DE10-Nano

GETTING STARTED GUIDE

CONTENTS

CHAPTER 1	ABOUT THIS GUIDE	3
CHAPTER 2	DEVELOPMENT BOARD SETUP	4
2.1 Introdu	JCTION	4
2.2 MSEL S	ETTINGS	4
2.3 USB , H	DMI OUTPUT AND POWER CABLES	5
2.4 Powerin	NG UP THE DE10-NANO BOARD WITH XFCE DESKTOP ENVIRONMENT	6
CHAPTER 3	SOFTWARE INSTALLATION	8
3.1 Introdu	JCTION	8
3.2 INSTALL	ING QUARTUS II SOFTWARE	8
3.3 Install	ING INTEL SOC EMBEDDED DESIGN SUITE	11
CHAPTER 4	PERFORMING A FPGA SYSTEM TEST	12
4.1 Introdu	JCTION	12
4.2 INSTALL	ING THE USB-BLASTER II DRIVER	12
4.3 DOWNLO	OADING A FPGA SRAM OBJECT FILE	13
CHAPTER 5	RUNNING LINUX ON THE DE10-NANO BOARD VIA UART TERMINAL	19
5.1 Introdu	JCTION	19
5.2 SETTING	UP UART TERMINAL	19
5.3 RUNNING	G LINUX ON DE10-NANO BOARD	22
5.4 Creatin	G A MICROSD CARD IMAGE	23
CHAPTER 6	RUNNING WEB SERVER ON THE DE10-NANO	25
6.1 Introdu	JCTION	25
6.2 HARDWA	RE SETUP AND DRIVER INSTALL	25
6.3 Using ti	HE WEB SERVER	30
6.4 ENABLE	DISABLE USB GADGET	34
ADDITIONAL	INFORMATION	35

Chapter 1

About this Guide

The DE10-Nano Getting Started Guide contains a quick overview of the hardware and software setup including step-by-step procedures from installing the necessary software tools to using the DE10-Nano board. The main topics this guide covers are listed below:

- Development Board Setup: Powering on the DE10-Nano
- Software Installation: Installing Quartus II and SoC EDS
- Perform FPGA System Test: Downloading a FPGA SRAM Object File (.sof)
- Running Linux on DE10-Nano Board via UART terminal.

Chapter 2

Development Board Setup

2.1 Introduction

The instructions in this section explain how to set up the DE10-Nano development board. The following pictures are the board overview of DE10-Nano.

2.2 MSEL Settings

■ FPPx32 Mode (Default)

The FPGA Configuration Mode Switch (MSEL) shown in **Figure 2-1** is by default set to **01010** (MSEL[4:0] = 01010). The setting corresponds to FPGA configured from HPS software (in the SD Card) in FPPx32 mode. **If users want to boot with Linux Xfce desktop, please setting MSEL switch in this mode**

Figure 2-1 FPGA Configuration Mode Switch set in FPPx32 Mode

■ AS Mode

When the board is powered on and MSEL[4:0] set to "10010" (See **Figure 2-2**), the FPGA is configured from EPCS.

Figure 2-2 FPGA Configuration Mode Switch set in AS Mode

2.3 USB, HDMI Output and Power Cables

Cable connections are shown in Figure 2-3, as below:

Figure 2-3 USB, HDMI Output and Power Cables

2.4 Powering up the DE10-Nano Board with Xfce Desktop Environment

To power-up the board and run the Xfce desktop, perform the following steps below:

- 1. To perform this power up test, user will need some additional parts as list in below:
 - i. A micro USB OTG cable.
 - ii. HDMI Monitor and HDMI cable.
 - iii. USB Mouse or Keyboard
- 2. Connect the HDMI port of DE10-Nano to a monitor with HDMI input.
- 3. Make sure the Factory SD Card is inserted in the SD Card socket.
- 4. Connect the supplied DE10-Nano power adapter to the power connector (J14) on the DE10-Nano board. At this point, you should see the 3.3V indicator LED (LED9) turned on.
- 5. It will take about 35 seconds to boot Linux. Finally, the screen will enter Xfce desktop on the monitor (See Figure 2-5).
- 6. After the Xfce system is ready, connect a Mouse/Keyboard to the USB OTG port (J2) via Micro USB OTG Cable (*1) (*2).
- 7. Now, user can use mouse/keyboard on the Xfce desktop.
 - (*1) Because the USB gadget function is enable by default in the Xfce system, any external USB device needs to be connected to the DE10-nano AFTER the Xfce boots up. Otherwise the external USB device will not be detected by the system. For how to enable/disable USB gadget function in the Xfce system, please refer to the section 6.4.
 - (*2)Some USB mouse or keyboard may have compatibility problem with the Xfce system, if user's mouse or keyboard don't get any response in the Xfce system, please re-plug the USB cable or change to other brand's USB mouse or keyboard.

Figure 2-4 Setup for Xfce Desktop

Figure 2-5 Xfce Desktop Environment

Chapter 3

Software Installation

3.1 Introduction

This section explains how to install the following software:

- Intel Quartus II software
- Intel SoC Embedded Design Suite

Note: 64-bit OS required

3.2 Installing Quartus II software

The Intel Complete Design Suite provides the necessary tools used for developing hardware and software solutions for Intel FPGAs. The Quartus II software is the primary FPGA development tool used to create reference designs along with the NIOS II soft-core embedded processor integrated development environment

User can download the latest software from:

http://url.terasic.com/quartus download

Software Selector

- If you choose to install the Standard Edition, note that a purchased license will be required.
 Please go to the following link for more information regarding the Standard Edition:
 https://www.altera.com/support/support-resources/download/licensing.html
- Download files from Standard or Lite edition page. You must download the Quartus II Software (includes NIOS II EDS) and Cyclone V device support (includes all variations).

Quartus Prime Standard Edition Release date: May, 2016 Latest Release: v16.1 **Quartus** Prime Select release: 16.0 Operating System 👩 💿 🎥 Windows 🔍 🐧 Linux Download Method 👩 🖲 Akamai DLM3 Download Manager 👩 🔘 Direct Download 🧹 The Quartus Prime software version 16.0 supports the following device families: Stratix IV, Stratix V, Arria II, Arria V, Arria V GZ, Arria 10, Cyclone IV, Cyclone V, MAX II, MAX V, and MAX 10 FPGA. Combined Files Individual Files Additional Software Updates Download and install instructions: Read Intel FPGA Software v16.0 Installation FAQ Quick Start Guide ✓ Select All ✓ Ouartus Prime Standard Edition Updates Available ✓ Quartus Prime (includes Nios II EDS) Size: 2.4 GB MD5: 5C9EECBF74650C4056F998DBEB3B478F ✓ ModelSim-Altera Edition (includes Starter Edition) Size: 1.4 GB MD5: 8C8ED25D6ACF152CEF2FCFE69DB052C5 Devices You must install device support for at least one device family to use the Quartus Prime software. Arria II device support Size: 669.7 MB MD5: 6ED508D95F582BE9FA18C0A7A75F835A Arria 10 device support 0 Arria 10 device support Part 1 Size: 3.0 GB MD5: BE378243AD7CA1D7278662EC85E466C6 Arria 10 device support Part 2 Size: 3.3 GB MD5: 9D72F9CEE8D2052889B0D9E0BC5AFA17 Arria 10 device support Part 3 Size: 3.0 GB MD6: E4357519C3EAAC5E59FB7AB11235FF98 Arria V device support Size: 1.3 GB MD5: 50316DDDBDBDFBFC1A32D354C9525558 Arria V GZ device support Size: 2.0 GB MD5: EF7172EE822BFCDE9EB8C6322B79A9C5 \square Cyclone IV device support Size: 466.6 MB MD5: 2C4E5F406114F56E42CB7F25C989A5E2 ✓ Cyclone V device support Size: 1.1 GB MD5: 3A846198DB1C584D1E19E6A9CE26D364 ☐ MAX II, MAX V device support Size: 11.4 MB MD5: 58DB40A727F99D57AF42EC2EE553F19D ☐ MAX 10 FPGA device support Size: 339.9 MB MD5: 6E5A3587BFD61936F0AA024B2BBCC1A0 \square Stratix IV device support Size: 544.5 MB MD5: C7555251A23B2872F75BDEA6A5113543 Stratix V device support Size: 2.9 GB MD5: 38FD57052920E96190ECD6B713799887 Download Selected Files

After the file is downloaded, select the *.exe file, and install the software. All of the defaults are to be used.

