Exercice 1. /10

Les courbes C_f et C_g données ci-dessous représentent respectivement, dans un repère orthonormal, les fonctions f et g définies sur l'intervalle]0; $+\infty[$ par

$$f(x) = \ln x$$
 et $g(x) = (\ln x)^2$.

- 1. Pour x appartenant à]0; $+\infty[$, M est le point de \mathcal{C} d'abscisse x et N est le point de \mathcal{C}' de même abscisse.
 - (a) Résoudre dans]0; $+\infty[$ l'équation $(\ln x)^2 \ln x = 1$.
 - (b) En déduire que, sur]0; 1[\cup]e; $+\infty$ [, il existe deux réels a et b (a < b) pour lesquels la distance MN est égale à 1.
- 2. (a) À l'aide d'une intégration par parties, calculer $\int_1^e \ln x \, dx$.
 - (b) Vérifier que la fonction G définie sur]0; $+\infty[$ par $G(x)=x[(\ln x)^2-2\ln x+2]$ est une primitive de la fonction g sur]0; $+\infty[$.
 - (c) On considère la partie du plan délimitée par les courbes $\mathcal{C},\ \mathcal{C}$ et les droites d'équations x=1 et $x=\mathrm{e}.$

Déterminer l'aire \mathcal{A} en unités d'aire de cette partie du plan.

Exercice 2. /10

Soit la fonction définie sur \mathbb{R} par $f(x) = \sin(x) + \sin^2(x)$.

- 1. (a) Démontrer que f est 2π périodique.
 - (b) Déterminer l'intervalle d'étude de la fonction f .
- 2. (a) Calculer la fonction dérivée f' et démontrer que $f'(x) = \cos(x)(1 + 2\sin(x))$.
 - (b) Étudier le signe de f'(x) sur $[0; 2\pi]$ puis dresser le tableau de variation de la fonction f sur $[0; 2\pi]$.
- 3. On a représenté la courbe $\mathscr C$ représentative de la fonction f sur $[0\,;\,2\pi]$ ci-dessous. Compléter ce tracé pour avoir $\mathscr C$ sur $[-2\pi\,;\,2\pi]$:

