On the Effectiveness of Finite Traces in First-order Temporal Logic

Andrea Mazzullo

Free University of Bozen-Bolzano

AAAI 2023 Spring Symposium Series TL_f@AAAI-SSS'23

Main joint work

[AMO19b] A. Artale, A. Mazzullo, and A. Ozaki. *Do You Need Infinite Time?*. In: IJCAI, 2019.

Main joint work

[AMO19b] A. Artale, A. Mazzullo, and A. Ozaki. Do You Need Infinite Time?. In: IJCAI, 2019.

Related co-authored papers

[AMO18] A. Artale, A. Mazzullo, and A. Ozaki. *Temporal Description Logics over Finite Traces*. In: DL, 2018.

[AMO19a] A. Artale, A. Mazzullo, and A. Ozaki. *Temporal DL-Lite over Finite Traces (Preliminary Results)*. In: DL, 2019.

[AMO20] A. Artale, A. Mazzullo, and A. Ozaki. Finite vs. Infinite Traces in Temporal Logics. In: OVERLAY, 2020.

[AMOur] A. Artale, A. Mazzullo, A. Ozaki, First-order Temporal Logic on Finite Traces: Semantic Properties, Decidable Fragments, and Applications, submitted to ACM Trans. Comput. Log. (under review).

Motivations

Renewed interest in finite traces applied to:

- verification (cf. e.g. Martin Leucker's talk)
- synthesis (cf. e.g. Giuseppe De Giacomo's & Luca Geatti's talk)
- planning (cf. e.g. Sheila McIlraith's talk)
- data-aware process modelling (cf. e.g. Marco Montali's talk)
- knowledge representation (cf. several talks)

Goals

- 1 Semantic and syntactic conditions sufficient to preserve equivalences of FOTL formulas between finite and infinite traces
 - cf. e.g. Ben Greenman's talk/questionnaire
- 2 FOTL on finite traces in connection with related topics in AI
 - planning (insensitivity to infiniteness [DDM14] & f-FOLTL [BM06])
 - verification (safety [Sis94] & runtime verification maxims [BLS10])
- 3 Decidability and complexity results for FOTL fragments on finite traces, adapted from the infinite case [GKWZ03]
 - temporal formalisms for knowledge representation applications, e.g. temporal description logics (ALC & DL-Lite) on finite traces

First-Order Temporal Language

$T_{\mathcal{U}}\mathcal{QL}$ syntax

Predicates P (n-ary), terms τ (constants a, variables x), \neg , \land , \exists , \mathcal{U} (until)

$$\varphi, \psi ::= P(\bar{\tau}) \mid \neg \varphi \mid \varphi \wedge \psi \mid \exists x \varphi \mid \varphi \mathcal{U} \psi$$

Abbreviations $(\lor, \to, \leftrightarrow, \bot, \top, \text{ as usual})$

- $\bigcirc \varphi := \bot \mathcal{U} \varphi, \, \Diamond \varphi := \top \mathcal{U} \varphi, \, \varphi \mathcal{U}^+ \psi := \psi \lor (\varphi \land \varphi \mathcal{U} \psi), \, \Diamond^+ \varphi := \varphi \lor \Diamond \varphi$
- $\varphi \mathcal{R} \psi := \neg(\neg \varphi \mathcal{U} \neg \psi)$, • $\varphi := \top \mathcal{R} \varphi$, $\square \varphi := \bot \mathcal{R} \varphi$, last $:= \square \bot$, $\varphi \mathcal{R}^+ \psi := \psi \land (\varphi \lor \varphi \mathcal{R} \psi)$, $\square^+ \varphi := \varphi \land \square \varphi$

First-Order Temporal Language

$T_{\mathcal{U}}\mathcal{QL}$ syntax

Predicates P (n-ary), terms τ (constants a, variables x), \neg , \wedge , \exists , \mathcal{U} (until)

$$\varphi, \psi ::= P(\bar{\tau}) \mid \neg \varphi \mid \varphi \wedge \psi \mid \exists x \varphi \mid \varphi \mathcal{U} \psi$$

