Conversão de Energia I (CVEE6)

Aula 07

Prof. Elian João Agnoletto

agnoletto.elian@ifsp.edu.br

Câmpus Cubatão

Roteiro

☐ Transformadores trifásicos.

Transformadores trifásicos

- ☐ Equipamentos indispensáveis para o funcionamento de um sistema elétrico;
- ☐ Presentes nos principais sistemas de geração e distribuição de potência no mundo;

- ☐ Podem ser construídos a partir de transformadores monofásicos (banco trifásico) ou por meio de três conjuntos de enrolamentos que envolvem um núcleo comum;
- ☐ Banco monofásico: flexibilidade (substituição individual no caso de problema), estoque.

- ☐ Podem ser construídos a partir de transformadores monofásicos (banco trifásico) ou por meio de três conjuntos de enrolamentos que envolvem um núcleo comum;
- ☐ Transformador trifásico: mais leve, menor, custo mais baixo e ligeiramente mais eficiente.

- ☐ Um transformador trifásico é constituído de pelo menos três enrolamentos no primário e três enrolamentos no secundário;
- \square Como qualquer componente trifásico, podem ser conectados em Estrela (Y) ou Delta (Δ);
- ☐ Principais configurações possíveis de ligação:
 - Estrela-estrela (Y Y)
 - Estrela-triângulo $(Y \Delta)$
 - Triângulo-estrela (∆ Y)
 - Triângulo-triângulo ($\Delta \Delta$)

Ligações em um transformador trifásico

- ☐ A análise de um banco de transformadores trifásicos pode ser realizada para um único transformador do banco;
- ☐ Para os transformadores trifásicos, os cálculos de impedância, regulação de tensão, eficiência e outros similares são realizados tomando uma fase de cada vez;
- ☐ A relação de transformação de transformadores trifásicos são especificadas pela razão entre as tensões de linha do primário e do secundário.

Circuitos trifásicos

☐ Definições:

- Tensão de fase: tensão medida entre fase e neutro;
- Tensão de linha: tensão medida entre duas fases.

☐ Tensões de fase:

$$V_{an} = V_f \operatorname{sen}(\omega t)$$

$$V_{bn} = V_f \operatorname{sen}(\omega t - 120^\circ)$$

$$V_{cn} = V_f \operatorname{sen}(\omega t + 120^\circ)$$

☐ A **tensão de linha** é dada por:

$$V_{ab} = V_{an} - V_{bn}$$

 \Box As conexões Y- Δ e Δ -Y envolvem defasagens de 30° entre as tensões de linha do primário e do secundário.

☐ Tensões de fase:

$$V_{an} = V \operatorname{sen}(\omega t)$$

$$V_{bn} = V \operatorname{sen} (\omega t - 120^{\circ})$$

$$V_{cn} = V \operatorname{sen} (\omega t + 120^{\circ})$$

☐ Tensões de linha:

$$V_{ab} = V_{an} - V_{bn} = \sqrt{3}V \operatorname{sen}(\omega t + 30^{\circ})$$

$$V_{bc} = V_{bn} - V_{cn} = \sqrt{3}V \operatorname{sen}(\omega t - 90^{\circ})$$

$$V_{ca} = V_{cn} - V_{an} = \sqrt{3}V \operatorname{sen}(\omega t + 150^{\circ})$$

Ligação Y — Y

Ligação Y — Y

Cubatão

☐ Relações de tensões:

$$\frac{V_{\phi P}}{V_{\phi S}} = a$$

$$V_{LP} = \sqrt{3}V_{\phi P}$$

$$V_{LS} = \sqrt{3}V_{\phi S}$$

relação de transformação

$$\frac{V_{LP}}{V_{LS}} = \frac{\sqrt{3}V_{\phi P}}{\sqrt{3}V_{\phi S}} = a$$

■ A relação de transformação é igual à relação de espiras do transformador.

 V_{LP}^{bc}

Ligação Y — Y

☐ Relações de correntes:

$$\frac{I_{\phi P}}{I_{\phi S}} = \frac{1}{a}$$

$$\frac{I_{LP}}{I_{LS}} = \frac{I_{\phi P}}{I_{\phi S}} = \frac{1}{a}$$

Não há defasagem angular entre as correntes do primário e do secundário.

☐ Problemas:

- Se as cargas no circuito do transformador estiverem desequilibradas, as tensões nas fases do transformador podem se tornar gravemente desequilibradas;
- Como não há conexão de neutro para conduzir as harmônicas da corrente de excitação, tensões harmônicas são produzidas distorcendo de modo significativo as tensões do transformador;
- As tensões das terceiras harmônicas podem ser elevadas.

- Os problemas de desequilíbrio e de terceira harmônica podem ser resolvidos utilizando uma das duas técnicas seguintes:
 - ✓ Aterrar solidamente os neutros dos transformadores, especialmente o neutro do enrolamento primário;
 - \checkmark Acrescentar um terceiro enrolamento (terciário) ligado em Δ ao banco de transformadores;
- A ligação Y Y é pouco utilizada na prática.

