

NOME: _____

Tópicos de Física Moderna Exame de Recurso Licenciatura em Engenharia Informática

4 de julho de 2012 - 14h00 Duração - 2h30

_____ n°:

O exame é formado por dez questões. As questões de escolha múltipla só são consideradas corretas se forem selecionadas <u>todas</u> as opções corretas que lhes correspondem. <u>Deve apresentar os cálculos que justifiquem as opções assinaladas</u> .
Q1. $\vec{E}(x,t) = 100 \ sen \left[-2\pi \ (4 \times 10^{14} t - 2 \times 10^6 \ x) \right] \hat{k}$ representa uma radiação eletromagnética
polarizada na direção do eixo dos Z e a propagar-se no sentido positivo do eixo dos X, e em que $A=100$ nm; $\lambda=500$ nm; $T=2.5\times10^{-15}$ s; $v=2.0\times10^{8}$ m/s.
polarizada na direção do eixo dos Z e a propagar-se no sentido positivo do eixo dos X, e em que $A=100 \text{ V/m}; \lambda=500 \text{ nm}; T=2.5\times10^{-15} \text{ s}; v=2.0\times10^8 \text{ m/s}.$
polarizada na direção do eixo dos X e a propagar-se no sentido positivo do eixo dos X, e em que $A=100$ nm; $\lambda=400$ nm; $f=4\times10^{14}$ Hz; $v=c$.
polarizada na direção do eixo dos X e a propagar-se no sentido positivo do eixo dos Z, e em que $A=100 \text{ V/m}; \lambda=500 \text{ nm}; f=4\times10^{14} \text{ s}^{-1}; v=c/1.5.$
polarizada na direção do eixo dos Z e a propagar-se no sentido positivo do eixo dos X, e em que $A = 100 \text{ V/m}$; $\lambda = 500 \text{ nm}$; $f = 4 \times 10^{14} \text{ s}^{-1}$; $n = 1.5$.
$(A-amplitude;\ \lambda-comprimento\ de\ onda;\ f-frequência;\ T-período;\ v-velocidade\ de\ propagação;\ n-índice\ de\ refração)$
Q2. As seguintes seis afirmações <u>são falsas</u> . Escreva-as de novo de forma correta.
1) Os vários tipos de radiação eletromagnética propagam-se no vazio todos com a mesma velocidade e todos com a mesma frequência.
2) Quando uma dada radiação incide, segundo a normal, numa interface vidro-água, não há feixe refletido porque toda a radiação é transmitida sem mudar de direção.

	para outro com índice de refração maior, os fei	xes refletido e refra	tado aproximam-se da normal.
	4) O ângulo crítico para que ocorra reflexão in	terna total numa int	erface benzeno-água é de 33.33° (n _{bz}
	=1.82,		$n_{ ext{água}} = 1.33$
	5) Se radiação natural (despolarizada) de interestador de passar pelo polarizador fica polarizador		
	6) Radiação natural (despolarizada) de intensideais cujos eixos de transmissão fazem entre polarizador continua despolarizada mas a sua intensidea despolarizada despolari	e si um ângulo de	• •
0val	Q3. Radiação monocromática vermelha (λ = entre as duas fendas é de 0.1 mm. O padrão distância. Os primeiros zeros da irradiância milímetros e em radianos, em	le interferência obse	erva-se num alvo colocado a 2 m de
	□ ± 1.28 mm		\Box ± 3.2×10 ⁻³ rad
	□ ± 0.64 mm		$ = \pm 6.4 \times 10^{-3} $
	□ ± 6.4 mm		1 ± 3.2 rad
	□ ± 12.8 mm		□ ± 0.0032 rad
	□ ± 0.64 cm		1 ± 0.0064 rad
0val	Q4. Um astronauta de 40 anos vai até uma Quando o astronauta parte o seu filho tem 18 a		
	a) O astronauta deve viajar à velocidade	b) Qua	ndo regressa o astronauta tem
	\square $v = 0.55c$		55 anos
	\square $v = 0.75c$		menos de 55 anos
	$\square v = \frac{2}{3}c$		$40 + 5\sqrt{5}$
	$\Box \frac{2}{3}c < v < c$		mais de 55 anos
	\square $v=c$		51,18 anos

