MA 6.101 Probability and Statistics

Tejas Bodas

Assistant Professor, IIIT Hyderabad

Conditioning with random variables

▶ Conditioning X on an event $A \in \mathcal{F}$.

- ightharpoonup Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].

- ightharpoonup Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .

- ightharpoonup Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .
- ▶ Conditioning X on an event $\{X \in A\} \in \mathcal{F}'$

- ightharpoonup Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .
- ▶ Conditioning X on an event $\{X \in A\} \in \mathcal{F}'$
- Conditioning X on another random variable Y.

- ▶ Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .
- ▶ Conditioning X on an event $\{X \in A\} \in \mathcal{F}'$
- Conditioning X on another random variable Y.
- ▶ Conditional expectation E[X|Y=y].

 \triangleright Pick 2 integers from $\{1, 2, 3\}$ without replacement.

- \triangleright Pick 2 integers from $\{1,2,3\}$ without replacement.

- \triangleright Pick 2 integers from $\{1,2,3\}$ without replacement.
- $ightharpoonup \mathbb{P}\{\omega\} = \frac{1}{6} \text{ for all } \omega \in \Omega.$

- \triangleright Pick 2 integers from $\{1,2,3\}$ without replacement.
- $ightharpoonup \mathbb{P}\{\omega\} = \frac{1}{6} \text{ for all } \omega \in \Omega.$
- \triangleright Denote them by random variables X and Y.

- \triangleright Pick 2 integers from $\{1,2,3\}$ without replacement.
- $ightharpoonup \mathbb{P}\{\omega\} = \frac{1}{6} \text{ for all } \omega \in \Omega.$
- \triangleright Denote them by random variables X and Y.
- For $\omega = (1,3) \ X(\omega) = 1$ and $Y(\omega) = 3$.

- \triangleright Pick 2 integers from $\{1,2,3\}$ without replacement.
- $ightharpoonup \mathbb{P}\{\omega\} = \frac{1}{6} \text{ for all } \omega \in \Omega.$
- Denote them by random variables X and Y.
- For $\omega = (1,3) \ X(\omega) = 1$ and $Y(\omega) = 3$.
- ▶ Write down their joint PMF $p_{X,Y}(x,y)$.

- \triangleright Pick 2 integers from $\{1,2,3\}$ without replacement.
- $ightharpoonup \mathbb{P}\{\omega\} = \frac{1}{6} \text{ for all } \omega \in \Omega.$
- Denote them by random variables X and Y.
- For $\omega = (1,3) \ X(\omega) = 1$ and $Y(\omega) = 3$.
- ▶ Write down their joint PMF $p_{X,Y}(x,y)$.
- ightharpoonup Write down their marginal PMFs p_X and p_Y ?

- \triangleright Pick 2 integers from $\{1,2,3\}$ without replacement.
- $ightharpoonup \mathbb{P}\{\omega\} = \frac{1}{6} \text{ for all } \omega \in \Omega.$
- Denote them by random variables X and Y.
- For $\omega = (1,3) \ X(\omega) = 1$ and $Y(\omega) = 3$.
- ▶ Write down their joint PMF $p_{X,Y}(x,y)$.
- ightharpoonup Write down their marginal PMFs p_X and p_Y ?
- ightharpoonup What is E[X], E[Y] and E[XY]?

► Given/If dice rolls odd, what is the probability that the outcome is 1?

- ► Given/If dice rolls odd, what is the probability that the outcome is 1?
- ▶ Given/If $\bar{\omega} \in [0, 0.5]$ what is the probability that $\bar{\omega} \in [0, 0.25]$?

- ► Given/If dice rolls odd, what is the probability that the outcome is 1?
- ▶ Given/If $\bar{\omega} \in [0, 0.5]$ what is the probability that $\bar{\omega} \in [0, 0.25]$?
- The conditional probability of event B given event A is defined as $\mathbb{P}(B/A) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$ when $\mathbb{P}(A) > 0$.

▶ Consider a discrete r.v. X with pmf $p_X(x)$.

Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event A has happened where $A \in \mathcal{F}$.

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event A has happened where $A \in \mathcal{F}$.
- Consider event $\{\omega \in \Omega : X(\omega) = x\}$. We will use shorthand $\{X = x\}$.

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event A has happened where $A \in \mathcal{F}$.
- Consider event $\{\omega \in \Omega : X(\omega) = x\}$. We will use shorthand $\{X = x\}$.
- ▶ What is $\mathbb{P}(X = x|A)$?

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event A has happened where $A \in \mathcal{F}$.
- Consider event $\{\omega \in \Omega : X(\omega) = x\}$. We will use shorthand $\{X = x\}$.
- What is $\mathbb{P}(X = x|A)$? $\mathbb{P}(X = x|A) = \frac{\mathbb{P}(\{X = x\} \cap A)}{\mathbb{P}(A)}$.

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event A has happened where $A \in \mathcal{F}$.
- Consider event $\{\omega \in \Omega : X(\omega) = x\}$. We will use shorthand $\{X = x\}$.
- ▶ What is $\mathbb{P}(X = x|A)$? $\mathbb{P}(X = x|A) = \frac{\mathbb{P}(\{X = x\} \cap A)}{\mathbb{P}(A)}$.

$$p_{X|A}(x) := \frac{\mathbb{P}(\{X=x\} \cap A)}{\mathbb{P}(A)}.$$

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event A has happened where $A \in \mathcal{F}$.
- Consider event $\{\omega \in \Omega : X(\omega) = x\}$. We will use shorthand $\{X = x\}$.
- ▶ What is $\mathbb{P}(X = x|A)$? $\mathbb{P}(X = x|A) = \frac{\mathbb{P}(\{X = x\} \cap A)}{\mathbb{P}(A)}$.

$$p_{X|A}(x) := \frac{\mathbb{P}(\{X=x\} \cap A)}{\mathbb{P}(A)}.$$

 $ightharpoonup p_{X|A}(x)$ denotes the conditional PMF of X under event A.

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event A has happened where $A \in \mathcal{F}$.
- Consider event $\{\omega \in \Omega : X(\omega) = x\}$. We will use shorthand $\{X = x\}$.
- ▶ What is $\mathbb{P}(X = x|A)$? $\mathbb{P}(X = x|A) = \frac{\mathbb{P}(\{X = x\} \cap A)}{\mathbb{P}(A)}$.

$$p_{X|A}(x) := \frac{\mathbb{P}(\{X=x\} \cap A)}{\mathbb{P}(A)}.$$

- $ightharpoonup p_{X|A}(x)$ denotes the conditional PMF of X under event A.
- In the running example say A is the event that the first number is odd and second is even.

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event A has happened where $A \in \mathcal{F}$.
- Consider event $\{\omega \in \Omega : X(\omega) = x\}$. We will use shorthand $\{X = x\}$.
- ▶ What is $\mathbb{P}(X = x|A)$? $\mathbb{P}(X = x|A) = \frac{\mathbb{P}(\{X = x\} \cap A)}{\mathbb{P}(A)}$.

$$p_{X|A}(x) := \frac{\mathbb{P}(\{X=x\} \cap A)}{\mathbb{P}(A)}.$$

- $ightharpoonup p_{X|A}(x)$ denotes the conditional PMF of X under event A.
- In the running example say A is the event that the first number is odd and second is even. $A = \{(1,2), (3,2)\}$. Compute $p_{X|A}(\cdot)$.

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event A has happened where $A \in \mathcal{F}$.
- Consider event $\{\omega \in \Omega : X(\omega) = x\}$. We will use shorthand $\{X = x\}$.
- ▶ What is $\mathbb{P}(X = x|A)$? $\mathbb{P}(X = x|A) = \frac{\mathbb{P}(\{X = x\} \cap A)}{\mathbb{P}(A)}$.

$$p_{X|A}(x) := \frac{\mathbb{P}(\{X=x\} \cap A)}{\mathbb{P}(A)}.$$

- $\triangleright p_{X|A}(x)$ denotes the conditional PMF of X under event A.
- In the running example say A is the event that the first number is odd and second is even. $A = \{(1,2), (3,2)\}$. Compute $p_{X|A}(\cdot)$.
- ▶ How do we know that it is consistent, i.e., $\sum_{x} p_{X|A}(x) = 1$?

Consistency of conditional PMF

$$\sum_{x} p_{X|A}(x) = 1.$$

Proof:

Consistency of conditional PMF

$$\sum_{x} p_{X|A}(x) = 1.$$

Proof:

Consistency of conditional PMF

$$\sum_{x} p_{X|A}(x) = 1.$$

Proof:

▶ $\{\omega \in \Omega : X(\omega) = x\}$ are disjoint sets for different x.

Consistency of conditional PMF

$$\sum_{x} p_{X|A}(x) = 1.$$

- ▶ $\{\omega \in \Omega : X(\omega) = x\}$ are disjoint sets for different x.
- From theorem of total probability, this implies that

Consistency of conditional PMF

$$\sum_{x} p_{X|A}(x) = 1.$$

- ▶ $\{\omega \in \Omega : X(\omega) = x\}$ are disjoint sets for different x.
- From theorem of total probability, this implies that $\{X = x\} \cap A$ are disjoint sets for all x.

Consistency of conditional PMF

$$\sum_{x} p_{X|A}(x) = 1.$$

- ▶ $\{\omega \in \Omega : X(\omega) = x\}$ are disjoint sets for different x.
- From theorem of total probability, this implies that $\{X = x\} \cap A$ are disjoint sets for all x.

$$\sum_{x} p_{X|A}(x) = \frac{\mathbb{P}(\bigcup_{x} \{\{X=x\} \cap A)\}}{\mathbb{P}(A)} = \frac{\mathbb{P}(A)}{\mathbb{P}(A)} = 1.$$

Lets X denote the outcome of a dice.

- Lets X denote the outcome of a dice.
- Let A denote the event that the roll is odd.

- Lets X denote the outcome of a dice.
- Let A denote the event that the roll is odd.
- ▶ What is $p_{X|A}(x)$?

- Lets X denote the outcome of a dice.
- Let A denote the event that the roll is odd.
- ightharpoonup What is $p_{X|A}(x)$?
- ▶ Given that event A has happened, what is the average value of the dice, i.e., E[X|A]?

$$E[X/A] = \sum_{x} x p_{X|A}(x).$$

Using LOTUS,

$$E[g(X)/A] = \sum_{x} g(x) p_{X|A}(x).$$

▶ Conditioning X on an event $A \in \mathcal{F}$.

- ▶ Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].

- ightharpoonup Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .

- ▶ Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ightharpoonup Conditioning X with disjoint partitions $\{A_i\}$ of Ω .
- ▶ Conditioning X on an event $\{X \in A\} \in \mathcal{F}'$

- ightharpoonup Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ightharpoonup Conditioning X with disjoint partitions $\{A_i\}$ of Ω .
- ▶ Conditioning X on an event $\{X \in A\} \in \mathcal{F}'$
- Conditioning X on another random variable Y.

- ightharpoonup Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .
- ▶ Conditioning X on an event $\{X \in A\} \in \mathcal{F}'$
- Conditioning X on another random variable Y.
- ▶ Conditional expectation E[X|Y=y].

Now let $\{A_i, i = 1, 2, ..., n\}$ be a disjoint partition of Ω .

- ▶ Now let $\{A_i, i = 1, 2, ..., n\}$ be a disjoint partition of Ω .
- Prove the following using law of total probability

- ▶ Now let $\{A_i, i = 1, 2, ..., n\}$ be a disjoint partition of Ω .
- Prove the following using law of total probability

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

- ▶ Now let $\{A_i, i = 1, 2, ..., n\}$ be a disjoint partition of Ω .
- Prove the following using law of total probability

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

- Now let $\{A_i, i = 1, 2, ..., n\}$ be a disjoint partition of Ω .
- Prove the following using law of total probability

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

Proof:

$$\sum_{i=1}^n \mathbb{P}(A_i)^{\frac{\mathbb{P}(\{X=x\}\cap A_i)}{\mathbb{P}(A_i)}} = \sum_{i=1}^n \mathbb{P}(\{X=x\}\cap A_i) = \mathbb{P}(\{X=x\}).$$

► The last equality follows from the law of total probability.

