

Unit 2: MarkLogic Server Architecture

© COPYRIGHT 2015 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Learning Objectives

- Describe each of the following:
 - Database (Content / Modules / Schema / Triggers / Security)
 - Forest
 - Stand (In Memory / On Disk)
 - Universal Index
 - Application Server (HTTP / XDBC / ODBC / WebDAV)
 - Evaluator Node | Database Node
 - Hosts | Groups
 - List Cache | Compressed Tree Cache | Expanded Tree Cache
- Describe storage options in MarkLogic
- Compare / contrast a single host vs. cluster implementation

MarkLogic Server

- Example: Our training environment
- All MarkLogic resources configured on one machine
 - Node = Host = a machine running MarkLogic

- Node / Host / Machine
 - E = Evaluator = App Server
 - D = Data Manager = Database
- MarkLogic runs as a service
- A machine can act as both (E/D)
- In a cluster, machines may specialize

- Application Server
 - Handles requests / responses
 - Defined on a port
 - Evaluates code

- Database
 - Transaction controller
 - Logical configuration
 - Indexing / Reindexing settings

- Configurable memory caches:
 - List Cache
 - Recently accessed indexes
 - Compressed Tree Cache
 - Recently accessed docs, compressed
 - Expanded Tree Cache
 - Recently accessed docs, uncompressed
 - Triple Data and Triple Value Caches
 - Recently accessed triples

Single Node Architecture

Forests

- Physical storage
- Attached to database (1DB:Many Forests)
- Stands
 - Memory
 - Disk
 - Documents
 - Indexes
 - Compression
- Journal

Forest Details

Demo: Databases, Forests, Stands, Merges

- MarkLogic is a shared-nothing distributed database, allowing linear scale out and high availability
 - 3 node minimum for High Availability

- Groups
 - Groups of host machines within a cluster
 - Enables more specific configuration

- Common Databases
 - Can be shared across multiple projects
 - Security | Schemas | Triggers | Modules
 - Impacts to HA / DR design

Security 101

- Role based model
- Authentication
 - Performed on the application server
 - Utilize LDAP / Kerberos external authentication protocol
- Database Level
 - Who can read / write / update documents within a database?
- Code Level

- Scalability
 - Scaling a cluster to support more data and/or users
 - Add more forests
 - Add more E nodes and / or D nodes

- Scalability & Rebalancing
 - Assume your data needs have increased
 - One of your D Nodes still has capacity
 - You add another forest what happens when you load more data?
 - Pre-MarkLogic 7 (no automatic rebalancing)
 - MarkLogic 7 (rebalancing on by default)

- Rebalancing
 - Administrator can choose appropriate assignment policy and the rebalancer will automatically handle the data movement

- Storage
 - Local, Shared, SSD, HDFS, Amazon S3
 - Tiered Storage
 - Optimized storage of large binary data

More on storage...

- MarkLogic enables you to choose a portfolio of storage options
- Design for your business, budget and performance goals

		<u> </u>	
Rotating Disks	SSD	Amazon S3*	HDFS
Low Cost	Greater Cost	Low Cost	Low Cost
Performance impacted by many variables (controllers, latency, disk quality)	Fastest	Cloud based, globally distributed, access via HTTP, tight EC2 integration	Distributed, sequential I/O, configurable, replication
		Good for backups	

*MarkLogic does not create journals on Amazon S3

Storage and the Information Lifecycle

Tiered Storage Overview

- Objective:
 - Manage data using a portfolio of storage options
 - Design for your performance objectives and cost constraints
 - Partitions = groups of forests
 - APIs enabling you to migrate, resize, move offline/online, delete

Tiered Storage Overview

Conceptual implementation – where would these doc's end up?

