

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikiwe Express Way, Jabi - Abuja

FACULTY OF MANAGEMENT SCIENCES

OCTOBER/NOVEMBER EXAMINATION 2016

COURSE CODE: BUS 406 CREDIT UNIT: 3

COURSE TITLE: Analysis for Business Decisions

TIME ALLOWED: 2 ½ HOURS

INSTRUCTIONS: 1. Attempt question number one (1) and any other (3)

questions.

2. Question number 1 carries 25 marks, while the other

three (3) questions carry 15 marks each.

3. Present all your points in coherent and orderly manner

1a. Describe the components of Decision making. 8marks

b. A farmer is considering his activity in the next farming season. He has a choice of three crops to select from for the next planting season – Groundnuts, Maize, and Wheat. Whatever is his choice of crop; there are four weather conditions that could prevail: heaving rain, moderate rain, light rain, and no rain. In the event that the farmer plants Ground nuts and there is heavy rain, he expects to earn a proceed of №650,000 at the end of the farming season, if there is moderate rain №1,000,000, high rain – №450,000 and if there is no rain – (-№1,000) If the farmer plants Maize, the following will be his proceeds after the harvest considering the weather condition: heavy rain – №1,200,000, moderate rain – №1,500,000, Light rain – №600,000 and no rain №2000. And if the farmer decides to plant wheat, he expects to make the following: heavy rain – №1,150,000, moderate rain – №1,300,000, Light rain- №800,000 and No rain – №200 -000.

The farmer has contact you, an expert in OR to help him decide on what to do.

Required: Construct a payoff matrix for the above situation, analyse completely and advise the farmer on the course of action to adopt. Assume $\alpha = 0.6$. **17marks**

2a. Discuss four steps in Decision Theory Approach 10marks

b. What are the errors that can occur in making decisions? 5marks

- 3a. Explain the Monte Carlo Simulation (5marks)
- b. Consider the contingency Matrix Below

Contingency Matrix

Contingency Matrix			
	Alternatives		Probability
States of Nature	Stock Rice	Stock Maize	
	(A_1)	(A_2)	
High demand	8,000	12,000	0.6
(S_1) (\mathbb{N})			
Low demand	4,000	-3,000	0.4
(S_2) (\mathbb{N})			

Represent the above payoff matrix on a decision tree and find the optimum contingency strategy. **10marks**

- 4a. Discuss the concept of entropy **5marks**
- b. Present a brief and concise history of the waiting line model. 10marks
- 5a. Using relevant diagram, define Systems Theory. **5marks**
- b. A stock keeper has to supply 12000 units of a product per year to his customer. The demand is fixed and known and the shortage cost is assumed to be infinite. The inventory holding cost is \Re 0.20k per unit per month, and the ordering cost per order is N350. Determine
 - *i.* The optimum lot size q_0 **3marks**
 - *ii.* Optimum scheduling period t_0 3marks
 - iii. Minimum total variable yearly cost. 4marks
- 6a. Define project management **7marks**
- b. State the assumptions of games theory. **8marks**