期中考试模拟题 (十) 答案 2022.11

-. 1. 0.6 2.
$$\frac{5}{8}$$
 3. 1 4. $f(y) = \begin{cases} \frac{3}{2}e^{\frac{-3(y-3)}{2}}, y > 3\\ 0, y \le 3 \end{cases}$ 5. 5

 \equiv 1. B 2. C 3. A 4. C 5. B

三、设 $A = \{ \text{中级职员} \}, B = \{ \text{职员通过测试} \}.$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\overline{A})P(\overline{A})} = \frac{75\% \times 80\%}{75\% \times 80\% + 25\%10\%} = 96\%$$

四、(1) X和Y的分布律分别为

X	0	1	2	
P	0.64	0.32	0.04	

Y	0	1	2	00
P	0.25	0.5	0.25	

X与 Y相互独立,(X,Y)的分布律如右表.

(2)
$$D(X) = E(X^2) - [E(X)]^2 = 0.32$$
,
 $D(Y)=0.5$,

$$D(2X+Y)=4D(X)+D(Y)=4\times0.32+0.5=1.78$$
.

Y	0	1	2	×
0	0.16	0.08	0.01	
1	0.32	0.16	0.02	
2	0.16	0.08	0.01	

五、(1) 由连续的条件有:
$$\begin{cases} A+B\arcsin\frac{-a}{a}=0\\ A+B\arcsin\frac{a}{a}=1 \end{cases}, \quad \exists A=\frac{1}{2}, \quad B=\frac{1}{\pi}.$$

(2)
$$f(x) = F'(x) = \begin{cases} \frac{1}{\pi \sqrt{a^2 - x^2}}, & |x| < a \\ 0, & |x| \ge a \end{cases}$$

(3) 因为方程
$$t^2 + Xt + \frac{a^2}{16} = 0$$
有实根,则 $X^2 - \frac{a^2}{4} \ge 0$,故

$$P\left(X^{2} - \frac{a^{2}}{4} \ge 0\right) = P\left(X \ge \frac{a}{2}\right) + P\left(X \le -\frac{a}{2}\right) = \int_{\frac{a}{2}}^{a} \frac{1}{\pi\sqrt{a^{2} - x^{2}}} dx + \int_{-a}^{-\frac{a}{2}} \frac{1}{\pi\sqrt{a^{2} - x^{2}}} dx = \frac{2}{3}.$$

六、 (1)
$$X$$
 的边缘概率密度 $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^x 3x dy = 3x^2, & 0 \le x \le 1; \\ 0, & 其他. \end{cases}$

$$Y$$
的边缘概率密度 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_y^1 3x dx = \frac{3(1-y^2)}{2}, & 0 \le y \le 1; \\ 0, & 其他. \end{cases}$

(2) 当
$$0 \le y < 1$$
时, $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{2x}{1-y^2}, & y \le x \le 1\\ 0, & 其他 \end{cases}$.

(3) 因为 $f(x,y) \neq f_X(x) \cdot f_Y(y)$ 或 $f_{X|Y}(x|y) \neq f_X(x)$,所以 X 与 Y 不独立。

$$\text{-L.} \quad (1) \quad \varphi(z) = \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(z - x) dx = \int_0^1 1 \cdot f_Y(z - x) dx = \int_{z-1}^z f_Y(y) dy.$$

当
$$z \le 0$$
时, $\varphi(z) = \int_{z-1}^{z} f_{Y}(y) dy = 0$;

当
$$0 < z \le 1$$
时, $\varphi(z) = \int_{z-1}^{z} f_{Y}(y) dy = \int_{0}^{z} e^{-y} dy = 1 - e^{-z}$;

当
$$z > 1$$
时, $\varphi(z) = \int_{z-1}^{z} f_{Y}(y) dy = \int_{z-1}^{z} e^{-y} dy = e^{-z} (e-1)$;

故概率密度为
$$\varphi(z) = \begin{cases} 0 & z \le 0 \\ 1 - e^{-z} & 0 < z \le 1. \\ e^{-z}(e - 1) & z > 1 \end{cases}$$

(2)
$$P(X > Y) = \iint_{x>y} f_X(x) f_Y(y) dx dy = \int_0^1 dx \int_0^x e^{-y} dy = e^{-1}$$

八、(1)
$$X_i \sim E(\lambda)$$
,则 $E(X_i) = \frac{1}{\lambda} = 10$, $D(X_i) = \frac{1}{\lambda^2} = 100$,
$$E(X_1^2 + X_2) = E(X_1^2) + E(X_2) = D(X_1) + \left[E(X_1)\right]^2 + E(X_2) = 210$$

(2)
$$L_1$$
 的寿命 $Y_1 = \min\{X_1, X_2\}$, Y_1 的分布函数 $F_{Y_1}(y_1)$

$$\stackrel{\text{def}}{=} y_1 > 0 \text{ for } F_{Y_1}(y_1) = 1 - \left[1 - F_{X_1}(y_1)\right] \left[1 - F_{X_2}(y_1)\right] = 1 - e^{-0.1y_1} \cdot e^{-0.1y_1} = 1 - e^{-0.2y_1}$$

当
$$y_1 \le 0$$
 时, $F_{y_1}(y_1)=1-(1-0)(1-0)=0$.

$$L_2 \, \text{的寿命} \, Y_2 = \min \left\{ X_3, X_4, X_5 \right\} \, \text{的分布函数} \, F_{Y_2}(y_2) = \begin{cases} 1 - e^{-0.3 y_2}, & y_2 > 0; \\ 0, & y_2 \leq 0. \end{cases}$$

(3) L 的寿命 $Y = \max\{Y_1, Y_2\}$ 的分布函数为

$$F_{Y}(y) = \begin{cases} (1 - e^{-0.2y})(1 - e^{-0.3y}), & y > 0; \\ 0, & y \le 0 \end{cases}$$