Abbreviations $(\lor, \to, \leftrightarrow, \bot, \top, \text{ as usual})$

- $\bigcirc \varphi := \bot \mathcal{U} \varphi, \, \Diamond \varphi := \top \mathcal{U} \varphi, \, \varphi \mathcal{U}^+ \psi := \psi \lor (\varphi \land \varphi \mathcal{U} \psi), \, \Diamond^+ \varphi := \varphi \lor \Diamond \varphi$
- $\varphi \mathcal{R} \psi := \neg(\neg \varphi \mathcal{U} \neg \psi)$, • $\varphi := \top \mathcal{R} \varphi$, $\square \varphi := \bot \mathcal{R} \varphi$, last $:= \square \bot$, $\varphi \mathcal{R}^+ \psi := \psi \land (\varphi \lor \varphi \mathcal{R} \psi)$, $\square^+ \varphi := \varphi \land \square \varphi$

Fragments

- Two-variable monodic, $T_{\mathcal{U}}Q\mathcal{L}_{\square}^2$: $\leq 2 \text{ variables} + \text{temporal formulas} \leq 1 \text{ free variable}$
- Monadic, $T_{\mathcal{U}}Q\mathcal{L}^{mo}$: predicates arity ≤ 1
- One-variable, $T_{\mathcal{U}}Q\mathcal{L}_1$: ≤ 1 variables
- One-variable constant-free monadic, $T_{\mathcal{U}}\mathcal{QL}_{\not\in}^{1,mo}$ (\sim $LTL_f \times S5$): predicates arity $\leq 1 + \leq 1$ variable constants

First-Order Temporal Language

$T_{\mathcal{U}}Q\mathcal{L}$ syntax

Predicates P (n-ary), terms τ (constants a, variables x), \neg , \wedge , \exists , \mathcal{U} (until)

$$\varphi, \psi ::= P(\bar{\tau}) \mid \neg \varphi \mid \varphi \wedge \psi \mid \exists x \varphi \mid \varphi \mathcal{U} \psi$$

Abbreviations $(\lor, \to, \leftrightarrow, \bot, \top, \text{ as usual})$

- $\bigcirc \varphi := \bot \mathcal{U} \varphi, \, \Diamond \varphi := \top \mathcal{U} \varphi, \, \varphi \mathcal{U}^+ \psi := \psi \lor (\varphi \land \varphi \mathcal{U} \psi), \, \Diamond^+ \varphi := \varphi \lor \Diamond \varphi$
- $\varphi \mathcal{R} \psi := \neg(\neg \varphi \mathcal{U} \neg \psi)$, • $\varphi := \top \mathcal{R} \varphi$, $\square \varphi := \bot \mathcal{R} \varphi$, last $:= \square \bot$, $\varphi \mathcal{R}^+ \psi := \psi \land (\varphi \lor \varphi \mathcal{R} \psi)$, $\square^+ \varphi := \varphi \land \square \varphi$

Examples

- $T_{\mathcal{U}}Q\mathcal{L}^2_{\square}$: $\forall x (\mathsf{Reviewer}(x) \to \Box^+ \forall y (\mathsf{Submission}(y) \land \mathsf{Reviews}(x, y) \to \Diamond^+ \mathsf{Evaluated}(y)))$
- $T_{\mathcal{U}}Q\mathcal{L}^{mo}$: $\forall x \forall y (\text{Reviewer}(x) \land \text{Submission}(y) \rightarrow \Diamond^+(\text{WritesReview}(x) \land \text{Evaluated}(y))$
- $T_{\mathcal{U}}Q\mathcal{L}_1$: $\forall x (\mathsf{Reviewer}(x) \to \Box^+ \mathsf{HasConflictWith}(x,x))$
- $T_{\mathcal{U}}Q\mathcal{L}^{1,mo}_{\mathcal{E}}$: $\forall x (\text{Reviewer}(x) \rightarrow \diamondsuit^+(\text{WritesReview}(x)))$

