Package 'limai'

April 16, 2025				
Title Li	Title Linear modeling and AI decision making			
Version	0.0.1			
Author	Xu Liu [aut,cre]			
Maintai	ner Xu Liu <liu.xu@sufe.edu.cn></liu.xu@sufe.edu.cn>			
Descrip	tion Data sets used in the book ``Linear modeling and AI decision making"			
License	GPL (>=2)			
Encodin	g UTF-8			
Roxyger	n list(markdown = TRUE)			
Roxyger	nNote 7.3.2			
Depends	s R (>= 3.5.0)			
Imports	Matrix, glmnet			
LazyDa	ta true			
R top	ics documented:			
	CHARLS			
Index				
CHARL	China Health and Retirement Longitudinal Study (CHARLS) data of Hebei, Shandong, and Fujian provinces.			
Descript	tion			
The	dataset contains the CHARLS data collected in Hebei, Shandong, and Fujian provinces.			
Usage				
	data(CHARLS)			
Format				

A list object containing the following 3 variables:

2 CHARLS

Name	Type	Description
hebei	matrix	The CHARLS data of Hebei province.
		A matrix with 257 rows and 50 columns including y and 49 covariates v1,,v49.
shandong	matrix	The CHARLS data of Shandong province.
		A matrix with 413 rows and 50 columns including y and 49 covariates v1,,v49.
fujian	matrix	The CHARLS data of Fujian province.
		A matrix with 167 rows and 50 columns including y and 49 covariates v1,,v49.

Details

Each matrix containing y, v1-v49 variables:

Name	Description
У	Annual support income of elderly people.
v1	Gender: 1 = male, 0 = female.
v2	Age.
v3	Education level: 1 = primary, 2 = junior high, 3 = high school, 4 = other.
v4	Marital status: 1 = married, 0 = unmarried.
v5	Live alone: $1 = yes$, $0 = no$.
v6	Live with a spouse: $1 = yes$, $0 = no$.
v7	Live with children: $1 = yes$, $0 = no$.
v8	Live with other members (e.g., parents): $1 = yes$, $0 = no$.
v9	Health status: 1 = disability/chronic illness, 0 = healthy.
v10	Pension income.
v11	Whether to receive a pension: $1 = yes$, $0 = no$.
v12	Number of surviving children: 0 = none, 1 = one, 2 = two or more.
v13	Wage income per household.
v14	Net operating income per household.
v15	Net transfer income per household.
v16	Number of children with a college degree or above.
v17	Number of children earning over 10,000 CNY annually.
v18	Emotional comfort: 1 = contact children \geq every half month, 0 = otherwise.
v19	Number of household members.
v20	Number of deceased biological children.
v21	Number of surviving adopted children.
v22	Number of surviving sons.
v23	Financial support for parents.
v24	Financial support for other relatives.
v25	Net financial support received from other relatives.
v26	Number of types of disability.
v27	Chronic illness: $0 = \text{no}$, $1 = \text{yes}$, $2 = \text{other}$.
v28	Whether to receive a retirement pension: $1 = yes$, $0 = no$.
v29	Retirement pension income.
v30	New rural pension income.
v31	All other pension income.
v32	Pension income of elderly households.
v33	Total financial assets of elderly and spouses.
v34	Wage income of main household members.
v35	Government subsidies for individual families.
v36	Government subsidies for main household members.
v37	Wage income of other family members.
v38	Government subsidies for other family members.

game 3

```
v39
        Total government subsidies for families.
        Government transfer income for households.
v40
v41
        Net household income excluding private transfers.
v42
        Net household income.
v43
        Net household income per capita.
v44
        Other net private transfer income of elderly.
        Family shared income received by elderly.
v45
        Whether to complete junior high school education: 1 = yes, 0 = no.
v46
v47
        Whether to complete high school education: 1 = yes, 0 = no.
v48
        Annual net income from other sources.
v49
        Financial support provided for children.
```

Source

The CHARLS data from https://charls.charlsdata.com/pages/Data/2015-charls-wave4/zh-cn.html

References

Ren, P., Liu, X., Zhang, X., Zhan, P., & Qiu, T. (2024). Integrative analysis of high-dimensional quantile regression with contrasted penalization. *Journal of Applied Statistics*, 1-17.

