Работа 5.5.2

Спектрометрия α -излучения с помощью полупроводникового детектора

Выполнил:

Киракосян Давид Арсенович (Б02-006)

Цель Работы: С помощью кремниевого поверхностно-барьерного детектора измеряются спектры α -частиц, испускаемых различными радиоактивными ядрами - 226 Ra, 238 U, 241 Am + 230 Th и 239 Pu. Исследуется тонкая структура α – излучения и последовательность радиоактивных распадов в семействе урана.

1 Теоретические сведения

К числу радиоактивных процессов относятся α - и β -распады (в том числе и K-захват), γ -излучение, деление ядер, а также испускание запаздывающих нейтронов и протонов. В этой работе изучается α -распад.

Энергию вылетающих из ядра α -частиц легко подсчитать на основе законов сохранения. Если родительское (исходное) ядро имеет массу M_1 , а дочернее (конечное) - M_2 , то законы сохранения энергии и импульса записываются в форме

$$M_2c^2 = M_1c^2 + m_{\alpha}c^2 + T_1 + T_{\alpha},$$

 $p_1 + p_{\alpha} = 0$

где T_1 и p_1 - кинетическая энергия и импульс отдачи дочернего ядра, а T_α и p_α - кинетическая энергия и импульс α -частипы.

Ясно, что вылет α -частицы из ядра возможен лишь в том случае, если разность энергий покоя родительского и дочернего ядра будет больше энергии покоя α -частицы. В силу того, что реально α -распад испытывают лишь тяжелые ядра с A>200, энергия отдачи ядра очень мала и фактически кинетическая энергия α -частицы равна разности энергий покоя исходного и конечного ядер. Именно поэтому вылетающие α -частицы имеют строго определенную энергию.

Однако экспериментально обнаружено, что энергетический спектр α -частиц многих α -активных ядер состоит из нескольких линий, одна из которых преобладающее. Дискретность линий и их относительная интенсивность объяснимы, поскольку, во-первых, α -частицы могут испускаться ядром, находящимися в возбужденном состоянии (длиннопробежные α -частицы), а во-вторых может происходить α -распад из основного состояния родительского ядра на возбужденные состояния дочернего ядра (короткопробежные α -частицы). Так как период полураспада для α -частиц примерно в 10^5 раз больше периода α -распада, то интенсивность длиннопробежных α -частиц очень мала.

Тяжелые ядра, как правило, в основном состоянии деформированы (исключением являются магические ядра). Это означает, что низколежащими состояниями являются вращательные полосы, и именно на эти состояния обычно и происходит распад родительского ядра, приводящий к появлению группы короткопробежных α -частиц. Как известно, энергия вращательных уровней определяется выражением

$$E_{\rm Bp} = \frac{\hbar^2}{2\mathcal{T}}l(l+1).$$

Тем самым измерение тонкой структуры энергетического спектра α частиц дает возможность определить момент инерции ядра \mathcal{I} .

Периоды полураспада α -активных ядер очень сильно зависят от энергии вылетающих частиц. Экспериментально установленная зависимость (закон Гейгера-Нэттола) имеет вид:

$$\lg T_{1/2} = \frac{a}{\sqrt{E_{\alpha}}} + b. \tag{1}$$

Коэффициенты a и b очень слабо зависят от заряда ядра Z.

2 Экспериментальная установка

В состав экспериментальной установки входит альфа-спектрометр, форвакуумный насос и персональный компьютер. (Рис. 1)

Рис. 1: Блок-схема спектрометра α-излучения

Форвакуумный насос, соединенный с корпусом альфа-спектрометра вакуум-ным шлангом, откачивает измерительную камеру до давления 0,2 мм рт. ст.

Установка автоматически поддерживает давление в измерительной камере в рабочем диапазоне от 0,2 до 2,0 мм рт. ст. Откачка блокируется при разгер-метизации камеры. Соединение и отсоединение измерительной камеры с атмосферой осуществляется с помощью двух электромагнитных клапанов.

Внешний вид альфа-спектромерта изображен рис 2а.

Рис. 2: Блок-схема спектрометра α -излучения

Здесь 1 - крышка измерительной камеры, 2 - прижимная ручка, 3 - кнопка разгерметизации (напуска атмосферы), 4 - индикатор давления в камере (показывает давление в мм рт. ст.). Внутри измерительной камеры альфа-спектрометра (рис. 26) располагается полупроводниковый детектор 5, держатель образца 6 вместе с металлической подложкой 7, на которую устанавливают образцы с радиоактивными источниками. Металлическая подложка 7 соединена гибким проводником с источником постоянного напряжения. На подложку 7 подается отрицательный потенциал (относительно корпуса измерительной камеры) для того, чтобы ядра отдачи, получившие импульс, направленный вверх, не попадали на детектор и не загрязняли его. Держатель образца 6 вместе с самим образцом можно располагать на нескольких фиксированных расстояниях от детектора. Электрический сигнал с полупроводникового детектора усиливается, поступает на плату аналогово-цифрового преобразователя (АЦП) и обрабатывается компьютером.

