

Model Development Phase Template

Date	05 August 2025	
Skillwallet ID	SWUID20250186419	
Project Title	Employee Productivity Prediction Application	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

• Linear Regression:

• Random Forest:


```
print("\n--- Training Random Forest Regressor ---")
model_rf = RandomForestRegressor(n_estimators=100, random_state=42)
model_rf.fit(X_train, y_train)
pred_rf = model_rf.predict(X_test)
mse_rf = mean_squared_error(y_test, pred_rf)
mae_rf = mean_absolute_error(y_test, pred_rf)
r2_rf = r2_score(y_test, pred_rf)
print(f"Random Forest - Mean Squared Error (MSE): {mse_rf:.4f}")
print(f"Random Forest - Mean Absolute Error (MAE): {mae_rf:.4f}")
print(f"Random Forest - R-squared (R2) Score: {r2_rf:.4f}")

with open('model_rf.pkl', 'wb') as f:
    pickle.dump(model_rf, f)
print("\nModel Random Forest saved to 'model_rf.pkl'")

    Python
```

XGBoost :

```
# --- Train and Evaluate XGBoost Regressor
print("\n--- Training XGBoost Regressor ---")
model_xgb = xgb.XGBRegressor(n_estimators=200, max_depth=5, learning_rate=0.1, random_state=42)
model_xgb.fit(X_train, y_train)
pred_xgb = model_xgb.predict(X_test)
mse_xgb = mean_squared_error(y_test, pred_xgb)
mae_xgb = mean_absolute_error(y_test, pred_xgb)
r2_xgb = r2_score(y_test, pred_xgb)
print(f"XGBoost - Mean Squared Error (MSE): {mse_xgb:.4f}")
print(f"XGBoost - Mean Absolute Error (MAE): {mae_xgb:.4f}")
print(f"XGBoost - R-squared (R2) Score: {r2_xgb:.4f}")
# We'll save the XGBoost model as it's often a strong performer
with open('model_xgb.pkl', 'wb') as f:
   pickle.dump(model_xgb, f)
print("\nBest model (XGBoost) saved to 'model_xgb.pkl'")
                                                                                                             Python
```

Model Validation and Evaluation Report:

Model	MSE	MAE	R ² Score
Model 1 (Linear Regression)	0.8791	0.1958	-27.9999
Model 2 (Random Forest)	0.0217	0.0985	0.2856
Model 3 (XGBoost)	0.0240	0.1015	0.2068

