

O teste de postos com sinal de Wilcoxon

Professor: Pedro M. Almeida-Junior

24 de maio de 2021

Departamento de Estatística (UEPB)

Wilcoxon

O teste de postos com sinal de

- Quando estudamos dados comportamentais, não é incomum que o pesquisador possa:
 - Dizer qual membro de um par é "maior do que", isto é, dizer o sinal da diferença em cada par;
 - Ordenar as diferenças de acordo com seus tamanhos absolutos.
- Isto é, o pesquisador pode fazer o julgamento de "maior do que"entre os dois valores de cada par, bem como entre quaisquer dois escores surgindo de dois pares quaisquer.
- Com tal informação, o pesquisador pode usar o teste de postos com sinal de Wilcoxon.

- Seja d_i o escore-diferença para qualquer par combinado, representando a diferença entre os escores dos pares sob dois tratamentos X e Y. Isto é, $d_i = X_i Y_i$.
- Para usar o teste de postos com sinal de Wilcoxon, ordene todos os d_i 's sem considerar o sinal: dê o posto 1 ao menor $|d_i|$, o posto 2 ao segundo menor, etc.
- Quando são atribuídos postos aos escores sem considerar o sinal, a um d_i igual a -1 é atribuído um posto menor do que a um d_i igual a +2 ou a -2.
- Então a cada posto será indicado o sinal da diferença. Isto é, indique quais postos surgiram de d_i's negativos e quais postos surgiram de d_i's positivos.

- A hipótese nula é que os tratamentos X e Y são equivalentes, isto é, eles são amostras de populações com a mesma mediana e a mesma distribuição contínua.
- Se $\underline{H_0}$ é verdadeira, devemos esperar encontrar alguns dos maiores d_i 's favorecendo o tratamento X e alguns favorecendo o tratamento Y.
- Isto é, quando não existe diferença entre X e Y, alguns dos maiores postos devem vir de di's positivos enquanto outros devem vir de di's negativos.

- Se somamos os postos com sinal + e aqueles com sinal -, esperamos que as duas somas fossem quase iguais quando H_0 é verdadeira.
- Mas se a soma dos postos positivos é muito diferente da soma dos postos negativos, inferiríamos que o tratamento X é diferente do tratamento Y, e, assim, rejeitaríamos H₀.
- Para desenvolver um teste, devemos definir duas estatísticas:

 $T^+ = a$ soma dos postos dos d_i 's positivos;

 $T^- = a$ soma dos postos dos d_i 's negativos

EMPATES

- Ocasionalmente os dois escores de algum par são iguais.
- Nenhuma diferença entre os dois tratamentos é observada naquele par, de modo que $X_i Y_i = d_i = 0$.
- Tais pares são retirados da análise e o tamanho da amostra é reduzido.
 Assim, N é o número de pares combinados menos o número de pares para os quais X = Y.

Outra espécie de empate

- Dois ou mais d'_is podem ser de mesma magnitude. Atribuímos a tais casos de empate o mesmo posto.
- Se houver empates entre postos, aplicam-se os sinais aos postos médios;
- **Exemplo:** Se $|d_1| = |d_2| = |d_3|$, sendo $d_1, d_2 > 0$ e $d_3 < 0$, então, os postos seriam $\mathsf{Posto}_{d_1} = 2, \mathsf{Posto}_{d_2} = 2, \mathsf{Posto}_{d_3} = -2$.

Pequenas amostras

- Seja T⁺ a soma dos postos para os quais as diferenças d_i são positivas.
 A Tabela H do Apêndice em Siegel dá vários valores de T⁺ e suas probabilidades associadas de ocorrência sob a suposição de não haver diferença entre X e Y.
- Isto é, se um T⁺ observado é igual ao valor dado na Tabela H do Apêndice para um particular tamanho N da amostra, a probabilidade de um T⁺ tão grande ou maior que o observado é tabulada.
- Se esta probabilidade é menor ou igual ao nível de significância escolhido, a hipótese nula pode então ser rejeitada nesse nível de significância.

