Bellman Equations

Prof. Subrahmanya Swamy

Outline

- MDP Dynamics R_s^a , $P_{ss'}^a$
- Policy Dynamics R_s^{π} , $P_{ss'}^{\pi}$
- Value Function $V_{\pi}(s)$
- Action-Value Function $Q_{\pi}(s,a)$
- Bellman Equations

MDP Dynamics $(R_s^a, P_{ss'}^a)$

Transition Probability

- $P_{SS'}^a = \mathbb{P}(S_{t+1} = s' \mid S_t = s, A_t = a)$
- Example: $P_{3,5}^2 = p$

Expected Reward

- $R_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
- Example:

$$R_3^2 = 2 p - 2 (1 - p)$$

= $4p - 2$
= -1 (if $p = \frac{1}{4}$)

Policy Dynamics $(R_s^{\pi}, P_{ss'}^{\pi})$

Transition Probability

$$P_{ss'}^{\pi} = \mathbb{P}(S_{t+1} = s' \mid S_t = s, A_t \sim \pi)$$

 $= \sum_{a} \pi(a \mid s) P_{ss'}^{a}$

Expected Reward

•
$$R_s^{\pi} = \mathbb{E}[R_{t+1} \mid S_t = s, A_t \sim \pi]$$

•
$$= \sum_{a} \pi(a \mid s) R_{ss'}^{a}$$

Value Function $(V_{\pi}(s))$

The expected return for following policy π starting from state s

$$V_{\pi}(s) := \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

Action-Value Function $(Q_{\pi}(s, a))$

The expected return for taking action α in current state s and then following policy π from the next state

$$Q_{\pi}(s,a) \coloneqq \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a \right]$$

Relating Q_{π} and V_{π}

$$V_{\pi}(s) = \sum_{\sigma} \pi(\alpha \mid s) Q_{\pi}(s, a)$$

Relating Q_{π} and V_{π}

```
• Q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s, A_{t} = a]

= \mathbb{E}_{\pi}[R_{t+1} + G_{t+1} \mid S_{t} = s, A_{t} = a]

= \mathbb{E}_{\pi}[R_{t+1} \mid S_{t} = s, A_{t} = a] + \mathbb{E}_{\pi}[G_{t+1} \mid S_{t} = s, A_{t} = a]

= R_{s}^{a} + \sum_{s'} P_{ss'}^{a} \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s', S_{t} = s, A_{t} = a]

= R_{s}^{a} + \sum_{s'} P_{ss'}^{a} V_{\pi}(s')
```

• Substitute this in $V_{\pi}(s) = \sum_{a} \pi(a \mid s) Q_{\pi}(s, a)$ to get V_{π} interms of V_{π}

Bellman Expectation (BE) equation

• V_{π} in terms of V_{π} : (Useful to compute V_{π} from $P_{ss'}^a$ and R_s^a)

$$V_{\pi}(s) = R_s^{\pi} + \sum_{S} P_{ss'}^{\pi} V_{\pi}(s')$$

| Remaining Return

reward

- $R_s^{\pi} \coloneqq \sum_a R_s^a \, \pi(a \mid s)$
- $P_{ss'}^{\pi} := \sum_{a} P_{ss'}^{a} \pi(a \mid s)$