AOR Dr. Hendrik Kasten Mathematisches Institut

FAKULTÄT FÜR MATHEMATIK UND INFORMATIK

10. Dezember 2021

Modulformen 1 - Übungsblatt 8

Wintersemester 2021/22

Aufgabe 1 (6 Punkte)

Zur Herleitung des Kommutativitätskriteriums für Hecke-Algebren haben wir Hecke-Paare (R,S) studiert, in denen für alle $s \in S$ die Anzahl der R-Rechts- und R-Linksnebenklassen in RsR übereinstimmt. Zeigen Sie, dass diese Voraussetzung für das folgende Hecke-Paar nicht erfüllt ist:

$$(R,S) = (\langle T \rangle, \operatorname{GL}_2(\mathbb{Q})_{\infty}) = \left(\left\{ \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \mid h \in \mathbb{Z} \right\}, \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \mathbb{Q}^{2 \times 2} \mid ad \neq 0 \right\} \right) .$$

Aufgabe 2 (4 Punkte)

Sie haben in der Vorlesung den Hecke-Operator kennengelernt. Seien von nun an p prim und $r, s \in \mathbb{N}_0$.

(a) Beweisen Sie per Induktion über s:

$$T_{p^r}T_{p^s} = \sum_{n=0}^{\min(r,s)} p^{n(k-1)}T_{p^{r+s-2n}}$$
.

(b) Folgern Sie diese Identität formaler Potenzreihen:

$$\left(\sum_{r=0}^{\infty} T_{p^r} X^r\right) (1 - T_p X + p^{k-1} X^2) = 1.$$

Hinweis: Sie können stets ohne formalen Beweis $T_{p^r}T_p=T_{p^{r+1}}+p^{k-1}T_{p^{r-1}}$ für $r\in\mathbb{N}$ benutzen.

Aufgabe 3 (5 Punkte)

Zeigen Sie: Jede (simultane) Hecke-Eigenform $f \in M_k$ mit $a_0(f) = 1$ ist bereits identisch zu E_k .

Aufgabe 4 (3 Punkte)

Sei p eine Primzahl, für die $\tau(p)=0$ gilt. Nutzen Sie, dass $\Delta(z)=\sum_{n=1}^{\infty}\tau(n)q^n$ eine normierte Hecke-Eigenform ist und weisen Sie nach, dass $\tau(p^n)=0$ für ungerades n und $\tau(p^n)=(-1)^{\frac{n}{2}}\cdot p^{\frac{11n}{2}}$ für gerades n gilt.

Abgabe: online über MaMpf bis Freitag, den 17. Dezember 2021, spätestens um 12 Uhr s. t.