## <u>UNIT - II</u> LINEAR ALGEBRA - II

## Topic Learning Objectives:

Upon Completion of this unit, students will be able to:

- Study the orthogonal and orthonormal properties of vectors.
- Use Gram-Schmidt process to factorize a given matrix as a product of an orthogonal matrix(Q) and an upper triangular invertible matrix(R).
- Diagonalize symmetric matrices using eigenvalues and eigenvectors.
- Decompose a given matrix into product of an orthogonal matrix (U), a diagonal matrix ( $\Sigma$ ) and an orthogonal matrix ( $V^T$ ).

## **Introduction:**

This section deals with the study of orthogonal and orthonormal vectors which forms the basis for the construction of an orthogonal basis for a vector space. The Gram-Schmidt process is applied to construct an orthogonal basis for the column space of a given matrix and further to decompose a given matrix to the form A = QR, where Q has orthonormal column vectors and R is an upper triangular invertible matrix with positive entries along the diagonal. This section also deals with finding the Eigen values and Eigen vectors of a square matrix, which is applied to diagonalize a square matrix as  $D = P^{-1}AP$ . Further the singular value decomposition is studied wherein, a given matrix is resolved as a product of an orthogonal matrix (U), a diagonal matrix  $(V^T)$ .

## **Orthogonal Vectors:**

Two vectors u and v in  $\mathbb{R}^n$  are orthogonal to each other if u.v = 0. u = (1, 2) and v = (6, -3) are orthogonal in  $\mathbb{R}^2$  as u.v = (1, 2).(6, -3) = 0.

## **Orthogonal Sets:**

A set of vectors  $\{u_1, u_2, ..., u_p\}$  in  $\mathbb{R}^n$  is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if  $u_i.u_j = 0$  whenever  $i \neq j$ .

ex. 
$$\{u_1, u_2, u_3\}$$
 such that  $u_1 = (3, 1, 1), u_2 = (-1, 2, 1), u_3 = (-\frac{1}{2}, -2, \frac{7}{2}).$   
 $u_1.u_2 = (3, 1, 1).(-1, 2, 1) = -3 + 2 + 1 = 0$   $u_1.u_3 = (3, 1, 1).(-\frac{1}{2}, -2, \frac{7}{2}) = -\frac{3}{2} - 2 + \frac{7}{2} = 0$   
 $u_2.u_3 = (-1, 2, 1).(-\frac{1}{2}, -2, \frac{7}{2}) = \frac{1}{2} - 4 + \frac{7}{2} = 0.$ 

Each pair of distinct vectors is orthogonal and so  $\{u_1, u_2, u_3\}$  is an orthogonal set.

#### **Orthonormal Sets:**

A set  $\{u_1, u_2, ..., u_p\}$  is an orthonormal set if it is an orthogonal set of unit vectors.  $\{e_1, e_2, ..., e_n\}$ , the standard basis for  $\mathbb{R}^n$ , is an orthonormal set. Any non-empty subset of  $\{e_1, e_2, ..., e_n\}$  is orthonormal.

#### **Orthogonal Basis:**

An orthogonal basis for a subspace W of  $\mathbb{R}^n$  is a basis for W that is also an orthogonal set. ex.  $S = \{u_1, u_2, u_3\}, u_1 = (3, 1, 1), u_2 = (-1, 2, 1), u_3 = (-\frac{1}{2}, -2, \frac{7}{2})$  is an orthogonal basis for  $\mathbb{R}^3$  as (i) S is an orthogonal set and (ii) S forms a basis of  $\mathbb{R}^3$ .

$$\begin{vmatrix} 3 & 1 & 1 \\ -1 & 2 & 1 \\ -\frac{1}{2} & -2 & \frac{7}{2} \end{vmatrix} = 3(7+2) - 1(-\frac{7}{2} + \frac{1}{2}) + 1(2+1) = 27 + 3 + 3 = 33 \neq 0$$

#### **Orthonormal Basis:**

An orthonormal basis for a subspace W of  $\mathbb{R}^n$  is a basis for W that is also an orthonormal set.

## Example:

1. Show that  $\{v_1, v_2, v_3\}$  is an orthonormal basis of  $\mathbb{R}^3$ , where  $v_1 = (\frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}), v_2 = (-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}), v_3 = (-\frac{1}{\sqrt{66}}, -\frac{4}{\sqrt{66}}, \frac{7}{\sqrt{66}}).$  Solution:

$$v_1 \cdot v_2 = -\frac{3}{\sqrt{66}} + \frac{2}{\sqrt{66}} + \frac{1}{\sqrt{66}} = 0$$

$$v_1 \cdot v_3 = -\frac{3}{\sqrt{726}} - \frac{4}{\sqrt{726}} + \frac{7}{\sqrt{726}} = 0$$

$$v_2 \cdot v_3 = \frac{1}{\sqrt{396}} - \frac{8}{\sqrt{396}} + \frac{7}{\sqrt{396}} = 0$$

Thus  $\{v_1, v_2, v_3\}$  is a orthogonal set.

$$v_1 \cdot v_1 = \frac{9}{11} + \frac{1}{11} + \frac{1}{11} = 1$$
$$v_2 \cdot v_2 = \frac{2}{6} + \frac{4}{6} + \frac{1}{6} = 1$$
$$v_3 \cdot v_3 = \frac{1}{66} + \frac{16}{66} + \frac{49}{66} = 1$$

which shows that  $v_1, v_2, v_3$  are unit vectors.

Thus  $\{v_1, v_2, v_3\}$  is an orthonormal set.

Since the set is linearly independent, its three vectors form a basis for  $\mathbb{R}^3$ .

# Orthogonal Matrix:

A square matrix A with real entries and satisfying the condition  $A^{-1} = A^T$  is called an orthogonal matrix.

ex. Let 
$$P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 Then  $P^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$  and  $P^{T} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$  clearly  $P^{-1} = P^{T}$ 

 $\therefore P$  is an orthogonal matrix.

ex. The matrix 
$$A = \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 is orthogonal, since  $A^T A = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ . The rew vector of  $A$  parally  $\begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 \end{pmatrix}$  and  $\begin{pmatrix} 2 & 2 & 1 \\ 2 & 1 \end{pmatrix}$  are

The row vector of A, namely  $(\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}), (\frac{2}{3}, -\frac{1}{3}, -\frac{2}{3})$  and  $(\frac{2}{3}, \frac{2}{3}, \frac{1}{3})$  are orthonormal So are the column vectors of A.

