Infineon AURIX Microcontroller description Infineon Technologies Korea

AURIX Family Overview from low cost to high performance

9x Series up to 8 MB					TC297T TC297TA 300 MHz	TC298T 300 MHz	TC299T 300 MHz	
7x Series up to 4 MB				TC275T 200 MHz	TC277T 200 MHz		10/50	TC270T 200 MHz
6x Series up to 2.5 MB		$\mathcal{I}_{\mathbb{R}^n}$	TC264D TC264DA 200 MHz	TC265D 200 MHz	TC267D 200 MHz			TC260D 200 MHz
4x Series up to 2MB			TC244S 180 MHz					
3x Series up to 2 MB		TC233L 200 MHz	TC234L TC234LA 200 MHz		TC237L 200 MHz			
2x Series up to 1 MB	TC222L/S 133 MHz	TC223L/S 133 MHz	TC224L/S 133 MHz	N	TriCore Mu	Ilticore Arcl		
1x Series up to 512 KB	-	TC213L/S 133 MHz	TC214L/S 133 MHz) }	 New Timer Architecture (GTM) ISO26262 ASIL-D concept Programmable Security Hardware 		9	
	TQFP-80	TQFP-100	LQFP-144 TQFP-144	LQFP-176	LFBGA-292	BGA-416	LFBGA-516	Bare Die

EES available In Development Planned

AURIX Product Naming

9x Series – Umbrella Device SAK-TC29xTP-128F300

Feature Set		9x Series	
TriCore	# Cores / Checker	3 / 1	
1.6P	Frequency ²⁾	2x300 / 1x200 MHz	
Flash	Program Flash	8 MB	
	EEProm @ w/e cycles	128 KB @ 500k	
SRAM	Total (DMI , PMI, LMU)	728 KB	
DMA	Channels	128	
ADC	Modules 12bit / DS	11 / 10	
	Channels 12bit / DS	84 / 10 diff	
Timer	GTM Input / Output	48 / 152 channels	
	CCU / GPT modules	2 / 1	
Interfaces	FlexRay (#/ch.)	2 / 4	
	CAN-FD (nodes/obj)	6 / 384	
	QSPI / ASCLIN / I2C	6 / 4 / 2	
	SENT / PSI5 / PSI5S	15 / 5 / 1	
	HSCT / MSC / EBU	1 / 3 diff LVDS / 1	
	Other	Ethernet MAC	
Safety	SIL Level	ASIL-D	
Security	HSM	Yes	
Power	EVR	Yes	
	Standby Control Unit	Support	

Safety SIL Level ASIL-D

Security HSM Yes

Power EVR Yes

Standby Control Unit Support

1) HOT option available on request with limited functionality >Ta=125°C

2) High performance version with 3x300MHz on

LFBGA-292

60 ADC inputs

-40°C to +125°C 1)

0.8mm

-40°C to +125°C

60 ADC inputs

Bare Die

Tjmax 170°C,

84 ADC inputs

CAN-FD in B-Step

request with specific limitations

-40°C to +125°C.

84 ADC inputs

7x Series – Umbrella Device SAK-TC27xTP-64F200

Feature Set		7x Series	
TriCore	# Cores / Checker	2 / 1	
1.6P	Frequency	200 MHz	
TriCore	# Cores / Checker	1 / 1 2)	
1.6E	Frequency	200 MHz	
Flash	Program Flash	4 MB	
	EEProm @ w/e cycles	64 KB @ 500k	
SRAM	Total (DMI , PMI)	472 KB	
DMA	Channels	64	
ADC	Modules 12bit / DS	8 / 6	
	Channels 12bit / DS	60 / 6 diff	
Timer	GTM Input / Output	32 / 88 channels	
	CCU / GPT modules	2 / 1	
Interfaces	FlexRay (#/ch.)	1 / 2	
	CAN-FD (nodes/obj)	4 / 256	
	QSPI / ASCLIN / I2C	4 / 4 / 1	
	SENT / PSI5 / PSI5S	10 / 3 / 1	
	HSCT / MSC / EBU	1 / 2 diff LVDS / -	
	Other	Ethernet MAC	
Safety	SIL Level	ASIL-D	
Security	HSM	Yes	
Power	EVR	Yes	
1) HOT option 2) not availab	Standby Control available with limited fuller on TC29x/TC26x - to be	Support nctionality >Ta=125°C	

