

SECOND SEMESTER 2022-2023

Course Handout Part II

Date: 16/01/2023

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CHE F244

Course Title : Separation Processes 1 Instructor-in-Charge : Balaji Krishnamurthy

Scope and Objective of the Course:

Introduction to molecular diffusion and mass transfer coefficients; interphase mass transfer. Application of the principles in design of absorption, distillation, extraction and leaching processes. The course will enable the student to design the continuous contact and tray type equipment required for mass transfer.

Textbooks:

- T1. Mass Transfer Operations, Robert E. Treybal, Third Edition, McGraw Hill.
- **T2**. Seperation Process Principles, Seader and Henley, Wiley student edition.

Reference books

R1 Binay .K. Dutta ,"Principles of mass transfer and separation processes", PHI Learning Pvt Ltd, India, 2007

R2. McCabe, W. L., Smith, J. C., Harriott, P., "Unit Operations of Chemical Engineering," 7th Ed. (International Edition), McGraw-Hill Education (Asia), Singapore, 2005.

Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1	Introduction to separation processes	Unit operations and unit process, Basic concepts	Chapter 1 T1
2-4	Molecular diffusion in fluids	Molecular diffusion and fluxes, Molecular diffusion in Gases (stagnant film, equimolal counter diffusion), Diffusivity of gases and liquids.	Chap.2, T1
5-13	Mass transfer coefficients, interphase mass transfer	Relations between mass transfer coefficients, Reynolds analogy. Equilibrium, diffusion between phases, material balances, stages.	Chap 3,5 T1
14-20	Gas absorption	Equilibrium solubility of gases in liquids, one	Chap. 6T1

		component transfer: material balance for	
		counter – and co-current processes, multi	
	(Equipment for	stage operations, non-isothermal operations,	
	absorption)	calculation of height of packed	
		absorber/desorber, multi-component systems,	
		absorption with chemical reaction.	
		Vapor-liquid equilibrium, flash vaporization,	
	Distillation	differential distillation, Continuous distillation, multistage columns, overall mass	Chap. 9 T1
21-32	(equipments for	and enthalpy balances, McCabe-Thiele	
21-32	distillation)	method, Ponchon-Savarit method, use of open	
	albumation)	steam, multiple feed, side streams, azeotropic	
		and extractive distillations.	
		Liquid-liquid equilibrium, distribution curves,	
		triangular and solvent free coordinates,	
	Liquid extraction	systems of three liquids-one pair partially	Chap. 10, T1
33-36	(equipments for	soluble, insoluble liquids, effect of	
	extraction)	temperature, continuous counter-current	
		multi-stage extraction, continuous counter-	
		current extraction with reflux.	
		Solid-liquid extraction, underflow and	Chap.13, T1
37-40	Leaching(equipments	overflow locus, Multistage cross current	J. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
	for leaching)	extraction, Calculation of no. of stages for	
		cross current flow.	

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid test	90 min	30	13/03 11.30 - 1.00PM	ОВ
Surprise Tests	-	20		ОВ
Assignments		10		ОВ
Comprehensive Exam	3hr	40	08/05 AN	CB - 10% OB - 30%

Chamber Consultation Hour: To be announced in class

Notices: Notices will be put in CMS and Department of Chemical Engineering Notice Board

Make-up Policy: Granted only to **genuine cases** with prior permission from IC. **Grading:** At least 10% of the total marks to be obtained to obtain a valid grade **Academic Honesty and Integrity Policy:**

Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE

