SSD0332

Advance Information

96RGB x 64 Dot Matrix OLED/PLED Segment/Common Driver with Controller

This document contains information on a new product. Specifications and information herein are subject to change without notice.

CONTENTS

1	GENE	CRAL DESCRIPTION	6
2	FEAT	URES	6
3	ORDE	ERING INFORMATION	6
4	BLOC	CK DIAGRAM	7
5	DIE P	AD FLOOR PLAN	8
6	PIN D	ESCRIPTIONS	12
7	FUNC	TIONAL BLOCK DESCRIPTIONS	14
		CILLATOR CIRCUIT AND DISPLAY TIME GENERATOR	
		SET CIRCUIT	
		MMAND DECODER AND COMMAND INTERFACE	
	7.4 Cu	RRENT AND VOLTAGE SUPPLY	15
	7.5 SEC 7.6 MF	GMENT DRIVERS/COMMON DRIVERS	lt
	7.6.1	PU I ² C INTERFACE I^2 C-bus Write data and read register status	
	7.6.2	Write mode for 1 ² C	20 21
	7.6.3	Read mode for I^2C (Read status register)	
		PU PARALLEL 6800-SERIES INTERFACE.	
		PU Parallel 8080-series Interface	
		PU SERIAL INTERFACE	
	7.10 GR	APHIC DISPLAY DATA RAM (GDDRAM)	24
		AY SCALE AND GRAY SCALE TABLE	
	7.12 DC	C-DC Voltage Converter	27
8	COM	MAND TABLE	28
		ta Read / Write	
9	COM	MAND DESCRIPTIONS	33
	9.1 Fu	NDAMENTAL COMMAND	33
	9.1.1	Set Column Address (15h)	33
	9.1.2	Set Row Address (75h)	33
		Set Contrast for Color A, B, C (81h, 82h, 83h)	
	9.1.4	Master Current Control (87h)	
	9.1.5	Set Re-map & Data Format (A0h)	
	9.1.6	Set Display Start Line (A1h)	
	9.1.7 9.1.8	Set Display Offset (A2h) Set Display Mode (A4h ~ A7h)	
	9.1.8 9.1.9	Set Multiplex Ratio (A8h)	
	9.1.10	Set Master Configuration (ADh)	
	9.1.11	Set Display On/Off (AEh/AFh)	
	9.1.12	Phase 1 and 2 Period Adjustment (B1h)	
	9.1.13	Set Display Clock Divide Ratio/ Oscillator Frequency (B3h)	
	9.1.14	Set Gray Scale Table (B8h)	
	9.1.15	Enable Linear Gray Scale Table (B9h)	
	9.1.16	Set V_{PA} , V_{PB} and V_{PC} Voltage for Color A, B and C (BBh, BCh and BDh)	
	9.1.17	Set V _{COMH} Voltage (BEh)	
		APHIC ACCELERATION COMMAND SET DESCRIPTION	
	9.2.1	Draw Line (21h)	
	9.2.2	Draw Rectangle (22h)	
	9.2.3	Copv(23h)	

	9.2.4	Dim Window (24h)	41
	9.2.5	Clear Window (25h)	42
	9.2.6	Clear Window (25h)Fill Enable/Disable (26h)	42
10	MA	XIMUM RATINGS	43
11	DC	CHARACTERISTICS	43
12	AC	CHARACTERISTICS	44
13	SSI	D0332Z PACKAGE DETAILS	49

SSD0332 Rev 1.0 P 3/50 Oct 2005 **Solomon Systech**

TABLES

Table 5-1 : SSD0332Z Die Pad Coordinates	9
Table 6-1 : Pin Descriptions	12
Table 6-2: MCU Bus Interface Pin Selection	13
TABLE 7-1: COMPONENTS SELECTION FOR DC-DC CONVERTER	27
Table 8-1: Command Table	28
Table 8-2: Read Command Table	32
Table 8-3: Address increment table (Automatic)	32
Table 9-1: Result of Change of Brightness by Dim Window Command	41
Table 10-1: Maximum Ratings (Voltage Referenced to V_{SS})	43
Table 11-1: DC Characteristics	43
Table 12-1: AC Characteristics	44
Table 12-2: I ² C Interface Timing Characteristics	45
TABLE 12-3: 6800-SERIES MPU PARALLEL INTERFACE TIMING CHARACTERISTICS	46
Table 12-4: 8080-Series MPU Parallel Interface Timing Characteristics	47
Table 12-5 : Serial Interface Timing Characteristics	48

 Solomon Systech
 Oct 2005
 P 4/50
 Rev 1.0
 SSD0332

FIGURES

FIGURE 4-1 : SSD0332 BLOCK DIAGRAM	7
FIGURE 5-1: SSD0332Z PIN ASSIGNMENT	
FIGURE 5-2 : SSD0332Z ALIGNMENT MARK DIMENSIONS	11
Figure 7-1: Oscillator Circuit	14
FIGURE 7-2: I _{REF} CURRENT SETTING BY RESISTOR VALUE	15
FIGURE 7-3: SEGMENT AND COMMON DRIVER BLOCK DIAGRAM	16
FIGURE 7-4: SEGMENT AND COMMON DRIVER SIGNAL WAVEFORM	17
FIGURE 7-5 : GRAY SCALE CONTROL BY PWM IN SEGMENT	18
Figure 7-6 : I ² C-bus data format	20
FIGURE 7-7: DEFINITION OF THE START AND STOP CONDITION	21
FIGURE 7-8: DEFINITION OF THE ACKNOWLEDGEMENT CONDITION	22
FIGURE 7-9: DEFINITION OF THE DATA TRANSFER CONDITION	22
FIGURE 7-10: DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	23
FIGURE 7-11: 65k COLOR DEPTH GRAPHIC DISPLAY DATA RAM STRUCTURE	24
FIGURE 7-12: 65k COLOR DEPTH GRAPHIC DISPLAY DATA WRITING SEQUENCE	25
FIGURE 7-13: 256 COLOR DEPTH GRAPHIC DISPLAY DATA WRITING SEQUENCE	25
FIGURE 7-14: 256 COLOR DEPTH GRAPHIC DISPLAY DATA RAM STRUCTURE FOR ONE PIXEL	25
FIGURE 7-15 : RELATION BETWEEN GRAPHIC DATA ${\sf RAM}$ value and ${\sf gray}$ scale table entry fo)R
THREE COLORS IN 65K COLOR MODE	26
FIGURE 7-16: ILLUSTRATION OF RELATION BETWEEN GRAPHIC DISPLAY RAM VALUE AND GRAY	
SCALE CONTROL	26
FIGURE 7-17 : DC-DC CONVERTER APPLICATION CIRCUIT DIAGRAM	27
FIGURE 9-1: EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT	33
FIGURE 9-2: SEGMENT OUTPUT CURRENT FOR DIFFERENT CONTRAST CONTROL AND MASTER	
CURRENT SETTING	34
FIGURE 9-3: ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE	35
FIGURE 9-4: ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE	35
FIGURE 9-5: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAP	36
FIGURE 9-6 : EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAP	36
FIGURE 9-7: EXAMPLE OF GAMMA CORRECTION BY GRAY SCALE TABLE SETTING	38
FIGURE 9-8 : EXAMPLE OF DRAW LINE COMMAND	40
FIGURE 9-9 : EXAMPLE OF DRAW RECTANGLE COMMAND	40
FIGURE 9-10 : EXAMPLE OF COPY COMMAND	41
FIGURE 9-11 : EXAMPLE OF COPY + CLEAR = MOVE COMMAND	42
Figure 12-1 : I ² C interface characteristics	45
FIGURE 12-2: 6800-SERIES MPU PARALLEL INTERFACE CHARACTERISTICS	46
FIGURE 12-3: 8080-SERIES MPU PARALLEL INTERFACE CHARACTERISTICS	47
FIGURE 12-4: SERIAL INTERFACE CHARACTERISTICS	48

SSD0332 Rev 1.0 P 5/50 Oct 2005 **Solomon Systech**

1 GENERAL DESCRIPTION

The SSD0332 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display system. It consists of 288 segments (96RGB) and 64 commons. This IC is designed for Common Cathode type OLED panel.

The SSD0332 displays data directly from its internal 96x64x16 bits Graphic Data RAM (GDDRAM). Data/Commands are sent from general MCU through the hardware selectable I²C Interface, 6800/8000 series compatible Parallel Interface or Serial Peripheral Interface. It has a 256 steps contrast control and 65K color control.

2 FEATURES

- Support max. 96RGB x 64 matrix panel
- Power supply: $V_{DD} = 2.4V 3.5V$

$$V_{CC} = 7.0V - 18.0V$$

- OLED driving output voltage, 16V maximum
- DC-DC voltage converter
- Segment maximum source current: 200uA
- Common maximum sink current: 50mA
- Embedded 96x64x16 bit SRAM display buffer
- 16 step master current control, and 256 step current control for the three color components
- Programmable Frame Rate
- Graphic Acceleration Command Set (GAC)
- I²C Interface, 8-bit 6800-series Parallel Interface, 8-bit 8080-series Parallel Interface, Serial Peripheral Interface.
- Wide range of operating temperature: -40 to 90 °C

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	SEG	COM	Package Form	Reference	Remark
SSD0332Z	96RGB	64	COG	Page 8	Min SEG pad pitch: 41.2 umMin COM pad pitch: 41.2 um

Solomon Systech Oct 2005 | P 6/50 | Rev 1.0 | SSD0332

4 BLOCK DIAGRAM

Common Drivers(even) COM62 COM60 RES# CS# D/C# E (RD#) R/W#(WR#) Grey Scale Decoder BS2 COM2 BS1 GDDRAM . COM0 BS0 MCU Interface D7 D6 D5 D4 SA0 SB0 SC0 D3 SDA_{OUT} / D2 SDA_{IN} / D1 SCL / D0 SA1 SB1 SC1 Segment Drivers SA95 SB95 SC95 Display Timing Generator Seg/Com OLED DC-DC voltage Driving block Oscillator Command Decoder converter Common Drivers (odd) COM1 COM3 . COM61 COM63 CLS V_{DDB}
V_{SSB}
GDR
RESE
FB
V_{CC}
V_{CCOMH}
V_{REF}
V_{PA}
V_{PG}

Figure 4-1: SSD0332 Block Diagram

SSD0332 Rev 1.0 P 7/50 Oct 2005 **Solomon Systech**

Pad #1 —

+ represents the centre of the alignment mark

	X-pos (um)	Y-pos (um)
<u> </u>	-7433.6	-90.5
4	7433.6	-90.5
(o)	-7465.9	-437.4
	7465.9	-437.4

All alignment keys have size 75 um x 75 um

Die Size: 15.4mm x 1.9mm Die Thickness: 457 +/- 25 um Min I/O pad pitch: 76.2 um Min SEG pad pitch: 41.2 um Min COM pad pitch: 41.2 um Bump Height: Nominal 15 um

Bump size / Pad #	X-Dimension	Y-Dimension
1 - 199	54.000um	84.000um
200 ~ 213, 578 ~ 591	50.000um	60.000um
215 ~ 576	27.000um	110.000um
214, 577	68.200um	110.000um

