复数的乘积与乘幂、方根和平面点集和区域

主讲: 赵国亮

内蒙古大学电子信息工程学院

September 15, 2020

目录

目录

- 1 复数的乘积与乘幂
 - 复数的乘幂
 - 复数商
- 2 复数的方根
- 3 平面点集和区域
 - 简单曲线, 简单闭曲线
 - 单连通域, 多连通域 (复连通域)
 - 曲线的应用

- 1 复数的乘积与乘幂
 - 复数的乘幂
 - 复数商
- 2 复数的方根
- 3 平面点集和区域
 - 简单曲线, 简单闭曲线
 - 单连通域, 多连通域 (复连通域)
 - 曲线的应用

设有两个复数 $z_1=r_1(\cos\theta_1+i\sin\theta_1), z_2=r_2(\cos\theta_2+i\sin\theta_2).$ 则复数乘积 $z=z_1z_2$

$$\begin{split} \mathbf{z} &= \mathbf{z}_1 \mathbf{z}_2 = \mathbf{r}_1 \mathbf{r}_2 (\cos \theta_1 + \mathrm{i} \sin \theta_1) (\cos \theta_2 + \mathrm{i} \sin \theta_2) \\ &= \mathbf{r}_1 \mathbf{r}_2 [(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) \\ &\quad + \mathrm{i} (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)] \\ &= \mathbf{r}_1 \mathbf{r}_2 [\cos (\theta_1 + \theta_2) + \mathrm{i} \sin (\theta_1 + \theta_2)]. \end{split} \tag{1}$$

于是

$$|\mathsf{z}_1\mathsf{z}_2| = |\mathsf{z}|,\tag{2}$$

$$|z| = r_1 r_2 = |z_1||z_2|,$$
 (3)

$$Arg(z) = Arg(z_1z_2) = Arg(z_1) + Arg(z_2), \tag{4}$$

从而得到如下定理

定理.1

两个复数 $z_1 = r_1(\cos\theta_1 + i\sin\theta_1), z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ 乘 积的模等于它们模的乘积 |z₁||z₂|; 两个复数 z₁ 与 z₂ 乘积的辐角 👶 $Arg(z_1z_2)$ 等于各自辐角之和.

注解

利用向量表示复数时, 乘积 z_1z_2 对应的向量是将表示 z_1 的向量旋转一 个角度 $Arg(z_2)$, 并伸长或者缩短 $|z_2|$ 倍得到, 复数相乘的向量解释如 图1 所示.

图 1: 复数乘积的向量解释

例.1

- ① 旋转: iz 相当于将 z 逆时针旋转 90°; -z 相当于将 z 顺 时针旋转 180°.
- ② 伸长: $Arg(z_2) = 0$ 时, 复数乘法只做伸长, 不做旋转.

复数辐角的多值性

公式 (4) 两端都是由无穷多个数构成的数集. 对于左端的任一值, 右端 必有一值与其相等.

例.2

取 $z_1 = -1, z_2 = i$, 则 $z_1 z_2 = -i$. 辐角计算如下

$$Arg(z_1) = \pi + 2n\pi, (n = 0, \pm 1, \pm 2, \cdots),$$

$$\text{Arg}(\textbf{z}_2) = \frac{\pi}{2} + 2\textbf{m}\pi, (\textbf{m} = 0, \pm 1, \pm 2, \cdots),$$

$$\text{Arg}(\textbf{z}_{1}\textbf{z}_{2}) = -\frac{\pi}{2} + 2\textbf{k}\pi, (\textbf{k} = 0, \pm 1, \pm 2, \cdots).$$

$$\frac{3\pi}{2} + 2(\mathsf{m} + \mathsf{n})\pi = -\frac{\pi}{2} + 2\mathsf{k}\pi \Longleftrightarrow \mathsf{k} = \mathsf{m} + \mathsf{n} + 1.$$

