Advanced Statistical Inference Gaussian Processes

Maurizio Filippone Maurizio.Filippone@eurecom.fr

Department of Data Science EURECOM

Introduction

M. Filippone

Introduction

Weight Spac

Function Space

--vample

Optimizing Kerne Parameters

Suggested readings

Gaussian Processes for Machine Learning

Carl E. Rasmussen and Christopher K. I. Williams

Pattern Recognition and Machine Learning

C. Bishop

Gaussian Processes

- Linear models requires specifying a set of basis functions
 - ▶ Polynomials, Trigonometric, ...??
- ▶ Can we use Bayesian inference to let data tell us this?
- ► Gaussian Processes work implicitly with an infinite set of basis functions and learn a probabilistic combination of these

Introduction

M. Filippone

Introduction

Weight Space View

Function Space

xample

Optimizing Kerne Parameters

Gaussian Processes

Gaussian Processes can be explained in two ways

- Weight Space View
 - ▶ Bayesian linear regression with infinite basis functions
- ► Function Space View
 - ► Defined as priors over functions

Introduction

M. Filippone

Introduction

Weight Space

Function Spa

Evampl

Optimizing Kern
Parameters

Introduction

M. Filippone

Introduction

Weight Space

Function Space

Example

Gaussian Processes

Gaussian Processes can be explained in two ways

- ▶ Weight Space View
 - Bayesian linear regression with infinite basis functions
- ► Function Space View
 - Defined as priors over functions

Bayesian Linear Regression - recap

▶ Posterior must be Gaussian

$$p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \sigma^2) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{\Sigma})$$

Covariance:

$$\mathbf{\Sigma} = \left(rac{1}{\sigma^2} \mathbf{X}^\mathsf{T} \mathbf{X} + \mathbf{S}^{-1}
ight)^{-1}$$

Mean:

$$oldsymbol{\mu} = rac{1}{\sigma^2} oldsymbol{\Sigma} oldsymbol{X}^\mathsf{T} \mathbf{t}$$

Predictions

$$p(t_*|\mathbf{X}, \mathbf{t}, \mathbf{x}_*, \sigma^2) = \mathcal{N}(\mathbf{x}_*^\mathsf{T} \boldsymbol{\mu}, \sigma^2 + \mathbf{x}_*^\mathsf{T} \mathbf{\Sigma} \mathbf{x}_*)$$

Introduction

M. Filippone

Introduction

Weight Space

Function Space

xample

Optimizing Kernel Parameters

Introduction

M. Filippone

troduction

Weight Space View

Function Space

Example

Optimizing Kernel Parameters

Bayesian Linear Regression - recap

Modeling observations as noisy realizations of a linear combination of the features:

$$p(\mathbf{t}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\mathbf{X}\mathbf{w}, \sigma^2\mathbf{I})$$

► Gaussian prior over model parameters:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{S})$$

Introducing basis functions

► Imagine transforming the inputs using a set of *D* functions

$$\mathbf{x} o \phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_D(\mathbf{x}))^{\top}$$

- ▶ The functions $\phi_1(\mathbf{x})$ are also known as basis functions
- Define:

$$oldsymbol{\Phi} = \left[egin{array}{cccc} \phi_1(\mathbf{x}_1) & \dots & \phi_D(\mathbf{x}_1) \ dots & \ddots & dots \ \phi_1(\mathbf{x}_N) & \dots & \phi_D(\mathbf{x}_N) \end{array}
ight]$$

Introduction

M. Filippone

Introduction

Weight Space View

View

Example

Optimizing Kerne Parameters

Introduction

M. Filippone

Weight Space View

Function Space

Example

Introducing basis functions

► Applying Bayesian Linear Regression on the transformed features gives

$$p(\mathbf{w}|\mathbf{X},\mathbf{t},\sigma^2) = \mathcal{N}(\boldsymbol{\mu},\mathbf{\Sigma})$$

► Covariance:

$$\mathbf{\Sigma} = \left(rac{1}{\sigma^2}\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \mathbf{S}^{-1}
ight)^{-1}$$

