Segunda entrega de projeto

Karen Kaori Yonea - 10349471

1 Projeto4

1.1 Implementação

```
function(train, n) {
      train <<- train
      n_train <<- dim(train)[1]
      10
      #Configuração inicial: pesos aleatórios
nodes <<- rand(n*n, dim(train)[2])
res$init = nodes</pre>
11
12
13
14
15
      #Pesos atualizados
16
17
       res$trained <- training(c)</pre>
18
      #Retorna a matriz de pesos inicial e final
return(res)
19
20
21
    training <- function(c) {
  for (i in 1:dim(train)[1]) {
    #Encontrar o neuronio "vencedor"
    match = matching(train[i,])</pre>
24
25
26
         #Distâncias
         d <<- rowNorms(c - c[match], method='</pre>
               euclidean')
28
         L = learning_rate(i)
        S = learning_radius(i)
aux = train[i,] - nodes
#Atualizar pesos
29
30
31
         nodes = nodes + L*(S * aux)
33
34
35
      return(nodes)
36
    matching <- function(teachers) {
  norms = rowNorms(nodes - teachers, method=')</pre>
37
            euclidean')
      match = which.min(norms)
return(match)
40
41
42
   neighbourhood <-
                           function(t) {
     hfl = n_train/4
ini = n/2
45
      nei = ini*exp(-t/hfl)
      return(nei)
47
48
```

```
50 learning_rate <- function(t) {
51    hfl = n_train/4
52    ini = 0.1
53    rat = ini*exp(-t/hfl)
54    return(rat)
55 }
56
57 learning_radius <- function(t) {
58    s = neighbourhood(t)
59    rad = exp(-d^2/(2*s^2))
60    return(rad)
61 }</pre>
```

1.2 Paleta de cores

Para testar o algoritmo foi utilizado dados gerados de forma aleatório em escala de cor RGB:

(a) Antes de aplicar o SOM

(b) Depois de aplicar o SOM

1.3 Base MNIST(caracteres manuscritos)

Utilizando a base de dados de imagens de teste do MNIST com 10 categorias obteve-se:

(a) Antes de aplicar o SOM

(b) Depois de aplicar o SOM

2 Projeto 5

2.1 Implementação

2.1.1 KNN

```
#Analise da base de treino
   guess.knn <- function(x, train, trainlabels, k) {
   #Distância euclidiana</pre>
      xmatrix <- matrix(as.numeric(x), nrow=nrow(
    train), ncol=length(x), byrow=T)</pre>
      xmatrix <- (abs(as.matrix(train)-xmatrix))^2
diffs <- (rowSums(xmatrix))^(1/2)</pre>
6
      #Ordena as distâncias
diffs <- data.frame(dist=diffs,label=
           trainlabels)
      diffs <- (diffs[order(diffs$dist),])
diffs <- diffs[1:k,]</pre>
12
13
      guess <- names(sort(-table(diffs$label)))[1]</pre>
14
      return (guess)
15
16
     17
18
19
      trainlabels <- trainlabels[subsample]</pre>
23
      #Atribuir os valores das classes da base teste
            - apply(test, 1, function(x) guess.knn(x,
train, trainlabels, k))
25
26
      return(kn)
```

2.1.2 K-means

```
function(dataset, k, threshold=1e-3) {
      #Definindo os centroides iniciais
      ids = sample(1:nrow(dataset), size=k)
     centroid = as.data.frame(dataset[ids,])
div = 2 * threshold
     #Divergente > que o limiar
while (div > threshold) {
        # Para cada centroide
dists = NULL
 9
        for (i in 1:k) {

# calcular a distancia euclidiana de cada
11
12
                ponto do
          # espaço em relação a cada centroide
          14
15
16
        # Descobrir qual centroide cada ponto está
        clusters = apply(dists, 1, function(row) {
    which.min(row) } )
19
20
21
        # Atualizar a posição dos centroides
22
23
        for (i in 1:k) {
          ids = which(clusters == i)
position = colMeans(as.data.frame(dataset[
24
25
          ids,]))
div = div + sqrt(sum((centroid[i,] -
    position)^2))
26
          centroid[i,] = position
28
29
30
        div = div / k
31
32
33
     km = list()
34
     km $ k = k
35
36
     km$centroid = centroid
     km$cluster = clusters
37
38
      return(km)
```

2.2 Sinal 1D - Autômatos probabilísticos

Para essa parte foi gerado 500 padrões de tamanho M=500 para cada autômato, tendo um total de 1500 dados.

