Problem A. 稳定的连续子序列

现有一长度为 n 的数组 a_1, a_2, \ldots, a_n 。

对于该数组的一个**连续子序列** $a_l, a_{l+1}, \ldots, a_{r-1}, a_r$,如果连续子序列内相邻的两个元素差的绝对值 不超过 2,则认为这个连续子序列是**稳定的**。即 $|a_i - a_{i+1}| \le 2$ $(l \le i < r)$ 。

特别地,只有一个元素的连续子序列也是稳定的。

请你求一下最长的稳定的连续子序列的长度。

输入格式

第一行,一个整数 $n (1 \le n \le 3 \times 10^5)$,表示数组的长度。

第二行, 共 n 个整数 a_i ($-3 \times 10^5 \le a_i \le 3 \times 10^5$), 表示数组的元素。

输出格式

一行,一个整数,表示最长的**稳定的**连续子序列的长度。

样例

standard input	standard output
13	8
-7 5 3 5 4 6 7 7 9 3 2 7 -9	
13	4
-8 -9 3 2 10 9 10 -8 -6 -8 -7 3 4	
15	7
3 5 3 5 7 7 6 -4 -6 -8 -8 -7 7 4 3	

提示

第一个样例中, 最长的稳定的连续子序列是 5,3,5,4,6,7,7,9, 长度为 8。

第二个样例中,最长的稳定的连续子序列是 -8, -6, -8, -7,长度为 4。

第三个样例中, 最长的稳定的连续子序列是 3,5,3,5,7,7,6, 长度为 7。

Problem B. 击鼓传花序列

老板最近沉迷于击鼓传花这个游戏,每天早上到公司后便会从办公室中选取 n 位员工作为幸运儿从左到右排成一列,依次编号 1, 2, ..., n 并要求他们参与今天的游戏。

游戏开始后,老板会闭着眼睛抛出手中的绣球,幸运儿 x 首先接到绣球。每经过 1 秒后,当前拿着球的幸运儿会将球传给他右边的幸运儿,而幸运儿 n 则会将球传给幸运儿 1。从 t 秒开始,老板每隔 t 秒便会将此时拿着球的幸运儿的小名儿记在小本本上,**重复** $+\infty$ **秒**后老板终于停止了这轮游戏,而记在小本本上的幸运儿们则需要承包办公室今日的午餐外卖。

贫穷的你是老板身边的红人,于是自然而然地成为老板唯一指定必须参与人员,且**每天都是 1 号幸运儿**。你望着干瘪的钱包想着还要存钱开龙狙,于是便打算逃离这些游戏。

每天在老板上班前你都可以预见到老板今天选取的 n,x,t 的值,若这天预测到要被抽中请客,你将会在游戏开始前跑去给老板擦车溜之大吉 \sim

输入格式

注意: 本题包含多组数据。

第一行包含一个正整数 T $(1 \le T \le 10^6)$,代表数据组数。

接下来 T 行,第 i 行包含三个整数 n_i , x_i 和 t_i ,代表第 i 天你预测到的数据,满足 $1 \le n \le 10^6$, $1 \le x_i, t_i \le n$ 。

输出格式

对于每一组测试数据,输出一行。若你预测到在这一天你要请客吃饭,则输出 Yes,否则输出 No, **大小写不敏感**。

样例

standard input	standard output
3	Yes
1 1 1	No
2 2 2	Yes
2 1 2	

Problem C. 子树最小非零权序列

现有一个以 1 为根、n 个点的有根树,树上每个点都有点权 w_u 。同时给出两个长度为 m 的序列 $\{a_i\}$ 和 $\{c_i\}$ 。

每对 a_i 和 c_i 表示一个操作,操作是选定以 a_i 为根的子树,然后找到子树内点权最小且**非零**的点,如果有多个则取编号最小的;记该点为 u_i ,找到该点后,会修改其点权 $w_{u_i} \leftarrow \max(0, w_{u_i} - c_i)$ 。如果没有这样的点,则记 $u_i = -1$,也不会进行修改点权的操作。

操作按编号从小到大逐个进行。请你给出每次操作找到的最小非零点权的点的编号序列 $\{u_i\}$ 。

输入格式

第一行,一个整数 n ($3 \le n \le 10^5$),表示树的点数。

第二行, 共 n 个整数 w_i ($0 \le w_i \le 10^5$), 第 i 个整数 w_i 表示编号为 i 的点的点权。

接下来 n-1 行,每行两个空格分隔的整数 u_i, v_i $(1 \le u, v \le n, u \ne v)$,表示点 u 和点 v 有连边。数据保证给定的是合法的树。

接下来一行,一个整数 $m (1 \le m \le 10^5)$,表示操作数量。

接下来 m 行,每行两个空格分隔的整数 a_j, c_j $(1 \le a_j \le n, 1 \le c_j \le 10^5)$,第 j 行的两个整数 a_j, c_j ,意义同题意描述。

输出格式

共 m 行,每行一个整数,第 j 行为第 j 个操作找到的最小非零的点 u_j ,子树内找不到非零的点的情况下,输出 -1。

样例

standard input	standard output
6	2
0 5 8 0 1 8	5
5 4	6
3 2	6
1 3	2
6 5	6
3 6	3
7	
2 2	
1 2	
6 3	
6 4	
2 3	
1 3	
1 6	
10	3
1 0 3 10 0 15 0 0 0 25	4
10 3	-1
5 4	6
3 6	-1
2 1	10
8 9	-1
6 9	10
1 7	
8 5	
7 6	
8	
3 6	
5 14	
5 1	
7 6	
5 10	
10 12	
2 1	
10 15	

Problem D. Toxel 与子序列

宝可梦文是宝可梦世界通行的语言,这种语言一共有 Σ 种字母,我们用整数 $1, 2, ..., \Sigma$ 来标记它们。

一天,Toxel 和皮卡丘在冒险中发现了一个宝可梦文字符串 s。他们希望知道 s 字典序第 k 小的**非空**子序列是什么,请你帮他们找出这个子序列。

注意: 重复出现的子序列需要重复计算, 详见提示。

输入格式

注意:本题包含多组数据。

第一行包含一个正整数 T ($1 \le T \le 1000$),表示有 T 组测试数据。

接下来依次给出每组测试数据。对于每组测试数据:

第一行包含三个整数 n $(1 \le n \le 5000)$, Σ $(1 \le \Sigma \le 5000)$ 和 k $(1 \le k \le \min\{2^n - 1, 10^{18}\})$, 其中 n 表示字符串 s 的长度, Σ 和 k 的含义见题目描述。

第二行包含 n 个整数, 第 i 个整数为 s_i ($1 \le s_i \le \Sigma$), 表示 s 的第 i 个字符。

保证不超过 3 组测试数据满足 n > 100。

输出格式

对于每组数据、输出一行、包含若干个整数、表示该组数据的答案。

样例

standard input	standard output
3	1 3
2 3 2	1
1 3	1 2 1
1 1 1	
1	
3 2 5	
1 2 1	

提示

对于第一组数据, 子序列依次为 [1], [1, 3], [3]。

对于第二组数据, 子序列为 [1]。

对于第三组数据, 子序列依次为 [1], [1], [1,1], [1,2], [1,2,1], [2], [2,1]。