First-order temporal interpretation (trace)

$$\mathfrak{M}=(\Delta^{\mathfrak{M}},(\mathcal{I}_{n}^{\mathfrak{M}})_{n\in\mathfrak{T}})$$

- \mathfrak{T} interval $[0,\ell]$, $\ell \in \mathbb{N}$, or $[0,\infty)$
- $\mathcal{I}_n^{\mathfrak{M}}$ first-order interpretation with domain $\Delta^{\mathfrak{M}}$
 - constant domain assumption + rigid designators

First-order temporal interpretation (trace)

$$\mathfrak{M}=(\Delta^{\mathfrak{M}},(\mathcal{I}_{n}^{\mathfrak{M}})_{n\in\mathfrak{T}})$$

- \mathfrak{T} interval $[0,\ell]$, $\ell \in \mathbb{N}$, or $[0,\infty)$
- $\mathcal{I}_n^{\mathfrak{M}}$ first-order interpretation with domain $\Delta^{\mathfrak{M}}$
 - constant domain assumption + rigid designators

First-order temporal interpretation (trace)

$$\mathfrak{M}=(\Delta^{\mathfrak{M}},(\mathcal{I}_{n}^{\mathfrak{M}})_{n\in\mathfrak{T}})$$

- \mathfrak{T} interval $[0,\ell]$, $\ell \in \mathbb{N}$, or $[0,\infty)$
- $\mathcal{I}_n^{\mathfrak{M}}$ first-order interpretation with domain $\Delta^{\mathfrak{M}}$
 - constant domain assumption + rigid designators

First-order temporal interpretation (trace)

$$\mathfrak{M}=(\Delta^{\mathfrak{M}},(\mathcal{I}_{n}^{\mathfrak{M}})_{n\in\mathfrak{T}})$$

- \mathfrak{T} interval $[0,\ell]$, $\ell \in \mathbb{N}$, or $[0,\infty)$
- $\mathcal{I}_n^{\mathfrak{M}}$ first-order interpretation with domain $\Delta^{\mathfrak{M}}$
 - constant domain assumption + rigid designators

- φ entails ψ , $\varphi \models \psi$, iff for every $\mathfrak M$ and every $\mathfrak a$, if $\mathfrak M, 0 \models^{\mathfrak a} \varphi$, then $\mathfrak M, 0 \models^{\mathfrak a} \psi$
- φ and ψ are equivalent, $\varphi \equiv \psi$, iff $\varphi \models \psi$ and $\psi \models \varphi$
- infinite/finite traces entailment or equivalence: i/f subscript

First-order temporal interpretation (trace)

$$\mathfrak{M}=(\Delta^{\mathfrak{M}},(\mathcal{I}_{n}^{\mathfrak{M}})_{n\in\mathfrak{T}})$$

- \mathfrak{T} interval $[0,\ell]$, $\ell \in \mathbb{N}$, or $[0,\infty)$
- $\mathcal{I}_n^{\mathfrak{M}}$ first-order interpretation with domain $\Delta^{\mathfrak{M}}$
 - constant domain assumption + rigid designators

- Finite trace, $\mathfrak{T} = [0,\ell] \rightsquigarrow \mathfrak{F} = (\Delta^{\mathfrak{F}}, (\mathcal{F}_n)_{n \in [0,\ell]})$
- Infinite trace, $\mathfrak{T} = [0, \infty) \rightsquigarrow \mathfrak{I} = (\Delta^{\mathfrak{I}}, (\mathcal{I}_n)_{n \in [0, \infty)})$
- Concatenation of \mathfrak{F} with $\mathfrak{I} \leadsto \mathfrak{F} \cdot \mathfrak{I} = (\Delta^{\mathfrak{F} \cdot \mathfrak{I}}, (\mathcal{F} \cdot \mathcal{I}_n)_{n \in [0,\infty)})$

