

CAI 4104/6108 — Machine Learning Engineering: ML Engineering (3)

Prof. Vincent Bindschaedler

Spring 2024

Reminder: Machine Learning Engineering

Machine Learning Engineering

(Partial) Workflow for ML Engineering:

- When to use ML?
- What problems can it solve?
- Why do ML projects fail?
- What can ML not do?

- · How to get data?
- Dealing with noisy data?
- How much data is needed?
- How to extract features?

- · What is the task?
- · What kind of model?
- How to tune hyperparameters?

- Best practices to evaluate the model?
- What metric(s) to use?
- What is the baseline?
- Underfitting/overfitting?

Reminder: Types of Learning

- Supervised Learning
 - Learning from labeled data (i.e., each example or instance in the dataset has a corresponding label)
 - Tasks: classification vs. regression
- Unsupervised Learning
 - Learning from unlabeled data (we must discover patterns in the data)
 - ◆ Tasks: clustering (e.g., K-means), dimensionality reduction (e.g., t-SNE, PCA), etc.
- Semi-supervised Learning
 - Learning from partially labeled data
- Reinforcement Learning
 - There is an agent that can interact with its environment and perform actions and get rewards
 - Learning a policy (i.e., a strategy for which actions to take) to get the most rewards over time
- Transfer Learning
 - Learning to repurpose an existing model for a new task

Reminder: Supervised Learning

Classification

- Task: predict the corresponding label
- Different types:
 - Binary classification: there are only two classes (0,1; +,-, etc.)
 - Multiclass: more than two classes
 - Multi-label: each instance can belong to more than one class (e.g., label all objects in a photo)
 - One-class: there is only one class, we want to distinguish it from everything else

- Task: predict the corresponding value (typically a real number) or target
 - E.g.: you want to predict a person's future income based on their high school GPA

Sequence-to-sequence, similarity learning/metric learning, learning to rank, etc.

Reminder: Multiclass Classification

- Multiclass classification (aka multinomial classification)
 - There are c > 2 distinct classes: $y_i \in \{1,2,...,c\}$ is the label of the ith example
- Wait. How do we do this?
 - Recall the SVM formulation:
 - We want to find a hyperplane w x b = 0, also we relabel the classes as +1 and -1. **Problem?**
- Some learning algorithms / models naturally support multiclass classification
 - E.g.: kNN, decision trees, neural networks
- For others, we can transform multiclass classification into a binary classification
 - One-vs-rest (OvR): Train c binary classifiers. f_i to classify class i versus not i
 - * Predict: $y = \operatorname{argmax}_i f_i(x)$
 - One-vs-one (OvO): Train c(c-1)/2 binary classifiers. $f_{i,j}$ to classify class i versus class j
 - * Predict: predict with all c(c-1)/2 and return the class that has the highest number of "votes"

What Is a Learning Algorithm?

- To train a model we need:
 - Some kind of objection function or criterion often called loss function (or cost function)
 - Some algorithms have a specific criterion (e.g., SVM hinge loss)
 - Others do not have such a criterion (e.g., kNN)
 - An optimization procedure to find a solution (i.e., parameter values)
 - E.g.: quadratic programming, gradient descent
- We want "nice" loss functions:
 - Ideally: continuous, differentiable, (strictly) convex, smooth loss functions
 - Examples:
 - SVM is a convex problem
 - But (in general) the loss function for neural networks is not convex

Convex Sets & Convexity

Convex Sets:

Set \mathcal{X} is convex if for any $a, b \in \mathcal{X}$ the line λa +(1- λ) $b \in \mathcal{X}$ for $\lambda \in [0,1]$

Convexity:

Function f on a convex set \mathcal{X} is convex if for any $x, y \in \mathcal{X}$ and $\lambda \in [0,1]$: $\lambda f(x)+(1-\lambda)f(y) \geq f(\lambda x+(1-\lambda)y)$

No Free Lunch Theorem

- Famous ML result
 - No Free Lunch (NFL) Theorem
 - David H. Wolpert. "The lack of a priori distinctions between learning algorithms." Neural computation 8.7 (1996).
- What does the theorem say?
 - Informally: Given two learning algorithms A and B, there are just as many problem instances/datasets where A performs better than B as vice-versa (B performs better than A)
 - In other words:
 - * There is **no** learning algorithm that is **guaranteed** to work well on our data a priori (i.e., before we try it)
- Why?
 - When we train a model (i.e., use a learning algorithm as opposed to another), we are making assumptions about how features are related to target/label
 - * E.g.: we assume two classes can be separated by a linear decision boundary based features (if we use linear SVM)
- Consequences?
 - The only way to know for sure what learning algorithm is best is to evaluate them all
 - Or in practice: start with reasonable assumptions, then evaluate (only) a few algorithms

Model Selection

Source: scikit-learn.org

Parameters & Hyperparameters

Parameters

- Sometimes called "weights"
- Model parameters are determined by the training data (e.g., through some optimization procedure)

Hyperparameters

- These are not learned when we trained the model; the machine learning engineer sets those
 - * E.g.: k in kNN is a hyperparameter; for SVM is the non-linearly separable case there is C (regularization hyperparameter)
- However, hyperparameters should be tuned
 - If we want the best model, we also need the best values of hyperparameters!

Hyperparameter tuning/optimization strategies

- Grid search: try all combinations of hyperparam values
 - * For example: for hyperparam $a \in \mathcal{A}$ and $b \in \mathcal{B}$, try all pairs $(a,b) \in \mathcal{A} \times \mathcal{B}$
- Random search: given distribution of hyperparam values, we randomly sample from them
- Many others: e.g., bayesian hyperparameter optimization, evolutionary optimization, etc.

