Information documentaire Informatique de gestion

Corrigé de l'examen

Semestre d'hiver 2009

Département: Module: Unité de cours: Date:	Module: Branches instrumentales Unité de cours: Statistiques III					
Nombre de pages:	8 (sans la présente page de garde)					
	Étudiant-e					
Nom:	Prénom:					
$Examinateur$ -trice $\Box \qquad Varone \ S$ $\Box \qquad Hebeisen$						
– formulair – machine « Ne pas écrire e	tion et matériel autorisés : re personnel de 3 pages A4 recto-verso maximum ; à calculer, de quoi écrire en rouge. e vos calculs doit être de 4 chiffres après la virgule.					
Poir	nts: NOTE OBTENUE:					

Problème 1 Théorie (6 points)

a) Soit T_8 une variable de Student à 8 degrés de liberté. La valeur b telle que $P(T_8 \ge b) =$ 0.025 représente l'aire sous la courbe à partir de 0.025 \square VRAI \square FAUX Réponse: Faux. C'est l'inverse: 0.025 représente l'aire sous la courbe à partir de b. Autre argument : comme b = 2.306, il ne peut s'agir de l'aire (max 1). b) Soit un échantillon de taille 100, à partir duquel on construit un intervalle de confiance (IC) pour une moyenne. Alors l'IC à 90% est contenu dans l'IC à 95%. \square VRAI \square FAUX Réponse : Vrai. Plus le degré de confiance est grand, plus l'IC est grand ($z_{\frac{\alpha}{2}}$ augmente lorsque le risque α diminue). Cas extrême = 100 % c) Soit X une variable normale de moyenne 10 et d'écart-type 10. Alors en prenant un échantillon de taille 100, la moyenne d'échantillonnage suivra une loi $\bar{X} \sim \mathcal{N}(10, 1)$ \square VRAI \square FAUX Réponse : Vrai. On a $\mu = 10$ et $\sigma^2 = 100$. Comme n > 30, par le TCL on aura $\bar{X} \sim$ $\mathcal{N}(10, \frac{100}{100})$ d) On sait que la moyenne d'une certaine population est de 10.34. Sur la base d'un échantillon de taille 100 tiré de cette population, l'IC à 95% suivant est calculé : [9.44; 10.21]. Alors la probabilité que l'IC contienne la vraie valeur de la moyenne est de 95%. \square VRAI \square FAUX

e) Qu'est-ce que l'erreur de deuxième espèce?

Réponse : Il s'agit de la probabilité d'accepter H_0 alors qu'elle est fausse.

Problème 2 Enfants par ménage (4 points)

Un sondage a été effectué dans une petite communauté pour connaître le nombre d'enfants par foyer. L'échantillon procure les résultats suivants :

Justification: Réponse: Faux. L'IC ne contient pas 10.34, donc la probabilité est de 0.

Nombre d'enfants
$$x_i$$
 0 1 2 3 4 Total Effectif (foyers) n_i 6 7 5 2 0 20

Le nombre moyen d'enfants \bar{x} par foyer est 1.15, et l'écart type s du nombre d'enfants par foyer est 0.988087

a) (2 points) Calculez le pourcentage de foyers dont le nombre d'enfants appartiennent à l'intervalle $[\bar{x} - s; \bar{x} + s]$.

Réponse : L'intervalle est $1.15 \pm 0.988087 = [0.1619131; 2.138087]$, donc on regarde les foyers ayant soit 1, soit 2 enfants. Donc la proportion est (7+5)/20 = 0.6, ou 60%

b) (2 points) Calculez un intervalle de confiance à 90% pour la variance du nombre d'enfants par foyers dans la population. Vous pouvez supposer que les conditions nécessaires à l'utilisation d'un intervalle de confiance sont valides (échantillon dont les éléments sont

i.i.d. de distribution normale) Réponse : Estimation de la variance σ^2 , moyenne μ inconnue, population normale, dl = 19 IC = $[(n-1)s^2/q_{0.05;19}; (n-1)s^2/q_{0.95;19}] = [19\cdot0.9763158/30.14353; 19\cdot0.9763158/10.11701] = [0.6153892; 1.833545]$

Problème 3 Composants électriques (8 points)

La durée de vie d'un composant électrique, exprimée en heures, suit une loi normale. Une étude sur un échantillon de 16 composants donne une durée de vie moyenne de 3100 h et un écart type de 200h. Construisez un test bilatéral au seuil de risque de 15 % pour tester si la durée de vie moyenne du composant est égale à 3000 h. Utilisez la méthode de la p-valeur en spécifiant toutes les étapes.

- a) (1 point) Quel est le paramètre d'intérêt?
 Réponse : durée de vie moyenne du composant électrique
- b) (1 point) Quelles sont les hypothèses nulle et alternative? Réponse : H_0 : $\mu_0 = 3000$

Réponse : H_0 : $\mu_0 = 3000$ H_1 : $\mu_1 \neq 3000$

- c) (1 point) Quel est le niveau de signification? Réponse : risque : $\alpha = 0.15$ (1pt)
- d) (2 points) Quelle est la valeur critique du test? Réponse : $\alpha = 0.15$ ou $t_{0.075,15} \in [1.3406; 1.7531]$ et $t_{0.925,15} \in [-1.7531; -1.3406]$
- e) **(2 points)** Quelle est la p-valeur (Estimez-la)? Réponse : statistique de test $t_0 = \frac{3100-3000}{20/\sqrt{16}} = 2$ $P(T_{15} > 2) \in [0.025; 0.05], d'où p-valeur \in [0.05; 0.1]$
- f) (1 point) Quelle est la conclusion du test? Réponse : comme p-valeur $< \alpha = 0.15$, l'hypothèse nulle est rejetée il y a suffisamment d'évidence pour affirmer au seuil $\alpha = 0.15$ que la durée de vie moyenne n'est pas de 3000 h.

Problème 4 Cancer (7 points)

Une étude sur la relation entre le cancer du poumon et le tabagisme a été effectuée. 120 patients ont été examinés et questionnés. La variable X associe à chaque individu la modalité "est fumeur" ou "n'est pas fumeur" suivant son comportement, et la variable Y associe à chaque individu la modalité "a un cancer du poumon" ou "n'a pas de cancer du poumon" suivant son état.

Testez l'indépendance des deux variables au seuil 0.05, sachant que les données de l'étude sont les suivantes :

	cancer	pas de cancer	Total
fumeur	70	30	100
non fumeur	5	15	20
Total	75	45	120

Indiquez toutes les étapes du test.

Réponse : Effectifs par cellule supérieurs à 5, donc on peut faire le test.

- hypothèses 1 pt
- niveau de signification : 1 pt
- valeur critique $\chi^2_{0.05:1}$ 1 pt
- calcul des e_{ij} 1 pt
- calcul de la statistique χ^2 (calcul des $(o_{ij}-e_{ij})^2/e_{ij})$ 2 pt
- conclusion 1 pt

Calculs:

tableau des e_{ij}	cancer	pas de cancer
fumeur	62.5	37.5
non fumeur	12.5	7.5

Degrés de liberté = (2-1)(2-1) = 1, donc $\chi^2_{0.05:1} = 3.8415$

Calcul de la statistique : $\chi^2 = 0.9 + 1.5 + 4.5 + 7.5 = 14.4$, qui est plus grand que 3.8415. L'hypothèse H_0 : "il n'existe aucun lien entre fumer et avoir le cancer du poumon" sera rejetée.

```
tabac <- matrix(c(70,30,5,15),ncol=2,byrow=TRUE)
res <- chisq.test(tabac,correct=FALSE)
res$observed ; res$expected ; res$residuals^2 ; res
(oij-eij)^2/eij</pre>
```

Problème 5 Décision (3 points)

L'économiste Ed Tourdi de la société "Mark & Ting" a effectué un sondage pour estimer la proportion de clients qui achèteraient le nouveau téléphone "Nexus One" si ce dernier était proposé par un opérateur de télécommunications en exclusivité. En tant que responsable de l'agence "Mark & Ting" vous recevez le rapport de l'économiste. Devriez-vous suivre ses recommandations ? (Justifiez)

Note : les calculs peuvent être considérés comme corrects et le minimum de 1% nécessaire à la rentabilité est correct.

Rapport sur le potentiel du "Nexus One"

Un sondage aléatoire (simple) a été effectué, en prenant soin que l'échantillon représente bien la population visée. Le dépouillement du sondage indique que 2.45% des 200 personnes sondées achèteraient le "Nexus One". Comme il est nécessaire qu'au minimum 1% de la population achète ce téléphone afin que l'opération soit rentable, j'ai testé cette condition au seuil de 5% (selon le règlement de notre société).

a) Le paramètre d'intérêt est π , la proportion qui achèterait le "Nexus One"

- c) Le niveau de signification est $\alpha = 0.05$
- d) La région critique est l'ensemble des valeurs supérieures à $z_{0.05}$ i.e. $[1.645; \infty[$
- e) La statistique de test est

$$z = \frac{0.0245 - 0.01}{\sqrt{\frac{0.01(1 - 0.01)}{200}}} = 2.06094$$

Comme $z=2.06094>1.645=z_{0.05}$ l'hypothèse H_0 est rejetée

f) Je conseille donc le contrat d'exclusivité du "Nexus One" à l'opérateur de télécommunications.

Réponse : Les conditions du test sur la proportion ne sont pas toutes remplies : $n \cdot \pi = 200 \cdot 0.01 = 2 < 5$. Le test ne peux donc pas être fait.

Problème 6 Qualité des soins (6 points)

Une étude sur la qualité des soins en milieu hospitalier indique le jugement subjectif des patients sur la qualité des soins (échelle de 1=exécrable à 7=excellent) en fonction de la durée de séjour en jours.

Vous utilisez le logiciel R afin de calculer l'équation de la régression linéaire (partie de gauche), ainsi qu'effectuer le test de la corrélation au seuil de 5% (partie de droite).

Pearson's product-moment correlation | Coefficients: | (Intercept) | Duree |
data: Duree and Qualite | 6.5584 | -0.1948 |
t = -2.3717, df = 4, p-value = 0.03834 |
alternative hypothesis: true correlation is less than 0 |
95 percent confidence interval: | |
-1.00000000 -0.05716649 | |
sample estimates: | |
cor | |
-0.7644708 |

Indication : la droite de régression est donc $\widehat{Qualite} = 6.5584 - 0.1948 * Durée$ et le coefficient de corrélation vaut r = -0.7644708

a) (2 points) Quelle est la qualité du modèle de régression linéaire obtenu? Réponse : $R^2 = r^2 = 0.5844156$ donc 58.4% de la variance est expliquée

- b) (2 points) Le modèle est-il valide? Justifiez. Réponse : Oui car p-valeur = $0.03834 < \alpha = 0.05$
- c) (2 points) Utiliseriez-vous ce modèle? Justifiez.

 Réponse: Non car un diagramme de dispersion montre qu'il s'agit en fait de deux relations linéaires parfaites

A Loi normale centrée réduite

\mathbf{z}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.0913 0.7257	0.0930 0.7291	0.0983 0.7324	0.7019 0.7357	0.7034 0.7389	0.7033 0.7422	0.7123 0.7454	0.7137 0.7486	0.7190 0.7517	0.7224 0.7549
	0.7237	0.7291 0.7611	0.7524 0.7642	0.7673		0.7422 0.7734			0.7317 0.7823	
0.7					0.7704		0.7764	0.7794		0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

	Valeurs de $lpha$									
	0.995	0.99	$\boldsymbol{0.975}$	0.95	0.9	0.1	0.05	$\boldsymbol{0.025}$	0.01	0.005
dl										
1	0.0000	0.0002	0.0010	0.0039	0.0158	2.7055	3.8415	5.0239	6.6349	7.8794
2	0.0100	0.0201	0.0506	0.1026	0.2107	4.6052	5.9915	7.3778	9.2103	10.5966
3	0.0717	0.1148	0.2158	0.3518	0.5844	6.2514	7.8147	9.3484	11.3449	12.8382
4	0.2070	0.2971	0.4844	0.7107	1.0636	7.7794	9.4877	11.1433	13.2767	14.8603
5	0.4117	0.5543	0.8312	1.1455	1.6103	9.2364	11.0705	12.8325	15.0863	16.7496
6	0.6757	0.8721	1.2373	1.6354	2.2041	10.6446	12.5916	14.4494	16.8119	18.5476
7	0.9893	1.2390	1.6899	2.1673	2.8331	12.0170	14.0671	16.0128	18.4753	20.2777
8	1.3444	1.6465	2.1797	2.7326	3.4895	13.3616	15.5073	17.5345	20.0902	21.9550
9	1.7349	2.0879	2.7004	3.3251	4.1682	14.6837	16.9190	19.0228	21.6660	23.5894
10	2.1559	2.5582	3.2470	3.9403	4.8652	15.9872	18.3070	20.4832	23.2093	25.1882
11	2.6032	3.0535	3.8157	4.5748	5.5778	17.2750	19.6751	21.9200	24.7250	26.7568
12	3.0738	3.5706	4.4038	5.2260	6.3038	18.5493	21.0261	23.3367	26.2170	28.2995
13	3.5650	4.1069	5.0088	5.8919	7.0415	19.8119	22.3620	24.7356	27.6882	29.8195
14	4.0747	4.6604	5.6287	6.5706	7.7895	21.0641	23.6848	26.1189	29.1412	31.3193
15	4.6009	5.2293	6.2621	7.2609	8.5468	22.3071	24.9958	27.4884	30.5779	32.8013
16	5.1422	5.8122	6.9077	7.9616	9.3122	23.5418	26.2962	28.8454	31.9999	34.2672
17	5.6972	6.4078	7.5642	8.6718	10.0852	24.7690	27.5871	30.1910	33.4087	35.7185
18	6.2648	7.0149	8.2307	9.3905	10.8649	25.9894	28.8693	31.5264	34.8053	37.1565
19	6.8440	7.6327	8.9065	10.1170	11.6509	27.2036	30.1435	32.8523	36.1909	38.5823
20	7.4338	8.2604	9.5908	10.8508	12.4426	28.4120	31.4104	34.1696	37.5662	39.9968
21	8.0337	8.8972	10.2829	11.5913	13.2396	29.6151	32.6706	35.4789	38.9322	41.4011
22	8.6427	9.5425	10.9823	12.3380	14.0415	30.8133	33.9244	36.7807	40.2894	42.7957
23	9.2604	10.1957	11.6886	13.0905	14.8480	32.0069	35.1725	38.0756	41.6384	44.1813
24	9.8862	10.8564	12.4012	13.8484	15.6587	33.1962	36.4150	39.3641	42.9798	45.5585
25	10.5197	11.5240	13.1197	14.6114	16.4734	34.3816	37.6525	40.6465	44.3141	46.9279
26	11.1602	12.1981	13.8439	15.3792	17.2919	35.5632	38.8851	41.9232	45.6417	48.2899
27	11.8076	12.8785	14.5734	16.1514	18.1139	36.7412	40.1133	43.1945	46.9629	49.6449
28	12.4613	13.5647	15.3079	16.9279	18.9392	37.9159	41.3371	44.4608	48.2782	50.9934
29	13.1211	14.2565	16.0471	17.7084	19.7677	39.0875	42.5570	45.7223	49.5879	52.3356
30	13.7867	14.9535	16.7908	18.4927	20.5992	40.2560	43.7730	46.9792	50.8922	53.6720
40	20.7065	22.1643	24.4330	26.5093	29.0505	51.8051	55.7585	59.3417	63.6907	66.7660
50	27.9907	29.7067	32.3574	34.7643	37.6886	63.1671	67.5048	71.4202	76.1539	79.4900
60	35.5345	37.4849	40.4817	43.1880	46.4589	74.3970	79.0819	83.2977	88.3794	91.9517
70	43.2752	45.4417	48.7576	51.7393	55.3289	85.5270	90.5312	95.0232	100.4252	104.2149
80	51.1719	53.5401	57.1532	60.3915	64.2778	96.5782	101.8795	106.6286	112.3288	116.3211
90	59.1963	61.7541	65.6466	69.1260	73.2911	107.5650	113.1453	118.1359	124.1163	128.2989
_100	67.3276	70.0649	74.2219	77.9295	82.3581	118.4980	124.3421	129.5612	135.8067	140.1695

