Induction over Numbers General Plan for every proof

The Rules

Induction can be used to prove statements of the form

$$\forall x: S.P(x)$$

where S is an enumerable set, and $P \subseteq S$.

For any
$$P \subseteq \mathbb{N}$$
:
$$P(0) \land \forall k : \mathbb{N}.[P(k) \to P(k+1)] \longrightarrow \forall n : \mathbb{N}.P(n)$$

Example

Base Case of Proof

Base Case, To Show :
$$\sum_{i=0}^{0} i = \frac{0*(0+1)}{2}$$

$$\sum_{i=0}^{0} i$$

$$= 0 \qquad \text{by definition of } \sum$$

$$= \frac{0*(1)}{2} \qquad \text{by arithmetic}$$

$$= \frac{0*(0+1)}{2} \qquad \text{by arithmetic}$$

Inductive Step Of Proof

Take a $k \in \mathbb{N}$, arbitrary.

Inductive Hypothesis:
$$\sum_{i=0}^{k} i = \frac{k*(k+1)}{2}$$
To Show:
$$\sum_{i=0}^{k+1} i = \frac{(k+1)*(k+1+1)}{2}$$

To Show:
$$\sum_{i=0}^{k+1} i = \frac{(k+1)*(k+1+1)}{2}$$

by arithmetic

by arithmetic

by arithmetic

Good Proof Style

- Write what is given and what you want to prove.
- Make proof steps explicit.
- Justify each proof step, indicating properties, assumptions or lemmas used for particular step.
- Give names to intermediate results, and refer to these when using them later.
- When proving by induction, say on which variable you apply the induction principle.
- Vary granularity of proof steps according to confidence, and circumstances.

Aim to write proofs that others can check.

Example 2

We want to prove

(*)
$$\forall n : \mathbb{N}.(7^n + 5 \text{ is exactly divisible by 3})$$

by mathematical induction over n.

We reformulate (*) as

$$(**) \quad \forall n : \mathbb{N}. \exists m : \mathbb{N}. \ 7^n + 5 = 3 * m.$$

$$P(0) \wedge \forall k : \mathbb{N}.[P(k) \to P(k+1)] \longrightarrow \forall n : \mathbb{N}.P(n)$$

$$\exists m : \mathbb{N}. \ 7^0 + 5 = 3 * m$$

$$\wedge \\ \forall k : \mathbb{N}. \ [\exists m : \mathbb{N}. \ 7^k + 5 = 3 * m \to \exists m' : \mathbb{N}. \ 7^{k+1} + 5 = 3 * m']$$

$$\longrightarrow$$

$$\forall n : \mathbb{N}.\exists m : \mathbb{N}. \ 7^n + 5 = 3 * m$$

Base Case

Base Case, To Show:
$$\exists m : \mathbb{N}. 7^0 + 5 = 3 * m$$
.

We first manipulate the term $7^0 + 5$.

$$7^0 + 5 = 1 + 5$$
 by arithmetic $= 6$ by arithmetic $= 3 * 2$ by arithmetic

Therefore, $\exists m : \mathbb{N}. \ 7^0 + 5 = 3 * m$.

Inductive Step

Take a $k \in \mathbb{N}$, arbitrary.

Inductive Hypothesis: $\exists m : \mathbb{N}. \ 7^k + 5 = 3 * m$.

To Show: $\exists m' : \mathbb{N}. \ 7^{k+1} + 5 = 3 * m'.$

(A) $7^k + 5 = 3 * m1$. by ind. hyp., for some $\underline{m1} : \mathbb{N}$.

Moreover,

$$7^{k+1} + 5 = 7 * 7^k + 5$$
 by arithmetic
 $= (6+1) * 7^k + 5$ by arithmetic
 $= (6 * 7^k + 7^k) + 5$ by arithmetic
 $= 3 * (2 * 7^k) + (7^k + 5)$ by arithmetic
 $= 3 * (2 * 7^k) + 3 * m1$ by (A)
 $= 3 * (2 * 7^k + m1)$ by arithmetic

Take m2 as $m2 = 2 * 7^k + m1$, and thus obtain $\exists m' : \mathbb{N}. \ 7^{k+1} + 5 = 3 * m'$.

Justify Every Step!