#### Note:

Suppose that A is an  $n \times n$  matrix with real entries. Then

- (a) A is orthogonal iff the row vectors of A form an orthonormal basis of  $\mathbb{R}^n$ .
- (b) A is orthogonal iff the column vectors of A form an orthonormal basis of  $\mathbb{R}^n$ .

## **Orthogonal Projections:**

Given a non-zero vector  $\overrightarrow{u}$  in  $\mathbb{R}^n$ , consider the problem of decomposing a vector  $\overrightarrow{y}$  in  $\mathbb{R}^n$  into the sum of two vectors, one a multiple of  $\overrightarrow{u}$  and the other orthogonal to  $\overrightarrow{u}$ . We wish to

write  $\overrightarrow{y} = \hat{y} + \overrightarrow{z} - (1)$ , where  $\hat{y} = \alpha \overrightarrow{u}$ , for some scalar  $\alpha$  and  $\overrightarrow{z}$  is some vector orthogonal

Given any scalar  $\alpha$ , let  $\overrightarrow{z} = \overrightarrow{y} - \alpha \overrightarrow{u}$ , so that (1) is satisfied.

Then  $\overrightarrow{y} - \hat{y}$  is orthogonal to  $\overrightarrow{u}$  iff

$$0 = (\overrightarrow{y} - \alpha \overrightarrow{u}).\overrightarrow{u} = \overrightarrow{y}.\overrightarrow{u} - (\alpha \overrightarrow{u}).\overrightarrow{u}$$
$$= \overrightarrow{y}.\overrightarrow{u} - \alpha(\overrightarrow{u}.\overrightarrow{u})$$

That is, (1) is satisfied with  $\overrightarrow{z}$  orthogonal to  $\overrightarrow{u}$  iff

$$\alpha = \frac{\overrightarrow{y} \cdot \overrightarrow{u}}{\overrightarrow{u} \cdot \overrightarrow{u}}$$
 and  $\hat{y} = \frac{\overrightarrow{y} \cdot \overrightarrow{u}}{\overrightarrow{u} \cdot \overrightarrow{u}} \overrightarrow{u}$ 

The vector  $\hat{y}$  is called the orthogonal projection of  $\overrightarrow{y}$  onto  $\overrightarrow{u}$ , and the vector  $\overrightarrow{z}$  is called the component of  $\overrightarrow{y}$  orthogonal to  $\overrightarrow{u}$ .

ex. Let  $\overrightarrow{y} = (7,6)$  and  $\overrightarrow{u} = (4,2)$ .

The orthogonal projection of  $\overrightarrow{y}$  onto  $\overrightarrow{u}$  is given by,

$$\hat{y} = \frac{\overrightarrow{y} \cdot \overrightarrow{u}}{\overrightarrow{v} \cdot \overrightarrow{v}} \overrightarrow{u} = \frac{40}{20} \overrightarrow{u} = 2 \overrightarrow{u} = 2(4, 2) = (8, 4)$$

Note:

The orthogonal projection of  $\overrightarrow{y}$  onto a space W spanned by orthogonal vectors  $\{u_1, u_2\}$ is given by  $\hat{y} = \frac{\overrightarrow{y}.\overrightarrow{u_1}}{\overrightarrow{u_1}.\overrightarrow{u_1}}\overrightarrow{u_1} + \frac{\overrightarrow{y}.\overrightarrow{u_2}}{\overrightarrow{u_2}.\overrightarrow{u_2}}\overrightarrow{u_2}$ 

The distance from a point  $\overrightarrow{y}$  in  $\mathbb{R}^n$  to a subspace W is defined as the distance from  $\overrightarrow{y}$  to the nearest point in W.

ex. The distance from  $\overrightarrow{y}$  to  $W = \text{Span}\{u_1, u_2\}$ , where  $\overrightarrow{y} = (-1, -5, 10), u_1 = (5, -2, 1), u_2 = (-1, -5, 10), u_3 = (-1, -5, 10), u_4 = (-1, -5, 10), u_5 = (-1, -5, 10), u_6 = (-1, -5, 10), u_7 = (-1, -5, 10), u_8 = (-1, -5, 10), u_$ (1,2,-1) is given by

$$\hat{y} = \frac{(-1, -5, 10).(5, -2, 1)}{(5, -2, 1).(5, -2, 1)}(5, -2, 1) + \frac{(-1, -5, 10).(1, 2, -1)}{(1, 2, -1).(1, 2, -1)}(1, 2, -1)$$

$$= (-1, -8, 4)$$

$$\overrightarrow{y} - \hat{y} = (-1, -5, 10) - (-1, -8, 4) = (0, 3, 6)$$

The distance from  $\overrightarrow{y}$  to W is  $\sqrt{0+3^2+6^2} = \sqrt{45} = 3\sqrt{5}$ .

#### Exercise:

- 1. Determine which set of vectors are orthogonal.
- (i)  $u_1 = (-1, 4, -3), u_2 = (5, 2, 1), u_3 = (3, -4, -7)$ ,
- (ii)  $u_1 = (5, -4, 0, 3), u_2 = (-4, 1, -3, 8), u_3 = (3, 3, 5, -1).$
- 2. Show that  $\{(2,-3),(6,4)\}$  forms an orthogonal basis of  $\mathbb{R}^2$ .
- 3. Show that  $\{(1,0,1), (-1,4,1), (2,1,-2)\}$  forms an orthogonal basis of  $\mathbb{R}^3$ .
- 3. Show that  $\{(1,0,1), (-1,-1,-1)\}$   $U = \begin{bmatrix} \frac{3}{\sqrt{11}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{66}} \\ \frac{1}{\sqrt{11}} & \frac{2}{\sqrt{6}} & -\frac{4}{\sqrt{66}} \\ \frac{1}{\sqrt{11}} & \frac{1}{\sqrt{6}} & -\frac{7}{\sqrt{66}} \end{bmatrix}$  is an orthogonal matrix.
- 5. Find the orthogonal projection of y = (2, 6) onto u = (7, 1).

