Math 118C HW4

Zih-Yu Hsieh

May 18, 2025

1

Question 1 Rudin Pg. 242 Problem 27:

Put f(0,0) = 0, and

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$

if $(x,y) \neq (0,0)$. Prove that

- (a) f, $D_1 f$, $D_2 f$ are continuous in \mathbb{R}^2 .
- (b) $D_{12}f$ and $D_{21}f$ exist at every point of \mathbb{R}^2 , and are continuous except at (0,0).
- (c) $D_{12}f(0,0) = 1$, and $D_{21}f(0,0) = -1$.

Pf:

For all $(x,y) \in \mathbb{R}^2$ with $(x,y) \neq (0,0)$, using polar coordinates, $(x,y) = (r\cos(\theta), r\sin(\theta))$ for some r > 0 and $\theta \in [0,2\pi)$. Which, |(x,y)| = r, when consider limit definition, we'll use polar coordinates instead.

(a) f is continuous:

For $(x,y) \neq (0,0)$, since f is a defined rational function, it is continuous, so it suffices to show f is continuous at 0. For all $\epsilon > 0$, choose $\delta = \sqrt{\frac{\epsilon}{2}} > 0$, then for all (x,y) satisfying $0 < |(x,y)| = r < \delta$, we get the following:

$$|f(x,y) - f(0,0)| = \left| \frac{(r\cos(\theta))(r\sin(\theta))((r\cos(\theta))^2 - (r\sin(\theta))^2)}{(r\cos(\theta))^2 + (r\sin(\theta))^2} - 0 \right|$$

$$= \left| \frac{r^4\sin(\theta)\cos(\theta)(\cos^2(\theta) - \sin^2(\theta))}{r^2} \right| \le r^2|\sin(\theta)| \cdot |\cos(\theta)| \cdot (|\cos(\theta)|^2 + |\sin(\theta)|^2)$$

$$\le 2r^2 < 2\left(\sqrt{\frac{\epsilon}{2}}\right)^2 = 2 \cdot \frac{\epsilon}{2} = \epsilon$$

This shows that f is continuous at (0,0), hence f in continuous in \mathbb{R}^2 .

$D_1 f$ is continuous:

First, using basic differentiation rule, for $(x,y) \neq (0,0)$, we get the following:

$$D_1 f(x,y) = \frac{\partial}{\partial x} \left(\frac{xy(x^2 - y^2)}{x^2 + y^2} \right) = \frac{(3x^2y - y^3)(x^2 + y^2) - xy(x^2 - y^2)2x}{(x^2 + y^2)^2} = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}$$

Which, at (0,0), $D_1 f$ could be obtained through limit:

$$D_1 f(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h \cdot 0(h^2 - 0^2)}{(h^2 + 0^2)h} = \lim_{h \to 0} 0 = 0$$

Which, $D_1 f(x,y)$ for $(x,y) \neq (0,0)$ is again a rational function, which is continuous, so to verify continuity, it suffices to check (0,0). For all $\epsilon > 0$, choose $\delta = \frac{\epsilon}{6} > 0$, then for all (x,y) satisfying $0 < |(x,y)| = r < \delta$, we get the following:

$$|D_1 f(x,y) - D_1 f(0,0)| = \left| \frac{(r\cos(\theta))^4 (r\sin(\theta)) + 4(r\cos(\theta))^2 (r\sin(\theta))^3 - (r\sin(\theta)^5)}{((r\cos(\theta))^2 + (r\sin(\theta))^2)^2} - 0 \right|$$

$$= \left| \frac{r^5 (\cos^4(\theta)\sin(\theta) + 4\cos^2(\theta)\sin^3(\theta)) - \sin^5(\theta)}{r^4} \right| \le r(|\cos^4(\theta)\sin(\theta)| + 4|\cos^2(\theta)\sin^3(\theta)| + |\sin^5(\theta)|)$$

$$\le r(1 + 4 + 1) < 6 \cdot \frac{\epsilon}{6} = \epsilon$$

This proves the continuity of $D_1 f$ at (0,0), so $D_1 f$ is continuous in \mathbb{R}^2 .

