```
Set
        Items
                Description
                ENHANC?() AGENT? OR DMSO OR ETHANOL OR PENETRAT?() SOLVENT? -
S1
       510825
             OR (SULPHUR? OR SULFUR?) () COMPOUND? () SOLVENT?
        29447
S2
                RN = 67 - 68 - 5
S3.
            0
                DC=D.02.886.640.150
S4
      1151003
                 (CLARIFY? OR CLARIFI?) () AGENT? OR GLUCOSE OR GLUCONIC OR D-
             EXTROGLUCOSE OR DEXTROSE OR DEXTRONIC OR MALTONIC
S5
       368002
                GLYCOGEN? OR GLYCERYL? OR GLYCERIN? OR GLYCEROL?
S6
            0
                DC=D09.203.546.359.448
S7
       324444
                RN=50-99-7
S8
         6276
                 DIATRIZOATE() MEGLUMINE OR DIATRIZOATE() METHLYGLUCAMINE OR -
             DIATRIZOIC() ACID() METHYLGLUCAMINE OR MEGLUMINE() DIATRIZOATE OR
              METHYLGLUCAMINE() DIATRIZOATE OR (AMIDOTRICOIC OR AMIDOTRIZOI-
             C) () ACID? OR MEGLUMINE () AMIDOTRIZOATE
S9
         5410
                 RN=131-49-7
S10
                 DC=(D02.033.800.813.550.500 OR D02.241.223.100.140.100.375-
              .880.275 OR D09.203.037.342.600.500 OR D09.203.853.813.550.50-
        54642
                 IONTOPHORE? OR IONTOTHERAP? OR IONIC() THERAP? OR EMDA OR S-
S11
             ONOPHORE? OR ELECTROPORAT? OR ELECTRO() PORAT?
S12
            0
                 DC=E05.300.650
S13
           42
                 (MICRONEEDLE? OR MICRO()NEEDLE?)()ARRAY? ?
     13934886
                 INCREAS? OR ENHANC? OR AMELIORAT?
S14
S15
      3892039
                PERMIT? OR PERMISS? OR ALLOW?
S16
      6121599
                BETTER? OR IMPROV?
S17
       669461
                RECEPTABIL? OR PERMEABIL? OR PERMEABL? OR LUCENCY?
       260617
                TRANSLUCEN? OR TRANSPAREN? OR CLEARNESS OR CLARITY
S18
S19
      5381045
                OPTICAL? OR LIGHT? OR LUCID?
S20
      1581333
                PERMEAB?()(BARRIER? OR LAYER? OR STRAT?) OR SKIN
                CONJUNCTIV? OR EPITHELI? OR SCLERA? OR STRAT?()CORNE? OR (-
S21
      1311267
             INTERSTIT? OR INTER()STIT?)()(SPACE? OR TISSUE?)
          210
                 IC=(A61N? OR A61M? OR A61B?)
S22
S23
                 DIMETHYL()(SULFOXIDE OR SULPHONYL) OR DIMEXIDE OR RIMSO OR
        52703
             RIMSO100 OR SULFINYL()BISMETHANE OR SULFINYLBISMETHANE
S24
       405753
                 (DRIVING OR ELECTRIC?() PULSE OR ELECTRICPULSE OR ELECTROMO-
             TIVE OR ELECTRO() MOTIVE OR ACOUSTIC? OR ULTRASONIC? OR ELECTR-
             ICAL? OR RADIOFREQUENCY? OR RADIO() FREQUENCY? OR TEMPERATURE -
             OR THERMAL OR PHYSICAL OR CHEMICAL OR CONCENTRATION OR...
          199
S25
                 (S1:S3 OR S23) AND S4:S10 AND (S11:S13 OR S24)
S26
          139
                 S25 AND S14:S22
S27
           37
                S26 AND S20:S21
           37
S28
                S25 AND S20:S21
S29
           37
                S27:S28
S30
           19
                S29 AND PY<1999
S31
           16
                RD (unique items)
? show files
File
       5:Biosis Previews(R) 1969-2003/Nov W5
         (c) 2003 BIOSIS
       6:NTIS 1964-2003/Nov W5
File
         (c) 2003 NTIS, Intl Cpyrght All Rights Res
File
      34:SciSearch(R) Cited Ref Sci 1990-2003/Nov W5
         (c) 2003 Inst for Sci Info
      65: Inside Conferences 1993-2003/Nov W5
File
         (c) 2003 BLDSC all rts. reserv.
File
      71:ELSEVIER BIOBASE 1994-2003/Nov W5
         (c) 2003
                   Elsevier Science B.V.
File
      73:EMBASE 1974-2003/Nov W5
         (c) 2003 Elsevier Science B.V.
File
      94:JICST-EPlus 1985-2003/Nov W5
         (c) 2003 Japan Science and Tech Corp(JST)
```

» 1

File 103: Energy SciTec 1974-2003/Nov Bl

(c) 2003 Contains copyrighted material

File 144: Pascal 1973-2003/Nov W4

(c) 2003 INIST/CNRS

File 155:MEDLINE(R) 1966-2003/Nov W4

(c) format only 2003 The Dialog Corp.

File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec

(c) 1998 Inst for Sci Info

File 35:Dissertation Abs Online 1861-2003/Oct

(c) 2003 ProQuest Info&Learning

File 91:MANTIS(TM) 1880-2002/Dec

File

2003 (c) Action Potential 2:INSPEC 1969-2003/Nov W4

(c) 2003 Institution of Electrical Engineers

File 8:Ei Compendex(R) 1970-2003/Nov W4

(c) 2003 Elsevier Eng. Info. Inc.

File 95:TEME-Technology & Management 1989-2003/Nov W3

(c) 2003 FIZ TECHNIK

File 99:Wilson Appl. Sci & Tech Abs 1983-2003/Oct

(c) 2003 The HW Wilson Co.

31/5,K/1 (Item 1 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2003 BIOSIS. All rts. reserv.

0009529125 BIOSIS NO.: 199497550410

Effect of chemical enhancers and conducting gels on iontophoretic transdermal delivery of cromolyn sodium

AUTHOR: Gupta Sanjeev K (Reprint); Kumar Saran; Bolton Sanford; Behl Charanjeet R; Malick A Waseem

AUTHOR ADDRESS: Res. Dev., Barr Lab. Inc., 2 Quaker Road, Pomona, NY 10970, USA**USA

JOURNAL: Journal of Controlled Release 31 (3): p229-236 1994 1994

ISSN: 0168-3659

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: In vitro iontophoretic transdermal delivery (ITD) at a continuous current density of 0.1 mA/cm-2 of cromolyn sodium (CS) across hairless guinea pig skin (HGP) was studied with and without enhancers . CS was quantitated by a sensitive HPLC method. At a saturated drug concentration of CS in 80:20 mixture of ethanol: 6.66 mM acetate buffer, an overall flux enhancement compared to buffer alone was observed. This enhancement was determined to be an additive effect of iontophoresis and ethanol . Chemical enhancers , such as anionic surfactants (e.g. sodium dodecyl sulfonate and sodium lauryl sulfate), inhibited the permeation of CS ions at concentration less than or equal to the critical micelle concentration. No significant change in flux (P gt 0.05) was observed when propylene glycol was added at different concentrations to yield solutions with varying dielectric constants in the aqueous donor medium. Aqueous glycerol solution was ineffective for ITD. Conducting gels of ionic polymers, polyjel-HV and lubrijel-MS, decreased the flux of CS significantly (P lt 0.05). Non-ionic polymers such as hydroxypropyl cellulose (Klucel-LF) and polyvinyl alcohol did not affect the flux and may be used for ITD of CS from a transdermal patch. An optimized solution formulation for CS was incorporated in a commercially available electropatch, from which delivery rates up to 46 +- 5 mu-g/cm-2hr-1, were achieved. The optimized formulation of CS provided about 18 fold higher flux compared to an unoptimized formulation from the electropatch. Stainless steel or Ag/AgCl electrodes showed no difference in the flux of CS from the patch. Therapeutic levels of CS in humans may be achieved by this modern non-invasive drug-delivery route.

REGISTRY NUMBERS: 15826-37-6: CROMOLYN SODIUM DESCRIPTORS:

MAJOR CONCEPTS: Biochemistry and Molecular Biophysics; Integumentary System--Chemical Coordination and Homeostasis; Metabolism; Pharmacology ; Physiology

BIOSYSTEMATIC NAMES: Caviidae--Rodentia, Mammalia, Vertebrata, Chordata, Animalia; Hominidae--Primates, Mammalia, Vertebrata, Chordata, Animalia; Mammalia--Vertebrata, Chordata, Animalia

ORGANISMS: guinea-pig (Caviidae); human (Hominidae); mammal (Mammalia) COMMON TAXONOMIC TERMS: Rodents; Humans; Primates; Animals; Chordates; Mammals; Nonhuman Vertebrates; Nonhuman Mammals; Vertebrates CHEMICALS & BIOCHEMICALS: CROMOLYN SODIUM

MISCELLANEOUS TERMS: DELIVERY RATES; DRUG DELIVERY SYSTEM; ELECTRODES; ELECTROPATCH; FLUX; METHODS; PHARMACEUTICALS
CONCEPT CODES:

01006 Methods - Laboratory apparatus 04500 Mathematical biology and statistical methods

```
10010 Comparative biochemistry
  10050 Biochemistry methods - General
  10060 Biochemistry studies - General
  10069 Biochemistry studies - Minerals
  10502 Biophysics - General
 12002 Physiology - General
  12003 Physiology - Comparative
13002 Metabolism - General metabolism and metabolic pathways
  18504 Integumentary system - Physiology and biochemistry
 22003 Pharmacology - Drug metabolism and metabolic stimulators 22005 Pharmacology - Clinical pharmacology
  22030 Pharmacology - Respiratory system
  22100 Routes of immunization, infection and therapy
BIOSYSTEMATIC CODES:
  86300 Caviidae
  86215 Hominidae
  85700 Mammalia
Effect of chemical enhancers and conducting gels on iontophoretic
  transdermal delivery of cromolyn sodium
 1994
ABSTRACT: In vitro iontophoretic transdermal delivery (ITD) at a
  continuous current density of 0.1 mA/cm-2 of cromolyn sodium (CS) across
  hairless guinea pig skin (HGP) was studied with and without enhancers
  . CS was quantitated by a sensitive HPLC method. At a saturated drug
  concentration of CS in 80:20 mixture of ethanol: 6.66 mM acetate
  buffer, an overall flux enhancement compared to buffer alone was
  observed. This enhancement was determined to be an additive effect of
  iontophoresis and ethanol . Chemical enhancers , such as anionic
  surfactants (e.g. sodium dodecyl sulfonate and sodium lauryl sulfate),
  inhibited the...
...different concentrations to yield solutions with varying dielectric
  constants in the aqueous donor medium. Aqueous glycerol solution was
  ineffective for ITD. Conducting gels of ionic polymers, polyjel-HV and
  lubrijel-MS...
              (Item 1 from file: 34)
 31/5, K/2
DIALOG(R) File 34:SciSearch(R) Cited Ref Sci
(c) 2003 Inst for Sci Info. All rts. reserv.
          Genuine Article#: WX213
                                      Number of References: 49
05774444
Title: Ultrastructural characterization of sulfur mustard-induced
    vesication in isolated perfused porcine skin
Author(s): MonteiroRiviere NA (REPRINT); Inman AO
Corporate Source: N CAROLINA STATE UNIV, CTR CUTANEOUS PHARMACOL & TOXICOL,
    4700 HILLSBOROUGH ST/RALEIGH//NC/27606 (REPRINT)
Journal: MICROSCOPY RESEARCH AND TECHNIQUE, 1997, V37, N3 (MAY 1), P
    229-241
ISSN: 1059-910X
                 Publication date: 19970501
Publisher: WILEY-LISS, DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK,
    NY 10158-0012
Language: English
                    Document Type: ARTICLE
Geographic Location: USA
Subfile: CC LIFE--Current Contents, Life Sciences; CC ENGI--Current
    Contents, Engineering, Computing & Technology
Journal Subject Category: MICROSCOPY; BIOLOGY
```

Abstract: The isolated perfused porcine skin flap (IPPSF) is a novel

alternative, humane in vitro model consisting of a viable epidermis and dermis with a functional microvasculature. For this study, 200 mu 1 of either 10.0, 5.0, 2.5, 1.25, 0.50, or 0.20 mg/ml of bis (2-chloroethyl) sulfide (HD) in ethanol or ethanol control was topically applied to a 5.0 cm(2) dosing area of the IPPSF and perfused for 8 h with recirculating media. HD dermatotoxicity was assessed in the flap by cumulative glucose utilization (CGU), vascular resistance (VR), light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). HD produced a statistically significant dose relationship for gross blisters and microvesicles. The HD-treated IPPSFs were also characterized by a decrease in CGU and an increase in VR. Light microscopic changes included mild intracellular and slight intercellular epidermal edema, multifocal epidermal-dermal separation, and dark basal cells. Ultrastructural alterations consisted of cytoplasmic vacuoles, pyknotic basal cells, nucleolar segregation, and epidermal-dermal separation occurring between the lamina lucida and lamina densa of the basement membrane. The severity of these changes increased in a dose-dependent manner. Morphologically, the IPPSF appeared similar to human skin exposed to HD with the formation of macroscopic blisters and microscopic vesicles. In conclusion, the IPPSF appears to be an appropriate in vitro model with which to study the pathogenesis of vesicant-induced toxicity. (C) Wiley-Liss, Inc.

Descriptors--Author Keywords: microvesicle; blisters; sulfur mustard (bis(2-chloroethyl) sulfide); isolated perfused **skin**; vesication; histology; in vitro; **skin**; toxicology; pig; ultrastructure

Identifiers--KeyWord Plus(R): LESIONS PRODUCED INVIVO; ATHYMIC NUDE-MICE; PERCUTANEOUS-ABSORPTION; ORGAN-CULTURE; RABBIT SKIN; INFLAMMATORY MEDIATORS; LIDOCAINE IONTOPHORESIS; CUTANEOUS TOXICOLOGY; SERUM-PROTEIN; INVITRO MODEL

Research Fronts: 95-1958 001 (PORCINE SKIN; PERCUTANEOUS-ABSORPTION OF TOPICAL PARATHION; SULFUR MUSTARD VAPOR)

95-8217 001 (SULFUR MUSTARD; HAIRLESS GUINEA-PIG SKIN; INACTIVATION OF MICROSOMAL CA2+-ATPASE)

Cited References:

BARTEK MJ, 1972, V58, P114, J INVEST DERMATOL
BERNSTEIN IA, 1987, P1, ADA190313 USAMRDC
BOWMAN KF, 1991, V52, P75, AM J VET RES
CARVER MP, 1989, V97, P324, TOXICOL APPL PHARM
DANNENBERG AM, 1985, V121, P15, AM J PATHOL
FOX M, 1980, V75, P131, MUTAT RES
GOLDBLATT PJ, 1970, V30, P1349, CANCER RES
GRAY PJ, 1989, MRLTR8924 USAMRDC
HARADA S, 1985, V121, P28, AM J PATHOL
HARADA S, 1987, V126, P148, AM J PATHOL
HARRIS CC, 1971, V31, P1977, CANCER RES
HIGUCHI K, 1988, V12, P311, INFLAMMATION
KING JR, 1990, V104, P167, TOXICOL APPL PHARM
KING JR, 1991, V69, P11, TOXICOL APPL PHARM
KING JR, 1991, V69, P11, TOXICOLOGY
MARLOW DD, 1990, V9, P179, J TOXICOL-CUTAN OCUL
MCDOWELL EM, 1976, V100, P404, ARCH PATHOL LAB MED
MCGOWN EL, 1987, V15, P149, TOXICOL PATHOL
MERSHON MM, 1990, V15, P622, FUND APPL TOXICOL
MITCHELTREE LW, 1989, V8, P309, J TOXICOL-CUTAN OCUL
MOL MAE, 1991, V107, P439, TOXICOL APPL PHARM
MONTEIRORIVIERE NA, 1986, V6, P251, FUND APPL TOXICOL
MONTEIRORIVIERE NA, 1987, V1, P241, IN VITRO TOXICOL

MONTEIRORIVIERE NA, 1987, P948, 45TH P ANN M EL MICR PAPIRMEISTER B, 1985, V5, PS134, FUND APPL TOXICOL PAPIRMEISTER B, 1984, V3, P371, J TOXICOL-CUTAN OCUL PAPIRMEISTER B, 1984, V3, P393, J TOXICOL-CUTAN OCUL PAPIRMEISTER B, 1991, MED DEFENSE MUSTARD PETRALI JP, 1990, V9, P193, J TOXICOL-CUTAN OCUL REIFENRATH WG, 1984, V11, P123, BRIT J DERMATOL REIFENRATH WG, 1984, V4, PS224, FUND APPL TOXICOL RENSHAW B, 1946, V1, P479, CHEM WARFARE AGENTS REQUENA L, 1988, V19, P529, J AM ACAD DERMATOL RIVIERE JE, 1987, V116, P739, BRIT J DERMATOL RIVIERE JE, 1991, V21, P329, CRIT REV TOXICOL RIVIERE JE, 1986, V7, P444, FUND APPL TOXICOL RIVIERE JE, 1991, V80, P615, J PHARM SCI SHINOZUKA H, 1972, P73, PATHOLOGY TRANSCRIPT SRIKRISHNA V, 1991, V4, P207, IN VITRO TOXICOL SRIKRISHNA V, 1992, V115, P89, TOXICOL APPL PHARM SVOBODA D, 1975, P289, CANCER SVOBODA D, 1968, V28, P1703, CANCER RES VOGT RF, 1984, V4, PS71, FUND APPL TOXICOL WESTER RC, 1985, V2, P159, MODELS DERMATOLOGY WESTROM DR, 1987, P91, P VES WORKSH FEB 198 WILLEMS JL, 1989, V3, P1, ANN MED MILITARIS BE WILLIAMS PL, 1990, V79, P305, J PHARM SCI

Title: Ultrastructural characterization of sulfur mustard-induced vesication in isolated perfused porcine skin , 1997

- Abstract: The isolated perfused porcine **skin** flap (IPPSF) is a novel alternative, humane in vitro model consisting of a viable epidermis...
- ...25, 0.50, or 0.20 mg/ml of bis (2-chloroethyl) sulfide (HD) in **ethanol** or **ethanol** control was topically applied to a 5.0 cm(2) dosing area of the IPPSF...
- ...for 8 h with recirculating media. HD dermatotoxicity was assessed in the flap by cumulative **glucose** utilization (CGU), vascular resistance (VR), **light** microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). HD produced a statistically...
- ...microvesicles. The HD-treated IPPSFs were also characterized by a decrease in CGU and an increase in VR. Light microscopic changes included mild intracellular and slight intercellular epidermal edema, multifocal epidermal-dermal separation, and...
- ...cytoplasmic vacuoles, pyknotic basal cells, nucleolar segregation, and epidermal-dermal separation occurring between the lamina lucida and lamina densa of the basement membrane. The severity of these changes increased in a dose-dependent manner. Morphologically, the IPPSF appeared similar to human skin exposed to HD with the formation of macroscopic blisters and microscopic vesicles. In conclusion, the...
- ...Identifiers--LESIONS PRODUCED INVIVO; ATHYMIC NUDE-MICE; PERCUTANEOUS-ABSORPTION; ORGAN-CULTURE; RABBIT **SKIN**; INFLAMMATORY MEDIATORS; LIDOCAINE **IONTOPHORESIS**; CUTANEOUS TOXICOLOGY; SERUM-PROTEIN; INVITRO MODEL
- Research Fronts: 95-1958 001 (PORCINE **SKIN**; PERCUTANEOUS-ABSORPTION OF TOPICAL PARATHION; SULFUR MUSTARD VAPOR)
 95-8217 001 (SULFUR MUSTARD; HAIRLESS GUINEA-PIG **SKIN**; INACTIVATION

OF MICROSOMAL CA2+-ATPASE)

(Item 2 from file: 34) DIALOG(R)File 34:SciSearch(R) Cited Ref Sci (c) 2003 Inst for Sci Info. All rts. reserv. Genuine Article#: VW731 Number of References: 24 05414464 Title: COMBINED EFFECT OF ULTRASOUND AND CHEMICAL ENHANCERS ON THE SKIN PERMEATION OF AMINOPYRINE Author(s): UEDA H; ISSHIKI R; OGIHARA M; SUGIBAYASHI K; MORIMOTO Y Corporate Source: JOSAI UNIV, FAC PHARMACEUT SCI, 1-1 KEYAKIDAI/SAKADO/SAITAMA 35002/JAPAN/; JOSAI UNIV, FAC PHARMACEUT SCI/SAKADO/SAITAMA 35002/JAPAN/; JOSAI UNIV, LIFE SCI RES CTR/SAKADO/SAITAMA 35002/JAPAN/ Journal: INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1996, V143, N1 (OCT 25) , P37-45 ISSN: 0378-5173 Language: ENGLISH Document Type: ARTICLE Geographic Location: JAPAN Subfile: SciSearch; CC LIFE--Current Contents, Life Sciences Journal Subject Category: PHARMACOLOGY & PHARMACY Abstract: The combined effect of 150 kHz ultrasound with 111 mW/cm(2) intensity and chemical enhancers on the skin permeation of aminopyrine (AMP) was investigated using excised hairless rat skin . Monoterpenes (L-menthol, L-calvone and D-limonene), laurocapram (Azone(R)), glycerol monocaprylate (Sefsol-318(R)), isopropyl myristate and ethanol were selected as enhancers . Combined application of ultrasound and enhancers increased the skin permeation rate (flux) of AMP compared with ultrasound or enhancers alone. Better effects were obtained by the combination with monoterpenes. The influence of detailed conditions of ultrasound and enhancer applications on the AMP flux was further investigated using L-menthol. The enhancement effect by this combination was increased with an increase in ultrasonic application duration and L-menthol concentration, suggesting that these conditions might be used to achieve the controlled drug delivery. A pretreatment experiment with ultrasound or L-menthol was carried out, and L-menthol content in the skin and the skin permeation of deuterium oxide (D2O), used as a donor vehicle, were measured to understand the role of ultrasound in the combined effect. Application of ultrasound to the L-menthol-pretreated skin increased the AMP flux, while the effect of L-menthol on ultrasonic-pretreated skin was similar to that of L-menthol alone. The ultrasound increased the L-menthol content in the skin as well as the skin permeation of D2O from a vehicle with L-menthol. These results suggested that simultaneous application of ultrasound and enhancers is essential to obtain the pronounced effect. Ultrasound application also strongly assisted migration of L-menthol into skin , which increases the enhancing action on the skin permeation for a drug. Descriptors -- Author Keywords: SKIN PENETRATION ENHANCEMENT ; PHONOPHORESIS; ULTRASOUND; CHEMICAL ENHANCERS; L-MENTHOL; COMBINED EFFECT Identifiers -- KeyWords Plus: HAIRLESS RAT; PENETRATION; ETHANOL; ABSORPTION; INVITRO Research Fronts: 94-0613 001 (WATER SONOLUMINESCENCE; SONOCHEMICAL DESTRUCTION; CAVITATION BUBBLE; DILUTE AQUEOUS-SOLUTION; OSCILLATORY PRESSURE FIELD; TRANSIENT CAVITY) 94-1427 001 (SKIN PENETRATION ENHANCERS ; IONTOPHORETIC TRANSDERMAL DELIVERY; FAPG BASE; PERCUTANEOUS PERMEATION; LUTEINIZING-HORMONE-RELEASING HORMONE (LHRH) IN-VITRO)

Cited References:

BRAND RM, 1995, V33, P385, J CONTROL RELEASE HATANAKA T, 1993, V23, P247, J CONTROL RELEASE KOBAYASHI D, 1994, V11, P96, PHARMACEUT RES MCELNAY JC, 1987, V40, P105, INT J PHARM MCELNAY JC, 1993, P293, PHARM SKIN PENETRATI MITRAGOTRI S, 1995, V269, P850, SCIENCE MIYAZAKI S, 1992, V40, P2826, CHEM PHARM BULL MORIMOTO Y, 1986, V32, P31, INT J PHARM MORIMOTO Y, 1993, V91, P9, INT J PHARM MORIMOTO Y, 1992, V2, P253, STP PHARMA SCI NAKAKURA M, 1995, V2, P487, J DRUG TARGET OBATA Y, 1991, V8, P137, DRUG DESIGN DELIVERY OHARA N, 1994, V105, P31, INT J PHARM OKUMURA M, 1991, V7, P147, DRUG DES DEL ROONEY JA, 1973, V1, P13, ULTRASOUND MED BIOL SATO K, 1988, V43, P31, INT J PHARM SKAUEN DM, 1984, V20, P235, INT J PHARM SLOAN KB, 1992, PRODRUGS TOPICAL OCU SUGIBAYASHI K, 1995, V113, P189, INT J PHARM SUSLICK KS, 1988, ULTRASOUND ITS CHEM UEDA H, 1996, V137, P217, INT J PHARM UEDA H, 1995, V37, P291, J CONTROL RELEASE WALTERS KA, 1993, PHARM SKIN PENETRATI WILLIAMS AC, 1991, V8, P17, PHARMACEUT RES

Title: COMBINED EFFECT OF ULTRASOUND AND CHEMICAL ENHANCERS ON THE SKIN PERMEATION OF AMINOPYRINE , 1996

Abstract: The combined effect of 150 kHz ultrasound with 111 mW/cm(2) intensity and chemical enhancers on the skin permeation of aminopyrine (AMP) was investigated using excised hairless rat skin. Monoterpenes (L-menthol, L-calvone and D-limonene), laurocapram (Azone(R)), glycerol monocaprylate (Sefsol-318(R)), isopropyl myristate and ethanol were selected as enhancers. Combined application of ultrasound and enhancers increased the skin permeation rate (flux) of AMP compared with ultrasound or enhancers alone. Better effects were obtained by the combination with monoterpenes. The influence of detailed conditions of ultrasound and enhancer applications on the AMP flux was further investigated using L-menthol. The enhancement effect by this combination was increased with an increase in ultrasonic application duration and L-menthol concentration, suggesting that these conditions might be used...

...experiment with ultrasound or L-menthol was carried out, and L-menthol content in the skin and the skin permeation of deuterium oxide (D2O), used as a donor vehicle, were measured to understand the role of ultrasound in the combined effect. Application of ultrasound to the L-menthol-pretreated skin increased the AMP flux, while the effect of L-menthol on ultrasonic-pretreated skin was similar to that of L-menthol alone. The ultrasound increased the L-menthol content in the skin as well as the skin permeation of D2O from a vehicle with L-menthol. These results suggested that simultaneous application of ultrasound and enhancers is essential to obtain the pronounced effect. Ultrasound application also strongly assisted migration of L-menthol into skin, which increases the enhancing action on the skin permeation for a drug.

...Identifiers--HAIRLESS RAT; PENETRATION; ETHANOL; ABSORPTION; INVITRO ...Research Fronts: SONOCHEMICAL DESTRUCTION; CAVITATION BUBBLE; DILUTE AQUEOUS-SOLUTION; OSCILLATORY PRESSURE FIELD; TRANSIENT CAVITY) 94-1427 001 (SKIN PENETRATION ENHANCERS; IONTOPHORETIC

TRANSDERMAL DELIVERY; FAPG BASE; PERCUTANEOUS PERMEATION; LUTEINIZING-HORMONE-RELEASING HORMONE (LHRH) IN-VITRO)

(Item 3 from file: 34)

31/5,K/4

DIALOG(R) File 34:SciSearch(R) Cited Ref Sci (c) 2003 Inst for Sci Info. All rts. reserv. Genuine Article#: UW198 Number of References: 38 04972071 Title: SYNERGISTIC EFFECTS OF CHEMICAL ENHANCERS AND THERAPEUTIC ULTRASOUND ON TRANSDERMAL DRUG-DELIVERY Author(s): JOHNSON ME; MITRAGOTRI S; PATEL A; BLANKSCHTEIN D; LANGER R Corporate Source: MIT, DEPT CHEM ENGN/CAMBRIDGE//MA/02139; MIT, DEPT CHEM ENGN/CAMBRIDGE//MA/02139 Journal: JOURNAL OF PHARMACEUTICAL SCIENCES, 1996, V85, N7 (JUL), P 670-679 ISSN: 0022-3549 Language: ENGLISH Document Type: ARTICLE Geographic Location: USA Subfile: SciSearch; CC LIFE--Current Contents, Life Sciences Journal Subject Category: CHEMISTRY; PHARMACOLOGY & PHARMACY Abstract: The effects of (i) a series of chemical enhancers and (ii) the combination of these enhancers and therapeutic ultrasound (1 MHz, 1.4 W/cm(2), continuous) on transdermal drug transport are investigated. A series of chemical enhancer formulations, including (i) polyethylene glycol 200 dilaurate (PEG), (ii) isopropyl myristate (IM), (iii) glycerol trioleate (GT), (iv) ethanol /pH 7.4 phosphate buffered saline in a 1:1 ratio (50% EtOH), (v) 50% BOH saturated with linoleic acid (LA/EtOH), and (vi) phosphate buffered saline (PBS), as a control, are evaluated using corticosterone as a model drug, LA/EtOH is the most effective of these enhancers , increasing the corticosterone flux by 900-fold compared to that from PBS. Therapeutic ultrasound (1 MHz, 1.4 W/cm(2), continuous) increases the corticosterone permeability from all of the enhancers examined by up to 14-fold (LA/EtOH) and increases the corticosterone flux from the saturated solutions by up to 13000-fold (LA/EtOH), relative to that from PBS. Similar enhancements are obtained with LA/EtOH with and without ultrasound for four other model drugs, dexamethasone, estradiol, lidocaine, and testosterone. The permeability enhancements for all of these drugs resulting from the addition of linoleic acid to 50% EtOH increase with increasing drug molecular weight. Likewise, the permeability enhancement attained by ultrasound and LA/EtOH relative to passive EtOH exhibits a similar size dependence. A mechanistic explanation of this size dependence is provided. It is suggested that bilayer disordering agents, such as linoleic acid and ultrasound, transform the SC lipid bilayers into a fluid lipid bilayer phase or create a separate bulk oil phase. The difference in diffusivity of a given solute in SC bilayers and in either fluid bilayers or bulk oil is larger for larger solutes, thereby producing greater enhancements for larger solutes. Identifiers--KeyWords Plus: HUMAN- SKIN INVITRO; OLEIC-ACID; PENETRATION ENHANCERS ; STRATUM - CORNEUM ; FATTY-ACIDS; PERMEABILITY; PERMEATION; ESTRADIOL; MEMBRANE; ETHANOL Research Fronts: 94-1888 002 (PORCINE STRATUM - CORNEUM ; SKIN PERMEABILITY ; DERMAL ABSORPTION; TRANSDERMAL DELIVERY SYSTEMS; UNDERLYING TISSUE PHARMACOKINETICS; PERCUTANEOUS PERMEATION) (SKIN PENETRATION. ENHANCERS ; IONTOPHORETIC TRANSDERMAL DELIVERY; FAPG BASE; PERCUTANEOUS PERMEATION; LUTEINIZING-HORMONE-RELEASING HORMONE (LHRH) IN-VITRO) (DERIVING STRUCTURE-ACTIVITY-RELATIONSHIPS; NONLINEAR MAP OF SUBSTITUENT CONSTANTS; MOLECULAR MODELING APPROACH; GEIPARVARIN

ANALOGS; ESCHERICHIA-COLI K-12) Cited References: US FDA, 1991, IN INGR GUID AUNGST BJ, 1990, V7, P712, PHARMACEUT RES BARRY BW, 1987, V6, P85, J CONTROL RELEASE BURNETTE RR, 1989, P247, IONTOPHORESIS CLEGG RM, 1985, P173, TRANSLATIONAL DIFFUS COOPER ER, 1987, V6, P23, J CONTROL RELEASE
COOPER ER, 1984, V73, P1153, J PHARM SCI
COOPER ER, 1985, V74, P688, J PHARM SCI
GHANEM AH, 1992, V78, P137, INT J PHARM
GOATES CY, 1994, V1195, P169, BBA-BIOMEMBRANES HANSCH C, 1979, SUBSTITUENT CONSTANT HIRVONEN J, 1993, V26, P109, J CONTROL RELEASE HIRVONEN J, 1991, V8, P933, PHARMACEUT RES JOHNSON ME, UNPUB JOHNSON ME, UNPUB KASTING GB, 1992, P117, PRODRUGS TOPICAL OCU KNUTSON K, 1993, V24, P95, J CONTROL RELEASE KOST J, 1993, P91, ULTRASOUND MEDIATED LAMBERT WJ, 1989, V6, P798, PHARMACEUT RES LEVY D, 1989, V83, P2074, J CLIN INVEST LIU PC, 1991, V8, P938, PHARMACEUT RES MAK VHW, 1990, V12, P67, J CONTROL RELEASE MICHAELS AS, 1975, V21, P985, AICHE J MITRAGOTRI S, 1995, V84, P697, J PHARM SCI MITRAGOTRI S, 1995, V269, P850, SCIENCE MITRAGOTRI S, UNPUB ONGPIPATTANAKUL B, 1991, V8, P350, PHARMACEUT RES PECK KD, 1995, V84, P975, J PHARM SCI PECK KD, 1994, V11, P1306, PHARMACEUT RES PERRY RH, 1984, PERRYS CHEM ENG HDB POTTS RO, 1992, V9, P663, PHARMACEUT RES PRAUSNITZ MR, 1993, V90, P504, P NATL ACAD SCI USA TOCANNE JF, 1989, V257, P10, FEBS LETT WALKER M, 1991, V71, R1, INT J PHARM WALTERS KA, 1989, P197, PENETRATION ENHANCER WILLIAMS AC, 1991, V74, P157, INT J PHARM WILLIAMS AC, 1992, V86, P69, INT J PHARM WILLSCHUT A, 1995, V30, P1275, CHEMOSPHERE

Title: SYNERGISTIC EFFECTS OF CHEMICAL ENHANCERS AND THERAPEUTIC ULTRASOUND ON TRANSDERMAL DRUG-DELIVERY , 1996

Abstract: The effects of (i) a series of chemical enhancers and (ii) the combination of these enhancers and therapeutic ultrasound (1 MHz, 1.4 W/cm(2), continuous) on transdermal drug transport are investigated. A series of chemical enhancer formulations, including (i) polyethylene glycol 200 dilaurate (PEG), (ii) isopropyl myristate (IM), (iii) glycerol trioleate (GT), (iv) ethanol /pH 7.4 phosphate buffered saline in a 1:1 ratio (50% EtOH), (v) 50...

...evaluated using corticosterone as a model drug, LA/EtOH is the most effective of these enhancers, increasing the corticosterone flux by 900-fold compared to that from PBS. Therapeutic ultrasound (1 MHz, 1.4 W/cm(2), continuous) increases the corticosterone permeability from all of the enhancers examined by up to 14-fold (LA/EtOH) and increases the corticosterone flux from the saturated solutions by up to 13000-fold (LA/EtOH), relative to that from PBS. Similar enhancements are obtained with LA/EtOH with and without ultrasound for

four other model drugs, dexamethasone, estradiol, lidocaine, and testosterone. The **permeability enhancements** for all of these drugs resulting from the addition of linoleic acid to 50% EtOH **increase** with **increasing** drug molecular weight. Likewise, the **permeability enhancement** attained by ultrasound and LA/EtOH relative to passive EtOH exhibits a similar size dependence...

...in either fluid bilayers or bulk oil is larger for larger solutes, thereby producing greater enhancements for larger solutes.
 ...Identifiers--HUMAN- SKIN INVITRO; OLEIC-ACID; PENETRATION ENHANCERS; STRATUM - CORNEUM; FATTY-ACIDS; PERMEABILITY; PERMEATION; ESTRADIOL; MEMBRANE; ETHANOL

Research Fronts: 94-1888 002 (PORCINE STRATUM - CORNEUM; SKIN PERMEABILITY; DERMAL ABSORPTION; TRANSDERMAL DELIVERY SYSTEMS; UNDERLYING TISSUE PHARMACOKINETICS; PERCUTANEOUS PERMEATION) 94-1427 001 (SKIN PENETRATION ENHANCERS; IONTOPHORETIC TRANSDERMAL DELIVERY; FAPG BASE; PERCUTANEOUS PERMEATION; LUTEINIZING-HORMONE-RELEASING HORMONE (LHRH) IN-VITRO) 94-6319...

31/5,K/5 (Item 4 from file: 34)
DIALOG(R)File 34:SciSearch(R) Cited Ref Sci
(c) 2003 Inst for Sci Info. All rts. reserv.

01246860 Genuine Article#: GH309 Number of References: 52
Title: EFFECTS OF ORGANIC-SOLVENT VEHICLES ON THE VIABILITY AND MORPHOLOGY
OF ISOLATED PERFUSED PORCINE SKIN

Author(s): KING JR; MONTEIRORIVIERE NA

Corporate Source: N CAROLINA STATE UNIV, COLL VET MED, CTR CUTANEOUS PHARMACOL & TOXICOL, 4700 HILLSBOROUGH ST/RALEIGH//NC/27606; N CAROLINA STATE UNIV, COLL VET MED, CTR CUTANEOUS PHARMACOL & TOXICOL, 4700 HILLSBOROUGH ST/RALEIGH//NC/27606

Journal: TOXICOLOGY, 1991 , V69, N1, P11-26 Language: ENGLISH Document Type: ARTICLE

Geographic Location: USA

Subfile: SciSearch; CC LIFE--Current Contents, Life Sciences Journal Subject Category: TOXICOLOGY; PHARMACOLOGY & PHARMACY Abstract: Although many organic solvents are known to be cutaneous irritants, they are commonly utilized as vehicles in percutaneous absorption and toxicity studies. The isolated perfused porcine skin flap (IPPSF) is an alternative animal model that has been used to study percutaneous absorption and cutaneous toxicity. The purpose of this study was to evaluate the effect of five organic solvents (ethanol , acetone, dimethyl sulfoxide (DMSO), toluene, and cyclohexane) on biochemical viability parameters, vascular response, and epidermal morphology of the IPPSF. Cumulative glucose utilization (CGU), the ratio of lactate production/ glucose utilization (L/CGU ratio), and the leakage of lactate dehydrogenase (LDH) were used as biochemical indicators of alterations in glucose metabolism and flap viability. Only ethanol resulted in a statistically significant decrease in the average rate of CGU over the perfusion period. All of the solvent treatments resulted in slight increases in LDH release versus the controls. Vascular resistance (VR) was measured to examine the response of the cutaneous vasculature to these solvents, and most treatments resulted in a decreased VR in the terminal phases of Ethanol was the only solvent to cause an apparent increase in terminal VR. Light microscopy demonstrated a moderate increase in intracellular edema in the DMSO , toluene, and acetone

flaps. Ultrastructural evaluation showed focal blebbing of the nuclear

envelope and vesiculation of the rough endoplasmic reticulum in cells of the stratum basale and stratum spinosum layers with DMSO treatment. The IPPSF allowed the evaluation of subtle biochemical, vascular, and morphological changes associated with non-occlusive topical exposure to these organic solvents. These findings support the necessity of documenting vehicle effects which might mask or otherwise alter sublte, but potentially important, compound-specific responses. Descriptors -- Author Keywords: SOLVENT; VEHICLE; SKIN FLAP; VIABILITY; HISTOPATHOLOGY; ULTRASTRUCTURE Identifiers--KeyWords Plus: LASER DOPPLER FLOWMETRY; PERCUTANEOUS-ABSORPTION; LIDOCAINE IONTOPHORESIS; PHARMACOKINETIC MODEL; INDUSTRIAL SOLVENTS; FLAP; PENETRATION; INVITRO; PERMEABILITY; DEFINITION Research Fronts: 89-0541 004 (SKIN PERMEABILITY ; INVITRO PERCUTANEOUS PENETRATION; TRANS-EPIDERMAL WATER-LOSS; TRANSDERMAL DELIVERY OF LEVONORGESTREL; STRATUM - CORNEUM LIPIDS) (PHARMACOKINETICS OF ALFENTANIL; TRANSDERMAL FENTANYL; SUFENTANIL ANESTHESIA; 1-DODECYLAZACYCLOHEPTAN-2-ONE (AZONE); PERMEATION; WATER-SOLUBLE DRUGS) Cited References: BARRY BW, 1983, P127, DERMATOLOGICAL FORMU BARTEK MJ, 1972, V58, P114, J INVEST DERMATOL BIRD MG, 1981, V24, P235, ANN OCCUP HYG BOWMAN KF, 1991, V52, P75, AM J VET RES CARVER MP, 1989, V97, P324, TOXICOL APPL PHARM COOPER ER, 1985, P525, PERCUTANEOUS ABSORPT FREINKEL RK, 1983, P328, BIOCH PHYSL SKIN GUMMER CL, 1986, V24, P305, FOOD CHEM TOXICOL GUMMER CL, 1985, P561, PERCUTANEOUS ABSORPT HANSCH C, 1979, P177, SUBSTITUENT CONSTANT IDSON B, 1983, V14, P207, DRUG METAB REV IDSON B, 1975, V64, P901, J PHARM SCI KING JR, 1990, V104, P167, TOXICOL APPL PHARM KLIGMAN AM, 1965, V196, P796, JAMA-J AM MED ASSOC KLIGMAN AM, 1965, V193, P923, JAMA-J AM MED ASSOC KOHLI R, 1987, V36, P91, INT J PHARM KRONEVI T, 1979, V19, P56, ENVIRON RES LASHMAR UT, 1989, V41, P118, J PHARM PHARMACOL MAHMOUD G, 1984, V11, P179, CONTACT DERMATITIS MAHMOUD G, 1985, V13, P14, CONTACT DERMATITIS MAXWELL SA, 1986, V40, P59, TOXICOLOGY MEYER W, 1978, V7, P39, CURR PROBL DERMATOL MONTAGNA W, 1964, V43, P11, J INVEST DERMATOL MONTEIRORIVIERE NA, 1985, V14, P97, ANAT HISTOL EMBRYOL MONTEIRORIVIERE NA, 1990, V15, P174, FUND APPL TOXICOL MONTEIRORIVIERE NA, 1987, V1, P241, IN VITRO TOXICOL MONTEIRORIVIERE NA, 1990, P175, MEHTODOLOGY SKIN ABS MONTEIRORIVIERE NA, 1986, P641, SWINE BIOMEDICAL RES MONTEIRORIVIERE NA, 1987, P948, 45TH P ANN M EL MICR MONTES LF, 1967, V48, P184, J INVEST DERMATOL REIFENRATH WG, 1984, V4, P5224, FUNDAM APPL TOXICOL REIFLLY TF, 1901, V36, P250, JAMA-J AM MED ASSOC RIVIERE JE, 1987, V116, P739, BRIT J DERMATOL RIVIERE JE, 1991, P293, DERMAL OCULAR TOXICO

RIVIERE JE, 1986, V7, P444, FUND APPL TOXICOL RIVIERE JE, 1989, V8, P493, J TOXICOL-CUTAN OCUL RIVIERE JE, 1986, P657, SWINE BIOMEDICAL RES SCHEUPLEIN RJ, 1983, P1255, BIOCH PHYSL SKIN SCHEUPLEIN RJ, 1973, V60, P286, J INVEST DERMATOL SCHEUPLEIN RJ, 1970, V21, P853, J SOC COSMET CHEM

SCHEUPLEIN RJ, 1971, V51, P702, PHYSIOL REV

SHACKLEFORD JM, 1984, V11, P259, J CUTAN PATHOL SHARATA HH, 1988, V77, P27, J PHARM SCI SKOG E, 1967, V47, P426, ACTA DERM-VENEREOL SRIKRISHNA V, 1991, IN PRESS IN VITRO TO SULZBERGER MB, 1967, V141, P437, ANN NY ACAD SCI WAHLBERG JE, 1984, V10, P159, SCAND J WORK ENV HEA WILLIAMS PL, 1990, V6, P923, INT J HYPERTHER WILLIAMS PL, 1989, V78, P550, J PHARM SCI WILLIAMS PL, 1990, V79, P305, J PHARM SCI WILLIAMS PL, 1989, V66, P145, RES COMMUN CHEM PATH WRIGHT ET, 1966, V46, P409, J INVEST DERMATOL

Title: EFFECTS OF ORGANIC-SOLVENT VEHICLES ON THE VIABILITY AND MORPHOLOGY OF ISOLATED PERFUSED PORCINE SKIN 1991

- ... Abstract: are commonly utilized as vehicles in percutaneous absorption and toxicity studies. The isolated perfused porcine **skin** flap (IPPSF) is an alternative animal model that has been used to study percutaneous absorption...
- ...toxicity. The purpose of this study was to evaluate the effect of five organic solvents (ethanol , acetone, dimethyl sulfoxide (DMSO), toluene, and cyclohexane) on biochemical viability parameters, vascular response, and epidermal morphology of the IPPSF. Cumulative glucose utilization (CGU), the ratio of lactate production/glucose utilization (L/CGU ratio), and the leakage of lactate dehydrogenase (LDH) were used as biochemical indicators of alterations in glucose metabolism and flap viability. Only ethanol resulted in a statistically significant decrease in the average rate of CGU over the perfusion period. All of the solvent treatments resulted in slight increases in LDH release versus the controls. Vascular resistance (VR) was measured to examine the response...
- ...solvents, and most treatments resulted in a decreased VR in the terminal phases of perfusion. **Ethanol** was the only solvent to cause an apparent **increase** in terminal VR. **Light** microscopy demonstrated a moderate **increase** in intracellular edema in the **DMSO**, toluene, and acetone flaps. Ultrastructural evaluation showed focal blebbing of the nuclear envelope and vesiculation...
- ...the rough endoplasmic reticulum in cells of the stratum basale and stratum spinosum layers with DMSO treatment. The IPPSF allowed the evaluation of subtle biochemical, vascular, and morphological changes associated with non-occlusive topical exposure...
- ...Identifiers--LASER DOPPLER FLOWMETRY; PERCUTANEOUS-ABSORPTION; LIDOCAINE IONTOPHORESIS; PHARMACOKINETIC MODEL; INDUSTRIAL SOLVENTS; FLAP; PENETRATION; INVITRO; PERMEABILITY; DEFINITION
- Research Fronts: 89-0541 004 (**SKIN PERMEABILITY**; INVITRO PERCUTANEOUS PENETRATION; TRANS-EPIDERMAL WATER-LOSS; TRANSDERMAL DELIVERY OF LEVONORGESTREL; **STRATUM CORNEUM** LIPIDS)
 - 89-2190 001 (PHARMACOKINETICS OF ALFENTANIL; TRANSDERMAL FENTANYL; SUFENTANIL ANESTHESIA; 1-DODECYLAZACYCLOHEPTAN-2-ONE (AZONE); SKIN PERMEATION; WATER-SOLUBLE DRUGS)

31/5,K/6 (Item 5 from file: 34)
DIALOG(R)File 34:SciSearch(R) Cited Ref Sci
(c) 2003 Inst for Sci Info. All rts. reserv.

01011865 Genuine Article#: FN212 Number of References: 33

Title: SERUM GLUCOSE AND INSULIN RESPONSES TO AN INSULIN-CONTAINING
OPHTHALMIC SOLUTION ADMINISTERED TOPICALLY IN CLINICALLY NORMAL CATS
Author(s): HOPPER PE; MURPHY CJ; FELDMAN EC; NELSON RW; BOTTOMS GD; FRANTI
CE

Corporate Source: ENCINA VET HOSP, 2803 YGNACIO VALLEY RD/WALNUT CREEK//CA/94598; UNIV CALIF DAVIS, VET MED TEACHING HOSP, SMALL ANIM INTERNAL MED SERV/DAVIS//CA/95616; UNIV CALIF DAVIS, VET MED TEACHING HOSP, OPHTHALMOL SERV/DAVIS//CA/95616; UNIV CALIF DAVIS, SCH VET MED, DEPT REPROD/DAVIS//CA/95616; UNIV CALIF DAVIS, SCH VET MED, DEPT EPIDEMIOL & PREVENT MED/DAVIS//CA/95616; PURDUE UNIV, SCH VET MED, DEPT VET PHYSIOL & PHARMACOL/W LAFAYETTE//IN/47907; PURDUE UNIV, SCH VET MED, DEPT VET CLIN SCI/W LAFAYETTE//IN/47907

Journal: AMERICAN JOURNAL OF VETERINARY RESEARCH, 1991, V52, N6, P903-907 Language: ENGLISH Document Type: ARTICLE

Geographic Location: USA

Subfile: SciSearch; CC AGRI--Current Contents, Agriculture, Biology & Environmental Sciences

Journal Subject Category: VETERINARY MEDICINE

Abstract: Serum glucose and immunoreactive insulin concentrations were monitored after topical administration of an insulin-containing ophthalmic solution in 20 clinically normal cats. Three ophthalmic surface-acting agents, benzalkonium chloride, dimethyl sulfoxide , and proparacaine hydrochloride, were evaluated individually for their effectiveness in enhancing absorption of topically applied insulin. The ophthalmic effects of insulin-containing ophthalmic preparations were assessed by complete ophthalmic examination before and at the conclusion of each test period. Withholding of food overnight (12 hours) preceded each topical application of insulin-containing ophthalmic solution (12.25 to 26.4 U/cat), either alone or in combination with surface-acting agents, after which blood samples were drawn serially from an indwelling IV catheter over a period of 8 hours. Baseline serum insulin concentration, after food was withheld for 12 hours, in nonstressed cats was 6.0-mu-U/ml (geometric mean), and an exponentiation of the logarithmic quantity (mean +/- SD) yielded values of 1.5 to 23.0-mu-U/ml. All ophthalmic solutions tested failed to significantly lower serum glucose concentration or increase serum insulin concentration. Solutions used did not induce deleterious effect on ocular structures. Results indicate that topical administration of insulin-containing ophthalmic solution, either alone at the concentrations used or in combination with surface-acting agents, did not result in effective absorption of insulin across the conjunctival and lacrimal nasal mucosa in biologically relevent quantities. Thus, this route of insulin administration, under these specific conditions, is not an effective alternative or adjunct to SC administration of insulin for treatment of cats with insulin-dependent diabetes mellitus or severe noninsulin-dependent diabetes mellitus.

Identifiers--KeyWords Plus: BENZALKONIUM CHLORIDE; CORNEAL EPITHELIUM;
DIABETIC SUBJECTS; PERMEABILITY; EYES

Research Fronts: 89-1722 001 (TRANSDERMAL IONTOPHORETIC DRUG DELIVERY; NASAL ABSORPTION OF INSULIN; FACTORS AFFECTING SULFISOXAZOLE TRANSPORT) 89-5694 001 (CORNEAL EPITHELIUM; BENZALKONIUM CHLORIDE; TOXIC ULCERATIVE KERATOPATHY)

Cited References:

ARMITAGE P, 1971, P351, STATISTICAL METHODS CHIOU GCY, 1989, V5, P81, J OCUL PHARMACOL CHIOU GCY, 1989, V78, P815, J PHARM SCI CHURCH DB, 1983, V8, P838, CURRENT VET THERAPY FELDMAN EC, 1987, P264, CANINE FELINE ENDOCR GORDON DM, 1967, V141, P392, ANN NY ACAD SCI GREEN K, 1974, V13, P316, INVEST OPHTHALMOL

HANKISS J, 1985, V12, P107, ACTA MED ACAD SCI HU HIRAI S, 1978, V27, P2963, DIABETES HIRATA Y, 1979, V468, P319, EXCERPTA MED INT C S HULL FW, 1969, V68, P39, NW MED JACOB SW, 1967, V114, P414, AM J SURG JACOB SW, 1964, V6, P134, CURR THER RES CLIN E JANES RG, 1963, V56, P84, AM J OPHTHALMOL JANKOWSKA LM, 1986, V27, P32, INVEST OPHTHALMOL S KELLER N, 1980, V30, P203, EXP EYE RES KLOSTERMEYER H, 1966, V5, P807, ANGEW CHEM INT EDIT MCMILLAN FD, 1986, V188, P1426, J AM VET MED ASSOC MOISE NS, 1983, V185, P158, J AM VET MED ASSOC MOSES AC, 1983, V32, P1040, DIABETES NELSON RW, 1990, V51, P1357, AM J VET RES PFISTER RR, 1976, V15, P246, INVEST OPHTHALMOL PONTIROLI AE, 1982, V284, P303, BRIT MED J ROSENBAUM EE, 1965, V192, P309, JAMA-J AM MED ASSOC SALZMAN R, 1985, V312, P1078, NEW ENGL J MED SCHAER M, 1976, V168, P417, J AM VET MED ASSOC SCHWARTZPORCHE D, 1980, V7, P1005, CURRENT VET THERAPY STOLWIJK TR, 1990, V31, P436, INVEST OPHTH VISUAL TONJUM AM, 1975, V53, P335, ACT OPHTH K WIGLEY FM, 1971, V620, P552, DIABETES WOOD DC, 1967, V141, P346, ANN NY ACAD SCI WOOST PG, 1985, V40, P47, EXP EYE RES YOSHIMITUS Y, 1981, V4, P454, DIABETES CARE

- Title: SERUM GLUCOSE AND INSULIN RESPONSES TO AN INSULIN-CONTAINING OPHTHALMIC SOLUTION ADMINISTERED TOPICALLY IN CLINICALLY NORMAL CATS , 1991
- Abstract: Serum glucose and immunoreactive insulin concentrations were monitored after topical administration of an insulin-containing ophthalmic solution in 20 clinically normal cats. Three ophthalmic surface-acting agents, benzalkonium chloride, dimethyl sulfoxide, and proparacaine hydrochloride, were evaluated individually for their effectiveness in enhancing absorption of topically applied insulin.

 The ophthalmic effects of insulin-containing ophthalmic preparations were assessed...
- ...to 23.0-mu-U/ml. All ophthalmic solutions tested failed to significantly lower serum **glucose** concentration or **increase** serum insulin concentration. Solutions used did not induce deleterious effect on ocular structures. Results indicate...
- ...combination with surface-acting agents, did not result in effective absorption of insulin across the **conjunctival** and lacrimal nasal mucosa in biologically relevent quantities. Thus, this route of insulin administration, under...
- ...Identifiers--BENZALKONIUM CHLORIDE; CORNEAL **EPITHELIUM**; DIABETIC SUBJECTS; **PERMEABILITY**; EYES
- Research Fronts: 89-1722 001 (TRANSDERMAL IONTOPHORETIC DRUG DELIVERY; NASAL ABSORPTION OF INSULIN; FACTORS AFFECTING SULFISOXAZOLE TRANSPORT) 89-5694 001 (CORNEAL EPITHELIUM; BENZALKONIUM CHLORIDE; TOXIC ULCERATIVE KERATOPATHY)

31/5,K/7 (Item 1 from file: 73)
DIALOG(R)File 73:EMBASE
(c) 2003 Elsevier Science B.V. All rts. reserv.

06986820 EMBASE No: 1997272901

Iontophoretic transdermal absorption of insulin and calcitonin in rats with newly-devised switching technique and addition of urea

Tomohira Y.; Machida Y.; Onishi H.; Nagai T.

Y. Machida, Department of Clinical Pharmacy, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142 Japan

International Journal of Pharmaceutics (INT. J. PHARM.) (Netherlands) 1997, 155/2 (231-239)

CODEN: IJPHD ISSN: 0378-5173

PUBLISHER ITEM IDENTIFIER: S0378517397001713

DOCUMENT TYPE: Journal; Article

LANGUAGE: ENGLISH SUMMARY LANGUAGE: ENGLISH

NUMBER OF REFERENCES: 9

The effect of urea and reversing polarity of electrodes (switching technique) in iontophoresis was investigated in order to get a better transdermal absorption of peptide drugs, insulin and calcitonin, and to reduce dermal irritation caused by the iontophoresis . Two cells with an electrode were set on the hair-removed abdominal skin of diabetic or oophorectomized rats. After putting peptide solution into the anode side or both of the cells, an electric current with pulsed rectangular wave form (4 kHz, 50% duty) was passed through the $\,$ skin $\,$ for 2 h at 0.075 mA cmsup -sup 2 (insulin) and for 50 min or 2 h at 0.015 mA cmsup -sup 2 (calcitonin). Absorption of insulin and calcitonin was estimated from the reduction of glucose and calcium levels in the plasma of the rats, respectively. When the polarity of electrodes was reversed at intervals of 20 min for insulin and 25 min for calcitonin, absorption of the drug was effectively enhanced . The addition of urea to the insulin solution together with the switching technique brought about a remarkably facilitated absorption of insulin. Moreover, comparison of the skin conditions between switching and non-switching experiments suggested that irritation of skin could be reduced by employment of the switching iontophoresis .

MANUFACTURER NAMES: sigma

DRUG DESCRIPTORS:

*calcitonin--drug interaction--it; *calcitonin--pharmacokinetics--pk; * insulin--drug interaction--it; *insulin--pharmacokinetics--pk; *urea--drug interaction--it

penetration enhancing agent

MEDICAL DESCRIPTORS:

* **skin** absorption

animal cell; animal tissue; article; biological model; controlled study;
depolarization; drug absorption; female; iontophoresis; male; nonhuman;
priority journal; rat; skin irritation; transdermal drug administration
CAS REGISTRY NO.: 12321-44-7, 21215-62-3, 9007-12-9 (calcitonin); 9004-10-8
 (insulin); 57-13-6 (urea)

SECTION HEADINGS:

- 030 Clinical and Experimental Pharmacology
- 037 Drug Literature Index
- 039 Pharmacy

Iontophoretic transdermal absorption of insulin and calcitonin in rats with newly-devised switching technique and addition...

The effect of urea and reversing polarity of electrodes (switching technique) in iontophoresis was investigated in order to get a better transdermal absorption of peptide drugs, insulin and calcitonin, and to reduce dermal irritation caused by the iontophoresis. Two cells with an electrode were set on the hair-removed abdominal skin of diabetic or oophorectomized rats. After putting peptide solution into the anode side or both...

```
...electric current with pulsed rectangular wave form (4 kHz, 50% duty) was
passed through the skin for 2 h at 0.075 mA cmsup -sup 2 (insulin) and
for 50 min...
...cmsup -sup 2 (calcitonin). Absorption of insulin and calcitonin was
estimated from the reduction of glucose and calcium levels in the plasma
of the rats, respectively. When the polarity of electrodes...
...20 min for insulin and 25 min for calcitonin, absorption of the drug was
effectively enhanced . The addition of urea to the insulin solution
together with the switching technique brought about a remarkably
facilitated absorption of insulin. Moreover, comparison of the skin
conditions between switching and non-switching experiments suggested that
irritation of skin could be reduced by employment of the switching
iontophoresis .
DRUG DESCRIPTORS:
penetration enhancing
                        agent
MEDICAL DESCRIPTORS:
* skin absorption
animal cell; animal tissue; article; biological model; controlled study;
depolarization; drug absorption; female; iontophoresis; male; nonhuman;
priority journal; rat; skin irritation; transdermal drug administration
 1997
 31/5, K/8
              (Item 2 from file: 73)
DIALOG(R)File
              73:EMBASE
(c) 2003 Elsevier Science B.V. All rts. reserv.
             EMBASE No: 1997024317
  Current status and future prospects of transdermal drug delivery
  Guy R.H.
  R.H. Guy, Ctr. Interuniv Recherche d'Enseignem, Campus Universitaire,
  Parc d'Affaires International, F-74166 Archamps France
  AUTHOR EMAIL: quy@sc2a.unige.ch
  Pharmaceutical Research (PHARM. RES.) (United States) 1996, 13/12
  (1765 - 1769)
  CODEN: PHREE
                ISSN: 0724-8741
  DOCUMENT TYPE: Journal; Review
  LANGUAGE: ENGLISH
  NUMBER OF REFERENCES: 35
DRUG DESCRIPTORS:
clonidine; erythropoietin; estradiol; fentanyl; gamma interferon; glyceryl
 trinitrate; lidocaine--pharmacokinetics--pk; nicotine; penetration
          agent ; scopolamine; testosterone
enhancing
MEDICAL DESCRIPTORS:
* skin penetration; *transdermal drug administration
controlled drug release; drug delivery system; human; iontophoresis;
nonhuman; priority journal; review; stratum corneum; technology;
ultrasound
CAS REGISTRY NO.: 4205-90-7, 4205-91-8, 57066-25-8 (clonidine); 11096-26-7
    (erythropoietin); 50-28-2 (estradiol); 437-38-7 (fentanyl); 82115-62-6
    (gamma interferon); 55-63-0 (glyceryl trinitrate); 137-58-6,
    24847-67-4, 56934-02-2, 73-78-9 (lidocaine); 54-11-5 (nicotine);
    138-12-5, 51-34-3, 55-16-3 (scopolamine); 58-22-0 (testosterone
SECTION HEADINGS:
  030 Clinical and Experimental Pharmacology
  037 Drug Literature Index
```

039 Pharmacy

```
DRUG DESCRIPTORS:
clonidine; erythropoietin; estradiol; fentanyl; gamma interferon; glyceryl
trinitrate; lidocaine--pharmacokinetics--pk; nicotine; penetration
           agent ; scopolamine; testosterone
MEDICAL DESCRIPTORS:
* skin penetration; *transdermal drug administration
controlled drug release; drug delivery system; human; iontophoresis;
nonhuman; priority journal; review; stratum corneum; technology;
ultrasound
...CAS REGISTRY NO.: 28-2 (estradiol); 437-38-7 (fentanyl); 82115-62-6 (
    gamma interferon); 55-63-0 ( glyceryl trinitrate); 137-58-6...
1996
31/5, K/9
              (Item 3 from file: 73)
DIALOG(R)File 73:EMBASE
(c) 2003 Elsevier Science B.V. All rts. reserv.
06490578
             EMBASE No: 1996135448
 Drug penetration into human skin and their modulation
 WIRKSTOFFPENETRATION IN DIE HAUT UND DEREN MODULATION
 Neubert R.; Schmalfuss U.; Wohlrab W.; Huschka C.
 Fachbereich Pharmazie, Martin-Luther-Universitat,
 Wolfgang-Langenbeck-Strasse 4,06120 Halle Germany
  Pharmazeutische Zeitung ( PHARM. ZTG. ) (Germany)
                                                   1996, 141/17
  (11-16+18+21-23)
 CODEN: PZSED
               ISSN: 0031-7136
  DOCUMENT TYPE: Journal; Short Survey
 LANGUAGE: GERMAN
                    SUMMARY LANGUAGE: GERMAN
BRAND NAME/MANUFACTURER NAME: azone
DRUG DESCRIPTORS:
*analgesic agent--pharmacokinetics--pk; *analgesic agent--pharmaceutics--pr
; *anesthetic agent--pharmacokinetics--pk; *anesthetic agent--pharmaceutics
--pr; *antihistaminic agent--pharmaceutics--pr; *antihistaminic agent
--pharmacokinetics--pk; *antiinfective agent--pharmacokinetics--pk; *
antiinfective agent--pharmaceutics--pr; *antineoplastic agent
--pharmacokinetics--pk; *antineoplastic agent--pharmaceutics--pr; *
antivirus agent--pharmaceutics--pr; *antivirus agent--pharmacokinetics--pk;
*corticosteroid--pharmaceutics--pr; *corticosteroid--pharmacokinetics--pk;
*nonsteroid antiinflammatory agent--pharmacokinetics--pk; *nonsteroid
antiinflammatory agent--pharmaceutics--pr; *penetration enhancing
2 pyrrolidinone--pharmaceutics--pr; 2 pyrrolidone derivative--pharmaceutics
--pr; alcohol derivative--pharmaceutics--pr; cyclodextrin derivative
--pharmaceutics--pr; decyl methyl sulfoxide--pharmaceutics--pr; dimethyl
sulfoxide --pharmaceutics--pr; drug vehicle; fatty acid derivative
--pharmaceutics--pr; glycerol --pharmaceutics--pr; laurocapram
--pharmaceutics--pr; liposome--pharmaceutics--pr; prodrug--pharmaceutics
--pr; propylene glycol--pharmaceutics--pr; terpene derivative
--pharmaceutics--pr; unindexed drug; urea--pharmaceutics--pr
MEDICAL DESCRIPTORS:
* skin absorption; * skin penetration
drug formulation; drug penetration; drug release; human; iontophoresis;
short survey; solubilization; stratum
                                       corneum ; topical drug
administration; transdermal drug administration; drug dosage form; emulsion
; hydrogel
CAS REGISTRY NO.: 616-45-5 (2 pyrrolidinone); 3079-28-5 (decyl methyl
    sulfoxide); 67-68-5 (dimethyl sulfoxide); 56-81-5 (glycerol);
    59227-89-3 (laurocapram); 57-55-6 (propylene glycol); 57-13-6 (urea)
SECTION HEADINGS:
```

```
030
      Clinical and Experimental Pharmacology
  037 Drug Literature Index
  Drug penetration into human skin and their modulation
DRUG DESCRIPTORS:
...*pr; *corticosteroid--pharmacokinetics--pk; *nonsteroid antiinflammatory
agent--pharmacokinetics--pk; *nonsteroid antiinflammatory agent
--pharmaceutics--pr; *penetration enhancing agent ...pharmaceutics--pr; alcohol derivative--pharmaceutics--pr; cyclodextrin
derivative--pharmaceutics--pr; decyl methyl sulfoxide--pharmaceutics--pr;
           sulfoxide --pharmaceutics--pr; drug vehicle; fatty acid
dimethyl
derivative--pharmaceutics--pr; glycerol --pharmaceutics--pr; laurocapram
--pharmaceutics--pr; liposome--pharmaceutics--pr; prodrug--pharmaceutics
--pr; propylene glycol--pharmaceutics--pr...
MEDICAL DESCRIPTORS:
* skin absorption; * skin penetration
drug formulation; drug penetration; drug release; human; iontophoresis;
short survey; solubilization; stratum corneum; topical drug
administration; transdermal drug administration; drug dosage form; emulsion
; hydrogel
CAS REGISTRY NO.: 616-45-5 (2 pyrrolidinone); 3079-28-5 (decyl methyl
    sulfoxide); 67-68-5 (dimethyl sulfoxide); 56-81-5 (glycerol);
    59227-89-3 (laurocapram); 57-55-6 (propylene glycol); 57-13-6 (urea)
 1996
 31/5, K/10
               (Item 4 from file: 73)
DIALOG(R) File 73: EMBASE
(c) 2003 Elsevier Science B.V. All rts. reserv.
05697625
             EMBASE No: 1994103998
  Polymers for transdermal drug delivery systems
  Sugibayashi K.; Morimoto Y.
  Faculty of Pharmaceutical Sciences, Josai University, 1-1
  Keyakidai, Sakado, Saitama 350-02 Japan
  Journal of Controlled Release ( J. CONTROL. RELEASE ) (Netherlands) 1994
, 29/1-2 (177-185)
  CODEN: JCREE ISSN: 0168-3659
  DOCUMENT TYPE: Journal; Conference Paper
  LANGUAGE: ENGLISH
                     SUMMARY LANGUAGE: ENGLISH
  Advances in transdermal delivery systems (TDS) and the technology
involved have been rapid because of the sophistication of polymer science
which now allows incorporation of polymeric additives in TDS in adequate
quantity. Polymer selection and design are of prime importance in
formulating various criteria of new TDS. In this review paper, typical
polymers in topical drug formulations are introduced by category, and their
usefulness is discussed. Several methods for regulation of release and
skin permeation of drug by polymers are also introduced and evaluated.
BRAND NAME/MANUFACTURER NAME: nitrodisc/searle; transderm scop/alza
```

corporation; transderm nitro/alza corporation; nitriderm tts/alza

/hercon; nitrol/paco; frandol tape/toa eiyo

riker 3m; hercon; paco; toa eiyo

*polymer--pharmaceutics--pr

DRUG DESCRIPTORS:

corporation; nitroderm tts/alza corporation; nitrodur/key pharmaceuticals; diafusor/key pharmaceuticals; deponit/lohmann; minitran/riker 3m; nitrocine

MANUFACTURER NAMES: searle; alza corporation; key pharmaceuticals; lohmann;

013

Dermatology and Venereology

```
alginic acid--pharmaceutics--pr; casein--pharmaceutics--pr; clonidine
--pharmaceutics--pr; glyceryl trinitrate--pharmaceutics--pr; fentanyl
--pharmaceutics--pr; gelatin--pharmaceutics--pr; gum arabic--pharmaceutics
--pr; gum tragacanth--pharmaceutics--pr; isosorbide dinitrate
--pharmaceutics--pr; mepindolol--pharmaceutics--pr; paraffin--pharmaceutics
--pr; penetration enhancing
                              agent --pharmaceutics--pr; polyethylene
--pharmaceutics--pr; polysiloxane--pharmaceutics--pr; polystyrene
--pharmaceutics--pr; polyurethan--pharmaceutics--pr; polyvinyl acetate
--pharmaceutics--pr; polyvinyl alcohol--pharmaceutics--pr; scopolamine
--pharmaceutics--pr; starch--pharmaceutics--pr; unindexed drug;
unclassified drug
MEDICAL DESCRIPTORS:
*polymerization; * skin permeability; *drug delivery system conference paper; device; drug formulation; human; iontophoresis;
nonhuman; physical chemistry; priority journal; reservoir; technology;
topical drug administration; transdermal drug administration; pharmaceutics
DRUG TERMS (UNCONTROLLED): bioadhesive agent--pharmaceutics--pr; frandol
tape; polybutadiene--pharmaceutics--pr; polyisoprene--pharmaceutics--pr
CAS REGISTRY NO.: 28961-37-7, 29894-36-8, 9005-32-7, 9005-38-3 (alginic
    acid); 9000-71-9 (casein); 4205-90-7, 4205-91-8, 57066-25-8 (clonidine)
    ; 55-63-0 ( glyceryl trinitrate); 437-38-7 (fentanyl); 9000-70-8 (
    gelatin); 9000-01-5 (gum arabic); 9000-65-1 (gum tragacanth); 87-33-2 (
    isosorbide dinitrate); 23694-81-7, 56396-94-2 (mepindolol); 9003-17-2 (
    polybutadiene); 9002-88-4 (polyethylene); 9003-31-0 (polyisoprene);
    9003-53-6 (polystyrene); 61789-63-7 (polyurethan); 9003-20-7 (polyvinyl
    acetate); 37380-95-3, 9002-89-5 (polyvinyl alcohol); 138-12-5, 51-34-3,
    55-16-3 (scopolamine); 9005-25-8, 9005-84-9 (starch
SECTION HEADINGS:
      Dermatology and Venereology
  013
  027
       Biophysics, Bioengineering and Medical Instrumentation
  030 Clinical and Experimental Pharmacology
  037 Drug Literature Index
  ...the technology involved have been rapid because of the sophistication
of polymer science which now allows incorporation of polymeric additives
```

in TDS in adequate quantity. Polymer selection and design are of...

...introduced by category, and their usefulness is discussed. Several methods for regulation of release and skin permeation of drug by polymers are also introduced and evaluated. DRUG DESCRIPTORS:

alginic acid--pharmaceutics--pr; casein--pharmaceutics--pr; clonidine --pharmaceutics--pr; qlyceryl trinitrate--pharmaceutics--pr; fentanyl --pharmaceutics--pr; gelatin--pharmaceutics--pr; qum arabic--pharmaceutics --pr; qum tragacanth--pharmaceutics--pr; isosorbide dinitrate --pharmaceutics--pr; mepindolol--pharmaceutics--pr; paraffin--pharmaceutics --pr; penetration enhancing agent --pharmaceutics--pr; polyethylene --pharmaceutics--pr; polysiloxane--pharmaceutics--pr; polystyrene --pharmaceutics--pr; polyurethan--pharmaceutics--pr; polyvinyl... MEDICAL DESCRIPTORS: *polymerization; * skin permeability ; *drug delivery system

conference paper; device; drug formulation; human; iontophoresis; nonhuman; physical chemistry; priority journal; reservoir; technology; topical drug administration; transdermal drug administration; pharmaceutics ; ointment

...CAS REGISTRY NO.: 57066-25-8 (clonidine); 55-63-0 (glyceryl trinitrate); 437-38-7 (fentanyl); 9000-70-8 (gelatin); 9000-01-5 (gum arabic); 9000...

```
(Item 5 from file: 73)
 31/5,K/11
DIALOG(R) File 73: EMBASE
(c) 2003 Elsevier Science B.V. All rts. reserv.
             EMBASE No: 1993153920
05385821
  Transdermal penetration enhancers : Categorisation
  Soni S.; Dixit V.K.
  Dept. of Pharmaceutical Sciences, Sagar 470 003 India
  Indian Drugs (INDIAN DRUGS) (India) 1992, 29/11 (465-472)
  CODEN: INDRB
                ISSN: 0019-462X
  DOCUMENT TYPE: Journal; Review
                     SUMMARY LANGUAGE: ENGLISH
  LANGUAGE: ENGLISH
DRUG DESCRIPTORS:
*penetration enhancing
                          agent --drug comparison--cm; *penetration
enhancing
            agent --pharmacology--pd
alkanol; cineole; cyclopeptide; dimethyl
                                            sulfoxide ; dodecyl sulfate
sodium; fatty acid; glycerol; limonene; macrogol; macrogol stearate;
pyrrolidine derivative; solvent; surfactant; terpene; urea derivative;
unclassified drug
MEDICAL DESCRIPTORS:
* skin
        permeability
bioavailability; drug targeting; iontophoresis; review; structure
activity relation; transdermal drug administration; ultrasound
DRUG TERMS (UNCONTROLLED): lauryl ether; thioglycolate calcium
CAS REGISTRY NO.: 470-82-6, 55962-72-6 (cineole); 67-68-5 ( dimethyl
    sulfoxide ); 151-21-3 (dodecyl sulfate sodium); 56-81-5 ( glycerol );
   138-86-3, 5989-27-5 (limonene); 25322-68-3 (macrogol); 9004-99-3 (macrogol stearate); 814-71-1 (thioglycolate calcium
SECTION HEADINGS:
  013
      Dermatology and Venereology
  030 Clinical and Experimental Pharmacology
  037 Drug Literature Index
  Transdermal penetration enhancers : Categorisation
DRUG DESCRIPTORS:
*penetration enhancing
                         agent --drug comparison--cm; *penetration
enhancing agent --pharmacology--pd
alkanol; cineole; cyclopeptide; dimethyl sulfoxide; dodecyl sulfate
sodium; fatty acid; glycerol; limonene; macrogol; macrogol stearate;
pyrrolidine derivative; solvent; surfactant; terpene; urea derivative;
unclassified drug
MEDICAL DESCRIPTORS:
* skin
        permeability
bioavailability; drug targeting; iontophoresis; review; structure
activity relation; transdermal drug administration; ultrasound
...CAS REGISTRY NO.: 55962-72-6 (cineole); 67-68-5 ( dimethyl
    ); 151-21-3 (dodecyl sulfate sodium); 56-81-5 ( glycerol ); 138-86-3...
 1992
               (Item 1 from file: 144)
 31/5, K/12
DIALOG(R) File 144: Pascal
(c) 2003 INIST/CNRS. All rts. reserv.
  14125673
             PASCAL No.: 99-0321778
  Coherent and non-coherent light transport in living tissues impregnated
by endogenous or exogenous fluids and gels
  Photon propagation in tissues IV : Stockholm, 9-11 September 1998
```

TUCHIN V V

BENARON David A, ed; CHANCE Britton, ed; FERRARI Marco, ed; KOHL Matthias ed

Saratov State University, Astrakhanskaya 83, Saratov 410026, Russia International Society for Optical Engineering, Bellingham WA, United States.

Photon propagation in tissues. Conference, 4 (Stockholm SWE) 1998-09-09 Journal: SPIE proceedings series, 1998, 3566 161-175

ISBN: 0-8194-3028-5 ISSN: 1017-2653 Availability: INIST-21760; 354000084601570190

No. of Refs.: 44 ref.

Document Type: P (Serial); C (Conference Proceedings); A (Analytic)

Country of Publication: United States

Language: English

Results on the human sclera and skin optical properties controlled administration of various chemical agents are presented. by employing transmittance and reflectance measurements as well as intensity correlation experiments were used for tissue structural and optical properties monitoring. As chemical applicators - controllers osmotically active solutions, such as trazograph, glucose, polyethylene glycol (PEG), glycerol , as well as aprotonic solutions like propylene glycol (PPG), dimethyl sulphoxide (DMSO) were used. The characteristic time response of the human sclera optical clearing lying in the range 3-10 min was defined. The diffusion coefficients describing the samples of the human permeability to various solutes were experimentally estimated. Presented results are general and can be applicable for description of many other fibrous tissues.

English Descriptors: Wave propagation; Optical properties; Tissue; Sclera; Derm; Chemical product; Structural analysis; Time response; Light scattering; Human; Spectrophotometry; In vitro; In vivo

French Descriptors: Propagation onde; Propriete optique; Tissu; Sclerotique; Derme; Produit chimique; Analyse structurale; Reponse temporelle; Diffusion lumiere; Homme; Spectrophotometrie; In vitro; In vivo

Classification Codes: 002A08F01 Copyright (c) 1999 INIST-CNRS. All rights reserved.

Coherent and non-coherent light transport in living tissues impregnated by endogenous or exogenous fluids and gels
1998

Results on the human sclera and skin optical properties controlled by employing administration of various chemical agents are presented. CW transmittance and reflectance measurements as well as intensity correlation experiments were used for tissue structural and optical properties monitoring. As chemical applicators - controllers osmotically active solutions, such as trazograph, glucose, polyethylene glycol (PEG), propylene glycol (PPG), glycerol, as well as aprotonic solutions like dimethyl sulphoxide (DMSO) were used. The characteristic time response of the human sclera optical clearing lying in the range 3-10 min was defined. The diffusion coefficients describing the samples of the human sclera permeability to various solutes were experimentally estimated. Presented results are general and can be applicable for...

English Descriptors: Wave propagation; Optical properties; Tissue;
Sclera; Derm; Chemical product; Structural analysis; Time response;
Light scattering; Human; Spectrophotometry; In vitro; In vivo

31/5, K/13(Item 1 from file: 155) DIALOG(R) File 155: MEDLINE(R) (c) format only 2003 The Dialog Corp. All rts. reserv. PMID: 7550099 96031326 10230024 Combined effect of d-limonene pretreatment and temperature on the rat skin permeation of lipophilic and hydrophilic drugs. Ohara N; Takayama K; Nagai T Department of Pharmaceutics, Hoshi University, Tokyo, Japan. Biological & pharmaceutical bulletin (JAPAN) Mar 1995 , 18 (3) p439-42, ISSN 0918-6158 Journal Code: 9311984 Document type: Journal Article Languages: ENGLISH Main Citation Owner: NLM Record type: Completed Subfile: INDEX MEDICUS effect of d-limonene and temperature on the The combined permeation of lipophilic and hydrophilic penetrants has been investigated in rats in vitro. Prednisolone was used as a lipophilic penetrant, and and isoniazid were used as hydrophilic ones, respectively. When the skin was pretreated with 30% ethanol without d-limonene, the steady state permeability coefficient (P) of every penetrant through the skin was difficult to calculate because of very low permeability . On the other hand, the cumulative amount of each penetrant increased with an increase in temperature when the skin was pretreated with 1.5% d-limonene in 30% ethanol . The Arrhenius plots of P values for glucose and isoniazid showed a linear relationship, and the activation energies of permeation were estimated to be 87.6 and 66.5 kJ/mol, respectively. When prednisolone was used as penetrant, however, the Arrhenius plot of P values exhibited a convex curvature. This may suggest that the combined use of d-limonene and temperature effectively changes the barrier structure of the non-polar pathway in the **st**ratum corneum , while no synergistic effect was observed on the polar pathway. Tags: Animal; In Vitro; Male; Support, Non-U.S. Gov't Agents, Phytogenic--pharmacology--PD; Antineoplastic Descriptors: *Prednisolone--pharmacokinetics--PK; * Skin --metabolism--ME; * Skin Absorption--physiology--PH; Absorption--drug effects--DE; Skin *Terpenes--pharmacology--PD; Administration Cutaneous; Chemistry, , Glucose --pharmacokinetics--PK; ; Glucose --chemistry--CH; Isoniazid--chemistry--CH; Isoniazid--pharmacokinetics--PK; Prednisolone --chemistry--CH; Rats; Rats, Wistar; Skin --drug effects--DE; Solubility; Temperature CAS Registry No.: 0 (Terpenes) (Antineoplastic Agents, Phytogenic); 0 (limonene); 50-24-8 (Prednisolone); 50-99-7 138-86-3 (Glucose) ; 54-85-3 (Isoniazid) Record Date Created: 19951106 Record Date Completed: 19951106 Combined effect of d-limonene pretreatment and temperature on the rat skin permeation of lipophilic and hydrophilic drugs. Mar 1995, combined effect of d-limonene and temperature on the permeation of lipophilic and hydrophilic penetrants has been investigated in rats in vitro. Prednisolone was used as a lipophilic penetrant, and and isoniazid were used as hydrophilic ones, respectively. When the skin was pretreated with 30% ethanol without d-limonene, the steady permeability coefficient (P) of every penetrant through the skin was difficult to calculate because of very low permeability . On the

other hand, the cumulative amount of each penetrant increased with an increase in temperature when the skin was pretreated with 1.5%

d-limonene in 30% ethanol . The Arrhenius plots of P values for glucose and isoniazid showed a linear relationship, and the activation energies of permeation were estimated to be 87.6 and 66.5 kJ/mol, respectively. When prednisolone...

... limonene and temperature effectively changes the barrier structure of the non-polar pathway in the stratum corneum, while no synergistic effect was observed on the polar pathway.

Agents, Descriptors: Antineoplastic Phytogenic--pharmacology--PD; *Prednisolone--pharmacokinetics--PK; * Skin --metabolism--ME; * Skin Absorption--drug effects--DE; * Skin Absorption--physiology--PH; Administration , Cutaneous; Chemistry, *Terpenes--pharmacology--PD; Glucose --chemistry--CH; Glucose --pharmacokinetics--PK; Isoniazid--chemistry--CH; Isoniazid--pharmacokinetics--PK; Prednisolone --chemistry--CH; Rats; Rats, Wistar; Skin --drug effects--DE; Solubility; Temperature

CAS Registry No.: 0 (Antineoplastic Agents, Phytogenic); 0 (limonene); 50-24-8 (Prednisolone); 50-99-7 (Glucose) ; (Isoniazid)

Chemical Name: Antineoplastic Agents, Phytogenic; Terpenes; limonene; Prednisolone; Glucose; Isoniazid

31/5,K/14 (Item 2 from file: 155)

DIALOG(R) File 155: MEDLINE(R)

(c) format only 2003 The Dialog Corp. All rts. reserv.

07132993 91374207 PMID: 1895166

Thermal enhancement of ACNU and potentiation of thermochemotherapy with ACNU by hypertonic glucose in the BT4An rat glioma.

Schem B C; Dahl O

Department of Oncology, Haukeland Hospital, University of Bergen, Norway. Journal of neuro-oncology (NETHERLANDS) Jun 1991, 10 (3) p247-52, ISSN 0167-594X Journal Code: 8309335 Document type: Journal Article

Languages: ENGLISH Main Citation Owner: NLM Record type: Completed Subfile: INDEX MEDICUS

the cytotoxicity of the nitrosourea BCNU Hyperthermia increases (carmustine). Glucose given before treatment may further increase the value of thermochemotherapy, presumably by lowering tumour pH through blood flow reduction. The water-soluble ACNU (nimustine) is an alternative to other nitrosoureas in the treatment of gliomas. The drug is soluble without use of **ethanol** , and the eye complications when given intra-arterially are reduced compared with similar use of BCNU. The influence of simultaneous hyperthermia on treatment with ACNU, and the value of administered before thermochemotherapy therefore were investigated in the malignant rat glioma BT4An. BD IX rats with subcutaneous BT4An tumours on the hind leg were treated with ACNU (i.p.), or ACNU and locally applied waterbath hyperthermia (44 degrees C for 45 min), with or without previous (6 g/kg i.p. 2 hours before treatment). ACNU (10 or 20 mg/kg) alone and ACNU (20 mg/kg) after previous glucose did not influence tumour growth, compared to the controls. Simultaneous ACNU (10 mg/kg) hyperthermia clearly was more effective than treatment with hyperthermia load before treatment further enhanced the effect of Glucose combined ACNU and hyperthermia. Glucose before treatment did not change local toxicity or weight profiles of treatment with ACNU alone, or simultaneous ACNU and hyperthermia. Glucose load therefore represented a therapeutic gain when administered before thermochemotherapy with ACNU.

Tags: Animal; Comparative Study; Support, Non-U.S. Gov't *Glioma--therapy--TH; Descriptors: Brain Neoplasms; Glucose *Hyperthermia, Induced; *Nimustine dosage--AD; --administration and Carmustine--therapeutic use--TU; Carmustine --therapeutic use--TU; --toxicity--TO; Combined Modality Therapy; Drug Screening Assays, Antitumor ; Drug Synergism; Glioma--drug therapy--DT; Glucose --pharmacology--PD; Hydrogen-Ion Concentration ; Hypertonic Solutions -- administration and Hypertonic Solutions--pharmacology--PD; Neoplasm Nimustine--toxicity--TO; Rats; Rats, Inbred Strains; dosage--AD; Hypertonic Neoplasm Transplantation; Retinal Diseases--chemically induced--CI; Skin Neoplasms--drug therapy Skin Neoplasms--therapy--TH; Tumor Cells, Cultured --transplantation--TR CAS Registry No.: 0 (Hypertonic Solutions); 154-93-8 (Carmustine); 42471-28-3 (Nimustine); 50-99-7 (Glucose) Record Date Created: 19911022 Record Date Completed: 19911022

Thermal enhancement of ACNU and potentiation of thermochemotherapy with ACNU by hypertonic glucose in the BT4An rat glioma.

Jun 1991,

Hyperthermia increases the cytotoxicity of the nitrosourea BCNU (carmustine). Glucose given before treatment may further increase the value of thermochemotherapy, presumably by lowering tumour pH through blood flow reduction. The water...

... to other nitrosoureas in the treatment of gliomas. The drug is soluble without use of ethanol , and the eye complications when given intra-arterially are reduced compared with similar use of BCNU. The influence of simultaneous hyperthermia on treatment with ACNU, and the glucose administered before thermochemotherapy therefore were investigated in the malignant rat glioma BT4An. BD IX rats... ... and locally applied waterbath hyperthermia (44 degrees C for 45 min), with or without previous glucose (6 g/kg i.p. 2 hours before treatment). ACNU (10 or 20 mg/kg) alone and ACNU (20 mg/kg) after previous glucose did not influence tumour growth, compared to the controls. Simultaneous ACNU (10 mg/kg) and hyperthermia clearly was more effective than treatment with hyperthermia alone. Glucose load before treatment further enhanced the effect of combined ACNU and hyperthermia. Glucose before treatment did not change local toxicity or weight profiles of treatment with ACNU alone, or simultaneous ACNU and hyperthermia. Glucose load therefore represented a therapeutic gain when administered before thermochemotherapy with ACNU.

Descriptors: Brain Neoplasms; *Glioma--therapy--TH; --administration dosage--AD; *Hyperthermia, Induced; *Nimustine and --therapeutic use--TU...; toxicity--TO; Combined Modality Therapy; Drug Screening Assays, Antitumor; Drug Synergism; Glioma--drug therapy--DT; --pharmacology--PD; Hydrogen-Ion Concentration ; Hypertonic Solutions-- administration and dosage--AD; Hypertonic Solutions --pharmacology--PD; Neoplasm Transplantation; Nimustine--toxicity--TO; Rats Rats, Inbred Strains; Retinal Diseases--chemically induced--CI; Skin Neoplasms--drug therapy--DT; Skin Neoplasms--therapy--TH; Tumor Cells, Cultured--transplantation--TR

CAS Registry No.: 0 (Hypertonic Solutions); 154-93-8 (Carmustine); 42471-28-3 (Nimustine); 50-99-7 (Glucose)

Chemical Name: Hypertonic Solutions; Carmustine; Nimustine; Glucose

31/5,K/15 (Item 3 from file: 155)
DIALOG(R)File 155:MEDLINE(R)
(c) format only 2003 The Dialog Corp. All rts. reserv.

07095967 91337000 PMID: 1651701

Lipid peroxidation in electroporated hepatocytes occurs much more readily than does hydroxyl-radical formation.

Hallinan T; Gor J; Rice-Evans C A; Stanley R; O'Reilly R; Brown D Department of Biochemistry, Royal Free Hospital School of Medicine, London, U.K.

Biochemical journal (ENGLAND) Aug 1 1991, 277 (Pt 3) p767-71,

Document type: Journal Article

Languages: ENGLISH
Main Citation Owner: NLM
Record type: Completed
Subfile: INDEX MEDICUS

1. Rat hepatocytes suspended in 0.25 M-sucrose were electropermeabilized. This completely disrupted their plasma-membrane permeability barrier . 2. The endoplasmic reticulum in electroporated hepatocytes appeared morphologically preserved and maintained its permeability barrier as evidenced by electron-microscopic examination and latency measurements on reticular enzymes. 3. Upon aerobic incubation with an NADPH-generating system and iron/ADP, porated hepatocytes peroxidized their membrane lipids at rates similar to those of matched microsomal preparations. 4. When hepatocytes were incubated with iron/EDTA and azide, radical formation detectable with dimethyl sulphoxide (DMSO) was only 10-20% that shown by microsomes. Omitting azide abolished hepatocyte reactivity with DMSO completely. Effects of hydroxyl-radical (.OH) scavengers and of added catalase suggest that the radical detected by DMSO is .OH. 5. Cytosolic inhibitor(s) from hepatocytes seemed to be a major factor limiting .OH formation. These were macromolecular, but showed a degree of heat-stability. Dialysis largely abolished inhibition, but this could be restored again by adding GSH. 6. Since .OH formation in hepatocytes seems to be much more stringently prevented than lipid peroxidation, free-radical damage originating from intracellular redox systems seems more likely to take the form of lipid peroxidation.

Tags: Animal; Male; Support, Non-U.S. Gov't

Descriptors: *Hydroxides--chemistry--CH; *Lipid Peroxides--metabolism--ME; *Liver--metabolism--ME; *Microsomes, Liver--metabolism--ME; Cell Membrane Permeability; Cytosol--metabolism--ME; Electricity; Endoplasmic Reticulum --enzymology--EN; Free Radicals; Glucose -6-Phosphatase--metabolism--ME; Glucuronosyltransferase--metabolism--ME; Hydroxides--metabolism--ME; Rats; Rats, Inbred Strains

CAS Registry No.: 0 (Free Radicals); 0 (Hydroxides); 0 (Lipid Peroxides)

Enzyme No.: EC 2.4.1.17 (Glucuronosyltransferase); EC 3.1.3.9 (Glucose -6-Phosphatase)

Record Date Created: 19910917
Record Date Completed: 19910917

Lipid peroxidation in electroporated hepatocytes occurs much more readily than does hydroxyl-radical formation.

Aug 1 1991,

... hepatocytes suspended in 0.25 M-sucrose were electropermeabilized. This completely disrupted their plasma-membrane permeability barrier. 2. The endoplasmic reticulum in electroporated hepatocytes appeared morphologically preserved and maintained its permeability barrier as evidenced by electron-microscopic examination and latency measurements on luminal reticular enzymes. 3. Upon...

 \dots When hepatocytes were incubated with iron/EDTA and azide, radical formation detectable with dimethyl sulphoxide (<code>DMSO</code>) was only 10-20% that

shown by microsomes. Omitting azide abolished hepatocyte reactivity with DMSO completely. Effects of hydroxyl-radical (.OH) scavengers and of added catalase suggest that the radical detected by DMSO is .OH. 5. Cytosolic inhibitor(s) from hepatocytes seemed to be a major factor limiting...

; Cell Membrane **Permeability** ; Cytosol--metabolism--ME; Electricity; Endoplasmic Reticulum--enzymology--EN; Free Radicals; **Glucose** -6-Phosphatase--metabolism--ME; Glucuronosyltransferase--metabolism--ME; Hydroxides--metabolism--ME; Rats; Rats, Inbred Strains

Enzyme No.: EC 2.4.1.17 (Glucuronosyltransferase); EC 3.1.3.9 (Glucose -6-Phosphatase)

Chemical Name: Free Radicals; Hydroxides; Lipid Peroxides; Glucuronosyltransferase; Glucose -6-Phosphatase

31/5,K/16 (Item 1 from file: 35)
DIALOG(R)File 35:Dissertation Abs Online
(c) 2003 ProQuest Info&Learning. All rts. reserv.

01257087 ORDER NO: AAD92-37992

OPTIMIZATION OF IONTOPHORETIC TRANSDERMAL DELIVERY OF A PEPTIDE AND A NON-PEPTIDE DRUG (PEPTIDE DRUG, ENALAPRILAT, CROMOLYN SODIUM)

Author: GUPTA, SANJEEV KUMAR

Degree: PH.D. Year: 1992

Corporate Source/Institution: ST. JOHN'S UNIVERSITY (0192) Source: VOLUME 53/08-B OF DISSERTATION ABSTRACTS INTERNATIONAL.

PAGE 4053. 160 PAGES

Descriptors: HEALTH SCIENCES, PHARMACY; CHEMISTRY, ANALYTICAL;

CHEMISTRY, PHARMACEUTICAL

Descriptor Codes: 0572; 0486; 0491

Optimization studies for in vitro cathodic **iontophoretic** transdermal delivery (ITD) of a tripeptide, Enalaprilat (EP) and a non-peptide, Cromolyn sodium (CS), across hairless guinea pig (HGP) **skin** were investigated. HPLC assay methods were developed to estimate the drugs in the receptor medium. Effect of freezing of HGP skins was evaluated. The formulation parameters studied included the influence of ionic strength (\$\mu\$), types of buffers, drug loading, chemical **enhancers**, conducting gels in the donor and effect of pH on EP **permeability**.

Frozen skin was similar to the fresh skin based on the flux values of both drugs. Storage of frozen skin did not affect the permeation of CS. Optimum $\infty (6.66 \times 10^{-3})$ of acetate buffer was found necessary for efficient ITD of CS. Increasing the ∞ of acetate buffer, decreased the flux of CS exponentially. Less than detectable amounts permeated by increasing the ∞ the ∞ of aqueous EP solution in phosphate buffer. Buffer ions larger than acetate ions inhibited the flow of cromolyn ions across the aqueous channels (pores) of stratum corneum due to the blocking effect. An increase in pH above 3.55 (pk $\$ m al $\$), decreased the flux of EP linearly.

A hyperbolic relationship of the flux versus CS concentration was observed. This phenomenon was modelled based on the Michaelis-Menten enzyme kinetics which supported the fact that the increase in current level increases the permeability of drugs due to increase in number and size of pores in the skin . Similarly, better permeation of EP was obtained at higher drug loading. Passive permeation of either drug was negligible. Reversibility studies showed that the skin was not damaged by ITD.

A saturated CS concentration in 80:20 mixture of ethanol -water produced an overall flux enhancement, which was an additive effect of ITD and passive enhancer (ethanol) effect. Chemical enhancers, such as

anionic surfactants, inhibited the transport of CS across the **skin**. Different dielectric constants of propylene glycol-water combinations did not affect the flux of CS. Aqueous **glycerol** solution was ineffective for ITD.

Conducting gels of ionic polymers significantly decreased the flux of CS. However, conducting gels of non-ionic polymers were found suitable for ITD of CS. The optimized solution formulation was incorporated in a commercially available electropatch which provided \$\sim\$18 times higher ITD of CS compared to the electropatch containing non-optimized solution. Therapeutic levels of CS and EP in humans may be achieved by this modern non-invasive drug-delivery route.

OPTIMIZATION OF IONTOPHORETIC TRANSDERMAL DELIVERY OF A PEPTIDE AND A NON-PEPTIDE DRUG (PEPTIDE DRUG, ENALAPRILAT, CROMOLYN SODIUM)

Year: 1992

Optimization studies for in vitro cathodic **iontophoretic** transdermal delivery (ITD) of a tripeptide, Enalaprilat (EP) and a non-peptide, Cromolyn sodium (CS), across hairless guinea pig (HGP) **skin** were investigated. HPLC assay methods were developed to estimate the drugs in the receptor medium...

...parameters studied included the influence of ionic strength ($\mbox{\ensuremath{$^{\mbox{mu}}$}}$), types of buffers, drug loading, chemical enhancers, conducting gels in the donor and effect of pH on EP permeability.

Frozen **skin** was similar to the fresh **skin** based on the flux values of both drugs. Storage of frozen **skin** did not affect the permeation of CS. Optimum $\infty (6.66 \times 10^{-3})\$ of acetate buffer was found necessary for efficient ITD of CS. **Increasing** the ∞ of acetate buffer, decreased the flux of CS exponentially. Less than detectable amounts permeated by **increasing** the $\infty (5>31 \times 10^{-3})\$ of aqueous EP solution in phosphate buffer...

...than acetate ions inhibited the flow of cromolyn ions across the aqueous channels (pores) of **stratum corneum** due to the blocking effect. An **increase** in pH above 3.55 (pk $\$ \rm al} $\$), decreased the flux of EP linearly...

...was modelled based on the Michaelis-Menten enzyme kinetics which supported the fact that the increase in current level increases the permeability of drugs due to increase in number and size of pores in the skin . Similarly, better permeation of EP was obtained at higher drug loading. Passive permeation of either drug was negligible. Reversibility studies showed that the skin was not damaged by ITD.

A saturated CS concentration in 80:20 mixture of ethanol -water produced an overall flux enhancement, which was an additive effect of ITD and passive enhancer (ethanol) effect. Chemical enhancers, such as anionic surfactants, inhibited the transport of CS across the skin. Different dielectric constants of propylene glycol-water combinations did not affect the flux of CS. Aqueous glycerol solution was ineffective for ITD.

Conducting gels of ionic polymers significantly decreased the flux of

Set

Description
AU=(NEMATI B? OR NEMATI, B? OR NEMATI B OR NEMATI, B OR NE-Sl MATI B. OR NEMATI, B. OR NEMATI BABAK OR NEMATI, BABAK)

? show files

File 347: JAPIO Oct 1976-2003/Aug(Updated 031202)

(c) 2003 JPO & JAPIO

File 350: Derwent WPIX 1963-2003/UD, UM &UP=200378

(c) 2003 Thomson Derwent

```
(Item 1 from file: 350)
1/3.AU/1
DIALOG(R) File 350: Derwent WPIX
(c) 2003 Thomson Derwent. All rts. reserv.
013178732
WPI Acc No: 2000-350605/200030
XRAM Acc No: C00-106644
XRPX Acc No: N00-262704
  Novel method of enhancing optical transparency of biological tissue
  covered by surface barrier by bypassing the barrier, e.g. by abrasion,
  useful for treating skin appendages and detecting blood glucose
Patent Assignee: NEMATI B (NEMA-I)
Inventor: NEMATI B
Number of Countries: 029 Number of Patents: 007
Patent Family:
Patent No
              Kind
                     Date
                             Applicat No
                                             Kind
                                                    Date
                                                             Week
WO 200024454
               A1
                   20000504
                             WO 99US23526
                                              Α
                                                  19991012
                                                            200030
AU 9964228
               Α
                   20000515
                             AU 9964228
                                              Α
                                                  19991012
                                                            200039
EP 1045717
               A1
                   20001025
                             EP 99951881
                                              Α
                                                  19991012
                                                            200055
                             WO 99US23526
                                              Α
                                                  19991012
US 6219575
               В1
                   20010417
                             US 98177348
                                              Α
                                                  19981023
                                                            200123
US 20010008959
                A1
                    20010719
                              US 98177348
                                               Α
                                                   19981023
                                                            200143
                              US 2001777639
                                              Α
                                                  20010207
US 20010009984
                A1
                    20010726
                              US 98177348
                                               Α
                                                  19981023
                                                             200146
                              US 2001777640
                                              Α
                                                  20010207
AU 753574
               В
                   20021024
                             AU 9964228
                                              Α
                                                  19991012
                                                            200277
Priority Applications (No Type Date): US 98177348 A 19981023; US 2001777639
  A 20010207; US 2001777640 A 20010207
Patent Details:
Patent No Kind Lan Pg
                         Main IPC
                                      Filing Notes
WO 200024454 A1 E 46 A61N-001/30
   Designated States (National): AU BR CA CZ FI JP MX NO SG
   Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GR IE IT
   LU MC NL PT SE
                                      Based on patent WO 200024454
AU 9964228
              Α
                       A61N-001/30
EP 1045717
              A1 E
                       A61N-001/30
                                      Based on patent WO 200024454
   Designated States (Regional): AT BE CH CY DE DK ES FI FR GB GR IE IT LI
   LU MC NL PT SE
US 6219575
              В1
                       A61N-001/30
US 20010008959 A1
                        A61N-001/30
                                       Div ex application US 98177348
                                      Div ex patent US 6219575
```

A61N-001/30

A61N-001/30

Div ex application US 98177348

Previous Publ. patent AU 9964228 Based on patent WO 200024454

Div ex patent US 6219575

US 20010009984 A1

В

AU 753574

Items Description AU=(NEMATI B? OR NEMATI, B? OR NEMATI B OR NEMATI, B OR NE-S1 MATI B. OR NEMATI, B. OR NEMATI BABAK OR NEMATI, BABAK)

? show files

File 348:EUROPEAN PATENTS 1978-2003/Nov W04

(c) 2003 European Patent Office File 349:PCT FULLTEXT 1979-2002/UB=20031127,UT=20031120

(c) 2003 WIPO/Univentio

```
(Item 1 from file: 348)
 1/3.AU/1
DIALOG(R) File 348: EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.
01164177
ENHANCING OPTICAL TRANSPARENCY OF BIOLOGICAL TISSUE
VERBESSERUNG OPTISCHER TRANSPARENZ VON BIOLOGISCHEM GEWEBE
AMELIORATION DE LA TRANSPARENCE OPTIQUE ET TISSU BIOLOGIQUE
PATENT ASSIGNEE:
  Nemati, Babak, (3016330), 5313 Town Court South, Lawrenceville, NJ 08648,
    (US), (Applicant designated States: all)
INVENTOR:
   Nemati, Babak , 5313 Town Court South, Lawrenceville, NJ 08648, (US
LEGAL REPRESENTATIVE:
  Fuchs Mehler Weiss & Fritzsche (100495), Patentanwalte
    Abraham-Lincoln-Strasse 7, 65189 Wiesbaden, (DE)
PATENT (CC, No, Kind, Date): EP 1045717 A1
                                              001025 (Basic)
                              WO 0024454 000504
APPLICATION (CC, No, Date):
                              EP 99951881 991012; WO 99US23526 991012
PRIORITY (CC, No, Date): US 177348 981023
DESIGNATED STATES: AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LI;
  LU; MC; NL; PT; SE
INTERNATIONAL PATENT CLASS: A61N-001/30
  No A-document published by EPO
LANGUAGE (Publication, Procedural, Application): English; English; English
 1/3, AU/2
              (Item 1 from file: 349)
DIALOG(R) File 349: PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.
00561081
ENHANCING OPTICAL TRANSPARENCY OF BIOLOGICAL TISSUE
AMELIORATION DE LA TRANSPARENCE OPTIQUE ET TISSU BIOLOGIQUE
Patent Applicant/Assignee:
  NEMATI Babak,
Inventor(s):
  NEMATI Babak
Patent and Priority Information (Country, Number, Date):
                        WO 200024454 A1 20000504 (WO 0024454)
  Patent:
                        WO 99US23526 19991012 (PCT/WO US9923526)
  Application:
  Priority Application: US 98177348 19981023
```

Designated States: AU BR CA CZ FI JP MX NO SG AM AZ BY KG KZ MD RU TJ TM AT

BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

Publication Language: English Fulltext Word Count: 8746

```
Items
                Description
S1
          342
                AU=(NEMATI B? OR NEMATI, B? OR NEMATI B OR NEMATI, B OR NE-
             MATI B. OR NEMATI, B. OR NEMATI BABAK OR NEMATI, BABAK)
                S1 AND CLARIF? () AGENT? AND ENHANC? () AGENT?
S3
                S1 AND OPTIC?
S4
                S3 AND PY<1999
? show files
File
       5:Biosis Previews(R) 1969-2003/Nov W5
         (c) 2003 BIOSIS
File
       6:NTIS 1964-2003/Nov W5
         (c) 2003 NTIS, Intl Cpyrght All Rights Res
      34:SciSearch(R) Cited Ref Sci 1990-2003/Nov W5
File
         (c) 2003 Inst for Sci Info
File
      65:Inside Conferences 1993-2003/Nov W5
         (c) 2003 BLDSC all rts. reserv.
      71:ELSEVIER BIOBASE 1994-2003/Nov W5
File
         (c) 2003 Elsevier Science B.V.
File
      73:EMBASE 1974-2003/Nov W5
         (c) 2003 Elsevier Science B.V.
      94:JICST-EPlus 1985-2003/Nov W5
File
         (c) 2003 Japan Science and Tech Corp(JST)
File 144: Pascal 1973-2003/Nov W4
         (c) 2003 INIST/CNRS
File 155:MEDLINE(R) 1966-2003/Nov W4
         (c) format only 2003 The Dialog Corp.
File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec
         (c) 1998 Inst for Sci Info
File
      35:Dissertation Abs Online 1861-2003/Oct
         (c) 2003 ProQuest Info&Learning
      91:MANTIS(TM) 1880-2002/Dec
File
         2003 (c) Action Potential
       2:INSPEC 1969-2003/Nov W4
File
         (c) 2003 Institution of Electrical Engineers
File
       8:Ei Compendex(R) 1970-2003/Nov W4
         (c) 2003 Elsevier Eng. Info. Inc.
      95:TEME-Technology & Management 1989-2003/Nov W3
File
         (c) 2003 FIZ TECHNIK
      99: Wilson Appl. Sci & Tech Abs 1983-2003/Oct
File
         (c) 2003 The HW Wilson Co.
? pause
```

4/3;AU/1 (Item 1 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2003 BIOSIS. All rts. reserv.

0008040465 BIOSIS NO.: 199243009056

OPTICAL PROPERTIES OF CONJUNCTIVA SCLERA AND CILIARY BODY AND THEIR CONSEQUENCES FOR TRANSSCLERAL CYCLOPHOTOCOAGULATION

AUTHOR: NEMATI B (Reprint); RYLANDER H G III; WELCH A J AUTHOR ADDRESS: MED OPTICS LAB, BIOMED ENGINEERING PROGRAM, UNIVERSITY TEXAS AUSTIN, AUSTIN, TEXAS 78712, USA**USA

JOURNAL: Lasers in Surgery and Medicine (SUPPL. 4): p54 1992 CONFERENCE/MEETING: TWELFTH ANNUAL MEETING OF THE AMERICAN SOCIETY FOR LASER MEDICINE AND SURGERY, LAKE BUENA VISTA, FLORIDA, USA, MAY 17-19, 1992. LASERS SURG MED.

ISSN: 0196-8092

DOCUMENT TYPE: Meeting RECORD TYPE: Citation LANGUAGE: ENGLISH

4/3,AU/2 (Item 1 from file: 34)

DIALOG(R) File 34:SciSearch(R) Cited Ref Sci (c) 2003 Inst for Sci Info. All rts. reserv.

06472701 Genuine Article#: YV841 Number of References: 24

Title: Optical model for light distribution during transscleral cyclophotocoagulation (ABSTRACT AVAILABLE)

Author(s): Nemati B (REPRINT) ; Dunn A; Welch AJ; Rylander HG Corporate Source: ETHICON INC, POB 151/SOMERVILLE//NJ/08876 (REPRINT); UNIV TEXAS, BIOMED ENGN PROGRAM, MED OPT LAB/AUSTIN//TX/78712

Journal: APPLIED OPTICS, 1998 , V37, N4 (FEB 1), P764-771

ISSN: 0003-6935 Publication date: 19980201

Publisher: OPTICAL SOC AMER, 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036

Language: English Document Type: ARTICLE

4/3,AU/3 (Item 2 from file: 34)

DIALOG(R) File 34: SciSearch(R) Cited Ref Sci (c) 2003 Inst for Sci Info. All rts. reserv.

05504976 Genuine Article#: WD153 Number of References: 1

Title: Optical properties of conjunctiva, sclera, and the ciliary body and their consequences for transscleral cyclophotocoagulation (vol 35, pg 3321, 1996)

Author(s): Nemati B (REPRINT) ; Rylander HG; Welch A Corporate Source: CANDELA CORP,530 BOSTON POST RD/WAYLAND//MA/01778 (REPRINT); UNIV TEXAS,BIOMED ENGN PROGRAM, BIOMED ENGN LASER LAB/AUSTIN//TX/78712

Journal: APPLIED OPTICS, 1997, V36, N1 (JAN 1), P416-416

ISSN: 0740-3224 Publication date: 19970101

Publisher: OPTICAL SOC AMER, 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036

Language: English Document Type: CORRECTION, ADDITION

4/3, AU/4 (Item 3 from file: 34)

DIALOG(R) File 34:SciSearch(R) Cited Ref Sci (c) 2003 Inst for Sci Info. All rts. reserv.

```
04973133
          Genuine Article#: UW460
                                     Number of References: 25
Title: OPTICAL -PROPERTIES OF CONJUNCTIVA, SCLERA, AND THE CILIARY BODY
    AND THEIR CONSEQUENCES FOR TRANSSCLERAL CYCLOPHOTOCOAGULATION (
    Abstract Available)
Author(s): NEMATI B ; RYLANDER HG; WELCH AJ
Corporate Source: UNIV TEXAS, BIOMED ENGN PROGRAM, BIOMED ENGN LASER
    LAB/AUSTIN//TX/78712
Journal: APPLIED OPTICS, 1996, V35, N19 (JUL 1), P3321-3327
ISSN: 0003-6935
Language: ENGLISH Document Type: ARTICLE
 4/3,AU/5
              (Item 1 from file: 65)
DIALOG(R) File 65: Inside Conferences
(c) 2003 BLDSC all rts. reserv. All rts. reserv.
           INSIDE CONFERENCE ITEM ID: CN026590140
Starlight beam misalignment in optical synthesis imaging (3356-111)
   Nemati, B.; Duncan, A. L.
  CONFERENCE: Space telescopes and instruments-Conference; 5th
  PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 1998
  ; ISSUE 3356; NUMBER 1 P: 670-677
  SPIE, 1998
  ISSN: 0277-786X ISBN: 0819428035
  LANGUAGE: English DOCUMENT TYPE: Conference Papers
    CONFERENCE EDITOR(S): Bely, P. Y.; Breckinridge, J. B.
    CONFERENCE SPONSOR: SPIE
    CONFERENCE DATE: Mar 1998 (199803) (199803)
  NOTE:
    Held on the island of Kona, HI
 4/3,AU/6
              (Item 2 from file: 65)
DIALOG(R) File 65: Inside Conferences
(c) 2003 BLDSC all rts. reserv. All rts. reserv.
02461004
           INSIDE CONFERENCE ITEM ID: CN025701449
Laser soft-palate stiffening (3245-25)
  Wang, Z.; McMillan, K.; Perrault, D. F.; Nemati, B.
  CONFERENCE: Lasers in surgery: advanced characterization, therapeutics,
    and systems VIII-Conference
  PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 1998
  ; ISSUE 3245 P: 136-144
  SPIE, 1998
  ISSN: 0277-786X ISBN: 0819426849
  LANGUAGE: English DOCUMENT TYPE: Conference Papers
    CONFERENCE EDITOR(S): Anderson, R. R.
    CONFERENCE SPONSOR: SPIE
            International Biomedical Optics Society
    CONFERENCE LOCATION: San Jose, CA
    CONFERENCE DATE: Jan 1998 (199801) (199801)
 4/3,AU/7
              (Item 3 from file: 65)
DIALOG(R) File 65: Inside Conferences
(c) 2003 BLDSC all rts. reserv. All rts. reserv.
00455663
           INSIDE CONFERENCE ITEM ID: CN004373947
 Optical model for the propagation of light during transscleral
```

```
cyclophotocoagulation [2126-32]
  Nemati, B.; Rylander, H. G.; Welch, A. J.
  CONFERENCE: Ophthalmic technologies IV-Conference
  PROCEEDINGS- SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 1994; ISSUE 2126 P: 251-258
  SPIE, 1994
ISSN: 0361-0748 ISBN: 0819414190
  LANGUAGE: English DOCUMENT TYPE: Conference Papers
    CONFERENCE EDITOR(S): Parel, J. M.; Ren, Q.
    CONFERENCE SPONSOR: SPIE
    CONFERENCE LOCATION: Los Angeles, CA
    CONFERENCE DATE: Jan 1994 (199401) (199401)
 4/3,AU/8
              (Item 1 from file: 144)
DIALOG(R) File 144: Pascal
(c) 2003 INIST/CNRS. All rts. reserv.
             PASCAL No.: 98-0187077
  13489585
   Optical model for light distribution during transscleral
cyclophotocoagulation
  NEMATI Babak ; DUNN Andrew; WELCH Ashely J; RYLANDER H Grady
  Medical Optics Laboratory, Biomedical Engineering Program, ENS 610,
University of Texas, Austin, Texas 78712
  Journal: Applied optics,
                            1998 -02-01, 37 (4) 764-771
  Language: English
 Copyright (c) 1998 American Institute of Physics. All rights reserved.
              (Item 2 from file: 144)
 4/3,AU/9
DIALOG(R) File 144: Pascal
(c) 2003 INIST/CNRS. All rts. reserv.
            PASCAL No.: 97-0560306
   Optical properties of conjunctiva, sclera, and the ciliary body and
their consequences for transscleral cyclophotocoagulation: erratum
   NEMATI Babak ; RYLANDER H Grady; WELCH Ashley
  Biomedical Engineering Laser Laboratory, Biomedical Engineering Program,
University of Texas at Austin, Austin, Texas 78712; Candela Corporation,
530 Boston Post Road, Wayland, Massachusetts 01778
  Journal: Applied optics,
                            1997 -01-01, 36 (1) p. 416
  Language: English
 Copyright (c) 1997 American Institute of Physics. All rights reserved.
               (Item 3 from file: 144)
 4/3,AU/10
DIALOG(R) File 144: Pascal
(c) 2003 INIST/CNRS. All rts. reserv.
            PASCAL No.: 97-0104831
   Optical properties of conjunctiva, sclera, and the ciliary body and
their consequences for transscleral cyclophotocoagulation
  NEMATI B ; RYLANDER III H G; WELCH A J
  Biomedical Engineering Laser Laboratory, Biomedical Engineering Program,
University of Texas at Austin, Austin, Texas 78712
  Journal: Applied optics, 1996 -07-01, 35 (19) 3321-3327
  Language: English
```

Copyright (c) 1997 American Institute of Physics. All rights reserved.

(Item 1 from file: 35) 4/3,AU/11 DIALOG(R) File 35: Dissertation Abs Online (c) 2003 ProQuest Info&Learning. All rts. reserv. 01440235 AADAAI9534909 TRANSSCLERAL ARGON CYCLOPHOTOCOAGULATION: A PRECLINICAL FEASIBILITY STUDY (GLAUCOMA) Author: NEMATI, BABAK Degree: PH.D. Year: 1995 Corporate Source/Institution: THE UNIVERSITY OF TEXAS AT AUSTIN (0227) Source: VOLUME 56/06-B OF DISSERTATION ABSTRACTS INTERNATIONAL. PAGE 3317. 505 PAGES 4/3,AU/12 (Item 1 from file: 2) 2:INSPEC DIALOG(R) File (c) 2003 Institution of Electrical Engineers. All rts. reserv. INSPEC Abstract Number: A9808-8760F-001, B9804-7520C-011 5850844 Title: Optical model for light distribution during transscleral cyclophotocoagulation Author(s): Nemati, B.; Dunn, A.; Welch, A.J.; Rylander, H.G., III Author Affiliation: Med. Opt. Lab., Texas Univ., Austin, TX, USA Journal: Applied Optics vol.37, no.4 p.764-71 Publisher: Opt. Soc. America, Publication Date: 1 Feb. 1998 Country of Publication: USA CODEN: APOPAI ISSN: 0003-6935 SICI: 0003-6935(19980201)37:4L.764:OMLD;1-A Material Identity Number: A132-98006 U.S. Copyright Clearance Center Code: 0003-6935/98/040764-08\$10.00/0 Language: English Subfile: A B Copyright 1998, IEE (Item 2 from file: 2) 4/3,AU/13 DIALOG(R) File 2:INSPEC (c) 2003 Institution of Electrical Engineers. All rts. reserv. 5348028 INSPEC Abstract Number: A9619-8732C-001, B9610-7520C-002 Optical properties of conjunctiva, sclera, and the ciliary body and their consequences for transscleral cyclophotocoagulation Author(s): Nemati, B.; Rylander, H.G., III; Welch, A.J. Author Affiliation: Biomed. Eng. Laser Lab., Texas Univ., Austin, TX, USA vol.35, no.19 Journal: Applied Optics p.3321-7 Publisher: Opt. Soc. America, Publication Date: 1 July 1996 Country of Publication: USA CODEN: APOPAI ISSN: 0003-6935 SICI: 0003-6935(19960701)35:19L.3321:OPCS;1-H Material Identity Number: A132-96022 U.S. Copyright Clearance Center Code: 0003-6935/96/193321-07\$10.00/0 Language: English

Subfile: A B

Copyright 1996, IEE

(Item 1 from file: 8) DIALOG(R) File 8:Ei Compendex(R) (c) 2003 Elsevier Eng. Info. Inc. All rts. reserv.

05219567

E.I. No: EIP99024554001

Title: Starlight beam misalignment in optical synthesis imaging

Author: Nemati, Bijan ; Duncan, Alan

Corporate Source: Lockheed Martin Missiles and Space, Palo Alto, CA, USA Conference Title: Proceedings of the 1998 Conference on Space Telescopes and Instruments V. Part 1 (of 2)

Conference Location: Kona, HI, USA Conference Date: 19980325-19980328

E.I. Conference No.: 49620

Source: Proceedings of SPIE - The International Society for Optical Engineering 3356 1 1998. SPIE, Bellingham, WA, USA. p 670-677

Publication Year: 1998

ISSN: 0277-786X CODEN: PSISDG

Language: English

4/3,AU/15 (Item 1 from file: 99)

DIALOG(R) File 99: Wilson Appl. Sci & Tech Abs (c) 2003 The HW Wilson Co. All rts. reserv.

1632018 H.W. WILSON RECORD NUMBER: BAST98014034

Optical model for light distribution during transscleral cyclophotocoagulation

Nemati, Babak; Dunn, Andrew; Welch, Ashley J Applied Optics v. 37 (Feb. 1 '98) p. 764-71 DOCUMENT TYPE: Feature Article ISSN: 0003-6935

4/3,AU/16 (Item 2 from file: 99)

DIALOG(R) File 99: Wilson Appl. Sci & Tech Abs (c) 2003 The HW Wilson Co. All rts. reserv.

1416711 H.W. WILSON RECORD NUMBER: BAST96045410

Optical properties of conjunctiva, sclera, and the ciliary body and their consequences for transscleral cyclophotocoagulation

Nemati, Babak; Rylander, H. Grady III; Welch, Ashley J

Applied Optics v. 35 (July 1 '96) p. 3321-7

DOCUMENT TYPE: Feature Article ISSN: 0003-6935

Set Items Description

S1 0 AU=(NEMATI B? OR NEMATI, B? OR NEMATI B OR NEMATI, B OR NE-MATI B. OR NEMATI, B. OR NEMATI BABAK OR NEMATI, BABAK)

? show files

File 98:General Sci Abs/Full-Text 1984-2003/Oct

(c) 2003 The HW Wilson Co.

File 369:New Scientist 1994-2003/Nov W5

(c) 2003 Reed Business Information Ltd.

File 370:Science 1996-1999/Jul W3

(c) 1999 AAAS

File 444: New England Journal of Med. 1985-2003/Dec W1

(c) 2003 Mass. Med. Soc.

File 482: Newsweek 2000-2003/Dec 03

(c) 2003 Newsweek, Inc.

File 135:NewsRx Weekly Reports 1995-2003/Nov W5

(c) 2003 NewsRx

File 441:ESPICOM Pharm&Med DEVICE NEWS 2003/Nov W5

(c) 2003 ESPICOM Bus. Intell.

File 16:Gale Group PROMT(R) 1990-2003/Dec 04

(c) 2003 The Gale Group

File 160:Gale Group PROMT(R) 1972-1989

(c) 1999 The Gale Group

File 621: Gale Group New Prod. Annou. (R) 1985-2003/Dec 04

(c) 2003 The Gale Group

File 743: (New Jersey) The Record 1989-2003/Dec 04

(c) 2003 No.Jersey Media G Inc

```
Set
        Items
                Description
                ENHANC?() AGENT? OR DMSO OR ETHANOL OR PENETRAT?() SOLVENT? -
       105628
S1
             OR (SULPHUR? OR SULFUR?) () COMPOUND? () SOLVENT?
S2
            Λ
                RN=67-68-5
s3
            O
                DC=D.02.886.640.150
                 (CLARIFY? OR CLARIFI?) () AGENT? OR GLUCOSE OR GLUCONIC OR D-
S4
        43472
             EXTROGLUCOSE OR DEXTROSE OR DEXTRONIC OR MALTONIC
                GLYCOGEN? OR GLYCERYL? OR GLYCERIN? OR GLYCEROL?
S5
        58618
                DC=D09.203.546.359.448
S6
            0
S7
            0
                RN=50-99-7
                DIATRIZOATE() MEGLUMINE OR DIATRIZOATE() METHLYGLUCAMINE OR -
S8
           14
             DIATRIZOIC()ACID()METHYLGLUCAMINE OR MEGLUMINE()DIATRIZOATE OR
              METHYLGLUCAMINE() DIATRIZOATE OR (AMIDOTRICOIC OR AMIDOTRIZOI-
             C) () ACID? OR MEGLUMINE () AMIDOTRIZOATE
            Λ
                RN=131-49-7
S9
                DC=(D02.033.800.813.550.500 OR D02.241.223.100.140.100.375-
S10
             .880.275 OR D09.203.037.342.600.500 OR D09.203.853.813.550.50-
                IONTOPHORE? OR IONTOTHERAP? OR IONIC() THERAP? OR EMDA OR S-
         2954
S11
             ONOPHORE? OR ELECTROPORAT? OR ELECTRO() PORAT?
                DC=E05.300.650
S12
                 (DRIVING OR ELECTRIC() PULSE OR ELECTRICPULSE OR ELECTROMOT-
S13
        93558
             IVE OR ELECTRO() MOTIVE OR ACOUSTIC? OR ULTRASONIC? OR ELECTRI-
             CAL? OR RADIOFREQUENCY? OR RADIO() FREQUENCY OR TEMPERATURE OR
             THERMAL OR PHYSICAL OR CHEMICAL OR CONCENTRATION OR E...
                 (MICRONEEDLE? OR MICRO()NEEDLE?)()ARRAY? ?
           22
S14
      2045682
                INCREAS? OR ENHANC? OR AMELIORAT?
S15
                PERMIT? OR PERMISS? OR ALLOW?
S16
      1478299
                BETTER? OR IMPROV?
S17
      2591722
                RECEPTABIL? OR PERMEABIL? OR PERMEABL? OR LUCENCY?
S18
       148050
                TRANSLUCEN? OR TRANSPAREN? OR CLEARNESS OR CLARITY
S19
       384313
S20
      2097892
                OPTICAL? OR LIGHT? OR LUCID?
       158190
                PERMEAB?()(BARRIER? OR LAYER? OR STRAT?) OR SKIN
S21
        12494
                CONJUNCTIV? OR EPITHELI? OR SCLERA? OR STRAT?()CORNE? OR (-
S22
             INTERSTIT? OR INTER()STIT?)()(SPACE? OR TISSUE?)
S23
       342574
                IC=(A61N? OR A61M? OR A61B?)
S24
         3882
                DIMETHYL() (SULFOXIDE OR SULPHONYL) OR DIMEXIDE OR RIMSO OR
             RIMSO100 OR SULFINYL()BISMETHANE OR SULFINYLBISMETHANE
                 (S1:S3 OR S24) AND S4:S10 AND S11:S14
S25
           85
S26
                S25 AND S15:S23
           66
                S25:S26
S27
           85
S28
           13
                S27 AND PY<1999
S29
           13
                IDPAT (sorted in duplicate/non-duplicate order)
? show files
File 347: JAPIO Oct 1976-2003/Aug (Updated 031202)
         (c) 2003 JPO & JAPIO
File 350: Derwent WPIX 1963-2003/UD, UM & UP=200378
         (c) 2003 Thomson Derwent
```

29/3,K/1 (Item 1 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

009782126

WPI Acc No: 1994-061979/ 199408

XRAM Acc No: C94-027715 XRPX Acc No: N94-049042

Drug absorption accelerator for iontophoresis - comprises electrolyte, ethanol @, water and monoterpene analogue and/or fatty acid monoglyceride

Patent Assignee: ADVANCE KK (ADVN); JAPAN TOBACCO INC (NISB)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 6016538 A 19940125 JP 92198949 A 19920703 199408 B

Priority Applications (No Type Date): JP 92198949 A 19920703

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 6016538 A 7 A61K-009/08

Drug absorption accelerator for iontophoresis - ...

- ...comprises electrolyte, ethanol @, water and monoterpene analogue and/or fatty acid monoglyceride
- ...Abstract (Basic): Drug absorption accelerating compsn. for iontophoresis comprises electrolyte having sufficient electro conductivity, 10-70 wt % of ethanol , absorption accelerator consisting of 0.5-20 wt% of monoterpene analogue and/or fatty acid...
- ...Ph of the compsn. is pref. 3-7. Fatty acid monoglyceride is pref. glycerol monoester of 6-12C medium chain fatty acid, e.g. caproic acid monoglyceride, caprylic acid...
- ...USE/ADVANTAGE The compsn. aids absorption of polypeptide-type drug effectively through the **skin** even under low electric currency and low voltage. The polypeptide-type drug can be administered...
- ... Title Terms: IONTOPHORESIS;
- ... International Patent Class (Additional): A61N-001/30

29/3,K/2 (Item 2 from file: 347)

DIALOG(R) File 347: JAPIO

(c) 2003 JPO & JAPIO. All rts. reserv.

04372638

LIQUID COMPOSITION FOR DRUG ABSORPTION FOR IONTOPHORESIS

PUB. NO.: 06-016538 [JP 6016538 A] PUBLISHED: January 25, 1994 (**19940125**)

OKABE KEIICHIRO

INVENTOR(s): SUNAMI MASAKI
SHINDO YORIAKI
NAKAGAWA TAKASHI
ISHIKAWA TOSHIHIRO
SUGIMORI KENICHI

APPLICANT(s): JAPAN TOBACCO INC [000456] (A Japanese Company or

Corporation), JP (Japan)

ADVANCE CO LTD [470031] (A Japanese Company or Corporation),

JP (Japan)

APPL. NO.: 04-198949 [JP 92198949] FILED: July 03, 1992 (19920703)

JOURNAL: Section: C, Section No. 1193, Vol. 18, No. 222, Pg. 24, April

21, 1994 (19940421)

LIQUID COMPOSITION FOR DRUG ABSORPTION FOR IONTOPHORESIS

...PUBLISHED: 19940125)

INTL CLASS: A61K-009/08; A61K-047/10; A61K-047/14; A61N-001/30;

A61K-037/02

ABSTRACT

... absorption capable of effectively subjecting especially biologically active polypeptide based drugs to percutaneous absorption with iontophoresis.

. . .

...CONSTITUTION: The liquid composition for drug absorption consists of (A) 0.1-10wt.% pharmacologically **permissible** electrolyte enough to provide conductivity, e.g. sodium chloride, sodium carbonate, disodium hydrogenphosphate or citric acid, (B) 10-70wt.% **ethanol**, (C) 0.5-20wt.% monoterpenes (e.g. l-menthol, limonene or cineole) and/or a fatty acid monoglyceride, preferably a **glycerin** monoester of a 6-12C middle-chain fatty acid as an absorption promotor and (D

29/3,K/5 (Item 5 from file: 350) DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. 009488988 **Image available** WPI Acc No: 1993-182523/ 199322 XRAM Acc No: C93-080871 XRPX Acc No: N93-140303 Pressure-sensitive poly(n-polyvinyl lactam) compsn. - prepd. by irradiating solid poly(n-polyvinyl lactam) and mixing with non-irradiated plasticiser Patent Assignee: MINNESOTA MINING & MFG CO (MINN Inventor: ASMUS R A; BENSON O; DIETZ T M; DUAN D C; UY R Number of Countries: 020 Number of Patents: 012 Patent Family: Patent No Kind Date Applicat No Kind Date Week WO 9310201 Α1 19930527 WO 92US9397 Α 19921030 199322 Α 19930615 AU 9331254 Α AU 9331254 19921030 199340 US 5276079 Α 19940104 US 91792442 Α 19911115 199402 EP 612342 **A1** 19940831 EP 92925054 Α 19921030 199433 WO 92US9397 Α 19921030 US 5389376 19950214 Α US 91792442 Α 19911115 199512 US 93139516 Α 19931015 JP 7501101 19950202 WO 92US9397 W Α 19921030 199514 JP 93509290 Α 19921030 AU 657188 В 19950302 AU 9331254 Α 19921030 199516 US 5409966 Α 19950425 US 91792442 Α 19911115 199522 US 93137665 Α 19931015 US 5438988 US 91792442 Α 19950808 Α 19911115 199537 US 93137606 Α 19931015 EP 612342 B1 19961211 EP 92925054 Α 19921030 199703 WO 92US9397 Α 19921030 19970123 DE 69215893 DE 615893 Ε Α 19921030 199709 EP 92925054 Α 19921030 WO 92US9397 Α 19921030 JP 3426231 B2 20030714 WO 92US9397 Α 19921030 200347 JP 93509290 Α 19921030 Priority Applications (No Type Date): US 91792442 A 19911115; US 93139516 A 19931015; US 93137665 A 19931015; US 93137606 A 19931015 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes A1 E 30 C09J-139/04 WO 9310201 Designated States (National): AU CA JP Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE AU 9331254 Α C09J-139/04 Based on patent WO 9310201 US 5276079 Α 14 C08J-003/28 A1 E EP 612342 C09J-139/04 Based on patent WO 9310201 Designated States (Regional): AT BE CH DE DK ES FR GB IE IT LI NL SE US 5389376 14 A61F-013/02 Div ex application US 91792442 Div ex patent US 5276079 JP 7501101 W C09J-139/04 Based on patent WO 9310201 AU 657188 В C09J-139/04 Previous Publ. patent AU 9331254 Based on patent WO 9310201 US 5409966 Α 13 C08J-003/28 Div ex application US 91792442 Div ex patent US 5276079 US 5438988 Α 15 A61B-005/04 Div ex application US 91792442 Div ex patent US 5276079

Designated States (Regional): AT BE CH DE DK ES FR GB IE IT LI NL SE

Based on patent WO 9310201

EP 612342

B1 E 22 C09J-139/04

DE 69215893 E C09J-139/04 Based on patent EP 612342
Based on patent WO 9310201

JP 3426231 B2 16 C09J-139/04 Previous Publ. patent JP 7501101
Based on patent WO 9310201

- ...Abstract (Basic): a swelling capacity of at least 15, pref. 40ml water/g. The plasticiser is pref. glycerin or polyethylene glycol...
- ...and electrical contact with the electrical diagnostic, therapeutic or electrosurgical instrumentation. For use as a **skin** covering, the compsn. adhesive layer may comprise discrete swollen gel particles dispersed in a continuous...
- ...agent. For use in a pharmaceutical delivery device, the compsn. comprises a topical, transdermal, or iontophoretic therapeutic agent or pharmaceutical, and opt. an excipient, solvent or penetration enhancing agent.
- ...component of a biomedical electrode, for delivery of pharmaceuticals or active agents to or through **skin**, or for treatment of **skin** against possible infection. The method of prepn. of the compsn. minimises the presence of radiation
- ...Abstract (Equivalent): Biomedical electrode comprises (a) a field of adhesion conductive medium for contacting mammalian **skin**; and (b) electrical communication for interfacing with this, and the electrical instrumentation. Medium (a) is...
- ...signals, as a drug delivery device for pharmaceuticals and other active ingredients in and through **skin**, etc...
- ...drug delivery device for delivering a pharmaceutical or other achive agent to or through manmalia ${\it skin}$.
- ...Mammalian **skin** cover comprises a support and backing film, substrate or elastic porous material, coated on one...
- ...USE/ADVANTAGE The prods. are medicated tapes, wound dressings, bandages or medical **skin** covers. The prods. are free from residual monomers, by-products of chemical crosslinking agents and/or irradiated plasticiser prods., etc., avoiding antagonism of the **skin** or wound International Patent Class (Main): **A61B-005/04** ...
 International Patent Class (Additional): **A61B-005/0408** ...
- ... A61N-001/04 ...

. . .

... A61N-001/30

(Item 8 from file: 350) 29/3,K/8 DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. 008375768 **Image available** WPI Acc No: 1990-262769/ 199035 XRAM Acc No: C90-113793 XRPX Acc No: N90-203562 Conductive gel and appts. contg. it for electrical skin treatment which contains polyvinyl alcohol, ethanol and plasticiser, polymerises in air and then becomes electrically resistant Patent Assignee: RAMOND G (RAMO-I); LAMMON G (LAMM-I) Inventor: RAMOND G Number of Countries: 018 Number of Patents: 011 Patent Family: Patent No Kind Date Applicat No Kind Date Week 19900829 EP 90400379 EP 384804 Α Α 19900213 199035 FR 2642976 Α 19900817 FR 891949 Α 19890215 199040 AU 9049394 Α 19900823 199041 CA 2010082 Α 19900815 199044 JP 2241465 Α 19900926 JP 9032603 19900215 Α 199045 US 5085227 Α US 90480613 19920204 Α 19900215 199208 JP 93025513 В JP 9032603 19930413 Α 19900215 199317 AU 638431 AU 9049394 В 19930701 Α 19900214 199333 EP 384804 В1 19940504 EP 90400379 Α 19900213 199418 DE 69008583 Ε 19940609 DE 608583 Α 19900213 199424 EP 90400379 Α 19900213 ES 2054280 T3 19940801 EP 90400379 Α 19900213 199432 Priority Applications (No Type Date): FR 891949 A 19890215 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes EP 384804 Α Designated States (Regional): AT BE CH DE ES GB GR IT LI LU NL SE JP 93025513 В 5 A61N-001/04 Based on patent JP 2241465 AU 638431 В A61N-001/04 patent AU 9049394 B1 F 7 A61K-007/48 EP 384804 Designated States (Regional): AT BE CH DE DK ES GB GR IT LI LU NL SE DE 69008583 A61K-007/48 Based on patent EP 384804 F. Т3 Based on patent EP 384804 ES 2054280 A61K-007/48 Conductive gel and appts. contg. it for electrical skin treatment... ...which contains polyvinyl alcohol, ethanol and plasticiser, polymerises in air and then becomes electrically resistant ... Abstract (Basic): Claimed is a compsn. (I) which can be spread over an area of skin to allow application of an electric current, comprising a gel which a. polymerises in contact with air, b. is electrically-conductive whilst it is setting, c. consists of polyvinyl alcohol (II), ethanol , plasticiser (III) and water, and pref. d. has a viscosity of 2000-3000 pa.s... ...4% aq. soln. at 20 deg.C. (III) may be water soluble lanolin (IV) and glycerol (V), in the ratio of 1-4:1. The preferred compsn. (VI) is 20% (II...

... USE/ADVANTAGE - An apparatus contg. (I) corrected to an **electrical generator** for therapeutic or aesthetic facial treatment is claimed.

Unlike prior-art processes, professional supervision is...
... Abstract (Equivalent): A conductive **skin** mask to be used in

association with a generator for generating pulsed currents, for the application of such currents to a region of the skin of a subject for therapeutic or aesthetic purposes, which is formed by a layer of a composition capable of setting, when spread over the region of skin, band being of substantial conductivity in the course of setting, characterised in that the composition is a gel which polymerises in contact with the air, formed by a polyvinyl alcohol, ethanol and water ternary mixture, with a plasticiser which is physiologically acceptable on the skin, and comprises by weight from 15 to 30% of polyvinyl alcohol with a hydrolysis factor of higher than 85%, from 7 to 15% of ethanol and, as plasticiser, from 1.5 to 3% of water-soluble lanolin and from 0.7 to 1.5% of glycerol, the balance being water, whereby upon conclusion of polymerisation, application of the currents to the region of the skin of the subject comes to an end

- ...Abstract (Equivalent): Disposable conductive cutaneous coating comprises a settable layer spread over the **skin** having electrical conductivity during setting but little when set which comprises a gel progressively polymerisable on contact with air, which is a ternary mixt. of polyvinyl alcohol, **ethanol** and water with acceptable plasticiser. Pref. compsn. is 15-30 (30) % PVA with drg. of hydrolysis above 85%, (7-15) (10)% wt. **ethanol**, 1-5 (2) % by wt. water sol. lanolin 0.7-1.5 (1) % wt. **glycerol** the remainder being water. Viscosity of the gel is adjusted to 2000-3000 PaS. Generator...
- ...of the cheek bones at ear level. USE/ADVANTAGE For use on area of persons skin when applying electrical currents for therapeutic or beauty treatment. By using a mask of conductivity similar to that of the skin and underlying tissues, large locallised voltage gradients and currents are avoided. Gel soln. is stable...
- ... Title Terms: SKIN ;
- ...International Patent Class (Main): A61N-001/04
- ...International Patent Class (Additional): A61N-001/30

29/3,K/10 (Item 10 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

007198981

WPI Acc No: 1987-195990/ 198728

XRAM Acc No: C87-081952

Base composition for iontophoretic bio-electrode - contains alkyl

pyridine- carboxylate

Patent Assignee: NITTO ELECTRIC IND CO (NITL) Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week JP 62126138 Α 19870608 JP 85265787 Α 19851126 198728 B 19931013 JP 85265787 JP 93072890 В Α 19851126 199344

Priority Applications (No Type Date): JP 85265787 A 19851126

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 62126138 Α 10

JP 93072890 В 9 A61K-047/16 Based on patent JP 62126138

Base composition for iontophoretic bio-electrode...

- ... Abstract (Basic): Base compsn. for iontophoretic bioelectrode is new and contains essential component of formula (I) where R is 6-20C...
- ... Pref. organic solvents are lower alcohols, cyclic ureas, alkylene glycols, lactam cpds., glycerin and DMSO .
- ... ADVANTAGE Any enderic medicines can be applied to the present base. When stuck to skin , the pharmaceutical ingredient contained in the base can surely be transferred through the skin even under mild electric condition (low voltage and low current) and the bioavailability of the
- ... Title Terms: IONTOPHORESIS;

```
Items
                Description
Set
                ENHANC?() AGENT? OR DMSO OR ETHANOL OR PENETRAT?() SOLVENT? -
S1
       216513
             OR (SULPHUR? OR SULFUR?) () COMPOUND? () SOLVENT?
            0
S2
                RN=67-68-5
S3
                DC=D.02.886.640.150
            n
S4
                (CLARIFY? OR CLARIFI?) () AGENT? OR GLUCOSE OR GLUCONIC OR D-
       100516
             EXTROGLUCOSE OR DEXTROSE OR DEXTRONIC OR MALTONIC
                GLYCOGEN? OR GLYCERYL? OR GLYCERIN? OR GLYCEROL?
$5
       126731
S6
            0
                DC=D09.203.546.359.448
s7
                RN=50-99-7
            0
S8
          106
                DIATRIZOATE() MEGLUMINE OR DIATRIZOATE() METHLYGLUCAMINE OR -
             DIATRIZOIC() ACID() METHYLGLUCAMINE OR MEGLUMINE() DIATRIZOATE OR
              METHYLGLUCAMINE() DIATRIZOATE OR (AMIDOTRICOIC OR AMIDOTRIZOI-
             C) () ACID? OR MEGLUMINE () AMIDOTRIZOATE
S9
                RN=131-49-7
                DC=(D02.033.800.813.550.500 OR D02.241.223.100.140.100.375-
S10
             .880.275 OR D09.203.037.342.600.500 OR D09.203.853.813.550.50-
             0)
        27583
                IONTOPHORE? OR IONTOTHERAP? OR IONIC() THERAP? OR EMDA OR S-
S11
             ONOPHORE? OR ELECTROPORAT? OR ELECTRO() PORAT?
S12
            0
                DC=E05.300.650
                 (MICRONEEDLE? OR MICRO()NEEDLE?)()ARRAY? ?
S13
           86
       923704
S14
                INCREAS? OR ENHANC? OR AMELIORAT?
S15
       910277
                PERMIT? OR PERMISS? OR ALLOW?
       808104
                BETTER? OR IMPROV?
S16
                RECEPTABIL? OR PERMEABIL? OR PERMEABL? OR LUCENCY?
S17
        84730
                TRANSLUCEN? OR TRANSPAREN? OR CLEARNESS OR CLARITY
       240168
S18
S19
       579082
                OPTICAL? OR LIGHT? OR LUCID?
S20
       109002
                PERMEAB?()(BARRIER? OR LAYER? OR STRAT?) OR SKIN
                CONJUNCTIV? OR EPITHELI? OR SCLERA? OR STRAT?()CORNE? OR (-
S21
        40240
             INTERSTIT? OR INTER()STIT?)()(SPACE? OR TISSUE?)
        88098
S22
                IC=(A61N? OR A61M? OR A61B?)
                DIMETHYL()(SULFOXIDE OR SULPHONYL) OR DIMEXIDE OR RIMSO OR
S23
        17869
             RIMSO100 OR SULFINYL()BISMETHANE OR SULFINYLBISMETHANE
S24
        71850
                 (DRIVING OR ELECTRIC() PULSE OR ELECTRICPULSE OR ELECTROMOT-
             IVE OR ELECTRO() MOTIVE OR ACOUSTIC? OR ULTRASONIC? OR ELECTRI-
             CAL? OR RADIOFREQUENCY? OR RADIO() FREQUENCY OR TEMPERATURE OR
             THERMAL OR PHYSICAL OR CHEMICAL OR CONCENTRATION OR E...
S25
        19899
                 (S1:S3 OR S23) AND S4:S10 AND (S11:S13 OR S24)
                S25 AND S20:S21
S26
        11065
                S26 AND S14:S16 AND S17:S19
S27
         9684
         2448
                S27 AND S14:S16(5N)S17:S19
S28
                S28 AND (S1:S3 OR S23) (5N) S20:S21 AND S4:S10 (5N) S20:S21
S29
           54
                S29 AND S22
S30
            6
S31
           54
                S29:S30
S32
            7
                S31 AND PY<1999
            7
S33
                IDPAT (sorted in duplicate/non-duplicate order)
? show files
File 348: EUROPEAN PATENTS 1978-2003/Nov W04
         (c) 2003 European Patent Office
File 349:PCT FULLTEXT 1979-2002/UB=20031203,UT=20031127
         (c) 2003 WIPO/Univentio
```

```
DIALOG(R) File 348: EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.
00786612
FORMULATIONS AND METHODS FOR REDUCING SKIN IRRITATION
FORMULIERUNGEN UND VERFAHREN ZUR VERMINDERUNG VON HAUTIRRITATIONEN
FORMULATIONS ET PROCEDES POUR DIMINUER L'IRRITATION DE LA PEAU
PATENT ASSIGNEE:
  COSMEDERM TECHNOLOGIES, (2168921), 4370 La Jolla Village Drive, Suite 960
    , San Diego, CA 92122, (US), (Proprietor designated states: all)
INVENTOR:
  HAHN, Gary, Scott, 2371 Lagoon View Drive, Cardiff by the Sea, CA 92007,
    (US)
  THUESON, David, Orel, 12740 Boxwood Court, Poway, CA 92064, (US)
LEGAL REPRESENTATIVE:
  Warcoin, Jacques (19071), Cabinet Regimbeau 20, rue de Chazelles, 75847
    Paris cedex 17, (FR)
                              EP 801554 A1
                                             971022 (Basic)
PATENT (CC, No, Kind, Date):
                                             030416
                              EP 801554
                                         В1
                                           960627
                              WO 96019183
                              EP 95943956 951221; WO 95US16765
                                                                 951221
APPLICATION (CC, No, Date):
PRIORITY (CC, No, Date): US 362058 941221
DESIGNATED STATES: AT; BE; CH; DE; DK; ES; FR; GB; GR; IE; IT; LI; LU; MC;
  NL; PT; SE
INTERNATIONAL PATENT CLASS: A61K-007/00; A61K-007/48
CITED PATENTS (EP B): EP 559262 A; WO 93/25211 A; WO 95/26198 A; FR 2122613
  A; FR 2482860 A; US 4331653 A; US 4367224 A; US 4840798 A; US 4879116 A;
  US 5079010 A; US 5102670 A; US 5411731 A
NOTE:
  No A-document published by EPO
LEGAL STATUS (Type, Pub Date, Kind, Text):
                  001011 Al Date of dispatch of the first examination
 Examination:
                            report: 20000824
                  20000329 Al Date of drawing up and dispatch of
 Search Report:
                            supplementary:search report 20000211
 Grant:
                  030416 B1 Granted patent
                  030402 Al Transfer of rights to new applicant: COSMEDERM
 Assignee:
                            TECHNOLOGIES (2168921) 4370 La Jolla Village
                            Drive, Suite 960 San Diego, CA 92122 US
                  960925 A International application (Art. 158(1))
 Application:
 Change:
                  20000329 Al International Patent Classification changed:
                            20000207
                  20000329 Al International Patent Classification changed:
 Change:
                            20000207
                  971022 Al Published application (Alwith Search Report
 Application:
                             ;A2without Search Report)
 Examination:
                  971022 Al Date of filing of request for examination:
                            970721
                  980527 Al Representative (change)
 Change:
                  990623 Al Representative (change)
 Change:
LANGUAGE (Publication, Procedural, Application): English; English; English
FULLTEXT AVAILABILITY:
Available Text
               Language
                           Update
                                      Word Count
      CLAIMS B
                (English)
                           200316
                                       1093
                                        990
      CLAIMS B
                           200316
                 (German)
      CLAIMS B
                 (French)
                           200316
                                       1394
      SPEC B
                (English)
                           200316
                                       7248
Total word count - document A
Total word count - document B
                                      10725
Total word count - documents A + B
                                      10725
```

(Item 2 from file: 348)

33/5, K/2

FORMULATIONS AND METHODS FOR REDUCING SKIN IRRITATION

...SPECIFICATION This invention relates to compositions and formulations, and methods for using the same, to inhibit **skin** irritation in animals.

Background

Many substances are applied topically to the **skin** or mucous membranes of humans or animals (hereafter " **skin** ") in order to alter the subject's appearance, to protect the subject from the environment, or to produce a biological change in the **skin** or other tissue for therapeutic, preventive or cosmetic purposes. These substances may generically be termed...

- ...liquids such as sprays or mists. Examples of topical products commonly classified as "cosmetics" include skin care products such as creams, lotions, moisturizers and "treatment cosmetics" such as exfoliants and/or skin cell renewal agents; fragrances such as perfumes and colognes, and deodorants; shaving-related products such as creams, "bracers" and aftershaves; depilatories and other hair removal products; skin cleansers, toners and astringents; premoistened wipes and washcloths; tanning lotions; bath products such as oils...
- ...such as eye lotions and makeup removers; foot care products such as powders and sprays; **skin** colorant and make-up products such as foundations, blushes, rouges, eye shadows and liners, lip...
- ...lotions, oils, shampoos, powders and wet wipes; feminine hygiene products such as deodorants and douches; **skin** or facial peels applied by dermatologists or cosmeticians; and others. Examples of topical products commonly...
- ...Other topical products include hand, facial and body soaps and detergents and other forms of **skin** cleansers, as well as household detergents and many other household products such as solvents, propellants...
- ...chemicals which may produce "irritation," including various inflammation symptoms or signs, when applied to the **skin** or mucosa (" **skin** "). The present invention is directed in part to compositions and methods for inhibiting the irritation...
- ...or edema (swelling). The irritation response may be due to the direct effect on the **skin** of certain topical product chemicals or to a response by the immune system directed toward the chemicals alone or in combination with **skin** components (e.g. antigens).

The sensation of itch is one of the most common skin problems experienced by humans and animals. Itch can be defined as a sensation which provokes the desire to scratch the site from which the sensation originates. All skin contains sensory nerves which can transmit itch or other sensory impulses in response to chemical...

- ...Bernhard. McGraw-Hill, Inc. (San Francisco, 1994), pp. 1-22. The sensory nerves of the **skin** can be considered to be a "final common pathway" for the many irritating conditions which...
- ...sensed as itch including chemical exposure, environmental exposure (such as that which produces dry, itchy skin) and disease processes such as atopic dermatitis. Many chemical substances are able to produce itch or other sensory impulses when topically applied to the skin, No matter what the ultimate cause of itch, the sensation experienced is the same

and...

- ...in topical products are known irritants or are potentially irritating, especially to people with "sensitive **skin**". These irritating ingredients include fragrances, preservatives, solvents, propellants and many other ingredients that might otherwise...
- ...including chemicals that may also be classified as drugs, produce irritation when applied to the **skin**. These include, but are not limited to, such ingredients as exfoliants and **skin** cell renewal agents, anti-acne drugs, antiperspirant compounds, antihistamines, anti-inflammatory agents, **skin** protective agents, insect repellent chemicals, sunscreens and many others. Where more than one chemical irritant...
- ...additive. Furthermore, chemical ingredients may react with one another, or in the environment of the **skin**, to form new chemicals which are irritating. The vehicles in which the active drug ingredients...
- ...the case of drugs such as topical corticosteroids.

