Result Got from the experiment:

The backbone models is on CIFAR:

accuracy of all the dataset, with 100 classes based on CIFAR, without meta-training and with 600 test episodes.

	Accuracy (Mobile net)	Accuracy (resnet 56)
Aircraft	40.23%	41.49%
Cu_birds	42.53%	41.99%
Dtd	53.37%	53.98%
Fungi	39.72%	39.58%
Omniglot	85.57%	82.56%
vgg_flowers	69.97%	70.70%

The backbone models is on imagenet:

Accuracy of all the dataset, with Resnet, 1000 classes based on imagenet, without meta-training and with 600 test episodes.

	Accuracy (resnet 18) Accuracy (resnet 50)		Accuracy (resnet 152)
Aircraft	53.38±1%	54.76%	54.51%
Cu_birds	53.53%	59.00%	62.25%
Dtd	65.30%	66.09%	67.44%
Fungi	49.86%	51.16%	51.09%
Omniglot	89.35%	84.13%	80.80%
vgg_flowers	83.07%	84.51%	82.32%

With a meta-training on all the dataset(backbone model, resnet 18)

	Accuracy (500 episodes)	Accuracy (2000 episodes)	Accuracy (5000 episodes)
Aircraft	92.77%	95.67%	96.89%
Cu_birds	54.27%	52.08%	49.53%
Dtd	59.90%	57.53%	55.50%
Fungi	48.39%	47.21%	45.63%
Omniglot	87.62%	90.51%	92.16%
vgg_flowers	78.67%	77.01%	77.01%

With a meta-training on all the dataset(backbone model, resnet 152)

	Accuracy (1000 episodes)	Accuracy (2000 episodes)
Aircraft	94.11%	95.73%
Cu_birds	51.65%	48.61%
Dtd	60.09%	59.57%
Fungi	46.98%	48.39%
Omniglot	89.10%	90.61%
vgg_flowers	80.87%	78.25%

With a meta-training on all the dataset except the testing dataset.

	Accuracy (500 episodes)
Aircraft	48.56%
Cu_birds	53.58%
Dtd	61.21%
Fungi	48.15%
Omniglot	91.67%
vgg_flowers	77.85%

Some Results for 10 episode : Without training of the pretrained model

- 400 step for the pretrained model
- 400 step for TENT

With 300 step for training the pretrained model

• 300 step for the pretrained model

• 300 step for TENT

When I trained my model with a full trained (not just the last layer)

- 200 step for the pretrained model
- 200 step for TENT

- 100 step for the pretrained model
- 100 step for TENT

- 50 step for the pretrained model
- 50 step for TENT

Train by adapting proto in the last layer:

With the default parameter of TENT : SGD, LR: 0.001, base_model : resnet18 Prototypical network based model is resnet50

Tent number iter	Proto acc	Pretrained acc	Tent acc
50	16.5	17.3571	17.42857
50	16.28571	19.28571	19.92857
50	15.35714	19.78571	19.14285
50	16.14285	20.21428	20.92857
100	14.8857	18.3142	17.9999

With the default parameter of TENT : SGD, LR: 0.01, base_model : resnet18 Prototypical network based model is resnet50, number of episode 20,

Tent number iter	Proto acc	Pretrained acc	Tent acc
50	16.0	18.5714	17.7857
50	15.78571	18.64285	18.35714
100	16.0714	19.7857	20.0
200	16.78571	17.85714	17.71428

With the default parameter of TENT: SGD, LR: 0.0001, base_model: resnet18 Prototypical network based model is resnet50, number of episode 100

Tent number iter	Proto acc	Pretrained acc	Tent acc
100	16.44285	18.7571	18.8428
100	16.75714	16.64285	16.7428
100	17.0571	20.3285	20.1285
100	16.6428	20.3142	20.3

With the default parameter of TENT : ADAM, LR: 0.001, base_model : resnet18 Prototypical network based model is resnet50, number of episode 100

Tent number iter	Proto acc	Pretrained acc	Tent acc
100	14.9285	18.2714	18.2142

With the default parameter of TENT : ADAM, LR: 0.001, base_model : **resnet50** Prototypical network based model is resnet50, number of episode 100

Tent number iter	Proto acc	Pretrained acc	Tent acc
100	16.1142	16.1571	15.9857

With the default parameter of TENT : ADAM, LR: 0.001, base_model : resnet18 Prototypical network based model is resnet18, number of episode 100

Tent number iter	Proto acc	Pretrained acc	Tent acc
150	46.9619	43.3809	43.8380

Number of EPISODE: 100

Number of tent loop	Tent learning rate	Tent accuracy	Pretrained accuracy	Proto Accuracy
20	SGD, LR = 10-2	21.8142	46.8285	46.6428
50	SGD, LR = 10-2	21.1571	47.0857	46.2571
100	SGD, LR = 10-4	26.7	46.1857	46.0428
10	SGD, LR = 10-4	25.8428	46.3000	46.6000

Result by changing hyperparameters :

This will be done with 100 episodes.

LR	Number of Iteration	10	50	100	200	300
1		10.014 10.342 9.871	9.871 10.242			
10-1		10.242	9.714			
10-2		12.428	10.742			
10-3		25. 4 85 25.685	25.4			
10-4		26.028 26.314 26.471 26.299	26.114	27.357	25.857	
10-5		26.642 26.471				
10-6		25.857				
10-7		25.828 25.557 26.757 27.428	26.1	26.5 26.171	25.685	

10-8	25.628		
10-9			

Last Result

The number inside the parenthesis is the proto accuracy

Dataset : Aircraft

LR	Number of Iteration	0	5	10	50	100
1		45.728(=)	26.742 (46.128) 27.385 (45.599)	23.3	21.414	23.214(46.)
10-1		45.542(=)	45.628(46.428) 45.614(46.042)	45.2(46.485) 44.842(46.642)	43.814(46.071) 44.0(45.92)	45.128(46.642) 43.714(45.942)
10-2	!	45.614(=)	47.471(47.514) 46.1(45.82)	46.171 (46.242) 46.142(46.114)	Good. 46.171 (46.157) 45.957 (45.91 4) 46.69 (46.45)	47.171(47.15 7) 45.785(45.77 1)
10-3	}	46.242 (=)	47.042 (46.928) 46.528 (46.571)	46.785 (46.714) 46.214 (46.228) 47.085 (=)	46.371 (46.271) 46.20 (46.371)	46.357(=)
10-4		47.214 (=	45.828 (=)	46.442(46.445) 46.0285=	46.385(46.41 4)	47.028(47.0)
10-5		46.7(=)	45.771 (=)	46.657(=)	46.385(46.371) 45.985(46.028) 45.957(=)	46.557(46.571)
10-6		45.857(=)	46.242 (=) 45.614 (=)	46.857 (=) 45.857 (=)	47.114(47. 128) 46.528(=)	45.985(45. 971)
10-7	,					
10-8						
10-9)					

The number inside the parenthesis is the proto accuracy

Dataset : Bird Num way = 10

LR	Number of Iteration	0	5	10	50	100
1						
10-1	1					
10-2	2	72.942 (=)	72.528 (72.47 1) 72.371 (72.38 5) 74.328 (74.34 2)	72.342(72.271) 73.899(73.828) 73.185(73.157) 74.00(73.971)	72.428(72. 471) 73.771(73. 742) 73.614(73. 685)	72.657(72.7)
10-3	3	73.8 (=)	72.757 (=) 73.27 (73.285)	73.55(73.62) 73.62(73.60) 72.3(72.32)	73.185(73. 128) 72.614(=)	74.128(74.02 8) 73.157(=)
10-4	4	72.828(=)	73.357 (73.457) 73.557 (=) 72.942 (=)	72.942(=)	72.914(72. 928) 73.114(=)	73.342(73.32 8) 73.442(73.47 1)
10-	5	73.585(=)	72.585 (=)	73.971 (=) 72.257 (72.242) 72.257 (=)	72.185 (=)	72 . 585 (=)
10-6	6	71.82(=)	72.60 (=)	73.0714(=)	73.557(=)	72.771(=)
10-7	7					
10-8	3					
10-9	9					

Result:

omniglot, aircraft, birds

Recap of any table (max cell value, comment),

Dataset : Cu Birds

Number Shot: 5, 10, 15 Number of Way: 5 # 7 Number of query: 5 # 15 Number of Repeat episode: 5 Number of episode: 200

LR	Number of	0	10	25	50	100	200
	Iteratio						

n												
1												
10-1	79.28	79.28	79.56	79.66	78.14	78.4	79.12	79.36	79.12	79.34	78.2	79.1
	79.94	79.94	79.04	79.52	77.9	78.2	77.68	78.16	80.26	80.38	78.84	79.5
	79.4	79.4	79.2	79.24	78.22	78.9	78.58	79.38	77.74	78.0	78.46	78.94
	79.54	79.54	77.68	78.1	77.76	78.74	78.26	78.52	78.34	78.58	77.64	78.42
	79.22	79.22	78.48	79.36	78.48	79.38	77.12	78.52	78.56	79.3	79.02	79.08
	79.476± 0.251	79.47 6±0.2 5	78.792 ±0.643	79.176 ±0.545	78.1 ± 0.246	78.724 ±0.402	78.152 ±0.682	78.788 ±0.483	78.804 ±0.835	79.12 ± 0.786	78.432 ± 0.479	79.008 ± 0.341
10-2	79.52	79.52	80.08	80.1	79.84	79.88	79.68	79.7	78.52	78.52	77.56	77.58
	77.48	77.48	80.2	80.26	79.38	79.54	80.7	80.66	78.24	78.26	79.66	79.66
	78.62	78.62	78.58	78.58	78.6	78.62	80.14	80.14	78.34	78.3	78.84	78.9
	78.16	78.16	77.36	77.36	79.22	79.2	78.38	78.4	80.16	80.08	79.6	79.6
	79.3	79.3	78.68	78.68	79.64	79.66	79.74	79.76	78.26	78.22	78.12	78.12
	78.616 ±0.9	78.61 6±0.9	78.98 ±1.035	78.996 ±1.052	79.336 ±0.417	79.38± 0.430	79.728 ±0.751	79.732 ±0.734	78.704± 0.720	78.676 ±0.695	78.756 ±0.805	78.772 ± 0.801
10-3	79.36	79.36	79.6	79.6	79.52	79.48	77.92	77.92	78.84	78.86	78.42	78.42
	78.4	78.4	80.36	80.34	79.68	79.7	79.58	79.58	77.66	77.66		
	78.52	78.52	77.64	77.64	77.9	77.9	79.34	79.34	77.84	77.82		
	78.92	78.92	78.58	78.58	78.7	78.68	78.94	78.94	78.76	78.76		
	78.9	78.9	79.62	79.62	78.92	78.92	79.14	79.14	78.58	78.58		
	78.82 ±0.332	78.82 ±0.33 2	79.16 ±0.929	79.156 ±0.924	78.944 ±0.623	78.93 6±0.6 23	78.98 4±0.5 61	78.984 ±0.561	78.336 ±0.479	78.336 ±0.487		
10-4								1		ı		

Experiment:

Dataset: Cu Birds Number Shot: 5 Number of Way: 8 Number of query: 15 Number of episode: 200

LR	Number of Iteratio n	0	10	25	50	100	200
1	•						
10-1	I	68.9083333333 3333 ± 0.98950819405 96101	68.5708333333 3333 ± 1.01742229781 11565	68.2791666666 6665 ± 1.16397649550 29517	68.1541666666 6667 ± 1.266011275127 5163	68.11666666666 666 ± 1.294061870408 2292	68.125 ± 1.290320411327 7014
10-2	2	69.91666666 666667 ± 1.008178224 9847162	69.8875 ± 1.00623657 14079808	69.8833333 3333334 ± 1.00665819 64323562	69.875 ± 1.006638982 7871096	69.875 ± 1.006638982 7871096	69.875 ± 1.0066389827 871096
10-3	3	68.683333333 33334 ± 1.0241507961 883998	68.6875 ± 1.022265578 6019816	68.6875 ± 1.0222655786 019816	68.6875 ± 1.0222655786 019816	68.6875 ± 1.0222655786 019816	68.6875 ± 1.02226557860 19816
10-4	1	69.025 ± 0.875176366 6700431	69.025 ± 0.87517636 66700431	69.0208333 3333333 ± 0.87527752 54328068	69.02083333 333333 ± 0.875277525 4328068	69.02083333 333333 ± 0.875277525 4328068	69.020833333 33333 ± 0.8752775254 328068
10-5	5	69.5375 ± 1.054018835 4183555	69.5375 ± 1.05401883 54183555	69.5375 ± 1.05401883 54183555	69.5375 ± 1.054018835 4183555	69.5375 ± 1.054018835 4183555	69.541666666 66666 ± 1.0542752315 637927

Recap:

We can see that for the learning rate equal to 0.001, all the iterations of Tent were greater than Proto-Network. This learning rate can be seen as the optimal learning rate. But something happens for the learning rate 10-5. We can see that for the number of Tent iterations equal to 200, the accuracy was good compared to the previous value.

Dataset: Cu Birds **Number Shot**: 10 **Number of Way**: 8 Number of query : 15 Number of episode : 200

LR	Number of Iteratio n	0	10	25	50	100	200
1							
10-1	I	78.49583333 333334 ± 0.844979509 8600517	76.85 ± 1.18364050 37942146	75.275 ± 1.55634941 64586276	75.09583333 333335 ± 1.611636472 9591541	75.10833333 333333 ± 1.599804351 0587994	75.120833333 33334 ± 1.5943792138 75698
10-2	2	78.6 ± 0.830013010 6075314	78.6291666 6666666 ± 0.84127746 43857598	78.6416666 6666667 ± 0.84927914 89126399	78.6333333 333333 ± 0.850983908 9743902	78.6333333 333334 ± 0.850199814 42273	78.633333333 33334 ± 0.8491008656 219824
10-3	3	78.02916666 666665 ± 0.848797423 0737664	78.0083333 3333333 ± 0.84616992 61312049	78.0166666 6666667 ± 0.84441595 72680332	78.0125 ± 0.844504216 0772332	78.025 ± 0.844396211 3052537	78.03333333 33335 ± 0.8433474320 297127
10-4	1	77.51666666 666667 ± 0.869200397 5557714	77.5125 ± 0.86924010 48393426	77.5125 ± 0.86885638 3654207	77.51666666 666667 ± 0.867510677 4879231	77.51666666 666667 ± 0.867971836 4606587	77.520833333 33333 ± 0.8660084820 440399
10-5	5	78.6875 ± 0.715638387 7932578	78.6833333 3333334 ± 0.71628324 47200385	78.6833333 3333334 ± 0.71628324 47200385	78.6875 ± 0.716290460 8505934	78.68333333 333334 ± 0.715910700 5144643	78.683333333 33334 ± 0.7159107005 144643

For this one, We can see that the good learning rate for this operation is 10-2(0.01), but here the margin between Proto-network and our model is bigger than the first with 5 shot, as for the previous, the number of iteration 200 and 10-4 of learning rate is good.

Dataset : Flower Number Shot : 5 Number of Way : 8 Number of query : 15 Number of episode : 200

LR	Number of	0	10	25	50	100	200
	Iteratio n						

1						
10-1	84.925 ± 0.668888389 2116998	84.9125 ± 0.67020400 698013	84.8375 ± 0.69629610 15058337	84.82083333 333333 ± 0.706109996 0542818	84.8125 ± 0.711525959 4506881	84.8125 ± 0.7115259594 506881
10-2	84.68333333	84.6833333	84.6833333	84.68333333	84.68333333	84.683333333
	333332 ±	3333332 ±	3333332 ±	333332 ±	333332 ±	33332 ±
	0.740114501	0.74011450	0.74011450	0.740114501	0.740114501	0.7401145016
	651978	1651978	1651978	651978	651978	51978
10-3	85.05833333	85.0583333	85.0666666	85.06666666	85.06666666	85.06666666
	333332 ±	3333332 ±	6666666 ±	666666 ±	666666 ±	66666 ±
	0.631163410	0.63116341	0.63093618	0.630936180	0.630936180	0.6309361809
	3428013	03428013	09600432	9600432	9600432	600432
10-4	85.1375 ± 0.709304736 9509886	85.1375 ± 0.70930473 69509886	85.1375 ± 0.70930473 69509886	85.1375 ± 0.709304736 9509886	85.1375 ± 0.709304736 9509886	85.1375 ± 0.7093047369 509886
10-5	85.50416666	85.5041666	85.5041666	85.50416666	85.50416666	85.504166666
	666668 ±	6666668 ±	6666668 ±	666668 ±	666668 ±	66668 ±
	0.627707818	0.62770781	0.62770781	0.627707818	0.627707818	0.6277078185
	5084733	85084733	85084733	5084733	5084733	084733

Recap: here the best learning rate is 10-3, for this learning rate, all the iteration of Tent is slightly greater than proto-network. Globally our model and proto-network is sensibly the same.

Dataset : Flower Number Shot : 10 Number of Way : 8 Number of query : 15 Number of episode : 200

LR	Number of Iteratio n	0	10	25	50	100	200
1							
10-1	1	91.11666666 666667 ± 0.414242443 77202846	90.7375 ± 0.48647257 416699924	90.3333333 3333334 ± 0.78323400 07941432	90.19583333 333333 ± 0.893343562 674642	90.15416666 666665 ± 0.949940088 096203	90.154166666 66665 ± 0.9563077746 526537
10-2	2	90.87916666 666666 ± 0.497456262 594456	90.8833333 3333333 ± 0.49938882 869185436	90.875 ± 0.50073722 03949781	90.87083333 333332 ± 0.501874392 0710307	90.875 ± 0.501402740 6519966	90.879166666 66666 ± 0.5017281909 947745

10-3	91.2125 ± 0.468826063 31014587	91.2125 ± 0.47067178 924856373	91.2125 ± 0.47067178 924856373	91.22083333 333332 ± 0.469974105 52190116	91.22083333 333332 ± 0.469974105 52190116	91.220833333 33332 ± 0.4699741055 2190116
10-4	91.02916666 666668 ± 0.456161885 09855415	91.0333333 3333335 ± 0.45532224 48625441	91.0375 ± 0.45535996 124555733	91.0375 ± 0.455359961 24555733	91.0375 ± 0.455359961 24555733	91.0375 ± 0.4553599612 4555733
10-5	91.2375 ± 0.459512360 9448511	91.2375 ± 0.45951236 09448511	91.2375 ± 0.45951236 09448511	91.23333333 333332 ± 0.459945042 6107691	91.23333333 333332 ± 0.459945042 6107691	91.233333333 33332 ± 0.4599450426 107691

Omniglot , quickdraw.

Dataset : Omniglot Number Shot : 5 Number of Way : 8 Number of query : 15 Number of episode : 200

LR	Number of Iteratio n	0	10	25	50	100	200
1							
10-1	1	86.59583333 333335 ± 0.633827779 6890536	82.0875 ± 2.32590903 3731638	80.8 ± 2.78642166 82572174	80.70833333 333334 ± 2.780597095 649302	80.70833333 333334 ± 2.778293518 510958	80.7125 ± 2.7768923817 571887
10-2	2	86.48333333 333332 ± 0.665787218 26121	86.0833333 3333331 ± 0.71755216 61253007	85.85 ± 0.81355413 53291195	85.85833333 333332 ± 0.814615073 0389305	85.85 ± 0.813226152 7739719	85.845833333 33332 ± 0.8134325922 185152
10-3	3	86.675 ± 0.684149309 1586238	86.7291666 6666666 ± 0.68521569 74875381	86.7166666 6666668 ± 0.68362756 4297013	86.71666666 666668 ± 0.683237214 3780746	86.71666666 666668 ± 0.683237214 3780746	86.716666666 66668 ± 0.6832372143 780746
10-4	4	86.975 ± 0.694724658 0880482	86.975 ± 0.69587571 96671128	86.9791666 6666666 ± 0.69588793 94741336	86.98333333 333332 ± 0.694172431 3486127	86.98333333 333332 ± 0.694172431 3486127	86.979166666 66666 ± 0.6949288707 60646
10-5	5	86.45416666 666667 ±	86.4541666 6666667 ±	86.4583333 3333331 ±	86.45416666 666667 ±	86.45 ± 0.719523655	86.45 ± 0.7195236556

0.720520105 0.72052010 0.72068230 0.720520105 6994 2596195 52596195 59511807 2596195	994573
--	--------

Dataset : Omniglot Number Shot : 10 Number of Way : 5 Number of query : 10 Number of episode : 200

LR	Number of Iteratio n	0	10	25	50	100	200
1							
10-1	l	93.87 ± 0.643571305 1403084	87.84 ± 2.41014020 23948735	85.84 ± 2.94422533 70284006	85.59 ± 3.008366642 415781	85.62 ± 2.993400655 5755275	85.62 ± 2.9955815670 416985
10-2	2	93.67 ± 0.631945764 1285366	93.49 ± 0.64173016 07373616	93.34 ± 0.67220285 27163508	93.36 ± 0.664529610 4764633	93.36 ± 0.664529610 4764633	93.36 ± 0.6645296104 764633
10-3	3	93.92 ± 0.575345973 1326881	93.91 ± 0.57764994 17467296	93.92 ± 0.57400901 45633602	93.91 ± 0.576318328 0097901	93.91 ± 0.576318328 0097901	93.91 ± 0.5763183280 097901
10-4	1	93.88 ± 0.535076410 2443687	93.87 ± 0.53395342 94299456	93.87 ± 0.53395342 94299456	93.87 ± 0.533953429 4299456	93.86 ± 0.534983068 1432824	93.86 ± 0.5349830681 432824
10-5	5						

Dataset: Dtd Number Shot: 10 Number of Way: 5 Number of query: 10 Number of episode: 200

LR	Number of Iteratio n	0	10	25	50	100	200
1	•						
10-1	1	66.9 ± 1.365474481	60.75 ± 1.99986043	55.36 ± 2.86062788	54.28 ± 3.075019507	54.0 ± 3.113748557	53.8 ± 3.1529815223

	6363282	01300626	9677369	710479	6070527	055144
10-2	66.68 ± 1.363134557 1145936	66.58 ± 1.36542946 6797901	66.51 ± 1.35792712 58797359	66.52 ± 1.353461959 8644062	66.5 ± 1.354174198 5431563	66.5 ± 1.3541741985 431563
10-3	67.05 ± 1.314497493 3410865	67.01 ± 1.31480724 03208004	66.99 ± 1.31305299 17714668	67.0 ± 1.315976169 99701	67.01 ± 1.315099387 5749466	67.01 ± 1.3150993875 749466
10-4	66.91 ± 1.410600303 1333858	66.89 ± 1.41247818 5035082	66.91 ± 1.40978305 25297146	66.92 ± 1.410067100 8147094	66.94 ± 1.410358582 4888647	66.94 ± 1.4103585824 888647
10-5	66.83 ± 1.390157548 193729	66.84 ± 1.39073291 29635206	66.83 ± 1.39402097 86082847	66.83 ± 1.394020978 6082847	66.83 ± 1.394020978 6082847	66.83 ± 1.3940209786 082847

