Redes de Computadores Redes sem Fio e Redes Móveis

Material baseado nas apresentações (*slides*) disponibilizados junto com o livro referência a seguir.

A note on the use of these Powerpoint slides: We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

Bibliografia:

Computer Networking: A Top Down Approach

8th Edition, Global Edition Jim Kurose, Keith Ross Pearson 2020

Sumário

Introdução

Wireless (redes sem fio)

- Enlaces sem fio e características da rede
- WiFi: LANs sem fio 802.11
- Redes celulares: 4G e 5G

Mobilidade

- Princípios do gerenciamento de mobilidade
- Gerenciamento de mobilidade: questões práticas
 - Redes 4G/5G
 - Mobile IP
- Mobilidade e o impacto em protocolos de nível superior

Redes móveis (*mobile*) e sem fio (*wireless*): contexto

Há muito mais dispositivos móveis que assinantes de linhas fixas

Há mais dispositivos móveis de banda larga que dispositivos fixos conectados à banda larga (5-1 em 2019)

Redes celulares 4G/5G adotando a pilha de protocolos de Internet (incluindo configurações SDN – *Software Defined Networking*)

Duas importantes mas diferentes questões:

- Redes sem fio: como se comunicar em enlaces de redes sem fio compartilhadas
- Mobilidade: tratamento dos usuários móveis quando muda ou troca o ponto de conexão à rede móvel

Estação base

- Conecta-se tipicamente a uma rede cabeada
- Relay responsável por enviar pacotes entre redes cabeadas e hosts sem fio dentro de sua área:

<u>células em redes celulares</u> e <u>pontos de acesso 802.11</u>

Enlace Rede sem Fio

- Tipicamente usado para conectar disp. móveis em uma estação base
- Também usado como enlace de backbone
- Protocolos de acesso múltiplo coordenam acesso ao enlace
- Várias razões de transmissão de dados e diferentes distâncias

Características de alguns enlaces de redes sem fio: Wireless e Redes Celulares Móveis

Modo ad hoc

- Sem estações base (AP)
- Nós (hosts) somente podem transmitir para outros nós dentro do alcance do enlace
- Nós se organizam dentro da rede: o roteamento ocorre entre os mesmos

Taxonomia de redes sem fio

Quantos nós (hops) um pacote de atravessar?

	único hop	múltiplos hops	
Com infraestrutura (p. ex. APs)	Hosts conectam-se a uma estação base (Wi- Fi, celular) que é conectada à infraestrutura de rede da internet	Hosts podem ter que retransmitir através de vários nós sem fio para se conectar à infraestrutura. Ex.: redes mesh sem fio	
Sem infraestrutura	Sem uma estação base; sem conexão à infraestrutura da internet. Ex.: Bluetooth, ad hoc nets	Sem estação base; sem conexão à infraestrutura; conexão entre nós (normalmente móveis). Ex.: MANETs (mobile ad hoc networks) e VANETs (vehicular ad hoc networks)	

Sumário

Introdução

Wireless (redes sem fio)

- Enlaces sem fio e características da rede
- WiFi: LANs sem fio 802.11
- Redes celulares: 4G e 5G

Mobilidade

- Princípios do gerenciamento de mobilidade
- Gerenciamento de mobilidade: questões práticas
 - Redes 4G/5G
 - Mobile IP
- Mobilidade e o impacto em protocolos de nível superior

Importantes diferenças das <u>redes com fio</u>

Intensidade do sinal decresce: um sinal de rádio tem sua potência atenuada quando se <u>propaga</u> através de qualquer meio (perda de caminho – *path loss*)

Frequências de redes sem fio (p. ex. 2.4 GHz) são meios físicos compartilhados

Importantes diferenças das <u>redes com fio</u>

Propagação multicaminho (multipath propagation): sinais de rádio refletem em objetos, chegando ao destino em diferentes instantes de tempo (transmit and receive diversity).

Com **802.11n**, o multicaminho passou a ser usado para transmitir e receber em vários *streams* (MIMO: *multiple in, multiple out*)

Alcance das redes sem fio depende de:

- Ganho das antenas instaladas nos pontos de acesso e no cliente: 2-3 dBi (notebooks) 3-7 dBi (externas)
- A potência dos transmissores: 50 a 100 mW (limitada pela ANATEL)
- Obstáculos e fontes de interferência: frequências mais altas são absorvidas mais que menores frequências

Obstáculos: superfícies metálicas, incluindo espelhos; materiais densos (concreto e pedra); corpos com grande concentração de água (aquários, piscinas, extensas folhagens)

Interferências: são todos os equipamentos que geram sinais nas mesmas frequências de operação das redes sem fio.

- Para a faixa de 2,4 GHz: outros pontos de acesso transmitindo no mesmo canal; fornos de microondas; telefones sem fio
- A faixa de 5 GHz possui menor interferência de equipamentos

Problemas adicionais criados por **múltiplos** <u>transmissores</u> e **múltiplos** <u>receptores</u>

Problema do terminal escondido (*hidden terminal problem*)

- B e A ouvem-se mutuamente
- B e C ouvem-se mutuamente
- A e C não podem ouvir ouvir respectivas transmissõe e eles desconhecem que estão interferindo em B

Atenuação do sinal

- B e A ouvem-se mutuamente
- B e C ouvem-se mutuamente
- A e C não podem "ouvir" sobre a interferência causada em B

Características dos enlaces sem fio RESUMO: **fenômenos** que afetam a propagação dos sinais de radio-frequência

Reflexão Difração Desvanecimento Efeito Doppler Caminhos múltiplos Interferência Ruído

Bandas de radio **ISM** (aplicações **Industriais, Científicas e Médicas** - *Industrial, Scientific* and *Medical*)

- São faixas de frequência <u>não licencidas</u> (podem ser usadas para diversos propósitos, desde que respeitadas questões de potência/alcance)
- Telecomunicações de baixa potência e de curto alcance
- Usos: Wi-Fi, Bluetooth, Zigbee, telefones sem fio, RFID e NFC.

Atribuição de frequências:

(Mundo: ITU) (EUA: FCC) (Brasil: ANATEL)

https://www.anatel.gov.br/Portal/verificaDocumentos/documento.asp? numeroPublicacao=314474&pub=original&filtro=1&documentoPath=314474.pdf

https://www.teleco.com.br/tutoriais/tutorialredeswifi1/pagina_5.asp

Bandas de radio **ISM** (aplicações <mark>Industriais, Científicas e Médicas</mark> - *Industrial, Scientific* and *Medical*). A figura a seguir apresenta as principais faixas:


```
Algumas faixas designadas pela Anatel:
(HF) 6,765-6,795 MHz 13,563-13,567 MHz 26,957-27,283 MHz
(VHF) 40,66-40,7 MHz
(UHF) 902-928 MHz 2400-2500 MHz (UHF)
(SHF) 24-24,25 GHz
(EHF) 61-61,5 GHz 122-123 GHz
```

Propagação Multicaminho

Propagação Multicaminho

Propagação **Multicaminho** em redes 802.11n

Tecnologia de antenas MIMO (multiple-input and multiple-output) explora a propagação multicaminho para aumento de performance (a nível de enlace) através do uso de múltiplas antenas (transmissão e recepção).

Sumário

Introdução

Wireless (redes sem fio)

- Enlaces sem fio e características da rede
- WiFi: LANs sem fio 802.11
- Redes celulares: 4G e 5G

Mobilidade

- Princípios do gerenciamento de mobilidade
- Gerenciamento de mobilidade: questões práticas
 - Redes 4G/5G
 - Mobile IP
- Mobilidade e o impacto em protocolos de nível superior

Os <u>padrões</u> IEEE para redes sem fio (e redes com fio) são especificados para as camadas física e de enlace do modelo OSI. Principais características e funções da subcamada MAC e da camada física:

Camada MAC (media access control) provê:

Envio confiável de dados

Controle de Acesso

Segurança

Através de:

- modos de operação (infra vs ad-hoc)
- gerenciamento fluxo entre transmissor/receptor
- retransmissões caso detecção erro (protocolo ARQ)
- gerenciamento conexão (Beacon, Proble Request/Response; associação (request/response), autenticação)
- controle da conexão (ACK, RTS, CTS);
- protocolo acesso ao meio CSMA/CA com diferentes intervalos de tempo (temporizações: SIFS, Slot Time, PIFS, DIFS, EIFS) e backoff exponencial;
 - fragmentação e segurança
- tratamento dos problemas de terminal escondido (mensagens controle RTS/CTS)
- detecção de erros (CRC) e/ou correção de erros (LPDC: *low-density parity check code*)

