Probability - definitions, conditional probability, tree diagrams, Bayes' theorem, contingency tables, probability distributions, and binomial distribution

Independence

Events
$$A$$
, B are independent

$$\updownarrow$$

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

$$\updownarrow$$

$$P(A \text{ given } B) = P(A)$$

$$\updownarrow$$

$$P(B \text{ given } A) = P(B)$$

(If any of the 4 statements is true, all are true)

Mutual exclusivity (disjointness)

Exhaustivity

Events A, B are exhaustive

$$\uparrow$$

$$P(A \text{ or } B) = 1$$

Sometimes it takes more than two events for exhaustion.

Events A, B, C are exhaustive

$$\uparrow$$

$$P(A \text{ or } B \text{ or } C) = 1$$

Complementarity

Events A, B are complementary

Events A, B are disjoint and exhaustive

P(A and B) = 0 and P(A or B) = 1

A is "not B". B is "not A".

General addition rule

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Definition of conditional probability and general product rule

$$P(B \text{ given } A) = \frac{P(A \text{ and } B)}{P(A)}$$

$$P(A \text{ and } B) = P(A) \cdot P(B \text{ given } A)$$

Tree diagrams

A basic, general tree diagram is shown below.

Example tree

Let's imagine a basketball player has the following probabilities (based on James Harden 2019-2020). When James shoots during play, 65% of attempts are field goals and 35% of attempts are three-pointers. Of the field goals, 44% are hits and 56% are misses. Of the three-pointers, 36% are hits and 64% are misses.

Example problems

▶ What is the probability that James hits a shot?

$$P(hit) =$$

Example problems

▶ What is the probability that James misses a three-pointer?

P(miss given threepointer) =

Example problems

▶ What is the probability that James attempted a three-pointer given he missed the shot?

$$P(threepointer given miss) =$$

Two-way Contingency Table

	hit	miss	total
FG	0.286	0.364	0.65
3P	0.126	0.224	0.35
total	0.412	0.588	1

$$P(hit) = 0.412$$

$$P(\text{miss given 3P}) = \frac{0.224}{0.35} = 0.64$$

$$P(3P \text{ given miss}) = \frac{0.224}{0.588} = 0.381$$

Bayes' Theorem

$$P(A \text{ given } B) = \frac{P(B \text{ given } A) \cdot P(A)}{P(B)}$$

Probability distribution

A probability distribution is a list of events that are pairwise disjoint and collectively exhaustive. A probability distribution unambiguously describes a random variable.

► Example - 5 card poker hands

Event	Probability
Royal Flush	0.00000154
Straight flush (excluding royal flush)	0.000015
Four of a kind	0.000240
Full house	0.001441
Flush (not royal or straight)	0.003925
Three of a kind	0.021128
Two pair	0.047539
One pair	0.422569
No pair/High card	0.501177

Discrete Probability Distribution

The events are discrete numbers.

► Example: straight up bet of a dollar on an single number in French Roulette

Event	Probability
-1	36/37
35	1/37

Mean and Standard Deviation of Discrete Probability Distribution

$$\begin{array}{c|cc}
\hline
x & P(x) \\
-1 & 36/37 \\
35 & 1/37
\end{array}$$

$$\mu = \sum x \cdot P(x)$$

The mean of a probability distribution (μ) is also called the expected value, denoted with an upper-case E, with the variable denoted in parentheses.

$$E(X) = \mu = \sum x \cdot P(x)$$

The standard deviation is determined with the equation below.

$$\sigma = \sqrt{\sum (x - \mu)^2 \cdot P(x)}$$

Expected value and standard deviation of roulette

$$\mu = \sum x \cdot P(x)$$

$$\sigma = \sqrt{\sum (x - \mu)^2 \cdot P(x)}$$

X	P(x)	$x \cdot P(x)$	$x - \mu$	$(x-\mu)^2$	$(x-\mu)^2 \cdot P(x)$
-1 35	36/37 1/37	-36/37 35/37	-36/37 1296/37	0.946676 1226.89	0.9211 33.16
		$\mu = -1/37$			$\sigma^2 = 34.08$ $\sigma = \sqrt{34.08} = 5.8$

Consider summing (or averaging) 2 spins of a Bernoulli

$$P(\text{Total} = 1) = \frac{4}{9}$$

$$\mu_{\text{total}} = \frac{0+0+1+0+0+1+1+1+2}{9} = \frac{6}{9} = \frac{2}{3}$$

Same thing, different representation

Consider 3 spins of a Bernoulli spinner with p = 0.6

Consider 3 spins of a Bernoulli spinner with p = 0.6

$$P(\text{Total}=2) = 0.144 + 0.144 + 0.144 = 0.432$$

Consider 4 spins of a Bernoulli spinner with p = 0.6 Total

$$P(\text{Total}=2) = (6)(0.6)^2(0.4)^2 = 0.3456$$

Representing total of 4 spins with probability distribution

Event	Probability
total=0	$(1)(0.6)^0(0.4)^4$
$total {=} 1$	$(4)(0.6)^1(0.4)^3$
total=2	$(6)(0.6)^2(0.4)^2$
total=3	$(4)(0.6)^3(0.4)^1$
total=4	$(1)(0.6)^4(0.4)^0$

Pascal's Triangle

$$_{7}C_{3} = \frac{7!}{3!4!} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 35$$

Binomial Distribution

- ▶ Let W represent a Bernoulli distribution with p as the chance of success.
- Let *n* represent the number of spins.
- ▶ Let *X* represent the total of *n* spins of *W*.
- ▶ We say *X* follows a binomial distribution.

$$P(X = x) = {}_{n}C_{x}p^{x}(1-p)^{n-x}$$