2) not available on TC29x/TC26x - to be considered in SW family concept

3) CAN-FD in C-Step

Package Variants

LFBGA-292 0.8mm -40°C to +125°C 60 ADC inputs

LOFP-176 0.5mm -40°C to +125°C 1) 48 ADC inputs

Bare Die

Tjmax 170°C 60 ADC inputs

3x Series – Umbrella Device SAK-TC23xLP-32F200

		_	
		3x Series	
TriCore 1.6P	# Cores / Checker	-/-	
1.6P	Frequency	-	
TriCore	# Cores / Checker	1/1	
1.6E	Frequency	200 MHz	
Flash	Program Flash	2 MB	
	Data Flash	128k , 125 k cycles	
SRAM	Total (DMI, PMI)	192 KB	
DMA	Channels	16	
ADC	Modules 12bit / DS	2 / -	
	Channels 12bit / DS	24 / -	
Timer	GTM Input / Output	8 / 32	
	CCU / GPT modules	2 / 1	
Interfaces	FlexRay (#/ch.)	1/2	
	CAN-FD (nodes/obj)	6 / 256	
	QSPI / ASCLIN / I2C	4/2/-	
	SENT / PSI5	4 / -	
	HSCT/ MSC / EBU	-/-/-	
	Other	-	
Safety	SIL Level	ASIL-D	
Security	HSM	Yes	
Power	EVR	Yes	
	Standby Control Unit	WUT + SRAM	

¹⁾ HOT option available on request with limited functionality >Ta=125°C

-40°C to +125°C 1)

24 ADC inputs

24 ADC inputs

-40°C to +125°C 1)

-40°C to +125°C

24 ADC inputs

Infineon Technologies Microcontroller Core Roadmap

Key Features

- 32 bit Harvard architecture
- RISC architecture
- Superscalar architecture
- Little-endian byte ordering
- 4 GByte address space
- 16 & 32 bit instructions
- Most instruction executed in 1 cycle
- Bit handling
- Flexible interrupt prioritization scheme
- Low interrupt latency
- Fast context switching
- Dual MAC unit
- Zero Overhead Loop
- FPU

Core Subsystem

System Peripheral Bus (SPB) **DMI**

General Pipeline Overview

Four-Stage Super-Scalar triple issue TriCore™ Pipeline Dual MAC offers the ability to execute 2 multiplications or 2 multiplication/ additions in 1 cycle, with 1 instruction. Instruction 1 MAC MAC Instruction 2 Write Execute Execute Back Integer 32Bit Decode Integer Fetch Execute & 64 bit Integer Pipeline **Issue** Load/ Load/ Write Load/Store Pipeline Store Store 32Bit **Back** Decode Execute **Instruction 3** Instruction 4 Loop Loop Pipeline Write Loop Cache

Buffer

Execute

Back

Pipeline - General

- Integer pipeline:
 - Integer arithmetic and logic instructions.
 - Bit operations.
 - Divide and MAC instructions.
 - Etc.
- Load /Store pipeline:
 - Load / Store instructions.
 - Context operations.
 - Address arithmetic instructions.
 - Etc.
- Loop pipeline:
 - Loop instructions.

Architectural Registers

A15 (implicit address)				
A14				
A13				
A12				
A11 (Return Address)				
A10 (Stack pointer)				
A9 (Global Address)				
A8 (Global Address)				
A7				
A6				
A5				
A4				
А3				
A2				
A1 (Global Address)				
A0 (Global Address)				
Address				

Core Registers

General Purpose Registers			
D0 - D15 Data Registers.			
A0 - A15 Address Registers.			

System Registers			
PC Program Counter			
PSW Program Status Word			
SYSCON System Control Registers			
PCXI Previous Context Information.			

Context Management			
FCX Free CSA List Head Pointer			
LCX Free CSA List Limit Pointer			

CPU Interrupt and Trap Control			
ICR Interrupt Control Reg.			
BIV	Base Address of Interrupt Vect. Table.		
BTV Base Address of Trap Vect. Table.			

Memory Protection			
DPRx_L DPRx_H	Data Lower and Upper Address Range		
CPRx_L, CPRx_U	Code Lower and Upper Address Range		
CPRXE_n	Code Execute Permission		
DPRE_n	Data Read Permission		
DPWE_n	Data Write Permission		

Stack management				
ISP	Interrupt Stack Pointer			

Core Special Function Registers (CSFRs) can only be accessed by special read/write instructions:

- → MTCR: move to core special function register (write access, supervisor mode only)
- → MFCR: move from core special function register (read access)

What is a context?

- In an embedded real time system, independent tasks switching occur frequently (in response to an interrupt, RTOS management, etc).
- The task's context represents the state of this task.
- Basically, the context is everything the μC needs to know in order to start (or re-start) a task.

Upper and Lower context

- TriCore defines two contexts:
 - The upper context (task specific)
 - The lower context (for parameter passing).
- The upper context is automatically saved on call, interrupt or trap.
- The lower context has to be saved explicitly with an instruction.

Upper and Lower Contexts

Context Saving and restoring

Save

Restore

Automatically saved / restored

Event / Instruction	Saved context	Event / Instruction	Restored Context
Interrupt	Upper	RFE	Upper
Trap	Upper	RFE	Upper
CALL	Upper	RET	Upper
BISR	Lower	RSLCX	Lower
SVLCX	Lower	RSLCX	Lower
STLCX	Lower	LDLCX	Lower
STUCX	Upper	LDUCX	Upper

Saving to CSA

Saving to Absolute

Ability to Host Multiple Applications on One Device

- Common accesses protection based on Master ID (TriCores / DMAs)
- Each DMI (Data Access) has 2 IDs
 - 'Safe' ID
 - 'Non-Safe ID'
- Each Slave has write permissions based on ID
 - Permission register Safety
 Endinit protected
- Address range based protection pages for SRAMs

Aurix Peripherals: Access Enable Protection

New method for write access protection from On Chip Bus to Slave modules

- Endinit Protected (E)
- Safety Endinit Protected (SE -> New)
- > TAG ID protected (P -> New)
- User / Supervisor Mode (U / SV)

Register Short Name	Register Long Name	Offset Addre	Access Mode			
		SS	Read	Write		
Pn_OUT	Port n Output Register	0000 _H	U, SV	U, SV, P		
Pn_OMR	Port n Output Modification Register	0004 _H	U, SV	U, SV, P		
Pn_IOCR0	Port n Input/Output Control Register 0	0010 _H	U, SV	U, SV, P		
Pn_IOCR4	Port n Input/Output Control Register 4	0014 _H	U, SV	U, SV, P		
Pn_IOCR8	Port n Input/Output Control Register 8	0018 _H	U, SV	U, SV, P		
Pn_IOCR12	Port n Input/Output Control Register 12	001C _H	U, SV	U, SV, P		
Pn_ ACCEN1	Port n Access Enable Register 1	00F8 _H	U, SV	SV, SE		
Pn_ ACCEN0	Port n Access Enable Register 0	00FC _H	U, SV	SV, SE		

Aurix Peripherals: Access Enable Registers

infineon

- Each On Chip Bus transaction includes a Master TAG ID
- Master TAG ID is used for the write access protection
- After reset: per default no restriction

All On Chip Bus TAG IDs are unique and hardwired

Each CPU.DMI with two TAG Ids (safe/non-safe)

Each On Chip Slave Module (E.g SPI, GTM)

Masters on Bus

- > At least one set of ACCEN0/1 registers
- Some Slave Modules with multiple ACCEN0/1 sets
 - (e.g. SDMA, SCU)
- > Interrupt Router with different ACCEN0/1 sets for
 - SRC[31:16]/SRC[15:0]
- > SRAMs with additional range protection registers
 - each CPU with 8 ranges for PSRP/DSPR, LMU with 8 ranges

Access protection violations and bus errors are reported to the Safety Management Unit (SMU)

INT_ACCEN00 Access Enable Register 0 INT_ACCEN10 Kernel 1 Access Enable Register 0						(0F4 _H)			Reset Value: FFFF FFFF						
					·		•		20	04					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EN 31	EN 30	EN 29	EN 28	EN 27	EN 26	EN 25	EN 24	EN 23	EN 22	EN 21	EN 20	EN 19	EN 18	EN 17	EN 16
rw 15	rw 14	rw 13	rw 12	rw 11	rw 10	rw 9	rw 8	rw 7	rw 6	rw 5	rw 4	rw 3	rw 2	rw 1	rw 0
EN 15	EN 14	EN 13	EN 12	EN 11	EN 10	EN9	EN8	Ė	EN6	EN5	EN4	EN3	EN2	EN1	EN0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Table 3-15 On Chip Bus Master TAG Assignments

