· Directional Derivative:

at (xo, yo) in the direction of u=(a,b) (unit rector) of f(x,y) is



Theorem |

If f is a different: able function of x and y, then f has a directional derivative for any direction = < a, b> (wit vector) and

Example 2 Find the directional derivative if f(x,y) = x3-3xy+4y2 and Vis the unit vector given by 0=176. Find Di f(1,2).

Note:

· Gradient of f:

Example f(x,y, 2) = y ln (x2+2) find \ \text{of and Diff in the direction of} V= <1,-1,17 at (0,5,1).

· Question: How would you maximize the directional derivative? (that is find the max of Duf for a point on f)

Theorem If f is a differentiable function then the max value of the directional derivative Daf(x) is: and it occurs in the direction of:

Example 7 Suppose that the temp at a point (x,y,z) in space is given by  $T(x,y,z) = 80(1+x^2+2y^2+3z^2)^{-1}$  °C where X, y, 2 are in meters. In what direction is the temp increasing fastest at (1,1,-2) and what is the max rate of increase!

· Level Curves:

f(x,y)=K for Z=f(x,y)

- · Draw the gradient vectors on the level curres \* Do you see a relation between the gradient and another vector?
- · Tangent Plane to a Level surface: f(x,y,z) = x for z = f(x,y,z)



Tangent Plane to f(x,y, Z) = K at (xo, yo, Zo):

| Section | 14.6 - Dire | ctional Deriv | ratives LT | he Gradient |
|---------|-------------|---------------|------------|-------------|
|         |             |               |            |             |

MUC

| · Review: | Natch: | youtube. com/watch?v=NuNCIRnXWcE |
|-----------|--------|----------------------------------|
|-----------|--------|----------------------------------|

() Dir f(x,y) = \_\_\_\_ i must be \_\_\_\_

2 Vf = \_\_\_\_

3) Max valve of Daf(x,y) is \_\_\_\_

1 Direction of max value of Dirf(x, x) is \_\_\_\_\_

6)  $\nabla f$  \_\_\_\_ tangent vectors on level curres (surfaces)

6 Vf is the \_\_\_\_\_ for the tangent plane to f(xy, 2)=K

F Vf is the \_\_\_\_\_ of the normal line

(8) On a level curre graph, of points in the direction of

(g) of makes a \_\_\_\_ with the level curves

Example 8 Find the equations of the tangent Plane and normal line at (2,1,-3) to (2,1,-3) to (2,1,-3)

#39 Second Directional Derivative:

$$Dx^{2}f(x,y) = Dx(Dx f(x,y))$$
  
Find  $Dx^{2}f(x,y)$  if  $f(x,y) = x^{3} + 5x^{2}y + y^{3}$  and  $x^{2} = \langle \frac{3}{5}, \frac{4}{5} \rangle$ 

- · Extra Examples:
- #40 (a) If  $\vec{U} = \langle a,b \rangle$  is a unit vector and  $\vec{f}$  has continuous  $2^{nd}$  partials Show that  $D\vec{u}^2\vec{f} = \vec{f}_{xx} a^2 + 2\vec{f}_{xy}ab + \vec{f}_{yy}b^2$

# 55 Are there any points on the hyperboloid  $x^2-y^2-2^2=1$  where the tangent plane is parallel to  $x+y=2^2$ .

plane to the surface  $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{d}$  is a Constant.

#67 Suppose Disf(x,s) and Disf(x,y) are know for two non-parallel vectors is, is.

To it possible to find \( \nabla f(x,y) ? \) If so how?