 In addition to chemicals which directly trigger skin irritation, some chemicals indirectly cause the skin to become ...chemicals or environmental conditions which would not normally cause irritation. Many chemicals which act as skin "exfoliants" such as retinoids (e.g. tretinoin, retinol and retinal), carboxylic acids including (alpha)-hydroxy...
- ...octanoic acid, gluconolactone, methoxypropyl gluconamide, oxalic acid, malic acid, tartaric acid, mandelic acid, benzylic acid, gluconic acid, benzoyl peroxide and phenol, among others, may cause the skin to become more sensitive to irritation triggered by other topically-applied chemicals such as moisturizers...
- ...e.g. soaps, shaving cream) and other topical products. Exfoliants and other ingredients may also increase the skin 's sensitivity to environmental conditions such as sunlight, wind, cold temperature and dry air, or...
- ...chemical agents such as antigens, or may exacerbate the irritation attributable to a pre-existing **skin** disease.
 - Conversely, environmental influences may themselves increase the skin 's sensitivity to chemicals in topical products by reducing the epidermal skin 's "barrier function." The barrier function acts to minimize absorption or passage of potentially irritating chemicals through the outer "dead" cell layer of epidermal skin into the living skin tissue. Extremes of humidity, for example, can greatly increase irritation from topically-applied products. A very common condition due to low humidity is termed...
- ...heating) or long exposure to refrigerated air from air conditioners in the summer produces itchy skin -- especially in older people -- which can exacerbate the irritating effects of topical products. Additionally, soaps, detergents, cleansing products, shaving creams, alcohol and other products which remove some of the skin 's protective lipids and/or secretions may increase the skin 's permeability and sensitivity to topically-applied chemicals which would otherwise not produce irritation. Normal processes such as sweating may also increase the ability of irritant materials, such as antiperspirants, deodorants or sunscreens, to penetrate the skin through pores or glands, thus exacerbating the potential for irritation. Exposure of the skin to high humidity

environments or liquids may also increase the ability of potential irritants to penetrate the skin . Similarly, the skin may become sensitized or inflamed due to infection, shaving abrasion, repeated or excessive washing or...

...deodorants, after-shaves or other topical products.

In addition to chemical and environmental causes of skin irritation, many people have an inherent sensitivity or genetic predisposition to skin irritants. People with respiratory allergies, for example, tend to have excessively dry skin which facilitates increased absorption of potentially irritating chemicals. The excessively dry skin which accompanies atopic dermatitis, for example, predisposes patients with this condition to irritation from many topically-applied products. Other skin diseases and conditions such as allergic or non-allergic contact dermatitis, asthma (including exercise-induced asthma as may be precipitated by inhalation of cold or dry air), rhinitis, conjunctivitis, inflammatory bowel disease, psoriasis, eczema, post-herpetic neuralgia, infectious diseases manifested by, for example, sore throat or skin lesions such as candidiasis, insect bites and the like produce inherent irritation which may be...

...such as antigens, cold air, low humidity and the like. Many other individuals exhibit sensitive **skin** as a condition that is not related to an identifiable **skin** disease.

Whatever the exact cause of irritation, many attempts have been made to reduce the...

- ...like to designate a product's reduced tendency to cause irritation in consumers with sensitive **skin**. Many **skin** (including mucosal) irritation responses, however, are not allergic in origin. In any event, it is...
- ...there is a substantial practical and commercial need in the field of exfoliants and related **skin** care products for a composition or method that will reduce or prevent the irritation caused...
- ...octanoic acid, gluconolactone, methoxypropyl gluconamide, oxalic acid, malic acid, tartaric acid, mandelic acid, benzylic acid, gluconic acid, peroxides, phenols, and skin cell renewal agents such as retinoids. Such products are used as exfoliants and/or cell renewal agents to reduce the occurrence or severity of skin wrinkles, particularly facial wrinkles, or as anti-acne, anti-"dry skin " or skin whitening agents. See U.S. Patent Nos. 4,105,782, 4,105,783, 4,246...
- ...et al.) and 5,262,153 (Mishima et al.); W.P. Smith, "Hydroxy Acids and Skin Aging," Soap/Cosmetics/Chemical Specialties for September 1993, p. 54 (1993). Hydroxy acids, in concentrations high enough to exfoliate, are well known often to cause skin irritation and rashes. The danger of irritation is even higher for persons that have sensitive skin.

 Currently available methods reported by Yu et al. to reduce the irritation caused by hydroxy...reported drawback of reducing the ability of the resulting hydroxy acid salt to penetrate the skin and thus compromising the beneficial effects (particularly anti-acne or anti-"dry skin" effects) of the hydroxy acid. Alternatively, Yu et al. have proposed the approach of formulating...
- ...is, again, to raise the pH of preparation to a non-irritating level. However, the increased pH (reduced acidity) of the resulting preparations renders them less efficacious as exfoliating or anti...

- ...reported that certain alkali or alkaline-earth metal salts of lactic acid were useful as **skin** -whitening agents (U.S. Pat. No. 5,262,153), but no recognition is expressed as...
- ...of Mishima were typically "neutralized" or adjusted to pH 5.5 prior to screening or **skin** -whitening testing (see Experiments I and 2). A clear need exists, therefore, for a composition or method that prevents or reduces the **skin** irritation caused by low-pH (high-acidity) organic or inorganic acid products but that does...
- ...otherwise safe and effective topical products, or to reduce the intrinsic irritation associated with various **skin** diseases and conditions (such as atopic or other dermatitis, asthma (including exercise-induced asthma), rhinitis or other respiratory inflammation, **conjunctivitis**, inflammatory bowel disease, eczema or psoriasis) or caused by exposure to irritating chemicals or environmental...
- ...of the invention are useful in reducing the incidence and severity of irritation associated with **skin** exposure to irritating chemicals or environmental conditions. While the exact mechanism (or mechanisms) of activity...
- ...is presently believed that the cations of the invention may reduce irritation by interacting with **skin** nerve cells to prevent or counteract the sensation of irritation, and/or by interfering with irritation-inducing components of **skin** cells that are triggered by application of or exposure to the irritant. Thus, the cations may alter the ability of **skin** nerve cells to depolarize or repolarize, as for example by blocking or interfering with ion...
- ...or alternatively, the cations of the invention may act to inhibit or modify the action of **skin** cell proteases or other irritation—inducing biological molecules (such as eicosanoids or cytokines) that may otherwise be activated by topical application of **skin** irritants, or may alter "second-messenger" function within sensory cells.
 - A number of ionic species...form of stannous chloride as an ingredient to provide fast-acting, efficient and safe topical **skin** anti-irritant effects, and to formulations containing such selected cations. It is one object of the present invention to provide ingredients, formulations and methods of use which can suppress **skin** irritation due to chemical or environmental exposure, or due to tissue inflammation, injury or other **skin** pathology. The invention is particularly useful for preventing, reducing or eliminating the potential irritation caused...
- ...meets a clear need for formulations and ingredients that will prevent or reduce the potential **skin** irritation caused by topical products. The invention is also useful for preventing, reducing or eliminating the **skin** irritation caused by **skin** diseases or other conditions such as environmental exposure to irritating chemicals or influences such as...
- ...acidity or basicity in the formulated composition, and a total cation concentration effective to reduce **skin** irritation. In one such particularly preferred embodiment, a cation of the present invention is combined...
- ...terms, but that such acidity will manifest itself upon exposure of the formulation to the **skin** where water is present both intracellularly and extracellularly.

In another embodiment, the cation of the...

...362,100, 08/362,097, and 08/362,055 (entitled "Formulations and Methods

for Reducing $\,$ Skin $\,$ Irritation" and published in Europe under EP 0 796 078 and EP 0 799 018...

...a multiple anti-irritant effect.

The invention further provides methods of treating, reducing or eliminating **skin** irritation comprising the topical application of a formulation comprising an anti-irritant effective amount of...

...development of irritation or to treat a pre-existing irritation attributable to conditions such as **skin** disease, chemical irritant exposure or environmental exposure.

Description of the Drawings FIGURES 1 through 4...

...panel of humans treated with 250 mM stannous chloride (and control) in a lactic acid **skin** irritation challenge.

FIGURE 5 depicts experimental data showing the cumulative irritation inhibition effects of aluminum chloride administered at varying concentrations (31-500 mM) in a lactic acid **skin** irritation challenge. FIGURE 6 depicts experimental data showing the cumulative irritation inhibition effects of stannous chloride administered at varying concentrations (31-500 mM) in a lactic acid **skin** irritation challenge.

Detailed Description

Human clinical trials undertaken in connection with the present invention have established that the cation species tin(II) (Sn2+)) is effective, when applied topically to the **skin** in appropriate concentrations and vehicles, to suppress the relatively severe stinging, burning, tingling, itching and/or erythema induced by topical application of the hydroxy acid **skin** irritant lactic acid. Formulations containing such cation are useful in suppressing a wide range of...For example, the cation of the present invention is useful for preventing or reducing the **skin** irritation caused by (alpha) - or (beta) - hydroxy acids, (alpha) - keto acids and other carboxylic acids...

- ...acid, gluconolactone, methoxypropyl gluconamide, oxalic acid, malic acid, tartaric acid, mandelic acid, benzylic acid, and **gluconic** acid), as well as in certain prescription topical drugs containing high (for example, 12% w...
- ...inhibited by the formulations of the invention. Additionally, formulations containing such cations are useful in ameliorating irritation in conditions where the skin is inherently hypersensitive to topical products (e.g. dry skin, "winter itch," and other inflammation or injury conditions) and in ameliorating the irritation due to such conditions even in the absence of other applied topical products. The formulations are also useful in treating non-human animal skin irritation, as for example dog or cat irritation and resultant scratching due to fleas or other skin disease or condition.

An additional benefit of the present anti-irritant compounds and formulations is...

- ...they do not have the undesirable anesthetic side-effects exhibited by Lidocaine and other similar **skin** local anesthetics. Upon application of a solution of the compound used in the clinical trials...
- ...of the invention comprise a topical vehicle suitable for administration to the animal (particularly human) <code>skin</code>, and an amount of cation of the invention effective to reduce, inhibit or eliminate existing or potential <code>skin</code> irritation. The cation is accompanied in the formulation by

chloride counterions, although the cation-anion...

...irritant topical formulations additionally contain an irritant ingredient(s) that is itself capable of inducing **skin** irritation such as symptoms associated with inflammation, as for example a cosmetic or **skin** care product ingredient, or a pharmaceutically active ingredient or drug ingredient.

The cation for use...

- ...in a topical formulation in a concentration effective to prevent or reduce (hereafter, "inhibit") the **skin** irritation (such as inflammation) symptoms that are sought to be eliminated. The formulation contains such...
- ...0.5 grams of cation formulation over a 5 cm x 5 cm area of **skin** (25 cm2)). Clinical studies have shown that such preferred concentration ranges are generally effective to inhibit **skin** irritation and, in typical topical vehicles, are readily formulated and do not leave any significant visible residue when applied to the **skin**. Higher concentration formulations, such as saturated pastes or other forms, may also be successfully used...
- ...adjusted to account for the amount of formulation that is typically applied to a given **skin** area by the user, which will depend to an extent on the physical nature of...
- ...amount of cation required may be reduced in such cases where the formulation contains a **skin** penetration- **enhancing** ingredient or other agent which **increases** the ability of the cations to permeate the **stratum corneum** to their site of anti-irritant activity. Preferably, the formulations of the invention include an...362,100, 08/362,097, and 08/362,055 (entitled "Formulations and Methods for Reducing **Skin** Irritation"), filed December 21, 1994). Other anti-irritant agents, such as steroids or non-steroidal...
- ...is preferred that the selected salt be sufficiently soluble in the formulation vehicle as to **allow** a consistent formulation having the desired physical and topical application characteristics. It will be recognized...
- ...preferred that the salt chosen be sufficiently aqueous-soluble such that, upon application to the **skin**, the component cation (and corresponding counteranion) can dissociate and be taken up into the water-containing milieu of the **skin**. In addition, it will be clear that the particular salt ingredient chosen should be topically...
- ...exhibit higher solubility in many common topical vehicles and suitable ionization upon application to the **skin** . In addition, strongly acidic anion components may be useful where it is desired to maintain...
- ...water; organic solvents such as alcohols (particularly lower alcohols readily capable of evaporating from the skin such as ethanol), glycols (such as glycerin), aliphatic alcohols (such as lanolin); mixtures of water and organic solvents (such as water and alcohol), and mixtures of organic solvents such as alcohol and glycerin (optionally also with water); lipid-based materials such as fatty acids, acylglycerols (including oils, such as mineral oil, and fats of natural or synthetic origin), phosphoglycerides, sphingolipids...
- ...emulsifying agents; and other vehicles and vehicle components that are suitable for administration to the **skin**, as well as mixtures of topical vehicle components as identified above or otherwise known to the art. The

vehicle may further include components adapted to improve the stability or effectiveness of the applied formulation, such as preservatives, antioxidants, skin penetration enhancers, sustained release materials, and the like. Examples of such vehicles and vehicle components are well...the formulation -- such as a treated or premoistened bandage, wipe, washcloth or stick -- to the skin); spraying (including mist. aerosol or foam spraying); dropper application (as for example with ear or...

...a suitable powder form of the formulation); soaking; and injection (particularly intradermal or subcutaneous injection). **Iontophoresis** or other electromagnetic- **enhanced** delivery systems may also be usefully employed, as for example to **increase** delivery to the dermis.

Methodologies and materials for preparing formulations in a variety of

Methodologies and materials for preparing formulations in a variety of forms...

...products); Chapter 14, pp. 325-380 (hand products); Chapter 15, pp. 381-460 (body and skin creams and lotions); and Chapter 16, pp. 461-484 (baby products).

The formulations of the...

- ...as occurring with any accompanying anion counterion components) is substantially invisible upon application to the **skin**. This is particularly true in the case of many cosmetic formulations that are applied to...
- ...of the body. It will be recognized that in some cases, particularly with colored facial **skin** care products such as blushes, blemish covers, lipsticks and the like, the formulation will be designed to be visible on the **skin**; in such cases, it is desirable that the cation component itself be "invisible," that is, that it not adversely change the appearance of the overall formulation as applied to the **skin**.

In another embodiment of the invention, the present cation can be formulated in a form...

- ...determine whether and to what extent the cations of the present invention reduced or prevented **skin** irritation caused by lactic acid, an (alpha)-hydroxy carboxylic acid known for its **skin** irritating potential. The trials were conducted in a double blind, randomized, vehicle-controlled manner. Various...
- ...with Ivory bar soap in the clinic prior to application of test solutions.

Lactic acid skin -irritant compositions were formulated in an appropriate vehicle prior to application to the skin of the subjects. In the majority of the tests, the irritant composition was 7.5% lactic acid dissolved in a 10% ethanol -in-water solution. In the case of stannous chloride, which is not appreciably soluble in 10% ethanol, a water- ethanol - glycerin solution was used (composition 33.75% water, 33.75% glycerin ("Gly"), 25% ethanol, with 7.5% lactic acid). Test anti-irritant formulations were prepared by combining measured amounts...

...irritant composition. The test formulation was applied to a defined portion of the subject's **skin**, typically the face. Controls were performed by applying ...with an equimolar amount of sodium chloride to a contralateral portion of the subject's **skin**.

All test solutions (including controls) were applied in a double blind, randomized fashion using the...

...the left.

Sensory assessment scores were recorded for each treated side of the

- subject's **skin** every minute for 15 minutes or until three consecutive scores of "zero" irritation were obtained...
- ...sensations represented by a score of I to be an indication that a facial treatment **skin** care product (especially an exfoliant) was working as advertised. By contrast, irritation scores of "2...
- ...likely often result in a consumer never purchasing the product again. In those subjects and **skin** samples where an irritation was sensed, the irritation commonly involved a spectrum of burn-sting...
- ...shows the time course of irritation responses for both cation-treated and non-treated (control) **skin** portions for the panel. FIG. 2 shows the cumulative irritation over time for the same...
- ... Toner (an alcohol-containing solution). The concentrations achieved were shown to be effective to inhibit **skin** irritation.

...CLAIMS B1

- 1. A composition for inhibiting **skin** irritation in an animal subject comprising an anti-irritant amount of from 250 mM to...
- ... subject comprising a topical vehicle;

an irritant ingredient contained in an amount capable of inducing skin irritation in said subject; and

an anti-irritant amount of from 250 mM to 500...

...product

- 4. The composition of any of the foregoing claims wherein said composition comprises a **skin** exfoliant, **skin** peel or **skin** cell renewal agent
- 5. The composition of any of the claims 2 to 4 wherein...
- ...octanoic acid, gluconolactone, methoxypropyl gluconamide, oxalic acid, malic acid, tartaric acid, mandelic acid, benzylic acid, gluconic0 acid, pyruvic acid and phenol.
 - 7. The composition of any of the foregoing claims wherein...
- ...the concentration range of stannous chloride is from 50mM to 2000mM for the treatment of **skin** irritation attributable to a pre-existing human **skin** disease or **skin** irritation condition, including preferably **skin** irritation attributable to atopic dermatitis, non-atopic dermatitis, asthma, rhinitis, **conjunctivitis**, eczema, psoriasis or infectious disease; environmental exposure to one or more of sunlight, low humidity...
- ...selected from the group consisting of antiperspirant, deodorant, sunscreen, tanning, sunburn treatment, insect repellant, exfoliant, skin peel, skin cell renewal, fragrance, shaving or hair removal, hair care or hair treatment, cleanser, astringent, toner...
- ...topical drug products; insect sting or bite, or plant exposure; one or more of shaving, skin cleansing or bathing, sweating and physical skin trauma; and dry skin.
 - 13. The use of stannous chloride for the manufacture of a topical medicament wherein the...
- ...range of stannous chloride is from 50mM to 2000mM for the treatment or inhibition of **skin** irritation attributable to an irritant ingredient contained in said composition.

- 14. The use of stannous chloride according to any of the claims 12 or 13 wherein said **skin** irritation is selected from the group consisting of ocular irritation, respiratory system irritation, gastrointestinal system irritation, reproductive system irritation, irritation of a mucous membrane, irritation of epidermal **skin**, and irritation of dermal **skin**.
- 15. The use of stannous chloride according to any of claims 12 to 14, wherein said topical composition comprises an amount of said cation capable of inhibiting said **skin** irritation in subjects experiencing the same by an average of at least 20 %.
- 16. The capable of inhibiting said **skin** irritation by at least 40 % in at least 10 % of the subjects experiencing the same...
- ...wherein said topical composition comprises an amount of said cation capable of Inhibiting mean cumulative skin irritation in a susceptible human population, wherein said inhibition of skin irritation represents an average reduction in one or more of sting, bum and itch in...
- ...or following administration of said topical product.
 - 20. A cosmetic method comprising applying to the **skin** the composition of any of claims 1 to 11, wherein said composition is a cosmetic...
- ...CLAIMS zuschreibbar ist, einschlieslich vorzugsweise einer Hautreizung, die einer atopischen Dermatitis, nicht-atopischen Dermatitis, Asthma, Rhinitis, Conjunctivitis, Ekzem, Psoriasis oder infektioser Erkrankung; Umgebungseinwirkung von Sonnenlicht, geringer Feuchtigkeit, Wind, kalter Temperatur und/oder...

33/5, K/3(Item 3 from file: 348) DIALOG(R) File 348: EUROPEAN PATENTS (c) 2003 European Patent Office. All rts. reserv. The use of asymetric membranes in delivery devices. Verwendung von asymmetrischen Membranen in Abgabevorrichtungen. Utilisation de membranes asymetriques en dispositifs de liberation. PATENT ASSIGNEE: PFIZER INC., (200961), 235 East 42nd Street, New York, N.Y. 10017, (US), (applicant designated states: AT; BE; CH; DE; ES; FR; GB; GR; IT; LI; LU; NL; SE) INVENTOR: Cardinal, John Robert, 37 Coult Lane, Old Lyme Connecticut, (US) Herbig, Scott Max, Rimrock West No. 6, Bend Oregon, (US) Korsmeyer, Richard Wilker, 10 Green Valley Lakes, East Lyme Connecticut, (US) Lo, Jeelin, 20 Old Stagecoach Road, Old Lyme Connecticut, (US) Smith, Kelly Lincoln, 19295 Dayton Road, Bend Oregon, (US) Thombre, Avinash Goviind, 3 Little John Court, Gales Ferry Connecticut, (US) LEGAL REPRESENTATIVE: Wilkinson, Stephen John et al (52061), Stevens, Hewlett & Perkins 1 St. Augustine's Place, Bristol BS1 4UD, (GB) 900307 (Basic) PATENT (CC, No, Kind, Date): EP 357369 A2 911002 EP 357369 A3 EP 357369 B1 930512 APPLICATION (CC, No, Date): EP 89308716 890829; PRIORITY (CC, No, Date): US 238371 880830 DESIGNATED STATES: AT; BE; CH; DE; ES; FR; GB; GR; IT; LI; LU; NL; SE INTERNATIONAL PATENT CLASS: A61K-009/22; A61K-009/36; A61K-009/52; CITED PATENTS (EP A): US 4837111 A; EP 171457 A; US 4687660 A; EP 56825 A CITED REFERENCES (EP A): Desalination vol. 35, 1980, Amsterdam, Netherlands pages 39 - 58; H. Strathmann: "Development of new membranes"; ABSTRACT EP 357369 A2 A device for controlled release of an active substance through one or more asymmetric membranes by diffusion and/or osmotic pumping. ABSTRACT WORD COUNT: 24 LEGAL STATUS (Type, Pub Date, Kind, Text): Application: 900307 A2 Published application (Alwith Search Report ; A2without Search Report) Search Report: 911002 A3 Separate publication of the European or International search report 911204 A2 Date of filing of request for examination: Examination: 911009 Examination: 920812 A2 Date of despatch of first examination report: 920630 Grant: 930512 B1 Granted patent LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY: Available Text Language Update Word Count EPBBF1 3095 CLAIMS B (English) CLAIMS B (German) EPBBF1 1736 CLAIMS B EPBBF1 2042 (French) SPEC B (English) EPBBF1 20010 Total word count - document A 0

26883

26883

Total word count - document B

Total word count - documents A + B

15:---

... SPECIFICATION B1

Asymmetric membranes, which consist of a very thin, dense **skin** supported by a thicker, porous substructure layer, **are** used extensively in the reverse-osmosis desalination of brine. The technology for the formation of...

...developed by Loeb and Sourirajan (Adv. Chem. Ser. 38, 117 (1962)) and continues to be improved .

Asymmetric membranes of polyquinoxalines have been employed in the separation of gaseous mixtures (U.S. Patent 4,732,586).
While the literature is...

...is feasible and practical.

A preferred feature of the device is a membrane which is **permeable** and imperforate and where the release is **either** substantially by osmotic pumping or substantially by diffusion.

A second preferred feature of the device is a membrane which is **permeable** and perforate and where the release is **either** substantially osmotic pumping or substantially by diffusion.

A third preferred feature is a device in...

...the amount of 15% by weight and the pore-forming substances are formamide, acetic acid, <code>glycerol</code>, a (C(sub 1)-C(sub 4))alkanol, sodium acetate, aqueous hydrogen peroxide or polyvinylpyrrolidone. Especially preferred is the use of <code>ethanol</code> as a pore-forming agent, present <code>in</code> the amount of 30% by weight or the use of <code>glycerol</code> as a pore-forming agent, present <code>in</code> the amount of 10% by weight.

A second preferred wet process for preparing tablets comprises...

...the amount of 15% by weight and the pore-forming substances are formamide, acetic acid, <code>glycerol</code>, a (C(sub 1)- C (sub 4))alkanol, sodium acetate, aqueous hydrogen peroxide or polyvinylpyrrolidone. Especially preferred is the use of <code>ethanol</code>, as a pore-forming <code>agent</code>, present in the amount of 30% by weight.

Another preferred phase inversion process for preparing comprised of glycerol, water, butanol and ethanol present in the amount of 1.9, 2.7, 11.7 and 21.7%, respectively, by weight...

...the amount of 16% by weight and the pore-forming substance is formamide, acetic acid, glycerol, a (C(sub 1)-C(sub 4))alkanol, sodium acetate, aqueous hydrogen peroxide or polyvinylpyrrolidone. Especially preferred is the use of ethanol and glycerol as pore-forming substances, present in the amount of 28 and 8%, respectively, by weight. Also especially preferred is the use of glycerol as the pore-forming substance, present in the amount of 10% by weight.

Also part...

...by using cyclones.

Preferred within this process is the use of a pore-forming mixture comprising 38% by weight of the total and composed of ethanol, butanol, water and glycerol present in the amount of 57, 31, 7 and 5%, respectively, by weight, and the...

...beads after the membrane has solidified and drying.

Preferred in this process is the use of cellulose acetate 398-10 present in the amount of 15% and the pore-forming substance is ethanol present in the amount of 33% by weight.

Preferred in this method is a device...

...is a tablet, capsule or bead. Especially preferred is said device wherein the membrane is **permeable** and imperforate or perforate, and the

release is substantially either by diffusion or osmotic pumping. Also especially preferred is **said** device wherein the membrane is semipermeable and imperforate and the release is substantially osmotic pumping...

...comprised of one or more asymmetric membranes. Preferred is said device wherein the membrane is **permeable** and perforate or imperforate. Especially preferred is such a device wherein the release is by osmotic pumping.

Finally, the **instant** invention relates to a process for preparing a capsule shell to be used for controlled...

...the amount of 16% by weight and the pore-forming substance is formamide, acetic acid, <code>glycerol</code>, a (C(sub 1)-C(sub 4))alkanol, sodium acetate, aqueous hydrogen peroxide or polyvinylpyrrolidone. Especially preferred <code>is</code> the use of <code>ethanol</code> and <code>glycerol</code> as pore-forming substances, present in the amount of 28 and 8%, respectively, by weight. <code>Also</code> especially <code>preferred</code> is the use of <code>glycerol</code> as the pore-forming substance, present in the amount of 10% by weight.

The present invention also **relates** to a process for preparing a bead, tablet or capsule device for controlled release of ...the desired number of asymmetric membranes have been applied. Especially preferred is the use of **ethanol** as the pore-former and cellulose acetate 398-10 as the membrane material.

The present invention also includes a process for preparing a tablet for controlled release of one or more...

...by weight in acetone. Especially preferred is the use of cellulose acetate 398-10 and **glycerol**, water, butanol and **ethanol** together as pore-formers in the amount of 2, 2.8, 12.4 and 22% by weight, respectively.

Figure 1 shows the SEM (scanning electron microscope) cross section of an asymmetric membrane tablet coating having a dense imperforate **skin** prior to use. The membrane was prepared according to the procedure of Example 1, employing a phase inversion-wet process and using cellulose acetate as the membrane material and...

...shows the SEM cross section of an asymmetric membrane tablet coating having an imperforate dense **skin**. The table membrane was prepared according to the procedure of Example 2, utilizing **a** phase inversion wet process wherein the coated tablet was immersed in an aqueous quench bath...

...coated tablet.

Figures 8, 9, 10 and 11 are SEM which show the effects of increasing amounts of the pore-forming substance glycerol on the size of holes or ports in the dense membrane of an asymmetric membrane coated tablet, prepared in Example 11.

Figure 12 shows the SEM of dense skin of an asymmetric membrane coated tablet prepared by a wet phase inversion process, as described in Example 12, where sodium acetate was employed as a pore-forming substance.

Figure...

...outer surface and cross section of a capsule made of an asymmetric membrane in which **glycerol** was employed as the pore-forming substance.

Figure 16 shows an SEM of the surface and cross section of a bead covered with an asymmetric membrane and made by...

...an asymmetric membrane layer, prepared as described in Example 21. Note that only one dense **skin** is visible.

Figure 18 shows the release rate of doxazosin from asymmetric membrane coated beads having from one to three coats of an asymmetric membrane.

Figure 19 depicts the...in nature. This substructure supports the other portion of the membrane, a very dense, thin **skin**.

The materials of which the asymmetric membranes of the present invention are made <code>consist</code> of cellulose derivatives. In particular, they consist of cellulose esters and ethers, namely, the mono process can also use a pore-forming substance or substances to <code>enhance</code> the porous nature of the substructure of the membrane. These pore-forming substances <code>are</code>, generally, poor solvents for the polymer and are usually dissolved out in the quench bath...

- ...solution of polymer and pore-forming substance; however, in the dry process the solvent is **allowed** to evaporate completely. The successful formation of an asymmetric membrane using the dry **process** requires that the solvent or solvents evaporate more rapidly than the pore-forming substance. In...
- ...membrane. The porous channels in the substructure of the polymer can extend through the dense skin, resulting in macropores or a series of holes on the exterior skin of the device. Thus, by increasing the pore-forming substance it is possible to progress from a device having a porous substructure and an imperforate skin to one having a highly perforate skin (Figures 8, 9, 10 and 11 Example 11).

Pore-forming substances in the **wet** process include formamide, acetic acid, **glycerol**, an alkanol of one to four carbon atoms, 10% aqueous hydrogen peroxide and **polyviny**lpyrrolidone or combinations thereof. Sodium acetate, or other inorganic salts, can be employed as pore-forming

- ...polymer when the quench is an aqueous quench, leaving macropores in the dense membrane or skin. Suitable pore-forming substances for the dry process include glycerol, water, alkanols, oils, surfactants, glycols or combinations thereof. Rapid drops in pressure during the precipitation of the polymer can also result in enhanced macropore formation when the dry process is employed. For example, spray drying beads coated with a polymer solution under pressure into a chamber at a lower pressure can result...
- ...required to give the desired asymmetric membrane.

Asymmetric-membrane coatings with macropores through the outer skin (perforate membrane coatings) can also be made by adjusting the quench-bath conditions. Raising the temperature of the quench bath to temperatures near the boiling point of the solvent...

...macropore formation upon precipitation of the polymer in the quench bath. Other nonsolvents, such as **ethanol**, can be added to the quench bath to cause macropores to form in **the** membrane coatings. Thus, either perforate or imperforate membranes can be formed depending on the quench-bath temperature and composition.

Asymmetric-membrane coatings that have macropores through the outer skin can also be made by making membrane coatings using two or more incompatible polymers. The quantity of macropores through the surface an be a controlled by the relative concentrations...

...24 - Example 29).

Macropores can also develop in situ by the rupturing of the dense skin located directly over a channel in the substructure. Thus, an imperforate membrane becomes perforate during use.

The active substances and excipients are released from the device of

the present...

- ...osmotically effective compounds in the core of the device. These osmotically effective compounds are the **driving force** of the device and provide a higher osmotic pressure inside the device **than that** of the exterior environment, which in the case of a medicinal agent being given orally...
- ...When the device of this invention is intended for human or veterinary use, the osmotic **enhancing agents** should be pharmaceutically acceptable.

Other excipients present in the devices of this invention include such water soluble binders as polyethylene glycol, gelatin, agar carboxycellulose, ethylmethylcellulose, polyvinyl alcohol, water soluble ...methods for releasing active substances from the core of said device, the membrane can be permeable, meaning that both solvent and active material can pass through the membrane, and imperforate, meaning there are no visible macropores in the dense thin skin. If the skin is sufficiently strong or the osmotic core pressure sufficiently low, the release from this device may be substantially by diffusion (the term "substantially" implies that most, i.e., over 50% of the release is by this release mechanism). If the thin skin forms macropores in situ, the device would continue to release by diffusion. If the core of the device contains osmotically effective compounds or substances, the osmotic pressure could rupture the skin over the channels of the substructure and the release will be substantially by osmotic pumping.

The membrane can also be **permeable** and perforate. The delivery or release without osmotic substances will be substantially by **diffusion** unless the active substance itself is osmotically active. With osmotic **enhancing** substances in the core of the device the release can be substantially osmotic **pumping**.

The membrane can also be semipermeable, meaning that only the solvent can pass through the...

- ...the devices of the present invention can be controlled by the release mechanism, the membrane permeability, the nature of the excipients, the size of the device and the size and number of macropores present in the skin of the membrane. In general, release by osmotic pumping releases the active substances faster than diffusion, all other factors being the same. Excipients which aid in solubilizing the active substance enhance release from the device. Also large and numerous macropores aid in rapid diffusional release of the active substances. Another factor which can influence the rate of release is the...
- ...or more plasticizers in the material used in making the asymmetric membrane can affect the **permeability** of said membrane and hence the **rate** of release of the active substance. In general, hydrophilic plasticizers, such as **glycerine**, will **increase permeability** and release rate while hydropholic plasticizers, such as triethylcitrate will reduce **permeability** and rate of release (Figure 44 Example 52).

The process for preparing a table device surrounded by an asymmetric membrane, wherein the...from a conventional nozzle into a room or chamber. The formation of macropores in the **asymmetric** membrane coated beads is **enhanced** by the nozzle spray drying at a pressure of 68.95 to 689.5 kPa...

...bath for 3 minutes and subsequently into a hexane solvent-exchange bath, also for 3 minutes . The tablets were then allowed to completely

air-dry for at least 12 hours at room temperature.

The coatings formed...

...a porous layer adjacent to the tablet, extending through almost the entire coating thickness; on **the** outside surface a dense **skin** was formed that was imperforate prior to use. The overall thickness of the membrane coating was approximately 200 (mu)m, and the **thickness** of the dense outer **skin** was less than 1 (mu)m.

EXAMPLE 2

Formation of Asymmetric Membrane Tablet Coating-Wet...

- ...Trimazosin tablets were dip-coated and quenched in a water bath as described in Example 1 . The tablets were then allowed to completely air-dry at room temperature for at least 12 hours.

 The coatings formed...
- ...a porous layer adjacent to the tablet, extending through almost the entire coating thickness; on **the** outside surface a dense **skin** was formed that was imperforate prior to use. The overall thickness of the membrane coatings was approximately 200 (mu)m, and the **thickness** of the dense outer **skin** was less than 1 (mu)m.

 EXAMPLE 3

Formation of Asymmetric Membrane Tablet Coating-Dry Process
A coating solution was made of 15 wt% cellulose acetate 398-10 (Eastman Chemical Products, Inc.), 1.9 wt% glycerol, 2.7 wt% water, 11.7 wt% butanol, and 21.7 wt% ethanol dissolved in acetone, and the solution stored in a sealed container at room temperature until...described in Examples 1 and 2, the membrane coating consists mostly of a porous sublayer with a thin, dense outer skin. The overall thickness of the membrane was about 125 (mu)m and the thickness of the outer skin was about 1 (mu)m. The outer skin was imperforate prior to use.

EXAMPLE 4

- Osmotic Release from Tablets Coated With Asymmetric Membrane...
 ...solvent-exchange bath for 3 minutes, followed by immersion in a hexane solvent-exchange bath for 3 minutes before being allowed to dry to completion at room temperature. The average weight of these coatings was 13...
- ...made of 15 wt% cellulose acetate 398-10 dissolved in acetone at room temperature. The **tablets** were dip-coated, then **allowed** to air dry before they were dip-coated a second time to **increase** the coating thickness. The average weight of these coatings was 25.0 (+-) 2.2 mg...
- ...coatings were about 65 times higher than those from the same tablets coated with dense **membranes**. This demonstrates higher water **permeability** through asymmetric membrane coatings and subsequently higher release rates compared with dense coatings made of...
- ...1. A 340-(mu)m diameter hole was mechanically drilled through the coating on some of these tablets. The outer skin of the coatings was continuous except for the drilled holes. These tablets were release-rate...
- ...whereas the osmotic pressure of a saturated solution of trimazosin and the other tablet excipients was about 304 kPa (about 3 atm). Thus, there was no osmotic driving force for trimazosin delivery from these tablets into the magnesium sulfate solution. The solubility of trimazosin
- ...as the trimazosin solubility in water, so any difference in release rates from the tablets placed in magnesium sulfate solution and water

cannot be attributed to different **concentration gradients** across the membrane. Initially the tablets were placed in a stirred solution of 2.4 ...the magnesium sulfate solution by diffusion; the release rate was much higher into water due **to osmotic** pumping of the trimazosin from the tablet. As soon as the osmotic **driving force** was removed (placing the tablets back in a magnesium sulfate solution) the release rate dropped...

- ...applied in a manner similar to that described in Example 2. The coating solution consisted of 15 wt% cellulose acetate 398-10 (Eastman Chemical Products, Inc.) and 33 wt% ethanol dissolved in acetone at room temperature. The tablets were dip-coated, air-dried for five seconds, then immersed in a water quench bath for four minutes and finally allowed to dry to completion at room temperature. All solutions and the entire coating process were...
- ...the osmotic device do not develop. The same release rates from these doxazosin tablets placed in different receptor solutions demonstrate osmotic delivery using asymmetric-membrane coatings.

Demonstration of Variations of the **Permeability** of Asymmetric Membranes on Coated Tablets

Trimazosin tablets containing 40 wt% trimazosin, 58 wt% Avicel...

...were 150 (mu)m to 250 (mu)m thick. The thickness of the membrane coatings was proportional to the quantity of formamide in the coating solution.

Release-rate tests were conducted, comparing relative permeabilities of the coatings made with coating solutions with different formamide contents. The coated tablets were placed in water at 37 (degree) C. Steady-state release rates with respect to the formamide content in the coating solution are shown in Figure 6. The release rates increase as the formamide content increases up to a maximum at a formamide concentration of about 20 wt%. At higher formamide...

...tablet. The point on the graph corresponding to 27 wt% formamide was actually from 280 mg trimazosin tablets and was normalized with respect to the surface area of the 350 mg tablets. The increasing release rates indicate that the membrane coatings are becoming more permeable to water with increasing amounts of formamide and subsequently higher release rates are achieved. The membrane coatings with formamide concentrations higher than 20 wt% are evidently less permeable than some of the coatings made with coating solutions containing less formamide. This phenomenon has been reported in literature describing reverse-osmosis membranes. The ability to vary the membrane permeability and subsequently the release rate by altering the coating formulation provides added flexibility when designing osmotic delivery systems. EXAMPLE 9

Enhancement of Osmotic Release Rate From Asymmetric Membrane Coated Tablets

Two types of trimazosin tablets were...ascorbic acid tablets were made with 1 wt% doxazosin, 85 wt% ascorbic acid, 13 wt% Avicel PH102 (FMC Corp.), and 1 wt% magnesium stearate. The osmotic pressure of a saturated solution of these tablet excipients was about 5.5 MPa (about 54 atm) the osmotic driving force in gastric buffers being 4.76 MPa (47 atm), and the doxazosin solubility in a saturated solution of the tablet excipients was about 26 mg/ml.

- 2) Doxazosin/succinic acid/ lactose tablets were made with 1 wt% doxazosin, 49.5% succinic acid, and 49.5% lactose. The...
- ...solution of these tablet excipients was about 4.76 MPa (about 47 atm).

The osmotic driving force in gastric buffer being 4.05 MPa (40 atm), and the doxazosin solubility in a saturated solution of the tablet excipients was about 27 mg/ml.

- 3) Doxazosin/succinic acid tablets were made with 1 wt% doxazosin, 97...
- ...solution of these tablet excipients was about 2.94 MPa (about 29 atm) the osmotic driving force in gastric buffer being 2.23 MPa (22 atm), and the doxazosin solubility in a saturated solution of the tablet excipients was about 27 mg/ml.
 - 4) Doxazosin/adipic acid/lactose tablets were...
- ...solution of these tablet excipients was about 2.53 MPa (about 25 atm) the osmotic driving force in gastric buffer being 1.82 MPa (18 atm), and the doxazosin solubility in a saturated solution of the tablet excipients was about 20 mg/ml. All of the tablets had a total weight of 500 mg and contained 5 mg of doxazosin. All of the tablets were coated with...

...2.

Release rates from these tablets into gastric buffer vary from approximately 0.2 mg/hr to 0.6 mg/hr, as shown in Figure 7. The release rates increased with an increase in the osmotic driving force as is characteristic of osmotic delivery systems. The release rate from the doxazosin/adipic acid/lactose tablets...

...the doxazosin solubility was lower than that in the other tablets. Tablets with higher osmotic driving forces will build up larger boundary layers within the asymmetric membrane, and the release rates will not be directly proportional to osmotic driving force. These data illustrate that the doxazosin release rates can be controlled by selecting certain soluble fillers for the tablets. EXAMPLE 11

Formation of Macropores in Asymmetric Membrane...

...coated as described in Example 2. The coating solutions contained 1 wt%, 5 wt%, 10 wt %, and 20 wt% glycerol as a pore-former in place of formamide. All of the coating solutions contained 15 wt% cellulose acetate 398 -10 (Eastman Chemical Products, Inc.) and were dissolved in acetone.

The coatings made with these coating solutions were asymmetric in structure and similar to the coatings described in Example 2, but instead of having a continuous outer skin, macropores were formed through the skin. More and slightly larger macropores were formed as the glycerol concentration in the coating solution was increased (Figures 9-12). Coatings made from coating solutions containing 1 wt% glycerol do not form macropores through the outer skin, but macropores were formed on the outer skin as the concentration of glycerol was increased to 5 wt% glycerol and greater. These macropores, formed during the coating process, presumably serve as drug-delivery ports.

Trimazosin release rates into water and a 2.4 wt% magnesium sulfate solution were determined from tablets coated with solutions containing 1 wt%, 10 wt%, and 20 wt% glycerol. Higher release rates into water than those into the magnesium sulfate solution · indicate osmotic release, as was described in Example 6. The release rates into the two receptor solutions are shown in Table I. The coatings made with 1 wt% and 10 wt% glycerol appeared to deliver trimazosin osmotically (higher release rates in water than in the magnesium sulfate solution). The release rates from the tablets coated with the solution containing 20 wt% glycerol

were the same into the two receptor solutions, which is characteristic of diffusional release. Thus, by controlling the **glycerol** concentration in the coating solution, tablet coatings can be made that facilitate osmotic and/or...

... Asymmetric Membrane

Trimazosin tablets as described in Example 11 were coated with a coating suspension consisting of 15 wt% cellulose acetate 398-10 (Eastman Chemical Products, Inc.), 5 wt% sodium acetate...

- ...in Example 2. The membrane coatings formed on the tablets were asymmetric and the outer **skin** had many macropores through the surface. These macropores were about 1 (mu)m to 5...
- ...40 wt% trimazosin, 58 wt% Ethocel M50 (Dow Chemical Co.), and 2 wt% magnesium stearate with a total weight of 500 mg were coated with asymmetric membranes made of cellulose acetate...
- ...The three coating solutions contained 1) 15 wt% cellulose acetate 398-10, and 33 wt% ethanol dissolved in acetone; 2) 12 wt% Ethocel M50, 16 wt% formamide, and 24 wt% methanol...
- ...dissolved in acetone.

The trimazosin release rates from all three coated tablets were constant, or **zero** order, for the duration of the tests (7.5 hours), which is typical for osmotic...

 $\dots 0.22$ (+-) 0.11 mg/ml, respectively. Thus, asymmetric-membrane coatings that have different water **permeabilities** and correspondingly different drug release rates.

EXAMPLE 14

Release Rates of Asymmetric Membrane Coated Tablets...

- ...trimazosin tablets coated by the quench process were larger (350 mg) than those coated by **the** dry process (280 mg). Normalizing the release rates with respect to tablet surface areas, the...
- ...dry process was 3.9 (+-) 0.4 mg/hr. Thus, the release rate from tablets coated by the dry-process membranes was about one third that from tablets coated by the quench process. The dry process coatings are evidently less permeable to water than those made by the quench process.

EXAMPLE 15

Asymmetric Membrane Capsules Capsules...

...solution of 15 wt% cellulose acetate 398-10 (Eastman Chemical Products, Inc.), and 33 wt% ethanol dissolved in acetone was used to make the capsules. The solution was kept at room temperature.

Mandrels were made of glass tubes (9 mm and 10 mm outside diameter) ${f fired}$ at one end until they were rounded and had a small hole (about 1 mm...

- ...withdrawn slowly (5 seconds to completely withdraw the mandrels). The coated mandrels were inverted and **allowed** to dry in room-temperature air for 5 seconds and then were immersed in a...
- ...sliding a tightly fitting collar down each mandrel and sliding the capsules off. The capsules were then dried for at least 12 hours in room-temperature air. The dry capsules were...

...capsules and essentially the entire thickness of the capsule wall were porous. The dense outer **skin** was about 1 (mu)m thick, as shown in Figure 13, **and** was continuous and imperforate. EXAMPLE 16

Osmotic and Diffusional Release from Asymmetric Membrane Capsules Asymmetric-membrane capsules were made in the same manner as described in Example 15. The polymer solution used to make these capsules consisted of 17 wt% cellulose acetate 398-10 (Eastman Chemical Products, Inc.), and 30 wt% ethanol dissolved in acetone. The capsules were soaked in a 20-wt% glycerol solution for at least 12 hours after they were removed from the mandrels. The capsules were then allowed to dry at room temperature for at least 12 hours. Soaking the capsules in the glycerol solution plasticized the capsules. Once plasticized, the capsules remained flexible and resilient for at least...wt% lactose. The powder was loaded into the body of the capsule, then a thin band of adhesive solution was placed around the capsule body such that when the cap of the capsule was placed on the body it would cover the adhesive band. Another band of the adhesive solution was then placed around the capsule at the joint between the cap and the body. The adhesive solution was 10 wt% cellulose acetate in ethyl acetate. The adhesive was allowed to dry for at least two hours before the capsules were tested.

The capsules were placed in solutions with different osmotic pressures. The receptor solutions were **dextrose** solutions of various concentrations and gastric buffer (described in Example 7). The pH of the **dextrose** solutions was adjusted to a pH of 4 by adding tartaric acid. The doxazosin solubility in all the **dextrose** solutions was about 10 mg/ml, and the doxazosin solubility **in gastric** buffer was about 250 ppm. Release rates from osmotic delivery systems are not dependent on...

- ...the solution inside the capsule and the receptor solution outside the capsule is the osmotic **driving force**. Consequently, the osmotic release rates were inversely proportional to the osmotic pressure of the receptor...
- ...lower osmotic pressure than a saturated solution of trimazosin and tartaric acid, thus a longer time lag from the capsules loaded with trimazosin and calcium lactate would be expected. The rate of water inbibition into the capsules is theoretically proportional to the osmotic pressure within the capsule. The even shorter time lag from capsules loaded with a trimazosin in...
- ...due to a combination of the reduction of the interstitial volume between the powder particles, **better** initial contact with the inside surface of the capsule, and plasticization by the PEG 900, which **may** facilitate quicker wetting of the membrane and a higher water **permeability**. The ability to control the time lag before drug delivery begins may be advantageous for...
- ...drug-delivery systems that must be released in the intestines or for other specialized drug- delivery profiles.

 EXAMPLE 18

Macropores in Asymmetric Membrane Capsules

Asymmetric-membrane capsules have been made that have macropores through the outer skin of the capsules. These macropores function as drug delivery ports through which the drug solution is pumped from the capsules. The capsules were made by the same method as described in Example 15. Gycerol was added to the polymer solution and the ethanol was removed. The polymer solution consisted of 17 wt% cellulose acetate

- 398-10 (Eastman Chemical Products , Inc.) and 1 wt% to 20 wt% glycerol dissolved in acetone. The macropores were more numerous and slightly larger as more glycerol was used in the polymer solution and were similar in appearance to the macropores in...
- ...surface of a capsule wall made with a 17 wt% cellulose acetate and 3 wt% glycerol solution in acetone is shown in Figure 15. The macropores through the surface and the...
- ...the exterior of the capsule, and a steady stream flows to the bottom of the container . In capsules that do not have macropores through the surface, the dextran blue is pumped...
- ...flows to the bottom of the container. Thus, macropores can be formed through the outer skin of asymmetric membrane capsules and appear to function as drug-delivery ports for osmotic drug...described in Example 15. The Ethocel polymer solution consisted of 12 wt% Ethocel M50, 16 wt % formamide, and 24 wt% methanol dissolved in methyl acetate, and the cellulose acetate butyrate polymer...
- ...approximately 300 (mu)m and 450 (mu)m, respectively. The thickness of the dense outer skin for both these capsules was about 1 (mu)m. All of the capsules were loaded...
- ...trimazosin in PEG 900 slurry at about 37(degree) C. (PEG 900 is a solid at room temperature.) The capsules were sealed with an epoxy adhesive as described in Example 16...
- ... of cellulose acetate, Ethocel, and cellulose acetate butyrate, respectively. These data illustrate the different water permeabilities in the polymers investigated and how these properties can be utilized to formulate osmotic capsules...
- ...to non-pareil beads (20- to 25-mesh, or about 1 mm in diameter) with a spray-coating process. The beads were mixed with the polymer coating solution, then sprayed through an external-mixing air-atomizing nozzle (Model 100150) available from...
- ...a 38-wt% nonsolvent mixture dissolved in acetone. The nonsolvent mixture consisted of 57 wt% ethanol , 31 wt% butanol, 7 wt% water, and 5 wt%
 - The beads and polymer solution were mixed just upstream from the spray nozzle, and the...
- \ldots were similar in appearance to the dry-process asymmetric-membrane tablet coatings described in Example 3 . The asymmetric-membrane coatings on beads were much thinner than the dry-process coatings on...
- ...tablets and beads were porous through essentially the entire thickness and had a dense outer skin that was approximately 1 (mu)m thick. EXAMPLE 21
 - Multiple Coatings of Asymmetric Membrane on...
- ... The coating process was repeated three times, and after each coating a quantity of beads were set aside; thus, beads were obtained with single, double, and triple coatings. The overall coating thickness varied from 5 (mu)m to 15 (mu)m for the single-coated beads, from 10 (mu)m to 25 (mu)m for the double -coated beads, and 20 (mu)m to 30 (mu)m for the triple-coated beads, as determined by SEM observation. The outer skin of the coatings was dissolved by the subsequent coatings, leaving a

homogeneous porous layer through the entire coating except for an outer **skin** that was approximately 1 (mu)m thick, as shown by the example in Figure 17. The outside **skin** was the same for single, double and triple coatings.

Release rates were determined from these beads (65 mg) into a lactose solution with an osmotic pressure of 709 kPa (7...

...from beads that were coated more times, as shown in Figure 18. This was probably due to the increase in overall thickness of the asymmetric coating as additional coatings were applied.

EXAMPLE 22

Osmotic Release From Asymmetric Membrane Coated Beads Triple-coated doxazosin beads, as described in Example...

- ...of 0 kPa), a lactose solution with an osmotic pressure of 709 kPa (7 atm), and a dextrose solution with an osmotic pressure of 2.03 MPa (20 atm). Tartaric acid was added to the lactose and dextrose solutions to adjust the pH to 4 so that the doxazosin solubility, 10 mg/ml...
- ...rates from the beads into the different receptor solutions will not be due to different concentration gradients across the membrane coatings, and the diffusional contribution to the drug release from the beads is the same in all cases. The doxazosin-release rates into these three...at the point when 0.6 mg of doxazosin had been released, decreasing the osmotic driving force and the doxazosin -release rate. The dependence of the release rates on the osmotic pressure, or more precisely...
- ...solution at room temperature (same polymer coating solution as that described in Example 20). The **beads** and coating solution were placed in a pressure vessel, and 276 kPa (40 psi) was applied to the vessel. The beads and polymer **solution** were sprayed out an airless nozzle (a hose connector with a 3-mm diameter orifice...
- ...nozzle caused bubbles to form in the coating solution, thus forming macropores through the outer **skin** as the coating precipitates (Figure 20). The same coating solution (and conditions) but applied without a pressure drop forms a continuous, dense **outer skin**, as described in Example 3.

 EXAMPLE 24

Formation of Asymmetric Membrane Coated Beads-Wet Process...

- ...to form asymmetric osmotic beads. The polymer coating solution was made of 15 wt% cellulose acetate 398-10 (Eastman Chemical Products, Inc.), and 33 wt% ethanol dissolved in acetone and was used at room temperature. A mixture of beads and coating...
- ...beads were kept in the water quench bath for about a minute then removed and **allowed** to air-dry at room temperature for at least 12 hours. These asymmetric beads had...
- ...to 3 mm and a skinned outer surface. Inside the particles was a porous cellulose acetate network. Any trimazosin beads present were dispersed in the porous cellulose acetate network. Osmotic release of...
- ...Figure 21. The solubility of trimazosin is the same in both solutions; thus, the 75% decrease in release rate into the magnesium sulfate solution was due to reduction of the osmotic driving force across the membrane coating, demonstrating osmotic release.

 EXAMPLE 25

Formation of Macropores in Asymmetric Membranes...

- ...were dip-coated with a solution consisting of 15 wt% CA 398-10, 30 wt% ethanol, and 55 wt% acetone. The coated tablets were air-dried for 5 seconds and then immersed in a 60(degree) C. water quench bath for 5 minutes. After the coated tablets were removed from the...
- ...temperature and humidity. These membrane coatings were asymmetric and had macropores in the outer surface of the coating. Small bubbles could be seen forming on the surface of the membrane coating as it precipitated in the quench bath. Several of these bubbles ruptured the skin of the membrane coating forming macropores that could serve as drug-delivery ports.

EXAMPLE 26

Formation of Macropores in Asymmetric Membranes
Doxazosin tablets as described in Example 25 were dip-coated with a solution consisting of 15 wt% CA 398-10, 30 wt% ethanol, and 55 wt% acetone. The coated tablets were air-dried for 5 seconds and then immersed in an ethanol quench bath at ambient temperature for 5 minutes. After the tablets were removed from the...

- ...air-dried for at least 12 hours at ambient conditions. The membrane coatings were asymmetric **and** the outer **skin** had many macropores through the surface. These macropores were about 1 (mu)m in diameter...
- ...ethylcellulose (Ethocel std-45, Dow Chemical, Midland, Michigan), 25 wt% acetic acid, and 5 wt% glycerol dissolved in acetone.

 Capsules were made using two sizes of mandrels--one size for the...
- ...seconds and then immersed in a 45(degree)C quench bath that contained 5 wt% glycerol in water. The coated mandrels were removed from the quench bath after 30 minutes, and...
- ...capsule caps and bodies were removed from the mandrels by sliding a tight collar down each mandrel to force the caps and bodies off the mandrels. The capsule caps and bodies...
- ...the capsule wall, including the inside surface of the capsule, was porous. The dense outer **skin** was less than 1 (mu)m thick **and**, as shown in **Figure** 22, was continuous and imperforate.

These capsules were loaded with 200 mg of a powder...that contained 15 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25 wt% ethanol dissolved in acetone. The volatile solvents were evaporated, leaving a cellulose acetate seal that prevented...

- ...atm) and pH of 7.5) at 37(degree)C. About 70% of the glipizide was released at a **constant** rate--a release pattern that is typical of osmotic-delivery systems. The steady-state release...
- ...of 15 wt% cellulose acetate butyrate (CAB 381-20, Eastman Chemicals, Kingsport, Tennessee), 30 wt% ethanol, and 5 wt% glycerol dissolved in acetone.

Capsules were made using two sizes of mandrels—one size for the capsule cap and one size for the capsule body. The mandrels were immersed in room—temperature coating solution and were withdrawn slowly, taking 9 seconds to completely withdraw the mandrels. The...

...7 seconds and then immersed in a room-temperature quench bath that contained 5 wt% glycerol in water. The coated mandrels were removed from the quench bath after 30 minutes, and the capsule caps and bodies

- removed from the mandrels by sliding a tight collar down each mandrel to force the caps and bodies off the mandrels. The capsule caps and...
- ...the capsule wall, including the inside surface of the capsules, was porous. The dense outer **skin** was less than 1 (mu)m thick **and**, as shown in **Figure** 23, was continuous and imperforate.

These capsules were loaded with 200 mg of a powder...

- ...that contained 15 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25 wt% ethanol dissolved in acetone. The volatile solvents were evaporated, leaving a cellulose acetate seal that prevented...
- ...C. About 70% of the glipizide was released at a constant rate--a release pattern typical of osmotic-delivery systems. The steady-state release rate of glipizide (during the period of constant release) was 1...
- ...Chemical, Midland, Michigan), 2 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 30 wt % ethanol, and 10 wt% glycerol dissolved in acetone.

Capsules were made using two sizes of mandrels--one size for the capsule cap and one size for the capsule body. The mandrels were immersed in room- temperature coating solution and were withdrawn slowly, taking 9 seconds to completely withdraw the mandrels. The...

- ...7 seconds and then immersed in a room-temperature quench bath that contained 5 wt% glycerol in water. The coated mandrels were removed from the quench bath after 30 minutes, and...
- ...can function as drug-delivery ports. Thus, blending two incompatible polymers can be used to **form** asymmetric-membrane capsules **or** coatings that contain macropores in the surface.

These capsules were loaded with 200 mg of...

- ...that contained 15 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25 wt% ethanol dissolved in acetone. The volatile solvents were evaporated, leaving a cellulose acetate seal that prevented...
- ...About 70% of the glipizide was released at a constant rate--a release pattern that is typical of osmotic- delivery systems. The steady-state release rate of glipizide (during the period of constant release) was... 20, Eastman Chemicals, Kingsport, Tennessee), 2 wt% ethylcellulose (Ethocel std-100, Dow Chemical, Midland, Michigan), 30 wt% ethanol, and 5 wt% lglycerol dissolved in acetone.

Capsules were made using two sizes of mandrels—one size for the capsule cap and one size for the capsule body. The mandrels were immersed in room—temperature coating solution and were then withdrawn slowly, taking 7 seconds to completely withdraw the mandrels...

...7 seconds and then immersed in a room-temperature quench bath that contained 5 wt% glycerol in water. The coated mandrels were removed from the quench bath after 30 minutes, and the capsule bodies and caps were removed from the mandrels by sliding a tight collar down each mandrel to force the caps and bodies off the mandrels. The capsule bodies and caps were dried in room-temperature air for at least 12 hours and then trimmed to the desired lengths.

Capsule bodies and caps formed by ...

...the capsule wall, including the inside surface of the capsule, was porous. The dense outer **skin** was less than 1 (mu)m thick and had many

dimples, as shown in Figure 25. The dimples appear to contain macropores in the outer skin, which could serve as drug-delivery ports.

The capsules were loaded with 200 mg of...

- ...solution containing 15 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25 wt% ethanol dissolved in acetone. The volatile solvents were evaporated, leaving a cellulose acetate seal that prevented...
- ...70% of the glipizide was release at a constant rate--a release pattern that is **typical** of osmotic-delivery **systems**. The steady-state release rate of glipizide (during the period of constant release) was 1...
- ...20, Eastman Chemicals, Kingsport, Tennessee), 3 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 30 wt% ethanol, and 5 wt% glycerol dissolved in acetone.

Capsules were made using two sizes of mandrels--one size for the...

- ...seconds and then immersed in a 42(degree)C quench bath that contained 5 wt% glycerol in water. The coated mandrels were removed from the quench bath after 30 minutes, and the capsule caps and bodies removed from the mandrels by sliding a tight collar down each mandrel to force the caps and bodies off the mandrels. The...
- ...the capsule wall, including the inside surface of the capsule, was porous. The dense outer **skin** was less than **1** (mu)m **thick** and, as shown in Figure 26, was continuous and imperforate.

 The capsules were loaded with...
- ...solution containing 15 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25% ethanol dissolved in acetate. The volatile solvents were evaporated, leaving a cellulose acetate seal that prevented...
- ...osmotic pressure of 709 kPa (7 atm) and pH of 7.5) at 37(degree) ${\bf C}$. About 70% of the glipizide was released at a constant rate--a release pattern that...
- ...asymmetric-membrane walls were made from a solution of 34 wt% cellulose acetate propionate (CAP 482 -0.5, Eastman Chemicals, Kingsport, Tennessee), and 10 wt% glycerol dissolved in acetone.

Capsules were made using two sizes of mandrels--one size for the...

- ...3 seconds and then immersed in a room-temperature quench bath that contained 15 wt% glycerol in water. The coated mandrels were removed from the quench bath after 30 minutes, and the capsule caps and bodies were removed from the mandrels by sliding a tight collar down ...had walls about 450 (mu)m thick that were asymmetric in structure. Essentially the entire thickness of the capsule walls, including the inside surface of the capsules, was porous, as shown in Figure 27. The dense outer skin was less then 1 (mu)m thick and contained many macropores, which would function as...
- ...made from a solution of 36.5 wt% nitrocellulose (nitrocellulose RS 18-25, Hercules, Inc., **Wilmington**, Delaware), 13.5 wt% isopropanol, and 15 wt% **glycerol** dissolved in acetone.

Capsules were made using two sizes of mandrels--one size for the...

...7 seconds and then immersed in a room-temperature quench bath that

contained 15 wt% $\,$ glycerol $\,$ in water. The coated mandrels were removed from the quench bath after 30 minutes, and the capsule caps and bodies were removed from the mandrels by sliding a tight collar down each mandrel to force the caps and bodies off the mandrels. The capsule... ...and then trimmed to the desired lengths.

Capsules formed by the process described above had walls about 400 (mu)m thick that were asymmetric in structure. Essentially the entire thickness of the capsule walls, including the inside surface of the capsules, was porous, as shown in Figure 28. The dense outer skin was less than 1 (mu)m thick.

EXAMPLE 34

Formation of Asymmetric-Membrane Capsules Made...

... of 23.6 wt% cellulose acetate phthalate (CAPh, Eastman Chemicals, Kingsport, Tennessee), 25.5 wt% ethanol, and 7.3 wt% glycerol dissolved in acetone.

Capsules were made using two sizes of mandrels -- one size for the capsule cap and one size for the capsule body. The mandrels were immersed in room- temperature coating solution and were withdrawn slowly, taking 7 seconds to completely withdraw the mandrels. The...

...minutes, and the capsule caps and bodies were removed from the mandrels by sliding a tight collar down each mandrel to force the caps and bodies off the mandrels. The capsule...

...desired lengths.

Capsules formed by the process described above had walls about 200 (mu)m thick that were asymmetric in structure. Essentially the entire thickness of the capsule walls, including the inside surface of the capsules, was porous, as shown in Figure 29. The dense outer less than 1 (mu)m thick and was continuous and imperforate. EXAMPLE 35 Formation...

...solution of 25 wt% cellulose acetate trimellitate (CAT, Eastman Chemicals, Kingsport, Tennessee), and 25 wt% ethanol dissolved in acetone.

Capsules were made using two sizes of mandrels -- one size for the capsule cap and one size for the capsule body. The mandrels were immersed in room- temperature coating solution and were withdrawn slowly, taking 10 seconds to completely withdraw the mandrels. The...

...minutes, and the capsule caps and bodies were removed from the mandrels by sliding a tight collar down each mandrel to force the caps and bodies off the mandrels. The capsule...

...the desired lengths.

Capsules formed by the process described above had walls about 400 (mu) m thick that were asymmetric in structure. Essentially the entire thickness of the capsule walls, including...

...inside surface of the capsules, was porous, as shown in Figure 30. The dense outer skin was less than 1 (mu)m thick and was continuous and imperforate. EXAMPLE 36 Formation...

...solution of 15 wt% polyvinyl alcohol (Elvanol 71-30, Dupont, Wilmington, Delaware), and 20 wt% ethanol dissolved in water. Capsules were made using two sizes of mandrels--one size for the...

...minutes, and the capsule caps and bodies were removed from the mandrels by sliding a tight collar down each mandrel to force the caps and bodies off the mandrels. The capsule...the capsule walls, including the inside surface of the capsules, was porous, as shown in Figure 31. The dense outer skin was approximately 50 (mu)m thick and continuous and imperforate.

These capsules were loaded with...

- ...that contained 15 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25 wt% ethanol dissolved in acetone. The volatile solvents were evaporated, leaving a cellulose acetate seal that prevented...
- ...solution of simulated intestinal buffer (osmotic pressure of 709 kPa (7 atm) and pH of 7 .5) at 37(degree)C. About 90% of the glipizide was released at a constant...
- ...15 wt% ethylenevinyl alcohol (EVAL F-101, EVAL Co. of America, Omaha, Nebraska), 55 wt% ethanol , and 30 wt% water.

 Capsules were made using two sizes of mandrels--one size for...
- ...after 30 minutes, and the capsule caps and bodies were removed from the mandrels by **sliding** a tight collar down each mandrel to force the caps and bodies off the mandrels...
- ...of the capsule walls, including the inside surface of the capsules, was porous, as shown in Figure 32. The **dense** outer **skin** was less than 1 (mu)m thick and was continuous and imperforate.

 These capsules were...
- ...that contained 15 wt% cellulose acetate (CA 298-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25 wt% ethanol dissolved in acetone. The volatile solvents were evaporated, leaving a cellulose acetate seal that prevented...
- ...bath after 30 minutes, and the capsule caps and bodies were removed from the mandrels **by** sliding a tight collar down each mandrel to force the caps and bodies of the...
- ...thickness of the capsule walls, including the inside surface of the capsules, was porous, as **shown** in Figure 33. **The**0 dense outer **skin** was less than 1 (mu)m thick and was continuous and imperforate.

 These capsules were...
- ...solution containing 15 wt% cellulose actate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25 wt% ethanol dissolved in acetone. The volatile solvents were evaporated, leaving a cellulose acetate seal that prevented...from the quench bath after 30 minutes, and the capsule caps and bodies were removed from the mandrels by sliding a tight collar down each mandrel to force the caps and...
- ...the entire thickness of the capsule walls, including the inner surface of the capsules, was **porous**, as shown in **Figure** 34. The outer **skin** was covered with many pores less than 1 (mu)m in diameter.

 These capsules were...
- ...that contained 15 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25 wt% ethanol dissolved in acetone. The volatile solvents were evaporated, leaving a cellulose

acetate seal that prevented...

- ...removed from the quench bath after 30 minutes, and the capsule caps and bodies were **removed** from the mandrels by sliding a tight collar down each mandrel to force the caps...
- ... Essentially the entire thickness of the capsule walls, including the inside surface of the capsule, was porous, as shown in Figure 35. The dense outer skin was less than 1 (mu)m thick and was continuous and imperforate.

These capsules were...

- ...that contained 15 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25 wt% ethanol dissolved in acetone. The volatile solvents were evaporated, leaving a cellulose acetate seal that prevented...
- ...mandrels were removed from the quench bath after 30 minutes, and the capsule caps and **bodies** were removed from the mandrels by sliding a tight collar down each mandrel to force...
- ...air for at least 12 hours and then trimmed to the desired lengths.

 Capsules formed by the process described above had walls about 200 (mu)m thick that were asymmetric in...
- ...inside surface of the capsules, was porous, as shown in Figure 36. The dense outer **skin** was about 5 (mu)m thick and was continuous and imperforate.

EXAMPLE 42

Formation ofDupont, Wilmington, Delaware), 19 wt% water, and 56 wt% ethanol .

Capsules were made using two sizes of mandrels--one size for the capsule cap and...

- ...mandrels were removed from the quench bath after 30 minutes, and the capsule caps and **bodies** were removed from the mandrels by sliding a tight collar down each mandrel to force...
- ...asymmetric in structure. Most of the thickness of the capsule walls, including the inside surface of the capsules, was porous, as shown in Figure 37. The dense outer skin was about 11 (mu)m thick and was continuous and imperforate.

These capsules were loaded...

- ...that contained 15 wt% cellulose acetate (CA 398-10, Eastman Chemicals, Kingsport, Tennessee), 8 wt% glycerol, and 25 wt% ethanol dissolved in acetone. The volatile solvents were evaporated, leaving a cellulose acetate seal that prevented...
- ...during release-rate tests.

For release-rate tests, loaded capsules were placed in a stirred solution of simulated intestinal buffer (osmotic pressure of 709 kPa (7 atm) and pH of 7.5) at 37(degree...

...asymmetric-membrane walls were made from a coating solution of 10 wt% ethylcellulose (Ethocel std- 100 , Dow Chemicals, Midland, Michigan), 2 wt% cellulose acetate phthalate (CAPh, Eastman Chemicals, Kingsport, Tennessee), 30 wt% ethanol , and 10 wt% glycerol dissolved in acetone.

Capsules were made using two sizes of mandrels--one size for the...
...7 seconds and then immersed in a room-temperature quench bath that

- ...m thick that were asymmetric in structure. Essentially the entire thickness of the capsule walls, including the inner surface of the capsules, was porous, as shown in Figure 38. The dense outer skin had macropores on the surface, which could serve as drug-delivery ports. The macropores were...
- ...asymmetric-membrane walls were made from a coating solution of 10 wt% ethylcellulose (Ethocel std- 100, Dow Chemicals, Midland, Michigan), 2 wt% cellulose acetate trimellitate (CAT, Eastman Chemicals, Kingsport, Tennessee), 30 wt% ethanol, and 10 wt% glycerol dissolved in acetone.

Capsules were made using two sizes of mandrels--one size for the...

- ...7 seconds and then immersed in a room-temperature quench bath that contained 5 wt% **glycerol** in water. The coated mandrels were removed from the quench bath after 30 minutes, and the capsule **caps** and bodies were removed from the mandrels by sliding a tight collar down each mandrel...
- ...inside surface of the capsules, was porous, as shown in Figure 39. The dense outer **skin** appeared to have macropores through the surface, which could serve as drug-delivery ports. The...
- ...and 75 wt% acetone. The polymer solution was kept at 40(degree)C and the drying chamber was kept at 70(degree)C. The beads were mixed with the polymer solution just upstream from the spray nozzle and the mixture...m thick. The entire thickness of the coating was porous except for a dense outer skin, as shown in Figure 40. The dense outer skin was less than 1 (mu)m thick and was continuous and imperforate over the entire...
- ...Delaware), 14 wt% methyl ethyl ketone, 3 wt% water and 52 wt% acetone. The polymer solution was kept at 45(degree)C and the drying chamber was kept at 80(degree)C. The beads were mixed with the polymer solution just upstream from the spray nozzle and the...
- ...asymmetric-membrane coating that was approximately 20 (mu)m thick. Except for a dense outer **skin**, the entire thickness of the coating was porous, as shown in Figure 41. The dense outer **skin** was less than 1 (mu)m thick and was continuous and imperforate over the entire...
- ...were made with several different polymers, including polyvinyl alcohol (PVA), polyvinylidene fluoride (PVDF), and blends of cellulose acetate butyrate (CAB) and cellulose acetate; CAB and ethylcellulose (Ethocel); and Ethocel and CA. The...
- ...open end of the capsule above the surface of the buffer. Due to the osmotic driving force, water was imbibed into the capsule bodies. The water imbibed into the capsule bodies was measured by weight gain until the solution inside the capsule body filled the capsule body and overflowed into the intestinal buffer.

Release-rate tests, such as **those** described in Examples 29, 30, 31, 36 and 39, were conducted. The capsules were loaded **with** the same powder mixture as that used to load the capsule bodies for the water...

...water flux is shown in Figure 42 for each type of capsule. The release

rates increase as the water fluxes through the asymmetric-membrane capsule walls increase, as predicted by osmotic theory. Thus, by using the asymmetric-membrane capsules with the proper permeability to water, the desired release rate can be achieved without changing the composition of the material loaded in the capsules.

EXAMPLE 48

Using standard techniques well known in the pharmaceutical **industry**, 3/8 inch modified ball shape tablets were prepared to contain: (see image in original...

...model HCT 30) using a coating solution of the following composition:

acetone 50.0 wt% ethanol 22.8 wt% n-butanol 12.4 wt% water 2.8 wt% glycerol 2.0 wt% cellulose acetate 398-10 10.0 wt% The coating process was stopped...

- ...a largely porous layer which accounted for most of the coating thickness, surmounted by a **skin** which was perforated by numerous pores, but which was much less porous in appearance than...
- ...and coated with a solution having the composition: cellulose acetate 398-10 5% acetone 55%

ethanol 95% USP 40%

After the beads had received coating equivalent to 4.7 wt% cellulose...in the quench bath, the coated mandrels were withdrawn and dried at room temperature for **about** 30 minutes. After the drying step, the capsule shells were stripped off the pins using...

- ...and the other half had pins corresponding to capsule caps. The capsule dosage form was **assembled** by filling the capsule body with a powder composition consisting of an active agent and...
- ...electron microscope (SEM). The membrane was asymmetric with a relatively thin (6 (mu)m) dense **skin** formed on the surface of the capsule that was away from the mold pin and...
- ...Capsules were made from cellulose acetate as in Example 51 but with different ratios of **glycerol** /triethylcitrate. They were filled with a mixture of glipizide, meglumine, and sodium bicarbonate, and sealed...
- ...CLAIMS or more asymmetric membranes.
 - 2. A device according to claim 1, wherein the membrane is **permeable** and is either imperforate or perforate.
 - 3. A device according to claim 1, wherein the...
- ...is dazmergrel.
 - 16. A device according to claim 9, wherein the substance is a blood-glucose lowering agent.
 - 17. A device according to claim 16, wherein the substance is glipizide. $18\dots$
- ...present in the amount of 15 by weight and the pore-forming substances are formamide, acetic acid, glycerol, an alkanol of one to four carbon atoms, sodium acetate, aqueous hydrogen peroxide or polyvinylpyrrolidone.
 - 24. The process of claim 23 wherein the pore-forming substance is

ethanol present in the amount of 30% by weight.

- 25. The process of claim 23 wherein the pore-forming substance is glycerol present in the amount of 10% by weight.
- 26. The process of claim 21 comprising...
- ...398-10 present in the amount of 15% by weight and the pore-forming substances are formamide, acetic acid, glycerol, an alkanol of one to four carbon atoms, sodium acetate, aqueous hydrogen peroxide or polyvinylpyrrolidone.
 - 28. The process of claim 27 wherein the **pore** -forming substance is **ethanol** present in the amount of 30% by weight.
 - 29. The process of claim 20 wherein...
- ...is cellulose acetate 398-10 present in the amount of 15% by weight and the pore -forming substances are comprised of glycerol, water, butanol and ethanol present in the amount of 1.9, 2.7, 11.7 and 21.7%, respectively...ester is cellulose acetate 398-10 present in the amount of 16% by weight and the pore-forming substance is formamide, acetic acid, glycerol, an alkanol of one to four carbon atoms, sodium acetate, aqueous hydrogen peroxide or polyvinylpyrrolidone.
 - 36. The process of claim 35 wherein the pore-forming substances are ethanol and glycerol present in the amount of 28 and 8%, respectively, by weight.
 - 37. The process of **claim** 35 wherein the pore-forming substance is **glycerol** present in the amount of 10% by weight.
 - 38. A process for preparing beads for...
- ...the polymer flakes by sieving or by using cyclones.
 - 41. The process of claim 40 wherein the pore-forming substance, which comprises 38% by weight of the total solution and consists of ethanol, butanol, water and glycerol present in the amount of 57, 31, 7 and 5%, respectively, by weight and the...
- ...c) removing the beads after the membrane has solidified and drying.
 - 45. The process of **claim** 44 wherein the cellulose ester is cellulose acetate 398-10 present in the amount of 15% by weight and the pore-forming substance is **ethanol** present in the amount of 33% by weight.
 - 46. A capsule device for the controlled...
- ...device comprising a core of said substances, with or without excipients, enclosed in a capsule **the** top or bottom of which is comprised of one or more asymmetric membranes.
 - 47. A device of claim 46, wherein the membrane is **permeable** and perforate or imperforate.
 - 48. A device of claim 47, wherein the release is by...
- ...of the desired capsule, with a solution comprised of from 10 to 20% of a cellulose ester or ethyl cellulose by weight and, optionally, from 0 to 40% of one or...
- ...the amount of 16% by weight and the pore-forming substance is formamide, acetic acid, glycerol, an alkanol of one to four carbon atoms, sodium acetate, aqueous hydrogen peroxide or polyvinylpyrrolidone.
 - 53. The process of claim 52, wherein the pore-forming substances are ethanol and glycerol present in the amount of 28 and 8%, respectively, by weight.
 - 54. The process of claim 52, wherein the pore-forming substance is glycerol present in the amount of 10% by weight.
 - 55. A process for preparing a bead...

- ...controlled release of one or more active substances into an environment of use, said device **comprised** of a core of said active substances, with or without one or more excipients, surrounded by more than one asymmetric membrane wherein said membranes are formed by **a** phase inversion process.
 - 56. The process of claim 55, wherein the process is a dry process.
 - 57. The process of claim 56, comprising the spray **coating** of said device suspended in the temperature controlled air flow of a fluidized bed coating...

...have been applied.

- 58. The process of claim 57, wherein the pore-forming substance is **ethanol** and the cellulose ester is cellulose acetate 398-10.
- 59. A process for preparing a...a dry process.
- 61. The process of claim 60, comprising spray coating said core in a perforated pan coating machine with a solution comprised of from 10 to 15% of a...
- ...present in the amount of 16% by weight and the pore-forming substance is formamide, acetic acid, glycerol, an alkanol of one to four carbon atoms, sodium acetate, aqueous hydrogen peroxide or polyvinylpyrrolidone.
 - 36. The process of claim 35 wherein the pore-forming substances are **ethanol** and **glycerol** present in the amount of 28 and 8%, respectively, by weight.
 - 37. The process of claim 35 wherein the pore-forming substance is **glycerol** present in the amount of 10% by weight.
 - 38. A process for preparing beads for...
- ...pore-forming substance, which comprises 38% by weight of the total solution and consists of **ethanol**, butanol, water and **glycerol** present in the amount of 57, 31, 7 and 5%, respectively, by weight and the...
- ...10 present in the amount of 15% by weight and the pore-forming substance is **ethanol** present in the amount of 33% by weight.
- 46. A method for releasing one or...
- ...tablet, capsule or bead.
 - 48. A method of claim 47 wherein the asymmetric membrane is **permeable** and imperforate or perforate.
 - 49. A method of claim 48 wherein the releasing is substantially...
- ...one or more asymmetric membranes.
 - 54. A device of claim 53 wherein the membrane is **permeable** and perforate or imperforate.
 - 55. A device of claim 54 wherein the release is by...
- ...the amount of 16% by weight and the pore-forming substance is formamide, acetic acid, **glycerol**, an alkanol of one to ...peroxide or polyvinylpyrrolidone.
 - 60. The process of claim 59 wherein the pore-forming substances are ethanol and glycerol present in the amount of 28 and 8%, respectively, by weight.
 - 61. The process of claim 59 wherein the pore-forming substance is glycerol present in the amount of 10% by weight.
 - 62. A process for preparing a bead...
- ...have been applied.
 - 65. The process of claim 64 wherein the pore-forming substance is **ethanol** and the cellulose ester is cellulose acetate 398-10.

66. A process for preparing a...

- ...in the amount of 10% by weight and the pore-forming substances are comprised of glycerol, water, butanol and ethanol present in the amount of 2, 2.8, 12.4 and 22, respectively, by weight...
- ...in the amount of 10% by weight and the pore-forming substances are comprised of glycerol, water, butanol and ethanol present in the amount of 2, 2.8, 12.4 and 22, respectively, by weight. ...
- ...CLAIMS ist, das in einer Menge von 15 Gew.-% vorliegt, und die porenbildenden Substanzen Formamid, Essigsaure. Glycerin, ein Alkanol mit 1 bis 4 Kohlenstoffatomen, Natriumacetat, wasriges Wasserstoffperoxid oder Polyvinylpyrrolidon sind.
 - 24. Verfahren nach Anspruch 23, worin die porenbildende Substanz Ethanol ist, das in einer Menge von 30 Gew.-% vorliegt.
 - 25. Verfahren nach Anspruch 23, worin die porenbildende Substanz Glycerin ist, das in einer Menge von 10 Gew.-% vorliegt.
 - 26. Verfahren nach Anspruch 21, das...
- ...ist, das in einer Menge von 15 Gew.-% vorliegt, und die porenbildenden Substanzen Formamid, Essigsaure, **Glycerin**, ein Alkanol mit 1 bis 4 Kohlenstoffatomen, Natriumacetat, wasriges Wasserstoffperoxid oder Polyvinylpyrrolidon sind.
 - 28. Verfahren nach Anspruch 27, worin die porenbildende Substanz Ethanol ist, das in einer Menge von 30 Gew.-% vorliegt.
 - 29. Verfahren nach Anspruch 20, worin...
- ...398-10 ist, das in einer Menge von 15 Gew.-% vorliegt, und die porenbildenden Substanzen **Glycerin**, Wasser, Butanol und **Ethanol** sind, die in einer Menge von 1,9, 2,7, 11,7 bzw. 21,7...
- ...ist, das in einer Menge von 16 Gew.-% vorliegt, und die porenbildende Substanz Formamid, Essigsaure, **Glycerin**, ein Alkanol mit 1 bis 4 Kohlenstoffatomen, Natriumacetat, wasriges Wasserstoffperoxid oder Polyvinylpyrrolidon ist.
 - 36. Verfahren nach Anspruch 35, worin die porenbildenden Substanzen Ethanol und Glycerin sind, die in einer Menge von 28 bzw. 8 Gew.-% vorliegen.
 - 37. Verfahren nach Anspruch 35, worin die porenbildende Substanz Glycerin ist, das in einer Menge von 10 Gew.-% vorliegt.
 - 38. Verfahren zur Herstellung von Perlen...
- ...nach Anspruch 40, worin die porenbildende Substanz, die 38 Gew.-% der gesamten Losung ausmacht, aus Ethanol, Butanol, Wasser und Glycerin besteht, die in einer Menge von 57, 31, 7 bzw. 5 Gew.-% vorliegen, und der...
- ...398-10 ist, das in einer Menge von 15 Gew.-% vorliegt, und die porenbildende Substanz **Ethanol** ist, das in einer Menge von 33 Gew.-% vorliegt.
 - 46. Kapselvorrichtung zur kontrollierten Freigabe einer...
- ...ist, das in einer Menge von 16 Gew.-% vorliegt, und die porenbildende Substanz Formamid, Essigsaure, **Glycerin**, ein Alkanol mit 1 bis 4 Kohlenstoffatomen, Natriumacetat, wasriges Wasserstoffperoxid oder Polyvinylpyrrolidon ist.
 - 53. Verfahren nach Anspruch 52, worin die porenbildenden Substanzen Ethanol und Glycerin sind, die in einer Menge von 28 bzw. 8 Gew.-% vorliegen.
 - 54. Verfahren nach Anspruch 52, worin die porenbildende Substanz Glycerin ist, das in einer Menge von 10 Gew.-% vorliegt.

- 55. Verfahren zur Herstellung einer Perlen...
- ... Anzahl asymmetrischer Membranen aufgebracht worden ist.
 - 58. Verfahren nach Anspruch 57, worin die porenbildende Substanz Ethanol und der Celluloseester Celluloseacetat 398-10 sind.
 - 59. Verfahren zur Herstellung einer Tablette zur kontrollierten...
- ...398-10 ist, das in einer Menge von 10 Gew.-% vorliegt, und die porenbildenden Substanzen Glycerin, Wasser, Butanol und Ethanol sind, die in Mengen von 2, 2,8, 12,4 bzw. 22 Gew.-% vorliegen. ...
- ... CLAIMS ou plusieurs membranes asymetriques.
 - Dispositif suivant la revendication 1, dans lequel la membrane est permeable et est non perforee ou perforee.
 - 3. Dispositif suivant la revendication 1, dans lequel la membrane est semi- permeable et non perforee.
 - 4. Dispositif suivant la revendication 2 ou la revendication 3, dans lequel...
- ...la revendication 9, dans lequel la substance est un agent abaissant le taux sanguin de **glucose** .
 - 17. Dispositif suivant la revendication 16, dans lequel la substance est le glipizide.
 - 18. Dispositif...

()

- ...une quantite de 15 % en poids et les substances porogenes consistent en formamide, acide acetique, **glycerol**, un alcanol ayant 1 a 4 atomes de carbone, acetate de sodium, une solution aqueuse...
- ...ou polyvinylpyrrolidone.
 - 24. Procede suivant la revendication 23, dans lequel la substance porogene est l'ethanol, present en une quantite de 30 % en poids.
 - 25. Procede suivant la revendication 23, dans lequel la substance porogene est le **glycerol**, present en une quantite de 10 % en poids.
 - 26. Procede suivant la revendication 21, comprenant...
- ...une quantite de 15 % en poids et les substances porogenes consistent en formamide, acide acetique, **glycerol**, un alcanol ayant 1 a 4 atomes de carbone, acetate de sodium, une solution aqueuse...
- ...ou polyvinylpyrrolidone.
 - 28. Procede suivant la revendication 27, dans lequel la substance porogene est l'ethanol, present en une quantite de 30 % en poids.
 - 29. Procede suivant la revendication 20, qui...
- ...10 present en une quantite de 15 % en poids, et les substances porogenes consistent en **glycerol**, eau, butanol et **ethanol** presentes respectivement en des quantites de 1,9, 2,7, 11,7 et 21,7...une quantite de 16 % en poids et la substance porogene consiste en formamide, acide acetique, **glycerol**, un alcanol ayant 1 a 4 atomes de carbone, acetate de sodium, une solution aqueuse...
- ...ou polyvinylpyrrolidone.
 - 36. Procede suivant la revendication 35, dans lequel les substances porogenes consistent en **ethanol** et **glycerol** presents respectivement en des quantites de 28 et 8 % en poids.
 - 37. Procede suivant la revendication 35, dans lequel la substance porogene est le **glycerol**, present en une quantite de 10 % en poids.
 - 38. Procede de preparation de perles pour...

- ...lequel la substance porogene, qui represente 38 % en poids de la solution totale, consiste en ethanol, butanol, eau et glycerol presents, respectivement en des quantites de 57, 31, 7 et 5 % en poids, et l...
- ...10 present en une quantite de 15 % en poids et la substance porogene est l'ethanol present en une quantite de 33 % en poids. 46. Dispositif sous forme de capsule pour...
- ...ou plusieurs membranes asymetriques.
 - 47. Dispositif suivant la revendication 46, dans lequel la membrane est permeable et perforee ou non perforee.
 - 48. Dispositif suivant la revendication 47, dans lequel la liberation...
- ...une quantite de 16 % en poids et la substance porogene consiste en formamide, acide acetique, glycerol , un alcanol ayant 1 a 4 atomes de carbone, acetate de sodium, une solution aqueuse...
- ...ou polyvinylpyrrolidone.
 - 53. Procede suivant la revendication 52, dans lequel les substances porogenes consistent en ethanol et glycerol presents respectivement en ...en poids.
 - 54. Procede suivant la revendication 52, dans lequel la substance porogene est le glycerol, present en une quantite de 10 % en poids.
 - 55. Procede de preparation d'un dispositif...
- ...membranes asymetriques.
 - 58. Procede suivant la revendication 57, dans lequel la substance porogene est l' ethanol et l'ester de cellulose est l'acetate de cellulose 398-10.
 - 59. Procede de...
- ...10 present en une quantite de 10 % en poids et les substances porogenes consistent en glycerol, eau, butanol et ethanol presents respectivement en des quantites de 2, 2,8, 12,4 et 22 % en poids.

```
33/5, K/4
             (Item 4 from file: 348)
DIALOG(R) File 348: EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.
00308823
 Skin permeation enhancer compositions using sucrose esters.
                 enthaltende,
                                  die
                                         Hautpermeabilitat
Sukroseester
                                                               vergrossernde
    Zusammensetzungen.
Compositions augmentant la permeabilite du derme utilisant les esters de
    sucrose.
PATENT ASSIGNEE:
  ALZA CORPORATION, (242661), 950 Page Mill Road P.O. Box 10950, Palo Alto
    California 94303-0802, (US), (applicant designated states:
    BE; CH; DE; ES; FR; GB; IT; LI; NL; SE)
INVENTOR:
  Cheng, Yu-Ling, 20658 Celeste Circle, Cupertino, CA 95014, (US)
  Gale, Robert M., 1276 Russell Avenue, Los Altos, CA 94022, (US)
  Sugihara, Edna, 1479 Tyler Parkway, Mountain View, CA 94040, (US)
  Sanders, Harold F., 751 B. Loma Verde Drive, Palo Alto, CA 94303, (US)
LEGAL REPRESENTATIVE:
  Evans, David Charles et al (30461), F.J. CLEVELAND & COMPANY 40-43,
    Chancery Lane, London, WC2A 1JQ, (GB)
PATENT (CC, No, Kind, Date): EP 280413 A1
                                             880831 (Basic)
                              EP 280413 B1
APPLICATION (CC, No, Date):
                              EP 88300772 880129;
PRIORITY (CC, No, Date): US 19442 870226
DESIGNATED STATES: BE; CH; DE; ES; FR; GB; IT; LI; NL; SE
INTERNATIONAL PATENT CLASS: A61L-015/00; A61K-047/00;
CITED PATENTS (EP A): EP 57462 A; DE 2241667 A; US 4568343 A
CITED REFERENCES (EP A):
  CHEMICAL ABSTRACTS, vol. 90, no. 2, January 1979, page 363, abstract no.
    12218y, Columbus, Ohio, US; K. DUCKOVA et al.: "Surfactants in
    suspension. II. Model experiments in vitro", & FARM. OBZ. 1977, 46(2),
    59-68
  CHEMICAL ABSTRACTS, vol. 85, no. 24, 13rd September 1976, page 308,
    abstract no. 182265a, Columbus, Ohio, US; & JP-A-76 92 802 (DAIICHI
    KOGYO SEIYAKU CO., LTD.) 13-02-1975;
ABSTRACT EP 280413 A1
    A method for enhancing the transdermal flux of a transdermal
  deliverable drug through intact skin is described in which the drug is
  delivered simultaneously with sucrose monolaurate or a mixture of sucrose
  esters of coconut fatty acids, which is predominantly sucrose
  monolaurate. Preferred embodiments of therapeutic systems for delivering
  the drug and the sucrose ester employ a matrix containing drug at a
  concentration above saturation.
ABSTRACT WORD COUNT: 69
LEGAL STATUS (Type, Pub Date, Kind, Text):
 Application:
                  880831 Al Published application (Alwith Search Report
                            ; A2without Search Report)
 Examination:
                  890412 Al Date of filing of request for examination:
                            890201
 Examination:
                  891227 Al Date of despatch of first examination report:
                            891115
                  910703 B1 Granted patent
 Grant:
 Oppn None:
                  920624 B1 No opposition filed
LANGUAGE (Publication, Procedural, Application): English; English; English
FULLTEXT AVAILABILITY:
```

Available Text Language

(English)

CLAIMS B

Update

EPBBF1

Word Count

382

	CLAIMS B	(German)	EPBBF1	373
	CLAIMS B	(French)	EPBBF1	418
	SPEC B	(English)	EPBBF1	2510
Total	word count	t - documen	t A	0
Total	word count	t - documen	t B	3683
Total	word count	t - documen	ts A + B	3683

Skin permeation enhancer compositions using sucrose esters.

Compositions augmentant la permeabilite du derme utilisant les esters de sucrose.

...ABSTRACT A1

A method for **enhancing** the transdermal flux of a transdermal deliverable drug through intact **skin** is described in which the drug is delivered simultaneously with sucrose monolaurate or a mixture...

... SPECIFICATION B1

This invention relates to the transdermal delivery of drugs or other biologically active agents and more particularly to novel methods and compositions for enhancing the permeability of skin or other body surfaces to biologically active agents.

The transdermal route of parenteral delivery of drugs provides many advantages and transdermal systems...

- ...would appear to be ideal candidates for transdermal delivery are found to have such low permeability through intact skin that they cannot be delivered at therapeutically effective rates from reasonably sized systems. In an effort to increase skin permeability it has been proposed to pretreat the skin with various chemicals or to concurrently deliver the drug in the presence of a permeation enhancer. Various materials have been suggested for this purpose as described in U.S. Patent Nos. 4,299,826; 4,343,798; 4...
- ...919-921). EP-A-0,057,462 discloses the use of a sucrose fatty acid ester to assist the uptake of elastase in the intestine following oral administration .

Chemical Abstract vol 90, number 2, January 1979, page 363, No. 12218y reports upon the use...

...semipermeable membrané. Neither relate to transdermal administration per se.

To be considered useful a permeation **enhancer** should possess certain characteristics in addition to its ability to **enhance** the **permeability** of at least one and preferably a large number of drugs. These characteristics include being non-toxic, non-irritating on prolonged exposure **and** under occlusion, and non-sensitizing on repeated exposure. Preferably it should also be odourless and...

...transdermal administration of a pharmaceutically effective amount of an active agent capable of permeation through **skin** and, either separately or admixed therewith, a permeation **enhancer** selected from sucrose monolaurate and mixtures of sucrose esters of coconut fatty acids.

According to...

...an impermeable backing;

characterised in that said reservoir comprises a pharmaceutically effective amount of an active agent capable of permeation through skin , and either separately or admixed therewith, a permeation enhancer selected from sucrose monolaurate and mixtures of sucrose esters of coconut fatty acids.

As noted above, the preferred sucrose ester is...

...that the C(sub 1)(sub 2) ester is most useful.

For the sucrose esters, the C(sub 1) (sub 2) is sucrose monolaurate. Alternatively, instead of using SML alone, mixtures...

...available source of one such SML predominating mixture is SUCROSE MONOCOCOATE, commercially available from Croda, Inc. (New Jersey), which is an ester mixture with C(sub 1)(sub 2) predominating.

It is accordingly an object of our invention to increase the permeability of skin of animals and humans and more particularly of human skin, to the transport of drugs and other beneficial agents by the concurrent application of the...

...is another object of our invention to provide compositions of matter for application to the **skin** which comprise SML and a **transdermally** deliverable drug or beneficial agent.

It is another object of our invention to provide transdermal therapeutic systems for the concurrent delivery of SML and a drug or beneficial agent.

According to the present invention we have discovered that SML can be used to enhance the permeability to drugs and other beneficial agents of body surfaces generally and, more particularly, to enhance the transdermal permeability of a multiplicity of drugs useful in the treatment of a wide variety of conditions and indications. As used herein the term "drug" relates to a biologically active agent, compound or composition of matter which is administered for the purpose of providing some beneficial or therapeutic effect. As used herein the term "transdermal" delivery relates to the delivery of a drug by passage through intact skin into the vascularized layers below the stratum corneum for absorption by the blood stream. Thus transdermal delivery is distinguished from topical application to the surface of intact skin for topical treatment or to application to open wounds or to skin lacking the stratum corneum such as burned or abraded skin . As used herein the term "SML" relates to sucrose monolaurate alone or to a mixture of sucrose esters of coconut fatty acids, with sucrose monolaurate predominating.

According to the present invention a permeation enhancing sucrose ester and the biologically active agent (drug) to be delivered are placed in drug and permeation enhancer transmitting relationship to the appropriate body surface, preferably in a carrier therefor, and maintained in place for the desired period of time. The drug and SML are typically dispersed together within a physiologically compatible matrix or carrier as more fully described below which may be applied directly to...

...in addition to its known low toxicity and colourless and odourless nature, does not sensitize **skin** on repeated exposure. Further, SML can be applied to the **skin** in compositions that do not produce irritation even on occlusion and repeated application to the same site and is capable of **enhancing** drug flux without producing objectionable **skin** sensations.

SML has utility in connection with the delivery of drugs within the broad class normally delivered through body surfaces and membranes, including skin. In general, this includes therapeutic agents in all of the major therapeutic areas including, but...

... such as antibiotics and antiviral agents, analgestics and analgestic combinations, anorexics, anthemidines, antiarthritics, antiasthmatic agents, anticonvulsants, antidepressants, antidiabetic agents,

antidiarrheals, antihistamines, anti-inflammatory agents, antimigraine preparations, antimotion sickness, antinauseants, antineoplastics, antiparkinsonism...

...central nervous system stimulants, cough and cold preparations, decongestants, diagnostics, hormones, hypnotics, immunosuppressives, muscle relaxants, parasympatholytics, parasympathomimetics, psychostimulants, sedatives and tranquilizers.

We have demonstrated the utility of SML as a permeation **enhancer** for a large number of dissimilar drugs within these classes, such as estradiol, hydrocortisone, progesterone...

- ...Additionally, we believe it to be applicable to an even larger number of such drugs including, by way of example and not for purposes of limitation; scopolamine, isosorbide dinitrate, nitroglycerin, clonidine, cortisone, theophylline, phenylephrine, terbutaline, ephedrine, narcotine, quinidine, estradiol diacetate, pilocarpine, furosemide, tetracycline, insuline, chlorpheniramine, sulfathiazides, propranolol, testosterone, norgestrel, lidocaine, morphinone, dihydrocodeine, dihydromorphine, oxycodone, hydrocodone, codeine, norcodeine, hydromorphine, normophine, norlevorphanol, dihydrothebaine, bromocryptine, guanabenz, salbutamol, oxprenolol, tetracaine, dibucaine, altenolol, pindolol and timolol...
- ...as to other drugs not specifically noted herein.

The effect of SML as a permeation **enhancer** for other drugs not specifically set forth herein may be readily determined by a worker... ... by in vivo measurements of blood or urine levels for example.

SML has a permeation **enhancing** effect on the transport of **drugs** through the **skin**. Because **skin** is one of the most effective of the **body** 's barriers to permeation foreign substances, the effect of SML on **skin** permeation makes it extremely useful in transdermal drug delivery.

Following is a description by way of example **only** and with reference to the accompanying drawings of methods of carrying the invention into effect...

- ...transdermal therapeutic system 1 according to this invention is shown which comprises a drug/permeation enhancer reservoir 2 in the form of a matrix containing the drug and permeation enhancer. The reservoir 2 is covered by an impermeable backing 3 which is preferably sized slightly larger in circumference than reservoir 2. Means 4 for maintaining the system on the skin may either be fabricated together with or provided separately from the remaining elements of the...
- ...2 to provide a peripheral area around reservoir 2 free of the sucrose ester permeation **enhancer**, to prevent adverse interaction between the adhesive in the overlay 4 and any of the **enhancer** which may seep from under the base of the reservoir 2 in use. A strippable...
- ...base. Suitable matrices or carriers are described in the above identified patents, and include, without limitation, natural and synthetic rubbers such as polybutylene, polyisobutylene, polybutadiene, polyethylene, styrenebutadiene, copolymers, polyisoprene, polyurethane, ethylene/propylene copolymers, polyalkylacrylate polymers, copolyesters, ethylene/acrylic copolymers, silicones and butadiene/acrylonitrile copolymers for example and other polymers such as the ethylene vinylacetate (EVA) polymers described in U.S. Patent No. 4,144,317 (which is incorporated herein by reference), for example, gelled or thickened mineral oil, petroleum jelly and various aqueous gels and hydrophilic polymers. Typically the drug is...

...the matrix or carrier at a concentration in excess of saturation, the amount of the excess being a function of the intended useful life of the system. The drug, however, may be present at initial levels below saturation without departing from this invention. The enhancer is preferably dispersed through the matrix at a concentration sufficient to provide permeation enhancing concentrations of SML in the reservoir throughout the anticipated administration time, but below irritability concentration.

In addition to the drug and permeation **enhancer**, which are essential to the invention, the matrix may also contain other materials such as dyes, pigments, inert fillers or other permeation **enhancers**, excipients and **conventional** components of pharmaceutical products or transdermal therapeutic systems as known to the art.

Referring now to Figure 2 another embodiment of this invention is shown in place upon the skin 17 of a patient. In this embodiment the transdermal therapeutic system 10 comprises a multilaminate drug/enhancer reservoir 11 having at least two zones 12 and 14. Zone 12 consists of a drug reservoir substantially as described with respect to Figure 1. Zone 14 comprises a permeation enhancer reservoir which is preferably made from substantially the same matrix as used to form zone 12 and which is substantially free of...

...membrane 13 for controlling the release rate of the SML from zone 12 to the **skin** may also be utilized between zones 12 and 14 if desired. Suitable rate-controlling **membranes** may be formed from polymers having a **permeability** to SML lower than that of zone 12.

An advantage of the system described in Figure 2 is that the drug loaded zone 12 is concentrated at the **skin** surface rather than throughout the entire mass of the reservoir. This functions to reduce the amount of drug in the system while maintaining an adequate permeation **enhancer** supply.

Superimposed over the drug/ enhancer reservoir 11 is an impermeable backing 15 and adhesive overlay 16 as described above with...

- ...to Figure 1. In addition, a strippable release liner (not shown) would preferably be provided on the system prior to use as described with respect to Figure 1 and removed prior to application to the skin 17.

