Kapitola 1

Tablo metoda v predikátové logice

V této kapitole ukážeme, jak lze zobecnit *metodu analytického tabla* z výrokové na predikátovou logiku.¹ Metoda funguje velmi podobně, musíme si ale poradit *kvantifikátory*.

1.1 Neformální úvod

V této sekci tablo metodu neformálně představíme. K formálním definicím se vrátíme později. Začneme dvěma příklady, na kterých ilustruje, jak tablo metoda v predikátové logice funguje, a jak se vypořádá s kvantifikátory.

 $P\check{r}iklad$ 1.1.1. Na Obrázku 1.1.1 jsou znázorněna dvě tabla. Jsou to tablo důkazy (v logice, tj. z prázdné teorie) sentencí $(\exists x)\neg P(x) \rightarrow \neg(\forall x)P(x)$ (vpravo) a $\neg(\forall x)P(x) \rightarrow (\exists x)\neg P(x)$ (vlevo) jazyka $L = \langle P \rangle$ (bez rovnosti), kde P je unární relační symbol. Symbol c_0 je pomocný konstantní symbol, který do jazyka při konstrukci tabla přidáváme.

Položky

Formule v položkách musí být vždy sentence, neboť potřebujeme, aby měly v daném modelu pravdivostní hodnotu (nezávisle na ohodnocení proměnných). To ale není zásadní omezení, chceme-li dokázat, že formule φ platí v teorii T, můžeme nejprve nahradit formuli φ a všechny axiomy T jejich generálními uzávěry (tj. univerzálně kvantifikujeme všechny volné proměnné). Získáme tak uzavřenou teorii T' a sentenci φ' a platí: $T' \models \varphi'$ právě když $T \models \varphi$.

Kvantifikátory

Redukce položek funguje stejně, použijeme tatáž atomická tabla pro logické spojky (viz Tabulka ??, kde místo výroků jsou φ , ψ sentence). Musíme ale přidat 4 nová atomická tabla pro T/F a univerzální/existenční kvantifikátor. Tyto položky dělíme na dva typy:

- typ "svědek": položky tvaru $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$
- typ "všichni": položky tvaru $T(\forall x)\varphi(x)$ a $F(\exists x)\varphi(x)$

Příklady vidíme v tablech na Obrázku 1.1.1 ('svědci' jsou červeně, 'všichni' modře).

¹Na tomto místě je dobré připomenout si tablo metodu ve výrokové logice, viz Kapitola ??.

Obrázek 1.1: Příklady tabel. Položky typu 'svědek' jsou znázorněny červeně, položky typu 'všichni' modře.

Kvantifikátor nemůžeme pouze odstranit, neboť výsledná formule $\varphi(x)$ by nebyla sentencí. Místo toho současně s odstraněním kvantifikátoru substituujeme za x nějaký konstantní term, v nové položce tedy bude sentence $\varphi(x/t)$. Jaký konstantní term t substituujeme záleží na tom, zda jde o položku typu "svědek" nebo "všichni".

Pomocné konstantní symboly

Jazyk L teorie T, ve které dokazujeme, rozšíříme o spočetně mnoho nových (pomocných) $konstantních symbolů <math>C = \{c_0, c_1, c_2, \ldots\}$ (ale budeme psát i c, d, \ldots), výsledný rozšířený jazyk označíme L_C . Konstantní termy v jazyce L_C tedy existují, i pokud původní jazyk L nemá žádné konstanty. A vždy při konstrukci tabla máme k dispozici nějaký nový, dosud nepoužitý (ani v teorii, ani v konstruovaném tablu) pomocný konstantní symbol $c \in C$.

Svědci

Při redukci položky typu "svědek" substituujeme za proměnnou jeden z těchto nových, pomocných symbolů, a to takový, který dosud nebyl na dané větvi použit. V případě položky $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$. Tento konstantní symbol c bude hrát roli (nějakého) prvku, který danou formuli splňuje (resp. vyvrací, jde-li o položku tvaru $F(\forall x)\varphi(x)$). Zde používáme větu o konstantách (Věta $\ref{totaleq}$). Je důležité, že symbol c dosud nebyl na větvi ani v teorii nijak použit. Typicky ale poté použijeme položky typu "všichni", abychom se dozvěděli, co musí o tomto svědku platit.

Na Obrázku 1.1.1 vidíme příklad: položka $T(\exists x) \neg P(x)$ v levém tablu je redukovaná, její redukcí vznikla položka $T \neg P(c_0)$; $c_0 \in C$ je pomocný symbol, na větvi se dosud nevyskytoval

(a je první takový). Podobně pro položku $F(\forall x)P(x)$ a $FP(c_0)$ v pravém tablu.

Všichni

Při redukci položky typu "všichni" substituujeme za proměnnou x libovolný konstantní term t rozšířeného jazyka L_C . Z položky tvaru $T(\forall x)\varphi(x)$ tedy získáme položku $T\varphi(x/t)$.

Aby byla bezesporná větev dokončená, budou na ní ale muset být položky $T\varphi(x/t)$ pro všechny konstantní L_C -termy t. (Musíme 'použít' vše, co položka $T(\forall x)\varphi(x)$ 'říká'.) A stejně pro položku tvary $F(\exists x)\varphi(x)$.

Ve výrokové logice jsme používali konvenci, že při připojování atomických tabel vynecháváme jejich kořeny (jinak bychom opakovali na větvi tutéž položku dvakrát). V predikátové logice použijeme stejnou konvenci, ale s výjimkou položek typu 'svědek'. U těch zapíšeme i kořen připojovaného atomického tabla. Proč to děláme? Abychom si připomněli, že s touto položkou ještě nejsme hotovi, že musíme připojit atomická tabla s jinými konstantními termy.

Na Obrázku 1.1.1 v levém tablu neni položka $T(\forall x)P(x)$ redukovaná. Její prvni výskyt (4. vrchol shora) jsme zredukovali, substituujeme term $t=c_0$, máme tedy $\varphi(x/t)=P(c_0)$. Připojili jsme atomické tablo v sestávající z téže položky v kořeni $T(\forall x)P(x)$, kterou do tabla zapišeme, a z položky $TP(c_0)$ pod ní. Zatímco prvni výskyt položky $T(\forall x)P(x)$ je tímto redukovaný, druhý výskyt (7. vrchol shora) redukovaný není. Podobně pro položku $F(\exists x) \neg P(x)$ v pravém tablu.

