Formale Grundlagen der Informatik II Sommersemester 2014

Prof. Dr. Ulrich Kohlenbach TUD, Fachbereich Mathematik

Assistenz: Davorin Lesnik, PhD; Daniel Günzel; Daniel Körnlein

Inhaltsübersicht

- 1) Aussagenlogik AL
 - Syntax und Semantik der AL
 - Wahrheitsfunktionen ("Boolesche" Funktionen)
 - Maximal konsistente Satzmengen und aussagenlogische Vollständigkeit
 - Kompaktheitssatz für AL
 - Beweiskalküle
- 2) Prädikatenlogik der 1. Stufe (FO)
 - Sprache von FO
 - Strukturen und Interpretationen (,,Modelle")
 - Pränex-, Skolem- und Herbrand-Normalformen

- Beweiskalküle für FO
- Vollständigkeit, Kompaktheit, Satz von Löwenheim-Skolem

3) Optionale Themen

- Logik der 2. Stufe
- Algorithmische Aspekte: Satz von Herbrand, Unifikation, Beweiskomplexität, Unentscheidbarkeit
- Konstruktive (,,intuitionistische") Logik

Literatur

- Skript von Prof. Dr. M. Otto (SS 2010)
- Ebbinghaus, Flum, Thomas: Einführung in die mathematische Logik, Spektrum 98.
- U. Schöning: Logik für Informatiker, Spektrum 2000.

Teil 1: Aussagenlogik, AL

- Gegenstandsbereich: Verknüpfungen elementarer Aussagen mittels Boolescher logischer Verknüpfungen.
- Boolesche Verknüpfungen (Junktoren): \neg , \land , \lor , \rightarrow , ...
- Formalisierung komplexerer Eigenschaften
- Wahrheitsfunktionale Semantik
- Korrekte und vollständige Beweiskalküle

Syntax der Aussagenlogik AL

Symbole der Sprache: Wahrheitswerte: 0, 1;

Aussagenvariablen $p, q, r, \ldots, p_1, p_2, \ldots$;

Logische Verknüpfungen: \neg , \land , \lor , . . .; Hilfssymbole: (,).

Aussagenlogische Formeln: $AL(\mathcal{V})$, die Menge der AL-Formeln über einer AL-Variablenmenge \mathcal{V} , wird induktiv erzeugt:

atomare Formeln: 0, 1, p in AL(V) (wobei $p \in V$).

Negation: für $\varphi \in AL(\mathcal{V})$ ist auch $\neg \varphi \in AL(\mathcal{V})$.

Konjunktion: für $\varphi, \psi \in AL(\mathcal{V})$ ist auch $(\varphi \wedge \psi) \in AL(\mathcal{V})$.

Disjunktion: für $\varphi, \psi \in AL(\mathcal{V})$ ist auch $(\varphi \vee \psi) \in AL(\mathcal{V})$.

Weitere Junktoren (offiziell als Abkürzungen)

z.B.
$$(\varphi \to \psi) := (\neg \varphi \lor \psi),$$

$$(\varphi \leftrightarrow \psi) := ((\neg \varphi \land \neg \psi) \lor (\varphi \land \psi)).$$

Meistens: abzählbar unendlich viele Variablen

$$\mathcal{V} = \{p_i \colon i \geqslant 1\}.$$

Manchmal auch endliche Variablenmenge

$$\mathcal{V}_n = \{ p_i \colon 1 \leqslant i \leqslant n \}.$$

Semantik der Aussagenlogik AL

Interpretationen: von Belegungen der AL-Variablen zu Wahrheitswerten für AL-Formeln $\mathbb{B} = \{0, 1\}$.

$$\mathcal{V} ext{-Interpretation (Belegung):} \qquad \mathfrak{I}\colon \mathcal{V} \longrightarrow \mathbb{B}$$
 $p \longmapsto \mathfrak{I}(p)$

 $\Im \text{ interpretient } p \text{ als } \begin{cases} \text{ "wahr"} & \text{wenn } \Im(p) = 1, \\ \text{"falsch"} & \text{wenn } \Im(p) = 0. \end{cases}$

Definition der Semantik von komplexen Formeln

über geg. \mathcal{V} -Interpretation \mathfrak{I} :

Wahrheitswertfunktion ${}^{\mathfrak{I}}: \mathrm{AL}(\mathcal{V}) \longrightarrow \mathbb{B}$

$$^{\mathfrak{I}} : \mathrm{AL}(\mathcal{V}) \longrightarrow \mathbb{B}$$

$$\varphi \longmapsto \varphi^{\mathfrak{I}}$$

induktiv über den Aufbau der Formeln $\varphi \in AL(\mathcal{V})$ definiert bzgl. einer \mathcal{V} -Interpretation \mathfrak{I} :

atomare Formeln: $0^{\mathfrak{I}} := 0$; $1^{\mathfrak{I}} := 1$; $p^{\mathfrak{I}} := \mathfrak{I}(p)$.

 $(\neg \varphi)^{\Im} := 1 - \varphi^{\Im}.$ Negation:

Konjunktion: $(\varphi \wedge \psi)^{\Im} := \min(\varphi^{\Im}, \psi^{\Im}).$

Disjunktion: $(\varphi \vee \psi)^{\Im} := \max(\varphi^{\Im}, \psi^{\Im}).$

Modellbegriff

 \mathfrak{I} erfüllt φ gdw. $\varphi^{\mathfrak{I}} = 1$.

Schreibweise: $\mathfrak{I} \models \varphi$.

Sprechweisen: \Im erfüllt φ ,

 \Im ist Modell von φ ,

 φ ist wahr unter \Im .

Für **Formelmengen** $\Phi \subseteq AL(V)$ entsprechend:

 $\mathfrak{I}\models \Phi$ gdw. $\mathfrak{I}\models \varphi$ für alle $\varphi\in \Phi$.

Semantik und Wahrheitstafeln

Für $\varphi \in AL_n$ schreiben wir auch $\varphi = \varphi(p_1, \ldots, p_n)$

für
$$(b_1,\ldots,b_n)\in\mathbb{B}^n$$
 sei

$$arphi[b_1,\ldots,b_n]:=\left\{egin{array}{l} arphi^{\mathfrak{I}} ext{ für Interpretation } \mathfrak{I} \ ext{mit } (\mathfrak{I}(p_i)=b_i)_{i=1,\ldots,n} \end{array}
ight.$$

der Wahrheitswert von φ auf (b_1, \ldots, b_n) .

Wahrheitstafeln: die Wertetabelle der Funktion

$$\mathbb{B}^n \longrightarrow \mathbb{B}$$

$$(b_1,\ldots,b_n) \longmapsto \varphi[b_1,\ldots,b_n]$$

bestimmt die Semantik von φ vollständig!

	p		<u>0</u>	p	$\mid q \mid$	$p \land q$	p	$\mid q \mid$	$p \lor q$		p	$\mid q \mid$	$p \rightarrow q$
	0	1		0	0	0	0	0	0		0	0	1
	$1 \mid$	0		0	$\mid 1 \mid$	0	0	$\mid 1 \mid$	0 1 1 1		0	$\mid 1 \mid$	1
				1	$\mid 0 \mid$	0	1	$\mid 0 \mid$	1		1	$\mid 0 \mid$	0
				1	$\mid 1 \mid$	$egin{bmatrix} 0 \ 1 \ \end{bmatrix}$	1	$\mid 1 \mid$	1		1	$\mid 1 \mid$	1
	p	q	$p \leftarrow$	$\leftrightarrow q$									
	0	0		1									
	0	1		0									
	$1 \mid$	0		0									
	$1 \mid$	$1 \mid$		1									

Grundlegende semantische Begriffe

Folgerungsbeziehung für $\varphi, \psi \in AL(\mathcal{V})$

$$\varphi \models \psi$$
,

in Worten

$$, \psi$$
 folgt aus φ ",

ist definiert als: für alle \mathcal{V} -Interpretationen $\mathfrak I$ gilt:

$$\mathfrak{I} \models \varphi \Rightarrow \mathfrak{I} \models \psi.$$

Entsprechend $\Phi \models \psi$ für Formelmengen Φ .

Allgemeingültigkeit:

 $\varphi \in AL(\mathcal{V})$ ist **allgemeingültig** (in Zeichen: $\models \varphi$), wenn für **alle** \mathcal{V} -Interpretationen \mathfrak{I} gilt:

$$\mathfrak{I} \models \varphi$$
.

Beispiele

$$\varphi \models \varphi \lor \psi$$
, $\models \varphi \lor \neg \varphi$, $\varphi \models (\varphi \land \psi) \lor (\varphi \land \neg \psi)$.

Logische Äquivalenz:

 $\varphi, \psi \in AL(\mathcal{V})$ logisch äquivalent (in Zeichen: $\varphi \equiv \psi$), wenn für alle \mathcal{V} -Interpretationen \Im gilt:

$$\mathfrak{I}\models\varphi$$
 gdw. $\mathfrak{I}\models\psi$.

Schreibweise: $\varphi \equiv \psi$.

Sämtlich äquivalent: $\varphi \equiv \psi$

$$\models \varphi \leftrightarrow \psi$$

$$\varphi \models \psi \text{ und } \psi \models \varphi$$

Beispiele (vgl. Identitäten in Booleschen Algebren)

$$\neg \neg p \equiv p$$
, $p \lor 0 \equiv p$, $p \land 0 \equiv 0$, ...

$$p \lor q \equiv q \lor p$$
, $(p \lor q) \lor r \equiv p \lor (q \lor r)$, ...

$$(p \lor q) \equiv \neg(\neg p \land \neg q), \quad (p \land q) \equiv \neg(\neg p \lor \neg q)$$

$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r), \quad p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

Erfüllbarkeit

 $\varphi \in AL(\mathcal{V})$ ist **erfüllbar**, wenn es *mindestens eine*

 \mathcal{V} -Interpretation \mathfrak{I} gibt mit $\mathfrak{I} \models \varphi$.

Analog für Formelmengen $\Phi \subseteq AL$:

 Φ erfüllbar, wenn $\Im \models \Phi$ für mindestens ein \Im .

Also:

 φ erfüllbar gdw. $\neg \varphi$ nicht allgemeingültig.

Zentrale Rolle der Erfüllbarkeit (SAT)

- $\models \varphi$ gdw. $\neg \varphi$ **nicht** erfüllbar.
- $\varphi \models \psi$ gdw. $\varphi \land \neg \psi$ nicht erfüllbar.
- $\Phi \models \psi$ gdw. $\Phi \cup \{\neg \psi\}$ **nicht** erfüllbar.
- $\varphi \equiv \psi$ gdw. weder $\varphi \wedge \neg \psi$ noch $\neg \varphi \wedge \psi$ erfüllbar.

Satz: $SAT(AL) = \{ \varphi \in AL : \varphi \text{ erfullbar } \} \text{ ist } \mathbf{entscheidbar}.$

Beweis: Teste alle endlich vielen Belegungen der AL-Variablen.

Genauer: bei n Aussagenvariablen sind 2^n -viele Belegungen zu betrachten.

AL und Boolesche Funktionen

 \mathcal{B}_n die Menge aller n-stelligen Booleschen Funktionen

$$f: \mathbb{B}^n \longrightarrow \mathbb{B}$$
 $(b_1, \dots, b_n) \longmapsto f(b_1, \dots, b_n)$

$$\left.\begin{array}{cccc} \mathsf{f\"{u}r}\ \varphi \in \mathrm{AL}_n \colon & f_\varphi : \mathbb{B}^n & \longrightarrow & \mathbb{B} \\ & & (b_1, \dots, b_n) & \longmapsto & \varphi[b_1, \dots, b_n] \end{array}\right\} \quad \in \mathcal{B}_n$$

Bemerkung:
$$f_{\varphi} = f_{\psi}$$
 gdw. $\varphi \equiv \psi$

Also:
$$\operatorname{AL}_n/\equiv\longrightarrow \mathcal{B}_n$$
 injektiv! $[\varphi]_{=}\longmapsto f_{\varphi}$

Fragen

- Wieviele n-stellige Boolesche Funktionen gibt es, d.h. was ist die Kardinalität von \mathcal{B}_n ?
- Ist jedes $f \in \mathcal{B}_n$ durch eine AL-Formel $\varphi \in AL_n$ darstellbar, d.h. ist $[\varphi]_{\equiv} \longmapsto f_{\varphi}$ surjektiv?

Die Antwort auf die erste Frage ist einfach: $|\mathcal{B}_n| = 2^{2^n}$.

Die zweite Frage ist schwieriger zu beantworten.

Disjunktive und konjunktive Normalformen

Nomenklatur: p bzw. $\neg p$ (für $p \in \mathcal{V}$) heißen Literale

Disjunktionen von Konjunktionen von Literalen: DNF-Formeln

Konjunktionen von Disjunktionen von Literalen: KNF-Formeln

Konvention: auch **leere** Disjunktionen/Konjunktionen zulässig, wobei $\bigvee \emptyset \equiv 0$ und $\bigwedge \emptyset \equiv 1$.

Satz (Funktionale Vollständigkeit): Zu jeder Funktion $f \in \mathcal{B}_n$ existiert eine DNF-Formel $\varphi \in \mathrm{AL}_n$ mit $f = f_{\varphi}$.

Korollar: Zu jedem $\varphi \in AL_n$ existieren:

DNF-Formel $\varphi_1 \in AL_n$ mit $\varphi_1 \equiv \varphi$ und KNF-Formel $\varphi_2 \in AL_n$ mit $\varphi_2 \equiv \varphi$.

Dualität von Konjunktion und Disjunktion

Nützliche Umformungen/Rechenregeln:

$$\neg(\varphi_1 \land \varphi_2) \equiv \neg\varphi_1 \lor \neg\varphi_2$$

verallgemeinert zu

$$\neg (\bigwedge \varPhi) \equiv \bigvee \varPhi \neg, \text{ wobei } \varPhi \neg := \{ \neg \varphi \colon \varphi \in \varPhi \}.$$

Analog:

$$\neg (\bigvee \Phi) \equiv \bigwedge \Phi \neg.$$

Für KNF ←→ DNF (modulo Streichung doppelter Negationen):

$$\neg \bigwedge_{i=1}^{k} (\bigvee C_i) \equiv \bigvee_{i=1}^{k} (\bigwedge C_i^{\neg}),$$

$$\mathsf{KNF} \qquad \mathsf{DNF}^*$$

wobei C_1, \ldots, C_k (endl.) Mengen von Literalen.

Beispiel für exponentiellen "blow-up"

$$\varphi_m = \varphi_m(p_1, \dots, p_{2m}) := \bigwedge_{i=1}^m \neg (p_{2i-1} \leftrightarrow p_{2i}) \in AL_{2m}$$

- φ_m hat genau 2^m erfüllende Interpretationen in \mathbb{B}^{2m} , und:
- KNF von Länge $\sim m$ (linear in m):

$$\varphi_m \equiv \bigwedge_{i=1}^m \left((p_{2i-1} \vee p_{2i}) \wedge (\neg p_{2i-1} \vee \neg p_{2i}) \right)$$

• DNF in Länge $\sim 2m2^m$ (exponentiell in m):

$$\varphi_m \equiv \bigvee \{ \varphi_{\mathbf{b}} \colon \mathbf{b} \in \mathbb{B}^{2m}, \varphi_m[\mathbf{b}] = 1 \}$$

 keine kürzere DNF: keine kürzeren Disjunktionsglieder!
 keine redundanten Disjunktionsglieder!

Vollständige Systeme von Junktoren

Satz: Für $n \geq 1$ ist jede Funktion in \mathcal{B}_n darstellbar durch eine AL_n -Formeln, die nur die Junktoren \neg und \land (nur \neg und \lor) benutzt.

Beweis: Starte mit Formel in KNF/DNF und eliminiere \vee oder \wedge mit $\varphi_1 \vee \varphi_2 \equiv \neg(\neg \varphi_1 \wedge \neg \varphi_2), \ \varphi_1 \wedge \varphi_2 \equiv \neg(\neg \varphi_1 \vee \neg \varphi_2).$

Systeme von Junktoren (Booleschen Funktionen) mit dieser Eigenschaft heißen vollständig.

Beispiele vollständiger Systeme

- | mit der Definition $p \mid q := \neg(p \land q)$ (NAND; "Sheffer stroke"): benutze z.B.: $\neg p \equiv p \mid p$; $p \land q \equiv \neg(p \mid q) \equiv (p \mid q) \, \big| \, (p \mid q).$
- \rightarrow zusammen mit 0: benutze z.B.: $\neg p \equiv p \rightarrow 0$; $p \lor q \equiv \neg p \rightarrow q \equiv (p \rightarrow 0) \rightarrow q$.

Nicht vollständig sind z.B.: $\{\land,\lor\}$ (Monotonie); $\{\rightarrow\}$ ($0 \in \mathcal{B}_n$ nicht darstellbar).

Aussagenlogischer Kompaktheitssatz (Endlichkeitssatz)

Theorem: Eine beliebige Formelmenge Φ ist genau dann erfüllbar, wenn jede endliche Teilmenge $\Phi_0 \subseteq \Phi$ erfüllbar ist.

Äquivalente Formulierung:

$$\Phi \models \psi$$
 gdw. $\Phi_0 \models \psi$ für ein endliches $\Phi_0 \subseteq \Phi$

(wobei $\Phi \subseteq AL, \psi \in AL$).

Korollar: Unerfüllbarkeit einer unendlichen Formelmenge lässt sich durch ein endliches Zertifikat nachweisen.

Beweis des Kompaktheitssatzes

Abzählbarer Fall: $\Phi \subseteq AL(\mathcal{V})$, $\mathcal{V} = \{p_i : i \geq 1\}$

Sei jedes endliche $\Phi_0 \subseteq \Phi$ erfüllbar.

Konstruiere induktiv $\mathfrak{I}_0, \mathfrak{I}_1, \mathfrak{I}_2, \ldots$ so, dass:

- \mathfrak{I}_n eine \mathcal{V}_n -Interpretation.
- \mathfrak{I}_{n+1} verträglich mit \mathfrak{I}_n : $\mathfrak{I}_{n+1}(p_i) = \mathfrak{I}_n(p_i)$ für $1 \leq i \leq n$.
- alle endlichen $\Phi_0 \subseteq \Phi$ erfüllbar durch mit \mathfrak{I}_n verträgliche \mathfrak{I} .

Dann ist $\mathfrak{I}\models \varPhi$ für die Interpretation $\mathfrak{I}\colon \mathcal{V} \longrightarrow \mathbb{B}$

 $p_n \longmapsto \mathfrak{I}_n(p_n)$

Übergang von \mathfrak{I}_n zu \mathfrak{I}_{n+1}

Nach Voraussetzung ist jedes endliche Φ_0 mit einer mit \mathfrak{I}_n verträglichen Interpretation \mathfrak{I} erfüllbar. Sei \mathfrak{I}_{n+1}^0 (bzw. \mathfrak{I}_{n+1}^1) die Fortsetzung von \mathfrak{I}_n mit $\mathfrak{I}_{n+1}^0(p_{n+1})=0$ (bzw. $\mathfrak{I}_{n+1}^1(p_{n+1})=1$). Annahme: für $i\in\{0,1\}$ existiert endliches $\Phi^i\subseteq\Phi$, das von keiner mit \mathfrak{I}_{n+1}^i verträglichen Interpretation erfüllt wird. Dann wird $\Phi^0\cup\Phi^1$ von keiner mit \mathfrak{I}_n verträglichen Interpretation erfüllt. Widerspruch!

Beweisprinzip: Lemma von König, d.h. jeder unendliche endlich verzweigte Baum hat einen unendlichen Pfaden.

Konsequenzen des Kompaktheitssatzes

- Lemma von König.
- \bullet Ein Graph ist genau dann k-färbbar, wenn jeder endliche Teilgraph k-färbbar ist.
- Ein endliches Domino-System erlaubt genau dann eine Parkettierung der Ebene, wenn sich beliebig große endliche Quadrate parkettieren lassen.

Logikkalküle: Deduktion und Refutation

Logikkalküle: syntaktische Definition formaler Beweise.

Formale Beweise: syntaktische Zeichenketten, einfach nachprüfbaren syntaktischen Regeln aufgebaut (Regelsystem: Kalkül).

Ableitung: Erzeugung von (regelkonformen) formalen Beweisen.

Korrespondenz mit Semantik:

- Korrektheit: nur semantisch korrekte Sachverhalte sind formal beweisbar.
- Vollständigkeit: jeder semantisch korrekte Sachverhalt ist formal beweisbar.

Typen von vollständigen Kalkülen

- **Deduktionskalküle** für alle allgemeingültigen AL-Formeln: Hilbert-Systeme, Sequenzenkalkül.
- Widerlegungskalkül für alle unerfüllbaren KNF-Formeln.

Hilbertkalküle

Hilbertkalküle werden durch Angabe von Axiomen und Schlussregeln bestimmt. Beweise sind endliche Bäume, deren Blätter Axiome und deren Knoten Regelanwendungen sind. Die Wurzel ist die bewiesene Aussage.

Beispiel (Shoenfield 1967) (für das System \neg , \lor):

Axiome: alle Aussagen der Form $\neg \varphi \lor \varphi$

Regeln: $\frac{\varphi}{\psi \vee \varphi}$, $\frac{\varphi \vee \varphi}{\varphi}$, $\frac{\varphi \vee (\psi \vee \chi)}{(\varphi \vee \psi) \vee \chi}$, $\frac{\varphi \vee \psi}{\psi \vee \chi}$.

 $\Phi \vdash \psi$ (,, Φ beweist ψ "), falls es einen Beweisbaum gibt, dessen Blätter Axiome oder Aussagen in Φ sind und dessen Wurzel ψ ist.

KNF in Klauselform

KNF: Konjunktionen von Disjunktionen von Literalen.

Notation: L für Literal; \overline{L} für komplementäres Literal; $\overline{L} \equiv \neg L$.

Klauseln C: endliche Menge von Literalen. $C = \{L_1, \ldots, L_k\}$ steht dabei für $\bigvee C \equiv L_1 \vee \ldots \vee L_k$.

Bemerkung:

- steht für die leere Klausel.
- $\Box \equiv \bigvee \emptyset \equiv 0$.

Klauselmengen (endlich): $K = \{C_1, \dots, C_\ell\}$ steht für

$$\bigwedge K \equiv C_1 \wedge \ldots \wedge C_\ell$$

Bemerkung: $\bigwedge \emptyset \equiv 1$.

endliche Klauselmengen \approx KNF-Formeln

Resolutionskalkül arbeitet mit KNF in Klauselform Ableitungsziel: Nachweis der Unerfüllbarkeit einer geg. Klauselmenge durch Ableitung der leeren Klausel

Resolution

Beobachtungen:

- $L, \overline{L} \in C \Rightarrow C \equiv 1$ allgemeingültig.
- $C \equiv 1 \Rightarrow K \equiv K \setminus \{C\}.$
- $\Box \in K \Rightarrow K \equiv 0$ unerfüllbar.

Resolventen:

$$L \in C_1, \overline{L} \in C_2 \implies \{C_1, C_2\} \equiv \{C_1, C_2, C\},$$

wobei

$$C = \underbrace{(C_1 \setminus \{L\}) \cup (C_2 \setminus \{L\})}_{Resolvente}$$

Baumdarstellung

Beispiel:

Beweise im Resolutionskakül I

Ableitungsbaum für □:

- Knoten mit Klauseln beschriftet
- □ an der Wurzel
- Resolventen an binären Verzweigungen
- \bullet Klauseln aus K an den Blättern.

Beweise im Resolutionskalkül II

Resolutionslemma:

Seien $C_1, C_2 \in K$, C Resolvente von C_1 und C_2 . Dann ist $K \equiv K \cup \{C\}$ (also $K \models C$).

Res(K) und $Res^*(K)$:

 $Res(K) := K \cup \{C \colon C \text{ Resolvente von Klauseln in } K \}.$

Definition: Eine Klausel C heißt (im Resolutionskalkül) ableitbar aus K, gdw. $C \in \underbrace{\mathrm{Res} \cdots \mathrm{Res}}_{n\text{-mal}}(K)$ für ein $n \in \mathbb{N}$.

 $\mathrm{Res}^*(K)$: die Menge aller aus K ableitbaren Klauseln.

Korrektheit und Vollständigkeit des Resolutionskalküls

Korrektheit: $\Box \in \operatorname{Res}^*(K) \Rightarrow K \equiv 0$ unerfüllbar.

(Diese Aussage folgt sofort aus dem Resolutionslemma)

Vollständigkeit: K unerfüllbar $\Rightarrow \Box \in \operatorname{Res}^*(K)$.

Beweis der Vollständigkeit

Z.z.: K über $\mathcal{V}_n = \{p_1, \dots, p_n\}$ unerfüllbar $\Rightarrow \square \in \operatorname{Res}^*(K)$.

Beweis durch Induktion über n.

Induktionsschritt von n nach n+1

Aus $K = \{C_1, \ldots, C_k\}$ über \mathcal{V}_{n+1} gewinne K_0 und K_1 über \mathcal{V}_n :

 K_0 : setze $p_{n+1}:=0$ und vereinfache (streiche p_{n+1} aus allen

Klauseln und streiche alle Klauseln, die $\neg p_{n+1}$ enthalten).

 K_1 : analog mit $p_{n+1} := 1$.

K unerfüllbar $\Rightarrow K_0$ und K_1 unerfüllbar

 $\Rightarrow \Box \in \operatorname{Res}^*(K_0) \text{ und } \Box \in \operatorname{Res}^*(K_1).$

Dann ist $\square \in \operatorname{Res}^*(K)$ oder $\{p_{n+1}\}, \{\neg p_{n+1}\} \in \operatorname{Res}^*(K)$

und somit ebenfalls $\square \in \operatorname{Res}^*(K)$.

Resolutionsalgorithmus

Eingabe: K

[Klauselmenge, endlich]

R := K

WHILE $(Res(R) \neq R \text{ and } \square \not\in R) \text{ DO } R := Res(R) \text{ OD}$

IF $\square \in R$ THEN output "unerfüllbar"

ELSE output "erfüllbar"

Hornklauseln

- Interessanter Spezialfall für KI Anwendungen (Datenbanken),
- AL-HORN-SAT-Problem effizient entscheidbar,
- logische Programmierung (**Prolog**: FO Horn-Formeln)

Definition: Hornklauseln sind Klauseln mit höchstens einem positiven Literal.

Beispiel: $C = \{ \neg q_1, \dots, \neg q_r, q \} \equiv (q_1 \land \dots \land q_r) \rightarrow q;$ auch \square ist Hornklausel.

Spezialfälle: C besteht nur aus positivem Literal: positiv.

C ohne positive Literale: **negativ**.

Beobachtungen

- Mengen von negativen Hornklauseln trivial erfüllbar $(p_i \mapsto 0)$.
- Mengen von nicht-negativen Hornklauseln besitzen eindeutige minimale erfüllende Interpretationen.

Effizienter Horn-Erfüllbarkeitstest: Grundidee

H Hornklauselmenge; $H^-\subseteq H$ negative Klauseln in H $H_0:=H\setminus H^- \text{ nicht negative Klauseln}$

- 1. Schritt: Berechne minimale Interpretation $\mathfrak{I}_0 \models H_0$.
- 2. Schritt: Prüfe, ob $\mathfrak{I}_0 \models H^-$.

Korrektheit:

$$\mathfrak{I}_0\models H^- \quad \Rightarrow \quad \mathfrak{I}_0\models H.$$
 $\mathfrak{I}\models H \quad \Rightarrow \quad \mathfrak{I}\models H_0$, also $\mathfrak{I}_0\leq \mathfrak{I}.$ $\mathfrak{I}\models H^- \Rightarrow \mathfrak{I}_0\models H^-.$ Also $\mathfrak{I}_0\models H.$

Sequenzenkalkül (G. Gentzen 1935)

Sequenzen

 $\Gamma \vdash \Delta$, wobei Γ, Δ endliche ungeordnete Listen ("Multisets") von AL-Formeln sind. Auch: $\Gamma; \Delta$ oder Γ, Δ).

Bedeutung von $\Gamma \vdash \Delta : \Lambda \Gamma \rightarrow \bigvee \Delta$.

Also: Liste links von \vdash (Antezendent): Konjunktion von Voraussetzungen. Liste rechts von \vdash (Sukzedent): Disjunktion möglicher Konsequenzen.

Somit:

 $\Gamma \vdash \Delta$ allgemeingültig gdw. $\models \bigwedge \Gamma \rightarrow \bigvee \Delta$ gdw. $\bigwedge \Gamma \models \bigvee \Delta$.

Sequenzenkalkül (G. Gentzen 1935)

Erzeugung allgemeingültiger Sequenzen durch

Sequenzenregeln: neue Sequenzen aus bereits abgeleiteten

Sequenzen

Format: Prämissen Konklusion

Beispiele: $\frac{\Gamma \vdash \Delta, \varphi}{\Gamma, \neg \varphi \vdash \Delta} \quad \text{oder} \quad \frac{\Gamma \vdash \Delta, \varphi}{\Gamma, \neg \varphi \vdash \Delta}$

AL Sequenzenkalkül \mathcal{SK}

$$(\mathsf{Ax}) \quad \frac{}{\Gamma, p \vdash \Delta, p} \quad (p \in \mathcal{V})$$

$$(0-Ax) \frac{\Gamma}{\Gamma, 0 \vdash \Delta}$$

$$(1-Ax) \frac{}{\Gamma \vdash \Delta, 1}$$

$$(0-\mathsf{Ax}) \; \overline{\Gamma, 0 \vdash \Delta}$$

$$(\neg \mathsf{L}) \quad \frac{\Gamma \vdash \Delta, \varphi}{\Gamma, \neg \varphi \vdash \Delta}$$

$$(\neg R) \quad \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \Delta, \neg \varphi}$$

$$(\vee L) \quad \frac{\Gamma, \varphi \vdash \Delta}{\Gamma, \varphi \lor \psi \vdash \Delta} \quad (\vee R) \quad \frac{\Gamma \vdash \Delta, \varphi, \psi}{\Gamma \vdash \Delta, \varphi \lor \psi}$$

$$(\vee R) \quad \frac{\Gamma \vdash \Delta, \varphi, \psi}{\Gamma \vdash \Delta, \varphi \lor \psi}$$

$$(\wedge L) \quad \frac{\Gamma, \varphi, \psi \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta} \qquad (\wedge R) \quad \frac{\Gamma \vdash \Delta, \varphi}{\Gamma \vdash \Delta, \varphi \land \psi}$$

$$(\to L) \frac{\Gamma \vdash \Delta, \varphi \qquad \Gamma, \psi \vdash \Delta}{\Gamma, \varphi \to \psi \vdash \Delta} \qquad (\to R) \frac{\Gamma, \varphi \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \to \psi}$$

Übung: Zeige, dass (Ax) für beliebiges φ statt p ableitbar ist.

Korrektheitssatz: Jede ableitbare Sequenz ist allgemeingültig.

Beweis: Überprüfe, dass für alle Regeln gilt: sind die Prämissen allgemeingültig, so auch die Konklusion.

