CH KAUSHIK

Objective:

Design and configure **two Star Topologies** (one with a Switch, one with a Hub), each with **6 PCs**, and verify connectivity.

1. Network Design

Topology 1:

Star Topology using Switch

Central Device: 1 Switch (2960)

• End Devices: 6 PCs

• Connection: Each PC connected to the switch

Topology 2:

Star Topology using Hub

Central Device: 1 HubEnd Devices: 6 PCs

• Connection: Each PC connected to the hub

2. Basic Setup

Common Devices for both Topologies:

Device 1	Type Quantity	Model
PC	6	PC-PT
Switch	1	2960 (only for Switch topology)
Hub	1	Hub-PT (only for Hub topology)

3. Device Connection

- 1. Use Copper Straight-Through Cable to connect each PC to the Switch/Hub.
- 2. Click PC \rightarrow FastEthernet0, then click the central device \rightarrow any available port (e.g., FastEthernet0/1 to 0/6).

Connection Type Cable Type PC ↔ Switch/Hub Copper Straight-Through Switch ↔ Switch Copper Crossover

4. IP Address Configuration

Steps to assign IP:

- 1. Click each PC \rightarrow Desktop \rightarrow IP Configuration.
- 2. Assign unique IPs from the same subnet:

PC Name IP Address Subnet Mask

PC0	192.168.1.1 255.255.255.0
PC1	192.168.1.2 255.255.255.0
PC2	192.168.1.3 255.255.255.0
PC3	192.168.1.4 255.255.255.0
PC4	192.168.1.5 255.255.255.0
PC5	192.168.1.6 255.255.255.0

5. Connectivity Verification

Steps:

- 1. Open any PC \rightarrow Desktop \rightarrow Command Prompt.
- 2. Use the command:

```
ping 192.168.1.x
```

- 3. Ping every other PC to test communication.
- 4. You should get replies for successful communication.

For Switch:

```
Cisco Packet Tracer PC Command Line 1.0
C:\Poping 192:166.1.1 with 32 bytes of data:

Reply from 192:166.1.1 bytes-32 time-line TTL-128
Reply from 192:166.1.1 bytes-32 time-line TTL-128
Reply from 192:166.1.1 bytes-32 time-line TTL-128
Reply from 192:166.1.1: bytes-32 time-line TTL-128
Reply from 192:166.1.1: bytes-32 time-line TTL-128
Reply from 192:166.1.1: bytes-32 time-line TTL-128
Reply from 192:166.1.2 bytes-32 time-line TTL-128
C:\Poping 192:166.1.2 bytes-32 time-line TTL-128
Reply from 192:166.1.3 bytes-32 time-line TTL-128
Reply from 192:166.1.4 with 32 bytes of data:

Minimum - One, Maximum - One, Maximum - One, Average - One
C:\Poping 192:166.1.4 with 32 bytes of data:

Reply from 192:166.1.4 with 32 bytes of data:

Reply from 192:166.1.4 bytes-32 time-line TTL-128
Reply from 192:166.1.5 bytes-32 time-line TTL-128
Reply fro
```

For Hub:

```
Cisco Packet Tracer PC Command Line 1.0
C:\ping 192.168.1.1 with 32 bytes of data:

Reply from 192.168.1.1: bytes=32 time=17ms TTL=128
Reply from 192.168.1.1: bytes=32 time=12ms TTL=128
Reply from 192.168.1.1: bytes=32 time=15ms TTL=128
Reply from 192.168.1.1: bytes=32 time=15ms TTL=128
Reply from 192.168.1.1: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 17ms, Average = 11ms

C:\ping 192.168.1.3
Pinging 192.168.1.3 with 32 bytes of data:

Reply from 192.168.1.3: bytes=32 time<1ms TTL=128
Reply
```

```
C:\ping 192.168.1.6

Pinging 192.168.1.6 with 32 bytes of data:

Reply from 192.168.1.6: bytes=32 time<lms TTL=128
Ping statistics for 192.168.1.6:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms

C:\ping 192.168.1.5

Pinging 192.168.1.5 with 32 bytes of data:

Reply from 192.168.1.5: bytes=32 time<lms TTL=128

Ping statistics for 192.168.1.5:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 14ms, Average = 3ms
```

6. Packet Transmission Status

Steps in Simulation Mode:

- 1. Switch to **Simulation Mode** (bottom right).
- 2. Add a **PDU** (ping) from one PC to another.
- 3. Click the **Play** button to observe packet travel.

Fire Last Sta	atus Source	Destination	Type	Color	Time(sec)	Periodic	Num	Edit	Delete
Succes	sful PC0	PC4	IC		0.000	N	0	((delete)
Succes	sful PC0	PC5	IC		0.000	N	1	((delete)
,									

For Hub:

