·
$$\lim_{x \to a} x = e^a$$

$$f,g,h:I \rightarrow \mathbb{R}$$
 so gelto in einer δ -Umgebung von a ϵI $g(x) \leqslant f(x) \leqslant h(x) \quad \forall \quad x \in (a-\delta,a+\delta), \delta > 0 \ (x \neq a)$

$$\lim_{x\to 0} x \cdot \sin\left(\frac{1}{x}\right) = 0 \quad \& \quad \lim_{x\to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x\to 0} \frac{x-1}{x} = 1$$

3.2 Stedigneit von Funutionen

· Function is stating if $\lim_{x \to x_0} f(x) = f(x_0)$

f: I > R ist Stedig and I wenn es fin alle $x_0 \in I$ stedig ist

Satz 3.3

· if flg: I > R storig in I =>

ftg, cif, fig (cell)

sind auch statig

· Auch of stating if g(x) =0

g said a final fin

Satz 3.4 $f: I \rightarrow IR$ stating in x_0 $h: J \rightarrow IR$ stating in $y_0 = f(x_0) = f(x_$

Stetige Funktionen in ganz R

f(x)=c ·alle Polynome · $\frac{p(x)}{q(x)}$ für alle Bolynome mit q=0

Unsdedig Keit

Funktion ist in 2 Fällen unsterig:

- · Grenz word existient niMt
- · grenz went existient, is I abou + f(x0)
- · Auch Funktionen mit Sprung o.ä. sind evtl. stetig; ist eine Funktion z.B.

 D\{0} und hat bei 0 einem Sprung, so ist diese trotzdem statig

 (in ihrem Definitionsbereich)

Stetiqueil Lordsetzen

· lim f(x) = lim f(x) abou f(a) nicht def, so kann man eine noue Funntion def, welche x->a+ (x) = lim f(x) abou f(a) nicht def, so kann man eine noue Funntion def, welche für a einen Wert besitzt

Bsp.:
$$f(x) = \frac{(x-1)(x+3)}{(x-1)}$$
 $D = R \setminus \{1\}$

$$\lim_{x\to 1} f(x) = \lim_{x\to 1} (x+3) = 4 \qquad (denn lin all x + 1 uann man (x-1) uiuzen)$$

$$g(x) = \begin{cases} f(x) & x \neq 1 \\ 4 & x = 1 \end{cases}$$

· Stedigneið ist nur Lordsetzbar wenn:

lim I(x) = lim f(x) & Es gibt einen Grenzwert + ±00

Good to unow Beispiel:

(h) Man bestimme alle Werte des Parameters a, für die die Funktion

$$f_a(x) = \begin{cases} 1 + ax, & \text{falls } x \leq 2 \\ r^2 + 3, & \text{falls } x > 2 \end{cases}$$

stetig auf R ist. Für alle $x\neq 2$ ist diese Funktion offensichtlich stetig. Es gilt $\lim_{n \to \infty} f_a(x) = 1 + 2a \quad \text{und} \quad \lim_{n \to \infty} f_a(x) = 7.$

Damit der Grenzwert von f für x gegen 2 existiert, müssen das linksseitige und das rechtsseitige Grenzwerte übereinstimmen. Daraus folgt a = 3 Dann gilt:

 $\lim_{x\to 2} f_3(x) = 7 = f_3(2).$ Somit ist die Funktion $f_3(x)$ stetig auf R.

Sat = 3.5

I = [a,b] $f: I \rightarrow R$, stating in I

· List out I boschvämit => IL(x) 1 < C V x & I

· Es gibt einen minimalen & einen maximalen Funutionswert

$$M = \max_{x \in \mathcal{L}(x)} f(x_{max})$$

$$M = \min_{x \in \mathcal{L}(x)} f(x_{min})$$

 $\cdot m \leqslant c \leqslant M \Rightarrow \forall c \text{ gibt es ein } \beta \text{ sedass } c = f(\beta) (d.h. zwischen m & M muss f stedig sein)$

Bsp.: 5 70

Satz 3.6 Nullsdellentest

I = [a, b] $f: I \rightarrow \mathbb{R}$

Habon f(a) & f(b) versch. Vorzeichen (f(a), f(b) < 0) gibt es min. sine 0-stelle

jedes Polynom mit ungaradem Grad min. eine Reelle Nullstelle

Näherungs verfahren zur Nullstellen bestimmung

[:[a,b] mit [(a).f(b)<0

1 Konstruiere eine Folge [an, bn] die die Nullstelle beliebig genau eingrenzt

2 Man selte a0= a & b0= b

3 Yne N

$$C_n = \frac{a_n + b_n}{2}$$

if
$$c_n = 0$$
 if $f(a_n) \cdot f(c_n) < 0$

0-stable
$$a_{n+1} = a_n & b_{n+1} = c_n$$
gfunden

if
$$f(c_n)\cdot f(b_n) < 0$$

$$a_{n+1} = c_n b_{n+1} = b_n$$

d_{n+3}

Satz 3.7 Selbstabbildung

$$f: [a,b] \rightarrow [a,b]$$

₩

Es gibt einem Punut x deu sich abbildet a-

x liegt auf der Winnelhalbievenden

4 Folgon & Reihen in C

Folgon in Childen No (bzw. N) auf Cab

Folge in C Konv. if $\lim_{n\to\infty} |z_n - z| = 0$

Folge zn nonv gegen z if Re(₹n) → Re(Z) & Im(Zn) → Im(Z)

4.2 Reihen in C

$$\sum_{n=0}^{\infty} a_n \text{ is } d \text{ konv. } \text{if } \sum_{n=0}^{\infty} |a_n| \text{ konv.} \Rightarrow |a_n| \text{ in } \mathbb{C} = \sqrt{a^2 + b^2} = \in \mathbb{R}$$