MA 205 Complex Analysis: Real Integrals

U. K. Anandavardhanan IIT Bombay

August 31, 2015

We'll continue to work out some integrals using the Residue Theorem. Recall the theorem. We'll start with

Theorem (Jordan's Lemma)

Let f be a continuous function defined on the semicircular contour $C_R = \{Re^{i\theta} \mid \theta \in [0,\pi]\}$ of the form

$$f(z)=e^{\imath az}g(z),$$

with a > 0. Then,

$$\left| \int_{C_R} f(z) dz \right| \leq \frac{\pi}{a} \max_{\theta \in [0,\pi]} |g(Re^{i\theta})|.$$

Proof:

$$\int_{C_R} f(z) dz = \int_0^{\pi} g(Re^{i\theta}) e^{iaR(\cos\theta + i\sin\theta)} iRe^{i\theta} d\theta.$$

Therefore,

$$\begin{split} \left| \int_{C_R} f(z) dz \right| & \leq R \int_0^{\pi} \left| g(Re^{i\theta}) e^{aR(i\cos\theta - \sin\theta)} i e^{i\theta} \right| d\theta \\ & = R \int_0^{\pi} \left| g(Re^{i\theta}) \right| e^{-aR\sin\theta} d\theta \\ & \leq 2RM_R \int_0^{\frac{\pi}{2}} e^{-aR\sin\theta} d\theta \\ & \leq 2RM_R \int_0^{\frac{\pi}{2}} e^{-\frac{2aR\theta}{\pi}} d\theta = \frac{\pi}{a} (1 - e^{-aR}) M_R \leq \frac{\pi}{a} M_R, \end{split}$$

since $\sin \theta \geq \frac{2\theta}{\pi}$ for $\theta \in [0, \frac{\pi}{2}]$.

1. Compute $\int_0^\infty \frac{\sin x}{x} dx$. We'll consider the function

$$f(z)=\frac{e^{iz}}{z}.$$

Let γ be the boundary of the upper part of the annulus A(0; r, R). Then, $\int_{\gamma} f(z)dz = 0$, by Cauchy's theorem.

But,

$$\int_{\gamma} f(z)dz = \int_{r}^{R} \frac{e^{\imath x}}{x} dx + \int_{\gamma_{R}} \frac{e^{\imath z}}{z} dz + \int_{-R}^{-r} \frac{e^{\imath x}}{x} dx + \int_{\gamma_{r}} \frac{e^{\imath z}}{z} dz.$$

Now,

$$\int_{r}^{R} \frac{\sin x}{x} dx = \frac{1}{2i} \int_{r}^{R} \frac{e^{ix} - e^{-ix}}{x} dx$$
$$= \frac{1}{2i} \int_{r}^{R} \frac{e^{ix}}{x} dx + \frac{1}{2i} \int_{-R}^{-r} \frac{e^{ix}}{x} dx.$$

Thus, we only need to compute

$$\lim_{R \to \infty} \int_{\gamma_R} \frac{e^{iz}}{z} dz \, \& \, \lim_{r \to 0} \int_{\gamma_r} \frac{e^{iz}}{z} dz.$$

Now,

$$\lim_{R\to\infty}\int_{\gamma_R}\frac{e^{\imath z}}{z}dz=0,$$

by Jordan's lemma. (Why?) On the other hand, note that $\frac{e^{iz}-1}{z}$ has a removable singularity at 0. Thus, there is M>0 such that

$$\left|\frac{e^{iz}-1}{z}\right|\leq M,$$

for $|z| \leq 1$. Thus,

$$\lim_{r\to 0}\int_{\gamma_r}\frac{e^{iz}-1}{z}dz=0,$$

by appealing to ML inequality.

Therefore,

$$\lim_{r\to 0}\int_{\gamma_r}\frac{e^{\imath z}}{z}dz=-\pi\imath.$$

Thus,

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

2. Show that $\int_0^\infty \frac{\log x}{1+x^2} dx = 0$. We'll work with γ as in the previous problem. We take

$$f(z) = \frac{\log z}{1 + z^2},$$

where $\log z$ is a branch of the logarithm which is defined on the x-axis, so that \int_r^R and \int_{-R}^{-r} make sense. For instance, we can take the branch with negative y-axis as the branch cut. Then,

$$\log x = \begin{cases} \log x & \text{if } x > 0, \\ \log |x| + i\pi & \text{if } x < 0. \end{cases}$$

Now,

$$\int_{\gamma} \frac{\log z}{1+z^{2}} dz = \int_{r}^{R} \frac{\log x}{1+x^{2}} dx + \int_{\gamma_{R}} \frac{\log z}{1+z^{2}} dz + \int_{-R}^{-r} \frac{\log |x| + i\pi}{1+x^{2}} dx + \int_{\gamma_{r}} \frac{\log z}{1+z^{2}} dz.$$

The lhs is $2\pi i \cdot \operatorname{Res}(f;i)$ which is $2\pi i \cdot \frac{\log i}{2i} = \frac{\pi^2 i}{2}$. Also,

$$\int_{r}^{R} \frac{\log x}{1+x^{2}} dx + \int_{-R}^{-r} \frac{\log|x| + i\pi}{1+x^{2}} dx = 2 \int_{r}^{R} \frac{\log x}{1+x^{2}} dx + i\pi \int_{r}^{R} \frac{dx}{1+x} dx$$
$$= 2 \int_{r}^{R} \frac{\log x}{1+x^{2}} dx + \frac{\pi^{2}i}{2}.$$

Thus,

$$\int_{r}^{R} \frac{\log x}{1+x^2} dx = -\frac{1}{2} \left[\int_{\gamma_R} \frac{\log z}{1+z^2} dz + \int_{\gamma_r} \frac{\log z}{1+z^2} dz \right].$$

Note that

$$\begin{split} \left| \int_{\gamma_{\rho}} \frac{\log z}{1 + z^2} dz \right| &= \left| \rho \int_0^{\pi} \frac{\log \rho + i\theta}{1 + \rho^2 e^{i\theta}} e^{i\theta} d\theta \right| \\ &\leq \frac{\rho |\log \rho|}{|1 - \rho^2|} \int_0^{\pi} d\theta + \frac{\rho}{|1 - \rho^2|} \int_0^{\pi} \theta d\theta \\ &= \frac{\pi \rho |\log \rho|}{|1 - \rho^2|} + \frac{\rho \pi^2}{|1 - \rho^2|}. \end{split}$$

This is zero in the limit if $\rho \to 0+$ or $\rho \to \infty$. Thus, the given integral is zero.

3. Show that $\int_0^\infty \frac{x^{-c}}{1+x} dx = \frac{\pi}{\sin \pi c}$ if 0 < c < 1. We'll integrate

$$f(z)=\frac{z^{-c}}{1+z},$$

where z^{-c} is the branch corresponding to branch cut being the positive real axis, and integrate along the contour:

Why this particular choice?

By residue theorem,

$$\int_{\gamma} \frac{z^{-c}}{1+z} dz = 2\pi \imath e^{\imath \pi c}.$$

The integral is the sum of four integrals; one on L_1 , one on γ_R , one on L_2 , one on γ_r . Note that

$$\int_{r}^{R} \frac{t^{-c}}{1+t} dt = \lim_{\delta \to 0} \int_{L_{1}} \frac{z^{-c}}{1+z} dz.$$

Similarly,

$$\lim_{\delta \to 0} \int_{L_2} \frac{z^{-c}}{1+z} dz = -e^{-2\pi i c} \int_r^R \frac{t^{-c}}{1+t} dt.$$

Also,

$$\left| \int_{\gamma_{\rho}} \frac{z^{-c}}{1+z} dz \right| \leq \frac{\rho^{-c}}{|1-\rho|} 2\pi \rho.$$

This is zero in the limit as $\rho \to 0$ or $\rho \to \infty$. Thus we get:

$$2\pi i e^{-i\pi c} = (1 - e^{-2i\pi c}) \int_0^\infty \frac{t^{-c}}{1+t} dt.$$

Thus,

$$\int_0^\infty \frac{t^{-c}}{1+t} dt = \frac{2\pi i e^{-i\pi c}}{1-e^{-2i\pi c}} = \frac{\pi}{\sin \pi c}.$$

Now, let's introduce ourselves to a very important function; the Gamma function. It's defined as:

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt,$$

for $\mathrm{Re}(z)>0$. Does the integral make sense? Check: it does converge absolutely in the right half plane. Therefore, it is a holomorphic function in the right half plane. (Why?) What's $\Gamma(1)$?

Integration by parts in the region of convergence gives:

$$\Gamma(z+1)=z\Gamma(z).$$

Thus,

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1)\dots\Gamma(1) = n!.$$

The Gamma function interpolates the factorial function!

We would like to define the Gamma function throughout \mathbb{C} . Right now, it's defined only on the right half plane. Any ideas? Use the identity

$$\Gamma(z+1)=z\Gamma(z).$$

Is $\Gamma(z)$ holomorphic throughout? Plug in z=0, and we get:

$$0 \cdot \Gamma(0) = 1$$
.

Thus 0 must be a pole for the extended Gamma function. Similarly, all negative integers are also poles. And these are the only poles. Exercise: Check that these poles are simple and

$$\operatorname{Res}(\Gamma; -n) = \frac{(-1)^n}{n!}.$$

What is $\Gamma(x)\Gamma(y)$?

$$\Gamma(x)\Gamma(y) = \int_0^\infty \int_0^\infty e^{-u-v} u^{x-1} v^{y-1} du dv.$$

Put

$$u=zt;\ v=z(1-t),$$

and apply the change of variables formula from MA 105. Check:

$$\Gamma(x)\Gamma(y) = \Gamma(x+y)B(x,y),$$

where

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

Put $t = \frac{s}{s+1}$ to get:

$$B(1-c,c)=\int_0^\infty \frac{s^{-c}}{1+s}ds,$$

for 0 < c < 1.

Thus, for 0 < x < 1,

$$\Gamma(x)\Gamma(1-x) = \int_0^\infty \frac{t^{-x}}{1+t} dt = \frac{\pi}{\sin \pi x}.$$

In particular,

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}.$$

Can we say that

$$\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin\pi z},$$

for all $z \in \mathbb{C}$?

YES. By identity theorem. Introduce meromorphic functions. Why is the identity theorem valid for meromorphic functions?