Corrigé exercice 43:

1. $f(x) = \left(\frac{7x-8}{9-2x}\right)^3$ définie sur $I = \mathbb{R} \setminus \left\{\frac{9}{2}\right\}$. f est la composée des fonctions u et v définies par $u(x) = \frac{7x-8}{9-2x}$ et $v(x) = x^3$. La fonction u est dérivable sur $\mathbb{R} \setminus \left\{\frac{9}{2}\right\}$ et v est dérivable sur \mathbb{R} donc $\mathcal{D}_{f'} = \mathbb{R} \setminus \left\{\frac{9}{2}\right\}$.

f est de la forme $f = v \circ u$ donc $f' = u' \times v' \circ u$ avec $u'(x) = \frac{7(9-2x)+2(7x-8)}{(9-2x)^2} = \frac{47}{(9-2x)^2}$ et $v'(x) = 3x^2$.

D'où, pour tout $x \in \mathcal{D}_{f'}$, $f'(x) = 3 \times \frac{47}{(9-2x)^2} \times \left(\frac{7x-8}{9-2x}\right)^2 = \frac{141(7x-8)^2}{(9-2x)^4}$.

2. $f(x) = \left(\frac{-x^2 + 4x + 6}{x^2 - 1}\right)^4$ définie sur $I = \mathbb{R} \setminus \{-1; 1\}$. f est la composée des fonctions u et v définies par $u(x) = \frac{-x^2 + 4x + 6}{x^2 - 1}$ et $v(x) = x^4$. La fonction u est dérivable sur $\mathbb{R} \setminus \{-1; 1\}$ et la fonction v est dérivable sur \mathbb{R} donc $\mathcal{D}_{f'} = \mathbb{R} \setminus \{-1; 1\}$.

f est de la forme $v \circ u$ donc $f' = u' \times v' \circ u$ avec

$$u'(x) = \frac{(-2x+4)(x^2-1) - 2x(-x^2+4x+6)}{(x^2-1)^2}$$

$$= \frac{-2x^3 + 2x + 4x^2 - 4 - 2x^3 - 8x^2 - 12}{(x^2-1)^2}$$

$$= \frac{-4x^2 - 10x - 4}{(x^2-1)^2}$$

$$= \frac{-2(2x^2 + 5x + 2)}{(x^2-1)^2}$$

et $v'(x) = 4x^3$.

D'où, pour tout $x \in \mathcal{D}_{f'}$,

$$f'(x) = 4 \times \frac{-2(2x^2 + 5x + 2)}{(x^2 - 1)^2} \times \left(\frac{-x^2 + 4x + 6}{x^2 - 1}\right)^3$$
$$= \frac{-8(2x^2 + 5x + 2)(-x^2 + 4x + 6)^3}{(x^2 - 1)^5}$$

Corrigé exercice 45:

1. $f(x) = \sqrt{\frac{2x+4}{5-x}}$ définie sur I = [-2; 5[. f est la composée des fonctions u et v définies par $u(x) = \frac{2x+4}{5-x}$ et $v(x) = \sqrt{x}$. La fonction u est dérivable sur $\mathbb{R}\setminus\{5\}$ et positive sur I. La fonction v est dérivable sur $[0; +\infty[$ donc $\mathcal{D}_{f'} =] - 2; 5[$. f est de la forme $v \circ u$ donc $f' = u' \times v' \circ u$ avec $u'(x) = \frac{2(5-x)-(-1)(2x+4)}{(5-x)^2} = \frac{14}{(5-x)^2}$ et $v'(x) = \frac{1}{2\sqrt{x}}$.

D'où, pour tout
$$x \in \mathcal{D}_{f'}$$
, $f'(x) = \frac{14}{(5-x)^2} \times \frac{1}{2\sqrt{\frac{2x+4}{5-x}}} = \frac{7\sqrt{5-x}}{(5-x)^2\sqrt{2x+4}}$.

- 2. $f(x) = \sqrt{e^x(x^2 4x + 15)}$ définie sur $I = \mathbb{R}$. f est la composée des fonctions u et v définies par $u(x) = e^x(x^2 4x + 15)$ et $v(x) = \sqrt{x}$. La fonction u est dérivable et strictement positive sur \mathbb{R} et la fonction v est dérivable sur $]0; +\infty[$ donc $\mathcal{D}_{f'} = \mathbb{R}$. f est de la forme $v \circ u$ donc $f' = u' \times v' \circ u$ avec $u'(x) = e^x(x^2 4x + 15) + e^x(2x 4) = e^x(x^2 2x + 11)$ et $v'(x) = \frac{1}{2\sqrt{x}}$.
 - D'où, pour tout $x \in \mathcal{D}_{f'}$, $f'(x) = \frac{e^x(x^2 2x + 11)}{2\sqrt{e^x(x^2 4x + 15)}}$.