Task Performance Measures for Cognitive Workload Evaluation Using EEG Signals

Swarali Belsare Maitreyi Kale Priya Ghayal Aishwarya Gogate

Guide - Prof.Dr.Mrs.S. A. Itkar

Project Stage-II

PES Modern College of Engineering Department of Computer Engineering Savitribai Phule Pune University

21-June-2021

Outline

1 '	In	tr	od	hi	ct	ion
±•	111	UI	\mathbf{c}	ıu	Ct.	1011

- 2. <u>Objectives and Scope</u>
- 3. <u>Problem Statement</u>
- 4. <u>Literature survey</u>
- 5. <u>Architectural Diagram</u>
- 6. <u>Algorithmic Approach</u>
- 7. <u>System Specifications</u>
- 8. <u>Input/Dataset</u>
- 9. <u>Performance metrics for results</u>
- 10. <u>Actual Results</u>
- 11. <u>Conclusion</u>
- 12. <u>Papers Published and Participation in Project Competition</u>
- 13. <u>References</u>

Introduction

Cognitive Workload

- Level of workload affects the task performance of the person.
- Monitoring this level helps to detect fatigue or stress level of a person.
- > This level also affects the ability to process information, react to surroundings and decision making.

Electroencephalogram (EEG)

- An electroencephalogram (EEG) is a test that detects electrical activity in your brain using small, metal discs (electrodes) attached to your scalp.
- > The EEG may also be used to determine the overall electrical activity of the brain

EEG Analysis

- Analysis of EEG signals requires time and other resources as well.
- Proposing deep learning approach to modify the process and obtain better results.

Dept of Comp Engg Introduction 21-June-2021 3 / 25

Objectives and Scope

➤ Objectives

- 1. To analyze and classify users' mental workload while performing cognitive tasks.
- To apply deep learning techniques on EEG signals for classifying Cognitive Workload.

➤ Scope

Category	Application
Safety	Defence sector, Pilot stress, Driver fatigue
Performance	Student Performance during different tasks

Table 1: Scope

Problem Statement

- > To evaluate and classify the cognitive workload level of a person based on task performance from EEG signals using deep learning algorithms.
- To improve classification accuracy and propose a modified approach of EEG signal analysis for cognitive workload evaluation.

Dept of Comp Engg Problem Statement 21-June-2021 5 / 2

Literature Survey(1/3)

Title	Author, Publication, Year	Technique	Remark
Mental Workload Estimation using EEG	V. Pandey, D. K. Choudhary, V. Verma, G. Sharma, R. Singh, S. Chandra, Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), May 2020	CNN-LSTM, LSTM, MLP Classifier, RF Classifier, KNN Classifier	Comparison between Deep Learning and Machine Learning Algorithms.
EEG-based mental workload estimation using deep BLSTM-LSTM network and revolutionary algorithm.	D. D. Chakladar, S. Dey, P. P. Roy, D. P. Dorga, Elsevier Publications, May 2020	Composite framework of GWO and deep neural network(BLST M-LSTM)	Proposed deep learning approaches and comparison of same

Literature Survey(2/3)

Title	Author, Publication, Year	Technique	Remark
EEG based spatio-temporal Convolutional Neural Network for Driver Fatigue Evaluation	Z. Gao, X. Wang, Y. Yang, C. Mu, Q. Cai, W. Dang, S. Zuo, IEEE Transactions on Neural Networks and Learning Systems, January 2019	ESTCNN model	This model is employed using dense layers to get spatial features.
Detecting Fatigue Status of Pilots based on Deep Learning Network using EEG Signals	E. Q. Wu, P. Y. Deng, X. Y. Qu, W. M. Zang, L. M. Zhu, IEEE Transactions on Cognitive and Developmental Systems, January 2019	Deep Sparse Contractive Auto Encoder (DSCAEN) model.	DSCAEN model for obtaining mental status of pilots

Literature Survey(3/3)

Title	Author, Publication, Year	Technique	Remark
An Effective Hybrid Model for EEG-based Drowsiness Detection	U. Budak, V. Bajaj, Y. Akbulut, O. Atila, A. Sengur, IEEE Sensors Journal, September 2019	Building blocks LSTM	Each feature is considered in LSTM Model with three main building blocks
STEW: Simultaneous Task EEG Workload Dataset	W. L. Lim, O. Sourina, L. P. Wang, IEEE Transactions on Neural Systems and Rehabilitation Engineering, November 2018	Support Vector Regression Model with NCA Technique	Proposed an open source EEG dataset for mental workload evaluation.

Table 2: Literature Survey

Architectural Diagram

Figure 1: System Architecture Diagram

Algorithmic Approach(1/3)

Pre-processing raw EEG data:

Artifact Subspace Reconstruction(ASR):

It repeatedly computes a principal component analysis (PCA) on covariance matrices to detect artifacts based on their statistical properties in the component subspace.

Feature Extraction:

Convolutional Neural Network(CNN):

To extract spatial and temporal features from pre-processed EEG data.

Classification:

Gated Recurrent Unit (GRU) algorithm:

To classify the EEG data which is a sequential time series data.

Algorithmic approach(2/3)

CNN-GRU model architecture

Layer (type)	Output	Sha	ape	Param #
convld (ConvlD)	(None,	1,	128)	18432128
batch_normalization (BatchNo	(None,	1,	128)	512
max_pooling1d (MaxPooling1D)	(None,	1,	128)	0
convld_1 (ConvlD)	(None,	1,	64)	8256
batch_normalization_1 (Batch	(None,	1,	64)	256
max_pooling1d_1 (MaxPooling1	(None,	1,	64)	0

Algorithmic approach(3/3)

➤ CNN-GRU model architecture (Continued)

Model: "sequential_3"

Layer (type)	Output Shape	Param #
sequential_2 (Sequential)	(None, 1, 64)	18445568
gru_3 (GRU)	(None, 1, 64)	24768
gru_4 (GRU)	(None, 32)	9312
dense_3 (Dense)	(None, 2)	66

Total params: 18,479,714 Trainable params: 18,479,202 Non-trainable params: 512

System Specifications

Software Requirements

Sr.no	Software	Description
1	Operating System	Windows 8+
2	Language Used For Implementation	Python 3.7
3	Development Environment	EEGLAB(2020b), Visual Studio Code, Google Colaboratory

Table 3 : Software Requirements

Hardware Requirements

Sr.no	Hardware	Description
1	RAM	8GB and above
2	Processor	intel CORE i5 and above

Table 4: Hardware Requirements

Input / Dataset

➤ STEW

Simultaneous Task EEG Workload Dataset

- Data collection Emotiv EEG Device.
- ➤ Electrode Positions
 10-20 international system.
- Description 14 EEG channels recorded over duration of 2.5 minutes.
- Raw EEG recordings of 48 Subjects under
 - o Rest condition.
 - Performing Task.
 - Subjective ratings (1 9) based on NASA-TLX standard scale.

Channel	Position
AF3, F7, F3, FC5, FC6, F4, F8, AF4	Frontal
T7,T8	Temporal
P7, P8	Parietal
O1, O2	Occipital

Table 5: Channels and their Positions

Performance Metrics

Performance Parameters

- Classification Accuracy
- Precision
- ➤ Recall
- ➤ F1 Score
- Sensitivity

Output

Cognitive Workload Levels (Low, Moderate, High)

Dept of Comp Input / Dataset 21-June-2021 15 / 25

Result(1/4)

SIMKAP CNN-GRU Evaluation Report

SIMKAP - CN	NGRU EVALUATION precision	TIME OFTE	f1-score
Class	0 1.00	0.50	0.67
Class	0.71	1.00	0.83
accurac	У		0.78
macro av	g 0.86	0.75	0.75
weighted av	g 0.84	0.78	0.76

CONFUSION MATRIX [[2 2] [0 5]]

Specificity	Sensitivity
50	100

Figure 2 : SIMKAP Training Accuracy Plot

Figure 3: SIMKAP Training Loss Plot

Result(2/4)

No Task CNN-GRU Evaluation Report

No Task -CNNGR	J EVALUATION precision	REPORT recall	f1-score
Class0	0.89	1.00	0.94
Class1	0.00	0.00	0.00
accuracy			0.89
macro avg	0.44	0.50	0.47
weighted avg	0.79	0.89	0.84

CONFUSION MATRIX

[[8 0] [1 0]]

Specificity	Sensitivity
100	0

Figure 4 : No Task Training Accuracy Plot
No Task - CNNGRU Model Loss

Figure 5 : No Task Training Loss Plot

Dept of Comp Engg Results 21-June-2021 17 / 25

Result(3/4)

SIMKAP Results

Classification	Deep Learning					
Models	CNN		GRU		CNN-GRU	
	Train	Test	Train	Test	Train	Test
Accuracy	96%	66%	99%	88%	97%	78%
Precision	67.5%		91.5%		85.5%	
Recall	67.5%		87.5%		75.5%	
Sensitivity	60%		99%		99%	
F1 Score	67%		88.5%		75%	

Table 6: SIMKAP Classification Results

Result(4/4)

No Task Results

Classification	Deep Learning					
Models	CNN		GRU		CNN-GRU	
	Train	Test	Train	Test	Train	Test
Accuracy	100%	89%	100%	89%	100%	90%
Precision	89%		89%		89%	
Recall	99%		99%		99%	
Sensitivity	60%		70%		60%	
F1 Score	94%		94%		94%	

Table 7: No Task Classification Results

Conclusion

- Proposed a composite sequential model CNN-GRU for predicting cognitive workload levels.
- Proposed model gives increased accuracy through oversampled data.
- The cognitive workload levels is classified as low, moderate and high for both resting as well as multitasking condition shown via web application.
- Proposed model has the ability to enhance the analysis process of EEG signals for any information extraction.

