Simulation and Reconstruction of Charged Particle Trajectories in a Time Projection Chamber with Orthogonal Fields

RD51 Collaboration Meeting

Martin Vavřík

martin.vavrik@cvut.cz IEAP CTU PRAGUE

Outline

- Motivation
- Track simulation
- Track reconstruction
- 4 Energy reconstruction
- 5 Summary & Future

Outline

- Motivation
- 2 Track simulation
- Track reconstruction
- 4 Energy reconstruction
- Summary & Future

Motivation: ATOMKI measurements

 Measurement of anomalies in the angular correlation of an electron-positron pair internally produced in excited ⁸Be and ⁴He

ATOMKI spectrometer. [1]

Beam pipe (black), MWPC, ΔE det. (red), E scintillators (yellow), light guides (blue)

⁸Be, e^+e^- pair angular correlation. [2]

⁴He, e^+e^- pair angular correlation. [3]

OFTPC: Detector Configuration

 Time Projection Chamber with Orthogonal Fields (OFTPC) – electric and magnetic field perpendicular

Two out of the six OFTPC chambers. [4]

OFTPC with a triple gas electron multiplier (GEM) readout. [4]

OFTPC: Reasons for Orthogonal Fields

- No solenoid permanent magnets used to generate the field
 - Parallel fields difficult to create with permanent magnets
- Space constraints granularity of the TPC readout limited in order to fit one SAMPA/SRS hybrid in each of the six sectors
 - Parallel fields would bend particles parallel to readout, requiring much larger number of pads
 - These trajectories would extend to more than one sector, requiring alternative architecture of the detector
- We expect a similar resolution for significantly lower cost

OFTPC: Complications

Inhomogeneous magnetic field (simulated using Maxwell Add citation!)

- The field interferes with the direction of the drift of secondary electrons
- Curvature of the track is not constant in this field (deviation from a circle)

Outline

- Motivation
- 2 Track simulation
- Track reconstruction
- 4 Energy reconstruction
- Summary & Future

Track simulation

- Garfield++ used for track simulation
 - Primary relativistic particle simulated using the HEED program [5]
 - Secondary ionization electrons simulated using microscopic tracking (uses equations of motion)
 - Relatively slow (typically 5-30 CPU hours per track), very precise especially for small structures.
- Batches of 9702 tracks with different initial parameters simulated on a grid (MetaCentrum [6])
 - Electrons and positrons
 - 11 different energies from 3 MeV to 13 MeV (covers range for ⁸Be)
 - ullet 21 different angles arphi and 21 different angles heta (next slide)

Track simulation

Spherical angles (θ, φ) with respect to z θ taken from the equatorial plane xy

Diagram of the batch simulation parameters: $\theta \in [-17.1^{\circ}, 17.1^{\circ}], \ \varphi \in [-16.3^{\circ}, 16.3^{\circ}], \ E_{\rm kin.} \in [3, 13] \ {\rm MeV}.$

Simulated track example (microscopic tracking)

- Electron track with kinetic energy 8 MeV, $\theta=0^{\circ}$ and $\varphi=0^{\circ}$
- Diffusion less than 1.5 mm in both directions

Diffusion front view

Electron drift

Diffusion top view

- We want an unambiguous map of the drift of secondary electrons for the reconstruction
- We can use a simulation of evenly spaced electrons
 - Current spacing 5 mm, 100 electrons simulated in each location with 0.1 eV energy in a random direction

Electron drift

Partial simulation of the map

- As a result we get an approximation of a mapping from initial coordinates of the electrons (x, y, z) to the readout coordinates (x', y', t)
- By interpolating we can get the inverse map
- We can use the inverse map to finally create mapping from our discrete readout values (channel number, time) to voxels of the primary track

2D visualization of the simulated mapping \mathcal{M} and the inverse mapping \mathcal{M}^{-1} .

x and y coordinate distortion at different z values (denoted by colors).

Worst case x and y coordinate distortion for maximal initial distance from readout.

Pad voxel boundaries for different times.

M. Vavřík

4 D F 4 D F 4 D F 4 D F

Outline

- Motivation
- 2 Track simulation
- Track reconstruction
- 4 Energy reconstruction
- 5 Summary & Future

Track reconstruction

- At first using only the inverse map (not accounting for readout pads)
- Later simple reconstruction with pads and time bins, counting the number of electrons in each bin

Original and reconstructed interaction points on the simulated track

Reconstruction with pads

Outline

- Motivation
- 2 Track simulation
- Track reconstruction
- 4 Energy reconstruction
- 5 Summary & Future

Energy reconstruction

- Prefit with circle with smoothly attached lines
- Kinetic energy fit using 4th order Runge-Kutta
- Known initial position and direction of the particle assumed
- Currently cca 0.3 CPU seconds per track

Energy reconstruction of 8 MeV electron track with both circle fit (8.36 MeV) and Runge-Kutta fit (8.072 MeV)

Electrons

Energy resolution of Runge-Kutta reconstruction (with pads)

Positrons

Relative reconstruction deviation of the kinetic energy of electron and positron tracks (cca 5000 of each simulated).

Electrons Positrons

Relative reconstruction deviation of the kinetic energy of electron and positron tracks (cca 5000 of each simulated).

Electrons

Energy resolution dependence on phi

Positrons

Relative reconstruction deviation of the kinetic energy of electron and positron tracks (cca 5000 of each simulated).

Electrons

Positrons

Relative reconstruction deviation of the kinetic energy of electron and positron tracks (cca 5000 of each simulated).

Outline

- Motivation
- 2 Track simulation
- Track reconstruction
- 4 Energy reconstruction
- 5 Summary & Future

Summary

- Several batches of tracks have been simulated for testing purposes.
 - $\theta \in [-17.1^{\circ}, 17.1^{\circ}], \ \varphi \in [-16.3^{\circ}, 16.3^{\circ}], \ E_k \in [3, 13] \ \text{MeV}$
- The map of secondary electron positions and drift times has been generated.
- The map has been tested by the track reconstruction.
- First results suggest that:
 - Current energy resolution (FWHM) is 3.2 % for electrons and 4.8 % for positrons.
 - OFTPC works well on a simulation level.

Future Steps

- Account for parasitic tracks caused by high energy secondary electrons
- Account for GEM in the simulation, charge distribution between pads
- Optimize Runge-Kutta integration fit with likelihood approach (instead of least squares) if needed
- Write a faster simulation method for secondary electrons using the map
- Fix the observed systematic error of reconstruction

Thank you for your attention.

References I

J. Gulyás, T.J. Ketel, A.J. Krasznahorkay, M. Csatlós, L. Csige,
 Z. Gácsi, M. Hunyadi, A. Krasznahorkay, A. Vitéz, and T.G. Tornyi.
 A pair spectrometer for measuring multipolarities of energetic nuclear transitions.

Nucl. Instr. Meth. A, 808:21-28, 2016.

- [2] Sas, N. J. and others. Observation of the X17 anomaly in the ${}^{7}\text{Li}(p,e^{+}e^{-})^{8}\text{Be}$ direct proton-capture reaction. 5 2022.
- [3] A. J. Krasznahorkay, M. Csatlós, L. Csige, J. Gulyás, A. Krasznahorkay, B. M. Nyakó, I. Rajta, J. Timár, I. Vajda, and N. J. Sas. New anomaly observed in ⁴He supports the existence of the hypothetical x17 particle.

Phys. Rev. C, 104:044003, Oct 2021.

References II

- [4] A.F.V. Cortez, H. Natal da Luz, R. Sykora, B. Ali, L. Fajt. Measurement of anomalies in angular correlation of electron and positron internally produced in excited 8Be and 4He.
- [5] I. B. Smirnov. Modeling of ionization produced by fast charged particles in gases. Nucl. Instr. Meth. A, 554:474–493, 2005.
- [6] MetaCentrum. Computational resources were provided by the e-INFRA CZ project (ID:90254), supported by the Ministry of Education, Youth and Sports

https://metavo.metacentrum.cz/en.

December 6, 2023

of the Czech Republic.

Notes (what else to mention)

- Extra slide with the whole process summary?
- Better description than pad voxels.
- Residues on first attempts of track reconstruction?

