Міністерство освіти і науки України НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

до лабораторної роботи № 2

з дисципліни: «МОДЕЛЮВАННЯ КОМП'ЮТЕРНИХ СИСТЕМ»

На тему: «Структурний опис цифрового автомата Перевірка роботи автомата за допомогою стенда Elbert V2 – Spartan 3A FPGA» Варіант 2

Виконав:

ст. гр. КІ-201

Волинець М.М.

Прийняв:

Козак Н. Б.

Мета роботи: На базі стенда Elbert V2 – Spartan 3A FPGA реалізувати цифровий автомат світлових ефектів згідно наступних вимог:

- 1. Інтерфейс пристрою та функціонал реалізувати згідно отриманого варіанту завдання Дивись розділ Завдання
- 2. Логіку переходів реалізувати з використанням мови опису апаратних засобів Заборонено використовуючи оператори
- 3. Логіку формування вихідних сигналів реалізувати з використанням мови опису апаратних засобів Заборонено використовуючи оператори
- 4. Згенерувати символи для описів логіки переходів та логіки формування вихідних сигналів
- 5. Згрупувати всі компоненти логіку переходів логіку формування вихідних сигналів та пам'ять станів в єдину систему. Пам'ять станів реалізувати за допомогою графічних компонентів з бібліотеки
- 6. Промоделювати роботу окремих частин автомата та автомата в цілому за допомогою симулятора
- 7. Інтегрувати створений автомат зі стендом додати подільник частоти для вхідного тактового сигналу призначити фізичні виводи.
- 8. Згенерувати файл та перевірити роботу за допомогою стенда
- 9. Підготувати і захистити звіт

Завдання:

Варіант - 1:

• Пристрій повинен реалізувати 8 комбінацій вихідних сигналів згідно таблиці:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0
3	0	0	0	1	0	0	0	0
4	0	0	0	0	1	0	0	0
5	0	0	0	0	0	1	0	0
6	0	0	0	0	0	0	1	0
7	0	0	0	0	0	0	0	1

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда Elbert V2 Spartan 3A FPGA. Тактовий сигнал заведено нв вхід LOC = P129 FPGA (див. Додаток 1).
- Інтерфейс пристрою повинен мати вхід синхронного скидання (RESET).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (МОДЕ):
 - Якщо MODE=0 то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - Якщо MODE=1 то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід керування швидкістю роботи(SPEED):
 - Якщо SPEED=0 то автомат працює зі швидкістю, визначеною за замовчуванням.
 - Якщо SPEED=1 то автомат працює зі швидкістю, В 2 РАЗИ ВИЩОЮ ніж в режимі (SPEED=0).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів (див. Додаток – 1).
- Для керування сигналами RESET/SPEED використати будь як! з PUSH BUTTON кнопок (див. Додаток – 1).

Хід роботи:

- 1. У середовищі Xilinx ISE створив новий проєкт. Налаштував цільову FPGA, обрала інструменти для синтезу і симуляції.
- 2. Додав VHDL файл Output_Logic до проєкту та імплементував інтерфейс логіки формування вихідних сигналів, а також логічні вирази для формування кожного вихідного сигналу, залежно від поточного стану автомата.

```
2 library IEEE;
3 use IEEE.STD LOGIC 1164.ALL;
6 entity out_logic_intf is
7 Port ( IN BUS : in std logic vector(2 downto 0);
             OUT BUS : out std logic vector (7 downto 0)
10 end out_logic_intf;
12 architecture out logic arch of out logic intf is
13
14 begin
       OUT BUS(0) <= (not(IN BUS(2)) and not(IN BUS(1)) and not(IN BUS(0))); -000 0
15
       OUT_BUS(1) <= (not(IN_BUS(2)) and not(IN_BUS(1)) and(IN_BUS(0)));
16
       OUT_BUS(2) <= (not(IN_BUS(2)) and (IN_BUS(1)) and not(IN_BUS(0)));
OUT_BUS(3) <= (not(IN_BUS(2)) and (IN_BUS(1)) and (IN_BUS(0)));
OUT_BUS(4) <= ((IN_BUS(2)) and not(IN_BUS(1)) and not(IN_BUS(0)));
17
18
                                                                                         --010 2
                                                                                        --011
19
                                                                                        --100
20
        OUT BUS(5) <= ((IN BUS(2)) and not(IN BUS(1)) and (IN BUS(0)));
                                                                                         --101
       OUT BUS(6) <= ((IN BUS(2)) and (IN BUS(1)) and not(IN BUS(0)));
21
                                                                                         --110
        OUT_BUS(7) <= ((IN_BUS(2)) and (IN_BUS(1)) and (IN_BUS(0)));
                                                                                         --111 7
22
23 end out_logic_arch;
25
```

3. За допомогою симулятора Isim провів моделювання роботи схеми при всіх можливих комбінаціях сигналів на входах.

