Задача 19 (6 баллов)

В полупроводниках под действием света с частотой ω , близкой к частоте экситонного резонанса ω_0 , могут возбуждаться экситоны – квазичастицы, состоящие и связанных электрона и дырки. Поляризация среды \boldsymbol{P} , обусловленная экситонами, описывается уравнением

$$\left(-\frac{\hbar}{2m}\frac{\mathrm{d}^2}{\mathrm{d}\mathbf{r}^2} + \omega_0 - \omega\right)\mathbf{P}(\mathbf{r}) = \frac{\varepsilon_b \omega_{\mathrm{LT}}}{4\pi}\mathbf{E}(\mathbf{r}), \qquad (1)$$

где $\hbar\omega_0$ — энергия экситона, m — его масса, ε_b — фоновая диэлектрическая проницаемость полупроводника, $\omega_{\rm LT}$ — параметр, характеризующий силу взаимодействия света с экситонами. На поверхности полупроводника выполняется дополнительное граничное условие $\boldsymbol{P}=0$.

Плоская электромагнитная волна частоты ω падает по нормали из вакуума на плоскую поверхность полупроводника. Определите коэффициент отражения.