Gold Bumps face up

 Solomon Systech
 Oct 2005
 P 8/50
 Rev 1.0
 SSD0332

Table 5-1: SSD0332Z Die Pad Coordinates

						ran	le 5-1 :	22002	3 Z Z				ites					
Pad #	Pad Name		Y-Axis			Pad Name	X-Axis	Y-Axis			Pad Name		Y-Axis			Pad Name	X-Axis	Y-Axis
1	NC	-7543.80	-853.00		81	VPB	-1447.80	-853.00		161	VSL	4648.20	-853.00		241	COM5	6427.20	840.00
2	NC	-7467.60	-853.00		82	VPC	-1371.60	-853.00		162	VSL	4724.40	-853.00		242	COM4	6386.00	840.00
3	VCL	-7391.40	-853.00		83	VSS	-1295.40	-853.00		163	VSL	4800.60	-853.00	L	243	COM3	6344.80	840.00
4	VCL	-7315.20	-853.00		84	SENSE	-1219.20	-853.00		164	VSL	4876.80	-853.00		244	COM2	6303.60	840.00
5	VCL	-7239.00	-853.00		85	VSS	-1143.00	-853.00		165	VSL	4953.00	-853.00	Т	245	COM1	6262.40	840.00
6	VCL	-7162.80	-853.00		86	GPIO0	-1066.80	-853.00		166	VSL	5029.20	-853.00	Т	246	COM0	6221.20	840.00
7	VCL	-7086.60	-853.00		87	GPIO1	-990.60	-853.00		167	VSL	5105.40	-853.00	Т	247	NC	6180.00	840.00
8	VCL	-7010.40	-853.00		88	VDD	-914.40	-853.00		168	VSL	5181.60	-853.00		248	NC	6138.80	840.00
9	VSS	-6934.20	-853.00		89	ICASC	-838.20	-853.00		169	VSL	5257.80	-853.00	T	249	NC	6097.60	840.00
10	VSS	-6858.00	-853.00		90	ICASB	-762.00	-853.00		170	VSL	5334.00	-853.00	T	250	NC	6056.40	840.00
11	VSS	-6781.80	-853.00		91	ICASA	-685.80	-853.00		171	VSL	5410.20	-853.00	T	251	NC	6015.20	840.00
12	VSS	-6705.60	-853.00		92	VSS	-609.60	-853.00		172	VSS	5486.40	-853.00		252	SA0	5974.00	840.00
13	VSSB	-6629.40	-853.00		93	VREF	-533.40	-853.00		173	VSS	5562.60	-853.00		253	SB0	5932.80	840.00
14	VSSB	-6553.20	-853.00		94	VCC	-457.20	-853.00		174	VSS	5638.80	-853.00		254	SC0	5891.60	840.00
15	VSL	-6477.00	-853.00		95	VDD	-381.00	-853.00		175	VSS	5715.00	-853.00	T	255	SA1	5850.40	840.00
16	VSL	-6400.80	-853.00		96	BS0	-304.80	-853.00		176	VSS	5791.20	-853.00		256	SB1	5809.20	840.00
17	VSL	-6324.60	-853.00		97	VSS	-228.60	-853.00		177	VSS	5867.40	-853.00		257	SC1	5768.00	840.00
18	VSL	-6248.40	-853.00		98	BS1	-152.40	-853.00		178	VSS	5943.60	-853.00	Т	258	SA2	5726.80	840.00
19	VSL	-6172.20	-853.00		99	VDD	-76.20	-853.00		179	VSS	6019.80	-853.00	Т	259	SB2	5685.60	840.00
20	VSL	-6096.00	-853.00		100	BS2	0.00	-853.00		180	VSS	6096.00	-853.00	Т	260	SC2	5644.40	840.00
21	NC	-6019.80	-853.00		101	VSS	76.20	-853.00		181	NC	6172.20	-853.00	Т	261	SA3	5603.20	840.00
22	NC	-5943.60	-853.00		102	IREF	152.40	-853.00		182	NC	6248.40	-853.00	Т	262	SB3	5562.00	840.00
23	VDD	-5867.40	-853.00		103	VSS	228.60	-853.00		183	NC	6324.60	-853.00	T	263	SC3	5520.80	840.00
24	VDD	-5791.20	-853.00		104	VCC	304.80	-853.00		184	VCL	6400.80	-853.00	Τ	264	SA4	5479.60	840.00
25	VDD	-5715.00	-853.00		105	VCC	381.00	-853.00		185	VCL	6477.00	-853.00	T	265	SB4	5438.40	840.00
26	VDD	-5638.80	-853.00		106	VCC	457.20	-853.00		186	VCL	6553.20	-853.00	Ţ	266	SC4	5397.20	840.00
27	VCC	-5562.60	-853.00		107	VCC	533.40	-853.00		187	VCL	6629.40	-853.00	I	267	SA5	5356.00	840.00
28	VCC	-5486.40	-853.00		108	VCC	609.60	-853.00		188	VCL	6705.60	-853.00	Ι	268	SB5	5314.80	840.00
29	VCC	-5410.20	-853.00		109	VCC	685.80	-853.00		189	VCL	6781.80	-853.00	Ι	269	SC5	5273.60	840.00
30	VCC	-5334.00	-853.00		110	FR	762.00	-853.00		190	VCL	6858.00	-853.00	I	270	SA6	5232.40	840.00
31	VCOMH	-5257.80	-853.00		111	CL	838.20	-853.00		191	VCL	6934.20	-853.00		271	SB6	5191.20	840.00
32	VCOMH	-5181.60	-853.00		112	DOF#	914.40	-853.00		192	VCL	7010.40	-853.00	Т	272	SC6	5150.00	840.00
33	VCOMH	-5105.40	-853.00		113	VSS	990.60	-853.00		193	VCL	7086.60	-853.00	Т	273	SA7	5108.80	840.00
34	TR8	-5029.20	-853.00		114	CS#	1066.80	-853.00		194	VCL	7162.80	-853.00	Т	274	SB7	5067.60	840.00
35	TR7	-4953.00	-853.00		115	VDD	1143.00	-853.00		195	VCL	7239.00	-853.00	Т	275	SC7	5026.40	840.00
36	TR6	-4876.80	-853.00		116	RES#	1219.20	-853.00		196	NC	7315.20	-853.00	Т	276	SA8	4985.20	840.00
37	TR5	-4800.60	-853.00		117	D/C#	1295.40	-853.00		197	NC	7391.40	-853.00	Т	277	SB8	4944.00	840.00
38	TR4	-4724.40	-853.00		118	VSS	1371.60	-853.00		198	NC	7467.60	-853.00	Т	278	SC8	4902.80	840.00
39	TR3	-4648.20	-853.00		119	R/W#	1447.80	-853.00		199	NC	7543.80	-853.00	Т	279	SA9	4861.60	840.00
40	TR2	-4572.00	-853.00		120	E/RD#	1524.00	-853.00		200	NC	7568.30	-664.83	Т	280	SB9	4820.40	840.00
41	TR1	-4495.80	-853.00		121	VDD	1600.20	-853.00		201	NC	7568.30	-572.83	Т	281	SC9	4779.20	840.00
42	TR0	-4419.60	-853.00		122	D0	1676.40	-853.00		202	NC	7568.30	-480.83	Τ	282	SA10	4738.00	840.00
43	VSS	-4343.40	-853.00		123	D1	1752.60	-853.00		203	NC	7568.30	-388.83		283	SB10	4696.80	840.00
44	VSSB	-4267.20	-853.00		124	D2	1828.80	-853.00		204	NC	7568.30	-296.83	Τ	284	SC10	4655.60	840.00
45	VSSB	-4191.00	-853.00		125	D3	1905.00	-853.00		205	NC	7568.30	-204.83		285	SA11	4614.40	840.00
46	VSSB	-4114.80	-853.00		126	D4	1981.20	-853.00		206	NC	7568.30	-112.83		286	SB11	4573.20	840.00
47	VSSB	-4038.60	-853.00		127	D5	2057.40	-853.00		207	NC	7568.30	-20.83		287	SC11	4532.00	840.00
48	GDR	-3962.40	-853.00		128	D6	2133.60	-853.00		208	NC	7568.30	71.18		288	SA12	4490.80	840.00
49	GDR	-3886.20	-853.00		129	D7	2209.80	-853.00		209	NC	7568.30	163.18	L	289	SB12	4449.60	840.00
50	GDR	-3810.00	-853.00		130	VSS	2286.00	-853.00		210	NC	7568.30	255.18	L	290	SC12	4408.40	840.00
51	GDR	-3733.80	-853.00		131	MS	2362.20	-853.00		211	NC	7568.30	439.18		291	SA13	4367.20	840.00
52	GDR	-3657.60	-853.00		132	CLS	2438.40	-853.00		212	NC	7568.30	531.18	L	292	SB13	4326.00	840.00
53	GDR	-3581.40	-853.00		133	VDD	2514.60	-853.00		213	NC	7568.30	623.18		293	SC13	4284.80	840.00
54	GDR	-3505.20	-853.00		134	VCOMH	2590.80	-853.00		214	NC	7560.20	840.00		294	SA14	4243.60	840.00
55	GDR	-3429.00	-853.00		135	VCOMH	2667.00	-853.00		215	COM31	7498.40	840.00	L	295	SB14	4202.40	840.00
56	GDR	-3352.80	-853.00	Ш	136	VCOMH	2743.20	-853.00		216	COM30	7457.20	840.00	Ţ	296	SC14	4161.20	840.00
57	GDR	-3276.60	-853.00	_	137	VCOMH	2819.40	-853.00		217	COM29	7416.00	840.00	Ţ	297	SA15	4120.00	840.00
58	GDR	-3200.40	-853.00	_	138	VCOMH	2895.60	-853.00	_	218	COM28	7374.80	840.00	ļ	298	SB15	4078.80	840.00
59	GDR	-3124.20	-853.00	_	139	VCC	2971.80	-853.00		219	COM27	7333.60	840.00	Ţ	299	SC15	4037.60	840.00
60	GDR	-3048.00	-853.00	_	140	VCC	3048.00	-853.00	_	220	COM26	7292.40	840.00	ļ	300	SA16	3996.40	840.00
61	GDR	-2971.80	-853.00		141	VCC	3124.20	-853.00	_	221	COM25	7251.20	840.00	1	301	SB16	3955.20	840.00
62	GDR	-2895.60	-853.00	_	142	VCC	3200.40	-853.00	_	222	COM24	7210.00	840.00	ļ	302	SC16	3914.00	840.00
63	GDR	-2819.40	-853.00		143	VCC	3276.60	-853.00	_	223	COM23	7168.80	840.00	1	303	SA17	3872.80	840.00
64	GDR	-2743.20	-853.00	-	144	VCC	3352.80	-853.00	_	224	COM22	7127.60	840.00	╀	304	SB17	3831.60	840.00
65	VDDB	-2667.00	-853.00		145	VCC	3429.00	-853.00	_	225	COM21	7086.40	840.00	1	305	SC17	3790.40	840.00
66	VDDB	-2590.80	-853.00	_	146	VCC	3505.20	-853.00	<u> </u>	226	COM20	7045.20	840.00	1	306	SA18	3749.20	840.00
67	VDDB	-2514.60	-853.00		147	VCC	3581.40	-853.00	_	227	COM19	7004.00	840.00	1	307	SB18	3708.00	840.00
68	VDDB	-2438.40	-853.00		148	VCC	3657.60	-853.00	—	228	COM18	6962.80	840.00	1	308	SC18	3666.80	840.00
69	VDD	-2362.20	-853.00		149	VCC	3733.80	-853.00	_	229	COM17	6921.60	840.00	1	309	SA19	3625.60	840.00
70	VDD	-2286.00	-853.00		150	VCC	3810.00	-853.00	_	230	COM16	6880.40	840.00	1	310	SB19	3584.40	840.00
71	VDD	-2209.80	-853.00	_	151	VDD	3886.20	-853.00	_	231	COM15	6839.20	840.00	Ļ	311	SC19	3543.20	840.00
72	VDD	-2133.60	-853.00	_	152	VDD	3962.40	-853.00	_	232	COM14	6798.00	840.00	Ļ	312	SA20	3502.00	840.00
73	FB	-2057.40	-853.00	_	153	VDD	4038.60	-853.00	_	233	COM13	6756.80	840.00	Ţ	313	SB20	3460.80	840.00
74	VSS	-1981.20	-853.00		154	VDD	4114.80	-853.00	_	234	COM12	6715.60	840.00	ļ	314	SC20	3419.60	840.00
75	RESE	-1905.00	-853.00		155	VDD	4191.00	-853.00	_	235	COM11	6674.40	840.00	Ļ	315	SA21	3378.40	840.00
76	VBREF	-1828.80	-853.00		156	VDD	4267.20	-853.00		236	COM10	6633.20	840.00	Ţ	316	SB21	3337.20	840.00
77	VSS	-1752.60	-853.00		157	VDD	4343.40	-853.00	_	237	COM9	6592.00	840.00	Ĺ	317	SC21	3296.00	840.00
78	BGGND	-1676.40	-853.00		158	VDD	4419.60	-853.00		238	COM8	6550.80	840.00	Ţ	318	SA22	3254.80	840.00
79	NC NC	-1600.20	-853.00		159	VDD	4495.80	-853.00		239	COM7	6509.60	840.00	L	319	SB22	3213.60	840.00
80	VPA	-1524.00	-853.00		160	VSL	4572.00	-853.00		240	COIVI6	6468.40	840.00	Ĺ	320	SC22	3172.40	840.00

SSD0332 Rev 1.0 P 9/50 Oct 2005 **Solomon Systech**

Pad #	Pad Name	X-Axis	Y-Axis		Pad #	Pad Name	X-Axis	Y-Axis	_	Pad #	Pad Name	X-Axis	Y-Axis	Т	Pad #	Pad Name	X-Axis	Y-Axis
321	SA23	3131.20	840.00		401	SC49	-164.80	840.00		481	SB76	-3584.40	840.00	t	561	COM48	-6880.40	840.00
322	SB23	3090.00	840.00		402	SA50	-206.00	840.00		482	SC76	-3625.60	840.00	Ι	562	COM49	-6921.60	840.00
323	SC23	3048.80	840.00		403	SB50	-247.20	840.00		483	SA77	-3666.80	840.00		563	COM50	-6962.80	840.00
324	SA24	3007.60	840.00		404	SC50	-288.40	840.00		484	SB77	-3708.00	840.00		564	COM51	-7004.00	840.00
325	SB24	2966.40	840.00		405	SA51	-329.60	840.00		485	SC77	-3749.20	840.00	\perp	565	COM52	-7045.20	840.00
326	SC24	2925.20	840.00		406	SB51	-370.80	840.00		486	SA78	-3790.40	840.00	Ļ	566	COM53	-7086.40	840.00
327	SA25	2884.00	840.00		407	SC51	-412.00	840.00		487	SB78	-3831.60	840.00	L	567	COM54	-7127.60	840.00
328	SB25	2842.80	840.00		408	SA52	-453.20	840.00		488	SC78	-3872.80	840.00	+	568	COM55	-7168.80	840.00
329	SC25	2801.60	840.00 840.00		409	SB52 SC52	-494.40	840.00	_	489	SA79	-3914.00	840.00 840.00	+	569	COM56	-7210.00	840.00
330 331	SA26 SB26	2760.40 2719.20	840.00		410 411	SA53	-535.60 -576.80	840.00 840.00	_	490 491	SB79 SC79	-3955.20 -3996.40	840.00	+	570 571	COM57 COM58	-7251.20 -7292.40	840.00 840.00
332	SC26	2678.00	840.00		412	SB53	-618.00	840.00		492	SA80	-4037.60	840.00	+	572	COM59	-7333.60	840.00
333	SA27	2636.80	840.00		413	SC53	-659.20	840.00		493	SB80	-4078.80	840.00	+	573	COM60	-7374.80	840.00
334	SB27	2595.60	840.00		414	SA54	-700.40	840.00		494	SC80	-4120.00	840.00	t	574	COM61	-7416.00	840.00
335	SC27	2554.40	840.00		415	SB54	-741.60	840.00		495	SA81	-4161.20	840.00	T	575	COM62	-7457.20	840.00
336	SA28	2513.20	840.00		416	SC54	-782.80	840.00		496	SB81	-4202.40	840.00	T	576	COM63	-7498.40	840.00
337	SB28	2472.00	840.00		417	SA55	-824.00	840.00		497	SC81	-4243.60	840.00	Τ	577	NC	-7560.20	840.00
338	SC28	2430.80	840.00		418	SB55	-865.20	840.00		498	SA82	-4284.80	840.00	Ι	578	NC	-7568.30	623.18
339	SA29	2389.60	840.00		419	SC55	-906.40	840.00		499	SB82	-4326.00	840.00		579	NC	-7568.30	531.18
340	SB29	2348.40	840.00		420	SA56	-947.60	840.00		500	SC82	-4367.20	840.00	L	580	NC	-7568.30	439.18
341	SC29	2307.20	840.00		421	SB56	-988.80	840.00		501	SA83	-4408.40	840.00	_	581	NC	-7568.30	255.18
342	SA30	2266.00	840.00		422	SC56	-1030.00	840.00		502	SB83	-4449.60	840.00	+	582	NC	-7568.30	163.18
343	SB30 SC30	2224.80	840.00 840.00		423	SA57 SB57	-1071.20 -1112.40	840.00	_	503	SC83	-4490.80 -4532.00	840.00	+	583	NC NC	-7568.30	71.18
344 345	SA31	2183.60 2142.40	840.00	_	424 425	SC57	-1112.40	840.00 840.00	_	504 505	SA84 SB84	-4532.00 -4573.20	840.00 840.00	╁	584 585	NC NC	-7568.30 -7568.30	-20.83 -112.83
346	SB31	2142.40	840.00		425	SA58	-1194.80	840.00		506	SC84	-4573.20 -4614.40	840.00	╁	586	NC NC	-7568.30	-204.83
347	SC31	2060.00	840.00		427	SB58	-1236.00	840.00		507	SA85	-4655.60	840.00	+	587	NC NC	-7568.30	-296.83
348	SA32	2018.80	840.00		428	SC58	-1277.20	840.00		508	SB85	-4696.80	840.00	T	588	NC	-7568.30	-388.83
349	SB32	1977.60	840.00		429	SA59	-1318.40	840.00		509	SC85	-4738.00	840.00	t	589	NC	-7568.30	-480.83
350	SC32	1936.40	840.00		430	SB59	-1359.60	840.00		510	SA86	-4779.20	840.00	Т	590	NC	-7568.30	-572.83
351	SA33	1895.20	840.00		431	SC59	-1400.80	840.00		511	SB86	-4820.40	840.00	T	591	NC	-7568.30	-664.83
352	SB33	1854.00	840.00		432	SA60	-1565.60	840.00		512	SC86	-4861.60	840.00	T				
353	SC33	1812.80	840.00		433	SB60	-1606.80	840.00		513	SA87	-4902.80	840.00					
354	SA34	1771.60	840.00		434	SC60	-1648.00	840.00		514	SB87	-4944.00	840.00					
355	SB34	1730.40	840.00		435	SA61	-1689.20	840.00		515	SC87	-4985.20	840.00	4				
356	SC34	1689.20	840.00		436	SB61	-1730.40	840.00		516	SA88	-5026.40	840.00	4				
357	SA35	1648.00	840.00		437	SC61	-1771.60	840.00		517	SB88	-5067.60	840.00	+				
358	SB35	1606.80	840.00	_	438	SA62	-1812.80	840.00	_	518	SC88	-5108.80	840.00	+				
359 360	SC35 SA36	1565.60 1524.40	840.00 840.00		439 440	SB62 SC62	-1854.00 -1895.20	840.00 840.00	_	519 520	SA89 SB89	-5150.00 -5191.20	840.00 840.00	+				
361	SB36	1483.20	840.00		441	SA63	-1936.40	840.00	_	521	SC89	-5232.40	840.00	+				
362	SC36	1442.00	840.00		442	SB63	-1977.60	840.00		522	SA90	-5273.60	840.00	+				
363	SA37	1400.80	840.00		443	SC63	-2018.80	840.00		523	SB90	-5314.80	840.00	†				
364	SB37	1359.60	840.00		444	SA64	-2060.00	840.00		524	SC90	-5356.00	840.00	\top				
365	SC37	1318.40	840.00		445	SB64	-2101.20	840.00		525	SA91	-5397.20	840.00	T				
366	SA38	1277.20	840.00		446	SC64	-2142.40	840.00		526	SB91	-5438.40	840.00					
367	SB38	1236.00	840.00		447	SA65	-2183.60	840.00		527	SC91	-5479.60	840.00					
368	SC38	1194.80	840.00		448	SB65	-2224.80	840.00		528	SA92	-5520.80	840.00	4				
369	SA39	1153.60	840.00		449	SC65	-2266.00	840.00		529	SB92	-5562.00	840.00	4				
370	SB39	1112.40	840.00	_	450	SA66	-2307.20	840.00	_	530	SC92	-5603.20	840.00	+				
371	SC39	1071.20	840.00 840.00		451	SB66	-2348.40	840.00	_	531	SA93	-5644.40	840.00	+				
372 373	SA40 SB40	1030.00 988.80	840.00		452 453	SC66 SA67	-2389.60 -2430.80	840.00 840.00	-	532 533	SB93 SC93	-5685.60 -5726.80	840.00 840.00	+				\vdash
374	SC40	947.60	840.00		454	SB67	-2472.00	840.00	-	534	SA94	-5768.00	840.00	+				
375	SA41	906.40	840.00		455	SC67	-2513.20	840.00		535	SB94	-5809.20		+				
376	SB41	865.20	840.00		456	SA68	-2554.40	840.00		536	SC94	-5850.40	840.00	+				
377	SC41	824.00	840.00		457	SB68	-2595.60	840.00		537	SA95	-5891.60	840.00	\top				
378	SA42	782.80	840.00		458	SC68	-2636.80	840.00		538	SB95	-5932.80	840.00					
379	SB42	741.60	840.00		459	SA69	-2678.00	840.00		539	SC95	-5974.00	840.00	I				
380	SC42	700.40	840.00		460	SB69	-2719.20	840.00		540	NC	-6015.20	840.00	_[
381	SA43	659.20	840.00		461	SC69	-2760.40	840.00		541	NC	-6056.40	840.00	4				
382	SB43	618.00	840.00		462	SA70	-2801.60	840.00	_	542	NC	-6097.60	840.00	4				
383	SC43 SA44	576.80	840.00	_	463 464	SB70 SC70	-2842.80 -2884.00	840.00	_	543	NC NC	-6138.80	840.00 840.00	+				
384 385	SA44 SB44	535.60 494.40	840.00 840.00	-	464	SC70 SA71	-2884.00 -2925.20	840.00 840.00	_	544 545	NC COM32	-6180.00 -6221.20	840.00	+				
386	SC44	453.20	840.00		466	SB71	-2925.20	840.00		546	COM33	-6262.40	840.00	+				\vdash
387	SA45	412.00	840.00		467	SC71	-3007.60	840.00		547	COM34	-6303.60	840.00	+				
388	SB45	370.80	840.00		468	SA72	-3048.80	840.00		548	COM35	-6344.80	840.00	+				
389	SC45	329.60	840.00		469	SB72	-3090.00	840.00		549	COM36	-6386.00	840.00	\dagger				
390	SA46	288.40	840.00		470	SC72	-3131.20	840.00		550	COM37	-6427.20	840.00	\dagger				
391	SB46	247.20	840.00		471	SA73	-3172.40	840.00		551	COM38	-6468.40	840.00	j				
392	SC46	206.00	840.00		472	SB73	-3213.60	840.00		552	COM39	-6509.60	840.00					
393	SA47	164.80	840.00		473	SC73	-3254.80	840.00		553	COM40	-6550.80	840.00	I				
394	SB47	123.60	840.00		474	SA74	-3296.00	840.00		554	COM41	-6592.00	840.00	_[
395	SC47	82.40	840.00		475	SB74	-3337.20	840.00		555	COM42	-6633.20	840.00	4				
396	SA48	41.20	840.00	_	476	SC74	-3378.40	840.00	_	556	COM43	-6674.40	840.00	+				
397	SB48	0.00	840.00		477	SA75	-3419.60	840.00	_	557	COM44	-6715.60	840.00	+				\vdash
398 399	SC48 SA49	-41.20 -82.40	840.00 840.00	-	478 479	SB75 SC75	-3460.80 -3502.00	840.00 840.00		558 559	COM45 COM46	-6756.80 -6798.00	840.00 840.00	+				
400	SB49	-123.60	840.00	-	480	SA76	-3543.20	840.00	_	560	COM47	-6839.20	840.00	+				
									_		•			_				