D_2f is continuous:

Using differentiation rule, for $(x,y) \neq (0,0)$, we get the following:

$$D_2 f(x,y) = \frac{\partial}{\partial y} \left(\frac{xy(x^2 - y^2)}{x^2 + y^2} \right) = \frac{(x^3 - 3xy^2)(x^2 + y^2) - xy(x^2 - y^2)2y}{(x^2 + y^2)^2} = \frac{x^5 - xy^4 - 4x^3y^2}{(x^2 + y^2)^2}$$

Again, at (0,0), D_2f could be obtained through limit:

$$D_2 f(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 \cdot h(0^2 - h^2)}{(0^2 + h^2)h} = \lim_{h \to 0} 0 = 0$$

Notice that $D_2f(x,y)$ for $(x,y) \neq (0,0)$ is a rational function, which is continuous, so to verify continuity, it suffices to check (0,0). For all $\epsilon > 0$, choose $\delta = \frac{\epsilon}{6} > 0$, then for all (x,y) satisfying $0 < |(x,y)| = r < \delta$, we get the following:

$$|D_2 f(x,y) - D_2 f(0,0)| = \left| \frac{(r\cos(\theta))^5 - (r\cos(\theta))(r\sin(\theta))^4 - 4(r\cos(\theta))^3(r\sin(\theta))^2}{((r\cos(\theta))^2 + (r\sin(\theta))^2)^2} - 0 \right|$$

$$= \left| \frac{r^5(\cos^5(\theta) - \cos(\theta)\sin^4(\theta) - 4\cos^3(\theta)\sin^2(\theta))}{r^4} \right| \le r(|\cos^5(\theta)| + |\cos(\theta)\sin^4(\theta)| + 4|\cos^3(\theta)\sin^2(\theta)|)$$

$$\le r(1+1+4) < 6 \cdot \frac{\epsilon}{6} = \epsilon$$

This proves the continuity of D_2f at (0,0), hence D_2f is continuous in \mathbb{R}^2 .

(b) Function $D_{21}f$:

Given that $D_1 f(x,y) = \frac{x^4 y + 4x^2 y^3 - y^5}{(x^2 + y^2)^2}$ for $(x,y) \neq (0,0)$ and $D_1 f(0,0) = 0$, apply differentiation rule for $(x,y) \neq (0,0)$, we get:

$$D_{21}f(x,y) = \frac{\partial}{\partial y} \left(\frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \right) = \frac{(x^4 + 12x^2y^2 - 5y^4)(x^2 + y^2)^2 - (x^4y + 4x^2y^3 - y^5)2(x^2 + y^2)2y}{(x^2 + y^2)^4}$$

Which, $D_{21}f(x,y)$ is continuous for $(x,y) \neq (0,0)$ (since it's a rational function).

Now, to get $D_{21}f(0,0)$, we'll use limit definition:

$$D_{21}f(0,0) = \lim_{h \to 0} \frac{D_1f(0,h) - D_1f(0,0)}{h} = \lim_{h \to 0} \frac{0^4 \cdot h + 4 \cdot 0^2 \cdot h^3 - h^5}{(0^2 + h^2)^2 h} = \lim_{h \to 0} -\frac{h^5}{h^5} = -1$$

Hence, $D_{21}f$ exists on the whole \mathbb{R}^2 , and is continuous at all $(x, y) \neq (0, 0)$. But, it is not continuous at (0, 0), since choosing $x \neq 0$ and y = 0, $D_{21}f$ becomes:

$$D_{21}f(x,0) = \frac{x^8}{x^8} = 1$$

Hence, $\lim_{x\to 0} D_{21}f(x,0) = 1 \neq -1 = D_{21}f(0,0)$, showing the discontinuity at (0,0).

So, $D_{21}f$ exists on \mathbb{R}^2 , while being continuous on $\mathbb{R}^2 \setminus \{0\}$.

Function $D_{12}f$:

Given that $D_2 f(x,y) = \frac{x^5 - xy^4 - 4x^3y^2}{(x^2 + y^2)^2}$ for $(x,y) \neq (0,0)$ and $D_2 f(0,0) = 0$, apply differentiation rule for $(x,y) \neq (0,0)$, we get:

$$D_{12}f(x,y) = \frac{\partial}{\partial x} \left(\frac{x^5 - xy^4 - 4x^3y^2}{(x^2 + y^2)^2} \right) = \frac{(5x^4 - y^4 - 12x^2y^2)(x^2 + y^2)^2 - (x^5 - xy^4 - 4x^3y^2)2(x^2 + y^2)2x^2}{(x^2 + y^2)^4}$$

Hence, $D_{12}f$ is continuous for $(x,y) \neq (0,0)$, since it's also a rational function.