Bemerkung 1 (Abschwächungslemma): Ist $\Gamma \vdash \Delta$ mit Beweistiefe n ableitbar, so auch $\Gamma, \Gamma' \vdash \Delta, \Delta'$.

Beweis: Induktion über n.

Bemerkung 2 (Inversionslemma): Alle Regeln für \neg , \lor , \land , \rightarrow sind auch von unten nach oben gelesen korrekt.

Genauer: Ist die Konklusion (mit Beweis der Tiefe n) herleitbar, dann auch die Prämisse(n) (mit gleicher Tiefe).

Beweis: Induktion über n.

Bemerkung 3 (Kontraktionslemma):

Ist $\Gamma, \varphi, \varphi \vdash \Delta$ (bzw. $\Gamma \vdash \Delta, \varphi, \varphi$) beweisbar (mit Tiefe n), so auch $\Gamma, \varphi \vdash \Delta$ (bzw. $\Gamma \vdash \Delta, \varphi$).

Beweis: Induktion über n.

Man kann die Kontraktionseigenschaft auch direkt in den Kalkül geben, indem man Γ, Δ als Mengen (statt Multisets) nimmt.

Bemerkung: Obige Version des Sequenzenkalküls wird in der Literatur oft als G3c bezeichnet.

Siehe 'A.S. Troelstra, H. Schwichtenberg: Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science 4, 2nd edition, 2000' für weitergehende Information.

Beispiel einer Ableitung

Ableitung der allgemeingültigen Sequenz

Vollständigkeit

Satz: Jede allgemeingültige Sequenz ist ableitbar.

Beweisidee: Systematische Beweissuche rückwärts: zu jeder Formel in einer Konklusions-Sequenz existiert (genau) eine Regel mit Prämissen, in der diese Formel abgebaut ist. In dem rückwärts von der Zielsequenz generiertem Beweisbaum gilt:

Zielsequenz allgemeingültig \Leftrightarrow alle Sequenzen an den Blättern sind allgemeingültig.

Beispiel einer fehlschlagenden Beweissuche

Die Interpretation liefert $p\mapsto 1$; $q\mapsto 0$ ein Gegenbeispiel.

Satz: Der AL Sequenzenkalkül ist korrekt und vollständig für die Ableitung aller allgemeingültigen AL Sequenzen.

Die Schnittregeln CUT

von \mathcal{SK}^+ entsteht aus \mathcal{SK} durch Hinzufgung der sogennanten Schnittregel (CUT), die zum modus ponens korrespondiert:

(CUT)
$$\frac{\Gamma \vdash \Delta, \varphi \qquad \Gamma, \varphi \vdash \Delta}{\Gamma \vdash \Delta}.$$

Korrektheit nachprüfen!

Anwendung von modus ponens 'schluckt' Hilfsformel φ : problematisch für (rückwärts-) Beweissuche.

CUT kann stets aus Beweisen eliminiert werden (auch algorithmisch, **Schnittelimination**, G. Gentzen), was aber i.a. zu einem **exponentiellen Wachstum** des Beweises führt.

Aus der Schnittregel folgen leicht die folgenden (ebenfalls redundanten Regeln):

(Kontradiktion)
$$\frac{\Gamma \vdash \varphi \qquad \Gamma \vdash \neg \varphi}{\Gamma \vdash \emptyset}$$

und

(Widerspruch)
$$\frac{\Gamma, \neg \varphi \vdash \psi \qquad \Gamma, \neg \varphi \vdash \neg \psi}{\Gamma \vdash \varphi}$$

Teil 2: Logik erster Stufe (Prädikatenlogik), FO

Gegenstandsbereich:

S-Strukturen

mit Belegungen für Element-Variablen

Ausdrucksmöglichkeiten:

atomare Aussagen über Terme

Funktionen, Konstanten, Variablen

 \wedge, \vee, \neg (wie in AL) aber **zusätzlich**

Quantifizierung \forall , \exists über Elemente

Haupteigenschaften

• Strukturierte Formalisierung komplexerer Eigenschaften: z.B.

$$(\forall n \in \mathbb{N}) (\exists m \in \mathbb{N}) (m > n \land (\exists k \in \mathbb{N})(2k = m)),$$

d.h. es gibt unendlich viele gerade Zahlen.

- Modulare Semantik
- Korrekte und vollständige Beweiskalküle
- Die Menge der logisch wahren Sätze ist nicht mehr entscheidbar.
- Schnittelimination im Sequenzenkalkül noch möglich aber von superexponentieller Komplexität $2_{|P|}$, wobei $2_0:=2$, $2_{n+1}:=2^{2_n}$ und P die Größe des gegebenen Beweises ist.

FO-Sprachen (Signaturen)

Symbole:

 $x, y, z, \ldots, x_1, x_2, x_3, \ldots$ Variablensymbole

 c,d,e,\ldots Konstantensymbole

 f, g, \dots Funktionssymbole

 P, Q, R, \dots Relationssymbole

Signatur S:

Auswahl von Konstanten-, Funktions- und Relationssymbolen

mit spezifizierten Stelligkeiten

Strukturen zu Signatur S

S-Struktur:

$$\mathcal{A} = (A, c^{\mathcal{A}}, \dots, f^{\mathcal{A}}, \dots, R^{\mathcal{A}}, \dots)$$

besteht aus: Trägermenge $A \neq \emptyset$

für $c \in S$: ausgezeichnetes Element $c^{\mathcal{A}} \in A$.

für n-st. $f \in S$: n-st. Funktion $f^{\mathcal{A}}: A^n \to A$.

für n-st. $R \in S$: n-st. Relation $R^{\mathcal{A}} \subseteq A^n$.

Beispiel: $\mathcal{N}=\left(\mathbb{N},+^{\mathcal{N}},\cdot^{\mathcal{N}},<^{\mathcal{N}},0^{\mathcal{N}},1^{\mathcal{N}}\right)$ zu $S=\{+,\cdot,<,0,1\}$

Beispiele

Wortstrukturen zu $S = \{<\} \cup \{P_a : a \in \Sigma\}$

$$w = a_1 \dots a_n \quad \longleftrightarrow \quad \mathcal{W} = (\{1, \dots, n\}, <^{\mathcal{W}}, (P_a^{\mathcal{W}})_{a \in \Sigma}),$$
$$<^{\mathcal{W}} = \{(i, j) : 1 \le i < j \le n\},$$
$$P_a^{\mathcal{W}} = \{i : a_i = a\}.$$

Graphen zu $S = \{E\}$

$$\mathcal{G} = (V, E^{\mathcal{G}}),$$

 mit Knotenmenge V

Kantenrelation $E^{\mathcal{G}} \subseteq V \times V$.

Weitere Beispiele

Transitionssysteme zu $S = \{E_a : a \in \Sigma\}$

$$(\Sigma, Q, \Delta) \longleftrightarrow \mathcal{A} = (Q, (E_a^{\mathcal{A}})_{a \in \Sigma}),$$
$$E_a^{\mathcal{A}} = \{(q, q') : (q, a, q') \in \Delta\}.$$

Relationale Datenbanken, ...

Terme

Variablen aus $\mathcal{V} := \{x_1, x_2, \ldots\}$ bzw. $\mathcal{V}_n := \{x_1, \ldots, x_n\}$.

Die Menge der S-Terme T(S) einer Signatur S (über den Variablen aus V) ist induktiv erzeugt durch:

$$x \in T(S)$$
 für $x \in \mathcal{V}$.

$$c \in T(S)$$
 für $c \in S$.

$$ft_1 \dots t_n \in T(S)$$
 für $f \in S$ (n-st.), $t_1, \dots, t_n \in T(S)$.

 $T_n(S) \subseteq T(S)$: S-Terme über Variablen aus \mathcal{V}_n .

Speziell: $T_0(S)$ sind die **geschlossenen** Terme von S (= \emptyset , falls kein Konstantensysmbol in S).

Beispiele wohlgeformter S-Terme

 $S = \{f, c\}, f \text{ 2-st.: } c, ffccc, fcfcc, \dots, x_{17}, fx_1c, ffx_5cx_2, \dots$

$$S = \{+, \cdot, 0, 1\}, +, \cdot 2\text{-st.}: \cdot + 11 + +111, + \cdot + \cdot + 111 x_3 x_1, \dots$$

Konvention: Funktionsterme mit Klammern, 2-st. auch infix

$$(((1+1)+1)\cdot x_3 + x_1)$$
 statt $+\cdot + + 111x_3x_1$

Term-Strukturen und Herbrand-Strukturen

Eine S-Struktur \mathcal{T} heißt \mathbf{Term} -Struktur, wenn gilt:

•
$$\mathcal{T} = \mathcal{T}(S) = (T(S), \dots, c^{\mathcal{T}(S)}, \dots, f^{\mathcal{T}(S)}, \dots, R^{\mathcal{T}(S)}, \dots)$$

- $c \in S : c^{\mathcal{T}} := c \in T(S)$.
- $f \in S$ (n-st.): $f^{\mathcal{T}} : T(S)^n \longrightarrow T(S)$ $(t_1, \dots, t_n) \longmapsto ft_1 \dots t_n.$
- keine Einschränkungen an $R^{\mathcal{T}}$ für $R \in S$.

Falls S mindestens ein Konstantensymbol enthält, kann man in obiger Definition auch $T_0(S)$ statt T(S) nehmen. Solche Term-Strukturen heißen auch **Herbrand-Strukturen**.

Belegungen

Weisen den Variablensymbolen Elemente einer S-Struktur zu!

Belegung

über S-Struktur $\mathcal{A} = (A, c^{\mathcal{A}}, \dots, f^{\mathcal{A}}, \dots)$:

$$\beta \colon \mathcal{V} \longrightarrow A$$

$$x \longmapsto \beta(x)$$

$$x \mapsto \beta(x)$$

S-Interpretation:

$$S$$
-Struktur + Belegung $\mathcal{I} = (\mathcal{A}, \beta)$

Semantik von Termen: induktiv über T(S) für gegebene S-Interpretation $\mathfrak{I} = (\mathcal{A}, \beta)$:

Interpretation von $t \in T(S)$: $t^{\Im} \in A$.

- $t = x \ (x \in \mathcal{V} \ \text{Variable}): \qquad t^{\mathfrak{I}} := \beta(x).$
- $t = c \ (c \in S \ \mathsf{Konstante}): \qquad t^{\mathfrak{I}} := c^{\mathcal{A}}.$
- $t = ft_1 \dots t_n \ (f \in S, n\text{-st.}): \ t^{\mathfrak{I}} := f^{\mathcal{A}} \big(t_1^{\mathfrak{I}}, \dots, t_n^{\mathfrak{I}} \big).$

Für jede S-Interpretation $\mathfrak{I}=(\mathcal{A},\beta)$ ist die Abbildung

$$h \colon T(S) \longrightarrow A$$
$$t \longmapsto t^{\mathfrak{I}}$$

ein Homomorphismus von $\mathcal{T}(S)$ nach \mathcal{A} .

Speziell für Term-Strukturen: $t^{\mathfrak{I}} = t$ für $t \in T_0(S)$.

Die Syntax von FO(S)

Induktive Definition der Menge der FO(S) Formeln:

• atomare Formeln: für $t_1, t_2 \in T(S)$: $t_1 = t_2 \in FO(S)$.

für
$$R \in S$$
 (n-st.), $t_1, \ldots, t_n \in T(S)$: $Rt_1 \ldots t_n \in FO(S)$.

• **AL-Junktoren**: für $\varphi, \psi \in FO(S)$: $\neg \varphi \in FO(S)$.

$$(\varphi \wedge \psi) \in FO(S).$$

$$(\varphi \vee \psi) \in FO(S).$$

• Quantifizierung: für $\varphi \in FO(S)$, $x \in \mathcal{V}$: $\exists x \varphi \in FO(S)$.

$$\forall x \varphi \in FO(S)$$
.

Logik ohne Gleichheit $FO^{\neq} \subseteq FO$: ohne Atome $t_1 = t_2$.

Syntax: freie und gebundene Variablen, Quantorenrang

Freie Variablen

frei:
$$FO(S) \longrightarrow \mathcal{P}(\mathcal{V})$$

$$\varphi \longmapsto frei(\varphi) \subseteq \mathcal{V}$$

induktiv: $frei(\varphi) := var(\varphi)$ für atomare φ .

$$frei(\neg \varphi) := frei(\varphi).$$

$$\operatorname{frei}(\varphi \wedge \psi) = \operatorname{frei}(\varphi \vee \psi) := \operatorname{frei}(\varphi) \cup \operatorname{frei}(\psi).$$

$$\operatorname{frei}(\exists x\varphi) = \operatorname{frei}(\forall x\varphi) := \operatorname{frei}(\varphi) \setminus \{x\}.$$

Sätze

Variablen x, die unter den Skopus eines Quantors $\forall x, \exists x$ stehen, werden durch diesen **gebunden**. Eine Variable x kann in einer Formel sowohl frei wie auch gebunden vorkommen:

$$\varphi(x) \wedge \forall x \, \psi(x).$$

$$FO_n(S) := \{ \varphi \in FO(S) : frei(\varphi) \subseteq \mathcal{V}_n \}.$$

Schreibweise: $\varphi(x_1,\ldots,x_n)$ für $\varphi\in FO_n(S)$.

Definition: Formeln φ ohne freie Variablen, d.h. $\varphi \in FO_0(S)$, heißen **Sätze**.

Bsp: frei $(0 < fx) = \{x\}$ frei $(\forall x \neg x = fx) = \emptyset$ frei $(0 < fx \land \forall x \neg x = fx) = \{x\}$

Quantorenrang

$$\operatorname{qr} : \operatorname{FO}(S) \longrightarrow \mathbb{N}, \quad \varphi \longmapsto \operatorname{qr}(\varphi) \in \mathbb{N}$$

induktiv: $qr(\varphi) = 0$ für atomares φ .

$$\operatorname{qr}(\neg \varphi) := \operatorname{qr}(\varphi).$$

$$\operatorname{qr}(\varphi \wedge \psi) = \operatorname{qr}(\varphi \vee \psi) := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\psi)).$$

$$qr(\exists x\varphi) = qr(\forall x\varphi) := qr(\varphi) + 1.$$

Misst die Quantorschachtelungstiefe!

$$\mathsf{Bsp:} \quad \operatorname{qr}(0 < fx) = 0$$

$$\operatorname{qr}(\forall x \exists y (x < y)) = 2$$

$$qr(\exists z \, (0 < fz) \land \forall x \exists y \, x < y) = 2$$

Semantik von FO(S)

Der Wahrheitswert φ^{\Im} von FO(S)-Formeln φ über S-Interpretation \Im wird induktiv definiert:

atomare
$$\varphi$$
: $(t_1 = t_2)^{\mathfrak{I}} = 1$ gdw. $t_1^{\mathfrak{I}} = t_2^{\mathfrak{I}}$.

$$(Rt_1 \dots t_n)^{\mathfrak{I}} = 1$$
 gdw. $(t_1^{\mathfrak{I}}, \dots, t_n^{\mathfrak{I}}) \in R^{\mathcal{A}}$.

Negation:
$$(\neg \varphi)^{\Im} := 1 - \varphi^{\Im}.$$

Konjunktion:
$$(\varphi \wedge \psi)^{\Im} := \min(\varphi^{\Im}, \psi^{\Im}).$$

Disjunktion:
$$(\varphi \lor \psi)^{\Im} := \max(\varphi^{\Im}, \psi^{\Im}).$$

Quantoren:
$$(\exists x\varphi)^{\Im} = \max(\varphi^{\Im[x\mapsto a]} : a \in A).$$

$$(\forall x\varphi)^{\Im} = \min(\varphi^{\Im[x\mapsto a]} \colon a \in A).$$

Sprech- und Schreibweisen für $\varphi^{\Im}=1$: φ wahr unter \Im

 \Im erfüllt φ

 ${\mathfrak I}$ Modell von ${\varphi}$

 $\mathfrak{I} \models \varphi$

Belegungen und freie Variablen: Werte der Belegung $\beta(x) \in A$ über \mathcal{A} nur relevant für $x \in \operatorname{frei}(\varphi)$.