 Solomon Systech
 Oct 2005
 P 10/50
 Rev 1.0
 SSD0332

Figure 5-2: SSD0332Z Alignment mark dimensions

Detail O

Scale: 10:1

Unit in um

SSD0332 Rev 1.0 P 11/50 Oct 2005 **Solomon Systech**

6 PIN DESCRIPTIONS

Key:

I = Input O =Output IO = Bi-directional (input/output) P = Power pin Hi-Z = High impedance

Table 6-1: Pin Descriptions

Pin Name	Pin Type	Description
RES#	I	This pin is reset signal input. When the pin is low, initialization of the chip is executed.
CS#	т	This pin is the chip select input. The chip is enabled for MCU communication only when
CS#	I	CS# is pulled low.
D/C#	I	This pin is Data/Command control pin. When the pin is pulled high, the data at D ₇ -D ₀ is
(SA0)		treated as data. When the pin is pulled low, the data at D ₇ -D ₀ will be transferred to the
		command register. For detail relationship to MCU interface signals, please refer to the
		Timing Characteristics Diagrams in Section 12.
		In I ² C mode, this pin act as SA0 for slave address selection.
E (RD#)	I	This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin
. ,		will be used as the Enable (E) signal. Read/write operation is initiated when this pin is
		pulled high and the chip is selected.
		When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Data
		read operation is initiated when this pin is pulled low and the chip is selected.
		When I ² C Interface mode is selected, this pin is tied to LOW.
R/W#	I	This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin
(WR#)		will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this
(pin is pulled high and write mode will be carried out when low.
		When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write
		operation is initiated when this pin is pulled low and the chip is selected.
		When I ² C Interface mode is selected, this pin is tied to LOW.
D_7 - D_0	IO	These are 8-bit bi-directional data bus to be connected to the microprocessor's data bus.
, 0		When serial interface mode is selected, D ₁ will be the serial data input, SD _{IN} , and D ₀ will be
		the serial clock input, SCLK.
		When I ² C mode is selected, D ₂ , D ₁ should be tied together and serve as SDA _{out} , SDA _{in} and
		D_0 is the serial clock input, SCL.
V_{DD}	P	Power Supply pin for logic operation of the driver. It must be connected to external source
V _{SS}	P	Ground pin. It must be connected to external ground.
CL	I	This pin is the system clock input. When internal clock is enabled, this pin should be left
		open. Nothing should be connected to this pin. When internal oscillator is disabled, this pin
		receives display clock signal from external clock source.
CLS	I	This pin is internal clock enable. When this pin is pulled high, internal oscillator is selected.
		The internal clock will be disabled when it is pulled low, an external clock source must be
		connected to CL pin for normal operation.
V _{CC}	P	This is the most positive voltage supply pin of the chip. It is supplied either by external high
• 66		voltage source or internal booster.
V _{COMH}	IO	This pin is the input pin for the voltage output high level for COM signals. It can be supplied
COMH		externally or internally. When V _{COMH} is generated internally, a capacitor should be
		connected between this pin and V_{SS} .
V _{REF}	P	This pin is the reference for OLED driving voltages like V_{PA} , V_{PB} , V_{PC} and V_{COMH} . The
· KEF	1	relation between V_{REF} and those driving voltages can be programmed and please refer to
		Table 8-1 : Command Table for details. V_{REF} can be either supplied externally or connected
		to V _{CC} .
$V_{PA}, V_{PB},$	P	These pins are the pre-charge driving voltages for OLED driving segment pins SA0-SA95,
V PA, V PB, V _{PC}	1	SB0-SB95 and SC0-SC95 respectively. They can be supplied externally or internally
• PC		generated by VP circuit. When internal VP is used, V _{PA} , V _{PB} , V _{PC} pins should be left open.
	1	1 Somerated by vi circuit, vinen internal vi is asou, vpA, vpB, vpC pins should be left open.

 Solomon Systech
 Oct 2005
 P 12/50
 Rev 1.0
 SSD0332

Pin Name	Pin Type	Description
I_{REF}	IO	This pin is the segment output current reference pin. I_{SEG} is derived from I_{REF}
		$I_{SEG} = Contrast / 256 * I_{REF} * scale factor,$
		in which the contrast is set by command and the scale factor = $1 \sim 16$.
		A resistor should be connected between this pin and V _{SS} to maintain the current around
		10uA. Please refer to section 7.4 "Current and Voltage Supply" for the formula of resistor
		value from I _{REF} .
COM0 ~	О	These pins provide the Common switch signals to the OLED panel. These pins are in high
COM63		impedance state when display is off.
SA0-SA95,	О	These pins provide the OLED segment driving signals. These pins are in high impedance
SB0-SB95,		state when display is off.
SC0-SC95		
		The 288 segment pins are divided into 3 groups, SA, SB and SC. Each group can have
		different color settings for color A, B and C.
FB		This pin is the feedback resistor input of the booster circuit. It is used to adjust the booster
		output voltage level (Vcc). Please refer to the section 7.12 "DC-DC Voltage Converter" for
		connection details.
VDDB	P	This is the power supply pin for the internal buffer of the DC-DC voltage converter. 3.5V
		$>= V_{DDB} >= V_{DD}$.
VSSB	P	This is the GND pin for the internal buffer of the DC-DC voltage converter. It must be
		connected to V _{SS.}
GDR	P	This output pin drives the gate of the external NMOS of the booster circuit. Please refer to
		the section 7.12 "DC-DC Voltage Converter" for connection details.
RESE	I	This pin connects to the source current pin of the external NMOS of the booster circuit.
		Please refer to the section 7.12 "DC-DC Voltage Converter" for connection details.
VB_{REF}	I	This pin is the internal voltage reference of booster circuit. A stabilization capacitor,
		typically 1uF, should be connected between VB _{REF} and Vss.
VSL	О	This is segment voltage reference pin. This pin should be left open.
TIGE		
VCL	О	This is common voltage reference pin. This pin should be connected to V_{SS} externally.
TR0-TR8	-	Testing reserved pins. Keep NC.

Table 6-2: MCU Bus Interface Pin Selection

Pin Name	I ² C Interface	6800- parallel interface (8 bit)	8080- parallel interface (8 bit)	Serial interface
BS0	0	0	0	0
BS1	1	0	1	0
BS2	0	1	1	0

 SSD0332
 Rev 1.0
 P 13/50
 Oct 2005
 Solomon Systech

7 FUNCTIONAL BLOCK DESCRIPTIONS

7.1 Oscillator Circuit and Display Time Generator

Figure 7-1: Oscillator Circuit

This module is an On-Chip low power RC oscillator circuitry (Figure 7-1). The operation clock (CLK) can be generated either from internal oscillator or external source CL pin by CLS pin. If CLS pin is high, internal oscillator is selected. If CLS pin is low, external clock from CL pin will be used for CLK. The frequency of internal oscillator Fosc can be programmed by command B3h.

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor can be programmed from 1 to 16 by command B3h.

7.2 Reset Circuit

When RES# input is low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 64 MUX Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00H and COM0 mapped to address 00H)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Master contrast control register is set at 0FH
- 9. Individual contrast control registers of color A, B, and C are set at 80H

7.3 Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin.

If D/C# pin is high, data is written to Graphic Display Data RAM (GDDRAM). If it is low, the input at D_0 - D_7 is interpreted as a Command and it will be decoded and be written to the corresponding command register.

Solomon Systech Oct 2005 | P 14/50 | Rev 1.0 | SSD0332

7.4 Current and Voltage Supply

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V_{CC} are most positive voltage supply. It can be supplied externally or from internal DC-DC converter.
- V_{DD} are external power supply for logic operation of the driver.
- V_{REF} is reference voltage, which is used to derive driving voltage for segments and commons like V_{PA}, V_{PB}, V_{PC} and V_{COMH}. Normally, V_{REF} is connected to V_{CC}. Please refer to the command table for the relationships of V_{REF} to the segments and commons voltages.
- I_{REF} is a reference current source for segment current drivers I_{SEG}. The relationship between reference current and segment current of a color is:

```
I_{SEG} = Contrast / 256 * I_{REF} * scale factor
```

in which the contrast $(0\sim255)$ is set by Set Contrast command, and the scale factor $(1\sim16)$ is set by Master Current Control command.

For example, in order to achieve $I_{SEG} = 160uA$ at maximum contrast 255, I_{REF} is set to around 10uA. This current value is obtained by connecting an appropriate resistor from I_{REF} pin to V_{SS} as shown in Figure 7-2.

Recommended range for Iref = 8 - 12uA

Figure 7-2: I_{REF} Current Setting by Resistor Value

Since the voltage at I_{REF} pin is $V_{CC} - 3V$, the value of resistor R1 can be found as below.

R1 = (Voltage at $I_{REF} - V_{SS}$) / $I_{REF} = (V_{CC} - 3)$ / 10uA ≈ 910kΩ for $V_{CC} = 12V$.

SSD0332 | Rev 1.0 | P 15/50 | Oct 2005 | **Solomon Systech**

7.5 Segment Drivers/Common Drivers

Segment drivers consists of 288 (96 x 3 colors) current sources to drive OLED panel. The driving current can be adjusted from 0 to 200uA with 256 steps by contrast setting command. Common drivers generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are shown as follow.

Figure 7-3: Segment and Common Driver Block Diagram

 Solomon Systech
 Oct 2005 | P 16/50 | Rev 1.0 | SSD0332

Figure 7-4: Segment and Common Driver Signal Waveform

SSD0332 Rev 1.0 P 17/50 Oct 2005 **Solomon Systech**

The commons are scanned sequentially one by one row. If the row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage V_{COMH} .

In the scanned row, the pixels on the row will be turned on or off by sending the corresponding data signal to the segment pins. If the pixel is turned off, the segment current is kept at 0. On the other hand, the segment drives to I_{SEG} when the pixel is turned on.

There are three phases to driving a OLED a pixel. In phase 1, the pixel is reset by the segment driver to $V_{\rm SS}$ in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h from 1 to 16 DCLK. An OLED panel with larger capacitance requires a longer period for discharging.

In phase 2, the pixel is charged up by the segment driver to the desired voltage levels V_{PA} , V_{PB} or V_{PC} for color A, B or C respectively. The period of phase 2 can be programmed by command B1h from 1 to 16 DCLK. An OLED panel with larger capacitance requires a longer period for charging up.

Last phase is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The wider pulse widths in the current drive stage results in brighter pixels and vice versa. This is shown in the following figure.

Figure 7-5: Gray Scale Control by PWM in Segment

The pulse width in current drive stage to control brightness can be programmed through "Set Gray Scale Table" command. It is described in more detailed in section 9 "Command Descriptions".

Solomon Systech Oct 2005 | P 18/50 | Rev 1.0 | SSD0332

7.6 MPU I²C Interface

The I^2C communication interface consists of slave address bit SA0, I^2C -bus data signal SDA (D_2 for output and D_1 for input) and I^2C -bus clock signal SCL (D_0). Both the data and clock signals must be connected to pull-up resistors. RES# is used for the initialization of device.

a) Slave address bit (SA0)

SSD0332 has to recognize the slave address before transmitting or receiving any information by the I²C-bus. The device will respond to the slave address following by the slave address bit ("SA0" bit) and the read/write select bit ("R/W#" bit) with the following byte format,

 $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$

0 1 1 1 1 0 SA0 R/W#

"SA0" bit provides an extension bit for the slave address. Either "0111100" or "0111101", can be selected as the slave address of SSD0332.

"R/W#" bit is used to determine the operation mode of the I^2C -bus interface. R/W#=1, it is in read mode. R/W#=0, it is in write mode.

b) I²C-bus data signal (SDA)

SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA. If SDA in is connected to the "SDA out", the device becomes fully I²C bus compatible.

It should be noticed that the ITO track resistance and the pulled-up resistance at "SDA" pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in "SDA".

The "SDA out" pin may be disconnected from the "SDA in" pin. With such arrangement, the acknowledgement signal will be ignored in the I²C-bus.

c) I²C-bus clock signal (SCL)

The transmission of information in the I²C-bus is following a clock signal, SCL. Each transmission of data bit is taken place during a single clock period of SCL.

SSD0332 | Rev 1.0 | P 19/50 | Oct 2005 | **Solomon Systech**

7.6.1 I²C-bus Write data and read register status

The I^2C -bus interface gives access to write data and command into the device. Please refer to Figure 7-6 for the write mode of I^2C -bus in chronological order.

Co – Continuation bit Note: D/C# - Data / Command Selection bit ACK - Acknowledgement SA0 – Slave address bit R/W# - Read / Write Selection bit S – Start Condition / P – Stop Condition Write mode $n \, \geq \, 0 \; bytes$ Slave Address 1 byte $m \geq 0 \ words$ $MSB \dots LSB$ Read mode Read mode SSD0332 Slave Address Slave Address

Control byte

Figure 7-6: I²C-bus data format

Solomon Systech Oct 2005 | P 20/50 | Rev 1.0 | SSD0332

7.6.2 Write mode for I^2C

- 1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in Figure 7-7. The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH.
- 2) The slave address is following the start condition for recognition use. For the SSD0332, the slave address is either "b0111100" or "b0111101" by changing the SA0 to HIGH or LOW.
- 3) The write mode is established by setting the R/W# bit to logic "0".
- 4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R/W# bit. Please refer to the Figure 7-8 for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse.
- 5) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and D/C# bits following by six "0" 's.
 - a. If the Co bit is set as logic "0", the transmission of the following information will contain data bytes only.
 - b. The D/C# bit determines the next data byte is acted as a command or a data. If the D/C# bit is set to logic "0", it defines the following data byte as a command. If the D/C# bit is set to logic "1", it defines the following data byte as a data which will be stored at the GDDRAM. The GDDRAM column address pointer will be increased by one automatically after each data write.
- 6) Acknowledge bit will be generated after receiving each control byte or data byte.
- 7) The write mode will be finished when a stop condition is applied. The stop condition is also defined in Figure 7-7. The stop condition is established by pulling the "SDA in" from LOW to HIGH while the "SCL" stays HIGH.

Figure 7-7: Definition of the Start and Stop Condition

SSD0332 | Rev 1.0 | P 21/50 | Oct 2005 | **Solomon Systech**

DATA OUTPUT
BY TRANSMITTER

DATA OUTPUT
BY RECEIVER

SCL FROM
MASTER

1

2

8

9

START
Clock pulse for acknowledgement

Figure 7-8: Definition of the acknowledgement condition

Please be noted that the transmission of the data bit has some limitations.

- 1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the "HIGH" period of the clock pulse. Please refer to the Figure 7-9 for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW.
- 2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.

Figure 7-9: Definition of the data transfer condition

Solomon Systech Oct 2005 | P 22/50 | Rev 1.0 | SSD0332

7.6.3 Read mode for I²C (Read status register)

- 1) The master device firstly initiates the data communication by a start condition. The definition of the start condition is shown in Figure 7-7.
- 2) The slave address is following the start condition for recognition use. For the SSD0332, the slave address is either "b0111100" or "b0111101".
- 3) The read mode is established by setting R/W# bit to logic "1". The read mode allows the MCU to monitor the internal status of the chip.
- 4) An acknowledgement signal will be generated after sending one byte of data, including the slave address and the R/W# bit. Please refer to the Figure 7-8 for the graphical representation of the acknowledge signal.
- 5) The status of the register will be read at the next status byte. Please refer to the Table 8-2: Read Command Table for the explanation of the status byte.
- 6) The read mode will be finished when a stop condition is applied. The stop condition is also defined in Figure 7-7.

7.7 MPU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (D₀-D₇), R/W(WR#), D/C, E (RD#) and CS#. R/W(WR#) High Input indicates a read operation from the Graphic Display Data RAM (GDDRAM) or the status register. R/W(WR#) Low Input indicates a write operation to Display Data RAM or Internal Command Registers depending on the status of D/C input. The E(RD#) input serves as data latch signal (clock) when high provided that CS# is low. Refer to Figure 12-2 of parallel timing characteristics for Parallel Interface Timing Diagram of 6800-series microprocessors.

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 7-10 below.

Figure 7-10: Display data read back procedure - insertion of dummy read

SSD0332 | Rev 1.0 | P 23/50 | Oct 2005 | **Solomon Systech**

7.8 MPU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D_0 - D_7), E (RD#), R/W(WR#), D/C and CS#. The E(RD#) input serves as data read latch signal (clock) when low, provided that CS# is low. Display data RAM or status register read is controlled by D/C#.

R/W(WR#) input serves as data write latch signal (clock) when low provided that CS# is low, or CS# input serves as data write latch signal at rising edge when R/W(WR#) is low. Display data RAM or command register write is controlled by D/C. Refer to Figure 12-3 of parallel timing characteristics for Parallel Interface Timing Diagram of 8080-series microprocessor. Similar to 6800-series interface, a dummy read is also required before the first actual display data read.

7.9 MPU Serial Interface

The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. D3 to D7, E and R/W pins can be connected to external ground.

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D_7 , D_6 , ... D_0 . D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Display Data RAM or command register in the same clock.

7.10 Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the pattern to be displayed. The size of the RAM is 96 x 64 x 16bits.

For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display.

Each pixel has 16-bit data. Three sub-pixels for color A, B and C have 6 bits, 5 bits and 6 bits respectively. The arrangement of data pixel in graphic display data RAM is shown below.

Normal 0 93 94 95 Column Address 95 94 93 0 B5 B5 Data B4 А3 B4 A3 B4 C3 А3 B4 А3 B4 А3 B4 Format A3 C3 C3 C3 C3 C3 B3 C2 A2 В3 C2 A2 B3 C2 A2 B3 C2 A2 B3 C2 A2 B3 C2 A1 B2 A1 B2 C1 A1 B2 C1 A1 B2 C1 A1 B2 C1 A1 B2 Row ΑO ΑO ΑO B1 CO B1 CO AΩ B1 CO AΩ B1 C0B1 C0AΩ B1 C0Address COM B0 B0 B0 B0 B0 B0 Normal Remap OUTPUT 95 6 5 6 5 5 6 6 6 6 COMO 94 COM₁ 2 93 COM₂ no, of bits of data in this cell 93 2 COM6 94 COM62 95 0 COM6 SEG OUTPUT SA0 SB0 SC0 SA1 SB1 SC1 SA2 SB2 SC2 : SA93 SB93 SC93 SA94 SB94 SC94 SA95 SB95 SC95

Figure 7-11: 65k Color Depth Graphic Display Data RAM Structure

Solomon Systech Oct 2005 | P 24/50 | Rev 1.0 | SSD0332

The sequence of sending one pixel of 16-bit data is divided into two 8-bit sessions as shown below.

Figure 7-12: 65k Color Depth Graphic Display Data Writing Sequence

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1 st byte	C4	C3	C2	C1	C0	В5	B4	В3
2 nd byte	B2	B1	В0	A4	A3	A2	A1	A0

In 256-color mode, each pixel is composed of 8-bit. Color A uses 2-bit while color B and color C each is represented by 3-bit. Although only 8 bits are required to represent one pixel, each pixel occupies 16-bit space inside graphic display data RAM with format as follows.

For 256-color mode, one pixel data is sent in a 8-bit session like below.

Figure 7-13: 256 Color Depth Graphic Display Data Writing Sequence

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1 st byte	C2	C1	C0	B2	B1	В0	A1	A0

Figure 7-14: 256 Color Depth Graphic Display Data RAM Structure for One Pixel

Color C	RAM
(3 bits)	Content
	(5 bits)
000	00000
001	00100
010	01000
011	01100
100	10010
101	10110
110	11010
111	11110

RAM
Content
(6 bits)
000000
001000
010000
011000
100100
101100
110100
111100

Color A	RAM
(2 bits)	Content
	(5 bits)
00	00000
01	01000
10	10100
11	11100

7.11 Gray Scale and Gray Scale Table

The gray scale display is produced by controlling the current pulse widths from the segment driver in the current drive phase. The gray scale table stores the corresponding pulse widths (PW0 \sim PW63) of the 64 gray scale levels (GS0 \sim GS63). The wider the pulse width, the brighter the pixel will be. This single gray scale table supports all the three colors A, B and C. The pulse widths are entered by software commands.

As shown in Figure 7-15, color B sub-pixel RAM data has 6 bits, represent the 64 gray scale levels from GS0 to GS63. color A and color C sub-pixel RAM data has only 5 bits, represent 32 gray scale levels from GS0, GS2, ..., GS62.

SSD0332 | Rev 1.0 | P 25/50 | Oct 2005 | **Solomon Systech**

Figure 7-15 : Relation between graphic data RAM value and gray scale table entry for three colors in 65K color mode

Color A, C, RAM data (5 bits)	Color B, RAM data (6 bits)	Gray Scale
0	0	GS0
-	1	GS 1
1	2	GS 2
-	3	GS 3
2	4	GS 4
:	:	••
:	:	••
30	60	GS 60
-	61	GS 61
31	62	GS 62
-	63	GS 63

The meaning of values inside data RAM with respect to the gray scale level is best to be illustrated in an example below.

Gray Scale	Value/DCLKs
(Pulse Width)	
PW0	0
PW1	2
PW2	5
:	:
PW62	120
PW63	125

Gray Scale Table

Figure 7-16: Illustration of relation between graphic display RAM value and gray scale control

Solomon Systech Oct 2005 | P 26/50 | Rev 1.0 | **SSD0332**

7.12 DC-DC Voltage Converter

VCC VDD C5 ↓ AGND Q1 **VDDB GDR** R1 C2 C6 VBREF **RESE** R3 C1 **VSSB** FΒ AGND AGND R2 C4

Figure 7-17: DC-DC Converter Application Circuit Diagram

It is a switching voltage generator circuit, designed for handheld applications. In SSD0332, internal DC-DC voltage converter accompanying with an external application circuit (shown in Figure 7-17) can generate a high voltage supply V_{CC} from a low voltage supply input V_{DD} . V_{CC} is the voltage supply to the OLED driver block. The application circuit above is an example for the input voltage of $3V\ V_{DD}$ to generate V_{CC} of $12V\ @20mA \sim 30mA$ application.

