

E1R

产品手册

手册版本 V1.0

变更说明

版本	修订日期	说明
1.0	2025/01/03	初版发布

阅读提示

符号说明

⚠ 警告: 使用过程应严格遵守,否则可能会导致轻微伤害或者财产损失等潜在 危险状况。

- ! 重要: 使用过程应遵守, 否则可能会导致产品受损等潜在有害状况。
- (i) 提示: 使用过程应足够重视,实现高效、顺利发挥产品的最大价值。

资源下载

最新产品手册、RSview 等资源请点击以下链接进行下载:

https://www.robosense.cn/resources

更多信息

制造商信息:深圳市速腾聚创(RoboSense)科技有限公司

官 网: https://www.robosense.cn/

技术支持: support@robosense.cn

地 址:中国广东省深圳市南山区桃源街道留仙大道 1213 号众冠红花岭工

业南区2区9栋

座 机: 0755-86325830

电 话: 15338772453 (市场合作)

邮 箱: service@robosense.cn

工作时间: 周一至周五,09:00-18:00 (GMT/UTC+8)

目录

变更	更说明	. 1
阅读	卖提示	. 2
目录	₹	. 3
1	安全提示	. 5
	1.1 法律声明	. 5
	1.2 使用规范	. 5
	1.3 违规操作	. 5
	1.4 操作人员的要求	. 6
	1.5 工作安全和特殊危险	. 6
2	产品描述	. 7
	2.1 产品结构	. 7
	2.2 FOV 分布	. 7
	2.3 规格参数	. 9
	2.4 产品原理	10
	2.4.1 时间同步方式	
	2.4.2 使用 Linuxptp 工具简单验证时间同步	
	2.4.3 GPS 时间同步	
3	产品安装布置推荐	
	3.1 接口说明	
	3.1.1 E1R 平台连接器	
	3.1.2 连接器安装要求	
	3.1.3 整车线束端安装要求	
	3.2 LIDAR 接线及接口说明	
	3.2.1 车载以太网线束接口及定义	
	3.2.2 接口盒接口	
	3.2.3 电源接口	
	3.2.4 RJ45 网口	
	3.3 状态机说明	
	3.4 安装及定位方式推荐	
	3.4.1 安装支架位置	
	3.4.2 安装支架定位与紧固要求	
	3.5 安装支架设计参考	
	3.6 安装支架散热要求	
4	产品使用2	21

4.1	产品坐标系2	1
4.2	RSView 使用2	1
	4.2.1 软件功能2	1
	4.2.2 安装 RSView	2
	4.2.3 使用 RSView	2
4.3	通信协议2	2
	4.3.1 主数据流输出协议(MSOP)2	3
	4.3.2 产品信息输出协议(DIFOP)2	6
5 产	品维护2	9
	运输与物流2	
5.2	存储2	9
5.3	产品清洁2	9
	5.3.1 注意事项2	9
	5.3.2 需要的材料	0
	5.3.3 清洁方法	
6 售.	后	1
附录 A	-	
A.:	l rs_ driver 的编译与安装3	2
	A.1.1 依赖库的安装3	2
	A.1.2 使用方式	4
	A.1.3 示例程序 & 可视化工具3	4
	A.1.4 坐标变换	
A.2	2 rlidar_sdk 的编译与安装3	5
附录 B	结构图纸3	6

1 安全提示

1.1 法律声明

♠非我们另行声明,RoboSense 的所有产品、技术、软件、程序、数据及其他信息(包括文字、图标、照片、音频、视频、图表、色彩组合、版面设计等)的所有权利(报告版权、商标权、专利权、商业秘密及其他相关权利)均归 RoboSense 及其授权方所有。

★经 RoboSense 书面同意,任何人不得以任何方式非法使用本手册中所承载 在的任何内容。

♠ "RoboSense"、"速腾聚创"等文字及/或标识,以及其他标识、产品和服务名称等均为 RoboSense 所有,如有宣传、展示等任何使用需要,您必须取得 RoboSense 的事先书面授权。

1.2 使用规范

⚠ 请按以下要求,规范使用本产品:

- 1) 请严格遵守国家激光安全相关法律法规;
- 2) 请在使用产品前,详细阅读本产品手册;
- 3) 请在相关针对的领域范围内使用本产品;
- 4) 请避免在爆炸性、高腐蚀性、超越产品 IP 防护等级的环境中使用本产品。

1.3 违规操作

请按规定使用本产品,否则可能会造成产品损坏、财产损失及人员受伤。对 违反规定的操作行为,需用户自行承担风险。

- 1) 请勿私自拆解、改装本产品(包含相关配件);
- 2) 禁止使用超规格供电电源及配件;
- 3) 请避免跌落、碰撞、焚烧等非正常操作;

- 4) 如发现产品外观受损(窗口片),请立即停止使用;
- 5) 如发现产品工作异常等情况,请立即停止使用,并及时联系 RoboSense。

1.4 操作人员的要求

↑ 本产品的使用,对操作人员的基础专业知识及其他相关资质有一定要求。对 无基础知识及未经培训上岗人员的不当操作行为,给产品及人员财产造成损 害、伤害、损失等后果,RoboSense 不承担相关责任。

- 1) 使用产品前,详细阅读本产品手册;
- 2) 禁止违规操作;
- 3) 上岗前需经过培训,且有相关工种施工资格;
- 4) 有一定的计算机数据连接、电气等基础知识。

1.5 工作安全和特殊危险

使用本产品前,为避免对用户或他人产生意外,同时损坏产品及违反保修条款,请务必仔细阅读并遵循本说明书中的操作及规范。

1) 激光安全:本产品激光安全等级符合 IEC 60825-1:2014 标准:

2) 高温注意:注意表面过热标识,谨防发生意外。

- 3) 保留说明:请保留所有安全和操作说明,以备将来参考。
- 4) 注意警告:请遵守产品和操作说明中的所有警告,以免发生意外。
- 5) 产品维修:请勿在缺少官方指导的情况下尝试打开产品进行维修。如需维修,请及时联系 RoboSense。

2 产品描述

2.1 产品结构

E1R 的平台外形尺寸图如图 1 所示。

图 1 EIR 平台外形尺寸规格

2.2 FOV 分布

E1R 的光学包络如下图所示,所有极限公差累计后,激光雷达的光学包络面不能被车身外饰件遮挡,如激光雷达外罩、车顶饰板、引擎盖以及前保险杆等有可能遮挡 FOV 的零件,如图 2 所示。RoboSense 标定下线后,FOV 角度存在一定公差,具体以厂家最终结果为准。图 3 为 E1R 的 FOV 示意图。

图 2 E1R 光学包络示意图

图 3 E1R FOV 分布图

2.3 规格参数

外形尺寸

E1R 固态激光雷达采用 Flash 扫描方式,10%NIST 测距 30 米,单帧出点数 26,000 点,水平测角 120°(-60.0°~+60.0°),垂直测角 90°(-45°~+45°),详情 参见表 1。

规格参数 TOF 法测距 测距原理 水平视场角 $120^{\circ} (-60.0^{\circ} \sim +60.0^{\circ})$ 激光波长 940 nm 垂直视场角 90° (-45°~+45°) 激光安全等级 Class1 人眼安全 水平角分辨率 平均 0.625⁰1 30m @10% NIST, 100klux 测距能力2 垂直角分辨率 日照 盲区 0.1m精度(典型值)3 ± 5 cm@1 sigma 以太网传输速 出点数 ~260,000 点/秒 1000Base-T1 千兆以太网 率 gPTP (IEEE-802.1AS) 工作电压 时间同步 9 V - 16 V PTP E2E L2 (IEEE-1588) 帧率 10 Hz 重量 330 g±20g(激光雷达本体) 产品功率4 <10 W 存储温度 - 40°C ~+ 105°C - 40°C ~ + 85°C 工作温度5 防护等级 IP67 / IP6K9K 外形尺寸 长 (mm) 宽 (mm) 高 (mm) 名称

表 1 EIR 规格参数

95

95

42.6

51.1

69.5

87

主体轮廓

带连接器、安装位轮廓

9

¹ 水平&垂直分辨率在整个 FOV 区域内并非均匀分布,角分辨率在中心区域为 0.625°, 在视场边缘为 0.7°;

² 测距能力以 10%NIST 漫反射板作为目标,测试结果会受到环境影响,包括但不限于环境温度、光照强度等因素;

³ 测距精度以 50%NIST 漫反射板为目标,测试结果会受到环境影响,包括但不限于环境温度、目标物距离等因素,且精度值适用于大部分通道,部分通道之间存在差异;

⁴ 产品功耗测试结果会受到外部环境影响,包括但不限于环境温度、目标物的距离、目标物反射强度等因素:

⁵ 产品运行温度可能会受到外部环境影响,包括但不限于光照环境、气流变化等因素;

2.4 产品原理

2.4.1 时间同步方式

E1R 默认固件使用 gPTP (IEEE 802.1AS)的时间同步方式。

2.4.1.1 gPTP 同步原理

gPTP(general Precise Time Protocol,IEEE802.1AS 协议)是 PTP 在时效性 网络(Time-Sensitive Networking)的派生协议。同步机制采用和 PTP 协议一致的 P2P 端延迟机制(Peer Delay Mechanism),同时采用以太网 L2 层通信。与 PTP 不同,gPTP 要求使用硬件方式打时间戳,即硬件时间戳,所以对于交换机和 Master 时钟要求较为严苛,需满足 IEEE802.1AS 协议。

2.4.1.2 gPTP 接线方式

使用 gPTP 同步方式,需要做以下准备,连接方式详情参见图 4。

图 4 gPTP 时间同步拓扑

- 1) gPTP Master 授时主机(即插即用,无需额外配置);
- 2) 以太网交换机;
- 3) 支持 gPTP 协议的待授时设备。

提示说明

- 1) Master 授时设备属于第三方设备, RoboSense 出货时不包含此配件, 需用户自行采购:
- 2) RoboSense 产品作为 Slave 设备只获取 Master 发出的时间,不对 Master 时钟源的准

