ÖVEGES JÓZSEF Fizikaverseny

II. forduló 2020. február 28. VII. osztály

JAVÍTÓKULCS

I. feladat

A zászló a hajó és a szél sebességeinek az eredője mentén fog megállni Paralelogramma-szabállyal megrajzolni a vektorokat 1p

1p

A BOA \triangle -ben BO \perp OA, OA = $\frac{1}{2}$ BA (mert $v_H = \frac{1}{2}v_{SZ}$)

1p

 $\Rightarrow OBA_{\text{sz\"{o}g}} = \alpha = 30^{\circ}$

1p

Ha $V'_H = 2V_H \implies V'_H = V_{SZ}$, de a szél nem változtatja meg sem az irányát, sem az "erősségét" (sebességének nagyságát)

1p

Az új eredő (paralelogramma szabály) $OB'(V_z)$

1p

 $OC ext{ II } B'A' ext{ és } OC = B'A', ext{ valamint } OA' ext{ II } B'C ext{ és } OA' = B'C$ $COO'\Delta - \text{ben } \alpha = 30^{0} ext{ és } CO'O = 90^{0} \Rightarrow OCO'_{\text{szög}} = 60^{0}$ **1p**

 $COO'\Delta$ -ben $\alpha = 30^{\circ}$ és $CO'O = 90^{\circ}$ \Rightarrow $OCO'_{sz\ddot{o}g} = 60^{\circ}$ **1p** OO' II B'D; B'A' II $CO \Rightarrow B'DA'\Delta$ -ben: $DB'A'_{sz\ddot{o}g} = 30^{\circ}$ \Rightarrow $DA'B'_{sz\ddot{o}g} = 60^{\circ}$ **1p**

Az OA'B' egyenlő oldalú háromszögben $B'OA'_{\text{szög}}=60^0$ \Rightarrow

A zászló 60^{0} -os szöget zár be a menetiránnyal **1p/10p**

II feladat

a)

A folyadékkal tele tartály tömege $M = m + m_f$; $G = M \cdot g$

Erők felbontása:
$$F_x = \frac{1}{2}F$$
 mert $\alpha = 30^\circ$; $F_y = \frac{\sqrt{3}}{2}F$

Mivel a sebesség állandó $F_x = F_f = \mu \cdot N$ és $G = N + F_y$ 1p

$$\Rightarrow G = \frac{1}{2} \frac{F(1 + \mu\sqrt{3})}{\mu} = 841.5N \; ; \; \Rightarrow M = \frac{G}{g} = 84.15kg$$

De
$$m_f = M - m = 69,15kg$$
 és $\rho_f = \frac{m_f}{V} = 691,5kg/m^3$ **0,5p/5p**

b)

 Δt idő alatt a tartály tömege $\Delta m = \rho_f \cdot 0.5 \cdot 10^{-3} \cdot \Delta t$ értékkel csökken, 1 perc alatt a tartály tömegének csökkenése $\Delta m_1 = 20.745 kg$

A tartály tömege 1 perc után $M_1 = M - \Delta m_1 = 63,405 kg$,

2 perc után
$$M_2 = 42,66 \text{ kg}$$
, 3 perc után $M_3 = 21,915 \text{ kg}$

A tartályban $\Delta m' = M_3 - m = 6,915kg$ folyadék maradt, amely $\Delta t' = \frac{\Delta m'}{0.5 \cdot 10^{-3} \rho_s} = 20s$ alatt folyhat ki a

tartályból. 0,5p

Az egész folyadék 3 perc 20 s alatt folyik ki a tartályból, ez után üresen fog mozogni. **0,5p**

Mivel
$$a = 0$$
 \Rightarrow minden pillanatban $F'_x = F'_f$ és $F'_f = \mu \cdot N' = \mu (G' - F'_y)$ 0,5p

$$F'_x = F' \cos \alpha$$
; $F'_y = F' \sin \alpha$ $\Rightarrow F' \cos \alpha = \mu (G' - F' \sin \alpha)$ $\Rightarrow F' = \frac{\mu}{\cos \alpha + \mu \sin \alpha} \cdot G' = k \cdot G'$,

ahol
$$k = \frac{\mu}{\cos \alpha + \mu \sin \alpha} \cong 0,207 = \text{állandó}$$
 0,5p

Táblázat

	5	4	3,33	3	2	1	0	t (perc)
0,5p	31,05	31,05	31,05	45,36	88,30	131,25	250	F (N)

Grafikon

0.5p

III feladat

a)

$$v = \frac{d}{t} = 80 \, km/h$$

$$v' = \frac{d}{t'} = 60 \, km/h$$
 0,5p/ 1p

b)

Az út $d_1 = 30$ km-es szakaszát Δt_1 idő alatt teszi meg az autóbusz. A d_2 kátyús útszakaszt

 $\Delta t_2 = 0,8$ h alatt teszi meg, míg az utolsó d_3 hosszúságú részt Δt_3 idő alatt. $\Rightarrow d = v'(\Delta t_1 + \Delta t_2 + \Delta t_3)$ **1p**

$$\Delta t_1 + \Delta t_3 = \frac{d - d_2}{v}$$

$$\Rightarrow d = \frac{v'}{v} (d - d_2) + v' \Delta t_2$$

$$\Rightarrow d_2 = d\left(1 - \frac{v}{v'}\right) + v\Delta t_2 = 24km$$

$$v_2 = \frac{d_2}{t_2} = 30 \, \text{km/h}$$

c)

Első grafikon (út – idő)

Második grafikon (sebesség – idő)

1,5p

1,5p