Jystèmes dynamiques: Espace de Banach, Thévierne du point fixe, Inversion locale, Fonctions implicits

Exercise 23: Demontrer qu'il existe une unique fonction continue $f:tq:J\to R$ telle que $\forall x\in (0,1)$, $f(x) = s + \int \frac{f(t)}{roo} dt$

Posons $E = L^{\circ}(L_{0}D, R)$, $d(G) = \sup_{x \in L_{0}D} |f(x) - g(x)|$ On a (E, d_{∞}) complet.

* Problème du point fixe: $f = \overline{\Phi}(f)$

 (\tilde{Q}) $\tilde{\Phi}$: E (\tilde{Q}) = $1+\int \frac{f(\tilde{Q})}{100+(1-x)} dt$

Ja fonchin $F: [0,1] \times [0,1] \longrightarrow \mathbb{R}$ est continue sen le $(n,t) \longleftrightarrow F(n,t) = \frac{f(t)}{100 + |t-x|}$ compact $[0,1] \times [0,1]$

 $\Rightarrow 6: \mathbb{R} \longrightarrow \mathbb{P} \qquad 1$ $x \mapsto 6(x) = \int_{3}^{1} F(x,t) dt = \int_{100 \text{ H}} \frac{f(t)}{100 \text{ H}} dt$

est continue

a)
$$\oint$$
 at contractomte: Sat $f,g \in E$

$$\int_{0}^{\infty} (\Phi(0), \overline{b}(g)) = \sup_{n \in [0,1]} |\Phi(0) - \overline{b}(g)|$$
On a $\Phi(0) - \overline{b}(g) = 1 + \int_{10}^{\infty} \frac{f(0)}{100 + |t-x|} dt - (1 + \int_{100 + |t-x|}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{100 + |t-x|}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt)$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 + |t-x|} dt$$

$$= \int_{0}^{\infty} \frac{f(0) - \overline{b}(g)}{100 + |t-x|} dt - (1 + \int_{0}^{\infty} \frac{g(0)}{100 +$$

D'aprè le thévème de Picard, É admet un emique point pre

⇒ £ : E → E continue et contractante