Classifying Matrices with a Spectral Regularization

Ryota Tomioka & Kazuyuki Aihara
University of Tokyo / Fraunhofer FIRST
2007/06/23

Outline

Method

- Discriminative model that factorizes using the spectral ℓ_1 -regularization.
- Penalized empirical loss minimization (convex!).

Implementation

- Dual formulation.
- Linear Matrix Inequality.
- Interior point method.

Application

- Motor-imagery EEG classification.
- Summary

Examples of Matrix Inputs

Multivariate Time Series

$$X =$$

Second order statistics

Time

Problem Setting

The Input

Class Label

$$X \longrightarrow y \in \{+1, -1\}$$

$$R \times C$$

$$f(X; W, b) = \operatorname{Tr}\left[W^{\top}X\right] + b$$
 $(W \in \mathbb{R}^{R \times C}, b \in \mathbb{R})$

Spectral ℓ₁-regularization (sum of singular-values):

$$\Omega(W) = \sum_{c=1}^{r} \sigma_c[W]$$

Interpreting the Model

Using the singular-value decomposition:

$$W = U \begin{pmatrix} \sigma_1 \\ \cdots \\ \sigma_r \end{pmatrix} V^{\top} = \sum_{c=1}^r \sigma_c \boldsymbol{u}_c \boldsymbol{v}_c^{\top}$$

The classifier can be written as:

$$f(X) = \operatorname{Tr} \left[\left(\sum_{c} \sigma_{c} u_{c} v_{c}^{\top} \right)^{\top} X \right] + b$$
$$= \sum_{c=1}^{r} \sigma_{c} u_{c}^{\top} X v_{c} + b$$

Interpreting the Model

Using the singular-value decomposition:

$$W = U \begin{pmatrix} \sigma_1 \\ \cdots \\ \sigma_r \end{pmatrix} V^{\top} = \sum_{c=1}^r \sigma_c \boldsymbol{u}_c \boldsymbol{v}_c^{\top}$$

The classifier can be written as:

$$f(X) = \operatorname{Tr}\left[\left(\sum_{c} \sigma_{c} u_{c} v_{c}^{\top}\right)^{\top} X\right] + b$$
$$= \sum_{c=1}^{r} \sigma_{c} u_{c}^{\top} X v_{c} + b$$

Linear combination Features (projected inputs)

Comments on Related Methods

LASSO:

$$\Omega_{LASSO}(W) = \sum_{(i,j)} |W_{ij}|$$

Ridge penalty:

$$\Omega_2(W) = \frac{1}{2} \sum_{i,j} W_{ij}^2 = \sum_{c=1}^r \sigma_c^2 [W]$$

Spectral ℓ_1 -regularization:

$$\Omega_1(W) = \sum_{c=1}^{\prime} \sigma_c[W]$$

The Problem

$$(\mathsf{P}) \quad \min_{\substack{W \in \mathbb{R}^{R \times C}, \\ b \in \mathbb{R}, \\ \boldsymbol{z} \in \mathbb{R}^n}} \quad \frac{1}{n} \sum_{i=1}^n \ell_{LR}(z_i) + \frac{\lambda}{n} \|W\|_1 \,, \\ \text{Lagrange multipliers} \\ \text{s.t.} \quad y_i \left(\mathsf{Tr} \left[W^\top X_i \right] + b \right) = z_i \quad \left(\boldsymbol{\alpha}_i \right) \\ (i = 1, \dots, n), \quad$$

$$\ell_{LR}(z) := \log (1 + \exp(-z)),$$
 $\|W\|_1 := \sum_{c=1}^r \sigma_c [W]$

Implementation

- Dual Formulation
- Linear Matrix Inequality
- Interior Point Method

s.t.

The First Trick:

The Dual Optimization Problem

(D)

 $\min_{0 \leq \boldsymbol{\alpha} \leq 1} \quad \sum_{i=1}^{n} \ell_{\mathsf{LR}}^{*}(\alpha_{i})$

The fit must be simple (large entropy)

Residual of the fit must be small

 $\sum_{i=1}^{n} \alpha_i y_i = 0,$ $\left\| \sum_{i=1}^{n} \alpha_i y_i X_i \right\|_{\infty} \leq \lambda,$

-norm

$$\ell_{\mathsf{LR}}^*(\alpha) := \alpha \log \alpha + (1 - \alpha) \log (1 - \alpha),$$
$$\|X\|_{\infty} := \max_{\alpha} \sigma_c[X].$$

The Second Trick:
Using Linear Matrix Inequality

$$\|A(\alpha)\|_{\infty} = \max \sigma [A(\alpha)] \le \lambda$$

$$A(\alpha) = \sum_{i=1}^{n} \alpha_i y_i X_i$$

The Second Trick:

Using Linear Matrix Inequality

$$\|A(\alpha)\|_{\infty} = \max \sigma [A(\alpha)] \le \lambda$$
 $A(\alpha) = \sum_{i=1}^{n} \alpha_i y_i X_i$
 $\Leftrightarrow \begin{bmatrix} \lambda I_R & A(\alpha) \\ A^{\top}(\alpha) & \lambda I_C \end{bmatrix} \succeq 0$

The Third Trick:

Interior Point Method

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \quad \sum_{i=1}^n \ell_{\mathsf{LR}}^*(\alpha_i) + \frac{1}{t} \phi\left(\boldsymbol{\alpha}\right),$$
 s.t.
$$\sum_{i=1}^n \alpha_i y_i = 0.$$

$$\phi\left(\boldsymbol{\alpha}\right) := - \left(\log \det \begin{bmatrix} \frac{\lambda}{n} I & A(\boldsymbol{\alpha}) \\ A^\top(\boldsymbol{\alpha}) & \frac{\lambda}{n} I \end{bmatrix} + \log \alpha + \log(1 - \alpha)\right).$$

$$\left(A(\boldsymbol{\alpha}) = \sum_i \alpha_i y_i X_i\right)$$

Original problem!

Good News for IP optimization

Obtaining the Primal Variable:

 $\widehat{m{lpha}}_t$: solution at barrier parameter t

$$W_{\widehat{\alpha}_t} = U_{\widehat{\alpha}_t} \mathrm{diag} \left(\frac{2\lambda_c^{(\widehat{\alpha}_t)}}{t \left(\lambda^2 - \lambda_c^{(\widehat{\alpha}_t)^2} \right)} \right) V_{\widehat{\alpha}_t}^{\top}$$

$$\left(U_{\widehat{\alpha}_t} \wedge_{\widehat{\alpha}_t} V_{\widehat{\alpha}_t}^{\top} := A(\widehat{\alpha}_t) = \sum_{i=1}^n \widehat{\alpha}_{t,i} y_i X_i\right)$$

Quality guarantee:

Duality gap
$$(W_{\widehat{\alpha}_t}, \widehat{\alpha}_t) \leq \frac{R + C + 2n}{t}$$

Application: Motor-imagery EEG Classification

Single-trial EEG Classification

The Covariance EEG signal Class Label

$$X = SS^{\mathsf{T}} \implies y \in \{+1, -1\}$$

Single-trial EEG Classification

The Covariance EEG signal Class Label

$$X = SS^{\mathsf{T}} \implies y \in \{+1, -1\}$$

$$y \in \{+1, -1\}$$

ERD/ERS

 $C \times C$

Lateralized modulation of rhythmic activity

Conventional Methods

- Common Spatial Pattern (CSP) [Koles 1991;
 Ramoser 2000] (State of the art)
 - Two steps:
 - Feature Extraction: Find a low-dimensional decomposition.
 - Classify: linear classifier on the log-power feature.
- LR (L2)
 - $-\ell_2$ (Frobenius norm)-regularized logistic regression.
- LR (rank=2)
 - Rank=2 constrained logistic regression (nonconvex!)

$$W = \frac{1}{2} \left(-\boldsymbol{w}_1 \boldsymbol{w}_1^\top + \boldsymbol{w}_2 \boldsymbol{w}_2^\top \right)$$

Results: Classification Errors

- Low-ranked (ℓ_1 -regularized) solution performs better.
- Fixed rank performs suboptimal.

Extracted Features (1/2) Model Selection and Eigenvalues

Extracted Features (2/2)

Eigenvectors

Works on Spectral ℓ_1 (Trace-norm) Regularization

- Prior work by Fazel, Hindi, and Boyd (2001)
- Related work by Abernethy et al. (2006)

	MMMF [Srebro et al. 05]	MTFL [Argyriou et al. 07]	Uncovering Shared Structure [Amit et al. 07]	Classifying Matrices [this talk]
Application	Matrix Factorization	Multi-ouput Regression	Multi-class Classification	Matrix Classification
Loss Function	Hinge-loss	Quad-loss	Hinge-loss	Logit-loss
Input	Scalar	Vector	Vector	Matrix
Output	Matrix	Vector	Vector	Scalar
Optimiza- tion	SDP	Iterative	Primal Gradient	Dual Interior- point

Summary

- Proposed the Matrix Classifier that factorizes using the Spectral ℓ_1 -regularization.
 - Single convex optimization problem.
 - Dual formulation and Linear Matrix Inequality for efficient optimization.
 - Sparseness: interpretable solution.
- Applied to motor-imagery EEG classification
 - No distinction between feature extraction step and classification step.
 - Found physiologically relevant features.
 - Application to other problems are in progress.

References

- Koles (1991) "The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG". *Electroencephalogr. Clin. Neurophysiol.*, **79**.
- Ramoser et al. (2000) "Optimal spatial filtering of single trial EEG during imagined hand movement". *IEEE Trans. Rehab. Eng.*, **8**(4).
- Fazel et al. (2001). "A rank minimization heuristic with application to minimum order system approximation". *Proc. American Control Conference*.
- Boyd & Vandenberghe (2004). Convex optimization. CUP.
- Srebro et al. (2005) "Maximum margin matrix factorization". Advances in NIPS. 17.
- Abernethy et al. (2006), "Low-rank matrix factorization with attributes". Technical report Ecole des Mines de Paris. N24/06/MM.
- Blankertz et al. (2006) "The Berlin Brain-Computer Interface: EEG-based communication without subject training". IEEE Trans. Neural Sys. Rehab. Eng. 14(2).
- Argyriou et al. (2007) "Multi-Task Feature Learning". Advances in NIPS. 19.
- Tomioka et al. (2007) "Logistic regression for single trial EEG classification". *Advances in NIPS.* **19**.
- Amit et al. (2007) "Uncovering Shared Structures in Multiclass Classification". Proc. ICML.

Derivation of the Dual Problem

$$(P) \qquad \qquad \text{Equivalent} \quad (P') \\ \min_{x} f(x) + g(x) & & \min_{x,y} \quad f(x) + g(y) \\ \text{s.t.} \quad x = y \\ & & \text{Dual} \\ \text{(D)} \qquad \qquad (D') \\ \bar{p} \text{ (constant)} \qquad & \min_{\alpha} f^*(-\alpha) + g^*(\alpha) \\ \end{cases}$$

Derivation of the Dual

(P)
$$\min_{W \in \mathbb{R}^{R \times C}, b \in \mathbb{R}, \ z \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \ell_{LR}(z_i) + \frac{\lambda}{n} \|W\|_1,$$
 s.t. $y_i \left(\text{Tr} \left(W \right) X_i \right] + b \right) = z_i$ $(i = 1, \dots, n),$ Dual logistic loss

(D)
$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n}$$

$$\sum_{i=1}^{n} \ell_{\mathsf{LR}}^*(\alpha_i)|_{(0 \leq \alpha_i \leq 1)} \ell_{\infty}\text{-norm}$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0, \quad \sum_{i=1^n} \alpha_i y_i X_i \Big|_{\infty} \leq \lambda,$$

Interpreting the dual variable

$$p_i = \begin{cases} 1 - \alpha_i & (y_i = +1) \\ \alpha_i & (y_i = -1) \end{cases} (i = 1, \dots, n)$$

(D)
$$\max_{0 \leq p \leq 1} \sum_{i=1}^n H_2(p_i)$$
 s.t. $\sum_{i=1}^n (y_i - \mathbb{E}[y_i|p_i]) = 0,$ $\left\|\sum_{i=1}^n (y_i - \mathbb{E}[y_i|p_i]) X_i \right\|_{\infty} \leq 2\lambda,$

Experimental setup

- Offline analysis of 162 datasets from 29
 healthy subjects recorded in the Berlin Brain
 Computer Interface (BBCI) project
 ([Blankertz et al., 2006], www.bbci.de).
- Binary classification of all the combinations of left hand (L), right hand (R), and foot (F) imaginary movement.
- Multi-channel EEG (32, 64, or 128ch) recordings (70-600 trials in a dataset).
- Band-pass filter 7-30Hz.

Conventional Methods

 CSP (Koles, 1991; Ramoser, 2000)
 Dimensionality reduction/ demixing technique using label information:

$$\Sigma^{(+)} \boldsymbol{w}_c = \lambda_c \Sigma^{(-)} \boldsymbol{w}_c \quad (c = 1, ..., C)$$

$$\Sigma^{(\pm)} = \langle X \rangle_{\pm}$$

$$f(X) = \sum_{c=1}^{C^*} \beta_c \log \left[\boldsymbol{w}_c^\top X \boldsymbol{w}_c \right] + \beta_0$$

 $(C^* < C)$

Conventional Methods

 LR (L2) – Logistic regression with L2regularization (Frobenius norm)

$$\Omega(W) = \frac{1}{2} \operatorname{Tr} \left[W^{\top} W \right]$$

 LR (rank=2) – Rank=2 approximated logistic regression

$$W = \frac{1}{2} \left(-\boldsymbol{w}_1 \boldsymbol{w}_1^\top + \boldsymbol{w}_2 \boldsymbol{w}_2^\top \right)$$

(Tomioka et al., NIPS*2006)

The Discriminative Model

$$f(S; W, b) = \operatorname{Tr} \left[W S S^{\top} \right] + b$$

Appendix: CSP (1/3)

- Common Spatial Pattern (CSP) [Koles, 1991]
 - discriminative dimensionality reduction technique.

Generalized eigenvalue problem

$$\Sigma^+ W = \Sigma^- W \Lambda$$

Appendix: CSP (2/3)

Fxample of Snatial Filters

Appendix: CSP (3/3) CSP filtered time-series

