AB

674183

USAAVLABS TECHNICAL REPORT 68-44

WIND TUNNEL TESTS OF FULL-SCALE ROTORS OPERATING AT HIGH ADVANCING TIP MACH NUMBERS AND ADVANCE RATIOS

By

W. H. TANNER J. F. VAN WYCKHOUSE

ALY 1968

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

CONTRACT DA 44-177-AMC-291(T)
CONTRACT DAAJO2-67-C-0018
BELL HELICOPTER COMPANY
FORT WORTH, TEXAS

This document has been approved for public release and sale; its distribution is unlimited.

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to originator.

DEPARTMENT OF THE ARMY U. S. ARMY AVIATION MATERIEL LABORATORIES FORT ELISTIS, VIRGINIA 23604

This report has been reviewed by the U. S. Army Aviation Materiel Laboratories and is considered to be technically sound. The report is published for the exchange of information and the stimulation of ideas.

TASK IF125901A13903 Contract DA 44-177-AMC-291(T)

Task IF125901A14231 Contract DAAJ02-67-C-0018

USAAVLABS Technical Report 68-44 July 1968

WIND TUNNEL TESTS OF FULL-SCALE ROTORS OPERATING AT HIGH ADVANCING TIP MACH NUMBERS AND ADVANCE RATIOS

Bell Helicopter Report 576-099-001

Ву

W. H. Tanner J. F. Van Wyckhouse

Prepared by

Bell Helicopter Company A Division of Bell Aerospace Corporation Fort Worth, Texas

for

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

This document has been approved for public release and sale; its distribution is unlimited.

SUMMARY

A joint U. S. Army Aviation Materiel Laboratories/NASA-Ames/ Bell Helicopter Company experimental investigation of three full-scale sets of rotor blades was conducted in the NASA-Ames Large Scale Wind Tunnel. Tested were: (1) production UH-1D (NACA Our2 profile) 48-foot-diameter blades, (2) modified UH-1D blades reduced in thickness at the tip, and (3) UH-1D blades reduced in diameter to 34 feet. The production blades were evaluated at Mach numbers up to 0.95, the thin-tipped blades to Mach 1.025, and the 34-foot rotor to advance ratios of 0.79. The production and thin-tipped blades are compared to show the compressibility effects. At higher tip Mach numbers, a significant reduction in power required was obtained with the thin-tipped blades. Additionally, the state of the art of calculating rotorcraft performance at high tip speeds and advance ratio is reviewed, and limited experimental data obtained with special boundary layer instrumentation installed at the 3/4 radius and surface pressure instrumentation installed near the blade tip are presented.

FOREWORD)

The results from the full-scale rotor performance tests of a two-bladed semirigid rotor system are contained in this report. The tests were conducted in the Large Scale Wind Tunnel at NASA-Ames Research Center. The project was performed under Contracts DA 44-177-AMC-291(T) and DAAJ02-67-C-0018 under the technical cognizance of Patrick Cancro, Project Engineer, U. S. Army Aviation Materiel Laboratories.

The assistance and cooperation of Advanced Engineering personnel and the Engineering Laboratories of the Bell Helicopter Company and the active participation of John McCloud, III, and James Biggers of the NASA-Ames Research Center, in organizing and conducting the tests, are gratefully acknowledged. The analytical techniques used in this report and the advanced instrumentation were developed as part of the Bell Helicopter Company Independent Research and Development program.

TABLE OF CONTENTS

																		Page
S	UMMA	RY	•	•	•	•		•	•	•	•	•	•	•	•	•	•	iii
F	OREW	ORI	· .	•	•	•	•	•		•		•			•	•	•	7
L	IST	OF	ILI	נצטי	rai	CION	S		•		•			•		•	•	i>
L	IST	OF	TAE	BLES	S .	•		•		•				•	•	•	•	×iii
L	IST	OF	SYN	ßОІ	LS		•	•		•	•	•	•	•	•	•	•	xiv
I	NTRO	DUC	CTIC	N		•	•				•			•	•	•		1
T	EST	EQ	JIPN	ŒNI	r .			•		•		•	•	•	•	•		3
	ROI	OR	TES	T	10DU	ILE	•	•		•	•	•	•	•	•	•		3
	ROI	ORS	3.	•	•					•	•	•	•	•	•	•		4
	INS	TRU	JMEN	TAI	OI	1.	•	•		•	•	•		•	•	•		4
	SHA	KE	TES	STS		•	•	•						•	•	•		4
G	ENEF	AL	STA	'TEM	ŒNI	OF	RE	SUL	TS	•	•	•	•		•	•	•	6
S	PEC1	FIC	C TE	ST	RES	ULT	S	•		•			•	•	•	•	•	11
	GEN	IERA	AL I)IS	CUSS	ION	•			•	•	•	•	•	•	•	•	11
	TES	TI	NG F	'ROC	CEDU	JRE		•	•			•	•		•	•	•	12
	TES	T F	RESU	JLTS	S -	48-	FOO	T R	OTO	R		•	•	•	•	•	•	12
	SUE	PERC	CRIT	:ICA	AL F	LOW	ST	ATE	S		•	•	•	•	•	•	•	13
	COM	1PAF	RISC	N V	ITH	н тн	EOR	Y		•	•	•	•	•	•		•	14
						lard								•	•	•		14
	L	+8-I	₹oot	: Tt	ıin-	Tip	ped	Re	tor		•	•	•					16
	•	34	toos	- R	tor	•	-	_										16
									•	•	•	•	•	•				
	(iont	rol	. Po	s1t	ion	S	•	•	•	•	•	•	•	•	•	•	17
S	P E C1	ŒL	TNS	TRU	JME N	TAT	ION	RE	S UL'	rs			•	•	•	•		18
	воц	JN DA	ARY	LAY	ER.	BUT	TON	(B	LB)					•	•	•		18
	AIF	RFO:	IL S	TAT	CIC	PRE	SSU	RE	DIS'	r i	BUT	ION	AT	0.	98			
	RAI	DIUS	3.							_						_		18

														Page
CONCL	USIONS	•	•	•	•	•	•	•	•	•	•	•	•	21
REFER	ENCES CITED	•	•	•	•	•	•	•	•	•	•	•	•	55
APPEN	DIXES													
I.	Graphed Data		•	•	•	•		•	•	•	•		•	57
II.	Description	of	Tes	t E	qui	pme	nt	•	•	•	•	•	•	70
III.	Shake Tests	•	•		•	•	•	•	•	•	•	•		85
IV.	Tabular Data		•	•		•	•	•	•	•	•	•	•	110
DISTR	TRUTTON													132

LIST OF ILLUSTRATIONS

Figure		Page
1	Full-Scale Rotor Wind Tunnel Test Module in NASA-Ames 40- x 80-Foot Wind Tunnel	. 3
2	Chart of Test Conditions	6
3	Performance Comparison of Standard and Thin-Tipped Blades	. 7
4	Theory-Experiment Comparison of UH-1D Rotor Performance	. 7
5	Theory-Experiment Comparison, Thin-Tipped Blades	8
6	Yaw Angle Variation With Azimuth for Upper and Lower Surfaces	9
7	An Example of Pressure Distribution at 0.98 Radius	9
8	Control Loads Versus Advancing Tip Mach Number for the Standard and Thin-Tipped Blades at Various Advance Ratios	10
9	Performance Comparison Versus Advancing Tip Mach Number for Standard and Thin-Tipped Blades at μ = 0.30	. 22
10	Variation of Representative Airfoil Section Characteristics with Mach Number	. 23
11	UH-1D Rotor Disc Area Affected by Supercritical Flow	. 24
12	Reference 8 Theory-Test Comparison Versus Advancing Tip Mach Number for UH-1D Rotor at μ = 0.30	. 25
13	Reference 9 Theory-Test Comparison Versus Advancing Tip Mach Number for UH-1D Rotor at μ = 0.30	. 26
14	Reference 9 Theory-Test Comparison Versus Rotor Advance Ratio for UH-1D Rotor at M(1.0. 90.) = 0.85	. 27

Figure		Page
15	Theory-Test Comparison, Nondimensional Performance of UH-1D Rotor at Various Combinations of Advance Ratio and Advancing Tip Mach Number	28
16	Theory-Test Comparison, Nondimensional Performance of Thin-Tipped Blades at μ = 0.30 and M(1.0, 90.) = 0.95	33
17	Theory-Test Comparison, Nondimensional Performance of Thin-Tipped Blades at μ = 0.35 and M(1.0, 90.) = 1.00	34
18	Variation of Critical and Drag Divergence Mach Number with Thickness Ratio	35
19	Theory-Test Comparison, Nondimensional Performance of 34-Foot-Diameter Rotor at μ = 0.51, M(1.0, 90.) = 0.65	36
20	Theory-Test Comparison, Nondimensional Performance of 34-Foot-Diameter Rotor at μ = 0.66, M(1.0, 90.) = 0.55	39
21	Theory-Test Comparison, Nondimensional Performance of 34-Foot-Diameter Rotor at μ = 0.79, M(1.0, 90.) = 0.52	42
22	Theory-Test Comparison, Control Positions of UH-1D Rotor at μ = 0.30, M(1.0, 90.) = 0.85	45
23	Boundary Layer Button Details	47
24	Variation of Yaw Angle on the Upper Surface with a Change in Azimuth Position for Two Values of Rotor Lift. $\mu = 0.27$, $M(1.0, 90.) = 0.90$	48
25	Surface Pressure Distribution at 0.98R for Various Azimuths, $\mu = 0.20$, $M(1.0.90.) = 0.85$ $CL/\sigma = 0.0734$, $CD/\sigma = 0.0051$.	
26	Surface Pressure Distribution at 0.98R for Various Azimuths, $\mu = 0.20$, $M(1.0, 90.) = 0.85$, 51

Figure		Page
27	Surface Pressure Distribution at 0.98R for Various Azimuths, μ = 0.129, M(1.0, 90.) = 0.80 CL/ σ = 0.077, CD/ σ = -0.0060	53
28	The Results of Various Collective Pitch, Shaft and Control Axis Angles on the Performance Characteristics of the Standard Blades. μ = 0.30; M(1.0, 90.) = 0.95	58
29	The Results of Various Collective Pitch, Shaft and Control Axis Angles on the Performance Characteristics of the Standard Blades. μ = 0.40; M(1.0, 90.) = 0.85	61
30	The Results of Various Collective Pitch, Shaft and Control Axis Angles on the Performance Characteristics of the Thin-Tipped Blades. μ = 0.30; M(1.0, 90.) = 0.85	64
31	The Results of Various Collective Pitch, Shaft and Control Axis Angles on the Performance Characteristics of the Thin-Tipped Blades. $\mu = 0.40$; M(1.0, 90.) = 0.85	67
32	Wind Tunnel Strut Arrangement	76
33	Test Module on Transport Dolly	77
34	Plan View of Test Module	78
35	Side View of Test Module	79
36	Control System Arrangement	80
37	Rotor Control Motions	81
38	Profile View of Fairing	82
39	Power Distribution Panel	83
40	Control Module	84
41	Photograph of Ground Floor Shake Test Facility	95
42	Hub Response to Longitudinal Excitation	96
Д. З	Hub Response to Lateral Excitation	97

Figure		Page
44	Hub Response to Vertical Excitation in the Wind Tunnel	98
45	Pylon Response to Longitudinal Excitation .	99
46	Pylon Response to Lateral Excitation	100
47	Module Response to Longitudinal Excitation .	101
48	Module Response to Lateral Excitation	102
49	Module Response to Lateral Excitation at the Tail Strut in the Wind Tunnel	103
50	Effect of Damping on Hub Response to Lateral Excitation	104
51	Effect of Damping on Module Response to Longitudinal Excitation	105
52	Longitudinal Natural Frequencies Versus Rotor Speed, Original Struts	106
53	Lateral Natural Frequencies Versus Rotor Speed, Original Struts	107
54	Longitudinal Natural Frequencies Versus Rotor Speed, Modified Struts	108
55	Lateral Natural Frequencies Versus Rotor Speed, Modified Struts	109

LIST OF TABLES

Table		Page
I	48-Foot-Diameter Rotors	11
II	34-Foot-Diameter Rotor	11
III	Airfoil Contours, Station 288.0, Bell Part No. 204-018-050 Blade (in percent of airfoil chord)	75
IV	Natural Frequencies Determined in Wind Tunnel Shake Tests	87
v	Wind Tunnel Balance Tabulated Data	111

LIST OF SYMBOLS

а	Speed of sound, ft/sec
a o	Rotor coning angle, the component of flapping which is constant and independent of the blade azimuth position, deg
als, a2s	Components of longitudinal flapping with respect to the shaft. Constant coefficients of the cosine terms in the Fourier series expressing flapping with respect to a plane normal to the shaft axis, deg
Als	Lateral cyclic pitch control with respect to the shaft axis, deg
b	Number of blades
bls, b2g	Component of lateral flapping with respect to the shaft axis. Constant coefficients of the sine terms of the Fourier series expressing flapping with respect to a plane normal to the shaft axis, deg
$Bl_{\mathbf{S}}$	Longitudinal cyclic pitch with respect to the shaft axis, deg
С	Blade chord, ft
cq	Section drag coefficient
cl	Section lift coefficient
c_{D}/σ	Rotor drag coefficient, $C_D/\sigma = D/\rho bcR(\Omega R)^2$
$^{ extsf{C}}\mathbf{L}/\!\sigma$	Rotor lift coefficient, $C_L/\sigma = L/\rho bcR(\Omega R)^2$
CQ∕σ	Rotor torque coefficient, $CQ/\sigma = Q/\rho bcR^2(\Omega R)^2$
D	Drag, the component of the resultant force parallel to the relative wind direction, positive in the downwind direction, lb
f	Equivalent flat plate area, D/q
I	Mass moment of inertia about the flapping hinge, slug-ft 2

L Lift, the component of rotor resultant force perpendicular to the relative wind direction in the plane of the relative wind and the shaft, positive up, lb Rolling moment, the moment about the x axis, Ľ positive clockwise looking upstream, ft-li M Mach number. M = V/aM(1.0, 90.)Advancing tip Mach number Pitching moment, the moment about the y axis, positive nose up, ft-lb Yawing moment, the moment about the z axis, 7 positive clockwise from above, ft-lb Dynamic pressure, lb/sq ft q Shaft torque, the moment about the shaft z axis, Q positive when torque tends to accelerate the rotor, ft-lb R Rotor radius, ft t Airfoil thickness, ft Forward speed, fps Force perpendicular to L and D forces, positive Y to the right when viewed from downstream. 1b $\alpha_{\sf S}$ Shaft angle of attack, the angle between the relative wind and a plane normal to the shaft axis, positive in nose-up direction, deg Control axis angle of attack, the angle between αc the relative wind, the shaft axis, and the projection of the control axis on the plane of the relative wind axis, positive in nose-up direction. deg

 $\beta = a_0 - a_1 \cos \psi - b_1 \sin \psi - a_2 \cos 2 \psi - b_2 \sin 2 \psi$ $... - b_{n_8} \sin n \psi$

Flapping angle at any azimuth position referred to the plane normal to the shaft axis, positive

β

up, deg

γ Radial flow angle, deg

θ Blade section pitch angle at any azimuth position referred to the shaft axis, positive leading edge up, deg

θ_o
Blade collective pitch angle measured at root
(Blade Sta. 28), constant term of Fourier series
representing blade pitch (it is assumed that only
the first harmonic cyclic pitch is impressed),
deg

 $\theta = \theta_0 - A_{1_8} \cos \psi B_{1_8} \sin \psi$

 $\theta_{.75R}$ Blade collective pitch angle measured at 0.75R, deg

 θ_{l} Difference between hub (blade extended to center of rotation) and tip pitch angles, positive when tip angle is larger, deg

 μ Advance ratio, $\mu = \frac{V}{\Omega R}$

 ρ Density of air, slugs/ft³

 σ Rotor solidity, $\sigma = \frac{bc}{\pi R}$

 ψ Blade azimuth angle measured from downwind in the direction of rotation in a plane normal to the shaft axis, deg

 Ω Rotor shaft angular velocity, rad/sec

Systems of Axes

1. Wind axis system:

X_W Longitudinal Wind Axis. Axis lying along the airstream or relative wind direction.

Normal Wind Axis. Axis perpendicular to the longitudinal wind axis in the plane of the wind axis and the shaft centerline.

 y_w Lateral Wind Axis. Axis perpendicular to the x_w and z_w axes.

2. Shaft axis system:

- Shaft Axis. Axis coincident with the shaft centerline.
- Longitudinal Shaft Axis. Axis perpendicular to the shaft axis, in the plane of the shaft axis and relative wind direction.
- y_s Lateral Shaft Axis. Axis perpendicular to the x_s and z_s axes. This axis is coincident with the lateral y_w wind axis.

3. Control axis system:

- Control Axis. Axis of no feathering, axis with reference to which there is no first harmonic pitch change with azimuth angle. This axis may be tilted with respect to the shaft longitudinally (with (Bl_s)) and laterally (with Al_s), separately or in combination.
- Longitudinal Axis. Axis perpendicular to the control axis in the plane of the control axis and the relative wind direction.
- y_c Lateral Axis. An axis perpendicular to the x_c and z_c axis.

4. Virtual axis system:

- v Virtual axis. Axis of no flapping. An axis with respect to which there is no first harmonic blade flapping. This axis is perpendicular to the "tip path plane" for zero flapping hinge offset.
- x Longitudinal Axis. An axis perpendicular to the vertical axis in the plane of the virtual axis and the relative wind direction.
- \mathbf{y}_{v} Lateral Axis. An axis perpendicular to the \mathbf{x}_{v} and \mathbf{z}_{v} axis.

INTRODUCTION

For years, the rule "do not exceed an advancing tip Mach number of 0.8" was accepted by most rotary-wing aerodynamicists. However, as with most arbitrary rules, experience has modified this attitude. In References 1 and 2, it is shown that there are real benefits to be obtained from high tip speeds if compressibility power losses can be minimized. Furthermore, in the near future, rotorcraft operation at Mach 1.0 and above will become commonplace with (1) high-performance rotorcraft in maneuvers, especially in cold weather, and (2) many low-disc-loading composite-type aircraft. Because of the high installed power, composite aircraft will have the capability of obtaining high helicopter speeds (in excess of normal conversion speeds), which will result in high advancing tip Mach numbers.

Fixed-wing aerodynamicists have largely been able to avoid the transonic region. Until recently, rotary-wing aerodynamicists, busy with other facets of their unique aircraft, have neglected the complicated and little-understood compressibility effects. Supercritical rotor blade operation is a normal occurrence today. Supersonic rotor blade tip operation can be expected to become commonplace if the speed potential of rotorcraft is to be fully realized.

Also, high advance ratio flight will soon be commonplace. Studies (References 2 through 4 are examples) have shown the compound helicopter to be an attractive configuration for achieving speeds of 250 knots and more. Several compound research aircraft have flown and are flying at the present time. In spite of the success of these research aircraft, experimental full-scale rotor data at high advance ratios taken under controlled conditions are extremely limited. To help fill this gap, experimental information for a two-bladed semirigid rotor operating at high advance ratios is required.

To achieve the ultimate potential as well as to understand the complex aerodynamic environment of today's high-performance rotorcraft, the theoretical and empirical aspects of rotor operation must be extended. From this work, new rotor designs will be evolved which are capable of efficient operation in the transonic-supersonic regions, and at high advance ratios as compound helicopters.

This report presents results for a two-bladed semirigid rotor system for advancing blade tip Mach numbers to 1.025 and advance ratios to 0.79. The tests were conducted in the NASA-Ames Large Scale (40- \times 80-foot) Wind Tunnel. In addition to the basic rotor performance investigation, feasibility tests were conducted with a new instrument, the Boundary Layer

Button, for measuring velocity, magnitude, and direction in and out of the boundary layer. Also, some airfoil surface pressure measurements were made at 0.98R, where present theory assumes the lift to be zero (tip loss factor).

TEST EQUIPMENT

ROTOR TEST MODULE

The rotor test module is shown in the NASA-Ames 40- x 80-Foot Wind Tunnel (Figure 1). The stand includes a mounting frame, a UH-1 pylon system, a speed increaser gearbox, an electric drive motor, and an aerodynamic fairing. The mounting frame, pylon, and drive system are enclosed by an aerodynamic fairing of tear-drop shape. The maximum diameter of the fairing is 6.66 feet, and the length is 22 feet.

Figure 1. Full-Scale Rotor Wind Tunnel Test Module in NASA-Ames 40- x 80-Foot Wind Tunnel.

ROTORS

Three two-bladed semirigid rotors using a UH-1D underslung feathering axis were tested. The rotors tested were:

- Standard UH-1D 48-foot-diameter, NACA 0012 airfoil

- Modified UH-1D 48-foot-diameter blades incorporating reduced thickness tips

Standard UH-1D blades reduced to 34-foot diameter

The purpose of the reduced-diameter blades was to reduce the rotational velocity (ΩR) without requiring changes in the standard UH-1 transmission so that high advance ratios $(V/\Omega R)$ could be obtained.

Complete details of these rotors are given in Appendix II.

INSTRUMENTATION

Instrumentation was installed to provide rotor and control position data and for monitoring structural loads during the tests. The loads and position data were recorded on direct-write oscillographs provided by NASA-Ames.

Loads data were obtained from foil type (350-ohm) strain gages wired into four active arm bridges and excited by a common DC voltage. The strain gage sensitivities were determined by direct calibration through the expected operating range. The load equivalent electrical output was obtained using a precision resistor shunt on one leg of the bridge. Position data were obtained from potentiometers used as voltage dividers. Position calibrations were performed by moving the hardware incrementally through the full operating ranges and plotting electrical output versus mechanical position. Copies of the calibration data are in permanent file at Bell Helicopter Compensy.

In conjunction with the basic rotor performance and structural loads experiments, initial results were obtained with a special instrument, the Boundary Layer Button (BLB). Also, 14 pressure transducers were installed at the 0.98 radius on the upper and lower surfaces in order to obtain pressure distribution information.

SHAKE TESTS

Two separate shake tests were conducted to determine the natural frequencies and mode shapes of the combined test module and support system. The purposes of the tests were to: (1) obtain data for predicting the dynamic behavior of the system during wind tunnel operation, (2) establish dynamic

criteria for future test hardware designs, and (3) evaluate the effects of the tunnel balance on the dynamics of the test system. The initial test was conducted with the test module installed on a simulated support system located on the ground floor of the test facility. The second test was conducted in the tunnel test section with the test module and support system mounted on the tunnel balance system.

Complete details of the shake tests are given in Appendix III.

GENERAL STATEMENT OF RESULTS

A joint U. S. Army Aviation Materiel Laboratories/NASA-Ames/Bell Helicopter Company experimental investigation of three full-scale sets of rotor blades was conducted in the NASA-Ames Large Scale Tunnel.

The principal objects of the tests were to, under controlled conditions:

- Provide full-scale rotor performance data to advancing tip Mach numbers greater than 1.0;
- Provide full-scale rotor performance data to advance ratios of 1.0;
- Acquire comparative data for standard UH-1D and thin-tipped blades;
- Conduct feasibility tests on a new instrument, the Boundary Layer Button (BLB), to measure instantaneous velocity, magnitude, and direction on a rotor blade in and out of the boundary layer; and
- Obtain preliminary airfoil pressure distribution in the region where present theory assumes the lift to be zero (tip loss factor).

The basic objectives of the experimental program were accomplished, although the maximum advance ratio obtained was 0.79, not 1.0 as planned. The data are presented herein. In addi-

tion to the experimental results included in this report, the state of the art of calculating rotor performance for the tested conditions is reviewed.

Figure 2 gives the range of conditions tested. The maximum tip Mach numbers reached were 0.95 for the standard rotor and 1.025 with the thin-tipped 48-foot rotor. The maximum advance ratio reached for the reduced—diameter blade was 0.79.

Figure 2. Chart of Test Conditions.

A comparative example of the performance of the standard and thin-tipped blades is given in Figure 3. Horsepower loading (HP/bcR) at constant blade loading (L/bcR) and at parasite drag loading (f/bcR) is shown for advancing blade tip Mach numbers from 0.8 to 1.0. These data are representative of the test results and show that at about M(1.0, 90.) = 0.85, the thin-tipped blades require less power than the standard blades without compromising the lifting capability of the rotor. thin-tipped blades.

ADVANCING TIP MACH NO. M(1.0, 90.)

Figure 3. Performance Comparison of Standard and Thin-Tipped blades.

A theory-experiment comparison for the standard UH-1D blades is shown in Figure 4. These data show that in this low advance ratio range, a present state-of-the-art (blade element

Figure 4. Theory-Experiment Comparison of UH-1D Rotor Performance.

quasi-static) aerodynamic theory gives reasonable performance estimates in the high Mach number realm of operation. It is shown in the main data section of this report that good agreement was obtained to advance ratios of 0.4 throughout the high Mach number range tested.

LIFT COEFFICIENT/SOLIDITY RATIO CT/o

Figure 5. Theory-Experiment Comparison, Thin-Tipped Blades.

