A Bayesian Analysis of Some Nonparametric Problems

Thomas S. Ferguson, 1973

Roadmap

- Brief Motivation
- ② Dirichlet Distribution
- Onstruction of the Dirichlet Process
- Properties of the Dirichlet Process: large support and conjugacy
- Alternative construction of the Dirichlet Process and consequences
- Applications: distribution function estimation, mean estimation

Motivation

- We will build and analyze the properties of the Dirichlet process.
- A good nonparametric prior should have two features:
 - 1 it should have a large support.
 - 2 It should be analytically tractable.
- Clearly, these two features are antithetical: easy to get one if we sacrifice the other, but we want both.

Dirichlet Distribution I

- Let $Z_1,...,Z_n$ be independent random variables with distribution Gamma with non negative shape parameter $\alpha_1,...,\alpha_n$ and scale parameter 1.
- Then, the vector $Y=(Y_1,...,Y_n)$ has **Dirichlet distribution** with parameters $(\alpha_1,...,\alpha_n)$, denoted as $Y\in\mathfrak{D}(\alpha_1,...,\alpha_n)$ if each Y_i is defined as

$$Y_i := \frac{Z_i}{\sum_{j=1}^n Z_j}$$

• The marginal distribution of each Y_i is a beta with parameters $(\alpha_i, \sum_{j \neq i} \alpha_j)$

Dirichlet Distribution II

ullet The Dirichlet distribution is singular with respect to the n-dimensional Lebesgue measure. However, the joint distribution of $Y_1,...,Y_{n-1}$ has density

$$f(y_1, ..., y_{n-1}) = \frac{\Gamma(\sum_{i=1}^n \alpha_i)}{\prod_{i=1}^n \Gamma(\alpha_i)} \prod_{i=1}^{n-1} y_i^{\alpha_i - 1} \left(1 - \sum_{i=1}^{n-1} y_i \right)^{\alpha_n - 1} \mathbf{1}_{\mathbb{S}}(y)$$

Here, $\mathbb{S} := \{ y \in \mathbb{R}^{n-1} : y \ge 0, \sum y_i \le 1 \}$.

Construction of the Dirichlet Process

- Let \mathcal{X} be a set endowed with a σ -field \mathcal{A} .
- We want to define a random probability P by defining the joint distribution of random variables $(P(A_1),...,P(A_n))$ for each finite sequence of measurable sets. $(A_i)_{i=1}^n$.
- To do so, we fix the distribution of $(P(B_1),...,P(B_k))$ for every k, where $B_1,...,B_k$ is a measurable partition of \mathcal{X} .

Construction of the Dirichlet Process I

• Take a finite number of arbitrary measurable sets $A_1,...,A_m$. If each $\nu_j=0$ or 1, we can define $B_{\nu_1,...,\nu_m}$ as

$$B_{\nu_1,\dots,\nu_m} := \bigcap_{j=1}^m A_j^{\nu_j}$$

Where $A_j^0=A_j^c$, $A_j^1=A_j$. Then, $\{B_{\nu_1,\dots,\nu_m}\}_{\nu\in\{0,1\}^n}$ is a measurable partition of \mathcal{X} .

• Then, we can define

$$P(A_i) = \sum_{(\nu_i)_{i=1}^m: \ \nu_i = 1} P(B_{\nu_1, \dots, \nu_m})$$

• If $(A_1,...,A_m)$ is a partition to begin with, no contradiction as long as we assume that $P(\emptyset)$ is degenerate at 0.

Construction of the Dirichlet Process II: consistency

Condition C

If $(B_1',...,B_k')$ and $(B_1,...,B_n)$ are measurable partitions, and if $(B_1',...,B_k')$ is a refinement of $(B_1,...,B_n)$, so that we can find $r_1,...,r_{n-1}$ such that for each i, it holds

$$B_i = \bigcup_{j=r_{i-1}+1}^{r_i} B_j'$$

then the distribution of $\left(\sum_{i=1}^{r_1} P(B_i'), \ldots, \sum_{i=r_{n-1}+1}^k P(B_i')\right)$ is identical to the distribution of $((P(B_1)..., P(B_n)).$

• Notice that, assuming that P is an additive measure, $P(B_i) = \sum_{j=r_{i-1}+1}^{r_i} P(B_j')$: we are asking that the distribution of $P(B_i)$ is thus consistent with the distribution of the $P(B_j')$ s.

