```
In [1]: # Import Libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.preprocessing import StandardScaler, OneHotEncoder
        from sklearn.impute import SimpleImputer
        from sklearn.cluster import KMeans
        import datetime as dt
        import warnings
        warnings.filterwarnings("ignore")
In [3]: # Load and Inspect Data
        df = pd.read_csv("Airbnb_data.csv")
        # Basic info
        df.shape
        df.head()
        df.info()
        df.describe()
```

5/27/25, 8:39 PM Project- Part A C6

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 74111 entries, 0 to 74110
Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype	
0	id	74111 non-null	int64	
1	log_price	74111 non-null	float64	
2	property_type	74111 non-null	object	
3	room_type	74111 non-null	object	
4	amenities	74111 non-null	object	
5	accommodates	74111 non-null	int64	
6	bathrooms	73911 non-null	float64	
7	bed_type	74111 non-null	object	
8	cancellation_policy	74111 non-null	object	
9	cleaning_fee	74111 non-null	bool	
10	city	74111 non-null	object	
11	description	74111 non-null	object	
12	first_review	58247 non-null	object	
13	host_has_profile_pic	73923 non-null	object	
14	host_identity_verified	73923 non-null	object	
15	host_response_rate	55812 non-null	object	
16	host_since	73923 non-null	object	
17	instant_bookable	74111 non-null	object	
18	last_review	58284 non-null	object	
19	latitude	74111 non-null	float64	
20	longitude	74111 non-null	float64	
21	name	74111 non-null	object	
22	neighbourhood	67239 non-null	object	
23	number_of_reviews	74111 non-null	int64	
24	review_scores_rating	57389 non-null	float64	
25	thumbnail_url	65895 non-null	object	
26	zipcode	73143 non-null	object	
27	bedrooms	74020 non-null	float64	
28	beds	73980 non-null	float64	
dtype	es: bool(1), float64(7),	int64(3), objec	t(18)	

memory usage: 15.9+ MB

•	•					
3]:	id	log_price	accommodates	bathrooms	latitude	longitu
count	7.411100e+04	74111.000000	74111.000000	73911.000000	74111.000000	74111.0000
mean	1.126662e+07	4.782069	3.155146	1.235263	38.445958	-92.3975
std	6.081735e+06	0.717394	2.153589	0.582044	3.080167	21.7053
min	3.440000e+02	0.000000	1.000000	0.000000	33.338905	-122.5115
25%	6.261964e+06	4.317488	2.000000	1.000000	34.127908	-118.3423
50%	1.225415e+07	4.709530	2.000000	1.000000	40.662138	-76.9969
75%	1.640226e+07	5.220356	4.000000	1.000000	40.746096	-73.9546
max	2.123090e+07	7.600402	16.000000	8.000000	42.390437	-70.9850
1						•

^{1.} Data Exploration and Preprocessing

```
In [4]: # Handle Missing Values
        # Fill numerical nulls
        num cols = ['bathrooms', 'bedrooms', 'beds', 'review_scores_rating']
        for col in num_cols:
            df[col].fillna(df[col].median(), inplace=True)
        # Fill text and boolean nulls
        df['cleaning fee'].fillna(0, inplace=True)
        df['host_response_rate'] = df['host_response_rate'].str.replace('%', '').astype(flo
        df['host_response_rate'].fillna(df['host_response_rate'].mean(), inplace=True)
        # Convert date fields
        for date_col in ['host_since', 'first_review', 'last_review']:
            df[date col] = pd.to datetime(df[date col], errors='coerce')
        # Host tenure
        df['host_tenure'] = (pd.to_datetime('today') - df['host_since']).dt.days
        # Review time gaps
        df['days_since_last_review'] = (pd.to_datetime('today') - df['last_review']).dt.day
        df['days_active'] = (df['last_review'] - df['first_review']).dt.days
        # Fill missing tenure or review gaps
        df['host_tenure'].fillna(df['host_tenure'].median(), inplace=True)
        df['days_since_last_review'].fillna(df['days_since_last_review'].median(), inplace=
        df['days_active'].fillna(0, inplace=True)
In [5]: # Feature Engineering
        # Amenity count
        df['amenities_count'] = df['amenities'].apply(lambda x: len(x.split(',')) if pd.not
        # Description & name Length
        df['description_length'] = df['description'].apply(lambda x: len(str(x)))
        df['name_length'] = df['name'].apply(lambda x: len(str(x)))
        # Binary encoding
        binary_cols = ['host_has_profile_pic', 'host_identity_verified', 'instant_bookable'
        for col in binary_cols:
            df[col] = df[col].map({'t': 1, 'f': 0})
        # Create location clusters
        kmeans = KMeans(n_clusters=5, random_state=42)
        df['location_cluster'] = kmeans.fit_predict(df[['latitude', 'longitude']])
In [6]: # Encode Categorical Variables
        # One-Hot Encoding for Low-cardinality columns
        onehot_cols = ['room_type', 'cancellation_policy']
        df = pd.get_dummies(df, columns=onehot_cols, drop_first=True)
        # Frequency Encoding for high-cardinality columns
        for col in ['neighbourhood', 'zipcode']:
```

```
df[col + '_freq'] = df[col].map(freq_map)

In [8]: # Outlier Detection (Flag)

from scipy.stats import zscore
    df['z_price'] = zscore(df['log_price'])
    df['price_outlier'] = df['z_price'].apply(lambda x: 1 if abs(x) > 3 else 0)
```

freq_map = df[col].value_counts().to_dict()