► Mean:

$$oldsymbol{\mu} = rac{1}{\sigma^2} oldsymbol{\Sigma} oldsymbol{\Phi}^\mathsf{T} \mathbf{t}$$

Predictions:

$$p(t_*|\mathbf{X}, \mathbf{t}, \mathbf{x}_*, \sigma^2) = \mathcal{N}(\boldsymbol{\phi}_*^\mathsf{T} \boldsymbol{\mu}, \sigma^2 + \boldsymbol{\phi}_*^\mathsf{T} \mathbf{\Sigma} \boldsymbol{\phi}_*)$$

Introduction

M. Filippone

Introduction

Weight Space View

Function Space

Example

Optimizing Kernel
Parameters

Introduction

M. Filippone

Weight Space

View

Bayesian Linear Regression as a Kernel Machine

- ▶ Working with $\psi(\cdot)$ costs $O(D^2)$ storage, $O(D^3)$ time
- ▶ Working with $k(\cdot, \cdot)$ costs $O(N^2)$ storage, $O(N^3)$ time
- ▶ Pick the one that makes computations faster . . . or
- ▶ What if we could pick $k(\cdot, \cdot)$ so that $\psi(\cdot)$ is infinite dimensional?

, g

Bayesian Linear Regression as a Kernel Machine

► We are going to show that predictions can be expressed exclusively in terms of scalar products as follows

$$k(\mathbf{x},\mathbf{x}') = \psi(\mathbf{x})^{ op}\psi(\mathbf{x}')$$

- ▶ This allows us to work with either $k(\cdot, \cdot)$ or $\psi(\cdot)$
- ▶ Why is this useful??

Kernels

▶ It is possible to show that for

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2}\right)$$

there exists a corresponding $\psi(\cdot)$ that is infinite dimensional!!!

▶ There are other kernels satisfying this property

Introduction

M. Filippone

Introduction

Weight Space

Function Spac

Evample

Optimizing Kernel

Introduction

M. Filippone

ntroduction

Weight Space View

Function Spac

.......

Kernels

Proof that the Gaussian kernel induces an infinite dimensional $\psi(\cdot)$

- For simplicity consider one dimensional inputs x, y
- ightharpoonup Expand the Gaussian kernel k(x, y) as

$$\exp\left(-\frac{(x-y)^2}{2}\right) = \exp\left(-\frac{x^2}{2}\right) \exp\left(-\frac{y^2}{2}\right) \exp\left(xy\right)$$

► Focusing on the last term and applying the Taylor expansion of the $exp(\cdot)$ function

$$\exp(xy) = 1 + (xy) + \frac{(xy)^2}{2!} + \frac{(xy)^3}{3!} + \frac{(xy)^4}{4!} + \dots$$

Introduction

M. Filippone

Weight Space

Bayesian Linear Regression as a Kernel Machine Proof

► To show that Bayesian Linear Regression can be formulated through scalar products only, we need Woodbury identity:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

Do not memorize this!

Introduction

M. Filippone

Weight Space View

Kernels

Proof that the Gaussian kernel induces an infinite dimensional $\psi(\cdot)$

▶ Define the infinite dimensional mapping

$$\psi(x) = \exp\left(-\frac{x^2}{2}\right) \left(1, x, \frac{x^2}{\sqrt{2!}}, \frac{x^3}{\sqrt{3!}}, \frac{x^4}{\sqrt{4!}}, \ldots\right)^{\top}$$

▶ It is easy to verify that

$$k(x,y) = \exp\left(-\frac{(x-y)^2}{2}\right) = \psi(x)^{\top}\psi(y)$$

Introduction M. Filippone

Weight Space

Bayesian Linear Regression as a Kernel Machine Proof

► Woodbury identity:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

▶ We can rewrite:

$$\Sigma = \left(\frac{1}{\sigma^2} \mathbf{\Phi}^\mathsf{T} \mathbf{\Phi} + \mathbf{S}^{-1}\right)^{-1}$$
$$= \mathbf{S} - \mathbf{S} \mathbf{\Phi}^\mathsf{T} \left(\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^\mathsf{T}\right)^{-1} \mathbf{\Phi} \mathbf{S}$$