Für Sätze φ hängt daher für $\mathfrak{I}=(\mathcal{A},\beta)$ nur von \mathcal{A} ab:

 $\mathcal{A} \models \varphi$:gdw. $(\mathcal{A}, \beta) \models \varphi$ für ein/alle β .

Semantische Grundbegriffe

Analog zu AL:

Folgerungsbeziehung:

$$\varphi \models \psi$$
: für alle \Im gilt $(\Im \models \varphi \Rightarrow \Im \models \psi)$.

Logische Äquivalenz: $\varphi \equiv \psi$: f.a. \Im gilt $(\Im \models \varphi \Leftrightarrow \Im \models \psi)$.

Erfüllbarkeit: $\varphi \in SAT(FO)$: es gibt \Im mit $\Im \models \varphi$.

Allgemeingültigkeit: $\models \varphi$: für alle \Im gilt $\Im \models \varphi$.

- Aquivalent? $\bullet \forall x \forall y \varphi(x,y) \equiv \forall y \forall x \varphi(x,y)$?
 - $\bullet \ \forall x \varphi \equiv \neg \exists x \neg \varphi ?$

Erfüllbar?

- $\forall x \exists y Rxy \land \neg \exists y \forall x Rxy$?
- $\bullet \ \forall x \forall y (Rxy \land \neg Ryx) ?$
- $\forall x \forall y (Rxy \leftrightarrow \neg Ryx)$?

Substitution

Semantisch korrektes Einsetzen von Termen:

Gesucht: für $t \in T(S)$ und $\varphi(x) \in FO(S)$, $\varphi' := \varphi(t/x) \in FO(S)$ so, dass:

$$\mathfrak{I} \models \varphi' \quad \Leftrightarrow \quad \mathfrak{I}[x \mapsto t^{\mathfrak{I}}] \models \varphi.$$

Warnung: Naives Ersetzen von x durch t tut es nicht!

- ullet beachte, dass x frei und gebunden auftreten kann.
- ullet beachte, dass Variablen in t nicht fälschlich gebunden werden.

Bedingung: t muss in φ frei für x sein, d.h. keine Variable in t wird nach der Einsetzung in φ durch einen Quantor in φ gebunden.

Methode: Induktive Definition, die intern gebundene Variablen so umbenennt, dass Konflikte vermieden werden.

Beispiel:
$$\varphi(x) = \forall y \big(Exy \land \exists x \neg Exy \big)$$

 $\varphi(fy/x) = ?$

Negationsnormalform

Eine Formel $\varphi \in FO(S)$ ist in **Negationsnormalform NNF**, wenn φ aus atomaren und negierten atomaren Formeln mit $\wedge, \vee, \exists, \forall$ aufgebaut ist.

Satz: Zu jedem φ kann man explizit eine Formel $\varphi^* \in \mathbf{NNF}$ konstruieren, die zu φ logisch äquivalent ist, d.h. $\varphi \equiv \varphi^*$.

Beweis: Übungsaufgabe!

Variationen: Spielsemantik (model checking $\varphi \in NNF$)

Spiel zwischen Verifizierer (V) und Falsifizierer (F) zu $\varphi(x_1, \ldots, x_n) \in FO_n(S)$ über A.

Spielpositionen: $(\psi, \mathbf{a}) \in SF(\varphi) \times A^n$

Züge in Position (ψ, \mathbf{a}) , $\mathbf{a} = (a_1, \dots, a_n)$:

 $\psi=\psi_1\wedge\psi_2$ **F** am Zug

zieht nach (ψ_1, \mathbf{a}) oder nach (ψ_2, \mathbf{a}) .

 $\psi = \psi_1 \vee \psi_2$ V am Zug

zieht nach (ψ_1, \mathbf{a}) oder nach (ψ_2, \mathbf{a}) .

 $\psi = \forall x_i \psi_0$ **F** am Zug

zieht nach einem $(\psi_0, \mathbf{a}[x_i \mapsto a_i'])$.

 $\psi = \exists x_i \psi_0 \quad \mathbf{V} \text{ am Zug}$

zieht nach einem $(\psi_0, \mathbf{a}[x_i \mapsto a_i'])$.

Spiel-Ende in Positionen (ψ, \mathbf{a}) , ψ atomar oder negiert atomar.

Gewinner: \mathbf{V} gewinnt in Endposition (ψ, \mathbf{a}) , wenn $\mathcal{A} \models \psi[\mathbf{a}]$.

F gewinnt in Endposition (ψ, \mathbf{a}) , wenn $\mathcal{A} \not\models \psi[\mathbf{a}]$.

Satz: $\mathcal{A} \models \psi[\mathbf{a}] \Leftrightarrow \mathbf{V}$ hat Gewinnstrategie in Position (ψ, \mathbf{a}) .

FO ohne =: FO^{\neq}

- In unserer Behandlung von FO: Gleichheit R := Bestandteil der Logik, d.h. spezielle Interpretion als mengentheoretische Identität auf A in A.
- Alternativ: = ist nicht Bestandteil der Logik (FO[≠]). Bei Bedarf Behandlung von = als gewöhnliches binäres Relationssymbol, dass die Gleichheitsaxiome erfüllt: Reflexivität, Symmetrie, Transitivität, Kongruenzrelation bzgl. aller anderen Relations- und Funktionssymbole.

Reduktion von FO auf FO[≠]

Idee: modelliere '=' durch interpretierte Relation \sim .

$$\hat{S} := S \cup \{\sim\}$$

Verträglichkeitsbedingungen:

 \sim Kongruenzrelation bzgl. aller $R, f \in S$.

Erhalte Modelle A_0 mit echter Gleichheit als \sim -Quotienten:

$$\mathcal{A}_0 = \mathcal{A}/\sim^{\mathcal{A}} = (A/\sim^{\mathcal{A}}, \dots, [c^{\mathcal{A}}]_{\sim^{\mathcal{A}}}, \dots, f^{\mathcal{A}}/\sim^{\mathcal{A}}, \dots, R^{\mathcal{A}}/\sim^{\mathcal{A}}).$$

 \sim -Äquivalenzklassen als Elemente.

Erfüllbarkeit universeller Sätze ohne Gleichheit in Herbrand-Modellen

Voraussetzungen:

- ullet S enthalte mindestens ein Konstantensymbol
- $\Phi \subseteq FO_0^{\neq}(S)$: Menge von '='-freien reinen \forall -Sätzen

Herbrand-Strukturen \mathcal{H} (Erinnerung):

- S-Termstruktur $\mathcal{T}_0(S)$ über $T_0(S)$ (geschlossene S-Terme) als Trägermenge.
- Interpretation geschlossener Terme durch sich selbst.
- Interpretation von R (n-st.) als Teilmenge von $(T_0(S))^n$.

Herbrand-Strukturen, die Modell einer Satzmenge Φ , sind heißen auch **Herbrand-Modell von** Φ .

Satz über Herbrand-Modelle:

 Φ Menge '='-freier reiner \forall -Sätze.

 Φ erfüllbar \Leftrightarrow es existiert ein Herbrand-Modell

$$\mathcal{H} = (\mathcal{T}_0(S), (R^{\mathcal{H}})_{R \in S}) \models \Phi.$$

Beweisidee: "←": offensichtlich.

" \Rightarrow ": geeignete Interpretationen $R^{\mathcal{H}}$ aus geg. Modell $\mathcal{A} \models \Phi$:

$$R^{\mathcal{H}} := \{ (t_1, \dots, t_n) \in (T_0(S))^n : (t_1^{\mathcal{A}}, \dots, t_n^{\mathcal{A}}) \in R^{\mathcal{A}} \}.$$

Verfeinerungen

Sei $\varphi := \forall x_1, \dots, x_n \varphi_{qf}(x_1, \dots, x_n) \in \Phi$ (φ_{qf} quantorfrei). Betrachte die Menge $E(\Phi)$ aller geschlossenen $T_0(S)$ -Instanzen

$$\varphi_{qf}(t_1,\ldots,t_n) \qquad (t_1,\ldots,t_n \in T_0(S))$$

für alle $\varphi \in \Phi$.

Satz: Φ hat ein Herbrand-Modell gdw. $E(\Phi)$ im aussagenlogischen Sinne erfüllbar ist gdw. jede endliche Teilmenge von $E(\Phi)$ im aussagenlogischen Sinne erfüllbar ist.

Beweis: Zum Beweis der 1. Äquivalenz: ' \Rightarrow :' Sei \mathcal{H} ein Herbrand-Modell für Φ . Definiere auf

$$\mathcal{V} := \{ p_{\alpha} : \alpha = R(t_1, \dots, t_n), R \in S \text{ (n-stell.)}, t_1, \dots, t_n \in T_0(S) \}$$

$$\mathfrak{I}(p_{\alpha}) := \left\{ egin{array}{l} 1, \ \mathsf{falls} \ \mathcal{H} \models \alpha \ 0, \ \mathsf{falls} \ \mathcal{H} \not\models \alpha. \end{array} \right.$$

' \Leftarrow :' Sei ${\mathfrak I}$ eine erfüllende Belegung. Definiere ${\mathcal H}$ durch

$$R^{\mathcal{H}} := \{ (t_1, \dots, t_n) \in T_0(S) : \Im(p_{R(t_1, \dots, t_n)}) = 1 \}$$

Bijektive Korrepondenz $\mathcal{H} \leftrightarrow \mathcal{I}$

Für

$$\varphi = \forall x_1 \dots \forall x_n \, \varphi_{qf}(x_1, \dots, x_n) = \forall \underline{x} \, \varphi_{qf}(\underline{x}), \quad \xi \text{ quantorfrei}$$
 $\mathcal{H} = \mathcal{H}(\mathcal{I})$:

$$\mathcal{H} \models \varphi \quad \text{gdw.} \quad \mathcal{H} \models \varphi_{qf}[\underline{t}] \text{ für alle } \underline{t} = (t_1, \dots, t_n) \in T_0(S)^n$$
 gdw. $\mathcal{I} \models \varphi_{qf}(\underline{t})^{\operatorname{AL}} \text{ für alle } \underline{t} = (t_1, \dots, t_n) \in T_0(S)^n$

Erhalte $\varphi_{qf}(\underline{t})^{\mathrm{AL}} \in \mathrm{AL}(\mathcal{V})$ aus $\varphi_{qf}(\underline{t})$ durch Ersetzen von Atomen $\alpha = \mathtt{R} \dots$ durch AL-Variablen $p_{\alpha} = p_{\mathtt{R}\dots}$.

Die 2. Äquivalenz folgt aus dem aussagenlogischen Kompaktheitssatz.

Satz von Herbrand (J. Herbrand 1930)

Satz von Herbrand: Sei $\varphi = \exists \underline{x} \varphi_{qf}(\underline{x})$ ein reiner \exists -Satz (d.h. φ_{qf} ist quantorfrei) ohne Gleichheit '='. $\underline{x} = x_1, \ldots, x_n$ ist ein Tupel von Variablen. Dann gilt

$$\models \varphi \text{ gdw. } \exists \underline{t}_1, \dots, \underline{t}_k \in T_0(S) \text{ mit } \bigvee_{i=1}^{\kappa} \varphi_{qf}(\underline{t}_i) \in \text{ TAUT.}$$

Statt $T_0(S)$ genügt es alle aus φ -Material (plus Konstantensymbol c, falls kein Konstantensymbol in φ) bildbaren geschlossenen Terme zu nehmen.

Beweis des Satzes von Herbrand: $\neg \varphi$ ist logisch äquivalent zu dem \forall -Satz $\forall \underline{x} \neg \varphi_{qf}(\underline{x})$. Wende nun den vorangegangenen Satz auf $\Phi := \{\forall \underline{x} \neg \varphi_{qf}(\underline{x})\}$ an.

Beispiel: Betrachte den logisch wahren Satz

$$\exists x \, \big(P(x) \vee \neg P(f(x)) \big).$$

Für die mit $t_1 := c$ und $t_2 := f(c)$ gebildete Disjunktion gilt

$$\big(P(c) \vee \neg P(f(c))\big) \vee \big(P(f(c)) \vee \neg P(f(f(c)))\big) \in \mathsf{TAUT}.$$

Satz von Herbrand für offene Theorien

Eine Menge Γ von S-Sätzen (in der Logik mit Gleichheit =) heißt offen, falls jeder Satz in Γ ein reiner \forall -Satz

$$\forall y_1, \ldots, y_m \psi_{qf}(y_1, \ldots, y_m)$$
 ist.

Satz: Sei $\varphi = \exists \underline{x} \varphi_{qf}(\underline{x})$ ein reiner \exists -Satz (d.h. φ_{qf} ist quantorfrei). Dann gilt

$$\Gamma \models \varphi \text{ gdw. } \exists \underline{t}_1, \dots, \underline{t}_k \in T_0(S) \text{ mit } \Gamma \models \bigvee_{i=1}^k \varphi_{qf}(\underline{t}_i).$$

Tatsächlich ist $\bigvee_{i=1}^k \varphi_{qf}(\underline{t}_i)$ sogar eine tautologische Folgerung aus endlich vielen geschlossenen Instanzen von =- und Γ -Axiomen. Statt $T_0(S)$ genügen alle aus φ, Γ gebildeten geschl. Terme.

Beweis

Betrachte ,,=" als gewöhnliches binäres Relationssymbol, dass durch den \forall -Abschluss E der Gleichheitsaxiome axiomatisiert wird. Wende nun den Satz über Herbrand-Modelle an auf $\Phi:=\Gamma\cup E\cup\{\forall\underline{x}\neg\varphi_{af}(\underline{x})\}.$

Pränexe Normalform

Definition: Eine Formel $\varphi \in FO(S)$ ist in **pränexer Normalform (PNF)**, falls φ die folgende Gestalt hat:

$$\varphi = Q_1 x_{i_1} \dots Q_k x_{i_k} \varphi_{qf}$$

mit $Q_i \in \{\forall, \exists\}, k \in \mathbb{N}, \varphi_{qf}$ quantorfrei.

Beispiele:

$$\exists y (Exy \land \forall x (Eyx \to x = y)) \equiv \exists y \forall z (Exy \land (Eyz \to z = y))$$
$$\exists y \forall x Exy \lor \neg \exists y Exy \equiv \exists y_1 \forall y_2 \forall y_3 (Ey_2y_1 \lor \neg Exy_3)$$

Satz über PNF

Satz über die Pränexnormalform:

Jede FO-Formel ist logisch äquivalent zu einer Formel in PNF.

Beweis: Induktion über $\varphi \in FO(S)$.

Bemerkung:

- 1) Die Pränexnormalform ist i.a. nicht eindeutig bestimmt.
- 2) Die Durchführung der Pränexierung einer Formel erfordert i.a. die Einführung neuer Variablen durch Umbenennung vorhandener Variablen.

Skolemnormalform

Reine \forall -Formeln (Universell-pränexe Formeln) sind Formeln der Gestalt $\forall x_{i_1} \dots \forall x_{i_k} \varphi_{qf}$, wobei φ_{qf} quantorenfrei ist.