Now, to get $D_{12}f(0,0)$, we'll again use limit definition:

$$D_{12}f(0,0) = \lim_{h \to 0} \frac{D_2f(h,0) - D_2f(0,0)}{h} = \lim_{h \to 0} \frac{h^5 - h \cdot 0^4 - 4h^3 \cdot 0^2}{(h^2 + 0^2)^2h} = \lim_{h \to 0} \frac{h^5}{h^5} = 1$$

Hence, $D_{12}f$ exists on the whole \mathbb{R}^2 , and is continuous at all $(x,y) \neq (0,0)$. But again, it's not continuous at (0,0), since choosing x=0 and $y\neq 0$, $D_{12}f$ becomes:

$$D_{12}f(0,y) = \frac{-y^8}{y^8} = -1$$

Hence, $\lim_{y\to 0} D_{12}f(0,y) = -1 \neq 1 = D_{12}f(0,0)$, showing the discontinuity at (0,0).

So, $D_{12}f$ exists on \mathbb{R}^2 , while being continuous on $\mathbb{R}^2 \setminus \{0\}$.

(c) From part (b), when verifying that the existence of $D_{12}f(0,0)$ and $D_{21}f(0,0)$, we've shown that $D_{12}f(0,0) = 1$, and $D_{21}f(0,0) = -1$.

Question 2 Rudin Pg. 242 Problem 28:

For $t \geq 0$, put

$$\varphi(x,t) = \begin{cases} x & 0 \le x \le \sqrt{t} \\ -x + 2\sqrt{t} & \sqrt{t} \le x \le 2\sqrt{t} \\ 0 & otherwise \end{cases}$$

and put $\varphi(x,t) = -\varphi(x,|t|)$ if t < 0.

Show that φ is continuous on \mathbb{R}^2 , and $D_2\varphi(x,0)=0$ for all x. Define

$$f(t) = \int_{-1}^{1} \varphi(x, t) dx$$

Show that f(t) = t if $|t| < \frac{1}{4}$. Hence

$$f'(0) \neq \int_{-1}^{1} D_2 \varphi(x,0) dx$$

Pf:

Continuity of φ :

First, in the open half plane x < 0, since $\varphi(x,t) = 0$, then φ is continuous.

Similarly, in the open region where all (x,t) satisfies $x > 2\sqrt{|t|}$, since again $\varphi(x,t) = 0$ by the restriction, then φ is again continuous.

Then, for the open region where all (x,t) satisfies $0 < x < \sqrt{|t|}$, since the function φ is described by x for t > 0, and -x for t < 0, then the addition φ is also continuous within this region.

Also, for the open region where all (x,t) satisfies $\sqrt{|t|} < x < 2\sqrt{|t|}$, since the function φ is described by $-x + 2\sqrt{|t|}$ for t > 0, while described by $-(-x + 2\sqrt{|t|})$ when t < 0, so since both $x, \sqrt{|t|}$ are continuous functions, φ as their linear combination is again continuous within this region.

Hence, the only regions left to check, is the lines where (x,t) satisfies $x=0, x=\sqrt{|t|}$, or $x=2\sqrt{|t|}$. (Note: Since both x and $2\sqrt{|t|}$ are continuous functions, then for any given (x_0,t_0) , for all $\epsilon>0$, there exists $\delta>0$, such that $|x-x_0|<\delta\implies |x-x_0|<\frac{\epsilon}{2}$, and $|t-t_0|<\delta\implies |2\sqrt{|t|}-2\sqrt{|t_0|}|<\frac{\epsilon}{2}$). (Note 2: below when \pm appears, it considers the case where t could be positive or negative). (Note 3: below we'll directly assume the choice of δ relates to $\epsilon>0$).

• For the line x=0, we have $\varphi(0,t)=0$. Which, for any $(0,t_0)$:

If $t_0 = 0$, for all (x, t) with $|(x, t) - (0, 0)| < \delta$, since $|x - 0|, |t - 0| < \delta$, we get the following three cases:

$$\varphi(x,t) = \pm x, \quad |\varphi(x,t) - \varphi(0,0)| = |x-0| < \frac{\epsilon}{2} < \epsilon$$

$$\varphi(x,t) = \pm(-x + 2\sqrt{|t|}), \quad |\varphi(x,t) - \varphi(0,0)| = |-x + 2\sqrt{|t|}| \le |x| + |2\sqrt{|t|}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

$$\varphi(x,t) = 0, \quad |\varphi(x,t) - \varphi(0,0)| = |0 - 0| < \epsilon$$

For $t_0 \neq 0$ instead, we can add an extra condition, not only $|(x,t) - (0,t_0)| < \delta$, but shrink δ so that $|x| < \sqrt{|t|}$ for all point in the region. Hence, we no longer need to consider the second case of the function, which left with the following two cases:

$$\varphi(x,t) = \pm x, \quad |\varphi(x,t) - \varphi(0,t_0)| = |x-0| < \frac{\epsilon}{2} < \epsilon$$

$$\varphi(x,t) = 0, \quad |\varphi(x,t) - \varphi(0,t_0)| = |0| < \epsilon$$

This shows that φ is continuous at all $(0, t_0)$.