Table 3-13	on only b	as master	TAG Assignments			
TAG-Number	Module	Location	Description			
000000 _B	CPU0	SRI/SPB	DMI.NonSafe TAG ID			
000001 _B	CPU0	SRI/SPB	DMI.Safe TAG ID			
000010 _B	CPU1	SRI/SPB	DMI.NonSafe TAG ID			
000011 _B	CPU1	SRI/SPB	DMI.Safe TAG ID			
000100 _R	CPU2	SRI/SPB	DMI.NonSafe TAG ID			
000101 _B	CPU2	SRI/SPB	DMI.Safe TAG ID			
000110 _B	SDMA	SRI/SPB	Move Engine 0 (SDMA.ME0)			
000111 _B	SDMA	SRI/SPB	Move Engine 1(SDMA.ME1)			
001000 _B	SDMA	SRI/SPB	Cerberus			
001001 _B	DMA	SRI/SPB	Move Engine 0 (DMA.ME0)			
001010 _B	DMA	SRI/SPB	Move Engine 1 (DMA.ME1)			
001011 _B	HSSL	SRI	High Speed Serial Link			
001100 _B	Ethernet	SPB	Ethernet			
001101 _B	HSM	SPB	HSMCMI, HSMRMI ¹⁾			
001110 _B	-	-	Reserved			
001111 _B	-	-	Reserved			
010000 _B	CPU0	SRI	PMI			
010001 _B	CPU1	SRI	PMI			
010010 _B	CPU2	SRI	PMI			
011000 _B	DAM	SRI	DAM			
111000 _B	IOC32	BBB	Cerberus on Back Bone Bus (ED)			
111001 _B	CIF	BBB	CIF Master on Back Bone Bus (ED			
110000 _B	LMU	BBB	LMU Master on Back Bone Bus (ED			
Others		_	Reserved			

Both HSM FPI Master Interfaces (HSMCMI, HSMRMI) are using the sam TAG II.

Interrupt System Overview

Independent Interrupt Systems per Interrupt Service Provider (CPUs, DMA, SDMA)

Aurix Interrupt System: Introduction

- An interrupt request is serviced by CPU/DMA, called Service Provider
- Interrupt requests are called **Service Requests**. Each interrupt request source must connect to a Service Request Node (**SRN**). An interrupting device can have more than one SRN.
- Interrupt service requests are serviced by an **Interrupt Control Unit** (**ICU**) that handles the priority arbitration and the communication with the CPU.
- Each SRN contains a **Service Request Control Register (SRC)** and the necessary logic to communicate with the requesting source and the interrupt arbitration bus

Aurix Interrupt System: Feature Set Overview

Central Interrupt Router Module (IR)

- Interrupt Trigger Signals from Peripherals
- Result from last Arbitration Round to Service Provider
- Acknowledge from Service Provider when Service Request taken
- One Service Request Node (SRN) per Interrupt Trigger signal
- Each SRN with own Service Request Control register (SRC)

TC29x / TC27x Request CPU 0 Interrupt Router (IR) Interrupt Request. ■ Interrupt ■ Acknowledge ICU0 Trigger CPU₁ Signals from: Interrupt ► ICU1 Bus 1 Peripherals / External / Request Acknowledge ICU2 CPU 2 SRN Interrupt ICU3 Request DMA Move Engine0/1 **ENDINIT** Safety ENDINIT Register Request **SDMA** Acknowledge Move Engine0/1 SPB ⇐ → SMU Integrity Error -

Feature Set Overview:

- Supports up to 1024 Service Requests
- Support of up to 255 service request priority level per ICU
 / Service Provider
- One Interrupt Control Unit (ICU) per Interrupt Service Provider
- ICUs with independent arbitration

Aurix Interrupt System: Feature Set Overview

Feature Set Overview (cont'd):

- Each Interrupt with dedicated Service Request Node (SRN)
- Each SRN with a programmable 8-bit priority vector
- Each SRN can be mapped to one of the ICUs (Service Providers: CPUs or DMA)
- Interrupt System Integrity support (ECC based)
- Four General Purpose Interrupts per CPU that are not assigned to peripherals or external interrupts (-> to be used as SW Interrupt)
- Mechanism to signal Software Interrupts simultaneously to multiple Service Providers
- Interrupt Overflow mechanism (new service request was triggered while the SRN has still an pending service request)

Aurix Interrupt System: TC27x

Interrupt Router (IR) for TC27x:

- 5 Interrupt Service Provider (Interrupt Targets)
- 479 Interrupt Nodes
- Main Interrupt Contributor Modules:

- GTM: 159

- DMA/SDMA: 68

ADC/VADC: 52

- QSPI: 30

HSSL/DigRF: 18

- MultiCAN: 16

- CCU6: 16

SW/GP: 15

- Sent: 10

- ...

