

Ordinary least square regression model for continuous outcomes

Dr. Rina Das

Nutrition and Clinical Services Division, icddr,b

Learning objectives

By the end of the session we will be able to:

- 1. Build statistical model for investigating associations
- Identify important exposure variables for inclusion in a model
- Perform multiple linear regression analysis for epidemiological investigations
- 2. Interpret the findings and present them in a clear and concise manner

Why Regression?

Regression

• Regression analysis attempts to explain the variation in a dependent variable using the variation in independent variable(s)

• We use regression to estimate the <u>unknown effect</u> of changing one variable over another (Stock and Watson, 2003, ch. 4)

Purpose of regression

Estimation

 <u>Estimate</u> association between outcome and exposure adjusted for other covariates

Prediction

 Use an estimated model to predict the outcome of the given covariates in a <u>new dataset</u>

Difference ??

Correlation

Measures <u>direction</u> and <u>strength of association</u>

Linear regression

To quantify the magnitude of association when it is assumed that the linear relationship exists between dependent and independent variable

Variables

Independent variable:

It is a variable that stands alone and isn't changed by the other variables we are trying to measure. These are more or less *controlled*.

Dependent variable:

Dependent variables are not controlled but instead are simply *measured*. Dependent Variables depend on what the independent variable is

Independent variable(s) change the dependent variable

Regression

Regression Model

Simple regression fits a straight line to the data

Slope (b): Slope (b) represents the rate of change in dependent variable (y) for unit change in independent variable (x)

Intercept (a): Expected mean value of dependent variable (y) when there is no effect of independent variable on dependent variable (x=0)

The function will make a prediction for each observed data point

The observation is denoted by y and the prediction is denoted by ŷ

For each observation, the variation can be described as:

$$y = y + \epsilon$$
Actual = Explained + Error

Least Square Regression Line

A least squares regression selects the line with the lowest total sum of squared prediction errors

This value is called the **Sum of Squares of Error**, or SSE

Sum of Square Regression

The **Sum of Squares Regression** (SSR) is the sum of the squared differences between the prediction for each observation and the population mean

Coefficient of Determination, R²

The proportion of total variation (SST) that is explained by the regression (SSR) is known as the Coefficient of Determination, and is often referred to as R²

$$R^2 = \frac{SSR}{SST} = \frac{SSR}{SSR + SSE}$$

measure of explained variation:

$$SSR = \sum (\hat{y} - \overline{y})^2$$

measure of unexplained variation:

$$SSE = \sum (y - \hat{y})^2$$

measure of total variation in y:

$$SST = SSR + SSE$$

Range of R²

The value of R² can range between 0 and 1, and the higher its value the more accurate the regression model is. It is often expressed in percentage

Example

X	y	ŷ	y	y-ŷ	(y-ŷ) ²	ŷ- y	(ŷ- y)²
1	4	3	7	4-3=1) (1	-4	16
2	6	4	7	2	4	-3	9
3	6	5	7	1	1	-2	4
4	7	6	(7) 1	1	-1	1
5	8	7	7	1	1	0	0
6	7	8	7	-1	1	1	1
7	8	9	7	-1	1	2	4
8	10	10	7	0	0	3	9
Total=					$\Sigma(y-\hat{y})=10$		$\Sigma(\hat{y}-\overline{y})^2=44$

$$R^2 = \frac{SSR}{SST} = \frac{SSR}{SSR + SSE} = \frac{44}{44 + 10} = 0.8148 = 81.48\%$$

Multiple Regression

 Multiple regression forms a 'linear combination' of <u>multiple</u> variables to best predict an outcome

 Then assess the contribution of each predictor variable to the equation, separately and/or combinedly

When to use Multiple Linear Regression

1 (One) Dependent variable

[Continuous]

VS.

