MAT4220 Problem Set 1 (due September 12, 2019)

- 1. Solve the equation $xu_x yu_y = u$ with initial condition $u(x, \mathbf{1}) = f(x)$.
- 2. Prove that the equation $xu_x + yu_y = -u$ in the domain $x^2 + y^2 \le a^2$ has only one solution $u \equiv 0$.
- 3. Prove that the equation $a(x,y)u_x + b(x,y)u_y = -u$ in the domain $x^2 + y^2 \le a^2$ has only one solution $u \equiv 0$ if xa(x,y) + yb(x,y) > 0 on the boundary $x^2 + y^2 = a^2$.

(Hint: Show that, in $x^2 + y^2 \le a^2$, we have $\max u \le 0$ and $\min u \ge 0$.)