Electrophysiology of Neurons

Zhang Yi, *IEEE Fellow* Autumn 2018

Outline

- ■Cell Membrane & Ions
- ■Electrochemical gradients
- ■Equivalent circuit
- ■Hodgkin-Huxley gate model
- ■Hodgkin-Huxley Model

Cell Membrane & Ions

Cell Membrane
Cell Body
Nuclear Membrane
Nucleus
Endoplasmic Reticulum
Mitochondria

Cell Membrane & Ions

Neuron

© 2000 John Wiley & Sons, Inc.

Neuron

Neuron

Connection of Neurons

An Individual Synapse

An Individual Synapse

Neuron membrane

Neurons & Ions

Electrical activity in neurons is sustained and propagated via ionic currents through neuron membranes. Most of these transmembrane currents involve four ionic species: sodium (Na⁺), potassium (K⁺), calcium (Ca²⁺), and chloride (Cl⁻).

Electrochemical gradients

Different concentrations on the two sides --- major driving forces of neural activity.

Ions

Ionic diffusion

Ionic diffusion

The Membrane Potential

The Membrane Potential

Nernst potential

Nernst equilibrium potential:

$$E_{ion} = \frac{RT}{zF} \ln \frac{[\text{Ion}]_{\text{out}}}{[\text{Ion}]_{\text{in}}}$$

R - the universal gas constant

T - temperature

F - Faraday cons tan t

z - the valence of the ion

Sodium equilibrium potential

Outside 145mM

Inside 5-15mM

Equilibrium potential

Equilibrium potentials

Equilibrium Potentials

Na⁺
$$62 \log \frac{145}{5} = 90 \text{ mV}$$

 $62 \log \frac{145}{15} = 61 \text{ mV}$
K⁺ $62 \log \frac{5}{140} = -90 \text{ mV}$
Cl⁻ $-62 \log \frac{110}{4} = -89 \text{ mV}$
Ca²⁺ $31 \log \frac{2.5}{10^{-4}} = 136 \text{ mV}$
 $31 \log \frac{5}{10^{-4}} = 146 \text{ mV}$

$$T = 37^{\circ} C$$

Equilibrium potentials

Resting Potential

I=0, dV/dt=0

Inward on outward currents

$$E_K < E_{Cl} < V_{(at rest)} < E_{Na} < E_{Ca}$$
 $I_{Na}, I_{Ca} < 0 \text{ (inward currents)}$
 $I_K, I_{Cl} > 0 \text{ (outward currents)}$

Mapping neural activity to circuits

$$I_{K} = g_{K} (V - E_{K})$$

$$I_{Na} = g_{Na} (V - E_{Na})$$

$$I_{Ca} = g_{Ca} (V - E_{Ca})$$

$$I_{Cl} = g_{Cl} (V - E_{Cl})$$

$$I_{K} = g_{K} (V - E_{K})$$

$$I_{Na} = g_{Na} (V - E_{Na})$$

$$I_{Ca} = g_{Ca} (V - E_{Ca})$$

$$I_{Cl} = g_{Cl} (V - E_{Cl})$$

$$I = CV + I_{Na} + I_{Ca} + I_{K} + I_{Cl}$$
 $CV = I - I_{Na} - I_{Ca} - I_{K} - I_{Cl}$

$$CV = I - g_{Na}(V - E_{Na}) - g_{Ca}(V - E_{Ca}) - g_{K}(V - E_{K}) - g_{Cl}(V - E_{Cl})$$

$$C\dot{V} = I - g_{Na}(V - E_{Na}) - g_{Ca}(V - E_{Ca}) - g_{K}(V - E_{K}) - g_{Cl}(V - E_{Cl})$$

by setting
$$\stackrel{\bullet}{V} = 0$$
 and $I = 0$

$$V_{rest} = \frac{g_{Na}E_{Na} + g_{Ca}E_{Ca} + g_{K}E_{K} + g_{Cl}E_{Cl}}{g_{Na} + g_{Ca} + g_{K} + g_{Cl}}$$

$$CV = I - g_{inp} (V - V_{rest})$$

$$where$$

$$g_{inp} = g_{Na} + g_{Ca} + g_{K} + g_{Cl} - -- input conductance.$$

Ionic channels

Electrical conductance of individual channels can be controlled by gating particles.

Ionic channels are large transmembrane proteins having aqueous pores through which ions can flow down their electrochemical gradients.

Ionic channels

Electrical conductance of individual channels can be controlled by gating particles.

Hodgkin-Huxley gate model

Electrical conductance of individual channels can be controlled by gating particles.

$$g_{inp} = g p$$

p - average proportion of channels in the open state

g - maximal conductance of the population

Hodgkin-Huxley gate model

$$g_{inp} = \bar{g} p \Rightarrow p = m^a h^b \Rightarrow g_{inp} = \bar{g} m^a h^b$$

m - probability of the activation gate to be in open state

h - probability of the inactivation gate to be in open state

a - number of activation gates

b - number of inactivation gates_{otal 48 pages}

Activation gate

$$\tau(V) \stackrel{\bullet}{m} = (m_{\infty}(V) - m)$$

$$m_{\infty}(V) = \frac{1}{1 + \exp\{(V_{1/2} - V)/k\}}$$

Time constant

$$\tau(V) \stackrel{\bullet}{m} = (m_{\infty}(V) - m)$$

Time constant:
$$\tau(V) = C_{base} + C_{amp} \exp \frac{-(V_{max} - V)^2}{\sigma^2}$$

Time constant

Time constant:

$$\tau(V) = C_{base} + C_{amp} \exp \frac{-(V_{max} - V)^2}{\sigma^2}$$

Inactivation gate

$$\tau(V) \stackrel{\bullet}{h} = (h_{\infty}(V) - h)$$

Hodgkin-Huxley Model

Hodgkin-Huxley model of the squid giant axon

total 48 pages

Hodgkin-Huxley model of the squid giant axon

total 48 pages

The End