

SEQUENCE LISTING

<110> Vrljic, Marina, Eggeling, Lothar, Sahm, Hermann

<120> Process for the microbial production of amino acids by boosted activity of export carriers

<130> 1

<140> PCT/DE96/02485

<141> 1996-12-18

<160> 1

<170> PatentIn Ver. 2.1

Seq - only opp

<210> 1

<211> 2374

<212> DNA

<213> Corynebacterium glutamicum

<400> 1

ggtaaacgac ttccacaatg agacggaccg ggttaaggac gccccgttct tcacttttg 60
ggacttgaa aagtcttcat tgattccggc gtttagggagc taacgacgt a gttgctgccg 120
cagacactca gatcgatctc tagatctaag gtccgcggta gcaacggta t gtagccaca 180
cagttaccca tagagtagct cctccttagtg aagaggacga aaatcgta ctcgtcgaac 240
ccaaagccct tcttcagggg ttggttccgg agccgcttaa cggagtgggt ttggaaggcg 300
gctgccctgt tacatatgcg cggacgcggg gtgtcctggc agctgcgcgg gcagggtccag 360
tgccagaact tcgtgttagaa accctggctt cgcattctgc ccgttagcgtc gggtagatc 420
aaagggtagt tggtagatcc gttagggcggtt actccccaa cgttaccggc tcaccgcgt 480
ccaagggtca agatgatgaa gtgttagggcg gtgcctaat cgaagtgc aatggcgagg 540
atttgtaga ggtgcggcgt cgttcctatt acacacgcga agtagaaaggt tcgcgtcgca 600
ctcgcaacga ggtggggttc ttcgatggag caacttgtc cctccttgg tacacctatc 660
gcttagacgc aactaccgct accaattgcc cttaaagtctgt tccgcaggtc tatcaacgcg 720
aaatcaaaga cgaacgtcgt tttggtaaaa ggccgcacga acgttttctt gaagtggcg 780
aagccaaacga aaccggccaa cccacgcgtc atgggtgtga gctgggtgca ctacgagctc 840
tcgaaattgc gcgactgagt ggcggctccc ctttacctt tcccgatccc tccgcggaaag 900
cttcgacgga agtagttact aactctcggt tcacaggtca acttaccctt agtagaaagct 960
atattaaacc atgttaagaa ccaatcatt tacttaagta cttccatagg tcacgatgg 1020
gatcatggaa atcttcatta caggtctgtt tttggggcc agtcttttac tgtccatcg 1080
accgcagaat gtactgtga ttaaacaagg aattaagcgc gaaggactca ttgcgggttct 1140
tctcgtgtgt ttaattctg acgtttttt gttcatcgcc ggcaccttgg gcgttgcgt 1200
tttgcataat ggcgcggcga tcgtgtcgat tattatgcgc tgggtggca tcgcttacct 1260
gttatggttt ggcgtcatgg cagcgaaaga cgccatgaca aacaagggtgg aagcgccaca 1320
gatcattgaa gaaacagaac caaccgtgcc cgatgacacg ctttggcg gttcggcggt 1380
ggccactgac acgcgcacc ggtgcgggtt ggaggtgagc gtcgataagc agcgggtttg 1440
gttaaagccc atgttgcgtt caatcgatgg gacctgggtt aacccgaatg cgtatttgg 1500
cgcgttgtt tttatcgccg ggcgtccgc gcaatacgac gacaccggac ggtggatttt 1560

cggcgctggc gcgttcgcgg caagcctgat ctggttcccg ctgggtgggtt tcggcgcagc 1620
acattgtca cgccccgtgt ccagccccaa ggtgtggcgc tggatcaacg tcgtcggtgc 1680
agggtgatg accgcattgg ccatcaaact gatgttgatg ggtagtttt cgccgggttt 1740
ccttagccac cggaagcggg tttacaacta cggccgcagc accctttaga gtagctagcg 1800
gaggttggcgc cgcagtcttt tgagggttcaa caactcactt agttccgaca acaggtcgac 1860
gagttgactg cttcggtt agttacgtga ccagtgccat aggccggca tgagaggaac 1920
gagcgcgtcg tgggtacgtt cgcggtagac gcgttcactg acgggcgcaa ggaccggcta 1980
cagtaactcg aacgcctggt atagttataa caagtgcaga ttgtacggga gtctgtccct 2040
gaatgggacc gaccgcgccc ttgggagacc ttaaggttagc tctataaaca ggcactcgtc 2100
cgggacgcgt tcaccactct ttcgttactg cggttctggt aacaaccgtc gactgacgtt 2160
gttcaagagt ggcagtagcg gccaaaggag gtgggttgct aattactacc ttatcgaacc 2220
gactacttag tcttcgcccgc tcgggaggag gcggtacttg agtcggcggaa ggcgacactc 2280
gagacctggc atccttcttt atgggtgcat ttctcgaaa ggtctgcgtt gttacagtgc 2340
gttacgcgtg taccaaagaa gtttcctca taga 2374

SEQUENCE LISTING

<110> Vrljic, Marina, Eggeling, Lothar, Sahm, Hermann

<120> Process for the microbial production of amino acids by boosted activity of export carriers

<130> 1

<140> PCT/DE96/02485

<141> 1996-12-18

<160> 2

<170> PatentIn Ver. 2.1

FZJ 9910. app

<210> 1

<211> 2374

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1016)..(1726)

<223> LysE

<220>

<221> gene

<222> Complement((1421)..(2293))

<223> LysG

<220>

<221> unsure

<222> Complement((2)..(652))

<223> ORF3

<400> 1

ggtaaacgac ttccacaatg agacggaccc ggttaaggac gcccgccttct tcacttttg 60

ggacttggaa aagtcttcat tgattccggc gtttagggagc taacgacgta gttgctgccg 120

cagacactca gatcgatctc tagatctaag gtccgcggta gcaacggtta tgttagccaca 180

cagttaccca tagagtagct cctcctagtg aagaggacga aaatcgtacc ctcgtcgaac 240

ccaaagccct tcttcagggg ttgggtccgg agccgcctaa cggagtggtt ttggaaggcg 300

gctgccctgt tacctatgcg cggacgcggg gtgtcctggc agctgcgcgg gcaggtccag 360

tgccagaact tcgtgtagaa accctggctt cgcatctgc ccgtacgatc gggtagatc 420
aaagggtagt tggtagatcc gtagggcggt actccccaa cgttaccggt tcaccgcgt 480
ccaagggtca agatgtatgaa gtgtagggcg gtgcctaat cgaagtgcggc aatggcgagg 540
attttgtaga ggtgcggcgt cgttcctatt acacacgcga agtagaaggt tcgcgtcgca 600
ctcgcaacga ggtgggttc ttgcgtggag caacttgcgc ctcctttgg tacacctatac 660
gcttagacgc aactaccgct accaattgcc cttaaagtgcgt tccgcaggc tatcaacgcg 720
aaatcaaaga cgaacgtcgt tgtggtaaaa ggcgcgacga acgtgttcct gaagtggcg 780
aagccaaacga aaccggccaa cccacgcgct atggttgtga gctgggtgca ctacgagctc 840
tcgaaattgc gcgactgagt ggcggctccc ccttacattt tcccgattcc tccgcggaaag 900
cttcgacgga agtagttact aactctcggt tcacaggatca acttacccca agtagaagct 960
atattaaacc atgttaagaa ccaatcattt tacttaagta cttccatagg tcacg atg 1018
Met

gtg atc atg gaa atc ttc att aca ggt ctg ctt ttg ggg gcc agt ctt 1066
Val Ile Met Glu Ile Phe Ile Thr Gly Leu Leu Leu Gly Ala Ser Leu
5 10 15

tta ctg tcc atc gga ccg cag aat gta ctg gtg att aaa caa gga att 1114
Leu Leu Ser Ile Gly Pro Gln Asn Val Leu Val Ile Lys Gln Gly Ile
20 25 30

aag cgc gaa gga ctc att gcg gtt ctt ctc gtg tgt tta att tct gac 1162
Lys Arg Glu Gly Leu Ile Ala Val Leu Leu Val Cys Leu Ile Ser Asp
35 40 45

```

gtc ttt ttg ttc atc gcc ggc acc ttg ggc gtt gat ctt ttg tcc aat    1210
Val Phe Leu Phe Ile Ala Gly Thr Leu Gly Val Asp Leu Leu Ser Asn
   50          55          60          65

```

gcc gcg ccg atc gtg ctc gat att atg cgc tgg ggt ggc atc gct tac 1258
Ala Ala Pro Ile Val Leu Asp Ile Met Arg Trp Gly Gly Ile Ala Tyr
70 75 80

ctg tta tgg ttt gcc gtc atg gca gcg aaa gac gcc atg aca aac aag 1306
Leu Leu Trp Phe Ala Val Met Ala Ala Lys Asp Ala Met Thr Asn Lys
85 90 95

gtg gaa gcg cca cag atc att gaa gaa aca gaa cca acc gtg ccc gat			1354
Val Glu Ala Pro Gln Ile Ile Glu Glu Thr Glu Pro Thr Val Pro Asp			
100	105	110	
gac acg cct ttg ggc ggt tcg gcg gtg gcc act gac acg cgc aac cg			1402
Asp Thr Pro Leu Gly Gly Ser Ala Val Ala Thr Asp Thr Arg Asn Arg			
115	120	125	
gtg cgg gtg gag gtg agc gtc gat aag cag cgg gtt tgg gta aag ccc			1450
Val Arg Val Glu Val Ser Val Asp Lys Gln Arg Val Trp Val Lys Pro			
130	135	140	145
atg ttg atg gca atc gtg ctg acc tgg ttg aac ccg aat gcg tat ttg			1498
Met Leu Met Ala Ile Val Leu Thr Trp Leu Asn Pro Asn Ala Tyr Leu			
150	155	160	
gac gcg ttt gtg ttt atc ggc ggc gtc ggc gcg caa tac ggc gac acc			1546
Asp Ala Phe Val Phe Ile Gly Gly Val Gly Ala Gln Tyr Gly Asp Thr			
165	170	175	
gga cgg tgg att ttc gcc gct ggc gcg ttc gcg gca agc ctg atc tgg			1594
Gly Arg Trp Ile Phe Ala Ala Gly Ala Phe Ala Ala Ser Leu Ile Trp			
180	185	190	
ttc ccg ctg gtg ggt ttc ggc gca gca gca ttg tca cgc ccg ctg tcc			1642
Phe Pro Leu Val Gly Phe Gly Ala Ala Ala Leu Ser Arg Pro Leu Ser			
195	200	205	
agc ccc aag gtg tgg cgc tgg atc aac gtc gtc gtg gca gtt gtg atg			1690
Ser Pro Lys Val Trp Arg Trp Ile Asn Val Val Val Ala Val Val Met			
210	215	220	225
acc gca ttg gcc atc aaa ctg atg ttg atg ggt tag tttcgcggg			1736
Thr Ala Leu Ala Ile Lys Leu Met Leu Met Gly			
230	235		
ttttccttag ccaccggaag cgggtttaca actacggccg cagcacccct tagagtagct			1796
agcggagggtt gagccgcagt cttttgaggt tcaacaactc acttagtcc gacaacaggt			1856
cgacgagttg actgcttcgt ggttagttac gtgaccagtg ccatagggcg ggcattgagag			1916
gaacgagcgc gtcgtggta cggtcgccgt agacgcgttc actgacgggc gcaaggaccc			1976
gctacagtaa ctcgaacgcc tggtagtttataataacaagtg caagttgtac gggagtctgt			2036
ccctgaatgg gaccgaccgc gcccttggga gacctaagg tagctctata aacaggcact			2096

cgtccgggac gcgttcacca ctcttcgtt actgcggttc tggtaacaac cgtcgactga 2156
cggtgttcaa gagtggcagt agcgggccaa ggaggtgggt tgctaattac taccttatcg 2216
aaccgactac tttagtctcg cccgtcggga ggaggcggta cttgagtcgg cgaggcgac 2276
actcgagacc tggcatcctt ctatgggt gcattctcg gaaaggctcg cgttgttaca 2336
gtgcgttacg catgtaccaa agaaggttc ctcataga 2374

<210> 2
<211> 236
<212> PRT
<213> Corynebacterium glutamicum

<400> 2
Met Val Ile Met Glu Ile Phe Ile Thr Gly Leu Leu Leu Gly Ala Ser
1 5 10 15
Leu Leu Leu Ser Ile Gly Pro Gln Asn Val Leu Val Ile Lys Gln Gly
20 25 30
Ile Lys Arg Glu Gly Leu Ile Ala Val Leu Leu Val Cys Leu Ile Ser
35 40 45
Asp Val Phe Leu Phe Ile Ala Gly Thr Leu Gly Val Asp Leu Leu Ser
50 55 60
Asn Ala Ala Pro Ile Val Leu Asp Ile Met Arg Trp Gly Gly Ile Ala
65 70 75 80
Tyr Leu Leu Trp Phe Ala Val Met Ala Ala Lys Asp Ala Met Thr Asn
85 90 95
Lys Val Glu Ala Pro Gln Ile Ile Glu Glu Thr Glu Pro Thr Val Pro
100 105 110
Asp Asp Thr Pro Leu Gly Gly Ser Ala Val Ala Thr Asp Thr Arg Asn
115 120 125
Arg Val Arg Val Glu Val Ser Val Asp Lys Gln Arg Val Trp Val Lys
130 135 140
Pro Met Leu Met Ala Ile Val Leu Thr Trp Leu Asn Pro Asn Ala Tyr
145 150 155 160
Leu Asp Ala Phe Val Phe Ile Gly Gly Val Gly Ala Gln Tyr Gly Asp
165 170 175
Thr Gly Arg Trp Ile Phe Ala Ala Gly Ala Phe Ala Ala Ser Leu Ile
180 185 190
Trp Phe Pro Leu Val Gly Phe Gly Ala Ala Ala Leu Ser Arg Pro Leu
195 200 205
Ser Ser Pro Lys Val Trp Arg Trp Ile Asn Val Val Val Ala Val Val
210 215 220
Met Thr Ala Leu Ala Ile Lys Leu Met Leu Met Gly
225 230 235