Задание к лабораторной работе №6 ВС

ИССЛЕДОВАНИЕ ПРИНЦИПОВ РАБОТЫ КЭШ-ПАМЯТИ

Цель работы: изучение основных принципов работы кэш-памяти, знакомство с алгоритмами замещения строк кэш-памяти, рассмотрение понятия ассоциативности кэш-памяти.

Домашняя подготовка

- **1.** Изучить соответствующий раздел лекционного курса и описание лабораторных работ.
 - 2. Исследование кэша прямого отображения.

Степень ассоциативности для данного пункта игнорировать

Рассчитать **полезный** размер кэш-памяти исходя из данных, представленных в таблице 1. Схематично представить структуру заданной кэш-памяти (на схеме должны быть отражены: **размер** и **количество кэш-строк**, **тег**, соответствующий каждой кэш-строке).

Определить возможное **расположение** заданной в таблице 1 **последовательности байт в кэш-памяти** при прямом отображении ОЗУ в кэш-память.

Рассчитать **вероятность коллизии** в случае обращения к ячейкам ОЗУ, **адреса** которых **отличаются на N**, где N — полезный размер кэш-памяти.

3. Исследование понятия ассоциативности

Рассчитать полезный размер кэш-памяти исходя из данных, представленных в таблице 1 с учётом числа банков. Схематично представить структуру заданной кэш-памяти (на схеме должны быть отражены: количество банков и полезный размер кэш-памяти в банке).

Рассчитать **вероятность коллизии** в случае обращения к ячейкам ОЗУ, **адреса** которых **отличаются на N**, где N — полезный размер кэш-памяти. Сравнить с результатом, полученным в пункте 2.

4. Описать процесс замещения строк кэш-памяти при последовательном обращении к набору байт из пункта 2 в случае, когда кэш-память уже заполнена данными (лежащими в ОЗУ по адресу от 0 до полезного размера кэш-памяти).

Для групп A-07, A-12 алгоритм LRU (Least Recently Used) замещения строк кэш-памяти.

Для группы A-08 алгоритм MFU (Most Frequently Used) замещения строк кэшпамяти.

Лабораторное задание

- **1.** Написать программу на языке C, позволяющую отследить изменение в скорости отклика получения данных при явлении **thrashing**'а (**пробуксовке кэша**).
- **2.** На основе данных, полученных в пункте 1, построить график, определить по нему размер кэша **L1** и **L2**.

Проанализировать полученные результаты и сделать вывод.

Таблица 1 Исходные данные для домашней подготовки лабораторной работы 6

№ Бригады	Разрядность системы	Размер кэш- строки	Кол-во кэш- строк	Степень ассоциативности	Последовательность байт	Размер ОЗУ
1	8	32	16	4	F, 285A, 401, 3E80, AAA, 76	16 КБ
2	16	64	8	4	5, 32A, 1, 2F4F, 55F, FFF	12 КБ
3	32	128	4	8	3E80, ABC, 322, 1322, FFF, 3	16 КБ
4	8	64	4	4	CCC, 1234, 2, 2000, 79A, AAB	8 КБ
5	8	32	8	8	24, 288, 4000, 3E80, ABB, 10D	16 КБ
6	16	128	8	2	DD, 3DB8, 4, 36B0, A, 79A	16 КБ
7	16	64	8	8	5DC0, 5C2C, C33, 2E19, 49, EC	24 КБ
8	8	32	4	8	171, 1B71, 5A, 1036, 40D, FFF	12 КБ
9	32	256	8	4	75F7, 322, 228A, 562A, B, 8	32 КБ
10	16	128	4	8	DEB, 433, FF, 5D5D, 58A8, 4	24 КБ
11	16	64	4	8	CAB, 3E80, 3E00, 3E, 3BD0, FF	16 КБ
12	8	32	8	4	1F3, 12C0, 5, 280, B43, 1990	8 КБ
13	32	64	8	2	3EB, 960, 5F, 2FA, 1997, 1D1B	8 КБ
14	32	128	4	4	888, 1234, 3A, BAB, 2, 2CEC	12 КБ
15	16	256	8	2	3E08, 36B0, 25, 79A, 79C, 2023	16 КБ

16	16	128	8	2	1812, 988, 1380, 1721, 1861, A	18 КБ
17	8	64	8	4	19E, EDA, 3232, 2AC, 3A09, 2	16 КБ
18	16	64	8	2	1234, 5F, 2F4F, 2E60, FFF, 756	12 КБ
19	8	64	16	2	777, 2077, ABC, 2C88, A, 4F2	12 КБ
20	32	128	8	2	4321, F1A, 1, 558, 1023, 75F7	32 КБ
21	8	32	16	4	345, EBA, 36B0, DD, 1322, 2023	16 КБ
22	32	64	16	4	64F, 40D2, FAC, 3DB8, 24, 1088	24 КБ
23	16	64	8	4	68A, AAB, 36B0, FA, 1589, 462E	18 КБ
24	8	32	16	2	1F43, 640, 1047, 140, B40, 1EBD	8 КБ