Title: subtitle

Ty Stanford †

February 11, 2016

†School of Mathematical Sciences The University of Life

Motivation

Research question:

• Find the thing

Data:

Hierarchical

Model:

Generalized Linear Mixed Model (GLMM)

ML is used to obtained the parameter estimates in GLMMs

 The (profiled) log-likehood function is approximated to a specified degree

Motivating data: some data

outcome	cluster	individual	predictor	covariates
0	1	1	49	x' _{1,1}
1	1	2	88	$x'_{1,2}$
:	:	:	:	:
Θ	1	n_1	59	$x'_{1,n_{-1}}$
1	2	1	91	$x'_{2,1}$
Θ	2	2	45	x' _{2,2}
:	:	:	:	:
0	2	n_2	94	$x'_{1,n_{-2}}$
÷	:	:	:	:
1	m	1	49	x' _{m,1}
1	m	2	147	$x'_{m,2}$
:	:	:	:	:
0	m	n_m	57	$x'_{1,nm}$

Adaptive GHQ (aGHQ)

aGHQ simply means standard normal variate type tranformation takes place which alters the formula (Liu and Pierce, 1992):

$$\int_{-\infty}^{\infty} g(x) dx \approx \sqrt{2} \hat{\sigma} \sum_{q=1}^{Q} e^{-x_q^2} w_q g(\hat{\mu} + \sqrt{2} \hat{\sigma} x_q)$$

where

- $\hat{\mu} = \arg\max_{x} g(x)$, and
- $\hat{\sigma}$ is the Fisher Information at $\hat{\mu}$: $\hat{\sigma} = \frac{1}{\sqrt{-\frac{\partial^2}{\partial x^2} \ln g(x) \Big|_{x=\hat{\mu}}}}$

aGHQ example (Q = 7)

$ au_1=2$	Q = 1	Q = 2	Q = 3	Q = 4	Q = 5	Q = 6	Q = 7
$\alpha (\hat{\tau}_1)$	0.373	0.954	0.204	0.035	0.037	0.040	0.033
$ar{\hat{ au}}_{1}$	1.671	1.456	1.757	1.949	1.927	2.033	1.990

Summary

Statement

- sub statement 1
- sub statement 2
- sub statement 3

Acknowledgements

Thank you to The University of Life and my co-authors.

