Sentiment Analysis for Financial News

Winter 2022 Tools in Data Science STAT 418

Harrison DiStefano, Jaehee Jeong, Lisa Kaunitz, Junghwan Park, David Sun

Table of Contents

01

Problem Statement

Literature Review

04

Analysis

Models & Demo

02

Methods

Tools Utilized & Our Data

05

Conclusion

Results & Future Recommendations

03

EDA

Data Exploration

Problem Statement

- There is a statistically significant association between strong media sentiment and abnormal market returns and volatility¹
- While we can not directly change or control the headlines, our goal is to
 - 1. Build a model that predicts news sentiments which may affect changes in the market.
 - 2. Implement an app that can take in a potential news headline and output the predicted sentiment.

Methods

Our Data

- 4,845 financial news headlines with predetermined sentiment labels
 - Neutral
 - Positive
 - Negative
- Imported as .csv via Kaggle

Tools Utilized

- Github
- Python (numpy, pandas, TensorFlow, Keras, matplotlib)
- R (ggplot, nlp, tm, caTools, topicmodels, fpc, RTextTools)
- Flask

Exploratory Data Analysis

Our Data at a Glance

Neutral

Positive

Negative

Exploratory Data Analysis

Composition of 10 sentiments in all headlines after tokenization looks like:

Exploratory Data Analysis

8 sentiments for the positive, negative, neutral after tokenization looks like:

Models

- Text Cleaning
 - Remove Punctuations
 - English Only
- Train & Test Datasets: 80/20
- Models:
 - LSTM (Long Short Term Memory)
 - GRU (Gated Recurrent Unit)
 - BERT (Bidirectional Encoder Representations from Transformers)
 - Sentimental Analysis
 - Fine-Tuning

Results

BERT Arch.

Models	Epoch	Loss	Test Accuracy
LSTM	18	0.845	63.9%
GRU	23	0.838	63.4%
BERT Sentimental Analysis	-	-	23.1%
BERT Fine-Tuning	8	0.43	84.6%

Further: Flask App Demo

Further: Flask App Demo

Shortcomings

- No price data and date data
 - We can't check how the new sentiments affect stock prices

Future Recommendations

- Building a stock market price forecasting model
 - Collecting data
 - Date, Stock price per day for a specific company
 - Specific company's news headline
 - Other features like dividend yield, price to book, etc.
 - Using sentiment analysis result as a predictor feature
- Adding more labels
 - o Now:
 - Negative/ Neutral/ Positive
 - o Future:
 - Strongly Negative/ Weakly Negative/ Neutral/ Weakly Positive/ Strongly Positive