Finite and Infinite Traces Compared

$$\begin{array}{c} \text{Extensions of } \mathfrak{F} & \text{Prefixes of } \mathfrak{I} \\ \text{Ext}(\mathfrak{F}) = \{\mathfrak{I} \mid \exists \mathfrak{I}' : \mathfrak{I} = \mathfrak{F} \cdot \mathfrak{I}'\} & \text{Pre}(\mathfrak{I}) = \{\mathfrak{F} \mid \exists \mathfrak{I}' : \mathfrak{I} = \mathfrak{F} \cdot \mathfrak{I}'\} \end{array}$$

Semantic conditions

Given a $T_{\mathcal{U}}Q\mathcal{L}$ formula φ and $\mathbb{Q} \in \{\exists, \forall\}$

$$\varphi \text{ is } \begin{cases} \mathsf{F}_{\mathbb{Q}} \text{ if for every } \mathfrak{F}, \mathfrak{a} \colon \mathfrak{F} \models^{\mathfrak{a}} \varphi \Leftrightarrow \mathbb{Q} \mathfrak{I} \in \mathit{Ext}(\mathfrak{F}).\mathfrak{I} \models^{\mathfrak{a}} \varphi \\ \mathsf{I}_{\mathbb{Q}} \text{ if for every } \mathfrak{I}, \mathfrak{a} \colon \mathfrak{I} \models^{\mathfrak{a}} \varphi \Leftrightarrow \mathbb{Q} \mathfrak{F} \in \mathit{Pre}(\mathfrak{I}).\mathfrak{F} \models^{\mathfrak{a}} \varphi \end{cases}$$

$$(\mathsf{F}_{\circ Q} \ / \ \mathsf{I}_{\circ Q}, \, \circ \in \{\Rightarrow, \Leftarrow\} \colon \ '\Rightarrow' \ / '\Leftarrow' \text{ directions of } \mathsf{F}_{Q} \ / \ \mathsf{I}_{Q})$$

Examples

Formulas satisfying exactly one of the corresponding conditions:

$$\begin{array}{ll} (\mathsf{F}_{\exists}) \diamondsuit^{+} \mathsf{last} \lor \diamondsuit P(x) & (\mathsf{I}_{\exists}) \ \Box \bigcirc \top \lor \mathsf{last} \\ (\mathsf{F}_{\forall}) \ \forall x \diamondsuit^{+} P(x) & (\mathsf{I}_{\forall}) \ \Box^{+} P(x) \lor \diamondsuit^{+} (P(x) \land \mathsf{last}) \end{array}$$

Finite and Infinite Traces Compared

Syntactic conditions

$$\alpha ::= P(\bar{\tau}) \mid \neg P(\bar{\tau})$$

$$\mathcal{U}^{+}\text{-formulas} \qquad \qquad \mathcal{R}^{+}\text{-formulas}$$

$$\alpha \mid \varphi \land \psi \mid \varphi \lor \psi \mid \exists x \varphi \mid \varphi \mathcal{U}^{+}\psi \qquad \alpha \mid \varphi \land \psi \mid \varphi \lor \psi \mid \forall x \varphi \mid \varphi \mathcal{R}^{+}\psi$$

$$\mathcal{U}^{+}\forall \text{-formulas} \qquad \qquad \mathcal{R}^{+}\exists \text{-formulas}$$

$$\mathcal{U}^{+}\text{-formulas} \mid \forall x \varphi \qquad \qquad \mathcal{R}^{+}\text{-formulas} \mid \exists x \varphi$$

$$\mathcal{U}\text{-formulas} \qquad \qquad \mathcal{R}\text{-formulas}$$

$$\alpha \mid \varphi \land \psi \mid \varphi \lor \psi \mid \exists x \varphi \mid \varphi \mathcal{U} \psi \qquad \alpha \mid \varphi \land \psi \mid \varphi \lor \psi \mid \forall x \varphi \mid \varphi \mathcal{R} \psi$$

$$\mathcal{U}^{+}\mathcal{R}^{+}\text{-formulas}$$

$$\alpha \mid \varphi \land \psi \mid \varphi \lor \psi \mid \exists x \varphi \mid \forall x \varphi \mid \varphi \mathcal{U}^{+}\psi \mid \varphi \mathcal{R}^{+}\psi.$$

