

Multivariate Triangular Quantile Maps for Novelty Detection

Jingjing Wang, Sun Sun, Yaoliang Yu {jingjing.wang, sun.sun, yaoliang.yu}@uwaterloo.ca

Summary

- ✓ We extend the univariate quantile to the multivariate setting through increasing triangular maps.
- ✓ We present a new framework for neural novelty detection, which unifies and extends many existing approaches.
- ✓ We apply the multiple gradient descent algorithm and obtain an efficient end-to-end implementation.
- We perform extensive experiments to confirm the efficacy of our proposed framework.

General Framework for Novelty Detection

Triangular Quantile Map

Let $U \sim \mathrm{Uniform}[0,1]$, and X be any *univariate* random variable. Then:

$$F_X(x) = \Pr(X \le x), \qquad Q_X(u) = F_X^{-1}(u) := \inf\{x : F_X(x) \ge u\} \implies Q_X(U) \sim X.$$

Challenge: How to extend the quantile function Q_X to the multivariate setting?

Definition. Let $\mathbf{U} \sim \mathrm{Uniform}[0,1]^d$, and \mathbf{X} be any random vector in \mathbb{R}^d . We call an **increasing triangular** map $\mathbf{Q} = (Q_1, \dots, Q_d) : [0,1]^d \to \mathbb{R}^d$ the Triangular Quantile Map (TQM) of \mathbf{X} if $\mathbf{Q}(\mathbf{U}) \sim \mathbf{X}$.

Increasing: Q_j is increasing w.r.t. the j-th coordinate of the input;

Triangular: Q_j depends only on the first j coordinates of the input;

Significance:

- ullet \mathbf{Q} always exists and is unique (up to ordering of coordinates);
- ullet efficiently computable inverse and Jacobian \implies efficient density;
- amenable to neural parameterization (real-NVP, MAF, IAF, NAF, SOS, etc);
- composition friendly (unlike optimal transport approach).

Problem Formulation

Let X be a random sample from the unknown density p. We learn the feature map $f: \mathbb{R}^d \to \mathbb{R}^m$ and the TQM $Q: \mathbb{R}^m \to \mathbb{R}^m$ simultaneously by minimizing:

$$\min_{\mathbf{f},\mathbf{Q}} \gamma \mathsf{KL}(\mathbf{f}_{\#}p \| \mathbf{Q}_{\#}q) + \lambda \ell(\mathbf{f}) + \zeta g(\mathbf{Q}), \tag{1}$$

- q: a fixed reference density (e.g., the uniform density over $[0,1]^m$)
- ullet loss associated with learning the feature map ${f f}$
- ullet g: potential constraints on the triangular quantile map ${f Q}$

Novelty Detection Rules

- ① Density Scoring Rule: novel if $p_{\mathbf{Z}}(\mathbf{z}) = 1/|\mathbf{Q}'(\mathbf{Q}^{-1}(\mathbf{z}))| < \tau$ where $\mathbf{z} = \mathbf{f}(\mathbf{X})$.
- **2** Quantile Scoring Rule: novel if $\mathbf{Q}^{-1}(\mathbf{f}(\mathbf{X})) \notin N \subseteq [0,1]^m$ whose (uniform) measure is $1-\alpha$.

Advantages of Our General Framework:

- ✓ alleviates curse-of-dimensionality by performing dimensionality reduction;
- ✓ universally consistent and effective by adopting recent flow-based density estimators;
- \checkmark employs the density and quantile scoring rules simultaneously by estimating ${f Q}$ once;
- ✓ unifies existing approaches, e.g., One-class SVM, Support Vector Data, Latent Space Autoregression.

Estimating TQM Using Deep Networks

Our framework (1) has three components which we implement as follows:

• Feature Extractor f: We use a deep autoencoder composed by $\mathbf{Z}=\mathcal{E}(\mathbf{X}; \boldsymbol{\theta}_E)$ and $\hat{\mathbf{X}}=\mathcal{D}(\mathbf{Z}; \boldsymbol{\theta}_D)$, and we use the Euclidean reconstruction loss

$$\ell(\mathbf{f}) = \ell(\boldsymbol{\theta}_E, \boldsymbol{\theta}_D) = \sum_{i=1}^n \|\mathbf{X}_i - \hat{\mathbf{X}}_i\|^2.$$
 (2)

- Neural Density Estimator for TQM $\mathbf{Q} = \mathbf{T} \circ \mathbf{\Phi}^{-1}$:
 - $\Phi = (\Phi, \dots, \Phi)$, where Φ is the CDF of standard univaraite Gaussian;

T is the TQM implemented by the flow-based density estimation algorithms, e.g., SoS flow; $\mathsf{KL}(\mathbf{f}_{\#}p||\mathbf{Q}_{\#}q)$ is approximated empirically using the given sample $\mathbf{X}_1,\ldots,\mathbf{X}_n$ as:

$$\sum_{i=1}^{n} \left[\log |\mathbf{Q}'(\mathbf{Q}^{-1}(\mathbf{f}(\mathbf{X}_i)))| - \log q(\mathbf{Q}^{-1}(\mathbf{f}(\mathbf{X}_i))) \right]$$
(3

ullet For example, $g(\mathbf{Q})=0$ when using the SoS flow which satisfies the constraints naturally.