- nicht jede Formel ist logisch äquivalent zu universell-pränexer Formel, z.B. $\varphi = \forall x \exists y \, Exy$
- aber jede Formel ist erfüllbarkeitsäquivalent zu einer geeigneten universell-pränexen Formel.

Idee: neue Funktionen, die potentielle Existenzbeispiele liefern
[im Semantik Spiel: ∃-Züge für V]

Beispiel

 $\varphi = \forall x \exists y \, E(x, y) \quad \longmapsto \quad \varphi' = \forall x \, E(x, f(x)) \quad \text{(für neues } f\text{)}$ dann gilt:

$$(i) \mathcal{A}' = (A, E^{\mathcal{A}}, \dots, f^{\mathcal{A}'}) \models \varphi' \Rightarrow \mathcal{A} = (A, E^{\mathcal{A}}, \dots) \models \varphi$$

 $(ii) \mathcal{A} = (A, E^{\mathcal{A}}, \dots) \models \varphi \Rightarrow$

$$(ii) \ \mathcal{A} = (A, E^{\mathcal{A}}, \ldots) \models \varphi \ \Rightarrow$$

es gibt eine Interpretation von f über A so, dass

$$\mathcal{A}' = (A, E^{\mathcal{A}}, \dots, f^{\mathcal{A}'}) \models \varphi'$$

Satz über die Skolemnormalform

Satz: Jedes $\varphi \in FO$ ist erfüllbarkeitsäquivalent zu einer \forall -Formel φ^S (in einer erweiterten Signatur), der sogenannten Skolemnormalform (Vorsicht: nicht eindeutig).

Beweis: Man erhält φ^S aus einer zu φ logisch äquivalenten Formel φ^{pr} in PNF $(x_i, y_j \text{ auch Tupel von Variablen})$:

$$\varphi^{pr} \equiv \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \varphi_{qf}(x_1, y_1, \dots, x_n, y_n)$$

durch Substitution von **Skolemfunktionstermen** die für existentiell abquantifizierten Variablen:

$$\varphi^S := \forall x_1 \dots \forall x_n \, \varphi_{qf}(x_1, f_1(x_1), \dots, x_n, f_n(x_1, \dots, x_n)).$$

 φ^S impliziert logisch trivialerweise φ^{pr} (und damit φ). Umgekehrt gilt nur, dass die Erfüllbarkeit von φ die Erfüllbarkeit von φ^S impliziert. Sei $\mathcal{A} \models \varphi^{pr}$. Erweitere \mathcal{A} zu einer Struktur \mathcal{A}^S der um f_1,\ldots,f_n erweiterten Signatur durch Interpretation der f_i als geeignete Auswahlfunktionen. Dann gilt $\mathcal{A}^S \models \varphi^S$ und damit die Erfüllbarkeit von φ^S .

Bemerkung: Stets $\varphi^S \models \varphi$, aber i.a. nicht $\varphi \models \varphi^S$.

Herbrandnormalform

Satz: Jedes $\varphi \in FO$ ist **gültigkeitsäquivalent** zu einer reinen \exists -Formel φ^H (in einer erweiterten Signatur), der sogenannten Herbrandnormalform.

Beweis: Man erhält φ^H aus einer zu φ logisch äquivalenten Formel in PNF (x_i, y_i) auch Tupel von Variablen):

$$\exists x_1 \forall y_1 \dots \exists x_n \forall y_n \varphi_{qf}(x_1, y_1, \dots, x_n, y_n)$$

durch Substitution von Herbrandfunktionstermen für die universell abquantifizierten Variablen:

$$\exists x_1 \ldots \exists x_n \, \varphi_{qf}(x_1, f_1(x_1), \ldots, x_n, f_n(x_1, \ldots, x_n)).$$

$$\models \varphi \Leftrightarrow \models \varphi^H$$

folgt aus dem Satz über die Skolemnormalform, da φ^H die Negation der Skolemnormalform (einer Pränexnormalform) der Negation von φ ist.

Bemerkung: Stets $\varphi \models \varphi^H$, aber i.a. nicht $\varphi^H \models \varphi$.

Satz: Sei Γ eine Menge von PNF-Formeln, φ in PNF.

$$\Gamma^S := \{ \psi^S : \psi \in \Gamma \}$$
. Dann gilt

$$\Gamma^S \models \varphi^H \text{ gdw. } \Gamma \models \varphi.$$

Erfüllbarkeit: Reduktion auf AL

 Φ erfüllbar $\Leftrightarrow \Phi'''$ erfüllbar $\Leftrightarrow \Phi'''$ in Herbrand-Modell erfüllbar

Bedingungen an Herbrand-Modell lassen sich in AL kodieren!

Erfüllbarkeit: Reduktion auf AL

(fortges.): o.B.d.A.:

 $\Phi \subseteq \mathrm{FO}_0^{\neq}(S)$, universell-pränex,

S habe Konstanten

 Φ erfüllbar $\Leftrightarrow \Phi$ hat ein Herbrand-Modell

$$\mathcal{H} = (\mathcal{T}_0(S), (R^{\mathcal{H}})_{R \in S}) \models \Phi$$

 \Leftrightarrow für alle $R \in S$ (n-st.) existieren $R^{\mathcal{H}} \subseteq T_0(S)^n$, sodass $\mathcal{H} = (\mathcal{T}_0(S), (R^{\mathcal{H}})_{R \in S}) \models \Phi$

$$\mathcal{V} := \{ p_{\alpha} \colon \alpha = \mathtt{Rt_1} \ldots \mathtt{t_n}; R \in S; t_1, \ldots, t_n \in S \}$$

 $T_0(S)$ für n-stelliges R}

 ${\mathcal V}$ -Interpretationen ${\mathcal I}$ beschreiben mögliche ${\mathcal H}$

Beispiel

$$S = \{R, Q, f\}$$
 R (2-st.), Q (1-st.), Relationssymbole f (1-st.), Funktionssymbol

Behauptung:

$$\Phi: \begin{cases}
\varphi_1 = \forall x \forall y (Rxy \to (Qx \leftrightarrow \neg Qy)) \\
\varphi_2 = \forall x (Rxfx \lor Rfxx) \\
\varphi_3 = \forall x \forall y (\neg Rxy \to Rxffy)
\end{cases}$$

ist unerfüllbar.

$$S_c := S \cup \{c\}$$

$$T_0(S_c) = \{c, fc, ffc, fffc, \ldots\} = \{f^n c \colon n \in \mathbb{N}\}$$

Fortsetzung des Beispiels

AL-Variablen für die Reduktion:

$$q_n \quad (=p_{\mathrm{Qf}^{\mathrm{n}}\mathrm{c}}) \qquad \text{für die Atome } Qf^nc, \qquad (n\in\mathbb{N}),$$
 $r_{\ell,m} \quad (=p_{\mathrm{Rf}^{\ell}\mathrm{cf}^{\mathrm{m}}\mathrm{c}}) \quad \text{für die Atome } Rf^{\ell}cf^mc, \qquad (\ell,m\in\mathbb{N}).$

zugeh. AL-Formeln

$$\begin{cases} \llbracket \varphi_1 \rrbracket^{\mathrm{AL}} = \{ r_{\ell,m} \to (q_{\ell} \leftrightarrow \neg q_m) : \ell, m \in \mathbb{N} \} \\ \llbracket \varphi_2 \rrbracket^{\mathrm{AL}} = \{ r_{\ell,\ell+1} \lor r_{\ell+1,\ell} : \ell \in \mathbb{N} \} \\ \llbracket \varphi_3 \rrbracket^{\mathrm{AL}} = \{ \neg r_{\ell,m} \to r_{\ell,m+2} : \ell, m \in \mathbb{N} \} \end{cases}$$

Unerfüllbarkeit von Φ folgt aus Unerfüllbarkeit von

$$r_{0,0} \to (q_0 \leftrightarrow \neg q_0),$$

$$r_{0,1} \to (q_0 \leftrightarrow \neg q_1),$$

$$r_{1,0} \to (q_1 \leftrightarrow \neg q_0),$$

$$r_{0,2} \to (q_0 \leftrightarrow \neg q_2),$$

$$r_{1,2} \to (q_1 \leftrightarrow \neg q_2), \quad r_{0,1} \lor r_{1,0},$$

$$\underbrace{r_{2,1} \to (q_2 \leftrightarrow \neg q_1),}_{\in \llbracket \varphi_1 \rrbracket^{\operatorname{AL}}} \quad \underbrace{r_{1,2} \lor r_{2,1},}_{\in \llbracket \varphi_2 \rrbracket^{\operatorname{AL}}} \quad \underbrace{\neg r_{0,0} \to r_{0,2}}_{\in \llbracket \varphi_3 \rrbracket^{\operatorname{AL}}}$$

Kompaktheitssatz (Endlichkeitssatz):

Version 1: (Erfüllbarkeit)

Für $\Phi \subseteq FO$ sind äquivalent:

- (i) Φ erfüllbar.
- (ii) Jede endliche Teilmenge $\Phi_0 \subseteq \Phi$ ist erfüllbar.

Version 2: (Folgerungsbeziehung)

Für $\Phi \subseteq FO$, $\varphi \in FO$ sind äquivalent:

- (i) $\Phi \models \varphi$.
- (ii) $\Phi_0 \models \varphi$ für eine endliche Teilmenge $\Phi_0 \subseteq \Phi$.

Version $1 \Leftrightarrow \text{Version 2 (zur Übung!)}$

Version 1 für universell-pränexes $\Phi \subseteq FO_0^{\neq}$: Reduktion auf AL

Konsequenzen des Endlichkeitssatzes

Beliebig große endliche Modelle \Rightarrow unendliche Modelle: zu Φ

betrachte
$$\Phi \cup \{\exists x_1 \dots \exists x_n \bigwedge_{1 \le i \le j \le n} \neg x_i = x_j : n \ge 1\}$$

Unendliche Modelle \Rightarrow beliebig große unendliche Modelle: zu Φ

betrachte
$$\Phi \cup \{ \neg c_i = c_j : i \neq j; i, j \in I \}$$

für neue Konstanten $(c_i)_{i \in I}$

 \Rightarrow keine unendliche Struktur in FO bis auf Isomorphie charakterisierbar

Nichtstandardmodelle

Z.B.
$$\mathcal{N}^*$$
 zu $\mathcal{N}=(\mathbb{N},+,\,\cdot\,,0,1,<)$

Nichtstandardmodell der Arithmetik mit 'unendlich großen natürlichen Zahlen.'

Betrachte alle \mathbb{N} -wahren Sätze in der Sprache der Arithmetik erster Stufe plus allen Sätzen der Form $c \neq 0, c \neq 1, c \neq 2, \ldots$ (c neue Konstante). Für jede endliche Teilmenge hiervon ist \mathcal{N} ein Modell (bei geeigneter Interpretation von c). Also hat die gesamte Menge ein Modell \mathcal{N}^* , dass nicht zu \mathcal{N} isomorph sein kann.

Logik-Kalküle

Syntaktische Beweiskalküle: Beweise der Unerfüllbarkeit (Resolution) bzw. der Allgemeingültigkeit (Hilbertkalküle, Sequenzenkalkül).

Erweiterung des Kalküls von J.S. Shoenfield auf \neg, \lor, \forall

Axiome: alle Instanzen von $\neg \varphi \lor \varphi$ und $\forall x \varphi \to \varphi(t/x)$.

Regeln:
$$\frac{\varphi}{\psi \lor \varphi}$$
, $\frac{\varphi \lor \varphi}{\varphi}$, $\frac{\varphi \lor (\psi \lor \chi)}{(\varphi \lor \psi) \lor \chi}$, $\frac{\varphi \lor \psi$, $\neg \varphi \lor \chi}{\psi \lor \chi}$

und $\frac{\varphi \vee \psi}{\forall x \, \varphi \vee \psi}$, falls $x \notin \text{frei}(\psi)$.

Alternativ für \exists : $\varphi(t/x) \to \exists x \varphi$ und $\frac{\varphi \to \psi}{\exists x \varphi \to \psi}$ falls $x \notin \operatorname{frei}(\psi)$ mit $\varphi \to \psi := \neg \varphi \lor \psi$.

Alternativer Hilbertkalkül für $\{\land, \rightarrow, \lor, \bot, \forall, \exists\}$

Logische Axiomschemata $(\neg \varphi := \varphi \rightarrow \bot)$:

$$(i) \varphi \rightarrow (\psi \rightarrow \varphi),$$

$$(ii) (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)),$$

$$(iii) \varphi \to \varphi \lor \psi, \quad (iv) \psi \to \varphi \lor \psi,$$

$$(v) (\varphi \to \chi) \to ((\psi \to \chi) \to (\varphi \lor \psi \to \chi)),$$

$$(vi) \varphi \wedge \psi \rightarrow \varphi, \quad (vii) \varphi \wedge \psi \rightarrow \psi,$$

$$(viii) \varphi \to (\psi \to \varphi \land \psi),$$

$$(x) \perp \rightarrow \varphi, \quad (xi) \neg \neg \varphi \rightarrow \varphi,$$

$$(xii) \ \forall x \varphi \to \varphi[t/x], \quad (xiii) \ \varphi[t/x] \to \exists x \varphi,$$

wobei in (xii), (xiii) der Term t frei für x in φ sein muss.

Logische Regeln:

$$\frac{\varphi \quad , \quad \varphi \to \psi}{\psi}$$

$$\frac{\varphi \to \psi}{\varphi \to \forall x \psi},$$

$$\frac{\psi \to \varphi}{\exists x \psi \to \varphi},$$

wobei in den letzten beiden Regeln x nicht frei in φ vorkommen darf.

Erweiterung um Gleichheitsaxiome

$$x = x$$
 (Reflexivität),

$$x = y \rightarrow y = x$$
 (Symmetrie),

$$x = y \land y = z \rightarrow x = z$$
 (Transitivität),

$$x_1 = y_1 \wedge \ldots \wedge x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n),$$

$$x_1 = y_1 \wedge \ldots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)).$$

Bemerkung: Die Gleichheitsaxiome implizieren:

$$x_1 = y_1 \wedge \ldots \wedge x_n = y_n \rightarrow t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$$

und

$$x_1 = y_1 \wedge \ldots \wedge x_n = y_n \rightarrow (\varphi(x_1, \ldots, x_n) \rightarrow \varphi(y_1, \ldots, y_n))$$

für beliebige Terme t und Formeln φ .

Symmetrie und Transitivität folgen tatsächlich bereits aus den anderen Axiomen (wenn man = als Relationssymbol P zuläßt).

Grundinstanzen-Resolution (GI-Resolution):

Gegenstand: FO^{\neq} -Klauselmengen K

(universelle FO^{\neq} -Satzmengen Φ)

Beweisziel: Ableitung der (unerfüllbaren) leeren Klausel

Korrektheit: \square ableitbar aus $K \Rightarrow K$ unerfüllbar.

Vollständigkeit: K unerfüllbar $\Rightarrow \square$ ableitbar aus K.