Dataset : Dtd Number Shot : 15 Number of Way : 5 Number of query : 10 Number of episode : 200

LR	Number of Iteratio n	0	10	25	50	100	200
1							
10-1	I	74.49 ± 1.006492920 5910988	62.9 ± 2.29809477 6113466	50.41 ± 3.58034627 58789126	48.15 ± 3.739435248 8042895	48.44 ± 3.691170748 041873	48.06 ± 3.7426157659 0491
10-2	2	74.13 ± 1.135811967 1847096	74.06 ± 1.13202853 81561723	74.08 ± 1.13234409 46991334	74.09 ± 1.131141624 7314037	74.09 ± 1.130122300 992242	74.1 ± 1.1302761078 60376
10-3	3	74.35 ± 1.124376511 6721356	74.37 ± 1.11980256 5097973	74.4 ± 1.12217488 83306917	74.42 ± 1.118948876 758898	74.39 ± 1.118985783 2877057	74.39 ± 1.1189857832 877057
10-4	1	74.53 ± 1.001894601 6423083	74.5 ± 0.99969607 38144368	74.45 ± 0.99572533 36136426	74.43 ± 0.990867721 1414245	74.43 ± 0.991642819 164239	74.43 ± 0.9916428191 64239
10-5	5	74.3 ± 1.119003806 9640333	74.29 ± 1.11922607 5107259	74.29 ± 1.11888278 52818184	74.3 ± 1.121746887 6711894	74.31 ± 1.116717632 7075703	74.31 ± 1.1167176327 075703

Visual Domain Bridge Results:

Dataset : Omniglot Number Support : 10 Number of Way : 5 Number of Query : 10 Number of episode : 200

Prototypical Network	Proto + VDB Networks
93.95 ± 0.5622416384438277	94.23 ± 0.6254688295990456
93.87 ± 0.6670208578447903	94.0 ± 0.6766969188639771
93.77 ± 0.6542863415967047	94.05 ± 0.6256284999902098
93.65 ± 0.6383930920678889	94.15 ± 0.6234756611127655
93.36 ± 0.6102874758669066	94.09 ± 0.64250791061278
94.13 ± 0.5714853845900173	93.86 ± 0.7357235372067418

Dataset : Aircraft Number Support : 10 Number of Way : 5 Number of Query : 10 Number of episode : 200

Prototypical Network	Proto + VDB Networks
61.3 ± 1.4200872930915198	63.39 ± 1.424799348399626
61.44 ± 1.4307087094164204	63.08 ± 1.4222741046647793
62.08 ± 1.4244332868899126	63.37 ± 1.3651445728566627
61.41 ± 1.2607531460202668	62.85 ± 1.3523822462602797
61.7 ± 1.3688463756024631	63.29 ± 1.447190922857105
61.5 ± 1.3855827654817303	63.25 ± 1.4592295432864562

Dataset: Birds

Number Support: 10 Number of Way: 5 Number of Query: 10 Number of episode: 200

Prototypical Network	Proto + VDB Networks
82.37 ± 1.0860159965672695	84.96 ± 1.05365633258667
83.03 ± 1.0047662378881965	85.61 ± 1.0362813050518667
83.04 ± 0.9893477382599102	85.2 ± 0.9016
83.76 ± 0.9527938807528099	86.11 ± 0.9921540521511768
83.38 ± 1.0861265325918525	85.53 ± 1.0289449318598152
84.07 ± 1.0420778285713597	86.4 ± 1.0763951690712847

Dataset: Flower Number Support: 10 Number of Way: 5 Number of Query: 10 Number of episode: 200

Prototypical Network	Proto + VDB Networks
94.84 ± 0.5441321486550853	94.99 ± 0.5050547685152572
94.97 ± 0.5687226325723287	94.97 ± 0.6021874731344052
94.79 ± 0.584656862783633	94.86 ± 0.5896375863189184
95.61 ± 0.48937043555981186	95.72 ± 0.5237565969035617
95.05 ± 0.500424120122122	95.5 ± 0.5183820212931771
95.01 ± 0.48882062067797427	95.23 ± 0.48935473513597477

Dataset : DTD

Number Support: 10 Number of Way: 5 Number of Query: 10 Number of episode: 200

Prototypical Network	Proto + VDB Networks
67.37 ± 1.256412744602664	73.39 ± 1.236260580622063
67.33 ± 1.351768533736453	72.86 ± 1.221981015891818

66.79 ± 1.2635229349718984	72.27 ± 1.2289301594476392
66.64 ± 1.3913957033137625	72.6 ± 1.3264436663499886
67.41 ± 1.317375912638454	72.73 ± 1.3031207069185877
67.68 ± 1.2109057026870425	73.48 ± 1.1392439935325531

Dataset : Fungi Number Support : 5 Number of Way : 5 Number of Query : None

Number of episode: 200

Prototypical Network	Proto + VDB Networks
64.82238095238095 ± 1.8728469522436675	70.10460317460317 ± 1.7702556901347106
63.30563492063492 ± 1.834141680009521	68.2415873015873 ± 1.647533177197179
64.91630952380952 ± 1.8356100677322176	68.70734126984127 ± 1.8568432261244676
64.5961111111111 ± 1.728689112115926	69.2168253968254 ± 1.6762797911100493
63.454206349206345 ± 1.8034429342192073	67.44996031746032 ± 1.795282406800469
65.0147222222222 ± 1.795711892429219	69.62734126984127 ± 1.693796706035633

Conclusion:

We can see that combining VDB with prototypical network increased the accuracy of the prediction, this improvement is very important for some dataset like: Aircraft, Birds, DTD, Fungi. Some other dataset like Omniglot and Flowers does'nt improve a lot.

Understand vdb, and implement it from scratch Give a recap of this paper vdb

Load the same weight used by vdb with tent

Combine vdb and tent,

finetune the pretrained model, define a new classifier for this episode, and then finetune. I can repeat the process with the same episode, until the model step

Combination of VDB and TENT

Dataset : Aircraft Number Shot : 10 Number of Way : 5 Number of query : 10 Number of episode : 200

LR	Number of Iteration	VDB	Proto	0	5	10	20
10-1		61.97 ± 1.36427	60.68 ± 1.3998	60.72 ± 1.402746	60.72 ± 1.402746	60.72 ± 1.402746	60.72 ± 1.402746
10-2		63.44 ± 1.3195	61.43 ± 1.2981	61.41 ± 1.2956	61.41 ± 1.2956	61.41 ± 1.2956	61.41 ± 1.2956
10-3		62.98 ± 1.373	60.65 ± 1.380	60.7 ± 1.381	60.7 ± 1.3819	60.7 ± 1.3819	60.7 ± 1.3819
10-4		62.93 ± 1.4335	60.96 ± 1.36	61.05 ± 1.363	61.05 ± 1.363	61.05 ± 1.363	61.05 ± 1.363
10-5		63.3 ± 1.4007	61.62 ± 1.3259	61.55 ± 1.3225	61.55 ± 1.3225	61.55 ± 1.3225	61.55 ± 1.3225

Dataset : Birds Number Shot : 10 Number of Way : 5 Number of query : 10 Number of episode : 200

LR	Number of Iteration	VDB	Proto	0	5	10	20
10-1		85.87 ± 0.9546	83.75 ± 0.9440	83.69 ± 0.9509	83.69 ± 0.9509	83.69 ± 0.9509	83.69 ± 0.9509
10-2		84.6 ± 1.040	82.98 ± 1.0728	83.02 ± 1.0706	83.02 ± 1.0706	83.02 ± 1.0706	83.02 ± 1.0706

10-3	85.89 ±	82.87 ±	82.86 ±	82.86 ±	82.86 ±	83.25 ±
	1.03646	1.0295	1.030635	1.030635	1.030635	0.992
10-4	85.39 ±	83.21 ±	83.25 ±	83.25 ±	83.25 ±	83.25 ±
	0.9630	0.9993	0.992	0.992	0.992	0.992
10-5	86.21 ±	84.02 ±	83.99 ±	83.99 ±	83.99 ±	83.99 ±
	1.023	1.0009	1.0072	1.0072	1.0072	1.0072

Dataset : Flower Number Shot : 10 Number of Way : 5 Number of query : 10 Number of episode : 200

LR	Number of Iteration	VDB	Proto	0	5	10	20
10-1		94.88 ± 0.6133	94.78 ± 0.548	94.69 ± 0.5785	94.69 ± 0.5785	94.69 ± 0.5785	
10-2		94.7 ± 0.579	94.82 ± 0.5959	94.83 ± 0.5972	94.83 ± 0.5972	94.83 ± 0.5972	
10-3		94.95 ± 0.5155	94.97 ± 0.5288	95.0 ± 0.5288	95.0 ± 0.5288	95.0 ± 0.5288	
10-4		95.15 ± 0.5448	95.26 ± 0.5022	95.25 ± 0.5031	95.25 ± 0.5031	95.25 ± 0.5031	
10-5		95.42 ± 0.5248	94.83 ± 0.5319	94.83 ± 0.5319	94.83 ± 0.5319	94.83 ± 0.5319	

Dataset : Omniglot Number Shot : 10 Number of Way : 5 Number of query : 10 Number of episode : 200

LR	Number of Iteration	VDB	Proto	0	5	10	20
10-1		93.93 ± 0.6359	93.88 ± 0.617	93.86 ± 0.6163	93.86 ± 0.6163	93.86 ± 0.6163	
10-2		93.98 ± 0.6210	93.98 ± 0.5445	93.98 ± 0.5445	93.98 ± 0.5445	93.98 ± 0.5445	
10-3		93.85 ± 0.68512	93.64 ± 0.60459	93.54 ± 0.62824	93.54 ± 0.62824	93.54 ± 0.62824	

10-4	93.67 ± 0.675	93.47 ± 0.6758	93.5 ± 0.6754	 93.5 ± 0.6754	
10-5	94.03 ± 0.60314	93.67 ± 0.61904	93.65 ± 0.6200	 93.65 ± 0.6200	

Dataset: DTD Number Shot: 10 Number of Way: 5 Number of query: 10 Number of episode: 200

LR	Number of Iteration	VDB	Proto	0	5	10	20
10-1		73.04 ± 1.2252	67.77 ± 1.2966	67.7 ± 1.30564	67.7 ± 1.30564	67.7 ± 1.30564	
10-2		72.29 ± 1.2700	66.72 ± 1.2995	66.74 ± 1.29576	66.74 ± 1.29576	66.74 ± 1.29576	
10-3		72.69 ± 1.2839	67.37 ± 1.3404	67.42 ± 1.3358	67.42 ± 1.3358	67.42 ± 1.3358	
10-4		72.3 ± 1.2509	67.26 ± 1.3718	67.23 ± 1.3735	67.23 ± 1.3735	67.23 ± 1.3735	
10-5		72.26 ± 1.1506	67.46 ± 1.198	67.63 ± 1.2240	67.63 ± 1.2240	67.63 ± 1.2240	

Dataset : Fungi Number Shot : 10 Number of Way : 5 Number of query : 10 Number of episode : 200

