Вопросы и задания к занятию № 6

1. Укажите, при каких значениях E и \mathcal{E} объект $M = \langle E, \mathcal{E} \rangle$ будет являться матроидом:

1)
$$E = \{1, 2, 3, 4\}$$
 $\mathcal{E} = \{\{\emptyset\}, \{1\}, \{2\}, \{3\}\}\}$
2) $E = \{1, 2, 3\}$ $\mathcal{E} = \{\{\emptyset\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}$
3) $E = \{1, 2, 3, 4, 5\}$ $\mathcal{E} = \{\{\emptyset\}, \{1\}, \{2\}, \{4, 5\}, \{1, 2, 3\}, \{1, 3, 4, \}\}\}$
4) $E = \{1, 2, 3, 4\}$ $\mathcal{E} = \{\{\emptyset\}, \{1\}, \{2\}, \{4\}, \{1, 2\}\}\}$
5) $E = \{1, 2, 3\}$ $\mathcal{E} = \{\{\emptyset\}, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}\}\}$

2. Для каждого варианта 1) – 2) семейства \mathcal{E} подберите такое разбиение $\{E_1, ..., E_k\}$ для множества $E = \{1, 2, 3, 4, 5\}$, чтобы объект $(M = \langle E, \mathcal{E} \rangle)$ стал матроидом выбранных вами разбиений:

1)
$$\mathcal{E} = \{ \{\emptyset\}, \{2\}, \{5\}, \{1\}, \{3\}, \{4\} \}$$

2) $\mathcal{E} = \{ \{\emptyset\}, \{1\}, \{1, 2\}, \{4\} \}$

- 3. Постройте объекты $M = \langle X, I \rangle$ по указанным ниже правилам. Определите, какие из них являются матроидами:
 - 1) Пусть X множество элементов, каждый из которых раскрашен в некоторый цвет. Множество $A \in I$, если все элементы множества A разного цвета.

2)
$$X = \{1, 2, 3, \dots, n\}, \ I = \{A \subset X \mid |A| \le k\}, \ k \le n$$

3) Пусть G=(V, E) — неориентированный граф (множество X=E). Семейство I состоит из всех ацикличных множеств ребер (то есть являющихся лесами) Пример:

- 4. Пусть $M = \langle E, \mathcal{E} \rangle$ матроид, заданный множествами E и \mathcal{E} : $E = \{1, 2, 3, 4, 5\}$ $\mathcal{E} = \{\{\emptyset\}, \{1\}, \{2\}, \{4\}, \{1, 2, \}, \{1, 4\}, \{2, 4\}, \{1, 2, 4, \}\}$ Найдите все максимальные независимые подмножества множества $X = \{1, 2, 3, 5\}$ ($X \subset E$).
- 5. Задача 1: Пусть дана матрица А. Требуется выбрать по одному элементу из каждого столбца так, чтобы их сумма была максимальна.

A:
$$\begin{array}{ccc} 3 & 4 \\ 7 & 5 \end{array}$$

Составьте для данной задачи объект $M = \langle E, \mathcal{E} \rangle$. Будем ли он являться матроидом? Примените для решения задачи «жадный» алгоритм.

6. Задача 2: Пусть дана матрица А. Требуется выбрать по одному элементу из каждого столбца и каждой строки так, чтобы их сумма была максимальна.

Составьте для данной задачи объект $M = \langle E, \mathcal{E} \rangle$. Будем ли он являться матроидом? Примените для решения задачи «жадный» алгоритм. Решите *задачу 1* (из пункта 5) для этой же матрицы с использованием «жадного» алгоритма.