DataExploration.R

Wow

Tue Sep 04 08:13:33 2018

```
Data Exploration
data(iris)
summary(iris)
   Sepal.Length
                Sepal.Width
                             Petal.Length
                                         Petal.Width
##
## Min.
        :4.300
               Min.
                    :2.000
                                 :1.000
                            Min.
                                         Min.
                                              :0.100
                            1st Qu.:1.600
## 1st Qu.:5.100
               1st Qu.:2.800
                                         1st Qu.:0.300
                            Median :4.350
## Median :5.800
               Median :3.000
                                         Median :1.300
## Mean
        :5.843
               Mean
                     :3.057
                            Mean
                                  :3.758
                                         Mean
                                              :1.199
## 3rd Qu.:6.400
               3rd Qu.:3.300 3rd Qu.:5.100
                                         3rd Qu.:1.800
        :7.900
               Max. :4.400
                            Max. :6.900
                                             :2.500
## Max.
                                         Max.
##
       Species
## setosa
           :50
## versicolor:50
## virginica:50
##
##
##
quantile(iris\$Sepal.Length, prob = c(0,0.25,0.5,0.75,1)) #quantile
   0% 25% 50% 75% 100%
##
## 4.3 5.1 5.8 6.4 7.9
quantile(iris$Sepal.Length, prob = seq(0,1,by=0.1)) #quantile
   0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
## 4.30 4.80 5.00 5.27 5.60 5.80 6.10 6.30 6.52 6.90 7.90
range(iris$Sepal.Length) #provide max and min
## [1] 4.3 7.9
min(iris$Sepal.Length) #minimum
## [1] 4.3
max(iris$Sepal.Length) #maximum
## [1] 7.9
```

```
mean(iris$Sepal.Length) #mean, average
## [1] 5.843333
median(iris$Sepal.Length) #median
## [1] 5.8
var(iris$Sepal.Length) #variance
## [1] 0.6856935
sd(iris$Sepal.Length) #standard deviaiton
## [1] 0.8280661
# Use apply function
apply(iris[1:4], MARGIN=2, range)
        Sepal.Length Sepal.Width Petal.Length Petal.Width
##
## [1,]
                 4.3
                             2.0
                                          1.0
## [2,]
                 7.9
                             4.4
                                          6.9
                                                      2.5
apply(iris[1:4], MARGIN=2, min)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
##
            4.3
                         2.0
                                      1.0
                                                   0.1
apply(iris[1:4], MARGIN=2, max)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
##
                         4.4
                                      6.9
                                                   2.5
            7.9
apply(iris[1:4], MARGIN=2, mean)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
       5.843333
                                 3.758000
                    3.057333
                                              1.199333
apply(iris[1:4], MARGIN=2, median)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
##
           5.80
                        3.00
                                     4.35
                                                  1.30
apply(iris[1:4], MARGIN=2, var)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
##
      0.6856935
                   0.1899794
                                3.1162779
                                             0.5810063
apply(iris[1:4], MARGIN=2, sd)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
##
      0.8280661
                   0.4358663
