D=Alb

4. Pro matici $\mathbf{A} \in \mathbb{R}^{15 \times 5}$ hledáme nejbližší matici hodnosti < 3. Víme, že matice $\mathbf{A}^T \mathbf{A}$ má vlastní čísla 2, 1, 4, 9, 0.

0,=1/0,=0,5 chyba=125

- a) (1 bod) Formulujte úlohu maticově jako optimalizační problém a napište hodnotu účelové funkce v optimu.
 - b) (1 bod) Jaké bude optimální řešení tohoto problému, budeme-li hledat matici hodnosti ≤ 4 ?

Vase odpovedi na kvizove otazky: b, d, a, b, e

spatne: 6, 8, 9

dobre: 5, 7

chybi:

Celkem bodu za kviz: 2

Zadani vaseho kvizu naleznete na nasledujici strane.

V každém z následujících kvízových příkladů je právě jedna odpověď správně. Odpovědi vyznačte do tabulky křížky. Nechcete-li na nějaký příklad odpovědět, sloupec v tabulce ponechte prázdný. Pokud již vyznačený křížek chcete odstranit, políčko s křížkem zcela vyplňte barvou.

ODPOVĚDI NEVYZNAČENÉ V TABULCE NEBUDOU ZAPOČÍTÁNY.

(Za každou správnou odpověď je 1 bod.)

	5	6	7	8	9
a			\times		
b	X			×	
С					
d		\times			
е					X

5. Máme matice $A_1, A_2, \dots, A_k \in \mathbb{R}^{n \times n}$ takové, že každá matice A_i má ortonormální sloupce. Označme $B = A_1 A_2 \cdots A_k$ součin těchto matic.

PL = I - A (ATA) 1AT

- (a) Matice **B** má ortonormální sloupce, ale nemusí být ortogonální.
- (b) Matice B je ortogonální.
- \checkmark (c) Matice **B** je ortogonální jen tehdy, když $k \le 2$.
- X(d) Matice B je identická.
 - (e) Neplatí žádné výše uvedené tvrzení.
- 6. Nechť \mathbf{A} je matice s lineárně nezávislými řádky. Matice ortogonálního projektoru na podprostor null \mathbf{A}^T je

P=A(ATAITAT

- (a) $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$
- (b) $A^{T}(AA^{T})^{-1}A$
- (c) $I A^T (AA^T)^{-1}A$
- $\mathbf{V}(\mathbf{d}) \mathbf{I} \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$
- - (e) neplatí žádné výše uvedené tvrzení
- 7. Rozhodněte, co platí pro matici $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$. $\lambda_1 = 5$
 - (a) Neplatí žádná z uvedených možností.
- Y (b) A má vlastní číslo 0.
- X (c) Optimální hodnota úlohy min $\{\mathbf{x}^T \mathbf{A} \mathbf{x} | \mathbf{x} \in \mathbb{R}^2, ||\mathbf{x}|| = 1\}$ je kladná.
- \times (d) Kvadratická forma $\mathbf{x}^T \mathbf{A} \mathbf{x}$ má minimum v bodě 0.
- X (e) A je pozitivně definitní.
- 8. Nechť n > 2 a $\mathbf{a} \in \mathbb{R}^n$ je nenulový vektor. Ortogonální projektor promítající na podprostor span $\{\mathbf{a}\}$ je
- X (a) je singulární matice
- √ (b) je symetrická regulární matice
- $\pmb{\chi}$ (c) je široká matice, která není čtvercová
 - (d) je matice plné hodnosti
 - (e) žádná z uvedených možností
- 9. Pro úlohu nejmenších čtverců $\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} \mathbf{A}\mathbf{x}\|^2$ platí:
- 🔀 (a) Optimálních řešení může být nekonečně mnoho.
- X (b) Optimální řešení je vždy tvaru $(\mathsf{A}^T\mathsf{A})^{-1}\mathsf{A}^T\mathsf{y}$.
- $\mathbf{x} \leq \mathbf{x}(c)$ Každé řešení úlohy nejmenších čtverců je i řešením soustavy $\mathbf{A}\mathbf{x} = \mathbf{y}$.
 - x(d) Hodnota v optimu je vždy 0.
 - v (e) Úloha nemusí mít optimální řešení.