

CDS501: PRINCIPLES & PRACTICES OF DATA SCIENCE & ANALYTICS

Statistical Distribution

Outline

- Descriptive Statistics
 - Measures of Central Tendency
 - Measures of Dispersion
 - Measures of Association
- Statistical Distributions
 - Basic concepts
 - Probability Density Function
 - Normal Distribution
 - Binomial Distribution
 - Multinomial Distribution

Measures of Central Tendency

A set of numbers that "describe" a data

- Measures of central tendency
 - Central aspect of the data
- Measures of dispersion
 - How spread-out the data is

Measures of Central Tendency

- Mean (average)
- Median
- Mode

Mean (Average)

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\frac{(5.2 + 2.8 + 1.2 + 6.1 + 4.8)}{5} = 4.02$$

Median

 The middle number that divides the ordered observations into two parts

1.2, 2.8, 4.8, 5.2, 6.1

Mean vs Median

Consider the following salaries:

RM 5500

RM 4800

RM 5900

RM 4900

RM 5200

RM 4500

RM 22000

Mean: RM7542.86 Median: RM5200.00

- Mean is influenced by extreme observations
- Median is better the summary descriptor to use when there are extreme observations

Mean and median relationship relates to the skewness of the data

Mode

The most frequently occurring value in a set of data

Mode

- The most frequently occurring value in a set of data
- Not that relevant descriptive statistic when the data is continuous e.g. exchange rate USD to MYR

Date	USD to MYR
30/4/2020	4.326
29/4/2020	4.36
28/4/2020	4.3705
27/4/2020	4.354
24/4/2020	4.365
23/4/2020	4.365
22/4/2020	4.395
21/4/2020	4.3923
20/4/2020	4.388
17/4/2020	4.365
16/4/2020	4.374
15/4/2020	4.33
14/4/2020	4.323
13/4/2020	4.3225
10/4/2020	4.308
9/4/2020	4.341
8/4/2020	4.3398

Measures of Dispersion

Measures of Dispersion

Salaries 1 (RM) Salaries 2 (RM)

5500 6400

4900 5300

5900 4200

4900 5200

5200 4000

4500 4500

5300 6600

Mean: 5171.43 5171.43

Median: 5200.00 5200.00

Measures of Dispersion

Spread of Salaries 2 is greater than Salaries 1

Range

Range of data

Range =
$$Max(x) - Min(x)$$

Range

- Range of Salaries 1
 - = 5900 4500
 - = 1400
- Range of Salaries 2
 - = 6600 4000
 - = 2600

Interquartile Range

• IQR is the middle 50% of the data

$$IQR = Q3 - Q1$$

Interquartile Range

IQR of Salaries 1

4500, 4900, 4900, <mark>5200</mark>, 5300, 5500, 5900

Q1 = 4900 and Q3 = 5500

IQR = 600

IQR of Salaries 2

4000, 4200, 4500, 5200, 5300, 6400, 6600

Q1 = 4200 and Q3 = 6400

IQR = 2200

Standard Deviation

Standard Deviation

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Standard Deviation

standard deviation =
$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

 $variance = standard deviation^2$

Measures of Association

Covariance and Correlation

How do two variables vary together

Covariance

$$Cov = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y})$$

- \bar{x} : mean of variable x
- \overline{y} : mean of variable y
- The range of values: $-\infty$ to $+\infty$
- Positive value: positive relationship
- Negative value: negative relationship

Covariance does not describe the strength of the relationship

Correlation

$$Cor = \frac{Cov_{xy}}{\sigma_x \sigma_y}$$

- σ_x : standard deviation of variable x
- σ_y : standard deviation of variable y
- No affected by the units of measurement
- The range of values: -1 to +1
- Positive value: positive relationship
- Negative value: negative relationship
- Cor > +0.5 or Cor < -0.5 are considered strong

Statistical Distributions

Probability, Random Experiment, Random Variable and Probability <u>Density Function</u>

Probability

- A numerical measure of the frequency of occurrence of an event
- A scale from 0 to1
- Tossing a fair coin
- Rolling a dice

Random Experiment & Random Variable

- Random Experiment
 - Any situation where a process leads to more than one possible outcome
 - tossing a coin
 - rolling a dice
 - observing the number of goals in a football match
 - observing the number of phones sold by a shop in a year
 - observing the total sales of a shop in a day

Random Experiment & Random Variable

- Random Variable
 - A variable that takes on values determined by the outcome of a random experiment

Random Experiment Random Variable

Coin toss outcome={head, tail}

Roll of a dice $outcome=\{1, 2, 3, 4, 5, 6\}$

Observe # phone sold phone sold={0, 1, 2, 3, ...}

Observe total sales total sales= $\mathbb{R}_{\geq 0}$

Statistical Distribution

Description of the frequency of all possible outcomes of a random variable

Random Experiment
Observing salary of workers

Random Variable salary= $\mathbb{R}_{>0}$

Probability Density Function

- A rule that assigns probabilities to various possible values of a random variable can take when it is being approximated by a particular statistical distribution
- Probability Mass Function (for discrete data)

Probability Mass Function

Consider a coin toss

Outcome of toss	<u>Probability</u>
Head	0.5
Tail	0.5
	1.0

Probability Mass Function

Consider a coin toss	Outcome of toss	Probability
	Head	0.5
	Tail	0.5
		1.0

Consider a roll of a dice

Outcome of roll	Probability
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6
	1.0

The rule is known as Probability Mass Function (for discrete data)

Probability Mass Function

- What about more complex process such as the number of customers in a day
- Approximate the process using a statistical distribution and use the pmf of the distribution

Probability Density Function

- For continuous data
- The probability is not for a particular outcome but for ranges of outcomes
 - Probability of someone's height between 1.60m and 1.70m
 - Probability of someone's height less than 1.60m
 - Probability of someone's height greater than 1.70m

Probability Density Function

Statistical Distributions

Gaussian distribution or bell shape curve

- Defined by two parameters
 - mean and standard deviation

PDF =
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- μ is the mean
- σ is the standard deviation

- Assuming that number of customers that comes to a shop in a day can be approximated by a Normal distribution with the mean of 65 customers and standard deviation of 12 customers.
- What is the probability that on a particular day the number of customers is 50

$$\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x-65}{12}\right)^2}$$

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{50-65}{12}\right)^2}$$

$$0.033245 \times e^{-0.78125}$$

$$0.033245 \times 0.457833$$

0.015220

Statistical Distributions

Binomial Distribution

- Bernoulli process is a situation where the random variable has only two mutually exclusive outcomes (success or failure)
- Coin toss → head/tail [1/2]
- Exam grade → pass/fail [1/2]
- Lucky draw → win/do not win [1/2]

- Game of dice → win (roll a 6) / lose (otherwise)
- Probability of winning = 1/6 = 0.1667
- Probability of winning at least 4 times in 10 rolls?
- Probability of winning exactly 5 times in 10 rolls?
- Random Variable is number of times you win in 10 rolls

lacktriangle A probability distribution of x successful outcomes in n independent trials with the probability of success is p and the probability of failure is 1-p

$$n = 10$$

 $p = 1/6$ (roll a 6)
 $x = 5$ (winning exactly 5 times)

Probability mass function, P

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{(n-x)}$$
where $\binom{n}{x} = \frac{n!}{x!(n-x)!}$

$$\frac{10!}{5!(10-5)!} = 252$$

$$0.167^5 \cdot (1 - 0.167)^5 = 5.168e^{-5}$$

$$P(X = 5) = 252 \times 5.168e^{-5} = 0.013$$

Statistical Distributions

Multinomial Distribution

Multinomial Distribution

- Consider three-sided dice is tossed 10 times
- \bullet The probability of the three sides are $p_1=1/3$, $p_2=1/3$ and $p_3=1/3$
- What is the probability of getting five "1", three "2" and two "3"?

Multinomial Distribution

- n independent trials
- Each trial results in k mutually exclusive outcomes
- On a single trial, the probabilities of the k outcomes p_1 , p_2 , ..., p_k where $\sum_{i=1}^k p_i = 1$

Multinomial Distribution

Probability mass function, P

$$P(X_1 = x_1, X_2 = x_2, X_3 = x_3) = \frac{n!}{x_1! \, x_2! \dots x_k!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}$$

- n is the number of trials
- k is the number of outcomes
- x_i is the number of outcome x_i occurs
- p_i is the probability of outcome x_i occurs

$$\frac{10!}{5!3!2!} = 2520$$

$$0.333^{5} \cdot 0.333^{3} \cdot 0.333^{2} = 1.693e^{-5}$$

$$P(X_{1} = 5, X_{2} = 3, X_{3} = 2) = 2520 \times 1.693e^{-5} = 0.0426$$

End