Camada PHY (physical layer):

- interface com o meio de radiofrequência
- converte o frame MAC para transmissão na camada física
- métodos de <mark>modulação</mark>, <mark>codificação</mark> e <mark>taxa</mark> transmissão dados
- principais padrões PHY: 802.11(a,b,g,n,ac,ax,be)

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.11n (WiFi 4)	2009	600	70m	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	2020 (exp.)	14 Gbps	70m	2.4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

- Todos usam o protocolo CSMA/CA para acesso múltiplo ao meio e possuem versões estação base e redes ad-hoc
- WiFi 6 faz uso da tecnologia de antenas MU-MIMO (Multi-user MIMO) (multiplexação no domínio espacial) com o esquema de modulação OFDMA (multiplexação no domínio da frequência) que permitem um incremento de taxas muito alto.

Padronização da tecnologia: IEEE (*Institute of Electrical and Electronics Engineers* - IEEE) para LAN/MAN)

Padrão de rede sem fio (IEEE 802.11) faz parte dos padrões de redes locais (IEEE 802) que definem as camadas física e enlace.

Wi-Fi Alliance (https://www.wi-fi.org/): organização que congrega empresas visando certificação de produtos 802.11 com vistas à interoperabilidade.

https://en.wikipedia.org/wiki/IEEE_802.11

https://en.wikipedia.org/wiki/IEEE_802.11ac-2013

https://en.wikipedia.org/wiki/IEEE_802.11n-2009

https://en.wikipedia.org/wiki/IEEE_802.11be

Padrão Wi-Fi 6E (802.11ax) para atender novos requisitos:

- Mais dispositivos IoT, comunicação M2M (Machine-to-Machine): <u>alta</u> densidade de dispositivos e comunicação crítica
- Questões de SLA (*Service Level Agreements*) para atender aplicações com baixa latência e baixo jitter, como vídeo, áudio; necessidade de transmissão/recepção determinística.
- Maior desempenho em largura de banda para alta demanda de dados (vídeo).
- Gerenciamento de tráfego para <u>múltiplos usuários</u> (uso de técnicas como OFDMA e MU-MIMO).
- Interferência reduzida pois o padrão não prevê compatibilidade com padrões anteriores (apesar de que estes operam em 2,4 e 5 GHz)
- Melhor eficiência no gerenciamento do uso de bateria através do TWT
- Segurança mandatória: uso do WPA3

Padrão Wi-Fi 6E (802.11ax):

Nova alocação de banda de frequência: 6 GHz; faixa disponibilizada: 1200 MHz, que irá permitir muito mais canais com larguras de 20 a 160 MHz. Por exemplo: no Wi-Fi 6, eram possíveis dois canais de 160MHz enquanto no Wi-Fi 6E, são sete de 160MHz (a largura de banda disponível depende da alocação em cada país).

https://www.wi-fi.org/countries-enabling-wi-fi-6e

CISCO: https://www.cisco.com/c/en/us/products/wireless/what-is-wifi.html CISCO https://www.cisco.com/c/en/us/products/wireless/what-is-wi-fi-6.html

- Adopted 5925-6425 MHz
- Adopted 5925-7125 MHz
- Considering 5925-6425 MHz
- Considering 5925-7125 MHz
- Adopted 5925-6425 MHz, Considering 6425-7125 MHz

802.11: canais e largura de banda

Non-Overlapping Channels for 2.4 GHz WLAN

802.11b (DSSS) channel width 22 MHz

802.11g/n (OFDM) 20 MHz ch. width - 16.25 MHz used by sub-carriers

802.11n (OFDM) 40 MHz ch. width - 33.75 MHz used by sub-carriers

802.11: canais - "vazamento" em outras frequências

802.11 Arquitetura da LAN

Hosts wireless se comunicam com estações base (pontos de acesso ou access point – AP)

Basic Service Set (BSS) (célula) Conjunto de estações controladas por um único elemento de coordenação. Configura o modo de infraestrutura e contém:

- hosts sem fio
- uma estação base (AP)

No modo ad hoc, somente hosts

BSS 2

BSSID: endereço do AP em uma célula BSS

IBSS: identificador em uma rede ad hoc (gerado aleatoriamente)

802.11 Canais e Associação

Espectro de rádio <u>dividido em canais de</u> <u>diferentes frequências</u>

- Administrador do AP escolhe a frequência (alocação estática ou dinâmica)
- Possibilidade de interferência

Hosts que chegam precisam se associar ao AP

- Varre (*scan*) por canais, ouvindo por frames de beacon
- Seleciona o AP para se associar (o protocolo não define a qual AP se conectar)
- Realiza o processo de autenticação (WEP, WPA, WPA2, WPA3, RADIUS, DIAMETER, IEEE 802.11i)
- Executa o DHCP para obter endereço IP de demais informações de rede (máscara, GW, DNS)

802.11b: espectro 2.4GHz-2.485GHz dividido em:

- 13 canais (Brasil)
- 11 canais (EUA)

Frames beacon: enviados periodicamente por um AP. Contém: SSID e MAC

802.11: scanning ativo/passivo

- (1) Frames **beacon** enviados por APs
- (2) Frame (**Association Request**) enviado por H1 para o AP selecionado
- (3) Frame (**Association Response**) do AP para o H1

Scanning ativo

- (1) Frame (**Probe Request**) enviado por H1 (broadcast)
- (2) Frames (**Probe Response**) enviados pelos APs
- (3) Frame (**Association Request**) enviado por H1 para o AP selecionado
- (4) Frame (**Association Response**) enviado do AP selecionado para H1

802.11: acesso múltiplo

- Colisões: dois ou mais nós transmitindo ao mesmo tempo
- 802.11: CSMA "sentir" o meio antes de transmitir
 - don't collide with detected ongoing transmission by another node
- 802.11: não provê detecção de colisão
 - Dificuldade em detectar colisões: transmissão de sinal em nível de potência alto; enquanto; a recepção ocorre com um sinal de intensidade extremamente fraca
 - Além disso, não pode detectar colisões devido a outros problemas inerentes às redes sem fio: <u>terminal escondido</u> e <u>fading</u>
 - Objetivo: evitar colisões: CSMA/CollisionAvoidance

802.11 protocolo MAC: CSMA/CA

802.11: remetente

- a) Se sentir o canal livre espera um tempo (**DIFS**), então transmite todo o frame (sem CD)
- b) Se sentir o canal ocupado então
 Inicia um tempo aleatório de espera (backoff)
 Timer decrementa enquanto canal livre
 Transmite quando o timer expira
 Se não receber ACK, <u>aumenta o tempo de intervalo</u> backoff, e repete b)

802.11: receptor

Se frame recebido OK então

Retorna uma mensagem ACK depois de um tempo de espera (**SIFS**): processo para resolver o problema do terminal escondido

Evitando colisões

Problema do terminal escondido (hidden terminals)

Outra solução: remetente "reserva" o canal para uso de frames de dados

- Remetente envia primeiro um pacote de <u>pequeno tamanho</u> (probabilidade de colisão menor) com *request-to-send* (RTS) para o AP usando CSMA (se ocorrerem colisões, elas não impactarão em demasia o uso do canal)
- APs enviam broadcasts clear-to-send CTS em resposta ao RTS
- Mensagens CTS serão ouvidas por todos os nós
 - Remetente envia o frame de dados
 - Outras estações evitam transmissões

Evitando colisões: RTS-CTS

802.11 Frame: endereçamento

802.11 Frame: endereçamento

802.11 WiFi frame

802.11 Frame: endereçamento

Tipo quadro
Controle (RTS, CTS, ACK)
Gerenciamento
Dados

Subtipos para **gerenciamento**: associação requisição/resposta, probe requisição/resposta, beacon, desassociação, autenticação e deautenticação

802.11 mobilidade dentro da mesma sub-rede

Enquanto H1 se move da BBS 1 para BBS 2, o endereço IP é o mesmo, pois ambas as redes sem fio estão dentro da mesma subrede.

O switch deverá "reaprender" a porta na qual H1 está conectado (quando chega um pacote de H1 por uma determinada porta, o dispositivo, ou melhor, o endereço MAC da interface é associdado à nova porta).

Tecnologia MIMO

MIMO (multiple-input e multiple-output): método para multiplicar a capacidade do rádio ao usar várias antenas para transmissão e recepção. Esse processo explora a propagação multicaminho.

Padrões que usam:

IEEE 802.11n (Wi-Fi 4) MIMO: 4 streams

IEEE 802.11ac (Wi-Fi 5) MIMO: 8 streams

IEEE 802.11ax (Wi-Fi 6) MIMO: 8 streams

HSPA+ (3G)

WiMAX

Long Term Evolution (LTE) (4G)

MU-MIMO (multi-user, multiple input, multiple output): tecnologia introduzida com o padrão IEEE 802.11ac Wave 2 (Wi-Fi 5) (somente downlink): permite que um AP possa transmitir para vários clientes ao mesmo tempo

Aspectos gerais de configuração Redes sem Fio

Dispositivos para conexão à rede sem fio

Aspectos gerais de configuração Redes sem Fio

Pontos de acesso (AP) e dispositivos (interfaces) 802.11n

SSID (Service Set Identifier): nome da rede, em forma de texto, para fácil identificação

Wireless > Channel and SSID

To make changes to the wireless settings of the router, make the changes here. Changes" to save the settings. **More Info**

Wireless: configuração de AP 802.11

Segurança: WEP (Wired-Equivalent Privacy), WPA e WPA-PSK (Pre-Shared Key)

Parâmetros gerais configuração cliente

Parâmetros gerais configuração cliente

Parâmetros gerais configuração cliente

Personal Area Networks (PAN)

```
A IEEE tem um conjunto de padrões para redes PAN. Alguns:
```

- 802.15.1a Tecnologia Bluetooth (1Mbps; 2,4GHz
- 802.15.2 Trata da coexistência entre PANs (não-interferência)
- 802.15.3 High Rate PAN (55 Mbps; 2,4 GHz)
- 802.15.3a Ultra Wideband (UWB) High Rate PAN (110 Mbps; 2,4 GHz)
- 802.15.4 ZigBee: baixas taxas para controle remote em PANs
- 802.15.4a Alternativa para baixa potência (e baixo consumo energia)

Obs.: o desenvolvimento de padrões em Bluetooth ficou a cargo da Bluetooth SIG, sendo o padrão 802.15.1a apenas a especificação da tecnologia inicial.

Personal Area Networks (PAN): Bluetooth

Opera a pequenas distâncias (baixas potências); baixo custo; usado primeiramente como substituto para cabos (mouse, keyboard, headphones), mas outras aplicações são possíveis

Rede *ad hoc*: sem infraestrutura (redes se organizam em piconets, designando um controlador)

Dispositivos: controlador *master*/clientes: o *master* sonda (*polls*) clientes e concede permissão para transmissões

Redes também conhecidas como: WPANs (Wireless PANs) e Piconets

Centralized Controler (master device)

Dispositivo cliente

parked device (inativo)

Personal Area Networks (PAN): Bluetooth

A primeira versão foi especificada pelo IEEE 802.15.1 (camadas física e de enlace)

Atualmente a tecnologia é patrocinada pela Bluetooth Special Interest Group (Bluetooth SIG). Versões: 1 até 5 (baixa energia; IoT)

Opera na banda de 2,4-2,5 GHz (faixa de ISM); até 3 Mbps (versões mais recentes aumentaram a taxa)

TDM: slots de tempo de 625 µs

FDM: o remetente usa um dos 79 canais de frequência disponíveis, em uma ordem pseudo-aleatória conhecida: outros dispositivos podem interferir, mas não em todos os canais

Modo *parked*: clientes podem entrar modo sleep (park) e mais tarde acordarem (diminuir consumo energia)

Sumário

Introdução

Wireless (redes sem fio)

- Enlaces sem fio e características da rede
- WiFi: LANs sem fio 802.11
- Redes celulares: 3G, 4G e 5G

Mobilidade

- Princípios do gerenciamento de mobilidade
- Gerenciamento de mobilidade: questões práticas
 - Redes 4G/5G
 - Mobile IP
- Mobilidade e o impacto em protocolos de nível superior

Redes móveis celulares

Sob o ponto de vista da Internet, são redes de acesso (primeiro HOP).

Duas técnicas para compartilhar o espectro de rádio entre um dispositivo móvel e a estação base.

- TDMA e FDMA combinados: divide o espectro em canais de frequência e cada canal é dividido em slots de tempo
- CDMA (code division multiple access) acesso múltiplo por divisão de código, ou seja, a cada canal é associado um código exclusivo.

Elementos de uma rede celular

Arquitetura de rede 2G (voz)

Arquitetura de rede 3G (voz e dados)

- A rede de voz continua operando da mesma forma
- Rede de dados opera em paralelo

por voz:

Arquitetura de rede 3G (voz e dados)

Arquiteturas de rede: 3G versus 4G

Redes 4G: diferenças da 3G

Toda a rede é sobre a pilha IP: pacotes são enviados por tunelamento da estação base até o gateway, sem separação voz/dados Arquitetura RAN: em 3G é hierárquico (UTRAN; 4G arquitetura plana

(E-UTRAN) Mobility Home Subscriber Management Server(HSS) Packet data Serving Entity (MME) (like HLR+VLR) network Gateway UE **eNodeB** Gateway (S-GW) **HSS** (user element) (base station) (P-GW) MME control G **Public** Internet data S-GW P-GW RAN (radio access network) **Evolved Packet Core** Evolved-Universal Terrestrial Radio (EPC) Access Network (E-UTRAN)

Redes 4G LTE: arquitetura

- Solução para internet em áreas geográficas grandes
- Uso generalizado:
 - Mais dispositivos conectados por 4G que acessos por banda larga (5 para 1 em 2019)
 - Disponibilidade 4G: 97% do tempo na Coreia (90% nos EUA)
- Tecnologias OFDM (Orthogonal Frequency Division Multiplex) e
 MIMO (Multiple-Input Multiple-Output) para acesso rádio
- Taxas de transmissão em torno de 100 Mbps
- Padrões técnicos (technical standards): 3rd Generation
 Partnership Project (3GPP)
 - wwww.3gpp.org
 - 4G Long-Term Evolution (LTE) standard

Redes celulares: 4G/5G

Similaridades com rede internet cabeada

- Distinção entre edge/core
- Rede celular global
- Uso da pilha de protocolos TCP/IP, separação entre planos de dados/controle, SDN, Ethernet, tunelamento
- Conectado à internet cabeada

Diferenças da rede cabeada

- Diferente camada de enlace
- Mobilidade como serviço de primeira classe
- Identidade do usuário via cartão SIM
- Modelo de negócios baseado na subscrição de usuários ao provedor da rede celular
 - "home network" versus roaming
 - Acesso global com acordos entre operadoras

Redes 4G LTE: arquitetura

Dispositívo Móvel

- 64-bit International Mobile Subscriber Identity (IMSI), armazenado no cartão SIM (Subscriber Identity Module)
- Em LTE ele é denominado de User Equipment (UE)

Redes 4G LTE: User Equipment (UE)

Identificador de Dispositívo Móvel

International Mobile Subscriber Identity (IMSI) é um código que identifica um usuário dentro de uma rede de telefonia móvel. Armazenado de forma segura no cartão SIM (Subscriber Identity Module). Ao se conectar à rede, é gerado um número temporário baseado no IMSI para ser enviado à operadora.

O IMSI é composto por:

MCC (Mobile Country Code): identifica o país

MNC (Mobile Network Code): identifica a operadora

MSIN: código único do usuário

Bases de dados que diferencial um usuário se estiver na própria rede (home) ou em uma rede diferente da sua (visitor):

HLR (Home LocationRegister)

VLR (Visitor Location Register)

Redes 4G LTE; arquitetura

((2))

Estação Base (Base Station - BS)

- Borda (edge) da rede
- Em LTE é conhecido como eNode-B

Mobility Manageme nt Entity (MME)

Base station (eNode-B)

PDN gateway (P-GW)

Serving Gateway
(S-GW)

Compartilhamento e acesso rádio usa:

- MU-MIMO (Multiple User MIMO)
- OFDMA (Orthogonal Frequency Division Multiple Access) para download e SC-FDMA (Single Carrier Frequency Division Multiple Access) para upload

 $H11 \times a1 + h21 \times a2 = b1$

 $H12 \times a1 + h22 \times a2 = b2$

Redes 4G LTE: arquitetura

Home Subscriber Service

- Armazena as informações sobre os dispositivos (assinantes)
- Trabalha com o MME na autenticação dos dispositivos

