CS7GV1: Computer Vision Linear Classifiers

Credits: Some Slides from Noah Snavely and Abe Davis (Cornell) and Fei-Fei Li, Justin Johnson, Serena Yeung (Stanford) http://vision.stanford.edu/teaching/cs231n/

Linear Classifiers

This image is CC0 1.0 public domain

Linear Classification vs. Nearest Neighbors

- Nearest Neighbors
 - Store every image
 - Find nearest neighbors at test time, and assign same class

Linear Classification vs. Nearest Neighbors

- Nearest Neighbors
 - Store every image
 - Find nearest neighbors at test time, and assign same class
- Linear Classifier
 - Store hyperplanes that best separate different classes
 - We can compute continuous class score by calculating (signed) distance from hyperplane

Score functions

class scores

Parametric Approach

image parameters f(x, W)

10 numbers, indicating class scores

[32x32x3] = 3072 array of numbers 0...1 (3072 numbers total)

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Linear Classifier

Interpretation: Algebraic

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpretation: Geometric

 Parameters define a hyperplane for each class:

$$f(x_i, W, b) = Wx_i + b$$

- We can think of each class score as defining a distribution that is proportional to distance from the corresponding hyperplane
- Weight and Bias Effect:
 - The effect of changing the weight will change the line angle, while changing the bias, will move the line left/right

Interpretation: Template matching

ullet We can think of the rows in $\!\!W$ as templates for each class

Rows of W in $f(x_i, W, b) = Wx_i + b$

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

So far: Defined a (linear) score function f(x,W) = Wx + b

Example class scores for 3 images for some W:

How can we tell	
whether this W	
is good or bad?	

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

3.45	-0.51	3.42
3.87	6.04	4.64
.09	5.31	2.65
2.9	-4.22	5.1
.48	-4.19	2.64
.02	3.58	5.55
.78	4.49	-4.34
.06	-4. 37	-1.5
0.36	-2.09	-4.79
0.72	-2.93	6.14

Linear classification

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Output scores

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function.
 (optimization)

Loss functions

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}$ is image and $oldsymbol{y_i}$ is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Loss function, cost/objective function

- Given ground truth labels (y_i) , scores $f(x_i, \mathbf{W})$
 - how unhappy are we with the scores?
- Loss function or objective/cost function measures unhappiness
- During training, want to find the parameters W that minimize the loss function

Simpler example: binary classification

- Two classes (e.g., "cat" and "not cat")
 - AKA "positive" and "negative" classes

not cat

Linear classifiers

• Find linear function (*hyperplane*) to separate positive and negative examples

 \mathbf{x}_i positive: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 0$

 \mathbf{x}_i negative: $\mathbf{x}_i \cdot \mathbf{w} + b < 0$

Which hyperplane is best? We need a **loss function** to decide

What is a good loss function?

- One possibility: Number of misclassified examples
 - Problems: discrete, can't break ties
 - We want the loss to lead to good generalization
 - We want the loss to work for more than 2 classes

Problem – which is better?

Softmax classifier

 Interpret Scores as unnormalized log probabilities of classes

$$f(x_i, W) = Wx_i$$
 (score function)

$$\left[rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight]$$

softmax function

Squashes values into *probabilities* ranging from 0 to 1

$$P(y_i \mid x_i; W)$$

Example with three classes:

$$[1,-2,0] o [e^1,e^{-2},e^0] = [2.71,0.14,1] o [0.7,0.04,0.26]$$

Softmax classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Cross-entropy loss

$$f(x_i, W) = Wx_i$$
 (score function)

Cross-entropy loss

$$f(x_i,W) = Wx_i$$
 (score function) $L_i = -\log\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight)$ $L_i = -f_{y_i} + \log\sum_j e^{f_j}$ We call L_i crossentropy loss

Cross-entropy loss

$$f(x_i, W) = Wx_i$$
 (score function)

$$L_i = -\log\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight)$$
 $L_i = -f_{y_i} + \log\sum_j e^{f_j}$ We call L_i crossentropy loss i.e. we're minimizing the negative log likelihood.

Losses

- Cross-entropy loss is just one possible loss function
 - One nice property is that it reinterprets scores as probabilities, which have a natural meaning
- SVM (max-margin) loss functions also used to be popular
 - But currently, cross-entropy is the most common classification loss

Summary

- Have score function and loss function
 - Currently, score function is based on linear classifier
 - Next, will generalize to convolutional neural networks
- Find W and b to minimize loss

