Welcome to STN International! Enter x:X LOGINID:ssptacrs1614 PASSWORD: TERMINAL (ENTER 1, 2, 3, OR ?):2 * * * * * * * * * * Welcome to STN International Web Page for STN Seminar Schedule - N. America NEWS NEWS 2 OCT 02 CA/CAplus enhanced with pre-1907 records from Chemisches Zentralblatt NEWS 3 OCT 19 BEILSTEIN updated with new compounds NEWS 4 NOV 15 Derwent Indian patent publication number format enhanced NEWS 5 NOV 19 WPIX enhanced with XML display format NEWS 6 NOV 30 ICSD reloaded with enhancements NEWS 7 DEC 04 LINPADOCDB now available on STN NEWS 8 DEC 14 BEILSTEIN pricing structure to change NEWS 9 DEC 17 USPATOLD added to additional database clusters NEWS 10 DEC 17 IMSDRUGCONF removed from database clusters and STN NEWS 11 DEC 17 DGENE now includes more than 10 million sequences NEWS 12 DEC 17 TOXCENTER enhanced with 2008 MeSH vocabulary in MEDLINE segment NEWS 13 DEC 17 MEDLINE and LMEDLINE updated with 2008 MeSH vocabulary NEWS 14 DEC 17 CA/CAplus enhanced with new custom IPC display formats NEWS 15 DEC 17 STN Viewer enhanced with full-text patent content from USPATOLD NEWS 16 JAN 02 STN pricing information for 2008 now available NEWS 17 JAN 16 CAS patent coverage enhanced to include exemplified prophetic substances NEWS 18 JAN 28 USPATFULL, USPAT2, and USPATOLD enhanced with new custom IPC display formats NEWS 19 JAN 28 MARPAT searching enhanced NEWS 20 JAN 28 USGENE now provides USPTO sequence data within 3 days of publication NEWS 21 JAN 28 TOXCENTER enhanced with reloaded MEDLINE segment NEWS 22 JAN 28 MEDLINE and LMEDLINE reloaded with enhancements NEWS 23 FEB 08 STN Express, Version 8.3, now available NEWS 24 FEB 20 PCI now available as a replacement to DPCI NEWS 25 FEB 25 IFIREF reloaded with enhancements NEWS 26 FEB 25 IMSPRODUCT reloaded with enhancements NEWS 27 FEB 29 WPINDEX/WPIDS/WPIX enhanced with ECLA and current U.S. National Patent Classification NEWS EXPRESS FEBRUARY 08 CURRENT WINDOWS VERSION IS V8.3, AND CURRENT DISCOVER FILE IS DATED 20 FEBRUARY 2008 NEWS HOURS STN Operating Hours Plus Help Desk Availability NEWS LOGIN Welcome Banner and News Items

Enter NEWS followed by the item number or name to see news on that specific topic.

NEWS IPC8

For general information regarding STN implementation of IPC 8

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 10:04:14 ON 03 MAR 2008

=> file registry
COST IN U.S. DOLLARS

FULL ESTIMATED COST ENTRY SESSION 0.42 0.42

SINCE FILE

TOTAL

FILE 'REGISTRY' ENTERED AT 10:05:08 ON 03 MAR 2008 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2008 American Chemical Society (ACS)

Property values tagged with IC are from the ${\tt ZIC/VINITI}$ data file provided by ${\tt InfoChem.}$

STRUCTURE FILE UPDATES: 2 MAR 2008 HIGHEST RN 1006303-40-7 DICTIONARY FILE UPDATES: 2 MAR 2008 HIGHEST RN 1006303-40-7

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH January 9, 2008.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/support/stngen/stndoc/properties.html

Uploading C:\Program Files\STNEXP\Queries\10506936.str

chain nodes :
7 8 9 10 11 12 13 14 15 16 17 18 19 20 27
ring nodes :
1 2 3 4 5 6 21 22 23 24 25 26
chain bonds :
3-7 6-9 7-8 9-10 9-11 9-27 12-16 12-13 12-27 13-14 13-15 16-19 16-17
17-18 20-21 20-27
ring bonds :
1-2 1-6 2-3 3-4 4-5 5-6 21-22 21-26 22-23 23-24 24-25 25-26
exact/norm bonds :
3-7 6-9 7-8 9-10 9-11 9-27 12-27 16-19 16-17 20-27
exact bonds :
12-16 12-13 13-14 13-15 17-18 20-21
normalized bonds :
1-2 1-6 2-3 3-4 4-5 5-6 21-22 21-26 22-23 23-24 24-25 25-26

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:CLASS 8:CLASS 9:CLASS 10:CLASS 11:CLASS 12:CLASS 13:CLASS 14:CLASS 15:CLASS 16:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:Atom 22:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:CLASS

L1 STRUCTURE UPLOADED

=> d l1 L1 HAS NO ANSWERS L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> s 11 sss ful FULL SEARCH INITIATED 10:05:32 FILE 'REGISTRY' FULL SCREEN SEARCH COMPLETED - 172 TO ITERATE 100.0% PROCESSED 172 ITERATIONS 24 ANSWERS

SEARCH TIME: 00.00.01

L2 24 SEA SSS FUL L1

=> s l1 fam ful

FULL SEARCH INITIATED 10:05:40 FILE 'REGISTRY'

FULL SCREEN SEARCH COMPLETED - 66 TO ITERATE

100.0% PROCESSED 66 ITERATIONS 9 ANSWERS

SEARCH TIME: 00.00.01

L3 9 SEA FAM FUL L1

=> d scan 13

L3 9 ANSWERS REGISTRY COPYRIGHT 2008 ACS on STN

MF C18 H23 N3 O5 S

CI COM

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):1

L3 9 ANSWERS REGISTRY COPYRIGHT 2008 ACS on STN

IN Butanamide, N-hydroxy-2-[[(4-methoxyphenyl)sulfonyl](3-pyridinylmethyl)amino]-3-methyl-, monohydrochloride (9CI)

MF C18 H23 N3 O5 S . Cl H

● HCl

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):end

COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

=> file caplus

COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION

FULL ESTIMATED COST 248.47 248.89

FILE 'CAPLUS' ENTERED AT 10:06:18 ON 03 MAR 2008 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 3 Mar 2008 VOL 148 ISS 10 FILE LAST UPDATED: 2 Mar 2008 (20080302/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

http://www.cas.org/infopolicy.html

=> s 13

L4 111 L3

=> s 14 and py<=2003 23979372 PY<=2003

L5 72 L4 AND PY<=2003

=> s 15 and (cancer? or tumor? or neoplasm?)

366619 CANCER? 505848 TUMOR? 502023 NEOPLASM?

L6 21 L5 AND (CANCER? OR TUMOR? OR NEOPLASM?)

=> d 16 ibib abs 1-21

L6 ANSWER 1 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:166330 CAPLUS

DOCUMENT NUMBER: 141:17052

TITLE: Screening of stress enhancer based on analysis of gene

expression profiles: Enhancement of hyperthermia-induced tumor necrosis by an

MMP-3 inhibitor

AUTHOR(S): Kato, Naoki; Kobayashi, Takeshi; Honda, Hiroyuki CORPORATE SOURCE: Department of Biotechnology, School of Engineering,

Nagoya University, Nagoya, 464-8603, Japan

SOURCE: Cancer Science (2003), 94(7), 644-649

CODEN: CSACCM; ISSN: 1347-9032

PUBLISHER: Japanese Cancer Association

DOCUMENT TYPE: Journal

LANGUAGE: English

To improve the therapeutic benefit of hyperthermia, we examined changes of AB global gene expression after heat shock using DNA microarrays consisting of 12,814 clones. HeLa cells were treated for 1 h at 44° and RNA was extracted from the cells 0, 3, 6, and 12 h after heat shock. The 664 genes that were up or down-regulated after heat shock were classified into 7 clusters using fuzzy adaptive resonance theory (fuzzy ART). There were 41 genes in two clusters that were induced in the early phase after heat shock. In addition to shock response genes, such as hsp70 and hsp40, the stress response genes c-jun, c-fos and egr-1 were expressed in the early phase after heat shock. We also found that expression of matrix metalloproteinase 3 (MMP-3) was enhanced during the early response. We therefore investigated the role of MMP-3 in the heat shock response by examining HeLa cell survival after heat treatment in the presence and absence of an MMP-3 inhibitor, N-isobutyl-N-(4-methoxyphenylsulfonyl)glycylhydroxamic acid (NNGH) or N-hydroxy-2(R)-[[4methoxysulfonyl](3-picolyl)amino]-3-methylbutaneamidehydrochloride(MMI270) . The number of surviving cells 3 days after heat treatment significantly decreased, reaching 3.5% for NNGH and 0.2% for MMI270. These results indicate that the MMP-3 inhibitors enhanced heat shock-induced cell death and behaved as stress enhancers in cancer cells. This valuable conclusion was reached as a direct result of the gene expression profiling that was performed in these studies.

REFERENCE COUNT: 46 THERE ARE 46 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 2 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:855697 CAPLUS

DOCUMENT NUMBER: 139:364941

TITLE: Preparation of 3,4-diaminocyclobutene-1,2-diones as

CXC chemokine receptor antagonists

INVENTOR(S): Taveras, Arthur G.; Aki, Cynthia J.; Bond, Richard W.;

Chao, Jianping; Dwyer, Michael; Ferreira, Johan A.; Pachter, Jonathan A.; Baldwin, John J.; Kaiser, Bernd;

Li, Ge; Merritt, J. Robert; Nelson, Kingsley H.;

Rokosz, Laura L.

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 127 pp., Cont.-in-part of U.S.

Ser. No. 62,006.

CODEN: USXXCO

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
US 2003204085	A1	20031030	US 2002-208426		20020730 <
US 2003097004	A1	20030522	US 2002-62006		20020201 <
US 2004235908	A1	20041125	US 2004-869189		20040616
PRIORITY APPLN. INFO.:			US 2001-265951P	P	20010202
			US 2002-62006	A2	20020201
			US 2002-208426	А3	20020730

OTHER SOURCE(S): MARPAT 139:364941

GΙ

AB Title compds. I [A = (substituted) aryl, heteroaryl; B = (substituted) Ph, benzotriazolyl, benzimidazolyl, hydroxyimidazolyl, hydroxythienyl, hydroxypyrrolyl, etc.], useful for treating chemokine mediated diseases selected from psoriasis, atopic dermatitis, asthma, arthritis, cancer, etc., were prepared Thus, 1-ethoxy-2-phenylamino-1-cyclobutene-3,4-dione (preparation given) and 2-OH-3-[(2-morpholinoethyl)aminocarbonyl]aniline (preparation given) were refluxed overnight in EtOH to give 34% title compound (II). I showed CXCR2 receptor binding activity in the range of 1-10000 nM. Pharmaceutical composition comprising the compound I is claimed.

L6 ANSWER 3 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:786213 CAPLUS

DOCUMENT NUMBER: 140:296584

TITLE: Combination therapy of hepatocellular carcinoma with

biological response modifiers

AUTHOR(S): Schuppan, D.; Herold, C.; Ganslmayer, M.; Ocker, M.;

Hahn, E. G.

CORPORATE SOURCE: Innere Medizin I, Universitaet Erlangen-Nuernberg,

Erlangen, D-91054, Germany

SOURCE: Malignant Liver Tumours: Basic Concepts and Clinical

Management, Proceedings of [the] Falk Workshop, Leipzig, Germany, Jan. 24-25, 2002 (2003), Meeting Date 2002, 145-148. Editor(s): Berr, F. Kluwer Academic Publishers: Dordrecht, Neth.

CODEN: 69EPH7; ISBN: 0-7923-8779-1

DOCUMENT TYPE: Conference; General Review

LANGUAGE: English

AB A review. The treatment of hepatocellular carcinoma (HCC) cells with tamoxifen (TAM), 9-cis-retinoic acid (CRA), TNP-470, or histone deacetylase inhibitors alone showed minor to moderate antiproliferative effects. Inhibitors of matrix metalloproteinases and of angiogenesis were ineffective. Modulation or inhibition of several tumor-specific alterations, such as neo-angiogenesis, peri-tumoral lysis of extracellular matrix and resistance to apoptosis, is a promising strategy for the treatment of solid gastrointestinal cancers, in particular HCC.

REFERENCE COUNT: 20 THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 4 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:757689 CAPLUS

DOCUMENT NUMBER: 139:276755

TITLE: Preparation of epothilone derivatives for therapeutic

use as anticancer agents

INVENTOR(S): Regueiro-Ren, Alicia; Kim, Soong-Hoon PATENT ASSIGNEE(S): Bristol-Myers Squibb Company, USA

SOURCE: PCT Int. Appl., 47 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA	TENT	NO.			KIN	D	DATE			APPL	ICAT	ION 1	NO.		D.	ATE	
WO	2003	 0784	 11		A1	_	2003	0925		WO 2	003-	 US75	84		2	0030	311 <
	W:	ΑE,	ΑG,	AL,	ΑM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BΖ,	CA,	CH,	CN,
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	GH,
		GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LR,
		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NΖ,	OM,	PH,
		PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	ТJ,	TM,	TN,	TR,	TT,	TZ,
		UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW						
	RW:	GH,	GM,	ΚE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	BY,
		KG,	KΖ,	MD,	RU,	ΤJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,
		FΙ,	FR,	GB,	GR,	HU,	ΙE,	ΙΤ,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,
		BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG
AU	2003	2181	10		A1		2003	0929		AU 2	003-	2181	10		2	0030	311 <
US	2003	1910	89		A1		2003	1009		US 2	003-	3860	72		2	0030	311 <
US	6719	540			В2		2004	0413									
EP	1483	251			A1		2004	1208		EP 2	003-	7140	96		2	0030	311
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK	
PRIORIT	Y APP	LN.	INFO	.:						US 2	002-	3634	41P		P 2	0020	312
										WO 2	003-	US75	84		W 2	0030	311
OTHER SO	OURCE	(S):			MAR	PAT	139:	2767.	55								

AB Epothilone derivs., such as I [M = bond, O, NR9, CR10R11; X = O, NH; R1-R4 = H, alkyl; R5 = H, alkyl, cyano; R6 = H, alkyl, aryl, heterocyclyl; R9-R11 = H, OH, alkyl, alkoxy, aryl, cycloalkyl, heterocyclyl], pharmaceutically acceptable salts, solvates or hydrate thereof, were prepared for use as antitumor agents. Thus, epothilone derivative II was prepared

from 2,3-dehydro epothilone A, via silylation of hydroxyl group, potassium cyanide addition, followed by deprotection. The prepared epothilone derivs. were assayed in vitro for their effect on tubulin polymerization and for cytotoxicity against HCT-116 human colon carcinoma cells. Therapeutic compns. containing I or in combination with other therapeutic agents useful in the treatment of cancer or other proliferative diseases are also claimed.

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 5 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2003:757513 CAPLUS

DOCUMENT NUMBER: 139:276754

TITLE: Preparation of C12-cyano epothilone derivatives with

antitumor activity

INVENTOR(S): Vite, Gregory D.; Regueiro-Ren, Alicia

PATENT ASSIGNEE(S): Bristol-Myers Squibb Company, USA

SOURCE: PCT Int. Appl., 47 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA'	TENT	NO.			KIN	D	DATE			APPL	ICAT	ION :	NO.		D.	ATE	
WO	2003	 0779	 03		A1	_	2003	0925		WO 2	003-	 US75	 76		2	0030	311 <
	W:	ΑE,	AG,	AL,	ΑM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	GH,
		GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LR,
		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MΖ,	NΙ,	NO,	NΖ,	OM,
		PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	ТJ,	TM,	TN,	TR,	TT,
		TZ,	UA,	UG,	US,	UΖ,	VC,	VN,	YU,	ZA,	ZM,	ZW					
	RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,
		KG,	KΖ,	MD,	RU,	ΤJ,	TM,	AT,	BE,	ВG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,
		FΙ,	FR,	GB,	GR,	HU,	ΙE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,
		BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG
AU	2003	2181	07		A1		2003	0929		AU 2	003-	2181	07		2	0030	311 <
US	2003	1869	65		A1		2003	1002		US 2	003-	3860	59		2	0030	311 <
US	7211	593			В2		2007	0501									
PRIORIT	Y APP	LN.	INFO	.:						US 2	002-	3637	03P		P 2	0020	312
										WO 2	003-	US75	76	,	W 2	0030	311

OTHER SOURCE(S): MARPAT 139:276754

CN

GΙ

$$R^{5}$$
 R^{6}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{2}
 R^{4}
 R^{4

AB Epothilone derivs. of formula I [R1-R5 = H, alkyl; R6 = H, alkyl, aryl, cycloalkyl, heterocyclo; X = H; Y = OH; XY = bond] are prepared Also included are therapeutic compns. containing the compds. of formula I as active ingredients, alone or in combination with other therapeutic agents useful in the treatment of cancer or other proliferative diseases.

Thus, II was prepared in several steps from epothilone A. The EC0.01 of the

prepared compds. was 0.01 to 1000 μM in in vitro tubulin polymerization assay. REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 6 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:737608 CAPLUS

DOCUMENT NUMBER: 139:240351

TITLE: Matrix metalloproteinase inhibitors in combination

with hypothermia and/or radiotherapy for the treatment

of cancer

INVENTOR(S): Nakajima, Motowo

PATENT ASSIGNEE(S): Novartis A.-G., Switz.; Novartis Pharma G.m.b.H.

SOURCE: PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PA:	CENT :	NO.			KIN	D	DATE			APPL	ICAT	ION 1	. O <i>l</i>		D	ATE	
	WO	2003	 0759	 59		A1	_	2003	0918	,	wo 2	003-	EP23	65		2	0030	307 <
		W:	ΑE,	ΑG,	AL,	ΑM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	GH,
			HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LT,	LU,
			LV,	MA,	MD,	MK,	MN,	MX,	NO,	NΖ,	OM,	PH,	PL,	PT,	RO,	RU,	SC,	SE,
			SG,	SK,	ТJ,	TM,	TN,	TR,	TT,	UA,	US,	UZ,	VC,	VN,	YU,	ZA,	ZW	
		RW:	ΑM,	ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,
			DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	ΙE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,
			SI,	SK,	TR													
	ΑU	2003	2141	08		A1		2003	0922		AU 2	003-	2141	8 0		2	00303	307 <
	ΕP	1485	131			A1		2004	1215		EP 2	003-	7097	64		2	00303	307
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
			ΙE,	SI,	LT,	LV,	FΙ,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK	
	JΡ	2005	5267	60		Τ		2005	0908		JP 2	003-	5742.	32		2	00303	307
	US	2005	2329	15		A1		2005	1020	1	JS 2	005-	5069	36		2	0050	506
PRIOF	RIT	APP	LN.	INFO	. :					(GB 2	002-	5537			A 2	00203	308
										(GB 2	002-	2905	4		A 2	0021	212
										1	WO 2	003-	EP23	65	1	W 2	00303	307

OTHER SOURCE(S): MARPAT 139:240351

AB The invention provides a method of treating cancer in a subject in need of such treatment which comprises: radiotherapy, or cytotoxic therapy in combination with heat shock, and further comprises administering to the subject an effective amount of a matrix metalloproteinase inhibitor (Markush structures are included).

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 7 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:551500 CAPLUS

DOCUMENT NUMBER: 139:117431

TITLE: 4,5-Diamino-1,2,3,4-tetrahydro-3,6-pyridazinediones as

 $\ensuremath{\mathsf{CXC}}$ chemokine receptor antagonists for treatment of

inflammatory disorders and cancer

INVENTOR(S): Taveras, Arthur G.; Dwyer, Michael; Chao, Jianping;

Baldwin, John J.; Merritt, Robert J.; Li, Ge; Chao,

Jianhua; Yu, Younong

PATENT ASSIGNEE(S): Schering Corporation, USA; Pharmacopeia, Inc.

SOURCE: PCT Int. Appl., 210 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

PA	TENT :	NO.			KIN	D	DATE			APPL	ICAT	ION 1	NO.		D.	ATE		
WO	2003	0576	 76		A1	_	2003	0717		WO 2	003-	US29	9		2	0030	103 ·	<
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AΖ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
		CO,	CR,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	HR,	HU,	
		ID,	IL,	IN,	IS,	JP,	KG,	KR,	KΖ,	LC,	LK,	LR,	LT,	LU,	LV,	MA,	MD,	
		MG,	MK,	MN,	MX,	MZ,	NO,	NΖ,	PH,	PL,	PT,	RO,	RU,	SC,	SE,	SG,	SK,	
		SL,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UΖ,	VC,	VN,	YU,	ZA,	ZM			
	RW:	GH,	GM,	KΕ,	LS,	MW,	${ m MZ}$,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	ΑM,	AΖ,	BY,	
		KG,	KΖ,	MD,	RU,	ΤJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	
							IE,										BF,	
							GΑ,											
	2004									US 2	003-	3357	89		2	0030	102	
	6878																	
	2472																	
	2003																	<
EP	1461						2004											
	R:						ES,										PT,	
							RO,											
	1582						2005											
	2005						2005											
	2004				A		2004	1004								0040		
RIORIT	Y APP	LN.	INFO	.:						US 2								
										US 2								
										WO 2	003-	US29	9	1	W 2	0030	103	
THER SO	DURCE	(S):			MAR.	PAT	139:	1174	31									

$$\begin{array}{c|c}
R1 & R15 \\
N-N & & \\
O \longrightarrow & & \\
A-N & N-B & \\
H & H & & \\
\end{array}$$

GT

AB Prepns. for title compds. I [wherein R1 and R15 = independently H or (un) substituted (hetero) aryl, alkyl, (hetero) cycloalkyl (alkyl), or (hetero)arylalkyl; A = (un)substituted thiazolyl(alkyl), thienyl(alkyl), oxazolyl(alkyl), pyridinyl(alkyl), piperazinyl(alkyl), piperidinyl(alkyl), imidazolyl(alkyl), indolyl(alkyl), benzotriazolyl(alkyl), phenyl(alkyl), naphthyl(alkyl), carbamoylalkyl, etc.; B = (un)substituted Ph, benzotriazolyl, benzimidazolyl, indolyl, indazolyl, pyridinyl, pyrazolyl, thienyl, pyrrolyl, or pyrimidinyl; or pharmaceutically acceptable salts or solvates thereof] and their intermediates are disclosed (no data). In addition, CXCR1 SPA, CXCR2 SPA, calcium fluorescence, chemotaxis, and cytotoxicity assays are described. For example, 5-methylsalicylic acid was coupled with dimethylamine in the presence of DCC in EtOAc to give 2-hydroxy-N,N,5-trimethylbenzamide, which was nitrated (44%) and reduced using 10% Pd/C to give 3-amino-2-hydroxy-N,N,5-trimethylbenzamide (99%). The amine may be coupled with 1,2,3,4-tetrahydro-3,6-pyridazinediones to provide compds. of the invention (no data). I may exhibit a range of CXCR2 receptor binding activities from about 1 nM to about 10,100 nM. Thus, I and pharmaceutical compns. comprising I may be useful for the treatment of acute and chronic inflammatory disorders and cancer

(no data).

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 8 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN 1.6

ACCESSION NUMBER: 2003:301081 CAPLUS

DOCUMENT NUMBER: 138:321127

Preparation of 3,4-disubstituted maleimide compounds TITLE:

as CXC-chemokine receptor antagonists

INVENTOR(S): Taveras, Arthur G.; Dwyer, Michael; Ferreira, Johan

A.; Girijavallabhan, Viyyoor M.; Chao, Jianping;

Baldwin, John J.; Merritt, J. Robert; Li, Ge

PATENT ASSIGNEE(S): Schering Corporation, USA; Pharmacopeia, Inc.

PCT Int. Appl., 229 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA:	CENT	NO.			KIN	D	DATE			APPL	ICAT	ION :	NO.		D.	ATE		
WO	2003	0314	40		A1	_	2003	0417		WO 2	002-	 US32	628		2	0021	 011 <-	
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
		CO,	CR,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	HR,	HU,	
		ID,	IL,	IN,	IS,	JP,	KG,	KR,	KΖ,	LC,	LK,	LR,	LT,	LU,	LV,	MA,	MD,	
		MG,	MK,	MN,	MX,	MΖ,	NO,	NZ,	PH,	PL,	PT,	RO,	RU,	SE,	SG,	SI,	SK,	
		SL,	ТJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UZ,	VC,	VN,	YU,	ZA,	ZM			
	RW:	GH,	GM,	KΕ,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	ΑM,	ΑZ,	BY,	
		KG,	KΖ,	MD,	RU,	ТJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	
		FΙ,	FR,	GB,	GR,	ΙE,	ΙΤ,	LU,	MC,	NL,	PT,	SE,	SK,	TR,	BF,	ΒJ,	CF,	
		CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	ΤG				
	2462																011 <-	
																	011 <-	
US	2004	0342	29		A1		2004	0219		US 2	002-	2697	75		2	0021	011	
US	6903	131			В2		2005	0607										
EP	1434	775			A1		2004	0707		EP 2	002-	7863	95		2	0021	011	
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
		ΙE,	SI,	LT,	LV,	FΙ,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	SK			
JP	2005																	
_	1599							0323										
MX	2004	PA03	439		Α		2004	0708		MX 2	004 - 1	PA34	39		2	0040	412	
IORIT:	Y APP	LN.	INFO	.:						US 2								
										WO 2	002-	US32	628	,	W 2	0021	011	
HER SO	DURCE	(S):			MARI	PAT	138:	3211.	27									

GΙ

AΒ Disclosed are 3,4-disubstituted maleimides (shown as I; variables defined below; e.g. 3-[[3-(dimethylcarbamoy1)-2-hydroxypheny1]amino]-4-((tertbutyl)amino)maleimide) or pharmaceutically acceptable salts or solvates thereof. The compds. are useful for the treatment of chemokine-mediated

diseases such as acute and chronic inflammatory disorders and cancer. CXCR1 and CXCR2 SPA, calcium fluorescence, chemotaxis (for 293-CXCR2), cytotoxicity and soft agar receptor binding assay methods are described but no test results are reported. Although the methods of preparation are not claimed, 1 example preparation of I and a large number of example

prepns. of intermediates are included; also >200 specific I are claimed. For I: R1 = H or (un)substituted aryl, heteroaryl, alkyl, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, and heterocycloalkylalkyl; A is selected from a very large group of possibilities, e.g. CR7R8Z (Z = (un)substituted pyridinyl, 1-oxopyridinyl, thiazolyl, furyl, oxazolyl, imidazolyl); B is selected from a very large group of possibilities, e.g. (un)substituted Ph, benzotriazol-7-yl, thienyl; addnl. details are given in the claims.

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 9 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:272967 CAPLUS

DOCUMENT NUMBER: 139:316768

TITLE: Anti-tumor angiogenic effect of a matrix

metalloproteinase inhibitor MMI270

AUTHOR(S): Nakamura, Eliane Shizuka; Koizumi, Keiichi; Yamaura,

Takeshi; Saiki, Ikuo

CORPORATE SOURCE: Department of Pathogenic Biochemistry, Institute of

Natural Medicine, Toyama Medical and Pharmaceutical

University, Toyama, 930-0194, Japan

SOURCE: Anticancer Research (2003), 23(1A), 411-417

CODEN: ANTRD4; ISSN: 0250-7005

PUBLISHER: International Institute of Anticancer Research

DOCUMENT TYPE: Journal LANGUAGE: English

We investigated the anti-angiogenic effects of a matrix metalloproteinase inhibitor, (MMI), so called MMI270, against B16-BL6 melanoma through the inhibition of the migrating and invasive abilities of hepatic sinusoidal endothelial (HSE) cells, as well as the formation of tube-like structures by HSE cells. MMI270, at the concentration of 12.5 μ g/mL, significantly inhibited the migration and invasion of HSE cells, in addition to tube formation by approx. 40%. Furthermore, the enzymic degradation of metalloproteinases MMP-9 and MMP-2 produced by HSE cells was inhibited by treatment with 1 μ g/mL of MMI270, showing 30% and 100% of inhibition in comparison to the control, resp. The i.p. administration of MMI270 (200 mg/kg, twice daily for 8 days) after the implantation of B16-BL6 melanoma cells into mice reduced the number of vessels towards the established primary tumor on the dorsal side of mice. These results suggest that MMI270 might be useful as an anti-tumor angiogenic drug.

REFERENCE COUNT: 23 THERE ARE 23 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 10 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:55812 CAPLUS

DOCUMENT NUMBER: 139:223633

TITLE: Role of body surface area in dosing of investigational

anticancer agents in adults, 1991-2001

AUTHOR(S): Baker, Sharyn D.; Verweij, Jaap; Rowinsky, Eric K.;

Donehower, Ross C.; Schellens, Jan H. M.; Grochow,

Louise B.; Sparreboom, Alex

CORPORATE SOURCE: Division of Experimental Therapeutics, The Sydney

Kimmel Comprehensive Cancer Center at Johns Hopkins,

Baltimore, MD, USA

SOURCE: Journal of the National Cancer Institute (2002

), 94(24), 1883-1888

CODEN: JNCIEQ; ISSN: 0027-8874

PUBLISHER: Oxford University Press

DOCUMENT TYPE: Journal LANGUAGE: English

AB The prescribed dose of anticancer agents is most commonly calculated using body surface area as the only independent variable, and it has been shown that this approach still results in large inter-patient variability in drug exposure. Here, we retrospectively assessed the pharmacokinetics of 33 investigational agents tested in phase I trials from 1991 through 2001, as a function of body surface area in 1650 adult cancer, patients. Twelve of the drugs were administered orally, 19 were administered i.v., and two were administered by both routes. Body surface area-based dosing was statistically significantly associated with a reduction in

inter-patient variability in drug clearance for only five of the 33 agents: docosahexaenoic acid (DHA)-paclitaxel, 5-fluorouracil/eniluracil, paclitaxel, temozolomide, and troxacitabine. These results do not support the use of body surface area in dose calcns. and suggest that alternate dosing strategies should be evaluated. We conclude that body surface area should not be used to determine starting doses of investigational agents in future phase I studies.

REFERENCE COUNT: 81 THERE ARE 81 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 11 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:868715 CAPLUS

DOCUMENT NUMBER: 137:346164

TITLE: Anti-angiogenic therapy using liposome-encapsulated

chemotherapeutic agents

INVENTOR(S): Flowers, Clay; Saltman, David; Tam, Patrick M. S.;

Burge, Clive T. R.; Harasym, Troy O.

PATENT ASSIGNEE(S): Inex Pharmaceuticals Corporation, Can.

SOURCE: PCT Int. Appl., 47 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PAT	CENT :	NO.			KIN	D	DATE			APPL	ICAT	ION :	NO.		D	ATE		
	WO	2002	 0897	 72		A1	_	2002	1114		WO 2	002-	 US14	608		2	0020	 509 <	(
		W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	GH,	
			GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LR,	
			LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MΖ,	NO,	NZ,	OM,	PH,	
			PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK,	SL,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	
			UA,	UG,	US,	UΖ,	VN,	YU,	ZA,	ZM,	ZW								
		RW:	GH,	GM,	ΚE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	ΑT,	BE,	CH,	
			CY,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	ΙE,	ΙΤ,	LU,	MC,	NL,	PT,	SE,	TR,	
			BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	ΤG	
	ΑU	2002	2565	04		A1		2002	1118		AU 2	002-	2565	04		2	0020	509 <	(
	US	2003	0822	28		A1		2003	0501		US 2	002-	1435	45		2	0020	509 <	(
PRIO	RIT	APP	LN.	INFO	.:						US 2	001-	2899	35P		P 2	0010	509	
										•	WO 2	002-	US14	608		W 2	0020	509	
ν T)	TT 1			2				_1	1-	1	1			£	L 1		L		1

AB The present invention provides methods and compns. for the treatment and prevention of any of a large number of diseases and conditions with an angiogenic component, e.g., cancer. The present invention is based upon the discovery that liposome-encapsulated chemotherapeutic agents, such as alkaloids (e.g., vinca alkaloids such as vincristine), are surprisingly effective at treating such diseases or conditions when administered at a higher frequency than those used with conventional

administration strategies. Such methods can be used to treat diseases such as cancer even when the cancer comprises cells that are resistant to the chemotherapeutic alkaloid. The liposome encapsulation of the chemotherapeutic agents, e.g., alkaloids, imparts dramatic improvements in the stability, biodistribution, and delivery of the agents, thereby allowing more efficacious and convenient administration to a patient with any of the herein-described diseases or conditions.

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 12 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:754340 CAPLUS

DOCUMENT NUMBER: 137:279205

TITLE: Preparation of 3,4-diaminocyclobutene-1,2-diones as

CXC chemokine receptor antagonists

INVENTOR(S): Taveras, Arthur G.; Aki, Cynthia J.; Bond, Richard W.;

Chao, Jianping; Dwyer, Michael; Ferreira, Johan A.; Pachter, Jonathan; Baldwin, John J.; Kaiser, Bernd; Li, Ge; Merritt, J. Robert; Nelson, Kingsley H., Jr.;

Rokosz, Laura L.

PATENT ASSIGNEE(S): Schering Corporation, USA; Pharmacopeia, Inc.

SOURCE: PCT Int. Appl., 113 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PAT	ENT 1	NO.			KIN	D	DATE			APPL	ICAT	ION :	NO.		D	ATE		
WO	2002	 0769.	26		A1	_	2002	1003	1	 йО 2	002-	 US28	 88		2	0020	201	<
	W:	ΑE,	AG,	AL,	ΑM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
		CO,	CR,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	HR,	HU,	
		ID,	IL,	IN,	IS,	JP,	KG,	KR,	KΖ,	LC,	LK,	LR,	LT,	LU,	LV,	MA,	MD,	
		MG,	MK,	MN,	MX,	ΜZ,	NO,	NΖ,	PH,	PL,	PT,	RO,	RU,	SE,	SG,	SI,	SK,	
		SL,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UΖ,	VN,	YU,	ZA,	ZM				
	RW:	GH,	GM,	KΕ,	LS,	MW,	MΖ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	ΑT,	BE,	CH,	
		CY,	DE,	DK,	ES,	FΙ,	FR,	GB,	GR,	ΙE,	ΙΤ,	LU,	MC,	NL,	PT,	SE,	TR,	
		BF,	ΒJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	ΤG	
	2436																	
ΑU	2002	3030	84		A1		2002	1008		AU 2	002-	3030	84		2	0020.	201	<
EP	1355	875			A1		2003	1029		EP 2	002-	7310	85		2	0020.	201	<
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙΤ,	LI,	LU,	NL,	SE,	MC,	PT,	
		ΙE,	SI,	LT,	LV,	FΙ,	RO,	MK,	CY,	AL,	TR							
BR	2002	0069	68		Α		2004	0309		BR 2	002-	6968			2	0020.	201	
	2003																	
JΡ	2004	5299	11		T		2004	0930		JP 2	002-	5761	89		2	0020.	201	
CN	1575	273			Α		2005	0202	(CN 2	002-	8045	17		2	0020.	201	
NZ	5279	47			Α		2005	1028]	NZ 2	002-	5279	47		2	0020.	201	
ΙN	2003	CN01	171		Α		2005	0422		IN 2	003-	CN11	71		2	0030	729	
ZA	2003	0058	81		Α		2004	1101		ZA 2	003-	5881			2	0030	730	
ИО	2003	0034	24		А		2003	0930			003-				_	0030	731	<
MX	2003	PA06	950		Α		2003	1118]	MX 2	003 - 3	PA69	50		2	0030	801	<
RITY	APP:	LN.	INFO	.:							001-							
										WO 2	002-	US28	88	1	W 2	0020	201	

OTHER SOURCE(S): CASREACT 137:279205; MARPAT 137:279205

GΙ

AB Title compds. I; [A = (substituted) aryl, heteroaryl; B = (substituted) Ph, benzotriazolyl, benzimidazolyl, hydroxyimidazolyl, hydroxythienyl, hydroxypyrrolyl, etc.], were prepared Thus, 1-ethoxy-2-phenylamino-1-cyclobutene-3,4-dione (preparation given) and 2-OH-3-[2-(morpholinoethyl)aminocarbonyl]aniline (preparation given) were refluxed overnight in EtOH to give 34% title compound (II). I showed CXCR2 receptor binding activity in the range of 1-10000 nM.

REFERENCE COUNT: 12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 13 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:441843 CAPLUS

DOCUMENT NUMBER: 138:24507

TITLE: Synthesis of MMP inhibitor radiotracers

[11C]methyl-CGS 27023A and its analogs, new potential

PET breast cancer imaging agents

AUTHOR(S): Fei, Xiangshu; Zheng, Qi-Huang; Hutchins, Gary D.;

Liu, Xuan; Stone, K. Lee; Carlson, Kathy A.; Mock, Bruce H.; Winkle, Wendy L.; Glick-Wilson, Barbara E.; Miller, Kathy D.; Fife, Rose S.; Sledge, George W.;

Sun, Hui Bin; Carr, Raymond E.

CORPORATE SOURCE: Department of Radiology, Indiana University School of

Medicine, Indianapolis, IN, 46202, USA

SOURCE: Journal of Labelled Compounds & Radiopharmaceuticals (

2002), 45(6), 449-470

CODEN: JLCRD4; ISSN: 0362-4803

PUBLISHER: John Wiley & Sons Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 138:24507

GΙ

AB [11C]Methyl-CGS 27023A I [R1 = 4-MeO, R2 = (3-pyridinyl)methyl] and its analogs I [R1 = 4-MeO, R2 = (2-pyridinyl)methyl, PhCH2; R1 = 2-O2N, 3-O2N, 4-O2N, R2 = (3-pyridinyl)methyl], novel radiolabeled matrix metalloproteinase (MMP) inhibitors, were synthesized for evaluation as new potential positron emission tomog. (PET) breast cancer imaging agents. The precursors II, obtained in four to five steps from D-valine in moderate to excellent yields, were radiolabeled by methylation with [11C]methyl triflate at the aminohydroxyl position under basic conditions in 20-25 min synthesis time, and pure I were isolated by solid-phase extraction (SPE) purification in 40-60% radiochem. yields (decay corrected to end of bombardment).

REFERENCE COUNT: 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 14 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:359662 CAPLUS

DOCUMENT NUMBER: 137:306709

TITLE: Radiation-induced increase in invasive potential of

human pancreatic cancer cells and its

blockade by a matrix metalloproteinase inhibitor,

CGS27023

AUTHOR(S): Qian, Li-Wu; Mizumoto, Kazuhiro; Urashima, Taro;

Nagai, Eishi; Maehara, Naoki; Sato, Norihiro;

Nakajima, Motowo; Tanaka, Masao

CORPORATE SOURCE: Department of Surgery and Oncology, Kyushu University,

Fukuoka, 812-8582, Japan

SOURCE: Clinical Cancer Research (2002), 8(4),

1223-1227

CODEN: CCREF4; ISSN: 1078-0432

PUBLISHER: American Association for Cancer Research

DOCUMENT TYPE: Journal LANGUAGE: English

AB Purpose: Radiotherapy remains a major therapeutic option for patients with advanced pancreatic cancer. Nevertheless, the effects of irradiation on malignant biol. behaviors (e.g., migration and invasion of cancer cells) have yet to be clarified. Thus, we conducted an in vitro study to investigate the radiation-induced alterations around cell migration and invasion capacity. Experiment design: Three cell lines from human pancreatic cancer were included in the study. γ -Radiation was used for irradiation treatment. Cell migration and invasion ability were evaluated by Transwell migration assay and Matrigel invasion assay. The activity of MMP-2 and 9, and expression of

urokinase-type plasminogen activator were investigated with gelatin zymog. and immunoblot, resp. Results: Irradiation enhances invasive potential in some pancreatic cancer cells, whereas it significantly inhibits cell proliferation and migration. This hitherto unknown biol. effect of irradiation involves enhanced matrix metalloproteinase (MMP)-2 activity. Consequently, simultaneous administration of an MMP inhibitor, CGS27023A, suppresses the radiation-enhanced invasion through blockade of transition of MMP-2 from latent type to active type. Conclusion: Because radiation may increase invasion ability through activating MMP proteolytic system, simultaneous administration of the MMP inhibitor during radiotherapy could be a potent adjuvant therapeutic approach to improve the efficacy of radiotherapy for pancreatic cancer.

REFERENCE COUNT: 21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 15 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2001:935435 CAPLUS

DOCUMENT NUMBER: 136:84677

TITLE: Methods for enhancing antibody-induced cell lysis and

treating cancer

INVENTOR(S): Weiner, George; Hartmann, Gunther

PATENT ASSIGNEE(S): University of Iowa Research Foundation, USA

SOURCE: PCT Int. Appl., 312 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PA:	TENT :	NO.			KIN		DATE		j		ICAT				D.	ATE		
		2001 2001				A2				1						2	0010	622	<
	,,,	W:	AE, CO, GM, LS, RO,	AG, CR, HR, LT, RU,	AL, CU, HU, LU, SD,	AM, CZ, ID, LV, SE,	AT, DE, IL, MA,	AU, DK, IN, MD,	AZ, DM, IS, MG, SK,	DZ, JP, MK,	EC, KE, MN,	EE, KG, MW,	ES, KP, MX,	FI, KR, MZ,	GB, KZ, NO,	GD, LC, NZ,	GE, LK, PL,	GH, LR, PT,	
			GH, DE, BJ,	DK, CF,	KE, ES, CG,	LS, FI, CI,	FR, CM,	GB, GA,	SD, GR, GN,	IE, GW,	IT, ML,	LU, MR,	MC, NE,	NL, SN,	PT, TD,	SE, TG	TR,	BF,	
		2410																	
		2001 2003																	
		1296							0402										
	ш		AT,	BE,	CH,	DE,	DK,	ES,	FR, MK,	GB,	GR,	IT,							
	JΡ	2003				•							5033	27		2	0010	622	<
	AU	2006	2165	42		A1		2006	1012		AU 2	006-	2165	42		2	0060	915	
		Y APP	·]	AU 2 WO 2	000- 001- 001-	2701: US20:	34 154	,	A3 2 W 2	0010	622 622	
7 D	The		-n+	0 n	a + a + b	\sim \sim $+$.	o mo	+ 6 0 0	0 00	d 2020	0 d 1 1 0 1	+ a f	~~ +.	~~~+	ina	0000	~ ~		

AB The invention relates to methods and products for treating cancer
. In particular the invention relates to combinations of nucleic acids
and antibodies for the treatment and prevention of cancer. The
invention also relates to diagnostic methods for screening cancer
cells.

L6 ANSWER 16 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2001:572678 CAPLUS

DOCUMENT NUMBER: 136:263

Phase I and pharmacological study of the oral matrix TITLE: metalloproteinase inhibitor, MMI270 (CGS27023A), in

patients with advanced solid cancer

Levitt, Nicola C.; Eskens, Ferry A. L. M.; O'Byrne, AUTHOR(S):

Ken J.; Propper, David J.; Denis, Louis J.; Owen, Samantha J.; Choi, Les; Foekens, John A.; Wilner, Sue; Wood, Jeanette M.; Nakajima, Motowo; Talbot, Denis C.; Steward, William P.; Harris, Adrian L.; Verweij, Jaap

CORPORATE SOURCE: Imperial Cancer Research Fund Unit, Churchill

Hospital, Oxford, OX3 FLJ, UK

SOURCE: Clinical Cancer Research (2001), 7(7),

1912-1922

CODEN: CCREF4; ISSN: 1078-0432

PUBLISHER: American Association for Cancer Research

DOCUMENT TYPE: Journal English LANGUAGE:

This Phase I study of MMI270, an p.o. administered matrix AΒ metalloproteinase inhibitor, assessed toxicity, pharmacokinetics, and tumor response data and investigated markers of biol. activity to recommend a dose for Phase II studies. MMI270 was administered continuously at seven dose levels (50 mg once daily to 600 mg three times/day). Patients were evaluated for toxicity and tumor response, and blood and urine samples were taken for pharmacokinetics, bone resorption markers, direct targets of the inhibitor [matrix metalloproteinase-2 (MMP-2), MMP-8, and MMP-9], indirect targets [tissue inhibitor of metalloproteinase-1 (TIMP-1), TIMP-2, basic fibroblast growth factor, vascular endothelial growth factor, vascular cell adhesion mol.-1, soluble urokinase plasminogen activator receptor, and cathepsins B and H] and for a tumor necrosis factor- α cytokine release assay. Ninety-two patients were entered. There was no myelo-toxicity. Eighteen patients developed a widespread maculopapular rash, which increased in frequency and severity at doses ≥300 mg bid. Thirty nine patients developed musculoskeletal side effects, which were related to duration of treatment, not to dose level. Pharmacokinetics were linear, and MMI270 was rapidly absorbed and eliminated with minimal accumulation on chronic dosing. Sustained plasma concns. in excess of 4 + mean IC50 for the target enzymes were observed at dose levels ≥150 mg bid. There were no tumor regressions; however, 19 patients had stable disease for ≥ 90 days. There was a dose-response increase of MMP-2 and TIMP-1 with MMI270. Transient effects on the bone resorption markers were detected. MMI270 was generally well tolerated, with adequate plasma levels for target enzyme inhibition. The two main toxicities were rash, resulting in a maximum tolerated dose of 300 mg bid and musculoskeletal side effects. Biol. marker data indicate drug effects. The rise in TIMP-1 suggests that a reflex rise in inhibitors could modify the effects of

MMI270. The recommended Phase II dose is 300 mg bid. REFERENCE COUNT: THERE ARE 55 CITED REFERENCES AVAILABLE FOR THIS 55 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 17 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

2001:259436 CAPLUS ACCESSION NUMBER:

136:272422 DOCUMENT NUMBER:

TITLE: TACE and other ADAM proteases as targets for drug

discovery

AUTHOR(S): Moss, M. L.; White, J. M.; Lambert, M. H.; Andrews, R.

С.

CORPORATE SOURCE: Cognosci, Research Triangle Park, NC, 27709, USA

Drug Discovery Today (2001), 6(8), 417-426 CODEN: DDTOFS; ISSN: 1359-6446 SOURCE:

Elsevier Science Ltd. PUBLISHER: DOCUMENT TYPE: Journal; General Review

LANGUAGE: English AB A review. Tumor necrosis factor (TNF)-converting enzyme (TACE) and other ADAM proteases (those that contain a disintegrin and a metalloprotease domain) have emerged as potential therapeutic targets in the areas of arthritis, cancer, diabetes and HIV cachexia. TACE is the first ADAM protease to process the known physiol. substrate and inflammatory cytokine, membrane-bound precursor-TNF- α , to its mature soluble form. Subsequently, TACE was shown to be required for several different processing events such as tumor growth factor- α (TGF- α) precursor and amyloid precursor protein (APP) cleavage. With the recent discoveries of the proteolytic specificities of other ADAM family members, the information surrounding these metalloproteases is expanding at an exponential rate. This review focuses on TACE and other family members with known proteolytic function as well as the inhibitors of this class of enzyme.

REFERENCE COUNT: 104

14 THERE ARE 104 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE REFORMAT

L6 ANSWER 18 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1999:738391 CAPLUS

DOCUMENT NUMBER: 132:89906

TITLE: Catalytic activities and substrate specificity of the

human membrane type 4 matrix metalloproteinase

catalytic domain

AUTHOR(S): Wang, Yahong; Johnson, Adam R.; Ye, Qi-Zhuang; Dyer,

Richard D.

CORPORATE SOURCE: Department of Biochemistry, Parke-Davis Pharmaceutical

Research Division, Warner-Lambert Company, Ann Arbor,

MI, 48105, USA

SOURCE: Journal of Biological Chemistry (1999),

274(46), 33043-33049

CODEN: JBCHA3; ISSN: 0021-9258

PUBLISHER: American Society for Biochemistry and Molecular

Biology

DOCUMENT TYPE: Journal LANGUAGE: English

Membrane type (MT) matrix metalloproteinases (MMPs) are recently recognized members of the family of Zn2+- and Ca2+-dependent MMPs. investigate the proteolytic capabilities of human MT4-MMP (i.e. MMP-17), we have cloned DNA encoding its catalytic domain (CD) from a breast carcinoma cDNA library. Human membrane type 4 MMP CD (MT4-MMPCD) protein, expressed as inclusion bodies in Escherichia coli, was purified to homogeneity and refolded in the presence of Zn2+ and Ca2+. While MT4-MMPCD cleaved synthetic MMP substrates Ac-PLG-[2-mercapto-4methylpentanoyl]-LG-OEt and Mca-PLGL-Dpa-AR-NH2 with modest efficiency, it catalyzed with much higher efficiency the hydrolysis of a protumor necrosis factor- α converting enzyme synthetic substrate, Mca-PLAQAV-Dpa-RSSSR-NH2. Catalytic efficiency with the protumor necrosis factor- α converting enzyme substrate was maximal at pH 7.4 and was modulated by three ionizable enzyme groups (pKa3 = 6.2, pKa2 = 8.3, and pKa1 = 10.6). MT4-MMPCD cleaved gelatin but was inactive toward type I collagen, type IV collagen, fibronectin, and laminin. Like all known MT-MMPs, MT4-MMPCD was also able to activate 72-kDa progelatinase A to its 68-kDa form. EDTA, 1,10-phenanthroline, reference hydroxamic acid MMP inhibitors, tissue inhibitor of metalloproteinases-1, and tissue inhibitor of metalloproteinases-2 all potently blocked MT4-MMPCD enzymic activity. MT4-MMP is, therefore, a competent Zn2+-dependent MMP with unique specificity among synthetic substrates and the capability to both degrade gelatin and activate progelatinase A.

REFERENCE COUNT:

39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 19 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1999:103528 CAPLUS

DOCUMENT NUMBER: 130:293102

TITLE: Metalloprotease-disintegrin MDC9: intracellular

maturation and catalytic activity

AUTHOR(S): Roghani, Monireh; Becherer, J. David; Moss, Marcia L.;

Atherton, Ruth E.; Erdjument-Bromage, Hediye; Arribas, Joaquin; Blackburn, R. Kevin; Weskamp, Gisela; Tempst,

Paul; Blobel, Carl P.

CORPORATE SOURCE: Cellular Biochemistry and Biophysics Program,

Sloan-Kettering Institute Memorial Solan-Kettering

Cancer Center, Graduate School of the Cornell

University Medical College, New York, NY, 10021, USA

SOURCE: Journal of Biological Chemistry (1999),

274(6), 3531-3540

CODEN: JBCHA3; ISSN: 0021-9258

PUBLISHER: American Society for Biochemistry and Molecular

Biology

DOCUMENT TYPE: Journal LANGUAGE: English

Metalloprotease disintegrins are a family of membrane-anchored glycoproteins that are known to function in fertilization, myoblast fusion, neurogenesis, and ectodomain shedding of tumor necrosis factor (TNF)- α . Here we report the anal. of the intracellular maturation and catalytic activity of the widely expressed metalloprotease disintegrin MDC9. Our results suggest that the pro-domain of MDC9 is removed by a furin-type pro-protein convertase in the secretory pathway before the protein emerges on the cell surface. The soluble metalloprotease domain of MDC9 cleaves the insulin B-chain, a generic protease substrate, providing the first evidence that MDC9 is catalytically active. Soluble MDC9 appears to have distinct specificities for cleaving candidate substrate peptides compared with the TNF- α convertase (TACE/ADAM17). The catalytic activity of MDC9 can be inhibited by hydroxamic acid-type metalloprotease inhibitors in the low nanomolar range, in one case with up to 50-fold selectivity for MDC9 vs. TACE. Peptides mimicking the predicted cysteine-switch region of MDC9 or TACE inhibit both enzymes in the low micromolar range, providing exptl. evidence for regulation of metalloprotease disintegrins via a cysteine-switch mechanism. Finally, MDC9 shown to become phosphorylated when cells are treated with the phorbol ester phorbol 12-myristate 13-acetate, a known inducer of protein ectodomain shedding. This work implies that removal of the inhibitory pro-domain of MDC9 by a furin-type pro-protein convertase in the secretory pathway is a prerequisite for protease activity. After pro-domain removal, addnl. steps, such as protein kinase C-dependent phosphorylation, may be involved in regulating the catalytic activity of MDC9, which is likely to target different substrates than the related $TNF-\alpha$ -convertase.

REFERENCE COUNT:

66 THERE ARE 66 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 20 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1998:588912 CAPLUS

DOCUMENT NUMBER: 129:298070

TITLE: Synthetic matrix metalloproteinase inhibitors and tissue inhibitor of metalloproteinase (TIMP)-2, but

not TIMP-1, inhibit shedding of tumor

necrosis factor- α receptors in a human colon

adenocarcinoma (Colo 205) cell line

AUTHOR(S): Lombard, Mark A.; Wallace, Tanya L.; Kubicek, Marc F.;

Petzold, Gary L.; Mitchell, Mark A.; Hendges, Susan

K.; Wilks, John W.

