Covariance Matrix Adaptation Evolution Strategy

CMA-ES for short

Made by:

- Daniel Holm Johansen
- Silas Larsen
- Villads Rendtorff Zimakoff

What is CMA-ES?

Biological inspiration:

- Mutation / Recombination
- Survival of the fittest
- Adaptation

Applications:

- Numerical optimization of complicated functions
- Can be used similar to MLE's

Algorithm general idea

Source: "CMA-ES" by Wikipedia

Moving the mean

Source: Hansen N. "The CMA-ES (and its application to space flight trajectory optimization)", INRIA 2011.

Moving the mean

$$\boldsymbol{m}^{(g+1)} = \sum_{i=1}^{p} w_i \, \boldsymbol{x}_{i:\lambda}^{(g+1)}$$

$$\sum_{i=1}^{\mu} w_i = 1, \qquad w_1 \ge w_2 \ge \dots \ge w_{\mu} > 0$$

Source: Hansen N. "The CMA Evolution Strategy: A Tutorial", INRIA 2023

Moving the mean

$$m^{(g+1)} = m^{(g)} + c_{\text{m}} \sum_{i=1}^{r} w_i (x_{i:\lambda}^{(g+1)} - m^{(g)})$$

Source: Hansen N. "The CMA Evolution Strategy: A Tutorial", INRIA 2023

Understanding the Covariance

$$C^{(g+1)} = (1 - c_1 - c_{\mu} \sum w_j) C^{(g)} + c_1 \underbrace{p_c^{(g+1)} p_c^{(g+1)}}_{\text{rank-one update}}^{\mathsf{T}} + c_{\mu} \underbrace{\sum_{i=1}^{\lambda} w_i \, y_{i:\lambda}^{(g+1)} \left(y_{i:\lambda}^{(g+1)} \right)^{\mathsf{T}}}_{\text{rank-}\mu \text{ update}}$$
(30)

Source: Hansen N. "The CMA Evolution Strategy: A Tutorial", INRIA 2023

Covariance:

- Alters the form of the distribution (rank-µ update)
- 2. Aligns the distribution to the best points (rank-one update)
- 3. Applies the new information based on c_1 and c_μ

Aligning and deforming

Controlling the step size

Evolution Path p_{σ} :

We need precision: Take Smaller Steps

Source: Hansen N. "The CMA Evolution Strategy: A Tutorial", INRIA 2023

Controlling the step size

$$\sigma^{(g+1)} = \sigma^{(g)} \exp \left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\|\boldsymbol{p}_{\sigma}^{(g+1)}\|}{\mathsf{E}\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|} - 1 \right) \right)$$

Conclusion

CMA-ES Is Not Perfect But:

- Powerful in bumpy landscapes, good at avoiding local minima
- Can be tuned for specific problems
- Efficient in higher dimensions:
 - CMA-ES: N(dim) = lambda
 - Raster Scan: N(dim) ~ x^{dim}