

CORSI DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

SOCIAL NETWORKS ANALYSIS

Course Presentation

Teachers: Vincenzo Auletta

Diodato Ferraioli

Logistics

Lecture Schedule

– Monday11.00 - 12.40- room 21

Wednesday 10.10 - 12.40 - room 21

1 academic hour = 50 minutes All lectures will be offered in presence

- Office Hours (see at <u>rubrica.unisa.it</u>)
 - Due to security prescriptions office hours will be done only online
 - You're suggested to ask for an appointment by e-mail
- Contact informations available on the <u>rubrica di Ateneo</u>
 - Auletta: http://docenti.unisa.it/vincenzo.auletta
 - Ferraioli: http://docenti.unisa.it/diodato.ferraioli

How to Contact Us

- During the lectures' breaks
- In the office hours
- Forum on the <u>elearning platform</u>
- By email
 - Request for an appointment
 - Request for explanations
 - Request for anything related to the course
 - We cannot guarantee an answer, it depends on the question!!
 - We don't answer to messages that are not signed

Learning Objectives

The course aims to give students tools and methodologies to better understand and control
phenomena in highly connected networks, with particular emphasis on online social and
information networks

Main tools

- Graph Theory to describe and analyze the structure of the networks
- Game Theory to model strategic behaviours of agents
- Coding in Python to run experiments on API and datasets publicly available on the Internet

Knowledge and understanding

- Network mining: techniques to automatically extract information on the network from its structure;
- Web searching and the role of the search engines;
- Online advertisement, auctions, markets;
- Social learning and its manipolation
- Spread of information and/or innovation in networks, cascading behaviours, voting;

Applying knowledge and understanding

- Analyze, understand and drive processes in a social context;
- Design applications for social networks
- Mining information from networks

Prerequisites

- To successfully achieve learning objectives, students are required to have good competence on
 - design and analysis of algorithms
 - Programming techniques
 - Python language
- Basic competence on Probability Theory and Linear Algebra is required

Sketch of Program

- Network analysis (6 hours)
- Game Theory (8 hours)
- Web searching and Sponsored search (8 hours)
- Network dynamics (10 hours)
- Lab programming in Python (16 hours)

Course Organization

- The course consists of both lectures and guided programming activities in lab
- In the lectures we present
 - models to represent social networks and describe global phenomena in the network in terms of the local behaviours of the agents
 - algorithms to represent such phenomena and mining information from networks of large size
- In the guided exercises students are divided in groups of 4 elements and each group is assigned a project-work
 - The project-work is finalized to apply social network analysis methods and mining real-networks of large size

Partecipation to Class Activities

- The partecipation to classes is not due but highly recommended
- We ask for an active partecipation
 - Much better to clarify your ideas in class than hard work at home on unclear notes
 - If something is unclear or you have a comment to do, please raise your hand and you will be the possibility to talk
 - Each academic hour consists of an exposition part (20-25 minutes), a discussion part (20-25 minutes) and a 10 minute break
- Guided lab activities are interactive and students are actively involved in the solution design process
 - You will be asked both to present you solution to the class or to contribute to the discussion from your seat
 - To profitably take part in the practical exercises the use of a PC is highly recommended

Reference books

Networks, Crowds and Markets: reasoning about a highly connected world

Authors: D. Easley, J. Kleinberg

Cambridge University Press 2010

ISBN: 978-1118290279

Mining Massive Data Sets (III ed.)

Authors: J.Leskovec, A. Rajamaran, J. Ullman

Cambridge University Press 2020

ISBN: 978-1108476348

Suggested Readings

- M. Jackson, "Social and Economic Networks", Princeton University Press, 2010
- M.E.J. Newman, "Networks: an introduction", Oxford University Press, 2010
- F. Menczer, S. Fortunato, C.A. Davis, "A First Course in Network Science", Cambridge University, Press, 2020
- A. Barabasi, "Network Science", Cambridge University, Press, 2016
- R. Pass, "A Course in Networks and Markets: Game-Theoretic Models and Reasoning", MIT Press, 2019

Documentation on Python

- Python official site
 - https://docs.python.org/3/index.html

- Python tutorial
 - https://docs.python.org/3/tutorial/

- Documentation in italian
 - http://docs.python.it/

Online Tools

- A company Web Site is published on the UNISA e-learning platform http://elearning.unisa.it/
 - Course name SOCIAL NETWORK ANALYSIS [0622700060*63884]
 - Access with unisa credentials
- For accessing the service you need to ask for the registration

How to Register for Online Teaching

In order to register for online teaching:

- Go to the <u>online tools for teaching</u> page
- Search for the course you are interested in and select the Moodle tool
 - You have to wait for the instructors acceptance
- The registration service is available only to students that are present in the Esse3 information system

Site Organization

- What you can find on the site
 - Calendar of the lectures
 - Syllabus and a detailed program
 - Slides
 - Exercises and exams
 - Teaching material
 - News and announcements
 - Exams' results
 - Forum
- All the material is organized by weeks
 - For each week you can find links to all the material related to the lectures of the week

Teaching Material

- Slides presented in class are published on the Moodle class (at least) the day before the lecture
- We remark that slides are only a support to help your participation to lectures and study
 - You don't waste your time in writing what is presented on the screen and you are totally concentrated on the discussion
 - You can put short notes on your copy
- To successfully study you have to refer to the textbooks and integrate them with the slides and your personal notes

How the Exam is Run

- The final exam is designed to evaluate as a whole
 - The knowledge and understanding of the concepts presented in class
 - The ability to apply such knowledge in designing algorithms and implementing them in an object-oriented programming language to solve non trivial combinatorial problems
- The exam consists of the discussion of a project work and a final test (usually oral but it can be also written)
 - The project work assesses your ability of applying knowledge of the methods and algorithms proposed in class and mining networks data
 - the discussion aims to assess the acquired knowledge on social networks analysis and ability to understanding.

Project Works

Every team has to present two mini-projects proposed during the semester

- Delivery time two weeks starting from the assignment day
 - deadline not mandatory
- A team consists of (at most) 2 students
 - Workload for each student: 15 hours (10 hours of autonomous work and 5 hours for team coordination)
- Tentative schedule of assignments
 - 6^{td} week
 - 11th week
- All the project works will be discussed within the month of July

Grading

Grades expressed in thirties

50% project40% discussion10% active partecipation

 The cum laude may be given to students who demonstrate that they can apply the knowledge autonomously even in contexts other than those proposed in the course