Camada de Ligação Lógica

Hugo Manuel Cunha, Marcos Daniel Teixeira da Silva, Susana Vitória Sá Silva Marques

Universidade do Minho, Departamento de Informática, 4710-057 Braga, Portugal Email:{a84656,a78566,a84167} @alunos.uminho.pt

1 Captura e análise de tramas Ethernet

1.1 Questões

/tmp/wireshark_enp2s0f1_20191120143944_O6SZBW.pcapng 556 total packets, 556 shown

No. Time Source Destination Protocol Length Info 126 7.971391459 192.168.100.191 193.136.19.40 HTTP 399 GET / HTTP/1.1 Frame 126: 399 bytes on wire (3192 bits), 399 bytes captured (3192 bits) on interface 0 Ethernet II, Src: CompalIn_Ta:03:0a (f0:76:1c:7a:03:0a), Dst: Vmware_d2:19:f0 (00:0c:29:d2:19:f0) Destination: Vmware_d2:19:f0 (00:0c:29:d2:19:f0) Source: CompalIn_Ta:03:0a (f0:76:1c:7a:03:0a) Type: IPv4 (0x0800) Internet Protocol Version 4, Src: 192.168.100.191, Dst: 193.136.19.40 Transmission Control Protocol, Src Port: 46500, Dst Port: 80, Seq: 1, Ack: 1, Len: 333 Hypertext Transfer Protocol

Fig. 1.

Pergunta 1

Anote os endereços MAC de origem e de destino da trama capturada.

Resposta

Destino: 00:0C:29:D2:19:F0 Source: F0:76:1C:7A:03:0A

Pergunta 2

Identifique a que sistemas se referem. Justifique.

Resposta

Destino: VMWare D2:19:F0 Source: CompalIn 7A:03:0A

Os primeiros 3 bytes do endereço MAC referem-se ao fabricante do

equipamento.

Pergunta 3

Qual o valor hexadecimal do campo Type da trama Ethernet? O que significa?

Resposta

O Type é 0X0800. Isto significa que o payload da trama Ethernet é um protocolo IPv4.

Pergunta 4

Quantos bytes são usados desde o início da trama até ao caractere ASCII "G" do método HTTP GET? Calcule e indique, em percentagem, a sobrecarga (overhead) introduzida pela pilha protocolar no envio do HTTP GET.

Resposta

399(tamanho total da trama) - 333 (tamanho total do payload do protocolo TCP: request HTTP) = 66

O tamanho de tudo o que está acima do início do método HTTP GET é 66. 66/399 *100= 17 %

O overhead introduzido por todos os protocolos onde o HTTP está inserido é de 17 %

Pergunta 5

Através de visualização direta de uma trama capturada, verifique que, possivelmente, o campo FCS (Frame Check Sequence) usado para deteção de erros não está a ser usado. Em sua opinião, porque será?

Resposta

O FCS é calculado pela placa de rede e é desnecessário numa ligação Ethernet por ser fiável. O equipamento descarta automaticamente todos os pacotes com o checkSum errado.

A seguir responda às seguintes perguntas, baseado no conteúdo da trama Ethernet que contém o primeiro byte da resposta HTTP:

Fig. 2.

Pergunta 6 Qual é o endereço Ethernet da fonte? A que sistema de rede corresponde? Justifique.

Resposta

Source: 00:0C:29:D2:19:F0

VMWare D2:19:F0

Pergunta 7

Qual é o endereço MAC do destino? A que sistema corresponde?

Resposta

Destino: F0:76:1C:7A:03:0A

CompalIn 7A:03:0A

Pergunta 8

Atendendo ao conceito de desencapsulamento protocolar, identifique os vários protocolos contidos na trama recebida.

Resposta

A trama recebida contém um protocolo HTTP (camada de aplicação) encapsulado num protocolo TCP (camada de transporte) encapsulado num protocolo IPv4 (camada de rede) encapsulado num protocolo Ethernet (camada de rede/física).

2 Protocolo ARP

2.1 Questões

Pergunta 9

Observe o conteúdo da tabela ARP. Explique o significado de cada uma das colunas.

Resposta

Fig. 3.

A primeira coluna indica-nos o endereço ip do host, a segunda coluna indica-nos o tipo de ligação(Ethernet), na terceira encontramos o endereço de destino(MAC address), a quarta coluna tem a indicação da flag e na quinta encontramos a interface(neste caso é nos mostrada a interface do host).

Pergunta 10

Qual é o valor hexadecimal dos endereços origem e destino na trama Ethernet que contém a mensagem com o pedido ARP (ARP Request)? Como interpreta e justifica o endereço destino usado?

Fig. 4.

Destino:ff:ff:ff:ff:ff:ff Source:f0:76:1c:7a:03:0a

É usado um endereço ethernet do broadcast (camada 2) para poder ser recebido por todos os hosts da rede.

Pergunta 11

Qual o valor hexadecimal do campo tipo da trama Ethernet? O que indica?

Resposta

Fig. 5.

 $\rm ARP~(0X0806)$ indica que o protocolo Ethernet tem nos seus dados um protocolo ARP encapsulado.

Pergunta 12

Qual o valor do campo ARP opcode? O que especifica? Se necessário, consulte a RFC do protocolo ARP (http://tools.ietf.org/html/rfc826.html).

	10 0.100400420	AIIIMUL C AT . TO . LA	υι υαυυαστ	PINE	00 MIIO 183 152,100,100,100; 1611 152,100,100,204
	79 7.079403372	Micro-St_dd:a2:7b	IPv4mcast_7f:ff:fa		216 IPv4
	80 7.119852403	CompalIn_7a:03:0a	Broadcast	ARP	42 Who has 192.168.100.195? Tell 192.168.100.191
	81 7.120808211	LcfcHefe_81:40:a0	CompalIn_7a:03:0a	ARP	60 192.168.100.195 is at 68:f7:28:81:40:a0
	82 7.120823627	CompalIn_7a:03:0a	LcfcHefe_81:40:a0	0x0800	98 IPv4
- 1	83 7.121354448	LcfcHefe_81:40:a0	CompalIn_7a:03:0a	0x0800	98 IPv4
	84 7.218779338	Vmware_d2:19:f0	BizlinkK_07:8b:e5	ARP	60 Who has 192.168.100.203? Tell 192.168.100.254
	85 7.762994139	Vmware_d2:19:f0	Broadcast	ARP	60 Who has 192.168.100.165? Tell 192.168.100.254
	86 7.917493253	AsustekC_29:c7:ce	IPv4mcast_7f:ff:fa		179 IPv4
- 1		CompalIn_7a:03:0a	Vmware_d2:19:f0	0x0800	342 IPv4
_		Vmwaro d2.10.ff	CompalIn 7a-03-0a	UAUSUU	251 TDv//
-	Frame 80: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0				
- >	Ethernet II, Src: CompalIn_7a:03:0a (f0:76:1c:7a:03:0a), Dst: Broadcast (ff:ff:ff:ff:ff)				
١,	Address Resolution				
- 1	Hardware type: E				
- 1	Protocol type: I				
-	Hardware size: 6				
	Protocol size: 4				
	Opcode: request (1)				
	Sender MAC address: CompalIn_7a:03:0a (f0:76:1c:7a:03:0a)				
1	Sender IP address: 192.168.100.191				
-			0 (00:00:00:00:00:00)		
- 1	Target IP addres	s: 192.168.100.195			
- 1					
- 1					

Fig. 6.

Opcode: request (1), que nos indica que é um request que espera um reply. Percebemos isso através do valor 1 especificado(se fosse o valor 2 seria um reply).

Pergunta 13

Identifique que tipo de endereços está contido na mensagem ARP? Que conclui?

