Linear Algebra

Matrices Part 1: Matrices and Basic Operations

Automotive Intelligence Lab.

Contents

- Matrices as linear transformations
- Matrix: introduction
- Matrix math: addition, scalar multiplication, Hadamard multiplication
- Matrix multiplication
- Matrix operation: transpose
- Matrix operation: LIVE EVIL (order of operation)
- Symmetric matrix
- Symbolic Toolbox
- Summary

Matrices as linear transformations

Basics of Matrix-Vector Multiplication

- A matrix can be right-multiplied by a column vector but not a row vector, and a matrix can be left-multiplied by a row vector but not a column vector.
 - Matrix can be If v is column vector, Av and v^TA are valid, but Av^T and vA are invalid.
 - ightharpoonup M imes N matrix can be pre-multiplied by a 1 imes M matrix or post-multiplied by an N imes 1 matrix.
- Result of matrix-vector multiplication is always a vector.
 - Orientation of that vector depends on the orientation of the multiplicand vector.
 - Pre-multiplying a matrix by a row vector produces another row vector.
 - Post-multiplying a matrix by a column vector produces another column vector.

What is Linear "Transformation"

https://youtu.be/kYB8IZa5AuE?si=kkT5-ZZpr8mFER4f (English) https://youtu.be/35ESC-g49fY (Korean)

- The word transformation contains different meanings.
 - 1. Function
 - It takes vector as an input, and outputs another vector.
 - 2. Movement
 - Input vector over the corresponding output vector.

What is "Linear" Transformation

- If a transformation has following two properties, it is linear.
 - 1. All lines remain lines without getting ______.
 - 2. The origin must remain fixed in place.
- Because of these properties, grid lines remain parallel and evenly spaced.

Numerical Example of Linear Transformation

- Only consider where the two basis vectors \hat{i} , and \hat{j} each land.
- Example
 - ▶ Set vector as $\mathbf{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, meaning that \mathbf{v} equals $-1 \times \hat{\imath} + 2 \times \hat{\jmath}$.
 - ▶ After transformation, there is a property that grid lines remain parallel and evenly spaced.
 - v lands will be $-1 \times$ the vector where \hat{i} landed $+2 \times$ the vector where \hat{j} landed.
 - So, if started off as a certain linear combination of \hat{i} and \hat{j} , then ends up as that same of where those two vectors landed.

Generalization of Linear Transformation

- \blacksquare Write the example with more general coordinate, x and y.
 - \blacktriangleright x will land on x times the vector where $\hat{\imath}$ lands, $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, plus y times the vector where $\hat{\jmath}$ lands, $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$.
 - ▶ The summation will land at $\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow x \begin{bmatrix} 1 \\ -2 \end{bmatrix} + y \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1x + 3y \\ -2x + 0y \end{bmatrix}$.
- So, given any vector, we can calculate where that vector lands using this formula.

Numerical Example of Linear Transformation in 2×2 **Matrix**

- It is common to package coordinate into a 2×2 matrix
 - \triangleright Column 0 is where \hat{i} lands
 - Column 1 is where \hat{j} lands
- If we expand linear transformation into 2×2 matrix form,
 - ► Take the coordinates of the vector, multiply them by the corresponding columns of the matrix, then add together.

Generalization of Linear Transformation in 2×2 **Matrix**

- Write the example in general case, where your matrix has entries a, b, c, d.
 - \triangleright First column, a, c, as the place where the first basis vector lands.
 - Second column, **b**, **d**, as the place where the second basis vector lands.

"2x2 Matrix"
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$
2x2 Matrix Representation of Coordinates

Example of Transformation

- - \triangleright $\hat{\imath}$ remains fixed, so the first column of the matrix is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
 - \triangleright \hat{j} moves over to the coordinates $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, which become the second column of the matrix.
 - Nows how a shear transforms a vector by multiplying this matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ by vector $\begin{bmatrix} x \\ y \end{bmatrix}$.

Linear Transformation in Linearly Dependent Columns

- If the vectors that i-hat and j-hat land on are one vector is scaled version of another vector.
 - Linear transformation squishes all of 2D space onto the line, where those two vectors sit.
 - ▶ This 2D space is called the one-dimensional span of those two linearly dependent vectors.

Interpretations of Matrix-Vector Multiplication

Linear weighted combinations (Linear Transformation)

Put the individual vectors into corresponding elements of a vector, then multiply.

$$4\begin{bmatrix} 3 \\ 0 \\ 6 \end{bmatrix} + 3\begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 1 \\ 0 & 2 \\ 6 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Linear weighted combinations of column vectors

Linear weighted combinations of row vectors

Geometric transforms

- Think of a vector as a geometric line.
 - Matrix-vector multiplication becomes a way of that vector.
- Let's see the example of this on the next page.