Tento poněkud technický přístup k definici redukovanosti (výskytů) položek typu 'všichni' se nám bude hodit v definici systematického tabla.

Jazyk

Nadále budeme předpokládat, že jazyk L je $spočetný.^2$ Z toho plyne, že každá L-teorie T má jen spočetně mnoho axiomů, a také že konstantních termů v jazyce L_C je jen spočetně mnoho. Toto omezení potřebujeme, neboť každé, i nekonečné tablo má jen spočetně mnoho položek, a musíme být schopni použít všechny axiomy dané teorie, a substituovat všechny konstantní termy jazyka L_C .

Nejprve také budeme předpokládat, že jde o jazyk bez rovnosti, což je jednodušší. Problémem je, že tablo je čistě syntaktický objekt, ale rovnost má speciální sémantický význam, totiž musí být v každém modelu interpretována relací identity. Jak adaptovat metodu pro jazyky s rovností si ukážeme později.

1.2 Formální definice

V této sekci definujeme všechny pojmy potřebné pro tablo metodu pro jazyky bez rovnosti. K jazykům s rovností se vrátíme v Sekci 1.3.

Buď L spočetný jazyk bez rovnosti. Označme jako L_C rozšíření jazyka L o spočetně mnoho nových pomocných konstantních symbolů $C = \{c_i \mid i \in \mathbb{N}\}$. Zvolme nějaké očíslování konstantních termů jazyka L_C , označme tyto termy $\{t_i \mid i \in \mathbb{N}\}$.

Mějme nějakou L-teorii T a L-sentenci φ .

²Z hlediska výpočetní logiky to není velké omezení.

1.2.1 Atomická tabla

Položka je nápis $T\varphi$ nebo $F\varphi$, kde φ je nějaká L_C -sentence. Položky tvaru $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$ jsou typu 'svědek', položky tvaru $T(\forall x)\varphi(x)$ a $F(\exists x)\varphi(x)$ jsou typu 'všichni' $Atomická\ tabla$ jsou položkami označkované stromy znázorněné v Tabulkách 1.1 a 1.2.

Tabulka 1.1: Atomická tabla pro logické spojky; φ a ψ jsou libovolné L_C -sentence.

Tabulka 1.2: Atomická tabla pro kvantifikátory; φ je L_C -sentence, x proměnná, t_i libovolný konstantní L_C -term, $c_i \in C$ je nový pomocný konstantní symbol (který se dosud nevyskytuje na dané větvi konstruovaného tabla).

1.2.2 Tablo důkaz

Definice v této části jsou téměř identické odpovídajícím definicím z výrokové logiky. Hlavní technický problém je jak definovat redukovanost položek typu 'všichni' na větvi tabla: chceme aby za proměnnou byly substituovány všechny možné konstantní L_C -termy t_i .

Definice 1.2.1 (Tablo). *Konečné tablo z teorie T* je uspořádaný, položkami označkovaný strom zkonstruovaný aplikací konečně mnoha následujících pravidel:

• jednoprvkový strom označkovaný libovolnou položkou je tablo z teorie T,

- pro libovolnou položkou P na libovolné větvi V, můžeme na konec větve V připojit atomické tablo pro položku P, přičemž je-li P typu 'svědek', můžeme použít jen pomocný konstantní symbol $c_i \in C$, který se na větvi V dosud nevyskytuje (pro položky typu 'všichni' můžeme použít libovolný konstantní L_C -term t_i),
- na konec libovolné větve můžeme připojit položku $T\alpha$ pro libovolný axiom teorie $\alpha \in T$.

Tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě vzniklo ve spočetně mnoha krocích. Můžeme ho formálně vyjádřit jako sjednocení $\tau = \bigcup_{i\geq 0} \tau_i$, kde τ_i jsou konečná tabla z T, τ_0 je jednoprvkové tablo, a τ_{i+1} vzniklo z τ_i v jednom kroku.³

Tablo pro položku P je tablo, které má položku P v kořeni.

Připomeňme konvenci, že pokud P není typu 'všichni', potom kořen atomického tabla nebudeme zapisovat (neboť vrchol s položkou P už v tablu je).

Cvičení 1.1. Ukažte v jednotlivých krocích jak byla tabla z Obrázku 1.1.1 zkonstruována.

Definice 1.2.2 (Tablo důkaz). *Tablo důkaz* sentence φ z teorie T je sporné tablo z teorie T s položkou $F\varphi$ v kořeni. Pokud existuje, je φ (tablo) dokazatelná z T, píšeme $T \vdash \varphi$. (Definujme také tablo zamítnutí jako sporné tablo s $T\varphi$ v kořeni. Pokud existuje, je φ (tablo) zamítnutelná z T, tj. platí $T \vdash \neg \varphi$.)

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je $sporn\acute{a}$, pokud obsahuje položky T ψ a F ψ pro nějaký výrok ψ , jinak je $beze-sporn\acute{a}$.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud
 - je sporná, nebo
 - je každá položka na této větvi redukovaná a zároveň větev obsahuje položku $T\alpha$ pro každý axiom $\alpha \in T$.
- \bullet Položka P je redukovaná na větvi <math display="inline">V procházející touto položkou, pokud
 - není typu 'všichni' a při konstrukci tabla již došlo k jejímu rozvoji na V, tj. vyskytuje se na V jako kořen atomického tabla.⁴
 - je typu 'všichni' a všechny její výskyty na V jsou na větvi V redukované.
- Výskyt položky P typu 'všichni' na větvi V je i- $t\acute{y}$, pokud má na V právě i-1 předků označených touto položkou, a i-tý výskyt je $redukovan\acute{y}$ na V, pokud
 - -položka Pmá (i+1)-ní výskyt na V,a zároveň
 - na V se vyskytuje položka $T\varphi(x/t_i)$ (je-li $P = T(\forall x)\varphi(x)$) resp. $F\varphi(x/t_i)$ (je-li $P = F(\exists x)\varphi(x)$), kde t_i je i-tý konstantní L_C -term.⁵

³Sjednocení proto, že v jednotlivých krocích přidáváme do tabla nové vrcholy, τ_i je tedy podstromem τ_{i+1} .

⁴Byť podle konvence tento kořen nezapisujeme.

⁵Tj. (typicky) už jsme za x substituovali term t_i .

Všimněte si, že je-li položka typu 'všichni' na nějaké větvi redukovaná, musí mít na této větvi nekonečně mnoho výskytů, a museli jsme v nich použít při substituci všechny možnosti, tj. všechny konstantní L_C -termy.

 $P\check{r}\hat{\imath}klad$ 1.2.3. Jako příklad sestrojme tablo důkazy v logice (z prázdné teorie) následujících sentencí:

- (a) $(\forall x)(P(x) \to Q(x)) \to ((\forall x)P(x) \to (\forall x)Q(x))$, kde P,Q jsou unární relační symboly.
- (b) $(\forall x)(\varphi(x) \land \psi(x)) \leftrightarrow ((\forall x)\varphi(x) \land (\forall x)\psi(x))$, kde $\varphi(x), \psi(x)$ jsou libovolné formule s jedinou volnou proměnnou x.

Výsledná tabla jsou na Obrázcích 1.2 a 1.3. Dvojice sporných položek jsou znázorněny červeně. Rozmyslete si, jak byla tabla po krocích zkonstruována.

Obrázek 1.2: Tablo důkaz z Příkladu 1.2.3 (a).

1.2.3 Systematické tablo a konečnost důkazů

V Sekci ?? jsme ukázali, že neprodlužujeme-li sporné větve (což nemusíme dělat), potom sporné tablo, speciálně tablo důkaz, bude vždy konečný. Stejný důkaz funguje i v logice predikátové.

Obrázek 1.3: Tablo důkaz z Příkladu 1.2.3 (b). Konstantu c_0 můžeme použít jako novou ve všech třech případech. Stačí, že se zatím nevyskytuje na dané větvi.

Důsledek 1.2.4 (Konečnost důkazů). Pokud $T \vdash \varphi$, potom existuje i konečný tablo důkaz φ zT. Důkaz. Stejný jako ve ve výrokové logice, viz důkaz Důsledku ??. Ve stejné sekci jsme si ukázali konstrukci systematického tabla. Tu lze také snadno adaptovat na predikátovou logiku. Musíme zajistit, abychom někdy zredukovali každou položku, použili každý axiom, a nově v predikátové logice také substituovali každý L_C term t_i za proměnnou v položkách typu 'všichni'. **Definice 1.2.5.** Mějme položku R a teorii $T = \{\alpha_1, \alpha_2, \dots\}$. Systematické tablo z teorie Tpro položku R je tablo $\tau = \bigcup_{i>0} \tau_i$, kde τ_0 je jednoprvkové tablo s položkou R, a pro každé $i \geq 0$: Buď P položka v nejlevějším vrcholu v na co nejmenší úrovni tabla τ_i , která není redukovaná na nějaké bezesporné větvi procházející P (resp. jde-li o položu typu 'všichni', její $v\acute{y}skyt$ v tomto vrcholu není redukovaný). Potom τ_i' je tablo vzniklé z τ_i připojením atomického tabla pro P na každou bezespornou větev procházející v, kde \bullet je-li P typu 'všichni' a má-li ve vrcholu v k-tý výskyt, potom za proměnnou substituujeme k-tý L_C -term t_k , \bullet je-li Ptypu 'svědek', potom na dané větvi Vza proměnnou substituujeme $c_i \in C$ s nejmenším možným i (takovým, že na V se c_i dosud nevyskytuje). Jinak, pokud taková položka P a vrchol v neexistují, tj. všechny položky jsou redukované, definujeme $\tau_i' = \tau_i$. Tablo τ_{i+1} je potom tablo vzniklé z τ'_i připojením $T\alpha_i$ na každou bezespornou větev τ'_i , pokud $i \leq |T|$. Jinak (je-li T konečná a už jsme použili všechny axiomy) tento krok přeskočíme a definujeme $\tau_{i+1} = \tau'_i$. Stejně jako ve výrokové logice platí, že systematické tablo je vždy dokončené, a poskytuje konečný důkaz: Lemma 1.2.6. Systematické tablo je dokončené. Důkaz. Obdobný jako důkaz ve výrokové logice (Lemma ??). Pro položky typu 'všichni' si všimněte, že k-tý výskyt redukujeme v momentě, kdy na něj při konstrukci narazíme: připojením vrcholu s (k+1)-ním výskytem a substitucí k-tého L_C -termu t_k .

1.3 Jazyky s rovností

Důkaz. Stejný jako důkaz ve výrokové logice (Důsledek ??).

tablo důkazem φ z T.

Nyní si ukážeme, jak aplikovat tablo metodu na jazyky s rovností. Co je to rovnost? V matematice může v různém kontextu znamenat různé relace. Platí 1+0=0+1? Mluvíme-li

Důsledek 1.2.7 (Systematičnost důkazů). Pokud $T \vdash \varphi$, potom systematické tablo je (konečným)

o celých číslech, pak ano, ale máme-li na mysli aritmetické výrazy (nebo např. termy v jazyce těles), potom si levá a pravá strana nejsou rovny: jde o jiné výrazy. ⁶

Představte si, že máme teorii T v jazyce s rovností obsahujícím konstantní symboly c_1, c_2 , unární funkční symbol f a unární relační symbol P. Mějme nějaké dokončené tablo z této teorie, a v něm bezespornou větev, na kterém najdeme položku $Tc_1 = c_2$. Budeme chtít sestrojit kanonický model A pro tuto větev, podobně jako ve výrokové logice. Položka bude znamenat, že v kanonickém modelu platí $c_1^A = c_2^A$, tj. $(c_1^A, c_2^A) \in e_1^A$. To nám ale nestačí, chceme také, aby platilo také např.:

- $\bullet \ c_2^{\mathcal{A}} =^{\mathcal{A}} c_1^{\mathcal{A}},$
- $f^{\mathcal{A}}(c_1^{\mathcal{A}}) =^{\mathcal{A}} f^{\mathcal{A}}(c_2^{\mathcal{A}}),$
- $c_1^{\mathcal{A}} \in P^{\mathcal{A}}$, právě když $c_2^{\mathcal{A}} \in P^{\mathcal{A}}$.

Obecně tedy chceme, aby relace $=^{\mathcal{A}}$ byla tzv. kongruenci, tj. ekvivalencí, která se chová 'dobře' vůči funkcím a relacím struktury \mathcal{A} . Toho docílíme tak, že k teorii T přidáme tzv. $axiomy\ rovnosti$, které tyto vlastnosti vynutí, a tablo sestrojíme z výsledné teorie T^* .

V modelu \mathcal{A} potom bude relace $=^{\mathcal{A}}$ kongruencí. To nám ale nestačí, chceme, aby rovnost byla identita, tj. aby $(a,b) \in =^{\mathcal{A}}$ platilo jedině když a a b jsou týmž prvkem univerza. Toho docílíme identifikací všech $=^{\mathcal{A}}$ -ekvivalentních prvků do jediného prvku. Této konstrukci se říká faktorstruktura podle kongruence $=^{\mathcal{A}}$. Nyní tyto pojmy formalizujeme.

Definice 1.3.1 (Kongruence). Mějme ekvivalenci \sim na množině A, funkci $f\colon A^n\to A$, a relaci $R\subseteq A^n$. Říkáme, že \sim je

- kongruencí pro funkci f, pokud pro všechna $x_i, y_i \in A$ taková, že $x_i \sim y_i \ (1 \le i \le n)$ platí $f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n)$,
- kongruencí pro relaci f, pokud pro všechna $x_i, y_i \in A$ taková, že $x_i \sim y_i$ $(1 \le i \le n)$ platí $f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n)$.

Kongruence struktury \mathcal{A} je ekvivalence \sim na množině A, která je kongruencí pro všechny funkce a relace \mathcal{A} .

Definice 1.3.2 (Faktorstruktura). Mějme strukturu \mathcal{A} a její kongruenci \sim . Faktorstruktura (podílová struktura) \mathcal{A} podle \sim je struktura $\mathcal{A}/_{\sim}$ v témž jazyce, jejíž univerzum $\mathcal{A}/_{\sim}$ je množina všech rozkladových tříd \mathcal{A} podle \sim , a jejíž funkce a relace jsou definované pomocí reprezentantů, tj:

- $f^{\mathcal{A}/\sim}([x_1]_\sim,\ldots,[x_n]_\sim)=[f^{\mathcal{A}}(x_1,\ldots,x_n)]_\sim$, pro každý (n-ární) funkční symbol f, a
- $R^{\mathcal{A}/\sim}([x_1]_\sim,\ldots,[x_n]_\sim)$ právě když $R^{\mathcal{A}}(x_1,\ldots,x_n)$, pro každý (n-ární) relační symbol R.

Definice 1.3.3 (Axiomy rovnosti). Axiomy rovnosti pro jazyk L s rovností jsou následující:

Fodobně např. $t_1 = t_2$ v Prologu neznamená, že jde o tentýž term, ale že termy t_1 a t_2 jsou *unifikovatelné*, viz kapitola o rezoluci v predikátové logice.

 $^{^7}$ Název pochází z kongruence modulo n,která je kongruencí v tomto smyslu na množině všech celých čísel, např. splňuje: $a+b\equiv c+d\pmod n$ kdykoliv $a\equiv c\pmod n$ a $b\equiv d\pmod n.$

⁸Stejně jako grupa \mathbb{Z}_n je faktorstrukturou grupy \mathbb{Z} podle $\equiv \pmod{n}$; např. prvek $2 \in \mathbb{Z}_n$ představuje množinu všech celých čísel, jejichž zbytek po dělení n je roven 2.

- (i) x = x,
- (ii) $x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ pro každý *n*-ární funkční symbol f jazyka L,
- (iii) $x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (R(x_1, \dots, x_n) \rightarrow R(y_1, \dots, y_n))$ pro každý n-ární relační symbol R jazyka L včetně rovnosti.

Cvičení 1.2. První z axiomů rovnosti znamená reflexivitu relace = $^{\mathcal{A}}$. Kam se poděly symetrie a tranzitivita? Ukažte, že plynou z axiomu (iii) pro symbol rovnosti =.

Z axiomů (i) a (iii) tedy plyne, že relace $=^{\mathcal{A}}$ je ekvivalence na A, a axiomy (ii) a (iii) vyjadřují, že $=^{\mathcal{A}}$ je kongruencí \mathcal{A} . V tablo metodě v případě jazyka s rovností implicitně přidáme všechny axiomy rovnosti:

Definice 1.3.4 (Tablo důkaz s rovností). Je-li T teorie v jazyce L s rovností, potom označme jako T^* rozšíření teorie T o generální uzávěry⁹ axiomů rovnosti pro jazyk L. Tablo důkaz z teorie T je tablo důkaz z T^* , podobně pro tablo zamítnutí (a obecně jakékoliv tablo).

Platí následující jednoduché pozorování:

Pozorování 1.3.5. Jestliže $A \models T^*$, potom platí i $A/_{=A} \models T^*$, a ve struktuře $A/_{=A}$ je symbol rovnosti interpretován jako identita. Na druhou stranu, v každém modelu, ve kterém je symbol rovnosti interpretován jako identita, platí axiomy rovnosti.

Toto pozorování využijeme při konstrukci *kanonického modelu*, který budeme potřebovat v důkazu Věty o úplnosti. Nejprve ale dokážeme Větu o korektnosti.

1.4 Korektnost a úplnost

V této sekci dokážeme, že tablo metoda je i v predikátové logice korektní a úplná. Důkazy obou vět mají stejnou strukturu jako ve výrokové logice, liší se jen v implementačních detailech.

1.4.1 Věta o korektnosti

Model (struktura) \mathcal{A} se shoduje s položkou P, pokud $P = T\varphi$ a $\mathcal{A} \models \varphi$, nebo $P = F\varphi$ a $\mathcal{A} \not\models \varphi$. Dále \mathcal{A} se shoduje s větví V, pokud se shoduje s každou položkou na této větvi. Ukážeme nejprve pomocné lemma analogické Lemmatu 1.4.1:

Lemma 1.4.1. Shoduje-li se model A teorie T s položkou v kořeni tabla z teorie T (v jazyce L), potom lze A expandovat do jazyka L_C tak, že se shoduje s některou větví v tablu.

Všimněte si, že stačí expandovat $\mathcal A$ o nové konstanty $c^{\mathcal A}$ vyskytující se na větvi V. Ostatní konstantní symboly lze interpretovat libovolně.

 $D\mathring{u}kaz$. Mějme tablo $\tau = \bigcup_{i\geq 0} \tau_i$ z teorie T a model $A \in M_L(T)$ shodující se s kořenem τ , tedy s (jednoprvkovou) větví V_0 v (jednoprvkovém) τ_0 .

Indukcí podle i najdeme posloupnost větví V_i a expanzí \mathcal{A}_i modelu \mathcal{A} o konstanty $c^{\mathcal{A}} \in C$ vyskytující se na V_i takových, že V_i je větev v tablu τ_i shodující se s modelem \mathcal{A}_i , V_{i+1} je prodloužením V_i , a \mathcal{A}_{i+1} je expanzí \mathcal{A}_i (mohou si být i rovny). Požadovaná větev tabla τ je

⁹Neboť v tablo metodě potřebujeme sentence.

potom $V = \bigcup_{i \geq 0} V_i$. Expanzi modelu \mathcal{A} do jazyka L_C získáme jako 'limitu' expanzí \mathcal{A}_i , tj. vyskytuje-li se symbol $c \in C$ na V, vyskytuje se na nějaké z větví V_i a interpretujeme ho stejně jako v \mathcal{A}_i (ostatní pomocné symboly interpretujeme libovolně).

- Pokud τ_{i+1} vzniklo z τ_i bez prodloužení větve V_i , definujeme $V_{i+1} = V_i$ a $\mathcal{A}_{i+1} = \mathcal{A}_i$.
- Pokud τ_{i+1} vzniklo z τ_i připojením položky $T\alpha$ (pro nějaký axiom $\alpha \in T$) na konec větve V_i , definujeme V_{i+1} jako tuto prodlouženou větev a $\mathcal{A}_{i+1} = \mathcal{A}_i$ (nepřidali jsme žádný nový pomocný konstantní symbol). Protože \mathcal{A}_{i+1} je modelem T, platí v něm axiom α , tedy shoduje se i s novou položkou $T\alpha$.
- Nechť τ_{i+1} vzniklo z τ_i připojením atomického tabla pro nějakou položku P na konec větve V_i . Protože se model \mathcal{A}_i shoduje s položkou P (která leží na větvi V_i), shoduje se i s kořenem připojeného atomického tabla.
 - Pokud jsme připojili atomické tablo pro logickou spojku, položíme $\mathcal{A}_{i+1} = \mathcal{A}_i$ (nepřidali jsme nový pomocný symbol). Protože \mathcal{A}_{i+1} se shoduje s kořenem atomického tabla, shoduje se i s některou z jeho větví (stejně jako ve výrokové logice); definujeme V_{i+1} jako prodloužení V_i o tuto větev.
 - Je-li položka P typu 'svědek': Pokud je $P = T(\exists x)\varphi(x)$, potom $\mathcal{A}_i \models (\exists x)\varphi(x)$, tedy existuje $a \in A$ takové, že $\mathcal{A}_i \models \varphi(x)[e(x/a)]$. Větev V_{i+1} definujeme jako prodloužení V_i o nově přidanou položku $T\varphi(x/c)$ a model \mathcal{A}_{i+1} jako expanzi \mathcal{A}_i o konstantu $c^A = a$. Případ $P = F(\forall x)\varphi(x)$ je obdobný.
 - Je-li položka P typu 'všichni', větev V_{i+1} definujeme jako prodloužení V_i o atomické tablo. Nově přidaná položka je $T\varphi(x/t)$ nebo $F\varphi(x/t)$ pro nějaký L_C -term t. Předpokládejme, že jde o první z těchto dvou možností, pro druhou je důkaz analogický. Model \mathcal{A}_{i+1} definujeme jako libovolnou expanzi \mathcal{A}_i o nové konstanty vyskytující se v t. Protože $\mathcal{A}_i \models (\forall x)\varphi(x)$, platí i $\mathcal{A}_{i+1} \models (\forall x)\varphi(x)$ a tedy i $\mathcal{A}_{i+1} \models \varphi(x/t)$; model \mathcal{A}_{i+1} se tedy shoduje s větví V_i .

Připomeňme stručně myšlenku důkazu Věty o korektnosti: Pokud by existoval důkaz a zároveň protipříklad, protipříklad by se musel shodovat s některou větví důkazu, ty jsou ale všechny sporné. Důkaz je tedy téměř stejný jako ve výrokové logice.

Věta 1.4.2 (O korektnosti). *Je-li výrok* φ *tablo dokazatelný z teorie* T, *potom je* φ *pravdivý* v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

 $D\mathring{u}kaz$. Předpokládejme pro spor, že $T \not\models \varphi$, tj. existuje $\mathcal{A} \in \mathcal{M}(T)$ takový, že $\mathcal{A} \not\models \varphi$. Protože $T \vdash \varphi$, existuje sporné tablo z T s $F\varphi$ v kořeni. Model \mathcal{A} se shoduje s $F\varphi$, tedy podle Lemmatu 1.4.1 lze expandovat do jazyka L_C tak, že se expanze shoduje s nějakou větví V. Všechny větve jsou ale sporné.

1.4.2 (draft) Věta o úplnosti

[TODO]

Stejně jako ve výrokové logice ukážeme, že bezesporná větev v dokončeném tablo důkazu poskytuje protipříklad: model teorie T, který se shoduje s položkou $F\varphi$ v kořeni tabla, tj.

11

neplatí v něm φ . Takových modelů může být více, definujeme proto opět jeden konkrétní, kanonický.

Model musí mít nějakou doménu. Jak ji získat z tabla, což je čistě sémantický objekt? Využijeme standardní (v matematice) trik: ze syntaktických objektů uděláme sémantické. Konkrétně, za doménu zvolíme množinu všech konstantních termů jazyka L_C . 10 Ty chápeme jako konečné řetězce. V následujícím budeme někdy (neformálně) místo termu t psát "t", abychom zdůraznili, že v daném místě chápeme t jako řetězec znaků, a ne např. jako termovou funkci, kterou je třeba vyhodnotit.¹¹

Definice 1.4.3 (Kanonický model). Mějme teorii T v jazyce $L = \langle \mathcal{F}, \mathcal{R} \rangle$ a nechť V je bezesporná větev nějakého dokončeného tabla z teorie T. Potom kanonický model pro V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^{\mathcal{A}} \cup C^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}} \rangle$ definovaná následovně:

Je-li jazyk L bez rovnosti, potom:

- Doména A je množina všech konstantních L_C -termů.
- Pro každý *n*-ární relační symbol $R \in \mathcal{R}$ a " s_1 ", ..., " s_n " z A:

$$("s_1", \ldots, "s_n") \in R^{\mathcal{A}}$$
 právě když na větvi V je položka T $R(s_1, \ldots, s_n)$

• Pro každý *n*-ární funkční symbol $f \in \mathcal{F}$ a " s_1 ", ..., " s_n " z A:

$$f^{\mathcal{A}}("s_1", \dots, "s_n") = "f(s_1, \dots, s_n)"$$

Speciálně, pro konstantní symbol c máme $c^{\mathcal{A}} = c^{*}$.

Funkci $f^{\mathcal{A}}$ tedy interpretujeme jako 'vytvoření' nového termu ze symbolu f a vstupních termů (řetězců).

Nechť je L jazyk s rovností. Připomeňme, že naše tablo je nyní z teorie T^* , tj. z rozšíření T o axiomy rovnosti pro L. Nejprve vytvoříme kanonický model \mathcal{B} pro V jakoby byl L bez rovnosti (jeho doména B je tedy množina všech konstantních L_C -termů). Dále definujeme relaci $=^B$ stejně jako pro ostatní relační symboly:

$$"s_1"=^B"s_2"$$
 právě když na větvi V je položka $\mathrm{T} s_1=s_2$

Kanonický model pro V je potom faktorstruktura $\mathcal{A} = \mathcal{B}/_{=B}$.

Jak plyne z diskuze v Sekci 1.3, relace $=^B$ je opravdu kongruence struktury \mathcal{B} , definice je tedy korektní, a relace $=^{\mathcal{A}}$ je identita na A. Platí následující jednoduché pozorování:

Pozorování 1.4.4. Pro každou formuli φ máme $\mathcal{B} \models \varphi$ (kde symbol = je interpretován jako $bin\acute{a}rn\acute{i}\ relace=^{B}$), $pr\acute{a}v\check{e}\ kdy\check{z}\ \mathcal{A}=\mathcal{B}/_{-B}\models\varphi\ (kde=je\ interpretov\acute{a}n\ jako\ identita).$

Všimněte si, že v jazyce bez rovnosti je kanonický model vždy spočetně nekonečný. V jazyce s rovností může ale být konečný, jak uvidíme v následujících příkladech.

 $^{^{10}\}mathrm{Tj.}$ termů zbudovaných aplikací funkčních symbolů jazyka Lna konstantní symboly jazyka L (má-li nějaké) a pomocné konstantní symboly z C.

11 Srovnejte aritmetický výraz "1+1" a 1+1=2.

 $P\check{r}iklad$ 1.4.5. Nejprve si ukažme příklad kanonického modelu v jazyce bez rovnosti. Mějme teorii $T = \{(\forall x)R(f(x))\}$ v jazyce $L = \langle R, f, d \rangle$ bez rovnosti, kde R je unární relační, f unární funkční, a d konstantní symbol. Najděme protipříklad ukazující, že $T \not\models \neg R(d)$.

Systematické tablo z T s položkou $F \neg R(d)$ v koření není sporné, obsahuje jedinou větev V, která je bezesporná. (Sestrojte si tablo sami!) Kanonický model pro V je L_C -struktura $\mathcal{A} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, c_2^{\mathcal{A}}, \dots \rangle$, jejíž doména je

$$A = \{ \text{"d"}, \text{"}f(d)\text{"}, \text{"}f(f(d))\text{"}, \dots, \text{"}c_0\text{"}, \text{"}f(c_0)\text{"}, \text{"}f(f(c_0))\text{"}, \dots, \text{"}c_1\text{"}, \text{"}f(c_1)\text{"}, \text{"}f(f(c_1))\text{"}, \dots \}$$

a interpretace symbolů jsou následující:

- $d^{\mathcal{A}} = "d"$.
- $c_i^{\mathcal{A}} = "c_i"$ pro všechna $i \in \mathbb{N}$,
- $f^{\mathcal{A}}("d") = "f(d)", f^{\mathcal{A}}("f(d)") = "f(f(d))", \dots$

•
$$R^{\mathcal{A}} = A \setminus C = \{ \text{"d"}, \text{"}f(d)\text{"}, \text{"}f(f(d))\text{"}, \dots, \text{"}f(c_0)\text{"}, \text{"}f(f(c_0))\text{"}, \dots, \text{"}f(c_1)\text{"}, \text{"}f(f(c_1))\text{"}, \dots \}.$$

Redukt kanonického modelu \mathcal{A} na původní jazyk L je potom $\mathcal{A}' = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}} \rangle$.

Příklad 1.4.6. Nyní příklad v jazyce s rovností: Mějme teorii $T = \{(\forall x) R(f(x)), (\forall x) (x = f(f(x)))\}$ v jazyce $L = \langle R, f, d \rangle$ s rovností. Opět najděme protipříklad ukazující, že $T \not\models \neg R(d)$.

