프롬프트 러닝

Pretrain, Prompt, Predict: A New Paradigm for NLP

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

Pengfei Liu

Carnegie Mellon University pliu3@cs.cmu.edu

Zhengbao Jiang

Carnegie Mellon University zhengbaj@cs.cmu.edu

Weizhe Yuan

Carnegie Mellon University weizhey@cs.cmu.edu

Hiroaki Hayashi

Carnegie Mellon University hiroakih@cs.cmu.edu

Jinlan Fu

National University of Singapore jinlanjonna@gmail.com

Graham Neubig

Carnegie Mellon University gneubig@cs.cmu.edu

Downstram Task에 적합한 Prompt를 설계하기 위해 고려할 것들

- 1. Pre-trained Model Choice 어떤 LM을 선택할 것 인가.
- 2. Prompt Engineering 다운스트림 태스크에서 최고의 성능을 내는 프롬프트 템플릿을 찾는 방법에 대한 연구
- 3. Answer Engineering 예측되는 토큰과 다운스트림 태스크의 레이블과의 관계를 mapping하는 것에 대한 연구
- 4. Multi-prompt Learning 하나의 prompt learning으로 풀기 어려운 문제를 여러 개의 prompt를 활용해서 푸는 연구.
- 5. Prompt-based Training Strategies 프롬프트를 이용한 학습을 할 때 선택할 수 있는 다양한 학습 기법들에 대한 선택지

Preview

Preview

Pre-trained Model Choice

Prefix Prompt

Pre-trained Model Choice

Cloze Prompt

Prompt Engineering

• Downstream task에 가장 효과적인 prompt template을 만드는 과정

- 최적의 Prompt Template를
 - •사람이 직접 설계하여 찾거나(Manual Template Engineering)
 - 자동화된 방법으로 탐색(Automated Template Learning)

Prompt Engineering - Manual

- 사람이 직접 설계하여 찾는 방식
- LAMA(Petroni et al., 2019)
 - •Factual Probing task를 위한 cloze prompt template
 - •e.g. Patrick Oboya plays in _____ position
- GPT-3(Brown et al., 2020)
 - •다양한 task에 대한 prefix prompt template
 - •e.g. Translation English to French:
 - •cheese => ____

Prompt Engineering - Auto

- 최적의 prompt template을 자동으로 탐색
- Prompt template을 사람이 문자 그대로 해석할 수 있는지에 따라
 - Discrete Prompts(a.k.a. Hard Prompts)
 - Continuous Prompts(a.k.a. Soft Prompts)

• Vocab에서 최적의 prompt template을 위한 token들의 조합 탐 색한다.

- 주요 방법론
 - 1. Prompt Mining
 - 2. Prompt Paraphrasing
 - 3. Gradient-based Search
 - 4. Prompt Generation
 - 5. Prompt Scoring

- Prompt Mining
 - Wikipedia의 각 문장에 대해서 다음 두 가지 규칙에 따라 prompts를 추출
- 1. Middle-word Prompts
 - Barack Obama was born in Hawaii" → "x was born in y"
- 2. Dependency-based Prompts
 - "The capital of France is Paris" → "capital of x is y"

- Prompt Paraphrasing
 - LPAQA(Jiang et al., 2020)에서 제안된 방법
 - "x shares a boarder with y" → "x has a common border with y" / "x adjoins y"

- Gradient-based Search
 - AutoPrompt(Shin et al., 2020)
- Prompt Generation
 - LM-BFF(Gao et al. 2021)
 - PADA(Ben-David et al., 2021)
- Prompt Scoring
 - Coherency Ranking(Davison et al., 2019)

• Prompt가 반드시 사람이 이해할 수 있는 자연어 형태일 필요는 없음

- 주요 방법론
 - 1. Prefix-Tuning
 - 2. Tuning Initialized with Discrete Prompts
 - 3. Hard-SoftPromptHybridTuning

- Prefix-Tuning(GPT-2 구조)
- →Learnable parameter에 prompt token <p1>,<p2>, ... <pn>을 입력 받아
- →Feed Foward Network 거쳐 나온 key와 value값을 모델에 입력
- → 때문에 각각에 task마다 앞에 붙는 Learnable parameter 가 학습
- → 학습이 끝나면 어떠한 task에 대해 이 모델을 적용할 때
- → 얻어진 Task-specific vector(key, value)를 가지고 task마다 이 LM을 적합하게 바꿔 사용이 가능
- → task-specific vectors를 출력한 후 input 과 cross attention 적용

