

Grundbegriffe der Informatik - Tutorium 21

Christian Jülg Wintersemester 2012/13 22. Januar 2013

http://gbi-tutor.blogspot.com

Übersicht

Guten Morgen...

Aufgabenblatt 11

Aufgabenblatt 12

Reguläre Ausdrücke

Rechtslineare Grammatiken

Kantorowitsch-Bäume, Regex-Bäume

Berechenbarkeit

Turingmaschinen

Abschluss

Übersicht

Guten Morgen...

Aufgabenblatt 11

Aufgabenblatt 12

Reguläre Ausdrücke

Rechtslineare Grammatiken

Kantorowitsch-Bäume, Regex-Bäume

Berechenbarkeit

Turingmaschinen

Abschluss

Der Reguläre Ausdruck ab*c*a ...

- 1. ... beschreibt eine Typ-3 Sprache.
- 2. ... beschreibt die Sprache $L_1 = \{ab^nc^na|n \in \mathbb{N}_0\}$
- 3. ... beschreibt eine endliche Sprache.

Rechtslineare Grammatiken ...

- 1. ... beschreiben reguläre Sprachen.
- 2. ... dürfen ϵ -Produktionen enthalten.
- 3. ... lassen sich in einen endlichen Automaten überführen.

Der Reguläre Ausdruck ab*c*a ...

- 1. ... beschreibt eine Typ-3 Sprache.
- 2. ... beschreibt die Sprache $L_1 = \{ab^nc^na|n \in \mathbb{N}_0\}$
- 3. ... beschreibt eine endliche Sprache.

Rechtslineare Grammatiken ...

- 1. ... beschreiben reguläre Sprachen.
- 2. ... dürfen ϵ -Produktionen enthalten.
- 3. ... lassen sich in einen endlichen Automaten überführen.

Der Reguläre Ausdruck ab*c*a ...

- 1. ... beschreibt eine Typ-3 Sprache.
- 2. ... beschreibt die Sprache $L_1 = \{ab^nc^na|n \in \mathbb{N}_0\}$
- 3. ... beschreibt eine endliche Sprache.

Rechtslineare Grammatiken ...

- 1. ... beschreiben reguläre Sprachen.
- 2. ... dürfen ϵ -Produktionen enthalten.
- 3. ... lassen sich in einen endlichen Automaten überführen.

Für die Typen-Hierachie von Grammatiken gilt, ...

- 1. ... alle Grammatiken lassen sich als regulärer Ausdruck angeben
- 2. ... reguläre Sprachen sind die umfangreichsten.
- 3. ... wenn die Grammatik G Typ-2 ist (also eine KFG), so ist L(G) auch Typ-2.

Ein Akzeptor, bei dem der Startzustand auch akzeptierender Zustand ist ...

- 1. ... akzeptiert alle Worte $w \in A$.
- 2. ... akzeptiert immer auch das leere Wort ϵ .
- 3. ... akzeptiert alle Worte $w \in A^*$.

Für die Typen-Hierachie von Grammatiken gilt, ...

- 1. ... alle Grammatiken lassen sich als regulärer Ausdruck angeben
- 2. ... reguläre Sprachen sind die umfangreichsten.
- 3. ... wenn die Grammatik G Typ-2 ist (also eine KFG), so ist L(G) auch Typ-2.

Ein Akzeptor, bei dem der Startzustand auch akzeptierender Zustand ist ...

- 1. ... akzeptiert alle Worte $w \in A$.
- 2. ... akzeptiert immer auch das leere Wort ϵ .
- 3. ... akzeptiert alle Worte $w \in A^*$.

Für die Typen-Hierachie von Grammatiken gilt, ...

- 1. ... alle Grammatiken lassen sich als regulärer Ausdruck angeben
- 2. ... reguläre Sprachen sind die umfangreichsten.
- 3. ... wenn die Grammatik G Typ-2 ist (also eine KFG), so ist $\mathcal{L}(G)$ auch Typ-2.

Ein Akzeptor, bei dem der Startzustand auch akzeptierender Zustand ist ...

- 1. ... akzeptiert alle Worte $w \in A$.
- 2. ... akzeptiert immer auch das leere Wort ϵ .
- 3. ... akzeptiert alle Worte $w \in A^*$.

Übersicht

Guten Morgen...

Aufgabenblatt 11

Aufgabenblatt 12

Reguläre Ausdrücke

Rechtslineare Grammatiken

Kantorowitsch-Bäume, Regex-Bäume

Berechenbarkeit

Turingmaschinen

Abschluss

Blatt 11

■ Abgaben: 18 / 18

■ Punkte: 11,1/20

Probleme

• bei jedem Automaten Startzustand angeben

Blatt 11

Abgaben: 18 / 18

• Punkte: 11,1/20

Probleme

• bei jedem Automaten Startzustand angeben

zu jedem Akzeptor die akzeptierenden Zustände angeben

Übersicht

Guten Morgen...

Aufgabenblatt 11

Aufgabenblatt 12

Reguläre Ausdrücke

Rechtslineare Grammatiken

Kantorowitsch-Bäume, Regex-Bäume

Berechenbarkeit

Turingmaschinen

Abschluss

Blatt 12

■ Abgabe: 25.01.2013 um 12:30 Uhr im Untergeschoss des Infobaus

Punkte: maximal 20

Themen

Strukturelle Induktion

Blatt 12

Abgabe: 25.01.2013 um 12:30 Uhr im Untergeschoss des Infobaus

Punkte: maximal 20

Themen

Strukturelle Induktion

Akzeptoren, reguläre Ausdrücke und rechtslineare Grammatiken

Blatt 12

Abgabe: 25.01.2013 um 12:30 Uhr im Untergeschoss des Infobaus

Punkte: maximal 20

Themen

Strukturelle Induktion

Akzeptoren, reguläre Ausdrücke und rechtslineare Grammatiken

Turing Maschinen

Blatt 12

Abgabe: 25.01.2013 um 12:30 Uhr im Untergeschoss des Infobaus

Punkte: maximal 20

Themen

Strukturelle Induktion

Akzeptoren, reguläre Ausdrücke und rechtslineare Grammatiken

Turing Maschinen

Turing Maschinen bauen

Blatt 12

Abgabe: 25.01.2013 um 12:30 Uhr im Untergeschoss des Infobaus

Punkte: maximal 20

Themen

Strukturelle Induktion

- Akzeptoren, reguläre Ausdrücke und rechtslineare Grammatiken
- Turing Maschinen
- Turing Maschinen bauen
- Turing Maschinen verstehen

Übersicht

Guten Morgen...

Aufgabenblatt 11

Aufgabenblatt 12

Reguläre Ausdrücke

Rechtslineare Grammatiken

Kantorowitsch-Bäume, Regex-Bäume

Berechenbarkeit

Turingmaschiner

Abschluss

Definition

Reguläre Ausdrücke sind eine verbreitete und geeignete Notation, um reguläre Sprachen zu formalisieren.

Die Regeln (= Metazeichen)

Metazeichen Bedeutung

azeichen	Bedeutung
()	Klammerung von Alternativen
*	n-maliges Vorkommen
	trennt Alternativen

Es gelten folgende Vorrangregeln:

- * bindet stärker als Verkettung
- Verkettung (RS) bindet stärker als "oder" (R|S)
- Überflüssige Klammern dürfen wir weglassen. So sind (RS), ((RS)), . . . und RS äquivalent

Definition

Die Sprache von R

Wenn ${\bf R}$ ein regulärer Ausdruck ist, dann bezeichnen wir mit $\langle R \rangle$ die Sprache, die dieser erzeugt.

- Für $a \in A$ ist $\langle a \rangle = \{a\}$

 R_1 und R_2 sind hier zwei beliebige reguläre Ausdrücke.

Beispiel 1

Welche Wörter erzeugt der folgende reguläre Ausdruck R?

• R = (a|b) * abb(a|b) * ?

Beispiel 1

Welche Wörter erzeugt der folgende reguläre Ausdruck R?

- R = (a|b) * abb(a|b) * ?
- $lackbox{} \langle R \rangle$ enthält genau die Wörter, in denen das Teilwort *abb* vorkommt.

Beispiel 2

Gebe einen regulären Ausdruck für die Sprache aller Wörter die nicht ab enthalten

Beispiel 1

Welche Wörter erzeugt der folgende reguläre Ausdruck R?

- R = (a|b) * abb(a|b) * ?
- $lackbox{} \langle R \rangle$ enthält genau die Wörter, in denen das Teilwort *abb* vorkommt.

Beispiel 2

Gebe einen regulären Ausdruck für die Sprache aller Wörter die nicht ab enthalten

b∗a∗

Beispiel 3

Welcher reguläre Ausdruck R erzeugt die Sprache $\{\epsilon\}$?

Beispiel 3

Welcher reguläre Ausdruck R erzeugt die Sprache $\{\epsilon\}$?

• \emptyset *, denn $\langle \emptyset \rangle^* = \{\}^* = \{\epsilon\}$

Beispiel 3

Welcher reguläre Ausdruck R erzeugt die Sprache $\{\epsilon\}$?

 $\qquad \oslash *, \ \mathsf{denn} \ \langle \varnothing \rangle^* = \{\}^* = \{\epsilon\}$

Beispiel 4

Gebe einen regulären Ausdruck für die Sprache aller Wörter mit mindestens 3 b's an!

Beispiel 3

Welcher reguläre Ausdruck R erzeugt die Sprache $\{\epsilon\}$?

