נוסחאות ואלגוריתמים

G = (V, T, P, S) כל ההגדרות מתייחסות לדקדוק

Top Down

```
\begin{split} & \text{first}(\alpha) = \big\{ \ t \in T \mid \alpha \Rightarrow^* t\beta \land \beta \in (V \cup T)^* \ \big\} \\ & \text{follow}(A) = \big\{ \ t \in T \cup \{\$\} \mid S\$ \Rightarrow^* \alpha A t\beta \land \alpha \in (V \cup T)^* \ \land \beta \in (V \cup T)^*(\epsilon |\$) \ \big\} \\ & \text{select}(A \rightarrow \alpha) = \left\{ \begin{array}{l} \text{first}(\alpha) \cup \text{follow}(A) & \alpha \Rightarrow^* \epsilon \\ \\ \text{first}(\alpha) & \text{otherwise} \end{array} \right. \end{split}
```

G ב- מתקיים אותו משתנה A אם הוא (LL(1) אם האיכים לכל שני כללים ב- G השייכים אותו אם הוא (EL(1) אם אם הגדרה: דקדוק אם לכל שני כללים ב- G הפוect($A \rightarrow \alpha$) \cap select($A \rightarrow \beta$) = \varnothing

: LL(1) עבור דקדוק M : V × (T \cup {\$}) \rightarrow P \cup {error} הגדרת טבלת המעברים

$$M[A\ ,\, t] = \begin{cases} A \to \alpha & t \in select(A \to \alpha) \\ \\ error & t \not\in select(A \to \alpha) \text{ for all } A \to \alpha \in P \end{cases}$$

:LL(1) אלגוריתם מנתח

```
Q.push(S)
while !Q.empty() do
    X = Q.pop()
    t = next token
    if X ∈ T then
        if X = t then MATCH
        else ERROR
    else // X ∈ V
        if M[X , t] = error then ERROR
        else PREDICT(X , t)
    end if
end while
t = next token
if t = $ then ACCEPT
else ERROR
```

Bottom Up

 $A \rightarrow \alpha \beta \in P$ כאשר ($A \rightarrow \alpha \bullet \beta$) הוא (LR(0) פריט

סגור (closure) על קבוצת פריטים I מוגדר באופן אינדוקטיבי:

.closure(I) = I :סיס

 $(B \rightarrow \bullet \gamma) \in closure(I)$ צעד: אם ($A \rightarrow \alpha \bullet B\beta$), אז לכל ($A \rightarrow \alpha \bullet B\beta$) אז לכל (מ

פונקציית המעברים של האוטומט:

$$\delta(I, X) = \bigcup \left\{ \text{ closure}(A \to \alpha X \bullet \beta) \mid (A \to \alpha \bullet X \beta) \in I \right\}$$

 $t \in T \cup \{\$\}$, $A \to \alpha \beta \in P$ כאשר ($A \to \alpha \bullet \beta$, t) הוא (LR(1) פריט (LR(1)

סגור (closure) על קבוצת פריטים I מוגדר באופן אינדוקטיבי:

.closure(I) = I :בסיס

 $(B \rightarrow \bullet \gamma, x) \in closure(I)$

פונקציית המעברים של האוטומט:

$$\delta(I, X) = \bigcup \left\{ \text{ closure}(A \to \alpha X \bullet \beta, t) \mid (A \to \alpha \bullet X \beta, t) \in I \right\}$$

הגדרת טבלת action למנתח

$$\begin{aligned} \text{action}[i \text{ , } t] = & \begin{cases} \text{SHIFT}_j & \delta(I_i \text{ , } t) = I_j \\ \text{REDUCE}_k & \text{rule } k \text{ is } A \rightarrow \alpha, \, (A \rightarrow \alpha \bullet) \in I_i \text{ and } t \in \text{follow}(A) \\ \text{ACCEPT} & (S' \rightarrow S \bullet) \in I_i \text{ and } t = \$ \\ \text{ERROR} & \text{otherwise} \end{cases}$$

הגדרת טבלת action למנתח

$$\begin{aligned} \text{action}[i \text{ , } t] = & \begin{cases} & SHIFT_j & \delta(I_i \text{ , } t) = I_j \\ & REDUCE_k & \text{rule k is } A \rightarrow \alpha \text{ and } (A \rightarrow \alpha \bullet \text{ , } t) \in I_i \\ & ACCEPT & (S' \rightarrow S \bullet \text{ , } \$) \in I_i \text{ and } t = \$ \\ & ERROR & \text{otherwise} \end{cases}$$

:LR(1) ו- SLR הגדרת טבלת goto הגדרת

$$\label{eq:goto_state} goto[i\;,\,X] = \left\{ \begin{array}{ll} j & & \delta(I_i\;,\,X) = I_j \\ \\ error & otherwise \end{array} \right.$$

: shift/reduce אלגוריתם מנתח

קוד ביניים

```
: סוגי פקודות בשפת הביניים
```

```
x := y op z
x := op y
x := y
goto L
if x relop y goto L
print x
```

1. משפטי השמה עם פעולה בינארית

2. משפטי השמה עם פעולה אונרית

3. משפטי העתקה

4. קפיצה בלתי מותנה

5. קפיצה מותנה

6. הדפסה

Data-Flow Analysis

G = (V, E) מהצורה CFG מתייחסות מתייחסות

הצורה הכללית של המשוואות בחישוב סריקה קדמית:

```
\operatorname{in}(B) = \bigcup_{(S,B)\in E} \operatorname{out}(S)
\operatorname{out}(B) = f_B(\operatorname{in}(B))
```

הצורה הכללית של המשוואות בחישוב סריקה אחורית:

```
\operatorname{in}(B) = \bigcup_{(B,D)\in E} \operatorname{out}(D)
\operatorname{out}(B) = f_B(\operatorname{in}(B))
```

שפת FanC

:אסימונים

תבנית	אסימון
void	VOID
int	INT
byte	BYTE
bool	BOOL
and	AND
or	OR
not	NOT
true	TRUE
false	FALSE
return	RETURN
if	IF
else	ELSE
while	WHILE
break	BREAK
continue	CONTINUE
;	SC
,	COMMA
(LPAREN
)	RPAREN
{	LBRACE
}	RBRACE
=	ASSIGN
!= < > <=	RELOP
+ - * /	BINOP
[a-zA-Z][a-zA-Z0-9]*	ID
0 [1-9][0-9]*	NUM
0b [1-9][0-9]*b	NUM_B
'' ([^\n\r\''\\] \\[rnt''\\])+''	STRING

:דקדוק

- 1. $Program \rightarrow Funcs$
- 2. Funcs $\rightarrow \epsilon$
- 3. $Funcs \rightarrow FuncDecl Funcs$
- 4. FuncDecl → RetType ID LPAREN Formals RPAREN LBRACE Statements RBRACE
- 5. $RetType \rightarrow Type$
- 6. $RetType \rightarrow VOID$
- 7. Formals $\rightarrow \epsilon$
- 8. Formals \rightarrow FormalsList
- 9. FormalsList \rightarrow FormalDecl
- 10. FormalsList \rightarrow FormalDecl COMMA FormalsList
- 11. $FormalDecl \rightarrow Type\ ID$
- 12. $Statements \rightarrow Statement$
- 13. $Statements \rightarrow Statements Statement$
- 14. $Statement \rightarrow LBRACE Statements RBRACE$
- 15. Statement \rightarrow Type ID SC
- 16. Statement \rightarrow Type ID ASSIGN Exp SC
- 17. Statement \rightarrow ID ASSIGN Exp SC
- 18. $Statement \rightarrow Call SC$
- 19. $Statement \rightarrow RETURN SC$
- 20. Statement \rightarrow RETURN Exp SC
- 21. Statement \rightarrow IF LPAREN Exp RPAREN Statement
- 22. Statement \rightarrow IF LPAREN Exp RPAREN Statement ELSE Statement
- 23. Statement → WHILE LPAREN Exp RPAREN Statement
- 24. $Statement \rightarrow BREAKSC$
- 25. Statement \rightarrow CONTINUE SC
- 26. Call → ID LPAREN ExpList RPAREN
- 27. Call → ID LPAREN RPAREN
- 28. $ExpList \rightarrow Exp$
- 29. $ExpList \rightarrow Exp\ COMMA\ ExpList$
- 30. $Type \rightarrow INT$
- 31. $Type \rightarrow BYTE$
- 32. $Type \rightarrow BOOL$
- 33. $Exp \rightarrow LPAREN Exp RPAREN$
- 34. $Exp \rightarrow Exp \ BINOP \ Exp$
- 35. $Exp \rightarrow ID$
- 36. $Exp \rightarrow Call$
- 37. $Exp \rightarrow NUM$
- 38. $Exp \rightarrow NUM B$
- 39. $Exp \rightarrow STRING$
- 40. $Exp \rightarrow TRUE$
- 41. $Exp \rightarrow FALSE$
- 42. $Exp \rightarrow NOT Exp$
- 43. $Exp \rightarrow Exp \ AND \ Exp$
- 44. $Exp \rightarrow Exp \ OR \ Exp$
- 45. $Exp \rightarrow Exp \ RELOP \ Exp$
- 46. $Exp \rightarrow LPAREN Type RPAREN Exp$