- Now let $\{A_i, i = 1, 2, ..., n\}$ be a disjoint partition of Ω .
- Prove the following using law of total probability

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

$$\sum_{i=1}^n \mathbb{P}(A_i)^{\frac{\mathbb{P}(\{X=x\}\cap A_i)}{\mathbb{P}(A_i)}} = \sum_{i=1}^n \mathbb{P}(\{X=x\}\cap A_i) = \mathbb{P}(\{X=x\}).$$

- ► The last equality follows from the law of total probability.
- An important consequence is the following.

- Now let $\{A_i, i = 1, 2, ..., n\}$ be a disjoint partition of Ω .
- Prove the following using law of total probability

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

$$\sum_{i=1}^n \mathbb{P}(A_i)^{\frac{\mathbb{P}(\{X=x\}\cap A_i)}{\mathbb{P}(A_i)}} = \sum_{i=1}^n \mathbb{P}(\{X=x\}\cap A_i) = \mathbb{P}(\{X=x\}).$$

- ► The last equality follows from the law of total probability.
- ► An important consequence is the following.

$$E[X] = \sum_{i=1}^{n} \mathbb{P}(A_i) E[X|A_i]$$

▶ Conditioning X on an event $A \in \mathcal{F}$.

- ▶ Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].

- ightharpoonup Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .

- ▶ Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .
- ▶ Conditioning X on an event $\{X \in A\} \in \mathcal{F}'$

- ightharpoonup Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .
- ▶ Conditioning X on an event $\{X \in A\} \in \mathcal{F}'$
- Conditioning X on another random variable Y.

- ightharpoonup Conditioning X on an event $A \in \mathcal{F}$.
- ightharpoonup Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .
- ▶ Conditioning X on an event $\{X \in A\} \in \mathcal{F}'$
- Conditioning X on another random variable Y.
- ▶ Conditional expectation E[X|Y=y].

▶ Consider a discrete r.v. X with pmf $p_X(x)$.

Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event $X \in A$ has happened where $A \in \mathcal{F}'$.

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event $X \in A$ has happened where $A \in \mathcal{F}'$.
- $X \in A = \{\omega \in \Omega : X(\omega) \in A\} \text{ and } \mathbb{P}\{X \in A\} = \sum_{x \in A} p_X(x).$

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event $X \in A$ has happened where $A \in \mathcal{F}'$.
- $X \in A = \{\omega \in \Omega : X(\omega) \in A\} \text{ and } \mathbb{P}\{X \in A\} = \sum_{x \in A} p_X(x).$
- ▶ We will use the same notation $p_{X|A}(x) := \frac{\mathbb{P}(\{X=x\} \cap \{X \in A\})}{\mathbb{P}(X \in A)}$.

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event $X \in A$ has happened where $A \in \mathcal{F}'$.
- $X \in A = \{\omega \in \Omega : X(\omega) \in A\} \text{ and } \mathbb{P}\{X \in A\} = \sum_{x \in A} p_X(x).$
- We will use the same notation $p_{X|A}(x) := \frac{\mathbb{P}(\{X=x\} \cap \{X \in A\})}{\mathbb{P}(X \in A)}$.
- ▶ If $x \notin A$, we have $p_{X|A}(x) = 0$.