CORPORATE SOURCE: Cell and Molecular Biology, Pharmacia and Upjohn,

Inc., Kalamazoo, MI, 49001, USA

SOURCE: Cancer Research (1998), 58(17), 4001-4007

CODEN: CNREA8; ISSN: 0008-5472

PUBLISHER: American Association for Cancer Research

DOCUMENT TYPE: Journal LANGUAGE: English

The solubilization of plasma membrane receptors through proteolytic AB cleavage of the ligand binding domain at the cell surface is an important mechanism for regulating cytokine function and receptor signaling. inhibition of the shedding of a variety of receptors by synthetic inhibitors of the matrix metalloproteinases (MMPs) implicates metalloproteinases in this regulatory event. The authors examined the effects of two naturally occurring tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-2, and several synthetic MMP inhibitors (MMPIs) on the shedding of both tumor necrosis factor α receptor type I (TNF $\alpha-RI$; Mr 55,000) and TNF $\alpha-RII$ (Mr 75,000) by the Colo 205 human colon adenocarcinoma cell line. Culture of Colo 205 cells for 48 h resulted in the shedding of both $\textsc{TNF}\alpha\textsc{-RI}$ and TNF α -RII, as determined by ELISA. The shedding of TNF α receptors was not affected by TIMP-1 or protease inhibitors aprotinin, pepstatin, or leupeptin but was inhibited in a dose-dependent manner by the following synthetic MMPIs: batimastat and marimastat (BB-94 and BB-2516, resp., British Biotech, Inc.); CT1418 (Celltech Therapeutics); CGS27023A (Novartis Pharmaceuticals); and RO31-9790 (Roche), with IC50s ranging from 3.2 to 38.0 μM . Similarly, TIMP-2 from two different sources reproducibly inhibited the shedding of both ${\tt TNF}\alpha{\tt -RI}$ and $\text{TNF}\alpha\text{-RII}$ in a dose-dependent manner (IC50 = 286 nM for $\text{TNF}\alpha\text{-RI}$ shedding and 462 nM for shedding of $TNF\alpha-RII$). The inhibition of $TNF\alpha-RI$ shedding was confirmed in the SW626 human ovarian adenocarcinoma cell line. The synthetic MMPIs and TIMP-2, but not TIMP-1, also caused a dose-dependent increase in the number of $\text{TNF}\alpha$ receptors retained on the surface of Colo 205 cells, as determined by flow cytometry. Inhibition of ${\tt TNF}\alpha$ receptor shedding with ${\tt TIMP-2}$ occurs at molar concns. 10-100 times less than those required with low mol. weight, synthetic MMPIs but at concns. greater than those required to inhibit collagen degradation Modulation of $TNF\alpha$ receptor shedding by TIMP-2 could have important implications for the pleiotropic effects of ${\tt TNF}\alpha$ in both normal and malignant cells and for the pharmacol. activity of synthetic MMPIs.

REFERENCE COUNT: 47 THERE ARE 47 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 21 OF 21 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1997:124446 CAPLUS

DOCUMENT NUMBER: 126:135633

TITLE: Arylsulfonamido-substituted hydroxamic acids for the

treatment of tumors

INVENTOR(S): Macpherson, Lawrence Joseph; Parker, David Thomas

PATENT ASSIGNEE(S): Ciba-Geigy A.-G., Switz. SOURCE: PCT Int. Appl., 53 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 7

PATENT INFORMATION:

PATENT	NO.			KIN	D	DATE			APPL	ICAT	ION 1	NO.		D.	ATE	
					_									_		
WO 9640	101			A1		1996	1219		WO 1	996-	EP24	18		1	9960	604 <
W:	AL,	ΑU,	BB,	BG,	BR,	CA,	CN,	CZ,	EE,	GE,	HU,	IL,	IS,	JP,	KP,	KR,
	LK,	LR,	LT,	LV,	MG,	MK,	MN,	MX,	NO,	NZ,	PL,	RO,	SG,	SI,	SK,	TR,

```
TT, UA, US, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR,
             IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML,
             MR, NE, SN, TD, TG
     US 5646167
                                19970708
                                             US 1995-475166
                          Α
                                                                    19950607 <--
     AU 9661249
                          Α
                                19961230
                                             AU 1996-61249
                                                                    19960604 <--
PRIORITY APPLN. INFO.:
                                             US 1995-475166
                                                                 A 19950607
                                             US 1993-1136
                                                                A2 19930106
                                             US 1994-265296
                                                                A2 19940624
                                             US 1994-333676
                                                                 A2 19941103
                                             WO 1996-EP2418
                                                                 W 19960604
OTHER SOURCE(S):
                         MARPAT 126:135633
     The invention relates to the use of compds. NH(OH)COCR1R2N(CH2R)SO2X (X =
     carbocyclic or heterocyclic aryl; R, R1 = H, substituted lower alkyl,
     arylalkyl, biaryl, etc; R2 = H, lower alkyl) for the treatment of a
     tumor selected from human breast carcinoma, lung carcinoma,
     bladder carcinoma, colon carcinoma, prostate carcinoma, skin carcinoma,
     and ovarian carcinoma. N-hydroxy-2(R)-[[4-methoxybenzenesulfony1](3-
     picolyl)-amino]-3-methylbutanamide·HCl was prepared and formulated
     into a capsule.
=> 16 and (heat shock)
L6 IS NOT A RECOGNIZED COMMAND
The previous command name entered was not recognized by the system.
For a list of commands available to you in the current file, enter
"HELP COMMANDS" at an arrow prompt (=>).
=> s 16 and heat shock
       1410582 HEAT
         59554 HEATS
       1427928 HEAT
                 (HEAT OR HEATS)
        153681 SHOCK
         11165 SHOCKS
        158688 SHOCK
                 (SHOCK OR SHOCKS)
         37818 HEAT SHOCK
                 (HEAT (W) SHOCK)
L7
             2 L6 AND HEAT SHOCK
=> d 17 ibib abs
     ANSWER 1 OF 2 CAPLUS COPYRIGHT 2008 ACS on STN
                         2004:166330 CAPLUS
ACCESSION NUMBER:
DOCUMENT NUMBER:
                         141:17052
TITLE:
                         Screening of stress enhancer based on analysis of gene
                         expression profiles: Enhancement of
                         hyperthermia-induced tumor necrosis by an
                         MMP-3 inhibitor
                         Kato, Naoki; Kobayashi, Takeshi; Honda, Hiroyuki
AUTHOR(S):
CORPORATE SOURCE:
                         Department of Biotechnology, School of Engineering,
                         Nagoya University, Nagoya, 464-8603, Japan
                         Cancer Science (2003), 94(7), 644-649 CODEN: CSACCM; ISSN: 1347-9032
SOURCE:
                         Japanese Cancer Association
PUBLISHER:
DOCUMENT TYPE:
                         Journal
LANGUAGE:
                         English
     To improve the therapeutic benefit of hyperthermia, we examined changes of
     global gene expression after heat shock using DNA
     microarrays consisting of 12,814 clones. HeLa cells were treated for 1 h
     at 44^{\circ} and RNA was extracted from the cells 0, 3, 6, and 12 h after
```

heat shock. The 664 genes that were up or down-regulated after heat shock were classified into 7 clusters using fuzzy adaptive resonance theory (fuzzy ART). There were 41 genes in two clusters that were induced in the early phase after heat shock. In addition to shock response genes, such as hsp70 and hsp40, the stress response genes c-jun, c-fos and egr-1 were expressed in the early phase after heat shock. We also found that expression of matrix metalloproteinase 3 (MMP-3) was enhanced during the early response. We therefore investigated the role of MMP-3 in the heat shock response by examining HeLa cell survival after heat treatment in the presence and absence of an MMP-3 inhibitor, N-isobutyl-N-(4-methoxyphenyl-sulfonyl)glycylhydroxamic acid (NNGH) or N-hydroxy-2(R)-[[4-methoxysulfony1](3-picoly1)amino]-3methylbutaneamidehydrochloride(MMI270). The number of surviving cells 3 days after heat treatment significantly decreased, reaching 3.5% for NNGH and 0.2% for MMI270. These results indicate that the MMP-3 inhibitors enhanced heat shock-induced cell death and behaved as stress enhancers in cancer cells. This valuable conclusion was reached as a direct result of the gene expression profiling that was performed in these studies.

REFERENCE COUNT: 46 THERE ARE 46 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> d 17 ibib abs 1-2

ANSWER 1 OF 2 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:166330 CAPLUS

DOCUMENT NUMBER: 141:17052

TITLE: Screening of stress enhancer based on analysis of gene

expression profiles: Enhancement of

hyperthermia-induced tumor necrosis by an

MMP-3 inhibitor

AUTHOR(S): Kato, Naoki; Kobayashi, Takeshi; Honda, Hiroyuki CORPORATE SOURCE: Department of Biotechnology, School of Engineering,

Nagoya University, Nagoya, 464-8603, Japan

Cancer Science (2003), 94(7), 644-649 SOURCE:

CODEN: CSACCM; ISSN: 1347-9032

PUBLISHER: Japanese Cancer Association

DOCUMENT TYPE: Journal English

AB To improve the therapeutic benefit of hyperthermia, we examined changes of global gene expression after heat shock using DNA microarrays consisting of 12,814 clones. HeLa cells were treated for 1 h at 44° and RNA was extracted from the cells 0, 3, 6, and 12 h after heat shock. The 664 genes that were up or down-regulated after heat shock were classified into 7 clusters using fuzzy adaptive resonance theory (fuzzy ART). There were 41 genes in two clusters that were induced in the early phase after heat shock. In addition to shock response genes, such as hsp70 and hsp40, the stress response genes c-jun, c-fos and egr-1 were expressed in the early phase after heat shock. We also found that expression of matrix metalloproteinase 3 (MMP-3) was enhanced during the early response. We therefore investigated the role of MMP-3 in the heat shock response by examining HeLa cell survival after heat treatment in the presence and absence of an MMP-3inhibitor, N-isobutyl-N-(4-methoxyphenyl-sulfonyl)glycylhydroxamic acid (NNGH) or N-hydroxy-2(R)-[[4-methoxysulfonyl](3-picolyl)amino]-3methylbutaneamidehydrochloride(MMI270). The number of surviving cells 3 days after heat treatment significantly decreased, reaching 3.5% for NNGH and 0.2% for MMI270. These results indicate that the MMP-3 inhibitors enhanced heat shock-induced cell death and behaved as

stress enhancers in cancer cells. This valuable conclusion was reached as a direct result of the gene expression profiling that was performed in these studies.

REFERENCE COUNT: 46 THERE ARE 46 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L7 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:737608 CAPLUS

DOCUMENT NUMBER: 139:240351

TITLE: Matrix metalloproteinase inhibitors in combination

with hypothermia and/or radiotherapy for the treatment

of cancer

INVENTOR(S):
Nakajima, Motowo

PATENT ASSIGNEE(S): Novartis A.-G., Switz.; Novartis Pharma G.m.b.H.

SOURCE: PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

P <i>P</i>	TENT	NO.			KIN	D	DATE			APPL:	ICAT	ION I	.OV		D.	ATE	
WC	2003	0759	 59		A1		2003	0918		WO 2	003-	EP23	65		2	0030	307 <
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,
		HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LT,	LU,
		LV,	MA,	MD,	MK,	MN,	MX,	NO,	NΖ,	OM,	PH,	PL,	PT,	RO,	RU,	SC,	SE,
		SG,	SK,	ΤJ,	TM,	TN,	TR,	TT,	UA,	US,	UZ,	VC,	VN,	YU,	ZA,	ZW	
	RW:	ΑM,	ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,
		DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	ΙE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,
		SI,	SK,	TR													
AU	2003	2141	08		A1		2003	0922		AU 2	003-	2141	8 0		2	00303	307 <
EF	1485	131			A1		2004	1215		EP 2	003-	7097	64		2	00303	307
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙT,	LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK	
JE	2005	5267	60		Τ		2005	0908		JP 2	003-	5742	32		2	00303	307
US	2005	2329	15		A1		2005	1020		US 2	005-	5069	36		2	0050	606
PRIORIT	Y APF	·LN.	INFO	.:					1	GB 2	002-	5537		1	A 2	00203	308
									1	GB 2	002-	2905	4		A 2	0021	212
									,	WO 2	003-	EP23	65	1	W 2	00303	307

OTHER SOURCE(S): MARPAT 139:240351

AB The invention provides a method of treating cancer in a subject in need of such treatment which comprises: radiotherapy, or cytotoxic therapy in combination with heat shock, and further comprises administering to the subject an effective amount of a matrix

metalloproteinase inhibitor (Markush structures are included).

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> s 16 and radiotherapy

30601 RADIOTHERAPY

33 RADIOTHERAPIES

30617 RADIOTHERAPY

(RADIOTHERAPY OR RADIOTHERAPIES)

L8 3 L6 AND RADIOTHERAPY

=> d 18 ibib abs 1-3

L8 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2003:737608 CAPLUS

DOCUMENT NUMBER: 139:240351

TITLE: Matrix metalloproteinase inhibitors in combination

with hypothermia and/or radiotherapy for the

treatment of cancer

INVENTOR(S):
Nakajima, Motowo

PATENT ASSIGNEE(S): Novartis A.-G., Switz.; Novartis Pharma G.m.b.H.

SOURCE: PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

P	'ΑΤ	ENT I	NO.			KIN	D	DATE				_	ION I			D.	ATE	
W	10	2003	0759	59		A1		2003	0918	,						2	0030	307 <
		W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,
			HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LT,	LU,
			LV,	MA,	MD,	MK,	MN,	MX,	NO,	NΖ,	OM,	PH,	PL,	PT,	RO,	RU,	SC,	SE,
			SG,	SK,	ΤJ,	TM,	TN,	TR,	TT,	UA,	US,	UZ,	VC,	VN,	YU,	ZA,	ZW	
		RW:	AM,	ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,
			DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,
			SI,	SK,	TR													
A	U	2003	2141	8 0		A1		2003	0922		AU 2	003-	2141	8 0		2	0030.	307 <
E	ŀΡ	1485	131			A1		2004	1215		EP 2	003-	7097	64		2	0030.	307
		R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙΤ,	LI,	LU,	NL,	SE,	MC,	PT,
			ΙE,	SI,	LT,	LV,	FΙ,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK	
J	Ρ	2005	5267	60		${f T}$		2005	0908		JP 2	003-	5742	32		2	0030.	307
U	IS	2005	2329	15		A1		2005	1020		JS 2	005-	5069	36		2	0050	606
PRIORI	TY	APP:	LN.	INFO	.:					1	GB 2	002-	5537			A 2	0020	308
										1	GB 2	002-	2905	4		A 2	0021	212
										•	WO 2	003-	EP23	65	1	₩ 2	0030.	307
	~ ~							400	0 400	- 4								

OTHER SOURCE(S): MARPAT 139:240351

AB The invention provides a method of treating cancer in a subject in need of such treatment which comprises: radiotherapy, or cytotoxic therapy in combination with heat shock, and further comprises administering to the subject an effective amount of a matrix metalloproteinase inhibitor (Markush structures are included).

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 2 OF 3 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:551500 CAPLUS

DOCUMENT NUMBER: 139:117431

TITLE: 4,5-Diamino-1,2,3,4-tetrahydro-3,6-pyridazinediones as

CXC chemokine receptor antagonists for treatment of

inflammatory disorders and cancer

INVENTOR(S): Taveras, Arthur G.; Dwyer, Michael; Chao, Jianping;

Baldwin, John J.; Merritt, Robert J.; Li, Ge; Chao,

Jianhua; Yu, Younong

PATENT ASSIGNEE(S): Schering Corporation, USA; Pharmacopeia, Inc.

SOURCE: PCT Int. Appl., 210 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2003057676	A1	20030717	WO 2003-US299	20030103 <

```
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
             CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU,
             ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD,
            MG, MK, MN, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SC, SE, SG, SK,
             SL, TJ, TM, TN, TR, TT, TZ, UA, UZ, VC, VN, YU, ZA, ZM
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
             KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
             FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR, BF,
             BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
     US 2004063709
                         Α1
                                20040401
                                           US 2003-335789
     US 6878709
                         В2
                                20050412
     CA 2472165
                                20030717
                                           CA 2003-2472165
                                                                   20030103 <--
                         Α1
     AU 2003207460
                         Α1
                                20030724
                                           AU 2003-207460
                                                                   20030103 <--
                                           EP 2003-705667
     EP 1461321
                         Α1
                                20040929
                                                                   20030103
            AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK
                               20050216
     CN 1582280
                                          CN 2003-801923
                                                                   20030103
                         Α
     JP 2005516029
                         Τ
                                            JP 2003-557993
                                20050602
                                                                   20030103
     MX 2004PA06555
                                20041004
                                           MX 2004-PA6555
                         Α
                                                                   20040702
PRIORITY APPLN. INFO.:
                                            US 2002-346248P
                                                               P 20020104
                                            US 2003-335789
                                                               A 20030102
                                                               W 20030103
                                            WO 2003-US299
```

OTHER SOURCE(S): MARPAT 139:117431

$$\begin{array}{c}
R1 & R15 \\
N-N & \\
0 \longrightarrow & \\
\end{array}$$

(no data).

AΒ Prepns. for title compds. I [wherein R1 and R15 = independently H or (un) substituted (hetero) aryl, alkyl, (hetero) cycloalkyl (alkyl), or (hetero)arylalkyl; A = (un)substituted thiazolyl(alkyl), thienyl(alkyl), oxazolyl(alkyl), pyridinyl(alkyl), piperazinyl(alkyl), piperidinyl(alkyl), imidazolyl(alkyl), indolyl(alkyl), benzotriazolyl(alkyl), phenyl(alkyl), naphthyl(alkyl), carbamoylalkyl, etc.; B = (un)substituted Ph, benzotriazolyl, benzimidazolyl, indolyl, indazolyl, pyridinyl, pyrazolyl, thienyl, pyrrolyl, or pyrimidinyl; or pharmaceutically acceptable salts or solvates thereof] and their intermediates are disclosed (no data). In addition, CXCR1 SPA, CXCR2 SPA, calcium fluorescence, chemotaxis, and cytotoxicity assays are described. For example, 5-methylsalicylic acid was coupled with dimethylamine in the presence of DCC in EtOAc to give 2-hydroxy-N,N,5-trimethylbenzamide, which was nitrated (44%) and reduced using 10% Pd/C to give 3-amino-2-hydroxy-N,N,5-trimethylbenzamide (99%). The amine may be coupled with 1,2,3,4-tetrahydro-3,6-pyridazinediones to provide compds. of the invention (no data). I may exhibit a range of CXCR2 receptor binding activities from about 1 nM to about 10,100 nM. Thus, I and pharmaceutical compns. comprising I may be useful for the treatment of acute and chronic inflammatory disorders and cancer

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 3 OF 3 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2002:359662 CAPLUS

DOCUMENT NUMBER: 137:306709

TITLE: Radiation-induced increase in invasive potential of

human pancreatic cancer cells and its

blockade by a matrix metalloproteinase inhibitor,

CGS27023

AUTHOR(S): Qian, Li-Wu; Mizumoto, Kazuhiro; Urashima, Taro;

Nagai, Eishi; Maehara, Naoki; Sato, Norihiro;

Nakajima, Motowo; Tanaka, Masao

CORPORATE SOURCE: Department of Surgery and Oncology, Kyushu University,

Fukuoka, 812-8582, Japan

SOURCE: Clinical Cancer Research (2002), 8(4),

1223-1227

CODEN: CCREF4; ISSN: 1078-0432

PUBLISHER: American Association for Cancer Research

DOCUMENT TYPE: Journal LANGUAGE: English

Purpose: Radiotherapy remains a major therapeutic option for patients with advanced pancreatic cancer. Nevertheless, the effects of irradiation on malignant biol. behaviors (e.g., migration and invasion of cancer cells) have yet to be clarified. Thus, we conducted an in vitro study to investigate the radiation-induced alterations around cell migration and invasion capacity. Experiment design: Three cell lines from human pancreatic cancer were included in the study. γ -Radiation was used for irradiation treatment. Cell migration and invasion ability were evaluated by Transwell migration assay and Matrigel invasion assay. The activity of MMP-2 and 9, and expression of urokinase-type plasminogen activator were investigated with gelatin zymog. and immunoblot, resp. Results: Irradiation enhances invasive potential in some pancreatic cancer cells, whereas it significantly inhibits cell proliferation and migration. This hitherto unknown biol. effect of irradiation involves enhanced matrix metalloproteinase (MMP)-2 activity. Consequently, simultaneous administration of an MMP inhibitor, CGS27023A, suppresses the radiation-enhanced invasion through blockade of transition of MMP-2 from latent type to active type. Conclusion: Because radiation may increase invasion ability through activating MMP proteolytic system, simultaneous administration of the MMP inhibitor during radiotherapy could be a potent adjuvant therapeutic approach to improve the efficacy of radiotherapy for pancreatic cancer.

REFERENCE COUNT: 21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> s heat shock therapy

1410582 HEAT

59554 HEATS

1427928 HEAT

(HEAT OR HEATS)

153681 SHOCK

11165 SHOCKS

158688 SHOCK

(SHOCK OR SHOCKS)

342832 THERAPY

32934 THERAPIES

360689 THERAPY

(THERAPY OR THERAPIES)

7 HEAT SHOCK THERAPY

(HEAT (W) SHOCK (W) THERAPY)

=> s heat shock

L9

1410582 HEAT

59554 HEATS

1427928 HEAT (HEAT OR HEATS) 153681 SHOCK 11165 SHOCKS 158688 SHOCK (SHOCK OR SHOCKS) L10 37818 HEAT SHOCK (HEAT (W) SHOCK) => s 110 and (matrix metalloproteinase) 556212 MATRIX 72692 MATRIXES 10141 MATRICES 594341 MATRIX (MATRIX OR MATRIXES OR MATRICES) 26797 METALLOPROTEINASE 11763 METALLOPROTEINASES 29364 METALLOPROTEINASE (METALLOPROTEINASE OR METALLOPROTEINASES) 22325 MATRIX METALLOPROTEINASE (MATRIX (W) METALLOPROTEINASE) L11 324 L10 AND (MATRIX METALLOPROTEINASE) => d 19 ibib abs 1-7ANSWER 1 OF 7 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2008:192635 CAPLUS TITLE: HSP72 protects against obesity-induced insulin resistance AUTHOR(S): Chung, Jason; Nguyen, Anh-Knoi; Henstridge, Darren C.; Holmes, Anna G.; Chan, M. H. Stanley; Mesa, Jose L.; Lancaster, Graeme I.; Southgate, Robert J.; Bruce, Clinton R.; Duffy, Stephen J.; Horvath, Ibolya; Mestril, Ruben; Watt, Matthew J.; Hooper, Philip L.; Kingwell, Bronwyn A.; Vigh, Laszlo; Hevener, Andrea; Febbraio, Mark A. CORPORATE SOURCE: Cellular and Molecular Laboratory, baker Heart Research Institute, Prahran, 8008, Australia SOURCE: Proceedings of the National Academy of Sciences of the United States of America (2008), 105(5), 1739-1744 CODEN: PNASA6; ISSN: 0027-8424 PUBLISHER: National Academy of Sciences DOCUMENT TYPE: Journal LANGUAGE: English Patients with type 2 diabetes have reduced gene expression of heat shock protein (HSP) 72, which correlates with reduced insulin sensitivity. Heat therapy, which activates HSP72, improves clin. parameters in these patients. Activation of several inflammatory signaling proteins such as c-jun amino terminal kinase (JNK), inhibitor of κB kinase, and tumor necrosis factor- α , can induce insulin resistance, but HSP 72 can block the induction of these mols. in vitro. Accordingly, we examined

whether activation of HSP72 can protect against the development of insulin resistance. First, we show that obese, insulin resistant humans have reduced HSP72 protein expression and increased JNK phosphorylation in

overexpress HSP72 either specifically in skeletal muscle or globally in mice. Herein, we show that regardless of the means used to achieve an elevation in HSP72 protein, protection against diet- or obesity-induced

resistance was observed This protection was tightly associated with the prevention of JNK phosphorylation. These findings identify an essential

hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin

therapy, transgenic overexpression, and pharmacol. means to

skeletal muscle. We next used heat shock

role for HSP72 in blocking inflammation and preventing insulin resistance in the context of genetic obesity or high-fat feeding.

L9 ANSWER 2 OF 7 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2008:102747 CAPLUS

TITLE: HSP72 protects against obesity-induced insulin

resistance

AUTHOR(S): Chung, Jason; Nguyen, Anh-Khoi; Henstridge, Darren C.;

Holmes, Anna G.; Chan, M. H. Stanley; Mesa, Jose L.; Lancaster, Graeme I.; Southgate, Robert J.; Bruce, Clinton R.; Duffy, Stephen J.; Horvath, Ibolya; Mestril, Ruben; Watt, Matthew J.; Hooper, Philip L.; Kingwell, Bronwyn A.; Vigh, Laszlo; Hevener, Andrea;

Febbraio, Mark A.

CORPORATE SOURCE: Cellular and Molecular Metabolism Lab., Baker Heart

Research Institute, Prahran, Victoria, 8008, Australia SOURCE: Proceedings of the National Academy of Sciences of the

United States of America, Early Edition (2008), (Jan

25 2008), 1-6, 6 pp.

CODEN: PNASC8

URL: http://www.pnas.org/cgi/reprint/0705799105v1

PUBLISHER: National Academy of Sciences
DOCUMENT TYPE: Journal; (online computer file)

LANGUAGE: English

AB Patients with type 2 diabetes have reduced gene expression of heat shock protein (HSP) 72, which correlates with reduced insulin sensitivity. Heat therapy, which activates HSP72, improves clin. parameters in these patients. Activation of several inflammatory signaling proteins such as c-jun amino terminal kinase (JNK), inhibitor of κB kinase, and tumor necrosis factor-, can induce insulin resistance, but HSP 72 can block the induction of these mols. in vitro. Accordingly, we examined whether activation of HSP72 can protect against the development of insulin resistance. First, we show that obese, insulin resistant humans have reduced HSP72 protein expression and increased JNK phosphorylation in skeletal muscle. We next used heat shock therapy, transgenic overexpression, and pharmacol. means to overexpress HSP72 either specifically in skeletal muscle or globally in mice. Herein, we show that regardless of the means used to achieve an

elevation in HSP72 protein, protection against diet- or obesity-induced hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance was observed. This protection was tightly associated with the prevention of JNK phosphorylation. These findings identify an essential role for HSP72 in blocking inflammation and preventing insulin resistance in the context of genetic obesity or high-fat feeding.

