D' Alembert's Principle

Dynamic Equilibrium State

ΣF - ma = 0

R - ma = 0

· Dalembert's principle ! . =) N=119 - 100x10

The states that under the acts of ett.

Force and inertia force body will be in dynamic

equilibrium

qcc|n q' that means there is effective force

(Net Force) F=ma acting in x-directn.

Now, it we apply force p=ma in the -ve x
directn then body will be in equilibrium called as

dynamic equilibrium.

- Enertia parce is the imaginary parce acting apposite to the moth having same magnitude like resultant force

Q. Consider a block of mass 40 kg acted upon by a force P which acts at an angle $\theta = 30^\circ$ with horizontal. Due to this force, block is moving with acceleration of 2 m/s². Given that the coefficient of friction $\mu k = 0.3$. Find force P. Use D' Alembert's principle.

Applying in x-direction

Applying in y-direction

$$\Sigma F_x - ma = 0$$
 $\Sigma F_y - ma = 0$ (P cos 30 - μ_k .N) - ma = 0 (P sin 30 + N - W) - ma = 0 P cos 30 - 0.3.N - $40*2 = 0$(1) P sin 30 + N - $40*9.81 - 40*2 = 0$(2) On solving equation (1) & (2), we get

N S L Equation Applied To Rectilinear Motion

I person travelling in lift with acclu-

(2) person travelling 90 11th with const velocity

@ person travelling in lift with accluding in downward directn

N S L Equation Applied To Rectilinear Motion

$$\Sigma F_{x} = ma_{x}$$

P - $mg sin\theta - \mu_{k}N = ma.....(1)$

$$\sum Fy = may$$

$$N - mg \cos \theta = 0$$

$$N = mg \cos \theta \dots (2)$$

$$a = \frac{P - mg(\sin\theta - \mu_k \cos\theta)}{m}$$

Q. Two blocks P and Q are held stationary 15 m apart on a 30° inclined plane. The kinetic coefficient of friction between P and plane is 0.3 and between Q and plane is 0.1. If the blocks are released simultaneously, calculate the time taken and distance traveled by each block before they are on the verge of collision.

$$\Sigma F_y = ma_y$$
 $\Sigma F_x = ma_x$
 $N - W \cos \theta = 0$ $W \sin \theta - \mu_k N = ma.....(2)$
 $N = W \cos \theta$ (1)

Substitute the value of N from (1) in (2)

www.ezed.in

For block P,
$$\mu_k = 0.3$$
, $\theta = 30^\circ$

$$a_p = 9.81(\sin 30 - 0.3*\cos 30)$$

$$a_p = 2.35 \text{ m/s}^2$$

For block Q,
$$\mu_k = 0.1$$
, $\theta = 30^{\circ}$

$$a_{Q} = 9.81(\sin 30 - 0.1 * \cos 30)$$

$$a_q = 4.05 \text{ m/s}^2$$

$$a = 2.35 \text{ m/s}^2$$

using
$$s = ut + \frac{1}{2}at^2$$

Ww.ezex =
$$0 + \frac{1}{2}(2.35)t^2(4)$$

$$s = (x + 15)$$

$$a = 4.05 \text{ m/s}^2$$

using
$$s = ut + \frac{1}{2}at^2$$

$$(x + 15) = 0 + \frac{1}{2}(4.05)t^2$$
(5)

$$x = 20.73 \text{ m}$$

N S L Equation Applied To Curvilinear Motion

Rectilinear Motion V/S Curvilinear Motion

Q. A bob of 2 m pendulum describes an arc of circle in a vertical plane. If the tension in the cord is 5 times the weight of the bob for the position shown, find the velocity and acceleration of the bob in that position.

Solution:

$$\Sigma F_{y} = ma_{y}$$

$$T - mg \cos 30 = ma_{n}$$

$$5m - m \cos 30 = ma_{n}$$

$$\therefore a_{n} = 40.55 \text{ m/s}^{2}$$

Total Acceleration

$$a = \sqrt{a_t^2 + a_n^2}$$

$$\sqrt{4.91^2 + 40.55^2}$$

$$\Sigma F_x = ma_x$$
-mg sin 30 = - ma_t
 $a_t = 4.91 \text{ m/s}^2$

Also,
$$a_n = \frac{v^2}{\rho}$$

$$\therefore v = q m/s$$

Work, Energy and Power

Energy (Joule)

Ability to do work.

Law of Conservation of Energy:

Energy cannot be destroyed nor created but is converted from one form to another.