FO-Klauselmengen

Universelle (skolemisierte) FO≠-Sätze in Klauselform:

$$\forall x_1 \dots \forall x_k \; \xi \; \equiv \; \forall x_1 \dots \forall x_k \bigwedge_{C \in K} \bigvee_{\text{q-fr. Kern in KNF}} C$$

 $\xi \equiv K$ für endliche Klauselmenge K über FO^{\neq} -Literalen

FO[≠]-Literale:

relationale Atome oder negierte relationale Atome λ , $\overline{\lambda} \equiv \neg \lambda$

 FO^{\neq} -Klauseln: endliche Mengen C von FO^{\neq} -Literalen

für
$$C = \{\lambda_1, \dots, \lambda_k\}$$
: $C \equiv \bigvee C = \bigvee_{i=1,\dots,k} \lambda_i$

 FO^{\neq} -Klauselmengen: Mengen K von FO^{\neq} -Klauseln

Klauselmengen und universell-pränexe Sätze

Semantisch identifiziere Klauselmenge mit Satzmenge:

$$K \equiv \{ \underbrace{\forall x_1 \dots \forall x_n}_{\text{alle Variablen in } C} \bigvee C : C \in K \}$$

$$(\equiv \underbrace{\forall x_1 \dots \forall x_n}_{\text{C} \in K} \bigvee C \text{ für endliches } K)$$

$$\underset{\text{alle Variablen in } K}{\text{alle Variablen in } K}$$

Korrespondenzen

endliche universell-pränexe

 FO^{\neq} Klauselmengen FO^{\neq} -Sätze

 $FO^{\neq} \text{ Klauselmengen } !$

 FO^{\neq} -Satzmengen

Übersetzungs-Beispiel

$$\varphi = \forall x \forall y (Rxy \to (Qx \leftrightarrow \neg Qy))$$

relevante Atome: $\alpha = Rxy$, $\beta_1 = Qx$ und $\beta_2 = Qy$

$$\varphi = \forall x \forall y (\alpha \to (\beta_1 \leftrightarrow \neg \beta_2))$$

Kern von φ in KNF (z.B.):

$$(\neg \alpha \vee \beta_1 \vee \beta_2) \wedge (\neg \alpha \vee \neg \beta_2 \vee \neg \beta_1)$$

$$K = \{ \{\neg \alpha, \beta_1, \beta_2\}, \{\neg \alpha, \neg \beta_1, \neg \beta_2\} \}$$
$$= \{ \{\neg Rxy, Qx, Qy\}, \{\neg Rxy, \neg Qy, \neg Qx\} \}$$

Grundinstanzen-Resolution (GI)

Übertragung von AL-Resolution gemäß Reduktionsansatz ähnlich wie schon für andere Erfüllbarkeitsargumente

Grundinstanzen einer Klausel C über Literalen $\lambda \in FO_n^{\neq}$:

$$C(t_1/x_1,\ldots,t_n/x_n):=\{\lambda(t_1/x_1,\ldots,t_n/x_n)\colon \lambda\in C\}$$
 mit $t_i\in T_0(S)$

Grundinstanzenmenge einer Klauselmenge K:

$$GI(K) := \{C(t_1/x_1, \ldots) : C \in K, t_i \in T_0(S)\}$$

• es gilt $K \models GI(K)$.

und aus dem Satz von Herbrand:

 \bullet K und GI(K) erfüllbarkeitsäquivalent.

GI-Resolution: Resolventen

 C_1, C_2, C Klauseln von variablenfreien $\mathrm{FO}^{\neq}(S)$ -Literalen

C ist **Resolvente** von C_1 und C_2 (bezüglich des Literals λ), wenn

$$\lambda \in C_1, \quad \overline{\lambda} \in C_2, \quad \text{ und } C = (C_1 \setminus \{\lambda\}) \cup (C_2 \setminus \{\overline{\lambda}\})$$

$$C_1 = \{\lambda_1, \dots, \lambda_k, \underline{\lambda}\}\$$
 $C_2 = \{\lambda'_1, \dots, \lambda'_\ell, \overline{\underline{\lambda}}\}$

$$C = \{\lambda_1, \dots, \lambda_k, \lambda'_1, \dots, \lambda'_\ell\}$$

Zu Klauselmenge K über variablenfreien $FO^{\neq}(S)$ -Literalen:

 $Res^*(K) = Abschluß von K unter Resolventenbildung$

Beispiel

Über Grundinstanzen von

$$\{\neg Rxy, Qx, Qy\}$$
, $\{\neg Rxy, \neg Qx, \neg Qy\}$ und $\{Rxx, Rxffx\}$:

$$\forall x \forall y (\neg Rxy \lor Qx \lor Qy)$$

$$\forall x \forall y (\neg Rxy \lor \neg Qx \lor \neg Qy)$$

$$\forall x (Rxx \lor Rxffx)$$

$$\models Rcffc$$

Resolutionssatz

Korrektheit und **Vollständigkeit** von GI-Resolution für die Unerfüllbarkeit von universell-pränexen $FO^{\neq}(S)$ -Satzmengen in Klauselform:

Resolutionssatz: Für $FO^{\neq}(S)$ -Klauselmengen K sind äquivalent:

- (i) K unerfüllbar.
- (ii) GI(K) unerfüllbar.
- $(iii) \quad \Box \in \operatorname{Res}^*(\operatorname{GI}(K)).$

Beweis:

 $(iii) \Rightarrow (i)$: $C \in \text{Res}^*(GI(K))$ impliziert, dass $K \models C$

 $\Box \equiv 0$ unerfüllbar.

 $(i) \Leftrightarrow (ii)$: Erfüllbarkeitsäquivalenz (Herbrand).

 $(ii) \Rightarrow (iii)$: Vollständigkeit von AL Resolution + Reduktion.

Allgemeinere Resolution: Termunifikation

Idee: nicht notwendig zu Grundinstanzen absteigen

Resolution nach Substitution von Termen mit Variablen

Substitutionsinstanz zu $\sigma = (t_1, \ldots, t_n) \in T(S)^n$:

$$C^{\sigma} = \{\lambda^{\sigma} : \lambda \in C\} = \{\lambda(t_1/x_1, \dots, t_n/x_n) : \lambda \in C\}$$

Resolution von C_1 und C_2 zu C falls für geeignete σ_1 und σ_2 :

$$\lambda \in C_1^{\sigma_1}, \overline{\lambda} \in C_2^{\sigma_2}, C = (C_1^{\sigma_1} \setminus \{\lambda\}) \cup (C_2^{\sigma_2} \setminus \{\overline{\lambda}\})$$

Beispiel

 $\forall x \forall y \big(\neg Rxy \lor Qx \lor Qy \big), \forall x \forall y \big(\neg Rxy \lor \neg Qx \lor \neg Qy \big), \forall x \big(Rxx \lor Rxffx \big) \models \forall x Rxffx$

Sequenzenkalkül

Allgemeingültigkeitsbeweise (für bel. FO-Formeln/Sätze)

Gegenstand: FO-Sequenzen $\Gamma \vdash \Delta$

für endliche Γ, Δ Multisets aus FO(S)

 $\Gamma \vdash \Delta$ allgemeingültig wenn $\bigwedge \Gamma \models \bigvee \Delta$

Beweisziel: Ableitung allgemeingültiger Sequenzen

Korrektheit: Jede ableitbare Sequenz ist allgemeingültig.

Vollständigkeit: Jede allgemeingültige Sequenz ist ableitbar.

(schwache Form, wird später verschärft)

Sequenzenkalkül: Regeln und Korrektheit

Format von Sequenzenregeln (wie in AL): $\frac{Prämissen}{Konklusion}$

Konklusionen von Regeln ohne Prämisssen: Axiome

Ableitbare Sequenzen:

ausgehend von Axiomen (in endlich vielen Schritten) durch Anwendung von Sequenzenregeln erzeugte Sequenzen

Korrektheit:

Jede ableitbare Sequenz ist allgemeingültig.

Die Korrektheit folgt aus der Korrektheit der einzelnen Regeln:

- die Axiome sind allgemeingültige Sequenzen.
- für Regeln mit Prämissen:

Prämissen allgemeingültig \Rightarrow Konklusion allgemeingültig.

Regeln des Sequenzenkalküls

FO Sequenzenkalkül \mathcal{SK} , drei Gruppen von Regeln:

- AL Regeln (wie AL-Sequenzenkalkül).
- Quantorenregeln (neu): Einführung von \forall oder \exists links/rechts. $(\forall L), (\forall R), (\exists L), (\exists R).$
- Gleichheitsregeln (neu): Umgang mit Term-Gleichheiten.
 (=), (Sub).

 $AL + Quantorenregeln: vollständiger Beweiskalkül <math>\mathcal{SK}^{\neq}$ für FO^{\neq} .

 \mathcal{SK}^{\neq} + Gleichheitsregeln: vollständiger Beweiskalkül \mathcal{SK} für FO.

Zusätzlich (nicht notwendig aber natürlich) in \mathcal{SK}^+ :

• Schnittregel (modus ponens, Kettenschluss)

Sequenzenkalkül: Quantorenregeln

(O.B.d.A.: y frei für x in φ wenn wir schreiben $\varphi(y/x)$)

$$(\forall L) \quad \frac{\Gamma, \forall x \varphi, \varphi(t/x) \vdash \Delta}{\Gamma, \forall x \varphi \vdash \Delta} \qquad (\forall R) \quad \frac{\Gamma \vdash \Delta, \varphi(y/x)}{\Gamma \vdash \Delta, \forall x \varphi}$$

$$\text{falls } y \text{ nicht in } \Gamma, \Delta, \forall x \varphi$$

$$(\exists L) \quad \frac{\Gamma, \varphi(y/x) \vdash \Delta}{\Gamma, \exists x \varphi \vdash \Delta} \qquad (\exists R) \quad \frac{\Gamma \vdash \Delta, \exists x \varphi, \varphi(t/x)}{\Gamma \vdash \Delta, \exists x \varphi}$$

falls y nicht in $\Gamma, \Delta, \exists \varphi$

Korrektheit prüfen!

Sequenzenkalkül: Gleichheitsregeln

$$(=) \qquad \frac{\Gamma, t = t \vdash \Delta}{\Gamma \vdash \Delta}$$

(Sub)
$$\frac{\Gamma, \varphi(t'/x), t = t', \varphi(t/x) \vdash \Delta}{\Gamma, t = t', \varphi(t'/x) \vdash \Delta}$$

Es ist tatsächlich ausreichend, diese Regeln for alle atomaren Formeln P statt φ zu fordern.

Übung: Zeige, dass

$$\Gamma, t = t', \varphi(t/x) \vdash \Delta, \varphi(t'/x)$$

ableitbar ist (siehe S. Negri, J. van Plato: Structural Proof Theory, CUB 2001).

Sequenzenkalkül: Schnittregel (optional)

$$(\mathsf{Schnittregel}\;(\mathsf{CUT})) \qquad \frac{\Gamma \vdash \Delta, \varphi}{\Gamma \vdash \Delta} \qquad \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \Delta}$$

Schnitteliminationssatz (G. Gentzen 1935): Jeder Beweis im Sequenzenkalkül mit Schnittregel läßt sich in einen Beweis ohne Gebrauch der Schnittregel umformen.

Beweis: Sehr kompliziert (Gegenstand der sognannten Beweistheorie).

Beweise B mit Schnitt der Größe |B|, so dass jeder schnittfreie Beweis derselben Konklusion $\geq 2_{|B|}$ groß ist, wobei $2_0 := 1$ und $2_{n+1} := 2^{2_n}$ (Statman 1979).

Korrektheit und Vollständigkeit

Ableitbarkeit aus Theorie $\Phi \subseteq FO_0$:

 φ

ableitbar aus Φ $[\Phi \vdash \varphi]$ gdw.

für geeignetes endl. $\Gamma_0 \subseteq \Phi$ (Voraussetzungen) ist $\Gamma_0 \vdash \varphi$ ableitbar.

\Phi konsistent (widerspruchsfrei) gdw. *nicht* $\Phi \vdash \emptyset$.

Vollständigkeit (starke Form)

$$\Phi \models \varphi \Rightarrow \Phi \vdash \varphi$$

 Φ konsistent \Rightarrow Φ erfüllbar

Korrektheit

$$\Phi \vdash \varphi \Rightarrow \Phi \models \varphi$$

 Φ erfüllbar \Rightarrow Φ konsistent

Gödelscher Vollständigkeitssatz (K. Gödel 1929)

Satz (Vollständigkeit des Sequenzenkalküls \mathcal{SK}^+):

Für jede Satzmenge $\Phi \subseteq FO_0(S)$ und jeden Satz $\varphi \in FO_0(S)$ gelten:

- $\Phi \models \varphi$ gdw. $\Phi \vdash \varphi$, hier ,, \vdash " Herleitbarkeit in \mathcal{SK}^+
- ullet Φ erfüllbar gdw. Φ konsistent.

Bemerkung zu Herbrand und Vollständigkeit

Die Existenz eines vollständigen Kalküls ist bereits implizit im Satz von Herbrand und der Existenz eines vollständigen Kalküls für die Aussagenlogik (Resolution): Sei Φ eine beliebige Satzmenge und φ ein Satz. Sei Φ^S die Menge der Skolemnormalformen $\forall x\,\psi_{qf}^S(x)$ (x auch Tupel) der Sätze $\psi\in\Phi$ und φ^H die Herbrandnormalform von φ Mit dem Satz von Herbrand (für offene Theorien) folgt:

$$\Phi \models \varphi \iff \bigwedge_{j=1}^k \bigwedge_{i=1}^n \psi_{qf,j}^S(s_i) \to \bigvee_{l=1}^m \varphi_{qf}^H(t_l) \in \mathsf{TAUT}$$

für geeignetes $\{\psi_1, \ldots, \psi_k\} \subseteq \Phi$ und Termtupel s_i, t_l .

Ersetze nun in der Tautologie alle Terme, die mit einer Skolemoder Herbrand-Funktion beginnen, ihrer Größe nach durch neue Variablen. Die entstehende aussagenlogische Formel ist weiterhin eine Tautologie, aus der man durch geeignete Quantoreinführungsregeln und Kontraktion

$$\bigwedge_{j=1}^{k} \psi_j \to \varphi$$

ableiten kann (Details nicht ganz einfach). Mit diesen Regeln (plus Resolution) folgt also

$$\Phi \vdash \varphi$$
.

Zentrale Folgerungen

- Kompaktheitssatz (wesentlich neuer Zugang)
- Allgemeingültigkeit rekursiv aufzählbar (aber: nicht entscheidbar!)
- (aus dem Beweis) Jede konsistente Satzmenge über einer abzählbaren Sprache hat bereits ein abzählbares Modell (Satz von Löwenheim-Skolem).

Vollständigkeitsbeweis (Idee)

Zu zeigen: Konsistenz ⇒ Erfüllbarkeit

nicht-Ableitbarkeit best. Sequenzen

⇒ Existenz eines Modells

Henkin-Theorien 1 (L. Henkin 1949)

Sei Φ eine konsistente Satzmenge und T die von Φ axiomatisierte Theorie, d.h. $T:=\{\varphi: \Phi \vdash \varphi\}.$

Definition: Eine Theorie T^{Henkin} heißt **Henkin-Theorie**, falls zu jedem Satz $\exists x \, \varphi(x)$ eine Konstante c existiert mit $\forall x \, \neg \varphi \lor \varphi(c/x) \in T^{\mathrm{Henkin}}$ (inhaltlich: $\exists x \, \varphi \to \varphi((c/x))$).

Zu T sei T^* die wie folgt axiomatisierte erweiterte Theorie: für jeden Satz $\exists x\, \varphi(x)$ aus $\mathcal{L}(T)$ fügen wir ein neues Konstantensymbol c_φ zur Sprache hinzu mit dem neuen Axiom

$$\forall x \neg \varphi \lor \varphi(c_{\varphi}/x).$$

Henkin-Theorien 2

Lemma 1: T^* ist konservativ über T, d.h. falls φ ein Satz in $\mathcal{L}(T)$ ist, d.h. ohne neue Konstanten c_{ψ} (für irgendein ψ), so gilt

$$T^* \vdash \varphi \Rightarrow T \vdash \varphi.$$

Definition: Sei T wie zuvor. Definiere

$$T_0 := T, \ T_{n+1} := (T_n)^*; \ T_\omega := \bigcup_{n \in \mathbb{N}} T_n.$$

Lemma 2: T_{ω} ist eine Henkin-Theorie und ist konservativ über T.

