Propietats de les mostres i Intervals de Confiança

TCL:
$$X_1, ..., X_n$$
 i.i.d. $(n \rightarrow \infty)$, amb $E(X_i) = \mu$ i $V(X_i) = \sigma^2$, llavors

TCL:
$$X_1, \ldots, X_n$$
 i.i.d. $(n \rightarrow \infty)$, amb $E(X_i) = \mu$ i $V(X_i) = \sigma^2$, llavors $\frac{\sum_{i=1}^n X_i}{n} = \overline{X}_n \approx N(\mu, \sigma^2/n)$ (també $\sum_{i=1}^n X_i \approx N(n\mu, \sigma^2 n)$)

Estadístic mitjana mostral (
$$\overline{X}$$
): $\frac{(\overline{X} - \mu)}{\sqrt{\sigma^2/n}} \approx N(0,1)$ $\frac{(\overline{X} - \mu)}{\sqrt{s^2/n}} \approx t_{n-1}$ on $\overline{X} = \sum_{i=1}^n X_i / n$

Estadístic variància mostral (
$$s^2$$
): $S^2 \frac{n-1}{\sigma^2} \approx \chi_{n-1}^2$

Estadístic variància mostral (s²):
$$S^2 \frac{n-1}{\sigma^2} \approx \chi_{n-1}^2$$
 on $S^2 = \frac{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}{n-1} = \frac{\sum_{i=1}^n X_i^2 - n(\overline{X})^2}{n-1} = \frac{\sum_{i=1}^n X_i^2 - n(\overline{X})^2}{n-1} = \frac{\sum_{i=1}^n X_i^2 - n(\overline{X})^2}{n-1}$

Paràmetre	Estadístic	Premisses	Distribució	Interval de Confiança 100(1-α)%
μ	$Z = \frac{(\overline{X} - \mu)}{\sqrt{\sigma^2/n}}$	[X ~ N o n≥≈30] i σ coneguda	$Z \sim N(0,1)$	$\mu \in (\overline{X} \pm z_{1-\alpha/2} \sqrt{\frac{\sigma^2}{n}})$
μ	$T = \frac{(\overline{X} - \mu)}{\sqrt{S^2/n}}$	X ~ N	$T \sim t_{n\text{-}1}$	$\mu \in (\overline{X} \pm t_{n-1,1-\alpha/2} \sqrt{\frac{S^2}{n}})$
μ	$Z = \frac{(\overline{X} - \mu)}{\sqrt{S^2/n}}$	n ≥ ≈100	$Z \sim N(0,1)$	$\mu \in (\overline{X} \pm z_{1-\alpha/2} \sqrt{\frac{S^2}{n}})$
σ (normal)	$X^2 = \frac{S^2(n-1)}{\sigma^2}$	X ~ N	$X^2 \sim \chi^2_{n-1}$	$\sigma^2 \in \left(\frac{S^2(n-1)}{\chi^2_{n-1,1-\alpha/2}}, \frac{S^2(n-1)}{\chi^2_{n-1,\alpha/2}}\right)$
π (Binomial)	$Z = \frac{(P - \pi)}{\sqrt{\pi (1 - \pi)/n}}$	$(1-\pi) \ n \ge \approx 5$ $\pi \ n \ge \approx 5$	$Z \sim N(0,1)$	$\pi \in (P \pm z_{1-\alpha/2} \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}})$ $\hat{\pi} = P o \hat{\pi} = 0.5$

