Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная №11

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Latency

Задание 2

Студенты:

Соболь В.

Темнова А.С.

Группа: 13541/3

Преподаватель:

Антонов А.П.

Содержание

1.	Задание	3
2.	Исходный код	6
3.	Скрипт	7
4.	Моделирование	7
5.	Решение 1а 5.1. Директивы 5.2. Синтез 5.3. С/RTL моделирование	8
6.	Решение 2a 6.1. Директивы	11 11 11
7.	Решение 3а 7.1. Директивы	
8.	Решение 4а 8.1. Директивы 8.2. Синтез	
9.	Решение 5а 9.1. Директивы 9.2. Синтез	
10	.Вывол	13

1. Задание

- 1. Создать проект lab11 2
- 2. Микросхема: ха7а12tcsg325-1q
- 3. Создать функцию по образцу (иерархия функций)

```
Op_read: t_in=d_in[i]
Op_compute: t_r=t_in*t_in;
Op_write: d_out[i]=t_r;
```

- 4. Создать тест lab11_2_test.c для проверки функции. Осуществить моделирование (с выводом результатов в консоль)
- 5. Исследование:
- 6. Solution_1a
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ПО УМОЛЧАНИЮ
 - осуществить синтез для:
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму
- 7. Solution 2a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию LATENCY для одной итерации

```
Loop_A: for (i=0; i<N; i++) {
#pragma HLS latency
..Loop Body...
}
```

- 8. осуществить синтез
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - * На скриншоте показать Latency
 - * На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - * На скриншоте показать Latency
 - * На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму
- 9. Сравнить два решения (solution_1a и solution_2a) и сделать выводы: зависимость от LATENCY; объяснить (посчитать) число циклов Latency, II...
- 10. Solution 3a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию LATENCY для всего цикла

```
#pragma HLS latency Loop_A: for (i=0; i<N; i++) { ...Loop Body... }
```

- осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)

- · На скриншоте показать Latency
- · На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму
- 11. Сравнить два решения (solution_2a и solution_3a) и сделать выводы: зависимость от LATENCY; объяснить (посчитать) число циклов Latency, II...
- 12. Solution_4a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию LATENCY с опцией min=5
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму
- 13. Сравнить два решения (solution_3a и solution_4a) и сделать выводы: зависимость от LATENCY; объяснить (посчитать) число циклов Latency, II...
- 14. Solution 5a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию LATENCY с опцией max=8
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму
- 15. Сравнить два решения (solution_3a и solution_5a) и сделать выводы: зависимость от LATENCY; объяснить (посчитать) число циклов Latency, II...

2. Исходный код

Ниже приведен исходный код устройства и теста.

```
1 #include "lab11_2.h"
    \mathbf{void} \ \mathrm{lab11} \_ 2 (\mathbf{int} \ \mathrm{d} \_ \mathrm{in} [\mathrm{N}] \ , \ \mathbf{int} \ \mathrm{d} \_ \mathrm{out} [\mathrm{N}])
 2
 3
 4
       int i;
 5
       int t_in, t_r;
 6
       Loop: for (i = 0; i < N; i++)
 7
 8
           t_i = d_i [i];
 9
           t r = t in * t in;
           d_out[i] = t_r;
10
11
12|}
```

Рис. 2.1. Исходный код устройства

```
1 #define N 16
```

Рис. 2.2. Заголовочный файл

```
1 #include "lab11 2.h"
  #include <stdio.h>
3
4
  int main()
5
6
    int d_in[N], d_actual[N], d_expected[N];
7
    int passed = 1;
     int i;
8
9
     {\bf for}\,(\,i\ =\ 0\,;i\ <\,N\,;\,i\,+\!+\!)
10
11
       d_i = i;
12
       d \exp \operatorname{cted}[i] = i * i;
13
     }
14
    lab11 2(d in,d actual);
15
16
     for (i = 0; i < N; i++)
17
18
19
       printf("Expected_[%d]_actual_[%d]\n",d_expected[i], d_actual[i]);
20
       if (d_expected[i] != d_actual[i])
21
22
         passed = 1;
23
24
25
     if (passed != 1) {
                        ---Test_failed ----\n");
26
       printf("-
27
     } else {
       28
29
30
```

