V. ANÁLISE DE SINAIS

Capítulo que aborda:

- Análise espectral dos sinais
 - Interpretação das propriedades dos sinais no domínio das frequências
 - Séries de Fourier
 - Teorema da potência de Parseval
 - Largura de Banda de um sinal
- Modulação de Sinais
 - Consequências no espectro do sinal após modulação

1

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais periódicos)

Considere-se uma forma de onda sinusoidal v(t)

V. ANÁLISE DE SINAIS (sinais periódicos)

 ω_0 é a frequência angular

 ϕ o ângulo de fase

$$T_0 = 2\pi/\omega_0$$

$$f_0 = \frac{1}{T_0} = \frac{\omega_0}{2\pi}$$
 $W_0 = 2.\pi.f_0$

$$W_0 = 2.\pi.f_0$$

3

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais periódicos)

- A sinusoide pode ser representada no plano complexo por uma exponecial ou fasor
- Teorema de Euler:

$$e^{\pm j\theta} = \cos\theta \pm j\sin\theta$$

logo pode representar-se qualquer sinusoide como sendo a parte real de uma exponencial complexa:

$$A \cos(\omega_0 t + \phi) = A \Re \left[e^{j(\omega_0 t + \phi)} \right] = \Re \left[A e^{j\omega_0 t} \cdot e^{j\phi} \right]$$

V. ANÁLISE DE SINAIS (sinais periódicos)

$$A \cos(\omega_0 t + \phi) = A \Re \left[e^{j(\omega_0 t + \phi)} \right] = \Re \left[A e^{j\omega_0 t} \cdot e^{j\phi} \right]$$

 $W_0 = 2.\pi.f_0$

descrição do fasor no domínio da frequência: espectro de linha - dois gráficos 1) amplitude em função da frequência e 2) fase em função da frequência

5

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais periódicos)

Regras a adoptar na representação espectral:

- (i) A variável independente é a frequência, f em Hz. A frequência angular ω , em radianos/seg, é uma notação sintética para o valor $2\pi f$
- (ii) Os ângulos de fase são medidos relativamente a funções cosseno. Os senos serão convertidos a cosseno através da identidade $\sin\omega t=\cos(\omega t-90^\circ)$
- (iii) A amplitude é sempre uma quantidade positiva. Quando aparecerem sinais com amplitude negativa, esta será absorvida na fase, isto é, $-A\cos(\omega t) = A\cos(\omega t \pm 180^{\circ})$
- (iv) Os ângulos de fase são expressos em graus embora ângulos tais como ωt sejam inerentemente em radianos.

V. ANÁLISE DE SINAIS (sinais periódicos)

- Exemplo de espectro de linhas unilateral -

 $v(t) = 7 - 10 \cos(40\pi t - 60^{\circ}) + 4 \sin(120\pi t)$

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais periódicos)

- É comum a utilização de uma representação de espectros de linhas bilateral
 - por questões de manipulação e aplicação de algumas "ferramentas" matemáticas
- Representação espectral passa a contemplar também frequências negativas
- Baseado na propriedade:

$$\Re[z] = 1/2(z+z^*)$$

$$A \cos(2\pi f_0 t + \phi) = \frac{A}{2} e^{j2\pi f_0 t} \cdot e^{j\phi} + \frac{A}{2} e^{-j2\pi f_0 t} \cdot e^{-j\phi}$$

V. ANÁLISE DE SINAIS (sinais periódicos)

ESPECTRO DE LINHAS BILATERAL

9

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais periódicos)

Mesmo exemplo mas com espectro de linhas bilateral...

$$v(t) = 7\cos(2\pi \theta t) + 10\cos(2\pi 2\theta t + 12\theta^{\circ}) + 4\cos(2\pi 6\theta t + 9\theta^{\circ})$$

V. ANÁLISE DE SINAIS (sinais periódicos)

Sinais Periódicos

$$v(t) = v(t \pm mT_0)$$

O valor médio de v(t)

$$\langle v(t) \rangle = \frac{1}{T_0} \int_{t_1}^{t_1+T_0} v(t) dt = \frac{1}{T_0} \int_{T_0} v(t) dt$$

Potência média do Sinal, S

$$S \, = \, \langle |v(t)|^2 \rangle \, = \, \frac{1}{T_0} \, \int_{T_0} \, |v(t)|^2 \, dt$$

se 0 < S < ∞ então o sinal é designado de sinal periódico de potência

11

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais periódicos)

- No exemplos de espectros apresentados anteriormente o sinal v(t) era dado como uma soma de uma parcela constante e duas sinusoides
 - nesse caso foi imediata a passagem para o domínio das frequências
- Como decompor um determinado sinal periódico apresentado no domínio do tempo em somas sinusoidais?
 - usar o desenvolvimento em Série Exponencial de Fourier

V. ANÁLISE DE SINAIS (sinais periódicos)

Série de Fourier

- Seja v(t) um sinal de potência de período $T_0=1/f_0$
- desenvolvimento em série exponencial de Fourier:

$$v(t) = \sum_{n=-\infty}^{+\infty} C_n e^{j2\pi n f_0 t}$$
 $n = 0, \pm 1, \pm 2, \cdots$

em que os coeficientes C_n da série são dados por

$$C_n = \frac{1}{T_0} \int_{T_0} v(t) e^{-j2\pi n f_0 t} dt$$

13

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais periódicos)

Série de Fourier

$$v(t) = \sum_{n=-\infty}^{+\infty} C_n e^{j2\pi n f_0 t}$$
 $n = 0, \pm 1, \pm 2, \cdots$

em que os coeficientes C_n da série são dados por

$$C_n = \frac{1}{T_0} \int_{T_0} v(t) e^{-j2\pi n f_0 t} dt$$

- v(t) consiste numa soma de fasores de amplitude $|C_n|$ e ângulo arg C_n com frequências $nf_0 = 0, \pm f_0, \pm 2f_0, \cdots$
- A representação gráfica no domínio da frequência consiste num espectro de linhas bilateral definido pelos coeficientes da série

 $|C(nf_0)|$ representará o espectro de amplitude arg $C(nf_0)$ representará o espectro de fase

V. ANÁLISE DE SINAIS (sinais periódicos)

Algumas propriedades dos espectros dos sinais de potência:

- Todas as frequências são multiplas inteiras, harmónicas, da frequência fundamental, $f_0 = \frac{1}{T_0}$. Assim, as linhas espectrais estão uniformemente espaçadas de um valor igual a f_0
- \Rightarrow A componente constante é igual ao valor médio do sinal, dado que para n=0, a equação 2.10 dá

$$C_0 = \frac{1}{T_0} \int_{T_0} v(t) dt = \langle v(t) \rangle$$

15

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais periódicos)

Após o cálculo dos coeficientes (para representação espectral) é possível apresentar o sinal como uma soma de sinusoides:

$$v(t) = C_0 + \sum_{n=1}^{\infty} |2C_n| \cos(2\pi n f_0 t + \arg C_n)$$

(confirmar recordando o exemplo inicial)

 $v(t) = 7\cos(2\pi \ 0t) + 10\cos(2\pi \ 20t + 120^{\circ}) + 4\cos(2\pi \ 60t - 90^{\circ})$

V. ANÁLISE DE SINAIS (sinais periódicos)

EXEMPLO DE SINAL PERIÓDICO, Pulso periódico de duração τ

• Calcular os coeficientes de fourier e o espectro de amplitude do sinal:

$$C_n = \frac{1}{T_0} \int_{T_0} v(t) e^{-j2\pi n f_0 t} dt$$

$$C_{n} = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} v(t) e^{-\jmath 2\pi n f_{0} t} dt$$

$$C_{n} = \frac{1}{T_{0}} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} A e^{-\jmath 2\pi n f_{0} t} dt$$

$$C_{n} = \frac{A}{-\jmath 2\pi n f_{0} T_{0}} \left(e^{-\jmath \pi n f_{0} \tau} - e^{+\jmath \pi n f_{0} \tau} \right)$$

$$C_{n} = A f_{0} \frac{\sin(\pi n f_{0} \tau)}{\pi n f_{0}}$$
....

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais periódicos)

SINAL PERIÓDICO BÁSICO - Pulso de duração τ

...continuando os cálculos e assumindo T₀=4τ

V. ANÁLISE DE SINAIS (sinais periódicos)

SINAL PERIÓDICO BÁSICO - Pulso de duração τ

- O que acontece se só forem consideradas algumas componentes do espectro apresentado?
 - as partes do sinal com transições mais "bruscas" são efeito das componentes espectrais nas frequências mais altas

19

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais periódicos)

RECONSTRUÇÃO DO SINAL

V. ANÁLISE DE SINAIS (sinais periódicos)

RECONSTRUÇÃO DO SINAL

confirmar com visualização gráfica

$$C_n = A f_0 \frac{\sin(\pi n f_0 \tau)}{\pi n f_0}$$

21

25

...uma outra representação das compoenentes sinusoidais de um sinal

(ver aplicação exemplo)

V. ANÁLISE DE SINAIS (sinais periódicos)

TEOREMA DA POTÊNCIA DE PARSEVAL

 Teorema que relaciona a potência média (S) de um sinal periódico com os seus coeficientes de Fourier

Sinal Periódico com potência média S

"A potência média de um sinal pode ser determinada quadrando e adicionando os valores $|C(nf_0)|$ das linhas do espectro de amplitude"

$$S = \sum_{n=-\infty}^{+\infty} |C_n|^2$$

27

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais não periódicos-breve referência)

SINAIS NÃO PERIÓDICOS - Espectros contínuos

 Se um sinal não periódico possui uma energia total finita e não nula será representado por um espectro contínuo

• Energia normalizada do sinal:

$$E = \int_{-\infty}^{+\infty} |v(t)|^2 dt$$

V. ANÁLISE DE SINAIS (sinais não periódicos-breve referência)

SINAIS NÃO PERIÓDICOS - Espectros contínuos

- Transformada de Fourier no caso dos sinais não periódicos
 - é dada pela função V(f)
 - representa o espectro do sinal (neste caso um espectro contínuo)

$$V(f) = \mathcal{F}[v(t)] = \int_{-\infty}^{+\infty} v(t) e^{-\jmath 2\pi f t} dt$$

29

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS (sinais não periódicos-breve referência)

SINAIS NÃO PERIÓDICOS - Espectros contínuos

V. ANÁLISE DE SINAIS (sinais não periódicos-breve referência)

Teorema de Energia (Rayleigh)

- Tal como o Teorema de Parseval para os sinais periódicos...
- A energia de um sinal n\u00e3o peri\u00f3dico v(t) est\u00e1 relacionada com o seu espectro, V(f), pela seguinte igualdade:

$$E = \int_{-\infty}^{+\infty} |V(f)|^2 df$$

31

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS

LARGURA DE BANDA DE UM SINAL

- Relaciona-se com o intervalo de frequência onde está a maior parte da energia (ou potência média para os sinais periódicos) do sinal
- Exemplo: sinal com uma energia = $A^2 \tau$

$$E_{1/\tau} = \int_{-\frac{1}{\tau}}^{+\frac{1}{\tau}} |V(f)|^2 df$$

$$E_{1/\tau} = \int_{-\frac{1}{\tau}}^{+\frac{1}{\tau}} (A\tau)^2 \operatorname{sinc}^2(f\tau) df$$

$$E_{1/\tau} = 0.92 A^2 \tau$$

V. ANÁLISE DE SINAIS

LARGURA DE BANDA DE UM SINAL

Definição 2.1 -Largura de Banda de um sinal

Largura de Banda, B, de um sinal é a amplitude do menor intervalo espectral positivo que contém 90% da energia total do sinal (ou da sua potência média total, caso se trate de um sinal periódico).

• Como poderá ser utilizado Teorema de Parseval (ou o teorema da energia) para calcular a largura de banda de um sinal? $S = \sum_{n=0}^{+\infty} |C_n|^2$

33

Espectogramas – representação das características de frequência de sinais ao longo do tempo

Espectogramas – representação das características de frequência de sinais ao longo do tempo (outro tipo de representação)

35

Espectogramas – representação das características de frequência de sinais ao longo do tempo (representação adoptada por um software de análise musical)

V. ANÁLISE DE SINAIS

MODULAÇÃO DE SINAIS

- Analisar as consequências em termos de espectro das operações de modulação
 - modulação em amplitude
 - modulação em frequência
- Qual a relação do espectro do sinal modulante com o sinal após modulação

37

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS

MODULAÇÃO DE SINAIS - Modulação em Amplitude

A multiplicação de um sinal v(t) por uma onda sinusoidal dá origem a um novo sinal $v_m(t)$ cujo espectro é o de v(t) transladado na frequência de um valor igual à frequência do sinal sinusoidal.

• Sinal modulado em amplitude tem uma largura de banda que é o dobro da largura de banda do sinal modulante

V. ANÁLISE DE SINAIS

MODULAÇÃO DE SINAIS - Exemplo de Modulação em Amplitude

39

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS

MODULAÇÃO DE SINAIS - Exemplo de Modulação em Frequência

superior ao do sinal modulante

40