Bagging

```
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import becisionTreeClassifier
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection

data = arff.loadarff(r'c:\Users\repressure)niport train_test_split
from sklearn.model_selection
from sklearn.m
```

		, ,			/		<i>- -</i>					
PS C:\	Users\reyna> & C:/Us countNonZeroRSSI_1										ging.py globalMeanAbsSumChanges	
2124	5.0	19365.0	10.0	0.0	-62.2	-66.0	7.218	-69.0	-45.0	99163.0	20.90	Cuisi
e_c2 9392 _d15	5.0	14263.0	4.0	-0.4	-53.4	-55.0	13.907	-69.0	-52.0	259870.0	55.15	Cuisir
14672 n_a5	3.0	12681.0	131.0	-0.6	-39.0	-67.0	3.895	-68.0	-55.0	211244.0	14.45	Sal
28042	0.0	0.0	0.0	0.0	0.0	0.0	6.160	-69.0	-46.0	116653.0	16.40	Salleamang
r_o9 16052 n_g5	0.0	0.0	0.0	0.0	0.0	0.0	5.837	-69.0	-58.0	94125.0	14.65	Sal
tree : 0.9512 baggir	2168856342882											

Random Forest

```
from sklearn.ensemble import RandomForestClassifier
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import standardScaler

data = arff.loadarff(r'c:\Users\reyna\Desktop\Travail\UQAC\Trimestre2-Hiver\DeepLearning\Travail2\RFID_Features_windows5.arff')
df = pd.DataFrame(data[0])
df['class'] = df['class'].str.decode('utf-8')
df = shuffle(df)
print(df.tail()) #To see the last lines

X = df.iloc[:, :188].values
y = df.iloc[:, :188].values
X_train, X_test, y_train, y_test = train_test_split(X ,y ,test_size = 0.3 , random_state = 1)

sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
#y_train = np.where(y_train == 'chambre_al', 1, -1)
#y_test = np.where(y_train == 'chambre_al', 1, -1)
forest = RandomForestClassifier(criterion = 'entropy', n_estimators=10, n_jobs = 2, random_state=1)

forest.fit(X_train_std, y_train)
print("random forest : ")
print(forest.score(X_test_std, y_test))
```

	Users\reyna> & C:/Uso countNonZeroRSSI_1											domforest.py globalMeanAbsSumChanges	с
1ass 20474	0.0	0.0	0.0	0.0	0.0	0.0		0.083	-66.0	-59.0	79113.0	0.35	Salleamange
r_f7 343	0.0	0.0	0.0	0.0	0.0	0.0		0.222	-67.0	-56.0	150466.0	0.80	Chambr
e_b5 15739	0.0	0.0	0.0	0.0	0.0	0.0		0.136	-69.0	-58.0	165322.0	0.45	Salo
n_f2 1384	0.0	0.0	0.0	0.0	0.0	0.0		0.188	-68.0	-53.0	156625.0	0.55	Chambr
e_e0 2242	5.0	17298.0	9.0	-0.6	-58.8	-61.0		0.187	-66.0	-45.0	66012.0	0.75	Cuisin
e_e2													
[5 rows x 189 columns] random forest : 0.9854619857856527													

Adaboost

```
from sklearn.ensemble import AdaBoostClassifier
df['class'] = df['class'].str.decode('utf-8')
df = shuffle(df)
sc = StandardScaler()
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
print("tree : ")
print(tree.score(X_test_std, y_test))
```

```
avail3/adaboost.py
hanges class
0.10 Salleamanger_b18
30.20 Cuisine_i9
0.40 Salleamanger_m4
0.75 Chambre_c3
22.30 Cuisine_a19
17678
5976
26127
667
11837
 [5 rows x 189 columns]
tree :
0.9559552013784192
```

Hist Gradient Boosting

MajorityVote

```
print('10-fold cross validation:\n')
for clf, label in zip([pipe1, clf2, pipe3], clf_labels):
    scores = cross_val_score(estimator=clf,
                             X=X train,
                             y=y_train,
                             cv=10.
                             scoring='f1_macro')
   print("F1-Score: %0.2f (+/- %0.2f) [%s]"% (scores.mean(), scores.std(), label))
mv clf = mv.MajorityVoteClassifier(classifiers=[pipe1, clf2, pipe3])
clf_labels += ['Majority Voting']
all_clf = [pipe1, clf2, pipe3, mv_clf]
for clf, label in zip(all clf, clf labels):
    scores = cross val score(estimator=clf,
                             X=X train,
                             y=y_train,
                             scoring='f1 macro')
   print("F1-Score: %0.2f (+/- %0.2f) [%s]"
        % (scores.mean(), scores.std(), label)
```

PS C:\Users\reyna\& C:\Users\reyna\AppData\Local\Programs\Python\Python39\python.exe c:\Users\reyna\Desktop\Travail\UQAC\Trimestre2\Hiver\DeepLearning\Travail3\ExampleW.py 10-fold cross validation:

F1-Score: 0.92 (+/- 0.14) [Logistic Regression]
F1-Score: 0.92 (+/- 0.14) [Decision Tree]
F1-Score: 0.88 (+/- 0.24) [RNN]
F1-Score: 0.99 (+/- 0.14) [Logistic Regression]
F1-Score: 0.92 (+/- 0.14) [Decision Tree]
F1-Score: 0.92 (+/- 0.14) [Decision Tree]
F1-Score: 0.92 (+/- 0.14) [Decision Tree]
F1-Score: 0.89 (+/- 0.24) [RNN]
F1-Score: 0.89 (+/- 0.24) [RNN]
F1-Score: 0.89 (+/- 0.24) [RNN]
F1-Score: 0.89 (+/- 0.24) [RNN]