Homework8

Daniel Wu (EID: djw3627)

2025-04-07

To access my GitHub repository, click here: https://github.com/DanielWu3627/SDS315. Please check the file named **Homework8.Rmd**.

Problem 1

Age and Creatine Clearance Rate in ml/minute

(Intercept) age ## 147.81 -0.62

Part A

For a 55-year-old, we expect the creatinine clearance should be about 113.71 ml/minute. I determined this by first running a regression analysis of creatinine clearance vs. age and then using the coef() function to get the y-intercept, which is about 147.81, and the slope, which is about -0.62. Therefore, with y = slope * x + y-intercept (y = -0.62x + 147.81) is -0.62 * 55 + 147.81 = 113.71 ml/minute.

Part B

Creatinine clearance decreases by a rate of approximately -0.62 ml/minute per year. I determined this by first running a regression analysis and then using the coef() function to get the slope, which is about -0.62. As age increases by 1, the creatinine clearance should decrease by 0.62 ml/minute.

Part C

y = -0.62x + 147.81 -> -0.62*40 + 147.81 = 123.01 (expected creatine value for a 40-yr-old) y = -0.62x + 147.81 -> -0.62*60 + 147.81 = 110.61 (expected creatine value for a 60-yr-old) The expected creatine clearance rate is 123.01 ml/minute for the 40-yr-old. This 40-yr-old has a rate of 135, which is about 11.99 above the expected value. The expected creatine rate for a 60-yr-old is 110.61 ml/minute, but that 60-yr-old's is 112, with a difference of 1.39 above the expected value. Therefore, the creatine clearance rate is healthier for the 40-year old with a rate of 135.

Problem 2

1.

Number of reported COVID deaths in Italy

##	name	lower	upper	level	method	estimate
## 1	Intercept	0.5391942	1.6003642	0.95	percentile	0.6786914
## 2	days_since_first_death	0.1593454	0.2079217	0.95	percentile	0.2082641
## 3	sigma	0.5508425	0.8360535	0.95	percentile	0.8271387
## 4	r.squared	0.8546581	0.9328625	0.95	percentile	0.8812985
## 5	F	217.5720775	514.1080635	0.95	percentile	274.7062862

[1] "The doubling time for Italy is approximately 3.9"

The estimated growth rate for Italy is 0.180, with a 95% confidence interval [0.159, 0.208]. The estimated doubling time for Italy is 3.9 days, with a 95% confidence interval [3.4, 4.4].

Number of reported COVID deaths in Spain

##		name	lower	upper	level	method	estimate
##	1	Intercept	-0.1516204	1.2470547	0.95	percentile	0.2656199
##	2	${\tt days_since_first_death}$	0.2347834	0.3166407	0.95	percentile	0.2976922
##	3	sigma	0.5981941	0.9581418	0.95	percentile	0.6876322
##	4	r.squared	0.8292877	0.9390789	0.95	percentile	0.9228520
##	5	F	126.3030515	400.7818540	0.95	${\tt percentile}$	311.0147789

[1] "The doubling time for Spain is 2.3"

The estimated growth rate is 0.287, with a 95% confidence interval $[0.235,\,0.317]$. The estimated doubling time for Spain is 2.3 days, with a 95% confidence $[2.2,\,3]$.

Number of reported COVID deaths over time in Italy and Spain

Problem 3

##		name	lower	upper	level	method	estimate
##	1	Intercept	4.5362285	4.8893692	0.95	percentile	4.6933843
##	2	log.price.	-1.7690751	-1.4529753	0.95	percentile	-1.5477914
##	3	sigma	0.2316697	0.3001399	0.95	percentile	0.2578064
##	4	r.squared	0.6864506	0.8440191	0.95	percentile	0.7599025
##	5	F	249.5790359	616.8585949	0.95	percentile	360.8070609

I bootstrapped 10,000 times. For each time, I performed regression analysis for log(sales) vs. log(price). The coefficient for log(price) is the exprected price elasticity, which is around -1.46. When the price increases by 1 %, the sales decreases at the 95% confidence level of [-1.78, -1.46].