Лекция 10. Уравнения Максвелла для электромагнитного поля.

Основные положения электромагнитной теории Максвелла. Вихревое электрическое поле. Ток смещения. Закон полного тока. Уравнения Максвелла в интегральной и дифференциальной формах.

Закон электромагнитной индукции Фарадея $\mathbf{E}_i = -\frac{d}{dt} \iint_S (\vec{B}, d\vec{S})$ или $rot(\vec{E}_{CT}) = -\frac{\partial B}{\partial t}$ свидетельствует о том, что изменение магнитного поля приводит к появлению сторонних сил в проводнике, действующие на носители тока. Как показывает пример с проводником, поступательно движущимся в магнитном поле, эти сторонние силы аналогичны силам, действующим на электрические заряды со стороны электрического поля. Поле этих сил является

Первая гипотеза Максвелла состоит в том, что появление вихревого электрического поля из-за изменяющегося во времени магнитного поля в некоторой области пространства, не зависит от наличия в этой области проводника или носителей тока. При этом электрическое поле в любой области пространства является *суперпозицией* электростатического (кулоновского) поля (с напряжённостью \vec{E}_q), создаваемого электрическими зарядами, и вихревого электрического полей (с напряжённостью \vec{E}_B), создаваемого переменным магнитным полем. Напряженность суммарного электрического поля $\vec{E} = \vec{E}_q + \vec{E}_B$. Найдем дивергенцию суммарного электрического поля. Т.к.

$$div\!\left(\vec{E}_{\scriptscriptstyle q}\right)\!=\!\frac{\rho}{\varepsilon_{\scriptscriptstyle 0}} \text{ if } div\!\left(\vec{E}_{\scriptscriptstyle B}\right)\!=\!0 \text{ , to } div\!\left(\vec{E}\right)\!=\!div\!\left(\vec{E}_{\scriptscriptstyle q}\right)\!+\!div\!\left(\vec{E}_{\scriptscriptstyle B}\right)\!=\!\frac{\rho}{\varepsilon_{\scriptscriptstyle 0}} \,.$$

вихревым, поэтому его называют вихревым электрическим полем.

Из $\vec{E}_q = -grad\left(\phi\right)$ и $rot\left(\vec{E}_q\right) = rot\left(-grad\left(\phi\right)\right) = \vec{0}$ следует равенство

$$rot(\vec{E}) = rot(\vec{E}_q) + rot(\vec{E}_B) = -\frac{\partial \vec{B}}{\partial t}$$
.

Ток смещения.

Теорема о циркуляции для вектора напряжённости магнитного поля имеет вид $rot(\vec{H}) = \vec{j}$. Применим к обеим частям дивергенцию $div(rot(\vec{H})) = div(\vec{j})$. Левая часть равна нулю $div(rot(\vec{H})) = 0$, но правая $div(\vec{j}) = -\frac{\partial \rho}{\partial t}$ (уравнение непрерывности электрического заряда).

Откуда следует $\frac{\partial \rho}{\partial t} = 0$, т.е. объемная плотность заряда не зависит от времени. Следовательно, равенство $rot(\vec{H}) = \vec{j}$ применимо для случая, когда $div(\vec{j}) = 0$. В этом случае векторное поле плот-

ности тока \vec{j} является вихревым, поэтому линии тока замкнутые. Рассмотрим теорему о циркуляции вектора напряженности вдоль замкнутого проводника, в котором течёт постоянный ток: $\oint_{\Gamma} \left(\vec{H}, d\vec{l} \right) = I$. Линии тока в этом случае замкнутые, поэтому если взять несколько поверхностей S_1, S_2, S_3, S_4 имеющих вид мешков, общим горлом которых является контур Γ , то должно выполняться равенство

$$\oint_{\Gamma} \left(\vec{H}, d\vec{l} \right) = \iint_{S_1} \left(\vec{j}, d\vec{S} \right) = \iint_{S_2} \left(\vec{j}, d\vec{S} \right) = \iint_{S_3} \left(\vec{j}, d\vec{S} \right) = \iint_{S_4} \left(\vec{j}, d\vec{S} \right) = I$$

т.к. сила тока в любом сечении проводника одинаковая.