- Kinetic energy-Energy in motion = 1/2mv²
- Gravitational potential energy(GPE)= mass x gravity x height= mgh
 Energy stored in an object due to its position(height) in a
 gravitational field.

Work (Nm or J)

Product of force and distance moved in the direction of the force.

W=F.s or Fs.cos⊖

Power

(W)

Rate of doing work/energy transfer.

$$Power = \frac{work \ done}{time}$$

or

Force x velocity.

Work Of A Force

Force Along Displacement

Work Of A Friction

Work Of A Spring

Work Of A Weight Force

NOTE: If the displacement of weight is against the gravity (upwards) then it is '-ve'. If the displacement of the weight is in the direction of gravity (downwards) then it is 'tve'.

Work Energy Principle

to unbalanced force system, the total workdone by all forces during the displacement is equal to change in kinetic energy during that displacement.

1 For linear motion: -

Exs = and kinetic enougy

Fxs = and kinetic enougy

Fxs = and kinetic enougy

- @ For angular moto : .
 - .. workdone = change in k.E. Initial k.E. $= \frac{1}{2} \operatorname{Inol}_{2^{2}} \frac{1}{2} \operatorname{Inol}_{2^{2}}$... workdone = $\frac{1}{2} \operatorname{Inol}_{2^{2}} \frac{1}{2} \operatorname{Inol}_{2^{2}}$

Work Energy Principle

- ** Work energy principle is applicable for both conservative and non-conservative forces.
- · conservative Force: workdone is independent of path followed by particles.
- e.g : Gravity force, apring sorce, elastic force etc.
- by particles.

 Non-conservative force:
 workdone depends on path followed
- e.g. trictional force.

- Principle of conservation of energy!
 The sum of potential energy and kinetic energy of particles remains const. during the moth under the act of conservative force.
 - (KE) 3 (PE)3
 - @ () (kE)2 (PE)2
 - O (Cke)1 Che)1
 - · (KE + PE) 1 = (KE + PE) 2 = CKE + PE) 3
 - · total mechanical energy is constant.

Work Energy Principle

Q. A 20 kg steel collar is being raised from rest at position 1 by a 300 N force applied as shown. The collar is guided by a smooth rod and a spring whose free length is 0.3 m.

Find the speed of the collar as it reaches position 2.

Applying Work Energy principle to the moving collar from Position 1 to 2.

$$T_2 = \frac{1}{2} \text{ mv}^2$$

= $\frac{1}{2} * 20 * \text{v}^2$
= $10 \text{ v}^2 \text{ N.m}$

= 259.81 N.m

By Spring Force

$$U = \frac{1}{2} k (x_1^2 - x_2^2)$$

Deformation of Spring at Position 1

Deformation of Spring at Position 2

$$x_2$$
 = Spring Length - Free Length = $0.6^2 + 1^2 - 0.3$

= 0.866 m

$$U = \frac{1}{2} * 150 (0.3^2 - 0.866^2)$$

By Weight Force

U = - m g h (-ve because displacement is upv

Using
$$T_1 + \Sigma U_{1-2} = T_2$$

· Impulse (I): -

A large amount of force acting on a particle for short durath of time is called the pulse

F D

Impulse - Area under Force - time diagram

Unit: Fxt
=
$$H \times Sec$$

 $F = m \times q = Fg \cdot m / sec 7 \cdot Se / c$

F = kg m/sec

- · It is also a vector quantity.
- · Impulse momentum theorem

On particle for short time, it will produce impulsed and which is equal to change in momentum.

* 1000 of conservath of comentum:

on a body then, final momentum is always equal to initial momentum. e.g. of non-impulsive force:

1) Force exerted by spring.

3) frictional forces

1 force reacts

Q. The 75 kg crate is originally at rest on the smooth horizontal surface. If a towing force of 175 N, is acting at an angle of 30°, is applied for 12s, determine final velocity and normal force which the surface exerts on the crate during this time interval.

Applying Impulse Momentum Equation in x-direction

$$(mv_1)_{\times} + (impulse_{1-2})_{\times} = (mv_2)_{\times}$$

 $(mv_1) + \sum F_{\times} * t = (mv_2)_{\times}$
 $0 + (175 \cos 30)(12) = 75 v_2$
 $v_2 = 24.24 \text{ m/s}$

Applying Impulse Momentum Equation in y-direction

$$(mv_1)_g + (impulse_{1-2})_g = (mv_2)_g$$

 $(mv_1)_g + \sum F_g * t = (mv_2)_g$

Impact

 Impact occurs when two bodies collide with each other during a very short period of time causing relatively large (impulsive) forces to be exerted on two bodies.

