# Конспект по топологии I семестр (лекции Иванова Сергея Владимировича)

Тамарин Вячеслав

27 декабря 2019 г.

# Оглавление

ОГЛАВЛЕНИЕ 4

## Глава 1

# Общая топология

- 1.1 Метрические пространства
- 1.2 Топологические пространства
- 1.3 Внутренность, замыкание, граница
- 1.4 Подпространства
- 1.5 Сравнение топологий
- 1.6 База топологии
- 1.7 Произведение топологических пространств

**Def 1.** X, Y - топологические пространства.

Топология произведения на  $X \times Y$  – топология, база которой равна

$${A \times B \mid A \subset X, B \subset Y \text{ - открыты.}}.$$

 $X \times Y$  с такой топологией – произведение X и Y.

**Theorem 1.** Определение 1 корректно.

Доказательство. 1. Все пространство открыто

2. Пересечение двух множеств из базы = объединение множеств базы.

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Получили объединение открытого в X и в Y, а значит принадлежит базе.

**Theorem 2.**  $A \cap X$  – замкнуто,  $B \cap Y$  – замкнуто. Тогда  $A \times B$  – замкнуто в  $X \times Y$ .



Рис. 1.1: Пересечение

Доказательство. Докажем, что дополнение открыто.

$$(X \times Y) \setminus (A \times B) = X \times (Y \setminus B) \cup (X \setminus A) \times Y.$$

 $Y\setminus B$  открыто в Y, а  $X\setminus A$  открыто в X. Тогда объединение произведений с X и Y есть объединение открытых в  $X\times Y$ .

Practice. Для любых  $A \subset X$ ,  $B \subset Y$ :

- 1.  $Int(A \times B) = Int(A) \times Int(B)$
- 2.  $Cl(A \times B) = Cl(A) \times Cl(B)$
- 3.  $A \times B$  как произведение подпространств равно  $A \times B$  как подпространство произведения.

#### 1.7.1 Произведение параметризуемых метрических пространств

Здесь все также, только топология задается метрикой.  $d_X, d_Y$  - метрики.

#### Theorem 3.

$$d((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\}.$$

d - метрика на  $X \times Y$ . Произведение метризуемых пространств метризуемо.

Доказательство. 1. Проверим, что d - метрика. Очевидно, что  $d((x,y),(x',y'))=0 \iff d_X(x,x')=d_Y(y,y')=0 \iff x=y \land x'=y'$ . Также значение не зависит от порядка. Осталось проверить неравенство треугольника.

$$d(p, p') + d(p', p'') \stackrel{?}{\geq} d(p, p'') \stackrel{\text{HYO}}{=} d_X(x, x'').$$
$$d_X(x, x') + d_X(x', x'') \geq d_X(x, x'').$$

2.  $\Omega_d \subset \Omega_{X \times Y}$ 

$$B_r((x,y)) = B_r^X(x) \times B_r^Y(y).$$

А это базовое множество, которое мы представили через базовые множества X и Y.

3.  $\Omega_{X\times Y}\subset\Omega_d$  Рассмотрим  $W\in\Omega_{X\times Y}$ .

$$\exists A\subset X,\ B\subset Y$$
- открытые,  $(x,y)\in A\times B\subset W.$  
$$\exists r_1>0: B^X_{r_1}(x)\subset A.$$

#### ГЛАВА 1. ОБЩАЯ ТОПОЛОГИЯ



Рис. 1.2: Произведение метрических пространств

$$\exists r_2 > 0 : B_{r_2}^Y(y) \subset B.$$

Теперь возьмем  $r = \min(r_1, r_2)$ 

$$B_r^{X\times Y}((x,y))=B_r^X(x)\times B_r^Y(y)\subset A\times B\subset W.$$

Statement. Согласование метрик:

$$d_1((x,y),(x',y')) = d_X(x,x') + d_Y(y,y').$$
  
$$d_2((x,y),(x',y')) = \sqrt{d_X(x,x')^2 + d_Y(y,y')^2}.$$

Доказательство. Проверим неравенство треугольника для второй метрики (для первого - очевидно).

$$d_2((x,y),(x'',y'')) \stackrel{?}{\leq} d_2((x,y),(x',y')) + d_2((x',y'),(x'',y'')) \sqrt{(a+b)^2 + (c+d)^2} \leq \sqrt{a^2 + c^2} + \sqrt{b^2 + d^2}$$

#### 1.7.2 Тихоновская топология

Designation.

- $X = \prod_{i \in I} X_i$  произведение множеств или пространств.
- $p_i: X \to X_i$  координатная проекция.
- $\Omega_i$  топология на  $X_i$ .



Рис. 1.3: Неравенство треугольника

**Def 2** (Тихоновская топология). Пусть  $\{X_i, \Omega_i\}_{i \in I}$  – семейство топологических пространств. Тихоновская топология на  $X = \prod X_i$  – топология с предбазой

$$\{p_i^{-1}(U) \mid i \in I, \ U \in \Omega_i\}.$$

Tasks.

- 1. Счетное произведение метризуемых метризуемо. Сначала можно разобраться с отрезком  $[0,1]^{\mathbb{N}} = \prod_{i \in \mathbb{N}} [0,1]$ .
- 2. Канторовское множество  $\approx \{0,1\}^{\mathbb{N}}$

## 1.8 Непрерывность

X,Y - топологические пространства,  $\Omega_1,\Omega_2$  - топологии,  $f:X\to Y$ .

**Def 3.** f – непрерывна, если  $\forall U \subset \Omega_Y : f^{-1}(U) \subset \Omega_X$ .

Note.

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

Exs.

- 1. Тождественное отображение непрерывно.  $id_X: X \to X$
- 2. Константа тоже непрерывна.  $Const_{y_0}: X \to Y, \ \forall x \in X \quad x \mapsto y_0$
- 3. Если X дискретно,  $\forall f: X \to Y$  непрерывно.



Рис. 1.4: Тихоновская топология

4. Если Y - антидискретно,  $\forall f: X \to Y$  - непрерывно.

$${f Def~4.}~f:X o Y,~x_0\in Y~f$$
 непрерывна в точке  $x_0,$  если  $\forall$  окрестности  $U
i y_0=f(x_0)\exists$  окрестность  $V
i x_0:f(U)\subset V.$ 

**Theorem 4.** f - непрерывна тогда и только тогда, когда  $\forall x_0 \in X : f$  - непрерывна в точке  $x_0$ .

Доказательство.  $\Rightarrow$ )  $y_0 \in U$ .

$$\left\{ \begin{array}{ll} f^{-1}(U) \text{ открыт} & V := f^{-1}(U) \\ x_0 \in f^{-1}(U) & f(V) \subset U \end{array} \right..$$

 $\Leftarrow$ )  $U \subset Y$  - открыто, хотим доказать, что  $f^{-1}(U)$  - открыто. Достаточно доказать, что  $\forall x \in f^{-1}(x)$ - внутренняя.

$$\exists V\ni x: f(V)\subset U \Leftrightarrow x\in V\subset f^{-1}(U).$$

Тогда x - внутренняя точка  $f^{-1}(U)$ .

#### 1.8.1 Непрерывность в метрических пространствах

1.9. ГОМЕОМОРФИЗМ 10

**Theorem 5.** X,Y - метрические пространства.  $f:X\to Y,\ x_0\in X.$ 

Tогда f – непрерывна в точка  $x_0$  тогда и только тогда, когда

$$\forall \varepsilon > \exists \delta > 0 : f(B_{\delta}) \subset B_{\varepsilon}(f(x)).$$

Или можем записать альтернативную формулировку непрерывности:

$$\forall \varepsilon \exists \delta : \forall x' \in X \land d(x, x') < d \Rightarrow d(f(x), f(x')) < \varepsilon.$$

Доказательство.  $\Rightarrow$ ) Так как f – непрерывна в точке x, существует окрестность  $V \ni x : f(v) \subset B_{\varepsilon}(f(x))$ . Так как V открыто,  $\exists \delta > 0 : B_{\delta} \subset V$ .

$$\Leftarrow$$
) Рассмотрим  $U \ni f(x)$ . Тогда  $\exists \varepsilon > 0 : B_{\varepsilon}(f(x)) \subset U :$   $\exists \delta > 0 : f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)) \subset U$ . Можем взять  $V := B_{\delta}(x)$ .

#### 1.8.2 Липшицевы отображения

**Def 5.** X, Y – метрические пространства.

 $f:X\to Y$  – липшицево, если  $\exists c>0 \forall x,x'\in X:d_Y(f(x),f(x'))\leq cd_X(x,x')$ . C – константа Липшица данного отображения.

Corollary. Все липшицевы отображения непрерывны.

Доказательство. Рассмотрим  $\delta = \frac{\varepsilon}{c}$ .

$$d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) \le C\delta = \varepsilon.$$

Ex. X – метрика,  $x0 \in X$ .  $f: X \to \mathbb{R}$ ,  $f(x) = d(x, x_0)$ 

$$|f(x) = f(y)| = f(y) - f(x) = d(y, x_0) - d(x, x_0) \le d(x, y).$$

Получили, что липшицево с константой 1.

Task.  $A \subset X$ 

$$f(x) = dist(x, A) := \inf\{d(x, y) \mid y \in A\}.$$

Доказать, что X тоже липшицево с константой 1.

**Ех.**  $d: X \times X \to \mathbb{R}$  – непрерывна.

#### 1.8.3 Композиция непрерывных отображений

**Theorem 6.** Композиция непрерывных отображений непрерывна.

### 1.9 Гомеоморфизм

**Designation.** X, Y — топологические пространства.

**Def 6.** Гомеоморфизм между X и Y — непрерывное биективное отображение  $f: X \to Y$  такое, что  $f^{-1}: Y \to X$  тоже непрерывно.

