ĺ							
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2ik(t_1\!-\!2t_3)}{(1\!+\!2k^2)(3t_1t_3\!+\!2k^2r_5(t_1\!+\!t_3))}$	$\frac{i\sqrt{2}k(6k^2r_5\!+\!t_1\!+\!4t_3)}{(1\!+\!2k^2)^2(3t_1t_3\!+\!2k^2r_5(t_1\!+\!t_3))}$	0	$\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1 - 2 t_3)}{(1 + 2 k^2) (3 t_1 t_3 + 2 k^2 t_5 (t_1 + t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5 \cdot kt_1)}{(1+k^2)^2t_1^2} \left \frac{-2k^4r_5 + k^2t_1}{(1+k^2)^2t_1^2} \right $	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$		0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\tau_{1}^{\#1} + \alpha \beta \frac{i \sqrt{2} k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \sigma^{\beta}$	$\sigma_{1}^{\#2} + \alpha \beta$	${\mathfrak l}_1^{\#_1} + {\mathfrak a}^{eta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\sharp 1}{}_{lpha}$	$\omega_{1^{-}\alpha}^{\#2}$	$f_{1}^{\#1}{}_{\alpha}$	$f_{1}^{#2}$ α
$\omega_1^{\sharp 1} \dagger^{lpha eta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_1^{\#2} \dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	<u>t₁-2t₃</u> 3 √2	0	$\frac{1}{3} i k (t_1 - 2 t_3)$
$\omega_{1}^{#2}\dagger^{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3}\bar{i}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}\bar{i}k(t_1-2t_3)$	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 - t_1$
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	-i $\sqrt{2} kt_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	<i>t</i> ³	$i\sqrt{2}kt_3$	0	0
	$\omega_{0}^{\#1}\dagger$	$f_0^{#1}$ †	$f_0^{#2} +$	$\omega_{0}^{\#1} \uparrow$

<u>t1</u> 2

0

 $\omega_{2}^{\#1}{}_+\alpha_\beta \ f_{2}^{\#1}{}_{\alpha\beta}$

Lagrangian density	$-rac{1}{3}t_{1}\;\omega_{_{l}}^{\;lpha_{l}}\;\omega_{_{K}lpha}^{\;\;\;K}+rac{2}{3}t_{3}\;\omega_{_{l}}^{\;\;lpha_{l}}\;\omega_{_{K}lpha}^{\;\;\;K}-t_{1}\;\omega_{_{l}}^{\;\;K\lambda}\;\omega_{_{K}\lambda}^{\;\;l}+f^{lphaeta}\; au_{_{R}eta}^{\;\;}+$	$\omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - r_5 \partial_i \omega^{\kappa\lambda}_{\kappa} \partial^i \omega^{\alpha}_{\kappa} + \frac{2}{3} r_2 \partial^\beta \omega^{\alpha}_{\kappa} \partial_\theta \omega^{\kappa}_{\beta} - \frac{1}{3} r_2 \partial_\theta \omega^{\kappa}_{\beta} \partial_\kappa \omega^{\alpha\beta}_{\theta} -$	$\frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{} \partial_\kappa \omega^{\theta\alpha\beta} - r_5 \partial_\alpha \omega_{\lambda}^{\alpha} \partial_\kappa \omega^{\theta\kappa\lambda} + r_5 \partial_\theta \omega_{\lambda}^{\alpha} \partial_\kappa \omega^{\theta\kappa\lambda} - r_5 \partial_\alpha \omega_{\lambda}^{\alpha} \partial_\kappa \omega^{\kappa\lambda\theta} +$	$2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - \frac{1}{2} t_1 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f^\lambda_{\ \alpha} \partial^\kappa f_{\alpha\lambda} +$	$rac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;$	$\frac{2}{3}t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\prime}-\frac{4}{3}t_3\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\prime}-\frac{1}{3}t_1\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f'_{\prime}+\frac{2}{3}t_3\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f'_{\prime}+$	$2t_1\;\omega_{_{/K}\theta}\;\partial^{\kappa}f^{'\theta}-\tfrac{1}{_3}t_1\;\omega_{_{/\alpha}}^{\;\;\alpha}\;\partial^{\kappa}f^{'}_{\;\;\kappa}+\tfrac{2}{_3}t_3\;\omega_{_{/\alpha}}^{\;\;\alpha}\;\partial^{\kappa}f^{'}_{\;\;\kappa}-\tfrac{1}{_3}t_1\;\omega_{_{/\lambda}}^{\;\;\lambda}\;\partial^{\kappa}f^{'}_{\;\;\kappa}+$	$\frac{2}{3}t_3\;\omega_{_{I}\lambda}^{\lambda}\;\partial^{\kappa}f_{_{K}}^{}+\frac{1}{2}t_1\partial^{\alpha}f_{_{A}}^{}+\frac{1}{2}t_1\partial_{\kappa}f_{_{B}}^{}\partial^{\kappa}f_{_{A}}^{}+\frac{1}{2}t_1\partial_{\kappa}f_{_{A}}^{}+\frac{1}{2}t_1\partial_{\kappa}f_{_{A}}^{}+\frac{1}{2}t_1\partial_{\kappa}f_{_{A}}^{}+\frac{1}{2}t_1\partial_{\kappa}f_{_{A}}^{}$	$\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{2}{3}t_3\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}r_2\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_2\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} -$	$\frac{2}{3}r_2\partial^\beta\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
--------------------	--	--	---	---	--	--	---	--	---	--

	#	1	1	3	3	3	5	16
Source constraints	SO(3) irreps	$t_{0+}^{\#2} == 0$	$t_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 \cdot t_1}$
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0^-}^{\#1} \dagger$

	$\sigma_{2^{+}lphaeta}^{\!\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^{-}lphaeta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

	Massive particle			
?	Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$		
$J^P = 1$	Polarisations:	3		
? k^{μ}	Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$		
?	Spin:	1		
	Parity:	Odd		

Unitarity conditions $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0 \&\& 0 < t_3 < -t_1$

(No massless particles)