Рис. 2.3. Исходный код теста

3. Скрипт

Ниже приводится скрипт, для автоматизации выполнения лабораторной работы.

```
open\_project - reset \ lab11\_2
2
3
  add files lab11 2.c
  add files -tb lab11 2 test.c
  set top lab11 2
7
  set solutions [list 1a 2a 3a 4a 5a]
8
9
  foreach sol $solutions {
     open_solution solution_$sol -reset
10
     set_part \{xa7a12tcsg325-1q\}
11
12
     create_clock -period 10ns
13
     set_clock_uncertainty 0.1
14
     if \{\$sol = "2a"\} \{
15
16
       set_directive_latency "lab11_2/Loop"
17
     if {$sol == "3a"} {
18
19
       set_directive_latency "lab11_2"
20
     if {\$sol} = "4a"} {
21
22
       set_directive_latency -min 5 "lab11_2"
23
24
     if {$sol == "5a"} {
25
       set directive latency -max 8 "lab11 2"
26
27
28
     csim\_design
29
     \operatorname{csynth}_{-}\operatorname{design}
     cosim_design -trace_level all
30
31
32
33
  e\,x\,i\,t
```

Рис. 3.1. Скрипт

4. Моделирование

Ниже приведены результаты моделирования.

```
INFO: [APCC 202-1] APCC is done.
  Generating csim.exe
Expected [0] actual [0]
Expected [1] actual [1]
Expected [4] actual [4]
Expected [9] actual [9]
Expected [16] actual [16]
Expected [25] actual [25]
Expected [36] actual [36]
Expected [49] actual [49]
Expected [64] actual [64]
Expected [81] actual [81]
Expected [100] actual [100]
Expected [121] actual [121]
Expected [144] actual [144]
Expected [169] actual [169]
Expected [196] actual [196]
Expected [225] actual [225]
-----Test passed------
INFO: [SIM 211-1] CSim done with 0 errors.
```

Рис. 4.1. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

5. Решение 1а

5.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 5.1. Директивы

5.2. Синтез

 Π о оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty		
ap_clk	10.00	8.470	0.10		

□ Latency (clock cycles)

□ Summary

Late	Latency		Interval		
min	max	min	max	Туре	
65	65	65	65	none	

Рис. 5.2. Performance estimates

Itilization Es	timates			
∃ Summary				
Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	3	0	47
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	42
Register	-	-	84	-
Total	0	3	84	89
Available	40	40	16000	8000
Utilization (%)	0	7	~0	1

Рис. 5.3. Utilization estimates

Performance Pr	Œ				
	Pipelined	Latency	Iteration Latency	Initiation Interval	Trip count
▼ ⊚ lab11_2	b11_2 - 65			66	
• Loop no 64		64	4	-	16

Рис. 5.4. Performance profile

Рис. 5.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4
1	⊡I/O Ports					
2	d_in(p0)		re	read		
3	d_out(p0)					write
4	⊡Memory Ports		read			
5	d_in(p0)					
6	d_out(p0)					write
7	Expressions					
8	i_1_fu_69		+			
9	i_phi_fu_56		phi_mux			
10	exitcond_fu_63		icmp			
11	t_r_fu_80				*	

Рис. 5.6. Resource viewer

5.3. C/RTL моделирование

Рис. 5.7. Временная диаграмма

По умолчанию интерфейсы реализованы как ар_memory. Как видно из диаграммы, выполнение одного цикла требует 4 такта (всего 16 итераций цикл) и 1 такт для инициализации, в итоге Latency =4*16+1=65, II =66 тактов.

6. Решение 2а

6.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 6.1. Директивы

6.2. Синтез

Результаты идентичны первому решению.

7. Решение 3а

7.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 7.1. Директивы

7.2. Синтез

Результаты идентичны первому решению.

8. Решение 4а

8.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 8.1. Директивы

8.2. Синтез

Результаты идентичны первому решению.

9. Решение 5а

9.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 9.1. Директивы

9.2. Синтез

Результаты идентичны первому решению.

10. Вывод

При проведении исследований для данной функции никаких отличия при применении директивы LATENCY выявлено не было.