不定方程可用的解有

$$\begin{aligned} & \mathbf{k} = 1, \mathbf{m} = 0, \mathbf{n} = 0; \\ & \mathbf{k} = 1, \mathbf{m} = -2, \mathbf{n} = 2; \\ & \mathbf{k} = -1, \mathbf{m} = 0, \mathbf{n} = -2; \\ & \vdots \end{aligned}$$

$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1) = r_1 e^{i\theta_1},$$

 $z_2 = r_2(\cos \theta_2 + i \sin \theta_2) = r_2 e^{i\theta_2}.$

由定理 1, 可以表示如下

$$z_1z_2 = r_1r_2e^{i\theta_1}e^{i\theta_2} = r_1r_2e^{i(\theta_1+\theta_2)},$$

几何解释: 若利用复指数表示式 $z_1=r_1e^{i\theta_1}, z_2=r_2e^{i\theta_2}$, 则有 $z_1z_2=r_1r_2e^{i(\theta_1+\theta_2)}$.

若将第 k 个复数记为 $z_k=r_ke^{i\theta_k}=r_k(\cos\theta_k+i\sin\theta_k)$, 则 n 个复数的乘积

$$\begin{split} z_1z_2\cdots z_n &= r_1r_2\cdots r_n[cos(\theta_1+\theta_2+\cdots+\theta_n)\\ &+ isin(\theta_1+\theta_2+\cdots+\theta_n)]\\ &= r_1r_2\cdots r_ne^{i(\theta_1+\theta_2+\cdots+\theta_n)}, \end{split} \tag{5}$$

若其中 $z_1 = z_2 = \cdots = z_n = z = r(\cos\theta + i\sin\theta)$, 则有 z 的乘幂表示, $z^n = r^n(\cos n\theta + i\sin n\theta)$, $n \in \mathbb{Z}$.

棣莫佛公式

定义.1

棣莫佛(**De-Moivre**)公式**:** 当 |z| = r = 1 时, 若记 $z = \cos \theta + i \sin \theta$, 则有 $z^n = (\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$, 称该公式为 棣莫佛公式.

例.3

计算 $z^{10} + z^9$ 的值, 其中 $z = \frac{1+i}{1-i}$.

解:
$$z = \frac{1+i}{1-i} = \frac{(1+i)^2}{(1-i)(1+i)} = \frac{1}{2}2i = i$$
. $i^{10} + i^9 = (-1)^5 + i(-1)^4 = i - 1$.

例 .4

计算 $(1+i\sqrt{3})^8$ 的值.

解: 因为 $1 + i\sqrt{3} = 2\left(\cos\frac{1}{3}\pi + i\sin\frac{1}{3}\pi\right)$, 所以

$$(1+i\sqrt{3})^8 = 2^8 \left(\cos\frac{1}{3}\pi + i\sin\frac{1}{3}\pi\right)^8$$
$$= 2^8 \left(\cos\frac{8}{3}\pi + i\sin\frac{8}{3}\pi\right)$$
$$= 2^8 \left(\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi\right).$$

对于复数商, 按照复数商的定义, 当 $z_1 \neq 0$ 时, 有

$$\mathbf{Z}_2 = \frac{\mathbf{Z}_2}{\mathbf{Z}_1}\mathbf{Z}_1.$$

由复数的运算法则, 显然有

$$|z_2| = \left|\frac{z_2}{z_1}\right| |z_1|, \text{Arg}(z_2) = \text{Arg}\left(\frac{z_2}{z_1}\right) + \text{Arg}(z_1).$$

于是, 可以得到

$$\left|\frac{\mathsf{z}_2}{\mathsf{z}_1}\right| = \frac{|\mathsf{z}_2|}{|\mathsf{z}_1|}, \mathsf{Arg}\left(\frac{\mathsf{z}_2}{\mathsf{z}_1}\right) = \mathsf{Arg}(\mathsf{z}_2) - \mathsf{Arg}(\mathsf{z}_1).$$

归纳起来,得到关于复数商的定理。

定理 .2

两个复数 $z_1 = r_1(\cos\theta_1 + i\sin\theta_1), z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ 商的模 等于它们模的商 $|z_1|/|z_2|$; 两个复数 z_1 与 z_2 商的辐角 $Arg(z_1z_2)$ 等干各自辐角之差.

