#### **CLAIMS**

### 1. A compound of formula I

$$\begin{array}{c|c}
R^2 & R^1 \\
R^3 & C & C & M
\end{array}$$

in salt or zwitterionic form wherein

R<sup>1</sup> and R<sup>3</sup> are each independently a C<sub>3</sub>-C<sub>15</sub>-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R2 is hydrogen, hydroxy, or C1-C4-alkyl optionally substituted by hydroxy;

L and M are (a bond and -CH<sub>2</sub>-CH<sub>2</sub>-), (-CH<sub>2</sub>- and -CH<sub>2</sub>-CH<sub>2</sub>-) or (-CH<sub>2</sub>-CH<sub>2</sub>- and -CH<sub>2</sub>-) respectively and J is  $C_1$ - $C_2$ -alkylene,

or L and M are (-CH<sub>2</sub>- and -CH<sub>2</sub>-CH<sub>2</sub>-) or (-CH<sub>2</sub>-CH<sub>2</sub>- and -CH<sub>2</sub>-) respectively and J is a bond;  $R^4$  is C<sub>1</sub>-C<sub>4</sub>-alkyl;

 $R^5$  is  $C_1$ -alkyl substituted by -SO-R<sup>6</sup>, -S(=O)<sub>2</sub>-R<sup>6</sup>, -CO-R<sup>6</sup>, -CO-O-R<sup>6</sup>, -CO-NH-R<sup>6</sup> or -R<sup>7</sup>, or  $R^5$  is  $C_2$ - $C_{10}$ -alkyl substituted by -O-R<sup>6</sup>, -S-R<sup>6</sup>, -SO-R<sup>6</sup>, -S(=O)<sub>2</sub>-R<sup>6</sup>, -CO-R<sup>6</sup>, -O-CO-R<sup>6</sup>, -CO-O-R<sup>6</sup>, -NH-CO-R<sup>6</sup>, -CO-NH-R<sup>6</sup>, -R<sup>7</sup> or -R<sup>8</sup>,

or R5 is C2-C10-alkenyl or C2-C10-alkynyl optionally substituted by -R7 or -R8;

R<sup>6</sup> is a C<sub>3</sub>-C<sub>15</sub>-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur,

or R<sup>6</sup> is C<sub>1</sub>-C<sub>10</sub>-alkyl optionally substituted by C<sub>1</sub>-C<sub>10</sub>-alkoxy, -O-R<sup>7</sup>, a C<sub>3</sub>-C<sub>15</sub>-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

 $\mathbb{R}^7$  is a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur; and

R8 is a C3-C15-carbocyclic group.

### 2. A compound according to claim 1, wherein

R¹ and R³ are each independently a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R<sup>2</sup> is hydroxy;

L and M are (a bond and -CH<sub>2</sub>-CH<sub>2</sub>-), (-CH<sub>2</sub>- and -CH<sub>2</sub>-CH<sub>2</sub>-) or (-CH<sub>2</sub>-CH<sub>2</sub>- and -CH<sub>2</sub>-) respectively and J is  $C_1$ - $C_2$ -alkylene,

WO 2005/000815 41 PCT/EP2004/006795

or L and M are (-CH<sub>2</sub>- and -CH<sub>2</sub>-CH<sub>2</sub>-) or (-CH<sub>2</sub>-CH<sub>2</sub>- and -CH<sub>2</sub>-) respectively and J is a bond; R<sup>4</sup> is C<sub>1</sub>-C<sub>4</sub>-alkyl;

R5 is C1-alkyl substituted by -CO-R6 or -CO-NH-R6,

or R5 is C2-C10-alkyl substituted by -O-R6, -S-R6, -O-CO-R6 or -R8,

or R<sup>5</sup> is C<sub>2</sub>-C<sub>10</sub>-alkenyl or C<sub>2</sub>-C<sub>10</sub>-alkynyl optionally substituted by -R<sup>8</sup>;

R<sup>6</sup> is a C<sub>3</sub>-C<sub>15</sub>-carbocyclic group,

or R<sup>6</sup> is C<sub>1</sub>-C<sub>10</sub>-alkyl optionally substituted by C<sub>1</sub>-C<sub>10</sub>-alkoxy, O-R<sup>8</sup> or a C<sub>3</sub>-C<sub>15</sub>-carbocyclic group; and

R8 is a C3-C15-carbocyclic group.

#### 3. A compound according to claim 2, wherein

R<sup>1</sup> and R<sup>3</sup> are each independently a C<sub>3</sub>-C<sub>10</sub>-carbocyclic group, preferably phenyl, or a 5- to 9-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur, preferably thienyl;

R<sup>2</sup> is hydroxy;

L and M are (a bond and -CH<sub>2</sub>-CH<sub>2</sub>-), (-CH<sub>2</sub>- and -CH<sub>2</sub>-CH<sub>2</sub>-) or (-CH<sub>2</sub>-CH<sub>2</sub>- and -CH<sub>2</sub>-) respectively and J is  $C_1$ - $C_2$ -alkylene,

or L and M are (-CH<sub>2</sub>- and -CH<sub>2</sub>-CH<sub>2</sub>-) or (-CH<sub>2</sub>-CH<sub>2</sub>- and -CH<sub>2</sub>-) respectively and J is a bond;  $R^4$  is  $C_1$ - $C_4$ -alkyl;

R5 is C1-alkyl substituted by -CO-R6 or -CO-NH-R6,

or R5 is C2-C5-alkyl substituted by -O-R6, -S-R6, -O-CO-R6 or -R8,

or R5 is C2-C4-alkenyl or C2-C8-alkynyl optionally substituted by -R8;

R6 is a C3-C10-carbocyclic group, preferably phenyl,

or R<sup>6</sup> is C<sub>1</sub>-C<sub>15</sub>-alkyl optionally substituted by C<sub>1</sub>-C<sub>4</sub>-alkoxy, O-R<sup>8</sup> or a C<sub>3</sub>-C<sub>10</sub>-carbocyclic group; and

R<sup>8</sup> is a C<sub>3</sub>-C<sub>10</sub>-carbocyclic group, preferably phenyl.

#### 4. A compound according to claim 1, that is also a compound of formula Ia

wherein

R<sup>1</sup> and R<sup>3</sup> are each independently a C<sub>3</sub>-C<sub>15</sub>-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R<sup>2</sup> is hydrogen, hydroxy, or C<sub>1</sub>-C<sub>4</sub>-alkyl optionally substituted by hydroxy;

J and K are both independently C1-C2-alkylene,

or one of J and K is a bond and the other is C1-C2-alkylene;

L is C1-C2-alkylene;

R4 is C1-C4-alkyl;

R<sup>5</sup> is C<sub>1</sub>-C<sub>8</sub>-alkyl substituted by -OR<sup>6</sup>, -O-CO-R<sup>6</sup> or -CO-O-R<sup>6</sup>; and

R<sup>6</sup> is C<sub>1</sub>-C<sub>8</sub>-alkyl, a C<sub>3</sub>-C<sub>15</sub>-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur.

## 5. A compound according to claim 4, wherein

R1 and R3 are each independently a C3-C15-carbocyclic group;

R<sup>2</sup> is hydroxy;

J is a bond;

K is C1-C2-alkylene;

L is C1-C2-alkylene;

R4 is C1-C4-alkyl;

 $R^5$  is  $C_1\text{-}C_8\text{-}alkyl$  substituted by -OR6; and

R<sup>6</sup> is a C<sub>3</sub>-C<sub>15</sub>-carbocyclic group.

## 6. A compound according to claim 5, wherein

R1 and R3 are each independently a C3-C10-carbocyclic group, preferably phenyl;

R<sup>2</sup> is hydroxy;

J is a bond;

K is C1-C2-alkylene;

L is C1-C2-alkylene;

R4 is methyl;

 $R^{5}$  is  $C_{1}$ - $C_{4}$ -alkyl substituted by -OR $^{6}$ ; and

 $R^6$  is a  $C_3$ - $C_{10}$ -carbocyclic group, preferably phenyl.

