Домашнее задание 3

Чэнь Сюаньдун Γ руппа 519/2 18 октября 2022 г.

Задача 1

Прямоугольник задан вершинами с координатами A(0;0), B(u;0), C(u;v), D(0;v),где точка (u;v) лежит в первой четверти на графике функции $y=-x^3+8.$ Найти наибольшую возможную площадь прямоугольника.

Решение

площадь
$$S(u)=u*(-u^3+8)=-u^4+8*u$$
 производная $S'(u)=-4*u^3+8=4*(2-u^3)$ $\Rightarrow u_0=2^{\frac{1}{3}}$ при $u<2^{\frac{1}{3}},\ S'(u)>0,\ S(u)$ возрастает при $u>2^{\frac{1}{3}},\ S'(u)<0,\ S(u)$ убывает

Ответ: Наибольшая возможная площадь прямоугольника $= S(2^{\frac{1}{3}}) = 6 * 2^{\frac{1}{3}}$

Задача 2

В эллипс, заданный уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ вписать прямоугольник максимальной площади так, чтобы стороны прямоугольника были параллельны осям эллипса.

Решение

площадь
$$S(u)=2u*2v=4u\sqrt{b^2(1-\frac{u^2}{a^2})}$$
 производная $S'(u)=4\sqrt{b^2(1-\frac{u^2}{a^2})}+4u*\frac{1}{2}*\frac{-\frac{b^2}{a^2}2u}{\sqrt{b^2(1-\frac{u^2}{a^2})}}$ пусть его равно нулю, получил $b^2(1-\frac{u^2}{a^2})=\frac{b^2}{a^2}u^2$ $\Rightarrow a^2-u^2=u^2$ $\Rightarrow u=\pm\frac{a}{\sqrt{2}}$ \Rightarrow при $u=\frac{a}{\sqrt{2}}$ и $v=\frac{b}{\sqrt{2}},\,S_{max}=2ab$

Ответ: при $u = \frac{a}{\sqrt{2}}$ и $v = \frac{b}{\sqrt{2}}$, Наибольшая площадь примоугольника это 2ab.