

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА по курсу «Data Science»

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Соколовский Болеслав Леонидович

Содержание работы

1 Постановка задачи и описание используемых методов

2 Разведочный анализ данных, Предобработка данных

Разработка и обучение моделей. Тестирование моделей

4 Нейронная сеть

Разработка приложения, Создание удаленного репозитория

Прогнозирование конечных свойств новых материалов (композиционных материалов).

Постановка задачи и описание используемых методов

Цель исследовательской работы – разработать модели для прогноза модуля упругости при растяжении, прочности при растяжении и соотношения «матрица-наполнитель».

Так как поставленные задачи прогнозирования параметров являются задачей регрессии, для их решения были выбраны следующие методы машинного обучения с учителем:

- 1. Линейная регрессия
- 2. Полиномиальная регрессия;
- 3. KNeighborsRegressor
- 4. RandomForestRegressor
- 5. GradientBoostingRegressor

Для прогноза рекомендованного значения соотношения «матрица-наполнитель»:

• Полносвязная нейронная сеть (2 варианта)

Разведочный анализ данных,
Предобработка данных

Разведочный анализ данных

Датсеты df_bp и df_nup были объединены по индексу, тип объединения INNER. Для формирования описания данных используя библиотеку ydata-profiling:

- пропусков и дубликатов в данных не выявлено.
- распределение величин, близкое к нормальному
- наблюдается отсутствие значимых взаимосвязей между переменными
- выявлены выбросы по всем признакам

Предобработка

- удаление выявленных выбросов методом на основе межквартильного размаха(скошенное распределение 2 признаков)
- нормализацию данных с помощью MinMaxScaler()

Разработка и обучение моделей

- При построении моделей был осуществлен поиск гиперпараметров модели с помощью поиска по сетке с перекрестной проверкой, количество блоков равно 10.
- При построении модели в соответствии с поставленной задачей 30% данных было оставлено на тестирование модели, на остальных 70% происходило обучение моделей.
- По итогам оценки лучшие результаты почти по всем выбранным метрикам для прогноза модуля упругости при растяжении показал метод RandomForestRegressor.
- Лучшие результаты для прочности при растяжении показал метод линейной регрессии. Хотя и параметры R2 в большинстве случаев отрицательны что говорит о неудовлетворительной описательной способности моделей.

Тестирование моделей

Нейронная сеть

Первая модель

количество скрытых слоев — 2 количество нейронов на входном слое — 12 количество нейронов на 1 и 2 скрытых слоях — 25 количество нейронов на выходном слое — 1 активационная функция «Relu», на выходном слое «Sigmoid» оптимизатор «Adam» функция потерь — MSE метрика — MAE

Обучение модели происходило за 250 эпох.

Нейронная сеть

Вторая модель

количество скрытых слоев — 4 количество нейронов на входном слое — 120 количество нейронов на 1 и 2 скрытых слоях — 1440 количество нейронов на 3 скрытом слое — 60 количество нейронов на 4 скрытом слое — 20 количество нейронов на выходном слое — 1; активационная функция «Relu», на выходном слое «Sigmoid» оптимизатор «rmspror» функция потерь — MAE метрика — MSE

В модели Yet_another_NN использовались точки фиксации минимального значения ошибки на тестовой выборке — чекпоинты. Согласно истории обучения, оптимальные параметры получены на 8 эпохе обучения. (МАЕ =0.14713). В дальнейшем сохраним эту модель для использования в приложении. Обучение модели происходило также за 250 эпох.

Нейронная сеть

+	целевая переменная	÷	модель	÷	MAE ÷	MSE ÷	R2 ÷
Θ	Модуль упругости при растяжении		Linear Regression		0.145773	0.032470	-0.00303
1	Модуль упругости при растяжении		Polynomial Regression		0.156588	0.037613	-0.16191
2	Модуль упругости при растяжении		KNeighborsRegressor		0.148200	0.032793	-0.01302
3	Модуль упругости при растяжении		RandomForestRegressor		0.146204	0.032330	0.00130
4	Модуль упругости при растяжении		GradientBoostingRegressor		0.146091	0.032810	-0.01352
5	Прочность при растяжении		Linear Regression		0.141190	0.033028	-0.03206
6	Прочность при растяжении		Polynomial Regression		0.149222	0.036791	-0.14964
7	Прочность при растяжении		KNeighborsRegressor		0.141451	0.033193	-0.03720
8	Прочность при растяжении		RandomForestRegressor		0.142092	0.033202	-0.03748
9	Прочность при растяжении		GradientBoostingRegressor		0.140149	0.032722	-0.02248
10	Соотношение матрица-наполнитель		Sequential NN		0.169243	0.046851	-0.38504
11	Соотношение матрица-наполнитель		Yet another NN		0.149472	0.034665	-0.02477

Разработка приложения, Создание - удаленного репозитория

Приложение

Приложение было разработано с помощью Flask, HTML. Используется сохраненная модель нейронной сети Keras.

Создание удаленного репозитория

Страница GitHub: www.github.com/bls-89

Созданный репозиторий: www.github.com/bls-89/BMSTU

Ссылка на приложение на render.com: www.bls-app.onrender.com/

Ссылка на страницу Kaggle.com: www.kaggle.com/boleslav89

ЦЕНТР ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ

мгту им. Н.Э. Баумана

do.bmstu.ru

