1 Saved for sans math

FiraSans-TLF sl sb
$$xxffBB$$
 Should match the size.

2 Serif

Simplest form of the *Central Limit Theorem:* Let X_1, X_2, \cdots be a sequence of i.i.d. random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, Pr)$. Then

$$\Pr\left(\frac{X_1 + \dots + X_n}{\sqrt{n}} \le \nu\right) \to \mathfrak{N}(\nu) := \int_{-\infty}^{\nu} \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \,\mathrm{d}t \quad \text{as } n \to \infty,$$

or, equivalently, letting $S_n := \sum_{1}^{n} X_k$,

$$\mathbb{E}f\left(S_n/\sqrt{n}\right) \to \int_{-\infty}^{\infty} f(t) \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \, \mathrm{d}t \quad \text{as } n \to \infty, \text{ for every } f \in \mathrm{b}\mathscr{C}(\mathbb{R}).$$

3 Serif Bold

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2}} dx \int_{-\infty}^\infty e^{-\alpha y^2} dy = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sum_{k=0}^{\infty} a_0 q^k = \lim_{n \to \infty} \sum_{k=0}^{n} a_0 q^k = \lim_{n \to \infty} a_0 \frac{1 - q^{n+1}}{1 - q} = \frac{a_0}{1 - q}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Simplest form of the Central Limit Theorem: Let X_1, X_2, \cdots be a sequence of iid random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, \Pr)$. Then

$$\Pr\left(\frac{X_1+\cdots+X_n}{\sqrt{n}}\leq v\right)\to\mathfrak{N}(v):=\int_{-\infty}^v\frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}}\,\mathrm{d}t\quad\text{as }n\to\infty,$$

or, equivalently, letting $S_n := \sum_{1}^{n} X_k$,

$$\mathbb{E} f\left(S_n/\sqrt{n}\right) \to \int_{-\infty}^{\infty} f(t) \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \, \mathrm{d}t \quad \text{as } n \to \infty \text{, for every } f \in \mathrm{b}\mathscr{C}(\mathbb{R}).$$

4 Sans Serif

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sqrt[n]{a} \cdot \sqrt[n]{b} \sqrt[n]{ab}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \sqrt[n]{\frac{a}{b}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$a\sqrt[n]{b}\sqrt[n]{a^nb}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of

the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\bar{x} \frac{1}{n} \sum_{i=1}^{n} x_i \frac{x_1 x_2 \dots x_n}{n}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\int_0^\infty e^{-\alpha x^2} dx \, \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2}} dx \int_{-\infty}^\infty e^{-\alpha y^2} dy \, \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Simplest form of the Central Limit Theorem: Let X_1, X_2, \cdots be a sequence of iid random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, \Pr)$. Then

$$\Pr\!\left(rac{X_1\,\cdots\,X_n}{\sqrt{n}} \leq
u
ight)\!
ightarrow\!\mathfrak{N}(
u)\!:\!\int_{-\infty}^
urac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}}\,\mathrm{d}t\quad ext{as }n
ightarrow\!\infty$$
,

or, equivalently, letting $S_n: \sum_{1}^{n} X_k$,

$$\mathbb{E} f \left(S_n / \sqrt{n} \right) \to \int_{-\infty}^{\infty} f(t) \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \, \mathrm{d}t \quad \text{as } n \to \infty \text{, for every } f \in \mathrm{b}\mathscr{C}(\mathbb{R}).$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sum_{k0}^{\infty} a_0 q^k \lim_{n \to \infty} \sum_{k0}^{n} a_0 q^k \lim_{n \to \infty} a_0 \frac{1 - q^{n_1}}{1 - q} \frac{a_0}{1 - q}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\partial^2 \Phi}{\partial x^2} \; \frac{\partial^2 \Phi}{\partial y^2} \; \frac{\partial^2 \Phi}{\partial z^2} \; \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sqrt[n]{a} \cdot \sqrt[n]{b} \sqrt[n]{ab}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \sqrt[n]{\frac{a}{b}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no

information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

5 Sans Serif Bold

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$a\sqrt[n]{b} = \sqrt[n]{a^n b}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2}} dx \int_{-\infty}^\infty e^{-\alpha y^2} dy = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this

text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sum_{k=0}^{\infty} a_0 q^k = \lim_{n \to \infty} \sum_{k=0}^{n} a_0 q^k = \lim_{n \to \infty} a_0 \frac{1 - q^{n+1}}{1 - q} = \frac{a_0}{1 - q}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Simplest form of the Central Limit Theorem: Let X_1 , X_2 , \cdots be a sequence of iid random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, \Pr)$. Then

$$\Pr\left(\frac{X_1+\cdots+X_n}{\sqrt{n}} \le \nu\right) \to \mathfrak{N}(\nu) := \int_{-\infty}^{\nu} \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \,\mathrm{d}t \quad \text{as } n \to \infty,$$

or, equivalently, letting $S_n := \sum_{1}^{n} X_k$,

$$\mathbb{E} f\left(S_n/\sqrt{n}\right) \to \int_{-\infty}^{\infty} f(t) \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \, \mathrm{d}t \quad \text{as } n \to \infty, \text{ for every } f \in \mathrm{b}\mathscr{C}(\mathbb{R}).$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of

the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$a\sqrt[n]{b} = \sqrt[n]{a^n b}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no

need for special content, but the length of words should match the language.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

6 Serif

6.1 Overview Serif

Default: $a\alpha b\beta G\Gamma P\Pi \alpha\beta$ mathnormal: $a\alpha b\beta G\Gamma P\Pi$

mathrm: $a\alpha\alpha b\beta G\Gamma P\Pi$ mathup: $a\alpha\alpha b\beta G\Gamma P\Pi$ mathit: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbfit: $a\alpha b\beta G\Gamma P\Pi$

Default: $a\alpha b\beta G\Gamma P\Pi$ mathnormal: $a\alpha b\beta G\Gamma P\Pi$ mathrm: $a\alpha b\beta G\Gamma P\Pi$ mathup: $a\alpha b\beta G\Gamma P\Pi$ mathit: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$

Default: $a\alpha b\beta G\Gamma P\Pi$ mathnormal: $a\alpha b\beta G\Gamma P\Pi$ mathrm: $a\alpha b\beta G\Gamma P\Pi$ mathup: $a\alpha b\beta G\Gamma P\Pi$ mathit: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbft: $a\alpha b\beta G\Gamma P\Pi$

6.2 Formulas Serif

 α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , o, π , ρ , σ , ζ , τ , v, ϕ , χ , ψ , ω , F, A, B, Γ , Δ , E, Z, H, Θ , I, K, Λ , M, N, Ξ , O, Π , P, Σ , T, Y, Φ , X, Ψ , Ω , F,

 α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , o, π , ρ , σ , ς , τ , ν , ϕ , χ , ψ , ω , \digamma , A, B, Γ , Δ , E, Z, H, Θ , I, K, Λ , M, N, Ξ , O, Π , P, Σ , T, Υ , Φ , X, Ψ , Ω , F,

