## NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL MANGALORE, KARNATAKA-575025

LAB ASSIGNMENT:=03



NAME :- CHIKKERI CHINMAYA

ROLL NO := 211IT017

COURSE : B. TECH (INFORMATION TECHNOLOGY)

SUBJECT := IT204 (SIGNALS AND SYSTEMS LAB)

SUBMITTED TO :=

REVANESHA M SIR

```
from sympy import*
import sympy as sp
import numpy as np
from numpy import*
A, t, t1, T, n, N=symbols( 'A, t, t1, T, n, N')
init_printing(pretty_print=True)
Integral(A**2, (t, -t1/2, t1/2))
Energy=integrate(A^{**}2, (t, -t1/2, t1/2))
display('Energy of the signal E1=' , Energy)
E1=Energy
Power=limit((Integral(A**2, (t,-t1/2,t1/2))/T),T,oo)
display( 'Power of the signal P1=', Power)
P1=Power
if E1==oo and P1!=0 and P1!=oo:
 display('x(t) is Power signal')
if P1==0 and E1!=0 and E1!=oo:
 display('x(t) is Energy signal' )
if E1==oo and P1!=oo and P1==0:
 display('x(t) is Neither Energy Nor Power signal')
if E1==oo and P1==oo:
  display('x(t) is Neither Energy Nor Power signal')
if E1==0 and P1==0:
  display('x(t) is Neither Energy Nor Power signal')
     'Energy of the signal E1='
     A^2t_1
     'Power of the signal P1='
     'x(t) is Energy signal'
```

```
from sympy import*
import sympy as sp
import numpy as np
from numpy import*
Integral((sp.cos(t)**2),(t,-oo,oo))
Energy=integrate((sp.cos(t)**2),(t,-oo,oo))
display('Energy of the signal E2=' , Energy)
E2=Energy
Integral((sp.cos(t)**2)/T,(t,-T/2,T/2))
Power=limit(integrate((sp.cos(t)**2)/T,(t,-T/2,T/2)),T,oo)
display( 'Power of the signal P2=', Power)
P2=Power
if E2==oo and P2!=0 and P2!=oo:
 display('x(t) is Power signal')
if P2==0 and E2!=0 and E2!=oo:
 display('x(t) is Energy signal' )
if E2==oo and P2!=oo and P2==0:
 display('x(t) is Neither Energy Nor Power signal')
if E2==oo and P2==oo:
  display('x(t) is Neither Energy Nor Power signal')
if E2==0 and P2==0:
  display('x(t) is Neither Energy Nor Power signal')
     'Energy of the signal E2='
     \infty
     'Power of the signal P2='
```

'x(t) is Power signal'

```
from sympy import*
import sympy as sp
import numpy as np
from numpy import*
A, t, t1, T, n, N=symbols( 'A, t, t1, T, n, N')
init_printing(pretty_print=True)
Energy=Sum(((1/4) **n) **2, (n,0,oo))
E3=Energy.evalf()
display('Energy E3=', E3)
Power3=Sum(((1/4)**n)**2, (n,0,N)) / (2*N)
y=Power3.doit()
Power1=limit(y,N,oo)
P3=Power1
display('Power P3=' ,P3)
if E3==oo and P3!=0 and P3!=oo:
 display('x(t) is Power signal')
if P3==0 and E3!=0 and E3!=oo:
  display('x(t) is Energy signal')
if E3==oo and P3!=oo and P3==0:
 display('x(t) is Neither Energy Nor Power signal')
if E3==oo and P3==oo:
 display('x(t) is Neither Energy NP signal')
if E3==0 and P3==0:
  display('x(t) is NENP signal')
     'Energy E3='
     1.0
     'Power P3='
     0
     'x(t) is Energy signal'
```

```
from sympy import*
import sympy as sp
import numpy as np
from numpy import*
x=Integral(((t)**(-1/2))**2,(t,2,oo))
Energy=x
Energy
y=integrate(((t)**(-1/2))**2,(t,2,oo))
display('Energy E4=',y)
x1=(1/T)*Integral(((t)**(1/2))**2,(t,2,T/2))
x1
y1=limit((1/T)*integrate(((t)**(-1/2))**2,(t,2,T/2)),T,oo)
display('Power P4=',y1)
P4=y1
if E4==oo and P4!=0 and P4!=oo:
  display('x(t) is Power signal')
if P4==0 and E4!=0 and E4!=oo:
  display('x(t) is Energy signal' )
if E4==oo and P4!=oo and P4==0:
  display('x(t) is Neither Energy Nor Power signal')
if E4==oo and P4==oo:
  display('x(t) is Neither Energy NP signal')
if E4==0 and P4==0:
 display('x(t) is NENP signal')
     'Energy E4='
     \infty
     'Power P4='
```