2.0val	Q5. a)	Determine a energia total (E) de uma partícula de	e mass	sa \underline{m} a deslocar-se à velocidade de
	$\frac{1}{\sqrt{2}}c$			
		$E = mc^2 \left(\sqrt{2} + 1 \right)$		$E = \sqrt{2} mc^2$
		$E = \frac{mc^2}{\sqrt{2}}$		$E = \sqrt{2} mc^{2}$ $E = \frac{\sqrt{2} mc^{2}}{2}$ $E = 1.4142 mc^{2}$
		$E = mc^2 \left(\sqrt{2} - 1\right)$		$E = 1.4142 mc^2$
	b)	Determine o comprimento de onda de de Broglie	(λ) da	mesma partícula (massa <u>m</u> e v =
	$\frac{1}{\sqrt{2}}c)$			
		$\lambda = \frac{h}{\sqrt{2} \ mc}$		$\lambda = \frac{h}{mc}$
		$\lambda = \frac{\sqrt{2} h}{mc}$		$\lambda = \frac{h}{mc}$ $E = \frac{\sqrt{2} h}{2 mc}$
1.5val		as seguintes afirmações assinale as que são verdadeira	as (V)	e as que são falsa (F)
1		to fotoelétrico		
		o comprimento de onda da radiação incidente no cátoo		-
		a frequência da radiação incidente no cátodo aumenta		-
		o comprimento de onda da radiação incidente no ca ocorrente medida e aumenta o potencial de corte.	átodo	aumenta, aumenta a intensidade da
		o comprimento de onda da radiação incidente no cáto	do dim	ninui aumenta o notencial de corte
		a intensidade da radiação monocromática que incide		-
	de corte		110 Ca	todo damenta, admenta o potenerar
		a intensidade da radiação monocromática que incide rorrente medida mas o potencial de corte mantém-se c		
3.0val		onsidere um sistema atómico formado por um protão sando o modelo atómico de Bohr determine:	o e um	antiprotão ($m_p = 1.673 \times 10^{-27} \text{ kg}$).
	a) A ma	assa reduzida do sistema $\mu = kg$	g	
	b) A co	nstante de Rydberg para este "átomo" R =		m ⁻
	c) A en	ergia de ligação do estado fundamental deste "átom I	$E_1 = $	1
	d) O ma	nior e o menor comprimento de onda da série de Lyma	an des	te "átom $\lambda_{max} = m;$
				$\lambda_{\min} = m$

Dados:	m ($^{40}_{19}K$)= 39.964000 u m $_{\alpha}$ = 4.002603 u	m ($_{17}^{36}Cl$)= 35.9 m _e = 5.4858×10		m $\binom{40}{20}Ca$ = 39.962591 u u = 1.660540×10 ⁻²⁷ kg
a) Escr	eva a equação que traduz o de	ecaimento α deste n	uclídeo.	
b) Escr	eva a equação que traduz o de	ecaimento β deste	nuclídeo.	
2) (5)	una acha ao daointa ana a		<u></u>	
c-1) conver	mo sabe as desintegrações rad Indique, <u>ju</u> nientemente, qual ou quais ticos mecanismos de des	s dos dois	c-2) A	energia (Q) libertada na ação radioativa identificada em c-1
-	fetivamente ocorrer.	sintegração		Q = 1.314 MeV
				Q = 0.803 MeV
				$Q = 2.106 \times 10^{-13} \text{ J}$ $Q = 1.314 \times 10^{6} \text{ eV}$
				$Q = 1.314 \times 10^{-8} \text{ eV}$ $Q = 1.409 \times 10^{-3} \text{ u c}^2 \text{ (J)}$
				$Q = 0.8604 \times 10^{-3} \text{ u c}^2 \text{ (J)}$
)		$Q = 1.286 \times 10^{-13} \text{ eV}$
de cada Coloca- este fra período	semana. Um médico encon co em frente a um detetor de sco por outro acabado de o de meia vida do isótopo radi no hospital há	ntra um frasco do e Geiger, que regist chegar, obtêm-se 4	referido is a 3.5×10^3 7×10^3 converifica-se	e num hospital no mesmo dia e hora sótopo, sem a etiqueta de chegada. contagens por minuto. Substituindo tagens por minuto. Sabendo que o que o isótopo encontrado sem rótulo
	20.8 dias30 dias			4.32×10^4 minutos 3.0×10^4 minutos
	54 dias			7200 horas
1.5val Q10. D	as seguintes afirmações assin	ale as que são verd	adeiras (V)) e as que são falsa (F)
No don	nínio da física de partículas			
	neutrões e os protões são j iões.	partículas composta	as por três	s quarks e pertencem ao grupo dos
Too	das as partículas elementares	pertencentes ao gru	po dos fer	miões têm spin 1/2.
A r	principal diferenca entre os qu	iarks e os lentões es	stá no spin	

Uma diferença entre os quarks e os leptões é que nos primeiros a carga elétrica é uma fração da
carga elementar e nos segundos e carga elétrica é nula ou múltiplo inteiro de e .
O eletrão é uma partícula elementar do grupo dos leptões.
O protão, o neutrão e o eletrão pertencem ao grupo dos leptões.