#### Nr identyfikacyjny

sp-CH - ..... - 2020/2021



Imię i nazwisko ucznia

(numer porządkowy z kodowania)

**Nr identyfikacyjny – wyjaśnienie -** *symbol przedmiotu* np. BI – biologia, *numer porządkowy wynika z numeru stolika wylosowanego przez ucznia* 

# WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII

organizowany przez Łódzkiego Kuratora Oświaty dla uczniów szkół podstawowych w roku szkolnym 2020/2021

## TEST - ETAP REJONOWY

| • | Arkusz liczy 10 stron i zawiera 15 zadań, w tym brudnopis.                                                    | Czas pracy: |
|---|---------------------------------------------------------------------------------------------------------------|-------------|
| • | Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś             | czws prwej. |
|   | je Komisji Konkursowej.                                                                                       |             |
| • | Zadania czytaj uważnie i ze zrozumieniem.                                                                     | 90 min.     |
| • | Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.                                     | yo mm.      |
| • | Dbaj o czytelność pisma i precyzję odpowiedzi.                                                                |             |
| • | W zadaniach zamkniętych zaznacz prawidłową odpowiedź, wstawiając znak X we właściwym miejscu.                 |             |
| • | Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.                     |             |
| • | Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.                           |             |
| • | Do każdego numeru zadania podana jest maksymalna liczba punktów możliwa do uzyskania za prawidłową odpowiedź. |             |
| • | Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.                                   |             |
| • | Nie używaj korektora. Jeśli pomylisz w zadaniach otwartych, przekreśl błędną odpowiedź i wpisz poprawną.      |             |
| • | Korzystaj tylko z przyborów i materiałów określonych w regulaminie konkursu.                                  |             |
|   | Powodzenia!                                                                                                   |             |

Wypełnia Komisja Konkursowa po zakończeniu sprawdzenia prac

| wypenna Konkarsowa po zakonezenia sprawazenia prae |    |    |   |   |   |   |   |   |   |    |    |    |    |    |    |          |
|----------------------------------------------------|----|----|---|---|---|---|---|---|---|----|----|----|----|----|----|----------|
| Zadanie                                            | 1  | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Razem    |
| Punkty<br>możliwe do<br>uzyskania                  | 10 | 10 | 4 | 4 | 5 | 6 | 8 | 4 | 4 | 8  | 4  | 5  | 10 | 5  | 13 | 100 pkt. |
| Punkty<br>uzyskane                                 |    |    |   |   |   |   |   |   |   |    |    |    |    |    |    |          |

| - | 4 .    | 1 1 /    |         |              |               |
|---|--------|----------|---------|--------------|---------------|
| μ | Odniev | CZŁONKOW | V011111 | chrawdzai    | iacvch prace: |
|   | ounsv  | CZIOHKOW | KUHHSH  | SDI a w uzai | acven mace.   |

- ipisy członkow komisji sprawdzających prace:
  1. (imię i nazwisko).....(podpis)
- 2. (imię i nazwisko).....(podpis)

Przeczytaj uważnie treść zadań. Zadanie 1 składa się z 10 zadań testowych, w których tylko jedna odpowiedź jest poprawna.

#### Zadanie 1. (10 pkt)

- 1. Działając kwasem na marmur wydziela się gaz. Ten gaz to:
- a. azot
- b. ditlenek węgla
- c. tlen
- d. chlor
  - 2. Do roztworu AlCl<sub>3</sub> dodawano kroplami roztwór KOH. Zaobserwowane zmiany to:
- a. osad nie pojawił się
- b. osad pojawił się po dodaniu kilku kropli KOH a następnie gęstniał przy dalszym dodawaniu KOH
- c. osad pojawił się po dodaniu kilku kropli a następnie zniknął przy dalszym dodawaniu KOH
- d. osad pojawił się dopiero po dodaniu dużej porcji KOH
  - 3. Adam badał uniwersalnym papierkiem wskaźnikowym próbkę proszku do prania w wodzie destylowanej. Wskaźnik przyjął zabarwienie:
- a. czerwone, ze względu na nadmiar jonów H<sup>+</sup>
- b. żółte, ze względu na jednakowe stężenia jonów H<sup>+</sup> i OH<sup>-</sup>
- c. malinowe, ze względu na nadmiar jonów OH-
- d. zielone, ze względu na nadmiar jonów OH-
- 4. Wybierz poprawne równanie dysocjacji jonowej siarczku sodu.
- a.  $Na_2S \xrightarrow{H_2O} 2 Na^+ + S^-$
- b.  $Na_2SO_4 \xrightarrow{H_2O} 2Na^+ + SO_4^{2-}$
- c.  $Na_2S \xrightarrow{H_2O} 2 Na^+ + S^{2-}$
- d.  $Na_2SO_3 \xrightarrow{H_2O} 2 Na^+ + SO_3^{2-}$
- 5. Wskaż opis słowny równania dysocjacji jonowej kwasu siarkowodorowego.
- a. Kwas siarkowy(VI) dysocjuje na kationy wodoru i aniony siarczanowe(VI).
- b. Kwas siarkowy(IV) dysocjuje na kationy wodoru i aniony siarczanowe(IV).
- c. Kwas siarkowodorowy dysocjuje na kationy wodoru i aniony siarczkowe.
- d. Kwas siarkowodorowy dysocjuje na kationy wodoru i aniony siarczanowe.
- 6. Wskaż równanie reakcji chemicznej, które przedstawia sposób wykrywania CO<sub>2</sub>.
- a.  $Ca(OH)_2 + CO_2 \rightarrow CaCO_2 + H_2O$
- b.  $2 \text{ Ca(OH)}_2 + \text{CO} \rightarrow \text{CaCO}_3 + 2 \text{ H}_2\text{O}$
- c.  $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$
- d.  $2 \text{ Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{Ca}_2\text{CO}_3 + 2 \text{ H}_2\text{O}$

Poniżej przedstawiono fragment tabeli rozpuszczalności.

| ANIONY                        | Na⁺ | K⁺ | Mg <sup>2+</sup> | Ca <sup>2+</sup> | Sr <sup>2+</sup> |
|-------------------------------|-----|----|------------------|------------------|------------------|
| OH⁻                           | R   | R  | N                | Т                | R                |
| CI⁻                           | R   | R  | R                | R                | R                |
| Br⁻                           | R   | R  | R                | R                | R                |
| <b>S</b> <sup>2-</sup>        | R   | R  | R                | Т                | R                |
| SO <sub>3</sub> <sup>2-</sup> | R   | R  | R                | Т                | N                |
| SO <sub>4</sub> <sup>2-</sup> | R   | R  | R                | Т                | N                |

R – substancja dobrze rozpuszczalna w wodzie

T – substancja trudno rozpuszczalna w wodzie

N – substancja praktycznie nierozpuszczalna w wodzie

7. Wybierz wzór związku chemicznego, którego należy dodać do wodorotlenku strontu, aby otrzymać sól rozpuszczalną w wodzie.

- a. HBr
- b. K<sub>2</sub>SO<sub>4</sub>
- c. K<sub>2</sub>SO<sub>3</sub>
- d. Ca(OH)<sub>2</sub>

8. Wybierz wzór związku chemicznego, którego należy dodać do wodorotlenku strontu, aby otrzymać sól praktycznie nierozpuszczalną w wodzie.

- a. NaCl
- b. HBr
- c. K<sub>2</sub>SO<sub>4</sub>
- d. Na<sub>2</sub>S

9. Wskaż produkty reakcji dysocjacji jonowej fosforanu(V) litu.

$$\text{Li}_3\text{PO}_4 \xrightarrow{\text{H}_2\text{O}} \dots$$

a. 
$$3 \text{ Li}^+ + 4 \text{ PO}^{3-}$$

b. 
$$3 \text{ Li}^+ + PO_4$$

c. 
$$\text{Li}_3^+ + \text{PO}_4^{3-}$$

d. 
$$3 \text{ Li}^+ + \text{PO}_4^{3-}$$

10. Wskaż zbiór tlenków będących wyłącznie tlenkami kwasowymi:

- A. CO, ZnO, Cl<sub>2</sub>O<sub>7</sub>
- $\text{B. } P_2\mathrm{O}_5, \text{MgO}, \text{N}_2\mathrm{O}_3$
- c. CO<sub>2</sub>, N<sub>2</sub>O<sub>5</sub>, SO<sub>2</sub>
- D. CaO, SO<sub>3</sub>, Na<sub>2</sub>O

| Numer<br>zadania | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------------------|---|---|---|---|---|---|---|---|---|----|
| A                |   |   |   |   |   |   |   |   |   |    |
| В                |   |   |   |   |   |   |   |   |   |    |
| С                |   |   |   |   |   |   |   |   |   |    |
| D                |   |   |   |   |   |   |   |   |   |    |

Zadanie 2. (10 pkt)

Do siedmiu probówek wrzucono próbki metali. Znakiem X zaznacz te probówki, w których zajdą reakcje chemiczne a następnie zapisz równania reakcji.



ciecz • substancja stała • jest higroskopijny • trudno rozpuszcza się w wodzie • bardzo dobrze rozpuszcza się w wodzie • rozpuszczanie go w wodzie jest procesem egzoenergetycznym • rozpuszczanie go w wodzie jest procesem endoenergetycznym

Zadanie 4. (4pkt) Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

| 1. | Chlorek żelaza(III) można otrzymać w wyniku ogrzewania tlenku żelaza(III)               | P | F |
|----|-----------------------------------------------------------------------------------------|---|---|
| 2. | W reakcji tlenku siarki(IV) z wodorotlenkiem potasu powstają siarczan(IV) potasu i woda | P | F |
| 3. | Sole kwasów tlenowych otrzymuje się m.in. w wyniku bezpośredniej syntezy z pierwiastków | P | F |
| 4. | W reakcji wodorotlenku z kwasem beztlenowym powstaje sól kwasu beztlenowego.            | P | F |

#### Zadanie 5. (5 pkt)

Uczniowie badali odczyn roztworu kwasu siarkowego VI. Pod probówkami wpisz barwy, jakie w obecności kwasu siarkowego VI przyjmują użyte przez uczniów wskaźniki.



#### Zadanie 6. (6 pkt)

W ramce podano wzory jonów. Podaj wszystkie możliwe wzory sumaryczne soli, zbudowanych z podanych jonów.

| K | $C^+$ , $Ca^2$ | +, Al <sup>3+</sup> , | Br <sup>-</sup> , | NO <sub>3</sub> |
|---|----------------|-----------------------|-------------------|-----------------|
|   |                |                       |                   |                 |

Wzory soli: .....

Przedstaw równania reakcji dla poniższego schematu oraz podaj nazwy systematyczne powstałych produktów (pomijając nazwę wody).



Równania reakcji i nazwy

- 1. ....
- 2. ....
- 3. ....
- 4. ....

Zadanie 8 (4 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne substancji w odpowiednie kolumny.

$$\begin{array}{c} K_3PO_4 \neg Ca(HCO_3)_2 \neg CaCl_2 \neg Fe(OH)_2Cl \neg CaCO_3 \neg K_2HPO_4 \\ \neg Al_2(SO_4)_3 \cdot 10 \ H_2O \neg MgSO_4 \cdot 2 \ H_2O \end{array}$$

| Sole obojętne | Wodorosole | Hydroksosole | Hydraty |
|---------------|------------|--------------|---------|
|               |            |              |         |
|               |            |              |         |
|               |            |              |         |
|               |            |              |         |

## Zadanie 9. (4 pkt)

Ułóż równania reakcji według przedstawionego schematu:



Równania reakcji

- 1 ....
- 2 ....
- 3 ....
- 4 ....

Zadanie 10. (8 pkt)

Zaprojektuj doświadczenie chemiczne, w wyniku którego można otrzymać chlorek srebra I.

a. podkreśl nazwy odczynników chemicznych, których użyjesz w doświadczeniu:

- roztwór wodorotlenku sodu
  - azotan(V) potasu
- roztwór kwasu chlorowodorowego
  - roztwór kwasu azotowego(V)
    - azotan V srebra

| b. Opisz wykonywane kolejno czynności                                                     |
|-------------------------------------------------------------------------------------------|
| c. Zapisz obserwacje                                                                      |
| d. Zapisz wniosek.                                                                        |
| e. Napisz równanie zachodzącej reakcji chemicznych w sposób cząsteczkowy, jonowy i jonowy |
| skrócony:                                                                                 |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |

## Zadanie 11. (4 pkt)

Na podstawie schematu doświadczenia chemicznego, zapisz obserwacje, uzupełnij wniosek i zapisz równanie reakcji chemicznej.



| Obserwacje:                                          |
|------------------------------------------------------|
| Wniosek: W kredzie występuje, który reaguje z kwasem |
| W wodzie wapiennej zachodzi reakcja:                 |
|                                                      |

## Zadanie 12. (5 pkt).

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, lub F - jeśli jest fałszywe. 2 p.

| 1. | W 1 molu miedzi znajduje się taka sama liczba atomów jak w 1 molu srebra.          | P | F |
|----|------------------------------------------------------------------------------------|---|---|
| 2. | 56 g tlenku wapnia to 2 mole tego związku chemicznego.                             | P | F |
| 3. | Aby przygotować 1 mol węglanu wapnia, należy odważyć 100 g tej substancji.         | P | F |
| 4. | W 1 molu wody znajduje się taka sama liczba atomów jak w 1 molu tlenku siarki(VI). | P | F |
| 5  | 1 mol tlenu ma taką samą masę jak 1 mol ozonu.                                     | P | F |

### Zadanie 13. (10 pkt)

W celu otrzymania kwasu siarkowego VI należy spalić w tlenie siarkę pierwiastkową, a powstający tlenek siarki IV katalitycznie utlenić do tlenku siarki VI, po czym powstający SO<sub>3</sub> połączyć z wodą. Oblicz całkowitą masę tlenu potrzebną do spalenia siarki, a następnie tlenku siarki IV, jeśli powstało 120g kwasu siarkowego VI.

## Zadanie 14. (5 pkt)

Mleko zawiera średnio 0,132 mg tlenku arsenu III na 1 kg mleka. Dawka śmiertelna dla człowieka wynosi 10 mg As<sub>2</sub>O<sub>3</sub> na kilogram masy ciała. Oblicz jaką masę mleka należałoby wypić aby była ona zagrożeniem dla człowieka ważącego 80 kg. Wynik podaj w tonach.

## Zadanie 15. (13 pkt)

Sacharoza (cukier kryształ) przedstawia się wzorem C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>. Oblicz ile:

- a. moli cząsteczek sacharozy zawartych jest w 1 kg cukru
- b. cząsteczek sacharozy zawartych jest w 1 kg cukru
- c. moli atomów węgla zawartych jest w 500 g cukru
- d. atomów tlenu zawartych jest w 200 g sacharozy

# BRUDNOPIS