Resultados Al no Cimento

Thiago Lira

March 20, 2020

Outline

Resumo

2 Resultados

Os dados I

Unidade/ Variáveis						
Composição Química (%)	AL_20_3	SIO ₂	MGO	RICARB	$P_{2}O_{5}$	F_2O_3
Água (%)	AGP					
Tempo até o começo e fim do endurecimento do material (s)	IP	FP]			
Finura Blaine (cm²/g)	SBL		•			
Resistência Compressiva do Cimento (kPA)	RC3	RC7	RC28			

Table: Variáveis presentes nos dados de expedição de cimento.

Os dados (2)

 Objetivo (RC28) possui baixa correlação com as variáveis fornecidas.

	RC28
AGP	0.592847
AL203	0.463414
SIO2	-0.053178
MGO	-0.371414
IP	-0.132297
FP	-0.419800
SBL	0.396555
PF	-0.480720
P205	0.292252

Os dados (3)

• Objetivo (RC28) possui correlação com os outros índices de RC

Os dados (4)

Figure: Plots de correlação entre os índices e seus valores atrasados.

Treino e Validação

Série não estacionária.

Os dados (Transformações)

Normalizacao Minmax: Valores transformados no intervalo [0, 1].

$$z_i^* = \frac{x_i - \min(X)}{\max(X) - \min(X)}$$

Os dados (Transformações) 2

• Reamostragem para frequência diária

Aplicações de Al existentes

- Em [2] temos um tratamento temporal dos dados, com regressão lineares treinadas em janelas móveis
- [1, 3] apresentam uma solucao compatível com o ambiente laboratorial

Modelo Linear com Filtragem Exp.

Modelo Econométrico (Processo AR)

- Processo AR
- Usa atrasos de RC3, RC7 e RC28 de respectivamente 3, 7 e 28 dias.

$$RC28_t = \beta_0 + \beta_1 * RC28_{t-27} + \beta_2 * RC3_{t-3} + \beta_3 * RC7_{t-7} + \epsilon_t$$

Os Modelos de Deep Learning Bayesianos

- Consideram a incerteza do modelo e a propagam até a predição.
- Geram uma distribuição de probabilidade para cada predição.
- Escalam facilmente para dezenas ou centenas de milhares de entradas de dados.
- Podem facilmente agregar séries exógenas na predição.
- Não dependem de estacionariedade dos dados. i.e. podem gerar predições em regimes de anomalia

Rede Encoder Decoder (Treino)

Rede Encoder Decoder (Inferência)

Deep AR (Treino)

Modelo Auto-regressivo

Deep AR (Inferência)

Modelo Auto-regressivo

Deep Factors

- Gera predições de maneira similar ao Encoder-Decoder.
- Gera incerteza por meio de um Processo Gaussiano.
- O Processo Gaussiano supõe que as predições são normalmente distribuídas 2 a 2.
- O Kernel escolhido como função de covariância do processo
- é usado para maximizar a verossimilhança das predições.

Treinamento

Métricas

 \bullet R^2

Reporta a proporção da variância da variável dependente que foi explicada pelo modelo.

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} \tag{1}$$

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2$$
 (2)

$$SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y})^2$$
 (3)

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y \tag{4}$$

Métricas (2)

RMSE

Raiz do erro quadrático médio para obtermos um erro na mesma ordem de grandeza da variável alvo.

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y_i} - y_i)^2}{n}}$$

Resultados (Tabela)

Table: Comparação dos modelos de Deep Learning e o modelo Linear

	RMSE 24h	RMSE 48h	RMSE 72h
DeepAR	0.07	1.37	1.44
Enc-Dec-Forecaster	0.06	0.44	0.80
Deep Factors	0.18	2.36	1.83
Linear Coupled Model	1.79	1.47	2.36
AR Process	0.33	4.32	5.48

Resultados (Distribuição)

Figure: Valores reais plotados contra os valores previstos para análise da distribuição aprendida por cada modelo

Resultados Deep AR

Resultados Encoder Decoder Forecaster

Resultados Deep Factors

Resultados Processo AR

• Realizado em período estacionário dos dados de treino

Resultados Coupled Linear Model

Bibliografia I

- P. E. García-Casillas et al. "Prediction of Portland Cement Strength Using Statistical Methods". In: Materials and Manufacturing Processes 22.3 (2007), pp. 333–336. DOI: 10.1080/10426910701190352. eprint: https://doi.org/10.1080/10426910701190352. URL: https://doi.org/10.1080/10426910701190352.
- Dimitris Tsamatsoulis. "Optimizing the Cement Compressive Strength Prediction by Applying Coupled Linear Models". In: Jan. 2015.

Bibliografia II

Q. Zhang et al. "Predicting Cement Compressive Strength Using Double-Layer Multi-expression Programming". In: 2012 Fourth International Conference on Computational and Information Sciences. Aug. 2012, pp. 94–97. DOI: 10.1109/ICCIS.2012.207.