Figure 5 is a theoryexperiment comparison for the thin-tipped rotor blades. Airfoil data are not available for the tip sections; therefore, for these comparisons the standard NACA 0012 airfoil data were used to the 80percent radius station, where the thickness taper begins. Outward of this point, the 0012 lift data were assumed to apply, and the drag divergence Mach number was increased in increments as a function of decreased thickness. Experimental data were used to obtain the rate of change of drag divergence with This method gave Mach number.

reasonable results and provides a tool for the designer to estimate the performance of rotors with this type of geometry without requiring prior extensive test data as demanded by other methods.

Although good agreement has been shown for the restricted advance ratio range tested at high Mach numbers (high Mach number and high advance ratio cannot be obtained simultaneously in the Ames 40-x 80-Foot Wind Tunnel because of tunnel maximum speed limits), this should not be interpreted as validating agreement throughout the entire rotary-wing spectrum. Analysis of tunnel test data at advance ratios greater than 0.5, given in the next section, indicates that techniques have been tailored to low advance ratios (μ = 0.3 to 0.4; an advance ratio of 0.4 is about the upper limit), because this is within the advance ratio range that has been flight tested for many years. Below μ = 0.2, the uniform inflow assumptions become poor. Above μ = 0.5, the effects which are accounted for in present techniques become nonlinear. Additionally, other effects such as radial flow, boundary layer aeroelasticity, etc., which are not as yet accounted for nor understood. may be important. Developing new predictive techniques in transition or at high advance ratios is beyond the scope of the present report.

Feasibility tests were performed with two BLB's mounted on the standard UH-1D rotor blades at 0.75 radius and 0.80 chord on

14

Figure 6. Yaw Angle Variation
With Azimuth for
Upper and Lower
Surfaces.

each surface. The BLB is described on page 18. Some test results and the theoretical yaw angular variation are shown in Figure 6. (The theoretical calculations considered only the rotational and forward velocity compon-The yaw angle variation ents.) with azimuth is shown for the upper and lower surfaces and shows that the measured yaw angles are considerably different from the theoretical angles over most of the azimuth. The angles are different on the upper and lower surfaces.

Also, limited data were obtained from pressure transducers located on both blade surfaces at 98-percent radius to get some preliminary results in the region where present theory assumes the lift to be zero (tip loss factor).

Figure 7. An Example of Pressure Distribution at 0.98 Radius.

Figure 7 is an example of these data and shows that substantial lift is being produced and that the center of pressure is aft of the quarter chord, resulting in a nose-down pitching moment. Lift coefficients as much as 0.9 were measured in the area of the blade

where most current theories assume zero lift. Much study of blade tip aerodynamics is clearly required.

The control system and blade structural loads were monitored throughout the wind tunnel test program. As expected, all loads increased with advancing tip Mach number; however, this was not as great as extrapolation of earlier flight test data would indicate. The oscillatory pitch link loads measured during the wind tunnel tests are shown in Figure 8 as a function of the advancing tip Mach number for the standard and thin-tipped blades. The standard blades show a rapid rise with Mach number and a significant advance ratio effect. The thin-tipped blades, in contrast, show a different trend in that the load does not increase significantly as the Mach number increases. From these data, it is concluded that supersonic speed can be obtained locally on the rotor disc without compromise of structural safety when the blade design parameters are properly selected.

Figure 8. Control Loads Versus Advancing Tip Mach Number for the Standard and Thin-Tipped Blades at Various Advance Ratios.

SPECIFIC TEST RESULTS

GENERAL DISCUSSION

The advance ratio and advancing tip Mach number combinations tested with the three rotors are shown in Tables I and II. The symbols S and T used in Table I refer to the particular combinations tested with the standard UH-1D (S) and thintipped (T) rotors. Table II is for the 34-foot rotor.

TABLE I. 48-FOOT-DIAMETER ROTORS							
Advance Ratio $\mu = V/\Omega R$	Tip Mach Number M(1.0, 90.)						
	0.79	0.85	0.95	1.00	1.025		
0.30 0.35 0.40	S,T	S,T S,T S,T	S,T S,T T	T T	Т		

TABLE II. 34-FOOT-DIAMETER ROTOR						
Advance Ratio	Tip Mach Numbe.					
$\mu = V/\Omega R$	M(1.0, 90.)					
0.51 0.66 0.79	0.65 0.55 0.52					

The two rotor diameters were required to accomplish the performance objectives of the tests, since the large-scale tunnel is speed limited (see Figure 2). With the 48-foot rotor, supersonic speeds were obtainable within the UH-1B transmission rotational speed range (Table I). However, to obtain high advance ratios, it was necessary to reduce the rotational tip speed (Ω R) because of the tunnel speed limitations. This can be accomplished by a change in transmission gearing or a radius decrease. The latter method is simpler and was chosen.

A graphical presentation of representative performance data and the complete NASA-Ames data reduction tabulation are presented in Appendixes I and IV, respectively. In addition to the performance data, both rotor system and test module loads and moments were recorded. The principal purposes of monitoring these data were: (1) for flight safety and (2) so that, in the event of a structural failure, an accident analysis could be conducted. No failures occurred, and these data are not reported herein.

TESTING PROCEDURE

For each particular test condition, the rotor rotational speed and the tunnel speed were adjusted to maintain constant values of rotor advance ratio and advancing tip Mach number. The rotor shaft angle (test module pitch) and rotor collective pitch were then varied in even increments to map the test envelope. The rotor cyclic pitch was adjusted to zero the first harmonic flapping with respect to the rotor shaft and data were recorded at each incremental combination of shaft angle and collective pitch.

The wind tunnel balance data were recorded by NASA-Ames. Their data, which are in Appendix IV, were resolved such that all forces were in the relative wind axis system, and all moments were transferred from balance resolving center to the center of rotation of the rotor hub and referenced to the shaft axis system.

Table I shows that for the 48-foot-diameter rotor blades, the data were taken at constant advancing tip Mach number for three advance ratios. This mode of operation was chosen because the primary variable to be investigated was Mach number. Also, by maintaining constant advance ratio, data could be acquired and analyzed void of advance ratio effects.

For the 34-foot rotor tests at high advance ratios and low Mach number, the method of test operation was changed for the convenience of tunnel operation. Constant tunnel speed was set, and the rpm was varied to give the desired advance ratio. This method is acceptable since at low advancing tip Mach numbers, Mach number is not a prime variable.

TEST RESULTS - 48-FOOT ROTOR

Comparisons of the blades with two tip thicknesses at an advance ratio of 0.3 are shown on Figure 9. The form of data presentation chosen is to divide rotor lift (L), horsepower (HP), and equivalent flat-plate propulsive area (f= propulsive force/dynamic pressure) by the total blade area (bcR). In the calculation of blade area, it was assumed that the full chord extended to the center of rotation. Figure 9 shows that above an M(1.0, 90.) of about 0.85, there are adverse compressibility effects throughout the blade loading range. For the

standard blades, the power required increases about 100 percent between 0.85 and 0.95 advancing tip Mach number. In terms of speed at the same advance ratio, this represents an increase of 15 knots.

With the thin-tipped blades, the adverse compressibility effects are greatly reduced when compared to the standard blades above an M(1.0, 90.) of 0.85. Also, the rate of increase of horsepower with Mach number is substantially less. Figure 9 shows that there is a crossover Mach number where the thin tips require slightly more power than the standard blades.

SUPERCRITICAL FLOW STATES

Before proceeding with a discussion of the subject test results, the supercritical flow states and their relation to rotorcraft will be reviewed briefly in the following paragraphs. There are three supercritical flow states for an airfoil relating to the critical, drag divergence, and shock stall Mach numbers (Reference 7). These are defined below:

- The critical Mach number (Mcr) Free-stream Mach number at which local sonic velocity is first reached on airfoil surface.
- The drag-divergence Mach number (Md) Free-stream Mach number at which slope of curve of drag coefficient versus Mach number attains a value of 0.10.
- The shock-stall Mach number (M_S) Free-stream Mach number at which full separation first occurs at rear of airfoil.

The effects of supercritical flow states on the two-dimensional airfoil characteristics are illustrated by Figure 10. The figure shows that the critical Mach number ($M_{\rm Cr}$) is not the "critical" Mach number as far as power required is concerned. There is no drag rise at $M_{\rm Cr}$, and the lift is still rising. The "critical" Mach number with respect to power is the drag-divergence Mach number at which there is a rapid increase in drag for a small Mach number or angle-of-attack change. The lift curve has not as yet peaked at Md. $M_{\rm S}$ is the Mach number where complete separation occurs, with the consequent abrupt lift decrease and drag rise.

Figure 11 shows the portion of the UH-1D (48-foot diameter) rotor disc area that is affected by supercritical flow for various flight conditions. The disc area outboard of the line labeled Mcr is above Mach critical, and the area outboard from the line labeled Md is above drag divergence. For reference,

the 80-percent radius is also shown, and it should be remembered that this is the location where the thickness taper begins on the thin-tipped blades.

Figure 11a, which represents a normal UE-1D operating condition, shows only a small portion of the disc area above drag divergence. Therefore, since little of the disc area is above Md, thinning the tip airfoil to improve its supercritical flow characteristics would be expected to alter the horse-power required by only a small amount. This is consistent with the flight and wind tunnel experience.

A quite different situation is shown in Figure 11b, which is representative of a flight condition beyond the normal flight envelope of the UH-1D. Now, where M(1.0, 90.) = 0.92, half of the disc is supercritical and a major portion of the disc outboard of 0.8R is about Md. A small area on the advancing blade is above shock stall. In this case, thinning the airfoil from 0.8R should have significant effects on the power required, in that the drag divergence line should move outward and the area of shock stall should be eliminated. The latter of itself would significantly reduce the power required. The experimental data at this Mach number (Figure 9) show this to be the case. For both cases, the data show that maximum lift capability of the thin-tipped rotor is not significantly altered.

A very important result from both the flight test and tunnel experience is that, as shown in Figure 9, there is no apparent loss in the lifting capacity of the thin-tipped blades when compared to the standard blades. From the time of original conception of the thin-tipped blades, it was assumed that because of the reduced lift curve slope and lower CL_{max} of the thin airfoil sections, shown by low Mach number two-dimensional results, the overall lifting capability of the rotor would be compromised to obtain the improved supercritical characteristics. These expected penalties have not materialized, and no difference has been found.

COMPARISON WITH THEORY

48-Foot Standard Rotor

Most of the theory-experiment comparisons are for the standard UH-1D (constant NACA 0012 airfoil) blades for which airfoil data are available. The method of data presentation is first to give summary results and then more detailed comparisons. Limited comparisons for the thin-tipped blades are presented in the next section. Figure 12 is a theory-experiment comparison using the performance charts of Reference 8, and it should be noted that there is a 2.9-degree difference in twist between the standard UH-1D blade tested and the rotor of the

theoretical calculations. Also, the solidity correction required for these theoretical data is the maximum recommended by Reference 8. More will be said about the solidity correction effects in the next paragraph. However, Reference 8 is an accepted method of obtaining rotor performance, and the experimental data offered an opportunity to check the trends obtained. As seen on the figure, both trend and magnitude agreement are reasonable, with the largest error occurring at the lowest blade loading.

The effects of the large solidity correction on the results from Reference 8 (theory of Figure 12) were evaluated using the Bell Rotor Aerodynamic Method (BRAM). The conclusion from this study was that at the high blade loadings, a maximum error of HP/bcR = .5 could be made by using the results of Reference 8. The direction of the error is such that the theoretical values would be reduced; thus, there would be an improved agreement between theory and experiment at the high blade loadings. The solidity correction effects at the low blade loading were small.

Figure 13 is a theory-experiment comparison using the BRAM of Reference 9. The theories used for the comparisons shown by Figures 12 and 13 are similar in that both are based on Reference 10. In the comparison shown by Figure 13, the actual UH-1D blade physical characteristics were used with the airfoil data of Reference 8; and as seen, the correlation generally improved. Again, the correlation is best at the higher blade loadings. The 0012 airfoil data were assumed to apply to the blade retention bolts. The reasons for the discrepancies between theory and experiment at the low loading (30 psf) are not known. It appears that the method used in calculating the performance in References 8 and 9 does not adequately represent the rotor where there are sizable negative angles of attack on the advancing blade. Study of predictive techniques in this area is clearly needed. However, the techniques used in Reference 9 appear to give good results at high Mach numbers when compared to full-scale data in the normal helicopter blade loading range. Similar conclusions for small-scale forward flight data were reached in Reference 11.

Figure 14 is a theory-experiment as a function of advance ratio for the standard blades at M(1.0, 90.) = 0.85 for two blade loadings. These data show that the agreement deteriorates somewhat with advance ratio at the 60-psf blade loading. More will be said about advance ratio effect in a later section of this report.

Theory-experiment performance comparisons, calculated with the BRAM, are given in Figure 15 and support the results presented in the summary graphs.

48-Foot Thin-Tipped Rotor

Two-dimensional airfoil data as a function of Mach number are not available for thin airfoil sections. Therefore, only limited theory-experiment is given in this report. This particular blade varied from 12-percent thickness at 0.8 radius to 6 percent at the tip.

Figures 16 and 17 show these comparisons at 0.95 and 1.0 Mach numbers. Two theoretical sets of data appear on Figure 16, each of which involves empirical corrections to compensate for the lack of applicable airfoil data. The approach used in the short dashed lines (labeled variable drag divergence) was to use the standard 0012 airfoil data to .8 radius; then the drag divergence Mach number was increased as a function of decreased thickness to compensate for the improved supercritical Mach number characteristics of the thin sections. References 7 and 12 were used as empirical guides to obtain the magnitude of this correction, and the variation used is shown in Figure 18.

The second approach, as suggested by Reference 13, to correct empirically for the improved supercritical Mach number characteristics of the thin tip is to increase the drag divergence Mach number by .05 for the entire blade. These results are shown in Figure 16 as dash-dot lines. Both of these methods appear to give reasonable agreement; however, the former is preferable, since the constant drag divergence can only be obtained empirically from the test data and will vary with blade geometry. The variable drag divergence method requires only that reasonable estimates of the change in supercritical flow characteristics from the standard section be made.

34-Foot Rotor

The high advance ratio test results were obtained with the 34-foot-diameter rotor as previously explained. Test-theory comparison for the three conditions is shown in Figures 19 through 21. The carpet form of presentation for these data was unsatisfactory; therefore, $\text{CL/}\sigma$, $\text{CD/}\sigma$, and $\text{CO/}\sigma$ versus α_{C} for constant collective pitch are presented. These figures show that the correlation is rather poor, especially with respect to drag. However, it must be pointed out that to obtain high advance ratios in the 40- x 80-foot tunnel, reduced rpm must be used because of the tunnel speed restriction, and the drag force generated by the rotor is small compared to the model tare force. (See Appendix IV for tares.)

Present predictive techniques have been tailored to low advance ratios (μ = 0.3 to 0.4; an advance ratio of 0.4 is about the upper limit), because this is within the advance ratio range that has been flight tested for many years. Below μ = 0.2, the uniform inflow assumptions become poor. Above μ = 0.5, the effects which are accounted for by present techniques become nonlinear. Additionally, other effects such as radial flow, boundary layer, aeroelasticity, unsteady airfoil, etc., which are not as yet accounted for may be important. To summarize, in the advance ratio range, where there is vast flight test experience, techniques such as those used in Reference 9, are acceptable in the normal pure helicopter blade loading range (transition excluded). In the high advance ratio region, much basic study of fundamental aerodynamics is required before the predictive technique can be significantly improved.

Control Positions

In a previous section, it was shown that good performance correlation was achieved with the 48-foot rotor blades. Comparisons of theory-test control position (θ .75R and Blg) were also made, and Figure $_2$ is an example of these comparisons. Analysis of these data showed that empirical equations could be obtained to correct the theoretical results to the experimental. The equations are:

$$\theta.75 \text{ exp} = \left[\theta.75 \text{ theory} (1 + \mu^4) (2 - \sqrt{M}) + 1\right] \sqrt[4]{M}$$

$$B_{1s \text{ exp}} = (B_{1s \text{ theory}} + 1) (1 - \mu^2) \sqrt[4]{M}$$

Since poor force agreement was obtained for the high advance ratio condition (i.e., 34-foot rotor), no empirical corrections of control position were attempted for this rotor.

SPECIAL INSTRUMENTATION RESULTS

BOUNDARY LAYER BUTTON (BLB)

The BLB, shown in Figure 23, is a device for measuring the magnitude and direction of the local velocity in or out of the boundary layer on the rotor blade. The BLB is composed of two plates in which are submerged three subminiature pressure transducers. The forward transducer measures static pressure, and the two aft ones are connected to total pressure tubes. The total pressure tubes are oriented 90 degrees apart, and static wind tunnel calibrations of the device have demonstrated that for a 40-degree included angle, both magnitude and direction can be measured with a 3-percent accuracy. The frequency response of the BLB is approximately 400 cps.

Two BLE's were mounted on the standard UH-1D rotor blades at 0.75 radius and 0.8 chord on each surface. The tube height was 0.03 inch above the blade. A comparison of the measured and theoretical yaw angle variation with rotor azimuth has previously been shown in Figure 6. The theoretical yaw angles were calculated based on rotational and forward velocity component considerations only. Figure 6 shows that there is a considerable difference between the measured and calculated values and also that the upper and lower surface angles are not the same. The measured yaw angle variation on the upper surface is shown for two values of lift coefficient in Figure 24. The data show that rotor lift has a significant effect on the retreating blade yaw angle, and the advancing blade yaw angle is unaffected by lift.

The data obtained to date with the BLB are very limited; however, from these results, it is evident that consideration of the forward and rotational velocity components is insufficient to describe the yaw angle variation. In addition to the normal velocity components, the vortex field, spanwise pressure gradient, centrifugal boundary layer forces, and, in all probability, the undeveloped tip vortex must be taken into account for a true representation of the aerodynamic environment of a rotor blade. Discussions of the importance of these effects in hovering are given in Reference 14 and 15, and some information on tip vortex effects in forward flight is given in the next section.

AIRFOIL STATIC PRESSURE DISTRIBUTION AT 0.98 RADIUS

Recent studies (References 14 and 15 are examples) have raised questions about the effect of the forming tip vortex on rotor blade aerodynamics. The cited references give information for hovering but none for forward flight. Thus, in these tests, 14 subminiature pressure transducers were

positioned at 0.98 radius (rotor Station 282.25) on both upper and lower surfaces. The chord locations were as shown below.

Upper Surface	Lower Surface
Percent Chord	Percent Chord
20 30 40 50 65 80 95	5 10 20 30 40 50 65 80 95

Surface pressures were recorded for several test conditions. The measured surface pressure versus chord for several azimuth positions are shown in Figures 25 through 27.

Most theoretical techniques, including the BRAM used for correlation in this report, assume a tip loss factor. The tip loss factor assumes that at some percentage of the outermost span of the rotor blade (0.97R, 1/2 chord, etc.), the lift of the blade is zero and the drag is finite. The experimental data (Figures 25 through 27) show that significant lift still is being produced at 0.98R. It is impossible to integrate the pressure distributions very accurately, since there are no data available forward of the 20-percent chord on the upper surface. However, if the data are faired smoothly to zero chord, the lift coefficient can be of the order of 0.70 or more, not zero as assumed by conventional theory. Secondly, with the above assumption and integration, there will be a nose-down pitching due to the aerodynamic center's being behind the quarter chord. The moment is not accounted for in any known theories and may be especially significant in dynamic response calculations.

Another conclusion from these data is that there is no significant difference between the pressure distributions at $\psi=0^\circ$ and 180°. One would expect that the influences of the forward velocity would cause notable differences in the forming tip vortex effects at these particular azimuthal positions. From the experimental results, one of two conclusions can be reached: (1) the pressure transducers at 0.98 radius were too far inward to be affected significantly by the forming vortex, or (2) forward velocity is a second-order effect on the forming vortex at these advance ratios ($\mu=0.12$ and 0.20). The latter means that the first-order effects are those of the rotational and vortex velocities. The proper interpretation of these

results is unknown at this time. More extensive experimental studies are clearly needed in this area.

CONCLUSIONS

The investigation and subsequent analysis of the data for rotor operation to advancing tip Mach number in excess of 1.0 and advance ratios to 0.79 have yielded the following conclusions:

- Thin-tipped rotor blades require significantly less power than constant 12-percent thick blades when operated at advancing tip Mach numbers above 0.85.
- The lifting capability of the rotor was not compromised with the thin-tipped blades.
- No stability limit was encountered to an advancing tip Mach number of 1.025 or an advance ratio of 0.79.
- Control structural loads were reduced with the thintipped blades, and the blade structural loads were acceptable.
- Theory-experiment performance comparisons were good at normal blade loading for the low advance ratio of the tests.
- Theoretical predictive techniques appear to be inadequate at low blade loadings at high Mach number and at high advance ratios.
- Empirical equations were determined to correct the theoretically predicted control positions to agree with the experimental results.
- The use of the advanced instrumentation device, the Boundary Layer Button, was shown to be feasible, and the results indicate that:
 - The measured radial flow angles were generally much larger than those calculated by considering forward and rotational velocity components only.
 - There is a strong influence of rotor lift on the radial flow angle of the retreating blade.
- Significant lift and nose-down pitching moments were measured at 0.98R, which is within the region where present theory, using a tip loss, assumes that the lift is zero.
- The variation of lift coefficient with azimuth was small at 0.98R for the limited number of measured conditions.

Figure 9. Performance Comparison Versus Advancing Tip Mach Number for Standard and Thin-Tipped Blades at μ = 0.30.

Figure 10. Variation of Representative Airfoil Section Characteristics with Mach Number.

$$M(1.0, 90.) = 0.83$$
 L/bcR = 94 lb/sq ft f/bcR = 0.17

a) Within Normal Flight Envelope

$$^{\text{M}}$$
(1.0, 90.) = 0.92
 μ = 0.27

b) Higher Speed Than Normal Flight Envelope

UH-1D Rotor Disc Area Affected by Figure 11. Supercritical Flow.

Figure 12. Reference 8 Theory-Test Comparison Versus Advancing Tip Mach Number for UH-1D Rotor at μ = 0.30.

Figure 13. Reference 9 Theory-Test Comparison Versus Advancing Tip Mach Number for UH-1D Rotor at μ = 0.30.

Figure 14. Reference 9 Theory-Test Comparison Versus Rotor Advance Ratio for UH-1D Rotor at M(1.0, 90.) = 0.85.

TORQUE COEFFICIENT/SOLIDITY RATIO, ${\rm C_Q/\sigma}$

(a)
$$\mu = 0.30$$
, $M_{(1.0, 90.)} = 0.79$

Figure 15. Theory-Test Comparison, Nondimensional Performance of UH-1D Rotor at Various Combinations of Advance Ratio and Advancing Tip Mach Number.

TORQUE COEFFICIENT/SOLIDITY RATIO, c_Q/σ

(b)
$$\mu = 0.30$$
, $M_{(1.0, 90.)} = 0.95$

Figure 15. Continued.

TORQUE COEFFICIENT/SOLIDITY RATIO, C_Q/σ (c) μ = 0.35, $M_{(1.0, 90.)}$ = 0.85

Figure 15. Continued.

TORQUE COEFFICIENT/SCLIDITY RATIO, C_Q/σ (d) μ = 0.30, $M_{(1.0, 90.)}$ = 0.85

Figure 15. Continued.

TORQUE COEFFICIENT/SOLIDITY RATIO, C_Q/σ (e) μ = 0.40, $M_{(1.0, 90.)}$ = 0.85

Figure 15. Concluded.

TORQUE COEFFICIENT/SOLIDITY RATIO, ${\rm C_Q/}\sigma$

Figure 16. Theory-Test Comparison, Nondimensional Performance of Thin-Tipped Blades at μ = 0.30 and M(1.0, 90.) = 0.95.

TORQUE COEFFICIENT/SOLIDITY RATIO, $C_{
m Q}/\sigma$

Figure 17. Theory-Test Comparison, Nondimensional Performance of Thin-Tipped Blades at μ = 0.35 and M_(1.0, 90.) = 1.00.

Figure 18. Variation of Critical and Drag Divergence Mach Number with Thickness Ratio.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\mbox{\scriptsize C}}}$, DEG

a) $C_{\rm L}/\sigma$ vs $\alpha_{\rm C}$

Figure 19. Theory-Test Comparison, Nondimensional Performance of 34-Foot-Diameter Rotor at μ = 0.51, M(1.0, 90.)

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{\rm C}$, DEG

b) C_D/σ vs α_c

Figure 19. Continued.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\mbox{\scriptsize c}}}$, DEG

c) C_Q/σ vs α_c

Figure 19. Concluded.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\mbox{\scriptsize C}}}$, DEG

a) $C_{
m L}/\sigma$ vs $lpha_{
m C}$

Figure 20. Theory-Test Comparison, Nondimensional Performance of 34-Foot-Diameter Rotor at μ = 0.66, M(1.0, 90.)

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\mbox{\scriptsize c}}}$, DEG

b) C_D/σ vs α_c

Figure 20. Continued.

CONTROL AXIS ANGLE OF ATTACK, α_{c} , DEG

c) C_Q/σ vs α_c

Figure 20. Concluded.

Figure 21. Theory-Test Comparison, Nondimensional Performance of 34-Foot-Diameter Rotor at μ = 0.79, M(1.0, 90.)

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{\rm C}$, DEG b) ${\rm C_D/\sigma}$ vs $\alpha_{\rm C}$

Figure 21. Continued.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{\mathbf{c}}$, DEG

c) C_Q/σ vs α_c

Figure 21. Concluded.

DRAG COEFFICIENT/SOLIDITY RATIO, C_D/σ a) θ .75R vs C_D/σ

Figure 22. Theory-Test Comparison, Control Positions of UH-1D Rotor at μ = 0.30, $M_{(1.0, 90.)}$ = 0.85.

DRAG COEFFICIENT/SOLIDITY RATIO, ${\rm C_D/}\sigma$

t) B_{ls} vs C_D/σ

Figure 22. Concluded.

Figure 23. Boundary Layer Button Details.

Figure 24. Variation of Yaw Angle on the Upper Surface with a Change in Azimuth Position for Two Values of Rotor Lift. μ = 0.27, $M_{(1.0, 90.)}$ = 0.90.

Figure 25. Surface Pressure Distribution at 0.98R for Various Azimuths, $\mu = 0.20$, $M_{(1.0, 90.)} = 0.85$, $C_L/\sigma = 0.0734$ $C_D/\sigma = 0.0051$.

CHORD POSITION, PERCENT

Figure 25. Concluded.

Figure 26. Surface Pressure Distribution at 0.98R for Various Azimuths, μ = 0.20, M(1.0, 90.) = 0.85, C_L/σ = 0.0604, C_D/σ = 0.00406.

CHORD POSITION, PERCENT

Figure 26. Concluded.

Figure 27. Surface Pressure Distribution at 0.98R for Various Azimuths, μ = 0.129, M(1.0, 90.) = 0.80, C_L/σ = 0.077, C_D/σ = -0.0060.

Figure 27. Concluded.

REFERENCES CITED

- 1. Kelley, B., NOTES ON THE SELECTION OF TIP SPEED AND SOLIDITY, Bell Aircraft Corporation, 18 March 1950.
- 2. Drees, J. M., and Lynn, R. R., THE PROMISE OF COMPOUNDING, Presented at AGARD, Paris, France, 10-13 January 1966.
- 3. Fradenburgh, Evan A., AERODYNAMIC EFFICIENCY POTENTIALS OF ROTARY WING AIRCRAFT, Paper presented before the American Helicopter Society's Sixteenth Annual National Forum, Washington, D.C., 11-14 May 1960.
- 4. Tanner, W. H., and Bergquist, R. R., SOME PROBLEMS OF DESIGN AND OPERATION OF A 250-KNOT COMPOUND HELICOPTER ROTOR, American Institute of Aeronautics and Astronautics Journal of Aircraft, Vol. 1, No. 5, September-October 1964, pp. 252-259.
- 5. Van Wyckhouse, J. F., and Cresap, W. L., HIGH-PERFORMANCE HELICOPTER PROGRAM SUMMARY REPORT, PHASE II, USATRECOM Technical Report 64-61, October 1964.
- Van Wyckhouse, J. F., et al., HIGH-PERFORMANCE UH-1 COMPOUND HELICOPTER MANEUVER FLIGHT TEST PROGRAM, USAAVLABS Technical Report 66-17, February 1966, AD630927.
- 7. Nitzberg, G. E., and Crandall, S., A STUDY OF FLOW CHANGES ASSOCIATED WITH AIRFOIL SECTION DRAG RISE AT SUPERCRITICAL SPEEDS, NACA Technical Note 1813, February 1949.
- 8. Tanner, W. H., CHARTS FOR ESTIMATING ROTARY WING PERFORMANCE IN HOVER AND AT HIGH FORWARD SPEEDS, NASA Contractor Report CR-114, November 1964.
- 9. Charles, B. D., BELL ROTOR AERODYNAMIC METHOD, Bell Helicopter Company Report No. 599-102-900, January 1968.
- 10. Gessow, Alfred, and Crim, Almer D., A METHOD FOR STUDYING THE TRANSIENT BLADE-FLAPPING BEHAVIOR OF LIFTING ROTORS AT EXTREME OPERATING CONDITIONS, NACA Technical Note 3366, January 1955.
- 11. Fradenburgh, E. A., and Rabbott, J. P., Jr., HIGH SPEED HELICOPTER RESEARCH, Paper presented before the American Helicopter Society's Eighteenth Annual National Forum, Washington, D.C., 1962.

- 12. Abbott, I. H., Von Doenhoff, A. E., and Stivers, L. S., Jr., SUMMARY OF AIRFOIL DATA, NACA Report No. 824, Langley Memorial Aeronautical Laboratory, Langley Field, Virginia, 1945.
- 13. Cresap, W. L., Duhon, J. M., Lynn, R. R., and Van Wyckhouse, J. F., THE 200+ KNOT FLIGHT RESEARCH HELICOFTER, Paper presented before the American Helicopter Society's Twenty-First Annual National Forum, Washington, D. C., May 1965.
- 14. Tanner, W. H., and Yaggy, P. F., EXPERIMENTAL BOUNDARY LAYER STUDY ON HOVERING ROTORS, Paper presented before the American Helicopter Society's Twenty-Second Annual National Forum, Washington, D. C., May 1966.
- 15. Tanner, W. H., and Buettiker, P., THE BOUNDARY LAYER OF THE HOVERING ROTOR, CAL/USAAVLABS Symposium Proceedings, Vol. III, 22-24 June 1966.

APPENDIX I GRAPHED DATA

The data presented in this appendix (Figures 28 through 31) are from the wind tunnel balance and model instrumentation as tabulated in Appendix IV. The symbols are actual test points and show lift, drag, and torque as a function of shaft angle, $\alpha_{\rm S}$, and root collective pitch ($\theta_{\rm O}$). These data illustrate the consistency of the experimental results.

Rotor rotational speed and tunnel speed were adjusted to obtain the desired advance ratio and advancing tip Mach number. The cyclic pitch was adjusted to minimize first harmonic rotor flapping; and at each combination of shaft angle and collective pitch, the data were recorded. Collective pitch or shaft angle was then changed, and the above procedure was repeated until the envelope was explored.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\hbox{\scriptsize c}}}$, DEG

a) C_L/σ vs α_c

Figure 28. The Results of Various Collective Pitch, Shaft and Control Axis Angles on the Performance Characteristics of the Standard Blades. $\mu = 0.30$; M(1.0, 90.) = 0.95.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\mbox{\scriptsize c}}}$, DEG

b) C_D/σ vs α_c

Figure 28. Continued.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\hbox{\scriptsize C}}}$, DEG

c) C_Q/σ vs α_c

Figure 28. Concluded.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\mbox{\scriptsize c}}}$, DEG

a) C_L/σ vs α_c

Figure 29. The Results of Various Collective Pitch, Shaft and Control Axis Angles on the Performance Characteristics of the Standard Blades. $\mu = 0.40$; M(1.0, 90.) = 0.85.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\mbox{\scriptsize C}}}$, DEG

b) C_D/σ vs α_c

Figure 29. Continued.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\hbox{\scriptsize C}}}$, DEG c) C $_{\hbox{\scriptsize Q}}/\sigma$ vs $\alpha_{_{\hbox{\scriptsize C}}}$

Figure 29. Concluded.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\hbox{\scriptsize C}}}$, DEG

a) $C_{\rm L}/\sigma$ vs $lpha_{
m c}$

Figure 30. The Results of Various Collective Pitch, Shaft and Control Axis Angles on the Performance Characteristics of the Thin-Tipped Blades. $\mu = 0.30$; M(1.0, 90.) = 0.85.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\mbox{\scriptsize C}}}$, DEG

b) C_D/σ vs α_c

Figure 30. Continued

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\mbox{\scriptsize c}}}$, DEG

c) C_Q/σ vs α_c

Figure 30. Concluded.

Figure 31. The Results of Various Collective Pitch, Shaft and Control Axis Angles on the Performance Characteristics of the Thin-Tipped Blades. μ = 0.40; M(1.0, 90.) = 0.85.

b) C_D/σ vs α_c

Figure 31. Continued.

CONTROL AXIS ANGLE OF ATTACK, $\alpha_{_{\mbox{\scriptsize c}}}$, DEG

c)
$$C_Q/\sigma$$
 vs α_c

Figure 31. Concluded.

APPENDIX II DESCRIPTION OF TEST EQUIPMENT

The test equipment consists of a rotor test module, power distribution panel, control module, rotors, and associated instrumentation. This equipment is described in the following paragraphs.

ROTOR TEST MODULE

The rotor test module includes a mounting frame, a rotor pylon, a drive system, and an aerodynamic fairing. The module is designed for mounting on the primary support system in the NASA-Ames 40- x 80-Foot Wind Tunnel. The mounting geometry is shown by Figure 32. The module is supported in the tunnel by two fixed struts and a gimbal-mounted tail strut. The struts attach to the test module through ball and socket joints. The tail strut is extended (or retracted) by an electrically driven jack screw to provide the desired angle-of-attack range. A three-wheeled dolly is provided for transport and storage of the test module when it is not installed in the tunnel test section. Figure 33 shows the test module installed on the transport dolly.

The test module frame mounts the pylon, the speed increaser gearbox, and the drive motor as shown by Figures 34 and 35. The pylon installation consists of a UH-1B transmission and mast assembly and modified rotor controls. The mounting arrangement and the suspension configuration are the same as those of the helicopter installation.

The control system arrangement is shown by Figure 36. Except for the control input linkages, the basic control geometry is the same as that of the helicopter installation. The dimensional data given (Figure 37) are for the UH-1C control system configuration. The module was originally configured with UH-1B control system components. These components were replaced by UH-1C components for increased strength following the initial test program.

Cyclic control is provided by two electric linear actuators connected through independent linkages to the servo control valves of the right- and left-hand cyclic control boost tubes. The amplitude and the phasing of the cyclic input to the rotor are controlled by the relative extension and/or retraction of these two actuators. The actuators are remotely controlled by the switching circuits at the control console.

The rotor collective control is provided by a single electric actuator remotely controlled from the control console connected through a linkage to the servo control valve of the collective control boost tube. The collective or steady

value of rotor blade pitch is controlled by the extension or retraction of the actuator.

Hydraulic control power is supplied from two independent systems on the test module. One system is supplied by a transmission-mounted pump and operates only when the rotor is turning. The second system is supplied by an electric motor-driven pump. The electrically driven system is connected through the power distribution panel and is controlled by the main power switch in the control console. This system provides hydraulic power for control system checkout and calibration in addition to rotor operation.

The rotor drive system consists of a UH-lB transmission, a speed increaser gearbox, and an electric drive motor. The drive motor was provided by NASA-Ames. The drive motor used was originally maximum rated for 1500 hp at 3000 rpm; however, due to the motor bearing life restrictions, the motor has since been derated by NASA to 2800 rpm maximum. The motor speed is controlled by NASA personnel during the tests and is continuously variable from approximately 100 to maximum rpm. The motor output speed is increased to match the transmission speed rating by a 2.606:1 ratio speed increaser gearbox. This gearbox is a commercial unit with a rating of 1295 hp continuous, and 1500 hp intermittent, at 2500 rpm input. Tne gearbox is mounted to the test module frame between the drive motor and the transmission. Cooling and lubrication are provided by an oil-to-water heat exchanger and an electrically driven oil pump and reservoir mounted below the gearbox. The drive motor and gearbox input shafts are connected by a commercial flexible coupling. The output shaft of the gearbox and the transmission input shaft are connected by a standard UH-1B input drive-shaft coupling. The final speed change is a 1:0.0491 reduction to rotor shaft speed which is provided by the helicopter transmission gearing. The overall speed change from drive motor to rotor shaft is a 1:0.12796 reduc-

The mounting frame. pylon, and drive system are enclosed by an aerodynamic fairing. The fairing, as shown in Figure 38, is a "tear drop" shaped body of revolution with two local protuberances at the lift strut attachment points. The maximum diameter of the fairing body is 6.66 feet, and the overall length is 22 feet. The forward sections (approximately 16 feet) are of molded sandwich construction with fiber-glass inner and outer skins, paper honeycomb cores, and aluminum alloy bulkheads and stiffeners. The tail section of the fairing is a monocoque design with aluminum alloy skins. The fairing is provided with flush panels for access to the struts and also to the controls and fluid connectors located on the underside of the mounting frame. The upper nose

section of the fairing opens upward and pivots forward for access to the transmission, controls, and instrumentation. The upper section of the fairing aft of the mast opens upward and slides aft to provide access to the drive system. The upper access doors are fitted with flush "quick release" latches; all other panels are fitted with flush screw-type fasteners.

POWER DISTRIBUTION PANEL

The test module requires 24 volts DC and 110/220 volts AC power for operation and servicing. The AC power is supplied through a 35-foot-long umbilical cable which connects to the power distribution panel as shown by Figure 39. For wind tunnel testing, the umbilical cable is routed through the left-hand main strut fairing to the distribution panel, which is located below the test section floor. The distribution panel has three coded receptacles which are mated to corresponding plugs on the umbilical. The three connections are for the service outlet, hydraulic pump motor, and oil pump motor on the test module. Power for the three circuits is obtained through the transformer, master switch, and external power cable installed on the panel. The power cable is provided with a connector for attachment to a 440-volt, 60-cycle, 3-phase, AC external power receptacle. The common outlet is "live" whenever the panel master switch is closed and provides power for the tools, lights, etc., for servicing and maintenance of the test module. Power for the pump motor circuits is controlled by two "normally open" 24-volt DC relays mounted on the distribution panel. The hydraulic pump motor relay is seriesconnected with the master DC power switch on the control module. This arrangement provides hydraulic pressure for control boost whenever DC power is available for control system actuation. The oil pump motor relay is seriesconnected with a "normally open" pressure-actuated switch in the transmission-driven hydraulic system and the master DC power switch on the control module. Power is supplied to the oil pump motor circuit for lubrication of the speed increaser gearbox whenever the rotor is operating and DC power is available for control system actuation.

CONTROL MODULE

The rotor speed (NASA drive motor) and the module pitch (tail strut actuator) controls are provided by the test facility. All other rotor control and monitoring functions are provided on the desk-type control module shown by Figure 40. The control and monitor functions are arranged in two major panel groups: an operation station and a test engineer station.

The operator's station is on the right-hand section of the control module and includes all the controls and indicators required for operation of the test module. The upper section of the operator's panel mounts, from left to right, a rotor tachometer, the hydraulic and oil systems' warning indicator lights, and the DC power switch. The DC power switch, through its associated relays, controls all the power (except the NASA motor and instrumentation circuits) required for operation of the test module. The system warning indicator lights are series-connected with individual pressure and temperature switches in the two hydraulic systems, the transmission oil system, and the speed increaser gearbox oil system. The warning lights incorporate a "press to test" circuit and are normally "off" unless there is a loss in pressure or excessive temperature rise in their respective system. The rotor tachometer is used to monitor rotor rpm and to provide an indication of rapid power changes such as power failure, inadvertent autorotation entry, or a high rate of control input.

Three control position indicators are mounted in a horizontal row along the center of the panel. The indicators display, from left to right, positions of collective pitch, longitudinal cyclic control, and lateral cyclic control. The collective pitch is controlled by two push-button switches mounted below the collective position indicator. The operator sets collective pitch by depressing and holding either the "UP" or the "DOWN" switch until the desired setting is obtained on the collective pitch indicators. The first harmonic longitudinal and lateral positions of the rotor disc (flapping plane) relative to the shaft are displayed on indicators located immediately below the respective control position indicators. The longitudinal and lateral cyclic pitch is controlled by two spring-centered lever type switches which ar: located just below the operator's panel and in line with the respective position indicators. The operator moves the switches offcenter to the left or right to obtain the desired setting on either the control position indicators or the flapping position indicators as determined by the particular test procedure (see the section on Rotor Test Results).

The rest engineer's station is on the left-hand section of the control module and is principally a monitoring station. The test engineer's panel mounts four load meters, a vibration meter, an airspeed indicator, and a three-way selector switch for use with a digital voltmeter. The load meters and vibration meter provide a continuous "on-line" display of oscillatory load and vibration levels for selected critical components. The main rotor yoke flapwise bending moment, pitch link load, drag brace load, and pylon vibration were monitored during initial tunnel entry. The yoke chordwise bending moment was monitored during the initial tests but was replaced

by mast steady torsional moment prior to the second entry test since operation near the system torque limit was expected. A three-way switch installed in the lower right-hand corner of the test engineer's panel is used to select the collective, longitudinal cyclic, or lateral cyclic position signal for display on a digital voltmeter for accurate readout of the control positions. The voltmeter (provided by NASA) mounts immediately above the control module between the operator and test engineer stations.

The switch is normally positioned to display collective positions. The final collective setting for each data point is set based on the digital readout. The digital readout for all control positions is then read and recorded in the test engineer's log.

ROTORS

Three two-bladed, semirigid type rotors utilizing a common UH-1D underslung hub were tested. Basic data for these rotors are tabulated below:

34-Foot-Diameter Rotor

Airfoil Designation Chord	NACA 0012 1.75 ft
Di am eter	34 ft
Twist (Total Aerodynamic)	-7.7 deg
Disc Area	908 sq ft
Solidity	.0656
Effective Root Cutout	11.8 percent span
Lock No.	4.97

UM-1D Rotor (Standard Blade)

Airfoil Designation	NACA 0012
Chord	1.75 ft
Diameter	48 ft
Twist (Total Aerodynamic)	-10.9 deg
Disc Area	1810 sq ft
Solidity	.0464
Effective Root Cutout	8.3 percent span
Lock No.	7.47

Thin-Tipped Rotor

Airfoil Designation
Roct to .8R
.8R to tip
Tip
Chord
Diameter
Twist (Total Aerodynamic)
Disc Area
Solidity
Effective Root Cutout
Lock No.

NACA 0012
Uniform Thickness Change
(See Table III)
1.75 ft
48 ft
-10.9 deg
1810 sq ft
.0464
8.3 percent span
6.91

TABLE III. AIRFOIL CONTOURS,* STATION 288.0, BELL PART NO. 204-018-050 BLADE (in percent of airfoil chord)

Station	Upper Surface Ordinate	Lower Surface Ordinate
0	- 1.190	- 1.190
.5	390	- 1.633
1.0	095	- 1.776
2.0	.524	- 1. 895
3. 0	.919	- 1.986
4.0	1.238	- 2.071
5.0	1.514	- 2.148
10.0	2.310	- 2.476
12.5	2.533	- 2.595
15.C	2.676	- 2.676
20.0	2.871	- 2.871
25.0	2.966	- 2.966
30.0	3.000	- 3.000
35.0	2.976	- 2.976
40.0	2.900	- 2.900
50.0	2.647	- 2.647
60.0	2,281	- 2.281
70.0	1.833	- 1.833
80.0	1.309	- 1.309
90.0	.724	724
95.0	.405	405
100.0	.095	095

*NOTE: NACA Airfoil Conventions Observed

All Dimensions Are in Inches.

Figure 32. Wind Tunnel Strut Arrangement.

Figure 33. Test Module on Transport Dolly.

Figure 34. Plan View of Test Module.

Figure 35. Side View of Test Module.

Figure 36. Control System Arrangement.

All Dimensions Are in Inches.

Figure 37. Rotor Control Motions.

Figure 38. Profile View of Fairing.

Figure 39. Power Distribution Panel.

Figure 40. Control Module.

APPENDIX III SHAKE TESTS

Two separate shake tests were conducted to determine the natural frequencies and mode shapes of the combined test module and support system. The purposes of the tests were to: (a) obtain data for predicting the dynamic behavior of the system during wind tunnel operation, (b) establish dynamic criteria for future test hardware designs, and (c) evaluate the effects of the tunnel balance system on the dynamics of the system. The initial test was conducted with the test module installed on a simulated support system located on the ground floor of the test facility as shown by Figure 41. The second test was conducted in the tunnel test section with the test module and support system mounted on the tunnel balance system.

SUPPORT SYSTEM CONFIGURATION

The test module was installed on the "light" main struts for both tests. The struts were attached to a welded steel mounting platform for the ground floor test and to the balance system for the wind tunnel test. The dimensional location of the attachments in the mounting base and the balance frame were the The principal differences between the two test configurations were in the mounting bases and the tail struts. size and mass of the balance frame are extremely large compared to the mounting platform used for the floor test; however, the effects of these differences were at least partially compensated for by bolting the platform to the floor. The floor test was conducted with a fixed-length tail strut, and the tunnel test was conducted with the collapsible tail strut normally used with the primary support system. The fixed strut was mounted to the platform through a ball and socket to simulate the gimbal mounting of the collapsible test strut. The tail strut mounting dimensions were the same for both tests. The two tail strut installations were dynamically dissimilar, since the fixed tail strut did not extend below the base mounting plane as was the case for the collapsible strut. Upon completion of the initial tunnel shake tests, the support system was modified by removing 2 30-inch section from the upper end of the lift struts.

TEST PROCEDURE

The same test procedures were used for both tests. Weights were installed in the main rotor blade grips to simulate the blade mass. The excitation forces were provided by externally driven, counterrotating, eccentric mass shakers. Three shakers were used for the tests. One shaker was installed in a blade grip to simulate rotor inplane excitations. A second shaker

was suspended, through a bungee chord, from the wind tunnel 15ton hoist and connected to the rotor mast to simulate vertical
excitations. A third shaker was mounted on the aft frame
member of the test module to simulate rotor torque excitations.
The shakers were driven separately through a flexible shaft
coupled to a variable-speed motor mounted on the test module
frame.

The motor speed was manually controlled to provide a 2-cps to 30-cps sweep in the excitation frequency. Accelerometers were installed on the rotor hub, pylon, and test module frame, and these data were recorded on magnetic tape for later playback through a Spectral Dynamic Analyzer. During the tests, the response of the test module was visually observed and the output of three selected accelerometers was recorded on direct-writing oscillographs for immediate readout and classification of mode shapes and frequencies. The tunnel scales were used as an additional source for visual observations of system response. Response data were not recorded for the final strut configuration. The natural frequencies of this configuration were obtained by visual observation only.

SHAKE TEST RESULTS

The natural frequencies determined by the tests are summarized in Table IV. The basic test results and comparison with rotor excitation frequencies are discussed in the following paragraphs.

Ground Floor Shake Test

The rotor inplane (lateral and longitudinal) excitations at the hub produced resonant frequencies of the pylon modes and bending modes of the vertical member of the lift struts. The pylon modes were near 3 cps, as expected, since the installation was similar to the normal helicopter installation. The first lateral mode of the main strut was located at 2.3 cps and was strongly coupled with the pylon mode. The second and third lateral modes were located at 6.3 and 7.8 cps respectively. These modes were not significant because of the pylon isolation. The first longitudinal mode was located from 4.6 to 5.5 cps, depending on the mounting platform stiffness. This mode was originally located at 4.6 cps and was raised to 5.5 cps by driving steel wedges between the floor and the platform and adding lead ballast to the platform. The bending frequencies of the forward and outboard diagonal members of the main struts were determined from decay records. These modes were located at approximately 17 cps for the forward diagonal and at 29 cps for the outboard diagonal.

TABLE	IV. NATURAL FREQUENCIES	DETERMINED IN WIND	ND TUNNEL SHAKE	TESTS
		Natural	Frequency -	CDS
Mode Direction and Identifi- cation No.	Description of Mode	Ground Floor Test	Initial Tunnel Test	Modified Strut Test
Longitudinal				
7	Balance Frame - Drag Scale		1.6 - 1.7	1.6 - 1.7
2	Pylon	2.9 - 3.1	2.9 - 3.1	2.9 - 3.1
3	1st Strut Bending	4.6 - 5.5(a)	5.3	6.5
Lateral				
4	Balance Frame - Rear Scale		I. 8	1.8
5	Balance Frame - Fwd Scale		2.5(b)	<u></u>
9	lst Strut Bending	2.3	2.6(b)	(၁)
7	Pylon	2.7 - 2.8	2.8(b)	(°)
∞	2nd Strut Bending	6.3	6.0	7.5
6	3rd Strut Bending	12.8	10.5 - 11.5	(p)
Vertical				
10	Suspension System	14.5	(e)	(g)
11	Frame Mode	16.7	(e)	(8)
() Notes on page	ge 91			

	77.	TABLE IV - (Continued		
			Natural		cps
Mode Direction and Identifi- cation No.	n Description of Mode	ode	Ground Floor Test	Initial Tunnel Test	Modified Strut T≎st
Lateral at Rear	ir of Test Stand				
12	Tail Strut Bending	ng		3.2	(g)
13	Main Strut Bending Bending Mode	ng - lst	6.25	6.3	(£)
Bending of Sup	Support Tubes				
14	Fwd Tubes Rt Side Lt Side	υυ	16.0 - 18.0 16.5	(8) (8)	(98) (98)
15	Diagonal Tubes R L	Rt Side Lt Side	23.0 - 24.5 23.0 - 26.0	(g)	(8)
Scale Modes in	. Balance Room	Scale			
16	Pendular Mode of Scale Bal- ance Weight	Drag Front Rear		.485 .493	99 99 99 99
17	Torsional Spring Mode	Drag Front Rear		4.41 4.75 4.55	. 99 99 99 99 99 99
() Notes on	page 91				

•	ζ		j
	C C C C C C C C C C C C C C C C C C C	١	1
•	ī		1
	;	_	•
	•		,
r			
	i		J
	1		
	i	•	1
1			1
	•	_	•
		(ŀ
			,
		_	
1		1	
1			
i	ď	1	-
		,	ŕ
1	•		٩
ł	r	-	-

NOTES:

- In the ground floor test, the strut bending frequency was found to vary with the framework stiffness. Initially, the frequency was 4.6 cps. By adding mass on top and driving wedges beneath the frame, this frequency was raised to 5.5 cps. (a)
- Modes 5, 6, and 7 are strongly coupled modes between 2.0 and 3.0 cps. Exact natural frequencies are not easily identified, since peaks occur in different elements at different frequencies. (P)
- and 3.0 cps; however, no response data were taken and identification was The three lateral modes with the struts cut off were still between 2.0 not possible ်
- This was a weak mode that was not visible in the test stand motion in the tunnel but was observed in the struts on the ground floor. (p)
- No modes were The vertical test in the tunnel was stopped at 14.0 cps. apparent up to this frequency. (e)
- The torsional frequency due to strut bending was undoubtedly increased by shortening the struts but was not re-evaluated. (£)
- These frequencies were not measured, but they should be approximately the same as in earlier tests. (g

The vertical excitation at the hub produced resonant frequencies of the suspension system and the test module frame. The suspension system mode was located at 14.5 cps. This mode was determined by the stiffness of the lifting system external to the test system and was of no importance with respect to the test program. The test module frame mode was located at 16.7 cps and was not of sufficient strength to be considered of importance.

The excitation of the aft test module frame member produced a resonance of the main struts. This mode was located at 6.25 cps and was observed to be principally an out-of-phase longitudinal bending of the main strut vertical members. There were no other resonant frequencies observed as a result of the aft frame excitation.

Tunnel Shake Test

The same main strut modes observed during the ground test were also observed at the tunnel test but at slightly different resonant frequencies. The first lateral main strut mode was located at 2.7 cps and, as in the ground test, was strongly coupled with the pylon. The second and third lateral strut mode natural frequencies were slightly lower than in the ground test. The first longitudinal strut mode was located at 5.3 cps and resulted in a high response of the test module. These low-frequency balance frame modes were determined by visual observation of the balance frame scale responses during excitation sweeps. These frequencies are shown in Table IV. Because of the relatively small excitation force available below 3 cps, the frequencies could not be exactly defined; however, the modes were strongly coupled with the pylon.

The lateral excitations at the aft frame of the test module produced a 6.3-cps out-of-phase bending mode at the main struts and, additionally, the natural bending mode of the tail strut at 3.2 cps. The out-of-phase main strut bending was the same as in the ground floor test. The tail strut mode was not apparent during the ground test due to the lack of dynamic similarity between the two struts. This mode did not couple with the other support system modes, and the test module response to this mode was negligible.

The resonant frequency of the first longitudinal strut mode was known to be coincident within the rotor excitation range anticipated for the wind tunnel test prior to the tunnel shake test. It was also anticipated that this frequency would not be significantly changed in the tunnel and that modification of the struts would be required to eliminate the frequency coincidence. Preliminary calculation had indicated that

reducing the strut height approximately 30 inches would raise the resonance frequency sufficiently 't of the rotor excitation range. Although it was known that a strut modification would be necessary before rotor testing could proceed, it was also recognized that the basic differences between the ground and tunnel test could not be determined unless the support system effects were known.

Following the tunnel shake test of the basic configuration, the struts were removed and modified. To avoid unnecessary delays in the test program, the shake test instrumentation was removed and the rotor test instrumentation buildup was started while the struts were being modified. The modified struts were installed in the tunnel, and the rotor inplane excitation tests were repeated. The response data for this configuration were obtained by visual observations of the support system and balance frame scales. The lower frequency modes between 1.6 and 3.0 cps were the same as the original configuration. first longitudinal and second lateral strut modes were observed to be significantly higher than those of the original The first longitudinal mode was located at 6.5 configuration. cps and was above the area of rotor excitation coincidence. The second lateral mode was raised from 6.0 to 7.5 cps.

The tunnel balance scales were hand excited to determine the natural frequencies of the scales. These tests were conducted with and without the dashpots connected. The observed natural frequencies are given in Table IV. With the dashpot disconnected, the first mode of vibration was lightly damped and could be excited by an internal excitation force. The dashpot installation prevented the first mode from being excited by balance frame motion. The second mode was also effectively damped out by the dashpot.

Discussion

In general, the ground floor test setup was a reasonable duplication of the tunnel system with respect to the struts and test module. The tunnel test verified that the principal conclusions reached from the floor test were realistic and identified the low-frequency balance frame modes that were not duplicated in the floor test. The significance of the various modes and responses is discussed in the following paragraphs.

Mode Characteristics - The tunnel balance frame modes located at 1.6 cps longitudinally, and at 1.8 and 2.4 cps laterally, are fundamental modes of the balance frame. These mode frequencies were probably not significantly affected by the installation of the support systems in the tunnel. The rotor pylon modes at 2.8 and 3.0 cps were strong modes with respect to the rotor hub on the test module, but they were generally weak with respect to the tunnel balance frame.

The first main strut lateral mode at 2.6 cps and the first main strut longitudinal mode at 5.3 cps were strong modes with respect to the test module and the balance frame. The resultant response at the rotor hub was high laterally due to pylon coupling and relatively low longitudinally due to pylon isolation. For the planned rotor tests, the longitudinal mode was of prime significance since it was within the expected rotor excitation range. The longitudinal mode was increased to 6.5 cps by shortening the struts. The second and third lateral strut bending modes at 6.0 and 11.0 cps were relatively weak modes in both the test module and the rotor hub. The principal response to this mode was in the vertical member of the main struts.

The natural frequency of the tail strut was observed to be at 3.2 cps. This mode had been observed in several rotor test programs conducted in the tunnel and was known to be located between 3.0 and 3.5 cps. The basic characteristic of this mode was a relatively high amplitude motion of the tail strut actuator motor at the lower end of the strut. The out-of-phase main strut mode at 6.3 cps had a mode shape similar to the first longitudinal mode at 5.3 cps. The natural frequency of this mode was undoubtedly increased when the main struts were shortened; however, the lateral frame excitation test was not repeated, and the actual magnitude of the change is unknown.

Response - Normalized response curves for the rotor hub, pylon, and test module frame are given in Figures 42 through 51. The response curves are given for both the ground and tunnel tests with the original strut configuration. Measured data are not available for the short strut configuration since the modes were determined by visual observation only.

The hub response to longitudinal, lateral, and vertical excitations is shown by Figures 42 through 44. The highest response at the hub was at 3.1 cps longitudinally (Figure 42) and at 2.6 cps laterally (Figure 43). The response above these frequencies attenuated rapidly, indicating that the higher frequency modes of the support system had no significant effect on the hub response. The vertical response at the hub is shown by Figure 44. No significant vertical responses at the hub were observed during the test; however, the response curves indicate a weak resonant frequency between 8 and 10 cps. This response is believed to be the first vertical mode of the tunnel balance frame. The mass and damping of the balance frame was more than adequate to prevent any significant responses to vertical inputs.

The pylon response is shown by Figures 45 and 46. The response to longitudinal excitations of the rotor hub is shown by Figure 45. The major responses are the pylon mode at

approximately 3.0 cps and the first longitudinal strut mode at approximately 5.3 cps. The lateral response data are shown by Figure 47. The principal pylon responses are the lateral pylon mode at approximately 2.8 cps and the lateral main strut mode at approximately 2.6 and 6.0 cps.

The test module frame response data are given by Figures 47 through 49. The longitudinal response is shown by Figure 47. The principal responses are the pylon mode at approximately 3.0 cps and the first longitudinal main strut mode at approximately 5.3 cps. The high response at approximately 3.0 cps is also characteristic of the pylon and rotor hub. The response at the first longitudinal main strut mode is characteristic of the pylon but not the rotor hub. This particular frequency was within the planned range of rotor operation for the test program and was the basic reason for reducing the height of the main struts.

The lateral response of the test module frame is shown by Figure 48. The basic responses are at the pylon and the lateral main strut mode frequencies. The response to first lateral strut and the pylon mode frequencies is also a characteristic of the pylon and rotor hub. The response to the second and third lateral strut modes is a characteristic of the test module frame and pylon only. The rotor hub response to these modes is insignificant due to the effectiveness of the pylon isolation.

The lateral response at the aft crossmember of the test module frame is shown by Figure 49. The principal response is located at 6.3 cps, which is the first torsional mode of the strut system. This mode is characterized by an out-of-phase bending of the vertical members of the main struts. Both a rotor excitation coincidence and higher-than-normal values of oscillatory rotor torque would be required to produce a significant excitation of this mode.

Balance Frame Damping - The effect of balance frame damping is shown by Figures 50 and 51. The response of the test module frame to the balance frame modes was significantly reduced by the addition of the dampers. The response of the pylon and main struts was higher with the dampers installed. These changes in response characteristics are attributed to the isolation effect of the balance frame modes on the higher frequencies. Without the dampers, the isolation was apparent above 3.0 cps. The pylon and strut modes were not isolated and exhibited a higher response with the dampers installed. This effect was observed on the test module frame during both the longitudinal and the lateral hub excitations.

Excitation Coincidence - The excitation coincidences for the original and shortened main strut configurations are shown by Figures 52 through 55. The operating ranges for the two different diameter rotors tested are also given in the figures. With the original strut configuration, the first longitudinal strut mode was coincident with one-per-rev rotor excitation of the 48-foot-diameter rotor at 320 rpm, as shown by Figure 52. The second lateral strut mode was coincident with one-per-rev excitations of the 48-foot rotor at 360 rpm and also two-per-rev excitations of the 34-foot rotor at 180 rpm, as shown by Figure 53. The 48-foot rotor coincidences were considered to be unacceptable, and the main struts were shortened to raise the strut modes. The strut modification shifted the frequency to remove these coincidences from the operating range, as shown by Figures 54 and 55.

The pylon modes were coincident with the one-per-rev rotor excitations of the 34-foot rotor at 180 rpm for both the original and the short strut configurations. The coincidence with the longitudinal pylon mode (Figure 52) was eliminated by removing the aft pylon mount, which lowered the pylon longitudal frequency to approximately 2.6 cps. The lateral pylon coincidence and the two-per-rev coincidence at 200 and 225 (Figures 53 and 55 respectively) could not be changed without additional modification to the main struts or the support system stiffness. The required changes would have caused further delays in the test program and also would unnecessarily complicate the support system. It was determined that the test program requirements could be satisfied by selecting specific rotor speeds to avoid the excitation coincidences, and the program proceeded on this basis.

Figure 41. Photograph of Ground Floor Shake Test Facility.

Figure 42. Hub Response to Longitudinal Excitation.

Figure 43. Hub Response to Lateral Excitation.

Figure 44. Hub Response to Vertical Excitation in the Wind Tunnel.

Figure 45. Pylon Response to Longitudinal Excitation.

Figure 45. Pylon Response to Lateral Excitation.

Figure 47. Module Response to Longitudinal Excitation.

Figure 48. Module Response to Lateral Excitation.

Figure 49. Module Response to Lateral Excitation at the Tail Strut in the Wind Tunnel.

Figure 50. Effect of Damping on Hub Response to Lateral Excitation.

Figure 51. Effect of Damping on Module Response to Longitudinal Excitation.

Figure 52. Longitudinal Natural Frequencies Versus Rotor Speed, Original Struts.

ROTOR SPEED - RPM

Figure 53. Lateral Natural Frequencies Versus Rotor Speed, Original Struts.

Figure 54. Longitudinal Natural Frequencies Versus Rotor Speed, Modified Struts.

Figure 55. Lateral Natural Frequencies Versus Rotor Speed, Modified Struts.

APPENDIX IV TABULAR DATA

The data presented in this appendix were recorded by the Large Scale Aerodynamic Branch of the NASA Ames Research Center. These data were taken during two separate test periods, and repetition of many test points will be noted. Table V relates the test conditions, rotor, and the page number of the data.

Data Reduction

Six-component forces and moments were measured by the wind tunnel balance system. Tare corrections were applied to the balance data to account for forces and moments produced by the exposed model support struts, the faired body, and the rotating hub. The rotating hub tares included all hardware inboard of the 2.66-foot radius station. The tares were applied based on wind tunnel dynamic pressure and shaft angle. Rotor downwash effects on the tares were neglected, and no data adjustments were made for wall effects.

TABLE	E V. WIND TUNNEL BALANCE TABULATED DATA	
Table Number	Description	Page Number
	Standard Blades	
V-1	$\mu = 0.30, M_{(1.0, 90.)} = 0.79$	113
V-2	$\mu = 0.30, M_{(1.0, 90.)} = 0.85$	113
V-3	$\mu = 0.30, M_{(1.0, 90.)} = 0.95$	114
V-4	$\mu = 0.35, M_{(1.0, 90.)} = 0.85$	114
V -5	$\mu = 0.35, M_{(1.0, 90.)} = 0.95$	115
V-6	$\mu = 0.40, M_{(1.0, 90.)} = 0.85$	115
	48-Foot Tapered-Tipped Blades	
V- 7	$\mu = 0.13, M_{(1.0, 90.)} = 0.80$	116
V-8	$\mu = 0.20, M_{(1.0, 90.)} = 0.85$	116
V- 9	$\mu = 0.24, M_{(1.0, 90.)} = 0.87$	117
V-10	$\mu = 0.27, M_{(1.0, 90.)} = 0.90$	117
V-11	$\mu = 0.30, M_{(1.0, 90.)} = 0.79$	118
V-12	$\mu = 0.30, M_{(1:0, 90.)} = 0.85$	119
V-13	$\mu = 0.30, M_{(1.0, 90.)} = 0.95$	121
V-14	$\mu = 0.30, M_{(1.0, 90.)} = 1.0$	122
V-15	$\mu = 0.35, M_{(1.0, 90.)} = 0.85$	124
V-16	$\mu = 0.35, M_{(1.0, 90.)} = 0.94$	125

	TABLE V - Continued	
Table Number	Description 48-Foot Tapered-Tipped Blades	Page Number
V-17	$\mu = 0.35, M_{(1.0, 90.)} = 0.95$	125
V -18	$\mu = 0.35, M_{(1.0.90.)} = 1.0$	127
V- 19	$\mu = 0.35, M_{(1.0, 90.)} = 1.025$	128
V -20	$\mu = 0.47, M_{(1.0, 90.)} = 0.84$	128
V- 21	$\mu = 0.40, M_{(1.0, 90.)} = 0.85$	128
V-22	$\mu = 0.40, M_{(1.0, 90.)} = 0.95$	129
	34-Foot-Diameter Blades	
V-23	$\mu = 0.51, M_{(1.0, 90.)} = 0.65$	130
V- 24	$\mu = 0.66, M_{(1.0, 90.)} = 0.55$	131
V- 25	$\mu = 0.79$ M _(1.0, 90.) = 0.52	131

0.79
·.
0
11
ď
6
0
-
C
M(1.0, 90.)
_
o
$\mu = 0.30$
11
I
BLADES,
ES S
口
∢
BI
\Box
A
0
A
STANDARD
S
•
V-1.
(-1
TABLE
ro
IA

