Calibration Analysis: Integrating Theory with Data¹

Pei-Ju Liao

Department of Economics, NTU

Fall Semester

¹Some materials in this slide are borrowed from Prof. Ping Wang's lecture notes.

Why Calibration?

• To link a theoretical model to the real world

Why Calibration?

- To link a theoretical model to the real world
- To deal with the lack of suitable data for econometric analysis:
 - Time-series data: not enough annual data
 - Cross-sectional data: small sample size
 - Lack of suitable measurement: for example, the time preference discount factor β

Why Calibration?

- To link a theoretical model to the real world
- To deal with the lack of suitable data for econometric analysis:
 - Time-series data: not enough annual data
 - Cross-sectional data: small sample size
 - \bullet Lack of suitable measurement: for example, the time preference discount factor β
- To conduct more serious policy experiments than simple numerical analysis before a policy is implemented into the real economy

What is Calibration?

What is Calibration?

 Use model equations and stable relations that we observe in data to pin down the values of parameters in the model

What is Calibration?

- Use model equations and stable relations that we observe in data to pin down the values of parameters in the model
- Stable relations could be:

 - First moment: time-series average; cross-sectional average; ratio
 - Second moment: growth rate; variance

An Example

Consider a social planner's **stationary** problem (the model with exogenous population growth and labor-augmenting technological progress):

$$\max_{\{\hat{c}_t, \hat{k}_{t+1}, h_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} (\beta \eta)^t [\log \hat{c}_t - Bh_t]$$

subject to:

$$\hat{c}_t + \eta \gamma \hat{k}_{t+1} = \hat{k}_t^{\theta} h_t^{1-\theta} + (1-\delta)\hat{k}_t$$

Steady-state Equations

The three equations that characterizes the steady state are given by:

$$\frac{(1-\theta)\bar{k}^{\theta}\bar{h}^{-\theta}}{\bar{c}} = B;$$

$$\gamma = \beta(\theta\bar{k}^{\theta-1}\bar{h}^{1-\theta} + 1 - \delta);$$

$$\bar{c} + (\eta\gamma + \delta - 1)\bar{k} = \bar{k}^{\theta}\bar{h}^{1-\theta}.$$

In the steady state, we have 3 endogenous variables \bar{c} , \bar{k} , and \bar{h} . Once those parameters are determined (calibrated), we can solve for the 3 endogenous variables.

Parameters in the Model

- We have six parameters to be calibrated:
 - Preference: β , η , and B would of while from working
 - Technology: γ , θ , and δ guth de inco the family > 造帐都算得出来
- Some of them are observable $(\eta, \gamma, \underline{\theta})$, but others are lack of measurement in the real world $(\underline{\beta}, \underline{B}, \underline{\delta})$. Thus, we do calibration to determine these parameters.
- Serious Calibration: # of parameters equals # of data moments.

Target Economy

- Target economy: calibrate the model to data from the US after the Korean War
- Six stable relations for the US economy (annual basis, directly taken from data):

- $\gamma=1.014$: average growth rate of per capita output (recall $g=\gamma$)
- $\eta = 1.015$: average population growth rate
- $\theta = 0.4 \text{: capital income share } \frac{r\bar{k}}{\bar{y}}$ $\bar{h} = 0.31 \text{: average fraction of time that people spend on working}}$ $\bar{k} = 3.5 \text{: capital-output ratio}$ $\bar{k} = 0.75 \text{: consumption-output ratio}$

• What we have at this stage:

$$\begin{cases} k^{f} = k \\ C + i = Y \end{cases}$$

T= Y- Wn-1k

- What we have at this stage:
 - 6 unknown parameters: β , η , B, γ , θ , and δ
 - 6 stable relations: γ , η , θ , \bar{h} , $\frac{\bar{k}}{\bar{y}}$, and $\frac{\bar{c}}{\bar{y}}$
 - 3 model equations at steady state $\longrightarrow P9$

- What we have at this stage:
 - 6 unknown parameters: β , η , B, γ , θ , and δ
 - 6 stable relations: γ , η , θ , \bar{h} , $\frac{\bar{k}}{\bar{y}}$, and $\frac{\bar{c}}{\bar{y}}$
 - 3 model equations at steady state
- Thus, γ , η , and θ are directly determined by data.

- What we have at this stage:
 - 6 unknown parameters: β , η , B, γ , θ , and δ
 - 6 stable relations: γ , η , θ , \bar{h} , $\frac{\bar{k}}{\bar{y}}$, and $\frac{\bar{c}}{\bar{y}}$
 - 3 model equations at steady state
- Thus, γ , η , and θ are directly determined by data.
- Next, solve β , B, and δ using the rest 3 stable relations and 3 model equations.

Calibrated Results

After some algebra...

Calibrated Results

After some algebra...

• We obtain B=2.581, $\beta=0.946$, and $\delta=0.042$.

Calibrated Results

After some algebra...

- We obtain B = 2.581, $\beta = 0.946$, and $\delta = 0.042$.
- Together with $\eta=1.015$, $\gamma=1.014$, and $\theta=0.4$, the steady-state calibrated economy is given by:

$$\begin{array}{lll} \bar{k} & = & [\frac{\beta\theta}{\gamma-\beta(1-\delta)}]^{\frac{1}{1-\theta}}\bar{h} = 2.509; \\ \bar{y} & = & [\frac{\beta\theta}{\gamma-\beta(1-\delta)}]^{\frac{\theta}{1-\theta}}\bar{h} = 0.715; \\ \bar{c} & = & [\frac{\beta\theta}{\gamma-\beta(1-\delta)}]^{\frac{\theta}{1-\theta}}(\frac{1-\theta}{B}) = 0.537; \\ \bar{I} & = & \bar{y}(1-\frac{\bar{c}}{\bar{y}}) = 0.179. \end{array}$$

Research Steps

- Find a research question
- Construct a theoretical model
- Make sure the model is stationary -> y
- Solve the maximization problems
- Collect data and calibrate the model
- Do impulse response or conduct policy experiments