





01

02

Introduction

### 引言

研究背景,研究动机以及研究主题。

Graph convolutional network

### 图卷积网络

GCN实现分子性质预测,包 括实现原理和思路





Molecular Classification

03

04

05

06

WL kernel

### WL核方法

WL核方法实现分子分类

Graph isomorphic network

### 图同构网络

表达能力更强的GNN变体

Experiments

### 实验部分

模型在MUTAG数据集上的分 类效果,以及对比 References

## 参考文献



PART ONE

# 研究背景

图结构是描述和分析实体与关系的一种通用语言,被普遍应用在许多领域中,如社交网络、交通网络、引文网络和分子结构等。对图结构数据来说,一个基本问题是计算它们之间的相似性,以便进行图分类





## 引言

#### 项目背景

- · 图结构是描述和分析实体与关系的一种 通用语言,被普遍应用在许多领域中, 如社交网络、交通网络、引文网络和分 子结构等。
- · 对图结构数据来说,一个基本问题是计 算它们之间的相似性,以便进行图分类







### 数据结构对比



#### → 项目动机

- 现代深度学习的框架大多为处理较简单的序列或者网格数据而设计
- · 但在图上远远没那么简单:任意大小和复杂的拓扑结构、没有像网格那样的空间局部性、没有固定顺序和参考节点、甚至是动态变化的



#### → 研究主题

选取分子性质预测为研究主题,分子性质预测在药物筛选和药物设计等中有着重要作用。 其核心在于利用分子的内部信息来预测其物理和化学性质,来达到筛选作用,显著加速药物研发进程。

传统上,DFT方法被广泛应用于分子性质预测,但这种方法非常耗时且计算成本高昂。 近年来,深度学习方法为分子性质预测提供了新的思路。将分子视为图数据,分子中 的原子被抽象为节点,化学键被抽象为边,构建出分子图,结合深度学习方法进行预 测。

这样,分子性质预测问题就转化为了一个图回归问题。

#### 数据库选择

#### **TUDatasets**

这是TU Dortumnd University收集的大量关于分子特征的图数据,可以通过PyTorch Geometric直接加载。



例如其中一个数据集MUTAG是一个硝基芳香族化合物的集合,目的是预测它们对鼠伤寒沙门氏菌的诱变性。输入图用于表示化合物,其中顶点代表原子并由原子类型标记(由one-hot编码表示),而顶点之间的边表示相应原子之间的键。它包括188个化合物样品,有7个离散节点标签。





# GCN模型

GCN(图卷积网络)是一种在图结构数据上进行卷积操作的神经网络架构,通过聚合邻居节点的信息来更新每个节点的特征。GCN能够捕获图中节点间的复杂关系和特征,用于节点分类、图分类、边预测及图嵌入表示等任务。





### **CNN** on an image:



作为计算图获取结构信息在图结构为以每个结点的领域



Determine node computation graph

## 图卷积层







## 图读出层

0

读出阶段是通过全局的池化模块来生成整个图级的特征。在卷积阶段过后得到最终图节点特征。

本项目读出函数使用log函数作为激活函数, P采用全局平均化池:

$$\sigma(X) = log (AX + b)$$

$$P(H^k) = \sum_{i \in [1,N]} \frac{h_i^{(k)}}{N}$$







# WL核模型

WL核利用Weisfeiler-Lehman图同构测试算法迭代地丰富节点特征,通过比较两个图在WL算法迭代过程中的节点特征向量来计算它们之间的相似性。这种方法的核心在于利用图的邻域结构信息来构建节点的特征表示,从而捕捉图的结构特性。







## WL核函数





在使用WL核表达出图之间的相似性后,使用SVM来进行分类,直接使用WL核函数来替换SVM中的内积计算,这样SVM就可以利用WL核函数来度量图之间的相似性,并进行分类。

这里K是自己选定的常用的正定核函数,如子树核,最短路径核,随机游走核等,h是自己通过经验感知选定的合适的阶数。







# GIN模型

图同构网络(GIN)模型是一种比GCN拥有更强表达能力的图神经网络架构,它通过迭代聚合节点邻居特征并混合自身特征,实现了对图结构的精确表达。GIN模型具有单射特性,能够区分不同的图结构,适用于图分类等任务。



# HOW POWERFUL ARE GNN?

GNN的设计是一个非常经验感觉的设计,如何客观形式化地探知其在图上的表达能力,在《HOW POWERFUL ARE GNN?》这篇文章中给出了说明。

#### GNN的表达能力的严格上限是 WL同构检验

- 相同: 都是一阶一阶迭代聚合得到结点丰富特征。
- 不同: WL test 是由哈希函数 聚合, GNN 池化函数来聚合。 前者是单射函数, 可以保证不同 构的图映射到不同的embedding中, 但池化函数并不是单射

#### 可以保证单射聚合的GNN变体: GIN

- 1.采用单射聚合函数: sum
- 2.图级读出函数保证单射



#### 核方法VS神经网络

- •核方法的选择和参数调整对性能有较大影响,需要一定的经验和技巧。对于大规模数据集,核方法的计算效率较低。
- •神经网络通过训练可以自动学习调整参数,神经网络在处理大规模数据集时具有较高的效率。

Max和mean 池化无法区分







Sum聚合函数



GCN使用单层感知机, 其本质上是线性模型, 可能无法捕捉到数据 中复杂的非线性关系, 从而限制了GCN的表 达能力。这里将ReLU 激活函数替换为MLP。

$$h_v^{(k+1)} = MLP^{(k+1)} \left( \sum_{u \in N(v)} h_u^{(k)} + (1 + \epsilon^k) h_v^{(k)} \right)$$

## Readout逐数

$$R(H^k) = Concat \left( (\sum_{i \in [1,N]} h_i^{(k)}) | k = 0,1,...,K \right)$$





# 实验部分

使用三种模型对数据集MUTAG分类,MUTAG是一个硝基芳香族化合物的集合,目的是预测它们对鼠伤寒沙门氏菌的诱变性。对比了三种模型在该分类任务中的实际效果。





#### Model: WL SVM, Train Acc: 0.8511, Test Acc: 0.8511 Model: WL SVM, Train Acc: 0.9149, Test Acc: 0.8723 Model: WL SVM, Train Acc: 0.9645, Test Acc: 0.8298 Model: WL SVM, Train Acc: 0.8582, Test Acc: 0.8511 Model: WL SVM, Train Acc: 0.9433, Test Acc: 0.8723 Model: WL SVM, Train Acc: 0.9504, Test Acc: 0.8723 Model: WL SVM, Train Acc: 0.9504, Test Acc: 0.8298 Model: WL SVM, Train Acc: 0.9078, Test Acc: 0.8511 Model: WL SVM, Train Acc: 0.9362, Test Acc: 0.9149 Model: WL SVM, Train Acc: 0.9433, Test Acc: 0.8723 iter=2 Model: WL SVM, Train Acc: 0.9362, Test Acc: 0.8723 Model: WL SVM, Train Acc: 0.9504, Test Acc: 0.8936 Model: WL SVM, Train Acc: 0.8440, Test Acc: 0.8511 Model: WL SVM, Train Acc: 0.9149, Test Acc: 0.8085 Model: WL SVM, Train Acc: 0.9574, Test Acc: 0.8936 Model: WL SVM, Train Acc: 0.9220, Test Acc: 0.8298 Model: WL SVM, Train Acc: 0.9504, Test Acc: 0.8085 Model: WL SVM, Train Acc: 0.9220, Test Acc: 0.7872 Model: WL SVM, Train Acc: 0.9574, Test Acc: 0.8511 Model: WL SVM, Train Acc: 0.9362, Test Acc: 0.8511 Model: WL SVM, Train Acc: 0.8440, Test Acc: 0.8723 iter=3 Model: WL SVM, Train Acc: 0.8511, Test Acc: 0.7660 Model: WL SVM, Train Acc: 0.9149, Test Acc: 0.8723 Model: WL SVM, Train Acc: 0.9645, Test Acc: 0.8298 Model: WL SVM, Train Acc: 0.9504, Test Acc: 0.7872 Model: WL SVM, Train Acc: 0.9362, Test Acc: 0.9149 Model: WL SVM, Train Acc: 0.9716, Test Acc: 0.7872 Model: WL SVM, Train Acc: 0.9504, Test Acc: 0.8298 Model: WL SVM, Train Acc: 0.9504, Test Acc: 0.8723 Model: WL SVM, Train Acc: 0.8511, Test Acc: 0.8085 Model: WL SVM, Train Acc: 0.9362, Test Acc: 0.7872 Model: WL SVM, Train Acc: 0.9645, Test Acc: 0.8085

iter=1

#### WL核 SVM模型



























0

[1] Siameh, T., "Semi-Supervised Classification With Graph Convolutional Networks," 2023. [Online]. Available: <a href="https://doi.org/10.13140/RG.2.2.22993.71526">https://doi.org/10.13140/RG.2.2.22993.71526</a>.

[2] K. M. Borgwardt and H. P. Kriegel, "Shortest-path kernels on graphs," *Fifth IEEE International Conference on Data Mining (ICDM'05)*, Houston, TX, USA, 2005, pp. 8, doi: 10.1109/ICDM.2005.132.

[3] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt, "Wasserstein weisfeiler-lehman graph kernels," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 6439-6449, doi: 10.1109/CVPR.2019.00663.

[4] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, "How Powerful are Graph Neural Networks?," *ArXiv*, abs/1810.00826, 2018.



代码仓库: https://github.com/seadeer-I/GNNmodels.git