 T_{ω} heißt Henkin-Erweiterung von Φ .

Henkin-Theorien 3

Lemma 3 (Lindenbaum): Jede konsistente Theorie ist in einer maximal-konsistenten Theorie enthalten.

Lemma 4: Sei T_{ω}^{M} eine maximal-konsistente Erweiterung von T_{ω} . Dann ist T_{ω}^{M} ebenfall eine Henkin-Theorie.

 T_{ω}^{M} heißt maximal-konsistente Henkin-Erweiterung von Φ (nicht eindeutig bestimmt).

Henkin-Methode

Zu konsistentem Φ finde maximal-konsistente Henkin-Erweiterung T_ω^M von $\Phi.$

 FO^{\neq} (ohne Gleichheit): Herbrand-Modell aus Henkin-Theorie T_{ω}^{M} .

FO (mit Gleichheit): Quotienten bzgl. der in T_{ω}^{M} postulierten Gleichheitsrelation auf $T_{0}(S)$.

Unentscheidbarkeit von SAT(FO)

Satz von Church und Turing, 1936: SAT(FO) ist unentscheidbar (und somit nach Post nicht rekursiv aufzählbar).

Beweis: Reduktion des Halteproblems für Turing-Maschinen auf SAT(FO): FO ausreichend ausdrucksstark für Kodierung des Verhaltens von TM (in einzelnen Sätzen).

Finde berechenbare Zuordnung

$$\mathcal{M}, w \longmapsto \varphi_{\mathcal{M},w} \in FO_0(S_{\mathcal{M}}),$$

$$\varphi_{\mathcal{M},w} \text{ erfüllbar gdw. } w \xrightarrow{\mathcal{M}} \infty.$$

Idee: $\varphi_{\mathcal{M},w}$ besagt, dass die Konfigurationenfolge in der Berechnung von \mathcal{M} auf w nicht abbricht.

Reduktion des Halteproblems auf SAT(FO)

Zu $\mathcal{M} = (\Sigma, Q, q_0, \delta, q^+, q^-)$: wähle als Signatur $S_{\mathcal{M}}$:

succ Nachfolgerfunktion, 1-st. (Schritt-/Positionszähler)

pred Vorgängerfunktion, 1-st.

0 Konstante

 $R_a = 2$ -st. Relation für $a \in \Sigma \cup \{\Box\}$ (Bandbeschriftung)

 Z_q 1-st. Relation für $q \in Q$ (Zustände)

K 2-st. Relation (Kopfpositionen)

Intendierte Interpretation über \mathbb{Z}

 $(t,i) \in R_a$: in Konfiguration C_t steht ein a in Zelle i.

 $t \in Z_q$: in Konfiguration C_t ist \mathcal{M} im Zustand q.

 $(t,i) \in K$: in Konfiguration C_t steht der Kopf bei Zelle i.

$$\varphi_{\mathcal{M},w} := \varphi_0 \wedge \varphi_{\mathsf{start}} \wedge \varphi_\delta \wedge \varphi_\infty \ \mathcal{M} = (\Sigma, Q, q_0, \delta, q^+, q^-),$$
 $w = a_1 \dots a_n$, wobei

$$\varphi_0 := \begin{cases} \forall x \; (\mathsf{pred} \, \mathsf{succ} \, x = x \; \wedge \; \mathsf{succ} \, \mathsf{pred} \, x = x) \\ \forall t \forall y \; \neg (R_a t y \wedge R_{a'} t y) & \text{für } a \neq a' \\ \forall t \; \neg (Z_q t \wedge Z_{q'} t) & \text{für } q \neq q' \\ \forall t \forall y \forall y' \; ((K t y \wedge K t y') \to y = y') \end{cases}$$

$$\begin{split} \varphi_{\text{start}} &:= K00 \wedge Z_{q_0} 0 \wedge \begin{bmatrix} \bigwedge_{i=1}^n R_{a_i} 0 \operatorname{succ}^i 0 \\ \wedge \forall y \left(\left(\bigwedge_{i=1}^n \neg y = \operatorname{succ}^i 0 \right) \to R_\square 0 y \right) \end{bmatrix} \\ \varphi_{\delta} &:= \forall t \forall t' \left(t' = \operatorname{succ} t \to \psi(t,t') \right) \operatorname{wobei} \psi(t,t') \operatorname{Konj. der Form.} \\ & \forall y \left((Z_q t \wedge K t y \wedge R_b t y) \to (Z_{q'} t' \wedge K t' \operatorname{succ} y \wedge R_{b'} t' y) \right) \operatorname{für} \delta(q,b) = (b',>,q') \\ & \forall y \left((Z_q t \wedge K t y \wedge R_b t y) \to (Z_{q'} t' \wedge K t' \operatorname{pred} y \wedge R_{b'} t' y) \right) \operatorname{für} \delta(q,b) = (b',<,q') \\ & \forall y \left((Z_q t \wedge K t y \wedge R_b t y) \to (Z_{q'} t' \wedge K t' y \wedge R_{b'} t' y) \right) \operatorname{für} \delta(q,b) = (b',\circ,q') \\ & \forall y,y' \left((K t y \wedge y \neq y') \to \bigwedge_a (R_a t y' \leftrightarrow R_a t' y') \right) \\ \varphi_{\infty} & := \forall t \ \neg \left(Z_q + t \vee Z_q - t \right) \end{split}$$

- $w \xrightarrow{\mathcal{M}} \infty \Rightarrow \varphi_{\mathcal{M},w}$ erfüllbar, $w \xrightarrow{\mathcal{M}} \mathrm{STOP} \Rightarrow \varphi_{\mathcal{M},w}$ unerfüllbar.

Weitere zentrale Unentscheidbarkeitsaussagen

FINSAT(FO): Sätze, die in **endlichen** Modellen erfüllbar sind beachte: FINSAT(FO) ist rekursiv aufzählbar.

Variation der Reduktion aus Church/Turing liefert:

Satz von Traktenbrot: FINSAT(FO) ist unentscheidbar.

Sätze von K. Gödel und A. Tarski

$$\mathcal{N}=(\mathbb{N},+,\cdot,0,1,<)$$
, $\operatorname{Th}(\mathcal{N}):=\left\{ arphi\in\operatorname{FO}_{0}\colon\mathcal{N}\modelsarphi\right\}$ die erststufige Theorie der Arithmetik.

Satz von Tarski (1933):

 $\operatorname{Th}(\mathcal{N})$ ist nicht arithmetisch definierbar, also nocht nicht einmal semi-entscheidbar.

1. Unvollständigkeitssatz von Gödel (1931):

Keine rekursiv aufzählbare Axiomatisierung der Zahlentheorie beweist alle \mathcal{N} -wahren Sätze.

Beide Sätze basieren auf unterschiedlichen formalisierten Versionen der Lügner-Antinomie!

Semantische Antinomien: die Lügner-Antinomie (Eubulides 4.Jh.v.C.)

Dieser Satz ist falsch!

Vorbereitung: Primitiv-rekursive Funktionen

Definition 1 Eine Funktion $f: \mathbb{N} \times ... \times \mathbb{N} \to \mathbb{N}$ heißt **primitiv-rekursiv**, falls f durch einfache Rekursionen aus $(\underline{x} = x_1, ..., x_k)$:

$$N(x) = 0, S(x) = x + 1, P_i^k(\underline{x}) = x_i$$
 (Ausgangsfunktionen)

hervorgeht. Beispiele:

(i)
$$x + 0 := x$$
, $x + (y + 1) := (x + y) + 1$ (Addition),

(ii)
$$x \cdot 0 := 0$$
, $x \cdot (y+1) := x \cdot y + x$ (Multiplikation).

Formalisierte Zahlentheorie der 1. Stufe: Peano Arithmetik PA

- Alle Axiome und Regeln der Logik (der 1. Stufe).
- Axiome der Gleichheit.
- Nachfolgeraxiome: $x + 1 = y + 1 \rightarrow x = y, \ x + 1 \neq 0.$
- Definierende Axiome für die prim.-rek. Funktionszeichen.
- Axiomschema der Induktion

IA:
$$\varphi(0) \wedge \forall x (\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x \varphi(x)$$

für alle Formeln $\varphi(x)$ von $\mathcal{L}(PA)$.

Gödelisierung

Prim.-rek. Folgenkodierung: Endliche Folgen natürlicher Zahlen $\langle x_1, \dots x_n \rangle$ können durch Zahlen prim.-rek. kodiert werden.

Bäume werden als Folgen (und damit Zahlen) kodiert.

Terme, Formeln, Beweise sind endliche Bäume. Daher: Es gibt prim.rek. Prädikat $Bew_{\rm PA}(x,y)$ mit $Bew_{\rm PA}(x,y)$ gdw.

,,x ist Kode eines PA-Beweises des Satzes mit Kode y".

Wir schreiben $[\varphi]$ für den Kode des Satzes φ .

Das Fixpunktlemma

Fixpunktlemma: $\Phi(x)$ sei eine Formel von $\mathcal{L}(PA)$. Dann kann man einen Satz $\varphi \in \mathcal{L}(PA)$ konstruieren mit

$$PA \vdash \varphi \leftrightarrow \Phi(\lceil \varphi \rceil).$$

Insbesondere:

$$\mathcal{N} \models \varphi$$
 genau dann, wenn $\mathcal{N} \models \Phi(\lceil \varphi \rceil)$,

d.h. φ sagt über sich selbst aus, Φ zu erfüllen.

Definition (Wahrheitsprädikat): Eine Formel $W(x) \in \mathcal{L}(PA)$ ist ein **Wahrkeitsprädikat** für die Zahlentheorie, falls für alle Sätze $\varphi \in \mathcal{L}(PA)$ gilt

$$\mathcal{N} \models \varphi$$
 genau dann, wenn $\mathcal{N} \models W(\lceil \varphi \rceil)$.

"Wahrheit" ist kompliziert!

Satz (A. Tarski, 1933): Es gibt kein Wahrheitsprädikat W(x) in $\mathcal{L}(\mathsf{PA})$ für die Zahlentheorie der ersten Stufe.

Beweis: Angenommen W(x) sei Wahrheitsprädikat.

Fixpunktlemma (angewendet auf $\neg W(x)$) liefert "Lügner"-Satz L mit

$$\mathcal{N} \models L \text{ gdw. } \mathcal{N} \models \neg W(\lceil L \rceil) \text{ gdw. } \mathcal{N} \not\models W(\lceil L \rceil).$$

Andererseit (W Wahrkeitsprädikat)

 $\mathcal{N} \models L$ genau dann, wenn $\mathcal{N} \models W(\lceil L \rceil)$, also

 $\mathcal{N} \models W(\lceil L \rceil)$ genau dann, wenn $\mathcal{N} \not\models W(\lceil L \rceil)$

Widerspruch!

Gödels 1. Unvollständigkeitssatz

Satz (K. Gödel 1931): Sei \mathcal{T} eine Erweiterung von PA um eine rekursiv aufzählbare Menge von (\mathcal{N})-wahren Axiomen. Dann gibt es einen wahren Satz $\varphi \in \mathcal{L}(PA)$, der in \mathcal{T} nicht beweisbar ist:

$$\mathcal{N} \models \varphi$$
, aber $\mathcal{T} \not\models \varphi$.

Beweisskizze: Sei S_1 die Menge aller wahren Sätze, d.h.

$$S_1 = \{ \varphi \in \mathcal{L}(\mathsf{PA}) : \mathcal{N} \models \varphi \}$$

und S_2 die Menge aller \mathcal{T} -beweisbaren Sätze, d.h.

$$S_2 := \{ \varphi \in \mathcal{L}(\mathsf{PA}) : \mathcal{T} \vdash \varphi \}$$

Da $\mathbb{N} \models \mathcal{T}$, gilt $S_2 \subseteq S_1$. Es gibt ein Beweisbarkeitsprädikat $B_{\mathcal{T}} :\equiv \exists x \, Bew_{\mathcal{T}}(x,y)$, aber kein Wahrheitsprädikat W. Also $S_1 \neq S_2$ und somit existiert ein Satz $\varphi \in S_1 \setminus S_2$.

Formalisierte Widerspruchfreiheit (Konsistenz):

$$KON_{\mathcal{T}} := \neg B_{\mathcal{T}}(\lceil 0 = 1 \rceil)$$
(,,0=1 ist in \mathcal{T} nicht beweisbar")

Gödels 2. Unvollständigkeitssatz: \mathcal{T} ist genau dann konsistent, wenn $\mathcal{T} \not\vdash \mathrm{KON}_{\mathcal{T}}$, d.h. genau dann, wenn \mathcal{T} nicht seine eigene Konsistenz beweist.

Ausblick: entscheidbare Fragmente von FO

über relationalen Signaturen ist SAT z.B. entscheidbar für:

pränexe $\exists^* \forall^*$ -Sätze

pränexe gleichheitsfreie $\exists^* \forall \forall \exists^*$ -Sätze

pränexe $\exists^* \forall \exists^* \text{-Sätze}$

FO-Sätze mit nur zwei Variablensymbolen

Ausblick: Andere Logiken (Beispiele)

Angewandte Modallogiken:

Anwendungen in der Wissensrepräsentation, KI

Fragment(e) von FO: eingeschränkte Quantifizierung

längs Kanten in Transitionssystemen;

Formeln mit einer freien Variablen

SAT entscheidbar

Temporallogiken LTL, CTL, μ -Kalkül

Anwendungen in Verfikation, model checking für

Transitionssysteme, (verzweigte) Prozesse, etc.

SAT entscheidbar, für viele Zwecke ausdrucksstärker als FO

ML: Modallogik

Hier über Σ -Transitionssystemen,

$$\mathsf{zu}\ S = \{E_a \colon a \in \Sigma\} \cup \{P_i \colon 1 \le i \le n\}$$

Formeln von $\mathrm{ML}(S)$ sprechen über einzelne Zustände in

 Σ -Transitionssystemen mit atomaren

Zustandseigenschaften p_i korrespondieren zu P_i

Syntax von $\mathrm{ML}(S)$

atomare Formeln: \bot , \top , p_i (wie AL_n)

AL Junktoren \wedge, \vee, \neg wie üblich

modale Quantifizierung: $\Box_a \varphi$, $\diamondsuit_a \varphi$ für jedes $a \in \Sigma$

Semantik von ML(S) als Fragment von FO(S)

$$\Box_a \varphi(x) \equiv \forall y \left(E_a x y \to \varphi(y) \right) : \quad \forall y \left(\left(x \xrightarrow{a} y \right) \to \varphi(y) \right)$$

$$\diamondsuit_a \varphi(x) \equiv \exists y \left(E_a x y \land \varphi(y) \right) : \quad \exists y \left(\left(x \xrightarrow{a} y \right) \land \varphi(y) \right)$$

$$\diamondsuit_a \varphi(x) \equiv \exists y \left(E_a x y \land \varphi(y) \right) : \exists y \left((x \xrightarrow{a} y) \land \varphi(y) \right)$$

Monadische Logik zweiter Stufe: MSO

Monadische zweite Stufe MSO:

Quantifizierung auch über alle Teilmengen der Trägermenge es existiert *kein* vollständiges Beweissystem

Allgemeingültigkeit nicht einmal rekursiv aufzählbar

aber SAT(MSO) entscheidbar über interessanten Strukturklassen: z.B. Wortmodelle, lineare Ordnungen, Bäume enger Zusammenhang mit Automatentheorie

Satz von Büchi: Reguläre Sprachen = MSO definierbare Wortmodellklassen.

