# 16-720A Computer Vision: Homework 3 Lucas-Kanade Tracking

Instructor: Srinivasa Narasimhan TAs: Anurag Ghosh, Mark Lee, Mohamad Qadri, Rebecca Martin, Ruihan Gao

Due: Tuesday, October 24th, 2023 11:59 p.m. It's the TUESDAY right after the fall break.

- Please pack your code and write-up into a single file <andrewid>\_hw3.zip, in accordance with the complete submission checklist at the end of this document.
- $\bullet$  All tasks marked with a  $\mathbf Q$  require a submission.
- Please stick to the provided function signatures, variable names, and file names.
- Start early! This homework cannot be completed within two hours!
- Verify your implementation as you proceed: otherwise you will risk having a huge mess of malfunctioning code that can go wrong anywhere.

\* \* \*

This homework consists of four sections. In the first section you will implement a simple Lucas-Kanade (LK) tracker with one single template. The second section requires you to implement a motion subtraction method for tracking moving pixels in a scene. In the final section you shall study efficient tracking such as inverse composition. Other than the course slide decks, the following references may also be helpful:

- 1. Simon Baker, et al. Lucas-Kanade 20 Years On: A Unifying Framework: Part 1, CMU-RI-TR-02-16, Robotics Institute, Carnegie Mellon University, 2002
- Simon Baker, et al. Lucas-Kanade 20 Years On: A Unifying Framework: Part 2, CMU-RI-TR-03-35, Robotics Institute, Carnegie Mellon University, 2003

Both are available at:

https://www.ri.cmu.edu/pub\_files/pub3/baker\_simon\_2002\_3/baker\_simon\_2002\_3.pdf. https://www.ri.cmu.edu/pub\_files/pub3/baker\_simon\_2003\_3/baker\_simon\_2003\_3.pdf.

# 1 Lucas-Kanade Tracking

In this section you will be implementing a simple Lucas & Kanade tracker with one single template. In the scenario of two-dimensional tracking with a pure translation warp function,

$$W(\mathbf{x}; \mathbf{p}) = \mathbf{x} + \mathbf{p} . \tag{1}$$

The problem can be described as follows: starting with a rectangular neighborhood of pixels  $\mathbb{N} \in \{\mathbf{x}_d\}_{d=1}^D$  on frame  $\mathcal{I}_t$ , the Lucas-Kanade tracker aims to move it by an offset

 $\mathbf{p} = [p_x, p_y]^T$  to obtain another rectangle on frame  $\mathcal{I}_{t+1}$ , so that the pixel squared difference in the two rectangles is minimized:

$$\mathbf{p}^* = \arg\min_{\mathbf{p}} = \sum_{\mathbf{x} \in \mathbb{N}} ||\mathcal{I}_{t+1}(\mathbf{x} + \mathbf{p}) - \mathcal{I}_t(\mathbf{x})||_2^2$$
 (2)

$$= \left\| \begin{bmatrix} \mathcal{I}_{t+1}(\mathbf{x}_1 + \mathbf{p}) \\ \vdots \\ \mathcal{I}_{t+1}(\mathbf{x}_D + \mathbf{p}) \end{bmatrix} - \begin{bmatrix} \mathcal{I}_t(\mathbf{x}_1) \\ \vdots \\ \mathcal{I}_t(\mathbf{x}_D) \end{bmatrix} \right\|_2^2$$
(3)

**Q1.1 (5 points)** Starting with an initial guess of  $\mathbf{p}$  (for instance,  $\mathbf{p} = [0, 0]^T$ ), we can compute the optimal  $\mathbf{p}^*$  iteratively. In each iteration, the objective function is locally linearized by first-order Taylor expansion,

$$\mathcal{I}_{t+1}(\mathbf{x}' + \Delta \mathbf{p}) \approx \mathcal{I}_{t+1}(\mathbf{x}') + \frac{\partial \mathcal{I}_{t+1}(\mathbf{x}')}{\partial \mathbf{x}'^T} \frac{\partial \mathcal{W}(\mathbf{x}; \mathbf{p})}{\partial \mathbf{p}^T} \Delta \mathbf{p}$$
(4)

where  $\Delta \mathbf{p} = [\Delta p_x, \Delta p_y]^T$ , is the template offset. Further,  $\mathbf{x}' = \mathcal{W}(\mathbf{x}; \mathbf{p}) = \mathbf{x} + \mathbf{p}$  and  $\frac{\partial \mathcal{I}(\mathbf{x}')}{\partial \mathbf{x}'^T}$  is a vector of the x- and y- image gradients at pixel coordinate  $\mathbf{x}'$ . In a similar manner to Equation 3 one can incorporate these linearized approximations into a vectorized form such that,

$$\arg\min_{\Delta \mathbf{p}} ||\mathbf{A}\Delta \mathbf{p} - \mathbf{b}||_2^2 \tag{5}$$

such that  $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$  at each iteration. (See section 2.1 and Figure 1 in this paper for more details.)

- What is  $\frac{\partial \mathcal{W}(\mathbf{x}; \mathbf{p})}{\partial \mathbf{p}^T}$ ? Write out the mathematical expression
- What is A and b? Write out the mathematical expression
- What conditions must  $\mathbf{A}^T \mathbf{A}$  meet so that a unique solution to  $\Delta \mathbf{p}$  can be found?

**Note**: in case you are looking for some references for matrix computation, the Matrix cookbook from the University of Waterloo is a good resource.

Q1.2 (15 points) Implement a function with the following signature

that computes the optimal local motion from frame  $\mathcal{I}_t$  to frame  $\mathcal{I}_{t+1}$  that minimizes Equation 3. Here It is the image frame  $\mathcal{I}_t$ , It1 is the image frame  $\mathcal{I}_{t+1}$ , rect is the 4-by-1 vector that represents a rectangle describing all the pixel coordinates within  $\mathbb{N}$  within the image frame  $\mathcal{I}_t$ , and  $p_0$  is the initial parameter guess  $(\delta x, \delta y)$ . The four components of the rectangle are  $[x_1, y_1, x_2, y_2]^T$ , where  $[x_1, y_1]^T$  is the top-left corner and  $[x_2, y_2]^T$  is the bottom-right corner. The rectangle is inclusive, i.e., it includes all the four corners. To deal with fractional movement of the template, you will need to interpolate the image using the Scipy module ndimage.shift or something similar. You will also need to iterate the estimation until the change in  $||\Delta \mathbf{p}||_2^2$  is below a threshold. In order to perform interpolation you might find RectBivariateSpline from the scipy.interpolate package. Read

the documentation of defining the spline (RectBivariateSpline) as well as evaluating the spline using RectBivariateSpline.ev carefully.

Q1.3 (10 points) Write a script testCarSequence.py that loads the video frames from carseq.npy, and runs the Lucas-Kanade tracker that you have implemented in the previous task to track the car. carseq.npy can be located in the data directory and it contains a single three-dimensional matrix: the first two dimensions correspond to the *height* and *width* of the frames respectively, and the third dimension contains the indices of the frames (that is, the first frame can be visualized with imshow(frames[:, :, 0])).

The starting rectangle in the first frame is  $[x_1, y_1, x_2, y_2]^T = [59, 116, 145, 151]^T$ . Run the Lucas-Kanade tracker that you have implemented to track the car in each following frame. Report your tracking performance (image + bounding rectangle) at frames 1, 100, 200, 300 and 400 in a format similar to Figure 1. Also, create a file called carsequects.npy, which contains one single  $n \times 4$  matrix. Each row i contains the rectangle coordinates rect for frame i and n is the total number of frames. I.e., the first row (i = 0) is just going to be [59, 116, 145, 151] and for each row i > 0, you will call your LucasKanade function on frame i - 1 and frame i to get the rectangle in frame i. You are encouraged to play with the parameters defined in the scripts and report the best results.

Similarly, write a script testGirlSequence.py that loads the video from girlseq.npy and runs your Lucas-Kanade tracker on it. The rectangle in the first frame is  $[x_1, y_1, x_2, y_2]^T = [280, 152, 330, 318]^T$ . Report your tracking performance (image + bounding rectangle) at frames 1, 20, 40, 60 and 80 in a format similar to Figure 1. Also, create a file called girlseqrects.npy, which contains one single  $n \times 4$  matrix, where each row stores the rect that you have obtained for each frame.

**Note:** The image in the dataset is represented by (height, width) array, while the rectangle coordinates are provided as  $[x_i, y_i]$ . Pay attention to the index ordering and make sure that the rectangles stay within the image frame for correct implementations given the default settings.



Figure 1: Lucas-Kanade Tracking with One Single Template

Q1.4 (20 points) As you might have noticed, the image content we are tracking in the first frame differs from the one in the last frame. This is understandable since we are updating the template after processing each frame and the error can be accumulating. This problem is known as template drifting. There are several ways to mitigate this problem. Iain Matthews et al. (2003, https://www.ri.cmu.edu/publication\_view.html?pub\_id=4433) suggested one possible approach (refer to section 2.1 and implement equation-3 from the paper using strategy-3).

Write two scripts with a similar functionality to Q1.3 but with a template correction routine incorporated: testCarSequenceWithTemplateCorrection.py and testGirlSequenceWithTemplateCorrection.py. Save the rects as carsequenceT.npy and girlsequenceT.npy, and also report the performance at those frames. An example is given in Figure 2. Again, you are encouraged to play with the parameters defined in the scripts to see how each parameter affects the tracking results.



Figure 2: Lucas-Kanade Tracking with Template Correction

Here the blue rectangles are created with the baseline tracker in **Q1.3**, the red ones with the tracker in **Q1.4**. The tracking performance has been improved non-trivially. Note that you do not necessarily have to draw two rectangles in each frame, but make sure that the performance improvement can be easily visually inspected.

#### 2 Affine Motion Subtraction

In this section, you will implement a tracker for estimating dominant affine motion in a sequence of images and subsequently identify pixels corresponding to moving objects in the scene. You will be using the images in the file aerialseq.npy, which consists of aerial views of moving vehicles from a non-stationary camera.

#### 2.1 Dominant Motion Estimation

In the first section of this homework we assumed the the motion is limited to pure translation. In this section you shall implement a tracker for affine motion using a planar affine warp function. To estimate dominant motion, the entire image  $\mathcal{I}_t$  will serve as the template to be tracked in image  $\mathcal{I}_{t+1}$ , that is,  $\mathcal{I}_{t+1}$  is assumed to be approximately an affine warped version of  $\mathcal{I}_t$ . This approach is reasonable under the assumption that a majority of the pixels correspond to the stationary objects in the scene whose depth variation is small relative to their distance from the camera.

Using a planar affine warp function you can recover the vector  $\Delta \mathbf{p} = [p_1, \dots, p_6]^T$ ,

$$\mathbf{x}' = \mathcal{W}(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} 1 + p_1 & p_2 \\ p_4 & 1 + p_5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} p_3 \\ p_6 \end{bmatrix} . \tag{6}$$

One can represent this affine warp in homogeneous coordinates as,

$$\tilde{\mathbf{x}}' = \mathbf{M}\tilde{\mathbf{x}} \tag{7}$$

where,

$$\mathbf{M} = \begin{bmatrix} 1 + p_1 & p_2 & p_3 \\ p_4 & 1 + p_5 & p_6 \\ 0 & 0 & 1 \end{bmatrix} . \tag{8}$$

Here **M** represents  $\mathbf{W}(\mathbf{x}; \mathbf{p})$  in homogeneous coordinates as described in [1]. Also note that **M** will differ between successive image pairs. Starting with an initial guess of  $\mathbf{p} = \mathbf{0}$  (i.e.  $\mathbf{M} = \mathbf{I}$ ) you will need to solve a sequence of least-squares problem to determine  $\Delta \mathbf{p}$  such that  $\mathbf{p} \to \mathbf{p} + \Delta \mathbf{p}$  at each iteration. Note that unlike previous examples where the template to be tracked is usually small in comparison with the size of the image, image  $\mathcal{I}_t$  will almost always not be contained fully in the warped version  $\mathcal{I}_{t+1}$ . Hence, one must only consider pixels lying in the region common to  $I_t$  and the warped version of  $I_{t+1}$  when forming the linear system at each iteration.

Q2.1 (15 points) Write a function with the following signature

which returns the affine transformation matrix M (shape  $3 \times 3$ ), and It and It1 are  $I_t$  and  $I_{t+1}$  respectively. LucasKanadeAffine should be relatively similar to LucasKanade from the first section (you will probably also find scipy.ndimage.affine\_transform helpful).

### 2.2 Moving Object Detection

Once you are able to compute the transformation matrix M relating an image pair  $\mathcal{I}_t$  and  $\mathcal{I}_{t+1}$ , a naive way for determining pixels lying on moving objects is as follows: warp the image  $\mathcal{I}_t$  using M so that it is registered to  $\mathcal{I}_{t+1}$  and subtract it from  $\mathcal{I}_{t+1}$ ; the locations where the absolute difference exceeds a threshold can then be declared as locations of corresponding moving objects. To obtain better results, you can check out the following scipy.morphology functions: binary\_erosion, and binary\_dilation.

- Note:
  - Try your best to tune the erosion and dilation function to get getter results; however, don't worry if you can't get rid of all noise pixels. The key thing is to have the motion pixels highlighted.
  - You can use L2 norm when comparing with the threshold.

**Q2.2** (10 points) Using the function you have developed for dominant motion estimation, write a function with the following signature

#### SubtractDominantMotion(image1, image2)

where image1 and image2 form the input image pair, and the return value mask is a binary image of the same size that dictates which pixels are considered to be corresponding to moving objects. You should invoke LucasKanadeAffine in this function to derive the transformation matrix M, and produce the aforementioned binary mask accordingly.

Q2.3 (10 points) Write two scripts testAntSequence.py and testAerialSequence.py that load the image sequence from antseq.npy and aerialseq.npy and run the motion



Figure 3: Lucas-Kanade Tracking with Motion Detection

detection routine you have developed to detect the moving objects. Try to implement testAntSequence.py first as it involves little camera movement and can help you debug your mask generation procedure.

Report the performance at frames 30, 60, 90 and 120 with the corresponding binary masks superimposed, as exemplified in Figure 3. Feel free to visualize the motion detection performance in a way that you would prefer, but please make sure it can be visually inspected without undue effort.

### 3 Efficient Tracking

#### 3.1 Inverse Composition

The inverse compositional extension of the Lucas-Kanade algorithm (see [1]) has been used in literature to great effect for the task of efficient tracking. When utilized within tracking it attempts to linearize the current frame as,

$$\mathcal{I}_t(\mathcal{W}(\mathbf{x}; \mathbf{0} + \Delta \mathbf{p}) \approx \mathcal{I}_t(\mathbf{x}) + \frac{\partial \mathcal{I}_t(\mathbf{x})}{\partial \mathbf{x}^T} \frac{\partial \mathcal{W}(\mathbf{x}; \mathbf{0})}{\partial \mathbf{p}^T} \Delta \mathbf{p} . \tag{9}$$

In a similar manner to the conventional Lucas-Kanade algorithm one can incorporate these linearized approximations into a vectorized form such that,

$$\arg\min_{\Delta \mathbf{p}} ||\mathbf{A}' \Delta \mathbf{p} - \mathbf{b}'||_2^2 \tag{10}$$

for the specific case of an affine warp where  $\mathbf{p} \leftarrow \mathbf{M}$  and  $\Delta \mathbf{p} \leftarrow \Delta \mathbf{M}$  this results in the update  $\mathbf{M} = \mathbf{M}(\Delta \mathbf{M})^{-1}$ . Just to clarify, the notation  $\mathbf{M}(\Delta \mathbf{M})^{-1}$  corresponds to  $\mathbf{W}(\mathbf{W}(\mathbf{x};\Delta \mathbf{p})^{-1};\mathbf{p})$  in Section 2.2 from [2].

Q3.1 (15 points) Reimplement the function LucasKanadeAffine(It,It1) as InverseCompositionAffine(It,It1) using the inverse compositional method. Report the results of the query frames (see Q2.3) for both ant and aerial sequences, as well as the runtime performance gain you observe using the inverse composition method. In your own

words, please describe why the inverse compositional approach is more computationally efficient than the classical approach.

### 4 Deliverables

The assignment (code and writeup) should be submitted to Gradescope and Canvas. The writeup should be submitted to Gradescope named <AndrewId>\_hw3.pdf. The code should be submitted as a zip named <AndrewId>\_hw3.zip to both Gradescope and Canvas. The zip file when uncompressed should produce the following files.

- LucasKanade.py
- LucasKanadeAffine.py
- SubtractDominantMotion.py
- InverseCompositionAffine.py
- testCarSequence.py
- testCarSequenceWithTemplateCorrection.py
- testGirlSequence.py
- testGirlSequenceWithTemplateCorrection.py
- testAntSequence.py
- testAerialSequence.py
- carseqrects.npy
- carseqrects-wcrt.npy
- girlseqrects.npy
- girlseqrects-wcrt.npy

# 5 Frequently Asked Questions (FAQs)

Q1: Why do we need to use ndimage.shift or RectBivariateSpline for moving the rectangle template? What frequency should I use to sample points using RectBivariateSpline.ev library?

