Exercice L

1) Point d'intersection C (xc, yc) des draits d'équations

$$\frac{2x+y=2}{\frac{2}{2}x+y=2}$$

$$\frac{3}{2}x=4 \quad d'ai \quad x=\frac{8}{3} \quad et \quad y=\frac{8}{3}-2=\frac{2}{3} \quad C\left(\frac{8}{3},\frac{2}{3}\right)$$

Solution: $\int_{max} = \frac{8}{3} + \frac{2}{3} = \frac{10}{3}$ par $x = \frac{8}{3}$ et $y = \frac{2}{3}$

2 a Dichionnaise L
variables host base
$$x, y$$

variables clansla base $3 = 2 - x + y$
 $t = 2 - \frac{1}{2}x - y$
 $f = 2 - ty$

La solution basique du dictionnaise L est (x=0,y=0,3=2,t=2) par f=0.

(1-0,9-0,5-)	
Variable entrante dans la base	x
Variable en l'ante class la sec	2 × /2
contraintes	1270 -1 ~ 62
Conmanies	b>0 => 1/2×62=>x64
	630 - 2
I actente de la pase	0
variable sortante de la base)
	•

Dictionnaise 2	
variables hows-base	4,3
variables clans la base	x = 2 + y - 3
	L=2-(1+24-23)-4
	= 1-34+23
1	f = 2 + y - 3 + y = 2 + 2y - 3

La schinen basique du dichennaire 2 est (x=2, y=0, g=0, t=1) pour f=2.

variable entrante dans la base: y variable sortante de la base: t (pas le chaix)

Dictionnaise 3	
variables has base	3,5
variables dans la base	
4	$x = 2 + (\frac{2}{3} + \frac{4}{3}3 - \frac{2}{3}t) - 3$
	= \frac{2}{3} - \frac{2}{3} \frac{2}{3} +
P	f=2+4+=3-4t-3
	$=\frac{10}{3}-\frac{1}{3}3-\frac{4}{3}t$
	3 30 3

ha solution du dictionnaire 3 est la solution du problème d'aphimisation (car les coefficients de g et t dans f sont négatifs). Solution: $(x = \frac{8}{3}, y = \frac{2}{3})$ par une valeur maximale c le $f = \frac{10}{3}$.

©
$$O(0,0): \int = 0$$

 $A(2,0): \int = 2$
 $C(\frac{8}{3}, \frac{2}{3}): \int = \frac{10}{3}$

Algorithme du simplexe

Graphique de l'exercice ${}^{*}_{\mathscr{A}}{}^{*}$.

(1) © Solution: par (x=1, y=4), $\int_{max} = 3+8=11$

2 Diction naive 1 variables how base x, yvariables dans la base 3 = 2 - 2x + y t = 6 - 2x - y u = 5 - x - yf = 3x + 2y

La solution basique du dictionnaire Let (x=0, y=0, 3=2, t=6, u=5) pour j=0

Variable entrante dans la base : y variable sortante de la base : u

	Dictionnaire 2	
-	variables has base	x, u
-	rariables dans la bas	y = 5 - x - 4 y = 5 - x - 4 3 = 2 - 2x + 5 - x - 4 3 = 6 - 2x - 5 + x + 4 = 1 - x + 4
-	J	f = 3x + 10 - 2x - 2u
	<i>t</i>	$\frac{1}{2} = 10 + x - 2u$

La solution basique du dictionnaire 2 est (x=0,y=5, z=7, t=1, u=0) f=10

Variable entrante clans la base: x variable sortante de la base: t

Dictionnaire 3	
variables has base	t,u
variables clans la base	$x = \lambda + \mu - \lambda$
	y = 4 - u + t - u = 4 - 2u + t 3 = 7 - 3 - 3u + 3t - u = 4 - 4u + 3t
J	$\int = 10 + (1+u-t) - 2u$ $\int = 19 - u - t$

La solution du dictionnaire 3 est la solution du problème d'optimisation.

