Matemática Discreta II

Mauro Polenta Mora

Ejercicio 7

Consigna

- 1. Demostrar que el producto de tres naturales consecutivos es múltiplo de 6.
- 2. Probar que n(2n+1)(7n+1) es divisible entre 6 para todo $n \in \mathbb{N}$.

Resolución

Para este ejercicio vamos a considerar como una prueba suficiente que si un entero es múltiplo de 2 y de 3, entonces también es múltiplo de 6.

Parte 1

• Demostrar que el producto de tres naturales consecutivos es múltiplo de 6.

Queremos verificar que para todo $n \in \mathbb{N} : n(n+1)(n+2) = 6q$ para algún $q \in \mathbb{Z}$. Lo haremos verificando en partes separadas que dicho número es múltiplo de 2 y de 3.

Llamemos m = n(n+1)(n+2).

Divisibilidad por 2

• Para todo $n \in \mathbb{N} : n(n+1)(n+2) = 2q$ para algún $q \in \mathbb{Z}$

Tenemos los siguientes dos casos posibles para n:

- $n = 2q \text{ con } q \in \mathbb{Z}$
- $n = 2q + 1 \text{ con } q \in \mathbb{Z}$

CASO 1: n = 2q

$$n(n+1)(n+2)$$
=(sustituyendo $n=2q$)
$$2q(2q+1)(2q+2)$$
=(reagrupando)
$$2(q(2q+1)(2q+2))$$

Y como $q(2q+1)(2q+2) \in \mathbb{Z}$, tenemos que:

•
$$m = 2q'$$

Por lo tanto, m es múltiplo de 2 para este caso.

CASO 2: n = 2q + 1

$$n(n+1)(n+2)$$

=(sustituyendo $n=2q+1$)
 $(2q+1)(2q+2)(2q+3)$
=(operando)
 $(2q+1)2(q+1)(2q+3)$
=(reagrupando)
 $2(q+1)(2q+1)(2q+3)$

Y como $(q+1)(2q+1)(2q+3) \in \mathbb{Z}$, tenemos que:

•
$$m = 2q'$$

Por lo tanto, m es múltiplo de 2 para este caso.

Con esto se concluye que m es múltiplo de 2 en todos los casos. \square

Divisibilidad por 3

• Para todo $n \in \mathbb{N} : n(n+1)(n+2) = 3q$ para algún $q \in \mathbb{Z}$

Tenemos los siguientes dos casos posibles para n:

- $n = 3q \text{ con } q \in \mathbb{Z}$
- $n = 3q + 1 \operatorname{con} q \in \mathbb{Z}$
- $n = 3q + 2 \operatorname{con} q \in \mathbb{Z}$

CASO 1: n = 3q

El caso es directo, de la misma forma que el caso 1 para la divisibilidad entre 2.

CASO 2: n = 3q + 1

$$n(n+1)(n+2)$$

=(sustituyendo $n=3q+1$)
 $(3q+1)(3q+2)(3q+3)$
=(operando)
 $(3q+1)(3q+2)3(q+1)$
=(reagrupando)
 $3(q+1)(3q+1)(3q+2)$

Y como $(q+1)(3q+1)(3q+2)\in\mathbb{Z},$ tenemos que:

•
$$m = 3q'$$

Por lo tanto, m es múltiplo de 3 para este caso.

CASO 3:
$$n = 3q + 2$$

$$n(n+1)(n+2)$$
=(sustituyendo $n=3q+1$)
$$(3q+2)(3q+3)(3q+4)$$
=(operando)
$$(3q+2)3(q+1)(3q+4)$$
=(reagrupando)
$$3(q+1)(3q+2)(3q+4)$$

Y como $(q+1)(3q+2)(3q+4) \in \mathbb{Z}$, tenemos que:

•
$$m = 3q'$$

Por lo tanto, m es múltiplo de 3 para este caso.

Con esto se concluye que m es múltiplo de 3 en todos los casos. \square