

Instruction-based Reuse-Distance Prediction for Effective Cache Management

Pavlos Petoumenos, Georgios Keramidas and
Stefanos Kaxiras
University of Patras, Greece

Introduction

- The memory wall rises more and more
 - L2 Cache: Last line of defense

Contributions:

- Improved and less resource demanding Instruction based Reuse-Distance Prediction
- Efficient reuse-distance sampling
- Case study: a replacement algorithm for second level caches

LRU vs Belady's Optimal Replacement

- LRU: Inefficient for L2 caches
- Reasons:
 - L1 filtering
 - Highly associative caches

Can we predict the future?

- Yes we can!
- Memory behavior → repeating patterns
- Our Motivation:
 - Strong correlation between instructions (PC) and moment of next access (reuse distance)

Reuse Distance

Reuse Distance (measured in mem accesses)

A: 7, B: 6

Which one is better?

Reuse Distance (measured in L2 accesses)

A: 3, B: 3

Discount Irrelevant Accesses

- L1 writebacks:
 - Appear as write accesses in the L2
 - Not related to any instruction

Reuse distances are predictable

- Significant PCs:
 - Are few → Easily stored
 - Have predictable reuse distances

Instruction based Predictor

- Predicts the reuse distance of an access based on the PC which initiated the access
- 256 entries are enough!

Reuse Distance Sampling

- Perfect reuse-distance information is not possible
- Single-Prediction Sampler (SPS)
 - One sample per predictor entry
 - Almost perfect reuse-distance information
 - Minimal overhead

Reuse Distance Sampling

- Long reuse-distances "block" multiple short reuse-distances
 - Long rds are overrepresented

Reuse Distance Sampling

- Short Reuse-Distance Sampler (SRDS)
 - Small FIFO queue
 - Samples the L2 access stream
 - Captures only small reuse-distances
 - Can capture overlapping reuse-distances

Reuse Distance Sampler

- Overlapping long reuse distances are lost
 - Bias in favor of short reuse distances
- For each rd which doesn't fit in SRDS inhibit one which does

Sampling mechanisms – Comparison

A case study: replacement policy

- Belady's OPT is within our grasp
 - Our predictor fulfills the need for quantitative info about the future
- Reuse-Distance Management (RDM):
 - Replace the line used farthest in the future (OPT) when you have enough info
 - Replace the line used farthest in the past (LRU) if you don't
- Selective Caching (RDM-SC):
 - RDM can choose the currently fetched block

Evaluation

- Basic Setup:
 - Memory intensive SPEC2000 benchmarks
 - 256KB-2MB unified L2 caches
- Comparison against Dynamic Insertion Policy
 - ISCA 2007, Qureshi, Jaleel, Patt, Steely and Emer.
 - Best performing algorithm at the moment
- All results are relative to LRU
- Only results with improvement or degradation relative to LRU are presented

IPC improvement

RDM+SC <u>never</u> reduces IPC

Conclusions

- Instruction-based reuse-distance prediction
 - Feasible
 - Offers high predictability of reuse patterns
- Cache Replacement using reuse-distance information outperforms state-of-the-art algorithms
- Future Work
 - More cache management schemes
 - Integrate MLP-prediction in the predictor

Thank You!

Any questions?

Misses Reduction