- Tuning Initialized with Discrete Prompts
 - Discrete Prompts를 초기값으로 하여 Downstream task에 tuning
 - OptiPrompt(Zhong et al., 2021)

 [X] is [MASK] citizen

 [X] [X] [MASK] [MASK]

Soft(Qin and Eisner, 2021)

```
weight = 0.45 _____x died in _____y .

weight = 0.15 _____x was the year _____y died .

weight = 0.40 _____x performed until his death in _____y .
```

- Hard-Soft Prompt Hybrid Tuning
 - P-Tuning(Liu et al., 2021)

• PTR:Prompt Tuning with Rules(Han et al., 2021)

Answer Engineering

Answer Engineering

- 가능한 answer z의 집합을 answer space Z, output label y의 집합을 Y라 할 때 task의 성능을 높이는 answer space Z와 Z → Y의 mapping을 탐색하는 것
- NLG 형태의 task인 경우 출력된 answer token z가 그 자체로 task의 output y

Answer Engineering

- Manual Design 사람이 직접 answer z와 output y의 대응 관 계를 지정
 - TemplateNER(Chi et al., 2021)
 - Ex) z: "location" -> y: "LOC" 로 mapping

Answer Engineering

• Automated Design - 최적의 answer space & mapping을 자동으로 탐색

- 사람이 해석가능한지의 여부에 따라
 - Discrete Answer
 - Continuous Answer

Discreat Answer

- 주요 방법론
 - 1. Answer Paraphrasing
 - 2. Label Decomposition
 - 3. Prune-then-Search

Discreat Answer

- Answer Paraphrasing
 - LPAQA(Jiang et al., 2020)
- Label Decomposition
 - Adaprompt(Chen et al., 2021)
 - Ex) per:city_of_death → {person, city, death}
 - per:city_of_death의 확률 = 각 token(person, city, death)의 확률의 합

Discreat Answer

- Prune-then-Search
 - Answer token 후보를 추려낸 다음(Prune), 알고리즘을 이용해 적절한 것을 선택(Search)

	PET (Schink, 2020)	AutoPrompt (Shin et al., 2020)	LM-BFF (Gao et al., 2021)
Prune	2개 이상의 알파벳을 포함하는 token z 중에 빈도 수가 높은 것들로 구성	[MASK] token의 contextualized embedding을 이용한 분류기를 학습 시킴	[Step1] token z가 들어갈 위치에서의 생성 확률이 가장 높은 top-k개 token 선택 [Step2] zero-shot accuracy가 높은 것들 로 구성
Search	label y에 대한 LM의 likelihood를 최대화하는 token z	Token z를 학습된 분류기에 입력했을 때 각 label에 대하여 확률이 가장 높은 top-k개 token을 answer token z로 선택	LM fine-tuning 이후 dev set의 accuracy 기준으로 최종 answer token z 선택

Continuous Answer

- Answer token z가 반드시 사람이 이해할 수 있는 형태일 필요 는 없다.
- WARP(Hambardzumyan et al., 2021)

WRAP

Result

	Model	СВ	RTE
	Model	F ₁ / Acc.	Acc.
	GPT-3 Small	26.1 / 42.9	52.3
	GPT-3 Med	40.4 / 58.9	48.4
dev	GPT-3	57.2 / 82.1	72.9
ð	PET (ALBERT)	59.4 / 85.1	69.8
	iPET (ALBERT)	92.4 / 92.9	74.0
	WARP _{init} (ALBERT)	84.0 / 87.5	71.8
test	GPT-3	52.0 / 75.6	69.0
	PET (ALBERT)	60.2 / 87.2	67.2
	iPET (ALBERT)	79.9 / 88.8	70.8
	WARP _{init} (ALBERT)	70.2 / 82.4	69.1

Multi-Prompt Learning

- 1. Prompt Ensembling
- 2. Prompt Augmentation
- 3. Prompt Composition
- 4. Prompt Decomposition

Prompt Ensembling

• 여러개의 prompt를 사용하여 predict한 결과를 ensemble

Prompt Augmentation

- 정답이 포함된 prompt를 예시로 추가
- Sample 선택과 제시 순서가 성능에 크게 영향을 미침
 - Sample Selection
 - LM-BFF(Gao et al., 2021), KATE(Liu et al., 2020)
 - Sample Ordering
 - OrderEntropy(Lu et al., 2021)

(b) Prompt Augmentation.

