

Experimental Methods Lecture 6

October 1st, 2020

S. Vitale

Discrete Fourier Transform

- N samples of s(t), sampling time T, signal duration \sim NT
- The transform and its inverse

$$s_k = \sum_{n=0}^{N-1} s_n e^{-i\frac{2\pi}{N}nk}$$
 $s_n = \frac{1}{N} \sum_{k=0}^{N-1} s_k e^{+i\frac{2\pi}{N}nk}$

Symmetry

$$s_{N-k} = s_{-k} = s_k^*$$

 $s_{N-k} = s_{-k} = s_k^*$ • $\simeq \frac{N}{2}$ complex coefficient, N real coefficients

S. Vitale

Discrete Fourier Transform

Relation to continuous transform

$$s_{k} = \sum_{n=0}^{N-1} s_{n} e^{-i\frac{2\pi}{N}nk} = \sum_{n=-\infty}^{\infty} (\Theta(n) - \Theta(n-N+1)) s_{n} e^{-i\frac{2\pi}{N}nk}$$
$$s_{k} = s'_{d} \left(\phi = k\frac{2\pi}{N}\right)$$

• s'_d discrete-time Fourier transform of

$$s_n' = (\Theta(n) - \Theta(n - N + 1))s_n$$

• But

$$s'_d(\phi) = \frac{1}{T} \sum_{k=-\infty}^{\infty} s'_c \left(\frac{\phi}{T} + n \frac{2\pi}{T} \right)$$

• s'_c continuous Fourier Transform of

$$s'(t) = s(t)(\Theta(t) - \Theta(t - NT))$$

Thus

$$s_k = \frac{1}{T} \sum_{k=-\infty}^{\infty} s_c' \left(k \frac{2\pi}{NT} + n \frac{2\pi}{T} \right)$$

Discrete Fourier Transform

$$s_k = \frac{1}{T} \sum_{k=-\infty}^{\infty} s_c' \left(k \frac{2\pi}{NT} + n \frac{2\pi}{T} \right)$$

Notice from

$$s'(t) = s(t)(\Theta(t) - \Theta(t - NT))$$

Using convolution

$$s'(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} s(\omega') NT e^{-\frac{i(\omega - \omega')NT}{2}} Sinc\left(\frac{(\omega - \omega')NT}{2}\right) d\omega'$$

- If s(t) is long duration, $\Delta T > NT$, it is narrow band, $\Delta \omega \simeq 1/\Delta T$.
- Extrapolating:

$$s'(\omega) \simeq \frac{1}{2\pi} s(0) \Delta \omega NT e^{-\frac{i\omega NT}{2}} Sinc\left(\frac{\omega T}{2}\right)$$

- Which is not band limited
- Aliasing may come from truncation. Signals should be truncated after they have decayed to zero

Convolution

• Convolution of infinite length series.