Several Independent variables

[Continuous and/or Categorical]

Assumption of linear regression

- Data normally distributed: outcome variable is distributed normally at each value of predictor variable
- Have linear relationship between predictor and outcome variables
- The variance of outcome variable at every value of predictor variable is the same
- The residuals are independent

Overview: statistical modelling in linear regression

Conceptual framework

- 1. Literature Review
- 2. Identification of the
- -Exposure variables
 - Confounders
 - -Effect modifiers

Preliminary analysis

- 1. Data exploration and data cleaning
- 2. Classification of the variables
 - 3. Data reduction (categorization)

Univariate and bivariate analysis

- 1. Tables and visual plots
 - 2. Cross tabulations
- 3. Unadjusted measure of effect (crude)
 - 3. Correlations
 - 4. Simple regression

Multivariable analysis

- 1. Multiple linear regression
 - 2. Adjusted for confounders
- 3. Investigate interaction
 - 4. Post estimation diagnostics

Confounder

Confounding happens when another variable is:

- Associated with the outcome
- Associated with the explanatory variable of interest
- Not on the causal pathway

Simultaneous adjustment for all exposures (if multiple exposures)

There is no statistical test for confounding

https://www.sciencedirect.com/science/article/pii/S008 5253815529748: Confounding: What it is and how to deal with it

Maternal age is correlated with birth order and a risk factor even if birth order is low

Control the confounder

 Adding a confounding variable as a predictor in the linear model allow for controlling the confounder

- Adjusting for confounding in this way we assume that:
 - ✓ The confounder has been measured perfectly.
 - ✓ The association between confounder and outcome is perfectly linear.
- Confounding is a property of the real-world system we are attempting to model
- Requires a thorough knowledge of the subject area

Interaction / effect modification

- Mediating factor— should not be adjusted/controlled
- Multivariable methods itself can be used to assess effect modification
- Need to report the effect modifier

Example of Multiple Linear Regression

- Data Source: BDHS data, 2018
- Objective of the analysis: To identify the factors associated with height-for-age
 z score among under 5 Bangladeshi children
- **Dependent variable:** Height-for-age z score (HAZ)

• Independent/exposure variables: ?????

BDHS data, 2018

	caseid	₩003	₩005	V008	v011	v012	v021	v024	v025	v106	v113	v116	v130	v1: ^	Variables	
1	1 17 4	4	664194	1415	1194	18	1	barisal	rural	higher	tube	pit 1	islam		Kilter variables here	
2	1 48 2	2	664194	1415	989	35	1	barisal	rural	primary	tube	pit 1	islam		✓ Name	Label
3	1 52 4	4	664194	1415	1152	21	1	barisal	rural	secon	not a	not a	islam		☑ edu	Education
4	1 52 4	4	664194	1415	1152	21	1	barisal	rural	secon	not a	not a	islam		religion	Mother's religion
5	1 61 2	2	664194	1415	1035	31	1	barisal	rural	primary	tube	hangi	islam		☑ PartnerEdu	Partner's Education
6	1 69 2	2	664194	1415	1143	22	1	barisal	rural	secon	tube	pit 1	islam		☑ deci_healt	Woman's own heal
7	1 74 2	2	664194	1415	1138	23	1	barisal	rural	higher	tube	pit 1	islam		☑ deci_purch	Making major hou
8	1104 1	1	664194	1415	934	40	1	barisal	rural	higher	tube	venti	buddhism		☑ deci_visit	Visits to her family
9	1117 2	2	664194	1415	1065	29	1	barisal	rural	secon	tube	pit l	islam		☑ all_dec	All three decisions
10	1131 2	2	664194	1415	1162	21	1	barisal	rural	primary	tube	pit 1	islam		☑ none_dec	None of the three
11	2 7 2	2	677993	1415	971	37	2	barisal	rural		tube	-	islam		✓ toilet	type of toilet facility
12	2 25 2	2	677993	1415	1126	24	2	barisal	rural	secon		pit l	islam		✓ contraceptive	Use contraceptive
13	2 32 2	2	677993	1415	1043	31	2	barisal	rural	higher		venti	islam		☑ Beating	Domestic violence
14	2 43 3	3	677993	1415	1114	25	2	barisal	rural	secon			islam		Variables Snapshots	***** 1
15	2 43 3	3	677993	1415	1114	25	2	barisal	rural	secon		not a	islam		Properties	
16	2 54 2	2	677993	1415	1085	27	2	barisal	rural	secon			islam		□ Variables	
												pit l			Name	caseid
17	2 61 4	4	677993	1415	1076	28	2	barisal	rural	secon		pit l	islam		Label	case identification
18	2 65 2	2	677993	1415	1063	29	2	barisal	rural	primary		pit l	islam		Type Format	str15 %15s
19	2 72 2	2	677993	1415	1122	24	2	barisal	rural	secon	tube	pit l	islam		Value label	70133
20	2 76 2	2	677993	1415	1120	24	2	barisal	rural	primary	tube	pit 1	islam		Notes	
21	2 76 2	2	677993	1415	1120	24	2	barisal	rural	primary	tube	pit 1	islam		⊟ Data	
22	2 79 2	2	677993	1415	1199	18	2	barisal	rural	primary	tube	pit 1	islam		⊞ Filename Label	DataBDHS_2018.dta
23	2 87 2	2	677993	1415	1034	31	2	barisal	rural	primary	tube	hangi	islam		Notes	
24	2 94 2	2	677993	1415	1127	24	2	barisal	rural	primary	tube	pit 1	islam		Variables	79
25	2 97 2	2	677993	1415	1106	25	2	barisal	rural	primarv	tube	pit 1	islam		Observations	8,759
26	3 7 4	4	726617	1416	938	39	3	barisal	rural		not a	-	islam		Size Memory	1.68M 64M
26	3 / 4	7	726617	1410	930		3	Darisai 	rurdi	110 Eu	110t a	1100 a		~	Sorted by	UMIVI

Statistical modelling

Conceptual framework

- 1. Literature Review
- 2. Identification of the
 - -Exposure variables
 - Confounders
 - -Effect modifiers

Preliminary analysis

- 1. Data exploration and data cleaning
- 2. Classification of the variables
 - 3. Data reduction (categorization)

Univariate and bivariate analysis

- 1. Tables and visual plots
 - 2. Cross tabulations
 - 3. Correlations
 - 4. Simple regression

Conceptual framework

Use of linear regression analysis

Example research question

Average maternal BMI in the urban area is better than rural area in Bangladesh, 2021

```
. tabstat bmi, by(v025)

Summary for variables: bmi
by categories of: v025 (type of place of residence)

v025 mean

urban 23.64351
rural 22.13953

Total 22.66033
```

Use of linear regression analysis

Example research question

Average maternal BMI in the urban area is better than rural area in Bangladesh, 2021

Use of linear regression analysis

Example research question

Average maternal BMI in the urban area is better than rural area in Bangladesh, 2021

```
. tabstat bmi, by(v025)
```

Summary for variables: bmi by categories of: v025 (type of place of residence)

v025	mean
urban rural	23.64351 22.13953
Total	22.66033

Simply, we can do the *t-test* between two groups

Data Exploration

							- 1-50			
. sum hw70						. su	m hw70, detail			
Variable	Obs	Mean	Std. Dev.	Min	Max		height/ag	ge standard de v	iation (new who)	
hw70	7,849	-1.382771	1.320636	-5.86	5.88		Percentiles	Smallest		
'						1%	-4.48	-5.86		
						5%	-3.41	-5.86		
						10%	-2.94	-5.85	Obs	7,849
. tab b4						25%	-2.23	-5.85	Sum of Wgt.	7,849
sex of	=					50%	-1.45		Mean	-1.382771
child	ı	From	Percent	C	11m			Largest	Std. Dev.	1.320636
CIIIIC	1	Freq.	reicent	C	um.	75%	59	5.59		
		1 567	E2 14	E 2	1.4	90%	.21	5.71	Variance	1.744079
male	- 1	4,567	52.14		.14	95%	.73	5.87	Skewness	.4471885
female	=	4,192	47.86	100	.00	0.08	2 2	E 00	Furtosis	4 754577

99%

8,759

Total

100.00

2.2

5.88

Kurtosis

4.754577

Grouping

. sum hw70

Variable	Obs	Mean	Std. Dev.	Min	Max
hw70	7,849	-1.382771	1.320636	-5.86	5.88

Stunting: HAZ < -2, (< 5 years of age)

tab stunting

stunting	Freq.	Percent	Cum.
non-stunted stunted	5,388 2,461	68.65 31.35	68.65 100.00
Total	7,849	100.00	

✓ Meaningful cut-off points

✓ Standard grouping

. sum hw72

Variable	Obs	Mean	Std. Dev.	Min	Max
hw72	7,831	5411365	1.148866	-4.99	4.99

. tab wasting

wasting	Freq.	Percent	Cum.
non-wasted wasted	7,16 4 667	91.48 8.52	91.48 100.00
Total	7,831	100.00	

Categorization

type of toilet facility	Freq.	Percent	Cum.
flush to piped sewer system flush to septic tank flush to pit latrine flush to somewhere else flush, don't know where ventilated improved pit latrine (vip) pit latrine with slab pit latrine without slab/open pit no facility/bush/field hanging toilet/latrine	180 1,424 276 301 198 1,040 1,855 2,319 75 75	2.06 16.26 3.15 3.44 2.26 11.87 21.18 26.48 0.86 0.86	2.06 18.31 21.46 24.90 27.16 39.03 60.21 86.69 87.54 88.40
not a dejure resident Total	1,016 8,759	100.00	

			. tab toilet
Cum.	Percent	Freq.	type of toilet facility
57.81 100.00	57.81 42.19	4,775 3,485	improved unimproved
	100.00	8,260	Total

highest educational level	Freq.	Percent	Cum.
no education primary secondary higher	642 2,548 4,115 1,454	7.33 29.09 46.98 16.60	7.33 36.42 83.40 100.00
Total	8,759	100.00	

Education	Freq.	Percent	Cum.
below secondary Secondary and above	3,190 5,569	36. 4 2 63.58	36. 4 2 100.00
Total	8,759	100.00	

Univariate analysis

- Categorical variables Frequency tables
- **Quantitative variables** Descriptive statistics
 - ✓ Central tendency (mean, median)
 - ✓ Dispersion (min, max, range, IQR, SD, coefficient of variation)
 - ✓ Shape of distribution (skewness, kurtosis)
- Visualize data using plots
 - ✓ Histograms (normally distributed/ not), bar charts, pie charts

Univariate analysis

Categorical variable

Continuous variable

. sum hw70, detail

height/age standard deviation (new who)

. tabulate b4

sex of child	Freq.	Percent	Cum.
male female	4,567 4,192	52.14 47.86	52.14 100.00
Total	8,759	100.00	

	Percentiles	Smallest		
1%	-4.48	-5.86		
5%	-3.41	-5.86		
10%	-2.94	-5.85	Obs	7,849
25%	-2.23	-5.85	Sum of Wgt.	7,849
50%	-1.45		Mean	-1.382771
		Largest	Std. Dev.	1.320636
75%	59	5.59		
90%	.21	5.71	Variance	1.744079
95%	.73	5.87	Skewness	.4471885
99%	2.2	5.88	Kurtosis	4.754577

Data visualization

histogram hw70, normal

graph box hw70, over(b4)

Bivariate analysis

Cross tabulation

sex of	stunt	ing	
child	non-stunt	stunted	Total
male	2,805	1,287	4,092
	52.06	52.30	52.13
female	2,583	1,174	3,757
	47.94	47.70	4 7.87
Total	5,388	2,461	7,8 4 9
	100.00	100.00	100.00

Source	SS	df	MS		Number of obs F(1, 7847) Prob > F R-squared Adj R-squared Root MSE		7,849
Model Residual	.009383704 1958.66612	1 7,8 4 7	.009383704	Prob R-squ			0.04 0.8463 0.0000
Total	1958.6755	7,848	.249576389	_			-0.0001 .49961
b4	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
stunting _cons	0023568 1.479399	.0121553 .0068064	-0.19 217.36	0.8 4 6 0.000	0261 1.466		.0214708 1.492741

Bivariate analysis

Correlations and scatterplot matrix

. pwcorr hw70 v136 bmi ChildAge w h, sig

	hw70	v136	bmi	ChildAge	W	h
hw70	1.0000					
v136	-0.0050 0.6588	1.0000				
bmi	0.1640 0.0000	0.0149 0.1657	1.0000			
ChildAge	-0.09 41 0.0000	-0.0795 0.0000	0. 1146 0.0000	1.0000		
W	0.25 4 8 0.0000	0.0283 0.0085	0.92 4 0 0.0000	0.1022 0.0000	1.0000	
h	0.2825 0.0000	0.037 4 0.0005	0.0 442 0.0000	-0.0020 0.8509	0. 4155 0.0000	1.0000

Visual plot

- Box plot for a quantitative variable by groups of a categorical variable
 - ✓ Weight for age z score for boys and girls in different age group
- Scatterplots for two quantitative variables to show crude relationship
 - ✓ Linear/ non linear, strong/ week/ no relationship
 - ✓ Weight for age z score and wealth index have non linear relationship