Prompt Composition

- 하나의 task를 이를 구성하는 sub task의 조합으로 표현
 - PTR(Han et al., 2021)

Prompt Decomposition

- 하나의 prompt를 여러개의 sub-prompt로 분할
 - TemplateNER(Cui et al., 2021)

Training Strategies for Prompting Methods

Strategy	LM Params	Prompt Params		E	
Strategy		Additional	Tuned	Example	
Promptless Fine-tuning	romptless Fine-tuning Tuned -		ELMo [130], BERT [32], BART [94]		
Tuning-free Prompting	Frozen	×	X	GPT-3 [16], AutoPrompt [159], LAMA [133]	
Fixed-LM Prompt Tuning	Frozen	✓	Tuned	Prefix-Tuning [96], Prompt-Tuning [91]	
Fixed-prompt LM Tuning	Tuned	×	X	PET-TC [153], PET-Gen [152], LM-BFF [46]	
Prompt+LM Fine-tuning	Tuned	✓	Tuned	PADA [8], P-Tuning [103], PTR [56]	

Table 6: Characteristics of different tuning strategies. "Additional" represents if there are additional parameters beyond LM parameters while "Tuned" denotes if parameters are updated.

Fixed-LM Prompt Tuning

- LM의 parameter는 고정, prompt와 관련된 parameter를 추가해 이것만 업데이트(fine-tuning)
 - ㅇ 관련 연구
- Prefix-Tuning(Li and Liang., 2021), Prompt-Tuning(Lester et al., 2021),
 WARP(Hambardzumyan et al., 2021)
 - ㅇ 장점
 - Catastrophic forgetting을 피할 수 있음(LMO) 고정되어 있기 때문에 LMO 이전에 학습한 데이터를 잊지않는다.)
- + :: 학습되는 parameter가 적어 few-shot setting에 적합하며 종종 tuning-free prompting(zero-shot setting)보다 더 나은 성능을 보임
 - ㅇ 단점
 - Zero-shot setting(학습 데이터가 전혀 없는)에서는 적용 불가
 - Hyperparameter 또는 random seed 설정 필요(추가 학습이 이루어지기 때문)
 - Continuous Prompt를 최적화하므로 사람이 해석하거나 조작하기 어려움

Fixed-prompt LM Tuning

Prompt에 대한 파라미터 없이 LM을 Prompt에 사용하면서 fine-tuning하는 방식

- Tuning-free Prompting 방식에서 LM의 parameter를 fine-tuning하는 방법
- ㅇ 관련 연구
 - PET-TC(Schick and Shütze, 2021), PET-Gen(Schick and Shütze, 2020), LM-BFF(Gao et al. 2021) 등
 - Logan IV et al.(2021)
- ㅇ 장점
 - Prompting method를 이용해서 모델에 task를 보다 명확하게 지시하여 효과적인 학습 가능(특히 few-shot learning)
- ㅇ 단점
- Prompt 또는 Answer engineering 필요
 - LM을 Fine-tuning을 하기 때문에 한 downstream task에 학습된 모델은 다른 task에 좋은 성능을 얻지 못 할 수 있음

Prompt+LM Fine-tuning

- Prompt parameter + LM의 parameter 일부 또는 전부를 fine-tuning
 - 기존 pre-train & fine-tune 방식과 비슷하지만, 서로 다른 prompt가 model 학습에 bootstrapping 효과
- 관련 연구
 - PADA(Ben-David et al., 2021), P-Tuning(Liu et al., 2021)
- 장점
 - 가장 expressive한 방법(표현력이 좋은 방법), dataset이 충분할 때 적합
- 단점
 - model의 모든 parameters를 학습하고 저장해야함
 - 작은 데이터셋에 과적합 가능성

P-Tuning

Prompt type	Model	P@1
Omininal	BERT-base	31.1
Original	BERT-large	32.3
(MP)	E-BERT	36.2
	LPAQA (BERT-base)	34.1
Discrete	LPAQA (BERT-large)	39.4
	AutoPrompt (BERT-base)	43.3
D tunin a	BERT-base	48.3
P-tuning	BERT-large	50.6