                                1.7652982
                                             0.7622377
# covariance
cov(iris[,1:4]) #covariance between attributes
```

```
##
                Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length
                   0.6856935 -0.0424340
                                             1.2743154
                                                         0.5162707
## Sepal.Width
                  -0.0424340
                              0.1899794
                                            -0.3296564
                                                       -0.1216394
                   1.2743154 -0.3296564
                                             3.1162779
## Petal.Length
                                                         1.2956094
## Petal.Width
                   0.5162707 -0.1216394
                                             1.2956094
                                                         0.5810063
cov_objs <- cov(t(iris[,1:4])) #covariance between objects</pre>
cov objs[1:10,1:10]
##
             \lceil,1\rceil
                      [,2]
                               [,3]
                                         [,4]
                                                  [,5]
                                                           [,6]
##
    [1,] 4.750000 4.421667 4.353333 4.160000 4.696667 4.860000 4.215000
    [2,] 4.421667 4.149167 4.055000 3.885000 4.358333 4.515000 3.907500
    [3,] 4.353333 4.055000 3.990000 3.813333 4.303333 4.453333 3.861667
##
    [4,] 4.160000 3.885000 3.813333 3.656667 4.110000 4.256667 3.688333
    [5,] 4.696667 4.358333 4.303333 4.110000 4.650000 4.810000 4.175000
   [6,] 4.860000 4.515000 4.453333 4.256667 4.810000 4.976667 4.318333
    [7,] 4.215000 3.907500 3.861667 3.688333 4.175000 4.318333 3.749167
##
    [8,] 4.595000 4.284167 4.211667 4.031667 4.541667 4.701667 4.075833
   [9,] 3.965000 3.707500 3.635000 3.485000 3.915000 4.055000 3.512500
## [10,] 4.493333 4.210000 4.120000 3.953333 4.433333 4.593333 3.976667
##
                   [,9]
                            [,10]
             [,8]
    [1,] 4.595000 3.9650 4.493333
##
   [2,] 4.284167 3.7075 4.210000
    [3,] 4.211667 3.6350 4.120000
  [4,] 4.031667 3.4850 3.953333
  [5,] 4.541667 3.9150 4.433333
##
  [6,] 4.701667 4.0550 4.593333
  [7,] 4.075833 3.5125 3.976667
## [8,] 4.449167 3.8425 4.356667
## [9,] 3.842500 3.3225 3.770000
## [10,] 4.356667 3.7700 4.280000
# correlation
cor(iris[,1:4]) #correlation between atrributes
                Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length
                   1.0000000 -0.1175698
                                             0.8717538
                                                         0.8179411
## Sepal.Width
                  -0.1175698
                               1.0000000
                                            -0.4284401
                                                       -0.3661259
## Petal.Length
                   0.8717538 -0.4284401
                                             1.0000000
                                                         0.9628654
## Petal.Width
                   0.8179411 -0.3661259
                                            0.9628654
                                                         1.0000000
cor_objs <- cor(t(iris[,1:4])) #correlation between objects</pre>
cor_objs[1:10,1:10]
##
                        [,2]
                                  [,3]
                                             [,4]
                                                       [55]
              [,1]
    [1,] 1.0000000 0.9959987 0.9999739 0.9981685 0.9993473 0.9995861
##
    [2,] 0.9959987 1.0000000 0.9966071 0.9973966 0.9922327 0.9935919