$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	236. 4	2	ì		,	(•	,	•	•	1	
1	<u>.</u>	8	1	<u>`</u>	C_{γ}/σ	-	~	-		-		
257.5 0.012321 0.000312 0.000317 0.000317 0.000318 0.000314 10.0 0.88 0.230 0.750 0.750 0.000312 0.		8	.03018	.00140	0.00046	.00027	00031	.00200	5		. 29	~
\$ -5.0 - 10.0 \$ - 0.055891 \$ 0.000515 \$ - 0.000518 \$ 0	ŗ	0 -7.	.01252	.0004	0.00031	.00021	00017	.00130	o.	•	30	~
25.0 - 11.2		0 -10.	.05288	.0037	0.00037	.000.30	00028	.00294	÷,	•	.29	۲.
12.5 0.07445 0.003410 0.000315 0.000317 0.000318 11.0 0.004 0.00318 11.0 0.004 0.00318 11.0 0.004 0.00318 0.000318 11.0 0.004 0.00318 0.0	-5	0 -11.	.07089	.0061	0.00103	.00010	0.00072	.00411	ė,	•	3	۲.
10.0 -14.2 0.002445 0.000219 0.000113 0.000102 0.000135 0.001245 12.0 0.14 0.100 0.14 0.100 0.14 0.000119 0.00	5	0 -12.	.07948	.0076	0.00115	.00024	0.00074	.00478	٠.	•	8	7
10.0 1.15 0.000220 0.000015 0.000015 0.000015 0.00015 0.	2	0 -14.	.02464	.0028	0.00011	.0000	0.00037	.00238	• •	•	8	-
15.6 0.054278 0.0000238 -0.000054 0.000545 0.000	-10	0 -12.	.00602	.000	0.00010	00001	0.00033	.00126		•	٠ م	~
10.0 - 17.1 0.065259 0.010934 - 0.000262 - 0.0005415 0.009415 11.7 0 0.112 0.01099 0.01994 - 0.000242 0.0005415 0.000941 0.000541 0.000941 0.000541 0.000944 0.000941 0.000941 0.000941 0.000941 0.000941 0.000941 0.00094	-10	0 -15.	.04478	* 0069	0.00005	.00046	00053	.00379	ė,	•	5	~
15.0 117.1 0.002539 0.01023 -0.000046 -0.000176 0.002517 18.0 0.142 0.299 0.772 15.0 18.6 0.01752 0.000176 0.000176 0.000549 18.0 0.112 0.299 0.772 15.0 18.6 0.01572 0.000176 0.000149 0.000176 0.000149 0.000176 0.000176 0.000179 0.00017	-10	0 -16.	.05422	0600.	0.00022	.0006	0.00067	.00461			£.	~
15.0 19.7 0.017520 0.000312 0.0000040 0.0010040 0.0010140 0.001547 0.01550 0.12 0.300 0.71 0.01550 0.	01-	0 -17.	.06250	.0109	0.00025	.0007	00072	.00536	œ,	•	500	
-15:0 -18:0 0.01000000000000000000000000000000000	-15	0 -19.	-01762	.0031	0.00004	.0003	4.000.0	.00247	Ġ.	•	67.	~
115.0 - 211.0 0.036.78 0.008579 - 0.000219 - 0.0001690 0.001650 0.12.0 0.390 0.797 0.007621 0.000219 0.001659 0.001659 0.001659 0.001659 0.001659 0.001659 0.001629	-15	0 -18.	01000	8000	000000	0007	0.0000	.00180	'n	•	30	~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-15	0 -21.	.03678	0089	0.00024	0000	0.00041	.00443	œ	•	30	~
06. 0019321 0.000235 -0.001937 0.000223 14.0 -0.35 0.000 0.239 0.700380 -0.000223 0.0001223 14.0 0.000380 -0.000184 0.000228 0.000187 0.000187 0.000380 0.000380 0.000189 0.0000280 0.000187 0.000380 0.000189 0.000187 0.000187 0.000187 0.000187 0.000187 0.000187 0.000187 0.000187 0.000187 0.000187 0.000187 0.00018 0.000187		4	.062302	0.000	0.00162	0002	0.00061	.00163	2	•	29	-
ext 274.0 Run 16 6.0001246 -0.000129 0.000251 0.000174 6.00 0.294 0.127 0.001299 0.000251 0.000174 6.00 0.000 0.294 0.12 0.000344 0.0001299 0.000251 0.000174 6.00 0.000 0.294 0.127 0.000344 0.0001299 0.000251 0.000174 6.00 0.000 0.294 0.127 0.000344 0.0001299 0.000251 0.0000321 0.000032 6.0 0.002 0.294 0.127 0.000341 0.000251 0.000032 0.000331 0.000032 0.000331 0.000032 0.000231 0.000032 0.000231 0.000032 0.000231 0.000032 0.000231 0.000032 0.000231 0.000331 0.0	• •	9-	.079271	0.0002	0.00193	0007	0.00577	00246	₹.	•	20	-
61.8 0.02586 -0.001299 -0.000546 0.000221 0.0001374 8.0 0.00 0.299 0.71 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.000124 0.000124 0.000124 0.000124 0.000124 0.000124 0.000124 0.000124 0.000124 0.000124 0.000124 0.000127 0.000022 0.0	•	1	041078	0.0012	01100	000	000	00122	ö		20	
TABLE V-2. STANDARD BLADES, $\mu=0.001374$ 600 0.00 0.00 0.00 0.70 0.00 0.70 0.70	ì	֓֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	020380		1000	200	1000	70100	8	•		
TABLE V-2. STANDARD BIADES, $\mu = 0.30$, $M(1.0, 90.) = 0.85$ TABLE V-2. STANDARD BIADES, $\mu = 0.30$, $M(1.0, 90.) = 0.85$ TABLE V-2. STANDARD BIADES, $\mu = 0.30$, $M(1.0, 90.) = 0.85$ TABLE V-2. STANDARD BIADES, $\mu = 0.30$, $M(1.0, 90.) = 0.85$ TABLE V-2. STANDARD BIADES, $\mu = 0.30$, $M(1.0, 90.) = 0.85$ 10.04314 0.002487 -0.000221 -0.000472 0.002518 13.0 0.72 10.04314 0.002487 -0.000221 -0.000472 0.002518 13.0 0.72 10.04314 0.00333 0.000247 -0.000251 0.000372 14.0 0.72 10.04518 0.00333 0.000214 0.000374 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000274 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000274 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000274 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000274 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000274 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000274 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000374 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000374 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000374 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000374 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000374 0.000374 14.0 0.72 11.0 1.95 0.01318 0.000374 0.000377 0.000377 0.00137 10.0 0.60 11.0 0.25 0.25 0.25 0.200374 0.000377 0.000377 0.00137 10.0 0.60 11.0 0.25 0.25 0.25 0.200375 0.000377 0.000377 0.00137 10.0 0.60 11.0 0.45 0.00037 0.00037 0.00037 0.000377 0.00137 10.0 0.0 0.0 0.0 0.30 11.0 0.45 0.00037 0.00037 0.00037 0.000377 0.000377 0.00037 0.			97500				2000	7.00	1.		2	
TABLE V-2. STANDARD BLADES, $\mu = 0.30$, $M(1.0, 90.) = 0.85$ TABLE V-2. STANDARD BLADES, $\mu = 0.30$, $M(1.0, 90.) = 0.85$ TABLE V-2. STANDARD BLADES, $\mu = 0.30$, $\mu = 0.30$, $\mu = 0.30$ Table V-2. STANDARD BLADES, $\mu = 0.30$, $\mu = 0.30$, $\mu = 0.30$ -5.0 -0.4 314 0.002487 -0.000321 -0.000462 0.002518 13.0 0.75 -5.0 -10.4 0.002487 -0.000287 -0.000045 0.000392 14.0 0.75 -10.0 -10.4 0.002487 -0.000287 -0.000045 0.000392 14.0 0.75 -10.0 -10.4 0.002487 -0.000287 -0.000183 0.000340 16.0 0.72 -10.0 -10.4 0.002874 0.000287 0.000018 0.000340 16.0 0.72 -10.0 -10.4 0.002874 0.000287 0.000018 0.000018 0.000340 16.0 0.72 -10.0 -10.4 0.002874 0.000287 0.000018 0.000018 0.000340 16.0 0.72 -10.0 -10.4 0.002874 0.000287 0.000018 0.000018 0.0000190 16.0 0.72 -10.0 -10.4 0.002874 0.000287 0.000018 0.0000190 11.0 0.72 -10.0 -10.4 0.002874 0.00028 0.000018 0.000190 11.0 0.72 -10.0 -10.4 0.002874 0.000018 0.000018 0.000190 11.0 0.72 -10.0 -10.4 0.00288 0.000018 0.000018 0.000190 11.0 0.72 -10.0 -10.4 0.00288 0.000018 0.000018 0.000190 11.0 0.72 -10.0 -10.4 0.00288 0.000018 0.000018 0.000190 0.00190 0.000190 0.00001	7	•	044440		9	45000	70000		•	•		
TABLE V-2. STANDARD BLADES, $\mu = 0.30$, $M(1.0, 90.) = 0.85$ -5.0 -0.3 0.04334 0.002487 -0.000311 -0.000412 0.002518 13.0 0.660 0.302 -5.0 -0.3 0.04334 0.002487 -0.000117 -0.000442 0.002318 13.0 0.650 -6.1 0.04334 0.002487 -0.000117 -0.000142 0.002318 13.0 0.620 -6.1 0.051865 0.0033748 -0.000525 -0.000321 14.0 0.304 -10.0 -12.4 0.005590 0.003749 0.00017 -0.00015 10.003374 14.0 0.304 -15.0 -10.4 0.005591 0.000008 -0.000189 0.000271 16.0 0.304 -15.0 -10.4 0.005591 0.000088 -0.000189 0.000271 16.0 0.304 -15.0 -10.4 0.005591 0.000089 0.000039 0.000271 15.0 0.304 -10.0 -12.9 0.007598 0.000099 0.000099 0.001999 12.0 0.304 -10.0 -12.9 0.007588 0.000099 0.000017 15.0 0.304 -10.0 -12.0 0.007588 0.000099 0.000017 0.001979 12.0 0.304 -10.0 -12.0 0.007588 0.000099 0.000177 0.00137 12.0 0.304 -10.0 -12.0 0.007588 0.000099 0.000177 0.00137 12.0 0.304 -10.0 0.015509 0.00111 0.000177 0.00137 10.0 0.50 -10.0 0.015509 0.00111 0.000177 0.00117 12.0 0.004 -10.0 0.015509 0.00111 0.000177 0.00117 10.00139 10.0 0.304 -10.0 0.015509 0.00117 0.000177 0.00117 0.00139 10.0 0.304 -10.0 0.015509 0.000187 0.000187 0.000187 0.00139 10.0 0.304 -10.0 0.015509 0.000187 0.000187 0.000187 0.00117 0.00139 0.00175 10.0 0.304 -10.0 0.015509 0.000187 0.000187 0.000187 0.00139 0.00175 10.0 0.304 -10.0 0.015509 0.000187 0.000187 0.000187 0.	•	• n	002400	00.00	0.00134	00000	# COO	00000	•		7 0	- 1
TABLE V-2. STANDARD BLADES, $\mu = 0.30$, $M(1.0, 90.) = 0.85$ St 274.0 Run 16 -5.0 -6.3 0.002487 -0.0002487 -0.0000437 0.000458 13.0 0.750 -5.0 -6.3 0.003484 0.002487 -0.0000287 -0.0000437 0.002318 13.0 0.750 -5.0 -10.4 0.003484 0.003748 -0.0000287 -0.0000437 0.000354 0.003570 0.360 -10.0 -10.4 0.003549 0.003033 -0.0000497 0.000354 0.003574 14.0 0.36 -10.0 -10.4 0.003599 0.0003034 -0.0000498 0.000354 14.0 0.456 -10.0 -10.4 0.003599 0.000304 0.000049 0.000354 18.0 0.36 -10.0 -10.4 0.003599 0.000304 0.000021 0.0003940 18.0 0.36 -10.0 -10.4 0.003599 0.000304 0.000021 0.0003940 18.0 0.36 -10.0 -10.4 0.003599 0.000304 0.000307 0.000399 0.000460 17.0 0.72 -10.0 -10.4 0.003599 0.0000304 0.000309 0.000309 0.0003940 12.0 0.36 -10.0 -10.4 0.003599 0.000008 0.000309 0.000309 0.000399 0.000399 -10.0 -10.4 0.00399 0.000008 0.000309 0.000309 0.000399 0.0		•							•			,
## 274.0 Run 16 -5.0 -9.3 0.043314 0.002487 -0.0001821 -0.0004612 0.002518 13.0 0.560 0.302 0.804 0.302 0.302 0.302 0.302 0.302 0.033843 0.001874 -0.000183 -0.000184 0.002181 13.0 0.560 0.302 0.302 0.302 0.302 0.302 0.003748 0.000184 0.0001854 0.003394 14.0 0.302 0.304 0.301 0.302			ABLE	-2. S	NDAR	BLADES	II	0	(
-5.0 -9.3 0.004314 0.002487 -0.000017 -0.000462 0.002518 13.0 0.60 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.000059 0.	st 2	4.0 Ru	-						, 90			
-5.0 - 10.4 0.051863 0.001507 -0.000025 -0.000451 0.002132 12.0 0.72 0.89 0.88		0 0 0	0.04331	4000	-000	11000	000	.0025	6	09.0	.30	ŏ
-5.0 -10.4 0.051805 0.003748 -0.000163 -0.000354 0.003992 14.0 0.36 0.302 0.84 0.301 0.501	י ו	1	104384	0015	-0.0002	0.00002		.0021	8	$\hat{}$.29	4
-15.0 -15.6 0.045795 0.0000017 -0.000195 -0.0001321 0.002574 14.0 0.84 0.301 0.801 -10.0 -15.6 0.045795 0.0000134 -0.0001468 0.0003940 16.0 0.72 0.72 0.801 0.801 -15.0 -15.0 0.010126 0.0001024 -0.0001221 0.0001231 16.0 0.966 0.9) (C)	-10	.05180	0037	-0.0005	0.00016	0.000	00030	4		.30	48.
-15.6 0.045795 0.000234 -0.000468 0.003940 16.0 0.72 0.301 0.80 -19.5 0.018718 0.000284 0.0000120 0.000493 16.0 0.96 0.302 0.80 -19.5 0.018718 0.000284 0.0000284 0.0000281 16.0 0.96 0.99 0.894 0.302 0.80 -19.5 0.019185 0.019185 0.0003874 0.000028 -0.0000422 0.0004907 15.0 0.96 0.994 0.995 0.901 0.90	-10	~14.	.92550	0030	-0.00001	00019	0.00	.0025	÷	æ	8	ĕ
-15.0 -19.5 0.018718 0.003291 0.000088 -0.000433 -0.000120 0.0102673 16.0 0.96 0.384 0.362 0.884 0.3628 0.035888 0.008574 0.000034 -0.000218 10.001997 15.0 0.96 0.363 0.0363 0.035828 0.008574 0.000034 -0.000278 18.0 0.0450 17.0 0.96 0.305 0.305 0.03529 0.03529 0.000278 -0.000278 0.001997 15.0 0.72 0.36 0.301 0.045 0.025629 0.002737 0.000277 -0.000379 0.002468 14.0 0.72 0.36 0.301 0.36 0.302 0.	-10	-15.	.04579	0000	0.00023	9000	-0.000	.0039	Ġ	7	9	.85
-15.0 -20.9 0.035858 0.0008574 0.000208 -0.000221 0.004398 18.0 0.84 0.363 0.88 18.0 0.250.9 0.035858 0.0008574 0.000208 -0.000183 0.001907 15.0 0.96 0.301 0.80 0.302 0.302 0.302 0.005281 0.002581 0.0024600 17.0 0.72 0.301 0.72 0.301 0.005281 0.005281 0.002460 14.0 0.72 0.302	-15	-19.	.01871	.0032	0.0000	4000	-0.000	.0026	ė	ς.	30	į
-15.0 -18.8 0.010126 0.000000 0.000034 -0.000278 -0.000183 0.0004007 15.0 0.96 0.301 0.00291 0.002931 0.000201 0.000205 0.004600 17.0 0.72 0.301 0.00291 0.002931 0.000291 0.000293 0.000293 0.000293 0.000293 0.000293 0.0002946 17.0 0.022 0.302 0.3	-15	-20.	.03585	.0085	0.00020	0.0008	-0.000	.0043	.	8	5	ě
-10.0 -16.5 0.052919 0.008737 0.000210 -0.0001505 0.0004600 17.0 0.72 0.302 0.801 0.0025629 0.002933 0.000086 -0.000374 0.000340 0.002468 14.0 0.72 0.361 0.801 0.001379 12.0 0.36 0.300 0	-15	-18.	.01012	.0008	0.0000	0.0002	-0.000	.0019	'n	٥.	e.	•
-10.0 -14.0 0.025629 0.002933 0.000086 -0.000277 -0.000309 0.002568 14.0 0.72 0.72 0.300 0.900 0.007088 -0.000509 -0.00031 0.001379 12.0 0.356 0.300 0	-10	-16.	.05291	.0087	0.00021	0.0007	-0.000	0046	Ľ.	۲.	8	•
-10.0 -12.8 0.007088 -0.000008 -0.000010 -0.000341 0.001379 12.0 0.96 0.300 0.80 0.300 0.80 0.30	-10	-14:	.02562	.0029	0.0000	0.0002	-0.000	.0024	;	۲.	Š	6
-5.0 -8.5 0.032068 0.001403 -0.000298 -0.0000370 0.002076 12.0 0.60 0.300 0.88 0.014580 -0.000393 -0.000406 0.000127 0.001492 10.0 0.60 0.302 0.302 0.80 0.301 0.043786 -0.001367 -0.000377 0.001331 10.0 0.36 0.302 0.88 0.0062011 +0.000372 -0.000127 0.001331 10.0 0.36 0.392 0.88 0.0072557 0.001035 -0.001635 0.001437 0.001756 12.0 0.24 0.302 0.88 0.98 0.0072557 0.001035 -0.001635 0.001737 0.001737 14.0 0.00 0.34 0.301 0.88 0.98 0.001205 0.00 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.88 0.301 0.301 0.88 0.301 0.301 0.88 0.301 0.301 0.88 0.301 0.301 0.88 0.301 0.301 0.88 0.301 0.301 0.301 0.88 0.301	-10	-12.	.00708	.0006	-0.0000	0.000	-0.000	.0013	તં	Ç,	6	
-5.0 -7.0 0.014580 -3.000393 -0.000406 0.000127 -0.000377 0.001492 10.0 0.60 0.36 0.302 0.80 0.437 0.001361 10.0 0.36 0.36 0.302 0.80 0.447 0.062011 +0.000210 -0.000497 0.001331 10.0 0.36 0.36 0.302 0.80 0.447 0.062011 +0.000529 -0.001251 0.000217 0.001756 12.0 0.24 0.302 0.80 0.445 0.001625 0.001629 0.001623 14.0 0.001772 8.0 0.30 0.301 0.80 0.301 0.80 0.445 0.001526 -0.000667 0.0001341 0.0011772 8.0 0.72 0.301 0.80 0.301 0.301 0.80 0.301 0.80 0.301 0.301 0.80 0.301 0.80 0.301 0.30	1	-8-	.03206	.0014	-0.00029	0000	-0.000	.0020	ä	۰	ĕ.	ő
04.7 0.062011 +0.000529 -0.001251 0.000210 -0.000377 0.001331 10.0 0.36 0.36 0.302 0.80 0.407 0.062011 +0.000529 -0.001251 0.000217 -0.000409 0.001756 12.0 0.24 0.301 0.80 0.301 0.80 0.301 0.80 0.301 0.80 0.301 0.80 0.301 0.80 0.301 0.80 0.301 0.80 0.301 0.80 0.301 0.80 0.301 0.80 0.301 0.80 0.40 0.002524 -0.001581 -0.000647 0.0001341 0.0001172 8.0 0.50 0.301 0.80 0.301 0.80 0.40 0.004524 -0.001581 -0.000647 0.0001341 0.0001172 8.0 0.60 0.301 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.	1	.7-	.01458	.0003	-0.00040	.0001	-0.000	.0014	ċ	۹	30	
04.7 0.062011 +0.000529 -0.001251 0.000217 -0.090409 0.0011756 12.0 0.24 0.302 0.98 0.98 0.001255 0.0002537 14.0 0.024 0.301 0.98 0.98 0.002328 -0.001596 0.000203 -0.000437 0.002537 14.0 0.000 0.301 0.98 0.98 0.002328 -0.001586 -0.000134 -0.0000408 0.001172 8.0 0.72 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0	1	.04378	0.0013	-0.00101	0002	-0.00	.0013	ં	ຕຸ	9	•
06.5 0.080557 0.000035 -0.001696 0.000203 -0.000437 0.002537 14.0 0.00 0.301 0.8 0.8 0.022328 -0.001581 -0.000617 0.0001341 0.001172 8.0 0.72 0.302 0.8 0.0 0.72 0.302 0.8 0.0 0.04924 -0.001526 -0.000647 0.000134 -0.000608 0.001205 6.0 0.60 0.302 0.8 0.8 0.03359 0.000537 0.000393 0.000215 7.0 0.00 0.302 0.8 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0	4	.06201	0.0005	-0.00125	.0002	-0.00	.0017	તં	7	90	•
01.4 0.022328 -0.001581 -0.000677 0.000117 -0.000341 0.001172 8.0 0.72 0.302 0.84 0.84 0.004924 -0.001526 -0.000667 0.000134 -0.000608 0.001205 6.0 0.60 0.60 0.301 0.84 0.004924 -0.005437 -0.001273 0.000393 0.000215 7.0 0.00 0.302 0.302 0.84 0.033419 -0.004576 -0.001272 0.000392 6.0 0.24 0.304 0.	0	-4-	.08055	0000	-0.00169	0002	-0.00	.0025	3	٥.	<u>۾</u>	•
00.4 0.004924 -0.001526 -0.000667 0.000134 -0.000608 0.001205 6.0 0.60 0.301 0.84 5.0 3.1 0.043639 -0.005437 -0.001623 0.000343 0.000215 7.0 0.00 0.302 0.304 5.0 3.8 0.033619 -0.004576 -0.001423 0.000345 0.000392 6.0 0.24 0.304 0.304 0.84 5.0 2.5 0.054309 -0.006415 -0.001702 0.000530 0.000049 0.000049 0.000049 0.00 0.00 0		-	.02232	. 6015	-0.00067	0001	000-0-	.0011		.72	0.30	*
5.0 3.1 0.043639 -0.005437 -0.001623 0.000271 -0.000393 0.000215 7.0 0.00 0.302 0.84 5.0 3.1 0.043639 -0.004576 -0.001423 0.000045 0.000392 6.0 0.24 0.304 0.304 5.0 2.5 0.054309 -0.004415 -0.001702 0.000530 0.000049 0.000049 8.0 0.00 0.00 0.301 0.84 0.25 0.054304 0.0001702 0.0000531 0.0000530 0.000556 14.0 0.012 0.303 0.84 0.0007454 -0.0007454 -0.0007454 -0.0007455 15.0 0.012 0.303 0.88 0.0007456 15.0 0.012 0.304 0.88 0.88 0.0007456 15.0 0.012 0.304 0.88 0.88 0.0007456 15.0 0.012 0.304 0.88 0.88 0.0007456 15.0 0.012 0.304 0.88 0.88 0.0007456 15.0 0.012 0.304 0.88 0.88 0.0007456 15.0 0.012 0.304 0.88 0.88 0.0007456 15.0 0.012 0.304		!	00492	0.0015	-0.00066	000	-0.00	.0012		9.	0.30	. 84
5.0 3.8 0.033619 -0.004576 -0.001423 0.000261 -0.000445 0.000392 6.0 0.24 0.304 0.84 5.0 2.5 0.054309 -0.006415 -0.001702 0.000530 0.000049 8.0 0.00 0.00 0.301 0.84 0.002556 14.0 -0.12 0.303 0.84 0.002556 14.0 -0.12 0.303 0.84 0.002566 15.0 0.48 0.304 0.86	> v		06363	0.0054	-0.00162	5000	000	0007		9	.30	. 84
5.0 2.5 0.054309 -0.005415 -0.001702 0.000530 0.000049 8.0 0.00 0.00 0.301 0.84 0.002550 14.0 -0.12 0.303 0.84 0.002550 14.0 -0.12 0.303 0.84 0.002550 14.0 -0.12 0.304 0.84 0.002550 14.0 0.48 0.304 0.84	, c		19860	0.0045	-0.00142	000020	0.00	.0003		7	8	.0
0.00 -6.5 0.082340 -0.000051 -0.000217 -0.000494 0.002556 14.0 -0.12 0.303 0.84			05430	0.0064	-0.00170	00024	0.000	0000		9	6	. 6.
= 0.00 0.48 0.00498 -0.000454 -0.000348 -0.000395 0.003466 15.0 0.48 0.304 0.84	٠ د	4	08234	0.000	-0.00183	00021	0000	.00255	3	7	.30	
	1		41.790	000	-0.00045	000	Ö	00366	'n	-7	.30	. 84

	M(1.0,90	0.95	0	0.95		•	•	0.0	•		•	•	•	•		0.951	•	•	ç	ċ	0.954	•				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.846	0.847	0.647	0.849	•	•		•	•		0.044	0.850	0.849	9.0	200))
	a	~	000	. ~	7	•	?	Ÿ	ÿ	Ÿſ	٦.٢	•	2	7	7	7	?		7		7	7		••	1	NYK D.		¥.	.34	.34	. 35	m.			7	0.349	.34	.34	101	9	, M		
= 0.95	A	₩°0																			0.60	•	g shallman may bey verifying	= 0.85		4	~	٣.	₽.	٩	۰۰	٠,	3.	•		00.0	٦.	ヿ	7	٦,	ი,		•
0, 90.)	_o	+	25	9	~	80 1	n:	* '	าะ	\$ °) c	-, ۱	10		0	σ	g,	-3	S	9	17.0	3 0		.(0, 90.)	7	-	4	9	9	_	1 0	~ c) K) C	12.0	0	0.8	6.0	0.8	0.0	20.4) · · · · · · · · · · · · · · · · · · ·
30, M _{(1.}	6/05	-00352	0.003961	00352	.00430	.00520	.00288	•	66700	16660.	*****	7000	00279	00245	.01234	.00224	.00167	.00400	.00463	.00321	-00564	-00625		35. M.	•	40200	0030	.0022	.0335	.0019	.0028	7600-	100		100	00	.0014	.0012	.0012	6000	•000•	00000	• 002
$\mu = 0.3$	Cm/G	.000296	000770	000024	.000639	-000754	960000	0	215000	62000	7	777000	317000	000586	000434	985000	000380	000053	000294	\$15000	000862	000743		$\mu = 0$		517000	000812	000412	000000	000124	000239	616000	56.000	000272	97.000	617	000592	000318	921000	000523	000441	116000	946000
BLADES,	C 2010	300286 -	0363	- 609000	000758 -	01012 -	0.000312 -	0.000277	- 512000-0	- 90000	A0000		000349 -	000328	000228 -	000315 -	- 276000	200047	0.000027	5.000135	000649 -	956000		BLADES.	•	00000	00000	981000	000426	150000	000374	000000	50000	240000	2000	96100	000179	060000	000045	.000173	.000177	241000.	.000182
STANDARD	6//	- 961000	7 i	762000	000340 -	- 714000	- 640000	-000256	- 000254	-000445	- CE+000.	1 20000	0.000.0	0.001098	000673	0.000607	.000864	-000419	- 666000	.000725	.000223 -	- 065000	******	STANDARD		000000	.000.873	000114 -	0.000210 -	0.000165 -	0.000180 -	-000208	- 292000-	- 1200000	1 10100	0.001874	.001293	.000997				•	.00253
-3.	D/40	,002052	3.003252	20000	004404	.007069	000120	001680	000130	.002084 -	- 110100	0.000032	1.0000	200100	0.003256 -	0.003357 -	0.005041	002088 -	.003145 -	004198	.006809	008521	1	V-4. ST		0.000	200	96000	.00415	8	.00246	.004625	6666	90		0.00144	0.001679	0.00182	0.00180	0.0051	0.004684	0.0040	• 0006
T.	7 0	.02746	17	20010	.02729	.03652	.01151	-02554	-01748	.05220	04290	306760	062407	0525	042569	.034478	-044667	.05125	-06186	.06984	.05259	.05923		TABLE \	7 1	02420	04427	01821	.03467	.00873	.01779	.02554	767840	10600.	000000	057284	.039003	.0220	-006432	.047713	.038856	.030361	.07540
c	•	=	-14-1	11	161	19	1	5	2	•	Ю.	- •	9 6	10	-		0	•	•	10	S	9			0 R11n	9	90	1	16.	•	20.	21.	17.	::	• •	- 6				•		•	
27.	τ 2/4 ας	_	-10.0	0.01-	-15.0	-15.0	-15.0	-10.0	-10.0	0.0	2.0	0.0					2.0	-5.0	-5.0	-5.0	-10.0						e d	. 0	9	-15.0	15.	15.	9	5	'n	•		•	•	4.0	0.4	0	•
Ę	PT	-	N	n 4	'n	. •	~	8	•	2	7	71:	1	2	16	17	18	161	20	21	22	23			Test		22	23	54	25	5 6	27	82	2) r	4 6	9 6	34	32	36	37	B) (B	34

	¥.	0.947		0			•		0.349 0.948 .0.349 0.948				0.399 0.8						•		0.400			1				_	0.00	h .
	A1s	1.56		09.0	0.60	96.0	96.0	96.0	96.0		= 0.85		84.0	0.72	180	0.84	0.60	# # # # # # # # # # # # # # # # # # #	0,60	0.48	0.00		0.24	-0.48	0.12	0.24	-0.36	-0-72	14.0) c
.06 ,0.	90	12.5		13.3	0.81	74.0	14.5	15.0	15.5		(06 0		14.0	10.0	16.0	17.0	18.0		13.0	13.0	12.0	0.00	12.0	10.0	11.0	0.6	0.01	0.0	K 11	200
60.17	6/0)	0.003446		0.003664	0.004109	0.0040	0.004014	0.004259	0.004319		0.40, Mr	i ,		0.002343				•	0.00.00	0.002462	0.002077	0.001785	0.001540	0.001390	0.001573	0.001291	0.000370	.0002	7000	0.003942
	CM/G	-0.000554		-0.000931	-0.000837	-0.00.00	-0.000785	-0.000666	-0.000861		<u>π</u>		Ö	-0.000553	ġ	00145	-0.000961	-0.000641	-0.000,03	-0.000784	-0.000521	-0.000270	-0-000148	0000	-0.000334	0000	69000	19000	-0.000688	
•	C 1/0	-0.000083		000121	0.000126	-0.000262	-0.000408	-0.000407	-0.000405		BLADES,		0.000131	-0.00015	777000-0-			0.00006	0.00000	0.000244	Ö	0		o	0	ö	ė	•	0.000	190000
	$C\gamma/\sigma$			-0.000721	-0.000565	981000-0-	0.000375	0.000368	0.000342	**************************************	STANDARD		-0.001028	-0.000168	-0.000043	, 0	-0.000033	0.000127	000000	-0.000983	-0.000994	-0.000795	-0.000850	-0.001944	-0.001850	-0.001347	-0.002901	-0.003050	-0.002497	210100-0-
	CD/Q	-0.000835		.000047	164000	111100	0.001349		0.001809		V-6. ST		0.000745	0.000165	-0.000269	0	•	-0.001894	-0-000964	0.000072	-0.000447	-0.003891	-0-001431	-0.002244	-0.002140	-0.002196	-0.006142	-0.005888	-0.0000	•
n 20	راً / <i>ط</i>	0.044738	n 21	0.0	.053	.043	200	.033	0.034128		TABLE	n 18									0.028915									
274.0 Run	8	9	4.0 Run	-8.2	8-	9:	-12.	-13.	-13			4.0 Run	-10	-13	-11-	-18	-19.	-16.	-13	6	-8-5	•	7.0	• •	+	1	,	- (7) i		•
Test 27)	9 5.0	Test 27	5 -5.	-5.			-10	11 -10.0			Test 27	. +	8	-12	-12.	-12.	-12		*	1 -4.		•		0	7	60	19. 4.0		•

í					48-FOOT TAPERED-TIP	'APERED-	TIP BLA	BLADES, μ =	0.13,	$\mu = 0.13, M(1.0, 90.)$		08.0
288.0 Run L4 α. α. C./σ C _A /σ C	un 14. Γ C./σ C _D /σ	L4. C1/σ Cη/σ		U	C_{γ}/σ	C2/A	C 7 19	\o_3	<i>&</i> °	Aıs	Ŧ	M(1.0.90.)
0 -3.5 0.064289 0.002048	0.064289 0.002048	0.002048	0.0202048 -0.0	-0-	-0.000931	-0.00000-	9		13.2	0.80	0.129	0.802
-3.5 0.072238 0.002067	0.072238 0.002067	0.002067	0.002067 -0.0	0	-0.000934	0.000034		0.002348	13.7	0.80	0.130	0.79
-4.5 0.070406 0.003042	0.010406 0.003042	0.003042	0.003042 -0.	•	-0.000933	-0.000046		0.002425	13.	3	161-0	9.79
-4.5 0.075747 0.003144	0.075747 0.003144	0.003144	0.003144 -0.	o ·	-0.000874	-0.000061	-0-0 10246	0.002624	7 6 6		0.1.0	767-0
-4.5 0.061730 0.002814	0.061700 0.002814	0.002814	0.002814 -0.	0	-0.000922	-0.000032	-0.000169	0.002170	13.6		200	967.5
-2.5 0.067530 0.000930	0.067530 0.000930	0.000930	0.000930	9 9	746000.0-	6000000	-0.000203	0.007000	12.2	000	0.130	0.799
0.061014 0.000937	0.061014 0.000937	4 0.000937	0.000937 -0.0	ò	-0.000939	-0.000003	-0.000291	0.001913	12.7	0.80	0.133	0.799
-3.5 0.057811 C.001863	.5 0.057811 0.001863	1 0.001863	0.001863 -0.0	0-0	96600	-0.000936 -0.000043	-0.000226	196100.0	12.7	0.80	0.130	. 0 . 799
288.0 Run 16	Run											
-6.2 0.068100 0.004459	0.068100 0.004459	0.004459	0.004459 -0.00	-0.0	-0.001153	-0.000013	-0.000225	0.002555	13.2	1.00	0.130	0.7
-6.2 0.074159 0.004741	0.074159 0.004741	0.004741	0.004741 -0.5	-0-0	25110	-0.000047	-0.000310	0.002787	13,7	1.00	0.129	0.83
-7.2 0.071174 0.005759	0.071174 0.005759	0.005759	0.005759 -0.00	-0.00		-0.000225	-0.300253	0.002863	13.7	00.1.	0.129	0.63
-5.0 -1.2 0.077323 0.006080 -0.001093 -5.0 -7.2 0.04374 0.006299 -0.001093	0.017323 0.006080	0.0000000	0.006080 -0.00			502000-0-	861000°0-	0.003373	13.5	00.	671-0	
-5.2 0.069559 0.003336	0.069559 0.003336	0.003336	0.003336 -0.00		-0.001122	-0.000047	-0.000181	2,002,62	13.2	1.00	0.129	
0.056528 0.002898	0.056528 0.002898	0.002898	0.002898 -0.00	-0.03		-0.000031	-0.000197	0.002056	12.2	1.00	0.129	0.834
-5.2 0.053716 0.003123	0.053716 0.003123	.043716 0.003123	0.003123 -0.00	-0.00		-0.000041	-0.000265	0.002276	12.7	1.00	0-127	9.199
-4.2 0.060332	0.04332 0.004126	.063332 0.004126	0.034126 - 0.001	-0000		-0.000055	-0,000041	0.00.237	17.7	7.00	0.129	6
TABLE V-8. 48-FOOT	V-8.	V-8.		3-F001		TAPERED-TIP		BLADES, $\mu =$	0.20,	$\mu = 0.20, M_{(1.0)}$	·= (*06	0.85
288.0 Run 14	Run	14										
-7.8 0.064411 0.004901 -7.8 0.071570 0.005163	-7.8 0.054411 -7.8 0.071570		0.004901 -0.000	00.00	1102	-0.000969 -0.000027	-0.000296	0.002856	14.5	0.25	0.202	0.851
-8.8 0.066077	0.066077		0.006022 -0.00	0.0	01010	-0.000212	,	0.003188	15.0	0.25	0.204	0.040
70++/C**********	00000		0.01 6.6000.0	0	27010	-0.000		050000	7.07	74.5	7747	0000