NOM:

PRENOM:

Graphique de l'exercice

Exercice 3

NOM:

PRENOM:

(PL)

raphique de l'exercice 🏖

Exercice 3. (P2)

NOM:

PRENOM:

Graphique de l'exercice 2

Exercice 3 (suite) Algorithme dusimplexe

50f. (x3=x4=0,x1=1,x=2) $f = 4 + (4 - x_3 + x_4) - 2x_4$ Dictionnaice 3 =5-x3-24 $x_1 va en timbe | x_1 = \lambda - x_3 + x_4$ X, va en hante pas de va 200 tante 23 Va Dor laste | 22 = 2-24 58. $(x_1 = x_4 = 0, x_2 = 2, 0.9 = 1)$ x_2 va entrante $|x_2=2-xy|$ x_4 va sortante $|x_3=3-2(1-2+xy)$ $\begin{cases} -x_1 + (4-2)4 \\ +x_1 - 2x_4 \end{cases}$ Dichan are 2 トンインスートコ solution de (P1) (2,=1, 2,=2) fmax =5 xz va entramte (z=hx'==2'x==0'x3=3'xh=5) Dictionnaic L Dictionnage 2 $x_3 = 3 - x_1 - x_2$ J=0 $\beta = x_1 + 2x_2$ $x_{1}=2-x_{2}$ (2) (P2)

 x_2 va entrante y_1 ctionnaire 2 x_4 va x_4 va x_4 va x_5 for fante $x_2 = 2 + 2x_4 - 3x_4$ $x_3 = 4 + x_4 - x_4$ $x_4 = 4 + 5x_4 - 3x_4$ $x_5 = 4 + 5x_4 - 3x_4$ $x_5 = 4 + 5x_4 - 3x_4$ $x_5 = 2, x_5 = 4$

Je problème n'a pas de solution.

Sof (x1=x2=0,x3=2,x4=2)

= x1+2x=

 $x_{4}=2+2x_{3}-x_{2}$

 $x_3 = 2 - x_1 + x_2$

Exercice 4 (P3)

NOM:

PRENOM:

Graphique de l'exercice 2

Dictionnaire	
variables has base	x1, x2
variables dans la bese	$x_3 = 3 - x_4 - x_2$
	$x_4 = 2 - x_1$
	$x_5 = x_1 - x_2$
	$x_6 = -x_1 + 2x_2$
ſ	$\int = 2x_1 + x_2$

501.
-
$$(x_1=0, x_2=0, x_3=3, x_4=2, x_5=0, x_5)$$

 $f=0$
dictionnaire désenéré

The Bland => variable entrante x2 variable sortante x6

Diction naive 2

variables has base
$$x_2, x_6$$

variables dans a base $x_1 = 2x_2 - x_6$
 $x_3 = 3 - 2x_2 + x_6 - x_2$
 $= 3 - 3x_2 + x_6$
 $x_4 = 2 - 2x_2 + x_6$
 $x_5 = x_2 - x_6$

$$y_5 = x_2 - x_6$$

$$y_5 = x_2 - x_6$$

$$y_5 = x_2 - x_6$$

Sol

$$(x_2 = x_2 = x_3 = 0)$$

 $x_3 = 3$, $x_4 = 2$)
 $f = 0$
clictionnaise dégénéré

The Bland =) variable entrante: x2 variable sortante: x3

	Dictionnare 3		
	variables has base	χ_{3} , χ_{6}	
	variables hous los	1 . 1	1
-	variables clans la base	$x_2 = \lambda - \frac{1}{3}x_3 + \frac{1}{3}x_6$	1
	Valland of	$x_1 = 2 - \frac{2}{3}x_3 + \frac{2}{3}x_6 - x_6$	
		$=2-\frac{2}{3}x_3-\frac{1}{3}x_6$	
		$2c_4 = 2 - 2 + \frac{2}{3}x_3 - \frac{2}{3}x_6 + \frac$	HOCA
\		= = x3+= x6	
		$x_5 = 1 - \frac{1}{3}x_3 - \frac{2}{3}x_6$	
	P	1=5-5-13+5-26-2x6	
1		=5-5x-13% -	

Solution de Pá:

(x1=2, x2=2)

par une valeur

maximale de d

espale à 5

112

Dictionnaise L	
variables hors base	x_1, x_2, x_3
variables dans la base	$x_4 = 4 - x_1 - x_2 + 2x_3$ $x_5 = 5 - 2x_1 - 3x_3$
	$x_5 = 5 - 2x_1 - 3x_3$
The state of the s	$\int = 3x_1 + 2x_2 + 4x_3$