Redes 4G LTE: arquitetura

Redes 4G LTE: arquitetura

Mobility Management Entity

- Autenticação do dispositivo
- Gerenciamento da mobilidade do dispositivo
- Cria o caminho (tunelamento) do dispositivo para o P-GW

LTE: separação entre planos de dados e de controle SDN (*Software Defined Networking*)

Plano de CONTROLE

 Novos protocolos para gerenciamento da mobilidade, segurança e autenticação

Plano de DADOS

- Novos protocolos ao nível físico e enlace
- Uso extensivo de tunelamento que facilita a mobilidade

Redes 4G LTE: pilha de protocolos do <u>plano de dados</u> <u>primeiro hop</u>

LTE: pilha de protocolos do <u>plano de dados</u> **primeiro hop**

LTE: rede de acesso ao rádio

Canal de **downstream**: FDM e TDM dentro do canal de frequência (OFDM - *orthogonal* frequency division multiplexing)

"orthogonal": interferência mínima entre canais

Canal de **upstream**: FDM e TDM similar ao OFDM

- Cada dispositivo móvel tem alocado um ou mais slots de tempo de 0,5 ms usando 12 frequências
- Algoritmo de scheduling não é padronizado
- Centenas de Mbps por dispositivo

LTE: pilha de protocolos do <u>plano de dados</u> **núcleo (core)**

Tunelamento:

- Datagrama IP encapsulado usando o protocolo GPRS Tunneling Protocol (GTP), o qual é enviado dentro de um datagrama UDP para o S-GW
- O S-GW tunela o datagrama para o P-GW
- Suporte à mobilidade: somente o endpoints mudam quando um usuário se move entre estações base

LTE: plano de dados: associando com uma estação base

- BS (estação base) faz broadcast de um sinal de sincronismo (synch) a cada 5 ms em todas as frequências. Múltiplos sinais de sincronismo podem estar sendo enviados por múltiplas operadoras
- 2 Um dispositivo móvel encontra o sinal synch primário então localiza o segundo synch na mesma frequência.
 - o dispositivo encontra dados/informações da BS: largura de banda do canal, configurações, informações sobre a operadora de celular
 - podem ser obtidas informações de múltiplas estações e de múltiplas operadoras
- 3 O dispositivo móvel seleciona a estação base (BS) para se associar (preferência pela operadora home)
- Mais passos necessários até estabelecer a conexão: autenticação, criar um estado de conexão e definir e ajustar um plano de dados.

Dispositivos LTE: sleep modes

Da mesma forma que em Wi-Fi e Bluetooth: o dispositivo móvel LTE pode colocar o rádio em modo "sleep" para conservar bateria através de ativação de bits específicos nos frames:

light sleep: depois de 100 ms de inatividade

- wake up periódico (100 ms) para checar por transmissões downstream

deep sleep: depois de 5-10 s de inatividade Dispositivo pode mudar de célula quando em deep sleeping, mas terá que reassociar-se novamente.

Rede celular global: uma rede de redes IP

Redes celulares 5G

Objetivos:

- 10x aumento no pico do throughput (vazão, bitrate) se espera 10Gbps
- 10x na diminuição da latência
- 100x no aumento da capacidade de tráfego sobre 4G (LTE)

Conceitos em 5G centrados em aplicações

URLLC para automação industrial

D2D para gerenciamento de desastres

MTC, MMC e M2M para segurança pública

Real-time Video Streaming sobre multi-caminhos

Conexões Grid-to-vehicle

Redes celulares 5G

- •5G NR (new radio):
 - Duas bandas de frequência: FR1 (450 MHz–6 GHz) e FR2 (24 GHz–52 GHz): ondas de frequência milimétricas
 - Não compatível com 4G
 - MIMO: antes direcionais múltiplas
- Frequência de ondas milimétricas: muito maiores razões de dados; mas, em distâncias curtas
 - pico-cells: diâmetro das céluas: 10-100 m
 - deployment massivo e denso de novas estações base

Sumário

Introdução

Wireless (redes sem fio)

- Enlaces sem fio e características da rede
- WiFi: LANs sem fio 802.11
- Redes celulares: 4G e 5G

Mobilidade

- Princípios do gerenciamento de mobilidade
- Gerenciamento de mobilidade: questões práticas
 - Redes 4G/5G
 - Mobile IP
- Mobilidade e o impacto em protocolos de nível superior