Conditioning on event $X \in A$

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event $X \in A$ has happened where $A \in \mathcal{F}'$.
- $X \in A = \{\omega \in \Omega : X(\omega) \in A\} \text{ and } \mathbb{P}\{X \in A\} = \sum_{x \in A} p_X(x).$
- We will use the same notation $p_{X|A}(x) := \frac{\mathbb{P}(\{X=x\} \cap \{X \in A\})}{\mathbb{P}(X \in A)}$.
- ▶ If $x \notin A$, we have $p_{X|A}(x) = 0$.
- ▶ Otherwise (when $x \in A$,), we have $p_{X|A}(x) = \frac{p_X(x)}{\mathbb{P}(X \in A)}$.

Conditioning on event $X \in A$

- Consider a discrete r.v. X with pmf $p_X(x)$. Suppose an event $X \in A$ has happened where $A \in \mathcal{F}'$.
- $X \in A = \{\omega \in \Omega : X(\omega) \in A\} \text{ and } \mathbb{P}\{X \in A\} = \sum_{x \in A} p_X(x).$
- We will use the same notation $p_{X|A}(x) := \frac{\mathbb{P}(\{X=x\} \cap \{X \in A\})}{\mathbb{P}(X \in A)}$.
- ▶ If $x \notin A$, we have $p_{X|A}(x) = 0$.
- ▶ Otherwise (when $x \in A$,), we have $p_{X|A}(x) = \frac{p_X(x)}{\mathbb{P}(X \in A)}$.
- ▶ Running example: Suppose we are given $X \in A$ where $A = \{2,3\}$. What is $p_{X|A}(x)$?

 \triangleright Let N be a geometric random variable with parameter p.

- \triangleright Let N be a geometric random variable with parameter p.
- ► Its pmf is $p_N(k) = (1-p)^{k-1}p$.

- \triangleright Let N be a geometric random variable with parameter p.
- ► Its pmf is $p_N(k) = (1-p)^{k-1}p$.
- ightharpoonup Suppose we are given the event A := N > n.

- \triangleright Let N be a geometric random variable with parameter p.
- ► Its pmf is $p_N(k) = (1-p)^{k-1}p$.
- ▶ Suppose we are given the event $A := N > n.P(A) = (1 p)^n$.

- \triangleright Let N be a geometric random variable with parameter p.
- ► Its pmf is $p_N(k) = (1-p)^{k-1}p$.
- ▶ Suppose we are given the event $A := N > n.P(A) = (1 p)^n$.
- ▶ What is $p_{N|A}(k)$?

- \triangleright Let N be a geometric random variable with parameter p.
- ► Its pmf is $p_N(k) = (1-p)^{k-1}p$.
- ▶ Suppose we are given the event $A := N > n.P(A) = (1 p)^n$.
- ightharpoonup What is $p_{N|A}(k)$?
- For k > n, $p_{N|A}(k) = \frac{P\{(N > n) \cap N = k\}}{P(N > n)} = (1 p)^{k 1 n} p$. For $k \le n$, we have $p_{N|A}(k) = 0$.

▶ What is P(N > n + m|N > n)?

- ▶ What is P(N > n + m|N > n)?
- $P(N > n + m | N > n) = \frac{P(N > n + m)}{P(N > n)} = (1 p)^m = P(N > m).$

- ▶ What is P(N > n + m|N > n)?
- $P(N > n + m | N > n) = \frac{P(N > n + m)}{P(N > n)} = (1 p)^m = P(N > m).$
- If N denotes number of tosses till you first get a head, and having already tossed more than n times, the probability of having to toss more than n + m is same as starting the experiment (forgetting that you have already tossed more than n times) fresh and having to toss more than m times.

- ▶ What is P(N > n + m|N > n)?
- $P(N > n + m | N > n) = \frac{P(N > n + m)}{P(N > n)} = (1 p)^m = P(N > m).$
- If N denotes number of tosses till you first get a head, and having already tossed more than n times, the probability of having to toss more than n + m is same as starting the experiment (forgetting that you have already tossed more than n times) fresh and having to toss more than m times.
- How much you have tossed till now has no bearing on how much you will be required to toss.

$$P(N > n + m|N > n) = P(N > m)$$
 (Memoryless property).

HW: Find E[N|A] where event $A = \{N > n\}$ and n > 0.