Passive components selection:

Table 7-1: Components Selection for DC-DC Converter

Components	Typical Value	Remark
L1	Inductor, 22uH	2A
D1	Schottky diode	2A, 25V e.g. 1N5822
Q1	MOSFET	N-FET with low R _{DS} (on) and low Vth voltage.
		e.g. MGSF1N02LT1 [ON SEMICONDUCTOR]
R1, R2	Resistor	1%,1/10W
R3	Resistor, 1.2Ω	1%, 1/2W
C1	Capacitor, 1uF	16V
C2	Capacitor, 22uF	Low ESR, 25V
C3	Capacitor, 1uF	16V
C4	Capacitor, 10nF	16V
C5	Capacitor, 1 ~ 10 uF	16V
C6	Capacitor, 0.1 ~ 1uF	16V
C7	Capacitor, 15nF	16V

The VCC output voltage level can be adjusted by R1 and R2, the reference formula is:

$$VCC = 1.2 \text{ x } (R1+R2) / R2$$

SSD0332 Rev 1.0 P 27/50 Oct 2005 **Solomon Systech**

^{*}All paths to AGND should be connected as short as possible

8 COMMAND TABLE

Table 8-1: Command Table

(To write commands to command registers, the MCU interface pins are set as: D/C = 0, R/W(WR#) = 0, E(RD#)=1)

Fun	damenta	l Co	mm	and	Tab	le					
D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
	15 A[6:0] B[6: 0]	0 *	0 A ₆ B ₆		1		1 A ₂ B ₂		A_0	Set Column Address	A[6:0] sets the column start address from 0-95, POR=00d. B[6:0] sets the column end address from 0-95 POR=95d.
	75 A[5:0] B[5:0]	0 *	1 *	1 A ₅ B ₅				0 A ₁ B ₁	A_0	Set Row Address	A[5:0] sets the row start address from 0-63, POR=00d. B[5:0] sets the row end address from 0-63, POR=63d.
	81 A[7:0]	1 A ₇	0 A ₆	0 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Set Contrast for Color A (Segment Pins :SA0 – SA95)	Double byte command to select 1 out of 256 contrast steps. Contrast increases as level increases. POR = 80H
	82 A[7:0]	1 A ₇	0 A ₆	0 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁		Set Contrast for Color B (Segment Pins :SB0 – SB95)	Double byte command to select 1 out of 256 contrast steps. Contrast increases as level increases. POR = 80H
	83 A[7:0]	1 A ₇	0 A ₆	0 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁		Set Contrast for Color C (Segment Pins :SC0 – SC95)	Double byte command to select 1 out of 256 contrast steps. Contrast increases as level increases. POR = 80H
	87 A[3:0]	1 *	0 *	0 *	0 *	0 A ₃	1 A ₂	1 A ₁		Master Current Control	Set A[3:0] from 0000, 0001 to 1111 to adjust the master current attenuation factor from 1/16, 2/16 to 16/16. POR =1111b, for no attenuation.
	A0 A[7:0]	1 A ₇	0 A ₆	1 A ₅	0 A ₄	0 *	0 *	0 A ₁		Set Re-map & Data Format	A[0]=0, Horizontal address increment (POR) A[0]=1, Vertical address increment A[1]=0, Column address 0 is mapped to SEG0 (POR) A[1]=1, Column address 95 is mapped to SEG0 A[4]=0, Scan from COM 0 to COM [N-1] A[4]=1, Scan from COM [N-1] to COM0. Where N is the Multiplex ratio. A[5]=0, Disable COM Split Odd Even (POR) A[5]=1, Enable COM Split Odd Even A[7:6]=00; 256 color format = 01; 65k color format(POR)
	A1 A[5:0]	1 *	0 *	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁		Set Display Start Line	Set display RAM display start line register from 0-63. Display start line register is reset to 00H after POR.

 Solomon Systech
 Oct 2005
 P 28/50
 Rev 1.0
 SSD0332

Fun	damenta	l Co	mma	and '	Tabl	le					
D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	A2 A[5:0]	1 *	0 *	1 A ₅	0	0	0	1		Set Display Offset	Set vertical scroll by COM from 0-63. The value is reset to 00H after POR.
0	A4~A7	1	0	1	0	0	1	X_1	X_0	Set Display Mode	A4h=Normal Display (POR) A5h=Entire Display On, all pixels turn on at GS level 63 A6h=Entire Display Off, all pixels turn off A7h=Inverse Display
0	A8 A[5:0]	1 *	0 *	1 A ₅	0 A ₄	1 A ₃	0 A ₂	0 A ₁	0 A ₀	Set Multiplex Ratio	The next command determines multiplex ratio N from 16MUX-64MUX, POR=63d (64MUX) A[5:0]=0-14d (invalid entry)
0	AD A[7:0]	1 1	0 0	1 0	0 0	1 1	1 A ₂	0 A ₁		Set Master Configuration	A[0]=0, Select external VCC supply at Display ON A[0]=1, Select internal booster at Display ON (POR) A[1]=0, Select external VCOMH voltage supply at Display O A[1]=1, Select internal VCOMH regulator at Display ON (PC A[2]=0, Select External VP voltage supply A[2]=1, Select Internal VP (POR)
0	AE~AF	1	0	1	0	X ₃	1	1	1	Set Display On/Off	AEh=Display off (POR) AFh=Display on
0 0	B0 A[7:0]	1 0	0	1 0	1 A ₄	0	0	0 A ₁	0	Set Power Save	A[7:0]=00 (POR) A[7:0]=12, power saving mode
0 0	B1 A[7:0]	1 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	0 A ₁		Phase 1 and 2 period adjustment	A[3:0] Phase 1 period in 1~16 DCLK clocks [POR=4h] A[7:4] Phase 2 period in 1~16 DCLK clocks [POR=7h]
0 0	B3 A[7:0]	1 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁		Display Clock Divider / Oscillator Frequency	A[3:0] [DIVIDER, POR=0] DCLK is generated from CLK divided by DIVIDER +1 (i.e., A[7:4] Fosc frequency, POR=D0H Frequency increases as level increases
0	B8 A[7:0] PW1	1 A ₇	0 A ₆	1 A ₅	1 A ₄	1 A ₃	0 A ₂	0 A ₁		Set Gray Scale Table	The next 32 bytes of command set the current drive pulse widt gray scale level GS1, GS3, GS5GS63 as below:
	B[7:0] PW3 C[7:0]	B ₇			B ₄			B_1 C_1			A[7:0]=PW1, POR=1, it equals 1 DCLK clock B[7:0]=PW3, POR=5, it equals 3 DCLK clocks C[7:0]=PW5, POR= 9
0 0 0 0	PW5 : : : : AE[7:0] PW61 AF[7:0] PW63		AE_6	AE_5			AE_2		AE_0		: AE[7:0]=PW61, POR=121 AF[7:0]=PW63, POR=125, it equals 125 DCLK clocks Note (1) GS0 has no pre-charge and current drive stages. For GS2 GS4GS62, they are derived by driver itself with: PWn = (PWn ₋₁ +PWn ₊₁)/2 Max pulse width is 125

SSD0332 Rev 1.0 P 29/50 Oct 2005 **Solomon Systech**

Fun	Fundamental Command Table													
D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description			
0	В9	1	0	1	1	1	0	0		Enable Linear Gray Scale Table	Enable build-in linear gray scale table (POR=Enable) PW1=1,PW2=3,PW3=5 PW61=121,PW62=123,PW63=125			
	BB ~ BD A[7:0]	1 A ₇	0 A ₆	1 A ₅	1 A ₄		X ₂ A ₂			V _{PA} , V _{PB} , V _{PC} level setting for Color A,B,C	011b for Color A, 100b for Color B, 101b for Color C A[7:0] 00000000 0.43*Vref 00111111 0.83*Vref 01111111 1.0*Vref 1xxxxxxx connects to VCOMH (POR)			
	BE A[6:0]	1 *	0 A ₆	1 A ₅	1 A ₄	1 A ₃	1 A ₂	1 A ₁		Set V _{COMH}	A[6:0] 0000000 0.43*Vref 0111111 0.83*Vref (POR)			
0	E3	1	1	1	0	0	0	1	1	NOP	Command for No Operation			

 Solomon Systech
 Oct 2005
 P 30/50
 Rev 1.0
 SSD0332

Gra	phic Cor	nma	nd T	able	e						
D/C	Hex	D7	D6	D5	D4	D3	D2	D 1	D0	Command	Description
0	21	0	0	1	0	0	0	0	1	Draw Line	A[6:0]: Column Address of Start
0	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	\mathbf{A}_1	A_0		B[5:0]: Row Address of Start
0	B[5:0]	*		B_5	B_4	B_3	B_2	\mathbf{B}_1	B_0		C[6:0]: Column Address of End
0	C[6:0]	*	C_6	C_5	C_4	C_3	C_2	C_1	C_0		D[5:0]: Row Address of End
0	D[5:0]	*	*	D_5	D_4	D_3	D_2	D_1	D_0		E[5:1]: Color C of the line
0	E[5:1]	*	*	E_5	E_4	E_3	E_2	E_1	*		F[5:0]: Color B of the line
0	F[5:0]	*	*	F_5	F_4	F_3	F_2	F_1	F_0		G[5:1]: Color A of the line
0	G[5:1]	*	*	G_5	G_4	G_3	G_2	G_1	*		
0	22	0	0	1	0	0	0	1	0	Drawing Rectangle	A[6:0]: Column Address of Start
0	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0		B[5:0]: Row Address of Start
0	B[5:0]	*	*	B_5	B_4	B_3	B_2	B_1	B_0		C[6:0]: Column Address of End
0	C[6:0]	*	C_6	C_5	C_4	C_3			C_0		D[5:0]: Row Address of End
	D[5:0]	*							D_0		E[5:1]: Color C of the line
0	E[5:1]	*						E_1	*		F[5:0]: Color B of the line
	F[5:0]	*				F_3			F_0		G[5:1]: Color A of the line
	G[5:1]	*		-		_		G_1	*		H[5:1]: Color C of the fill area
	H[5:1]	*				H_3	H_2	H_1	*		I[5:0]: Color B of the fill area
0	I[5:0]	*				I_3	I_2	I_1	I_0		J[5:1]: Color A of the fill area
	J[5:1]	*	*	J_5		J_3	J_2	J_1	*		
	23	0	0	1	0	0	0	1	1	Сору	A[6:0]: Column Address of Start
	A[6:0]	*		A_5		A_3			A_0		B[5:0]: Row Address of Start
	B[5:0]	*				B_3	B_2		B_0		C[6:0]: Column Address of End
	C[6:0]	*				C_3	C_2	C_1	C_0		D[5:0]: Row Address of End
	D[5:0]	*				D_3			D_0		E[6:0]: Column Address of New Start
	E[6:0]	*				E_3			E_0		F[5:0]: Row Address of New Start
	F[5:0]	*		_	+	F_3	F_2	+	F_0		
	24	0	0		0	0	1	0	0	Dim Window	A[6:0]: Column Address of Start
	A[6:0]	*		A_5		A_3			A_0		B[5:0]: Row Address of Start
	B[5:0]	*				\mathbf{B}_3			B_0		C[6:0]: Column Address of End
	C[6:0]	*				C_3		C_1	C_0		D[5:0]: Row Address of End
0	D[5:0]	*	*	D_5	D_4	D_3	D_2	D_1	D_0		The effect of dim window:
											GS15~GS0 no change
											GS19~GS16 become GS4
											GS23~GS20 become GS5
						_		_			GS63~GS60 become GS15
	25	0	0	_	-	0	1	0		Clear Window	A[6:0]: Column Address of Start
	A[6:0]	*	-	A_5		A_3			A_0		B[5:0]: Row Address of Start
	B[5:0]	*				\mathbf{B}_3			\mathbf{B}_0		C[6:0]: Column Address of End
	C[6:0]	*							C_0		D[5:0]: Row Address of End
0	D[5:0]	*	*	D_5	D_4	D_3	D_2	\mathbf{D}_1	D_0		
	0.6	0			0			_		PW P 11 / 7 11	
	26	0	-		-	0	1	l		Fill Enable / Disable	A0 0 : Disable Fill for Draw Rectangle Command (POR)
0	A[4:0]	*	*	*	A_4	0	0	0	A_0		1 : Enable Fill for Draw Rectangle Command
											A[3:1] 000 : Reserved values
											A4 0 : Disable reverse copy (POR)
											1 : Enable reverse during copy command.

SSD0332 Rev 1.0 P 31/50 Oct 2005 **Solomon Systech**

Table 8-2: Read Command Table

(D/C=0, R/W (WR#)=1, E (RD#)=1 for 6800 or E (RD#)=0 for 8080)

Bit Pattern	Command	Description
$D_7D_6D_5D_4D_3D_2D_1D_0$	Status Register Read *	D ₇ : "1" for Command lock
		D ₆ : "1" for display OFF / "0" for display ON
		D ₅ : Reserve
		D ₄ : Reserve
		D ₃ : Reserve
		D ₂ : Reserve
		D ₁ : Reserve
		D ₀ : Reserve

Note

8.1 Data Read / Write

To read data from the GDDRAM, input HIGH to R/W (WR#) pin and D/C pin for 6800-series parallel mode, LOW to E (RD#) pin and HIGH to D/C pin for 8080-series parallel mode. No data read is provided in serial mode operation.

