WORKSHOP 1

COMSM1302 Overview of Computer Architecture Kira Clements, University of Bristol

CONWAY'S GAME OF LIFE

MODIFIED GAME OF LIFE

In this modified Game of Life, there are only 2 rules:

- 1. Birth/Survival: an uninhabited cell becomes inhabited, and an inhabited cell stays inhabited, if exactly 3 of its adjacent neighbours are inhabited.
- **2. Death:** an inhabited cell becomes uninhabited, and an uninhabited cell stays uninhabited, if the number of inhabited adjacent neighbours is *not* exactly 3.

We define "adjacent neighbours" to be cells directly above, below, left, and right of the cell.

Create a circuit that outputs whether an individual cell will be uninhabited or inhabited next.

0 = uninhabited1 = inhabited

N	Е	S	W	Cell
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

NE\SW	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	0	1	0	1
10	0	0	1	0

 $(\neg N \land E \land S \land W) \lor (N \land \neg E \land S \land W) \lor (N \land E \land \neg S \land W) \lor (N \land E \land S \land \neg W)$

$$(((\neg N \land E \land S \land W) \lor (N \land \neg E \land S \land W) \lor (N \land E \land \neg S \land W) \lor (N \land E \land S \land \neg W)$$

$$((((\neg N \land E) \lor (N \land \neg E)) \land (S \land W)) \lor (N \land E \land \neg S \land W) \lor (N \land E \land S \land \neg W)$$

$$((((\neg N \land E) \lor (N \land \neg E)) \land (S \land W)) \lor ((N \land E) \land ((\neg S \land W) \lor (S \land \neg W)))$$

$$((((\neg N \land E) \lor (N \land \neg E)) \land (S \land W)) \lor ((N \land E) \land ((\neg S \land W) \lor (S \land \neg W)))$$

$$((((\neg N \land E) \land (S \land W)) \lor ((N \land E) \land (S \land W)) \lor (S \land \neg W)))$$

$$((((\neg N \land E) \land (S \land W)) \lor ((N \land E) \land (S \land W)) \lor (S \land \neg W)))$$

Let's compare creating circuits based on our original expression and our last expression...