AIA Exercise

Bayesian Estimation

Simon Matern

Computer Vision and Remote Sensing Technische Universität Berlin

May 19, 2025

Overview

- 1. Maximum Likelihood Estimation
- 2. Maximum A Posteriori Estimation
- 3. Bayesian Estimation
- 4. Bayesian Decision Theory

Maximum Likelihood Estimation (MLE)

Assuming our data comes from a parametrized distribution, how can one estimate its parameters given the observations?

MLE Definition

Given a set of observations $D = \{x_1, \dots, x_n\}$ with i.i.d $x_i \sim p(x|\theta)$ The MLE is defined as

$$\begin{split} \hat{\theta}_{ML} &:= \arg\max_{\theta} \underbrace{p(D|\theta)}_{\text{likelihood}} &= \arg\max_{\theta} \prod_{i=1}^{n} p(x_i|\theta) \\ &= \arg\max_{\theta} \underbrace{\log p(D|\theta)}_{\text{log-likelihood}} &= \arg\max_{\theta} \sum_{i=1}^{n} \log p(x_i|\theta) \end{split}$$

MLE

MLE procedure

- 1. formulate likelihood analytically: $p(D|\theta) = \prod_{i=1}^{n} p(x_i|\theta)$
- 2. formulate log-likelihood analytically: $L(\theta) := \sum_{i=1}^{n} \log p(x_i | \theta)$
- 3. compute gradient: $\nabla L(\theta)$
- 4. find extrema: $\nabla L(\hat{\theta}_{ML}) \stackrel{!}{=} 0$

MLE Example

Example

We observe a coin-toss experiment $D = \{x_1, \dots, x_n\}$ with i.i.d. $x_i \sim p(x_i|\theta)$

$$p(x_i| heta) = egin{cases} heta & ext{if } x_i = 1 \ (ext{head}), \ 1 - heta & ext{if } x_i = 0 \ (ext{tail}) \end{cases}$$

Example

- 1. Likelihood: $p(D|\theta) = \theta^k \cdot (1-\theta)^{n-k}$ where k is the number of heads
- 2. Log-likelihood: $L(\theta) = k \log(\theta) + (n k) \log(1 \theta)$
- 3. Gradient: $\nabla L(\theta) = \frac{k}{\theta} \frac{n-k}{1-\theta}$
- 4. Extremum: $\nabla L(\theta) \stackrel{!}{=} 0$

MLE Example

Example

4. Extremum:

$$\nabla L(\theta_{ML}) = 0$$

$$\Leftrightarrow \frac{k}{\theta} - \frac{n - k}{1 - \theta} = 0$$

$$\Leftrightarrow \frac{k(1 - \theta) - \theta(n - k)}{\theta(1 - \theta)} = 0$$

$$\Leftrightarrow k(1 - \theta) - \theta(n - k) = 0$$

$$\Leftrightarrow k - \theta n = 0$$

$$\Rightarrow \hat{\theta}_{ML} = \frac{k}{n}$$

MLE Visualization

Figure: The graph shows the log-likelihood of a Bernoulli distribution with $\theta=0.3$

MLE Visualization II

Summary: As shown before, the

Log-likelihood of Bernoulli distribution

is defined as

$$L(\theta \mid \mathbf{x}) = k \log \theta + (n - k) \log(1 - \theta), \qquad 0 < \theta < 1.$$

We fixed the data and are scanning over all $\theta \in [0, 1]$ to see which parameter value makes the data most plausible.

MLE: Exercise

Task 1

- Why apply a logarithm on the likelihood?
- What are analytical reasons?
- What are numerical reasons?
- Does it affect the estimator?

Task 2:

We observe an experiment $D = \{x_1, \dots, x_n\}$ with i.i.d. $x_i \sim p(x_i | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. What is the MLE for μ and σ^2 ?

Task 3: Regression

We observe am experiment $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$. We assume a linear model with Gaussian noise: $y_i = x_i \cdot a + b + \epsilon_i$ with i.i.d. $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. What is the MLE for a, b and σ^2 ?

Maximum a posteriori estimation (MAP)

Problem

- MLE is purely data-driven. This leads to some unstable behavior for estimations with low amount of data.
- How can one incorporate additional knowledge into the estimation?