确度判断,若解析激光雷达点云时间出现突变,请检查 Master 提供的时间是否准确:

3) 激光雷达同步之后, Master 断开连接, 点云数据包中的时间则会按照激光雷达内部 时钟进行叠加, 激光雷达断电重启后才会被重置。

2.4.2 使用 Linuxptp 工具简单验证时间同步

将 E1R 电源线和网线与接口盒相连,网线对端再与上位机相连。上位机操作系统(OS)必须为 Linux 系统,以下以 Ubuntu 为例。

1) 使用命令\$ifconfig 查看网卡名。如图 5 所示, 网卡名为 enp2s0。

```
sti@sti:~$ ifconfig
enp2s0    Link encap:Ethernet HWaddr 54:ee:75:f0:7b:9f
    UP BROADCAST MULTICAST MTU:1500 Metric:1
    RX packets:1148564 errors:0 dropped:0 overruns:0 frame:0
    TX packets:2786 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:1000
    RX bytes:1436527228 (1.4 GB) TX bytes:309309 (309.3 KB)

lo    Link encap:Local Loopback
    inet addr:127.0.0.1 Mask:255.0.0.0
    inet6 addr: ::1/128 Scope:Host
    UP LOOPBACK RUNNING MTU:65536 Metric:1
    RX packets:138110 errors:0 dropped:0 overruns:0 frame:0
    TX packets:138110 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:1000
    RX bytes:48448646 (48.4 MB) TX bytes:48448646 (48.4 MB)
```

图 5 查找网卡名示意图

2) 使用命令\$ethtool -T enp2s0(上一步查询到的网卡名),可以查看此网卡是否支持 PTP 硬件。对于 gPTP 同步,需要硬件支持,PTP Hardware Clock 选项要求不是 none 值。

图 6 检查 PTP 硬件支持情况示意图

3) 下载并安装 linuxptp 工具。

\$sudo git clone git://git.code.sf.net/p/linuxptp/code linuxptp

\$cd linuxptp

\$sudo make

\$sudo make install

\$reboot

4) Ptp4l 命令的使用。

Ptp4l 命令选项介绍如下:

- a) 延迟机制选项
- -A 自动模式,自动选择 E2E 延迟机制,当收到对等延迟请求时切换到 P2P。
 - -E E2E 模式,请求应答延迟机制(默认)
 - -P P2P 模式,端延迟机制
- b) 网络传输选项
 - -2 IEEE 802.3
 - -4 UDP IPV4 (默认)
 - -6 UDP IPV6
- c) 时间戳选项
 - -H 硬件时间戳 (默认)
 - -S 软件模拟时间戳
 - -L 老的硬件时间戳, LEGACY HW 需要配合 PHC 设备使用。
- d) 其他选项
- -f[file] 从指定文件 file 中读取配置。默认情况下不读取任何配置文件。
- -i [dev] 选择 PTP 接口设备,例如 eth0 (可多次指定) 必须至少使用 此选项或配置文件指定一个端口。
- -p [dev]此选项用于在旧 Linux 内核上指定要使用的 PHC 设备(例如/dev/ptp0 时钟设备), 默认为 auto, 忽略软件/ LEGACY HW 时间戳(不推荐使用此选项)
 - -s slaveOnly mode,从时钟模式(覆盖配置文件)
 - -t 透明时钟模式
 - -1 [num] 将日志记录级别设置为'num',默认是 6
 - -m 将消息打印到 stdout
 - -q 不打印消息到 syslog

- -v 打印软件版本并退出
- -h 帮助命令

此外,简单同步 E1R 使用命令如下:

1) PTP E2E (L2 层) 命令:

\$sudo ptp41 -E -S -2 -m -i enp2s0 (网卡名)

如设备硬件支持 PTP Hardware Clock 不是 none 值,可以使用-H 替代-S

2) gPTP 命令:

\$sudo ptp41 -i enp4s0 -m -H -2 -f gptp-master.cfg

设备要求硬件支持 PTP Hardware Clock 不是 none 值。其中, gptp-master.cfg为 gPTP 主时钟配置文件。

在主机上新建 gptp-master.cfg 文件,在此文件中复制以下内容后,保存文件:

```
#802.1AS example configuration containing those attributes which
# differ from the defaults. See the file, default.cfg, for the
# complete list of available options.
[global]
domainNumber
                        0
                        -3
logSyncInterval
syncReceiptTimeout
                            800
neighborPropDelayThresh
path_trace_enabled 1
follow up info
                        1
transportSpecific
                   0x1
ptp dst mac
                   01:80:C2:00:00:0E
#p2p dst mac
                   01:1B:19:00:00:00
network transport L2
                        P<sub>2</sub>P
delay mechanism
masterOnly
                   1
BMCA
                   noop
asCapable
                            true
inhibit announce
inhibit delay req
```

(1) 提示说明

无硬件支持设备可用-S 替代-H 进行 gPTP 同步模拟,但同步精度无法保证。

2.4.3 GPS 时间同步

如需要将 E1R 与 GPS 模块同步。首先需要使 GPS 模块给 gPTP Master 授时, 具体接口与授时方式需要与 gPTP Master 提供方明确。除特殊需求外,RoboSense 将不提供相关技术支持。