In normal data read mode, GDDRAM column address pointer will be increased by one automatically after each data read.

Also, a dummy read is required before the first data read. See Figure 7-10 in Functional Block Description. To write data to the GDDRAM, input LOW to R/W (WR#) pin and HIGH to D/C pin for 6800-series parallel mode AND 8080-series parallel mode. For serial interface mode, it is always in write mode. GDDRAM column address pointer will be increased by one automatically after each data write.

Table 8-3: Address increment table (Automatic)

D/C	R/W (WR#)	Comment	Address Increment
0	0	Write	No
		Command	
0	1	Read Status	No
1	0	Write Data	Yes
1	1	Read Data	Yes

Solomon Systech Oct 2005 | P 32/50 | Rev 1.0 | **SSD0332**

⁽¹⁾ Patterns other than that given in Command Table are prohibited to enter to the chip as a command; otherwise, unexpected result will occur.

9 COMMAND DESCRIPTIONS

9.1 Fundamental Command

9.1.1 Set Column Address (15h)

This command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address.

9.1.2 Set Row Address (75h)

This command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

For example, column start address is set to 2 and column end address is set to 93, row start address is set to 1 and row end address is set to 62. Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 93 and from row 1 to row 62 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation. Whenever the column address pointer finishes accessing the end column 93, it is reset back to column 2 and row address is automatically increased by 1. While the end row 62 and end column 93 RAM location is accessed, the row address is reset back to 1. The diagram below shows the way of column and row address pointer movement for this example.

 Row 0
 Col 0
 Col 1
 Col 2

 Col 93
 Col 94
 Col 95

 Row 1
 Row 2

Figure 9-1: Example of Column and Row Address Pointer Movement

SSD0332 | Rev 1.0 | P 33/50 | Oct 2005 | **Solomon Systech**

9.1.3 Set Contrast for Color A, B, C (81h, 82h, 83h)

This command is to set Contrast Setting of each color A, B and C. The chip has three contrast control circuits for color A, B and C. Each contrast circuit has 256 contrast steps from 00h to FFh. The segment output current I_{SEG} increases linearly with the contrast step, which results in brighter of the color. This relation is shown in Figure 9-2. In many situations, the output brightness of color A, B and C pixels are different under the same segment current condition. The contrasts of color A, B and C are set such that the brightness of each color are the same on the OLED panel

9.1.4 Master Current Control (87h)

This command is to control the segment output current by a scale factor. This factor is common to color A, B and C. The chip has 16 master control steps. The factor is ranged from 1 [0000] to 16 [1111]. POR is 16 [1111]. The smaller the master current value, the dimmer the OLED panel display is set. For example, if original segment output current of a color is 160uA at scale factor = 16, setting scale factor to 8 to reduce the current to 80uA. Please see Figure 9-2.

Figure 9-2: Segment Output Current for Different Contrast Control and Master Current Setting

Solomon Systech Oct 2005 | P 34/50 | Rev 1.0 | SSD0332

9.1.5 Set Re-map & Data Format (A0h)

This command has multiple configurations and each bit setting is described as follows.

• Address increment mode (A[0])

When it is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read/written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 9-4.

 Col 0
 Col 1

 Col 94
 Col 95

 Row 0

 Row 1

 Row 62

 Row 63

Figure 9-3: Address Pointer Movement of Horizontal Address Increment Mode

When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read/written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 9-4.

Figure 9-4: Address Pointer Movement of Vertical Address Increment Mode

• Column Address Mapping (A[1])

This command bit is made for flexible layout of segment signals in OLED module with segment arranged from left to right or vice versa.

• COM Remap (A[4])

This bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa.

• Odd even split of COM pins (A[5])

This bit can set the odd even arrangement of COM pins.

A[5] = 0: Disable COM split odd even, pin assignment of common is in sequential as COM63 COM62 COM 33 COM32..SC95..SA0..COM0 COM1.... COM30 COM31

A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as COM63 COM61.... COM3 COM1..SC95..SA0..COM0 COM2.... COM60 COM62

• Display color mode (A[7:6])

Select either 65k or 256 color mode. The display RAM data format in different mode is described in section "Graphic Display Data RAM (GDDRAM)".

SSD0332 | Rev 1.0 | P 35/50 | Oct 2005 | **Solomon Systech**

9.1.6 Set Display Start Line (A1h)

This command is to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 63. The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

Figure 9-5: Example of Set Display Start Line with no Remap

64 62 64 62 0 4 0 Row0 Row4 Row0 Row4

Mux ratio COM Pin Display start line COM₀ COM1 Row1 Row5 Row1 Row5 COM₂ Row2 Row2 Row6 Row6 COM3 Row3 Row3 Row7 Row7 COM57 Row57 Row61 Row57 Row61 COM58 Row58 Row62 Row58 Row62 COM59 Row59 Row63 Row59 Row63 COM60 Row60 Row0 Row60 Row0 COM61 Row61 Row1 Row61 Row1 COM62 Row62 Row2 COM63 Row63 Row3

Set Display Offset (A2h) 9.1.7

This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-63. For example, to move the COM16 towards the COM0 direction for 16 lines, the 6-bit data in the second command should be given by 0010000. The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

64 64 62 62 Mux ratio COM Pin 0 4 0 4 Display offset COM₀ Row0 Row4 Row0 Row4 COM1 Row1 Row1 Row5 Row5 COM2 Row2 Row6 Row2 Row6 COM3 Row3 Row7 Row7 Row3 COM57 Row57 Row61 Row57 Row61 COM58 Row58 Row62 Row58 COM59 Row59 Row63 Row59 COM60 Row60 Row0 Row60 Row0 COM61 Row61 Row61 Row1 Row1 COM62 Row62 Row2 Row2 COM63 Row63 Row3 Row3

Figure 9-6: Example of Set Display Offset with no Remap

SSD0332 Solomon Systech Oct 2005 P 36/50 Rev 1.0

9.1.8 Set Display Mode $(A4h \sim A7h)$

These are single byte command and they are used to set Normal Display, Entire Display On, Entire Display Off and Inverse Display.

- Set Entire Display On (A5h)
 - Forces the entire display to be at "GS63" regardless of the contents of the display data RAM.
- Set Entire Display Off (A6h)
 - Forces the entire display to be at gray level "GS0" regardless of the contents of the display data RAM.
- Inverse Display (A7h)
 - The gray level of display data are swapped such that "GS0" <-> "GS63", "GS1" <-> "GS62",
- Normal Display (A4h)
 - Reset the above effect and turn the data to ON at the corresponding gray level.

9.1.9 Set Multiplex Ratio (A8h)

This command switches default 1:64 multiplex mode to any multiplex mode from 16 to 64. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of "Display Offset" register programmed by command A2h

9.1.10 Set Master Configuration (ADh)

This command contains multiple bits to control several functionalities of the driver.

- Select DC-DC converter (A[0])
 - 0 = Disable selection of DC-DC converter and VCC is supplied externally.
 - 1 (POR) = Enable selection of DC-DC converter to supply high voltage to VCC. The output voltage of the converter is set by values of external resistors. Please refer to section 7.12 "DC-DC Voltage Converter" for details.
- Select V_{COMH} supply (A[1])
 - $0 = Select \ external \ V_{COMH} \ voltage \ from \ V_{COMH} \ pin \ for the common waveform high voltage level supply. It is recommended to set the voltage of <math>V_{COMH}$ such that the OLED pixel diode is not turned on (prefer in reverse bias state) when the segment pin is either driven to V_{PA} , V_{PB} or V_{PC} level.
 - 1 = Select internal V_{COMH} voltage generated by regulator from V_{REF} . The level of V_{COMH} can be programmed by command BEh.
- Select pre-charge voltage supply (A[2])
 - 0 =Select pre-charge voltage sources from external pins V_{PA} , V_{PB} , V_{PC} for color A, B and C respectively.
 - 1 = Select pre-charge voltage supply internally. The level of V_{PA} , V_{PB} , V_{PC} can be set by command BBh, BCh and BDh for color A, B and C respectively.

9.1.11 Set Display On/Off (AEh/AFh)

These single byte commands are used to turn the OLED panel display on or off. When the display is on, the selected circuits by Set Master Configuration command will be turned on. When the display is off, those circuits will be turned off and the segment and common output are in high impedance state.

9.1.12 Phase 1 and 2 Period Adjustment (B1h)

This command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 1 to 16 in the unit of DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase 2 (A[7:4]): Set the period from 1 to 16 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V_{PA}, V_{PB}, V_{PC} for color A, B and C respectively.

SSD0332 | Rev 1.0 | P 37/50 | Oct 2005 | Solomon Systech

9.1.13 Set Display Clock Divide Ratio/ Oscillator Frequency (B3h)

This command consists of two functions:

- Display Clock Divide Ratio (A[3:0])
 Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with power on reset value = 1. Please refer to section "Oscillator Circuit and Display Time Generator" for the details of DCLK and CLK.
- Oscillator Frequency (A[7:4])
 Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency setting available as shown below. The default value is 1101b which represents 0.97MHz Fosc.

9.1.14 Set Gray Scale Table (B8h)

This command is used to set the gray scale table for the display. Except gray scale entry 0, which is zero as it has no pre-charge and current drive, each odd entry gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter is the OLED pixel when it's turned on. Please refer to section "Graphic Display Data RAM (GDDRAM)" for more detailed explanation of relation of display data RAM, gray scale table and the pixel brightness.

Following the command B8h, the user has to set the pulse width from PW1, PW3, PW5, ..., PW59, PW61, PW63 one by one in sequence and complies the following conditions.

$$PW1 > 0$$
; $PW3 > PW1 + 1$; $PW5 > PW3 + 1$;

Afterwards, the driver automatically derives the pulse width of even entry of gray scale table PW2, PW4, ..., PW62 with the formula like below.

$$PWn = (PWn-1 + PWn+1) / 2$$

For example, if PW1 = 3 DCLKs and PW3 = 7 DCLKs, PW2 = (3+7)/2 = 5 DCLKs

The setting of gray scale table entry can perform gamma correction on OLED panel display. Normally, it is desired that the brightness response of the panel is linearly proportional to the image data value in display data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate gray scale table setting like example below can compensate this effect.

Figure 9-7: Example of gamma correction by gray scale table setting

Solomon Systech Oct 2005 | P 38/50 | Rev 1.0 | SSD0332

9.1.15 Enable Linear Gray Scale Table (B9h)

This command reloads the preset linear gray scale table as PW1 = 1, PW2 = 3, PW3 = 5, ..., PW62 = 123, PW63 = 125 DCLKs.

9.1.16 Set V_{PA}, V_{PB} and V_{PC} Voltage for Color A, B and C (BBh, BCh and BDh)

These three commands are used to set V_{PA} , V_{PB} and V_{PC} phase 2 voltage level for color A, B and C respectively. The commands are valid in condition that these voltages are selected to generate internally by command ADh. It can be programmed to set the pre-charge voltage reference to V_{REF} or V_{COMH} .

9.1.17 Set V_{COMH} Voltage (BEh)

This command sets the high voltage level of common pins, V_{COMH} , when it is selected to generate internally by command ADh. The level of V_{COMH} is programmed with reference to V_{REF} .

SSD0332 Rev 1.0 P 39/50 Oct 2005 **Solomon Systech**

9.2 GRAPHIC ACCELERATION COMMAND SET DESCRIPTION

9.2.1 Draw Line (21h)

This command draws a line by the given start, end column and row coordinates and the color of the line.

Figure 9-8: Example of Draw Line Command

For example, the line above can be drawn by the following command sequence.

- 1. Enter into draw line mode by command 21h
- 2. Send column start address of line, column1, for example = 1h
- 3. Send row start address of line, row 1, for example = 10h
- 4. Send column end address of line, column 2, for example = 28h
- 5. Send row end address of line, row 2, for example = 4h
- 6. Send color C, B and A of line, for example = 35d, 0d, 0d for blue color

9.2.2 Draw Rectangle (22h)

Given the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2), specify the outline and fill area colors, a rectangle that will be drawn with the color specified. Remarks: If fill color option is disabled, the enclosed area will not be filled.

