Harmonic Measure TD8

2025年05月16日 aytony

Exercise 1: If u is subharmonic in a domain $\Omega \subset \mathbb{R}^d$ and c > 0, then $u_+ = \max\{u, 0\}$ and e^{cu} are subharmonic in Ω . What is the analogue for superharmonic functions?

Proof: Since u subharmonic, 0 subharmonic, u_+ is subharmonic, and cu is subharmonic. According to the continuity of exp, e^{cu} is lsc, which is same as cu. Thus

$$\exp(cu(x)) \leqslant \exp\left(c \oint_{B(x,r)} u(y) \,\mathrm{d}y\right) \leqslant \oint_{B(x,r)} \exp(cu(y)) \,\mathrm{d}y\,.$$

Analogue is for superharmonic function u and c>0, u^- and $\log(cu)$ are superharmonic. \square

Exercise 2: Let Ω be a domain in \mathbb{R}^d and $u \in C^2(\Omega)$.

1. Using Green's formula, show that

$$\int_{B(x,r)} \Delta u(x) \, \mathrm{d}x = \frac{d\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2}+1)} r^{d-1} \frac{\mathrm{d}}{\mathrm{d}s} \bigg|_{s=r} \int_{\partial B(x,s)} u(\zeta) \, \mathrm{d}\sigma(\zeta).$$

2. Show that u is superharmonic if and only if $\Delta u \leq 0$ on Ω .

Proof:

1.

$$\begin{split} \int_{B(x,r)} \Delta u(x) \, \mathrm{d}x &= \int_{\partial B(x,r)} \nabla u(x) \cdot \nu \, \mathrm{d}\sigma(x) \\ &= r^{d-1} \int_{\partial B(0,1)} \nabla u(x+\zeta r) \cdot \zeta \, \mathrm{d}\sigma(\zeta) \\ &= r^{d-1} \int_{\partial B(0,1)} \nabla u(x+\zeta r) \cdot \zeta \, \mathrm{d}\sigma(\zeta) \\ &= r^{d-1} \frac{\mathrm{d}}{\mathrm{d}s} \bigg|_{s=r} \int_{\partial B(0,1)} u(x+\zeta s) \, \mathrm{d}\sigma(\zeta) \\ &= \frac{d\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2}+1)} r^{d-1} \frac{\mathrm{d}}{\mathrm{d}s} \bigg|_{s=r} \int_{\partial B(x,s)} u(\zeta) \, \mathrm{d}\sigma(\zeta). \end{split}$$

2. \Leftarrow Suppose $\Delta u \leqslant 0$ on Ω . Then for any $B(x,r) \subset \Omega$,

$$0\geqslant \int_{B(x,r)}\Delta u(x)\,\mathrm{d}x = \frac{d\pi^{\frac{d}{2}}}{\Gamma\big(\frac{d}{2}+1\big)}r^{d-1}\frac{\mathrm{d}}{\mathrm{d}s}\bigg|_{s=r}\int_{\partial B(x,s)}u(\zeta)\,\mathrm{d}\sigma(\zeta).$$

i.e.

$$\left.\frac{\mathrm{d}}{\mathrm{d}s}\right|_{s=r} \int_{\partial B(x,s)} u(\zeta) \, \mathrm{d}\sigma(\zeta) \leqslant 0,$$

so

$$\int_{\partial B(x,r)} u(\zeta) \,\mathrm{d}\sigma(\zeta) \leqslant \lim_{r \to 0^+} \int_{\partial B(x,r)} u(\zeta) \,\mathrm{d}\sigma(\zeta) = u(x),$$

Hence

$$\int_{B(x,r)} u(\zeta) \,\mathrm{d}\zeta \leqslant u(x)$$

holds for all $B(x,r) \in \Omega$.

 \Longrightarrow Since

$$\int_{\partial B(x,s)} u(\zeta) \, \mathrm{d}\sigma(\zeta) \leqslant u(x),$$

then

$$\int_{B(x,r)} \Delta u(x) \, \mathrm{d}x \leqslant 0$$

holds for all $B(x,r) \in \Omega$, hence $\Delta u \leq 0$ in Ω .

Exercise 3: Let Ω be a bounded domain in \mathbb{R}^d . Then, every real-valued continuous function f on $\partial\Omega$ can be uniformly approximated on $\partial\Omega$ by the difference of the restrictions to $\partial\Omega$ of two functions continuous on $\overline{\Omega}$ and superharmonic in Ω .

Proof: Since f can be uniformly approximated by polynomial functions on $\partial\Omega$, we can suppose $f_n \to f$ uniformly, where f_n are polynomials on $\partial\Omega$. Denote $M_n = \sup_{\partial\Omega} |\Delta f_n|$, and set $v(x) = M_n |x|^2$, $w = f_n + v$. Then it is easy to varify that v, w are superharmonic functions needed. \square

Exercise 4:

- 1. Show that if $\Omega, \tilde{\Omega}$ are domains in \mathbb{C} and $f: \Omega \to \tilde{\Omega}$ is analytic, then $u \circ f$ is harmonic in Ω for every harmonic function u in $\tilde{\Omega}$. What can we conclude if f is conformal and $\tilde{\Omega} = f(\Omega)$?
- 2. Show that if $\Omega, \tilde{\Omega}$ are domains in \mathbb{C} and $f: \Omega \to \tilde{\Omega}$ is conformal and onto $\tilde{\Omega}$, then $u \circ f$ is superharmonic in Ω whenever $u: \tilde{\Omega} \to \mathbb{R}$ is superharmonic in $\tilde{\Omega}$.

Exercise 5: Find a bounded harmonic function h in the upper half-plane $\mathbb{H} \subset \mathbb{R}^2$, continuous on $\{z : \operatorname{Im}(z) \ge 0\} \setminus \{0\}$, such that

$$\lim_{\mathbb{H}\ni y\to x\in\mathbb{R}^*}h(y)=\mathrm{sgn}(x)\quad\text{for all}\ \ x\in\mathbb{R}^*.$$

Exercise 6: Determine the harmonic measure of the upper half-plane $\mathbb{H} \subset \mathbb{R}^2$ with respect to a point $x \in \mathbb{R} \times \mathbb{R}_+^*$.

Exercise 7:

- 1. Let R>r>0 be two positive real numbers and consider the domain $\Omega=B(0,R)\setminus \overline{B(0,r)}$. For $x\in\Omega$, determine the harmonic measure $\omega_x(\partial B(0,r))$.
- 2. Determine the harmonic measure of the upper half-plane $\mathbb{H} \subset \mathbb{R}^2$ with respect to a point $x \in \mathbb{H}$.
- 3. Determine the harmonic measure of $\mathbb{R}_+^* \times \mathbb{R}_+^*$ with respect to a point $x \in \mathbb{R}_+^* \times \mathbb{R}_+^*$. (Note: Items 2 and 3 involve unbounded domains but can still be addressed...)

Exercise 8: Let Ω be a domain in \mathbb{R}^d and ω its harmonic measure. Show that a set $E \subset \partial \Omega$ has zero harmonic measure if and only if there exists a positive superharmonic function u, not identically $+\infty$ on Ω , such that

$$\lim_{\Omega\ni y\to x}u(y)=+\infty\quad\text{for every }\ x\in E.$$

Remark: The reference point for the harmonic measure is irrelevant.