CENG 551 Probability and Stochastic **Processes for Engineers**

Week # 2
Conditional Probability and
Independence

Dr. Deniz Ozdemir Deniz.ozdemir@yasar.edu.tr Web: dozdemir.yasar.edu.tr

Plan for the Session

- Conditional Probability
- Three important tools:
 - Total probability theorem
 - Bayes' rule
 - Multiplication rule
- Independence

7 Axioms of Algebra of Events

$$A \cup B = B \cup A$$

Commutative Law

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Associative Law

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 Distributive Law

$$(A^c)^c = A$$

$$(A \cap B)^c = A^c \cup B^c$$

DeMorgan's Law

$$A \cap A^c = \emptyset$$

$$A \cap U = A$$

3

Axioms of Probability

- Sample Space: List of all possible outcomes
- Event: a subset of the sample space
- Every outcome is an event and certain set of outcomes are events
- Probability is assigned to events
- Axioms:
 - 1. For Any Event A, $P(A) \ge 0$
 - 2. P(U) = 1 (Normalization)
 - 3. If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

Axioms of Probability

- Axioms:
 - For Any Event $A, P(A) \ge 0$
 - P(U) = 1 (Normalization)
 - If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

From this and the prior Axioms one can determine the probability measure of an event by simply summing up all the measures for each of the finest grain events that the event consists of.

$$P({s_1, s_2, \dots, s_k}) = P(s_1) + \dots + P(s_k)$$

Axiom 3 needs strengthening

5

Axioms of Probability

- Axioms:
 - For Any Event $A, P(A) \ge 0$
 - P(U) = 1 (Normalization)
 - If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$
- Exercise:
 - If $A \cap B \neq \emptyset$, then $P(A \cup B) = ?$

Example: Radar Device

- Radar device, with 3 readings:
 - Low (0), Medium (?), High (1)
- Probabilistic Modeling:
 - Sample Space / Outcomes:
- Airplane Presence + Radar Reading
 - Probability Law:

Radar Airplane	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

7

Example: Radar Device

Radar Airplane	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

- Questions:
 - What is the probability that the radar reads a medium level (?) if there are no airplanes?
 - What is the probability of having an airplane?
 - What is the probability of the airplane being there if the radar reads low (0)?
 - When should we decide there is an airplane, and when should we decide there is none?

Ω

Conditional Probability

- $P(A \mid B)$ probability of A given that B occurred.
 - B becomes our universe
- **Definition:** Assuming $P(B)\neq 0$, we have

P(A | B) =
$$\frac{P(A \cap B)}{P(B)}$$

• Consequences: If $P(A) \neq 0$, $P(B) \neq 0$, then

$$P(A \cap B) = P(B).P(A \mid B) = P(A).P(B \mid A)$$

9

Example: Radar Device 2

- Event A: Airplane is flying above
- Event B: Something registers on radar screen

- $P(A \cap B) =$
- \bullet P(B) =
- P(A/B) =

\bullet \bullet \bullet
• •
l

. . . .

Radar Airplane	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

- Questions:
 - What is the probability that the radar reads a medium level (?) if there are no airplanes?
- Event "Absent"= Plane is absent.
 - P(Medium|Absent) =

11

Example: Die Roll

- Let Z be the event: min(X, Y) = 2
- Let M = max(X, Y)
 - P(M = 1 | Z) =
 - P(M = 2 | Z) =

Total Probability Theorem

- Divide and conquer.
- Partition of sample space into A_1 , A_2 , and A_3 .

• One way of computing P(B):

$$P(B) = P(A_1)P(B|A_1)$$
+ P(A_2)P(B|A_2)
+ P(A_3)P(B|A_3)

9/29/2012

40

Value of information

- You have 100 coins. Of these 99 are normal fair coins with a probability of 0.5 landing heads and 0.5 of landing tails. One *special* coin has heads on both sides: it always comes up heads.
 - Your friend picks a coin at random. What is the probability that the coin he picked is the *special* coin?
 - Your friend then flips the coin he picked 5 times and on every flip it comes up heads. <u>Using this additional</u> <u>information</u>, what is the probability that the coin he picked is the *special* coin?

9/29/2012

Bayes Rule

- Rules for combining evidence ("inference").
- We have "prior" probabilities: $P(A_i)$
- For each i, we know: $P(B|A_i)$
- We wish to compute: $P(A_i | B)$

9/29/2012

15

Bayes Theorem

• Sample Space Interpretation

$$P(A | B) = \frac{P(A | B)}{P(B | A_1)P(A_1) + P(B | A_2)P(A_2)}$$

Generalized $P(A_i | B) = \frac{P(B | A_i)P(A_i)}{\sum P(B | A_i)P(A_i)}$

9/29/2012

Example: Radar Device

Radar Airplane	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

• Questions:

- What is the probability of the airplane being there if the radar reads low (0)?
- P(Present|Low) =

2012

Monty Hall

- Three doors (A,B,C) behind one is your dream car, other two doors disappointment
- You select say door A. Monty, who knows where the car is, opens say door B which is empty (as he perpetrated) and offers to let you switch. What should you do?
 - Keep your door?
 - Switch the door?
 - Does not matter?

9/29/2012

Example 2: Coin Tosses

- Look at 3 tosses of a biased coin:
 - P(Head) = p, P(Tail) = 1-p
 - P(THT) =
 - P(1 head)=
 - P(first toss is H|1 head) =

9/29/201

24

Radar Device: Decision Rule

- Given the radar reading, what is the best decision about the plane?
- Criterion for decision:
 - Minimize "Probability of Error"
- Decision rules:
 - Decide absent or present for each reading.
- What is the optimal decision region?

Radar Airplane	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

9/29/2012

Radar Device: Decision Rule

- *P*(Error)=?
- Error={Present and decision is absent}

or {Absent and decision is present}

- Disjoint event!
- *P*(Error)=

Radar Airplane	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

9/29/2013

23

Exercise: HIV Testing

	HIV +	HIV -	
Test positive (+)	95	495	590
Test negative (-)	5	9405	9410
	100	9900	10000

P(HIV +) =

P(Test + | HIV +) =

P(Test -| HIV -) =

P(Test - | HIV +) =

P(Test + | HIV -) =

P(HIV + | Test +) =

Want these to be high

Want these to be low

This is one reason why we don't have mass HIV screening

9/29/2012

Multiplication Rule

• **Example 3**: Three cards are drawn from a 52-card deck. What's the probability that none of these cards is a heart?

$$P(A \cap B \cap C) = P(A)P(B \mid A)P(C \mid A \cap B)$$

2012

Extended Radar Example

• Threat alert affects the outcome

P(...| No Threat)

Radar Airplane	Low(0)	Medium(?)	High(1)
Absent	0.45	0.20	0.05
Present	0.02	0.08	0.20

P(...|Threat)

Radar Airplane	Low(0)	Medium(?)	High(1)
Absent	0.1125	0.05	0.0125
Present	0.055	0.22	0.55

- *P*(Threat) = Prior probability of threat = *p*
- What is *P*(airplane, radar)?

9/29/2012

Extended Radar Example

A=Airplane, R=Radar Reading

$$P(A, R) = P(A, R/\text{Threat}) \cdot P(\text{Threat}) + P(A, R/\text{No Threat}) \cdot P(\text{No Threat})$$

• If we let P(Threat) = p, then we get:

P(A, R)

Radar Airplane	Low(0)	Medium(?)	High(1)
Absent	0.45- 0.3375 <i>p</i>	0.20-0.15 <i>p</i>	0.05- 0.0375 <i>p</i>
Present	0.02+0.014 5p	0.08+0.14p	0.20+35p

Extended Radar Example

Radar Airplane	Low(0)	Medium(?)	High(1)
Absent	0.45- 0.3375 <i>p</i>	0.20-0.15p	0.05- 0.0375 <i>p</i>
Present	0.02+0.014 5n	0.08+0.14p	0.20+35p

- Given the Radar registered High, and a plane was absent, What is the probability that there was a threat?
- How does the decision region behave, as a function of p?

Exercise: Sensor Problem

- Assume that there are two chemical hazard sensors: A and B.
- Let P(A falsely detecting a hazardous chemical)=0.05 and the same for B.
- What is the probability of both sensors falsely detecting a hazardous chemical?
- If A and B are both "fooled" by the same chemical substance?

012

Independence of Two Events

Definition:

$$P(A \cap B) = P(A/B) P(B)$$

- Recall:
 - Independence of *B* from *A*: P(B|A) = P(B)
 - By symmetry, P(A/B) = P(A)
- Examples:
 - A and B are disjoint.
 - Independence of A^c and B
 - $P(A/B) = P(A/B^c)$

Independence

- Simply put P(A/B) = P(A)
- This implies that

$$P(A \cap B) = P(A/B) P(B) = P(A) P(B)$$

• Interpretation in Event space:

9/29/2012

22

Conditioning may affect independence

• Assume A and B are independent:

• If we are told that *C* occurred, are *A* and *B* independent?

9/29/2012

Example 1

- Two independent fair (p=1/2) coin tosses.
 - Event A: First toss is H
 - Event B: Second toss is H
 - P(A) = P(B) = 1/2

- Event C: The two outcomes are different.
- Conditioned on C, are A and B independent?

012

Example

- Choice between two unfair coins, with equal probability.
 - P(H|coin1) = 0.9
 - P(H|coin2) = 0.1
- Keep tossing the chosen coin.
- Are future tosses independent?
 - If we know we chose coin 1?
 - If we do not know which coin we chose?
 - Compare P(toss 11 is H)

P(toss 11 is H| first 10 tosses are H)

9/29/2012

Independence of a Collection of Events

- Intuitive definition:
 - Information about some of the events tells us nothing about probabilities related to remaining events.
 - Example: $P(A_1 \cup (A_2 \cap A_3) | A_4 \cap A_5) = P(A_1 \cup (A_2 \cap A_3))$
- Mathematical definition:
 - For any distinct i, j, ..., q $P(A_i \cap A_j \cap ... \cap A_q) = P(A_i) P(A_i) ... P(A_i)$

9/2012

Independence vs. Pairwise Independence

- Example 1 revisited
 - Two independent fair $(p=\frac{1}{2})$ coin tosses.
 - Event A: First toss is H
 - Event B: Second toss is H
 - Event C: The two outcomes are different.
 - P(A) = P(B) = P(C) = 1/2

- $P(C|A \cap B) =$
- Pairwise independence does not imply independence.

