AR13 SET-1

CODE: 13EC3018

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

III B.Tech I Semester Supplementary Examinations, Jan / Feb-2016 SIGNALS AND SYSTEMS (ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) Mention the properties of impulse function.
 - b) Compare energy and power signals.
 - c) Define singularity function.
 - d) Mention the necessary conditions for a Fourier transform to exist.
 - e) Mention the relation between Laplace Transform and Fourier Transform.
 - f) Find the Laplace Transform of u (t).
 - g) Mention the condition for Causality of an LTI system.
 - h) What is the ROC of an infinite duration two sided sequence?
 - i) What is the use of bilateral Z transform?
 - j) Mention the properties of convolution.

PART-B

Answer one question from each unit

[5X12=60M]

UNIT-I

2. Determine whether the system is (i) Memory less (ii) Stabel or not (iii) Causal (or) not

(iv) Linear (or) not (
$$\checkmark$$
) time variant (or) not for $y(t) = \int_{-\gamma}^{2t} x(t) dt$ [12M]

3. a) Find the convolution of the two continuous time signals

[6M]

$$x(t)=e^{-(t)}$$
 for all t and $h(t)=\begin{cases} e^{-2t}, t \ge 1\\ 0 & t < 1 \end{cases}$

b) For an energy signal x(t) with energy E_x , show that (i) the energy of the signal $x_1(t)$ =-x(t), $x_2(t)$ =x(-t), and $x_3(t)$ =x(t) is E_x (ii) The energy of $x_1(t)$ =x(t) is $x_2(t)$ =x(t) is $x_3(t)$ =x(t) is $x_3(t)$ =x(t)= $x_3(t)$ = $x_3(t)$

UNIT – II

4. For a even signal ie; x(t)=x(-t) prove that the trigonometric Fourier series coefficients are

$$a_0 = \frac{2}{T} \int_0^{T/2} x(t) dt; \ a_n \frac{4}{T} \int_0^{T/2} x(t) \cos(n\omega_0 t) dt; \ bn=0.$$
 [12M]

(OR)

CODE: 13EC3018

5. a) Write down any three properties of Fourier series .

[6M]

b) Find the Fourier Series of a half wave rectified signal using exponential Fourier Series.

[6M]

<u>UNIT – III</u>

6. a) Write down any two properties of Fourier transform.

[6M]

b) Find the Fourier Transform of (i) U(t) (ii) sgn (t).

[6M]

(OR)

- 7. a) Find the total area under the function $x(t) = 10 \operatorname{sinC}\left(\frac{t+4}{7}\right)$ using Fourier Transform properties. [6M]
 - b) Consider an LTI system with impulse response $h(t)=e^{-at}u(t)$. Find the response y(t) of this system when the input is the unit step function i.e; x(t)=u(t). [6M]

UNIT - IV

- 8. a) Find the Laplace Transform of the signal $x(t)=t^n u(t)$ [6+6M]
 - b) Find the Laplace Transform and plot its ROC for the signal $x(t)=\sin(\omega_0 t) u(t)$.

(OR)

9. a) Check whether the following LTI system is Causal (or) Anti causal using ROC [6+6M]

Properties of Laplace Transform for (i) $H(S) = \frac{1}{S^2 + 5S + 6} R\{S\} > -2$

(ii)
$$H(S) = \frac{1}{S^2 + 5S + 6} R\{S\} < -3$$

b) State and prove final value theorem of Laplace Transform.

UNIT – V

- 10. a) Explain the relation between Z-transform and Laplace Transform using Z-plane to S-plane mapping. [6+6M]
 - b) State and prove the final value theorem of Z-Transform.

(OR)

11. a) Find the inverse Z-transform:

(i)
$$x(z) = \frac{1}{1 - 2z^{-1}}$$
 for $|z| > 2$ (ii) $x(z) = \frac{1}{1 - 2z^{-2} + 0.5z^{-1}}$ for $|z| > 1$

using partial fraction method

b) Find the unilateral z-transform of the following signals (i) x(n+1) (ii)x(n+2)

AR13 SET-1

CODE: 13CS3008

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

III B.Tech I Semester Supplementary Examinations, Jan / Feb-2016

COMPUTER ORGANIZATION AND ARCHITECTURE (ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10M]$

- 1. a) What is relative addressing mode? When is it used?
 - b) Write the register transfer sequence for storing a word in memory.
 - c) What is hard-wired control? How is it different from micro-programmed control?
 - d) What is meant by data and control hazards in pipelining?
 - e) What is meant by speculative execution?
 - f) Define DMA.
 - g) Define direct memory access transfer.
 - h) What is meant by interleaved memory?
 - i) Define pipeline.
 - j) What does synchronous data stream means?

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

2.	(a)	With a neat diagram explain the internal organization of a processor.	[6M]
	(b)	Explain fixed point representation with example.	[6M]
		(OR)	
3.	(a)	Explain floating point representation with example.	[6M]
	(b)	Explain the use of multiple-bus organization for executing a three-operand	[6M]
		instruction.	

AR13 SET-1

CODE: 13CS3008

UNIT-II

4.	Design a 4-bit adder and explain its function in detail	[12M]			
5	(OR) What are the special registers in a typical computer? Explain their purposes in detail.	[12M]			
	<u>UNIT-III</u>				
6	(a) What are addressing modes? Explain the various addressing modes with	[6M]			
	examples. (b) Explain shift micro operation with example. (OR)	[6M]			
7	 (a) Discuss about instruction codes and instruction formats. (b) Explain arithmetic micro operation with example. 	[6M] [6M]			
<u>UNIT-IV</u>					
8	Discuss the following: i) Interleaving ii) Hit rate and Miss penalty iii) Pre-fetching. (OR)	[12M]			
9	(a) What are the steps in handling interrupts?	[6M]			
	(b) With a neat sketch explain the working principle of DMA.	[6M]			
<u>UNIT-V</u>					
10	Describe the techniques for handling data and instruction hazards in pipelining.	[12M]			
11	 (OR) (a) Discuss the basic concepts of pipelining. (b) Describe the data path and control considerations for pipelining. 	[6M] [6M]			

2 of 2
