

# INVESTIGAÇÃO OPERACIONAL

- A Investigação Operacional (IO) surgiu para resolver, de uma forma eficiente, problemas que envolvem a gestão otimizada de recursos escassos
- Aplica uma análise quantitativa aos problemas reais complexos que envolvem a tomada de decisões, utilizando um conjunto de métodos baseados essencialmente em procedimentos matemáticos
- O objetivo consiste em encontrar a melhor solução para os problemas, isto é, a solução ótima, de forma a poder tomar-se a melhor decisão

- Relativamente à origem da IO, existem diferentes visões dependendo da fonte de informação. De acordo com *The* Operations Research Society<sup>1</sup>, a história da IO começou nas guerras mundiais, quando a investigação científica foi usada para melhorar as operações militares, com sucesso
- Foram contratados cientistas para analisar os problemas estratégicos e táticos associados às operações militares (ou seja, investigar as operações), com o objetivo de descobrir a forma mais eficiente de usar os recursos militares limitados, através da aplicação de técnicas quantitativas

<sup>1</sup> https://www.theorsociety.com/about-or/history-of-or/

Em 1947, George Dantzig, cientista que trabalhava na alocação de recursos (materiais e humanos) em vários projetos da Força Aérea do Exército dos EUA, inventou o algoritmo simplex para resolver problemas de otimização e, nesse processo, fundou o ramo da programação linear (PL)



Cedo se verificou que este algoritmo era ideal para resolver problemas anteriormente intratáveis, envolvendo centenas, ou mesmo milhares, de variáveis, pelo computador recém-inventado

- Em termos de aplicação generalizada, o algoritmo simplex é um dos mais bem-sucedidos de todos os tempos, tendo sido incluído num Top 10 dos melhores algoritmos do século 20²
- Algumas das possíveis aplicações práticas da PL e do algoritmo simplex:
  - Negócios e indústria no planeamento da produção, transporte e roteamento, bem como vários tipos de escalonamento

<sup>&</sup>lt;sup>2</sup> http://web.ist.utl.pt/~ist11038/CD Casquilho/PRINT/NotebookSC 6Simul 08pp.pdf

- Companhias aéreas para programar os seus voos, tendo em consideração, quer o escalonamento dos aviões, quer o escalonamento do pessoal
- Serviços de entrega para agendar e encaminhar remessas, de forma minimizar o tempo de entrega ou o custo
- Retalhistas para determinar como encomendar produtos aos fabricantes e organizar as entregas nas suas lojas

- Instituições financeiras para determinar a combinação de produtos financeiros a oferecer aos clientes, ou para programar transferências de fundos entre instituições
- ➤ Instituições de saúde para garantir que as provisões adequadas estão disponíveis quando for necessário, ou para organizar e coordenar procedimentos de saúde que salvam vidas (por exemplo, identificar com eficiência uma cadeia de doação de um rim)

#### Alguns links para consulta:

- https://math.libretexts.org/Bookshelves/Applied Mathematics/Applied Finite Mathematics (Sekhon and Bloom)/04%3A Linear Programming The Simplex Method/4.01%3A Introduction to Linear Programming Applications in Business Finance Medicine and S ocial Science
- o https://digitalis-dsp.sib.uc.pt/handle/10316.2/35906
- o <a href="https://youtu.be/0oMVVx81kCs">https://youtu.be/0oMVVx81kCs</a>



## PROGRAMAÇÃO LINEAR

- A programação linear (PL) é um dos ramos mais desenvolvidos e mais utilizados da IO
- Otimiza problemas de decisão, representando-os em termos de um modelo matemático de PL
- Este modelo carateriza-se pelo facto de todas as expressões matemáticas que o compõem serem lineares



## PROGRAMAÇÃO LINEAR

Formular um problema em termos de um **modelo de PL** consiste em especificar:

- Variáveis de decisão (o que se pretende determinar)
- Função objetivo (o que se pretende otimizar)
- Restrições (condições que têm de ser respeitadas)

### EXEMPLO DE UM PROBLEMA DE PL

### O dilema do Sr. Francisco



O Sr. Francisco dedica-se à criação e venda de cães de determinada raça, com bastante procura no mercado.



Como pretende que os seus animais cresçam saudáveis e bonitos, ele sabe que deve proporcionar-lhes uma alimentação equilibrada.

Na verdade, o Sr. Francisco tem à sua disposição dois tipos de rações, **A** e **B**, com caraterísticas e preços diferentes.







