Gandhar Kulkarni (mmat2304)

To prove the result, we will decompose an arbitrary permutation $\sigma \in S_n$ into transpositions. We will then show that each transposition can be written as a product of transpositions of the form (ii+1). We have $\sigma = \tau_1 \dots \tau_r$, where τ_i is some transposition of the form $(k_1k+1+k_2)_i$. Note that we can assume the first element of τ_i is strictly lesser than the second since if it weren't we could just invert the order without any loss of generality. We state that $(k_1k_1+k_2)$ can written as a product of finite transpositions of the form (tt+1). See that $(k_1k_1+k_2-1)=(k_1+k_2-1k_1+k_2)(k_1k_1+k_2)(k_1+k_2-1k_1+k_2)$. Since we have $(k_1k_1+k_2-1)$, we have lowered the second entry of the transposition by one. In k_2-1 steps, we will get $(k_1k_1+1)=(k_1+1k_1+2)(k_1k_1+2)(k_1+1k_1+2)$, which means that we can stop. We have τ_i as a product of $2(k_2-1)+1$ transpositions of the desired type. We can do this for all transpositions to get our result. Thus we can generate any permutation in S_n by exchanging adjacent elements. The bubble sort algorithm works this way too, which accepts a permutation then returns the list of n numbers. This is essentially the same problem.

 $\mathbf{2}$