Aufgabe 47

(a) Es gilt

$$(0,0)*(a_1,a_2)=(a_1,a_2)\forall (a_1,a_2)\in\mathbb{Z}^2$$

Damit ist (0,0) das neutrale Element. Weiter ist durch

$$((-1)^{-a_2+1}a_1, -a_2) * (a_1, a_2) = ((-1)^{-a_2+1}a_1 + (-1)^{-a_2}a_1, -a_2 + a_2) = (0, 0)$$

das Inverse zu (a_1, a_2) bestimmt. Die Assoziativität folgt durch

$$\begin{aligned} ((a_1, a_2) * (b_1, b_2)) * (c_1, c_2) &= (a_1 + (-1)^{a_2} b_1, a_2 + b_2) * (c_1, c_2) \\ &= (a_1 + (-1)^{a_2} b_1 + (-1)^{a_2 + b_2} c_1, (a_2 + b_2) + c_2) \\ &= (a_1 + (-1)^{a_2} (b_1 + (-1)^{b_2} c_1), a_2 + (b_2 + c_2)) \\ &= (a_1, a_2) * (b_1 + (-1)^{b_2} c_1, b_2 + c_2) \\ &= (a_1, a_2) * ((b_1, b_2) * (c_1, c_2)) \end{aligned}$$

Offensichtlich ist jedes Produkt wieder in \mathbb{Z}^2 enthalten. Dadurch wird $(\mathbb{Z}^2,*)$ zu einer Gruppe. Wegen

$$(1,2) * (2,1) = (1 + (-1)^2 2, 2 + 1) = (3,3)$$

 $(2,1) * (1,2) = (2 + (-1)^1 1, 1 + 2) = (1,3)$

ist die Gruppe nicht abelsch. $(0,0)*(x_1,x_2)=(x_1,x_2)$ mit $(x_1,x_2)\in\mathbb{R}^2$ folgt analog zum Beweis, dass (0,0) neutrales Element von $(\mathbb{Z}^2,*)$ ist. $(a_1,a_2)*((b_1,b_2)*(x_1,x_2))=((a_1,a_2)*(b_1,b_2))*(x_1,x_2)$ folgt analog zum Beweis der Assoziativität. Daher handelt es sich um eine Linksoperation. Diese ist wegen

$$D[(a_1, a_2) * (b_1, b_2)] = \begin{pmatrix} (-1)^{a_2} & 0 \\ 0 & 1 \end{pmatrix}$$

differenzierbar. Offensichtlich sind alle höheren partiellen Ableitungen 0. Daher handelt es sich um eine glatte Gruppenoperation.

- (b) Wir zeigen die beiden Eigenschaften einer freien Operation.
 - (1) Wähle zu $x \in \mathbb{R}^2$ die offene Umgebung $U_{1/2}(x)$. Man sieht (u.a. aus Symmetriegründen) schnell ein, dass $(a_1, a_2) * U_{\epsilon}(x) = U_{\epsilon}((a_1, a_2) * x)$ gelten muss. Daher erhalten wir

$$(a_{1}, a_{2}) * U_{1/2}(x) \cap U_{1/2}(x) \neq \emptyset \Leftrightarrow U_{1/2}((a_{1}, a_{2}) * x) \cap U_{1/2}(x) \neq \emptyset$$

$$\implies U_{1/2}((a_{1} + (-1)^{a_{2}}x_{1}, a_{2} + x_{2})) \cap U_{1/2}((x_{1}, x_{2})) \neq \emptyset$$

$$\implies |a_{1} + (-1)^{a_{2}}x_{1} - x_{1}|^{2} + |a_{2} + x_{2} - x_{2}|^{2} < 1$$

$$\implies |a_{1} + (-1)^{a_{2}}x_{1} - x_{1}|^{2} + |a_{2}|^{2} < 1$$

$$\stackrel{a_{2} \in \mathbb{Z}}{\Longrightarrow} |a_{1} + (-1)^{a_{2}}x_{1} - x_{1}|^{2} < 1 \wedge a_{2} = 0$$

$$\implies |a_{1} + x_{1} - x_{1}|^{2} < 1 \wedge a_{2} = 0$$

$$\implies |a_{1}|^{2} < 1 \wedge a_{2} = 0$$

$$\stackrel{a_{1} \in \mathbb{Z}}{\Longrightarrow} a_{1} = a_{2} = 0$$

- (2) Seien $(x_1, x_2) \not\sim (y_1, y_2) \in \mathbb{R}^2$ gegeben. Wieder nutzen wir $(a_1, a_2) * U_{\epsilon}(x) = U_{\epsilon}((a_1, a_2) * x)$. Daher genügt es zu zeigen, dass $||(a_1, a_2) * (x_1, x_2) (y_1, y_2)|| \geq 2\epsilon$ gilt. Dann sind nämlich beliebig Translate der ϵ -Umgebungen von x und y disjunkt. Wir unterscheiden drei Fälle
 - i. $x_2 y_2 \notin \mathbb{Z}$. Setze $\epsilon = \frac{x_2 y_2 \mod \mathbb{Z}}{2}$. Wegen

$$\|(a_1, a_2) * (x_1, x_2) - (y_1, y_2)\| \ge \sqrt{|a_2 + x_2 - y_2|^2} \ge \sqrt{(x_2 - y_2 \mod \mathbb{Z})^2} \ge 2 \cdot \epsilon$$

folgt die Aussage für diesen Fall.

