

CHAPTER 4

Enhanced Entity-Relationship (EER) Modeling and

Mapping EER Schemas to Relational Schemas (Chapter 9: 9.2.1 and 9.2.2)

Chapter 4 Outline

- EER stands for Enhanced ER or Extended ER
- EER Model Concepts
 - EER Includes all modeling concepts of basic ER
 - Additional concepts:
 - subclasses/superclasses
 - specialization/generalization
 - attribute and relationship inheritance
 - Constraints on Specialization/Generalization
- IGNORE (LEAVE OUT): Sections 4.4, 4.5, 4.6, 4.7
 - 4.4 Union Types
 - 4.5 Design Choices
 - 4.6 Other notations including UML diagrams
 - 4.7 Data Abstraction, Knowledge Representation and Ontologies

NOTATION for ER diagrams

ER DIAGRAM – for Company Database

Figure 3.2An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.

Subclasses and Superclasses

- An entity type may have additional meaningful subgroupings of its entities
 - Example: EMPLOYEE may be further grouped into:
 - SECRETARY, ENGINEER, TECHNICIAN, ...
 - Based on the EMPLOYEE's Job
 - MANAGER
 - EMPLOYEEs who are managers (the role they play)
 - SALARIED_EMPLOYEE, HOURLY_EMPLOYEE
 - Based on the EMPLOYEE's method of pay
- EER diagrams extend ER diagrams to represent these additional subgroupings, called subclasses or subtypes

Subclasses and Superclasses

Subclasses and Superclasses

- Each of these subgroupings is a subset of EMPLOYEE entities
- Each is called a subclass of EMPLOYEE
- EMPLOYEE is the superclass for each of these subclasses
- These are called superclass/subclass relationships:
 - EMPLOYEE/SECRETARY
 - EMPLOYEE/TECHNICIAN
 - EMPLOYEE/MANAGER
 -could be additional subclasses

Subclasses and Superclasses –contd.

- These are also called IS-A relationships
 - SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A EMPLOYEE,
- Note: An entity that is member of a subclass represents the same real-world entity as some member of the superclass:
 - The subclass member is the same entity in a distinct specific role
 - An entity cannot exist in the database merely by being a member of a subclass; it must also be a member of the superclass
 - A member of the superclass can be optionally included as a member of any number of its subclasses

Subclasses and Superclasses –contd.

Examples:

- A salaried employee who is also an engineer belongs to the two subclasses:
 - ENGINEER, and
 - SALARIED_EMPLOYEE
- A salaried employee who is also an engineering manager belongs to the three subclasses:
 - MANAGER,
 - ENGINEER, and
 - SALARIED_EMPLOYEE
- It is not necessary that every entity in a superclass be a member of some subclass

Representing **Specialization** in EER Diagrams

Figure 4.4

EER diagram notation for an attributedefined specialization on Job_type.

Attribute and Relationship Inheritance in Superclass / Subclass Relationships

- An entity that is member of a subclass inherits
 - All attributes of the entity as a member of the superclass
 - All relationships of the entity as a member of the superclass
- Example:
 - In the previous slide, SECRETARY (as well as TECHNICIAN and ENGINEER) inherit the attributes Name, SSN, ..., from EMPLOYEE
 - Every SECRETARY entity will have values for the inherited attributes

Specialization (1)

- Specialization is the process of defining a set of subclasses of a superclass
- The set of subclasses is based upon some distinguishing characteristics of the entities in the superclass
 - Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE based upon job type, a discriminating attribute.
 - Example: MANAGER is a specialization of EMPLOYEE based on the role the employee plays
 - May have several specializations of the same

Specialization (2)

- Example: Another specialization of EMPLOYEE based on method of pay is {SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}.
 - Superclass/subclass relationships and specialization can be diagrammatically represented in EER diagrams as a hierarchy
 - Attributes of a subclass are called specific or local attributes.
 - For example, the attribute TypingSpeed of SECRETARY
 - The subclass can also participate in specific relationship types.
 - For example, a relationship BELONGS_TO of HOURLY_EMPLOYEE

Specialization (3)

Generalization

- Generalization is the reverse of the specialization process
- Several classes with common features are generalized into a superclass;
 - original classes become its subclasses
- Example: CAR, TRUCK generalized into VEHICLE;
 - both CAR, TRUCK become subclasses of the superclass VEHICLE.
 - We can view {CAR, TRUCK} as a specialization of VEHICLE
 - Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK

Generalization (2)

Figure 4.3 and TRUCK.

Generalization. (a) Two entity types, CAR and TRUCK. (b) Generalizing CAR and TRUCK into the superclass VEHICLE.

Types of Specialization

- Predicate-defined (or condition-defined): based on some predicate. E.g., based on value of an attribute, say, Age.
- Attribute-defined: shows the name of the attribute next to the line drawn from the superclass toward the subclasses (see Fig. 4.1)
- User-defined: membership is defined by the user on an entity by entity basis

Displaying an attribute-defined specialization in EER diagrams

Figure 4.4

EER diagram notation for an attributedefined specialization on Job_type.

Constraints on Specialization and Generalization (3)

- Two basic constraints can apply to a specialization/generalization:
 - Disjointness Constraint:
 - Completeness Constraint:

Constraints on Specialization and Generalization (4)

- Disjointness Constraint:
 - Specifies that the subclasses of the specialization must be disjoint:
 - an entity can be a member of at most one of the subclasses of the specialization
 - Specified by <u>d</u> in EER diagram
 - If not disjoint, specialization is overlapping:
 - that is the same entity may be a member of more than one subclass of the specialization
 - Specified by <u>o</u> in EER diagram

Constraints on Specialization and Generalization (5)

- Completeness (Exhaustiveness) Constraint:
 - Total specifies that every entity in the superclass must be a member of some subclass in the specialization/generalization
 - Shown in EER diagrams by a <u>double line</u>
 - Partial allows an entity not to belong to any of the subclasses
 - Shown in EER diagrams by a single line

Constraints on Specialization and Generalization (6)

- Hence, we have four types of specialization/generalization:
 - Disjoint, total
 - Disjoint, partial
 - Overlapping, total
 - Overlapping, partial
- Note: Generalization usually is total because the superclass is derived from the subclasses.

Example of disjoint partial Specialization

Figure 4.4

EER diagram notation for an attributedefined specialization on Job_type.

Example of overlapping total Specialization

Specialization/Generalization Hierarchies, Lattices & Shared Subclasses (1)

- A subclass may itself have further subclasses specified on it
 - forms a hierarchy or a lattice
- Hierarchy has a constraint that every subclass has only one superclass (called single inheritance); this is basically a tree structure
- In a *lattice*, a subclass can be subclass of more than one superclass (called *multiple inheritance*)

Shared Subclass "Engineering_Manager" resulting in a Lattice

Figure 4.6 A specialization lattice with shared subclass ENGINEERING_MANAGER.

Chapter 9: 9.2 Mapping EER Model Constructs to Relations

CHAPTER 9 Mapping Algorithm:

- Step8: Options for Mapping Specialization or Generalization.
 - Convert each specialization with m subclasses {S1, S2,...,Sm} and generalized superclass C, where the attributes of C are {k,a1,...an} and k is the (primary) key, into relational schemas using one of the four following options:
 - Option 8A: Multiple relations-Superclass and subclasses
 - Option 8B: Multiple relations-Subclass relations only
 - Option 8C: Single relation with one type attribute
 - Option 8D: Single relation with multiple type attributes

Example EER Schema to be mapped

Figure 4.4

EER diagram notation for an attribute-defined specialization on Job_type.

Possible Mappings (1)

Possible to map this into anywhere from 1 to 4 relations

One relation option:

Combine all attributes into a single relation and introduce one or more discriminating attributes to identify the subclass as needed:

Employee(Ssn, Fname, Lname, Minit, Birth_date, Address, Job_type, Typing_speed, Tech_grade, Eng_type)

Note: Some specialized class attributes will be null based on which subclass an employee belongs to.

Four relations option: most straight-forward.

Employee(Ssn, Fname, Lname, Minit, Birth_date, Address, Job_type)

Secretary (Ssn, Typing_speed)

Technician (Ssn, Tech_grade)

Engineer (Ssn, Eng_type)

Possible Mappings (2)

Three relations option:

If the specialization was TOTAL, i.e., if each employee was either a secretary or a technician or an engineer, then we can inherit the attributes of Employee into each subclass and set up three relations:

Secretary (<u>Ssn</u>, Fname, Lname, Minit, Birth_date,Address, Typing_speed) Technician (<u>Ssn</u>, Fname, Lname, Minit, Birth_date,Address, Tech_grade) Engineer (<u>Ssn</u>, Fname, Lname, Minit, Birth_date,Address, Eng_type)

There is no need for storing the "Job-type" discriminating attribute any more. There is no need for the Employee relation any more.

Two relations option:

In this schema, there is no logical and reasonable option of mapping to two relations. But the designer could lump all employees except engineers in one relation and only Engineers in a separate relation if there was lot more data about engineers.

EER to Relational Mapping- general guideline

BOTTOM LINE

- For Specialization hierarchies with one superclass and n subclasses, there are possibilities of mapping from to 1 relation to (n+1) relations.
- The mapping design is highly subjective, but must maintain appropriate attributes that determine what subclass an entity from superclass belongs to.

Specialization / Generalization Lattice Example (UNIVERSITY)

Figure 4.7 A specialization lattice with multiple inheritance for a UNIVERSITY database.

Alternative Diagrammatic Notations (Appendix A in Elmasri/Navathe textbook)

Figure A.1

Alternative notations. (a) Symbols for entity type/class, attribute, and relationship. (b) Displaying attributes. (c) Displaying cardinality ratios. (d) Various (min, max) notations. (e) Notations for displaying specialization/generalization.