1. Язык, описывающийся следующей атрибутной грамматикой:

 $S \rightarrow AT$; T.rng > A.iter

 $A \rightarrow aA$; $A_0.iter := A_1.iter + 1$

 $A \rightarrow \varepsilon$; A.iter := 0

 $T \rightarrow TcT$; $T_0.rng := max(T_1.rng, T_2.rng)$

 $T \rightarrow K$; T.rng := K.rng

 $K \rightarrow \alpha K$; $K_0.rng := K_1.rng + 1$

 $K \rightarrow bK$; $K_0.rng := 0$ $K \rightarrow \varepsilon$; K.rng := 0

- 2. Язык $\{wcvw_{pref}zw_{suff} \mid w,z \in \{a,b\}^* \& v \in \{a,b,c\}^*\}$. Здесь w_{pref} непустой префикс слова w; w_{suff} непустой суффикс слова w.
- 3. Язык, описывающийся следующей атрибутной грамматикой:

 $S \rightarrow SbS$; $S_0.iter := 2 \cdot S_1.iter$, $S_1.iter == S_2.iter$

 $S \rightarrow a$; S.iter := 1

4. Язык SRS с правилами $a \to bab$, $ba \to ab$ над базисным словом aa (единственным).

Решение задачи IV

 \mathscr{L} — язык SRS с правилами $\mathfrak{a} \to \mathfrak{bab}, \mathfrak{ba} \to \mathfrak{ab}$ над базисным словом \mathfrak{aa} (единственным).

Правила переписывания показывают, что во-первых, буквы α в словах языка всегда ровно две, а во-вторых, относительно слов, порождаемых по первому правилу $b^n a b^{n+m} a b^m$ они могут перемещаться только влево, причём как угодно далеко. При этом, если мы сначала применим первое правило, а потом второе, то получим композицию $\alpha \to abb$, а если мы сначала применим второе, а потом первое — то $ba \to babb$, то есть правила перестановочны, коль скоро есть хотя бы одна буква b слева от a. Значит, чтобы получить произвольное слово языка, можно сначала максимально применить первое правило, а потом второе.

Обратим также внимание, что если какое-то слово получилось из второй слева буквы а применением k правил 1, то мы могли бы получить его, применив те же k правил 1 к самой левой букве а, а затем к ней же — k правил 2, и ко второй букве а — k правил 2. Пусть область, порождаемая правилами

 $a \to bab$, обозначена красным для первой буквы a и синим — для второй. Тогда ab^kab^k — то же, что $b^kab^kab^kab^kab^k$. Поэтому можно принять допущение, что правила $a \to bab$ применяются только к самой левой букве a.

Таким образом, можно установить, что слова языка $\mathscr L$ имеют вид $b^{n_1}ab^{n_2}ab^{n_3}$, где $n_2+n_3\geqslant n_1$ и сумма $n_1+n_2+n_3$ чётна. Это детерминированный контекстно-свободный (но не регулярный) язык, DPDA для которого выглядит так:

Язык не является LL(k), в чём можно убедиться, рассмотрев слова $b^{n+k}ab^{n+k}a$ и $b^{n+k}aab^{n+k}$ с предполагаемым lookahead для грамматики в ГНФ, равным k, и наблюдаемым префиксом b^n . В силу бесконечности классов по Майхиллу—Нероуду в языке b^* относительно \mathcal{L} , стек на этом префиксе разрастается как угодно сильно, в частности, можно взять такое n, чтобы он уж точно содержал k+3 элемента. Тогда в слове $b^{n+k}aab^{n+k}$ последний элемент стека заведомо разворачивается в $C_1=b^s$ (т.к. префикс b^ka^2 точно прочитан раньше: каждый из k+2 первых элементов стека считал как минимум по одной букве). В слове $b^{n+k}ab^{n+k}a$ последний элемент стека точно разворачивается в $C_2=b^ta$. Этот последний элемент один и тот же, и lookahead у него в обоих случаях равен концу строки. Подменой C_1 на C_2 (или наоборот) получаем слово не из \mathcal{L} .

Язык не является VPL-языком. По условию, в VPL-языке все терминалы строго делятся на непересекающиеся категории: вызывающие, возвращаю-

щие и внутренние. Если назначить b вызывающим терминалом, то стек (почти) всегда будет только наполняться; если назначить b читающим — стек (почти) всегда будет пуст. И тот, и другой случай приводят к тому, что количество букв b слева и справа от первой буквы а сравнить невозможно. «Почти» здесь — указание, что в принципе ничего не мешает назначить букву а читающей или вызывающей, однако поскольку их только две в слове, они изменят поведение стека лишь конечным образом.

