MATH 135 — Fall 2021 Sample Proofs from Lecture 6

Mark Girard

March 24, 2025

Proving existentially quantified statements

To prove a existentially statement (" $\forall x \in S, P(x)$ "):

- Do the scratchwork investigation to determine a value of *x* that works.
- Start your proof with "Let $x = \dots$ " and state clearly that x is in fact an element of S (or demonstrate that x is an element of S if it is not clear).
- Then proceed to show that P(x) is true for this particular value of x.
- Do not include your scratchwork as part of your proof! However, your proof must be self-contained, so include any explanations necessary to justify your argument.

Claim. $\exists m \in \mathbb{Z}, \frac{m-7}{2m+4} = 5.$

Proof. Let m = -3, which is an integer. Now

$$\frac{m-7}{2m+4} = \frac{-3-7}{-6+4} = \frac{-10}{-2} = 5,$$

which proves the claim.

Claim. There exists a perfect square k such that $k^2 - \frac{31}{2}k = 8$.

Proof. Let k = 16, which is a perfect square as $16 = 4^2$. Then

$$k^{2} - \frac{31}{2}k = 16^{2} - 31 \cdot 8$$
$$= 256 - 248$$
$$= 8,$$

as desired.

Disproving statements

To prove that a statement is false:

- Negate the statement.
- Prove that the negation is true.

Claim.
$$\forall x \in \mathbb{R}, (x^2 - 1)^2 > 0.$$

We prove this statement is false by stating its negation and proving that. The negation of this statement is:

$$\exists x \in \mathbb{R}, (x^2 - 1)^2 \le 0.$$

Proof (of the negation). Let x = 1, which is a real number. Then

$$(x^2 - 1)^2 = (1 - 1)^2 = 0^2 = 0 \le 0,$$

as desired.

Claim. There exists a real number θ for which it holds that $\sin(2\theta) + \cos(2\theta) = 3$.

We prove this statement is false by stating its negation and proving that. The negation of this statement is:

$$\forall \theta \in \mathbb{R}, \sin(2\theta) + \cos(2\theta) \neq 3.$$

Proof (of the negation). Let θ be a real number. Note that

$$-1 \le \sin(2\theta) \le 1$$

and
$$-1 \le \cos(2\theta) \le 1$$
,

and thus

$$-2 \le \sin(2\theta) + \cos(2\theta) \le 2 < 3.$$

Hence $\sin(2\theta) + \cos(2\theta) < 3$.

Proving statements with nested quantifiers

Prove or disprove the following statements:

A: "
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 = 1$$
"

$$B \colon "\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x^3 - y^3 = 1"$$

Statement *A* is true but statement *B* is false. In statement *A*, one decides on a value for *y* after a value for *x* is given. In statement *B*, a value of *y* is picked first and this value must work for every possible choice of x.

We first prove statement A.

Proof. Let x be a real number. Choose $y = (x^3 - 1)^{1/3}$, which is a real number. Then

$$x^3 - y^3 = x^3 - ((x^3 - 1)^{1/3})^3 = x^3 - (x^3 - 1) = 1,$$

which completes the proof.

Now state the negation of *B*:

$$\neg B$$
: " $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, x^3 - y^3 \neq 1$ "

Proof (of negation of B). Let *y* be a real number and choose $x = (y^3 - 2)^{1/3}$. Then

$$x^3 - y^3 = ((y^3 - 2)^{1/3})^3 - y^3 = y^3 - 2 + y^3 = 2,$$

which is not equal to 1.

Proving implications

An implication is a statement of the form " $A \implies B$ " or " $\forall x \in S, P(x) \implies Q(x)$."

- 1. Assume that the hypothesis (i.e., A or P(x)) is true.
- 2. Prove the conclusion (i.e., B or Q(x)) using only what you know to be true.
- 3. Do not worry about instances where the hypothesis is false!

Claim. For every integer k, if k^5 is a perfect square then $9k^{19}$ is a perfect square.

Proof. Let k be an integer. Assume that k^5 is a perfect square. There exists an integer m such that $m^2 = k$. Now,

$$9k^{19} = 3^{2} \cdot k^{14} \cdot k^{5}$$
$$= 3^{2} \cdot (k^{7})^{2} \cdot m^{2}$$
$$= (3mk^{7})^{2}$$

which is a perfect square as $3mk^7$ is an integer.

Claim. For every integer n, if 2^{2n} is odd then 2^{-2n} is odd.

Proof. Let n be an integer. There are three possible cases to consider: n < 0, n = 0, and n > 0.

Case 1: Suppose n < 0. Then 2^{2n} is not an integer and thus not odd.

Case 2: Suppose n = 0. Then $2^{2n} = 2^0 = 1$, which is odd. In this case, one has $2^{-2n} = 2^0 = 1$, which is again odd.

Case 2: Suppose n > 0. Then $n - 1 \ge 0$ and thus

$$2^{2n} = 2^{2n-2+2} = 2^2 \cdot 2^{2(n-1)} = 2(2 \cdot 4^{n-1})$$

which is even as $2 \cdot 4^{n-1}$ is an integer, and thus 2^{2n} is not odd.

This proves the claim, as the implication has been shown to be true in every case where the hypothesis holds. \Box