BLACKJACK

Modélisation mathématique du jeu ou Comment optimiser ses gains?

Sommaire

I	Règles du Blackjack	2
II	Modélisation mathématique	3
III	Programmation	8
IV	Conclusion	14
A	Bibliographie	15
В	Annexe	16

I Règles du Blackjack

But du jeu Avoir un meilleur score que le croupier sans dépasser 21.

Valeur des cartes

— AS: 1 ou 11

— ROI, DAME, VALET: 10 (BUCHES)

— 2 à 9 : valeur nominative

Déroulement d'une partie

- **Tirer** : demander une carte suplémentaire.
- **Rester** : s'arrêter.
- **Doubler** : doubler sa mise et recevoir une unique carte suplémentaire. (uniquement en début de tour).

Le croupier tire jusqu'à 17 (stratégie du dealer).

Fonctionnement des gains $\{-2; -1; 0; +1; +1.5; +2\}$

II Modélisation mathématique

a Etat du sabot

$$\Lambda = [n_2; n_3; n_4; n_5; n_6; n_7; n_8; n_9; n_{10}; n_{11}]$$

 n_i = nombre de cartes valant i restantes dans le sabot.

D'où:

$$P_{\Lambda}(i) = \frac{n_i}{\sum_{k=2}^{11} n_k} \tag{1}$$

b Utilisation de chaînes de Markov

Définition : Une *chaînes de Markov* est une suite de variables aléatoires (la n-ème représentant l'état du système à l'instant n) qui possède la propriété de *Markov*. On a :

$$P(X_{n+1} = j | X_0 = i_0, ..., X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$$
 (2)

Un exemple élémentaire de graphe de chaine de Markov :

c Modélisation du croupier

Stratégie imposée : 1 carte visible puis tire jusqu'à 17.

C = ensemble des états que le *croupier* peut atteindre pendant son tour.

- $\{I_i: i \in [|2;11|]\}$: états initiaux
- $\{h_i : i \in [|4;16|]\}$: états accessibles dures (hard hand) (pas d'As comptant pour 11)
- $\{s_i : i \in [|12;16|]\}$: états accessibles souples (soft hand) (présence d'un As comptant pour 11)
- $-\{F_i: i \in [|17;21|]\}$: états finaux
- -BJ: blackjack (21 en deux cartes)
- Busted: total strictement supérieur à 21

D'où

$$|C| = 35 \tag{3}$$

On modélise le tour du *croupier* par une *chaine de Markov* avec :

Un vecteur d'états : $\Phi_C \in M_{1,35}(\mathbb{R})$

Une matrice de transition : $\mathcal{M}_C(\Lambda) \in M_{35}(\mathbb{R})$

 $\Phi_C^*\mathcal{M}_C(\Lambda)$ donne les probabilités d'états du croupier après un tirage.

coefficient $(i,j) \in [|29,35|]^2$ de $\Phi_C^*(\mathcal{M}_C(\Lambda))^{17}$ = probabilité que le croupier soit dans l'état $(F_i \cup BJ \cup Busted)$ sachant que sa première carte était un i.

Etats (Initiaux/Finaux)	17	18	19	20	21	BJ	Busted
2	0,1398	0,1349	0,1297	0,1240	0,1180	0	0,3536
3	0,1350	0,1305	0,1256	0,1203	0,1147	0	0,3739
4	0,1305	0,1259	0,1214	0,1165	0,1112	0	0,3945
5	0,1223	0,1223	0,1177	0,1131	0,1082	0	0,4164
6	0,1654	0,1063	0,1063	0,1017	0,0972	0	0,4232
7	0,3686	0,1378	0,0786	0,0786	0,0741	0	0,2623
8	0,1286	0,3593	0,1286	0,0694	0,0694	0	0,2447
9	0,1200	0,1200	0,3508	0,1200	0,0608	0	0,2284
10	0,1114	0,1114	0,1114	0,3422	0,0345	0,0769	0,2121
As	0,1308	0,1308	0,1308	0,1308	0,0539	0,3077	0,1153

d Modélisation du joueur

Plusieurs stratégies:

— T_n : tirer n cartes puis rester

— ${\bf R}:rester$ (ne pas demander de cartes supplémentaires)

- D : doubler sa mise et recevoir une unique carte supplémentaire

Etude d'un cas particulier :

Espérance de gain du joueur 2 s'il décide de rester?

$$E(gain) = P(croupier > 21) - P(croupier \le 21)$$

Pour un sabot complet au début du tour, les valeurs numériques du tableau donnent :

$$E(gain) = 0,4164 - 0,5836 = -0,1672$$

J = ensemble des états que le joueur peut atteindre pendant son tour.

```
 - \{I_{hi}: i \in [|4;20|]\} : \text{\'etats initiaux } hard 
- \{I_{si}: i \in [|12;20|]\} : \text{\'etats initiaux } soft 
- \{h_i: i \in [|5;20|]\} : \text{\'etats accessibles } hard 
- \{s_i: i \in [|13;20|]\} : \text{\'etats accessibles } soft 
- \{F_i: i \in [|4;21|]\} : \text{\'etats finaux} 
- \{2F_i: i \in [|6;21|]\} : \text{\'etats finaux apr\'es avoir doubl\'e} 
- busted : \text{total strictement sup\'erieur \'a } 21 
- 2busted : \text{total strictement sup\'erieur \'a } 21 \text{ apr\'es avoir doubl\'e}. 
- BJ : \text{blackjack } (21 \text{ en deux cartes})
```

D'où

$$|J| = 87 \tag{4}$$

On modélise le tour du joueur par une chaine de Markov avec :

Un vecteur d'états : $\Phi_J \in M_{1,87}(\mathbb{R})$

Une matrice de transition : $\mathcal{M}_J(s,\Lambda) \in M_{87}(\mathbb{R})$

 $NB : \mathcal{M}_J(s,\Lambda)$ dépend de la stratégie s du joueur.

e Calcul de l'espérance de gain

Conditions initiales : $\Lambda, \Phi_C, \Phi_J, \mathcal{S}$

NB : S est une liste de la forme [D] ou [T, T, ..., T, R]

L'application σ associe à une situation finale les gains du joueur (gains appartenant à $G = \{-2; -1; 0; 1; 1.5; 2\}$).

$$\sigma = \begin{cases} F_J \times F_C & \longrightarrow & G \\ (j,c) & \longmapsto & \sigma(j,c) \end{cases}$$
 (5)

Etats possibles du joueur (noté F_J) et du croupier (noté F_C) à la fin du tour sont :

- $F_C \in \{F_i : i \in [|17; 21|]\} \cup \{busted\} \cup \{BJ\}\}$
- $F_J \in \{F_i : i \in [|4;21|]\} \cup \{2F_i : i \in [|6;21|]\} \cup \{busted\} \cup \{2busted\} \cup \{BJ\}$

Avec X la variable aléatoire associée à l'état final du tour, le théorème de Transfert donne l'espérance de gain (notée E) pour une main et une stratégie fixée :

$$E = E(\sigma(X)) = \sum_{\mathcal{F} \in F_J \times F_C} P(X = \mathcal{F}) \sigma(\mathcal{F})$$
 (6)

Avec

— Si $\mathcal{F} \in \{(busted, _) \cup (2busted, _)\}$:

$$P(\mathcal{F}) = (\Phi_J \mathcal{M}_J(\mathcal{S}[1], \Lambda) \cdots \mathcal{M}_J(\mathcal{S}[n], \Lambda)).e_i$$

— Sinon:

$$P(\mathcal{F}) = [(\Phi_J \mathcal{M}_J(\mathcal{S}[1], \Lambda) \cdots \mathcal{M}_J(\mathcal{S}[n], \Lambda)).e_i] \times [(\Phi_C(\mathcal{M}_C(\Lambda))^{17}).u_j]$$

III Programmation

a Problème rencontrés

Difficultés rencontrées	Solution trouvées
Très lourde complexité	Programmation dynamique
Rendre le tout plus ludique	Programmation orienté objet (interface graphique)
Aucunes connaissances	Tutoriel sur Tkinter
Multiplication matrices	Utilisation module Numpy avec fonction dot
Exponentiation matrice $(89 * 89)^{21}$	Stockage des matrices et s'arrêter à puissance 6

o Création d'une simulation

- nouveau_sabot()
- modification etat sabot(n)
- mains_initiales()
- valeur main(main)
- tirer(main)
- doubler(main)
- strategie_dealer(main)
- comparaison mains(moi,dealer)
- tour()
- jeu()

o Programmation dynamique

- Implémentation des matrices croupier et joueur.
- Exponentiation rapide des matrices.
- Codage de la fonction sigma.
- Calcul des probabilités pour arriver dans un état final donné. (stockage des matrices pour ne pas tout remultiplier à chaque fois.
- Calcul de l'espérance.
- Renvoyer la meilleure stratégie (tri-fusion)

o Programmation orienté objet

- Interface graphique interactive
- Module Tkinter (Python)

b Programme d'aide à la décision

But : donner au joueur la stratégie ayant la plus grande espérance de gain.

c Efficacité de l'algorithme

d Amélioration

- Utilisation du comptage de cartes (un excédent de buches est favorable au joueur)
- Adaptation de la mise en fonction de l'état du sabot

e Limites

Complexité en temps (tests effectués sur un ordinateur équipé d'un : Intel Core i3-3217U CPU@1.80GHz) :

Nombre de stratégies comparées	Temps
23	3min 30s
7	43s
4	17s

IV Conclusion

- Une modélisation mathématique permet de créer un programme permettant de battre le casino
- Difficilement applicable dans la réalité

A Bibliographie

- R. Baldwin, W. Cantey, H. Maisel, J. McDermott. Journal of the american statistical association, 51 (1956), p.275, *The optimum strategy in blackjack*.
- R. Baldwin, W. Cantey, H. Maisel, J. McDermott. *Playing Blackjack to Win : A New Strategy for the Game of 21*, Cardoza, 2008 (réimpression).
- E. O. Thorp. Beat the Dealer: A Winning Strategy for the Game of Twenty-One, Vintage, 1962.
- F. Montmirel. Le Blackjack: Apprenez l'excellence, Bornemann, 2004.
- Guide Blackjack : la référence du 21, http://www.guide-blackjack.com, consulté régulièrement tout au long de l'année.

B Annexe

Matrice du croupier

	1213 1415 1617 1819 1111 0 1	0 1 h4	55	94	Ь7	P8	6	h10 h	h11 h12	2 h13	3 h14	h15	h16	s12	s13 s14	4 s15	5 s16	£ 41	1 8	1 19	120	£21	<u>8</u>	bust
12		p(2)	p(3)	p(4)	p(5)	(9)d	p(7)	p(8)	.)d (6)d	p(10)					p(11)									
13			p(2)	p(3)	p(4)	p(5)	(9)d	p(7)	p(8) p(9)	9) p(10)	(0)d	p(11)								
14				p(2)	p(3)	p(4)	p(5)	d (9)d	p(7) p(8)	(e)d (e	() p(10)					ď	p(11)							
15					p(2)	p(3)	p(4)	p(5) p	p(6) p(7)	7) p(8)	(6)d (1	p(10)					p(11)	£						
91						p(2)	p(3)	p(4)	p(5) p(6)	3) p(7)) p(8)	(6)d	p(10)					p(11)						
71							p(2)	p(3)	p(4) p(5)	e) b(e)	() p(7)	p(8)	(6)d					p(10)) p(11)					
81								p(2)	b(3) p(4	(4) p(5)	(9)d (1	p(7)	p(8)					(6)d	p(10)	p(11)				
6								۵	p(2) p(3)	3) p(4)	(c) (d)	(9)d	p(7)					p(8)	(6)d	p(10)	p(11)			
110									p(2)	2) p(3)	b(4)	p(5)	(9)d					p(7)	(8)d	(6)d	p(10)	0.	p(11)	
Ħ														p(11)	p(2) p(3)	3) p(4)	4) p(5)	(9)d ((Z)d	p(8)	(6)d	0.	p(10)	
h4				p(2)	p(3)	p(4)	p(5)	d (9)d	p(7) p(8	(8) (8)	() p(10)					ď	p(11)							
h5					p(2)	p(3)	p(4)	p(5) p	p(6) p(7)	(y) (b)	(6)d (1	p(10)					p(11)	£						
h6						p(2)	p(3)	p(4)	p(5) p(6)	3) p(7)) p(8)	(6)d	p(10)					p(11)						
h7							p(2)	p(3)	p(4) p(5)	9) b(e)	() p(7)	p(8)	(6)d					p(10)	0) p(11)					
h8								p(2)	p(3) p(4)	t) p(5)	(9)d (e	p(7)	p(8)					(6)d	p(10)	p(11)				
h9								Q.	p(2) p(3)	3) p(4)	(c) (d)	(9)d	p(7)					p(8)	(6)d	p(10)	p(11)			
h10									p(2)	2) p(3)) p(4)	p(5)	(9)d					p(7)	p(8)	(6)d	p(10)	p(11)		
h11									ď	p(11) p(2)	(c) b(3)	p(4)	p(5)					(9)d	(Z)d	p(8)	(6)d	p(10)		
h12										p(11)	1) p(2)	p(3)	p(4)					p(5)	(9)d	p(7)	p(8)	(6)d	ď	p(10)
h13											p(11)) p(2)	p(3)					p(4)	p(5)	(9)d	p(7)	p(8)	ď	p(9)+p(10)
h14												p(11)	p(2)					p(3)	p(4)	p(5)	(9)d	p(7)	ď	p(8)+p(9)+p(10)
h15													p(11)					p(2)	p(3)	p(4)	p(5)	(9)d	ā	p(7)+p(8)+p(9)+p(10)
h16																		p(11)	I) p(2)	p(3)	p(4)	p(5)	ď	p(6)+p(7)+p(8)+p(9)+p(10)
s12									ď	p(10)				_	p(11) p(2)	2) p(3)	3) p(4)) p(5)	(9)d	p(7)	p(8)	(6)d		
s13									(6)d	9) p(10)	(0				ď	p(11) p(2)	2) p(3)) p(4)	p(5)	(9)d	p(7)	p(8)		
s14									ď	(8) p(9)) p(10)					ď	p(11) p(2)) p(3)	p(4)	p(5)	(9)d	p(7)		
s15									p(7)	7) p(8)	(6)d (1	p(10)					p(11)	1) p(2)	p(3)	p(4)	p(5)	(9)d		
s16									b(6)	(2) p(7)) p(8)	(6)d	p(10)					p(11)	I) p(2)	p(3)	p(4)	p(5)		
117																			-					
118																				_				
119																				_				
120																					-			
121																						-		
e de la			-	+		_		+	+		-	+			+	+	+	+	+	+			-	,
Diest												-				-			-					_