 α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , o, π , ρ , σ , ς , τ , v, ϕ , χ , ψ , ω , F, A, B, Γ , Δ , E, Z, H, Θ , I, K, Λ , M, N, Ξ , O, Π , P, Σ , T, Y, Φ , X, Ψ , Ω , F,

 $\alpha,\,\beta,\,\gamma,\,\delta,\,\varepsilon,\,\zeta,\,\eta,\,\theta,\,\iota,\,\kappa,\,\lambda,\,\mu,\,\nu,\,\xi,\,o,\,\pi,\,\rho,\,\sigma,\,\varsigma,\,\tau,\,\upsilon,\,\phi,\,\chi,\,\psi,\,\omega,\,\digamma,\,A,\,B,\,\Gamma,\,\Delta,\,E,\,Z,\\H,\,\Theta,\,I,\,K,\,\Lambda,\,M,\,N,\,\Xi,\,O,\,\Pi,\,P,\,\Sigma,\,T,\,\Upsilon,\,\Phi,\,X,\,\Psi,\,\Omega,\,F,$

 $\alpha a>0, \beta b+(3\times 27), \Gamma G=7<8, \lambda$

 $\alpha a > 0$, $\beta b + (3 \times 27)$, $\Gamma G = 7 < 8$, λ

 $s \pm 3\gamma + y - 1 = 4 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

 $s \pm 3\gamma + y - 1 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

 $s \pm 3\gamma + y - 1 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

 $s \pm 3\gamma + y - 1 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

6.3 Math Alphabets Serif

Default

 $\begin{array}{l} 0,1,2,3,4,5,6,7,8,9, \\ A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, \\ a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z, \\ A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,Y,\Phi,X,\Psi,\Omega, \\ \alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,v,\xi,o,\pi,\rho,\sigma,\tau,v,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\omega,\rho,\varsigma,\varphi, \end{array}$

Math Normal (\mathnormal)

 $\begin{aligned} &0,1,2,3,4,5,6,7,8,9, \\ &A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, \\ &a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z, \\ &A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,Y,\Phi,X,\Psi,\Omega, \\ &\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,v,\xi,o,\pi,\rho,\sigma,\tau,v,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\omega,\varrho,\varsigma,\varphi, \end{aligned}$

Math Italic (\mathit)

$$\begin{split} &0,1,2,3,4,5,6,7,8,9, \\ &A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, \\ &a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z, \\ &A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,Y,\Phi,X,\Psi,\Omega, \\ &\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,v,\xi,o,\pi,\rho,\sigma,\tau,v,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\varpi,\varrho,\varsigma,\varphi, \end{split}$$

Math Roman (\mathrm)

0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z, A,B, Γ , Δ ,E,Z,H, Θ ,I,K, Λ ,M,N, Ξ ,O, Π ,P, Σ ,T, Υ , Φ ,X, Ψ , Ω , α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ ,o, π , ρ , σ , τ , ν , ϕ , χ , ψ , ω , ϵ , θ , ω , ρ , ς , φ ,

Math Bold (\mathbf)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ, Δ, E, Z, H, Θ, I, K, Λ, M, N, Ξ, O, Π, P, Σ, T, Y, Φ, X, Ψ, Ω, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, τ, υ, φ, χ, ψ, ω, ε, θ, ω, ρ, ς, φ,

Caligraphic (\mathcal)

 $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{O}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{F}, \mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{Y}, \mathcal{Z}, \mathcal{Y}, \mathcal{Z}, \mathcal{Y}, \mathcal{Z}, \mathcal{Z}$

Script (\mathscr)

 $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{O}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{F}, \mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{Y}, \mathcal{Z}, \mathcal{Y}, \mathcal{Z}, \mathcal{Y}, \mathcal{Z}, \mathcal{Z}$

Fraktur (\mathfrak)

 $\mathfrak{A},\mathfrak{B},\mathfrak{C},\mathfrak{D},\mathfrak{E},\mathfrak{F},\mathfrak{G},\mathfrak{H},\mathfrak{I},\mathfrak{J},\mathfrak{K},\mathfrak{L},\mathfrak{M},\mathfrak{N},\mathfrak{O},\mathfrak{P},\mathfrak{Q},\mathfrak{R},\mathfrak{S},\mathfrak{T},\mathfrak{U},\mathfrak{V},\mathfrak{W},\mathfrak{X},\mathfrak{Y},\mathfrak{Z},$ $\mathfrak{a},\mathfrak{b},\mathfrak{c},\mathfrak{d},\mathfrak{e},\mathfrak{f},\mathfrak{g},\mathfrak{h},\mathfrak{i},\mathfrak{j},\mathfrak{k},\mathfrak{l},\mathfrak{m},\mathfrak{n},\mathfrak{o},\mathfrak{p},\mathfrak{q},\mathfrak{r},\mathfrak{s},\mathfrak{t},\mathfrak{u},\mathfrak{v},\mathfrak{w},\mathfrak{x},\mathfrak{y},\mathfrak{z},$

Blackboard Bold (\mathbb)

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,

6.4 Character Sidebearings Serif

Default

$$\begin{split} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |E| + |O| + |\Pi| + |P| + |E| + |T| + |Y| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ |\alpha| + |\beta| + |\gamma| + |\delta| + |\epsilon| + |\zeta| + |\eta| + |\theta| + |\iota| + |\kappa| + |\lambda| + |\mu| + \\ |v| + |\xi| + |o| + |\pi| + |\rho| + |\sigma| + |\tau| + |v| + |\phi| + |\chi| + |\psi| + |\omega| + \\ |\varepsilon| + |\partial| + |\omega| + |\varrho| + |\zeta| + |\varphi| + \end{split}$$

Math Roman (\mathrm)

$$\begin{split} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |I| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |\Lambda| + |M| + \\ |N| + |\Xi| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |\Upsilon| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ \end{split}$$

Math Bold (\mathbf)

$$\begin{split} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |\Lambda| + |M| + \\ |N| + |\Xi| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |\gamma| + |\Phi| + |X| + |\gamma| + |\alpha| + \\ |A| + |B| + |C| + |D| + |D$$

Math Calligraphic (\mathcal)

$$\begin{aligned} |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + |\mathcal{D}| + |\mathcal{E}| + |\mathcal{F}| + |\mathcal{G}| + |\mathcal{H}| + |\mathcal{I}| + |\mathcal{I}| + |\mathcal{I}| + |\mathcal{H}| +$$

6.5 Superscript Positioning Serif

Default

$$\begin{split} A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2 + H^2 + I^2 + J^2 + K^2 + L^2 + M^2 + \\ N^2 + O^2 + P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2 + X^2 + Y^2 + Z^2 + \\ a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2 + j^2 + k^2 + l^2 + m^2 + \\ n^2 + o^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2 + \\ A^2 + B^2 + \Gamma^2 + \Delta^2 + E^2 + Z^2 + H^2 + \Theta^2 + I^2 + K^2 + \Lambda^2 + M^2 + \\ N^2 + \Xi^2 + O^2 + \Pi^2 + P^2 + \Sigma^2 + T^2 + Y^2 + \Phi^2 + X^2 + \Psi^2 + \Omega^2 + \\ \alpha^2 + \beta^2 + \gamma^2 + \delta^2 + \epsilon^2 + \zeta^2 + \eta^2 + \theta^2 + t^2 + \kappa^2 + \lambda^2 + \mu^2 + \\ v^2 + \xi^2 + o^2 + \pi^2 + \rho^2 + \sigma^2 + \tau^2 + v^2 + \phi^2 + \chi^2 + \psi^2 + \omega^2 + \\ \varepsilon^2 + \vartheta^2 + \varpi^2 + \varrho^2 + \zeta^2 + \varphi^2 + \end{split}$$

Math Roman (\mathrm)

$$\begin{split} A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2 + H^2 + I^2 + J^2 + K^2 + L^2 + M^2 + \\ N^2 + O^2 + P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2 + X^2 + Y^2 + Z^2 + \\ a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2 + j^2 + k^2 + I^2 + m^2 + \\ n^2 + o^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2 + \\ A^2 + B^2 + \Gamma^2 + \Delta^2 + E^2 + Z^2 + H^2 + \Theta^2 + I^2 + K^2 + \Delta^2 + M^2 + \\ N^2 + \Xi^2 + O^2 + \Pi^2 + P^2 + \Sigma^2 + T^2 + Y^2 + \Phi^2 + X^2 + \Psi^2 + O^2 + D^2 + D^2$$

Math Bold (\mathbf)

$$\mathbf{A}^2 + \mathbf{B}^2 + \mathbf{C}^2 + \mathbf{D}^2 + \mathbf{E}^2 + \mathbf{F}^2 + \mathbf{G}^2 + \mathbf{H}^2 + \mathbf{I}^2 + \mathbf{J}^2 + \mathbf{K}^2 + \mathbf{L}^2 + \mathbf{M}^2 + \mathbf{N}^2 + \mathbf{O}^2 + \mathbf{P}^2 + \mathbf{Q}^2 + \mathbf{R}^2 + \mathbf{S}^2 + \mathbf{T}^2 + \mathbf{U}^2 + \mathbf{V}^2 + \mathbf{W}^2 + \mathbf{X}^2 + \mathbf{Y}^2 + \mathbf{Z}^2 + \mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2 + \mathbf{d}^2 + \mathbf{e}^2 + \mathbf{f}^2 + \mathbf{g}^2 + \mathbf{h}^2 + \mathbf{i}^2 + \mathbf{j}^2 + \mathbf{k}^2 + \mathbf{I}^2 + \mathbf{m}^2 + \mathbf{m}^2 + \mathbf{o}^2 + \mathbf{p}^2 + \mathbf{q}^2 + \mathbf{r}^2 + \mathbf{s}^2 + \mathbf{t}^2 + \mathbf{u}^2 + \mathbf{v}^2 + \mathbf{w}^2 + \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 + \mathbf{A}^2 + \mathbf{B}^2 + \mathbf{\Gamma}^2 + \mathbf{\Delta}^2 + \mathbf{E}^2 + \mathbf{Z}^2 + \mathbf{H}^2 + \mathbf{\Theta}^2 + \mathbf{I}^2 + \mathbf{K}^2 + \mathbf{\Lambda}^2 + \mathbf{M}^2 + \mathbf{N}^2 + \mathbf{\Xi}^2 + \mathbf{O}^2 + \mathbf{\Pi}^2 + \mathbf{P}^2 + \mathbf{\Sigma}^2 + \mathbf{T}^2 + \mathbf{Y}^2 + \mathbf{\Phi}^2 + \mathbf{X}^2 + \mathbf{\Psi}^2 + \mathbf{O}^2 + \mathbf{\Pi}^2 + \mathbf{P}^2 + \mathbf{\Sigma}^2 + \mathbf{T}^2 + \mathbf{Y}^2 + \mathbf{\Phi}^2 + \mathbf{X}^2 + \mathbf{\Psi}^2 + \mathbf{O}^2 + \mathbf{\Pi}^2 + \mathbf$$

Math Calligraphic (\mathcal)

$$\mathcal{A}^{2} + \mathcal{B}^{2} + \mathcal{C}^{2} + \mathcal{D}^{2} + \mathcal{E}^{2} + \mathcal{F}^{2} + \mathcal{F}^{2} + \mathcal{F}^{2} + \mathcal{F}^{2} + \mathcal{J}^{2} + \mathcal{J}^{2} + \mathcal{L}^{2} + \mathcal{L}^{2}$$

6.6 Subscript Positioning Serif

Default

$$\begin{split} A_i + B_i + C_i + D_i + E_i + F_i + G_i + H_i + I_i + J_i + K_i + L_i + M_i + \\ N_i + O_i + P_i + Q_i + R_i + S_i + T_i + U_i + V_i + W_i + X_i + Y_i + Z_i + \\ a_i + b_i + c_i + d_i + e_i + f_i + g_i + h_i + i_i + j_i + k_i + l_i + m_i + \\ n_i + o_i + p_i + q_i + r_i + s_i + t_i + u_i + v_i + w_i + x_i + y_i + z_i + \\ A_i + B_i + \Gamma_i + \Delta_i + E_i + Z_i + H_i + \Theta_i + I_i + K_i + \Lambda_i + M_i + \\ N_i + \Xi_i + O_i + \Pi_i + P_i + \Sigma_i + T_i + Y_i + \Phi_i + X_i + \Psi_i + \Omega_i + \\ \alpha_i + \beta_i + \gamma_i + \delta_i + \epsilon_i + \zeta_i + \eta_i + \theta_i + \iota_i + \kappa_i + \lambda_i + \mu_i + \\ v_i + \xi_i + o_i + \pi_i + \rho_i + \sigma_i + \tau_i + v_i + \phi_i + \chi_i + \psi_i + \omega_i + \\ \varepsilon_i + \theta_i + \Theta_i + \varrho_i + \varsigma_i + \varphi_i + \end{split}$$

Math Roman (\mathrm)

$$\begin{aligned} &A_{i} + B_{i} + C_{i} + D_{i} + E_{i} + F_{i} + G_{i} + H_{i} + I_{i} + J_{i} + K_{i} + L_{i} + M_{i} + \\ &N_{i} + O_{i} + P_{i} + Q_{i} + R_{i} + S_{i} + T_{i} + U_{i} + V_{i} + W_{i} + X_{i} + Y_{i} + Z_{i} + \\ &a_{i} + b_{i} + c_{i} + d_{i} + e_{i} + f_{i} + g_{i} + h_{i} + i_{i} + j_{i} + k_{i} + l_{i} + m_{i} + \\ &n_{i} + o_{i} + p_{i} + q_{i} + r_{i} + s_{i} + t_{i} + u_{i} + v_{i} + w_{i} + x_{i} + y_{i} + z_{i} + \\ &A_{i} + B_{i} + \Gamma_{i} + \Delta_{i} + E_{i} + Z_{i} + H_{i} + \Theta_{i} + I_{i} + K_{i} + \Lambda_{i} + M_{i} + \\ &N_{i} + \Xi_{i} + O_{i} + \Pi_{i} + P_{i} + \Sigma_{i} + T_{i} + \gamma_{i} + \Phi_{i} + X_{i} + \Psi_{i} + \Omega_{i} + A_{i} + A_$$