Simple linear regression

. reg hw70 i.b4

Source	SS	df	MS		Number of obs F(1, 7847) Prob > F R-squared Adj R-squared Root MSE		7,849 0.34
Model Residual	.594686997 13686.9412	1 7,8 4 7	.59468699 1.7442259	7 Prob 7 R-sq			0.5593 0.0000 -0.0001
Total	13687.5359	7,848	1.7440794	_			1.3207
hw70	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
b4 female _cons	0174246 -1.374431	.0298415 .0206459	-0.58 -66.57	0.559	07592 -1.4149		.0410726 -1.333959

Multivariable analysis

Multiple linear regression

- 1. Entry method
- 2. Forward selection
- 3. Backward elimination

Check for effect modifiers

- 1. Interaction
- 2. Estimate the effect of effect modifier

Model fit and diagnostics

- 1. Goodness of fit
- 2. Multicollinearity
- 3. Identify influential individuals

Hypothesis test

- 1. Likelihood ratio test
 - 2. Wald test

Multiple Linear Regression

Entry method

 A procedure for variable selection in which all variables in a block are entered in a single step

Forward Selection

 A stepwise variable selection procedure in which variables are sequentially entered into the model

Backward Elimination

 A variable selection procedure in which all variables are entered into the equation and then sequentially removed

Stepwise selection

Combination of Forward and Backward method

Variable selection

• If we are only interested in the **predictions** from the linear model, we can use all of the variables

• To be considered:

- ✓ Literature review
- ✓ Biological plausibility
- ✓ Availability of data

Regression analysis

. reg hw70 ChildAge i.b4 i.Mdelivery i.Diarrhea bmi i.edu i.PartnerEdu i.toilet i.waterdrink i.v190 > i.v025

	Source	SS	df	MS	Number of obs	=	4,481
-					F(14, 4466)	=	32.51
	Model	793.642104	14	56.6887217	Prob > F	=	0.0000
	Residual	7787.29153	4,466	1.74368373	R-squared	=	0.0925
-					Adj R-squared	=	0.0896
	Total	8580.93364	4,480	1.91538697	Root MSE	=	1.3205

hw70	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ChildAge	0239668	.0018957	-12.64	0.000	0276833	0202503
b4 female	.0658597	.0396016	1.66	0.096	0117792	.1434985
Mdelivery Non-caesarrean	1900547	.0463315	-4.10	0.000	2808873	099222
Diarrhea Yes bmi	.0546046 .0284534	.077705 .0054991	0.70 5.17	0.482	0977357 .0176724	.2069449 .0392345
edu Secondary and above	.0804704	.0475508	1.69	0.091	0127527	.1736935

Interpretation of STATA output

Source	SS	df	MS
Model Residual	793.642104 7787.29153		56.6887217 1.74368373
Total	8580.93364	4,480	1.91538697

Number of obs = 4,481 F(14, 4466) = 32.51 Prob > F = 0.0000 R-squared = 0.0925 Adj R-squared = 0.0896 Root MSE = 1.3205

hw70	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ChildAge	0240432	.001896	-12.68	0.000	0277602	0203261
b4						
female	.0690642	.0395836	1.74	0.081	0085393	.1466676
bmi	.0286517	.0055002	5.21	0.000	.0178686	.0394347
edu						
Secondary and above	.0748253	.0474852	1.58	0.115	0182692	.1679198
PartnerEdu						
Secondary and above	.2480062	.0468394	5.29	0.000	.1561778	.3398347
toilet						
unimproved	0154156	.0501998	-0.31	0.759	113832	.0830008
waterdrink						
Improved water	0000542	.0622986	-0.00	0.999	1221903	.122082
Diarrhea						
Yes	.0554164	.0777308	0.71	0.476	0969745	.2078073
Mdelivery						
Non-caesarrean	1919778	.0463377	-4.14	0.000	2828227	1011329
v 190						
poorer	.0013483	.0600784	0.02	0.982	1164352	.1191317
middle	.0448888	.0660676	0.68	0.497	0846364	.174414
richer	.1664902	.0702273	2.37	0.018	.0288099	.3041704
richest	.3587349	.0795614	4.51	0.000	.2027551	.5147146

Post estimation

Assumptions in linear regression are based mostly on predictive values and residuals. In particular, we will consider the following assumptions:

Linearity- **Big deal if violated**Homogeneity of variance- not as big deal if violated
Normality of residual- not as big deal if violated
Independence- **Huge deal if violated**Multicoliniarity- **Big deal if violated**

Check for Multicoliniarty

. estat vif

Variable	VIF	1/VIF
ChildAge	1.02	0.984288
2.b4	1.00	0.995227
1.Mdelivery	1.21	0.825838
l.Diarrhea	1.01	0.994852
bmi	1.16	0.864292
1.edu	1.30	0.768287
1.PartnerEdu	1.41	0.710592
2.toilet	1.59	0.627674
l.waterdrink	1.34	0.745393
∀1 90		
2	1.58	0.631035
3	1.72	0.580933
4	2.00	0.499700
5	2.46	0.407123
2.∀025	1.17	0.854660
Mean VIF	1.43	

Variable	VIF	1/VIF
ChildAge	1.02	0.975687
2.b4	1.01	0.994776
1.Mdelivery	1.20	0.832963
v190		
2	1.57	0.637598
3	1.69	0.590228
4	1.96	0.510788
5	2.42	0.413228
bmi	144.93	0.006900
agem	1.10	0.911235
h	26.61	0.037575
W	177.47	0.005635
1.PartnerEdu	1.33	0.754624
2.toilet	1.59	0.628491
1.waterdrink	1.35	0.740207
2.v025	1.17	0.854790
Mean VIF	24.43	

Not associated with the outcome variable

VIF: less than 5= no multicollinearity

VIF: between 5-10= moderate multicollinearity

VIF: more than 10: high multicollinearity

Normality of residual

Q-Q plot for standardized residuals

Box plot for residuals

Outlier: checking residuals

Rule of thumb: absolute (values) >2 or 3 suggests influential

Points far from the rest need attention

Next, need to check the leverage of observations with large residuals

. tab outl

Cum.	Percent	Freq.	outl
98.91 100.00	98.91 1.09	4,432	0 1
	100.00	4,481	Total

Influential observation

Influential observation: Cook's distance

. tab inf

Cum.	Percent	Freq.	inf
100.00	100.00	4,481	0
	100.00	4,481	Total

A general rule of thumb is that observations with a Cook's Distance of more than 1, is a possible outlier

High Leverage value

Observations with high leverage (extreme explanatory X values) cannot affect regression estimates

Leverage of observations

. tab cut

	cut	Freq.	Percent	Cum.
	0 1	4,626	99. 44 0.56	99. 44 100.00
-	Total	4,652	100.00	

.

- Observations with high leverage (extreme explanatory X values) cannot affect regression estimates
- Observations with large residual values may not necessary to have high leverage, that means they
 may not have much impact on regression estimate
- Rule of thumb: values > 2 or 3 times the average leverage
- If some observations have high leverage, repeat analysis, without these subjects to see if the regression estimates change substantially, and report both results

Test of homogeneity

Non significant Chi square value indicates the absence of heteroskedasticity

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of hw70

$$chi2(1) = 1.66$$

Prob > chi2 = 0.1973

Interactions

Girls who were exclusively breastfed, are predicted to have increased weight for age z score by 0.90 (0.90= 0.19 + 0.71)

req	end	waz	i.exclu	breastfed	i.gender
-----	-----	-----	---------	-----------	----------

Source	SS	df	MS	Number of obs		3,795
Model	18.7390168	2	9.3695084	F(2, 3792) Prob > F	=	7.29 0.0007
Residual	4871.82137	3,792	1.28476302	R-squared Adj R-squared	=	0.0038
Total	4890.56039	3,794	1.28902488	Root MSE	=	1.1335

end_waz	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
1.exclu_breastfed	. 4934698	.1305021	3.78	0.000	.2376087	.749331
gender Girl _cons	01983 4 2 -1.279513	.0372887	-0.53 -52.68	0.595	0929 4 2 -1.327136	.0532736 -1.231889

