

AD-A103 759

NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON --ETC F/G 13/13
NATIONAL DAM SAFETY PROGRAM, HELMETTA DAM (NJ 00794) RARITAN RI--ETC(U)
AUG 81 W A GUINAN

DACW61-79-C-0011

DAFN/NAP-53A42/N.100794-R1/ NI

UNCLASSIFIED

1 of 1
ATA
100794

DAFN/NAP-53A42/N.100794-R1/ NI

END
DATE
FILED
10-81
DTIC

~~LEVEL II~~

RARITAN RIVER BASIN
TRIBUTARY TO MANALAPAN BROOK,
MIDDLESEX COUNTY
NEW JERSEY

ADA103759

HELMETTA DAM

NJ 00794

PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED.

DEPARTMENT OF THE ARMY

Philadelphia District
Corps of Engineers
Philadelphia, Pennsylvania

DTIC
ELECTED
S SEP 4 1981

REPT. NO: DAEN/NAP-53842/NJ00794-81/08

AUGUST 1981

D

81 9 03.071

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
REPORT NUMBER 19 DAEN/NAP/53842/NJ00794-81/08	2. GOVT ACCESSION NO. RD-A103 759	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle) Phase I Inspection Report National Dam Safety Program Helmetta Dam, NJ00794 Middlesex County, N.J.		5. TYPE OF REPORT & PERIOD COVERED FINAL Sept 1981	
6. AUTHOR(s) Guinan, Warren, P.E.		7. CONTRACT OR GRANT NUMBER(s) DACP61-79-C-0011	
8. PERFORMING ORGANIZATION NAME AND ADDRESS Anderson-Nichols 150 Causeway St. Boston, Massachusetts 02114		9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
10. CONTROLLING OFFICE NAME AND ADDRESS NJ Department of Environmental Protection Division of Water Resources P.O. Box CN029 Trenton, NJ 08625		11. REPORT DATE August 1981	
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) U.S. Army Engineer District, Philadelphia Custom House, 2d & Chestnut Streets Philadelphia, PA 19106		13. NUMBER OF PAGES 50	
14. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		15. SECURITY CLASS. (of this report) Unclassified	
16. DISTRIBUTION STATEMENT (of the abstract entered in 17.) National Dam Safety Program, Helmetta Dam (NJ 00794) Raritan River Basin, Tributary to Manalapan Brook, Middlesex County, New Jersey. Phase I Inspection Report.		17. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151.			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dams National Dam Safety Program Erosion Embankments Helmetta Dam, N.J. Visual Inspection Seepage Structural Analysis Spillways			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.			

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
CUSTOM HOUSE-2D & CHESTNUT STREETS
PHILADELPHIA, PENNSYLVANIA 19106

IN REPLY REFER TO
NAPEN-N

Honorable Brendan T. Byrne
Governor of New Jersey
Trenton, New Jersey 08621

25 AUG 1981

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/>	
DTIC TAB <input type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Justification _____	
By _____	
Distribution/ Availability Cones	
Avail and/or Dist	Special
A	

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Helmetta Pond Dam in Middlesex County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Helmetta Pond Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in poor overall condition. The dam's spillway is considered inadequate because a flow equivalent to 12 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within three months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated.

b. Within three months from the date of approval of this report the owner should engage a qualified professional consultant to perform the following:

(1) Investigate the cause of the seepage and wet, soft areas at the downstream toe of the dam.

(2) Design and oversee procedures for the removal of trees, from the upstream and downstream slopes and the one tree near the center of the dam which is approximately 15 ft. downstream from the toe.

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

NAPEN-N

Honorable Brendan T. Byrne

(3) Design and oversee repairs for the erosion of the upstream slope of the dam and design and specify erosion protection for the upstream slope of the dam.

(4) Design and oversee repairs for the eroded areas on the downstream slope adjacent to the spillway.

(5) Investigate the reasons for the uneven surface of the crest, and design remedial measures as needed.

(6) Oversee filling of the animal burrows on the embankment.

(7) Design and oversee repairs to the concrete spillway and walls.

(8) Design and oversee reconstruction of the outlet works.

c. Within three months from the date of approval of this report the following remedial actions should be initiated:

(1) Start a program of checking the condition of the dam periodically and monitoring the seepage and wet areas along the toe of the downstream slope.

(2) Start a program for maintaining the embankment free of weeds and brush and filling animal burrows as they occur.

(3) Control trespassing on dam.

d. Within six months from the date of approval of this report the following remedial actions should be initiated:

(1) After repair of eroded areas on the dam, re-establish and maintain grassy vegetation on the dam.

(2) Repair deteriorated portions of service bridge.

e. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam, within one year from the date of approval of this report.

f. An emergency action plan and warning system should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Smith of the Fourth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

NAPEN-N

Honorable Brendan T. Byrne

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,

ROGER L. BALDWIN
Lieutenant Colonel, Corps of Engineers
Commander and District Engineer

Incl
As stated

Copies furnished:

Mr. Dirk C. Hofman, P.E., Deputy Director
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

Mr. John O'Dowd, Acting Chief
Bureau of Flood Plain Regulation
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

HELMETTA POND DAM (NJUU794)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 20 April 1981 by Anderson-Nichols and Co. Inc., under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

Helmetta Pond Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in poor overall condition. The dam's spillway is considered inadequate because a flow equivalent to 12 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within three months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated.

b. Within three months from the date of approval of this report the owner should engage a qualified professional consultant to perform the following:

(1) Investigate the cause of the seepage and wet, soft areas at the downstream toe of the dam.

(2) Design and oversee procedures for the removal of trees, from the upstream and downstream slopes and the one tree near the center of the dam which is approximately 15 ft. downstream from the toe.

(3) Design and oversee repairs for the erosion of the upstream slope of the dam and design and specify erosion protection for the upstream slope of the dam.

(4) Design and oversee repairs for the eroded areas on the downstream slope adjacent to the spillway.

(5) Investigate the reasons for the uneven surface of the crest, and design remedial measures as needed.

(6) Oversee filling of the animal burrows on the embankment.

(7) Design and oversee repairs to the concrete spillway and walls.

(8) Design and oversee reconstruction of the outlet works.

c. Within three months from the date of approval of this report the following remedial actions should be initiated:

(1) Start a program of checking the condition of the dam periodically and monitoring the seepage and wet areas along the toe of the downstream slope.

(2) Start a program for maintaining the embankment free of weeds and brush and filling animal burrows as they occur.

(3) Control trespassing on dam.

d. Within six months from the date of approval of this report the following remedial actions should be initiated:

(1) After repair of eroded areas on the dam, re-establish and maintain grassy vegetation on the dam.

(2) Repair deteriorated portions of service bridge.

e. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam, within one year from the date of approval of this report.

f. An emergency action plan and warning system should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

APPROVED:

ROGER L. BALDWIN
Lieutenant Colonel, Corps of Engineers
Commander and District Engineer

DATE:

25 Aug 81

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam:	Helmetta Pond
Identification No.:	Fed ID No. NJ00794
State Located:	New Jersey
County Located:	Middlesex
Stream:	Manalapan Brook
River Basin:	Raritan
Date of Inspection	April 20, 1981

ASSESSMENT OF GENERAL CONDITIONS

Helmetta Pond Dam is a horseshoe shaped, low earthen embankment, 653 feet long, at least 70 years old, small in size and in poor overall condition. The soft wet area and seepage at the downstream toe is indicative of seepage through and under the dam. If not properly controlled, it could lead to failure of the dam by piping and sloughing of the downstream slope. Serious erosion on the upstream slope of the dam at the waterline, if allowed to continue, could result in eventual breaching of the embankment. The crest of the dam is uneven, the cause of which cannot be determined by visual inspection alone, but may be indicative of a potential stability problem. Continued deterioration of the concrete spillway and steel plate covers over the outlet pipe could lead to a sudden release of water. The spillway can handle a storm about 11 percent the size of the Spillway Design Flood of one-half PMF and is considered inadequate. Because of the depression downstream behind the factory buildings, controlled by a 42-inch RCP culvert, failure of the dam would cause flooding from ponded water from 1 to 6-1/2 feet deep in the warehouses and factory. The economic loss would be appreciable but with little threat of loss of lives. Therefore, the hazard classification should be downgraded to Significant.

It is recommended that the owner retain the services of a professional engineer, qualified in the design and inspection of dams, to accomplish the following tasks very soon: Evaluate further the inadequate spillway capacity and also consider the hydraulic conveyance downstream; investigate the cause of the seepage and wet, soft areas at the downstream toe of the dam; design and oversee procedures for the removal of trees from the upstream and downstream slopes and the one tree near the center of the dam which is approximately 15 feet downstream from the toe; design and oversee repairs for the erosion of the upstream slope of the dam and design and specify erosion protection for the upstream slope of the dam; design and oversee repairs for the eroded areas on the downstream slope adjacent to the spillway; investigate the reasons for the uneven surface of the

crest, and design remedial measures as needed; oversee filling of the animal burrows on the embankment; design and oversee repairs to the concrete spillway and walls; and design and oversee reconstruction of the outlet works.

It is further recommended that the owner undertake the following as part of operating and maintenance procedures. Starting very soon: begin a program of checking the condition of the dam periodically and monitoring the seepage and wet areas along the toe of the downstream slope; start a program for maintaining the embankment free of weeds and brush, and filling animal burrows as they occur; control trespassing on the dam. Starting soon: develop an emergency action plan which outlines actions taken by the owner to minimize downstream effects of an emergency at the dam; after repair of eroded areas on the dam, re-establish and maintain grassy vegetation on the dam; repair deteriorated portions of service bridge; and in the near future: develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

ANDERSON-NICHOLS & COMPANY, INC.

Warren A. Guinan, P.E.
Project Manager
New Jersey Number 16848

April 20, 1981

OVERVIEW PHOTO
HELMETTA POND DAM

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonable possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

CONTENTS

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY REPORT

HELMETTA POND DAM FED ID NO. NJ00794

SECTION 1	PROJECT INFORMATION	<u>Page</u>
1.1	<u>General</u>	1
1.2	<u>Project Description</u>	1
1.3	<u>Pertinent Data</u>	3
SECTION 2	ENGINEERING DATA	
2.1	<u>Design</u>	5
2.2	<u>Construction</u>	5
2.3	<u>Operation</u>	5
2.4	<u>Evaluation</u>	5
SECTION 3	VISUAL INSPECTION	6
SECTION 4	OPERATIONAL PROCEDURES	
4.1	<u>Procedures</u>	8
4.2	<u>Maintenance of Dam</u>	8
4.3	<u>Maintenance of Operating Facilities</u>	8
4.4	<u>Warning System</u>	8
4.5	<u>Evaluation of Operational Adequacy</u>	8
SECTION 5	HYDRAULIC/HYDROLOGIC	9
SECTION 6	STRUCTURAL STABILITY	10
SECTION 7	ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES	
7.1	<u>Assessment</u>	11
7.2	<u>Recommendations/Remedial Measures</u>	11
FIGURES	1. Essential Project Features	
	2. Essential Project Features	
	3. Regional Vicinity Map	
APPENDICES	1. Check List Visual Inspection	
	2. Photographs	
	3. Hydrologic Computations	
	4. HEC 1 Output	
	5. References	

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY INSPECTION PROGRAM
HELMETTA POND DAM
FED ID NO. #NJ00794

SECTION 1
PROJECT INFORMATION

1.1 General

a. Authority. Authority to perform the Phase I Safety Inspection of Helmetta Pond Dam was received from the State of New Jersey, Department of Environmental Protection, Division of Water Resources by letter dated 12 December 1980 under Basic Contract No. FPM-39 and Contract No. A01093 dated 10 October, 1979. This Authority was given pursuant to the National Dam Inspection Act, Public Law 92-367 and by agreement between the State and the U.S. Army Engineers District, Philadelphia. The inspection discussed herein was performed by Anderson-Nichols & Company, Inc.

b. Purpose: The purpose of the Phase I Investigation is to develop an assessment of the general conditions with respect to the safety of Helmetta Pond Dam and appurtenances. Conclusions are based upon available data and visual inspection. The results of this study are used to determine any need for emergency measures and to conclude if additional studies, investigations, and analyses are necessary and warranted.

1.2 Project Description

a. Description of Dam and Appurtenances. Helmetta Pond Dam is a horseshoe shaped, 653 foot long earth embankment dam with a hydraulic height of 5.6 feet and a structural height of 7.2 feet. The spillway type is concrete overflow with a 7.2-foot long weir. The dam's crest width ranges from 8 to 14 feet. There are tire ruts in a very wide road on the right (west) side of the crest and a 28-inch diameter tree is growing on the left (east) side of the crest. The dam's upstream face has a 3H:1V slope and a 20-foot wide erosion feature near the right abutment with trees growing in the area. The downstream slope varies from 3H:1V to 8H:1V. There is a large 2-foot diameter tree at the downstream toe of the dam. A large area of seepage has developed, over-grown with wetlands-type species of vegetation, downstream of the dam near the right abutment. Animal burrows are evident on the dam crest, as well as on the upstream and downstream faces.

b. Location. The dam is located in Helmetta Borough, New Jersey on Manalapan Brook. The dam is at 40° 22.7' north latitude and 74° 25.7' west longitude on the New Brunswick Quadrangle. The dam may be reached by exiting from the New Jersey Turnpike at Interchange 8A, turning east on Forsgate Drive, turning left on Possum Hollow Road, turning right on Bordentown - South Amboy Turnpike and continuing on Spotswood - Cranbury Road (Main Street in the Borough of Helmetta) to the dam site behind Helme Tobacco Co. Plant, a total distance of about 1.3 miles. A location map has been included as Figure 3.

c. Size Classification. Helmetta Pond Dam is classified as being small in size on the basis of storage at the dam crest of 142 acre-feet, which is less than 1000 acre-feet but more than 50 acre-feet, and on the basis of its structural height of 7.2 feet, which is less than 40 feet, in accordance with criteria given in the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification. The spillway at Helmetta Pond Dam will not pass the SDF of one-half PMF. Approximately 300 feet downstream of the dam, and next to the left (east) abutment are warehouses. About 200 feet further downstream are the factories of the Helme Tobacco Company. The downstream area is a depression with only a 42-inch RCP culvert to convey the water from the depression under the factory to the 500-foot open channel leading to Manalapan Brook. Breaching of the dam would fill the depression (about 63 acre-foot) and cause ponded water to inundate buildings from 1 to 6-1/2 feet. The economic loss would be appreciable but no serious threat to loss of life is apparent. Therefore, the hazard classification should be downgraded to significant.

e. Ownership. The dam is owned by Middlesex County. Information may be obtained by writing Middlesex County Council at 303 George Street, Plaza 1, 3rd Floor, New Brunswick, New Jersey 08901, or by calling (201) 745-3228.

f. Purpose. The purpose of construction of Helmetta Pond Dam was for fire protection for Helme Tobacco Company; this is also the present purpose.

g. Design and Construction History. No information regarding the original plan or design of the dam was available.

h. Normal Operational Procedure. No operational procedures were disclosed for the dam.

i. Site Geology. No site specific information (such as borings) was available at the time the dam was inspected. Information derived from the Geologic Map of New Jersey (Kummel and Johnson, 1912) indicates soils within the immediate site consists of coastal plain sediments which includes sand and clay deposits.

The depth to bedrock at the dam site is unknown and outcrops were not observed during the dam inspection. No information was available on the bedrock in this area based on the previously mentioned reports.

1.3 Pertinent Data

a. Drainage Area

.69 square miles

b. Discharge at Damsite (cfs)

Maximum flood at damsite - unknown

Total ungated spillway capacity at maximum pool elevation (at top of dam) - 41

c. Elevation (ft. above NGVD)

Top of dam - low point 45.2
high point 46.8

Test flood (1/2 PMF) - 46.6

Recreation pool (at time of inspection) - 43

Spillway crest - 43.7

Streambed at centerline of spillway - 39.6

Maximum tailwater (estimated) 41.0

d. Reservoir (length in feet)

Length of maximum pool - 3000 (estimated)

Spillway crest - 2800

e. Storage (acre-feet)

Spillway crest - 64

Top of dam - 142

Test Flood (1/2 PMF) - 267

f. Reservoir Surface (acres)

Top of dam - 72 (estimated)

Spillway crest - 32

g. Dam

Type - earth

Length - 653 feet

Height - 5.6 feet (hydraulic)

- 7.2 feet (structural)

Top width - ranges from 8 to 14 feet

Side slopes - upstream 3H:1V, downstream varies 3H:1V

to 8H:1V

Zoning - unknown

Impervious core - unknown

Cutoff - unknown

Grout curtain - unknown

h. Spillway

Type - Concrete overflow

Length of weir - 7.2 feet

Crest elevation - 43.7' NGVD

Low level outlet - 36-inch clay pipe

U/S Channel - Approach channel, about 35 feet wide and
150 feet long from Helmetta Pond.

D/S Channel - Three-foot wide channel open for 400
feet leading into a 42-inch pipe that passes flow
under building and thence downstream for about
500 feet into Manalapan Brook.

i. Regulating Outlets

Type - 36-inch clay pipe with steel plate covers
serving as a gate over upstream pipe inlet
Invert elevation - 40.1 feet NGVD
Length - about 3 feet
Access - Bridge deck over spillway

SECTION 2
ENGINEERING DATA

2.1 Design

No hydraulic, hydrologic, or other engineering data were disclosed.

2.2 Construction

No recorded data concerning construction of the Helmetta Pond Dam were found.

2.3 Operation

No written operational data were found.

2.4 Evaluation

a. Availability. A search of the New Jersey Department of Environmental Protection files revealed no information.

b. Adequacy. Data obtained in the visual inspection are deemed adequate to complete this Phase 1 Inspection Report

SECTION 3
VISUAL INSPECTION

3.1 Findings

a. Dam. Trees are growing on the upstream and downstream slopes of the dam near the right and left abutments. Extensive erosion has taken place on the upstream slope at and above the waterline. Near the center of the dam, the upstream slope has been flattened considerably which may be due to wave action.

The crest of the dam is uneven and is partially covered with depression tracks up to 4 inches deep caused by vehicular traffic. Several animal burrows, up to 10 inches in diameter and 2.5 feet deep, were observed on the crest and on the upstream slope near the crest. At the crest, a surface depression, 2 feet in diameter and 1 foot deep, had developed around one of the animal burrows. The area at the downstream toe of the dam is generally wet and soft. Wetlands-type species of vegetation, primarily cattails, is located everywhere along the toe of the slope. Seepage is flowing from a large swamp area on the right side of the dam in the vicinity of the right abutment. The visible water contained some orange colored flocs but no evidence of suspended soil fines in the water was observed.

Erosion has occurred on the downstream slope on either side of the concrete spillway wingwalls. On the right side, railroad ties have been placed on the slope in an attempt to minimize the erosion on the slope. An animal burrow, 6 in. in diameter and 2 ft. deep, has been developed beneath the ties.

b. Appurtenant Structures. The ungated spillway at the left end of the dam is in generally poor condition. The concrete abutment walls are badly eroded and undermined on the downstream side and the concrete is eroded at the water line on the upstream side. The makeshift steel plates used for gating the outlet pipe are leaking and are rusting. Some planks on the service bridge over the spillway are deteriorated.

c. Reservoir Area. The watershed above the lake is gently sloping and wooded. Some open fields were evident along the west side of the reservoir and low lying swamps exist on the north end of the reservoir. Slopes on the shore of the lake appear stable. No evidence of significant sedimentation was observed.

d. Downstream Channel. The channel downstream of the spillway makes a lefthand turn and joins the seepage flow from the right side of the dam. The channel bottom is in soil and there is no erosion protection on the sides of the channel. Considerable sloughing and erosion have occurred along the banks. After passing flow through a 48-inch CMP under a haul road, the open channel passes flow into a 42-inch RCP beneath the buildings egressing downstream beyond the building and enters Manalapan Brook 500 feet downstream of the buildings.

SECTION 4
OPERATIONAL PROCEDURES

4.1 Procedures

No formal operating procedures were revealed.

4.2 Maintenance of Dam

No formal maintenance procedures for the dam were found.

4.3 Maintenance of Operating Facilities

No formal maintenance procedures for the operating facilities were discovered.

4.4 Warning System

No description of any warning system was found.

4.5 Evaluation of Operational Adequacy

Because of the lack of operation and maintenance procedures, the remedial measures described in Section 7.2 should be implemented as described.

SECTION 5
HYDROLOGIC/HYDRAULIC

5.1 Evaluation of Features

a. Design Data. Because no original hydrologic design data were revealed, an evaluation of such data could not be performed.

b. Experience Data. No experience data were found.

c. Visual Inspection. The invert of the low-level outlet is estimated to be located well above the deeper parts of the reservoir. The dam has the appearance of a low earth berm added to increase stored water in an existing lake. The steel covers over the 36-inch clay pipe appear to be 9 makeshift arrangement; no lifting mechanism was noted. Considerable erosion and spalling of the concrete around the spillway at the end of the approach channel was observed.

d. Helmetta Pond Dam Overtopping Potential. The hydraulic/hydrologic evaluation for the dam is based on a selected Spillway Design Flood (SDF) equal to one-half the Probable Maximum Flood (PMF) in accordance with the range of test floods given in the evaluation guidelines, for dams classified as significant hazard and small in size. The PMF was determined by application of a 24-hour Probable Maximum Precipitation of 22.9 inches to the SCS dimensionless unit hydrograph. Hydrologic computations are given in Appendix 3. The routed half-PMF peak inflow to the reservoir is 849 cfs; the peak outflow is 267 cfs.

Water will rise to a depth of 1.5 foot above the spillway crest before overtopping the low point on the dam embankment crest. Under this head the spillway capacity is 41 cfs, which is less than the selected SDF.

Flood routing calculations indicate that Helmetta Pond Dam will be overtopped for 9.8 hours to a maximum depth of 1.4 feet under half-PMF conditions. It is estimated that the spillway can pass the inflow from a storm about 11 percent the size of the half-PMF without overtopping the dam; thus, the spillway is considered inadequate.

e. Draw-down Capacity. It is estimated that the lake can be drained down to elevation 41.1 feet in approximately 2.5 days assuming no significant inflow. This time period is considered adequate for draining the reservoir in an emergency situation. However, some water probably would remain in the pond, as the low-level outlet is believed not to be at or near the bottom of the reservoir.

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations. The soft, wet area and seepage at the downstream toe of the dam is indicative of seepage through and under the dam, which, if not properly controlled, could lead to failure of the dam by piping and sloughing of the downstream slope. Serious erosion on the upstream slope of the dam at the waterline, if allowed to continue, could result in eventual breaching of the embankment. Most of the crest of the dam which is bare of vegetation would be susceptible to erosion if the dam were overtopped, which might, in turn, lead to breaching of the dam. Trees growing on the upstream and downstream slopes may cause seepage and erosion problems if the tree blows over and pulls out its roots, or if a tree dies or its roots rot.

The crest of the dam is uneven. Although the cause of the unevenness cannot be determined on the basis of the visual inspection alone, it may be a sign of a potential stability problem. The presence of several large depressions at the upstream edge of the crest and on the upstream slope may be a result of internal erosion of the embankment which, if not stopped, could lead to breaching of the dam.

Continued deterioration of the concrete spillway and steel plates over the outlet pipe could lead to a sudden release of water.

6.2 Design and Construction Data. No design or construction data pertinent to the structural stability of the dam are available.

6.3 Operating Records. No operating records pertinent to the structural stability of the dam were available.

6.4 Post-Construction Changes. No record of post-construction changes was available.

6.5 Seismic Stability - This dam is in Seismic Zone 1. According to the Recommended Guidelines, dams located in Seismic Zone 1 "may be assumed to present no hazard from earthquake, provided static stability conditions are satisfactory and conventional safety margins exist". The visual observations made during the inspection are possible indicators of unstable embankments as mentioned in Section 6.1. However, because no data are available concerning the engineering properties of the embankment and foundation materials for this dam, it is not possible to make an engineering evaluation of the stability of the slopes or the factor of safety under static conditions.

SECTION 7
ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. Helmetta Pond Dam is estimated to be at least 70 years old and is in poor condition.

b. Adequacy of Information. The information available is such that the assessment of the dam must be based on the results of the visual inspection.

c. Urgency. The recommendations made in 7.2.a and 7.2.b should be implemented by the owner as prescribed.

d. Necessity for Additional Data/Evaluation. The information available from the visual inspection is adequate to identify the potential problems which are listed in 7.2.a. These problems require the attention of a professional engineer who will have to make additional engineering studies to design or specify remedial measures to rectify the problems. If left unattended, the problems could lead to failure of the dam.

7.2 Recommendation/Remedial Measures

a. Recommendations. The owner should engage a professional engineer qualified in the design and construction of dams to accomplish the following very soon:

- (1) Evaluate further the inadequate spillway capacity and also consider the hydraulic conveyance downstream.
- (2) Investigate the cause of the seepage and wet, soft areas at the downstream toe of the dam.
- (3) Design and oversee procedures for the removal of trees, from the upstream and downstream slopes and the one tree near the center of the dam which is approximately 15 ft. downstream from the toe.
- (4) Design and oversee repairs for the erosion of the upstream slope of the dam and design and specify erosion protection for the upstream slope of the dam.
- (5) Design and oversee repairs for the eroded areas on the downstream slope adjacent to the spillway.
- (6) Investigate the reasons for the uneven surface of the crest, and design remedial measures as needed.

- (7) Oversee the repair of animal burrows on the embankment slope.
- (8) Design and oversee repairs to the concrete spillway and walls.
- (9) Design and oversee reconstruction of the outlet works.

b. Alternatives. None recommended if fire protection remains high priority purpose.

c. Operating and Maintenance Procedures. The owner should accomplish the following in the time periods specified:

Beginning very soon:

- (1) Start a program of checking the condition of the dam periodically and monitoring the seepage and wet areas along the toe of the downstream slope.
- (2) Start a program for maintaining the embankment free of weeds, brush, and filling animal burrows (add to brief assessment) as they occur.
- (3) Control trespassing on dam.

Starting soon:

- (1) Develop an emergency action plan which outlines actions taken by the owner to minimize downstream effects of an emergency at the dam.
- (2) After repair of eroded areas on the dam, re-establish and maintain grassy vegetation on the dam.
- (3) Repair deteriorated portions of service bridge.

In the near Future:

Develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

Anderson-Nichols & Co., Inc BOSTON MASSACHUSETTS	U.S. ARMY ENGINEER DIST PHILADELPHIA CORPS OF ENGINEERS PHILADELPHIA, PA
NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS	
HELMETTA POND DAM PLAN	
TRIB. TO MANALAPAN BROOK	NEW JERSEY
SCALE: NOT TO SCALE	
DATE: JUNE 1981	

FIGURE -1

670'

PROFILE

OUTLET ELEVATION

Anderson-Nichols & Co., Inc.	U.S. ARMY ENGINEER DIST. PHILADELPHIA CORPS OF ENGINEERS PHILADELPHIA, PA.	
BOSTON	MASSACHUSETTS	
NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS		
HELMETTA POND DAM PROFILE & ELEVATION		
TRIB. TO MANALAPAN BROOK		NEW JERSEY
		SCALE NOT TO SCALE
		DATE: JUNE 1981

FIGURE-2

Anderson-Nichols & Co., Inc.

U.S. ARMY ENGINEER DIST. PHILADELPHIA
CORPS OF ENGINEERS
PHILADELPHIA, PA.

NATIONAL PROGRAM OF INSPECTION OF NON-FED DAMS

HELMETTA DAM
LOCATION MAP

TRIB. TO MANALAPAN BROOK

NEW JERSEY

SCALE: 1" = 4 Miles Approx.

DATE: JUNE 1981

MAP BASED ON STATE OF NEW JERSEY
OFFICIAL MAP & GUIDE.

SCALE IN MILES
0 4 8

FIGURE -

APPENDIX 1
CHECK LIST
VISUAL INSPECTION

HELMETTA POND DAM

Check List
Visual Inspection
Phase 1

Name	Dam	Helmetta Pond Dam	County	Middlesex	State	NJ (00794)	Coordinators	NJDEP
Date(s)	Inspection	2/19/81 4/20/81	Weather	Overcast, warm Clear	Temperature	40° 45°		
Pool Elevation at Time of Inspection			43	NGVD	Tailwater at Time of Inspection	39.6	NGVD	

Inspection Personnel:

Guinan	Stuart
Gilman	Deane
Murdock	

Stuart/Gilman/Murdock

Recorder

VISUAL EXAMINATION OF EMBANKMENT	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed	Repair erosion and provide adequate erosion protection
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	Significant erosion and sloughing along upstream face	Horizontal alignment - good vertical alignment - crest exhibits a slight undulation in elevation
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	No riprap evident above water level. Small trees and brush growing on upstream face.	Remove trees and brush and provide adequate erosion protection on upstream face.
RIPRAP FAILURES		

EMBANKMENT

VISUAL EXAMINATION OF

REMARKS OR RECOMMENDATIONS

RAILINGS

None

JUNCTION OF EMBANKMENT
AND ABUTMENT, SPILLWAY
AND DAMErosion evident on either side
of spillway structure

ANY NOTICEABLE SEEPAGE

Ground is wet and soggy down-
stream of the dam. Seepage
and standing water evident
in many locations along the
toe.

Investigate origin of seepage

STAFF GAGE AND RECORDER

None

DRAINS

None observed

UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Poor condition - Substantial spalling and erosion on u/s face, approximately 8' below weir. D/s face has evidence of surface erosion. Much debris.	Repair eroded and deteriorated concrete. Clean inlet area.
APPROACH CHANNEL	Clear of brush or weeds. Much trash debris. Mortared cinder block training wall on left side in good condition.	Clear trash
DISCHARGE CHANNEL	Defined channel. Weeds and trash.	Clear trash
BRIDGE AND PIERS OVER SPILLWAY	Evidence of deterioration of wood. Some planks show rot. Wooden footbridge with railing on d/s side only. Deck in fair condition. Railing well painted.	Add railing on u/s side. Repair deteriorated plank and paint.

OUTLET WORKS (Located at Ungated Spillway)
See Ungated Spillway

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	See outlet channel. See outlet pipe.	
INTAKE STRUCTURE	U/s face of spillway wall. Considerable surface erosion and spalling of concrete. Concrete block wall has minor cracking.	Repair concrete and concrete block wall.
OUTLET PIPE	3 ft smooth clay pipe exits face of spillway. Invert 4 ft below spillway crest.	
OUTLET CHANNEL	Poor condition. Substantial erosion and deterioration of concrete wall at base.	Repair or rebuild channel.
EMERGENCY GATE	Gate appears to be 2 steel plates which together cover, outlet pipe and may be held in place by water pressure from u/s. Some leakage. Steel plates are rusting.	Refit with new gate and stop logs.

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
Stream flows perpendicular to spillway crest for approx. 100 yards then takes right angle towards factory. It then flows: approx. 50 yards d/s; under the loading dock driveway 15-foot long, 48-inch diameter BCCNP; 20+ feet more d/s; into a 42-inch concrete pipe; and then under the mill to Manalapan Brook across the street.		Failure of this dam could cause flooding to the basements of two warehouses.
SLOPES	Gentle	Helme Tobacco Co. located immediately downstream.

APPROXIMATE NO.
OF HOMES AND
POPULATION

RESERVOIR	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES		Slightly wooded, gradual slopes, some homes situated adjacent to reservoir.	
SEDIMENTATION		No evidence of significant sedimentation observed.	

CHECK LIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION

ITEM	REMARKS
PLAN OF DAM	None found.
REGIONAL VICINITY MAP	Prepared for this report
CONSTRUCTION HISTORY	None found
TYPICAL SECTIONS OF DAM	None found
HYDROLOGIC/HYDRAULIC DATA	None found
OUTLETS - PLAN	None found
- DETAILS	None found
- CONSTRAINTS	
- DISCHARGE RATINGS	
RAINFALL/RESERVOIR RECORDS	None found

ITEM	REMARKS
DESIGN REPORTS	None found
GEOLOGY REPORTS	None found
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None found
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	None found
POST-CONSTRUCTION SURVEYS OF DAM	None found
BORROW SOURCES	Unknown

ITEM	REMARKS
MONITORING SYSTEMS	None found
MODIFICATIONS	None found
HIGH POOL RECORDS	None found
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None found
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	None found
MAINTENANCE OPERATION RECORDS	None found

ITEMS	REMARKS
SPILLWAY PLAN	
SECTIONS	None found
DETAILS	

OPERATING EQUIPMENT
PLANS & DETAILS

CHECK LIST
HYDROLOGIC AND HYDRAULIC DATA
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: .69 square miles, gentle slope,
wooded area, and wet lands

ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 43.7 NGVD (64
acre-feet)

ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY)
Not applicable

ELEVATION MAXIMUM TEST FLOOD POOL: 46.6 feet NGVD

ELEVATION TOP DAM: 45.2 feet NGVD (142 acre-feet)

SPILLWAY CREST: free overflow concrete spillway

a. Elevation 43.7 feet NGVD

b. Type flat

c. Width 8 inches

d. Length 7.2 feet

e. Location Spillover left dam abutment

f. Number and Type of Gates None

OUTLET WORKS: One 36 inches pipe with upstream steelplate
covers (gate)

a. Type clay pipe

b. Location Directly below spillway through wall

c. Entrance Invert 41.1 feet NGVD

d. Exit Invert 41.1 feet NGVD

HYDROMETEOROLOGICAL GAGES: None

MAXIMUM NON-DAMAGING DISCHARGE: 41 cfs

APPENDIX 2

PHOTOGRAPHS

HELMETTA POND DAM

February 19, 1981

View from u/s looking into overflow channel at u/s end of pipe section spillway on left bank (circular cover at u/s end of pipe.)

February 19, 1981

Looking u/s at d/s end of circular pipe spillway - note debris.

April 20, 1981

View of left training wall. Note deteriorated and eroded, spalled concrete along left training wall and debris in channel.

February 19, 1981

View looking across dam d/s face. Very large tree growing on dam crest.

April 20, 1981

View from location of large concrete block on upstream face looking toward left side of dam. Note extensive erosion along upstream face.

April 20, 1981

View of animal burrow on crest, 8-inches in diameter, 2.5 feet deep, surface depression 2-feet in diameter, and 1 foot deep.

April 20, 1981

View of seepage area across most of the dam face. Flow estimated at 1-2 gal/min.

February 19, 1981

View looking d/s at retreat channel from bridge over spillway.

April 20, 1981

View of pipe outlet from retreat channel looking d/s at second pipe that carries normal flows beyond buildings but beneath them.

APPENDIX 3

HYDROLOGIC COMPUTATIONS

HELMETTA POND DAM

NATIONAL PROGRAM OF INSPECTION OF
NON-FED. DAMS

HELMETTA POND DAM
BRUNSWICK TOWNSHIP, NEW JERSEY
REGIONAL VICINITY MAP

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
PHILADELPHIA, PENNSYLVANIA

SCALE IN MILES

MAP BASED ON U.S.G.S. 7.5 MINUTE QUADRANGLE
SHEET NEW BRUNSWICK, N.J. 1954, AND
JAMESBURG, N.J. 1953, REVISED 1954.

JOB NO.

SQUARES 1/4 IN. SCALE	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
--------------------------	---	---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

TIME OF CONCENTRATION① Texas Highway Method

all overland - longest flowpath = 4,700 ft.

$$\text{Slope} = \frac{130 - 43}{4700} = 0.019 = 1.9\%$$

Velocity = 1.0 fps for woodlands

$$\text{TIME} = \text{Overland} = \frac{4700}{1.0} = 4700 \text{ sec} = 1.31 \text{ hours}$$

② Soil & Water Conservation

$$L = 0.6 T_C = \frac{l^{0.8} (s+1)^{1.67}}{9,000 y^{0.5}}$$

$$S = \frac{1000}{CN} - 10$$

$$y = 1.9\%$$

$$l = 4,700$$

CN = 70 for good condition woods class C

$$S = \frac{1000}{70} - 10 = 4.3$$

$$T_C = \frac{L}{0.6} = \frac{4700^{0.8} (5.3)^{1.67}}{9000 (1.9)^{0.5} (0.6)} = 1.89 \text{ hours}$$

③ Weston or SCS T.R. #55

all overland:

slope = 1.9%, length = 4700 feet

from T.R. 55 graph, V = 0.33 fps

$$\text{Time} = \frac{4,700}{0.33} = 14,240 \text{ seconds} = 3.96 \text{ hours}$$

Anderson-Nichols & Company, Inc.

Subject HELMETTA DAMSheet No. 2 of 16Date 6/19/81Computed 7/7/81Checked C.R.D.

JOB NO.

