

Research on hyperparameters for the

classification of ultrasonic signals

By:

Theertha Bharathan (1445457)

Contents

O1 Introduction

02 Methodology

Sensor System and Red Pitaya Board

Ultrasonic Object Differentiation

Hyperparameter Optimization

03 Implementation

Data Preprocessing

Machine Learning Models

04 Results

05 Conclusion

Introduction

The objective of the study is to examine how different machine learning model for ultrasonic signal classification are affected by hyperparameter tuning. The study analyses how hyperparameter adjustment can increase the models' capacity to distinguish between different materials based on ultrasonic waves the reflect.

Methodology

Sensor System and Red Pitaya Measurement Board

Ultrasonic Object Differentiation

- 1. Time-of-Flight (ToF) Principle
- 2.Pulse-Echo Method
- 3. Phase Shift Measurement
- 4. Multi-Echo Detection
- 5.Dual-Transducer Systems
- 6.Temperature Compensation

Methodology

Hyperparameter Optimization

•Hyperparameters = are all the parameters which can be arbitrarily set by the user before starting training (eg. number of estimators in Random Forest).

Hyperparameter Optimization Techniques

Grid Search:

This approach is a brute-force technique that searches over the hyperparameter space of the learning algorithm in a predetermined subset. To speed up the search, the technique can be parallelized among several models with various configurations.

Random Search:

This approach chooses random values from the hyperparameter subset independently. By navigating the grid of hyperparameters randomly, one can obtain a similar performance as a full grid search. However, this approach is surprisingly easy and effective.

Methodology

Hyperparameter Optimization Techniques

Bayesian optimization:

This approach builds a surrogate model based on a random selection of hyperparameters and forecasts the performance of more combinations. To reduce the objective function, it strikes a balance between exploration and exploitation

Hyperband Search: exploitation Hyperband efficiently explores many hyperparameter configurations by allocating limited resources initially and increasing them for top performing ones. It balances exploration of a wide range of options with a focus on the best configurations, optimizing both time and performance.

Implementation

Data Preprocessing for Model Training

Windowing to Reduce Spectral Leakage

Fourier Transform (FFT) for frequency analysis of signals

Extracting SINAD, peak (count, position), and autocorrelation

Extracted Features:

LALI	Extracted reactives:						
	sinad	peak_count	peak_position	autocorr_max	label		
0	16.888277	2	85	8.770884e+08	aluminum		
1	15.771295	3	5	8.747460e+08	aluminum		
2	16.307615	2	85	9.741237e+08	aluminum		
3	16.905421	4	1	8.861499e+08	aluminum		
4	16.266501	2	85	9.645380e+08	aluminum		

Implementation

Machine learning Models

K-Nearest Neighbours (KNN)

Classification Report for KNN Classifier:							
	precision	recall	f1-score	support			
aluminum	0.99	0.99	0.99	200			
plain wood	0.92	0.91	0.92	200			
steel	0.82	0.91	0.86	200			
wood with lessneedles	0.72	0.66	0.69	200			
wood with lotofneedles	0.65	0.65	0.65	200			
accuracy			0.82	1000			
macro avg	0.82	0.82	0.82	1000			
weighted avg	0.82	0.82	0.82	1000			

Classificatio	n Report for precision		t Neighbors f1-score	(Randomized Search Tuned): support	
0	0.99	0.99	0.99	200	
1	0.94	0.91	0.92	200	
2	0.85	0.91	0.88	200	
3	0.73	0.66	0.69	200	
4	0.65	0.69	0.67	200	
accuracy			0.83	1000	
macro avg	0.83	0.83	0.83	1000	
weighted avg	0.83	0.83	0.83	1000	

Support Vector Machines (SVM)

Classific	ation Report	for Suppo	ort Vector	Machine
	precision	recall	f1-score	support
_				
9	0.99	0.99	0.99	200
1	0.95	0.88	0.91	200
2	0.84	0.90	0.87	200
3	0.68	0.72	0.70	200
4	0.63	0.59	0.61	200
accuracy			0.82	1000
macro avg	0.82	0.82	0.82	1000
weighted avg	0.82	0.82	0.82	1000

Support Vector Machines (SVM)

Classific	ation Report	for Opti	mized SVM	(Grid Search)
	precision			
0	0.99	0.98	0.98	200
1	0.97	0.94	0.95	200
2	0.89	0.93	0.91	200
3	0.77	0.71	0.74	200
4	0.70	0.76	10.49.312.7	200
accuracy			0.86	1000
macro avg		0.86	0.86	1000
weighted avg	0.86	0.86	0.86	1000

Classific	ation Report precision			(Random Search) support	
0	0.99	0.99	0.99	200	
1	0.95	0.93	0.94	200	
2	0.89	0.94	0.91	200	
3	0.78	0.70	9.74	200	
4	0.70	0.76	0.73	200	
accuracy			0.86	1000	
macro avg	0.86	0.86	0.86	1000	
weighted avg	0.86	0.86	0.86	1000	

Random Forest

Random Forest Simplified

Implementation

of Applied Sciences Random Forest (without hyperparameter tuning)

Classification Report for Random Forest Classifier:							
	precision	recall	f1-score	support			
aluminum	0.99	0.99	0.99	200			
plain wood	0.95	0.93	0.94	200			
steel	0.91	0.94	0.93	200			
wood with lessneedles	0.78	0.75	0.76	200			
wood with lotofneedles	0.75	0.77	0.76	200			
accuracy			0.88	1000			
macro avg	0.88	0.88	0.88	1000			
weighted avg	0.88	0.88	0.88	1000			

Random Forest

Results

Classificatio	n Report for	Tuned Rar	ndom Forest	(Grid Search	h):
	precision	recall	f1-score	support	
9	0.99	0.99	0.99	200	
1	0.96	0.94	0.95	200	
2	0.91	0.96	0.94	200	
3	0.82	0.72	0.77	200	
4	0.74	0.80	0.77	200	
accuracy			0.89	1000	
macro avg	0.89	0.89	0.88	1988	
weighted avg	0.89	0.89	0.88	1000	

Classificatio	n Report for	Tuned Ra	ndon Forest	(Random	Search):
	precision	recall	f1-score	support	
8	0.99	0.99	0.99	200	
1	0.96	0.94	0.95	200	
2	0.91	0.96	0.94	200	
3	0.83	0.72	0.77	200	
4	0.73	0.80	0.77	200	
accuracy			0.89	1000	
macro avg	0.89	0.89	0.88	1000	
weighted avg	0.89	0.89	0.88	1000	

Random Forest

Results

Classification	Report for	Tuned Ran	ndom Forest	(Bayesian	Search):
	precision	recall	f1-score	support	
9	1.00	0.99	0.99	200	
1	0.96	0.94	0.95	200	
2	0.91	0.96	0.94	200	
3	0.81	0.72	0.76	200	
4	0.73	0.79	0.75	200	
accuracy			0.88	1000	
macro avg	0.88	0.88	0.88	1000	
weighted avg	0.88	0.88	0.88	1000	

Multilayer Perceptron (MLP)

Classification Report for Multilayer Perceptron:							
	precision	recall.	f1-score	support			
9	0.99	0.99	0.99	200			
1	0.97	0.94	0.96	200			
2	0.90	0.94	0.92	200			
3	0.83	0.64	0.72	200			
4	0.67	0.81	0.73	200			
accuracy			0.86	1000			
macro avg	0.87	0.86	0.86	1000			
weighted avg	0.87	0.86	0.86	1000			

Classification	n Report for precision		yer Percept f1-score	cron (Randomized support	Search):
0	0.99	0.99	0.99	200	
1	0.95	0.95	0.95	200	
2	0.91	0.94	0.93	200	
3	0.73	0.80	0.76	200	
4	0.75	0.67	0.71	200	
accuracy			0.87	1000	
macro avg	0.87	0.87	0.87	1000	
weighted avg	0.87	0.87	0.87	1000	

Implementation

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN)

Classification	n Report for	Convolut	ional Neura	1 Network	(CNN):
	precision	recall	f1-score	support	
	0.00	0.00	0.00	200	
0	0.99	0.99	0.99	200	
1	0.93	0.89	0.91	200	
2	0.73	0.79	0.75	200	
3	0.59	0.69	0.63	200	
4	0.63	0.49	0.56	200	
accuracy			0.77	1000	
macro avg	0.77	0.77	0.77	1000	
weighted avg	0.77	0.77	0.77	1000	

Long Short-Term Memory (LSTM)

Classification	Report for	Long Shor	t-Term Mem	ory (LSTM):
	precision	recall	f1-score	support
0	0.99	0.97	0.98	200
1	0.95	0.90	0.92	200
2	0.83	0.91	0.87	200
3	0.74	0.64	0.68	200
4	0.63	0.70	0.66	200
accuracy			0.82	1000
macro avg	0.83	0.82	0.82	1000
weighted avg	0.83	0.82	0.82	1000

Classificatio	n Report for	LSTM (Tu	ned):	
	precision	recall	f1-score	support
Ø	0.99	0.99	0.99	200
1	0.93	0.92	0.93	200
2	0.88	0.95	0.92	200
3	0.77	0.70	0.73	200
4	0.70	0.72	0.71	200
accuracy			0.86	1000
macro avg	0.86	0.86	0.86	1000
weighted avg	0.86	0.86	0.86	1000

Conclusion

Analysis of Ultrasonic Signal Classification

Several machine learning models have been successfully constructed to categorize materials using ultrasonic signals that are obtained by the SRF02 sensor and the Red Pitaya STEMLAB

Impact of Hyperparameter Tuning

Models performed much better after hyperparameter adjustment, which increased their capacity to differentiate across materials.
Random Forest showed the best classification accuracy.

Key Takeaways

The integration of machine learning with feature extraction methods produced insightful results about material differentiation.

Optimizing model performance has been shown to depend heavily on tuning parameters like estimators and kernels.

Thank You