maxon motor

maxon motor control

4-Q-DC Servo Control (LSC)

Order number 108302/108303

Operating Instructions

May 2001 edition

The linear servo controller (LSC) is a servo amplifier for the speed controlled operation of permanent magnet DC motors of up to 50 Watt output power.

It works on the linear (proportional) principle.

Advantages

- Small dimensions, matching the Eurocard format, in protective housing
- Overtemperature protection
- · Current limit adjustable using potentiometer
- Input setting by means of external potentiometer or with external control voltage level
- Simple to connect with screw-type terminals
- Only one supply voltage required

Operation features

- 4-Quadrant operation speed controlled operation, driving and braking in both directions
- Different modes of operation DC tacho speed control, encoder speed control, IxR compensation or use as voltage regulator (U_{adi})
- Good control characteristics PI-controller with adjustable P-portion for a stable speed behaviour
- Ballast circuit = «braking help» the LSC absorbs up to 5W (continuously) during braking

Safety Instructions

Skilled Personnel

Handling of the equipment shall only be performed by experienced, skilled personnel.

Statutory Regulations

The user must ensure that the servo controller and the components belonging to it are assembled and connected according to local statutory regulations.

Additional Safety Equipment

Electronic apparatus is basically not fail-safe. Machines and apparatus must therefore be fitted with independent monitoring and safety equipment.

Repairs

Repairs may be made by authorised personnel only or by the manufacturer. It is dangerous for the user to open the unit or make repairs to it.

Max. Supply Voltage

Make sure that the supply voltage is between 12 and 30 VDC.

Attention: Voltage higher than 30 VDC or wrong polarity will destroy the unit.

Electrostatic Sensitive Device (ESD)

Table of Contents

1	Technical Data	2
2	Block Diagram	2
3	Dimension Drawing	
4	Connection	_
5	Installation	1

The latest edition of these operating instructions may also be found in the internet under http://www.maxonmotor.com («Downloads» in the category «Service & Support»).

1 Technical Data

Electrical Data

Continuous output power	max. 50 W
Operating voltage range V _{cc}	
Motor operating voltage	
Motor current limit adjustable	
	_

Input

Output

Ambient temperature- / Humidity range

Operation10 +45°C
Overtemperature protection Shut down when housing reaches approx. 80°C
Storage40 +85°C
noncondensating

Mechanical data

330 g
120 x 100 x 40 [mm]
for M4 screws
80 x 90 [mm]

Notice

Ideally the servo controller should be mounted onto a heat sink, if high ambient temperature or long duty cycles appear.

2 Block Diagram

3 Dimension Drawing

Dimensions in [mm]

4 Connection

1	Motor +	
2	Motor -	
3	V _{CC} +	Operating voltage
4	V _{CC} Gnd	Operating voltage
5	V _{ref} +	Reference voltage
6	V _{ref} -	Reference voltage
7	Disable	Disable Input
8	Gnd	Disable Gnd
9	U _{Set} -	Set Value
10	U _{Set} +	Set Value
11	U _{Tacho} -	
12	U _{Tacho} +	
Α	Connector	

13	Channel B	Encoder
14	Channel A	Encoder
15	n.c. or Index	Encoder «home» (if available)
16	Gnd	
17	V_{CC}	
В	Connector	

5 Installation

Different adjustments are required depending on the mode of operation. All tasks are to be done in the sequence shown in the table.

Tools required are:

One small screwdriver for the adjustments of the potentiometers.

One small Phillips type screwdriver for the LSC front plate.

One Multimeter for current and voltage measurements.

Mode of	DC	I x R	DE	U _{adj}
operation Item Task	DC tacho speed control	IxR Compen- sation	Digital encoder speed control	Voltage regulator operation
1. Pre-adjust potentiometers	х	x	х	х
2. Connect Set value circuit	Х	Х	Х	Х
3. Install plug-in jumpers	X	X	X	Х
4. Arrange power source	х	Х	Х	Х
5. Make remaining connections	Х	Х	Х	Х
6. Adjust max. desired speed	х	Х	Х	Х
7. Adjust current limit	х	х	х	Х
8. Adjust Offset	х	х	х	х
9. Adjust amplification (XP)	х	Х	Х	
10. Options		if required	•	

Item	Task	DC	l x R	DE	U _{adj}
1.	Pre-adjust potentiometers	X	Х	Χ	χ

By pre-adjusting the potentiometers you put yourself in a preferred starting position. Damage to the motor due to high currents is avoided. LSC units in original packing are already pre-adjusted. In all other cases or if in doubt proceed as shown.

Important: The total adjustment range of the potentiometers is 20 turns (7200°). This is guarantee for precise adjustment. A built-

20 turns CW min.

20 turns CCW min.

20 turns CW, followed by 10 turns CCW.

in friction clutch prevents any damage to the potentiometers in case of over-adjustment.

Item	Task	DC	I x R	DE	U_{adj}
2.	Connect Set value circuit	X	Х	Х	Χ

Potentiomete

Set value defined with . . •

The Set value must be defined by either an external potentiometer or an external voltage source.

a) Potentiometer

- Connect potentiometer (recommended value 47 kOhm).
- and 9.

The jumpers No. 1 - 6 are located directly behind the LSC front cover. Installing a plug on top of a pair of pins interconnects these two pins. A maximum of three jumper plugs is required. Jumpers in locations 2 - 6 define With Set value potentiometer

the operating mode and location 1 defines the chosen Set value.

maxon motor

Operating Instructions

4-Q-DC Servo Control (LSC)

Item	Task	DC	Ix R	DE	U _{adj}
4.	Arrange power source	Χ	Х	Х	Χ

You may use any power supply of your own choice as long as it meets the requirements shown on the right.

Please note:

- Local Safety regulations.
- While installing and adjusting we recommend:

Mechanically separate the motor from the driven device to preclude damage due to unexpected motion.

Important:

- The maximum voltage must be in proper relationship with the desired operating point of the motor.
- The formula takes a 6 Volt voltage drop in the LSC into account.

Power supply req	uirements:
Output voltage	According to the motor's minimum requirements, 30V DC max, 12V DC min.
Output current	2 A max.
Ripple	<5%
Potential	Galvanic separation from the line is recommended.

Known data:

Operating torque M_B [mNm] Operating speed n_B [rpm] Nominal motor voltage U_N [Volt] (According to catalog, motor data, line 2) Motor no load speed n_0 [rpm] at U_N (According to catalog, motor data, line 3) Motor speed / Torque gradient $\Delta n/\Delta M$ [rpm/mNm] (According to catalog, motor data, line 5)

Data sought:

Operating Voltage U_B [Volt]

Solution:

$$U_{B} = \frac{U_{N}}{n_{0}} (n_{B} + \Delta n / \Delta M \cdot M_{B}) + 6$$

Select a power supply capable of providing this voltage under load.

I	Item	Task	DC	Ix R	DE	U _{adj}
	5.	Make remaining connections	X	Х	Х	X

DE	
E + 12.30VDC	Motor+ Motor- Vcc+
	/cc-
to items 2 and 10	
	J _{Tacho} - J _{Tacho} +
15 Home"Impuls/no connection	
17 V _{cc}	

Warning:		
Disable Gnd U _{Set} -	8 9	These may be interconnected
Motor - V _{cc} Gnd Ref. Voltage - Disable Gnd	2 4 6 8	None of these may be interconnected with any of the others. Potentials are not identical i.e. at different levels.

Item	Task	DC	l x R	DE	U _{adj}
6.	Adjustmax. desired speed	Х	Х	X	Х

When either the potentiometer is in one of its extreme positions or the Set value voltage at its maximum level, then the motor is to achieve its maximum speed.

Different Set values result in respectively changed motor shaft speeds. Change in polarity causes reversal in shaft rotation.

1.	Operating voltage pins 3/4	Power ON according value in item 4	
2.	Set value input pin 9/10	Adjust to max.	
3.	Potentiometer P1	Turn P1 CW until the desired shaft speed (Voltage on motor terminals resp. in case of U_{adj}) is reached.	\mathbf{t}

maxon motor

4-Q-DC Servo Control (LSC)

Operating Instructions

Item	Task	DC	Ix R	DE	U _{adj}
7.	Adjust current limit	Χ	Х	Х	Х

Adjust the max. permissible motor current with potentiometer ${\bf P4}$.

As a result, the motor can only be loaded down to the defined max. current.

Important: A current range from 0 to 2 A applies for both directions of rotation.

1a.	Connect DC Amp-meter in series with motor, lock motor shaft.	LSC 2 M		
2.	Adjust set value	Turn P4 CW or CCW until the desired		†

Item	Task	Potentiometer	Externalvoltage	
8.	Adjust Offset	X	X	

The Offset adjustment (=Zero Adjust) causes the speed control circuit to be in position «Null» when Set value is «Null». Adjustment is done with potentiometer **P3**.

As a result, the motor shaft stands still when the Set value is 0 Volt.

Item	Task	DC	DE	IxR	U _{ad}
9.	Adjust amplification (XP)	Х	Х	Х	
		-			

Potentiometers **P5**, **P2** respectively, are used to adjust the control accuracy of the system.

Caution: Poor adjustment (excessive amplification) causes the LSC to oscillate. Motor as well as LSC heat up.

Current amplification is ineffective in case of voltage regulator operation. **P5** only influences the output voltage.

1.	Max. Set value External potentiometer, external voltage respectively in MAX position.				
2.	Turn P5 CW until the circuit begins to oscillate, the motor hums.	Turn P2 CW until the circuit begins to oscillate, the motor hums.	C		
3.	Turn P5 CCW until oscillations cease.	Turn P2 CCW until oscillations cease, over the entire motor speed range.	5		

Item	Task	DC	Ix R	DE	U _{adj}
10.	Options	Х	Х	Х	X

Disable:

- The LSC can be Disabled/enabled with a simple SPST switch.
- Closing the contact causes the motor to come to an un-aided stop.
- An offset current of typically 10 mA measured in the motor circuit is normal. This means that the unloaded motor could keep rotating slowly.