Final Objective Function

$$\min_{\boldsymbol{\theta}} \quad \sum_{i=1}^{n} (1 - \lambda) \left[\underbrace{\log |\mathbf{T}'(\mathbf{T}^{-1}(\mathbf{Z}_i))| + \frac{1}{2} ||\mathbf{T}^{-1}(\mathbf{Z}_i)||^2}_{\text{negative log-likelihood } h(\mathbf{X}_i; \boldsymbol{\theta})} \right] + \lambda \quad \underbrace{\|\mathbf{X}_i - \mathcal{D}(\mathbf{Z}_i; \boldsymbol{\theta}_D)\|^2}_{\text{reconstruction loss } \ell(\mathbf{X}_i; \boldsymbol{\theta})}$$

MGDA for auto-tuning hyperparameter λ

We cast the two competing objectives in (4) as <u>multi-objective optimization</u> and implement the Multiple Gradient Descent Algorithm (MGDA) to automatically tune λ in each iteration.

$$\lambda_t = \arg\min_{0 \le \lambda \le 1} \left\| \sum_{i \in I} (1 - \lambda) \nabla h(\mathbf{X}_i; \boldsymbol{\theta}_t) + \lambda \nabla \ell(\mathbf{X}_i; \boldsymbol{\theta}_t) \right\|^2 = \min \left\{ 1, \max \left\{ 0, \frac{\langle \nabla h_I - \nabla \ell_I, \nabla h_I \rangle}{\|\nabla h_I - \nabla \ell_I\|^2} \right\} \right\}, \quad (5)$$

$m{ heta}_{t+1} = m{ heta}_t - \eta[(1 - \lambda_t)\nabla h_I + \lambda_t \nabla \ell_I], \quad \text{where} \quad I \subseteq \{1, \dots, n\} \text{ is a minibatch of samples}$ (6)

Advantages of MGDA:

- converges to a Pareto-stationary solution under fairly general conditions;
- \checkmark eliminates the need of tuning the hyperparameter $\lambda.$

Empirical Results

Comparing AUROC of our methods against SOTA on (Fashion) MNIST:

• Comparing scoring statistics on MNIST test set (nominal: 1):

1) NLL: $\log |\mathbf{T}'(\mathbf{T}^{-1}(\tilde{\mathbf{Z}}))| + \frac{1}{2} \|\mathbf{T}^{-1}(\tilde{\mathbf{Z}})\|_2^2$, 2) $\mathbf{TQM_1}$: $\|\mathbf{\Phi}(\mathbf{T}^{-1}(\tilde{\mathbf{Z}})) - \frac{1}{2}\|_1$, 3) $\mathbf{TQM_2}$: $\|\mathbf{\Phi}(\mathbf{T}^{-1}(\tilde{\mathbf{Z}})) - \frac{1}{2}\|_2$, 4) \mathbf{TQM}_{∞} : $\|\mathbf{\Phi}(\mathbf{T}^{-1}(\tilde{\mathbf{Z}})) - \frac{1}{2}\|_{\infty}$.

• Inspecting the training progress:

Comparing MGDA with two-stage training strategies:

<u>Fix-</u>: First train the autoencoder, then fix the autoencoder and train the estimation network alone; <u>Pretrain-</u>: First train the autoencoder, then jointly train the whole framework.

	Fix-NLL	Pretrain-NLL	Ours-NLL	Fix-TQM ₂	Pretrain-TQM ₂	Ours-TQM ₂
0	0.9939	0.9954	0.9951	0.9904	0.9939	0.9925
1	0.9971	0.9988	0.9977	0.9972	0.9985	0.9969
2	0.9403	0.9677	0.9526	0.9188	0.9568	0.9479
3	0.9568	0.9496	0.9627	0.9481	0.9414	0.9567
4	0.9703	0.9445	0.9657	0.9700	0.9388	0.9625
5	0.9612	0.9564	0.9618	0.9525	0.9486	0.9601
6	0.9878	0.9907	0.9915	0.9841	0.9881	0.9895
7	0.9629	0.9676	0.9686	0.9587	0.9656	0.9660
8	0.9549	0.9587	0.9551	0.9397	0.9527	0.9512
9	0.9736	0.9733	0.9768	0.9742	0.9641	0.9756
vg	0.9699	0.9703	0.9728	0.9634	0.9649	0.9699

	_	Thyroid	KDDCUP			
Method	Precision	Recall	F1	Precision	Recall	F1
RAW-OC-SVM *	0.3639	0.4239	0.3887	0.7457	0.8523	0.7954
SEBM *	0.0404	0.0403	0.0403	0.7369	0.7477	0.7423
AGMM *	0.4766	0.4834	0.4782	0.9297	0.9442	0.9369
Durs-REC		_	_	0.6305	0.6287	0.6296
Ours-NLL	0.7312	0.7312	0.7312	0.9622	0.9622	0.9622
${\sf Durs-TQM}_1$	0.5269	0.5269	0.5269	0.9621	0.9621	0.9621
${\sf Durs-TQM}_2$	0.5806	0.5806	0.5806	0.9622	0.9622	0.9622
Durs-TQM $_{\infty}$	0.7527	0.7527		0.9622	0.9622	0.9622