 \blacktriangleright We set $A = \mathbf{S}$, $U = V^{\top} = \mathbf{\Phi}^{\mathsf{T}}$, and $C = \frac{1}{2}\mathbf{I}$

Introduction

M. Filippone

Weight Space View

Bayesian Linear Regression as a Kernel Machine Proof

▶ Mean and variance of the predictions:

$$p(t_*|\mathbf{X}, \mathbf{t}, \mathbf{x}_*, \sigma^2) = \mathcal{N}(\phi_*^\mathsf{T} \boldsymbol{\mu}, \sigma^2 + \phi_*^\mathsf{T} \mathbf{\Sigma} \phi_*)$$

Rewrite the variance:

$$\begin{array}{lll} \boldsymbol{\sigma}^2 & + & \boldsymbol{\phi}_*^\mathsf{T} \boldsymbol{\Sigma} \boldsymbol{\phi}_* = \\ & \boldsymbol{\sigma}^2 & + & \boldsymbol{\phi}_*^\mathsf{T} \mathbf{S} \boldsymbol{\phi}_* - \boldsymbol{\phi}_*^\mathsf{T} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \left(\boldsymbol{\sigma}^2 \mathbf{I} + \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \right)^{-1} \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\phi}_* \end{array}$$

... continued

Bayesian Linear Regression as a Kernel Machine Proof

Mean and variance of the predictions:

$$p(t_*|\mathbf{X}, \mathbf{t}, \mathbf{x}_*, \sigma^2) = \mathcal{N}(\phi_*^\mathsf{T} \boldsymbol{\mu}, \sigma^2 + \phi_*^\mathsf{T} \mathbf{\Sigma} \phi_*)$$

▶ Rewrite the mean:

$$\begin{split} \boldsymbol{\phi}_*^\mathsf{T} \boldsymbol{\mu} &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\mathsf{T} \boldsymbol{\Sigma} \boldsymbol{\Phi}^\mathsf{T} \mathbf{t} \\ &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\mathsf{T} \left(\mathbf{S} - \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \left(\sigma^2 \mathbf{I} + \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \right)^{-1} \boldsymbol{\Phi} \mathbf{S} \right) \boldsymbol{\Phi}^\mathsf{T} \mathbf{t} \\ &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\mathsf{T} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \left(\mathbf{I} - \left(\sigma^2 \mathbf{I} + \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \right)^{-1} \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \right) \mathbf{t} \\ &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\mathsf{T} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \left(\mathbf{I} - \left(\mathbf{I} + \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T}}{\sigma^2} \right)^{-1} \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T}}{\sigma^2} \right) \mathbf{t} \end{split}$$

... continued

Introduction

M. Filippone

Introductio

Weight Space

Function Space

xample

Optimizing Kernel

Introduction

M. Filippone

Weight Space

Bayesian Linear Regression as a Kernel Machine

Proof

▶ Define $\mathbf{H} = \frac{\mathbf{\Phi}\mathbf{S}\mathbf{\Phi}^{\mathsf{T}}}{\sigma^2}$

▶ The term in the parenthesis

$$\left(\mathbf{I} - \left(\mathbf{I} + \frac{\mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^{\mathsf{T}}}{\sigma^2}\right)^{-1} \frac{\mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^{\mathsf{T}}}{\sigma^2}\right)$$

becomes

$$\left(I - (I + H)^{-1} H \right) = I - (H^{-1} + I)^{-1}$$

▶ Using Woodbury $(A, U, V = \mathbf{I} \text{ and } C = \mathbf{H}^{-1})$

$$I - (H^{-1} + I)^{-1} = (I + H)^{-1}$$

Bayesian Linear Regression as a Kernel Machine

▶ Mean and variance of the predictions:

$$p(t_*|\mathbf{X},\mathbf{t},\mathbf{x}_*,\sigma^2) = \mathcal{N}(\phi_*^\mathsf{T}\boldsymbol{\mu},\sigma^2 + \phi_*^\mathsf{T}\mathbf{\Sigma}\phi_*)$$

