

Using K-Nearest Neighbors to Classify Lending Club Loans Issued

Matt Delsman and Ian Poblete

Agenda

K Nearest Neighbors

Our Question

Lending Tree

Overall Evaluation Plan

Initial Data Cleaning

Initial KNN Evaluation

Secondary Data Cleaning

Final KNN Evaluation

Our Formula

K-Nearest Neighbors

Grouping Data by Similar Features

K-Nearest Neighbors

- "Similar things exist in close proximity"
- Similarity defined mathematically as distance
 - Learns classification from train set
 - Classifies a data point based on "close" other points
 - Distance types: Euclidean, Hamming, Manhattan, and Minkowski
 - Predicts based on "where" new data is

KNN Figure with 3 Classifications

K-Nearest Neighbors

- K Determination is another important step
 - K determines the number of points that are compared
 - Too small: fitting model to noise
 - Too large: misses capturing the local data structure
- Other important info
 - Non-parametric, supervised
 - Curse of dimensionality
 - Incredibly computationally intensive

Distance Measurements

$$D\left(X,Y
ight) = \left(\sum_{i=1}^{n}\left|x_{i}-y_{i}
ight|^{p}
ight)^{rac{1}{p}}$$

Minkowski Distance Calculation

$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

Hamming Distance Calculation

$$d(\mathbf{p},\mathbf{q})=\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+\cdots+(p_i-q_i)^2+\cdots+(p_n-q_n)^2}=\sqrt{\sum_{i=1}^n{(p_i-q_i)^2}}$$
 Euclidean Distance Calculation

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p}-\mathbf{q}\|_1 = \sum_{i=1}^n |p_i-q_i|$$

Manhattan Distance Calculation

Our Question

Lending Club Loan Classification

From 2008-2017

Backstory

- Founded in 2006
- Peer-To-Peer Lending
 - Platform where borrowers apply for loans and investors pick and choose their investments
- Loans
 - o Range between \$1,000 and \$40,000
 - Standard repayment period of 3 years
- \$15.98bn lent as of December 2015
- Make their money from charging borrowers and investors a fee
 - Makes grading system incredibly important

Loan Classification

- Loans are classified into 7 Grades
 - Grades based on likelihood of repayment
- Traditional Bank Banker with education and years of experience
- Lending Club Amateur
 - Require help
- Grades serve as an easy reference for investors
 - Higher Grade will have a higher payback at a higher risk

Interest Rate Range

Grade	Low	High
Α	6.46%	8.81%
В	10.33%	13.08%
С	14.30%	17.74%
D	18.62%	28.80%
E	28.90%	29.00%
F	29.35%	30.75%
G	30.79%	30.99%

Loan Grades and Corresponding Interest Rates (2020)

Average borrower interest rates as of June 30, 2016

Lower interest payments Lower expected loan losses (fewer charge offs) Lower expected returns Lower expected volatility

Higher interest payments Higher expected loan losses (more charge offs) Higher expected returns Higher expected volatility

Can we use a KNN model to predict loan grade?

Our Data

Lending Club Loans

From 2008-2017

Our Data Set: Lending Club Loan Data

- Kaggle: https://www.kaggle.com/wendykan/lending-club-loan-data
- Contains data on all loans issued through Lending Club from 2007 2018
- 2.26 million records x 145 features (loan.csv is ~1.1 GB)
- Classify Data based on "Loan Grade" Feature
 - Loan Grade General classification of the likelihood of a loan being paid back

Grade (Int. Rate) - Count

- A (6-8%) 433,027
- B (10-13%) 663,557
- C (14-17%) 650,053
- D (18-28%) 324,424
- E (28-29%) 135,639
- F (29-30%) 41,800
- G (30-31%) 12,168

Data Refinement

- 2.26 million records x 145 features (loan.csv is ~1.1 GB)
 - Running full data set with Jupyter and sklearn takes longer than overnight
- Create smaller data sets to test code
 - Made data sets of one thousand, ten thousand, and one hundred thousand randomly sampled rows

```
In [3]: #Shape
print(loan.shape)
(2260668, 145)
```

Our Evaluation

Classifying Loan Grades

Grouping Data by Features

Our Evaluation Plan

Original Plan:

- Curse of Dimensionality Need to Reduce Features
 - Dimension reduction: PCA?
 - Specific features
 - Annual income
 - Loan amount
 - Total number of credit lines.
 - Loan purpose
 - DTI
 - Expected Default Rate
 - Home Status
 - Credit Inquiries in Last 12 Months
- Time Reduction Post-Financial Crash
- Data Cleaning
- Create Model
- Evaluate

Our Evaluation Plan Original Plan:

- Curse of Dimensionality Need to Reduce Features
 - Dimension reduction: PCA?
 - Specific features
 - Annual income
 - Loan amount
 - Total number of credit lines
 - Loan purpose
 - DTI
 - Expected Default Rate
 - Home Status
 - Credit Inquiries in Last 12 Months
- Time Reduction Post-Financial Crash
- Data Cleaning
- Create Model
- Evaluate

Reality:

- No Spark
- Curse of Dimensionality Need to Reduce Features
 - Dimension reduction: Intuition + Heat Map
 - Specific features
 - Annual income
 - Loan amount
 - Total number of credit lines
 - Loan purpose
 - DTI
 - Derogotory public records
 - Home Status
 - Credit Inquiries in Last 6 Months
- Data Cleaning
 - Annual income / DTI
 - Normalization, Encoding, Dummy Variables
- Create Model
- Deciding k
- Evaluate

Variable Choice

- High number of categories in original data (145)
 - Too computationally intensive to use all
 - Reduce to most important factors
- Created a heatmap with all numeric data
 - Evaluate based on correlation
 - High correlation = same explanatory power but more noise
- Pick variables which have a low correlation.
 - Did the variables we selected intuitively have low correlation?
 - Annual income, Loan amount, Total number of credit lines, Loan purpose, DTI, Expected Default Rate, Home Status, Credit Inquiries in Last 12 Months
 - Expected Default Rate -> Derogatory public records
 - Credit Inquiries in Last 12 Months -> Credit Inquiries in Last 6 Months
- Need to clean, encode, and create dummy variables

- 0.4

- 0.0

- -0.4

-0.8

Initial Data Cleaning

We did some limited initial cleaning in order to get our code to run

Reduce predictors, remove NA's

```
#Clean data
#change loan to specific column
loan_s = loan[['annual_inc', 'loan_amnt', 'open_acc', 'purpose', 'dti', 'pub_rec', 'home_ownership', 'inq_last_6mths', 'grade']]
#Delete annual_inc = 0
loan_s = loan_s[loan_s.annual_inc != 0]

#Drop NAs
loan_s.dropna(inplace = True)
```

Initial Runs

Served as a baseline - removed categorical, no normalization of large data

Accuracy_3: 0.2660372952596991
Accuracy_4: 0.2710411315341762
Accuracy_5: 0.2757780965406812
Accuracy_6: 0.2774794008740034
Accuracy_7: 0.27928078193281514
Accuracy_8: 0.28041498482169663
Accuracy_9: 0.28171598225306066
Accuracy_10: 0.2841845414818027
Accuracy_15: 0.29088968208960203
Accuracy_20: 0.2928912165993929

Accuracy Score Plotted Against K

Data Refinement

- Large Numbers
 - Annual Income 20.000
 - o DTI 3
 - Need to normalize in order to have similar explanatory power
- Dummy variables
 - debt_consolidation
 negatively correlated with
 credit_card
 - MORTGAGE negatively correlated with RENT

```
In [5]: #dummy variables for purpose, home ownership, and grade
#dummygrade = pd.get_dummies(loan['grade'])
dummypurp = pd.get_dummies(loan_s['purpose'])
dummyhome = pd.get_dummies(loan_s['home_ownership'])
#Concat
loan_s = pd.concat([loan_s, dummypurp, dummyhome], axis=1)
#drop
loan_s = loan_s.drop(['purpose','home_ownership'], axis=1)
```

Creating Dummies for Categorical Data

```
In [7]: #Normalization

float_array = loan_s.values.astype(float)
min_max_scaler = preprocessing.MinMaxScaler()
scaled_array = min_max_scaler.fit_transform(float_array)
loan_s = pd.DataFrame(scaled_array)

print(loan_s)
```

