

Графовые задачи в терминах линейной алгебры

Рустам Азимов

2022г.

Примеры задач на графах

- ▶ Обход графа
- Нахождение транзитивного замыкания графа
- ▶ Поиск путей в графе
 - ▶ Могут фиксироваться начальная и/или конечная вершины пути
 - ▶ Могут накладываться дополнительные ограничения на искомые пути (ищем кратчайший путь, с минимальным весом и т.д.)
- Задача о максимальном потоке
- Задача о минимальном остове
- Подсчёт треугольников в графе
- Поиск максимального паросочетания

Сложность анализа графов

- Современные компьютерные архитектуры хороши в обработке линейных и иерархических структур данных
 - lists
 - stacks
 - trees
- ▶ Требуется огромный объём произвольного доступа к данным, СРU часто пропускает кэш и реализация параллелизма трудна
- Pre-fetching и branch prediction малоэффективны
- ► Нужно использовать достаточно выразительную модель данных и вычислений, которые также удобны и портативны

Решение графовых задач с помощью линейной алгебры

- Уже давно известно о том, что граф может быть представлен в виде разреженной матрицы смежности
- ▶ А операции с графом могут выполняться с помощью линейных алгебраических операций
- ▶ Но технологии были недостаточно развиты для эффективной реализации данной идеи
- В настоящее время, с появлением эффективных алгоритмов для разреженных массивов и матриц, данный подход стал очень популярен

Мотивация

- Многие графовые алгоритмы сформулированные в терминах линейной алгебры более компактны и просты для понимания
- Они легки в реализации из-за возможности использовать существующие высокоуровневые библиотеки для вычисления операций линейной алгебры
- ▶ Они очень эффективны на практике
 - Существующие библиотеки используют широкий класс оптимизаций, например, параллельное вычисление
 - ▶ Такие алгоритмы более явно определяют шаблон доступа к данным, что также может быть использованно для оптимизаций

Пример

Матрица смежности

Транспонированная матрица смежности

\mathbf{A}^{T}	①	2	3	4	(5)	6	7
1				1			
2	1						
① ② ③				1		1	1
4	1						1
(4)(5)(6)(7)		1					1
6			1		1		
7		1					

Обход графа

Стандарт GraphBLAS

- ▶ Большой популярностью пользуется стандарт GraphBLAS, использующий вышеизложенные идеи
- ▶ Цель: разделить проблемы разработки аппаратных средств, библиотек и приложений
- ► **GraphBLAS** (2013 г.) определяет стандартные строительные блоки для графовых алгоритмов на языке линейной алгебры
- ▶ Для многих графовых алгоритмов была найдена формулировка на языке линейной алгебры (BFS, PageRank, Graph coloring, Connected components, . . .)
- ▶ Для остальных неизвестно существует ли такая формулировка (DFS, ...)

Стандарт GraphBLAS

Стандарт GraphBLAS

- ▶ SuiteSparse:GraphBLAS высокопроизводительная реализация на языке Си
- Использует разреженный формат матриц, например, CSR
- ightharpoonup Умножает только на пересечении ненулевых индексов строки в матрице A и столбца матрицы B:

$$C(i,j) = \bigoplus_{k \in ind(A(i,:)) \cap ind(B(:,j))} A(i,k) \otimes B(k,j)$$

Графовые алгоритмы и полукольца

- Одним из способов сформулировать графовые алгоритмы на языке линейной алгебры является определение полукольца
- Полученные полукольца могут быть использованы для определения матрично-векторных операций соответствующих различным обходам графа и его анализу
- ightharpoonup Будем использовать нотацию Matlab $A \ op_1.op_2 \ v$
- ► Например, алгоритм Беллмана-Форда поиска кратчайшего пути может быть перезаписан в виде

$$d = d \min + A$$

Полукольцо в GraphBLAS

Определение

Алгебраическая структура $< D, \oplus, \otimes, 0 >$ является полукольцом в GraphBLAS, если:

- ► $< D, \oplus, 0 >$ является коммутативным моноидом с операцией сложения $\oplus: D \times D \to D$, где a, b, c $\in D$:
 - ightharpoonup Коммутативность: $a \oplus b = b \oplus a$
 - ightharpoonup Ассоциативность: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - ► Нулевой элемент: $a \oplus 0 = a$
- lacktriangle Оператор умножения является замкнутым бинарным оператором $\otimes: D imes D o D$

Математическое определение более строгое (\otimes — моноид и дистрибутивен над \oplus)

Примеры полуколец в GraphBLAS и их смысл

semiring	set	\oplus	\otimes	0	graph semantics
lor-land	$a \in \{F, T\}$	V	٨	F	connectivity
any-pair	arbitrary	any	pair	F/0	connectivity
integer arithmetic	$a \in \mathbb{N}$	+	×	0	number of paths
real arithmetic	$a \in \mathbb{R}$	+	×	0	strength of all paths
min-plus	$a \in \mathbb{R} \cup \{+\infty\}$	min	+	+∞	shortest path
max-plus	$a\in\mathbb{R}\cup\{-\infty\}$	max	+	$-\infty$	graph matching

Примеры семантик матрично-векторных произведений

Примеры семантик матрично-векторных произведений

Примеры семантик матрично-векторных произведений

Вопросы

- Какова семантика поэлементного умножения матриц смежности двух графов?
- ▶ Какова семантика поэлементного сложения матриц смежности двух графов?
- С помощью каких алгебраических операций над матрицей смежности ориентированного графа можно получить матрицу смежность его неориентированной версии?

Источники

- ▶ Книга: Kepner J., Gilbert J. "Graph algorithms in the language of linear algebra"
- Презентация: Gábor Szárnyas "Introduction to GraphBLAS"