A1: When moving the rectangle template with  $\Delta p$ , you can either move the points inside the template or move the image in the opposite direction. If you choose to move the points, the new points can have fractional coordinates, so you need to use RectBivariateSpline to sample the image intensity at those fractional coordinates. If you instead choose to move the image with ndimage.shift, you don't need to move the points and you can sample the image intensity at those points directly. Using RectBivariateSpline could be faster since it does not require moving the entire image. If you are using RectBivariateSpline.ev library, feel free to use any sampling frequency; e.g., sampling at a 1-pixel rate should be fine.

Here are some good docs as a reference for RectBivariateSpline: and doc2. doc1 and

<sup>\*</sup>Do not include the data directory in your submission.

doc2.

In our case, you can fit the RectBivariateSpline function on the given image and evaluate (query) the values at the required coordinates. In the function RectBivariateSpline(x, y, z), x and y would be the range of [0, height) and [0, width) values and z is the image you want to interpolate. Now you can query the values at the desired points (in our case the pixels within the rectangle) using the RectBivariateSpline.ev( $x_i, y_i, dx = 0, dy = 0$ ) where  $x_i$  and  $y_i$  are the pixels within the rectangle. You can set either dx or dy to 1 in order to get  $\nabla I_x$  or  $\nabla I_y$ .

**Q2:** What's the right way of computing the image gradients  $\mathcal{I}_x(\mathbf{x})$  and  $\mathcal{I}_y(\mathbf{x})$ . Should I first sample the image intensities  $\mathcal{I}(\mathbf{x})$  at  $\mathbf{x}$  and then compute the image gradients  $\mathcal{I}_x(\mathbf{x})$  and  $\mathcal{I}_y(\mathbf{x})$  with  $\mathcal{I}(\mathbf{x})$ ? Or should I first compute the entire image gradients  $\mathcal{I}_x$  and  $\mathcal{I}_y$  and sample them at  $\mathbf{x}$ ?

**A2:** The second approach is the correct one.

**Q3:** Can I use pseudo-inverse the least-squared problem  $\arg \min_{\Delta \mathbf{p}} ||\mathbf{A}\Delta \mathbf{p} - \mathbf{b}||_2^2$ ?

**A3:** Yes, the pseudo-inverse solution of  $\mathbf{A}\Delta\mathbf{p} = \mathbf{b}$  is also  $\Delta\mathbf{p} = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b}$  when **A** has full column ranks, i.e., the linear system is overdetermined.

Q4: For inverse compositional Lucas Kanade, how to deal with points outside out the image?

**A4:** Since the Hessian in inverse compositional Lucas Kanade is precomputed, we cannot simply remove points when they are outside the image since it can result in dimension mismatch. However, we can set the error  $\mathcal{I}_{t+1}(\mathcal{W}(\mathbf{x};\mathbf{p})) - \mathcal{I}_t(\mathbf{x})$  to 0 for  $\mathbf{x}$  outside the image.

**Q5:** How to find pixels common to both It1 and It?

**A5:** If the coordinates of warped It1 is within the range of It.shape, then we consider the pixel lies in the common region.

Note for Q1.4: Please be wary that we define p in the writeup to be the shift from the template rectangle. However, in the code for your LK function  $p\theta$  is defined as the shift from the passed-in variable *rect*. Therefore, when pass in a rectangle that isn't the template rectangle like the initial frame rectangle in the 2nd LK stage, then you should be passing in p plus a shift that accounts for the difference in rectangle coordinates.

Note for Q2.2: When warping using the Affine Transformation function (cv2.warpAffine or scipy.ndimage.affine\_transform), read the function documentation carefully on whether M or  $M^{-1}$  needs to be passed to the function.

Note for Q3.1:

$$\Delta M = \begin{bmatrix} 1 + \Delta p_1 & \Delta p_2 & \Delta p_3 \\ \Delta p_4 & 1 + \Delta p_5 & \Delta p_6 \\ 0 & 0 & 1 \end{bmatrix}$$