Tugas Aljabar I

Teosofi Hidayah Agung 5002221132

$$\rho_0 = (1)$$

$$\rho = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

$$\rho^2 = (1 \ 3 \ 2)$$

$$\mu_1 = (2 \ 3)$$

$$\mu_2 = \begin{pmatrix} 1 & 2 \end{pmatrix}$$

$$\mu_3 = \begin{pmatrix} 1 & 3 \end{pmatrix}$$

$$D_3 = \{\rho_0, \rho_1, \rho_2, \mu_1, \mu_2, \mu_3\}$$

Komposisi:

•
$$\rho_0 \circ \rho_0 = (1) \circ (1) = (1) = \rho_0$$

•
$$\rho_0 \circ \rho = (1) \circ (1 \quad 2 \quad 3) = (1 \quad 2 \quad 3) = \rho$$

•
$$\rho_0 \circ \rho^2 = (1) \circ (1 \quad 3 \quad 2) = (1 \quad 3 \quad 2) = \rho^2$$

•
$$\rho_0 \circ \mu_1 = (1) \circ (2 \quad 3) = (2 \quad 3) = \mu_1$$

•
$$\rho_0 \circ \mu_2 = (1) \circ (1 \quad 2) = (1 \quad 2) = \mu_2$$

•
$$\rho_0 \circ \mu_3 = (1) \circ (1 \quad 3) = (1 \quad 3) = \mu_1$$

•
$$\rho \circ \rho_0 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \rho$$

•
$$\rho \circ \rho = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \rho^2$$

•
$$\rho \circ \rho^2 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} = \rho_0$$

•
$$\rho \circ \mu_1 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} = \mu_2$$

•
$$\rho \circ \mu_2 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix} = \mu_3$$

•
$$\rho \circ \mu_3 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} = \mu_1$$

•
$$\rho^2 \circ \rho_0 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \rho^2$$

•
$$\rho^2 \circ \rho = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} = \rho_0$$

•
$$\rho^2 \circ \rho^2 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \rho$$

•
$$\rho^2 \circ \mu_1 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix} = \mu_3$$

•
$$\rho^2 \circ \mu_2 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} = \mu_1$$

•
$$\rho^2 \circ \mu_1 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} = \mu_2$$

•
$$\mu_1 \circ \rho_0 = \begin{pmatrix} 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} = \mu_1$$

•
$$\mu_1 \circ \rho = (2 \quad 3) \circ (1 \quad 2 \quad 3) = (2 \quad 3) = \mu_3$$

•
$$\mu_1 \circ \rho^2 = \begin{pmatrix} 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} = \mu_2$$

•
$$\mu_1 \circ \mu_1 = (2 \quad 3) \circ (2 \quad 3) = (1) = \rho_0$$

•
$$\mu_1 \circ \mu_2 = \begin{pmatrix} 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \rho^2$$

•
$$\mu_1 \circ \mu_3 = (2 \ 3) \circ (1 \ 3) = (1 \ 2 \ 3) = \rho$$

•
$$\mu_2 \circ \rho_0 = \begin{pmatrix} 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} = \mu_2$$

•
$$\mu_2 \circ \rho = \begin{pmatrix} 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} = \mu_1$$

•
$$\mu_2 \circ \rho^2 = \begin{pmatrix} 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix} = \mu_3$$

•
$$\mu_2 \circ \mu_1 = \begin{pmatrix} 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \rho$$

•
$$\mu_2 \circ \mu_2 = \begin{pmatrix} 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} = \rho_0$$

•
$$\mu_2 \circ \mu_3 = \begin{pmatrix} 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \rho^2$$

•
$$\mu_3 \circ \rho_0 = \begin{pmatrix} 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix} = \mu_3$$

•
$$\mu_3 \circ \rho = \begin{pmatrix} 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} = \mu_2$$

•
$$\mu_3 \circ \rho^2 = \begin{pmatrix} 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} = \mu_1$$

•
$$\mu_3 \circ \mu_1 = \begin{pmatrix} 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \rho^2$$

•
$$\mu_3 \circ \mu_2 = \begin{pmatrix} 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \rho$$

•
$$\mu_3 \circ \mu_3 = \begin{pmatrix} 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} = \rho_0$$

0	$ ho_0$	ho	$ ho^2$	μ_1	μ_2	μ_3
$ ho_0$	ρ_0	ρ	ρ^2	μ_1	μ_2	μ_3
ρ	ρ	$ ho^2$	$ ho_0$	μ_2	μ_3	μ_1
$ ho^2$	ρ^2	$ ho_0$	ρ	μ_3	μ_1	μ_2
μ_1	μ_1	μ_3	μ_2	$ ho_0$	$ ho^2$	ρ
μ_2	μ_2	μ_1	μ_3	ρ	$ ho_0$	$ ho^2$
μ_3	μ_3	μ_2	μ_1	ρ^2	ρ	$ ho_0$

Tabel komposisi

1. Tentukan anggota D_6 ?

Jawab:

- $\rho_0 = (1)$
- $\bullet \ \rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$
- $\rho^2 = \begin{pmatrix} 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 \end{pmatrix}$
- $\rho^3 = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 3 & 6 \end{pmatrix}$
- $\bullet \ \rho^4 = \begin{pmatrix} 1 & 5 & 3 \end{pmatrix} \begin{pmatrix} 2 & 6 & 4 \end{pmatrix}$
- $\rho^5 = \begin{pmatrix} 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$
- $\mu_1 = \begin{pmatrix} 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix}$
- $\mu_2 = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 6 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix}$
- $\mu_3 = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 4 & 6 \end{pmatrix}$
- $\mu_4 = \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \end{pmatrix}$
- $\mu_5 = \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$
- $\mu_6 = \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 6 \end{pmatrix}$

2. Tunjukkan bahwa

Jawab:

$$\bullet \rho \circ \mu_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \circ \begin{pmatrix} 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 6 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix} = \mu_{2}$$

$$\bullet \rho^{2} \circ \mu_{1} = \begin{pmatrix} 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 \end{pmatrix} \circ \begin{pmatrix} 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 4 & 6 \end{pmatrix} = \mu_{3}$$

$$\bullet \rho^{3} \circ \mu_{1} = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 3 & 6 \end{pmatrix} \circ \begin{pmatrix} 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \end{pmatrix} = \mu_{4}$$

$$\bullet \rho^{4} \circ \mu_{1} = \begin{pmatrix} 1 & 5 & 3 \end{pmatrix} \begin{pmatrix} 2 & 6 & 4 \end{pmatrix} \circ \begin{pmatrix} 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} = \mu_{5}$$

$$\bullet \rho^{5} \circ \mu_{1} = \begin{pmatrix} 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 6 \end{pmatrix} = \mu_{6}$$

3. Tentukan k sehingga $\rho^2 \mu_1 = \mu_1 \rho^k$.

Jawab:

Dengan sebuah teorema maka didapat k = 4, buktinya:

$$\rho^{2}\mu_{1} = \begin{pmatrix} 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 \end{pmatrix} \circ \begin{pmatrix} 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 4 & 6 \end{pmatrix}$$
$$\mu_{1}\rho^{4} = \begin{pmatrix} 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix} \circ \begin{pmatrix} 1 & 5 & 3 \end{pmatrix} \begin{pmatrix} 2 & 6 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 4 & 6 \end{pmatrix}$$

 $\therefore k = 4$ memenuhi persamaan diatas.

4. Tentukan l sehingga $\rho^3 \mu_1 = \mu_1 \rho^l$.

Jawab:

Dengan sebuah teorema maka didapat l=3, buktinya:

$$\rho^{3}\mu_{1} = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 3 & 6 \end{pmatrix} \circ \begin{pmatrix} 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \end{pmatrix}$$

 $\therefore l=3$ memenuhi persamaan diatas.

5. Tentukan invers dari setiap elemen pada D_6 .

Jawab:

•
$$(\rho_0)^{-1} = \rho_0$$

•
$$(\rho)^{-1} = \rho^5$$

•
$$(\rho^2)^{-1} = \rho^4$$

•
$$(\rho^3)^{-1} = \rho^3$$

•
$$(\rho^4)^{-1} = \rho^2$$

•
$$(\rho^5)^{-1} = \rho$$

•
$$(\mu_1)^{-1} = \mu_1$$

•
$$(\mu_2)^{-1} = \mu_2$$

•
$$(\mu_3)^{-1} = \mu_3$$

•
$$(\mu_4)^{-1} = \mu_4$$

•
$$(\mu_5)^{-1} = \mu_5$$

•
$$(\mu_6)^{-1} = \mu_6$$

6.
$$f, g \in S_7$$
.

$$f = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix}$$

 $g = \begin{pmatrix} 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 & 7 \end{pmatrix}$

(a) Buatlah f dan g dalam permutasi **Jawab**:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 4 & 6 & 7 \end{pmatrix}$$
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 7 & 6 & 4 \end{pmatrix}$$

(b) Tentukan $f \circ g$ dan $g \circ f$ Jawab:

(c) Tentukan f^{-1} dan g^{-1} Jawab:

$$f^{-1} = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix}$$

 $g^{-1} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 7 & 5 & 4 \end{pmatrix}$

Dapat kita cek kembali

$$\begin{split} f\circ f^{-1} &= \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}\begin{pmatrix} 4 & 5 \end{pmatrix}\circ\begin{pmatrix} 3 & 2 & 1 \end{pmatrix}\begin{pmatrix} 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}\\ f^{-1}\circ f &= \begin{pmatrix} 3 & 2 & 1 \end{pmatrix}\begin{pmatrix} 4 & 5 \end{pmatrix}\circ\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}\begin{pmatrix} 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}\\ g\circ g^{-1} &= \begin{pmatrix} 2 & 3 & 1 \end{pmatrix}\begin{pmatrix} 4 & 5 & 7 \end{pmatrix}\circ\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}\begin{pmatrix} 7 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}\\ g^{-1}\circ g &= \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}\begin{pmatrix} 7 & 5 & 4 \end{pmatrix}\circ\begin{pmatrix} 2 & 3 & 1 \end{pmatrix}\begin{pmatrix} 4 & 5 & 7 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} \end{split}$$