ამოცანა 1: განაწილების კანონის შედგენა

მითითება: ააგეთ x, P ცხრილი, სადაც x-ის მნიშვნელობები განისაზღვრება ამოცანის პირობით (მაგალითად, თუ ვეძებთ კამათლის 4- χ ერ გაგორებისას 2-იანის მოსვლის განაწილების კანონს, x-ის მნიშვნელობები იქნება ყველა ის რიცხვი, თუ რამდენ χ ერ შეიძლება 2-იანი მოვიდეს, ანუ 0, 1, 2, 3 და 4), ხოლო P შესაბამისი მნიშვნელობები გამოითვლება ბერნულის ფორმულით:

$$P_n(k) = C_n^k p^k q^{n-k}$$

სადაც

$$C_n^k = \frac{n!}{k! (n-k)!}$$

p არის ხელსაყრელი ხდომილობის ალბათობა (ანუ ზემოთხსენებულ კამათლის მაგალითში 2-იანის მოსვლის ალბათობა, რაც ტოლია $\frac{1}{6}$ -სა), q=1-p (ჩვენს მაგალითში $q=1-\frac{1}{6}=\frac{5}{6}$).

n არის დამოუკიდებელ ცდათა რაოდენობა (ჩვენს მაგალითში 4, ვინაიდან კამათელს ოთხჯერ ვაგორებთ), ხოლო k არის x-ის შესაბამისი მნიშვნელობა.

გაითვალისწინეთ, რომ P -ს ყველა მიღეზული მნიშვნელოზის χ ამი უნდა იყოს 1-ის ტოლი.

2. მონეტას ვაგდებთ ოთხჯერ. შეადგინეთ საფასურის მოსვლის განაწილების კანონი. n=4 Palb) P41) P4(3) P4(2) Py(0) = 0:(4-0)1 1! (4-1)! Dy (2) = C3 P2 2! (4-2)! Ph(3) = 3! (4-3)1 16 16 16 6 16 Typrobyto:

h = 3	3 i p=	0,7;	9=1-0	7=0,3	
(1) how x	(=1, 2,8	6L Sahayo	30 (Pyzn)	dontzes	
(2) me X	=2, 2,20	5 sh300	2 (1/37)	Nes 9	1 0 1
(3) mu	x=3, 2,8,1			omb (py	بهم المون
	e	and an	ges, 5	wazz)(0)
3 50300	Jus 21.	spacons		~~~	-9(
(1)	P=p=	0,7			
(2) ->	P=q.	0 = 0.3	0,7=0	, 21	
(3) →	P = q - q		$q \cdot q = 0$	0,3-0,3	0,7+0,3
	= 0,3		$3) = 0.3^{2}$	1=0,0	
	X	1	2	2	
	0	0,7	0,21	0,09	
y 2006.	260: 0,7	+0,21-	40,09	= 1 (
44414					

3. მიზანში ისვრიან პირველ მოხვედრამდე. შევადგინოთ **დახარჯულ**

4. მსროლელს აქვს ოთხი ვაზნა და მიზანში ისვრის პირველ მოხვედრამდე. მიზანში მოხვედრის ალზათობაა 0.7. შეადგინეთ დაუხარჯავ ვაზნათა განაწილების კანონი.

ამოცანა 2: შემთხვევით სიდიდეთა კომბინაცია (ჯამი, სხვაობა, ნამრავლი)

მითითება:

ამოცანა 3: დისპერსია

მითითება:

ამოცანა 4: შუალედში მოხვედრის ალბათობა

მითითეზა:

ამოცანა 5: k კოეფიციენტის პოვნა

მითითება:

ამოცანა 6: მოცემული განაწილების კანონიდან დისპერსიის პოვნა

მითითეზა:

ამოცანა 7: განაწილების კანონის შედგენა და დისპერსიი პოვნა

მითითება:

ამოცანა 8: მოცემული ვარიაციული მწკრივიდან შერჩევითი დისპერსიის პოვნა

მითითება:

ამოცანა 9: თეორიული 1 ამოცანა 10: თეორიული 2