Common Case in Matrix-Vector Multiplication

- Set 2×2 matrix and 2×1 vector for multiplication
 - ▶ Put the individual vectors into corresponding elements of a vector, then multiply.
 - Matrix M is set as [2,3; 2,1], and the vector x is a vector set as [1; 1.5].
 - ► Matrix *M* both the original vector.
- Main point of matrix-vector multiplication
 - Matrix houses a transformation that can rotate and stretch that vector.

$$\mathbf{M} = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1 \\ 1.5 \end{bmatrix}$$

Matrix and vector

$$\mathbf{M}\mathbf{x} = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 6.5 \\ 3.5 \end{bmatrix}$$

Matrix and vector multiplication

Result of the multiplication

Uncommon Case in Matrix-Vector Multiplication

- Set another vector as x = [1.5; 1].
 - ► Matrix-vector product is no longer rotated into a different direction.
 - Matrix-vector multiplication acted as if it were scalar-vector multiplication.
 - Note: Scalar-vector multiplication does not change the direction, but only changes magnitude
 - lt's because vector x is an of matrix *M* and the amount by which *M* stretched *x* is its
 - This phenomenon will be explained later.

$$\mathbf{M} = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1.5 \\ 1 \end{bmatrix}$$

$$x = \begin{bmatrix} 1.5 \\ 1 \end{bmatrix}$$

Matrix and vector

$$\mathbf{M}\mathbf{x} = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1.5 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

Matrix and vector multiplication

Result of the multiplication

Code Exercise of Matrix-Vector Multiplication

■ Code Exercise (05_01)

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Create a 2x2 matrix with random values
matrix = [[2,3]; [2,1]];
% Create a 2x1 vector with random values
vector = [1.5; 1]; % Generate a 2x1 vector with integers between 1 and 10
% Calculate the matrix-vector multiplication
result = matrix * vector;
% Create and visualize the original 2x1 vector
quiver(0, 0, vector(1), vector(2), 'AutoScale', 'off', 'MaxHeadSize', 1,
'LineWidth', 2);
hold on; % Keep the same figure for the next quiver plot
axis equal; % Keep the x and y scales the same
grid on; % Add a grid for better readability
title('Matrix and vector Multiplication');
xlabel('X');
ylabel('Y');
xlim([0, max([vector(1), result(1)])+1]); % Set limits based on the larger
ylim([0, max([vector(2), result(2)])+1]);
% Visualize the result of matrix-vector multiplication
quiver(0, 0, result(1), result(2), 'r', 'AutoScale', 'off', 'MaxHeadSize',
1, 'LineWidth', 1);
% Add a legend for clarity
legend('vector \itx', '\itMx', 'Location', 'Best');
hold off; % Release the figure for new plots
```


MATLAB code to calculate matrix-vector multiplication and result

Matrix: introduction

Introduction of Matrix

Matrix: Vector taken to the next level

- Highly versatile mathematical objects.
 - Equations
 - Geometric transformations
 - Positions of particles over time
 - Financial records
 - Myriad other things
- ► We can use matrix in either.
 - Rows: Observations (e.g., customers)
 - Columns: Features (e.g., purchases)

Visualizing

Small matrices can simply be printed out in full.

- ▶ But matrices that you work with in practice can be large.
 - Larger matrices will be visualized as
 - Numerical value of each element of the matrix maps onto a color in the image.
 - Maps are pseudo-colored.
 - Mapping of numerical value onto color is arbitrary.

Image of small and big matrix

Indexing and Slicing

- \blacksquare Matrices are indicated using bold-faced capital letters, like matrix A or M.
 - ▶ Size of a matrix is indicated using convention.
- Refer to specific elements of a matrix.
 - Indexing the row and column position.
 - ▶ Element in the 3rd row and 4th column of matrix *A* is indicated as $a_{3.4} =$

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 5 & 7 & 9 \\ 0 & 2 & 4 & 6 & 8 \\ 1 & 4 & 7 & 8 & 9 \end{bmatrix}$$

Example of matrix

- Extracting a subset of rows or columns of a matrix is done through slicing.
 - ► Following code shows an example of extracting a submatrix from rows 2-4 and columns 1-5 of a large matrix.

Code Exercise of Indexing and Slicing

- Extracting a subset of rows or columns of a matrix is done through slicing.
 - ▶ Remember that **MATLAB** uses **index start from 1**, not 0 like others.
- Code Exercise (05_02)

