Artificial Intelligence

Lec 3 - Informed Search

Pratik Mazumder

Recap: Search

Search problem:

- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- Optimal: finds least-cost plans

Practice

Which chooses the shorter plan? BFS, DFS, UCS

Ques3

8	9	10(G)
4	11	7
3	5	6
2	1	S

Practice

Which chooses the shorter plan? BFS, DFS, UCS

DFS solution 🛉

BFS solution

Uninformed Search

- BFS and UCS give complete plans.
- BFS gives optimal plans in terms of no. of actions.
- UCS gives optimal plans in terms of the cost involved.

The bad aspect:

- Explores options in every "direction"
- No information about goal location

Informed Search

Search Heuristics

A heuristic is:

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing
- Guesses may not be the actual distance

Example: Heuristic Function

to Bucharest	200
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Strategy: Expand the node that seems closest to a goal state

Straight-line distar	ice
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Straight-line distar	nce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Fringe Arad, 366

Straight-line dista to Bucharest	nce
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

h(x)

Fringe

Arad, 366

Arad→Sibiu,253

Arad→Timisoara,329

Arad→Zerind,374

Amad	200
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

h(x)

Fringe

Arad, 366

-Arad→Sibiu,253

Arad→Timisoara,329

Arad→Zerind,374

Arad→Sibiu→Arad,366

Arad→Sibiu→Fagaras,178

Arad→Sibiu→Oradea,380

Arad→Sibiu→Rimnicu Vilcea,193

Straight-line distant to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

h(x)

Fringe

Arad, 366

- Arad → Sibiu, 253

 $Arad{\rightarrow} Timisoara, 329$

Arad→Zerind,374

Arad→Sibiu→Arad,366

Arad→Sibiu →Fagaras,178

Arad→Sibiu→Oradea,380

Arad→Sibiu→Rimnicu Vilcea,193

Arad→Sibiu→Fagaras→Sibiu,253

Arad→Sibiu→Fagaras→Bucharest,0

Straight-line distant to Bucharest	ice
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

h(x)

Fringe

Arad, 366

- Arad → Sibiu, 253

 $Arad{\rightarrow} Timisoara, 329$

Arad→Zerind,374

Arad→Sibiu→Arad,366

Arad → Sibiu → Fagaras, 178

Arad→Sibiu→Oradea,380

Arad→Sibiu→Rimnicu Vilcea,193

 $Arad \rightarrow Sibiu \rightarrow Fagaras \rightarrow Sibiu, 253$

solution Arad→Sibiu→Fagaras→Bucharest,0

Straight-line distance to Bucharest Arad 366 Bucharest 0 Craiova 160 Dobreta 242 Eforie 161 **Fagaras** 178 Giurgiu 77 Hirsova 151

Straight-line distance to Bucharest Arad 366 Bucharest 0 Craiova 160 Dobreta 242 Eforie 161 **Fagaras** 178 Giurgiu 77 Hirsova 151

Strategy: expand a node that **you think** is closest to a goal state

Heuristic: estimate of distance to nearest goal for each state

A common case: Best-first takes you straight to the (wrong) goal - wrong in terms of non optimal

Worst-case: like a badly-guided DFS

A* Search

A* Search

A* Search

• Uniform-cost orders by path cost, or backward cost g(n)

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)
- A* Search orders by the sum: f(n) = g(n) + h(n)

A* : Combining UCS and Greedy

 $\begin{array}{c} \mathbf{S} & g = 0 \\ h = 6 \end{array}$

Fringe S,f=6

A* : Combining UCS and Greedy

Fringe

S,f=6

 $S \rightarrow a, f = 0$

 $S\rightarrow a\rightarrow b, f=8$

 $S \rightarrow a \rightarrow d, f=7$

 $S\rightarrow a\rightarrow e, f=10$

Fringe

S,f=6

S →a,f=6

S→a→b,f=8

S →a →d,f=7

 $S\rightarrow a\rightarrow e, f=10$

 $S \rightarrow a \rightarrow b \rightarrow c, f=10$

 $S \rightarrow a \rightarrow d \rightarrow G, f=6$

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)
- A* Search orders by the sum: f(n) = g(n) + h(n)

When should A* terminate?

Should we stop when we enqueue/insert a goal state in the fringe?

