Final = 12-12-09 @ 6:15-8:15

Topics = Dynamic Semantics -> Prolog

Review: Notes, Exercise Sets 3-9, course Notes 7-17

- · Static Variables
- · Stack Dynamic Variables
- * Heap Dynamic Variables
 - · Explicit Heap-Dynamic Variables use of explicit constructor functions (C++/C, Java)
 - · Implicit Heap Dynamic Variables

Statually-Typed Languages Vs. Type-Free Languages

· Statically - Typed

- · languages in which types of all names get bound statically, mostly at program writing time
- · Type declarations in programs
- · PASCAL, ADA, C++, Java, E, FFEL, C#, etc.
- · The compiler can detect all (or almost all) type errors
 - -> Type sately. Sometimes known as "strongly typed"
- · Promotes a disciplined style of programming based on clear organization of data and objects structured by types.
- · generally leads to more afficient implementations
 - The compiler can allocate memory cells or fixed size and structure, according to the variable's type
 - · Menory cells don't have to carry type descriptors
 - · one exception = class objects in the heap

· Type · Free

- · Variables can be assigned values of any type at any time
- · No type declarations in programs
- · Java Scopt, Small Talk, LISP, PROLOG

ę	Overview OF Lisp and Prolog
	· Commonalities
	· Mainly used in AI applications
	· ex: symbolic computation - mathematical software, automatic equation solving,
	formula simplification, automatic differentiation/integration
	·ex: natural lauguage processing
	ex : robots
	· ex = expert systems, knowledge · based systems - weather report assistance, financial
	market analysis
	· Very High-Level languages that permit manipulation of high-level symbolic data
	without worrying about low-level data structures
	· Prototyping
	· Use Lisp /Prolog for rapid prototyping
	> reimplement in conventional layers
	· Both are type-free
	· No static variables
	· All variables are stack-dynamic or heap-dynamic
	· Good garbage collectors needed
	• Differences
	- Lisp
	· Hesbrid of procedural and functional languages) - "Pure Lisp"
	· Assignments
	· Loops
	Prolog
	· Example of logic language
	· program = set of logical statements (A < B, A AB,
	· computation = logical deduction process
	· Men data structures
	· Terms = look like mathematical function applications f(x, g(Y, Z), h(x, Y, Z))