Dept of Comp Engg Conclusion 21-June-2021 20 / 25

Papers Published and Participation in Project Competition

Title

Performance Comparison of Different EEG Analysis Techniques Based on Deep Learning Approaches

Conference

2021 IEEE International Conference on Emerging Smart Computing and Informatics (ESCI)

DOI

https://doi.org/10.1109/ESCI50559.2021.9396856

Published Paper

S. Belsare, M. Kale, P. Ghayal, A. Gogate and S. Itkar, "Performance Comparison of Different EEG Analysis Techniques Based on Deep Learning Approaches," 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), 2021, pp. 490-493.

Project Competition:

Participated in Round 2 of CSI-inApp 2021 Competition

References I

- V. Pandey, D. K. Choudhary, V. Verma, G. Sharma, R. Singh, S. Chandra, "Mental Workload Estimation Using EEG", Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), May 2020
- 2. Das Chakladar, D., Dey, S., Roy, P. and Dogra, D., "EEG-based mental work load estimation using deep BLSTM-LSTM network and evolutionary algorithm" Biomedical Signal Processing and Control,vol. 60, May 2020.
- 3. Gao, Z., Wang, X., Yang, Y., Mu, C., Cai, Q., Dang, W. and Zuo, S., "EEG-Based Spatio-Temporal Convolutional Neural Network for Driver Fatigue Evaluation", IEEE Transactions on Neural Networks and Learning Systems, Volume 30(9), January 2019.
- Wu, E., Deng, P., Qu, X., Tang, Z., Zhang, W., Zhu, L., Ren, H., Zhou, G. and Sheng, R., "Detecting Fatigue Status of Pilots Based on Deep Learning Network Using EEG Signals", IEEE Transactions on Cognitive and Developmental Systems, January 2020.
- 5. Budak, U., Bajaj, V., Akbulut, Y., Atila, O. and Sengur, A., "An Effective Hybrid Model for EEG-Based Drowsiness Detection", IEEE Sensors Journal, vol. 19(17), September 2019.

References II

- Lim, W., Sourina, O. and Wang, L., "STEW: Simultaneous Task EEG Workload Data Set." IEEE Transactions on Neural Systems and Rehabilitation Engineering", vol. 26(11), November 2018.
- Saha A., Minz V., Bonela S., Sreeja S.R., Chowdhury R., Samanta D. "Classification of EEG Signals for Cognitive Load Estimation Using Deep Learning Architectures." In: Tiwary U. (eds) Intelligent Human Computer Interaction. IHCI 2018. Lecture Notes in Computer Science, vol 11278. Springer, 2018
- 8. P. Nagabushanam, S. Thomas George ,S. Radha ," EEG signal classification using LSTM and improved neural network algorithm," Soft Computing, vol. 24, November 2019
- A. Saha, V. Minz, S. Bonela, S. R. Sreeja, R. Chowdhury, D. Samanta, "Classification of EEG Signals for Cognitive Load Estimation Using Deep Learning Architecture", International Conference on Intelligent Human Computer" vol 11278. Springer, November 2018
- B. Hosseinifard, M. H. Moradi, R. Rostami, "Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal", Computer Methods and Programs in Biomedicine, Vol 103 Issue 3, March 2013

References III

- 11. R. Ramirez, Z. Vamvalousis, "Detecting Emotion from EEG Signals using the Emotive Epoch Device", *Brain Informatics.*, vol 7670. Springer, Berlin, Heidelberg., 2012
- P. Liping, G. Liang, Z. Jie, W. Xiaoru, Q. Hongquan, W. Xin, "Subject-specific mental workload classification, using EEG and stochastic configuration network(SCN)", Biomedical Signal Processing and Control, Vol 68, July 2021
- S. Midha, H. A. Maior, M. L. Wilson, S. Sharples, "Measuring Mental Workload Variations in Office Work Tasks using fNIRS", International Journal of Human-Computer Studies, Vol. 147, March 2021

Dept of Comp Engg References 21-June-2021 24 / 25

Thank You

Dept of Comp Engg 21-June-2021 25 / 25