Здравствуйте!

Лекция №1

Функции многих переменных

Одномерное пространство

В n-мерном пространстве точка — это совокупность n вещественных чисел $(x_1, x_2, x_3, ..., x_n)$, которые называются **координатами** точки n-мерном пространстве. Для сокращения записи, мы в дальнейшем будем часто точку обозначать одной буквой x, но надо всегда помнить, что это сокращенное обозначение подразумевает следующее

$$x = (x_1, x_2, x_3, ..., x_n).$$

Расстояние между двумя точками.

Пусть имеются две точки — $x = (x_1, x_2, x_3, ..., x_n)$ и $y = (y_1, y_2, y_3, ..., y_n)$. Эвклидовым расстоянием между этими точками называется величина

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

Так как других расстояний в данном курсе не будет, то слово «эвклидово» мы будем опускать.

Это расстояние обладает следующими свойствами:

- 1. $d(x,y) \ge 0$; $d(x,y) = 0 \Leftrightarrow x = y$ (то есть $\forall i = \overline{1,n}$ $x_i = y_i$).
- 2. d(x, y) = d(y, x).
- 3. Неравенство треугольника:

$$\forall z \quad d(x,y) \leq d(x,z) + d(z,y).$$

Области в *n*-мерном пространстве

Определение. Областью в *n*-мерном пространстве называется любое множество точек из этого пространства.

1. Замкнутый параллелепипед — это множество точек x, координаты которых удовлетворяют соотношению

$$a_i \le x_i \le b_i$$
, $i=1,n$.

Он обозначается символом

$$[a_1,b_1;a_2,b_2;a_3,b_3;...a_n,b_n].$$

Точка с координатами

$$\left(\frac{a_1+b_1}{2}, \frac{a_2+b_2}{2}, \frac{a_3+b_3}{2}, \dots, \frac{a_n+b_n}{2}\right)$$

называется **центром** параллелепипеда, величины $b_i - a_i$, $i = \overline{1,n}$ – **сторонами** параллелепипеда.

2. Открытый параллелепипед — это множество точек x, координаты которых удовлетворяют соотношению

$$a_i < x_i < b_i$$
, $i = 1, n$.

Он обозначается символом

$$(a_1,b_1;a_2,b_2;a_3,b_3;...a_n,b_n).$$

3. Замкнутый шар — это множество точек x, координаты которых удовлетворяют соотношению

$$\sum_{i=1}^{n} (x_i - x_i^0)^2 \le r^2.$$

Он обозначается символом $R[x_0, r]$. Точка $x_0 = (x_1^0, x_2^0, x_3^0, ... x_n^0)$ называется **центром** шара, величина r — его **радиусом**.

4. Открытый шар — это множество точек x, координаты которых удовлетворяют соотношению

$$\sum_{i=1}^{n} (x_i - x_i^0)^2 < r^2$$

Он обозначается символом $R(x_0,r)$. Шар $R(x_0,\epsilon) = O_{\epsilon}(x_0)$ называется **\epsilon-окрестностью** точки x_0 .

Теорема. Во всякий параллелепипед можно вписать шар и наоборот – во всякий шар можно вписать параллелепипед.

Функции п переменных

Пусть в n-мерном пространстве задана какая-то область G. Правило, которое каждой точке области G с координатами $x = (x_1, x_2, x_3, ..., x_n)$ ставит в соответствие число z, называется функцией n переменных и обозначается символом z = f(x), или, в полной форме записи, $z = f(x_1, x_2, x_3, ..., x_n)$.

Множество точек x, где это правило имеет смысл, называется областью определения функции. Множество чисел z называется областью значений функции.

Пусть $z = f(x_1, x_2, x_3, ..., x_n)$, а переменные x_i в свою очередь являются функциями m-мерных переменных $t = (t_1, t_2, ..., t_m)$, то есть

$$x_i = \varphi_i(t_1, t_2, ..., t_m), \quad i = 1, n.$$

Подставим в вместо x_i эти функции. Тогда мы получим **сложную** функцию, или **суперпозицию** функций

$$z = f(\varphi_1(t_1, t_2, ..., t_m), \varphi_2(t_1, t_2, ..., t_m), ..., \varphi_n(t_1, t_2, ..., t_m)) =$$

$$= F(t_1, t_2, ..., t_m)$$

Предел функции п переменных

Определение. Число A называют **пределом** функции f(x) при $x \rightarrow a$ $(a = (a_1, a_2, ..., a_n))$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \ | x_i - a_i | < \delta \ i = 1, n \ | f(x) - A | < \varepsilon,$$

ИЛИ

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \ d(x,a) < \delta \ |f(x) - A| < \varepsilon.$$

Геометрически это означает следующее. Пусть около значения A мы взяли сколь угодно малый отрезок $(A-\varepsilon,A+\varepsilon)$. Тогда найдется такой параллелепипед с центром в точке a и со сторонами равными 2δ , что как только точка x попадет в этот параллелепипед, так значение функции попадет в отрезок $(A-\varepsilon,A+\varepsilon)$

Втрое определение отличается от первого тем, что вместо параллелепипеда фигурирует шар с центром в точке a и радиусом δ и попадание точки x внутрь этого шара приводит к тому, что значение f(x) попадет в отрезок $(A - \varepsilon, A + \varepsilon)$.

 \bullet x_3

Повторные пределы

Пусть задана функция f(x, y) двух переменных x и y. Пусть точка (x, y) стремится к точке с координатами (a, b), то есть $(x, y) \rightarrow (a, b)$. Это означает, что $x \rightarrow a$ и $y \rightarrow b$.

Будем подходить к точке (a, b) двумя путями. Первый путь выглядит так: Сначала из точки (x, y) перейдем в точку (x, b), двигаясь параллельно оси OY, а затем из этой точки перейдем в точку (a, b), двигаясь параллельно оси OX. В приложении к функции f(x, y) это означает, что сначала мы перешли к пределу $\lim_{y\to b} f(x, y)$ получив некоторую функцию $\psi(x) = \lim_{y\to b} f(x, y)$, а затем уже нашли $\lim_{x\to a} \psi(x)$, получив так называемый **повторный** предел $\lim_{x\to a} \lim_{y\to b} f(x, y)$.

Теперь пойдем от точки (x, y) к точке (a, b) по такой траектории: сначала перейдем в точку (a, y) двигаясь параллельно оси OX. Тем самым мы найдем $\lim_{x\to a} f(x,y) = \varphi(y)$, который будет функцией от y. Затем из точки (a, y), двигаясь параллельно оси OY перейдем в точку (a, b), вычисляя теперь уже $\lim_{y\to b} \varphi(y)$. Тем самым мы нашли другой повторный предел $\lim_{y\to b} \varphi(y)$.

Теорема. Если

- 1. Существует двойной предел $\lim_{(x,y)\to(a,b)} f(x,y)$;
- 2. $\forall y$ существует $\lim_{x \to a} f(x, y) = \varphi(y)$,

то существует и повторный предел $\liminf_{y\to b} f(x,y)$ и он равен

двойному пределу, то есть $\liminf_{y\to b} f(x,y) = \lim_{(x,y)\to(a,b)} f(x,y)$.

Доказательство.

Пусть
$$\exists A = \lim_{(x,y)\to(a,b)} f(x,y)$$
. Это означает, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \ |x-a| < \delta \ |y-b| < \delta \ |f(x,y)-A| < \varepsilon.$$

Перейдем в этой строке к пределу $x \to a$. Тогда выписывать неравенство $|x-a| < \delta$ не будет необходимости, так как $x-a \to 0$. Далее, так как $\forall y$ существует $\lim f(x,y) = \varphi(y)$, то

$$\lim_{x \to a} |f(x, y) - A| = |\lim_{x \to a} f(x, y) - A| = |\varphi(y) - A|,$$

и наша строчка кванторов примет вид

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \ | y - b | < \delta \ | \varphi(y) - A | < \varepsilon.$$

По определению предела функции одной переменной это и означает, что существует

$$\lim_{y \to b} \varphi(y) = \lim_{y \to b} \lim_{x \to a} f(x, y) = A.$$

Следствие. Если к ограничениям теоремы добавить еще, что 3. $\forall x$ существует $\lim_{y\to b} f(x,y) = \psi(x)$,

то существуют оба повторных предела, и они равны друг другу (так как оба они равны двойному пределу)

$$\lim_{x \to a} \lim_{y \to b} f(x, y) = \lim_{y \to b} \lim_{x \to a} f(x, y) = \lim_{(x, y) \to (a, b)} f(x, y).$$

Через понятие предела обычным образом вводится понятие непрерывности функции n переменных: функция f(x) называется непрерывной в точке a, если $\lim_{x\to a} f(x) = f(a)$. Все свойства непрерывных функций сохраняются и в случае функций n переменных.