Group Meeting 07.05

Three-body reaction theory in a model space

Hao Liu Zetian Ma

The Schrodinger equation of three-body System

$$[E - K - V(r) - U_1(r_1) - U_2(r_2)] \psi = 0,$$

The "Distorted-wave" Faddeev differential equations

$$\begin{split} \left[E - K - V(r) - \mathscr{P}_{\lambda} \left(U_{1} + U_{2}\right) \mathscr{P}_{\lambda}\right] \psi_{\lambda} &= V \left[\psi_{1\lambda} + \psi_{2\lambda}\right] \\ \left[E - K - U_{1} \left(r_{1}\right)\right] \psi_{1\lambda} &= \mathscr{P}_{\lambda} \left[U_{1} - \mathscr{P}_{\lambda} U_{1} \mathscr{P}_{\lambda}\right] \psi_{\lambda} + \mathscr{P}_{\lambda} U_{1} \psi_{2\lambda} \\ \left[E - K - U_{2} \left(r_{2}\right)\right] \psi_{2\lambda} &= \mathscr{P}_{\lambda} \left[U_{2} - \mathscr{P}_{\lambda} U_{2} \mathscr{P}_{\lambda}\right] \psi_{\lambda} + \mathscr{P}_{\lambda} U_{2} \psi_{1\lambda}, \end{split}$$
 where $\psi = \psi_{\lambda} + \psi_{1\lambda} + \psi_{2\lambda}$

Expend it in the set of basis $|k[lL]JM| \equiv |\phi_l(k,r)[Y_l(\hat{r}),Y_L(\hat{R})]_{JM}$,

$$[E - K - V(r)] \psi_{\lambda} = \mathcal{P}_{\lambda} (U_1 + U_2) \mathcal{P}_{\lambda} \psi_{\lambda} + V [\psi_{1\lambda} + \psi_{2\lambda}]$$

$$\left[E - \boldsymbol{\epsilon}(k) - K_R\right] g_{\lambda LL}^J[P(k), \overrightarrow{R}] = \int d^3r d\hat{R} \left\{ \phi_l\left(k', r\right) \left[Y_1(r), Y_L(R)\right]_{JM} \right\}^*$$

$$\left\{ \mathscr{P}_{\lambda} \left(U_1 + U_2 \right) \mathscr{P}'_{\lambda} \psi' + V \left[\psi_{1\lambda} + \psi_{2\lambda} \right] \right\}$$

$$U_{\lambda} \equiv \mathscr{P}_{\lambda} \left(U_1 + U_2 \right) \mathscr{P}_{\lambda}' \qquad \xi_{\lambda} \equiv \psi_{1\lambda} + \psi_{2\lambda}$$

$$\begin{split} \left[E - K - U_{1}\left(r_{1}\right)\right]\psi_{1\lambda} &= \mathscr{P}_{\lambda}\left[U_{1} - \mathscr{P}_{\lambda}U_{1}\mathscr{P}_{\lambda}\right]\psi_{\lambda} + \mathscr{P}_{\lambda}U_{1}\psi_{2\lambda} \\ \left[E - K - U_{2}\left(r_{2}\right)\right]\psi_{2\lambda} &= \mathscr{P}_{\lambda}\left[U_{2} - \mathscr{P}_{\lambda}U_{2}\mathscr{P}_{\lambda}\right]\psi_{\lambda} + \mathscr{P}_{\lambda}U_{2}\psi_{1\lambda}, \end{split}$$

With "Distorted-wave" Faddeev differential equations, they get

$$\begin{split} \left[E - K - U_1 - U_2\right] \xi_{\lambda} &= \left[U_1 + U_2 - U_{\lambda}\right] \psi_{\lambda}, \\ \left[E - K - V - U_{\lambda}\right] \psi_{\lambda} &= V \xi_{\lambda}, \end{split} \qquad U \equiv U_1 + U_2 \end{split}$$

$$[E - K - U] \xi_{\lambda} = [U - U_{\lambda}] \psi_{\lambda},$$
$$[E - K - V - U_{\lambda}] \psi_{\lambda} = V \xi_{\lambda},$$

$$\xi_{\lambda} \equiv \psi_{1\lambda} + \psi_{2\lambda}$$
 just has outgoing wave,

Source term

$$\xi_{\lambda} = \left[E^{+} - K - U\right]^{-1} \left[U - U_{\lambda}\right] \psi_{\lambda},$$

This term will be small in the range of V.

Source term show there will be a 'hole' near the origin, where the low multipoles of U cancel with those of U_{λ} .

CDCC

$$(E - K - V - U)\psi = 0$$

$$(E - K - V - \mathcal{P}U)\mathcal{P}\psi = \mathcal{P}U\mathcal{Q}\psi,$$

$$(E - K - V - \mathcal{P}U)\mathcal{P}\psi = \mathcal{P}U(1 - \mathcal{P})\psi,$$

In the CDCC calculation, they assume

$$(E - K - V - \mathcal{P}U\mathcal{P})\psi^{CDCC} = 0,$$

CDCC

$$(E - K - V - \mathcal{P}U)\mathcal{P}\psi = \mathcal{P}U(1 - \mathcal{P})\psi,$$

$$(E - K - V - \mathcal{P}U\mathcal{P})\psi^{CDCC} = 0,$$

This term must be small.

$$\begin{aligned} \left[E - K - V - U_{\lambda}\right] \psi_{\lambda} &= V \xi_{\lambda}, \\ \xi_{\lambda} &= \left[E - K - U\right]^{-1} \left[U - U_{\lambda}\right] \psi_{\lambda} \end{aligned}$$

Now, however, by the analysis given before, we recognize that $\mathcal{P}_{\lambda}U(1-\mathcal{P}_{\lambda})\psi$ must be negligible in a domain \mathcal{D} , defined by $R < R_c$. We assume that we can find R_c in such a way that it is small enough to ensure that $\mathcal{P}_{\lambda}U(1-\mathcal{P}_{\lambda})\psi$ is small in \mathcal{D} , so that partial waves with $l < \lambda$ are not much affected in \mathcal{D} by those with $l > \lambda$. At the same time, R_c is large enough to ensure that the truncated tail of $\mathcal{P}_{\lambda}U\mathcal{P}_{\lambda}$ beyond R_c is small and smooth, so that the reflection of $\mathcal{P}_{\lambda}\psi_{\lambda}$ from outside is negligible. Then $\mathcal{P}_{\lambda}\psi$ satisfies approximately the same equation in \mathcal{D} and approximately the same boundary conditions at $R = R_c$ as ψ_{λ} , so that $\psi_{\lambda} \approx \mathcal{P}_{\lambda}\psi$ in \mathcal{D} . The larger λ is, the larger R_c can be and the closer ψ_{λ} is to ψ .