Tabla de distribuciones discretas

Modelo	p(X=k)	E[X]	Var[X]	$G_X(z)$
	$\begin{cases} p(X=1) = p \\ p(X=0) = 1 - p \end{cases}$	p	p(1-p)	(1-p)+pz
	$\binom{N}{k} p^i (1-p)^{N-k}$	Np	Np(1-p)	$((1-p)+pz)^N$
Uniforme	1	N+1	$N^2 - 1$	$1 \ z(z^N - 1)$
$\sim U(1,N)$	\overline{N}	2	12	\overline{N} $\overline{z-1}$
Poisson	λ^k	λ	λ	$e^{\lambda(z-1)}$
$\sim Po(\lambda)$	$\frac{\lambda^{\kappa}}{k!}e^{-\lambda}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		e · /
	$p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pz}{1 - (1 - p)z}$
Binomial negativa $\sim BinN(r,p)$	$\begin{cases} 0 & \text{si } k < r \\ \binom{k-1}{r-1} p^r (1-p)^{k-r} & \text{si } k \ge r \end{cases}$	$\frac{r}{p}$	$r\frac{1-p}{p^2}$	$\left \left(\frac{pz}{1 - (1 - p)z} \right)^r \right $

Tabla de distribuciones continuas

Modelo	$f_X(x)$	E[X]	Var[X]	$G_X(z)$
Uniforme	1 т	b+a	$(b-a)^2$	$e^{ibt} - e^{iat}$
$\sim U(a,b)$	$\frac{1}{b-a}\mathbb{I}_{[a,b]}$		12	1 en $t = 0$, $\frac{c}{it(b-a)}$
Exponencial	$\lambda e^{-\lambda x}, x \ge 0, \lambda > 0$	1	1	λ
$\sim Exp(\lambda)$		$\overline{\lambda}$	$\overline{\lambda^2}$	$\lambda - it$
Normal	$\frac{1}{1} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.,	σ^2	$e^{i\mu t - \frac{\sigma^2 t^2}{2}}$
$\sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	U	
Gamma	λ^{τ} $\alpha^{\tau-1} e^{-\lambda x} = 0$ $\lambda = 0$	τ	au	$\int_{1}^{\infty} it^{\tau}$
$\sim Gamma(\lambda, \tau)$	$\frac{\lambda^{\tau}}{\Gamma(\tau)} x^{\tau - 1} e^{-\lambda x}, x > 0, \lambda, \tau > 0$	$\overline{\lambda}$	$\overline{\lambda^2}$	$\left(1-\frac{1}{\lambda}\right)$
Beta	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, x \in [0,1]$	<u>α</u>	$\alpha \beta$	Sin forma sencilla
$\sim Beta(\alpha, \beta)$	$\Gamma(\alpha)\Gamma(\beta)$ $\Gamma(\alpha)\Gamma(\beta)$ $\Gamma(\alpha)\Gamma(\beta)$	$\overline{\alpha + \beta}$	$\overline{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Weibull	$\frac{\alpha}{\beta} \left(\frac{x}{\beta} \right)^{\alpha - 1} e^{-(x/\beta)^{\alpha}}, x, \alpha, \beta > 0$	$\beta\Gamma\left(1+\frac{1}{2}\right)$	$\beta^2 \left[\Gamma(1 + \frac{2}{\alpha}) - \Gamma^2(1 + \frac{1}{\alpha}) \right]$	$\sum_{k>0} \frac{(it)^k \beta^k}{k!} \Gamma(1+\frac{k}{\alpha})$
$\sim Weibull(\alpha, \beta)$	$\frac{1}{\beta}\left(\frac{1}{\beta}\right)$	$\left[\begin{array}{c} \beta 1 \left(1 + \frac{-}{\alpha}\right) \end{array}\right]$	$\begin{bmatrix} \rho & \begin{bmatrix} 1 & (1+\alpha) & -1 & (1+\alpha) \\ \alpha & \alpha \end{bmatrix} \end{bmatrix}$	$\sum_{k\geq 0} \frac{1}{k!} \left(1 + \frac{1}{\alpha}\right)$
Cauchy	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	No definida	No definida	$e^{\theta it - \gamma t }$
$\sim Cauchy(\theta, \gamma)$	$\frac{1}{\pi\gamma} \frac{1}{1 + (\frac{x - \theta}{\gamma})^2}, \gamma > 0$	110 definida	ivo deninda	C
χ_p^2	$\frac{1}{\Gamma(p/2)2^{p/2}} x^{\frac{p}{2}-1} e^{-\frac{x}{2}}, x > 0, p \in \mathbb{N}$	p	2p	$(1-2it)^{-\frac{p}{2}}$
Doble expon				$e^{\mu it}$
$\sim DobExp(\mu, \gamma)$	$\frac{1}{2\gamma}e^{-\frac{ x-\mu }{\gamma}}, \gamma > 0$	μ	$2\gamma^2$	$\frac{1}{1+\gamma^2t^2}$
Lognormal	$\frac{1}{\sqrt{2}} - e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, x, \sigma > 0$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2(\mu+\sigma^2)} - e^{2\mu+\sigma^2}$	Sin forma sencilla
$\sim LogN(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}\frac{1}{x}e^{-2\sigma^2}$, $x, \sigma > 0$	C 2	E – E .	om forma sencina