$$z_n = \sum_{k=-\infty}^{\infty} y_{n-k} x_k$$

• Reverse y, shift it by n and do the "scalar product" with x

n=-3	Х ₅	X ₄	х ₃	x ₂	x ₁	Χ _O	X_{-1}	X ₋₂	X ₋₃	X_{-4}	X ₋₅
]	y ₋₈	y _7	У_6	y ₋₅	y ₋₄	У-3	y ₋₂	y ₋₁	Уο	У1	У2
n=-2	Х ₅	X ₄	Х3	X ₂	X ₁	Χ ₀	X_{-1}	X ₋₂	X ₋₃	X_{-4}	X ₋₅
]	y _7	y ₋₆	y ₋₅	y ₋₄	y ₋₃	y_{-2}	y ₋₁	Уο	У1	У2	У3
n=-1	Х ₅	X ₄	X ₃	X ₂	X ₁	Χ ₀	X_{-1}	X_{-2}	X ₋₃	X_{-4}	X ₋₅
]	y ₋₆	y ₋₅	y ₋₄	y ₋₃	y_{-2}	y_{-1}	Уο	У1	У2	У3	У4
n=0	Х ₅	X ₄	X ₃	X ₂	X ₁	Χ ₀	X_{-1}	X_{-2}	X ₋₃	X_{-4}	X ₋₅
]	y _5	y ₋₄	У-3	y ₋₂	y ₋₁	Уο	У1	У2	У3	У4	y ₅
n=1	Х ₅	X ₄	Х3	X ₂	X ₁	Χ ₀	X_{-1}	X ₋₂	X_3	X_{-4}	X ₋₅
	y _4	У-3	y ₋₂	y ₋₁	Уο	У1	У2	У3	У ₄	У ₅	У ₆
n=2	Х ₅	X ₄	Х3	X ₂	x ₁	Χ ₀	X_{-1}	X ₋₂	X_3	X_{-4}	X ₋₅
	У-3	y ₋₂	y ₋₁	У₀	У1	У2	Уз	У4	У ₅	У ₆	У7
n=3	Х ₅	X ₄	х ₃	x ₂	x ₁	×ο	X ₋₁	X ₋₂	X_3	X ₋₄	X ₋₅
	y ₋₂	y ₋₁	У₀	У1	У2	У3	У4	У ₅	У ₆	У7	У8

Convolution

- Convolution
 of two series
 of finite and
 different
 length
- No element is defined

?	?	X_3	X ₋₂	X_{-1}	Χ _O	X ₁	x ₂	Х3	?	?	n=-3
У2	У ₁	У₀	y ₋₁	y ₋₂	У-3	y ₋₄	?	?	?	?	
?	?	X_3	X ₋₂	X_{-1}	Χ ₀	X ₁	X ₂	Х3	?	?	n=-2
У3	У2	У1	Уο	y ₋₁	y ₋₂	У-3	y ₋₄	?	?	?	
?	?	X_3	X ₋₂	X_{-1}	Χ ₀	X ₁	X ₂	Х3	?	?	n=-1
У4	у ₃	У2	У1	Уο	y ₋₁	y ₋₂	У-3	y _4	?	?	
?	?	X_3	X ₋₂	X_{-1}	Χ ₀	x ₁	X ₂	Х3	?	?	n=0
?	У ₄	У3	У2	У1	У₀	y ₋₁	y ₋₂	У-3	y ₋₄	?	
?	?	X ₋₃	X ₋₂	X_{-1}	Χ ₀	X ₁	X ₂	Х3	?	?	n=1
?	?	У ₄	У3	У2	У1	Уο	y ₋₁	y ₋₂	У-3	y ₋₄	
?	?	X_3	X ₋₂	X_{-1}	Χ ₀	x ₁	X ₂	Х3	?	?	n=2
?	?	?	У4	Уз	У2	У1	У₀	y ₋₁	y ₋₂	У-3	
?	?	X_3	X ₋₂	X_{-1}	Χ _O	x ₁	x ₂	Х3	?	?	n=3
?	?	?	?	У4	У3	У2	У1	У₀	y ₋₁	y ₋₂	

Convolution

- Convolution
 of two series
 of finite and
 equal length
- The case forn=0 is defined

