Lecture 1 - Introduction

BDAT 1002

Today's Lecture

- Introduction to Big Data
- Understanding Big Data Problem
- · Hadoop as a solution
- History of Hadoop

Evaluation

- Evaluation comprised of
 - In-class labs 20%
 - Assignments: 40%
 - Midterm Exam: 40%
- Program and courses should complement your skills/background

Course Topics

- · Can give you a list of topics
 - A bit useless right now
- Better to look at an introduction and arrive at the course topic

Ideally it would be nice if you know

- Relational Databases
 - But we will review this later in the course
- Programming language
 - Java, Python
 - Any kind of "procedural" programming language
- Basic Linux commands
 - Homework for next week.

What is Big Data?

- Extremely large volumes of data
 - But what is considers "large"?
 - 10Gb, 100G?
- There is no straight forward answer for two reasons

What is Big Data?

- What is considered "Big" today, is not considered Big in a year
 - It's a moving target
- It's relative
 - What we consider big may not be big to someone else
 - Example Google, Facebook

Factors for Big Data

- Factors to consider to designate something as big Data
- Volume → > 100TB (at this time)
- But volume is only part of the equation
- Rate of change of data growth or velocity is also important
 - example: email server

Factors for Big Data

- Most of the time, volume and velocity are all the we need to determine if we have a "Big" data problem
- Next factor is variety
 - Another dimension
 - Traditional databases are very structured with rows and tables
 - Different formats of data can make your "traditional" databases not a good choice
 - If you have pictures, text, comments, "likes"

Factors for Big Data

- So if you want to know if you have big data, take the three V's into consideration
- Companies often bring in Big data consultants and hope a "Big" Data solution will help them out
- Most of the time, volume and velocity tests are not met
 - Volume 100's GB
 - Velocity low
 - Really need to optimize what you have

Is there a Big Data Problem?

- You might look around and not really see what the big deal is
- · But there are very real cases

Is there an actual use case?

- Science
 - NASA 2 GB every hour!

- NSA
- One Yottabyte Capacity
- Social Media
 - Facebook → 70 billion photos, 150TB of logs every year
 - Facebook data collection

So what?

- So hopefully I have convinced you that there is such a thing as "Big" data
- So we have Big Data, but so what?
- · Big Data comes with big problems!
- We are going to look at some problems
 - Storage
 - Computational Efficiency
 - Data Loss
 - Cost

Traditional Solutions - RDBMS

- One solution is Relational Database Management Systems (RDBMS)
 - MySQL, PL/SQL, etc
- Scalability issues
 - As the data gets bigger, computational time goes up
- · RDBMS are not horizontally scalable
 - You can't improve performance by adding more computing power

Traditional Solutions - RDBMS

RDBMS are designed to hand structured data

- If the data is unstructured, it is hard for an

RDBM to handle

Traditional Solutions - Grid Computing

- Put many computers in parallel
- Good for low volume, intensive computational tasks
 - ex image rendering
 - Not good for large volume
- Also requires good experience with low level programming knowledge
 - Not suitable for mainstream

What we need?

- Support large volume of data
- Storage efficiency
- Good Data Recovery
- Horizontally scalable
- · Cost effective
- Easy for programmers and nonprogrammers

Understanding Big Data Problems

Introduction

- We like to intuitively arrive at the solution for Big Data
- Analyze a Big Data Problem
- · See if we can come up with a solution

"Big" Data Problem

- Scenario: You are given the day to day stock price information for several years
- File size: 1TB

```
ABCSE, KJT, 2010-02-08, 10.95, 11.06, 10.70, 10.76, 115900, 10.76
ABCSE, KJT, 2010-02-05, 10.87, 11.00, 10.68, 10.98, 103600, 10.98
ABCSE, KJT, 2010-02-04, 11.07, 11.07, 10.73, 10.82, 171000, 10.82
ABCSE, KJT, 2010-02-03, 11.00, 11.16, 10.61, 11.13, 164500, 11.13
ABCSE, KJT, 2010-02-02, 10.83, 11.15, 10.74, 10.98, 161900, 10.98
ABCSE, KJT, 2010-02-01, 10.52, 10.89, 10.52, 10.77, 245800, 10.77
ABCSE, KJT, 2010-01-29, 10.43, 10.51, 10.26, 10.26, 373700, 10.26
ABCSE, KJT, 2010-01-28, 10.93, 10.96, 10.29, 10.42, 158000, 10.42
ABCSE, KJT, 2010-01-27, 10.67, 10.93, 10.41, 10.91, 100300, 10.91
ABCSE, KJT, 2010-01-26, 10.55, 11.05, 10.46, 10.76, 229500, 10.76
ABCSE, KJT, 2010-01-25, 10.67, 10.86, 10.50, 10.56, 102300, 10.56
ABCSE, KJT, 2010-01-22, 10.92, 11.02, 10.54, 10.59, 206100, 10.59
ABCSE, KJT, 2010-01-21, 11.14, 11.40, 10.90, 10.97, 165300, 10.97
ABCSE, KJT, 2010-01-20, 11.24, 11.35, 11.03, 11.16, 66800, 11.16
ABCSE, KJT, 2010-01-19, 10.79, 11.38, 10.72, 11.35, 133300, 11.35
ABCSE, KJT, 2010-01-15, 11.01, 11.07, 10.75, 10.80, 115000, 10.80
ABCSE, KJT, 2010-01-14, 10.80, 11.14, 10.76, 11.06, 87500, 11.06
```

Problem

- Question: Find the maximum closing price for each stock symbol
- Two problems:
- Storage
 - your desktop has only 200 GB
 - Ask your network administrator to put the data on NAS Network attached storage
 - Anyone with access to the network can get the data
- · So storage problem is solved

Solution

- Solving the problem:
 - Write a Java program to parse the dataset
 - Do the computation
- What is the ETA for this problem?
 - We need to access the data
 - We need to do some computation
 - Also have some network latency

Traditional Hard Disk Drive (HDD)

- So your ETA is > 3 hours with computation time added
- Many businesses cannot wait 3 hours, especially finance
- So how can we calculate the result in less than 3 hours?
- Replace HDD with SSD
 - No magnetic disk or head
 - Based on flash memory, very fast
- · Problem?

- Any other solutions to speed up time?
- · Chop up the 1TB into 100 pieces
 - Have 100 parallel computers
 - Read simultaneously
 - Compute simultaneously

- One problem is that the network now can become the bottleneck
- Say you have 10 people in a household all trying to watch Netflix, what happens?

- Bring the data closer to the computation
 - Store the data in several different nodes
 - Not restricted with bandwidth
- Seems great ...
 - System used to make billions
 - You get a bonus, glory etc
 - Any problems?

Hard Disk Failure

- How do you protect yourself from Hard Disk failure?
 - Backup!
- We want something similar for our nodes
- How would you do this?

Hard Disk Failure

- Want to the same with our cluster
- · Copy each block to different nodes

Challenges - Storage

- Who breaks the 1TB into blocks?
- How does node 1 know that node 3 has block 1?
- Who decides that block 7 should be in nodes 1, 2 and 3.

Challenges - Computation

- There are also computational challenges
- Data for a stock can be in many different blocks
 - Somehow you have to consolidate the results to get a final result

Challenges

- What we have described in the previous slides is really called distributed computing
- And it is not easy
- · Lots of work must go into it
- And all this came from trying to solve a simple problem
 - But the data was very large

Hadoop

- A framework for distributed computing
- Two main components
 - HDFS
 - MapReduce

HDFS

- Hadoop Distributed File System
- Takes care of all your distributed storage complexities
 - Splitting your data into blocks
 - Replicating each block to more than one node
 - Keep track of which block is stored in which node

MapReduce

- A programming model
- Implemented by Hadoop
- Takes care of all the computational complexities
 - Bring all the intermediate results to get a consolidated output

One last thing

- Hadoop was built to work on commodity hardware
- We need a machine that has processor, hard disk and RAM
- But it's not cheap hardware!
 - Still need certain amount of memory, CPU power
 - We'll look at specifications later

Is Hadoop a replacement for Databases?

- No
- There are things Hadoop is good at, and there are things databases are good at

Is Hadoop a replacement for Databases?

But...

- Gaps between Hadoop and RDBMS are closing in...
- There is a third set of tools called NoSQL databases
 - HBase, Cassandra
- Sit between Hadoop and RDBMS

History of Hadoop

