Mélange liquide idéal

C3 – Thermochimie – Chapitre 1

Notations I.

Liquide	Vapeur	Mélange
$x_i = \frac{n_i}{n}$	$y_i = \frac{n_i}{n}$ $P_i = y_1 P$ Loi de Dalton	$z_i = \frac{n_i}{n} \qquad w_i = \frac{m_i}{m}$

II. **Définitions**

Variance : Nombre de facteur d'équilibre qu'il est nécessaire et suffisant de fixer pour décrire entièrement le système.

v = nbr de paramètres - nbr de relations

$$v = N + 2^* - Re - \varphi - q$$

N: nombre de constituants à l'équilibre 2*: nombre de fact. d'eq. parmi T et P

Re: nombre de réactions

 φ : nombre de phases à l'équilibre. nombre de relations liés aux c.i.

- <u>Pression de vapeur saturante $P^*(B)$ ou $P_S(B,T)$:</u> pression à l'équilibre liquide-vapeur à T
- Mélange liquide idéal : Phase liquide homogène où les interactions entre molécules sont de même nature.
- Loi de Raoult : (solutions idéales)

$$P_i = x_i P^*(B_i)$$

III. Diagrammes binaires

Ébullition : $P = x_1[P_1^* - P_2^*] + P_2^*$ Rosée:

Théorèmes

Théorème de l'horizontale :

A l'éq liquide-vapeur :

- y_1 est donné par l'intersection de l'horizontale avec la courbe
- x_1 est donné par l'intersection de l'horizontale avec la courbe de d'ébullition.

Théorème des moments :

$$\frac{n^l}{n^v} = \frac{MV}{ML}$$

$$\frac{n^l}{n} = \frac{MV}{LV}$$
 et $\frac{n^v}{n} = \frac{ML}{LV}$