Math Bold (\mathbf)

$$\begin{aligned} & \mathbf{A}_{i} + \mathbf{B}_{i} + \mathbf{C}_{i} + \mathbf{D}_{i} + \mathbf{E}_{i} + \mathbf{F}_{i} + \mathbf{G}_{i} + \mathbf{H}_{i} + \mathbf{I}_{i} + \mathbf{J}_{i} + \mathbf{K}_{i} + \mathbf{L}_{i} + \mathbf{M}_{i} + \\ & \mathbf{N}_{i} + \mathbf{O}_{i} + \mathbf{P}_{i} + \mathbf{Q}_{i} + \mathbf{R}_{i} + \mathbf{S}_{i} + \mathbf{T}_{i} + \mathbf{U}_{i} + \mathbf{V}_{i} + \mathbf{W}_{i} + \mathbf{X}_{i} + \mathbf{Y}_{i} + \mathbf{Z}_{i} + \\ & \mathbf{a}_{i} + \mathbf{b}_{i} + \mathbf{c}_{i} + \mathbf{d}_{i} + \mathbf{e}_{i} + \mathbf{f}_{i} + \mathbf{g}_{i} + \mathbf{h}_{i} + \mathbf{i}_{i} + \mathbf{j}_{i} + \mathbf{k}_{i} + \mathbf{I}_{i} + \mathbf{m}_{i} + \\ & \mathbf{n}_{i} + \mathbf{o}_{i} + \mathbf{p}_{i} + \mathbf{q}_{i} + \mathbf{r}_{i} + \mathbf{s}_{i} + \mathbf{t}_{i} + \mathbf{u}_{i} + \mathbf{v}_{i} + \mathbf{w}_{i} + \mathbf{x}_{i} + \mathbf{y}_{i} + \mathbf{z}_{i} + \\ & \mathbf{A}_{i} + \mathbf{B}_{i} + \Gamma_{i} + \Delta_{i} + \mathbf{E}_{i} + \mathbf{Z}_{i} + \mathbf{H}_{i} + \Theta_{i} + \mathbf{I}_{i} + \mathbf{K}_{i} + \Lambda_{i} + \mathbf{M}_{i} + \\ & \mathbf{N}_{i} + \mathbf{\Xi}_{i} + \mathbf{O}_{i} + \Pi_{i} + \mathbf{P}_{i} + \mathbf{\Sigma}_{i} + \mathbf{T}_{i} + \mathbf{Y}_{i} + \Phi_{i} + \mathbf{X}_{i} + \mathbf{Y}_{i} + \mathbf{\Omega}_{i} + \end{aligned}$$

Math Calligraphic (\mathcal)

$$\mathcal{A}_i + \mathcal{B}_i + \mathcal{C}_i + \mathcal{D}_i + \mathcal{E}_i + \mathcal{F}_i + \mathcal{G}_i + \mathcal{H}_i + \mathcal{J}_i + \mathcal{J}_i + \mathcal{K}_i + \mathcal{L}_i + \mathcal{M}_i + \mathcal{N}_i + \mathcal{O}_i + \mathcal{P}_i + \mathcal{Q}_i + \mathcal{R}_i + \mathcal{F}_i + \mathcal{T}_i + \mathcal{U}_i + \mathcal{V}_i + \mathcal{V}_i + \mathcal{H}_i + \mathcal$$

6.7 Accent Positioning Serif

Default

$$\begin{split} \hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{l} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{A} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{Y} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{Q} + \\ \hat{\alpha} + \hat{\beta} + \hat{\gamma} + \hat{\delta} + \hat{\epsilon} + \hat{\xi} + \hat{\gamma} + \hat{\theta} + \hat{i} + \hat{\kappa} + \hat{\lambda} + \hat{\mu} + \\ \hat{v} + \hat{\xi} + \hat{o} + \hat{\pi} + \hat{\rho} + \hat{\sigma} + \hat{\tau} + \hat{v} + \hat{\phi} + \hat{\chi} + \hat{\psi} + \hat{\omega} + \\ \hat{\varepsilon} + \hat{\vartheta} + \hat{\phi} + \hat{\varphi} + \hat{\xi} + \hat{\varphi} + \end{aligned}$$

Math Italic (\mathit)

$$\begin{split} \hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{l} + \hat{m} + \hat{\ell} + \hat{\wp} + \hat{i} + \hat{j} + \hat{i} \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{Y} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} + \\ \hat{\alpha} + \hat{\beta} + \hat{\gamma} + \hat{\delta} + \hat{\epsilon} + \hat{\zeta} + \hat{\eta} + \hat{\theta} + \hat{i} + \hat{\kappa} + \hat{\lambda} + \hat{\mu} + \\ \hat{v} + \hat{\xi} + \hat{o} + \hat{\pi} + \hat{\rho} + \hat{\sigma} + \hat{\tau} + \hat{v} + \hat{\phi} + \hat{\chi} + \hat{\psi} + \hat{\omega} + \\ \hat{\epsilon} + \hat{\theta} + \hat{\phi} + \hat{\rho} + \hat{\varsigma} + \hat{\varsigma} + \hat{\phi} + \end{split}$$

Math Roman (\mathrm)

$$\begin{split} \hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{I} + \hat{J} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{A} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{\gamma} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{Q} + \end{split}$$

Math Bold (\mathbf)

$$\begin{split} \hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{\gamma} + \hat{\Phi} + \hat{X} + \hat{Y} + \hat{\Omega} + \end{split}$$

Math Calligraphic (\mathcal)

$$\hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{J} + \hat{J} + \hat{J} + \hat{X} + \hat{L} + \hat{M} + \hat{N} + \hat{O} + \hat{P} + \hat{Z} + \hat{A} + \hat{P} + \hat{T} + \hat{W} + \hat{V} + \hat{W} + \hat{X} + \hat{W} + \hat{Z} + \hat{Z} + \hat{M} + \hat{D} +$$

