

LEARNING STAGE OF A MULTILAYER PERCEPTRON

Let N be the number of inputs, L the number of hidden neurons and M the number of outputs. Suppose you have Q different inputs with known outputs for the learning stage.

 w^h is a $L \times N$ matrix and w^o is a $M \times L$ matrix filled originally with random real numbers between -1 and 1

x is a $Q \times N$ matrix with the values of the inputs of the known patterns.

d is a $Q \times M$ matrix with the values of the outputs of the known patterns.

f is a sigmoid function (in our case $f(x) = \frac{1}{1+e^{-ax}}$) You have to repeat the following procedure for every row j of x and d until E is small enough

FORWARD

$$net^{h} = w^{h}x_{j}^{t}$$

$$y^{h} = f(net^{h})$$

$$net^{o} = w^{o}y^{h}$$

$$y = f(net^{o})$$

BACKWARD

$$\delta_{i}^{0} = \left(\left(d_{j}^{t} \right)_{i} - y_{i} \right) y_{i} \left(1 - y_{i} \right)$$

$$\delta_{i}^{h} = y_{i}^{h} \left(1 - y_{i}^{h} \right) \left[\left(w^{o} \right)^{t} \delta^{o} \right]_{i}$$

$$\Delta w^{o} = \alpha \delta^{o} \left(y^{h} \right)^{t}$$

$$\Delta w^{h} = \alpha \delta^{h} x_{j}$$
ERROR

$E = \|\delta^o\|$