物理学 A 中間試験 (渡慶次)

2025 年 6 月 5 日・90 分間

注意事項

- 1. 試験問題はこの裏面 1 枚。配布物はこの紙 1 枚,解答用紙 2 枚,計算用紙 1 枚。下線のものを提出すること。
- 2. 問題用紙と解答用紙の両方に学籍番号・氏名等の必要事項を記入すること。
- 3. 最終的な結果だけでなく、結果に至る過程(日本語を含む)も目で追える程度に詳しく書くこと。
- 4. 問題文に与えられていない記号を解答に用いる場合には、定義を記すこと。
- 5. 資料の持ち込みは一切不可。
- 6. 各大問に付随する小問はどのような順序で解いてもよい。
- 7. 問題の不備や条件不足が考えられる場合には、適宜修正のうえ、修正点を明記して解答すること。

以上

- **I.** 重力加速度を g として、質点 m の等加速度直線落下運動を考える。地表(地面)を z=0 とする。座標軸の正方向を好きに選んで以下の問に答えよ。空気抵抗や質量変化といった面倒なことは考慮しなくてよい。
 - (1) 質点にはたらく力を座標軸とともに図示し、質点の運動方程式を z(t) に対する微分方程式の形で記せ。
 - (2) 前問で記した運動方程式を解き、位置 z(t) の一般解を与えよ。任意定数は c_1 と c_2 (順不同) とすること。
 - (3) 次の条件が満たされるように設問 (2) の任意定数 c_1 と c_2 を決定せよ。h>0 かつ $t_2>t_1>0$ とする。

(条件)
$$t = t_1$$
 で $z(t_1) = h$ かつ $t = t_2$ で $z(t_2) = 0$

- (4) 特に $t_2 t_1 = \sqrt{2h/g}$ が満たされるとき、z(t) と速度 $v(t) \equiv \mathrm{d}z(t)/\mathrm{d}t$ を、 t_2 を用いることなく記せ。
- (5) 設問 (4) で求めた z(t) を t の関数として図示せよ。特徴的な時刻や座標などがあれば記入すること。
- (6) 質点の力学的エネルギー E(t) を求めよ。時間変化 $\mathrm{d}E/\mathrm{d}t$ を計算し,そのようになる理由を述べよ。
- **II.** 水平面上を弾性定数 k のばねに繋がれた質点 m が運動している。ばねの一端は壁に固定されており、自然長位置を x=0 とする。運動の開始時刻を t=0 とし、座標軸の正方向を好きに選んで以下の問に答えよ。
 - (1) 質点にはたらく力を座標軸とともに図示し、質点の運動方程式を x(t) に対する微分方程式の形で記せ。
 - (2) 設問 (1) で記した運動方程式の一般解を記せ。任意定数は c_1 と c_2 (順不同) とすること。
 - (3) t=0 で自然長において速度 v_0 を与えた。この初期条件を満たす解 x(t) を求めよ。
 - (4) 設問 (3) で求めた x(t) に対して xt グラフを描け。また速度 v(t) に対して vt グラフを描け。
 - (5) 設問 (3) で求めた x(t) に対して、運動エネルギー $K \equiv mv^2/2$ (ただし $v \equiv dx/dt$ は速度) とポテンシャル・エネルギー $V \equiv kx^2/2$ を t の関数として求め、 $0 \le t \le 2\pi\sqrt{m/k}$ の範囲で同一のグラフに描け。
 - (6) 質点の力学的エネルギー E(t) を求めよ。時間変化 $\mathrm{d}E/\mathrm{d}t$ を計算し、そのようになる理由を述べよ。
- **III.** 重力加速度の大きさを g として、上空から直線的に落下する質点 m の運動を考える。質点には、速度に比例 する空気抵抗がはたらくとし、比例定数を k とする。座標軸の正方向を好きに選んで以下の問に答えよ。
 - (1) 質点にはたらく力を座標軸とともに図示し、質点の運動方程式を z(t) に対する微分方程式の形で記せ。
 - (2) 前問で書いた運動方程式を速度 $v \equiv \mathrm{d}z/\mathrm{d}t$ で書き換え、一般解 v(t) を求めよ。
 - (3) 初期条件 v(0) = 0 を満たす v(t) を求めて図示せよ。縦軸に終端速度、横軸に時定数の値を明記すること。
 - (4) 初期条件 $z(0) = z_0$ を満たす z(t) を求めよ。
 - (5) 質点の力学的エネルギー E(t) を求めよ。時間変化 $\mathrm{d}E/\mathrm{d}t$ を計算し,そのようになる理由を述べよ。計算 に際しては設問 (4) で求めた z(t) と設問 (3) で求めた v(t) を用いてよい。
 - (6) ストークスの法則によれば、半径 a の球状物体にはたらく空気抵抗の比例係数は $k=6\pi a\eta$ で与えられる。 粘性係数 η の次元を求めよ。
 - ♠ 時間が余った人や、問題を解くのを諦めた人は、講義に対する感想や要望がもしあれば自由に述べてください。 特にない場合は、まったく関係ない自由記述を行なってもかまいません。採点には一切影響しないものです。