

Interdisciplinary Research Centre

in

Materials for High Performance Applications

Final Proceedings of
The EOARD/IRC-sponsored
International Workshop on Gamma
Aluminide Alloy Technology

held from 1 to 3 May 1996
at The IRC in Materials for High Performance
Applications
The University of Birmingham

SECTION THREE

DISTRIBUTION STATEMENT A

Approved for public release

Part 1A, 2A, 3A, 4A, 5A

THE UNIVERSITY
OF BIRMINGHAM

UNIVERSITY OF WALES
SWANSEA

THE UNIVERSITY OF BIRMINGHAM AND UNIVERSITY OF WALES SWANSEA CONSORTIUM

Funded by the Engineering and Physical Sciences Research Council

DTIC QUALITY INSPECTED 2

**Final Proceedings of
The EOARD/IRC-sponsored
International Workshop on Gamma
Aluminide Alloy Technology**

**held from 1 to 3 May 1996
at The IRC in Materials for High Performance
Applications
The University of Birmingham**

SECTION THREE

**The organisers wish to thank the United States Air Force European
Office of Aerospace Research and Development for its contributions to
the success of this conference**

19970620 018

✓

Gamma Alloy Technology: Fundamentals and Development

Young-Won Kim

UES-Materials & Processes
Dayton, OH, USA

Fundamentals
Processing
Microstructural Evolution
Structure/Property Relationships
Designing Microstructures
Component-Specific Alloy Design
Forming and Application
Summary and Future Direction

(April 1996)

Fundamentals

Phase Relations and Transformations

Microstructural Evolution

Deformation Mechanism

Alloying Effects

Deformation and Fracture Behavior

Environmental Resistance

Alpha Decomposition

At Very Slow Cooling Rate

At Intermediate Cooling Rates

Lamellar Structure Formation

Stacking Fault Mechanism

Gamma Precipitation and Growth

Ordering

No Compositional Changes Involved

Compositional Changes Involved

Effects of Composition and Cooling Rate

At Fast Cooling Rates

Widmanstätten Structures

Massively-Transformed Gamma

Formation of α_2 Phase

Transformations of Alpha Phase in Ti-xAl

Ti-43Al : Homogenized and DTA Cooled

Cooling Rate vs Lamellar Spacing (Ti-47Al)

50 °C/min

0.2 °C/min

Ti-47Al: COOLED AT 30°C/MIN

Ti-43Al: COOLED AT 5°C/MIN

DTA SPECIMENS OF HOMOGENIZED ALLOYS

Ti-51Al-1.1 WT%Ox
1350°C/6 HR/FC

CAST ALLOYS

Ti-47Al-1.1 WT%Ox
1350°C/6 HR + 1000°C/24 HR/WQ

Processing Routes for Gamma Alloys

ICIM (90-95)

Alloy KD-CBS1
340 kg P&W PAM Ing

Microstructural Evolution and Control

Principle

Phase Relation and Transformation

In Practice

Formation/Growth Kinetics, Distribution and Morphology Depend on Starting Microstructural and Compositional Conditions.

Controlling Factors

Temperature and Time
Heating Rate, Cooling Rate, and Scheme
Aging Method and Condition

Starting Material

Cast Product
Ingot Wrought-Processed Material
PM Processed Material
Material Processed by Other Processes

Processing

Ingot Preparation

Methods: ISM; PAM; VAR; VAR-Skull

Size Limitations (?)

Compositional/Microstructural Issues

NNS Casting

Investment vs. Permanent-Mold

Issues: Refinement; Porosity/Hip-Cycle
Thin-Section Casting

Wrought Processing

Primary: Conversion; Mill Production

Secondary: Forming, Rolling, etc.

Heat-Treatment Cycles

Joining; Machining

Other Processes

Processing Routes for Gamma Alloys

16im (90-95)

Microstructure Control in Castings

Standard Alloys

Ti-47Al-(1-2)Cr-(2-4)(Nb,Ta,W)-(0-0.2)Si

As-Cast Microstructures

Non-uniform; Lamellar Base

Controlled Microstructures

Refining and Uniformization

Practical: Casting Duplex

Desired: NL; Refined FL

Boride-Containing Alloys

XD Gamma Alloys

Ti-(45, 47)Al-4(Cr,Mn)-2Nb-0.8TiB₂

TMT-Type Microstructures

Others: IHI; GKSS

Inoculation by Borides

Microstructures in Castings

Cast and HIP'ed

Casting Duplex

XD (HIP'ed)

GKSS, As Cast

Casting RFL

As-Cast

T α -ΔT Treated

~~Not a good photo~~

309-09: 1440/2R 200X

309-1A: 1320/2R 200X

GKSS-2 1350/4pm/FC/1000 100x P.L.

