IIT Jodhpur

Biological Vision and Applications Module 03-03: Bayesian Reasoning for Vision

Hiranmay Ghosh

Vision is an inverted problem

- We do not see an object
 - We see the image features caused by the objects
 - We try to find best explanation for the observed image features
- This is an example of abductive reasoning
 - Bayesian reasoning is a probabilistic formulation

Baye's Theorem and Inferencing

Recap

Baye's Theorem:

$$P(A = a_i \mid B = b_j) = \frac{P(B = b_j \mid A = a_i).P(A = a_i)}{P(B = b_j)}$$

$$P(A \mid B) = \frac{1}{\kappa} . P(B \mid A) . P(A)$$

where A and B are stochastic variables: $A = \{a_1, a_2, \dots, a_m\}, B = \{b_1, b_2, \dots, b_n\}$

We try to infer the fruit from its color

Joint Probability Distribution

		Fruits (A)					
		Banana	Apple	Guava	Total		
	Red	0.07	0.1	0.01	0.18		
Color	Green	0.21	0.04	0.07	0.32		
(B)	Yellow	0.42	0.06	0.02	0.5		
	Total	0.7	0.2	0.1	1		

$$P(banana \mid yellow) = \frac{0.42}{0.5} = 0.84$$

Using Baye's Theorem:

$$P(banana \mid yellow) = \frac{P(yellow|banana).P(banana)}{P(yellow)}$$
$$= \frac{\frac{0.42}{0.7}*0.7}{0.5} = 0.84$$

Why Baye's Theorem?

We do not have a complete knowledge about the world

		Fruits (A)				<u>.)</u>
		Banana	Apple			
	Red	0.1	0.5			
Color	Green	0.3	0.2			
(B)	Yellow	0.6	0.3			
	Total	1	1			

$$P(Banana) = 0.7, P(Apple) = 0.2, P(Others) = 0.1 \\$$

Posterior Priors
$$P(banana \mid yellow) = \frac{1}{\kappa} * P(yellow \mid banana).P(banana)$$

$$= \frac{1}{\kappa} * 0.6 * 0.7 = \frac{1}{\kappa} * 0.42$$

How do we get to know the priors and κ ?

- Priors: $P(banana), P(yellow \mid banana)$
 - ► From external sources / context
 - From prior observations
- Proportionality constant κ
 - We do not care
 - ► We need to find the best explanation
 - $P(banana \mid yellow) = \frac{1}{\kappa} * 0.42$
 - P(apple | yellow) = $\frac{1}{\kappa} * 0.06$
 - ▶ Banana is a better explanation than apple for observed yellow color

Bayesian Inference

Summary

- Hypothesis space: $\mathcal{H} = \{h_1, h_2 \dots h_m\}$
- Observable space: $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2 \dots \mathbf{d}_n\}$
- Prior belief: $P(h_1), \ldots$
- Conditional probabilities: $P(\mathbf{d}_1 \mid h_1), \ldots$
- Observed data: $\mathbf{d} \in \mathcal{D}$
 - Bayes formula: $P(h_i \mid \mathbf{d}) = \frac{P(\mathbf{d}|h_i).P(h_i)}{P(\mathbf{d})} = \frac{1}{\kappa}.P(\mathbf{d} \mid h_i).P(h_i)$
 - Inference by best explanation (abduction):
 - $h^* = \operatorname{argmax}_{h_i \in \mathcal{H}} P(h_i \mid \mathbf{d})$

Belief Revision

Prior belief and evidence

Baye's Theorem:
$$P(h_i \mid \mathbf{d}) = \frac{1}{\kappa} P(h_i) P(\mathbf{d} \mid h_i)$$

Prior belief Evidential support

- Bayesian inference is a synthesis of prior belief and evidence from observation
 - Key advantage over pure data-driven (machine learning) approach
- Challenge:
 - Strong prior belief: Takes lots of evidence to offset it
 - Weak prior belief: Susceptible to noisy data

Odds and log-Odds

$$\begin{aligned} \mathbf{odds}(banana,apple \mid yellow) &= \frac{P(banana|yellow)}{P(apple|yellow)} \\ &= \frac{\frac{1}{\kappa}*0.42}{\frac{1}{\kappa}*0.06} = 7 \\ \\ \mathbf{logodds}(banana,apple \mid yellow) &= log \frac{P(banana|yellow)}{P(apple|yellow))} \\ &= log(0.42) - log(0.06) \\ &\approx (-0.38) - (-1.22) = 0.84 \end{aligned}$$

Useful for comparing the plausibility of pairs of concepts

Composite data

Data item **d** may be composite: $\mathbf{d} = (d_1, d_2, \dots, d_n)$

		Fruits (A)				
		Banana	Apple			
	Red	0.1	0.5			
Color	Green	0.3	0.2			
(B)	Yellow	0.6	0.3			
	Total	1	1			

				F	ruits (A	()
		Banana	Apple			
	Long	0.8	0.3			
Shape	Round	0.2	0.7			
	Total	1	1			

$$P(Banana) = 0.7, P(Apple) = 0.2, P(Others) = 0.1$$

- $\mathcal{D} = \{(Red, Long), (Red, Round), \dots\}$
 - ► Conditionals: $P(Red, Long \mid Banana), ...$
 - Combinatorial explosion of data space makes modeling difficult
 - Data becomes sparse: there may be little data available for some rare combinations
- Assuming conditional independence of features

$$\begin{split} P(\mathbf{d}\mid h_i) &= P(d_1\mid h_i).P(d_2\mid h_i).\dots P(d_n\mid h_i) \\ P(h_i\mid \mathbf{d}) &= \frac{1}{\kappa}.P(h_i).\prod_{k=1}^n P(d_k\mid h_i) \\ \mathbf{logodds}(h_i,h_j\mid \mathbf{d}) &= P(h_i) - P(h_j) + \sum_{k=1}^n (P(d_k\mid h_i) - P(d_k\mid h_j)) \end{split}$$

Advantages of modeling with Elementary data items

- Easier to model the statistical dependency of a hypothesis h_i with an elementary data item d_k than the composite d
 - Model size is additive, rather than combinatorial
 - Statistically more dependable
- Robust inference can be made with a subset of observations
 - Robust against missing / erroneous observations
 - ► Generally, it is possible to use a few discriminatory data elements

Example: Robust inference

- To recognize the object as a car, you need not consider all visual features of a car
 - Robust against occlusions, etc.

- You can reconstruct the contour of the occluded part of the image
- Can it be done with deductive reasoning?

Incremental belief update

- $P(h_i \mid \mathbf{d}) = \frac{1}{r}.P(h_i).P(\mathbf{d} \mid h_i)$
- Assume that $\mathbf{d} = d_1, d_2, d_3, \dots$ represents a data stream (possibly infinite)
- After d₁ arrives
 - Posterior: $P(h_i \mid d_1) = \frac{1}{\kappa_i} . P(h_i) . P(d_1 \mid h_i)$
 - This posterior becomes the prior for the second observation
- After d₂ arrives
 - Posterior: $P(h_i \mid d_1, d_2) = \frac{1}{\kappa_0} P(h_i \mid d_1) P(d_2 \mid h_i) = \frac{1}{\kappa_0} P(h_i) P(d_1 \mid h_i) P(d_2 \mid h_i)$
 - This posterior becomes the prior for the third observation
- ... and so on
- System updates it's belief incrementally
 - Does sequence matter ?
- In practice, it may be possible to infer even before all data arrives

Example

		Fruits (A)			.)	
		Banana	Apple			
Color (B)	Red	0.1	0.5			
	Green	0.3	0.2			
	Yellow	0.6	0.3			
	Total	1	1			

				F	ruits (A	۱)
		Banana	Apple			
	Long	0.8	0.3			
Shape	Round	0.2	0.7			
_	Total	1	1			

P(Banana) = 0.7, P(Apple) = 0.2, P(Others) = 0.1

- We see a green and long fruit.
 - Is it a banana or an apple?
- Solution sketch:
 - Start with prior beliefs P(banana) and P(apple)
 - "Observe" features in any order
 - Revise posterior beliefs for the fruits progressively
 - Check whichever is higher
 - Alternatively, use **odds()** / **logodds()**

Emergent knowledge

- We observe d
 - Visual patterns: color, texture, shape
- We infer h
 - Semantic concepts: mountain, river, greenery
- The inferred entities are of <u>different kind</u> than the observed entities
- New knowledge is created
- Paradigm applicable to higher layers of cognition also

Limitation of Bayesian reasoning

- We cannot infer an entity unless we have a model for it
 - ▶ The fruit was green and round. Was it really a guava?
- A way to cope up for new concepts
 - Assume uniform probability distribution to begin with
 - Learn with experience
- Results are good only if
 - Prior belief is good
 - Model (conditionals) is good
 - Data (observation) is good
- Robust against imperfect priors / models / noisy data
 - ▶ We need best explanation, not accurate probability values

Does human mind follow Bayesian reasoning?

Both Yes & No

EdPuzzle: Cognitive bias

Quiz

Quiz 03-03

End of Module 03-03