Листок №27 07.08.2020

Действительные числа

Определение. Бесконечная десятичная дробь (БДД) — это конечная влево и бесконечная вправо последовательность десятичных цифр вида $\pm \overline{b}_{-n} \dots b_{-1} b_0, b_1 b_2 \dots b_m \dots$ Куски слева и справа от запятой называются *целой* и дробной частями данной БДД. Если БДД имеет лишь конечное множество ненулевых цифр, то она называется конечной; у такой БДД все цифры правее некоего разряда — нули, их обычно не пишут.

Определение. *Множество действительных чисел* $\mathbb R$ получается из множества всех БДД путём отождествления друг с другом некоторых пар БДД по следующему правилу: две БДД, по определению, изображают одно и то же действительное число, если и только если они одного знака и существует номер $i \in \mathbb Z$, такой что цифры этих дробей во всех разрядах левее i-того совпадают, в i-том разряде различаются ровно на единицу, и дробь с большей i-той цифрой имеет справа от i-того разряда одни нули, а с меньшей — одни девятки.

Иными словами, $\overline{b_{\beta} \dots b_{i-1}b_{i}9999\dots} = b_{\beta} \dots b_{i-1}(b_{i}+1)0000\dots$ как действительные числа. Если действительное число имеет два представления в виде БДД, то представление, оканчивающееся нулями, мы будем называть cmandapmhim и использовать по умолчанию именно его.

Задача 27.1. Докажите, что множество \mathbb{R} несчётно.

Определение. Положительные БДД *больше* отрицательных. Для сравнения двух положительных БДД их стандартные представления записывают друг под другом, выровнив по запятой; *меньшей* считается БДД с меньшей самой левой из несовпадающих цифр. Для отрицательных БДД наоборот: $-a < -b \Leftrightarrow a > b$.

Определение. Число $b \in \mathbb{R}$ называется верхней гранью для данного множества действительных чисел $M \subset \mathbb{R}$, если $\forall x \in M \quad b \geqslant x$. Множество $M \subset \mathbb{R}$ называется ограниченным сверху, если у него есть верхняя грань. Аналогично определяются нижняя грань и ограниченность снизу. Множества ограниченные одновременно и сверху и снизу называются просто ограниченными.

Задача 27.2. Не употребляя отрицаний, дайте определения (a) числа, не являющегося нижней гранью данного множества $M \subset \mathbb{R}$; (б) множества, неограниченного сверху; (в) неограниченного множества. Запишите их с помощью кванторов.

Определение. Число $m \in M$, такое что $\forall x \in M \quad m \geqslant x$, называется *максимальным* элементом множества $\subset \mathbb{R}$. Максимальный элемент в множестве нижних граней данного множества M называется точной нижней гранью (сокращённо: тнг) и обозначается inf M (от латинского «infimum»).

Задача 27.3. Дайте определение минимального элемента и точной верхней грани (сокращённо: твг) данного множества $M \subset \mathbb{R}$ (она обозначается $\sup M$ — от латинского «supremum»). Задача 27.4. Каждое ли ограниченное сверху подмножество в \mathbb{R} имеет максимальный элемент?

Задача 27.5. Вычислите твг множеств:

- (a) $\{0,3;0,33;0,333;0,3333;0,33333;\ldots\};$
- **(б)** сумм $1 + q + q^2 + \dots + q^m$ с фиксированным 0 < q < 1 и любым $m \in \mathbb{N}$.

Задача 27.6. Верно ли, что любая БДД $b \in \mathbb{R}$ есть твг множества:

- (a) всех БДД, меньших b;
- (б) всех конечных БДД, меньших b;
- (в) всех конечных БДД, являющихся начальными кусками b.

Задача 27.7. (a) Докажите, что $b = \sup M$, ограниченной сверху $M \subset \mathbb{R}$, обладает свойством *предельности*: для любого $\varepsilon > 0$ найдётся $x \in M$ такое, что $b - \varepsilon \leqslant x \leqslant b$. (б) Докажите, что это свойство является достаточным. То есть, что любая верхняя грань обладающая этим свойством будет точной.