```
% Clear previous figures and vars
clc; clear; close all;
% Create a 6x10 matrix with random values
originalMatrix = rand(6, 10);
% Extract submatrix from rows 2 to 4 and columns 1 to 5
subMatrix = originalMatrix(2:4, 1:5);
% Display
disp("Original Matrix");
disp(originalMatrix);
disp("Sub-Matrix");
disp(subMatrix);
% Visualize the original matrix
figure; % Create a new figure for the original matrix
imagesc(originalMatrix); % Display the original matrix as a color image
title('Original Matrix');
xlabel('Columns');
ylabel('Rows');
colorbar; % Show a color scale
axis equal tight; % Adjust axes to fit tightly around the data
% Visualize the sub-matrix
figure; % Create a new figure for the sub-matrix
imagesc(subMatrix); % Display the sub-matrix as a color image
title('sub-Matrix');
xlabel('Columns');
vlabel('Rows');
colorbar; % Show a color scale
axis equal tight; % Adjust axes to fit tightly around the data
```


Special Matrices

- Number of matrices is infinite.
 - Infinite number of ways of organizing numbers into a matrix.
 - ▶ But matrices can be described using a relatively small number of characteristics.
 - It creates "families" or categories of matrices.
 - Square, diagonal, triangular, identity, zero
 - These categories appear in certain operations.
 - They have certain useful properties.
 - Some categories of matrices are used so frequently that they have dedicated MATLAB functions to create them.

Special Matrices: Random Numbers

- Matrix can contain numbers drawn at random from some distribution, typically (a.k.a. normal).
 - Random-numbers matrices
 - Can be quickly and easily created with any size and rank.

Special Matrices: Random Numbers

- Several ways to create random matrices in MATLAB.
 - ► Random matrices with **float** numbers using function ('...
 - ➤ Random matrices with **integer** numbers using function '______'.

■ Code Exercise (05_03)

```
% Clear previous figures and vars
                                                    colorbar; % Show a color scale
clc; clear; close all;
                                                    axis equal tight; % Adjust axes to fit tightly
                                                    around the data
% 4x6 matrix with random values
                                                    [numRows, numCols] = size(matrix);
matrix = rand(4, 6);
                                                    for row = 1:numRows
                                                        for col = 1:numCols
% Create a figure for visualization
                                                            text(col, row, num2str(matrix(row, col),
                                                    '%0.2f'), ...
figure;
                                                                 'HorizontalAlignment', 'center', ...
                                                                 'VerticalAlignment', 'middle', ...
% Display
disp("4x6 Random Matrix")
                                                                 'FontSize',20);
disp(matrix);
                                                        end
                                                    end
% Visualize the matrix
imagesc(matrix); % Display the matrix as a color
title('4x6 Random Matrix');
xlabel('Columns');
ylabel('Rows');
```


MATLAB code to make random numbers matrix and result

Special Matrices: Square VS Non-square

Square matrix

- Same number of rows as columns.
- ightharpoonup Can be expressed as $R^{N \times N}$.

■ Non-square matrix

- Different number of rows and columns.
 - Sometimes called a rectangular matrix.
- Can be called tall.
 - Number of rows number of columns
- Can be called wide.
 - Number of rows number of columns

You can create square and rectangular matrices from random numbers.

By adjusting the shape parameters in the previous code.

Special Matrices: Diagonal

Diagonal of a matrix

➤ Elements starting at the _____ and going down to the _____

Diagonal matrix

- Zeros on all the off-diagonal elements.
- Diagonal elements are the only elements that may contain nonzero values.
 - Diagonal elements can contain zero too.

Code Exercise of Diagonal Matrix

MATLAB function diag()

- Input as matrix: diag() will return the diagonal elements of matrix as a vector.
- ▶ Input as vector: diag() will return a matrix with input vector elements on the diagonal.

■ Code Exercise (05_04)

```
% Clear previous figures and vars
                                                 title('Diagonal Matrix');
clc; clear; close all;
                                                 xlabel('Columns');
                                                 ylabel('Rows');
                                                                                                              Diagonal Matrix
% Create a vector for the diagonal
                                                 colorbar; % Show a color scale
                                                                                                                                                Input Matrix
                                                 axis equal tight; % Adjust axes to fit
InputMatrix = randi(10, 5);
                                                 tightly around the data
diagonalElements = [1, 2, 3, 4, 5];
                                                 set(gca, 'XTick',
                                                 1:length(diagonalElements), 'YTick',
% Create a diagonal matrix using the diag
                                                 1:length(diagonalElements)); % Set the
function
                                                 tick marks
diagonalVector = diag(InputMatrix);
diagonalMatrix = diag(diagonalElements);
                                                 % Add text annotations for each element
                                                 [numRows, numCols] = size(diagonalMatrix);
% Display
                                                 for row = 1:numRows
                                                                                                                                                Diagonal Vector
disp("Input Matrix");
                                                     for col = 1:numCols
disp(InputMatrix);
                                                         text(col, row,
disp("Diagonal Vector")
                                                 num2str(diagonalMatrix(row, col),
disp(diagonalVector);
                                                 '%d'), ...
                                                                                                                                  5
                                                             'HorizontalAlignment',
% Create a figure for visualization
                                                  'center', ...
figure;
                                                              'VerticalAlignment',
                                                 'middle', ...
                                                                                                                Columns
% Visualize the diagonal matrix
                                                             'FontSize',20);
imagesc(diagonalMatrix); % Display the
                                                     end
matrix as a color image
                                                 end
```

MATLAB code of function 'diag()' and results

Special Matrices: Triangular

■ Triangular matrix

- Contains all zeros either above or below the main diagonal.
- Upper triangular
 - if the nonzero elements are above the diagonal.
- ► Lower triangular
 - if the nonzero elements are below the diagonal.

Code Exercise of Triangular Matrix

■ Code Exercise (05_05)

- Create upper triangular matrix using function 'triu(matrix)'
- Create lower triangular matrix using function 'tril(matrix)'.

```
% Clear workspace, command window, and
                                                 colorbar; % Show a color scale
close all figures
                                                 axis equal tight; % Adjust axes to fit
                                                 tightly around the data
clc; clear; close all;
                                                 % Add text annotations for each element in
% Create a random matrix using randi
                                                 the upper triangular matrix
randomMatrix = randi(10, 5, 5); % Generate
                                                 [numRows, numCols] =
a 5x5 matrix with integers between 1 and
                                                 size(upperTriangularMatrix);
                                                 for row = 1:numRows
                                                     for col = 1:numCols
% Create upper triangular matrix from the
                                                         text(col, row,
                                                 num2str(upperTriangularMatrix(row, col),
random matrix
upperTriangularMatrix = triu(randomMatrix);
                                                 '%d'), ...
                                                              'HorizontalAlignment',
% You can create lower triangular matrix
                                                 'center', ...
use function 'tril(matrix)'
                                                              'VerticalAlignment',
                                                 'middle', ...
% Create and visualize the upper
                                                              'FontSize',20);
triangular matrix
                                                     end
figure;
                                                 end
imagesc(upperTriangularMatrix); % Display
the matrix as a color image
title('Upper Triangular Matrix');
xlabel('Columns');
ylabel('Rows');
```


MATLAB code to create triangular matrix and result

Special Matrices: Identity

Identity matrix

- ▶ Equivalent of the number □
 - In that any matrix or vector times the identity matrix is that same matrix or vector.
- Equivalent of Square diagonal matrix
 - With all diagonal elements having a value of

Notation of Identity matrix

- Indicate using the letter I.
 - I_5 is 5×5 identity matrix.
 - If there is no subscript to indicate its size, you can infer the size from context.
 - To make the equation consistent.

Code Exercise of Identity Matrix

- Identity matrix can be created by eye() in MATLAB code.
- Code Exercise (05_06)

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Create a 5x5 identity matrix
identityMatrix = eye(5, 5);
% Create and visualize the identity matrix
figure;
imagesc(identityMatrix); % Display the matrix as a color image
title('Identity Matrix');
xlabel('Columns');
ylabel('Rows');
colorbar; % Show a color scale
axis equal tight; % Adjust axes to fit tightly around the data
% Add text annotations for each element in the identity matrix
[numRows, numCols] = size(identityMatrix);
for row = 1:numRows
    for col = 1:numCols
        text(col, row, num2str(identityMatrix(row, col), '%d'), ...
            'HorizontalAlignment', 'center', ...
            'VerticalAlignment', 'middle', ...
            'FontSize',20);
    end
end
```


MATLAB code to create identity matrix and result

Special Matrices: Zeros

- All of zeros matrix elements are zero.
 - ► Indicate using a bold-faced zero: 0.
 - ▶ It can be a bit confusing to have the same symbol indicate both a vector and a matrix.
 - But this kind of overloading is common in math and science notation.

Code Exercise of Zero Matrix

- Using the zeros() function in MATLAB to create zeros matrix.
- Code Exercise (05_07)

