▼ Usando machine learning na Previsão de Falhas de maquinários

O objetivo deste notebook, é avaliar os potenciais falhas de uma determinada maquina de uma fabrica. Para isto foram feitas todo o processo de importação dos dados, tratamento e modificação necessária do dataset, além de todo o processo de engenharia de feature e treinamento do modelo.

▼ Importando e tratando dados

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import classification_report,accuracy_score, confusion_matrix, auc
from sklearn import preprocessing

#carregando dados
df = pd.read_csv('/content/desafio_manutencao_preditiva_treino.csv')
df_teste = pd.read_csv('/content/desafio_manutencao_preditiva_teste.csv')

#verificando os 5 primeiro dados
df.head()
```

	udi	product_id	type	air_temperature_k	<pre>process_temperature_k</pre>	${\tt rotational_speed_}$
0	1	M14860	М	298.1	308.6	1
1	2	L47181	L	298.2	308.7	1
2	5	L47184	L	298.2	308.7	1
3	6	M14865	М	298.1	308.6	1
4	7	L47186	L	298.1	308.6	1
- 4 -						>

```
#tipos de dados
df.info()
```

```
RangeIndex: 6667 entries, 0 to 6666
Data columns (total 9 columns):
# Column
                          Non-Null Count Dtvpe
0
    udi
                           6667 non-null
                                           int64
1
    product_id
                          6667 non-null
                                           object
 2
                          6667 non-null
                                           object
    air_temperature_k
                           6667 non-null
                                           float64
    process_temperature_k 6667 non-null
                                           float64
                           6667 non-null
                                           int64
    rotational_speed_rpm
    torque_nm
                           6667 non-null
                                           float64
                                           int64
    tool_wear_min
                           6667 non-null
                           6667 non-null
    failure type
                                           object
```

<class 'pandas.core.frame.DataFrame'>

memory usage: 468.9+ KB

Dicionario dos dados

• **UID**: unique identifier ranging from 1 to 10000

dtypes: float64(3), int64(3), object(3)

- **Product ID**: consisting of a letter L, M, or H for low (50% of all products), medium (30%) and high (20%) as product quality variants and a variant-specific serial number
- Air temperature [K]: generated using a random walk process later normalized to a standard deviation of 2 K around 300 K
- Process temperature [K]: generated using a random walk process normalized to a standard deviation of 1 K, added to the air temperature plus 10 K.
- Rotational speed [rpm]: calculated from a power of 2860 W, overlaid with a normally distributed noise

- Torque [Nm]: torque values are normally distributed around 40 Nm with a SD = 10 Nm and no negative values.
- Tool wear [min]: The quality variants H/M/L add 5/3/2 minutes of tool wear to the used tool in the process.

```
#valores nulos
df.isnull().sum()
     udi
                               a
     product_id
                               0
                               0
     type
     air_temperature_k
                               0
     process_temperature_k
     rotational_speed_rpm
     torque_nm
     tool wear min
                               0
     failure_type
                               0
     dtype: int64
#linhas e colunas
df.shape
     (6667, 9)
O dataset possui 6667 linhas e 9 colunas
features_numericas = df.select_dtypes(include='number').columns.tolist()
#separando o dataset features numericas.
features_categoricas = df.select_dtypes(include = 'object').columns.tolist()
#separando o dataset features categoricas.
print('Features numericas: {}'.format(features_numericas))
     Features numericas: ['udi', 'air_temperature_k', 'process_temperature_k', 'rotational_speed_rpm', 'torque_nm', 'tool_wear_min']
As features numéricas são:

    Type,

   • Air_temperature_k,

    Process_temperature_k,

    Rotational_speed_rpm,

   · Torque_nm, tool_wear_min,

    Failure_type

print('Features categoricas: {}'.format(features categoricas))
     Features categoricas: ['product_id', 'type', 'failure_type']
Ja as features categoricas são:
   · Product_id

    Type

    Failure_type

#verificando os valores unicos
df['failure_type'].unique()
     array(['No Failure', 'Power Failure', 'Tool Wear Failure',
             'Overstrain Failure', 'Random Failures',
            'Heat Dissipation Failure'], dtype=object)
Derivei a variavel failure_type para verificar quantas colunas apresentaram falhas na maquina, e quantas não apresentaram .
#criando um for para verificar quais maquinas apresentaram falhas, quais não apresentaram
# se a maquina apresentar falha = 1
# se não apresentar = 0.
df['failure'] = [0 if x=='No Failure' else 1 for x in df['failure_type']]
Deletei as variaveis udi e product_id para nao afetar a analise exploratória
```

df = df.drop(["udi",'product_id'], axis = 1)

#deletando o udi = id

```
df_teste = df_teste.drop(["udi",'product_id'], axis = 1)
```

▼ Análise exploratoria

Comecei a analise exploratória dos dados descrevendo as principais valores das variaveis presentes.

df.describe()

	udi	air_temperature_k	${\tt process_temperature_k}$	rotational_speed_rpm
count	6667.000000	6667.000000	6667.000000	6667.000000
mean	4994.589921	299.992515	309.992620	1537.419529
std	2896.125718	1.994710	1.488101	177.182908
min	1.000000	295.300000	305.700000	1168.000000
25%	2496.500000	298.300000	308.800000	1422.500000
50%	4983.000000	300.000000	310.000000	1503.000000
75%	7510.500000	301.500000	311.100000	1612.000000
max	10000.000000	304.500000	313.800000	2886.000000
4				→

Air_temperature_k

Media: 299.99Desvio Padrão: 1.99

Temperatura do ar minima: 295.30Temperatura do ar maxima: 304.50

Process_temperature_k

Media: 309.99Desvio Padrão: 1.48

Temperatura do ar minima: 305.7Temperatura do ar maxima: 313.8

Rotational_speed_rpm

Media: 1537.41Desvio Padrão: 177.18

Velocidade rotacional minima: 1168 rpmVelocidade Rotacional maxima: 2886 rpm

Torque_nm

Media: 40.05Desvio Padrão: 9.95Valor minimo: 3.8 rpmValor maximo: 76 rpm

tool_wear_min

Media: 108.09Desvio Padrão: 63.35Valor minimo: 0Valor maximo: 151 rpm

Após isso verifiquei a distribuição das principais variaveis numericas

sns.distplot(df['torque_nm'])
#distribuição normal

 $/usr/local/lib/python 3.8/dist-packages/seaborn/distributions.py: 2619: \ Future Warning: \\$ warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f498b7ec760>

Torque_nm

- A velocidade se encontra distribuida entre 20 e 60 nm.
- · A variavel possui distribuição normal.

sns.distplot(df['rotational_speed_rpm']) #distribuição assimetrica a direita

> /usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f498b7ecee0>

Rotational_speed_rpm

- A concentração da velocidade foi de 1000 a 2250 rpm
- Media de 1500 rpm

sns.distplot(df['air_temperature_k']) #distribuição normal

> /usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4989156e20>

air_temperature_k

- A concentração da velocidade foi de 295 a 304 rpm
- Media de 300 rpm

Como parte do processo de analise de dados, foi verificado os tipos de falhas, e a quantidade existente de cada falha.

```
#tipos de falhas
df['failure_type'].value_counts()
     No Failure
                                 6435
     Heat Dissipation Failure
                                   75
     Power Failure
                                   63
     Overstrain Failure
                                   52
     Tool Wear Failure
                                   30
     Random Failures
     Name: failure_type, dtype: int64
plt.figure(figsize=(10,8))
sns.countplot(data = df[df['target'] == 1], \ x = "failure\_type")
#tipos de falhas
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f49871805b0>

- No Failure 6435
- Heat Dissipation Failure 75
- Power Failure 63
- Overstrain Failure 52
- Tool Wear Failure 30
- Random Failures 12

Foi verificado quantas maquinas possuem falhas e quantas não possuem falhas

<matplotlib.axes._subplots.AxesSubplot at 0x7f642fe9eb80>

- Maquinario com falha: 6435
- Maquinario sem falhas: 232

Foi verificado a correlação das variaveis com a variavel heatmap

plt.figure(figsize = (10, 8))
sns.heatmap(df.corr(), annot = True, fmt = ".2f")
#heat map

Correlação das variaveis com tipo de falha:

- tool_wear_min:11%
- torque_nm: 3%
- rotational_speed: 8%

Correlação negativa:

- Air_temperature_k: -3%
- Process_temperature: -1%
- Type: -2%

Por ultimo complementei o processo de análise das correlações de features através de um pairplot

sns.pairplot(df, hue='failure', palette='husl')

- Torque e rotational_speed_rpm s\u00e3o altamente correlacionados.
- Process temperature e Air temperature também estão altamente correlacionados.
- Pode se notar que existe falha quando ocorre valores extremos em algumas variaveis, ou seja a maquina falha ou para valores muito baixos, ou para valores muito alto de rotational speed. Isto se percebe, pois os pontos verdes, estão mais afastados para este tipo de caracteristica.
- Podemos deduzir a partir disto, que deve existir uma faixa de valores onde as maquinas funcionam normalmente, e acima ou abaixo destes valores, elas tendem a falhar.

Também foi feito o processo de engenharia de features que será detalhada logo a baixo.

Feature engineering

Para fazer o processo de feature engineering, foi utilizado o processo de enconder de algumas colunas categóricas, também foi feita a derivação de algumas colunas com as informações obtidas a partir da leitura da documentação fornecida.

A coluna Failure type, sendo categórica, precisou ser transformada através do processo de Label enconder, onde eu transformei os tipos de falhas em valores inteiros numericos.

```
# Encodando a coluna failure_type'.
le= preprocessing.LabelEncoder()
df['failure_type']= le.fit_transform(df['failure_type'])
df['failure_type'].unique()
array([1, 3, 5, 2, 4, 0])
```

A coluna type, também categórica possuindo três valores também foi transformada através da função map do pandas. Onde: L = 1 M = 2 H = 3

```
df['type'] = df['type'].map({'L': 1, 'M': 2,'H':3})
#replace L M & H por numeros.
```

Este processo também foi feito na tabela df_teste, usada para previsão.

```
df_teste['type'] = df_teste['type'].map({'L': 1, 'M': 2,'H':3})
```

Após este processo de encoders de variaveis categoricas, foi feito o processo de derivação de variaveis. Estas informações foram obtidas através da leitura da documentação fornecida, onde foi relatada como acontecia o processo de cada espécie de falha de maquinario.

As variaveis derivadas nesta etapa foram

- Heat Dissipation Failure = HTF
- Power Failure = PWF
- Overstrain Failure = OSF

As variaveis Tool Wear Failure (Desgaste de maquina) e Random Failures(Falhas aleatórias) não sofreram derivações, pois ao meu entender, não são variaveis passiveis de se quantificar a partir dos dados originais fornecidos. Ambas as derivações, foram feitas tanto para a dataframe de treino, quanto de teste.

A variavel heat dissipation failure (falha na dissipação de calor) foi obtida através da subtração da variavel air_temperature_k - process_temperature_k

```
df['htf'] = df['air_temperature_k'] - df['process_temperature_k']
#'heat dissipation failure (HDF)'

df_teste['htf'] = df_teste['air_temperature_k'] - df_teste['process_temperature_k']
```

A varivavel power failure (falha de energia) foi obtida através da multiplicação de rotational_speed_rpm pela variavel torque_nm. Também nesta estapa a variavel rotational_speed_rpm foi convertida para radianos por segundo(rad/s)

```
df['pwf'] = (df['rotational_speed_rpm']*0.10472) * (df['torque_nm'])
#power failure (PWF)

df_teste['pwf'] = (df_teste['rotational_speed_rpm']*0.10472) * (df_teste['torque_nm'])
```