IN.	_BUS(2)	IN_BUS(1)	IN_BUS(0)	out_bus(0)	out_bus(1)	out_bus(2)	out_bus(3)	out_bus(4)	out_bus(5)	out_bus(6)	out_bus(7)
	0	0	0	1	0	0	0	0	0	0	0
	0	0	1	0	1	0	0	0	0	0	0
	0	1	0	0	0	1	0	0	0	0	0
	0	1	1	0	0	0	1	0	0	0	0
	1	0	0	0	0	0	0	1	0	0	0
	1	0	1	0	0	0	0	0	1	0	0
	1	1	0	0	0	0	0	0	0	1	0
	1	1	1	0	0	0	0	0	0	0	1

Рис.1 Таблиця істинності виводу сигналів

4. Додав до проєкту VHDL файл Transition_Logic, в якому реалізував логіку формування переходів.

```
1
 2
      library IEEE;
 3
       use IEEE.STD_LOGIC_1164.ALL;
 5
       entity transition logic intf is
       Port ( CUR_STATE : in std_logic_vector(2 downto 0);
 6
                            MODE : in std_logic;
 8
                            NEXT_STATE : out std_logic_vector(2 downto 0)
 9
                            );
10
       end transition_logic_intf;
11
12
      architecture transition_logic_arch of transition_logic_intf is
13
      begin
14
               NEXT STATE(0) <=
                                                     (\verb"not(MODE")" and \verb"not(CUR_STATE"(2)")" and \verb"not(CUR_STATE"(1)")" and \verb"not(CUR_STATE"(0)")") or all the contents of the 
15
16
                                                     (not(MODE) and not(CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0))) or
17
                                                     (not(MODE) and (CUR_STATE(2)) and not(CUR_STATE(1)) and not(CUR_STATE(0))) or
18
                                                     (not(MODE) and (CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0))) or
19
                                                     ((MODE) and not(CUR_STATE(2)) and not (CUR_STATE(1)) and not (CUR_STATE(0))) or
20
                                                     ((MODE) and not(CUR STATE(2)) and (CUR STATE(1)) and not (CUR STATE(0))) or
                                                     ((MODE) and (CUR STATE(2)) and not (CUR STATE(1)) and not (CUR STATE(0))) or
21
                                                     ((MODE) and (CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0)));
22
23
24
               NEXT_STATE(1) <=
                                                     (not(MODE) and not(CUR_STATE(2)) and not (CUR_STATE(1)) and (CUR_STATE(0))) or
                                                     (not(MODE) and not(CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0))) or
25
26
                                                     (not (MODE) and (CUR_STATE(2)) and not (CUR_STATE(1)) and (CUR_STATE(0))) or
27
                                                     (not(MODE) and (CUR_STATE(2)) and (CUR_STATE(1)) and not(CUR_STATE(0))) or
                                                     ((MODE) and not(CUR_STATE(2)) and not(CUR_STATE(1)) and not (CUR_STATE(0))) or
28
                                                     ((MODE) and not(CUR STATE(2)) and (CUR STATE(1)) and (CUR STATE(0))) or
29
                                                     ((MODE) and (CUR_STATE(2)) and not (CUR_STATE(1)) and not(CUR_STATE(0))) or
30
31
                                                     ((MODE) and (CUR_STATE(2)) and (CUR_STATE(1)) and (CUR_STATE(0)));
32
               NEXT_STATE(2) <=
                                                     (not(MODE) and not(CUR_STATE(2)) and (CUR_STATE(1)) and (CUR_STATE(0))) or
33
                                                     (not(MODE) and (CUR_STATE(2)) and not (CUR_STATE(1)) and not (CUR_STATE(0))) or
34
                                                           (not (MODE) and (CUR STATE(2)) and not (CUR STATE(1)) and (CUR STATE(0))) or
35
                                                           (not(MODE) and (CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0))) or
36
                                                     ((MODE) and not(CUR_STATE(2)) and not(CUR_STATE(1)) and not (CUR_STATE(0))) or
37
38
                                                     ((MODE) and (CUR_STATE(2)) and not (CUR_STATE(1)) and (CUR_STATE(0))) or
39
                                                      ((MODE) and (CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0))) or
40
                                                      ((MODE) and (CUR_STATE(2)) and (CUR_STATE(1)) and (CUR_STATE(0)));
41
42
      end transition logic arch;
43
44
```

5. За допомогою симулятора Isim провів моделювання роботи схеми при всіх можливих комбінаціях сигналів на входах.