Exemplo

Exemplo: Um experimento foi criado para determinar se crianças entre 10 e 16 semanas de idade percebem a sincronia entre movimentos dos lábios e sons de fala em conversas normais. Bebês foram colocados em uma sala à prova de som com uma janela através da qual eles poderiam ver uma pessoa falando. Esta pessoa falou em um microfone e o som foi transmitido diretamente para a sala (em sincronia) ou depois de um atraso de 400 milésimos de segundo (fora de sincronia). A quantidade de tempo durante o qual o bebê olhou a face na janela foi medida em cada situação. Foi argumentado que, se um bebê é capaz de discriminar as duas condições, as quantidades de tempo utilizadas olhando para o rosto na janela seriam diferentes, apesar de não haver nenhuma hipótese a priori concernente com a condição que justificaria uma maior atenção.

Hipóteses

- Hipótese nula (H₀): A quantidade de tempo que o bebê gasta olhando para a janela não depende do tipo de apresentação. Em termos do teste de postos com sinal de Wilcoxon, a soma dos postos positivos não difere da soma dos postos negativos.
- Hipótese alternativa (H₁): a quantidade de tempo que o bebê gasta olhando depende do tipo de apresentação, isto é, a soma dos postos positivos difere da soma dos postos negativos.

O teste de postos com sinal de Wilcoxon

- Teste estatístico: O teste de postos com sinal de Wilcoxon é escolhido porque o estudo utiliza duas amostras relacionadas e elas fornecem escores-diferença que podem ser ordenados em postos de magnitude absoluta.
- Nível de significância: Sejam $\alpha=0,01$ e N=12 o número de pares.

Distribuição amostral

- **Distribuição amostral:** A Tabela H do Apêndice dá valores de probabilidades da cauda superior da distribuição amostral de T^+ para $N \leq 15$. ($P(T^+ \geq c)$, em que c é a soma observada)
- Região de rejeição Como a direção da diferença não é previamente predita, uma região de rejeição bilateral é apropriada. A região de rejeição consiste de todos os valores de T^+ que sejam tão grandes que a probabilidade associada com sua ocorrência quando H_0 é verdadeira seja menor ou igual a $\alpha=0,01$ para um teste bilateral.

Sujeito Em sincronia Fora de sincronia d Posto de d DC 20,3 50,4 30,1 10 MK 17,0 87,0 70,0 12 VH 6,5 25,1 18,6 6 JM 25,0 28,5 3,5 3 SB 5,4 26,9 21,5 8 MM 29,2 36,6 7,4 5 RH 2,9 1,0 -1,9 -1 DJ 6,6 43,8 37,2 11 JD 15,8 44,2 28,4 9 ZC 8,3 10,4 2,1 2 CW 34,0 29,9 -4,1 -4 AF 8,0 27,7 19,7 7						
MK 17,0 87,0 70,0 12 VH 6,5 25,1 18,6 6 JM 25,0 28,5 3,5 3 SB 5,4 26,9 21,5 8 MM 29,2 36,6 7,4 5 RH 2,9 1,0 -1,9 -1 DJ 6,6 43,8 37,2 11 JD 15,8 44,2 28,4 9 ZC 8,3 10,4 2,1 2 CW 34,0 29,9 -4,1 -4	Suje	ito	Em sincronia	Fora de sincronia	d	Posto de d
VH 6,5 25,1 18,6 6 JM 25,0 28,5 3,5 3 SB 5,4 26,9 21,5 8 MM 29,2 36,6 7,4 5 RH 2,9 1,0 -1,9 -1 DJ 6,6 43,8 37,2 11 JD 15,8 44,2 28,4 9 ZC 8,3 10,4 2,1 2 CW 34,0 29,9 -4,1 -4	D	2	20,3	50,4	30,1	10
JM 25,0 28,5 3,5 3 SB 5,4 26,9 21,5 8 MM 29,2 36,6 7,4 5 RH 2,9 1,0 -1,9 -1 DJ 6,6 43,8 37,2 11 JD 15,8 44,2 28,4 9 ZC 8,3 10,4 2,1 2 CW 34,0 29,9 -4,1 -4	MI	<	17,0	87,0	70,0	12
SB 5,4 26,9 21,5 8 MM 29,2 36,6 7,4 5 RH 2,9 1,0 -1,9 -1 DJ 6,6 43,8 37,2 11 JD 15,8 44,2 28,4 9 ZC 8,3 10,4 2,1 2 CW 34,0 29,9 -4,1 -4	VI	Н	6,5	25,1	18,6	6
MM 29,2 36,6 7,4 5 RH 2,9 1,0 -1,9 -1 DJ 6,6 43,8 37,2 11 JD 15,8 44,2 28,4 9 ZC 8,3 10,4 2,1 2 CW 34,0 29,9 -4,1 -4	J١	1	25,0	28,5	3,5	3
RH 2,9 1,0 -1,9 -1 DJ 6,6 43,8 37,2 11 JD 15,8 44,2 28,4 9 ZC 8,3 10,4 2,1 2 CW 34,0 29,9 -4,1 -4	SE	3	5,4	26,9	21,5	8
DJ 6,6 43,8 37,2 11 JD 15,8 44,2 28,4 9 ZC 8,3 10,4 2,1 2 CW 34,0 29,9 -4,1 -4	M	V	29,2	36,6	7,4	5
JD 15,8 44,2 28,4 9 ZC 8,3 10,4 2,1 2 CW 34,0 29,9 -4,1 -4	Rł	Н	2,9	1,0	-1, 9	-1
ZC 8,3 10,4 2,1 2 CW 34,0 29,9 -4,1 -4	D.	J	6,6	43,8	37,2	11
CW 34,0 29,9 -4,1 -4	JE)	15,8	44,2	28,4	9
- /- /	Z	2	8,3	10,4	2,1	2
AF 8,0 27,7 19,7 7	CV	V	34,0	29,9	-4, 1	-4
	Al	=	8,0	27,7	19,7	7