Figure 9-9: Example of Draw Rectangle Command

The following example illustrates the rectangle drawing command sequence.

- 1. Enter the "draw rectangle mode" by execute the command 22h
- 2. Set the starting column coordinates, Column 1. e.g., 03h.
- 3. Set the starting row coordinates, Row 1. e.g., 02h.
- 4. Set the finishing column coordinates, Column 2. e.g., 12h
- 5. Set the finishing row coordinates, Row 2. e.g., 15h
- 6. Set the outline color C, B and A. e.g., (28d, 0d, 0d) for blue color
- 7. Set the filled color C, B and A. e.g., (0d, 0d, 40d) for red color

Solomon Systech Oct 2005 | P 40/50 | Rev 1.0 | SSD0332

9.2.3 Copy (23h)

Copy the rectangular region defined by the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to location (Row 3, Column 3). If the new coordinates are smaller than the ending points, the new image will overlap the original one.

The following example illustrates the copy procedure.

- 1. Enter the "copy mode" by execute the command 23h
- 2. Set the starting column coordinates, Column 1. E.g., 00h.
- 3. Set the starting row coordinates, Row 1. E.g., 00h.
- 4. Set the finishing column coordinates, Column 2. E.g., 05h
- 5. Set the finishing row coordinates, Row 2. E.g., 05h
- 6. Set the new column coordinates, Column 3. E.g., 03h
- 7. Set the new row coordinates, Row 3. E.g., 03h

Figure 9-10: Example of Copy Command

9.2.4 **Dim Window (24h)**

This command will dim the window area specify by starting point (Row 1, Column 1) and the ending point (Row 2, Column 2). After the execution of this command, the selected window area will become darker as follow.

Table 9-1: Result of Change of Brightness by Dim Window Command

Original gray scale	New gray scale after dim window command
GS0 ~ GS15	No change
GS16 ~ GS19	GS4
GS20 ~ GS23	GS5
:	:
GS60 ~ GS63	GS15

Additional execution of this command over the same window area will not change the data content.

SSD0332 | Rev 1.0 | P 41/50 | Oct 2005 | **Solomon Systech**

9.2.5 **Clear Window (25h)**

This command sets the window area specify by starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to clear the window display. The graphic display data RAM content of the specified window area will be set to zero.

This command can be combined with Copy command to make as a "move" result. The following example illustrates the copy plus clear procedure and results in moving the window object.

- 1. Enter the "copy mode" by execute the command 23h
- 2. Set the starting column coordinates, Column 1. E.g., 00h.
- 3. Set the starting row coordinates, Row 1. E.g., 00h.
- 4. Set the finishing column coordinates, Column 2. E.g., 05h
- 5. Set the finishing row coordinates, Row 2. E.g., 05h
- 6. Set the new column coordinates, Column 3. E.g., 06h
- 7. Set the new row coordinates, Row 3. E.g., 06h
- 8. Enter the "clear mode" by execute the command 24h
- 9. Set the starting column coordinates, Column 1. E.g., 00h.
- 10. Set the starting row coordinates, Row 1. E.g., 00h.
- 11. Set the finishing column coordinates, Column 2. E.g., 05h
- 12. Set the finishing row coordinates, Row 2. E.g., 05h

Figure 9-11: Example of Copy + Clear = Move Command

9.2.6 Fill Enable/Disable (26h)

This command has two functions.

- Enable/Disable fill (A[0])
 - 0 = Disable filling of color into rectangle in draw rectangle command. (POR)
 - 1 = Enable filling of color into rectangle in draw rectangle command.
- Enable/Disable reverse copy (A[4])
 - 0 = Disable reverse copy (POR)
 - 1 = During copy command, the new image colors are swapped such that "GS0" <-> "GS63", "GS1" <-> "GS62",

Solomon Systech Oct 2005 | P 42/50 | Rev 1.0 | SSD0332

10 MAXIMUM RATINGS

Table 10-1 : Maximum Ratings (Voltage Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}		-0.3 to +4	V
V_{CC}	Supply Voltage	0 to 18	V
V_{REF}		0 to 18	V
V_{COMH}	Supply Voltage/Output voltage	0 to 16	V
-	SEG/COM output voltage	0 to 16	V
V _{in}	Input voltage	Vss-0.3 to Vdd+0.3	V
T_{A}	Operating Temperature	-40 to +90	°C
T_{stg}	Storage Temperature Range	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

11 DC CHARACTERISTICS

Table 11-1: DC Characteristics

(Unless otherwise specified, Voltage Referenced to V_{SS} , V_{DD} = 2.4 to 3.5V, T_A = 25°C)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V_{CC}	Operating Voltage		7	11	18	V
V_{DD}	Logic Supply Voltage		2.4	2.7	3.5	V
V_{OH}	High Logic Output Level	Iout =100uA, 3.3MHz	$0.9*V_{DD}$	-	$V_{ m DD}$	V
V_{OL}	Low Logic Output Level	Iout =100uA, 3.3MHz	0	_	$0.1*V_{DD}$	V
V_{IH}	High Logic Input Level	Iout =100uA, 3.3MHz	$0.8*V_{DD}$	_	V_{DD}	V
$V_{\rm IL}$	Low Logic Input Level	Iout =100uA, 3.3MHz	0	_	$0.2*V_{DD}$	V
I _{SLEEP}	Sleep mode Current	VDD=2.7V, Display OFF, No panel attached	-	_	5	uA
I_{CC}	Vcc Supply Current	V _{DD} =2.7V, VCC=11V, Display ON Contrast =FF, No panel attached	-	770	-	uA
I_{DD}	V _{DD} Supply Current	V _{DD} =2.7V, VCC=11V, Display ON Contrast =FF, No panel attached	-	170	-	uA
	Segment Output Current	Contrast = FF	-	160	-	uA
	Setting	Contrast = AF		110		uA
	V_{DD} =2.7V, V_{CC} =11V,	Contrast = 5F	-	60	-	uA
I_{SEG}	I_{REF} =10uA, All one pattern, Display on, Segment pin under test is connected with a 33KΩ resistive load to Vcc.	Contrast = 00	-	0	-	uA
Dev	Segment output current uniformity	$Dev = (I_{SEG} - I_{MID})/I_{MID}$ $I_{MID} = (I_{MAX} + I_{MIN})/2$ $I_{SEG}[0:287] = Segment current at contrast = FF$	-	-	3	%
Adj. Dev	Adjacent pin output current uniformity (contrast = FF)	Adj Dev = $(I[n]-I[n+1]) / (I[n]+I[n+1])$	-	±2.0		%
Vcc	Booster output voltage (Vcc)	Vin=3V, L=22uH; R1=450Kohm; R2=50Kohm; Icc = 30mA(soaking)	11	_	13	V
Pwr	Booster output power	Vin=3V, L=22uH; Vcc = 10 V ~ 16V	-	-	400	mW

SSD0332 Rev 1.0 P 43/50 Oct 2005 **Solomon Systech**

12 AC CHARACTERISTICS

Table 12-1: AC Characteristics

(Unless otherwise specified, Voltage Referenced to V_{SS} , V_{DD} = 2.4 to 3.5V, T_A = 25°C.)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
F _{OSC} (1)	Oscillation Frequency of	V -2.7V		0.97		MH
Fosc	Display Timing Generator	$V_{DD} = 2.7V$	_	0.77	_	Z
	Frama Fraguenay for 64	96RGB x 64 Graphic Display		F _{OSC} X		
F_{FRM}	Frame Frequency for 64	Mode, Display ON, Internal	-	1/(D*K*64)	-	Hz
	MUX Mode	Oscillator Enabled		(2)		

Note

(I) Fosc stands for the frequency value of the internal oscillator
(2) D: divide ratio (POR=1)

K: number of display clocks (POR=136, i.e. phase1 dclk+phase2 dclk+ phase3 dclk=4+7+125)

Oct 2005 | P 44/50 | Rev 1.0 | SSD0332 Solomon Systech

Table 12-2: I^2C Interface Timing Characteristics

 $(V_{DD}-V_{SS}=2.4 \text{ to } 3.5\text{V}, T_{A}=-40 \text{ to } 90^{\circ} \text{ C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	2.5	-	-	us
t _{HSTART}	Start condition Hold Time	0.6	-	-	us
$t_{ m HD}$	Data Hold Time	300	-	-	ns
t_{SD}	Data Setup Time	100	-	-	ns
t_{SSTART}	Start condition Setup Time (Only relevant for a repeated Start condition)	0.6	-	-	us
t_{SSTOP}	Stop condition Setup Time	0.6	-	-	us
t_R	Rise Time for data and clock pin	-	-	300	ns
$t_{\rm F}$	Fall Time for data and clock pin	-	-	300	ns
t _{IDLE}	Idle Time before a new transmission can start	1.3	-	-	us

Figure 12-1 : I²C interface characteristics

SSD0332 Rev 1.0 P 45/50 Oct 2005 **Solomon Systech**

Table 12-3: 6800-Series MPU Parallel Interface Timing Characteristics

(V $_{DD}$ - V $_{SS}$ = 2.4 to 3.5V, T_{A} = -40 to 90°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	0	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
t_{DHW}	Write Data Hold Time	15	-	-	ns
$t_{\rm DHR}$	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
DW	Chip Select Low Pulse Width (read)	120		-	ns
PW_{CSL}	Chip Select Low Pulse Width (write)	60	-		
DW	Chip Select High Pulse Width (read)	60			na
PW_{CSH}	Chip Select High Pulse Width (write)	60	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 12-2: 6800-series MPU parallel interface characteristics

 Solomon Systech
 Oct 2005
 P 46/50
 Rev 1.0
 SSD0332

Table 12-4: 8080-Series MPU Parallel Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 3.5 \text{V}, T_A = -40 \text{ to } 90^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	0	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
t_{DHR}	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
PW_{CSL}	Chip Select Low Pulse Width (read)	120	-	-	ns
	Chip Select Low Pulse Width (write)	60			
PW_{CSH}	Chip Select High Pulse Width (read)	60		-	ns
	Chip Select High Pulse Width (write)	60			
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

SSD0332 Rev 1.0 P 47/50 Oct 2005 **Solomon Systech**

Table 12-5: Serial Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 3.5 \text{V}, T_A = -40 \text{ to } 90^{\circ}\text{C})$

 $SDIN(D_1)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	250	-	-	ns
t _{AS}	Address Setup Time	150	-	-	ns
t_{AH}	Address Hold Time	150	-	-	ns
t_{CSS}	Chip Select Setup Time	120	-	-	ns
t_{CSH}	Chip Select Hold Time	60	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	100	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	100	-	-	ns
$t_{ m CLKL}$	Clock Low Time	100	-	-	ns
t_{CLKH}	Clock High Time	100	-	-	ns
t_{R}	Rise Time	-	-	15	ns
t_{F}	Fall Time	-	-	15	ns

Figure 12-4: Serial interface characteristics

D4

D3

D2

D1

D0

D6

 Solomon Systech
 Oct 2005
 P 48/50
 Rev 1.0
 SSD0332

13 SSD0332Z PACKAGE DETAILS

	Spec	
	mm	(mil)
W1	76.0 +0.2/-0.1	(2992)
W2	68.0 +0.2/-0.1	(2677)
Н	4.20 +/-0.1	(165)
Px	20.36 +/-0.1	(802)
Ру	3.23 +/-0.1	(127)
X	15.60 +/-	(614)
Υ	2.10 +/-	(83)
Ζ	0.61 +/-0.05	(24)
N	80	

SSD0332 Rev 1.0 P 49/50 Oct 2005 **Solomon Systech**

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

http://www.solomon-systech.com

Solomon Systech Oct 2005 | P 50/50 | Rev 1.0 | SSD0332