Figura 3: Autômatos utilizados

A escolha de dois autômatos muito similares para testar os métodos foi proposital. Atributos escolhidos:

- Média do tamanho dos bursts
- Entropia do tamanho dos bursts
- Média das distâncias intersímbolos
- Entropia das distâncias intersímbolos

2.2.1 KNN

Foram selecionados aleatoriamente 250 índices para treino e outros 250 para teste.

Matriz de Confusão

	a	b	c
a	82	0	13
b	0	82	0
\mathbf{c}	12	0	61

2.2.2 K-means

Utilizando 250 índices foram obtidos resultados pouco assertivos, então foi tomada a escolha de analisar 500 valores.

Matriz de Confusão

	a	b	c
a	134	0	26
b	1	164	0
\mathbf{c}	11	0	164

Os melhores resultados foram obtidos utilizando entre (500, 750) índices.

2.3 Base MNIST(caracteres manuscritos)

2.3.1 KNN

Para essa parte foram selecionados aleatoriamente 250 índices da base de treino e 250 da base de teste.

Matriz de Confusão

	0	1	2	3	4	5	6	7	8	9
0	20	0	0	0	0	0	0	0	0	0
1	0	32	0	0	0	0	0	0	2	0
2	2	8	12	0	2	0	0	1	1	0
3	0	3	0	15	0	1	0	0	0	3
4	0	4	0	0	21	0	1	0	0	0
5	3	1	0	5	0	9	0	1	1	1
6	0	0	0	0	2	0	20	0	0	0
7	0	3	0	0	2	0	0	19	0	7
8	1	3	0	7	1	0	0	1	5	3
9	0	2	0	0	6	0	0	0	1	21

2.3.2 K-means

Para essa parte foram selecionados aleatoriamente 250 índices da base de teste e os atributos foram pré-processados com a função nearZeroVar que diagnostica preditores que possuem um valor único (ou seja, preditores de variação zero) ou preditores que possuem as duas características a seguir: eles têm muito poucos valores exclusivos em relação ao número de amostras e a razão da frequência do valor mais comum para a frequência do segundo valor mais comum é grande.

Matriz de Confusão

	0	1	2	3	4	5	6	7	8	9
0	26	0	0	0	0	1	0	1	0	0
1	0	27	0	0	0	0	0	0	2	0
2	0	7	12	0	6	0	0	0	1	0
3	0	5	0	9	1	2	0	1	2	1
4	0	0	0	0	12	1	0	1	5	11
5	0	1	0	8	1	4	0	0	5	2
6	0	0	0	0	8	1	12	0	1	0
7	1	1	0	0	0	0	0	16	0	5
8	0	5	0	2	0	6	0	1	9	1
9	0	0	0	0	4	2	0	2	0	18

Alguns grupos ficam bem definidos como o zero enquanto outros ficam indistinguíveis

2.4 Base IRIS

2.4.1 KNN

Foram selecionados aleatoriamente 75 índices da base de dados como treino e os outros 75 índices como teste.

Matriz de Confusão

	setosa	versicolor	virginica
setosa	25	0	0
versicolor	0	25	0
virginica	0	5	20

2.4.2 K-means

Utilizou-se todas as entradas da base de dados e não foi feito nenhum tipo de pré-processamento.