Proves d'Hipòtesis

Paràmetre	Hipòtesi nul·la	Estadístic	Premisses	Distribució sota H ₀	Criteri Decisió (Risc α)	
μ	H ₀ : μ = μ ₀	$Z = \frac{(\overline{Y} - \mu_0)}{\sqrt{\sigma^2/n}}$	Y~ N o <i>n</i> ≥≈30 i σ coneguda	$Z \sim N(0,1)$	Rebutjar H ₀ si Z > z _{1-α/2}	
μ	H ₀ : μ = μ ₀	$T = \frac{(\overline{Y} - \mu_0)}{\sqrt{S^2/n}}$	Y ~ N	$T \sim t_{n\text{-}1}$	Rebutjar H ₀ si <i>T</i> > t _{n-1,1-α/2}	
μ	H ₀ : μ = μ ₀	$Z = \frac{(\overline{Y} - \mu_0)}{\sqrt{S^2/n}}$	n ≥ ≈100	$Z \sim N(0,1)$	Rebutjar H ₀ si Z > z _{1-α/2}	
π (Binomial)	$H_0: \pi = \pi_0$	$Z = \frac{(P - \pi_0)}{\sqrt{\pi_0 (1 - \pi_0)/n}}$	$(1-\pi_0) \ n \ge \approx 5$ $\pi_0 \ n \ge \approx 5$	$Z \sim N(0,1)$	Rebutjar H ₀ si $ Z > z_{1-\alpha/2}$	
σ (normal)	$H_0: \sigma = \sigma_0$	$X^2 = \frac{S^2(n-1)}{\sigma^2}$	Y ~ N	$X^2 \sim \chi^2_{n-1}$	Rebutjar H ₀ si $X^2 < \chi^2_{n-1,\alpha/2} o$ $X^2 > \chi^2_{n-1,1-\alpha/2}$	
En les proves unilaterals s'acumula el risc a un sol costat				H ₀ : $\mu \le \mu$ ₀ → Rebutjar H ₀ si Z > z _{1-α}		
				H ₀ : $\mu \ge \mu_0$ → Rebutjar H ₀ si $Z < -z_{1-\alpha}$		

Proves de μ i σ en 2 mostres

Paràme tres	Hipòtesi nul·la	Estadístic	Premisses	Distrib. sota H ₀	Decisió (Risc α)
μ	$H_0: \mu_1 = \mu_2$	$Z = \frac{(\overline{Y_{1}} - \overline{Y_{2}})}{\sqrt{\sigma_{1}^{2}/n_{1} + \sigma_{2}^{2}/n_{2}}}$	[Y ₁ , Y ₂ ~ N o n ₁ n ₂ $\geq \approx 30$] m.a.s. indep. i σ_1 σ_2 conegudes	$Z \sim N(0,1)$	Rebutjar H ₀ si Z > z _{1-α/2}
μ	$H_0: \mu_1 = \mu_2$	$T = \frac{(\overline{Y_1} - \overline{Y_2})}{S\sqrt{1/n_1 + 1/n_2}}$ $S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	Y_1 , $Y_2 \sim N$ $\sigma_1 = \sigma_2$ desconegudes m.a.s indep.	$T \sim t_{n1+n2-2}$	Rebutjar H ₀ si $ T > t_{nI+n2-2,1-\alpha/2}$
μ	$H_0: \mu_1 = \mu_2$	$Z = \frac{(\overline{Y_1} - \overline{Y_2})}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$	n ₁ , n ₂ ≥ ≈100 m.a.s indep.	$Z \sim N(0,1)$	Rebutjar H ₀ si Z > z _{1-α/2}
μ	$H_0: \mu_D = \mu_0$ $(\mu_D = \mu_1 - \mu_2)$	$T = \frac{\overline{D} - \mu_0}{S_D / \sqrt{n}}$	D ~ N m.a. aparellada	$T \sim t_{n-1}$	Rebutjar H ₀ si $ T > t_{n-1,1-\alpha/2}$
σ	$H_0: \sigma^2_1 = \sigma^2_2$	$F = S_A^2 / S_B^2$ Sent $S_A^2 > S_B^2$	Y ₁ , Y ₂ ∼ N m.a.s. indep.	$F \sim F_{nA-1,nB-1}$	Rebutjar si $F > \mathrm{F_{nA-1,nB-1,\;1-lpha/2}}$

Les corresponents proves unilaterals es fan acumulant el risc α a un costat

Proves de π en 2 mostres

Proves de Comparació de 2 Paràmetres més usuals					
Hipòtesis	Estadístic		Premisses	Distrib.(H₀)	Decisió (risc α)
H_0 : $π_1 = π_2 = π$ H_1 : $π_1 \neq π_2$	$Z = \frac{(P_1 - P_2)}{\sqrt{P(1 - P)/n_1 + P(1 - P)/n_2}}$ $P = \frac{n_1 P_1 + n_2 P_2}{n_1 + n_2}$		e _{ij} ≥ 5 ∀ i,j m.a.s indep.	$Z \sim N(0,1)$	Rebutjar * H ₀ si <i>Z</i> > z _{1-α/2}
	$X^2 = \sum_{\forall ij} \frac{(f_{ij} - e_{ij})^2}{e_{ij}}$			$X^2 \sim \chi^2_1$	Rebutjar si $X^2 > \chi^2_{1, 1-\alpha}$
$H_0: \pi(A_j \cap B_i) = \pi(A_j) \pi(B_i)$ $H_1: \exists i,j \ t.q. \ \pi(A_j \cap B_i) \neq \pi(A_j) \pi(B_i)$ $i=1I, \ j=1J$		$X^2 = \sum_{\forall ij} \frac{(f_{ij} - e_{ij})^2}{e_{ij}}$	e _{ij} ≥ 5 ∀ i,j m.a.s indep.	$X^2 \sim \chi^2_{\text{(I-1)(J-1)}}$	Rebutjar si $X^2 > \chi^2_{(I-1)(J-1), 1-\alpha}$
* La corresponent prova unilateral es fa acumulant el risc $lpha$ a un costat.					

