FCC ID: YN9-HN-WC10P ATTACHM

** MPE Calculations **

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = 14.26dBm + 4.1dBi	P = Power input to the antenna (mW)
EIRP = 18.36 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
D - 1 0/(TIC /C)	S = Maximum power density (mW/cm2)
$S = (26.67 * 2.57) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0136 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

P Γ(PC / 4 π)	Where,
$R = \sqrt{(PG/4\pi)}$	P = Power input to the antenna (mW)
$R = \sqrt{(26.67 * 2.57/4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 2.34Cm	(20cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{-1}$$
 (dB antenna gain / 10)

$$G = Log^{-1} (4.1 / 10)$$

$$G = 2.57$$