Package 'explore'

September 2, 2024

```
Title Simplifies Exploratory Data Analysis
Version 1.3.2
Description Interactive data exploration with one line of code, automated
     reporting or use an easy to remember set of tidy functions for low
     code exploratory data analysis.
License MIT + file LICENSE
URL https://rolkra.github.io/explore/,
     https://github.com/rolkra/explore
BugReports https://github.com/rolkra/explore/issues
Depends R (>= 3.5.0)
Imports cli, dplyr (>= 1.1.0), DT (>= 0.3.0), forcats (>= 1.0.0),
     ggplot2 (>= 3.4.0), grDevices, gridExtra, magrittr,
     palmerpenguins, plotly, rlang (>= 1.1.0), rmarkdown, rpart,
     rpart.plot, shiny, stats, stringr, tibble
Suggests knitr, MASS, randomForest, xgboost, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation no
Author Roland Krasser [aut, cre]
Maintainer Roland Krasser < roland.krasser@gmail.com>
Repository CRAN
Date/Publication 2024-09-02 06:40:02 UTC
```

Type Package

2 Contents

Contents

abtest	4
_ ,	5
abtest_targetnum	5
abtest_targetpct	6
	7
add_var_random_01	8
	8
add_var_random_dbl	9
	0
	1
= = = &	2
= 8	3
	3
	4
-1	5
	5
create_data_app	6
create_data_buy	7
create_data_churn	8
1 2	9
	0
create_data_newsletter	1
create_data_person	1
create_data_random	2
create_data_unfair	3
create_notebook_explore	4
cut_vec_num_avg	4
data_dict_md	5
decrypt	6
describe	6
describe_all	7
describe_cat	8
describe_num	8
describe_tbl	9
drop_obs_if	0
drop_obs_with_na	0
drop_var_by_names	1
drop_var_low_variance	1
drop_var_not_numeric	2
drop_var_no_variance	2
drop_var_with_na	3
encrypt	3
explain_forest	4
explain_logreg	5
explain_tree	5
explain_xgboost	7

Contents 3

explore	38
explore_all	39
explore_bar	40
explore_cor	41
explore_count	42
explore_density	43
explore_shiny	44
explore_targetpct	45
explore_tbl	46
format_num_auto	46
format_num_kMB	47
format_num_space	47
format_target	48
format_type	48
get_color	49
get_type	49
get_var_buckets	5 0
guess_cat_num	51
interact	51
log_info_if	5 2
mix_color	52
plot_legend_targetpct	5 3
plot_text	53
plot_var_info	54
predict_target	54
replace_na_with	55
report	56
rescale01	56
show_color	
simplify_text	57
target_explore_cat	
target_explore_num	59
total_fig_height	60
use_data_beer	61
use_data_diamonds	61
use_data_iris	62
use_data_mpg	62
use_data_mtcars	63
use_data_penguins	63
use_data_starwars	64
	64
weight_target	65

66

Index

4 abtest

abtest	A/B testing	

Description

A/B testing

Usage

```
abtest(data, expr, n, target, sign_level = 0.05, color = "grey")
```

Arguments

data	A dataset. If no data is provided, a shiny app is launched
expr	Logical expression, that return in a FALSE/TRUE
n	A Variable for number of observations (count data)
target	Target variable
sign_level	Significance Level (typical 0.01/0.05/0.10)
color	Fill color of bar/violin-plot

Value

Plot that shows if difference is significant

```
## Using chi2-test or t-test depending on target type
data <- create_data_buy(obs = 100)
abtest(data, female_ind == 1, target = buy)  # chi2 test
abtest(data, city_ind == 1, target = age)  # t test

## If small number of observations, Fisher's Exact test
## is used for a binary target (if <= 5 observations in a subgroup)
data <- create_data_buy(obs = 25, seed = 1)
abtest(data, female_ind == 1, target = buy)  # Fisher's Exact test</pre>
```

abtest_shiny 5

abtest_shiny

A/B testing interactive

Description

Launches a shiny app to A/B test

Usage

```
abtest_shiny(
    size_a = 100,
    size_b = 100,
    success_a = 10,
    success_b = 20,
    success_unit = "percent",
    sign_level = 0.05
)
```

Arguments

```
size_a Size of Group A
size_b Size of Group B
success_a Success of Group A
success_b Success of Group B
success_unit "count" | "percent"
sign_level Significance Level (typical 0.01/0.05/0.10)
```

Examples

```
# Only run examples in interactive R sessions
if (interactive()) {
   abtest_shiny()
}
```

abtest_targetnum

A/B testing comparing two mean

Description

A/B testing comparing two mean

Usage

```
abtest_targetnum(data, expr, target, sign_level = 0.05, color = "grey")
```

6 abtest_targetpct

Arguments

data A dataset

expr Expression, that results in a FALSE/TRUE

target Target variable (must be numeric)

sign_level Significance Level (typical 0.01/0.05/0.10)

color fill color

Value

Plot that shows if difference is significant

Examples

```
data <- create_data_buy(obs = 100)
abtest(data, city_ind == 1, target = age)</pre>
```

abtest_targetpct

A/B testing comparing percent per group

Description

A/B testing comparing percent per group

Usage

```
abtest_targetpct(
  data,
  expr,
  n,
  target,
  sign_level = 0.05,
  group_label,
  ab_label = FALSE,
  color = "grey"
)
```

Arguments

data A dataset

expr Expression, that results in a FALSE/TRUE

n A Variable for number of observations (count data) target Target variable (must be 0/1 or FALSE/TRUE) sign_level Significance Level (typical 0.01/0.05/0.10)

group_label Label of groups (default = expr)

ab_label Label Groups as A and B (default = FALSE)

color color of bar

add_var_id 7

Value

Plot that shows if difference is significant

Examples

```
data <- create_data_buy(obs = 100)
abtest(data, female_ind == 1, target = buy)
abtest(data, age >= 40, target = buy)
```

add_var_id

Add a variable id at first column in dataset

Description

Add a variable id at first column in dataset

Usage

```
add_var_id(data, name = "id", overwrite = FALSE)
```

Arguments

data A dataset

name Name of new variable (as string)

overwrite Can new id variable overwrite an existing variable in dataset?

Value

Data set containing new id variable

```
library(magrittr)
iris %>% add_var_id() %>% head()
iris %>% add_var_id(name = "iris_nr") %>% head()
```

8 add_var_random_cat

add_var_random_01

Add a random 0/1 variable to dataset

Description

Add a random 0/1 variable to dataset

Usage

```
add_var_random_01(
  data,
  name = "random_01",
  prob = c(0.5, 0.5),
  overwrite = TRUE,
  seed
)
```

Arguments

data A dataset

name Name of new variable (as string)

prob Vector of probabilities

overwrite Can new random variable overwrite an existing variable in dataset?

seed Seed for random number generation (integer)

Value

Dataset containing new random variable

Examples

```
library(magrittr)
iris %>% add_var_random_01() %>% head()
iris %>% add_var_random_01(name = "my_var") %>% head()
```

add_var_random_cat

Add a random categorical variable to dataset

Description

Add a random categorical variable to dataset

add_var_random_dbl 9

Usage

```
add_var_random_cat(
  data,
  name = "random_cat",
  cat = LETTERS[1:6],
  prob,
  overwrite = TRUE,
  seed
)
```

Arguments

data A dataset

name Name of new variable (as string)

cat Vector of categories
prob Vector of probabilities

overwrite Can new random variable overwrite an existing variable in dataset?

seed Seed for random number generation (integer)

Value

Dataset containing new random variable

Examples

```
library(magrittr)
iris %>% add_var_random_cat() %>% head()
iris %>% add_var_random_cat(name = "my_cat") %>% head()
iris %>% add_var_random_cat(cat = c("Version A", "Version B")) %>% head()
iris %>% add_var_random_cat(cat = c(1,2,3,4,5)) %>% head()
```

add_var_random_dbl

Add a random double variable to dataset

Description

Add a random double variable to dataset

Usage

```
add_var_random_dbl(
  data,
  name = "random_dbl",
  min_val = 0,
  max_val = 100,
  overwrite = TRUE,
  seed
)
```

10 add_var_random_int

Arguments

max_val

A dataset data Name of new variable (as string) name Minimum random integers min_val

Can new random variable overwrite an existing variable in dataset? overwrite

Seed for random number generation (integer) seed

Maximum random integers

Value

Dataset containing new random variable

Examples

```
library(magrittr)
iris %>% add_var_random_dbl() %>% head()
iris %>% add_var_random_dbl(name = "random_var") %>% head()
iris %>% add_var_random_dbl(min_val = 1, max_val = 10) %>% head()
```

add_var_random_int

Add a random integer variable to dataset

Description

Add a random integer variable to dataset

Usage

```
add_var_random_int(
  data,
  name = "random_int",
 min_val = 1,
 max_val = 10,
 overwrite = TRUE,
  seed
)
```

Arguments

data	A dataset
name	Name of new variable (as string)
min_val	Minimum random integers
max_val	Maximum random integers

Can new random variable overwrite an existing variable in dataset? overwrite

Seed for random number generation (integer) seed

add_var_random_moon 11

Value

Dataset containing new random variable

Examples

```
library(magrittr)
iris %>% add_var_random_int() %>% head()
iris %>% add_var_random_int(name = "random_var") %>% head()
iris %>% add_var_random_int(min_val = 1, max_val = 10) %>% head()
```

add_var_random_moon

Add a random moon variable to dataset

Description

Add a random moon variable to dataset

Usage

```
add_var_random_moon(data, name = "random_moon", overwrite = TRUE, seed)
```

Arguments

data A dataset

name Name of new variable (as string)

overwrite Can new random variable overwrite an existing variable in dataset?

seed Seed for random number generation (integer)

Value

Dataset containing new random variable

```
library(magrittr)
iris %>% add_var_random_moon() %>% head()
```

```
add_var_random_starsign
```

Add a random starsign variable to dataset

Description

Add a random starsign variable to dataset

Usage

```
add_var_random_starsign(
  data,
  name = "random_starsign",
  lang = "en",
  overwrite = TRUE,
  seed
)
```

Arguments

data	A dataset
name	Name of new variable (as string)
lang	Language used for starsign (en = English, de = Deutsch, es = Espanol)
overwrite	Can new random variable overwrite an existing variable in dataset?
seed	Seed for random number generation (integer)

Value

Dataset containing new random variable

```
library(magrittr)
iris %>% add_var_random_starsign() %>% head()
iris %>% add_var_random_starsign(lang = "de") %>% head()
```

balance_target 13

balance_t	target	Balance ta	rget variable

Description

Balances the target variable in your dataset using downsampling. Target must be 0/1, FALSE/TRUE ore no/yes

Usage

```
balance_target(data, target, min_prop = 0.1, seed)
```

Arguments

data A dataset

target Variable (0/1, TRUE/FALSE, yes/no)

min_prop Minimum proportion of one of the target categories

seed Seed for random number generator

Value

Data

Examples

```
iris$is_versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
balanced <- balance_target(iris, target = is_versicolor, min_prop = 0.5)
describe(balanced, is_versicolor)</pre>
```

```
check_vec_low_variance
```

Check vector for low variance

Description

Check vector for low variance

Usage

```
check_vec_low_variance(values, max_prop = 0.99)
```

Arguments

values Vector of values

max_prop Maximum proportion of values without variance

14 clean_var

Value

```
TRUE/FALSE (low variance)
```

Examples

```
## Not run:
values <- c(1, rep(0 ,1000))
check_vec_low_variance(values, max_prop = 0.9)
## End(Not run)</pre>
```

clean_var

Clean variable

Description

Clean variable (replace NA values, set min_val and max_val)

Usage

```
clean_var(
  data,
  var,
  na = NA,
  min_val = NA,
  max_val = NA,
  max_cat = NA,
  rescale01 = FALSE,
  simplify_text = FALSE,
  name = NA
)
```

Arguments

```
data
                  A dataset
                  Name of variable
var
                  Value that replaces NA
na
                  All values < min_val are converted to min_val (var numeric or character)
min_val
                  All values > max_val are converted to max_val (var numeric or character)
max_val
                  Maximum number of different factor levels for categorical variable (if more,
max_cat
                  .OTHER is added)
rescale01
                  IF TRUE, value is rescaled between 0 and 1 (var must be numeric)
                  If TRUE, a character variable is simplified (trim, upper, ...)
simplify_text
                  New name of variable (as string)
name
```

count_pct 15

Value

Dataset

Examples

```
library(magrittr)
iris %>% clean_var(Sepal.Width, max_val = 3.5, name = "sepal_width") %>% head()
iris %>% clean_var(Sepal.Width, rescale01 = TRUE) %>% head()
```

count_pct

Adds percentage to dplyr::count()

Description

Adds variables total and pct (percentage) to dplyr::count()

Usage

```
count_pct(data, ...)
```

Arguments

data A dataset

... Other parameters passed to count()

Value

Dataset

Examples

```
count_pct(iris, Species)
```

create_data_abtest

Create data of A/B testing

Description

Data that can be used for unit-testing or teaching

create_data_app

Usage

```
create_data_abtest(
  n_a = 100,
  n_b = 100,
  success_a = 10,
  success_b = 5,
  success_unit = "count",
  count = TRUE
)
```

Arguments

n_a	Total size of group A
n_b	Total size of group B
success_a	Success in group A
success_b	Success in group B
success_unit	Unit ("count" "percent")
count	Create as count-data (FALSE TRUE)

Value

A dataset as tibble

Examples

```
library(dplyr)
create_data_abtest() %>% abtest()
create_data_abtest(
    n_a = 100,
    n_b = 100,
    success_a = 20,
    success_b = 30,
    success_unit = "count"
) %>% abtest()
```

create_data_app

Create data app

Description

Artificial data that can be used for unit-testing or teaching

Usage

```
create_data_app(obs = 1000, add_id = FALSE, seed = 123)
```

create_data_buy 17

Arguments

obs Number of observations
add_id Add an id-variable to data?
seed Seed for randomization (integer)

Value

A dataset as tibble

Examples

```
create_data_app()
```

create_data_buy

Create data buy

Description

Artificial data that can be used for unit-testing or teaching

Usage

```
create_data_buy(
  obs = 1000,
  target_name = "buy",
  factorise_target = FALSE,
  target1_prob = 0.5,
  add_extreme = TRUE,
  flip_gender = FALSE,
  add_id = FALSE,
  seed = 123
)
```

Arguments

obs Number of observations target_name Variable name of target factorise_target

Should target variable be factorised? (from 0/1 to factor no/yes)?

target1_prob Probability that target = 1

add_extreme Add an observation with extreme values?

flip_gender Should Male/Female be flipped in data?

add_id Add an id-variable to data?
seed Seed for randomization

18 create_data_churn

Details

Variables in dataset:

- id = Identifier
- period = Year & Month (YYYYMM)
- city_ind = Indicating if customer is residing in a city (1 = yes, 0 = no)
- female_ind = Gender of customer is female (1 = yes, 0 = no)
- fixedvoice_ind = Customer has a fixed voice product (1 = yes, 0 = no)
- fixeddata_ind = Customer has a fixed data product (1 = yes, 0 = no)
- fixedty ind = Customer has a fixed TV product (1 = yes, 0 = no)
- mobilevoice_ind = Customer has a mobile voice product (1 = yes, 0 = no)
- mobiledata_prd = Customer has a mobile data product (NO/MOBILE STICK/BUSINESS)
- bbi_speed_ind = Customer has a Broadband Internet (BBI) with extra speed
- bbi_usg_gb = Broadband Internet (BBI) usage in Gigabyte (GB) last month
- hh_single = Expected to be a Single Household (1 = yes, 0 = no)

Target in dataset:

• buy (may be renamed) = Did customer buy a new product in next month? (1 = yes, 0 = no)

Value

A dataset as tibble

Examples

```
create_data_buy()
```

create_data_churn

Create data churn

Description

Artificial data that can be used for unit-testing or teaching

Usage

```
create_data_churn(
  obs = 1000,
  target_name = "churn",
  factorise_target = FALSE,
  target1_prob = 0.4,
  add_id = FALSE,
  seed = 123
)
```

create_data_empty 19

Arguments

obs Number of observations target_name Variable name of target

factorise_target

Should target variable be factorised?

target1_prob Probability that target = 1
add_id Add an id-variable to data?

seed Seed for randomization (integer)

Value

A dataset as tibble

Examples

```
create_data_churn()
```

create_data_empty

Create an empty dataset

Description

Create an empty dataset

Usage

```
create_data_empty(obs = 1000, add_id = FALSE)
```

Arguments

obs Number of observations

add_id Add an id

Value

Dataset as tibble

```
create_data_empty(obs = 100)
create_data_empty(obs = 100, add_id = TRUE)
```

20 create_data_esoteric

create_data_esoteric Create data esoteric

Description

Random data that can be used for unit-testing or teaching

Usage

```
create_data_esoteric(obs = 1000, add_id = FALSE, seed = 123)
```

Arguments

obs Number of observations
add_id Add an id-variable to data?
seed Seed for randomization

Details

Variables in dataset:

- id = Identifier
- starsign = random starsign
- chinese = random chinese zodiac
- moon = random moon phase
- blood = random blood type
- fingers_crossed = random fingers crossed (1 = yes, 0 = no)
- success = random success (1 = yes, 0 = no)

Value

A dataset as tibble

```
create_data_esoteric(obs = 100)
```

create_data_newsletter 21

```
create_data_newsletter
```

Create data newsletter

Description

Artificial data that can be used for unit-testing or teaching (fairness & AI bias)

Usage

```
create_data_newsletter(obs = 1000, add_id = FALSE, seed = 123)
```

Arguments

obs Number of observations
add_id Add an id-variable to data?
seed Seed for randomization (integer)

Value

A dataset as tibble

Examples

```
create_data_newsletter()
```

create_data_person

Create data person

Description

Artificial data that can be used for unit-testing or teaching

Usage

```
create_data_person(obs = 1000, add_id = FALSE, seed = 123)
```

Arguments

obs Number of observations

add_id Add an id

seed Seed for randomization (integer)

Value

A dataset as tibble

22 create_data_random

Examples

```
create_data_person()
```

create_data_random

Create data random

Description

Random data that can be used for unit-testing or teaching

Usage

```
create_data_random(
  obs = 1000,
  vars = 10,
  target_name = "target_ind",
  factorise_target = FALSE,
  target1_prob = 0.5,
  add_id = TRUE,
  seed = 123
)
```

Arguments

Seed for randomization

Details

add_id seed

Variables in dataset:

- id = Identifier
- var_X = variable containing values between 0 and 100

Target in dataset:

• target_ind (may be renamed) = random values (1 = yes, 0 = no)

Value

A dataset as tibble

create_data_unfair 23

Examples

```
create_data_random(obs = 100, vars = 5)
```

create_data_unfair

Create data unfair

Description

Artificial data that can be used for unit-testing or teaching (fairness & AI bias)

Usage

```
create_data_unfair(
  obs = 1000,
  target_name = "target_ind",
  factorise_target = FALSE,
  target1_prob = 0.25,
  add_id = FALSE,
  seed = 123
)
```

Arguments

Seed for randomization (integer)

Value

seed

A dataset as tibble

```
create_data_unfair()
```

24 cut_vec_num_avg

create_notebook_explore

Generate a notebook

Description

Generate an RMarkdown Notebook template for a report. You must provide a output-directory (parameter output_dir). The default file-name is "notebook-explore.Rmd" (may overwrite existing file with same name)

Usage

```
create_notebook_explore(output_file = "notebook-explore.Rmd", output_dir)
```

Arguments

output_file Filename of the html report

output_dir Directory where to save the html report

Examples

```
create_notebook_explore(output_file = "explore.Rmd", output_dir = tempdir())
```

cut_vec_num_avg

Cut a variable

Description

Cut a variable

Usage

```
cut_vec_num_avg(values, bins = 8)
```

Arguments

values Variable

bins Number of bins

Value

Data frame

data_dict_md 25

data_dict_md Create a data dictionary Markdown file	
---	--

Description

Create a data dictionary Markdown file

Usage

```
data_dict_md(
  data,
  title = "",
  description = NA,
  output_file = "data_dict.md",
  output_dir
)
```

Arguments

data A dataframe (data dictionary for all variables)
title Title of the data dictionary

description Detailed description of variables in data (dataframe with columns 'variable' and

'description')

output_file Output filename for Markdown file

output_dir Directory where the Markdown file is saved

Value

Create Markdown file

26 describe

decrypt

decrypt text

Description

decrypt text

Usage

```
decrypt(text, codeletters = c(toupper(letters), letters, 0:9), shift = 18)
```

Arguments

text A text (character)

codeletters A string of letters that are used for decryption

shift Number of elements shifted

Value

Decrypted text

Examples

```
decrypt("zw336 E693v")
```

describe

Describe a dataset or variable

Description

Describe a dataset or variable (depending on input parameters)

Usage

```
describe(data, var, n, target, out = "text", ...)
```

Arguments

\ dataset
١ (

var A variable of the dataset

n Weights variable for count-data

target Target variable (0/1 or FALSE/TRUE)

out Output format ("text"|"list") of variable description

... Further arguments

describe_all 27

Value

Description as table, text or list

Examples

```
# Load package
library(magrittr)

# Describe a dataset
iris %>% describe()

# Describe a variable
iris %>% describe(Species)
iris %>% describe(Sepal.Length)
```

describe_all

Describe all variables of a dataset

Description

Describe all variables of a dataset

Usage

```
describe_all(data, out = "large")
```

Arguments

data A dataset

out Output format ("small"|"large")

Value

Dataset (tibble)

```
describe_all(iris)
```

28 describe_num

describe_	cat
UCSCI IDC	_Cat

Describe categorical variable

Description

Describe categorical variable

Usage

```
describe_cat(data, var, n, max_cat = 10, out = "text", margin = 0)
```

Arguments

data	A datasat
data	A dataset

var Variable or variable name
n Weights variable for count-data

max_cat Maximum number of categories displayed
out Output format ("text"|"list"|"tibble"|"df")
margin Left margin for text output (number of spaces)

Value

Description as text or list

Examples

```
describe_cat(iris, Species)
```

describe_num

Describe numerical variable

Description

Describe numerical variable

Usage

```
describe_num(data, var, n, out = "text", margin = 0)
```

Arguments

data A o	dataset
----------	---------

var Variable or variable name

n Weights variable for count-data
out Output format ("text"|"list")

margin Left margin for text output (number of spaces)

describe_tbl 29

Value

Description as text or list

Examples

```
describe_num(iris, Sepal.Length)
```

describe_tbl

Describe table

Description

Describe table (e.g. number of rows and columns of dataset)

Usage

```
describe_tbl(data, n, target, out = "text")
```

Arguments

data A dataset

n Weights variable for count-data

target Target variable (binary)

out Output format ("text"|"list")

Value

Description as text or list

```
describe_tbl(iris)
iris[1,1] <- NA
describe_tbl(iris)</pre>
```

30 drop_obs_with_na

drop_obs_if

Drop all observations where expression is true

Description

Drop all observations where expression is true

Usage

```
drop_obs_if(data, expr)
```

Arguments

data Data frame expr Expression

Value

Data frame

Examples

```
drop_obs_if(iris, Species == "setosa")
drop_obs_if(iris, Sepal.Length < 5 | Sepal.Length >7)
```

drop_obs_with_na

Drop all observations with NA-values

Description

Drop all observations with NA-values

Usage

```
drop_obs_with_na(data)
```

Arguments

data

Data frame

Value

Data frame

```
data <- data.frame(a = 1:10, b = rep("A",10))
data[1,1] <- NA
drop_obs_with_na(data)</pre>
```

drop_var_by_names 31

drop_var_by_names

Drop variables by name

Description

Drop variables by name

Usage

```
drop_var_by_names(data, var_names)
```

Arguments

data Data frame

var_names Vector of variable names (as string)

Value

Data frame

Examples

```
drop_var_by_names(iris, "Species")
drop_var_by_names(iris, c("Sepal.Length", "Sepal.Width"))
```

drop_var_low_variance Drop all variables with low variance

Description

Drop all variables with low variance

Usage

```
drop_var_low_variance(data, max_prop = 0.99)
```

Arguments

data Data frame

max_prop Maximum proportion of values without variance

Value

Data frame

32 drop_var_no_variance

Examples

```
data <- data.frame(a = 1:100, b = c(0, rep(1, 99)))
drop_var_low_variance(data, max_prop = 0.9)
```

 $drop_var_not_numeric$ Drop all not numeric variables

Description

Drop all not numeric variables

Usage

```
drop_var_not_numeric(data)
```

Arguments

data

Data frame

Value

Data frame

Examples

```
data <- data.frame(a = 1:10, b = rep("A",10))</pre>
drop_var_not_numeric(data)
```

 ${\tt drop_var_no_variance} \quad \textit{Drop all variables with no variance}$

Description

Drop all variables with no variance

Usage

```
drop_var_no_variance(data)
```

Arguments

data

Data frame

Value

Data frame

drop_var_with_na 33

Examples

```
data <- data.frame(a = 1:10, b = rep(1,10))
drop_var_no_variance(data)</pre>
```

drop_var_with_na

Drop all variables with NA-values

Description

Drop all variables with NA-values

Usage

```
drop_var_with_na(data)
```

Arguments

data

Data frame

Value

Data frame

Examples

```
data <- data.frame(a = 1:10, b = rep(NA,10))
drop_var_with_na(data)</pre>
```

encrypt

encrypt text

Description

encrypt text

Usage

```
encrypt(text, codeletters = c(toupper(letters), letters, 0:9), shift = 18)
```

Arguments

text A text (character)

codeletters A string of letters that are used for encryption

shift Number of elements shifted

34 explain_forest

Value

Encrypted text

Examples

```
encrypt("hello world")
```

explain_forest

Explain a target using Random Forest.

Description

Explain a target using Random Forest.

Usage

```
explain_forest(data, target, ntree = 50, out = "plot", ...)
```

Arguments

data A dataset

target Target variable (binary)

ntree Number of trees used for Random Forest

out Output of the function: "plot" | "model" | "importance" | all"

... Further arguments

Value

Plot of importance (if out = "plot")

```
data <- create_data_buy()
explain_forest(data, target = buy)</pre>
```

explain_logreg 35

explain_logreg	Explain a binary target using a logistic regression (glm). Model chosen by AIC in a Stepwise Algorithm (MASS::stepAIC()).

Description

Explain a binary target using a logistic regression (glm). Model chosen by AIC in a Stepwise Algorithm (MASS::stepAIC()).

Usage

```
explain_logreg(data, target, out = "tibble", ...)
```

Arguments

data	A dataset
target	Target variable (binary)
out	Output of the function: "tibble" "model"
	Further arguments

Value

Dataset with results (term, estimate, std.error, z.value, p.value)

Examples

```
data <- iris
data$is_versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
data$Species <- NULL
explain_logreg(data, target = is_versicolor)</pre>
```

explain_tree Explain a target using a simple decision tree (classification or regression)

Description

Explain a target using a simple decision tree (classification or regression)

36 explain_tree

Usage

```
explain_tree(
  data,
  target,
  n,
  max_cat = 10,
  max_target_cat = 5,
  maxdepth = 3,
  minsplit = 20,
  cp = 0,
  weights = NA,
  size = 0.7,
  out = "plot",
  ...
)
```

Arguments

data	A dataset
target	Target variable
n	weights variable (for count data)
max_cat	Drop categorical variables with higher number of levels
max_target_cat	Maximum number of categories to be plotted for target (except NA)
maxdepth	Set the maximum depth of any node of the final tree, with the root node counted as depth 0. Values greater than 30 rpart will give nonsense results on 32-bit machines.
minsplit	the minimum number of observations that must exist in a node in order for a split to be attempted.
ср	complexity parameter. Any split that does not decrease the overall lack of fit by a factor of cp is not attempted. For instance, with anova splitting, this means that the overall R-squared must increase by cp at each step. The main role of this parameter is to save computing time by pruning off splits that are obviously not worthwhile. Essentially,the user informs the program that any split which does not improve the fit by cp will likely be pruned off by cross-validation, and that hence the program need not pursue it.
weights	optional case weights.
size	Text size of plot

Value

out

. . .

Plot or additional the model (if out = "model")

Further arguments

Output of function: "plot" | "model"

explain_xgboost 37

Examples

```
data <- iris
data$is_versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
data$Species <- NULL
explain_tree(data, target = is_versicolor)</pre>
```

explain_xgboost

Explain a binary target using xgboost

Description

Based on the hyperparameters defined in the setup parameter, XGBoost hyperparameter-tuning is carried out using cross-validation. The best model is chosen and returned. As default, the function returns the feature-importance plot. To get the all outputs, use parameter out = "all"

Usage

Arguments

data	Data frame, must contain variable defined in target, but should not contain any customer-IDs or date/period columns
target	Target variable (must be binary 0/1, FALSE/TRUE, no/yes)
log	Log?
nthread	Number of threads used for training
setup	Setup of model
out	Output of the function: "plot" "model" "importance" all"

Value

```
Plot of importance (if out = "plot")
```

```
data <- use_data_iris()
data$is_versicolor <- ifelse(data$Species == "versicolor", 1, 0)
data$Species <- NULL
explain_xgboost(data, target = is_versicolor, log = FALSE)</pre>
```

38 explore

explore

Explore a dataset or variable

Description

Explore a dataset or variable

Usage

```
explore(
  data,
  var,
  var2,
  n,
  target,
  targetpct,
  split,
  min_val = NA,
  max_val = NA,
  auto_scale = TRUE,
  na = NA,
  ...
)
```

Arguments

data	A dataset
var	A variable
var2	A variable for checking correlation
n	A Variable for number of observations (count data)
target	Target variable (0/1 or FALSE/TRUE)
targetpct	Plot variable as target% (FALSE/TRUE)
split	Alternative to targetpct (split = !targetpct)
min_val	All values < min_val are converted to min_val
max_val	All values > max_val are converted to max_val
auto_scale	Use 0.2 and 0.98 quantile for \min_val and \max_val (if \min_val and \max_val are not defined)
na	Value to replace NA
	Further arguments (like flip = TRUE/FALSE)

Value

Plot object

explore_all 39

Examples

```
## Launch Shiny app (in interactive R sessions)
if (interactive()) {
   explore(iris)
## Explore grafically
# Load library
library(magrittr)
# Explore a variable
iris %>% explore(Species)
iris %>% explore(Sepal.Length)
iris %>% explore(Sepal.Length, min_val = 4, max_val = 7)
# Explore a variable with a target
iris$is_virginica <- ifelse(iris$Species == "virginica", 1, 0)</pre>
iris %>% explore(Species, target = is_virginica)
iris %>% explore(Sepal.Length, target = is_virginica)
# Explore correlation between two variables
iris %>% explore(Species, Petal.Length)
iris %>% explore(Sepal.Length, Petal.Length)
# Explore correlation between two variables and split by target
iris %>% explore(Sepal.Length, Petal.Length, target = is_virginica)
```

explore_all

Explore all variables

Description

Explore all variables of a dataset (create plots)

```
explore_all(
  data,
  n,
  target,
  ncol = 2,
  targetpct,
  color = c("#ADD8E6", "#7BB8DA"),
  split = TRUE
)
```

40 explore_bar

Arguments

data A dataset

n Weights variable (only for count data)

target Target variable (0/1 or FALSE/TRUE)

ncol Layout of plots (number of columns)

targetpct Plot variable as target% (FALSE/TRUE)

color Forece a default color (if possible)

split Split by target (TRUEIFALSE)

Value

Plot

Examples

```
explore_all(iris)
iris$is_virginica <- ifelse(iris$Species == "virginica", 1, 0)
explore_all(iris, target = is_virginica)</pre>
```

explore_bar

Explore categorical variable using bar charts

Description

Create a barplot to explore a categorical variable. If a target is selected, the barplot is created for all levels of the target.

```
explore_bar(
  data,
  var,
  target,
  flip = NA,
  title = "",
  numeric = NA,
  max_cat = 30,
  max_target_cat = 5,
  color = c("#ADD8E6", "#7BB8DA"),
  legend_position = "right",
  label,
  label_size = 2.7,
  ...
)
```

explore_cor 41

Arguments

data A dataset variable var target (can have more than 2 levels) target Should plot be flipped? (change of x and y) flip Title of the plot (if empty var name) title numeric Display variable as numeric (not category) Maximum number of categories to be plotted max_cat max_target_cat Maximum number of categories to be plotted for target (except NA) Color for bar color legend_position Position of the legend ("bottom"|"top"|"none") label Show labels? (if empty, automatic) label_size Size of labels

Value

Plot object (bar chart)

explore_cor

Explore the correlation between two variables

Description

Explore the correlation between two variables

Further arguments

```
explore_cor(
  data,
  x,
  y,
  target,
  bins = 8,
  min_val = NA,
  max_val = NA,
  auto_scale = TRUE,
  title = NA,
  color = c("#ADD8E6", "#7BB8DA"),
  ...
)
```

42 explore_count

Arguments

data	A dataset
Х	Variable on x axis
У	Variable on y axis
target	Target variable (categorical)
bins	Number of bins
min_val	All values < min_val are converted to min_val
max_val	All values > max_val are converted to max_val
auto_scale	Use 0.2 and 0.98 quantile for min_val and max_val (if min_val and max_val are not defined) $$
title	Title of the plot
color	Color of the plot
• • •	Further arguments

Value

Plot

Examples

```
explore_cor(iris, x = Sepal.Length, y = Sepal.Width)
```

explore_count

Explore count data (categories + frequency)

Description

Create a plot to explore count data (categories + freuency) Variable named 'n' is auto detected as Frequency

```
explore_count(
  data,
  cat,
  n,
  target,
  pct = FALSE,
  split = TRUE,
  title = NA,
  numeric = FALSE,
  max_cat = 30,
  max_target_cat = 5,
  color = c("#ADD8E6", "#7BB8DA"),
  flip = NA
)
```

explore_density 43

Arguments

A dataset (categories + frequency) data cat Numerical variable n Number of observations (frequency) target Target variable Show as percent? pct Split by target (FALSE/TRUE) split title Title of the plot Display variable as numeric (not category) numeric Maximum number of categories to be plotted max_cat max_target_cat Maximum number of categories to be plotted for target (except NA) color Color for bar flip Flip plot? (for categorical variables)

Value

Plot object

Examples

```
library(dplyr)
iris %>%
  count(Species) %>%
  explore_count(Species)
```

explore_density

Explore density of variable

Description

Create a density plot to explore numerical variable

```
explore_density(
  data,
  var,
  target,
  title = "",
  min_val = NA,
  max_val = NA,
  color = c("#ADD8E6", "#7BB8DA"),
  auto_scale = TRUE,
  max_target_cat = 5,
  ...
)
```

44 explore_shiny

Arguments

data A dataset Variable var target Target variable (0/1 or FALSE/TRUE) title Title of the plot (if empty var name) min_val All values < min_val are converted to min_val All values > max_val are converted to max_val max_val color Color of plot auto_scale Use 0.02 and 0.98 percent quantile for min_val and max_val (if min_val and max_val are not defined) max_target_cat Maximum number of levels of target shown in the plot (except NA).

Value

Plot object (density plot)

Examples

```
explore_density(iris, "Sepal.Length")
iris$is_virginica <- ifelse(iris$Species == "virginica", 1, 0)
explore_density(iris, Sepal.Length, target = is_virginica)</pre>
```

Further arguments

explore_shiny

Explore dataset interactive

Description

Launches a shiny app to explore a dataset

Usage

```
explore_shiny(data, target, color = c("#ADD8E6", "#7BB8DA"))
```

Arguments

data A dataset

target Target variable (0/1 or FALSE/TRUE)

color Color for plots (vector)

```
# Only run examples in interactive R sessions
if (interactive()) {
   explore_shiny(iris)
}
```

explore_targetpct 45

Description

Create a plot to explore relation between a variable and a binary target as target percent. The target variable is choosen automatically if possible (name starts with 'target')

Usage

```
explore_targetpct(
  data,
  var,
  target = NULL,
  title = NA,
  min_val = NA,
  max_val = NA,
  auto_scale = TRUE,
  na = NA,
  flip = NA,
  ...
)
```

Arguments

data	A dataset
var	Numerical variable
target	Target variable (0/1 or FALSE/TRUE)
title	Title of the plot
min_val	All values < min_val are converted to min_val
max_val	All values > max_val are converted to max_val
auto_scale	Use 0.2 and 0.98 quantile for min_val and max_val (if min_val and max_val are not defined)
na	Value to replace NA
flip	Flip plot? (for categorical variables)
	Further arguments

Value

Plot object

```
iris$target01 <- ifelse(iris$Species == "versicolor",1,0)
explore_targetpct(iris)</pre>
```

46 format_num_auto

explore_tbl

Explore table

Description

Explore a table. Plots variable types, variables with no variance and variables with NA

Usage

```
explore_tbl(data, n)
```

Arguments

data

A dataset Weight variable for count data

Examples

```
explore_tbl(iris)
```

format_num_auto

Format number as character string (auto)

Description

Formats a number depending on the value as number with space, scientific or big number as k (1 000), M (1 000 000) or B (1 000 000 000)

Usage

```
format_num_auto(number = 0, digits = 1)
```

Arguments

number A number (integer or real)

digits Number of digits

Value

Formatted number as text

```
format_num_kMB(5500, digits = 2)
```

format_num_kMB 47

format_num_kMB

Format number as character string (kMB)

Description

Formats a big number as k (1 000), M (1 000 000) or B (1 000 000 000)

Usage

```
format_num_kMB(number = 0, digits = 1)
```

Arguments

number A number (integer or real)

digits Number of digits

Value

Formatted number as text

Examples

```
format_num_kMB(5500, digits = 2)
```

format_num_space

Format number as character string (space as big.mark)

Description

Formats a big number using space as big.mark (1000 = 1000)

Usage

```
format_num_space(number = 0, digits = 1)
```

Arguments

number A number (integer or real)

digits Number of digits

Value

Formatted number as text

```
format_num_space(5500, digits = 2)
```

48 format_type

format_target

Format target

Description

Formats a target as a 0/1 variable. If target is numeric, 1 = above average.

Usage

```
format_target(target)
```

Arguments

target

Variable as vector

Value

Formated target

Examples

```
iris$is_virginica <- ifelse(iris$Species == "virginica", "yes", "no")
iris$target <- format_target(iris$is_virginica)
table(iris$target)</pre>
```

format_type

Format type description

Description

Format type description of variable to 3 letters (intldblllgllchrldat)

Usage

```
format_type(type)
```

Arguments

type

Type description ("integer", "double", "logical", character", "date")

Value

Formatted type description (intldblllgllchrldat)

```
format_type(typeof(iris$Species))
```

get_color 49

get_color

Get predefined colors

Description

Get predefined colors

Usage

```
get_color(name, fill = FALSE, fill_color = "#DDDDDD", fill_n = 10)
```

Arguments

name Name of color/color-vector

fill Fill color vector?

fill_color Color to use to fill color vector

fill n Number of color codes to return

Value

Vector of color-codes

Examples

```
get_color("mario")
get_color("mario")
show_color(get_color("mario"))
show_color(get_color("mario", fill = TRUE, fill_n = 10))

col <- get_color("mario")
explore(iris, Sepal.Length, target = Species,
    color = col)
explore(iris, Sepal.Length, target = Species,
    color = c(col["peach"], col["bowser"], col["donkeykong"]))</pre>
```

get_type

Return type of variable

Description

Return value of typeof, except if variable contains hide, then return "other"

```
get_type(var)
```

get_var_buckets

Arguments

var

A vector (dataframe column)

Value

Value of typeof or "other"

Examples

```
get_type(iris$Species)
```

get_var_buckets

Put variables into "buckets" to create a set of plots instead one large plot

Description

Put variables into "buckets" to create a set of plots instead one large plot

Usage

```
get_var_buckets(data, bucket_size = 100, var_name_target = NA, var_name_n = NA)
```

Arguments

data A dataset

bucket_size Maximum number of variables in one bucket

var_name_target

Name of the target variable (if defined)

var_name_n Name of the weight (n) variable (if defined)

Value

Buckets as a list

```
get_var_buckets(iris)
get_var_buckets(iris, bucket_size = 2)
get_var_buckets(iris, bucket_size = 2, var_name_target = "Species")
```

guess_cat_num 51

guess_cat_num

Return if variable is categorical or numerical

Description

Guess if variable is categorical or numerical based on name, type and values of variable

Usage

```
guess_cat_num(var, descr)
```

Arguments

var A vector (dataframe column)

descr A description of the variable (optional)

Value

```
"cat" (categorical), "num" (numerical) or "oth" (other)
```

Examples

```
guess_cat_num(iris$Species)
```

interact

Make a explore-plot interactive

Description

Make a explore-plot interactive

Usage

```
interact(obj, lower_title = TRUE, hide_geom_text = TRUE)
```

Arguments

obj A object (e.g. ggplot2-object)

lower_title Lowering the title in ggplot2-object(FALSE/TRUE) hide_geom_text Hiding geom_text in ggplot2-object (FALSE/TRUE)

Value

Plot object

52 mix_color

Examples

```
library(dplyr)
if (interactive()) {
   iris %>% explore(Sepal.Length, target = Species) %>% interact()
}
```

log_info_if

Log conditional

Description

Log conditional

Usage

```
log_info_if(log = TRUE, text = "log")
```

Arguments

log (TRUEIFALSE) text text string to be logged

Value

prints log on screen (if log == TRUE).

mix_color

Mix colors

Description

Mix colors

Usage

```
mix\_color(color1, color2 = NA, n = 5)
```

Arguments

color1 Color 1 color2 Color 2

n Number of different colors that should be generated

Value

Vector of color-codes

plot_legend_targetpct 53

Examples

```
mix_color("blue", n = 10)
mix_color("gold", "red", n = 4)
```

plot_legend_targetpct Plots a legend that can be used for explore_all with a binary target

Description

Plots a legend that can be used for explore_all with a binary target

Usage

```
plot_legend_targetpct(border = TRUE)
```

Arguments

border

Draw a border?

Value

Base plot

Examples

```
plot_legend_targetpct(border = TRUE)
```

plot_text

Plot a text

Description

Plots a text (base plot) and let you choose text-size and color

Usage

```
plot_text(text = "hello world", size = 1.2, color = "black", ggplot = FALSE)
```

Arguments

text	Text as string
size	Text-size
color	Text-color
.	

ggplot return a ggplot-object? (or base plot)

54 predict_target

Value

Plot

Examples

```
plot_text("hello", size = 2, color = "red")
```

plot_var_info

Plot a variable info

Description

Creates a ggplot with the variable-name as title and a text

Usage

```
plot_var_info(data, var, info = "")
```

Arguments

data A dataset
var Variable
info Text to plot

Value

Plot (ggplot)

predict_target

Predict target using a trained model.

Description

Predict target using a trained model.

Usage

```
predict_target(data, model, name = "prediction")
```

Arguments

data A dataset (data.frame or tbl)

model A model created with explain_*() function

name Prefix of variable-name for prediction

replace_na_with 55

Value

data containing predicted probabilities for target values

Examples

```
data_train <- create_data_buy(seed = 1)
data_test <- create_data_buy(seed = 2)
model <- explain_tree(data_train, target = buy, out = "model")
data <- predict_target(data = data_test, model = model)
describe(data)</pre>
```

replace_na_with

Replace NA

Description

Replace NA values of a variable in a dataframe

Usage

```
replace_na_with(data, var_name, with)
```

Arguments

data A dataframe

var_name Name of variable where NAs are replaced

with Value instead of NA

Value

Updated dataframe

```
data <- data.frame(nr = c(1,2,3,NA,NA))
replace_na_with(data, "nr", 0)</pre>
```

56 rescale01

report

Generate a report of all variables

Description

Generate a report of all variables If target is defined, the relation to the target is reported

Usage

```
report(data, n, target, targetpct, split, color, output_file, output_dir)
```

Arguments

data	A dataset
n	Weights variable for count data
target	Target variable (0/1 or FALSE/TRUE)
targetpct	Plot variable as target% (FALSE/TRUE)
split	Alternative to targetpct (split = !targetpct)
color	User defined colors for plots (vector)
output_file	Filename of the html report
output_dir	Directory where to save the html report

Examples

```
if (rmarkdown::pandoc_available("1.12.3")) {
  report(iris, output_dir = tempdir())
}
```

rescale01

Rescales a numeric variable into values between 0 and 1

Description

Rescales a numeric variable into values between 0 and 1

Usage

```
rescale01(x)
```

Arguments

x numeric vector (to be rescaled)

show_color 57

Value

vector with values between 0 and 1

Examples

```
rescale01(0:10)
```

show_color

Show color vector as ggplot

Description

Show color vector as ggplot

Usage

```
show_color(color)
```

Arguments

color

Vector of colors

Value

ggplot

Examples

```
show_color("gold")
show_color(c("blue", "red", "green"))
```

simplify_text

Simplifies a text string

Description

A text string is converted into a simplified version by trimming, converting to upper case, replacing german Umlaute, dropping special characters like comma and semicolon and replacing multiple spaces with one space.

Usage

```
simplify_text(text)
```

Arguments

text

text string

58 target_explore_cat

Value

```
text string
```

Examples

```
simplify_text(" Hello World !, ")
```

target_explore_cat

Explore categorical variable + target

Description

Create a plot to explore relation between categorical variable and a binary target

Usage

```
target_explore_cat(
  data,
  var,
  target = "target_ind",
  min_val = NA,
  max_val = NA,
  flip = TRUE,
  num2char = TRUE,
  title = NA,
  auto_scale = TRUE,
  na = NA,
  max_cat = 25,
  color = c("#ECEFF1", "#CFD8DC", "#B0BEC5", "#90A4AE"),
  legend_position = "bottom"
)
```

Arguments

data	A dataset
var	Categorical variable
target	Target variable (0/1 or FALSE/TRUE)
min_val	All values < min_val are converted to min_val
max_val	All values > max_val are converted to max_val
flip	Should plot be flipped? (change of x and y)
num2char	If TRUE, numeric values in variable are converted into character
title	Title of plot
auto_scale	Not used, just for compatibility
na	Value to replace NA

target_explore_num 59

```
max_cat Maximum numbers of categories to be plotted color Color vector (4 colors)
legend_position
Position of legend ("right"|"bottom"|"non")
```

Value

Plot object

Description

Create a plot to explore relation between numerical variable and a binary target

Usage

```
target_explore_num(
  data,
  var,
  target = "target_ind",
  min_val = NA,
  max_val = NA,
  bins = 10,
  flip = TRUE,
  title = NA,
  auto_scale = TRUE,
  na = NA,
  color = c("#ECEFF1", "#CFD8DC", "#B0BEC5", "#90A4AE"),
  legend_position = "bottom"
)
```

Arguments

data	A dataset
var	Numerical variable
target	Target variable (0/1 or FALSE/TRUE)
min_val	All values < min_val are converted to min_val
max_val	All values > max_val are converted to max_val
bins	Nuber of bins
flip	Should plot be flipped? (change of x and y)
title	Title of plot
auto_scale	Use 0.02 and 0.98 quantile for min_val and max_val (if min_val and max_val are not defined)

total_fig_height

```
na Value to replace NA

color Color vector (4 colors)

legend_position

Position of legend ("right"|"bottom"|"non")
```

Value

Plot object

total_fig_height

Get fig.height for RMarkdown-junk using explore_all()

Description

Get fig.height for RMarkdown-junk using explore_all()

Usage

```
total_fig_height(
  data,
  var_name_n,
  var_name_target,
  nvar = NA,
  ncol = 2,
  size = 3
)
```

Arguments

data A dataset

var_name_n Weights variable for count data? (TRUE / MISSING)

var_name_target

Target variable (TRUE / MISSING)

nvar Number of variables to plot ncol Number of columns (default = 2) size fig.height of 1 plot (default = 3)

Value

Number of rows

```
total_fig_height(iris)
total_fig_height(iris, var_name_target = "Species")
total_fig_height(nvar = 5)
```

use_data_beer 61

use_data_beer

Use the beer data set

Description

This data set is an incomplete collection of popular beers in Austria, Germany and Switzerland. Data are collected from various websites in 2023. Some of the collected data may be incorrect.

Usage

```
use_data_beer()
```

Value

Dataset as tibble

Examples

```
use_data_beer()
```

use_data_diamonds

Use the diamonds data set

Description

This data set comes with the ggplot2 package. It contains the prices and other attributes of almost 54,000 diamonds.

Usage

```
use_data_diamonds()
```

Value

Dataset

See Also

```
ggplot2::diamonds
```

```
use_data_diamonds()
```

62 use_data_mpg

use_data_iris

Use the iris flower data set

Description

This data set comes with base R. The data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

Usage

```
use_data_iris()
```

Value

Dataset as tibble

Examples

```
use_data_iris()
```

use_data_mpg

Use the mpg data set

Description

This data set comes with the ggplot2 package. It contains a subset of the fuel economy data that the EPA makes available on https://fueleconomy.gov/. It contains only models which had a new release every year between 1999 and 2008 - this was used as a proxy for the popularity of the car.

Usage

```
use_data_mpg()
```

Value

Dataset

See Also

```
ggplot2::mpg
```

```
use_data_mpg()
```

use_data_mtcars 63

use_data_mtcars

Use the mtcars data set

Description

This data set comes with base R. The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Usage

```
use_data_mtcars()
```

Value

Dataset

Examples

```
use_data_mtcars()
```

use_data_penguins

Use the penguins data set

Description

This data set comes with the palmerpenguins package. It contains measurements for penguin species, island in Palmer Archipelago, size (flipper length, body mass, bill dimensions), and sex.

Usage

```
use_data_penguins()
```

Value

Dataset

See Also

```
palmerpenguins::penguins
```

```
use_data_penguins()
```

64 use_data_titanic

use_data_starwars

Use the starwars data set

Description

This data set comes with the dplyr package. It contains data of 87 star war characters

Usage

```
use_data_starwars()
```

Value

Dataset

See Also

```
dplyr::starwars
```

Examples

```
use_data_starwars()
```

use_data_titanic

Use the titanic data set

Description

This data set comes with base R. Survival of passengers on the Titanic.

Usage

```
use_data_titanic(count = FALSE)
```

Arguments

count

use count data

Value

Dataset

```
use_data_titanic(count = TRUE)
use_data_titanic(count = FALSE)
```

weight_target 65

ht_target Weight target variable

Description

Create weights for the target variable in your dataset so that are equal weights for target = 0 and target = 1. Target must be 0/1, FALSE/TRUE ore no/yes

Usage

```
weight_target(data, target)
```

Arguments

data A dataset

target Variable (0/1, TRUE/FALSE, yes/no)

Value

Weights for each observation (as a vector)

```
iris$is_versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
weights <- weight_target(iris, target = is_versicolor)
versicolor <- iris$is_versicolor
table(versicolor, weights)</pre>
```

Index

abtest, 4	drop_var_by_names, 31
abtest_shiny, 5	drop_var_low_variance, 31
abtest_targetnum, 5	drop_var_no_variance, 32
abtest_targetpct, 6	drop_var_not_numeric, 32
add_var_id, 7	drop_var_with_na, 33
	ur op_var_with_na, 33
add_var_random_01, 8	encrypt, 33
add_var_random_cat, 8	explain_forest, 34
add_var_random_dbl, 9	explain_logreg, 35
add_var_random_int, 10	explain_tree, 35
add_var_random_moon, 11	explain_xgboost, 37
add_var_random_starsign, 12	explore, 38
halance target 12	explore_all, 39
balance_target, 13	explore_bar, 40
check_vec_low_variance, 13	explore_cor, 41
clean_var, 14	explore_count, 42
count_pct, 15	explore_density, 43
create_data_abtest, 15	explore_shiny, 44
create_data_app, 16	explore_targetpct, 45
create_data_buy, 17	explore_tbl, 46
create_data_churn, 18	CAPIOI C_UDI, 40
create_data_empty, 19	format_num_auto, 46
create_data_esoteric, 20	format_num_kMB, 47
create_data_newsletter, 21	format_num_space, 47
create_data_person, 21	format_target, 48
create_data_random, 22	format_type, 48
create_data_unfair, 23	
create_notebook_explore, 24	get_color, 49
cut_vec_num_avg, 24	get_type, 49
cut_vec_num_avg, 24	get_var_buckets, 50
data_dict_md, 25	ggplot2::diamonds,61
decrypt, 26	ggplot2::mpg, 62
describe, 26	guess_cat_num, 51
describe_all, 27	
describe_cat, 28	interact, 51
describe_cat, 28	
describe_tbl, 29	log_info_if, 52
dplyr::starwars, 64	
drop_obs_if, 30	mix_color, 52
drop_obs_ii, 30 drop_obs_with_na, 30	palmerpenguins::penguins, 63
ui op_ob3_witii_iia, 30	parmer pengurnspengurns, 03

INDEX 67

```
plot_legend_targetpct, 53
plot_text, 53
plot_var_info, 54
predict_target, 54
replace_na_with, 55
report, 56
rescale01, 56
show_color, 57
simplify_text, 57
target_explore_cat, 58
target_explore_num, 59
total_fig_height, 60
use_data_beer, 61
use_data_diamonds, 61
use_data_iris,62
use_data_mpg, 62
use_data_mtcars, 63
use_data_penguins, 63
use_data_starwars, 64
use\_data\_titanic, \\ 64
weight_target, 65
```