Neural Shape Mating: Self-Supervised Object Assembly with Adversarial Shape **Priors**

Yun-Chun Chen

Haoda Li

Dylan Turpin Alec Jacobson Animesh Garg

3D Shape Assembly

Pen and Cap

Toothbrush and Case

3D Geometric Shape Assembly

Broken vase

Broken fossil

Broken sculpture

Broken bones

Pairwise 3D Geometric Shape Assembly

Input: Two shapes

Pairwise 3D Geometric Shape Assembly

Input: Two shapes

Goal: Develop an algorithm that learns to assemble them

Applications

Furniture Assembly

Toy Assembly

Pick and Place

Object Packing

Object Kitting

Semantic Shape Assembly

Input: A set of part point clouds and a target shape

Target Shape Part Point Clouds

Semantic Shape Assembly

Input: A set of part point clouds and a target shape

Idea: Formulate shape assembly as a part pose prediction problem

Target Shape Part Point Clouds Pose Predictions

Semantic Shape Assembly

Input: A set of part point clouds and a target shape

Idea: Formulate shape assembly as a part pose prediction problem

Target Shape Part Point Clouds Pose Predictions Assembly Result

Prior Work: Semantic Shape Assembly

[Li et al. ECCV 2020]

- + Part segmentation as guidance
- + Graph networks for inferring part relationships
- Part segmentation ground truth
- Part pose ground truth

[Huang et al. NeurIPS 2020]

- + No need part segmentation
- + Graph networks for inferring part relationships
- + Coarse-to-fine pose refinement
- Part pose ground truth

Method: Neural Shape Mating

Input: Two point clouds P_A and P_B

Method: Neural Shape Mating

Input: Two point clouds P_A and P_B

Output: SE(3) poses for P_A and P_B

Method: Neural Shape Mating

Input: Two point clouds P_A and P_B

Output: SE(3) poses for P_A and P_B

Point Feature Extraction

Cross-Shape Correlations

Pose Estimation for Shape Assembly

$$F_{B}$$

$$F_{B}$$

$$F_{B}$$

Pose estimation loss

$$\mathcal{L}_{\text{pose}} = \sum_{i \in \{A, B\}} \|R_i^{\top} R_i^{\text{GT}} - I\| + \|T_i - T_i^{\text{GT}}\|$$

Adversarial Learning of Shape Priors

Implicit Shape Reconstruction as a Regulatization

 $i \in \{A,B\}$

The Geometric Shape Assembly Dataset

Experimental Results

Conclusions

- Formulate the task of pairwise 3D geometric shape assembly
- Propose a self-supervised learning algorithm
- Collect a large-scale geometric shape assembly dataset
- Provide a benchmark with several methods on the proposed tasks
- State-of-the-art results with good generalization