

Verwundbarkeitsanalyse des Industrial-Ethernet Protokolls PROFINET

Andreas Paul

Brandenburgische Technische Universität Cottbus Lehrstuhl Rechnernetze und Kommunikationssysteme

SPRING 7
GI SIDAR Graduierten-Workshop über Reaktive Sicherheit
Berlin 05-06.07 2012

BTU Cottbus und Lehrstuhl RNKS

Inhaltliche Gliederung

Einleitung

- SCADA-Architektur
- Einordnung in aktuelle Arbeiten

PROFINET

- Prinzip
- Protokollabläufe
- Angriffsszenarien
- Zusammenfassung

SCADA-Architektur (Beispiel)

Automation network

Prozessleitebene

- Planung, Visualisierung + Beobachtung von Prozessen
- Archivierung von Messwerten

Steuerungs- und Feldebene

- Steuerung + Regelung von Prozessen
- Schnittstelle zum Prozess über I/O Signale
- Anforderungen eingesetzter Kommunikationstechnologien
 - hohe Ausfallsicherheit
 → Verfügbarkeit!
 - Echtzeitfähigkeit

Verteiltes IDS zum Schutz von SCADA-Systemen

- Analysekomponente: Vortrag Franka Schuster!
- Simulationsumgebung
 - Modellierung von SCADA-Infrastrukturen (Komponenten + Verhalten)
 - Generierung Protokoll-konformer Nachrichten
 - Simulation von Angriffsszenarien
- Deep Packet Inspection
 - Datenanalyse basiert auf dekodierte Informationen der Protokollfelder
 - → "DPI-Komponente"

DPI-Komponente 1/2

DPI-Komponente 2/2

- spp_profinet: Snort-Präprozessor
 - Dekodierung von Profinet-Frames
 - Generierung von Snort-Alarmen
- spo_alert_unixsock: Snort-Ausgabe-Modul
 - schreibt Alarme in Unix Domain Socket
- snort.conf: Snort-Konfigurationsdatei
 - Aktivierung und Konfiguration von Präprozessoren: preprocessor profinet: alert { dcp rt_unicast alarm_high }
 - Aktivierung des Ausgabe-Moduls: output alert_unixsock
- event generator
 - Generierung von DPI-Events
 - Weiterleitung der Events an event channel (publish)

PROFINET: Einleitung

Industrial Ethernet

- Echtzeitfähiges Ethernet: geringe Zykluszeiten + geringer Jitter
- weitere Ansätze: SERCOS III, ETHERNET/IP, Modbus/TCP, ETHERCAT, ...

Realisierung der Echtzeitfähigkeit

RT-Over-UDP:

- geplante Kommunikation
- VLAN-Priorisierung (IEEE 802.1Q)

RT-Klasse 1:

 Kommunikation innerhalb eines Subnetzes

RT-Klasse 2,3:

- Zeitsynchronisation
- Eingriff in MAC-Layer

PROFINET: Prinzip

Geräterollen

- IO-Supervisor
- IO-Controller
- IO-Device

Schritte

- 1. Projektierung
- 2. Übertragung der Projektierdaten
- 3. Initialisierung
 - Vergabe des Gerätenamens
 - Vergabe der IP-Adresse
- 4. Systemhochlauf
- 5. Betriebsphase
 - zyklisch: Prozessdaten
 - · azyklisch: Diagnose, Alarm

PROFINET: Protokollabläufe 1/2

Initialisierung:

Vergabe des Gerätenamens

Vergabe der IP-Adresse

PROFINET: Protokollabläufe 2/2

Betriebsphase:

zyklische Datenübertragung

azyklische Datenübertragung

PROFINET: Angriffsszenarien 1/2

Denial-Of-Service:

Initialisierung: Vergabe der IP-Adresse

PROFINET: Angriffsszenarien 2/2

Man-In-The-Middle:

Betriebsphase: zyklische Datenübertragung

Initialisierung: Vergabe der IP-Adresse

Zusammenfassung

Automatisierungsnetz (spez. Feldbus-Systeme)

- Anforderungen stehen mit denen zur Gewährleistung klassischer IT-Schutzziele in Konkurrenz
- fehlende Mechanismen zur Sicherung einer authentifizierten Kommunikation + Wahrung der Datenintegrität
- → abgeleitete Angriffe können auf andere Technologien übertragen werden!

Ausblick: Schutz des Automatisierungsnetzes

- Ziel: Erweiterung der Sicherheit von SCADA-Systemen unter Berücksichtigung gegebener Anforderungen
- → Franka Schuster: "Intrusion-Detection für Automatisierungstechnik"

Vielen Dank für Ihre Aufmerksamkeit!

Fragen? Anmerkungen?