Complexity Insights into Circular Economy

J. Broere, C. Moore, J. Raimbault, J. M. Serna, M. Somveille, E. Strombom, L. Sugar, B. Zhu

July 7, 2016

The Circular Economy

Why use complexity science?

- 'Closing the loop'
- Multiple interacting actors
- Multiple organizational levels
- Interdependence
- Optimizing waste flows

Model

Model

Model

$$u_{ij} = o(i,j) - c \cdot \frac{d_{ij}}{d_{max}}$$

Geographical setup

Application on a real city system

Results: Internal Validation

Model Exploration : Intensive parallel computation ($\simeq 5 \cdot 10^5$ runs) using OpenMole [Reuillon et al., 2013]

Statistical distributions of indicators

Results: Model Exploration

Left: uniform; Right: real case. Qualitative change in behavior.

Results: Optimization

Pareto fronts for contradictory objectives

Perspectives

- Test on:
 - Existing maps and infrastructures
 - Biobjective Calibration of the toy-model on waste and cost
 - Use data to calibrate the model
- Open source monitoring
- Insights into the 'waste market'

Reserve slides

Model setup

Demand and Offer functions : $\vec{D}_i(\vec{y}) = D_i^{(0)} \cdot \vec{d}_i(\vec{y})$ and $\vec{O}_i(\vec{y}) = O_i^{(0)} \cdot \vec{o}_i(\vec{y})$, where \vec{d}_i and \vec{o}_i are multivariate probability densities

Model Parameters

Parameters

- σ_0 standard deviation of input/output distributions
- d₀ characteristic decay distance for spatial interaction potential
- c transportation cost
- ullet $heta_O$ overlap threshold over which transactions are feasible

Model Indicators

- Total waste : sum of remaining output distributions
- Total cost : weighted network length
- Network topology indicators : clustering coefficient, in/out mean degree, component number

Model Interface (uniform)

Model Interface (synthetic)

Indicators (uniform spatial distribution)

Pareto front (uniform spatial distribution)

Indicators (real case)

Pareto front (real case)

References I

Reuillon, R., Leclaire, M., and Rey-Coyrehourcq, S. (2013). Openmole, a workflow engine specifically tailored for the distributed exploration of simulation models.

Future Generation Computer Systems, 29(8):1981–1990.