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Create a 5x5 zero matrix
zeroMatrix = zeros(5, 5);
% Create and visualize the zero matrix
imagesc(zeroMatrix); % Display the matrix as a color image
title('Zero Matrix');
xlabel('Columns');
ylabel('Rows');
colorbar; % Show a color scale
axis equal tight; % Adjust axes to fit tightly around the data
% Add text annotations for each element in the zero matrix
[numRows, numCols] = size(zeroMatrix);
for row = 1:numRows
    for col = 1:numCols
        text(col, row, num2str(zeroMatrix(row, col), '%d'), ...
            'HorizontalAlignment', 'center', ...
            'VerticalAlignment', 'middle', ...
            'FontSize',20);
    end
end
```


MATLAB code to create zero matrix

Matrix math: addition, scalar multiplication, Hadamard multiplication

Matrix Math: Addition and Subtraction

Matrix addition

▶ Defined only between two matrices of the

$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 3 & 1 \\ -1 & -4 & 2 \end{bmatrix} = \begin{bmatrix} (2+0) & (3+3) & (4+1) \\ (1-1) & (2-4) & (4+2) \end{bmatrix} = \begin{bmatrix} 2 & 6 & 5 \\ 0 & -2 & 6 \end{bmatrix}$$

Matrix addition example

Matrix Math: Shifting a Matrix

- Linear-algebra is way to add a scalar to a square matrix.
 - ► Called
 - Not formally possible to add a scalar to a matrix, as in $\lambda + A$.
 - It works by adding a scalar multiplied identity matrix, as in $\mathbf{A} + \lambda \mathbf{I}$.

$$\begin{bmatrix} 4 & 5 & 1 \\ 0 & 1 & 11 \\ 4 & 9 & 7 \end{bmatrix} + 6 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 5 & 1 \\ 0 & 7 & 11 \\ 4 & 9 & 13 \end{bmatrix}$$

Matrix addition example

- ► Only the diagonal elements can be changed.
 - The rest of the diagonal elements is unchanged by shifting.
- In practice, one shifts a relatively small amount.
 - To preserve as much information as possible in the matrix while benefiting from the effects of shifting, including increasing the numerical stability of the matrix.

Matrix Math: Applications of Shifting a Matrix

- Exactly how much to is a matter of on-going research in multiple areas.
 - Such as machine learning, statistics, deep learning, control engineering, etc.
 - ▶ For example, is shifting by $\lambda = 6$ a little or a lot ? How about $\lambda = 0.001$?
 - These numbers are "big" or "small" relative to the numerical values in the matrix.
 - Therefore, in practice, λ is usually set to be some fraction of a matrix-defined quantity such as the norm or the average of the eigenvalues.
 - You will get to explore about norm and eigenvalues in later chapters.

Two primary applications of shifting a matrix

- Finding the eigenvalues of a matrix.
- Regularizing matrices when fitting models to data.

Code Exercise of Matrix Shifting

■ Code Exercise (05_08)

