Магистратура/специалитет

Задача 1.

Универсальный компилятор двухуровневых операций Общая формулировка

Наименьшей единицей информации в области квантовых вычислений (в квантовых компьютерах) являются кубиты. Кубит допускает всего два собственных состояния, обозначаемых как $|0\rangle$ и $|1\rangle$. Например, кубитами могут являться фотоны, электроны, единичные атомы или ионы в ловушках. В последне время большую актуальность приобретают вычисления, основанные на многоуровневых системах с размерностью d>2 — на так называемых «кудитах». Управление и программирование квантовых устройств на основе кудитов, открывает возможности для помехоустойчивой квантовой связи, тонких квантовых молекулярных симуляций и эффективных квантовых вычислений, демонстрируя огромный потенциал.

Кудит преставляет собой d-уровневую квантовую систему. Обозначим базисные состояния в гильбертовом пространстве \mathcal{H} кудита $\{|0\rangle, |1\rangle, ..., |d-1\rangle\}$. Рассмотрим унитарный оператор U ($U^{\dagger}U = UU^{\dagger} = I$), действующий в \mathcal{H} . Необходимо построить алгоритм разложения U на произведение двухуровневых унитарных матриц, нетривиально действующих не более чем на двух базисных векторах. Двухувровневые унитарные матрицы имеют вид

$$R_{mn}(\theta,\phi) = \exp\left[-i\theta/2(X_{mn}\cos(\phi) + Y_{mn}\sin(\phi))\right],\tag{1}$$

где

$$X_{mn} = |m\rangle\langle n| + |n\rangle\langle m|, \qquad (2)$$

$$Y_{mn} = -i |m\rangle\langle n| + i |n\rangle\langle m|, \qquad (3)$$

$$m, n = 0, ..., d - 1, \quad m \neq n$$
 (4)

Заметим, что в общем случае произвольная унитарная матрица U может быть разложена в произведение не более чем $2^{d-1}(2^d-1)$ двухуровневых унитарных матриц. Минимизация числа матриц в разложении не является необходимой опцией в решении данной задачи.

Решение данной задачи предполагает разработку алгоритма разложения произвольных унитарных операций на произведение двухуровневых унитарных операций при помощи любого языка программирования (Python, $\mathrm{C/C++},\ldots$).

Задача 2.

Квантовый компьютер на явлении ядерного магнитного резонанса

Введение

Известно, что кубитом может являться любая квантовая система с двумя возможными квантовыми состояниями. Один из очевидных примеров – состояния системы с разными проекциями спина-1/2 на некоторую ось. Релизовать этот подход можно, в том числе, используя явление ядерного магнитного резонанса (ЯМР) – расщепления энергетических уровней ядра с ненулевым спином в присутствии внешнего магнитного поля. Эта идея легла в основу одного из первых и наиболее хорошо разработанных на сегодняшний день квантовых компьютеров. По типу используемого рабочего вещества они бывают жидкостными и твердотельными. Сосредоточимся на рассмотрении первого варианта.

Физическими кубитами такого устройства являются ядра атомов в молекуле, а вся молекула выполняет роль квантового регистра. Колба с раствором рабочего вещества помещается во внешнее сильное стационарное магнитное поле \vec{B}_0 , обеспечивающее расщепление энергетических уровней. Управление состояниями кубитов производится с помощью слабого поперечного магнитного поля $\vec{B}_1(t)$, параметрами которого можно управлять. Вся система находится при комнатной температуре и теоретически описывается в терминах матрицы плотности ρ .

Указания по оформлению и вводу ответов:

Во всех заданиях с ручной проверкой необходимо загрузить файл с описанием хода решения в формате pdf. Участникам допускается загружать сканы и/или фотографии рукописных решений, конвертированные в pdf, если изображение хорошего качества, а решение оформлено аккуратным, разборчивым почерком без помарок и исправлений.

В заданиях с автоматической проверкой: дробную часть отделять от целой **запятой**; мнимую единицу обозначать буквой i без пробела. Внимательно читайте правила ввода ответов в заданиях с автоматической проверкой!

Теоретическое описание системы

В простейшем случае однокубитной системы гамильтониан имеет вид

$$H_1 = -\hbar \gamma \vec{B_0} \hat{\vec{s}} - \hbar \gamma \vec{B_1}(t) \hat{\vec{s}} = -\hbar \omega_0 I_z + 2\hbar \omega_1 \cos(\Omega t - \varphi) I_x, \tag{5}$$

где γ – гиромагнитное отношение; ω_i – ларморовская частота, соответствующая полю B_i ; $I_i = \sigma_i/2$ с σ_i – матрицами Паули; Ω и φ – частота и фаза

управляющего магнитного поля; а оси выбраны вдоль направлений магнитных полей $\vec{B}_0 = B_0 \vec{e}_z$, $\vec{B}_1 = -B_1 \vec{e}_x$. Эволюция состояния системы описывается уравнением фон Неймана:

$$i\hbar \frac{d\rho_1}{dt} = [H_1, \rho_1], \qquad (6)$$

где ρ_1 – матрица плотности однокубитной системы.

Часто оказывается удобным перейти из лабораторной во вращающуюся систему отсчёта:

$$\rho_1 \to \tilde{\rho}_1 = U_{1,R} \rho_1 U_{1,R}^{\dagger},\tag{7}$$

где $U_{1,R}=\exp(-i\omega_0I_zt)$ – генератор поворота вокруг оси Oz. Можно по-казать, что уравнение (6) при этом сохраняет свой вид с точностью до замены $\rho_1\to \tilde{\rho}_1$ и с соответствующим образом изменённым гамильтонианом $H_1\to \tilde{H}_1$. В предположении $\omega_1\ll\omega_0$ этот преобразованный гамильтониан можно записать в простом виде

$$\tilde{H}_1 \approx \hbar \omega_1 \left(\cos \varphi I_x + \sin \varphi I_y\right).$$
 (8)

Везде в дальнейшем примем $\hbar = 1$ для упрощения выкладок.

При добавлении второго кубита в систему размерность рассматрвиаемого гильбертова пространства увеличивается, а в гамильтониане дополнительно появляется член, связанный со взаимодействием между двумя кубитами вида

$$H_{12} = J \sum_{k=x,y,z} I_k \otimes I_k, \tag{9}$$

где J – некоторая константа. Переход во вращающуюся систему отсчёта теперь совершается под действием оператора

$$U_{2,R} = e^{-i\omega_{0,1}I_z t} \otimes e^{-i\omega_{0,2}I_z t}.$$
 (10)

Здесь и далее $\omega_{i,j}$ – это ларморовская частота j-го кубита в поле B_i . В остальном процедура перехода во вращующуся систему отсчёта и упрощения гамильтониана остаётся прежней и приводит к результату:

$$\tilde{H}_{2} \approx J I_{z} \otimes I_{z}
+ \omega_{1,1} \left(\cos \varphi_{1} I_{x} \otimes I + \sin \varphi_{1} I_{y} \otimes I \right)
+ \omega_{1,2} \left(\cos \varphi_{2} I \otimes I_{x} + \sin \varphi_{2} I \otimes I_{y} \right),$$
(11)

где φ_i – фаза управляющего поля B_1 , действующего на i-й кубит, а I – единичная матрица размера 2×2 .

Данный результат легко обобщается на линейный квантовый регистр произвольной длины n:

$$\tilde{H}_n \approx \sum_{i=1}^{n-1} J_{i,i+1} I_{z,i} \otimes I_{z,i+1} + \sum_{i=1}^n \omega_{1,i} \left(\cos \varphi_i I_{x,i} + \sin \varphi_i I_{y,i}\right),$$
 (12)

где $J_{i,i+1}$ – постоянная взаимодействия между i и i+1 кубитами; $I_{k,i}=I\otimes\cdots\otimes I_k\otimes\cdots\otimes I$ – последовательность прямых произведений единичных операторов I с I_k на i-м месте.

Однокубитные операции

Физическая реализация операций над кубитами происходит, как было сказано выше, с помощью слабого поперечного магнитного поля B_1 . Рассмотрим это на примере оператора поворота вокруг оси Ox на угол $\pi/2$:

$$X = e^{-i\frac{\pi}{2}I_x}. (13)$$

Эволюция кубита описывается оператором

$$U = e^{-i\int_0^\tau \tilde{H}dt},\tag{14}$$

где τ — время эволюции. Подберём параметры управляющего магнитного поля, приравняв два этих выражения. В результате получим, что данный оператор поворота обеспечивается импульсом с фазой $\varphi=0$ и ларморовской частотой и длительностью $\omega_1\tau=\pi/2$.

Двухкубитные операции

Заметим, что выполнение однокубитных операций оказывается на порядки быстрее двухкубитных. Так, длительность управляющих импульсов для реализации однокубитной операции составляет в среднем 10 мкс ($\tau \ll 1/J$), а для реализации двухкубитной операции – 10 мс ($\tau \sim 1/J$). В рамках теоретического описания это означает, что эволюцией многокубитной системы под действием межкубитного взаимодействия можно пренебречь на время выполнения однокубитных операций.

Отдельную сложность представляет реализация одно- и двухкубитных операций на квантовом регистре, состоящем из трёх и более кубитов: взаимодействие между кубитами делает прямое применений таких операций невозможным. Однако можно подобрать такую последовательность вспомогательных импульсов управляющего магнитного поля, которая сможет компенсировать этот эффект. Эта процедура называется decoupling.

Измерения

Квантовый компьютер рассматриваемого вида интересен тем, что измерения в нём не относятся к проективному типу. Система, как было сказано выше, находится в смешанном состоянии, а измерения носят статистический характер (ансамбль измерений).

Пусть матрица плотности однокубитной системы во вращающейся системе отсчёта после ряда проделанных вычислений имеет вид

$$\tilde{\rho}_1 = \frac{1}{2}I + c_x I_x + c_y I_y + c_z I_z. \tag{15}$$

Для полного определения состояния системы необходимо найти коэффициенты c_i . Это можно сделать, измеряя проекцию магнитного момента

$$M_x(t) \propto \text{Tr}\left[I_x \rho_1\right] = \frac{1}{2} \left(c_x \cos(\omega_0 t) + c_y \sin(\omega_0 t)\right). \tag{16}$$

В приведённом выражении учтено, что измерительные приборы зафиксированы в лабораторной системе отсчёта. Видно, что единичного измерения недостаточно для того, чтобы полностью определить состояние системы. Чтобы это восполнить, можно подействовать на кубит дополнительным управляющим импульсом, а затем снова измерить величину $M_x(t)$. Такое восстановление искомого состояния системы путём сопоставления результатов нескольких отдельных измерений называется квантовой томографией. В случае однокубитной системы необходимо два измерения для полного восстановления матрицы плотности.

В действительности проекция магнитного момента системы $M_x(t)$ может деградировать (например, из-за неоднородностей внешнего магнитного поля \vec{B}_0). Этот процесс можно приближённо описать введением соответствующего сомножителя:

$$M_x(t) \propto e^{-t/T} \left(c_x \cos \omega_0 t + c_y \sin \omega_0 t \right) = A e^{-t/T} \cos(\omega_0 t + \alpha),$$
 (17)

где A и α определяются через коэффициенты c_x , c_y , а T – постоянная размерности времени, характеризующая скорость деградации магнитного момента $M_x(t)$.