ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ

МЕМ-254 Аріюмнтікн Граммікн Алгевра Хеімеріно Е Ξ амнно 2016 Ерга Ξ тнріо 3 25-10-2016 Н Аналу Ξ н Сноlesky

1. Διατύπωση του προβλήματος.

Έστω:

- $d \in \mathbb{N}$,
- συμμετρικός και θετικά ορισμένος πίνακας $A \in \mathbb{R}^{d \times d},$
- διάνυσμα b ∈ ℝ^d.

Σκοπός μας είναι να βρούμε τη λύση $x \in \mathbb{R}^d$ του γραμμικού συστήματος Ax = b, χρησιμοποιώντας την ανάλυση Cholesky.

2. Περιγραφή της μεθόδου.

Επειδή ο πίναχας A είναι συμμετρικός και θετικά ορισμένος, υπάρχει κάτω τριγωνικός πίναχας $L\in\mathbb{R}^{d\times d}$ με θετικά διαγώνια στοιχεία τέτοιος ώστε $A=L\,L^T$. Επειδή το γραμμικό σύστημα παίρνει τη μορφή: $L(L^T\,x)=b$, πρώτα βρίσκουμε τη λύση $y\in\mathbb{R}^d$ του γραμμικού συστήματος $L\,y=b$ ως εξής:

$$y_i = \frac{1}{L_{ii}} \left(b_i - \sum_{j=1}^{i-1} L_{ij} y_j \right), \quad i = 1, \dots, d,$$

και στη συνέχεια βρίσκουμε τη λύση x λύνοντας το γραμμικό σύστημα $L^T x = y$, ως εξής:

$$x_i = \frac{1}{L_{ii}} \left(y_i - \sum_{j=i+1}^d L_{ij}^T x_j \right), \quad i = d, \dots, 1.$$

3. Υπολογισμός του πίνακα L.

Για k = 1, ..., d, πρώτα υπολογίζουμε το διαγώνιο στοιχείο L_{kk} ως εξής:

$$L_{kk} = \left(A_{kk} - \sum_{j=1}^{k-1} (L_{kj})^2\right)^{\frac{1}{2}}$$

και στη συνέχεια υπολογίζουμε τα υπόλοιπα στοιχεία της k-στήλης ως εξής:

$$L_{ik} := \frac{1}{L_{kk}} \left(A_{ik} - \sum_{j=1}^{k-1} L_{ij} L_{kj} \right), \quad i = k+1, \dots, d.$$

4. Αντικείμενο εργαστηρίου.

Γράψτε ένα πρόγραμμα το οποίο να υπολογίζει τη λύση x του γραμμικού συστήματος Ax=b χρησιμοποιώντας την ανάλυση Cholesky όπως περιγράψαμε στις προηγούμενες παραγράφους.

Επειδή ο πίναχας είναι συμμετριχός αρχεί να ξέρουμε τα στοιχεία της διαγωνίου και τα υποδιαγώνια στοιχεία του, δηλ. δεν απαιτούνται d^2 θέσεις μνήμης για την αποθήχευση των στοιχείων του αλλά $N=\frac{d(d+1)}{2}$ θέσεις μνήμης. Επιπλέον, για την αποθήχευση του πίναχα L δεν απαιτούνται επιπλέον θέσεις μνήμης, καθώς το L_{ij} μπορεί να αποθηχευτεί στο στοιχείο A_{ij} το οποίο δεν χρειάζεται στον υπολογισμό των υπολοίπων στοιχείων του L.

Επομένως, μπορούμε να αποθηκεύσουμε τα στοιχεία του πίνακα A κατά γραμμές σε ένα διάνυσμα v μήκους N, δηλ. το A(i,j) αντιστοιχεί στο στοιχείο $v\left(\frac{(i-1)i}{2}+j\right)$.

Παράδει γμα. Δοχιμάστε το πρόγραμμά σας με ένα τριδιαγώνιο πίναχα A με διαγώνια στοιχεία $A_{j,j}=2$ για $j=1,\ldots,d$, υπερδιαγώνια στοιχεία $A_{j,j+1}=-1$ για $j=1,\ldots,d-1$, και υποδιαγώνια στοιχεία $A_{j,j-1}=-1$ για $j=2,\ldots,d$. Για $b\in\mathbb{R}^d$ με $b_1=1,$ $b_j=0$ για $j=2,\ldots,d-1$, και $b_d=1$, η λύση $x\in\mathbb{R}^d$ του γραμμικού συστήματος έχει συντεταγμένες $x_i=1$ για $i=1,\ldots,d$.

Γ. Ζουράρης