Human Brain VS Computer

Motivation

- Human mind Computer
- Good at image recognition, pattern recognition etc
- Good at arithmetic calculations

 $2574304 \times e^{354} \div \tan 5.1\pi$

Handwriting recognition

Making precise rules is difficult

```
222422222222222222
444444444444
88888888888
```

Neural Networks

Neural Networks creates own complex pattern recognition rules

Pattern recognition

Training data

Future Prediction

Dataset

Fashion MNIST

We will classify images into 10 fashion items

Trouser (Trouser)

Trouser (Trouser)

Sandal (Sandal)

Shirt (Shirt)

Sneaker (Sneaker)

Pullover (Pullover)

Sandal (Sandal)

Sneaker (Sneaker) Ankle boot (Ankle boot) Trouser (Trouser)

Course Flow

Artificial Neuron

Biological Neuron

Artificial Neuron

Artificial Neuron

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Purchasing a Shirt

•Blue or Not

Sleeves

•Full or half

Fabric

•Cotton or not

Color	Sleeves	Fabric	Calculated Sum	Threshold	Buy / Not Buy
Blue	Half	Non Cotton	7*1 + 4*0 + 2*0 = 7	8	Not buy
Blue	Full	Non Cotton	11	8	Buy
Not Blue	Full	Cotton	6	8	Not Buy

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Removing Binary Restriction

Standard Equation

$$Output = \begin{cases} 0, & w & j \ x_j + b < 0 \\ 1, & w & j \ x_j + b \ge 0 \end{cases}$$

b is called Bias

Graphical Representation

Step Activation function

Sigmoid Activation

$$Output = \begin{cases} 0, & w & j \ x_j + b < 0 \\ 1, & w & j \ x_j + b \ge 0 \end{cases}$$

Sigmoid Activation function

Sigmoid Activation

Sigmoid Activation function

- Sigmoid is better because it is less sensitive to individual observation
- Artificial neuron with sigmoid activation is called sigmoid or logistic neuron

$$\sigma(z) \equiv rac{1}{1+e^{-z}}. \hspace{1.5cm} extit{Output} = \hspace{0.1cm} rac{1}{1+\exp(-\sum_{j}w_{j}x_{j}-b)}.$$

Two types of Stacking

Parallel

Sequential

Parallel Stacking

With parallel stacking we can get multiple outputs with the same input

Sequential Stacking

Why not use a single neuron

Sequential Stacking

Single neuron can handle such linear classification problem

Sequential Stacking

Each neuron can focus on the particular features of the object instead of the final outcome

Nomenclature

Nomenclature

Feed Forward Network — One directional processing

Fully connected network — Output from a neuron goes to all neurons of next layer

Deep Learning

Such artificial neural networks primarily constitutes deep learning

Deep Learning

More number of layers => Deeper network => More complex relationships

Neural Network

How it works

Covered till Now

• What is a neural network

Now we are going to learn

How does a neural network works

Problem Statement

Quick Recap

$$\sigma(z) \equiv rac{1}{1+e^{-z}}$$
 Output = $rac{1}{1+\exp(-\sum_{j}w_{j}x_{j}-b)}$.

Problem Statement

• Establish the values of weights and biases so that predicted output is as close to actual output as possible

Problem Statement

Example

Variables to be established in this neural network

- Weights W1, W2...........W6
- Biases B1, B2, B3

Total - 9 variables

Neural Network

Gradient Descent

- GD is an optimization technique to find minimum of a function
- Better than other technique such as OLS when we have large number of features and complex relationships

Initialization Assign random W and B values Step 1 Forward Calculate final output using these values Step 2 **Propagation** • Estimate error using error function Step 3 **Backward Propagation** • Find those W and B which can reduce this error Step 4 Implementati • Update W and B and repeat from step 2 on of GD Step 5

Process

Neural Network

Gradient Descent

Neural Network

Gradient Descent

- 1. Start at a random point
- 2. Find out the instantaneous slope at that point
- 3. Slightly move in the direction of steepest slope
- 4. Reiterate

Step 4

• Calculate final output using these values

• Estimate error using error function

• Find those W and B which can reduce this error

• Update W and B and repeat from step 2

Assume predicted output = 0.3, actual output = 0

Distance = 0 - 0.3 = -0.3

Error Function $_1 = |-0.3| = 0.3$

Error Function $_2 = (-0.3)^2 = 0.09$

Square function works well with regression but not with classification

Cross Entropy Error Function

$$= -y \log(y') - (1-y) \log(1-y')$$

Error Function

Cross Entropy Error Function

$$= -y \log(y') - (1-y) \log(1-y')$$

Assume actual output = y = 1,

Error = -
$$[1(\log(y')) + (1-1)(\log(1-y'))]$$

Error =
$$-[log(y')]$$

To minimize error, we have to minimize $-\log(y')$

i.e. maximize log(y')

 \Rightarrow Maximize y'

Since y' lies between 0 and 1, y' should be as close to 1 as possible

Error Function

Back Propagation

- Calculate final output using these values
- Estimate error using error function
- Find those W and B which can reduce this error
- Update W and B and repeat from step 2

$$w = w - \alpha \Delta w$$

Step -

$$b = b - \alpha \Delta b$$

lpha is learning rate, Δw and Δb are unit steps

Alpha determines number of steps we take in downward direction

Back Propagation

$$w = w - \alpha \Delta w$$

$$b = b - \alpha \Delta b$$

To find Δw and Δb

We do back propagation

Example

$$w_1 x_1 + w_2 x_2 + b_1 = z$$

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}}$$

Error Function

$$= -y \log(y') - (1-y) \log(1-y')$$

Back Propagation

Step 1 — Initialization

W1	W2	В
2	3	-4

Back Propagation

Step 2 — Forward propagation

x1	x2	у
10	-4	1

$$z = 2 \times 10 + 3 \times -4 + (-4) = 4$$

Applying activation function $\sigma(z) = 0.982$

Back Propagation

Step 3 - Error calculation =
$$-y \log(y') - (1-y) \log(1-y')$$

Υ'	у
0.982	1

$$E = 0.0079$$

Back Propagation

X
1
$$x$$
2
$$w_1x_1 + w_2x_2 + b_1 = z$$

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}}$$
Error Function
$$= -y \log(y') - (1 - y) \log(1 - y')$$

