#### Généralités

**Exercice 1.1** Déterminer les facteurs, les préfixes et les suffixes du mot u = abac.

Exercice 1.2 1. Compter les occurrences des lettres a et b dans les mots suivants :  $a^3cbbca$ , aabgjdd, titi, babc.

- 2. Donner l'ensemble des couples (u, v) tels que uv = abaac.
- 3. Calculer *LM* pour les ensembles suivants :

$$-L = \{a, ab, bb\} \text{ et } M = \{\varepsilon, b, a^2\};$$

$$-L = \varnothing$$
 et  $M = \{a, ba, bb\}$ ;

$$-L = \{\varepsilon\} \text{ et } M = \{a, ba, bb\};$$

$$-L = \{aa, ab, ba\} \text{ et } M = \{a, b\}^*.$$

**Exercice 1.3** Prouver les assertions suivantes, où V est un alphabet,  $a, b \in V$  et  $u, v, x, y \in V^*$ .

1. 
$$au = bv \Rightarrow a = b$$
 et  $u = v$ ;

2. 
$$xu = xv \Rightarrow u = v$$
;

3. 
$$(xu = yv \land |x| = |y|) \Rightarrow u = v$$
;

4. 
$$(xu = yv \land |x| \le |y|) \Rightarrow (x \text{ est préfixe de } y \text{ et } v \text{ est suffixe de } u)$$
.

**Exercice 1.4** Soient u et v deux mots. Montrer que uv = vu si et seulement si il existe  $\gamma \in V^*$  et  $p, q \in \mathbb{N}$  tels que  $u = \gamma^p$  et  $v = \gamma^q$ .

**Exercice 1.5** Montrer que  $(uv)^R = v^R u^R$ .

# Exercice 1.6 Montrer que:

- 1. Il n'existe pas de mot  $x \in \{a, b\}^*$  tel que ax = xb.
- 2. Il n'existe pas de mots  $x, y \in \{a, b\}^*$  tel que xay = ybx.

Exercice 1.7 Soient A,B,C trois langages sur un même alphabet. Prouver les propriétés suivantes, annoncées dans le Lemme 11 du cours :

1. 
$$(AB)C = A(BC)$$
;

2. 
$$(A^*)^* = A^*$$
.

3. 
$$A \subseteq B \Rightarrow A^* \subseteq B^*$$
.

$$4. \ A(B \cup C) = AB \cup AC.$$

5.  $A(B \cap C) \subseteq AB \cap AC$  et l'inclusion réciproque est fausse en général.

```
6. (A \cup B)^* = (A^*B^*)^*.
```

Exercice 1.8 Soient A, B deux langages sur un même alphabet.

- 1. Comparer  $(A \cup B)^*$  et  $A^* \cup B^*$ .
- 2. Comparer  $(A \cap B)^*$  et  $A^* \cap B^*$ .
- 3. Comparer  $(AB)^*$  et  $A^*B^*$ .

Exercice 1.9 Deux mots u et v sont dits conjugués s'il existe deux mots  $w_1$  et  $w_2$  tels que  $u = w_1w_2$  et  $v = w_2w_1$ . En d'autres termes, v s'obtient à partir de u par permutation cyclique de ses lettres.

- 1. Montrer que la conjugaison est une relation d'équivalence, c'est-à-dire :
  - tout mot *u* est conjugué à lui-même ;
  - si u est conjugué à v, alors v est conjugué à u;
  - si u est conjugué à v et v est conjugué à w, alors u est conjugué à w.
- 2. Montrer que u et v sont conjugués si et seulement s'il existe un mot w tel que uw = wv.

**Exercice 1.10** On appelle *code* sur un alphabet V tout langage X sur V tel que pour tous  $x_1, \ldots, x_p \in X$  et pour tous  $y_1, \ldots, y_q \in X : x_1 \ldots x_p = y_1 \ldots y_q \Rightarrow (p = q \text{ et } \forall i \leq p : x_i = y_i)$ . Autrement dit, X est un code ssi tout élément de  $X^*$  se factorise de manière unique sur X.

- 1. Les langages suivants sont-ils des codes ?
  - $-X_1 = \{ab, baa, abba, aabaa\};$
  - $X_2 = \{b, ab, baa, abaa, aaaa\};$
  - $X_3 = \{aa, ab, aab, bba\};$
  - $X_4 = \{a, ba, bba, baab\};$
- 2. Soit  $u \in V^*$ . Montrer que le singleton  $\{u\}$  est un code si et seulement si  $u \neq \varepsilon$ .
- 3. Soient u et v deux mots distincts sur V. Montrer que la paire  $\{u,v\}$  est un code si et seulement si u et v ne commutent pas.
- 4. Soit X une partie de V ne contenant pas  $\varepsilon$  et telle qu'aucun mot de X n'est préfixe propre d'un autre mot de X. Montrer qu'alors X est un code. (Un tel code est appelé *code préfixe*.)

## Expressions régulières

Exercice 2.1 Déterminer tous les mots de longueur maximale 4 qui appartiennent au langage dénoté par chacune des expressions régulières suivantes :

Exercice 2.2 Donner une description en français des langages donnés par les expressions régulières suivantes :

Exercice 2.3 Donner une description en français des langages donnés par les expressions régulières suivantes :

$$\begin{array}{llll} (i) & (a+b)(a+b) & (ii) & (\varepsilon+a+b)(\varepsilon+a+b) & (iii) & ((a+b)(a+b))^* \\ (iv) & (a+b)^*a(a+b)^* & (v) & (a+b)^*ab(a+b)^* & (vi) & (a+b)^*a(a+b)^*b(a+b)^* \\ (vii) & (ab)^* & \end{array}$$

**Exercice 2.4** Prouver la Proposition 16.

Exercice 2.5 Prouver les équivalences suivantes :

1. 
$$(a+b) + (a+b)(a+b)^* + \varnothing^* \equiv (a+b)^*$$

2. 
$$a(c^+ + \varnothing^*) + (a+b)(c^* + (c^*)^*) \equiv (a+b)c^*$$

3. 
$$(x+y)\varnothing + (x+y)\varnothing^* + ((x+y)^*\varnothing^*)^* \equiv (x+y)^*$$

4. 
$$0(\varepsilon + 00)^*(1 + 01) + 1 \equiv 0^*1$$

**Exercice 2.6** Pour chacun des langages suivants, donner une expression régulière représentant son complément :  $(i) (a+b)^*b$ ;  $(ii) ((a+b)(a+b))^*$ .

**Exercice 2.7** On rappelle que deux ensembles X et Y sont *équipotents* s'il existe une bijection de l'un vers l'autre. On note alors  $X \sim Y$ . En particulier, un ensemble équipotent à  $\mathbb{N}$  est dit *dénombrable*.

- (a) Prouver qu'un ensemble n'est jamais équipotent à l'ensemble de ses parties.
- (b) Soit  $\Sigma$  un alphabet. Montrer que l'ensemble des *mots* sur  $\Sigma$  est dénombrable alors que l'ensemble des *langages* sur  $\Sigma$  ne l'est pas.

(c) En déduire qu'il existe des langages non réguliers.

Exercice 2.8 La commande grep -E 'regexp' fichier retourne les lignes d'un fichier où l'on reconnaît l'expression régulière regexp. Une expression régulière est formée à partir de lettres de l'alphabet (chaque lettre constituant un élément ) et des symboles :

- \* qui indique que l'élément précédent apparaît un nombre quelconque de fois
- + qui indique que l'élément précédent apparaît au moins une fois
- ( et ) qui entourent une expression régulière pour former un élément
- | qui indique une disjonction entre deux expressions régulières (on reconnaît l'une ou l'autre)
- ? qui indique que l'élément précédent est facultatif (i.e. il apparaît au plus une fois).

Une expression régulière représente donc sous forme condensée un ensemble de mots (c'est-à-dire un langage). Soit tutu le fichier contenant :

```
caa
cbbab
cabab
caaabba
```

1. Que répond la commande grep -E 'regexp' tutu – et pourquoi ? – lorsque regexp vaut respectivement :

(i) 
$$ca^+$$
; (ii)  $c(ab)^+$ ; (iii)  $ca^+(a^*b^*)$ ; (iv)  $(aa^+)|(bb^+)$ ; (v)  $baa?b$ ; (vi)  $a^*$ 

2. Décrire sous forme ensembliste le langage correspondant aux expressions régulières précédentes.

Exercice 2.9 Pour chacune de ces affirmations, dire si elle est vraie ou fausse en argumentant brièvement.

- i) Tout langage régulier est infini.
- ii) Tout langage non régulier est infini.
- iii) Il y a une infinité de langages réguliers.
- iv) Il y a une infinité de langages non réguliers.
- v) Tout langage inclus dans un langage régulier est régulier.
- vi) Il y a toujours une infinité d'expressions régulières pour décrire un langage régulier.

#### Automates finis

**Exercice 3.1** On considère deux automates  $A_1$  et  $A_2$  sur l'alphabet  $\{a,b\}$ .



- (a) Dans quel état se trouve l'automate  $A_1$  après lecture des mots a, ab, abb, abba? Après lecture du mot  $\varepsilon$ ?
- (b) Lesquels de ces mots sont reconnus par l'automate  $A_1$ ?
- (c) Que se passe-t-il quand on donne le mot aab à lire à l'automate  $A_1$ ?
- (d) Les mots  $aba^2b$ ,  $a^2ba^2b$ ,  $ab^4$  et  $b^3a^2$  sont-ils reconnus par l'automate  $A_1$ ?
- (e) Décrire les mots reconnus par l'automate  $A_1$ .
- (f) Après lecture du mot  $b^3a^2$ , dans quel état se trouve l'automate  $A_2$ ?
- (g) Y a-t-il des mots que l'automate  $A_2$  ne peut pas lire jusqu'au bout?
- (h) S'il n'a lu aucun a, dans quel état se trouve l'automate  $A_2$ ?
- (i) Dans quels cas l'automate  $A_2$  se trouve-t-il dans l'état 1?
- (*j*) Dans quels cas arrive-t-il à l'état final 2 ? Quels mots reconnaît-il ?

**Exercice 3.2** On considère l'automate  $\mathcal{A} = (V, Q, \delta, q_0, F)$  suivant.



- i) Expliciter  $V, Q, \delta, q_0$  et F (on représentera  $\delta$  par sa table de transition).
- ii) Donner 4 mots acceptés par  $\mathscr{A}$  et 4 mots refusés par  $\mathscr{A}$ .
- *iii*) Donner une expression régulière  $\alpha$  dénotant  $L(\mathscr{A})$ .
- *iv*) L'expression régulière suivante dénote-t-elle  $L(\mathscr{A})$  ? (Vous tenterez d'argumenter votre réponse à cette question.)

$$\beta = (0+1)^*1(0+1)0(0+1)^*$$

**Exercice 3.3** Pour chacune des expressions régulières qui suivent, dessinez un automate reconnaissant le langage qu'elle dénote :

$$\alpha = aab$$
;  $\beta = abba + bbab$ ;  $\gamma = (aba)^* + (bab)^*$ .

Exercice 3.4 Déterminer pour chacun des langages suivants un automate qui le reconnaît :

- $(a) \varnothing$
- (b)  $\{\varepsilon,0\}$
- (c)  $\{u00 | u \in \{0,1\}^*\}$
- (*d*)  $\{0^m 1^n 2^p \mid m, n, p \ge 0\}$
- (e)  $\{a^{2n} | n \ge 0\}$
- (f) { $w \mid w$  contient au moins trois 1}
- (g)  $\{w \mid w \text{ ne contient pas le facteur } 110\}$

Exercice 3.5 Pour chacun des langages suivants, donner une expression régulière qui le dénote et un automate qui le reconnaît.

- (a)  $\{u \in \{a,b\}^* | \text{ dans } u, \text{ tout bloc de } a \text{ est de longueur } \geq 2\}.$
- (b)  $\{u \in \{a,b\}^* | \text{dans } u, \text{tout } a \text{ est suivi d'un seul } b\}.$

Exercice 3.6 Déterminer un AFD pour les langages suivants :

- (a) l'ensemble des réprésentations binaires des nombres pairs
- (b) l'ensemble des représentations décimales des multiples de 3

**Exercice 3.7** Soit  $L \subset V^*$  un langage reconnaissable. Montrer que les langages suivants sont reconnaissables :