Sol $(x_1 = x_2 = x_3 = 0, x_4 = 4, x_5 = s)$ f = 0

variable entrante: x, variable sortante: x5

Dictionnaise 2	
variables has base	x_2, x_3, x_5
variables dans la base	$x_{1} = \frac{5}{2} - \frac{3}{2}x_{3} - \frac{1}{2}x_{5}$ $x_{4} = 4 - \left(\frac{5}{2} - \frac{3}{2}x_{3} - \frac{1}{2}x_{5}\right) - \frac{7}{2} + 2x_{3}$ $= \frac{3}{2} - x_{2} - \frac{1}{2}x_{3} + \frac{1}{2}x_{5}$
	$\int = \frac{15}{2} - \frac{9}{2}x_3 - \frac{3}{2}x_5 + 2x_2 + 4x_3$ $= \frac{15}{2} + 2x_2 - \frac{1}{2}x_3 - \frac{3}{2}x_5$

Solution du dictionnaise 2

$$\left(x_2 = x_3 = x_5 = 0, x_4 = \frac{5}{2}, x_4 = \frac{3}{2}\right)$$
 $\int = \frac{15}{2}$

variable entrante x2 variable sortante x4

	Dictionnaire 3		
	variables how base	x_3, x_4, x_5	
ŀ	variables dans la basc	$x_1 = \frac{5}{2} - \frac{3}{2}x_3 - \frac{1}{2}x_5$	
		$x_2 = \frac{3}{2} - \frac{1}{2}x_3 - x_4 + \frac{1}{2}x_5$	
	f I	$ = \frac{15}{2} + 3 - x_3 - 2x_4 + x_5 - \frac{1}{2}x_3 = \frac{3}{2}$	35
	·	$=\frac{21}{2}-\frac{3}{2}x_3-2x_4-\frac{1}{2}x_5$	

Solution de Py:

 $(x_1 = \frac{5}{2}, x_2 = \frac{3}{2})$ job une valeur maximale de \int égale à $\frac{21}{2}$

Ps) Dictionnaise 1 variables how base x_1, x_2, x_3 variables dams a base $x_4 = 10 - x_1 - x_2 - x_3$ $x_5 = -x_1 + x_2$ $x_6 = -x_1 + x_3$ $x_7 = 4x_1 - x_2 + x_3$

sol $(x_1=x_2=x_3=0=x_5=x_6,x_4=10)$ f=0dictionnaire défénéré

(Bland) va entrante oci va sortunte x

	3	
Dictionnaire 2		Sol
variables has base	$\chi_{2},\chi_{3},\chi_{5}$	$(x_2 = x_3 = x_5 = x_4 = x_5 = 0)$
variables dans la base	$x_1 = x_2 - x_5$	$-\frac{\chi_{4}=10}{2}$
	24=10-222-23+25	J=0
	$x_6 = -x_2 + x_3 + x_5$	
	J=4x2-4x5-x2+x3	
	$=3x,+x_3-4x_5$	(

va en trante oca va portante oca

Dictionnave 3	
variables has base	263, 25, 26
variables class la base	$x_2 = x_3 + x_5 - x_6$
	$x_1 = x_3 - x_6$
	$x_4 = 10 - 2x_3 - 2x_5 + 2x_4 - x_3 + x_5$ $= 10 - 3x_3 - x_5 + 2x_6$
f	J=3x3+3x5-3x6+x3-4x5
	$= 4x_3 - x_5 - 3x_6$

Solution du dictionnaire 3: $(x_1 = x_2 = x_3 = x_5 = x_6 = 0, x_4 = 10) = 0$

variable entrante x3

1 3301 1an/6	~ 20
Dictionnaire 4	
variables has base	x_4, x_5, x_6
variables dans la basc	$x_3 = \frac{10}{3} - \frac{1}{3}x_4 - \frac{1}{3}x_5 + \frac{2}{3}x_6$
	$x_4 = \frac{10}{3} - \frac{1}{3}x_4 - \frac{1}{3}x_5 - \frac{1}{3}x_6$
	$x_2 = \frac{10}{3} - \frac{1}{3}x_4 + \frac{2}{3}x_5 - \frac{1}{3}x_6$
	$\int = \frac{40}{3} - \frac{4}{3} x_4 - \frac{4}{3} x_5 + \frac{8}{3} x_6 - x_5 - 3x_6$ $= 40 4 x_1 7$
	= 40 - 43 x4 - 3 x5 - 43 x6 - 15 - 16
	3 3

Solution de Ps:

$$\left(x_1 = \frac{10}{3}, x_2 = \frac{10}{3}, x_3 = \frac{10}{3}\right)$$
 $\int_{\text{max}} = \frac{40}{3}$