3.3 Installing Intel SoC Embedded Design Suite

The <u>Intel SoC Embedded Design Suite</u> (EDS) contains development tools, utility programs, run-time software, and application examples to enable embedded development on the Intel SoC hardware platform. User can use the Intel SoC EDS to develop firmware and application software.

Users can download the software from the Intel webpage:

http://url.terasic.com/soceds_download

Intel® SoC FPGA Embedded Development Suite (SoC EDS) is available in two editions: **Standard Edition** and **Pro Edition**. Both Editions include ARM Development Studio 5 (DS-5) for Intel SoC FPGAs (license-managed). Please refer to the link list in below to get the comparison chart to compare both versions. After downloading the software, follow the corresponding guide in License Activation to activate your license.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_soc_eds.pdf

Chapter 4

Performing a FPGA System Test

4.1 Introduction

This chapter shows how to install the USB-Blaster II driver and download a FPGA SRAM Object (.sof) file to your FPGA board.

4.2 Installing the USB-Blaster II Driver

The steps below outline the step-by-step process of installing the USB-Blaster II driver.

- 1. Connect your computer to the development board by plugging the USB cable into the USB connector (J13) of DE10-Nan0-SoC. (connection shown in **Figure 2-3**)
- 2. Power up the board and open the device manager in Windows. You will find an unknown device.

Figure 4-1 Unknown device on device manager

3. Select the unknown device to update the driver software. The driver file is in the \<Quartus II installation directory>\drivers\ usb-blaster-ii directory.

4. After the driver is correctly installed, the device will be recognized as Intel USB-Blaster II, as shown in following picture.

Figure 4-2 USB-Blaster II driver is installed correctly

4.3 Downloading a FPGA SRAM Object File

The Quartus II Programmer is used to configure the FPGA with a specific .sof file. Before configuring the FPGA, ensure that the Quartus II software and the USB-Blaster II driver are installed on the host computer.

If users would like to program their SRAM Object File (.sof) into the Cyclone V SOC FPGA device on the DE10-Nano board, there are two devices (FPGA and HPS) on the JTAG Chain. The configure flow is different from the one used with DE0-Nano. The section below shows the step-by-step procedure of programming flow with JTAG mode.

- 1. Connect your computer to the DE10-Nano board by plugging the USB cable into the USB connector (J13) of DE10-Nano and power up the board. (details shown in **Chapter 2**)
- 2. Open the Quartus II software and select Tools > Programmer. The Programmer window will appear.

Figure 4-3 Quartus Programer

- 3. Click **Hardware Setup**.
- 4. If **DE-SoC** [**USB-1**] does not appear under **Currently Selected Hardware**, select that option and click **Close**, as illustrated below.

Figure 4-4 Hardware Setup

If the USB-Blaster II does not appear under hardware options list, please confirm if the USB-Blaster II driver has been correctly installed, and if the USB cable has been properly connected between the DE10-Nano board and host computer.

5. Click "Auto Detect"

Figure 4-5 Auto detect FPGA device

6. Select the device associated with the board

Figure 4-6 Select FPGA device

7. FPGA and HPS devices are shown in the JTAG chain

Figure 4-7 JTAG Chain on DE10-nano board

8. Click the FPGA device, click "Change File..", and then select .sof file for FPGA

Figure 4-8 Add .sof file

9. Select \<CD directory>\Demonstration\FPGA\my_first_fpga\my_first_fpga.sof

Figure 4-9 Select .sof file

10. Click "Program/Configure" check box, and then click "Start" button to download .sof file into FPGA

Figure 4-10 Downaload .sof file

Chapter 5

Running Linux on the DE10-Nano board via UART Terminal

5.1 Introduction

This chapter illustrates the process of setting up a UART Terminal and connecting it to DE10-Nano Board which will be running Linux at this moment. Also, the chapter will show how to create a Micro SD card image with another board support image (BSP), such us **Linux Console.** User can download the latest SD Card image file from Terasic's website: http://de10-nano.terasic.com/cd.