```
for col = 1:numCols
% Clear workspace, command window, and close all
figures
                                                                 text(col, row, num2str(squareMatrix(row,
clc; clear; close all;
                                                                     'HorizontalAlignment', 'center', ...
                                                                     'VerticalAlignment', 'middle', ...
% Create a 3x3 square matrix with random values
squareMatrix = randi(10, 3, 3); % Generate a 3x3
                                                                     'FontSize',20);
matrix with integers between 1 and 10
                                                            end
                                                        end
% Define a scalar value
scalar = 5;
                                                        % Create and visualize the modified matrix in a
                                                        new figure
% Create a 3x3 identity matrix
                                                        figure;
identityMatrix = eye(3);
                                                        imagesc(modifiedMatrix); % Display the modified
                                                        matrix as a color image
% Add the scalar multiplied by the identity matrix
                                                        title('Modified Matrix (Scalar Added)');
to the original matrix
                                                        xlabel('Columns');
modifiedMatrix = squareMatrix + scalar *
                                                        ylabel('Rows');
identityMatrix;
                                                        colorbar; % Show a color scale
                                                        axis equal tight; % Adjust axes to fit tightly
% Create and visualize the original square matrix
                                                        around the data
in a new figure
                                                        % Add text annotations for each element in the
figure;
                                                        modified matrix
imagesc(squareMatrix); % Display the matrix as a
                                                        for row = 1:numRows
                                                             for col = 1:numCols
title('Original 3x3 Matrix');
                                                                 text(col, row, num2str(modifiedMatrix(row,
xlabel('Columns');
                                                        col), '%d'), ...
                                                                     'HorizontalAlignment', 'center', ...
ylabel('Rows');
colorbar; % Show a color scale
                                                                     'VerticalAlignment', 'middle', ...
                                                                     'FontSize',20);
axis equal tight; % Adjust axes to fit tightly
around the data
                                                            end
% Add text annotations for each element in the
                                                        end
original matrix
[numRows, numCols] = size(squareMatrix);
for row = 1:numRows
```


MATLAB code to calculate the matrix shifting

Matrix Math: Scalar-Matrix and Hadamard Multiplications

■ Scalar-matrix multiplication and Hadamard multiplication

- ▶ Work the same for matrices as they do for vectors, which is to say, element-wise.
- - Multiply each element in the matrix by the same scalar.

$$Y\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \gamma a & \gamma b \\ \gamma c & \gamma d \end{bmatrix}$$

Example of scalar multiplication

Involving multiplying two matrices element-wise.

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \odot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2a & 3b \\ 4c & 5d \end{bmatrix}$$

Example of Hadamard multiplication

Code Exercise of Hadamard Multiplication

■ Code Exercise (05_09)

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Create two 3x3 square matrices with random values
squareMatrix1 = randi(10, 3, 3); % Generate a 3x3 matrix
with integers between 1 and 10
squareMatrix2 = randi(10, 3, 3); % Generate another 3x3
matrix with integers between 1 and 10
% Calculate the Hadamard product of the two matrices
hadamardProduct = squareMatrix1 .* squareMatrix2;
% Create and visualize the first square matrix
imagesc(squareMatrix1); % Display the matrix as a color
title('First 3x3 Matrix');
xlabel('Columns');
vlabel('Rows');
colorbar; % Show a color scale
axis equal tight; % Adjust axes to fit tightly around the
% Add text annotations for each element in the first
[numRows, numCols] = size(squareMatrix1);
for row = 1:numRows
    for col = 1:numCols
        text(col, row, num2str(squareMatrix1(row, col),
'%d'), ...
             'HorizontalAlignment', 'center', ...
            'VerticalAlignment', 'middle', ...
            'FontSize',20);
    end
% Create and visualize the second square matrix
imagesc(squareMatrix2); % Display the matrix as a color
title('Second 3x3 Matrix');
xlabel('Columns');
vlabel('Rows');
colorbar; % Show a color scale
```

```
axis equal tight; % Adjust axes to fit tightly around the
% Add text annotations for each element in the second
matrix
for row = 1:numRows
    for col = 1:numCols
        text(col, row, num2str(squareMatrix2(row, col),
            'HorizontalAlignment', 'center', ...
            'VerticalAlignment', 'middle', ...
            'FontSize',20);
    end
end
% Create and visualize the Hadamard product of the
matrices
figure;
imagesc(hadamardProduct); % Display the Hadamard product
matrix as a color image
title('Hadamard Product of the Two Matrices');
xlabel('Columns');
vlabel('Rows');
colorbar; % Show a color scale
axis equal tight; % Adjust axes to fit tightly around the
% Add text annotations for each element in the Hadamard
product matrix
for row = 1:numRows
    for col = 1:numCols
        text(col, row, num2str(hadamardProduct(row, col),
'%d'), ...
            'HorizontalAlignment', 'center', ...
            'VerticalAlignment', 'middle', ...
            'FontSize',20);
    end
end
```


MATLAB code to calculate the Hadamard multiplication

Standard matrix multiplication

Standard Matrix Multiplication

- Characteristics of standard matrix multiplication
 - Operating row/column-wise rather than operating element-wise.
 - Reduces to a systematic collection of dot products.
 - Between rows of one matrix and columns of the other matrix.
 - Formally simply called
 - 'Standard' term is added to help disambiguate from Hadamard and scalar multiplications.

Rules for Matrix Multiplication Validity

- First matrix sizes: $M \times N$
- **Second matrix sizes:** $N \times K$
 - Multiplying these two matrices.
 - The "Inner" dimensions: N
 - The "Outer" dimensions: M and K
 - ► Matrix multiplication is valid only when the dimensions match.
 - ► Size of product matrix is defined by dimensions.

Describing rules for matrix multiplication validity

- Matrix multiplication does not obey the commutative law.
 - If C = AB and D = BA, then in general $C \neq D$.
 - They are equal in some special cases, but we cannot generally assume equality.

Matrix Multiplication

- Why matrix multiplication is valid only if the number of columns in left matrix matches the number of rows in the right matrix?
 - The (i,j)th element in the product matrix is the dot product between the i th row of the left matrix and the j th column in the right matrix.
 - Dot product
 - A number that encodes the relationship between rows of the left matrix and columns of the right matrix.

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2a+3c & 2b+3d \\ 4b+5d \end{bmatrix}$$

Example of multiplication

Finger movements for matrix multiplication

Result of Matrix Multiplication

- Matrix that stores all the pairwise linear relationships between rows of the left matrix and columns for the right matrix.
- Can be a basis for computing covariance and correlation matrices.
 - General linear model, singular-value decomposition, and countless other applications.