注解

若使用指数形式表示复数为 $\mathbf{z}_1 = \mathbf{r}_1 \mathbf{e}^{\mathrm{i}\theta_1}, \mathbf{z}_2 = \mathbf{r}_2 \mathbf{e}^{\mathrm{i}\theta_2}$, 则定理 2 可以表 示为

$$\frac{\textbf{z}_2}{\textbf{z}_1} = \frac{\textbf{r}_2}{\textbf{r}_1} \textbf{e}^{\textbf{i}(\theta_1 - \theta_2)}, \ (\textbf{r}_1 \neq 0).$$

例 .5

复数的乘积与乘幂 ○○○○○ ○○○○ ○○○○

已知正三角形的两个顶点为 $z_1=1$, $z_2=2+i$, 求它的另 \heartsuit 外一个顶点.

解: 如图 2, 将向量 $z_2 - z_1$ 绕 z_1 旋转 $\frac{\pi}{3}$ (或者 $-\frac{\pi}{3}$) 就得到另一个向量, 他的终点即为所求的顶点 z_3 (或者 z_3').

图 2: 确定正三角形的顶点

由于复数 $|e^{\frac{\pi}{3}i}|=1$, 辐角主值为 $\frac{\pi}{3}$, 根据复数的乘法, 有

$$\begin{aligned} \mathbf{z}_{3} - \mathbf{z}_{1} &= \mathbf{e}^{\frac{\pi}{3}\mathbf{i}}(\mathbf{z}_{2} - \mathbf{z}_{1}) = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\mathbf{i}\right)(1+\mathbf{i}) \\ &= \left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)\mathbf{i}. \end{aligned}$$

所以

$$\mathbf{z}_3 = \frac{3 - \sqrt{3}}{2} + \frac{1 + \sqrt{3}}{2}\mathbf{i}$$

类似可得另一方向的点 $\mathbf{z}_{3}^{'}$, 且

$$\mathbf{z}_{3}' = \frac{3+\sqrt{3}}{2} + \frac{1-\sqrt{3}}{2}\mathbf{i}.$$

目录

- - ■复数的乘幂
 - 复数商
- 2 复数的方根
- - 简单曲线, 简单闭曲线
 - 单连通域, 多连通域(复连通域)
 - ■曲线的应用

设复数 w 与 z 的等式满足条件 $w^n = z$, 其中 $z = r(\cos \theta + e^{-\beta t})$ $i \sin \theta$, $w = \rho(\cos \phi + i \sin \phi) \Rightarrow z = \rho^{n}(\cos n\phi + i \sin n\phi)$, M

复数的方根 00000

$$\mathbf{w}^{\mathbf{n}} = \mathbf{r}(\cos\theta + \mathbf{i}\sin\theta) = \rho^{\mathbf{n}}(\cos\mathbf{n}\phi + \mathbf{i}\sin\mathbf{n}\phi)$$

$$\Rightarrow \rho = \mathbf{r}^{\frac{1}{n}} = \sqrt[n]{\mathbf{r}},$$

$$\cos\mathbf{n}\phi + \mathbf{i}\sin\mathbf{n}\phi = \cos\theta + \mathbf{i}\sin\theta,$$

所以

$$\mathsf{n}\phi = \theta_0 + 2\mathsf{k}\pi \Rightarrow \phi = \frac{\theta_0 + 2\mathsf{k}\pi}{\mathsf{n}}, \mathsf{k} = 0, 1, \cdots, \mathsf{n} - 1.$$

复数的各个复数根为

$$\mathbf{w_k} = \sqrt[n]{r} \left(\cos \frac{\theta_0 + 2\mathbf{k}\pi}{\mathbf{n}} + \mathrm{i} \sin \frac{\theta_0 + 2\mathbf{k}\pi}{\mathbf{n}} \right), \mathbf{k} = 0, 1, \cdots, \mathbf{n} - 1.$$

复数的方根 00000

从而得到复数 $\sqrt[n]{z}$ 的 n 个不同的复数根 w_0, w_2, \dots, w_{n-1} .

