Name:	
VIP ID:	

- Write your name and VIP ID in the space provided above.
- The test has five (5) pages, including this one.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	25	
3	25	
4	20	
5	30	
Total	100	

Function/Power series	convergence
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$	(-1,1)
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$	$(-\infty,\infty)$
$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$	$(-\infty,\infty)$
$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$	[-1, 1]
$\ln(1-x) = \cdots$ (see problem 4)	???

Problem 1 (15 pts). For what values of x is the following power series convergent?

$$\sum_{n=1}^{\infty} \frac{(x-\pi)^n}{n}$$

Problem 2 (10 pts). Find the radius and interval of convergence of the following power series.

$$\sum_{n=1}^{\infty} \frac{(-\pi)^n x^n}{\sqrt{n}}$$

Problem 3 (10 pts). Assume known that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for |x| < 1.

Express the function $f(x) = 1/(1-x)^2$ as a power series by differentiating the previous equation. What is the radius of convergence?

Problem 4 (15 pts). Find a power series representation for $f(x) = \ln(1-x)$ and its radius of convergence.

Problem 5 (10 pts). Find the Taylor series for $f(x) = e^x$ at $b = \pi$.

Hint: The Taylor series of f(x) is $\sum_{n=0}^{\infty} \frac{f^{(n)}(b)}{n!} (x-b)^n$.

Problem 6 (10 pts). Find the Maclaurin series for the function $f(x) = x^2 \sin x$

Hint: The MacLaurin series is just a Taylor series centered at b = 0... But you may not need this at all, if you know a faster way to compute the power series of $\sin x$

Problem 7 (15 pts). Find the first three nonzero terms in the Maclaurin series for $f(x) = e^x \cos x$. **Hint:** A relatively fast way to do this is to compute a Taylor or MacLaurin polynomial of f(x) until you find those three non-zero coefficients.

Problem 8 (15 pts). Evaluate $\int e^{-x^2} dx$ as an infinite series. For this, proceed as indicated:

- (a) Find a power series expansion of the function $f(x) = e^{-x^2}$. You may do this by modification of the power series of e^x . Simplify as much as possible, to help you with easier expressions in the next step.
- (b) In the interval of convergence of this power series, you are allowed to use the *integration trick* to interchange integral with summation. Apply this technique, amd simplify as much as you can. Once you have produced a power-series representation of this integral, you are done!