LR	Number of Iteration	VDB	Proto	0	5	10	20
10-1							
10-2							
10-3							

10-4			
10-5			

Fine Tuning

Dataset: DTD Number Shot: 10 Number of Way: 5 Number of query: 10 Number of episode: 200 Pretrained model: Resnet 18

LR	Number of Iteration	Proto	0	5	10	25	50
10-1							
10-2		67.59 ± 1.290	67.59 ± 1.2907	30.15 ± 2.205	28.54 ± 2.048	29.06 ± 1.971	30.3 ± 1.9899
10-3		67.24 ± 1.301	67.24 ± 1.301	68.31 ± 1.259	66.51 ± 1.2411	63.1 ± 1.327	60.97 ± 1.4258
10-4		67.88 ± 1.3710	67.88 ± 1.371	68.84 ± 1.4170	69.21 ± 1.3919	69.32 ± 1.3693	69.36 ± 1.3632
10-5		67.35 ± 1.2668	67.35 ± 1.2668	67.54 ± 1.2661	67.84 ± 1.2624	68.17 ± 1.2631	

Dataset : Omniglot Number Shot : 10 Number of Way : 5 Number of query : 10 Number of episode : 200 Pretrained model : Resnet 18

LR	Number of Iteration	Proto	0	5	10	25	50
10-1		94.03 ± 0.6005	94.03 ± 0.6005	76.02 ± 3.711		86.08 ± 1.9935	

10-2	93.58 ± 0.6955	93.58 ± 0.6955	84.96 ± 2.7567	90.11 ± 1.3571	91.91 ± 0.9194	
10-3	94.05 ± 0.6299	94.05 ± 0.6299	93.89 ± 0.6267	94.13 ± 0.6079	94.13 ± 0.6129	
10-4	94.17 ± 0.5746	94.17 ± 0.5746	94.21 ± 0.5849	94.11 ± 0.608	93.97 ± 0.6268	
10-5	93.25 ± 0.5986	93.25 ± 0.5986	93.22 ± 0.6065	93.22 ± 0.6115	93.33 ± 0.5842	

Dataset : Fungi Number Shot : 5 Number of Way : 5 Number of query : None Number of episode : 200 Pretrained model : Resnet 18

LR	Number of Iteration	Proto	0	5	10	25	50
10-1		63.3013 ± 1.662	63.3013 ± 1.662	59.153 ± 2.305	59.0716 ± 2.3342	59.232 ± 2.3105	
10-2		64.138 ± 1.833	64.138± 1.8326	60.172± 2.4178	59.918 ± 2.4475	59.985± 2.4450	
10-3		62.4998 ± 1.888	62.4998 ± 1.888	62.5379 ± 1.87462	62.37 ± 1.8701	62.043 ± 1.858	
10-4		63.2003 ±1.7742	63.2003± 1.7742	63.2778 ± 1.7701	63.3339 ± 1.7651	63.4291± 1.7582	
10-5		65.6896 ± 1.649	65.6896 ± 1.649	65.6921 ± 1.648	65.6796± 1.650	65.6598 ± 1.6528	

Dataset : Aircraft
Number Shot : 10
Number of Way : 5
Number of query : 10
Number of episode : 200
Pretrained model : Resnet 18

LR	Number of Iteration	Proto	0	5	10	25	50
10-1		60.32 ±	60.32 ±	40.66 ±	41.57 ±	42.87 ±	

	1.436	1.436	3.024	2.902	2.747	
10-2	60.37 ± 1.350	60.37 ± 1.350	57.36 ± 1.5674	55.85 ± 1.613	54.21 ± 1.8130	
10-3	60.53 ± 1.429	60.53 ± 1.429	60.96 ± 1.409	61.0 ± 1.4005	60.98 ± 1.369	
10-4	60.6 ± 1.337	60.6 ± 1.337	60.71 ± 1.3304	60.81 ± 1.337	60.95 ± 1.337	
10-5	61.88 ± 1.393	61.88 ± 1.393	61.92 ± 1.3867	61.97 ± 1.386	62.02 ± 1.383	

Dataset : Bird Number Shot : 10 Number of Way : 5 Number of query : 10 Number of episode : 200 Pretrained model : Resnet 18

LR	Number of Iteration	Proto	0	5	10	25	50
10-1		82.94 ± 1.044	82.94 ± 1.044	62.94 ± 4.126	63.25 ± 4.074	63.76 ± 3.967	
10-2		83.05 ± 1.0251	83.05 ± 1.0251	76.88 ± 1.846	70.69 ± 3.019	68.95 ± 3.218	
10-3							
10-4							
10-5							

Fine Tuning + VDB

Dataset: Omniglot Number Shot: 15 Number of Way: 5 Number of query: 5 Number of episode: 200

LR	Number of Iteration	Proto	0	5	10	25	50
----	---------------------	-------	---	---	----	----	----

10-1	94.88 ±	94.82 ±	94.08 ±	93.82 ±	94.08 ±
	0.6747	0.6624	0.7353	0.6985	0.7290
10-2	94.9 ± 0.6367	94.4 ± 0.7375	94.42 ± 0.7310	94.36 ± 0.750	94.02 ± 0.7681
10-3	94.76 ±	93.28 ±	93.28 ±	93.38 ±	93.36 ±
	0.6684	0.82554	0.82554	0.8064	0.7945
10-4	94.5 ±	94.6 ±	94.6 ±	94.6 ±	94.58 ±
	0.7216	0.7158	0.7158	0.7158	0.7204
10-5	94.54 ±	94.54 ±	94.54 ±	94.54 ±	94.54 ±
	0.69722	0.68835	0.68835	0.68835	0.68835

Dataset : Omniglot Number Shot : 10 Number of Way : 5 Number of query : 10 Number of episode : 200