. reg end_waz i.exclu_breastfed##i.gender

Source	SS	df	MS		r of obs	=	3,795	
Model Residual	28.1881 4862.372		9.39605476 1.2826094	Prob R-squ	ared	=	7.33 0.0001 0.0058	
Total	4890.560	3,794	1.28902488	-	-squared MSE		0.0050 1.1325	
	end_waz	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
l.exclu_k	preastfed	.1949738	.170577	1.14	0.253	139	4577	.5294053
	gender Girl	0343688	.0376403	-0.91	0.361	108	1659	.0394283
exclu_breastfe	ed#gender 1#Girl	.7181257	.2645766	2.71	0.007	.199	3996	1.236852
	_cons	-1.273418	.0243737	-52.25	0.000	-1.32	1205	-1.225631

Stratum specific estimate

Model for b	OVS
-------------	-----

MS

df

SS

345.891888

2476.70201

2822.5939

Source

Model Residual

Total

Number of obs 2,204 F(9, 2194) 34.05 38.432432 Prob > F 0.0000 2,194 1.12885233 R-squared 0.1225 Adj R-squared 0.1189 2,203 1.28125007 Root MSE 1.0625

Model for girls

Source	SS	df	MS	Number of obs		1,591
				F(9, 1581)	=	25.35
Model	260.71973	9	28.9688589	Prob > F	=	0.0000
Residual	1806.87774	1,581	1.14287017	R-squared	=	0.1261
				Adj R-squared	=	0.1211
Total	2067.59747	1,590	1.30037577	Root MSE	=	1.0691

end_waz	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
agegroup						
12-23 Months	1139774	.0553802	-2.06	0.040	2225805	0053743
24-59 Months	3905528	.0559715	-6.98	0.000	5003154	2807902
edumoth						
Illiterate	1392287	.0717957	-1.94	0.053	2800232	.0015659
ppl_sleep_comb	0184868	.0089999	-2.05	0.040	0361361	0008376
wash_nurse						
Yes	.0954588	.0541061	1.76	0.078	0106457	.2015633
wealth_index	.3228925	.0266161	12.13	0.000	.2706971	.3750878
hand_washing						
Without soap	2192843	.0639184	-3.43	0.001	3446311	0939375
<pre>1.exclu_breastfed</pre>	.0057598	1631773	0.04	0.972	.3142384	.325758
STATUS						
case	1836669	.0473891	-3.88	0.000	276599	0907347
_cons	9054725	.0699354	-12.95	0.000	-1.042619	7683259
	I					

end_waz	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
agegroup						
12-23 Months	2557737	.0657349	-3.89	0.000	3847105	1268369
24-59 Months	519987	.0672311	-7.73	0.000	6518585	3881155
edumoth						
Illiterate	2979517	.0839957	-3.55	0.000	4627063	1331972
ppl_sleep_comb	0342381	.0108328	-3.16	0.002	0554863	0129899
wash_nurse						
Yes	.1239155	.0666349	1.86	0.063	0067865	.2546175
wealth_index	.2622395	.0312448	8.39	0.000	.200954	.3235251
hand washing						
Without soap	-,1844716	.0761689	-2.42	0.016	3338742	0350689
l.exclu_breastfed	. 623043	.1951464	3.19	0.001	.24027	1.005816
STATUS						
case	141141	.0564893	-2.50	0.013	2519428	0303391
_cons	7728289	.0855913	-9.03	0.000	9407133	6049445

Confounding vs Effect modifier

	Confounding	Effect modification
Study design	Literature review and collect data	Literature review and collect data
Analysis	If the stratum-specific measures are similar to each other, and at least 10% different than the crude, then the covariable is a confounder	If the stratum-specific measures are significantly different than each other, then the covariable is an effect modifier
Control of confounding or Describe interaction	 During study design Matching During analysis Stratification Multiple variable regression 	As it is a biological phenomenon, effect modifier can not be controlled, it should be described • Stratification
Writing results	Report an adjusted measure of association that controls for the confounder	Report the stratum-specific measures of association

Hypothesis test

- Null hypothesis (H0): the complex model is not better than the simple model
- Likelihood Ratio Test (LRT) is generally the best
- Wald test makes an additional approximation

Model fit

Model 1

. reg hw70 ChildAge i.b4 i.Mdelivery i.Diarrhea bmi i.edu i.PartnerEdu i.toilet i.waterd
> rink i.v190

	Source	SS	df	MS	Number of obs F(13, 4467)	=	4,481 34.67
	Model Residual	786.512357 7794.42128		60.5009505 1.74488947	Prob > F	=	0.0000
-	Total	8580.93364		1.91538697	Adj R-squared Root MSE	= (0.0890

hw70	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
ChildAge	0240432	.001896	-12.68	0.000	0277602	0203261
b4 female Mdelivery	.0690642	.0395836	1.74	0.081	0085393	.1466676

Model 2

. reg hw70 ChildAge i.b4 i.Mdelivery i.Diarrhea bmi i.edu i.PartnerEdu i.toilet i.waterd > rink i.v190 (1.v025)

Source	SS	df	MS	Transcer of one	=	4,481
Model Residual	793.642104 7787.29153		56.6887217 1.74368373	F(14, 4466) Prob > F R-squared	=	32.51 0.0000 0.0925
Total	8580.93364	4,480		R-squared Adj R-squared Root MSE	=	0.0896

hw70	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ChildAge	0239668	.0018957	-12.64	0.000	0276833	0202503
b4 female	.0658597	.0396016	1.66	0.096	0117792	.1434985
Mdelivery Non-caesarrean	1900547	.0463315	-4.10	0.000	2808873	099222

Likelihood ratio test

- It compares two regression models
- The models must have the same outcome and use the same method
- One model must be "nested" inside the other
- Same number of observations, no missing value

. 1rtest B A

```
Likelihood-ratio test LR chi2(1) = \frac{4.10}{0.0429} (Assumption: B nested in A) Prob > chi2 = \frac{0.0429}{0.0429}
```

A low p-value (<0.05) provides evidence that adding the extra variable, "residence:urban/rural" improves the model

Wald test in Stata

agegroup 12-23 Months
12-23 Months
24-59 Months4408054 .0432217 -10.20 0.00052554543560653 gender Girl0243261 .0352875 -0.69 0.4910935104 .0448583 edumoth Illiterate ppl_sleep_comb2402525 .0550158 -4.37 0.00034811611323889 ppl_sleep_comb016923 .0068721 -2.46 0.01403039640034496
gender Girl0243261 .0352875 -0.69 0.4910935104 .0448583 edumoth Illiterate ppl_sleep_comb016923 .0068721 -2.46 0.01403039640034496 wash_nurse
Girl0243261 .0352875 -0.69 0.4910935104 .0448583 edumoth Illiterate ppl_sleep_comb016923 .0068721 -2.46 0.01403039640034496 wash_nurse
Girl0243261 .0352875 -0.69 0.4910935104 .0448583 edumoth Illiterate ppl_sleep_comb016923 .0068721 -2.46 0.01403039640034496 wash_nurse
edumoth Illiterate2402525 .0550158 -4.37 0.00034811611323889 ppl_sleep_comb016923 .0068721 -2.46 0.01403039640034496 wash_nurse
Illiterate2402525 .0550158 -4.37 0.00034811611323889 ppl_sleep_comb016923 .0068721 -2.46 0.01403039640034496
ppl_sleep_comb016923 .0068721 -2.46 0.01403039640034496 wash_nurse
wash_nurse
_
_
Yes .1168969 .0421223 2.78 0.006 .0343123 .1994816
wiq
Lower middle .1733797 .0557806 3.11 0.002 .0640168 .2827427
Middle .2854186 .0563743 5.06 0.000 .1748917 .3959456
Upper middle .4290963 .0583157 7.36 0.000 .314763 .5434296
Richest .7942495 .0619274 12.83 0.000 .6728351 .9156638
hand_washing
Without soap2134211 .0492194 -4.34 0.0003099203116922
1.exclu_breastfed .2701748 .1258386 2.15 0.032 .0234566 .516893
1.pn351985539 .0791935 -2.51 0.01235382020432877
STATUS
case1633458 .0365379 -4.47 0.00023498170917099
_cons -1.21805 .0628143 -19.39 0.000 -1.341203 -1.094897

Summary

- Multiple linear regression is used when we have a continuous outcome and predictor variables can be continuous or categorical
- We assume that the data are normally distributed and have linear relationship
- We can use any suitable method for Multiple linear regression which depends on the research question
- Report an adjusted measure of association that controls for the confounder
- Report the stratum-specific measures of association for the effect modifier
- We can use <u>Likelihood Ratio Tests</u> and <u>Wald Tests</u> to help us decide which variables are associated with the outcome

THANK YOU

icddr,b thanks its core donors for their on-going support

