Assignment-based Subjective Questions

1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable? (3 marks)

There were 6 categorical variables in the dataset.

We used Box plot (refer the fig above) to study their effect on the dependent variable ('cnt'). The inference that We could derive were:

season: Almost 32% of the bike booking were happening in season3 with a median of over 5000 booking (for the period of 2 years). This was followed by season2 & season4 with 27% & 25% of total booking. This indicates, season can be a good predictor for the dependent variable.

mnth: Almost 10% of the bike booking were happening in the months 5,6,7,8 & 9 with a median of over 4000 booking per month. This indicates, mnth has some trend for bookings and can be a good predictor for the dependent variable.

weathersit: Almost 67% of the bike booking were happening during 'weathersit1 with a median of close to 5000 booking (for the period of 2 years). This was followed by weathersit2 with 30% of total booking. This indicates, weathersit does show some trend towards the bike bookings can be a good predictor for the dependent variable.

holiday: Almost 97.6% of the bike booking were happening when it is not a holiday which means this data is clearly biased. This indicates, holiday CANNOT be a good predictor for the dependent variable.

weekday: weekday variable shows very close trend (between 13.5%-14.8% of total booking on all days of the week) having their independent medians between 4000 to 5000 bookings. This variable can have some or no influence towards the predictor. I will let the model decide if this needs to be added or not.

workingday: Almost 69% of the bike booking were happening in 'workingday' with a median of close to 5000 booking (for the period of 2 years). This indicates, workingday can be a good predictor for the dependent variable.

2. Why is it important to use **drop first=True** during dummy variable creation? (2 mark)

drop_first=True is important to use, as it helps in reducing the extra column created during dummy variable creation. Hence it reduces the correlations created among dummy variables.

Let's say we have 3 types of values in Categorical column, and we want to create dummy variable for that column. If one variable is not furnished and semi_furnished, then it is obvious unfurnished. So, we do not need 3rd variable to identify the unfurnished. Hence if we have categorical variable with n-levels, then we need to use n-1 columns to represent the dummy variables

3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable? (1 mark)

There is linear relationship between temp and atemp. Both parameters cannot be used in the model due to multicollinearity. We will decide which parameters to keep based on VIF and p-value w.r.t other variables

4. How did you validate the assumptions of Linear Regression after building the model on the training set? (3 marks)

VERY LOW Multicollinearity between the predictors and the p-values for all the predictors seems to be significant. For now, we will consider this as our final model (unless the Test data metrics are not significantly close to this number).

The Coefficient values from the model of all the variables are not equal to zero which means we are able to reject Null Hypothesis.

F-Statistics is used for testing the overall significance of the Model: Higher the F-Statistics, more significant the Model is.

F-statistic: 233.8

Prob (F-statistic): 3.77e-181

The F-Statistics value of 233 (which is greater than 1) and the p-value of '~0.0000' states that the overall model is significant.

The Residuals were normally distributed after plotting the histogram. Hence our assumption for Linear Regression is valid

VIF calculation we could find that there is no multicollinearity existing between the predictor variables, as all the values are within permissible range of below 5.

5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes? (2 marks)

As per our final Model, the top 3 predictor variables that influences the bike booking are:

Temperature (temp) - A coefficient value of '0.5636' indicated that a unit increase in temp variable increases the bike hire numbers by 0.5636 units.

Weather Situation 3 (weathersit_3) - A coefficient value of '-0.3070' indicated that, w.r.t Weathersit1, a unit increase in Weathersit3 variable decreases the bike hire numbers by 0.3070 units.

Year (yr) - A coefficient value of '0.2308' indicated that a unit increase in yr variable increases the bike hire numbers by 0.2308 units.

So, it's suggested to consider these variables utmost importance while planning, to achive maximum Booking

The next best features that can also be considered are:

season_4: - A coefficient value of '0.128744' indicated that w.r.t season_1, a unit increase in season_4 variable increases the bike hire numbers by 0.128744 units.

windspeed: - A coefficient value of '-0.155191' indicated that, a unit increase in windspeed variable decreases the bike hire numbers by 0.155191 units.