图 7 GPS 同步拓扑简图

3 产品安装布置推荐

3.1 接口说明

3.1.1 E1R 平台连接器

E1R 平台推荐 TE 2397179-1 连接器方案,不接受客户自定义连接器型号, 线束折弯半径大于 30 mm,具体接插件方案见表 2。

接插件方案	连接器类型	型号	图片	功能			
TE 弯插型 (二合一直插, 6+2 pin)	激光雷达端连接器	TE 2397179-1		电源+千兆以太			

表 2 接插件方案

3.1.2 连接器安装要求

- 1) 线束端连接器防水圈与线材配合良好,需满足 IP67及 IP6K9K 防水等级;
- 2) 线束端连接器末端出线位置与周边环境建议至少 70 mm 的手部预留拔插空间。

3.1.3 整车线束端安装要求

- 1) 以太网线束材质需采用满足 1000BASE-T1 的 STP 线材:
- 2) 建议采用 Dacra 686-3(折弯半径 25 mm)或 GG X9305(折弯半径 12 mm);
- 3) 以太网线束总长度建议小于 15 m,连接器对接数建议不超过 3 对(包含 线对板);
- 4) 以太网信号线在整车上走线,建议避开运动段与高温区域;
- 5) 供电需考虑线长、线径、阻抗,电源线上激光雷达工作电压保持在9V以上;

3.2 LIDAR 接线及接口说明

3.2.1 车载以太网线束接口及定义

E1R 使用1个车载以太网、电源二合一接头,线束如图8所示。

图 8 车载以太网电源线束

3.2.2 接口盒接口

E1R 的接口盒接线说明如表 3 所示:

连接激光雷达侧 连接电源及上位机侧

表 3 接线说明

3.2.3 电源接口

E1R 接口盒使用标准 DC 5.5-2.1 接口。

电源正常输入时,电源盒绿色指示灯常亮。当绿色指示灯熄灭,请检查电源

输入是否正常,若电源输入正常,即接口盒可能已损坏,请联系 RoboSense。

3.2.4 RJ45 図口

E1R 本体只支持 1000BASE-T1 车载以太网,使用接口盒时网络接口使用标准 RJ45 接口。接口盒只支持千兆以太网。

3.3 状态机说明

E1R 状态机说明参见图 9。

整机状态机说明:

S1: 整机未供电 S2: 整机休眠 S3: 整机运行

图 9 激光雷达状态机描述

3.4 安装及定位方式推荐

E1R 不包含安装耳,推荐采用安装支架的方式固定。

3.4.1 安装支架位置

激光雷达后壳设置有 4 个 M4 螺孔或者过孔,以及 2 个定位柱,如图 10 所示。后壳定位柱和支架定位孔配合,支架设置 4 个固定孔,与后壳 4 个螺纹孔采用螺纹连接,完成激光雷达安装。

图 10 支架安装固定位置

3.4.2 安装支架定位与紧固要求

- 1) 推荐激光雷达后壳定位孔/定位柱的定位方式;
- 2) 后壳侧耳 4 颗 M4 螺钉(可以根据实际设计需求选择);
- 3) 激光雷达支架建议在 4 个安装孔附近使用小凸台与激光雷达配合, 凸台 整体平面度要求 0.2 mm 以内:
- 4) M4 螺钉孔螺距为 1 mm;
- 5) 螺钉强度等级推荐 8.8 级及以上;
- 6) 推荐扭矩 5 ± 10% N·m;
- 7) 建议螺钉长度为支架厚度 T+4.5 mm;
- 8) 推荐支架厚度: 钢板 2~2.5 mm, 压铸铝合金 3~5 mm, 支架厚度根据设计校核确定。

3.5 安装支架设计参考

固定支架需要有较好的刚性用于安装固定激光雷达,并在各种工况下保持激光雷达处于一个稳定的状态,设计要求如下:

1) 激光雷达及其固定支架整体的一阶模态频率至少大于 50 Hz, 固定支架 18

刚度讨低会导致激光雷达刚体位移过大,影响点云精度:

- 2) 激光雷达及其固定支架需要保证在 780 Hz 不产生共振,如果确实无法避开共振区间,客户需提供激光雷达安装处在道路随机激励下的加速度 PSD 响应谱(仿真或实测或经验预估数据),RoboSense 根据激光雷达的定频抗振能力曲线作比较识别是否有风险;
- 3) 激光雷达在使用过程中会经历各种随机振动、机械冲击等工况。这些工况下支架需要承受较大的负载,因此支架还需要有足够的强度,推荐2倍安全系数;
- 4) 同时在各个方向尽可能的增加加强筋、凸包、折弯等设计提高其刚度和 强度:
- 5) 尽量避免设计出现尖角或小于 0.3 mm 的圆角、缺口等易产生应力集中的结构;
- 6) 建议避免激光雷达支架与防撞梁在高度上重叠,重叠后会增加行人保护 设计的难度,矛盾点在于行人保护要求溃缩,而激光雷达支架要求刚性 好;
- 7) 安装平面的平面度、共面度建议小于 0.5 mm;
- 8) 建议提供安装支架模型和安装环境信息给到 RoboSense,进行结构仿真确认。