Model lineal

$$\overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

$$S_Y^2 = \frac{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}{n-1} = \frac{\sum_{i=1}^{n} Y_i^2 - n(\overline{Y})^2}{n-1} = \frac{\sum_{i=1}^{n} Y_i^2 - \frac{\left(\sum_{i=1}^{n} Y_i\right)^2}{n}}{n-1}$$

$$S_{XY} = \frac{\sum_{i} x_i Y_i - \frac{\sum_{i} x_i \sum_{i} Y_i}{n}}{n-1}$$

$$r_{XY} = \frac{S_{XY}}{S_X S_Y} = \frac{\sum_i (x_i - \bar{x})(Y_i - \bar{Y})/n - 1}{S_X S_Y} = \frac{\sum_i (x_i - \bar{x})(Y_i - \bar{Y})}{\sqrt{\sum_i (x_i - \bar{x})^2 (Y_i - \bar{Y})^2}}$$

$$b_1 = \frac{S_{XY}}{S_X^2} = r_{XY} \frac{S_Y}{S_X}$$

$$b_0 = \overline{Y} - b_1 \overline{x}$$

$$S^{2} = \frac{\sum_{i} e_{i}^{2}}{n-2} = \frac{(n-1)S_{Y}^{2}(1-r_{XY}^{2})}{n-2} = \frac{(n-1)(S_{Y}^{2}-b_{1}S_{XY})}{n-2}$$

Estimació i inferència dels paràmetres model lineal

D \ .		0		0		2
Paràmet	re	eta_0		eta_1		σ^2
Estimado	Estimador $b_0 = \overline{Y} - b_1 \overline{x}$		$b_1 = S_{XY} / S^2_X$		$S^2 = \Sigma e_i^2 / (n-2)$	
Esperan	erança $E(b_0) = \beta_0$			$E(b_I) = \beta_1$		$E(S^2) = \sigma^2$
Variànci	cia $S_{b_0}^2 = S^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{(n-1)S_X^2} \right)$ $S_{b_1}^2 = \frac{1}{n}$		$S_{b_1}^2 = \frac{S^2}{(n-1)S_X^2}$		$V(S^2) = 2\sigma^4/(n-2)$	
Distribuc	stribució (b_0 - β_0) / $S_{b0} \sim t_{n-2}$ (b_1 - β_1) / $S_{b1} \sim t_{n-2}$		t _{n-2}	$(n-2)S^2/\sigma^2 \sim \chi^2_{n-2}$		
Interval de Confiança		$IC(\beta_0,95\%) =$ $= b_0 \pm t_{n-2,0.975} \cdot S_{b0}$		$IC(\beta_1,95\%) =$ $= b_1 \pm t_{n-2,0.975} \cdot S_{b1}$		$IC(\sigma^{2},95\%) = (n-2)S^{2}/\chi^{2}_{n-2,0.975} \le \sigma^{2} \le (n-2)S^{2}/\chi^{2}_{n-2,0.025}$
H ₀	H_0 $\beta_0 = \beta'_0$		$\beta_1 = \beta'_1$			
Rebutjar F	ebutjar H ₀ si $(b_0 - \beta'_0) / S_{b0}$ > $t_{n-2,0.975}$		$ (b_I - \beta'_1) / S_{b1} > t_{n-2,0.975}$			
	Estimació puntual			Estimació per interv		al 95%
Previsions		Pe		al valor esperat Pe		r a valors individuals
	$Y_h = \hat{y}_h = b_0 + b_1 x_h$		$\hat{y}_h \pm t_{n-2,0.975} S \sqrt{\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}} \qquad Y_h \pm t_n$		$-2,0.975$ S $\sqrt{1+\frac{1}{n}+\frac{(x_{h}-\overline{x})^{2}}{\sum(x_{i}-\overline{x})^{2}}}$	