

Plan

- Introduction
- Routage dans l'Internet
- IPv6
- Communication de groupes et l'Internet
- Réseaux sans fils, réseaux adhoc (E.F)
- Sécurité IP

MADYNES

Coria

1. Introduction

- 1.1 Rappel bref sur les réseaux
- 1.2 Architecture des réseaux
- 1.3 Normalisation
- 1.4 L'Internet ?

286

MADYNES

1.1 Notion de réseau

- · Un réseau :
 - deux ou plusieurs nœuds connectés par une liaison physique
 - deux ou plusieurs réseaux connectés par deux ou plusieurs nœuds
- Nœuds :
 - station de travail ou des nœuds de commutation ou d'interconnexion
- · Liaison physique : câble, fibre, satellites,...

MADYNES

Réseau extrémité Système terminal (hôte): Modèle client/serveur Modèle peer-peer

- Deux approches basées sur la commutation :

 Commutation de circuits : circuit dédié
 Commutation de paquets : "store-andforward"
- MADYNES (oris

Réseaux à commutation de circuit

- Technique d'établissement d'un circuit dans le réseau téléphonique
- Mise en place d'un chemin dédié par séquence d'appel
 - Phase d'établissement d'un appel
- · Ressources réservées par appel
 - Garantie au niveau performance
- Exemple
 - RTC (Réseau Téléphonique Commuté)
 - Commutation de la voix

MADYNES

Réseaux à commutation de paquets

- But : acheminer des paquets de la source vers la destination
- Deux types de réseaux :
 - Réseaux circuit virtuel
 - Réseaux datagramme

MADYNES

coria

10

Réseaux à commutation de paquets

- · Circuit virtuel
 - Établissement explicite de la connexion et de la terminaison (orienté connexion)
 - Maintien d'un circuit virtuel
 - Les paquets suivent le même circuit
 - Exemple:
 - ATM, X25

Réseaux à commutation de paquets

- Datagramme
 - Pas de phase de connexion (modèle sans connexion)
 - Chaque paquet est émis de manière indépendante
 - Chaque commutateur maintient une table de routage pour aiguiller le paquet
 - Exemple
 - Réseau Internet

MADYNES

12

1.2 Architecture des réseaux

- Couches
- Protocoles
- · Architectures Standards
 - Modèle OSI (Normalisation)
 - Modèle Internet (Standard de fait)

Deux catégories de protocoles

- Les protocoles orientés connexion
 - établissement de connexion
 - transfert de donnés
 - fermeture de connexion
- Les protocoles non connectés

Normalisation dans les Réseaux

- Monde des standards internationaux
 - ISO (Organisation Internationale de normalisation)
 - membres sont des organisations de standardisations nationales (ANSI, BSI, AFNOR, DIN)
 - CD (Committed Draft) -> DIS (Draft International Standard) -> IS (International Standard)
 - IEEE (Institute of Electrical and Electronics Engineers): normes dans le domaine électrique et informatique

Normalisation dans les réseaux

- Monde des standards de l'Internet
 - IRTF (Internet Research Task Force) => long terme
 - IETF (Internet Engineering Task Force): forum où sont définis les standards de l'Internet <u>www.ietf.org</u>
 - Composé de groupes de travail supervisés par des directeurs -> IESG (Steering Group)

Normalisation dans les réseaux

- Monde des standards de l'Internet (suite)
 - Durée d'un groupe de travail : 6 mois à 2 ans
 - Décision de création d'un groupe à la suite d'un BOF
 - Rapport techniques et standards:
 - Draft
 - RFC (Request for Comments)
 - Internet Society: 1992

Normalisation dans les réseaux

- Tous les RFCs ne sont pas des standards
 - Experimental, Information, 1er Avril
- Standard Track (RFC2026)
 - Proposed Standard:
 - 6 à 24 mois + implémentation
 - Draft Standard
 - · Solide spécification : on y croit
 - Internet Standard
 - · Déploiement à grande échelle

MADYNES

26

coria

1.4 Qu'est ce que l'Internet?

- Le but est la connectivité
- L'intelligence est de bout en bout Internet = générique pour internetwork (Interconnexion de réseaux)
- L'outil est le protocole IP (Internet Protocol) = couche réseau

La couche Réseau Adressage et Routage

- Adresse: suite d'octets qui identifie un noeud; normalement unique
- Routage: process de déterminer comment "forwarder" des messages vers le nœud destination en se basant sur son adresse
- · Type d'adresses:
 - · unicast : spécifique au nœud
 - broadcast : tous les nœuds du réseau
 - multicast : un sous-ensemble des nœuds du réseau

Services offerts par la couche réseau

- · Service orienté connexion et fiable
 - Approche des opérateurs de télécoms = circuits virtuels
 - La complexité est dans le réseau
 - Établissement explicite de la phase de connexion (et de la terminaison)
 - Les paquets suivent le même circuit (=> appel téléphone)
 - · Appelé le modèle orienté connexion
 - · Chaque commutateur maintient un circuit virtuel
 - Exemple de réseau : X25 (circuit virtuel commuté et permanent) ou ATM

Services offerts par la couche réseau

- · Service sans connexion et non fiable
 - Approche choisie par l'Internet = datagramme
 - Réduire la complexité dans le réseau
 - Protocole Internet : IP (rfc791)
 - Chaque paquet est émis de manière indépendante (=> poste).
 - · Les paquets peuvent :
 - se perdre, arrivés en désordre et être dupliqués
 - · Les erreurs sont gérées par les couches supérieures
 - · Chaque commutateur maintient une table de routage

Internet

- Historique
 - Recherches du DARPA
 - (Defense Advanced Research Agency)
 - ARPANET : ancêtre de l'Internet
 - Un des premiers réseaux à commutation de paquets dans les années 70
 - En 1980 mise en place de TCP/IP

Internet Protocol

- Transporte des datagrammes de bout en bout
- Un datagramme contient l'adresse IP de l'émetteur et l'adresse IP du destinataire
- Mode sans connexion et sans aucune garantie IP = Best Effort
- Assure le routage : comment envoyer les paquets
- · Assure la fragmentation si nécessaire

Adressage IP

- · Propriétés :
 - -4 octets (32 bits)
 - adresse unique
 - hiérarchique : réseau + hôte
 - Configurable par logiciel :
 - Ifconfig (UNIX)
 - Ipconfig (NT) ou panneau de configuration
 - Associée à chaque interface réseau

Adressage IP

Format

Bits de poids Fort	Format	Classe
0 10 110 1110 1111	7 réseau + 24 hôte 14 réseau + 16 hôte 21 réseau + 8 hôte 28 numéros multpoint expérimental	A B C D

• "Dot notation" : 138.96.24.89, 255.255.255.255

CIDR (Classless InterDomain Routing)

- Introduit en 1995 qui a permis de résoudre :
 - Épuisement classe B
 - · Allocation de plusieurs réseaux de classe C
 - Explosion des tables de routage
 - · Numéros contigus
 - · Coordination de l'allocation des adresses
 - Par continent
 - Par fournisseur

MADYNES

37

CIDR (Classless InterDomain Routing)

- Si plusieurs adresses de classe C consécutives:
 - Identification d'un site est obtenue par adresse réseau début et adresse réseau fin :
 - Site A: 192.24.0.0 -> 192.24.7.0
 - Nombre de classes C ?
 - Adresse réseau début/Longueur préfixe
 - Longueur préfixe : nombre de bits qui correspondent toujours au même site
 - Site A: 192.24.0.0/???

MADYNES

Loria

38

CIDR (Classless InterDomain Routing)

- Multirégionales 192.0.0.0

193.255.255.255

- Europe 194.0.0.0

195.255.255.255

- Amérique du Nord 198.0.0.0

199.255.255.255

- Amérique du Sud/

Centrale 200.0.0.0

201.255.255.255

28/2

MADYNES

Masque de sous réseaux et CIDR

- L'adressage CIDR est complémentaire de la notion de netmask
- Exemple:
 - 192.44.77.0/24 => masque 255.255.255.0
 - 192.44.77.64/26 => masque 255.255.255.192
 Réseau de classe C 192.44.77.0 et Sous-réseau 1
 - 192.44.77.79/26 => masque 255.255.255.192
 - 92.44.77.79/20 => masque 255.255.255.1
 - Réseau de classe C 192.44.77.0
 N° sous réseau 192.44.77.64/26
 - Sous-réseau 1 et Machine 15
 - 129.130.79.85 et Masque : 255.255.248.0
 - 129.130.79.85/??
 - ???

MADYNES

Loria

40