Ottimizzazione Strutturale e Ottimizzazione Topologica

Claudio Caccia

Progetto di Strutture Aerospaziali

Politecnico di Milano

May 11, 2016

1 / 39

Outline

- Descrizione del Problema
- Definizione di un Modello di Ottimizzazione
- Categorie di modelli di Ottimizzazione
- Ottimizzazione strutturale: Classificazione
- Ottimizzazione Topologica
- OT: algoritmi
- 🕜 OT: esempi
- OT: implementazioni SW
- Conclusioni

Elementi dell'ottimizzazione strutturale:

- modello strutturale
- modello di ottimizzazione
- algoritmo di ottimizzazione

3 / 39

Modello di ottimizzazione

- Modello strutturale:
 - struttura reale ⇒ modello
 - funzione obiettivo e vincoli descritti come variabili del modello x
- Algoritmo di ottimizzazione:
 - porta da soluzione iniziale x_0 a x_f
- Modello di ottimizzazione:
 - ponte tra struttura e algoritmo
 - valuta f.o. e vincoli
 - traduce le variabili strutturali in design variables

Schema

Schema di ottimizzazione:

Figure: Optimization schema [5]

5 / 39

Formulazione

Forma generale [9]:

$$\min \qquad f(\mathbf{x}) \qquad \mathbf{x} \in \mathbb{R}^n \tag{1}$$

subject to
$$g_j(\mathbf{x}) \leq 0$$
 $j = 1, \dots, m$ (2)

$$h_k(\mathbf{x}) = 0 \quad k = 1, \dots, r \tag{3}$$

$$\check{x}_i \le x_i \le \hat{x}_i \quad i = 1, \dots, n \tag{4}$$

Definizione dei termini

- Funzione obiettivo
- inequality constraints: definiscono le regioni di validità della f.o.
- equality constraints: sono sempre attivi
- side constraints: definiscono la regione di ricerca delle variabili

Categorie di Modelli

- lineare, non-lineare [8]
- continuo, discreto
- vincolato, non vincolato
- convex optimization [2]
- multi-objective [4]
- modelli euristici vs. esatti
- metodi rilassati
- ...

8 / 39

Note (1)

Ottimizzazione multi-obiettivo

- Frontiera di Pareto
- definizione a priori delle preferenze
 - pb. di omogeneizzazione (costo?)
- trasformazione di obiettivi in vincoli

Note (2)

Convex optimization

In un certo senso più semplice. Strumenti molto potenti. Varie implementazioni software (ad es. www.cvxopt.org)

Rilassamento dei vincoli

Possibilità di ridurre la complessità del pb. modificando opportunamente i vincoli del problema.

Varie tecniche, in particolare da binario [0,1] a continuo.

Ottimizzazione Strutturale

Classificazione dei modelli di O.S.[3]

- Sizing Optimization
- Shape Optimization
- Topological Optimization

Sizing Optimization

Parametri

- Spessori
- Aree
- momenti d'inerzia
- 4

Figure: minimo peso con vincolo su sforzi

Shape Optimization (1)

Esempio:

forma o contorno descritte in modo parametrico:

Figure: Shape Optimization

Shape Optimization (2)

Procedura

- def. parametri e limiti
- mesh
- risoluzione
- calcolo f.o.
- calcolo prossimo passo

Figure: shape opt.

Shape Optimization (3)

Metodi di Design Improvement

- Simplex
- Steepest Descent
- Conjugate Gradient
- Response Surface
- Line Search
- Brent
- Stochastic Search
- . . .
- (DoE?)

Ottimizzazione Topologica

Richiede il minor numero di informazioni iniziali:

- design space (volume)
- vincoli
- carichi

Esempio di O.T.(1)

Definizione del problema:

Esempio di O.T. (2)

Soluzione:

Ottimizzazione Topologica [O.T.]

