Ensemble Learning and Random Forests

Ensembles

- If we aggregate the predictions of a group of predictors, we will often get better predictions than with the best individual predictor.
- A group of predictors is called an ensemble, and aggregating individual predictors is called ensemble learning. An ensemble learning algorithm is called an ensemble method.
- For example, we can train a group of decision tree classifiers, each on a different subset of the training set, get their predictions, and get the class with the most votes. This ensemble is called a random forest.

Voting Classifiers

- We can aggregate the predictions of each classifier and get the majority vote. This
 classifier is a hard voting classifier.
- Even if each classifier is a weak learner, the ensemble can still be a strong learner.
 - There has to be a sufficient number of weak learners in the ensemble, and they
 must be sufficiently diverse to create a strong learner.
 - One way to get diverse learners is to train them using different algorithms.
- We can use Scikit-Learn's VotingClassifier() class, which takes in a list of name/predictor tuples.
 - Note that moving forward, every class or function mentioned originates from the Scikit-Learn API unless specified otherwise.
- The "estimators" attribute fits a clone of every predictor that was provided to it.
- Then, we can simply fit() and predict().
- Voting classifiers can also perform soft voting, where the algorithm predicts the highest class probability, averaged over all individual classifiers.
 - Soft voting often performs better than hard voting because it gives more weight to highly confident votes.
 - We simply set the voting parameter to "soft."

Bagging and Pasting

 Another way of getting diverse classifiers is to use the same training algorithm for every predictor but train them on different random subsets of the training set.

- Bagging is sampling performed with replacement, also known as bootstrap aggregating.
- Pasting is sampling performed without replacement.
- The aggregation function is typically the statistical mode for classification (i.e., the most frequent prediction, just like with a hard voting classifier) or the average for regression.
- We can use the **BaggingClassifier()** class (or **BaggingRegressor()** class for regression) with a DecisionTreeClassifier() as an input.
 - By default, this class performs bootstrapping. To perform pasting, we set the "bootstrap" parameter to false.
 - The bagging classifier also performs soft voting by default.
- An ensemble's predictions likely generalize much better than a single decision tree.
 - o An ensemble has a similar amount of bias but a smaller variance.
 - Bagging introduces more bias than pasting, but the overall ensemble's variance is smaller.

Out-of-Bag Evaluation

- Not all training instances are sampled for any given predictor. The instances that are not sampled are called out-of-bag (OOB) instances.
- A bagging ensemble can be evaluated using OOB instances without a separate validation set.
- We can simply set the bagging classifier's "oob_score" attribute to true and check its evaluation score with the oob_score_ attribute.
- The classifier also has an oob_decision_function_ attribute to get the class probabilities for each instance.

Random Patches and Random Subspaces

- The bagging classifier can also sample features.
- We can use the "bootstrap_features" hyperparameter to train each predictor on a random subset of input features.
- Sampling both instances and features is called the random patches method.
- Keeping all training instances except the sampling features is called the random subspaces method.

Random Forests

- We can use RandomForestClassifier() to use an ensemble of decision trees.
 - There's also the **RandomForestRegressor()** class for regression tasks.
- The random forest algorithm searches for the best feature among a random subset of features.
 - o It samples \sqrt{n} features, where n is the total number of features.
 - o This results in a higher bias but lower variance.
- The RandomForestClassifier() class has the same hyperparamaters as a DecisionTreeClassifier() and as the BaggingClassifer() class.

• We can find the most important features using the RandomForestClassifier's **feature_importances_** attribute.

Extra-Trees

- We can make trees even more random by using random thresholds for each feature.
 - We simply set the "splitter" attribute to "random" when creating a decision tree classifier.
 - These forests are called extremely randomized trees or extra-trees.
- Extra-Trees have a higher bias but lower variance than random forests.
- Extra-Tree classifiers are much faster than random forests because it simply uses a random threshold at each feature rather than finding the best possible threshold at each feature.
- We can use the **ExtraTreesClassifier()** class whose API is identical to the RandomForestClassifier() class.

Boosting

- Boosting refers to any ensemble method that can combine weak learners into a strong learner
- Boosting methods train predictors sequentially, each trying to correct its predecessor.

AdaBoost

- An AdaBoost classifier pays more attention to the training instances that the predecessor underfit.
 - The algorithm first trains a base classifier, and then, it increases the relative weight of misclassified training instances.
 - The algorithm repeats this process a set number of times.
- We can use the **AdaBoostClassifier()** class using a base classifier, like a decision tree, as an input.
- An important drawback of AdaBoost is that it does not scale as well as bragging or pasting.
- If the AdaBoost ensemble overfits, we can try to reduce the number of estimators or regularizing the base estimator more.

Gradient Boosting

- This method tries to fit the new predictor to the residual errors of the predecessor rather than the relative weight of misclassified training instances.
- We can use the GradientBoostingRegressor() class or the GradientBoostingClassifier() class depending on the task.
 - These classes have a "learning_rate" hyperparameter that controls the contribution of each decision tree.
 - The the learning rate value is lower, then the algorithm needs more trees in the ensemble, but it will likely generalize better. This technique is called shrinkage.

- If the learning rate value is too low, the model will likely underfit, and if it is set too high, it will likely overfit.
- To find the optimal number of trees, we can perform cross-validation using GridSearchCV() or RandomizedSearchCV().
 - We can also set the gradient booster class's "n_iter_no_change" attribute to an integer value, which will stop adding more trees during training if the last few trees did not help.
 - Then, we can simply access the optimal number of trees using the class's n_estimators_ attribute.

Histogram-Based Gradient Boosting

- HGB bins the input features, replacing them with integers.
 - The number of bins is controlled by the "max_bins" hyperparameter, which defaults to 255 and cannot go any higher.
 - Working with integers allows the algorithm to use faster and more memory-efficient data structures.
 - This implementation has a complexity of O(b x m) where b is the number of bins and m is the number of training instances.
- We can use the HistGradientBoostingRegressor() class or the HistGradientBoostingClassifier() class.
 - Early stopping is automatically activated if the number of instances is greater than 10,000. This is controlled by setting the "early_stopping" hyperparameter to true or false.
- HGB classes support categorical features and missing values, which means that we can use an encoder to encode text as integers.

Stacking

- Stacked generalization trains a model to perform aggregation.
 - Each predictor predicts a different value, and the final predictor (the blender or meta learner) takes these predictions as inputs and makes the final prediction.
- The blending training set will contain one input feature per predictor.
- Once the algorithm trains the blender, it trains the base predictors one last time on the full original training set.
- We can have several layers, or stacks, of blenders, but this increases both training time and system complexity.
- We can use the **StackingClassifier()** class, which has a similar API as the VotingClassifier() class.
 - The StackingClassifier() class has a "final_estimator" attribute, which controls which estimator, such as a random forest, the algorithm uses as the blender.