SQUARES $\frac{1}{4}$ IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30(4) Kerby

Overland $T_c = 0.83 \left(\frac{N \cdot L}{S} \right)^{0.467}$

N = 0.7 (timber land), S = 0.019, L = 4,700 feet

$$T_c = 0.83 \left(\frac{0.7 \cdot 4,700}{\sqrt{0.019}} \right)^{0.467} = 91.94 \text{ min} = 1.53 \text{ hours}$$

Average of 4 methods = $\frac{1.31 + 1.89 + 3.96 + 1.53}{4} = 2.17 \text{ hours}$

Lag = 0.6 $T_c = 1.30 \text{ hours}$

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1/4 IN. SCALE

1

2

3

Stage-Discharge Curve

4

5

6

A hydraulic profile of Helmetta dam is given on page 4. E = water surface elevation (ft.msl).

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

$$\text{for the spillway, } Q = 3.1 (7.2) (E - 43.7)^{3/2}$$

for the top of dam, assume each section (1) through (1) is a broad-crested weir ($C = 2.6$) with its crest at the average elevation of the section. Thus:

$$Q_{TOP} = 2.6 (10) (E - 45.9)^{3/2} + 2.6 (32.8) (E - 46.1)^{3/2} + 2.6 (50) (E - 46.05)^{3/2} \\ + 2.6 (100) (E - 46.4)^{3/2} + 2.6 (100) (E - 46.6)^{3/2} + 2.6 (100) (E - 46.3)^{3/2} \\ + 2.6 (100) (E - 46.0)^{3/2} + 2.6 (100) (E - 45.75)^{3/2} + 2.6 (70) (E - 45.45)^{3/2}$$

for side slopes, use sloping weir equation ($Q = CL H_{avg}^{3/2}$) with $C = 2.5$

$$Q_{sides} = 2.5 (5(E - 45.7)) [0.5(E - 45.7)]^{3/2} + 2.5 (10(E - 45.2)) [0.5(E - 45.2)]^{3/2}$$

ANDERSON-NICHOLS

VERNON	BOSTON	CONCORD	
HYDRAULIC PROFILE			SHEET NO.
HILLMAN DAM			P.4.C.F.15
DATE 6/18/81	SCALE 1:1000	JOB NO. V	

726

Anderson-Nichols & Company, Inc.

Subject: HELMETTA DAM

Sheet No. 5 of 15
 Date 6/18/81
 Computed TCT
 Checked GRP

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 1/4 IN. SCALE

3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
ELEVATION (ft. above 1/4 GVD)	H (ft. above s/w crest)	Q _{spillway} (cfs)	Q _{top of dam} (cfs)	Q _{sidewalls} (cfs)	Q _{TOTAL} (cfs)																						
39.6	-	0	0	0	0																						
43.7	0	0	0	0	0																						
44	0.3	4	0	0	4																						
44.5	0.8	16	0	0	16																						
45	1.3	33	0	0	33																						
45.2	1.5	41	0	0	41																						
46	2.3	78	108	5	191																						
46.5	2.8	105	561	20	686																						
47	3.3	134	1,537	47	1,718																						
47.5	3.8	165	2,898	90	3,153																						
48	4.3	199	4,544	151	4,894																						

JOB NO.

SQUARES 1/4 IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Stage Storage Determination

The surface area at normal pool, 43.7 ft. above NGVD, is 32 acres.

At 50 ft above NGVD, Area is about 200 acres. Assume a linear increase in surface area with elevation. Also assume 0 storage at 39.6 ft msl, and 64 acre-feet storage at 43.7 ft msl (Avg. Sept = 2 feet).

ELEVATION (Ft. above NGVD)	ΔH (Ft.)	SURFACE AREA (ACRES)	Avg. S.A. (Acres)	INCREMENTAL STORAGE (Ac-ft)	CUMULATIVE STORAGE (Ac-ft)
39.6		-		-	0
43.7	4.1	32		-	64
44	0.3	36		10.8	74.8
44.5	0.5	40	46.5	23.3	98.1
45	0.5	53	59.85	29.9	128.0
45.2	0.2	66.7	69.35	13.9	141.9
46	0.8	72	82.65	66.1	208
46.5	0.5	93.3	100.15	50.1	258.1
47	0.5	107	113.5	56.8	314.9
47.5	0.5	120	126.5	63.2	378.1
48	0.5	133	140	70	448.1

JOB NO.

SQUARES
1/4 IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30OVERTOPPING ANALYSIS

Done using HEC-1, dam top at 45.2, HEC-1 output attached

OVERTOPPING POTENTIAL

JOB NO.

 SQUARES 1/4 IN. SCALE
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
DRAWDOWN TIME

Use 36" clay pipe with steel covers. (1) Above 43.1, the pipe has pressure

— 43.7

$$\text{flow. Say } Q = C A \sqrt{2g} \sqrt{E - 41.6}$$

$$C = 0.61, A = \pi(1.5)^2 = 7.1. \text{ So,}$$

$$Q = 0.61 (7.1) (\sqrt{64.4}) \sqrt{E - 41.6} = 34.76 \sqrt{E - 41.6}$$

(2) Below 43.1, use manning's formula

for open channel flow. Get a at 41.6,

$$Q = A V = A \frac{1.49}{n} \left(\frac{A}{W.P.} \right)^{2/3} S^{1/2}$$

$$A: \text{Area} = \frac{\pi r^2}{4} = 3.55 \text{ ft}^2$$

$$n: 0.015$$

$$W.P.: \text{W.R.} = \pi R = 4.71 \text{ ft}$$

$$S: 0.001$$

$$Q = 3.55 \left(\frac{1.49}{0.015} \right) \left(\frac{3.55}{4.71} \right)^{2/3} (0.001)^{1/2} = 9.2 \text{ cfs}$$

(2) Storage Elev.

64 AF 43.7

47 AF 43.1

20 AF 41.6

4 AF 40.1

0 AF 39.6

$$(3) Ac - FV/day = 1.99 \times Q_{AVG}$$

$$(4) \text{Days} = \Delta \text{Storage} / Ac - FV/day$$

Anderson-Nichols & Company, Inc.

Subject HELME ITA

Sheet No. 11 of 15
 Date 6/18/81
 Computed ---
 Checked C.R.P.

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 1/4 IN. SCALE

1	2 ELEV. (Ft. above NGVD)	3 STORAGE (Ac.-Ft.)	4 Δ Storage (Ac.-Ft.)	5 Q (cfs)	6 Q AVG (cfs)	7 Ac.-Ft./Day	8 DAYS
5	43.7	64	17	50.4			
6	43.1	47	27	42.6	46.5	92.1	0.18
7	41.6	20	16	9.2	26.9	51.3	0.53
8	40.1	4		0	4.6	9.1	1.76

$$\Sigma = 2.47 \text{ Days}$$

Note - Some storage left in pond below pipe is not shown.

JOB NO.

SQUARES
1/4 IN. SCALE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Breach Analysis

Immediately downstream of Helmetta Dam there is a large depression, with warehouses and factory buildings on its edges. The depression shows to have an area of 6 acres below 40 feet NGVD on the USGS quad. The only outlet below 43 feet NGVD or so is a 42" rcp leading under the factory, etc. Its invert is at about 34 feet MSL.

Immediately prior to overtopping, Helmetta Dam would have a stage of 45.2 feet and an outflow of 41 cfs. This outflow would cause pooling but no appreciable damage downstream.

Upon dam failure, water stored from Helmetta Pond would fill the depression downstream, causing still-water flooding and damage to factories and warehouses. There would be some threat to the lives of workers in basements. The ground floor of one building downstream is at about 38 feet msl, another at about 41', and the main factory and warehouse buildings are at 43'.

See the sketch on p.13

JOB NO.

SQUARES
1/4 IN. SCALE

To estimate the impact of a breach to Helmetta Dam,
 assume the storage available at failure (141.9 acre-feet)
 spreads over the depression, thus lowering the stage in the pond
 while raising that downstream until they are equal and they store
 a combined total of 141.9 acre-feet. This assumes:

- ① negligible outflow during breach development from the depression. A reasonable assumption given only a 42" rcp outlet.
- ② All flooding due to breach - effects of higher later inflows not considered.

The stage-storage relationship for Helmetta Pond is given on page 7.
 For the depression, surface area = 0 at 34 feet, 6 acres at 40 feet

J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Assume a linear relationship, $SA = (E - 34) \left(1 \frac{\text{Ac}}{\text{ft.}} \right)$

Storage at E_{current} = $\int_{34}^{E_{\text{current}}} (E - 34) dE$

$$= \frac{E^2}{2} - 34E + C$$

at 34, $\frac{E^2}{2} - 34E + C = 0$

$$\frac{34^2}{2} - 34(34) + C = 0$$

$$C = \frac{34(34)}{2} = 578$$

So Storage at $E = \frac{E^2}{2} - 34E + 578$

elevation (Ft. above M.G.D.)	Helmetta ¹ Storage(Ac-Ft)	Depression Storage(Ac-Ft)	Total Storage (Ac-Ft)
39.6	0	15.7	15.7
43.7	64	47.0	111
44	74.8	50.0	124.8
44.5	98.1	55.1	153.2
45	128.0	60.5	188.5
45.2	141.9	62.7	204.6

From our assumptions the final stage would be that yielding a total storage of 141.9 ac-ft, which is 44.3 feet msl. This would cause $1\frac{1}{2}$ feet of flooding at the main buildings downstream, $3\frac{1}{2}$ feet.

