	G.C.E. at - Raigad Date :
	at - Raigad
	Name: Makarand Samir Khadakban
	Roll No.: 30
	Class: B.EIT
	Batch: I2
0	Sem.: VIII th
	Sub.: IS Lab
	D.O.P. D.O.C. Marks Sign
	Diorit Diorit July
0	

CF

K.G.C.E. Karjat - Raigad

Tutorial 2

Page No.:

Date:

GCE KGCE KGCE	KGCE KC	GCE KGCE KGCE KGCE KGCE KGCE KGCE KGCE K				
		To understand State Space Problem formulation				
		10/1/10(00)				
	A	Aim:				
-		To understand State Space based				
		problem formulation of AI problems so				
		that Boblem Solving Agent can be				
		applied.				
	-					
	A	Theory:				
	-	First we understand the problem				
		solving agent. Algorithman shown in Figure 3				
	-	shows agent program for problem solving				
	-	agent Agent first formulates goal 4				
		problem, then determines or rather				
		Searches an action sequence, after which				
	1	it seturns the next action to be				
	-	executed in a sequential manner.				
-60						
	4	function SIMPLE-PROBLEM-SOLVING-AGENT (percept)				
	-	setums an action				
	1	Static: seq, an action seq, initially empty				
		states some description of the current world				
	1-1	State				
		goal, a goal, initially mull				
		problem a problem formulation				
		State - UPDATE - STATE (State, percept)				
		if seg is empty then do				

K.	\mathbf{G}	C	E.
Kar	iat -	Ra	igad

Page No.:

	goal FORMULATE-GOAL (state) problem & FORMULATE-PROBLEM (state, goal) seq & SEARCH (Problem)
	action < FIRST (seq) seq < REST (seq) seturn action
0	Figure 3: Broblem Solving Agent Architecture Defining the Broblem is referred to as problem formulation. It involves defining
	following five things: 41 months (Terming) Initial State: It is the starting state that the
	Actions: Tt definess all possible actions
	available to the agent given it is in some state & currently. It is a function Action (s) that returns list of all possible actions
	Transition Model: Also known as successor function which define which states the system tend to move to when a farticular action is executed by the agent. Successive application
	executed by the agent. Successive applica

K.	G.	C.	E.
Karia			

Page No.:

Date:

KGCE KGCE KGCE	KGCE K	GCE KGCE KGCE KGCE KGCE KGCE KGCE KGCE K
		of transition model gives rise to what
		is known as State space.
		Goal Test:
-		This act as a stopping condition
		when the state passed to this
		truction is goal state it will return true & searching would stop.
(5)		
•		Path Cost: It is accumulated cost of
		performing certain exequence of actions
		This can help in determining weather
		the action sequence under consideration
0		is optimal.
		Thus a problem can formally
		specified by identifying initial state,
(actions (aperators), transition model (successor function), goal test & path
		cost. In term of publem solving agent
		solution is the path from initial state
	$\ \cdot\ $	to a goal state optimal solution is the lowest path cost of all solutions. Process
		of finding a solution is called search.
<u> </u>	×	Working:
		Solve following problem using State Space Seeach.

K.G.	C.E.
Kariat -	Raigad

Page No.:

Date :

GCE KGCE KGCE	KGCE K	GCE KGCE KGCE KGCE KGCE KGCE KGCE KGCE K					
		8 0 1 0 11					
		8 puzzle problem:					
		numbered, movable files set in a 3x3					
		frame. One cell of the frame is					
		always empty thus making it possible					
	to move an adjacent numbered tile						
,		into the empty cell. Such a puzzle is					
=======================================		illustrated in following figure.					
•		THUSTIAILE IN TOHOWING THYWAY.					
		283					
		। 6 व ॥ ज्ञानदीपेन भारवताः॥ 8 व					
		7 1 25 20 20 20 2 7 6 5					
		Initial State Goal State					
		fig. : Example of 8 Puzzle					
_		This program is to change the					
(2)		initial configuration into the goal config.					
		A solution to the problem is an appropriate					
		sequence of moves, such as "move tile					
		5 to the right, move tile 7 to the left,					
		move the tile 6 to the down" etc					
		To solve a problem, we must specify					
		the global database the rules & the					
		control strategy, for the 8 puzzle					
		problem that corresponds to 3 components.					
	الــــا						

K.G.	C.E.
Karjat -	

Page No.:	
Date :	

GCE KGCE KGCE KGCE	NGCE KGCE KGCE KGCE KGCE KGCE KGCE KGCE K				
	These elements are the problem states, moves of goal. In this problem each tile configuration is a state. The set of all possible configuration in the problem space. Consists of 3.62,880 different configurations of the 8 tiles of blank space.				
•	for the 8-pazzle a straight forward description is a 3x3 array of matrix of numbers. Initial global database is this description of the initial problem state. Virtually any kind of data structure can be used to describe states. A move transforms one problem state into another state. The 8-pazzle is conveniently interested as howing the following for moves:				
	- move empty space (blank) to the left. move blank up move blank to the night 4 move blank down. - These moves one modeled by production moves that operate on the state descriptions in the appropriate manner. The goal condition form the basis for the termination. The control strategy repeatedly applies rules to state descriptions				
-					

K	C	C	E.
7.			
Ka	riat -	Rai	gad

Page No.:

	imilia description of a goal state is
	mili a description of a goal state is produced It also keeps track of rules
	that have been applied so that it can
	compose them into sequence representing
	the problem solution.
	283
	164
)	775
	283 283 283
	169 1164
	75 765 75
	3 2 8 3 4 2 3 2 8 3
	1 4 1 8 4 1 4
	765 765 765
	83 283 5 23 23
	219 714 184 184
	765 765 765
	6 1 2 3
	8 4
	765
	7 1 2 3 1 2 3
	8 4 784
	765
	Fig. Solution of 8 Puzzle Problem