5.2 Setting Up UART Terminal

This section presents how to install the drivers for the USB to UART chip on the DE10-Nano board and how to set up the UART terminal on your host PC. The DE10-Nano board communicates with the PC through the micro USB connector J4. You should install the USB to UART driver and configure the UART terminal before you run Linux on the board.

Figure 5-1 Hardware Setup for UART Terminal

■ Installing the Driver

This section explains how to install the drivers for USB to UART communication. The necessary steps on Windows 7 are:

- 1. Connect your computer to the development board by plugging the USB cable into the **micro** USB connector (J4) of DE10-Nano. (connection shown in Figure 2-3)
- 2. Power on the board and open the computer device manager in Windows. You will find an unrecognized FT232R USB UART.

Figure 5-2 Unknown device on device manager

Select the FT232R USB UART to update the driver software. The driver can be downloaded from http://www.ftdichip.com/Drivers/VCP.htm.

3. After the driver has been correctly installed, the USB Serial Port is recognized as a port such as *COM5* (Open the device manager to know which COM port assigned in your computer)

Figure 5-3 USB Serial Poet driver is installed correctly

4. Now you can power off the DE10-Nano board

■ Configure UART terminal UART terminal spec:

- 115200 baud rate
- no parity
- 1 stop bit
- no flow control settings

The following steps shows how to configure a PuTTY terminal window (can be downloaded from the link: http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe)

- 1. Open putty.exe, click *Serial* go to a serial configure interface.
- Configure the window like the flowing picture and click "save" button to save the configuration.

Figure 5-4 Putty Window

5.3 Running Linux on DE10-Nano board

This section presents how to run the pre-built Linux images on the DE10-Nano board. You can run the Linux by following the steps below:

- 1. Insert the factory microSD card with the pre-built image into the board (See Section 5.4 to prepare a microSD card)
- 2. Make sure the MSEL switch is set to "MSEL[4:0] = 01010"
- 3. Power up the board (See Chapter 2 for details)
- 4. Open putty.exe, select the saved configuration **de10_nano** and click open button.
- 5. After the board is successfully booted, the Linux will ask for the login name. Type "**root**" and press the Enter key to skip the password

Figure 5-5 Putty Window

5.4 Creating a MicroSD Card Image

To program a microSD card Linux image you can use a free tool called **Win32DiskImager.exe** from http://sourceforge.net/projects/win32diskimager/ on a Windows machine.

■ MicroSD Specification

• Capacity: 8GB minimum

• Speed: Class 4 (at least)

■ Pre-Built SD Card Image

The pre-built binaries are delivered as an archive named DE10_Nano_XFCE.img. This SD card image file contains all the items that are needed to run Linux on DE10-Nano board. (You can download the compressed file from the link:

http://www.terasic.com/downloads/cd-rom/de10-nano/linux_BSP/DE10_Nano_Xfce.zip. And extract file to get the image file after the download)

- SPL Pre-loader
- U-boot

- Device Tree Blob
- Linux Kernel
- Linux Root File system

The SD card image file needs to be programmed to a microSD card before it can be used. The steps below present how to create microSD card on a windows machine using Win32DiskImager.exe.

- 1. Connect the microSD card to a Windows PC
- 2. Execute Win32DiskImager.exe
- 3. Select the image file for microSD card
- 4. Select the microSD card device

Figure 5-6 Win32 Disk Imager

- 5. Click "write" to start writing the image file to the microSD card. Wait until the image is successfully written.
- 6. There is also a Linux console image file which do not have desktop feature; it can be download on the link below:

 $\frac{http://www.terasic.com/downloads/cd-rom/de10-nano/linux_BSP/de10_nano_linux_console.}{zip} \ .$

7.

Item	Linux BSP (Board Support Package)/Click	Descriptions
	to Download	
1	DE10_Nano_LXDE.zip	LXDE desktop
2	DE10 Nano Linux Console.zip	Without desktop feature
3	DE10 Nano Xfce.zip	Factory Image

Chapter 6

Running Web Server on the DE10-Nano

6.1 Introduction

Chapter 6 describes how to run the web server on the DE10-Nano. Users can connect the DE10-Nano to a computer via the micro USB cable and interact with the board through the website. The website will guide you through the steps of learning about the board from evaluation to full development. Next, we will describe how to run it on Windows OS as below. (In section 6.2, we will have detail descriptions on how to run the DE10-Nano on Window OS.)

6.2 Hardware Setup and Driver Install

1. Make sure the Factory MircoSD card is inserted into the MircoSD card socket on the board and the MSEL[4:0] switch is set to "01010".

2. Plug in the 5-volt power adapter to power up the board. Once the Linux boots, use the Micro US B cable to connect the USB connector on the DE10-Nano board to a USB port on a computer.

3. After they are connected, the DE10-Nano will display a USB Flash Drive feature in windows. The "**DE10-Nano**" will be shown in the Hard Disk Drives. The drivers and the web server related data will be used in the following steps.

4. Your computer's Device Manger will automatically detect unknown devices.

5. Right click unknown device, and select "Update Driver Software."

6. Choose "Browse my computer for driver software."

7. The driver for unknown devices is in the "**DE10-Nano.**"

8. Choose "**Drivers****Windows**" in **DE10-Nano** when browse for driver software in the installation location.

9. Choose "Install."

10. Complete the "Gadget Serial" installation.

6.3 Using the Web Server

1. Users can use the web server after the drivers have been installed. Open the **DE10-Nano** and execute the start.html file.

2. This webpage provides step-by-step procedure to guide users to install driver for USB Ethernet/RNDIS Gadget just like section 6.1. Users can enter "192.168.7.1" into browser and connect to the website served by the board.

3. Open the web server in the DE10-Nano; users can choose any pages to operate.

The "Start" page provides hardware data of the DE10-Nano board, such as Circuit diagram, Block diagram, and pin assignments of the peripherals.

4. Enter the "**Play**" page, users can interact with the board in this page. For example, control the LEDs lights (turning lights on and off).

DE10-Nano Kit

Play with interactive applications included on the SD Card.

Blink The LEDs

Fast Fourier Transform Acceleration

5. The "Learn" page contains the related documents and tools of SoC FPGA.

DE10-Nano Kit

Developing software for Intel SoC FPGA devices is similar to developing for other embedded processors in terms of the tool chain used, development flow, and software ecosystem available.

The FPGA portion of the device can be considered much like an embedded RAM in that it needs to be loaded before it can be used. That process is called "configuring" the FPGA. Many hardware blocks configured in the FPGA have traditional status and control registers making them appear as memory-mapped peripherals which can be controlled by software running on the processor.

6. The "Develop" page provides users the download location for the DE10-Nano software.

6.4 Enable/Disable USB Gadget

Use can use the above features only when the USB Gadget function is enabled in the Xfce Desktop. When the USB gadget is enabled, the DE10-Nano acts as a USB storage after it is connected to a host PC.If it is unusable, please follow below steps to check if the USB Gadget is disabled:

- 1. Boot up the DE10-Nano with the Xfce Desktop.
- 2. Execute the USB_Gadget icon on the desktop.
- 3. Check if the USB Gadget is Enable.
- 4. Note that, any modified setting will be applied after the system is reboot.

Additional Information

Contact Terasic

Users can refer to the following table for technical support and more information of Terasic and our product:

Contact	Contact	Address
	Method	
Technical Support	Email	support@terasic.com
	Website	www.terasic.com
	Address	9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, 30070. Taiwan, 30070
Training Opportunity	Website	http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=200
Product Information	Website	http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=13&List=Simple

Revision History

Date	Version	Changes	
2017.01	V1.0	First Version	
2017.02	V1.0.1	Update SD card download link	
2017.03	V1.1	Change Default Linux image to Xfce desktop	
2019.04	V1.2	Modify software download link	
2019.05	V1.3	Delete step 2 in section 2.4	
2020.10	V1.4	Modify step 2 in section 6.2	