Resposta

Na mensagem ARP estão contidos endereços IP e MAC de origem e IP de destino. O MAC de destino ainda é um broadcast porque o objetivo é ainda descobrir qual é o MAC correspondente ao IP do destino.

Pergunta 14

Explicite que tipo de pedido ou pergunta é feito pelo host de origem?

Resposta

"Who has 192.168.100.195? Tell 192.168.100.191"

Perguntamos aos hosts da rede qual o mac de quem tem o ip 192.168.100.195, e pedimos para enviar a resposta para o 192.168.100.191.

Pergunta 15

Localize a mensagem ARP que é a resposta ao pedido ARP efectuado.

- a. Qual o valor do campo ARP opcode? O que especifica?
- b. Em que posição da mensagem ARP está a resposta ao pedido ARP?

Resposta

```
75 6.47108175 8121ntK, 97:8bre6 PMeast F6 CDP/VTP/DTP/PAgP/UD... CDP 416 Device ID: Bastidore_SW3 Port ID: FastEthernet6/5 PMeast_16 CMS 416 Device ID: Bastidore_SW3 Port ID: FastEthernet6/5 PMeast_16 CMS 416 Device ID: Bastidore_SW3 Port ID: FastEthernet6/5 PMeast_16 CMS 416 Device ID: Bastidore_SW3 Port ID: FastEthernet6/5 PMeast_16 CMS 416 Device ID: Bastidore_SW3 Port ID: FastEthernet6/5 PMeast_16 Device ID: Bastidore_SW3 Port ID: Bastidore_SW3 Por
```

Fig. 7.

- a) Opcode: $\operatorname{reply}(2)$, que nos indica que é um reply. Percebemos isso através do valor 2 especificado.
- b) A resposta encontra-se no Sender MAC address e no Sender IP address:

Pergunta 16

Identifique um pacote de pedido ARP gratuito originado pelo seu sistema. Analise o conteúdo de um pedido ARP gratuito e identifique em que se distingue dos restantes pedidos ARP. Registe a trama Ethernet correspondente. Qual o resultado esperado face ao pedido ARP gratuito enviado?

```
24 5.45/863799 Bizlink(97:80:eb | Py68cast_TD | 9x860d | 229 | Py6 | 220 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240
```

Fig. 8.

Distingue-se através da adição de um campo: Is gratuitous: True O resultado esperado é não obter resposta uma vez que o endereço de IP testado é único.

3 Domínios de colisão

3.1 Questões

Fig. 9.

Pergunta 17

Faça ping de n1 para n3. Verifique com a opção tepdump como flui o tráfego nas diversas interfaces dos vários dispositivos. Que conclui?

Fig. 10.

Depois de fazer o ping de n1 para n3, analisando o tráfego num host não envolvido na comunicação, por exemplo, n4, verificamos que apesar de o pedido não lhe ser destinado ele recebe mesmo assim essa comunicação.

Pergunta 18

Na topologia de rede substitua o hub por um switch. Repita os procedimentos que realizou na pergunta anterior. Comente os resultados obtidos quanto à utilização de hubs e switches no contexto de controlar ou dividir domínios de colisão. Documente as suas observações e conclusões com base no tráfego observado/capturado.

Resposta

Fig. 11.

Com a utilização do switch o problema analisado na pergunta anterior fica resolvido, isto porque se analisarmos mais uma vez o tráfego que flui para n4 verificamos que com o switch ele já não recebe a ping que n1 faz para n3.

4 Conclusão

Com este trabalho prático aprendemos como funciona a conexão de redes locais baseado no envio de pacotes.

Abordamos o funcionamento da partilha de endereços MAC, nestas mesmas redes, usando o protocolo ARP e com a ferramenta CORE analisamos o funcionamento dos domínios de colisão e o modo de como são corrigidos (através de um switch de rede, por exemplo).

Assim, ao realizarmos este trabalho conseguimos consolidar melhor toda a matéria que abrange a camada de Ligação Lógica dada nas aulas teóricas.