Matriz de Confusão

	setosa	versicolor	virginica
setosa	50	0	0
versicolor	0	48	2
virginica	0	14	36

3 Projeto 6

3.1 Implementação

PCA:

```
1 pca <- function(p) {
2    k = cov(p)
3    Q = eigen(k)
4    p = scale(p)
5    for (i in 1:dim(p)[1]) {
        x = t(p[i,]) %*% Q$vectors
7    p[i,] = x
8    }
9    return(p)
10 }</pre>
```

Método descrito por Newman:

```
spectral_clustering <- function(dt, k, sig) {</pre>
       #Definindo variáveis
      S <- dt
n <- nrow(dt)
 4
5
6
7
8
      W <- matrix(rep(0,n^2) ,nrow = n ,ncol=n)
D <- diag(n)
       #Calculando matriz W
       for (i in 1:n){
         10
11
12
13
14
15
16
17
18
19
       #Calculando matriz diagonal
      for (i in 1:n){
   D[i,i] <- sum (W[i,])
20
21
22
23
24
25
26
       #Definindo L
      aux = solve(sqrt(D))
L <- aux %*% W %*% aux
      #Autovetores de L (funcao eigen ja ordena)
eig <- eigen(L)$vectors
X <- eig[,(1 : k)]</pre>
27
28
29
30
31
      #Definindo matriz de comunidade
Y <- matrix(0,nrow=n,ncol=k)
com <- matrix(0,nrow=n,ncol=1)</pre>
32
33
34
       #Encontra as comunidades
35
36
37
38
       for(i in 1:n){
         for(j in 1:k){
            Y[i,j] <- X[i,j] / (sqrt (sum(X[i,j])^2))
39
41
       return(Y)
```


Figura 4: PCA com a separação das comunidades

3.2 Resultados

Matriz de Confusão Método de Newman

	setosa	versicolor	virginica
setosa	50	0	0
versicolor	0	44	6
virginica	0	6	44

Matriz de Confusão K-means

	setosa	versicolor	virginica
setosa	50	0	0
versicolor	0	48	2
virginica	0	14	36

No geral ambos os métodos diferenciaram os grupos de forma satisfatória, porém, o custo computacional da implementação do k-means para essa precisão é muito maior, sendo assim, compensa nesse caso utilizar o método descrito por Newman.

4 Projeto 7

No projeto foram utilizadas as seguintes bibliotecas disponibilizadas do respositório CRAN:

- $\bullet\,$ cluster: algoritmos de clusterização
- \bullet dendextrend: comparar dois dendrogramas

4.1 Dendrogramas

 Todos os dendrogramas foram gerados à partir da base de dados IRIS e utilizando a distância euclidiana entre os pontos.

4.1.1 Single-linkage

Figura 5: Dendrograma single-linkage

Matriz de Confusão

	setosa	versicolor	virginica
setosa	49	1	0
versicolor	0	0	50
virginica	0	0	50

4.1.2 Complete-linkage

Figura 6: Dendrograma complete-linkage

Matrix de Confusão

	setosa	versicolor	virginica
setosa	49	1	0
versicolor	0	21	29
virginica	0	2	48

4.1.3 Median

Figura 7: Dendrograma median

Matriz de Confusão

	setosa	versicolor	virginica
setosa	49	1	0
versicolor	0	21	29
virginica	0	2	48

4.1.4 Ward

Figura 8: Dendrograma ward.D2

Matriz de Confusão

	setosa	versicolor	virginica
setosa	49	1	0
versicolor	0	27	23
virginica	0	2	48

4.2 Relação entre os dendrogramas

Para mensurarmos a relação entre os dendrogramas gerados pelos diferentes métodos, calcularemos o emaranhamento(entanglement) entre eles, essa medida assume valores entre 0 e 1, quanto menor, mais alinhados são os dendrogramas.

Figura 9: single e complete

Figura 10: single e median

Figura 11: single e ward

Figura 12: Complete e median

Figura 13: Complete e ward

Figura 14: Median e ward

Ao obter todos os valores de emaranhamento par a par dos 4 métodos é tirada a conclusão de que os métodos: single-linkage, complete-linkage e median; agrupam os itens de forma parecida e completamente diferente da forma que o método ward.