Step 4 − Back Propagation

$$\frac{\partial E}{\partial y'}$$
 = slope of error wrt $y' = \frac{\partial (-1 \times \log(y'))}{\partial y'} = -\frac{1}{y'}$

$$\frac{\partial y'}{\partial z}$$
 = slope of activation function wrt z = $\frac{e^{-z}}{(1 + e^{-z})^2}$

$$\frac{\partial z}{\partial w_1} = x_1 = 10 \qquad \frac{\partial z}{\partial w_2} = x_2 = -4 \qquad \frac{\partial z}{\partial b} = 1$$

Back Propagation *Step* 4 − Back Propagation

$$\frac{\partial E}{\partial y'} = \text{slope of error wrt } y' = \frac{\partial (-1 \times \log(y'))}{\partial y'} = -\frac{1}{y'}$$

$$\frac{\partial y'}{\partial z} = \text{slope of activation function wrt } z = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$\frac{\partial z}{\partial w_1} = x_1 = 10 \qquad \frac{\partial z}{\partial w_2} = x_2 = -4 \qquad \frac{\partial z}{\partial b} = 1$$

To
$$get \frac{\partial E}{\partial w_1}$$
 i. e. Δw_1 we apply chain rule $\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial y'} \times \frac{\partial y'}{\partial z} \times \frac{\partial z}{\partial w_1} = -0.186$

Similarly
$$\frac{\partial E}{\partial w_2} = 0.0746$$
 $\frac{\partial E}{\partial b} = -0.0186$

Back Propagation

$$w1 = w1 - \alpha \Delta w1 = 2 - 5 \times -0.186 = 2.93$$

$$w2 = w2 - \alpha \Delta w2 = 3 - 5 \times 0.0746 = 2.627$$

$$b = b - \alpha \Delta b = -4 - 5 \times -0.0186 = -3.907$$

Back Propagation

Repeat Step 2 -

x1	x2	у
10	-4	1

$$z = 2.9 \times 10 + 2.6 \times -4 + (-3.9 \neq 14.7)$$

Applying activation function $\sigma(z) = 0.999$

Activation Function

Q – Why do we use activation functions

Ans

- To put special boundary conditions on the output
- To introduce non linearity and find complex patterns

Activation Function

Q – What are the different types of activation functions

Q – What are the different types of activation functions

Activation Function

Function	Upper Boundary	Lower Boundary	Class /Reg	Layer
Step	1	0	Classification	Mostly Output
Sigmoid	1	0	Classification	Hidden & Output
Hyperbolic Tangent (TanH)	1	-1	Classification	Hidden & Output
Rectified Linear Unit (ReLU)	0	infinity	Regression/ classification	Hidden

Activation Function

Q – Can Hidden layers and output layers have different activation functions?

Ans - Yes

Activation Function

Q – What is multi class classification? Is there any specific activation function for this?

Ans

- Two classes like 'Yes' or 'No' => Binary Classification
- More than 2 classes like 'shirts', 'trousers' or 'socks' => Multiclass classification
- For multiclass, we use softmax activation

Activation Function

 ${\sf Q}-{\sf What}$ is multi class classification? Is there any specific activation function

for this?

Ans

- For each class we keep one output neuron with sigmoid activation
- All the outputs go into softmax layer where each output is divided by the tota sum to bring the total probability to one

Gradient descent

Q – What is the difference between Gradient descent and stochastic gradient descent

- Stochastic gradient descent => Single training record, forward and backward propagation
- Gradient descent => Full training set, forward and backward propagation
- Mini Batch Gradient descent => small batch of training set, forward and backward propagation

Epoch

Q – What is an Epoch

- Epoch is one cycle through the full training data
- It is different from iteration.
- Example Suppose we have 1000 training records, if we are doing SGD i.e.
 one record is input at a time, then 1000 iterations within one epoch
- If we enter 1000 records 2 time => Epoch is 2

Classification Hyperparameters

Hyperparameter	Typical value
# input neurons	One per input feature
# hidden layers	Depends on the problem, but typically 1 to 5
Hidden activation	ReLU

Hyperparameter	Binary classification	Multilabel binary classification	Multiclass classification
# output neurons	1	1 per label	1 per class
Output layer activation	Logistic	Logistic	Softmax
Loss function	Cross entropy	Cross entropy	Cross entropy

Regression
Hyperparameters

Hyperparameter	Typical value
# input neurons	One per input feature
# hidden layers	Depends on the problem, but typically 1 to 5
# neurons per hidden layer	Depends on the problem, but typically 10 to 100
# output neurons	1 per prediction dimension
Hidden activation	ReLU
Output activation	None
Loss function	MSE

Keras & Tensorflow

Keras is a model-level library, providing high-level building blocks for developing deep-learning models ! Model-Level Keras TensorFlow / Theano / CNTK / ... Lower-Level CPU/GPU-Level CUDA / cuDNN BLAS, Eigen **GPU** CPU

Keras & Tensorflow

