## ΜΑΣ026 - Μαθηματικά για Μηχανικούς ΙΙ Χειμερινό εξάμηνο 2021-2022

## Ασκήσεις 2ου Κεφαλαίου

- 1. Να βρείτε την εξίσωση της σφαίρας στις παρακάτω περιπτώσεις.
  - i) κέντρο (7, 1, 1), ακτίνα 4,
  - ii) κέντρο (1, 0, -1), διάμετρος 8,
  - iii) κέντρο (-1, 3, 2), διέρχεται από την αρχή των αξόνων,
  - iv) κέντρο (2, -1, -3), εφάπτεται στο xy-επίπεδο.
- 2. Βρείτε μια εξίσωση που περιγράφει τις παρακάτω επιφάνειες στον χώρο.
  - i) Επίπεδο που περιλαμβάνει τον άξονα x και το σημείο (0, 1, 2).
  - ii) Επίπεδο που περιλαμβάνει τον άξονα y και το σημείο (1,0,2).
  - iii) Ορθός κύλινδρος με ακτίνα 1 και άξονα την ευθεία που είναι παράλληλη στον άξονα z και διέρχεται από το (1,1,0).
  - iv) Ορθός κύλινδρος με ακτίνα 1 και άξονα την ευθεία που είναι παράλληλη στον άξονα y και διέρχεται από το (1,0,1).
- **3.** Ένα έντομο περπατάει στην σφαίρα με εξίσωση  $x^2 + y^2 + z^2 + 2x 2y 4z 3 = 0$ . Ποια είναι η πιο κοντινή και η πιο μακρινή απόσταση που μπορεί να έχει από την αρχή των αξόνων;
- 4. Να χαρακτηριστεί η κάθε πρόταση ως σωστή (Σ) ή λάθος (Λ) και να αιτιολογηθεί η απάντησή σας.
  - i) Το μέτρο του αθροίσματος δύο διανυσμάτων είναι ίσο με το άθροισμα των μέτρων των δύο διανυσμάτων.
  - ii) Υπάρχουν ακριβώς δύο μοναδιαία διανύσματα που είναι παράλληλα σε ένα δοσμένο μη μηδενικό διάνυσμα.
- 5. Να βρεθεί διάνυσμα που ικανοποιεί την δοσμένη συνθήκη.
  - i) Αντίθετη κατεύθυνση από το  $\vec{v} = (3, -4)$  και μέτρο το μισό του μέτρου του  $\vec{v}$ .
  - ii) Μήκος  $\sqrt{17}$  και κατεύθυνση ίδια με το  $\vec{v}=(7,0,-6)$ .
- **6.** Έστω  $\overrightarrow{r}=(x,y,z)$  ένα τυχαίο διάνυσμα. Περιγράψτε το σύνολο των σημείων (x,y,z) που ικανοποιούν την δοσμένη εξίσωση.
  - i)  $\|\overrightarrow{r}\| = 1$
  - ii)  $\|\overrightarrow{r}\| \leq 1$
  - iii)  $\|\overrightarrow{r}\| > 1$
- 7. Χρησιμοποιώντας διανύσματα να δείξετε ότι το τρίγωνο με κορυφές A(2,-1,1), B(3,2,-1) και C(7,0,-2) είναι ορθογώνιο και να βρείτε σε ποια κορυφή βρίσκεται η ορθή γωνία.
- 8. Να δείξετε ότι  $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} \vec{v}\|^2 = 2 \|\vec{u}\|^2 + 2 \|\vec{v}\|^2$  και να δώσετε γεωμετρική ερμηνεία του αποτελέσματος.
- **9.** i) Χρησιμοποιώντας ορίζουσα, να υπολογιστεί το  $i \times (i+j+k)$ .
  - ii) Υπολογίστε το παραπάνω γινόμενο χωρίς ορίζουσα, χρησιμοποιώντας μόνο ιδιότητες του εξωτερικού γινομένου.

- **10.** Να βρεθούν δύο μοναδιαία διανύσματα που είναι κάθετα στο επίπεδο που ορίζουν τα σημεία A(0,-2,1), B(1,-1,-2) και C(-1,1,0).
- **11.** Να βρεθεί το εμβαδόν του τριγώνου με κορυφές P(1,5,-2), Q(0,0,0) και R(3,5,1).
- **12.** Έστω το παραλληλεπίπεδο με διαδοχικές ακμές  $\vec{u} = 3i + 2j + k$ ,  $\vec{v} = i + j + 2k$ ,  $\vec{w} = i + 3j + 3k$ .
  - i) Να βρεθεί ο όγκος του.
  - ii) Να βρεθεί το εμβαδόν της έδρας που ορίζουν τα  $\vec{u}$  και  $\vec{w}$ .
  - iii) Να βρεθεί η γωνία του  $\vec{u}$  με το επίπεδο που περιλαμβάνει την έδρα που ορίζουν τα  $\vec{v}$  και  $\vec{w}$ .
- **13.** Τι συμπεραίνουμε για τη γωνία δύο διανυσμάτων  $\vec{u}$  και  $\vec{v}$  για τα οποία ισχύει  $\vec{u} \cdot \vec{v} = \|\vec{u} \times \vec{v}\|$ ;
- 14. Να βρεθούν οι παραμετρικές εξισώσεις ευθείας:
  - i) που διέρχεται από τα σημεία  $P_1(-1,3,5)$  και  $P_2(-1,3,2)$ ,
  - ii) που έχει διανυσματική εξίσωση xi + yj + zk = k + t(i j + k),
  - iii) που διέρχεται από το (-2,0,5) και είναι παράλληλη στην ευθεία x=1+2t, y=4-t, z=6+2t,
  - iv) που είναι η εφαπτομένη του κύκλου  $x^2 + y^2 = 25$  στο σημείο (3, -4).
- **15.** Για την ευθεία με διανυσματική εξίσωση (x,y,z)=(-1,2,4)+t(5,7,-8) να βρεθεί ένα σημείο της P και ένα διάνυσμα  $\vec{v}$  παράλληλο σε αυτήν.
- **16.** Να βρεθούν τα σημεία τομής με τα επίπεδα xy, xz και yz της ευθείας x = -2, y = 4 + 2t, z = -3 + t.
- 17. Να δείξετε ότι οι ευθείες  $L_1$ :  $x=2+t, y=2+3t, z=3+t, L_2$ : x=2+t, y=3+4t, z=4+2t τέμνονται και να βρεθούν τα σημεία τομής τους.
- **18.** Να εξετάσετε αν οι ευθείες  $L_1$ : x = 3 2t, y = 4 + t, z = 6 t,  $L_2$ : x = 5 4t, y = -2 + 2t, z = 7 2t είναι παράλληλες.
- **19.** Να δείξετε ότι οι ευθείες  $L_1$ :  $x = 1 + 3t, y = -2 + t, z = 2t, L_2$ : x = 4 6t, y = -1 2t, z = 2 4t ταυτίζονται.
- 20. Να βρεθεί η εξίσωση του επιπέδου στις παρακάτω περιπτώσεις.
  - i) Διέρχεται από το σημείο P(2,6,1) και είναι κάθετο στο διάνυσμα  $\vec{n}=(1,4,2)$ .
  - ii) Διέρχεται από τα σημεία (-2, 1, 1), (0, 2, 3) και (1, 0, -1).
  - iii) Διέρχεται από την αρχή των αξόνων και είναι παράλληλο στο επίπεδο 4x-2y+7z+12=0.
  - iv) Διέρχεται από το (1,2,-1) και είναι κάθετο στην ευθεία τομής των επιπέδων 2x+y+z=2 και x+2y+z=3.
- 21. Εξετάστε αν τα επίπεδα είναι παράλληλα, κάθετα ή τίποτα από τα παραπάνω.
  - i) 2x 8y 6x 2 = 0, -x + 4y + 3z 5 = 0
  - ii) 3x 2y + z = 1, 4x + 5y 2z = 4
  - iii) x y + 3z 2 = 0, 2x + z = 1
- 22. Εξετάστε αν η ευθεία και το επίπεδο τέμνονται και αν ναι, προσδιορίστε την τομή τους.
  - i) x = t, y = t, z = t, 3x 2y + z 5 = 0
  - ii) x = 2 t, y = 3 + t, z = t, 2x + y + z = 1

- **23.** Βρείτε το συνημίτονο της γωνίας τομής των επιπέδων x + 2y 2z = 5 και 6x 3y + 2z = 8.
- **24.** Δείξτε ότι οι ευθείες x=-2+t, y=3+2t, z=4-t και x=3-t, y=4-2t, z=t είναι παράλληλες και βρείτε την εξίσωση του επιπέδου που τις περιέχει.
- **25.** Να δείξετε ότι τα επίπεδα -2x+y+z=0 και 6x-3y-3z-5=0 είναι παράλληλα και να βρείτε την απόστασή τους.
- **26.** \*Να δείξετε ότι οι ευθείες x=1+7t, y=3+t, z=5-3t και x=4-t, y=6, z=7+2t είναι ασύμβατες και να βρεθεί η απόστασή τους.
- **27.** Βρείτε την εξίσωση της σφαίρας με κέντρο (2,1,-3) που εφάπτεται στο επίπεδο x-3y+2z=4.
- 28. Προσδιορίστε την τετραγωνική επιφάνεια.

i) 
$$z = \frac{x^2}{4} + \frac{y^2}{9}$$

ii) 
$$z = \frac{y^2}{25} - x^2$$

iii) 
$$x^2 + y^2 - z^2 = 16$$

iv) 
$$x^2 + y^2 - z^2 = 0$$

v) 
$$4z = x^2 + 4y^2$$

vi) 
$$z^2 - x^2 - y^2 = 1$$

- 29. Να κάνετε τις παρακάτω μετατροπές.
  - i)  $(4\sqrt{3},4,-4)$  από καρτεσιανές σε κυλινδρικές,
  - ii)  $(1, \sqrt{3}, -2)$  από καρτεσιανές σε σφαιρικές,
  - iii)  $(5, \pi/6, \pi/4)$  από σφαιρικές σε καρτεσιανές,
  - iv)  $(\sqrt{3}, \pi/6, 3)$  από κυλινδρικές σε καρτεσιανές.
- **30.** Μετατρέψτε τις παρακάτω εξισώσεις σε καρτεσιανές και περιγράψτε την επιφάνεια που εκφράζουν. Σε κάθε περίπτωση δίνεται το αρχικό σύστημα συντεταγμένων.
  - i) r = 3, κυλινδρικές,
  - ii)  $r=4\sin\theta$ , κυλινδρικές,
  - iii)  $r^2 + z^2 = 1$ , κυλινδρικές,
  - iv)  $\phi = \pi/4$ , σφαιρικές,
  - ν)  $\rho \sin \phi = 2 \cos \theta$ , σφαιρικές.
- 31. Δίνονται παρακάτω οι καρτεσιανές εξισώσεις επιφανειών. Να μετατραπούν σε κυλινδρικές και σφαιρικές συντεταγμένες.
  - i)  $z = 3x^2 + 3y^2$ ,
  - ii) 2x + 3y + 4z = 1.

Αυτή η εργασία χορηγείται με άδεια Creative Commons Αναφορά δημιουργού-Μη εμπορική-Παρόμοια διανομή 4.0 International License.

3