1.9. ГОМЕОМОРФИЗМ



Рис. 1.5: Композиция отображений

**Def** 7. X и Y гомеоморфны, если существует гомеоморфизм между ними.

**Designation.** X и Y гомеоморфны:  $X \cong Y$  или  $X \simeq Y$ .

#### Property.

- 1. Тождественное отображение гомеоморфизм.
- 2. Если f гомеоморфизм, то  $f^{-1}$  гомеоморфизм.
- 3. Композиция гомеоморфизмов гомеоморфизм.

#### **Theorem 7.** Гомеоморфность — отношение эквивалентности.

Note.

- 1. Гомеоморфизм задает биекцию между открытыми множествами в X и Y.
- 2. С топологической точки зрения гомеоморфные пространства неотличимы.

*Note.* Топологическая эквивалентность — гомеоморфность.

Note. Про гомеоморфные пространства говорят, что у них одинаковый тип.

#### Пример непрерывной биекции, не являющейся гомеоморфизмом

Пусть  $f:[0,2\pi)\to S^1$  такое что:

$$f(t) = (\cos t, \sin t).$$

f – биекция между  $[0,2\pi)$  и  $S^1,\,f$  – непрерывно, но  $f^{-1}$  разрывно в точке  $(1,\,0).$ 

#### ГЛАВА 1. ОБЩАЯ ТОПОЛОГИЯ

1.10. АКСИОМЫ 12

#### Примеры гомеоморфных пространств

#### Statement.

•  $\forall a, b, c, d : [a, b] \cong [c, d]$ 

•  $\forall a, b, c, d : (a, b) \cong (c, d)$ 

•  $\forall a, b, c, d : [a, b) \cong [c, d) \cong (c, d]$ 

•  $\forall a, b : (a, +\infty) \cong (b, +\infty) \cong (-\infty, a)$ 

•  $\forall a, b : [a, +\infty) \cong [b, +\infty) \cong (-\infty, a]$ 

•  $(0,1) \cong \mathbb{R}$ 

•  $[0,1) \cong [0,+\infty)$ 

**Theorem 8.** Открытый шар в  $\mathbb{R}^n$  гомеоморфен  $\mathbb{R}^n$ 

**Designation.**  $D^n$  — замкнутый единичный шар в  $\mathbb{R}^n$ 

**Designation.**  $S^n$  — единичная сфера в  $\mathbb{R}^{n+1}$ 

Theorem 9.  $S^n \setminus \{mouna\} \cong \mathbb{R}^n$ 

Practice.

- 1. Квадрат с границей гомеоморфен  $D^2$
- 2.  $D^m \times D^n \cong D^{n+m}$

#### 1.10 Аксиомы

#### 1.10.1 Аксиомы счетности

**Def 8.**  $X=(X,\Omega)$  База в точке  $x\in X$  – такое множество  $\Sigma_x\subset\Omega$ , что:

- 1.  $\forall V \in \Sigma_x : x \in V$
- 2.  $\forall U \not\ni x \exists V \in \Sigma_x : V \subset U$

**Designation.** Счетное множество – не более, чем счетное.

**Def 9.** Пространство X удовлетворяет первой аксиоме сетности (1AC), если для любой точки  $x \in X$  существует счетная база в этой точке.

**Def 10.** Пространство X удовлетворяет второй аксиоме счетности (2AC), если у него есть счетная база топологии.

1.10. АКСИОМЫ 13

Theorem 10.  $2AC \Rightarrow 1AC$ 

Доказательство. Пусть  $\Sigma$  – база топологии,  $x \in X$ . Пусть . . .

**Theorem 11.** Все метрические пространства удовлетворяют второй аксиоме счетности.

Statement.  $\mathbb{R}$  имеет счетную базу.

Theorem 12. Если X и Y имеют счетную базу, то  $X \times Y$  тоже имеет счетную базу.

**Theorem 13.** Если X имеет счетную базу, то любое его подпространство тоже имеет счетную базу.

Corollary.  $\mathbb{R}^n$  имеет счетную базу.

Practice. 1AC тоже наследуется подпространствами и произведениями.

**Def 11.** Топологические свойство – наследственное, если оно сохраняется при замене пространства на любое подпространство.

Ех. Дискретность, антидискретность, 1АС, 2АС – наследственные свойства.

**Theorem 14.** Линделёф Eсли X удовлетворяет 2AC, то из любого открытого покрытия можно выбрать счетное подпокрытие.

Доказательство. Пусть  $\Lambda$  – множество тех элементов базы, которые содержатся хотя бы в одном из элементов покрытия.  $\Lambda$  – счетное покрытие.

Каждому  $U \in A$  сопоставим V из исходного покрытия, для которого  $U \subset V$ .

Все такие V образуют искомое счетное покрытие.

#### 1.10.2 Сеперабельность

**Def 12.** Всюду плотное множество – множество, замыканние которого есть все пространство.

**Def 13.** Множество всюду плотно тогда и только тогда, когда оно не пересекается с любым непустым открытым множеством.

 $\mathbf{E}\mathbf{x}$ .  $\mathbb{Q}$  всюду плотно в  $\mathbb{R}$ 

**Def 14.** Топологическое пространство сепарабельно, если в нем есть счетное всюду плотное множество.

**Property.** X, Y – сепарабельны  $\Longrightarrow X \times Y$  тоже.

Note. Сепарабельность – не наследственное свойство.

1.10. AKCИОМЫ 14

#### Theorem 15.

- Счетная база  $\Longrightarrow$  сепарабельность.
- ullet Для метризуемых пространств сеперабельность  $\Longrightarrow$  счетная база

#### 1.10.3 Аксиомы отделимости

**Def 15.** X обладает свойтсвом  $T_1$ , если для любой различных точек  $x,y \in X$  существует такое открытое U, что  $x \notin U \land y \notin U$ .

**Theorem 16.**  $T_1 \iff$  любая точка является замкнутым множеством.

**Def 16.** X – хаусдорфово, если для любых  $x, y \in X$  существуют окрестности  $U \ni x \land V \ni y : U \cap V = \emptyset$ .

 ${f Def 17.}\,\,X$  хаусдорфово  $\Longleftrightarrow$  Диагональ  $\Delta:=\{(x,x)\mid x\in X\}$  замкнута в  $X\times X$ 

 $\mathbf{Def}$  18. X – регулярно, если

- обладает  $T_1$
- $\forall$  замкнутого  $A \subset X \ \forall x \in X \setminus A \ \exists$  открытые  $U,V:A \subset U \land x \in V \land U \cap V = \varnothing$  Другое название  $T_3$ -пространство

**Def 19.** X – нормально, если

- обладает T<sub>1</sub>
- $\forall A, B \in X (A \cap B = \emptyset)$   $\exists$  открытые  $U, V : A \subset U, B \subset V \land U \cap V = \emptyset$

Другое название  $T_4$ -пространство

Statement.  $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1$ 

Practice. Свойства  $T_1 - T_3$  наследуются подпространствами и произведениям.

Нормальность не наследственная.

**Def 20.** Все метрические пространства нормальны.

Доказательство. Хороший метод.

$$f: X \to Y$$

$$f(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Она корректна, непрерывна, и принимает значение ноль на A и единице B.

1.11. CBЯЗНОСТЬ 15

**Lemma** (Урысон). X – нормально,  $A, B \subset X$  – замкнуты,  $A \cap B = \emptyset$ . Тогда существует непрерывна функция  $f: X \to [0,1]: f \upharpoonright_A = 0 \land f \upharpoonright_B = 1$ 

#### 1.11 Связность

**Designation.** X — топологическое пространство.

**Def 21** (Связное топологическое пространство).

X связно, если:

его нельзя разбить на два непустых открытых множества;

его нельзя разбить на два непустых замкнутых множества;

не существует открыто-замкнутых множеств, кроме  $\varnothing$  и X;

не существует сюрьективного непрерывного отображения  $f: X \to 0, 1$ .

#### Exs.

- Антидискретное пространство связно
- Дискретное пространство из хотя бы двух точек несвязно
- ℝ \ 0 несвязно
- $[0,1] \cup [2,3]$  несвязно
- Ф несвязно

#### 1.11.1 Связные множества

**Def 22.** Связное множество — подмножество топологического пространства, которое связано как топологическое пространство с индуцированной топологий.

Practice.

- Множество  $A \subset X$  несвязно тогда и только тогда, когда оно разбивается на такие непустые B и C, что  $ClA \cap C = \emptyset \wedge ClC \cap B = \emptyset$ .
- Множество A в метрическом пространстве X несвязно тогда и только тогда, когда существуют открытые  $U, V: U \cap V = \emptyset \land U \cap A \neq \emptyset \land V \cap A \neq \emptyset$ .
- Предыдущее свойство неверно в общей топологии.

**Property.** Любое открытое содержится в некоторой компоненте связности.

#### Связные множества на прямой

Statement. Ompesok [0,1] связен.

1.11. СВЯЗНОСТЬ 16

**Theorem 17.** Для  $X \subset \mathbb{R}$  следующие утверждения эквивалентны:

- 1. X c 6 я з н o
- 2. X выпукло (то есть вместе с любыми двумя точками содержит весь отрезок между ними)
- 3. X интервал, точка или пустое множество

#### 1.11.2 Связность при отображении

**Theorem 18.** X-cвязно,  $f:X\to Y$  непрерывно. Тогда множество f(x) связно.

**Theorem 19.** X связно,  $f: X \to \mathbb{R}$  непрерывно,  $a, b \in f(X)$ . Тогда f(x) содержит все числа между a u b.

Доказательство. По теореме  $\ref{eq:constraint} f(x)$  связно. Тогда по определению f(x) выпукло, значит содержит [a,b].

#### 1.11.3 Компоненты связности

**Def 23.** Компонента связности топологического пространства X — максимальное по включению связное множество в X.

#### Exs.

- 1.  $[0,1] \cup [2,3]$  две компоненты связности [0,1] и [2,3].
- 2. Компоненты связности  $\mathbb{Q}$  отдельные точки.

**Lemma** (Об объединении связных множеств). Пусть  $\{A_i\}_{i\in I}$  — семейство связных множеств, каждые два из которых имеют непустое пересечение. Тогда  $A := \bigcup_{i\in I} A_i$  тоже связно.

ot Доказательство. Пусть <math>A разбивается на непустые открытые U и V .

$$\exists i, j \in I: U \cap A_i \neq \emptyset \land V \cap A_j \neq \emptyset.$$

Так как  $A_i$  связно,  $A_i \subset U$ . Аналогично  $A_j \subset V$ . Следовательно,  $A_i \cap A_j = \emptyset$ . Противоречие.

**Theorem 20.** Пространство разбивается на компоненты связности. То есть:

- каждая точка содержится в некоторой компоненте связности;
- различные компоненты связности не пересекаются.

Доказательство.

1. Каждая точка принадлежит некоторой компоненте связности. Рассмотрим  $x \in X$ . Пусть A — объединение всех связных множеств, содержащих x. Такие есть, так как множество  $\{x\}$  связно. По лемме  $\ref{Mathematics}$  полученное множество связно, значит это компонента связности.

2. Различные компоненты связности не пересекаются.

Пусть A, B — различные компоненты связности и  $A \cap B \neq \emptyset$ . По лемме  $\ref{eq:condition}$  тоже связно, но A и B были максимальными по включению. Значит  $A \cup B = A = B$ . Противоречие.

Lemma. Замыкание связного множества связно.

**Theorem 21.** Компоненты связности замкнуты.

Доказательство. Следует из леммы ??.

Note. компоненты связности не всегда открыты. Например, в  $\mathbb{Q}$ .

Corollary. Пространство несвязно тогда и только тогда, когда есть хотя бы две компоненты связности.

**Corollary.** Две точки принадлежат одной компоненте связности тогда и только тогда, когда существует связное множество, содержащее их.

#### 1.12 Линейная связность

**Designation.** X — топологическое пространство.

**Def 24.** Путь в X — непрерывное отображение  $\alpha:[0,1]\to X$ . Точки  $\alpha(0)$  и  $\alpha(1)$  — концы пути (или начало и конец). Путь  $\alpha$  **соединяет**  $\alpha(0)$  и  $\alpha(1)$ .

**Def 25.** X линейно связно, если для любых двух точек существует соединяющий их путь.

 $\mathbf{E}\mathbf{x}$ .

$$\forall p, q \in \mathbb{R}^n \ \exists \ \alpha(t) = (1-t)p + tq.$$

**Theorem 22.** Если X линейно связно,  $f: X \to Y$  непрерывно, то f(X) линейно связно.

Доказательство. Если  $\alpha$  — путь, соединяющий  $x,y\in X$ , то  $f\circ \alpha$  соединяет f(x) в f(X).

**Lemma.** Соединимость путем — отношение эквивалентности на множестве точек.

Доказательство.

Рефлексивность:  $\forall x \in X \exists \alpha(t) = x$ 

Симметричность:  $\forall x, y \in X : (\exists \alpha : \alpha(0) = x \land \alpha(1) = y) \rightarrow \exists \overline{\alpha} = \alpha(1-t))$ 

Транзитивность: если  $\alpha$  идет из x в y, а  $\beta$  из x в z, построим путь  $\gamma$ , идущий из x в z:

$$\gamma(t) = \begin{cases} \alpha(2t) & t \in [0, \frac{1}{2}) \\ \beta(2t - 1) & t \in [\frac{1}{2}, 1] \end{cases}.$$

П

#### 1.12.1 Компоненты линейной связности

**Def 26.** Компонента линейной связности — класс эквивалентности отношения соединимости путем.

**Def 27** (переформулировка). Компонента линейной связности — максимальные по включению линейно связные множества.

#### 1.12.2 Линейная связность и связность

**Theorem 23.** Если X линейно связно, то оно связно.

Corollary. Компоненты линейной связности лежат в компонентах связности.

Ех (Связность не влечет линейную связность). Рассмотрим множество

$$\left\{ \left( x, \cos \frac{1}{x} \right) \mid x > 0 \right\} \cup \left\{ (0,0) \right\}.$$

Оно связно, но не линейно связно.

Доказательство.

1. Связность

График линейно связен, значит он связен, а (0,0) — его предельная точка. X — замыкание графика в X, следовательно, X — связно.

2. (0,0) не соединяется путем с другими точками

Пусть  $\alpha$  — путь с началом в (0,0). Рассмотрим  $T = \{t \in [0,1] \mid \alpha(t) = (0,0)\}$ . T замкнуто, так как это прообраз замкнутого.

Докажем, что T открыто в [0,1]. Рассмотрим  $t_0 \in T$ . Так как  $\alpha$  непрерывно  $\exists \delta > 0 : \forall t \in (t_0 - \delta, t_0 + \delta) : |\alpha(t)| < 1$ . Предположим, что  $\exists t_1 \in (t_0 - \delta, t_0 + \delta) : \alpha(t_1) \neq (0,0)$ . Пусть f(t) — первая координата  $\alpha(t)$ . Тогда  $f(t_1) > 0$ . По непрерывности

$$\exists t_2 \in [t_0, t_1] : f(t_2) = \frac{1}{2\pi n}, \quad n \in \mathbb{N}.$$

Следовательно,  $\alpha(t_2) = (f(t_2), \cos f(t_2)) = (\frac{1}{2\pi n}, 1)$ . Получаем  $|\alpha(t_2)| > 1$ . Противоречие.

Значит, T — открыто-замкнутое множество на отрезке, а так как отрезок связен, T = [0,1]. Тогда,  $\alpha$  — постоянный путь в точке (0,0).

#### 1.12.3 Локальная линейная связность

**Def 28.** Пространство X локально линейно связно, если для любой точки  $x \in X$  и любой окрестности  $U \ni x$  существует линейно связная окрестность  $V \ni x : V \subset U$ .

Ех. Любое открытое множество на плоскости локально линейно связано.

1.13. KOMΠAKTHOCTЬ

**Theorem 24.** В локально линейно связном пространстве компоненты линейной связности открыты и совпадают с компонентами связности.

Доказательство. 1. Открытость компонент связности следует из того, что у каждой точки есть линейно связная окрестность, которая содержится в компоненте, а значит, точка каждая точка внутренняя.

2. Компоненты линейной связности совпадают с компонентами связности так как пространство разбито на открытые связные множества  $\{U_i\}$ , а тогда любое связное множество A содержится в одном из  $U_i$  (так как  $A \cap U_i$  и  $A \setminus U_i$  открыты в A). Значит это компоненты связности.

#### Негомеоморфность интервалов и окружности

**Theorem 25.** Интервалы [0,1],  $[0,+\infty)$ ,  $\mathbb{R}$ ,  $S^1$  попарно негомеоморфны.

**Theorem 26.**  $\mathbb{R}^2$  не гомеоморфна никакому интервалу и  $S^1$ 

Доказательство.

- В интервалах и окружности существуют конечные множества с несвязными дополнениями.
- ullet Дополнение любого конечного множества  $\mathbb{R}^2$  связно.

#### 1.13 Компактность

#### 1.14 Полные метрические пространства

#### 1.14.1 Компактность полных метрических пространств

#### 1.15 Факторизация

**Def 29.** Пусть X — топологическое пространство,  $\sim$  — отношение эквивалентности на нем как множестве точек.

Факторпространство  $X/\sim$  — множество классов эквивалентности с такой топологией:

• множество U открыто в  $X/\sim \iff \bigcup_{u\in U} u$  открыто в X.

Эта топология называется фактортопологией.

Note. Элементы факторпространства — классы эквивалентности — подмножества X.

#### 1.15.1 Каноническая проекция на факторпространство

**Designation.** Здесь и далее X — топологическое пространство,  $\sim$  — отношение эквивалентности на X.

**Def 30.** Каноническая проекция X на  $X/\sim$  или отображение факторизации — отображение

$$p: X \to X/\sim$$

сопоставляющее каждой точке  $x \in X$  ее класс эквивалентности:

$$p(x) = [x] := \{ y \in X : y \sim x \}.$$

**Theorem 27.** Каноническая проекция непрерывна.

Note (Переформулировка определения).  $A \subset X/\sim$  открыто тогда и только тогда, когда  $p^{-1}(A)$  открыто в X.

Note. Фактортопология — наибольшая топология, для которой каноническая проекция непрерывна.

Property. Следующие свойства наследуются факторпространством:

- Связность
- Линейная связность
- Компактность
- Сепарабельность

#### 1.15.2 Стягивание множества в точку

**Def 31.** Пусть  $A \subset X$ . Введем отношение эквивалентности  $\sim$  на X:

$$x \sim y \iff x = y \lor (x \in A \land y \in A).$$

Факторпространство обозначается X/A, операция называется стягиванием в точку. Полученные классы эквивалентности — A и одноточечные.

**Ex.**  $D^{n}/S^{n-1} \cong S^{n}$  (доказано позже в теореме ??)

#### 1.15.3 Несвязное объединение

**Def 32.** Пусть X, Y — топологические пространства. Их несвязное объединение — дизъюнктное объединение  $X \sqcup Y$  с такой топологий: A открыто в  $X \sqcup Y \iff A \cap X$  открыто в X и  $A \cap Y$  открыто в Y.

Note. Аналогично определяется несвязное объединение топологических пространств  $\{X_i\}_{i\in I}$ .

Practice. Все компоненты связности X открыты тогда и только тогда, когда X — несвязное объединение своих компонент связности.

#### 1.15.4 Приклеивание по отображению

**Designation.** X, Y — топологические пространства,  $A \subset X$ .  $f: A \to Y$  — непрерывное отображение.

**Def 33.**  $\sim$  — наименьшее отношение эквивалентности на  $X \sqcup Y$ , такое что

$$\forall a \in A : a \sim f(a).$$

Факторпространство  $(X \sqcup Y)/\sim$  обозначается  $X \sqcup_f Y$ . Операция называется приклеиванием X к Y по f.

**Ех.** Пусть  $x_0, y_0$  — точки в  $X, Y, A = \{x_0\}, f(x_{00} = y_0)$ . Результат склеивания — **букет**  $(X, x_0)$  и  $(Y, y_0)$ .

**Ex.** Склеим в квадрате  $\overrightarrow{ABCD}$  стороны  $\overrightarrow{AB}$  и  $\overrightarrow{DC}$  по аффинной биекции между ними, сохраняющей отученное направление. Получим цилиндр  $S^1 \times [0,1]$ .

Ex. Если склеить  $\overrightarrow{AB}$  и  $\overrightarrow{CD}$ , получилась лента Мебиуса.

**Def 34.** Пусть X – топологическое пространство.  $\Gamma$  – подгруппа группы Homeo(X) – группы всех гомеоморфизмов из X в себя.

Введем отношение эквивалентности  $\sim$  на X :

$$a \sim b \iff \exists g \in \Gamma : g(a) = b.$$

**Designation.** Факторпространство  $X/\sim$  обозначается  $X/\Gamma$  или  $\Gamma\backslash X$ 

 $\mathbf{Ex.}\ \mathbb{R}/\mathbb{Z}\cong S^1$ , где  $\mathbb{Z}$  действует на  $\mathbb{R}$  параллельными переносами.

**Theorem 28.** Пусть  $p: X \to X/\sim$  – каноническая проекция.  $f: X \to Y$  переводит эквивалентные точки в равные:

$$\forall x, y \in X : x \sim y \Longrightarrow f(x) = f(y).$$

Tог $\partial a$ 

- 1.  $\exists \overline{f}: X/\sim \to Y: f = \overline{f} \circ p$ .
- 2.  $\overline{f}$  непрерывно тогда и только тогда, когда f непрерывно.

Доказательство.

- Определим  $\overline{f}([x]) = f(x)$  для всех  $x \in X$
- ullet По непрерывности композиции, если  $\overline{f}$  непрерывна, то f тоже.
- Е В обратную сторону по определению фактортопологии. (проверим определение непрерывности)

**Theorem 29** (Склеивание концов отрезка).  $[0,1]/\{1,0\} \cong S^1$ 

Доказательство. Рассмотрим  $f:[0,1]\to S^1$ .

$$f(x) = (\cos 2\pi x, \sin 2\pi x).$$

Это отображение пропускается через факторпространство  $[0,1]/\{0,1\} \to S^1$ . Соответствующее  $\overline{f}:[0,1]/\{0,1\} \to S^1$  — биекция. По теореме ??  $\overline{f}$  непрерывно.  $[0,1]/\{0,1\}$  — компактно,  $S^t$  — хаусдорфово, следовательно,  $\overline{f}$  — гомеоморфизм.

**Theorem 30.** X – замкнуто, Y – хаусдорфово.  $f: X \to Y$  – непрерывно и сюрьективно. Тогда

$$X/\sim \cong Y$$
,

 $r\partial e \sim onpedeляется условием$ 

$$x \sim y \iff f(x) = f(y).$$

Theorem 31.  $D^n/S^{n-1} \cong S^n$ 

Доказательство. Вместо  $D^n$  возьмем B – замкнутый шар радиуса  $\pi$  с центром в  $0 \in \mathbb{R}^n$ . По прошлой теореме ?? достаточно построить сюрьективный гомеоморфизм  $f: B \to S^n$ , отображающий край шара в одну точку, а в остальном инъективен. Сойдет такое:

$$f(x) = \begin{cases} \left(\frac{x}{|x|}\sin|x|, \cos|x|\right) & x \neq 0_{\mathbb{R}^n} \\ (0_{\mathbb{R}_{n-1}}, 1) & x = 0_{\mathbb{R}^n} \end{cases}$$

1.16 Многообразия

**Designation.** Здесь и далее  $n \in \mathbb{N} \cup \{0\}$ 

**Def 35.** n-мерное многообразие — хаусдорфово топологическое пространство со счетной базой, обладающее свойством локальной евклидовости: у любой точки  $x \in M$  есть окрестность, гомеоморфная  $\mathbb{R}^n$ .

Число n — размерность многообразия.

**Theorem 32.** При  $m \neq n$  никакие непустые открытые подмножества  $\mathbb{R}^n$  и  $\mathbb{R}^m$  не гомеоморфны.

Corollary. Многообразие размерности n не гомеоморфно многообразию размерности m.

Ех. 0-мерные многообразия – не более чем счетные дискретные пространства.