Matrix operation: transpose

Transpose Operation on Matrix

Principle of Transpose Operation

➤ Simply swap the

Notation of Transpose Operation

- ► Indicate with a superscripted ^T.
- ightharpoonup Double-transposing a matrix returns the original matrix. ($C^{TT} = C$)

$$\boldsymbol{a}_{i,j}^T = \boldsymbol{a}_{j,i}$$

Definition of the transpose operation

$$\begin{bmatrix} 3 & 0 & 4 \\ 9 & 8 & 3 \end{bmatrix}^T = \begin{bmatrix} 3 & 9 \\ 0 & 8 \\ 4 & 3 \end{bmatrix}$$

Example of the transpose operation

Code Exercise of Transpose Operation on Matrix

- A few ways to transpose matrices in MATLAB
 - ► Function <'>
 - Function <transpose(A)>
- Code Exercise (05_10)

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
                                                                               Original Matrix
% Create a 3x2 matrix with random values
matrix = randi(10, 3, 2); % Generate a 3x2 matrix with integers between 1
and 10
% Transpose the matrix
                                                                               Transposed Matrix using (')
transposedMatrix = matrix';
transposedMatrix2 = transpose(matrix);
% Create and visualize the original matrix as vectors
disp("Original Matrix");
disp(matrix);
                                                                               Transposed Matrix using (transpose(A))
disp("Transposed Matrix using (')");
disp(transposedMatrix);
disp("Transposed Matrix using (transpose(A))");
disp(transposedMatrix2);
```

MATLAB code to transpose operation on matrix

Dot and Outer Product Notation

Dot product of vectors

- \blacktriangleright Vector \boldsymbol{a} : 2 × 1, vector \boldsymbol{b} : 2 × 1.
- ► The dot product is indicated as
 - The "inner" dimensions match, and the "outer" dimensions will be 1×1 as Eq 1..

Outer product of vectors

- A way to create matrix from a column vector and a row vector
- \blacktriangleright Vector $a: 2 \times 1$, vector $b: 3 \times 1$.
- ightharpoonup The outer product is indicated as ab^T .
 - The "inner" dimensions match, and the "outer" dimensions will be 2×3 as Eq 2...
 - Two vectors in an outer product can have different dimensionality, whereas dot product must have same.

$$\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \qquad \boldsymbol{a}^T \boldsymbol{b} = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_1 b_1 + a_2 b_2 \end{bmatrix}$$

Eq 1. Example of dot product of vectors

$$a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ b_2 \end{bmatrix}, ab^T = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} [b_1 \quad b_2 \quad b_3] = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \end{bmatrix}$$

Eq 2. Example of outer product of vectors

Matrix operation: LIVE EVIL (order of operation)

The Transpose of Multiplied Matrices

- LIVE EVIL is a palindrome.
 - Palindrome is a word or phrase that is spelled the same forwards and backwards.
- Transpose of multiplied matrices is same as the individual matrices transposed and multiplied.
 - ▶ But reversed in order as shown in below equation.
- Assume
 - \triangleright L, I, V and E are all matrices.
 - ► Their sizes match to make multiplication valid.

$$(\boldsymbol{L}\boldsymbol{I}\boldsymbol{V}\boldsymbol{E})^T = \boldsymbol{E}^T\boldsymbol{V}^T\boldsymbol{I}^T\boldsymbol{L}^T$$

Example of the LIVE EVIL rule

■ This rule applies for multiplying any number of matrices.

Symmetric matrix

Definition of Symmetric Matrix

- The corresponding rows and columns are equal.
 - ▶ When you the rows and columns, nothing happens to the matrix!
- **A** symmetric matrix equals its transpose, $A^T = A$.
- Then, can non-square matrix be symmetric?
 - ► Nope! Why can't be?
 - If matrix is of size M*N, then its transpose is of size N*M.
 - It cannot be guaranteed that M and N are always the same value.

$$\mathbf{A} = \begin{bmatrix} a & e & f & g \\ e & b & h & i \\ f & h & c & j \\ g & i & j & d \end{bmatrix}$$

A symmetric matrix

Creating Symmetric Matrix from Nonsymmetric Matrix

Multiplying any matrix by its transpose, it will be a square symmetric matrix as eq 1...

Prove symmetry

- Recall that the definition of a symmetric matrix is one that equals its transpose as eq 2..
- ▶ The proof relies on the LIVE EVIL rule.
- But AA^T and A^TA are square symmetric, but matrix.
 - ▶ If *A* in non-square, then two matrix products are not even the same size.

if
$$A = M \times N$$
, $A^T A = (N \times M)(M \times N) = N \times N$

Eq 1. Symmetric matrix from nonsymmetric matrix