6. Let  $u_1 = (2, 5, -1), u_2 = (-2, 1, 1)$  and y = (1, 2, 3).  $W = \text{Span}\{u_1, u_2\}$ . Find the orthogonal projection of y onto  $W = \text{Span}\{u_1, u_2\}.$ 

#### Answers:

- 1.  $u_1, u_2$  and  $u_2, u_3$ .
- $2. u_1, u_2, u_1, u_3.$
- 5. (14/5, 2/5)
- 6. (-2/5, 2, 1/5)

## **Gram-Schmidt Orthogonalization**

The Gram-Schmidt process is a simple algorithm for producing an orthogonal or orthonormal basis for any non-zero subspace of  $\mathbb{R}^n$ .

The construction converts a skewed set of axes into a perpendicular set.

## Gram-Schmidt process

Given a basis  $\{x_1, x_2, ..., x_p\}$  for a subspace W of  $\mathbb{R}^n$ 

define, 
$$v_1 = x_1$$
  
 $v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1$   
 $v_3 = x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2$   
.

$$\begin{split} &\overset{\cdot}{v_p} = v_p - \frac{x_p.v_1}{v_1.v_1}v_1 - \frac{x_p.v_2}{v_2.v_2}v_2... - \frac{x_p.v_{p-1}}{v_{p-1}.v_{p-1}}v_{p-1} \end{split}$$
 Then  $\{v_1, v_2, ..., v_p\}$  is an orthogonal basis for  $W$ .

In addition Span $\{v_1, v_2, ..., v_p\}$  = Span $\{x_1, x_2, ..., x_k\}$  for  $1 \le k \le p$ .

# **Examples:**

1. Let  $W = \operatorname{Span}\{x_1, x_2\}$  where  $x_1 = (3, 6, 0)$  and  $x_2 = (1, 2, 2)$ . Construct an orthogonal basis  $\{v_1, v_2\}$  for W.

## Solution:

Let 
$$v_1 = x_1$$

and 
$$v_2 = x_2 - \frac{x_2 \cdot x_1}{x_1 \cdot x_1} x_1 = (1, 2, 2) - \frac{(1, 2, 2) \cdot (3, 6, 0)}{(3, 6, 0) \cdot (3, 6, 0)} (3, 6, 0) = (0, 0, 2).$$

Then  $\{v_1, v_2\}$  is an orthogonal set of non-zero vectors in W. Since dimW=2, the set  $\{v_1, v_2\}$ is a basis in W.

2. Let  $W = \text{Span}\{v_1, v_2, v_3\}$ , where  $v_1 = (0, 1, 2), v_2 = (1, 1, 2), v_3 = (1, 0, 1)$ . Construct an orthogonal basis  $\{u_1, u_2, u_3\}$  for W.

#### **Solution:**

Set 
$$u_1 = v_1$$
  
and  $u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = (1, 1, 2) - \frac{(1, 1, 2) \cdot (0, 1, 2)}{(0, 1, 2) \cdot (0, 1, 2)} (0, 1, 2) = (1, 0, 0)$   
and  $u_3 = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2$   

$$= (1, 0, 1) - \frac{(1, 0, 1) \cdot (0, 1, 2)}{(0, 1, 2) \cdot (0, 1, 2)} (0, 1, 2) - \frac{(1, 0, 1) \cdot (1, 0, 0)}{(1, 0, 0) \cdot (1, 0, 0)} (1, 0, 0)$$

$$= (1, 0, 1) - \frac{2}{5} (0, 1, 2) - (1, 0, 0) = (0, -\frac{2}{5}, \frac{1}{5}).$$

QR Factorization:

If A is an  $m \times n$  matrix with linearly independent columns, then A can be factored as A = QR, where Q is an  $m \times n$  matrix whose columns form an orthonormal basis for col A and R is an  $n \times n$  upper triangular invertible matrix with positive entries on its diagonal.

## **Examples:**

**1.** Find a 
$$QR$$
 factorization of  $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ 

#### **Solution:**

## Construction an orthonormal basis for Col A

The columns of A are the vectors  $\{x_1, x_2, x_3\}$ 

Let 
$$v_1 = x_1 = (1, 1, 1, 1)$$

Let 
$$v_1 = x_1 = (1, 1, 1, 1)$$
  
 $v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 = (0, 1, 1, 1) - \frac{(0, 1, 1, 1) \cdot (1, 1, 1, 1)}{(1, 1, 1, 1) \cdot (1, 1, 1, 1)} (1, 1, 1, 1)$   
 $= (0, 1, 1, 1) - \frac{3}{4} (1, 1, 1, 1) = (-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$   
 $v_3 = x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2$ 

$$= (0,0,1,1) - \frac{(0,0,1,1).(1,1,1,1)}{(1,1,1,1).(1,1,1,1)}(1,1,1,1) - \frac{(0,0,1,1).(-\frac{3}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})}{(-\frac{3}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}).(-\frac{3}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})}(-\frac{3}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})$$

$$= (0,0,1,1) - \frac{2}{4}(1,1,1,1) - \frac{2}{3}(-\frac{3}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}) = (0,-\frac{2}{3},\frac{1}{3},\frac{2}{3})$$

$$\therefore \{u_1,u_2,u_3\} \text{ forms an orthogonal basis of Col.} A$$

$$= (0,0,1,1) - \frac{2}{4}(1,1,1,1) - \frac{2}{3}(-\frac{3}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}) = (0,-\frac{2}{3},\frac{1}{3},\frac{2}{3})$$

 $\{(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (-\frac{3}{\sqrt{12}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}), (0, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}})\}$  forms an orthonormal basis of Col A.

$$\therefore Q = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0\\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}$$

To construct an upper triangular invertible matrix

We have 
$$A = QR \implies Q^T A = Q^T QR \implies Q^T A = IR \implies Q^T A = R$$
 i.e.,  $R = Q^T A$ 

**2.** Find a 
$$QR$$
 factorization of  $A = \begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & -4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{bmatrix}$ 

## **Solution:**

 $\{x_1, x_2, x_3\}$  are the columns of the matrix A.

Let 
$$v_1 = x_1 = (1, -1, -1, 1, 1)$$

$$v_{2} = x_{2} - \frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} = (2, 1, 4, -4, 2) - \frac{(2, 1, 4, -4, 2) \cdot (1, -1, -1, 1, 1)}{(1, -1, -1, 1, 1) \cdot (1, -1, -1, 1, 1)} (1, -1, -1, 1, 1)$$

$$= (2, 1, 4, -4, 2) - \frac{-5}{5} (1, -1, -1, 1, 1) = (3, 0, 3, -3, 3)$$

$$v_{3} = x_{3} - \frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$$

$$= (5, -4, -3, 7, 1) - \frac{(5, -4, -3, 7, 1) \cdot (1, -1, -1, 1, 1)}{(1, -1, -1, 1, 1) \cdot (1, -1, -1, 1, 1)} (1, -1, -1, 1, 1) - \frac{(5, -4, -3, 7, 1) \cdot (3, 0, 3, -3, 3)}{(3, 0, 3, -3, 3) \cdot (3, 0, 3, -3, 3)} (3, 0, 3, -3, 3)$$

$$v_3 = x_3 - \frac{1}{v_1 \cdot v_1} v_1 - \frac{1}{v_2 \cdot v_2} v_2$$

$$- (5 - 4 - 3 \ 7 \ 1) - \frac{(5 - 4 - 3, 7, 1) \cdot (1, -1, -1, 1, 1)}{(1 - 3, -1, 1)} (1 - 3, -1, 1)$$

$$= (5, -4, -3, 7, 1) - \frac{(5, -4, -3, 7, 1) \cdot (1, -1, -1, 1, 1)}{(1, -1, -1, 1, 1) \cdot (1, -1, -1, 1, 1)} (1, -1, -1, 1, 1) - \frac{(5, -4, -3, 7, 1) \cdot (3, 0, 3, -3, 3)}{(3, 0, 3, -3, 3) \cdot (3, 0, 3, -3, 3)} (3, 0, 3, -3, 3)$$

= 
$$(5, -4, -3, 7, 1) - \frac{20}{5}(1, -1, -1, 1, 1) - \frac{-12}{36}(3, 0, 3, -3, 3) = (2, 0, 2, 2, -2).$$
  
 $\therefore \{(1, -1, -1, 1, 1), (3, 0, 3, -3, 3), (2, 0, 2, 2, -2)\}$  forms an orthogonal basis of Col A.  
 $\{(1/\sqrt{5}, -1/\sqrt{5}, -1/\sqrt{5}, 1/\sqrt{5}, 1/\sqrt{5}), (1/2, 0, 1/2, -1/2, 1/2), (1/2, 0, 1/2, 1/2, -1/2)\}$  forms an orthonormal basis of Col A.

$$\therefore Q = \begin{bmatrix} 1/\sqrt{5} & 1/2 & 1/2 \\ -1/\sqrt{5} & 0 & 0 \\ -1/\sqrt{5} & 1/2 & 1/2 \\ 1/\sqrt{5} & -1/2 & 1/2 \\ 1/\sqrt{5} & 1/2 & -1/2 \end{bmatrix}$$

$$R = Q^{T}A = \begin{bmatrix} 1/\sqrt{5} & -1/\sqrt{5} & -1/\sqrt{5} & 1/\sqrt{5} & 1/\sqrt{5} \\ 1/2 & 0 & 1/2 & -1/2 & 1/2 \\ 1/2 & 0 & 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & -4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\therefore R = \begin{bmatrix} \sqrt{5} & -\sqrt{5} & 4\sqrt{5} \\ 0 & 6 & -2 \\ 0 & 0 & 4 \end{bmatrix}$$

3. Find the orthogonal basis for the column space of the matrix  $\begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{bmatrix}$ 

## **Solution:**

The columns of A are the vectors  $\{x_1, x_2, x_3\}$  where  $x_1 = (3, 1, -1, 3), x_2 = (-5, 1, 5, -7), x_3 = (1, 1, -2, 8).$  Let  $v_1 = (3, 1, -1, 3)$   $v_2 = x_2 - \frac{x_2.v_1}{v_1.v_1}v_1 = (-5, 1, 5, -7) - \frac{(-5, 1, 5, -7).(3, 1, -1, 3)}{(3, 1, -1, 3).(3, 1, -1, 3)}(3, 1, -1, 3)$   $= (-5, 1, 5, -7) - \frac{-40}{20}(3, 1, -1, 3) = (1, 3, 3, -1)$   $v_3 = \frac{x_3.v_1}{v_1.v_1}v_1 - \frac{x_3.v_2}{v_2.v_2}v_2 = (1, 1, -2, 8) - \frac{(1, 1, -2, 8).(3, 1, -1, 3)}{(3, 1, -1, 3).(3, 1, -1, 3)}(3, 1, -1, 3) - \frac{(1, 1, -2, 8).(1, 3, 3, -1)}{(1, 3, 3, -1).(1, 3, 3, -1)}(1, 3, 3, -1)$   $= (1, 1, -2, 8) - \frac{30}{20}(3, 1, -1, 3) - \frac{-10}{20}(1, 3, 3, -1) = (-3, 1, 1, 3)$  {(3, 1, -1, 3), (1, 3, 3, -1), (-3, 1, 1, 3)} is an orthogonal basis for the column space of the given matrix.

4. Find the orthogonal basis for the column space of the matrix  $\begin{bmatrix} -1 & b & b \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$ 

#### **Solution:**

The columns of 
$$A$$
 are the vectors  $\{x_1, x_2, x_3\}$  where  $x_1 = (-1, 3, 1, 1), x_2 = (6, -8, -2, -4), x_3 = (6, 3, 6, -3).$  Let  $v_1 = (-1, 3, 1, 1)$  
$$v_2 = x_2 - \frac{x_2.v_1}{v_1.v_1}v_1 = (6, -8, -2, -4) - \frac{(6, -8, -2, -4).(-1, 3, 1, 1)}{(-1, 3, 1, 1).(-1, 3, 1, 1)}(-1, 3, 1, 1)$$
 
$$= (6, -8, -2, -4) - \frac{-36}{12}(-1, 3, 1, 1) = (3, 1, 1, -1)$$
 
$$v_3 = \frac{x_3.v_1}{v_1.v_1}v_1 - \frac{x_3.v_2}{v_2.v_2}v_2 = (6, 3, 6, -3) - \frac{(6, 3, 6, -3).(-1, 3, 1, 1)}{(-1, 3, 1, 1).(-1, 3, 1, 1)}(-1, 3, 1, 1) - \frac{(6, 3, 6, -3).(3, 1, 1, -1)}{(3, 1, 1, -1).(3, 1, 1, -1)}(3, 1, 1, -1)$$
 
$$= (6, 3, 6, -3) - \frac{6}{12}(-1, 3, 1, 1) - \frac{30}{12}(3, 1, 1, -1) = (-1, -1, 3, -1)$$
 is an orthogonal basis for the column space of the given matrix.

