Prediction of the quantity of taxi orders in time

Content

- 1. Project Description
- 2. Data import and overview
- 3. Data Analysis
- 4. Models training
- 5. Models testing

Project Description

Taxi company wants to understand what time is the highest and lowest drivers load for the optimization of the cost and increase of the drivers in a peak drivers load time. Based on the provided historical data from the company (taxi orders in airports) it's required to predict the quantity of the orders in next hour.

Main tasks are:

- 1. Load the data and perform resampling to 1 hour.
- 2. Perform the data Analysis.
- 3. Train the models with different hypreparameters. The test samplee shall be equal to 10% of all data.
- 4. Test the best model and draw a conclusion.
- 5. RMSE score on the best model shall not exceed 48.

Data import and overview

Имортируем необходимые библиотеки

```
In [1]:

1 import pandas as pd
2 import numpy as np
3 from statsmodels.tsa.seasonal import seasonal_decompose
4 import matplotlib.pyplot as plt
5 from sklearn.model_selection import train_test_split
6 from sklearn.metrics import mean_squared_error
7 from sklearn.linear_model import LogisticRegression
8 from sklearn.ensemble import RandomForestRegressor
9 from sklearn.model_selection import RandomizedSearchCV
10 from sklearn.model_selection import TimeSeriesSplit
11
12 import warnings
13 warnings.filterwarnings("ignore")
```

Импортируем данные, ознакомимся с ними и проводеме ресэмплинг с периодом в 1 час

```
1 data = pd.read_csv('taxi.csv',index_col = [0], parse_dates = [0])
In [3]: 1 data = data.sort_index()
In [4]:
         1 data.head()
Out[4]:
                          num_orders
                  datetime
         2018-03-01 00:00:00
         2018-03-01 00:10:00
                                  14
         2018-03-01 00:20:00
                                  28
         2018-03-01 00:30:00
                                  20
         2018-03-01 00:40:00
                                  32
In [5]: 1 data = data.resample('1H').sum()
In [6]:
         1 data.head()
Out[6]:
                          num_orders
                  datetime
```

Data Analysis

2018-03-01 00:00:00

2018-03-01 01:00:00

2018-03-01 02:00:00

2018-03-01 03:00:00

2018-03-01 04:00:00

124

85

71

66

43

```
In [8]:
         1 data.describe()
Out[8]:
                num_orders
         count 4416.000000
                 84.422781
         mean
                 45.023853
           std
          min
                  0.000000
          25%
                 54.000000
          50%
                 78.000000
                107.000000
          75%
          max 462.000000
        Plotting of graphs: destribution of orders, weekly and daily flatterned
In [9]:
         1 temp_data = data.copy()
          2 temp_data['daily_rolling'] = temp_data.rolling(24).mean()
          3 temp_data['weekly_rolling'] = temp_data['num_orders'].rolling(172).mean()
          4 temp_data.plot()
Out[9]: <AxesSubplot:xlabel='datetime'>
                  num orders
                  daily_rolling
         400
                  weekly_rolling
         300
         200
```

Trend and seasonality graphs plotting

May

datetime

Aug

```
In [11]: 1 plt.figure(figsize =(10,10))
          2 plt.subplot(311)
          decomposed_data.trend.plot(ax=plt.gca())
          4 plt.title('trend')
          5 plt.ylabel('quantity of orders')
          6 plt.xlabel('date')
          7
          8 plt.subplot(312)
          9 decomposed_data_szn.seasonal.head(30).plot(ax=plt.gca())
         10 plt.title('Sesonality in March')
         plt.ylabel('quantity of orders')
         12 plt.xlabel('day')
         14 plt.subplot(313)
         decomposed_data.seasonal.head(168).plot(ax=plt.gca())
         16 plt.title('Sesonality on first week of March')
         17 plt.ylabel('quantity of orders')
         18 plt.xlabel('day')
         20 plt.tight_layout()
```


Conclsuion:

- · Based on the analysis we see that deamnd on the taxi has slow groth from March to end of August.
- On the seasonal March graph we see increase of demand in the middle of the week and on weekends.
- On the season graph of first week of march we see that the highest demand is in the second half of the day and the lowest demand is the night.

