Hamburg University

Optimization

Notes

Department of Mathematics, Hamburg University, Bundesstrasse 55, 20146, Hamburg, Germany

Abstract:

Keywords: Optimization • Convexity

Introduction

0.1. Definitions

0.2. Useful lemmas and Theorems.

Lemma 0.1.

Let $(x_n)_{n\in\mathbb{N}}$ be a bounded sequence in a Hilbert Space H. Then $(x_n)_{n\in\mathbb{N}}$ possesses a weakly convergent subsequence.

Lemma 0.2.

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a Hilbert Space H. Then $(x_n)_{n\in\mathbb{N}}$ converges if and only if it is bounded and possesses at most one weak sequential cluster point.

Theorem 0.1.

Let $f: H \to (\infty, \infty]$ be a convex functional on a Hilbert space. Then the following are equivalent:

- (i) f is weakly sequentially lower semicontinuous.
- (ii) f is sequentially lower semicontinuous.
- (iii) f is lower semicontinuous.
- (iv) f is weakly lower semicontinuous.

Lemma 0.3.

A convex set is closed if and only if it is weakly closed.

Lemma 0.4.

Every bounded linear operator over a Banach Space is weakly continuos.

Lemma 0.5 (Parallelogram law).

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$

1. Lecture 1

Fact 1.1.

Let $x \in H$, let U be a neighborhood of x, let G be a real Banach space, let $T: U \to G$, let V be a neighborhood of Tx, and let $R: V \to K$. Suppose that T is Frechet differentiable at x and that R is Gteaux differentiable at Tx. Then $R \circ T$ is Gateâux differentiable at x and $D(R \circ T)(x) = (DR(Tx)) \circ DT(x)$. If R is Fréchet differentiable at x, then so is $R \circ T$.

Fact 1.2.

Let $x \in H$, let U be a neighborhood of x, let K be a real Banach space, and let $T: U \to K$. Suppose that T is twice Fréchet differentiable at x. Then $\forall (y,z) \in H \times H$, $(\mathsf{D}^2T(x)y)z = (\mathsf{D}^2T(x)z)y$.

Definition 1.1.

Let $x \in H$, let $C \in \mathcal{V}(x)$, and let $T : C \to K$. Then T is Fréchet differentiable at x if there exists an operator $\mathbf{D}T(x) \in B(H,K)$, called the Frchet derivative of T at x, such that

$$\lim_{0 \neq \|y\| \to 0} \frac{\|T(x+y) - Tx - \mathsf{D}T(x)y\|}{\|y\|} = 0$$

2. Lecture 2

2.1. Convexity

Definition 2.1.

Let U be linear space. A functional $J: U \to \mathbb{R}$ is called convex, if for $t \in [0,1]$ and $u_1, u_2 \in U$.

$$J(tu_1 + (1-t)u_2) \le tJ(u_1) + (1-t)J(u_2) \tag{1}$$

holds such that the right hand sid is well defined.

- J is strictly convex if (1) holds strictly for $\forall u_1, u_2 \in U, u_1 \neq u_2 \text{ and } t \in (0,1) \text{ with } J(u_1) < \infty \text{ and } J(u_2) < \infty.$
- An optimization problem,

$$\min_{u \in C} J(u)$$

is called convex if both C and J are convex.

Lemma 2.1.

If C and V are convex in U, then

- $\bullet \ \alpha V = \{w = \alpha v, v \in C\} \ \textit{is convex}.$
- ullet C+V is convex.

Proof.

Lemma 2.2

Let V be a collection of convex sets in U, then $C = \bigcap_{K \in V} K$ is convex.

Proof. If $C = \emptyset$, then C the statement is vacuously true. Consider $C \neq \emptyset$ and $u_1, u_2 \in C$ then $u_1, u_2 \in K$ for all $K \in V$

$$\implies tu_1 + (1-t)u_2 \in K, \quad \forall K \in V \implies tu_1 + (1-t)u_2 \in \bigcap_{K \in V} K$$

Lemma 2.3.

Let $C \in U$ convex and $J: C \to \mathbb{R}$. Define $\alpha = \inf_{u \in C} J(u)$. Then the set $\Psi = u|J(u) = \alpha$ is convex, i.e. the solution of

$$\min_{u \in C} J(u)$$

is a convex set.

