PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE ESTADÍSTICA

Segundo Semestre 2020

Docente: Fernando Quintana

Interrogación 3 : Parte II

NICOLÁS SUMONTE

Parte A

Para esta entrega usamos las librerias MASS, mvtnorm y invgamma. En esta parte que se encontrará en el script de R usamos el metodo de la composición para encontrar σ^2 de una distribución $\chi^2(\nu_0,\sigma_0^2)$ luego de esto, utilizamos este σ^2 para calcular la priori de $\beta|\sigma^2$ con la distribución $N_{k\gamma}(b_{0\gamma},\sigma^2B_{0\gamma})$ considerando que $b_{0\gamma}$ y $B_{0\gamma}$ están ya normalizados segun el vector γ . Con estos dos parametros a priori encontrados, generamos la verosimilitud $y|X,\sigma^2,b_{0\gamma},B_{0\gamma}$ con una distribucion $N_n\left(X_\gamma\beta_\gamma,\sigma^2I_n\right)$ con β_γ,σ^2 encontrados anteriormente. Para el caso de la distribucion a posteriori de β,σ^2 usamos el hecho que $\sigma^2\mid y, X\sim \chi^{-2}\left(\nu_n,\sigma_n^2\right)$, y que $\beta\mid\sigma^2,y,X\sim N_k\left(b_n,\sigma^2B_n\right)$ con

$$B_n = \left(X^T X + B_0^{-1}\right)^{-1}$$

$$\boldsymbol{b}_n = B_n \left(\boldsymbol{X}^T \boldsymbol{X} \hat{\boldsymbol{\beta}} + B_0^{-1} \boldsymbol{b}_0\right) = \left(\boldsymbol{X}^T \boldsymbol{X} + B_0^{-1}\right)^{-1} \left(\boldsymbol{X}^T \boldsymbol{y} + B_0^{-1} \boldsymbol{b}_0\right)$$

$$\nu_n = \nu_0 + n$$

$$\nu_n \sigma_n^2 = \nu_0 \sigma_0^2 + \boldsymbol{b}_0^T B_0^{-1} \boldsymbol{b}_0 + \boldsymbol{y}^T \boldsymbol{y} - \boldsymbol{b}_n^T B_n^{-1} \boldsymbol{b}_n$$

dado, esto repetimos el metodo de la composición encontrando σ^2 y luego β a posteriori. Finalmente se calculan las densidades y realizamos la multiplicación $p\left(\beta,\sigma^2\right)=p\left(\beta\mid\sigma^2\right)p\left(\sigma^2\right)$ para las prioris y posteriores respectivas de σ^2 y β para finalmente calcular la marginal de y según la formula

$$\log(p(y)) = \log(p(y \mid \theta)) + \log(p(\theta)) - \log(p(\theta \mid y))$$

dada en el enunciado.

Todo este procedimiento, está realizado bajo la función marginal posteriori en el script entregado.

Parte B

Notemos que para esta parte, bajo una priori para $\gamma^{\mathcal{L}}$ podriamos calcular la probabilidad a posteriori de la siguiente manera:

$$p(\gamma \mid y, X) = \frac{p(\gamma)p(y \mid X, \gamma)}{\sum_{\gamma} p(\gamma)p(y \mid X, \gamma)}$$

y con estas posterioris, bajo razones de equiprobabilidad a priori, es posible contrastar evidencias de los modelos a de la siguiente forma

$$(\gamma_{1}, \gamma_{2} \mid y, \mathbf{X}) = \frac{p(\gamma_{1} \mid y, \mathbf{X})}{p(\gamma_{2} \mid y, \mathbf{X})} = \frac{p(\gamma_{1})}{p(\gamma_{2})} \times \frac{p(y \mid X, \gamma_{1})}{p(y \mid X, \gamma_{2})}$$

con ello, el factor de bayes que nos dice cuanta informacion favorece el modelo γ_1 sobre el modelo γ_2 queda dado por $\frac{p(y|X,\gamma_1)}{p(y|X,\gamma_2)}$ y por consiguiente, sería la division entre dos valorizaciones de nuestra función creada en A, con diferentes valores del vector γ

Parte C

Para esta parte escogí como b_0 los minimos cuadrados ordinarios, debido a que estos minimizan la suma de cuadrados del exponente, bajo un argumento parecido, escogí B_0 como la varianza de los vectores β . Siguiendo la misma linea, para encontrar σ^2 que se ajustara, utilicé el σ^2 obtenido por a regresión. En cuanto a ν_0 utilicé el minimo de tamaño muestral para que las distribuciones estuvieran definidas y esto es 1. Con esto se obtuvieron los siguientes resultados

$\textbf{Valores de } \gamma$	Coeficientes de Regresión	Valores de $p_{\gamma}(y)$
(1, 1, 1, 1, 1)	$\begin{array}{l} \beta_1 \times {\rm agricultura} + \beta_2 \times \\ {\rm examen} + \beta_3 \times {\rm educación} + \\ \beta_4 \times {\rm catolico} + \beta_5 \times \\ {\rm mortalidad} \end{array}$	50,67691
(1,0,1,1,1)	$eta_1 imes ext{agricultura} + eta_3 imes ext{educación} + eta_4 imes ext{catolico} + eta_5 imes ext{mortalidad}$	47,66516
(0,0,1,1,1)	$eta_3 imes ext{educación} + eta_4 imes ext{catolico} + eta_5 imes ext{mortalidad}$	43,2107
(0,1,1,1,1)	$eta_2 imes ext{examen} + eta_3 imes ext{educación} + eta_4 imes ext{catolico} + eta_5 imes ext{mortalidad}$	47,9726

Tabla Nº1: valores encontrados para $p_{\gamma}(y)$ dado el vector γ

Con estos valores es posible comparar los valores del test de bayes, explicado en el inciso anterior. A continuación se muestran los resultados obtenidos para 6 posibles combinaciones

Modelos comparados	Factor de bayes	Decisción
$\frac{(1,1,1,1,1)}{(1,0,1,1,1)}$	1,063186	Se opta por modelo $(1,0,1,1,1)$ (Sin examen)
$\frac{(1,1,1,1,1)}{(0,1,1,1,1)}$	1,056	$\begin{array}{cccc} \text{Se} & \text{opta} & \text{por} & \text{modelo} \\ (0,1,1,1,1) & \left(\text{Sin} & \text{agricultura}\right) \end{array}$
$\begin{array}{c} (1,1,1,1,1) \\ (0,0,1,1,1) \end{array}$	1,17272	$\begin{array}{cccc} \text{Se} & \text{opta} & \text{por} & \text{modelo} \\ (0,0,1,1,1) & \text{(Sin} & \text{agricultura y sin Examen)} \end{array}$
$\frac{(1,0,1,1,1)}{(0,0,1,1,1)}$	1,103087	Se opta por modelo $(0,0,1,1,1)$ (Sin agricultura y sin Examen)
$\frac{(1,0,1,1,1)}{(0,1,1,1,1)}$	1,103087	Se opta por modelo $(1,0,1,1,1)$ (Sin Examen)
$\frac{(0,0,1,1,1)}{(0,1,1,1,1)}$	0,900	Se opta por modelo $(1,0,1,1,1)$ (Sin Examen y sin agricultura)

Tabla Nº2: Modelos comparados y su respectivo valor del factor de bayes.

Con esto, podemos concluir que el mejor modelo es el que no tiene a los factores Agricultura ni Examen. Sin embargo quien realizo el análisis de regresión estaba bien al sospechar que Agricultura no tenia influencias y al dudar del modelo con examen debido a que este ultimo, esta cerca del modelo sin Examen y sin Agricultura

Parte D

Podemos encontrar $p_{\gamma}(y)$ con la integral

$$p_{\gamma}(y \mid X, \gamma) = \iint p(y, \beta) \left(\sigma^{2} \mid X, \gamma\right) d\beta d\sigma^{2}$$
$$= \iint p(y \mid \beta, X) p\left(\beta \mid X, \gamma, \sigma^{2}\right) p\left(\sigma^{2}\right) d\beta d\sigma^{2}$$

y ahora si integramos primero respecto a β nos queda que

$$\begin{split} p_{\gamma}(y \mid X, \gamma) &= \int \left(\int p\left(y \mid X, \gamma, \sigma^{2}, \beta\right) p\left(\beta \mid X, \gamma, \sigma^{2}\right) d\beta \right) p\left(\sigma^{2}\right) d\sigma^{2} \\ &= \int p\left(y \mid X, \gamma, \sigma^{2}\right) p\left(\sigma^{2}\right) d\sigma^{2} \end{split}$$

llegando así a una formula para esta marginal