Machine Learning Engineering

(Partial) Workflow for ML Engineering:

- · When to use ML?
- What problems can it solve?
- Why do ML projects fail?
- What can ML not do?

- · How to get data?
- Dealing with noisy data?
- How much data is needed?
- How to extract features?

- · What is the task?
- · What kind of model?
- How to tune hyperparameters?

- Best practices to evaluate the model?
- What metric(s) to use?
- What is the baseline?
- Underfitting/overfitting?

Training, Test, Validation

- Before training a model (or looking at the data ideally)
 - Divide the dataset into three disjoint parts
 - 1. Training dataset
 - 2. Test dataset
 - 3. Validation dataset
- Why? Why do we need the validation dataset? Why not just training and test?
 - We need it for hyperparameter optimization!
 - Q: Why can't we use the training set for that?
 - Q: Why can't we use the test set for that?
- What proportion of the dataset to allocate to each?
 - (Rule of thumb:) For small datasets (i.e., < 100k examples): 70% training, 15% validation, 15% test
 - For large datasets (e.g., deep learning): 95% training, 2.5% validation, 2.5% test
 - For very small datasets (e.g., <1000 examples): check the raw numbers (e.g., how many examples is 10%?)
 - What if you don't have enough data to afford leaving some aside for validation/testing?
 - Use k-fold validation: divide the data into k equal parts, then train on k-1, test on the remaining part, repeat k times and average!

(Training) Data Leakage

- Subtle failure more for ML: data leakage
 - Occurs if the model is given access to information (at training time) that would not be available at inference time.
 - Row-wise leakage (training example) or column-wise leakage
 - Examples:
 - Duplicate data
 - Preprocessing leakage (e.g., premature feature engineering)
 - Improper hyperparameter tuning
 - * Proxy attributes (e.g., want to predict age but year_of_birth is a feature)
 - Time leakage (e.g., time series data improperly split between train and test)
 - * Etc.
 - Major concern: reproducibility crisis
 - <u>Ref:</u> Kapoor and Narayanan. "Leakage and the reproducibility crisis in machine-learning-based science." Patterns 4, no. 9 (2023).

Bias and Variance

Bias

- Error due to incorrect assumptions in the model
- Inability to capture the true relationship
 - If a model is too simple to capture the true relationship between features and label/target, it will have high bias!
- High bias means underfitting!
- Terminology:
 - do not confuse this with the bias term in the parameters of a model (i.e., the intercept)

Variance

- Sensitivity to small variation in the training data
 - Think of training a model as a repeated randomized process
 - If the model is highly influenced by a few data points, then it has high variance (it models the random noise!)
- High variance means overfitting!

Bias and Variance

- Bias
 - Error due to incorrect assumptions in the model
 - Inability to capture the true relationship
- Variance
 - Sensitivity to small variations in the training data
- Ideally, we want: low bias and low variance
 - Strategies to lower bias:
 - Increase model complexity
 - Use more features
 - Strategies to lower variance:
 - Reduce model complexity
 - Use more training data

Bias-Variance Tradeoff

- Generalization error (aka out-of-sample error or risk)
 - Prediction error on unseen data
 - Related to overfitting
 - If the model overfits, then the generalization error will be large
- Bias-Variance Tradeoff
 - Generalization error: bias² + variance + irreducible error
 - For more details:
 - Geman et al. "Neural networks and the bias/variance dilemma." Neural computation (1992)
 - Kohavi et al. "Bias plus variance decomposition for zero-one loss functions." ICML, 1996.
 - Why is it a tradeoff?
 - Increasing model complexity => lower bias
 - Decreasing model complexity => lower variance
 - Note: there has been some debate of whether this applies to neural networks
 - E.g.: see Neal et al. "A modern take on the bias-variance tradeoff in neural networks." arXiv, 2018.

Regularization

- Most models can be regularized
 - Typically tuned through a regularization constant (hyperparameter)
 - Effect: lower variance at the cost of (slightly?) higher bias
- Regularization reduces model complexity
 - It decreases the degrees of freedom of the model
 - ★ E.g.: for linear SVM, regularization controls the cost of misclassification in the loss function
 - Note: there are several types of regularization and regularization techniques
- If your model is overfitted
 - Regularization is (one of) the first things you should try

Measuring Bias & Variance

- Key quantities:
 - Error on training dataset
 - Error on validation/test dataset
 - To keep in mind: the irreducible error
- Examples (classification):
 - Assumptions:
 - We measure the error using 1-accuracy
 - Irreducible error is 0%
 - Diagnoses:
 - 1. Training error: 1%; validation error: 20% => low bias; high variance (**overfitted**)
 - 2. Training error: 20%; validation error: 21% => high bias; low variance (underfitted; generalizes well)
 - 3. Training error: 20%; validation error: 35% => high bias; high variance (worst case)
 - 4. Training error: 1%; validation error: 2% => low bias; low variance (**best case**)

Baseline(s)

- In general, we do not know the irreducible error
 - Suppose the training error of a classifier is 20%
 - Q: Does the classifier have high bias (is it underfitted)?
 - It depends what the irreducible error is!
- It is critical to have an appropriate baseline!
 - Given a baseline, we can at least know if the model learned anything at all!
 - Baseline(s) for classification tasks
 - Random guessing:
 - If there c classes, the baseline accuracy is 1/c (baseline error is 1-1/c)
 - Guessing the mode (most frequent class)
 - If q_i is the frequency of class i, then baseline error is $\min(1-q_i) = 1 \max(q_i)$
 - # If the problem is well-studied, use benchmarks as a baseline!
 - Note: if humans can perform the task with almost 0% error, then the irreducible error is probably 0

Next Time

Friday (1/26): Exercise 2

- Upcoming:
 - Homework 1 will be out today (due 2/2 by 11:59pm)