Лабораторная работа №11 Модуляция и выборка (квантование)

Смирнов Никита

6 мая 2021 г.

Оглавление

1	Упражнение 11.1	4
2	Упражнение 11.2	5
3	Упражнение 11.3	6
4	Выводы	12

Список иллюстраций

3.1	Визуализация звука
3.2	Спектр звука
3.3	Отфильтрованный звук
3.4	Спектр звука
3.5	Применение фильтра сглаживания
3.6	Масштабирование результата
3.7	Разница между интерполированной волной и фильтрован-
	ной волной

Листинги

3.1	Загрузка звука
3.2	Спектр звука
3.3	Уменьшение частоты дискретизации
3.4	Отфильтрованный звук
3.5	Функция sample
3.6	Спектр звука
3.7	Применение фильтра сглаживания
3.8	Масштабирование результата
3.9	Разница между спектром до и после дискретизации 10
3.10	Разница между интерполированной волной и фильтрован-
	ной волной
3.11	Разница между интерполированной волной и фильтрован-
	ной волной

Упражнение 11.1

В данном упражнении нам нужно открыть **chap11.ipynb**, прочитать пояснения и запустить примеры. Поэтому я просто изучил все примеры с комментариями.

Упражнение 11.2

B данном упражнении нас просят посмотреть видео D/A and A/D \mid Digital Show and Tell,

Это видео о споре качества цифрового и аналогового звука. В нём на примерах объясняется, почему аналоговый звук в допустимых пределах человеческого слуха (от 20 Γ ц до 20 к Γ ц) может воспроизводиться с идеальной точностью с использованием 16-битного цифрового сигнала 44,1 к Γ ц.

Упражнение 11.3

Для начала загрузим наш звук.

```
wave = thinkdsp.read_wave('2631868.wav')
```

Листинг 3.1: Загрузка звука

Рис. 3.1: Визуализация звука

Этот сигнал дискредитируется с частотой 44100 Γ ц. Составим спектр:

spectrum = wave.make_spectrum(full=True)

² wave.normalize()

³ wave.plot()

2 spectrum.plot()

Листинг 3.2: Спектр звука

Рис. 3.2: Спектр звука

Уменьшим частоту дискретизации в 3 раза:

```
1 framerate = wave.framerate / 3
```

2 cutoff = framerate / 2 - 1

Листинг 3.3: Уменьшение частоты дискретизации

Перед дискретизацией мы применяем фильтр сглаживания:

- spectrum.low_pass(cutoff)
- 2 spectrum.plot()

Листинг 3.4: Отфильтрованный звук

Рис. 3.3: Отфильтрованный звук

Следующая функция имитирует процесс выборки:

```
1 def sample(wave, factor):
2 """Simulates sampling of a wave.
3
4 wave: Wave object
5 factor: ratio of the new framerate to the original
6 """
7 ys = np.zeros(len(wave))
8 ys[::factor] = wave.ys[::factor]
9 return thinkdsp.Wave(ys, framerate=wave.framerate)
Листинг 3.5: Функция sample
```

Результат содержит копии спектра около 20 кГц.

```
sampled_spectrum = sampled.make_spectrum(full=True)
sampled_spectrum.plot()
```

Листинг 3.6: Спектр звука

Рис. 3.4: Спектр звука

Применяем фильтр сглаживания:

- sampled_spectrum.low_pass(cutoff)
- sampled_spectrum.plot()

Листинг 3.7: Применение фильтра сглаживания

Рис. 3.5: Применение фильтра сглаживания

Мы только что потеряли половину энергии в спектре, но мы можем масштабировать результат, чтобы вернуть его:

```
sampled_spectrum.scale(factor)
```

- 2 spectrum.plot()
- 3 sampled_spectrum.plot()

Листинг 3.8: Масштабирование результата

Рис. 3.6: Масштабирование результата

Теперь разница между спектром до и после дискретизации должна быть небольшой.

spectrum.max_diff(sampled_spectrum)

Листинг 3.9: Разница между спектром до и после дискретизации

Разница составила 1.8189894035458565е-12.

- filtered.plot()
- 2 interpolated.plot()

Листинг 3.10: Разница между интерполированной волной и фильтрованной волной

Рис. 3.7: Разница между интерполированной волной и фильтрованной волной

filtered.max_diff(interpolated)

Листинг 3.11: Разница между интерполированной волной и фильтрованной волной

Разница составила 5.56290642113787е-16.

Умножение на импульсы даёт 4 сдвинутых копии исходного спектра. Один из них проходит от отрицательного конца спектра к положительному, поэтому в спектре от выбранной волны есть 5 пиков.

Выводы

Во время выполнения лабораторной работы получены навыки работы с эффектом выборки и представил теорему выборки, которая объясняет сглаживание и частоту сворачивания. Также научился применять эти знания на практике.