Домашнее задание 3

Дедлайн: 2025-02-27, 23:59. Оцениваемые задачи:

- 1. В одном тропическом лесу водятся удавы и питоны. Длина удавов имеет нормальное распределение $\mathcal{N}(\mu_X,\sigma_X^2)$. По выборке из 10 удавов оказалось, что $\sum X_i=20$ метрам, а $\sum X_i^2=1000$. Длина питонов имеет нормальное распределение $\mathcal{N}(\mu_Y,\sigma_Y^2)$. По выборке из 20 питонов оказалось, что $\sum Y_i=60$ метрам, а $\sum Y_i^2=4000$. Все наблюдения независимы между собой.
 - а) Постройте точечные оценки для μ_X , σ_X^2 , μ_Y , σ_Y^2 .
 - б) Постройте двусторонний 95%-й доверительный интервал для σ_X^2/σ_Y^2 .
 - в) Проверьте гипотезу H_0 : $\sigma_X^2 = \sigma_Y^2$ против альтернативной H_1 : $\sigma_Y^2 > \sigma_X^2$ на уровне значимости 5%. Укажите точное p-значение.
 - г) Постройте примерный двусторонний 95%-й доверительный интервал для разницы $\mu_X \mu_Y$ с помощью статистики Уэлча.
 - д) Проверьте гипотезу H_0 : $\mu_X = \mu_Y$ против альтернативной H_1 : $\mu_Y > \mu_X$ на уровне значимости 5% с помощью теста Уэлча. Укажите точное p-значение.
- 2. Априорное распределение параметра θ является треугольным на отрезке [0;40] с модой в точке 30. Наблюдаемая величина X это индикатор того, что $\theta > 20$. Оказалось, что X = 1.
 - а) Найдите апостериорную плотность θ .
 - б) Найдите апостериорное математическое ожидание θ .
 - в) Найдите апостериорную медиану θ .
 - г) Постройте 94% байесовский интервал наивысшей плотности для θ .
 - д) Постройте 94% симметричный по вероятности байесовский интервал для θ .

Определение треугольного распределения можно найти, например, на википедии :)

Неоцениваемые задачи в удовольствие:

3. Величины $X_1, ..., X_n$ независимы и одинаково распределены с функцией плотности

$$f(x) = \begin{cases} \theta x^{\theta-1}, \text{ при } x \in [0;1] \\ 0, \text{ иначе.} \end{cases}$$

- а) Оцените значение θ с помощью метода максимального правдоподобия.
- б) Оцените дисперсию оценки $\hat{\theta}_{ML}$ метода максимального правдоподобия.
- в) Как примерно распределена $\hat{\theta}_{ML}$?
- r) Оцените значение θ с помощью метода моментов.
- д) Оцените дисперсию оценки $\hat{ heta}_{MM}$ метода моментов.
- е) Как примерно распределена $\hat{ heta}_{MM}$?

- 4. Цыганка Роза ничего не понимает в статистике, но у неё всегда с собой колода из 36 карт. Помогите цыганке Розе построить точный 95%-й доверительный интервал для неизвестной вероятности p того, что клиента ждёт дальняя дорога и казённый дом.
- 5. Величины $X_1, ..., X_n$ независимы и одинаково распределены с функцией плотности

$$f(x) = \begin{cases} \frac{\theta \exp(-\theta^2/2x)}{\sqrt{2\pi x^3}} \text{ при } x \in [0; +\infty), \\ 0, \text{ иначе.} \end{cases}$$

- а) Найдите оценку параметра θ методом максимального правдоподобия, если по выборке из 100 наблюдений оказалось $\sum 1/X_i=12$.
- б) Найдите оценку параметра θ методом максимального правдоподобия для произвольной выборки.
- в) Найдите теоретическую информацию Фишера $I(\theta)$.
- г) Пользуясь данными по выборке постройте оценку \hat{I} для информации Фишера.
- д) Постройте 90% доверительный интервал для θ . Подсказка: $\mathbb{E}(1/X_i)=1/\theta^2$, интеграл берется, например, заменой $x=\theta^2a^{-2}$.
- 6. Величины X_1 и X_2 независимы и распределены по Пуассону с интенсивностью a. Есть две гипотезы, H_0 : a=1 и H_a : a=2. Мальвина отвергает H_0 в том случае, если $X_1+X_2\geq 2$. Найдите вероятность ошибок первого и второго рода.
- 7. Величины $Y_1, ..., Y_n$ независимы и имеют распределение Бернулли с неизвестным $p, \hat{p} = \bar{Y}$.
 - а) Постройте для неизвестного p доверительный интервал Вальда. Для этого вспомните про сходимость

$$\frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \xrightarrow{\text{dist}} \mathcal{N}(0; 1)$$

и решите неравенство

$$-z_{\rm cr} \le \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \le z_{\rm cr}.$$

б) Постройте для неизвестного p доверительный интервал Вильсона. Для этого воспользуйтесь сходимостью

$$\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\text{dist}}{\to} \mathcal{N}(0;1).$$

На этот раз потребуется решить (о ужас!) квадратное неравенство.

Обозначим центр интервала Вильсона с помощью \hat{p}_w .

в) Докажите, что центр интервала Вильсона \hat{p}_w можно представить как средневзвешенное классической оценки \hat{p} и тривиальной оценки 1/2,

$$\hat{p}_w = u\hat{p} + (1 - u)(1/2).$$

Найдите веса u и (1-u).

г) Докажите, что центр интервала Вильсона \hat{p}_w можно проинтерпретировать следующим образом: добавим f вымышленных единиц и f вымышленных нулей в выборку и посчитаем классическую оценку вероятности для выборки с вымышленными наблюдениями,

$$\hat{p}_w = \frac{\sum_{i=1}^n Y_i + f}{n + 2f}.$$

Какому целому числу примерно равно f для 95%-го доверительного интервала?

д) Докажите, что интервал Вильсона можно записать в виде

$$\hat{p}_w \pm z_{\rm cr} \cdot \sqrt{\frac{u\hat{p}(1-\hat{p}) + (1-u)(1/2)^2}{n_w}}.$$

Найдите n_w , а также веса u и (1-u).

Таким образом, интервал Вильсона слегка корректирует число наблюдений и использует в качестве оценки дисперсии Y_i средневзвешенное между классической оценкой $\hat{p}(1-\hat{p})$ и тривиальной оценкой 1/4.

Доверительный интервал Агрести — Коулла для уровня доверия 95% строится следующим образом. В выборку мысленно добавляют два наблюдения равных единице и два наблюдений равных нулю, считают оценку доли

$$\hat{p}_{ac} = \frac{\sum_{i=1}^{n} Y_i + 2}{n+4},$$

а затем строят классический интервал Вальда, используя \hat{p}_{ac} вместо классической $\hat{p}.$

- e) Правда ли, что при уровне доверия 95% центры интервала Агрести Коулла и Вильсона совпадают?
- ж) Какой 95%-й интервал шире, Агрести Коулла или Вильсона?
- з) С помощью симуляций на компьютере сравните фактическую вероятность накрытия неизвестного параметра p интервалами Вальда, Вильсона и Агрести Коулла с номинальной 95%-й вероятностью. Для экспериментов возьмите n=50 и различные p от 0 до 1 с шагом 0.1.