New Technique of Mathematical Induction

For example, given

f :: Int -> Ratio Int
-- SPEC
$$\forall n \ge 1$$
.f $n = \frac{n}{n+1}$
f 1 = 1/2
f n = 1/(n*(n+1)) + f (n-1)

Math. induct. principle. not *directly* applicable on $\forall n \geq 1$.f $n = \frac{n}{n+1}$, because

- a) The conclusion has different shape.
- b) The term f 0 is undefined; therefore "base case" cannot be stated.

3 Possible Approaches

In order to prove $\forall n \geq 1$.f $n = \frac{n}{n+1}$, we can

1st Approach Prove, instead $\forall n : \mathbb{N}. n \geq 1 \longrightarrow f$ $n = \frac{n}{n+1}$

2nd Approach Prove, instead $\forall n : \mathbb{N}.f(n+1) = \frac{n+1}{n+2}$

3rd Approach Apply the Mathematical Induction "Technique"

3rd Approach is best.

3rd Approach: Technique of Mathematical Induction

For any $P \subseteq \mathbb{Z}$, and any $m : \mathbb{Z}$

$$P(m) \land \forall k \geq m.[P(k) \rightarrow P(k+1)] \longrightarrow \forall n \geq m.P(n)$$

Example

To Prove:

$$\forall n \geq 1. \text{f } n = \frac{n}{n+1}$$

$$P(m) \land \forall k \geq m.[P(k) \rightarrow P(k+1)] \longrightarrow \forall n \geq m.P(n)$$

$$\begin{array}{c} \texttt{f} \ 1 = \frac{1}{1+1} \\ \land \\ \forall k \geq 1. \ [\ \texttt{f} \ k = \frac{k}{k+1} \ \rightarrow \ \texttt{f} \ (k+1) = \frac{k+1}{k+2} \] \\ \longrightarrow \end{array}$$

$$\forall n \geq 1.$$
f $n = \frac{n}{n+1}$

Proof Schema

$$\forall k \geq 1$$
.

Base Case

To Show
$$f = \frac{1}{1+1}$$
 $\forall n \ge 1.5$

Inductive Step

Take $k : \mathbb{Z}$, arbitrary.

Assume that $k \geq 1$.

Inductive Hypothesis f $k = \frac{k}{k+1}$ To Show f $(k+1) = \frac{k+1}{k+2}$.

Base Case

Base Case, To Show :
$$f 1 = \frac{1}{1+1}$$

$$egin{array}{lll} f & 1 \ &=& 1/2 & ext{by definition} \ &=& rac{1}{1+1} & ext{because } 1+1=2 \end{array}$$

Inductive Step

Take $k : \mathbb{Z}$, arbitrary.

(Ass1) Assume that $k \geq 1$.

Inductive Hypothesis: $f(k) = \frac{k}{k+1}$

To Show: $f(k+1) = \frac{k+1}{k+2}$.

$$f(k+1)$$

$$= \frac{1}{(k+1)*(k+2)} + (f k)$$

$$= \frac{1}{(k+1)*(k+2)} + \frac{k}{k+1}$$

by def. of f, and because of (Ass1). by induction hypothesis

 $= \frac{1}{(k+1)*(k+2)} + (f k)$ $= \frac{1}{(k+1)*(k+2)} + \frac{k}{k+1}$ $= \frac{1}{(k+1)*(k+2)} + \frac{k*(k+2)}{(k+1)*(k+2)}$

by arithmetic

by arithmetic

by arithmetic by arithmetic

In Summary

Principle:

$$P(0) \wedge \forall k : \mathbb{N}.[P(k) \rightarrow P(k+1)] \rightarrow \forall n : \mathbb{N}.P(n)$$

Technique:

For any arbitrary $m \in \mathbb{Z}$:

$$P(m) \land \forall k \geq m.[P(k) \rightarrow P(k+1)] \rightarrow \forall n \geq m.P(n)$$

Strong Induction

$$P(0) \wedge \forall k : \mathbb{N}. [\forall j \in [0..k]. P(j) \longrightarrow P(k+1)] \rightarrow \forall n : \mathbb{N}. P(n)$$

Example

$$P(0) \land \forall k : \mathbb{N}. [\forall j \in [0..k]. P(j) \longrightarrow P(k+1)] \rightarrow \forall n : \mathbb{N}. P(n)$$

g 0 =
$$3^{0}$$
 - 2^{0} \land \land $\forall k.[$\forall j \in [0..k]. g j = 3^{j} - 2^{j} \rightarrow g (k+1) = 3^{k+1} - 2^{k+1}]$ $\longrightarrow$$

$$\forall n : \mathbb{N}. \ g \ n = 3^n - 2^n$$

Proof Schema

Base Case

To Show g 0 =
$$3^0 - 2^0$$
 $\forall n : \mathbb{N}. g = 3^n - 2^n$

Inductive Step

Take $k : \mathbb{N}$, arbitrary.

Inductive Hypothesis
$$\forall j \in [0..k]$$
. g $j = 3^j - 2^j$ To Show g $(k+1) = 3^{k+1} - 2^{k+1}$

. . .

Base Case

Base Case, To Show:
$$g = 3^0 - 2^0$$

$$egin{array}{lll} g & 0 \\ &=& 0 & \mbox{by definition of g} \\ &=& 1-1 & \mbox{by arithmetic} \\ &=& 3^0-2^0 & \mbox{by arithmetic} \end{array}$$

Inductive Step Take an arbitrary $k : \mathbb{N}$ Inductive Hypothesis: $\forall j \in [0..k]$. ($g j = 3^j - 2^j$) To Show: $g (k+1) = 3^{k+1} - 2^{k+1}$ Ist Case, k = 0To show: $g (1) = 3^1 - 2^1$.

g(1)= 1 by line 4 in definition of g

= ... rest as exercise

```
Inductive Hypothesis: \forall j \in [0..k]. ( g \ j = 3^j - 2^j ) To Show: g \ (k+1) = 3^{k+1} - 2^{k+1}

2nd Case, k \neq 0
(A) k \geq 1 because k : \mathbb{N} and k \neq 0 by case.
(B) k, k-1 \in [0..k] because k : \mathbb{N} and k \neq 0.

g \ (k+1)
= 5 * g(k) - 6*g(k-1) \qquad \text{By (A), line 5 of defn. g applies}
= 5 * (3^k - 2^k) - 6 * (3^{k-1} - 2^{k-1}) \qquad \text{By (B), and induction hypothesis}
= 5 * (3 * 3^{k-1} - 2 * 2^{k-1}) - 6 * (3^{k-1} - 2^{k-1}) \qquad \text{by arithmetic}
= \dots \qquad \qquad \dots
= 3^{k+1} - 2^{k+1} \qquad \qquad \text{by arithmetic}
```

In Summary

Mathematical Induction

$$P(0) \wedge \forall k : \mathbb{N}.[P(k) \rightarrow P(k+1)] \longrightarrow \forall n : \mathbb{N}.P(n)$$

Strong Induction

$$P(0) \wedge \forall k : \mathbb{N}. [\forall j \in [0..k]. P(j) \rightarrow P(k+1)] \longrightarrow \forall n : \mathbb{N}. P(n)$$

Strong Induction Principle

For any $Q \subseteq \mathbb{Z}$, and $m \in \mathbb{Z}$

$$Q(m) \wedge \forall k : \mathbb{Z}. [\forall j \in [m..k]. Q(j) \rightarrow Q(k+1)] \longrightarrow \forall n \geq m. Q(n)$$

$$\forall n \geq m. Q(n)$$
 is a shorthand for $\forall n : \mathbb{Z}. [n \geq m \rightarrow Q(n)]$

Marning

Write Proof Schemas! You will get marks!

Final Summary

Mathematical Induction

$$P(0) \wedge \forall k : \mathbb{N}. [P(k) \rightarrow P(k+1)] \longrightarrow \forall n : \mathbb{N}. P(n)$$

Technique, for any $m \in \mathbb{Z}$:

$$P(m) \wedge \forall k \geq m.[P(k) \rightarrow P(k+1)] \longrightarrow \forall n \geq m.P(n)$$

Strong Induction:

$$P(0) \wedge \forall k : \mathbb{N}. [\forall j \in [0..k]. P(j) \rightarrow P(k+1)] \longrightarrow \forall n : \mathbb{N}. P(n)$$

Strong Induction, for $m \in \mathbb{Z}$:

$$P(m) \land \forall k \geq m. [\forall j \in [m..k]. P(j) \rightarrow P(k+1)] \longrightarrow \forall n \geq m. P(n)$$