GKSS-3 1320/2Hr/FC/1000 100x P.L.

GKSS 100X P.L.

12794

XDDI-2 1370°/40 min/FC/1000 100x PL.

XDDI-3 1320°/2hr/FC/1000 100x PL.

XD-01 50x Cast

Microstructure Control in Wrought Alloys

Standard Alloys

Ti-47Al-(0-3)(Cr,Mn,V)-(0-6)(Nb,Ta,Mo,W)

As-Processed Microstructures

Fine Mixture of Gamma and Alpha-2

Heat Treatments Yield

Standard Microstructures

Standard Microstructures

Types

Near-Gamma (NG)

Duplex (DP)

Nearly-Lamellar (NL)

Fully-Lamellar (FL)

Inverse EI/K_{1c} Relationship

Difficulties in Designing

Effort on Fundamental Understanding

Designed Microstructures

TI-46Al ALLOY CIGAR

1300°C/1 HR/Q + 900°C/1 HR/AC 1380°C/2 HR/CC + 1180°C/30 MIN/AC

Alloy K5's: Isothermally-Forged ($1150^{\circ}\text{C}/70/70$)

K5WSB (K5+0.3W+0.2Si+0.1B)

2
50 μm

Ti - 48Al - $x_2\text{Si}$

Ti - 47Al - $x_2\text{Si}$

Ti - 47Al - $x_1\text{Si}$

Isothermally forged(85%) microstructures

1270°C/3h/FC

Alloy K5: Isothermally-Forged and Duplex-Treated

1150°C/70/70

Lamellar Structures : Light-to-Gray Areas

Alloy G1 : Forged + ($\alpha+\gamma$) Treated + Air Cooled

Microstructures of Gamma Alloys

Duplex

Fully-Lamellar (FL)

Nearly-Lamellar (NL)

NL

7
Alloy K5 (Ti-46.5Al-2Cr-3Nb-0.2W)

Duplex

HW + $(\alpha+\gamma)$ -Treated

Fully-Lamellar

HW + α -Treated

Lamellar Grain Size Control in Wrought Alloy K5

Al₉₂(Ti₆C₄)₃, Ti₆C₄Al₆ - 2.1Cr - 3Nb - 0.5Mo

Cooling Condition Effect on RFL of Alloy K5

200 μm

K5L-12

K5L-19

Wrought Alloy K5 after High Temperature Treatments

ALLOY 616 FORGED (88%) AND HEAT TREATED (1200°C/2 HR/AC + 1000°C/24 HR/AC)

Duplex Microstructures in Alloy G1

Indirectly Aged

Directly Aged

Structure/Property Relationships

General Mechanical Behavior

Tensile
Fracture Toughness
Creep
Fatigue; FCG,

Inverse Ductility/FT Relationship

Deformation and Fracture Behavior

Tensile Loading
Cyclic Loading
Creep Loading

Damage Tolerance and Life Prediction

Microstructure Optimization

Alloy K5 Duplex

1270°C/4h/AC/RT

1270°C/4h/FC/900°C/AC
+ 900°C/48h/AC

Weak Yield Point

Pronounced Yield Point

K5 Duplex: $\varepsilon_t = 0.5\%$

Weak Yield Point
Strong Yield Point

1270°C/4h/AC/RT

1270°C/4h/FC/900°C/AC + 900°C/48h/AC

Duplex (+) Treatment and Cooling

a Duplex with direct aging

Near Gamma

10 μm

A Nearly-Lamellar with indirect aging

a Duplex with indirect aging

Tensile Fracture Surfaces of Alloy G1 in Various Microstructural Conditions

Tensile Curves of Fully-Lamellar Gamma Materials

Alloy K5 RFL Flat Gage Tensile Specimen Surface Deformed at RT
 $(\sigma_0/\sigma_y = 328/474 \text{ MPa} ; \lambda_L = 0.3 \mu\text{m})$

$\varepsilon_3/\sigma_3 = 0.55\% / 493 \text{ MPa}$

$\varepsilon_1/\sigma_1 = 0.3\% / 427 \text{ MPa}$

20 μm

20 μm

RT Tensile Deformation/Strain-Accommodation Observed on Electropolished
Surfaces of Alloy K5 RFL Specimens at $\sigma/\varepsilon=528 \text{ MPa}/1.21\% (\sigma_0/\varepsilon_0=328/0.19)$

4

BSE Image of RT Tensile Deformation/Strain-Accommodation near GB's
on Surfaces of Alloy K5 RFL Specimens at $\sigma/\epsilon = 528 \text{ MPa}/1.21\% (\epsilon_0=0.19)$

Deformed Microstructure of Alloy G1 at 1.9% Tensile Strain

Alloy K5 RFL Tensile Specimen Flat Gage Surface Deformed at RT
 $\sigma_5/\varepsilon_5 = 524 \text{ MPa}/0.78\% (\sigma_0/\varepsilon_0 = 328/0.19)$

RT Tensile Transgranular Fracture of FL Gamma Alloys:
(a) Overall, (b) Interlamellar and Translamellar, (c, d)
Translamellar Cleavage with Interlamellar Deformation

Fully-Lamellar

Duplex

RT Tensile Fracture Features of TiAl alloys in FL
and Duplex Microstructural Conditions

Grain-Size//Yield-Stress Relations in TiAl

Specimen/Grain Size Effect on Tensile Properties

SD/GS=1.5:1

Specimen-Diameter/Grain-Size = 8.2:1

500 μm

Corrected Hall-Petch Relation in FL TiAl

Hall-Petch Relations in TiAl Alloys

Hall-Petch Relations in TiAl Alloys

Duplex Material

$$\sigma_y = \sigma'_o = K_d d^{-1/2}$$

$$K_d \sim 1 \text{ MPa}^{\lambda/m}$$

Relatively isotropic

Fully-Lamellar Material

$$\sigma_y = \sigma_o + K_{d\lambda} d^{-1/2}$$

$$K_{d\lambda} = 2.5 \text{ MPa}^{\lambda/m} \text{ (for } \lambda=1 \mu\text{m})$$

Combined Effect of d and λ

$$K_{dy} = K_d (\tau^*_{avg} / \tau^*_s) = f_{tn}(\lambda)$$

Yielding of the $(\gamma + \alpha_2)$ Lath Structure

Ti-(46.5-47)Al- (4-6)(Cr,V,Nb,M)

Tensile Fracture of FL Alloy G5 at 750°C

Tensile Properties of Alloy K5

(Dependence on Microstructure, Temperature and Strain Rate)

Tensile Fracture of Alloy K5 (Duplex) in Air at 600°C
[YS/UTS/EI : 396/545/3.6]

Far Below Fracture Surface

Just Below Fracture Surface

Near Cl site

Away From Cl

Tensile Deformation and Fracture of a Duplex Alloy K5
at 800°C in Air

Temperature Effect on Fracture Mode

Duplex at RT

Duplex at 600°C

RFL at RT

RFL at 800°C

Tensile Properties of Alloy K5

(Dependence on Microstructure, Temperature and Strain-Rate)

Effect of Strain Rate on BDT in Alloy K5

Dependence of Flow Stress on Strain-Rate and Temperature

Factors Controlling Tensile Properties

Microstructure

Types: Duplex vs. FL

Features

- Grain Size and Morphology
- GB Morphology
- Lamellar Spacing (LS)
- α_2/γ Ratio (α_2 vol%)

Uniformity

Composition

α_2/γ Ratio; LS

Cleavage Strength

Interfacial Bond Strength

Grain Size Effects on Tensile and Toughness

Ductility and Strength

Ductility and Toughness

Near-tip Strain Distribution

K -Resistance Curves

Fracture Resistance and Near-Tip Plasticity at RT

General Tensile Yielding vs. Near-Crack-Tip Plasticity at K_{IC}

Plastic Deformation and Microcracking Around the Advancing Crack Tip in
a FL Alloy G1 CT Specimen under a Monotonic Tension Loading at RT

Interlamellar and Translaminar Deformation in Crack-Tip and Ligament Regions

Fracture Toughness

Grain Size Effect

Lamellar Spacing Effect

T-Cracks Involving
Delamination, and Both
Inter- and Trans-lamellar
Slip/Twinning

Effect of displacement rate on the K-resistance curves of the G1L alloy at 800°C.