Solution

- Treat parameter θ as a random variable.
- Find mostly likely θ given the data

$$\begin{split} \hat{\theta}_{MAP} &= \argmax_{\theta} p(\theta|D) \\ &= \argmax_{\theta} \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta} \\ &= \arg\max_{\theta} p(D|\theta)p(\theta) \end{split}$$

MAP

MAP procedure

- A prior distribution $p(\theta)$ can model a certainty over the parameter space
- $\hat{\theta}_{MAP}$ can be found the same way as MLE. The only difference is that the likelihood has an additional constraint.

$$\hat{\theta}_{MAP} = \operatorname*{arg\,max}_{\theta} \underbrace{p(D|\theta)}_{ ext{likelihood prior}} \underbrace{p(\theta)}_{ ext{prior}}$$

Bayesian Estimation

Problem

MLE and MAP are **point estimators**. They provide no certainty over the found solution. What is the distribution for a new measurement x given our data D?

Bayesian Estimation

$$p(x|D) = \int \underbrace{p(x|\theta)}_{ ext{pdf}} \underbrace{p(\theta|D)}_{ ext{Posterior probability}} d\theta$$
 $p(\theta|D) = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta}$

Bayesian Estimation: Exercise

Task

Let
$$D = (x_1, x_2, ..., x_7) = (0, 0, 1, 1, 0, 0, 1)$$
. Assume $p(x_i | \theta) = \begin{cases} \theta & \text{if } x_i = 1 \text{ (head)}, \\ 1 - \theta & \text{if } x_i = 0 \text{ (tail)} \end{cases}$

- Let $p(\theta) = \mathcal{N}(0.5, 0.1)$. What is the MAP estimator θ_{MAP} ? What is the probability of tossing tails two times $P(x_8 = 0, x_9 = 0 | \theta_{MAP})$
- Let $p(\theta) = \mathcal{U}(0,1)$. What is the probability of the next toss to be head $P(x_8 = 1|D)$

Bayesian Decision Theory

Discriminant Functions

Select class i with highest probability given measurement x:

$$rg \max_i P(\omega_i|x) = rac{p(x|\omega_i)P(\omega_i)}{p(x)}$$

• Alternatively use any functions $g_i(x)$ with

$$k = \underset{i}{\operatorname{arg \, max}} \ g_i(x) \Leftrightarrow k = \underset{i}{\operatorname{arg \, max}} \ P(\omega_i|x)$$

Examples

- $g_i(x) = P(\omega_i|x)$
- $g_i(x) = p(x|\omega_i)P(\omega_i)$

- $g_i(x) = \log p(x|\omega_i) + \log P(\omega_i)$
- $g_i(x) = f(\hat{g}_i(x))$ for any monotonic function f and some discriminant $\hat{g}_i(x)$

Bayesian Decision Theory: Error

Using our discriminant functions for decision making what is the expected error ?

Error Metric

Conditional error:

$$P(\operatorname{error}|x) = 1 - \max_{i}(P(\omega_{i}|x))$$

= $\min(P(\omega_{1}|x), P(\omega_{2}|x))$ for binary classification

Expected error:

$$P(error) = \int P(error|x)p(x)dx$$

Bayesian Decision Theory: Error

Bayesian Decision Theory: Exercise

Task 1

- If $p(x|\omega_i)$ is assumed to be Gaussian $p(x|\omega_i) = \mathcal{N}(\mu_i, \Sigma_i)$
 - compute the discriminant function: $g_i(x) = \log[p(x|\omega_i)P(\omega_i)]$
 - When is the decision boundary linear? $w^T(x-x_0)=0 \ \forall x \text{ with } g_i(x)=g_i(x)$
 - In which case is the optimal decision rule to always choose class ω_1 ? Explain the parameters of this scenario.
- How does the distribution of the features p(x) affect the classification error?
- Are the following statements correct of wrong?
 - If $P(\omega_1) > P(\omega_2)$ it is always better to select class ω_1
 - If $\forall i, j : P(\omega_i) = P(\omega_j)$ then $g_i(x) = p(x|\omega_i)$ are valid discriminator functions?
- In which case are $g_i(x) = P(\omega_i)$ valid discriminator functions ?