Proof. Let $u_1, u_2 \in \Psi$ and $u_t = tu_1 + (1-t)u_2$. Sinc J is convex, it holds that $J(u_t) \leq tJ(u_t) + (1-t)J(u_t) = \alpha$. Thus $J(u_t) = \alpha$, $\forall t \in [0, 1]$. Implying $u_t \in \Psi$ Hence Ψ is convex.

Lemma 2.4.

Let U be linear normed space, and $C \subset U$ a convex set and $J: U \to \overline{\mathbb{R}}$ convex functional. Let $\overline{u} \in C$ such that

$$J(\overline{u}) \le J(u) \quad \forall u \in B_{\epsilon}(\overline{u}) \cap C,$$

for some ball $B_{\epsilon}(\overline{u})$ in U with center in \overline{u} . Then $J(\overline{u}) = \inf_{u \in C} J(u)$. In other words, the local minimizer of a convex optimization problem is also a global minimizer.

Proof. Let $B_{\epsilon}(\overline{u})$ be an open neighborhood of \overline{u} with $J(\overline{u}) \leq J(u)$ for all $u \in B_{\epsilon}(\overline{u}) \cap C$. Take an arbitrary $u^* \in C$ and consider $u_t = t\overline{u} + (1-t)u^*$. Since C is convex $u_t \in C$. For some $t \in (0,1), u_t \in B_{\epsilon}(\overline{u})$. Thus,

$$J(\overline{u}) < J(u_t) < tJ(\overline{u}) + (1-t)J(u^*).$$

We have $\forall t \in [0,1]$ that $(1-t) \leq 0$, then

$$(1-t)J(\overline{u}) < (1-t)J(u^*) \qquad \forall u^* \in C$$

Therefore, \overline{u} is a local minimizer for C.

Theorem 2.1.

Let U is Banach Space, $C \subset U$ convex and $J: C \to \mathbb{R}$ Gateâux differentiable. Consider the minimization problem.

$$\min_{u \in C} J(u)$$

- 1. Let \overline{u} be a local solution. Then $J'(\overline{u}; u \overline{u}) \geq 0$, $\forall u \in C$.
- 2. If J is convex on C, then $J'(\overline{u}; u \overline{u}) \geq 0$, $\forall u \in C$ is necessary and sufficient for global optimality of \overline{u}
- 3. If J is strictly convex on C, then the minimization problem admits at most one solution.
- 4. If C is closed, and J is convex and continuous with

$$\lim_{\substack{u \in C \\ \|u\| \to \infty}} J(u) = \infty.$$

Then a global solution $\overline{u} \in C$ exists.

Proof.

1. Let \overline{u} be a local solution $J(\overline{u}) \leq J(u)$, $\forall u \in B_{\epsilon}(\overline{u}) \cap C$, let $t \in [0,1]$, $u_t = \overline{u} + t(u - \overline{u})$, then $u_t \in C$, since C is convex.

For small t > 0,

$$0 \le \frac{1}{t} \left[J(u_t) - J(u) \right] \le \frac{1}{t} \left[J(\overline{u} + t(u - \overline{u})) - J(u) \right] \xrightarrow{t \downarrow 0} J'(\overline{u}; u - \overline{u})$$

2. Since J is convex we have for $u \in C$, $J(\overline{u} + t(u - \overline{u})) \le J(\overline{u}) + t[J(u) - J(\overline{u})]$, for t > 0

$$\implies J(u) - J(\overline{u}) \ge \frac{1}{t} \left[J(\overline{u} + t(u - \overline{u})) - J(\overline{u}) \right] \xrightarrow{t \downarrow 0} J'(\overline{u}; u - \overline{u}) \ge 0.$$

Therefore \overline{u} is a global minimizer.

- 3. Assume, that there are two solution for the minimization problem, $\overline{u}, u^* \in C$, such that $\overline{u} \neq u^*$ and $J(\overline{u}) = J(u^*) = \inf_{u \in C} J(u)$. Since J is strictly convex $J(u_t) = J(t\overline{u} + (1-t)u^*) < tJ(\overline{u}) + (1-t)J(u^*) = \alpha$ for all $t \in [0,1]$. Contradicting our assumption that u^* and \overline{u} are solutions.
- 4. $\alpha = \inf_{u \in C} J(u) \in \mathbb{R} \cup \{-\infty\}$, choose a minimizing sequence $(u_k)_k \subset C$ with $J(u_k) \xrightarrow{k \to \infty} \alpha$
 - $\Longrightarrow (u_k)_k$ is bounded, because $J \to \infty$ as $||u|| \to \infty$.
 - $\Longrightarrow (u_k)_k$ contains a weakly convergent subsequence $u_{k_e} \xrightarrow[e \to \infty]{} \overline{u} \in C$. Since C is closed and convex.
 - $\Longrightarrow J$ is weakly-lower semicontinuos because it is convex and continuos.

3. Lecture 3

Now consider Hilbert space $(H, \langle \cdot, \cdot \rangle)$ with the norm defined as $\| \cdot \| = \sqrt{(\cdot, \cdot)}$.

Let be $J: H \to \mathbb{R}$ a functional over a Hilbert space H, we define the set,

$$\underset{v \in C \subseteq H}{\arg\min} J(x) := \{ x \mid x \in C \land \forall v \in C : J(x) \le J(v) \}.$$

By Riesz-Fréchet representation formula, exists a unique vector $\nabla J(x) \in H$ such that,

$$(\forall y \in H) \quad J'(x;y) = \langle y, \nabla J(x) \rangle$$

namely Gateâux gradient of J at x.

Lemma 3.1.

Let H Hilbert space and $C \subset H$ closed and convex. Define $P_C : H \to C$,

$$P_C(x) = \underset{v \in C}{\arg \min} [||v - x||].$$

Then,

- 1. P_C is well defined, i.e. $\exists ! u \in H$ such that $P_C(x) = \{u\}$.
- 2. $\forall u, v \in H$, we have $x = P_C(u) \iff x \in C$ and $\langle u x, v x \rangle \leq 0$.
- 3. $||P_C(u) P_C(\overline{u})|| \le ||u \overline{u}|| \quad \forall u, \overline{u} \in H$, i.e. The projection P_C is non expansive.
- 4. $\langle P_C(u) P_C(\overline{u}), u \overline{u} \rangle \le 0, \quad \forall u, \overline{u} \in H$
- 5. Let be t > 0 a real number, then $\forall u \in C$, and $\forall v \in H$, $\phi(t) = \frac{1}{t} \|P_C(u + tv) u\|$ is non-increasing.

Proof. 1. First we prove existence, let be $(v_k)_k$ a minimizing sequence in C, such that

$$||x - v_k|| \to \alpha = \inf_{v \in C} ||x - v||,$$

By the parallelogram law,

$$2 \|v_j - x\|^2 + 2 \|v_i - x\|^2 = \|v_j - v_i\|^2 + \|v_j + v_i - 2x\|^2$$

$$2 \|v_j - x\|^2 + 2 \|v_i - x\|^2 = \|v_j - v_i\|^2 + 4 \left\| \frac{v_j + v_i}{2} - x \right\|^2$$

$$\implies 2 \|v_j - x\|^2 + 2 \|v_i - x\|^2 - 4 \left\| \frac{v_j + v_i}{2} - x \right\|^2 = \|v_j - v_i\|^2$$

Since C is convex $\frac{v_i+v_j}{2} \in C$, then by definition of α ,

$$0 \le \alpha \le \left\| \frac{v_j + v_i}{2} - x \right\|$$

Therefore the above equations become in the following inequality,

$$2 \|v_j - x\|^2 + 2 \|v_i - x\|^2 - 4\alpha^2 \ge \|v_j - v_i\|^2$$

Since $||v_i - x|| \to \alpha$ and $||v_j - x|| \to \alpha$, we have that $||v_j - v_i|| \to 0$, therefore the series is Cauchy and then converges. Since C is closed the series converges to a point $v \in C$.

