安徽大学 2019—2020 学年第一学期《线性代数 A》期末考试试卷 (闭卷 时间 120 分钟)

- 一、选择题(每小题2分,共10分)
- 1. 设n阶方阵A与B仅第 $j(1 \le j \le n)$ 列元素不同,则下列关于行列式的结论**正确**的是 ().
 - (A) $|A| + |B| = 2^{n-1} |A + B|$
- (B) $|A| + |B| = 2^{1-n} |A + B|$
- (C) $|A| |B| = 2^{n-1} |A B|$ (D) $|A| |B| = 2^{1-n} |A B|$
- **2.** 设 $A \neq n$ 阶实矩阵,且 $A^3 = O$,则下列矩阵中不可逆的是().
 - (A) A-E
- (B) A+E
- (C) $A^2 A$ (D) $A^3 + E$
- 3. 设A为 $m \times n$ 矩阵,则齐次线性方程组AX = O仅有零解的充要条件是().
- (B) A的列向量组线性无关
- (A) A的列向量组线性相关 (C) A的行向量组线性相关
- (D) A的行向量组线性无关
- **4.** 设 $A \in m \times n$ 的矩阵,r(A) = m < n,则下列**不正确**的是().
 - (A) $A^TX = O$ 只有零解

- (B) $A^T AX = O$ 必有无穷多解
- (C) 对于任意的m维向量 β , $AX = \beta$ 有无穷多解
- (D) 对于任意的n维向量 β , $A^TX = \beta$ 有唯一解

- (A) 合同且相似 (B) 合同但不相似 (C) 不合同但相似 (D)不合同也不相似
- 二、填空题 (每小题 2 分, 共 10 分)
- 6. 设A是一个三阶方阵,且|A|=4,则 $|A^*-A^{-1}|=$ ____
- 7. 设 A, B 均 为 4 阶 方 阵 , A 的 伴 随 矩 阵 分 别 为 A^* , 且 r(A) = 3 , r(B) = 4 , 则 $r(A^*B) =$.
- 8. 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是n维向量空间 \mathbb{R}^n 的一组基, $\beta_1 = \alpha_1, \beta_2 = \alpha_1 + \alpha_2, \dots, \beta_n = \alpha_1 + \alpha_2 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 +$ $\cdots + \alpha_n$, 从 β_1 , β_2 , $\cdots \beta_n$ 到基 α_1 , α_2 , $\cdots \alpha_n$ 的过渡矩阵为 P ,则 $|P| = ______$

- 9. 设 A 是 3 阶可逆矩阵,且特征值为1,1/2,1/3 , A_{11} , A_{22} , A_{33} 是 |A| 的代数余子式,则 A_{11} + A_{22} + A_{33} = _____.
- **10.** 二次型 $f(x_1, x_2, x_3) = (x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_1)^2$ 的规范形为_____.
- 三、计算题 (每小题 10 分, 共 60 分)

11. 计算
$$n$$
阶行列式 $D_n = \begin{vmatrix} a+b & a \\ b & a+b & a \\ b & a+b & a \\ b & a+b & \ddots \\ \vdots & \ddots & a \\ b & a+b \end{vmatrix}$ (其中 $a \neq b$).

- **12.** 设 3 阶方阵 A, B满足 $A^{-1}BA = 6A + BA$,且 $A = \begin{pmatrix} 1/3 & 0 & 0 \\ 0 & 1/4 & 0 \\ 0 & 0 & 1/5 \end{pmatrix}$,求 B.
- **13.** 设 $\alpha_1 = (1,0,2,4)^T$, $\alpha_2 = (1,1,3,0)^T$, $\alpha_3 = (2,1,a+2,4)^T$, $\alpha_4 = (2,-1,3,a+7)^T$ 线性相关,若 $\beta = (3,-1,a+6,a+11)^T$ 可由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示,求 α 值,并写出 β 由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 表示的线性表达式.
- 14. 设 5×4 矩阵 A 的秩 r(A) = 2 , $(0,1,-3,0)^T$ 是方程组 AX = O 的解,已知 $\alpha_1,\alpha_2,\alpha_3$ 为非 齐次线性方程组 AX = b 的三个解,且 $\alpha_1 + \alpha_2 = (4,6,-8,4)^T$, $\alpha_3 = (1,2,-1,1)^T$, 求方程组 AX = b 的通解.
- **15.** 已知 $\xi = (1,1,-1)^T$ 是矩阵 $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的一个特征向量.
 - (1) 确定参数a,b及 ξ 对应的特征值 λ ; (2) A是否相似于对角阵? 说明理由.
- **16.** 设二次型 $f(x_1, x_2, x_3) = X^T A X = a x_1^2 + 2 x_2^2 2 x_3^2 + 2 b x_1 x_3 (b > 0)$,其中二次型的矩阵 A 的特征值之和为 1,特征值之积为 -12.
 - (1) 求a,b的值; (2) 求将二次型化为标准形的正交变换X = QY.

四、证明题 (每小题 10 分, 共 20 分)

- 17. 设 $A_{3\times 3}$ 有三个不相等的 $\lambda_1, \lambda_2, \lambda_3$,它们对应的特征向量分别为 $\alpha_1, \alpha_2, \alpha_3$,令 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,证明 $\beta, A\beta, A^2\beta$ 线性无关.
- 18. 设B是n阶反对称阵,E是n阶单位阵, $\lambda > 0$,证明: $\lambda E B^2$ 是正定阵.