$$(\mathbf{A}^T \mathbf{A})^T = \mathbf{A}^T \mathbf{A}^{TT} = \mathbf{A}^T \mathbf{A}$$

Eq 2. Definition of a symmetric matrix

Summary

Summary

Matrix

Spreadsheet of numbers.

Several categories of special matrices

Random number, square, non-square, diagonal, triangular, identity and zeros matrix.

Some arithmetic operations that work element-wise

Addition, scalar multiplication and Hadamard multiplication.

Shifting a matrix

Adding a constant to the diagonal elements.

Matrix multiplication validity

First matrix sizes are $M \times N$, second matrix sizes are $N \times K$.

The transpose of multiplied matrices

► The individual matrices transposed and multiplied with their order reversed.

Symmetric matrix

- \blacktriangleright Each row equals its corresponding columns, $A = A^T$.
- Create from any matrix by multiplying that matrix by its transpose.

Exercise: Matrix Slicing

Create original matrix

► Shape: 10 *x* 10

Value: 0-99 (Refer to the figure(Result of code))

Create function

- Input: Original matrix, start row index, end row index, start col index, end col index
- Output: Submatrix from Original matrix
 - Output can be express various type.

Input

Output

Result of code

Exercise: Matrix Addition

- Use for loops for rows and columns to implement matrix additions for each element.
 - Input: Two matrix with same size
 - Output: The sum of two matrix
 - Use the error() function in the MATLAB to make the error generate if the size of the two input matrix is different.

Exercise: Matrix Multiplication

- Use for loops for rows and columns to implement dot product.
 - Input: Two matrix with same size
 - Output: The sum of two matrix
 - Use the error() function in the MATLAB to make the error generate if dot product is not available.

Exercise: Symmetric Checker

- Create a function that checks whether the input matrix is symmetrical or not.
 - Input: a matrix
 - Output: 1 (if symmetric) / 0 (if not symmetric)

Appendix

Symbolic Math with MATLAB

- In mathematics, science, and engineering, expressions that are prone to errors when solved manually often involve symbolic variables.
- A **symbolic variable** refers to a variable that is represented by a symbol, such as a letter, without being assigned a specific numerical value.
- This course covers the essential concepts for working with symbolic variables in MATLAB.
- Using the Symbolic Math Toolbox, you can create symbolic variables, manipulate symbolic expressions, equations, and functions, perform calculations, and simplify expressions.

$$ax^{2} + bx + c = 0$$

$$\text{syms a b c x}$$

$$x0 = \text{solve}(a*x^{2} + b*x + c)$$

$$x0 = \text{subs}(x0, [a b c], [1 -2 -1])$$

$$x0 = \left(\frac{1 - \sqrt{8}}{2}\right)$$

$$x0 = \left(\frac{1 - \sqrt{8}}{2}\right)$$
Example of symbolic math in MATLAB

Preparation for 'Symbolic Math Toolbox'

- You need to practice using the 'Symbolic Math Toolbox', which appears in the latter part of the lecture.
- Follow the procedure to install the toolbox and then try the exercise yourself.

Exercise: Symbolic Variable and Function

Symbolic variable

A mathematical symbol rather than a specific value.

Symbolic function

► An expression defined using such symbolic variables.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Define symbolic variables
syms x y;
% Fig 1: Plot visualization of g(x)
g(x) = x^2; % Define symbolic function g(x)
figure;
fplot(g(x));
title('g(x) = x^2, Plot');
xlabel('x'); ylabel('g(x)');
grid on;
% Fig 2-1: Contour visualization of f(x, y)
f(x,y) = x^2 + y^2; % Define symbolic function f(x,y)
figure;
fcontour(f);
title('f(x,y) = x^2 + y^2, Contour');
xlabel('x'); ylabel('y');
% Fig 2-2: Surface visualization of f(x, y)
figure;
fsurf(f);
title('f(x,y) = x^2 + y^2, Surface');
xlabel('x'); ylabel('y');
```


MATLAB code to practice the symbolic variable and symbolic function

Supplementary material using MATLAB course

- You can practice the symbolic math on matlab web browser independently.
 - https://matlabacademy.mathworks.com/kr/details/introduction-to-symbolic-math-with-matlab/symbolic
- The following chapters are recommended to be practiced.

MATLAB®의 기호 수학에 대한 기본 사항을 학습할 수 있습니다. 종이에 직접 방정식을 풀고 조작하는 대신 MATLAB을 활용할 수 있습니다. 교육과정 모듈 ✓ > 소개 100% | 5분 ✔ > 기호 변수 만들기 100% | 10분 ✓ > 기호 변수를 사용한 수학 표현식 100% | 15분 ✓ > 기호 방정식을 만들고 풀기 100% | 10분 ✔ > 대수 조작 및 단순화 100% | 5분 ✓ > 가정을 다루는 작업하기 100% | 10분 ✓ > 기호 함수 만들기 100% | 10분 ✓ > 기호 함수 및 기호 방정식 시각화하기 100% | 10분

Recommended chapters

THANK YOU FOR YOUR ATTENTION

