2023 南京大学强基计划数理试题(回忆版)

Guotao He

Build: 2023 年 6 月 15 日

本 PDF 在 GitHub 上更新,最新版下载链接: https://ghe0000.github.io/GHe_Book/NJU2023.pdf

1 南大强基流程及题目类型介绍

2023 年南京大学强基计划**非破格** (未得到学科竞赛银牌及以上得以免去初试的)的考试分为**初试笔试 (100 分)** 和**复试面试 (50 分)**,下文题目仅为非破格的题目。

初试数理探究共 24 道 "6 选 1"选择题,其中 12 道数学、12 道物理,有 3 分题也有 5 分题,数学和物理各占 50 分。部分一般可以通过某些"对称性"进行排除,可以从"6 选 1"排除至"2 选 1"下文中只包含部分 24 道题且统一以填空题形式呈现。

复试面试没有自我介绍等流程,面试官与考生"双盲",面试官从题库中随机抽取 3 道专业相关题目进行考察,并且会根据回答情况追问或者考察更复杂的情形,同时给予一定的提示和引导。

2 初试笔试

2 初试笔试

直线 y = kx + b 平分圆 $x^2 + y^2 - 2x - 4y = 0$ 且不经过第 4 象限,求 k 的取值范围:_____

2

已知 $x, y \in [0, 1]$,则 $x^2 + y^2 \le 1$ 且 $(x - 1)^2 + (y - 1)^2 \le 1$ 的概率为:

在 1,2,3,4,5,6 中有放回地取数字三次,求最小数字为 2 的概率为: _____

已知
$$\frac{sin^4\alpha}{sin^2\beta} + \frac{cos^4\alpha}{cos^2\beta} = 1$$
,求 $\frac{sin^4\beta}{sin^2\alpha} + \frac{cos^4\beta}{cos^2\alpha}$:_____

满足 $\frac{1}{x} + \frac{1}{y} = \frac{1}{30}$ 且 $x \le y$ 的正整数解的个数为: _____

已知实系数二次方程 $ax^2+bx+c=0$ 的两根为 α 和 β ,且满足 α 为虚数, $\frac{\alpha^2}{\beta}$ 为实数,求 $\frac{\alpha}{\beta}$: _____

已知 a > 0、b > 0, x + y = c, 求 $\sqrt{x^2 + a^2} + \sqrt{y^2 + b^2}$ 的最小值:

已知 $f(n) = \sum_{k=1}^{n} (k^2 + 3k + 2, n)$,其中 (a, b) 代表 a 与 b 的最大公约数,求 f(100):_____

已知 $\triangle ABC$ 三边 a, b, c 满足 $a^2 + b^2 + c^2 = \alpha$, $a^2b^2 + b^2c^2 + c^2a^2 = \beta$, 则 $\triangle ABC$ 面积为:

记 a_n 为 n 在三进制下各数字之和,如 $a_7=3$ 、 $a_9=1$,记 $S=a_n|a_n=5, 1\leq n\leq 2023$,则 |S| 为: _____

2 初试笔试 3

如图,已知重力加速度为 g,小球离开斜面初速度为 v_0 ,斜面倾斜角为 θ ,斜面足够长,求小球离开斜面最远距离为:

如图,电源内阻不计,电动势为 E,所有电阻阻值相同,电容为 C,记开关断开且稳定时电容所存电荷为 Q_1 ,开关闭合且稳定时电容所存电荷为 Q_2 ,求 $\frac{Q_1}{Q_2}$: _____

已知重力加速度为 g,现有一辆汽车以速度 v_0 做半径为 r 的匀速圆周运动,汽车内有与汽车静止的杯子,杯子有一个小孔,杯中水面在小孔上方且离小孔最远处为 h,求以汽车内的乘客为参考水从小孔中流出的速度: _____

现有一杨氏模量为 E 的长方体材料,长 a,宽 b,高 c,密度 ρ ,重力加速度为 g,现将其宽和高所在面固定在竖直墙面上,问另一端下降高度:_____

真空中两片靠得很近的金属板会由于量子效应而出现吸力,这种效应被称为卡西米尔效应。已知普朗克常量 h、真空光速 c、静电力常量 k,电子电荷 e,问卡西米尔力正比于:_____(注:这题需要分析选项才能得出答案,但我记不起具体选项,有思路即可)

在地面系(记为 S 系)中有一半径为 R,周长为 C 的圆盘以一定角速度匀速绕中心转动,转盘上参考系(记为 S' 系)中测得的半径为 R'、周长为 C',考虑相对论下则 C _____C'、 $\frac{C}{2R}$ ____ π 、 $\frac{C'}{2R'}$ ____ π (均填 ">"、"<" 或 "=")

有关以下说法: A. 单电子经过双缝可以看见干涉条纹 B. 处理电子时只能使用量子力学,不能使用牛顿力学,牛顿力学给出的结果是不准确的 C^-E . (没有回忆起来也没有搜到) F. 以上说法都不对 正确的是:

3 复试面试 4

3 复试面试

Q1:

估算单个水分子质量(需要自己背得水的摩尔质量)

Q2:

真空中点电荷是否会受到自己电场的影响? 为什么? 如果受到了会出现什么情况?

一个沿着直线运动的点电荷电场是否是随时间变化的?是否产生有磁场?产生磁场是否需要变化的电场?

Q3:

现有一密闭方形容器,中间有隔板分割成两块区域,其中一块为真空,另一块充满某种理想气体,现在抽出隔板,气体自由扩散,问气体内能是否变化?气体温度是否变化?为什么?

现将理想气体改为某种等离子体,其气体分子均带上相同的电荷,同样抽出隔板,问气体内能是否变化?气体温度是否变化?为什么?

Q4:

若水杯中有一个小孔,从小孔有水柱流出,现有一激光从杯中射向小孔,问会发生什么现象? 为什么?

在光纤中,现弯曲光纤,从光纤一端射入激光,问激光是否会从光纤折射出来?发生折射出来的现象的条件是什么?

从光纤一端射入激光,要求激光不会从光纤折射出来,问需要满足哪些条件?

若不从从端口而从从光纤外向光纤内射入激光,问激光是否会从光纤折射出来?若光纤弯曲呢?