

- 1. Consider an Hermitian operator, $\hat{A}^{\dagger} = \hat{A}$.
 - (a) Prove that any expectation value of \hat{A} is a real number.
 - (b) Prove that the eigenvalues of \hat{A} are real numbers.
 - (c) Prove that two eigenvectors, ψ_{α} and ψ_{β} , associated to two different eigenvalues, a_{α} and a_{β} are orthogonal, $\langle \psi_{\alpha} | \psi_{\beta} \rangle = 0$.
- 2. Consider a one-dimensional system where x represents the spatial coordinate. The momentum operator is $\hat{p}_x = -i\hbar \partial_x$. Prove that this operator is Hermitian.
- 3. An operator \hat{A} , corresponding to observable A, has two normalised eigenstates $|a_1\rangle$ and $|a_2\rangle$, with eigenvalues a_1 and a_2 . An operator \hat{B} , corresponding to observable B, has two normalised eigenstates $|b_1\rangle$ and $|b_2\rangle$ with eigenvalues b_1 and b_2 . The eigenstates are related by

$$|a_1\rangle = c_1|b_1\rangle + c_2|b_2\rangle,$$

$$|a_2\rangle = c_2|b_1\rangle - c_1|b_2\rangle,$$

where $c_1 = \frac{2}{\sqrt{13}}$ and $c_2 = \frac{3}{\sqrt{13}}$. A is measured and the value a_1 is obtained. If B is measured immediately after, and A is measured immediately after that, what is the probability of obtaining a_1 again?

4. A Hamiltonian \hat{H} has two eigenstates, $|1\rangle$ and $|2\rangle$, associated to the two eigenvalues E_1 and E_2 . A physical quantity A associated to observable \hat{A} has two eigenvalues, a_1 and a_2 . Its eigenstates can be expanded in the Hamiltonian basis according to:

$$|a_1\rangle = \frac{1}{\sqrt{2}}|1\rangle + \frac{1}{\sqrt{2}}|2\rangle,$$

$$|a_2\rangle = \frac{1}{\sqrt{2}}|1\rangle - \frac{1}{\sqrt{2}}|2\rangle.$$

If the system is in state $|\psi\rangle = |a_1\rangle$ at t = 0,

- (a) Find the wave function as a function of time, $|\psi(t)\rangle$.
- (b) Show that the expectation value of A as a function of time is:

$$\langle a \rangle = \frac{a_1 + a_2}{2} + \frac{a_1 - a_2}{2} \cos \left(\frac{(E_1 - E_2)t}{\hbar} \right) .$$

- (c) Sketch the expectation value $\langle a \rangle$ as a function of time and provide a physical interpretation for the time evolution.
- 5. At time t = 0, the state function of a free particle in a 1D system is a gaussian wavepacket,

$$\psi(x,t=0) = c \exp\left(-\frac{x^2}{4\Delta_0^2}\right).$$

Show that the uncertainty in position is $\Delta^2(t) = \Delta_0^2 + (\Delta v)^2 t^2$, where Δv is the uncertainty in velocity at t = 0. How does the uncertainty in velocity evolve over time?

6. The spectral decomposition of the position \hat{x} and momentum \hat{p} operators is given by the expressions

$$\hat{x} = \int dx \, x |x\rangle\langle x|, \quad \hat{p} = \int \frac{dp}{2\pi\hbar} \, p|p\rangle\langle p|.$$

Computing the matrix elements of the commutator $[\hat{x}, \hat{p}]$, prove that these definitions lead to the standard relation $[\hat{x}, \hat{p}] = i\hbar$.

Hint: you may use the wavefunction $\langle x|p\rangle=\exp\left(\frac{i}{\hbar}px\right)$; the Fourier transform $|p\rangle=\int dy e^{i\frac{py}{\hbar}}|y\rangle$ and the formal relation $\int \frac{dp}{2\pi\hbar}pe^{-i\frac{p(y-x)}{\hbar}}=i\hbar\partial_y\delta(x-y)$.