										ı	
X_{-5}	X_{-4}	X_{-3}	X_{-2}	X_{-1}	Χ ₀	x_1	x ₂	X ₃	X ₄	X ₅	n=-3
У2	У1	Уο	y ₋₁	y ₋₂	y ₋₃	y ₋₄	y ₋₅	?	?	?	
X_{-5}	X_{-4}	X ₋₃	X ₋₂	X_{-1}	Χ ₀	X ₁	X ₂	Х3	X ₄	Х ₅	n=-2
Уз	У2	У1	У₀	y ₋₁	y ₋₂	У-3	У ₋₄	y _5	?	?	
X_{-5}	X ₋₄	X ₋₃	X ₋₂	X_{-1}	Χ ₀	X ₁	X ₂	Х3	X ₄	Х ₅	n=-1
У ₄	Уз	У2	У1	Уο	y ₋₁	y ₋₂	y ₋₃	y ₋₄	y ₋₅	?	
X_{-5}	X ₋₄	X_3	X ₋₂	X_{-1}	Χ ₀	x ₁	x ₂	Х3	X ₄	Х ₅	n=0
У ₅	У4	У3	У2	У1	У₀	y ₋₁	У ₋₂	У-3	y ₋₄	У ₋₅	
X ₋₅	X ₋₄	X_3	X ₋₂	X_{-1}	Χ ₀	x ₁	x ₂	х ₃	X ₄	Х ₅	n=1
?	y ₅	У4	У3	У2	У1	Уο	y ₋₁	y ₋₂	У-3	У ₋₄	
X ₋₅	X ₋₄	X-3	X ₋₂	X ₋₁	Χ ₀	x ₁	x ₂	х ₃	X ₄	Х ₅	n=2
?	?	У5	У4	Уз	У2	У1	У₀	y ₋₁	y ₋₂	У-3	
X ₋₅	X ₋₄	X ₋₃	X ₋₂	X ₋₁	Χ ₀	x ₁	x ₂	х ₃	X ₄	Х ₅	n=3
?	?	?	У ₅	У4	У3	У2	У1	У₀	y ₋₁	У ₋₂	

Linear convolution

- To convolute finite length series you need to pad them and make them infinite.
- Case 1: padding with zeros
- For series of equal length N, resulting series has 2N 1 meaningful elements.
- Other zeros can be ignored

_		.11'		LI		11 '	V	IU	LI	<i>)</i> 11						
	0	0	0	0	0	X ₋₂	X ₋₁	Χ ₀	x ₁	x ₂	0	0	0	0	0	n=-5
	У2	У1	У₀	У ₋₁	y ₋₂	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	X ₋₂	X_{-1}	Χ ₀	X ₁	X ₂	0	0	0	0	0	n=-4
	0	У2	У ₁	У₀	y ₋₁	y ₋₂	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	X ₋₂	X ₋₁	Χ ₀	X ₁	x ₂	0	0	0	0	0	n=-3
	0	0	У2	У1	У₀	y ₋₁	У ₋₂	0	0	0	0	0	0	0	0	
	0	0	0	0	0	X ₋₂	X ₋₁	Χ ₀	X ₁	x ₂	0	0	0	0	0	n=-2
	0	0	0	У2	У1	У₀	y ₋₁	y ₋₂	0	0	0	0	0	0	0	
	0	0	0	0	0	X ₋₂	X ₋₁	Χ ₀	X ₁	X ₂	0	0	0	0	0	n=-1
	0	0	0	0	У2	У1	У₀	y ₋₁	y ₋₂	0	0	0	0	0	0	
	0	0	0	0	0	X ₋₂	X_{-1}	Χ ₀	X ₁	X ₂	0	0	0	0	0	n=0
	0	0	0	0	0	У2	У1	У ₀	y ₋₁	y ₋₂	0	0	0	0	0	
	0	0	0	0	0	X ₋₂	X_{-1}	Χ ₀	X ₁	X ₂	0	0	0	0	0	n=1
	0	0	0	0	0	0	У2	У1	У₀	y ₋₁	y ₋₂	0	0	0	0	
	0	0	0	0	0	X ₋₂	X_{-1}	Χ ₀	X ₁	x ₂	0	0	0	0	0	n=2
	0	0	0	0	0	0	0	У2	У1	У ₀	y ₋₁	y ₋₂	0	0	0	
	0	0	0	0	0	X ₋₂	X_{-1}	Χ ₀	X ₁	X ₂	0	0	0	0	0	n=3
	0	0	0	0	0	0	0	0	У2	У1	У ₀	y ₋₁	y ₋₂	0	0	
	0	0	0	0	0	X ₋₂	X ₋₁	Χ ₀	X ₁	x ₂	0	0	0	0	0	n=4
	0	0	0	0	0	0	0	0	0	У2	У1	У ₀	У_1	y ₋₂	0	
	0	0	0	0	0	X ₋₂	X_{-1}	Χ ₀	X ₁	x ₂	0	0	0	0	0	n=5
	0	0	0	0	0	0	0	0	0	0	У2	У1	У ₀	y ₋₁	y ₋₂	