L9 ANSWER 3 OF 7 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2005:60754 CAPLUS

Correction of: 2004:1036571

DOCUMENT NUMBER: 142:233342

Correction of: 142:16836

TITLE: Sequences of human schizophrenia related genes and use

for diagnosis, prognosis and therapy

INVENTOR(S): Liew, Choong-Chin

PATENT ASSIGNEE(S): Chondrogene Limited, Can.

SOURCE: U.S. Pat. Appl. Publ., 156 pp., Cont.-in-part of U.S.

Ser. No. 802,875.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 33

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PATENT NO. US 2004241727 US 2004014059 US 2007031841 US 2006134635 US 2005191637 US 2005196762 US 2005196763 US 2005196764 US 2005208505 US 2005208519 PRIORITY APPLN. INFO.:	A1	DATE 20041202 20040122 20070208 20060622 20050901 20050908 20050908 20050908 20050922 20050922	APPLICATION NO.	DATE
			US 2000-477148 US 2002-268730 US 2003-601518	A2 20021009 A2 20030620
			US 2004-802875 US 2001-271955P	A2 20040312 P 20010228
			US 2001-275017P US 2001-305340P	P 20010312 P 20010713
			US 2002-85783 US 2004-812731 WO 2004-US20836	A2 20020228 A2 20040330 A2 20040621
			2001 0020000	

AB The present invention is directed to detection and measurement of gene transcripts and their equivalent nucleic acid products in blood. Specifically provided is anal. performed on a drop of blood for detecting, diagnosing and monitoring diseases using gene-specific and/or tissue-specific primers. The present invention also describes methods by which delineation of the sequence and/or quantitation of the expression levels of disease-specific genes allows for an immediate and accurate diagnostic/prognostic test for disease or to assess the effect of a particular treatment regimen. [This abstract record is one of 3 records for this document necessitated by the large number of index entries required to fully index the document and publication system constraints.].

L9 ANSWER 4 OF 7 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:770029 CAPLUS

DOCUMENT NUMBER: 141:258763

TITLE: Genes showing altered patterns of expression in metastatic lung and breast cancer and their use in

diagnosis and therapy

INVENTOR(S): Aziz, Natasha; Zlotnik, Albert PATENT ASSIGNEE(S): Protein Design Labs, Inc., USA

SOURCE: PCT Int. Appl., 233 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

PATENT NO.	KIND	DATE	DATE					
WO 2004063355	A2	20040729	WO 2004-XA885	20040112				
W: AE, AG, A	L, AM, AT	, AU, AZ,	BA, BB, BG, BR, BW, B	Y, CA, CH, CN,				
CO, CR, C	J, CZ, DE	, DK, DM,	DZ, EC, EE, EG, ES, F	I, GB, GD, GE,				
GH, GM, 1	R, HU, ID	, IL, IN,	IS, JP, KE, KG, KP, KI	R, KZ, LC, LK,				
LR, LS,	I, LU, LV	, MA, MD,	MG, MK, MN, MW, MX, M	Z, NA, NI, NO,				
NZ, OM, 1	G, PH, PL	, PT, RO,	RU, SC, SD, SE, SG, SI	K, SL, SY, TJ,				
TM, TN,	R, TT, TZ	, UA, UG,	US, UZ, VC, VN, YU, ZZ	A, ZM, ZW				
RW: BW, GH,	M, KE, LS	, MW, MZ,	SD, SL, SZ, TZ, UG, ZI	M, ZW, AM, AZ,				
BY, KG, I	Z, MD, RU	, TJ, TM,	AT, BE, BG, CH, CY, C'	Z, DE, DK, EE,				
FI, FR, (B, GR, HU	, IE, IT,	LU, MC, NL, PT, RO, SI	E, SI, SK, TR,				

```
BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
     WO 2004063355
                         A2
                               20040729
                                          WO 2004-US885
                         А3
     WO 2004063355
                                20050929
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
             CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
             GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
             LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
             NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,
             TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
         RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ,
             BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE,
             FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR,
             BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
                                                            P 20030110
                                           US 2003-439058P
PRIORITY APPLN. INFO.:
                                                              A 20040112
                                           WO 2004-US885
```

AB Genes that showed altered patterns of expression in metastatic lung and breast cancer are described for use in diagnosis and prognosis of the diseases. The genes or gene products may also be useful as targets for anti-cancer drugs. [This abstract record is one of 4 records for this document necessitated by the large number of index entries required to fully index the document and publication system constraints.].

L9 ANSWER 5 OF 7 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:39697 CAPLUS

DOCUMENT NUMBER: 140:123703

TITLE: Human prostate cancer marker genes associated with

various metastatic stages identified by gene

profiling, and related compositions, kits, and methods

for diagnosis, prognosis and therapy Schlegel, Robert; Endege, Wilson O. Millennium Pharmaceuticals, Inc., USA

SOURCE: U.S. Pat. Appl. Publ., 131 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 5

PATENT INFORMATION:

PATENT ASSIGNEE(S):

INVENTOR(S):

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
US 2004009481	A1	20040115	US 2002-166883		20020611	
US 2004009481	A1	20040115	US 2002-166883		20020611	
US 2004009481	A1	20040115	US 2002-166883		20020611	
US 2004009481	A1	20040115	US 2002-166883		20020611	
US 2004009481	A1	20040115	US 2002-166883		20020611	
PRIORITY APPLN. INFO.:			US 2001-297285P	Ρ	20010611	
			US 2002-166883	Α	20020611	

The invention relates to compns., kits, and methods for diagnosing, AΒ staging, prognosing, monitoring and treating human prostate cancers. A variety of marker genes are provided, wherein changes in the levels of expression of one or more of the marker genes is correlated with the presence of prostate cancer. In particular, three sets of the marker genes set, corresponding to 11617 GenBank Accession Nos. (only 2168 new submissions) and 15 SEQ IDs, are identified by transcription profiling using RNA derived from clin. samples, that were expressed at least $2\text{-}\mathrm{fold}$ or greater than the normal controls. Using TNM staging approach, these markers are divided to three groups, ones can be used to determine whether prostate cancer has metastasized, or is likely to metastasize, to the liver (M stage); ones can be used to determine whether prostate cancer has metastasized, or is likely to metastasize, to the bone (M stage); and ones can be used to determine whether prostate cancer has metastasized, or is likely to metastasize, to the lymph nodes (N stage and/or M stage). The

invention also relates to a kit for assessing the specific type of metastatic prostate cancer, e.g., cancer that has metastasized to the liver, bone or lymph nodes. [This abstract record is one of three records for this document necessitated by the large number of index entries required to fully index the document and publication system constraints.].

L9 ANSWER 6 OF 7 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1999:348346 CAPLUS

TITLE: Heat shock does not attenuate low-frequency fatigue

AUTHOR(S): Thomas, J. A.; Noble, E. G.

CORPORATE SOURCE: School of Kinesiology, The University of Western

Ontario, London, ON, N6A 3K7, Can.

SOURCE: Canadian Journal of Physiology and Pharmacology

(1999), 77(1), 64-70

CODEN: CJPPA3; ISSN: 0008-4212 National Research Council of Canada

DOCUMENT TYPE: Journal LANGUAGE: English

PUBLISHER:

AB Whole-body hyperthermia or heat shock confers protection to myocardial contractility against reperfusion-induced injury. The purpose of this study was to determine whether heat shock could provide similar protection to skeletal muscle contractility against low-frequency fatigue. Male Sprague-Dawley rats (6 rats/group) were heat shocked at 41.5°C for 15 min either 24 h or 4 days prior to fatiguing stimulation to compare the contractile responses of the plantaris muscle with those of a nonheated group. Both 24 h and 4 days after heat shock, the 72-kDa heat shock protein (HSP72) was elevated above control levels. There were no differences between the heat-shocked and non-heat-shocked animals in measures of contractility prior to fatiguing contractions or in resistance to fatigue. Heat-shock preconditioning did not lead to improved postfatigue force recovery above control responses and, in fact, delayed the recovery of force. This study does not support the use of heat-shock therapy to improve skeletal muscle

contractile performance under fatiguing conditions.

REFERENCE COUNT: 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L9 ANSWER 7 OF 7 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1993:406516 CAPLUS

DOCUMENT NUMBER: 119:6516

TITLE: Alterations in nuclear protein mass and macromolecular

synthesis following heat shock

AUTHOR(S): Higashikubo, Ryuji; Roti Roti, Joseph L.

CORPORATE SOURCE: Sch. Med., Washington Univ., St. Louis, MO, 63108, USA

SOURCE: Radiation Research (1993), 134(2), 193-201

CODEN: RAREAE; ISSN: 0033-7587

DOCUMENT TYPE: Journal LANGUAGE: English

AB Possible correlations between post-heat alterations in nuclear protein mass and the resumption of macromol. (DNA, RNA, and protein) synthesis were investigated in CHO cells. Nuclear protein content was measured using flow cytometry. Macromol. synthesis was measured by incorporation of radioactively labeled precursors into TCA-precipitable material of whole cells and isolated nuclei. Following an initial increase which was dependent on the heat dose, nuclear protein mass decreased following a monotonic function which appeared to be multiphasic. The synthesis of DNA, RNA, and protein was inhibited in a manner dependent on the heat dose and remained suppressed for an interval dependent on the heat dose and remained suppressed for an interval dependent on the heat dose before recovery. The kinetics of resumption of DNA, RNA, and protein synthesis correlated linearly with the nuclear protein mass measured immediately after heating. Also, the time of onset of recovery of RNA and protein

syntheses correlated linearly with the time at which nuclear protein mass returned to 125% of control, a level which has been implicated as a possible threshold in previous studies. More significantly, the onset of the resumption of DNA synthesis showed a one-to-one correlation with the time at which the nuclear protein mass returned to 125% of control. These correlations suggest that there may be causal relationships between the resumption of DNA, RNA, and protein synthesis and the reduction of the amount nuclear protein binding, particularly in the case of DNA synthesis. => 16 and (radioth? or radiation or chemoradiotherapy L6 IS NOT A RECOGNIZED COMMAND The previous command name entered was not recognized by the system. For a list of commands available to you in the current file, enter "HELP COMMANDS" at an arrow prompt (=>). => s 16 and (radioth? or radiation or chemoradiotherapy) 31960 RADIOTH? 766514 RADIATION 13479 RADIATIONS 772062 RADIATION (RADIATION OR RADIATIONS) 869 CHEMORADIOTHERAPY 3 L6 AND (RADIOTH? OR RADIATION OR CHEMORADIOTHERAPY) => d 112L12 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2008 ACS on STN 2003:737608 CAPLUS 139:240351 Matrix metalloproteinase inhibitors in combination with hypothermia and/or radiotherapy for the treatment of cancer Nakajima, Motowo Novartis A.-G., Switz.; Novartis Pharma G.m.b.H. PCT Int. Appl., 46 pp. CODEN: PIXXD2 Patent English FAN.CNT 1 PATENT NO. KIND DATE APPLICATION NO. DATE A1 20030918 WO 2003-EP2365 WO 2003075959 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LT, LU, LV, MA, MD, MK, MN, MX, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SE, SG, SK, TJ, TM, TN, TR, TT, UA, US, UZ, VC, VN, YU, ZA, ZW RW: AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR AU 2003214108 AU 2003-214108 20030307 <--Α1 20030922 EP 2003-709764 EP 1485131 Α1 20041215 20030307 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK JP 2003-574232 US 2005-506936 Τ 20050908 JP 2005526760 20030307 A1 US 2005232915 20051020 20050606 PRAI GB 2002-5537 GB 2002-29054 WO 2003-EP2365 A 20020308 A 20021212 W 20030307

THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD

of

L12

ΑN

DΝ TΙ

ΙN

PASO

DT

LΑ

PΙ

MARPAT 139:240351

RE.CNT 7

ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> d 112 ibib abs 1-3

L12 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:737608 CAPLUS

DOCUMENT NUMBER: 139:240351

TITLE: Matrix metalloproteinase inhibitors in combination

with hypothermia and/or radiotherapy for the

treatment of cancer Nakajima, Motowo

PATENT ASSIGNEE(S): Novartis A.-G., Switz.; Novartis Pharma G.m.b.H.

SOURCE: PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

INVENTOR(S):

PAT	PATENT NO. KIND DATE									DATE								
WO	2003	 0759	 59	A1 20030918					WO 2003-EP2365									
	W: RW:	CO, HR, LV, SG, AM,	CR, HU, MA, SK, AZ,	CU, ID, MD, TJ, BY,	CZ, IL, MK, TM, KG,	DE, IN, MN, TN, KZ,	DK, IS, MX, TR, MD,	AZ, DM, JP, NO, TT, RU, GR,	DZ, KE, NZ, UA, TJ,	EC, KG, OM, US, TM,	EE, KP, PH, UZ, AT,	ES, KR, PL, VC, BE,	FI, KZ, PT, VN, BG,	GB, LC, RO, YU, CH,	GD, LK, RU, ZA, CY,	GE, LT, SC, ZW CZ,	GH, LU, SE,	
11 کے	2003	,	SK,		2∆1	·	2003	N922	,	AII 2	UU3-	2141	N.8	·	21	UU3U.	307 <	
									AU 2003-214108 EP 2003-709764									
	2005 2005	5267 2329	SI, 60 15	LT,	LV, T	FI,	RO, 2005	MK,	CY,	AL, JP 2 US 2 GB 2 GB 2	TR, 003- 005- 002- 002-	вG , 5742.	CZ, 32 36	EE,	HU, 2 2 A 2 A 2	SK 00303 00506 00203	307 506 308 212	

OTHER SOURCE(S): MARPAT 139:240351

AB The invention provides a method of treating cancer in a subject in need of such treatment which comprises: radiotherapy, or cytotoxic therapy in combination with heat shock, and further comprises administering to the subject an effective amount of a matrix metalloproteinase inhibitor (Markush structures are included).

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 2 OF 3 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:551500 CAPLUS

DOCUMENT NUMBER: 139:117431

TITLE: 4,5-Diamino-1,2,3,4-tetrahydro-3,6-pyridazinediones as

 $\ensuremath{\mathsf{CXC}}$ chemokine receptor antagonists for treatment of

inflammatory disorders and cancer

INVENTOR(S): Taveras, Arthur G.; Dwyer, Michael; Chao, Jianping;

Baldwin, John J.; Merritt, Robert J.; Li, Ge; Chao,

Jianhua; Yu, Younong

PATENT ASSIGNEE(S): Schering Corporation, USA; Pharmacopeia, Inc.

SOURCE: PCT Int. Appl., 210 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

English LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.												DATE						
									WO 2003-US299						20030103 <			
	W:	ΑE,	AG,	AL,	AM,	ΑT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
		CO,	CR,	CZ,	DE,	DK,	DM,	DZ,	EC,	ΕE,	ES,	FΙ,	GB,	GD,	GE,	HR,	HU,	
		ID,	IL,	IN,	IS,	JP,	KG,	KR,	KΖ,	LC,	LK,	LR,	LT,	LU,	LV,	MA,	MD,	
		MG,	MK,	MN,	MX,	ΜZ,	NO,	NΖ,	PH,	PL,	PT,	RO,	RU,	SC,	SE,	SG,	SK,	
		SL,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UZ,	VC,	VN,	YU,	ZA,	ZM			
	RW:	GH,	GM,	KΕ,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	ΑM,	AZ,	BY,	
		KG,	KΖ,	MD,	RU,	ТJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	
		FΙ,	FR,	GB,	GR,	HU,	ΙE,	ΙΤ,	LU,	MC,	NL,	PT,	SE,	SI,	SK,	TR,	BF,	
							GΑ,											
US 2004063709					A1		2004	0401	US 2003-335789						20030102			
US	6878	709			В2		2005	0412										
																	103 <	
									AU 2003-207460									
EP									EP 2003-705667					20030103				
	R:						ES,										PT,	
							RO,											
_	1582						2005											
	2005																	
	2004				А		2004	1004								0040		
RIORIT	7 APP	LN.	INFO	.:									48P					
													89					
										WO 2	003-	US29	9	1	W 2	0030	103	
HER SO	DURCE	(S):			MARPAT 139:11743				31									

GΙ

$$\begin{array}{c|c}
R1 & R15 \\
N-N & & & \\
0 & & & & \\
A-N & N-B & & \\
\end{array}$$

Prepns. for title compds. I [wherein R1 and R15 = independently H or AΒ (un) substituted (hetero) aryl, alkyl, (hetero) cycloalkyl (alkyl), or (hetero)arylalkyl; A = (un)substituted thiazolyl(alkyl), thienyl(alkyl), oxazolyl(alkyl), pyridinyl(alkyl), piperazinyl(alkyl), piperidinyl(alkyl), imidazolyl(alkyl), indolyl(alkyl), benzotriazolyl(alkyl), phenyl(alkyl), naphthyl(alkyl), carbamoylalkyl, etc.; B = (un)substituted Ph, benzotriazolyl, benzimidazolyl, indolyl, indazolyl, pyridinyl, pyrazolyl, thienyl, pyrrolyl, or pyrimidinyl; or pharmaceutically acceptable salts or solvates thereof] and their intermediates are disclosed (no data). In addition, CXCR1 SPA, CXCR2 SPA, calcium fluorescence, chemotaxis, and cytotoxicity assays are described. For example, 5-methylsalicylic acid was coupled with dimethylamine in the presence of DCC in EtOAc to give 2-hydroxy-N,N,5-trimethylbenzamide, which was nitrated (44%) and reduced using 10% Pd/C to give 3-amino-2-hydroxy-N,N,5-trimethylbenzamide (99%). The amine may be coupled with 1,2,3,4-tetrahydro-3,6-pyridazinediones to provide compds. of the invention (no data). I may exhibit a range of

CXCR2 receptor binding activities from about 1 nM to about 10,100 nM. Thus, I and pharmaceutical compns. comprising I may be useful for the treatment of acute and chronic inflammatory disorders and cancer (no data).

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 3 OF 3 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:359662 CAPLUS

DOCUMENT NUMBER: 137:306709

TITLE:

Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase

inhibitor, CGS27023

AUTHOR(S): Qian, Li-Wu; Mizumoto, Kazuhiro; Urashima, Taro;

Nagai, Eishi; Maehara, Naoki; Sato, Norihiro;

Nakajima, Motowo; Tanaka, Masao

CORPORATE SOURCE: Department of Surgery and Oncology, Kyushu University,

Fukuoka, 812-8582, Japan

SOURCE: Clinical Cancer Research (2002), 8(4),

1223-1227

CODEN: CCREF4; ISSN: 1078-0432

PUBLISHER: American Association for Cancer Research

DOCUMENT TYPE: Journal LANGUAGE: English

Purpose: Radiotherapy remains a major therapeutic option for patients with advanced pancreatic cancer. Nevertheless, the effects of irradiation on malignant biol. behaviors (e.g., migration and invasion of cancer cells) have yet to be clarified. Thus, we conducted an in vitro study to investigate the radiation-induced alterations around cell migration and invasion capacity. Experiment design: Three cell lines from human pancreatic cancer were included in the study. γ - Radiation was used for irradiation treatment. Cell migration and invasion ability were evaluated by Transwell migration assay and Matrigel invasion assay. The activity of MMP-2 and 9, and expression of urokinase-type plasminogen activator were investigated with gelatin zymog. and immunoblot, resp. Results: Irradiation enhances invasive potential in some pancreatic cancer cells, whereas it significantly inhibits cell proliferation and migration. This hitherto unknown biol. effect of irradiation involves enhanced matrix metalloproteinase (MMP)-2 activity. Consequently, simultaneous administration of an MMP inhibitor, CGS27023A, suppresses the radiation-enhanced invasion through blockade of transition of MMP-2 from latent type to active type. Conclusion: Because radiation may increase invasion ability through activating MMP proteolytic system, simultaneous administration of the MMP inhibitor during radiotherapy could be a potent adjuvant therapeutic approach to improve the efficacy of radiotherapy for pancreatic cancer.

REFERENCE COUNT: 21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> s metalloproteinase and heat shock

26797 METALLOPROTEINASE

11763 METALLOPROTEINASES

29364 METALLOPROTEINASE

(METALLOPROTEINASE OR METALLOPROTEINASES)

1410582 HEAT

59554 HEATS

1427928 HEAT

(HEAT OR HEATS)

153681 SHOCK

11165 SHOCKS 158688 SHOCK

(SHOCK OR SHOCKS)

37818 HEAT SHOCK

(HEAT (W) SHOCK)

L13 443 METALLOPROTEINASE AND HEAT SHOCK

=> s 113 and radiother? or radiation or chemoradiotherapy

31430 RADIOTHER?

766514 RADIATION

13479 RADIATIONS

772062 RADIATION

(RADIATION OR RADIATIONS)

869 CHEMORADIOTHERAPY

772590 L13 AND RADIOTHER? OR RADIATION OR CHEMORADIOTHERAPY L14

=> s 113 and (radiother? or radiation or chemoradiotherapy)

31430 RADIOTHER?

766514 RADIATION

13479 RADIATIONS

772062 RADIATION

(RADIATION OR RADIATIONS)

869 CHEMORADIOTHERAPY

L15 18 L13 AND (RADIOTHER? OR RADIATION OR CHEMORADIOTHERAPY)

=> d 115 ibib abs 1-15

L15 ANSWER 1 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2007:433685 CAPLUS

DOCUMENT NUMBER: 146:460567

TITLE: Nucleic acid vaccines encoding matrix

metalloproteinase 11 and immunoenhancing

element against cancer or carcinoma

INVENTOR(S): Aurisicchio, Luigi; La Monica, Nicola

PATENT ASSIGNEE(S): Istituto di Ricerche di Biologia Molecolare P.

Angeletti S.p.A., Italy; Ciliberto, Gennaro; Lazzaro,

Domenico; Mori, Federica; Peruzzi, Daniela

SOURCE: PCT Int. Appl., 68pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATI	ENT	NO.			KIN	D	DATE			APPL	ICAT	ION I	.00		D	ATE	
		0421					2007			 WO 2	006-	EP95	 36		2	0061	
WO 2	2007	0421	69		A3		2007	0531									
	W:	ΑE,	ΑG,	AL,	ΑM,	ΑT,	ΑU,	ΑZ,	ΒA,	BB,	BG,	BR,	BW,	BY,	ΒZ,	CA,	CH,
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,
	GE, GH, G			GM,	HN,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KM,	KN,	KP,
	KR, KZ, L			LA,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	LY,	MA,	MD,	MG,	MK,	MN,
	KR, KZ, LA MW, MX, M			MY,	MΖ,	NA,	NG,	NI,	NO,	NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RS,
		RU,	SC,	SD,	SE,	SG,	SK,	SL,	SM,	SV,	SY,	ΤJ,	TM,	TN,	TR,	TT,	TZ,
		UA,	UG,	US,	UZ,	VC,	VN,	ZA,	ZM,	ZW							
	RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,
		IS,	ΙT,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,	ВJ,
		CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG,	BW,	GH,
		GM,	ΚE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,
		KG,	KΖ,	MD,	RU,	ΤJ,	TM,	AP,	EA,	EP,	OA						
RITY	APP	LN.	INFO	. :						US 2	005-	7244	98P]	P 2	0051	007

AB Compns. comprising matrix metalloproteinase 11 (MMP-11) or

stromelysin-3 (ST-3) or the nucleic acid encoding the MMP-11 for use in vaccines for treating tumors and cancers, which overexpress MMP-11, are described. In particular embodiments, the compns. comprise a nucleic acid encoding a fusion polypeptide that includes the catalytically inactivated MMP-11 linked at the C-terminus to an immunoenhancing element wherein the codons encoding the MMP-11 and the immunoenhancing element have been optimized for enhanced expression of the fusion polypeptide in human cells. In other embodiments, the compns. comprise the catalytically inactivated MMP-11 linked at the C-terminus to an immunoenhancing element. The compns. can be used alone or in synergy with vaccines against other tumor associated antigens as well as with conventional therapies such as radiation therapy and chemotherapy.

L15 ANSWER 2 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:1157631 CAPLUS

DOCUMENT NUMBER: 145:483673

TITLE: Novel methods and devices for evaluating poisons INVENTOR(S): Ching, Edwin P.; Johnson, Dale E.; Sudarsanam, Sucha

PATENT ASSIGNEE(S): Emiliem, USA

SOURCE: PCT Int. Appl., 132pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA	ATENT	NO.			KIN	D	DATE			APPL	ICAT	ION 1	NO.		D.	ATE	
W(2006	 1166	 22		A2	_	2006	1102		WO 2	006-	 US16	 067		2	0060	426
	W:	ΑE,	ΑG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	ВG,	BR,	BW,	BY,	BZ,	CA,	CH,
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KM,	KN,	KP,	KR,
		KΖ,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	LY,	MA,	MD,	MG,	MK,	MN,	MW,	MX,
		MZ,	NA,	NG,	NΙ,	NO,	NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,
		SG,	SK,	SL,	SM,	SY,	ТJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,
		VN,	YU,	ZA,	ZM,	ZW											
	RW:	ΑT,	BE,	ВG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,
		IS,	ΙΤ,	LT,	LU,	LV,	MC,	ΝL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,	ВJ,
		CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	ΤG,	BW,	GH,
		GM,	KΕ,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	ΑM,	ΑZ,	BY,
		KG,	KΖ,	MD,	RU,	ΤJ,	$^{\mathrm{TM}}$										
US	S 2006	2532	62		A1		2006	1109		US 2	006-	3803	88		2	0060	426
EI	2 1880	332			A2		2008	0123		EP 2	006-	7516	75		2	0060	426
	R:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	IE,
		IS,	ΙT,	LI,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	AL,
			HR,	•	YU												
PRIORI:	IY APP	LN.	INFO	.:						US 2					P 2	0050	427
								US 2						0060.			
										WO 2	006-	US16	067	1	W 2	0060	426

AB Methods and devices useful for evaluating poisons or other chemical entities, and for using such methods to forecast unfavorable drug effects. The present invention provides lists of biomarkers for anal., either directly or indirectly, which affect the toxicity pathways. These may be evaluated at many levels, including genetic, genotyping, evaluation of combination pairing of diploid alleles or haplotypes, RNA expression, protein expression, functional activity, posttranslational anal. or evaluation, etc. Thus, the biomarkers refer to the corresponding genetic information, RNA, protein, or other structural embodiments thereof. And the means to use these biomarkers, e.g., to evaluate status of toxicity pathways, to evaluate individual risk or susceptibility to various toxic pathways from exposure or therapeutic intervention, to generate test systems for drug development, are all provided by identifying critical and significant

contributors to the pathway progression. The present invention is directed to accelerating the speed of development and reducing the resource investment necessary to determine these features for directing use of such substances or treatments to appropriate biol. contexts.

L15 ANSWER 3 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:816927 CAPLUS

DOCUMENT NUMBER: 145:267789

TITLE: The dynamic phase of cancer cells by the low

temperature narrow wavelength far infrared

radiation

AUTHOR(S): Hosokawa, Hiroyoshi

CORPORATE SOURCE: Dep. Oral Maxill. Surg., Grad. Sch. Dentistry, the

University of Tokuyama, Japan

SOURCE: Shikoku Shigakkai Zasshi (2006), 19(1), 35-54

CODEN: SSZAED; ISSN: 0914-6091

PUBLISHER: Shikoku Shigakkai

DOCUMENT TYPE: Journal LANGUAGE: Japanese

Far IR ray (FIR) are known to have some effects on the human body, but little is known about the non-fever effects in normal thermal fields. developed a CO2 incubator and an animal raiser that is able to radiate low temperature narrow wavelength (limited) FIR at wavelength of 4 to 20 μm with a peak wavelength 7 to 12 μ m, which had strong effects on living tissue, and we investigated the effects of this FIR on cancer cells. in vitro analyses, analyses of cell proliferation and cell cycle were carried out using 5-bromo-2'-deoxy-uridine (BrdU) incorporation and flow cytometry in three cancer cell lines: the human vulval epidermal cell line A431, the human tongue squamous cell carcinoma (SCC) line HSC3, and the human gingiva SCC line Sa3. In addition, from the viewpoint of the heat shock proteins (HSPs), especially the HSP70 protein, having cytoprotection for various stresses, Hsp70A gene expression was examined using real-time reverse transcription polymerase chain reaction. The effect of HSP70 protein on cell proliferation for limited FIR was analyzed by transfecting Hsp70A expression vector or by repressing Hsp70A and Hsp70C mRNA using gene silencing methods with siRNA. In in vivo analyses, we generated xenograft tumors of A431 and Sa3 cells and examined the changes of tumor volume, genetic alteration and histol. observation. As a result, limited FIR suppressed cell proliferation of HSC3 and Sa3 cells, not A431 cells. The cell cycle of HSC3 cells was mainly delayed by limited FIR in the G2/M stage, while necrotic cells of Sa3 cells slightly increased by limited FIR. Moreover, the expression of Hsp70A gene and HSP70 protein was higher on A431 cells whose cell proliferation was not suppressed by limited FIR. On BrdU incorporation anal. under the condition in which HSP70 protein was repressed, BrdU incorporation of A431 cells was suppressed. In in vivo analyses, limited FIR suppressed both the growth of A431 tumor and Sa3 tumor. Tumor tissues of A431 in limited FIR group were encapsulated and matrix metalloproteinase (MMP)-1, -9, -10, -13 were significantly suppressed in the protein level. On the other hand, limited FIR induced the apoptosis in the Sa3 tumor. These findings in vitro suggest that limited FIR suppressed the proliferation of certain cancer cells, and the suppressive effect depended on expression level of HSP70 protein. These findings in vivo that limited FIR suppressed the tumor growth of A431 by inhibiting MMPs, and that of Sa3 by inducing apoptosis.

L15 ANSWER 4 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:167588 CAPLUS

DOCUMENT NUMBER: 144:254148

TITLE: Aminopteridinones as anticancer agents, their

preparation, pharmaceutical compositions, and use in

therapy

INVENTOR(S): Munzert, Gerd; Steegmaier, Martin; Baum, Anke

PATENT ASSIGNEE(S): Boehringer Ingelheim International G.m.b.H., Germany;

Boehringer Ingelheim Pharma G.m.b.H. & Co. K.-G.

SOURCE: PCT Int. Appl., 158 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

GΙ

PA'	TENT	NO.			KIN	D	DATE			APPI	ICAT	ION 1	NO.		D	ATE	
WO	2006	0181	 82		A1	_	2006	0223		WO 2	2005-	EP86.	 23		2	0050	809
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KM,	KP,	KR,	KΖ,
		LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,
		NG,	NΙ,	NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,
		SL,	SM,	SY,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,
		ZA,	ZM,	ZW													
	RW:	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	ΙE,
		IS,	ΙΤ,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,	ВJ,
		CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	ΤG,	BW,	GH,
		GM,	KΕ,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	BY,
			RU,														
US	2006	0583	11		A1		2006	0316		US 2	2005-	1895	40		2	0050	726
AU	2005	2743	84		A1		2006	0223		AU 2	005-	2743	84		2	0050	809
CA	2576	269			A1		2006	0223		CA 2	005-	2576.	269		2	0050	809
EP	1827	441			A1		2007	0905		EP 2	2005-	7702.	28		2	0050	809
	R:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	IE,
		IS,	ΙΤ,	LI,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BA,
		HR,	ΥU														
	HR, YU CN 101039673						2007			CN 2	2005-	8003	5272			0050	
	IN 2007DN00888						2007	0803			2007-		-		_	0070	
	MX 200701853 KR 2007050478						2007				2007-				_	0070	
KR	2007	0504	78		А		2007	0515		KR 2	2007-	7059	55		2	0070	314
RIORIT	Y APP	LN.	INFO	.:							004-					0040	
											004-		_	_		0040	
										WO 2	2005-	EP86.	23	Ī	W 2	0050	809
THER S	OURCE	(S):			MAR)	PAT	144:	2541	48								

The invention relates to a group of aminopteridinones I, which are useful AΒ for the treatment of diseases which involve cell proliferation. In compds. I, R1 and R2 are independently selected from H and (un)substituted C1-6 alkyl, or R1 and R2 together form a 2- to 5-membered alkylene bridge, optionally containing 1 or 2 heteroatoms; R3 is (un)substituted C1-12 alkyl, C2-12 alkenyl, C2-12 alkynyl, C6-14 aryl, etc.; R4 is H, OH, CN, halo, (un) substituted amino, (un) substituted C1-6 alkyl, C1-5 alkoxy, etc.; L is (un) substituted C2-10 alkylene, (un) substituted C2-10 alkenylene, (un) substituted C6-14 arylene, etc.; R5 is (un) substituted morpholinyl, (un) substituted piperidinyl, (un) substituted piperazinyl, (un) substituted piperazinylcarbonyl, (un)substituted pyrrolidinyl, (un)substituted thiomorpholinyl, etc.; n is 0 or 1; and m is 1 or 2; including tautomers, stereoisomers, salts, solvates, polymorphs, and prodrugs thereof. The invention also relates to the preparation of I, pharmaceutical compns. comprising a compound I, at least one other therapeutic agent, optionally

^{*} STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

with one or more pharmaceutically acceptable excipients, as well as to the use of the compns. for the treatment of diseases which involve cell proliferation, migration or apoptosis of cancer cells, or angiogenesis. Esterification of (R)-2-aminobutyric acid and reductive condensation with cyclopentanone gave cyclopentylamine II, which underwent regioselective substitution of 2,4-dichloro-5-nitropyrimidine and reductive heterocyclization to form pteridinone III. N-Methylation of III followed by substitution with 4-amino-3-methoxybenzoic acid and amidation with 1-methyl-4-aminopiperidine resulted in the formation of aminopteridinone IV. A combination of suboptimal doses of irinotecan and compound IV shows an additive/synergistic effect in a human colon carcinoma model and is well tolerated. Meanwhile, compound IV acts at least additively with docetaxel in a human non-small cell lung carcinoma model and not antagonistically with gemcitabine in a human adenocarcinoma model.

REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 5 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:151685 CAPLUS

DOCUMENT NUMBER: 144:309813

TITLE: The receptor for advanced glycation end products is

highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis

factor-alpha

AUTHOR(S): Lohwasser, Christina; Neureiter, Daniel; Weigle,

Bernd; Kirchner, Thomas; Schuppan, Detlef

CORPORATE SOURCE: Department of Medicine I, University of

Erlangen-Nuernberg, Germany

SOURCE: Journal of Investigative Dermatology (2006), 126(2),

291-299

CODEN: JIDEAE; ISSN: 0022-202X

PUBLISHER: Nature Publishing Group

DOCUMENT TYPE: Journal LANGUAGE: English

Advanced glycation end products (AGEs) form non-enzymically from reactions of proteins with reducing sugars. In the skin, AGEs were reported to accumulate in dermal elastin and collagens and to interact nonspecifically with the cell membrane of dermal fibroblasts. Therefore, AGEs may influence the process of skin aging. We investigated the presence of the AGE receptor RAGE in skin and the influence of AGEs on receptor expression and the formation of extracellular matrix (ECM). Sections of sun-protected and sun-exposed skin were analyzed with monoclonal antibodies against (RAGE), heat-shock protein 47, factor XIIIa, CD31, and CD45. RAGE was mainly expressed in fibroblasts, dendrocytes, and keratinocytes and to a minor extent in endothelial and mononuclear cells. Human foreskin fibroblasts (HFFs) highly expressed RAGE on the protein and mRNA level when analyzed by quant. Western blotting and real-time PCR. Incubation of HFFs with the specific RAGE ligand N ϵ -(carboxymethyl)lysine-modified BSA (CML-BSA) and tumor necrosis factor-alpha resulted in significant upregulation of RAGE expression. CML-BSA induced a mildly profibrogenic pattern, increasing connective tissue growth factor, transforming growth factor-beta (TGF- β) 1, and procollagen- α 1(I) mRNA, whereas expression of matrix metalloproteinase (MMP)-1, -2, -3, and -12 was unaffected. We conclude that in HFFs, AGE-RAGE interactions may influence

the process of skin aging through mild stimulation of ECM gene expression.

REFERENCE COUNT:

43 THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 6 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:120414 CAPLUS

DOCUMENT NUMBER: 144:184702

TITLE: Gene expression profiles for identifying patients at

risk of developing encephalitis following

immunotherapy for Alzheimer's disease

INVENTOR(S): O'Toole, Margot; Dorner, Andrew J.; Janszen, Derek B.;

Slonim, Donna K.; Mounts, William M.; Reddy,

Padmalatha S.; Hill, Andrew A.

PATENT ASSIGNEE(S): Wyeth, USA

SOURCE: PCT Int. Appl., 298 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PAT	CENT 1	NO.			KIN	D	DATE			APPL	ICAT	ION 1	NO.		D.	ATE	
		2006 2006									WO 2	005-	US25	771		2	0050	720
		W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,
			CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	ΚM,	KP,	KR,	KΖ,
			LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,
			NG,	ΝI,	NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,
	SL, SM, ZA, ZM,					ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UΖ,	VC,	VN,	YU,
	ZA, ZM,																	
	RW: AT, BE,									,	,							
			IS,	ΙΤ,	LT,	LU,	LV,	MC,	ΝL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,	ВJ,
							•	GN,								•		•
			•	•	•	•		NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	ΑM,	AΖ,	BY,
			,	,	,	RU,	,											
		2571																
		2006															0050	-
	EP 1784509													-				_
	R: AT, BE, B					,	,			,	,	,	,	,	•		,	IE,
	IS, IT, L					LT,	LU,	LV,	MC,									
PRIOF	RIORITY APPLN. INFO.:										US 2							
											US 2						0050	
											WO 2	005-	US25	771	Ī	w 2	0050	720

The present invention generally relates to a method for an improved treatment for Alzheimer's disease (AD) using immunotherapy, e.g., immunotherapy targeting β amyloid (A β) and immunotherapy based on AN1792. By ANOVA and GeneCluster analyses of Affymetrix U133A GeneChip data, statistically significant assocns. were detected between the gene expression profiles of peripheral blood mononuclear cells of patients prior to immunization with AN1792 and the post-immunization development of encephalitis. In addition, statistically significant assocns. were found between the pre-immunization gene expression profile in PBMCs and post-immunization development of IgG response. The method allows for predicting an adverse clin. response, and therefore allows for an improved safety profile of AN1792. In another embodiment, the method allows for predicting a favorable clin. response, and therefore allows for an improved efficacy profile of AN1792. The methods of the present invention may be combined to predict a favorable clin. response and the lack of an adverse clin. response.

L15 ANSWER 7 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2005:1293778 CAPLUS

DOCUMENT NUMBER: 144:35066

TITLE: Gene expression profiling in the prostate in the

diagnosis and Gleason staging of high- and low-grade

tumors

INVENTOR(S): Shekar, Mamatha; Zhang, Zhaomei; Caldwell, Mitchell

C.; Chen, Zuxiong; Fan, Zhenbin; McNeal, John E.; Nolley, Rosalie; Stamey, Thomas A.; Warrington, Janet

A.; Palma, John F.

PATENT ASSIGNEE(S): Affymetrix, Inc., USA

SOURCE: U.S. Pat. Appl. Publ., 40 pp., Cont.-in-part of U.S.

Ser. No. 411,537. CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
					-	
	US 2005272052	A1	20051208	US 2004-975592		20041027
	US 2004029151	A1	20040212	US 2003-411537		20030409
PRIO	RITY APPLN. INFO.:			US 2002-371304P	P	20020409
				US 2003-411537	Α2	20030409

AB Many genes are affected in prostate cancers which have not been previously identified. This includes genes that have been up-regulated or down-regulated. Monitoring the expression levels of these genes is useful to identify the existence of prostate cancer and to differentiate low-risk (Gleason grade 3), and high risk (Gleason grade 4 or 5) tumors. Also, monitoring the expression levels of these genes is useful to predict the effectiveness of treatment, outcome, use of therapeutics, and screening drugs useful for the treatment of prostate cancer.

L15 ANSWER 8 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2005:493568 CAPLUS

DOCUMENT NUMBER: 143:48169

TITLE: Implantable sensors and pumps and anti-scarring agents

INVENTOR(S): Hunter, William L.; Gravett, David M.; Toleikis,

Philip M.; Maiti, Arpita

PATENT ASSIGNEE(S): Angiotech International A.-G., Switz.

SOURCE: PCT Int. Appl., 1619 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 19

PATENT INFORMATION:

PAT	CENT 1	NO.			KINI	O	DATE		1	APPL	ICAT	ION 1	.OV		Di	ATE	
WO WO	2005		. –				2005 2006		1	wo 2	004-1	JS39:	387		2	0041	122
	W: RW:	CN, GE, LK, NO, TJ, BW, AZ, EE, SE,	CO, GH, LR, NZ, TM, GH, BY, ES,	CR, GM, LS, OM, TN, GM, KG, FI, SK,	CU, HR, LT, PG, TR, KE, KZ, FR,	CZ, HU, LU, PH, TT, LS, MD, GB,	AU, DE, ID, LV, PL, TZ, MW, RU, GR, BJ,	DK, IL, MA, PT, UA, MZ, TJ, HU,	DM, IN, MD, RO, UG, NA, TM, IE,	DZ, IS, MG, RU, US, SD, AT, IS,	EC, JP, MK, SC, UZ, SL, BE, IT,	EE, KE, MN, SD, VC, SZ, BG, LU,	EG, KG, MW, SE, VN, TZ, CH, MC,	ES, KP, MX, SG, YU, UG, CY, NL,	FI, KR, MZ, SK, ZA, ZM, CZ, PL,	GB, KZ, NA, SL, ZM, ZW, DE, PT,	GD, LC, NI, SY, ZW AM, DK, RO,
US	2005	,	•	TD,	TG A1		2005	0707	1	US 2	004-	9862:	30		21	0041	110
US	2005	1819	77		A1		2005	0818	1	US 2	004-	9862	31		2	0041	110
CN	1010	9461	3		Α		2007	1226	(CN 2	004-	8003	1664		2	0041	110
AU	2004	2934	63		A1		2005	0609		AU 2	004-	2934	63		2	0041	122
CA	2536	242			A1		2005	0609	(CA 2	004-	2536	242		2	0041	122
WO	2005	0512	32		A2		2005	0609	1	WO 2	004-1	JS39:	346		2	0041	122

```
WO 2005051232
                           А3
                                  20051208
             AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
              CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
              GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
              LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
              NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,
              TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
         RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
              AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
              EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO,
              SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
              NE, SN, TD, TG
     WO 2006055008
                           A2
                                  20060526
                                               WO 2004-US39353
                                                                        20041122
             AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
              CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
              GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
              LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
              NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,
              TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
         RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
             IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ,
             MD, RU, TJ, TM
     EP 1685085
                                  20060802
                                               EP 2004-817879
                                                                        20041122
                           Α2
             AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
              IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK, IS
     CN 1878514
                           Α
                                  20061213
                                              CN 2004-80033341
                                                                        20041122
     JP 2007513650
                           Τ
                                  20070531
                                               JP 2006-541669
                                                                        20041122
     US 2005149158
                                  20050707
                                               US 2004-409
                                                                        20041129
                           Α1
                                  20050811
                                               US 2004-451
     US 2005175662
                           Α1
                                                                        20041129
     US 2005175661
                                  20050811
                                               US 2004-999205
                                                                        20041129
                           Α1
                                               US 2004-97
     US 2005186243
                           Α1
                                  20050825
                                                                        20041129
                                                                        20041129
     US 2005186242
                                  20050825
                                               US 2004-999204
                           Α1
     US 2005191331
                                  20050901
                                               US 2004-1419
                           Α1
                                                                        20041130
     US 2005175663
                           Α1
                                  20050811
                                               US 2004-1791
                                                                        20041202
     US 2005181008
                           Α1
                                  20050818
                                               US 2004-1786
                                                                        20041202
     US 2005181011
                                  20050818
                                               US 2004-1792
                                                                        20041202
                           Α1
     US 2005143817
                                  20050630
                                               US 2004-6899
                                                                        20041207
                           Α1
     US 2005177103
                                  20050811
                                               US 2004-6314
                           Α1
                                                                        20041207
     US 2005177225
                           Α1
                                  20050811
                                               US 2004-6895
                                                                        20041207
     US 2005181004
                                  20050818
                                               US 2004-6289
                                                                        20041207
                           Α1
     US 2006147492
                           Α1
                                  20060706
                                               US 2006-343809
                                                                        20060131
                                  20070511
     IN 2006KN01694
                           Α
                                               IN 2006-KN1694
                                                                        20060619
                                  20070511
                                               IN 2006-KN1695
                                                                        20060619
     IN 2006KN01695
                           Α
                                  20070511
                                               IN 2006-KN1698
     IN 2006KN01698
                           Α
                                                                        20060619
PRIORITY APPLN. INFO.:
                                               US 2003-523908P
                                                                    Ρ
                                                                       20031120
                                               US 2003-524023P
                                                                    Ρ
                                                                        20031120
                                               US 2003-525226P
                                                                    Ρ
                                                                        20031124
                                               US 2003-526541P
                                                                    Ρ
                                                                        20031203
                                               US 2004-578471P
                                                                    Ρ
                                                                        20040609
                                               US 2004-586861P
                                                                    Ρ
                                                                        20040709
                                               US 2004-986230
                                                                    Α
                                                                        20041110
                                               US 2004-986231
                                                                    Α
                                                                        20041110
                                               US 2003-518785P
                                                                    Ρ
                                                                        20031110
                                                                    Ρ
                                               US 2004-582833P
                                                                        20040624
                                               US 2004-986450
                                                                    A1 20041110
                                               WO 2004-US37930
                                                                    W
                                                                        20041110
                                               WO 2004-US39183
                                                                    W
                                                                        20041122
                                               WO 2004-US39346
                                                                    W
                                                                        20041122
                                               WO 2004-US39353
                                                                    W
                                                                        20041122
                                               WO 2004-US39387
                                                                    W
                                                                        20041122
```

AB Pumps and sensors for contact with tissue are used in combination with an anti-scarring agent (e.g., a cell cycle inhibitor) in order to inhibit scarring that may otherwise occur when the pumps and sensors are implanted within an animal are disclosed. Thus, a drug-coated device was coated with a heparin coating and dipped into a solution of heparin-benzalkonium chloride complex in isopropanol. The device was removed from the solution and air-dried.

L15 ANSWER 9 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2005:283363 CAPLUS

DOCUMENT NUMBER: 142:329832

TITLE: Combination of a vegf receptor inhibitor with a

chemotherapeutic agent

INVENTOR(S): Bold, Guido; Brueggen, Josef Bernhard; Huang, Jerry

Min-Jian; Kinder, Frederick Ray, Jr.; Lane, Heidi; Latour, Elisabeth Jeanne; Manley, Paul William; Wood,

Jeanette Marjorie

PATENT ASSIGNEE(S): Novartis Ag, Switz.; Novartis Pharma GmbH

SOURCE: PCT Int. Appl., 71 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PAT	ENT 1	NO.			KIN	D	DATE			APPL	ICAT	ION I	NO.		D	ATE		
	2005								1	WO 2	004-	EP10	686		2	0040	923	
0	W:	AE, CN, GE, LK, NO, TJ, BW, AZ, EE,	AG, CO, GH, LR, NZ, TM, GH, BY,	AL, CR, GM, LS, OM, TN, GM, KG,	AM, CU, HR, LT, PG, TR, KE, KZ,	AT, CZ, HU, LU, PH, TT, LS, MD, GB,	AU, DE, ID, LV, PL, TZ, MW, RU, GR,	AZ, DK, IL, MA, PT, UA, MZ, TJ,	DM, IN, MD, RO, UG, NA, TM, IE,	DZ, IS, MG, RU, US, SD, AT, IT,	BG, EC, JP, MK, SC, UZ, SL, BE, LU, GA,	EE, KE, MN, SD, VC, SZ, BG, MC,	EG, KG, MW, SE, VN, TZ, CH, NL,	ES, KP, MX, SG, YU, UG, CY, PL,	FI, KR, MZ, SK, ZA, ZM, CZ, PT,	GB, KZ, NA, SL, ZM, ZW, DE, RO,	GD, LC, NI, SY, ZW AM, DK, SE,	
CA	2004 2537 1682	2736 991	-		A1		2005	0331	(CA 2	004- 004- 004-	2537	991		2	0040	923	
BR JP MX IN	1856. 2004 2007 2006 2006 2006	IE, 327 0146 5059 PA03 CN00	SI, 98 38 163 982	LT,	LV, A A T A A	FI,	RO, 2006 2006 2007 2006 2007	MK, 1101 1128 0315 0605 0615	CY,	AL, CN 2 BR 2 JP 2 MX 2 IN 2 NO 2	IT, TR, 004- 006- 006- 006- 006- 003- 004-	BG, 8002 1469 5273 PA31 CN98 1777	CZ, 7544 8 48 63 2	EE,	HU, 21 21 21 21 21 21	PL, 0040 0040 0040	SK, 923 923 923 320 322 421 923	HR

OTHER SOURCE(S): MARPAT 142:329832

AB The present invention relates to a combination therapy for treating patients suffering from proliferative diseases or diseases associated with persistent angiogenesis. The patient is treated with: (a) a VEGF inhibitor compound; and (b) one or more chemotherapeutic agents selected from the group consisting of: an aromatase inhibitor; an anti-estrogen, an anti-androgen (especially in the case of prostate cancer) or a gonadorelin agonist; a topoisomerase I inhibitor or a topoisomerase II inhibitor; a microtubule active agent, an alkylating agent, an anti-neoplastic

anti-metabolite or a platin compound; a compound targeting/decreasing a protein or lipid kinase activity or a protein or lipid phosphatase activity, a further anti-angiogenic compound or a compound which induces cell differentiation processes. The patient is treated with :(a) a VEGF inhibitor compound; and (b) one or more chemotherapeutic agents selected from the group consisting of : a bradykinin 1 receptor or an angiotensin II antagonist; a cyclooxygenase inhibitor, a bisphosphonate, a heparanase inhibitor (prevents heparan sulfate degradation) , e.g. , PI-88 , a biol. response modifier, preferably a lymphokine or interferons, e.g., interferon γ , an ubiquitination inhibitor, or an inhibitor which blocks anti-apoptotic pathways; an inhibitor of Ras oncogenic isoforms or a farnesyl transferase inhibitor; a telomerase inhibitor, e.g., telomestatin ; a protease inhibitor, a matrix metalloproteinase inhibitor , a methionine aminopeptidase inhibitor , e.g. , bengamide or a derivative thereof , or a proteasome inhibitor , e. g. , PS-341. The patient is treated with : (a) a VEGF inhibitor compound (b) one or more chemotherapeutic agents selected from the group consisting of : agents used in the treatment of hematol. malignancies or FMS-like tyrosine kinase inhibitors; an HSP90 inhibitors; HDAC inhibitors; mTOR inhibitors; somatostatin receptor antagonists; integrin antagonists; anti-leukemic compds. ; tumor cell damaging approaches such as ionizing radiation EDG binders ; anthranilic acid amide class of kinase inhibitors; ribonucleotide reductase inhibitors; S-adenosylmethionine decarboxylase inhibitors ; antibodies against VEGF or VEGFR ; photodynamic therapy; angiostatic steroids; implants containing corticosteroids; AT1 receptor antagonists; ACE inhibitors.

L15 ANSWER 10 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:1101434 CAPLUS

DOCUMENT NUMBER: 142:235549

TITLE: Heat shock-induced matrix

metalloproteinase (MMP)-1 and MMP-3 are

mediated through ERK and JNK activation and via an

autocrine interleukin-6 loop

AUTHOR(S): Park, Chi-Hyun; Lee, Min Jung; Ahn, Jungmi; Kim,

Sangmin; Kim, Hyeon Ho; Kim, Kyu Han; Eun, Hee Chul;

Chung, Jin Ho

CORPORATE SOURCE: Department of Dermatology, Seoul National University

College of Medicine and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National

University Hospital, Seoul, S. Korea

SOURCE: Journal of Investigative Dermatology (2004), 123(6),

1012-1019

CODEN: JIDEAE; ISSN: 0022-202X

PUBLISHER: Blackwell Publishing, Inc.

DOCUMENT TYPE: Journal LANGUAGE: English

AB Although many studies have been performed to elucidate the mol. consequences of UV irradiation, little is known about the effect of IR radiation on skin aging. In addition to photons, heat is likely to be generated as a consequence of IR irradiation, and heat shock is widely considered to be an environmental stress. Here we investigated the effect of heat shock on the expressions of matrix metalloproteinase (MMP)-1, MMP-2, and MMP-3 in cultured human skin fibroblasts. Heat shock induced the expression of MMP-1 and MMP-3, but not MMP-2, at the mRNA and protein levels in a temperature-dependent manner, and caused the rapid activation of three distinct mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. The heat shock-induced MMP-1 and MMP-3 expression was suppressed by the inhibition of ERK and JNK but not by p38 MAPK inhibition. Furthermore, heat shock

increased the synthesis and release of interleukin-6 (IL-6) into culture media. The specific inhibition of IL-6 using a monoclonal antibody against IL-6 greatly reduced the expression of MMP-1 and MMP-3 induced by heat shock. Taken together, our results suggest that ERK and JNK play an important role in the induction of MMP-1 and MMP-3 by

ERK and JNK play an important role in the induction of MMP-1 and MMP-3 by heat shock and that the heat shock

-induced expression of MMP-1 and MMP-3 is mediated via an IL-6-dependent autocrine mechanism.

REFERENCE COUNT: 47 THERE ARE 47 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 11 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:965067 CAPLUS

DOCUMENT NUMBER: 141:406039

TITLE: Combinations for the treatment of diseases involving

cell proliferation, migration or apoptosis of myeloma

cells, or angiogenesis

INVENTOR(S): Hilberg, Frank; Solca, Flavio; Stefanic, Martin

Friedrich; Baum, Anke; Munzert, Gerd; Van Meel,

Jacobus C. A.

PATENT ASSIGNEE(S): Boehringer Ingelheim International G.m.b.H., Germany;

Boehringer Ingelheim Pharma G.m.b.H. & Co. K.-G.

SOURCE: PCT Int. Appl., 101 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PA	TENT				KINI		DATE			APPI	LICAT	ION I	NO.		D	ATE	
	2004 2004	0962	24		A2		2004	1111		WO 2	2004-	EP43	63		2	0040	424
	W:		,	,		,			•	,	BG, EE,	,	,	,	,	,	•
											KE,						
		LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MΖ,	NA,	ΝΙ,	NO,
		NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	ТЈ,
		TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UΖ,	VC,	VN,	YU,	ZA,	ZM,	ZW	
	RW:	BW,	GH,	GM,	ΚE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,
		ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,
			,	,		,	,		,	,	LU,	,	,	,		,	
					BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,
	4		TD,														
EP	1473																
	K:				•	•	•		•	•	IT,					•	PT,
71 17	2004				,						TR,	•					121
	2523										2004 2004						
=	1622															0040	
PE											IT,						
	1(•	,	,	,	,	,	,	,	,	,	HU,	,	,	1111	UL,	110,	/
BR	2004														2	0040	424
	2006																
	2005																
NO	2005	0056	05		Α		2005	1128		NO 2	2005-	5605			2	0051	128
PRIORIT	Y APP	LN.	INFO	.:						EP 2	2003-	9587			A 2	0030	429
										EP 2	2004-	508			A 2	0040	113
										EP 2	2004-	1171			A 2	0040	121
										WO 2	2004-	EP43	63	1	W 2	0040	424

AB The present invention relates to a pharmaceutical combination for the treatment of diseases which involves cell proliferation, migration or

apoptosis of myeloma cells, or angiogenesis. The invention also relates to a method for the treatment of said diseases, comprising co-administration of effective amts. of specific active compds. and/or co-treatment with radiation therapy, in a ratio which provides an additive and synergistic effect, and to the combined use of these specific compds. and/or radiotherapy for the manufacture of corresponding pharmaceutical combination prepns. The pharmaceutical combination can include selected protein tyrosine kinase receptor antagonists and further chemotherapeutic or naturally occurring semisynthetic or synthetic agents.

L15 ANSWER 12 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:554409 CAPLUS

DOCUMENT NUMBER: 142:193398

TITLE: Gene expression profiling of in vivo UVB-irradiated

human epidermis

Enk, Claes D.; Shahar, Iris; Amariglio, Ninette; AUTHOR(S):

Rechavi, Gideon; Kaminski, Naftali; Hochberg, Malka

CORPORATE SOURCE: Department of Dermatolology, The Hadassah-Hebrew

University Medical Center, Jerusalem, Israel

SOURCE: Photodermatology, Photoimmunology & Photomedicine

(2004), 20(3), 129-137 CODEN: PPPHEW; ISSN: 0905-4383

PUBLISHER: Blackwell Publishing Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

Background: Several recent studies have employed microarray profiling to study UVB-regulated gene expression in human skin. These studies are all based on UV-irradiated cultured cells that differ substantially from the intact tissues they are supposed to imitate. The purpose of the present study was to analyze the differential expression of UVB-regulated genes in intact human epidermis following in vivo UV irradiation Methods: The forearms of human volunteers were exposed to 4 MED of UVB in vivo, followed by removal of epidermal samples from exposed and non-exposed areas after 24 h. RNA samples were analyzed using oligonucleotide microarray (Affymetrix) technol. analyzing 12 500 genes simultaneously. Verification of selected genes was performed by semi-quant. reverse transcriptase polymerase chain reaction. Results: Gene expression patterns clearly distinguished UV-exposed epidermis from unexposed skin. Classification of these genes into functional categories revealed that several biol. processes are globally affected by UVB. Significant changes were seen in more than 800 genes. Conclusion: Human intact epidermis responds to a single low dose of in vivo UVB irradiation by differential regulation of numerous genes. Our results illustrate the power of global gene expression anal. of human epidermis to identify mol. pathways involved in UV-induced photodamage.

THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 35 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 13 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

2004:308529 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 140:333599

TITLE: Gene expression profile of human and mouse genes in

atopic dermatitis and psoriasis patients and its use

for diagnosis, therapy, and drug screening

Itoh, Mikito; Ogawa, Kaoru; Shinagawa, Akira; Sudo, INVENTOR(S):

Hajime; Ogawa, Hideoki; Ra, Chisei; Mitsuishi, Kouichi

PATENT ASSIGNEE(S): Genox Research, Inc., Japan; Juntendo University

SOURCE: PCT Int. Appl., 611 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

```
PATENT NO.
                      KIND DATE
                                      APPLICATION NO. DATE
    WO 2004031386 A1 2001
                       A1 20040415 WO 2003-JP9808 20030801
                                                                -----
        W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
            CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
            GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS,
            LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG,
            PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
            TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
            KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
            FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR,
            BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
    AU 2003252326 A1 20040423 AU 2003-252326 20030801
                                           JP 2002-229318 A 20020806
JP 2003-136543 A 20030514
WO 2003-JP9808 W 20030801
PRIORITY APPLN. INFO.:
AΒ
    This invention provides gene expression profile between a rash site and a
    no-rash site in a patient with atopic dermatitis or a patient with
    no-rash site in such a disease and a normal subject. Animal models,
```

psoriasis. The invention also provides gene expression profile between a no-rash site in such a disease and a normal subject. Animal models, particularly mouse for those diseases are also claimed. The gene expression profile provided in this invention can be used for diagnosis, therapy, and drug screening for atopic dermatitis and psoriasis.

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 14 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:737608 CAPLUS

DOCUMENT NUMBER: 139:240351

TITLE: Matrix metalloproteinase inhibitors in combination with hypothermia and/or

radiotherapy for the treatment of cancer

INVENTOR(S): Nakajima, Motowo

PATENT ASSIGNEE(S): Novartis A.-G., Switz.; Novartis Pharma G.m.b.H.

SOURCE: PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA:	TENT	NO.			KIN	D	DATE			APPL	ICAT	ION :	NO.		D.	ATE	
WO	2003	 0759	 59		A1	_	2003	 0918	1	WO 2	003-	 ЕР23	 65		2	0030	307
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	GH,
		HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LT,	LU,
		LV,	MA,	MD,	MK,	MN,	MX,	NO,	NZ,	OM,	PH,	PL,	PT,	RO,	RU,	SC,	SE,
		SG,	ΤJ,	TM,	TN,	TR,	TT,	UA,	US,	UZ,	VC,	VN,	YU,	ZA,	ZW		
	RW:	ΑM,	ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM,	ΑT,	ΒE,	BG,	CH,	CY,	CZ,	DE,
		DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,	ΙT,	LU,	MC,	NL,	PT,	RO,	SE,
		SI,	SK,	TR													
AU	2003	2141	8 0		A1		2003	0922		AU 2	003-	2141	8 0		2	0030	307
EP	1485	131			A1		2004	1215		EP 2	003-	7097	64		2	0030	307
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙT,	LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK	
JP	2005	5267	60		Τ		2005	0908		JP 2	003-	5742	32		2	0030	307
US	2005	2329	15		A1		2005	1020	1	US 2	005-	5069	36		2	0050	606

PRIORITY APPLN. INFO.:

GB 2002-5537

GB 2002-29054

A 20020308

A 20021212

WO 2003-EP2365 W 20030307

OTHER SOURCE(S): MARPAT 139:240351

AB The invention provides a method of treating cancer in a subject in need of such treatment which comprises: radiotherapy, or cytotoxic

therapy in combination with heat shock, and further

comprises administering to the subject an effective amount of a matrix $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}$

metalloproteinase inhibitor (Markush structures are included).

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 15 OF 18 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:48083 CAPLUS

DOCUMENT NUMBER: 138:333688

TITLE: Infrared-A radiation-induced matrix

metalloproteinase 1 expression is mediated

through extracellular signal-regulated kinase 1/2

activation in human dermal fibroblasts

AUTHOR(S): Schieke, Stefan M.; Stege, Helger; Kurten, Viola;

Grether-Beck, Susanne; Sics, Helmut; Krutmann, Jean

CORPORATE SOURCE: Institut fur Umweltmedizinische Forschung (IUF) an der

Heinrich-Heine-Universitat GmbH, Duesseldorf, D-40225,

Germany

SOURCE: Journal of Investigative Dermatology (2002), 119(6),

1323-1329

CODEN: JIDEAE; ISSN: 0022-202X

PUBLISHER: Blackwell Publishing, Inc.

DOCUMENT TYPE: Journal LANGUAGE: English

In addition to UV radiation, human skin is exposed to IR radiation from natural sunlight as well as artificial UV and IR irradiation devices used for therapeutic or cosmetic purposes. The mol. consequences resulting from IR exposure are virtually unknown. In this study we have investigated whether IR has the capacity to affect gene expression in human skin cells. Exposure of cultured human dermal fibroblasts to IR in the range of 760-1400 nm (IR-A) induced the expression of matrix metalloproteinase 1 at the mRNA and protein level in a time- and concentration-dependent manner. Expression of tissue inhibitor of matrix metalloproteinase 1 remained unaltered. These effects were not mediated by the generation of heat by IR-A. Furthermore, IR-A did not induce heat shock protein 70 expression in human dermal fibroblasts under conditions that increased matrix metalloproteinase 1 expression. Here we provide evidence that IR-A activated mitogen-activated protein kinase pathways. Extracellular signal-regulated kinase 1/2 and p38-mitogen-activated protein kinase were rapidly activated after IR-A exposure. The mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor PD 98059, which specifically blocked the extracellular signal-regulated kinase pathway, prevented IR-A-induced matrix metalloproteinase 1 expression. Upregulation of matrix metalloproteinase 1 expression by IR-A was thus shown to be dependent on extracellular signal-regulated kinase 1/2 activation. In conclusion, this study demonstrates that IR-A is capable of inducing matrix metalloproteinase 1 expression in human dermal fibroblasts via activation of the extracellular signal-regulated kinase 1/2 signaling pathway. This previously unrecognized property of IR-A points to its possible role in the photoaging of human skin.

REFERENCE COUNT: 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> file embase biosis medline caplus

SINCE FILE TOTAL SESSION COST IN U.S. DOLLARS FULL ESTIMATED COST 237.41 486.30

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)

SINCE FILE TOTAL SESSION CA SUBSCRIBER PRICE -41.60 -41.60

FILE 'EMBASE' ENTERED AT 10:43:29 ON 03 MAR 2008 Copyright (c) 2008 Elsevier B.V. All rights reserved.

FILE 'BIOSIS' ENTERED AT 10:43:29 ON 03 MAR 2008

Copyright (c) 2008 The Thomson Corporation

FILE 'MEDLINE' ENTERED AT 10:43:29 ON 03 MAR 2008

FILE 'CAPLUS' ENTERED AT 10:43:29 ON 03 MAR 2008 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

=> s 113 and (radiother? or radiation or chemoradiotherapy) 35 L13 AND (RADIOTHER? OR RADIATION OR CHEMORADIOTHERAPY) L16

=> dup rem ENTER L# LIST OR (END):116 PROCESSING COMPLETED FOR L16 27 DUP REM L16 (8 DUPLICATES REMOVED)

=> d 117 ibib abs 1-27

L17 ANSWER 1 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2007:433685 CAPLUS

DOCUMENT NUMBER: 146:460567

TITLE: Nucleic acid vaccines encoding matrix metalloproteinase 11 and immunoenhancing

element against cancer or carcinoma

INVENTOR(S): Aurisicchio, Luigi; La Monica, Nicola

PATENT ASSIGNEE(S): Istituto di Ricerche di Biologia Molecolare P.

Angeletti S.p.A., Italy; Ciliberto, Gennaro; Lazzaro,

Domenico; Mori, Federica; Peruzzi, Daniela

SOURCE: PCT Int. Appl., 68pp.

CODEN: PIXXD2

DOCUMENT TYPE: Pat.ent. English LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT N				KIN	D	DATE			APPL	ICAT	ION I			D	ATE	
WO 20070)421	69		A2 A3		2007 2007		;	wo 2	006-1				2	0061	003
W:	•	,	•	•	•	AU, DE,	•		•	•	•	,	•	•	•	•
	GE,	GH,	GM,	HN,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KM,	KN,	KP,
	MW,	MX,	MY,	MZ,	NA,	LR, NG,	NI,	NO,	NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RS,
	•	•	•	•	•	SK, VN,	•	•	•	SY,	TJ,	TM,	TN,	TR,	TT,	TZ,
RW:						CZ, MC,	•									•

CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,

KG, KZ, MD, RU, TJ, TM, AP, EA, EP, OA

PRIORITY APPLN. INFO.: US 2005-724498P P 20051007

AB Compns. comprising matrix metalloproteinase 11 (MMP-11) or stromelysin-3 (ST-3) or the nucleic acid encoding the MMP-11 for use in vaccines for treating tumors and cancers, which overexpress MMP-11, are described. In particular embodiments, the compns. comprise a nucleic acid encoding a fusion polypeptide that includes the catalytically inactivated MMP-11 linked at the C-terminus to an immunoenhancing element wherein the codons encoding the MMP-11 and the immunoenhancing element have been optimized for enhanced expression of the fusion polypeptide in human cells. In other embodiments, the compns. comprise the catalytically inactivated MMP-11 linked at the C-terminus to an immunoenhancing element. The compns. can be used alone or in synergy with vaccines against other tumor associated antigens as well as with conventional therapies such as radiation therapy and chemotherapy.

L17 ANSWER 2 OF 27 EMBASE COPYRIGHT (c) 2008 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 2007096345 EMBASE

TITLE: Recent advances in the management of osteosarcoma and

forthcoming therapeutic strategies.

AUTHOR: Lamoureux F.; Trichet V.; Chipoy C.; Blanchard F.; Gouin

F.; Redini F.

CORPORATE SOURCE: Dr. F. Redini, Universite de Nantes, Physiopathologie de la

Resorption Osseuse et Therapie des Tumeurs Osseuses

Primitives, Faculte de Medecine, 1 rue Gaston Veil, 44035 Nantes Cedex 1, France. françoise.redini@univ-nantes.fr

SOURCE: Expert Review of Anticancer Therapy, (Feb 2007) Vol. 7, No.

2, pp. 169-181.

Refs: 88

ISSN: 1473-7140 E-ISSN: 1744-8328 CODEN: ERATBJ

COUNTRY: United Kingdom

DOCUMENT TYPE: Journal; General Review; (Review)

FILE SEGMENT: 016 Cancer

033 Orthopedic Surgery 037 Drug Literature Index 038 Adverse Reactions Titles

LANGUAGE: English SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 2 Apr 2007

Last Updated on STN: 2 Apr 2007

AB Osteosarcoma is the most frequent primary bone tumor and occurs mainly in young patients (average age: 18 years). No evolution of the survival rates has been recorded for two decades in response to current treatment, associating often toxic and badly tolerated cures of chemotherapy (given a significant rate of bad responders) with preserving surgery. Among the proposed innovative strategies, immune-based therapy, antiangiogenesis agents, tumor-suppressor or suicide gone therapy, or anticancer drugs not commonly used in osteosarcoma are presented. A further strategy is to target the tumor microenvironment rather than the tumor itself. .COPYRGT. 2007 Future Drugs Ltd.

L17 ANSWER 3 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:1157631 CAPLUS

DOCUMENT NUMBER: 145:483673

TITLE: Novel methods and devices for evaluating poisons
INVENTOR(S): Ching, Edwin P.; Johnson, Dale E.; Sudarsanam, Sucha

PATENT ASSIGNEE(S): Emiliem, USA

SOURCE: PCT Int. Appl., 132pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

P	PAI	ENT I	.00			KIN	D	DATE		•	APPL	ICAT	ION I	.00		D.	ATE	
M	ΙO	2006	1166	22		A2		2006	1102		WO 2	006-	US16	067		2	0060	426
		W:	ΑE,	AG,	AL,	ΑM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,
			CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KM,	KN,	KP,	KR,
			KΖ,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	LY,	MA,	MD,	MG,	MK,	MN,	MW,	MX,
			MZ,	NA,	NG,	NI,	NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,
			SG,	SK,	SL,	SM,	SY,	ТJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,
			VN,	YU,	ZA,	ZM,	ZW											
		RW:	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,
			IS,	ΙΤ,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,	ВJ,
			CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	ΤG,	BW,	GH,
			GM,	ΚE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,
			KG,	KΖ,	MD,	RU,	ΤJ,	$_{ m TM}$										
Ü	JS	2006	2532	62		A1		2006	1109		US 2	006-	3803	88		2	0060	426
E	ΞP	1880	332			A2		2008	0123		EP 2	006-	7516	75		2	0060	426
		R:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	IE,
			IS,	ΙΤ,	LI,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	AL,
	BA, HR, MI																	
PRIORI	IORITY APPLN. INFO.:										US 2	005-	6757	41P]	P 2	0050	427
											US 2	006-	7781.	33P]	P 2	0060.	301
											WO 2	006-	US16	067	Ī	W 2	0060	426

Methods and devices useful for evaluating poisons or other chemical entities, AB and for using such methods to forecast unfavorable drug effects. The present invention provides lists of biomarkers for anal., either directly or indirectly, which affect the toxicity pathways. These may be evaluated at many levels, including genetic, genotyping, evaluation of combination pairing of diploid alleles or haplotypes, RNA expression, protein expression, functional activity, posttranslational anal. or evaluation, etc. Thus, the biomarkers refer to the corresponding genetic information, RNA, protein, or other structural embodiments thereof. And the means to use these biomarkers, e.g., to evaluate status of toxicity pathways, to evaluate individual risk or susceptibility to various toxic pathways from exposure or therapeutic intervention, to generate test systems for drug development, are all provided by identifying critical and significant contributors to the pathway progression. The present invention is directed to accelerating the speed of development and reducing the resource investment necessary to determine these features for directing use of such substances or treatments to appropriate biol. contexts.

L17 ANSWER 4 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:167588 CAPLUS

DOCUMENT NUMBER: 144:254148

TITLE: Aminopteridinones as anticancer agents, their

preparation, pharmaceutical compositions, and use in

therapy

INVENTOR(S): Munzert, Gerd; Steegmaier, Martin; Baum, Anke

PATENT ASSIGNEE(S): Boehringer Ingelheim International G.m.b.H., Germany;

Boehringer Ingelheim Pharma G.m.b.H. & Co. K.-G.

SOURCE: PCT Int. Appl., 158 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA	TENT	NO.									LICAT					ATE	
WC	2006	0181									2005-						
	W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB	B, BG,	BR,	BW,	BY,	BZ,	CA,	CH,
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS	JP,	KE,	KG,	KM,	KP,	KR,	KZ,
		LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD	, MG,	MK,	MN,	MW,	MX,	MZ,	NA,
		NG,	NI,	NO,	NZ,	OM,	PG,	PH,	PL,	PΤ	, RO,	RU,	SC,	SD,	SE,	SG,	SK,
		SL,	SM,	SY,	ТJ,	TM,	TN,	TR,	TT,	TZ	uA,	UG,	US,	UZ,	VC,	VN,	YU,
			ZM,														
	RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE	E, ES,	FI,	FR,	GB,	GR,	HU,	ΙE,
		IS,	ΙT,	LT,	LU,	LV,	MC,	NL,	PL,	PΤ	, RO,	SE,	SI,	SK,	TR,	BF,	ВJ,
		CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML	, MR,	ΝE,	SN,	TD,	ΤG,	BW,	GH,
		GM,	ΚE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ	, TZ,	UG,	ZM,	ZW,	ΑM,	AZ,	BY,
			,	,	RU,	- ,											
											2005-						
AU	2005	2743	84		A1		2006	0223		AU	2005-	2743	84		2	0050	809
											2005-					0050	809
EP											2005-					0050	
	R:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE	E, ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,
		IS,	ΙT,	LI,	LT,	LU,	LV,	MC,	ΝL,	PΙ	, PT,	RO,	SE,	SI,	SK,	TR,	BA,
		HR,	YU														
	1010				Α		2007	0919			2005-					0050	809
IN	2007	DN00	888		Α		2007			ΙN	2007-	DN88	8		2	0070	202
MX	IN 2007DN00888 MX 200701853						2007	0328		MΧ	2007-	1853			2	0070	214
KR	2007	0504	78		А		2007	0515			2007-					0070	
PRIORIT	Y APP	LN.	INFO	.:						EΡ	2004-	1936	1		A 2	0040	814
											2004-						
										WO	2005-	EP86	23		W 2	0050	809
OTHER S GI	OURCE	(S):			MAR:	PAT	144:	2541	48								

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

The invention relates to a group of aminopteridinones I, which are useful for the treatment of diseases which involve cell proliferation. In compds. I, R1 and R2 are independently selected from H and (un)substituted C1-6 alkyl, or R1 and R2 together form a 2- to 5-membered alkylene bridge, optionally containing 1 or 2 heteroatoms; R3 is (un)substituted C1-12 alkyl, C2-12 alkenyl, C2-12 alkynyl, C6-14 aryl, etc.; R4 is H, OH, CN, halo, (un) substituted amino, (un) substituted C1-6 alkyl, C1-5 alkoxy, etc.; L is (un) substituted C2-10 alkylene, (un) substituted C2-10 alkenylene, (un) substituted C6-14 arylene, etc.; R5 is (un) substituted morpholinyl, (un) substituted piperidinyl, (un) substituted piperazinyl, (un) substituted piperazinylcarbonyl, (un)substituted pyrrolidinyl, (un)substituted
thiomorpholinyl, etc.; n is 0 or 1; and m is 1 or 2; including tautomers, stereoisomers, salts, solvates, polymorphs, and prodrugs thereof. The invention also relates to the preparation of I, pharmaceutical compns. comprising a compound I, at least one other therapeutic agent, optionally with one or more pharmaceutically acceptable excipients, as well as to the use of the compns. for the treatment of diseases which involve cell proliferation, migration or apoptosis of cancer cells, or angiogenesis. Esterification of (R)-2-aminobutyric acid and reductive condensation with cyclopentanone gave cyclopentylamine II, which underwent regioselective substitution of 2,4-dichloro-5-nitropyrimidine and reductive heterocyclization to form pteridinone III. N-Methylation of III followed by substitution with 4-amino-3-methoxybenzoic acid and amidation with

1-methyl-4-aminopiperidine resulted in the formation of aminopteridinone IV. A combination of suboptimal doses of irinotecan and compound IV shows an additive/synergistic effect in a human colon carcinoma model and is well tolerated. Meanwhile, compound IV acts at least additively with docetaxel in a human non-small cell lung carcinoma model and not antagonistically with gemcitabine in a human adenocarcinoma model.

REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS

L17 ANSWER 5 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:120414 CAPLUS

DOCUMENT NUMBER: 144:184702

TITLE: Gene expression profiles for identifying patients at

risk of developing encephalitis following

immunotherapy for Alzheimer's disease

INVENTOR(S): O'Toole, Margot; Dorner, Andrew J.; Janszen, Derek B.;

Slonim, Donna K.; Mounts, William M.; Reddy,

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

Padmalatha S.; Hill, Andrew A.

PATENT ASSIGNEE(S): Wyeth, USA

SOURCE: PCT Int. Appl., 298 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA	PATENT NO.)	DATE			APPL	ICAT	ION I	NO.		D.	ATE	
	2006 2006				A2				,	WO 2	005-	US25	771		2	0050	720
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KM,	KP,	KR,	KΖ,
		LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MΖ,	NA,
		NG,	NΙ,	NO,	NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,
		SL,	SM,	SY,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,
		ZA,	ZM,	ZW													
	RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	ΙE,
		IS,	ΙΤ,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,	ВJ,
		CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	ΤG,	BW,	GH,
		GM,	ΚE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	ΑM,	ΑZ,	BY,
		KG,	KΖ,	MD,	RU,	ТJ,	TM										
CA	2571	856			A1		2006	0209	1	CA 2	005-	2571	856		2	0050	720
US	2006	0734	96		A1		2006	0406		US 2	005-	1862.	36		2	0050	720
EP	1784	509			Α2		2007	0516		EP 2	005-	7955	82		2	0050	720
	R:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,
		IS,	ΙT,	LI,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR	
RIORIT	Y APP	LN.	INFO	.:						US 2	004-	5898	77P		P 2	0040	720
										US 2	005-	6727	16P		P 2	0050	418
									,	WO 2	005-1	US25	771	1	W 2	0050	720
₹ Th	e nre	cant	inz	anti.	on a	anar	-all 177	rol:	at ac	+0	a mo	thod	for	an	impr	harro	

AB The present invention generally relates to a method for an improved treatment for Alzheimer's disease (AD) using immunotherapy, e.g., immunotherapy targeting β amyloid (A β) and immunotherapy based on AN1792. By ANOVA and GeneCluster analyses of Affymetrix U133A GeneChip data, statistically significant assocns. were detected between the gene expression profiles of peripheral blood mononuclear cells of patients prior to immunization with AN1792 and the post-immunization development of encephalitis. In addition, statistically significant assocns. were found between the pre-immunization gene expression profile in PBMCs and post-immunization development of IgG response. The method allows for predicting an adverse clin. response, and therefore allows for an improved safety profile of AN1792. In another embodiment, the method allows for

predicting a favorable clin. response, and therefore allows for an improved efficacy profile of AN1792. The methods of the present invention may be combined to predict a favorable clin. response and the lack of an adverse clin. response.

L17 ANSWER 6 OF 27 EMBASE COPYRIGHT (c) 2008 Elsevier B.V. All rights

reserved on STN

ACCESSION NUMBER: 2006586498 EMBASE

TITLE: Nitric oxide and the regulation of apoptosis in tumour

cells.

AUTHOR: Tarr J.M.; Eggleton P.; Winyard P.G.

CORPORATE SOURCE: P.G. Winyard, Institute of Biomedical and Clinical Science,

Peninsula Medical School, Universities of Exeter and Plymouth, Exeter, Devon EX1 2LU, United Kingdom.

paul.winyard@pms.ac.uk

SOURCE: Current Pharmaceutical Design, (Dec 2006) Vol. 12, No. 34,

pp. 4445-4468.

Refs: 313

ISSN: 1381-6128 CODEN: CPDEFP

COUNTRY: Netherlands

DOCUMENT TYPE: Journal; General Review; (Review)

FILE SEGMENT: 016 Cancer

O29 Clinical and Experimental Biochemistry
O30 Clinical and Experimental Pharmacology

037 Drug Literature Index

005 General Pathology and Pathological Anatomy

LANGUAGE: English SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 24 Jan 2007

Last Updated on STN: 24 Jan 2007

AB Nitric oxide (NO) is a small, highly reactive, diffusible free radical which has been implicated in many physiological and pathophysiological processes. It has either pro-apoptotic or anti-apoptotic effects on cells, depending upon a host of factors. This review outlines some of the regulatory molecules and organelles involved in the apoptotic pathways that can be influenced by the presence of NO, including p53, Bcl-2, caspases, mitochondria, and heat shock proteins. The effects of NO on the apoptosis of tumour cells are also examined.

L17 ANSWER 7 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

.COPYRGT. 2006 Bentham Science Publishers Ltd.

ACCESSION NUMBER: 2006:151685 CAPLUS

DOCUMENT NUMBER: 144:309813

TITLE: The receptor for advanced glycation end products is

highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis

factor-alpha

AUTHOR(S): Lohwasser, Christina; Neureiter, Daniel; Weigle,

Bernd; Kirchner, Thomas; Schuppan, Detlef Department of Medicine I, University of

Erlangen-Nuernberg, Germany

SOURCE: Journal of Investigative Dermatology (2006), 126(2),

291-299

CODEN: JIDEAE; ISSN: 0022-202X

PUBLISHER: Nature Publishing Group

DOCUMENT TYPE: Journal LANGUAGE: English

CORPORATE SOURCE:

AB Advanced glycation end products (AGEs) form non-enzymically from reactions of proteins with reducing sugars. In the skin, AGEs were reported to accumulate in dermal elastin and collagens and to interact nonspecifically with the cell membrane of dermal fibroblasts. Therefore, AGEs may influence the process of skin aging. We investigated the presence of the

AGE receptor RAGE in skin and the influence of AGEs on receptor expression and the formation of extracellular matrix (ECM). Sections of sun-protected and sun-exposed skin were analyzed with monoclonal antibodies against (RAGE), heat-shock protein 47, factor XIIIa, CD31, and CD45. RAGE was mainly expressed in fibroblasts, dendrocytes, and keratinocytes and to a minor extent in endothelial and mononuclear cells. Human foreskin fibroblasts (HFFs) highly expressed RAGE on the protein and mRNA level when analyzed by quant. Western blotting and real-time PCR. Incubation of HFFs with the specific RAGE ligand Ns-(carboxymethyl)lysine-modified BSA (CML-BSA) and tumor necrosis factor-alpha resulted in significant upregulation of RAGE expression. CML-BSA induced a mildly profibrogenic pattern, increasing connective tissue growth factor, transforming growth factor-beta (TGF- β) 1, and procollagen- α 1(I) mRNA, whereas expression of matrix metalloproteinase (MMP)-1, -2, -3, and -12 was unaffected. We conclude that in HFFs, AGE-RAGE interactions may influence the process of skin aging through mild stimulation of ECM gene expression. REFERENCE COUNT: THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS 43

L17 ANSWER 8 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:816927 CAPLUS

DOCUMENT NUMBER: 145:267789

TITLE: The dynamic phase of cancer cells by the low

temperature narrow wavelength far infrared

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

radiation

AUTHOR(S): Hosokawa, Hiroyoshi

CORPORATE SOURCE: Dep. Oral Maxill. Surg., Grad. Sch. Dentistry, the

University of Tokuyama, Japan

SOURCE: Shikoku Shigakkai Zasshi (2006), 19(1), 35-54

CODEN: SSZAED; ISSN: 0914-6091

PUBLISHER: Shikoku Shigakkai

DOCUMENT TYPE: Journal LANGUAGE: Japanese

Far IR ray (FIR) are known to have some effects on the human body, but little is known about the non-fever effects in normal thermal fields. We developed a CO2 incubator and an animal raiser that is able to radiate low temperature narrow wavelength (limited) FIR at wavelength of 4 to 20 μm with a peak wavelength 7 to 12 μ m, which had strong effects on living tissue, and we investigated the effects of this FIR on cancer cells. in vitro analyses, analyses of cell proliferation and cell cycle were carried out using 5-bromo-2'-deoxy-uridine (BrdU) incorporation and flow cytometry in three cancer cell lines: the human vulval epidermal cell line A431, the human tongue squamous cell carcinoma (SCC) line HSC3, and the human gingiva SCC line Sa3. In addition, from the viewpoint of the heat shock proteins (HSPs), especially the HSP70 protein, having cytoprotection for various stresses, Hsp70A gene expression was examined using real-time reverse transcription polymerase chain reaction. The effect of HSP70 protein on cell proliferation for limited FIR was analyzed by transfecting Hsp70A expression vector or by repressing Hsp70A and Hsp70C mRNA using gene silencing methods with siRNA. In in vivo analyses, we generated xenograft tumors of A431 and Sa3 cells and examined the changes of tumor volume, genetic alteration and histol. observation. As a result, limited FIR suppressed cell proliferation of HSC3 and Sa3 cells, not A431 cells. The cell cycle of HSC3 cells was mainly delayed by limited FIR in the G2/M stage, while necrotic cells of Sa3 cells slightly increased by limited FIR. Moreover, the expression of Hsp70A gene and HSP70 protein was higher on A431 cells whose cell proliferation was not suppressed by limited FIR. On BrdU incorporation anal. under the condition in which HSP70 protein was repressed, BrdU incorporation of A431 cells was suppressed. In in vivo analyses, limited FIR suppressed both the growth of A431 tumor and Sa3 tumor. Tumor tissues of A431 in limited

FIR group were encapsulated and matrix metalloproteinase (MMP)-1, -9, -10, -13 were significantly suppressed in the protein level. On the other hand, limited FIR induced the apoptosis in the Sa3 tumor. These findings in vitro suggest that limited FIR suppressed the proliferation of certain cancer cells, and the suppressive effect depended on expression level of HSP70 protein. These findings in vivo that limited FIR suppressed the tumor growth of A431 by inhibiting MMPs, and that of Sa3 by inducing apoptosis.

L17 ANSWER 9 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2005:493568 CAPLUS

DOCUMENT NUMBER: 143:48169

TITLE: Implantable sensors and pumps and anti-scarring agents

INVENTOR(S): Hunter, William L.; Gravett, David M.; Toleikis,

Philip M.; Maiti, Arpita

PATENT ASSIGNEE(S): Angiotech International A.-G., Switz.

SOURCE: PCT Int. Appl., 1619 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 19

PATENT INFORMATION:

PATENT NO.					KIN	CIND DATE			APPLICATION NO.						DATE			
WO WO	2005 2005				A2 A9		 2005 2006			WO 2	004-	 US39	 387		2	0041	122	
WO	2003 W:			7\ T				AZ,	DΛ	DD	DC.	DD	D TaT	DV	D7	C^{Λ}	СП	
	VV •	CN.		CR,				DK,										
		GE,	,	•				IL,										
		- ,	LR,	,	HR, LT,	HU,		и, МА,										
		,	,															
		,	NZ,	,	PG,			PT, UA,									,	
	DIJ.	TJ,	TM,	TN,	TR,	TT,											ZW	
	KW:	BW,	- ,	- ,	KE,	LS,		MZ,		SD,						,	AM,	
		,	BY,		KZ,	MD,				AT,								
		EE,	- *	•	FR,	- ,		HU,										
		SE,	SI,	,	•	Br,	BU,	CF,	CG,	CI,	CM,	GA,	GIV,	GQ,	GW,	ML,	MK,	
TTC	2005	NE,		TD,	TG A1		2005	0707		US 2	0.0.4	0060	2.0		2	0041	110	
	2005				A1		2005			US 2 US 2						0041		
CN	1010						2003			05 Z CN 2						0041		
-	2004				A		2007 2005					8003 2934				0041		
AU	2536		63		A1 A1		2005			AU 2 CA 2						0041		
	2005		2.2		A1 A2		2005			WO 2						0041		
WO	2005				AZ A3		2005			WO Z	004-	0539	340		4	0041	122	
WU	∠005 W:			7\ T				AZ,	ת כו	ממ	DC	חח	DM	DV	D.7	C \overline{A}	CII	
	VV :				•			DK,							•		•	
		GE,					•			•					•			
		,	GH, LR,	,	HR,	•		IL, MA,										
		,	NZ,	,				PT,										
		TJ,	TM,	TN,	TR,	TT,		UA,									ZW	
	Dīaī •	BW,	,	•	KE,			MZ,									AM,	
	IVW •	AZ,	,	,	KZ,			TJ,								,	,	
		EE,	,	,	FR,			HU,									,	
		SE,	SI,	SK,	TR,			CF,										
		NE,	SN,	TD,	TG,	Dr,	ъо,	Cr,	CG,	CI,	C1·1,	GA,	GIV,	GQ,	Gw,	1,117	1.11	
WO	2006	•		10,	A2		2006	0526		WO 2	004-	11630	353		2	0041	122	
WO	Z000			7\ T				AZ,						DV				
	VV •	CN,						DK,										
		GE,			HR,			IL,										
		- ,	- ,	LS,	,	,		MA,										
		,	,	,				PT,										
		140,	TA 🔽 🕯	OPI,	ru,	rп,	гu,	гı,	ro,	ro,	SC,	SD,	or,	SG,	or,	υц,	o_{\perp} ,	

```
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
        RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
            IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG,
            CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE,
            LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ,
            MD, RU, TJ, TM
    EP 1685085
                         A2
                               20060802
                                           EP 2004-817879
                                                                  20041122
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK, IS
                               20061213
                                          CN 2004-80033341
                         Α
                                                                  20041122
    JP 2007513650
                         Τ
                               20070531
                                           JP 2006-541669
    US 2005149158
                               20050707
                                           US 2004-409
                         Α1
                                                                 20041129
    US 2005175662
                         Α1
                               20050811
                                           US 2004-451
                                                                 20041129
    US 2005175661
                         Α1
                               20050811
                                           US 2004-999205
                                                                 20041129
    US 2005186243
                               20050825
                                           US 2004-97
                                                                 20041129
                        A1
    US 2005186242
                               20050825
                                           US 2004-999204
                        A1
                                                                 20041129
                               20050901
                                           US 2004-1419
    US 2005191331
                                                                 20041130
                        A1
    US 2005175663
                               20050811
                                           US 2004-1791
                                                                 20041202
                        A1
    US 2005181008
                                           US 2004-1786
                        A1
                               20050818
                                                                 20041202
    US 2005181011
                               20050818
                                           US 2004-1792
                                                                 20041202
                         Α1
    US 2005143817
                         Α1
                               20050630
                                           US 2004-6899
                                                                 20041207
    US 2005177103
                         Α1
                               20050811
                                           US 2004-6314
                                                                  20041207
    US 2005177225
                         Α1
                               20050811
                                           US 2004-6895
                                                                  20041207
    US 2005181004
                         Α1
                               20050818
                                           US 2004-6289
                                                                  20041207
                        A1
    US 2006147492
                               20060706
                                           US 2006-343809
                                                                  20060131
                        А
                               20070511
                                           IN 2006-KN1694
    IN 2006KN01694
                                                                  20060619
                        Α
                               20070511
                                           IN 2006-KN1695
    IN 2006KN01695
                                                                  20060619
    IN 2006KN01698
                        А
                               20070511
                                           IN 2006-KN1698
                                                                  20060619
PRIORITY APPLN. INFO.:
                                           US 2003-523908P
                                                              P 20031120
                                           US 2003-524023P
                                                              P 20031120
                                           US 2003-525226P
                                                              Ρ
                                                                 20031124
                                                             P
                                           US 2003-526541P
                                                                  20031203
                                                             P
                                           US 2004-578471P
                                                                 20040609
                                           US 2004-586861P
                                                             P 20040709
                                           US 2004-986230
                                                             A 20041110
                                           US 2004-986231
                                                             A 20041110
                                           US 2003-518785P
                                                             P 20031110
                                           US 2004-582833P
                                                             P 20040624
                                           US 2004-986450
                                                             A1 20041110
                                           WO 2004-US37930
                                                              W 20041110
                                           WO 2004-US39183
                                                              W 20041122
                                           WO 2004-US39346
                                                              W 20041122
                                           WO 2004-US39353
                                                              W 20041122
                                           WO 2004-US39387
                                                              W 20041122
```

AB Pumps and sensors for contact with tissue are used in combination with an anti-scarring agent (e.g., a cell cycle inhibitor) in order to inhibit scarring that may otherwise occur when the pumps and sensors are implanted within an animal are disclosed. Thus, a drug-coated device was coated with a heparin coating and dipped into a solution of heparin-benzalkonium chloride complex in isopropanol. The device was removed from the solution and air-dried.

L17 ANSWER 10 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2005:283363 CAPLUS

DOCUMENT NUMBER: 142:329832

TITLE: Combination of a vegf receptor inhibitor with a

chemotherapeutic agent

INVENTOR(S): Bold, Guido; Brueggen, Josef Bernhard; Huang, Jerry

Min-Jian; Kinder, Frederick Ray, Jr.; Lane, Heidi; Latour, Elisabeth Jeanne; Manley, Paul William; Wood,

Jeanette Marjorie

PATENT ASSIGNEE(S): Novartis Ag, Switz.; Novartis Pharma GmbH

SOURCE: PCT Int. Appl., 71 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

									APPLICATION NO.									
WO	2005	0279	72		A2		2005	0331								0040	923	
WO	2005																	
	W:	ΑE,	ΑG,	AL,	ΑM,	ΑT,	ΑU,	ΑZ,	ΒA,	BB,	BG,	BR,	BW,	BY,	ΒZ,	CA,	CH,	
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,	
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KΖ,	LC,	
		LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	NΙ,	
		NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	
		ТJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW	
	RW:	BW,	GH,	GM,	KΕ,	LS,	MW,	MΖ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	ΑM,	
		ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ТJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	
		EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,	ΙΤ,	LU,	MC,	ΝL,	PL,	PT,	RO,	SE,	
		SI,	SK,	TR,	BF,	ΒJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML_{\prime}	MR,	ΝE,	
		,	TD,															
	2004																	
	2537																	
EP	1682																	
	R:							FR,										
								MK,										HR
CN	1856	327			А		2006	1101		CN 2	004-	8002	7544		2	0040	923	
BR	2004 2007	0146	98		Α		2006	1128		BR 2	004-	1469	8		2	0040	923	
	2006																	
	2006							0615				CN98						
	2006				А		2006	0623				1777						
IORIT	Y APP	LN.	INFO	.:								5052						
	_									WO 2	004-	EP10	686	1	W 2	0040	923	
HER SO	MIRCE.	(5) •			MARI	⊃⊼T	142 •	3298	32									

OTHER SOURCE(S): MARPAT 142:329832

The present invention relates to a combination therapy for treating patients suffering from proliferative diseases or diseases associated with persistent angiogenesis. The patient is treated with: (a) a VEGF inhibitor compound; and (b) one or more chemotherapeutic agents selected from the group consisting of: an aromatase inhibitor; an anti-estrogen, an anti-androgen (especially in the case of prostate cancer) or a gonadorelin agonist; a topoisomerase I inhibitor or a topoisomerase II inhibitor; a microtubule active agent, an alkylating agent, an anti-neoplastic anti-metabolite or a platin compound; a compound targeting/decreasing a protein or lipid kinase activity or a protein or lipid phosphatase activity, a further anti-angiogenic compound or a compound which induces cell differentiation processes. The patient is treated with :(a) a VEGF inhibitor compound; and (b) one or more chemotherapeutic agents selected from the group consisting of : a bradykinin 1 receptor or an angiotensin II antagonist; a cyclooxygenase inhibitor, a bisphosphonate, a heparanase inhibitor (prevents heparan sulfate degradation) , e.g. , PI-88 , a biol. response modifier, preferably a lymphokine or interferons , e.g., interferon γ , an ubiquitination inhibitor, or an inhibitor which blocks anti-apoptotic pathways ; an inhibitor of Ras oncogenic isoforms or a farnesyl transferase inhibitor; a telomerase inhibitor, e.g., telomestatin ; a protease inhibitor, a matrix metalloproteinase inhibitor , a methionine aminopeptidase inhibitor , e.g. , bengamide or a derivative thereof , or a proteasome inhibitor , e. g. , PS-341. The patient is treated with : (a) a VEGF inhibitor compound (b) one or more chemotherapeutic agents selected from the group consisting of : agents used in the treatment of hematol. malignancies or FMS-like tyrosine kinase

inhibitors; an HSP90 inhibitors; HDAC inhibitors; mTOR inhibitors; somatostatin receptor antagonists; integrin antagonists; anti-leukemic compds.; tumor cell damaging approaches such as ionizing radiation EDG binders; anthranilic acid amide class of kinase inhibitors; ribonucleotide reductase inhibitors; S-adenosylmethionine decarboxylase inhibitors; antibodies against VEGF or VEGFR; photodynamic therapy; angiostatic steroids; implants containing corticosteroids; AT1 receptor antagonists; ACE inhibitors.

L17 ANSWER 11 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2005:1293778 CAPLUS

DOCUMENT NUMBER: 144:35066

TITLE: Gene expression profiling in the prostate in the

diagnosis and Gleason staging of high- and low-grade

tumors

INVENTOR(S): Shekar, Mamatha; Zhang, Zhaomei; Caldwell, Mitchell

C.; Chen, Zuxiong; Fan, Zhenbin; McNeal, John E.;
Nolley, Rosalie; Stamey, Thomas A.; Warrington, Janet

A.; Palma, John F.

PATENT ASSIGNEE(S): Affymetrix, Inc., USA

SOURCE: U.S. Pat. Appl. Publ., 40 pp., Cont.-in-part of U.S.

Ser. No. 411,537.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

I	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-					
Ţ	US 2005272052	A1	20051208	US 2004-975592	20041027
Ţ	US 2004029151	A1	20040212	US 2003-411537	20030409
PRIOR	ITY APPLN. INFO.:			US 2002-371304P P	20020409
				US 2003-411537 A2	20030409

AB Many genes are affected in prostate cancers which have not been previously identified. This includes genes that have been up-regulated or down-regulated. Monitoring the expression levels of these genes is useful to identify the existence of prostate cancer and to differentiate low-risk (Gleason grade 3), and high risk (Gleason grade 4 or 5) tumors. Also, monitoring the expression levels of these genes is useful to predict the effectiveness of treatment, outcome, use of therapeutics, and screening drugs useful for the treatment of prostate cancer.

L17 ANSWER 12 OF 27 BIOSIS COPYRIGHT (c) 2008 The Thomson Corporation on STN DUPLICATE 1

ACCESSION NUMBER: 2005:362767 BIOSIS DOCUMENT NUMBER: PREV200510154562

TITLE: Novel aspects of intrinsic and extrinsic aging of human

skin: Beneficial effects of soy extract.

AUTHOR(S): Suedel, Kirstin M.; Venzke, Kirsten; Mielke, Heiko;

Breitenbach, Ute; Mundt, Claudia; Jaspers, Soeren; Koop, Urte; Sauermann, Kirsten; Knussmann-Hartig, Elke; Moll, Ingrid; Gercken, Guenther; Young, Antony R.; Staeb, Franz;

Wenck, Horst; Gallinat, Stefan [Reprint Author]

CORPORATE SOURCE: Beiersdorf AG, Paul Gerson Unna Skin Res Ctr, Unnastr 48,

D-20245 Hamburg, Germany

stefan.gallinat@beiersdorf.com

SOURCE: Photochemistry and Photobiology, (MAY-JUN 2005) Vol. 81,

No. 3, pp. 581-587.

CODEN: PHCBAP. ISSN: 0031-8655.

DOCUMENT TYPE: Article LANGUAGE: English

ENTRY DATE: Entered STN: 14 Sep 2005

Last Updated on STN: 14 Sep 2005

Biochemical and structural changes of the dermal connective tissue AB substantially contribute to the phenotype of aging skin. To study connective tissue metabolism with respect to ultraviolet (UV) exposure, we performed an in vitro (human dermal fibroblasts) and an in vivo complementary DNA array study in combination with protein analysis in young and old volunteers. Several genes of the collagen metabolism such as Collagen I, III and VI as well as heat shock protein 47 and matrix metalloproteinase-1 are expressed differentially, indicating UV-mediated effects on collagen expression, processing and degradation. In particular, Collagen I is time and age dependently reduced after a single UV exposure in human skin in vivo. Moreover, older subjects display a lower baseline level and a shorter UV-mediated increase in hyaluronan (HA) levels. To counteract these age-dependent changes, cultured fibroblasts were treated with a specific soy extract. This treatment resulted in increased collagen and HA synthesis. In a placebo-controlled in vivo study, topical application of an isoflavone-containing emulsion significantly enhanced the number of dermal papillae per area after 2 weeks. Because the flattening of the dermal-epidermal junction is the most reproducible structural change in aged skin, this soy extract appears to rejuvenate the structure of mature skin.

L17 ANSWER 13 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:965067 CAPLUS

DOCUMENT NUMBER: 141:406039

TITLE: Combinations for the treatment of diseases involving

cell proliferation, migration or apoptosis of myeloma

cells, or angiogenesis

INVENTOR(S): Hilberg, Frank; Solca, Flavio; Stefanic, Martin

Friedrich; Baum, Anke; Munzert, Gerd; Van Meel,

Jacobus C. A.

Boehringer Ingelheim International G.m.b.H., Germany; PATENT ASSIGNEE(S):

Boehringer Ingelheim Pharma G.m.b.H. & Co. K.-G.

SOURCE: PCT Int. Appl., 101 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.					KIN	D	DATE 		APPLICATION NO.						DATE 		
	2004 2004						 2004 2004		1	WO 2	004-	EP43	63		2	0040	424
	₩:	AE, CN,						AZ, DM,									
		•	•	•	•	•	•	IN, MD,	•	•	•	•	•	•	•	•	
		•		•	•	•	•	RO, UG,	•	•		•	•	•	•	•	TJ,
	RW:	•	BY,	KG,	KΖ,	MD,	RU,	ТJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,
		SI,		TR,	•		•	HU, CG,		•				•			
EP	1473	,	,		A1		2004	1103		EP 2	003-	9587			2	0030	429
	R:	AT,						FR, MK,									PT,
	2004 2523	2335	76	,	A1	·	2004	1111		AU 2	004-	2335	76	•	2	0040	

```
EP 1622619
                          A2 20060208 EP 2004-729366 20040424
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
              IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK
     BR 2004009919 A 20060425 BR 2004-9919
                                                                        20040424
     JP 2006524634
                          T
                                20061102 JP 2006-500099
                                                                      20040424
                          A 20051215 MX 2005-PA11656
A 20051128 NO 2005-5605
EP 2003-9587
     MX 2005PA11656
NO 2005005605
                                                                      20051028
                                                                  20051026
20051128
A 20030429
PRIORITY APPLN. INFO.:
                                               EP 2004-508
EP 2004-1171
                                                                   A 20040113
                                               EP 2004-1171 A 20040121 WO 2004-EP4363 W 20040424
```

AB The present invention relates to a pharmaceutical combination for the treatment of diseases which involves cell proliferation, migration or apoptosis of myeloma cells, or angiogenesis. The invention also relates to a method for the treatment of said diseases, comprising co-administration of effective amts. of specific active compds. and/or co-treatment with radiation therapy, in a ratio which provides an additive and synergistic effect, and to the combined use of these specific compds. and/or radiotherapy for the manufacture of corresponding pharmaceutical combination prepns. The pharmaceutical combination can include selected protein tyrosine kinase receptor antagonists and further chemotherapeutic or naturally occurring semisynthetic or synthetic agents.

L17 ANSWER 14 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:308529 CAPLUS

DOCUMENT NUMBER: 140:333599

TITLE: Gene expression profile of human and mouse genes in

atopic dermatitis and psoriasis patients and its use

for diagnosis, therapy, and drug screening

INVENTOR(S): Itoh, Mikito; Ogawa, Kaoru; Shinagawa, Akira; Sudo,

Hajime; Ogawa, Hideoki; Ra, Chisei; Mitsuishi, Kouichi

PATENT ASSIGNEE(S): Genox Research, Inc., Japan; Juntendo University

SOURCE: PCT Int. Appl., 611 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

```
PATENT NO. KIND DATE APPLICATION NO. DATE

WO 2004031386 A1 20040415 WO 2003-JP9808 20030801

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

AU 2003252326 A1 20040423 AU 2003-252326 20030801

PRIORITY APPLN. INFO::

JP 2003-136543 A 20030514
WO 2003-JP9808 W 20030801
```

AB This invention provides gene expression profile between a rash site and a no-rash site in a patient with atopic dermatitis or a patient with psoriasis. The invention also provides gene expression profile between a no-rash site in such a disease and a normal subject. Animal models, particularly mouse for those diseases are also claimed. The gene

expression profile provided in this invention can be used for diagnosis,

therapy, and drug screening for atopic dermatitis and psoriasis.