#### Exercise:

- 1. Let  $W = \operatorname{Span}\{v_1, v_2\}$ , where  $v_1 = (1, 1)$  and  $v_2 = (2, -1)$ . Construct an orthogonal basis  $\{u_1, u_2\}$  for W.
- 2. Find the orthonormal basis of the subspace spanned by the vectors  $u_1 = (1, -4, 0, 1), u_2 =$ (7, -7, -4, 1)
- 3. Find the QR factorization of the matrix  $A = \begin{bmatrix} -1 & -3 & 1 \\ 0 & 2 & 3 \\ 1 & 5 & 2 \\ 1 & 5 & 8 \end{bmatrix}$

Answer: 
$$1. \ v_1=(1,1), v_2=(\frac{3}{2},-\frac{3}{2}) \\ 2. \ v_1=(1,-4,0,1), v_2=(5,1,-4,-1)$$

### Eigen Values and Eigen Vectors:

If A is a square matrix of order n, we can find the matrix  $A - \lambda I$ , where I is the  $n^{th}$  order unit matrix. The determinant of this matrix equated to zero, i.e,

$$|A - \lambda I| = \begin{bmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{bmatrix}$$

On expanding the determinant, the characteristic equation takes the form

$$(-1)^{n}\lambda^{n} + k_{1}\lambda^{n-1} + k_{2}\lambda^{n-2} + \dots + k_{n} = 0,$$

where  $k^s$  are expressible in terms of the elements  $a_{ij}$ . The roots of this equation are called the characteristic roots or latent roots or eigen-values of the matrix A.

If 
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 and  $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$ ,

then the linear transformation y = Ax - (1) carries the column vector x into the column vector y by means of the square matrix A.

In practice it is often required to find such vectors which transform into themselves or to a scalar multiple of themselves.

Let x be such a vector which transforms into  $\lambda x$  by means of the transformation (1).

Then, 
$$\lambda x = Ax$$
 or  $Ax - \lambda Ix = 0$  or  $[A - \lambda I]x = 0$ - (2)

The matrix equation represents n homogeneous linear equations,

$$(a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$
  

$$a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n = 0$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda)x_n = 0$$
 -(3)

which will have a non-trivial solution only if the coefficient matrix is singular.

i.e, if 
$$|A - \lambda I| = 0$$

This is called the characteristic equation of the transformation and is same as the characteristic equation of the matrix A.

It has n roots and corresponding to each root, the equation (2)( or equation (3)) will have a

non-zero solution, 
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, which is known as the eigen vector or latent vector.

#### Observation 1:

Corresponding to n distinct eigen values, we get n independent eigen vectors. But when two or more eigen values are equal, it may or may not be possible to get linearly independent eigen vectors corresponding to the repeated roots.

## Observation 2:

If  $x_i$  is a solution for a eigen value  $\lambda_i$  then it follows from (2) that  $cx_i$  is also a solution, where c is an arbitrary constant. Thus the eigen vector corresponding to an eigen value is not unique, but may be any one of the vectors  $cx_i$ .

## **Examples:**

**1.** Find the Eigen Values and Eigen vectors of the matrix  $A = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ 

## Solution:

Solution: 
$$|A - \lambda I| = 0 \implies \begin{vmatrix} \frac{1}{2} - \lambda & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} - \lambda \end{vmatrix} \implies \lambda^2 - \lambda = 0 \implies \lambda = 0, \lambda = 1.$$
with  $\lambda = 1$ ,  $(A - \lambda I)x = 0 \implies \begin{bmatrix} -1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies -x_1 + x_2 = 0 \implies x_2 = x_1$ 
Letting  $x_1 = 1 \implies x_2 = 1 : x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 
with  $\lambda = 0$ ,  $(A - \lambda I)x = 0 \implies \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies x_1 + x_2 = 0 \implies x_2 = -x_1$ 
Letting  $x_1 = 1 \implies x_2 = -1 : x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 

**2.** Find the Eigen Values and Eigen vectors of the matrix  $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ 

#### Solutions

Solution:  

$$|A - \lambda I| = 0 \implies \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} \implies \lambda^2 + 1 = 0 \implies \lambda = +i, \lambda = -i.$$
with  $\lambda = i$ ,  $(A - \lambda I)x = 0 \implies \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies -ix_1 - x_2 = 0 \implies x_2 = -ix_1$ 
Letting  $x_1 = 1 \implies x_2 = -i : x = \begin{bmatrix} 1 \\ -i \end{bmatrix}$ 
with  $\lambda = -i$ ,  $(A - \lambda I)x = 0 \implies \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies ix_1 - x_2 = 0 \implies x_2 = ix_1$ 
Letting  $x_1 = 1 \implies x_2 = i : x = \begin{bmatrix} 1 \\ i \end{bmatrix}$ 

**3.** Find the Eigen Values and Eigen vectors of the matrix  $A = \begin{bmatrix} 3 & 4 & 2 \\ 3 & 5 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ .

#### **Solution:**

$$|A - \lambda I| = 0 \implies \begin{vmatrix} 3 - \lambda & 4 & 2 \\ 3 & 5 - \lambda & 4 \\ 0 & 1 & 2 - \lambda \end{vmatrix} = 0 \implies \lambda^3 - 10\lambda^2 + 15\lambda = 0$$

$$\implies \lambda = 5 + \sqrt{10}, 5 - \sqrt{10}, 0$$
with  $\lambda = 5 + \sqrt{10} |A - \lambda I| = 0 \implies \begin{bmatrix} -2 - \sqrt{10} & 4 & 2 \\ 3 & -\sqrt{10} & 4 \\ 0 & 1 & -3 - \sqrt{10} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 

$$\implies \frac{x_1}{3\sqrt{10} + 6} = \frac{-x_2}{-9 - 3\sqrt{10}} = \frac{x_3}{3} \implies \frac{x_1}{2 + \sqrt{10}} = \frac{x_2}{3 + \sqrt{10}} = \frac{x_3}{1}$$

$$\therefore x = \begin{bmatrix} 2 + \sqrt{10} \\ 3 + \sqrt{10} \\ 1 \end{bmatrix}$$
with  $\lambda = 5 - \sqrt{10}, |A - \lambda I| = 0 \implies \begin{bmatrix} -2 + \sqrt{10} & 4 & 2 \\ 3 & \sqrt{10} & 4 \\ 0 & 1 & -3 + \sqrt{10} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 

