MECH 6327 - Homework 3

Jonas Wagner

 $2021,\;\mathrm{March}\;24$

Contents

	0.1	Problem 5.43		
		0.1.1	Part a	3
		0.1.2	Part b	3
1	Problem 1: Robust control design			4
2	Pro	blem 2	: Nonnegative and sum of squares polynomials	5

BV Textobook Problems

0.1 Problem 5.43

The dual a SOCP defined as:

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \ i = 1, \dots, m$ (1)

with $x \in \Re^n$ can be expressed as:

maximize
$$\sum_{i=1}^{m} (b_i^T u_i - d_i v_i)$$
subject to
$$\sum_{i=1}^{m} (A_i^T u_i - c_i v_i) + f = 0$$

$$\|u_i\|_2 \le v_i, \ i = 1, \dots, m$$

$$(2)$$

with variables $u_i \in \Re_i^n$, $v_i \in \Re$, i = 1, ..., m and problem data $f \in \Re^n$, $A_i \in \Re^{n_i \times n}$, $b_i \in \Re^{n_i}$, $c_i \in \Re$, i = 1, ..., m.

0.1.1 Part a

Problem: Derive the dual by defining $y_i \in \Re^{n_i}$ and $t_i \in \Re$ and the inequalities $y_i = A_i x + b_i$, $t_i = c_i^T x + d_i$ then deriving the Lagrange dual.

Solution:

0.1.2 Part b

Problem: Start with the conic formulation of the SOCP and use the conic dual to prove the equivelence. Use the fact that the secound-order dual is self-dual.

Solution:

1 Problem 1: Robust control design

For the standard DT dynamical system defined as:

$$x_{t+1} = Ax_t + Bu_t \tag{3}$$

with dynamic matrix A unknown but assumed to belong to a set:

$$A \in \mathcal{A} = \operatorname{conv}(A_1, \dots, A_m) \tag{4}$$

with A_i and B known.

Problem: For a state-feedback controller $u_t = Kx_t$ use Lyapunov techniques to design it so the system is globally asymptotically stable (GAS) by solving a semi-definite program (SDP).

Solution:

2 Problem 2: Nonnegative and sum of squares polynomials

The Motzkin polynomial is defined as:

$$M(x,y) = x^2 y^4 + x^4 y^2 + 1 - 3x^2 y^2$$
(5)

Problem: Show that the Motzkin polynomial is nonnegative but can be expressed as sum of squares. It is sufficient to show this using numerical and/or symbolic solvers.

Solution: