Course No.: CS224

Lab No.: 6 Section No.: 6

Full Name: Yasemin Akın Bilkent ID.: 22101782

Preliminary Design Report

Question 1.

No.	Cache Size KB	N way cach e	Word Size	Block size (no. of words)	No. of Sets	Tag Size in bits	Index Size (Set No.) in bits	Word Block Offset Size in bits	Byte Offset Size in bits	Block Replacement Policy Needed (Yes/No)
1	64	1	32 bits	4	2 ¹²	16	12	2	2	No
2	64	2	32 bits	4	2 ¹¹	17	11	2	2	Yes
3	64	4	32 bits	8	29	18	9	3	2	Yes
4	64	Full	32 bits	8	1	27	0	3	2	Yes
9	128	1	16 bits	4	2 ¹⁴	15	14	2	1	No
10	128	2	16 bits	4	2 ¹³	16	13	2	1	Yes
11	128	4	16 bits	16	2 ¹⁰	17	10	4	1	Yes
12	128	Full	16 bits	16	1	27	0	4	1	Yes

Question 2.

a.

Instruction	Iteration No.						
	1	2	3	4	5		
lw \$t1, 0x4(\$0)	Compulsory	-	-	-	-		
lw \$t2, 0xC(\$0)	Compulsory	-	-	-	-		
lw \$t3, 0x8(\$0)	Compulsory	-	-	-	-		

b.

Total Cache Size = Number of Blocks x (Block Size in bits + Tag bit + V bit) = 4 x (64 + 1 + 27)

= 4 x (92 bits) = **368 bits**

C.

2:1 Multiplexer = 1

Equality Comparator = 1

AND Gate = 1

Question 3.

a.

Instruction	Iteration No.							
	1	2	3	4	5			
lw \$t1, 0x4(\$0)	Compulsory	Capacity	Capacity	Capacity	Capacity			
lw \$t2, 0xC(\$0)	Compulsory	Capacity	Capacity	Capacity	Capacity			
lw \$t3, 0x8(\$0)	Compulsory	Capacity	Capacity	Capacity	Capacity			

b.

of bits required for LRU will equal 1 as 21 equals to the number of blocks in the cache.

Total Cache Size = Number of Blocks x (Block Size in bits + Tag bit + V bit + LRU bit)

=
$$2 \times (32 + 1 + 29 + 1) = 2 \times (63 \text{ bits}) = 126 \text{ bits}$$

C.

2: 1 Multiplexer = 1

Equality Comparator = 2

AND Gate = 2

OR Gate = 1

Question 4.

AMAT = Access time for L1 + Miss rate for L1 x (Access time for L2 + Miss rate for L2 x Access time for main memory)

$$= 1 + 0.2 \times (4 + 0.05 \times 40)$$

= 2.2 clock cycles

Clock rate with 4GHz = 0.25 ns

 10^{12} instructions requires time = 10^{12} x 0.25 x 2.2 = 0.55 x 10^{12} ns = 550 s

Question 5.

#Course No.: CS224

#Lab No.: 6

#Section No.: 6

#Full Name: Yasemin Akın

#Bilkent ID.: 22101782

.data

menuTitle: .asciiz "\n\nMENU"

functPrompt: .asciiz "\nEnter an integer according to the choosen functionality: "

f1: .asciiz "\n1. Enter the matrix size in terms of its dimensions (N)"

f2: .asciiz "\n2. Allocate an array with proper size"

f3: .asciiz "\n3. Obtain summation of matrix elements row-major (row by row)

summation"

f4: .asciiz "\n4. Obtain summation of matrix elements column-major (column by column)

summation"

f5: .asciiz "\n5. Display desired elements of the matrix by specifying its row and column

member"

exitPrompt: .asciiz "\n6. Exit"

rPrompt: .asciiz "\nSummation of matrix elements in row by row major: "

cPrompt: .asciiz "\nSummation of matrix elements in column by column major: "

rowNoPrompt: .asciiz "\nEnter rowNo: "

columnNoPrompt: .asciiz "\nEnter columnNo: "

elementPrompt: .asciiz "\nItem in the requested index = "

exitPromptM: .asciiz "\nExiting the program..."

.text

```
Main:
```

jal Menu

li \$v0, 10

syscall

Menu:

Displaying the menu

addi \$sp, \$sp, -4

sw \$ra, 0(\$sp)

li \$v0, 4

la \$a0, menuTitle

syscall

li \$v0, 4

la \$a0, f1

syscall

la \$a0, f2

syscall

la \$a0, f3

syscall

la \$a0, f4

syscall

la \$a0, f5

syscall

la \$a0, exitPrompt

syscall

li \$v0, 4

la \$a0, functPrompt

syscall

```
li $v0, 5
syscall
```

beq \$v0, 1, funct1

beq \$v0, 2, funct2

beq \$v0, 3, funct3

beq \$v0, 4, funct4

beq \$v0, 5, funct5

beq \$v0, 6, funct6

funct1:

li \$v0, 4

la \$a0, askN

syscall

li \$v0, 5

syscall

move \$s0, \$v0 # N in \$s0

j Menu

funct2:

mul \$s2, \$s0, \$s0 # number of elements in array in \$s2

mul \$a0, \$s2, 4

li \$v0, 9

syscall

move \$\$1, \$v0 # array base address in \$\$1

move \$s7, \$s1

insertion starting from 1

li \$t0, 1

insert:

sw \$t0, 0(\$s7)

addi \$s7, \$s7, 4

addi \$t0, \$t0, 1

ble \$t0, \$s2, insert

j Menu

row by row summation

funct3:

addi \$sp, \$sp, -8

sw \$s1, 0(\$sp)

sw \$s2, 4(\$sp)

mul \$\$4, \$\$0, 4 # column offset in \$\$4

li \$s3, 0 # total sum in \$s3

li \$t1, 0 # row - 1 in \$t1

loopC2:

mul \$s5, \$t1, 4 # row offset in \$s5

move \$s6, \$0 # column - 1 in \$s6

add \$t5, \$s1, \$s5 # address in \$t5

lw \$t7, 0(\$t5) # current element in \$t7

add \$s3, \$t7, \$s3

loopR:

add \$t5, \$s4, \$t5 # address in \$t5

lw \$t7, 0(\$t5) # current element in \$t7

add \$s3, \$t7, \$s3

addi \$s6, \$s6, 1 # column + 1

blt \$s6, \$s0, loopR # if #column < N(in \$s0) then cont

addi \$t1, \$t1, 1 # row + 1

blt \$t1, \$s0, loopC2

li \$v0, 4

la \$a0, rPrompt

syscall

move \$a0, \$s3

li \$v0, 1

syscall

lw \$s2, 4(\$sp)

lw \$s1, 0(\$sp)

addi \$sp, \$sp, 8

j Menu

column by column summation

funct4:

addi \$sp, \$sp, -8

sw \$s1, 0(\$sp)

sw \$s2, 4(\$sp)

li \$s3, 0 # total sum in \$s3

loopC:

lw \$s4, 0(\$s1) # current item to add in \$s4

addi \$s1, \$s1, 4

add \$s3, \$s3, \$s4

subi \$s2, \$s2, 1

bgt \$s2, 0, loopC

```
li $v0, 4
```

la \$a0, cPrompt

syscall

move \$a0, \$s3

li \$v0, 1

syscall

lw \$s2, 4(\$sp)

lw \$s1, 0(\$sp)

addi \$sp, \$sp, 8

j Menu

funct5:

li \$v0, 4 # ask for rowNo

la \$a0, rowNoPrompt

syscall

li \$v0, 5

syscall

move \$s4, \$v0 # rowNo in \$s4

li \$v0, 4 # ask for columnNo

la \$a0, columnNoPrompt

syscall

li \$v0, 5

syscall

move \$s3, \$v0 # columnNo in \$s3

subi \$s3, \$s3, 1

mul \$s3, \$s3, \$s0

mul \$s3, \$s3, 4

```
$s4, $s4, 1
subi
       $s4, $s4, 4
mul
add
       $s3, $s3, $s4
       $s5, $s3, $s1
                               # address of the requested index in $s5
add
li
       $v0, 4
       $a0, elementPrompt
la
syscall
       $a0, 0($s5)
lw
li
       $v0, 1
syscall
j
       Menu
li
       $v0, 4
       $a0, exitPromptM
la
syscall
lw
       $ra, 0($sp)
addi
       $sp, $sp, 4
```

Exit

funct6:

jr

\$ra