Farbenia grafov s obmedzeniami do vzdialenosti dva

Bc. Jaroslav Petrucha školiteľ: RNDr. Michal Forišek, PhD.

14. 6. 2018

L(2,1)-farbenie

- Ohodnotenie vrcholov prirodzenými číslami
 - Susedné vrcholy majú rozdiel aspoň 2
 - Vrcholy so spoločným susedom majú rozdiel aspoň 1
- Motivácia v priraďovaní Wi-Fi kanálov

Súvisiace problémy

- Skúmame rozsah priradených hodnôt
- Rozhodovacie aj optimalizačné problémy
 - ▶ Stačí rozsah *k*?
 - Aký je minimálny rozsah?
- ullet \mathcal{NP} -ťažký na mnohých triedach
 - Planárne grafy
 - Čiastočné 2-stromy, bipartitné grafy

Doterajšie algoritmy

- Polynomiálne na triedach grafov
 - Stromy, cyklové stromy
 - Riešenie malých lokálnych problémov
- Pre všeobecné grafy
 - Počítanie všetkých čiastočných ofarbení
 - $O^*(2.6488^n)$

Vlastná práca - mosty

- Mostová hrana $e = \{u, v\}$
- Vrcholy v rôznych komponentoch sú ďaleko
- Ofarbíme u a v, komponenty riešime zvlášť

Pozorovania

- Musíme riešiť rozhodovací problém
 - Máme daný rozsah k
- Mierne pozmenený problém
 - Niektoré vrcholy majú fixovanú farbu
 - Podobne ťažký problém

Pozorovania

- Najlepšie je rozdelenie na polovice
 - Za malý blok platíme viac, než ušetríme
- Ak je blok príliš malý, môžeme ho ignorovať
 - Vzhľadom na rozsah k
 - Zaručene sa dá dofarbiť

Orezanie malého bloku

Základná myšlienka

- Pre rozsah $k \le 5$ použijeme iný algoritmus
- Odstránime malé listové bloky
- Nájdeme stredný blok K_s
- ullet Ofarbíme všetky mosty v K_s
- Pre každú možnosť vyriešime menší problém

Výsledok

Stačí riešiť grafy bez netriviálnych mostov

- ullet Zo špecifického $O^*(lpha^n)$ dostaneme rovnako rýchle všeobecné riešenie
- Pre $6 \le k \le 11$ horšia časová zložitosť
 - Na niektorých zlých typoch grafov

- ◀ □ ▶ ◀疊 ▶ ◀ 볼 ▶ 4 볼 ▶ 열 N P P

Algoritmus Junosza-Szaniawski

- Každý graf má triviálne (2n)-farbenie
- Postupne počítame tabuľky $T_0, T_1 \dots T_{2n}$
- T_k popisuje všetky čiastočné farbenia s rozsahom k
- Hlavná časť algoritmu je počítanie $\oplus: T_k \mapsto T_{k+1}$

Algoritmus Junosza-Szaniawski

- T_k popisuje čiastočné farbenia s rozsahom k
- Stačí vedieť, ktoré vrcholy majú farbu k a ktoré sú ofarbené
- Stavy sa nazývajú vlastné páry
- Počet vlastných párov aj časová zložitosť je $O^*(2.6488^n)$
- Najviac vlastných párov majú stromy
 - Ale majú polynomiálny algoritmus

Vlastná práca - planárne grafy

Veta (Lipton, Tarjan)

Nech G je ľubovoľný n-vrcholový planárny graf. Vrcholy G sa dajú rozdeliť do množín A,B,C tak, že neexistuje hrana medzi vrcholom v A a vrcholom v B, veľkosť množiny A aj množiny B je nanajvýš $\frac{n}{2}$ a veľkosť množiny C je nanajvýš $\frac{2\sqrt{2}}{1-\sqrt{2/3}}\sqrt{n}$.

Základná myšlienka

- Nájdeme vrcholový separátor S s $O(\sqrt{n})$ vrcholmi
- Čiastočné farbenia rozdelíme podľa ofarbenia S a okolia
- Pre komponenty G S počítame množiny T_i nezávisle
- Reprezentácia z algoritmu Junosza-Szaniawski má málo stavov

Riešenie pre planárne grafy

- ullet Mierne odlišné riešenie podľa veľkosti okolia separátora S
- ullet Časová zložitosť v oboch prípadoch $O^*(2.2^{n+o(n)})$
- Funguje pre grafy s $O(n^{1-\varepsilon})$ separátorom

Vyvážene rozdeliteľné grafy

- Vrcholy vieme rozdeliť do množín A a B
- A aj B majú nanajvýš $\frac{2n}{3}$ vrcholov
- ullet Počet vrcholov so susedom v druhej množine je nanajvýš $\frac{n}{4}$
- Časová zložitosť algoritmu je O*(2.614ⁿ)

Vlastné páry na 2-hranovo súvislých grafoch

- Vyplýva z práce k mostom
- Generujeme minimálne 2-hranovo súvislé grafy
- Z grafov s nanajvýš 20 vrcholmi má najviac kružnica
- Kružnica s n vrcholmi má $O(2.5943^n)$ vlastných párov

Generovanie grafov

Záver

- Zjednodušenie problému na "chlpaté" 2-hranovo súvislé grafy
- Rýchlejší algoritmus pre planárne grafy
- Rýchlejší algoritmus pre vyvážene rozdeliteľné grafy
- Generátor minimálne 2-hranovo súvislých grafov
- Experiment nad 2-hranovo súvislými grafmi

Ďalšia práca v oblasti

- Odhad počtu vlastných párov v nerozdeliteľných grafoch
- Algoritmus pre nerozdeliteľné grafy
- Algoritmus pre (chlpaté) 2-hranovo súvislé grafy
- Odstraňovanie mostov pre rozsah $6 \le k \le 11$

Ďakujem za pozornosť!

Zlé grafy

- Stredný blok spojený s mnohými malými blokmi
- Malé bloky s $\lfloor \frac{k}{2} \rfloor + 1$ vrcholmi

Malé bloky

- Väčšie bloky nerobia problém
- Musí ich byť lineárne veľa
- Musia byť husté, aby sa nedali ignorovať

Odstrániteľný vrchol

- Ľubovoľná kostra
- Listový vrchol
- Prípadne koncový vrchol nepredĺžiteľnej cesty

Oprava dôkazu

Polynóm a jeho korene

- Počet vlastných párov na cestách
- $p_n = 2p_{n-1} + 4p_{n-3}$
- Charakteristický polynóm $p(x) = x^3 2x^2 4$
- Korene: 2.5944, -0.2972 + 1.2056i, -0.2972 1.2056i
- Menšie korene v absolútnej hodnote 1.2417
- Vlastné čísla matice rekurencie