6.8 Differentials Serif

```
\begin{split} \mathrm{d}A + \mathrm{d}B + \mathrm{d}C + \mathrm{d}D + \mathrm{d}E + \mathrm{d}F + \mathrm{d}G + \mathrm{d}H + \mathrm{d}I + \mathrm{d}J + \mathrm{d}K + \mathrm{d}L + \mathrm{d}M + \\ \mathrm{d}N + \mathrm{d}O + \mathrm{d}P + \mathrm{d}Q + \mathrm{d}R + \mathrm{d}S + \mathrm{d}T + \mathrm{d}U + \mathrm{d}V + \mathrm{d}W + \mathrm{d}X + \mathrm{d}Y + \mathrm{d}Z + \\ \mathrm{d}a + \mathrm{d}b + \mathrm{d}c + \mathrm{d}d + \mathrm{d}e + \mathrm{d}f + \mathrm{d}g + \mathrm{d}h + \mathrm{d}i + \mathrm{d}j + \mathrm{d}k + \mathrm{d}l + \mathrm{d}m + \\ \mathrm{d}n + \mathrm{d}o + \mathrm{d}p + \mathrm{d}q + \mathrm{d}r + \mathrm{d}s + \mathrm{d}t + \mathrm{d}u + \mathrm{d}v + \mathrm{d}w + \mathrm{d}x + \mathrm{d}y + \mathrm{d}z + \\ \mathrm{d}A + \mathrm{d}B + \mathrm{d}\Gamma + \mathrm{d}\Delta + \mathrm{d}E + \mathrm{d}Z + \mathrm{d}H + \mathrm{d}\Theta + \mathrm{d}I + \mathrm{d}K + \mathrm{d}\Lambda + \mathrm{d}M + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}P + \mathrm{d}\Sigma + \mathrm{d}T + \mathrm{d}Y + \mathrm{d}\Phi + \mathrm{d}X + \mathrm{d}\Psi + \mathrm{d}\Omega + \\ \mathrm{d}\alpha + \mathrm{d}\beta + \mathrm{d}\gamma + \mathrm{d}\delta + \mathrm{d}\epsilon + \mathrm{d}\zeta + \mathrm{d}\eta + \mathrm{d}\theta + \mathrm{d}\iota + \mathrm{d}\kappa + \mathrm{d}\lambda + \mathrm{d}\mu + \\ \mathrm{d}v + \mathrm{d}\xi + \mathrm{d}O + \mathrm{d}\pi + \mathrm{d}\rho + \mathrm{d}\sigma + \mathrm{d}\tau + \mathrm{d}v + \mathrm{d}\phi + \mathrm{d}\chi + \mathrm{d}\psi + \mathrm{d}\omega + \\ \mathrm{d}\epsilon + \mathrm{d}\theta + \mathrm{d}\omega + \mathrm{d}\rho + \mathrm{d}\varphi + \mathrm{d}\zeta + \mathrm{d}\Psi + \mathrm{d}\omega + \\ \mathrm{d}A + \mathrm{d}B + \mathrm{d}\Gamma + \mathrm{d}\Delta + \mathrm{d}E + \mathrm{d}Z + \mathrm{d}H + \mathrm{d}\Theta + \mathrm{d}I + \mathrm{d}K + \mathrm{d}\Lambda + \mathrm{d}M + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}P + \mathrm{d}Z + \mathrm{d}T + \mathrm{d}Y + \mathrm{d}\Phi + \mathrm{d}X + \mathrm{d}\Psi + \mathrm{d}\Omega + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}P + \mathrm{d}Z + \mathrm{d}T + \mathrm{d}Y + \mathrm{d}\Psi + \mathrm{d}X + \mathrm{d}\Psi + \mathrm{d}\Omega + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}P + \mathrm{d}Z + \mathrm{d}T + \mathrm{d}Y + \mathrm{d}\Psi + \mathrm{d}X + \mathrm{d}\Psi + \mathrm{d}\Omega + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}P + \mathrm{d}Z + \mathrm{d}T + \mathrm{d}Y + \mathrm{d}\Psi + \mathrm{d}X + \mathrm{d}\Psi + \mathrm{d}\Omega + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}P + \mathrm{d}Z + \mathrm{d}T + \mathrm{d}Y + \mathrm{d}\Psi + \mathrm{d}X + \mathrm{d}\Psi + \mathrm{d}\Omega + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}P + \mathrm{d}Z + \mathrm{d}T + \mathrm{d}Y + \mathrm{d}\Psi + \mathrm{d}X + \mathrm{d}\Psi + \mathrm{d}\Omega + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}P + \mathrm{d}Z + \mathrm{d}T + \mathrm{d}Y + \mathrm{d}\Psi + \mathrm{d}X + \mathrm{d}\Psi + \mathrm{d}\Omega + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}P + \mathrm{d}Z + \mathrm{d}T + \mathrm{d}Y + \mathrm{d}\Psi + \mathrm{d}X + \mathrm{d}\Psi + \mathrm{d}\Omega + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}\Psi + \mathrm{d}\Omega + \mathrm{d}\Pi + \mathrm{d}\Psi + \mathrm{d}\Omega + \mathrm{d}\Pi + \mathrm{d}\Psi + \mathrm{d}\Omega + \mathrm{d}\Pi + \mathrm{d}\Omega + \mathrm{d}\Omega
```

```
\begin{split} \partial A + \partial B + \partial C + \partial D + \partial E + \partial F + \partial G + \partial H + \partial I + \partial J + \partial K + \partial L + \partial M + \\ \partial N + \partial O + \partial P + \partial Q + \partial R + \partial S + \partial T + \partial U + \partial V + \partial W + \partial X + \partial Y + \partial Z + \\ \partial a + \partial b + \partial c + \partial d + \partial e + \partial f + \partial g + \partial h + \partial i + \partial j + \partial k + \partial l + \partial m + \\ \partial n + \partial o + \partial p + \partial q + \partial r + \partial s + \partial t + \partial u + \partial v + \partial w + \partial x + \partial y + \partial z + \\ \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial Y + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \\ \partial \alpha + \partial \beta + \partial \gamma + \partial \delta + \partial \epsilon + \partial \zeta + \partial \eta + \partial \theta + \partial \iota + \partial \kappa + \partial \lambda + \partial \mu + \\ \partial v + \partial \xi + \partial o + \partial \pi + \partial \rho + \partial \sigma + \partial \tau + \partial v + \partial \phi + \partial \chi + \partial \Psi + \partial \omega + \\ \partial \varepsilon + \partial \theta + \partial \Theta + \partial \rho + \partial \zeta + \partial \Theta + \\ \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial Y + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \\ \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial D + \partial \Xi + \partial D + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial Y + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \\ \partial D + \partial C + \partial D + \partial D + \partial D + \partial D + \partial C +
```

6.9 Slash Kerning Serif

 $A/2 + B/2 + C/2 + D/2 + E/2 + F/2 + G/2 + H/2 + I/2 + J/2 + K/2 + L/2 + M/2 + N/2 + O/2 + P/2 + Q/2 + R/2 + S/2 + T/2 + U/2 + V/2 + W/2 + X/2 + Y/2 + Z/2 + a/2 + b/2 + c/2 + d/2 + e/2 + f/2 + g/2 + h/2 + i/2 + j/2 + k/2 + l/2 + m/2 + n/2 + o/2 + p/2 + q/2 + r/2 + s/2 + t/2 + u/2 + v/2 + w/2 + x/2 + y/2 + z/2 + A/2 + B/2 + \Gamma/2 + \Delta/2 + E/2 + Z/2 + H/2 + \Theta/2 + I/2 + K/2 + A/2 + M/2 + N/2 + E/2 + O/2 + H/2 + P/2 + Z/2 + T/2 + Y/2 + \Phi/2 + X/2 + \Psi/2 + \Omega/2 + \alpha/2 + \beta/2 + \gamma/2 + \delta/2 + \varepsilon/2 + \zeta/2 + \eta/2 + \theta/2 + v/2 + \psi/2 + \omega/2 + \varepsilon/2 + \delta/2 + \omega/2 + \rho/2 + \sigma/2 + \tau/2 + v/2 + \psi/2 + \psi/2 + \omega/2 + \varepsilon/2 + \partial/2 + \omega/2 + \rho/2 + \varepsilon/2 + \varphi/2 + \varphi/2$

6.10 Big Operators Serif

$$\sum_{i=1}^{n} x^{n} \quad \prod_{i=1}^{n} x^{n} \quad \prod_{i=1}^{n} x^{n} \quad \int_{i=1}^{n} x^{n} \quad \oint_{i=1}^{n} x^{n}$$

$$\bigotimes_{i=1}^{n} x^{n} \quad \bigoplus_{i=1}^{n} x^{n} \quad \bigwedge_{i=1}^{n} x^{n} \quad \bigvee_{i=1}^{n} x^{n} \quad \bigoplus_{i=1}^{n} x^{n} \quad \bigcap_{i=1}^{n} x^{n} \quad \prod_{i=1}^{n} x^{n}$$

6.11 Radicals Serif

$$\sqrt{x+y} \qquad \sqrt{x^2+y^2} \qquad \sqrt{x_i^2+y_j^2} \qquad \sqrt{\left(\frac{\cos x}{2}\right)} \qquad \sqrt{\left(\frac{\sin x}{2}\right)}$$

$$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}$$

6.12 Over- and Underbraces Serif

$$\overbrace{x}$$
 $\overbrace{x+y}$ $\overbrace{x^2+y^2}$ $\overbrace{x_i^2+y_j^2}$ \underbrace{x} $\underbrace{x+y}$ $\underbrace{x_i+y_j}$ $\underbrace{x_i^2+y_j^2}$

6.13 Normal and Wide Accents Serif

6.14 Long Arrows Serif

6.15 Left and Right Delimiters Serif

$$-(f)$$
 $-[f]$ $-[f]$ $-[f]$ $-\langle f \rangle$ $-\{f\}$

Using \left and \right.

$$-(f) - -[f] - -|f| - -|f| - -\langle f \rangle - -\{f\} -$$

$$-)f(--]f[--/f/--\backslash f \backslash --/f \backslash --\backslash f/-$$

6.16 Big-g-g Delimiters Serif

6.17 Binary Operators Serif

$x \pm y$	\pm	$x \cap y$	\cap	$x \diamond y$	\diamond	$x \oplus y$	\oplus
$x \mp y$	\mp	$x \cup y$	\cup	$x \triangle y$	\bigtriangleup	$x \ominus y$	ω ominus
$x \times y$	\times	$x \uplus y$	\uplus	$x \nabla y$	\bigtriangledown	$x \otimes y$	\otimes
$x \div y$	\div	$x \sqcap y$	\sqcap	$x \triangleleft y$	\triangleleft	$x \otimes y$	\oslash
x * y	\ast	$x \sqcup y$	\sqcup	$x \triangleright y$	\triangleright	$x \odot y$	\odot
$x \star y$	\star	$x \lor y$	\vee	$x \triangleleft y$	\lhd	$x \bigcirc y$	\bigcirc
$x \circ y$	\circ	$x \wedge y$	\wedge	$x \triangleright y$	\rhd	$x \dagger y$	\dagger
$x \bullet y$	\bullet	$x \setminus y$	\setminus	$x \leq y$	\unlhd	$x \ddagger y$	\ddagger
$x \cdot y$	\cdot	$x \wr y$	\wr	$x \trianglerighteq y$	\unrhd	x§ y	\S
x + y	+	x - y	_	$x \coprod y$	\amalg	$x \P y$	\P

6.18 Relations Serif

```
x \le y
           \leq
                               x \ge y
                                          \geq
                                                               x \equiv y
                                                                          \equiv
                                                                                        x \models y
                                                                                                    \models
                                          \succ
                                                                          \sim
                                                                                        x \perp y
                                                                                                    \perp
x < y
           \prec
                               x > y
                                                               x \sim y
x \leq y
           \preceq
                               x \succeq y
                                          \succeq
                                                               x \simeq y
                                                                          \simeq
                                                                                        x \mid y
                                                                                                    \mid
                                                                          \asymp
                                                                                                    \parallel
x \ll y
          \11
                               x \gg y
                                          \gg
                                                               x = y
                                                                                        x \parallel y
                                                                                                    \bowtie
x \subset y
           \subset
                               x \supset y
                                          \supset
                                                                          \approx
                                                               x \approx y
                                                                                        x \triangleright \triangleleft y
                                          \supseteq
           \subseteq
                                                                                                    \Join
x \subseteq y
                               x \supseteq y
                                                               x \cong y
                                                                          \cong
                                                                                        x \bowtie y
x \sqsubset y
           \sqsubset
                                          \sqsupset
                                                               x \neq y
                                                                          \neq
                                                                                                    \smile
                               x \supset y
                                                                                        x \smile y
                                          \sqsupseteq
                                                                                        x - y
                                                                                                    \frown
x \sqsubseteq y
           \sqsubseteq
                               x \supseteq y
                                                               x \doteq y
                                                                          \doteq
x \in y
           \in
                               x \ni y
                                          \ni
                                                               x \propto y
                                                                          \propto
                                                                                        x = y
                                                                                                    >
x \vdash y
           \vdash
                               x \dashv y
                                          \dashv
                                                               x < y
                                                                          <
                                                                                        x > y
x:y
```

6.19 Punctuation Serif

```
x, y, x; y \colon x. y \ldotp x \cdot y \cdotp
```

6.20 Arrows Serif

$x \leftarrow y$	\leftarrow	$x \leftarrow\!$	$\label{longleftarrow}$	$x \uparrow y$	\uparrow
$x \leftarrow y$	\Leftarrow	$x \longleftarrow y$	\Longleftarrow	$x \uparrow y$	\Uparrow
$x \rightarrow y$	\rightarrow	$x \longrightarrow y$	$\label{longright} \$	$x \downarrow y$	\downarrow
$x \Rightarrow y$	\Rightarrow	$x \Longrightarrow y$	\Longrightarrow	$x \downarrow y$	\Downarrow
$x \leftrightarrow y$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$x \longleftrightarrow y$	\longleftrightarrow	$x \uparrow y$	\updownarrow
$x \Leftrightarrow y$	\Leftrightarrow	$x \longleftrightarrow y$	\Longleftrightarrow	$x \updownarrow y$	\Updownarrow
$x \mapsto y$	\mapsto	$x \longmapsto y$	$\label{longmapsto} \$	x / y	\nearrow
$x \leftarrow y$	\hookleftarrow	$x \hookrightarrow y$	\h ookrightarrow	$x \setminus y$	\searrow
$x \leftarrow y$	$\label{leftharpoonup}$	$x \rightarrow y$	$\$ rightharpoonup	$x \swarrow y$	\swarrow
x - y	\leftharpoondown	$x \rightarrow y$	\rightharpoondown	$x \setminus y$	\nwarrow
$x \rightleftharpoons y$	\rightleftharpoons	$x \rightsquigarrow y$	\leadsto		

6.21 Miscellaneous Symbols Serif

```
x . . . y
          \ldots
                       x \cdots y
                                 \cdots
                                                    x:y
                                                             \vdots
                                                                                x \cdot y
                                                                                           \ddots
                                                            \forall
          \aleph
                                  \prime
                                                    x \forall y
                                                                                           \infty
x \aleph y
                       x/y
                                                                                x\infty y
x\hbar y
          \hbar
                                  \emptyset
                                                   x\exists y
                                                             \exists
                                                                                x \square y
                                                                                           \Box
                       x \not o y
          \imath
                       x\nabla y
                                  \nabla
                                                                                x \Diamond y
                                                                                           \Diamond
xiy
                                                   x \neg y
                                                             \neg
                                                   x \flat y
xjy
          \jmath
                       x\sqrt{y}
                                  \surd
                                                             \flat
                                                                                x \triangle y
                                                                                           \triangle
x\ell y
          \ell
                       x \top y
                                  \top
                                                   x 
atural y
                                                             \natural
                                                                                x♣y
                                                                                           \clubsuit
          \wp
                       x \perp y
                                  \bot
                                                             \sharp
                                                                                           \diamondsuit
x \wp y
                                                   x \sharp y
                                                                                x \diamondsuit y
                                                                                x \heartsuit y
                                                                                           \heartsuit
x\Re y
          \Re
                       x \parallel y
                                  \|
                                                             \backslash
                                                   x \setminus y
                                                             \partial
x\Im y
          \Im
                                                                                           \spadesuit
                       x \angle y
                                  \angle
                                                   x∂y
                                                                                x \spadesuit y
x \nabla y
          \mho
                       x.y
                                                   x|y
                                                                                x!y
                                                                                           !
```

6.22 Variable-Sized Operators Serif

```
x \sum y
         \sum
                       x \cap y
                                                           \bigodot
                                \bigcap
                                                 x \odot y
x \prod y
         \prod
                       x \cup y
                                \bigcup
                                                 x \otimes y
                                                           \bigotimes
x \coprod y
         \coprod
                       x \sqcup y
                                \bigsqcup
                                                 x \oplus y
                                                           \bigoplus
x \int y
         \int
                       x \lor y
                                \bigvee
                                                 x \uplus y
                                                           \biguplus
x \oint y
                                \bigwedge
         \oint
                       x \wedge y
```

6.23 Log-Like Operators Serif

```
x \limsup y
x \arccos y
               x\cos y
                            x \csc y
                                                      x ker y
                                                                                     x \min y
                                                                                                  x \sinh y
                                         x \exp y
x \arcsin y
               x \cosh y
                            x \deg y
                                        x \gcd y
                                                      x \lg y
                                                                     x \ln y
                                                                                     x \Pr y
                                                                                                  x \sup y
x arctan y
               x \cot y
                            x \det y
                                         x \text{ hom } y
                                                      x \lim y
                                                                     x \log y
                                                                                     x \sec y
                                                                                                  x \tan y
               x \coth y
                            x \dim y
                                        x \inf y
                                                      x \liminf y
                                                                     x \max y
                                                                                                  x \tanh y
x \arg y
                                                                                     x \sin y
```

6.24 Delimiters Serif

```
(
x(y)
                        x)y
                                                 x \uparrow y
                                                           \uparrow
                                                                                    x \uparrow y
                                                                                              \Uparrow
x[y]
         x]y
                                 ]
                                                 x \downarrow y
                                                           \downarrow
                                                                                    x \downarrow y
                                                                                              \Downarrow
        \{
                                 \}
                                                           \updownarrow
                                                                                   x \updownarrow y
                                                                                              \Updownarrow
x\{y
                        x}y
                                                 x \uparrow y
        \lfloor
                                 \rfloor
                                                                                    x \rceil y
                                                                                              \rceil
x \lfloor y
                        x\rfloor y
                                                 x \lceil y
                                                           \lceil
                                                                                              \backslash
x\langle y
        \langle
                        x\rangle y
                                 \rangle
                                                 x/y
                                                                                    x \setminus y
x|y
                        x \parallel y
```

6.25 Large Delimiters Serif

6.26 Math Mode Accents Serif

```
\hat{a} \hat{a} \acute{a} \acute{a} \bar{a} \bar{a} \acute{a} \dot{a} \check{a} \breve{a} \check{a} \check{a} \grave{a} \grave{a} \vec{a} \vec{a} \ddot{a} \ddot{a} \tilde{a} \tilde{a}
```

6.27 Miscellaneous Constructions Serif

```
ãbc
                                 \widehat{abc}
                                         \widehat{abc}
        \widetilde{abc}
abc
        \overleftarrow{abc}
                                 abc
                                         \overrightarrow{abc}
abc
        \overline{abc}
                                 abc
                                         \underline{abc}
abc
        \overbrace{abc}
                                 abc
                                         \underbrace{abc}
\sqrt{abc}
                                 \sqrt[n]{abc}
                                         \sqrt[n]{abc}
       \sqrt{abc}
                                 abc
f'
        f,
                                         \frac{abc}{xyz}
```

6.28 AMS Delimiters Serif

```
x \vdash y \ullcorner x \vdash y \ullcorner x \perp y \llcorner x \perp y \llcorner
```

6.29 AMS Arrows Serif

$x \dashrightarrow y$	\d	<i>x</i> ← <i>y</i>	\dashleftarrow
$x \rightleftharpoons y$	\leftleftarrows	$x \stackrel{\longleftarrow}{\Rightarrow} y$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$x \Leftarrow y$	\Lleftarrow	$x \leftarrow y$	\twoheadleftarrow
$x \leftarrow\!$	\leftarrowtail	$x \leftrightarrow y$	\looparrowleft
$x \leftrightharpoons y$	$\label{leftright} \$	$x \cap y$	\curvearrowleft
$x \circlearrowleft y$	\circlearrowleft	$x ^{ eg} y$	\Lsh
$x \uparrow \uparrow y$	\upuparrows	$x \mid y$	\upharpoonleft
$x \mid y$	\downharpoonleft	$x \multimap y$	$\mbox{\mbox{\tt multimap}}$
$x \leftrightarrow y$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$x \Rightarrow y$	\rightrightarrows
$x \rightleftharpoons y$	\rightleftarrows	$x \Rightarrow y$	\rightrightarrows
$x \rightleftharpoons y$	\rightleftarrows	$x \rightarrow y$	\twoheadrightarrow
$x \rightarrowtail y$	\rightarrowtail	$x \hookrightarrow y$	$\label{looparrowright}$
$x \rightleftharpoons y$	\rightleftharpoons	$x \cap y$	$\c vearrowright$
$x \circlearrowright y$	\circlearrowright	$x \vdash y$	\Rsh
$x \downarrow \downarrow y$	\downdownarrows	$x \mid y$	\upharpoonright
$x \mid y$	\downharpoonright	$x \rightsquigarrow y$	\rightsquigarrow