#### Composição em termos de nutrientes das rações A e B:

|               | Rações |        |  |  |  |
|---------------|--------|--------|--|--|--|
| Nutrientes    | Α      | В      |  |  |  |
| Nutrientes    | (g/kg) | (g/kg) |  |  |  |
| Sais minerais | 20     | 50     |  |  |  |
| Vitaminas     | 50     | 10     |  |  |  |
| Cálcio        | 30     | 30     |  |  |  |

Quantidades mínimas de nutrientes, por semana, para uma alimentação equilibrada (segundo os veterinários):

| Nutrientes    | Quantidade mínima requerida (em g) |  |  |  |
|---------------|------------------------------------|--|--|--|
| Sais minerais | 200                                |  |  |  |
| Vitaminas     | 150                                |  |  |  |
| Cálcio        | 210                                |  |  |  |

O Sr. Francisco reflete sobre aquilo que pretende:

Por um lado, quer respeitar as indicações dadas pelos veterinários no sentido de proporcionar aos cachorros uma dieta nutritiva adequada

0.5€/kg



Mas, por outro lado, quer minimizar gastos com a alimentação de cada animal



Assim, a questão a resolver é a seguinte:

Que quantidade de cada tipo de ração (**A** e **B**) deve o Sr. Francisco dar semanalmente a cada cachorro de forma a

- respeitar as quantidades mínimas de nutrientes aconselhadas e
- minimizar o custo da alimentação de cada animal

Para determinar a resposta a esta questão, torna-se necessário traduzir o problema num **modelo matemático de PL** 



### Modelo de programação linear

- Variáveis de decisão:
  - x<sub>1</sub> Quantidade (em Kg) de ração A a dar a cada animal por semana
  - x<sub>2</sub> Quantidade (em Kg) de ração B a dar a cada animal por semana
- Função objetivo:

minimizar custo (em €), ou seja,

min 
$$z = 1 x_1 + 0.5 x_2$$

#### Restrições:

$$20 x_1 + 50 x_2 \ge 200$$
 Sais minerais  
 $50 x_1 + 10 x_2 \ge 150$  Vitaminas  
 $30 x_1 + 30 x_2 \ge 210$  Cálcio  
 $x_1 \ge 0, x_2 \ge 0$ 

### Obtenção da solução ótima

#### Método gráfico

Utilizado na resolução de problemas simples

#### Método algébrico

Um dos algoritmos de programação linear, como por exemplo, o **método Simplex** 

### Método gráfico / Método Simplex



| хв             | c'e xi | 5<br>x <sub>1</sub> | 2<br>x2 | 0<br>x3 | 0<br>X4 | 0<br>x5 | ь |       |
|----------------|--------|---------------------|---------|---------|---------|---------|---|-------|
| <b>x</b> 3     | 0      | 1+                  | 0       | 1       | 0       | 0       | 3 | (3/1) |
| X4             | 0      | -0                  | 1       | 0       | 1       | 0       | 4 |       |
| X5             | 0      | 1                   | 2       | 0       | 0       | 1       | 9 | (9/1) |
| z <sub>i</sub> | −¢j    | -5                  | -2      | 0       | 0       | 0       | 0 |       |

com z=0

| хв             | ci<br>c'B <sup>x</sup> i | 5<br>x <sub>1</sub> | 2<br>x2 | 0<br>x3 | 0<br>X4 | 0<br>x5 | ь  |                |
|----------------|--------------------------|---------------------|---------|---------|---------|---------|----|----------------|
| x <sub>1</sub> | 5                        | 1                   | 0       | 1       | 0       | 0       | 3  |                |
| X4             | 0                        | 0                   | 1       | 0       | 1       | 0       | 4  | (4/1)          |
| X5             | 0                        | 0                   | 2+      | -1      | 0       | 1       | 6  | (4/1)<br>(6/2) |
| Zį.            | . ci                     | 0                   | -2      | - 5     | 0       | 0       | 15 |                |

com z=15

| x <sub>E</sub> | ci<br>c'E <sup>X</sup> i | 5<br>x <sub>1</sub> | 2<br>x2 | 0<br>x3 | 0<br>x4 | 0<br>x5 | ь  |           |
|----------------|--------------------------|---------------------|---------|---------|---------|---------|----|-----------|
| x <sub>1</sub> | 5                        | 1                   | 0       | 1       | 0       | 0       | 3  | ×1 óptimo |
| 34             | 0                        | 0                   | 0       | 1/2     | 1       | -1/2    | 1  | ×4 óptimo |
| x2             | 2                        | 0                   | 1       | -1/2    | 0       | 1/2     | 3  | ×2 óptimo |
| Zj             | _cj                      | 0                   | 0       | 4       | 0       | 1       | 21 | 2 áptimo  |

Quadro ótimo pois não há valores negativos na linha zj-cj.

## Apresentação da solução



Resolvendo por qualquer dos dois métodos anteriormente referidos, obter-se-ia **x**<sub>1</sub>=**2**, **x**<sub>2</sub>=**5** e **z**=**4.5**, pelo que a solução a apresentar ao Sr. Francisco seria a seguinte:



Deverá alimentar cada cachorro com 2 kg de ração A e 5 kg de ração B, por semana, de modo a conseguir fornecer ao animal os nutrientes indispensáveis a um crescimento saudável, gastando um mínimo de 4.5 € semanais.