Construction of the Dirichlet Process

Lemma 1: Existence

If a system of joint distributions of $(P(B_1),...,P(B_k))$ for all k and all measurable partitions $(B_i)_{i=1}^k$ is defined satisfying condition C and if for arbitrary measurable sets $(A_1,...,A_m)$ the distribution of $(P(A_1),...,P(A_m))$ is defined as above, then there exists a probability measure $\mathscr P$ on $([0,1]^{\mathcal A},\mathcal B([0,1]^{\mathcal A}))$ yielding these distributions.

- Application of Kolmogorov's existance theorem.
- We will call P a **random measure** if condition C is satisfied, P(A) only takes values in [0,1] and if $P(\mathcal{X})=1$ with probability 1.

Construction of the Dirichlet Process III

Definition

Let α be a non-null finite measure on $(\mathcal{X},\mathcal{A})$. Then, we say that P is a **Dirichlet Process** on $(\mathcal{X},\mathcal{A})$ with parameter α (denoted as $P \in \mathfrak{D}(\alpha)$) if for every k and every measurable partition $(B_i)_{i=1}^k$ of \mathcal{X} we have $(P(B_1),...,P(B_k)) \in \mathfrak{D}(\alpha(B_1),...,\alpha(B_k))$.

- By Lemma 1 it follows that P defined as above is a well defined random process.
- $(P(\mathcal{X}), P(\emptyset)) \in \mathfrak{D}(\alpha(\mathcal{X}), 0)$, which implies that $P(\mathcal{X})$ is degenerate at one. Then P is a proper random measure.

Key Properties of the Dirichlet Process I: Large support

Proposition 3:

Let P be a Dirichlet process on $(\mathcal{X},\mathcal{A})$ with parameter α , and let Q be a fixed probability measure on $(\mathcal{X},\mathcal{A})$, with $Q\ll\alpha$. Then, for every $m\in\mathbb{N}$, $\varepsilon>0$ and measurable sets $A_1,...,A_m$ we have

$$\mathscr{P}\left(\left\{|P(A_i) - Q(A_i)| < \varepsilon \ \forall i = 1, ..., m\right\}\right) > 0$$

• If we endow $[0,1]^{\mathcal{A}}$ with the topology of weak convergence, the support of the Dirichlet process is the set of all probability measures whose support is contained in the support of α .

Key Properties of the Dirichlet Process: Tractability

Theorem 1

Let P be a Dirichlet process on $(\mathcal{X}, \mathcal{A})$ with parameter α and let $(X_i)_{i=1}^n$ be a sample of size n from P. Then the conditional distribution of P given $X_1, ..., X_n$ is a Dirichlet process with parameter $\alpha + \sum_{i=1}^n \delta_{X_i}$.

- The Dirichlet process is a non parametric conjugate prior.
- Easy posterior computation.

Alternative Construction

- Let α be a non-null finite measure, and let $N(x):=-\alpha(\mathcal{X})\int_x^\infty \frac{e^{-y}}{y}dy$, where x>0.
- We define the distribution of random variables $J_1, ..., J_n$ as

$$\mathscr{P}(J_1 \le x_1) = e^{N(x_1)} \quad x_1 > 0$$

and for j = 1, 2, 3... and $0 < x_i < x_{i-1}$,

$$\mathscr{P}(J_i \le x_i | J_{i-1} = x_{i-1}, ..., J_1 = x_1) = e^{N(x_i) - N(x_{i-1})}$$

- It can be shown that $Z_1:=\sum_{i=1}^\infty J_i$ converges with probability one and that Z_1 is a Gamma with parameters $\alpha(\mathcal{X})$ and 1.
- Define $Q(A) = \frac{\alpha(A)}{\alpha(\mathcal{X})}$, let $V_j : (\mathcal{X}^{\infty}, \mathcal{A}^{\infty}, Q^{\infty}) \to (\mathcal{X}, \mathcal{A})$ be the random variable $(x_i)_{i \in \mathbb{N}} \mapsto x_j$.