Out[9]:

•		log_price	property_type	accommodates	bathrooms	bed_type	cleaning_fee	city	host
	0	5.010635	Apartment	3	1.0	Real Bed	True	NYC	
	1	5.129899	Apartment	7	1.0	Real Bed	True	NYC	
	2	4.976734	Apartment	5	1.0	Real Bed	True	NYC	
	3	6.620073	House	4	1.0	Real Bed	True	SF	
	4	4.744932	Apartment	2	1.0	Real Bed	True	DC	

5 rows × 33 columns

←

2. Model Development

```
In [10]: # Define target and features
X = df_clean.drop(columns=['log_price'])
y = df_clean['log_price']
```

```
In [11]: # Train-Test Split
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42)
```

```
In [14]: # Identify object (categorical) columns
    cat_cols = X.select_dtypes(include='object').columns.tolist()
    print("Categorical columns:", cat_cols)
```

Categorical columns: ['property_type', 'bed_type', 'city']

```
In [15]: # Encode Categorical Columns
         #Frequency Encoding
         for col in ['property_type', 'bed_type', 'city']:
             freq_map = X[col].value_counts().to_dict()
             X[col] = X[col].map(freq_map)
In [19]: # Impute missing values
         from sklearn.impute import SimpleImputer
         # Impute numerical missing values with median
         imputer = SimpleImputer(strategy='median')
         X_imputed = imputer.fit_transform(X)
         # Reassign back as DataFrame
         X = pd.DataFrame(X_imputed, columns=X.columns)
In [20]: # Feature Scaling
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
In [21]: # Linear Regression Model
         from sklearn.linear_model import LinearRegression
         lr_model = LinearRegression()
         lr_model.fit(X_train_scaled, y_train)
Out[21]:
             LinearRegression
         LinearRegression()
In [24]: # install XGBoost
         !pip install xgboost
        Requirement already satisfied: xgboost in c:\users\adithya\anaconda3\lib\site-packag
        es (3.0.2)
        Requirement already satisfied: numpy in c:\users\adithya\anaconda3\lib\site-packages
        (from xgboost) (1.26.4)
        Requirement already satisfied: scipy in c:\users\adithya\anaconda3\lib\site-packages
        (from xgboost) (1.13.1)
In [25]: # XGBoost Regression Model
         from xgboost import XGBRegressor
```

```
xgb_model = XGBRegressor(n_estimators=100, learning_rate=0.1, max_depth=6, random_s
         xgb model.fit(X train, y train)
Out[25]:
                                          XGBRegressor
         XGBRegressor(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample_bytree=None, device=None, early_stopping_rounds=N
         one,
                       enable_categorical=False, eval_metric=None, feature_types=N
         one,
                       feature_weights=None, gamma=None, grow_policy=None,
                       importance_type=None, interaction_constraints=None,
                       learning_rate=0.1, max_bin=None, max_cat_threshold=None,
In [26]: # Save Trained Models
         import joblib
         joblib.dump(lr_model, "linear_model.pkl")
         joblib.dump(xgb_model, "xgboost_model.pkl")
Out[26]: ['xgboost_model.pkl']
           3. Model Evaluation
In [27]: # Model Evaluation by XGBoost
         from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
         import numpy as np
         # Predict using XGBoost model
         y_pred_xgb = xgb_model.predict(X_test_scaled)
         # Evaluation Metrics
         rmse = np.sqrt(mean_squared_error(y_test, y_pred_xgb))
         mae = mean_absolute_error(y_test, y_pred_xgb)
         r2 = r2_score(y_test, y_pred_xgb)
         print(f"XGBoost RMSE: {rmse:.2f}")
         print(f"XGBoost MAE: {mae:.2f}")
         print(f"XGBoost R2: {r2:.2f}")
        XGBoost RMSE: 0.80
        XGBoost MAE: 0.64
        XGBoost R<sup>2</sup>: -0.23
In [28]: # Model Evaluation by Linear Regression
```

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

import numpy as np

```
# Predict on test data
y_pred_lr = lr_model.predict(X_test_scaled)

# Calculate evaluation metrics
rmse_lr = np.sqrt(mean_squared_error(y_test, y_pred_lr))
mae_lr = mean_absolute_error(y_test, y_pred_lr)
r2_lr = r2_score(y_test, y_pred_lr)

print(f"Linear Regression RMSE: {rmse_lr:.2f}")
print(f"Linear Regression Regression R2: {r2_lr:.2f}")
inear Regression RMSE: 0.47
```

Linear Regression RMSE: 0.47 Linear Regression MAE: 0.36 Linear Regression R²: 0.57

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(8, 6))
    sns.scatterplot(x=y_test, y=y_pred_lr, alpha=0.5)
    plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', lw=2)
    plt.xlabel('Actual Price (log scale)')
    plt.ylabel('Predicted Price (log scale)')
    plt.title('Linear Regression: Actual vs Predicted Prices')
    plt.show()
```

5/27/25, 8:39 PM Project- Part A C6

Linear Regression: Actual vs Predicted Prices


```
In [30]: # Residuals Plot

residuals = y_test - y_pred_lr

plt.figure(figsize=(8, 5))
sns.histplot(residuals, bins=40, kde=True)
plt.xlabel('Residuals')
plt.title('Distribution of Residuals')
plt.show()
```

5/27/25, 8:39 PM Project- Part A C6

Presentation Video: https://drive.google.com/file/d/1Hz-Yh-zPBnzbhXDhbGSUiGFBaTU0nkdv/view

In []: