Luis Gascon, Ethan Webb, Femi Dosumu COSC 336

February 26, 2023

Assignment 2

Exercise 1

(a) Find a Θ evaluation for the function $(4n+1)8^{\log{(n^2)}}$.

 $\Theta(n^7)$

(b) Give an example of two functions $t_1(n)$ and $t_2(n)$ that satisfy the relations:

$$t_1(n) = \Theta(n^2), t_2(n) = \Theta(n^2) \text{ and } t_1(n) - t_2(n) = o(n^2).$$

$$t_1(n) = 3n^2 + 3n$$

$$t_2(n) = 3n^2 - 2$$

$$3n^2 - 3n^2 + 3n - 2$$

$$3n - 2$$

(c) Give an example of a function $t_1(n)$ such that $t_1(n) = \Theta(t_1(2n))$.

$$t_1(n) = n^2 + n - 10$$

$$t_1(2n) = 2n^2 + 2n - 10$$

$$t_1(2n) = \Theta(t_1(2n))$$

(d) Give an example of a function $t_2(n)$ such that $t_2(n) = o(t_2(2n))$.

$$t_2(n) = n^n$$

$$t_2(2n) = 2n^{2n}$$

$$2n^{2n} > n^n$$

Exercise 2 Indicate whether A is O, o, Ω , ω , or Θ of B. Answer should be "yes" or "no" in each box. Assume that $k \geq 1$, $\varepsilon > 1$, and c > 1 are constants.

A	В	O	О	Ω	ω	Θ
$\log^k(n)$	$n^{arepsilon}$	yes	yes	no	no	no
n^k	c^n	no	no	yes	yes	no
2^n	$2^{n/2}$	no	no	yes	yes	no
$n^{\log c}$	$c^{\log n}$	yes	no	yes	no	yes
$\log n!$	$\log n^n$	yes	no	yes	no	yes

Exercise 3

For each of the following program fragments, give a $\Theta(\cdot)$ estimation of the running time as a function of n.

```
(a) sum = 0;
   for (int i = 0; i < n * n; i++) {
       for(int j =0; j < n/2; j++)
           sum++;
   }
(b) sum = 0;
   for (int i = 0; i < n; i++) {
       sum++;}
   for(int j = 0; j < n/2; j++){
       sum++;}
(c) sum = 0;
   for (int i = 0; i < n * n; i++) {
       for(int j = 0; j < n * n; j++)
           sum++
   }
(d) sum = 0;
   for (int i = 1; i < n; i = 2*i)
           sum++
(e) sum = 0;
   for (int i = 0; i < n; i++) {
       for(int j = 1; j < n * n; j = 2*j)
           sum++
   }
```

- (a) $\Theta(n^2)$
- (b) $\Theta(n)$
- (c) $\Theta(n^2)$
- (d) $\Theta(\log n)$
- (e) $\Theta(n \log n)$

Exercise 4

(a) Compute the sum $S_1 = 500 + 501 + 502 + 503 + ... + 999$ (the sum of all integers from 500 to 999).

$$N = 500$$

$$S_1 = \frac{N(500 + 999)}{2}$$

$$= 374,750$$

(b) Compute the sum $S_2 = 1 + 3 + 5 + \ldots + 999$ (the sum of all odd integers from 1 to 999).

$$S_2 = \frac{500(1+999)}{2}$$
$$= 250,000$$

(c) A group of 30 persons need to form a committee of 3 person. How many such committees are possible?

$$\binom{30}{3} = \frac{30!}{(30-3)! \cdot 3!}$$
$$= 4,060$$

4,060 committees are possible.

(d) Let C_n be the number of committees of 4 persons selected from a group of n persons. Is the estimation $C_n = o(n^3)$ correct? Justify your answer.

$$\binom{n}{4} = \frac{n!}{(n-4)! \cdot 4!}$$

$$= \frac{n(n-1)(n-2)(n-3)(n-4)(n-5)\dots}{(n-4)(n-5)\dots \cdot 4!}$$

$$= \frac{n(n-1)(n-2)(n-3)}{4!}$$

$$= \Theta(n^4)$$

The estimation of $C_n = o(n^3)$ is incorrect since $n^4 > n^3$.

Exercise 5

Find a $\Theta(\cdot)$ evaluation for the sum

$$S = 1\sqrt{1} + 2\sqrt{2} + \ldots + n\sqrt{n}.$$

Find a function f such that $S = \Theta(f(n))$

The summation is monotonically increasing, so:

$$\int_0^n f(x) \, dx \le S_n \le \int_1^{n+1} f(x) \, dx$$

Lower bound

Upper bound

$$\int_0^n x\sqrt{x} \, dx = \int_0^n x^{3/2} \, dx$$

$$\int_1^{n+1} x\sqrt{x} \, dx = \frac{2}{5}x^{5/2} \Big|_1^{n+1}$$

$$= \frac{x^{(3/2)+1}}{3/2+1}$$

$$= \frac{2}{5}(n+1)^{5/2} - \frac{2}{5}(1)^{5/2}$$

$$= \frac{2}{5}x^{5/2} \Big|_0^n$$

$$= O(n^{5/2})$$

$$= \Theta(n^{5/2})$$