Sec 12: Function of a complex

variable:

Let S be a set of complex numbers.

Then function f defined on S is a rule that assigns to each $z \in S$ a unique complex number w, and we

write
$$f(z) = w$$

The set S is called domain of definition of f.

Let
$$z = x + iy$$
 &

$$W = U(x,y) + i V(x,y)$$

Then
$$f(z) = w = u(x, y) + iv(x, y)$$

Re
$$f(z) = u(x,y)$$
 & Im $f(z) = v(x,y)$

In polar coordinates,

$$z = x + iy = re^{i\theta}$$
,

$$f(z) = u(r, \theta) + i v(r, \theta).$$

<u>Limit:</u>

• Let f be a function defined at ALL POINTS of z in some deleted nbd of z_0 . Then

$$\lim_{z \to z_0} f(z) = w_0 \implies \text{given } \varepsilon > 0,$$

 $\exists a \quad \delta > 0 \text{ such that}$

$$|f(z)-w_0|<\varepsilon$$

whenever $0 < |z - z_0| < \delta$

Theorems on limits:

Thm 1 Let
$$f(z) = u(x, y) + iv(x, y)$$
,
 $z_0 = x_0 + iy_0$, $w_0 = u_0 + iv_0$,

Then
$$\lim_{z \to z_0} f(z) = w_0$$

$$\iff (i) \lim_{(x,y) \to (x_0, y_0)} \mathbf{u}(\mathbf{x}, \mathbf{y}) = u_0$$

$$(ii) \lim_{(x,y) \to (x_0, y_0)} v(\mathbf{x}, \mathbf{y}) = v_0$$

Thm 2 Let

$$\lim_{z\to z_0} f(z) = w_0,$$

$$\lim_{z\to z_0} g(z) = W_0$$
. Then

(i)
$$\lim_{z \to z_0} [f(z) \pm g(z)] = w_0 \pm W_0$$
.

$$(ii) \lim_{z \to z_0} [f(z)g(z)] = w_0 W_0.$$

(iii)
$$\lim_{z \to z_0} \left[\frac{f(z)}{g(z)} \right] = \frac{w_0}{W_0}$$
, if $W_0 \neq 0$.

The point at infinity:

The point at infinity is denoted by ∞ , and the complex plane together with the point at infinity is called the **Extended complex** Plane.

Riemann Sphere & Stereographic Projection

Theorem

1.
$$\lim_{z \to z_0} f(z) = \infty \Leftrightarrow \lim_{z \to z_0} \frac{1}{f(z)} = 0.$$

2.
$$\lim_{z \to \infty} f(z) = w_0 \iff \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0$$

3.
$$\lim_{z \to \infty} f(z) = \infty \Leftrightarrow \lim_{z \to 0} \frac{1}{f\left(\frac{1}{z}\right)} = 0$$

Sec 18. Continuity

1. A function f(z) is said to be continuous at a point z_0 if

$$\lim_{z \to z_0} f(z) = f(z_0)$$

i.e. for each $\in > 0$, $\exists \delta > 0$ such that

$$\left| \mathbf{f}(\mathbf{z}) - \mathbf{f}(\mathbf{z}_0) \right| < \in$$
whenever $\left| z - z_0 \right| < \delta$.

 The function f(z) is said to be continuous in a region R if it is continuous at all points of the region R.

2.

If
$$f(z) = u(x, y) + iv(x, y)$$
, then
 $f(z)$ is continuous iff
 $Re f(z) = u(x, y)$ and
 $Im f(z) = v(x, y)$

are continuous.

3. If f(z) and g(z) are continuous, then

(a)
$$f(z) \pm g(z)$$

(b)
$$f(z)g(z)$$

(c)
$$\frac{f(z)}{g(z)}$$
, $g(z) \neq 0$

are all continuous.

4. Composition of two continuous map is continuous

Qs. Let f (z) is continuous at z_0 and $f(z_0) \neq 0$. Then show that $f(z) \neq 0$ throughout in some nbd of Z_0 .

Solution: f (z) is continuous at z₀

$$\Rightarrow \lim_{z \to z_0} f(z) = f(z_0)$$

⇒ For each \in >0, \exists a δ >0 s.t.

$$|f(z) - f(z_0)| < \in$$

whenever $|z-z_0| < \delta$. (1)

Note that $f(z_0) \neq 0 \& (1)$ is valid for each $\in > 0$.

Let
$$\in = \frac{1}{2} |f(z_0)| > 0$$
.

If possible, let

$$\exists z = \overline{z} \in N(z_0, \delta) : |z - z_0| < \delta$$

such that $f(\overline{z}) = 0$

Then (1) gives

$$|f(\overline{z}) - f(z_0)| < \frac{1}{2} |f(z_0)|,$$

whenever $|\bar{z} - z_0| < \delta$

$$\Rightarrow |f(z_0)| < \frac{1}{2}|f(z_0)|$$

whenever $|\bar{z} - z_0| < \delta$

a contradiction

$$\therefore f(z) \neq 0 \ \forall \ z \in N(z_0, \delta)$$

Result: Every continuous function in a closed & bounded region is bounded.

Let f (z) is continuous in a closed & bounded region R

 $\Rightarrow \exists M > 0 \text{ s. t } |f(z)| \leq M \forall z \in R.$

Ex1. If
$$f(z) = \frac{z}{\overline{z}}$$
, then

 $\lim_{z\to 0} f(z)$ does NOT exist.

Soln: Use two path test.

Ex2. If
$$f(z) = \left(\frac{z}{\overline{z}}\right)^2$$
, then

 $\lim_{z\to 0} f(z)$ does NOT exist.

Soln: Use two path test.

Ex 3. Discuss the continuity of f(z) at z = 0 if

(i) f (z) =
$$\frac{\text{Re } z}{1+|z|}$$

(ii)
$$f(z) = z^{-1}Re z$$

Sol. (i) $f(z) = \frac{Re z}{1+|z|}$

$$=\frac{x}{1+\sqrt{x^2+y^2}}$$

$$\lim_{z \to 0} f(z) = \lim_{(x,y) \to (0,0)} \frac{x}{1 + \sqrt{x^2 + y^2}}$$
$$= 0 = f(0)$$

$$\Rightarrow f(z)$$
 is continuous at $z=0$

(ii)
$$f(z) = \frac{\text{Re } z}{z} = \frac{x}{x + iy}$$

We have

$$\lim_{z \to 0} f(z) = \lim_{(x,y) \to (0,0)} \frac{x}{x + iy}$$

$$\Rightarrow \lim_{z \to 0} f(z) = \lim_{(x,y) \to (0,0)} \frac{x}{x + imx},$$

$$(along y = mx)$$

$$= \frac{1}{1 + im}$$
which is not unique

 \Rightarrow f(z) is not continuous at z = 0