A variavel overstrain failure (falha por sobrecarga), foi obtida através da multiplicação de tool_wear_min por torque_nm

```
df['osf'] = df['tool_wear_min']*df['torque_nm']
#overstrain failure (OSF)
df_teste['osf'] = df_teste['tool_wear_min']*df_teste['torque_nm']
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 6667 entries, 0 to 6666
     Data columns (total 10 columns):
         Column
                                Non-Null Count Dtype
     #
                                6667 non-null
                                                float64
         type
         air temperature k
                                6667 non-null
                                                float64
         process temperature k 6667 non-null
                                                float64
         rotational_speed_rpm 6667 non-null
                                               float64
                                                float64
         torque_nm
                                6667 non-null
         tool wear min
                                6667 non-null
                                                float64
                                                float64
      6
         failure_type
                                6667 non-null
         htf
                                6667 non-null
                                                float64
         pwf
                                6667 non-null
                                                float64
                                6667 non-null
                                                float64
          osf
     dtypes: float64(10)
     memory usage: 521.0 KB
```

df_teste['type'].value_counts()

df

```
1 1978
2 1010
3 345
Name: type, dtype: int64

df.failure_type.value_counts()

1 6435
0 75
3 63
2 52
5 30
4 12
```

Name: failure_type, dtype: int64

Depois de terminado a parte de engenharia de features, aplicamos o standard scaler para normalizar os dados do dataframe. A escolha dessa técnica em especifica, se deu após o teste de diferentes tipos de normalização, a que performou melhor e melhorou significativamente o F1 do modelo escolhido, foi a standard scaler. O processo de normalização de variaveis ocorreu tanto para base de treino, quanto para base de teste.

	type	air_temperature_k	<pre>process_temperature_k</pre>	rotational_speed_rpm	torque_nm	tool_wear_min	failure_type	failure	h ¹
0	2	-0.948838	-0.935907	0.076652	0.275525	-1.706224	1	0	-0.50132
1	1	-0.898702	-0.868702	-0.730484	0.627282	-1.658872	1	0	-0.50132
2	1	-0.898702	-0.868702	-0.730484	-0.005881	-1.564168	1	0	-0.50132
3	2	-0.948838	-0.935907	-0.634531	0.185073	-1.532600	1	0	-0.50132
4	1	-0.948838	-0.935907	0.116163	0.235324	-1.485247	1	0	-0.50132
6662	1	-0.597884	-1.137521	0.545130	-1.221954	-1.516816	1	0	0.5015
6663	2	-0.597884	-1.070317	0.375801	-1.061151	-1.485247	1	0	0.4012
6664	3	-0.547747	-1.070317	0.533841	-0.829996	-1.437895	1	0	0.5015
6665	3	-0.497611	-0.868702	-0.730484	0.848386	-1.311623	1	0	0.30096
6666	2	-0.497611	-0.868702	-0.211207	0.014220	-1.232703	1	0	0.30096
6667 rows × 11 columns									

▼ Treinando o modelo

Após todo o processo de importação e tratamento dos dados, analise exploratória e engenharia de features, parti para a escolha do modelo a ser utilizado na previsão e treinamento do mesmo. Por ser um problema onde a variavel target a ser previsa era categórica, o modelo a ser previso é um modelo de classificação. Apesar dos varios modelos existentes para esse propósito, resolvi utilizar uma regressão logistia multinomial. Na regressão logistica multinomial o as variáveis de resposta podem incluir três ou mais variáveis, que não estarão em nenhuma ordem. O que é o caso da variavel target(failure_type).

Feita a importação dos pacotes, fiz a divisão dos pacotes entre treino e validação.

```
validation_set_ratio = 0.30
validation_set_size = int(len(df)*validation_set_ratio)
training_set_size = len(df) - validation_set_size
#dividindo o dataset entre validacao e treino

train, val = train_test_split(df, test_size=validation_set_ratio)

print("Dataframe total: {}".format(len(df)))
print("Tamanho treino: {}".format(training_set_size))
print("Tamanho Validação:: {}".format(validation_set_size))

Dataframe total: 6667
Tamanho treino: 4667
Tamanho Validação:: 2000
```

De 100% do dataframe 30% foi para validação 70% ara teste Das 6667 linhas contidas no dataframe de treino, 4667 delas foram para treino e 2000 linhas para o dataset de validação

Criei a variavel columns, onde armazenou todas as variaveis existentes x

Armazenei as variaveis preditoras e a variavel target em train_x e train_y,val_x,val_y

```
# x para treino
train_X = df[columns]
train_y = df[['failure_type']] #y para teste
#x para val
val_X = val[columns]
#y para val
val_y = val[['failure_type']]
```

Instanciei a regressão logistica.

```
{\tt lr = LogisticRegression(random\_state=0, \ multi\_class='multinomial', \ penalty='none', \ solver='newton-cg')}
```

Treinei a regressão logistica chamando a função fit.

Após isso foi verificado o acerto do modelo através do metodo acurracy_score. O metodo acurracy_score é uma das medidas mais populares e mais eficazes para avaliar a precisão do algoritimos de classificação.

```
y_pred = lr.predict(train_X)
print("Accuracy:",metrics.accuracy_score(train_y, y_pred))
#acc treino
Accuracy: 0.983500824958752
```

Como observado no output gerado. O modelo obteve uma precisão de 98.35% na base de treino. O que é um otimo indicador de performance, para avaliar se não ocorreu um processo de overfitting no modelo treinado, também fiz a predição na base de validação.

```
y_pred = lr.predict(val_X)
print("Accuracy:",metrics.accuracy_score(val_y, y_pred))
#acc validação

Accuracy: 0.9860069965017492
```

A acurácia do modelo foi de 98.35% o que não diferenciou, do nosso modelo de treino que chegou a cerca de 98.6%. A ausência de uma porcentagem discrepante entre os valores de validação e de teste, indica que nosso modelo não sofreu um processo de overfiting.

Também gerei um classification report.

```
# matriz de confusao
print(confusion_matrix(val_y, y_pred))
# outras metricas
print(classification_report(val_y, y_pred))
         18
                4
                                 a
                                      0]
     ГΓ
                           a
          3 1920
                      2
                                      01
                           2
                                 0
                    17
          1
                2
                           0
                                 0
                                      01
           0
                2
                      0
                          17
                                 0
                                      01
           a
                5
                      a
                           a
                                 a
                                      01
           0
                5
                     a
                           a
                                 0
                                      1]]
                                   recall
                                            f1-score
                     precision
                                                        support
                 0
                                     0.75
                                                0.78
                          0.82
                 1
                          0.99
                                     1.00
                                                0.99
                                                           1927
                 2
                          0.81
                                     0.85
                                                0.83
                                                             20
                 3
                                                             19
                                     0.89
                                                0.89
                          0.89
                 4
                          0.00
                                     0.00
                                                0.00
                                                              5
                 5
                          1.00
                                     0.17
                                                0.29
                                                              6
          accuracy
                                                a 99
                                                           2001
        macro avg
                          0.75
                                     0.61
                                                0.63
                                                           2001
                                     0.99
                                                0.98
                                                           2001
     weighted avg
                          0.98
```

/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are i _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are i _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are i _warn_prf(average, modifier, msg_start, len(result))

Podemos notar através do classification report, que nosso modelo acertou:

- 78% para erros do tipo 0
- 99% para erros do tipo 1
- 85% para erros do tipo 2
- 89% para erros do tipo 3
- 0 % para erros do tipo 4
- 29% para erros do tipo 5

Com um F1 score geral de 99%

A performance geral do F1 score e acurácia do modelo, nos fez perceber que o modelo obteve uma boa performance geral. Apesar dos baixos valores para erros do tipo 4 e erros do tipo 5. Uma das hipóteses no meu ponto de vista, que pode justificar este baixo tipo de verificação para este tipo de erro, é o baixo numero de ocorrencias para o modelo se basear.

Por fim, foi feito a previsão nos dados de teste, como foi exigido pelo desafio.

```
# prevendo os dados de validação
pred = lr.predict(df_teste)
#criando dataframe submissão
df_sub = pd.read_csv('/content/desafio_manutencao_preditiva_teste.csv')
submission = pd.DataFrame({
         "rowNumber": df_sub["product_id"],
        "predictedValues": pred
    })
#verficando quantidade de dados sub
submission.predictedValues.value_counts()
     1
          3163
     3
            87
     0
            45
```

Name: predictedValues, dtype: int64

submission.head()

	rowNumber	predictedValues
0	L47625	1
1	L54255	1
2	L48370	1
3	L49797	1
4	L52246	1

submission.to_csv("pred.csv",sep=';',header=True,index=False)