Решение задачи III

Посмотрим на несколько первых итераций, порождающих слова языка \mathcal{L} :

```
S \rightarrow SbS \quad ; \quad S_0.iter := 2 \cdot S_1.iter, \\ S_1.iter == S_2.iter
```

 $\mathsf{S} o \mathsf{a}$; $\mathsf{S}.\mathsf{iter} := 1$

Слово ава семантическому критерию удовлетворяет, т.к. оно получается разбором двух нетерминалов с атрибутом iter =1. При этом для ава соответствующий атрибут равен 2.

Из этих базовых слов мы не можем получить слово ababa, т.к. атрибуты его левых и правых частей не равны. То же самое верно и про ababa. Слово abababa построить можно, и его атрибут iter будет равен 4.

Мы видим, что на каждой новой итерации мы получаем возможность скомбинировать только два слова с предыдущей итерации, при этом атрибут iter полученного слова будет не равен атрибутам iter никаких ранее построенных слов. Если на i-й итерации было построено слово $(ab)^k a$, то на i+1-й итерации будет построено слово $(ab)^k ab(ab)^k a=(ab)^{2k+1}a$. Отсюда следует, что множество слов языка в свёрточной форме выглядит так: $\{(ab)^{2^i-1}a\}$.

Проще всего обосновать не КС-свойство для данного языка с помощью теоремы Париха. Действительно, кратности букв b (впрочем, как и α) в словах языка описываются экспоненциально растущей функцией, которая не может быть представлена как объединение линейных. Доказательство не КС-свойства языка \mathcal{L} с помощью леммы о накачке предоставляется читателю.

Построим backref-регулярку для данного языка, пользуясь наблюдением, что $2^n-1=1+2+2^2+\cdots+2^{n-1}$.

$$\alpha([_1b\alpha]_1([_2x_1x_1]_2[_1x_2x_2]_1)^*[_2x_1x_1]_2?)?$$

Заметим, что эту backref-регулярку можно преобразовать в детерминированный MFA. Единственной проблемой, которая в ней может возникнуть, является переход от итерации Клини к последнему чтению x_1x_1 , который решается тем, что промежуточное состояние внутри итерации перед чтением $[{}_1x_2x_2]_1$ нужно сделать финальным.

Решение задачи II

$$\mathcal{L} = \{wcvw_{pref}zw_{suff} \mid w, z \in \{a, b\}^* \& v \in \{a, b, c\}^*\}$$

Можно заметить, что для любого слова в \mathscr{L} при рассмотрении $w_{\text{pref}} = s_{\text{fst}} w'_{\text{pref}}$ и $w_{\text{suff}} = w'_{\text{suff}} s_{\text{last}}$, где s_{fst} и s_{last} — первая и последняя буквы соответственно, получается слово вида $w\text{cvs}_{\text{fst}} w'_{\text{pref}} z w'_{\text{suff}} s_{\text{last}}$, в котором можно положить $z' = w'_{\text{pref}} z w'_{\text{suff}}$, а новыми префиксом и суффиксом — только первую и последнюю буквы. И это слово также принадлежит \mathscr{L} , однако его структура подходит под большее число случаев w, чем исходная. Поэтому язык \mathscr{L} по факту представляет собой следующий:

$$\mathscr{L} = \{s_{fst}ws_{last}cvs_{fst}zs_{last} \mid s_{fst}ws_{last}, z \in \{a,b\}^* \ \& \ v \in \{a,b,c\}^*\}$$

Поскольку w, v, z здесь можно заменить регулярками $(a|b)^*$ и $(a|b|c)^*$, то данный язык регулярен и является объединением следующих языков:

- ac(a|b|c)*a(a|b)*a
- bc(a|b|c)*b(a|b)*b
- $a(a|b)^*ac(a|b|c)^*a(a|b)^*a$
- a(a|b)*bc(a|b|c)*a(a|b)*b

- b(a|b)*ac(a|b|c)*b(a|b)*a
- b(a|b)*bc(a|b|c)*b(a|b)*b

Префикс-свойство для него не выполняется, потому что внутри подвыражения $(a|b|c)^*$ или последнего подвыражения $(a|b)^*$ может встретиться повтор последующего суффикса. В качестве контрпримера, подтверждающего это, достаточно взять слова аасаа и слово аасааа, принадлежащие \mathscr{L} .

