TRAIN THE ML MODEL ON IBM

Team ID	PNT2022TMID15858
Project Name	Car Resale value Prediction

TRAIN THE ML MODEL ON IBM

import pandas as pd import numpy as np import matplotlib as plt from sklearn.preprocessing import LabelEncoder import pickle print("IMPORTED REQUIRED LIBRARIES") # df = pd.read_csv("C:/Users/MUGUNTHAN/Desktop/IBM/Data/autos.csv", header=0, sep=',' ,encoding='Latin1',low_memory=False) # df.head() import os, types import pandas as pd from botocore.client import Config import ibm boto3 import io def __iter__(self): return 0 #@hidden cell # The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials. # You might want to remove those credentials before you share the notebook. cos_client = ibm_boto3.client(service_name='s3',

ibm_api_key_id='DT15l-lL0017uhnUGwXyhG_Eort5gohoW6XJTNoT3RKk',

endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')

ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",

config=Config(signature_version='oauth'),

```
bucket = 'carresalevalueprediction-donotdelete-pr-yuhtmzidi0ka1p' object_key
= 'autos.csv'
body = cos_client.get_object(Bucket=bucket,Key=object_key)
df = pd.read_csv((io.BytesIO(body['Body'].read())), header=0, sep=',',encoding='Latin1',low_memory=False)
df.head()
# df = pd.read csv("C:/Users/MUGUNTHAN/Desktop/IBM/Data/autos.csv", header=0, sep=','
,encoding='Latin1',low memory=False)
# df.head() import
os, types import
pandas as pd
from botocore.client import Config
import ibm_boto3
import io
def __iter__(self): return 0
#@hidden cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.
# You might want to remove those credentials before you share the notebook. cos_client
= ibm boto3.client(service name='s3',
  ibm_api_key_id='DT151-lL0017uhnUGwXyhG_Eort5gohoW6XJTNoT3RKk',
  ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",
config=Config(signature_version='oauth'),
  endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
bucket = 'carresalevalueprediction-donotdelete-pr-yuhtmzidi0ka1p' object key
= 'autos.csv'
body = cos client.get object(Bucket=bucket,Key=object key)
df = pd.read_csv((io.BytesIO(body['Body'].read())), header=0, sep=',',encoding='Latin1',low_memory=False)
df.head() print(df.seller.value_counts()) df[df.seller !='gewerblich']
df=df.drop('seller',axis=1)
print(df.offerType.value_counts())
df[df.offerType !='Gesuch']
df=df.drop('offerType',axis=1) print(df.shape)
df=df[(df.powerPS>50) & (df.powerPS<900)] print(df.shape)
df=df[(df.yearOfRegistration>=1950)&(df.yearOfRegistration<2022)] print(df.shape)
df.drop(['name','abtest','dateCrawled','nrOfPictures','lastSeen','postalCode','dateCreated'], axis='columns',inplace=True)
new df=df.copy()
new_df=new_df.drop_duplicates(['price','vehicleType','yearOfRegistration','gearbox','powerPS','model','kilometer','mo
nthOfRegistration','fuelType','notRepairedDamage'])
new df.gearbox.replace(('manuell', 'automatik'), ('manual', 'automatic'), inplace=True)
new_df.fuelType.replace(('benzin','andere','elektro'),('petrol','others','electric'),inplace=True)
new_df.vehicleType.replace(('kleinwagen','cabrio','kombi','andere'),('samll
car', 'convertible', 'combination', 'others'), inplace=True)
new df.notRepairedDamage.replace(('ja','nein'),('Yes','No'),inplace=True)
new_df=new_df[(new_df.price>=100)&(new_df.price<=150000)]
new_df['notRepairedDamage'].fillna(value='not-declared',inplace=True)
new_df['fuelType'].fillna(value='not-declared',inplace=True)
```

```
new_df['gearbox'].fillna(value='not-declared',inplace=True)
new df['vehicleType'].fillna(value='not-declared',inplace=True)
new_df['model'].fillna(value='not-declared',inplace=True) from
ibm_watson_machine_learning import APIClient wml_credentials={
    "url": "https://us-south.ml.cloud.ibm.com",
    "apikey":"hEAn_mcoP3u_-ZjagjeqlxDayqUiETpYVYWdR1OLKAby"
} client =APIClient(wml_credentials) def
guide from space name(client, space name):
    space = client.spaces.get details()
       print(space)
    return(next(item for item in space['resources'] if item['entity']["name"]==space_name)['metadata']['id'])
space uid=guide from space name(client, 'CAR') print("Space UID"+ space uid)
client.set.default_space(space_uid) client.software_specifications.list()
software_spec_uid = client.software_specifications.get_uid_by_name("runtime-22.1-py3.9")
software_spec_uid print(new_df)
labels=['gearbox','notRepairedDamage','model','brand','fuelType','vehicleType']
mapper={} for
i in labels:
    mapper[i]=LabelEncoder()
mapper[i].fit(new_df[i])
tr=mapper[i].transform(new_df[i])
    np.save(str('classes'+i+'.npy'),mapper[i].classes_)
print(i,":",mapper[i])
    new_df.loc[:, i+ '_labels']=pd.Series(tr,index=new_df.index)
labeled = new\_df[['price', 'yearOfRegistration', 'powerPS', 'kilometer', 'monthOfRegistration'] + [x + "\_labels" for x in the property of th
labels]] print(labeled.columns) Y=labeled.iloc[:,0].values
X=labeled.iloc[:,1:].values
Y=Y.reshape(-1,1)
from sklearn.model_selection import cross_val_score,train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3,random_state=3) from
sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
regressor = RandomForestRegressor(n_estimators = 1000,max_depth = 10,random_state = 34)
regressor.fit(X train, np.ravel(Y train, order='C')) y pred
= regressor.predict(X_test)
print(r2_score(Y_test,y_pred))
filename='resale model.sav'
pickle.dump(regressor,open(filename,'wb'))
model_details = client.repository.store_model(model=regressor,meta_props={
client.repository.ModelMetaNames.NAME: "resale_model",
     client.repository.ModelMetaNames.SOFTWARE SPEC UID: software spec uid,
client.repository.ModelMetaNames.TYPE: "scikit-learn_1.0"
})
model_id = client.repository.get_model_id(model_details)
model_id X_train[0]
regressor.predict([[2012.0, 179.0, '1500000', 12.0, 0, 0, 30, 1, 1, 4]])
```


