Open Problems

Computable Structure Theory and Interactions

Question 1 by Dino Rossegger

Suppose $R \subseteq \mathbb{N}^k$ is definable by a $\Sigma_1(X)$ formula in $\mathcal{L}_{\omega_1\omega}$ for some comeager set X. Questions:

- Is $R \Sigma_1(\emptyset)$ -definable?
- What about the same question as above replacing "comeager" by "co-null"?

Question 2 by Russell Miller

Notations:

- TFAB_n denotes the class of torsion free abelian group of rank n;
- FTD_n denotes the class of fields of trascendence degree n;
- TD_n denotes the class of fields of characteristic 0 and transcendence degree n.

Known results:

- (Hjorth, Thomas) $\mathsf{TFAB}_n <_B \mathsf{TFAB}_{n+1}$ (here $<_B$ denotes Borel reducibility). In contrast,
- (Thomas, Velikovic) For every n, $\mathsf{FTD}_{13} \equiv_B \mathsf{FTD}_n$.

The following is known in the context of Turing computable embeddings (denoted by \leq_{tc}).

• (Ho, Knight, Miller) For every n, TFAB_n \leq_{tc} FTD_n.

Questions:

- $\mathsf{TD}_n \geq_B \mathsf{FTD}_{n+1}$?
- $\mathsf{TD}_n \leq_B \mathsf{TFAB}_n$? The answer is no for $n \geq 13$.
- Same question as above but replacing \leq_B with \leq_{tc} . Again, the answer is no for $n \geq 13$.

Question 3 by Stefan Vatev

It is known that for all limit ordinals α, β , $(\alpha, \alpha^*) \equiv_{tc} (\beta, \beta^*)$. Question:

• What happens if we replace Turing computable embedding with enumeration reducibility?

Definition 1 (Enumeration reducibility) Let $A, B \subseteq \mathbb{N}$. We say that A is enumeration reducible to B (notation, $A \leq_e B$) if:

$$(\exists e)(x \in A \iff (\exists finite \ D \subseteq B)(\langle x, D \rangle \in W_e)).$$

For example, $(\omega \cdot n, \omega^* \cdot n) \leq_c (\omega \cdot k, \omega^* \cdot k)$ if and only if n|k (here \leq_c denotes computable embedding).

Question 4 by Gianluca Paolini

- Is there a computable first-order theory T such that the isomorphism relation for models of T with domain ω is as complicated as graph isomorphism with respect to Borel reducibility?
- Consider classes as linear orders, Trees, Boolean algebras: is Elementary embeddability restricted to these classes a complete analytic quasi-order? (In general, the anwer is yes).

Question 5 by Mateusz Lelik

Let the Scott function of a theory be the function defined as

$$S_T(\alpha) := |\{\mathcal{M} \models T : SR(\mathcal{M}) = \alpha\}|.$$

Question:

• Is there a non-trivial first-order theory T such that S_T is not monotone or has interesting behavior?

Question 6 by David Gonzalez

What are the possible Scott spectra of first-order theories?