Does $\sum_{n=2}^{\infty} \left(\frac{1}{\ln n} - \frac{1}{\ln(n+1)} \right)$ diverge, converge absolutely, or converge conditionally?

Solution

 $\sum_{n=2}^{\infty} \left(\frac{1}{\ln n} - \frac{1}{\ln(n+1)} \right)$ appears to be a telescoping series. We look at the sequence of partial sums s_n , and note that after cancellation¹ we have

$$s_n = \frac{1}{\ln 2} - \frac{1}{\ln(n+1)}$$

Then

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(\frac{1}{\ln 2} - \frac{1}{\ln(n+1)} \right)$$
$$= \frac{1}{\ln 2} - 0$$
$$= \frac{1}{\ln 2}.$$

It is tempting to get confused here with the Test for Divergence, but note that we found the limit of the sequence of partial sums. So, (by definition), the series $\sum_{n=2}^{\infty} \left(\frac{1}{\ln n} - \frac{1}{\ln(n+1)} \right)$ converges, and we furthermore know that the sum is $\frac{1}{\ln 2}$. Recall that it is unusual that we get to know the value of a convergent

Since $\sum |a_n| = \sum a_n$, the series $\sum_{n=2}^{\infty} \left(\frac{1}{\ln n} - \frac{1}{\ln(n+1)} \right)$ converges absolutely.

¹This cancellation is much easier to describe in handwritten work than it is in typewritten work.... sorry!