From RegExps to clean NFAs: induction basis

From RegExps to clean NFAs: inductive step

(c)

From RegExps to clean NFAs: example

Conversion of a regexp $(0 \cup 1)^*1(0 \cup 1)$ into an NFA:

From NFAs to RegExps

Theorem

Every regular language is described by some regular expression.

The proof is done by construction of a regular expression for a language A, given an NFA recognizing A. The construction uses a generalized form of NFA (GNFA).

So, transforming an NFA to an equivalent regexp will be done as follows:

$$\mathsf{NFA} \longrightarrow \mathsf{GNFA} \longrightarrow \mathsf{RegExp}$$

Generalized NFA

Definition

Let REGEXP be the set of all regular expressions. A generalized nondeterministic finite automaton (GNFA) is a tuple $G = (Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set (the set of states),
- Σ is a finite alphabet,
- $q_0 \in Q$ (the start state),
- ▶ $F \subseteq Q$ (the set of final states), and
- $\delta: Q \times Q \to \text{REGEXP}$ is the transition function.

The transition diagram for a GNFA is the same for an NFA, except that there is exactly one edge from each state q to each state r, and the edges are labeled with regular expressions, the edge (q,r) being labeled with $\delta(q,r)$. The edges labeled with the regexp \emptyset can be omitted from the diagram as they can never be followed.

From NFA to GNFA

We will find it convenient to work with a *clean GNFA* that has a start state with no incoming transitions and a single final state that has no outgoing transitions. So, our goal is to contruct an equivalent clean GNFA from a given NFA.

- 1. Given an NFA, we first transform it to a clean NFA M.
- 2. The states GNFA G that we are constructing are the same as in M, with the same starting and final states.
- 3. For any two states p and q, if there is a transition $p \to q$ labelled x_1, \ldots, x_k in M, we define a transition $p \to q$ labelled by a regexp $x_1 \cup \cdots \cup x_k$ in G; if there is no transition $p \to q$ in M, we define a transition $p \to q$ labelled by a regexp \emptyset in G.

Q: Are we done?

From NFA to GNFA

We will find it convenient to work with a *clean GNFA* that has a start state with no incoming transitions and a single final state that has no outgoing transitions. So, our goal is to contruct an equivalent clean GNFA from a given NFA.

- 1. Given an NFA, we first transform it to a clean NFA M.
- 2. The states GNFA G that we are constructing are the same as in M, with the same starting and final states.
- 3. For any two states p and q, if there is a transition $p \to q$ labelled x_1, \ldots, x_k in M, we define a transition $p \to q$ labelled by a regexp $x_1 \cup \cdots \cup x_k$ in G; if there is no transition $p \to q$ in M, we define a transition $p \to q$ labelled by a regexp \emptyset in G.

Q: Prove that M and G are equivalent. How?

From NFA to GNFA

We will find it convenient to work with a *clean GNFA* that has a start state with no incoming transitions and a single final state that has no outgoing transitions. So, our goal is to contruct an equivalent clean GNFA from a given NFA.

- 1. Given an NFA, we first transform it to a clean NFA M.
- 2. The states GNFA G that we are constructing are the same as in M, with the same starting and final states.
- 3. For any two states p and q, if there is a transition $p \to q$ labelled x_1, \ldots, x_k in M, we define a transition $p \to q$ labelled by a regexp $x_1 \cup \cdots \cup x_k$ in G; if there is no transition $p \to q$ in M, we define a transition $p \to q$ labelled by a regexp \emptyset in G.

Q: Prove that for every computation in M, there exists an equivalent computation in G; and vice versa.

From GNFA to RegExp

If a constructed GNFA G has just two states, we are done (Q: why?).

From GNFA to RegExp

If a constructed GNFA G has just two states, we are done (Q: why?).

For a constructed GNFA G with k>2 states, we will eliminate states (other than the start and final ones) one by one and modify the transitions such that a new GNFA G' with k-1 states is equivalent to the original one.

We will continue in similar way until we get an equivalent GNFA with just two states. From this 2-state GNFA we will derive a regexp as above.

From GNFA to RegExp: Eliminating States

- Select any state, which we denote q_{rip}, other than the start and final states.
- ▶ GNFA G' has the same states as G, except q_{rip} .
- For any two other states q_i and q_j , let $R_1 = \delta(q_i, q_{rip})$, $R_2 = \delta(q_{rip}, q_{rip})$, $R_3 = \delta(q_{rip}, q_j)$, and $R_4 = \delta(q_i, q_j)$. In G' transition from q_i to q_j is labeled $R_1 R_2^* R_3 \cup R_4$.

Algebraic Regular Expressions

Algebraic regular expressions may contain variables that may stand for any language (over any alphabet).

Associativity and Commutativity

- ightharpoonup L + M = M + L, the commutativity law for union
- ▶ (L + M) + N = L + (M + N), the associativity law for union
- ▶ (LM)N = L(MN), the associativity law for concatenation

Identities and Annihilators

- ▶ $\emptyset + L = L + \emptyset = L$, i.e., the empty regexp is the identity for union.
- ▶ $\epsilon L = L\epsilon = L$, i.e., the empty string regexp is the identity for concatenation.
- ▶ $\emptyset L = L\emptyset = \emptyset$, i.e., the empty regexp is the annihilator for concatenation.

Distributive Laws

- ▶ L(M + N) = LM + LN, the *left distributive law of concatenation over union*.
- ▶ (M + N)L = ML + NL, the right distributive law of concatenation over union.

For example, we can factor 0 out of the regexp $0 + 01^*$ as follows:

$$0 + 01^* = 0\epsilon + 01^* = 0(\epsilon + 1^*).$$

The first equality is due the fact that ϵ is the identity for concatenation, while the second equality is due the left distributive law.

We can further recognize that $\epsilon \in 1^*$ and simplify the regexp to 01^* .

Proof for Left Distributive Law

Theorem

If L, M, and N are any languages, then

$$L(M \cup N) = LM \cup LN.$$

Proof.

We need to show that $w \in L(M \cup N)$ if and only if $w \in LM \cup LN$.

- ▶ If $w \in L(M \cup N)$, then w = xy for some $x \in L$ and y is in either M or N. If $y \in M$, then $xy \in LM$ and therefore $xy \in LM \cup LN$. Likewise, if $y \in N$, then $xy \in LN$ and therefore $xy \in LM \cup LN$.
- ▶ If $w \in LM \cup LN$, then w is in either LM or LN. If $w \in LM$, then w = xy for some $x \in L$ and $y \in M$. Since y is in M, it is also in $M \cup N$ and therefore $xy \in L(M \cup N)$. The case of $w \in LN$ is proved similarly.

Idempotence Law

▶ L + L = L, the idempotence law for union.

Laws Involving Closures

- $(L^*)^* = L^*$
- $\blacktriangleright \ \emptyset^* = \epsilon$
- $\epsilon^* = \epsilon$
- $L^+ = LL^* = L^*L$
- $L^* = L^+ + \epsilon$
- L? = $\epsilon + L$ (the definition of the ? operator)

RegExps in UNIX

UNIX regexp operators:

- ▶ The operator | is used for union.
- ▶ The operator ? means "zero or one of". Thus, R? is the same as $\epsilon + R$.
- ▶ The operator + means "one or more of". Thus, R+ is the same as R^+ .
- ▶ The operator $\{n\}$ means "n copies of". Thus, $R\{5\}$ is the same as R^5 .