제 2 교시

수학 영역

5지선다형

1. $\sqrt[3]{24} \times 3^{\frac{2}{3}}$ 의 값은? [2점]

① 6 ② 7 ③ 8 ④ 9

⑤ 10

 $3. \quad \frac{3}{2}\pi < \theta < 2\pi$ 인 θ 에 대하여 $\sin\left(-\theta\right) = \frac{1}{3}$ 일 때, tanθ의 값은? [3점]

2. 함수 $f(x) = 2x^3 - 5x^2 + 3$ 에 대하여 $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$ 의 값은? [2점]

① 1 ② 2 ③ 3 ④ 4

⑤ 5

4. 함수

$$f(x) = \begin{cases} 3x - a & (x < 2) \\ x^2 + a & (x \ge 2) \end{cases}$$

가 실수 전체의 집합에서 연속일 때, 상수 a의 값은? [3점]

- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

5. 다항함수 f(x)가

$$f'(x) = 3x(x-2), \quad f(1) = 6$$

을 만족시킬 때, f(2)의 값은? [3점]

- 1
- ② 2
- ③ 3
- 4
- **⑤** 5

 $\mathbf{6}$. 등비수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 하자.

$$S_4 - S_2 = 3a_4\,, \quad a_5 = \frac{3}{4}$$

일 때, $a_1 + a_2$ 의 값은? [3점]

- ① 27
- ② 24
- ③ 21
- 4 18
- ⑤ 15

- 7. 함수 $f(x) = \frac{1}{3}x^3 2x^2 12x + 4$ 가 $x = \alpha$ 에서 극대이고 $x = \beta$ 에서 극소일 때, $\beta \alpha$ 의 값은? (단, α 와 β 는 상수이다.) [3점]
 - \bigcirc -4
- (2) -1
- 3 2
- **4** 5
- ⑤ 8

8. 삼차함수 f(x)가 모든 실수 x에 대하여

$$xf(x) - f(x) = 3x^4 - 3x$$

를 만족시킬 때, $\int_{-2}^{2} f(x) dx$ 의 값은? [3점]

- ① 12
- 2 16
- 3 20
- **4** 24
- (5) 28

- 9. 수직선 위의 두 점 $P(\log_5 3)$, $Q(\log_5 12)$ 에 대하여 선분 PQ = m : (1-m)으로 내분하는 점의 좌표가 1일 때, 4^m 의 값은? (단, m은 0 < m < 1인 상수이다.) [4점]

- ① $\frac{7}{6}$ ② $\frac{4}{3}$ ③ $\frac{3}{2}$ ④ $\frac{5}{3}$ ⑤ $\frac{11}{6}$

10. 시각 t=0일 때 동시에 원점을 출발하여 수직선 위를 움직이는 두 점 P, Q의 시각 $t(t \ge 0)$ 에서의 속도가 각각

$$v_1(t) = t^2 - 6t + 5$$
, $v_2(t) = 2t - 7$

이다. 시각 t에서의 두 점 P, Q 사이의 거리를 f(t)라 할 때, 함수 f(t)는 구간 [0,a] 에서 증가하고, 구간 [a,b] 에서 감소하고, 구간 $[b,\infty)$ 에서 증가한다. 시각 t=a에서 t = b까지 점 Q가 움직인 거리는? (단, 0 < a < b) [4점]

- ① $\frac{15}{2}$ ② $\frac{17}{2}$ ③ $\frac{19}{2}$ ④ $\frac{21}{2}$ ⑤ $\frac{23}{2}$

11. 공차가 0이 아닌 등차수열 $\{a_n\}$ 에 대하여

$$|a_6| = a_8, \quad \sum_{k=1}^{5} \frac{1}{a_k a_{k+1}} = \frac{5}{96}$$

일 때, $\sum_{k=1}^{15} a_k$ 의 값은? [4점]

- ① 60
- ② 65
- 3 70
- **④** 75
- ⑤ 80
- 12. 함수 $f(x) = \frac{1}{9}x(x-6)(x-9)$ 와 실수 t(0 < t < 6)에 대하여 함수 g(x)는

$$g(x) = \begin{cases} f(x) & (x < t) \\ -(x-t) + f(t) & (x \ge t) \end{cases}$$

이다. 함수 y=g(x)의 그래프와 x축으로 둘러싸인 영역의 넓이의 최댓값은? [4점]

- ① $\frac{125}{4}$ ② $\frac{127}{4}$ ③ $\frac{129}{4}$ ④ $\frac{131}{4}$ ⑤ $\frac{133}{4}$

13. 그림과 같이

$$\overline{AB} = 3$$
, $\overline{BC} = \sqrt{13}$, $\overline{AD} \times \overline{CD} = 9$, $\angle BAC = \frac{\pi}{3}$

인 사각형 ABCD가 있다. 삼각형 ABC의 넓이를 S_1 , 삼각형 ACD의 넓이를 S_2 라 하고, 삼각형 ACD의 외접원의 반지름의 길이를 R이라 하자.

 $S_2 = \frac{5}{6}S_1$ 일 때, $\frac{R}{\sin\left(\angle \text{ADC}\right)}$ 의 값은? [4점]

- ① $\frac{54}{25}$ ② $\frac{117}{50}$ ③ $\frac{63}{25}$ ④ $\frac{27}{10}$ ⑤ $\frac{72}{25}$

14. 두 자연수 a, b에 대하여 함수 f(x)는

$$f(x) = \begin{cases} 2x^3 - 6x + 1 & (x \le 2) \\ a(x-2)(x-b) + 9 & (x > 2) \end{cases}$$

이다. 실수 t에 대하여 함수 y=f(x)의 그래프와 직선 y=t가 만나는 점의 개수를 g(t)라 하자.

$$g(k) + \lim_{t \to k^{-}} g(t) + \lim_{t \to k^{+}} g(t) = 9$$

를 만족시키는 실수 k의 개수가 1이 되도록 하는 두 자연수 a, b의 순서쌍 (a, b)에 대하여 a+b의 최댓값은? [4점]

- ① 51
- ② 52 ③ 53
- **4** 54

15. 첫째항이 자연수인 수열 $\left\{a_n\right\}$ 이 모든 자연수 n에 대하여

$$a_{n+1} = \left\{ \begin{array}{ll} 2^{a_n} & \left(a_n \circ\right) \,\, \text{홀수인 경우} \right) \\ \\ \frac{1}{2}a_n & \left(a_n \circ\right) \,\, \text{짝수인 경우} \right) \end{array} \right.$$

를 만족시킬 때, $a_6 + a_7 = 3$ 이 되도록 하는 모든 a_1 의 값의 합은? [4점]

- ① 139 ②
- 2 146
- ③ 153

4 160

⑤ 167

단답형

16. 방정식 $3^{x-8} = \left(\frac{1}{27}\right)^x$ 을 만족시키는 실수 x의 값을 구하시오. [3점]

17. 함수 $f(x) = (x+1)(x^2+3)$ 에 대하여 f'(1)의 값을 구하시오. [3점]

18. 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여

$$\sum_{k=1}^{10} a_k = \sum_{k=1}^{10} \left(2b_k - 1 \right), \quad \sum_{k=1}^{10} \left(3a_k + b_k \right) = 33$$

일 때, $\sum_{k=1}^{10} b_k$ 의 값을 구하시오. [3점]

19. 함수 $f(x) = \sin \frac{\pi}{4} x$ 라 할 때, 0 < x < 16에서 부등식

$$f(2+x)f(2-x) < \frac{1}{4}$$

을 만족시키는 모든 자연수 x의 값의 합을 구하시오. [3점]

20. $a > \sqrt{2}$ 인 실수 a에 대하여 함수 f(x)를

$$f(x) = -x^3 + ax^2 + 2x$$

라 하자. 곡선 y=f(x) 위의 점 O(0,0)에서의 접선이 곡선 y=f(x)와 만나는 점 중 O가 아닌 점을 A라 하고, 곡선 y=f(x) 위의 점 A에서의 접선이 x축과 만나는 점을 B라 하자. 점 A가 선분 OB를 지름으로 하는 원 위의 점일 때, $\overline{OA} \times \overline{AB}$ 의 값을 구하시오. [4점] **21.** 양수 a에 대하여 $x \ge -1$ 에서 정의된 함수 f(x)는

$$f(x) = \begin{cases} -x^2 + 6x & (-1 \le x < 6) \\ a\log_4(x - 5) & (x \ge 6) \end{cases}$$

이다. $t \ge 0$ 인 실수 t에 대하여 닫힌구간 [t-1,t+1]에서의 f(x)의 최댓값을 g(t)라 하자. 구간 $[0,\infty)$ 에서 함수 g(t)의 최솟값이 5가 되도록 하는 양수 a의 최솟값을 구하시오. [4점]

22. 최고차항의 계수가 1인 삼차함수 f(x)가 다음 조건을 만족시킨다.