Circular convolution of equal length series

- Case 2: repeat series periodically
- Invert one of the two, shift it by n, and truncate to *N*
- Result is periodic with same period

							_						
x ₂	X ₃	Χ ₀	x_1	x ₂	X ₃	Χ ₀	X ₁	x ₂	X ₃	Χ ₀	x_1	x ₂	n=-3
У3	У2	У1	Уо	У3	У2	У1	Уо	у ₃	У2	у ₁	Уο	У3	
X ₂	X ₃	Χ ₀	X ₁	X ₂	Х3	Χ ₀	X ₁	X ₂	X ₃	Χ ₀	X ₁	X ₂	n=-2
У₀	У3	У2	У1	У₀	У3	У2	У1	У₀	У3	У2	У1	У₀	
X ₂	X ₃	Χ ₀	X ₁	X ₂	Х3	Χ ₀	X ₁	X ₂	Х3	Χ ₀	X ₁	X ₂	n=-1
У ₁	У₀	У3	У2	У1	У₀	У3	У2	У1	Уo	У3	У2	У1	
X ₂	X ₃	Χ ₀	X ₁	x ₂	Х3	Χ ₀	X ₁	X ₂	Х3	Χ ₀	X ₁	X ₂	n=0
У2	У ₁	У₀	У3	У2	У ₁	У₀	У3	У2	У1	У₀	У3	У2	
X ₂	Х3	Χ ₀	X ₁	x ₂	Х3	Χ ₀	X ₁	x ₂	Х3	Χ ₀	X ₁	x ₂	n=1
у ₃	У2	У1	Уо	У3	У2	У1	Уo	У3	У2	У ₁	Уο	У3	
X ₂	Х3	Χ ₀	X ₁	X ₂	Х3	Χ ₀	X ₁	Х ₂	Х3	Χ ₀	X ₁	x ₂	n=2
У₀	у ₃	У2	У1	Уο	У3	У2	У1	У₀	У3	У2	У1	У₀	
X ₂	X ₃	Χ ₀	X ₁	X ₂	Х3	Χ ₀	X ₁	X ₂	X ₃	Χ ₀	X ₁	X ₂	n=3
у ₁	У₀	У3	У2	У ₁	У₀	У3	У2	У1	У₀	У3	У2	У1	

10

Fourier transform of circular convolution

• A natural way of continuing y periodically: extend the Fourier antitransform to any integer:

$$y_{N+m} = \frac{1}{N} \sum_{k=0}^{N-1} y_k e^{ik\frac{2\pi}{N}(N+m)} = \frac{1}{N} \sum_{k=0}^{N-1} y_k e^{ik\frac{2\pi}{N}m} e^{ik2\pi} = y_m$$

• Then

$$z_n = \sum_{j=0}^{N-1} \left(\frac{1}{N^2} \sum_{k=0}^{N-1} y_k e^{ik\frac{2\pi}{N}(n-j)} \sum_{l=0}^{N-1} x_l e^{il\frac{2\pi}{N}j} \right)$$

That is

$$z_n = \frac{1}{N^2} \sum_{k,l=0}^{N-1} y_k x_l e^{ik\frac{2\pi}{N}n} \sum_{i=0}^{N-1} e^{ij\frac{2\pi}{N}(l-k)}$$

• But

$$\sum_{i=0}^{N-1} e^{ij\frac{2\pi}{N}(l-k)} = N\delta_{kl}$$

Fourier transform of circular convolution

• From

$$z_n = \frac{1}{N^2} \sum_{k,j=0}^{N-1} y_k x_l e^{ik\frac{2\pi}{N}n} \sum_{j=0}^{N-1} e^{ij\frac{2\pi}{N}(l-k)}$$

And

$$\sum_{i=0}^{N-1} e^{ij\frac{2\pi}{N}(l-k)} = N\delta_{kl}$$

It follows

$$z_{n} = \frac{1}{N} \sum_{k=0}^{N-1} y_{k} x_{k} e^{ik\frac{2\pi}{N}n}$$

• Going back to the definition of discrete Fourier transform we get

$$z_k = y_k x_k$$

• Which is the convolution theorem for discrete Fourier transforms

Examples with random numbers

• Two series of 10⁴ random Gaussian numbers with zero mean and unit variance

Can we use DFT to calculate true convolutions?

• For finite duration signal yes, provided that they go to zero fast enough at both ends

AA 2019- X

Can we use DFT to calculate true convolutions?

• For finite duration signal yes, provided that they go to zero fast enough at both ends

AA 2019- X

Can we use DFT to calculate true convolutions?

• As I used signals with $-\frac{N}{2} \le n \le \frac{N}{2}$ results must be appropriately shifted to give true circular convolution

AA 2019-

Can we use DFT to calculate true convolutions?"

• A counterexample

AA 2019- X

Circular convolution: frequency domain

$$\hat{s}_{k} = \sum_{n=0}^{N-1} s_{n} e^{-i\frac{2\pi}{N}kn}$$

• Is already periodic. The padding takes place the same way

$$\hat{s}_{k+N} = \sum_{n=0}^{N-1} s_n e^{-i\frac{2\pi}{N}(k+N)n} = \sum_{n=0}^{N-1} s_n e^{-i\frac{2\pi}{N}kn} e^{-i\frac{2\pi}{N}Nn} = \hat{s}_k$$

• If

$$\hat{q}_k = \frac{1}{N} \sum_{j=0}^{N-1} \hat{p}_j \hat{s}_{k-j} \quad 0 \le j \le N-1$$

• Then

$$q_n = p_n s_n$$

• Notice the factor 1/N in the definition of the convolution

Practical advice

- You may use FFT to numerically estimate Fourier transform of continuous signals but:
 - Signal must be sampled densely enough
 - Signal must have been truncated appropriately
 - If you want to use convolution, both signals (and/or Fourier transforms) must decay fast enough that they are naturally padded with zeros at both ends
 - In some applications signals are multiplied by "spectral windows" that taper their ends to get the previous condition. To be discussed later

What should you know about sampling

- Sampling theorem
- The Nyquist rule
- Discrete Fourier Transform
- How to use a FFT on a computer
- Circular convolution and effect of truncation

Exercise

1. Calculate the Continuous Fourier Transform of

$$e^{-\frac{t^2}{2}}Sin(8\pi t)$$
 All units in SI

- 2. Calculate the FFT of the curve above sampled at the sampling frequency of 20 Hz, and truncated at $|t| \le 10$ s
- 3. Calculate the FFT of the two following functions

$$e^{-\frac{t^2}{2}}$$
 $\sin(8\pi t)$

sampled at the sampling frequency of 20 Hz, and truncated at $|t| \le 10 \text{ s}$

4. Calculate their circular convolution and compare with 2. above

A physical instrument as a "system"

• A system transforms an input signal into an output one

$$i(t) \xrightarrow{Input} System \xrightarrow{Output} o(t)$$

- The output at any time may depend on the input at all times
- A system is then an operator or a functional in the vector space of signals

 $o(t) = \Im[i(t)]$

• A discrete system (in data analysis or calculations) converts an input data series into an output one. The output series is in principle a function of all samples of the input series

$$o_n = f[.....i_{-2}, i_{-1}, i_0, i_1, i_2,....]$$

Mathematical examples

System regulated by a linear differential equation: Newton law

$$m\ddot{x} = F_x$$

- Input: force $F_x(t)$
- Output: particle coordinate x(t)
- Input-output relation (particle at rest in the origin at infinite past)

$$x(t) = \int_0^\infty t' F(t - t') dt'$$

Non linear system: Ginzburg Landau Equation for superconducting current j

$$\alpha\psi + \beta|\psi|^2\psi + \frac{1}{2m}\left(-i\hbar\nabla - 2e\mathbf{A}\right)^2\psi = 0$$

$$\mathbf{j} = \frac{2e}{m}\mathrm{Re}\left\{\psi^*\left(-i\hbar\nabla - 2e\mathbf{A}\right)\psi\right\}$$
 – Input: vector potential \mathbf{A} (better: its applied part)

- Output: current density j

AA 2019-2020

Special properties

Causality

• For physical systems the *principle of causality* holds:

$$o(t) = \Im \left[i(t') \right] \quad t \ge t'$$

For arbitrary "mathematical systems", encountered in calculations or in data analysis, causality is not required

Linearity

• A system is linear if:

$$\Im\left[a_1i_1(t) + a_2i_2(t)\right] = a_1\Im\left[i_1(t)\right] + a_2\Im\left[i_2(t)\right]$$

i.e. if it obeys the principle of superposition

• For discrete systems, linearity implies:

$$o_n = \sum_{k=-\infty}^{\infty} h_{n,k} i_k$$

with $h_{n,k}$ a numerical coefficient

Linearity and the input-output relation

• For a band-limited signal:

 $i(t) = \sum_{k=-\infty}^{\infty} i(kT) Sinc \left[\frac{\pi}{T} (t - kT) \right]$

• Linearity implies:

$$o(t) = \Im[i(t)] = \sum_{k=-\infty}^{\infty} i(kT)\Im\left[\operatorname{Sinc}\left[\frac{\pi}{T}(t-kT)\right]\right]$$

Now remember that

$$\lim_{a\to 0} \left(\frac{1}{a} \operatorname{Sinc} \left[\pi x / a \right] \right) = \delta(x)$$

• Then taking the limit of infinite fast sampling

$$\lim_{T \to 0} \left[o(t) \right] = \sum_{k = -\infty}^{\infty} i(kT) \lim_{T \to 0} \left(\frac{1}{T} \Im \left[Sinc \left[\frac{\pi}{T} (t - kT) \right] \right] \right) T = \int_{-\infty}^{\infty} i(t') h(t,t') dt'$$

- where kT \rightarrow t' and $h(t,t') = \Im[\delta(t-t')]$
- h(t,t') is called the impulse response of the system, as it is the output at time t for a δ arriving at time t'.

A central formula for linear systems

• In general

$$o(t) = \int_{-\infty}^{\infty} i(t')h(t,t')dt'$$

For causal systems

$$o(t) = \int_{-\infty}^{\infty} i(t')h(t,t')dt'$$

System may have a free evolution

• Free evolution: output for no input

$$o_n = o_n^o + \sum_{k=-\infty}^{\infty} h_{n,k} i_k \qquad o(t) = o^o(t) + \int_{-\infty}^{\infty} i(t') h(t,t') dt'$$

- o° depends on internal states of the systems (initial conditions)
- Principle of superposition holds for $o_n o_n^o$ and $o(t) o^o(t)$

An example: the calorimeter

- A body of heat capacitance C, temperature T, receiving a heat input with power W, and with a loss path to the thermostat (at T_0) of conductance κ .
- Input: heat flow. Output: temperature
- First principle of thermodynamics $C(dT/dt) = W \kappa(T T_0)$
- The derivative of T_o is zero $C \left[d(T T_o) / dt \right] = W \kappa (T T_o)$
- A change of variables and names $\Delta T T T = \tau^{-1} \frac{\kappa}{2}$

$$\Delta T = T - T_o \quad \tau^{-1} = \frac{\kappa}{C}$$

• Finally

$$d\Delta T/dt + \Delta T/\tau = W/C$$

Disclaimer

• To make things dimensionally more transparent, a better way to write the equation would have been

$$\frac{d\Delta T}{dt} + \frac{\Delta T}{\tau} = \frac{W}{\kappa} \frac{\kappa}{C} = \frac{1}{\tau} \frac{W}{\kappa} \equiv \frac{\Delta T_o}{\tau}$$

- So that input and output have the same dimensions
- The following slides suffer a bit because of the choice of using $\frac{W}{C}$ as the input, instead of $\Delta T_O = W/\kappa$

