Example Analysis of LEO Data

Data Description

The data was acquired from the latest excel file. These data were converted to SAS and JMP files. The analysis that follows is solely for illustrative purposes as none of the results are meaningful or necessarily informative about the prediction of coronary events of interest.

Data Analysis

I used the variable "PLA2 Out of Range" as an indicator event of interest. This variable was binary, and I assumed that PLA2 Out of Range = "TRUE" is the event of interest. My objective was to build a predictive model for this event. My approach was to use a machine learning technique called "random forest" which is an extension of a CART (Classification and Regression Trees) procedure that identifies which variables provide the best predictive information for the binary (in our case) event of interest. Once these variables were identified I used them to build a predictive model for the probability of the event of interest as a function of the selected predictor variables. Models of these types are used in developing potential risk models for the medical condition of interest. I have included some output examples (again all meaningless due to the sparseness of the data set that I used).

Data Analysis Results

The data set that I used had 2006 useable records of which I had 592 entries where PLA2 Out of Range = "TRUE" (29.5%). The best result that I could get using the random forest had a correct classification of PLA2 Out of Range = "TRUE" 470 times with a misclassification of 122. None of the cases where PLA2 Out of Range = "FALSE" were misclassified. The results are found in Figure 1. The blue variables (selected) were then used in a Generalized Logistic Regression model from which I can get the predictive probabilities of (in this case) the event PLA2 Out of Range = "TRUE". Some summary results are seen in Figure 2.

Figure 1

Specifica	ations				
Target Column:		pla2_out		Training Rows:	200
Nombo (7	:- * =		400	Validation Rows:	
Number of Tre			100	Test Rows:	
Number of Ter	rms Sampied	per Split:	5	Number of Terms: Bootstrap Samples:	2 200
				Minimum Splits per Tree:	
				Minimum Size Split:	
Overall S	tatistics				
Measure	Tr	aining Defin	ition		
Entropy RSq		0.5195 1-Log			
Generalized I				el))^(2/n))/(1-L(0)^(2/n))	
Mean -Log p RMSE		0.2915 ∑ -Log 0.2799 √∑(y[j			
Mean Abs De		0.2799 √ Z(y[) 0.2360 ∑ y[j]-			
Misclassificat		0.0608 Σ (ρ[j]		n	
N		2006 n			
▼ Confusi	ion Matri	x			
	aining				
Tra	aining Predicted				
Actual	aining Predicted Count				
Tra	aining Predicted Count				
Actual pla2_out	Predicted Count 0 1				
Actual pla2_out 0	Predicted				
Actual pla2_out	Predicted Count 0 1 1414 0 122 470 Summar	ies			
Actual pla2_out 0 1 Per-Tree Column (Predicted Count 0 1 1414 0 122 470 Summar Contribut Number	ies tions			
Actual pla2_out 0 1 Per-Tree Column C	Predicted Count 0 1 1414 0 122 470 Summar Contribut Number of Splits	ies tions		Porti	
Actual pla2_out 0 1 Per-Tree Column (Predicted Count 0 1 1414 0 122 470 Summar Contribut Number of Splits	ries tions G^2 95.4137467		0.09	34
Actual pla2_out 0 1 Per-Tree Column C	Predicted Count 0 1 1414 0 122 470 Summar Contribut Number of Splits 1147 1163	ies tions			34
Actual pla2_out 0 1 Per-Tree Column (Term	Predicted Count 0 1 1414 0 122 470 Summar Contribut Number of Splits 1147 1163 1228	G^2 95.4137467 84.0898159		0.09	34 23 22
Actual pla2_out 0 1 Per-Tree Column (Term LDL TC sdLDL_C HDL ApoB	Predicted Count	G^2 95.4137467 84.0898159 83.9791788 63.1920023 59.801319		0.09 0.08 0.08 0.06 0.05	34 223 322 319 885
Actual pla2_out 0 1 Per-Tree Column (Term LDL TC sdLDL_C HDL ApoB TG	Predicted Count 1414 0 122 470 Summar Contribut 163 1228 1109 1011 1081	G^2 95.4137467 84.0898159 83.9791788 63.1920023 59.801319 55.7991081		0.09 0.08 0.08 0.06 0.05	34 223 322 319 385 346
Actual pla2_out 0 1 Per-Tree Column (Term LDL TC sdLDL_C HDL ApoB TG Lp_a_	Predicted Count 1414 0 122 470 Summar Contribut 163 1228 1109 1011 1081 911	G^2 95.4137467 84.0898159 83.9791788 63.1920023 59.801319 55.7991081 54.1567237		0.09 0.08 0.08 0.06 0.05 0.05	34 223 319 385 346 330
Actual pla2_out 0 1 Per-Tree Column (Term LDL TC sdLDL_C HDL ApoB TG	Predicted Count 1414 0 122 470 Summar Contribut 163 1228 1109 1011 1081 911 847	G^2 95.4137467 84.0898159 83.9791788 63.1920023 59.801319 55.7991081		0.09 0.08 0.08 0.06 0.05	34 23 22 319 85 46 30

The LOGISTIC Procedure