Теперь поместим в цепь конденсатор С. Пусть по цепи протекает постоянный ток. Поверхность S_3 проведём таким образом, чтобы она охватывала одну из обкладок конденсатора. Так как в конденсаторе нет тока проводимости, то $\iint_{S_2} \left(\vec{j}, d\vec{S} \right) = 0$,

но по-прежнему

$$\oint_{\Gamma} \left(\vec{H}, d\vec{l} \right) = \iint_{S_1} \left(\vec{j}, d\vec{S} \right) = \iint_{S_2} \left(\vec{j}, d\vec{S} \right) = \iint_{S_4} \left(\vec{j}, d\vec{S} \right) = I.$$

Но расположение конденсатора можно поменять, так, чтобы одна его обкладка находилась внутри поверхности не S_3 , а например, S_2 . Тогда получим равенства $\iint_{S_2} (\vec{j}, d\vec{S}) = 0$ и

$$\oint_{\Gamma} \left(\vec{H}, d\vec{l} \right) = \iint_{S_1} \left(\vec{j}, d\vec{S} \right) = \iint_{S_3} \left(\vec{j}, d\vec{S} \right) = \iint_{S_4} \left(\vec{j}, d\vec{S} \right) = I.$$

Получаем *противоречие* — циркуляция векторного поля по контуру Г, не охватывающему участок цепи с конденсатором, зависит от произвольного выбора места расположения конденсатора. Чтобы снять это противоречие <u>Максвелл выдвинул (вторую) гипотезу</u> о том, что наряду с током проводимости существует *ток смещения*, который также создаёт магнитное поле. *Плотность тока смещения* задаётся скоростью изменения вектора электрического смещения

$$\vec{j}_{CM} = \frac{\partial \vec{D}}{\partial t}.$$

Плотность полного тока — векторная сумма плотности тока проводимости и плотности тока смещения

$$\vec{j}_{\Pi O \Pi H} = \vec{j}_{\Pi P O B} + \vec{j}_{C M}.$$

Найдём дивергенцию вектора плотности полного тока. Учтём закон сохранения электрического заряда $div(\vec{j}_{\mathit{IPOB}}) = -\frac{\partial \rho}{\partial t}$ и теорему Гаусса для вектора смещения $div(\vec{D}) = \rho$:

$$div\left(\vec{j}_{\Pi O J H}\right)=div\left(\vec{j}_{\Pi P O B}\right)+div\left(\vec{j}_{C M}\right)=-\frac{\partial \rho}{\partial t}+div\left(\frac{\partial \vec{D}}{\partial t}\right)=-\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial t}\left(div\left(\vec{D}\right)\right)=-\frac{\partial \rho}{\partial t}+\frac{\partial \rho}{\partial t}=0\;.$$

Таким образом, векторное поле плотности *полного* тока не имеет источников, т.е. является вихревым, следовательно, силовые линии полного тока являются замкнутыми.

В частном случае, когда по замкнутой цепи течёт постоянный ток, $\frac{\partial \rho}{\partial t} = 0$, откуда

$$\frac{\partial \rho}{\partial t} = \frac{\partial}{\partial t} \left(div \left(\vec{D} \right) \right) = div \left(\frac{\partial \vec{D}}{\partial t} \right) = div \left(\vec{j}_{CM} \right) = 0.$$

Т.к. цепь замкнутая, то не происходит накапливания электрического заряда ни в одной точке цепи с течением времени и поэтому можно считать, что вдоль цепи $\vec{D} = const$. Поэтому нет тока смещения $\vec{j}_{CM} = \frac{\partial \vec{D}}{\partial t} = \vec{0}$ и $\vec{j}_{\Pi O J H} = \vec{j}_{\Pi P O B}$.

Если цепь содержит конденсатор, то между обкладками отсутствует ток проводимости. Поэтому силовая линия тока проводимости имеет разрыв на обкладках конденсатора – т.е. на обкладках имеются стоки и источники поля векторов плотности тока проводимости $div(\vec{j}_{\mathit{ПРОВ}}) \neq 0$.

Из уравнения непрерывности для тока $div(\vec{j}_{\Pi POB}) = -\frac{\partial \rho}{\partial t}$ следует, что источниками (и стоками) электрического тока в цепи является изменяющаяся во времени плотность электрических зарядов на обкладках. Но в то же самое время, изменение электрического заряда на обкладках служит стоком и источником плотности тока смещения в пространстве между обкладками

$$div\left(\vec{j}_{CM}\right) = div\left(\frac{\partial \vec{D}}{\partial t}\right) = \frac{\partial}{\partial t}\left(div\left(\vec{D}\right)\right) = \frac{\partial \rho}{\partial t}.$$

Т.е. из-за изменения электрического заряда конденсатора (во времени) векторное поле смещения в пространстве между обкладками будет меняться во времени, что приведёт к появлению тока смещения в пространстве между обкладками конденсатора. Поэтому между обкладками конденсатора $\vec{j}_{\Pi OJH} = \vec{j}_{CM}$.

Так как сила тока проводимости (с учётом знака) равна потоку вектора плотности тока проводимости через ориентированную поверхность $I = \iint_S \left(\vec{j}, d\vec{S}\right)$, то, аналогично, можно определить силу тока смещения (с учётом знака) через ориентированную поверхность

$$I_{CM} = \iint_{S} \left(\vec{j}_{CM}, d\vec{S} \right) = \iint_{S} \left(\frac{\partial \vec{D}}{\partial t}, d\vec{S} \right).$$

Если поверхность S неподвижная, то $I_{CM} = \iint_S \left(\frac{\partial \vec{D}}{\partial t}, d\vec{S} \right) = \frac{d}{dt} \iint_S \left(\vec{D}, d\vec{S} \right).$

Закон полного тока: сила полного тока равна сумме тока проводимости и тока смещения. Вывод. Если в теореме о циркуляции для напряженности магнитного поля ток проводимости заменить на полный ток, то противоречие будет снято:

$$rot(\vec{H}) = \vec{j}_{\Pi O \Pi H} = \vec{j}_{\Pi P O B} + \vec{j}_{CMELL}, \ rot(\vec{H}) = \vec{j} + \frac{\partial \vec{D}}{\partial t}.$$

Или, в интегральной форме:

$$\oint_{\Gamma} \left(\vec{H}, d\vec{l} \right) = I + \frac{d}{dt} \iint_{S} \left(\vec{D}, d\vec{S} \right)$$

- циркуляция вектора напряжённости магнитного поля по любому замкнутому (ориентированному) контуру равна сумме токов проводимости и смещения через ориентированную поверхность, ограниченную этим контуром. Ориентации контура и поверхности согласованы правилом правого винта (буравчика).

Это соотношение свидетельствует о том, что магнитное поле может порождаться переменным во времени электрическим полем.

Пример. Найдем циркуляцию вектора напряжённости магнитного поля в пространстве между обкладками плоского конденсатора включённого в цепь с постоянным током.

Пусть сила тока в цепи равна I. Конденсатор плоский, обкладки — круги радиусом R. Расстояние между обкладками d много меньше R (в этом случае электрическое поле между пластинами в каждый момент времени приближённо можно считать однородным). Ток в цепи постоянный, поэтому заряды «положительной» и «отрицательной» обкладок линейно зависят от времени

$$q = I \cdot t + q_0$$
.

Пусть \vec{n} - единичный вектор нормали к пластине с положительным зарядом. Между обкладками вектор смещения направлен перпендикулярно пластинам $\vec{D} = D \cdot \vec{n}$ от положительно заряжённой пластины к отрицательно заряженной. Нормальная составляющая вектора смещения равна длине вектора $D_n = D$. С другой стороны, внутри плоского конденсатора $D_n = \sigma = \frac{q}{S}$ ($\sigma = \frac{q}{S}$ - поверхностная плотность стороннего заряда, $S = \pi R^2$ - площадь обкладки конденсатора), поэтому $D = \frac{I \cdot t + q_0}{S}$. Найдём производную вектора смещения

$$\frac{\partial \vec{D}}{\partial t} = \frac{\partial}{\partial t} (D \cdot \vec{n}) = \vec{n} \frac{\partial D}{\partial t} + D \frac{\partial \vec{n}}{\partial t}$$

Ho $\vec{n}=const$, поэтому $\frac{\partial \vec{n}}{\partial t}=\vec{0}$ и вектор $\frac{\partial \vec{D}}{\partial t}=\vec{n}\frac{\partial D}{\partial t}$ тоже направлен перпендикулярно пластинам.

Пусть в рассматриваемом случае заряд положительной пластины увеличивается, тогда $\frac{\partial D}{\partial t} > 0$ и

векторы $\frac{\partial \vec{D}}{\partial t}$ и \vec{D} направлены одинаково. Поле между пластинами обладает осевой симметрией, поэтому найдём циркуляцию по контуру Γ , который является окружностью в плоскости, перпендикулярной оси симметрии, с центром на оси симметрии. Пусть радиус окружности равен r.

Контур ограничивает плоский круг S, на котором можно ввести ориентацию, совпадающую по направлению с направлением вектора смещения \vec{D} . Поток этого векторного поля через поверхность круга равен $\Phi_D = \iint_S \left(\vec{D}, d\vec{S} \right) = D\pi r^2$. Поэтому сила тока смещения

$$I_{CM} = \frac{d}{dt} \iint_{S} (\vec{D}, d\vec{S}) = \frac{d}{dt} (D\pi r^{2}) = \pi r^{2} \frac{dD}{dt} = \pi r^{2} \frac{I}{S} = I \frac{r^{2}}{R^{2}}.$$

Силовые линии магнитного поля являются окружностями, лежащими в плоскости, перпендикулярной оси симметрии, центры окружностей находятся на этой оси. Поэтому выбранный контур Γ совпадает с какой-то силовой линией и вектор напряжённости магнитного поля направлен по касательной к Γ , его величина зависит только от радиуса окружности r. Ориентацию на Γ согласуем с направлением векторного поля $\frac{\partial \vec{D}}{\partial t}$. Так как в рассматриваемом случае векторы $\frac{\partial \vec{D}}{\partial t}$ и

 $ec{D}$ направлены одинаково, то направления касательных векторов $ec{H}$ и $dec{l}$ совпадают, поэтому

$$\oint_{\Gamma} \left(\vec{H}, d\vec{l} \right) = \oint_{\Gamma} H dl = H 2\pi r .$$

Ток проводимости между обкладками конденсатора отсутствует (I=0), поэтому

Семестр 3. Лекция 10.

$$\oint_{\Gamma} (\vec{H}, d\vec{l}) = \frac{d}{dt} \iint_{S} (\vec{D}, d\vec{S}).$$

Тогда $H 2\pi r = I \frac{r^2}{R^2}$, откуда $H = \frac{Ir}{2\pi R^2}$. В частности, при r=R получаем $H = \frac{I}{2\pi R}$ - такое же зна-

чение, как если бы между обкладками конденсатора протекал ток проводимости силой $I. \clubsuit$

Уравнения Максвелла

Гипотезы Максвелла позволяют записать систему уравнений электромагнитного поля.

	Дифференциальная	Интегральная форма
	форма	
Теорема Гаусса	$div\vec{D} = \rho$	$\bigoplus_{S} \left(\vec{D}, d\vec{S} \right) = q_{\Sigma}$
для электрического поля		S
Закон электромагнитной индукции	$rot(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$	$ \oint_{\Gamma} \left(\vec{E}, d\vec{l} \right) = -\frac{d}{dt} \iint_{S} \left(\vec{B}, d\vec{S} \right) $
(закон Фарадея)	$\int \partial t \left(E \right) = -\frac{\partial t}{\partial t}$	$\int_{\Gamma}^{\Gamma} (D, uv) dt \int_{S}^{\Pi} (D, uv)$
(теорема о циркуляции вектора на-		
пряжённости электрического поля)		
Теорема Гаусса	$div\vec{B} = 0$	
для магнитного поля		S
Теорема о циркуляции вектора на-	$rot(\vec{H}) = \vec{j} + \frac{\partial \vec{D}}{\partial t}$	$ \oint_{\Gamma} \left(\vec{H}, d\vec{l} \right) = I_{\Sigma} + \frac{d}{dt} \iint_{S} \left(\vec{D}, d\vec{S} \right) $
пряжённости магнитного поля	∂t	$\int_{\Gamma} dt \int_{S} dt \int_{S} dt \int_{S}$

В материальной среде эти системы дополняются уравнениями (материальные уравнения)

