Multiple Features Based Approach for Automatic Fake News Detection

Mohammed Rushad 181CO232

Akshat Nambiar 181CO204

Gist of Paper

- Detecting Fake News based on multiple Features apart from only News Title.
- Obtain Dataset from Facebook by using web crawler built by authors.
- Implement the following models: KNN, SVM, Logistic Regression, Decision Tree, Naive Bayes, LSTM.
- Pick best performing model for Fake News detection.

Effectiveness of this method

Features	Measure in %	Machine learning classifiers				Deep learning classifiers	
		KNN	SVM	Logistic Regression	Decision tree	Naïve Bayes	LSTM
Users profile content features	Accuracy	94.1	96.2	92.8	94.3	94.8	96.3
News content features	Accuracy	92.3	93.9	92.8	93.0	93.6	91.1
Users profile features + News content features	Accuracy	99.3	99.3	99.0	99.1	98.6	99.4

- User Features method slightly outperforms traditional News Features method.
- Combined, we see a significant increase in performance for all models.

Other metrics to prove success of Method

Paper Dataset

User Features

Feature	Description			
Profile ID	Every profile has one unique profile ID.			
Profile name	Profile name of the user varies based on users choice			
Date of join	It describes how old the profile is.			
All friends	Total number of friends of the user.			
Profile picture	It shows pictorial identity of the user.			
Number of group join	Number of different group's user participated.			
Number of page like	This feature shows association of the user in different contents.			
News post	It identifies the interest of the user and the multiple events user have participated.			
Profile with photo guard	To protect the image from unauthorized user, user uses safety principle as photo guard.			
Number of stories shared	User shared the multiple events as story in their profile to view by multiple users.			

News Features

Feature	Description
Source	It describes the author or publisher of the news article.
Headline	It describes main highlight of the topic and catch the reader's attention.
Body text	Text that elaborate the detail story of the topic, It also highlights the angle of publisher.
Text	It highlights the story as textual representation i.e. ir readable format
Images (Image with text, image with hyperlink)	Content of the shared news article that provides visual description about that activities or events. It also posted by some user including caption as text and links.

Our Dataset

Features

uuid ord in thread author published title text language crawled site url country domain rank thread title spam score main_img_url replies count participants count likes comments shares type

- Traditional Fake News datasets have mainly 2 Features: Title, Text
- Paper Dataset: Uses 15 features:
 - 10: User Features
 - 5: News Features
- Our chosen dataset has 20 features:
 - 6: Article Performance features
 - 3: News features
 - 2: Misc. features
- Different from Traditional methods.
- Focuses on Article Performances as major indicator.
- This makes the method slightly different from authors' method, since Viewer User Data is given more attention than Poster User Data.

Labels in Chosen Dataset

Types of stories type
bias 56
bs 1726
conspiracy 117
fake 3
hate 60
satire 38
dtype: int64

The following transformations have been applied on the labels as Fake and Real news

•	State	->	real
•	Satire	->	real
•	Juncksci	->	real
•	Hate	->	real
•	Fake	->	fake
•	Conspiracy	->	fake
•	Bs	->	fake
•	Bias	->	real

Project Overview

- Import Dataset
- Replace Labels and Dataset Pre-processing
- NLP Pre-processing
- Creating Final Dataset for Test-Train Split
- Implement Models
- Calculate Accuracy

Preparing the Dataset

- Clean the Original Dataset.
- 2. Combining Text and Title features of Original dataset.
- 3. Performing NLP Processing using CountVectorizer from sklearn to tokenize the words after removing punctuation, stopwords, converting to lowercase etc.
- 4. Perform Step-2 on all text-based columns of Original Dataset.
- Combine all Numerical and vectorized text columns into New Dataset.

Models Used

Machine Learning Analysis:

• Logistic Regression

	precision	recall	f1-score	support
0	0.93	0.99	0.96	558
1	0.14	0.02	0.04	42
accuracy			0.92	600
macro avg	0.54	0.51	0.50	600
weighted avg	0.88	0.92	0.89	600

KNN

	precision	recall	f1-score	support
0	0.93	0.97	0.95	558
1	0.00	0.00	0.00	42
accuracy			0.91	600
macro avg	0.46	0.49	0.48	600
weighted avg	0.86	0.91	0.88	600

Accuracy for Logistic Regression: 0.92166666666666666

Accuracy for KNN: 0.905

Models Used - Continued

SVM

	precision	recall	f1-score	support
0	0.94	0.96	0.95	558
1	0.25	0.19	0.22	42
accuracy			0.90	600
macro avg	0.60	0.57	0.58	600
weighted avg	0.89	0.90	0.90	600

Decision Tree

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	558
	1	1.00	1.00	1.00	42
accura	су			1.00	600
macro a	vg	1.00	1.00	1.00	600
weighted a	vg	1.00	1.00	1.00	600

Accuracy for Decision Tree using gini Index: 1.0

Models Used - Continued

Naive Bayesian

	precision	recall	f1-score	support
0	0.93	0.99	0.96	558
1	0.33	0.05	0.08	42
accuracy			0.93	600
macro avg	0.63	0.52	0.52	600
weighted avg	0.89	0.93	0.90	600

Accuracy for Naive Bayes: 0.9266666666666666

Models Used - Continued

Model: "sequential 7"

Deep Learning Analysis:

LSTM - Long Short-term Memory

Accuracy: 93.00%

```
Layer (type)
            Output Shape
                        Param #
embedding 7 (Embedding)
            (None, 500, 32)
                        160000
1stm 7 (LSTM)
            (None, 100)
                        53200
dense 7 (Dense)
            (None, 1)
                        101
Total params: 213,301
Trainable params: 213,301
Non-trainable params: 0
None
Epoch 1/5
Epoch 2/5
Epoch 3/5
Epoch 4/5
Epoch 5/5
```

Our Contributions

Traditional Method: News features

Paper Method: User features + News features

Our method: Article Performance features + News features + Misc. features

Method can be altered to detect type of fake news.

Future Work

- Incorporate User + News + Article Performance features
- Incorporate Data from different social networks
- Incorporate model into web-extensions for easier article tagging.

References

Paper: Multiple Features Based Approach for Automatic Fake News Detection (Link)