 <doc>
 abc 123 xyz
 abc 123 xyz
 abc 123 xyz

 <d>>2013-10-22</d>
 abc 123 xyz
 abc 123 xyz
 abc 123 xyz

 </doc>
 abc 123 xyz
 abc 123 xyz

 </doc>
 abc 123 xyz
 abc 123 xyz

Partition Name	Forest Name	Range Definition < d>
V1	V1-01, V1-02	> 2013-01-01 < 2015-12-31 *Include LB
V2	V2-01, V2-02, V2-03	> 2000-01-01 < 2012-12-31 *Include LB
V3	V3-01, V3-02, V3- 03, V3-04	> 1980-01-01 < 1999-12-31 *Include LB
V4	V4-01, V4-02, V4- 03, V4-04, V4-05	> 1900-01-01 < 1979-12-31 *Include LB

Tiered Storage Overview

Conceptual implementation – where would these doc's end up?

Partition Name	Forest Name	Range Definition < d>
V1	V1-01, V1-02	> 2013-01-01 < 2015-12-31 *Include LB
V2	V2-01, V2-02, V2-03	> 2000-01-01 < 2012-12-31 *Include LB
V3	V3-01, V3-02, V3- 03, V3-04	> 1980-01-01 < 1999-12-31 *Include LB
V4	V4-01, V4-02, V4- 03, V4-04, V4-05	> 1900-01-01 < 1979-12-31 *Include LB

Tiered Storage Overview

- What about access?
 - Each tier can be accessed individually
 - Or combined into a single unified system

MarkLogic

MarkLogic Architecture Summary

Demo: MarkLogic Architecture in Samplestack

Labs: Unit 2

Exercise 1: Explore Inside MarkLogic Server

買

Unit Review Question 1:

Which of the following is stored in a forest stand:

- Database configuration information
- 2. Uncompressed data
- 3. Compressed data
- 4. Indexes

買

Unit Review Question 1:

Which of the following is stored in a forest stand:

- 1. Database configuration information
- 2. Uncompressed data
- 3. Compressed data
- 4. Indexes

Unit Review Question 2:

An instance of a database can only exist on one host in a cluster:

- 1. True
- 2. False

Unit Review Question 2:

An instance of a database can only exist on one host in a cluster:

- 1. True
- 2. False

Unit Review Question 3:

You run a search query against a MarkLogic database in a cluster to find a relevant document, read it from the database, and display the document content to an end user.

What will the following caches contain?

- 1. List
- 2. Compressed tree
- 3. Expanded tree
- 4. Triple

Unit Review Question 3:

You run a search query against a MarkLogic database in a cluster to find a relevant document, read it from the database, and display the document content to an end user.

What will the following caches contain?

- 1. List indexes that were used in the search
- 2. Compressed tree the compressed document
- 3. Expanded tree the uncompressed document
- 4. Triple nothing, assuming no SPARQL in the search

買

Unit Review Question 4:

You have added memory to your cluster and you want to increase the size of one of the MarkLogic caches.

At what level would this be configured?

- 1. Host
- 2. App Server
- 3. Group
- 4. Cluster

Unit Review Question 4:

You have added memory to your cluster and you want to increase the size of one of the MarkLogic caches.

At what level would this be configured?

- 1. Host
- 2. App Server
- 3. Group
- 4. Cluster

Unit Review Question 5:

Assume you are building a cluster with a group of E Nodes and a group of D Nodes.

When building the cluster, the first host that you install and initialize should be an:

- 1. E Node
- 2. D Node
- 3. It doesn't matter

Unit Review Question 5:

Assume you are building a cluster with a group of E Nodes and a group of D Nodes.

When building the cluster, the first host that you install and initialize should be an:

- 1. E Node
- 2. D Node
- 3. It doesn't matter

₩

Unit Review Question 6:

In a 3 tier architecture, where does the MarkLogic cluster fit?

- 1. Browser tier
- 2. App server / middle tier
- 3. Database tier

買

Unit Review Question 6:

In a 3 tier architecture, where does the MarkLogic cluster fit?

- 1. Browser tier
- 2. App server / middle tier
- 3. Database tier