Allison J.B. Chaney Princeton University

ajbc.io/spf

• What is personalized item recommendation?

- What is personalized item recommendation?
- Probabilistic matrix factorization models

- What is personalized item recommendation?
- Probabilistic matrix factorization models
- Social networks

- What is personalized item recommendation?
- Probabilistic matrix factorization models
- Social networks
 - Comparison approaches

- What is personalized item recommendation?
- Probabilistic matrix factorization models
- Social networks
 - Comparison approaches
 - Data overview

- What is personalized item recommendation?
- Probabilistic matrix factorization models
- Social networks
 - Comparison approaches
 - Data overview
- Social Poisson Factorization

- What is personalized item recommendation?
- Probabilistic matrix factorization models
- Social networks
 - Comparison approaches
 - Data overview
- Social Poisson Factorization
 - Define the model

- What is personalized item recommendation?
- Probabilistic matrix factorization models
- Social networks
 - Comparison approaches
 - Data overview
- Social Poisson Factorization
 - Define the model
 - Algorithm for inference

- What is personalized item recommendation?
- Probabilistic matrix factorization models
- Social networks
 - Comparison approaches
 - Data overview
- Social Poisson Factorization
 - Define the model
 - Algorithm for inference
 - Results on data

- What is personalized item recommendation?
- Probabilistic matrix factorization models
- Social networks
 - Comparison approaches
 - Data overview
- Social Poisson Factorization
 - Define the model
 - Algorithm for inference
 - Results on data
- Current work: extensions

Winter's Tale

East of Eden

Winter's Tale

East of Eden

???

Matrix Factorization

Matrix Factorization

K latent features

Probabilistic matrix factorization

- Scales to large datasets
- Models fit quickly
- Performs well
- Recommendations are interpretable
- Learn about the domain

Matches our intuition

- Matches our intuition
- Choice of K might matter less

- Matches our intuition
- Choice of K might matter less
- Introduce explainable serendipity

- Matches our intuition
- Choice of K might matter less
- Introduce explainable serendipity
- Improve performance

- Matches our intuition
- Choice of K might matter less
- Introduce explainable serendipity
- Improve performance
- Help us learn about the social network

Comparison Approaches

Ma et al., SoRec: Social Recommendation Using Probabilistic SoRec

Matrix Factorization, SIGIR 2008.

Ma et al., Learning to Recommend with Social Trust Ensemble, RSTE

SIGIR 2009.

Jamali and Ester, A Matrix Factorization Technique with Trust SocialMF Propagation for Recommendation in Social Networks, RecSys 2010.

TrustMF Yang et al., Social Collaborative Filtering by Trust, IJCAI 2013.

Guo et al., TrustSVD: Collaborative Filtering with Both the Explicit TrustSVD and Implicit Influence of User Trust and of Item Ratings, AAAI 2015.

librec.net

Data

Data

source	# users	# items	# ratings (% matrix)	# edges (% matrix)
FilmTrust	1,483	1,786	28,468 (1.07%)	982 (0.04%)
Ciao	7,375	92,184	249,834 (0.04%)	43,002 (0.08%)
Epinions	37,826	122,147	651,302 (0.01%)	135,473 (0.01%)
Etsy	39,862	5,201,879	18,650,632 (0.01%)	4,761,437 (0.30%)

etsy.com and librec.net/datasets.html

 Thresholding: set a minimum # of items per user and/or # of users per item

- Thresholding: set a minimum # of items per user and/or # of users per item
- Cull the network to only include network connections with items in common

- Thresholding: set a minimum # of items per user and/or # of users per item
- Cull the network to only include network connections with items in common
- Threshold users to only include users who have at least a certain % of items shared with friends

- Thresholding: set a minimum # of items per user and/or # of users per item
- Cull the network to only include network connections with items in common
- Threshold users to only include users who have at least a certain % of items shared with friends

Social Poisson Factorization

Social Poisson Factorization

Ratings:

$$r_{ui} \mid r_{-u,i} \sim \text{Poisson} \left(\theta_u^{\top} \beta_i + \sum_{v \in N(u)} \tau_{uv} r_{vi} \right)$$

Social Poisson Factorization

User preferences:

$$\theta_{uk} \sim \text{Gamma}(a_{\theta}, b_{\theta})$$

Item attributes:

$$\beta_{ik} \sim \text{Gamma}(a_{\beta}, b_{\beta})$$

User influence:

$$\tau_{uv} \sim \text{Gamma}(a_{\tau}, b_{\tau})$$

The Problem of Inference:

How do we go from a generative model to finding the values of the variables that best fit our data?

Posterior Distribution

latent model parameters

model hyperparameters

Posterior Distribution

Mean Field Variational Inference

- Pick a family of distributions q over the latent variables with its own variational parameters
- ullet Optimize q to approximate the posterior p
- To choose q, we use the **mean field assumption**: each variable is independent, allowing q to factorize
- Use coordinate ascent: iteratively optimize each variable, holding the others fixed

Coordinate Ascent: How do we update each variable?

Auxiliary variables:

$$z_{uik}^{M} \sim \text{Poisson}(\theta_{uk}\beta_{ik})$$

$$z_{uiv}^S \sim \text{Poisson}\left(\tau_{uv}r_{vi}\right)$$

Auxiliary variables:

$$z_{uik}^{M} \sim \text{Poisson}(\theta_{uk}\beta_{ik})$$

$$z_{uiv}^S \sim \text{Poisson}\left(\tau_{uv}r_{vi}\right)$$

if
$$r \sim \text{Poisson}(a+b)$$
 then $r = z_1 + z_2$
where $z_1 \sim \text{Poisson}(a)$ and $z_2 \sim \text{Poisson}(b)$

Auxiliary variables:

$$z_{uik}^{M} \sim \text{Poisson}(\theta_{uk}\beta_{ik})$$

$$z_{uiv}^S \sim \text{Poisson}\left(\tau_{uv}r_{vi}\right)$$

$$r_{ui} | r_{-u,i} = \sum_{k=1}^{K} z_{uik}^{M} + \sum_{v=1}^{V} z_{uiv}^{S}$$

if $r \sim \text{Poisson}(a+b)$ then $r = z_1 + z_2$ where $z_1 \sim \text{Poisson}(a)$ and $z_2 \sim \text{Poisson}(b)$

$$z_{ui} \mid \theta, \beta, \tau, r \sim \text{Mult}(r_{ui}, \phi_{ui})$$

$$\phi_{ui} \propto \left\langle \theta_{u1}\beta_{i1}, \cdots, \theta_{uK}\beta_{iK}, \tau_{u1}r_{1i}, \cdots, \tau_{uV}r_{Vi} \right\rangle$$

$$\theta_{uk} \mid \beta, \tau, z, r \sim \operatorname{Gam}\left(a_{\theta} + \sum_{i} z_{uik}^{M}, b_{\theta} + \sum_{i} \beta_{ik}\right)$$

$$\beta_{ik} \mid \theta, \tau, z, r \sim \operatorname{Gam}\left(a_{\beta} + \sum_{u} z_{uik}^{M}, b_{\beta} + \sum_{u} \theta_{uk}\right)$$

$$\tau_{uv} \mid \theta, \beta, z, r \sim \operatorname{Gam}\left(a_{\tau} + \sum_{i} z_{uiv}^{S}, b_{\tau} + \sum_{i} r_{vi}\right)$$

Gamma variables:

$$\lambda \sim \text{Gamma}(\lambda_a, \lambda_b)$$

$$\mathbf{E}[\lambda] = \lambda_a/\lambda_b$$

Algorithm 1 Mean field variational inference for social Poisson factorization

```
1: initialize \mathbf{E}[\theta], \mathbf{E}[\beta] randomly
 2: while \Delta \mathcal{L} > \delta do
                                                                                           initialize global \beta^a to priors for all items
 3:
           for each user do
 4:
                 while \Delta \mathbf{E}[\theta_{user}] + \Delta \mathbf{E}[\tau_{user}] > \delta' do
                                                                                             \triangleright check for user convergence
 5:
                       initialize \theta_{user}^a and \tau_{user}^a to priors
 6:
                       \theta_{user}^b = \text{prior} + \sum_i \beta_i
 7:
                       \tau_{user}^b = \text{prior} + \sum_i r_i
 8:
                       initialize local \beta_{item}^a to prior
 9:
                       for each (item, rating) \in ratings_{user} do
10:
                             \mathbf{E}[z_{ui}] = rating * \phi_{ui}
11:
                             update \theta_{user}^a += \mathbf{E}[z_{ui}^M]
12:
                             update \tau_{user}^a += \mathbf{E}[z_{ui}^S]
13:
                             update local \beta_{item}^a += \mathbf{E}[z_{ui}^M]
14:
                       \mathbf{E}[\theta_{user}] = \theta_{user}^a/\theta_{user}^b
15:
                       \mathbf{E}[\tau_{user}] = \tau_{user}^a / \tau_{user}^b
16:
                 global \beta_{item}^a += \text{local } \beta_{item}^a
17:
          \beta^b = \text{prior} + \sum_u \theta_u
18:
           \mathbf{E}[\beta] = \beta^a/\beta^b
19:
```

Recommendation

$$\mathbf{E}[r_{ui}] = \mathbf{E}[\theta_u]^{\top} \mathbf{E}[\beta_i] + \sum_{v \in N(u)} \mathbf{E}[\tau_{uv}] r_{vi}$$

Evaluation:

How do we know if our model is doing a good job?

RMSE / MAE

$$RMSE = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (\hat{r}_{ui} - r_{ui})^2}$$

$$MAE = \frac{1}{N} \sum_{n=1}^{N} |\hat{r}_{ui} - r_{ui}|$$

RMSE / MAE

Precision / Recall

$$precision(n, user) = \frac{\text{\# of held-out items in top } n}{n}$$

$$recall(n, user) = \frac{\text{\# of held-out items in top } n}{\text{total \# of held-out items}}$$

RMSE / MAE

Precision / Recall

NDCG

$$DCG(n, user) = \mathbf{1}[rec_1 \in \mathcal{H}] + \sum_{i=2}^{n} \frac{\mathbf{1}[rec_i \in \mathcal{H}]}{\log_2(i)}$$

$$NDCG(n, user) = \frac{DCG(n, user)}{\text{ideal } DCG(n, user)}$$

RMSE / MAE

Precision / Recall

NDCG

NCRR

$$CRR(user) = \sum_{n=1}^{N} \frac{\mathbf{1}[rec_n \in \mathcal{H}]}{n} = \sum_{i \in \mathcal{H}} \frac{1}{rank(i)}$$

100 iterations on FilmTrust data

100 iterations on FilmTrust data

FilmTrust

Ciao

Epinions

An Example Etsy User

Training

PF

SPF

ranking shifts for Etsy users

Conclusions

What do we learn from all this?

- Domain makes a difference in how a social network impacts personalized item recommendation
- SPF shows performance improvement on users with even just one friend
- Since the majority of users have a low number of friends, modeling general preferences is important
- No model is universally the best for all users

Current Work

Extensions to SPF include hierarchical influence (user credulity, friend credibility) and topical influence.

Acknowledgements

David Blei, advisor

Tina Eliassi-Rad, Prem Gopalan

Guibing Guo (LibRec creator)

Blei Lab colleagues

Thank You Questions, ideas, and suggestions welcome!