Advanced Tree Data Structures

Prepared by

Dr Annushree Bablani

Balanced Search Trees

- A search-tree data structure for which a height of O(log n) is guaranteed when implementing a dynamic set of n items.
- Examples:
 - AVL trees (Discussed in Unit-1)
 - 2-4 trees (This Lecture)
 - B+-trees
 - Red-black trees

2-4 Trees

- Search Trees (but not binary)
- Also known as 2-4, 2-3-4 trees
- Very important as basis for Red-Black trees

Multi-way Search Trees

- Each internal node of a multi-way search tree *T*:
 - has at least two children
 - stores a collection of items of the form (k, x), where k is a key and x is an element
 - $\overline{}$ contains d 1 items, where d is the number of children
 - "contains" 2 pseudo-items: $k_0 = -\infty$, $k_d = \infty$
- Children of each internal node are "between" items
 - all keys in the subtree rooted at the child fall between keys of those items
- External nodes are just placeholders

Multi-way Searching

- Similar to binary searching
- If search key $s < k_1$, search the leftmost child
- If $s > k_{d-1}$, search the rightmost child
- That's it in a binary tree; what about if d > 2?
- Find two keys k_{i-1} and k_i between which s falls, and search the child v_i .

Multi-way Searching

(2,4) Trees

- At most 4 children
- All external nodes have same depth
- Height h of (2,4) tree is $O(\log n)$.
- How is this fact useful in searching?

(2,4) Insertion

- Always maintain depth condition
- Add elements only to existing nodes

(2,4) Insertion

- What if that makes a node too big?
- •- overflow
- Must perform a *split* operation
 - replace node v with two nodes v' and v''
 - v' gets the first two keys
 - v" gets the last key send the other key up the tree
 - if v is root, create new root with third key
 - otherwise just add third key to parent

(2,4) Insertion (cont.)

(2,4) Insertion (cont.)

- Tree always grows from the top, maintaining balance
- What if parent is full?
 - Do the same thing
- Overflow cascade all the way up to the root
 - still at most $O(\log n)$

- First of all, find the key
 - simple multi-way search
- Then, reduce to the case where item to be deleted is at the bottom of the tree
 - Find item which precedes it in in-order traversal
 - Swap them
- Remove the item

- Removing from 2-nodes
- Not enough items in the node
 - underflow
- Pull an item from the parent, replace it with an item from a sibling
 - called transfer

- What happens if siblings are 2-nodes?
- Could we just pull one item from the parent?
 - too many children
- But maybe...
- We know that the node's sibling is just a 2-node
- So we *fuse* them into one after removing an item from the parent,

- what if the parent was a2-node?
- Underflow can cascade up the tree, too.

(2-4) Trees Conclusion

- The height of a (2,4) tree is $O(\log n)$.
- Split, transfer, and fusion each take O(1).
- Search, insertion and deletion each take $O(\log n)$.