAV electrophoresed on cellulose acetate in 0.1N HCl. Fraction labeled with  $^{35}\text{S}$ -Methionine.

Electron micrograph of colloidal thorium precipitated on acidic polysaccharide extending from CBI surface



Fig. 3

Family of acidic polysaccharides obtained from sephadex column and fractionated on a hydroxylapatite column.

Fig. 4. A model postulating the structural relationships of macromolecules of the envelope-cell wall complex. The simple proteins of isoelectric point 4.85 are located in the most exterior portions of the envelope complex, with the glycoproteins of isoelectric point 4.65 located in closer proximity to the cell wall. Carbohydrate moieties are represented and shown to be associated with the chemically similar high molecular weight acidic polysaccharides occupying an intermediate location between the envelope and the cell wall. Interior to the high molecular weight acidic polysaccharides are low molecular weight acidic polysaccharides which are structurally similar to lipopolysaccharide O-antigens and serve to connect the high molecular weight acidic polysaccharides to the outer core region of lipopolysaccharides in the cell wall. Adjacent to the outer core region are the inner core LPS building blocks shown linked by phosphodiester bridges. These are in turn linked to the lipid A portion of the LPS.

MODEL  
STRUCTURE  
ENVELOPE  
YERSINIA PESTIS



## B. Bibliography of Publications.

1. Tornabene, Thomas G. Lipid composition of selected strains of *Yersinia pestis* and *Yersinia pseudotuberculosis*. *Biochim. Biophys. Acta.* 306 (1973) 173-185.
2. Bennett, Larry G., and Thomas G. Tornabene. Characterization of the antigenic subunits of the envelope protein of *Yersinia pestis*. *J. Bacteriol.* 117 (1974) 48-55.
3. Vulliet, Phillip, Sandford P. Markey, and Thomas G. Tornabene. Identification of methoxyester artifacts produced by methanolic-HCl solvolysis of the cyclorpopane fatty acids of genus *Yersinia*. *Biochim. Biophys. Acta.* 348 (1974) 299-301.
4. Hartley, J. L., Gordon A. Adams, and Thomas G. Tornabene. Chemical and physical properties of lipopolysaccharide of *Yersinia pestis*. *J. Bacteriol.* 118 (1974) 848-854.

## Papers in preparation:

1. Lipids, glycolipids and lipoproteins of *Pseudomonas maltophilia*.
2. Acidic polysaccharides of *Pseudomonas maltophilia*.
3. Acidic polysaccharides of *Y. pestis*.
4. Invasive and pathogenic properties of *Y. pestis*.

## C. Personnel.

1. Larry G. Bennett, graduate student; received Ph.D., January 1975.
2. James L. Hartley, graduate student; received Ph.D., June 1975.
3. Carol Manweiler, graduate student; received M.S., August 1976.
4. Dr. Gordon Adams, Retired National Research Council of Canada,  
Ottawa, Visiting Professor.
5. Dr. Robbyn Happel, Post-doctoral fellow.