Normalization of Large Data Numbers Using Minmax Scaler

Run 2

Dummy Variables, Normalized Data = +1% Accuracy

Accuracy_3: 0.27621176235113587 Accuracy 4: 0.275444507455716

Accuracy_5: 0.2852853854621877

Accuracy_6: 0.2876538679654402

Accuracy_7: 0.28972212029222405

Accuracy_8: 0.2941588551222604

Accuracy_9: 0.2946592387497081

Accuracy_10: 0.29455916202421856

Accuracy_15: 0.30239850552089936

Accuracy_20: 0.3082696734162858

Data Evaluation - Purpose

Purpose values house, car, vacation, renewable energy, wedding, and educational with other
loan_s.replace(to_replace = ["house","car","vacation","renewable_energy","wedding","educational"], value = "other")

Data Evaluation - DTI


```
#Delete dti > 60
loan_s = loan_s[loan_s.dti <= 60]</pre>
```

Data Evaluation - Annual Income

X units are in hundred millions


```
#Delete annual_inc = 0
loan_s = loan_s[loan_s.annual_inc != 0]

#Delete annual_inc > 500000
loan_s = loan_s[loan_s.annual_inc <= 500000]</pre>
```

Data Evaluation - Open Account


```
#Delete open acc > 60
loan_s = loan_s[loan_s.open_acc <= 60]</pre>
```

Data Evaluation - Home Ownership


```
#Replace Home Ownership values ANY and NONE with OTHER
loan_s = loan_s.replace(to_replace = ["ANY","NONE"], value = "OTHER")
```

Data Evaluation - Public Records


```
#Delete pub rec > 5
loan_s = loan_s[loan_s.pub_rec <= 5]</pre>
```

Data Evaluation - Ing last 6 months


```
#Delete inq_last_6mths > 5
loan_s = loan_s[loan_s.inq_last_6mths <= 5]</pre>
```

Run 3

Removed all Outliers = +1% Accuracy, smaller spread

Accuracy_3: 0.2837238971328812 Accuracy_4: 0.2856711206607131 Accuracy_5: 0.29346001477204053 Accuracy_6: 0.2962129859665615 Accuracy_7: 0.2961458403276707 Accuracy_8: 0.29920096689720005 Accuracy_9: 0.3050090646612503 Accuracy_10: 0.3064191230779561

Accuracy_15: 0.3123279393003424 Accuracy 20: 0.3166252601893507

Accuracy based on K

Accuracy Score Plotted Against K

Deciding k

After K = 11, there were diminishing returns on accuracy

Higher K values lead to significant processing times, not worth it

Last Gasp

Trying Different Distances

```
In [10]: #Specify number of neighbors
         #Default with Minokowski p = 2 (Euclidean)
         knn_11_p2 = KNeighborsClassifier(n_neighbors = 11)
         #Default with Minokowski p = 1 (Manhattan)
         knn 11 p1 = KNeighborsClassifier(n neighbors = 11, p = 1)
In [11]: #Train model with test set
         knn_11_p2.fit(x_train, y_train)
         knn 11 p1.fit(x train, y train)
Out[11]: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
                              metric params=None, n jobs=None, n neighbors=11, p=1,
                              weights='uniform')
In [12]: #Predict output with test set
         y pred 11 p2 = knn 11 p2.predict(x test)
         y pred 11 p1 = knn 11 p1.predict(x test)
In [13]: #Model Accuracy
         from sklearn import metrics
         Accuracy 11 p2 = metrics.accuracy score(y test, y pred 11 p2)
         Accuracy 11 p1 = metrics.accuracy score(y test, y pred 11 p1)
         print("Accuracy 11 p2:", Accuracy 11 p2)
         print("Accuracy 11 p1:", Accuracy 11 p1)
         Accuracy 11 p2: 0.3104257458933959
```

Accuracy 11 p1: 0.3043915521287295

Finalized Result

```
In [13]: #Model Accuracy
    from sklearn import metrics
    Accuracy_11 = metrics.accuracy_score(y_test, y_pred_11)
    print("Accuracy_11:",Accuracy_11)
```

Accuracy_11: 0.31210512864708084

Possible Explanations:

Too many predictors, too many categories, human grade classification

Finalized Result - Individual Grade Comparisons

```
#Model Accuracy
from sklearn import metrics
Accuracy 11 = metrics.accuracy score(y test, y pred 11)
print("Accuracy A vs B:", Accuracy 11)
Accuracy A vs B: 0.5986977182530576
#Model Accuracy
from sklearn import metrics
Accuracy 11 = metrics.accuracy score(y test, y pred 11)
print("Accuracy A vs C:", Accuracy 11)
Accuracy 11: 0.661488382186536
#Model Accuracy
from sklearn import metrics
Accuracy 11 = metrics.accuracy score(y test, y pred 11)
print("Accuracy A vs D:", Accuracy 11)
Accuracy A vs D: 0.7186920777942337
#Model Accuracy
from sklearn import metrics
Accuracy 11 = metrics.accuracy score(y test, y pred 11)
print("Accuracy A vs E:", Accuracy 11)
Accuracy A vs E: 0.8169363264486957
#Model Accuracy
from sklearn import metrics
Accuracy_11 = metrics.accuracy_score(y_test, y_pred_11)
print("Accuracy A vs F&G:", Accuracy 11)
```

Accuracy A vs F&G: 0.9083001337174839

Grade Comparison	Accuracy	
A vs B	59.86%	
A vs C	66.15%	
A vs D	71.87%	
A vs E	81.69%	
A vs F&G	90.83%	

Appendix

Feature	Column Name	Data Type
Annual Income	annual_inc	Float
Loan Amount	loan_amnt	Integer
Open Accounts	open_acc	Integer
Loan Purpose	purpose	Character
DTI (Monthly Debt Payment/Total Debt)	dti	Float
Derogatory Public Records	pub_rec	Integer
Home Ownership	home_ownership	Character
Credit Inquiries in last 12 Months	inq_last_6mths	Integer
Grado	grado	Character

References

https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761

https://en.wikipedia.org/wiki/Euclidean_distance

https://en.wikipedia.org/wiki/Taxicab_geometry

https://en.wikipedia.org/wiki/Kernel density estimation

https://stackoverflow.com/questions/19960077/how-to-filter-pandas-dataframe-using-in-and-not-in-like-in-sql

https://www.saedsayad.com/k nearest neighbors.htm

https://en.wikipedia.org/wiki/Minkowski_distance

https://www.youtube.com/watch?v= EEcjn0Uirw

https://en.wikipedia.org/wiki/LendingClub

https://www.lendingclub.com/foliofn/rateDetail.action

https://www.drawingfromdata.com/how-to-rotate-axis-labels-in-seaborn-and-matplotlib

https://discuss.codecademy.com/t/in-seaborn-can-we-set-a-specific-bar-order-for-a-barplot/354499

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html

https://www.moneycrashers.com/lending-club-review-peer-to-peer-lending/

https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/

https://towardsdatascience.com/better-heatmaps-and-correlation-matrix-plots-in-python-41445d0f2bec

OLD SLIDES

Our Evaluation Plan

- Proposed Evaluation Visualization
 - Heat Map
- Libraries we plan on using
 - Sklearn.neighbors
 - Sklearn.metrics
 - Pylab
 - Matplotlib
 - seaborn
- Model Evaluation
 - Using Accuracy from Sklearn.neighbors package
- Overall Goal
 - Most important Features for each Loan Grade

Agenda

Data Overview

Question you are looking to answer

Data Refocus - Original Focus + No Spark, create smaller set in order to make program run

Variable Choice - Heat Map + Intuition

Data Cleaning - Data Cleaning N/A's + 0's Annual Income

Data Cleaning - Dummy Variables + Encoding + Final heat map

Accuracy - Normalization

Deciding K - Overlap all the Graphs

Visualized Results - Accuracy Plot + Explanation + Reason for low + suggestions (SVM)

Final Result - Pick a K and Run for Big Data Set

Distance Measurements

Hamming

$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

Minkowski

$$D\left(X,Y
ight) = \left(\sum_{i=1}^{n}\left|x_{i}-y_{i}
ight|^{p}
ight)^{rac{1}{p}}$$

Variable Choice

- Created a heatmap with all numeric data
- Did the variables we selected intuitively have low correlation?
 - Annual income
 - Loan amount
 - Total number of credit lines
 - Loan purpose
 - o DTI
 - Expected Default Rate -> Derogatory
 public records
 - Home Status
 - Credit Inquiries in Last 12 Months ->
 Credit Inquiries in Last 6 Months
- Need to clean, encode, and create dummy variables

Data Exploration

Data shape

```
Df.shape
```

- More data visualization
- Test with different distance measurement