LinearRegression

In [1]:

```
import numpy as np
import pandas as pd
```

data collection

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as pp
import seaborn as sb
```

```
In [3]:
```

```
df = pd.read_csv(r"C:\Users\user\Desktop\10_USA_Housing.csv")
df
```

Out[3]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael 674\nLaur
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 John: Suite (Kathl
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Stravenue\nD W
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raym
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Willia AP 30
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 8489\nAPO /
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Trac Suite 076\nJo
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 Geor Apt. 509\nI
5000 r	rows × 7 colum	nns					
4							•

first 10 rows

In [4]:

df.head(10)

Out[4]:

Ad	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Fer 674\nLaurabu ;	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Suite 079\ Kathleen	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Eliz Stravenue\nDanie WI 06	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFl	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond ⁾ AE	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
06039 Jennifer Is Apt. 443\nTrac	1.068138e+06	26748.428425	4.04	6.104512	4.988408	80175.754159	5
4759 Daniel \$	1.502056e+06	60828.249085	3.41	8.147760	6.025336	64698.463428	6
972 Viaduct\nLake W TN 17778	1.573937e+06	36516.358972	2.42	6.620478	6.989780	78394.339278	7
USS Gilbert\nFf	7.988695e+05	29387.396003	2.30	6.393121	5.362126	59927.660813	8
Unit 944 0958\nDPO AE	1.545155e+06	40149.965749	6.10	8.167688	4.423672	81885.927184	9
•							4

data cleaning

In [5]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1) memory usage: 273.6+ KB

In [6]:

df.describe()

Out[6]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [7]:

df.columns

Out[7]:

```
Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Roo
ms',
       'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Addres
s'],
      dtype='object')
```

In [8]:

sb.pairplot(df)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x252d4ab72e0>

In [9]:

sb.distplot(df["Price"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]:

<AxesSubplot:xlabel='Price', ylabel='Density'>

In [10]:

sb.distplot(df["Price"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]:

<AxesSubplot:xlabel='Price', ylabel='Density'>

In [11]:

Out[11]:

Address	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry Apt 674\nLaurabury, NE 3701	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Views Suite 079\nLake Kathleen, CA	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizabeth Stravenue\nDanieltown WI 06482	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPO AF 44820	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\nFPC	0.000405-+05	00054 400470	4.00	7 000000	E 040EEE	50000 407000	

In [12]:

```
sb.heatmap(df1.corr())
```

Out[12]:

<AxesSubplot:>

model building

In [13]:

In [14]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

linear regression

```
In [15]:
```

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
```

Out[15]:

LinearRegression()

In [16]:

```
print(lr.intercept_)
```

6.984919309616089e-10

In [17]:

```
coef = pd.DataFrame(lr.coef_,x.columns,columns=['Co_efficient'])
coef
```

Out[17]:

Co_efficient

Avg. Area Income -3.704650e-15

Avg. Area House Age -5.916626e-11

Avg. Area Number of Rooms -8.441522e-11

Avg. Area Number of Bedrooms 4.169082e-12

Area Population -1.357025e-14

Price 1.000000e+00

In [18]:

```
print(lr.score(x_test,y_test))
```

1.0

```
In [19]:
```

```
prediction = lr.predict(x_test)
pp.scatter(y_test,prediction)
```

Out[19]:

<matplotlib.collections.PathCollection at 0x252d94e20a0>

lasso and ridge regression

```
In [20]:
```

```
lr.score(x_test,y_test)
```

Out[20]:

1.0

In [21]:

```
lr.score(x_train,y_train)
```

Out[21]:

1.0

In [22]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [23]:

```
r = Ridge(alpha=10)
r.fit(x_train,y_train)
r.score(x_test,y_test)
r.score(x_train,y_train)
```

Out[23]:

1.0

In [24]:

l = Lasso(alpha=10)

```
1.fit(x_train,y_train)
1.score(x_test,y_test)
1.score(x_train,y_train)
Out[24]:
0.999999999929275
elasticnet
In [25]:
from sklearn.linear_model import ElasticNet
e = ElasticNet()
e.fit(x_train,y_train)
Out[25]:
ElasticNet()
In [26]:
print(e.coef_)
[3.85562165e-05 0.00000000e+00 0.00000000e+00 0.00000000e+00
 2.68661480e-05 9.99998956e-01]
In [27]:
print(e.intercept_)
-2.328094639116898
In [33]:
predictions = e.predict(x_test)
predictions
Out[33]:
array([1591187.81321373, 1161232.55294351, 1273120.17499616, ...,
       1358647.25257467, 813415.02999894, 1555490.30952982])
In [41]:
print(e.score(x_test,y_test))
0.99999999999154
In [35]:
from sklearn import metrics
```

mean absolute error

```
In [36]:
```

```
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, predictions))
```

Mean Absolute Error: 0.2532628133917945

mean squared error

```
In [39]:
```

```
print("Mean Squared Error:", metrics.mean_squared_error(y_test,predictions))
```

Mean Squared Error: 0.0998632431597178

root mean squared error

```
In [40]:
```

```
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

Root Mean Squared Error 0.31601146048793516

In []: