```
import pandas as pd
import numpy as np
import mathlotlib nym
```

import matplotlib.pyplot as plt

import seaborn as sns

data = pd.read_csv('Crop Production data.csv')

data

→		State_Name	District_Name	Crop_Year	Season	Crop	Area	Production
_	0	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Arecanut	1254.0	2000.0
	1	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Other Kharif pulses	2.0	1.0
	2	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Rice	102.0	321.0
	3	Andaman and Nicobar Islands	NICOBARS	2000	Whole Year	Banana	176.0	641.0
	4	Andaman and Nicobar Islands	NICOBARS	2000	Whole Year	Cashewnut	720.0	165.0
	153172	Odisha	KALAHANDI	2000	Whole Year	Sugarcane	1141.0	50345.5
	153173	Odisha	KALAHANDI	2000	Whole Year	Sweet potato	1010.0	8520.0
	153174	Odisha	KALAHANDI	2000	Whole Year	Tobacco	430.0	110.0
	153175	Odisha	KALAHANDI	2000	Whole Year	Turmeric	110.0	250.0
	153176	Odisha	KALAHANDI	2000	Winter	NaN	NaN	NaN
•	153177 rc	ows × 7 columns						

data.isnull().sum()

State_Name 0
District_Name 0
Crop_Year 0
Season 0
Crop 1
Area 1
Production 2678

dtype: int64

data=data.dropna()

data

→		State_Name	District_Name	Crop_Year	Season	Crop	Area	Production
	0	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Arecanut	1254.0	2000.0
	1	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Other Kharif pulses	2.0	1.0
	2	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Rice	102.0	321.0
	3	Andaman and Nicobar Islands	NICOBARS	2000	Whole Year	Banana	176.0	641.0
	4	Andaman and Nicobar Islands	NICOBARS	2000	Whole Year	Cashewnut	720.0	165.0
		•••						•••
	153171	Odisha	KALAHANDI	2000	Whole Year	Sannhamp	490.0	2230.0
	153172	Odisha	KALAHANDI	2000	Whole Year	Sugarcane	1141.0	50345.5
	153173	Odisha	KALAHANDI	2000	Whole Year	Sweet potato	1010.0	8520.0
	153174	Odisha	KALAHANDI	2000	Whole Year	Tobacco	430.0	110.0
	153175	Odisha	KALAHANDI	2000	Whole Year	Turmeric	110.0	250.0

150499 rows × 7 columns

data.isnull().sum()

State_Name 0
District_Name 0
Crop_Year 0
Season 0
Crop 0
Area 0
Production 0
dtype: int64

import pandas as pd
df=pd.DataFrame(data)

df.

6/19/24, 10:14 PM

Untitled19.ipynb - Colab

	State_Name	District_Name	Crop_Year	Season	Crop	Area	Production
0	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Arecanut	1254.0	2000.0
1	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Other Kharif pulses	2.0	1.0
2	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Rice	102.0	321.0
3	Andaman and Nicobar Islands	NICOBARS	2000	Whole Year	Banana	176.0	641.0
4	Andaman and Nicobar Islands	NICOBARS	2000	Whole Year	Cashewnut	720.0	165.0
•••							
153171	Odisha	KALAHANDI	2000	Whole Year	Sannhamp	490.0	2230.0
153172	Odisha	KALAHANDI	2000	Whole Year	Sugarcane	1141.0	50345.5
153173	Odisha	KALAHANDI	2000	Whole Year	Sweet potato	1010.0	8520.0
153174	Odisha	KALAHANDI	2000	Whole Year	Tobacco	430.0	110.0
153175	Odisha	KALAHANDI	2000	Whole Year	Turmeric	110.0	250.0

150499 rows × 7 columns

```
import pandas as pd
import matplotlib.pyplot as plt

# Calculate Yield (Production / Area)
df['Yield'] = df['Production'] / df['Area']

# Top 3 Producing Crops (by Total Production)
top_crops = df.groupby('Crop')['Production'].sum().sort_values(ascending=False).head(3)

plt.figure(figsize=(8, 6)) # Adjust figure size for better readability
plt.bar(top_crops.index, top_crops.values)
plt.xlabel('Crop')
plt.ylabel('Total Production')
plt.title('Top 3 Producing Crops (Total Production)')
plt.show()
```


Start coding or generate with AI.

```
# Crop production over the years
df.groupby('Crop_Year')['Production'].sum().plot(kind='line')
plt.title('Crop Production Over the Years')
plt.xlabel('Year')
plt.ylabel('Total Production')
plt.show()
```