Alternative construction II

Theorem 2

The random probability measure defined by

$$P(A) := \frac{1}{Z_1} \sum_{n \in \mathbb{N}} J_n \delta_{V_n}(A)$$

is a Dirichlet process with parameter α .

- Intuition: constructed similarly to Dirichlet distribution (with ratios of gamma distributions)
- The Dirichlet process can be written as a series of point masses.
- Important implication: the realization of the Dirichlet process are discrete with probability 1.

Key Properties of the Dirichlet Process: Tractability

Theorem 3

Let P be a Dirichlet process with parameter α , and let Z be a measurable real valued function defined on $(\mathcal{X},\mathcal{A})$. If $\int |Z| d\alpha < \infty$, then $\mathscr{P}(\{\int |Z| dP < \infty\}) = 1$ and

$$\mathbb{E}\left(\int ZdP\right) = \int Zd\mathbb{E}(P) = \frac{1}{\alpha(\mathcal{X})} \int Zd\alpha.$$

• In particular, if $\mathcal{X}=\mathbb{R}$ and if α has a finite n-th moment, with probability 1 P has a finite n-th moment.

Application: distribution function estimation

- We will take $(\mathcal{X}, \mathcal{A}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Suppose that W is a finite measure; the stastician seeks a rule with respect to the prior distribution, $P \in \mathfrak{D}(\alpha)$.
- If we can find a rule for the no sample problem, we immediately obtain a rule for the n sample problem by replacing α with $\alpha + \sum_{i=1}^{n} \delta_{X_i}$
- The statistician will want to minimize a loss function defined as

$$L(P, \hat{F}) := \int_{\mathbb{R}} \left(F(x) - \hat{F}(x) \right)^2 dW(x)$$

• The empirical risk for the no-sample problem is

$$\mathbb{E}(L(P,\hat{F})) = \int \mathbb{E}\left(\left(F(x) - \hat{F}(x)\right)^2\right) dW(x)$$

Application: distribution function estimation II

• The minimizer for the non-sample problem is

$$F_0(x) := \mathbb{E}(F(x)) = \mathbb{E}(P((-\infty, x))) = \frac{\alpha((-\infty, x))}{\alpha(\mathbb{R})}$$

• For a sample of size n, we replace α with $\alpha + \sum_{i=1}^{n} \delta_{X_i}$ to obtain

$$\hat{F}_n(t|X_1,...,X_n) = \frac{\alpha((-\infty,t]) + \sum_{i=1}^n \delta_{X_i}((-\infty,t])}{\alpha(\mathbb{R}) + n}$$
$$= p_n F_0(t) + (1-p_n) F_n(t|X_1,...,X_n)$$

where
$$p_n:=rac{lpha(\mathbb{R})}{lpha(\mathbb{R})+n}$$
 and $F_n(t):=rac{1}{n}\sum_{i=1}^n\delta_{X_i}((-\infty,t]))$

 By Glivenko Cantelli, the Bayes estimates converges to the true distribution function uniformly.

Application: mean estimation

- Assume $P \in \mathfrak{D}(\alpha)$, where α has finite first moment. Suppose that the statistician wants to minimize $L(P,\hat{\mu}) = (\mu \hat{\mu})^2$ where $\mu := \int x dP(x)$ (well defined by theorem 3).
- Denote by $\mu_0 := \frac{\int x d\alpha(x)}{\alpha(\mathbb{R})}$. By theorem 3, the Bayes rule for the no-sample problem is $\hat{\mu} = \mu_0$.
- For a sample of size n, we instead obtain the Bayes rule

$$\hat{\mu}_n(X_1, ..., X_n) = \frac{\int x d(\alpha + \sum_{i=1}^n \delta_{X_i})}{\alpha(\mathbb{R}) + n}$$
$$= p_n \mu_0 + (1 - p_n) \bar{X}_n$$

Where $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$.

Conclusion

- We have defined the Dirichlet Process and pointed out its main properties.
- The Dirichlet process enjoys a large support and is tractable, satisfying our desiderata.
- Downside: the realizations of the process are discrete with probability
 1.