```
Binary → Unsigned:

0 0 0 1

x 3^3 3^2 3^1 3^0

0 0 0 1

∴ 1
```

there's no -ve 0 (-0) in math so binary 1000 \rightarrow unsigned is 0

🏂 2's complement is always I value smaller than I's complement 🌴

kepresent the number -9210 in	Binary avitnmetic w	ith 8-bi	t 2's (o	molement :
(i) 8-bit signed magnitude	(i) 33+92		•	,
signed = -9210	2[33 a [9 2			
unsigned = 9210	2 16 1 2 H6 () ın	0001	1011100
	2 8 0 2 23			(011100
• 1	a [4 0 a [11]	, ,		
2122	2 2 0 2 5 1	UI	1110	0100011
	3 1 0 3 3	ວ 'ໄ		
2 5 ((1 = negative.)	3 0 1 3 1	011	111	0100100
	10 1	•		
3/3 1	(ii) 33-92 ⇒ 33+(-92		, ,	
2 1 0	33 215 = 1011111	10	11111 00100	
a 0 1 1	92 2'5 = 0100100		00100	•
(ii) 8-bit 2's complement	- 00 00 0 = 1100 CP -	1100	0 0 1 1	
1.3 = 20000011 (10100011+1)				
2'1 = 100 00011 = 10100100	(ORRELTION: 33 ⇒ 00	100001		
<u>₹0100100</u> ¾	92 > 01011100			
		00011+1 -	7 101001	00
Convert the following numbers to 6-bit	(i) 00100001 + 010111	00		
2's complement notation k add them:	= 01111101			
(i)-16+11 (ii) 16-11	(ii) + 10100001			
	11000101			
16 → 01000 b 11 → 001011	4-bit binary number	<u>signea</u>	1 13	1 313
-16-> 101 11 + = 110000 -11 → 110100 + 1 = 110101	0000	0	$\frac{1}{o}$	$\frac{2}{0}$
			1	1,
(i) 110000 (ii) 010000 + 001011 + 110101	0001	2	2	2
111011 7(1)000101	0010	3	3	3
	0011		3	4
# 2's complement can discard the extra bit	0100	4	· ·	•
	0101	5	5	5
Becquie	0110	6	6	6
1's -> 2's need +1 already	0111	4	7	4
save the process to create	1000	0	- 7	-8
memory to stone the discarded 1				,
memory to store the discarded l	:	:		·
memory to store the discarded i	:	:		:

V	range of bits
unsigned	0 - 2 ⁿ -1
signed	$-\left(\frac{2^{n}}{2}-1\right)<0<\left(\frac{2^{n}}{2}-1\right)$
5.2	$-\left(\frac{2^{h}}{2}\right) < 0 < \left(\frac{3^{h}}{2} - 1\right)$

* Overflow = out-of-range Ly Hou computer detect: ANJ: + 2 positive number results in -ve number · + 2 negative number results in the number

What are the ranges of number that can be represented in a computer if it's using...

(i) 4-bit 2's complement representation

ANS: -8 < 0 < +7

(11) 6-bit 2's complement representation

ANS: -32 < 0 < 31

(111) 8 - bit 2's complement representation

ANJ: -128 4 0 4 127

Use binary authmetic with 8-bit 2's complement representation to calculate

92 + 92 - result of operation accepted?

ANS: 92 -> 01011100

> results of operation is NOT ACCEPTED.

01011100 +01011100

10111000 (overflow)

184 is outside the range of numbers that can be represented in a computer using 8-bit 2's complement representation.

92+92=184

