

Final Assessment Test - April 2019

Course: CLE1006 - Environmental Engineering

Class NBR(s): 5247

Time: Three Hours

Slot: D2

Max. Marks: 100

PART – A (8 X S = 40 Marks) Answer any <u>EIGHT</u> Questions

- a) Determine the BODs of wastewater and compute the ultimate BOD for the following sample. 5 ml
 of wastewater is diluted to 300 ml of distilled water in a standard BOD bottle. Initial DO in the
 bottle is 8.2 mg/l and DO after 5 days at 20° C is 4.5 mg/l. Suggest the wastewater could be
 discharged in water bodies.
 - b) State the drinking quality standards for any four physic-chemical parameters.

[2]

- 2. Derive the first order reaction for Continuously-flow Stirred Tank Reactors (CSTR).
- Discuss the concepts of mass balance used for wastewater treatment and list the steps involved in the preparation of mass balance.
- 4. A coagulation sedimentation plant clarifiers 40 million litre of water every day. The quantity of filter alum required for the plant is 18 mg/l and if the raw water is having an alkalinity equivalent to 5 mg/l of CaCO₃. Determine the quantity of filter alum and the quicklime required per year.
- Explain different methods of chlorination process.

(A)

6. Design a grit chamber for population 50000 with water consumption of 135 LPCD. Assume necessary

- 7. What is the purpose of primary and secondary clarifier in wastewater treatment plant? Explain why the sludge from secondary clarifier is returned to aeration tank?
- a) Explain the zones of pollution in River streams.

[2]

Explain the oxygen sag curve in a river receiving discharge of sewage with a neat diagram.

[3]

What is the need for advanced treatment of wastewater? List various advanced treatment unit operations and their process.

PART - B (5 X 12 = 60 Marks) Answer any FIVE Questions

a) The population of a town as per past census records are mentioned below. Forecast the population in the year 2021 using the following methods;

Arithmetical Increase method

Geometrical Increase method

Incremental Increase method

If the per captia water demands are 135 lpcd estimate the demand for the year 2035

1961	1971	1981	1991	2001
39250	54390	68010	83630	99850

b) List the factors to be considered in fixing the design periods for water supply components.

[4]

Possession of Mobile Phone in the exam hall even in switched off condition is a malpractice.

Page 1 of 2

11	a	an activated carbon	
	b	Design a rapid sand filter to treat 12 million litres of raw water	[6]
12.	a	Draw schematic of the skimming tank and explain the removal	[6]
		Draw schematic of the skimming tank and explain the removal mechanism of Fats, Oil and Grease (FOG).	[6]
	b	Design a rectangular sedimentation tank to treat 2 million litres of raw water per day with a detention period of 2.5 hours. Assume the necessary data required.	[6]
13.	a)		
	b)	Explain Upflow Anaerobic Sludge Blanket Reactor with a neat sketch.	
14.	a)	Design a Trickling filter to treat a domestic wastewater flow of 10 MLD having influent 80D ₃ equa	[6]
		to 250 mg/l.	[6]
		The desired effluent BOD ₃ is 25 mg/l.	
	b)	With the help of neat flow diagram, Explain in detail about the various processes involved in sludg treatment and disposal process.	e [6]
15.	a)	Explain the application of Nano technology and biotechnology for wastewater treatments.	[6]
	b)	Explain the sequence of unit operations and processes involved in the effluent treatment plan	[0]
		and the different treatment plan	131

000

201N 17T QUESTION PAPERS ON TELEGRAM

> SPARCH YIT QUESTION PAPERS ON TELEGRAM YO JOIN