Model	MP	FT	MP+FT	P-tuning
BERT-base (109M)	31.7	51.6	52.1	52.3 (+20.6)
-AutoPrompt (Shin et al., 2020)	-	-	-	45.2
BERT-large (335M)	33.5	54.0	55.0	54.6 (+21.1)
RoBERTa-base (125M)	18.4	49.2	50.0	49.3 (+30.9)
-AutoPrompt (Shin et al., 2020)	-	_	-	40.0
RoBERTa-large (355M)	22.1	52.3	52.4	53.5 (+31.4)
GPT2-medium (345M)	20.3	41.9	38.2	46.5 (+26.2)
GPT2-xl (1.5B)	22.8	44.9	46.5	54.4 (+31.6)
MegatronLM (11B)	23.1	OOM*	OOM*	64.2 (+41.1)

^{*} MegatronLM (11B) is too large for effective fine-tuning.

Table 2. Knowledge probing Precision@1 on LAMA-34k (left) and LAMA-29k (right). P-tuning outperforms all the discrete prompt searching baselines. And interestingly, despite fixed pre-trained model parameters, P-tuning overwhelms the fine-tuning GPTs in LAMA-29k. (MP: Manual prompt; FT: Fine-tuning; MP+FT: Manual prompt augmented fine-tuning; PT: P-tuning).

Challenges

1. PromptDesign

- a. Tasks beyond Classification and Generation(기존의 prompt연구가 Classification과 Generation 위주로 연구가 진행됨) → 정보 추출 또는 텍스트 분석 등의 task에 확장
- b. Prompting with Structured Information(구조화된 데이터에 대해서도 처리할 수 있는 prompt 연구도 필요하다)
 - →NLP task에서는 Tree, graph, table 등의 형태에 대해서 처리할 수 있는 prompt 또는 answer engineering이 필요
 - →Htlm(Aghajanyan et al., 2021): HTML을 이용한 구조화된 prompt
- c. Entanglement of Template and Answer

모델의 성능이 template과 answer 둘 모두에 영향을 받기 때문에 (높은 성능을 낼 수 있는)둘의 최적 조합을 찾는 것이 문제

최근 연구들은 template을 선택하기 전에 answer를 선택(LM-BFF, AutoPrompt)

WARP(Hambardzumyan et al., 2021)에서는 이 둘을 동시에 학습할 수 있다는 가능성을 보임

Challenges

- 2. AnswerEngineering
 - a. Many-class and Long-answer Classification Tasks
 - → 분류해야할 class가 매우 많은 경우, 적절한 answer space를 설정하기 어려움
 - →여러개의 token으로 이뤄진 긴 answer의 경우, 어떻게 decoding할 것인지
 - b. Multiple Answer for Generation Tasks
 - →Text 생성 문제에서 동일한 의미의 문장이 다양한 구문 구조로 표현될 수 있음
 - →현재까진 대부분의 연구가 하나의 정답만을 두고 평가했음
 - 학습시에 다양한 레퍼런스(문장)를 참조하도록 하는 방법 연구 필요
- 3. Selection of Tuning Strategy

Prompt와 LM의 parameter를 tuning하는 방법의 tradeoff에 대한 체계적인 탐구 필요

Challenges

- 4. Multiple Prompt Learning
 - a. Prompt Ensembling

더 많은 Prompt를 ensemble할 수록 시공간 <u>복잡도</u> 증가 → 이를 완화하는 방법(PET → iPET)

ensemble을 적용할 때 효과적인 prompt를 선택하는 방법에 대한 연구 텍스트 생성 task에 대한 ensemble에 대한 연구

b. Prompt Composition & Decomposition

Span relation prediction(e.g. entity coreference)에는 composition이 Token 또는 span prediction(e.g. NER)에는 decomposition이 경험적으로 더 낫다고 알려져 있음 더 다양한 상황에서 이 둘을 적용하는 것에 대한 연구

c. Prompt Augmentation

효과적인 예시를 선택하는 방법과 적절한 순서로 제시하는 방법에 대한 연구 필요

- d. Prompt Sharing
- 서로 다른 task나 domain, 언어에 대해서 공유하여 사용될 수 있는 prompt에 대한 연 구