A linear system

- If C and τ are independent of ΔT the system is linear.
- Indeed, suppose that $d\Delta T_1/dt + \Delta T_1/\tau = W_1/C$
- and that

$$d\Delta T_2/dt + \Delta T_2/\tau = W_2/C$$

• Then

$$d(c_1\Delta T_1 + c_2\Delta T_2)/dt + (c_1\Delta T_1 + c_2\Delta T_2)/\tau =$$

$$= d(c_1 \Delta T_1)/dt + (c_1 \Delta T_1)/\tau + d(c_2 \Delta T_2)/dt + (c_2 \Delta T_2)/\tau =$$

$$= c_1 W_1 / C + c_2 W_2 / C$$

Input-output relations

• Let's find the input-output relation from the equation

$$d\Delta T/dt + \Delta T/\tau = W/C$$

- From calculus, in order to find the general solution for 0≤t≤∞ you need to:
 - 1. Find the general solution of associated homogeneous equation
 - 2. Add a special solution of complete equation

(Assume C and τ constant)

Input-output relations

• Homogeneous equation

 $d\Delta T/dt + \Delta T/\tau_{t} = 0$

General solution

- $\Delta T_{h}(t) = \Delta T_{o} e^{-\frac{t}{\tau}} \Theta(t)$
- ΔT_0 to be found later from initial conditions
- A well known algorithm to find a special solution of a differential equation of the nth degree:
 - Take the homogeneous solution for all initial conditions equal to 0,
 except that of order n-1 that must be set to 1

$$\Delta T_h(0) = 1 \rightarrow \Delta T_h(t) = e^{-\frac{t}{\tau}}\Theta(t)$$

- The solution is

AA 2019-2020

$$\Delta T_{nh}(t) = \int_{0}^{\infty} \frac{W(t')}{C} e^{-\frac{t-t'}{\tau}} \Theta(t-t') dt' = \int_{0}^{t} \frac{W(t')}{C} e^{-\frac{t-t'}{\tau}} dt' = \int_{0}^{t} \frac{W(t-t'')}{C} e^{-\frac{t''}{\tau}} dt''$$

Input-output relations

- Let's check that $\Delta T_{nh}(t) = \int_{0}^{t} (W(t')/C) e^{-\frac{t-t'}{\tau}} dt' = e^{-\frac{t}{\tau}} \int_{0}^{t} (W(t')/C) e^{\frac{t'}{\tau}} dt'$
- Is a solution to

Is a solution to
$$d\Delta T/dt + \Delta T/\tau = W/C$$

• Take the derivative
$$\begin{split} d\Delta T_{nh}/dt &= -\frac{1}{\tau}e^{-\frac{t}{\tau}}\int\limits_{0}^{t} \left(W(t')/C\right)\!e^{\frac{t'}{\tau}}dt' + e^{-\frac{t}{\tau}}\left(W(t)/C\right)\!e^{\frac{t}{\tau}}\\ &= -\frac{1}{\tau}\Delta T_{nh}(t) + \left(W(t)/C\right) \end{split}$$
• Then

Then

$$d\Delta T_{nh}/dt + \Delta T_{nh}/\tau = -\frac{1}{\tau}\Delta T_{nh} + (W/C) + \frac{1}{\tau}\Delta T_{nh} = W/C$$

AA 2019-2020

Impulse response and free evolution

• In summary the input-output relation

$$\Delta T(t) = \Delta T_o e^{-\frac{t}{\tau}} + \int_0^\infty \frac{W(t')}{C} e^{-\frac{t-t'}{\tau}} \Theta(t-t') dt' =$$

$$= \Delta T_o e^{-\frac{t}{\tau}} + \int_0^t \frac{W(t-t'')}{C} e^{-\frac{t''}{\tau}} \Theta(t'') dt''$$

• In the language of the previous slides the impulse response of the system is

$$h(t,t') = e^{-\frac{t-t'}{\tau}}\Theta(t-t')$$

While its free evolution is

$$\Delta T_0 e^{-\frac{t}{\tau}}$$

Notice that at t=0, only the free evolution term is different from zero

AA 2019-2020

S. Vitale