Листок №27 07.08.2020

Задача 27.8 (теорема о полноте). Докажите, что каждое ограниченное сверху подмножество в \mathbb{R} имеет точную верхнюю грань, а каждое ограниченное снизу — точную нижнюю. Задача 27.9 (сложение и умножение). Суммой БДД $a,b \in \mathbb{R}$ называется твг чисел вида $\alpha + \beta$, где $\alpha < a$ и $\beta < b$ — всевозможные конечные БДД. Аналогично, произведение $a \cdot b$ двух положительных БДД — это твг чисел вида $\alpha \cdot \beta$ с конечными положительными $\alpha < a$ и $\beta < b$ (на неположительные БДД произведение распространяется по стандартному правилу «—» на «—» даёт «+»). Докажите, что (а) эти определения корректны (т. е. нужные твг существуют), (б) дают для конечных a и b то же, что и раньше. (в) Проверьте, что для любых $a,b,c \in \mathbb{R}$ верно, что a(b+c)=ab+ac.

Задача 27.10 *(корни).* Пусть $b \in \mathbb{R}$ есть твг конечных БДД β с $\beta^2 < 5$. Докажите, что b существует и вычислите b^2 .

Определение. БДД с нулевой дробной частью называются *целыми*. На координатной прямой множество целых БДД $\mathbb{Z} \subset \mathbb{R}$ получается откладыванием от 0 всевозможных целых кратных единичного отрезка. БДД $r \in \mathbb{R}$ называется рациональной, если $\exists k, m \in \mathbb{Z} \quad kr = m$ в \mathbb{R} . Подмножество рациональных БДД $\mathbb{Q} \subset \mathbb{R}$ на числовой прямой изображается откладыванием от 0 всевозможных отрезков, соизмеримых* с единичным.

Задача 27.11. Докажите, что конечные БДД рациональны.

Задача 27.12. Верно ли, что $\forall \alpha \in \mathbb{R}, \varepsilon > 0 \quad \exists r_1, r_2 \in \mathbb{Q} \quad \alpha - \varepsilon < r_1 < \alpha < r_2 < \alpha + \varepsilon$?

Определение. Разбиение $\mathbb{Q} = A_1 \sqcup A_2$ в объединение двух непересекающихся подмножеств, таких что $a_1 < a_2$ для любых $a_1 \in A_1, a_2 \in A_2$, называется сечением множества \mathbb{Q} .

Задача 27.13. Докажите, что для любого сечения $\mathbb{Q} = A_1 \sqcup A_2$ имеет место равенство $\sup A_1 = \inf A_2$.

Задача 27.14. Докажите, что для любого сечения $\mathbb{Q} = A_1 \sqcup A_2$ выполняется ровно одна из трёх возможностей: либо в A_1 есть максимальный элемент, либо в A_2 есть минимальный элемент, либо действительное число $\sup A_1 = \inf A_2$ иррационально.

Забудем на время про БДД, будем понимать \mathbb{Q} как множество обыкновенных дробей $p/q, p \in \mathbb{Z}, q \in \mathbb{N}$, и назовём действительным числом Дедекинда любое сечение $\mathbb{Q} = A_1 \sqcup A_2$, в котором A_i не имеет максимального элемента.

Задача 27.15. Дайте определение (a) суммы и (б) произведения действительных чисел Дедекинда[†].

Задача 27.16. Установите сохраняющую арифметические операции биекцию (uзоморфuзм) между множеством дедекиндовых действительных чисел и множеством действительных чисел, определённом посредством БДД ‡

Задача 27.17. Исходя только из дедекиндова определения действительных чисел[§] (a) докажите теорему о полноте (ср. с задачей 27.8) и (б) определите квадратные корни (ср. с задачей 27.10).

^{*}два отрезка называются соизмеримыми, если они допускают общую единицу измерения — третий отрезок, который целое число раз укладывается в каждом из них

[†]это должно быть сечение нужного типа

 $^{^{\}ddagger}$ Подсказка: сопоставьте каждому классу эквивалентных БДД $\alpha \in \mathbb{R}$ сечение $\mathbb{Q} = \{q \in \mathbb{Q} \mid q < \alpha\} \cup \{q \in \mathbb{Q} \mid q > \alpha\}$.

[§]т.е. не пользуясь БДД, но в терминах сечений