复数的方根 00000

解:
$$1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$$
, $\rho = r^{\frac{1}{4}} = \sqrt[8]{2}$, 所以

$$\sqrt[4]{1+\mathrm{i}} = \sqrt[8]{2} \left(\cos\frac{\frac{\pi}{4}+2\mathrm{k}\pi}{4}+\mathrm{i}\sin\frac{\frac{\pi}{4}+2\mathrm{k}\pi}{4}\right), \ (\mathrm{k}=0,1,2,3).$$

复数的四个根为

$$\begin{split} \mathbf{w}_0 &= \sqrt[8]{2} \left(\cos \frac{\pi}{16} + \mathrm{i} \sin \frac{\pi}{16} \right), \mathbf{k} = 0 \\ \mathbf{w}_1 &= \sqrt[8]{2} \left(\cos \frac{7\pi}{16} + \mathrm{i} \sin \frac{7\pi}{16} \right), \mathbf{k} = 1 \\ \mathbf{w}_2 &= \sqrt[8]{2} \left(\cos \frac{9\pi}{16} + \mathrm{i} \sin \frac{9\pi}{16} \right), \mathbf{k} = 2 \\ \mathbf{w}_3 &= \sqrt[8]{2} \left(\cos \frac{25\pi}{16} + \mathrm{i} \sin \frac{25\pi}{16} \right), \mathbf{k} = 3. \end{split}$$

几何解释是: 这四个根是中心在原点, 半径为 $\sqrt[8]{2}$ 的圆的内接正方形的四个顶点, 并且 $w_1 = iw_0, w_2 = -w_0, w_3 = -iw_0$.

目录

- - ■复数的乘幂
 - 复数商
- 3 平面点集和区域
 - 简单曲线, 简单闭曲线
 - 单连通域, 多连通域 (复连通域)
 - 曲线的应用

定义 .2

1、邻域: 以 z_0 为心, ρ 为半径的圆内部所有点的集合, 可用圆域 $|z-z_0|<\rho$ 来表示, 也可用 $U(z_0)$ 或者 $N(z_0)$ 表示 z_0 的邻域, 也 可以记为 $U_{\rho}(z_0)=\{z||z-z_0|<\rho\}$ 或者 $N(z_0)=\{z||z-z_0|<\rho\}$.

定义.3

2、内点、外点: 设 E 为平面点集, 对任意 $z_0 \in E$, 若存在 $U(z_0) \in E$, z_0 及其邻域全属于 E, 则称 z_0 为 E 的内点. 若 z_0 及其邻域不属于 v_0 E. 称 v_0 为 E 的外点.

定义 .4

界点和边界 **3**、界点和边界: 对于 $z_0, z_1 \in U(z_0, \rho) \subset E$, 若存在 $z_1 \in U(z_0, \rho) \cap E$, 且存在 $z_2 \notin \{U(z_0, \rho)\} \cap \{z_2 \in E\}$, 称点 z_0 为 E 的边界点, 全体边界点组成边界曲线 C. C 的方向按规定逆时针为正, 顺时针为负.

定义.5

4、有界点集, 无界点集: 若平面点集 E 能用半径为 R 的圆包含, 则称 E 为有界点集, 若平面点集 E 不能用半径为 R 的圆包含, 则称 E 为无界点集.

定义.6

连通集和开集 5、连通集: 在区域 D 中的任意两点 z_1, z_2 可用属于 D 的折线连接, 则称 D 为连通集.

定义 .7

6、开集: D 中的点集全是 D 的内点, 则称 D 为开集.