6. Додав до проєкту Schematic файл Light_Controller, виконав для нього команду Set as Top Module. Згенерував Schematic символи для файлів Output_Logic і Transition_Logic. Використовуючи новостворені символи та елементи з бібліотеки, реалізував у файлі Light_Controller.sch пам'ять стану автомата.

out_logic_intf transition_logic_intf

7. За допомогою симулятора Isim провів моделювання роботи схеми при всіх можливих комбінаціях сигналів на входах.

При MODE 0:

Name	Value	0 ps	1 ps	2 ps	13 ps	r* ps	5 ps	e be	7 ps	≇ ps	9 ps 9 ps
in cfk	1										-
mode reset	0										
out_bus[7:0]	01000000	00000001	00000010	00000100	00001000	00010000	60106000	01000000	1000	0000	010
(F)	6										
161	1							1			
12 (5)											
lm 541	0										
1 (31	G-										
1 (z)	0										
1m 111	ė.							_			
10 (0)	G-	000	Y 001	X 010	011	100	101	110	· .	11	↓
(ur_s_bus[2:0]	110	-000	101	U10	VII	100	101	110	1	1'	1
Un (1)	1										1
Un 50)	0										
next_schol	101	001	010	011	100	101	110	111	000	110	1
15 (2)	1							-			
The T11	0										
Um 501	1										

При MODE 1:

		7			9 06	9 00							
Name	Value	4000000	7 ps	B ps	o ps	10 ps	11 ps	12 ps	13 ps	14 ps	15 05		
e ck	1												
reset	0												
out bus[7:0]	01000000	01000000	100	0000	01000000	00100000	00010000	000010000	00000100	01000000	10000000		
171	0						_		_		_		
€ 161 15. rs1	0												
in [4]	0												
T 131	0.										_		
= [7] = [6] = [5] = [4] = [3] = [2] = [1]	0				_		_				_		
101	0												
Testes cur 3 busi20	iio	110	* .	1	110	101	X 100	X 011	X 010	X 001	X 000		
के 121 के 111 के 101	1												
Ge [1]	0												
mest_siz:01	101	111	000	110	101	100	011	010	óbt	666	111		
	1												
(2) (2) (1) (2) (0)	0												
- HO 101	1												

RESET:

8. Додав до проєкту Schematic файл Top_Level, виконав для нього команду Set as Top Module. Згенерував Schematic символ для файлу Light_Controller. Використовуючи новостворений символ та елементи з бібліотеки, реалізував у файлі подільник вхідної частоти та логіку сигналу SPEED.

9. За допомогою симулятора Isim провела моделювання роботи схеми з різними значеннями сигналів MODE, RESET та SPEED при подачі на вхід CLOCK тактового сигналу 12 MHz.

SPEED =1, MODE = 1(до лінії), MODE = 0(після лінії).

Автомат працює відповідно до завдання.

10. Додала до проєкту Constraint файл та призначила виводам схеми фізичні виводи цільової FPGA.

```
UCF for ElbertV2 Development Board
CONFIG VCCAUX = "3.3" ;
 #Clock 12 MHz
                    LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
NET TOUTH (0)
                     LOC = P46
                             | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
  NET "OUTB(1)"
                             | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
                     LOC - P47
                                                          DRIVE - 12;
  NET "OUTH (2) "
                     LOC = P48 | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
                     LOC = P49 | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
LOC = P50 | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
LOC = P51 | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
LOC = P54 | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
  NET "00TB (3) "
  NET "OUTH (4) "
                                                          DRIVE = 12;
  NET "OUTB (5) "
                                                          DRIVE = 12:
  NET "OUTB(6)"
                                                          DRIVE = 12;
  NET "OUTB (7) "
                     LOC = PSS
                            | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12:
LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P76 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P75 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
  NET "RESET"
```

11. Згенерував файли прошиття.

toplevel	06.05.2023 14:49	Файл BIN	54 KB
toplevel.bit	06.05.2023 14:49	Файл BIT	54 KG

Висновок: під час виконання цієї лабораторної роботи я реалізувала цифровий автомат світлових ефектів у середовищі Xilinx ISE і стендом Elbert V2 - Spartan 3A FPGA. Я реалізувала схему автомату та провела симуляцію його роботи.