Analysis Notes

Kerry Tarrant

January 19, 2021

Contents

L	Mea	asure Theory	
	1.1	Preliminaries	
	1.2	The Exterior Measure	7
	1.3	Measurable Sets and the Lebesgue Measure	7

4 CONTENTS

Chapter 1

Measure Theory

1.1 Preliminaries

 $\it Note$: Understand the analogy between measuring "volume" and the concept of this section.

Note: Every open set in \mathbb{R} is a countable union of disjoint open intervals. Every open set in \mathbb{R}^d , $d \geq 2$, is almost the disjoint union of closed cubes. Almost means that only the boundaries of the cubes can overlap.

A **point** $x \in \mathbb{R}^d$ consists of a *d*-tuple of real numbers

$$x = (x_1, x_2, \dots, x_d), \quad x_i \in \mathbb{R}, \text{ for } i = 1, \dots, d.$$

The **norm** of x is denoted by |x| and is defined to be the standard Euclidean norm given by

$$|x| = (x_1^2 + \dots + x_d^2)^{1/2}.$$

The distance between two points x and y is then simply |x - y|. The complement of a set E in \mathbb{R}^d is denoted by E^c and defined by

$$E^c = \{ x \in \mathbb{R}^d : x \notin E \}.$$

The distance between two sets E and F is defined by

$$d(E, F) = \inf |x - y|,$$

where the infimum is taken over all $x \in e$ and $y \in F$.

The **open ball** in \mathbb{R}^d centered at x and of radius r is defined by

$$B_r(x) = \{ y \in \mathbb{R}^d : |y - x| < r.$$

A subset $E \subset \mathbb{R}^d$ is **open** if for every $x \in E$ there exists r > 0 with $B_r(x) \subset E$. A set is **closed** if its complement is open.

A point $x \in \mathbb{R}^d$ is a **limit point** of the set E if for every r > 0, the ball $B_r(x)$ contains points of E.

An **isolated point** of E is a point $x \in E$ such that there exists an r > 0 where $B_r(x) \cap E$ is equal to $\{x\}$.

A closed set E is **perfect** if E does not have any isolated points.

A (closed) **rectangle** R in \mathbb{R}^d is given by the product of d one-dimensional closed and bounded intervals

$$R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d],$$

where $a_j \leq b_j$ are real numbers, $j = 1, 2, \dots, d$.

The **volume** of the rectangle R is denoted by |R|, and is defined to be

$$|R| = (b_1 - a_1) \cdots (b_d - a_d).$$

A union of rectangles is said to be almost disjoint if the interiors are disjoint.

Lemma 1.1.1. If a rectangle is the almost disjoint union of finitely many other rectangles, say $R = \bigcup_{k=1}^{N} R_k$, then

$$|R| = \sum_{k=1}^{N} |R_k|.$$

Lemma 1.1.2. If R, R_1, \ldots, R_N are rectangles, and $R \subset \bigcup_{k=1}^N R_k$, then

$$|R| \le \sum_{k=1}^{N} |R_k|.$$

Theorem 1.1.3. Every open subset \mathcal{O} of \mathbb{R} can be written uniquely as a countable union of disjoint open intervals.

Theorem 1.1.4. Every open subset \mathcal{O} of \mathbb{R}^d , $d \geq 1$, can be written as a countable union of almost disjoint closed cubes.

Construction of the Cantor set:

- 1. Subintervals, starting at [0, 1], delete a third of the remaining closed intervals. This iterative process is performed countable many times. Example:
 - (0) $C_0 = [0, 1]$
 - (1) $C_1 = [0, 1/3] \cup [2/3, 1]$
 - (2) $C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$

:

(n) C_n

:

2. This procedure yields a sequence of nested compact sets with

$$C_0 \supset C_1 \supset \cdots \supset C_k \supset C_{k+1} \supset \cdots$$

3. The **Cantor set** is defined by the intersection of all C_k 's:

$$\mathcal{C} = \bigcap_{k=0}^{\infty} C_k.$$

The Cantor set a length of zero.

 C_k is a disjoint union of 2^k intervals of length 3^{-k} , making the total length of C_k equal to $(2/3)^k$.

1.2 The Exterior Measure

If E is any subset of \mathbb{R}^d , the exterior measure of E is

$$m_*(E) = \inf \sum_{j=1}^{\infty} |Q_j|,$$

where the infimum is taken over all countable coverings $E \subset \cup_{j=1}^{\infty} Q_j$ by closed cubes.

Properties of the exterior measure:

Observation 1 (Monotonicity): If $E_1 \subset E_2$, then $m_*(E_1) \leq m_*(E_2)$.

Observation 2 (Countable sub-additivity):

If
$$E = \bigcup_{j=1}^{\infty} E_j$$
, then $m_*(E) \leq \sum_{j=1}^{\infty} m_*(E_j)$.

Observation 3 If $E \subset \mathbb{R}^d$, then $m_*(E) = \inf m_*(\mathcal{O})$, where the infimum is taken over all open sets \mathcal{O} containing E.

Observation 4 If $E = E_1 \cup E_2$, and $d(E_1, E_2) > 0$, then $m_*(E) = m_*(E_1) + m_*(E_2)$.

Observation 5 If a set E is the countable union of almost disjoint cubes $E=\cup_{i=1}^{\infty}Q_{j},$ then

$$m_*(E) = \sum_{j=1}^{\infty} |Q_j|.$$

1.3 Measurable Sets and the Lebesgue Measure

A subset E of \mathbb{R}^d is **Lebesgue measurable**, or simply **measurable**, if for any $\epsilon > 0$ there exists an open set \mathcal{O} with $E \subset \mathcal{O}$ and

$$m_*(\mathcal{O} - E) \le \epsilon$$
.

If E is measurable, we define its **Lebesgue measure** (or **measure**) m(E) by

$$m(E) = m_*(E)$$
.

Properties of Lebesgue measure:

Property 1: Every open set in \mathbb{R}^d is measurable.

Property 2: If $m_*(E) = 0$, then E is measurable. In particular, if F is a subset of a exterior measure 0, then F is measurable.

Property 3: A countable union of measurable sets is measurable.

Property 4: Closed sets are measurable.

Property 5: The complement of a measurable set is measurable.

Property 6: A countable intersection of measurable sets is measurable.