Systematické tablo z teorie T^* (tj. z T rozšířené o axiomy rovnosti pro L) s položkou $F \neg R(d)$ v kořeni obsahuje bezespornou větev V. (Sestrojte si tablo sami!) Nejprve sestrojíme kanonický model \mathcal{B} pro tuto větev, jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

kde B je množina všech konstantních L_C -termů. Relace $=^B$ je definovaná, jako by symbol '=' byl 'obyčejným' relačním symbolem v L. Je to kongruence struktury \mathcal{B} , a platí pro ni, že $s_1 = ^B s_2$ právě když $s_1 = f(\cdots(f(s_2))\cdots)$ nebo $s_2 = f(\cdots(f(s_1))\cdots)$ pro sudý počet aplikací f. Jako reprezentanty jednotlivých tříd tedy můžeme vybrat termy s žádným nebo jedním výskytem symbolu f:

$$B/_{=B} = \{["d"]_{=B}, ["f(d)"]_{=B}, ["c_0"]_{=B}, ["f(c_0)"]_{=B}, ["c_1"]_{=B}, ["f(c_1)"]_{=B}, \dots \}$$

Kanonický model pro větev V je potom L_C -struktura

$$\mathcal{A} = \mathcal{B}/_{\equiv B} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, c_2^{\mathcal{A}}, \dots \rangle$$

kde $A = B/_{=B}$ a interpretace symbolů jsou následující:

- $d^{\mathcal{A}} = ["d"]_{=B}$,
- $c_i^{\mathcal{A}} = ["c_i"]_{=B}$ pro všechna $i \in \mathbb{N}$,
- $f^{\mathcal{A}}(["d"]_{=B}) = ["f(d)"]_{=B}, f^{\mathcal{A}}(["f(d)"]_{=B}) = ["f(f(d))"]_{=B} = ["d"]_{=B}, \dots$
- $R^{A} = A = B/_{-B}$.

Redukt kanonického modelu \mathcal{A} na původní jazyk L je opět $\mathcal{A}' = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}} \rangle$.

- Cvičení 1.3. (a) Sestrojte dokončené tablo s položkou $T(\forall x)(\forall y)(x=y)$ v kořeni. Sestrojte kanonický model pro (jedinou, bezespornou) větev tohoto tabla.
- (b) Sestrojte dokončené tablo s položkou $T(\forall x)(\forall y)(\forall z)(x=y\vee x=z\vee y=z)$ v kořeni. Sestrojte kanonické modely pro několik bezesporných větví a porovnejte je.

Nyní jsme připraveni dokázat Větu o úplnosti. Použijeme opět následující pomocné lemma, jehož znění je zcela stejné, jako znění Lemmatu ?? a důkaz se liší jen v technických detailech.

Lemma 1.4.7. Kanonický model pro (bezespornou dokončenou) větev V se shoduje s V.

 $D\mathring{u}kaz$. Nejprve uvažme jazyky bez rovnosti. Ukážeme indukcí podle struktury sentencí v položkách, že kanonický model \mathcal{A} se shoduje se všemi položkami P na větvi V.

Základ indukce, tj. případ, kdy $\varphi = R(s_1, \ldots, s_n)$ je atomická sentence, je jednoduchý: Je-li na V položka $T\varphi$, potom $(s_1, \ldots, s_n) \in R^{\mathcal{A}}$ plyne přímo z definice kanonického modelu, máme tedy $\mathcal{A} \models \varphi$. Je-li na V položka $F\varphi$, potom na V není položka $T\varphi$ (V je bezesporná), $(s_1, \ldots, s_n) \notin R^{\mathcal{A}}$, a $\mathcal{A} \not\models \varphi$

Nyní indukční krok. Rozebereme jen několik případů, ostatní se dokáží obdobně.

Pro logické spojky je důkaz zcela stejný jako ve výrokové logice, například je-li $P = F\varphi \wedge \psi$, potom protože je P na V redukovaná, vyskytuje se na V položka $F\varphi$ nebo položka $F\psi$. Platí tedy $\mathcal{A} \not\models \varphi$ nebo $\mathcal{A} \not\models \psi$, z čehož plyne $\mathcal{A} \not\models \varphi \wedge \psi$ a \mathcal{A} se shoduje s P.

Máme-li položku typu "všichni", například $P = T(\forall x)\varphi(x)$ (případ $P = F(\exists x)\varphi(x)$ je obdobný), potom jsou na V i položky $T\varphi(x/t)$ pro každý konstantní L_C -term, tj. pro každý prvek " $t'' \in A$. Dle indukčního předpokladu je $\mathcal{A} \models \varphi(x/t)$ pro každé "t" $\in A$, tedy $\mathcal{A} \models (\forall x)\varphi(x)$.

Máme-li položku typu "svědek", například $P=\mathrm{T}(\exists x)\varphi(x)$ (případ $P=\mathrm{F}(\forall x)\varphi(x)$ je obdobný), potom je na V i položka $T\varphi(x/c)$ pro nějaké "c" $\in A$. Dle indukčního předpokladu je $\mathcal{A}\models \varphi(x/c)$, tedy i $\mathcal{A}\models (\exists x)\varphi(x)$.

Je-li jazyk s rovností, máme kanonický model $\mathcal{A} = \mathcal{B}/_{=B}$, důkaz výše platí pro \mathcal{B} , a zbytek plyne z Pozorování 1.4.4.

Cvičení 1.4. Ověřte zbývající případy v důkazu Lemmatu 1.4.7.

Důkaz Věty o úplnosti je také analogický její verzi pro výrokovou logiku:

Věta 1.4.8 (O úplnosti). *Je-li sentence* φ *pravdivá v teorii* T, *potom je tablo dokazatelná z* T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Důkaz. Ukážeme, že libovolné dokončené tablo z T s položkou $F\varphi$ v kořeni je nutně sporné. Důkaz provedeme sporem: kdyby takové tablo nebylo sporné, existovala by v něm bezesporná (dokončená) větev V. Uvažme kanonický model \mathcal{A} pro tuto větev, a označme jako \mathcal{A}' jeho redukt na jazyk L. Protože je V dokončená, obsahuje $T\alpha$ pro všechny axiomy $\alpha \in T$. Model \mathcal{A} se podle Lemmatu 1.4.7 shoduje se všemi položkami na V, splňuje tedy všechny axiomy a máme i $\mathcal{A}' \models T$. Protože se ale \mathcal{A} shoduje i s položkou $F\varphi$ v kořeni, platí i $\mathcal{A}' \not\models \psi$, což znamená, že $\mathcal{A}' \in M_L(T) \setminus M_L(\varphi)$, tedy $T \not\models \psi$, a to je spor. Tablo tedy muselo být sporné, tj. být tablo důkazem φ z T.

1.5 (draft) Důsledky korektnosti a úplnosti

[TODO]

Zavedeme syntaktické varianty již definovaných sémantických pojmů.