1. from p. 7

JOB NO.

SQUARES
1/4 IN. SCALE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1
2 building ⑥, and 6-6½ feet at building ⑤. In reality, stages would
3 be somewhat less due to outflow during breach development. However
4 serious economic damage would result from dam failure. Due to
5 low velocities, there would be no serious threat to lives.
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

APPENDIX 4
HEC 1 OUTPUT
HELMETTA POND DAM

PAGE 1.

HFC-1 INPUT

LINE	ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
1	HELMETTA DAM INFLUX ANALYSIS - TOM GOODCH
2	IN JRP, Y DAM NO. 79% - MICHIGAN COUNTY - HELMETTA BOROUGH
3	0.1 0.2, 0.5 MULTIPLES OF 0.01 FROM 24-HOUR PMP
4	0.1 0.2, 0.5
5	0.1 0.2, 0.5
6	0.1 0.2, 0.5
7	KK ALL HELMETTA POND INFLOW HYDROGRAPH
8	KK INFLOW FROM SCS UNIT GRAPH COMPUTATIONS
9	0.69 0 1
10	0.69 0 1
11	0.21 2.1 1
12	0.21 2.1 1
13	0.1 0.1 1
14	0.1 0.1 1
15	KK ROUTE INFLOW HYDROGRAPH THROUGH HELMETTA POND
16	RJS 1 STUR INFLOW 6.0
17	SJY 39.0 64.7 74.8 98.1 128. 141.9 208. 258.1 314.9 378.1
18	SF 39.0 43.7 44.5 45.2 46.0 46.5 47.2 48.5 49.2 49.5
19	SE 39.0 43.0 44.0 45.0 46.0 46.5 47.0 48.0 49.0 49.5
20	SE 39.0 43.7 44.7 45.5 46.2 46.8 47.5 48.2 49.2 49.8
21	SW 43.7 44.7 45.5 46.2 46.8 47.5 48.2 48.8 49.2 49.8
22	SW 43.7 44.7 45.5 46.2 46.8 47.5 48.2 48.8 49.2 49.8

FLOOD HYDROGRAPH PLOTACE (HICR-1)
FEBRUARY 1981
RUN DATE 06/24/81 TIME 10.06.37

U.S. ARMY CORPS OF ENGINEERS
THE HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 440-3285 OR (FTS) 448-3285

HELMETTA DAM OVERTOPPING ANALYSIS - TOM GOODCH AND CO.
NEW JERSEY DAM NO. 794 - MIDDLESEX COUNTY - HELMETTA BOROUGH
C.1.025, 0.4 MULTIPLES OF PMF FROM 24-HOUR PMP

5 10 OUTPUT CONTROL VARIABLES

INPUT 1 PRINT CONTROL
FLOOD 1 PRINT CONTROL
GRAPH 1 PRINT GRAPHIC SCALING
MESSAGES YES

11 HYDROGRAPH TIME DATA

MINUTE 5 MINUTES IN COMPUTATION INTERVAL
INSTEAD OF 1
TIME 0 STARTING DATE
NO. 0000 STARTING TIME
NUMBER 300 NUMBER OF HYDROGRAPH ORDINATES
MIDTIME 2
ENDTIME 0055 ENDING DATE
COMPUTATION INTERVAL 0.05 HOURS
TOTAL TIME BASE 24.92 HOURS

ENGLISH UNITS
DRAINAGE AREA SQUARE MILES
SPECIFIC GRAVITY 1.0
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-BLANK OPTION

1 NUMBER OF PLANS

MULTI-RATIO OPTION
RATIOS OF RUNOFF C.10 0.50
0.25

7 KK SURFACE RUNOFF DATA
A1 HELMETTA POND INFLOW HYDROGRAPH
INFLOW FROM SCS UNIT GRAPH COMPUTATIONS

9 RA SUBBASIN CHARACTERISTICS

BASE FLOW CHARACTERISTICS
SFC TO 1.0 INITIAL FLOW
GRAPH 1.0 BEGIN RATE FLOW RECESSION
PLOT 1.0000 RECESSION CONSTANT

PRECIPITATION DATA
PROBABLY MAXIMUM STORM INDEX PRECIPITATION:
11 PM

INITIATION DATA		INCREASING PRECIPITATION COEFFICIENT		
ABOVE MAXIMUM SIGN	THRESHOLD	THRESHOLD	THRESHOLD	THRESHOLD
+	0.00	0.00	0.00	0.00
-	0.50	0.50	0.50	0.50
SHD	SHD	SHD	SHD	SHD

PERCENT OF 6-MONTH PRECIPITATION	INDEX 123.0	PRECIPITATION 45.0	NUMBER OF DAYS 72.0	IN GIVING TIME 96-HR 0.0
113.0	123.0	45.0	6.0	0.0

UNIFORM LOSS RATE	1.00	INITIAL LOSS RATE	1.00
STRETCH	0.00	UNIFORM PERCENT	0.00
COST	0.00	PREVIOUS AREA	0.00
FTMP	0.00		
SCS DIMENSIONLESS UNIT GRAPH	1.00	YFLAG	1.00
YAC	1.00		

EARLY JEWISH WRITERS

卷之六

UNIT	END-OF-PERIOD COORDINATES
1	145.
2	134.
3	135.
4	136.
5	145.
6	137.
7	138.
8	139.
9	140.
10	141.
11	142.
12	143.
13	144.
14	145.
15	146.
16	147.
17	148.
18	149.
19	150.
20	151.
21	152.
22	153.
23	154.
24	155.
25	156.
26	157.
27	158.
28	159.
29	160.
30	161.
31	162.
32	163.
33	164.
34	165.
35	166.
36	167.
37	168.
38	169.
39	170.
40	171.
41	172.
42	173.
43	174.
44	175.
45	176.
46	177.
47	178.
48	179.
49	180.
50	181.

HYDROGRAPH AT STATION A1

The hydrograph displays four data series over a 60-month period:

- Rain:** Daily rainfall measurements.
- Loss:** Daily loss values, generally low (mostly 0.0).
- Excess:** Daily excess values, showing peaks corresponding to rainfall events.
- Comp Q:** Daily component Q values, which are zero for most days but show significant spikes during rainfall events.

DA	MON	RAIN	LOSS	EXCESS	COMP Q
1	1	0.0	0.0	0.0	0.0
2	1	0.0	0.0	0.0	0.0
3	1	0.0	0.0	0.0	0.0
4	1	0.0	0.0	0.0	0.0
5	1	0.0	0.0	0.0	0.0
6	1	0.0	0.0	0.0	0.0
7	1	0.0	0.0	0.0	0.0
8	1	0.0	0.0	0.0	0.0
9	1	0.0	0.0	0.0	0.0
10	1	0.0	0.0	0.0	0.0
11	1	0.0	0.0	0.0	0.0
12	1	0.0	0.0	0.0	0.0
13	1	0.0	0.0	0.0	0.0
14	1	0.0	0.0	0.0	0.0
15	1	0.0	0.0	0.0	0.0
16	1	0.0	0.0	0.0	0.0
17	1	0.0	0.0	0.0	0.0
18	1	0.0	0.0	0.0	0.0
19	1	0.0	0.0	0.0	0.0
20	1	0.0	0.0	0.0	0.0
21	1	0.0	0.0	0.0	0.0
22	1	0.0	0.0	0.0	0.0
23	1	0.0	0.0	0.0	0.0
24	1	0.0	0.0	0.0	0.0
25	1	0.0	0.0	0.0	0.0
26	1	0.0	0.0	0.0	0.0
27	1	0.0	0.0	0.0	0.0
28	1	0.0	0.0	0.0	0.0
29	1	0.0	0.0	0.0	0.0
30	1	0.0	0.0	0.0	0.0
31	1	0.0	0.0	0.0	0.0
32	1	0.0	0.0	0.0	0.0
33	1	0.0	0.0	0.0	0.0
34	1	0.0	0.0	0.0	0.0
35	1	0.0	0.0	0.0	0.0
36	1	0.0	0.0	0.0	0.0
37	1	0.0	0.0	0.0	0.0
38	1	0.0	0.0	0.0	0.0
39	1	0.0	0.0	0.0	0.0
40	1	0.0	0.0	0.0	0.0
41	1	0.0	0.0	0.0	0.0
42	1	0.0	0.0	0.0	0.0
43	1	0.0	0.0	0.0	0.0
44	1	0.0	0.0	0.0	0.0
45	1	0.0	0.0	0.0	0.0
46	1	0.0	0.0	0.0	0.0
47	1	0.0	0.0	0.0	0.0
48	1	0.0	0.0	0.0	0.0
49	1	0.0	0.0	0.0	0.0
50	1	0.0	0.0	0.0	0.0
51	1	0.0	0.0	0.0	0.0
52	1	0.0	0.0	0.0	0.0
53	1	0.0	0.0	0.0	0.0
54	1	0.0	0.0	0.0	0.0
55	1	0.0	0.0	0.0	0.0
56	1	0.0	0.0	0.0	0.0
57	1	0.0	0.0	0.0	0.0
58	1	0.0	0.0	0.0	0.0
59	1	0.0	0.0	0.0	0.0
60	1	0.0	0.0	0.0	0.0

1936-37 1937-38 1938-39 1939-40 1940-41 1941-42 1942-43 1943-44 1944-45 1945-46 1946-47 1947-48 1948-49 1949-50 1950-51 1951-52 1952-53 1953-54 1954-55 1955-56 1956-57 1957-58 1958-59 1959-60 1960-61 1961-62 1962-63 1963-64 1964-65 1965-66 1966-67 1967-68 1968-69 1969-70 1970-71 1971-72 1972-73 1973-74 1974-75 1975-76 1976-77 1977-78 1978-79 1979-80 1980-81 1981-82 1982-83 1983-84 1984-85 1985-86 1986-87 1987-88 1988-89 1989-90 1990-91 1991-92 1992-93 1993-94 1994-95 1995-96 1996-97 1997-98 1998-99 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 2006-2007 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 2019-2020 2020-2021 2021-2022 2022-2023 2023-2024

କାହାର ପାଦରେ ମନ୍ଦିର କରିବାକୁ ଆଶିଷ ଦିଲା
କାହାର ପାଦରେ ମନ୍ଦିର କରିବାକୁ ଆଶିଷ ଦିଲା

A decorative horizontal border at the bottom of the page. It consists of a repeating pattern of small circles and dots arranged in two rows. The top row contains a continuous sequence of small circles, while the bottom row contains a sequence of small dots. The pattern is repeated across the width of the page.

