Cours: Révisions d'analyse

Table des matières

1	Fon	ction réelle d'une variable réelle	1
	1.1	Définition	1
	1.2	Symétries, inégalités	1
	1.3	Opérations usuelles	2
2	Lim	ites	2
	2.1	Définition intuitive	2
	2.2	Limites et opérations usuelles	2
	2.3	Techniques de calcul	4
	2.4	Limites et inégalités	4
3	Con	atinuité	4
	3.1	Définition, opérations usuelles	4
	3.2	Prolongement par continuité	5
	3.3	Théorème des valeurs intermédiaires	5
4	Dér	ivation	5
	4.1	Définition, fonction dérivée	5
	4.2	Dérivées et opérations usuelles	6
	4.3	Fonctions de classe C^n	7
	4.4	Dérivation et monotonie	7
5	Inté	egration	7
	5.1	Définition, opérations usuelles	7
	5.2	Inégalités	8
	5.3	Intégration et primitives, calcul de primitives	8

1 Fonction réelle d'une variable réelle

1.1 Définition

Définition 1. Soit \mathcal{D}_f une partie de \mathbb{R} . On appelle fonction réelle définie sur \mathcal{D}_f toute application f qui à chaque élément x de \mathcal{D}_f associe un unique réel noté f(x). \mathcal{D}_f est appelé domaine de définition de f.

Remarques:

- \Rightarrow Deux fonctions f et g sont égales lorsque :
 - —Elles ont même domaine de définition \mathcal{D} .
 - $-\forall x \in \mathcal{D} \quad f(x) = g(x)$

- \Rightarrow Il sera essentiel de ne pas confondre une fonction avec son expression. Par exemple parler de la fonction $\sin x$ est une erreur grave; on parlera plutôt de la fonction définie sur \mathbb{R} qui au réel x associe le réel $\sin x$.
- Par abus de langage, il est courant que les énoncés demandent à l'élève de donner le domaine de définition d'une fonction f donnée par une expression (par exemple \sqrt{x}). Dans ce cas, il faut donner l'ensemble $\mathcal D$ des x pour lesquels cette expression à un sens (ici, $\mathbb R_+$). La fonction f sera alors dans la suite du problème la fonction définie sur $\mathcal D$ qui à x associe cette expression en x.

1.2 Symétries, inégalités

Définition 2. Soit f une fonction définie sur un domaine \mathcal{D}_f symétrique par rapport à 0. On dit que

— f est paire lorsque:

$$\forall x \in \mathcal{D}_f \quad f(-x) = f(x)$$

— f est impaire lorsque:

$$\forall x \in \mathcal{D}_f \quad f(-x) = -f(x)$$

Définition 3. Soit f une fonction définie $sur \mathbb{R}$ et T un réel. On dit que T est une période de f lorsque :

$$\forall x \in \mathbb{R} \quad f(x+T) = f(x)$$

 $On \ dit \ qu'une \ fonction \ est \ p\'eriodique \ lors qu'elle \ admet \ une \ p\'eriode \ non \ nulle.$

Définition 4. Soit f une fonction définie sur \mathcal{D}_f . On dit que :

 $-\ f\ est\ croissante\ lorsque$:

$$\forall x, y \in \mathcal{D}_f \quad x \leqslant y \Longrightarrow f(x) \leqslant f(y)$$

 $-\ f$ est décroissante lorsque :

$$\forall x, y \in \mathcal{D}_f \quad x \leqslant y \Longrightarrow f(x) \geqslant f(y)$$

— f est strictement croissante lorsque :

$$\forall x, y \in \mathcal{D}_f \quad x < y \Longrightarrow f(x) < f(y)$$

 $-\ f$ est strictement décroissante lorsque :

$$\forall x, y \in \mathcal{D}_f \quad x < y \Longrightarrow f(x) > f(y)$$

Remarques:

⇒ Les fonctions constantes sont à la fois croissantes et décroissantes. Une fonction qui n'est pas croissante n'est pas forcément décroissante.

1.3 Opérations usuelles

Définition 5. Soit f et g deux fonctions définies sur \mathcal{D} .

— Pour tout $\lambda, \mu \in \mathbb{R}$, on définit la fonction $\lambda f + \mu g$ par :

$$\forall x \in \mathcal{D} \quad (\lambda f + \mu g)(x) = \lambda f(x) + \mu g(x)$$

— On définit la fonction f q par :

$$\forall x \in \mathcal{D} \quad (fg)(x) = f(x)g(x)$$

— Si f ne s'annule en aucun point de \mathcal{D} , on définit 1/f par :

$$\forall x \in \mathcal{D} \quad \left(\frac{1}{f}\right)(x) = \frac{1}{f(x)}$$

Définition 6. Soit f et g deux fonctions définies respectivement sur \mathcal{D} et \mathcal{D}' . On suppose que pour tout $x \in \mathcal{D}$, $f(x) \in \mathcal{D}'$. On définit alors la fonction $g \circ f$ par :

$$\forall x \in \mathcal{D} \quad (g \circ f)(x) = g(f(x))$$

1.3.1 Opérations usuelles, symétries et monotonie

Les effets des opérations usuelles sur les propriétés de symétries sont résumés dans les tableaux ci-dessous :

— Combinaison linéaire :

f g	paire	impaire
paire	paire	×
impaire	×	impaire

— Produit:

f g	paire	impaire
paire	paire	impaire
impaire	impaire	paire

— Inverse:

f	paire	impaire
1/f	paire	impaire

— Composition:

g f	paire	impaire
paire	paire	paire
impaire	paire	impaire
×	paire	×

Les effets de opérations usuelles sur les propriétés de monotonie sont résumées dans les tableaux ci-dessous :

— Combinaison linéaire positive :

Ì			
	f g	croissante	décroissante
	croissante	croissante	×
ĺ	décroissante	×	décroissante

— Produit de fonctions positives :

f g	croissante	décroissante	
croissante	croissante	×	
décroissante	×	décroissante	

— Inverse d'une fonction strictement positive ou strictement négative :

f croissante		décroissante	
1/f	décroissante	croissante	

— Composition:

f g	croissante	décroissante	
croissante	croissante	décroissante	
décroissante	décroissante	croissante	

Remarques:

⇒ Lorsque c'est possible, il est souvent bien plus judicieux de déterminer la monotonie d'une fonction à partir de ces règles plutôt qu'à partir de l'étude du signe de la dérivée. En effet, cette méthode est bien plus rapide et source de beaucoup moins d'erreurs.

Exemples:

⇒ Déterminer la monotonie des fonctions d'expressions

$$\frac{1}{e^x + \sqrt{1+x}}, \qquad \sqrt{x+1} - \sqrt{x}$$

2 Limites

2.1 Définition intuitive

Définition 7. Dans ce cours, on ne définira pas la notion de limite. On se basera sur la notion intuitive suivante :

Étant donné une fonction f et $a, l \in \mathbb{R}$, on dit que f(x) tend vers l lorsque x tend vers a, lorsque, quitte à rendre x proche de a, on peut rendre f(x) aussi proche que l'on souhaite de l. Dans ce cas, on note :

$$f(x) \xrightarrow[x \to a]{} l$$

2.2 Limites et opérations usuelles

2.2.1 Limites usuelles

Les limites usuelles suivantes sont à la base du calcul de limites :

— Fonctions puissances:

$$x^{n} \xrightarrow[x \to +\infty]{} +\infty \quad \text{(où } n \in \mathbb{N}^{*}\text{)} \qquad x^{n} \xrightarrow[x \to -\infty]{} \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est impair} \end{cases} \quad \text{(où } n \in \mathbb{N}^{*}\text{)}$$

$$x^n \xrightarrow[x \to a]{} a^n$$
 (où $n \in \mathbb{N}$ et $a \in \mathbb{R}$)

— Fonction exponentielle et croissances comparées :

— Fonction logarithme et croissances comparées :

$$\begin{split} \ln x \xrightarrow[x \to +\infty]{} +\infty & \ln x \xrightarrow[x \to 0]{} -\infty \\ & \ln x \xrightarrow[x \to a]{} \ln a & \frac{\ln (1+x)}{x} \xrightarrow[x \to 0]{} 1 \\ & \frac{\ln^{\alpha} x}{x^{\beta}} \xrightarrow[x \to +\infty]{} 0 & (\text{où } \alpha, \beta > 0) & x^{\alpha} \ln^{n} x \xrightarrow[x \to 0]{} 0 & (\text{où } \alpha > 0 \text{ et } n \in \mathbb{N}^{*}) \end{split}$$

