

Introduction to Machine Learning

Learning and Univariate Data Analysis

Outline

Machine learning

- intelligence and learning
- data science and AI
- symbolic learning
- terminology
- descriptive and predictive tasks

Univariate data analysis

- numeric and categoric variables
- empirical and theoretical distributions
- summary statistics
- outlier removal
- discriminant analysis
- correlation

Outline

- Machine learning
 - intelligence and learning
 - data science and Al
 - symbolic learning
 - terminology
 - descriptive and predictive tasks
- Univariate data analysis
 - numeric and categoric variables
 - empirical and theoretical distributions
 - summary statistics
 - outlier removal
 - discriminant analysis
 - correlation

Intelligence

- Rationality ←
 - ability to act in a way that maximizes some utility function
- Adaptability ←
 - ability learn from experience
 - make abstractions (patterning)
 - deal with novelty and change
- Curiosity
 - ability to engage creative imaginative or inquisitive reasoning

What is machine learning?

- Artificial Intelligence (AI) emulates qualities of human intelligence to answer real-world problems
 - parallels between human and artificial intelligence?
 - many AI techniques inspired from human psychology, biology, behavior
- Learning is a fundamental quality intelligence
 - "learning is any process by which a system improves performance from experience" (by Herbert Simon)
- Machine learning (ML) as a subfield of Al
 - Al with a focus on <u>rationality</u> => optimization, planning, reasoning, ...
 - Al with a focus on <u>curiosity</u> => autonomous agents, affective computing, ...
 - Al with a focus on <u>adaptability</u> from experience (data records) => ML

Systemic world view

system

- set of elements organized with a shared purpose
- (open) surrounded and influenced by its environment
- described by its structure, purpose and functioning
- open systems evolve

- \rightarrow Earth \rightarrow societies \rightarrow individuals
- \rightarrow organs \rightarrow cells \rightarrow atoms

Systemic world view

- Everything is systemic:
 - biological systems
 - ecological systems
 - societal systems
 - mechanical systems
 - digital systems
 - quantum systems
 - hybrid systems
 - astrophysical systems

By monitoring systems (e.g. sensorization, observation)...

- data \Rightarrow information (descriptive learning) \Rightarrow knowledge
- data ⇒ decision support system (predictive learning)

"we contain, are, interact and move within systems"

Psychoanalyst: Know the influence of systems in our life and be free!

Data everywhere!

Sensorization examples:

- biological systems
 - physiological signals from biosensors, molecular signals using multi-omic high-throughput technologies
 - health records (diagnostics, prescriptions, undertaken surgeries), exposomics, demographics
- knowledge systems
 - corpora from digital libraries and the Web
- ecological systems
 - biodiversity, plant health, crop and livestock conditions, water quality, food nutrition, forestry and fishery surveillance from remote vision (satellite, drones), physical sensors, acoustic sensors, citizen notifications
- societal systems
 - social interactions via social networks, telecom and messaging apps
 - commerce and finance via transaction records
- urban systems
 - traffic records from mobile phones, smart card validations, inductive loop counters, privacy-preserving
 - water and energy supply via telemetry (flowrate, pressure, smart sensors)
- ... [complete the list]

From experience to learning

- Data records acquired from:
 - multiple systems of the same type
 - e.g. different individuals, vehicles, computers, organizations
 - single system under different conditions
 - e.g. brain under different stimuli, crop under different weather conditions, e-commerce along time
- Multiple data records... statistics!
 - discover of relevant relations/associations (patterning)
- Pattern recognition aids us in:
 - understanding systems' behavior (descriptive learning)
 - supporting decisions (predictive learning)

Machine Learning

- Machine Learning versus Artificial Intelligence
 - recall: ML is a subfield of the larger AI field
- Machine Learning versus Data Science
 - ML as a set of concepts, principles and computational methods
 to aid decisions and accomplish other digital tasks from available data
 - grounded on statistical, algebraic, mathematical and algorithmic foundations
 - Data Science has been termed the art of discovering what we don't know from data
 - the non-trivial extraction of implicit, previously unknown, and potentially useful knowledge from data
 - ML provides the foundational concepts and algorithmic means for Data Science

The ML stance

Traditional programming and classic AI

Machine learning

"Machine Learning: field of study that gives computers the ability to learn without being explicitly programmed" Arthur Samuel (1959)

When?

