Unsupervised

Fenna Feenstra Msc Hanze University of Applied Sciences

Schedule

- Clustering theory
- Clustering use case (k-means)
- Distance metrics theory
- Data analysis use case (HAC)
- Dimensionality reduction theory
- Feature selection use case

Usage

Python3 Programming language

NumPy Apply calculations and linear algebra

Pandas Store and view results

Matplotlib/sns Plot (intermediate) results

Jupyter For demonstration purpose

Pip3/conda Installing required packages

Github Share code

Material

Library	Docs	cheatsheet		
python	https://www.python.org/doc/	https://perso.limsi.fr/pointal/ media/ python:cours:mementopython3- english.pdf		
pandas	pandas.pydata.org/pandas- docs/stable/	https://pandas.pydata.org/ Pandas Cheat Sheet.pdf		
numpy	https://docs.scipy.org/doc/ numpy	https://s3.amazonaws.com/dq-blog- files/numpy-cheat-sheet.pdf		
matplotlib	https://matplotlib.org/ contents.html	https://s3.amazonaws.com/ assets.datacamp.com/blog_assets/ Scikit_Learn_Cheat_Sheet_Python.pdf		
sklearn	scikit-learn.org	https://s3.amazonaws.com/ assets.datacamp.com/blog_assets/ Scikit Learn Cheat Sheet Python.pdf		

Book

Machine learning

labeled data

Non labeled data

Use cases

- Try to find structures in our dataset
 - Clustering: identify unknown structures (group data, segmentation analysis, anomaly detection, classification, improve supervised learning by modelling per cluster)
 - Dimensionality reduction: use structural characteristics to simplify data (image compression, text analysing, feature selection, improve plotting)

General method

Unlabelled data (X_test)

Model

predict

Reduced dimension or new grouping

Clustering

- Group data points based on certain similarities. Data does not have labels, best algorithm depends on use case. Most common:
 - K-means
 - Meanshift
 - HAC
 - DBSCAN

Cluster method

Examples

- Group documents by topic
- Group organism by genetic information
- Group colours into cluster-IDs to compress image

Clustering methods

Method	K-means	Mean Shift	HAC	DBSCAN
Class	KMeans	<u>MeanShift</u>	Agglomerative Clustering	DBSCAN
Essential Parameters	n_clusters	bandwidth	n_clusters, linkage, affinity	epsilon, min_samples metric
Distance methods	Euclidean	Euclidean	euclidean/l1/ L2/Manhattan/ cosine/ precomputed	About 23 different metrics
Use case	find a few clusters of ~ same size	determine the (large) amount of clusters	get a full tree (informative)	tons of data and weirds shapes
Remark	Fast, but bad on non spherical clusters	Slow, bad on weird shapes	Slow, good on weird shapes or uneven cluster sizes	Highly configurable ,good performance

Dimensionality reduction

- Coming up with a lower dimensional representation of our original data that maintains the majority of the information important for us in the original dataset (create new features as combination of original features). Most common:
 - PCA (linear principal component analysis)
 - KernelPCA (non linear principal component analysis)
 - MDS (Multidimensional Scaling)
 - t-SNE (t-distributed Stochastic Neighbor Embedding)
 - NMF (non negative matrix factorisation)

dimensionality reduction

Unlabelled data (X_test) + Model predict bigger overal dataset

Dimensions reduction example

Compression Model predict (reconstruct picture)

Curse of dimensionality

Curse of Dimensionality describes the explosive nature of increasing data dimensions and its resulting exponential increase in computational efforts required for its processing and/ or analysis

2 dim -> 79% inside sphere

3 dim -> 52% inside sphere

10 dim -> 0.25% inside sphere

high-dimensional space leads to sparse data; clustering is difficult when points are far away from each other

unsupervised+ supervised

Use dimensionality reduction to lower number of features

- PCA
- Matrix factorisation
- t-SNE
- MDS

https://machinelearningmastery.com/dimensionality-reduction-for-machine-learning/

methods

Method	PCA	KernelPCA	MDS	NMF
Class	PCA	KernelPCA	MDS	NMF
Essential Parameters	n_components	n_components , kernel, gamma	n_components	n_components , init
Use case	In case of linear combination of features	Non linear relationship s	Non linear relationships	Only for positive values (words, images)
Remark	Preserves variance as much as possible	Requires more computation	Preserving distance between points rather than variance	