##
    [3,] 0.9999739 0.9966071 1.0000000 0.9983335 0.9990611 0.9993773
  [4,] 0.9981685 0.9973966 0.9983335 1.0000000 0.9967188 0.9978326
    [5,] 0.9993473 0.9922327 0.9990611 0.9967188 1.0000000 0.9998833
## [6,] 0.9995861 0.9935919 0.9993773 0.9978326 0.9998833 1.0000000
```

```
[7,] 0.9988112 0.9907206 0.9984377 0.9961394 0.9999140 0.9997226
  [8,] 0.9995381 0.9971181 0.9996045 0.9995456 0.9985032 0.9991788
## [9,] 0.9980766 0.9985463 0.9983561 0.9998333 0.9960309 0.9972157
## [10,] 0.9965520 0.9990329 0.9969856 0.9993068 0.9937612 0.9952606
##
              [,7]
                        [8,]
                                  [,9]
                                            [,10]
    [1,] 0.9988112 0.9995381 0.9980766 0.9965520
##
  [2,] 0.9907206 0.9971181 0.9985463 0.9990329
   [3,] 0.9984377 0.9996045 0.9983561 0.9969856
## [4,] 0.9961394 0.9995456 0.9998333 0.9993068
## [5,] 0.9999140 0.9985032 0.9960309 0.9937612
## [6,] 0.9997226 0.9991788 0.9972157 0.9952606
## [7,] 1.0000000 0.9979521 0.9952140 0.9927272
## [8,] 0.9979521 1.0000000 0.9994062 0.9983737
## [9,] 0.9952140 0.9994062 1.0000000 0.9997398
## [10,] 0.9927272 0.9983737 0.9997398 1.0000000
# Cut each attribute into ordered factors with three levels
iris_ord <- data.frame( # create the new data frame</pre>
 cut(iris[,1], 3, labels=c("short", "medium", "long"), ordered=T),
cut(iris[,2], 3, labels=c("short", "medium", "long"), ordered=T),
cut(iris[,3], 3, labels=c("short", "medium", "long"), ordered=T),
  cut(iris[,4], 3, labels=c("short", "medium", "long"), ordered=T),
  iris[,5])
colnames(iris_ord) <- colnames(iris) #assign column names</pre>
sw <- table(iris ord$Sepal.Width)</pre>
barplot(sw)
```



```
sls <- sort(iris$Sepal.Length) #sort sepal length in ascending order</pre>
sls
##
    [1] 4.3 4.4 4.4 4.4 4.5 4.6 4.6 4.6 4.6 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9
   [18] 4.9 4.9 4.9 4.9 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.1
##
##
   [35] 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.3 5.4 5.4 5.4 5.4
  [69] 5.7 5.7 5.7 5.7 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.9 5.9 5.9 6.0 6.0
## [86] 6.0 6.0 6.0 6.0 6.1 6.1 6.1 6.1 6.1 6.2 6.2 6.2 6.2 6.3 6.3 6.3
## [103] 6.3 6.3 6.3 6.3 6.3 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.5 6.5 6.5
## [120] 6.5 6.6 6.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.8 6.8 6.8 6.9 6.9 6.9
## [137] 6.9 7.0 7.1 7.2 7.2 7.2 7.3 7.4 7.6 7.7 7.7 7.7 7.7 7.9
slp1 <- stem(iris$Sepal.Length,scale=0.10) #each Line contains 2 stems</pre>
##
##
    The decimal point is at the
##
##
    4 |
34445666677888889999990000000001111111112222344444455555555666666777+3
    6 | 000000111111222233333333344444445555566777777788899990122234677779
slp1 <- stem(iris$Sepal.Length,scale=0.10, width=100) #default width = 80</pre>
##
##
    The decimal point is at the
##
```

```
## 4
34445666677888889999990000000000111111111222234444445555555666666777777778888
888999
##
    6 | 000000111111222233333333344444445555566777777788899990122234677779
slp2 <- stem(iris$Sepal.Length,scale=0.25)</pre>
##
    The decimal point is at the |
##
##
    4 | 3444566667788888999999
##
##
   5 | 00000000011111111122223444444555555566666677777778888888999
##
    6 | 00000011111122223333333344444445555566777777788889999
    7 | 0122234677779
##
slp3 <- stem(iris$Sepal.Length,scale=0.50) #two buckets per stem</pre>
##
    The decimal point is at the |
##
##
    4 | 3444
##
    4 | 566667788888999999
##
    5 | 00000000011111111122223444444
##
   5 | 5555555666666777777788888888999
##
    6 | 00000011111122223333333334444444
##
##
    6 | 555556677777778889999
##
    7 | 0122234
    7 | 677779
hist(iris$Sepal.Length) # Histograms of sepal Length
```


hist(iris\$Sepal.Length, col = "blue", border = "black", main = "Sepal
Length", xlab = "Centimeter") #Use arguments to make the plot looks better


```
# See http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf for color options
# Specify number of bins
hist(iris$Sepal.Length, breaks=8) #8 bins
```


hist(iris\$Sepal.Length, breaks=10) #10 bins (gets 8 bins, actually)
hist(iris\$Sepal.Length, breaks=20) #20 bins (gets 19 bins, actually)

The bins donâ t correspond to exactly the number you put in, because of the way R runs

its algorithm to break up the data but it gives you generally what you want. If you

want more control over exactly the breakpoints between bins, you can be more precise with

the breaks() option and give it a vector of breakpoints, like this:
hist(iris\$Sepal.Length, breaks=c(4.0,5.0,6.0,7.0,8.0)) #define split points
of bins using breaks()

hist(iris\$Sepal.Length, breaks=seq(4.0,8.0,by=0.5)) #define breaks using
seq()

Histogram of iris\$Sepal.Length


```
# Pareto histogram for categorical attribute
library(qcc)

## Package 'qcc' version 2.7

## Type 'citation("qcc")' for citing this R package in publications.

count <- c(80, 27, 66, 94, 33)
names(count) <- c("Good", "Very Poor", "Very Good", "OK", "Poor")
pareto.chart(count)</pre>
```



```
## Pareto chart analysis for count
##
                Frequency Cum.Freq. Percentage Cum.Percent.
##
     OK
                 94.00000 94.00000
                                        31.33333
                                                      31.33333
##
     Good
                 80.00000 174.00000
                                        26.66667
                                                      58.00000
##
     Very Good
                                        22.00000
                                                      80.00000
                 66.00000 240.00000
##
     Poor
                 33.00000 273.00000
                                        11.00000
                                                      91.00000
##
     Very Poor
                 27.00000 300.00000
                                         9.00000
                                                     100.00000
# 2-D histograms
library(plot3D)
SepL <- cut(iris[,1],8) #cut sepal length into 8 bins</pre>
PetL <- cut(iris[,3],8) #cut petal length into 8 bins</pre>
tb <- table(SepL, PetL) #calculate joint counts at cut levels (cross
tabulation)
tb
##
                 (0.994,1.74] (1.74,2.48] (2.48,3.21] (3.21,3.95] (3.95,4.69]
## SepL
##
                            11
     (4.3, 4.75]
                                          2
##
                            26
                                                       1
                                                                    4
                                                                                 1
     (4.75, 5.2]
                             8
                                          0
                                                       0
                                                                    4
                                                                                 7
##
     (5.2, 5.65]
                             3
                                                                    2
##
     (5.65, 6.1]
                                          0
                                                       0
                                                                                12
                                                                    0
##
     (6.1, 6.55]
                             0
                                          0
                                                       0
                                                                                 6
##
                             0
                                          0
                                                       0
                                                                    0
                                                                                 3
     (6.55,7]
                             0
                                                                                 0
##
     (7,7.45]
                                          0
                                                       0
                                                                    0
     (7.45, 7.9]
##
```

```
##
                PetL
                 (4.69,5.43] (5.43,6.16] (6.16,6.91]
## SepL
##
     (4.3, 4.75]
##
     (4.75, 5.2]
                            0
                                         0
                                                      0
                            1
                                         0
                                                      0
##
     (5.2,5.65]
##
     (5.65, 6.1]
                           12
                                         1
                                                      0
                           11
                                         8
                                                      0
##
     (6.1, 6.55]
     (6.55,7]
                            8
                                         7
                                                      0
##
                            0
                                         5
                                                      1
##
     (7,7.45]
     (7.45, 7.9]
                                         1
                                                      5
##
                            0
image2D(tb, x = 1:8, y = 1:8, xlab = "Sepal Length", ylab = "Petal Length")
```


3-D histograms
hist3D(z=tb, border="black")

boxplot(iris[,1:4]) #4 attributes

Quantiles Plot


```
#### Empirical cumulative distribution function plot ####

x <- ecdf(iris$Sepal.Width)
plot(x, main = "Empirical Cumulative Distribution Function", xlab="Sepal
Width", ylab="CDF(x)", verticals = FALSE, col.01line = "gray70", pch = 19)</pre>
```

Empirical Cumulative Distribution Function

#Matrix of scatter plots
plot(iris[,1:4], col=iris\$Species)


```
#Scatter plot of iris associating 4 attributes
plot(iris$Petal.Length,iris$Petal.Width, xlab = "Petal Length", ylab = "Petal
Width", col=iris$Species, pch=16, cex=(iris$Sepal.Width/3))
legend(1,2.5,legend=c("Setosa", "Versicolor","Virginica"),
col=c("black","red","green"), pch=16, cex=0.8)
```



```
#3d scatter plot (associates 4 attributes)
library(scatterplot3d)
# Rename all Levels in Species attribute (column 5) to number from 1-3
levels(iris$Species) <- c("1","2","3")
scatterplot3d(iris$Sepal.Width,iris$Petal.Length,iris$Petal.Width,
color=iris$Species,xlab="Sepal Width",ylab="Petal Length",zlab="Petal Width")</pre>
```


pimage(iris_s, col = heat.colors(50))


```
# Plot of the iris correlation matrix
cc <- cor(t(iris[,1:4])) #correlation between objects
pimage(cc, col = heat.colors(50))</pre>
```



```
## effect of variables:
##
    modified item
                        Var
                       " "Sepal.Length"
##
    "height of face
                       " "Sepal.Width"
##
    "width of face
##
    "structure of face" "Petal.Length"
##
    "height of mouth
                      " "Petal.Width"
                      " "Sepal.Length"
##
    "width of mouth
                       " "Sepal.Width"
##
    "smiling
                       " "Petal.Length"
##
    "height of eyes
                      " "Petal.Width"
##
    "width of eyes
                      " "Sepal.Length"
##
    "height of hair
                     " "Sepal.Width"
    "width of hair
##
    "style of hair
                        "Petal.Length"
                     " "Petal.Width"
##
    "height of nose
                      " "Sepal.Length"
##
    "width of nose
    "width of ear
                        "Sepal.Width"
##
##
    "height of ear
                         "Petal.Length"
```