- Human expertise does not exist (e.g. navigating on Mars)
- Humans cannot explain their expertise (e.g. speech recognition)
- Models must be customized (e.g. personalized medicine)
- Models are based on huge amounts of data (e.g. genomics)

Learning isn't always useful: there is no need to learn to calculate payroll!

When?

■ Task-specific *versus* multi-task/purpose learning — the era of Large Language-and-Vision Models

When?

- Classic example of a task that requires machine learning:
 - Hard to say what makes a 2!

— What about clinical diagnostics? Product recommendations?

Machine Learning

base DATA

feature data time series, event data image, video data heterogeneous data

Learning

HOW approaches

MODEL

predictive models (supervised)

descriptive models (unsupervised/supervised)

prescriptive models (reinforcement)

Learning input-output functions

Supervised learning

- with a teacher
- learning from training data and desired outputs (labels, quantities, structures)

Unsupervised learning

- without a teacher
- learning from training data without desired outputs

Reinforcement learning

- absence of a designated teacher to give positive and negative examples
- learning rewards and penalties observed from sequence of actions within a given environment

Machine learning in practice

- The process of knowledge discovery is a composition of steps:
 - data preprocessing
 - data acquisition and integration
 - data cleaning (e.g. duplicate and outlier removal, missing imputation)
 - data transformations (e.g. normalization, dimensionality reduction, sampling)
 - data mining recurring to machine learning
 - postprocessing needs and knowledge retrieval from the extracted info (descriptive stance) or learned models (predictive stance)
 - interpret and validate results
 - consolidate and deploy discovered knowledge

Data Science

- Data science
 - the rediscovery of "statistics" …
 - descriptive statistics
 - inferential statistics
 - the rediscovery of "maths" ...
 - linear algebra
 - calculus

Sir William Petty, a 17th-century economist who used early statistical methods to analyse demographic data

History of Machine Learning

1950s

- Samuel's checker player
- Selfridge's Pandemonium

1960s

Perceptron and its limitations

■ 1970s

- Symbolic learning
- Expert systems
- Decision trees

1980s

- Resurgence of neural networks: backpropagation
- Learning and planning
- Explanation-based learning
- Inductive logic programming
- Utility problem, analogy
- Cognitive architectures
- PAC Learning Theory

1990s

- Data mining, text mining
- Adaptive software agents
- Reinforcement learning (RL)
- Ensembles: bagging, boosting, stacking
- Bayes network learning

2000s

- Support vector machines, kernel methods
- Learning in robotics and vision
- Graphical models
- Relational learning

2010s

- Deep learning
- Big data
- Uncertainty
- Multi-task learning
- Large language models

Deep Learning and Large Language Models

Terminology

Dataset:

- set of observations/instances/records, $X = \{x_1, ..., x_n\}$ (population)
- with values/features along a set of variables/attributes, $Y = \{y_1, \dots, y_m\}$
 - input variables (explanatory)
 - optional output variables (targets)
- data size = number of observations, |X| = n
- data dimensionality = number of variables, |Y| = m

Learning

Learning from a dataset: retrieving relevant data relations

- relations/patterns/abstractions ≡ distributions of interest on specific observations and attributes
 - unexpectedly informative
 - unexpectedly discriminative (different distribution between populations)
- learn classifiers, regressors, descriptors, forecasters, autoencoders from these relations

Feature space

- When variables are numeric:
 - feature space ≡ vector space (e.g. Euclidean space)
 - observation ≡ data point

$$\mathbf{x} = \{x_1, \dots, x_m\} \in \mathbb{R}^m$$

$$\|\mathbf{a} - \mathbf{b}\| = \sqrt{\sum_{i=1}^{m} (a_i - b_i)^2}$$

Classification

Given a set of labeled observations, $\{(\mathbf{x}_1, z_1), \dots, (\mathbf{x}_n, z_n)\}$ where $z_n \in \Sigma$, a **classifier** M is a mapping function between input variables and a categoric variable

$$M: X \rightarrow Z$$

– given a new unlabeled observation \mathbf{x}_{new} , use M to classify: $\hat{z}_{new} = M(\mathbf{x}_{new})$

Classification: *salmon?*

Classification: salmon?

- we might add other variables that are not correlated with the ones we already have
 - caution should be taken not to reduce the performance by adding such "noisy features"
- the best decision boundary should be the one which provides an optimal performance

- However, our satisfaction is premature because the central aim of designing a classifier is to correctly classify novel inputs
 - issue of *generalization*!

Classification: *salmon?*

- Generalization ability linked with:
 - underfitting risks
 - overfitting risks
- Aim: find a balanced model capacity

Regression

- unsupervised setting: given a set of observations, $\{(\mathbf{x}_1, z_1), \dots, (\mathbf{x}_n, z_n)\}$ where $z_n \in \mathbb{R}$, describe relation between a set of (explanatory) variables and a target real-valued variable
- supervised setting: given a set of observations with a real-valued outcome, $\{(\mathbf{x}_1, z_1), ..., (\mathbf{x}_n, z_n)\}$ where $z_n \in \mathbb{R}$, learn a mapping, $M: X \to Z$, to estimate the outcome of a new observation

Clustering

Given a set of data observations, $X = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$, cluster analysis aims at grouping observations into clusters, $C_i \subseteq X$ with i = 1..k, according to their (dis)similarity: observations in the same cluster are more similar than those in different clusters

Pattern mining

{symptomA, testBpositive} \Rightarrow condition1 [sup=10%, conf=80%, lift=1.4, sig=1E-4]

Given a dataset, find local associations (aka patterns) satisfying:

- statistical significance criteria (min number of observations to deviate from expectations)
- discriminative power (qualitative targets) or correlation (numeric targets) criteria

Example: learning from biomedical data

- Descriptive modeling: models of disease/treatment (e.g. health progression)
- Clustering: group individuals in accordance with health profile
- Pattern mining and subspace clustering: discover meaningful patterns and associations with impact on disease/treatment study and discrimination
- *Classification*: diagnostics/prognostics, treatment recommendation
- Regression: estimate risk, drug dosage or efficacy, quantifiable phenotypes

Example: learning from biomedical data

- observations generally correspond to:
 - individuals
 - input variables: health-related features (multi-omics, clinical records, exposomics...)
 - output variable: outcome annotation
 - qualitative clinical condition (diagnostics, prognostics, therapies, traits)
 - quantifiable phenotypes (impairments, molecular levels, severity, survivability, drug dosage)
 - hospitals, undertaken procedures, care professionals, drugs...
- clinical trials (cohort studies) with enough, precise data observations, e.g. case-control populations
- ability to generalize from a population to new patients
 - prevent overfitting (including non-relevant relations in the learned models)
 - prevent underfitting (excluding relevant relations from learned models)

Outline

- Machine learning
 - intelligence and learning
 - data science and AI
 - symbolic learning
 - terminology
 - descriptive and predictive tasks
- Univariate data analysis
 - numeric and categoric variables
 - empirical and theoretical distributions
 - summary statistics
 - outlier removal
 - discriminant analysis
 - correlation

Univariate data analysis

Random/aleatory variable

- function $Y: \Omega \to E$ from a sample space Ω to a measurable space E
- e.g. height variable is a function which maps a person from a population Ω to her height in \mathbb{R}^+ (E = \mathbb{R}^+)
 - the observed height is referred as a measurement
- from now one, we will refer random variable simply as variable

Univariate data

- single input variable
- comprises univariate data statistics and, in the presence of an output variable, bivariate data statistics

Multivariate data

- multiple (input) variables
- multivariate order = number of (input) variables

Variables

- Categorical (or qualitative) variables
 - values are categories
 - can either be nominal/symbolic or ordinal (e.g. low, average, high)
 - binary variables are variables with two categories (whether nominal or ordinal)
 - variable cardinality = number of categories
- Numerical (or quantitative) variables
 - values are quantities
 - can be either be discrete (e.g. integers) or continuous (e.g. real values)
- Exercise: classify the following variables gender, age, height

Variables

- [discretization] numeric variables can be discretized into ordinal variables
 - e.g. age categories of 0-10, 11-20, 21-30, 31-40...
 - trade-off: loss of information versus utility for subsequent data analysis
- [normalization] numeric variables can be normalized
 - comparability between variables with different domains E
- [aggregation] categoric variables with high cardinality can be aggregated
 - 100 colors can be aggregated into coarser categories in accordance with hue
- [imputation] missing values can occur
 - unobserved, error or noisy measurements
 - missings can be imputed using variable expectations

Data profiling

- Data profiling = data exploration
 - essential step to know and learn from data

Frequentist statistics

- Categorical variables
 - summary statistics (e.g. mode)
 - category frequencies
 - category probabilities

Data profiling

Frequentist statistics

- numeric variables
 - summary statistics (e.g., percentiles)
 - classic histograms (bin frequencies)
 - empirical probability distribution (bin probabilities)
 - density function for continuous variables
 - mass function for discrete variables, example:

Data profiling: histograms

- How?
 - divide the range of values in a distribution into several bins of equal size
 - toss each value in the appropriate bin
- The choice of bin size can strongly affect the frequency histogram
 - revealing details when we lower bin size, yet at times a result of overfitting
 - bin size also affects one's perception of the shape of distribution

Data profiling

Theoretical statistics

- summary statistics
 - mean and deviation statistics (Gaussian assumption)
- fitting theoretical distributions
 - discrete numeric variables: fitted probability mass function
 - continuous numeric variables fitted probability density function
- Empirical versus theoretical distributions
 - empirical distribution are perfectly overfitted to observed data
 - this is problematic for low-to-moderate data sample size, otherwise preferrable

Data profiling: theoretical distributions

Discrete distributions

- uniform
- Binomial
- Poisson

Data profiling: theoretical distributions

Continuous distributions

- uniform
- Gaussian

Data profiling: fitting

- Learn parameters from sample to describe the variable
- Kolmogorov-Sminorv statistical test to assess fitting between sample and theoretical distribution
 - https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html

Univariate summary statistics

- *sample size*: number of data observations, *n*
- *mean*: arithmetic mean is the average value

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- maximum, minimum, range (max min)
- percentiles
 - median, max and min correspond to the 50, 100 and 0 percentiles
 - 5, 10, 25 (first quantile), 75 (third quantile), 90, 95 are also informative

Univariate summary statistics

Center statistics are relevant to understand expectations

- harmonic mean
- median
 - sorted values, the median is the value that splits the distribution in half
 - median(1,1,1,2,3,4,5) = 2
 - If n is even, the median can be found by interpolating them
- mode for categorical and discrete numeric values
 - mode(1,2,2,3,4,4,4) = 4
 - application in continuous variables: after rounding, bin sorting, discretization
- trimmed mean
 - lop off a fraction of the upper and lower ends of the distribution, and take the mean of the rest
 - Example with lop off two: 0,0,1,2,5,8,12,17,18,18,19,19,20,26,86,116
 - trimmed mean = 13.75
 - arithmetic mean = 22.75

Univariate summary statistics

Deviation statistics are important to assess the variability of variable measurements

Standard deviation: square root of the variance

$$\sigma_{population} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{\mathbf{x}})^2}, \qquad \sigma_{sample} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{\mathbf{x}})^2}$$

- population-based deviation
 - divided by n
- sample deviation
 - divided by n-1
 - conservative estimate (higher variance) because as we are unable to observe the whole population
- example: 1, 2, 15 measurements

$$-\mu = 6$$
, $\sigma_{population} = 6.37$, $\sigma_{sample} = 7.81$

Univariate data statistics: skew

- In a skewed distribution the bulk of the data are at one end of the distribution
 - If the bulk of the distribution is on the right (tail is on the left): left skewed or negatively skewed distribution
 - If the bulk of the distribution is on the left (tail is on the right): **right skewed** or positively skewed distribution
- Symmetric distributions are not skewed
- Percentile statistics are not distorted by outliers

Properties of Normal distribution

- Many real-world variables are well-approximated to a Gaussian curve
- How to check if one variable satisfies the Gaussian assumption?
 - use the introduce Kolmogorov-Sminorv or, more suitably, Shapiro-Wilk test
 - remember the central limit theorem: 30 measurements are often necessary to check this assumption
- Interesting properties of the Normal curve:
 - from μ–σ to μ+σ: contains about 68% of the measurements (μ: mean, σ: standard deviation)
 - from μ –2 σ to μ +2 σ : contains about 95% of it
 - from μ –3 σ to μ +3 σ : contains about 99.7% of it

Outliers

- Outlier values = uncommon values
 - unexpected measurements against a variable distribution
- Mean and the variance are based on averages, hence sensitive to outliers
- Outliers can cause strong effects that can wreck our interpretation of data
 - for example, the presence of a single outlier can render some statistical comparisons insignificant
- Detecting and removing outlier values requires judgment and depend on one's purpose

Interquartile range (IQR)

- Interquartile range is used to measure value expectations
 - distribution can be divided into quartiles, each containing the same number of observations
 - the difference between the highest value in the third quartile and the lowest in the second quartile is the interquartile range
 - example
 - $-quartiles(1,1,2,3,3,5,5,5,5,6,6,100) = \{(1,1,2), (3,3,5), (5,5,5), (6,6,100)\}$
 - interquartile range 5-3=2
- IQR is empirically known to be robust against outliers
 - observations falling outside $[Q1 1.5 \times IQR, Q3 + 1.5 \times IQR]$ are seen as outliers

Boxplot

- The distribution of variable can be visualized:
 - bar charts (categorical variables) and histograms (numeric variables)
 - theoretical probability distributions
 - boxplots, particularly useful to visually detect outlier values

Bivariate data statistics

- Considering pairwise input variables:
 - check whether the two distributions are correlated
 - if highly correlated, variables may be redundant
 - select the one with the highest variability
- Exercise: select non-redundant variables on the provided left example

Bivariate data statistics

- Considering one input and one output variable
 - when referring to class variables: we want to assess the *discriminative power* of the input variable
 - when referring to numeric output variables: we want to assess the *correlation* with the input variable
 - the higher the correlation, the higher the relevance of the input variable to characterize the targets
 - if both input-output variables are numeric
 - linear correlation given by Pearson correlation coefficient (PCC)
 - rank-based correlation given by Spearman tau prioritizes ranks instead of magnitude
 - if variables are either ordinal or numeric: Spearman tau is suggested
 - if one variable is nominal and other numeric: analysis of variance (ANOVA)
 - if both variables are nominal: χ^2

Discriminative power

Class-conditional distributions

- the higher the dissimilarity between class-condition distributions: the higher the discriminative power
- exercise: consider a dataset composed by the following 9 numeric input variables and binary class
 - are we in the presence of a simple or difficult classification task?

Discriminative power

- Using class-conditional distributions:
 - discriminative rules can be inferred by identifying the class of higher probability along the input values
 - this classifier is termed univariate discriminant

Correlation...

- Relationship between two quantitative attributes
 - correlation: degree to which two attributes are related (in [-1,1])
 - the *sign*: nature of association (> 0 direct; < 0 inverse)
 - the absolute value of r: strength of association
 - unable to infer causal relationships

Correlation...

Scatter diagrams can be used to visually assess correlation

- each pair of values is treated as a pair of coordinates and plotted as points in the plane
- provides a first look at bivariate data to see clusters, outliers, etc.

Pearson correlation

- Pearson correlation (or product moment correlation) coefficient
 - only suitable for numeric attributes
 - able to handle scales and shifts

$$\mathbf{r} = \frac{cov(y_1, y_2)}{\sqrt{var(y_1)}\sqrt{var(y_2)}}$$

$$= \frac{\sum y_{1}y_{2} - \frac{\sum y_{1} \sum y_{2}}{n}}{\sqrt{\left(\sum y_{1}^{2} - \frac{(\sum y_{1})^{2}}{n}\right) \cdot \left(\sum y_{2}^{2} - \frac{(\sum y_{2})^{2}}{n}\right)}}$$

Pearson correlation

Anxiety (y_1)	Test score (y_2)	y_1^2	y_2^2	y_1y_2
10	2	100	4	20
8	3	64	9	24
2	9	4	81	18
1	7	1	49	7
5	6	25	36	30
6	5	36	25	30
$\sum y_1 = 32$	$\sum y_2 = 32$	$\sum y_1^2 = 230$	$\sum y_2^2 = 204$	$\sum y_1 y_2 = 129$

$$r = \frac{(6)(129) - (32)(32)}{\sqrt{(6(230) - 32^2)(6(204) - 32^2)}} = -.94$$
indirect strong correlation

Spearman rank

- Non-parametric coefficient
 - works with rankings instead of absolute values
- How?
 - 1. Rank the values of y_1 and y_2
 - 2. Apply the Pearson correlation
 - In the given example

$$r_s = PCC((5 6 1.5 3.5 3.5 7 1.5), (3 5.5 7 5.5 4 2 1))$$

 $r_s = -0.17$

 r_s denotes the magnitude of association

education level (y ₁)	income (y ₂)	rank y₁	rank y ₂
Preparatory	25	5	3
Primary	10	6	5.5
University	8	1.5	7
Secondary	10	3.5	5.5
Secondary	15	3.5	4
Illiterate	50	7	2
University	60	1.5	1

Outline

Machine learning

- intelligence and learning
- data science and AI
- symbolic learning
- terminology
- descriptive and predictive tasks

Univariate data analysis

- numeric and categoric variables
- empirical and theoretical distributions
- summary statistics
- outlier removal
- discriminant analysis
- correlation

Thank You

rmch@tecnico.ulisboa.pt andreas.wichert@tecnico.ulisboa.pt