◎ 公 開 特 許 公 報 (A) 平4-121186

®Int. Cl. 5

識別記号

庁内整理番号

49公開 平成4年(1992)4月22日

C 12 N 9/16 A 21 D 8/04 //(C 12 N 9/16 C 12 R 1:225) Z 7823-4B 9162-4B

審査請求 未請求 請求項の数 4 (全7頁)

60発明の名称 新規エステラーゼ、生産菌及び利用

郊特 願 平2-238974

苗

巌

❷出 頤 平2(1990)9月11日

@ 発明者 小崎 道

東京都世田谷区上用賀3-7-10

加発明者 岡田

東京都府中市幸町2-9-2

@発明者 吉 田

埼玉県富士見市関沢 3 -19-28-402

@発明者 豊田 建吾

東京都北区堀船 1-29-6

⑪出 願 人 オリエンタル酵母工業

東京都板橋区小豆沢3丁目6番10号

株式会社

勿出 願 人

日本油脂株式会社

東京都千代田区有楽町1丁目10番1号

仍代 理 人 弁理士 戸田 親男

- ·1-発明の名称

新規エステラーゼ、生産菌及び利用

- 2.特許請求の範囲
 - (1) 下、記の理化学的性質を有する新規エステラーゼ。
 - 1. 小麦粉のphospholipids、Iveen80及び1monooleoy1-rac-glycerolに作用する。
 - 小麦粉のphospholipids、Tween80及び1monooleoy1-rac-glycerolに作用し、triolein、 1-3-diolein及び小麦粉のnonpolar lipidsに作用しない基度特異性を有する。
 - 3. pH5~8の至適pHを有する。
 - 4. 30~45℃の至道温度を有する。
 - (2) ラクトパチルス属に属し、諸求項第1項の新 規エステラーゼを生産する菌もしくはその培養 物。
 - (3) 諸求項第1項の新規エステラーゼ、請求項第 2項の苗もしくはその培養物を用いて製造した パンもしくは菓子パン。

- (4) 請求項第1項の新規エステラーゼ、請求項第 2項の蓄もしくはその培養物を用いて中種を製 造し、持られた中種を各種原料と混合して生地 を製造し、特られた生地を発酵し、焼成するこ とを特徴とするパンもしくは菓子パンの製造法。
- 3.発明の詳細な説明

(産業上の利用分野)

本発明は、新規エステラーゼ、生産菌及びその 利用に関するものである。

更に詳細には、本発明は、パンの老化を防止する作用を有する新規エステラーゼとその生産蓄及 びこれらを用いたパンもしくは菓子パンに関する ものである。

本発明の新規エステラーゼ、その生産菌もしく はその培養物を、パンもしくは菓子パンの製造に 際して用いれば、製造されたパンもしくは菓子パ ンはかなり老化がおくれ、食パンであれば3日~ 2週間間くなるのが防止されるのである。

従って、本元明はパン東昇や菓子パン業界に大 いに貢献するものである

(従来技術及び問題点)

一般的に、パンもしくは菓子製等は老化しやすい食品の一つである。しかしながら、近年のパンもしくは菓子の消費者指向としては、いつまでも果らかくて新鮮な要素が求められている。この老化抑制に対し、いままでモノグリセライド等の食品添加物で対応していたが、最近の天然物志向に合致していないという問題点がある。

一方、伝統的な製パン法において、パン種として使われているサンフランシスコサワーやパネト ー・ネサワーを用いれば、常法でも長時間柔らかなパンができることは知られており、それらサワードウ中の乳酸菌がその効果に関与しているといわれている。このことは最近の研究で明かにされている。

しかしながら、サンフランシスコサワーやパネトーネサワーのパン種苗の系統的管理は難しく、また原料や製パン工程の管理、例えば温度、限期時間により大きく影響をうけ、長時間柔らかなパン、そして品質の安定したパンが得られにくいと

命名されているが、この酵素をパン生地調製時に 使用すれば、この酵素が脂質に作用して生成した 分解物がパンの長時間にわたる柔軟性保持に役立 つものと考えられるに至っている。

本発明のエステラーゼTMの現化学的性質の詳細 は次の通りである。

- 1. 小麦粉のphospholipids、Tween80及び1-. monoolecyl-rac-glycerolに作用する。
- 小支筋のphospholipids、Twoen80及び1noncoleoyl-rac-glycerolに作用し、triolein、1 -3-diolein及び小支筋の nonpolar lipidsに作用 しない基質特異性を有する。

種々の基質に対するエステラーゼ活性の比較は 次の表1に示される。 いう久点があった。

(問題点を解決するための手段)

本発明者らは、パンを長時間柔らかく保つ技術を、サンフランシスコやパネトーネなどの地域に 限定されることなく、どこでも利用できるように 鋭意研究したところ、本発明においてパンを長時 間柔らかく保つことのできる酵素を明らかにし、 パンを長時間柔らかく保つパン製造技術を確立す ることに成功したのである。