Амплитуда электрического сигнала с полупроводникового детектора пропорциональна энергии а - частицы, и поэтому с помощью компьютера мы регистрируем спектры источников. Осуществляется это с помощью установленной на компьютере программы "Прогресс"

При использовании детектора в спектрометрических целях особое значение приобретает его разрешающая способность, т. е. ширина кривой распределения импульсов по амплитудам при строго постоянной энергии регистрируемых частиц. Форма такой кривой распределения обычно бывает близка к кривой ошибок (гауссовой кривой)

$$W(U)dU = \frac{1}{\sqrt{2\pi}\sigma}e^{-(U-U_0)^2/(2\sigma^2)}dU$$

Распределение (5) имеет вид колокола с максимумом при $U=U_0$. Разрешающую способность спектрометра определяют по величине δ ширине кривой W(U), измеренной на половине высоты. Энергетическим разрешением спектрометра обычно называют величину

$$R = \frac{\delta}{U_0} \cdot 100\%.$$

Нетрудно найти связь между δ и б:

$$\delta = 2\sqrt{2 \ln 2} \sigma$$
.

Одной из основных причин, вызывающих разброс импульсов по амплитуде, является статистическая флуктуация числа электрондырочных пар, создаваемых падающей частицей. Среднее число пар N равно

$$N = E/E_{\rm cp}$$

где E - энергия, теряемая частицей в детекторе, а $E_{\rm cp}=3.6$ эВ - энергия, необходимая для создания пары электрондырка. Среднеквадратичное отклонение σ равно

$$\sigma = \sqrt{N} = \sqrt{E/E_{\rm cp}}$$

Вклад флуктуаций числа пар в энергетическое разрешение

$$R_{\rm флук} \ = rac{\sigma}{N} \cdot 100\% = \sqrt{rac{E_{
m cp}}{E}} \cdot 100\%.$$

3 Ход Работы

Получим зависимость счета на сцинтилляторе $N_{\rm q}'$ от номера канала N для разных веществ: $^{226}{\rm Ra}, ^{238}{\rm U}, ^{239}{\rm Pu},$ $^{241}{\rm Am} + ^{230}{\rm Th}.$ Спектр $^{226}{\rm Ra}$ будем использовать для калибровки горизонтальной оси. Найдем номера пиков:

$$N_1 = 1594.7, \quad N_2 = 1828.2, \quad N_3 = 1998.1, \quad N_4 = 2540.2$$
 (2)

Мы знаем, что этим пикам соответствуют табличные значения энергии 4.784, 5.490, 6.002, 7.687 МэВ соответственно. Тогда проведем калибровку спектрометра, построив линейную зависимость энергии гамма-кванта от номера канала $E_i = f(N_i)$ (Рис. 3). Результат калибровки:

$$E_i = (-0.1267 + 0.0031N_i) \text{ M} \cdot \text{B}$$
 (3)

Рис. 3: Калибровочный график $E_i = f(N_i)$

С помощью полученной зависимости переведем все полученные значения каналов в энергии, а счет сцинтиллятора не будем отнормировать по времени, так как все измерения были проведены за 600 ± 3 секунды. Также занесем значения максимумов в таблицу 1

Рис. 4: Спектр ²²⁶Ra

Рис. 5: Спектр $^{239}\mathrm{Pu}$

Рис. 6: Спектр $^{238}\mathrm{U}$

Таблица 1: Пики α -спектров

Образец	$ N_i $	ΔN_i	$ E_i$	ΔE_i	R_i	$R_{\Phi\pi}, 10^{-4}$
²³⁹ Pu	1738.639	18.063	5.217	0.056	0.010	8.31
²³⁹ Ри (доч.)	1845.025	12.345	5.544	0.038	0.007	8.06
226 Ra	1594.688	30.224	4.775	0.093	0.019	8.68
²²⁶ Ra (доч.)	1828.164	26.150	5.492	0.080	0.014	8.10
²²⁶ Ra (доч.)	1998.108	23.183	6.015	0.071	0.012	7.74
²²⁶ Ra (доч.)	2540.184	24.510	7.681	0.075	0.010	6.85
241 Am $+^{230}$ Th	1581.102	17.973	4.733	0.055	0.011	8.72
241 Am $+^{230}$ Th (доч.)	1841.891	18.608	5.535	0.057	0.010	8.07
$^{238}\mathrm{U}$	1388.365	49.676	4.141	0.153	0.036	9.32
²³⁸ U (доч.)	1566.426	69.002	4.688	0.212	0.044	8.76

Рис. 7: Спектр $^{241}{\rm Am} + ^{230}{\rm Th}$

Для 226 Rа разница $R_i-R_{\Phi\pi}=0.01$. Построим теперь зависимость $T_{1/2}(1/\sqrt{E_{\alpha}})$, для проверки закона Гейгера-Нетолла (1). Времена полураспада 226 Rа и дочерних ядер приведены в таблице 2. График представлен на Рис. 8.

Таблица 2: Время полураспадов $^{226}\mathrm{Ra}$ и дочерних ядер

Образец	$\frac{226}{88}$ Ra	$^{222}_{86}{ m Rn}$	$^{218}_{84}$ Po	²¹⁴ ₈₄ Po
$T_{1/2}$	1620 лет	3.82 суток	3.11 мин.	1.6310^{-4} сек.

Рис. 8: Проверка закона Гейгера-Нетолла

4 Вывод

В ходе работы были проведены измерения спектров α -излучения, были получены энергии α -распадов для разных веществ, которые приведены в таблице 1. Также был проверен закон Гейгера-Нетолла связывающий период полураспада с энергией излучения.