# 7. A compound according to claim 1, which is also a compound of formula XVI

where T is as shown in the following table:

8. A compound according to claim 1, which is also a compound of formula XVI where T is as shown in the following table:

9. A compound according to claim 1, which is also a compound of formula XVII

where T is as shown in the following table:



- 10. A compound according to any one of the preceding claims in combination with at least one drug substance which is an anti-inflammatory, a bronchodilator, an antihistamine, a decongestant or an anti-tussive drug substance.
- 11. A compound according to any one of the preceding claims for use as a pharmaceutical.
- 12. A pharmaceutical composition comprising as active ingredient a compound according to any one of claims 1 to 10.
- 13. The use of a compound according to any one of claims 1 to 10 for the manufacture of a medicament for the treatment of a condition mediated by the muscarinic M3 receptor.
- 14. The use of a compound according to any one of claims 1 to 10 for the manufacture of a medicament for the treatment of an inflammatory or allergic condition, particularly an inflammatory or obstructive airways disease.
- 15. The use according to claim 13 or 14, in which the compound is a single enantiomer.
- 16. A process for the preparation of a compound of formula I as claimed in claim 1 which comprises:
- (i) (A) reacting a compound of formula II

$$R^2$$
 $R^3$ 
 $C$ 
 $C$ 
 $C$ 
 $C$ 
 $C$ 
 $M$ 
 $M$ 

or a protected form thereof where R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, J, L and M are as defined in claim 1, with a compound of formula III

where R<sup>5</sup> is as defined in claim 1 and X is chloro, bromo or iodo;

(B) reacting a compound of formula IV

or a protected form thereof where R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>5</sup>, J, L and M are as defined in claim 1, with a compound of formula V

where R4 is as defined in claim 1 and X is chloro, bromo or iodo;

(C) for the preparation of compounds of formula I where R<sup>5</sup> is -Q-NH-CO-R<sup>6</sup>, reacting a compound of formula VI

$$\begin{array}{c|c}
R^2 & \downarrow & \downarrow & \downarrow \\
R^3 & C & \downarrow & \downarrow & \downarrow \\
R^3 & C & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow \\
C$$

or a protected form thereof where R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, J, L and M are as defined in claim 1 and Q is C<sub>1</sub>-C<sub>10</sub>-alkylene, with a compound of formula VII

or an amide-forming derivative thereof wherein R6 is as defined in claim 1; or

- (D) for the preparation of compounds of formula I where R<sup>5</sup> is C<sub>1</sub>-C<sub>10</sub>-alkyl substituted by a C<sub>3</sub>-C<sub>15</sub>-carbocyclic group that is substituted by carboxy, converting a compound of formula I where R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, J, L and M are as defined in claim 1 and R<sup>5</sup> is C<sub>1</sub>-C<sub>10</sub>-alkyl substituted by a C<sub>3</sub>-C<sub>15</sub>-carbocyclic group that is substituted by either -COO-C<sub>6</sub>-C<sub>10</sub>-aryl or -COO-C<sub>7</sub>-C<sub>15</sub>-aralkyl; and
- (ii) recovering the product in salt or zwitterionic form.

#### 17. A compound of formula VI

$$\begin{array}{c|c}
R^{2} & \downarrow & \downarrow \\
R^{3} & C & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow \\
M & \downarrow & \downarrow \\
M &$$

in salt or zwitterionic form wherein

R¹ and R³ are each independently a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

 $R^2$  is hydrogen, hydroxy, or  $C_1$ - $C_4$ -alkyl optionally substituted by hydroxy; L and M are (a bond and -CH<sub>2</sub>-CH<sub>2</sub>-), (-CH<sub>2</sub>- and -CH<sub>2</sub>-CH<sub>2</sub>-) or (-CH<sub>2</sub>-CH<sub>2</sub>- and -CH<sub>2</sub>-) respectively and J is  $C_1$ - $C_2$ -alkylene,

or L and M are (-CH<sub>2</sub>- and -CH<sub>2</sub>-CH<sub>2</sub>-) or (-CH<sub>2</sub>-CH<sub>2</sub>- and -CH<sub>2</sub>-) respectively and J is a bond;  $R^4$  is  $C_1$ - $C_4$ -alkyl; and

Q is C<sub>1</sub>-C<sub>10</sub>-alkylene.