Preservation of Equivalences & Satisfiability

	Properties	Equivalences			
$\mathcal{U}^+ \forall$	F∀	$i \Rightarrow f$			
\mathbb{R}^+	F∃	$i \Rightarrow f$			
\mathcal{U}	I _∃	$f \Rightarrow i$			
$\overline{\mathcal{R}}$	I∀	$f \Rightarrow i$			
\mathcal{U}^+	F _∀ , I _∃	f ⇔ i			
$\overline{\mathcal{R}^+}$	F∃, I∀	f ⇔ i			

Table: FOTL fragments with corresponding semantic properties and preservation of equivalences

- $\mathcal{U}^+\mathcal{R}^+$ -formulas: finite trace satisfiable \Rightarrow infinite trace satisfiable
- Not vice versa: $\mathcal{U}^+\mathcal{R}^+$ -formula satisfiable only on infinite traces

$$\Box^{+} \forall x \big((P(x) \land \neg Q(x)) \lor (Q(x) \land \neg P(x)) \land \\ \Box^{+} \forall x \big((P(x) \to \diamondsuit^{+} Q(x)) \land (Q(x) \to \diamondsuit^{+} P(x)) \big)$$

Connections with Planning and Verification

Planning

- $T_{\mathcal{U}}Q\mathcal{L}$ formula φ insensitive to infiniteness [DDM14]
- Extended prenex normal form f-FOLTL [BM06]

Verification

- LTL R-(U)-formulas express (co-)safety properties [Sis94, AGGMM21]
- Runtime verification maxims [BLS10] $\begin{cases} \text{Impartiality: } F_{\Rightarrow\forall}, F_{\Leftarrow\exists} \\ \text{Anticipation: } F_{\Leftarrow\forall}, F_{\Rightarrow\exists} \end{cases}$

Complexity of Decidable Fragments

			Finite traces				Bounded traces			
$T_{\mathcal{U}}\mathcal{Q}\mathcal{L}_{ec{ec{q}}}^{1,mo}$	φ		EXPSPACE				NEXPTIME			
$T_{\mathcal{U}}\mathcal{Q}\mathcal{L}^{1}$	φ		ExpSpace				NEXPTIME			
$T_{\mathcal{U}}Q\mathcal{L}_{\mathbb{I}}^{mo}$	φ		EXPSPACE				NEXPTIME			
$T_{\mathcal{U}}\mathcal{Q}\mathcal{L}_{\mathbb{I}}^{2}$	φ		ExpSpace				NEXPTIME			
$T_{\mathcal{U}}\mathcal{A}\mathcal{L}\mathcal{C}$	φ	ExpSpace				NEXPTIME				
TUALC	κ	?				ExpTime				
		bool	horn	krom	core	bool	horn	krom	core	
$T_{\mathcal{U}}DL$ -Lit $e_{\alpha}^{\mathcal{N}}$	\mathcal{K}	PSPACE	PSPACE	PSPACE	PSPACE	PSPACE	PSPACE	PSPACE	PSPACE	
$T_{\square \bigcirc}DL$ -Lite $_{\alpha}^{\mathcal{N}}$	κ	PSPACE	PSPACE	?	$\geq NP$	PSPACE	PSPACE	?	$\geq NP$	

Table: Decidable FOTL fragments and temporal DLs complexity results, where

- φ , formula satisfiability
- K, knowledge base (global) satisfiability
- $\alpha \in \{bool, horn, krom, core\}$

Future Work

FOTL safety and co-safety fragments on finite/infinite traces

- Complexity results have been recently established for (propositional) LTL safety and co-safety fragments on finite and infinite traces [AGGMM21]
- Lift this complexity analysis to FOTL safety and co-safety fragments on finite and infinite traces?

