

Muon Alignment for Reprocessing

Jim Pivarski

Texas A&M University

26 May, 2009

- ► The muon alignment community has agreed upon an alignment update for the next reprocessing, to be proposed for sign-off tomorrow
- It has three parts:
 - internal DT alignment
 - hardware + photogrammetry CSC alignment
 - ightharpoonup global chamber alignment for DT wheels -1, 0, +1
- ► Global chamber alignment will need to be re-created with final tracker geometry and APEs
 - internal sign-off plots were all made with the nearly-final alignment
 - we do not expect large differences with the final tracker (geometry needs to be centered and APEs need to be updated)
 - we'll need to verify that the differences are small by HyperNews

Internal DT alignment

- Physically-motivated correction (glue layer)
- ► Track-based alignment method agrees with survey (540 μ m in δ_z)
- Track-based constants proposed for sign-off

Hardware + photogrammetry CSC alignment

- lacktriangle Photogrammetry describes every chamber with $ec{B}=0$ T
- ▶ Hardware constants on top of PG describe disk-bending in $\vec{B} = 3.8 \text{ T}$
- ▶ All sign issues have been resolved; tracks have been re-fitted with the new constants

Both of these were described in detail by Pablo on May 12; they haven't changed

- ▶ New since last alignment (CRAFT_ALL_V5–12, Jan 29):
 - ightharpoonup combined fit to all 6 DOF, rather than independent x, y, ϕ_z
 - well-defined region for alignment: wheels -1, 0, +1, all sectors except 1 and 7 (highest statistics)
 - ▶ high p_T cut: 100–200 GeV, rather than 20–100 GeV
- Studied in Monte Carlo (geometry-only, collisions, and cosmic rays)
- Verification by different methods/groups:
 - ► tracker/globalMuon momentum ratio (N. Tran)
 - ► cosmic ray splitting (J. Tucker and N. Tran)
 - ► segment extrapolation (A. Calderon)

Combined 6-DOF fit

Jim Pivarski 5/18

▶ Segment angle residuals $\left(\Delta \frac{dx}{dz}\right)$ and $\Delta \frac{dy}{dz}$ give us more constraints

$$\begin{pmatrix} \Delta x \\ \Delta y \\ \Delta \frac{dx}{dz} \\ \Delta \frac{dy}{dz} \end{pmatrix} = \begin{pmatrix} -1 & 0 & \frac{dx}{dz} & y \frac{dx}{dz} & -x \frac{dx}{dz} & y \\ 0 & -1 & \frac{dy}{dz} & y \frac{dy}{dz} & -x \frac{dy}{dz} & -x \\ 0 & 0 & 0 & \frac{dx}{dz} \frac{dy}{dz} & -1 - \left(\frac{dx}{dz}\right)^2 & \frac{dy}{dz} \\ 0 & 0 & 0 & 1 + \left(\frac{dy}{dz}\right)^2 & -\frac{dx}{dz} \frac{dy}{dz} & -\frac{dx}{dz} \end{pmatrix} \begin{pmatrix} \delta_x \\ \delta_y \\ \delta_z \\ \delta_{\phi_x} \\ \delta_{\phi_y} \\ \delta_{\phi_z} \end{pmatrix}$$

"Geometry-only MC": concoction of CMSSW alignment tools and propagator to simulate alignment with no detector effects

Validates our extension of the Karimaki derivative matrix (including signs)

Example in full cosmics MC

- ► Fit 4-D residuals distribution with all propagation effects included
- 3-way convolution of alignment matrix, Gaussian errors, and Lorentzian scattering (8-D space, 16 parameters, check projections)

Same example in real data

Jim Pivarski 7/18

▶ Wheel 0, station 1, sector 10 (largest statistics, bottom of CMS)

Accuracy in cosmics MC

Jim Pivarski

8/18

- ▶ All aspects of the MC alignment same as CRAFT except:
 - ideal tracker, ideal $\vec{B}(\vec{x})$ map, ideal internal DT alignment
 - ▶ about 4 times the sample size
- After 2 iterations, attain $r\phi$ accuracy of 200 μ m

- ► Statistical uncertainty from alignment fit is about 3–4 times smaller than differences between alignment and MC-truth
- ▶ Define systematic error = $\sqrt{\left(\text{absolute error}\right)^2 \left(\text{statistical}\right)^2}$
 - ▶ this "systematic" doesn't include unsimulated effects

Dependence on p_T cut

- Neither effect is present in Monte Carlo
- Could be explained by tracker curl, but tracker studies already rule out the required magnitude (backup slides)

Jim Pivarski 10/18

- Expected and observed: splitting in residuals between μ^+ and μ^- at low momentum (\vec{B} and dE/dx effects)
- Unexpected and observed: charge-independent variation in residuals at very high p_T
- ▶ Dependence on p_T and $\frac{dx}{dz}$ (sawtooth) are both unexplained and may be related

Color scale: residuals (mm)

Effect of p_T cut on alignment Jim Pivarski 11/18

- ▶ These plots show the difference between alignments produced with low p_T (20–100 GeV) and high p_T (100–200 GeV)
 - ightharpoonup global coordinates: $\Delta \phi$ (top row) is rotation around beamline, $r\phi$ (bottom row) is the same orientation for all chambers
- ▶ 0.35 mrad rotation, 0.04 mrad/m twist, and 3.2 mm spread

Studies of p_T effect

Jim Pivarski 12/18

Alignments from low and high p_T differ: how do we know which is right?

- ightharpoonup Ratio of tracker p_T and globalMuon p_T vs. momentum in CRAFT
- lacktriangle Study repeated with low and high p_T alignments (from prev page)
- ▶ Alignment made with high p_T (solid red and black) yields more correct ratios (1.0) at all momenta

Studies of p_T effect

Jim Pivarski 13/18

Alignments from low and high p_T differ: how do we know which is right?

- ▶ Cosmic track splitting: difference between top and bottom half of cosmic ray
- Using high- p_T alignment, tracks with station 1 muon hits (TPFMS and TMR) yield better resolution than tracker only (TO) for the first time!
 - ightharpoonup this was not the case for the low- p_T alignment or any previous alignments
- ightharpoonup Highest- p_T bin in this study is statistically independent of 100–200 GeV alignment

DB comparisons

Jim Pivarski 14/18

- ► CRAFT_ALL_V4 (before global alignment) minus new constants
- ► Large spread is seen in absolute positions only; relative motion within sectors is much smaller

- ► CRAFT_ALL_V5–12 (first global alignment) minus new constants
- ▶ Wheel-by-wheel dependence is the p_T effect (new constants were produced with high- p_T)

Verification with segments

Jim Pivarski 16/18

- ► Test internal consistency of muon alignment by extrapolating segments from one station to the next
- ▶ Relative local x position mostly unchanged: sectors move together
- ightharpoonup ~800 μ m in stations 1–3
- ▶ Outlier station 4 (green) chambers: possible internal misalignment

Verification with segments

Jim Pivarski 17/18

- ▶ Relative local $\frac{dx}{dz}$ angle improved by almost a factor of 2
- \sim 0.7 mrad

A. Calderon

- New muon alignment constants are ready to be signed-off
 - ▶ internal DT alignment
 - ► hardware + photogrammetry CSC alignment
 - ightharpoonup global chamber alignment for DT wheels -1, 0, +1(pending final tracker alignment and APEs)
- New techniques allow for a more complete alignment: 6 DOF
- Behavior studied in Monte Carlo: technique is sound and capable of 200 μ m resolution
- Real results verified by several independent techniques
- ▶ Dependence of residuals on p_T and $\frac{dx}{dx}$ (sawtooth) is still unexplained and exhibits global patterns (p_T -dependent rotation and twist)

Tracker curl hypothesis

Jim Pivarski

 p_T -dependent rotation could be curl in tracker, if large enough

Tracker curl constraints

Black= MP starting object

Blue= misaligned Red= aligned on top of misalignment

Studies performed in CRAFT data

Zijin Guo, Roberto Castello

- ▶ Left: tracker tracks are sensitive to 300 μ rad curl (blue: adding curl worsens χ^2 and red: re-aligning restores it)
- ightharpoonup Right: also restores wafer positions within 150 μ rad except TEC
 - ▶ TEC not used in muon alignment; not relevant here
 - \blacktriangleright restored chamber positions randomly distributed around zero: no systematic trend on the scale of 86 $\mu{\rm rad}$