$$\implies \frac{x_1}{-3\sqrt{10} + 6} = \frac{-x_2}{-9 + 3\sqrt{10}} = \frac{x_3}{3} \implies \frac{x_1}{2 - \sqrt{10}} = \frac{x_2}{3 - \sqrt{10}} = \frac{x_3}{1}$$

$$\therefore x = \begin{bmatrix} 2 - \sqrt{10} \\ 3 - \sqrt{10} \\ 1 \end{bmatrix}$$

with 
$$\lambda = 0$$
,  $|A - \lambda I| = 0 \implies \begin{bmatrix} 3 & 4 & 2 \\ 3 & 5 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 

$$\implies \frac{x_1}{6} = \frac{-x_2}{6} = \frac{x_3}{3} \implies \frac{x_1}{2} = \frac{x_2}{-2} = \frac{x_3}{1}$$

$$\therefore x = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

**4.** Find the Eigen Values and Eigen vectors of the matrix 
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

#### Solution:

$$|A - \lambda I| = 0 \implies \begin{vmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{vmatrix} = 0 \implies \lambda^3 + 3\lambda^2 - 4 = 0$$

$$\implies \lambda = 1, -2, -2$$
with  $\lambda = 1, |A - \lambda I| = 0 \implies \begin{bmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 

$$\implies \frac{x_1}{9} = \frac{-x_2}{9} = \frac{x_3}{9} \implies \frac{x_1}{1} = \frac{x_2}{-1} = \frac{x_3}{1} \therefore x = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
with  $\lambda = -2, |A - \lambda I| = 0 \implies \begin{bmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 

$$3x_1 + 3x_2 + 3x_3 = 0 \implies x_1 = -x_2 - x_3$$
Letting  $x_2 = k_1, x_3 = k_2 \implies x_1 = -k_1 - k_2 \therefore x = \begin{bmatrix} -k_1 - k_2 \\ k_1 \\ k_2 \end{bmatrix}$ 

or 
$$x = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
,  $x = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$  are the linearly independent eigen vectors corresponding to  $\lambda = -2$ .

## Diagonalization of a Matrix:

Suppose the n by n matrix A has n linearly independent eigen vectors. If these eigen vectors are the columns of a matrix P, then  $P^{-1}AP$  is a diagonal matrix D. The eigen values of A are on the diagonal of D

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_n \end{bmatrix}$$

## Note:

- 1. Any matrix with distinct eigen values can be diagonalized.
- 2. The diagonalization matrix P is not unique.
- 3. Not all matrices posses n linearly independent eigen vectors, so not all matrices are diagonalizable.
- 4. Diagonalizability of A depends on enough eigen vectors.
- 5. Diagonalizability can fail only if there are repeated eigen values.
- 6. The eigen values of  $A^k$  are  $\lambda_1^k, \lambda_2^k, ..., \lambda_n^k$  and each eigen vector of A is still an eigen vector

$$[D^k = D.D...D(k \text{ times}) = (P^{-1}AP)(P^{-1}AP)...(P^{-1}AP) = P^{-1}A^kP].$$

## **Problems:**

1. Diagonalize the matrix  $A = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix}$ .

## **Solution:**

$$|A - \lambda I| = 0 \implies \begin{vmatrix} 7 - \lambda & 2 \\ 2 & 4 - \lambda \end{vmatrix} = 0 \implies \lambda^2 - 11\lambda + 24 = 0 \implies (\lambda - 3)(\lambda - 8) = 0 \implies \lambda = 3, \lambda = 8.$$

With 
$$\lambda = 3$$
,  $(A - 3I)x = 0 \implies \begin{vmatrix} 4 & 2 \\ 2 & 1 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies 2x_1 + x_2 = 0$ . Letting  $x_1 = 1 \implies x_2 = -2$ . Hence  $x_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ 

$$x_1 = 1 \implies x_2 = -2$$
. Hence  $\mathbf{x}_1 = \begin{bmatrix} -2 \end{bmatrix}$   
With  $\lambda = 8$ ,  $(A - 8I)x = 0 \implies \begin{vmatrix} -1 & 2 \\ 2 & -4 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies -x_1 + 2x_2 = 0$ . Letting  $x_2 = 1 \implies x_1 = 2$ . Hence  $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 

$$x_2 = 1 \implies x_1 = 2$$
. Hence  $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$   
 $\implies P = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, D = \begin{bmatrix} 3 & 0 \\ 0 & 8 \end{bmatrix}, P^{-1} = \begin{bmatrix} 1/5 & -2/5 \\ 2/5 & 1/5 \end{bmatrix}$ 

2. Diagonalize the matrix  $A = \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$ .

Solution: 
$$|A - \lambda I| = 0 \implies \begin{vmatrix} 1 - \lambda & 0 \\ 0 & -3 - \lambda \end{vmatrix} = 0 \implies (\lambda - 1)(\lambda + 3) = 0 \implies \lambda = -3, \lambda = 1.$$
With  $\lambda = -3, (A + 3I)x = 0 \implies \begin{vmatrix} 4 & 0 \\ 0 & 0 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies 4x_1 = 0 \implies x_1 = 0.$  Let  $x_2 = 1$ .
Hence  $x_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 



With 
$$\lambda = 1, (A - I)x = 0 \implies \begin{vmatrix} 0 & 0 \\ 0 & -4 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies 4x_2 = 0 \implies x_2 = 0$$
. Let  $x_1 = 1$ . Hence  $x_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 

$$\implies P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, D = \begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}, P^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$
3. Diagonalize the matrix  $A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$ 

$$\text{Soln: } |A - \lambda I| = 0 \implies \begin{vmatrix} 6 - \lambda & -2 & -1 \\ -2 & 6 - \lambda & -1 \\ -1 & -1 & 5 - \lambda \end{vmatrix} = 0 \implies \lambda^3 - 17\lambda^2 + 90\lambda - 144 = 0$$

$$\implies \lambda = 3, 6, 8$$
with  $\lambda = 3 |A - \lambda I| = 0 \implies \begin{bmatrix} 3 & -2 & -1 \\ -2 & 3 & -1 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 

$$\implies \frac{x_1}{5} = \frac{-x_2}{-5} = \frac{x_3}{5} \implies \frac{x_1}{1} = \frac{x_2}{1} = \frac{x_3}{1} \therefore x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
with  $\lambda = 6 |A - \lambda I| = 0 \implies \begin{bmatrix} 0 & -2 & -1 \\ -2 & 0 & -1 \\ -1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 