2.2.2 Opérations usuelles

Proposition 1. Soit f et g deux fonctions définies au voisinage de a. On suppose que f(x) et g(x) tendent respectivement vers l_f et l_g lorsque x tend vers a. Alors : — $Si \ \lambda$ et μ sont deux réels :

$$\lambda f(x) + \mu g(x) \xrightarrow[x \to a]{} \lambda l_f + \mu l_g$$

- On a:

$$f(x)g(x) \xrightarrow[x \to a]{} l_f l_g$$

— Si $l_f \neq 0$, 1/f est définie au voisinage de a et :

$$\frac{1}{f(x)} \xrightarrow[x \to a]{} \frac{1}{l_f}$$

— Plus généralement, si $l_q \neq 0$, f/g est définie au voisinage de a et :

$$\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} \frac{l_f}{l_g}$$

Proposition 2. Soit f et g deux fonctions. On suppose que f(x) tend vers $l_f \in \mathbb{R}$ lorsque x tend vers $a \in \mathbb{R}$ et que g tend vers $l_g \in \mathbb{R}$ lorsque x tend vers l_f . Alors g(f(x)) tend vers l_g lorsque x tend vers a.

De nombreux autres propositions existent concernant les limites finies et infinies. Elles sont résumées dans les tableaux ci-dessous où la présence d'une croix représente une forme indeterminée.

— Somme:

Si f et g sont deux fonctions admettant respectivement pour limites l_f et l_g , alors f+g:

l_g	$-\infty$	$l_g \in \mathbb{R}$	$+\infty$
$-\infty$	$-\infty$	$-\infty$	×
$l_f \in \mathbb{R}$	$-\infty$	$l_f + l_g$	$+\infty$
$+\infty$	×	$+\infty$	$+\infty$

— Opposé :

Si f est une fonction admettant pour limite l, alors -f:

l	$-\infty$	$l \in \mathbb{R}$	$+\infty$
	$+\infty$	-l	$-\infty$

— Multiplication par un scalaire :

Si f est une fonction admettant pour limite l et λ est un réel, alors λf :

λ l	$-\infty$	$l \in \mathbb{R}$	$+\infty$
$\lambda < 0$	$+\infty$	λl	$-\infty$
$\lambda > 0$	$-\infty$	λl	$+\infty$

— Produit :

Si f et g sont deux fonctions admettant respectivement pour limites l_f et l_g , alors fg:

			-		
l_g	$-\infty$	$l_g < 0$	0	$l_g > 0$	$+\infty$
$-\infty$	$+\infty$	$+\infty$	×	$-\infty$	$-\infty$
$l_f < 0$	$+\infty$	$l_f l_g$	0	$l_f l_g$	$-\infty$
$l_f = 0$	×	0	0	0	×
$l_f > 0$	$-\infty$	$l_f l_g$	0	$l_f l_g$	$+\infty$
$+\infty$	$-\infty$	$-\infty$	×	$+\infty$	$+\infty$

— Inverse:

Si f est une fonction admettant pour limite l, alors 1/f:

l	$-\infty$	l < 0	0-	0	0_{+}	l > 0	$+\infty$
	0	1/l	$-\infty$	×	$+\infty$	1/l	0

— Exponentiation :

Si f et g sont deux fonctions admettant respectivement pour limites l_f et l_g , alors f^g :

l_g	$-\infty$	$l_g < 0$	0	$l_g > 0$	$+\infty$
0	$+\infty$	$+\infty$	×	0	0
$0 < l_f < 1$	$+\infty$	$l_f^{l_g}$	1	$l_f^{l_g}$	0
1	×	1	1	1	×
$1 < l_f$	0	$l_f^{l_g}$	1	$l_f^{l_g}$	$+\infty$
$+\infty$	0	0	×	$+\infty$	$+\infty$

Exemples:

 \Rightarrow Montrer que 0^0 et $1^{+\infty}$ sont des formes indeterminées.

2.3 Techniques de calcul

Exemples:

⇒ Calculer les limites des expressions suivantes :

$$2x^3 - x^2 + 1$$
 en $+\infty$, $\frac{x^2 + 2x - 3}{2x^2 - 1}$ en $-\infty$

⇒ Calculer les limites des expressions suivantes :

$$e^{x} - x^{5}$$
 en $+\infty$, $\frac{e^{x} \ln x - x^{1000} + e^{2x}}{e^{2x} + \ln x + x}$ en $+\infty$

⇒ Calculer les limites des expressions suivantes :

$$x \ln x$$
 en 0, $\frac{1}{x} e^{-\frac{1}{x^2}}$ en 0, $\frac{e^{e^x}}{x^2}$ en $+\infty$

⇒ Calculer les limites des expressions suivantes :

$$\frac{\ln(2-2\sin x)}{1-2\cos(2x)}$$
 en $\frac{\pi}{6}$, $\frac{\ln(2\cos x)}{e^{\sin\frac{x}{2}}-\sqrt{e}}$ en $\frac{\pi}{3}$

Proposition 3.

— Soit f, g et h trois fonctions définies au voisinage de a. On suppose qu'au voisinage de ce point :

$$f(x) \leqslant g(x) \leqslant h(x)$$

et que f(x) et h(x) admettent la même limite $l \in \mathbb{R}$ lorsque x tend vers a. Alors g(x) tend vers l lorsque x tend vers a.

— Soit f et g deux fonctions définies au voisinage de a. On suppose qu'au voisinage de ce point :

$$f(x) \leqslant g(x)$$

Alors, si f(x) tend vers $+\infty$, lorsque x tend vers a, il en est de même pour g(x). De même, si g(x) tend vers $-\infty$ lorsque x tend vers a, il en est de même pour f(x).

— Soit f et g deux fonctions définies au voisinage de a et $l \in \mathbb{R}$. On suppose gu'au voisinage de a:

$$|f(x) - l| \leqslant g(x)$$

et que g(x) tend vers 0 lorsque x tend vers a. Alors f(x) tend vers l lorsque x tend vers a.

Remarques:

 \Rightarrow Soit f,g et h trois fonctions définies au voisinage de a, telles que, sur ce voisinage :

$$f(x) \leqslant g(x) \leqslant h(x)$$

On suppose que f(x) et h(x) admettent respectivement pour limite l_f et l_h lorsque x tend vers a. On pourrait être tenté d'affirmer que la limite de g(x) lorsque x tend vers a est comprise entre l_f et l_h . C'est une erreur grossière. En effet lorsque l_f et l_h sont distincts, il se peut très bien que f(x) n'ait pas de limite lorsque x tend vers a.

Exemples:

En encadrant l'aire du triangle entre les aires des deux camemberts,

montrer que $\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1$.

 $\Rightarrow \quad \text{Montrer que } \xrightarrow{\sin x} \xrightarrow[x \to +\infty]{} 0.$

2.4 Limites et inégalités

Proposition 4. Soit f et g deux fonctions définies au voisinage de a. On suppose que f(x) et g(x) admettent respectivement pour limite l_f et $l_g \in \mathbb{R}$ lorsque x tend vers a et qu'au voisinage de ce point :

$$f(x) \leqslant g(x)$$

Alors, $l_f \leqslant l_g$.

Remarques:

- ⇒ Remarquons que cet énoncé ne prouve l'existence d'aucune limite. Au contraire, il les suppose et en donne des propriétés.
- ⇒ Attention, il n'existe pas de résultat semblable lorsqu'on remplace l'inégalité large par une inégalité stricte. Par exemple :

$$\forall x > 0 \quad \frac{1}{x} > 0$$

Pourtant 1/x tend vers 0 lorsque x tend vers $+\infty$ et $0 \ge 0$.

3 Continuité

3.1 Définition, opérations usuelles

Définition 8. Soit f une fonction et $x_0 \in \mathcal{D}_f$. On dit que f est continue en x_0 lorsque :

$$f(x) \xrightarrow[x \to x_0]{} f(x_0)$$

On appelle domaine de continuité de f l'ensemble des points où f est continue.

Remarques:

 \Rightarrow On dit qu'une fonction f est continue à gauche en $x_0 \in \mathcal{D}_f$ lorsque

$$f\left(x\right) \xrightarrow[x < x_0]{x \to x_0} f\left(x_0\right)$$

On définit de même la notion de continuité à droite. Une fonction est continue en x_0 si et seulement si elle est continue à gauche et à droite en x_0 .

 \Rightarrow Dans le cas où f admet des limites à gauche et à droite en x_0 et qu'au moins l'une de ces limite n'est pas $f(x_0)$, on dit que f admet une discontinuité de première espèce en x_0 .

Exemples:

 \Rightarrow Donner une condition nécessaire et suffisante sur a et $b \in \mathbb{R}$ pour que la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad f(x) = \begin{cases} \frac{\cos x - a}{x^2} & \text{si } x < 0\\ be^x & \text{si } x \geqslant 0 \end{cases}$$

soit continue en 0.

Proposition 5. Soit f une fonction continue en $x_0 \in \mathcal{D}_f$ et $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{D}_f convergeant vers x_0 . Alors :

$$f(u_n) \xrightarrow[n \to \infty]{} f(x_0)$$

Proposition 6. Soit f et g deux fonctions continues en x_0 . Alors :

- si λ et μ sont deux réels la fonction $\lambda f + \mu g$ est est continue en x_0 .
- la fonction fg est continue en x_0 .
- $si\ f(x_0) \neq 0$, la fonction f ne s'annule pas au voisinage de x_0 et 1/f est continue en x_0 .
- plus généralement, si $g(x_0) \neq 0$, la fonction g ne s'annule pas au voisinage de x_0 , et f/g est continue en x_0 .

Proposition 7. Soit f une fonction continue en x_0 et g une fonction continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

3.2 Prolongement par continuité

Définition 9. Soit f une fonction et $a \in \overline{\mathbb{R}}$ tel que f admette une limite finie l en a. On définit alors la fonction \overline{f} sur $\mathcal{D}_{\overline{f}} = \mathcal{D}_f \cup \{a\}$ par :

$$\forall x \in \mathcal{D}_{\bar{f}} \quad \bar{f}(x) = \begin{cases} f(x) & si \ x \in \mathcal{D}_f \\ l & si \ x = a \end{cases}$$

Cette fonction \bar{f} est continue en a et est appelée prolongement de f par continuité en a.

Exemples:

 \Rightarrow Étudier le prolongement par continuité en 0 de la fonction d'expression $x \ln x$.

3.3 Théorème des valeurs intermédiaires

Proposition 8.

- Soit f une fonction continue sur le segment [a,b] et $y_0 \in [f(a), f(b)]$. Alors il existe $x_0 \in [a,b]$ tel que $f(x_0) = y_0$.
- Soit f une fonction continue sur l'intervalle]a,b[admettant respectivement pour limite l_a et l_b en a et b et $y_0 \in]l_a,l_b[$. Alors il existe $x_0 \in]a,b[$ tel que $f(x_0) = y_0$.

Remarques:

 \Rightarrow Le théorème des valeurs intermédiaires est un théorème d'existence et ne donne aucune information sur l'unicité. Par exemple, lorsqu'il est demandé de montrer qu'il existe une unique solution au problème $f(x) = y_0$, le théorème des valeurs intermédaires peut être utile pour montrer l'existence d'une solution, mais c'est souvent un argument de stricte monotonie qui permet de montrer son unicité.

Exemples:

 \Rightarrow Pour tout $\lambda \in \mathbb{R}$, on définit la fonction f_{λ} sur \mathbb{R}_{+}^{*} par

$$\forall x > 0 \quad f_{\lambda}(x) = \frac{\ln x + \lambda}{1 + x^2}$$

Montrer que pour tout $\lambda \in \mathbb{R}$, l'équation $f'_{\lambda}(x) = 0$ admet une unique solution sur \mathbb{R}^*_+ . En déduire les variations de f_{λ} .

4 Dérivation

4.1 Définition, fonction dérivée

Définition 10. Soit f une fonction et $x_0 \in \mathcal{D}_f$. On dit que f est dérivable en x_0 lorsque :

$$\frac{f(x_0+h)-f(x_0)}{h}$$

admet une limite finie lorsque h tend vers 0. Dans ce cas on note $f'(x_0)$ cette limite que l'on appelle nombre dérivé de f en x_0 .

Remarques:

 \Rightarrow On dit qu'une fonction f est dérivable à gauche en x_0 lorsque l'expression

$$\frac{f(x_0+h)-f(x_0)}{h}$$

admet une limite finie lorsque h tend vers 0 par la gauche; si tel est le cas, cette limite est notée $f'_g(x_0)$. On définit de même la notion de dérivabilité à droite. Une fonction est dérivable en x_0 si et seulement si elle est dérivable à gauche et à droite en x_0 et que $f'_g(x_0) = f'_d(x_0)$.

Exemples:

 \Rightarrow Donner une condition nécessaire et suffisante sur a et $b\in\mathbb{R}$ pour que la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad f(x) = \begin{cases} ax + b & \text{si } x < 0 \\ e^x & \text{si } x \geqslant 0 \end{cases}$$

soit dérivable en 0.

Proposition 9. Si f est dérivable en x_0 , alors f est continue en x_0 .

Remarques:

 \Rightarrow La réciproque de cette proposition est fausse comme le montre l'exemple de la fonction d'expression |x| qui est continue en 0 mais n'est pas dérivable en 0.

Définition 11. Soit f une fonction. On note $\mathcal{D}_{f'}$ l'ensemble des $x_0 \in \mathcal{D}_f$ en lesquels f est dérivable. On définit la fonction dérivée de f, notée f' par :

$$f': \mathcal{D}_{f'} \longrightarrow \mathbb{R}$$

$$x \longmapsto f'(x)$$

Définition 12. Soit f une fonction. Pour tout $n \in \mathbb{N}$, on définit lorsque c'est possible la dérivée n-ième de f par :

- $-f^{(0)}=f$
- Si $f^{(n)}$ est définie et dérivable en au moins un point, on définit $f^{(n+1)}$ comme la fonction dérivée de $f^{(n)}$.

4.2 Dérivées et opérations usuelles

4.2.1 Dérivées des fonction usuelles

\mathcal{D}_f	f(x)	$\mathcal{D}_{f'}$	f'(x)	
\mathbb{R}	$x^n (n \in \mathbb{N})$	\mathbb{R}	$\begin{cases} nx^{n-1} & \text{si } n \geqslant 1\\ 0 & \text{si } n = 0 \end{cases}$	
\mathbb{R}^*	$x^n (n \in \mathbb{Z})$	\mathbb{R}^*	nx^{n-1}	
\mathbb{R}_+^*	$x^{\alpha} (\alpha \in \mathbb{R})$	\mathbb{R}_+^*	$\alpha x^{\alpha-1}$	
\mathbb{R}_{+}	$\sqrt[n]{x} = x^{\frac{1}{n}} (n \in \mathbb{N}^*)$	\mathbb{R}_+^*	$\frac{1}{n}x^{\frac{1}{n}-1}$	
\mathbb{R}	e^x	\mathbb{R}	e^x	
\mathbb{R}_+^*	$\ln x$	\mathbb{R}_+^*	$\frac{1}{x}$	
R*	$\ln x $	ℝ*	$\frac{1}{x}$	
\mathbb{R}	$\cos x$	\mathbb{R}	$-\sin x$	
\mathbb{R}	$\sin x$	\mathbb{R}	$\cos x$	
$\mathbb{R}\setminus\left(\frac{\pi}{2}+\pi\mathbb{Z}\right)$	$\tan x$	$\mathbb{R}\setminus\left(\frac{\pi}{2}+\pi\mathbb{Z}\right)$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	
$\mathbb{R} \setminus \pi \mathbb{Z}$	$\cot x$	$\mathbb{R}\setminus\pi\mathbb{Z}$	$-\left(1 + \cot^2 x\right) = -\frac{1}{\sin^2 x}$	

Remarques:

⇒ Contrairement à ce qui se passe pour la continuité, les fonctions usuelles ne sont pas toutes dérivables sur leur ensemble de définition. Par exemple la fonction :

$$f: \mathbb{R}_+ \to \mathbb{R}, x \mapsto \sqrt{x}$$

est continue sur son ensemble de définition et dérivable sur \mathbb{R}_+^* mais n'est pas dérivable en 0.

4.2.2 Opérations usuelles

Proposition 10. Soit f et g deux fonctions définies au voisinage de x_0 et dérivables en x_0 . Alors :

— Si λ et μ sont deux réels, la fonction $\lambda f + \mu g$ est dérivable en x_0 et :

$$(\lambda f + \mu g)'(x_0) = \lambda f'(x_0) + \mu g'(x_0)$$

— La fonction fg est dérivable en x_0 et :

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

— Si f ne s'annule pas en x_0 , 1/f est dérivable en x_0 et :

$$\left(\frac{1}{f}\right)'(x_0) = -\frac{f'(x_0)}{f^2(x_0)}$$

— Plus généralement, si g ne s'annule pas en x_0 , f/g est dérivable en x_0 et :

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

Proposition 11. Soit f et g deux fonctions définies respectivement au voisinage de x_0 et $f(x_0)$. O suppose que f est dérivable en x_0 et que g est dérivable en $f(x_0)$. Alors $g \circ f$ est dérivable en x_0 et :

$$(g \circ f)'(x_0) = f'(x_0)g'(f(x_0))$$

Remarques:

 \Rightarrow La dérivée d'une fonction paire (resp. impaire, T-périodique) est impaire (resp. paire, T-périodique).

Exemples:

Arr Étudier la dérivablité et calculer la dérivée de la fonction définie sur $[0,\pi/2]$ par

$$\forall x \in \left[0, \frac{\pi}{2}\right] \quad f(x) = \sqrt{1 - \cos x}$$

Étudier la dérivabilité et calculer la dérivée des fonctions d'expression

$$e^{\sin x}, \qquad x^x$$

4.3 Fonctions de classe C^n

Définition 13. Soit f une fonction et $n \in \mathbb{N}$. On dit que f est de classe C^n lorsque f est dérivable n fois sur \mathcal{D}_f et que sa dérivée n-ième g est continue. On dit que g est de classe g lorsqu'elle est de classe g sur pour tout g in g.

Proposition 12. Soit $n \in \mathbb{N} \cup \{\infty\}$ et f, g deux fonctions de classe C^n sur D. Alors:

- Si λ et μ sont deux réels, la fonction $\lambda f + \mu q$ est de classe C^n .
- La fonction fg est de classe C^n .
- Si f ne s'annule pas sur \mathcal{D} , 1/f est de classe \mathcal{C}^n .
- Plus généralement, si g ne s'annule pas sur \mathcal{D} , f/g est de classe \mathcal{C}^n .

Proposition 13. Soit $n \in \mathbb{N} \cup \{\infty\}$, f et g deux fonctions de classe C^n telles que $g \circ f$ soit définie sur \mathcal{D}_f . Alors $g \circ f$ est de classe C^n .

Exemples:

 \Rightarrow Soit $n \in \mathbb{N}^*$. Montrer que la fonction f définie sur \mathbb{R}_+^* par

$$\forall x > 0 \quad f(x) = x^{n-1} \ln x$$

est de classe C^n et calculer sa dérivée n-ième.

4.4 Dérivation et monotonie

Proposition 14. Soit f une fonction dérivable sur un intervalle I. Alors :

— f est croissante si et seulement si :

$$\forall x \in I \quad f'(x) \geqslant 0$$

 $-\ f$ est décroissante si et seulement si :

$$\forall x \in I \quad f'(x) \leqslant 0$$

Remarques:

 \Rightarrow Cette proposition est fausse lorsque le domaine de définition de f n'est pas un intervalle. Par exemple la fonction

$$f: \mathbb{R}^* \longrightarrow \mathbb{R}$$
$$x \longmapsto 1/x$$

n'est pas décroissante bien qu'elle soit dérivable et que sa dérivée soit négative.

Exemples:

⇒ Montrer que

$$\forall x \in [0, \pi/2] \quad \frac{2}{\pi} x \leqslant \sin x \leqslant x, \qquad \forall x \in]0, 1[\quad x^x (1-x)^{1-x} \geqslant \frac{1}{2}$$

Proposition 15. Soit f une fonction dérivable sur un intervalle I. Alors f est constante si et seulement si:

$$\forall x \in I \quad f'(x) = 0$$

Remarques:

 \Rightarrow Cette proposition est fausse lorsque le domaine de définition de f n'est pas un intervalle.

Proposition 16. Soit f une fonction dérivable sur un intervalle I. Si :

- $-\forall x \in I \quad f'(x) \geqslant 0$
- Le nombre de points ou f' s'annule est fini alors f est strictement croissante.

Remarques:

 \Rightarrow La fonction $x \mapsto x^3$ est strictement croissante sur \mathbb{R} bien qu'elle soit dérivable et que sa dérivée s'annule en 0. Si une fonction est croissante mais pas strictement croissante, alors elle est constante sur un intervalle non trivial.

5 Intégration

5.1 Définition, opérations usuelles

Définition 14. Soit f une fonction continue sur un intervalle I et $a, b \in I$. On définit l'intégrale :

$$\int_{a}^{b} f(x) dx$$

comme l'aire algébrique comprise entre le graphe de f et l'axe (Ox) comptée positivement si $a \leq b$ et négativement dans le cas contraire.

Proposition 17. Soit f et g deux fonctions continues sur un intervalle I, $a, b \in I$ et $\lambda, \mu \in \mathbb{R}$. Alors:

$$\int_a^b (\lambda f(x) + \mu g(x)) \ dx = \lambda \int_a^b f(x) \ dx + \mu \int_a^b g(x) \ dx$$

Proposition 18. Soit f une fonction continue sur un intervalle I et $a, b, c \in I$. Alors:

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

5.2 Inégalités

Proposition 19. Soit f et g deux fonctions continues sur un intervalle I et $a, b \in I$ tels que $a \leq b$. On suppose que :

$$\forall x \in [a, b] \quad f(x) \leqslant g(x)$$

Alors:

$$\int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} g(x) \, dx$$

Exemples:

- \implies Montrer que, pour tout $x \in \mathbb{R}$, $0 \le 1 \cos x \le x^2/2$. En déduire la limite à droite en 0 de
 - $\int_{x}^{3x} \frac{\cos t}{t} \, \mathrm{d}t$

5.3 Intégration et primitives, calcul de primitives

5.3.1 primitives

Définition 15. Soit f une fonction définie sur une partie \mathcal{D}_f de \mathbb{R} . On appelle primitive de f toute fonction F dérivable sur \mathcal{D}_f telle que :

$$\forall x \in \mathcal{D}_f \quad F'(x) = f(x)$$

Proposition 20. Soit f une fonction définie sur un intervalle I et F une primitive de f. Alors les primitives de f sont les fonctions F_C définies sur I par :

$$\forall x \in I \quad F_C(x) = F(x) + C$$

où C est un réel quelconque.

5.3.2 Intégration et régularité

Proposition 21. Soit f une fonction continue sur un intervalle I et $x_0 \in I$. On définit sur I la fonction F par :

$$\forall x \in I \quad F(x) = \int_{x_0}^x f(t) dt$$

Alors:

- F est continue sur I.
- F est dérivable sur I et :

$$\forall x \in I \quad F'(x) = f(x)$$

Autrement dit, F est une primitive de f sur I.

Corollaire 1. Soit f une fonction continue sur un intervalle I. Alors f admet une primitive. Plus précisement, pour tout $x_0 \in I$, il existe une unique primitive F de f sur I s'annulant en x_0 . De plus :

$$\forall x \in I \quad F(x) = \int_{x_0}^x f(t) dt$$

Corollaire 2. Soit f une fonction continue sur un intervalle I et $a, b \in I$. Alors, $si\ F$ est une primitive de f sur I:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

5.3.3 Calcul d'intégrales

Proposition 22. Soit f et g deux fonctions définies sur un intervalle I et $a, b \in I$. On suppose que f est de classe C^1 sur [a,b] et que g est continue sur [a,b]. Alors, si G est un primitive de g:

$$\int_{a}^{b} \underbrace{f(x)}_{derive} \underbrace{g(x)}_{intègre} dx = [f(x)G(x)]_{a}^{b} - \int_{a}^{b} f'(x)G(x) dx$$

Exemples:

 \Rightarrow Pour tout $n \in \mathbb{N}$, on définit I_n par

$$I_n = \int_0^1 t^n \sqrt{1 - t} \, \mathrm{d}t$$

Calculer I_0 et trouver une relation de récurrence entre I_n et I_{n+1} .

Proposition 23. Soit f une fonction continue sur un intervalle I. Soit J un intervalle et \bar{x} une fonction de classe C^1 de J à valeurs dans I. On se donne $a_x, b_x \in I$ et $a_t, b_t \in J$ tels que :

$$a_x = \bar{x}(a_t)$$
 et $b_x = \bar{x}(b_t)$

Alors:

$$\int_{a_x}^{b_x} f(x) dx = \int_{a_t}^{b_t} f(\bar{x}(t)) \frac{d\bar{x}}{dt}(t) dt$$

Exemples:

⇒ Calculer

$$\int_0^\pi \ln\left(1 + \cos^2 x\right) \sin\left(2x\right) \, \mathrm{d}x$$

 \Rightarrow Montrer que

$$\int_{\frac{1}{2}}^{2} \frac{1 - x^2}{(1 + x^2)\sqrt{1 + x^4}} \, \mathrm{d}x = 0$$

Corollaire 3. Soit f une fonction continue sur le segment [-a, a]. Alors :

— si f est paire :

$$\int_{-a}^{0} f(x) \, dx = \int_{0}^{a} f(x) \, dx$$

- si f est impaire :

$$\int_{-a}^{0} f(x) \, dx = -\int_{0}^{a} f(x) \, dx$$

En particulier :

$$\int_{-a}^{a} f(x) \, dx = 0$$

Corollaire 4. Soit f une fonction T-périodique, continue sur \mathbb{R} . Alors quel que soit $a \in \mathbb{R}$:

$$\int_{a}^{a+T} f(x) \, dx = \int_{0}^{T} f(x) \, dx$$

5.3.4 Calcul de primitives

Exemples:

⇒ Calculer des primitives des fonctions d'expressions

$$\frac{\sin x}{\cos^2 x}$$
, $\frac{x}{1+x^2}$, $\tan x$, $\frac{1}{x \ln x}$

⇒ Calculer des primitives des fonctions d'expressions

$$(2x+3)e^x$$
, $e^{\sqrt{x}}$, $x\cos x$, $\ln x$

⇒ Calculer des primitives des fonctions d'expressions

$$\sin^2 x \cos^3 x$$
, $\cos^2 x \sin^5 x$, $\cos^2 x \sin^2 x$