Test 288.0 Bin	TABLE V-0		1001	Arekeu-	48-FOOI IAFEKED-11F BLADES, F - 0.20, 11(1.0, 90.)	, r	• 0 • 0	(1.0,	90.)	•
	0.064411	0-004901 -0	696000	-0-000027	04901 -C.000969 -0.000027 -0.000296	0.002856	14.5	0.25	0.202	0.851
- 60	0.071570	0	.001102	-0.000056	-0.000334	0.003108	15.0	0.25	0.203	0.848
0	0.066077	0	010100	-0.000212	06022 -0.001010 -0.000212 -0.000303	0.003188	15.0	0.25	0.204	0.848
Ф	69442000	0.0	. 001015	-0.000222	-0.000317	0.003498	15.5	0.25	0.203	0.848
ø	0.058359	0	. 086000.0	-0.000156	-0.000199	0.002895	14.5	0.25	0.204	0.848
8	0.068127	0-146600.0	. 001159	-0.000042	-0.000383	5.002808	14.5	0.25	C.201	0.852
8	0.055225	0-003579 -0	. 201100.	-0.000007	-0.000232	0.002401	13.5	0.25	0.202	0.849
•	0.060959	0	.001128	-0.000029	-0.000254	0.002571	14.0	0.25	0.201	0.852
8	0.055953	0.004432 -0	001034	04432 -C.001034 -0.000075 -0.000241	-0.000241	0.002595	14.0	0.25	0.201	3.856
Run	ın 16									
8.3	1 0.065647	0-304855 -0	110100	-0.000065	04855 -0.001011 -0.000065 -0.000412	0.002977	0.41	0.45	0.201	19.851
8.3	0.073275	0-335212 -0	-001085	-0.000359	-0.000421	0.003214	14.5	0.45	0.201	0.850
9.3	0.058342	0-306124 -0	.00000	011000.0-	06124 -0.0010.9 -0.000110 -0.000447	0.003278	14.5	0.45	0.201	0.852
9.3	0.074735	0-006493 -0	- 896000:0	06493 -0.000968 -0.000171 -0.000339	-0.000339	0.003545	15.0	0.45	0.201	0.850
9.3	0.060673	0-005715 -0	. 9960000	-0.000194	-0.000166	0.003030	14.0	0.45	0.200	0.851
7.3	1 0.070084	0-2504045 -0	- 901100	34042 -0.301106 -0.300017 -0.000281	34042 -0.301106 -0.300017 -0.003281	0.002922	14.0	0.45	0.201	0.851
.3	0.055769	0.003527 -0	. 00100-0	-0.000013	-0.000311	0.002463	13.0	0.45	0.201	0.847
	0.063371	0-03835 -0	011100-0	-0.00000-	-0.000341	0.002683	13.5	0.45	0.201	0.851
-8-3	0.058608	0	. 00100	74539 -0.001008 -0.000077 -0.000377	-0.000377	0.002714	13.5	0.45	0.201	0.851

.) = 0.87	M(1.0.90.		10	O (D (0.242	1			1				-	06.0 =	?		D			272	• 0		•	•		96	,	, с		2 6.9
.0, 90																					(1.0, 90	0	0	0		96	•	6	•	0	0			, ,	• •	
M(1.0,	₹	0.15	# .	~ -	- 1	-	_			0	0.35	0.3	0	0,1	ان. ا	0.0	0.0	0.1		M		0.0		•	• 1	21.0		• •		•	•	j c	oic	ċ		Ö
- 0.24,	8°	16.0	16.5	16.0	15.50	15.5	15.0	16.0		16.0	16.5	16.5	17.2	15.8	15.0	15.0	14.5	16.2		= 0.27		•			- 6	17.4		• •			•	•	•1	•		
BLADES, $\mu =$	6/02	0.003732	•	0.003718	0.004500	0.003470	0.003116	0.003755		171700	0.004731	0.004683	0.005216	0.004006	\mathbf{c}	09800	00334	0.004408		BLADES, µ		•	0.005175	0.005169	0.005673	4:	414400°0	00407	0.004914	0.004618	0.004452	0.004359	617 400 0	20400	0503	00482
	Cm/a	-0.000265	-0.000245	ף נ	פו	ç	Ŷ	9		C	9	o	ò	o	o	ပဲ	• (-0.000013		TIP		-0.000413	.0003	000	-0.000350	-0.000274	į	0	9	Ŷ	P	o o	204000-0-	900000-0-		2000
TAPERED-TIP	C410	-0.000102	-0.000308	-0.000258	-0.000156	-0.000115	ĭ	ĭ		0.00032	-0.000	-0.000	1	-0.000	-0.0002	100000-	10000	-0-0		TAPERED-			-0.000	-0.000646	oʻl	•	-0.000433	-0.000281	-0.000359	-0.000501	-0.000495	-0.000533	100000-0-	-0.030619	7,000	
48-F00T	C_{γ}/σ	-0.000948 -C.000954	-0.0008	-0.000849	0.0000-0-	-0.001011	-0.001019	-0.001009		1-0.001221	-0.0313	-0.201200	86610000-	-0.000119	-0.000954	-0.401132				48-FOOT		•	0	ė,	9	Ç	íì		-0.001473	ĭ	-0.001399	-0.001313	500000	ָ ֖֖֖֖֖֖֭֓֞֞֓֓֓֓֓	2000	0.000
V-9. 4	$c_{D/\sigma}$	0.007368	.008542	07600	.006671	.006133	.005568	.006578		O	0	3	0	اُد	0 (• •	00000	00.0		V-10.		0	0	0.01003	o	0	O	0	0.008292	0.009050	0.008806	0.008864	o þ	0.00873	0.00725	0.00883
TABLE	L4 C ₁ /σ	0.065634	0.066585	72950-	.05662	.06319	.05443	0.071196	1 17	.07045	0.378038	Ç	0.079661	2	o,	. .) IC	?		TABLE	1 13	-		4	٩	0.060621	. ·			٠,		ပ္	•	, (, 9	, 12
	O Run α _C	-11.0	-12.0	-12.0	-11.0	-10.3	6.61-	-10.0	0 Run	-11.8	2	ė	m (-12.2	ė			• •			0 Run	-13.1	m	-14.1	•	1.4.1	$^{\circ}$, (1	~	4	S	-16.1	")(3:	-10-8	
	288.0 as	0.2-	-8-0	9 6	-7.5	0.9-	-6.0	-6.0	288.	-7.3	-1.0	-8-0	-8-0	0.0	3.7-	0 5	1	•			288.	-8.0	8	Ġ.	Ġ.	9		· [-	-		8	6	Š.	•	. 6	
F	Test	1 2	m -	• «	ا د م	~	8	6	Test	-	7	m	4 (ا م	0 F	~ α	0	•			Test	17	19	61	20.	21	7 6	. 47	25	97	2.1	28	7		3 2	33

6.0		M(1.0,9	0.87	0.89	0.89	0.69	0.0	0.89	0.69	0.89	0.69	0.69	0.69	
, 90.		a.	0.239	0.272	0.272	0.273	9,273	0.271	0.273	0.272	0.273	0.272	0.274	
• M(1.0		۸۱۶	0.35	00	0.0	0.0	0,15	0.15	0.25	0,10	.0.10	-0.10	0.15	
$\mu = 0.27$, $M_{(1.0, 90.)} = 0.9$		စိ	16.5	17,25	18.00	18.25	18.25	18.75	17.00	16,00	16.00	15.50	17,00	
LADES,		رم/م م	0.004672	0.005215	0.005826	0.006302	0.006277	0.006695	0.005218	0.004641	0.004643	2-003997	0.005370	
D-TIP B		D/*C	-0.000215	-0.000398	-0.000425	-0.000632	-0.030525	-0.000436	-0.000402	-0.000461	0.000395	-0.000393	-0.000466	
TAPERE		C.2/10	-0.000456 -	-0.000588	-0.000721	-0.000744 -	- 958000*0-	-0.000884	-0.003625	-0.000452 -	-0.000349	-0.300259 -	-0.000463	
48-FOOT TAPERED-TIP BLADES,		C_D/σ C_{γ}/σ C_{λ}/σ	-0.031214	- C.000832 -	. 196000.0-	- 160100.0-	-0.000951	-C.000851	-0.300550 -	- 618000.0-	-0-00100s	- 608000°0-	- 6+2100*3-	
CONT'D.		C_D/σ	0.009532	0.038669	0.009878	0.010040	0.010599	019110.5	0.008490	9,000000	0.006578	0.005232	0.008063	
	18	CL/0	0.570915	116010-0	0.017999	0.079988	9.075146	0.077747	0.063721	0.061590	911790.0	0.057754	0.076880	
FABLE V-10	Run	α	-13.)	-13.3	-13.7	-13.8	-14.8	-15.1	-13.8	-12.6	-11.6	-11.3	-12.4	
17.	288.C	ά	-8.	-8.0	-8.0	Û.8-	-9.3	0.6-	0.6-	0.8	-7.0	-7.0	-1.0	
	Test	PT	~	ı	Φ.	4	S	9	~	60	6	.01	11	

											1	
		TABLE	TABLE V-11.	48-FOC	-FOOT TAPERED-TIP		BLADES,	$\mu = 0.30, M_{(1.0)}$), M(1.	0, 90.)	= 0.79	
est	288.0	Run	7									
*	-5.0	4.8.	0.051942	32568	-0.001276	0.000074	-0.001055	0.002799	14.0	-0.45	0.298	0.790
S	-5.0	-10.0	5.069612	04637	-0.031616		-0.301229	0.003850	16.0	-0.10	0.300	0.788
9	-5.0	-11.7	0.083972	36965		-0.000066	0.330475	C.0C>119	18.0	0.25	0.298	0.790
1	-10.0	-141	0.041437	3.305676	-0.000734	-0.000403	-0.001072	ö	16.0	-0.70	0.299	0.787
60	-10.0	-15.4	0.060330	0.009626	-6.000829	-0.000664	-0.000664 -0.001308	0.005212	18.0	-0.45	0.300	0.786
6	-10.0	-12.5	0.024051	0.002354	-0.000851	8410000-	-0, 303851	0.002502	14.0	-0.70	0.298	0.786
0	-10.0	-11.0	0.105556	-3.000825	-0.000783	-0.000087	-0.000559	0.001460	17.0	-0.70	0.297	0.789
	-15.0	-1812	0.017512	0.332733	-6.603712	-0.000497	-0.300837	C. 002596	16.0	-0.60	0.299	0.788
7	-15.0	-1913	0.034167	0.007581	-0.000511	-0.000848	-0.031018	0.004228	18.0	-0.80	0.300	0.788
9	0.51-	-2019	0.050058	0.012464	.012464 -0.000577	-0.301292	-0.001320	0.025888	Z0.0	-0.45	0.300	0.786
4	-5.0	6*9-	3.333671	3.330862	-0.000943	3.000094	-0.000838	0.002030	12.0	-0,60	0.299	0.786
Š	-5.0	-5.6		-0.000611	-C.000849	0.000075	-0.000655	0.001498	10.0	-0.70	0.296	0.190
9	0.0	-115	0.045323	-0.001729	-c.001402	0.000250	-0.000189	0.001265	10.0	-0.70	.662.0.	0.788
_	0.0			-0.301814	-0.001919	C.000384	-0.001146	3.301558	12.0	-0.60	0.297	0.791
8	• •		0.078254	P	-0.002413	0.000440	-0.001197	C. 002139	14.0	0.15	0.299	0.789
ō	0.0		0.094102	9	-0.002997	0.000428	-0.301402	C.003168	16.0	45.45	0.299	0.789
0	0.0		0.019694	-0.001579	-C.001315	0.000192	-0.000589	0.001205	8.0	-0.60	0.297	0.792
_	4.0		0.042841	-0.004535	0.002352	0.000482	-0.000721	0.000380	8.0	-0.10	0.297	0.791
2	0.4		0.061487	-0.005792	-0.002753	0.000535	-2.020950	0.000286	10.0	0.0	.962-0	-0.789
Ü	0		J.080812	-0.006906	-C-303299	. d.000555	-0.001244	0.000494	12.0	0.35	0.298	0.789
4	4.0		0.096365	-0.006799	-6.003751	20000	-0.001163	0.001163	14.0	0,0	006.0	0.786

0.85		/\(\(\)(1.0,90.)	0.848	0.848	8	æ (•	æ (•	Ę.	•	e a	•	9	α,	8	8	8	æ	8	8	8	8	8	8	8	8	8	8			•	9	80	•	0.846	
= (.06		3 .	0.302	0.302	0.301	90.00	705-0	0.392	0.503	205		0 - 50 S		0.00	0.303	0.304	0.303	0.00	0.303	0.305	0.303	0.304	0.304	0 - 304	0.303	0.304	0.305	0.303	0-302		Ŀ.	٣.	٠.	~	•	0.301	
M(1,0,		٩٠	-0.95	0.0	-0.43	-0.25	200	-0.93	0.0	0.5		2.01		-1.05	0.0	0.95	0.05	-0.70	-0.35	0.0	0.0	0.35	-0.70	-0.25	-0.60	-0.70	-0-70	0.25	0.35		-00.48	-00-24	-00.24	-00.72	90.00	-00.36	
= 0.30,		ø°°	72.0	1,00	0.01	200	0.0	20.00	200	0.61	,	, o		12.0	0 01	10.01	8	9	16.0	18.0	16.0	17.0	12.0	12.0	10.0	8	4	14.0	16.0		•	ċ	æ.	3 0	it	14.0	
BLADES, µ		6/م ر	0.302062	C.02843	000000000000000000000000000000000000000	0.00000	200000	118400.0	500000	0,00000	20000	1.CC594A	ACT CC 0.0	0.001883	5.051275	C. 301261	0.301328	0.001247	0.003690	0.005048	3.503244	0.004078	0.00100.0	C-00087C	0.000695	0.00010	C. C01C41	0.001500	6.333114		0.001484	0.001138	0.00100.0	0.002198	0.001901	0.001323	
		C22/0	.000334	000 430	1	7 7	,	2 5	*	270			0	88	80	999	89	34	52	130	154	061	122	13	40,	121	112		.000413							-0.000564 -0.000275	
TAPERED-TIP		C\$/0	380		60253610	0.300000		2000000	11000000	00050431	10000	0.00068	. 080000	0.000170	0.000357	0.000176	0.000329	0.000339	0.000280	0.000178	0.000647	0-000568 -	3.307668 -	6.000902	0.000329 ·	0.003837	0.000791	0.000977	0.000897						Ŏ (-0-000000-	
48-FOOT		$C\gamma/\sigma$	1282	-0.001518	54-T00-0-	056T30*0-	C*************************************	916000-0-	-0.0000-0-	. 666000°0+	6600000	-0.001052	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-0.000895	-6.350771	-0.000864	-0.001381	-0.301444	-0.002054	-0.002367	-0.303254	-6.303494	-0.302227	-0.003199	-0.052717	-0.002469	-0.002354	-0.003860	.004146		0.00182	0.00135	0.00100	-00262	0-000-0	-0.000300-0-	
V-12. 4		Ь	0.001078	887	9	200	700	400	7	7,7		704	, ,	472	50	203	588	743	725	195	460	739	257	801	C26	534	966	410	-0.002802		001	9	8	8	66	0.003226	
TABLE V	3	ر <i>ا</i> م	5	53	\$ 1		9	9 5	2	7	0 0	0 10	١-	2 5	14	Ś	m	m	4	4	-	9	9	P	6	5	-	7	0	4	.05	.03	.02	8	Ď.	0.053802	
	Run	αC	-7.3	-8.7	-17.3	-15-0	-13.6	-17.2	-15.6	9-91-	0.61-	-13.5		1.04.	-7.7	-7.2	-2.8	4 - 1 -	-8.8	-13.6	-6.5	-7.7	-2.9	-	0.8	2.2	306	-2.4	-4.5	Run	3.	_;	•	š	ŕ.	0.6-	
	288.0	ας	_																											274.0	•	°.	•	•	S	. v.	
	lest	ΡŢ	-	2	m	4	S	. 01	-	©	•	<u>s:</u>	4:	71	1 4	12	91	12	18	61	23	21	22	23	24	25	26	27	28	Test	4	ď	•	~	œ	10	•

0.85	,	M(1.0,90.)	0.0		•			•	•	•	•			•	•	• •		•			.94			6	.94	. 95	6.0	95	. 95	.95	.94	186.0	6			*	•
= ('06		Ħ	0.302	9	8		30	.30	30	5	200	30	6	8			30	.30	3		•29	.29	, ,	30	.29	• 29	2.0	, 20	.29	.29	• 29	• ;	0.297			0.301	.30
M(1.0.		A ₁ s	00.36	00.12	00.00	00.00	00.00	84.00	-00.24	-00-36	000	-00.24	-00-48	-00.72	200-	-00-72	84.00-	00.00	21.00		-0.12	0 0	4 A	0.60	0.48	87.0	900	0.12	0.24	-0.24	-0-24	-0.12	-0.36			0.36	
= 0.30,		Φ°	12.0	0	8	o a	Š	3	3	ø,			æ	ö	de	ic		2	2		3	Ý	•		S	6	'n.	•		7	ä	0	0	1		12.0	3
BLADES, µ		6/05		0.003729	.0052	.0023	0015	0000	.0023	.0040	0000	0000	.0000	0000	.0003		.0015	.0019	.0013		.0030	2002		.0033	.0018	.0019	1600.	0002	0010	.0018	.0016	0	0.000285			0.001923	-00283
IP		Cm/a	-0.000313	200	00			8	90	80		200	00	8	200			002	00		0.00036	7500		00032	0.00043	0.00064	0.000,76	78000	0.00076	16000	0.00054	00	0.00082			-0.000585	0.00068
TAPERED-T		0/X)	0.000114		0.000958	0.000603	0.000430	.000156	0.000176	0.000264	00000	0000101	.000146	.000245	.000384	\$ 0000°	.000199	.000041	.000129		00	0.00	986000	0.000157	0.000216	.000119	0.000411	0.0000	.0000	.000341	.000240	000	0.000358			-0.000034	0.00005
-FOOT		Cv/9	000143	00114	000027	000667	944000	000493	0.000788	0.001290	4.00034	0.00149	00201	0.00275	0.00339	72600.0	00170	00047	60000		.00094	.00013		.00051	.00032	.00016	-00017	0.00047	0.00037	.00185	0.00148	0.00142	-0.002363			-0.000422	0.000.0
T'D. 48			8		9	ĕ			.003350	0.005714	0.002290	0.004408	.006231	3.097278	3.008285	0.006820		ĕ	ě		.0025	0020	4000	.0048	.0001	.0003	-0038	2000	0.0001	0.0018	0.0020	.0020				0.001134	• 0035
2. CONT'D	n 5	6/10	005	0.043469	.0614	.0176	2032	000	.0515	.0715	8200	0316	.0505	0690	.0881	.0840	0619	0314	.0078	n 11	.04982	.02386	01700	.02490	.00859	.01463	.03340	.03017	02150	.05972	.04835	-03992	0.058853		n 14	0.028863	16840.
FABLE V-12	1.0 Run	α	1	-14.8	9	2	202	_	6	ö	٠,			•	·	٠.		,		4.0 Run			9		17.	12.	13.	::	;	3	ż	•	m		.0 Run	9-7-	
TAL	st 274	ά	9	0.01	9	5	5	5	Š	Š	ń		S.	•	•	•	• •	6	-10.0	st 27	Š.	ė e	ċ	Š	š	.	ė.		Š	•	ċ	.	.0.5		st 274	- 10.0	•
	Te	PT		A) W	*	en:	0 1	- 40	•	2	Ξ:	13	*	15	91	7	9 5	. ~	21	Te		. .	า ∢	I	•	7	10 C	10	1	12	=	4.8	91				•

	TABLE	3 V-1	TABLE V-12. CONT	<u>.</u>	48-FOOT	TAPEREL	48 -FOOT TAPERED-TIP BLADES, μ = 0.30, $M_{(1.0, 90.)}$	ADES,	$\mu = 0.30$, M(1.0	= (.06	= 0.85
St	rest 274.0	Run	1. 15			1	1 A					
P.T.		O	C, /9	CAIG	C~/9	C.4.10	C C C C	ρ/O) .	∞ °	Als	ュ	W
		ر ا	17.20		•			! 6		0.24	0.4	
•	0.8	6.7-	0.027305	520100-0			500000	0.002000	7	76.0	0 0	
•	1	-9.5	0.04740.0	0.003276			*0C000*0-	0.002422		7		
•	•	11.1	0.066284	0.005699	-0.000580	-0.000206	-0.000406	0.004356	0.0	0.12	0.299	0
'	٠	11.8	0.076953	0.007015	-0.000898	-0.000668	-0.000479	0.004752	17.0	-0.12	0.300	
'		-5.9	0.038909	0.000752	-0.000232	-0.000291	-0.000615	0.902037	12.0	0.36	00.300	0
'		-6.8	924640.0	0.001529	-0.000398	-0.000247	-0.000668	0.002436	13.0	84.0	0.300	0
•		7.7-	0.059786	0.002325	-0.000830	-0.000273	-0.000471	0.002850	14.0	00.0	0.300	0
'		-8.7	0.067131	0.003478	-0.000982	-0.000303	-0.000460	0.003358	15.0	00.0-	0.300	ě.
'		4.6-	0.077887	0.004224	-0.001091	-0.0000-0-	-0.000571	0.003916	16.0	-0.12	008.0	•
ı		8-6-	0.080970	0.004712	-0.301056	-0.301056 -0.000491 -0.00057J	0.00057J	0.004170	16.5	00.0	0.301	G
'	-3.0	-10.2	0.086136	. 0.005270 -	-0.001145	-0.000411 -0.000525	-0.000525	0.004537	17.0	-0.12	0.301	9.0
		-3.5	0.055484	-0.001005	-0.001015	-0.000082 -0.000510	-0.000510	0.001763	12.0	0.12	0.300	0
		2.4-	0.068285	-0.000863	-0.001380	-0.001380 ~0.000120 -0.000501	-0.000501	0.002368	13.0	-0.12	0.300	0
		-5.5	0.076500	-0.000167	-0.001594	-0.000180 -0.000432	-0.000432	0.002420	14.0	-0.24	0.299	0
		-6.2	0.085340	0.000065	-0.001859	-0.000222 -0.000229	-0.000229	0.032885	15.0	-0.36	0.299	0
		-6.5	0.089211	0.000299	-0.002016	-0.002016 -0.000192 ~0.000195	~0.000195	0.003171	15.5	-0.36	0.299	0
		-7.5	0.088459	0.001160	-0.002220	-0.002220 -0.000248	0.001662	0.003609	16.0	84.0-	0.300	8.0