	Дифференциальная форма	Интегральная форма
Закон Ома	$\vec{j} = \gamma \cdot \left(\vec{E} + \vec{E}_{CT}\right)$	$I \cdot R = \varphi_1 - \varphi_2 + \mathcal{E}_{12}$
Закон сохранения электриче-	$div(\vec{j}) = -\frac{\partial \rho}{\partial t}$	$\oiint \left(\vec{j}, d\vec{S} \right) = -\frac{d}{dt} \iiint \rho dV$
ского заряда	∂t	$\int_{S}^{\pi} (J^{r,m}) dt \int_{V}^{JJJ}$

 $\vec{D} = \pmb{\varepsilon}_0 \cdot \vec{E} + \vec{P}$, в однородном изотропном диэлектрике $\vec{D} = \pmb{\varepsilon}_0 \pmb{\varepsilon} \vec{E}$

 $ec{B} = \mu_0 \cdot \left(ec{H} + ec{J}
ight)$, в однородном, изотропном магнетике $ec{B} = \mu_0 \mu ec{H}$.

Условия на границе раздела сред $D_{2n}-D_{1n}=\sigma$, $E_{1t}=E_{2t}$, $B_{2n}=B_{1n}$, $H_{2t}-H_{1t}=i$.

Данная система уравнений в дифференциальной форме содержит 15 координат векторов \vec{E} , \vec{D} , \vec{B} , \vec{H} , \vec{j} и функцию ρ - объёмной плотности электрического заряда – итого 16 переменных. Количество уравнений Максвелла в координатной форме равно 8, материальных уравнений – 10, итого 18 уравнений. При этом некоторые уравнения могут быть следствием других в данной системе.

Кроме того, необходимо добавить начальное распределение зарядов (токов) и значения неизвестных параметров на границе рассматриваемой области.

В общем случае, нахождение характеристик электромагнитного поля является достаточно трудоёмкой задачей.

Оператор «набла».

Введем оператор, обозначаемый $\vec{\nabla}$, который сопоставляет функции её градиент

$$\vec{\nabla} f \mapsto grad\left(f\right)$$
 или в декартовых координатах $\vec{\nabla} f \mapsto \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$.

Если ввести векторы-орты декартовой системы координат $(\vec{e}_X, \vec{e}_Y, \vec{e}_Z)$, то это соответствие можно записать в виде равенства $\vec{\nabla} f = \vec{e}_X \frac{\partial f}{\partial x} + \vec{e}_Y \frac{\partial f}{\partial y} + \vec{e}_Z \frac{\partial f}{\partial z}$.

Поэтому для оператора «набла» используют обозначение в виде вектора

$$\vec{\nabla} = \vec{e}_x \frac{\partial}{\partial x} + \vec{e}_y \frac{\partial}{\partial y} + \vec{e}_z \frac{\partial}{\partial z}$$

с условием, что он действует на функцию только слева.

Если в некоторой области задано непрерывно-дифференцируемое векторное поле \vec{a} , то с помощью этого обозначения оператора «набла» дивергенция векторного поля записывается как скалярное произведение $(\vec{\nabla}, \vec{a}) = div(\vec{a})$, а ротор векторного поля – как векторное произведение $(\vec{\nabla} \times \vec{a}) = rot(\vec{a})$. Эти обозначения удобны тем, что соотношения векторного анализа $div(rot(\vec{a})) = 0$ и $rot(grad(f)) = \vec{0}$ становятся более наглядными. Действительно,

$$div(rot(\vec{a})) = (\vec{\nabla}, (\vec{\nabla} \times \vec{a})) = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_{x} & a_{y} & a_{z} \end{vmatrix} = 0$$

т.к. в этом определителе две одинаковые строки.

$$rot(grad(f)) = (\vec{\nabla} \times (\vec{\nabla}f)) = (\vec{\nabla} \times \vec{\nabla})f = \vec{0}$$

т.к. векторное произведение вектора на себя равно нулю.

Квадрат оператора набла равен оператору Лапласа $\vec{\nabla}^2 = (\vec{\nabla}, \vec{\nabla}) = \Delta$.

Действительно $(\vec{\nabla}, (\vec{\nabla}f)) = div(grad(f)) = \Delta f$.

Пример. Рассмотрим двойное векторное произведение $(\vec{a} \times (\vec{a} \times \vec{b})) = (\vec{a}, \vec{b})\vec{a} - (\vec{a}, \vec{a})\vec{b}$.