• For the line $x = \sqrt{|t|}$ (assume $(x,t) \neq (0,0)$, which has checked before). Then, for all (x_0,t_0) on this line, since $x_0 = \sqrt{|t_0|}$, then $\varphi(x_0,t_0) = \pm x_0$. Then, choose $\delta > 0$, such that for all (x,t) satisfying $|(x,t) - (x_0,t_0)| < \delta$, $0 < x < 2\sqrt{|t|}$, and t has the same sign with t_0 . Then, we don't need to consider the case where $\varphi(x,t) = 0$, and $\varphi(x,t)$ and $\varphi(x_0,t_0)$ are following the same sign (since assuming t,t_0 have the same sign). So, we get the following two cases:

$$\varphi(x,t) = \pm x, \quad |\varphi(x,t) - \varphi(x_0,t_0)| = |\pm x - \pm x_0| = |x - x_0| < \frac{\epsilon}{2} < \epsilon$$

$$\begin{split} \varphi(x,t) &= \pm (-x + 2\sqrt{t}), \quad \text{since } x = x_0 + \delta', \ |\delta' - 0| < \delta, \ |\delta' - 0| < \frac{\epsilon}{2} \\ \Longrightarrow \ |\varphi(x,t) - \varphi(x_0,t_0)| &= |\pm (-(x_0 + \delta') + 2\sqrt{|t|}) - \pm x_0| = |2\sqrt{|t|} - 2x_0 - \delta'| \leq |2\sqrt{|t|} - 2\sqrt{|t_0|}| + |\delta'| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{split}$$

(Note: the second case has $x_0 = \sqrt{|t_0|}$, and $|2\sqrt{|t|} - 2\sqrt{|t_0|}| < \frac{\epsilon}{2}$ since assuming $|t - t_0| < \delta$). This proves continuity on the line $x = \sqrt{|t|}$.

• For the line $x = 2\sqrt{|t|}$, for all (x_0, t_0) on the line (again, assume $(x_0, t_0) \neq (0, 0)$), since $x_0 = 2\sqrt{|t_0|}$, then $\varphi(x_0, t_0) = \pm(-x_0 + 2\sqrt{|t_0|}) = \pm(-2\sqrt{|t_0|} + 2\sqrt{|t_0|}) = 0$. Which, choose $\delta > 0$, such that not only satisfy the relationship with ϵ , but also for any (x, t) with $|(x, t) - (x_0, t_0)|$, we have $x > \sqrt{|t|}$. This avoids the case where $\varphi(x, t) = x$. Then, we get the following two cases:

$$\varphi(x,t) = \pm(-x + 2\sqrt{|t|}), \quad \text{since } x = x_0 + \delta', \quad |\delta' - 0| < \delta, \ |\delta' - 0| < \frac{\epsilon}{2}$$

$$\implies |\varphi(x,t) - \varphi(x_0,t_0)| = |-x + 2\sqrt{|t|}| = |-(x_0 + \delta') + 2\sqrt{|t|}| \le |2\sqrt{|t|} - 2\sqrt{|t_0|}| + |\delta'|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

$$\varphi(x,t) = 0, \quad |\varphi(x,t) - \varphi(x_0,t_0)| = 0 < \epsilon$$

(Note: the first case has $x_0 = 2\sqrt{|t_0|}$, while $|2\sqrt{|t|} - 2\sqrt{|t_0|}| < \frac{\epsilon}{2}$ since $|t - t_0| < \delta$).

This proves continuity on the line $x = 2\sqrt{|t|}$.

The above situation covers the all points in \mathbb{R}^2 , hence φ is continuous on \mathbb{R}^2 .

$D_2\varphi$ when t=0:

For all $x \in \mathbb{R}$, if $x \le 0$, then we get $\varphi(x,t) = 0$ regardless of $t \in \mathbb{R}$, showing that $D_2\varphi(x,0) = \frac{\partial \varphi}{\partial t}(x,0) = 0$. Now for x > 0, since for all $t \in \mathbb{R}$ satisfying $4|t| < x^2$, we have $2\sqrt{|t|} < x$, then $\varphi(x,t) = 0$ when $t \in (-\frac{x^2}{4}, \frac{x^2}{4})$. So, $D_2\varphi(x,0) = 0$ (since $\lim_{t\to 0} \frac{\varphi(x,t)-\varphi(x,0)}{t} = \lim_{t\to 0} 0 = 0$, because for small enough t, it lies in the range $(-\frac{x^2}{4}, \frac{x^2}{4})$).