 $\qquad \varnothing *, \ \mathsf{denn} \ \langle \varnothing \rangle^* = \{\}^* = \{\epsilon\}$

Beispiel 4

Gebe einen regulären Ausdruck für die Sprache aller Wörter mit mindestens 3 b's an!

• (a|b) * b(a|b) * b(a|b) * b(a|b) * oder

Beispiel 3

Welcher reguläre Ausdruck R erzeugt die Sprache $\{\epsilon\}$?

 $\qquad \oslash *, \ \mathsf{denn} \ \langle \varnothing \rangle^* = \{\}^* = \{\epsilon\}$

Beispiel 4

Gebe einen regulären Ausdruck für die Sprache aller Wörter mit mindestens 3 b's an!

- (a|b) * b(a|b) * b(a|b) * b(a|b) * oder
- a * ba * ba * b(a|b)*

Übersicht

Guten Morgen...

Aufgabenblatt 11

Aufgabenblatt 12

Reguläre Ausdrücke

Rechtslineare Grammatiken

Kantorowitsch-Bäume, Regex-Bäume

Berechenbarkeit

Turingmaschinen

Abschluss

etwas genauer...

Eine rechtslineare Grammatik ist eine kontextfreie Grammatik G=(N,T,S,P) mit folgenden Einschränkungen. Jede Produktion ist entweder von der Form

- $X \rightarrow w$ oder
- $X \rightarrow wY$ mit $w \in T^*$ und $X, Y \in N$

etwas genauer...

Eine rechtslineare Grammatik ist eine kontextfreie Grammatik G=(N,T,S,P) mit folgenden Einschränkungen. Jede Produktion ist entweder von der Form

- $X \rightarrow w$ oder
- $X \to wY$ mit $w \in T^*$ und $X, Y \in N$

Regex

Zu jeder rechtslinearen Grammatik gibt es:

...einen entsprechenden regulären Ausdruck und

etwas genauer...

Eine rechtslineare Grammatik ist eine kontextfreie Grammatik G = (N, T, S, P) mit folgenden Einschränkungen. Jede Produktion ist entweder von der Form

- $X \rightarrow w$ oder
- $X \rightarrow wY$ mit $w \in T^*$ und $X, Y \in N$

Regex

Zu jeder rechtslinearen Grammatik gibt es:

- ...einen entsprechenden regulären Ausdruck und
- ... einen einen deterministischen endlichen Automaten

Zu jeder rechtslinearen gibt es äquivalente linkslineare Grammatiken. Diese "können" nichts anderes als rechtslineare Grammatiken, daher ignorieren wir sie in dieser Vorlesung.

Ein Beispiel

Gegeben Sei die Grammatik $G = (\{X, Y\}, \{a, b\}, X, \{X \rightarrow aY | \epsilon, Y \rightarrow Xb\})$

Ist diese Grammatik rechtslinear?

Ein Beispiel - oder auch nicht...

Gegeben Sei die Grammatik $G = (\{X, Y\}, \{a, b\}, X, \{X \rightarrow aY | \epsilon, Y \rightarrow Xb\})$

Ist diese Grammatik rechtslinear?
G ist offensichtlich nicht rechtslinear, denn die Produktion Y → Xb hat das Nichtterminalsymbol links vom Terminalsymbol (Die Produktion ist linkslinear)!

Ein Beispiel - oder auch nicht...

Gegeben Sei die Grammatik $G = (\{X, Y\}, \{a, b\}, X, \{X \rightarrow aY | \epsilon, Y \rightarrow Xb\})$

- Ist diese Grammatik rechtslinear?
 G ist offensichtlich nicht rechtslinear, denn die Produktion Y → Xb hat das Nichtterminalsymbol links vom Terminalsymbol (Die Produktion ist linkslinear)!
- lacksquare Die Grammatik erzeugt die Sprache $L(G)=\{a^kb^k|k\in\mathbb{N}_0\}$

rechtslineare Grammatiken

Ein Beispiel - oder auch nicht...

Gegeben Sei die Grammatik $G = (\{X, Y\}, \{a, b\}, X, \{X \rightarrow aY | \epsilon, Y \rightarrow Xb\})$

- Ist diese Grammatik rechtslinear?
 G ist offensichtlich nicht rechtslinear, denn die Produktion Y → Xb hat das Nichtterminalsymbol links vom Terminalsymbol (Die Produktion ist linkslinear)!
- lacksquare Die Grammatik erzeugt die Sprache $\mathit{L}(\mathit{G}) = \{\mathit{a}^k\mathit{b}^k | k \in \mathbb{N}_0\}$
- Kann es eine rechtslineare Grammatik für diese Sprache geben? Ist diese Sprache regulär?

rechtslineare Grammatiken

Ein Beispiel - oder auch nicht...

Gegeben Sei die Grammatik $G = (\{X, Y\}, \{a, b\}, X, \{X \rightarrow aY | \epsilon, Y \rightarrow Xb\})$

- Ist diese Grammatik rechtslinear?
 G ist offensichtlich nicht rechtslinear, denn die Produktion Y → Xb hat das Nichtterminalsymbol links vom Terminalsymbol (Die Produktion ist linkslinear)!
- lacksquare Die Grammatik erzeugt die Sprache $L(G)=\{a^kb^k|k\in\mathbb{N}_0\}$
- Kann es eine rechtslineare Grammatik für diese Sprache geben? Ist diese Sprache regulär? Nein, ist sie nicht!

von G zu L(G)

Aufgabe

Betrachte
$$G = (\{X, Y, Z\}, \{a, b\}, X, P)$$
 mit $P = \{X \rightarrow aX | bY | \epsilon, Y \rightarrow aX | bZ | \epsilon, Z \rightarrow aZ | bZ\}$

- Was ist *L*(*G*)?
- Geben Sie einen endlichen Automaten an, der L(G) akzeptiert.
- Lässt sich diese Grammatik noch vereinfachen?

von G zu L(G)

Aufgabe

Betrachte $G = (\{X, Y, Z\}, \{a, b\}, X, P)$ mit $P = \{X \rightarrow aX|bY|\epsilon, Y \rightarrow aX|bZ|\epsilon, Z \rightarrow aZ|bZ\}$

- Was ist *L*(*G*)?
- Geben Sie einen endlichen Automaten an, der L(G) akzeptiert.
- Lässt sich diese Grammatik noch vereinfachen?

Lösung

Ist doch alles das Gleiche, oder?

Gleiche Sprache - andere Grammatik

Folgende Grammatiken erzeugen die gleiche Sprache

•
$$G = (\{X, Y, Z\}, \{a, b\}, X, P) \text{ mit } P = \{X \rightarrow aX|bY|\epsilon, Y \rightarrow aX|bZ|\epsilon, Z \rightarrow aZ|bZ\}$$

Ist doch alles das Gleiche, oder?

Gleiche Sprache - andere Grammatik

Folgende Grammatiken erzeugen die gleiche Sprache

- $G = (\{X, Y, Z\}, \{a, b\}, X, P) \text{ mit}$ $P = \{X \rightarrow aX|bY|\varepsilon, Y \rightarrow aX|bZ|\varepsilon, Z \rightarrow aZ|bZ\}$
- $\qquad \qquad G = (\{X,Y\},\{a,b\},X,P) \text{ mit } P = \{X \rightarrow aX|bY|\epsilon,Y \rightarrow aX|\epsilon\}$

Ist doch alles das Gleiche, oder?

Gleiche Sprache - andere Grammatik

Folgende Grammatiken erzeugen die gleiche Sprache

- $G = (\{X, Y, Z\}, \{a, b\}, X, P) \text{ mit } P = \{X \rightarrow aX|bY|\varepsilon, Y \rightarrow aX|bZ|\varepsilon, Z \rightarrow aZ|bZ\}$
- $G = (\{X,Y\},\{a,b\},X,P) \text{ mit } P = \{X \rightarrow aX|bY|\epsilon,Y \rightarrow aX|\epsilon\}$
- $G = (\{X\}, \{a, b\}, X, P) \text{ mit } P = \{X \rightarrow aX | baX | b | \epsilon\}$

Übersicht

Guten Morgen...

Aufgabenblatt 11

Aufgabenblatt 12

Reguläre Ausdrücke

Rechtslineare Grammatiker

Kantorowitsch-Bäume, Regex-Bäume

Berechenbarkeit

Turingmaschinen

Abschluss

Kantorowitsch

Beispiel:

• wie sieht der Baum zu 3 + (a + b) * (-c) aus?

Kantorowitsch

Beispiel:

- wie sieht der Baum zu 3 + (a + b) * (-c) aus?
- wie hoch ist der Baum?

Kantorowitsch

Beispiel:

- wie sieht der Baum zu 3 + (a + b) * (-c) aus?
- wie hoch ist der Baum? Antwort: 3

Kantorowitsch

Beispiel:

- wie sieht der Baum zu 3 + (a+b)*(-c) aus?
- wie hoch ist der Baum? Antwort: 3

Die Höhe eines Baumes entspricht auch dem längsten wiederholungsfreien Weg von der Wurzel zu den Blättern.

Kantorowitsch-Bäume zu Reg. Ausdrücken

Kantorowitsch

Beispiel:

- wie sieht der Baum zu 3 + (a + b) * (-c) aus?
- wie hoch ist der Baum? Antwort: 3

Die Höhe eines Baumes entspricht auch dem längsten wiederholungsfreien Weg von der Wurzel zu den Blättern.

Kantorowitsch-Bäume zu Reg. Ausdrücken

Wird ein regulärer Ausdruck als Baum dargestellt, sind Klammern auch unnötig

Kantorowitsch

Beispiel:

- wie sieht der Baum zu 3 + (a+b)*(-c) aus?
- wie hoch ist der Baum? Antwort: 3

Die Höhe eines Baumes entspricht auch dem längsten wiederholungsfreien Weg von der Wurzel zu den Blättern.

Kantorowitsch-Bäume zu Reg. Ausdrücken

- Wird ein regulärer Ausdruck als Baum dargestellt, sind Klammern auch unnötig
- durch die "Eltern-Kind"- bzw. "ist-Teilausdruck"-Beziehung im Baum ist die Klammerung eindeutig festgelegt

Übersicht

Guten Morgen...

Aufgabenblatt 11

Aufgabenblatt 12

Reguläre Ausdrücke

Rechtslineare Grammatiken

Kantorowitsch-Bäume, Regex-Bäume

Berechenbarkeit

Turingmaschiner

Abschluss

Typische Fragestellung

- Gibt es Aufgaben, die von einem Rechner unabhängig
 - von der Art der Programmierung
 - von physikalischen und elektronischen Beschränkungen
- nicht gelöst werden können?
- Hauptfrage: Welche Probleme sind dann berechenbar?

Typische Fragestellung

- Gibt es Aufgaben, die von einem Rechner unabhängig
 - von der Art der Programmierung
 - von physikalischen und elektronischen Beschränkungen
- nicht gelöst werden können?
- Hauptfrage: Welche Probleme sind dann berechenbar?

Lösungsansätze

Entwicklung neuer Konzepte wie

- eine grundlegende Problemformulierung
- ein grundlegendes Rechnermodell

Dafür muss geklärt werden wie ein Rechner (der nur *Nullen* und *Einsen* kennt) ein Problem überhaupt löst.

Vorschlag

endliche Automaten als Grundlage für "allgemeine" theoretische Aussagen über "Berechenbarkeit"

Vorschlag

endliche Automaten als Grundlage für "allgemeine" theoretische Aussagen über "Berechenbarkeit"

Problem

- nicht mächtig genug!
- es ist zwar erfassbar, ob ein Getränkeautomat (wie aus der Vorlesung) eine Eingabe verabeiten kann, ABER das Modell wäre spätestens bei kontextsensitiven Sprachen überfordert

Vorschlag

endliche Automaten als Grundlage für "allgemeine" theoretische Aussagen über "Berechenbarkeit"

Problem

- nicht mächtig genug!
- es ist zwar erfassbar, ob ein Getränkeautomat (wie aus der Vorlesung) eine Eingabe verabeiten kann, ABER das Modell wäre spätestens bei kontextsensitiven Sprachen überfordert

Frage: Gibt es ein mächtigeres, realistisches Rechnermodell, das geeignet ist?

Übersicht

Guten Morgen...

Aufgabenblatt 11

Aufgabenblatt 12

Reguläre Ausdrücke

Rechtslineare Grammatiken

Kantorowitsch-Bäume, Regex-Bäume

Berechenbarkeit

Turingmaschinen

Abschluss

Aufbau der Turing-Maschine

Erfinder: Alan Turing (1936)

Aufbau der Turing-Maschine

Erfinder: Alan Turing (1936)

Bestandteile

- beidseitig unendliches Eingabe- und Rechenband
- freibeweglicher Lese-/Schreibkopf
- gesteuert von einer endlichen Kontrolle

Aufbau der Turing-Maschine

Erfinder: Alan Turing (1936)

Bestandteile

- beidseitig unendliches Eingabe- und Rechenband
- freibeweglicher Lese-/Schreibkopf
- gesteuert von einer endlichen Kontrolle

Eigenschaften

- Eingabe- und Rechenband enthält eine Folge von Symbolen
- Kontrolle ist in einem von endlich vielen Zuständen
- Zellen des Bandes enthalten jeweils höchstens ein Symbol aus dem Bandalphabet

Funktionsweise

So arbeitet die TM

Ist die Turing-Maschine (TM) in einem bestimmten Zustand und liest ein Symbol...

