C*-Algebra

Samir Salmen February 2021

	7.7			
u	1	111	n	
' U	. U J	ш	LL	U

 $Chapter \ 1-Order \ vector \ spaces \ and \ positivity$

3

1 Order vector spaces and positivity

I Basic Notions

a Cones

Let V be a vector space over a field. We say that $P \subset V$ is a **cone** if: $\forall \lambda \geq 0$ and $v \in P, \lambda v \in P$.

A given cone is **convex** if it is closed under vector addiction.

Note that a convex cone is also a convex set.

b Preorders

Any convex cone $P \subset V$ naturally defines a pre-order relation in V, denoted here by \succeq^P :

$$v \succeq^P v' \iff v - v' \in P, v, v' \in V$$

from that follows:

- For all $v, v', w, w' \in P$ with $v \succeq^P v'$ and $w \succeq^P w'$, one has $v + w \succeq^P v' + w'$.
- For all $\lambda \geq 0$ and $v, v' \in P$ with $v \succeq^P v'$, one has $\lambda v \succeq^P \lambda v'$

Conversely, if \succeq is a pre-order in V with the above two proprieties, then it tis the preorder associeted with the convex cone

$$V^+ := \{ v \in V : v \succeq 0 \}..$$

1 Definition. The pair (V, \succeq) is called "preordered vector space", while the elements that are greater in this order than zero are called the "positive elements".