Universidade Federal do Rio Grande do Norte Departamento de Engenharia da Computação e Automação DCA3703 - Programação Paralela

Tarefa 3 - Aproximação matemática de π Aluno: Daniel Bruno Trindade da Silva

1 Introdução

Nesta tarefa, exploramos a aproximação de π por meio de uma série matemática implementada em linguagem C. Foram realizadas variações no número de iterações do algoritmo, permitindo a análise da relação entre precisão e tempo de execução. Além disso, comparamos os valores obtidos com o valor real de π , avaliando a convergência da série e os impactos do aumento do processamento na acurácia dos resultados.

Por fim, refletimos sobre a relevância desse comportamento em aplicações computacionais do mundo real, como simulações físicas e inteligência artificial, onde a necessidade de precisão influencia diretamente a eficiência e a confiabilidade dos resultados.

2 Metodologia

Para realizar a aproximação matemática de π utilizaremos formula de Leibniz, que leva o nome de Gottfried Wilhelm Leibniz um polímata alemão que viveu entre o século XVII e XVIII. A formula em notação de somatório é dada pelo seguinte:

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

Como se trata de uma série, quanto maior o valor de n, mais aproximado do valor real de π será o valor que teremos como resultado. Para facilitar nosso trabalho implementamos uma função que possui um laço de repetição for que aplica a formula de Leibniz por n vezes e a essa função demos o nome de piByLeibniz() apos implementada ela ficou como se segue:

```
double piByLeibniz(int n) {
  double res_pi = 0.0;
  for (int i = 0; i < n; i++) {
    res_pi += ((i % 2 == 0) ? 1.0 : -1.0) / (2.0 * i + 1.0);
  }
  return 4.0 * res_pi;
}</pre>
```

Na main() de nosso código chamamos a função piByLeibniz() passando como parâmetro um valor de n (que determina quantas iterações irão ocorrer para a aproximação). Essa função é chamada por x vezes e a cada vez que é executada multiplica o valor de n por 10. Logo na primeira chamada teremos o somatório de 10 termos, na segunda 100, na terceira 1000 e assim sucessivamente. Para nosso estudo realizaremos chamadas a função até n assumir 10^{10} , ou seja, teremos pi como o somatório de 10 bilhões de termos.

A cada vez que chamarmos a função utilizaremos a clock() para medir o tempo convertendo os ticks para segundos, e assim saberemos quanto tempo cada chamada com um n diferente vai levar. Em cada iteração exibimos o valor obtido para π com 30 casas decimais, o tempo decorrido para o cálculo e o erro absoluto do valor em relação ao π correto. Por fim nossa main() ficou da seguinte forma:

```
int main(){
  long long int n_it = 10;
  int num_test = 10;
  for(int i=0; i<num_test; i++){</pre>
    double pi, error;
    clock_t start = clock();
    pi = piByLeibniz(n_it);
    clock_t end = clock();
    printf("
      Valor obtido para pi: %.30f Tempo de execução com %lld iterações: %.4f ms\n",
     pi, n_it, get_time(start, end)
    );
   n_{it} *=10;
    error = fabs(M_PI - pi);
   printf("Erro absoluto: %.30f\n", error);
return 0;
```

3 Resultados

A partir da saída do programa, podemos resgatar as informações que precisamos para analisar o desempenho obtido. Organizando os valores em uma tabela temos o seguinte:

Iterações	Valor de π	Erro absoluto	Tempo (ms)
10	3.041839618929403243896558706183	0.099753034660389872101404762361	0.0010
100	3.131592903558553686593768361490	0.009999750031239429404195107054	0.0000
1.000	3.140592653839794134995599961258	0.000999999749998981002363507287	0.0030
10.000	3.141492653590034489496929381858	0.000099999999758626501034086687	0.0220
100.000	3.141582653589719775766297971131	0.000010000000073340231665497413	0.3130
1.000.000	3.141591653589774324473182787187	0.000001000000018791524780681357	2.3300
10.000.000	3.141592553589791503299011310446	0.000000100000001612698952158098	22.3180
100.000.000	3.141592643589325994923910911893	0.000000010000467121074052556651	215.570
1.000.000.000	3.141592652588050427198140823748	0.000000001001742688799822644796	2155.49
10.000.000.000	3.141592652878837377272702724440	0.000000000710955738725260744104	3026.95

Table 1: Resultados da aproximação de π pela Série de Leibniz

Analisando a tabela podemos verificar que a convergência do valor obtido é muito custosa, foram necessárias 10 bilhões de iterações para conseguir chegar numa assertividade de 8 casas decimais. Isso pode ser visto mais claramente nos gráficos a seguir.

O primeiro deles mostra como o erro absoluto diminui en relação ao número de iterações confirmando o que já havíamos percebido na tabela a série de Leibniz converge para π , mas de forma lenta, exigindo um número muito grande de iterações para alcançar uma precisão aceitável. Em aplicações que exigem alta precisão, a utilização dessa série pode ser ineficiente, sendo necessário recorrer a métodos mais rápidos de convergência.

Erro Absoluto na Aproximação de π pela Série de Leibniz

Figure 1: Erro absoluto da aproximação de π pela Série de Leibniz

No segundo gráfico vemos o custo em tempo por número de iterações. Podemos observar um crescimento linear do tempo de execução conforme o número de iterações aumenta, evidenciando o custo computacional da aproximação. Esse comportamento reforça a necessidade de um equilíbrio entre precisão e eficiência computacional, especialmente em aplicações que exigem cálculos rápidos e precisos.

Figure 2: Crescimento do tempo de execução com o aumento do numero de iterações

4 Conclusão

A relação observada entre precisão e tempo de execução na aproximação de π pela Série de Leibniz reflete um desafio comum em diversas aplicações computacionais do mundo real. Em áreas como simulações físicas e inteligência artificial, a necessidade de obter resultados cada vez mais precisos frequentemente exige maior poder computacional, o que pode impactar o tempo de processamento e o consumo de recursos.

Por exemplo, em simulações físicas, como as utilizadas em modelagem climática ou dinâmica de fluidos, pequenas imprecisões nos cálculos podem levar a grandes desvios nos resultados finais. Métodos numéricos de alta precisão são essenciais, mas, assim como no caso da Série de Leibniz, a busca por maior acurácia pode aumentar exponencialmente o tempo de processamento. Por isso, técnicas como refinamento adaptativo de malhas e algoritmos de alta eficiência são frequentemente adotadas para otimizar esse balanço entre precisão e desempenho.

Na inteligência artificial, especialmente no treinamento de redes neurais profundas, um dilema semelhante ocorre. Modelos mais complexos e precisos geralmente demandam maior capacidade computacional e tempo de treinamento. No entanto, técnicas como quantização de modelos, uso de aproximações matemáticas eficientes e treinamento distribuído ajudam a mitigar esses desafios, permitindo que modelos de IA sejam treinados e executados de maneira mais eficiente sem perder significativamente a precisão.

Portanto, o comportamento observado no experimento com a Série de Leibniz evidencia um princípio fundamental da computação: quanto maior a precisão desejada, maior o custo computacional associado. Esse dilema exige que se busquem métodos alternativos que equilibrem precisão e eficiência, tornando os cálculos viáveis para aplicações práticas no mundo real.