Package 'resplsm'

November 26, 2017

Title Robust estimator for semi-parametric dynamic locationscale models

Type Package

Index

Version 0.0.0.9000
Author Edvinas Drevinskas
Maintainer Edvinas Drevinkskas <e.drevinskas@gmail.com></e.drevinskas@gmail.com>
Description Estimation of location scale parameters for stationary times series using robust semi-parametric method.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
espls 2 interpolate_theta 2 k1 3 k2 2 Laplace_approx 4 Laplace_approx_den 4 pls 4 qn_function 4 qn_function_den 4 qn_function_z 6
qn_function_z_den

7

9

10

2 interpolate_theta

espls

Kernel M-Estimator for Location Scale model

Description

Estimates parameters for location scale model using Kernel M-Estimator using R optim function

Usage

```
espls(Yt, St, s, initial.values, bandwidth = 1.06 * sqrt(var(St)) * length(St)^(-1/5), int.of.par = c(0, 1), print = F)
```

Arguments

Yt parmeter of a function which is not to be optimized, usually Y_t

St regresor parameter can be X's or $lag(Y_t)$ s points at which function should be estimated

initial.values initial value of optimisible parameter might be a vector

bandwidth bandwith should be used int.of.par initial parameters print print during fitting

Value

Estimated location scale function at s points

interpolate_theta $Get \theta(X)$

Description

```
Get \theta(X)
```

Usage

```
interpolate_theta(dat, X)
```

Arguments

dat data.frame which contains X and value of thate for that X X vector for which new values of $\theta(X)$ should be returned

Value

Returns $\theta(X)$

*k*1

k1 *k1*

Description

$$k_1 = \frac{1}{2v_0(y_{t-1})^2} \frac{\partial v_0(y_{t-1})^2}{\partial \theta(y_{t-1})} \Big|_{\theta = \theta_0}$$

Usage

k1(theta, x, func)

Arguments

theta A data.frame

x A number/vectors.

func scale function

Value

A value of score function.

k2 *k2*

Description

$$k_2 = \frac{1}{v_0(y_{t-1})} \frac{\partial m_0(y_{t-1})^2}{\partial \theta(y_{t-1})} \Big|_{\theta = \theta_0}$$

Usage

k2(theta, x, func)

Arguments

theta A data.frame

x A number/vectors.

func scale function

Value

A value of score function.

Laplace_approx_den

Laplace_approx

Laplace_approx

Description

```
\mathcal{L}(\overline{\mathbf{q}_n}, \overline{u}) for the \tau numerator
```

Usage

```
Laplace_approx(u, parameters, h = 1e-04)
```

Arguments

u A number

parameters A list with given parameters to function: k1m, k2m, A, cb, tau, func_mu, func_sigma,

x, theta0

h numerical derivative parameter

Value

value of Laplace_approx function

Laplace_approx_den Lapla

Laplace_approx_den

Description

```
\mathcal{L}(\overline{\mathbf{q}_n},\overline{u}) for the 	au denominator
```

Usage

```
Laplace_approx_den(u, parameters, h = 1e-04)
```

Arguments

u A number

parameters A list with given parameters to function: k1m, k2m, A, cb, tau, func_mu, func_sigma,

x, theta0

h numerical derivative parameter

Value

value of Laplace_approx_den function

pls 5

pls

Pseudo Liklyhood Estimator for Location Scale model

Description

Description

Usage

```
pls(initial.theta, Y, X, func_s, func_m)
```

Arguments

initial.theta initial value of theta, A vector

Y parmeter of a function which is not to be optimized, usually Y_t

X regresor parameter can be X's or $lag(Y_t)$

func_s scale function
func_m location function

Value

Estimated location theta Robust

qn_function

qn_function

Description

$$q_n(u) := (-k_1 + k_2 u + k_1 u^2) \frac{c}{\|A(s(v;\theta_0) - \tau^{(0)})\|}$$

Usage

```
qn_function(u, parameters = list())
```

Arguments

u A number

parameters A list with given parameters to function: k1m, k2m, A, cb, tau, func_mu, func_sigma,

x, theta0

Value

value of q_n function

6 qn_function_z

qn_function_den

qn_function_den

Description

$$q_n^{den}(u) := \frac{c}{\|A(s(v;\theta_0) - \tau^{(0)})\|}$$

Part of τ calculation

Usage

```
qn_function_den(u, parameters = list())
```

Arguments

u A number

parameters A list with given parameters to function: k1m, k2m, A, cb, tau, func_mu, func_sigma,

x, theta0

Value

value of q_n function

qn_function_z

qn_function_z

Description

$$q_n(z) := q_n(u+z) \exp(-.5z^2)$$

Usage

qn_function_z(z, u, parameters)

Arguments

z A number u A number

parameters A list with given parameters to function: k1m, k2m, A, cb, tau, func_mu, func_sigma,

x, theta0

Value

value of q_n function

qn_function_z_den 7

qn_function_z_den

qn_function_z_den

Description

$$q_n^{den}(z) := q_n^{den}(u+z) \exp(-.5z^2)$$

Usage

```
qn_function_z_den(z, u, parameters)
```

Arguments

z A number u A number

parameters A list with given parameters to function: k1m, k2m, A, cb, tau, func_mu, func_sigma,

x, theta0

Value

value of q_n function

respls

Robust Kernel M-Estimator for Location Scale model

Description

Description

Usage

```
respls(theta, Y, X, c_bound, iterations = 5, bindwidths, return.all = F)
```

Arguments

theta initial value of theta, document later

Y parmeter of a function which is not to be optimized, usually Y_t

X regresor parameter can be X's or $lag(Y_t)$

c_bound bounding constant iterations number of iterantions bindwidths bindwidths should be used return.all if TRUE returns list of all $\theta^{(j)}$

Value

Estimated location theta Robust

semi_est_func

rls

Robust M-Estimator for Location Scale model

Description

Description

Usage

```
rls(theta, Y, X, c_bound, func_s, d_func_s, func_m, d_func_m, iterations = 5,
  return.all = F, tolerance = 0)
```

Arguments

theta initial value of theta, document later

Y parmeter of a function which is not to be optimized, usually Y_t

X regresor parameter can be X's or $lag(Y_t)$

c_bound bounding constant func_s scale function

d_func_s derivative of scale function

func_m location function

d_func_m derivative of location function

iterations number of iterantions

return. all if TRUE returns list of all $\theta^{(j)}$

tolerence tolerance level

Value

Estimated location theta Robust

semi_est_func

Estimating function

Description

Estimating function

Usage

```
semi_est_func(yt, thetas)
```

Arguments

yt A number.

thetas A vector of lengths 2.

Value

A value of score function.

u_resids 9

u_resids Residuals

Description

Residuals

Usage

```
u_resids(y, x, theta, func_mu, func_sigma)
```

Arguments

y A number.

x A number/vectors.

theta A vector of lengths 2 of data.frame, depends on func_mu and func_sigma.

func_mu location function func_sigma scale function

Value

residual

Index

```
espls, 2
interpolate_theta, 2
k1, 3
k2, 3

Laplace_approx, 4
Laplace_approx_den, 4
pls, 5
qn_function, 5
qn_function_den, 6
qn_function_z, 6
qn_function_z, 6
qn_function_z, 7
respls, 7
rls, 8
semi_est_func, 8
u_resids, 9
```