3.6 安装支架散热要求

- 1) 散热要求: E1R 在使用过程中会有部分发热,且受其他热源的辐射,可能会加剧 E1R 的温升,散热要求如下:
 - a) E1R 安装支架需为优良的传热导体,且 E1R 应尽量避免被支架封闭 包裹:
 - b) E1R 前后端为主要散热面;
 - c) 支架建议采用导热系数大于 50 W/m·K 的铝合金或者镀锌钢板等材料;
 - d) 尽量在支架上做一些散热鳍片,并合理的控制鳍片间距/高度/方向, 尽量增大散热面积,与空气对流方向一致;

- e) 建议提供安装支架模型和安装环境信息给到 RoboSense, 进行热仿 真确认。
- 2) 工作温度要求。
 - a) E1R 与周边件的间隙(大于 5 mm),安装件最好不要完全包裹激光 雷达,开一些孔保证空气流动更好;
 - b) 原则上只需要满足任何条件下 E1R 周边环境温度不高于 85℃即可。

4 产品使用

4.1 产品坐标系

E1R 坐标系定义如图 11 所示。

图 11 E1R 激光雷达坐标系定义

4.2 RSView 使用

在 E1R 的数据的检测上,可使用 Wireshark 和 tcp-dump 等免费工具获取原始数据,而 RSView 可帮助用户更为便捷的实现对原始数据的可视化。

4.2.1 软件功能

RSView 提供将 E1R 数据进行实时可视化的功能。RSView 也能回放保存为 ".pcap" 文件格式的数据,但是目前还不支持".pcapng"格式的文件。

RSView 将 E1R 得到距离测量值显示为一个点。它能够支持多种自定义颜色来显示数据,例如反射强度、时间、距离、水平角度和激光线束序号。所显示的数据能够导出保存为".csv"格式,RSView 4.3.11 以后的版本支持导出".las"格式的数据。

RSView 包含以下功能:

1) 通过以太网实时显示数据;

- 2) 将实时数据记录保存为 PCAP 文件:
- 3) 从记录的 PCAP 文件中回放;
- 4) 不同类型可视化模式,例如距离、时间、水平角度等等;
- 5) 用表格显示点的数据:
- 6) 将点云数据导出为 CSV 格式文件;
- 7) 测量距离工具;
- 8) 将回放数据的连续多帧同时显示;
- 9) 裁剪显示。

4.2.2 安装 RSView

RSView 支持在 Windows 64 位、Ubuntu 18.04 以上操作系统上运行。可从 RoboSense 的官网(<u>http://www.robosense.cn/resources</u>)下载最新版本 RSView 软件压缩包。下载后,软件的解压路径请勿出现中文字符,软件无需安装,解压后运行可执行文件即可正常使用。

4.2.3 使用 RSView

打开 RSview 后,在软件界面,可通过 F1 按钮打开软件使用指南,或通过 点击软件菜单栏 Help 选项中的 RS-LiDAR User Guide 进行查阅。

4.3 通信协议

E1R 与电脑之间的通信采用以太网介质,使用 UDP 协议,输出包有两种类型: MSOP 包和 DIFOP 包。

文中所有涉及 MSOP 协议包均为 1200 Bytes 定长; DIFOP 协议包均为 256 Bytes 定长。E1R 网络参数可配置,出厂默认为单播模式,采用固定 IP 和固定目的端口号,按照如下表格。

	77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	IP 地址	MSOP 包端口号	DIFOP 包端口号				
E1R	192.168.1.200	6699	7788				
电脑	192.168.1.102	6699	7788				

表 4 出厂默认网络配置表

产品默认 MAC 地址是在工厂初始设置的,每台产品 MAC 地址唯一。

当使用产品的时候,需要把电脑的 IP 设置为与产品同一网段上,例如 192.168.1.x(x 的取值范围为 1~254),子网掩码为 255.255.0.0。若不知产品网络配置信息,请将主机子网掩码设置为 255.255.0.0 后连接产品并使用 Wireshark 抓取产品输出包进行分析。

E1R 和电脑之间的通信协议主要分两类,一览表见 5。

主数据流输出协议 MSOP,将激光雷达扫描出来的距离,角度,反射率等信息封装成包输出给电脑;

产品信息输出协议 DIFOP,将激光雷达当前状态的各种配置信息输出给电脑。

(协议/包)名称	简写	功能	类型	包大小
Main Data Stream Output Protocol	MSOP	扫描数据输出	UDP	1200 Bytes
Device Information Output Protocol	DIFOP	产品信息输出	UDP	256 Bytes

表 5 产品协议一览表

4.3.1 主数据流输出协议(MSOP)

主数据流输出协议: Main data Stream Output Protocol, 简称: MSOP。

I/O 类型:产品输出,电脑解析。

默认端口号为6699。

MSOP 包完成三维测量相关数据输出,包括激光测距值、回波的反射强度值、垂直角度、水平角度和时间戳。MSOP 包的有效荷载长度为 1200Bytes, 其中 32Bytes 为同步帧头 Header, 1152Bytes 为数据块区间(共 96 个 12Bytes 的 data block), 16Bytes 为帧尾。

