

IN THE CLAIMS:

Please amend the claims as follows:

1. (Amended) A program converting unit for generating a machine language instruction from a source program for [a processor] an embedded microprocessor series that manages an N-bit address while processing M-bit data, N being greater than M, N being customized depending on a program size, said program converting unit comprising:

parameter holding means for holding a data width M and a pointer width N [designated by a user], said data width M representing the number of bits of data used in the source program, [while] said pointer width N representing the number of bits of an address, said N being designated by a user depending on the program size; and

generating means for generating an instruction to manage said data width M when a variable operated by said instruction represents the data, and for generating an instruction to manage said pointer width N when a variable operated by said instruction represents the address.

2. (Amended) The program converting unit of Claim 1, wherein said M is 16 and said N is [an integer] in a range of integers from 17 to 31 inclusive, said N being determined depending on the program size as follows:

$N = 17$, when the program size ≤ 128 Kbytes

$N = 18$, when the program size ≤ 256 Kbytes

$N = 19$, when the program size ≤ 512 Kbytes

$N = 20$, when the program size ≤ 1 Mbyte

$N = 21$, when the program size ≤ 2 Mbytes

$N = 22$, when the program size ≤ 4 Mbytes

- 10 $N = 23$, when the program size ≤ 8 Mbytes
- 11 $N = 24$, when the program size ≤ 16 Mbytes
- 12 $N = 25$, when the program size ≤ 32 Mbytes
- 13 $N = 26$, when the program size ≤ 64 Mbytes
- 14 $N = 27$, when the program size ≤ 128 Mbytes
- 15 $N = 28$, when the program size ≤ 256 Mbytes
- 16 $N = 29$, when the program size ≤ 512 Mbytes
- 17 $N = 30$, when the program size ≤ 1 Gbyte
- 18 $N = 31$, when the program size ≤ 2 Gbytes.

In Claim 3, line 3, delete "judging" (both occurrences) and insert --determining--.

13. (Amended) A program converting unit for generating a machine language
instruction from a source program for [a processor] an embedded microprocessor series
that manages an N-bit address while processing M-bit data, N being greater than M, N
being customized depending on a program size, said program converting unit comprising:
parameter holding means for holding a data width M and a pointer width N
[designated by a user], said data width M representing the number of bits of data used
in the source program, [while] said pointer width N representing the number of bits of
an address, said N being designated by a user depending on the program size;
generating means for generating an instruction to manage said data width M when
a variable operated by said instruction represents the data, and for generating an
instruction to manage said pointer width N when a variable operated by said instruction
represents the address;

13 option directing means for holding a user's direction for an overflow compensa-
14 tion, an overflow being possibly caused by an arithmetic operation; and
15 compensate instruction generating means for generating a compensation instruction
16 to compensate an overflow in accordance with a type of a variable used in the arithmetic
17 operation, [said type being judged when said option directing means holds the user's
18 direction for executing the overflow compensation,] said compensation instruction being
19 generated when an effective bit-width of a variable designated by an operand is shorter
20 than a register of N-bit wide and the arithmetic operation instruction will possibly cause
21 an overflow exceeding said effective bit-width; and
22 prohibition means for prohibiting a generation of a compensation instruction by the
23 compensate instruction generating means when the option directing means is storing an
24 indication denoting not to compensate.

In Claim 17, line 3, delete "judging" (both occurrences) and insert --determining--.

1 20. (Amended) A program converting unit for generating a machine language
2 instruction based on a source program for a processor that manages an N-bit address
3 while processing M-bit data, N being greater than M, said program converting unit
4 comprising:

5 syntax analyzing means for analyzing a syntax of the source program to convert
6 the same into an intermediary language comprising intermediate instructions, and
7 subsequently for judging whether or not each variable contained in said intermediary
8 instructions represents data used in an address;

9 table generating means for generating a table for each variable in said intermediary
10 instructions, said table holding a name together with a type of each variable, said type
11 representing one of the data and the address, and one of [singed] signed and unsigned
12 data;

13 parameter holding means for holding a data width and a pointer width designated
14 by a user, said data width representing the number of bits of the data, [while] said pointer
15 width representing the number of bits of the address;

16 option directing means for holding a user's direction for an overflow compensa-
17 tion, an overflow being possibly caused by an arithmetic operation;

18 generating means for generating an instruction to manage said data width when the
19 variable in said intermediary instruction represents the data, and an instruction to manage
20 said pointer width when said variable represents the address; and

21 compensate instruction generating means for generating a compensation instruction
22 to compensate an overflow in accordance with a type of a variable used in the arithmetic
23 operation, said type being judged when said option directing means holds the user's
24 direction for executing the overflow compensation, said compensation instruction being
25 generated when an effective bit-width of a variable designated by an operand is shorter
26 than a register of N-bit wide and the arithmetic operation instruction will possibly cause
27 an overflow exceeding said effective bit-width; and

28 prohibition means for prohibiting a generation of a compensation instruction by the
29 compensate instruction generating means when the option directing means is storing an
30 indication denoting not to compensate.

In Claim 24, line 3, delete "judging" (both occurrences) and insert --determining--.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

27. (Amended) A program converting unit for generating a machine language instruction based on a source program for a processor that manages an N-bit address while processing M-bit data, N being greater than M, said program converting unit comprising:

syntax analyzing means for analyzing a syntax of the source program to convert the same into an intermediary language comprising intermediary instructions, and subsequently for judging whether or not each variable contained in said intermediary instructions represents data used in an address;

table generating means for generating a table for each variable in said intermediary instructions, said table holding a name together with a type of each variable, said type representing one of the data and the address, and one of [singed] signed and unsigned data;

parameter holding means for holding a data width and a pointer width designated by a user, said data width representing the number of bits of the data, [while] said pointer width representing the number of bits of the address;

option directing means for holding a user's direction for an overflow compensation, an overflow being possibly caused by an arithmetic operation;

generating means for generating an instruction to manage said data width when the variable in said intermediary instruction represents the data, and an instruction to manage said pointer width when said variable represents the address;

compensate instruction generating means for generating a compensation instruction to compensate an overflow in accordance with a type of a variable used in the arithmetic operation, said type being judged when said option directing means holds the user's direction for executing the overflow compensation, said compensation instruction being

25 generated when an effective bit-width of a variable designated by an operand is shorter
26 than a register of N-bit wide and the arithmetic operation instruction will possibly cause
27 an overflow exceeding said effective bit-width; and

28 prohibition means for prohibiting a generation of a compensation instruction by the
29 compensate instruction generating means when the option directing means is storing an
30 indication denoting not to compensate, wherein said generating means includes:

31 [judging] determining means for [judging] determining a kind of the machine
32 language instruction, the machine language instruction including (1) an instruction to
33 access to [an] a memory, (2) an instruction to use a register, and (3) an instruction to use
34 an immediate;

35 memory managing means for outputting a direction, in case of the (1) instruction,
36 to manage a corresponding bit-width held in said parameter holding means as an effective
37 memory-access width depending on the type of a variable to be accessed shown in said
38 table;

39 register managing means for outputting a direction, in case of the (2) instruction,
40 to manage a corresponding bit-width held in said parameter holding means as an effective
41 bit-width depending on the type of a variable to be read/written from/in the register
42 shown in said table;

43 immediate managing means for outputting a direction, in case of the (3)
44 instruction, to manage a corresponding bit-width held in said parameter holding means
45 for the immediate as an effective bit-width depending on the type of the immediate shown
46 in said table; and

47 code generating means for generating the machine language instruction in
48 accordance with the directions from said memory managing means, said register
49 managing means, and said immediate managing means, and wherein

50 said compensate instruction generating means includes:

51 instruction judging means for judging an arithmetic operation instruction that will
52 possibly cause an overflow for all the machine language instructions when said option
53 instructing means holds the user's direction for executing the overflow compensation;

54 [variable] determining judging means, with respect to a variable in the arithmetic
55 operation instructions [judged] determined by said instruction [judging] determining
56 means, for [judging] determining an effective bit-width and whether said variable is
57 signed or unsigned by referring to said table;

58 sign-extension instruction generating means for generating a compensation instruc-
59 tion in case of a signed variable, a logical value of a sign bit being filled into all bits
60 higher than the effective bit-width in a register that is to store said signed variable by said
61 sign-extension compensation instruction; and

62 zero-extension instruction generating means for generating a zero-extension
63 compensation instruction in case of an unsigned variable, a logical value "0" being filled
64 into all bits higher than the effective bit width in a register that is to store said unsigned
65 variable by said zero-extension compensation instruction.