Konstruktive ("intuitionistische") Logik (L.E.J. Brouwer, A. Heyting)

Die Brouwer-Heyting-Kolmogorov ('BHK')
Interpretation der logischen Konstanten (intendierte ,,konstruktive" Semantik):

- (i) Es gibt keine Konstruktion (konstruktiven Beweis) für ⊥.
- (ii) Eine Konstruktion für $\varphi \wedge \psi$ ist ein Paar (q,r) von Konstruktionen, wobei q Konstruktion für φ und r Konstruktion für ψ ist.
- (iii) Eine Konstruktion für $\varphi \vee \psi$ ist ein Paar (n,q), wobei $n \in \mathbb{N}$ und q Konstruktion für φ ist, falls n=0, und für ψ , falls $n \neq 0$.

- (iv) Eine Konstruktion p für $\varphi \to \psi$ ist ein Programm, das jede Konstruktion q für φ in eine Konstruktion p(q) für ψ überführt.
- (v) Eine Konstruktion für $\forall x \, \varphi(x)$ ist ein Programm p, das jedes Element d (des intendierten Universums) in eine Konstruktion p(d) für $\varphi(d)$ überführt.
- (vi) Eine Konstruktion für $\exists x \varphi(x)$ ist ein Paar (d,q), wobei d ein Element des Universums ist und q eine Konstruktion für $\varphi(d)$.

Beweiskalküle für intuitionistische Prädikatenlogik IL

Als logische Konstanten benötigen wir $\land, \lor, \rightarrow, \bot, \exists, \forall$.

Abkürzungen:

$$\neg \varphi := \varphi \to \bot$$
, $\varphi \leftrightarrow \psi := (\varphi \to \psi) \land (\psi \to \varphi)$.

Sequenzenkalkül \mathcal{SK}_i für IL: Wie \mathcal{SK} , aber mit der Bedingung, dass der Kontext Δ so ist, dass rechts von \vdash stets höchstens eine Formel steht (was einige weitere Änderungen induziert).

Sequenzenkalkül \mathcal{SK}_i

$$(\mathsf{Ax}) \quad \overline{\Gamma, p \vdash p} \quad (p \in \mathcal{V})$$

$$(0-Ax) \frac{\Gamma}{\Gamma, 0 \vdash \varphi}$$

$$(1-Ax) \frac{\Gamma + 1}{\Gamma + 1}$$

$$(0-Ax) \frac{\Gamma, 0 \vdash \varphi}{\Gamma, 0 \vdash \varphi}$$

$$(\lor L) \frac{\Gamma, \varphi \vdash \chi}{\Gamma, \varphi \lor \psi \vdash \chi}$$

$$(\land L) \frac{\Gamma, \varphi, \psi \vdash \chi}{\Gamma, \varphi \land \psi \vdash \chi}$$

$$(\vee R) \quad \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \text{ (analog mit } \psi)$$

$$(\wedge L) \quad \frac{\Gamma, \varphi, \psi \vdash \chi}{\Gamma, \varphi \land \psi \vdash \chi}$$

$$(\wedge R) \quad \frac{\Gamma \vdash \varphi \qquad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi}$$

$$(\rightarrow L) \frac{\Gamma, \varphi \rightarrow \psi \vdash \varphi}{\Gamma, \varphi \rightarrow \psi \vdash \chi} \qquad (\rightarrow R) \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi}$$

$$(\to R) \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

$$(\forall \mathbf{L}) \quad \frac{\Gamma, \forall x \varphi, \varphi(t/x) \vdash \psi}{\Gamma, \forall x \varphi \vdash \psi} \qquad (\forall \mathbf{R}) \quad \frac{\Gamma \vdash \varphi(y/x)}{\Gamma \vdash \forall x \varphi}$$
 falls y nicht in $\Gamma, \forall x \varphi$

$$(\exists \mathbf{L}) \quad \frac{\Gamma, \varphi(y/x) \vdash \psi}{\Gamma, \exists x \varphi \vdash \psi} \qquad (\exists \mathbf{R}) \quad \frac{\Gamma \vdash \varphi(t/x)}{\Gamma \vdash \exists x \varphi}$$
 falls y nicht in $\Gamma, \psi, \exists \varphi$

Ein Hilbert-Kalkül H_i für IL: streiche aus bisherigem alternativen Hilbert-Kakül das Schema: $\neg \neg \varphi \rightarrow \varphi$.

Axiome von H_i :

$$(i) \varphi \to (\psi \to \varphi),$$

$$(ii) (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)),$$

$$(iii) \varphi \to \varphi \lor \psi, \quad (iv) \psi \to \varphi \lor \psi,$$

$$(v) (\varphi \to \chi) \to ((\psi \to \chi) \to (\varphi \lor \psi \to \chi)),$$

$$(vi) \varphi \land \psi \to \varphi, \quad (vii) \varphi \land \psi \to \psi,$$

$$(viii) \varphi \to (\psi \to \varphi \land \psi),$$

$$(x) \perp \to \varphi,$$

$$(xi) \forall x \varphi \to \varphi[t/x], \quad (xii) \varphi[t/x] \to \exists x \varphi,$$

wobei in (xi), (xii) der Term t frei für x in φ sein muss.

Logische Regeln von H_i:

$$\frac{\varphi \quad , \quad \varphi \to \psi}{\psi}$$

$$\frac{\varphi \to \psi}{\varphi \to \forall x \psi},$$

$$\frac{\psi \to \varphi}{\exists x \psi \to \varphi},$$

wobei in den letzten beiden Regeln x nicht frei in φ vorkommen darf.

Gleichheitsaxiome: wie für FO.

Ein vollständiger Kalkül H für FO ensteht aus H_i durch Hinzufügung des Schemas vom ausgeschlossenen Dritten

$$\varphi \vee \neg \varphi$$

oder von

$$\neg \neg \varphi \rightarrow \varphi$$
.

Beispiele: konstruktiv beweisbar: $(\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$, jedoch nicht $(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$.

Konstruktiv: $\neg \exists x \, \varphi(x) \leftrightarrow \forall x \, \neg \varphi(x)$,

jedoch **nicht:** $\neg \forall x \varphi(x) \rightarrow \exists x \neg \varphi(x)$.

Satz (Gödel 1933): Γ, φ sei aus doppelt negierten atomaren Formeln $\neg \neg R(t_1, \ldots, t_n), \neg \neg s = t$ mittels $\wedge, \rightarrow, \bot, \forall$ aufgebaut. Dann gilt $\Gamma \vdash_{\mathbf{H}} \varphi$ gdw. $\Gamma \vdash_{\mathbf{H}_i} \varphi$.

Da sich in klassischer Logik **jede** Formel logisch äquivalent in obiger Form schreiben läßt, ergibt dies eine **Einbettung** von FO in IL: IL ist eine **Verfeinerung** von FO!

IL läßt sich in einer Erweiterung von FO um einen Modaloperator ("S4") einbetten (Gödel 1933).

Die "mögliche Welten"-Semantik (Kripke 1959) für S4 induziert dann eine vollständige Semantik für IL (Kripke 1962).

Ausblick: entscheidbare Theorien

Beispiele:

entscheidbar	dagegen unentscheidbar
MSO-Theorie von Bäumen (Rabin)	Graphentheorie, FO
$\operatorname{FO-Th}(\mathbb{R},+,\cdot,0,1,<)$ (Tarski)	FO-Th($\mathbb{N}, +, \cdot, 0, 1, <$)
$\operatorname{FO-Th}(\mathbb{N},+,0,1,<)$ (Presburger)	
FO-Theorie abelscher Gruppen	Gruppentheorie, FO

Ausblick: Ausdrucksstärke verschiedener Logiken

Welche Struktureigenschaften können in gegebener Logik formalisiert werden?

Welche Eigenschaften sind nicht ausdrückbar?

z.B. nicht in FO: Endlichkeit der Trägermenge

Zusammenhang von (endlichen) Graphen

gerade Länge endlicher linearer Ordnungen

. . .

Fragen der Ausdrucksstärke

Kernfrage: Welche Logik wofür?

Z.B. bei der Wahl einer Logik als Sprache für Spezifikation, Verifikation, Deduktion Wissensrepräsentation, Datenbankabfragen

Kriterien: algorithmische Eigenschaften beweistheoretische Eigenschaften Ausdrucksstärke

- wie kann man analysieren, was ausdrückbar ist?
- wie erkennt/beweist man, dass etwas *nicht* ausdrückbar ist?

Ehrenfeucht-Fraïssé Spiele

(vgl. Semantikspiel zwischen Verifizierer und Falsifizierer)

Idee: Spielprotokoll für zwei Spieler I und II zum Vergleich zweier Strukturen so, dass \mathcal{A} und \mathcal{B} ähnlich (ununterscheidbar in L) wenn Spieler II Gewinnstrategie hat.

Spieler ${f II}$ muss in der jeweils anderen Struktur nachmachen, was ${f I}$ in einer der Strukturen vorgibt

Spieler I versucht das Spiel auf Unterschiede zu lenken, die das für II unmöglich machen

Verwendung

Wenn \mathcal{A} und \mathcal{B} ununterscheidbar in L, aber verschieden hinsichtlich Eigenschaft E, dann lässt sich E nicht in L ausdrücken

Klassisches Ehrenfeucht-Fraïssé Spiel für FO

Fixiere feste endliche relationale Signatur ${\cal S}$

zB für Wortstrukturen zu Alphabet Σ : $S = \{<\} \cup \{P_a \colon a \in \Sigma\}$

Ununterscheidbarkeitsgrade $\mathcal{W}, \mathbf{m} \equiv_q \mathcal{W}', \mathbf{m}'$

f.a. $\varphi(\mathbf{x}) \in FO(S)$ mit $qr(\varphi) \leq q$:

$$\mathcal{W} \models \varphi[\mathbf{m}] \Leftrightarrow \mathcal{W}' \models \varphi[\mathbf{m}']$$

insbesondere für q=0, $\mathbf{m}=(m_1,\ldots,m_k)$, $\mathbf{m}'=(m'_1,\ldots,m'_k)$ $\mathcal{W},\mathbf{m}\equiv_0 \mathcal{W}',\mathbf{m}'$ gdw. $\rho:(m_i\mapsto m'_i)_{1\leq i\leq k}$ lokaler Isomorphismus

Spielidee: I markiert zukzessive Elemente in $\mathcal W$ oder $\mathcal W'$,

II antwortet in der jeweils anderen Struktur,

II muss $W, \mathbf{m} \equiv_0 W', \mathbf{m}'$ gewährleisten

Diee Spiele $G^q(\mathcal{W}, \mathcal{W}')$ und $G^q(\mathcal{W}, \mathbf{m}; \mathcal{W}', \mathbf{m}')$

Konfigurationen:

 $(\mathcal{W}, \mathbf{m}; \mathcal{W}', \mathbf{m}')$ mit $\mathbf{m} = (m_1, \dots, m_k)$ und $\mathbf{m}' = (m'_1, \dots, m'_k)$ wenn in \mathcal{W} und \mathcal{W}' jeweils k Elemente markiert sind

Zugabtausch in einer Runde:

I markiert in $\mathcal W$ oder in $\mathcal W'$ ein weiteres Element,

II ein Element in der jeweils anderen Struktur

von

$$(\mathcal{W},\mathbf{m};\mathcal{W}',\mathbf{m}')$$

zu Nachfolgekonfiguration

$$(\mathcal{W}, \mathbf{m}, m_{k+1}; \mathcal{W}', \mathbf{m}', m'_{k+1})$$

Gewinnbedingung:

II verliert wenn $W, \mathbf{m} \not\equiv_0 W', \mathbf{m}'$

 $G^q(\mathcal{W},\mathrm{m};\mathcal{W}',\mathrm{m}')$:

Spiel über q Runden mit Startkonfiguration $(\mathcal{W}, \mathbf{m}; \mathcal{W}', \mathbf{m}')$

Ehrenfeucht-Fraïssé Satz

Für alle $q \in \mathbb{N}$, S-Strukturen \mathcal{W} und \mathcal{W}' mit Parametern $\mathbf{m} = (m_1, \dots, m_k)$ in \mathcal{W} und $\mathbf{m}' = (m'_1, \dots, m'_k)$ in \mathcal{W}' sind äquivalent:

- (i) II hat Gewinnstrategie in $G^q(\mathcal{W}, \mathbf{m}; \mathcal{W}', \mathbf{m}')$
- (ii) $\mathcal{W}, \mathbf{m} \equiv_q \mathcal{W}', \mathbf{m}'$

Beweis per Induktion über q. Strategieanalyse! q = 0: trivial.

Gewinnstrategie für eine Runde verlangt gerade Übereinstimmung hinsichtlich Existenzbeispielen für z in allen Formeln $\exists z \varphi(\mathbf{x}, z)$ mit quantorenfreiem φ (warum?)

Gewinnstrategie für q+1 Runden verlangt analog, in der ersten Runde, Übereinstimmung hinsichtlich aller Formeln $\exists z \varphi(\mathbf{x},z)$ mit $\operatorname{qr}(\varphi) \leq q$

Zusammenfassung

Syntax der Aussagenlogik und der Prädikatenlogik

- AL, FO, Terme, freie Variablen, Formeln etc.
- Normalformen für aussagenlogische Äquivalenz: DNF, KNF.
- Normalformen für prädikatenlogische Äquivalenz: pränexe Normalform.
- Erfüllbarkeitsnormalform: Skolemnormalform.
- Gültigkeitsnormalform: Herbrandnormalform.
- Beweiskalküle: Hilbertkalküle, Resolutionskalkül,
 Sequenzenkalkül.

Semantik der Aussagenlogik und der Prädikatenlogik

- Aussagenlogik: Belegungen und Wahrheitsfunktionen.
- Strukturen und Interpretationen zu Signaturen
- Interpretation von Termen in Interpretationen.
- Wahrheit von Formeln (Sätzen) in Interpretationen (Strukturen).
- Modellbeziehung: $\Gamma \models \varphi$.

Lernziele

- Zentrale Begriffe/Konzepte inhaltlich beherrschen und im Kontext sinnvoll anwenden können.
- Zentrale Sätze und Resultate kennen und anwenden können.

Zentrale Sätze

- Kompaktheit (Endlichkeitssätze).
- Satz über Herbrand-Modelle.
- Sätze über Skolem- und Herbrandnormalform.
- Satz von Herbrand.
- Reduktionen von FO auf AL.
- Korrektheits- und Vollständigkeitsaussagen zu Kalkülen.
- Entscheidbarkeit und Unentscheidbarkeit.
- Nichtdefinierbarkeit (Tarski) und Unvollständigkeit (Gödel).

Wiederholung: Beispiele

AL-Formeln auswerten (systematisch: Wahrheitstafel)

 AL -Formeln auf Folgerung bzw. Äquivalenz untersuchen

natürlichsprachliche Bedingungen in AL formalisieren

Unerfüllbarkeit mittels Resolution nachweisen

Allgemeingültigkeit formal im Sequenzenkalkül nachweisen

Folgerungsbeziehungen reduzieren auf

Unerfüllbarkeit/Allgemeingültigkeit

Kompaktheitssatz anwenden

Kalküle rechtfertigen (z.B. Korrektheit von Regeln)

Wiederholung: Beispiele

Umgang mit Strukturen

auch spezielle Strukturen und Klassen wie z.B.

Graphen, Transitionssysteme, relationale DB-Strukturen,

Wortmodelle, linear-temporale Abfolgen, ${\mathcal N}$

Auswerten von Termen und Formeln in Strukturen

PNF, Skolemisieren, Substitutionen ausführen

Herbrandmodelle beschreiben/untersuchen

Unerfüllbarkeit durch Reduktion auf AL nachweisen

GI-Resolution und Sequenzenkalkül in Beispielen

etc.