Fracture Process in Lamellar TiAl Alloys at 800°C

4

Crack-Tip Regions of Lamellar TiAl Fracture Specimens

Creep Resistance of Alloy K5

Larsen-Miller Plot

Stress Exponents

Alloy G1 : Lamellar structure near the fracture surface of the specimen
crept in vacuum at 207 MPa

+

Alloy K5 RFL Specimen Crept at 800°C to 18.7% in Air Under
(138-173-207-242-285 MPa) Step Stress Conditions

Turbine Blade and Vane Operating Temperatures, Yield Stresses (YS), 1000-h Rupture Stresses (RS) for Superalloys

Effect of Al_2O_3 Layer on Creep

Creep of Alloy K5

Creep of Alloy K5 Series

(under severe conditions)

Nemoto (94)

Figure 8 Dark field electron micrograph showing the bypassing dislocations in $(\text{Ti}_{0.49}\text{Al}_{0.51})_{99.5}\text{C}_{0.5}$ aged at 1073 K for 3.6×10^5 s (100h/over aged) and deformed to 3% at 873 K. The dislocation loops surrounding needles can be seen.

Figure 2 Effects of the deviation from the stoichiometry on the variation of compressive yield strength of $(\text{Ti}_{0.51}\text{Al}_{0.49})_{99.5}\text{C}_{0.5}$, $(\text{Ti}_{0.50}\text{Al}_{0.50})_{99.5}\text{C}_{0.5}$ and $(\text{Ti}_{0.49}\text{Al}_{0.51})_{99.5}\text{C}_{0.5}$ during aging at 1073 K.

Figure 3 Temperature dependence of compressive yield strength of $(\text{Ti}_{0.51}\text{Al}_{0.49})_{99.5}\text{C}_{0.5}$ and $(\text{Ti}_{0.50}\text{Al}_{0.50})_{99.5}\text{C}_{0.5}$ aged at 1073 K for 3.6×10^4 s (10 h), and $(\text{Ti}_{0.49}\text{Al}_{0.51})_{99.5}\text{C}_{0.5}$ aged at 1073 K for 3.6×10^3 s (1 h). Data for binary and ternary TiAl are also included.

HCF of Alloy K5

$\sigma_m = 430 \text{ MPa}$; $C_f = 2,310$

$\sigma_m = 330 \text{ MPa}$; $C_f = 7.2 \times 10^6$

Fatigue Deformation and Fracture of FL Alloy K5 at
 800°C and $R=0.1$ in Air ($\text{UTS} = 500 \text{ MPa}$)

4

$\sigma_m/UTS=430/505 \text{ MPa} ; C_f=10,700$

$\sigma_m/UTS=280/505 \text{ MPa} ; C_f=3.6\times 10^6$

$\sigma_m/UTS=430/500 \text{ MPa} ; C_f=2,310$

$\sigma_m/UTS=330/500 \text{ MPa} ; C_f=7.2\times 10^6$

Fatigue Fracture of Alloy K5 in Various Conditions
at 800°C and R = 0.1 in Air

Load-Controlled Fatigue Failure of FL Alloy K5

(R=0.1 / 870°C / Air)

$\sigma_{\max} = 350 \text{ MPa} / N_f = 9.6 \times 10^5$

$\sigma_{\max} = 250 \text{ MPa} / N_f = 1.63 \times 10^7$

Near Cl Site

Near Cl

Away from Cl

Away from Cl

$$\sigma_m = 625 \text{ MPa} / C_f = 1629$$

$$\sigma_m = 575 \text{ MPa} / C_f = 1.36 \times 10^6$$

Fatigue Fracture of a Duplex Alloy K5 at 600°C in Air
(R = 0.1; UTS = 583 MPa)

Specimen Geometry Effect at <BDTT

HCF of Alloy K5 in Duplex at 800°C

(Effect of Frequency and Fatiguing Time)

Frequency Effect

Effect of Fatiguing Time

Effect of Frequency on HCF

(at 800°C)

High Stress Regime ($\sigma_{\max} > \sigma_y$)

Frequency-dependent (need investigation)
High-rate deformation

Low Stress Regime ($\sigma_{\max} > \sigma_y$)

Frequency-independent
Time-dependent
Creep deformation important

Creep Fatigue

Suggested at Low Stresses
Mean Stress: $\sigma_{\text{avg}} = (\sigma_{\max} + \sigma_{\min})/2$

Figure 10. Crack-size dependence of the threshold stress range below which specimen failure will not occur in the alloy K5 in the (a) duplex and (b) lamellar conditions.

FCG of Alloy K5

Fatigue Deformation and Failure

- Fatigue behavior in gamma alloys consists of:
 - Deformation period (remarkably long),
 - Crack initiation and growth (to a critical size)
 - Rapid crack propagation (to failure)
- Below BDTT, flat SN curves are observed. The fatigue strength is controlled by tensile properties.
 - Duplex microstructure** (preferred)
Above BDTT, fatigue life depends on tensile deformation behavior under high applied stress ($>YS$). Under low stresses ($<YS$), fatigue strength appears related to creep resistance.
 - Fully-lamellar microstructure** (preferred)
Fracture takes place transgranularly below BDTT and boundary fracture becomes predominant at higher temperatures.

Fatigue Behavior

Alloy K5 vs. Disk Superalloys

Alloy Design

Alloy Selection

Microstructural Optimization

Considerations

- Mechanical Data and Behavior
- Damage-Tolerance & Life-Prediction
- Microstructural Controllability

Derive Optimum Microstructures

Devise Process & Treatment Schemes

Chemistry Modification

Promote Desired Microstructures

Improve Mechanical Behavior

Enhance Environmental Resistance

Design of Microstructures

Property Requirements

Dimensional Considerations

Component-Specific Microstructures

Scaled-up Process Development

Designed Microstructures

Refined FL (RFL)

Alloy Modification
Innovative Heat Treatments

TMT Lamellar (TMLT)

Boron Addition
Heat Treatments

TMP Lamellar (TMPL)

Extrusion
Forging
Aging

****Aligned Lamellar****

Directionally Solidified (DS)
Directionally Worked : DELM; DFLM

Other Types: Under Exploration

Chemistry Modification

(Standard: NG, DP, NL and FL)

Optimized Microstructural Features

(Wrought Alloys)

Lamellar Structure Base

Grain Size: 50-400 μm

GB Morphology

Slip Transmission
Bond Strength

Lamellar Spacing < 2 μm

Strength; Strain-to-Failure
Toughness; Creep

α_2 Volume Fraction: 5-30 %

Strength; Ductility; Toughness
Anisotropy

Texture Consideration

Duplex Microstructures (?)

RFL vs. TMTL Microstructures

TMT Lamellar Microstructures

**Wrought Processed Alloys
Boron Additions: 0.05-0.5 %
HW plus Alpha Treatment
Advantages/Disadvantages**

GS vs Boron Content in Gamma Alloys

Cooling-Rate and Boron -Content on Alpha Decomposition

Alloy K1: As-Forged; Near Gamma; Duplex; and TMTL microstructures

Forged and TMT-Lamellar Treated ($1370^{\circ}\text{C}/1\text{h}/\text{FC}/1000^{\circ}\text{C}/\text{AC}$)

Ti-47Al-0.24B

Ti-47Al-0.10B

Ti-47Al-0.05B

Alloy K7: Alpha-Treated (1390°C/30min) and Cooled Differently

AC

FC/1300°C/AC

FC/900°C/AC

100 μm

AC

FC/1200°C/AC

Alloy K6: Alpha-Treated (1370°C/1h) and Cooled Differently

Alloy K2 (Ti-46.8Al-2Cr-4.0Nb-0.3B): Boride Distribution

TMTL

Duplex

200 μm

200 μm

Alloy K7: TMT-Treated ($1390^{\circ}\text{C}/1.5\text{h/AC}$) and Annealed ($1300^{\circ}\text{C}/24\text{h/AC}$)

TMP Lamellar Microstructures

K5SC Alloy TMPL Extrusion LT-Section

Longitudinal

Transverse

A TMP Microstructure in a 4822 Extrusion

Thermal Stability of TMP Lamellar Extrusions

✓

Flow Curves of Lamellar Alloys

Strengths of RFL/TMPL Gamma Alloys

✓

Microstructure on RT Tensile Properties

GS/LS/YS Relations in TiAl FL Alloys

Alloy K8 TMP-Lamellar Extrusion

Long-Transverse (LT)

021
020794

Alloy K5S: Effect of Ram Speed on the Alpha-Forged Microstructure

6

18

60

K5S (Ti-46.2Al-2Cr-3Nb-0.2W-0.2Si): Directionally Alpha-Forged

3

A Discrete Lamellar Structure in Alloy K5

3
f

Cooling Rate vs Microstructure/Tensile-Properties in α -Treated Alloy G8

FC: 297/360/0.36

AC: 460/543/0.82

250 μ m

HIGH TEMPERATURE MATERIALS

Advances in Microstructural Control

WL/MLL

Metals & Ceramics Division

Gamma Microstructure/Property Relationships:

<u>STRUCTURE</u>	<u>YEAR</u>	YS (ksi)	UTS (ksi)	EL (%)	K (ksi/in)	CREEP
Duplex (G+L)	1988	65	80	3-4	12	Fair
Nearly Lamellar	1990	90	105	2-2.5	14	Fair
Fully Lamellar	1990	50	75	0.4-0.9	22-30	Very Good
Cast Nearly Lamellar*	1991	43	58	1.4-2.0	23-28	Good
TMP Lamellar	1991	85	100	2-2.5	25-30	Good

**TMP LAMELLAR STRUCTURE HAS
BEST BALANCE OF PROPERTIES**

*Howmet Co,
Cast Ti-48Al-2Mn-2Nb

Properties of Titanium-Base Alloys and Superalloys

Property	Ti-Base	Ti ₃ Al-Base	TiAl-Base	Superalloys
Structure	hcp/bcc	DO19	L10	fcc/L12
Density (g/cm ³)	4.5	4.1-4.7	3.7-3.9	7.9-8.5
Modulus (GPa)	95-115	110-145	160-180	206
Yield Strength (MPa)	380-1150	700-990	350-600	800-1200
Tensile Strength (MPa)	480-1200	800-1140	440-700	1250-1450
Ductility (%) at RT	10-25	2-10	1-4	10-25
Ductility (%) at HT (°C)	12-50 (550)	10-20 (660)	10-60 (870)	20-80 (870)
Fracture Toughness (MPa/m) at RT	30-60	13-30	12-35	30-90
Creep Limit (°C)	600	750	750 ^a -950 ^b	800-1090
Oxidation Limit (°C)	600	650	800 [*] -950 ⁺	870 [*] -1090 ^{**}

a Duplex; b Fully-lamellar microstructures; * Uncoated; + ** Coated; + Expected

Component Forming

(Wrought Processing)

Turbine Engine Components

Blades

- Alloy/Microstructures
- Mill product + Machining
- Impression Forging to NNS
 - Isothermal
 - Hot-Die Forming
- Heat Treatment

Disks

- Mill Product + Machining
- Impression Forging to NNS
 - Isothermal
 - Hot-Die Forming
- Heat Treatment

Engine Valves

Automotive Engines

Aircraft Engines

G87

3882

3880

w

Automotive Valve Forming

Cast Valve

Casting

Hipping

Passenger Car

Wrought Valve

Isothermal Forging

Production Die Extrusion/Forging

Preconditioning: IM; PM

High Rate Extrusion of Preforms

High Rate Head Forging

Microstructure Control

Head/Stem Joining

High Performance

Wrought Gamma Engine Valve

1st Step: Partial Extrusion

Preform

2 cm

6

Stem

Neck

Base

50 μm

G10 Valve Extrusion:
Transverse Sections

High-Rate (80 cm/sec)
Warm-Die (250°C)

Valve Extrusion
Head Coining

Commercial Steel Valve
Production Press (TRW)

Wrought Gamma Exhaust Valves

Applications

Aircraft Gas Turbine Engines

Automotive Engines

Land-Based Gas Turbine Engines

Others

Cast 4822 Gamma Transition Duct Beam
GE-90 Engine for Boeing 777

CAESAR Program

COMPONENT AND ENGINE STRUCTURAL ASSESSMENT RESEARCH

Gamma Titanium HPC 6th Stage Blades

Participants:

P&W Cast "XD" Ti-47Al-2Nb-2Mn-0.8%TiB₂
Rolls Royce Cast "XD" Ti-45Al-2Nb-2Mn-0.8%TiB₂
Allison ADC Wrought Alloy 7
GE Wrought Ti-48Al-2Cr-2Nb

Schedule:

Design and fabrication Due 96
Delivery to P&W Due 96
Proof spin (P&W) Due 96
~~F4-13 Corrected 100 hours (AEBO)~~
~~Engine tests 2000 TAG cycles (P&W)~~
~~Spin pitch test failure (P&W, UK)~~

- Other gamma Ti components:
- ~~HPC inner shroud~~
 - ~~combustor swirlers~~
 - ~~nozzle tips~~

4822 Cast Gamma LPT Blades for GE CF6-80C2

Cast and Chem-milled
Engine Tested for over 1000 cycles

Summary and Future

Continuous Alloy Exploration/Design

Casting vs Wrough Alloys

Continuous Search for Fundamentals

Process Development

Component-Specific Alloy Design

Search for Application Areas

Understand Practicality

Collaboration/Exchange