C Table de la loi de Student

t	Valeurs de α									
	0.45	0.4	0.3	0.25	0.2	0.1	0.05	$\boldsymbol{0.025}$	0.01	0.005
$\overline{}$ dl										
1	0.1584	0.3249	0.7265	1.0000	1.3764	3.0777	6.3138	12.7062	31.8205	63.6567
2	0.1421	0.2887	0.6172	0.8165	1.0607	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.1366	0.2767	0.5844	0.7649	0.9785	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.1338	0.2707	0.5686	0.7407	0.9410	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.1322	0.2672	0.5594	0.7267	0.9195	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.1311	0.2648	0.5534	0.7176	0.9057	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.1303	0.2632	0.5491	0.7111	0.8960	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.1297	0.2619	0.5459	0.7064	0.8889	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.1293	0.2610	0.5435	0.7027	0.8834	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.1289	0.2602	0.5415	0.6998	0.8791	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.1286	0.2596	0.5399	0.6974	0.8755	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.1283	0.2590	0.5386	0.6955	0.8726	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.1281	0.2586	0.5375	0.6938	0.8702	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.1280	0.2582	0.5366	0.6924	0.8681	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.1278	0.2579	0.5357	0.6912	0.8662	1.3406	1.7531	2.1314	2.6025	2.9467
16	0.1277	0.2576	0.5350	0.6901	0.8647	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.1276	0.2573	0.5344	0.6892	0.8633	1.3334	1.7396	2.1098	2.5669	2.8982
18	0.1274	0.2571	0.5338	0.6884	0.8620	1.3304	1.7341	2.1009	2.5524	2.8784
19	0.1274	0.2569	0.5333	0.6876	0.8610	1.3277	1.7291	2.0930	2.5395	2.8609
20	0.1273	0.2567	0.5329	0.6870	0.8600	1.3253	1.7247	2.0860	2.5280	2.8453
21	0.1272	0.2566	0.5325	0.6864	0.8591	1.3232	1.7207	2.0796	2.5176	2.8314
22	0.1271	0.2564	0.5321	0.6858	0.8583	1.3212	1.7171	2.0739	2.5083	2.8188
23	0.1271	0.2563	0.5317	0.6853	0.8575	1.3195	1.7139	2.0687	2.4999	2.8073
24	0.1270	0.2562	0.5314	0.6848	0.8569	1.3178	1.7109	2.0639	2.4922	2.7969
25	0.1269	0.2561	0.5312	0.6844	0.8562	1.3163	1.7081	2.0595	2.4851	2.7874
26	0.1269	0.2560	0.5309	0.6840	0.8557	1.3150	1.7056	2.0555	2.4786	2.7787
27	0.1268	0.2559	0.5306	0.6837	0.8551	1.3137	1.7033	2.0518	2.4727	2.7707
28	0.1268	0.2558	0.5304	0.6834	0.8546	1.3125	1.7011	2.0484	2.4671	2.7633
29	0.1268	0.2557	0.5302	0.6830	0.8542	1.3114	1.6991	2.0452	2.4620	2.7564
30	0.1267	0.2556	0.5300	0.6828	0.8538	1.3104	1.6973	2.0423	2.4573	2.7500
40	0.1265	0.2550	0.5286	0.6807	0.8507	1.3031	1.6839	2.0211	2.4233	2.7045
50	0.1263	0.2547	0.5278	0.6794	0.8489	1.2987	1.6759	2.0086	2.4033	2.6778
60	0.1262	0.2545	0.5272	0.6786	0.8477	1.2958	1.6706	2.0003	2.3901	2.6603
70	0.1261	0.2543	0.5268	0.6780	0.8468	1.2938	1.6669	1.9944	2.3808	2.6479
80	0.1261	0.2542	0.5265	0.6776	0.8461	1.2922	1.6641	1.9901	2.3739	2.6387
90	0.1260	0.2541	0.5263	0.6772	0.8456	1.2910	1.6620	1.9867	2.3685	2.6316
100	0.1260	0.2540	0.5261	0.6770	0.8452	1.2901	1.6602	1.9840	2.3642	2.6259
200	0.1258	0.2537	0.5252	0.6757	0.8434	1.2858	1.6525	1.9719	2.3451	2.6006
500	0.1257	0.2535	0.5247	0.6750	0.8423	1.2832	1.6479	1.9647	2.3338	2.5857
∞				C:	f. Distrib	ution Nor	\mathbf{male}			