Analyse 2

20241011

14 septembre 2021

Chapitre 1 Notion de dérivabilité

Proposition 1

Lorsque a n'est pas une borne de I, la fonction f est dérivable en a si ei seulement si elle est dérivable à droite et à gauche en a et $f'_d(a) = f'_q(a)$.

Proposition 2

Si f est coïncide au voisinage de a avec une fonction g dérivable en a ; alors f est dérivable en a et f'(a) = g; (a).

Proposition 3

Si f est dérivable en a; alors elle est continue en a.

Proposition 4

Soient f et g deux fonction définies sur I ainsi que λ et μ deux réels. Si f et g sont dérivables en a, alors les fonction $\lambda f + \mu g$ et f g sont dérivables en a et l'on a:

$$(\lambda f + \mu g)'(a) = \lambda f'(a) + \mu g'(a)$$
 et $(f g)'(a) = f'(a) g(a) + f(a) g'(a)$.

Proposition 5

Si f est une fonction dérivable en a et ne sannulant pas sur I, alors la fonction $\frac{1}{f}$ est dérivable en a et :

$$\left(\frac{1}{f}\right)'(a) = -\frac{f'(a)}{f(a)^2}$$

Proposition 6

Soient I et J deux intervalles, f une application de I dans J et g une application définie sur J. Si f est dérivable en $a \in I$ et g dérivable en b = f(a), alors $g \circ f$ est dérivable en a et :

$$(g \circ f)'(a) = g'(b) f'(a)$$

Proposition 7

Soit f une application continue et strictement monotone de lintervalle I sur lintervalle J = f(I), dérivable en $a \in I$. La fonction f^{-1} est dérivable en b = f(a) si et seulement si $f'(a) \neq 0$, et l'on a alors :

$$(f^{-1})'(b) = \frac{1}{f'(a)}.$$

Proposition 8

Soient f une fonction définie sur un intervalle I et a un point de I qui nen est pas une borne. Si la fonction f présente un extremum local en a et si elle est dérivable en a alors f'(a) = 0.

Proposition 9

Soit f une fonction dérivable sur lintervalle I. Étant donnés deux réels x et h tels que x et x + h appartiennent à I, il existe un réel $\theta \in]0,1[$ tel que :

$$f(x+h) = f(x) + hf'(x+\theta h).$$

Proposition 10

Soient I un intervalle et f une fonction dérivable de I dans \mathbb{R} .

La fonction f est croissante (resp. décroissante) sur I si et seulement si $\forall x \in I, f'(x) \ge 0$ (resp. $\forall x \in I, f'(x) \le 0$).

Chapitre 2 Approximation locale des fonctions

CHAPITRE 3 INTÉGRATION

Définition 1

— On appelle subdivision de [a,b], toute famille $u=(x_i)_{i\in [0,n]}$ telle que $n\in \mathbb{N}^*$ et:

$$a = x_0 < x_1 < \dots < x_n < b.$$

— On appelle pas ou module de la subdivision $u = (x_i)_{i \in [0,n]}$, le réel :

$$\delta(u) = \max_{i \in \llbracket 0, n \rrbracket} (x_i - x_{i-1}).$$

Définition 2

Si u et v sont deux subdivisions de [a,b], on dit que u est plus fine que v si tout élément de v est élément de u.

Proposition 11

Si u et v sont deux subdivisions de [a,b], il existe une subdivision plus fine que u et v.

Définition 3

Une fonction ϕ de [a,b] dans R est en escalier si lon peut trouver une subdivision $u = (x_i)_{i \in [0,n]}$ de [a,b] telle que ϕ soit constante sur chacun des intervalles $]x_{i-1},x_i[$ $(1 \le i \le n)$.

Une telle subdivision u est appelée subdivision adaptée à la fonction en escalier ϕ .

Proposition 12

Soient ϕ et ψ dans $\mathcal{E}[a,b]$ et $(\lambda,\mu) \in \mathbb{R}^2$. Alors $\lambda \phi + \mu \psi$ est une fonction en escalier sur [a,b].

Proposition 13

Soit $\phi \in \mathcal{E}[a,b]$ et $u = (x_i)_{i \in [0,n]}$ une subdivision adaptée à ϕ . Si, pour $1 \leq i \leq n$, on note c_i la valeur de ϕ sur $|x_{i-1}, x_i|$, alors la quantité :

$$\sum_{i=1}^{n} (x_i - x_{i-1})c_i$$

ne dépend pas de la subdivision u choisie.

On l'appelle intégrale de ϕ sur [a,b] et on la note :

$$\int_{[a,b]} \phi.$$