Paper Review: Randomized sketches for kernels: Fast and optimal non-parametric regression

Yun Yang, Mert Pilanci and Martin J. Wainwright

Group Meeting · Meimei Liu · Nov 03, 2015

Outline

- 1 Introduction
- 2 Randomized Sketch Approach
- 3 Theorem
- 4 Simulations
- 5 Proof intuition

Model Description

Consider the model

$$y_i = f^*(x_i) + \sigma w_i$$
, for $i = 1, 2, \dots, n$

where the regression function $f^*(x) = E[Y|x]$, the sequence $\{w_i\}_{i=1}^n$ consists of i.i.d. standard Gaussian variates.

■ Suppose f^* belong to a RKHS with kernel function $\mathcal{K}(\cdot, \cdot)$, define the empirical kernel matrix K with entries $K_{ij} = n^{-1}\mathcal{K}(x_i, x_j)$. The KRR estimator

$$\hat{f}_{KRR} := \operatorname{argmin}_{f \in \mathcal{H}} \left\{ \frac{1}{2n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda_n ||f||_{\mathcal{H}}^2 \right\} \quad (1)$$

■ By Representer Theorem, $\hat{f}_{KRR}(\cdot) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} w_i^{\dagger} \mathcal{K}(\cdot, x_i)$, with w_i obtained by solving the quadratic program

$$w^{\dagger} = \operatorname{argmin}_{w \in \mathbb{R}^n} \left\{ \frac{1}{2} w^{\mathsf{T}} K^2 w - w^{\mathsf{T}} \frac{K y}{\sqrt{n}} + \lambda_n w^{\mathsf{T}} K w \right\} \quad (2)$$

KRR estimator could achieve the minimax prediction error for various classes of kernels. ■ By Representer Theorem, $\hat{f}_{KRR}(\cdot) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} w_i^{\dagger} \mathcal{K}(\cdot, x_i)$, with w_i obtained by solving the quadratic program

$$w^{\dagger} = \operatorname{argmin}_{w \in \mathbb{R}^n} \left\{ \frac{1}{2} w^{\mathsf{T}} K^2 w - w^{\mathsf{T}} \frac{Ky}{\sqrt{n}} + \lambda_n w^{\mathsf{T}} Kw \right\} \quad (2)$$

- KRR estimator could achieve the minimax prediction error for various classes of kernels.
- But consider the computational complexity:
 - The *n* dimensional quadratic program in (2) requires $\mathcal{O}(n^3)$ via QR decomposition.
 - The n dimensional matrix K is dense in general, so requires storage of order n^2 numbers.

- This paper considers approximations to KRR based on random projections of the data. Define a sketch matrix as $S \in \mathbb{R}^{m \times n}$, where $m \ll n$ is the projection dimension.
- $K \rightarrow SK$: approximate K by projecting its row and column subspaces to a randomly chosen m-dimensional subspace.
- The sketched KRR estimate $\hat{f}(\cdot) := \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (S^{T} \hat{\alpha})_{i} \mathcal{K}(\cdot, x_{i})$ is given by first solving

$$\hat{\alpha} = \operatorname{argmin}_{\alpha \in \mathbb{R}^m} \left\{ \frac{1}{2} \alpha^T (SK) (KS^T) \alpha - \alpha^T S \frac{Ky}{\sqrt{n}} + \lambda_n \alpha^T SKS^T \alpha \right\}$$
(3)

Purpose of this Paper

- i.e., change the n dimensional quadratic program to m dimensional. The computational complexity becomes $\mathcal{O}(m^3)$.
- The purpose of this paper:
 - what classes of random projection matrices could be used?
 - how small can the projection dimension *m* be chosen while still retaining minimax optimality of the original KRR estimate?

Sub-Gaussian sketches: the row s_i is zero-mean 1-sub-Gaussian as for any fixed unit vector $u \in \mathbb{R}^n$, we have

$$P(|\langle u, s_i \rangle \geq t|) \leq 2 \exp^{-\frac{n\delta^2}{2}}$$
 for all $\delta \geq 0$

For example, matrices with i.i.d. Gaussian entries, i.i.d. Bernoulli entries

$$s_i = \sqrt{\frac{n}{m}}RH^Tp_i, \text{ for } i = 1, \cdots, m,$$

where R is a random diagonal matrix whose entries are i.i.d. Rademacher variables. H is a fixed orthonormal matrix $H \in \mathbb{R}^{n \times n}$, e.g., the Hadamard matrix. $\{p_i\}$ is a random subset of m rows sampled uniformly from $I_{n \times n}$.

• this is equivalent to the Nystrom approximation.

The eigendecomposition of kernel matrix $K = UDU^T$, where U is an orthonormal matrix, D is diagonal with $\hat{\mu}_1 \geq \hat{\mu}_2 \geq \cdots \geq \hat{\mu}_n \geq 0$.

Kernel complexity function:

$$\hat{\mathcal{R}}(\delta) = \sqrt{\frac{1}{n} \sum_{j=1}^{n} \min\{\delta^{2}, \hat{\mu}_{j}\}}$$

i.e., a rescaled sum of the eigenvalues, truncated at level δ^2 .

lacktriangleright critical radius is the smallest positive solution $\delta_n>0$ to the inequality

$$\frac{\hat{\mathcal{R}}(\delta)}{\delta} \leq \frac{\delta}{\sigma}$$

Define the statistical dimension of the kernel as

$$d_n := \operatorname{argmin}_{i=1,\dots,n} \{ \hat{\mu}_i \leq \delta_n^2 \}$$

i.e.,
$$\hat{\mu}_j > \delta_n^2$$
 for all $j \in \{1, 2, \dots, d_n\}$. And

$$\hat{\mathcal{R}}(\delta_n) = \left[\frac{d_n}{n}\delta_n^2 + \frac{1}{n}\sum_{j=d_n+1}^n \hat{\mu}_j\right]^{1/2}$$

 d_n controls a type of bias-variance tradeoff. when the tail sum $\sum_{j=d_n+1}^n \hat{\mu}_j \leq d_n \delta_n^2$, $\delta_n^2 \asymp \frac{\sigma^2 d_n}{n}$.

Theorem 1 (Critical radius and minimax risk)

Theorem

Given n i.i.d. samples $\{(y_i, x_i)\}_{i=1}^n$ from the standard non-parametric regression model over any regular kernel class, any estimator \tilde{f} has prediction error lower bounded as

$$\sup_{||f^*||_{\mathcal{H}} \leq 1} \mathbb{E}||\tilde{f} - f^*||_n^2 \geq c_l \delta_n^2$$

where $c_l > 0$ is a numerical constant, and δ_n is the critical radius.

Remark: The critical radius is a fundamental lower bound on the performance of any estimator.

For $K = UDU^T$, let $U_1 \in \mathbb{R}^{n \times d_n}$ be the left bolck of U, $U_2 \in \mathbb{R}^{n \times (n-d_n)}$ be the right block.

■ Say S is K-satisfiable if there is a universal constant c such that

$$|||(SU_1)^T SU_1 - I_{d_n}|||_{op} \le 1/2$$

 $|||SU_2 D_2^{1/2}|||_{op} \le c\delta_n$

where
$$D_2 = diag\{\hat{\mu}_{d_n+1}, \cdots, \hat{\mu}_n\}$$
.

■ Intuitively, a sketch matrix S is "good" if the sub-matrix $SU_1 \in \mathbb{R}^{m \times d_n}$ is relatively close to an isometry, whereas $SU_2 \in \mathbb{R}^{m \times (n-d_n)}$ has a relatively small operator norm.

Theorem 2 (Upper Bound for the sketched KRR)

Theorem

Given n i.i.d. samples $\{(y_i, x_i)\}_{i=1}^n$ from the standard nonparametric regression model, consider the sketched KRR problem (3) based on a K-satisfiable sketch matrix S. Then for any $\lambda_n \geq 2\delta_n^2$, the sketched regression estimate \hat{f} satisfies the bound

$$||\hat{f} - f^*||_n^2 \le c_u \{\lambda_n + \delta_n^2\}$$

with probability greater than $1 - c_1 \exp^{-c_2 n \delta_n^2}$.

Significance of the critical radius δ_n

 δ_n is used to specify bounds on the prediction error in KRR estimator. See Theorem 2.

Example 1 (Polynomial kernel) For some integer $D \ge 1$, the kernel function given by $\mathcal{K}_{polv}(u, v) = (1 + \langle u, v \rangle)^D$ generates $f(x) = \sum_{j=0}^{D} a_j x^j$. So K always has at most $min\{D+1, n\}$ non-zero eigenvalues. Consequently,

$$\hat{\mathcal{R}}(\delta) \le c\sqrt{\frac{D+1}{n}}\delta$$

Then $\delta_n^2 \leq \sigma^2 \frac{D+1}{n}$, i.e., $||\hat{f} - f^*||_n^2 \leq \sigma^2 \frac{D+1}{n}$ with high probability.

$$\mathcal{H}^1[0,1] = \{f: [0,1] \to \mathbb{R} | f(0) = 0, \text{ and } f \text{ is abs. cts. with}$$

$$\int_0^1 [f'(x)]^2 dx < \infty \}$$

The population level eigenvalues are given by $\mu_j = (\frac{2}{(2i-1)^2\pi})^2$ for $i = 1, 2, \cdots$.

