Stat 6021: Homework Set 3 Solutions

2. (a) The table is displayed below.

x_i	70	75	80	80	85	90
y_i	75	82	80	86	90	91
$\hat{y_i}$	76	80	84	84	88	92
e_i	-1	2	-4	2	2	-1

		DF	SS	MS	F-stat	p-value
(b)	Regression	1	160	160	21.3333	0.0099
	Residual	4	30	7.5	***	***
	Total	5	190	***	***	***

$$SS_{res} = \sum_{i} e_i^2 = (-1)^2 + 2^2 + (-4)^2 + 2^2 + 2^2 + (-1)^2 = 30.$$

$$SS_T = \sum_{i} (y_i - \bar{y})^2$$

$$= (75 - 84)^2 + (82 - 84)^2 + (80 - 84)^2 + (86 - 84)^2 + (90 - 84)^2 + (91 - 84)^2$$

$$= 190.$$

- (c) $\hat{\sigma}^2 = \frac{SS_{res}}{n-2} = \frac{30}{4} = 7.5.$
- (d) $R^2 = \frac{SS_{res}}{SS_T} = \frac{160}{190} = 0.842.$
- (e) $H_0: \beta_1 = 0, H_a: \beta_1 \neq 0$. Since the p-value is less than 0.05, we reject the null hypothesis. Our data supports the claim that there is a linear relationship between scores on the second quiz and scores on the first quiz.

Critical value approach: Critical value is 7.71 (using qf(0.95,1,4) in R). Since the F-stat is greater than the critical value, we reject the null hypothesis. Our data supports the claim that there is a linear relationship between scores on the second quiz and scores on the first quiz.

3. We want to find $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize

$$Q = SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2.$$

Taking partial derivatives of Q with respect to $\hat{\beta}_0$ and $\hat{\beta}_1$, we obtain

$$\frac{\partial Q}{\partial \hat{\beta}_0} = \sum_i 2\left(y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)\right) (-1) \tag{1}$$

and

$$\frac{\partial Q}{\partial \hat{\beta}_1} = \sum_i 2\left(y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)\right) (-x_i). \tag{2}$$

To find the stationary points, set (1) and (2) equal 0. Thus we obtain

$$\sum_{i} y_i = n\hat{\beta}_0 + \hat{\beta}_1 \sum_{i} x_i \tag{3}$$

and

$$\sum_{i} x_{i} y_{i} = \hat{\beta}_{0} \sum_{i} x_{i} + \hat{\beta}_{1} \sum_{i} x_{i}^{2}. \tag{4}$$

From (3),

$$\hat{\beta}_0 = \frac{\sum_i y_i}{n} - \hat{\beta}_1 \frac{\sum_i x_i}{n}$$

$$= \bar{y} - \hat{\beta}_1 \bar{x}. \tag{5}$$

Sub (5) into (4),

$$\sum_{i} x_{i} y_{i} = (\bar{y} - \hat{\beta}_{1}\bar{x}) \sum_{i} x_{i} + \hat{\beta}_{1} \sum_{i} x_{i}^{2}$$

$$\Longrightarrow \hat{\beta}_{1} \left(\sum_{i} x_{i}^{2} - \bar{x} \sum_{i} x_{i} \right) = \sum_{i} x_{i} y_{i} - \bar{y} \sum_{i} x_{i}$$

$$\Longrightarrow \hat{\beta}_{1} \left(\sum_{i} x_{i}^{2} - n\bar{x}^{2} \right) = \sum_{i} x_{i} y_{i} - n\bar{x}\bar{y}$$

$$\Longrightarrow \hat{\beta}_{1} = \frac{\sum_{i} x_{i} y_{i} - n\bar{x}\bar{y}}{\sum_{i} x_{i}^{2} - n\bar{x}^{2}}$$

$$= \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i} (x_{i} - \bar{x})^{2}}.$$
(6)

Equations (5) and (6) are the least squares estimators.