# Laboratorio di Reti e Sistemi Distribuiti

15: Introduzione ai Sistemi Distribuiti

Roberto Marino, PhD<sup>1</sup> roberto.marino@unime.it

<sup>1</sup>Dipartimento di Matematica, Informatica, Fisica e Scienze della Terra Future Computing Research Laboratory Università di Messina

Last Update: 13th May 2025



### Indice

- Introduzione
- Ray.io



### Tassonomia di Flynn

Michael J. Flynn (Stanford) ha proposto un modello per classificare i sistemi (distribuiti e non) in base a:

- numero di flussi di istruzioni
- numero di flussi di dati

Questa classificazione è diventata uno standard nella progettazione e nello studio dell'elaborazione parallela e dell'architettura dei calcolatori.

- SISD: Single Instruction Single Data
- SIMD: Single Instruction Multiple Data
- MIMD: Multiple Instruction Multiple Data
- MISD: Multiple Instruction Single Data



# Single Instruction Single Data (SISD)

Un solo flusso di istruzioni, un solo flusso di dati (cioè l'architettura classica dei vecchi processori seriali).

#### Esempio

Un processore che esegue una somma a+b, poi c+d, uno alla volta.

#### Implementazioni

CPU monoprocessore 80386, 80486, Pentium o semplici microcontrollore.

# Single Instruction Multiple Data

- Un solo flusso di istruzioni, più flussi di dati
- L'istruzione è replicata su molti dati in parallelo.
- Usato in elaborazioni vettoriali o multimediali.

#### Esempio

GPU che usano CUDA o OpenCL (Open Computing Language)

```
1 float prezzi[4] = {10, 20, 30, 40};
2 float risultati[4];
3
4 for (int i = 0; i < 4; i++) {
5    risultati[i] = prezzi[i] * 2;
6 }</pre>
```

Il codice può essere o compilato in istruzioni SIMD (Es. C++/CUDA) o interpretato in istruzioni SIMD (Es. pytorch) ed eseguito in parallelo

# Multiple Instruction Multiple Data

- Flussi multipli di istruzioni, flussi multipli di dati
- Ogni core può eseguire istruzioni diverse su dati diversi.
- È il tipo più flessibile e più comune nei sistemi multi-core.

#### Esempio

Un core calcola la somma di due array mentre un altro core esegue un algoritmo di sorting.

#### **Implementazione**

Sistemi multi-core (Intel i7, AMD Ryzen) Cluster HPC, supercomputer (MPI, OpenMP)



# Multiple Instruction Single Data

- Flussi multipli di istruzioni, un solo flusso di dati
- È molto raro e usato in contesti fault-tolerant
- Stesso dato è processato da più istruzioni, spesso per ridondanza.

### Esempio

Un singolo dato (es. sensore critico) viene processato da più algoritmi per controllo incrociato.

#### Implementazione

Sistemi critici nel dominio aerospaziale (es. sistemi di volo ridondanti) Architetture come la Space Shuttle flight computer



### Sotto-tassonomia MIMD

I sistemi MIMD (Multiple Instruction, Multiple Data) possono essere suddivisi in due categorie principali:

#### 1. Sistemi Multiprocessore (Cluster)

- Tutti i processori condividono la memoria.
- Sono spesso chiamati SMP (Shared Memory Multiprocessors) o sistemi fortemente accoppiati (Tightly-Coupled).
- Esempio: server multi-core con memoria RAM condivisa.

#### 2. Multi-computer

- Sistemi composti da più computer che non condividono la memoria ma comunicano tramite reti o switch.
- Ogni nodo è un computer indipendente.
- Includono anche i cosiddetti sistemi MPP (Massively Parallel Processors), con decine di migliaia di processori.



### UMA vs NUMA

#### **UMA - Uniform Memory Access**

- Tutti i processori accedono alla memoria fisica condivisa con lo stesso tempo di accesso. Tale tempo non dipende dalla "distanza" tra cpu e memoria.
- Poco scalabile

#### **NUMA - Non-Uniform Memory Access**

- Ogni processore ha una memoria locale, ma può accedere anche alla memoria degli altri processori.
- Il tempo di accesso alla memoria varia: è più veloce se la memoria è locale, più lento se è remota (cioè appartenente a un altro nodo/CPU).
- Molto scalabile



#### Cluster

#### **Definizione**

Cluster: un'architettura distribuita costituita da più nodi (server o macchine fisiche/virtuali) coordinati per eseguire attività computazionali parallele, aumentare la disponibilità del sistema o garantire tolleranza ai guasti.

Un cluster è né UMA né NUMA nel senso tradizionale: ogni nodo ha memoria locale privata, separata dagli altri. I nodi non condividono una RAM centrale, quindi si parla di memoria distribuita piuttosto che condivisa.

Quindi, un cluster è **un'architettura a memoria distribuita**, dove ogni nodo è generalmente UMA o NUMA internamente, ma non nel complesso.

Se un sistema non è a memoria condivisa allora ricade nella categoria (vasta) dei sistemi **message passing** 



### Ray.io

Ray.io è un framework (middleware) open source per il calcolo distribuito e parallelo in Python. È progettato per essere scalabile, flessibile e con un curva di apprendimento poco ripida. È particolarmente usato in:

- Machine learning distribuito
- Ottimizzazione iperparametri
- Federated learning
- Reinforcement learning
- Servizi scalabili con microservizi (Ray Serve)

```
pip install "ray[default]"
```



### Ray.io

```
1 import ray
2 import time
4 ray.init() # Avvia Ray in locale
5
6 @ray.remote
 def worker_function(x):
     return x * x
 # Esecuzione in parallelo
  futures = [worker_function.remote(i) for i in range(4)]
results = ray.get(futures) # Ottieni i risultati
13 print(results) # Output: [0, 1, 4, 9]
```

### Cos'è un Remote in Ray?

In Ray, una funzione decorata con @ray.remote diventa una funzione remota. Quando viene invocata tramite il metodo .remote(), non viene eseguita immediatamente; invece, viene creato un task che verrà eseguito su un worker disponibile nel cluster. La chiamata a .remote() restituisce un ObjectRef, che è un identificatore univoco del risultato del task. Per ottenere il risultato, è necessario chiamare ray.get() su questo ObjectRef.

#### Flusso interno di un Remote

- Decorazione: La funzione viene decorata con @ray.remote, trasformandola in una funzione remota.
- **Invocazione:** Chiamando .remote() sulla funzione, Ray crea un task che rappresenta l'esecuzione della funzione.
- **Schedulazione:** Il task viene inviato al Raylet, il componente di Ray responsabile della gestione dei worker.
- **Esecuzione:** Il Raylet assegna il task a un worker disponibile che esegue la funzione remota.
- Ritorno del Risultato: Il risultato dell'esecuzione viene restituito come un ObjectRef.
- Recupero del Risultato: Chiamando ray.get() sull'ObjectRef, il driver riceve il risultato dell'esecuzione.



### Esecuzione di Ray in locale

```
import ray
ray.init()
```

Questo avvia Ray su una singola macchina, ma sfrutta tutti i core disponibili in modo parallelo.

### Ray clustering

#### Su una macchina head

```
ray start --head --port=6379
```

#### Sulle macchine worker:

```
ray start --address='192.168.1.100:6379'
```

Su una qualunque macchina del cluster:

```
import ray
ray.init(address='192.168.1.100:6379')
```