Nechť T je teorie jazyka L. Je-li sentence φ dokazatelná z T, řekneme, že φ je věta (teorém) teorie T. Množinu vět teorie T označme

$$Thm^{L}(T) = \{ \varphi \in Fm_{L} \mid T \vdash \varphi \}.$$

Řekneme, že teorie T je

- $sporn\acute{a}$, jestliže je v T dokazatelný \bot (spor), jinak je $bezesporn\acute{a}$,
- kompletní, jestliže není sporná a každá sentence je v ní dokazatelná či zamítnutelná, tj. $T \vdash \varphi$ či $T \vdash \neg \varphi$.
- extenze teorie T' jazyka L', jestliže L' ⊆ L a Thm^{L'}(T') ⊆ Thm^L(T),
 o extenzi T teorie T' řekneme, že je jednoduchá, pokud L = L', a
 konzervativní, pokud Thm^{L'}(T') = Thm^L(T) ∩ Fm_{L'},
- ekvivalentní s teorií T', jestliže T je extenzí T' a T' je extenzí T.
 Z korektnosti a úplnosti tablo metody vyplývá, že předchozí pojmy se shodují se svými sémantickými variantami.

Důsledek Pro každou teorii T a sentence φ , ψ jazyka L,

- $T \vdash \varphi \ pr\'{a}v\check{e} \ kdy\check{z} \ T \models \varphi$,
- Thm^L(T) = $\theta^L(T)$.
- T je sporná, právě když je sémanticky sporná, tj. nemá model,
- T je kompletní, právě když je sémanticky kompletní, tj. má až na elementární ekvivalenci jediný model,
- $T, \varphi \vdash \psi$ právě $když T \vdash \varphi \rightarrow \psi$ (Věta o dedukci).

Poznámka Větu o dedukci lze dokázat přímo, transformací příslušných tabel.

1.5.1 Löwenheim-Skolemova věta

[TODO]

Věta Každá bezesporná teorie T spočetného jazyka L bez rovnosti má spočetně nekonečný model.

 $D\mathring{u}kaz$ Nechť τ je systematické tablo z T s $F\bot$ v kořeni. Jelikož je dokončené a obsahuje bezespornou větev V, neboť \bot není dokazatelný z T, existuje kanonický model \mathcal{A} z V. Jelikož se \mathcal{A} shoduje s V, jeho redukt na jazyk L

je hledaným spočetně nekonečným modelem T. \square

Poznámka Jde o slabou verzi tzv. Löwenheim-Skolemovy věty. Ve spočetném jazyce s rovností je kanonický model s rovností spočetný.

Věta Teorie má model, právě když každá její konečná část má model. Důkaz Implikace zleva doprava je zřejmá. Pokud teorie T nemá model, je sporná, tj. je z ní dokazatelný \bot systematickým tablem τ . Jelikož je τ konečné, je \bot dokazatelný z nějaké konečné $T' \subseteq T$, tj. T' nemá model. \Box

1.5.2 Věta o kompaktnosti

[TODO]

1.5.3 Aplikace

[TODO]

Nestandardní model přirozených čísel

Nechť $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel.

Označme Th($\underline{\mathbb{N}}$) množinu všech pravdivých sentencí v $\underline{\mathbb{N}}$. Pro $n \in \mathbb{N}$ označme \underline{n} term $S(S(\dots(S(0)\dots), \text{tzv. } n\text{-tý numerál}, \text{kde } S \text{ je aplikováno } n\text{-krát.}$

Uvažme následující teorii T, kde c je nový konstantní symbol.

$$T = \operatorname{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

Pozorování Každá konečná část teorie T má model.

Tedy dle věty o kompaktnosti má T model A, jde o nestandardní model přirozených čísel. Každá sentence z Th $(\underline{\mathbb{N}})$ v něm platí, ale zároveň obsahuje prvek c^A větší než každé $n \in \mathbb{N}$ (tj. hodnota termu \underline{n} v A).

1.6 (draft) Hilbertovský kalkulus v predikátové logice [TODO]

Hilbertovský kalkul

- základní logické spojky a kvantifikátory: \neg , \rightarrow , $(\forall x)$ (ostatní odvozené)
- dokazují se libovolné formule (nejen sentence)

- logické axiomy (schémata logických axiomů)
 - (i) $\varphi \to (\psi \to \varphi)$
 - (ii) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - $(iii) \qquad (\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$
 - (iv) $(\forall x)\varphi \rightarrow \varphi(x/t)$ je-lit substituovatelný za x do φ
 - $(v) \hspace{1cm} (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi) \hspace{1cm}$ není-lixvolná proměnná ve φ

kde φ , ψ , χ jsou libovolné formule (daného jazyka), t je libovolný term a x je libovolná proměnná.

- je-li jazyk s rovností, mezi logické axiomy patří navíc axiomy rovnosti
- odvozovací (deduktivní) pravidla

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$
 (modus ponens), $\frac{\varphi}{(\forall x)\varphi}$ (generalizace)

Pojem důkazu

 $D\mathring{u}kaz$ ($Hilbertova\ stylu$) formule φ z teorie T je konečná posloupnost $\varphi_0,\ldots,\varphi_n=\varphi$ formulí taková, že pro každé $i\leq n$

- φ_i je logický axiom nebo $\varphi_i \in T$ (axiom teorie), nebo
- $\bullet \ \varphi_i$ lze odvodit z předchozích formulí pomocí odvozovacích pravidel.

Formule φ je dokazatelná v T, má-li důkaz z T, značíme $T \vdash_H \varphi$.

Věta Pro každou teorii T a formuli φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$. $D\mathring{u}kaz$

- Je-li $\varphi \in T$ nebo logický axiom, je $T \models \varphi$ (logické axiomy jsou tautologie),
- jestliže $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, pak $T \models \psi$, t
j. modus ponens je korektní,
- jestliže $T \models \varphi$, pak $T \models (\forall x)\varphi$, tj. pravidlo generalizace je korektní,
- $\bullet\,$ tedy každá formule vyskytující se v důkazu z Tplatí v T.

Poznámka Platí i úplnost, tj. $T \models \varphi \Rightarrow T \vdash_H \varphi$ pro každou teorii T a formuli φ .