Université Pierre et Marie Curie - LM 121 - 2012/2013

Contrôle continu n 2 MIME 11.3

Exercice 1:

Soit u = (1, 2, 3), v = (-1, 1, 2), w = (3, 3, 4) et z = (1, 1, 1) des vecteurs de \mathbb{R}^3 .

- 1. u, v et w sont-ils liés? Si oui, donner une combinaison linéaire non-triviale de u, v, w qui soit nulle.
- 2. z est-il combinaison linéaire de u, v et w?

Exercice 2:

On considère les deux droites suivantes :

$$D_1: \begin{cases} x+y-z & = -9 \\ x-y-2 & = 0 \end{cases}$$
 $D_2: \begin{cases} 3x-y-z & = -5 \\ x-z & = -1 \end{cases}$

- 1. determiner $D_1 \cap D_2$.
- 2. Donner une équation cartésienne de l'unique plan \mathcal{P} contenant ces deux droites.

Exercice 3:

Soit u, v et $w \in \mathbb{R}^3$. Montrer que $\det(u, v, w) = (u \wedge v) \cdot w$. (Ici représente le produit scalaire).

Exercice 4:

Soit f la rotation de centre (0,0) et d'angle $\frac{\pi}{2}$, et g la rotation de centre (1,2) et d'angle $\frac{\pi}{2}$. Identifier géométriquement $g \circ f$ (à savoir donner le centre et l'angle de cette rotation).