6.30 AMS Negated Arrows Serif

```
x \nleftrightarrow y \nleftarrow x \nleftrightarrow y \nrightarrow x \nleftrightarrow y \nRightarrow x \nleftrightarrow y \nleftrightarrow x \nleftrightarrow y \nleftrightarrow
```

6.31 AMS Greek Serif

```
x \vdash y \digamma x \kappa y \varkappa
```

6.32 AMS Hebrew Serif

6.33 AMS Miscellaneous Serif

```
x\hbar y
          \hbar
                                      x\hbar y
                                                \hslash
x \triangle y
          \vartriangle
                                      x \nabla y
                                                \triangledown
x \square y
          \square
                                      x \Diamond y
                                                \lozenge
          \circledS
x \odot y
                                      x \angle y
                                                \angle
x \angle y
          \measuredangle
                                      x \not\exists y
                                                \nexists
                                                \backslash \mathtt{Finv}^u
x \nabla y
          \mbox{mho}
                                      x \exists y
          \backslash \mathtt{Game}^u
                                                \verb|\Bbbk|^u
x \supseteq y
                                      x \mathbb{k} y
x \ y
          \backprime
                                      x \varnothing y
                                                \varnothing
                                     x \nabla y
                                                \blacktriangledown
          \blacktriangle
x \blacktriangle y
x \blacksquare y
          \blacksquare
                                      x \blacklozenge y
                                                \blacklozenge
x \bigstar y
          \bigstar
                                      x \triangleleft y
                                                \sphericalangle
xCy
          \complement
                                      xðy
                                                \eth
          \diagup<sup>u</sup>
                                      x \setminus y \setminus diagdown^u
x/y
```

6.34 AMS Binary Operators Serif

$x \dotplus y$	\dotplus	$x \sim y$	\smallsetminus
$x \cap y$	\Cap	$x \cup y$	\Cup
$x \overline{\wedge} y$	\barwedge	$x \leq y$	\veebar
$x \stackrel{=}{\wedge} y$	\doublebarwedge	$x \boxminus y$	\boxminus
$x \boxtimes y$	\boxtimes	$x \boxdot y$	\boxdot
$x \boxplus y$	\boxplus	x * y	\divideontimes
$x \ltimes y$	\ltimes	$x \rtimes y$	\rtimes
$x \setminus y$	\leftthreetimes	$x \times y$	\rightthreetimes
$x \downarrow y$	\curlywedge	x ggr y	\curlyvee
$x \ominus y$	\circleddash	$x \circledast y$	\circledast
$x \odot y$	\circledcirc	$x \cdot y$	\centerdot
$x \uparrow y$	\intercal		

 $[^]u$ Not defined in <code>amssymb.sty</code>, define using the <code>\newsymbol</code> command.

6.35 AMS Relations Serif

- $x \le y$ \leqslant
- $x \lesssim y$ \lesssim
- $x \approx y$ \approxeq
- $x \ll y \setminus 111$
- $x \leq y$ \lesseqgtr
- $x = y \setminus doteqdot$
- x = y \fallingdotseq
- $x \subseteq y$ \backsimeq
- $x \subseteq y$ \Subset
- $x \leq y$ \preccurlyeq
- $x \lesssim y$ \precsim
- $x \triangleleft y$ \vartriangleleft
- $x \models y \quad \forall x$
- $x \sim y$ \smallsmile
- x = y \bumpeq
- $x \ge y$ \geqq
- $x \geqslant y$ \eqslantgtr
- $x \gtrsim y$ \gtrapprox
- $x \gg y \setminus ggg$
- $x \geq y$ \gtreqless
- x = y \eqcirc
- $x \triangleq y$ \triangleq
- $x \approx y$ \thickapprox
- $x \ni y$ \Supset
- $x \succcurlyeq y$ \succcurlyeq
- $x \succsim y$ \succsim
- $x \triangleright y$ \vartriangleright
- $x \Vdash y$ \Vdash
- $x \sqcap y$ \shortparallel
- $x \cap y$ \pitchfork
- $x \triangleleft y$ \blacktriangleleft
- $x \ni y$ \backepsilon
- x : y \because

6.36 AMS Negated Relations Serif

```
x \not \leq y
x \not< y \nless
                                                  \nleq
                                       x \nleq y
x \not\leq y
          \nleqslant
                                                 \nleqq
x \leq y \setminus lneq
                                       x \leq y \setminus \text{lneqq}
x \leq y \left\text{lvertneqq}
                                       x \lesssim y \lnsim
                                       x \not\prec y \quad \text{\nprec}
x \lessapprox y \setminus lnapprox
x \not\preceq y \quad \text{npreceq}
                                       x \gtrsim y
                                                 \precnsim
x \underset{\approx}{\not\sim} y \precnapprox
                                       x \sim y
                                                  \n
          \nshortmid
                                       x \nmid y
                                                  \mbox{nmid}
x \nmid y
x \vdash y
         \nvdash
                                                  \nvDash
                                       x \nvDash y
x \not \lhd y \ntriangleleft
                                       x \not \supseteq y
                                                 \ntrianglelefteq
x \not\subseteq y \nsubseteq
                                       x \subsetneq y \subsetneq
x \subseteq y
          \varsubsetneq
                                       x \subseteq y
                                                  \subsetneqq
x \subsetneq y \varsubsetneqq
                                       x \not> y \setminus \text{ngtr}
x \not\geq y \setminus ngeq
                                       x \not \geq y
                                                  \ngeqslant
x \not \geq y \quad \text{ngeqq}
                                                  \gneq
                                       x \ge y
                                       x \geq y \gvertneqq
x \geq y \setminus gneqq
x \gtrsim y \gnsim
                                       x \gtrsim y \gnapprox
                                       x \not\succeq y \setminus \text{nsucceq}
x \not\succ y \quad \backslash \text{nsucc}
          \nsucceqq
                                       x \gtrsim y \succnsim
xy
x \geq y \succnapprox
                                       x \not\cong y \setminus \text{ncong}
          \nshortparallel x \not\parallel y
                                                  \nparallel
x H y
x \nvDash y
          \nvDash
                                       x \not\Vdash y
                                                  \nVDash
x \not\triangleright y \ntriangleright x \not\trianglerighteq y
                                                  \ntrianglerighteq
x \not\supseteq y \quad \text{\nsupseteq}
                                       x \not\supseteq y
                                                  \nsupseteqq
x \supseteq y \supsetneq
                                       x \supseteq y
                                                  \varsupsetneq
x \supseteq y \supsetneqq
                                       x \supseteq y \varsupsetneqq
```