即ち、本発明は下記の選化学的性質を有する新 規工ステラーゼに関する。

- 1. 小支粉のphospholipids. Tween80及び1monooleoyl-rac-glycerolに作用する。
- 2. 小変数のphospholipids、Tween80及び1noncoleoyl-rac-glycerolに作用し、triolein、1 -3-diolein及び小変数の nonpolar lipidsに作用 しない基質物異性を有する。
 - 3. pH5~8の至道pHを有する.
 - 4. 30~45℃の至遠温度を有する。

本発明の新規エステラーゼはエステラーゼTNと

-	•
-79	- 1

¥	X		相对活性(%)
Ive	en 80		100
(Pol	yoxyethylene	Sorbitan M	onooleate)
Tri	olien		. 0
1,3	-Diolein		0
1 – H	oncoleoyl-ra	c-Glycerol	65
Non	polar lipids	(小类粉)	0
Pho	spholipids	(小麦粉)	150

3. pH5~8の至選pHを有する。 .

エステラーゼ活性に及ぼすpHの影響は、広域パッファーである BrittonとRobinsonのパッファーを用いて 4.0から10.0までの間で測定した。 基質には各pHのパッファーに搭解した 0.1mg/m2のBSAを含む1.5%Tveen80を使用し、37℃で30分間反応させた。

その結果は第1回に示す通りである。

4. 30~45℃の至適温度を有する。

20℃から55℃の間で酵素活性を選定した。その

他の条件は至道pHの選定と同じように行なった。 その結果は第2因に示す通りである。

5. エステラーゼTKの製造

ラクトバチルス クルバタス (Lactobacillus curvetus) TN-8 NRIC 1715(FERN P-11682)を GYP 培地(500ppmのTween80と1%の酢酸ソーダを含む)で30で、24時間培養した。

培養液を5000rpmで15分遠心分離し、苗体を特、これを2mM CaCR。を含むpH7.0の50mM β-glycerophosphate bufferで2回洗浄し、6000 rpmで15分図遠心分離し、特られた薬体をpH 7.8 の50mM Trim-HCR bufferの 200mR中に懸濁させ、 30でで2時間インキュベートし、1800rpm で30分遠心分離し、沈澱物を除去し、エステラーゼTM抽 出液を特た。

6. 酵素活性の器定

商体懸濁液と相製酵素: 0.1mg/maの BSAを含む
 1.5%のTveen80(50mHリン酸パッファー、pH7.0)
 商液を基質として37℃で30分間反応させた。懸濁液の場合は反応液を遠心分離(15000rpm×3min.)

DEAE-SephacelによるCVEのイオン交換クロマト グラフィーは第4図に示される。

球水クロマトグラフィー: 0.5Mの確安 (50mKトリス塩酸パッファー、pH7.8)で平衡化したブチルトヨパール650Mのカラム(1.5×15cm)に 0.5M確安 決度のイオン交換クロマトグラフィー活性部分を 1 m2/sinの決速でアプライした。280mm の吸光度が0.05以下になるまで0.5Mの確安で洗浄したのち、0.5Mから 0 M確安のリニアーグラジェント(400m2)で常出した。

ブチルトヨパールを用いた確水クロマトグラフィーによるエステラーゼINの特製は第5回に示さ

8. 分子量。

SDS-PAGE: 破水クロマトグラフィーより得られた た活性質分をpH7.0の 50mKリン酸パッファーと遠心限外濾過チューブ(ザルトリウス社製)で脱塩、 濃縮したものを泳動用試料とした。7.5% ポリアクリルアミドゲルのミニスラブ電気泳動装置(アトー社製)を使用し、Lacasaliの方法(5)に準拠し し、上消液のオレイン酸量を遊離脂肪酸湖定キット(和光純薬)で測定した(10% 騰滑液50μ2-基質2mg)。CVEと分面チューブ: 0.2mg/mgの BSAを含む3.0%のTween80溶液を基質として37℃で4時間反応後、四様に測定した(試料1m2-基質1m2)。

L. curvatus TH-8株のインタクトセルによる
Tveen80の分類曲線は第3図に示される。

本酵業ではTween80 を分解し、1分間に1点nolのオレイン酸を生成する酵素量を1単位とした。

7. 酵素の精製

イオン交換クロマトグラフィー:pH7.8の SOmNトリス塩酸パッファーで平衡化したDEAE-Sephacelカラム(2.5×20cm)にCVEを 2 m2/minの液速でアプライした。CVE をアプライ後、トリス塩酸パッファーで洗浄した。非吸着の吸光度が低下したのちに 2 m2/minの液速で 5 m2ずつ分画し 0 から0.3HNaC2(50mMのトリス塩酸パッファー、pE7.8)のリニアーグラジェント(500m2)で溶出した。静楽活性の面分は集めた後、0.6Mの確安濃度に質製した。ピークは280mmの吸光度で検出した。