 \Diamond

定义 .8

1、区域:连通的开集称为区域.连通区域的示意见图 3.

图 3: 连通区域

定义.9

- 2、有界区域、无界区域: 若能以一个圆心在圆点, 半径为 R 的圆包含的区域, 称为有界区域, 否则, 称为无界区域. 边界的示意见图。
- 3. 区域的边界可能是由多条曲线和一些孤立点组成 (见图 4). 对
- \mp D, $\forall z \in D$, $|z| \leq M \in \mathbb{Z}^+$.

图 4: 连通区域

定义.10

闭区域: 区域 D 和 D 的边界 (∂ D) 一起构成闭区域, 记作 $\bar{D} = D \cup \partial D$.

可以得到: $|z - z_0| \le R$ 为有界区域. 而 $Im z \ge 0$ 为无界区域.

简单曲线

凡没有重复点的连续曲线(或称为约当曲线).

定义 .11

简单闭曲线: 对于曲线 $Z(t), \alpha \le t \le \beta$, 若曲线 Z(t) 满足 $Z(\alpha) = Z(\beta)$ 的简单曲线称为简单闭曲线. 简单闭曲线 (图 5). 简单开曲线 (图 6). 不简单、闭曲线 (7). 不简单、开曲线 (9).

简单曲线, 简单闭曲线

图 5: 简单闭曲线

简单曲线, 简单闭曲线

图 6: 简单开曲线

图 7: 不简单、闭曲线

图 8: 不简单、开曲线

简单曲线, 简单闭曲线

光滑曲线

定义 .12

若简单曲线 C: Z = Z(t) = x(t) + iy(t), 在 $\alpha \le t \le \beta$ 内具有连续 导数, 即 Z'(t) = x'(t) + iy'(t), $z'(t) \ne 0$, 称曲线 C 为光滑曲线.

单连通域, 多连通域 (复连通域)

单连通域, 多连通域(复连通域)

定义 .13

(单连通域): 若 D 内的任意简单闭曲线所围成的区域都是属于 D 的,则称 D 为单连通域.

定义.14

非单连通域称为多连通域.

单连通:一块铁板,没有洞;面包片:被蚂蚁咬了好多洞.就像分形图形中的谢尔宾斯基地毯.

单连通域, 多连通域 (复连通域)

注解

一条简单曲线的内部是单连通区域 (图 9).

图 9: 单连通区域

单连通域, 多连通域 (复连通域)

例.1

 $|z-z_0| \le r^2$ 为单连通域, 而 $r \le |z-z_0| \le R$ 为多连通域 (图 10).

图 10: 多连通区域

扩充复平面的无穷远点

扩充复平面以 ∞ 为内点, 且它是唯一的无边界的区域 (图 12)。

图 11: 复球面和扩充复平面.

平面点集和区域

0000000

曲线应用——作为拟合曲线

用于复函数上的各种积分区域 (二维数据为例,图 12)。

图 12: 复函数的积分区域

曲线应用——作为拟合曲线

支持向量机,原理就是找出支持向量拟合出的最优分类曲线 (二维数据示例,图 13)。

图 13: SVM 算法中的曲线

曲线的应用

曲线应用——作为拟合曲线

给定高斯分布的约束,如分布的个数,则可自动迭代拟合出最 优的两个高斯分布 (可以直接用 matlab 自带的函数 qmdistribution.fit 和 fitgmdist 做高斯混合分布拟合, 图 14)。

图 14: 估计密度曲线——最大似然

曲线应用——模糊主动轮廓模型

用于图像分割和轮廓提取,模糊主动轮廓模型是主流,包括自 适应能量偏移场、伪层集、能量型局部主动模糊轮廓、能量型全 局主动模糊轮廓以及混合型模糊轮廓等算法模型,图 15,图16, 图17)。

图 15: 各种噪声下的分割结果 ___

图 16: 各种噪声下的分割结果

图 17: 各种噪声下的分割结果

