ACTIVITY: DESIGNER CELLS

(Pages 401-402)

Observations

Maximum Cell Potentials of Galvanic Cells

Combination of metals	Cell potential or voltage (V)
Zn/Cu	0.78
Zn/Fe	0.26
Mg/Zn	0.65
Fe/Cu	0.47
Mg/Cu	1.52
Mg/Fe	1.00

- Step 8. The cell with the largest cell potential (voltage) was Mg/Cu. This cell made the buzzer buzz.
- Step 9. The buzzer buzzed much more loudly with the alkaline cell than with the Mg/Cu cell.

Analysis

- (a) (i) Magnesium was most often the anode, while copper was most often the cathode.
 - (ii) The magnesium/copper cell had the largest cell potential, $E_{cell} = 1.52 \text{ V}$.
 - (iii) The metals that resulted in the largest cell potential, magnesium and copper, are farther apart on the activity series than any other pair of metals used in this experiment.
- (b) Magnesium/copper cell:

anode:
$$Mg_{(s)} \longrightarrow Mg_{(aq)}^{2^+} + 2 e^-$$

cathode:
$$Cu_{(aq)}^{2+} + 2 e^{-} \rightarrow Cu_{(s)}$$

overall:
$$Mg_{(s)} + Cu_{(aq)}^{2+} \longrightarrow Cu_{(s)} + Mg_{(aq)}^{2+}$$

Zinc/copper cell:

anode:
$$Zn_{(s)} \longrightarrow Zn_{(aq)}^{2+} + 2 e^-$$
 cathode: $Cu_{(aq)}^{2+} + 2 e^- \longrightarrow Cu_{(s)}$

cathode:
$$Cu_{(aq)}^{2+} + 2e^{-} \rightarrow Cu_{(s)}$$

overall: $Zn_{(s)} + Cu_{(aq)}^{2+} \rightarrow Cu_{(s)} + Zn_{(aq)}^{2+}$

Iron/copper cell:

anode:
$$Fe_{(s)} \longrightarrow Fe_{(aq)}^{2+} + 2e^{-}$$

cathode: $Cu_{(aq)}^{2+} + 2e^{-} \longrightarrow Cu_{(s)}$

cathode:
$$Cu_{(aq)}^{2+} + 2 e^{-} \rightarrow Cu_{(s)}$$

overall:
$$Fe_{(s)}^{(aq)} + Cu_{(aq)}^{2+} \longrightarrow Cu_{(s)}^{(s)} + Fe_{(aq)}^{2+}$$

Magnesium/iron cell:

anode:
$$Mg_{(s)} \longrightarrow Mg_{(aq)}^{2+} + 2 e^-$$
 cathode: $Fe_{(aq)}^{2+} + 2 e^- \longrightarrow Fe_{(s)}$

cathode:
$$Fe_{(aq)}^{(2)} + 2e^{-} \longrightarrow Fe_{(s)}^{(aq)}$$

overall:
$$Mg_{(s)}^{(aq)} + Fe_{(aq)}^{(2+)} \rightarrow Fe_{(s)}^{(s)} + Mg_{(aq)}^{(2+)}$$

Zinc/iron cell:

anode:
$$Zn_{(s)} \longrightarrow Zn_{(aq)}^{2+} + 2 e^{-}$$
 cathode: $Fe_{(aq)}^{2+} + 2 e^{-} \longrightarrow Fe_{(s)}$

cathode:
$$Fe_{(aq)}^{2+} + 2 e^{-} \longrightarrow Fe_{(s)}^{2+}$$

overall:
$$Zn_{(s)} + Fe_{(aq)}^{2+} \longrightarrow Zn_{(s)} + Fe_{(aq)}^{2+}$$

Magnesium/zinc cell:

anode:
$$Mg_{(s)} \rightarrow Mg_{(ao)}^{2+} + 2 e^{-}$$

cathode:
$$Zn_{(aq)}^{2+} + 2 e^{-} \longrightarrow Zn_{(s)}$$

overall:
$$Mg_{(s)}^{(a_{4})} + Zn_{(aq)}^{2+} \longrightarrow Zn_{(s)}^{(s)} + Mg_{(aq)}^{2+}$$

(c) Criteria might include power output, voltage, portability, rechargeability, safety, environmental impact, cost, and efficiency.

(d) The most successful laboratory cell was the magnesium/copper cell, so we will compare this cell with the alkaline dry cell.

Criteria	Mg/Cu cell	Alkaline dry cell
cell potential (voltage)	1.52 V	1.6 V
power output	unable to light an LED	lit an LED
	faint sound produced with buzzer	louder sound produced with buzzer than Mg/Cu cell
portability	cumbersome	designed to be portable
	chemicals need to be sealed	little chance of chemicals leaking
rechargeability	needs to be tested to see if it is rechargeable	not rechargeable (however, other types of dry cells are rechargeable)

Students may include more of their own criteria in the table.

Synthesis

(e) The cells, ordered from smallest to largest predicted cell potentials, are: Mg/Pb, Mg/Cu, Mg/Ag. This prediction is based on the relative position of the metals. Mg and Pb are closest together on the activity series while Mg and Ag are the farthest apart.

CONSUMER CELLS AND BATTERIES

TRY THIS ACTIVITY: PICKLE POWER

(Page 407)

- (b) Connecting the cells in series results in an overall battery potential that was the sum of the individual cell potentials.
- (c) 12 V
- (d) A cordless phone may contain three 1.2-V Ni-Cd batteries connected in series, for a total cell potential of 3.6 V. A typical portable CD player requires two 1.5-V alkaline dry cells in series, for a total cell potential of 3.0 V.