て行なった。分子量マーカーはペーリンガー社裏を用いた。タンパクはクマシーブリリアントブルーG250で染色した。

精製されたエステラーゼTNのSDS-PAGEは第6図 ヒポされる。

エステラーゼINの分子量は8400であった。

本発明は、ラクトパチルス属に属し、請求項第 1項のエステラーゼINを生産する菌を包含してい

エステラーゼIN生産苗の具体例としては、サワー種から分離されたラクトバチルス クルバタス (Lactobacillus curvatus) IN-8 MRIC 1716(FERM P-11682)があげられる。

ラクトパチルス クルパタスTN-8の菌学的性質 は次の通りである。

	_111	
形業		rods
グラム染色		+
カタラーゼ		- .
15℃の生育		+

特別平4-121186 (4)

45℃の生育	-	salicin	+
最選pH	6.0~7.5	raffinose	- :
発酵のタイプ	hono	sorbitol	-
乳酸の光学形態	DL	mannitol	-
•	. ·	gluconate	-
- 第の発	<u>即性</u>	starch	
L-arabinose	_	melezitose	
D-ribose	- ·	·	•
D-xylose	_	ビタミンと塩基の要求性	_
glucose	†	thiamine	-
fructose	+	- riboflavin	+
galactose	· +	biotin	_
Rannose	+	niacin	+
rhannose	· _	PABA	-
naltose	+ .	Ca-pantothenate	+
cellobiose	<u>-</u>	folic acid	+
lactose -	+	pyridoxal	-
melibiose	-	pyridoxine	-
sucrose		adenine	-
trobalose	+	guanine	-

uracil.	~
.xanthine	.

ラクトバチルス クルバタスTM-8はGYP培地 (500ppmのTwoen80と1%の酢酸ソーダを含む)で 30℃、24時間程度培養することによって単一菌の 培養物を得ることができる。

*** GYP培地組成は次の通りである。

glucose	20g
yeast extract	10g
peptone	10€
Na-acetate-3H,0	10¢
NgSO7H. 0	200mg
NgS0 4H. 0	10mg
FeSO. 7H. 0	10mg
NaCe	10mg
vetor V	1000m#
aue S	

本発明においては、エステラーゼIN、エステラーゼIN生産菌もしくはその培養物を用いてパンも しくは菓子パンを製造し、長時間柔軟性を保持す るパンもしくは菓子パンを得ることができるものである。

エステラーゼIN、エステラーゼIN生産菌もしく はその培養物を用いて中種を製造し、得られた中 種を各種原料と混合して生地を製造し、得られた 生地を発酵し、焼成することによってパンもしく は菓子パンを製造することができる。

次に本発明の実施例を示す。

突旋例1

ラクトバチルス クルバタス (Lactobacillus curvatus) IN-8 NRIC 1716(FERN P-11682)をGYP培地 (500ppmのTween80と1%の酢酸ソーダを含む)で30で、24時間培養した。

培養液を 6000rpmで15分遠心分離し、ラクトバチルス クルパタスTN-8の培養物を得た。

実施例 2

大豆レシチン10gとサラダ油10gを混合、加熱溶解し、水 80gを加えてホモミキサーで混合し、乳化液とした。

この乳化液 100m2に実施例1で将た培養物の10

% 融濁液10m2に添加し、30℃で3日間提拌インキュペートし、インキュペート処理物を特た。

このインキュペート処理物は、そのまま生菌体 を含んでいてもよく、また、殺菌してもいずれで もパンもしくは菓子パンの製造に使用することが できる。

実施例3

実施例2で特たインキュベート処理物(生蔵体含有)5g、小変物100g、水38.5g、フード0.1g、パン酵母2gをよく混合し、28℃で4時間置き、中種とした。

この中程にショートニング4g、食塩2g、砂糖4g、小支粉 70g、水65gを加え、よく混合し、ドウとした。

このドウはフロアタイム15分とり、分割し、ペンチタイム17分とり、成型し、ケースに入れて、ホイロで37℃で55分置き、次いで 220℃で40分娩成し、食パン得た。

通常食パンは冷蔵庫に入れても2~3日で図くなるがこの食パンは5日間は柔軟性を保持してい

た.

4. 図面の簡単な説明

第1回はエステラーゼINの至適pRを示す図で、 第2回はその至適温度を示す図で、第3回はイン タクトセルによるIvecn80の分解を示す図で、第 4回はDEAE-SephacelによるCVEのイオン交換クロ マトグラフィーを示す図で、第5回はブチルトヨ パールを用いた球水クロマトグラフィーによるエ ステラーゼINの精製を示す図で、第6回は精製されたエステラーゼINのSDS-PAGEを示す図である。

代理人 弁理士 戸 田 親 男

¥

2; エステラーゼ TN

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

□ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR (QUALITY
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.