Đề kiểm tra PHƯƠNG PHÁP TÍNH

(Thời gian 45 phút)

Câu 1

Tìm nghiệm xấp xỉ của phương trình $x^4 - 3x + 1 = 0$ trên đoạn (1,2), với 2 lần lặp.

- 1.1. Sử dụng phương pháp chia đôi.
- 1.2. Sử dụng phương pháp dây cung.
- 1.3. Sử dụng phương pháp lặp.
- 1.4. Sử dụng phương pháp Newton.

Tìm nghiệm xấp xỉ của phương trình $x^4 - 3x + 1 = 0$ trên đoạn (0,1), với 2 lần lặp.

- 1.5. Sử dụng phương pháp chia đôi.
- 1.6. Sử dụng phương pháp dây cung.
- 1.7. Sử dụng phương pháp lặp.
- **1.8.** Sử dụng phương pháp **Newton**.

Tìm nghiệm xấp xỉ của phương trình $x^4 - 4x - 1 = 0$ trên đoạn (1,2), với 2 lần lặp.

- 1.9. Sử dụng phương pháp chia đôi.
- 1.10. Sử dụng phương pháp dây cung.
- 1.11. Sử dụng phương pháp lặp.
- **1.12.** Sử dụng phương pháp **Newton**.

Tìm nghiệm xấp xỉ của phương trình $x^3 - 2x - 10 = 0$ trên đoạn (2,3), với 2 lần lặp.

- 1.13. Sử dụng phương pháp chia đôi.
- 1.14. Sử dụng phương pháp dây cung.
- 1.15. Sử dụng phương pháp lặp.
- **1.16.** Sử dụng phương pháp **Newton**.

Tìm nghiệm xấp xỉ của phương trình $x^3 + 3x^2 + 5 = 0$ trên đoạn (-3, -2), với 2 lần lặp.

- 1.17. Sử dụng phương pháp chia đôi.
- 1.18. Sử dụng phương pháp dây cung.
- **1.19.** Sử dụng phương pháp **Newton**.

Câu 2

Giải hệ phương trình sau bằng phương pháp phân rã Doolittle

$$2.1 \begin{cases} x_1 + 3x_2 + 3x_3 = 1 \\ x_2 + 2x_3 = 2 \\ 2x_2 + 3x_3 = 1 \end{cases}$$

2.4.
$$\begin{cases} 2x_1 + 2x_2 + 3x_3 = 3\\ x_2 + 2x_3 = 2\\ 2x_2 + 3x_3 = 2 \end{cases}$$

2.2.
$$\begin{cases} x_1 + 4x_2 + 3x_3 = 1 \\ x_2 + 2x_3 = 1 \\ 2x_2 + 3x_3 = 2 \end{cases}$$

2.5.
$$\begin{cases} 2x_1 + 2x_2 + 3x_3 = 1\\ x_2 + 2x_3 = 2\\ 2x_2 + 3x_3 = 3 \end{cases}$$

2.3.
$$\begin{cases} 4x_1 + 2x_2 + 3x_3 = 1 \\ x_2 + 2x_3 = 2 \\ x_2 + 3x_3 = 2 \end{cases}$$

2.6.
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1 \\ x_2 + 2x_3 = 2 \\ 3x_2 + 3x_3 = 3 \end{cases}$$

Giải hệ phương trình sau bằng phương pháp phân rã Cholesky

2.7.
$$\begin{cases} 4x_1 + 2x_2 + 3x_3 = 1\\ x_2 + 2x_3 = 2\\ x_2 + 3x_3 = 2 \end{cases}$$

2.10.
$$\begin{cases} x_1 + 3x_2 + 3x_3 = 1 \\ x_2 + 2x_3 = 2 \\ 2x_2 + 3x_3 = 1 \end{cases}$$

2.8.
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1 \\ x_2 + 2x_3 = 2 \\ 3x_2 + 3x_3 = 3 \end{cases}$$

$$2.11 \begin{cases} 2x_1 + 2x_2 + 3x_3 = 3 \\ x_2 + 2x_3 = 2 \\ 2x_2 + 3x_3 = 2 \end{cases}$$

2.9.
$$\begin{cases} 2x_1 + 2x_2 + 3x_3 = 1 \\ x_2 + 2x_3 = 2 \\ 2x_2 + 3x_3 = 3 \end{cases}$$

2.12.
$$\begin{cases} x_1 + 4x_2 + 3x_3 = 1 \\ x_2 + 2x_3 = 1 \\ 2x_2 + 3x_3 = 2 \end{cases}$$

<u>Câu 3</u>

3.1. Sử dụng phương pháp Lagrange tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	0	2	3

3.2. Sử dụng phương pháp Newton tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
γ_i	0	2	3

3.3. Sử dụng phương pháp Newton tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
-------	---	---	---

y_i	0	2	3	
3.4. Tính ph	urong trình	n hồi quy tu	yến tính qu	a các
	0	1	2	

	`	,	9	
3 4 T/ 1 1	\ 1 1 ^ .	4 A 47 1	/ 4'^ 1~ 1	1. ~
★ /I I inh nhirana t	rinh hai aliv	flitten finh all	ia cac diem dir l	11211
3.4. Tính phương t	i iiiii iioi uuv	tuvcii tiiiii uu	ia cac uiciii uu i	IICu
- · · · · · · · · · · · · · · · · ·		11.		

x_i	0	1	2
y_i	0	2	3

3.5. Sử dụng phương pháp Lagrange tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	0	1	4

3.6. Sử dụng phương pháp Newton tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	0	1	4

3.7. Sử dụng phương pháp Neville tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	0	1	4

3.8. Tính phương trình hồi quy tuyến tính qua các điểm dữ liệu

x_i	0	1	2
y_i	0	1	4

3.9. Sử dụng phương pháp Lagrange tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	-1	0	2

3.10. Sử dụng phương pháp Newton tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
v_i	-1	0	2

3.11. Sử dụng phương pháp Neville tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	-1	0	2

3.12. Tính phương trình hồi quy tuyến tính qua các điểm dữ liệu

x_i	0	1	2
v_i	-1	0	2

3.13. Sử dụng phương pháp Lagrange tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	-1	2	4

3.14. Sử dụng phương pháp Newton tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	-1	2	4

3.15. Sử dụng phương pháp Neville tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	-1	2	4

3.16. Tính phương trình hồi quy tuyến tính qua các điểm dữ liệu

x_i	0	1	2
y_i	-1	2	4

3.17. Sử dụng phương pháp Lagrange tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	-1	1	2

3.18. Sử dụng phương pháp Newton tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
v_i	-1	1	2

3.19. Sử dụng phương pháp Neville tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	-1	1	2

3.20. Tính phương trình hồi quy tuyến tính qua các điểm dữ liệu

χ_i	0	1	2
v_i	-1	1	2