I Restitution du cours

- 1- Donner la définition de la convergence simple (phrase + quantificateurs) et énoncer le théorème d'interversion limite-intégrale sur un segment pour une suite de fonctions.
- 2 Donner la définition de la convergence uniforme (phrase + quantificateurs) et énoncer le théorème de dérivabilité de la fonction limite.
- 3 Donner la définition de la convergence normale et énoncer le théorème de continuité de la somme.

II Questions de cours

- 1 Démontrer le théorème d'interversion limite-intégrale sur un segment pour une suite de fonctions.
 - 2 Montrer que la série $\sum_{n>1} f_n$, où $f_n(x) = \frac{(-1)^{n+1}}{n+x^2}$ converge uniformément sur \mathbb{R} .
- 3 Étudier les modes de convergence des suites de fonctions $(f_n)_{n\in\mathbb{N}}$ pour $f_n: x \longmapsto \frac{nx^2+1}{nx+1}$

III Exercices axés sur le calcul

Exercice 1:

Soient $\alpha > 0$ et la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}^*, f_n : x \longmapsto xn^{\alpha}e^{-nx}$$

- 1 Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}^+ vers la fonction nulle.
- 2 Pour quelle(s) valeur(s) de α la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur \mathbb{R}^+ ?

Exercice 2:

Pour $x \in]0; +\infty[$, on pose sous réserve d'existence :

$$S(x) = \sum_{n=1}^{+\infty} \frac{e^{-nx}}{n^2}$$

Montrer que S est continue sur $[0; +\infty[$ et préciser $\lim_{x\to 0} S(x)$.

Exercice 3:

Pour tout $n \in \mathbb{N}^*$ et tout $x \in [0; +\infty[$, on pose :

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n$$

- 1 Étudier la convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ sur $[0;+\infty[$
- 2 Montrer que pour tout $n \in \mathbb{N}^*$ et tout $x \in [0; +\infty[$, on a $0 \le f_n(x) \le e^x$.
- 3 Soit a > 0. Montrer que $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur [0; a].
- 4 Calculer $\lim_{n \to +\infty} \int_0^1 \left(1 + \frac{x}{n}\right)^n dx$ de deux manières différentes.
- 5 La suite $(f_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur $[0;+\infty[$?

IV Exercices axés sur le raisonnement

Exercice 4:

Soient I un intervalle de \mathbb{R} et $(f_n)_{n\in\mathbb{N}}\in (\mathcal{F}(I,\mathbb{R}))^{\mathbb{N}}$ une suite de fonctions qui converge simplement sur \mathbb{R} vers f.

- 1 Montrer que si les fonctions f_n sont convexes, alors f est convexe.
- 2 Montrer que si les fonctions f_n sont bornées et que la convergence précédente est uniforme, alors f est bornée.

Exercice 5:

Pour $n \in \mathbb{N}$ et $x \in [0; +\infty[$, on pose : $u_n(x) = \frac{e^{-nx}}{1+n^2}$. En cas de convergence, on notera

$$f(x) = \sum_{n=0}^{+\infty} u_n(x).$$

- 1 Montrer que f est définie et continue sur $[0; +\infty[$ et préciser $\lim_{x\to +\infty} f(x)$.
- 2 Montrer que f est dérivable sur $]0; +\infty[$.
- 3 Montrer que f est deux fois dérivable sur $]0;+\infty[$ et que :

$$\forall x > 0, \ f''(x) + f(x) = \frac{1}{1 - e^{-x}}$$

Exercice 6:

Pour un réel x, on notera sous réserve de convergence : $f(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}$.

- 1 Déterminer le domaine \mathcal{D} de définition de f.
- 2 f est-elle continue sur \mathcal{D} ?
- 3 Déterminer la limite de f en $+\infty.$
- 4 Déterminer un équivalent de f en 0^+ .

Indication: On utilisera une comparaison série-intégrale.