Unit 6- Introduction to Vector

Scalar

VS

Vector

- Quantity that describes
 magnitude or size only (with
 or without units)
- Does not include direction
- Ex: Man's mass of 88kg,person skiing at a speed of 25km/h

- Quantity that has both magnitude and direction
- Ex: car traveling at 50 km/h to the east

Vectors can be represented in several ways

1) words

 5 km at an angle of 30 degree to the horizontal

- 2) In a diagram- as a geometric vector
- A representation using an arrow diagram, or directed line segment that shows magnitude and direction

Magnitude or size of a vector: $|\overrightarrow{AB}|$ or \overrightarrow{V}

Types of Vectors

- Parallel Vectors- same or opposite direction, not necessarily the same magnitude
- Equivalent vectors- have the same magnitude and the same direction. The location of the vectors does not matter

- Coincident vectors- same
- Opposite vectors- same magnitude but opposite direction. The location of vector does not matter.

 $\overrightarrow{Ex}: \overrightarrow{AB} = -\overrightarrow{BA} \text{ or } \overrightarrow{AB} \text{ and } \overrightarrow{BA}$

Equivalent Vectors

$$\overrightarrow{AB} = \overrightarrow{DC}$$

$$\overrightarrow{AD} = \overrightarrow{BC}$$

Opposite Vectors

$$\overrightarrow{AB}$$
 and \overrightarrow{CD}

$$\overrightarrow{AB} = -\overrightarrow{CD}$$

$$\overrightarrow{AB}$$
 and \overrightarrow{CB}

$$\overrightarrow{AD} = -\overrightarrow{CB}$$