Examples

```
library(glmnet)
data(CHARLS)
data_hebei = CHARLS$hebei
y = data_hebei$y
x = data_hebei[,-1]
x = matrix(unlist(x),nrow = nrow(x))
fit_lasso = cv.glmnet(x,y,alpha = 1)
coef(fit_lasso,s = "lambda.min")
```

game

Online Gaming Behavior Dataset

Description

This dataset captures comprehensive metrics and demographics related to player behavior in online gaming environments. It includes variables such as player demographics, game-specific details, engagement metrics, and a target variable reflecting player retention.

Usage

```
data(game)
```

Arguments

A data frame object containing 200 player entries with the following 13 variables:

Name	Type	Description
ID	integer	Unique identifier for each player

4 pollution

integer	Age of the player
character	Gender of the player
character	Geographic location of the player
character	Genre of the game the player is engaged in
numeric	Average hours spent playing per session
integer	Indicates whether the player makes in-game purchases $(0 = No, 1 = Yes)$
character	Difficulty level of the game
integer	Number of gaming sessions per week
integer	Average duration of each gaming session in minutes
integer	Current level of the player in the game
integer	Number of achievements unlocked by the player
character	Categorized engagement level reflecting player retention ('High', 'Medium', 'Low')
	character character numeric integer character integer integer integer integer

Details

The data provides information on various aspects of online gaming behavior for 200 players, including player identifiers, demographic details, gaming - related metrics.

Source

The dataset from Kaggle website https://www.kaggle.com/datasets/rabieelkharoua/predict-online-gaming-behavior-dataset/data

Examples

pollution

Air Quality Index (AQI) for Chinese Cities (2022)

Description

A multidimensional dataset containing weekly Air Quality Index (AQI), meteorological parameters, and socioeconomic indicators for 173 Chinese cities in 2022.

Usage

```
data(pollution)
```

Arguments

A list object containing 173 city entries with the following 10 variables:

pollution 5

Name	Type	Description
AQI	matrix	Air Quality Index, a matrix with 173 rows (cities) and 51 columns (weekly AQI values).
		Higher values indicate poorer air quality.
city	character	City names vector (length 173).
temp	numeric	Annual mean air temperature in °C.
dew	numeric	Annual mean dew point temperature in °C.
windD	numeric	Wind direction in degrees (0-360).
windS	numeric	Annual mean wind speed in m/s.
pres	numeric	Annual mean atmospheric pressure in hPa.
pop	numeric	Household resident population (unit: 10,000).
green	numeric	Green Covered Area as percentage of Completed Area (0-100).
second	numeric	Secondary Industry as Percentage to GRP (0-100).

Details

The data provides AQI data for 173 Chinese cities for the 51 weeks of 2022 and economic and meteorological related annual average data.

Source

- Air Quality Index form China National Environmental Monitoring Center(https://air.cnemc.cn:18007/)
- Meteorological Data from NOAA National Centers for Environmental Information (https://www.ncei.noaa.gov/)
- Socioeconomic data from China City Statistical Yearbook (https://www.stats.gov.cn/)

References

Guan, X., Li, Y., Liu, X., & You, J. (2025). Subgroup learning in functional regression models under the RKHS framework. *arXiv preprint arXiv:2503.01515*.

Examples

```
data(pollution)

# Explore AQI distribution for Beijing
bj_aqi <- as.numeric(pollution$AQI[pollution$city == "Beijing", ])
plot(bj_aqi,
    type = "1",
    main = "Weekly AQI in Beijing (2022)",
    xlab = "Week",
    ylab = "AQI")

# Correlation analysis
cor(pollution$temp, rowMeans(pollution$AQI, na.rm = TRUE))</pre>
```

Index

```
* datasets
game, 3
pollution, 4

CHARLS, 1
game, 3
pollution, 4
```