No, only stop when we dequeue/remove a goal from the fringe

- Insert S [f=3]
- Expand S
 - Insert S->B [f=3]
 - Insert S->A [f=4]
 - Fringe contains S->B[f=3],S->A[f=4]
- Remove S
- Expand S->B
 - Insert S->B->G [f=5]
 - Fringe contains S->A[f=4], S->B->G[f=5]
- Remove S->B
- Expand S->A
 - Insert S->A->G[f=4]
 - Fringe contains S->B->G[f=5], S->A->G[f=4]

When should A* terminate?

Should we stop when we enqueue/insert a goal state in the fringe?

No, only stop when we dequeue/remove a goal from the fringe

- Insert S [f=3]
- Expand S
 - Insert S->B [f=3]
 - Insert S->A [f=4]
 - Fringe contains S->B[f=3],S->A[f=4]
- Remove S
- Expand S->B
 - Insert S->B->G [f=5]
 - Fringe contains S->A[f=4], S->B->G[f=5]
- Remove S->B
- Expand S->A
 - Insert S->A->G[f=4]
 - Fringe contains S->B->G[f=5], S->A->G[f=4]

Is A* Optimal?

Is A* Optimal?

Actual bad goal cost < estimated good goal cost

We need estimates to be less than actual costs!

Is A* Optimal?

Actual bad goal cost < estimated good goal cost

We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

Where $h^*(n)$ is the true cost to a nearest goal

- Coming up with admissible heuristics is most of what's involved in using A* in practice.
- Needs to decided per problem

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

A will exit the fringe before B

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$
 Definition of f-cost $f(n) \le g(A)$ Admissibility of h $g(A) = f(A)$ h = 0 at a goal

1. f(n) is less than or equal to f(A)

Definition of f-cost says:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

 $f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$

1. f(n) is less than or equal to f(A)

Definition of f-cost says:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

 $f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$

 The admissible heuristic must underestimate the true cost h(A) = (est. cost of A to A) = 0

1. f(n) is less than or equal to f(A)

Definition of f-cost says:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

 $f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$

- The admissible heuristic must underestimate the true cost A h(A) = (est. cost of A to A) = 0
- So now, we have to compare:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

 $f(A) = g(A) = (path cost to A)$

1. f(n) is less than or equal to f(A)

Definition of f-cost says:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

 $f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$

- The admissible heuristic must underestimate the true cost A h(A) = (est. cost of A to A) = 0
- So now, we have to compare:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

 $f(A) = g(A) = (path cost to A)$

h(n) must be an underestimate of the true cost from n to A (path cost to n) + (est. cost of n to A) ≤ (path cost to A)

Since, path cost to A = path cost to n + path cost from n to A

1. f(n) is less than or equal to f(A)

Definition of f-cost says:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

 $f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$

- The admissible heuristic must underestimate the true cost A h(A) = (est. cost of A to A) = 0
- So now, we have to compare:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

 $f(A) = g(A) = (path cost to A)$

h(n) must be an underestimate of the true cost from n to A (path cost to n) + (est. cost of n to A) ≤ (path cost to A) g(n) + h(n) ≤ g(A) f(n) ≤ f(A)

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

$$f(A) < f(B)$$

B is suboptimal

2. f(A) is less than f(B)

We know that:

$$f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$$

 $f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)$

2. f(A) is less than f(B)

We know that:

$$f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$$

 $f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)$

The heuristic must underestimate the true cost:

$$h(A) = h(B) = 0$$

So now, we have to compare:

$$f(A) = g(A) = (path cost to A)$$

 $f(B) = g(B) = (path cost to B)$

2. f(A) is less than f(B)

We know that:

$$f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$$

 $f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)$

The heuristic must underestimate the true cost:

$$h(A) = h(B) = 0$$

So now, we have to compare:

$$f(A) = g(A) = (path cost to A)$$

 $f(B) = g(B) = (path cost to B)$

We assumed that B is suboptimal! So (path cost to A) < (path cost to B) g(A) < g(B) f(A) < f(B)</p>

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

$$f(n) \le f(A) < f(B)$$

Properties of A*

Uniform-Cost

A*

Still Contour-wise but contour defined by f

Practice

Is the heuristics function admissible? Find the solution using A*

