- b.i. Explain the priority queue with an example.
- ii. Explain the Dequeue operation performed in circular queue with example.
- 31. a. Explain the various rotations of AVL tree with a set of inputs.

(OR

- b. Construct the red black tree for the following input list: 195, 95, 65, 13, 65, 10, 25, 2.
- 32. a. Construct the minimum spanning tree using Kruskal's algorithm for the following graph.

(OR)

b. Consider a hash table of size 10. Using quadratic probing, insert the keys 75, 27, 36. 24. 63. 81 and 101 into the table. Consider C_1 =1 and C_2 =3.

* * * *

Reg. No.							

B.Tech. DEGREE EXAMINATION, DECEMBER 2019

First to Eighth Semester

15CS201J - DATA STRUCTURES

(For the candidates admitted during the academic year 2015-2016 to 2017-2018)

N	^	+,	^	٠	
1.4	4 3		۳.	Ξ	

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- (ii) Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

- Answer ALL Questions 1. Which of the following is not a primitive data structure? (A) Boolean (B) Integer (C) Arrays (D) Character of a set of N elements is an arrangement of the elements in a given order (A) Combination (B) Permutation (C) Exponent (D) Logarithm 3. The complexity of linear search algorithm is (A) O(n)(B) $O(n^2)$ (C) $O(n \log n)$ (D) O (log n)
- 4. An ADT is defined to be a mathematical model of a user defined type along with the collections of all ______ operations on that model.
 - (A) Cardinality

(B) Assignment

(C) Primitive

- (D) Structure
- 5. Which one of the following data structure is called as self-referential data type?
 - (A) Linked list(C) Stack

(B) Array

- (D) Trees
- 6. Each node in a linked list must contain at least
 - (A) Three fields .(C) Four fields

- (B) Two fields(D) Five fields
- 7. Which one of the following operations is performed more effectively by doubly linked list than by singly linked list?
 - (A) Deleting a node whose location is
- (B) Searching of an unsorted list given
- (C) Inverting a node after the node with given location
- (D) Traversing a list to process each node

8.				all the deleted space onto free storage list?
	` '	Garbage collection	,	Linked list
	(C)	Free storage	(D)	Garbage compaction
9.		n new data are to be inserted into a dation is usually called	ata st	ructure, but there is no available space, this
		Underflow	(B)	Overflow
	(C)	House full	(D)	Saturator
10.	Iden		etion	at both ends but insertion at only one end is
		Input restricted dequeue	(B)	Output restricted dequeue
	, ,	Priority queue	. ,	Stack
				e *
11.		result of evaluating the postfix expressi		
	(A)		(B)	
	(C)	12	(D)	14
12.		ch one of the following permutations can nput is 11, 22, 33, 44, 55 in that order	ın be	obtained as output using stack, assuming that
		33, 44, 55, 11, 22	` /	33, 44, 55, 22, 11
	(C)	11, 55, 22, 33, 44	(D)	55, 44, 33, 11, 22
13.	node	nary tree in which if all its levels excepts and all the nodes at the last level apportulary tree	ear a	ssibly the last, have the maximum number of s far as possible, is known as AVL tree
	` '		(D)	Complete binary tree
14.	Whe		l higl	ner than that of right sub tree, then the balance
	(A)		(B)	1
	(C)		(D)	2
		14		
15.		ch of the following way is in-order trav		
		Root \rightarrow left sub tree \rightarrow right sub tree		
	(C)	Left sub tree \rightarrow root \rightarrow right sub tree	(D)	Left sub tree \rightarrow right sub tree \rightarrow root
16.		en inorder traversal of a tree resulted in l FAEKCDBHG		KFHDBG, the preorder traversal would return FAEKCDHGB
	. ,	FEAKDCHBG	' '	EAFKHDCBG
	` /			
17.	(A)		(B)	N+1
	(C)	N-1	(D)	2N
1.0	T.	a direct around G is a smaller if	and a	only if a DES of G yields no back edge
18.	In_			only if a DFS of G yields no back edge. Prim's algorithm
		Kruskal's algorithm Dijstra algorithm	` '	Topological sorting
	(C)	Dilsita aigoriumi	(D)	Topological solding

- 19. Given two vertices S and T in a graph, which of the two traversals (BFS and DFS) can be used to find if there is a path from S to T?
 - (A) Only BFS

(B) Only DFS

(C) Both DFS and BFS

- (D) Neither DFS nor BFS
- 20. A hash function is defined as f(key) =key MOD 7, with linear probing, is used to insert keys 37, 38, 72, 48, 98, 11, 56 into a table indexed from 0-6, what will be location of key 11?
 - (A) 3

(B) 4

(C) 5

(D) 6

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Define data structure and write in brief about two types of data structures with example.
- 22. Analyze the time complexity of insertion sort.
- 23. Why do we need sparse matrix? How the sparse matrices are used efficiently in the computer's memory?
- 24. Define Dequeue. How is it represented? What are the types of Dequeue?
- 25. Write an algorithm to insert and delete an element in circular queue.
- 26. Construct a binary search tree (BST) for the elements: 50, 25, 60, 75, 80. Justify the need for balancing the BST tree.
- 27. Draw a hash table with open addressing and a size of 9. Use the hash function "K%9". Insert the keys 5, 29, 20, 0, 27 and 18 into your table (in that order).

$PART - C (5 \times 12 = 60 \text{ Marks})$ Answer ALL Questions

28. a. Write an algorithm for binary search and explain with suitable example. Mention its time complexity.

(OR)

- b. Explain the various mathematical notations and functions using a single algorithm for a fixed set of inputs.
- 29. a. Devise an algorithm to do the following operations on a singly linked list.
 - (i) Insert at front
 - (ii) Delete at last
 - (iii) Search an element

(OR)

- b. Given two polynomials represented by a linked list $5x^3 + 4x + 2$ and 5x + 3. Write a procedure to add two polynomials.
- 30. a. Convert the given expression into prefix expression (A+B)/(C+D)-(D*E) and write the algorithm.

(OR)

05DA1-8/15CS201J