Central impact and Oblique impact

Central and Oblique

Central impact

Iblique impact

Central - Direction of motion of mass centers of colliding particle is along a line passing through mass centers of particles

Oblique - When motion of one or both particles make an angle with the line of impact.

Coefficient Of Restitution

The ratio of restitution impulse to the deformation impulse is called coefficient of restitution

0 & 1 • Elastic impact e = 1, deformation impulse is equal to

Loss Energy

Plastic impact e = 0, No restitution impulse, the bodies stick together and move with same velocity, The loss of energy is maximum

(B) A ball of mass Ikg moving with velocity 12m/sec undergoes a direct central impact with a station any ball of mass elg. The impact of perfectly elastic. The speed of ekg mass ball after impact will be.

80/7: -

$$\begin{array}{cccc}
(1+q) & & & \downarrow & \downarrow \\
\downarrow & \downarrow &$$

$$|y_2 - y_1| = |y_2 - y_1|$$

 $|z - 0| = |y_2 - y_1|$

$$m_1V_1 + m_2V_2 = m_1V_1 + m_2V_2$$

 $|X|_2 + 2XO = |XV_1 + 2XV_2|$
 $\therefore |2 = V_1 + 2V_2 - 2$

A body A of mass lkg moves right ward with velocity 5 moles and Body B of mass exg moves left word with velocity em/sec after impose velocity of B is e-1 m/sec rightward. Determine coeff. of restitute.

$$\begin{array}{ccc}
A & B \\
\hline
 & 1 & 1 & 2 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 4 & 4 & 4 & 4 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 6 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 & 7 & 8 & 8 \\
\hline
 & 1 & 2 & 2 & 7 &$$

$$41-42 = 5-(-2) = 7$$

 $m_{1}4_{1} + m_{2}4_{2} = m_{1}v_{1} + m_{2}v_{2}$
 $1y5 - (2x2) = 1xv_{1} + 2x2.5$
 $5-4 = v_{1}+5$
 $v_{1} = -4m$ sec

$$V_2 - V_1 = 2.7 - (-4)$$

$$= 6.7 \text{ m/sec}$$

$$\therefore \cot \frac{1}{7} \cdot \cot \frac{1}{7} = \frac{V_2 - V_1}{V_1 - V_2}$$

$$= 6.7 / 7$$

$$= 0.928$$

Q. A 3 kg ball moving with 0.5 m/s towards right collides head on with another ball of mass 5 kg, moving with 0.7 m/s towards left. Determine the velocities of the balls after impact and the corresponding percentage loss of kinetic energy, when

- i) The impact is perfectly elastic e = 1
- ii) The impact is perfectly plastic e = 0
- iii) The impact such that e = 0.7

Solution:

Impact is perfectly elastic i.e. e = 1

Step 1 Using Conservation of Momentum Equation

$$m_{A}V_{A} + m_{B}V_{B} = m_{A}V_{A}' + m_{B}V_{B}'$$

$$3 * 0.5 + 5 * (-0.7) = 3V_{A}' + 5V_{B}'$$

$$-2 = 3V_{A}' + 5V_{B}'(1)$$

Step 2

Using Coefficient of Restitution Equation $v_8' - v_4' = e [v_A - v_B]$

$$v_8' - v_A' = 1 [0.5 - (-0.7)]$$

 $v_8' = 1.2 + v_A' \dots (2)$

Step 3

Solving equation (1) and (2), we get

$$V_{A}' = -1 \text{ m/s} = 1 \text{ m/s} \leftarrow V_{B}' = 0.2 \text{ m/s} = 0.2 \text{ m/s} \rightarrow$$

Since the impact is perfectly elastic, there will be no loss of kinetic energy

ii) Impact is perfectly plastic i.e. e = 0

Using Conservation of Momentum Equation

$$v' = -0.25 \text{ m/s}$$

i.e. $v_{A'} = v_{B'} = 0.25 \text{ m/s} -$

Kinetic energy of the system before impact

$$=\frac{1}{2}mV_A^2+\frac{1}{2}mV_B^2$$

$$=\frac{1}{2}*3*(0.5)^2+\frac{1}{2}*5*(0.7)^2$$

= 1.6 J

Kinetic energy of the system after impact

$$=\frac{1}{2}*3*(0.25)^2+\frac{1}{2}*5*(0.25)^2$$

= 0.25 J

Percentage loss of kinetic energy

Step 1 mava + mava = mava' + mava'