Ligação $\Delta - \Delta$

Ligação Δ — Δ

☐ Relações de tensões:

$$\frac{V_{\phi P}}{V_{\phi S}} = a$$

$$V_{LP} = V_{\phi P}$$

$$V_{LS} = V_{\phi S}$$

$$\frac{V_{LP}}{V_{LS}} = \frac{V_{\phi P}}{V_{\phi S}} = a$$

- Não apresenta nenhum deslocamento de fase entre as tensões do primário e do secundário;
- Não tem problemas de cargas desequilibradas ou harmônicas;
- A relação de transformação é igual à relação de espiras do transformador.

Ligação $\Delta - \Delta$

☐ Relações de correntes:

$$\frac{I_{\phi P}}{I_{\phi S}} = \frac{1}{a}$$

$$\frac{I_{LP}}{I_{LS}} = \frac{\sqrt{3}I_{\phi P}}{\sqrt{3}I_{\phi S}} = \frac{1}{a}$$

- ☐ Não apresenta deslocamento de fase entre as correntes do primário e do secundário;
- \square Defasagem de 30° em relação às correntes de linha e de fase (natural da ligação Δ);
- ☐ Não tem problemas de cargas desequilibradas ou harmônicas.

Ligação $Y-\Delta$

Ligação Y − ∆

FEDERAL São Paulo Câmpus Cubatão

☐ Relações de tensões:

$$\frac{V_{\phi P}}{V_{LS}} = a$$

$$V_{LP} = \sqrt{3}V_{\phi P}$$

$$V_{LS} = V_{\phi S}$$

$$\frac{V_{LP}}{V_{LS}} = \frac{\sqrt{3}V_{\phi P}}{V_{LS}} = \sqrt{3}a$$

- Defasagem de 30° em relação às tensões de linha do primário e do secundário;
- A tensão de linha do secundário está atrasada 30° em relação à tensão de linha do primário;

Ligação Y − ∆

☐ Relações de correntes:

$$\frac{I_{\phi P}}{I_{\phi S}} = \frac{1}{a}$$

$$\frac{I_{LP}}{I_{LS}} = \frac{I_{\phi P}}{\sqrt{3}I_{\phi S}} = \frac{1}{\sqrt{3}a}$$

- Apresenta deslocamento de fase de 30° entre as correntes de linha do primário e do secundário;
- A corrente de linha do primário está adiantada 30° em relação à corrente de linha do secundário.

- \square Não apresenta problemas com as componentes de terceira harmônica em suas tensões, porque elas são suprimidas por uma corrente que circula no lado Δ ;
- \Box Mais estável em relação a cargas desequilibradas, porque o lado Δ redistribui parcialmente qualquer desequilíbrio que possa ocorrer;
- ☐ A tensão secundária é deslocada de 30° em relação à tensão primária do transformador (cuidados adicionais com paralelismo de transformadores).

Ligação $\Delta - Y$

22

Ligação $\Delta - Y$

 \mathbf{V}_{LS}

Cubatão

☐ Relações de tensões:

$$\frac{V_{\phi P}}{V_{\phi S}} = a$$

$$V_{LP} = V_{\phi P}$$

$$V_{LS} = \sqrt{3}V_{\phi S}$$

relação de transformação

$$\frac{V_{LP}}{V_{LS}} = \frac{V_{\phi P}}{\sqrt{3}V_{\phi S}} = \frac{a}{\sqrt{3}}$$

- Defasagem de 30° em relação às tensões de linha do primário e do secundário;
- A tensão de linha do secundário está adiantada 30° em relação à tensão de linha do primário;

Ligação $\Delta - Y$

☐ Relações de correntes:

$$\frac{I_{\phi P}}{I_{\phi S}} = \frac{1}{a}$$

$$\frac{I_{LP}}{I_{LS}} = \frac{\sqrt{3}I_{\phi P}}{I_{\phi S}} = \frac{\sqrt{3}}{a}$$

- Apresenta deslocamento de fase de 30° entre as correntes de linha do primário e do secundário;
- A corrente de linha do primário está atrasada 30° em relação à corrente de linha do secundário.

- □ Não apresenta problemas com as componentes de terceira harmônica em suas tensões, porque elas são suprimidas por uma corrente que circula no lado;
- \Box Mais estável em relação a cargas desequilibradas, porque o lado Δ redistribui parcialmente qualquer desequilíbrio que possa ocorrer;
- ☐ A tensão secundária é deslocada de 30° em relação à tensão primária do transformador (cuidados adicionais com paralelismo de transformadores).

Conversão de Energia I (CVEE6)

Obrigado!

Prof. Elian João Agnoletto

agnoletto.elian@ifsp.edu.br

Câmpus Cubatão