Aurix Interrupt System: SRC

- Service Request Priority Number (SRPN)
 - priority increasing with number
 - CPU: SRPN=0 not allowed
 - DMA/SDMA: only available channel numbers
- Service Request Enable (SRE)
- Type Of Service Control (TOS)
 - 0->CPU0
 - 1->CPU1
 - 2->CPU2
 - 3->SDMA
 - 4->DMA

ECC is checked when the SRN with an pending service request was accepted by the service provider as next service request to be processed

set when

has been

set via

SETR

the SRR bit

ECC

Updated with any write to SRC[15:0]

- Set / Clear (SETR/CLRR)
- SRR (Service Request Pending)
- Interrupt Overflow Bit (IOV/IOVCLR)
- Software Sticky Bit (SWS/SWSCLR)
- Busy Bit (BUSY)
 - To be used by SW sequence when reconfiguring SRNs during runtime

To prevent a missmatch between the acknowledged TOS/SRPN value (using the old value) and the new values. This will result in ECC error.

Aurix Interrupt System: SW Interrupts and Broadcast

General Purpose Service Request Nodes (GPSR):

- not assigned to HW interrupt triggers
- can only be used as SW interrupts
- GPSR group: 4 Service Request Nodes
- One GPSR group per TriCore CPU implemented

Parallel service requests to multiple Service Provider:

- Each GPSR group with a dedicated Broadcast register
- Broadcast register allows to trigger multiple GPSR

A GPSR Request xy can be triggered by

- 1) writing '1' to the related SRC_GPSRxy.SETR bit or
- 2) by writing a '1' to the related Service Request Broadcast register bit SRBx[y]
- ** x refers to CPU0, CPU1 or CPU2
- ** y refers to the 4 SW interrupts per CPU

STM (System Timer) - Block Diagram

System Timer: How to read >32 bits synchronously

- > STM is a free running 64 bit upward counter
- TriCore can only do max 32 bit read operations
- Could get roll over between reading lower and upper bits
- Therefore bits 32 to 63 are cap registers TIM0-5 are read

GTM - Generic Timer Module System Overview 1/2

GTM - Generic Timer Module System Overview 2/2

GTM (Generic Timer Module) TIM – Timer Input Module

GTM (Generic Timer Module) TIM - TIM_CHx - Timer Channel Architecture

GTM (Generic Timer Module) TOM – Timer Output Module - Overview

- 16 independent channels (**TOM_CH0...15**) for simple PWM generation
 - 2 groups of 8 channel
 - TOM_OUT(15) moreover offers a PCM (Pulse Count Modulated) signal
 - 16 bits counter
- TGC0 & TGC1 are global channel control units to drive TOM channels synchronously by external or internal events.
 - control enabling/disabling of the channels
 - Output Enable
 - Force update
- 5 dedicated clock line inputs CMU_FXCLKx are providing clocks (PWM resolution)

GTM (Generic Timer Module) TOM – TGCx - Global Channel Control - Overview

- 3 individual mechanisms supported
 - control enabling/disabling of the channels (1)
 - Output Enable (2)
 - Force update (3)
- Above mechanisms by 3 trigger sources
 - T1: SW (via SFR HOST_TRG)
 - T2: TBU time stamp based on selected TBU_TSx time base
 - TBU time stamp can be defined by SFR ACT_TB
 - T3: Internal trigger signal TRIG_x
 - signal TRIG_x coming from channel x within a TOM module can be masked by SFR INT TRIG

GTM (Generic Timer Module) TOM – PWM Generation (1)

Synchronous update

ADC/DS Implementation Concept

Queued Request Source

- **The Queued Request Source** of group x can select up to 8 channels that are subsequently converted in a sequence
- These channels can be arranged in an arbitrary order
- Each entry can be refilled into the buffer to be repeated automatically
- Conversion sequences can be started either via software or via a selectable trigger signal from on-chip and external sources

38

Scan Request Source

- The Scan Request Source of group x can schedule a linear sequence of conversions for the associated converter
- > Each channel of group x can be included or excluded from a sequence
- A sequence can be repeated automatically
- Conversion sequences can be started either via software or via a selectable trigger signal from on-chip and external sources

Part of your life. Part of tomorrow.