Models training

Features extracting

```
In [13]:
          1 data['month'] = data.index.month
In [14]:
         1 data['day'] = data.index.day
In [15]:
          1 data['dayofweek'] = data.index.dayofweek
In [16]
          1 data['hour'] = data.index.hour
In [17]: 1 # function for adding the required qunatity of columns using shift method
           2 def rol_lag(df,lag_num,rol_qty):
           3
                  df['rolling_mean'] = df['num_orders'].shift().rolling(rol_qty+1).mean()
           4
                  lag = 1
           5
                  for i in range(lag num):
           6
                      df['lag'+str(lag)] = df['num_orders'].shift(i)
           7
                      lag+=1
                  return(df)
           8
In [18]:
          1 data_set = rol_lag(data,3,5)
           2 data set = data set.dropna()
           3 data_set.head(10)
Out[18]:
                           num_orders year month day dayofweek hour rolling_mean lag1 lag2 lag3
                   datetime
          2018-03-01 06:00:00
                                  12 2018
                                              3 1
                                                                                 12 6.0 43.0
                                                                      65.833333
          2018-03-01 07:00:00
                                  15 2018
                                              3
                                                                      47.166667
                                                                                 15 12.0 6.0
          2018-03-01 08:00:00
                                  34 2018
                                              3
                                                                       35.500000
                                                                                 34 15.0 12.0
          2018-03-01 09:00:00
                                  69 2018
                                                                 9
                                              3 1
                                                            3
                                                                      29.333333
                                                                                 69 34.0 15.0
          2018-03-01 10:00:00
                                  64 2018
                                              3 1
                                                                10
                                                                       29.833333
                                                                                 64 69.0 34.0
          2018-03-01 11:00:00
                                  96 2018
                                              3 1
                                                                11
                                                                       33.333333
                                                            3
                                                                                 96 64.0 69.0
          2018-03-01 12:00:00
                                  30 2018
                                                            3
                                                                12
                                                                       48.333333
                                                                                 30 96.0 64.0
          2018-03-01 13:00:00
                                  32 2018
                                              3 1
                                                            3
                                                                13
                                                                      51.333333
                                                                                 32 30.0 96.0
          2018-03-01 14:00:00
                                  48 2018
                                              3
                                                            3
                                                                14
                                                                       54.166667
                                                                                 48 32.0 30.0
          2018-03-01 15:00:00
                                  66 2018
                                              3 1
                                                            3
                                                                15
                                                                      56.500000
                                                                                 66 48.0 32.0
In [19]:
          train, test = train_test_split(data_set, shuffle = False, test_size = 0.1)
         1 train, valid = train_test_split(train, shuffle = False, test_size = 0.2)
In [20]:
In [21]: 1 train_target = train['num_orders']
           2 train_features = train.drop('num_orders', axis = 1)
In [22]: 1 valid_target = valid['num_orders']
           valid_features = valid.drop('num_orders', axis = 1)
In [23]: 1 test_target = test['num_orders']
           2 test_features = test.drop('num_orders', axis = 1)
```

```
In [24]:
          1 LR_model = LogisticRegression(random_state=0)
In [25]: 1 LR_model.fit(train_features,train_target)
Out[25]:
                  LogisticRegression
          LogisticRegression(random_state=0)
In [26]:
          1 LR_predictions = LR_model.predict(valid_features)
In [27]: 1 RMSE LR = mean squared error(valid target, LR predictions, squared = False)
         1 RMSE_LR
In [28]:
Out[28]: 32.28852920756703
         Random forest training
In [29]: 1 n_estimators = [int(x) for x in np.linspace(start = 10, stop = 100, num = 10)]
           2 max features = ['auto', 'sqrt']
           3 max_depth = [int(x) for x in np.linspace(10, 30, num = 10)]
          4 min_samples_split = [2, 5, 10]
           5 min_samples_leaf = [1, 2, 4]
           6 bootstrap = [True, False]
In [30]: 1 random_grid = {'n_estimators': n_estimators,
                            'max_features': max_features,
                            'max depth': max depth,
           4
                            'min_samples_split': min_samples_split,
           5
                            'min_samples_leaf': min_samples_leaf,
                            'bootstrap': bootstrap}
In [31]:
         1 RF = RandomForestRegressor()
In [32]: 1 tscv = TimeSeriesSplit(max train size = 5, test size=1)
In [33]:
          1 RF_model = RandomizedSearchCV(estimator = RF, param_distributions = random_grid, random_state=42, cv=tscv)
In [34]:
          1 RF_model.fit(train_features,train_target)
Out[34]:
                   RandomizedSearchCV
           ▶ estimator: RandomForestRegressor
                 RandomForestRegressor
         1 RF_predictions = RF_model.predict(valid_features)
In [36]: 1 RMSE_RF = mean_squared_error(valid_target,RF_predictions,squared= False)
In [37]: 1 RMSE_RF
Out[37]: 13.172828459572049
```

Models testing

selection of best model:

```
In [38]: 1 list = [LR_model, RF_model]
          1 result df = pd.DataFrame(list,columns = ['model'])
In [40]:
          1 prediction = []
           2 test_rmse =[]
           3 for i in range(len(list)):
                  prediction.append(result_df['model'][i].predict(test_features))
                  test_rmse.append(mean_squared_error(test_target,result_df['model'][i].predict(test_features),squared = False))
           7 result df['prediction'] = prediction
           8 result_df['RMSE'] = test_rmse
In [41]:
          1 result_df.sort_values(by = 'RMSE')
Out[41]:
                                                model
                                                                                      prediction
                                                                                                  RMSE
          1 RandomizedSearchCV(cv=TimeSeriesSplit(gap=0, m... [157.66814285714284, 145.987, 148.755492063492... 29.591714
                          LogisticRegression(random state=0)
                                                            [129, 118, 129, 110, 146, 76, 115, 110, 129, 1... 58.060274
In [42]: 1 best_result = result_df['RMSE'].min()
          1 best_model = result_df[result_df['RMSE'] == best_result]
In [44]:
          1 best model
Out[44]:
                                                model
                                                                                      prediction
                                                                                                  RMSE
```

Conclusion

- 1) Best RMSE score has random forest model with hyperparameters tuning;
- 2) required score RMSE < 48 sccessfully achieved

¹ RandomizedSearchCV(cv=TimeSeriesSplit(gap=0, m... [157.66814285714284, 145.987, 148.755492063492... 29.591714