Then it can be calculated that $\delta_n^2 \simeq (\sigma^2/n)^{2/3}$.

- Question: How small can the projection dimension m be chosen while still retaining such minimax optimality?
- A natural conjecture is that the projection dimension m proportional to the statistical dimension d_n .

Let the sketch dimension satisfies a lower bound of the form

$$m \ge \begin{cases} cd_n & \text{for Gaussian sketches,} \\ cd_n log^4(n) & \text{for ROS sketches.} \end{cases}$$
 (4)

Also define the function

$$\phi(m, d_n, n) := \begin{cases} c_1 \exp^{-c_2 m} & \text{for Gaussian,} \\ c_1 \left[\exp^{-c_2 \frac{m}{d_n log^2(n)}} + \exp^{-c_2 d_n log^2(n)} \right] & \text{for ROS sketches.} \end{cases}$$

Corollary

Given n i.i.d. samples $\{(y_i,x_i)\}_{i=1}^n$ from the standard nonparametric regression model, consider the sketched KRR problem (3) based on a sketch dimension m satisfying the lower bound (4). Then there is a universal constant c_u' s.t. for any $\lambda_n \geq 2\delta_n^2$, the sketched regression estimate \hat{f} satisfies the bound

$$||\hat{f} - f^*||_n^2 \le c_u' \{\lambda_n + \delta_n^2\}$$

with probability greater than $1 - \phi(m, d_n, n) - c_3 \exp^{-c_4 n \delta_n^2}$.

Remark

- For the D^{th} order polynomial kernel from Example 1, d_n is at most D+1, so that a sketch size of order D+1 is sufficient. This is special, since it has no dependence on the sample size.
- For the first-order Sobolev kernel from Example 2, $d_n \approx n^{1/3}$, so $m \approx n^{1/3}$ is required.

Simulation

- Consider the Sobolev kernel $K_{sob}(u, v) = \min\{u, v\}$ in Example 2.
- n i.i.d. samples are generated with $\sigma = 1$, and regression function

$$f^*(x) = |x + 0.5| - 0.5$$

Figure 1. Prediction error versus sample size for original KRR, Gaussian sketch, and ROS sketches for the Sobolev one kernel for the function $f^*(x) = |x+0.5| - 0.5$. In all cases, each point corresponds to the average of 100 trials, with standard errors also shown. (a) Squared prediction error $\|\hat{f} - f^*\|_n^2$ versus the sample size $n \in \{32, 64, 128, 256, 1024\}$ for projection dimension $m = \lceil n^{1/3} \rceil$. (b) Rescaled prediction error $n^{2/3} \|\hat{f} - f^*\|_n^2$ versus the sample size.

$$\frac{1}{2}||\hat{f} - f^*||_n^2 \le \underbrace{||f^{\dagger} - f^*||_n^2}_{\text{Approximation error}} + \underbrace{||f^{\dagger} - \hat{f}||_n^2}_{\text{Estimation error}}$$

where $f^{\dagger} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \alpha^{\dagger} \mathcal{K}(\cdot, x_i)$ is a zero-noise version of the KRR estimator within the range space of S^T . α^{\dagger} is achieved by

$$\alpha^{\dagger} = \operatorname{argmin}_{\alpha \in \mathbb{R}^m} \left\{ \frac{1}{2n} ||z^* - \sqrt{n}KS^T\alpha||_2^2 + \lambda_n ||\sqrt{K}S^T\alpha||_2^2 \right\}$$
 with $z^* := (f^*(x_1), \cdots, f^*(x_n))$.

Lemma 1 (Control of estimation error)
 Under the condition of Theorem 2, we have

$$||f^{\dagger} - \hat{f}||_n^2 \le c\delta_n^2$$

with probability at least $1 - c_1 \exp{-c_2 n \delta_n^2}$

■ Lemma 2 (Control of approximation error)
For any K-satisfiable sketch matrix *S*, we have

$$||f^{\dagger} - f^*||_n^2 \le c\{\lambda_n + \delta_n^2\}$$
 and $||f^{\dagger}||_{\mathcal{H}} \le c\{1 + \frac{\delta_n^2}{\lambda_n}\}$

Comparison with Nystrom-based approaches

Nystrom approximation: uniformly sampling a subset of p—columns of the kernel matrix K.

- In Bach's paper, $p \succeq n||diag(K(K + \lambda_n I)^{-1})||_{\infty}logn$
- There are many classes of kernel matrices for which the Nystrom approximation will be poor.