Step 2

Using Coefficient of Restitution Equation

Step 3

Solving equation (3) and (4)

$$V_{A}' = -0.775 \text{ m/s} = 0.775 \text{ m/s} \leftarrow V_{B}' = 0.065 \text{ m/s} = 0.065 \text{ m/s} \rightarrow$$

Kinetic energy of the system after impact

$$=\frac{1}{2}$$
* 3 * (0.775)² + $\frac{1}{2}$ * 5 * (0.065)²

= 0.9115 J

Percentage loss of kinetic energy

$$=\frac{(1.6-0.9115)}{1.6}$$
 * 100

Oblique Central Impact Problem

Q. Two smooth balls collide as shown. Find the velocities after impact. Take $m_A = 2 \text{ kg}$, $m_B = 3 \text{ kg}$ and e = 0.7

Using Conservation of Momentum Equation

$$m_{A}V_{An} + m_{B}V_{Bn} = m_{A}V_{An}' + m_{B}V_{Bn}'$$

 $2 * 3.46 + 3 * (-1.732) = 2 * V_{An}' + 3 * V_{Bn}'$
 $1.724 = 2 V_{An}' + 3 V_{Bn}'$ (1)

Using Coefficient of Restitution Equation

$$V_{Bn}' - V_{An}' = e \left[V_{An} - V_{Bn} \right]$$

$$V_{Bn}' - V_{An}' = 0.7 \left[3.46 - \left(-1.732 \right) \right]$$

$$V_{Bn}' - V_{An}' = 3.63 \dots (2)$$

$$V_{An'} = -1.83 \text{ m/s} = 1.83 \text{ m/s} \leftarrow V_{8n'} = 1.79 \text{ m/s} = 1.79 \text{ m/s} \rightarrow$$

$$v_{A'} = \sqrt{(v_{An'})^2 + (v_{At'})^2}$$

= $\sqrt{(1.83)^2 + (2)^2}$

$$\theta_{A}' = \tan^{-1}\left(\frac{V_{Ar'}}{V_{An'}}\right) = \tan^{-1}\left(\frac{2}{1.83}\right) = 47.54^{\circ}$$

= 2.71 m/s

$$v_{B'} = \sqrt{(v_{Bh'})^2 + (v_{Bh'})^2}$$

$$= \sqrt{(1.79)^2 + (1)^2}$$

$$\theta_{B'} = \tan^{-1}\left(\frac{V_{B+'}}{V_{Bn'}}\right) = \tan^{-1}\left(\frac{1}{1.79}\right) = 29.19^{\circ}$$

$$V_{B}' = 2.71 \text{ m/s,}$$
 $\theta_{B}' = 29.19^{\circ}$

$$\theta_{\rm B} = 29.19^{\circ}$$

= 2.05 m/s

Q: A sphere of mass 3 kg is released from rest. It swings as a pendulum and strikes a block B of mass 2.5 kg resting on a horizontal surface. Determine how far the block will move after impact. Take μ = 0.3 between the block B and the horizontal surface and e = 0.75.

T1 = O since it starts from rest

$$T_2 = \frac{1}{2} m v^2$$
$$= \frac{1}{2} * 3 * v^2$$

Substituting the values in equation (i)

Step 1

Using Conservation of Momentum Equation

$$m_{A}V_{A} + m_{B}V_{B} = m_{A}V_{A}' + m_{B}V_{B}'$$
 $3 * 5.425 + 2.5 * 0 = 3 V_{A}' + 2.5 V_{B}'$
 $3 V_{A}' + 2.5 V_{B}' = 16.275...........(ii)$

Step 2

Using Coefficient of Restitution Equation

$$v_{8}' - v_{A}' = e (v_{A} - v_{8})$$
 $v_{8}' - v_{A}' = 0.75 (5.425 - 0)$
 $v_{8}' - v_{A}' = 4.068....(iii)$

Step 3

Solving equation (ii) and (iii)

$$3 \text{ VA}' + 2.5 \text{ VB}' = 16.275......(ii)$$

$$\text{VB}' - \text{VA}' = 4.068......(iii)$$

Applying Work Energy Principle to block B

$$T_2 = \frac{1}{2} \text{ mv}^2$$

$$= \frac{1}{2} * 2.5 * 5.1782$$

$$= 33.51 \text{ J}$$

T3 = O Since the block comes to rest

U2-3 = only friction force will act

= - µk.N.s

= - 0.3*(2.5*9.81)* ×

= - 7.36 x J

33.51 + [- 7.36 x] = 0

x = 4.55 m