PHYS 60323: Fall 2024 - LaTeX Example

1. The following questions refer to stars in the Table below. Note: There may be multiple answers.

Name	Mass	Luminosity	Lifetime	Temperature	Radius
η Car.	$60.~M_{\odot}$	$10^{6}L_{\odot}$	$8.0 \times 10^5 \mathrm{years}$		
ϵ Eri.	$6.0~M_{\odot}$	$10^3 L_{\odot}$		20,000 K	
δ Scu.	$2.0~M_{\odot}$		$5.0 \times 10^8 \mathrm{years}$		$2R_{\odot}$
β Cyg.	$1.3~M_{\odot}$	$3.5L_{\odot}$			
α Cen.	$1.0~M_{\odot}$				$1R_{\odot}$
γ Del.	$0.7~M_{\odot}$		$4.5 \times 10^{10} \mathrm{years}$	5000 K	

- (a) (4 points) Which of these stars will produce a planetary nebula?
- (b) (4 points) Elements heavier than Carbon will be produced in which stars?
- 2. An electron is found to be in the spin state (in the z-basis): $\chi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$
 - (a) (5 points) Determine the possible values of A such that the state is normalized.
 - (b) (5 points) Find the expectation values of the operators S_x , S_y , S_z and \vec{S}^2 .

The matrix representations in the z-basis for the components of electron spin operators are given by:

$$S_x = \hbar/2 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \qquad S_x = \hbar/2 \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}; \qquad S_x = \hbar/2 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

3. The average electrostatic field in the earth's atmosphere in fair weather is approximately given:

$$\vec{E} = E_0 (Ae^{-\alpha z} + Be^{-\beta z})\hat{z} \tag{1}$$

where A,B,α,β are positive constants and z is the height above the (locally flat) earth surface.

- (a) (5 points) Find the average charge density in the atmosphere as a function of height.
- (b) (5 points) Find the electric potential as a function of height above the earth.

1