Mobilidade

Mobilidade sob o ponto de vista da rede

Abordagens para Mobilidade

Deixar que o core da rede (roteadores) tratem isso:

- Roteadores podem anunciar nome (well-known), endereço (endereço IP de 32 bits) ou um número (número de célula) de um dispositivo visitando uma rede através das tabelas de roteamento.
- Protocolos de roteamento da Internet podem fazer isso atualmente. As tabelas de roteamento podem indicar cada dispositivo através de um prefixo de rede (endereço) longo (longest prefix match)

Abordagens para Mobilidade

Deixar que o core da rede (roteadores) tratem isso:

- Roteadores podem anunciar nom um número (número de célula) tabelas de roteamento.
 N), endereço (endereço IP de 32 bits) ou vo visitando uma rede através das
- Protocolos de roteamento da Interescalável / Azer isso atualmente. As tabelas de roteamento podem indicar cada dispersayés de um prefixo de rede (endereço) longo (longest prefix match)

Deixar que os dispositivos finais possam tratar dessa questão

- Funcionalidade na borda (edge) da rede
- Roteamento indireto: a comunicação do dispositivo flui através de sua rede de origem (home network) que então re-encaminha para a rede remota
- Roteamento direto: o correspondente recebe o endereço estrangeiro do celular e o envia diretamente para o celular

Como contatar um celular

Como a rede encontra o dispositivo se a pessoa se moveu?

- search all phone books?
- expect her to let you know where he/she is?
- call his/her parents?
- Facebook!

A importância do conceito de "home":

- Um ponto de informação definitiva sobre o indivíduo
- Um lugar onde pessoas podem encontrar informações do paradeiro

Rede "home" e rede "visitada": 4G/5G

Rede "home"

- Rede da operadora de celular na qual o usuário está cadastrado (e pagando pelo serviço)
- Armazena informações de identificação e de serviço contratado (HSS)

Rede "visitada":

- Qualquer rede <u>que não</u>
 <u>seja a rede home do</u>
 <u>usuário</u>: em **roaming**
- Acorde de serviço entre redes para prover acesso a dispositivos visitantes (em roaming)

Rede "home" e rede "visitada": ISP/Wi-Fi

- Credenciais do ISP (username, password) armazenadas no dispositivo
- ISPs podem ter presença, regional, nacional ou internacional
- Redes diferentes, logo, credenciais diferentes

ou com o usuário

- Exceções: eduroam
- Arquiteturas para mobilidade da mesma forma que 4G: mobile IP

Rede "home" e rede "visitada": aspectos gerais

Registro: rede home precisa conhecer a localização

Resultado

- O gerenciador de mobilidade da rede visitada conhece sobre o dispositivo visitante (em roaming)
- O HSS da rede do usuário passa a conhecer a localização do móvel

O gerenciador de mobilidade da rede visitada registra a localização do móvel com o HSS da rede home do usuário

Sumário

Introdução

Wireless (redes sem fio)

- Enlaces sem fio e características da rede
- WiFi: LANs sem fio 802.11
- Redes celulares: 4G e 5G

Mobilidade

- Princípios do gerenciamento de mobilidade
- Questões de gerenciamento de mobilidade

Mobilidade em redes 4G: principais tarefas

Streaming server

- 1 Associação à estação base Dispositivo móvel provê IMSI que identifica a si dentro da rede home
- Configuração do plano de controle: MME, HSS estabelece o estado do plano de controle (dispositivo em sua rede home)

- Handover (transferência) do dispositivo: dispositivo móvel muda seu ponto de conexão para a rede visitada
- 3 Condiguração do plano de dados
 - O MME configura os túneis para encaminhamento de dados para o dispositivo móvel
 - Na rede visitada é criado um túnel do roteador P-GW da rede home até o dispositivo móvel

Questões de mobilidade entre redes home e visitada

- Dispositivo móvel se comunica com o MME local (na rede visitada) através da estação base (BS) usando o canal do plano de controle
- •MME usa as informações de identificação armazenadas no SIM (IMSI) do usuário para entrar em contato com o servidor HSS da rede home para
 - Obter informação de autenticação, criptografia e serviço de rede
 - O HSS da rede home agora tem conhecimento de que o usuário está em uma rede visitada
- A estação base seleciona parâmetros para configurar o canal (e túnel) para comunicação UE-BS