Pretrained model: Resnet vdb 18

LR	Number of Iteration	Proto	0	5	10	25	50
10-1		93.48 ± 0.6930	94.16 ± 0.6751	93.89 ± 0.6779	93.61 ± 0.7237	93.41 ± 0.7625	
10-2		94.52 ± 0.5627	94.12 ± 0.62329	94.16 ± 0.6056	94.14 ± 0.61327	93.93 ± 0.6187	
10-3		94.0 ± 0.564670	94.34 ± 0.55375	94.35 ± 0.5532	94.36 ± 0.5542	94.41 ± 0.5412	
10-4		93.14 ± 0.6533	93.61 ± 0.6872	93.62 ± 0.6848	93.63 ± 0.6857	93.63 ± 0.6863	
10-5		93.19 ± 0.7212	93.49 ± 0.7281	93.48 ± 0.7319	93.48 ± 0.7319	93.48 ± 0.7298	

Dataset: Omniglot Number Shot: 5 Number of Way: 5 Number of query: 10 Number of episode: 200

LR	Number of Iteration	Proto	0	5	10	25	50
10-1		91.59 ± 0.7812	93.09 ± 0.6856	92.64 ± 0.7518	92.2 ± 0.8412	92.4 ± 0.8194	
10-2		90.65 ± 0.7839	92.03 ± 0.776	92.1 ± 0.7705	92.0 ± 0.78791	91.9 ± 0.7926	
10-3		91.65 ± 0.8504	93.19 ± 0.7297	93.17 ± 0.73924	93.17 ± 0.73872	93.24 ± 0.7336	
10-4		90.77 ± 0.7823	92.58 ± 0.7362	92.58 ± 0.7362	92.6 ± 0.7296	92.62 ± 0.7293	
10-5		91.34 ± 0.8019	93.34 ± 0.627	93.34 ± 0.6272	93.34 ± 0.62726	93.34 ± 0.6272	

Dataset: Omniglot Number Shot: 2 Number of Way: 5 Number of query: 10 Number of episode: 200

Pretrained model: Resnet vdb 18

LR	Number of Iteration	Proto	0	5	10	25	50
10-1		83.63 ± 1.1435	89.06 ± 0.8964	89.12 ± 0.8924	89.09 ± 0.8925	89.09 ± 0.89252	
10-2		82.71 ± 1.10732	87.74 ± 1.0313	87.74 ± 1.0313	87.74 ± 1.0313	87.74 ± 1.0313	
10-3		82.89 ± 1.1155	87.58 ± 1.0280	87.58 ± 1.0280	87.59 ± 1.02532	87.57 ± 1.0311	
10-4		84.31 ± 1.0375	88.38 ± 0.9376	88.38 ± 0.93768	88.38 ± 0.9376	88.38 ± 0.9376	
10-5		83.09 ± 1.0798	87.8 ± 0.9913	87.8 ± 0.9913	87.8 ± 0.9913	87.8 ± 0.99130	

Dataset: Omniglot Number Shot: 1 Number of Way: 5 Number of query: 10 Number of episode: 200

LR	Number of Iteration	Proto	0	5	10	25	50
10-1		70.46 ± 1.4505	77.79 ± 1.304	77.79 ± 1.3046	77.79 ± 1.3046	77.79 ± 1.30465	
10-2		71.05 ± 1.5714	78.97 ± 1.377	78.97 ± 1.3778	78.97 ± 1.3778	78.97 ± 1.3778	
10-3		70.72 ± 1.3859	78.1 ± 1.3217	78.1 ± 1.3217	78.1 ± 1.321	78.1 ± 1.321	
10-4		72.06 ± 1.419	79.3 ± 1.4939	79.3 ± 1.4939	79.3 ± 1.4939	79.3 ± 1.4939	
10-5		72.79 ± 1.4149	78.88 ± 1.4605	78.88 ± 1.4605	78.88 ± 1.4605	78.88 ± 1.4605	

Dataset: DTD Number Shot: 10 Number of Way: 5 Number of query: 10 Number of episode: 200

Pretrained model: Resnet vdb 18

LR	Number of Iteration	Proto	0	5	10	25	50
10-1		67.6 ± 1.2834	73.07 ± 1.183	71.94 ± 1.2367	70.96 ± 1.2485	69.81 ± 1.213	
10-2		66.97 ± 1.35054	73.02 ± 1.1799	73.01 ± 1.1821	72.91 ± 1.1778	72.75 ± 1.1981	
10-3		66.3 ± 1.42305	72.18 ± 1.3477	72.19 ± 1.3464	72.24 ± 1.3475	72.18 ± 1.35826	
10-4		67.24 ± 1.3918	73.33 ± 1.2468	73.33 ± 1.2468	73.3 ± 1.2497	73.34 ± 1.2479	
10-5		67.29 ± 1.4128	72.75 ± 1.373	72.75 ± 1.373	72.75 ± 1.3732	72.74 ± 1.3737	

Dataset: DTD Number Shot: 15 Number of Way: 5 Number of query: 10 Number of episode: 200

LR	Number of Iteration	Proto	0	5	10	25	50
10-1		75.04 ± 1.07566	78.49 ± 1.1085	77.74 ± 1.1793	76.37 ± 1.1812	77.06 ± 1.0856	
10-2		75.14 ± 1.1033	77.92 ± 1.2142	78.3 ± 1.2100	78.65 ± 1.18671	77.71 ± 1.1456	
10-3		74.34 ± 1.0467	78.02 ± 1.0713	78.02 ± 1.068	78.12 ± 1.0546	78.45 ± 1.0761	
10-4		74.59 ± 1.06303	77.92 ± 1.0954	77.91 ± 1.0956	77.91 ± 1.0949	77.9 ± 1.0975	
10-5		75.18 ± 1.0739	78.7 ± 1.1759	78.69 ± 1.1778	78.69 ± 1.1778	78.71 ± 1.1779	