Всякий регулярный язык является LL(1). Соответствующую грамматику можно построить, тупо взяв ДКА для него и преобразовав его в праволинейную грамматику с эпсилон-правилами для самой последней буквы (иначе будет LL(1)-конфликт; нигде, кроме как с финальными состояниями, конфликта быть не может в силу того, что автомат детерминирован).

Решение задачи І

Сначала посмотрим на атрибутную грамматику.

 $S \rightarrow AT$; T.rng > A.iter

 $A \rightarrow aA$; A_0 .iter := A_1 .iter + 1

 $A \rightarrow \epsilon$; A.iter := 0

 $T \rightarrow TcT \quad ; \quad T_0.rng := max(T_1.rng, T_2.rng)$

 $T \rightarrow K$; T.rng := K.rng

 $\mathsf{K} \to \mathfrak{a} \mathsf{K} \quad \text{;} \quad \mathsf{K}_0.\mathsf{rn} g := \mathsf{K}_1.\mathsf{rn} g + 1$

 $\begin{array}{lll} \mathsf{K} \to \mathsf{b} \mathsf{K} & ; & \mathsf{K}_0.\mathsf{rng} := 0 \\ \mathsf{K} \to \varepsilon & ; & \mathsf{K}.\mathsf{rng} := 0 \end{array}$

Все атрибуты синтетические, кроме того, язык K явно регулярен, и атрибут rng в нём изменяется, только пока в префиксе встречаются исключительно буквы a. То есть если $K \to a^n(b(a|b)^*)$?, то K.rng = n.

Теперь посмотрим на язык Т. Заметим, что его можно переписать в форме $(Kc)^*K$, устранив левую рекурсию (поскольку язык K не содержит букв c, а разделители между K-развёртками не содержат α и b, то можно K представить единственным токеном и далее, например, применить метод Блюма–Коха). При этом семантическое свойство будет выглядеть так: $T.rng = m\alpha x(K.rng)$.

Осталось разобраться с атрибутом A. Здесь, очевидно, если $A \to a^m$, то A.iter = m. Но именно в случае A есть неоднозначность границы разбора: если $S \to AKcT$, причём $K \to a^n(b(a|b)^*)$?, $A \to a^m$, то мы можем сделать

какие угодно разборы префикса \mathfrak{a}^{n+m} начиная от $K \to \mathfrak{a}^{n+m}(b(\mathfrak{a}|b)^*)?$, $A \to \varepsilon$ и кончая $K \to (b(\mathfrak{a}|b)^*)?$, $A \to \mathfrak{a}^{n+m}$. С точки зрения языка, наиболее выгодно положить $K \to \mathfrak{a}^{n+m}(b(\mathfrak{a}|b)^*)?$, $A \to \varepsilon$ — это даст возможность породить наиболее широкий класс слов.

Таким образом, условие на атрибуты вырождается в T.rng > 0, а грамматика для данного языка может быть преобразована в следующую форму:

```
\begin{array}{lll} S \rightarrow T & ; & T.rng > 0 \\ T \rightarrow KcT & ; & T_0.rng := max(K.rng, T_1.rng) \\ T \rightarrow K & ; & T.rng := K.rng \\ K \rightarrow \alpha K & ; & K_0.rng := K_1.rng + 1 \\ K \rightarrow bK & ; & K_0.rng := 0 \\ K \rightarrow \epsilon & ; & K.rng := 0 \end{array}
```

Эта грамматика определяет регулярный язык $((a|b)^*c)^*a^+(a|b)^*(c(a|b)^*)$.

Если бы условие на атрибуты в корне было T.rng < A.iter, тогда наиболее выгодное с точки зрения языка решение по неоднозначности было бы $K \to (b(a|b)^*)$?, $A \to a^{n+m}$. То есть требовалось бы сравнить по длине максимальные подстроки из букв а в префиксах, идущих сразу после буквы с, с префиксом a^{n+m} (и если ни одной буквы с в слове нет, то это условие тривиально выполняется, если только в начале слова есть хотя бы одна буква а). Будем рассматривать только нетривиальную ситуацию — буквы с присутствуют. Упрощенная атрибутная грамматика станет такая:

```
S 	oup ABcT ; T.rng < A.iter ; A 	oup aA ; A_0.iter := A_1.iter + 1 ; A 	oup \epsilon ; A.iter := 0 ; A.iter := 0 ; T 	oup KcT ; T_0.rng := max(T_1.rng, T_2.rng) ; T 	oup K ; T.rng := K.rng ; K 	oup aK ; K_0.rng := K_1.rng + 1 ; K 	oup B ; K.rng := 0 B 	oup b(a|b)^* \mid \epsilon ; атрибутов нет
```

В свёрточной форме язык переписывается как $\{a^n(b(a|b)^*)?(ca^i(b(a|b)^*)?)^+ \mid \forall i(n>i)\}.$

Похоже, что есть более чем двойственная взаимосвязь между блоками a^i (т.к. каждый из них нужно сравнивать с самым первым, что означало бы, что из первого блока нужно читать в стек несколько раз). Попробуем опровергнуть КС-свойство для полученного языка путём лёммы о накачке. Для этого сначала пересечём наш язык с $a^+ca^+ca^+$, чтобы избавиться от лишних подстрок, определяемых конечноавтоматным поведением, и от накачек, наращивающих число К-фрагментов.

Пусть р — длина накачки. Рассмотрим слово $\mathfrak{a}^{p+1} c \mathfrak{a}^p c \mathfrak{a}^p$. Отдельно фрагмент \mathfrak{a}^{p+1} накачивать мы не можем — отрицательная накачка сразу же выведет из языка. Накачивать его вместе с фрагментом \mathfrak{a}^p тоже не получится — отрицательная накачка даст слово, в котором первый фрагмент не больше по длине, чем фрагмент \mathfrak{a}^p . Однако накачивать только $\mathfrak{a}^p c \mathfrak{a}^p$ (в любых вариациях) тоже нельзя — это сразу же приведёт к выходу из языка при повторной положительной накачке.

Можно заметить, что язык конъюнктивен. Действительно, для крайней пары нетерминалов A и K можно КС-свободно описать слова вида

$$a^{n+m+1}(b(a|b)^*|\epsilon)c(a|b|c)^*ca^n(b(a|b)^*|\epsilon)$$
 Например, такой грамматикой:
$$S' \to S'a \mid S'b \mid Cb \mid C$$

$$C \to aCa \mid aAc \mid aAcWc$$

$$A \to aA \mid bW \mid \epsilon$$

$$W \to (a|b|c)W \mid \epsilon$$
 Конъюнктивная грамматика готова:
$$S \to S' \& ScK$$

$$S \to aK$$

$$K \to (a|b)K \mid \epsilon$$

Заметим, что этот язык — не DMFA. Используем замкнутость DMFA относительно пересечения с регулярными языками и пересечём наш язык с $\alpha^+ c \alpha^+$. Получим язык слов вида $\alpha^{n+m} c \alpha^n$. Его префиксы α^* определяют бесконечное число классов эквивалентности по Майхиллу–Нероуду, поэтому для них можно применить JL (то есть положить ν_n подсловом префикса α^+). Положим $\nu_n = \alpha^n$. Для p_n есть два варианта: $p_n = \alpha^{n+k}$ и $p_n = \alpha^{n+k} c \alpha^i$, где i < 2n+k. Существуют такие z_i , что слова $p_n \nu_n z_i$ входят в язык, а именно: $z_i = c$ в первом случае и $z_i = a$ во втором случае. Однако слова $\alpha^{n+k} c \alpha^i a$ также входят в язык, а их суффиксы (после p_n) не начинаются с ν_n . Поэтому ни с какой позиции слова запомненный префикс ν_n детерминированно прочитано быть не может.

1 Дорешивание задачи 3 из варианта 22

Язык атрибутной грамматики:

 $[S] \rightarrow [Pred]$; ; $[Pred] \rightarrow [Val] [Eypr]$; Val

 $[Pred] \rightarrow = [Val][Expr]$; Val.val == Expr.val

$$\begin{split} [\mathsf{Expr}] &\to [\mathsf{Op}].[\mathsf{Expr}] & ; \quad \mathsf{Expr}_0.\nu al := (\mathsf{Op}.\mathsf{fun}) \; (\mathsf{Expr}_1.\nu al) \\ [\mathsf{Expr}] &\to [\mathsf{Op}]_[\mathsf{Val}] & ; \quad \mathsf{Expr}.\nu al := (\mathsf{Op}.\mathsf{fun}) \; (\mathsf{Val}.\nu al) \end{split}$$

 $\begin{array}{ll} [\mathsf{Op}] \to \mathsf{Inc} & ; & \mathsf{Op.fun} := (\lambda x \to x + 1) \\ [\mathsf{Op}] \to \mathsf{DoubleDec} & ; & \mathsf{Op.fun} := (\lambda x \to x - 2) \end{array}$

 $[Val] \rightarrow 1$; Val.val := 1

 $[Val] \rightarrow 1[Val]$; $Val_0.val := (Val_1.val) + 1$

Далее сокращаем терм Inc до (+1), DoubleDec до (-2) (по условию, эти термы можно считать входными символами).

Мы уже выяснили, что это детерминированный КС-язык, и построили для него PDA^1 .

Возникает вопрос, можно ли обойтись без ε -переходов. Очевидно, без последнего можно: достаточно добавить стековый символ «Р перед дном» P_0 и снимать последнюю единицу именно по нему. При этом мы даже сэкономим одно состояние: теперь тот факт, что нужно прочитать в конце хотя бы одну единицу, контролируется последним снятым стековым символом.

Сложнее с ε -переходами из q_6 . Они свидетельствуют, что необходимо сбрасывать по два стековых символа при чтении (-2) с ленты. А сбросить сразу несколько символов за один шаг мы не можем по определению. Остаётся

 $^{^1}$ Небольшая разница состоит в том, что наш PDA не обязывает читать с ленты хотя бы одну операцию, но если наложить это требование, то все общие конструкции останутся теми же, лишь с той разницей, что автоматы станут на одно состояние больше. То же относится к LL-свойству ниже: нужно будет увеличить размер предполагаемого стека ещё на 1 и считывать в первом слове префикс не 1^k_1 , а $1^k_(+1)_1$

ввести символы M_2 , соответствующие парным M — и сбрасывать с ленты уже именно их. При этом, если на вершине стека стоит M, а не M_2 , и читается (-2), нужно перейти в состояние, в котором мы удерживаем долг в один символ M (или избыток в один P). И компенсировать этот долг тогда, когда с ленты перестанут сниматься M_2 . При этом возможны следующие случаи:

- если встретился символ (+1), тогда со стеком ничего не происходит (он компенсирует недостающий M), и мы возвращаемся в состояние q_5 ;
- если встретился символ (-2), тогда мы выходим в положительную область (у нас один символ Р подразумевается), и должны положить в стек два обычных Р (за прочитанный (-2)) и под ними Р₀ (тот, который неявно считался в состоянии q_6);
- если встретился символ _ (а такое может быть, ведь мы неявно можем находиться и в области положительного счёта) значит, у нас ровно одна единица в долгу, и в стек передаём только P₀, при этом переходим в состояние подсчёта единиц (q₃).

Нам удалось построить Real-Time DPDA, значит, и язык — real-time. Слияние нескольких снимаемых подряд стековых символов и введение символа, находящегося непосредственно перед дном — довольно типичные приёмы построения таких автоматов.

А вот LL-свойство можно опровергнуть. Для этого имеет смысл заметить сходство с известным не-LL язык $\{a^nb^n\}\cup\{a^nc^n\}$. На основе этого сходства строим слова для подмены:

- $\omega_1 = (=1^{n+1}1^k \underline{1}^{n+k})$
- $\omega_2 = (=1^{n+1}1^k_{-}(+1)^{n+k}_{-}1)$

Здесь $x=1^{n+1}$, общий lookahead — 1^k . Поскольку префиксы 1^n определяют бесконечное число классов эквивалентности, стек должен неограниченно разрастись на них. Пусть он содержит хотя бы k+6 символов. Инфикс 1^k __1 в первом слове мы прочитаем, использовав, самое большее, k+3 символа. Суффикс _1 во втором слове мы прочитаем, использовав, самое большее, 2 стековых символа. Останется ещё хотя бы один, который читается в ω_1 точно после чтения с ленты хотя бы одной единицы. Он раскрывается в ω_2 в строку вида $(+1)^i$, а в ω_1 — в 1^j . Если мы подменим 1^j на $(+1)^i$ в ω_1 , то получим слово вида = $_1^{n+k+1}$ __ $_1^{i_1}(+1)^j 1^{i_2}$, а такие слова не входят в язык задачи. Таким образом, рассматриваемый язык — не LL.