• **Decisão:** A soma dos postos positivos é $T^+ = 10 + 12 + 6 + 3 + 8 + 5 + 11 + 9 + 2 + 7 = 73$. A Tabela H do Apêndice de Siegel mostra que quando N = 12 e $T^+ = 73$, rejeitamos a hipótese nula no nível $\alpha = 0,01$ para um teste bilateral pois a probabilidade tabelada (0,0024) corresponde a 0,0048 para um teste bilateral.

Portanto, neste estudo, rejeitamos H_0 em favor de H_1 e concluímos que os bebês são capazes de discriminar entre fala e movimento dos lábios em sincronia e fora de sincronia.

Exemplo: Para verificar se o tipo de pneu utilizado tem ou não influência no consumo de gasolina, fez-se o seguinte experimento: oito carros diferentes, equipados com pneus radiais, percorreram um determinado trajeto; a seguir, os mesmos carros foram equipados com pneus comuns e percorreram o mesmo trajeto. Os consumos (em $\rm km/$ litro) para cada carro foram os seguintes:

Carro	1	2	3	4	5	6	7	8
Pneus Radiais	26,5	14,3	12,7	20,2	15,1	16,9	23,4	16,4
Pneus Comuns	25,8	14,5	12,1	19,9	15,1	15,8	23,0	16,0

Testar, ao nível $\alpha=0,05$, se o tipo de pneu utilizado tem ou não influência no consumo de gasolina.

Grandes Amostras

- Quando N é maior do que 15, a Tabela H do Apêndice não pode ser usada.
- No entanto, pode ser mostrado que em tais casos a soma dos postos,
 T⁺, tem distribuição aproximadamente normal com

$$\mathsf{M\'edia}\ = \mu_{\mathcal{T}^+} = \frac{\mathit{N(N+1)}}{4},$$

Variância =
$$\sigma_{T^+}^2 = \frac{N(N+1)(2N+1)}{24}$$

Portanto,

$$z = \frac{T^+ - \mu_{T^+}}{\sigma_{T^+}} = \frac{T^+ - N(N+1)/4}{\sqrt{N(N+1)(2N+1)/24}}$$

tem distribuição aproximadamente normal com média 0 e variância 1.

Exemplo (Para grandes amostras): Detentos em uma prisão federal serviram como sujeitos em um estudo do tipo tomada de decisão. Primeiro, a utilidade dos cigarros (valor subjetivo) para os prisioneiros foi medida individualmente, levando em conta que cigarros têm um valor negociável entre os prisioneiros. Usando a função utilidade de cada sujeito, o investigador então tenta predizer as decisões que o detento tomaria em um jogo no qual ele repetidamente teria que escolher entre duas diferentes (variando) situações de risco e nas quais cigarros podem ser ganhados ou perdidos.

Prisioneiro	d	Posto de d
1	-2	-11,5
2	0	-
3	0	-
4	1	4,5
5	0	-
6	0	-
7	4	20,0
8	4	20,0
9	1	4,5
10	1	4,5
11	5	23,0
12	3	16,5
13	5	23,0
14	3	16,5
15	-1	-4,5
16	1	4,5
17	-1	-4,5
18	5	23,0
19	8	25,5
20	2	11,5
21	2	11,5
22	2	11,5
23	-3	-16,5
24	-2	-11,5
25	1	4,5
26	4	20,0
27	8	25,5
28	2	11,5
29	3	16,5
30	-1	-4,5

Hipóteses

- Hipótese nula (H₀): Não há diferença entre as demoras ou tempos de resposta de decisões incorretamente preditas e corretamente preditas.
- Hipótese Alternativa (H₁): as demoras das decisões incorretamente preditas são maiores do que as demoras de decisões corretamente preditas.

Nível de Significância

- **Nível de significância:** Seja $\alpha = 0,01$ e N é o número de prisioneiros que serviram como sujeitos = 30. (Este N será reduzido se d de algum prisioneiro for zero.)
- Distribuição amostral: Quando H₀ é verdadeira, os valores de z calculados têm distribuição assintoticamente normal com média 0 e variância 1. Logo,a probabilidade associada com a ocorrência sob H₀ de valores tão extremos quanto um z obtido é dado via valores Tabelados da distribuição normal padrão.

Região de rejeição: Como a direção da diferença é predita, a região de rejeição unilateral. T⁺, a soma dos postos positivos, será a soma dos postos daqueles prisioneiros cujos d's estão na direção predita. A região de rejeição consiste de todos os z 's (obtidos de T⁺) que são tão extremos que a probabilidade associada com sua ocorrência quando H₀ é verdadeira é menor ou igual a α = 0,01.

Teste

- O escore-diferença (d_i = X_i Y_i) foi obtido para cada sujeito subtraindo seu tempo mediano em chegar a decisões preditas corretamente, Y_i, de seu tempo mediano em chegar a decisões preditas incorretamente, X_i.
- Para os dados fornecido no exemplo, $T^+ = 298$. Então,

$$z = \frac{T^{+} - \mu_{T^{+}}}{\sigma_{T^{+}}}$$

$$= \frac{T^{+} - N(N+1)/4}{\sqrt{N(N+1)(2N+1)/24}}$$

$$= \frac{298 - (26)(27)/4}{\sqrt{(26)(27)(53)/24}}$$

$$= 3, 11$$

Passos no uso do teste de postos com sinal de Wilcoxon:

- 1. Para cada par combinado de observações, X_i e Y_i , determine a diferença com sinal $d_i = X_i Y_i$ entre as duas variáveis.
- 2. Atribua postos a estes d_i 's sem considerar os sinais. Para d_i 's empatados, atribua a média dos postos empatados.
- 3. Atribuir em cada posto o sinal (+ ou -) do d que ele representa.
- 4. Determine N, o número de d_i 's não-nulos.
- 5. Determine T^+ , a soma dos postos que têm um sinal positivo.
- 6. O procedimento para determinar a significância do valor observado de \mathcal{T}^+ depende do tamanho de \mathcal{N} :
 - (i) Se N é 15 ou menos, a Tabela H do Apêndice de Siegel deve ser usado para obter as probabilidades associadas com vários valores de \mathcal{T}^+ .
 - (ii) Se *N* é maior do que 15 , calcule o valor de *z* usando a pela aproximação da distribuição normal.