- (a)  $\{w \in L \mid \text{ aucun préfixe strict de } w \text{ n'est dans } L\}$
- (b)  $\{w \in V^* \mid \text{ aucun préfixe strict de } w \text{ n'est dans } L\}$
- (c)  $\{w \in L \mid w \text{ n'est préfixe strict d'aucun mot de } L\}$
- (d)  $\{w \in V^* \mid w \text{ est pr\'efixe d'un mot de } L\}$

## Résiduels - Minimisation

#### **Exercice 4.1** Calculer les résiduels suivants :

- 1. Résiduels de  $\{\varepsilon, abb, baaba\}$  par rapport aux mots  $\varepsilon, a, b, ab, ba$  et bb.
- 2. Résiduels du langage dénoté par  $aa(a+b)^*bb$  par rapport à  $\varepsilon$ , a, b, ab, aa, ba et bb.
- 3. Résiduels de  $\{a^pb^q, p, q \ge 0\}$  par rapport à tout mot  $u \in \{a, b\}^*$ .
- 4. Résiduels de  $\{a^nb^n, n \ge 0\}$  par rapport à tout mot  $u \in \{a,b\}^*$ .

**Exercice 4.2** Démontrer le Lemme 19 du cours, dont on rappelle l'énoncé : pour  $X,Y \subseteq V^*$ ,  $u,v \in V^*$  et  $a \in V$ , on a :

- 1. X/uv = (X/u)/v
- 2.  $(X \cup Y)/u = (X/u) \cup (Y/u)$
- 3. si  $\varepsilon \notin X : (XY)/a = (X/a)Y$
- 4. si  $\varepsilon \in X : (XY)/a = (X/a)Y \cup Y/a$
- 5.  $\forall n > 0 : X^n/a = (X/a)X^{n-1}$
- 6.  $X^*/u = (X/a)X^*$

**Exercice 4.3** Soient  $L \subseteq V^*$  et  $w \in V^*$ . Montrer que si L/w est infini, alors pour tout préfixe u de w, L/u est infini.

**Exercice 4.4** Soit L un langage comportant p résiduels  $L/u_1, ..., L/u_p$  (les  $L/u_i$  sont deux à deux distincts). Montrer que  $L = u_1(L/u_1) \oplus \cdots \oplus u_p(L/u_p)$ , où  $\oplus$  dénote l'union disjointe.

Exercice 4.5 Donner si c'est possible des exemples de langages tels que :

- 1.  $\{L/\alpha, \ \alpha \in V^*\}$  est fini et chaque  $L/\alpha$  est fini ;
- 2.  $\{L/\alpha, \alpha \in V^*\}$  est fini et chaque  $L/\alpha$  est infini ;
- 3.  $\{L/\alpha, \ \alpha \in V^*\}$  est infini et chaque  $L/\alpha$  est fini ;
- 4.  $\{L/\alpha, \alpha \in V^*\}$  est infini et chaque  $L/\alpha$  est infini.

**Exercice 4.6** Soient  $L \subseteq V^*$  un langage régulier et  $\alpha \in V^*$ . Les langages suivants sont-ils réguliers?

 $(i) \ L/\alpha \ ; \quad (ii) \ \{\beta \in L \mid \beta \text{ admet } \alpha \text{ comme pr\'efixe}\} \ ; \quad (iii) \ \{\beta \mid \beta \text{ est pr\'efixe d'un mot de } L\}.$ 

Exercice 4.7 Construire l'automates des résiduels des langages dénotés par les expressions régulières qui suivent :

i) 
$$(aa+bb+cc)(a+b+c)^*$$
.

$$ii) (a+b)^*aba.$$

$$iii) (ba^{+})^{+}$$

$$iv) \ \ \{u \in \{a,b\}^* \text{ t.q. } |u|_a \in 2\mathbb{N} \text{ et } |u|_b \in 3\mathbb{N}\}.$$

$$v) aa(a+b)^*bb.$$

$$vi) \ a(a+b)^*b+b(a+b)^*a.$$

$$vii$$
)  $\{u \in \{a,b\}^* \text{ t.q. dans } u, \text{ tout bloc de } a \text{ est de longueur } 3\}.$ 

*viii*) 
$$\{u \in \{a,b\}^* \text{ t.q. dans } u, \text{ tout } a \text{ est suivi de deux } b \text{ exactement}\}.$$

ix) 
$$\{u \in \{a,b\}^* \text{ t.q. } u \text{ ne contient pas le facteur } aba\}.$$

$$(00)^* + (000)^*$$

# Exercice 4.8 Minimiser les automates suivants :





### Automates non déterministes

Exercice 5.1 Déterminer un automate non déterministe pour chacun des langages suivants.

$$(b+ba)^*$$
;  $(a+b)^*abb$ ;  $(x+y+\varepsilon)dd^*$ ;  $(a^*(b+c)d^*)^*$ 

**Exercice 5.2** On considère l'automate non déterministe  $A_1 = (Q, V, \delta, S, F)$ , où  $Q = \{S, A, B, C\}$ ,  $V = \{a, b, c\}$ ,  $F = \{C\}$ , et dont le graphe des transitions est représenté ci-dessous.



- 1. Construire un automate  $A_2$  équivalent à  $A_1$ , sans  $\varepsilon$ -transition et sans état inaccessible. On donnera sa table de transition.
- 2. Construire un automate  $A_3$  déterministe et sans état inaccessible, équivalent à  $A_2$ . Représenter son graphe des transitions.
- 3. Construire un automate minimal  $A_4$  équivalent à  $A_3$ .
- 4. Quel est le langage accepté par  $A_1$ ?

Exercice 5.3 Soit *M* l'automate non déterministe caractérisé par le graphe de transition suivant :



- (a) Donner la table de transition de M et calculer l' $\varepsilon$ -clôture de chaque état de M.
- (b) Déterminer un automate  $M_1$  équivalent à M et ne comportant ni  $\varepsilon$ -transition ni état inaccessible. On donnera le graphe de transition de  $M_1$ .

(c) Construire un automate déterministe  $M_2$  équivalent à  $M_1$ . Donner son graphe de transition.

Exercice 5.4 Soit M l'automate non déterministe caractérisé par le graphe de transition suivant :



- (a) Donner la table de transition de M et calculer l' $\varepsilon$ -clôture de chaque état de M.
- (b) Déterminer un automate  $M_1$  équivalent à M et ne comportant ni  $\varepsilon$ -transition ni état inaccessible. On donnera le graphe de transition de  $M_1$ .
- (c) Construire un automate déterministe  $M_2$  équivalent à  $M_1$ . Donner son graphe de transition.

**Exercice 5.5** On considère l'automate fini  $A = (\Sigma, Q, q_0, F)$  où  $\Sigma = \{a, b, c, d\}, Q = \{0, 1, 2, 3, 4\}, q_0 = 0, F = \{2, 4\}$  et la fonction de transition  $\delta$  est définie par la table suivante :

|   | a | b | c | d                | $\boldsymbol{arepsilon}$ |
|---|---|---|---|------------------|--------------------------|
| 0 | 1 | 1 | Ø | Ø                | 1                        |
| 1 | Ø | Ø | 2 | Ø                | Ø                        |
| 2 | Ø | Ø | 2 | 3                | 4                        |
| 3 | Ø | Ø | 4 | Ø                | Ø                        |
| 4 | Ø | Ø | 4 | Ø<br>Ø<br>3<br>Ø | Ø                        |

- 1. Donner le graphe de cet automate.
- 2. Construire un automate A' sans  $\varepsilon$ -transition, équivalent à A. Donner son graphe.
- 3. Déterminiser A'. Donner le graphe de l'automate A" obtenu.
- 4. Peut-on réduire A" en un automate déterministe équivalent ayant moins d'états ?

**Exercice 5.6** Déterminiser puis minimiser l'automate  $(\{s_0, s_1, \dots, s_9\}, \delta, s_0, \{s_9\})$  avec la relation de transition :

|                 | <i>s</i> <sub>0</sub> | $s_1$                 | <i>s</i> <sub>2</sub> | <b>S</b> 3            | <i>S</i> <sub>4</sub> | <i>S</i> <sub>5</sub> | <i>s</i> <sub>6</sub> | <b>S</b> 7 | <i>s</i> <sub>8</sub> | <b>S</b> 9            |
|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------|-----------------------|-----------------------|
| $ \varepsilon $ | <i>s</i> <sub>2</sub> |                       | $s_0$                 |                       |                       |                       | <b>S</b> 9            |            |                       | <i>s</i> <sub>6</sub> |
| 0               | <i>s</i> <sub>1</sub> | <i>s</i> <sub>3</sub> | <i>S</i> 4            |                       |                       | <i>s</i> <sub>6</sub> | <b>S</b> 7            | <b>S</b> 9 |                       |                       |
| 1               |                       | <i>s</i> <sub>2</sub> | <i>S</i> 5            | <i>s</i> <sub>2</sub> | <i>s</i> <sub>6</sub> |                       | <i>S</i> 8            |            | <b>S</b> 9            |                       |

**Exercice 5.7** Donner un automate non déterministe puis un automate déterministe pour les langages :

- $-L = \{a,b,c\}^* a \{a,b,c\}^* b \cup c \{a,b\}^*$
- $-L = \{a,b\}^* a \{a,b\}^n.$

Comparer le nombre d'états de l'automate déterministe avec celui de l'automate non déterministe.

Exercice 5.8 (a) Prouver qu'un automate non trivial à k états accepte nécessairement un mot de taille inférieure à k-1.

- (b) Donner un automate non trivial sur l'alphabet  $\{a\}$  tel que la taille minimale d'un mot rejeté est supérieure au nombre d'états de l'automate.
- (c) Donner une construction pour un automate de taille arbitraire montrant que la taille du plus petit mot rejeté peut être exponentielle en le nombre d'états.

**Exercice 5.9** Soit  $\mathcal{N} = (Q, V, \delta, q_0, F)$  l'AFN défini par :  $Q = \{0, 1, 2, 3, 4, 5\}, q_0 = 0, V = \{a, b\}, F = \{4\}$  et  $\delta$  est donnée "extensivement" :

$$\begin{array}{ll} \delta(0,a) = \{1,2,3,4,5\} & \delta(0,b) = \varnothing \\ \delta(1,a) = \{2,3\} & \delta(1,b) = \{4\} \\ \delta(2,a) = \{0,1,4\} & \delta(2,b) = \{1,2,3\} \\ \delta(3,a) = \{0\} & \delta(3,b) = \{1,2,5\} \\ \delta(4,a) = \{1\} & \delta(4,b) = \varnothing \\ \delta(5,a) = \{2\} & \delta(5,b) = \{2,3,5\} \end{array}$$

- (a) Donner la table de transitions de l'automate  $\mathcal{N}$ .
- (b) Trouver un AFD  $\mathcal{D}$  équivalent à  $\mathcal{N}$ .

**Exercice 5.10** Soit  $\mathcal{A} = (Q, V, \delta, q_0, F)$  l'AFN avec  $\varepsilon$ -transitions défini par :  $Q = \{A, B, C, D, E, F\}$ ,  $q_0 = A, V = \{a, b, c\}$ ,  $F = \{C, D\}$  et dont la fonction de transition est donnée sous sa forme algébrique :

$$\begin{array}{llll} \delta(A,a) = \{E,F\} & \delta(A,b) = \varnothing & \delta(A,c) = \{B,C\} & \delta(A,\varepsilon) = \{B\} \\ \delta(B,a) = \varnothing & \delta(B,b) = \varnothing & \delta(B,c) = \{C\} & \delta(B,\varepsilon) = \{D\} \\ \delta(C,a) = \varnothing & \delta(C,b) = \{E\} & \delta(C,c) = \varnothing & \delta(C,\varepsilon) = \varnothing \\ \delta(D,a) = \varnothing & \delta(D,b) = \varnothing & \delta(D,c) = \{C,E\} & \delta(D,\varepsilon) = \{A\} \\ \delta(E,a) = \{E,F\} & \delta(E,b) = \varnothing & \delta(E,c) = \{C,E\} & \delta(E,\varepsilon) = \varnothing \\ \delta(F,a) = \varnothing & \delta(F,b) = \varnothing & \delta(F,c) = \{A,E\} & \delta(F,\varepsilon) = \{C\} \end{array}$$

- (a) Donner la table et le graphe des transitions de l'automate  $\mathcal{A}$ .
- (b) Eliminer les cycles vides et les  $\varepsilon$ -règles.
- (c) Donner un AFD équivalent à  $\mathcal{A}$ , sans état inaccessible.
- (d) Minimiser l'automate.

Exercice 5.11 Déterminer une expression régulière équivalente à chacun de ces automates.



## Preuves de (non) régularité

Exercice 6.1 Démontrer que le complémentaire d'un langage régulier est un langage régulier. En déduire que :

- (i) l'intersection de deux langages réguliers est un langage régulier;
- (ii) la différence de deux langages réguliers est un langage régulier.

**Exercice 6.2** Prouver que le langage  $\{a^nb^n, n \ge 0\}$  n'est pas régulier en utilisant :

- 1. Le Lemme de l'étoile (Théorème 43);
- 2. le Théorème de Myhill-Nerode (Théorème 27).

Exercice 6.3 Soit L un langage non régulier sur l'alphabet  $\{b\}$ . Montrez que les langages suivants vérifient le Lemme de l'étoile mais sont non réguliers :

- 1.  $a^+L \cup b^*$ .
- 2.  $b^* \cup aL \cup aa^+(a+b)^*$ .

**Exercice 6.4** Pour chacun des langages suivants, dire, en justifiant votre réponse, s'il est régulier ou non :

- 1.  $\{a^{2n}, n \in \mathbb{N}\}.$
- 2.  $\{w \in \{a,b\}^* : |w|_a = |w|_b\}.$
- 3.  $\{a^n b^m c^{n+m}, n, m \in \mathbb{N}\}.$
- 4.  $\{a^n, n \text{ est un entier premier}\}.$
- 5.  $\{a^{n^2}, n \ge 0\}$ .
- 6. L'ensemble des palindromes sur  $\{a,b\}$ .
- 7.  $\{a^nba^n, n \in \mathbb{N}\}.$

Exercice 6.5 Soit  $\mathscr{A}$  un automate déterministe à k états. Montrer que :

- 1.  $L(\mathscr{A}) \neq \varnothing$  ssi  $L(\mathscr{A})$  contient un mot de longueur < k.
- 2.  $L(\mathscr{A})$  est infini ssi  $L(\mathscr{A})$  contient un mot de longueur comprise entre k et 2k.
- 3. Déduire de la question 2 un algorithme qui, prenant en entrée un AFD  $\mathscr{A}$ , accepte cet automate si, et seulement si,  $L(\mathscr{A})$  est infini.

Exercice 6.6 À chaque état q d'un AFD  $\mathcal{A} = (V, Q, \delta, q_0, F)$ , on associe les deux langages :

$$G_q = \{ u \in V^* \text{ t.q. } q_0 \xrightarrow{u} q \} \text{ et } D_q = \{ u \in V^* \text{ t.q. } q \xrightarrow{u} F \}.$$

Par ailleurs, pour tout langage  $L \subseteq V^*$ , on note  $\sqrt{L} = \{u \in V^* | uu \in L\}$ .

- 1. Montrer que pour chaque  $q \in Q$ ,  $G_q$  et  $D_q$  sont réguliers.
- 2. En déduire que pour tout  $L \in REG$ , on a  $\sqrt{L} \in REG$ .

**Exercice 6.7** L'opération  $ext: V^* \to \mathscr{P}(V^*)$  qui construit les mots extraits d'un mot se définit par :

$$ext(\varepsilon) = \varepsilon$$
 et  $ext(\alpha.a) = ext(\alpha) \cup ext(\alpha).a$ 

Pour  $L \subseteq L^*$ , on pose  $ext(L) = \{ext(\alpha) \mid \alpha \in L\}$ . Montrer que  $L \in \mathsf{REG} \Rightarrow ext(L) \in \mathsf{REG}$ :

- 1. en utilisant le théorème de Kleene,
- 2. avec les automates.

**Exercice 6.8** Soient  $L, L' \in \mathsf{REG}$ . Montrer que l'ensemble des mots de la forme  $\alpha_1 \beta_1 \alpha_2 \beta_2 \dots \alpha_n \beta_n$  avec  $\alpha_1 \alpha_2 \dots \alpha_n \in L$  et  $\beta_1 \beta_2 \dots \beta_n \in L'$  est régulier.