 With both Figures 1 and 2, the adhesive overlays can be eliminated if the skin contacting layer can be made adhesive. Use of such an in -line contact adhesive would mainly be limited by the compatibility of the adhesive with the...
- ...can be fully enclosed in a pouch or pocket between the impermeable backing and a permeable or microporous skin contacting membrane as known to the art from U.S. Patent No. 4,379,454, noted above, for example. Although the invention is most useful with drugs whose permeability is too low for therapeutic effects to be obtained in the absence of an enhancer; its use with systems employing drug rate controlling membranes such as disclosed in U.S. Patent No. 3,598,122 and 3,598,123 noted above is also contemplated. EXAMPLE 1

A transdermal therapeutic system as described with...

...2) patch. Measurement of the progesterone blood level after an 8 hour period indicated an **increase** in progesterone of 40 ng/dl. EXAMPLE II

A transdermal therapeutic system for administration of...

...a control sample (25% hydromorphone and 75% EVA 40), in the following table: (see image in original document)

EXAMPLE III

A transdermal therapeutic system for administration of levorphanol was formulated from...

- ...Measurement of the plasma progesterone and estradiol levels after a 24 hour period indicated an increase in progesterone of 44 ng/dl and in estradiol of 0.8 ng/dl.

 Having...
- ...CLAIMS transdermal administration of a pharmaceutically effective amount of an active agent capable of permeation through **skin** and, either separately or admixed therewith, a permeation **enhancer** selected from sucrose monolaurate and mixtures of sucrose esters of coconut fatty acids.
 - 2. The use as claimed in claim 1 characterised in that said agent and said enhancer are dispersed within a reservoir (2.11) therefor.
 - 3. The use as claimed in claim...
- ...saturation concentration in the reservoir (2.11).
 - 4. The use as claimed in any preceding **claim** characterised by an occlusive backing behind the **skin** distal surface of said reservoir (2.11) and
 - means (14.10) for maintaining said reservoir (2.11) in agent and
 permeation enhancer transferring relationship to intact skin
 (17).
 - 5. The use as claimed in any preceding claim characterised in that said agent and said permeation enhancer are contained within a single reservoir means (2).
 - 6. The use as claimed in any one of claims 1 to 5 characterised in that said agent and said permeation **enhancer** are contained within separate reservoir means (12.14).
 - 7. The use as claimed in claim 6...
- ...said reservoir comprises a pharmaceutically effective amount of an active agent capable of permeation through skin, and either separately or admixed therewith, a permeation enhancer selected from sucrose monolaurate and mixtures of sucrose esters of coconut fatty acids.
 - 9. A system according to claim 8 characterised in that said agent and said **enhancer** are dispersed within single reservoir 2.
 - 10. A therapeutic system according to claim 8 characterised in that said agent and said permeation **enhancer** are contained within separate reservoir means (12.14).
 - 11. A system according to any of...
- ...according to any of claims 8 to 11 characterised by an occlusive backing behind the **skin** distal surface of said reservoir (2.11), and means (14, 16) for maintaining said reservoir (2.11) in agent and permeation **enhancer** transferring relationship to intact **skin** (14).
- ...CLAIMS capable de passage a travers la peau et, separement ou melange avec elle, d'un ameliorateur de penetration choisi parmi le monolaurate de saccharose et les melanges d'esters de saccharose...

...coco

- 2. Utilisation selon la revendication 1, caracterisee en ce que ledit agent et ledit ameliorateur sont disperses dans un reservoir (2.11) a cet effet.
- 3. Utilisation selon la revendication...

- ...pour maintenir ledit reservoir (2.11) dans une relation de transfert d'agent et d'ameliorateur de penetration a la peau intacte (17).
 - 5. Utilisation selon l'une quelconque des revendications precedentes, caracterisee en ce que ledit agent et ledit **ameliorateur** de penetration sont contenus dans un seul moyen de reservoir (2).
 - 6. Utilisation selon l'une quelconque des revendications 1 a 5, caracterise en ce que ledit agent et ledit **ameliorateur** de penetration sont contenus dans des moyens de reservoirs separes (12.14).
 - 7. Utilisation selon...
- ...actif capable de penetration a travers la peau et, separement ou melange avec lui, un **ameliorateur** de penetration choisi parmi le monolaurate de saccharose et les melanges d'esters de saccharose...

...coco.

- 9. Systeme selon la revendication 8, caracterise en ce que ledit agent et ledit ameliorateur sont disperses dans un seul reservoir (2).
- 10. Systeme therapeutique selon la revendication 8, caracterise en ce que ledit agent et ledit **ameliorateur** de penetration sont contenus dans des moyens de reservoir separes (12.14).
- 11. Systeme selon...
- ...pour maintenir ledit reservoir (2.11) dans une relation de transfert d'agent et d'ameliorateur de penetration a la peau intacte (14).

33/5,K/5 (Item 5 from file: 348) DIALOG(R)File 348:EUROPEAN PATENTS

(c) 2003 European Patent Office. All rts. reserv.

00223314

Medical device for pulsatile transdermal delivery of biologically active agents.

Medizinische Einrichtung zur pulsatilen transdermalen Verabreichung von biologisch aktiven Wirkstoffen.

Dispositif medical pour l'administration pulsatile transdermique d'agents a activite biologique.

PATENT ASSIGNEE:

ALZA CORPORATION, (242660), 950 Page Mill Road P.O. Box 10950, Palo Alto California 94303-0802, (US), (applicant designated states: AT;BE;CH;DE;ES;FR;GB;GR;IT;LI;LU;NL;SE)

INVENTOR:

Gale, Robert M., 1276 Russell Avenue, Los Altos California 94022, (US) Berggren, Randall G., 841 Polaris Way, Livermore California 94550, (US) LEGAL REPRESENTATIVE:

Evans, David Charles et al (30461), F.J. CLEVELAND & COMPANY 40-43, Chancery Lane, London, WC2A 1JQ, (GB)

PATENT (CC, No, Kind, Date): EP 227252 A2 870701 (Basic)

EP 227252 A3 890405 EP 227252 B1 910918

APPLICATION (CC, No, Date): EP 86308248 861023;

PRIORITY (CC, No, Date): US 792941 851030

DESIGNATED STATES: AT; BE; CH; DE; ES; FR; GB; GR; IT; LI; LU; NL; SE

INTERNATIONAL PATENT CLASS: A61M-037/00

CITED PATENTS (EP A): US 4379454 A; GB 2135880 A

ABSTRACT EP 227252 A2

The present invention relates to A medical device for the pulsatile administration of a drug through intact **skin** at a first steady state flux during a first delivery period and a second steady state flux during a second delivery period, said first flux being substantially higher than said second flux; said first and second delivery periods comprising a substantial portion of a predetermined administration period, characterised in that said device comprises:

- a) a reservoir of said drug containing an amount of drug sufficient to adminster drug at said first and second steady state fluxes throughout said administration period;
- b) a reservoir of a **skin** permeation **enhancer** for said drug; said reservoir containing an amount of said permeation **enhancer** sufficient to **permit** administration of said drug at said first flux only through said first delivery period; and
- c) means for maintaining said device on the **skin** in drug and permeation **enhancer** transferring relationship thereto.

ABSTRACT WORD COUNT: 165

LEGAL STATUS (Type, Pub Date, Kind, Text):

Application: 870701 A2 Published application (Alwith Search Report

; A2without Search Report)

Search Report: 890405 A3 Separate publication of the European or

International search report

Examination: 891108 A2 Date of filing of request for examination:

890906

*Assignee: 901017 A2 Applicant (name, address) (change)

Examination: 910130 A2 Date of despatch of first examination report:

901213

Grant: 910918 B1 Granted patent

920909 B1 No opposition filed Oppn None:

LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY:

Available Text Language Update Word Count CLAIMS B (English) EPBBF1 853 CLAIMS B (German) EPBBF1 701 CLAIMS B (French) EPBBF1 921 SPEC B (English) EPBBF1 5850 · Total word count - document A Total word count - document B 8325 Total word count - documents A + B 8325

INTERNATIONAL PATENT CLASS: A61M-037/00

- ...ABSTRACT invention relates to A medical device for the pulsatile administration of a drug through intact skin at a first steady state flux during a first delivery period and a second steady...
-first and second steady state fluxes throughout said administration period;
 - b) a reservoir of a skin permeation enhancer for said drug; said reservoir containing an amount of said permeation enhancer sufficient to permit administration of said drug at said first flux only through said first delivery period; and
 - c) means for maintaining said device on the skin in drug and permeation enhancer transferring relationship thereto.
- ... SPECIFICATION delivering biologically active agents (hereinafter referred to generally as "drugs") to the body through intact skin and more particularly for the pulsatile delivery of drugs at at least two different predetermined...
- ...preamble of claim 1. BACKGROUND OF THE INVENTION

Medical devices that deliver drugs through the skin for absorption into the body have been known for some time. For example, U.S...

- ...fabric backing layer. This type of device delivers a varying amount of drug to the skin and the rate of absorption is determined by the release rate of drug from the device, which decreases as a function of time of application, and the permeability of the skin at the administration site. In order to transdermally deliver drugs having a relatively narrow therapeutic...
- ...and includes means for metering the rate at which the drug is released to the skin . Other representative system controlled transdermal delivery devices are described in U.S. Patents 3,797...
- ...latter of which teaches controlling the rate at which a drug is absorbed through the skin by controlling the rate at which a permeation enhancer for the drug is delivered to the skin . (All of the aforementioned U.S. patents are incorporated herein by reference.) In addition, Black...
- ...910-922; and Cooney, Advances in Biomedical Engineering, Part 1, Chapter 6, "Drug Permeation Through Skin : Controlled Delivery for Topical Systemic Therapy", Marcel Dekker, Inc., New York and Basel 1980, pp...

- ...have a relatively long lag time between the time the device is applied to the **skin** and the time that therapeutic levels are achieved in the blood. This is because the...
- ...agent from the device into the bloodstream is a diffusional process and requires the necessary concentration gradient to be established between the device and the internal surfaces of the skin. Attempts to decrease the lag time have been proposed and include a "pulse" dosage of the drug in the adhesive layer in contact with the skin in order to initially saturate the skin binding sites so that delivery into the systemic circulation can begin sooner and treatment of the skin with permeation enhancers, either prior to administration of the device or concurrently with the drug administration. (See for...
- ...throughout the entire administration the higher or the lower level throughout the entire administration period. **Nitroglycerin**, for example, could be delivered in such a regime.

It is therefore a primary object...a device is particularly suitable for delivering drugs which are capable of permeating through normal skin at rates which produce therapeutic doses from reasonably sized devices without the use of permeation enhancers. It also contemplated that the device could be employed to deliver drugs which are less permeable if the skin at the delivery site is pretreated to increase its permeability by perforating, stripping, abrading or chemically treating the stratum corneum.

It is another object of this invention to provide a pulsatile transdermal drug delivery device...

...drawings, wherein:

Figure 1 is a plot of theoretical in vitro release rates through cadaver **skin** into an infinite sink of typical transdermal delivery devices of the prior art and of...

...according to this invention.;

Figure 6 is a plot of in vitro drug flux through skin as a function of permeation enhancer flux through skin;

Figure 7 is a plot of in vitro nitroglycerin and ethanol fluxes through cadaver skin into an infinite sink as a function of time according to this invention; and

Figure 8 is a plot of nitroglycerin plasma levels as a function of time for an embodiment of this invention. DESCRIPTION OF...

- ...running from t(sub 0) to t(sub 1) in which there is a rapid increase of the rate of release into an infinite sink through human cadaver skin from the device which results from the initial loading of the drug at the surface in contact with the skin. After this initial transient period has expired, the uncontrolled devices such as disclosed in U...
- ...from t-t(sub 2) in which the concentration of the agent is sufficient to permit the delivery rate to be limited by the skin until the concentration of the drug in the device drops at t(sub 2) to...
- \dots sub 1) and t(sub 2) is determined by the initial drug loading and the permeability of the system itself.

When a rate controlled device is used a pattern such as...

...device is typically designed to release agent at a rate lower than that obtainable through **skin** of average **permeability** and to contain sufficient drug such that unit activity (saturation concentration) is

maintained throughout the ...

- ...limited by the time during which a system can be maintained in contact with the **skin** without producing undesirable effects from occlusion or irritation. When adhesive systems are utilized it is...
- ...practical to transdermally deliver a drug beyond the 7 day period in which the human **skin** surface layer is replaced from the underlying tissue.

The steady-state portion of the administration...does not necessarily parallel the release rate curve. This is because of factors such as **skin** binding, and also because of the competing rates of drug delivery into the blood and...

...clearance from the blood as a result of metabolic action on the drug in the **skin** or body.

Figures 2-5 disclose embodiments of medical devices according to this invention which...

- ...will be more specifically described below. Thus, for example, Figure 2 illustrates a self-adhering skin patch 11 designed to be placed on unbroken skin 12. Device 11 is a laminate that consists of four layers, an impermeable top backing layer 13, a drug/permeation enhancer reservoir layer 14, a rate controlling membrane layer 15, and a contact adhesive layer 16...
- ...Reservoir layer 14 is immediately below backing 13. It contains supplies of both the permeation enhancer and the drug. Rate controlling membrane layer 15, the next layer of the device may be made of a dense or microporous polymer film that has the requisite permeability to the drug and permeation enhancer. It is the element of patch 11 that controls the rate at which the permeation enhancer and drug are delivered to the skin. The respective fluxes of the drug and enhancer through layer 15 will depend upon the thickness of the layer, its diffusion coefficients relative to the drug and the enhancer, and the concentration and loading of permeation enhancer in the reservoir. The diffusion coefficients of the layer 15 for a particular drug and enhancer may be determined by standard techniques. Examples of the types of polymer films that may...
- ...It is one means by which device 11 may be affixed to the area of skin to be treated. Its composition and thickness are normally such that it does not constitute a significant permeation barrier to either the drug or the enhancer, and normally it will be substantially more permeable to the drug enhancer than layer 15. During the time interval between the manufacture and the use of device 11, layer 16 may absorb enhancer and drug in amounts that will depend upon the composition, solubility of the components in...
- ...length of the time interval. If the interval is quite long, layer 16 will absorb **enhancer** and the drug until it is saturated with both. Contact adhesive compositions that may be...
- ...a protective undercoating layer made from materials that are substantially impermeable to the drug, the **enhancer**, and any other components of layer 16. The same materials that are used to make...
- ...adhesive 16 and discarded. Device 11 is then applied to a relatively nonhairy area of **skin** 12 that is substantially free of wrinkles, creases, or folds. Various locations on the torso...

...provide suitable sites for the bandage. As indicated above, once it is placed on the **skin** the bandage will begin co-administering drug and permeation **enhancer** to the wearer.

In order to obtain the pulsatile drug delivery pattern desired according to...

...now to Figures 6 and 7 typical plots for the relationship between drug flux through skin and permeation enhancer flux through skin are shown. It can be seen from Figure 6 that at permeation enhancer fluxes in the range of 0 to A there is a more or less direct relationship between enhancer flux and drug flux, with the drug flux increasing from the level X, at which the drug permeates through untreated skin, to level Y. At enhancer fluxes greater than A and up to level B, at which irreversible changes are created in the skin, there may, in many cases, be no significant increase in drug delivery rate with enhancer flux.

A representative pulsatile drug delivery device according to this invention therefore would be designed...

...controlling membrane 15 may either control the delivery rate of the drug or the permeation enhancer . Thus for example, if membrane 15 were to control the enhancer delivery rate its characteristics would be selected such that the enhancer flux through skin would be at level C as shown in Figures 6 and 7. If, on the other hand, membrane 15 were selected to control the drug flux; the enhancer would be delivered in substantial excess such that the enhancer flux through skin during the initial steady state period is in excess of C but less than B. The membrane 15, in that case, would be selected to reduce the drug flux through skin down to level Z. At the commencement of the second and lower steady state delivery rate regime the enhancer flux drops rapidly below level C, causing the the drug flux through skin to drop to level X, the rate at which the drug permeates through substantially untreated skin or the level X' a slightly higher level equivalent to the rate at which drug permeates through $\ensuremath{\mathbf{skin}}$ which has been previously treated with a permeation enhancer but in the absence of continuous permeation enhancer delivery. Level X' may be slightly higher than X due to some small, transient and non-damaging changes in the properties of the skin

In order to accomplish the desired pulsatile delivery according to this invention the loadings of the drug and the permeation **enhancer** are critical. The loading of the drug must be at least equal to the total...

- ...all of the time period t(sub 0)-t(sub 3) The loading of permeation enhancer, however, can be no greater than that required to deliver enhancer within the selected flux range only until the expiration of the high steady state delivery...
- ...sub 2). At the termination of the high rate regime, the activity of the permeation **enhancer** in the reservoir should be depleted so that the **enhancer** flux rapidly drops below level C.

This invention is applicable to a wide variety of drugs and permeation enhancers, within certain constraints imposed by the nature of the invention. For example, a drug to be usable according to this invention without pretreatment of the skin would have to have sufficient permeability through normal skin to produce a therapeutic effect when administered at flux level X or X'. Similarly, the permeation enhancer would have to be of the type that does not produce substantial changes in the properties of the skin that are not rapidly reversible when the

permeation enhancer is removed. Suitable permeation enhancers will vary from drug to drug but include ethanol, n-decylmethyl sulfoxide (nDMS), dimethyl lauramide, and polyethylene glycol monolaurate (PEGML), for example. Unsuitable permeation enhancers are of the type that appear to produce non-transient changes in the skin which include dimethylsulfoxide, for example.

Referring now to Figure 3, another embodiment of the invention, generally designated 17, is shown in which the drug and enhancer are stored in separate reservoirs. Device 17 is composed of four layers, a backing layer 18, a permeation enhancer reservoir layer 19, a rate controlling membrane layer 22 and a drug reservoir-contact adhesive...

...function to layer 13 of embodiment 11. Layer 19 contains the supply of percutaneous absorption enhancer. As in Figure 1 the loading of enhancer in layer 19 will depend on the rate and duration of enhancer administration required to achieve the desired pulsatile drug delivery. Layer 22 is the component of device 17 that controls the release rate of enhancer to the skin. In this regard it is structurally, compositionally and functionally similar to membrane 15 of embodiment 11. Because the drug does not pass through layer 22, layer 22 need not be permeable to the drug. Indeed it is preferred that it be substantially impermeable to the drug...

- ...in layer 23 at or above saturation from t(sub 0) t(sub 3). This **permits** a unit activity source to be available for delivery throughout the entire administration period and...
- ...2, it is also possible to control the release rate of drug and deliver the **enhancer** in an uncontrolled manner. In that instance, layer 19 would be the drug reservoir, layer 22 would maintain drug flux at level Y and layer 23 would contain the **enhancer** at a loading such that the **enhancer** flux would drop rapidly below level C after t(sub 2).

Embodiments such as device 17 in which the drug and **enhancer** supplies are separate may be advantageous or necessary in instances where formulation or storage of the drug and **enhancer** in contact with each other is impractical or undesirable or where separation of the drug and **enhancer** make selection of the rate controlling membrane easier.

Figure 4 illustrates another embodiment, generally designated 25, in which the supplies of drug and **enhancer** are separate Device 25 is a laminate composed of two layers, a backing layer 26...

- ...11. Heterogeneous basal layer 27 is composed of a continuous matrix phase 28 in which enhancer -containing microcapsules 29 and drug 32 (represented by stippling in Figure 4) are dispersed. Continuous matrix phase 28 is a solid, semisolid or gel composition that is permeable to the enhancer and the drug. It preferably adheres to skin. If it does not, an adhesive overlay will have to be used to keep embodiment 25 in contact with the skin. The contact adhesive compositions that are used to make the contact adhesive layers of embodiment...
- ...as continuous matrix phase 28. Microcapsules 29 each consist of an inner core of permeation **enhancer** encapsulated by a rate controlling membrane. The membrane functions as membranes 15 and 22 and...
- ...15 and 22. Accordingly, the membrane on each microcapsule controls the rate at which the **enhancer** is released therefrom. The combined release of **enhancer** from all the microcapsules in turn defines the rate of release of **enhancer** from embodiment 25. As in the case of the other embodiments the loading of **enhancer** contained in layer 27 in microcapsule form will depend upon the required **enhancer** release rate and duration of the high delivery rate phase. Microcapsules 29 may be

- ...given instance will depend upon the rate at which the drug is absorbed by the **skin** from layer 27 and the duration of therapy. The thickness and composition of continuous phase...
- ...should be such that it does not constitute a principal permeation barrier to either the **enhancer** or the drug. As with respect to the devices. Figures 2 and 3 the drug could be encapsulated in the microcapsules and the permeation **enhancer** dispersed in layer 27 with the same constraints as described with respect to Figures 2...
- ...device 33 are backing layer 34, a reservoir layer 35 that contains supplies of permeation **enhancer** and drug, a diffusion membrane layer 36, and a peripheral ring 37 of contact adhesive...
- ...the form of a peripheral ring rather than a continuous basal layer. Neither drug nor **enhancer** passes through ring 37 and it, therefore, need not be **permeable** to these compositions. Secondly, the basal surface from which drug and **enhancer** is transferred to the **skin** is defined by rate controlling membrane layer 36. Thirdly, the backing layer is not flat...

...contact adhesive.

The embodiments of Figures 2-5 may be designed to administer drug and enhancer at the rates required to achieve the desired pulsatile drug therapy. In order to determine the optimum rates for a given drugenhancer combination it is necessary to determine the permeability of skin to the drug and the permeation enhancer and the relationship between the drug flux and enhancer flux through skin.

The following discussion will illustrate the techniques employed in designing pulsatile transdermal delivery devices according to this invention with respect to a transdermal drug delivery device for delivering nitroglycerin in a pulsatile mode. A high rate of approximately 80 (mu) g/cm(sup 2...

...of a 24 hour administration period were selected as targets and normal having the average **permeabilities** to **nitroglycerin** and **ethanol** of normal human **skin** were used as design criteria.

The steady state, in vivo drug input rate, Jnet, of an agent, such as a

The steady state, in vivo drug input rate, Jnet, of an agent, such as a drug or permeation **enhancer** delivered through the **skin** from a transdermal delivery device is given by the following relationship: (see image in original...

...state flux of agent from the device directly into an infinite sink and J(sub(skin)) is the in vivo or in vitro steady state inherent flux of agent directly through skin from a unit activity source into an infinite sink, all units being expressed in (mu)g/cm(sup 2)/hr.

The **permeability** of normal human skin to NG, is in the range of about 10-50 (mu)g/cm(sup 2...

...be used to establish the J(sub(device)) (NG) in the absence of a permeation enhancer and the upper NG delivery rate of 80 (mu)g/cm(sup 2)/hr will determine the additional characteristics required for the initial phase. In order to permit the skin to primarily control the lower steady state rate, the J(sub(device)) (NG) must be substantially higher than J(sub(skin)) (NG). For example, application of Formula ...2)/hr.

To achieve the initial high in vivo drug fluxes contemplated herein, a permeation enhancer must be delivered in the initial phase at a flux

sufficient to increase the J(sub(net)) (NG) to about 80 (mu)g/cm(sup 2)/hr. Ethanol, within certain flux ranges produces a non-damaging, reversible effect on skin permeability, and is suitable for use as a NG permeation enhancer according to this invention. The delivery device of this example therefore should be designed to deliver ethanol at a flux sufficient to increase the NG permeability of the skin to a value no less than the J(sub(net)) of NG in the high initial phase and preferably substantially higher.

It has been determined that **ethanol** can reversibly **increase** the J(sub(skin)) (NG) for average skin to levels greater than 80 (mu)g/cm(sup 2)/hr if the J(sub(net)) of **ethanol** delivered through the skin is at least about 250 (mu)g/cm(sup 2)/hr and preferably higher but

- ...500 (mu)g/cm(sup 2)/hr, the level at which unacceptable and temporarily irreversible skin changes are observed. The permeability of average human skin to ethanol is in the range of about 1200 to 1500 (mu)g/cm(sup 2)/hr. Therefore the ethanol J(sub(device)) according to this invention is preferably in the range of about 300 to 750 (mu)g/cm(sup 2)/hr to obtain the average target ethanol J(sub(net)) of about 250-500 (mu)g/cm(sup 2)/hr. Ethylene vinyl...
- ...of 12-18% possess the necessary characteristics to maintain the fluxes of both NG and **ethanol** within the respective ranges required according to this invention.

It is also necessary that certain drug and **ethanol** loadings be initially present in the reservoir such that the delivery device will function to...

- ...at the selected rates throughout the selected portions of the 24 hour administration period, and **ethanol** at the desired rate only for the initial high delivery rate phase of about 10...
- ...The initial NG loading would normally be in excess of the minimum loading. The maximum ethanol loading per cm(sup 2) is determined by the ethanol flux required in the initial high delivery rate phase, the duration of the phase and the solubility of ethanol in its carrier. Because of the high permeability of skin to ethanol the desired fluxes can be obtained from sub-saturated sources having an activity less than 1. Ethanol fluxes within the selected ranges can be obtained if the initial loading of ethanol is sufficient to maintain the thermodynamic activity of ethanol above about 0.2 during the initial phase and thereafter drop below about 0.2...
- A typical NG- ethanol reservoir composition according to this invention comprises a dispersant having a low solubility, below about 5 mg/gm, for NG and ethanol and having the NG and the ethanol dispersed therethrough. To facilitate dispersion the NG and ethanol would be absorbed on a suitable carrier such as lactose for NG and porous polypropylene or colloidal silicon dioxide for the ethanol, for example, as disclosed in copending U.S. patent application of Gale et al., Serial Number 06/730,714 filed May 3, 1985 for Transdermal Delivery System for Delivering Nitroglycerin at High Transdermal Fluxes.

 The aforementioned patents and applications and U.S. Patent 4,144...

...medical fluid gelled with silica as the reservoir, colloidal silica or porous polypropylene as the **ethanol** absorbent and an EVA membrane having a minimum of 11% VA and preferably about 12...

- ...about 1-3 mils. The higher the VA content of the EVA, the greater the permeability to both NG and ethanol. The ethanol may be included as absolute alcohol although it is preferred, particularly from a cost standpoint to utilize the substantially less expensive aqueous USP 95% ethanol. More dilute ethanol solutions can be employed provided the ethanol activity is maintained above about 0.2 throughout the initial high delivery rate period and...
- ...devices according to the invention the following specific examples are provided.

 EXAMPLE 1
 - A NG/ ethanol reservoir composition comprising a silicone medical fluid carrier gelled with silica, having NG on lactose uniformly dispersed therethrough and ethanol absorbed in a particulate carrier is fabricated by placing 5 kg of silicone medical fluid...
- ...from ARMAK Company is placed in a separate vessel and approximately 1100 grams of USP ethanol (95% ethanol) is added with stirring to produce an essentially dry, flowable powder which on visual observation appears to have absorbed substantially all of the ethanol. Five kg of nitroglycerin -lactose (10%wt nitroglycerin) and the ethanol loaded porous polypropylene are placed in the original high energy mixing vessel and mixed until a homogeneous blend is obtained. A pouching machine is used to pouch the NG- ethanol gel so formed between an impermeable backing member comprising a medium density polyethylene/aluminized polyester...
- ...formed from a 1.5 mil thick EVA (12% VA) membrane to produce NG and ethanol loadings of 2.6 mg/cm(sup 2) and 4.8 mg/cm(sup 2) respectively. Systems can be fabricated having NG/ ethanol releasing surface areas of varying sizes such as approximately 5 cm(sup 2), 10cm(sup...
- ...A transdermal therapeutic device was fabricated according to procedure of Example 1 except that the **ethanol** is absorbed on 200 grams of colloidal silicon dioxide. The performance will be substantially the...
- ...VA) film and with loadings of 5 mg NG/cm(sup 2) and 20 mg **ethanol** /cm(sup 2). The device will perform in a manner similar to that of Example...

...CLAIMS B1

- 1. A medical device (11) for the pulsatile administration of a drug through intact **skin** (12) at a first steady state flux during a first delivery period and a second...
- ...first and second fluxes throughout said administration period;
 b) a reservoir of (14) of a **skin** permeation **enhancer** for said drug; and
 - c) means (16) for maintaining said device on the skin in drug and permeation enhancer transferring relationship thereto, characterized in that the second flux during the second delivery period is a steady state flux and in that the reservoir (14) of the skin permeation enhancer for the drug contains an amount of said permeation enhancer sufficient to permit administration of said drug at said first flux only through said first delivery period.
 2...

...device (11) as claimed in claim 1 characterised in that said drug reservoir and permeation **enhancer** reservoir is a common reservoir (14) comprising drug and permeation **enhancer** dispersed within a carrier.

- 3. A device (11) as claimed in claim 1 or claim...
- ...characterised in that release rate controlling means (15) for one of said drug and permeation **enhancer** is disposed between the respective reservoir (14) and the **skin** (12).
 - 4. A device (17) as claimed in claim 1 characterised in that said drug reservoir and said permeation enhancer reservoir are two separated reservoirs (23, 19), a release rate controlling means (22) controls the release rate of said permeation enhancer and is disposed between the permeation enhancer reservoir (19) and the drug reservoirs (23) in the flow path of permeation enhancer from said enhancer reservoir (19) to the skin.
 - 5. A device (17) as claimed in any preceding claim characterised in that said drug reservoir (23) comprises the **skin** contacting surface of the device.
 - 6. A device (17) as claimed in claim 5 characterised...
- ...adhesive and said drug reservoir (23) comprises the means for maintaining the device on the **skin** .
 - 7. A device (11) as claimed in any preceding claim characterised in that said means for maintaining the device on the **skin** comprises a contact adhesive (16) on the **skin** contacting surface of the device.
 - 8. A device as claimed in claim 1 characterised in that drug and permeation enhancer reservoirs are separated, a release rate controlling means controls the release rate of said drug during said first delivery period and is disposed between said drug reservoir and said enhancer reservoir in the path of drug flow from said drug reservoir to the skin.
 - 9. A device as claimed in anyone of claims 3 to 7 characterised in that said release rate controlling means controls the rate of release of said permeation $\$ enhancer $\$.
 - 10. A device as claimed in any one of claims 3 and 8 characterised in...
- ...11. A device as claimed in any preceding claim characterised in that said drug is **permeable** through normal human **skin** at therapeutic fluxes.
 - 12. A device as claimed in any preceding claim characterised in that...
- ...13. A device as claimed in any preceding claim characterised in that said drug is nitroglycerin and said permeation enhancer is ethanol.
 - 14. A device as claimed in claim 13 characterised in that the release rate controlled means controls the release rate of ethanol; said device being characterized by having a J device for nitroglycerin of at leaeans controls the release rate of ethanol; said device being characterised by having a J device for nitroglycerin of at least about 28 (mu)g/cm(sup 2)/hr, a J device for ethanol in the range of 300-750 (mu)g/cm(sup 2) /hr, said ethanol reservoir containing that amount of ethanol required to allow the activity of the ethanol in the reservoir to drop below about 0.2 at the end of said first delivery period and said nitroglycerin reservoir containing sufficient nitroglycerin to supply nitroglycerin at said first and second steady state fluxes at least until the expiration of said...
- ...device as claimed in any one of claims 13 to 17 characterised in that said nitroglycerin reservoir and said ethanol reservoir comprises a common reservoir of nitroglycerin and ethanol in a carrier

having solubility for nitroglycerin and ethanol of no more than about 5 (mu)g/gm.

- 19. A device as claimed in...
- ...CLAIMS selon l'une quelconque des revendications precedentes, caracterise en ce que ledit medicament est la **nitroglycerine** et ledit activateur de penetration est l' **ethanol** .
 - 14. Dispositif selon la revendications 13, caracterise en ce que le moyen de regulation de vitesse de liberation commande la vitesse de liberation de l' ethanol , ledit dispositif etant caracterise et, ce qu'il a u J(en indice(dispositif)) pour la nitroglycerine d'au moins environ 280 (mu)g/cm(sup 2)/heure, un J(en indice(dispositif)) pour l' ethanol dans un intervalle de 300-750 (mu)g/cm(sup 2)/heure, ledit reservoir d' ethanol contenant la quantite d' ethanol requise pour permettre a l'activite de l' ethanol dans le reservoir de baisser en dessous de 0,2 a la fin de ladite premiere periode d'administration, et ledit reservoir de nitroglycerine contenant suffisamment de nitroglycerine pour fournir la nitroglycerine auxdits premier et second flux constants au moins jusqu'a l'expiration de ladite periode...l'une quelconque des revendications 13 a 17, caracterise en ce que ledit reservoir de nitroglycerine et ledit reservoir d' ethanol comprennent un reservoir commun de nitroglycerine et d' ethanol dans un support ayant une solubilite pour la nitroglycerine et l'ethanol d'au plus environ 5 (mu)g/g.
 - 19. Dispositif selon l'une quelconque des...

33/5,K/6 (Item 6 from file: 349)
DIALOG(R)File 349:PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.

00309358

SCREENING METHODS FOR INTEGUMENTAL INFLAMMATION MODULATING AGENTS
PROCEDES DE CRIBLAGE DES AGENTS MODULATEURS DES INFLAMMATIONS TEGUMENTAIRES
Patent Applicant/Assignee:

DE NOVO CORPORATION,

MAK Vivien H W,

Inventor(s):

MAK Vivien H W,

Patent and Priority Information (Country, Number, Date):

Patent:

WO 9527510 A1 19951019

Application:

WO 95US4677 19950411 (PCT/WO US9504677)

Priority Application: US 94225991 19940412; US 94271287 19940706; US

95400234 19950303

Designated States: AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

Main International Patent Class: A61K-045/00

International Patent Class: C12N-15:00; C12N-15:09; C12N-15:19; C12Q-01:00;

C12Q-01:66; G01N-33:53

Publication Language: English

Fulltext Availability:

Detailed Description

Claims

Fulltext Word Count: 48932

English Abstract

The present invention provides a number of screening methods for evaluating compounds capable of suppressing cytokine production either in vitro or in vivo. The methods generally involve stimulating the production of a cytokine in a cell, exposing a portion of the cells to a putative cytokine modulating agent and determining subsequent levels of cytokine production in the cells. Additionally, the present invention provides certain compounds identified by this method.

French Abstract

La presente invention concerne plusieurs procedes d'evaluation par criblage in vitro ou in vivo de composes susceptibles de supprimer la production de cytokine. Les procedes consistent generalement en une stimulation de la production d'une cytokine d'une cellule, en l'exposition d'une partie des cellules a un agent dont on suppose qu'il peut moduler la production de cytokine, et en une determination des niveaux de production de cytokine dans les cellules. La presente invention concerne en outre certains composes identifies grace a ce procede.

Patent and Priority Information (Country, Number, Date):

Patent:

... 19951019

Fulltext Availability:

Detailed Description

Claims

Publication Year: 1995

Detailed Description

... useful as medicaments in the treatment of a variety of acute and chronic, systemic or skin conditions having an inflammatory and/or immunological component.

BACKGROUND OF THE INVENTION

Inflammation represents a...significant overlaps between the current understanding of the pathophysiology leading to the development of acute skin disorders and acute systemic inflammatory conditions like endotoxemia. In both scenarios, TNF production by hematopoietic...

- ...of more TNF receptors making TNF seminal in this disease pathogenesis. Similarly, there is an increased level of TNF in the intestinal mucosa (Olson, et al., J. Pediatric Gastroenterology and Nutrition...
- ...also mainstay anti-inflammatory agents but manifest significant adverse effects, such as inducing Cushingoid features, skin thinning, increased susceptibility to infection, and suppression of the hypothalamic-pituitary-adrenal axis. The use of other
- ...effects. Methods which suppress TNF production will find application not only in inflammation of the **skin**, but also in systemic inflammation.

Surprisingly, the present invention provides such methods of suppressing ${\tt TNF...}$

... DRAWINGS

٠.

Figure 1 illustrates the ability of verapamil to suppress inflammation in $\mbox{TPA-treated mouse}$ \mbox{skin} .

Figure 2 illustrates ...sldn.

Figure 3 illustrates the ability of verapainil to suppress inflammation in DNCB-treated mouse $\ \mathbf{skin}\ .$

Figure 4 illustrates the ability of amiloride to suppress inflammation in DNCB-treated mouse sldn...

...in man.

Figure 6 illustrates the ability of verapamil. to suppress epidermal swelling in a **skin** inflammation model in man.

SUMMARY OF THE INVENTION

The present invention provides screening assays to...

...the inflammatory response.

In one embodiment, the present invention provides a method of screening for **skin** immune or inflammation modulating agents. In this method, keratinocytes are stimulated to produce at least...

- ...MHC Class H molecule. A portion of the keratinocytes are then exposed to a putative **skin** inflammation modulating agent, and a determination is made as to whether the putative agent is...
- ...or a benzothiazepinone. More preferably the calcium channel blocker will be administered as a specific **optical** isomer for those compounds having at least one **optical** center. The selection of the **optical** isomer for use in the present invention is such that an optimal modulation of TNF... limited to Retin-A.

In yet another embodiment, the present invention includes methods of modulating skin inflammatory response wherein an anti-inflammatory

preparation is applied to the skin .

In still another embodiment, the present invention includes methods for treating a non-allergic **skin** inflammatory condition in a mammal, wherein a TNF inhibitor is administered to a mammal displaying...

...determined.

The present invention also includes methods of modulating and treating inflammatory responses in the **skin** in which an electric field effective to modulate the production of cytoldnes in the sldn...

...In another embodiment, the electric field is applied to the sldn in conjunction with a **skin** inflammation modulating (suppressing or inducing) drug.

The present invention also provides methods for reducing sldn adverse reactions, sensitization and irritation associated with the application of a transdermal or **iontophoretic** delivery device, and/or other drugs to the sldn.

Still further, the present invention provides...

...for the treatment of ocular inflammation using TNF inhibitors and methods for the treatment of **skin** sensitization or irritation associated with the use of a cosmetic or **skin**0 care product.

DETAILED DESCRIPTION OF THE INVENTION Table of Contents

- I. Definitions
- H. The TNF...
- ...Formulations
 - (2) Oral Formulations
 - (3) Aerosol Formulations
 - (4) Solutions
 - (5) Transdermal Patches
 - (6) Occlusion
 - (7) Iontophoresis
 - (8) Sonophoresis
 - (9) Combinations
 - 9. Dosages and Schedules
 - 2. Occlusion
 - 3. Application of an Electric Field
 - 4. Sonophoresis
 - 5. Combinations
 - IV. Therapeutic Regimens
 - A. The Treatment of Sensitization, Inflammation, and Irritation Accompanying Transdermal Drug Delivery
 - B. The Treatment of Skin Diseases
 - C. The Treatment of Skin Cancers
 - D. The Treatment of Wounds
 - E. The Treatment of Ocular Inflammation
 - F. The Treatment...

...and Evaluation

- G. The Treatment of Skin Inflammatory Diseases with a Solution of Ions using Iontophoresis
- H. The Reduction of Irritation in Conjunction with Topical Drug Administration

I. Treatment of Superficial...

Claim

The term " optical center" or "chiral center" refers to a center, usually a carbon atom, which has four...

- ...chirality can be specified according to the Cahn-Ingold-Prelog system. In this system, each optical center can be defined as having an R- or an S-configuration. Accordingly, molecules which have at least one optical center are termed "chiral molecules." A molecule is chiral if no stable conformation can be superimposed on its mirror image. A molecule having at least one optical center can therefore exist as a racemic pair of enantiomers, each enantiomer rotating polarized light in equivalent but opposite direction. Each of these enantiomers can be termed (+)- or (+ depending upon whether polarized light is rotated in a clockwise or counter-clockwise direction, respectively. A racemic mixture, often termed a (+/-)-mixture, can be separated into its " optical isomers," namely the (+)-isomer and the (-)-isomer. Equivalent terms for the (+)-isomer and the (-)-isomer...
- ...inflammatory lesions or other abnormities upon examination of the patient. This would also represent an improvement or a successful treatment. Prevention of deterioration of the recipient's status is also included...morphological appearance comprising well-organized basal, spinous, and granular layers, and a coherent multi-layered stratum corneum . In addition, the normal or healthy epidermis comprises a terminally differentiated, stratified squamous epithelium with an undulating junction with the underlying dermal tissue. Normal or healthy skin further contains no signs of fluid retention, cellular infiltration, hyper- or hypoproliferation of any cell...
- ...and dermal dendrocytes. This appearance is documented in dermatological textbooks, for example, HISTOPATHOLOGY OF THE SKIN , Lever and Schaumburg-Lever (eds.), J.B. Lippincott Company (1991) and TExTBOOK OF DERMATOLOGY, Champion...
- ...eds.), 5th Ed. Blackwell Scientific Publications (1992), especially Chapter 3 "Anatomy and Organization of Human Skin "; PHYSIOLOGY, BIOCHEMISTRY AND MOUCULAR BIOLOGY OF THE SKIN , VOLS. I AND II, Goldsmith (ed.), Oxford Press (1991), the full disclosures of which are
- ...cells, endothelial cells, activated lymphocytes, NK cells, LAK cells, astrocytes, smooth muscle cells, and other epithelial cell types. Agents in this category demonstrate at least 25% inhibition of TNF production/release...causes of a disease, or any other desired alteration of a biological system. "Non-allergic Skin Inflammatory Condition" refers to an inflammatory
 - condition of the sldn which is not solely mediated...
- ...other dermatologic disorders such as blistery dermatoses and collagen maladies; and extrinsic ageing of the skin , be it photoinduced or not. "Non-allergic Systemic Inflammatory Condition" refers to an inflammatory condition in all surface epithelia and include epidermal Langerhans cells. These cell types are also referred to as antigen presenting...
- ...responses against antigens that contact the body surface. When an immunogen is applied to the skin , some Langerhans cells migrate from the site into dermal lymphatics and are carried to the...

- ...the processed antigens to T cells. In macrophages, the level of class H expression is increased when the macrophage is activated. The murine class H system is highly analogous to the...
- ...NK cells, LAK cells, astrocytes, endothelial cells, smooth muscle cells, mast cells, keratinocytes and other **epithelial** cell types. This particular cytokine governs a wide variety of biological activities including: cytotoxic effects...
- ...1045 (1988)). More recent studies in man have shown that anti-TNF antibodies can significantly **improve** the clinical manifestations of this disease. Patients with active arthritis were treated with chimeric human...
- ...TNF (see, Elliott, et al.. Arthritis Rheum. 36:1681-1690 (1993)). After several weeks, significant improvements were seen in the Ritchie Articular Index, the swollen joint count, and in other clinical...with inactive MS (see, Hauser, et al., Neurology 40:1735-1739(1990)). In one study, increased TNF and interferon production by monocytes was observed just prior to exacerbation of the disease...
- ...rodent models of diabetes. Correspondingly, reduction of circulating TNF in obese rats caused a significant increase of the peripheral uptake of glucose. Others demonstrated that TNF directly interferes with the signaling mechanism of insulin through its receptor...
- ...HIV-positive patients alone and together with zidovudine (ZDV). The average HIV viral load was increased over baseline after treatment with PTX and ZDV, compared to higher levels in patients given...
- ...such as Crohn's disease and ulcerative colitis are of unknown origin yet show an increased production of TNF, IL-1, and IEL-6 (see, Braegger, et al., Ann. Allergy 72:135-141 (1994)). An increased density of TNF immunoreactive cells in tissue specimens was ...significantly to the pathogenesis of both Crohn's disease and ulcerative colitis by impairing the epithelial and endothelial membranes or by increasing inflammatory cell infiltration. As noted above, the largest organ in the body, the skin, also makes TNF. Since skin represents the border to a hostile environment, it needs an arsenal of biological weapons to...
- ...mechanisms, then disease ensues. Psoriasis is one example of a serious and socially debilitating inflammatory skin disease characterized by a breakdown in the control of proinflammatory cytokines. Other inflammatory skin disorders such as eczema, atopic dermatitis, acne, contact dermatoses, sunburn and even cancers manifest a similar loss of control of the mechanisms that regulate normal cytokine levels in the skin. Psoriasis is a relatively common skin disease that is thought to be genetically predisposed. This intractable condition is characterized by inflammation...
- ...First, elevated levels of immunoreactive TNF and its receptors have been demonstrated in lesional psoriatic **skin** by immunohistochemical staining. Further, **increased** TNF mRNA levels in biopsies and elevated TNF biological activities in suction blister exudates from lesional psoriatic **skin** have been recently reported. Various clinical studies have demonstrated **increased** circulating levels of TNF in patients with severe psoriasis, and a decline in circulating TNF...
- ...Eczema presents clinically as lesions of variable size not clearly defined from the surrounding normal skin and which are characterized by

itching, redness, and scaling. Atopic dermatitis (AD) is a chronically...

- ...have long been considered one of the hallmark features of the disease. Yet, when clinical improvements of AD were observed in patients treated with either cyclosporin A or IEFN-,y therapy children with AD indicated that circulating TNF levels were increased relative to those of normal children. Elevated IL-8 levels were also found in 41...
- ...it is logical and plausible that TNF plays the leading and central role in acute <code>skin</code> inflammation resulting from ACD. Irritant contact dermatitis (ICD) is more prevalent than allergic contact ...irritating agent. While exposure to low levels of irritants may have no effect on the <code>skin</code>, irritant dermatitis occurs when the intensity or duration of the exposure exceeds the repair capacity, of the <code>skin</code> or when the chemical elicits a nonspecific inflammatory response. The understanding of the pathogenesis of...
- ...the clinical symptoms of ICD (induced by 10% sodium lauryl sulfate), an 8-10 fold increase in TNF and IL-6 was observed many hours before the 2-3 fold increase in IL-I#, IL-2 and GM-CSF in the peripheral human skin lymph. Lastly, it has been shown that administration of anti-TNF antibody prevents the development...
- ...the development of irritant dermatitis.

 Sunburn is a clinical manifestation of over-exposure to UV light. It has been shown that there is an increase in the serum TNF level in man after UV treatment (see, Koch, et al., J...
- ...derives in part from a heretofore unrecognized sequence of cellular events which leads to the **skin** inflammatory response. This sequence includes the phases of (1) accentuated transepidermal water loss caused by an insult, injury or other chemical or physical stimulus to the **skin**, (2) a consequent change in the ion gradients normally maintained in the **skin**, (3) the release of pre-formed cytokines which are stored in the secretory vesicles within...
- ...as well as new superior anti-inflammatory agents, methods and compositions. The perturbation of the skin 's barrier properties typically results from a disorganization of the lipids in the stratum corneum. Although lipids account for only a small percentage of the total stratum corneum weight, they are crucial for the provision of the permeability barrier by the skin. For example, ...has been found to result in a marked disruption in barrier function and thus, an increase in transepidermal water loss (TEWL). See Menon et al. (1985) J. Lipid Res. 26:418...
- ...chloride, and phosphorus ions. See Warner et al. (1988) J. Invest. Dermatol. 90:78 The increased ion flux caused by the accelerated water transit disrupts these homeostatic ion gradients in the...
- ...profiles for sodium, potassium, calcium, and chloride each possess a major inflection point at the **stratum corneum**-granulosuni junction. As discussed above, passive water loss can disrupt these **concentration gradients** and shift the inflection points. Without wishing to be bound by any particular theory, this **increased** water loss and the resulting passive ion flux and disruption of the ion gradients and cellular concentrations in the **skin** provide a signal for the **enhancement** of secretory granule formation and secretion. Interestingly, in most

secretory systems, increases in intracellular calcium concentration stimulate secretion. See Rubin (1970) Pharmacol. Rev. 22:389-428, Schoen ...

- ...keratinocytes. This is analogous to the situation in the parathyroid gland where decreased calcium concentrations increased parathyroid hormone secretion.

 See Brown (1991) Physiol. Rev. 71:371

 Specifically, preformed lipids; enzymes, including...
- ...and significantly, proteins, including preformed cytoldnes, such as TNF and IL-1, found in the **stratum corneum** are released by some secretory granules. For example, the presence of preformed TNF and IL-1 in the upper layers and in the intercellular domain of the epidermis/ **stratum corneurn** and in isolated enriched secretory granule (lamellar body) preparation has been confirmed by the inventors...
- ...immobilization in the lipid matrix, and the presence of naturally occurring antagonists in the granulosum- stratum corneum junction could be the protection mechanisms that serve to prevent inward flux of the preformed process and constitutively present in the stratum comeum. In fact, the stratum corneum could % function as the excretory or consolidating system for constitutively-produced cytokines. However, under a...
- ...the overall high local level of proinflammatory cytokines could initiate and/or propagate the local **skin** inflammatory and immune responses. Additionally, it has been found that like the granulocytes, epidermal keratinocytes, monocytic/macrophage cell types, and perhaps also other **epithelial** and endothelial tissues, initiate their production and/or release of proinflammatory cytokines using a common...
- ...cytosolic domains where either various promotional and regulatory mechanisms are activated to induce production or **enhance** the release of cytokines such as TNF-ci and IL These secondary messenger ions may...
- ...discussion herein has centered on techniques for regulating the rate of cytokine production in the **skin**, the same techniques will be applicable to modulating the formation and release of proinflammatory cytokines...
- ...et al. (1991) Adv. Drug DeL Rev. 7:313 There are several notable similarities between **skin** and mucosal membranes. For example, the buccal membrane is stratified in a like manner to the **skin**, with both tissues comprising polygonal cells at the basal membrane leading to squamous cells at...
- ...the non-keratinized tissues, such as the floor of the mouth and buccal mucosa, have epithelia, which, like the skin, act as effective rate-limiting steps to absorption. Therefore, the buccal epithelium can be regarded as having less completely differentiated keratinocytes as compared with the epidermis. III...
- ...used to alleviate inflammation. Such assays also provide a means to identify compounds which can **enhance** the cytokine productions. Thus, in one aspect, the present invention provides assays for screening putative **skin** immune modulating agents. The assays of the invention include a variety of formats which are identifying those agents capable of modulating the production of cytokines in keratinocytes or other **epithelial** tissues. Most generally, the assays of the invention will

- comprise the steps of (i) inducing...
- ...II molecule in primary human keratinocytes, i.e., keratinocytes isolated from human tissues or human **skin**; (ii) exposing a portion of the stimulated cells or tissues to putative **skin** immune modulating agent; and (iii) determining whether the putative agent is effective to modulate cytokine...
- ...and (v) the neutrophil chemotaxis assay for IL
 (1) ELISA
 ELISA techniques for evaluating the **skin** immune response are well-known in the art (see, e.g., Kenney, et al., J...
- ...TNF antibody, at a concentration of between about 0 15 1Lglml. The antibody solution is **allowed** to incubate in the wells for about 12-24 hours at 4'C in a...
- ...blocked with an inert protein, such as bovine serum albumin (BSA) in PBS, which is allowed to incubate in the wells for 1-3 hours. The blocking solution is discarded and...substrate (e.g. 1 mg/mL OPD/ 0.3% H202/0. 1 M citrate buffer) permit color development, with the intensity of color varying according to the amount of TNF specifically...
- ...bound antibody is then exposed to the supernatant taken from keratinocytes cultured with a putative **skin** anti-inflammatory substance. A second antibody, carrying a radioactive label such as "5I-modified tyrosine is added to the bound cytokine and **allowed** to incubate as described above. Typically the labelled antibody has a specific activity of about...
- ...concentration or the presence of various detergents or solubilizing agents (as is the case with **skin** homogenates and lamellar body preparations).
 - Generally, this procedure involves electrophoresing the cell supernatant samples on...information of a qualitative and quantitative nature. The strength of this procedure is that it allows visualization and localization of the distribution of a specific cytokine among various cell types or...used in the ELISAs.
 - (a) WEHI/L-929 Bioassays
 - The WEHI and L-929 bioassays allow for the determination of the concentration of biologically active cytokines. The most sensitive TNF bioassay...
- ...This reagent is metabolized to a colored end product only by viable cells and thus **allows** determination of the extent of)VEHI cell toxicity. Using a standard curve of serially diluted...
 ...of dead cells P
 - can be determined by the formula:
 - where OD,.P,,.., is the **optical** density of the solution in wells containing supernatant and OD,,.,, refers to the **optical** density of solution in control wells. The **optical** densities of the solutions is determined using standard methods. Alternatively, the TNF concentration may be...l units determined for the supernatants of keratinocytes incubated with various concentrations of a putative **skin** immune modulation agent to determine the actual IL-1 concentration of the supernatants.
 - (c) B...keratinocytes incubated in an agent effective to modulate cytokine production will be associated with an increase or decrease in cell/HPF compared to control depending on whether the putative agent is effective to enhance or suppress cytokine production.
 - b. Measurement of Cytokine Gene Expression

In addition to examining the...

- ...is not always the case. For example, modifications of the protein after its synthesis may increase its stability without any corresponding changes in the mRNA. Conversely, increases in mRNA production may not translate into increase amounts of protein as (1) the mRNA is unstable; (2) translational interference or bottlenecks in processing prevent a corresponding increase in protein production; or (3) the protein produced is unstable. In addition, some drugs are...
- ...sequences of the cytokines of interest. The probes are labelled, e.g., with 31p, to allow detection of probe binding to the appropriate mRNA. However, nonradioactive labeling and detection procedures may...
- ...immunohistochemical analysis of level of protein expression, in situ hybridization is a qualitative procedure that **allows** the direct visualization of cellular mRNA levels in cultured cells or tissue sections (Remick, D fixed cells are incubated in **ethanol**, and the sample is hybridized with a DNA probe specific for the cytokine of interest...
- ...with hematoxylin, the distribution of the probe can be visualized at the level of the light microscope.

 (3) RT-PCR
 - A very sensitive and powerful technique for assessing mRNA levels is...
- ...concentrations can be achieved by RT-PCR. Primers have been designed, acquired, and prepared that allow the study of several different mRNA species, including human TNF, IL-la, IL-10, ICAM...the cells and then incubated at 37'C overnight. Rocking the tubes during incubation will improve the digestion of the sample. If the proteinase K digestion is incomplete after overnight incubation...precipitate has formed. The DNA precipitate is removed and dipped in a solution of 70% ethanol and gently mixed. The DNA precipitate is removed from the ethanol and air dried. The precipitate is placed in distilled water and dissolved. Another commonly used...
- ...8.0, 4.2 M guanidine isothiocyanate, 0.5% Sarkosyl, and 0. 1 M 2-mercaptoethanol). Whole tissue is processed by homogenization in this buffer, while cultured cells are scraped into...
- ...centrifuged to recover the precipitated nucleic acid. The nucleic acid pellet is washed in 70% ethanol /30% diethyl pyrocarbonate (DEPQ-treated water, repelleted, dried, and solubilized in DEPC water. Kits are...are provided in PCT patent publication [WO 91/05210], incorporated herein by reference. The method allows0 the enzymatic degradation of any amplified DNA from previous reactions and reduces nonspecific amplification. The... potentially be a nonradioactive label, such as DIG-UTP. The probe is then isolated and allowed to hybridize with the mRNA in the sample of interest. Following hybridization, a ribonuclease is...
- ...to explore the transcriptional activity of a cytokine gene and answer questions regarding whether the increase in steady-state mRNA levels as assessed by Northern blot is due to an increase in the transcription of the gene or due to an increase in the stability of the mRNA (see, e.g., Zuckerman, et al., Immunology 73:460...cytokines and the use of such regulatory elements to identify agents effective to suppress or enhance the transcription of DNA sequences encoding proinflammatory cytokines. DNA sequences within or flanking a cytokine gene which is preferentially expressed in keratinocyte cells contain DNA sequence motifs which function to enhance or drive transcription of the cis-linked gene in

keratinocytes. These sequences are termed cytokine-specific transcriptional regulatory sequences. Such sequences are isolated and evaluated for their capacity to **enhance** or drive transcription of an operably linked reporter gene (e.g., chloramphenicol transferase, CAT) in

...not in other cell types which have also been transfected with minimal reporter constructs.

The **enhancer** region may be derived from the 5' flanking region of a cytokine gene, where the cytokine gene selected is normally expressed in primary human keratinocytes. The **enhancer** region will include at least that portion of the 5' flanking region which is bound...

...induced by cytokines which are produced as a result of stimulation of the keratinocyte.

The $\mbox{enhancer}$ region can be obtained by isolation and purification from a

suitable genomic library, optionally using...

- ...pathway of the keratinocyte has been induced. Conveniently, a detectable signal will be visibly or **optically** detectable to facilitate screening of multiple samples simultaneously, for example using multiple-well microtiter plates...
- ...gene is preferred. Other suitable marker genes include fl-galactosidase and chloramphenicol acetyl-transferase.

 The enhancer region and the marker gene will be incorporated into a suitable DNA construct by conventional...
- ...for easy construction, the DNA construct will be prepared from a bacterial plasmid where the **enhancer**, the marker gene, and usually a suitable promoter region, will be sequentially introduced in proper reading frame so that binding of a nuclear regulatory protein to the **enhancer** region will result in **increased** expression of the marker. The plasmid will usually include at least one antibiotic resistance geneor portions thereof including the **enhancer**, promoter, marker gene, and optionally antibiotic resistance gene, will be introduced by conventional transfection techniques into the starting keratinocytes. Suitable techniques include the use of reagents that **improve** chemical **permeability**, **electroporation**, and the like. After transfection, the keratinocytes will be screened based on antibiotic resistance to...
- ...described below.

Stimulation of MHC Class II Expression Keratinocytes express and macrophages and B lymphocytes increase expression of surface MHC class II molecules when activated, for example by oy-interferon. (1...NY, 1989.)

2 In vivo Models

Animal models that are widely viewed to reflect human **skin** disorders and

to have predictive ability in assessing the efficacy of various treatments for these...allergen challenge, concurrently with, and/or subsequent to the challenge. Several accepted animal models for skin disease are known, each useful to study different aspects of skin disease, for example, immediate-hypersensitivity reaction, delayed-type hypersensitivity reaction, non-immunologic contact urticaria, and the like.

See NON-STEROIDAL ANTI-INFLAmmATORY DRUGS: PHARMACOLOGY OF THE SKIN @

Henby and Lowe (eds.), Basel, Karger (1989). With respect to **skin** irritation models in animals, inflammation and hyperplasia can be induced by topical application of a...

- ...Derm., 93:2 p. 322 (1989), which is incorporated herein by
 - 10 reference. Further, compromised **skin** barrier can be modeled by topical acetone treatment. TPA causes epidermal inflammation and hyperplasia by...
- ...kinase C, a key regulator of epidermal growth and inflammation. The pathophysiologic alterations to the **skin** induced by TPA bear many similarities to the pathophysiologic alterations observed in psoriatic **skin**. **Skin** challenged with DNCB several days after sensitization has been observed to exhibit immunologic reactions similar to those observed in clinical cases of allergic contact dermatitis. Acetone treatment of the **skin** is known to cause physiologic alterations as a result of disruption of the **stratum corneum** barrier. Such alterations are commonly observed in **skin** diseases.

In addition to the use of normal mice where **skin** inflammation is induced

via topical application of a specific stimulating agent, relevant skin disease model can also be developed in immune-compromised mice such as athymic nude mice...

- ...143:1511-1522, 1993). In these immune-compromised, or immune-deficient mice, excised psoriatic lesional **skin** is transplanted to the back of the animal. Once healed completely, these xenografts can be...
- ...to model psoriasis in man. Similar approach can be applied to the development of other **skin** diseases, as well as infections.

 The most common model for various **skin** cancers relies on the administration of a cancerous cell line or the implantation of cancerous
- ...onto the athymic mouse or SCID mouse. The compromised immune system of this animal will allow the development of cancers or tumors, often ... regulated by specific ligand such as cAMP, binding to the receptor. There are other calcium permeable channels that are not sensitive to the selective calcium channel blockers, which there are no...TNF production in stimulated RAW cells (62% inhibition at 10 ng/mL LPS), and TPAinduced skin swelling response in mice.

Preferred compounds useful in the present invention include the loop diuretics...diphenylcyclopropyl)-4,5-dihydro) [CAS 01-9]; CV-6402 (2,2'[(2-amino-ethyl)imino] diethanolbis (butylearbamate) 2HCL); EGIS-3966 (Cyclohexanone,

2-(phenylmethylene)-[3-[bis(I-methylethyl)amino] hydroxypropyl]oxime, (E ...decaenamide [CAS 48-6];

Carsatrin (4-[bis(4-fluorophenyl)methyl-ce-[(5H-purin ylthio)methyl]-piperazineethanol) [CAS 87-31; and BDF-9148

(4-[3'-1-(diphenylmethyl)-azetidine yl(oxy)-2'hydroxypropoxy...

...mouse peritoneal macrophages, PGE2 was found to effectively suppress lipopolysaccharide (LPS)-stimulated TNF production. The increase in intracellular cAMP levels produced upon interaction of PGE2 with ... adenylate cyclase (both G-protein activators and a-receptor agonists) also can be used to increase intracellular cAMP levels. Commonly used 0-adrenergic agonists (or, 6-agonists) include albuterol, terbutaline, metaproterenol...

...production in THP-1, RAW and keratinocytes.

The net intracellular cAMP level can also be increased by inhibiting the cAMP degradation. To this end, several inhibitors of phosphodiesterases (PDEs), the enzyme...

...Channel Blockers

Two of the three major structural classes of calcium channel blockers exist in **optically** active forms. Verapamil and diltiazem each have at least one **optical** center and accordingly can be separated into their respective enantiomers to determine the levels and...

- ...therefore exists as a single isomer. For other dihydropyridine agents which are not symmetrically substituted, **optical** isomers will exist due to the chirality associated with the C-4 position of the...that antiinflammatory properties are associated with both isomers of a racemic pair. Thus, a specific **optical** isomer of a calcium channel blocker can be selected to provide a desired therapeutic benefit conditions, such as infection and wound healing, elevated TNF production is beneficial to **enhance** the body's immune response to fight infections, and to facilitate removal of degenerated tissue...
- ...a calcium channel blocker. In preferred embodiments, for calcium channel blockers having one or more optical centers, a specific optical isomer of the calcium channel blocker is used. The specific optical isomer is preferably the isomer which is the less cardiovascularly active isomer. Alternatively, the specific optical isomer can be selected to provide optimal modulation of TNF production. In other preferred embodiments...
- ...channel blocker is a benzoacetonitrile, a dihydropyridine or a benzothiazepinone, more preferably as a specific **optical** isomer. Still further preferred are those embodiments in which a benzoacetonitrile, preferably verapamil, is present predominantly as its plus isomer. In one group of embodiments, the pathological condition is a **skin** inflammatory condition, preferably psoriasis, atopic dermatitis, UV-induced inflammation, contact dermatitis or inflammation induced by...
- ...administered to the mammal. As with the more general methods and for the treatment of **skin** inflammatory conditions, the preferred calcium channel blockers are benzoacetonitriles, dihydropyridines or benzothiazepinones, more preferably as a specific **optical** isomer. Still further preferred are those embodiments in which a benzoacetonitrile, preferably verapamil, is present...
- ...The preferred calcium channel blockers are benzoacetonitriles, dihydropyridines or benzothiazepinones, more preferably as a specific optical isomer. Still further preferred are those embodiments in which a benzoacetonitrile, preferably verapamil, is present predominantly as its plus isomer. In another aspect, the present invention provides methods of reducing skin adverse reactions associated with the application of transdermal devices to a selected area of the sldn, comprising administering to the selected area of the skin an amount of a calcium channel blocker effective to reduce the adverse reaction in conjunction blocker has at least one optical center, a specific optical isomer is preferred, more preferably either that isomer which is the less cardiovascularly active isomer...
- ...the present invention provides a method of reducing sldn sensitization and irritation associated with the **iontophoretic** delivery of a

therapeutic agent, comprising administering a therapeutically effective amount of a calcium channel blocker in conjunction with the iontophoretic delivery of the therapeutic agent. The administration of the calcium channel blocker to the skin can be made either prior to, contemporaneously with, or subsequent to the iontophoretic delivery of the therapeutic agent. In preferred embodiments, the calcium channel blocker is a benzoacetonitrile...

- ...application of a transdermal patch, above, the calcium channel blocker will preferably be a specific **optical** isomer (when the CCB has at least one **optical** center). More preferably that isomer is either the less cardiovascularly active isomer or the isomer...
- ...methods are provided for the treatment of ocular inflammation in a mammal and for reducing skin sensitization or irritation arising from the use of a cosmetic or skin care product. In each of these methods, an effective amount of a calcium channel blocker...spantide) or neurokinin-1 receptor antagonists (e.g., CP-96,345) can be administered to ameliorate the effect of this neuropeptide. Additionally, since acetylcholine is one of the most potent neurotransmitters...
- ...such as atropine, ipratropium bromide, and the like can be effective in alleviating the immediate skin

inflammation/immune response. Additionally, mast cell mediator release inhibitors, such as cromolyn sodium or sodium...

... useful in the methods described herein.

c. Antihistamines

Histamine can be released either from degranulating $\,$ skin $\,$ mast cells or peripheral nerve endings during the $\,$ skin 's inflammatory/immune response. Histamine is known to produce the redness, wheal, and flare reactions in the $\,$ skin $\,$. In addition, it has been suggested that histamine can work in synergy with TNF to...of histamine binding to the H-2 receptor that is of particular interest in the $\,$ skin 's inflammatory/immune response. Thus, compounds known to be H-2 antagonists, such as cimetidine, and the like, either alone or in combination with $\,$ iontophoresis $\,$, can be utilized in the methods described herein.

d. Immunosuppressants

The first evidence suggesting efficacy for the treatment of inflammatory skin disorders with immunosuppressants came from the systemic administration of cyclosporin A to psoriatic patients. Although...

- ...nephro- and hepatic toxicity, cyclosporin A has been employed in the treatment of many inflammatory skin0 disorders. Recently, it has been demonstrated that topical application of immunosuppressants, such as FK-506, was effective in inhibiting skin inflammatory reactions in an allergic contact dermatitis model. Other immunosuppressants, such as corticosteroids (see, e...
- ...ion (e.g., as the citrate, versenate, or other salt) delivered either passively or by iontophoresis (see, e.g., Diezel et al. (1989) J. Invest. Demat. 93:322-326); agents that...diethyl stilbestrol, and the like.

Additional pharmacological agents that can be delivered topically, transdermally, or iontophoretically, according to the methods described herein include other cytokines, peptides, oligosaccharide, proteins and oligonucleotides capable...to one group of embodiments, pharmacological agents capable

of modulating inflammation are applied to the skin , either

iontophoretically , sonophoretically , topically, or through other
routes of drug administration, such as oral (PO), intraperitoneal (IP),
intravenous...

...topical formulations will comprise a preparation for delivering a pharmacological agent directly to the affected skin comprising the pharmacological agent, typically in concentrations in the range from about 0. 00 1...modulating agents such as La". In preferred embodiments, for TNF inhibitors having one or more optical centers, a specific optical isomer of the inhibitor is used. In other preferred embodiments, the TNF inhibitor is a benzoacetonitrile, a dihydropyridine or a benzothiazepinone, more preferably as a specific optical isomer. Still further preferred are those embodiments in which a benzoacetonitrile, preferably verapamil, is present predominantly as its plus isomer. The specific optical isomer is preferably the isomer which is the less cardiovascularly active isomer. Alternatively, the specific optical isomer can be selected to provide optimal modulation of TNF production.

Additionally, other pharmacological agents

which have optical isomers are also expected to show a stereoselectivity similar to that which is found with...of a topical formulation includes about 1 % (+)-verapamil by weight; about 35-40% alcohol, predominantly ethanol and isopropyl alcohol; about 30% propylene glycol; about 15% polyethylene glycol 400 (PEG 400); about 10% water; and small amounts, such as about 1 % or less, of each of glycerin , sodium laurel sulfate, stabilizers, preservatives, humectants, thickeners, and chemicals selected for the addition of color

- ...Pat. No. 4,940,587. This buccal adhesive formulation, when applied to the buccal mucosa, allows for controlled release of the pharmacological agent into the mouth and through the buccal mucosa...active on the eye surface or in the eye after passage through the cornea or conjunctiva. To increase bioavailability of drugs, to extend therapeutic efficacy, and to improve patient compliance, various dosage forms have been developed over the years. These include soluble inserts...
- ...patches have the added advantage of providing controlled delivery of a pharmacological agent to the **skin** or body. See TRANSDERMAL DRUG DELIVERY: DEVELOPMENTAL ISSUES AND RESEARCH INITIATIVES, Hadgraft and Guy (eds...
- ...incorporating the pharmacological agent in a proper medium, such as an elastomeric matrix material. Absorption **enhancers** can also be used to **increase** the flux of the compound across the **skin**. The rate of such flux can be controlled by either providing a rate-controlling membrane...
- ...backing material and an adhesive, such as an acrylate adhesive. The pharmacological agent and any enhancer, or combination of enhancers, are formulated into the adhesive casting solution and allowed to mix thoroughly. The solution is cast directly onto the backing material ... deliver the pharmacological agent. The layers of this patch comprise a backing, a polyurethane drug/enhancer matrix, a membrane, an adhesive, and a release liner. The polyurethane matrix is prepared using...also find use in the methods described herein. This patch comprises an impermeable or semi-permeable, heat sealable backing material, a heat sealable membrane, an acrylate based pressure sensitive skin adhesive, and a siliconized release liner. The

backing is heat sealed to the membrane to form a reservoir which can then

be filled with a solution of the drug, enhancers, gelling agent, and other excipients. Such patches are described in U.S. Patent Nos. 5...

- ...incorporated herein by reference.

 In one embodiment, a TNF inhibitor can be applied to the **skin** in conjunction with any device or delivery system which is attached to the **skin** through an adhesive, e.g., a transdermal patch or an ostomy device such as a...
- ...or more different drugs, or the benzoacetonitrile can be applied to the area of the <code>skin</code> upon which the patch is to be placed prior to attachment of the transdermal patch to the <code>skin</code>. Such a combination can be used to deliver systemic antiinflammatories or reduce the well-known problems of <code>skin</code> irritation caused by the attachment of a transdermal patch to the <code>skin</code>. The TNF inhibitors which act as antiinflammatories can also be applied after the patch is...
- ...a pharmacological agent and a sealing material overlaid on the outside, to the area of **skin** to be treated. Occlusion prevents loss of the drug from the **skin**, promotes **skin** hydration, and **increases skin** temperature. These actions have been shown to **enhance** the penetration of certain medications used in the treatment of psoriasis, leg ulcers, some dermatitis...polyethylene film (e.g., Vigilong, Bard Home Health Division, Berkeley Heights, NJ and Spenco 2nd **Skin** Dressingg, Spenco Medical Inc., Ward, TX); polyethylene (e.g., Glad Cling WrapO, Union Carbide Corp...
- ...to methods and apparatus for transdermal delivery of therapeutic agents by means of an applied **electromotive force** to an electrolyte-containing reservoir. The particular therapeutic agent being delivered may be charged or...
- ...ion, calcium ion, or any charged atom or molecule, the process is referred to as **iontophoresis**. When the therapeutic species delivered is uncharged, it may be considered delivered by means of...
- ...solvent, in which the uncharged species is dissolved, as a result of the application of **electromotive** force to the electrolyte reservoir. Of course during the process, some transport of charged species will take place as wen. In general, **iontophoresis** is an introduction, by means of electric current, of ions of soluble salts into the tissues of the body. More specifically, **iontophoresis** is a process and technique which involves the transfer of ionic (charged) species into a...
- ...That is, ions are transferred into the tissue, from an electrolyte reservoir, by application of **electromotive** force to the electrolyte reservoir.

If the electrotransport method is <code>iontophoresis</code>, generally the active electrode includes the therapeutic species as a charged ion, or a precursor for the charged ion, and the transport occurs through application of the <code>electromotive</code> force to the charged therapeutic species. If other electrotransport phenomenon are involved, the therapeutic species will be delivered in an uncharged form, transfer being motivated, however, by <code>electromotive</code> force. For example, the applied ...the non-therapeutic charged species induces movement of the therapeutic but non-charged species.

Through iontophoresis, either positively charged drugs (medication) or negatively charged drugs (medication) can be readily transported through the skin and into the patient. This is done by setting up an

appropriate potential between two electrode systems (anode and cathode) in electrical contact with the <code>skin</code> . If a positively charged drug is to be delivered through the <code>skin</code> , an appropriate <code>electromotive</code> force can be generated by orienting the positively charged drug species at a reservoir associated with the anode. Similarly, if the ion to be transferred across the <code>skin</code> is negatively charged, appropriate <code>electromotive</code> force can be generated by positioning the drug in a reservoir at the cathode. Of course...

- ...may be delivered from a single system during a selected operation. For general discussions of iontophoresis, see, e.g., Tyle (1989) J. Phann. Sci. 75:318; Burnette, Iontophoresis (Chapter 11) in TRANSDERMAL DRUG DELIVERY Hadgraft and Guy (eds.) Marcel Dekker, Inc.: New York...
- ...24, the full disclosures of which are incorporated herein by reference. A wide variety of iontophoresis devices are presently known. See, e.g., Phipps et al. U.S. Patent No. 4...
- ...of each which are incorporated herein by reference. In typical, conventional, electrotransport devices, for example iontophoresis devices, two electrodes are generally used. Both electrodes are disposed so as to be in intimate electrical contact with some portion (typically skin) of the subject (human or animal) typically by means of two remote electrolyte-containing reservoirs, between which current passes as it moves between the skin and the electrodes. One electrode, generally referred to herein as the "active" electrode, is the...
- ...drug precursor or drug) is delivered or driven into the body by application of the **electromotive force**. The other electrode, typically referred to 1A 35 as an "indifferent" or "ground" electrode, serves...in these materials is not in their ability to generate an electric potential across the **skin**, but rather in certain nuances associated with their performance of this function. For example, platinum ...
- ...in pH can influence the ionization state of therapeutic agents and their resulting rate of iontophoretic transport. Silver-silver chloride electrodes, on the other hand, do not hydrolyze water. However, these...
- ...material. Such drug reservoirs, when electrically connected to the anode or the cathode of an **iontophoresis** device, provide a source of one or more ionic species for electrotransport. Generally, buffers will...
- ...ionic species, save the therapeutic agent itself, is minimized. In conjunction with the patient's **skin** in electrical communication with the electrodes, the circuit is completed by connection of the two...
- ...be the active electrode and the positive electrode (anode) will be the indifferent electrode. Chemical enhancers, vasodilators, and electroporation can also be utilized to alter the iontophoretic transport rate. For example, the coapplication of oleic acid to the skin causes a large decrease in the skin impedance or resistance which is inversely related to permeability or transport. See Potts et al. (1992) Solid State Ionics 53-56: ...ducts), the ions constituting the current can more uniformly permeate the lipid milieu of the stratum corneum at a lower current density. Thus, the epidermis, as well as the peripheral neurons surrounding...
- ...able to experience the electrical stimulation.

Substances which would perturb the normal structure of the stratum corneum could, in turn, disrupt the intercellular lipid organization, thus reducing its effectiveness as a dielectric barrier. These substances could include any lipid material which would partition into the stratum corneum lipids causing a direct effect or any material which would effect the proteins and cause an indirect perturbation of the lipid structure. Furthermore, solvents, such as ethanol , can remove lipids from the stratum corneum , thus destroying its lipid organization and decreasing its dielectric properties. Examples of stratum lipid perturbants include, but are not limited to, alcohol enhancers, such as alkanols with one to sixteen carbons, benzyl alcohol, butylene glycol, diethylene glycol, glycofurol, glycerides, glycerin, glycerol , phenethyl alcohol, polypropylene glycol, polyvinyl alcohol, and phenol; amide enhancers, such as N-butyl-N-dodecylacetamide, crotamiton, N, N-dimethylformamide,

- N, N-dimethylacetamide, N-methyl...
- ...jojoba oil, petrolatum; mixes, such as primary esters of fractionated vegetable oil fatty acids with glycerine, or propylene glycol, and interesterified medium chain triglyceride oils; fatty acids and fatty acid esters...
- ...caprylic acid, cetyl ester, diethyl sebacate, dioctyl malate, elaidic acid ethyl caprylate, ethyl glycol palmitostearate, glyceryl beheate, glucose glutamate, isobutyl acetate, laureth-4, lauric acid, malic acid, methyl caprate, mineral oil, myristic acid...
- ...caprylic-, capric-, and lauric-triglycerides; macrocylics, such as butylated hydroxyanisole, cyclopentadecanolide, cyclodextrins; phospholipid and phosphate enhancers , such as dialkylphosphates, ditetradecyl phosphate, lecithin, 2-pyrrolidone derivatives, such as alkyl pyrrolidone carboxylate esters, pyroglutamic acid esters, N-methyl pyrrolidone, biodegradable soft penetration enhancers , such as dioxane derivatives and dioxolane derivatives; sulphoxide enhancers , such as dimethyl sulphoxide and decylmethyl sulphoxide; acid enhancers , such as alginic acid, sorbic acid, and succinic acid; cyclic amines; imidazolinones; imidazoles; ketones, such...nonoxynols, polysorbates, polyoxylene alcohols, polyoxylene fatty acid esters, sodium lauryl sulfate, and sorbitan monostearate. In electroporation , which may have the same net effect as the use of chemical enhancers plus conventional iontophoresis, transient pores in the lipid structure of membranes, such as the stratum comeum, are
- ...been used to introduce DNA into various cells. See Chang et al. (1992) HANDBOOK OF ELECTROPORATION AND ELECTROFUSION Academic Press: York. Generally, electroporation involves the application of infrequent, short (about 1 millisecond), high voltage (5-300 volts) electric...

created...

- ...the present invention, the inflammation, irritation, and/or sensitization which frequently occurs with transdermal or iontophoretic delivery of drugs, and in other topical products such as cosmetics, can be ameliorated by pre-, co-, or post-administration of a TNF inhibitor. Such transdermaland iontophoresis -related inflammation is described in, e.g., Hogan, et al., J. Am. Acad. Dermatol., 22...
- ...includes the use of a TNF inhibitors or chemical anti-inflammatory agent

in conjunction with iontophoretic delivery of drugs to reduce the above-described sensitivity and irritation which accompanies iontophoretic drug delivery. Additionally, the TNF inhibitor can be used alone or in a combination of two or more. The agent or agents may be administered to the skin prophylactically, i.e., before the application of the iontophoretic current either topically or subcutaneously, or the agent or agents may be administered contemporaneously with the iontophoretic current, for example, by inclusion of the agent or agents with the reservoir of material to be delivered to the skin.

(8) Sonophoresis

Ultrasound also has been employed as a means of transdermal drug delivery, a technique known as sonophoresis or phonophoresis (see Type, et al., "Drug Delivery by Phonophoresis" Pharm. Res. 6:355-361 (1989) and Bommannan, et al., " Sonophoresis I: The Use of Ultrasound to Enhance Transdermal Drug Delivery" Phann. Res. 9:559-564 (1989), both of which are incorporated herein by reference). High frequency sound waves have been observed to disrupt the superficial skin layers (e.g., the ${\tt corneum}$); thereby ${\tt enhancing}$ the transport of drugs into the sldn. Sonophoresis has been reported to enhance drug delivery while avoiding the problems of permeability and long lag times before achieving therapeutically useful flux associated with other methods of transdermal drug delivery (see Bommannan (1989)). Sonophoresis at a frequency of 10-16 MHz has been shown to deliver materials into the skin in as few as 5 minutes (see Bommannan, et al., Phannaceutical Research, 9:8 1043-1047 (1992)). Thus, sonophoresis provides another method for the topical delivery of anti-inflammatory substances. (9) Combinations

Combinations of the various techniques described herein, i.e., electrotransport, sonophoresis, pharmacological intervention, and occlusion, can also be utilized. For example, pharmacological agents can be administered "actively" through the use of iontophoresis, or sonophoresis, optionally with stratum corneum lipid perturbants, or "passively", for example via the topical application of pharmacological agents, alone or with stratum corneum lipid perturbants. A further embodiment will combine iontophoresis with occlusion. Other embodiments will provide for the combination of occlusion and pharmacological agents. For...

- ...treatment may or may not be important depending on the disorder being treated. For example, **iontophoresis** and pharmacological intervention may be applied sequentially to the patient, with the **iontophoretic** therapy being administered before, during, after, or any combination thereof. Sequential administration involves treatment with...
- ...24 hours) and may involve continued treatment with the pharmacological agent on days that the **iontophoretic** therapy is not administered. The therapies may be administered to the patient at one time...
- ...agent may be applied to the affected area. Alternatively, a pharmacological agent may be delivered iontophoretically .

 The optimal combination of therapies and their sequence will depend upon the type of disorder...
- ...the compound is that which provides either subjective relief of symptoms or an objectively identifiable **improvement** as noted by the clinician or other qualified observer. The dosing range varies with the...
- ...topical formulations will comprise a preparation for delivering a pharmacological agent directly to the affected **skin** comprising the pharmacological agent, typically in concentrations in the

- range from about 0.001 % to...typically held in contact with the mucosal membrane and disintegrate and/or dissolve rapidly to allow immediate local and systemic absorption. For delivery to the buccal membranes, typically an oral formulation...
- ...Pat. No. 4,940,587. This buccal adhesive formulation, when applied to the buccal mucosa, allows for controlled release of the pharmacological agent into the mouth and through the buccal mucosa...active on the eye surface or in the eye after passage through the cornea or conjunctiva. To increase bioavailability of drugs, to extend therapeutic efficacy, and to improve patient compliance, various dosage forms have been developed over the years. These include soluble inserts...
- ...In one embodiment, a TNF inhibitor or an anti-inflammatory can be applied to the **skin** in conjunction with any device or delivery system which is attached to the **skin** through an adhesive, e.g., a transdermal patch or an ostomy device such as a...
- ...TNF inhibitor or the anti-inflammatory agent can be applied to the area of the **skin** upon which the patch is to be placed prior to attachment of the transdermal patch to the **skin**. Such a combination can be used to deliver systemic TNF inhibitors or antiinflammatories or reduce the well-known problems of **skin** irritation caused by the attachment of a transdermal patch to the **skin**. The TNF inhibitor or anti-inflammatory agent can also be applied after the patch is...usual patient treated with the invention may actually tolerate higher dosages of the inventive (+)-verapamil **better** than the conventional racernate because of the former's reduced effect on the cardiovascular system...
- ...10 to about 180 mg per day of (+)-verapamil is recommended. The dosage may be increased, usually in increments of about 10 to 100 mg, to a maximum of about 480...
- ...from about 2.8 to about 7.4 hours. After repetitive dosing, the half-life increased to a range of from about 4.5 to about 12. 0 hours. When administered...a hydrated dressing and a sealing material overlaid on the outside, to the area of skin to be treated. As noted above for the use of occlusive methods with drugs, occlusion promotes skin hydration, and increases skin temperature.
- 3 Application of an Electric Field Some embodiments of the present invention will employ...
 ...of an
- electric field to modulate the lamellar body extrusion process. The application of an **electromotive** force has been discussed above in connection with **iontophoretic** delivery of therapeutic agents. The use of ion currents will find use in the treatment...
- ...to this embodiment the ion current can be produced by applying the anode of an iontophoretic delivery device capable of delivering an electric field with a net current typically, from about...
- ...and most preferably from about 0. 1 to about 0.5 mA, to the affected skin . Typically, the cathode reservoir comprises a conductive gel and the anode reservoir comprises an aqueous...
- ...described in U.S. Patent No. 5,221,254 to Phipps.

 In some embodiment, the **enhancing** current will be applied by placing an electrode on the affected area and delivering an...

- ...most preferably, from about 20 to about 40 minutes. Moreover, since in the absence of **stratum corneum** lipid perturbants, the current density tends to concentrate on the shunt pathways, the release of...
- ...or cause mast cell degranulation and macrophage activation. The release of TNF-a from the **skin** mast cells and macrophages can further amplify the signal for keratinocyte activation induced by neuropeptides such as substance P.

Thus, the present invention contemplates the use of **enhancing** currents,

and the associated influx of ions into the **stratum corneum** -granulosum junction, optionally with **stratum corneum** lipid perturbants, to promote wound healing, to treat sldn cancers, to **increase** local production of cytokines in order to fight infections, or to reduce inflammation.

4 Sonol2horesis...

...been employed as a means of transdermal drug delivery. This technique is also known as sonophoresis or phonophoresis. In the absence of therapeutic agents, these methods, (i.e., sonophoresis) through disrupting stratum corneum intercellular bilayers and the epidermal calcium gradients can modulate the epidermal immune responses associated with pro-inflammatory cytokine releases from lamellar bodies (see, Menon, et al., "Sonophoresis Disrupts Corneum(SC) Intercellular Bilayers and the Epidermal Calcium Gradient", Abstracts 100(4):497 (April...

Accordingly, the present invention provides methods for the treatment of inflammation using sonophoresis. Further, the present invention contemplates the use of sonophoresis and associated flux of ions into the stratum corneum -granulosum junction, optionally with stratum corneum lipid perturants, to promote wound healing, to treat skin cancers and to increase local production of cytokines in order to fight infection.

5 Combinations

Combinations of the various techniques described herein, i.e., electrotransport, sonophoresis, pharmacological intervention, and occlusion, can also be utilized. For example, pharmacological agents can be administered "actively" through the use of iontophoresis, or sonophoresis, optionally with stratum corneum lipid perturbants, or "passively", for example via the topical application of pharmacological agents, alone or with stratum corneum lipid perturbants. A further embodiment will combine iontophoresis with occlusion. Other embodiments will provide for the combination of occlusion and pharmacological agents. For...

...agents.

When combinations of the therapeutic methods described herein are used in the treatment of **skin** disorders, the particular sequence of treatment may or may not be important depending on the disorder being treated. For example, **iontophoresis** and pharmacological intervention may be applied sequentially to the patient, with the **iontophoretic** therapy being administered before, during, after, or any combination thereof. Sequential administration involves treatment with...

- ...24 hours) and may involve continued treatment with the pharmacological agent on days that the **iontophoretic** therapy is not administered. The therapies may be administered to the patient at one time...
- ...agent may be applied to the affected area. Alternatively, a

pharmacological agent may be delivered iontophoretically. The optimal combination of therapies and their sequence will depend upon the type of skin disorder to be treated, the severity and course of that disorder, previous therapy, the patient...Field It is well recognized that application of drug-delivering transdermal delivery systems to the skin can result in the development of an immediate or delayed-type contact sensitivity to the...

...drug delivery.

There are seven transdermal therapeutic systems presently on the market: scopolamine (motion sickness), nitroglycerin (angina), clonidine (hypertension), estradiol (hormone replacement), nicotine (smoking cessation), fentanyl (analgesic) and testosterone (hypogonadism). See...

- ...and especially chronic use of the transdermal patches could be a result of the vehicle, enhancer, adhesive, drug, or any combinations of these components. Both irritant and allergic contact dermatitis have...
- ...method and agents mentioned in this application following the use of transdermal patches to further <code>improve</code> the safety profile and compliance of any given transdermal product. Methods of pretreatment include applying one or more of the compounds described above to the <code>skin</code> in the form of a topical preparation such as an ointment, gel or cream about...of electrotransport to reduce irritation and sensitization resulting from such application.

 B. The Treatment of <code>Skin</code> Diseases
 One of the common clinical manifestations in <code>skin</code> diseases of diverse origins is compromised <code>skin</code> barrier function as evidenced by an <code>increase</code> in the transepidermal water loss (i.e., > 10% normal, as measured with an electric water...

..IL

The methods described herein will find use in the treatment of a variety of **skin** disorders, including those associated with differentiation and proliferation, for example, allergic dermatitis, psoriasis, eczematous or ...

- ...such as cutaneous T-cell lymphoma, blistery dermatoses and collagen maladies; and ageing of the skin, be it photoinduced or not. Examples of specific skin diseases amenable to treatment with the methods described herein include psoriasis, eczematous dermatitis and all TNF-mediated skin disorders. Psoriasis is a common, idiopathic chronic skin disease characterized by inflamed, scaling, skin lesions containing infiltrates of neutrophils, lymphocytes and monocytes. According to the present invention, the term...Eczematous dermatitis is not a specific disease entity but a characteristic inflammatory response of the skin. Eczematous dermatitis is sufficiently serious to account for the highest incidence of skin disease. Approximately one-third of all patients in the United States seen by dermatologists have eczema. This category of skin disease includes atopic dermatitis, lichen simplex chronicus, prurigo nodularis, stasis dermatitis, nummular eczematous dermatitis, dyshidrotic...
- ...In addition, this category includes eczematous dermatitis caused by allergic contact, photoallergic contact, and polymorphous light -induced eruption, as well as infections eczematoid dermatitis and eczematous dermatophytosis.

For acute diseases such...

...antagonists. In a preferred embodiment, IFN-a or IFN-a2 is administered in combination with iontophoresis to provide additional therapeutic

advantages. IFN-a serves to counteract the TNF that is secreted from the lamellar bodies and that can exacerbate the symptoms of skin disease. Additionally, the iontophoresis and/or the pharmacological intervention can be combined with occlusion. In another preferred embodiment, a diuretic such as furosemide or spironolactone is administered in a topical preparation to afflicted skin. In still another preferred embodiment a TNF-inhibitor such as verapamil or isradipine is administered topically to diseased skin. Also in a preferred embodiment anti-diarrheal agents such as loperamide or diphenoxylate is administered topically to diseased skin or use as prophylactic regimen. In additon, skin disease is frequently associated with perturbations of the skin 's barrier properties and hence, elevated levels of water loss. As described above, this water...

- ...to accelerate the lamellar body extrusion process and hence, the cellular growth rate associated with **skin** diseases. Without being limited to a particular mechanism, the therapeutical. goal in the treatment of certain **skin** diseases may involve stabilizing the lamellar body extrusion process and/or homeostatic intracellular ion concentrations...
- ...thus, maintaining local ion concentration and the rate of lamellar body extrusion, and keeping the skin inflammatory/immunological responses at quiescent state. This stabilization can be brought about through the use of suppressing ion current electrotransport therapy, sonophoresis, and/or pharmacological intervention.
 C. The Treatment of Skin Cancers
 The methods described herein can be applied to the treatment for a variety of dermal or epidermal skin cancers, that are benign or malignant, of viral origin, bacterial, or other origin, including but...
- ...squamous cell carcinoma, mycosis fungoides lymphoma, and Kaposi's sarcoma. Primary malignant melanoma of the skin is the leading cause of death from all diseases arising in the skin. There has been a disturbing increase in the incidence of primary melanoma of the skin. The rate has doubled in the past 10 years, possible due to increased "weekend" exposure to sunlight. Primary cutaneous malignant melanoma, moreover, does not respond or responds only...
- ...primary stages before deep invasion occurs.

 Basal cell carcinoma accounts for over 75 % of all **skin** cancers. These carcinomas arise from the epidermis, cytologically resemble the normal basal cells, and show...
- ...from a premalignant lesion, a bum sear, a chronic inflammatory condition, or from apparently normal skin .

 Mycosis fungoides lymphonia is the most common lymphoma of the skin and begins with cutaneous lesions, usually with no evidence of visceral infiltration for several years...
- ...be clinically confused with eczema, contact dermatitis, or psoriasis. Kaposi's sarcoma is a frequent **skin** neoplasm that occurs in humans infected with HIV It is a complex neoplasm that includes...
- ...the natural defense mechanism to treat abnormal cell growth (various cancers and tumors) of the **skin** . In addition, the lamellar body extrusion process may also **increase** the rate of release of preformed proinflanimatory cytokines, such as EL-1 and TNF, and...
- ...accomplished by modulating the ion flux, ion gradients, or cellular concentrations of ions in the **skin**, for example, by using electrotransport, or **sonophoresis**, or with pharmacological intervention

or with combination of pharmacological agents and <code>iontophoresis</code>, or with <code>sonophoresis</code>. In addition, several different compounds are said to WO 95/27510 PCTfUS95/04677 79 D...

- ...to tissue infarction followed by secondary inf of the causes of chronic ulcers of the **skin** includes circulatory disturbances, such as varicose veins and obliterative arterial disease, ...and subsequently, promoting wound repair. Another therapeutic regimen which is presently under clinical development is **skin** or epidermal allographs. These treatment regimens involve major surgical procedures and significant medical costs and...
- ...by either pharmacological means (e.g. digoxin) or electrical means will initiate antigen-independent local **skin** inflammatory responses and the release of proinflammatory cytokines from lamellar granules. The release of TNF...
- ...1 stimulates both partial and full thickness wound repair in pigs via inducing the re- epithelization process.

 The release of these proinflammatory cytokines can be accomplished by using sonophoresis, iontophoresis with an enhancing current, either alone or in combination with other pharmacologically active agents (e.g., growth factors...of a solution, suspension, ointment, in a pack, by intracameral, subconjunctival or retrobulbar injection, or iontophoretically. Typically, a solution is preferred, the solution having a viscosity between about 15-25 centipoise...
- ...to those of skill in the art.

 F. Treatment of Inflammation Associated With Cosmetics or Skin Care Products

 The compounds of the invention can also be used to alleviate skin sensitization, irritation or inflammation associated with cosmetics or

The compounds of the invention can also be used to alleviate skin sensitization, irritation or inflammation associated with cosmetics or skin care products. Preferably the compounds are TNF-inhibitors or ion modulating agents such as La...

- ...inhibitors or antiinflammatory agents described herein can be used before, during or in response to **skin** sensitization, irritation or inflammation associated with cosmetics or **skin** care products. Typical **skin** care products and cosmetics which may cause adverse **skin** reactions such as sensitization, irritation or inflammation include depilatories such as described in U.S...be effective in reducing TNF activities in vitro and were both effective in vivo in **improving** cachexia conditions in cancer and AIDS patients respectively. Therefore, TNF has been found to be...
- ...or modified to yield essentially similar results.
 - V. EXAMPLES
 - A. Animal Models

Example: Induction of **Skin** Inflammation and Hyp=lasfic Responses by TWical TPA Treatment

The effects of the application of TPA to the **skin** have been well characterized in the literature. This activator of protein kinase C results in...

...of TPA treatment to stimulate the expression of cytokine messenger RNA (mRNA) in hairless mouse **skin** was examined in a preliminary time course ...of this experiment were analyzed by standard RT-PCR techniques on mRNA extracted from whole **skin**. The expression of

- $0\text{-}\mathrm{actin}$, a housekeeping gene whose expression is relatively constant under treatment...
- ...was not detectable at any of the time points examined. Lastly, TPA treatment of the **skin** caused the induction of ICAM-1 protein expression. Frozen **skin** sections were immunostained with a specific anti-ICAM-1 antibody and showed little or no...
- ...the experiments can be performed, the TPA treatment protocol was pursued as a model of **skin** inflammation. Detailed time course studies were therefore performed to determine the time point after TPA...
- ...In addition to assessing the cytokine mRNA levels, the time course of the TPA-induced increase in skin thickness was also evaluated. This measurement was made with a micrometer using skin excised from euthanized mice. While a minimal change in skin thickness was evident at the 2 hour and 4 hour time points, a dramatic increase was observed 6 hours after TPA treatment. Further increases were typically seen 8 hours with this response being maintained through the 24 hour time cytokine protein production in response to application of TPA to hairless mouse skin was also evaluated. Skin samples excised from euthanized mice were flash frozen and stored at -70'C until analysis...
- ...ELISAs for murine TNF and IL As compared to vehicle-treated tissue, the TPA treated **skin** showed little change in TNF content through the 6 hour time point. At 8 hours, however, a large **increase** in the TNF concentration of the homogenized **skin** was observed (approximately 300 pg/mL TNF) with lower levels of TNF being observed at...
- ...approximately 175 pg/ml). The profile of expression of IL-10 protein in TPA-treated **skin** was slightly different. **Increases** in IL-10 concentrations were gradually evident at 4 hours and 6 hours post-TPA, with the greatest **increase** being evident at the 8 hour time point (approximately 425 pg/ml). This IL-10...
- ...each being treated as 1) control, 2) vehicle, 3) verapamil. alone (4 % w/v in ethanol), 4) TPA alone, and 5) TPA + verapamil. Verapamil was applied to the skin the afternoon prior to the experiment, 2-3 hours before the application of TPA, and...
- ...euthanized at a 24 hour time point, and the thickness of the treated areas of **skin** was measured using a micrometer.

 The results of the PT-PCP analysis demonstrate that the levels of
 - The results of the RT-PCR analysis demonstrate that the low levels of TNF mRNA expression in control skin were unchanged or slightly reduced by treatment of the skin with vehicle (2.5 % DMSO in ethanol) or verapamil alone. Application of
 - TPA to the skin caused a substantial increase (104% 163%) of the TNF mRNA levels. Treatment of the TPA sites with verapamil resulted in a significant reduction (p < 0.01, paired Student's t test) in skin TNF mRNA levels as compared to TPA alone. In addition, the RNA samples from onein KC mRNA levels. Twenty-four hours after TPA application to the skin , the TPA sites looked markedly swollen and edematous as compared to the control sites, while...
- ...measurements, which demonstrated that verapamil afforded a substantial reduction in the extent of TPA-induced increase in skin thickness. Compared to skin treated with TPA alone, combined treatment with TPA + verapamil resulted complete suppression of skin swelling response. A slightly different protocol was used in an effort to determine whether the drug loperamide would also exert an anti-inflammatory effect on TPA-treated hairless mouse skin. Loperamide (7.5% solution in 70%

propylene glycol/30% ethanol) was applied the afternoon before, 2 hours before, and just after application of TPA. At the 8 hours time point, the mice were euthanized, the treated areas of skin were excised, and the thickness of the skin was measured using a micrometer. The results demonstrated that the thickness of skin treated with loperamide alone was unchanged as compared to vehicle-treated skin . A substantial increase in skin swelling was observed upon TPA treatment, with a thickness of 0.56 mm being measured...

- ...compared to 0.36 mm for vehicle-treated sites. Application of loperamide to TPA-treated **skin** sites was found to completely inhibit the TPA-induced **increase** in **skin** thickness at the 8 hour time point, with a 0.39 mm thickness being measured for the TPA + loperamide group (not statistically different from the vehicle-treated **skin**). The anti-inflammatory effects of loperamide were confirmed in a second experiment. In this study, **skin** thickness was observed to **increase** from 0.39 mm for vehicle-treated **skin** to 0.89 mm for the TPA-reated sites. Application of loperamide inhibited the TPA-induced...
- ...this phenomenon. The sequence of events following initial application of a contact allergen to the **skin** (sensitization phase) is thought to involve presentation of the allergen in association with NMC class...
- ...where they stimulate antigen-specific T cell proliferation. When the allergen is reapplied to the **skin** several days later (challenge phase), an allergic reaction occurs that takes 24-48 hours to...involved the application of DNCB (in an acetone:olive oil 4:1 vehicle) to the **skin** on the posterior portion of the back of hairless mice. Five days later, DNCB was...
- ...initial experiment was performed in which verapamil (4 % w/v in 70 % propylene glycol: 30 % ethanol) was applied to the dorsal and ventral surfaces of the right ear 2 hours before...
- ...with DNCB, and, five days later, amiloride (2% w/v in 70% propylene glycol: 30% ethanol) was applied to the right ear and vehicle to the left ear 30 minutes and...
- ...of cytokine protein expression in the DNCB contact hypersensitivity model. In these experiments, a significant increase in ear thickness was observed 18 hours post-DNCB challenge, peak swelling occurred at 30 Skin Barrier Model:

Acetone Treatment and Detection of TNF mRNA levels by RT-PCR Hairless mice...

...Simonsen

Laboratories (Gilroy, CA). The animals were housed under standard conditions with a 12 hour light /dark cycle and free access to food and water. The mice were anesthetized with an...

- ...the mouse was euthanized by carbon dioxide asphyxiation. The control and acetone-treated areas of **skin** were removed and frozen on dry ice. RNA was extracted from the **skin**, and TNF mRNA levels were analyzed by standard RT-PCR procedures as described above. The...
- ...results of the acetone treatment demonstrated that, at a 2 hour time point, saline-treated ${f skin}$ showed little or no TNF mRNA expression, while a marked induction of TNF mRNA was evident in the acetone-treated ${f skin}$.
 - B. Determination of Ion Concentrations
 The quantities of ions at each stratum of the skin (one micron,

horizontal cryo-sections) can be analyzed either with elemental analysis, via atomic absorption...

