Valores de Entrada

R3 = 549,4

Fórmula de Steinhart & Hart

T1 =	273,15	0	°C			1				2
T2 =	298,15	25	°C			$\frac{1}{T} = a +$	b.	ln(R) +	<i>C</i> .	$ln(R)^3$
T3 =	373,15	100	°C			•				
			Α	+ E	В	10,4791 +	С	1150,7132	=	0,0037
R1 =	35563		Α	+ E	В	9,21034 +	С	781,3166	=	0,0034
R2 =	10000		Α	+ E	В	6,30883 +	С	251,0995	=	0,0027

0,003661 10,4791 1150,7

0,003354 9,21034 781,32

0,00268 6,30883

-0,516501261

251,1

Matriz DA:

Esta planilha foi utilizada para a determinação dos coeficientes a, b e c de um termistor qualquer. Com base em três medições de temperatura e da resistência do termistor, podemos encontrar os seus coeficientes. 3 coeficientes => 3 equações

Matriz DC:	-3,54128E-05				
1	10,4791	0,0037			
1	9,21034	0,0034			
1	6,30883	0,0027			

Validação	dos Resultados
T1 =	273,15
T2 =	298,15
T3 =	373,15

Teorema de Cramer

Matriz DB: -0,086257237

1

1

1

0,004 1150,7

0,003 781,32

0,003 251,1

		ſ	$\frac{1}{2(1)}$	$\frac{1}{1}$
R_F	=	R_0e^{μ}	T^{-}	$\overline{T_0}^{j}$

$$\frac{1}{T} = \frac{1}{T_0} + \frac{1}{\beta} \ln(\frac{R_F}{R_I})$$