► Rewrite the variance:

$$\sigma^2 + \phi_*^\mathsf{T} \mathbf{S} \phi_* - \phi_*^\mathsf{T} \mathbf{S} \mathbf{\Phi}^\mathsf{T} \left(\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^\mathsf{T} \right)^{-1} \mathbf{\Phi} \mathbf{S} \phi_* =$$

$$\sigma^2 + k_{**} - \mathbf{k}_*^\mathsf{T} \left(\sigma^2 \mathbf{I} + \mathbf{K} \right)^{-1} \mathbf{k}_*$$

▶ Where the mapping defining the kernel is

$$\psi(\mathsf{x}) = \mathsf{S}^{1/2} \phi(\mathsf{x})$$

and

$$k_{**} = k(\mathbf{x}_*, \mathbf{x}_*) = \psi(\mathbf{x}_*)^\mathsf{T} \psi(\mathbf{x}_*)$$

$$(\mathbf{k}_*)_i = k(\mathbf{x}_*, \mathbf{x}_i) = \psi(\mathbf{x}_*)^\mathsf{T} \psi(\mathbf{x}_i)$$

$$(\mathbf{K})_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \psi(\mathbf{x}_i)^\mathsf{T} \psi(\mathbf{x}_j)$$

Introduction

M. Filippone

Introduction

Weight Space View

iew/

vamnle

Optimizing Kerne

Introduction

M. Filippone

ntroduction

Weight Space View

Function Space

kample

Bayesian Linear Regression as a Kernel Machine Proof

► Substituting into the expression of the predictive mean

$$\begin{split} \boldsymbol{\phi}_*^\mathsf{T} \boldsymbol{\mu} &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\mathsf{T} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \left(\mathbf{I} - \left(\mathbf{I} + \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T}}{\sigma^2} \right)^{-1} \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T}}{\sigma^2} \right) \mathbf{t} \\ &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\mathsf{T} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \left(\mathbf{I} + \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T}}{\sigma^2} \right)^{-1} \mathbf{t} \\ &= \boldsymbol{\phi}_*^\mathsf{T} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \left(\sigma^2 \mathbf{I} + \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\mathsf{T} \right)^{-1} \mathbf{t} \\ &= \mathbf{k}_*^\mathsf{T} \left(\sigma^2 \mathbf{I} + \mathbf{K} \right)^{-1} \mathbf{t} \end{split}$$

▶ All definitions as in the case of the variance

$$\psi(\mathbf{x}) = \mathbf{S}^{1/2}\phi(\mathbf{x})$$

$$(\mathbf{k}_*)_i = k(\mathbf{x}_*, \mathbf{x}_i) = \psi(\mathbf{x}_*)^{\mathsf{T}}\psi(\mathbf{x}_i)$$

$$(\mathbf{K})_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \psi(\mathbf{x}_i)^{\mathsf{T}}\psi(\mathbf{x}_j)$$

Introduction

M. Filippone

Weight Space

Introduction

M. Filippone

Function Space

View

Gaussian Processes

Gaussian Processes can be explained in two ways

- ► Weight Space View
 - ▶ Bayesian linear regression with infinite basis functions
- ► Function Space View
 - Defined as priors over functions

Kernel

► Consider the Gaussian kernel again

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp(-\beta \|\mathbf{x} - \mathbf{x}'\|^2)$$

▶ We introduced some parameters for added flexibility

Function Space

Introduction

M. Filippone

Introduction

M. Filippone

Function Space View

View

Gaussian Processes - Prior over Functions

- ► Consider an infinite number of Gaussian random variables
- ▶ Think of them as indexed by the real line and as independent
- ▶ Denote them as f(x)

Gaussian Processes - Prior over Functions

▶ Impose covariance using the kernel function

Introduction

M. Filippone

ntroductio

Weight Spac

Function Space View

Example

Optimizing Kernel
Parameters

Gaussian Processes - Prior over Functions

▶ Draw the infinite random variables again fixing one of them (the one at x = 0)

Gaussian Processes - Prior over Functions

▶ Draw the infinite random variables again allowing the one at x = 0 to be random too

Introduction

M. Filippone

roduction

Veight Spac

Function Space View

Example

Optimizing Kernel Parameters

Gaussian Processes - Prior over Functions

▶ This can be used as a prior over functions!