基本数据结构如下图所示:

图 12 MSOP Packet 数据包定义示意图

4.3.1.1 帧头

帧头 Header 共 32Bytes,用于识别数据的开始位置,包计数,UDP 通信预留以及存储时间戳。详细定义如下:

Header(32Bytes)						
Sync PktCnt Ver ReturnMode TimeMode						
4 Bytes	2 Bytes	2 Bytes	1 Byte	1 Byte		
Timestamp	FrameSync	Res0	LidarType	LidarTmp		
10 Bytes	1 Byte	9 Bytes	1 Byte	1 Byte		

表 6 MSOP 包头定义

Sync: 可作为包的检查序列,识别头为 0x55AA5AA5。

PktCnt: 包序列号,表示包计数,循环计数,从每帧数据的起点的包计数为

0,每帧数据的最后一个点的包计数为最大值。

Ver: 表示 UDP 通信协议的版本号。

ReturnMode: 回波模式标志位, 出厂时固定 04 (最强回波模式)。

TimeMode: 时间同步模式:

0x00 表示使用雷达内部计时

0x02 表示使用 PTP E2E 时间同步模式

0x03 表示使用 gPTP 时间同步模式

Timestamp: 用于存储时间戳, 定义的时间戳用来记录系统的时间

其中 0-5 bytes: Second; 6-9 bytes: MicroSecond

FrameSync: 帧同步状态 (0x00:no 0x01:yes)

Res0: 预留位

LidarType: 雷达类型标志位,默认值为 0x62。

LidarTmp: 芯片温度, Temp = LidarTmp - 80;即原始值 0 代表-80 度。

4.3.1.2 数据块区域

数据块区间是 MSOP 包中传感器的测量值部分,共 1152Bytes。它由 96 个 data block 组成,每个 data block 长度为 12Bytes。

详细定义如下:

表 7 MSOP 包中的 data block 定义

Data block (12Bytes)					
字段	定义说明				
			该组 Block 里面所有的点相对于包的		
TimeOffset	0	2	timestamp 的时间偏移量(单位:ns),该		
			组点的时间等于 timestamp+time_offset		
D - 1'	2	2	极坐标系下,通道1的径向点距离值,距		
Radius	2	2	离解析分辨率 5mm		
DinVestonV	4	2	通道1单位方向向量X轴分量,范围		
DirVectorX			-32768~32767,转浮点除以 2^15		
DirVectorY	6	2	通道1单位方向向量Y轴分量,范围		
Dirvectory			-32768~32767,转浮点除以 2^15		
DirVectorZ	8	2	通道1单位方向向量Z轴分量,范围		
Dirvectorz	0		-32768~32767,转浮点除以 2^15		
Intensity	10 1	1	通道1的点反射强度值,取值范围		
Intensity	10	1	0~255		
			通道1的点的属性,1表示正常点,2表示		
PointAttribute	Attribute 11	1	噪点,后续该定义会进一步扩展属性,原		
			回波饱和程度特征合入点属性		

¹ 相关计算说明

径向距离 radius 计算: (Radius 是 2Bytes,分辨率为 5mm)

获取某数据包中 Radius 值的十六进制数为: R1 为 0x03, R2 为 0x6c。 0x03 为距离的高位,转换为十进制为 3, 0x6c 为距离的低位,转换为十进制为 252。因此: 此通道的径向距离 = R1*256 + R2 = 3*256 + 252 = 1020。根据坐标分辨率,转换为米: 1020*0.005 = 5.10m。 故径向距离为 5.10m。

点云 X、Y、Z 坐标计算:

由以下公式可以解析得到点云的 XYZ 坐标:

4.3.1.3 帧尾

帧尾部分包含参数是雷达 E2E Profile4 所用参数,详细定义如下表

字段	offset	长度(byte)	定义说明
Res1	1184	4	预留位
DataLength	1188	2	04 B0
Counter	1190	2	00 00~FF FF
DataId	1192	4	00 00 0E 5C
Crc32	1196	4	

表 8 MSOP 帧尾参数定义

4.3.2 产品信息输出协议(DIFOP)

产品信息输出协议,Device Info Output Protocol,简称: DIFOP

I/O 类型:产品输出,电脑读取。

默认端口号为7788。

DIFOP 是为了将产品序列号(S/N)、固件版本信息、网络配置信息、运行状态定期发送给用户的"仅输出"协议,用户可以通过读取 DIFOP 解读当前使用产品的各种参数的具体信息。

一个完整的 DIFOP Packet 的详细信息如下:

表 9 DIFOP Packet 详细结构信息

DIFOP Packet(256Bytes)				
字段	offset	长度 (byte)	定义说明	
DifopHeader	0	8	DIFOP 识别头	
Res0	8	8	预留位	
SW Version	16	3	雷达版本号	
Res1	19	1	预留位	
SN	20	6	设备序列号	
Res2	26	18	预留位	
LocalIp	44	4	雷达 IP 源地址	
NetMask	48	4	子网掩码	
MacAddress	52	6	雷达 IP 本机 MAC 地址	
MsopRemoteIp	58	4	Msop 远程 IP	
MsopLocalPort	62	2	Msop 本地端口号	
MsopRemotePort	64	2	Msop 远程端口号	
DifopRemoteIp	66	4	Difop 远程 IP	
DifopLocalPort	70	2	Difop 本地端口号	
DifopRemotePort	72	2	Difop 远程端口号	
Res3	74	25	预留位	
FrequecySetting	99	1	雷达帧率设置	
			雷达回波信息:	
			0x00: FarthestWave	
			0x04: StrongestWave (Default)	
ReturnMode	100	1	0x07: NearestWave	
			0x08: 2ndStrongestWave	
			0x09: StrongestFarthestWave	
			0x0A: NearestFarthestWave	

			0x0B: Strongest2ndStrongestWave
			时间同步模式:
T'	101	1	0x0: Internal
TimesyncMode	101	1	0x2: E2E L2
			0x3: GPTP
			时间同步状态:
Time areas a Status	102	1	0x00: failed
TimesyncStatus	102		0x01: success
			0x02: timeout
			时间:
TimeStatus	103	10	0-5bytes: Second
			6-9bytes: MicroSecond
			物理层工作模式:
			0x00: auto-negotiation
PHYMode	113	1	0x01: master
			0x02: slave
			other: same as 0x00
Res4	114	142	预留位

5 产品维护

5.1 运输与物流

! 重要

运输不当会导致产品损坏!

- 应采用防震防潮包装材料包装产品,以避免运输途中损毁。建议使用原始包装;
- 2) 运输过程务必小心轻放,避免磕碰、摔落等危险行为;
- 3) 每次运输收到货物时,必须详细检查交付货物清单与是否有损坏(含产品与包装);
- 4) 如若有运输损坏,请拒绝收货,并及时联系 RoboSense。

5.2 存储

! 重要

存储不当可能会导致产品损坏!

- 1) 请将产品存储于室内常温、干燥的环境中;
- 2) 请轻拿轻放,避免产品遭受磕碰、摔落等;
- 3) 产品应存放于安全环境中,避免腐蚀、机械冲击及暴露于超过防护等级的环境中;
- 4) 请定期检查所有组件和包装的状态,建议检查周期为3个月。

5.3 产品清洁

为了能够准确地感知周围环境, E1R 需保持窗口片洁净。

5.3.1 注意事项

! 请在清理 E1R 前仔细并完整的阅读本节的内容, 否则不当的操作可能会损坏产品。

! 激光雷达在环境比较恶劣的情况下使用时,需及时清理表面的脏污保持激光雷达清洁,否则会影响激光雷达的正常使用。

5.3.2 需要的材料

- 1) 洁净的无尘布;
- 2) 温度适中的中性溶液(如肥皂水、蒸馏水、99%浓度乙醇等)。

5.3.3 清洁方法

- 1) 如果激光雷达的表面只是粘附了一些灰尘/粉尘:
 - a) 首先用洁净的无尘布,蘸取少量的中性溶液;
 - b) 其次轻轻地对激光雷达表面拭擦清洁;
 - c) 最后用一块干燥洁净的无尘布将其擦干。
- 2) 如果激光雷达表面沾上了泥浆等块状异物:
 - a) 首先应使用洁净水喷洒在激光雷达脏污部位表面让泥浆等异物脱离 (注意:不能直接用无尘布将泥浆擦掉,这样做可能会划伤表面特 别是窗口片表面);
 - b) 其次用温的肥皂水喷洒在脏污部位,因肥皂水的润滑作用可加速异物的脱离。再次用纤维布轻轻试擦激光雷达表面,但注意不要擦伤表面;
 - c) 最后用洁净的水清洗激光雷达表面肥皂的残留(如果表面仍有残留,可用 99%乙醇对其再次清洁),同时用一块干燥的无尘布擦干即可。

6 售后

如若使用过程中遇到无法解决的问题,请及时联系 RoboSense。

官 网: https://www.robosense.cn/contact

邮 箱: support@robosense.cn

电 话: 0755-86325830 / 15338772453

i 提示说明

1) 请在收到 RoboSense 售后服务回信确认后,再寄回产品;

2) 产品只能使用原包装或等效的软垫防潮包装寄回。

附录 A Driver & SDK

A.1 rs driver 的编译与安装

RS Driver 为 RoboSense 激光雷达提供跨平台的雷达驱动内核,方便用户二次开发使用。v 1.5.10 的驱动内核及之后的版本已支持 E1R 的点云解析及变换。可以在官方 GitHub 账号上下载 rs driver 包:

https://github.com/RoboSense-LiDAR/rs_driver rs driver 目前支持下列系统和编译器:

1) Windows:

MSVC (VS2017 & VS2019 己测试)
Mingw-w64 (x86 64-8.1.0-posix-seh-rt v6-rev0 己测试)

2) Ubuntu (16.04, 18.04, 20.04): gcc (4.8 +)

A.1.1 依赖库的安装

rs driver 依赖下列的第三方库,在编译之前需要先安装:

- 1) Boost
- 2) Pcap
- 3) PCL(非必须,如果不需要可视化工具可忽略)
- 4) Eigen3 (非必须,如果不需要内置坐标变换可忽略)

在 Ubuntu 中安装以下依赖库:

\$sudo apt-get install libboost-dev libpcap-dev libpcl-dev libeigen3-dev 在 Windows 中安装一下依赖库:

1) Boost

Windows 下需要从源码编译 Boost 库,请参考官方指南 (https://www.boost.org/doc/libs/1_67_0/more/getting_started/Windows.html)。编译安装完成之后,将 Boost 的路径添加到系统环境变量 BOOST_ROOT,如图 13 所示。如果使用 MSVC,也可以选择直接下载相应版本的预编译的

安装包。

图 13 环境变量添加示意图

2) pcap

首先,安装 pcap 运行库;

(https://www.winpcap.org/install/bin/WinPcap 4 1 3.exe) .

然后,下载开发者包(https://www.winpcap.org/install/bin/WpdPack_4_1_2.zip) 到任意位置,然后将 WpdPack_4_1_2/WpdPack 的路径添加到环境变量 PATH,如图 13 所示。

- 3) PCL(非必须,如果不需要可视化工具可忽略)
 - a) MSVC

如果使用 MSVC 编译器,可使用 PCL 官方提供的安装包安装。 安装过程中选择 "Add PCL to the system PATH for xxx";

图 14 PCL 设置界面

b) Mingw-w64

PCL 官方并没有提供 mingw 编译的库,所以需要按照官方教程,从源码编译 PCL 并安装。

A.1.2 使用方式

A.1.2.1 rs_Driver 安装使用

驱动编译以 Linux 环境为例 (在 Windows 中, rs_driver 暂不支持安装使用), 按顺序执行以下代码, 安装驱动;

\$cd rs_driver

\$mkdir build && cd build

\$cmake .. && make -j4

\$sudo make install

A.1.2.2 作为子模块使用

在作为子模块使用时,需要添加如下命令到 CMakeLists.txt 文件中(将 rs_driver 作为子模块添加到工程内,使用 find_package() 指令找到 rs_driver,然 后链接相关库)。

add_subdirectory(\${PROJECT_SOURCE_DIR}/rs_driver)
find_package(rs_driver REQUIRED)
include_directories(\${rs_driver_INCLUDE_DIRS})
target_link_libraries(project \${rs_driver_LIBRARIES})

A.1.3 示例程序 & 可视化工具

A.1.3.1 示例程序

rs_driver 提供了两个示例程序,用户可参考示例程序编写代码调用接口,存放于 rs driver / demo 中:

- 1) demo online.cpp
- 2) demo_pcap.cpp

若希望编译这两个示例程序, 执行 CMake 配置时加上参数:

\$cmake -DCOMPILE DEMOS=ON ..

A.1.3.2 可视化工具

rs driver 提供了一个基于 PCL 的点云可视化工具, 存放于 rs driver / tool 中:

1) rs driver viewer.cpp

若希望编译可视化工具,执行 CMake 配置时加上参数:

\$cmake -DCOMPILE TOOLS=ON ..

A.1.4 坐标变换

rs_driver 提供了内置的坐标变换功能,可以直接输出经过坐标变换后的点云, 节省了用户对点云进行坐标变换的额外操作耗时。若希望启用此功能,执行 CMake 配置时加上参数:

\$cmake -DENABLE TRANSFORM=ON ..

A.2 rlidar sdk 的编译与安装

rslidar_sdk 是 ROS 平台下的驱动 SDK, 请通过 github 上的 RoboSense 主页下载, 或联系 RoboSense 获取。

- rslidar_sdk 依赖 rs_driver, 后者是 RoboSense 的基本驱动。rs_driver 请 从 github 平台下载;
- 2) 如使用环境为 ROS2, rslidar_sdk 还依赖 rslidar_msg, 这是 msg 定义文件。msg 文件请从 github 平台下载;
- 3) 驱动 SDK 下载包含丰富的使用指引,请在使用驱动 SDK 前,详细阅读文件内的 README 文件及 doc 文件夹下的文档。

i 提示说明

- 1) SDK 获取地址: https://github.com/RoboSense-LiDAR/rslidar sdk
- 2) rs_driver 获取地址: https://github.com/RoboSense-LiDAR/rs_driver
- 3) msg 获取地址: https://github.com/RoboSense-LiDAR/rslidar msg

附录 B 结构图纸

TE 接口雷达结构图纸:

针脚定义:

接插件引脚定义

pin 脚编号	序号	引脚定义	连接器型号
A1	1	Battery+	
A2	2	Wakeup(KL15)	
A3	3	NC	
A4	4	GND	
A5	5	NC	TE-2397179-1
A6	6	NC	
B1	D1	TRX_P(1000Base-T1)	
B2	D2	TRX_N(1000Base-T1)	
В3	/	SHIELD	

深圳市南山区桃源街道留仙大道1213号众冠红花岭工业南区 2 区 9 栋 www.robosense.ai