So, regardless of $x \in \mathbb{R}$, we have $D_2\varphi(x,0) = 0$.

Function f(t):

Given $f(t) = \int_{-1}^{1} \varphi(x,t)dt$, when $|t| < \frac{1}{4}$, there are several cases to consider:

• when $t \ge 0$, then $0 \le \sqrt{t} < \sqrt{\frac{1}{4}} = \frac{1}{2}$, while $0 \le 2\sqrt{t} < 1$. Hence, the integral expression can be broken down as the following pieces:

$$\int_{-1}^{1} \varphi(x,t)dx = \int_{-1}^{0} 0dx + \int_{0}^{\sqrt{t}} xdx + \int_{\sqrt{t}}^{2\sqrt{t}} (-x + 2\sqrt{t})dx + \int_{2\sqrt{t}}^{1} 0dx$$
$$= \frac{1}{2}x^{2} \Big|_{0}^{\sqrt{t}} + \left(-\frac{1}{2}x^{2} + 2\sqrt{t}x\right) \Big|_{\sqrt{t}}^{2\sqrt{t}} = \frac{1}{2}t + \left((4t - 2t) - (2t - \frac{1}{2}t)\right) = t$$

• when t < 0 (where t = -|t|), since $\varphi(x,t) = -\varphi(x,|t|)$ with |t| > 0, then inheriting from the above expression, we get:

$$\int_{-1}^{1} \varphi(x,t) dx = -\int_{-1}^{1} \varphi(x,|t|) dx = -|t| = t$$

Hence, for $|t| < \frac{1}{4}$, we can deduce that f(t) = t, which f'(t) = 1. So, the following inequality is true:

$$f'(0) = 1 \neq 0 = \int_{-1}^{1} 0 dx = \int_{-1}^{1} D_2 \varphi(x, 0) dx$$

This shows that differentiation under integral sign fails under certain situation.

Question 3 Rudin Pq. 243 Problem 30:

Let $f \in C^{(m)}(E)$, where E is an open subset of \mathbb{R}^n . Fix $a \in E$, and suppose $x \in \mathbb{R}^n$ is so close to 0 that the points p(t) = a + tx lie in E whenever $0 \le t \le 1$. Define h(t) = f(p(t)) for all $t \in \mathbb{R}$ for which $p(t) \in E$.

(a) For $1 \le k \le m$, show (by repeated application of the chain rule) that

$$h^{(k)}(t) = \sum (D_{l_1...l_k}f)(p(t))x_{l_1}...x_{l_k}$$

The sum extends over all order k-tuples $(l_1,...,l_k)$ in which each l_i is one of the integers 1,...,n.

Pf:

Given $a, x \in \mathbb{R}^n$ (where $x = (x_1, ..., x_n)$ for fixed $x_1, ..., x_n \in \mathbb{R}^n$) and p(t) = a + tx for $t \in [0, 1]$, then p'(t) = x.

Now, we'll use induction to verify the formula (and we'll use matrix representation of the differentials). First, for k = 1, using chain rule, we get the following:

$$h'(t) = Df(p(t))p'(t) = \begin{pmatrix} D_1 f & \dots & D_n f \end{pmatrix} \Big|_{p(t)} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n D_i f(p(t)) x_i$$

Since all the possible 1-tuple is included in the summation, the h'(t) satisfies the given formula.

Now, suppose for given $1 \le k \le (m-1)$, $h^{(k)}(t)$ satisfies the following formula:

$$h^{(k)}(t) = \sum (D_{l_1...l_k}f)(p(t))x_{l_1}...x_{l_k}$$

Since for each k-tuple $(l_1, ..., l_k)$ (where each $l_i \in \{1, ..., n\}$) has the function $x_{l_1}...x_{l_k}D_{l_1...l_k}f(p(t))$ being a differentiable function from (0, 1) to \mathbb{R} (where $D_{l_1...l_k}f(z)$ for $z \in E$ is a differentiable function, since it has only been differentiated k < m times, while $f \in C^{(m)}(E)$). Then, to calculate the $(k + 1)^{th}$ derivative, we get:

$$h^{(k+1)}(t) = \sum \frac{d}{dt} (D_{l_1...l_k} f)(p(t)) x_{l_1}...x_{l_k}$$

$$\forall (l_1, ..., l_k), \quad \frac{d}{dt} (D_{l_1...l_k} f)(p(t)) x_{l_1}...x_{l_k} = x_{l_1}...x_{l_k} D\left(D_{l_1...l_k} f\right)(p(t)) p'(t)$$

$$= x_{l_1}...x_{l_k} \sum_{i=1}^n D_i \left(D_{l_1...l_k} f\right)(p(t)) x_i = \sum_{i=1}^n D_{il_1...l_k} f(p(t)) x_i x_{l_1}...x_{l_k}$$

$$\implies h^{(k+1)}(t) = \sum \left(\sum_{i=1}^n D_{il_1...l_k} f(p(t)) x_i x_{l_1}...x_{l_k}\right)$$