Introduction

M. Filippone

to the state of

Weight Space

Function Space View

Example

Optimizing Kerne

Introduction

M. Filippone

roduction

Weight Space

Function Space View

Example

Gaussian Processes - Priors over Functions

► Infinite Gaussian random variables with parameterized and input-dependent covariance

Introduction

M. Filippone

Weight Space

Function Space View

Example

Optimizing Kernel
Parameters

Gaussian Processes - Prior over Functions

▶ The distribution of N random variables $f(x_1), \ldots, f(x_N)$ depends exclusively on the corresponding rows and columns of the infinite by infinite kernel matrix K

Gaussian Processes - Prior over Functions

▶ The distribution of N random variables $f(x_1), \ldots, f(x_N)$ depends exclusively on the corresponding rows and columns of the infinite by infinite kernel matrix K

Introduction

M. Filippone

roduction

veignt Space

Function Space View

Example

Optimizing Kernel Parameters

Gaussian Processes - Prior over Functions

▶ The marginal distribution of $\mathbf{f} = (f(x_1), \dots, f(x_N))^{\top}$ is

$$p(\mathbf{f}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K})$$

▶ The conditional distribution of f_* given **f**

$$p(f_*|\mathbf{f},\mathbf{x}_*,\mathbf{X}) = \mathcal{N}(\bar{m},\bar{s}^2)$$

with

$$ar{m} = \mathbf{k}_*^ op \mathbf{K}^{-1}$$
 $ar{s}^2 = k_{**} - \mathbf{k}_*^ op \mathbf{K}^{-1} \mathbf{k}_*$

Introduction

M. Filippone

Function Space

View

Introduction M. Filippone

Function Space View

E.

Gaussian Processes - Prior over Functions

- ▶ Remember that when we modeled labels \mathbf{t} in the linear model we assumed noise with variance σ around $\mathbf{w}^T \mathbf{x}$
- ▶ We can do the same in Gaussian processes

$$ho(\mathbf{t}|\mathbf{f}) = \prod_{i=1}^N
ho(t_i|f_i)$$

with

$$p(t_i|f_i) = \mathcal{N}(t_i|f_i,\sigma^2)$$

- Likelihood and prior are both Gaussian conjugate!
- ▶ We can integrate out Gaussian process prior on **f**

$$p(\mathbf{t}|\mathbf{X}) = \int p(\mathbf{t}|\mathbf{f})p(\mathbf{f}|\mathbf{X})d\mathbf{f}$$

► This gives

$$p(\mathbf{t}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K} + \sigma^2 \mathbf{I})$$

Introduction

M. Filippone

Introduction

Weight Space

Function Space View

xample

Optimizing Kernel
Parameters

Gaussian Processes - Prior over Functions

▶ We can also make predictions as follows:

$$p(t_*|\mathbf{t}, \mathbf{x}_*\mathbf{X}) = \int p(t_*|f_*)p(f_*|\mathbf{f}, \mathbf{x}_*, \mathbf{X})p(\mathbf{f}|\mathbf{t}, \mathbf{X})d\mathbf{f}df_*$$
$$= \mathcal{N}(m_t, s_t^2)$$

with

$$m_t = \mathbf{k}_*^{\top} \left(\mathbf{K} + \sigma^2 \mathbf{I} \right)^{-1} \mathbf{t}$$
$$s_t^2 = \sigma^2 + k_{**} - \mathbf{k}_*^{\top} \left(\mathbf{K} + \sigma^2 \mathbf{I} \right)^{-1} \mathbf{k}_*$$

