Derivative of scalar function w.r.t. arguments of BatchNorm operation

Kadulin V.

October 18, 2022

Let $Y = \gamma \hat{X} + \beta$, where $\hat{X} \in \mathbb{R}^{N \times D}$, $\gamma \in \mathbb{R}^{D}$, $\beta \in \mathbb{R}^{D}$, $\hat{X} = \frac{X - \mu}{\sigma}$, $\mu = \frac{1}{N} \sum_{i=1}^{N} x_{i}$, $v = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$, $\sigma = \sqrt{v + \epsilon}$, $\epsilon \in \mathbb{R}$ is a small scalar to omit zero division.

Let $f: \mathbb{R}^{N \times D} \to \mathbb{R}$ is a differentiable scalar function. We also know $\frac{\partial f}{\partial Y}$. Derive $\frac{\partial f}{\partial X}$, $\frac{\partial f}{\partial \gamma}$, $\frac{\partial f}{\partial \beta}$. Notice that

- y_i depends on x_j , where $1 \le j \le N$
- there is only per-column dependency: y_{ij} depends on x_{kj} , where $1 \leq i$
- γ_j and β_j is the same for all y_{ij} , $1 \le i \le N$, $1 \le j \le D$.

Because columns are independent, consider j-th column of X as x. Hence,

$$y = \gamma \hat{x} + \beta$$
$$y, x, \hat{x} \in \mathbb{R}^{N}$$
$$\gamma, \beta, \mu, v, \sigma \in \mathbb{R}$$

$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^N \frac{\partial f}{\partial y_i} \frac{\partial y_i}{\partial \hat{x}_i} \frac{\partial \hat{x}_i}{\partial x_j}, \text{ where } x_j \text{ is the } j\text{-th element of } x.$$

$$\frac{\partial f}{\partial \gamma} = \sum_{i=1}^N \frac{\partial f}{\partial y_i} \frac{\partial y_i}{\partial \gamma} = \sum_{i=1}^N \frac{\partial f}{\partial y_i} \hat{x}_i$$

$$\frac{\partial f}{\partial \beta} = \sum_{i=1}^N \frac{\partial f}{\partial y_i} \frac{\partial y_i}{\partial \beta} = \sum_{i=1}^N \frac{\partial f}{\partial y_i}$$

Tricky part here is $\frac{\partial f}{\partial x_i}$. Let's derive it with two approaches: forward-mode differentiation (deriving $\frac{\partial f}{\partial x_i}$ directly from $f(x_j)$) and backward-mode differentiation (through writing computation graph and traversing it in reverse mode: from f to x_i).

Knowing expression for $\frac{\partial f}{\partial x_i}$, expression for $\frac{\partial f}{\partial X}$ comes straightforwardly from it.

Forward-mode differentiation

Let's derive expressions for building blocks:

$$\frac{\partial y}{\partial \hat{x}_i} = \gamma$$

$$\frac{\partial \hat{x}_i}{\partial x_j} = \frac{\partial (x_i - \mu)}{\partial x_j} (v + \epsilon)^{-\frac{1}{2}} + (x_i - \mu)(-\frac{1}{2})(v + \epsilon)^{-\frac{3}{2}} \frac{\partial (v + \epsilon)}{\partial x_j}$$

$$\frac{\partial \mu}{\partial x_j} = \frac{1}{N}$$

$$\frac{\partial x_i}{\partial x_j} = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}$$

Let's derive $\frac{\partial v}{\partial x_i}$.

Consider *i*-th component of sum in v as y_i .

$$\frac{\partial y_i}{\partial x_j} = \begin{cases} 2(x_i - \mu)(1 - \frac{1}{N}) = -\frac{2}{N}(x_i - \mu) + 2(x_i - \mu) & i = j \\ -\frac{2}{N}(x_i - \mu) & i \neq j \end{cases}$$

So,
$$\frac{\partial v}{\partial x_j} = \frac{1}{N} \left(-\frac{2}{N} \sum_{i=1}^{N} (x_i - \mu) + 2(x_j - \mu) \right)$$

So,
$$\frac{\partial v}{\partial x_j} = \frac{1}{N} \left(-\frac{2}{N} \sum_{i=1}^{N} (x_i - \mu) + 2(x_j - \mu) \right).$$

Note, that $\sum_{i=1}^{N} (x_i - \mu) = \sum_{i=1}^{N} x_i - N\mu = N\mu - N\mu = 0.$
So, $\frac{\partial v}{\partial x_j} = \frac{2}{N} (x_j - \mu).$

Now we can expand $\frac{\partial \hat{x_i}}{\partial x_i}$. Let's do it in case $i \neq j$:

$$\frac{\partial \hat{x}_i}{\partial x_j} = -\frac{1}{N} (v + \epsilon)^{-\frac{1}{2}} + (x_i - \mu)(-\frac{1}{2})(v + \epsilon)^{-\frac{3}{2}} \frac{2}{N} (x_j - \mu) = -\frac{1}{N} (v + \epsilon)^{-\frac{1}{2}} (1 + (x_i - \mu)(x_j - \mu)(v + \epsilon)^{-1})$$

Note that the only difference of case i = j is the first multiplier of the first term: it's $1 - \frac{1}{N}$ instead of $-\frac{1}{N}$. Now we have all to derive $\frac{\partial f}{\partial x_j}$:

$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^N \frac{\partial f}{\partial y_i} \frac{\partial y_i}{\partial \hat{x}_i} \frac{\partial \hat{x}_i}{\partial x_j} = \gamma \sum_{i=1}^N \frac{\partial f}{\partial y_i} \frac{\partial \hat{x}_i}{\partial x_j} =$$

$$\gamma \left(\sum_{i=1}^N -\frac{1}{N} (v+\epsilon)^{-\frac{1}{2}} (1 + (x_i - \mu)(x_j - \mu)(v+\epsilon)^{-1}) \frac{\partial f}{\partial y_i} + (v+\epsilon)^{-\frac{1}{2}} \frac{\partial f}{\partial y_j} \right) =$$

$$\gamma (v+\epsilon)^{-\frac{1}{2}} \left(-\frac{1}{N} \sum_{i=1}^N (1 + (x_i - \mu)(x_j - \mu)(v+\epsilon)^{-1}) \frac{\partial f}{\partial y_i} + \frac{\partial f}{\partial y_j} \right) =$$

$$\gamma (v+\epsilon)^{-\frac{1}{2}} \left(-\frac{1}{N} \sum_{i=1}^N \frac{\partial f}{\partial y_i} - (x_j - \mu)(v+\epsilon)^{-1} \frac{1}{N} \sum_{i=1}^N (x_i - \mu) \frac{\partial f}{\partial y_i} + \frac{\partial f}{\partial y_j} \right)$$

Backward-mode differentiation

Let's draw a computation graph:

Note that there are three paths from x_j and two paths from μ . So, derivative expressions through these nodes will consist of three and two terms respectively:

$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^{N} \frac{\partial f}{\partial y_i} \frac{\partial y_i}{\partial \hat{x}_i} \left(\frac{\partial \hat{x}_i}{\partial x_j} + \frac{\partial \hat{x}_i}{\partial v} \frac{\partial v}{\partial x_j} + \left(\frac{\partial \hat{x}_i}{\partial \mu} + \frac{\partial \hat{x}_i}{\partial v} \frac{\partial v}{\partial \mu} \right) \frac{\partial \mu}{\partial x_j} \right)$$

$$\frac{\partial y_i}{\partial \hat{x}_i} = \gamma$$

$$\frac{\partial \hat{x}_i}{\partial x_j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$\frac{\partial \hat{x}_i}{\partial v} = (x_i - \mu)(-\frac{1}{2})(v + \epsilon)^{-\frac{3}{2}}$$

$$\frac{\partial v}{\partial x_j} = \frac{2}{N} (x_j - \mu)$$

$$\frac{\partial \hat{x}_i}{\partial \mu} = -(v + \epsilon)^{-\frac{1}{2}}$$

$$\frac{\partial v}{\partial \mu} = -\frac{2}{N} \sum_{i=1}^{N} (x_i - \mu) = 0$$

$$\frac{\partial \mu}{\partial x_j} = \frac{1}{N}$$

Now let's derive $\frac{\partial f}{\partial x_i}$:

$$\frac{\partial f}{\partial x_j} = \gamma \left(\sum_{i=1}^N \frac{\partial f}{\partial y_i} \left(-(x_i - \mu)(v + \epsilon)^{-\frac{3}{2}} \frac{1}{N} (x_j - \mu) - \frac{1}{N} (v + \epsilon)^{-\frac{1}{2}} \right) + (v + \epsilon)^{-\frac{1}{2}} \frac{\partial f}{\partial y_j} \right) = \gamma (v + \epsilon)^{-\frac{1}{2}} \left(-\frac{1}{N} \sum_{i=1}^N \frac{\partial f}{\partial y_i} - (x_j - \mu)(v + \epsilon)^{-1} \frac{1}{N} \sum_{i=1}^N (x_i - \mu) \frac{\partial f}{\partial y_i} + \frac{\partial f}{\partial y_j} \right)$$

Note that result is the same as in previous approach. Knowing $\frac{\partial f}{\partial x_j}$, it's easy to write $\frac{\partial f}{\partial X}$:

$$\frac{\partial f}{\partial X} = \gamma (v + \epsilon)^{-\frac{1}{2}} \left(-\frac{1}{N} \sum_{i=1}^{N} \frac{\partial f}{\partial y_i} - (X - \mu)(v + \epsilon)^{-1} \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu) \frac{\partial f}{\partial y_i} + \frac{\partial f}{\partial Y} \right)$$

Here $x, y, v, \mu, \gamma \in \mathbb{R}^D$.