$$\implies \frac{x_1}{-1} = \frac{-x_2}{1} = \frac{x_3}{2} \implies \frac{x_1}{-1} = \frac{x_2}{-1} = \frac{x_3}{2} \therefore x = \begin{bmatrix} -1 \\ -1 \\ 2 & 2 & -1 \\ -1 & 1 & -1 & -1 \end{bmatrix}$$
with  $\lambda = 8 |A - \lambda I| = 0 \implies \begin{bmatrix} -2 & -2 & -1 \\ -2 & 2 & -1 \\ -1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 

$$\implies \frac{x_1}{5} = \frac{-x_2}{5} = \frac{x_3}{0} \implies \frac{x_1}{1} = \frac{x_2}{-1} = \frac{x_3}{2} \therefore x = \begin{bmatrix} -1 \\ -1 \\ 2 & 2 & -1 \end{bmatrix}$$
Hence  $P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \\ 1 & 2 & 0 \end{bmatrix}, D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 8 \end{bmatrix}, P^{-1} = \begin{bmatrix} 1//3 & 1/3 & 1/3 \\ -1/6 & -1/6 & 1/3 \end{bmatrix}.$ 
4. Diagonalize the matrix  $A = \begin{bmatrix} 3 & 0 & 0 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$ 
Soln:  $|A - \lambda I| = 0 \implies \begin{bmatrix} 3 - \lambda & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 - \lambda \end{bmatrix} = 0 \implies \lambda^3 - 12\lambda^2 - 21\lambda + 98 = 0$ 

$$\implies \lambda = -2, 7, 7$$
with  $\lambda = -2 |A - \lambda I| = 0 \implies \begin{bmatrix} 5 & -2 & 4 \\ -2 & 8 & 2 \\ 4 & 2 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 

$$\implies \frac{x_1}{36} = \frac{-x_2}{-18} = \frac{x_3}{-36} \implies \frac{x_1}{2} = \frac{x_2}{2} = \frac{x_3}{-2} \therefore x_1 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

with 
$$\lambda = 7 |A - \lambda I| = 0 \implies \begin{bmatrix} -4 & -2 & 4 \\ -2 & -1 & 2 \\ 4 & 2 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

As the second and third row are dependent on the first row, we get only one equation in three unknowns. i.e.,  $-4x_1-2x_2+4x_3=0$ . Letting  $x_1$  and  $x_3$  as arbitrary implies  $x_2=-2x_1+2x_3$ . With  $x_1 = 1$ ,  $x_3 = 2$  we get  $x_2 = 2$ . With  $x_1 = 2$ ,  $x_3 = 1$  we get  $x_2 = -2$ .

$$\therefore \mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \ \therefore \mathbf{x}_3 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

1. Diagonalize the matrices (i)  $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ , (ii)  $\begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$ . 2. Diagonalize the matrices (i)  $\begin{bmatrix} -2 & -36 & 0 \\ -36 & -23 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ , (ii)  $\begin{bmatrix} 7 & -4 & 4 \\ -4 & 5 & 0 \\ 4 & 0 & 9 \end{bmatrix}$ .

## Singular Value Decomposition

Any  $m \times n$  matrix A can be factored into  $A = U \Sigma V^T = (\text{orthogonal})(\text{diagonal})(\text{orthogonal})$ . The columns of U(m by m) are eigen vectors of  $AA^T$ , and the columns of V(n by n) are eigen vectors of  $A^TA$ . The r singular values on the diagonal of  $\Sigma(m \text{ by } n)$  are the square roots of the non-zero eigen values of both  $AA^T$  and  $A^TA$ .

#### Note:

The diagonal (but rectangular) matrix  $\Sigma$  has eigen values from  $A^TA$ . These positive entries(also called sigma) will be  $\sigma_1, \sigma_2, ..., \sigma_r$ , such that  $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r > 0$ . They are the singular values of A.

When A multiplies a column  $v_i$  of V, it produces  $\sigma_i$  times a column of  $U(A = U\Sigma V^T)$  $AV = U\Sigma$ ).

**Examples:** 

1. Decompose 
$$A = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$
 as  $U\Sigma V^T$ , where  $U$  and  $V$  are orthogonal matrices.

Solution:  

$$AA^{T} = \begin{bmatrix} -1\\2\\2 \end{bmatrix} \begin{bmatrix} -1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -2 & -2\\-2 & 4 & 4\\-2 & 4 & 4 \end{bmatrix}$$

$$|AA^{T} - \lambda I| = 0 \implies \begin{vmatrix} 1 - \lambda & -2 & -2\\-2 & 4 - \lambda & 4\\-2 & 4 & 4 - \lambda \end{vmatrix} = 0$$

$$\implies \lambda^{3} - 9\lambda^{2} = 0 \implies \lambda_{1} = 0, \lambda_{2} = 0, \lambda_{3} = 9$$
with  $\lambda = 9$ ,  $[AA^{T} - \lambda I]x = 0 \implies$ 

$$\begin{bmatrix} -8 & -2 & -2\\-2 & -5 & 4\\-2 & 4 & -5 \end{bmatrix} \begin{bmatrix} x_{1}\\x_{2}\\x_{3} \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} \implies -8x_{1} - 2x_{2} - 2x_{3} = 0, -18x_{2} + 18x_{3} = 0$$

$$\implies x_{1} = -(1/2)x_{3}, x_{2} = x_{3} \implies x = \begin{bmatrix} -1\\2\\2 \end{bmatrix}$$
with  $\lambda = 0$ ,  $[AA^{T} - \lambda I]x = 0 \implies$ 



$$\begin{bmatrix} 1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies x_1 = 2x_2 + 2x_3 \implies x = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} \text{ and } x = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$
Hence  $U = \begin{bmatrix} -1/3 & 2/3 & 2/3 \\ 2/3 & -1/3 & 2/3 \\ 2/3 & 2/3 & -1/3 \end{bmatrix}$ 

$$A^{T}A = \begin{bmatrix} -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \end{bmatrix}$$

$$|A^T A - \lambda I| = 0 \implies |9 - \lambda| = 0 \implies \lambda = 9$$

Then 
$$A^T A - \lambda I)x = 0 \Longrightarrow [0][x_1] = [0]$$

Let 
$$x_1 = 1 : x = [1]$$

Hence 
$$V = \begin{bmatrix} 1 \end{bmatrix}$$
 or  $V^T = \begin{bmatrix} 1 \end{bmatrix}$ 

9 is an eigen value of both  $AA^T$  and  $A^TA$ .

And rank of 
$$A = \begin{bmatrix} -1\\2\\2 \end{bmatrix}$$
 is  $r = 1$ .

$$\Sigma \Sigma$$
 has only  $\sigma_1 = \sqrt{9} = 3$ .  $\Sigma = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$ 

$$\therefore \text{ the SVD of } A = \begin{bmatrix} -1\\2\\2\\2 \end{bmatrix} = \begin{bmatrix} -1/3 & 2/3 & 2/3\\2/3 & -1/3 & 2/3\\2/3 & 2/3 & -1/3 \end{bmatrix} \begin{bmatrix} 3\\0\\0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

2. Obtain the SVD of 
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

 $\therefore x = \left| \frac{-1}{1 - \sqrt{5}} \right| = \begin{bmatrix} -1 \\ \beta \end{bmatrix}, \text{ where } \beta = \frac{1 - \sqrt{5}}{2}.$ 

### Solution:

$$AA^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$|AA^{T} - \lambda I| = 0 \implies \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

$$\implies \lambda^{2} - 3\lambda + 1 = 0 \implies \lambda_{1} = \frac{3 - \sqrt{5}}{2}, \lambda_{2} = \frac{3 + \sqrt{5}}{2}$$
with  $\lambda = \frac{3 - \sqrt{5}}{2}, (AA^{T} - \lambda I)x = 0 \implies \begin{bmatrix} \frac{1 + \sqrt{5}}{2} & 1 \\ 1 & \frac{-1 + \sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 

$$\implies \frac{1 + \sqrt{5}}{2}x_{1} + x_{2} = 0 \text{ Letting } x_{1} = -1, \text{ then } x_{2} = \frac{1 + \sqrt{5}}{2}$$

$$\therefore x = \begin{bmatrix} -1 \\ \frac{1 + \sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} -1 \\ \alpha \end{bmatrix}, \text{ where } \alpha = \frac{1 + \sqrt{5}}{2}.$$
with  $\lambda = \frac{3 + \sqrt{5}}{2}, (AA^{T} - \lambda I)x = 0 \implies \begin{bmatrix} \frac{1 - \sqrt{5}}{2} & 1 \\ 1 & \frac{-1 - \sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 

$$\implies \frac{1 - \sqrt{5}}{2}x_{1} + x_{2} = 0 \text{ Letting } x_{1} = -1, \text{ then } x_{2} = \frac{1 - \sqrt{5}}{2}$$

$$\implies \frac{1 - \sqrt{5}}{2}x_{1} + x_{2} = 0 \text{ Letting } x_{1} = -1, \text{ then } x_{2} = \frac{1 - \sqrt{5}}{2}$$

Third Semester

$$\text{Hence } U = \begin{bmatrix} \frac{-1}{\sqrt{1 + \alpha^2}} & \frac{-1}{\sqrt{1 + \beta^2}} \\ \frac{\alpha}{\sqrt{1 + \alpha^2}} & \frac{\beta}{\sqrt{1 + \beta^2}} \end{bmatrix} \\ \text{As } A^T A = AA^T \quad V^T = \begin{bmatrix} \frac{-1}{\sqrt{1 + \alpha^2}} & \frac{\alpha}{\sqrt{1 + \alpha^2}} \\ \frac{-1}{\sqrt{1 + \beta^2}} & \frac{\beta}{\sqrt{1 + \beta^2}} \end{bmatrix} \text{ and } \Sigma = \begin{bmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{bmatrix}. \\ \text{3. Obtain the SVD of } A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \\ |AA^T = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \\ |AA^T - \lambda I| = 0 \implies \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = 0 \implies \lambda^2 - 4\lambda + 3 = 0 \\ \implies \lambda_1 = 1, \lambda_2 = 3 \\ \text{with } \lambda = 3 & (AA^T - \lambda I)x = 0 \implies \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies x_1 + x_2 = 0 \implies x_1 = -x_2 \\ \text{Letting } x_2 = 1 \implies x_1 = -1 \therefore x = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \\ \text{with } \lambda = 1 & (AA^T - \lambda I)x = 0 \implies \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies x_1 - x_2 = 0 \implies x_1 = x_2 \\ \text{Letting } x_2 = 1 \implies x_1 = 1 \therefore x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ |A^T A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \\ |A^T A - \lambda I| = 0 \implies \begin{vmatrix} 1 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 1 - \lambda \end{vmatrix} = 0 \implies \lambda^3 - 4\lambda^2 + 3\lambda = 0 \\ \implies \lambda_1 = 0, \lambda_2 = 1, \lambda_3 = 3 \\ \text{with } \lambda = 0 & (A^T A - \lambda I)x = 0 \implies \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \implies x_1 - x_2 = 0, x_2 - x_3 = 0 \implies x_1 = x_2, x_2 = x_3 \\ \text{Letting } x_3 = 1 \implies x_2 = 1, x_1 = 1 \therefore x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Letting 
$$x_3 = 1 \implies x_2 = 0, x_2 = x_3 = 0 \implies x_1 = x_2, x_2 = x_3$$
  
with  $\lambda = 1$  ( $A^T A - \lambda I$ ) $x = 0 \implies \begin{bmatrix} 0 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$   
 $\implies -x_1 + x_2 - x_3 = 0, x_2 = 0 \implies x_1 = -x_3, x_2 = 0$   
Letting  $x_3 = 1 \implies x_2 = 0, x_1 = -1 \therefore x = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ 



with 
$$\lambda = 3$$
  $(A^T A - \lambda I)x = 0 \implies \begin{bmatrix} -2 & -1 & 0 \\ -1 & -1 & -1 \\ 0 & -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$   
 $\implies -2x_1 - x_2 = 0, x_2 + 2x_3 = 0 \implies 2x_1 = x_2, x_2 = -2x_3$   
Letting  $x_3 = 1 \implies x_2 = -2, x_1 = 1 : x = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ 

Hence 
$$U = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \Sigma = \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} V = \begin{bmatrix} 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \\ -2/\sqrt{6} & 0 & 1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \end{bmatrix}$$

$$V^{T} = \begin{bmatrix} 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}$$

### Exercise:

1. Find the SVD of
(i) 
$$\begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$$
, (ii)  $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}$ , (iii)  $\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$