Which, the first summation indicates all possible k-tuple $(l_1,...,l_k)$ for $l_i \in \{1,...,n\}$.

Now, for all (k+1)-tuple $(j_0, j_1, ..., j_k)$ where each $j_l \in \{1, ..., n\}$, choose the unique k-tuple $(j_1, ..., j_k)$, then $D_{j_0j_1...j_k}f(p(t))x_{j_0}x_{j_1}...x_{j_k}$ appears precisely once in the summation of $h^{(k+1)}(t)$ given above; similarly, since each k-tuple $(l_1, ..., l_k)$ and $i \in \{1, ..., n\}$ corresponds to a unique (k+1)-tuple $(i, l_1, ..., l_k)$, so the summation in $h^{(k+1)}(t)$ has a 1-to-1 correspondance to all (k+1)-tuple. Then, the summation $h^{(k+1)}(t)$ can also be described as:

$$h^{(k+1)}(t) = \sum D_{l_1...l_k l_{k+1}} f(p(t)) x_{l_1}...x_{l_k} x_{l_{k+1}}$$

Where each $(l_1, ..., l_k, l_{k+1})$ is a (k+1)-tuple with entries from $\{1, ..., n\}$.

Question 4 Rudin Pg. 288 Problem 2:

For $i = 1, 2, 3, ..., let \varphi_i \in \mathcal{C}(\mathbb{R})$ have support in $(2^{-i}, 2^{1-i})$, such that $\int \varphi_i = 1$. Put

$$f(x,y) = \sum_{i=1}^{\infty} (\varphi_i(x) - \varphi_{i+1}(x))\varphi_i(y)$$

Then f has compact support in \mathbb{R}^2 , f is cotinuous except at (0,0), and

$$\int dy \int f(x,y)dx = 0, \quad but \int dx \int f(x,y)dy = 1$$

Observe that f is unbounded in every neighborhood of (0,0).

Pf:

The function f is well-defined, with compact support:

First, notice that for $x \leq 0$ or $x \geq 1$, since for all $i \in \mathbb{N}$, we have $(2^{-i}, 2^{1-i}) \subseteq (0, 1)$, then x is not in the support of φ_i , hence $\varphi_i(x) = 0$. So, for $(x, y) \notin (0, 1) \times (0, 1)$, since $\varphi_i(x), \varphi_i(y) = 0$, then f(x, y) = 0.

Now, for all $x \in (0,1)$, since $\lim_{i\to\infty} 2^{-i} = 0$, then take the smallest $i \in \mathbb{N}$ such that $2^{-i} < x$, then $x \leq 2^{1-i}$. So, if $x \neq 2^{1-i}$. Which, for other $j \neq i$, since $(2^{-j}, 2^{1-j}) \cap (2^{-i}, 2^{1-i}) = \emptyset$, this indicates $x \notin (2^{-j}, 2^{1-j})$ (x is not in the support of φ_j), hence $\varphi_j(x) = 0$.

So, for all $(x, y) \in (0, 1) \times (0, 1)$, since there exists $i, j \in \mathbb{N}$, such that $x \in (2^{-i}, 2^{1-i})$ and $y \in (2^{-j}, 2^{1-j})$, then if $k \neq i$, $\varphi_k(x) = 0$; and if $k \neq j$, $\varphi_k(y) = 0$. So, consider the infinite summation, we get:

$$f(x,y) = \sum_{k=1}^{\infty} (\varphi_k(x) - \varphi_{k+1}(x))\varphi_k(y) = (\varphi_j(x) - \varphi_{j+1}(x))\varphi_j(y)$$

(Note: if $k \neq j$, then $\varphi_k(y) = 0$, so the other terms are trivial).

Hence, regardles of $(x,y) \in \mathbb{R}^2$, f(x,y) is well-defined. And, since for $(x,y) \notin (0,1) \times (0,1)$, f(x,y) = 0, this shows that the support of f is contained in $[0,1] \times [0,1]$, which is bounded. Then, because support is chosen to be closed, the support of f is in fact compact.

Continuity of f except at (0,0):

For all $(x, y) \neq (0, 0)$, there are several cases to consider:

- If y < 0 or y > 1, then since for any $i \in \mathbb{N}$, y is not in the support of φ_i (given by $(2^{-i}, 2^{1-i})$), then f(x,y) = 0 (since every term in the series include $\varphi_i(y)$ for some i), hence f is continuous. (similarly, if x < 0 or x > 1, then $\varphi_i(x) = 0$ for all $i \in \mathbb{N}$ also, then f(x,y) = 0, since every term in the summation includes $(\varphi_i(x) \varphi_{i+1}(x))$ for some i). So, for the region where $(x,y) \notin [0,1] \times [0,1]$, f is continuous (and the below cases we'll assume the points are in $[0,1] \times [0,1]$).
- For 0 < y < 1, then choose $i, j \in \mathbb{N} \cup \{0\}$, with i < j, such that $2^{-j} < y < 2^{-i}$. Then, for any (x_0, y_0) within this region, choose an open neighborhood U that's also contained in the region. Since for this neighborhood $2^{-j} < y < 2^{-i}$ for all points, there's only finitely many index $k \in \mathbb{N}$ satisfying $\varphi_k(y) \neq 0$ for some $(x, y) \in U$ (based on the formula initially derived), hence, f can be expressed as finite product and summation of φ_k with input x or y, which f is continuous in this region.

- For any point with y = 1 (and $x \neq 0$), choose open neighborhood U such that all $(x, y) \in U$ satisfies $y > 2^{-1}$. Then, since for all index i > 1, any $(x, y) \in U$ has y outside the support of φ_i , then $\varphi_i(y) = 0$, forcing $f(x, y) = (\varphi_1(x) \varphi_2(x))\varphi_1(y)$, hence f is continuous in this region.
- Then, for any point with y = 0, since x > 0, choose $j \in \mathbb{N}$ such that $2^{-j} < x$. Then, choose an open neighborhood U such that all $(x', y') \in U$ has $2^{-j} < x'$, then again only finitely many index $i \in \mathbb{N}$ (specifically, with $i \leq j$) has $\varphi_i(x) \neq 0$ for some $(x, y) \in U$. Then, within U, f can again be expressed as finite sum and product of $\varphi_k(x)$ and $\varphi_j(y)$, hence f is still continuous in this region.

The above verifies the continuity of f under various cases. Now, to prove that f is discontinuous at (0,0), it suffices to show that f is unbounded in any neighborhood of (0,0).

For all $i \in \mathbb{N}$, since φ_i has support contained in $(2^{-i}, 2^{1-i})$, then along with the fact that φ_i has integral being 1, we get the following:

$$\int_{2^{-i}}^{2^{1-i}} \varphi_i(x) dx = 1$$

Which, if we define the function $\overline{\varphi}_i:[2^{-i},2^{1-i}]\to\mathbb{R}$ as follow:

$$\overline{\varphi}_i(t) = \int_{2^{-i}}^t \varphi_i(x) dx$$

Then, since φ_i is continuous, $\overline{\varphi}_i$ is differentiable, with $\varphi_i(t)$ being its derivative. Then, with Mean Value Theorem, there exists $t_i \in (2^{-i}, 2^{1-i})$, such that the following is true:

$$1 - 0 = 1 = \int_{2^{-i}}^{2^{1-i}} \varphi_i(x) dx = \overline{\varphi}_i(2^{1-i}) - \overline{\varphi}_i(2^{-i}) = \varphi(t_i)(2^{1-i} - 2^{-i}) = \varphi_i(t_i) \cdot 2^{-i}$$

$$\implies \varphi_i(t_i) = 2^i$$

Which, if consider $f(t_i, t_i)$, since only index $i \in \mathbb{N}$ has t_i being in the support of φ_i , then we get:

$$f(t_i, t_i) = \sum_{k=1}^{\infty} (\varphi_k(t_i) - \varphi_{k+1}(t_i))\varphi_k(t_i) = (\varphi_i(t_i) - \varphi_{i+1}(t_i))\varphi_i(t_i) = (2^i - 0)2^i = 2^{2i}$$

Which, for all M > 0 and r > 0, for the open neighborhood $B_r(0,0)$, choose $i \in \mathbb{N}$ such that $2^{1-i} < \frac{r}{\sqrt{2}}$ and $2^i > M$. Then, the point (t_i, t_i) satisfies:

$$|(t_i, t_i)| = \sqrt{2t_i^2} < \sqrt{2 \cdot (2^{1-i})^2} < \sqrt{2 \cdot \left(\frac{r}{\sqrt{2}}\right)^2} = \sqrt{2 \cdot \frac{r^2}{2}} = \sqrt{r^2} = r$$

Hence, $(t_i, t_i) \in B_r(0, 0)$. Also, $f(t_i, t_i) = 2^{2i} > 2^i > M$. This shows that f is unbounded within any neighborhood of (0, 0), which f is not continuous at (0, 0).