► Same expression as in the "Weight-Space View" section

Introduction

M. Filippone

roduction

Veight Space

Function Space

Example

Optimizing Kernel Parameters

Gaussian Processes - Prior over Functions

► We can derive the predictive distribution of the function also make predictions as follows:

$$p(f_*|\mathbf{t},\mathbf{x}_*\mathbf{X}) = \int p(f_*|\mathbf{f},\mathbf{x}_*,\mathbf{X})p(\mathbf{f}|\mathbf{t},\mathbf{X})d\mathbf{f}df_* = \mathcal{N}(m,s^2)$$

with

$$m = \mathbf{k}_{*}^{\top} \left(\mathbf{K} + \sigma^{2} \mathbf{I} \right)^{-1} \mathbf{t}$$
$$s^{2} = k_{**} - \mathbf{k}_{*}^{\top} \left(\mathbf{K} + \sigma^{2} \mathbf{I} \right)^{-1} \mathbf{k}_{*}$$

▶ Same expression as in the "Weight-Space View" section

Gaussian Processes - Regression example

Some data generated as a noisy version of some function

Introduction

M. Filippone

Introduction

Weight Space

Function Space View

vamnle

Optimizing Kernel
Parameters

Introduction

M. Filippone

ntroduction

Weight Space

Function Space

Example

Gaussian Processes - Regression example

ightharpoonup Draws from the posterior distribution over f_* on the real line

Introduction

M. Filippone

Example

Introduction

M. Filippone

Optimizing Kerne

Parameters

Optimization of Gaussian Process parameters

- ▶ Define $\mathbf{K}_t = \mathbf{K} + \sigma^2 \mathbf{I}$
- ► Maximize the logarithm of the likelihood

$$p(\mathbf{t}|\mathbf{X}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_t)$$

that is

$$-\frac{1}{2}\log|\mathbf{K}_t| - \frac{1}{2}\mathbf{t}^\mathsf{T}\mathbf{K}_t^{-1}\mathbf{t} + \mathrm{const.}$$

 Derivatives can be useful for gradient-based optimization

$$\frac{\partial \log[p(\mathbf{t}|\mathbf{X}, \boldsymbol{\theta})]}{\partial \boldsymbol{\theta}_i}$$

Optimization of Gaussian Process parameters

▶ The kernel has parameters that have to be tuned

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp(-\beta \|\mathbf{x} - \mathbf{x}'\|^2)$$

... and there is also the noise parameter σ^2 .

- ▶ Define $\theta = (\alpha, \beta, \sigma^2)$
- ▶ How should we tune them?

► Log-likelihood

$$-\frac{1}{2}\log|\mathbf{K}_t| - \frac{1}{2}\mathbf{t}^\mathsf{T}\mathbf{K}_t^{-1}\mathbf{t} + \mathrm{const.}$$

 Derivatives can be useful for gradient-based optimization:

$$\frac{\partial \log[p(\mathbf{t}|\mathbf{X}, \boldsymbol{\theta})]}{\partial \boldsymbol{\theta}_i} = -\frac{1}{2} \operatorname{Tr} \left(\mathbf{K}_t^{-1} \frac{\partial \mathbf{K}_t}{\partial \boldsymbol{\theta}_i} \right) + \frac{1}{2} \mathbf{t}^\mathsf{T} \mathbf{K}_t^{-1} \frac{\partial \mathbf{K}_t}{\partial \boldsymbol{\theta}_i} \mathbf{K}_t^{-1} \mathbf{t}$$

Introduction

M. Filippone

Optimizing Kernel **Parameters**

Optimization of Gaussian Process parameters

M. Filippone

Introduction

Optimizing Kernel **Parameters**

Summary

- ► Introduced Gaussian Processes
 - ▶ Weight space view
 - ► Function space view
- ► Gaussian processes for regression
- ► Optimization of kernel parameters
- ► To think about:
 - ► Gaussian processes for classification?
 - Scalability?

Introduction

M. Filippone

Introduction

Weight Space

Function Space

Example

Optimizing Kernel Parameters