0

'x(t) is Neither Energy Nor Power signal'

```
from sympy import*
import sympy as sp
import numpy as np
from numpy import*
y = integrate((-4)**2,(t,0,2)) + integrate(4**2,(t,2,4)) + integrate((-4)**2,(t,4,6))
E5 = y
display('Energy E5=',y)
y2 = limit((1/T)*integrate((-4)**2,(t,0,2)),T,oo) + limit((1/T)*integrate((4)**2,(t,2,4)),T,oo) + limit((4/T)*integrate((4)**2,(t,2,4)),T,oo) + limit((4/T)*in
display('Power P5=', y2)
P5 = y2
if E5==oo and P5!=0 and P5!=oo:
       display('x(t) is Power signal')
if P5==0 and E5!=0 and E5!=oo:
       display('x(t) is Energy signal' )
if E5==oo and P5!=oo and P5==0:
        display('x(t) is Neither Energy Nor Power signal')
if E5==oo and P5==oo:
       display('x(t) is Neither Energy NP signal')
if E5==0 and P5==0:
        display('x(t) is NENP signal')
                     'Energy E5='
```

```
96
'Power P5='
0
'x(t) is Energy signal'
```

| SR. NO                             | Energy<br>Output | Power<br>Output | Category (Mentioned)                                 |  |  |  |
|------------------------------------|------------------|-----------------|------------------------------------------------------|--|--|--|
| 1 A <sup>2</sup> t <sub>1</sub>    |                  | 0               | x(t) is Energy signal                                |  |  |  |
| 2                                  | 00               | 1/2             | x(t) is Power signal                                 |  |  |  |
| 3                                  | 1.0              | 0               | x(t) is Energy signal                                |  |  |  |
| <ul><li>4 ∞</li><li>5 96</li></ul> |                  | 0               | x(t) is Neither<br>Energy <u>Nor</u> Power<br>signal |  |  |  |
|                                    |                  | 0               | x(t) is Energy signal                                |  |  |  |

Page \_\_\_\_\_

| x(h) = | C1, | 3,2,1,2,2,1,1,3,2] |
|--------|-----|--------------------|
|        |     | 1,0,8,0,4,0,0,1    |

N= 10+8-1=17

| (D) x | (b) | 3  | 2. 1 | 11 | 21  | 2  | 1 \ | 6 ] | 3   | 2 |
|-------|-----|----|------|----|-----|----|-----|-----|-----|---|
| 40)   |     |    | 2    | ,  | 2   | 2  |     | 1   | 3   | 2 |
| 0     | 0   | 3  |      | 0  | 0   | 0  | 0   | 0   | 0   | 0 |
| 8     | 8   | 24 | (6   | 8  | 16  | (6 | 8   | 8   | 24  |   |
| 0     | 0   | 0  | 0    | 0  | 0   | 0  | 0   | ( ) |     |   |
| 0     | 0   | 0  | 0    | 0  | 0   | 0  | 0   | 10  | 0 0 |   |
| 0     | 0   | 03 | 0    | 0  | 0 2 | 5  | 10  | 10  | 3   |   |
| •     |     | )  |      | 1  | 1   |    |     |     | 1   |   |