ii. $x_2 - y_2 \in 2\mathbb{Z}$. Setze $\epsilon = \frac{x_1 - y_1 \mod \mathbb{Z}}{2}$. Insbesondere ist $\epsilon < \frac{1}{2}$. Angenommen, $\epsilon = 0$. Dann wäre $y_1 - x_1, y_2 - x_2) * (x_1, x_2) = (y_1 - x_1 + (-1)^{x_2 - y_2} x_1, y_2 - x_2 + x_2) = (y_1, y_2)$, Widerspruch. Also $0 < \epsilon < \frac{1}{2}$. Daher gilt für alle $(a_1, a_2) * (x_1, x_2) = (a_1 + (-1)^{a_2} x_1, a_2 + x_2)$ mit $a_2 + x_2 \neq y_2$ bereits

$$||(a_1, a_2) * (x_1, x_2) - (y_1, y_2)|| \ge \sqrt{|a_2 + x_2 - y_2|^2} \ge 1 \ge 2 \cdot \epsilon.$$

Wir müssen also nur (a_1, a_2) betrachten mit $a_2 + x_2 = y_2$. Aufgrund der Voraussetzung gilt $y_2 - x_2 \in 2\mathbb{Z}$. Es folgt $(a_1, y_2 - x_2) * (x_1, x_2) = (a_1 + (-1)^{y_2 - x_2} x_1, y_2) = (a_1 + x_1, y_2)$. Schließlich erhalten wir

$$||(a_1, y_2 - x_2) * x - y|| = |a_1 + x_1 - y_1| \ge x_1 - y_1 \mod \mathbb{Z} \ge 2\epsilon.$$

iii. $x_2 - y_2 \in 2\mathbb{Z} + 1$. Setze $\epsilon = \frac{x_1 + y_1 \mod \mathbb{Z}}{2}$. Insbesondere ist $\epsilon < \frac{1}{2}$. Angenommen, $\epsilon = 0$. Dann wäre $y_1 + x_1, y_2 - x_2) * (x_1, x_2) = (y_1 + x_1 + (-1)^{x_2 - y_2} x_1, y_2 - x_2 + x_2) = (y_1, y_2)$, Widerspruch. Also $0 < \epsilon < \frac{1}{2}$. Daher gilt für alle $(a_1, a_2) * (x_1, x_2) = (a_1 + (-1)^{a_2} x_1, a_2 + x_2)$ mit $a_2 + x_2 \neq y_2$ bereits

$$||(a_1, a_2) * (x_1, x_2) - (y_1, y_2)|| \ge \sqrt{|a_2 + x_2 - y_2|^2} \ge 1 \ge 2 \cdot \epsilon.$$

Wir müssen also nur (a_1, a_2) betrachten mit $a_2 + x_2 = y_2$. Aufgrund der Voraussetzung gilt $y_2 - x_2 \in 2\mathbb{Z}$. Es folgt $(a_1, y_2 - x_2) * (x_1, x_2) = (a_1 + (-1)^{y_2 - x_2} x_1, y_2) = (a_1 - x_1, y_2)$. Schließlich erhalten wir

$$||(a_1, y_2 - x_2) * x - y|| = |a_1 - x_1 - y_1| \ge x_1 + y_1 \mod \mathbb{Z} \ge 2\epsilon.$$

(c) Wir haben oben bereits gesehen, dass die Gruppenoperation glatt ist wegen

$$D[(a_1, a_2) * (b_1, b_2)] = \begin{pmatrix} (-1)^{a_2} & 0 \\ 0 & 1 \end{pmatrix}.$$

Identifiziert man $\mathbb{R}^2 \cong \mathbb{C}$, so verstößt diese Jacobimatrix für ungerade a_2 gegen die Cauchy-Riemann-Differentialgleichungen. Daher ist die Gruppenoperation nicht holomorph. Insbesondere wird $G \setminus \mathbb{C}$ nicht zu einer Riemannschen Fläche.

Aufgabe 48

Offensichtlich ist $p_1 \times p_2 \colon X_1 \times X_2 \to Y_1 \times Y_2$ surjektiv. Sei $(x^1, x^2) \in X_1 \times X_2$. Dann existieren nach Definition der Überlagerung Umgebungen $x^1 \in U^1, x^2 \in U^2$ mit

$$p_k^{-1}(U^k) = \biguplus_{i \in F^k} U_i^k,$$

sodass alle Einschränkungen $p_k|_{U_i^k}\colon U_k^i\stackrel{\sim}{\to} U^k$ bistetig sind für $k\in\{1,2\}.$ Daher gilt

$$\begin{split} (p_1 \times p_2)^{-1} (U^1 \times U^2) &= \{ (x_1, x_2) | p(x_1) \in U^1, p(x_2) \in U^2 \} \\ &= \{ (x_1, x_2) | x_1 \in \biguplus_{i \in F^1} U_i^1, x_2 \in \biguplus_{j \in F^2} U_j^2 \} \\ &= \biguplus_{i \in F^1} \{ (x_1, x_2) | x_1 \in U_i^1, x_2 \in \biguplus_{j \in F^2} U_j^2 \} \\ &= \biguplus_{i \in F^1} \biguplus_{j \in F^2} \{ (x_1, x_2) | x_1 \in U_i^1, x_2 \in U_j^2 \} \\ &= \biguplus_{(i, j) \in F^1 \times F^2} U_i^1 \times U_j^2 \end{split}$$

Wegen $p_k|_{U_i^k}\colon U_k^i \stackrel{\sim}{\to} U^k$ bistetig für $K \in \{1,2\}$ folgt, dass

$$p_1 \times p_2|_{U_i^1 \times U_j^2} \colon U_i^1 \times U_j^2 \to U^1 \times U^2$$

bezüglich der Produkttopologie bistetig sein muss. Damit handelt es sich bei $p_1 \times p_2$ ebenfalls um eine Überlagerung.