Moce zbiorów

- 1. Sprawdź, czy poniższe zbiory są równoliczne?
 - (a) $X = \{x \in \mathbb{N} : 0 \le x < 10\}$ i $Y = \{x \in \mathbb{N} : x \text{ jest liczbą parzystą} < 20\},$
 - **(b)** $A = \{x \in \mathbb{N} : x < 7\} \text{ i } B = \{x \in \mathbb{N} : 1 < x^2 < 70\},$
 - (c) $A = \{x \in \mathbb{R} : x^2 2x + 1 = 0\} \text{ i } B = \emptyset,$
 - (d) Zbiór liczb podzielnych przez 2 i zbiór liczb podzielnych przez 4.
- 2. Zbadaj, czy zbiór wszystkich liczb postaci $a\sqrt{2} + b$, gdzie a i b są liczbami całkowitymi jest równoliczny ze zbiorem wszystkich liczb niewymiernych.
- 3. Dowieść, że następujące zbiory są co najwyżej przeliczalne. Podać, które z nich mają moc \aleph_0 .
 - (a) $\{x \in \mathbb{N} : 10|x\}$
 - (b) $\{x \in \mathbb{N} : \text{istnieje liczba rzeczywista } y \text{ taka, } \text{że } x = \sin y\}$
- 4. Udowodnić, że zbiór słów nad alfabetem skończonym jest zbiorem przeliczalnym.
- 5. Udowodnić, że zbiór liczb wymiernych dodatnich jest mocy \aleph_0 .
- 6. Udowodnić, że zbiór wszystkich odcinków położonych na osi liczb rzeczywistych, o końcach w punktach wymiernych, jest mocy \aleph_0 .
- 7. Weźmy graf G = (V, E). Niech P zbiór wszystkich dróg w tym grafie. Udowodnij, że jeśli E jest zbiorem skończonym, to P jest zbiorem co najwyżej przeliczalnym.
- 8. Sprawdzić, czy następujące zbiory mają moc c.
 - (a) $\{(x,y): x \in \mathbb{R} \land y \in \mathbb{R} \land x^2 = 4\}$
 - **(b)** $\{(x,y): x \in \mathbb{R} \land y \in \mathbb{Q} \land x^2 = 4\}$
- 9. Udowodnić, że poniższe zbiory są nieprzeliczalne:
 - (a) zbiór wszystkich funkcji $f: \mathbb{N} \to \mathbb{N}$,
 - (b) zbiór wszystkich funkcji ze zbioru liczb parzystych w zbiór $\{a, b, c\}$.
- 10. Udowodnić, że jeśli A jest zbiorem mocy \aleph_0 , a B zbiorem mocy \mathbf{c} , to produkt $A \times B$ ma moc \mathbf{c} .
- 11. Niech A i B będą zbiorami skończonymi takimi, że |A| < |B|. Czy następujące zdania są prawdziwe czy fałszywe?
 - (a) Istnieje przekształcenie różnowartościowe zbioru A w zbiór B.
 - (b) Istnieje przekształcenie różnowartościowe zbioru A na zbiór B.
 - (c) Istnieje przekształcenie różnowartościowe zbioru ${\cal B}$ w zbiór ${\cal A}.$