Lecture 13

Booth Multiplier (additional material)

Khaza Anuarul Hoque ECE 4250/7250

Booth multiplier

For the standard add-shift operation, each multiplier bit generates one multiple of the multiplicand to be added to the partial product. If the multiplier is very large, then a large number of multiplicands have to be added. In this case the delay of multiplier is determined mainly by the number of additions to be performed. If there is a way to reduce the number of the additions, the performance will get better.

Booth algorithm is a method that will reduce the number of multiplicand multiples. For a given range of numbers to be represented, a higher representation radix leads to fewer digits. Since a k-bit binary number can be interpreted as K/2-digit radix-4 number, a K/3-digit radix-8 number, and so on, it can deal with more than one bit of the multiplier in each cycle by using high radix multiplication. This is shown for Radix-4 in the example below.

Radix-4

Table .1 Radix-4 Booth recoding

X_{i+1}	X	X_{i-1}	$Z_{ m i/2}$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	2
1	0	0	-2
1	0	1	-1
1	1	0	-1
1	1	1	0

$$Z_i = -2x_{i+1} + x_i + x_{i-1}$$

Example-1

Example-2

Example

Using Booth algorithm multiply A and B.

$$A = 20$$

B = 30

$$A = 0010100 \\
B = 0011110$$

Please note that both numbers are extended to cover 2A or 2B and the sign bit (whichever is larger).

$$A * B =$$

$$A=$$

$$2A = 40 = 00101000$$

-2A = 11011000

Now performing the addition we have