- ...of the proinflammatory cytokines , e. g. @ IL- 1 and TNF , at each stratum of the **skin** can be measured semi-quantitatively by immunohistochemical staining of the whole **skin** tissue or quantitatively using standard, commercially available ELISA kits (Genzyme Cambridge, MA. or R&D...
- ...mRNA corresponding to TNF using PCR and Northern blot techniques as described above. Generally, the **skin** is challenged to produce an inflammatory response and the levels of cytokines are measured. Three...
- ...of Lamellar Bodies (LB) and
 The Detection of TNF and IL-lot in LBs and Skin
 LB Isolation
 One hundred fifty to two hundred neonatal ICR Swiss albino mice (born within...the precursor form of IL-la.
 Immunohistochemical Localization of TNF in
 Phorbol Ester-Stimulated Murine Skin
 Hairless mouse skin was treated topically with TPA in DMSO / ethanol for
 various lengths of time, or with DMSO / ethanol alone, and was subsequently biopsied and either frozen immediately in a polyvinyl alcohol based embedding...
- ...for 2 hours, followed by immersion in a cryoprotectant buffer (e.g., 7% sucrose, 10% glycerol in cacodylate buffer) before freezing in OCT. The skin samples were sectioned in a cryostat and were used for immunohistochemical localization of TNIF. A...
- ...Vector laboratories) and either A-EC (3-amino ethylcarbazole), DAB (3,3'-diaminobenzidine), or silver- enhanced Auroprobe streptavidin (Amersham) end products. Slides were visualized and photographed in a Nikon Optiphot light microscope. The results demonstrated striking differential labeling patterns suggesting:

 (1) dense outer epidermal localization consistent...
- ...similar loss of density in the SC/SG region following TPA treatment with a concomitant increase deeper into the nucleated cell layers suggests a similar mode of action for these two cytokines following TPA treatment. Like TNF, IL-la demonstrated also an increased density in the outer epidermis after 8 hours of TPA treatment. TPA-treated or untreated...
- ...of Transoidermal Water Loss
 - To determine the ability of compounds or methods described herein to increase or decrease the rate of barrier recovery during transepidermal water loss (TEWL), and thereby measure the "quality" of the skin with respect to the passage of water, and standard procedures used to disrupt the stratum corneum layer of the skin (e.g., the application of acetone to the skin). The time required for restoration of normal barrier function was also determined. Treatment of skin with sodium laurel sulfate (SLS) under occlusion (1.5 mg/cm' in saline) for a period of 7 to 20 hours was found to produce 20- to 200-fold increases in TEVYFL. Overnight exposure to SLS was found to be preferred. Barrier recovery was determined...
- fetal bovine serum, 2 mM L-glutamine, 25 mM HEPES, and 50 ItM 2-mercaptoethanol . Cultures were maintained by the addition of fresh

growth medium to a T-75 or...

- ...cell viability were assessed by the MTT assay. Drugs were prepared in a vehicle which allows for their complete dissolution, such as DMSO (for amiloride, for example) or ethanol (for verapamil, for example). Water-soluble drugs were dissolved in aqueous solutions such as RPMI or deionized H20. The final concentration of DMSO in the incubation medium was at or below 0. 0 1 % and that of ethanol was at or below 0. 1 The ...per well on the day prior to experimentation. Drugs were prepared in a vehicle which allowed for their complete dissolution, such as DMSO (for amiloride, for example) or ethanol (for verapamil, for example). Water-soluble drugs were dissolved in aqueous solutions such as RPMI or deionized H20. The final concentration of DMSO in the incubation medium was at or below 0. 03 % and that of ethanol was at or below 0. 1 %. Drugs were co-administered with the stimulant, LPS. After...at 4'C and for 1 hour at 37'C, to enable removal of the stratum corneum, separation of epidermal from dermal tissue and isolation of basal/suprabasal cells. The keratinocytes were...
- ...drug in our in vitro screens. TPA stock solutions were prepared in tissue culture grade dimethyl sulfoxide (DMSO) at 1 mg/mL and stored in aliquots at -20'C. Drugs were prepared in a vehicle which allows for their complete dissolution, such as DMSO (e.g., amiloride) or ethanol (e.g., verapamil). Water-soluble drugs were dissolved in aqueous solutions such as RPMI or deionized H2O. The final concentration of DMSO in the incubation medium was at or below 0.03% and that of ethanol was at or below 0.2%. Drugs were screened for their ability to alter stimulated...of sample). Treatment of cells with 10 nM or 50 nM TPA produced a maximal increase in TNF mRNA levels by 50% at the 2-hour time point which declined over...
- ...on TPA-stimulated production of TNF in keratinocytes. These drugs were of particular interest in **light** of their effects on LPS stimulated cytokine production in RAW and THP-1 cells. Hexamethylamiloride...
- ...ng/mL), retinoic. acid (RA; 1 14M), or LPS (100 jAg/mL) resulted in an enhancement of the levels of the cell-associated form for the incubation times chosen (24-, 36...
- ...average amount of cell-associated IL-la detected was 1800 pg/mL (a 6-fold increase). The maximum effect of 1 /AM RA was a Mold increase at the 48 hr time point and that for 100 jAg/mL LPS was 4...Dianosis The methods described herein will find use in the treatment of a variety of skin disorders having an inflammatory and/or immunological component. In order to employ the optimal therapeutic method, the skin disorder should first be properly diagnosed. In addition, subsequent to the application of the methods described herein to the affected skin, an evaluation of the affected skin must be made in order to determine the efficacy of the treatment. Generally, the evaluation and diagnosis of a skin disorder is performed by compiling the patient's description of their symptoms, i.e., the...
- ...their own observations in an effort to recognize a pattern which
 identifies the disorder.
 Many skin disorders can be diagnosed by physical examination alone. The
 patient will typically undress and undergo...
- ...which identify especially serious conditions such as cancer or AIDS. The signs and symptoms for **skin** disorders are well-known and have been complied in such references as TBE MERCK MANUAL area is less than or

- equal to 20% of normal or healthy **skin** , i.e. , those areas not affected by the condition. More definitive assessments of both the...
- ...More specifically, one embodiment of this invention is drawn to the treatment of psoriasis with <code>iontophoresis</code>, optionally in combination with pharmacological intervention and/or occlusion. Psoriasis is characterized by symmetrical erythematous, scaling plaques on the <code>skin</code> surface. The involved (lesional) <code>skin</code> is thickened and may be mildly pruritic. It is upon these physical parameters and symptoms...
- ...area and severity index) which takes into account the total body surface area of lesional **skin**, as well as the degree of erythema, scaling, and thickness to evaluate the efficacy of...
- ...for methods for treating WO 95/27510 PCT/US95/04677 100
 - G. The Treatment of ${\bf Skin}$ Inflammatory Diseases with a Solution of Ions using ${\bf Iontophoresis}$
 - This therapeutic regimen is applicable to **skin** conditions or diseases having an inflammatory and/or immunoallergic component. In addition, these methods may...
- ...reservoir (typically, 2-10 milliliters (ml)) having a semipermeable membrane for placement next to the **skin**.

 The donor compartment is filled with an ion solution. The return compartment is filled with...The therapy is repeated as necessary. After one day of therapy, the TEWL of the **skin** over the affected area is measured using a standard electrolytic device. If the TEVVL is...
- ...not affected by the condition, then the ionic solution is combined with a combination of <code>glycerin</code> /oleyl alcohol, or other <code>stratum</code> corneum perturbants, so as to not change the final ion concentration of the solution. Preferred combinations of <code>glycerin</code> and oleyl alcohol in percent by weight will include 0 15 percent <code>glycerin</code> and 0 10 percent oleyl alcohol. More preferably the combinations will include 0 2 percent <code>glycerin</code> and 0. 1-5 percent oleyl alcohol.

 The solution containing the ions and the <code>stratum</code> corneum perturbant
 - is then applied topically to the affected area 5 to 10 minutes prior to administration of the **iontophoretic** device. The **iontophoretic** treatment described above is then repeated. This combination of topical
 - and iontophoretic treatments can be repeated as necessary.
 *4P H. The Reduction of Irritation in Conjunction with...gel was prepared containing, in percent by weight,
 - loperamide (2.0%), Carbopol. 940' (1.5%), triethanolamine (1.5%) with water maldng up the remainder.
 - K. TMical Skin Delivery of Verapamil Formulations
 Various verapamil formulations (at 80% verapamil saturation) were
 prepared (see Table) and topical skin delivery (i.e., verapamil
 delivered to the epidermis and dermis) from these formulations to excised
 human skin was accessed using flowthrough diffusion apparatus.
 Verapamil formulation (50 jil/cm') was applied topically three...
- ...sIdn was removed from the diffusion cell, excess formulation was wiped off the surface, the stratum corneum was stripped off the skin by tape, and the remaining epidermis and dermis was weighed. Total verapamil delivered to the epidermis and dermis was extracted by ethanol and was quantitated by high-performance liquid chromatography. The concentration of verapamil in the skin was calculated based on the amount of

verapamil extracted and the total weight of the...

of verapamil to the human skin . Summary of Skin Delivery Profile from Various Verapamil Formulations (Conc.) VRP/ No. Formulation in 80% Skin Sat'd Mean Solution mg/mL FM 1 GP/water (30/70) 59.7 856... ...5 ETOH/water/oleic acid 307.6 2081.73 (50/49.75/0.25)6 Glycerin /water/oleic acid 15.4 @l . @74 1(50/49.75/0.25) Gel 7... ...47 carbopol/water (20/10/20/0.4/1/48.6) Ointment 8 White petrolatum/ light mineral oil 100.0 - 55.26 (55/45)L. Prevention or Reduction of Transdermal Drug... ...administered in conjunction with a transdermal patch such as a clonidine transdermal patch (Catapres-TTSI&). Skin is pretreated with the anti-inflammatory formulation at a 50-200141 per cm' dose for... ...be applied about two hours prior to the application of the patch at the same skin site as well as following the removal of the patch. Local adverse skin reactions, i.e., relative irritancy potential (21-day cumulative irritancy assay) and allergic contact dermatitis... ...posttreatment regimen are tested to achieve the best result with respect to minimize these adverse skin reactions. M. The Use of Specific Isomers of Calcium Channel Blockers to Modulate TNF-Mediated... ...verapamil is much more effective than thalidomide or pentoxifylline. 2 VeWamil for the Prevention of Skin Inflammation in Mice This example illustrates the ability of (+/-)-verapamil to prevent skin inflammation induced by 2% sodium lauryl ...chamber. Following the 24 hour exposure, the Hilltop chambers were removed and, after 18 hours, skin thickness readings were taken. The results indicate that within minutes of removing the 2% SLS... ...the flanks exposed to SLS and verapamil, no effects of SLS irritation were observed. The skin thickness measurements for the treated flanks as well as for untreated skin are provided in the table below. Verapamil Prevention of Skin Inflammation Treatment Visual Observation Skin Thickness (mm, n = 4)2% SLS Wound 1.23 0.11 SLS/Verapamil Normal 0.65 0.09 Untreated Skin Normal 0.59 + 0.08

...the following Table, the gel formulation delivers the highest quantity

As the results in the table indicate, edema developed in...

- ...in the SLS/verapamil-treated sites. Thus, verapamil was effective in preventing the development of **skin** inflammatory responses in mice.
 - 3 Use of V"a amil for the Treatment of \mathbf{Skin} Inflammation in Humans
 - This example illustrates the use of (+/-)-verapamil for the treatment of skin inflammation models in humans.
 - Human **skin** inflammation was elicited by either 2% sodium laurel sulfate in normal volunteers (irritant contact dermatitis...
- ...two respective sites. At the end of the two-day topical treatment, the degree of **skin** inflammation (i.e., erythema, edema and blister formation was assessed by a trained dermatologist. **Skin** biopsies were taken from the placebo and the active sites and analyzed for **skin** thickness and TNF levels using immunohistochemical techniques. The results of the biopsy analysis indicated that there is an **increase** in the TNF protein level and **skin** thickness of biopsies derived from the placebo sites in 50% of the patients and that...
- ...2 out of 3 for each test) treated with verapamil showed less TNF in the **skin** biopsies (see Figure 5). Further, **skin** thickness was less in 4 out of 6 patients on verapamil-treated sites than that...
- ...placebo sites (see Figure 6). Thus, verapamil was found to suppress irritant and allergen-induced increases in TNF production and skin thickness in humans.

 Additionally, dermatitis was also found to resolve faster on verapamil treated sites...
- ...pro-inflammatory cytokine TNF production, mitigates hyperproliferative responses and demonstrates anti-inflammatory properties in a **skin** inflammation model in man.
 - 4 Use of (+)-vg@rapamil for the treatment of atopic dermatitis...patient is treated with topical (+)-verapamil in a topical vehicle applied directly to the psoriatic **skin** areas three to four times a day until a therapeutic benefit is achieved. Thereafter, the...
- ...verapamil in a cream vehicle of concentration 1 % (weight/volume) applied directly to the afflicted **skin** areas twice a day until a therapeutic benefit is achieved. Thereafter, the cream is applied...
- ...weight/volume) (+)-verapamil in a cream vehicle. The preparation is applied directly to the afflicted **skin** areas twice a day. Applications are continued until a therapeutic benefit is achieved. Thereafter, the... The (+)-verapamil is started at 20 mg twice a day. If tolerated, the dosage is **increased** in increments of 20 mg daily until a therapeutic benefit is achieved. If needed, (+)-verapamil...
- ...of the addition of (+)-verapamil to the patch, the patient does not experience unacceptable local **skin** irritation at the site of application of the patch.
 - 10 The use of (+)-veWamil to...full scope of equivalents. WHAT IS CLALWED IS:
 - 1 A method of screening for a **skin** immune or inflammation modulating agent, comprising:

- i. stimulating production of at least one cytokine or...
- ...н

molecule in keratinocyte cells;

- ii. exposing a portion of said cells to a putative **skin** inflammation modulating agent; and
- iii. determining whether said putative agent is effective to modulate cytoldne...claim 1, wherein said determining further comprises identifying whether said putative agent is effective to increase said production of cytoldne or MHC Class II molecule in said exposed keratinocyte cells relative to said unexposed keratinocyte cells.
- 14 A method of screening for a **skin** immune or inflammation modulating agent, comprising:
- i. inducing production of at least one cytokine or...
- ...II

molecule in keratinocyte cells;

- ii. exposing a portion of said cells to a putative **skin** inflammation modulating agent; and
- iii. determining whether said putative agent is effective to modulate the
- ...claim 14, wherein said determining further comprises identifying whether said putative agent is effective to increase said production of cytokine or MHC Class II molecule in said exposed keratinocyte cells relative to said unexposed keratinocyte cells.
 - 20 A method of screening for a **skin** immune modulating agent, comprising:
 - L exposing a portion of keratinocyte cells which have been transformed...
- ...IOMC Class H molecule expressing gene linked to a reporter gene to a putative **skin** immune modulating agent; ii. determining whether said putative agent is effective to modulate the transcription...
- ...genes.
 - 22 The method of claim 20, wherein said measuring comprises measuring the amount of **light** produced by said exposed cells.
 23 The method of claim 20, wherein said cytokine is...
- ...claim 20, wherein said determining further comprises identifying whether said putative agent is effective to **increase** production of ...keratinocyte cells.
 - 26 A method of modulating an inflammatory response in sldn, comprising exposing said skin to an electric field which is effective to modulate production of cytokines or NMC Class II molecules in said .skin, wherein said inflammatory response is modulated.
 - 27 A method of administering a **skin** inflammation-inducing drug to sldn, comprising administering said drug to said sldn in conjunction with an **iontophoretic** current, wherein said **iontophoretic** current is effective to modulate the production of cytoldnes in said sldn.
 - 28 A method...

- ...method in accordance with claim 28 wherein said calcium channel blocker has at least one **optical** center and is present predominantly as a specific **optical** isomer.
 - 31 A method in accordance with claim 30 wherein said optical isomer is the less cardiovascularly active isomer of said calcium channel blocker.
 - 32 A method in accordance with claim 30 wherein said **optical** isomer provides the optimal modulation of TNF production in said mammal.
 - 33 A method in...

ب

- ...comprises diltiazem.
 - 36 A method in accordance with claim 28 wherein said condition is a **skin** inflammatory condition.
 - 37 A method in accordance with claim 36 wherein said **skin** inflammatory condition is a member selected from the group consisting of psoriasis, UV-induced inflammation and irritant contact dermatitis.
 - 38 A method in accordance with claim 36 wherein said $\mbox{\bf skin}$ inflammatory condition is psoriasis.
 - 39 A method in accordance with claim 36 wherein said **skin** inflammatory condition is irritant contact dermatitis.
 - 40 A method in accordance with claim 36 wherein said $\,$ skin inflammatory condition is UV-induced inflammation.
 - 41 A method in accordance with claim 36 wherein said **skin** inflammatory condition is induced by Retin-A.
 - 42 A method in accordance with claim 28 wherein said condition is a skin
 - adverse reaction associated with the application of a transdermal patch to a selected area of the **skin**, comprising administering to said selected area of the **skin** an amount of a calcium channel blocker effective to reduce said adverse reaction in conjunction...
- ...in accordance with claim 28 wherein said condition is sIdn sensitization and irritation associated with **iontophoretic** delivery of a therapeutic agent, comprising administering therapeutically effective amount of a calcium channel blocker in conjunction with said **iontophoretic** delivery of said therapeutic agent.
 - 50 A method in accordance with claim 49 wherein said administration is made prior to said iontophoretic delivery.
 - 51 A method in accordance with claim 49 wherein said administration is made contemporaneously with said iontophoretic delivery.
 - 52 A method in accordance with claim 49 wherein said administration is made subsequent to said iontophoretic delivery.
 - 53 A method in accordance with claim 28 wherein said condition is ocular inflammation...
- ...or irritation arising from the use of a cosmetic or sIdn care product which causes skin sensitization or irritation, comprising administering

an amount of a calcium channel blocker effective to reduce...

- ...is a sIdn inflammatory condition.
 - 59 A method in accordance with claim 58 wherein said **skin** inflammatory condition is a member selected from the group consisting of psoriasis, atopic dermatitis, UV-induced inflammation and contact dermatitis.
 60 A method in accordance with claim 58 wherein said **skin** inflammatory condition is psoriasis.
 - 61 A method in accordance with claim 58 wherein said sIdn inflammatory condition is atopic dermatitis.
 - 62 A method in accordance with claim 58 wherein said **skin** inflammatory condition is contact dermatitis.
 - 63 A method in accordance with claim 58 wherein said...
- ... condition is UV-induced inflammation.
 - 64 A method in accordance with claim 58 wherein said **skin** inflammatory condition is induced by other locally applied agents.
 - $65~\mathrm{A}$ method in accordance with claim $58~\mathrm{wherein}$ said skin inflammatory condition is induced by a drug.
 - 66 A method in accordance with claim 58...
- ...and AIDS.
 - 70 A method in accordance with claim 55 wherein said condition is a skin

adverse reaction associated with the application of a transdermal patch to a selected area of the skin, comprising administering to said selected area of the skin an amount of a diuretic effective to reduce said adverse reaction in conjunction with said...

- ...of said patch.
 - 74 A method in accordance with claim 55 wherein said condition is **skin** sensitization and irritation associated with **iontophoretic** delivery of a therapeutic agent, comprising administering therapeutically effective amount of a diuretic in conjunction with said **iontophoretic** delivery of said therapeutic agent.
 - 75 A method in accordance with claim 74 wherein said administration is made prior to said iontophoretic delivery.
 - 76 A method in accordance with claim 74 wherein said administration is made contemporaneously with said iontophoretic delivery.
 - 77 A method in accordance with claim 74 wherein said administration is made subsequent to said iontophoretic delivery.
 - 78 A method in accordance with claim 55 wherein said condition is ocular inflammation...
- ...or irritation arising from the use of a cosmetic or sIdn care product which causes **skin** sensitization or irritation, comprising administering an amount of a diuretic effective to reduce said sensitization...sIdn

inflammatory condition is psoriasis.

- 85 A method in accordance with claim 82 wherein said **skin** inflammatory condition is atopic dermatitis.
- 86 A method in accordance with claim 82 wherein said **skin** inflammatory condition is contact dermatitis.
- 87 A method in accordance with claim 82 wherein said **skin** inflammatory condition is UV-induced inflammation.
- 88 A method in accordance with claim 82 wherein said **skin** inflammatory condition is induced by Retin-A.
 89 A method in accordance with claim 80...

...and AIDS.

92 A method in accordance with claim 80 wherein said condition is a skin

adverse reaction associated with the application of a transdermal patch to a selected area of the **skin**, comprising administering to said selected area of the **skin** an amount of an antidiarrheal effective to reduce said adverse reaction in conjunction with said...

...of said patch.

- 96 A method in accordance with claim 80 wherein said condition is **skin** sensitization and irritation associated with **iontophoretic** delivery of a therapeutic agent, comprising administering therapeutically effective amount of an antidiarrheal in conjunction with said **iontophoretic** delivery of said therapeutic agent.
- 97 A method in accordance with claim 96 wherein said administration is made prior to said **iontophoretic** delivery.

 98 A method in accordance with claim 96 wherein said administration is made contemporaneously with said **iontophoretic** delivery.
- 99 A method in accordance with claim 96 wherein said administration is made subsequent to said iontophoretic delivery. 100. A method in accordance with claim 80 wherein said condition is ocular inflammation... induced inflammation and contact dermatitis. 105. A method in accordance with claim 103 wherein said skin inflammatory condition is psoriasis. 106. A method in accordance with claim 103 wherein said sIdn...
- ...condition is UV-induced inflammation. 109. A method in accordance with claim 103 wherein said **skin** inflammatory condition is induced by Retin-A.
 - 110. A method in accordance with claim 102...
- ...and AIDS. 113. A method in accordance with claim 102 wherein said condition is a **skin** adverse reaction associated with the application of a transdermal patch to a selected area of the **skin**, comprising administering to said selected area of the **skin** an amount of a flagonist effective to reduce said adverse reaction in conjunction with said...
- ...of said patch. 117. A method in accordance with claim 102 wherein said condition is **skin** sensitization and irritation associated with **iontophoretic** delivery of a therapeutic agent, comprising administering therapeutically effective amount of a 0-agonist in conjunction with said

iontophoretic delivery of said therapeutic agent. 118. A method in accordance with claim 117 wherein said administration is made prior to said iontophoretic delivery. 119. A method in accordance with claim 117 wherein said administration is made contemporaneously with said iontophoretic delivery. 120. A method in accordance with claim 117 wherein said administration is made subsequent to said iontophoretic delivery. 121. A method in accordance with claim 102 wherein said condition is ocular inflammation...or irritation arising from the use of a cosmetic or sIdn care product which causes skin sensitization or irritation, comprising administering an amount of a P-agonist effective to reduce said...

- ...RO 201724. 125. A method in accordance with claim 123 wherein said condition is a **skin** inflammatory condition. 126. A method in accordance with claim 125 wherein said sIdn inflammatory condition...
- ...condition is UV-induced inflammation. 128. A method in accordance with claim 125 wherein said **skin** inflammatory condition is induced by Retin-A. 129. A method in accordance with claim 123...
- ...reaction associated with the application of a transdermal patch to a selected area of the **skin**, comprising administering to said selected area of the **skin** an amount of a phosphodiesterase inhibitor effective to reduce said adverse reaction in conjunction with...
- ...in accordance with claim 123 wherein said condition is sIdn sensitization and irritation associated with iontophoretic delivery of a therapeutic agent, comprising administering therapeutically effective amount of a phosphodiesterase inhibitor in conjunction with said iontophoretic 'delivery of said therapeutic agent. 134. A method in accordance with claim 133 wherein said administration is made prior to said iontophoretic delivery. 135. A method in accordance with claim 133 wherein said administration is made contemporaneously with said iontophoretic delivery. 136. A method in accordance with claim 133 wherein said administration is made subsequent to said iontophoretic delivery. 137. A method in accordance with claim 123 wherein said condition is ocular inflammation...
- ...said condition is sIdn sensitization or irritation arising from the use of a cosmetic or **skin** care product which causes sIdn -sensitization or irritation, comprising administering an amount of a phosphodiesterase...

```
Items
Set
                Description
S1
        20780
                ENHANC?() AGENT? OR DMSO OR ETHANOL OR PENETRAT?() SOLVENT? -
             OR (SULPHUR? OR SULFUR?) () COMPOUND? () SOLVENT?
S2
            0
                RN=67-68-5
S3
            0
                DC=D.02.886.640.150
S4
        30551
                (CLARIFY? OR CLARIFI?) () AGENT? OR GLUCOSE OR GLUCONIC OR D-
             EXTROGLUCOSE OR DEXTROSE OR DEXTRONIC OR MALTONIC
S5
         9689
                GLYCOGEN? OR GLYCERYL? OR GLYCERIN? OR GLYCEROL?
S6
            0
                DC=D09.203.546.359.448
S7
            O
                RN=50-99-7
S8
           39
                DIATRIZOATE() MEGLUMINE OR DIATRIZOATE() METHLYGLUCAMINE OR -
             DIATRIZOIC()ACID()METHYLGLUCAMINE OR MEGLUMINE()DIATRIZOATE OR
              METHYLGLUCAMINE() DIATRIZOATE OR (AMIDOTRICOIC OR AMIDOTRIZOI-
             C) () ACID? OR MEGLUMINE () AMIDOTRIZOATE
S9
                RN=131-49-7
S10
                DC=(D02.033.800.813.550.500 OR D02.241.223.100.140.100.375-
             .880.275 OR D09.203.037.342.600.500 OR D09.203.853.813.550.50-
             0)
S11
         1656
                IONTOPHORE? OR IONTOTHERAP? OR IONIC() THERAP? OR EMDA OR S-
             ONOPHORE? OR ELECTROPORAT? OR ELECTRO() PORAT?
                DC=E05.300.650
S12
                (MICRONEEDLE? OR MICRO()NEEDLE?)()ARRAY? ?
S13
           40
S14
      4108533
                INCREAS? OR ENHANC? OR AMELIORAT?
      2572684
                PERMIT? OR PERMISS? OR ALLOW?
S15
                BETTER? OR IMPROV?
      2700931
S16
        14514
                RECEPTABIL? OR PERMEABIL? OR PERMEABL? OR LUCENCY?
S17
       143699
                TRANSLUCEN? OR TRANSPAREN? OR CLEARNESS OR CLARITY
S18
S19
      1028918
                OPTICAL? OR LIGHT? OR LUCID?
S20
       148287
                PERMEAB?()(BARRIER? OR LAYER? OR STRAT?) OR SKIN
S21
        20337
                CONJUNCTIV? OR EPITHELI? OR SCLERA? OR STRAT?()CORNE? OR (-
             INTERSTIT? OR INTER()STIT?)()(SPACE? OR TISSUE?)
S22
                IC=(A61N? OR A61M? OR A61B?)
S23
          901
                DIMETHYL() (SULFOXIDE OR SULPHONYL) OR DIMEXIDE OR RIMSO OR
             RIMSO100 OR SULFINYL()BISMETHANE OR SULFINYLBISMETHANE
S24
        45493
                 (DRIVING OR ELECTRIC() PULSE OR ELECTRICPULSE OR ELECTROMOT-
             IVE OR ELECTRO() MOTIVE OR ACOUSTIC? OR ULTRASONIC? OR ELECTRI-
             CAL? OR RADIOFREQUENCY? OR RADIO() FREQUENCY OR TEMPERATURE OR
             THERMAL OR PHYSICAL OR CHEMICAL OR CONCENTRATION OR E...
                (S1:S3 OR S23) AND S4:S10 AND (S11:S13 OR S24)
S25
           42
S26
                S25 AND S14:S21
           42
S27
                S25 AND S20:S21
           21
                S26:S27
S28
           42
S29
           21
                S28 AND PY<1999
S30
           20
                RD (unique items)
? show files
File 98:General Sci Abs/Full-Text 1984-2003/Oct
         (c) 2003 The HW Wilson Co.
File 369: New Scientist 1994-2003/Nov W5
         (c) 2003 Reed Business Information Ltd.
File 370: Science 1996-1999/Jul W3
         (c) 1999 AAAS
File 444: New England Journal of Med. 1985-2003/Dec W1
         (c) 2003 Mass. Med. Soc.
File 482: Newsweek 2000-2003/Dec 03
         (c) 2003 Newsweek, Inc.
File 135: NewsRx Weekly Reports 1995-2003/Nov W5
         (c) 2003 NewsRx
File 441:ESPICOM Pharm&Med DEVICE NEWS 2003/Nov W5
         (c) 2003 ESPICOM Bus. Intell.
File 16:Gale Group PROMT(R) 1990-2003/Dec 04
         (c) 2003 The Gale Group
```

File 160: Gale Group PROMT(R) 1972-1989

(c) 1999 The Gale Group

File 621: Gale Group New Prod. Annou. (R) 1985-2003/Dec 04

(c) 2003 The Gale Group

File 743: (New Jersey) The Record 1989-2003/Dec 04 (c) 2003 No. Jersey Media G Inc

	FILE	'HCAPL	US,	, MEDICONF' ENTERED AT 14:46:28 ON 05 DEC 2003
L1		247304	S	ENHANC? AGENT? OR DMSO OR ETHANOL OR PENETRAT? SOLVENT? OR (S
L2		26661	S	67-68-5/RN
L3		13215	S	DIMETHYL (W) (SULFOXIDE OR SULPHONYL) OR DIMEXIDE OR RIMSO OR
L4		259327	S	L1-L3
L5		548517	S	(CLARIFY? OR CLARIFI?) (W) AGENT? OR GLUCOSE OR GLUCONIC OR D
L6		157589	S	50-99-7/RN
L7		50776	S	56-81-5/RN
L8		260	S	DIATRIZOATE MEGLUMINE OR DIATRIZOATE METHYLGLUCAMINE OR DIATR
L9		290	S	131-49-7/RN
L10		562797	S	L5-L9
L11		10500	S	IONTOPHOR? OR IONTOTHERAP? OR IONIC THERAP? OR EMDA OR SONOPH
L12		22625	S	(DRIVING OR ELECTRIC PULSE OR ELECTRICPULSE OR ELECTROMOTIVE
L13		95236	S	(ELECTRICAL? OR RADIOFREQUENCY? OR RADIO FREQUENCY? OR TEMPER
L14		126099	S	L11-L13
L15		78	S	L4 AND L10 AND L14
L16		332898	S	PERMEAB? (W) (BARRIER? OR LAYER? OR STRAT?) OR SKIN OR CONJUN
L17		10	S	L15 AND L16
L18		4	S	L17 AND PY<=1999

.

··

·

```
ANSWER OF A HCAPLUS COPYRIGHT 2003 ACS on STN
L18
AB
     The transdermal drug delivery (TDD) system has largely been divided into
     phys., biochem. and chem. methods. Recently, combinations of these
     methods were introduced for more effective delivery with less side
     effects. The authors performed this study to identify the effectiveness
     and mechanism of TDD using the phys. method, iontophoresis, +
     the chem. method, pretreatment with chem. enhancer. The action sites of
     chem. enhancers in the stratum corneum (SC) were observed
     by electron microscope. The authors also studied whether this combined
     method synergistically impaired the skin barrier. To confirm
     the synergistic effect on skin penetration by this combined
     method, the authors measured the blood glucose level after
     insulin iontophoresis following a chem. enhancer pretreatment in
     rabbits. The results were as followed. (1) Dilatation of the
     intercellular lipid layers of the SC and lacunae was prominent in
     pretreatment with chem. enhancers inducing high transepidermal water loss
              (2) The skin barrier impairment, with repeated
     treatments showing an increased TEWL and also epidermal proliferation, was
     increased with the chem. enhancers that showed a high TEWL immediately
     after treatment. (3) The combination of chem. enhancer pretreatment and
     iontophoresis showed no synergistic impairment of the skin
     barrier. (4) The chem. enhancer pretreatment with greater impairment of
     the skin barrier could increase the delivery of insulin by
     iontophoresis.
                   These results showed that a combination of chem.
     enhancer pretreatment and iontophoresis could deliver drugs more
     effectively than iontophoresis alone. Our proposed theory is
     that iontophoretic drug delivery may be easier through the
     dilated intercellular spaces of the SC which have a lower elec. impedance
     following the chem. enhancer pretreatment. Because the effect and the
     side effects in the combination are decided by the chem. enhancer rather
     than iontophoresis, the development of proper chem. enhancers is
     important in future plans.
                        1999:705274 HCAPLUS
ACCESSION NUMBER:
DOCUMENT NUMBER:
                         131:327446
TITLE:
                         The pretreatment effect of chemical skin
                         penetration enhancers in transdermal drug delivery
                         using iontophoresis
AUTHOR(S):
                         Choi, Eung Ho; Lee, Seung Hun; Ahn, Sung Ku; Hwang,
                         Sang Min
                         Department Dermatology, Wonju College Medicine, Yonsei
CORPORATE SOURCE:
                         Univ., Wonju, 220, S. Korea
                         Skin Pharmacology and Applied Skin Physiology (
SOURCE:
                         1999), 12(6), 326-335
                         CODEN: SPAPFF; ISSN: 1422-2868
PUBLISHER:
                         S. Karger AG
DOCUMENT TYPE:
                         Journal
LANGUAGE:
                         English
REFERENCE COUNT:
                         35
                               THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS
                               RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
     The pretreatment effect of chemical skin penetration enhancers
TI
     in transdermal drug delivery using iontophoresis
SO
     Skin Pharmacology and Applied Skin Physiology (1999), 12(6),
     326-335
     CODEN: SPAPFF; ISSN: 1422-2868
AB
     The transdermal drug delivery (TDD) system has largely been divided into
     phys., biochem. and chem. methods. Recently, combinations of these
     methods were introduced for more effective delivery with less side
     effects. The authors performed this study to identify the effectiveness
     and mechanism of TDD using the phys. method, iontophoresis, +
     the chem. method, pretreatment with chem. enhancer. The action sites of
     chem. enhancers in the stratum corneum (SC) were observed
     by electron microscope. The authors also studied whether this combined
```

method synergistically impaired the skin barrier. To confirm the synergistic effect on skin penetration by this combined method, the authors measured the blood glucose level after insulin iontophoresis following a chem. enhancer pretreatment in rabbits. The results were as followed. (1) Dilatation of the intercellular lipid layers of the SC and lacunae was prominent in pretreatment with chem. enhancers inducing high transepidermal water loss (2) The skin barrier impairment, with repeated treatments showing an increased TEWL and also epidermal proliferation, was increased with the chem. enhancers that showed a high TEWL immediately after treatment. (3) The combination of chem. enhancer pretreatment and iontophoresis showed no synergistic impairment of the skin (4) The chem. enhancer pretreatment with greater impairment of the skin barrier could increase the delivery of insulin by iontophoresis. These results showed that a combination of chem. enhancer pretreatment and iontophoresis could deliver drugs more effectively than iontophoresis alone. Our proposed theory is that iontophoretic drug delivery may be easier through the dilated intercellular spaces of the SC which have a lower elec. impedance following the chem. enhancer pretreatment. Because the effect and the side effects in the combination are decided by the chem. enhancer rather than iontophoresis, the development of proper chem. enhancers is important in future plans.

ST chem enhancer iontophoresis transdermal drug delivery

IT Iontophoresis

(pretreatment effect of chem. skin penetration enhancers in transdermal drug delivery using iontophoresis)

IT Drug delivery systems

(transdermal; pretreatment effect of chem. skin penetration enhancers in transdermal drug delivery using iontophoresis)

IT 57-55-6, Propylene glycol, biological studies 60-33-3, Linoleic acid,
 biological studies 64-17-5, Ethanol, biological studies
 112-80-1, Oleic acid, biological studies
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(pretreatment effect of chem. **skin** penetration enhancers in transdermal drug delivery using **iontophoresis**)

L18 ANSWER 2 OF 4 HCAPLUS COPYRIGHT 2003 ACS on STN

AB The in vitro elec. properties of human skin were investigated in various solvents and salt concns., using electrochem. methods, in relation to to iontophoretic drug delivery. Increasing ethanol concentration in aqueous ethanol could increase the porosity of skin, whereas aqueous glycerol and aqueous propylene glycol containing up to 50% solvent did not not produce appreciable changes. When a current was applied, the steady-state elec. resistance of skin was constant at low currents, and decreased with increasing currents. This behavior reflected a transition of transport mechanism, from conduction and diffusion controlled to convection. The presence of electroosmosis supports previous findings that ions are transported through charged and narrow pathways.

ACCESSION NUMBER: 1994:663650 HCAPLUS

DOCUMENT NUMBER: 121:263650

TITLE: Salt concentration and solvent effects on the in vitro

electrical resistance of human skin Dinh, Steven M.; Kachmar, Deborah A.

CORPORATE SOURCE: Basic Pharmaceutics Research, CIBA-GEIGY Corporation,

Ardsley, NY, 10502, USA

SOURCE: Polymeric Materials Science and Engineering (

1993), 70, 84-5

CODEN: PMSEDG; ISSN: 0743-0515

DOCUMENT TYPE: Journal LANGUAGE: English

AUTHOR(S):

Salt concentration and solvent effects on the in vitro electrical ΤI resistance of human skin SO Polymeric Materials Science and Engineering (1993), 70, 84-5 CODEN: PMSEDG; ISSN: 0743-0515 AB The in vitro elec. properties of human skin were investigated in various solvents and salt concns., using electrochem. methods, in relation to to iontophoretic drug delivery. Increasing ethanol concentration in aqueous ethanol could increase the porosity of skin, whereas aqueous glycerol and aqueous propylene glycol containing up to 50% solvent did not not produce appreciable changes. current was applied, the steady-state elec. resistance of skin was constant at low currents, and decreased with increasing currents. behavior reflected a transition of transport mechanism, from conduction and diffusion controlled to convection. The presence of electroosmosis supports previous findings that ions are transported through charged and narrow pathways. STskin elec resistance salt solvent iontophoresis ITIontophoresis Skin Solvent effect (salt concentration and solvent effects on in vitro elec. resistance of human skin in relation to iontophoresis) IT Salts, biological studies RL: BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses) (salt concentration and solvent effects on in vitro elec. resistance of human skin in relation to iontophoresis) TΤ Electric activity (resistance, salt concentration and solvent effects on in vitro elec. resistance of human skin in relation to iontophoresis ITPharmaceutical dosage forms (topical, salt concentration and solvent effects on in vitro elec. resistance of human skin in relation to iontophoresis) L18 ANSWER 3/OF 4/ HCAPLUS COPYRIGHT 2003 ACS on STN In vitro iontophoretic transdermal delivery (ITD) at a continuous c.d. of 0.1 mA/cm2 of cromolyn sodium (CS) across hairless guinea pig skin (HGP) was studied with and without enhancers. CS was quantitated by a sensitive HPLC method. At a saturated drug concentration of CS in 80:20 mixture of ethanol/6.66 mM acetate buffer, an overall flux enhancement compared to buffer alone was observed This enhancement was determined to be an additive effect of iontophoresis and ethanol. Chem. enhancers, such as anionic surfactants (e.g. sodium dodecyl sulfonate and sodium lauryl sulfate), inhibited the permeation of CS ions at concentration less than or equal to the critical micelle concentration No significant change in flux (P > 0.05) was observed when propylene glycol was added at different concns. to yield solns. with varying dielec. consts. in the aqueous donor medium. Aqueous glycerol solution was ineffective for ITD. Conducting gels of ionic polymers, Polyjel HV and Lubrijel MS, decreased the flux of CS significantly (P < 0.05). Nonionic polymers such as hydroxypropyl cellulose (Klucel-LF) and polyvinyl alc. did not affect the flux and may be used for ITD of CS from a transdermal patch. An optimized solution formulation for CS was incorporated in a com. available electropatch, from which delivery rates up to 46 \pm 5 μg/cm2h-1. were achieved. The optimized formulation of CS provided

about 18 fold higher flux compared to an unoptimized formulation from the electropatch. Stainless steel or Ag/AgCl electrodes showed no difference

in the flux of CS from the patch. Therapeutic levels of CS in humans may be achieved by this modern non-invasive drug-delivery route. ACCESSION NUMBER: 1994:663516 HCAPLUS DOCUMENT NUMBER: 121:263516 TITLE: Effect of chemical enhancers and conducting gels on iontophoretic transdermal delivery of cromolyn Gupta, Sanjeev K.; Kumar, Saran; Bolton, Sanford; AUTHOR(S): Behl, Charanjeet R.; Waseem Malick, A. Nutley, NJ, 07110, USA CORPORATE SOURCE: Journal of Controlled Release (1994), 31(3), SOURCE: 229-36 CODEN: JCREEC; ISSN: 0168-3659 DOCUMENT TYPE: Journal LANGUAGE: English Effect of chemical enhancers and conducting gels on iontophoretic transdermal delivery of cromolyn sodium SO Journal of Controlled Release (1994), 31(3), 229-36 CODEN: JCREEC; ISSN: 0168-3659 AB In vitro iontophoretic transdermal delivery (ITD) at a continuous c.d. of 0.1 mA/cm2 of cromolyn sodium (CS) across hairless guinea pig skin (HGP) was studied with and without enhancers. CS was quantitated by a sensitive HPLC method. At a saturated drug concentration of CS in 80:20 mixture of ethanol/6.66 mM acetate buffer, an overall flux enhancement compared to buffer alone was observed. This enhancement was determined to be an additive effect of iontophoresis and ethanol. Chem. enhancers, such as anionic surfactants (e.g. sodium dodecyl sulfonate and sodium lauryl sulfate), inhibited the permeation of CS ions at concentration less than or equal to the critical micelle concentration No significant change in flux (P > 0.05) was observed when propylene glycol was added at different concns. to yield solns. with varying dielec. consts. in the aqueous donor medium. Aqueous glycerol solution was ineffective for ITD. Conducting gels of ionic polymers, Polyjel HV and Lubrijel MS, decreased the flux of CS significantly (P < 0.05). Nonionic polymers such as hydroxypropyl cellulose (Klucel-LF) and polyvinyl alc. did not affect the flux and may be used for ITD of CS from a transdermal patch. An optimized solution formulation for CS was incorporated in a com. available electropatch, from which delivery rates up to 46 \pm 5 μ g/cm2h-1. were achieved. The optimized formulation of CS provided about 18 fold higher flux compared to an unoptimized formulation from the electropatch. Stainless steel or Ag/AgCl electrodes showed no difference in the flux of CS from the patch. Therapeutic levels of CS in humans may be achieved by this modern non-invasive drug-delivery route. STcromolyn transdermal delivery conducting gel iontophoresis; penetration enhancer cromolyn transdermal delivery gel ΙT Polyelectrolytes Skin (conducting gels and penetration enhancers for iontophoretic transdermal delivery of cromolyn sodium) IT Surfactants (anionic, conducting gels and penetration enhancers for iontophoretic transdermal delivery of cromolyn sodium) IT Pharmaceutical dosage forms (gels, controlled-release, conducting gels and penetration enhancers for iontophoretic transdermal delivery of cromolyn sodium) IT Pharmaceutical dosage forms (transdermal, conducting gels and penetration enhancers for iontophoretic transdermal delivery of cromolyn sodium) 28474-30-8, Poly(glyceryl methacrylate) TT RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(Lubrijel MS; conducting gels and penetration enhancers for

```
iontophoretic transdermal delivery of cromolyn sodium)
    56-81-5, Glycerol, biological studies 57-55-6,
ΙT
    Propylene glycol, biological studies 64-17-5, Ethanol,
    biological studies 151-21-3, Sodium lauryl sulfate, biological studies
    2386-53-0, Sodium dodecyl sulfonate
                                       9002-89-5, Polyvinyl alcohol
    9004-64-2, Klucel-L 15826-37-6, Cromolyn sodium 142444-14-2, Polyjel
    RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
       (conducting gels and penetration enhancers for iontophoretic
       transdermal delivery of cromolyn sodium)
    ANSWER 4 OF 4 HCAPLUS COPYRIGHT 2003 ACS on STN
L18
    A new and improved method is disclosed for the transdermal administration
AΒ
    of agents using iontophoresis in conjunction with a water-soluble
    stratum corneum-lipid modifier (lactam, ester, alc.,
    amide, etc.). The lipid modifier may be used prior to
    iontophoresis or simultaneously with it. There may also be
    optionally present a water. soluble polar compound (glycol, urea, etc.).
    Compns. and articles useful in the processes of the invention are also
    provided. Use of 2-n-nonyl-1,3-dioxolane as a lipid modifier in
    conjunction with iontophoresis increased flux and amount of
    transdermal delivery of indomethacin.
                       1993:588585 HCAPLUS
ACCESSION NUMBER:
DOCUMENT NUMBER:
                       119:188585
                      Stratum corneum-lipid modifier in
TITLE:
                        improved iontophoretic administration of
                        drugs
INVENTOR(S):
                        Samour, Carlos M.; Eisenberg, Solomon R.
PATENT ASSIGNEE(S):
                       Macrochem Corp., USA; Boston University
SOURCE:
                        Eur. Pat. Appl., 26 pp.
                        CODEN: EPXXDW
DOCUMENT TYPE:
                        Patent
LANGUAGE:
                        English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
                                       APPLICATION NO. DATE
    PATENT NO.
                   KIND DATE
    EP 552879 A1 19930728
EP 552879 B1 19980819
                                       EP 1993-300198 19930113 <--
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, PT, SE
    AT 169826 E 19980915 AT 1993-300198 19930113 <--
    ES 2120477
                    T3 19981101
                                        ES 1993-300198
                                                        19930113 <--
    CA 2087679
                    AA 19930722
                                       CA 1993-2087679 19930120 <--
    JP 05339170 A2 19931221
US 5527797 A 19960618
                                        JP 1993-23532
                                                        19930120 <--
                                        US 1993-109599 19930820 <--
PRIORITY APPLN. INFO.:
                                      US 1992-823380 19920121
                       MARPAT 119:188585
OTHER SOURCE(S):
    Stratum corneum-lipid modifier in improved
   · iontophoretic administration of drugs
PΙ
    EP 552879 A1 19930728
    PATENT NO.
                 KIND DATE
                                        APPLICATION NO. DATE
                                        ______
    EP 552879 A1 19930728
EP 552879 B1 19980819
                                       EP 1993-300198 19930113 <--
PΙ
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, PT, SE
    AT 169826 E 19980915 AT 1993-300198 19930113 <--
    ES 2120477
                     T3 19981101
                                        ES 1993-300198
                                                         19930113 <--
    CA 2087679
                                       CA 1993-2087679 19930120 <--
                    AA 19930722
                                        JP 1993-23532
    JP 05339170
                    A2 19931221
                                                         19930120 <--
                    A 19960618
                                        US 1993-109599 19930820 <--
    US 5527797
    A new and improved method is disclosed for the transdermal administration
AΒ
    of agents using iontophoresis in conjunction with a water-soluble
    stratum corneum-lipid modifier (lactam, ester, alc.,
```

```
iontophoresis or simultaneously with it. There may also be
     optionally present a water. soluble polar compound (glycol, urea, etc.).
     Compns. and articles useful in the processes of the invention are also
     provided. Use of 2-n-nonyl-1,3-dioxolane as a lipid modifier in
     conjunction with iontophoresis increased flux and amount of
     transdermal delivery of indomethacin.
ST
     stratum corneum lipid modifier iontophoresis
IT
     Acetals
     Alcohols, biological studies
     Amides, biological studies
     Carboxylic acids, biological studies
     Esters, biological studies
     Lactams
     RL: BIOL (Biological study)
        (as stratum corneum-lipid modifiers, for
        iontophoresis)
IT
     Carbonates, biological studies
     RL: BIOL (Biological study)
        (cycloalkylene, as stratum corneum-lipid modifiers,
        for iontophoresis)
     Lipids, biological studies
IT
     RL: BIOL (Biological study)
        (of stratum corneum, modifiers, for
        iontophoresis)
     Glycols, biological studies
ΙT
     RL: BIOL (Biological study)
        (stratum corneum-lipid modifier and, for
        iontophoresis)
IT
     Iontophoresis
        (stratum corneum-lipid modifier for)
IT
     Alcohols, compounds
     Carboxylic acids, esters
     RL: BIOL (Biological study)
        (ethoxylated, as stratum corneum-lipid modifiers,
        for iontophoresis)
IT
     Acetals
     RL: BIOL (Biological study)
        (hemi-, as stratum corneum-lipid modifiers, for
        iontophoresis)
IT
     Molecules
        (polar, stratum corneum-lipid modifier and, for
        iontophoresis)
ΙT
     Skin
        (stratum corneum, lipid modifier for, for
        iontophoresis)
ΙT
     2687-96-9, N-Dodecyl pyrrolidone
                                        4353-06-4, 2-n-Nonyl-1, 3-dioxolane
                  59227-89-3, N-Dodecyl caprolactam
     55257-88-0
     RL: BIOL (Biological study)
        (as stratum corneum-lipid modifier, for
        iontophoresis)
ΙT
     3515-94-4, 2-Pentyl-1,3-dioxolane
                                          5421-12-5, 2-Nonyl-4-methyl-1,3-
     dioxolane
                 6316-55-8 66512-92-3
                                         150460-70-1
     RL: PROC (Process)
        (as stratum corneum-lipid modifier, indomethacin
        iontophoretic delivery in presence of)
     64-18-6D, Formic acid, esters
TΤ
                                     110-91-8D, Morpholine, derivs.
     505-22-6D, 1,3-Dioxane, derivs.
                                       646-06-0D, 1,3-Dioxolane, derivs.
     RL: BIOL (Biological study)
        (as stratum corneum-lipid modifiers, for
        iontophoresis)
ΙT
     53-86-1, Indomethacin
     RL: BIOL (Biological study)
        (iontophoretic delivery of, stratum corneum
```

amide, etc.). The lipid modifier may be used prior to

-lipid modifier effect on)

TT 50-99-7, D-Glucose, biological studies 57-13-6, Urea, biological studies 75-12-7, Formamide, biological studies 646-06-0, Dioxolane 3812-32-6, Carbonate, biological studies RL: BIOL (Biological study)

(stratum corneum-lipid modifier and, for iontophoresis)

IT 58218-95-4, Propylene glycol-ethanol mixture

RL: BIOL (Biological study)

(stratum corneum-lipid modifier and, indomethacin iontophoretic delivery in presence of)