REFERENCE COUNT: THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS 8 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 15 OF 27 EMBASE COPYRIGHT (c) 2008 Elsevier B.V. All rights reserved on STN DUPLICATE 2

2004518961 EMBASE ACCESSION NUMBER:

TITLE: Heat shock-induced matrix

> metalloproteinase (MMP)-1 and MMP-3 are mediated through ERK and JNK activation and via an autocrine

interleukin-6 loop.

AUTHOR: Park C.-H.; Min J.L.; Ahn J.; Kim S.; Hyeon H.K.; Kyu H.K.;

Hee C.E.; Jin H.C.

CORPORATE SOURCE: Dr. H.C. Jin, Department of Dermatology, Seoul National

University Hospital, 28 Yongon-dong, Chongno-gu, Seoul,

110-744, Korea, Republic of. jhchung@snu.ac.kr

Journal of Investigative Dermatology, (Dec 2004) Vol. 123, SOURCE:

No. 6, pp. 1012-1019.

Refs: 47

ISSN: 0022-202X CODEN: JIDEAE

COUNTRY: United States DOCUMENT TYPE: Journal; Article

FILE SEGMENT: 013 Dermatology and Venereology

> 029 Clinical and Experimental Biochemistry

Enalish LANGUAGE: SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 28 Dec 2004

Last Updated on STN: 28 Dec 2004

Although many studies have been performed to elucidate the molecular AB consequences of ultraviolet irradiation, little is known about the effect of infrared radiation on skin aging. In addition to photons, heat is likely to be generated as a consequence of infrared irradiation, and heat shock is widely considered to be an environmental stress. Here we investigated the effect of heat shock on the expressions of matrix metalloproteinase (MMP)-1, MMP-2, and MMP-3 in cultured human skin fibroblasts. Heat shock induced the expression of MMP-1 and MMP-3, but not MMP-2, at the mRNA and protein levels in a temperature-dependent manner, and caused the rapid activation of three distinct mitogen-activated protein kinases (MAPK), extracelluar signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. The heat shock-induced MMP-1 and MMP-3 expression was suppressed by the inhibition of ERK and JNK but not by p38 MAPK inhibition. Furthermore, heat shock increased the synthesis and release of interleukin-6 (IL-6) into culture media. The specific inhibition of IL-6 using a monoclonal antibody against IL-6 greatly reduced the expression of MMP-1 and MMP-3 induced by heat shock. Taken together, our results suggest that ERK and JNK play an important role in the induction of MMP-1 and MMP-3 by heat shock and that the heat shock-induced

L17 ANSWER 16 OF 27 BIOSIS COPYRIGHT (c) 2008 The Thomson Corporation on STN

expression of MMP-1 and MMP-3 is mediated via an IL-6-dependent autocrine

ACCESSION NUMBER: 2005:319395 BIOSIS PREV200510114790 DOCUMENT NUMBER:

mechanism.

TITLE: Heat shock-induced expression of matrix

metalloproteinase-1 is mediated by activation of

extracellular signal-regulated kinase and c-Jun N-terminal

kinase and via an interleukin 6-dependent autocrine

mechanism in human skin fibroblasts.

Park, C. [Reprint Author]; Lee, M.; Ahn, I.; Kim, S.; Shin, AUTHOR(S):

M.; Kim, K.; Eun, H.; Chung, I.

Seoul Natl Univ, Dept Dermatol, Seoul Natl Univ Hosp, Lab CORPORATE SOURCE:

Cutaneous Aging Res, Clin Res Inst, Coll Med, Seoul 151,

South Korea

SOURCE: Journal of Investigative Dermatology, (MAR 2004) Vol. 122,

No. 3, pp. A140.

Meeting Info.: 65th Annual Meeting of the

Society-for-Investigative-Dermatology. Providence, RI, USA.

April 28 -May 01, 2004. Soc Investigat Dermatol.

CODEN: JIDEAE. ISSN: 0022-202X.

DOCUMENT TYPE: Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

LANGUAGE: English

ENTRY DATE: Entered STN: 25 Aug 2005

Last Updated on STN: 25 Aug 2005

L17 ANSWER 17 OF 27 EMBASE COPYRIGHT (c) 2008 Elsevier B.V. All rights

reserved on STN

ACCESSION NUMBER: 2004293118 EMBASE

TITLE: Immune response against dying tumor cells.

AUTHOR: Zitvogel L.; Casares N.; Pequignot M.O.; Chaput N.; Albert

M.L.; Kroemer G.

CORPORATE SOURCE: Institut Gustave Roussy Villejuif, France

Advances in Immunology, (2004) Vol. 84, pp. 131-179. SOURCE:

Refs: 246

ISSN: 0065-2776 CODEN: ADIMAV

PUBLISHER IDENT.: S 0065-2776(04)84004-5

COUNTRY: United States

DOCUMENT TYPE: Journal; General Review; (Review)

FILE SEGMENT: 016 Cancer

> 026 Immunology, Serology and Transplantation

037 Drug Literature Index

005 General Pathology and Pathological Anatomy

LANGUAGE: English

Entered STN: 5 Aug 2004 ENTRY DATE:

Last Updated on STN: 5 Aug 2004

L17 ANSWER 18 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

2004:554409 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 142:193398

Gene expression profiling of in vivo UVB-irradiated TITLE:

human epidermis

Enk, Claes D.; Shahar, Iris; Amariglio, Ninette; AUTHOR(S):

Rechavi, Gideon; Kaminski, Naftali; Hochberg, Malka

CORPORATE SOURCE: Department of Dermatolology, The Hadassah-Hebrew

University Medical Center, Jerusalem, Israel

Photodermatology, Photoimmunology & Photomedicine SOURCE:

(2004), 20(3), 129-137 CODEN: PPPHEW; ISSN: 0905-4383

PUBLISHER: Blackwell Publishing Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

Background: Several recent studies have employed microarray profiling to study UVB-regulated gene expression in human skin. These studies are all based on UV-irradiated cultured cells that differ substantially from the intact tissues they are supposed to imitate. The purpose of the present study was to analyze the differential expression of UVB-regulated genes in intact human epidermis following in vivo UV irradiation Methods: The forearms of human volunteers were exposed to 4 MED of UVB in vivo, followed by removal of epidermal samples from exposed and non-exposed areas after 24

h. RNA samples were analyzed using oligonucleotide microarray (Affymetrix) technol. analyzing 12 500 genes simultaneously. Verification of selected genes was performed by semi-quant. reverse transcriptase polymerase chain reaction. Results: Gene expression patterns clearly distinguished UV-exposed epidermis from unexposed skin. Classification of these genes into functional categories revealed that several biol. processes are globally affected by UVB. Significant changes were seen in more than 800 genes. Conclusion: Human intact epidermis responds to a single low dose of in vivo UVB irradiation by differential regulation of numerous genes. Our results illustrate the power of global gene expression anal. of human epidermis to identify mol. pathways involved in UV-induced photodamage.

REFERENCE COUNT: 35 THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 19 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:737608 CAPLUS

DOCUMENT NUMBER: 139:240351

TITLE: Matrix metalloproteinase inhibitors in combination with hypothermia and/or

radiotherapy for the treatment of cancer

INVENTOR(S): Nakajima, Motowo

PATENT ASSIGNEE(S): Novartis A.-G., Switz.; Novartis Pharma G.m.b.H.

SOURCE: PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA	PATENT NO.					D	DATE		APPLICATION NO.							DATE		
WO	2003	0759.	 59		A1	_	2003	0918	1	WO 2	 003-1	EP23	65		2	0030	307	
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	GH,	
		HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LT,	LU,	
		LV,	MA,	MD,	MK,	MN,	MX,	NO,	NZ,	OM,	PH,	PL,	PT,	RO,	RU,	SC,	SE,	
		SG,	SK,	ТJ,	TM,	TN,	TR,	TT,	UA,	US,	UZ,	VC,	VN,	YU,	ZA,	ZW		
	RW:	AM,	AZ,	BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	
		DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	
		SI,	SK,	TR														
AU	2003	2141	08		A1		2003	0922		AU 2	003-	2141	08		2	0030.	307	
EP	1485	131			A1		2004	1215		EP 2	003-	7097	64		2	0030	307	
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙΤ,	LI,	LU,	NL,	SE,	MC,	PT,	
		ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK		
JP	2005	5267	60		T		2005	0908		JP 2	003-	5742.	32		2	0030	307	
US	2005	2329	15		A1		2005	1020	1	US 2	005-	5069.	36		2	0050	606	
PRIORIT	Y APP	LN.	INFO	.:					(GB 2	002-	5537		i	A 2	0020	308	
									(GB 2	002-	2905	4	1	A 2	0021	212	
									1	WO 2	003-1	EP23	65	Ī	W 2	0030	307	

OTHER SOURCE(S): MARPAT 139:240351

AB The invention provides a method of treating cancer in a subject in need of such treatment which comprises: radiotherapy, or cytotoxic

therapy in combination with heat shock, and further

comprises administering to the subject an effective amount of a matrix metalloproteinase inhibitor (Markush structures are included).

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 20 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:521462 CAPLUS

DOCUMENT NUMBER: 137:88442

TITLE: Incensole and furanogermacrens and compounds in treatment for inhibiting neoplastic lesions and

microorganisms

INVENTOR(S): Shanahan-Pendergast, Elisabeth

PATENT ASSIGNEE(S): Ire.

SOURCE: PCT Int. Appl., 68 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATEN	I NO.		KINI	D DATE	DATE 		PPLI	CAT	I NOI	. O <i>l</i>	DATE 			
	02053138	-	A2		0711	M() 20	02-	IE1			2	0020	102
WO 20	02053138	3	А3	2002	0919									
W	: AE, A	AG, AT,	ΑU,	BB, BG,	CA,	CH, C	CN,	CO,	CU,	CZ,	LU,	LV,	MA,	MD,
	UA, U	JG, US,	VN,	YU, RU,	ТJ,	TM								
R	W: GH, C	GM, KE,	LS,	MW, SD,	SL,	SZ, T	JG,	AT,	BE,	CH,	CY,	DE,	ES,	FI,
	ML, N	MR, NE,	SN,	TD, TG										
AU 20	02219472	2	A1	2002	0716	ΑU	J 20	002-2	2194	72		2	0020	102
EP 13	51678		A2	2003	1015	E	20	02-	7270	7 C		2	0020	102
R	: AT, E	BE, CH,	DE,	DK, ES,	FR,	GB, (GR,	ΙΤ,	LI,	LU,	NL,	SE,	MC,	PT,
	IE, S	SI, LT,	LV,	FI, RO,	MK,	CY, A	AL,	TR						
US 20	04092583	3	A1	2004	0513	US	S 20	004 - 2	25053	35		2	0040	102
PRIORITY A	PPLN. IN	VFO.:				II	E 20	01-2	2		Z	A 2	0010	102
						WO	20	02-	IE1		V	√ 2	0020	102

OTHER SOURCE(S): MARPAT 137:88442

AB The invention discloses the use of incensole and/or furanogermacrens, derivs. metabolites and precursors thereof in the treatment of neoplasia, particularly resistant neoplasia and immunodysregulatory disorders. These compds. can be administered alone or in combination with conventional chemotherapeutic, antiviral, antiparasite agents, radiation and/or surgery. Incensole and furanogermacren and their mixture showed antitumor activity against various human carcinomas and melanomas and antimicrobial activity against Staphylococcus aureus and Enterococcus faecalis.

L17 ANSWER 21 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:978584 CAPLUS

DOCUMENT NUMBER: 138:34125

TITLE: Determining changes in phenotype-specific gene expression in a cell by measuring changes in

housekeeping and phenotype-specific gene expression

INVENTOR(S): Nishimura, Ichiro; Iida, Keisuke

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 21 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.				KIN	D 1	DATE		APPLICATION NO.						DATE			
					_									_			
US 20021	19764	40		A1		2002	1226		US 2	002-	1746	58		2	0020	619	
WO 20040	00086	57		A1		2003	1231	,	WO 2	002-1	JS19	705		2	0020	731	
W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	
	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LR,	
	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NΖ,	OM,	PH,	
	PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK,	SL,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	

UA, UG, US, UZ, VN, YU, ZA, ZM, ZW

RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF,

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

AU 2002330858 A1 20040106 AU 2002-330858 20020731

PRIORITY APPLN. INFO.: US 2001-299910P P 20010621 US 2002-174658 A 20020619

WO 2002-US19705 W 20020731

AB The present invention provides an improved method for assessing, monitoring and/or determining the phenotype of cells and tissues. One aspect of

the present invention is a method of fabricating phenotype specific gene (PSGs) and house keeping gene (HKGs) targets onto a microarray. Another aspect of the present invention provides a composition containing PSGs and HKGs as

targets for high throughput assays including microarray analyses. Another aspect of the present invention is accessing, monitoring and/or determining the phenotype of tissue engineered cells derived from stem cells including embryonic stem cells, embryonic germ cells, fetal stem cells and adult stem cells by hybridizing cDNA probes to either PSG or HKG targets. These methods employ at least 25 PSG targets and no greater than 5000 HKG targets. Specific genes for use in measuring changes in given tissues are claimed.

L17 ANSWER 22 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:937303 CAPLUS

DOCUMENT NUMBER: 138:20443

TITLE: Endocrine disruptor screening using DNA chips of

endocrine disruptor-responsive genes

INVENTOR(S): Kondo, Akihiro; Takeda, Takeshi; Mizutani, Shigetoshi;

Tsujimoto, Yoshimasa; Takashima, Ryokichi; Enoki,

Yuki; Kato, Ikunoshin

PATENT ASSIGNEE(S): Takara Bio Inc., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 386 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
				_	
JP 2002355079	A	20021210	JP 2002-69354		20020313
PRIORITY APPLN. INFO.:			JP 2001-73183	Α	20010314
			JP 2001-74993	Α	20010315
			JP 2001-102519	Α	20010330

AB A method and kit for detecting endocrine-disrupting chems. using DNA microarrays are claimed. The method comprises preparing a nucleic acid sample containing mRNAs or cDNAs originating in cells, tissues, or organisms which have been brought into contact with a sample containing the endocrine disruptor. The nucleic acid sample is hybridized with DNA microarrays having genes affected by the endocrine disruptor or DNA fragments originating in these genes have been fixed. The results obtained are then compared with the results obtained with the control sample to select the gene affected by the endocrine disruptor. Genes whose expression is altered by tri-Bu tin, 4-octaphenol, 4-nonylphenol, di-N-Bu phthalate, dichlorohexyl phthalate, octachlorostyrene, benzophenone, diethylhexyl phthalate, diethylstilbestrol (DES), and 17- β estradiol (E2), were found in mice by DNA chip anal.

reserved on STN DUPLICATE 3

ACCESSION NUMBER: 2003001967 EMBASE

TITLE: Infrared-A radiation-induced matrix

metalloproteinase 1 expression is mediated through extracellular signal-regulated kinase 1/2 activation in

human dermal fibroblasts.

AUTHOR: Schieke S.M.; Stege H.; Kurten V.; Grether-Beck S.; Sies

H.; Krutmann J.

CORPORATE SOURCE: J. Krutmann, Inst. fur Umweltmedizinische Forsch.,

Heinrich-Heine-Universitat gGmbH, Auf'm Hennekamp 50,

D-40225 Duesseldorf, Germany. krutmann@rz.uni-

duesseldorf.de

SOURCE: Journal of Investigative Dermatology, (2002) Vol. 119, No.

6, pp. 1323-1329.

Refs: 41

ISSN: 0022-202X CODEN: JIDEAE

COUNTRY: United States
DOCUMENT TYPE: Journal; Article

FILE SEGMENT: 013 Dermatology and Venereology

014 Radiology

029 Clinical and Experimental Biochemistry

037 Drug Literature Index

LANGUAGE: English SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 9 Jan 2003

Last Updated on STN: 9 Jan 2003

In addition to ultraviolet radiation, human skin is exposed to infrared radiation from natural sunlight as well as artificial ultraviolet and infrared irradiation devices used for therapeutic or cosmetic purposes. The molecular consequences resulting from infrared exposure are virtually unknown. In this study we have investigated whether infrared has the capacity to affect gene expression in human skin cells. Exposure of cultured human dermal fibroblasts to infrared in the range of 760-1400 nm (infrared-A) induced the expression of matrix metalloproteinase 1 at the mRNA and protein level in a time- and concentration-dependent manner. Expression of tissue inhibitor of matrix metalloproteinase 1 remained unaltered. These effects were not mediated by the generation of heat by infrared-A. Furthermore, infrared-A did not induce heat shock protein 70 expression in human dermal fibroblasts under conditions that increased matrix metalloproteinase 1 expression. Here we provide evidence that infrared-A activated mitogen-activated protein kinase pathways. Extracellular signal-regulated kinase 1/2 and p38-mitogen-activated protein kinase were rapidly activated after infrared-A exposure. The mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor PD 98059, which specifically blocked the extracellular signal-regulated kinase pathway, prevented infrared-A-induced matrix metalloproteinase 1 expression. Upregulation of matrix metalloproteinase 1 expression by infrared-A was thus shown to be dependent on extracellular signal-regulated kinase 1/2 activation. In conclusion, this study demonstrates that infrared-A is capable of inducing matrix metalloproteinase 1 expression in human dermal fibroblasts via activation of the extracellular signal-regulated kinase 1/2 signaling pathway. This previously unrecognized property of infrared-A points to its possible role in the photoaging of human skin.

L17 ANSWER 24 OF 27 EMBASE COPYRIGHT (c) 2008 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 2002087002 EMBASE

TITLE: New molecular targets of breast cancer therapy.
AUTHOR: Sauer G.; Deissler H.; Kurzeder C.; Kreienberg R.

CORPORATE SOURCE: Dr. G. Sauer, Department of Gynecology, University of Ulm

Medical School, Prittwitzstrasse 43, 89075 Ulm, Germany.

georg.sauer@medizin.uni-ulm.de

SOURCE: Strahlentherapie und Onkologie, (2002) Vol. 178, No. 3, pp.

123-133. Refs: 131

ISSN: 0179-7158 CODEN: STONE4

COUNTRY: Germany

DOCUMENT TYPE: Journal; General Review; (Review)

FILE SEGMENT: 016 Cancer

037 Drug Literature Index 038 Adverse Reactions Titles

LANGUAGE: English

SUMMARY LANGUAGE: English; German

ENTRY DATE: Entered STN: 4 Apr 2002

Last Updated on STN: 4 Apr 2002

Background: The development of new chemotherapeutic agents and concepts of radiation therapy, administered as primary, adjuvant and palliative therapy, has led to new perspectives in breast cancer therapy. Apart from conventional chemotherapy, recently developed novel agents interfere with molecular mechanisms that are altered in cancer cells. Those targets are not necessarily breast cancer-specific. In this review we will focus on novel agents with potential or already proved benefit to breast cancer patients. Promising strategies include inhibition of growth factor receptors, blocking of tumor angiogenesis and signal transduction pathways, modulation of apoptosis, cancer vaccination, and inhibition of invasion and metastasis. Methods: Reports of relevant studies obtained from a search of MEDLINE and studies referenced in those reports were reviewed. Results: Apart from trastuzumab, other further developed compounds show promising results in clinical studies as a second generation of growth factor inhibitors. Different approaches in anti-angiogenetic therapy are under preclinical and clinical phase-II trials. Pro-apoptotic agents show synergistic effects with docetaxel in a clinical phase-I trial. Other compounds that target HSP 90, histone deacetylase and HMG-CoA reductase target atypical apoptotic pathways being lethal to tumor cells only but not to normal tissue, suggesting a tumor-specific way of action. MMP inhibitors have been demonstrating promising results in patients with refractory malignant pleural effusion in a phase-I trial. Several tyrosine kinase inhibitors currently under clinical investigation preliminarily show hopeful results in patients with advanced breast cancer. Furthermore, recent progress in defining the immunogenic epitopes of tumor antigens has rejuvenated the interest in cancer vaccines. Conclusion: Typical dose escalation studies leading to the highest clinically still tolerated dose do not appear to be equally appropriate for the estimation of efficiency of those compounds as for conventional cytotoxic regimes. Rather, escalation up to an amount of therapeutic agent that is sufficient for maximum target inhibition should be promoted, where classical measures of cytoreduction such as complete or partial remission are replaced both by time to progression and treatment failure as an appropriate measure of the efficacy of an agent.

L17 ANSWER 25 OF 27 EMBASE COPYRIGHT (c) 2008 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 2005336848 EMBASE

TITLE: Focus on pancreas cancer.

AUTHOR: Jaffee E.M.; Hruban R.H.; Canto M.; Kern S.E.

CORPORATE SOURCE: E.M. Jaffee, Sidney Kimmel Cancer Center, Johns Hopkins

University, Baltimore, MD 21231, United States.

ejaffee@jhmi.edu

SOURCE: Cancer Cell, (Jul 2002) Vol. 2, No. 1, pp. 25-28.

Refs: 27

ISSN: 1535-6108 CODEN: CCAECI

COUNTRY: United States

DOCUMENT TYPE: Journal; General Review; (Review)

FILE SEGMENT: 016 Cancer

> 026 Immunology, Serology and Transplantation

037 Drug Literature Index

048 Gastroenterology

English LANGUAGE:

ENTRY DATE: Entered STN: 1 Sep 2005

Last Updated on STN: 1 Sep 2005

L17 ANSWER 26 OF 27 MEDLINE on STN ACCESSION NUMBER: 2000144195 MEDLINE DOCUMENT NUMBER: PubMed ID: 10677564

TITLE: Induction of the putative protective protein ferritin by

infrared radiation: implications in skin repair.

AUTHOR: Applegate L A; Scaletta C; Panizzon R; Frenk E; Hohlfeld P;

Schwarzkopf S

Department of Obstetrics, Laboratory of Oxidative Stress CORPORATE SOURCE:

and Aging, University Hospital, CHUV MAT-07, CH 1011

Lausanne, Switzerland.

SOURCE: International journal of molecular medicine, (2000 Mar)

Vol. 5, No. 3, pp. 247-51.

Journal code: 9810955. ISSN: 1107-3756.

PUB. COUNTRY: Greece

Journal; Article; (JOURNAL ARTICLE)
(RESEARCH SUPPORT, NON-U.S. GOV'T) DOCUMENT TYPE:

English LANGUAGE:

Priority Journals FILE SEGMENT:

ENTRY MONTH: 200004

ENTRY DATE: Entered STN: 13 Apr 2000

Last Updated on STN: 13 Apr 2000

Entered Medline: 7 Apr 2000

AΒ The modification of ferritin in human skin cells in vitro and in vivo following infrared-A irradiation by immunohistochemical analysis and ELISA were evaluated. In addition, we observed that IR-A is not capable of inducing frank damage to DNA (pyrimidine dimers, p53), induction of oxidative stress proteins (heme oxygenase, nitric oxide, superoxide dismutase, heat shock proteins) or proteases (collagenase, stromelysin, gelatinase) involved in carcinogenesis and photoaging of the skin. in vivo, basal levels of ferritin were heterogeneous for all individuals tested but all showed ferritin to stain precisely in the basal layer of unirradiated epidermis. Following IR-A radiation, the ferritin increase was localized to epidermal tissue and showed an increase from 120 to 220%. Parallel to the in vivo analysis, dermal fibroblasts were cultured from six individuals. Quantitative analysis for ferritin in cultured fibroblasts was assessed by ELISA and increases were seen to be dose-dependent and up to 130% of basal levels of ferritin following infrared-A. Our findings indicate that the putative defense system of ferritin that exists in human skin in vivo can be induced by infrared-A radiation and that these wavelengths may prove to be beneficial for human skin. Importantly, following the same doses of IR-A that induced ferritin levels, there was no alteration seen for nuclear DNA type damage, oxidative stress proteins or proteases involved in the degradation of skin. The increased concentrations of this antioxidant in human skin following acute UV radiation could afford increased protection against subsequent oxidative stress.

L17 ANSWER 27 OF 27 EMBASE COPYRIGHT (c) 2008 Elsevier B.V. All rights reserved on STN DUPLICATE 4

ACCESSION NUMBER: 1992307017 EMBASE

Changes in gene expression by 193- and 248-nm excimer laser TITLE:

radiation in cultured human fibroblasts.

AUTHOR: Rimoldi D.; Flessate D.M.; Samid D. CORPORATE SOURCE: D. Samid, Department of Pathology, Uniformed Services

Health Sci. Univ., Bethesda, MD 20814, United States

SOURCE: Radiation Research, (1992) Vol. 131, No. 3, pp. 325-331.

ISSN: 0033-7587 CODEN: RAREAE

COUNTRY: United States
DOCUMENT TYPE: Journal; Article
FILE SEGMENT: 014 Radiology

022 Human Genetics

029 Clinical and Experimental Biochemistry

LANGUAGE: English SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 8 Nov 1992

Last Updated on STN: 8 Nov 1992

Tissue ablation by ultraviolet excimer lasers results in exposure of viable cells to subablative doses of radiation. To understand the potential biological consequences better, we have studied changes in gene expression in cultured human skin fibroblasts exposed to either 193or 248-nm laser light. Northern blot analyses revealed that both treatments up-regulate a common set of genes, including interstitial collagenase, tissue inhibitor of metalloprotease, metallothionein, and the proto-oncogene c-fos. Dose-response and kinetic studies of collagenase induction by 193-nm radiation showed a maximal effect with 60 J/m(2) and at approximately 24 h. The induction was still persistent 96 h later. In addition to the commonly affected genes, known to be activated also by conventional UV light (254 nm) and tumor- promoting phorbol esters, other genes were found to be selectively induced by the 193-nm radiation. The heat-shock hsp70 mRNA, undetectable in controls and in cultures irradiated at 248 nm, was transiently induced 8 h after exposure to 193-nm radiation. Furthermore, a selective up-regulation of collagen type I expression was observed. The results indicate that the 193- and 248-nm radiations by excimer lasers elicit specific and different cellular responses, in addition to an overlapping pathway of gene activation common also to UV radiation by germicidal lamps. The laser-induced genes could serve as molecular markers in evaluating cell injury in situ.

=> =>

Connection closed by remote host