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

Digitized by srujanika@gmail.com

www.ijerph.org

१०८ विषयात्मक अध्ययन क्रमांक

A decorative horizontal border consisting of a repeating pattern of small circles and larger ovals. The pattern is composed of two rows: the top row contains small circles, and the bottom row contains larger ovals. These two rows are offset by half a unit, creating a staggered effect. The entire pattern is enclosed within a thin black border.

Digitized by srujanika@gmail.com

A decorative border pattern consisting of a repeating geometric design. The pattern features a central square containing four smaller circles arranged in a cross-like shape (one at each corner). This central unit is surrounded by a ring of alternating small circles and squares. The entire design is enclosed within a double-lined rectangular frame.

PEAK FLOW	TIME (HR)	6-11K (CFS)	6-14K (CFS)	MAXIMUM AVIAGE FLOW 7-14K (CFS)	24-HR AVG. 7-14K (CFS)
2463.	16.03	{ INCHES }	{ CFS }	21 ^{0.00} 7-14K 6.1.0	21 ^{0.55} 7-14K 7.73.

HYDROGRAPH AT STATION 1, PLAN I, RATIO = C.50 A1

1	0535	68	1.0	0	1	1150	163	46.	0	1	1105	218	781.	0	2	6120	243	15.
1	0540	69	1.0	0	1	1153	144	46.	0	1	1110	219	756.	0	2	6125	243	15.
1	0545	70	1.0	0	1	1205	145	46.	0	1	1615	220	732.	0	2	6125	243	15.
1	0550	71	1.0	0	1	1210	146	46.	0	1	1620	221	709.	0	2	6125	243	14.
1	0555	72	1.0	0	1	1215	147	46.	0	1	1825	232	693.	0	2	6125	243	14.
1	0600	73	1.0	0	1	1220	148	46.	0	1	1830	233	659.	0	2	6125	243	14.
1	0605	74	1.0	0	1	1225	149	52.	0	1	1835	244	633.	0	2	6125	243	14.
1	0610	75	1.0	0	1	1225	150	56.	0	1	1840	225	607.	0	2	6125	243	12.

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
(CFS) (HR) 24-HR 72-HR 24-92-HR
1226. 16.83 (CES) 6.11R 6.3 200. 193.
(INCFF) 9.31 10.77 10.779 10.779.
(AC-FF) 39.3. 39.7. 39.7.

CUMULATIVE AREA = 0.69 SQ MI

ROUTE INFLOW HYDROGRAPH THROUGH HILMETTA POND
14 KK A2 0
HYDROGRAPH ROUTING DATA

15 RS	STORAGE	ROUTING	NUMBER OF SURFACES
16 SV	STORAGE	TYPE	STOKE
17 SE	ELEVATION	ESURIC	INITIAL CONDITIONS
18 SG	DISCHARGE	X	INITIAL CONDITIONS & NO COEFFICIENT
19 SE	ELEVATION	0.0	WORKING
20 SS	SPILLWAY	64.00	NO COEFFICIENT
21 ST	TOP OF DAM	64.00	NO COEFFICIENT
	CRASH	64.00	NO COEFFICIENT
	SWL	64.00	NO COEFFICIENT
	COUGH	64.00	NO COEFFICIENT
	EXPH	64.00	NO COEFFICIENT
	45.00	43.70	SPILLWAY CREST ELEVATION
	66.710	44.00	WEIR COEFFICIENT
	66.710	44.00	EXponent OF HEAD
	66.710	44.00	EL ELEVATION AT TOP OF DAM
	66.710	44.00	DAM WIDTH
	66.710	44.00	WEIR COEFFICIENT
	66.710	44.00	EXponent OF HEAD
	66.710	44.00	66.710
STORAGE	0.0	66.710	CUMULATIVE SURFACE INFLOW 141.90
OUTFLOW	0.0	0.0	16.00 33.00 41.00 191.00 686.00 1718.00 3153.00

HYDROGRAPH AT STATION PLAN 1, STATION = 0.50 A2

HYDROGRAPH AT STATION A2
PLAN 1, RATIO = 0.50

The figure displays a hydrograph at Station A2 for Plan 1 with a ratio of 0.50. The vertical axis represents water level in feet, ranging from 0 to 10. The horizontal axis represents time in days (DA), months (MON), hours (HRN), and ordinates (ORD). The hydrograph shows a single, sharp peak reaching about 10 ft above the baseline. This peak is centered around DA 1645, MON 05, HRN 05, and ORD 05.

