

University of Tehran

College of Engineering

School of Mechanical Engineering (ME)

Mechatronics & Robotics

Project: Room-Service Core (RSC)

Teaching Assistants: Elnaz Balazadeh

Deadline: 3 Khordad 1404, 23:59

Table Of Contents

Part 1: Project Overview	. 3
Part 2: Step-by-step instructions	. 5
Part 3: Grading	7

Part 1: Project Overview

Project goal — Why we are doing this

Very soon our lab will deploy a mobile robot that carries coffee, mail, and snacks inside a smart apartment. Before wheels touch the ground, we need the *backend software* that can:

- 1. accept delivery requests.
- 2. queue, track, and cancel them.
- 3. instruct a mock base to drive between rooms.
- 4. stream live status updates to the user.

You will build that backend using **pure ROS2 tools**. No Gazebo, no 3-D graphics—just a clean node—topic—service graph that runs on any laptop.

Learning outcomes

Skill you will gain	ROS2 concept exercised
Define and compile custom .msg / .srv files	Interface design
Write publishers & subscribers in rclpy	Topics
Offer costume services for cancellation	Services
Run and inspect a multi-node graph	Nodes & CLI
Debug with the ros2 CLI (topic, service, node, \dots)	CLI tools

Target system at a glance

Figure 1: System overview of the Room-Service Core project.

File layout you must create

Part 2: Step-by-step instructions

Task 1 — Interface package

- 1. Create delivery_interfaces with ament_cmake.
- 2. Add the three files shown above.
- 3. Build and verify:

\$colcon build
\$source install/setup.bash
\$ros2 interface show delivery_interfaces/msg/DeliveryOrder

Task 2 — order_manager

- 1. Subscribe to /delivery_order; store orders in a FIFO(First-in-First-out) queue.
- 2. Offer /cancel_order service; remove or mark orders.
- 3. Publish /order_status whenever a state changes.
- 4. When idle, publish /next_goal as "A01,kitchen->study" (String).

Task 3 — base_executor

- 1. Subscribe to /next_goal; parse the string.
- 2. Simulate pickup & drop-off with two sleep(3) calls.
- 3. Publish the order ID on /goal_reached.
- 4. Use /battery_pct for keeping robot alive and working. Navigate to charging station whenever the battery is under 10% and cancel all reaming orders.

Task 4 — close the loop

Make order_manager listen to /goal_reached; mark the order DONE and dispatch the next one.

I will test your work as follows

- 1. Build your workspace from scratch.
- 2. Start order_manager and base_executor in separate terminals:

\$ros2 run delivery_bringup order_manager
\$ros2 run delivery_bringup base_executor

- 3. From the CLI I will:
 - publish <u>several</u> orders,
 - cancel some of them before completion,
 - echo /order_status to verify state changes.
- 4. Code will be inspected for clarity and ROS2 best practice.

Part 3: Grading

Submission checklist

- 1. Compress both packages in a zip file.
- 2. A complete report as a documentation for your project.
- 3. 2–3 min demo video showing two orders, one cancellation, live status and battery percentage.

Grading rubric (100 pts)

Criterion	Points
Builds; nodes visible via ros2 node list	20
Custom interfaces compile & used correctly	20
Topics/services named & handled correctly	15
Live demo clarity (CLI only)	15
Order state-machine behaves as expected	20
Code quality & documentation	10
Extra credit: Any creative solution	+10

Starter CLI cheat-sheet

```
# Send an order
$ros2 topic pub /delivery_order delivery_interfaces/msg/DeliveryOrder \
    "{order_id: 'A01', item: 'coffee', pickup_room: 'kitchen', dropoff_room: 'study'}"
# Cancel it
$ros2 service call /cancel_order delivery_interfaces/srv/CancelOrder \
    "{order_id: 'A01'}"
# Watch state changes
$ros2 topic echo /order_status
```

Need help?

- Email me fastest for general questions.
- ROS2 documentation beginner tutorials on publishers, subscribers, and services.

Homework Guidelines and Instructions

- The deadlines are fixed and cannot be changed. If you need extra time, you can use your grace period (16 days) and upload your answers up to 5 days after the deadline.
- If you write your report of this homework in LATEX, you will be rewarded 5

•

- The implementation must be in Python programming language and your codes must be executable and uploaded along with the report.
- This project is done by one person.
- If any similarity is observed in the work report or implementation codes, this will be considered as fraud for the parties.
- Using ready-made codes without mentioning the source and without changing them will constitute cheating and your practice score will be considered zero.
- If you do not follow the format of the work report, you will not be awarded the grade of the report.
- All pictures and tables used in the work report must have captions and numbers.
- A large part of your grade is related to the work report and problem solving process.
- Please upload the report, code files, videos and other required attachments in the following format in the system: R2P_[Lastname]_[StudentNumber].zip
 For example, the: R2P_Balazadeh_12345678.zip
- You can ask your questions or doubts either via Telegram group or sending an email directly to the teaching assistants of this project through the following e-mail with the subject R2P_Q. Stay in touch educationally:
 - ROS Project: balazadeh.elnaz@gmail.com (Elnaz Balazadeh)
- Be happy and healthy.