	TABI	TABLE V-13.	48-FOOT TAPERED-TIP BLADES, μ = 0.30, $M_{(1.0.90)}$ = 0.95	ERED-TIP	BLADES,	$\mu = 0.3$	10, M(1)	(6 60.)	= 0.95	
Test 2	288.0 R	Run 8								
1 -5.	0 -7.8	0.349643	0.302683 -0.001365		-0.000400	0.003344	14.0	-0,35	0.297	ċ
2 -5.	0 -6.5	0.031727	0.000432 -0.001188	38 C-333260	C.339260 -0.399411	0.002413	12.0	J9.0-	00.0	Ö
3 -5.	0 -9.2	177790.0	1 0.003868 -C.301843 0.000C83 -0.330422 0	13 0.000083	-0.000422	601433.0	16.0	-0.25	0.300	ö
4 -5.	0 -10.2	0.075513	0.005012 -C.0022	101050.0 00	-0.000431	C. 004774	17.0	0.0	00.00	ö
5 -5.	0 -1018	0.083939	0.306477 -0.0025	191500.0 91	-0.303503	0.005633	18.0	0.15	0.300	ö
6 -10.	0 -13,3	0.040517	0.004937 -0.0006	15 -0.000317	-0.000534	0.003784	16.0	-0.80	0.299	ö
7 -10.	0 -14.8	3.056855	0.008451 -0.00080	38 -0.000598	-0.03060B	0.005334	18.0	-0.45	0.300	ö
8 -10.	0 -14.1	0.049353	0.306779 -0.6336	695000.0- 15	-0.000533	0.004574	17.0	-0.70	0.301	Ö
9 -15.0	0 -17.6	0.317051	0.002391 -0.0305(35 -6.300339	-0.00000-	6927000	16.0	-1.05	0.299	ċ
10 = 15.	0 -18.8	0.033473	0.006913 -0.00034	19 -0.303868	-0.003436	0.004328	18.0	-0.95	0.301	ċ
11 -15.	0 -1914	3.041133	0.009203 -0.000020	2601000- 29	-3.000455	0.005129	19.0	-0.95	0.300	ö
12 -17.	0 -20.5	3.922761	0.004843 -0.00010	32 -0.303825	-0.030253	0.303521	18.0	-1.15	0.299	ö
13 -17.	0 -21.1	0.028974	0.006998 6.0001	911100.0- 61	-0.000374	0.004181	19.0	-1,05	0.300	ö
16 -17.	0 -21.5	0.037228	0.009667 0.0001	23 -0.001422	-0.000489	0.005098	20.0	-0.95	.0.300	o
15 -17.	0 -20.0	0.015199	0.302473 -0.0933	769000-0-10	-0.000268	0.002751	17.0	-1.15	0.298	Ö
16 -17.	0 -19.3	0.007663	0. 10048 - C.SOSSS - D.OCC230 - D.GOSSB	250-0- 60	-0.0002HD	901200	14.0	50	0.298	c

095		M(1.0,9	0.0	6.0	6	6.0	6.0	6	6.0	6.0	ò.0	6.0	ŏ.0	6.0	6.0	•
48-FOOT TAPERED-TIP BLADES, $\mu = 0.30$, $M_{(1.0.90.)} = 0.95$	•	=	0.298	0.299	0.299	0.299	0.298	0.297	0.297	0.297	0.297	0.297	0.298	0.298	0.297	
M(1,0,		∧ 1s	-0.12	0.12	00.0-	00.0-	0.12	0.12	00.0	-0.12	00.0	00.0	-0-24	-0.12	-0-24	
0.30,	•	₽° °	14.0	15.0	16.0	16.5	12.0	13.0	14.0	15.0	12.0	13.0	13.5	14.0	14.5	•
ES,	(ь/o ₀	160800.0	0.003730	0.004318	0.004641	0.002306	0.002720	0.003124	0.003599	0.001968	0.002247	0.002514	0.002761	0.003057	Contract of the latest services of the latest services of
IP BLAD		C2/0 C2/0	-0.000559	-0.000562		-0.000571	-0.000436	-0.000395	-0.000358	-0.000078	-0.000509	-0.000354	-0-000011		-0.000114	
APERED-1		C 26/9	-0.000306	-0.00383	-0.000490	-0.007490	-0.000274	-0.000,45	-0.000212	-0.000354	0.000013	-0.000142	-0.000139	-0.000120	3 -0.000131	The second secon
-FOOT TA		$C\gamma/\sigma$	-0.000641		-0.000935	-0.000957	-0.000540	-0.000779	-0.001010	-0.001302	-0.001317	-0.001393	-0.00170	-0.00184	-0.00203	
'D. 48		c_{D}/σ	å	a	a	0.005314	0	ò	å	d	ė	-0.001733	001136	001281	-0.001057	a special contract from
TABLE V-13. CONT'D.	15	$c_{\rm L}/\sigma$	0.049546	0.060165	0.069405	0.073377	0.041884	0.052528	0.061069	0.069888	0.057761	0.070441	0.072013	0.078514	0.083275	
: V-13.	Rui	σ	7-8	-9.3	-10.0	-10.2	-5.2	0.9-	-7.0	-7.5	-3.0	-3.5	-4.2	. 4	1.4-	
TABLE	E 274.	PT. α_S	-5.0	-2.0	-5.0	-5.0	-3.D	-3.0	-3.0	-3.0	å	å	å	å	•	
	Test	PT.	1.8	19	20	21	22	23	24	52	26	27	28	29	30	

	•	,	ċ	ċ	ċ	ċ	ċ	• •		• •	ė	ċ	ė	ė	ċ	ċ		ä	.1	1.002	i	i	••• •	ė	1.000	-
1	0.309	•	ċ	01870		ċ										0.308			0.30	N.30		0.304				0.303
	-0.80	-0.80	-0.60	-0.45	-0.45	-0.35	-0.80	08.0-	-0.70	-0.60	26.0-	-0.95	-0.80	-1:05	-1.05	-0.45	-0.45	-0.60	-0.45	-0.25	-0.10	-0.45	-0.80	-0.80	-0.80	09.0-
:	12.0	17.0	13.0	14.0	15.0	16.0	14.0	15.0	16.0	17.0	15:0	16.0	17.0	0.41	13.0	13.0	3.0	13.0	14.0	15.0	16.0	16.0	15.0	14.0	13.0	13.0
	0.002870	0.002857	0.003216	0.003626	0.004182	0.004711	0.003415	C*003940	0.004601	0.005302	ċ	Ī	ċ	0.002845	0.002926	0.003062	0.003355	0.003461	0.003866	0.0044.25	0.004965	0.004803	0.004174	0:003519	0.003134	0.003516
	-0.000477	-0.000500		-0.300829	-0.000894	-0.000802	699000-0-	-0.000101	-0.000844	-0.001114	-0.000627	96900000-0-	118000-0-	-0.000418	-0-000632	-0.000113	-0.000808	-0.000698	-0.000767	-0.000832	-0.000491	-0.000664	-0.000699	-0.000542	-0.000567	-0.000687
		0.000165		0.000067	•	-0.0CC079	•		-0.000374	•	-0.000376	-0.000493	-0.000672	-0.000282	9	Ü	0.000312	Ĭ	-0.0000-	-0.000366	. 0.000065	-C.000445	-0.000368	-0.000316	-0.000301	-C. 000048
	-6.091252	-0.001064	-0.00107	-0.001303	-C.001232		-0.000692		-C-000773			-0.000534	-C.030547	-0.000576		-0.001710		-0.000987	-0.001026	•		-0.000623	-0.000481	-0.000414	-0.000338	-0.000872
	000	-0.000282	1	0	0	0:00	0.00	C.002	0	0.005	0	ဂ		ှ	00.0	- (0-00	1	0.001107	_		0.003988	0.002597		0000	0.000282
1.1 u	0.032471	- 0.026653	0.035456	0.045178	0.053029	1.0092.0	0.029126	- 0.037116	0.046723	0.055362	0.0222260	70.030262	0.039036	0.013491	0.020624	0.352676	0.054232	0.038219	.0466	ဂ	0.062730	0.347482	0.039178	0.029298	.02293	0.038329
.0 Run	1-9-	6.9-	-7.2	-7.9	9.8-	-9.5	-1006	-11.2	-11.8	-12.5	8-61-	-1403		-13.2	6*6-	1-9-	1.4-	-7.2	-T.T	-8.5	-9.5	-11:8	-111-1	-10.4	8.6-	-7-1
t 288	-5.0	0.9-	0.9-	0.9-	0.9-	0.9-		0.6-	0.6-	-9.0	-12.0	-12.0	-12.0	-12.0	-9.0	-3.0		-6.0	-6.0	-6.0	-6.0	0.6-	0.6-	-9.0	-9.0	-6.0
es	_	N	m	4	'n	•	_	8	•	0	—	7	m	4	s	9	_	80	•	0	_	7	<u>س</u>	•	S	۰

48-FOOT TAPERED-TIP BLADES, μ = 0.30, $M_{(1.0, 90.)}$ = 1.0

1.0		M(1.0,90	0.994	066.0	0.989	0.989	0.988	0.987	0.988	0.987	0.987	0.986	986-0	0.996	966.0	0.995	3.995	0.994	0.993	0.993	0.993	0.995	0.990	0.994	0.997	0.997	0.996	0.999
= (*06	•	Ħ	0.301	0.302	0.302	0.303	0.303	0.304	0.304	0.304	0.308	0.305	0.306	0.301	0.301	0.301	0.302	0.302	0.301	106.0	0.301	0.300	0.302	0.300	0.299	0.299	0.299	0.297
M(1.0, 90.)		۸۱s	00.0	00.0	0.24	0.12	0.24	0.24	0.36	0.36	84.0	84.0	84.0	0.12	84.0	84.0	09.0	0.60	0.72	0.72	84.0	09.0	0.12	0.24	0.24	0.36	0.00	0.24
0.30,		_o	12.0	12.5	12.0	12.0	12.0	12.0	12.0	12.0	12.5	13.0	14.0	15.0	13.0	14.0	14.0	15.0	13.0	12.0	11.0	10.0	13.0	12.0	11.0	10.0	11.0	10.0
BLADES, $\mu =$		CQ/9	0.002381	0.002462	0.002512	0.002616	0.002637	0.002695	0.002676	0.002617	0.002756	0.003027	0.003530	0.004274	0.003162	0.003598	0.003381	0.003844	0.002836	0.002409	0.002448	0.002220	0.003098	0.002861	0.002576	0.002415	0.002329	0.002145
		Cm/σ	-0.000547	•	'n	~	-0.000323	-0.000413	-0.000328	-0.000499	-0.000305	-0.000426	-0.000559	-0.000609	-0.000496	-0.000594	-0.000462	-0.000595	-0.000397	-0.000412	-0.000359	-0.000371	-0.000630	-0.000426	-0.000333	-0.000422	-0.000106	-0.000475
TAPERED-TIP		01,00	0.000161	0.000207	0.000171	9600000	0.00000	0.00000	-0.000057	_	-0.000185	-0.000138	-0.000209	-0.000335	-0.000259	-0.000271	-0.000390	-0.000499	-0.000276	-0.000223	-0.00004	0.000023	0.000013	-0.00000-0-	-0.00000-	0.000000	0.000229	0.000159
48-FOOT		C_{γ}/σ	-0.001402	-0.001565	-0.001260	-0.001006	-0.000751	-0.000635	-0.000465	-0.000254	-0.000184	-0.000276	-0.000350	-0.000487	-0.000127	-0.000136	0.000065	0.000177	0.000147	0.000065	-0.000238	-0.000268	-0.000897	-0.000766	-0.000587	-0.000520	-0.001257	-0.000951
•		C_D/σ	-0.002587	-0.002655	-0.001661	-0.000865	0				0.000566		0	0	0.000788	•		0	0	-0.001142	-0.001082	-0.001924	0.000066	-0.000640	-0.001096	-0.001576	-0.002989	-0.03010
4. CONT'D	1 12	C1 /9	0.059227	0.063700	0.052312	0.046231	0.040948	0.034551	0.030143	0.025232	0.030834	0.035733	0.044562	0.054968	0.030972	0.040470	0.030289	0.038256	0.020039	0.011824	0.017183	0.009154	0.052279	0.042503	0.032503	0.023706	0.050257	0.040680
TABLE V-14.	0 Run	g	-2.A					-6.2	6.9-	-7.8	-8-1	4.8-	0.6-	10.5	0-6-	-9.7	-11.3	-12.0	-10.6	-10.1	-6.7	-6.3	9-5-	6.4-	-4.2	-3.5	-1.6	-1.0
TAB]	274.0	8	,	ċ	0.1-	-2.0	-3.0	-4.0	-5.0	-6.0	-6.0	0.9-	-6.0	0.9-	-7.0	-7-0	-0-6-	0.6-	-9.0	-9.0	0.9-	-6.0	0.6-	-3.0	-3.0	-3.0	•	•
	Test	PT.	-	4 0		٠.			_	• •		10	-	17	13	1	5	9	17				21				'n	56

		TABLE	E V-15	. 48-FOOT		TAPERED-TIP	P BLADES	, µ = 0.	35, M	M(1 0 90	. = 0.	85
Test	288.0	Run	. 17									
P.	ας	α _C	C1/0	c_{D}/σ	6/ئح	C 210	Cm/0	P/07	φ°	A S	ı	M(1.0,9C.)
-	-5.3		0-023610	0.000516	-0.300797	421000-0	9	0.001898	12.0	-0.60	0.347	6.849
7	-5.0	-6.1	.001	•	-0.000589	0.000122	?	0 001369	0.01	-1.03	0.346	0.840
m •	-5.0	-11-3	0.056771		-0.000882	0.000524	-0.00086	0.003075	9.0	5.0	0.346	
ř 4	200	0.61-	100	000000	2010300	20000	1	A 4 4 A A	000	200	0.50	
1	-10.0	-14.7	030	003654	-0.000058	-0.006373		C. C03073	16.0	-1:03	0.347	0 0
, ,	-13.0		0.045940	207054		-0-505611	-0.000737	064400.3	18.0	-0.95	946	0.851
• •	-10.0	-17.8	090	010363		-0.000924	157600.0-	0.0900.0	20.0	-0.70	0.346	0.850
þ	-12.0	-16.2	0.020177	0.002349	د.		300468	0.302571	16.0	-1.05	0.347	0.848
01	-12.0	-17.7	.03533	0.006238		-		0.004027	18.0	-1.05	0.347	0.848
-	-12.0	-19.2	. 34842	0.009760	H i		259000	0.03553	20.0	-0.80	0.346	0.850
12	-15.0	-19.9	.0208	0.003682		-		0.003124	18.0	-1.05	0.346	0.920
13	-18.0	-21.4	.03354	0.037583	7	-0.000957	-0.000471	0.004705	20.0	-0.95	0.347	0.846
14	-15.3		C.005736	-0.030667	1	-0.000327	-0.000236	0.001562	16.0	-1.05	0.346	0.849
115	-12.0		.00318		0.000293	-0.333230	-0.000552	3.301207	14.0	-1.15	0.347	0.849
97	0.0		.06768		-0.302576	20200000	-0.000641	0.002186	14.0	-0-45	0.346	0.820
17	0.0		.082		-3.033145	0.000357	-0.300761	0.003168	16.0	-0.10	0.346	0.849
18	0.0		.09115	0.002701	-0.003595	0.000576	-0.000125	0.004880	18.0	0.0	0.346	0.849
61	0.0	-3.9	05	-0.000953	-0.302197	0.000643	-0.000781	0.001630	12.0	-0.60	0.346	0.848
20	2.0	-2.1	.06188	•	-0.03126	18006.	-0.000813	0.001216	12.0	-0.35	0.346	0.049
21	2.0	-3.0	.96894	.00280	-0.203491	0.000829	000	0.001356	2.0	-0.25	0.346	0.847
22	2.3	•	.38984	.00136	-0.304242	•	-0.000225	0.303067	0.0	0.15	0.346	0.820
23	2.9	•	40.	-0.032526	-0-002663	0.000712	-0.000696	0.001040	10.0	-0.60	0.347	0.847
	i		•									
Test	274.0	Run	9								•	
-	•	1.0	.00413	۲	٩	0.000160	•	0.001242	0.0	0.00	P . C	100.0
N	•	9.0-	.02144	7	-0.001168	0.000164		0.001100	0.0	2000	- 136.0	2
M ·	0	-2.3	860	-0.001899	-0.001471	0.000211		0.001589	12.0	000	0.352	0.0
•			07488	i	-0.007636	0.000291	-0.000629	0.002261	14.0	-0.36	0.351	0.046
i id	0.6-		.00802	7	-0.000482	0.000110	-0.000672	P	10.01	0.36	0.351	240
1	0.5-	-	.02774	0	-0.000610	-0.000015	-0.000595		12.0	0.36	0.352	1 - 0
•	10.0		.04612	0	-0.000855	-0.000093	-0.000884		14.0	0.12	0.352	-
ъ	-5.0	1	.06182	; ;	-0.001180	-0.000207	166000.0-	1	16.0	0,0	0.352	
10	-10.0		.03542	Ö	0.000016	-0.000491	-0.000295		16.0	90.0	10.00	
11	-10.0		-01736	Ċ	1 0.000147	-0.000277	-0.000387	i	14.0	9.48	0.349	
21	0.61-	-11.4	.00082	į	E60000-0-	0.000125	969000-0-		12.0	200	A	
13	-15.0		.00838	7	0.000494	-0.000226	•		000		100.0	
◆ [-15.0	- 1	.02403	0.004364	0.000694	116000.0-	- ;'	- !	78.0	2.0	12:451	.0.851
51	-10.0		02120	÷ (0.00000-	> <		•	7		0.351	
0 1	0.0		10110.	-	70.00		• •	0.000878	0	0.12	0.351	•
	7.7		.03293	7	1000				,			

	M(10,90.)	0.942	0.943	0.938	0.335	146.0	0.933	746.0			•	•	•	•	•	•	•		0.941	0.942					0.955	0.950	0.949	0.951	0.953	0.455	26.0	0.453	0.00	0.051	9.00	0.953	0.947	0.950	0.951
76.0 =	Ħ	3.5	0.350		35	35	9				۳	٠.	٠.	٠,	۳.	٣.	۳.	9	0.354	۳.			= 0.95			•	•	•	•	•	•	0.300	•	•		,	•	•	0.301
.06,00.	Als	9	0.72	0.72	0.72	9.0	2.0	0.00			84.0	0,36	84.0	0.60	0,36	0.12	0.24	917	09-0	09.0			06	•	02 0-	09.0	.0.25	-0.10	-c.10	0,25	0	0.15	;	n	۰,	0.35	2	2	0
5, M(1.0,	°°	-3	14.0	ก ง	QΨ	0 3	•	つ			14.0	13.0	12.0	12.0	12.0	.12.0	11.0	11.0	14.0	13.0			35, Mr	•			Š	•	7	œ	۲.	18.0	· 0	, "	, ,	•		•	12.0
$\mu = 0.35$,	C _O /q	0.003040	0.002215	0.002794	0.003369	0.901859	646700 0	866200.0			00308	0.002608	0.002191	0.002216	00219	0.001811	0.001619	0.001877	0.002270	0.001777			μ = 0.		.00205	.001	.00338		.00472	.00562	.09482	69500	71100		•	00487	000		000
BLADES,	C*/0		000548	000 41		966000	0.0000				-0.000568	-0.000807	0093	-0.000575	-0.000587	-0.000384	-0.000453	6		.00074			BLADES,		0,000293	_	-0.000680	-0.000782	-0.001020	-0.000729	-0.000885	-0.000827	0150000	014000-0-	-0.00094		-0.000626	00013	
TAPERED-TIP	C 2/0	-0.000130	0.000231	0.000335	0.000579			. <20000.0			-0-	-0.000058	0.000029	0.000137	0.000170	12000	·			-0.0000			RED-TIP		0.000350	.000303	.000352	.000283	.000381	.000287	•00000•	0001000	26000	. 00000	10000	000511	.000722	.000771	.000926
	$C\gamma/\sigma$.000615	'n	.000283	.000450	.000535					-0.000666	-0.000628	-0.000439	-0.000683	-0.000871	10000	44600	00000	40000	0.000045			FOOT TAPERED-		-0.001621	o		-0.002457	õ	ō (ŏ,	-0.002566	ŠC	-0.002433	-0.003650		-0.003250	-0.003476	0038
48-F00T	C_D/σ	20	1000	0015	1600	D (6100	000			406100	0.000428	000321	0.000205	46 6000 0	200000	0.000.00	5555555		-0.001427			48-F0		3	0.001	• 001	.002069	.003008	900	.004	o c			0-00-0	000	0.00855	.00938	0.00976
	9 C1/9	04353	0.016497	02404	03230	00662	61240	03560		n 10	0.04210	03413	02476	61140	74460	66440	63000	1010	76700	0.007322			.E V-17.	0	ò	02499	07126	01198	08581	09104	07756	01085415	70160	76440	41250	9758	06064	07109	0852
ΤA	.0 Run αr	-9.2	-13.0	m,	-14.5	8	0	1.8-		. 0 Ru	0	-8-2	,	• -	•	•	•	; .		-12.0		j	TABLE		1-4-	-3.5	6.9-	-7.7	- 8 - 5	-9.2	846	-10.5) W	16.2		10	4.1	354	1.7
	Test 274. PT. α_c	'	2 -10.0	7	7	7	•	'		Test 274			٠ ٧	1	ו ייני ו	ה י	0	•	•	0.01-	!			Test 288	3.0	-3	-3.	-3	Ë	ë,	֓֞֝֞֜֝֞֓֞֝֓֓֓֓֓֓֓֓֓֓֟֝֓֓֓֓֓֓֓֟֝֟ ֓֓֞֞֞֞֞֞֓֓֞֓֞֓֞֓֞֓֓֓֞֓֓֞֓֓֓֓֓֓֡֓֓֓֡	י מ	6		• c	9 6	5.		

0.95	:	(1.0,90	0.952	0.952	0.953	0.952	0.951	0.952	0.951	0.949	0.0	0.959	0.95	0.952	0.953	<u>.</u>		0.946	0.94	0.946	0.94	0.0	0.946	0.94	0.0	0.94	0.94	0.04	0.947	0.94	96.0	0.04	0.046	0.943
= (.06	. :	4	0.350	0.350	0.350	0.350	0.350	0.351	0.351	0.349	0.351	0.350	-0.352	0.352	0.352			0.350	0.351	0.352	0.350	0.351	.0.352	0.353	0.351	0.352	0.352	0.350	.0.351	.0.352	0.351	0.351	. 0.351	0.353
M(1.0, 90.)	•	A1s	-0.95	-0.80	-0.60	-0.95	-0.95	-0.70	09.0-	-0.95	-1.05	-0.80	0.80	-0.95	-0.70			-1.15	-1.02	-1.15	-1.25	-1.25	-1,25	-1.25	-1.25	-1.15	-0.70	-0.35	-0.45	-0.25	-0.80	-0.45	-0.35	-0.10
0.35,	•	P ₀	13.0	14.0	14.0	15.0	14.0	16.0	18.0	12.0	11.0	16.0	17.0	18.0	19.0			16.0	18.0	19.0	16.0	13.0	19.0	20.0	14.0	14.0	16.0	18.0	14.0	16.0	12.0	12.0	14.0	18.0
BLADES, $\mu =$		ار ا ا	0.032520	0.002841	0.003231	C-003638	0.003157	0.334248	0.005531	0.002282	0.001992	0.003847	0.004478	0.005135	.00608			0.003405	0.004001	0.005523	0.002349	0.004367	0.004718	0.005475	3.002138	0.002618	0.004213	0.005617	C.002948	0.004019	0.002353	0.002312	0.002670	0.003905
	,	b/₩)	-0-300663	-0.000629	-0.000724			-0.000793	-0.000935	-0.000618	-0.000481	-0.000585	Ŷ	-0.000690	-0.000684	1		-0.00.0568	+0.0000-0-	င္	•		0	-0-		ė	o o	o o	ç	°	ė	ç.	ė	-0.000327
TAPERED-TIP	•	D/20	0.000228	0.000259	0.000260	0.000139	0-1000-0	-0.303087	-0.000247	611000.0	C. 00C129	-0.000209	-0.000395	-0.000620				-0.000167	-0.000541	-0.00060	-0.0colo9	-0.000554	-0.000663	-0.30100-	0.300083	-0.0CCC12	0.000130		0.000568	0.000578	0.000592	.00000	.00078	0.000776
48-FOOT 1		6/7	-0.301281	-0.031436	-0.031703	-0.001519	-0.001157	-0.001222	-0.001482	-0.000932	-0.000894	-0.000529	-0.030576	-0.000493	-6.000939	<u>:</u> -		-6.330972	-0.000893	-0.000688	-0.001054		-C.000819	-0.000120	-0.031349	-0.033848	-0.001729	-0.332254	-0.002381	-0.003070	-0.032061	-0.032742	٥.	-0.003768
•	ď.	c_{D}/σ		0.000390	0.300977	•	•		•	-0.000447	-0.061367)		196100.0	0.005603	•		0.003490	•	0.007096	•		•	•	•	•	ċ	•	.3026	-0.001686
CONT.	9 Cont'd	$c_{\rm L}/\sigma$	0.031134	0.039128	0.047723	0.054762	0.035794	0.052213	0.067350	0.018210	1 5 9 6 0 0 . C	0.034463	0.041936	0.049159	0.058559	6.03.00.00	10	0.023934	0.043197	861990.0	0.008784	0.024610	0.030797	0.037121	0.037753	.01753	.06271	0.076562	.06237	.07916	.0452	.05888	.07344	0.088333
LE V-17	0 Run	α	-6.7	1	_				~	_			1 .	-15.0	-15.6		.0 Run	-15.2	3	-17:2	7.5	-	-19, 7	-20.2	-13.7	-12.0	-9.7	~	•	إهـ	3		•	-6.2
TABLE	t 288.0	ας	-5.0	-5.0	-5.0	-5.0	-7.0	-7.0	-7.0	-7.0	-7.0	-10.0	-10.0	-10.0	-10.0	1	t 288.	-12.0	-12.0	~	-15.0	-15.0	S	S	12	0	5	-5.0	2	0-2-0	N	0.0	0	
	Test	F.	11	8	<u>6</u>	2	21	22	23	54	25	56	27	28	29	1	Test			0	2	Ξ.	7	E .	* (5	9	<u>~</u> :	8	2 2	2.0	7 (7,5	53

	M(1.0,90.)	99	966-0	ם פי	8	9		6	3 6	38	66.	ຣີເ			6	9	86		00	S	9	Ş	ခိုင်			.1	1.017	92	.02	25.	20.	.92	20	20.	1
) = 1.0	=	0.353		, W	.35		Ä	35	J. 14	3	.35	.33		, W.	.35	.35	.33		,	.35	.35	50			= 1.025		0.332	, 6	.35	.35	Ü				Ì, .
(1.0, 90.	-	-1.05	-0.80	-0.60	-1.15	-1.15	-0.95	-1.25	1.15	-1.05	-1.05			-0.95	-0.80	-0,70	-0.45	8.0	-0.95	-0.60	-0.35	-0.45	-0.70		(06 . 0) -];	-			-0.70		-
35, ¥(1	$oldsymbol{artheta}_{oldsymbol{o}}$	15.0	. o i	່. ຕ	اما	9 ~	10	j.	2.4	·.	ω.	15.0	ďα	οœ	.	S	ø,	ກໍເ	i -	3	'n	ຕັ	2		35, M(1, 0)		1:	-		4	4		16.0		1
$\mu = 0$.	۵/۵	0.004215	0.005	0.003	0.002	400.00	00.0	0.002	700.0	0.00	0.004	0.00	0.005	0.00	0.00	0.004	0.005	0.003		0.004	0.00467	0.00367	0.003412		$\mu = 0.3$.0050	.00522	.00389	.00335	-00436	.00363	0.005289	.00357	c + 00 •
BLADES,	C.W/Q	00	00	000	000	200	000	0.000		000	8	0.00		200	0.001	.001	0.001			0.001	00.0	00	9		BLADES,		3.0006	5000	90000	0.000	90000	0.000.0	0.0	400000	
ED-TIP	C4/4	-0.000219	00000	60000	10000	200371	0.000345	11000	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	185000	0.00072	000311	000645	200834	000229	811000	101000	221000	251000	000539	00048	19000	00053		-TIP		0.000682	1,000.0	0.000480	0.000441	0.000366	0.000387	0.00058	0.000711	5
TAPERED	C_{γ}/σ	-6.000727	0.0008	00000	0.3006	0.0005	0005	0.0007	50000	9000	9.0005	9000-0	2000.0	90000	0.0012	0.0013	0016	1100.0		0.0021	.0021	0.0020	0017		T TAPERED		0.000149	2000	460000-0	0.000037	0.000209	11000-0	0.000182	200015	
48-FOOT	CD/a	0.000827	00	20	005	96	000	.001	200		.002	003	600		.000306	.000467	.001236	196000	0.002558	0.001	100.0	.002	200 002		48-FOOT	•	.002486	002440	00000	-002132	.000529	809100	- 656100.0	.00159	\$ 5 0 0 0
c v-18.	12 C _L /σ	0.033323	.04208		.00903	.02514	16710.	.01043	18700	.01840	.02639	.00306	96860		.04186	.05130	.05970	17560	16201 101810	.05944	.06756	.05092	0.043578		V-19.	15	.03326	03345	019153	.012027	.02756	<1610°	nin.	.01173	10170
TABLE	0 Run α _C	7.	(N)	610	0	-14.6	-14.0	-13.2	-12.5	-17.7	-18.4	-16.4	-16.0	-17.8	-8.1	-8.9	-6-1	4.7-	-04.	6.9	-6.5	•	6.4.	į.	TABLE	0 Run	15	٠. د ا ع	13		•	e -	4 2	10:	•
	t 288. αs	0.0	0.6-	0.61	0.6	-12.0	-12.0	-12.0	-12.3	-15.0	-15.0	-15.0	-12.0	-14.0	9-	G.g-	0-9-	0.9	0.01	-3.0	-3.0	÷	0.6			t 288.	12.	2	12.	5	6	•	0	2:	• }
	Tes		m	4 4	۰	~ 0		2	4:	13	5	12	9!	4~	2 5	77	17	25	77	52	76	27	8 7 7	}		Tes	-	7	n 🕨	- I	9	~ a	مام	21	1

E 1.023
!!
90
(1.0,
0.35, M
#
BLADES,
TAPERED-TIP BLADES, $\mu = 0$
48-F00T
CONT'D.
TABLE V-19.

M(1.0,90.) 1.022 1.024 1.023		- 9 s	000000000000000000000000000000000000000
0.351 0.351 0.353	000000000000000	0.401 0.401 0.401 0.85	0.400 0.800 0.800 0.800 0.800
A1s -1.05 -0.95 -1.05	000000000000000000000000000000000000000	0.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
0.01 18.0 19.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14.0 15.0 16.0	
CQ/0 0.004974 0.005001		0.002617 0.002995 0.003504 $\mu=0.40$	0.002682 0.003519 0.004812 0.004855 0.004855 0.003415
CANO 1 -0.000405 6 8 -0.000586 3 -0.000390	\$604-4060 \$604-4060 \$604-4000 \$604-4000 \$6	1 -0.000816 1 -0.000697 2 -0.000791 BLADES,	-0.700660 -0.55724 -0.559767 -0.50592 -0.50841 -0.50652
C2/9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00010 0.000010 0.000001	0.00163 0.00164 0.000182 0.000535 0.000687 0.000688
Cγ/σ 0.000275 -3. 0.000278 -0 -0.030060 -0	1.4. E.K.E.I.	-0.001356 (-0.001890 -0.00	-0.CC1126 -0.CO11481 -0.001611 -0.000205 -0.000153
CD/σ CD/σ 3.002357 0.001986 0.001986	1 8000000000000000000000000000000000000	-0.000207 0.000259 0.000684	0.0004116 0.000413 0.004413 0.007126 0.005997
15 Con C _L /G 0.026347 0.031172 0.029031	0.029193 0.028193 0.024789 0.0134696 0.029574 0.052280 0.0591270 0.0581270 0.0159835 0.015128	15 0.053944 0.060952 0.070202 V-21.	5 00.00.039 00.0039 00.0038
Run αC -18-1 -16-8 -15-9	10.0 11.0 11.0 11.0 11.0 11.0 11.0 10.0 1	4.0 Run 0 -1.1 0 -8.7 0 -9.5	m
Test 288.0 PT α_S 12 -15.0 13 -13.0 14 -13.0	Test 274	Test 274 31 -2.0 32 -2.0 33 -2.0	Test 288

0.85	1	W(1.0	0.84	0.85	0.85	0.84	0.85	0.84	46.0	0.85	0.85	0.84	0.84	0.84	0.84
= (0	•	Ħ	0.401	-0.396	0.393	0.399	966.0.	0.398	0.400	966.0.	0.398	0.399	866-0	0.398	0.398
48-FOOT TAPERED-TIP BLADES, μ = 0.40, M_{C1} 0 90) =	•	۸ ۱۶	-0.60	-0.45	1.40	-1.05	0.70	-0.95	-1.05	-0.45	-0.25	-0.25	上。	0.15	-0.35
0.40,		ø°°	18.0		20.0	8.0	12.0	10.0	8.0	17.0	18.0	16.0	17.0	18.0	14.0
ES, \(\mu =		6/0 ₀	9.004854	0.005704	09990000	0.001326	C.001950 -	0.001537	0.001451	0.004190	0.005317	0.003334	0.004182	0.005188	0.002217
TIP BLAD		C24/9	0.000536 -0.001161		0.303360 -0.301339	-0.001158	-0.000340	-0.000144	-0.000159	0.000052 -0.000710	-0.000657	-0.300698	0.000848 -0.000786	-0.000711	0.000971 -0.000722
PERED-		C*/9	0.000536	0.000369	0.303360	0.000459	0.000723	0.000757	0.000520	0.050652	0.000639	0.000830	0.000848	0.031015	0.000971
-FOOT TA		C_{γ}/σ	-0.002899	-C.002909	-0.03104	-0.001617	-0.032479	-0.032198	-0.031868	-0.003413	-0.003762	-0.004335	-0.034628	-0.004998	-0.004007
¹D.		C_{D}/σ	0.002944	0.004087 -C.002909	0.00500	-0.332949 -0.031617	-0.001147	-0.001475	-0.001746	0.001158	0.002159 -0.003762	-0.001384 -0.004335	-0.000399 -0.004628	0.030599	-0.002381 -C.004007
. CONT	7	ر رار	0.076035	0.081044	0.085398	-0.001140	0.043550	0.027193	0.010925	0.080477	0.084173	0.083656	0.087839	0.392076	0.071532
TABLE V-21.	0 Run	g	-12.2	-13:1	-14.0	-313	-5.0	-3.5	-2.0	6.6-	-11.0	-7.6	-8+8	1.6-	1.6-
TABL	288.0	αS	0.4-	0.4	0.4-	0.4-	-2.0	-2.0	-2.0	-2.0	-2.0	0.0	0.0	0.0	0.0
	Test	PT.	-4	! 7	m	4	1	9	P	iso	o.	01		12	13

		ò	ė	ė	Ö	ö	ŏ	Ö	٩	ò	Ö	ò	ŏ	ò	Ö	0	C
- 0.95		9.464	404.0	0.403	0.404	- 404.0	404.0	0.402	0.505	404.0	0.404	0.403	0 - 402	0.401	104.0	0.403	F 04 ° 0
. ('06 '0		-1.25	-1,15	-1.25	-1.25	-1,25	-1.25	-1.15	-1.25	-1.15	-1.25	-1.35	-1.35	-1.25	-1.25	-1.15	-1.05
M		15.0	16.0	14.0	13.0	15.0	16.0	17.0	18.0	19.0	14.0	17.0	18.0	19.0	16.0	14.0	2.0
48-FOOT TAPERED-TIP BLADES, μ = 0.40, M _(1,0,90,) = 0.95		0.033153	0.003801	0.002677	0.002235	0.002349	0.002997	0.003587	0.004371	0.005229	0.001716	0.002576	0.003244	0.003992	0.001663	0.003122	003440
LADES, μ		0.000015 -0.000510	-0.000378	0.000142 -0.000491	0.000167 -0.000265	-0.00CC29 -0.000289	-0.000302	-0.00333	-0.000301	-0.000720	0.000065 -0.000448	-0.000137	-0.000137	-0.000160	-0.000077	-0.000559	10 0 000301 -0 00000 0 000030 -0 000433 F 003440
SD-TIP B				Ì				0.001360 -0.000231 -0.000294 -0.000323	0.002680 -0.000377 -0.000302 -0.000301	0.003964 -0.000419 -0.000564			0.000067 -0.000369 -0.000449 -0.000137	0.001875 -C.000356 -0.000616 -0.000160	9 -0.303535 -0.000298 -0.000125 -0.000077	0-0.000098 -0.000198 0.000127 -0.000559	00000
TAPER		0.000248 -0.000476	0.001380 -0.000664	-0.000792 -0.000632	-0.001753 -0.000612	-0.000292	-0.000298	-0.000231	-0.000377	-0.000419	-0.003199 -0.000383	-0.000400	-0.000369	-C.000356	-0.000298	8610000-0-	
48-F00T		0.000243	0.001380	-0.000792	-0.001753	9 -0.001578 -0.000292	-0.000168	0.001360	0.002680	0.003964	-0.003199	-0.001550	0.000067	0.001875	-0.003535	-0.000098	404000
V-22.	1 13	0.026799	0.034482	0.019715	0.012847	0.011369	0.018260	0.025255	0.031335	0.038236	0.003491	0.039813	0.015745	0.022658		0.031850	007050
TABLE V-22	0 Run	-12.4	-13.1	-11.6	-10.9	-14.6	-15.2	-16.1	-16.8	-17.7	-13.9	-18.3	-19.3	-19.7	-17.8	8.6-	
	t 288.0	-9.3	0.6-	0.6-	6.6-	-12.0	-12.9	-12.0	-12.0	-12.0	-12.0	-15.0	-15.0	-15.0	-15.3	-7.0	,
	Test		7	<u> </u>	*	, Ku	9		· œ	0	2	-	12	F	1	15	

	M(1.0,90.)	10.451	0.651	0.650	0.650	0.650	•	0.648	9.648	-	,		_	0.652	0.650	0.648	0.640	0.649	0.646	0.648	0.648		0.648	0.648	0.648	0.648	0.646		0.646	0.646	0.646	2.645	0.644	19.0
0.65	7	0.508	0.508	0.509	0.509	0.510	9.509	606.0	605.0							0100	0.511	0.510	0.511	0.511	0.510	0.511	0.512	0.512	0.512	0.512	0.515	0.512	0.513	0.513	0.514	0.515	0.517	0.517
= (.06	۸۱۶	-0.36	-0.36	-0.24	-0.72	-0.24	-0.24	2.0	-0.12				76 0	95.0	25.0	17.0-	00.0	-0.60	84.0-	-0.60	-0.72	-0.60	-0.84	-0.84	-0.84	-0.84	-0.60	-0.96	96.0-	-1.2	-0.96	10.84	-0.24	09.0-
M(1.0, 90.)	θ°	12.0	14.0	16.0	10.0	15.0	o. e.	0.21	16.0				0	2.5	0.4	0.01	0.01	12.0	14.0	12.0	10.0	0.11	8.0	12.0	10.0	8	14.0	10.0	0.8	6.0	12.0	14.0	16.0	15.0
= 0.51,	6/05	0.002533	0.003467	0.004621	0.001939	0.003890	0.003393	0.002291	0.004588					0.003233	0.003707	0.004033	0.004705	0.002655	0.003418	0.002596	0.001984	0.002433	0.001716	0.002220	0.001730	0.001443	0.003260	0.001286	0.00000	0.000983	0.001975	0.003163	•	0.003932
BLADES, μ	$C_{\mathcal{M}}/\sigma$	-0.000416				-0.000685	-0.000528	-0.000254	0.000749					291000-0-	0.000-15	•	0.000154	0.000335	0.000418	0.000517	0.001272	0.000737	0.001086	0.00040	0.000572			0.000657		0.001469	0.001172	0.001122	0.00000	0.000526
	C. 26/0		0.000401 -	0.000365 -	0.000308 -			.000241	0.000036 -					٠.	0.000347	0.000047 -	0.000254 -	0.000449	0.000511	0.000239	0.000201	0.000620	0.000398	0.000160				0.000150		0.000599	0.000081	3.000790	0.000427	0.000045
4-FOOT-DIAMETER	C _V /q	-0 001362		-0.002382			•	-0.000650 -	-0.001530 -	-				-0.001795	-0.002071	-0.001934	-0.002539	-0.00218	-0.00277;	-0.002044	-0.001270 -	-0.002038	-0.001041	- "	i		_			-0.001962		-0.004445	-0.003656	-0.002650
34-FO	$C_{\rm D}/\sigma$	640100	0.001430	0000	02224	01306	01279		.000235				1	-001627	.001458	-00100-	.000716	.002552	.002402	.002635	.002662	.002532		004106	111200	003269	.003694	0.005593	140500	.004419	.006240	-0.005931 -		002497
E V-23.	1 23 C1/G	0.000	n 4					.020478	4590	ŀ			07		15328	0.051313	58421	13574	.057079	.043643	32804	38594	.019549	.056057		0.031124		0.054716 -	0.043638			.077860	.078046	.062101
TABLE	a Run	•	- X-0	13.5	-7.7	-12.5	-12.8	-10.9	-14.6			c	>	-10.8	-11.8	-12.7	-13.5	-8.5	-10.5	-8.5	9.9-	-7.7	-5.0	-7.3	-5.4	-3.7	-0-5	-4-1	-2.3	-0.8	-6.0	-8.0	-11.0	-11.4
	Test 274.0 \vec{P} i. α_c			-			9-0-9-		0.9-				במר ל	7-0-4-0	0.4-	0.4-			12 -2.0	13 -2.0	14 -2.0			17 0.		•	•		~		•		9	•

	:	۰(۱.0,9) س	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.54	0.54	0.54	0.54	40.0	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	
. 0.55	;	a .	0.652	0.653	0.653	.0.654	0.655	0.655	70.663	0.662	9990	0.663	0.665	999.0	999•0	999.0	999.0	999.0.	0.667	0.668	899.0.	0.667	0.670	999.0.	0.667	0.667	
= (.06		A I S	-0.48	09.0-	-1.08	- 1.20 ·	-0.36	09.0-	-96.95	-0.72	96.0-	- 4.24	-0.36	-0.12	0.00	0.00	-0.36	-0.84	-1.08	-1.32	-0.84	-0.84	-1.44	-1.56	-1.08	-0.96	
M(1.0, 90.) =	}	P ₀	12.0	10.0	0.8	0.0	14.0	12.0	-12:0	10.0	0.8	-1#.0	13.0	14.0	15.0	16.0	12.0	10.0	0.0	0.9	13.0	12.0	0.8	0.9	10.0	11.0	
= 0.66,		CQ/9	5.001777	0.001848	0.001524	0.001671	0.002615	0.001965	0.031746	0.001753	0.001519	0.002187	0.002088	0.002147	0.002643	0.002591	0.001785	0.001430	0.001184	0.001125	. 9802000	0.001613	0.000249	260000.0	0.000321	0.000875	
34-FOOT-DIAMETER BLADES, μ = 0.66,		C24/9	_	0.002152 (0.002000	0.001465 (0.004753 (_	_	0.001044 (m	ດ	_	-0.001733 (0.000049	_	_	0.000742 (_	0.001288 (0.002338 (0.001516 (_	0.001774 -(0.003084 (0.000961 (
TER BLA		C219	~	0.001644	0.000833	0.000963		8+5100.0	0.001025	0.001413 -	ı	0.001462	0.001638 -		0.001939 -	•	0.031209 -	0.001919	0.001905	0.000032	0.002114	0.000884	0.001132		0.001158	0.002201	
T-DIAME		C_{Y}/σ	0.003018	0.003125	0.002417	0.001786	0.004611	0.003623	0.002126	0.002139	0.302096	0.002909	0.001933	0.002052	0.002493	0.001935	0.001611	0.004032	0.003564	0.001829	0.005192	0.003877	0.004067	0.002248 -	0.004300	-0.005201	
34-F0		$c_{D/\sigma}$	0.005523 -	0.004954 -	-0.004698 -	-0.004042 -	0.006537 -	0.005892 -	0.005298 -	- 950500-0	0.004403 -	0.006305 -	0.006435 -	0	0.006586 -	0.006982 -	9.006364 -	0.006331 -	- 8109000-0	0.005342 -	- 690800.0	- 762700-0	0.007430 -	0.006952 -	0.008436 -	-0.009058 -	:
TABLE V-24.	1 27	C_{L}/σ	0.034002 -	0.029013 -		0.012812 -	0.042426 -	0.034672 -	9.025905	0.017451 -	0.011458 -	C.028681 -	0.020578 -	0.023335 -	0.028335 -	0.032147 -	- 177210.0	0.042321 -	0.035765 -	0.028333 -	0.051621 -	0.050186 -	0.047956 -	0.042675 -	0.053789 -		
TABL	.0 Run	g		. 7	_	'n	4	4	4			-11.7						:	-3.0					4		-5.4	
	274.0	ά		ċ	ċ	•	•	•	-2.0	-2.0	-2.0	-2.0	0.4-	0.4-	-4.0	-4.0	-4.0	2.0	2.0	2.0	2.0	2.0	0.4	•••	4.0	4.0	
	Test	PT.	'n	4	. ເ	•	-	•	•	CI	11	12	13	*	15	16	17	18	19	20	21	22	23	54	25	5 6	1

		TABLE	TABLE V-25.		OT-DIAME	TER BLA	DES, μ	$34-F00T-DIAMETER$ BLADES, $\mu = 0.79$, $M_{(1.0, 90.)} = 0.52$	M(1.0.	= (.06	0.52	
Test	274.	Test 274.0 Run 29	29 ו									
•	ó	-9.5	0.031178	-0.009999	-0.003442	0.001102	0.002000	0.001374	12.0	-0.48	0.785	0.52
۸ (Ġ	-8-3	0.030857	-0.009479	-0.004031	0.001343	0.002954	0.001111	11.0	96.0-	0.787	0.52
		-7.1	0.029576	-0.008726	-0.003761	n.002411	0.002489	0.001384	10.0	-0.96	0.786	0.52
• 0			0.023137	-0.007974	-0.002090	-0.000395	0.002025	0.001157	0.6	-1.08	0.787	0.52
` <u>-</u>			0.02088	-0.006787	-0.002337	0.000774	0.002071	0.001793	8	-1,20	0.787	0.52
2 :			0.039647	-0.010028	-0.003583	0.001255	0.002300	0.000779	10.0	-0.96	.0.789	0.52
12			0.035874	-0.009461	-0.004759	0.002092	0.002630	0.001067	0.6	-1.20	0.792	3.52
1 4		-4.1	0.040683	-0.007894	-0.003609	0.000732	0.005380	0.000680	8.0	-1.44	0.192	0.52
7		7.6	0.037808	-0-010249	-0.004786	0.001395	2.001554	0.001239	11.0	-0.72	0.192	0.52
· ·		6.4	0.039812	-0.010278	-0.004718	0.001879	0.001203	0.000606	10.0	-1.20	0.789	3.52
1 2		-7.1	0.027435	-0.008690	-0.008690 -0.003789	0.002183	0.001909	0.001768	10.0	-1.32	0.791	0.52
)	;											:

Unclassified

Security Classification			
DOCUMENT CONT	ROL DATA - R	k D	
(Security classification of title, body of abstract and indexing a	annetation must be a		
1. ORIGINATING ACTIVITY (Corporate author)			ECURITY CLASSIFICATION ASSIFIED
Bell Helicopter Company		25. GROUP	
Fort Worth, Texas		Į	
S. REPORT TITLE		<u> </u>	
WIND TUNNEL TESTS OF FULL-SCALE ROT- TIP MACH NUMBERS AND ADVANCE RATIOS		ING AT H	IGH ADVANCING
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final			
F LIIck L S- AUTHOR(S) (First name, middle initial, lesi name)			· · · · · · · · · · · · · · · · · · ·
Watson H. Tanner James F. Van Wyckhouse			
S. REPORT DATE	74. TOTAL NO. O	PAGES	75. NO. OF REFS
July 1968	150		15
DA 44-177-AMC-291(T)	SA. ORIGINATOR'S	REPORT NUM	BER(S)
DAA 102-67-C-0018	USAAVL	ABS Tech	nical Report 68-44
IF12590lA13903	1		
• IF125901A14231	Sh. OTHER REPOR	RT HO(S) (Amy o	office numbers that may be ensigned
4	BHC Re	eport 576	-099-001
This document has been approved for pub is unlimited.	olic release	and sale;	its distribution
II. SUPPLEMENTARY NOTES	112. SPONSORING	MILITARY ACT	IVITY
			ion Materiel ort Eustis, Va.
	Laborato	ries, ro	ort Eustis, va.
13. ABSTRACT			
A joint U. S. Army Aviation Materie Helicopter Company experimental inv of rotor blades was conducted in the Tested were: (1) production UH-1D (blades, (2) modified UH-1D blades re (3) UH-1D blades reduced in diamete were evaluated at Mach numbers up t Mach 1.025, and the 34-foot rotor t duction and thin-tipped blades are effects. At higher tip Mach number required was obtained with the thin state of the art of calculating rot speeds and advance ratio is reviewed obtained with special boundary layer 3/4 radius and surface pressure ins blade tip are presented.	estigation e NASA-Ame NACA 0012 educed in r to 34 fe o 0.95, th o advance compared t s a signi -tipped bl orcraft pe d, and lim r instrume	of thre s Large profile) thicknes et. The e thin-tratios o show t ficant rades. A rformancited exp	e full-scale sets Scale Wind Tunnel. 48-foot-diameter s at the tip, and production blades ipped blades to f 0.79. The pro- he compressibility eduction in power dditionally, the e at high tip erimental data installed at the

DD 1 MOV 41473 PERLACES DO PORM 1475, 1 JAN 64, WHICH IS

Unclassified
Security Classification

Unclassified
Security Classification

Uncl	assified	
	Cleaniflantian	