Proof theory of decidable FOTL fragments on finite traces

- $T_{\mathcal{U}}Q\mathcal{L}$ validities on finite and infinite traces are not r.e. [GKWZ03, CMP99]
- Monodic T_UQL₁ validities on infinite traces are recursively axiomatisable [WZ02] and satisfiability is decidable with tableaux [KLWZ04]
- Study axiomatisability of $T_{\mathcal{U}}\mathcal{QL}_{\square}$ on finite traces, as well as tableaux algorithms (implementable in BLACK [GGM21]) for satisfiability?

Definite descriptions and non-rigid designators

- Definite descriptions ("the x such that φ ") [AMOW21] are referring expressions behaving as non-rigid designators in temporal contexts
- Study FOTL fragments with definite descriptions but without rigid designators assumption on finite traces (undecidability behind the corner)?
 - cf. e.g. Sarah Winkler's and Nicola Gigante's talks

References I

- [AMO18] A. Artale, A. Mazzullo, and A. Ozaki. Temporal Description Logics over Finite Traces. In: DL, 2018.
- [AMO19a] A. Artale, A. Mazzullo, and A. Ozaki. *Temporal DL-Lite over Finite Traces (Preliminary Results)*. In: DL, 2019.
- [AMO19b] A. Artale, A. Mazzullo, and A. Ozaki. Do You Need Infinite Time?. In: IJCAI, 2019.
- [AMO20] A. Artale, A. Mazzullo, and A. Ozaki. Finite vs. Infinite Traces in Temporal Logics. In: OVERLAY, 2020.
- [AMOur] A. Artale, A. Mazzullo, A. Ozaki, First-order Temporal Logic on Finite Traces: Semantic Properties, Decidable Fragments, and Applications, submitted to ACM Trans. Comput. Log. (under review).
- [AMOW21] A. Artale, A. Mazzullo, A. Ozaki, and Frank Wolter. On Free Description Logics with Definite Descriptions. In: KR, 2021.
- [AGGMM21] A. Artale, L. Geatti, N. Gigante, A. Mazzullo, A. Montanari. *Complexity of Safety and coSafety Fragments of Linear Temporal Logic.* In: AAAI, 2023.
- [BM06] J.A. Baier and S.A. McIlraith, Planning with First-Order Temporally Extended Goals using Heuristic Search In: AAAI, 2006.

References II

- [BLS10] A. Bauer, M. Leucker, C. Schallhart, Comparing LTL Semantics for Runtime Verification. J. Log. Comput., 20, 3, 2010.
- [CMP99] S. Cerrito, M. Cialdea Mayer, S. Praud, First Order Linear Temporal Logic over Finite Time Structures In: LPAR, 1999.
- [DDM14] G. De Giacomo, R. De Masellis, M. Montali. Reasoning on LTL on finite traces: Insensitivity to infiniteness. AAAI, 2014.
- [DV13] G. De Giacomo, M.Y. Vardi. Linear temporal logic and linear dynamic logic on finite traces. IJCAI, 2013.
- [GKWZ03] D.M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev. Many-dimensional Modal Logics: Theory and Applications. Elsevier, 2003.
- [GGM21] L. Geatti, N. Gigante, and A. Montanari. BLACK: A fast, flexible and reliable LTL satisfiability checker. In: OVERLAY, 2021.
- [KLWZ04] R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalising Tableaux. Stud. Logica, 76, 1, 2004.
- [Sis94] A. Prasad Sistla. Safety, Liveness and Fairness in Temporal Logic. Formal Asp. Comput. 6, 5,1994.
- [WZ02] F. Wolter and M. Zakharyaschev Axiomatizing the monodic fragment of first-order temporal logic. Ann. Pure Appl. Log., 118, 1-2, 2002.

Thank You

