Лекции

по математическому анализу: многообразия, дифференциальные формы

21 марта 2019 г.

Аннотация

Записки создавались студентами Механико-математического факультета НГУ с лекций, прочитанных С. Г. Басалаевым.

Содержание

1	Многообразия		3
	1.1	Многообразия без края	3
	1.2	Многообразия с краем	6
	1.3	Касательное и нормальное пространства	9
	1.4	Задача на условный экстремум	11
	1.5	Площадь поверхности	14
	1.6	Площадь графика функции	18
2	Криволинейные интегралы		
	2.1	Криволинейные интегралы І-рода	19
	2.2	Объем шара и площадь сферы	20
	2.3	Формула коплощади	22
3	Введение в векторный анализ		
	3.1	Дифференциальные формы	23

1 Многообразия

1.1 Многообразия без края

Определение 1.1. Множество $M\subseteq\mathbb{R}^n$ называется C^r -гладким k-мерным многообразием без края, если для каждого $x_0\in M$ существует U - окрестность x_0 и существует C^r -диффеоморфизм $\Phi:U\to\Phi(U)$, такой что $\Phi(x_0)=0$ и $\Phi(U\cap M)=V\times\{0\}^{n-k}$, где V - окрестность нуля в R^n .

При r=0 многообразие называется топологическим, при r>0 многообразие называется дифференцируемым.

Виды многообразий:

1. Набор изолированных точек (k = 0).

2. Набор кривых, в том числе с выколотыми концами, а также замкнутые (k=1).

3. Поверхности (k = 2).

Пример 1.2.

- Пара параллельных прямых многообразие,
- Пара непересекающихся плоскостей многообразие,

- Плоскость и прямая не многообразие, так как их размерности не совпадают,
- Пара пересекающихся прямых с выколотой точкой пересечения многообразие.

Теперь рассмотрим способы задания k-мерных многообразий.

Теорема 1.3. Пусть $U \subseteq \mathbb{R}^n$ – окрытое множество, тогда U является n-мерным многообразием.

Доказательство. Напомним, что множество называется открытым, если для любая его точка x_0 лежит в некоторой окрестности.

Отображение Φ можно определить следующим образом: $\Phi(x) = x - x_0 -$ сдвиг в ноль, переводит окрестность x_0 в окрестность нуля.

Теорема 1.4 (О графике). Пусть $U \subset \mathbb{R}^n$ – открытое множество, $f: U \to \mathbb{R}, f \in C^r$, тогда график этой функции $\Gamma_f = \{(x, f(x)) \mid x \in U\}$ - C^r -гладкое n-мерное многообразие в \mathbb{R}^{n+1} .

Доказательство. Определим отображение $\Phi: U \times \mathbb{R} \to U \times \mathbb{R}$ следующим образом $\Phi(x,y) = (x,y-f(x))$, тогда:

$$\Phi(x_1, \dots, x_n, y) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ y - f(x_1, \dots, x_n) \end{pmatrix}, \quad |D\Phi| = \begin{vmatrix} E & 0 \\ -\frac{\partial f}{\partial x_i} & 1 \end{vmatrix} = 1.$$

Отображение Φ является C^r -диффеоморфизмом и $\Phi(x,f(x))=(x,0),$ т.е. $\Phi(\Gamma_f)=U\times\{0\}.$

Теорема 1.5 (О локальном вложении). Пусть $U \subset \mathbb{R}^k$ - открытое множество, $f: U \to \mathbb{R}^n$, $f \in C^r$ и $k \leq n$. Тогда, если $t^0 \in U$ и $\operatorname{rank} Df(t^0) = k$, то существует U-окрестность t^0 , такая что f(U) является C^r -гладким k-мерным многообразием.

 \mathcal{A} оказательство. Так как rank $Df(t^0)=k$, следовательно набор векторов $\left\{ rac{\partial f}{\partial x_1}, \dots, rac{\partial f}{\partial x_k}
ight\}$ является линейно независимым, т.е. его можно дополнить

Пусть $\{\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_k}\,v_{k+1},\ldots,v_n\}$ - базис в \mathbb{R}^n . Определим $\Phi:U\times\mathbb{R}^{n-k}\to\mathbb{R}^n$ так, что $\Phi(t_1,\ldots,t_k,s_{k+1},\ldots,s_n)=$

 $f(t_1,\ldots,t_k)+s_{k+1}v_{k+1}+\ldots+s_nv_n.$ $D\Phi=[rac{\partial f}{\partial x_1},\ldots,rac{\partial f}{\partial x_k}v_{k+1},\ldots,v_n],$ следовательно $\det D\Phi
eq 0.$

По теореме об обратной функции существует W - окрестность $(t_0, 0)$, такая что $\Phi: W \to \Phi(W)$ - C^r -диффеоморфизм. Выберем $V \times (-h,h) \in W$, так что V - окрестность x_0 в \mathbb{R}^k , тогда $\Phi^{-1}(f(V)) = V \times \{0\}^{n-k}$.

Определение 1.6. Пусть x^0 - решение системы уравнений:

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1, \\ \dots \\ f_k(x_1, \dots, x_n) = a_k, \end{cases}$$

тогда x^0 называется регулярным, если rank $\frac{\partial f_i}{\partial x_i}(x^0) = k$.

Теорема 1.7 (О решении системы уравнений). *Пусть* $U \subset \mathbb{R}^k$ - *откры*тое множество, $f_1, \ldots, f_k : U \to \mathbb{R}$ и $f_i \in C^r \ \forall i \leq k$, тогда множество регулярных решений системы уравнений

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1, \\ \dots \\ f_k(x_1, \dots, x_n) = a_k, \end{cases}$$

представляет собой C^r -гладкое (n-k)-мерное многообразие.

Доказательство. Пусть x^0 - регулярное решение, тогда:

$$Df(x^{0}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & & \vdots \\ \frac{\partial f_{k}}{\partial x_{1}} & \cdots & \frac{\partial f_{k}}{\partial x_{n}} \end{pmatrix} (x^{0}).$$

Матрица состоит из n столбцов, где k из них линейно независимы. В некоторой окрестности x^0 :

$$x_{n-k+1} = g_{n-k+1}(x_1, \dots, x_{n-k}),$$

 \dots
 $x_n = g_n(x_1, \dots, x_{n-k}).$

Множество решений по теореме о локальном вложении является многообразием:

$$x_1 = x_1,$$

$$\dots$$

$$x_k = x_k,$$

$$x_{n-k+1} = g_{n-k+1}(x_1, \dots, x_{n-k}),$$

$$\dots$$

$$x_n = g_n(x_1, \dots, x_{n-k}).$$

1.2 Многообразия с краем

Определение 1.8. $\mathbb{R}^k_+ = \{(x_1,\ldots,x_k): x_k \geq 0\}$ - верхнее полупространство ($\mathbb{R}^k_- = \{(x_1,\ldots,x_k): x_k \leq 0\}$ - нижнее полупространство).

Определение 1.9. Пусть $V \subseteq R^k$ - окрестность нуля, тогда $V \cap \mathbb{R}^k_+$ называется полуокрестностью нуля. В ее основании лежит (k-1)-мерная окрестность нуля.

Определение 1.10. Множество $M \in \mathbb{R}^n$ называется C^r -гладким k-мерным многообразием с краем, если для каждого $x_0 \in M$ существует U - окрестность x_0 и существует C^r -диффеоморфизм $\Phi: U \to \Phi(U)$, такой что $\Phi(x_0) = 0$ и, либо $\Phi(U \cap M) = V \times \{0\}^{n-k}$ (тогда x_0 - внутреняя точка), либо $\Phi(U \cap M) = (V \cap \mathbb{R}^k_+) \times \{0\}^{n-k}$ (тогда x_0 - крайняя точка).

Примеры многообразий с краем:

- 1. Края нет при k=0
- 2. Край незамкнутой кривой (k=1) это ее концевые точки. У замкнутых и неограниченных кривых края нет.

3. При k=2, внутренними точками поверхности являются те, которые лежат внутри нее вместе со своей некоторой окресности, остальные являются краевыми.

Определение 1.11. Пусть M- многообразие, тогда $\partial M = \{x \mid x$ - краевая точка $M\}$ - множество краевых точек многообразия M.

Теорема 1.12 (О крае). Пусть M - C^r -гладкое k-мерное многообразие c краем, тогда множество его краевых точек ∂M является C^r -гладким k-мерным многообразием без края ($\partial \partial M = \emptyset$).

Доказательство. Пусть $x \in \Phi(U \cap M)$, тогда $x = (x_1, \dots, x_{k-1}, x_k, 0, \dots, 0)$. Если $x_k = 0$, то $x \in \partial M$ - краевая точка. Отображение Φ переводит все краевые точки $U \cap M$ в (k-1)-мерную плоскость (основание полупространства). Основание - (k-1)-мерная окрестность нуля, следовательно $\Phi(U \cap M) = W \times \{0\} \times \{0\}^{n-k}$ - выполнено определение многообразия. \square

Теорема 1.13 (О решении системы уравнений и неравенства). Пусть $U \subset \mathbb{R}^k$ - открытое множество, $f_1, \dots, f_{k+1} : U \to \mathbb{R}, \ f_i \in C^r \ \forall i \leq k$ и $\operatorname{rank} \frac{\partial f_i}{\partial x_j}(x^0) = k+1$, тогда множество регулярных решений системы уравнений

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1 \\ \dots \\ f_k(x_1, \dots, x_n) = a_k \\ f_{k+1}(x_1, \dots, x_n) \ge a_{k+1} \end{cases}$$

представляет собой C^r -гладкое (n-k)-мерное многообразием с краем (внутрение точки - решение строгого неравенства, край - решение (k+1) уравнений).

Доказательство. Решение неравенства $f_{k+1}(x_1,\ldots,x_n)>a_{k+1}$ является открытым множеством, и по теореме 1.3 задает многообразие.

Решение системы уравнений

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1 \\ \dots \\ f_k(x_1, \dots, x_n) = a_k \\ f_{k+1}(x_1, \dots, x_n) = a_{k+1} \end{cases}$$

задает (k-1) мерную поверхность - край многообразия. \square

Определение 1.14. Множество $M \in \mathbb{R}^k$ называется k-мерным кусочногладким многообразием, если:

1. M - k-мерное топологическое многообразие.

2. Существует разбиение $M=\tilde{M}\cup (\bigcup_{i=0}^n Z_i)$, такое что \tilde{M} - гладкое k-мерное многообразие, а Z_i - кусочно гладкие многообразия размерности $l\leq k-1$.

Пример 1.15. Куб.

Теорема 1.16. Пусть $U \subset \mathbb{R}^k$ - открытое множество, $f_1, \ldots, f_k, \ldots, f_{k+l}: U \to \mathbb{R}, \ f_i \in C^r \ \forall i \leq k+l \ u \ \mathrm{rank} \ \frac{\partial f_i}{\partial x_j}(x^0) = k+l, \ mor \partial a \ множество \ pегулярных решений системы уравнений$

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1 \\ \dots \\ f_k(x_1, \dots, x_n) = a_k \\ f_{k+1}(x_1, \dots, x_n) \ge a_{k+1} \\ \dots \\ f_{k+l}(x_1, \dots, x_n) \ge a_{k+l} \end{cases}$$

представляет собой C^r -гладкое (n-k)-мерное многообразием с краем.

Пример 1.17. в
$$\mathbb{R}^3$$
. $x^2 + y^2 \le 1, x \ge 0, z \ge 0, z \le 1$

- грань тела, 2-мерное многообразие.

1.3 Касательное и нормальное пространства

Определение 1.18. Пусть $\gamma:[a,b]\to\mathbb{R}^n\in C^1$, тогда вектор $\gamma'(t)\in\mathbb{R}^n$ называется вектором скорости кривой γ .

Определение 1.19. Вектор $\vec{v} \in \mathbb{R}^n$ называется касательным к множеству $M \subseteq \mathbb{R}^n$ в точке $x_0 \in M$, если это вектор скорости некоторой кривой, лежащей в M, т.е. существует кривая $\gamma: [0,\varepsilon] \to M$, такая что $\gamma(0) = x_0$ и $\gamma_t'(0) = \vec{v}$.

Множество касательных векторов к M в точке x_0 обозначается $T_{x_0}M$.

Задача 1.20. Пусть $\gamma:(a,b)\to\mathbb{R}^n$ - параметризованная кривая, $\Psi:\mathbb{R}^n\to\mathbb{R}^n$ - C^1 -диффеоморфизм. Показать, что если v - вектор скорости кривой γ в точке $t_0\in(a,b)$, то $d\Psi_{\gamma(t_0)}\langle v\rangle$ - вектор скорости кривой $\Gamma=\Psi\circ\gamma$ в точке t_0 .

Решение. Воспользуемся правилом дифференцирования композиции:

$$d(\varPsi\circ\gamma)\langle t_0\rangle=d(\varPsi_{\gamma(t_0)})\langle\gamma(t_0)\rangle=d(\varPsi_{\gamma(t_0)})\langle v\rangle$$

П

Пемма 1.21. Колинеарный касательному вектору так же является касательным вектором, т.е. если $\vec{v} \in T_{x_0}M$, то $\forall \lambda > 0 \ \lambda \vec{v} \in T_{x_0}M$.

Теорема 1.22 (О множестве касательных векторов). *Если* $M \subseteq \mathbb{R}^n$ - C^1 -гладкое k-мерное многообразие, $x_0 \in M$, тогда:

- 1. Ecnu $x_0 \in M \setminus \partial M$, mo $T_{x_0}M \simeq \mathbb{R}^k$.
- 2. Ecnu $x_0 \in \partial M$, mo $T_{x_0}M \simeq \mathbb{R}^k_+$.

Доказательство. По определению k-мерного многообразия, для каждого $x_0 \in M$ существует U - окрестность x_0 и существует C^r -диффеоморфизм $\Phi: U \to \Phi(U)$, такой что $\Phi(x_0) = 0$ и $\Phi(U \cap M) = V \times \{0\}^{n-k}$, где V - окрестность нуля в R^n .

Под действием Ф кривая перейдет в кривую.

 $\gamma: [0,\varepsilon] \to M \Longrightarrow \Gamma(t) = \Phi(\gamma(t)) = (x_1(t), \dots, x_k(t), 0, \dots, 0) \Longrightarrow \Gamma'(t) == (x_1'(t), \dots, x_k'(t), 0, \dots, 0).$

 $\Gamma'(t)=\Phi(\gamma(t))=D\Phi_{\gamma(t)}\langle\gamma'(t)\rangle$ - линейное отображение, такое, что $\det D\Phi \neq 0.$

 $T_{x_0}M = D\Phi^{-1}(\mathbb{R}^k \times \{0\}^{n-k}) \implies T_{x_0}M$ - k-мерная плоскость (т.к. дифференциал переводит плоскость в плоскость).

Определение 1.23. Нормальное пространство $N_{x_0}M$ к дифференцируемому многообразию в точке x_0 – это ортогональное дополнение к касательному пространству $T_{x_0}M$.

Лемма 1.24. Пусть $M \subset \mathbb{R}^n$ и $x_0 \in M$, тогда $\dim M = k$, $\dim T_{x_0} M = k$, $\dim N_{x_0} M = n - k$.

Теорема 1.25 (О базисе касательного пространства). Пусть $U \subset \mathbb{R}^k$ - открытое множество, $f: U \to \mathbb{R}^k$, $f \in C^r$. Тогда, если M = f(U) - многообразие u rank Df = k, то $\{\frac{\partial f}{\partial x_1}(t_0), \ldots, \frac{\partial f}{\partial x_k}(t_0)\}$ - базис в $T_{f(t_0)}M$.

Доказательство. Пусть $t_0 \in U$, определим $\Gamma_j = t_0 + t \cdot \vec{e_j}$, тогда $\gamma_j(t) = f(\Gamma_j(t))$ - кривая на многообразии.

Найдем её касательный вектор в точке t_0 : $\gamma_j'(t_0) = \frac{d}{dt}f(t_0+t\cdot\vec{e_j}) = \frac{\partial f}{\partial t_j}(t_0) \in T_{f(t_0)}M$.

Набор векторов $\left\{ \frac{\partial f}{\partial t_i} \right\}_{i=1}^k$ является линейно независимым и их количество равно размерности касательного пространства.

Теорема 1.26. Пусть многообразие М задано системой уравнений:

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1 \\ \dots \\ f_k(x_1, \dots, x_n) = a_k \end{cases}$$

 $u\ f_1,\ldots,f_k:U o\mathbb{R},\ f_i\in C^r\ \forall\,i\leq k$, $U\subseteq\mathbb{R}^n$ – открытое множество, а так же $\mathrm{rank}(\frac{\partial f_i}{\partial x_i})=k,$ тогда система уравнений

$$\begin{cases} df_1(x_0)\langle \vec{v} \rangle = 0\\ \dots\\ df_k(x_0)\langle \vec{v} \rangle = 0 \end{cases}$$

задает $T_{f(t_0)}M$, а $\{\nabla f_1(x_0),\ldots,\nabla f_k(x_0)\}$ базис в $N_{x_0}M$.

Доказательство. Пусть $x_0 \in M$. Возьмем вектор $\vec{v} \in T_{f(t_0)}M$, тогда по определению существует кривая $\gamma: [0,\varepsilon] \to M$, такая что $\gamma(0) = x_0$ и $\gamma'_t(0) = \vec{v}$.

$$f(\gamma(t)) = 0 \implies 0 = f(\gamma(t))' = df_{f(t)}\langle \gamma'(t) \rangle.$$
 Подставим $t = 0 \implies 0 = df_{x_0}\langle \vec{v} \rangle$. Из этого равенства следует, что:

$$\begin{cases} df_1(x_0)\langle \vec{v} \rangle = 0 \\ \dots \\ df_k(x_0)\langle \vec{v} \rangle = 0 \end{cases}$$

Заметим, что $0=df_{x_0}\langle \vec{v}\rangle=\nabla f_j(x_0)\cdot \vec{v}$, из чего получаем, что $\{\nabla f_1(x_0),\dots,\nabla f_k(x_0)\}$ – базис в $N_{x_0}M$, т.к. $T_{f(t_0)}M\perp N_{x_0}M$.

1.4 Задача на условный экстремум

Определение 1.27. Пусть M,N — дифференцируемые многообразия, тогда $f:M\to N$ дифференцируема в точке x_0 , если существует линейное отображение $L:T_{x_0}M\to T_{f(t_0)}N$, такое что для каждой кривой $\gamma:[0,\varepsilon]\to M$, такой что $\gamma\in C^1,$ $\gamma(0)=x_0,$ $\gamma'(0)=\vec{v}\in T_{x_0}M$, выполняется $f(\gamma(t))=f(x_0)+tL(\vec{v})+o(t).$

Теорема 1.28 (Необходимое условие экстремума). Пусть $f: M \to \mathbb{R}$ - дифференцируема и x_0 - её экстремум, тогда $df(x_0) = 0$.

Доказательство. Пусть $\vec{v} \in T_{x_0}M \iff \exists$ кривая $\gamma:[0,\varepsilon]\to M$, такая что $\gamma(0)=x_0$ и $\gamma_t'(0)=\vec{v}$.

Для
$$f|_{\gamma} x_0$$
 - экстремум, следовательно $f(\gamma(t))'(0) = 0 = df_{x_0} \langle \vec{v} \rangle$.

Пусть $f:U\to\mathbb{R},\,U\subseteq\mathbb{R}^n$ – открытое множество, $M\subseteq U$ - k-мерное многообразие. Ставится задача: найти экстремум на многообразии $f|_M$.

Теорема 1.29 (Необходимое условие условного экстремума). *Если* $x_0 \in M$ – точка экстремума f, то $df \mid_{T_{x_0}M} = 0 \Leftrightarrow \nabla f(x_0) \in N_{x_0}M$.

Доказательство. Пусть $\vec{v} \in T_{x_0}M \iff \exists$ кривая $\gamma:[0,\varepsilon] \to M$, такая что $\gamma(0)=x_0$ и $\gamma_t'(0)=\vec{v}$.

Тогда x_0 - экстремум $f(\gamma(t))$ и $f(\gamma(0))=0$. Заметим, что $f(\gamma(t))=df_{\gamma(0)}\langle \gamma'(0)\rangle=df_{x_0}\langle \vec{v}\rangle$.

Теорема 1.30 (Метод множителей Лагранжа). Пусть $f, \varphi_1, \ldots, \varphi_k : U \to \mathbb{R}$, $U \subseteq \mathbb{R}^n$. Тогда, если x_0 - условный экстремум при условиях $\varphi_1(\bar{x}) = 0, \ldots, \varphi_k(\bar{x}) = 0$, то $dL(x_0) = 0$, где $L(\bar{x}, \lambda_1, \ldots, \lambda_k) = f(\bar{x}) - \lambda_1 \varphi_1(\bar{x}) - \ldots - \lambda_k \varphi_k(\bar{x})$ - функция Лагранжа.

Доказательство. Рассмотрим $L(\bar{x}, \lambda_1, \dots, \lambda_k)$. $\frac{\partial L}{\partial \lambda_j}(x) = -\varphi_j(x) = 0 \Rightarrow x$ – решение системы уравнений.

Возьмем частную производную L по x_i :

$$\frac{\partial L}{\partial x_i}(x,\lambda) = \frac{\partial f}{\partial x_i}(x) - \lambda_1 \frac{\partial \varphi_1}{\partial x_i}(x) - \dots - \lambda_k \frac{\partial \varphi_n}{\partial x_i}(x) = 0,$$

отсюда $\nabla f(x) = \lambda_1 \nabla \varphi_1(x) + \ldots + \lambda_k \nabla \varphi_k(x)$ – градиенты $\nabla \varphi_i$ – это нормали, следовательно, их линейная комбинация тоже нормаль. Таким образом, ∇f – нормаль к поверхности и выполнено необходимое условие условного экстремума.

Лемма 1.31 (Правило дифференцирования вдоль кривой).

Пусть $f:U\to\mathbb{E}\in C^2, U\subseteq\mathbb{R}^n$ – открытое множество $u\ \gamma:[a,b]\to U\in C^2$ – кривая. Тогда

1.
$$(f \circ \gamma)'(t) = df_{\gamma(t)} \langle \gamma'(t) \rangle$$
,

$$2. \ (f\circ\gamma)''(t)=d^2f_{\gamma(t)}\langle\gamma'(t),\gamma'(t)\rangle+df_{\gamma(t)}\langle\gamma''(t)\rangle.$$

Есть два способа доказательства, здесь будет приведен самый оптимальный. Другой способ вы сможете найти в своих лекциях ;-)

Доказательство. $(f\circ\gamma)''(t)=\left(df_{\gamma(t)}\langle\gamma'(t)\rangle\right)_t'$ – дифференцирование сложной функции.

Напомним, что
$$d_x\left(df_x\langle\vec{v}\rangle\right)=d^2f(x)\langle\vec{v}\rangle$$
 и $d_{\vec{v}}\left(df_x\langle\vec{v}\rangle\right)=df_x$. Отсюда имеем $\left(df_{\gamma(t)}\langle\gamma'(t)\rangle\right)_t'=d^2f_{\gamma(t)}\langle\gamma'(t),\gamma'(t)\rangle+df_{\gamma(t)}\langle\gamma''(t)\rangle$.

Теперь мы готовы сформулировать достаточное условие экстремума. Перед доказательством заметим, что если $\varphi_1, \ldots, \varphi_n$ – уравнения связи, то $x \in M$ (лежит в многообразии) тогда и только тогда, когда

$$\begin{cases} \varphi_1(x) = 0, \\ \dots \\ \varphi_n(x) = 0. \end{cases}$$

Теорема 1.32 (Достаточное условие экстремума в методе множителей Лагранжа). Пусть $U \subset \mathbb{R}^n$, $f, \varphi_1, \ldots, \varphi_k : U \to \mathbb{R} \in C^2$, $\operatorname{rank}\left(\frac{\partial \varphi_i}{\partial x_j}\right) = k - всюду$, то функция Лагранжа $L(x, \lambda_1, \ldots, \lambda_k) = f(x) - \lambda_1 \varphi_1(x) - \ldots - \lambda_k \varphi_k(x)$ если $dL(x_0, \lambda_0) = 0$, то при $d_x^2 L(x_0, \lambda_0) > 0$ – достигает минимума, при $d_x^2 L(x_0, \lambda_0) < 0$ – максимума.

Доказательство. Пусть $dL(x_0,\lambda_0)=0, d_x^2L(x_0,\lambda_0)\mid_{T_xM\times T_xM}>0.$ $dL(x_0,\lambda_0)=0\iff \frac{\partial L}{\partial x}=\frac{\partial f}{\partial x}-\sum_{j=1}^k\lambda_j\frac{\partial \varphi}{\partial x_j}=0\iff \nabla f(x_0)=\sum_{j=1}^k\lambda_j\nabla\varphi_j.$ Кроме того, $\frac{\partial L}{\partial x}=0=-\varphi_j\iff x_0\in M.$ Следовательно, $\nabla f(x)\in N_{x_0}M\iff df_{x_0}\mid_{T_{x_0}M}=0.$

Возьмем произвольную $\gamma:(-\varepsilon,\varepsilon)\to M\in C^2, \gamma(0)=x_0.$ Посмотрим, как ведет себя функция f на кривой $\gamma,$ т.е. ограничение функции на эту кривую.

Рассмотрим $f \circ \gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}$. По лемме 1.31 $(f \circ \gamma)'(t) = df_{\gamma(t)} \langle \gamma'(t) \rangle$. $(f \circ \gamma)'(0) = df_{x_0} \langle \gamma'(0) \rangle = 0$.

Поскольку образ кривой лежит в многообразии

$$\gamma(t) = x \in M \iff \begin{cases} \varphi_1(\gamma(t)) \equiv 0, \\ \dots \\ \varphi_k(\gamma(t)) \equiv 0. \end{cases}$$

Подставим $\gamma(t)=x$ в $L(x,\lambda)$, получим

$$L(\gamma(t),\lambda) = f(\gamma(t)) - \lambda_1 \varphi_1(\gamma(t)) - \dots - \lambda_k \varphi_k(\gamma(t)) = f(\gamma(t))$$

далее,

$$(f \circ \gamma)''(t) = (L(\gamma(t), \lambda))'_{tt} = d_x^2 L(\gamma'(t), \gamma'(t)) + d_x L(\gamma''(t)).$$

подставим ноль

$$(f \circ \gamma)''(0) = d_x^2 L(\gamma'(0), \gamma'(0)) + 0 > 0.$$

Имеем, что $f \circ \gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}, (f \circ \gamma)'(0) = 0, (f \circ \gamma)''(0) > 0$. Следовательно, t = 0 является точкой минимума для $f \circ \gamma$.

Таким образом, x_0 – точка минимума для любой кривой $\gamma \subseteq M$, проходящей через x_0 . Следовательно, x_0 – точка минимума для $f|_M$.

Пример 1.33. Найти экстремумы функции $f(x,y,z) = x^2 - 2x + y^2 - z^2$ на $x^2 + y^2 \le 4, 0 \le z \le 1$.

1.5 Площадь поверхности

Пусть $v_1,\ldots,v_n\in\mathbb{R}^n$. Из прошлого семестра, мы знаем, что n-мерный объем параллелепипеда $\Pi(v_1,\ldots,v_n)=\{t_1v_1+\ldots,t_nv_n:t_i\in[0,1]\}$, натянутого на набор векторов $v_1,\ldots,v_n\in\mathbb{R}^n$ может быть вычислен по формуле $|\Pi|=|\det[v_1,\ldots,v_n]|$. Так же он может быть вычислен с помощью определителя матрицы Грамма, полагая $A=[v_1,\ldots,v_n]$, из $(\langle v_i,v_j\rangle)_{ij}=A^TA$ получаем: $\det A^TA=\det A^T\det A=(\det A)^2=(|\Pi|)^2$.

Вспомним так же, как изменяется мера при отображениях.

Пусть $L: \mathbb{R}^k \to \mathbb{R}^n$ - линейное отображение. Мы знаем, что для любого измеримого множества $E \subseteq \mathbb{R}^k$, мера его образа вычисляется по формуле $|L(E)| = J_L|E| = |\det L||E|$.

Если же отображение $\varphi \in C^1$ не является линейным, мы можем приблизить его линейным и получить формулу локального искажения меры:

$$J_{\varphi(x)} = \lim_{r \to 0} \frac{|\varphi(Q(x,r))|}{|Q(x,r)|} = |\det D\varphi(x)|$$

Из чего мы получаем, что для каждого измеримого множества E, мера его образа вычисляется по формуле $|\varphi(E)|=\int\limits_{\Gamma}J_{\varphi(x)}.$

Поскольку мы работаем не со всем пространством, мы можем расширить эти определения.

Теорема 1.34 (Объем k-мерного параллепипеда). Пусть $v_1, \ldots, v_k \in \mathbb{R}^n, k \leq n$. Тогда $|\Pi(v_1, \ldots, v_n)|_k = \sqrt{\det(\langle v_i, v_j \rangle)}$. Обозначив за $A = [v_1, \ldots, v_n]$, это выражение можно записать ввиде $|\Pi| = \sqrt{\det A^*A}$.

Доказательство. Пусть k-мерная гиперплоскость L содержит в себе параллелепипед Π .

Существует ортогональное преобразование $Q: \mathbb{R}^n \to \mathbb{R}^n$, такое что $Q(L) = \mathbb{R}^k \times \{0\}^{n-k}$. Применим это преобразование к набору векторов, на которые натянут параллепипед: $Q(v_i) = (a_{1i}, \dots, a_{ki}, 0, \dots, 0)^T$.

Заметим, что ортагональное преобразование не меняет объем.

$$A = [v_1; \dots; v_k] \quad QA = \begin{pmatrix} \theta \\ 0 \end{pmatrix}$$
где $\theta - k imes k$ матрица

Используя равенство $(QA)^*QA = \theta^*\theta$, получаем требуемое утверждение:

$$|Q(\Pi)|_k = |\Pi|_k = |\det \theta| = \sqrt{\det \theta^* \theta} = \sqrt{\det(QA)^* QA} = \sqrt{\det A^* A}$$

Определение 1.35. Пусть A - матрица, имеющая из n строк и k столбцоц и $M(n,k)=\{I=(i_1,\ldots,i_k)\in\mathbb{N}^k:1\leq i_1< i_2<\ldots< i_k\leq n\}$ - множество мультииндексов. Тогда A_I - минор, составленный из i_1,i_2,\ldots,i_k строк матрицы A.

Теорема 1.36 (Формула Бине-Коши). Пусть A – матрица, имеющая из n строк u k столбцов, тогда $\det A^*A = \sum_{I \in M(n,k)} \det^2 A_I$.

Доказательство. Докажем более общее утверждение: пусть A, B = (n, k)-матрицы, тогда $\det A^*B = \sum_{I \in M(n,k)} \det A_I \det B_I$.

Пусть $A = [u_1; \dots; u_n]$ и $B = [v_1, \dots, v_n]$, определим отображения L_1 и L_2 следующим образом:

$$L_1\langle u_1,\ldots,u_k,v_1,\ldots,v_k\rangle = \det A^*B$$

$$L_2\langle u_1, \dots, u_k, v_1, \dots, v_k \rangle = \sum_{I \in M(n,k)} \det A_I \det B_I$$

Заметим, что L_1 и L_2 линейны по каждому аргументу, следовательно, чтобы доказать, что $L_1 = L_2$ достаточно доказать что они одинаково действуют на базис (TODO: ????).

$$L_1\langle e_{i1},\ldots,e_{ik},e_{j1},\ldots,e_{jk}\rangle=\delta_{IJ}=L_2\langle e_{i1},\ldots,e_{ik},e_{j1},\ldots,e_{jk}\rangle$$

Следствие 1.37. Пусть $L:U\subseteq\mathbb{R}^k\to\mathbb{R}^n$ - линейное отображение, такое, что $\mathrm{rank}\, L=k\leq n$. Тогда для каждого измеримого множества $A,\, L(A)$ - измеримо и $|L(A)|_k=J_L|A|_k$, где $J_L=\sqrt{\det L^*L}$.

Следствие 1.38. Пусть Π – k-мерная плоскость в \mathbb{R}^n и $\varphi: \mathbb{R}^k \to \Pi$ - C^1 -диффеоморфизм. Тогда для каждого измеримого $E \subset \mathbb{R}^k$, $\Pi(E)$ - измеримо и $|\varphi(E)|_k = \int_E J_{\varphi}(x) dx$, где $J_{\varphi} = \sqrt{\det D\varphi^*(x)D\varphi(x)}$.

Из формулы Коши-Бине так же можно получить выражения для скалярного и векторного произведения.

К примеру, взяв за A некоторый вектор $v \in \mathbb{R}^n$, можно получить:

$$v^T v = \langle v, v \rangle = |v|^2 = \sum_{i=1}^n v_i^2$$

Аналогично, если разместить векторы $u, v \in \mathbb{R}^3$ в столбцы матрицы A, получим (TODO: расписать это подробнее):

$$A^{2} = \begin{vmatrix} u_{1} & v_{1} \\ u_{2} & v_{2} \end{vmatrix} + \begin{vmatrix} u_{1} & v_{1} \\ u_{2} & v_{3} \end{vmatrix} + \begin{vmatrix} u_{2} & v_{2} \\ u_{3} & v_{3} \end{vmatrix} = |u \times v|^{2}$$

Теперь мы готовы определить меру на многообразиях.

Пусть $M \subseteq \mathbb{R}^n$ - k-мерное C^1 -гладкое многообразие, заданное параметрически, т.е. существует $\varphi: U \subseteq \mathbb{R}^k \to \mathbb{R}^n$, такое что $\varphi \in C^1$ и $M = \varphi(U)$.

$$\varphi = \begin{cases} x_1 = \varphi_1(t_1, \dots, t_k) \\ \vdots \\ x_n = \varphi_n(t_1, \dots, t_k) \end{cases}$$
 $(t_1, \dots, t_k) \in U$

Определим меру k-мерной площади S^k на параметрически заданном многообразии M.

Определение 1.39. Пусть $E\subseteq U\to \mathbb{R}^k$ - измеримо по $|.|_k$, тогда $\varphi(E)$ назовем измеримым по S^k и будем вычислять его меру как $S^k(\varphi(E)):=\int\limits_E J_\varphi(t)dt$, где $J_\varphi(t)=\sqrt{\det D\varphi^*(t)D\varphi(t)}$.

Внимательный читатель задастся вопросом: а не зависит ли наша мера от параметризации многообразия?

Лемма 1.40. Пусть $\varphi:U\subseteq\mathbb{R}^k\to\mathbb{R}^n$ и $\psi:V\subseteq\mathbb{R}^k\to\mathbb{R}^n$ - различные параметризации многообразия, такие что $\operatorname{rank} D\varphi=\operatorname{rank} D\psi=k$. Тогда $\int\limits_U J_\varphi(t)dt=\int\limits_V J_\psi(t)dt$.

Доказательство. Рассмотрим $\psi^{-1} \circ \varphi$ - отображение между U и V.

Очевидно, что $\psi^{-1}\circ \varphi$ является биекцией и $\det D\psi^{-1}\circ \varphi\neq 0$. Следовательно, $\psi^{-1}\circ \varphi-C^1$ -диффеоморфизм.

Сделаем замену переменных $y = \psi^{-1}(\varphi(x))$ в интеграле:

$$\int_{V} \sqrt{\det D\psi^{*}(y)D\psi(y)} dy = \int_{U} \sqrt{\det D\psi^{*}(\psi^{-1} \circ \varphi(x))D\psi(\psi^{-1} \circ \varphi(x))}$$
$$|\det D\psi^{-1} \circ \varphi(x)| dx = \int_{U} \sqrt{\det D\psi^{*}(\psi^{-1} \circ \varphi(x))D\psi(\psi^{-1} \circ \varphi(x))}$$
$$\sqrt{\det D(\psi^{-1} \circ \varphi)^{*}(x)\det D\psi^{-1} \circ \varphi(x)} dx$$

Заметим, что:

$$D\psi(\psi^{-1}\circ\varphi)=D\psi(\psi^{-1}\circ\varphi)\cdot D(\psi^{-1}\circ\varphi)=D\varphi$$

Осталось применить то, что произведение определитей равно определителю произведения и подставить это равенство в интеграл. \Box

Рассмотрим некоторые свойства меры S^k :

- 1. Счетная аддитивность.
 - Пусть $\{M_i\}_{i\in N}$ не более чем счетный дизъюнктивный набор множеств, тогда $S^k(\bigcup M_i)=\sum\limits_i S^k(M_i).$
- 2. Меру можно доопределить для кусочно-гладкого многообразия, так как мера множества размерности меньше k равна нулю в мере S^k .

Пример 1.41. Вывести формулу длины кривой $\gamma:[a,b]\to\mathbb{R}^n$ с помощью меры S^k и формулы Бине-Коши.

Решение.

$$\gamma(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} \quad D\gamma(t) = \begin{pmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{pmatrix} \text{ - вектор скорости}$$

$$\sqrt{\det D\gamma^*(t)D\gamma(t)} = \sqrt{{x'}_1^2 + \ldots + {x'}_n^2} = |\gamma'(t)|$$

$$l(\gamma) = \int\limits_a^b |\gamma'(t)| dt$$

Определение 1.42. Мера угла – длина дуги окружности с центром в начале угла.

1.6 Площадь графика функции

Пусть $f: U \to \mathbb{R}^n \in C^1$, где $U \subseteq \mathbb{R}^n$ её график – n-мерное многообразие $\Gamma_f = \{(\bar{x}, f(x)) \in \mathbb{R}^{n+1}\}.$

Чтобы найти S^k надо параметризовать график функции. Пусть

$$\varphi: \begin{cases} x_1 = x_1, \\ \dots \\ x_n = x_n, \\ y = f(x_1, \dots, x_n). \end{cases}$$

– параметризация графика. Тогда $S^k(\Gamma_f) = \int_U J_{\varphi}(x) dx$. Посчитаем $D\varphi$.

$$D\varphi = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 \\ \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{pmatrix}_{n \times (n+1)}$$

Нам нужно посчитать определитель матрицы $\det D\varphi^*D\varphi$. Если мы будем считать «в лоб»:

$$D\varphi^*D\varphi = E + \left(\frac{\partial f}{\partial x_i} \cdot \frac{\partial f}{\partial x_j}\right)_{i,j}$$

Получилась довольно сложная конструкция. Определитель проще вычислить по формуле Бине-Коши.

$$\det D\varphi^*D\varphi = 1 + f_{x_1}^2 + f_{x_2}^2 + \ldots + f_{x_n}^2 = 1 + |\nabla f|^2$$

Отсюда получаем, что

$$S^{k}(\Gamma_{f}) = \int_{U} \sqrt{1 + |\nabla f(x)|^{2}} dx$$

Свойство формулы 1.6:

 $\bullet \ S^k(\lambda M) = \lambda^k S^k(M)$

Доказательство. ТООО

Пример 1.43 (Вывод частной формулы из общей). Пусть $f:[a,b] o \mathbb{R}_+$

- поверхность, полученная вращением кривой относительно оси Ox.

Для того, чтобы вывести формулу, нам нужно параметризовать поверхность. Должно быть два параметра (x,φ) . Воспользуемся цилиндрической системой координат:

$$\begin{cases} x = x, \\ y = f(x)\cos\varphi, \\ z = f(x)\sin\varphi. \end{cases}$$

Вывод формулы: TODO.

2 Криволинейные интегралы

2.1 Криволинейные интегралы І-рода

Определение 2.1. Пусть M-n-мерное дифференцируемое многообразие, задана функция $f:M\to \mathbb{E}$ – измеримая по S^k . Тогда интегралом по поверхности назовем

$$\int_{M} f \ dS^{k}$$

Чтобы взять интеграл по поверхности нам нужно:

- 1. надо выбрать параметризацию
- 2. подставить параметризацию в интеграл

Если мы выберем некоторую параметризацию $M=\varphi(U),$ то $S^k(M)=\int_U J_\varphi(x)dx,$ получаем,

$$\int_{M} f(y)dS^{k} = \int_{U} f(\varphi(x)) \cdot J_{\varphi}(x)dx$$

Свойства интеграла по поверхности

1. линейность: если $f, g: M \to \mathbb{E}$ и $\alpha, \beta \in \mathbb{R}$, то

$$\int_{M} (\alpha f + \beta g) dS^{k} = \alpha \int_{M} f dS^{k} + \beta \int_{M} g dS^{k}.$$

2. монотонность: если $f,g:M\to \mathbb{E}$ и $f\le g$, то

$$\int_{M} f dS^{k} \le \int_{M} g dS^{k}.$$

3. аддитивность по области определения: если $f:M\to \mathbb{E}$ и $M_1\cap M_2=\emptyset$, то

$$\int_{M_1 \cup M_2} f dS^k = \int_{M_1} f dS^k + \int_{M_2} f dS^k.$$

4. ограниченность: если $f: M \to \mathbb{E}$, то

$$\left| \int_{M} f dS^{k} \right| \leq \int_{M} |f| dS^{k}.$$

2.2 Объем шара и площадь сферы

Введем сфеерическую систему координат в \mathbb{R}^k :

$$u = \begin{cases} x_1 = r \cos \varphi \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{n-2} \\ x_2 = r \sin \varphi \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{n-2} \\ x_3 = r \sin \varphi \cos \theta_2 \cdots \cos \theta_{n-2} \\ \vdots \\ x_n = r \sin \theta_2 \cdots \cos \theta_{n-2} \\ r \ge 0 \quad \varphi \in [0, 2\pi] \quad \theta_i \in [-\frac{\pi}{2}, \frac{\pi}{2}] \end{cases}$$

Заметим, что $u(r,\varphi,\theta_1,\dots,\theta_{n-2})$ - параметризация шара, а $\tilde{u}(\varphi,\theta_1,\dots,\theta_{n-2})=u|_{r=const}$ - параметризация сферы.

Обозначим n-мерный шар радиуса r как B_r . Соотвественно S_r - (n-1)-мерная сфера радиуса r.

Вычислим якобианы J_u и $J_{\tilde u}$ этих параметризаций. Нам известно, что $J_u = |\det Du|$ и $J_{\tilde u} = |\det D\tilde u|$.

Рассмотрим набор векторов $\{u_r, u_\varphi, u_\theta, \dots, u_{\theta_{n-2}}\}$, где $u_s = \{\frac{\partial x_1}{\partial s}, \dots, \frac{\partial x_n}{\partial s}\}$. Нетрудно проверить, что этот набор является ортогональным. Следовательно, объем параллепипеда, который натянут на этот набор можно вычислить как произведение длин векторов набора.

$$J_u = |u_r||u_{\varphi}||u_{\theta}|\cdots|u_{\theta_{n-2}}| \quad J_{\tilde{u}} = |u_{\varphi}||u_{\theta}|\cdots|u_{\theta_{n-2}}|$$

Вычислим длины этих векторов.

$$\begin{aligned} |u_r| &= 1 \\ |u_{\varphi}| &= r \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{n-2} \\ |u_{\theta_1}| &= r \cos \theta_2 \cdots \cos \theta_{n-2} \\ &\cdots \\ |u_{\theta_{n-3}}| &= r \cos \theta_{n-2} \\ |u_{\theta_{n-2}}| &= r \end{aligned}$$

Из того, что $|u_r|=1$ следует, что $J_u=J_{\tilde u}.$ Теперь мы можем записать конкретное выражение для J_u :

$$J_u = r^{n-1}\cos\theta_1\cos^2\theta_2\cdots\cos^{n-2}\theta_{n-2}$$

Из этого следуют формулы объема шара и площади сферы:

$$|B_R| = \int_0^R dr \int_0^{2\pi} d\varphi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta_1 \cdots \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta_{n-2} = w_n R^n$$
$$S^{n-1}(S_r) = \int_0^{2\pi} d\varphi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta_1 \cdots \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta_{n-2}$$

Так как $J_u = J_{\tilde{u}}$, можно получить другое выражение для объема шара:

$$|B_r| = \int\limits_0^R S^{n-2}(S_r)dr$$

То есть, чтобы найти объем шара нужно вычислить площади сфер, которые в нем содержаться. Так же площадь сферы можно представить ввиде объемов шаров:

$$S^{n-1}(S_r) = (w_n r^n)'_r = r w_n r^{n-1}$$

2.3 Формула коплощади

Пусть $\varphi:U\subseteq\mathbb{R}^n\to R$. Потребуем, чтобы $\nabla \varphi\neq 0$ (т. е. rank $D\varphi=k$ - максимальный).

Уравнение $\varphi(x)=0$ задает поверхность в U. Эту поверхность можно так же задать как $\varphi^{-1}(0)$. Из этого получаем:

$$\int_{a}^{b} S^{n-1}(\varphi^{-1}(t))dt = \int_{U} J_{\varphi}(x)dx = \int_{U} |\nabla \varphi|(x)dx$$

Теорема 2.2 (Формула коплощади). Пусть $\varphi:U\subset\mathbb{R}^n\to\mathbb{R}^k\in C^1,$ такая, что $\mathrm{rank}(D\varphi)=k,$ тогда верна формула коплощади

$$\int\limits_{U} f(x)J_{\varphi}(x)dx = \int\limits_{\mathbb{R}^{k}} dt \int\limits_{\varphi^{-1}(t)} f(\varphi(t))dS^{k-1}$$

, где

$$J_{\varphi(x)} = \sqrt{\det D\varphi(x) \det D\varphi^*(x)} = \sqrt{\det(\langle \nabla \varphi_i, \nabla \varphi_j \rangle)}$$

Доказательство. Пусть $x_0 \in U$. Мы знаем, что $\mathrm{rank}(\frac{\partial \varphi_i}{\partial x_j}) = k$ - максимальный. Следовательно, в матрице $D\varphi$ есть k линейно-независимых столбоцов. Для простоты будем считать, что это k последних столбцов.

По теореме о выпрямлении, существует C^1 -диффеоморфизм $\Phi: V \to W$, где V - окрестность x_0, W - окрестность нуля, такая что:

$$\Phi\begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} x \\ h(x,z) \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Выполним замену переменных в интеграле и воспользуемся формулой Фубини:

$$\int\limits_{U} f(x,y)J_{\varphi}(x,y)dxdy = \int\limits_{\Phi^{-1}(U)} f(\Phi(x,z))J_{\varphi}(\Phi(x,z))J_{\Phi(x,z)}dxdy = \int\limits_{\mathbb{R}^{k}} dz \int\limits_{\varphi^{-1}(U)\cap\mathbb{R}^{n-k}} f(\Phi(x,z))J_{\varphi}(\Phi(x,z))J_{\Phi(x,z)}dx$$

Заметим, что $\varPhi_{z(x)}^{-1}=\varPhi^{-1}(x,z)$ при фиксированом z является поверхностью. Возьмем $s=\varPhi_z^{-1}(x),$ тогда

$$\int\limits_{U\cap\varphi^{-1}(z)}g(s)dS^{n-k}=\int\limits_{\varphi(U)\cap\mathbb{R}^{n-k}_z}g(\varPhi_z^{-1}(x))J_{\varPhi_z^{-1}}(x)dx$$

Теперь нужно подставить это в прошлое уравнение.

$$\int\limits_{\mathbb{R}^k} dz \int\limits_{\varphi^{-1}(U)\cap\mathbb{R}^{n-k}} f(\varPhi(x,z)) J_{\varphi}(\varPhi(x,z)) J_{\varPhi(x,z)} dx = \int\limits_{\mathbb{R}^k} dz \int\limits_{U\cap\varphi^{-1}(z)} f(s) \frac{J_{\varphi}J_{\Phi}}{J_{\varPhi_z^{-1}}}$$

Для того, чтобы закончить доказательство, нужно лишь доказать, что:

$$\frac{J_{\varphi}J_{\Phi}}{J_{\Phi_z^{-1}}} = 1$$

(TODO: продолжение следует)

Следствие 2.3. Если $P_r:\mathbb{R}^n \to \mathbb{R}^k$ - проекция, тогда

$$\int_{U} f(x)dx = \int_{\mathbb{R}^{k}} dt \int_{\mathbb{R}^{n-k}} f(y)dy$$

, где $\mathbb{R}^{n-k}_t=\{(y,s):s=t\}$ - (n-k)-мерная плоскость (TODO: а это точно следствие?).

3 Введение в векторный анализ

3.1 Дифференциальные формы

Определение 3.1. Векторным полем на многообразии M называется функция $F: M \to F(x)$, такая что $F(x) \in T_x M$.

Для того, чтобы выяснить, как замена переменных влияет на векторное поле, введем оператор переноса.

Определение 3.2. Пусть $\varphi: U \to V$ - C^1 -диффеоморфизм. Тогда оператором переноса назовем φ^* и определим результат его действия на функцию $f: V \to \mathbb{E}$ как фукнцию $\varphi^* f: U \to \mathbb{E}$, такую, что $\varphi^* f(x) = f(\varphi(x)) = (f \circ \varphi)(x)$.

Выясним как оператор переноса действует на векторное поле. Пусть $v:V\to TV$ - векторное поле, тогда $\varphi^*v:U\to TU$ и $\varphi^*v(x)=D\varphi_{\varphi(x)}\langle v(\varphi(x))\rangle$. Свойства оператора переноса:

1. линейность: $\forall \alpha, \beta \in \mathbb{R} \ \forall f, g$ - функции $\forall u, v$ - векторные поля.

$$\varphi^*(\alpha f + \beta g) = \alpha \varphi^* f + \beta \varphi^* g \quad \varphi^*(\alpha u + \beta v) = \alpha \varphi^* u + \beta \varphi^* v$$

- 2. мультипликативность: пусть $f:V\to\mathbb{R},\ v:V\to TV,\ (f\circ v)(g)=f(g)\vec{v}(g)$. Тогда, если $\varphi:U\to V$ C^1 -диффеоморфизм, то $\varphi^*(f\vec{v})=\varphi^*f\cdot\varphi^*v$.
- 3. перенос композиции является произведением переносов: пусть φ : $U \to V$, ψ : $U \to V$ C^1 -диффеоморфизмы, тогда $(\varphi \circ \psi)^* = \varphi^* \psi^*$.
- 4. перестановочность с дифференциалом: $\varphi^* d = d\varphi^*$.

Для доказательства последнего свойства, нам нужно ввести определение дифференциальной формы, а для этого нужно вспомнить некоторые свойства линейных отображений.

Пусть $L:\mathbb{R}^n \to \mathbb{R}$ - линейное отображение. Рассмотрим действие L на вектор v:

$$L\langle v \rangle = L\langle v_1e_1 + \ldots + v_ne_n \rangle = v_1L\langle e_1 \rangle + \ldots + v_nL\langle e_n \rangle = v_1a_1 + \ldots + v_na_n$$

Из этого уравнения следует то, что всякая линейная функция это скалярное произведение аргумента с некоторым постоянным вектором: $L\langle v \rangle = a \cdot v.$

Введем базис на пространстве линейных отображений $Lin(\mathbb{R}^n,\mathbb{R})\simeq \mathbb{R}^n.$

Набор функций $dx_1,\ldots,dx_n:\mathbb{R}^n\to\mathbb{R}$, таких что $dx_j(v_1,\ldots,v_n)=v_j$, является базисом в $Lin(\mathbb{R}^n,\mathbb{R})$. Следовательно, $L\langle v\rangle=a_1v_1+\ldots+a_nv_n=a_1dx_1+\ldots+a_ndx_n$.

Обозначим за $\Lambda^k(\mathbb{R}^n)$ пространство алгебраических форм степени k над \mathbb{R}^n . В частности $\Lambda^0(\mathbb{R}^n)=\mathbb{R}$ и $\Lambda^1(\mathbb{R}^n)=Lin(\mathbb{R}^n,\mathbb{R})$.

Определение 3.3. Дифференциальной формой степени k (сокращенно k-формой) на $U \subseteq \mathbb{R}^n$ будем называть $w: U \to \Lambda^k(\mathbb{R}^k)$.

Пемма 3.4. Существует так называемый дуализм между 1-формами и векторными полями, так как каждая 1-форма изоморфна некоторому векторному полю.

Доказательство. Рассмотрим некоторую 1-форму w(x), тогда $w(x) = a_1(x)dx_1 + \dots a_n(x)dx_n$. Пусть $v(x) = (a_1(x), \dots, a_n(x))$, тогда $w(x)\langle u \rangle = v(x) \cdot u$.

Дифференциал функции так же является 1-формой. Так что стоит задасться вопросом: а не все ли 1-формы являются дифференциалом некоторой функции? Пример ниже говорит, что ответ на этот вопрос - нет.

Пример 3.5. w = xdy - 1-форма, но не дифференциал.

Доказательство. Допустим, что $w=df=f_xdx+f_ydy$. Тогда $f_x=0$ и $f_y=x$. Из курса мы знаем, что для любой функции $f_{xy}=f_{yx}$. Проверим, так ли это в нашем случае. Получаем $f_{xy}=0\neq 1=f_{yx}$. Получили противоречие.

Рассмотрим как перейти к полярным координатам в форме w=xdy. Пусть $x=r\cos\varphi$ и $y=r\sin\varphi$, тогда $\varphi^*w=r\cos\varphi d(r\sin\varphi)=r\cos\varphi(\sin\varphi dr+r\cos\varphi d\varphi)=r\sin\varphi\cos\varphi dr+r^2\cos^2\varphi d\varphi$.

Опеределим теперь оператор переноса для 1-форм.

Определение 3.6. Пусть w - 1-форма на V. Пусть $\varphi:U\to V\subseteq\mathbb{R}^n$ - C^1 -диффеоморфизм. Тогда φ^*w - 1-форма на U и $\varphi^*w(x)\langle v\rangle=w(\varphi(x))\langle d\varphi(x)\langle v\rangle\rangle$.

Теперь мы можем доказать 4 свойство оператора переноса.

Лемма 3.7 (Четвертое свойство оператора переноса). Пусть $\varphi: U \to V$ - C^1 -диффеоморфизм, $f: V \to \mathbb{E} \in C^1$, тогда $\varphi^*(d\varphi) = d(\varphi^*f)$. Заметим так жее, что слева от равенства стоит 1-форма, а справа 0-форма.

Доказательство. Утверждение следует из следующей цепочки равенств:

$$\varphi^*(df)(x)\langle v\rangle = df(\varphi(x))\langle d\varphi(x)\langle v\rangle\rangle = df(\varphi(x)) \circ d\varphi(x)\langle v\rangle = d(f \circ \varphi)(x)\langle v\rangle = d(\varphi^*f)(x)\langle v\rangle$$

Пример 3.8 (Работа векторного поля вдоль кривой). Рассмотри одно из физических приложений дифференциальных форм. Мы знаем, что работа силы вычисляется по формуле $A = \vec(F) \cdot \vec l$. То есть силу можно рассматривать как дифференциальную форму $A = w_g \langle l \rangle$. А теперь представим, что нам нужно посчитать работу вдоль кривой, где сила не постоянна на всех точках кривой. Получаем $A = \int \vec g(x) \cdot \vec r(x) dl(x)$.

 γ