Consiste nello "scavare" la struttura ottimale dal pieno:

- Definiti i vincoli
- Massimizzando la rigidezza del sistema (ma non solo)
- Data una percentuale prefissata di volume da mantenere

Nota

Nomenclatura (non ufficiale) in particolare per gusci:

• Topology: solid-void elements

Topometry:sizing

• Topography: shape

Topography optimization

Figure: topography opt.

O.T.: Caratteristiche

Una volta definita una discretizzazione del dominio (mesh) il problema è intrinsecamente discreto (binario):

- un elemento partecipa [1]
- un elemento non partecipa [0]

alla soluzione finale

O.T.: Ricerca della soluzione

- Il problema risulta intrinsecamente combinatorio
- Complessità computazionale $\mathcal{O}(2^n)$
- moltissime soluzioni prive di significato
- non trattabile "as is "per problemi anche semplici

Definizione del Problema

Minimum compliance:

$$\min_{\mathbf{x}} f(\mathbf{x}) = \mathbf{q}^{T} \mathbf{f} = \sum_{i=1}^{n} (x_i)^{p} \mathbf{q}_{i}^{T} \mathbf{K}_{i} \mathbf{q}_{i}$$
 (5)

subject to
$$g(\mathbf{x}) = \frac{v_e}{v_0} \sum_{i=1}^n x_i - \bar{v} \le 0$$
 (6)

$$Kq = f$$
 (7)

$$0 < \check{x}_i \le x_i \le 1 \quad i = 1, \dots, n \tag{8}$$

SIMP-like methods

SIMP Solid Isotropic Material with Penalization

- homogeneization
- relaxed
- penalized
- continuus

SIMP

- Largamente usato in codici commerciali
- produce valori intermedi delle variabili di progetto x_i
- eccessivi valori di penalizzazione rendono il pb malcondizionato o soggetto a minimi locali
- fase di postprocessing per definire la geometria
 - rispetta i vincoli?
 - fattibile?

Sequential Approximate Optimization

S.A.O: [7]

- Obiettivo: generare soluzione a predominanza di "pieni-vuoti"
- Approssimazione lineare locale del problema
- uso di intervening variables per per linearizzare il problema
- Soluzione iterativa

$$\check{x}_i \leftarrow \max(x_i - \delta, \rho_{\min}) \tag{9}$$

$$\hat{x_i} \leftarrow \min(x_i + \delta, 1) \tag{10}$$

Altri algoritmi

- **Optimality Criterion** (O.C.): [1]
 - Espressione delle condizioni di KKT sulla Lagrangiana del problema
 - Equivalente a S.A.O. sotto determinate ipotesi
- **② Gray Scale Suppression** (G.S.S.): [6]

Theorem

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Verbatim

```
Example (Theorem Slide Code)
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [?].

References I

Martin P Bendsøe.

Optimal shape design as a material distribution problem.

Structural optimization, 1(4):193-202, 1989.

Stephen Boyd and Lieven Vandenberghe.

Convex optimization.

Cambridge university press, 2004.

Peter W Christensen and Anders Klarbring.

An introduction to structural optimization, volume 153.

Springer Science & Business Media, 2008.

Jean-Antoine Désidéri.

Hierarchical shape optimization: Cooperation and competition in multi-disciplinary approaches.

Technical report, INRIA, 2010.

References II

Hans Eschenauer, Niels Olhoff, and Walter Schnell.

Applied structural mechanics: fundamentals of elasticity, load-bearing structures, structural optimization: including exercises.

Springer Science & Business Media, 1997.

Albert A Groenwold and LFP Etman.

A simple heuristic for gray-scale suppression in optimality criterion-based topology optimization.

Structural and Multidisciplinary Optimization, 39(2):217–225, 2009.

Raphael T Haftka and Zafer Gürdal.

Elements of structural optimization, volume 11.

Springer Science & Business Media, 2012.

Robert J Vanderbei.

Linear programming.

Springer, 2014.

May 11, 2016

References III

Garret N Vanderplaats.

Numerical optimization techniques for engineering design: with applications, volume 1.

McGraw-Hill New York, 1984.

The End

