TRANZISTORUL MOS_SOFT-HARD MODULUL MCM4/EV

"Tranzistorul cu efect de câmp metal-oxid-semiconductor" (MOSFET, MOS-FET sau MOS FET), cunoscut și sub numele de tranzistor metal-oxid-siliciu (tranzistor MOS sau MOS) este un tip de tranzistor cu efect de câmp (FET) cu poartă izolată care este fabricat prin oxidarea controlată a unui semiconductor, de obicei siliciu.

Tensiunea aplicată pe poarta acoperită determină conductivitatea electrica a dispozitivului; această capacitate de a schimba conductibilitatea cu cantitatea de tensiune aplicată poate fi utilizată pentru amplificare sau comutare semnale electrice.

Fig. 1: Aspect si reprezentare in scheme electronice

Fig. 2: Sectiune transversala MOS-FET

- (a) Caracteristica de transfer a unui tranzistor MOS-FET
- (b) Caracteristica de iesire a unui tranzistor MOS-FET

Placa de lucru MCM4/EV

Placa de lucru MCM4/EV este o placa preasamblata pentru experimente produsa de compania italiana ELETTRONICA VENETA divizata in 5 blocuri functionale ce pot fi modificate, interconectate si legate la diverse aparate de masurare prin intermediul cablurilor de legatura si jumper-ilor disponibili.

Fig. 3: Placa de lucru MCM4/EV

Schema 1: Masurarea caracteristicii de transfer a tranzistorului MOS

V _{GS} [V]	0	2	2.9	3	3.1	3.2	3.3	3.4	3.5	3.6
V _{GS măsurat} [V]	0	2.01	2.91	3	3.105	3.2	3.303	3.4	3.5	3.6
V _{cc} [V]	0	2.02	4.62	7.4	3.16	3.36	3.71	4.29	5.36	7.19
$R_{D}=R_{12}+R_{j22}[k\Omega]$	100.68	100.68	100.68	100.68	0.68	0.68	0.68	0.68	0.68	0.68
$I_{D} = (V_{CC} - V_{DS})/R_{D} [mA]$	0	0.0002	0.0171	0.0437	0.0882	0.2353	0.6029	1.3088	2.7353	5.2794
$\frac{1}{2}(V_{GS} - V_T)^2 [V^2]$	2	0	0.405	0.5	0.605	0.72	0.845	0.98	1.125	1.28

Tabelul 1: Caracteristica de transfer a tranzistorului MOS


```
Vgs = [0\ 2\ 2.9\ 3\ 3.1\ 3.2\ 3.3\ 3.4\ 3.5\ 3.6];
Vcc = [0 \ 2.02 \ 4.62 \ 7.4 \ 3.16 \ 3.36 \ 3.71 \ 4.29 \ 5.36 \ 7.19];
   [100.68 100.68 100.68 100.68 0.68 0.68 0.68 0.68 0.68 0.68];
Id = (Vcc-Vgs)./R;
figure(1);
plot(Vgs,Id);
xlabel("V {GS}[V]");
ylabel("I {D}[mA]");
title("Grafic 1: Caracteristica de transfer a tranzistorului MOS");
```

Cod 1 in Matlab: Realizarea Graficului 1

Schema 2: Masurarea caracteristicii de iesire a tranzistorului MOS

V _{DS} [V]		0	1	2	3	3.5	4	6	8	10
V _{GS} = 0 [V]	V _{DS} măs [V]	0	1	2	3	3.5	4	6	8	10
	V _{DD} [V]	0	1.02	2.03	3.02	3.535	4.038	6.05	8.08	10.11
	$R_{12}+R_{J22}$ [k Ω]	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68
	I _D [mA]	0	1.9*10-4	2.9*10-4	1.9*10-4	3.4*10-4	3.7*10-4	4.9*10-4	7.9*10-4	11*10-4
V _{GS} = 2.9 [V]	V _{DS} măs [V]	0	1	1.996	3.04	3.499	4	6	8	10
	V _{DD} [V]	0	4.399	5.432	6.46	6.97	7.48	9.52	11.55	13.58
	$R_{12}+R_{J22}$ [k Ω]	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68
	I _D [mA]	0	0.0338	0.0341	0.0344	0.0345	0.0346	0.0350	0.0353	0.0356
V _{GS} = 3.1 [V]	V _{DS} măs [V]	0	1	1.996	3.04	3.499	4	6	8	10
	V _{DD} [V]	0	1.06	2.06	3.06	3.56	4.06	6.06	8.07	10.06
	$R_{12}+R_{J22}$ [k Ω]	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68
	I _D [mA]	0	0.5959	0.5959	0.5959	0.5959	0.5959	0.5959	0.6953	0.5959
V _{GS} = 3.2 [V]	V _{DS} măs [V]	0	1	2	3	3.5	4	6	8	10
	V _{DD} [V]	0	1.08	2.09	3.08	3.58	4.08	6.09	8.08	10.09
	$R_{12}+R_{J22}$ [k Ω]	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68
	I _D [mA]	0	0.0008	0.0009	0.0008	0.0008	0.0008	0.0009	0.0008	0.0009
V _{GS} = 3.3 [V]	V _{DS} măs [V]	0	1.001	2.006	3.006	3.502	4	6	8	10
	V _{DD} [V]	0	1.716	2.716	3.733	4.233	4.742	6.74	8.74	10.75
	$R_{12}+R_{J22}$ [k Ω]	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68
	I _D [mA]	0	0.0071	0.0071	0.0073	0.0073	0.0074	0.0074	0.0074	0.0074
V _{GS} = 3.4 [V]	V _{DS} măs [V]	0	1	2	3	3.5	4	6	8	10
	V _{DD} [V]	0	1.025	2.528	3.329	4.04	4.527	6.57	8.54	10.5
	$R_{12}+R_{J22}$ [k Ω]	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68
	I _D [mA]	0	0.0002	0.0052	0.0033	0.0054	0.0052	0.0057	0.0054	0.0050
V _{GS} = 3.5 [V]	V _{DS} măs [V]	0	1	2	3	3.5	4	6	8	10
	V _{DD} [V]	0	2.07	3.07	4.08	4.58	5.10	7.12	9.13	11.4
	$R_{12}+R_{J22}$ [k Ω]	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68	100.68
	I _D [mA]	0	0.0106	0.0106	0.0107	0.0107	0.0109	0.0111	0.0112	0.0139

Tabelul 2: Caracteristicele de iesire ale tranzistorului MOS


```
VDS0 = [0 1 2 3 3.5 4 6 8 10];
VDS29 = [0 1 1.996 3.04 3.499 4 6 8 10];
VDS31 = [0 1 1.996 3.04 3.499 4 6 8 10];
VDS32 = [0 1 2 3 3.5 4 6 8 10];
VDS33 = [0 1.001 2.006 3.006 3.502 4 6 8 10];
VDS34 = [0 1 2 3 3.5 4 6 8 10];
VDS35 = [0 1 2 3 3.5 4 6 8 10];
VDD0 = [0 \ 1.02 \ 2.03 \ 3.02 \ 3.535 \ 4.038 \ 6.05 \ 8.08 \ 10.11];
VDD29 = [0 \ 4.399 \ 5.432 \ 6.46 \ 6.97 \ 7.48 \ 9.52 \ 11.55 \ 13.58];
VDD31 = [0 1.06 2.06 3.06 3.56 4.06 6.06 8.07 10.06];
VDD32 = [0 \ 1.08 \ 2.09 \ 3.08 \ 3.68 \ 4.08 \ 6.09 \ 8.08 \ 10.09];
VDD33 = [0\ 1.716\ 2.716\ 3.733\ 4.233\ 4.742\ 6.74\ 8.74\ 10.75];
VDD34 = [0 \ 1.025 \ 2.528 \ 3.329 \ 4.04 \ 4.527 \ 6.57 \ 8.54 \ 10.5];
VDD35 = [0 2.07 3.07 4.08 4.58 5.10 7.12 9.13 11.4];
ID0 = (VDD0 - VDS0) / 100.68;
ID29 = (VDD29 - VDS29) / 100.68;
ID31 = (VDD31 - VDS31) / 100.68;
ID32 = (VDD32 - VDS32) / 100.68;
ID33 = (VDD33 - VDS33) / 100.68;
ID34 = (VDD34 - VDS34) / 100.68;
ID35 = (VDD35 - VDS35) / 100.68;
plot(VDS, ID0, VDS, ID29, VDS, ID31, VDS, ID32, VDS, ID33, VDS, ID34, VDS, ID35);
xlabel("V {DS} [V]");
ylabel("I D [mA]");
legend("V \{GS\} = \emptyset \ V", "V \{GS\} = 2.9 \ V", "V \{GS\} = 3.1 \ V",...
    V_{GS} = 3.2 V, V_{GS} = 3.3 V, V_{GS} = 3.4 V, V_{GS} = 3.5 V);
title("Grafic 2: Caracteristicile de iesire ale tranzistorului MOS");
```

Cod 2 in Matlab: Realizarea Graficului 2