## РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей ОТЧЕТ

### ПО ЛАБОРАТОРНОЙ РАБОТЕ № 5

"Конфигурирование VLAN"

дисциплина: Сетевые технологии

Студент:

Шагабаев Давид Арсенович

Группа:

НПИбд-02-18

МОСКВА

2021 г.

## Оглавление

| 1. | Цель работы                         | 3   |
|----|-------------------------------------|-----|
| 2. | Описание процесса выполнения работы | 4   |
| 3. | Вывод                               | . 4 |

# 1. Цель работы

Получить основные навыки по настройке VLAN на коммутаторах сети.

## 2. Описание процесса выполнения работы

#### Задание

- 1. На коммутаторах сети настроить Trunk-порты на соответствующих интерфейсах (см. табл. 3.2 из раздела 3.3), связывающих коммутаторы между собой.
- 2. Коммутатор msk-donskaya-sw-1 настроить как VTP-сервер и прописать на нём номера и названия VLAN согласно табл. 3.1 из раздела 3.3.
- 3. Коммутаторы msk-donskaya-sw-2 msk-donskaya-sw-4, msk-pavlovskaya-sw-1 настроить как VTP-клиенты, на интерфейсах указать принадлежность к соответствующему VLAN (см. табл. 3.3 из раздела 3.3).
- 4. На серверах прописать IP-адреса, как указано в табл. 3.2 из раздела 3.3.
- 5. На оконечных устройствах указать соответствующий адрес шлюза и прописать статические IP-адреса из диапазона соответствующей сети, следуя регламенту выделения ір-адресов (см. табл. 3.4 из раздела 3.3).
- 6. Проверить доступность устройств, принадлежащих одному VLAN, и недоступность устройств, принадлежащих разным VLAN.
- 7. При выполнении работы необходимо учитывать соглашение об именовании.

#### Выполнение

1.







2. Настроили коммутатор msk-donskaya-sw-1 как VTP-сервер и прописали на нём номера и названия VLAN:



3. Настроили коммутаторы msk-donskaya-sw-2 — msk-donskaya-sw-4, msk-pavlovskaya-sw-1 как VTP-клиенты и на интерфейсах указали принадлежность к VLAN:





4. После указания статических IP-адресов (рис. 10-23) на оконечных устройствах проверили с помощью команды ping доступность устройств, принадлежащих одному VLAN, и недоступность устройств, принадлежащих разным VLAN (рис. 24).









## 3. Вывод

В ходе выполнения данной работы я приобрел основные навыки по настройке VLAN на коммутаторах сети.

## 4. Контрольные вопросы

1. Какая команда используется для просмотра списка VLAN на сетевом устройстве?

show vlan

2. Охарактеризуйте VLAN Trunking Protocol (VTP). Приведите перечень команд с пояснениями для настройки и просмотра информации о VLAN.

Протокол VTP (англ. VLAN Trunking Protocol) — протокол локальной сети, служащий для обмена информацией о VLAN (виртуальных сетях), имеющихся на выбранном транковом порту. Разработан и используется компанией Cisco.

switchport mode trunk/access – конфигурирование режима порта switchport access vlan <№> - настройка принадлежности к VLAN vtp mode server/client – VTP-клиент/сервер

vtp domain <name> - настройка имени домена

vtp password <password> - настройка пароля

vlan <№> - настройка VLAN сети

name <name> - настройка имени VLAN сети

3. Охарактеризуйте Internet Control Message Protocol (ICMP). Опишите формат пакета ICMP.

ICMP (англ. Internet Control Message Protocol — протокол межсетевых управляющих сообщений) — сетевой протокол, входящий в стек протоколов TCP/IP. В основном ICMP используется для передачи сообщений об ошибках и других исключительных ситуациях, возникших при передаче данных, например, запрашиваемая услуга недоступна, или хост, или маршрутизатор не отвечают. Также на ICMP возлагаются некоторые сервисные функции.

Формат пакета:



Тип сообщения, код ошибки, контрольная сумма сообщения ІСМР, идентификатор запроса, порядковый номер, дополнительные данные

4. Охарактеризуйте Address Resolution Protocol (ARP). Опишите формат пакета ARP.

ARP (англ. Address Resolution Protocol — протокол определения адреса) — протокол в компьютерных сетях, предназначенный для определения МАС-адреса по IP-адресу другого компьютера.

#### Формат пакета:

| +  | 0-7                           | 8 - 15                    | 16 - 31               |  |
|----|-------------------------------|---------------------------|-----------------------|--|
| 0  | Hardware type (HTYPE)         |                           | Protocol type (PTYPE) |  |
| 32 | Hardware length<br>(HLEN)     | Protocol length<br>(PLEN) | Operation (OPER)      |  |
| 64 | Sender hardware address (SHA) |                           |                       |  |
| ?  | Sender protocol address (SPA) |                           |                       |  |
| ?  | Target hardware address (THA) |                           |                       |  |
| ?  | Target protocol address (TPA) |                           |                       |  |

**HTYPE** — тип сети, назначено каждому стандартному типу LAN. Например, для Ethernet = 1.

РТҮРЕ - тип протокола . Например, для протокола IPv4 = 0x0800.

HLEN – длина физического адреса в байтах. Для MAC-адреса = 6.

PLEN - длина логического адреса в байтах. Для IPv4 = 4, IPv6 = 16.

OPER - операция, тип пакета. Запрос ARP =1, ответ ARP =2.

SHA – физический адрес передатчика.

SPA – логический адрес передатчика.

ТНА – физический адрес приемника.

ТРА - логический адрес приемника.

переменная длина, задается HLEN, PLEN

5. Что такое МАС-адрес? Какова его структура?

MAC-адрес (от англ. Media Access Control — надзор за доступом к среде, также Hardware Address, также физический адрес) — уникальный идентификатор, присваиваемый каждой единице активного оборудования или некоторым их интерфейсам в компьютерных сетях Ethernet.

При проектировании стандарта Ethernet было предусмотрено, что каждая сетевая карта (равно как и встроенный сетевой интерфейс) должна иметь уникальный шестибайтный номер (MAC-адрес), «прошитый» в ней при изготовлении. Этот номер используется для идентификации отправителя и получателя фрейма; и предполагается, что при появлении в сети нового компьютера (или другого устройства, способного работать в сети) сетевому администратору не придётся настраивать этому компьютеру МАС-адрес вручную.

Стандарты IEEE определяют 48-разрядный (6 октетов) MAC-адрес, который разделён на четыре части.



Первые 3 октета содержат 24-битный уникальный идентификатор организации (OUI), или код MFG (Manufacturing, производителя), который производитель получает в IEEE. При этом, в самом первом октете используются только 6 старших разрядов, а два младших имеют специальное назначение:

- Нулевой бит указывает: для одиночного (0) или группового (1) адресата предназначен кадр;
- Первый бит указывает, является ли МАС-адрес глобально (0) или локально (1) администрируемым.

Следующие три октета — выбираются изготовителем для каждого экземпляра устройства (за исключением сетей системной сетевой архитектуры SNA).

Таким образом, глобально администрируемый MAC-адрес устройства глобально уникален и обычно «зашит» в аппаратуру.

Администратор сети имеет возможность вместо использования «зашитого» назначить устройству МАС-адрес по своему усмотрению. Такой локально администрируемый МАС-адрес выбирается произвольно и может не содержать информации об ОИІ. Признаком локально администрируемого адреса является соответствующий бит первого октета адреса