DA	MON	HRN	ORD	STAGE
1640	05	05	05	0.50
1645	05	05	05	1.00
1650	05	05	05	0.50
1655	05	05	05	0.00
1660	05	05	05	-0.50
1665	05	05	05	-1.00
1670	05	05	05	-0.50
1675	05	05	05	0.00
1680	05	05	05	0.50
1685	05	05	05	1.00
1690	05	05	05	0.50
1695	05	05	05	0.00
1700	05	05	05	-0.50
1705	05	05	05	-1.00
1710	05	05	05	-0.50
1715	05	05	05	0.00
1720	05	05	05	0.50
1725	05	05	05	1.00
1730	05	05	05	0.50
1735	05	05	05	0.00
1740	05	05	05	-0.50
1745	05	05	05	-1.00
1750	05	05	05	-0.50
1755	05	05	05	0.00
1760	05	05	05	0.50
1765	05	05	05	1.00
1770	05	05	05	0.50
1775	05	05	05	0.00
1780	05	05	05	-0.50
1785	05	05	05	-1.00
1790	05	05	05	-0.50
1795	05	05	05	0.00
1800	05	05	05	0.50
1805	05	05	05	1.00
1810	05	05	05	0.50
1815	05	05	05	0.00
1820	05	05	05	-0.50
1825	05	05	05	-1.00
1830	05	05	05	-0.50
1835	05	05	05	0.00
1840	05	05	05	0.50
1845	05	05	05	1.00
1850	05	05	05	0.50
1855	05	05	05	0.00
1860	05	05	05	-0.50
1865	05	05	05	-1.00
1870	05	05	05	-0.50
1875	05	05	05	0.00
1880	05	05	05	0.50
1885	05	05	05	1.00
1890	05	05	05	0.50
1895	05	05	05	0.00
1900	05	05	05	-0.50
1905	05	05	05	-1.00
1910	05	05	05	-0.50
1915	05	05	05	0.00
1920	05	05	05	0.50
1925	05	05	05	1.00
1930	05	05	05	0.50
1935	05	05	05	0.00
1940	05	05	05	-0.50
1945	05	05	05	-1.00
1950	05	05	05	-0.50
1955	05	05	05	0.00
1960	05	05	05	0.50
1965	05	05	05	1.00
1970	05	05	05	0.50
1975	05	05	05	0.00
1980	05	05	05	-0.50
1985	05	05	05	-1.00
1990	05	05	05	-0.50
1995	05	05	05	0.00
2000	05	05	05	0.50
2005	05	05	05	1.00
2010	05	05	05	0.50
2015	05	05	05	0.00
2020	05	05	05	-0.50
2025	05	05	05	-1.00
2030	05	05	05	-0.50
2035	05	05	05	0.00
2040	05	05	05	0.50
2045	05	05	05	1.00
2050	05	05	05	0.50
2055	05	05	05	0.00
2060	05	05	05	-0.50
2065	05	05	05	-1.00
2070	05	05	05	-0.50
2075	05	05	05	0.00
2080	05	05	05	0.50
2085	05	05	05	1.00
2090	05	05	05	0.50
2095	05	05	05	0.00
2100	05	05	05	-0.50
2105	05	05	05	-1.00
2110	05	05	05	-0.50
2115	05	05	05	0.00
2120	05	05	05	0.50
2125	05	05	05	1.00
2130	05	05	05	0.50
2135	05	05	05	0.00
2140	05	05	05	-0.50
2145	05	05	05	-1.00
2150	05	05	05	-0.50
2155	05	05	05	0.00
2160	05	05	05	0.50
2165	05	05	05	1.00
2170	05	05	05	0.50
2175	05	05	05	0.00
2180	05	05	05	-0.50
2185	05	05	05	-1.00
2190	05	05	05	-0.50
2195	05	05	05	0.00
2200	05	05	05	0.50
2205	05	05	05	1.00
2210	05	05	05	0.50
2215	05	05	05	0.00
2220	05	05	05	-0.50
2225	05	05	05	-1.00
2230	05	05	05	-0.50
2235	05	05	05	0.00
2240	05	05	05	0.50
2245	05	05	05	1.00
2250	05	05	05	0.50
2255	05	05	05	0.00
2260	05	05	05	-0.50
2265	05	05	05	-1.00
2270	05	05	05	-0.50
2275	05	05	05	0.00
2280	05	05	05	0.50
2285	05	05	05	1.00
2290	05	05	05	0.50
2295	05	05	05	0.00
2300	05	05	05	-0.50
2305	05	05	05	-1.00
2310	05	05	05	-0.50
2315	05	05	05	0.00
2320	05	05	05	0.50
2325	05	05	05	1.00
2330	05	05	05	0.50
2335	05	05	05	0.00
2340	05	05	05	-0.50
2345	05	05	05	-1.00
2350	05	05	05	-0.50
2355	05	05	05	0.00
2360	05	05	05	0.50
2365	05	05	05	1.00
2370	05	05	05	0.50
2375	05	05	05	0.00
2380	05	05	05	-0.50
2385	05	05	05	-1.00
2390	05	05	05	-0.50
2395	05	05	05	0.00
2400	05	05	05	0.50
2405	05	05	05	1.00
2410	05	05	05	0.50
2415	05	05	05	0.00
2420	05	05	05	-0.50
2425	05	05	05	-1.00
2430	05	05	05	-0.50
2435	05	05	05	0.00
2440	05	05	05	0.50
2445	05	05	05	1.00
2450	05	05	05	0.50
2455	05	05	05	0.00
2460	05	05	05	-0.50
2465	05	05	05	-1.00
2470	05	05	05	-0.50
2475	05	05	05	0.00
2480	05	05	05	0.50
2485	05	05	05	1.00
2490	05	05	05	0.50
2495	05	05	05	0.00
2500	05	05	05	-0.50
2505	05	05	05	-1.00
2510	05	05	05	-0.50
2515	05	05	05	0.00
2520	05	05	05	0.50
2525	05	05	05	1.00
2530	05	05	05	0.50
2535	05	05	05	0.00
2540	05	05	05	-0.50
2545	05	05	05	-1.00
2550	05	05	05	-0.50
2555	05	05	05	0.00
2560	05	05	05	0.50
2565	05	05	05	1.00
2570	05	05	05	0.50
2575	05	05	05	0.00
2580	05	05	05	-0.50
2585	05	05	05	-1.00
2590	05	05	05	-0.50
2595	05	05	05	0.00
2600	05	05	05	0.50
2605	05	05	05	1.00
2610	05	05	05	0.50
2615	05	05	05	0.00
2620	05	05	05	-0.50
2625	05	05	05	-1.00
2630	05	05	05	-0.50
2635	05	05	05	0.00
2640	05	05	05	0.50
2645	05	05	05	1.00
2650	05	05	05	0.50
2655	05	05	05	0.00
2660	05	05	05	-0.50
2665	05	05	05	-1.00
2670	05	05	05	-0.50
2675	05	05	05	0.00
2680	05	05	05	0.50
2685	05	05	05	1.00
2690	05	05	05	0.50
2695	05	05	05	0.00
2700	05	05	05	-0.50
2705	05	05	05	-1.00
2710	05	05	05	-0.50
2715	05	05	05	0.00
2720	05	05	05	0.50
2725	05	05	05	1.00
2730	05	05	05	0.50
2735	05	05	05	0.00
2740	05	05	05	-0.50
2745	05	05	05	-1.00
2750	05	05	05	-0.50
2755	05	05	05	0.00
2760	05	05	05	0.50
2765	05	05	05	1.00
2770	05	05	05	0.50
2775	05	05	05	0.00
2780	05	05	05	-0.50
2785	05	05	05	-1.00
2790	05	05	05	-0.50
2795	05	05	05	0.00
2800	05	05	05	0.50
2805	05	05	05	1.00
2810	05	05	05	0.50
2815	05	05	05	0.00
2820	05	05	05	-0.50
2825	05	05	05	-1.00
2830	05	05	05	-0.50
2835	05	05	05	0.00
2840	05	05	05	0.50
2845	05	05	05	1.00
2850	05	05	05	0.50
2855	05	05	05	0.00
2860	05	05	05	-0.50
2865	05	05	05	-1.00
2870	05	05	05	-0.50
2875	05	05	05	0.00
2880	05	05	05	0.50
2885	05	05	05	1.00
2890	05	05	05	0.50
2895	05	05	05	0.00
2900	05	05	05	-0.50
2905	05	05	05	-1.00
2910	05	05	05	-0.50
2915	05	05	05	0.00
2920	05	05	05	0.50
2925	05	05	05	1.00
2930	05	05	05	0.50
2935	05	05	05	0.00
2940	05	05	05	-0.50
2945	05	05	05	-1.00
2950	05	05	05	-0.50
2955	05	05	05	0.00
2960	05	05	05	0.50
2965	05	05	05	1.00
2970	05	05	05	0.50
2975	05	05	05	0.00
2980	05	05	05	-0.50
2985	05	05	05	-1.00
2990	05	05	05	-0.50
2995	05	05	05	0.00
3000	05	05	05	0.50
3005	05	05	05	1.00
3010	05	05	05	0.50
3015	05	05	05	0.00
3020	05	05	05	-0.50
3025	05	05	05	-1.00
3030	05	05	05	-0.50
3035	05	05	05	0.00
3040	05	05	05	0.50

PEAK FLOW (CFS)	TIME [HR]	STAGE (FEET)	MAXIMUM AVERAGE FLOW 72-HR	MAXIMUM AVERAGE STAGE 72-HR
849.	17.92	{(CFS) (AC-FIT)}	67.5 66.47 24.5	24.92-HR 140. 7.627 2AA.
PEAK STAGE (AC-FIT)	TIME [HR]		6-HR	72-HF 12H.
PEAK STAGE (FEET)	TIME [HR]		6-HR	24-HR 44.73
46.58	17.92		23.7	24.92-HR 44.73
CUMULATIVE AREA =			0.69 SU.MI	

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLANT-SITE ECONOMIC COMPUTATIONS

OPERATION	STATION	AREA	PLAN	RATIO 1	RADIUS APPLIED TO FLOWS
HYDROGRAPH AT	A1	0.69	1	FLCH TIME	0.10 0.25 0.50
ROUTED TO	A2	0.69	1	FLCH TIME	16.83 16.83 16.83
				PEAK STAGES IN FLOW 1 TIME	122.50 122.50 122.50
				PEAK STAGES IN FLOW 1 TIME	17.92 17.92 17.92
				PEAK STAGES IN FLOW 1 TIME	46.58 46.58 46.58

SUMMARY OF DAY OVERTOPPING/AREACH ANALYSIS FOR STATION

A2

PLAN 1

STORAGE CAPACITY

	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
	43.70	43.70	45.26
	64.0.	64.0.	142.41.
RATIO OF RESERVOIR W.S. ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS
0.10	5.03	0.00	130.
0.25	16.00	0.80	208.
0.50	46.58	1.38	267.

	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	MAX OUTFLOW HOURS	TIME OF FAILURE HOURS

*** NORMAL END OF JOE ***

APPENDIX 5
REFERENCES
HELMETTA POND DAM

APPENDIX 5
REFERENCES

HELMETTA POND DAM

Chow, Ven-Te, Open Channel Hydraulics, McGraw Hill Book Company, New York, 1959.

King, H.W. and E.F. Brater, Handbook of Hydraulics, McGraw Hill Book Company, New York, Fifth Edition 1963.

Lewis, J.V. and H.B. Kummel (1910-1912) Geologic Map of New Jersey, revised by H.B. Kummel, 1931, and by M.E. Johnson, 1950. New Jersey Department of Conservation of Economic Development Atlas.

Schway, G.O., R.K. Frevert, T.W. Edmister, and K.K. Barnes, Soil and Water Conservation Engineering, The Ferguson Foundation Agricultural Engineering Series, John Wiley and Sons, Inc., New York, 1966, 683 pp.

U.S. Army Corps of Engineers, Hydrologic Engineering Center, Flood Hydrograph Package (HEC-1) Users Manual Preliminary, Davis, California, March 1981.

U.S. Department of Agriculture, Soil Conservation Service, Urban Hydrology for Small Watersheds, Technical Release No. 55, Washington, 1975.

U.S. Department of Commerce, Weather Bureau, "Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1000 Square Miles and Durations of 6, 12, 24, and 48 Hours", Hydrometeorological Report No. 33, Washington, 1977, 816 pp.

United States Department of Interior, Bureau of Reclamation, Design of Small Dams, U.S. Government Printing Office, Washington, 1977, 816 pp..

U.S. Department of Interior, Geological Survey, 7.5-Minute Series (topographic) maps, scale 1:24000, Contour Interval 10 feet: New Brunswick, New Jersey, (1954), Photorevised 1970.

Viessman, Warren, Jr., J.W. Knapp, G.L. Lewis, T.E. Harbaugh, Introduction to Hydrology, Harper and Row, Publishers, New York, Second Edition 1977, 704 pp.