1 28. (Amended) A processor [improved in address management] being one out
2 of an embedded processor series of processors with different address bit widths, having
3 an address bit width which can be customized by a user in accordance with program size,
4 comprising:

5 memory means for storing a program including an N-bit data arithmetic operation
6 instruction and [both] other [N-bit and M-bit load/store] instructions operating both N-bit
7 and M-bit data, N being greater than M;

8 a program counter for holding an N-bit instruction address to output the same to
9 said memory means;

10 fetching means for fetching an instruction from said memory means using the
11 instruction address from said program counter; and

12 executing means for executing all [N-bit] arithmetic operation instructions at N-bit
13 length and for executing [N-bit and M-bit] other instructions [excluding] aside from the
14 arithmetic operation instructions[,] at one of N-bit length and M-bit length;

15 wherein said memory means has a storage capacity equivalent of up to 2^N bytes,
16 and whereby an N-bit address is calculated by the N-bit arithmetic operation
17 independently of a data bit-width, said data bit-width being M.

Claim 31, line 6, delete "immediately".

Claim 35, line 6, delete "immediately".

44. (Amended) A processor for operating certain data in accordance with an
instruction in a program, comprising:

a first register means for holding N-bit data;

a second register means for holding N-bit data[,];

5 sign-extending means for extending said M-bit data to N bits by copying an MSB
6 of said M-bit data in a direction of an upper order, M being less than N;

7 zero-extending means for extending said M-bit data to N bits by copying a value
8 "0" in a direction of an upper order;

9 operating means for operating an arithmetic operation in accordance with an
10 instruction;

11 instruction control means for decoding an instruction to zero-extend M-bit
12 immediate data when said M-bit immediate data are to be stored in said first register
13 means by the decoded instruction and to sign-extend said M-bit immediate data when said
14 M-bit immediate data are to be stored in said second register means by the decoded
15 instruction, said zero-extended and sign-extended N-bit immediate data being outputted
16 in one of two methods, one method being to send the extended N-bit immediate data from
17 their respective extending means to their respective register means directly, the other
18 being to send the same via the operating means to their respective register means, with
19 said instruction including an indication for storing in the first register means and said
20 instruction including an indication for storing in the second register means being of two
21 different kinds of instruction, both having a same operation code but having different
22 destination operands.

38
47. (Amended) A processor for operating certain data in accordance with an
1 instruction in a program, comprising:

3 a first register means for holding N-bit data;

4 a second register means for holding N-bit data[,];

5 sign-extending means for extending said M-bit data to N bits by copying an MSB
6 of said M-bit data in a direction of an upper order, M being less than N;

7 zero-extending means for extending said M-bit data to N bits by copying a value
8 "0" in a direction of an upper order;

9 operating means for operating an arithmetic operation in accordance with an
10 instruction;

11 instruction decoding means for decoding an instruction in the program to detect a
12 first type instruction and a second type instruction, said first type instruction including
13 an instruction to store M-bit immediate data into said first register means, said second
14 type instruction including an instruction to store said M-bit immeditate data into said
15 second register means; and

16 control means for outputting said M-bit immediate data to said zero-extending
17 means when the first type instruction is detected, and for outputting said M-bit immediate
18 data to said sign-extending means when the second type instruction is detected, said zero-
19 extended N-bit immediate data and sign-extended N-bit immediate data being outputted
20 in one of two methods, one method being to send the extended N-bit immediate data from
21 their respective extending means to their respective register means directly, the other
22 being to send the same via the operating means to their respective register means, with
23 said first-type instruction and said second-type instruction both having a same operation
24 code but having different destination operands.

42
51. (Amended) A data processing method for executing an instruction that
1 includes an [instruction] operation code to store M-bit immediate data in an N-bit first
2 register and an N-bit second register, both M and N being integers, with [while] M being
3 less than N, said method comprising the steps of:

5 decoding [an] the instruction for selecting one of the first register and second
6 register in accordance with [a] an operand of the decoded instruction;

zero-extending said M-bit immediate data to N bits when said decoded instruction designates the first register, and sign-extending said M-bit immediate data to N bits when said decoded instruction designates the second register; and
storing extended N-bit immediate data to the designated register.

AB 45
54. (Amended) A processor [for executing a program including an N-bit data arithmetic operation instruction, M-bit and N-bit load/store instruction, M being less than N, a conditional branch instruction, a data-transfer instruction with an external memory, and an instruction having immediate data, said processor comprising:] being one out of an embedded processor series of processors with different address bit widths, having an address bit width which can be customized by a user in accordance with program size,
comprising:

memory means for storing a program including an N-bit data arithmetic operation instruction and other instructions operating both N-bit and M-bit data, N being greater than M, as well as for storing a program including conditional branch instructions, transfer instructions for external memory and instructions using immediate data;

a first register means including a plurality of registers for holding N-bit data;

a second register means including a plurality of registers for holding N-bit data;

a program counter for holding an N-bit instruction address to output the same to said memory means;

fetching means for fetching an instruction from an external memory using the instruction address from said program counter;

instruction decoding means for decoding a fetched instruction;

19 executing means for executing all [N-bit] arithmetic operation instructions at N-bit
20 length and for executing [N-bit and M-bit] instructions operating both N-bit and M-bit
21 data excluding the arithmetic operation instructions[.];

22 a plurality of flag storing means, each for storing a corresponding flag group
23 changed in response to different bit-widths data in accordance with an execution result
24 of said executing means;

25 flag selecting means for selecting a certain flag group from said plurality of flag
26 storing means in accordance with a conditional branch instruction decoded by said
27 instruction decoding means;

28 branch judging means for judging whether a branching is taken or not with a
29 reference to a flag group selected by said flag selecting means;

30 sign-extending means for extending M-bit data to N bits by copying an MSB of
31 said M-bit data in a higher order;

32 zero-extending means for extending M-bit data to N bits by filling a value "0" in
33 a higher order;

34 compensation instruction control means for compensating contents of said first
35 register means and said second register means using said sign-extending means and said
36 zero-extending means in accordance with a compensation instruction inserted
37 [immediately] after a machine language instruction for an arithmetic operation that will
38 possibly cause an overflow, said machine language instruction being decoded by said
39 instruction decoding means;

40 external-access-width control means for outputting bit-width information for trans-
41 mission data in accordance with a type of said register means to which a register indicated
42 by register information belongs, said register information indicating one of said first and
43 second register means;

44 external-access executing means for executing a data transfer between the register
45 and an external memory in accordance with said register information and bit-width
46 information; and

47 immediate control means for outputting M-bit immediate data to said zero-
48 extending means when a decoded instruction includes an instruction to store said M-bit
49 immediate data in said first register means, and for outputting said M-bit immediate data
50 to said sign-extending means when a decoded instruction includes an instruction to store
51 said M-bit in said second register means, said zero-extended and sign-extended immediate
52 data being sent to said first and second register means respectively in two methods, one
53 being to send the same directly to their respective register means and the other being to
54 send the same via said executing means,

55 wherein said memory means stores a program of a size which is up to 2^N bytes.

Please add the following newly-drafted Claims 56 and 57:

1 41
2 56. A program converting unit for generating a machine language instruction
3 from a source program, the machine language program being generated for a selected
4 microprocessor in an embedded microprocessor series comprising a plurality of micro-
5 processors, each of the plurality of microprocessors being able to process M-bit data and
6 having a different address bit width N, said program converting unit comprising:

6 parameter holding means for holding a data width M and a selected pointer width
7 N, N and M being integers greater than zero and N being greater than M,
8 said data width M representing a bit-width of data used in the source program to
9 be converted,

10 said pointer width N representing an address bit-width to be used with the
11 converted machine language program and being set by a user, depending on an estimated
12 size of the object program after conversion, in order to identify the selected micro-
13 processor in the embedded microprocessor series; and

14 generating means for generating an instruction to manage said data width M when
15 a variable operated by said instruction represents the data, and for generating an
16 instruction to manage said pointer width N when a variable operated by said instruction
17 represents the address.

48

1 57. A program converting unit for generating a machine language instruction
2 from a source program, the machine language program being generated for a selected
3 microprocessor in an embedded microprocessor series comprising a plurality of micro-
4 processors, each of the plurality of microprocessors being able to process M-bit data and
5 having a different address bit width N, said program converting unit comprising:

6 parameter holding means for holding a data width M and a selected pointer width
7 N, N and M being integers greater than zero and N being greater than M,

8 said data width M representing a bit-width of data used in the source program to
9 be converted,

10 said pointer width N representing an address bit-width to be used with the
11 converted machine language program and being set by a user, depending on an estimated
12 size of the object program after conversion, in order to identify the selected micro-
13 processor in the embedded microprocessor series;

14 generating means for generating an instruction to manage said data width M when
15 a variable operated by said instruction represents the data, and for generating an
16 instruction to manage said pointer width N when a variable operated by said instruction
17 represents the address;

18 option directing means for holding a user's direction for an overflow compensa-
19 tion, an overflow being possibly caused by an arithmetic operation;

20 compensate instruction generating means for generating a compensation instruction
21 to compensate an overflow in accordance with a type of a variable used in the arithmetic
22 operation, said compensation instruction being generated when an effective bit width of
23 a variable designated by an operand is shorter than a register of N-bit wide and the
24 arithmetic operation instruction will possibly cause an overflow exceeding said effective
25 bit-width; and

26 prohibition means for prohibiting a generation of a compensation instruction by the
27 compensate instruction generating means when the option directing means is storing an
28 indication denoting not to compensate.