 $\mathbf{E}\mathbf{x}$ . Любое открытое подмножество  $\mathbb{R}^n$  или любого многообразия – многообразие той же размерности.

**Ех.** Сфера  $S^n - n$ -мерное многообразие

**Ex.** Проективное пространство  $\mathbb{RP}^n = S^n/\{id, -id\}$  – многообразие

Practice. В диске  $D^n$  склеим противоположные точки границы. Полученное пространство гомеоморфно  $\mathbb{RP}^n$ .

**Def 36.** *n*-мерное многообразие с краем – хаусдорфово пространство M со счетной базой и такое, что у каждой точки есть окрестность, гомеоморфная либо  $\mathbb{R}^n$ , либо  $\mathbb{R}^n_+ := [0, +\infty) \times \mathbb{R}^{n-1}$ .

Множество точек, у которых нет окрестностей первого вида, называются **краем** M и обозначаются  $\partial M$ .

**Def 37.** Поверхность – двумерное многообразие.

**Ех.**  $D^n$  — многообразие с краем,  $S^{n-1}$  — его край.

**Theorem 33.**  $\mathbb{R}^n_+$  не гомеоморфно никакому открытому подмножеству в  $\mathbb{R}^n$ .

Склеивание поверхности их квадрата Три варианта склейки сторон квадрата:

- 1. Обе пары сторон без переворота  $(aba^{-1}b^{-1})$  тор  $S^1 \times S^1$ .
- 2. Одна пара с переворотом  $(abab^{-1})$  бутылка Клейна.
- 3. Обе пары с переворотом (abab) проективная плоскость  $\mathbb{RP}^2$ .

#### Theorem 34.

- Пусть дан правильный 2n угольник ( $D^2$  с границей разбитой на части), стороны которого разбиты на пары и ориентированы. Склеим каждую пару сторон по естественному отображению с учетом ориентации. Тогда получится двумерное многообразие (поверхность).
- Пусть в m-угольнике некоторые 2n сторон (2n < m) которого разбиты на пары, ориентированы и склеены аналогично. Тогда получится двумерное многообразие с краем.

Note. Можно брать и несколько многоугольников и склеивать из между собой.

#### 1.16.1 Классификация многообразий

Note. Любое многообразие локально линейно связно. Следовательно, компоненты линейной связности совпадают с компонентами связности и открыты. Будем исследовать только связные многообразия.

**Theorem 35** (без доказательства). Пусть M – непустое связное 1-мерное многообразие. Тогда

- 1. M компактно, без края  $\Longrightarrow M \cong S^1$
- 2. M некомпактно, без края  $\Longrightarrow M \cong \mathbb{R}$
- 3. M компактно,  $\partial M \neq \varnothing \Longrightarrow M \cong [0,1]$
- 4. M некомпактно,  $\partial M \neq \emptyset \Longrightarrow M \cong [0, +\infty)$

**Corollary.** Компактное 1-мерное многообразие без края — несвязное объединение конечного набора окружностей.

#### 1.16.2 Сферы

**Def 38.** Пусть  $p \in \mathbb{N}$ . Сфера с p ручками строится так: берем сферу  $S^2$ , вырезаем p не пересекающихся дырок (внутренностей  $D^2$ ). Далее берем p торов с такими же дырками и приклеиваем по дыркам торы к сфере.

**Def 39.** Сфера с пленками – аналогично, только приклеиваем ленты Мебиуса.

Practice. Сфера с одной пленкой –  $\mathbb{RP}^2$ , сфера с двумя пленками – бутылка Клейна.

#### 1.16.3 Классификация поверхностей

Statement. Поверхность — связное двумерное многообразие.

#### Theorem 36.

- Компактная поверхность без края гомеоморфна сфере или сфере с ручками или сфере с пленками.
- Поверхности разного типа, сферы с разным числом ручек, сферы с разным числом пленок попарно не гомеоморфны.
- Компактная поверхность с краем гомеоморфна одному из этих цилиндров с несколькими дырками.

Поверхности с разным числом дырок негомеоморфны.

Note. Число дырок равно числу компонент края.

#### 1.16.4 Эйлерова характеристика

**Def 40.** Пусть M – компактная поверхность, разбитая вложенныам связным графом на областидиски (замыкание области гомеоморфно диску, граница – цикл в графе). Эйлерова характеристика M – целое число:

$$\chi(M) = V - E + F.$$

**Theorem 37.** Эйлерова характеристика — топологический инвариант и не зависит от разбиения.

#### Exs.

- $\chi(S^2) = 2$
- $\chi(T^2) = 0$
- $\chi$ (бутылки Клейна) = 0
- При вырезании дырки  $\chi$  уменьшается на 1
- $\chi$ (сферы с n дырками) =  $2 n, \chi$ (тора с дыркой) = -1
- $\chi(A \cap B) = \chi(A) + \chi(B) \chi(A \cup B)$

- $\chi$ (сферы с р ручками) = 2-2p
- $\chi$ (сферы с q пленками) = 2-q