6/19/24, 10:14 PM

 \rightarrow

```
# Production by state
df.groupby('State_Name')['Production'].sum().sort_values().plot(kind='barh', figsize=(10, 10))
plt.title('Total Production by State')
plt.xlabel('Total Production')
plt.ylabel('State')
plt.show()
```



```
# Box plot: Production by Season
sns.boxplot(x='Season', y='Production', data=df)
plt.title('Production by Season')
plt.xlabel('Season')
plt.ylabel('Production')
plt.xticks(rotation=90)
plt.show()
```


Pie chart: Production share by state
state_prod = df.groupby('State_Name')['Production'].sum()
state_prod.plot(kind='pie', autopct='%1.1f%%', figsize=(8, 8))
plt.title('Production Share by State')
plt.ylabel('')
plt.show()

→

Production Share by State


```
# Time series analysis for a specific crop (e.g., 'Rice')
crop_name = 'Rice'
df_crop = df[df['Crop'] == crop_name]
df_crop.groupby('Crop_Year')['Production'].sum().plot(kind='line')
plt.title(f'Production Trend for {crop_name}')
plt.xlabel('Year')
plt.ylabel('Total Production')
plt.show()
```

6/19/24, 10:14 PM


```
# Heatmap: Crop production by district and year
pivot_table = df.pivot_table(values='Production', index='District_Name', columns='Crop_Year', aggfunc='sum')
plt.figure(figsize=(20, 15))
sns.heatmap(pivot_table, cmap='YlGnBu', linecolor='white', linewidths=0.1)
plt.title('Heatmap of Crop Production by District and Year')
plt.xlabel('Year')
plt.ylabel('District')
plt.show()
```

 \rightarrow


```
import pandas as pd
import matplotlib.pyplot as plt
# Group by Crop_Year and Crop, then sum the Production
year_crop_prod = df.groupby(['Crop_Year', 'Crop'])['Production'].sum().reset_index()
# For each year, find the crop with the highest production
top_crops_each_year = year_crop_prod.loc[year_crop_prod.groupby('Crop_Year')['Production'].idxmax()]
# Print the top crops for each year
print(top_crops_each_year)
# Plotting
plt.figure(figsize=(15, 8))
bars = plt.bar(top_crops_each_year['Crop_Year'], top_crops_each_year['Production'])
# Annotate the bars with the crop names
for bar, crop in zip(bars, top_crops_each_year['Crop']):
   yval = bar.get_height()
    plt.text(bar.get_x() + bar.get_width()/2, yval, crop, ha='center', va='bottom', fontsize=9, rotation=90)
plt.xlabel('Year')
```

Untitled19.ipynb - Colab

\rightarrow		Crop_Year	Crop	Production
	30	1997.0	Sugarcane	1.111962e+07
	44	1998.0	Coconut	2.203000e+07
	85	1999.0	Coconut	2.045200e+07
	125	2000.0	Coconut	1.190686e+09
	171	2001.0	Coconut	1.227423e+09
	224	2002.0	Coconut	1.256317e+09
	290	2003.0	Coconut	1.300105e+09
	350	2004.0	Coconut	1.294779e+09
	395	2005.0	Coconut	9.618892e+08
	440	2006.0	Coconut	1.429307e+09
	484	2007.0	Coconut	3.158600e+07
	526	2008.0	Coconut	9.993068e+08
	570	2009.0	Coconut	1.189476e+09
	614	2010.0	Coconut	1.423210e+08
	660	2011.0	Coconut	1.421500e+09
	714	2012.0	Coconut	1.670685e+09
	772	2013.0	Coconut	1.610056e+09
	830	2014.0	Coconut	2.091669e+09

 $https://colab.research.google.com/drive/1yOg6KflOQamEMKFhKCdif8LMpbYDg2M_\#scrollTo=_xY_iYVG1_F4\&printMode=true$

plt.title('Top Crops Produced Each Year')

plt.ylabel('Production')

plt.xticks(rotation=45)

plt.show()

6/19/24, 10:14 PM

Untitled19.ipynb - Colab

District with the highest production in Andhra Pradesh:

District with the lowest production in Andhra Pradesh:

District_Name KADAPA
Production 25662234.0
Name: 4, dtype: object

import pandas as pd
import matplotlib.pyplot as plt

Group by State_Name and District_Name and sum the Area
state_district_area = df.groupby(['State_Name', 'District_Name'])['Area'].sum().reset_index()

Identify the state and district with the highest area