Second we prove uniqueness, we proceed by contradiction, take $v, v' \in C$ such $v \neq v'$, and both of them minimizing the distant with respect the point x, i.e.

$$||x - v|| = ||x - v'|| = \alpha = \min_{u \in C} ||u - x||$$

By the parallelogram law,

$$2 \|x - v\|^2 + 2 \|x - v'\|^2 = \|2x - v - v'\|^2 + \|v - v'\|^2$$

Since C is convex, $\left\| \frac{v+v'}{2} - x \right\| \ge \alpha$

$$||v - v'||^{2} = 2||x - v||^{2} + 2||x - v'||^{2} - ||2x - v - v'||^{2}$$

$$||v - v'||^{2} = 2||x - v||^{2} + 2||x - v'||^{2} - 4||x - \frac{v - v'}{2}||^{2}$$

$$||v - v'||^{2} = 2\alpha^{2} + 2\alpha^{2} - 4||x - \frac{v - v'}{2}||^{2} \le 0$$

Therefore ||v - v'|| = 0, and v = v'.

By the uniqueness and existence $\underset{u \in C}{\arg\min} [\|u - x\|]$ is not empty set and has only one element for each $x \in H$. Thus, P_C is well defined.

Theorem 3.1.

Let H be Hilbert space, $C \subset H$ closed and convex, $J: C \to \mathbb{R}$, Gateâux differentiable at the local solution \overline{u} of $\min_{u \in C} J(u)$. Thus, $J'(\overline{u}; u - \overline{u}) \geq 0$, $\forall u \in C$ and it is equivalent to $\overline{u} = P_C(\overline{u} - \delta \nabla J(\overline{u}))$, $\forall \delta > 0$.

5

Proof. Since every Hilbert Space is a Banach space, and C is closed and Convex subset of H, and \overline{u} is a solution of minimization problem; we can apply 2.1.

Thus $J'(\overline{u}; u - \overline{u}) \ge 0 \iff \langle u - \overline{u}, \nabla J(\overline{u}) \rangle \ge 0 \ \forall u \in C$.

For all $\delta > 0$, we multiply the Gateâux gradient $(-\delta)$ and we have,

$$\langle u - \overline{u}, -\delta \nabla J(\overline{u}) \rangle \le 0 \ \forall u \in C,$$

adding zero to the gradient, $\langle u - \overline{u}, \overline{u} - \delta \nabla J(\overline{u}) - \overline{u} \rangle \leq 0$. Then we set $w \in H$ as $w := \overline{u} - \delta \nabla J(\overline{u})$, and applying lemma 3.1 we have,

$$\overline{u} = P_C(w) \iff \langle u - \overline{u}, w - \overline{u} \rangle$$

Thus,

$$\overline{u} = P_C(\overline{u} - \delta J(\overline{u}))$$

3.1. Application

Consider U, Y, Z Hilbert spaces. Let be $J: Y \times U \to \mathbb{R}$ a functional. Consider the minimization problem,

$$\begin{cases} \overline{u} = \min_{y,u} J(y,u) \\ Ay = Bu \quad u \in U_{ad} \subset U \end{cases}$$

For some set U_{ad} closed, convex and bounded. And $A \in \mathcal{L}(Y, Z)$ bounded and invertible with $A^{-1} \in \mathcal{L}(Z, Y)$ and $B \in \mathcal{L}(U, Z)$.

Then we can write $y \in Y$ as a function of $u \in U$,

$$y = y(u) = A^{-1}Bu$$

Consider the reduced cost functional F(u) := J(y(u), u), then our problem is equivalent to

$$\overline{u}_{ad} = \min_{u \in U_{ad}} F(u)$$

Let $(u_k)_k \in U_{ad}$ denote a minimizing sequence, i.e. $F(u_k) \to \inf_{u \in U_{ad}} F(u)$, since $u_k \in U_{ad}$ the sequence is bounded. Therefore we can find a convergent subsequence $u_{k_l} \xrightarrow[l \to \infty]{} \overline{u}$, moreover since U_{ad} is closed and convex U_{ad} is weakly closed, implying $\overline{u} \in U_{ad}$

Proposition 3.1.

If J is continuous and weakly lower semicontinuous, then $\overline{u} = \underset{u \in U_{ad}}{\arg \min} [F(u)].$

Proof. If J is weakly lower semicontinuos

$$J(y(\overline{u}), \overline{u}) \leq \liminf_{l \to \infty} J(y(u_k), u_k)$$

That is,

$$F(\overline{u}) \le \liminf_{l \to \infty} F(u_k) = \alpha$$

Since
$$u_{k_l} \xrightarrow[l \to \infty]{} \overline{u}$$
, $\Longrightarrow y(u_k) \rightharpoonup y(\overline{u})$ and $A^{-1}Bu_k \rightharpoonup A^{-1}B\overline{u}$

J is Gateâux differentiable, applying the chain rule to F and valuating in u we have

$$F_u(u;h) = J_y(y;\alpha(u;h),u) + J_u(y,u;h)$$

$$0 \leq \langle u - \overline{u}, \nabla_u F(\overline{u}) \rangle \quad \forall u \in U_{ad}$$

$$= \langle A^{-1}B(u - \overline{u}), \nabla_y J(\overline{y}, \overline{u}) \rangle_{Y^*Y} + \langle u - \overline{u}, \nabla_u J(\overline{y}, \overline{u}) \rangle_{U^*U}$$

$$= \langle A^{-1}B(u - \overline{u}), \nabla_y J(\overline{y}, \overline{u}) \rangle_{Y^*Y} + \langle u - \overline{u}, \nabla_u J(\overline{y}, \overline{u}) \rangle_{U^*U}$$

$$= \langle u - \overline{u}, (A^{-1}B)^* \nabla_y J(y, \overline{u}) \rangle_{U^*U} + \langle u - \overline{u}, \nabla_u J(y, \overline{u}) \rangle_{U^*U}$$

$$= \langle u - \overline{u}, (A^{-1}B)^* \nabla_y J(\overline{y}, \overline{u}) + \nabla_u J(\overline{y}, \overline{u}) \rangle_{U^*U}$$

Setting $p^* = (A^{-1}B)^* \nabla_y J(\overline{y}, \overline{u})$. We have that $\overline{u} = P_{U_{ad}}(\overline{u} - \delta(p^* + \nabla_u J(\overline{y}, \overline{u})))$

- 4. Lecture 4
- 5. Lecture 5
- 6. Lecture 6
- 7. Lecture 7

Remark 7.1.

Some elementary properties of conjugate functions

- Young inequality $J(u) + J^*(p^*) \ge p^*(u) \quad \forall u \in U, \forall p^* \in U^*$
- $J^*(0) = \sup_{u \in U} ((0, u) J(u)) = \sup_{u \in U} (-J(u)) = \inf_{u \in U} J(u)$

In many applications in optimization, is used the equivalent formulation,

$$\inf_{u \in U} J(u) = -J^*(0).$$

 $J \le F \implies J^* \ge F^*$

Theorem 7.1.

Let U a Banach space and $J^*: U^* \to \overline{\mathbb{R}}$ be the conjugate of the $J: U \to \overline{\mathbb{R}}$. Then for all $u \in U$.

$$p^* \in \partial J(u) \iff J(u) + J^*(p^*) = p^*(u)$$

Proof. content...

Corollary 7.1.

It follows from previous theorem that $\partial J(u) = \{p^* \in U^* | J(u) + J^*(p^*) = (p^*, u)\}.$

Theorem 7.2.

Let U be a Banach space and $J: U \to \mathbb{R}$ be proper function. If $p^* \in \partial J(u)$ then $u \in \partial J^*(p^*)$

Proof. Let $p^* \in \partial J(u)$. For any $g^* \in U^*$, it follows

$$J^*(g^*) = \sup_{v \in U} (g^*(v) - J(v)) \ge g^*(u) - J(u) \ge g^*(u) - J(u)$$

From theorem 7.1

$$J^{*}(g^{*}) \leq g^{*}(u) - p^{*}(u) + J^{*}(p^{*}) = (g^{*} - p^{*})(u) + J^{*}(p^{*}) \implies u \in \partial J^{*}(p^{*}).$$

By iteration the definition, we obtain the bipolar function $(J^*)^* = J^{**} : U^{**} \to \overline{\mathbb{R}}$,

$$J^{**}(u) = \sup_{p^* \in U^*} \{ p^*(u) - J^*(p^*) \}$$

Theorem 7.3.

Let U be a reflexive Banach space. The J^{**} is the maximum convex functional below J (also called convex envelope), i.e. $J^{**}(u) \leq J(u)$, $\forall u \in U$ and $F(u) \leq J^{**}(u)$, $\forall u \in U$ if F is also convex and $F(u) \leq J(u)$, $\forall u$. In particular $J^{**} = J$ if and only if J is convex.

Proof.

$$J^{**}(u) = \sup_{p^* \in U^*} \{ p^*(u) - J^*(p^*) \}$$
 (2)

$$= \sup_{p^* \in U^*} \left\{ p^*(u) - \sup_{v \in U} \left\{ p^*(v) - J(v) \right\} \right\}$$
 (3)

$$= \sup_{p^* \in U^*} \left\{ p^*(u) + \inf_{v \in U} \left\{ p^*(v) - J(v) \right\} \right\}$$
 (4)

(5)

Since for any $p^* \in U^*$,

$$\inf_{v \in U} \left\{ p^* \left(u - v \right) + J(v) \right\} \le p^* (u - u) + J(u)$$

We have that $J^{**}(u) \leq J(u)$.

Now we assume that F is a convex functional and $g^* \in \partial F(u)$ for $u \in U$.

$$\implies F(v) \ge F(v) + q^*(v - u) \tag{6}$$

$$F^{**}(u) = \sup_{p^* \in U^*} \inf_{v \in U} \left\{ p^*(u - v) + F(u) + q^*(v - u) \right\}$$
 (7)

$$\geq \sup_{p^* \in U^*} \inf_{v \in U} \left\{ (p^* - q^*) (u - v) + F(u) \right\} \tag{8}$$

$$\geq \inf_{v \in U} \{ (q^* - q^*)(u - v) + F(u) \}$$
(9)

$$=F(u) \tag{10}$$

If F is convex,

$$\implies F(u) \le F^{**}(u) \le F(u) \implies F(u) = F^{**}(u), \tag{11}$$

$$a$$
 (12)

8. Lecture 8

Definition 8.1.

A function $\Phi: U \times Y \to \overline{\mathbb{R}}$ is said to be a perturbation function of J for the minimization problem

$$\inf_{u \in U} J(u) \tag{P}$$

if $\Phi(u,0) = J(u)$ for all $u \in U$. For each $p \in Y$, the minimization problem (Pp)

$$\inf_{u \in U} \Phi(u, p) \tag{Pp}$$

is called a perturbation problem. The variable p is called perturbation parameter. If we denote by Φ^* the convex conjugate function of Φ , the *dual problem*, with respect to Φ is defined by

$$\sup_{p^* \in Y^*} -\Phi^*(0, p^*) \tag{P*}$$

where $\Phi^*: (U \times Y)^* \cong U^* \times Y^* \to \overline{\mathbb{R}}$, a function defined as follows.

$$\Phi^* (u^*, p^*) = \sup_{\substack{u \in U \\ p \in Y}} ((u^*, u)_{U^*U} + (p^*, p)_{Y^*Y} - \Phi(u, p))$$

Remark 8.1.

For p = 0, $(P^*) \equiv (Pp)$. We denote the infimum for problem (P) by $\inf (P)$ and the supremum for problem (P^*) by $\sup (P^*)$

Lemma 8.1 (Weak duality).

For the problem (P) and (P*) it holds that

$$-\infty \le \sup (P^*) \le \inf (P) \le \infty.$$

Proof. Let $p^* \in Y^*$. It follows

$$-\Phi^*(0, p^*) = -\sup_{\substack{u \in U \\ p \in Y}} ((0, u) + (p^*, p) - \Phi(u, p))$$
(13)

$$= \inf_{\substack{u \in U \\ p \in Y}} (\Phi(u, p) - (p^*, p)) \tag{14}$$

$$\leq (\Phi(u,0) - (p^*,0)) \quad \forall u \in U, p^* \in Y^*$$
 (15)

$$\Longrightarrow \sup_{p^* \in Y^*} \left(-\Phi\left(0, p^*\right) \right) \le \inf_{u \in U} \Phi(u, 0) = \inf(P) \tag{16}$$

By iteration we can define, a bidual problem

$$-\sup_{u \in U} (-\Phi^*(u,0)) = \inf_{u \in U} \Phi^*(u,0)$$
 (P**)

In case the space U is reflexive then ${U^*}^* = U$.

If the perturbation function $\Phi(u, p)$ is proper, convex and weakly lower semicontinuous. Then $\Phi^{**} = \Phi$. In this case $\Phi(u, 0) = \Phi^{**}(u, 0)$ i.e $(P) \equiv (P^{**})$

9

Definition 8.2.

Consider the infimal value function

$$h(p^*) = \inf (\mathbf{Pp}) = \inf_{u \in U} \Phi(u, p)$$

The problem (P) is called stable if h(0) is finite and its sub-differentiable in zero is not empty.

Theorem 8.1.

The primal problem (P) is stable if and only if the following conditions are simultaneously satisfied:

- The dual problem (P*) has a solution.
- There is no duality gap, i.e.

$$\inf(P) = \sup(P^*) \le \infty$$

Theorem 8.2 (Extremal relation).

Let $\Phi: U \times Y \to \overline{\mathbb{R}}$, be convex the following statements are equivalent:

- 1. (P) and (Pp) have solutions \overline{u} and $\overline{p^*}$ and $\inf(P) = \sup(P^*)$
- 2. $\Phi(\overline{u},0) + \Phi^*(0,\overline{p^*}) = 0$
- 3. $(0, \overline{p^*}) \in \partial \Phi(u, 0)$ and $(\overline{u}, 0) \in \partial \Phi^*(0, p^*)$

Proof. We proceed by parts:

- 1. (1) \Longrightarrow (2): \overline{u} solution of $\inf(P)$ and $\overline{p^*}$ solution of $\sup(P^*)$ and $\inf(P) = \sup(P^*)$. This properties implies, $\Phi(\overline{u}, 0) = \inf(P) = \sup(P^*) = -\Phi(0, \overline{p^*}) \Longrightarrow \Phi(\overline{u}, 0) + \Phi^*(0, \overline{p^*}) = 0$.
- 2. (2) \implies (1): $-\Phi^*(0, \overline{p^*}) = \sup(P^*) \le \inf(P) = \Phi(\overline{u}, 0) = -\Phi^*(0, \overline{p^*}) \implies \sup(P^*) = \inf(P)$
- $3. \ (2) \Longleftrightarrow (3): \ \Phi(\overline{u},0) + \Phi^*(0,\overline{p^*}) = 0 = (0,\overline{u}) + (\overline{p^*},0) = \left((0,\overline{p^*}),(\overline{u},0)\right) \iff (0,\overline{p^*}) \in \partial\Phi(\overline{u},0) \ \forall u \in U, \forall p^* \in \partial J(u) \iff J(u) + J^*(p^*) = (p^*,u)$

Fencel duality.

Consider the functional $J: U \to \overline{\mathbb{R}}$,

$$J(u) = F(u) + G(Au)$$

with $F: U \to \overline{\mathbb{R}}$, G convex function $G: V \to \overline{\mathbb{R}}$ and $A: U \to V$ bounded and linear.

We introduce the perturbation $\Phi(u, p) = F(u) + G(Au - p)$. The dual problem is obtained with,

$$\Phi^*(0, p^*) = \sup_{\substack{u \in U \\ p \in V}} ((p^*, p) - F(u) - G(Au - p))$$

For fixed u we set q: Au - p.

$$\begin{split} \Phi^*(0,p^*) &= \sup_{u \in U} \sup_{p \in V} \left((p^*,Au - q) - F(u) - G(q) \right) \\ &= \sup_{u \in U} \sup_{p \in V} \left((A^*p^*,u) - (p^*,q) - F(u) - G(q) \right) \\ &= \sup_{u \in U} \left((p^*,Au) - F(u) \right) + \sup_{p \in V} \left((-p^*,q) - G(q) \right) \\ &= F^*(A^*p^*) + G^*(-p^*) \end{split}$$

References