Linear Regression model Part-1

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Terminologies

Training set of	F
housing prices	5
(Portland, OR))

Size in feet ² (x)	Price (\$) in 1000's (y)	
→ 2104)	460	
1416	232	m= 47
1534	315	
852	178	
		J
C	~	

Notation:

> m = Number of training examples

m = Number of training examples

$$\mathbf{x}'s = \text{"input" variable / features}$$
 $\mathbf{y}'s = \text{"output" variable / "target" variable}$
 $\mathbf{x}' = 1416$
 $\mathbf{y}' = 1416$

$$\chi^{(1)} = 2104$$

 $\chi^{(2)} = 1416$
 $\chi^{(1)} = 460$

For linear regression, the model is represented by $f_{w,b}(x)=wx+b$. Which of the following is the output or "target" variable?

- \bigcirc \hat{y} .
- \bigcirc m
- y
- $\bigcirc x$

y is the true value for that training example, referred to as the output variable, or "target".

Linear Regression model Part-2

The function f is also know as function/hypothesis/model.

How do we represent h?

$$h_{\mathbf{e}}(x) = \underbrace{0_0 + 0_1 \times}_{h(x)}$$
Shorthard: $h(x)$

$$+0_1 \times$$

$$+0_1 \times$$

Linear regression with one variable. (x)
Univariate linear regression.

Andrew Ng

Model Representation

Refer 3_Model_Representation_Solution.ipynb file

Cost Function

Lets see the effect of slope and constant

Cost function/Squared error function/Residual Sum of Squares

Average square of the distance between the observed and the predicted value

$$\hat{y}^{(i)} = f_{w,b}(\mathbf{x}^{(i)}) \leftarrow$$

$$f_{w,b}(\mathbf{x}^{(i)}) = w\mathbf{x}^{(i)} + b$$

Cost function: Squared error cost function

$$\overline{J}(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2$$

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

The cost function used for linear regression is

$$J(w,b) = rac{1}{2m} \sum_{i=1}^m (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Which of these are the parameters of the model that can be adjusted?

- \bigcirc w and b
- $\bigcirc f_{w,b}(x^{(i)})$
- $\bigcirc w$ only, because we should choose b=0

Cost function Intuition

model:

$$f_{w,b}(x) = wx + b$$

parameters:

w, b

cost function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

goal:

 $\underset{w,b}{\operatorname{minimize}} J(w,b)$

Currently put b=0

simplified

w=1

As we move on with different values of w, and the corresponding J value we can obtain this curve

So we want to choose w, which minimises J(w)

goal of linear regression:

 $\underset{w}{\text{minimize}} J(w)$

general case:

 $\underset{w,b}{\operatorname{minimize}} J(w,b)$

choose w to minimize J(w)

When does the model fit the data relatively well, compared to other choices for parameter w?

- \bigcirc When $f_w(x)$ is at or near a minimum for all the values of x in the training set.
- When w is close to zero.
- lacksquare When the cost J is at or near a minimum.
- \bigcirc When x is at or near a minimum.

✓ Correct

When the cost is relatively small, closer to zero, it means the model fits the data better compared to other choices for w and b.

Visualize the Cost function

3D bowl shaped surface plot \rightarrow 2D contour plots

View directly above the mountain.

All of these three points have the same value for the cost function J, even though they have difference values for w and b(bottom figure)

All these three points corresponds to a different function (upper left figure)

Contour plots are convenient way to visualize the 3D cost function J.

Minimum is the centre of the smallest eclipse.

Visualization example

This is pretty close to the centre of the small eclipse.

How better the fit lines corresponds to the points on the graph of j that are closer to the minimum possible cost for the cost function J(w,b)

References

Linear regression model part 1 | Coursera