

3A POWER OPERATIONAL AMPLIFIER

- OUTPUT CURRENT UP TO 3A
- LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGES
- SOAPROTECTION
- THERMAL PROTECTION
- ± 18V SUPPLY

DESCRIPTION

The L165 is a monolithic integrated circuit in Pentawatt® package, intended for use as power operational amplifier in a wide range of applications, including servo amplifiers and power supplies. The high gain and high output power capability provide superiore performance wherever an operational amplifier/power booster combination is required.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply voltage	± 18	V
V ₅ V ₄	Upper power transistor V _{CE}	36	V
V ₄ V ₃	Lower power transistor V _{CE}	36	V
Vi	Input voltage	Vs	
V _i	Differential input voltage	± 15	V
Io	Peak output current (internally limited)	3.5	Α
P _{tot}	Power dissipation at T _{case} = 90°C	20	W
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C

APPLICATION CIRCUITS

Figure 1. Gain > 10.

Figure 2. Unity gain configuration.

October 1991 1/9

PIN CONNECTION (top view)

SCHEMATIC DIAGRAM

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th-j-case}	Thermal resistance junction-case max	3	°C/W

ELECTRICAL CHARACTERISTICS (Vs = \pm 15 V, T_j = 25 °C unless otherwise specified)

Symbol	Parameter	Test	Condi	tions	Min.	Тур.	Max.	Unit	
Vs	Supply Voltage				± 6		± 18	V	
I _d	Quiescent Drain Current					40	60	mA	
I _b	Input Bias Current	$V_{s} = \pm 18 V$				0.2	1	μΑ	
Vos	Input Offset Voltage					± 2	± 10	mV	
Ios	Input Offset Current					± 20	± 200	nA	
SR	Slew-rate	G _v = 10				8		V/ue	
		G _v = 1 (°)				6		V/μs	
Vo	Output Voltage Swing	f = 1 kHz				27 24		V _{pp}	
		$f = 10 \text{ kHz} \qquad \qquad I_p = 0.3 \text{ A} \\ I_p = 3 \text{ A}$				27 23		V_{PP}	
R	Input Resistance (pin 1)	_ f = 1 KHz			100	500		ΚΩ	
G _v	Voltage Gain (open loop)	7 - 11012				80		dB	
e _N	Input Noise Voltage	B = 10 to 10 00	00 Hz			2		μV	
i _N	Input Noise Current	5 5 - 10 10 10 000 112				100		рА	
CMR	Common-mode Rejection	$R_g \leq 10 \text{ K}\Omega$	$R_g \le 10 \text{ K}\Omega$ $G_v = 30 \text{ dB}$			70		dB	
SVR	Supply Voltage Rejection	$R_g = 22 \text{ K}\Omega$		G _v = 10		60	dB	dB	
		$V_{ripple} = 0.5 V_{rm}$ $f_{ripple} = 100 Hz$	S	dB G _v = 100		40		dB	
	Efficiency	f = 1 kHz	I _p = 1	I.6 A; P _o = 5W		70		%	
		$R_L = 4 \Omega$	$I_p = 3$	3 A; P _o = 18 W		60		%	
T _{sd}	Thermal Shut-down Case	P _{tot} = 12 W			110		· °C		
	Temperature	P _{tot} = 6 W				130			

Figure 3. Open loop frequency response.

Figure 5. Large signal frequency response.

Figure 7. Safe operating area and collector characteristics of the protected power transistor.

Figure 4. Closed loop frequency response (circuit of figure 2).

Figure 6. Maximum output current vs. voltage [VCE] across each output transistor.

Figure 8. Maximum allowable power dissipation vs. ambient temperature.

Figure 9. Bidirectional DC motor control with TTL/CMOS/μP compatible inputs.

Figure 10. Motor current control circuit with external power transistors (I_{motor} > 3.5A).

Figure 11. High current tracking regulator.

Figure 12. Bidirectional speed control of DC motor (Compensation networks not shown).

Figure 13. Split power supply.

Figure 14. Power squarewave oscillator with independent adjustments for frequency and duty-cycle.

PENTAWATT PACKAGE MECHANICAL DATA

DIM.	mm			inch			
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			4.8			0.189	
С			1.37			0.054	
D	2.4		2.8	0.094		0.110	
D1	1.2		1.35	0.047		0.053	
Е	0.35		0.55	0.014		0.022	
F	0.8		1.05	0.031		0.041	
F1	1		1.4	0.039		0.055	
G		3.4		0.126	0.134	0.142	
G1		6.8		0.260	0.268	0.276	
H2			10.4			0.409	
H3	10.05		10.4	0.396		0.409	
L		17.85			0.703		
L1		15.75			0.620		
L2		21.4			0.843		
L3		22.5			0.886		
L5	2.6		3	0.102		0.118	
L6	15.1		15.8	0.594		0.622	
L7	6		6.6	0.236		0.260	
М		4.5			0.177		
M1		4			0.157		
Dia	3.65		3.85	0.144		0.152	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.