Чтобы его обосновать, введем вектор $\vec{d} = \vec{b} - \frac{\left(\vec{a}, \vec{b}\right)}{\left(\vec{a}, \vec{a}\right)} \vec{a}$, который об-

ладает следующими свойствами:

1) вектор
$$\vec{d}$$
 ортогонален вектору \vec{a} : $(\vec{d}, \vec{a}) = (\vec{b}, \vec{a}) - \frac{(\vec{a}, \vec{b})}{(\vec{a}, \vec{a})} (\vec{a}, \vec{a}) = 0$;

2) при замене вектора \vec{b} на \vec{d} векторное произведение не меняется

$$(\vec{a} \times \vec{d}) = \left(\vec{a} \times \left(\vec{b} - \frac{(\vec{a}, \vec{b})}{(\vec{a}, \vec{a})} \vec{a} \right) \right) = (\vec{a} \times \vec{b}) - \frac{(\vec{a}, \vec{b})}{(\vec{a}, \vec{a})} (\vec{a} \times \vec{a}) = (\vec{a} \times \vec{b}),$$

поэтому вектор \vec{d} перпендикулярен также и вектору $(\vec{a} \times \vec{b})$. Т.к. вектор $(\vec{a} \times (\vec{a} \times \vec{b}))$ тоже перпендикулярен векторам \vec{a} и $(\vec{a} \times \vec{b})$, то он должен быть пропорциональным вектору \vec{d} , т.е. $(\vec{a} \times (\vec{a} \times \vec{b})) = \lambda \cdot \vec{d}$ (где λ - число). Но так как он направлен противоположно вектору \vec{d} , то $\lambda < 0$. Теперь воспользуемся векторным равенством $(\vec{a} \times (\vec{a} \times \vec{b})) = (\vec{a} \times (\vec{a} \times \vec{d}))$ (вытекающим из второго свойства вектора \vec{d}):

$$\left| \left(\vec{a} \times \left(\vec{a} \times \vec{b} \right) \right) \right| = \left| \left(\vec{a} \times \left(\vec{a} \times \vec{d} \right) \right) \right| = |\vec{a}| \cdot \left| \left(\vec{a} \times \vec{d} \right) \right| = |\vec{a}| \cdot \left| \vec{d} \right| = (\vec{a}, \vec{a}) \cdot \left| \vec{d} \right|.$$

С другой стороны, $\left|\left(\vec{a}\times\left(\vec{a}\times\vec{b}\right)\right)\right|=\left|\lambda\right|\cdot\left|\vec{d}\right|$, откуда $(\vec{a},\vec{a})\cdot\left|\vec{d}\right|=\left|\lambda\right|\cdot\left|\vec{d}\right|$ или $\left|\lambda\right|=\left(\vec{a},\vec{a}\right)$.

С учётом знака $\lambda = -(\vec{a}, \vec{a})$. Окончательно,

$$\left(\vec{a} \times \left(\vec{a} \times \vec{b}\right)\right) = \lambda \cdot \vec{d} = -\left(\vec{a}, \vec{a}\right) \left(\vec{b} - \frac{\left(\vec{a}, \vec{b}\right)}{\left(\vec{a}, \vec{a}\right)} \vec{a}\right) = \left(\vec{a}, \vec{b}\right) \vec{a} - \left(\vec{a}, \vec{a}\right) \vec{b}.$$

Следовательно, для непрерывно-дифференцируемого векторного поля \vec{v} (с учётом правил применения оператора «набла»)

$$rot(rot(\vec{v})) = (\vec{\nabla} \times (\vec{\nabla} \times \vec{v})) = \vec{\nabla}(\vec{\nabla}, \vec{v}) - (\vec{\nabla}, \vec{\nabla})\vec{v} = grad(div(\vec{v})) - \Delta \vec{v}.$$

Уравнения Максвелла, записанные с помощью оператора «набла» примут вид (в дифференциальной форме)

$$(\vec{\nabla}, \vec{D}) = \rho$$
, $(\vec{\nabla} \times \vec{E}) = -\frac{\partial \vec{B}}{\partial t}$, $(\vec{\nabla}, \vec{B}) = 0$, $(\vec{\nabla} \times \vec{H}) = \vec{j} + \frac{\partial \vec{D}}{\partial t}$.