WHAT IS CLAIMED IS:

1	1. A method for testing a set of interface connections in a reconfigurable
2	device between an IP core implementing at least one specialized operation and a set of
3	functional blocks adapted to implement general-purpose logic devices, the method
4	comprising:
5	creating a test program including a set of test data and a test configuration
6	adapted to configure the set of functional blocks to implement a set of boundary scan
7	registers connected with the interface connections of the IP core;
8	configuring the reconfigurable device according to the test configuration;
9	inputting the test data into the reconfigurable device to create a set of test
10	results; and
11	analyzing the set of test results to determine the integrity of the set of interface
12	connections.
1	2. The method of claim 1, wherein the set of boundary scan registers
2	include a plurality of shift registers connected in series, wherein each shift register is adapted
3	to be connected with an interface connection of the IP core.
1	3. The method of claim 2, wherein a first portion of the plurality of shift
2	registers is adapted to be connected with a set of input interface connections of the IP core
3	and a second portion of the plurality of shift registers is adapted to be connected with a set of
4	output interface connections of the IP core.
1	4. The method of claim 1, wherein the test configuration is defined with a
2	hardware description language representation.
1	5. The method of claim 4, wherein the creating a test program includes:
2	combining the hardware description language representation of the test
3	configuration with a hardware description language representation of the IP core to form a
4	test hardware description; and
5	analyzing the test hardware description to create a set of test data.
1	6. The method of claim 5, wherein creating a test program further
2	includes analyzing the test hardware description and the set of test data to create a set of
3	expected test results; and

5	with the set of expected test results.
1	7. The method of claim 5, wherein analyzing the test hardware
2	description is performed using automated test program generation software.
1	8. An information storage medium including a set of instructions adapted
2	to operate an information processing device to perform a set of steps, the set of steps
3	comprising:
4	creating a test program including a set of test data and a test configuration
5	adapted to configure the set of functional blocks to implement a set of boundary scan
6	registers connected with the interface connections of the IP core;
7	configuring the reconfigurable device according to the test configuration;
8	inputting the test data into the reconfigurable device to create a set of test
9	results; and
10	analyzing the set of test results to determine the integrity of the set of interface
11	connections.
1	9. The information storage medium of claim 8, wherein the set of
2	boundary scan registers include a plurality of shift registers connected in series, wherein each
3	shift register is adapted to be connected with an interface connection of the IP core.
1	10. The information storage medium of claim 9, wherein a first portion of
2	the plurality of shift registers is adapted to be connected with a set of input interface
3	connections of the IP core and a second portion of the plurality of shift registers is adapted to
4	be connected with a set of output interface connections of the IP core.
1	11. The information storage medium of claim 8, wherein the test
2	configuration is defined with a hardware description language representation.
1	12. The information storage medium of claim 11, wherein the creating a
2	test program includes:
3	combining the hardware description language representation of the test
4	configuration with a hardware description language representation of the IP core to form a
5	test hardware description; and
6	analyzing the test hardware description to create a set of test data.

wherein analyzing the test results includes comparing the set of test results

1	13. The information storage medium of claim 12, wherein creating a test
2	program further includes analyzing the test hardware description and the set of test data to
3	create a set of expected test results; and
4	wherein analyzing the test results includes comparing the set of test results
5	with the set of expected test results.

14. The information storage medium of claim 12, wherein analyzing the test hardware description is performed using automated test program generation software.

- 15. An information storage medium including a test configuration for configuring a reconfigurable device, the reconfigurable device having an IP core implementing at least one specialized operation and a set of functional blocks adapted to implement general-purpose logic devices, the test configuration comprising a configuration of the set of functional blocks implementing a set of boundary scan registers connected with a set of interface connections of the IP core.
- 16. The information storage medium of claim 15, wherein the set of boundary scan registers include a plurality of shift registers connected in series, wherein each shift register is adapted to be connected with an interface connection of the IP core.
- 17. The information storage medium of claim 16, wherein a first portion of the plurality of shift registers is adapted to be connected with a set of input interface connections of the IP core and a second portion of the plurality of shift registers is adapted to be connected with a set of output interface connections of the IP core.
- 18. The information storage medium of claim 15, wherein the test configuration is defined with a hardware description language representation.
- 19. The information storage medium of claim 15, further including a set of test data adapted to be input into the IP core via the set of functional blocks implementing the set of boundary scan registers.
- 20. The information storage medium of claim 15, further including a set of expected test results.