**Exercice 6.9** Soit  $\mathcal{A} = (V, Q, \delta, q_0, F)$ .

- 1. Montrer que le langage  $L(\mathscr{A})$  est infini ssi il contient un mot  $\alpha$  tel qu'il existe deux facteurs gauches stricts distincts  $\beta_1$  et  $\beta_2$  de  $\alpha$  vérifiant  $\delta(q_0, \beta_1) = \delta(q_0, \beta_2)$ .
- 2. Donner un algorithme qui permet de décider si un langage régulier est fini ou non.

**Exercice 6.10** Soit L un langage. On pose  $\frac{1}{2}L = \{x \text{ t.q. } \exists y : |x| = |y| \text{ et } xy \in L\}$ . Autrement dit,  $\frac{1}{2}L$  est l'ensemble des premières moitiés des mots de L.

- 1. Montrer que  $L \in \mathsf{REG} \Rightarrow \frac{1}{2}L \in \mathsf{REG}$ .
- 2. Si *L* est régulier, le langage des premiers tiers de *L* est-il régulier ? Même question pour le deuxième tiers, troisième tiers.
- 3. L'ensemble  $\{xz \text{ t.q. } \exists y : |x| = |y| = |z| \text{ et } xyz \in L\}$  est-il régulier ?

Exercice 6.11 Montrer que si L est régulier alors

- 1.  $SQRT(L) = \{x \text{ t.q. } \exists y : |y| = |x|^2 \text{ et } xy \in L\} \text{ est régulier.}$
- 2.  $LOG(L) = \{x \text{ t.q. } \exists y : |y| = 2^{|x|} \text{ et } xy \in L\} \text{ est régulier.}$

# TD no 7

### Révisions

# Exercice 7.1 Construire l'automates des résiduels des langages suivants :

(i) 
$$0+1(0+1)*0$$

$$(ii) 0^*1(10^*1+0)^*$$

## Exercice 7.2 On considère l'automate suivant :

$$\mathscr{A}: \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{1} q_3 \xrightarrow{0}$$

- 1. Dire pourquoi A n'est pas déterministe. Donner, sans justification, une expression régulière équivalente.
- 2. Déterminiser  $\mathscr{A}$  et représenter le graphe de l'automate déterministe  $\mathscr{D}$  obtenu.
- 3. Minimiser l'automate  $\mathscr{D}$  après l'avoir éventuellement complété. Dessiner l'automate obtenu.

# **Exercice 7.3** 1. Minimiser l'automate suivant.



2. Soit  $\mathscr{A}$  l'automate minimal obtenu. Calculer l'expression régulière dénotant  $L(\mathscr{A})$  en résolvant le système d'équations associé.

**Exercice 7.4** Soit  $\mathscr{A} = (V, Q, \delta, q_0, F)$  un automate, où  $V = \{a, b\}$ ,  $Q = \{0, 1, 2, 3\}$ ,  $q_0 = 0$ ,  $F = \{0, 3\}$  et où  $\delta$  est donné par la table de transition :

| $\delta$ | a | b   | ε |
|----------|---|-----|---|
| 0        | 1 | 0   |   |
| 1        | 2 |     | 2 |
| 2        | 3 |     |   |
| 3        |   | 0,3 |   |

1. Dessiner le graphe de  $\mathscr{A}$  et donner une expression régulière équivalente.

- 2. Déterminiser  $\mathscr{A}$  et représenter le graphe de l'automate déterministe  $\mathscr{D}$  obtenu.
- 3. L'automate  $\mathcal{D}$  est-il minimal?

**Exercice 7.5** Utiliser des propriétés de clôture des langages réguliers pour montrer que le langage suivant n'est pas régulier :  $L = \{w \in \{a,b\}^* \text{ t.q. } |w|_a < |w|_b\}.$ 

- **Exercice 7.6** 1. Il y a-t-il toujours une infinité d'expressions régulières dénotant un langage régulier?
  - 2. Quel est le nombre maximal d'états d'un AFD obtenu par déterminisation d'un AFN à *n* états ?
  - 3. Le miroir d'un langage régulier est-il régulier ?

**Exercice 7.7** Calculer une expression régulière équivalente à l'automate suivant en résolvant le systèmes d'équations associé :

