Hardware Implementation of 1024-bit RSA Decryption using Modular Exponentiation

Group Members Zach, Lukas, Kevin, Muhib

Zach Bachman Electrical Engineering

Lukas Pettersson Computer Engineering Kevin Manago
Computer and Electrical
Engineering

Muhib Noorali Computer Engineering

Summary of proposal

Multiple stages of Manufacturing leads to vulnerabilities

Obfuscation of Hardware to improve IP privacy

RSA Algorithm

1024-bit RSA Decryption module on an FPGA Board

Original Design Goals and Justification

Design Goal	Justification	
1024-bit cipher text	Bigger cipher text = More Security	
UART for input	Easier to input larger cipher values	
Edge Detector	Visualization of correct output	
Push it onto an FPGA	Confirm Viability	

Discussion of methodologies

RSA Decryption	Montgomery Modular Multiplication	Extended Euclidean Algorithm	Non-restoring division
M = C ^d mod (n)	$n'_0 = -n^{-1} \mod (2^w)$	ax + by = gcd(a,b)	
$\Phi(n) = (p-1)(q-1)$	r = 2 ^{sw} mod (n)		
$d = e^{-1} \mod \Phi(n)$	$t = r^2 \mod (n)$		

Summary of results

Share screen

What's next? What could be done with this in the future?

Pushing to Board-Optimizing

Connecting with UART- Ease of inputting values

Connecting with the Edge detector- Visual Confirmation

Upscaling- Potential for improved Security

Proper resetting of design- Bring design back to initial state and reset values

Thank you!

Zach Bachman Electrical Engineering

Lukas Pettersson Computer Engineering

Kevin Manago Computer and Electrical Engineering

Muhib Noorali Computer Engineering

QUESTIONS?