함수 f(x)에 대하여

$$f(k-1)f(k+1) < 0$$

을 만족시키는 정수 k는 존재하지 않는다.

$$f'\left(-\frac{1}{4}\right) = -\frac{1}{4}$$
, $f'\left(\frac{1}{4}\right) < 0$ 일 때, $f(8)$ 의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, **「선택과목(확률과 통계)**」문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

수학 영역(미적분)

5지선다형

23.
$$\lim_{x\to 0} \frac{\ln(1+3x)}{\ln(1+5x)}$$
의 값은? [2점]

- ① $\frac{1}{5}$ ② $\frac{2}{5}$ ③ $\frac{3}{5}$ ④ $\frac{4}{5}$ ⑤ 1

24. 매개변수 t(t>0)으로 나타내어진 곡선

$$x = \ln\left(t^3 + 1\right), \quad y = \sin \pi t$$

에서
$$t=1$$
일 때, $\frac{dy}{dx}$ 의 값은? [3점]

①
$$-\frac{1}{3}\pi$$
 ② $-\frac{2}{3}\pi$ ③ $-\pi$ ④ $-\frac{4}{3}\pi$ ⑤ $-\frac{5}{3}\pi$

$$(4) - \frac{4}{3}\pi$$

$$\bigcirc -\frac{5}{2}$$

25. 양의 실수 전체의 집합에서 정의되고 미분가능한 두 함수 f(x), g(x)가 있다. g(x)는 f(x)의 역함수이고, g'(x)는 양의 실수 전체의 집합에서 연속이다. 모든 양수 a에 대하여

$$\int_{1}^{a} \frac{1}{g'(f(x))f(x)} dx = 2\ln a + \ln(a+1) - \ln 2$$

이고 f(1) = 8일 때, f(2)의 값은? [3점]

- ① 36
- 2 40 3 44 48
- $\bigcirc 52$

26. 그림과 같이 곡선 $y = \sqrt{(1-2x)\cos x} \left(\frac{3}{4}\pi \le x \le \frac{5}{4}\pi\right)$ 와 x축 및 두 직선 $x=\frac{3}{4}\pi$, $x=\frac{5}{4}\pi$ 로 둘러싸인 부분을 밑면으로 하는 입체도형이 있다. 이 입체도형을 x축에 수직인 평면으로 자른 단면이 모두 정사각형일 때, 이 입체도형의 부피는? [3점]

- ① $\sqrt{2}\pi \sqrt{2}$ ② $\sqrt{2}\pi 1$ ③ $2\sqrt{2}\pi \sqrt{2}$ ④ $2\sqrt{2}\pi 1$ ⑤ $2\sqrt{2}\pi$

27. 실수 t에 대하여 원점을 지나고 곡선 $y = \frac{1}{e^x} + e^t$ 에 접하는

직선의 기울기를 f(t)라 하자. $f(a) = -e\sqrt{e}$ 를 만족시키는 상수 a에 대하여 f'(a)의 값은? [3점]

 $oldsymbol{28}$. 실수 전체의 집합에서 연속인 함수 f(x)가 모든 실수 x에 대하여 $f(x) \ge 0$ 이고, x < 0일 때 $f(x) = -4xe^{4x^2}$ 이다. 모든 양수 t에 대하여 x에 대한 방정식 f(x) = t의 서로 다른

실근의 개수는 2이고, 이 방정식의 두 실근 중 작은 값을 g(t), 큰 값을 h(t)라 하자.

두 함수 g(t), h(t)는 모든 양수 t에 대하여

$$2g(t) + h(t) = k (k 는 상수)$$

를 만족시킨다. $\int_0^7 f(x) dx = e^4 - 1$ 일 때, $\frac{f(9)}{f(8)}$ 의 값은? [4점]

- ① $\frac{3}{2}e^5$ ② $\frac{4}{3}e^7$ ③ $\frac{5}{4}e^9$ ④ $\frac{6}{5}e^{11}$ ⑤ $\frac{7}{6}e^{13}$

단답형

29. 첫째항과 공비가 각각 0이 아닌 두 등비수열

 $\{a_n\}$, $\{b_n\}$ 에 대하여 두 급수 $\sum_{n=1}^{\infty}a_n$, $\sum_{n=1}^{\infty}b_n$ 이 각각 수렴하고

$$\sum_{n=1}^{\infty} a_n b_n = \left(\sum_{n=1}^{\infty} a_n\right) \times \left(\sum_{n=1}^{\infty} b_n\right),$$

$$3 \times \sum_{n=1}^{\infty} \left| a_{2n} \right| = 7 \times \sum_{n=1}^{\infty} \left| a_{3n} \right|$$

이 성립한다. $\sum_{n=1}^{\infty} \frac{b_{2n-1}+b_{3n+1}}{b_n} = S$ 일 때, 120S의 값을 구하시오. [4점]

30. 실수 전체의 집합에서 미분가능한 함수 f(x)의 도함수 f'(x)가

$$f'(x) = |\sin x| \cos x$$

이다. 양수 a에 대하여 곡선 y=f(x) 위의 점 (a,f(a))에서의 접선의 방정식을 y=g(x)라 하자. 함수

$$h(x) = \int_{0}^{x} \{f(t) - g(t)\} dt$$

가 x=a에서 극대 또는 극소가 되도록 하는 모든 양수 a를 작은 수부터 크기순으로 나열할 때, n번째 수를 a_n 이라 하자.

$$\frac{100}{\pi} \times (a_6 - a_2)$$
의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, 「선택과목(기하)」 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.