General Subjective Questions

1. Explain the linear regression algorithm in detail. (4 marks)

Linear regression is a supervised machine learning method which finds a linear equation that best describes the correlation of the explanatory variables with the dependent variable. This is achieved by fitting a line to the data using least squares. The line tries to minimize the sum of the squares of the residuals. The residual is the distance between the line and the actual value of the explanatory variable. Finding the line of best fit is an iterative process.

The following is an example of a resulting linear regression equation:

$$Y = b0+b1x1+b2x2+.....$$
 bnxn

In the example above, y is the dependent variable, and x_1 , x_2 , and so on, are the explanatory variables. The coefficients (b_1 , b_2 , and so on) explain the correlation of the explanatory variables with the dependent variable. The sign of the coefficients (+/-) designates whether the variable is positively or negatively correlated. b_0 is the intercept that indicates the value of the dependent variable assuming all explanatory variables are 0.

2. Explain the Anscombe's quartet in detail. (3 marks)

Anscombe's Quartet can be defined as a group of four data sets which are nearly identical in simple descriptive statistics, but there are some peculiarities in the dataset that fools the regression model if built. They have very different distributions and appear differently when plotted on scatter plots.

3. What is Pearson's R? (3 marks)

The **Pearson correlation coefficient** (*r*) is the most common way of measuring a linear correlation. It is a number between –1 and 1 that measures the strength and direction of the relationship between two variables.

Pearson correlation coefficient (r)	Correlation type	Interpretation	Example
Between 0 and 1	Positive correlation	When one variable changes, the other variable changes in the same direction.	Baby length & weight: The longer the baby, the heavier their weight.
0	No correlation	There is no relationship between the variables.	Car price & width of windshield wipers: The price of a car is not related to the width of its windshield wipers.
Between 0 and -1	Negative correlation	When one variable changes, the other variable changes in the opposite direction.	Elevation & air pressure: The higher the elevation, the lower the air pressure.

4. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling? (3 marks)

Definition:

It is a step of data Pre-Processing which is applied to independent variables to normalize the data within a particular range. It also helps in speeding up the calculations in an algorithm.

Most of the times, collected data set contains features highly varying in magnitudes, units and range. If scaling is not done, then algorithm only takes magnitude in account and not units hence incorrect modelling. To solve this issue, we must do scaling to bring all the variables to the same level of magnitude.

It is important to note that scaling just affects the coefficients and none of the other parameters like t-statistic, F-statistic, p-values, R-squared, etc.

Normalizing Scaling:

 It brings all the data in the range of 0 and sklearn.preprocessing.MinMaxScaler helps to implement normalization in python. Standardized Scaling:

- Standardization replaces the values by their Z scores. It brings all of the data into a standard normal distribution which has mean (μ) zero and standard deviation one (σ).
- sklearn. preprocessing. scale helps to implement standardization in python.
- One disadvantage of normalization over standardization is that it loses some *information in the data*, *especially about outliers*.

5. You might have observed that sometimes the value of VIF is infinite. Why does this happen? (3 marks)

If there is perfect correlation, then VIF = infinity. This shows a perfect correlation between two independent variables. In the case of perfect correlation, we get R2 = 1, which lead to 1/(1-R2) infinity. To solve this problem, we need to drop one of the variables from the dataset which is causing this perfect multicollinearity.

An infinite VIF value indicates that the corresponding variable may be expressed exactly by a linear combination of other variables (which show an infinite VIF as well).

6. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression. (3 marks)

Quantile-Quantile (Q-Q) plot, is a graphical tool to help us assess if a set of data plausibly came from some theoretical distribution such as a Normal, exponential or Uniform distribution. Also, it helps to determine if two data sets come from populations with a common distribution.

This helps in a scenario of linear regression when we have training and test data set received separately and then we can confirm using Q-Q plot that both the data sets are from populations with same distributions.

Advantages:

- a) It can be used with sample sizes also
- b) Many distributional aspects like shifts in location, shifts in scale, changes in symmetry, and the presence of outliers can all be detected from this plot.It is used to check following scenarios:

If two data sets —

- i. come from populations with a common distribution.
- ii. have common location and scale.
- iii. have similar distributional shapes.
- iv. have similar tail behavior.