Integral of f:

Since f has a support in $[0,1] \times [0,1]$, it suffices to consider the integral over this region. (Also, for all $i \in \mathbb{N}$, since φ_i has support $(2^{-i}, 2^{1-i}) \subseteq [0,1]$, then integration along one variable can be taken from 0 to 1, and $\int_0^1 \varphi_i(x) dx = 1$ based on assumption).

First, fix $y \in (0, 1)$, since in the first section we've proven that $f(x, y) = (\varphi_j(x) - \varphi_{j+1}(x))\varphi_j(y)$ for some $j \in \mathbb{N}$, then:

$$\int_{0}^{1} f(x,y)dx = \int_{0}^{1} (\varphi_{j}(x) - \varphi_{j+1}(x))\varphi_{j}(y)dx = \varphi_{j}(y) \left(\int_{0}^{1} \varphi_{j}(x)dx - \int_{0}^{1} \varphi_{j+1}(x)dx \right) = \varphi_{j}(y)(1-1) = 0$$

This indicates that $\int f(x,y)dx = 0$. Hence, we get the following:

$$\int dy \left(\int f(x,y) dx \right) = \int 0 dy = 0$$

Else, if fix $x \in (0,1)$, there are two cases:

• For $x \in (2^{-1}, 2^{1-1})$, since the only index $i \in \mathbb{N}$ such that x is in φ_i 's support is i = 1, then for index i > 2, $\varphi_i(x) = 0$. So, we get:

$$f(x,y) = \sum_{i=1}^{\infty} (\varphi_i(x) - \varphi_{i+1}(x))\varphi_i(y) = (\varphi_1(x) - \varphi_2(x))\varphi_1(y) = \varphi_1(x)\varphi_1(y)$$

(Note: $\varphi_2(x) = 0$ for the fixed $x \in (2^{-1}, 2^{1-1})$). Which, its integral with respect to y becomes:

$$\int_0^1 f(x,y)dy = \int_0^1 \varphi_1(x)\varphi_1(y)dy = \varphi_1(x)$$

• If $x \notin (2^{-1}, 2^{1-1})$, either $x \notin (2^{-i}, 2^{1-i})$ for all $i \in \mathbb{N}$ (which x is not in the support of any φ_i , showing that f(x, y) = 0, so $\int_0^1 f(x, y) dy = 0$), or $x \in (2^{-i}, 2^{1-i})$ for some integer i > 1. Which, for the second case, since $i - 1 \ge 1$, we get:

$$f(x,y) = \sum_{i=1}^{\infty} (\varphi_i(x) - \varphi_{i+1}(x))\varphi_i(y) = (\varphi_{i-1}(x) - \varphi_i(x))\varphi_{i-1}(y) + (\varphi_i(x) - \varphi_{i+1}(x))\varphi_i(y)$$
$$= \varphi_i(x)(\varphi_i(y) - \varphi_{i-1}(y))$$

So, its integral with respect to y becomes:

$$\int_{0}^{1} f(x,y) dy = \int_{0}^{1} \varphi_{i}(x) (\varphi_{i}(y) - \varphi_{i-1}(y)) dy = \varphi_{i}(x) \left(\int_{0}^{1} \varphi_{i}(y) dy - \int_{0}^{1} \varphi_{i+1}(y) dy \right) = \varphi_{i}(x) (1-1) = 0$$

So, if consider the integral, we get:

$$\int dx \left(\int f(x,y) dy \right) = \int_0^1 dx \left(\int f(x,y) dy \right) = \int_0^{2^{-1}} dx \left(\int f(x,y) dy \right) + \int_{2^{-1}}^{2^{1-1}} dx \left(\int f(x,y) dy \right)$$
$$= \int_0^{2^{-1}} 0 dx + \int_{2^{-1}}^{2^{1-1}} \varphi_1(x) dx = \int \varphi_1(x) dx = 1$$

(Note: since φ_1 has support $(2^{-1}, 2^{1-1})$, the above integral is valid).

So, this shows that integrating x or y in different order actually causes a difference for this function.