- so geht sie in einen Folgezustand über
- überschreibt eventuell das Symbol und
- bewegt den Lese-/Schreibkopf eine Stelle nach rechts, nach links oder überhaupt nicht

Ganz genau

Eine Turingmaschine $T = (Z, z_0, X, f, g, m)$ ist festgelegt durch

- eine endliche **Zustandsmenge** Z
- einen Anfangszustand $z_0 \in Z$
- ein endliches Bandalphabet X

Ganz genau

Eine Turingmaschine $T = (Z, z_0, X, f, g, m)$ ist festgelegt durch

- eine endliche **Zustandsmenge** Z
- einen **Anfangszustand** $z_0 \in Z$
- ein endliches Bandalphabet X
- eine partielle **Zustandsüberführung**sfunktion $f: Z \times X \dashrightarrow Z$
- eine partielle **Ausgabe**funktion $g: Z \times X \longrightarrow X$ und
- eine partielle **Bewegung**sfunktion $m: Z \times X \dashrightarrow \{-1, 0, 1\}$

Anmerkungen

■ Die Funktionen **f**, **g** und **m** beschreiben, wie das eingelesene Zeichen verarbeitet werden soll (gemeinsamer Definitionsbereich)

Anmerkungen

- Die Funktionen f, g und m beschreiben, wie das eingelesene Zeichen verarbeitet werden soll (gemeinsamer Definitionsbereich)
- Bei der Bewegungsfunktion bedeutet -1 oder L eine Bewegung des Lese-/Schreibkopfes nach links, 1 oder R eine Bewegung nach rechts und 0 oder N ein Stehenbleiben

Anmerkungen

- Die Funktionen f, g und m beschreiben, wie das eingelesene Zeichen verarbeitet werden soll (gemeinsamer Definitionsbereich)
- Bei der Bewegungsfunktion bedeutet -1 oder L eine Bewegung des Lese-/Schreibkopfes nach links, 1 oder R eine Bewegung nach rechts und 0 oder N ein Stehenbleiben
- Im Bandalphabet gibt es ein sogenanntes Blanksymbol $\square \in X$ zur Beschreibung einer leeren Zelle auf dem Band
- ein endliches Eingabealphabet $A \subset X \setminus \{\Box\}$
- lacktriangle eine endliche Menge von akzpetierenden Zuständen $F\subseteq Z$

Eine Turingmaschine befindet sich zu jedem Zeitpunkt in einem Gesamtzustand, der als Konfiguration $(z, b, p) \in Z \times X^{\mathbb{Z}} \times \mathbb{Z}$ bezeichnet wird

Vollständig beschrieben durch...

Eine Turingmaschine befindet sich zu jedem Zeitpunkt in einem Gesamtzustand, der als Konfiguration $(z,b,p) \in Z \times X^{\mathbb{Z}} \times \mathbb{Z}$ bezeichnet wird

Vollständig beschrieben durch...

• den aktuellen **Zustand** $z \in Z$ der Steuereinheit,

Eine Turingmaschine befindet sich zu jedem Zeitpunkt in einem Gesamtzustand, der als Konfiguration $(z,b,p) \in Z \times X^{\mathbb{Z}} \times \mathbb{Z}$ bezeichnet wird

Vollständig beschrieben durch...

- den aktuellen **Zustand** $z \in Z$ der Steuereinheit,
- die aktuelle **Beschriftung des gesamten Bandes**, die man als Abbildung $b: \mathbb{Z} \to X$ formalisieren kann, und

Eine Turingmaschine befindet sich zu jedem Zeitpunkt in einem Gesamtzustand, der als Konfiguration $(z,b,p) \in Z \times X^{\mathbb{Z}} \times \mathbb{Z}$ bezeichnet wird

Vollständig beschrieben durch...

- den aktuellen **Zustand** $z \in Z$ der Steuereinheit,
- die aktuelle **Beschriftung des gesamten Bandes**, die man als Abbildung $b: \mathbb{Z} \to X$ formalisieren kann, und
- die aktuelle **Position** $p \in Z$ des Kopfes.

Beispiele

Einfach I

Beispiele

Einfach I

Bedeutung des Übergangs

Ist die TM im Zustand q_1 und liest das Sysmbol a, so überschreit sie dieses a mit b, geht auf dem Bande eine Stelle nach rechts und wechselt in den Zustand q_2

Beispiel

Verhalten von TM bei Entscheidungsproblemen

akzeptierende Zustände

Eine Turing-Maschine akzeptiert eine Eingabe w, wenn sie nach Lesen von w in einem akzeptierenden Zustand $F \subset Z$ stoppt.

Es gibt Eingaben, für die eine Turing-Maschine unter Umständen niemals stoppt, bzw. nur in einem nicht akzeptierenden Zustand.

Verhalten von TM bei Entscheidungsproblemen

akzeptierende Zustände

Eine Turing-Maschine akzeptiert eine Eingabe w, wenn sie nach Lesen von w in einem akzeptierenden Zustand $F \subset Z$ stoppt.

Es gibt Eingaben, für die eine Turing-Maschine unter Umständen niemals stoppt, bzw. nur in einem nicht akzeptierenden Zustand.

Terminierung

Wann terminiert eine TM?

Verhalten von TM bei Entscheidungsproblemen

akzeptierende Zustände

Eine Turing-Maschine akzeptiert eine Eingabe w, wenn sie nach Lesen von w in einem akzeptierenden Zustand $F \subset Z$ stoppt.

Es gibt Eingaben, für die eine Turing-Maschine unter Umständen niemals stoppt, bzw. nur in einem nicht akzeptierenden Zustand.

Terminierung

Wann terminiert eine TM?

Wenn der nächste Schritt nicht mehr definiert ist.

Aufgabe

Gebt die Berechnung der folgenden Turingmaschine für die Eingaben

- 1. aba
- 2. baba

Aufgabe

Gebt eine Turingmaschine an die alle Wörter aus $\{0,1\}^*$ erkennt, die mit einer Eins beginnen

Aufgabe

Gebt eine Turingmaschine an die alle Wörter aus $\{0,1\}^*$ erkennt, die mit einer Eins beginnen

Lösung (nicht minimal)

partielle Funktion von TM

Eine TM kann mehr...

Eine Turing-Maschine erkennt nicht nur Mengen von Wörtern (Sprachen), sondern sie verändert auch die Eingabe und hat insofern auch eine Ausgabe (= Inhalt des Bandes nach der Bearbeitung).

Eine TM kann so zur Berechnung von Funktionen genutzt werden, wie der Addition oder dem Vergleich zweier Binärzahlen

Wir konstruieren eine solche TM...

Ihr seid dran...

Gebt eine Turing-Maschine an, die eine in Binärcodierung gegebene natürliche Zahl $n \geq 1$ mit der Zahl 2 multipliziert. Der Schreib-/Lesekopf soll sich zu Anfang und Ende der Berechnung jeweils auf dem ersten Bit (der größten Zweierpotenz zugeordnet) der Darstellung von n befinden...

Wir konstruieren eine solche TM...

Ihr seid dran...

Gebt eine Turing-Maschine an, die eine in Binärcodierung gegebene natürliche Zahl $n \geq 1$ mit der Zahl 2 multipliziert. Der Schreib-/Lesekopf soll sich zu Anfang und Ende der Berechnung jeweils auf dem ersten Bit (der größten Zweierpotenz zugeordnet) der Darstellung von n befinden...

Lösung

Entscheidbarkeit und Berechenbarkeit

Die "verschiedenen Arten" von TMs

Verknüpfung von Entscheidbarkeit von Sprachen und der Berechenbarkeit von Funktionen:

- Eine Turing-Maschine akzeptiert eine Sprache L, wenn sie genau für die Eingaben $w \in L$ stoppt.
- L ist entscheidbar, wenn es eine Turing-Maschine gibt, die auf allen Eingaben stoppt und L akzeptiert.
- Die Funktion f heißt berechenbar, wenn eine Turing-Maschine existiert, die f realisiert.

Die Menge aller Konfigurationen bezeichnen wir als \mathbb{C}_t

Die Menge aller Konfigurationen bezeichnen wir als \mathbb{C}_t

Schritt einer TM

- $lack \Delta_1(c)$ liefert direkte Nachfolgekonfiguration zu c

Die Menge aller Konfigurationen bezeichnen wir als \mathbb{C}_t

Schritt einer TM

- $lack \Delta_1(c)$ liefert direkte Nachfolgekonfiguration zu c

Endkonfigurationen einer TM ist erreicht, falls $\Delta_1(c)$ nicht definiert ist

endliche Berechnung

- endliche Folge von Konfigurationen $(c_0, c_1, c_2, ..., c_t)$,
- wobei $0 < i \le t$ gilt $c_i = \Delta_1(c_{i-1})$

endliche Berechnung

- endliche Folge von Konfigurationen $(c_0, c_1, c_2, ..., c_t)$,
- wobei 0 < i < t gilt $c_i = \Delta_1(c_{i-1})$

haltende Berechnung

- endliche Berechnung
- deren letzte Konfiguration eine Endkonfiguration ist

endliche Berechnung

- endliche Folge von Konfigurationen $(c_0, c_1, c_2, ..., c_t)$,
- wobei $0 < i \le t$ gilt $c_i = \Delta_1(c_{i-1})$

haltende Berechnung

- endliche Berechnung
- deren letzte Konfiguration eine Endkonfiguration ist

unendliche Berechnung

- unendliche Folge von Konfigurationen $(c_0, c_1, c_2, ...)$
- wobei 0 < i gilt $c_i = \Delta_1(c_{i-1})$
- nicht haltend

analog zu endlichen Automaten

■ Erkennung formaler Sprachen: ein Bit akzeptiert/abgelehnt

- **Erkennung formaler Sprachen**: ein Bit akzeptiert/abgelehnt
- Teilmenge $F \subset Z$ akzeptierender Zustände
- TM akzeptiert Eingabewort w, wenn

- Erkennung formaler Sprachen: ein Bit akzeptiert/abgelehnt
- Teilmenge $F \subset Z$ akzeptierender Zustände
- TM akzeptiert Eingabewort w, wenn
 - TM für Eingabe w hält und

- Erkennung formaler Sprachen: ein Bit akzeptiert/abgelehnt
- Teilmenge $F \subset Z$ akzeptierender Zustände
- TM akzeptiert Eingabewort w, wenn
 - TM für Eingabe w hält und
 - der Zustand der Endkonfiguration $\Delta_*(c_0(w))$ akzepierend ist

- **Erkennung formaler Sprachen**: ein Bit akzeptiert/abgelehnt
- Teilmenge $F \subset Z$ akzeptierender Zustände
- TM akzeptiert Eingabewort w, wenn
 - TM für Eingabe w hält und
 - der Zustand der Endkonfiguration $\Delta_*(c_0(w))$ akzepierend ist
- L(T): Menge der akzeptierten Wörter

Aufgabe

Gebt ein TM-Akzeptor an, der die Sprache $L^==\{0^n1^n:n\geq 1\}$ akzeptiert

Lösung (die Markierung des Startzustands fehlt)

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

1. TM hält für Eingabe w, aber Endzustand nicht akzeptierend

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1. TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- 2. TM hält für Eingabe w nicht

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1. TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- 2. TM hält für Eingabe w nicht

Was wissen wir über die Berechnung?

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1. TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- 2. TM hält für Eingabe w nicht

Was wissen wir über die Berechnung?

1. TM ist fertig und lehnt die Eingabe ab

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1. TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- 2. TM hält für Eingabe w nicht

Was wissen wir über die Berechnung?

- 1. TM ist fertig und lehnt die Eingabe ab
- 2. TM ist noch nicht fertig (Ob TM irgendwann w noch akzeptiert oder ablehnt, ist unklar!)

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1. TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- 2. TM hält für Eingabe w nicht

Was wissen wir über die Berechnung?

- 1. TM ist fertig und lehnt die Eingabe ab
- 2. TM ist noch nicht fertig (Ob TM irgendwann w noch akzeptiert oder ablehnt, ist unklar!)

Wir halten in zwei Definitionen fest

1. *L* heißt **entscheidbare Sprache**, wenn es eine TM gibt, die **immer hält** und *L* akzeptiert.

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1. TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- 2. TM hält für Eingabe w nicht

Was wissen wir über die Berechnung?

- 1. TM ist fertig und lehnt die Eingabe ab
- 2. TM ist noch nicht fertig (Ob TM irgendwann w noch akzeptiert oder ablehnt, ist unklar!)

Wir halten in zwei Definitionen fest

- 1. *L* heißt **entscheidbare Sprache**, wenn es eine TM gibt, die **immer hält** und *L* akzeptiert.
- 2. *L* heißt **aufzählbare**(semi-entscheidbar) **Sprache**, wenn es eine TM gibt, die *L* akzeptiert

Übersicht

Guten Morgen...

Aufgabenblatt 11

Aufgabenblatt 12

Reguläre Ausdrücke

Rechtslineare Grammatiken

Kantorowitsch-Bäume, Regex-Bäume

Berechenbarkeit

Turingmaschiner

Abschluss

Was ihr nun wissen solltet!

• Was verstehen wir unter Berechenbarkeit?

- Was verstehen wir unter Berechenbarkeit?
- Welches Rechenmodell ist in der Informatik von zentrale Bedeutung?

- Was verstehen wir unter Berechenbarkeit?
- Welches Rechenmodell ist in der Informatik von zentrale Bedeutung?
- Was sind die Bestandteile dieses Rechenmodells? Und wie arbeitet es?

- Was verstehen wir unter Berechenbarkeit?
- Welches Rechenmodell ist in der Informatik von zentrale Bedeutung?
- Was sind die Bestandteile dieses Rechenmodells? Und wie arbeitet es?
- Was lässt sich aus diesem Rechenmodell ableiten?

- Was verstehen wir unter Berechenbarkeit?
- Welches Rechenmodell ist in der Informatik von zentrale Bedeutung?
- Was sind die Bestandteile dieses Rechenmodells? Und wie arbeitet es?
- Was lässt sich aus diesem Rechenmodell ableiten?
- Wann ist eine Sprache entscheidbar?

Was ihr nun wissen solltet!

- Was verstehen wir unter Berechenbarkeit?
- Welches Rechenmodell ist in der Informatik von zentrale Bedeutung?
- Was sind die Bestandteile dieses Rechenmodells? Und wie arbeitet es?
- Was lässt sich aus diesem Rechenmodell ableiten?
- Wann ist eine Sprache entscheidbar?

Ihr wisst was nicht? Stellt **jetzt** Fragen!

Ende

