Poincaré-Verdier 双対性

大柴寿浩

はじめに

X,Y を局所コンパクト空間とし, $f\colon Y\to X$ を連続写像とする.A を大域次元が有限な可換環とする. $F\in \mathsf{D}^+(A_X),G\in \mathsf{D}^+(A_Y)$ とする.

 $Rf_!: D^+(A_Y) \to D^+(A_X)$ の右随伴関手 $f^!: D^+(A_X) \to D^+(A_Y)$ を構成するのが目標.

1 例

随伴を仮定した場合,層を具体的に設定するとどのような結果が従うか見てみる. $X=\{\mathrm{pt}\},$ $F=A_{\{\mathrm{pt}\}},$ $G=A_Y$ のとき,

$$RHom_{A_X}(Ra_{Y!}A_Y, A) = RHom_{A_Y}(A_Y, a_Y^! A)$$

$$= R\Gamma(Y; R\mathcal{H}om_{A_Y}(A_Y, a_Y^! A))$$

$$= R\Gamma(Y; a_Y^! A)$$

である. ω_Y : $a_Y^!$ A とおく. 開集合 $U \subset Y$ に対し,

$$R\Gamma(U; \omega_Y) \cong R\Gamma(U; R\mathscr{H}om_A(A_U, a_Y^! A))$$

 $\cong RHom_{A_U}(A_U, A)$

なので,

$$\operatorname{RHom}_{A_U}(A_U, a_Y^! A) \cong \operatorname{RHom}_A(\operatorname{R}\Gamma_c(Y; A_U), A)$$
$$\cong \operatorname{RHom}_A(\operatorname{R}\Gamma_c(U; A_U), A).$$

ここで,Uが \mathbf{R}^n と同相であるとすると,

$$R\Gamma_c(U; A_U) \cong A[-n]$$

したがって,

$$\cong \operatorname{RHom}_A(\operatorname{R}\Gamma_c(U; A_U), A) \cong A[n]$$

である. つまり, $\omega_Y = a_Y^! A$ は

$$H^k(\omega_Y) = egin{cases} 0 & (k
eq -n) \\ \mathrm{rank} = 1 & \mathcal{O}$$
局所定数層 $(k = -n)$

2 構成

2.1 構成

X,Y を局所コンパクト空間とし、 $f:Y\to X$ を連続写像とする。A を大域次元が有限な可換環 とする. $F \in D^+(A_X), G \in D^+(A_Y)$ とする.

 $Rf_!: D^+(A_Y) \to D^+(A_X)$ の右随伴関手 $f^!: D^+(A_X) \to D^+(A_Y)$ を構成する. まず、開集合 $V \subset Y$ に対し、 $f^!F$ の V 上の切断に関する条件を見てみる.

$$R\Gamma(V; f^!F) = RHom_{A_Y}(A_V, f^!F) = RHom_{A_X}(R f_!A_V, F)$$

となることから, $f^!F$ は $V \mapsto \mathrm{RHom}_{A_X}(\mathrm{R}\,f_!A_V,F)$ という対応でなければならない. $\mathrm{R}\,f_!$ を計 算するには c 柔軟分解 $A_V \sim K$ を取ればよく, さらに F が入射的であれば,

$$\operatorname{RHom}_{A_X}(\operatorname{R} f_! A_V, F) = \operatorname{Hom}_{A_X}(f_! K_V, F)$$

となって, 結局

$$R\Gamma(V; f^!F) = \operatorname{Hom}_{A_X}(f_!K_V, F)$$

とできる.

■ f に関する仮定

定義 2.1. Y 上の層 G が f 柔軟であるとは、各点 $x \in X$ に対し、 $G|_{f^{-1}(x)}$ が c 柔軟であること をいう.

G が f 柔軟であることと、任意の開部分集合 $V \subset Y$ と $i \neq 0$ に対し、 \mathbf{R}^{j} $f_{i}G_{V} = 0$ となること と同値である.

次を仮定する.

$$f_! \colon \operatorname{Mod}(\mathbf{Z}_Y) \to \operatorname{Mod}(\mathbf{Z}_X)$$
 のコホモロジー次元は有限である. (2.1)

つまり、整数 $r \ge 0$ で、全ての j > r に対し $\mathbf{R}^j f_! = 0$ となるものが存在する. (2.1) は次の条件 と同値である.

$$\begin{cases} \text{任意の} \ G \in \text{Sh}(Y) \ \text{に対し, 完全列} \\ 0 \to G \to G^0 \to \cdots \to G^r \to 0 \\ \text{で, どの} \ G^j \text{も } f \text{ 柔軟であるものが存在する.} \end{cases} \tag{2.2}$$

$$\begin{cases} \text{完全列} \ G^0 \to \cdots \to G^r \to 0 \\ \text{において, } j < r \ \text{に対し} \ G^j \ \text{が } f \text{ 柔軟ならば,} \\ G^r \ \text{が } f \text{ 柔軟となる.} \end{cases}$$

$$\begin{cases} 完全列 G^0 \to \cdots \to G^r \to 0 \\ において, j < r に対し G^j が f 柔軟ならば, \\ G^r が f 柔軟となる. \end{cases}$$
 (2.3)

 $f_!$ のコホモロジー次元が $\leq r$ となるのは、任意の $x \in X$ に対し、 $\Gamma_c(f^{-1}(x);\cdot)$ のコホモロジー次 元が $\leq r$ となるときである。実際, $f_{!}|_{f^{-1}(x)}F = \Gamma_{c}(f^{-1}(x);F) = 0$ となるので.

■構成 以上の仮定は,

$$R\Gamma(V; f^!F) = \operatorname{Hom}_{A_X}(f_!K_V, F)$$

の構成をするためだった。 $f_!K_V$ の分解をしたくて,その長さが有限になるという仮定である. さて,K を \mathbf{Z}_Y 加群,F を A_X 加群とする.このとき,A 加群の前層 $f_K^!F$ を次で定める. $V\in \mathsf{Open}(Y)$ に対し,

$$(f_K^!F)(V) := \operatorname{Hom}_{A_X} \left(f_! \left(A_Y \underset{\mathbf{Z}_Y}{\otimes} K_V \right), F \right)$$

とする. 制限射は $K_{V'} \rightarrow K_V$ から引き起こされるもの.

補題 2.2. K を平坦かつ f 柔軟な \mathbf{Z}_{Y} 加群とする.

- (i) Y 上の任意の層 G に対し $G \otimes_{\mathbf{Z}_{V}} K$ は f 柔軟である.
- (ii) $G \mapsto f_!(G \otimes_{\mathbf{Z}_Y} K)$ は $\operatorname{Mod}(\mathbf{Z}_Y)$ から $\operatorname{Mod}(\mathbf{Z}_X)$ への完全関手である.

証明. (i) Y 上の任意の層 G に対し, [KS90, Prop.2.4.12] の証明から, 分解

$$\rightarrow G^{-r} \rightarrow \cdots \rightarrow G^0 \rightarrow G \rightarrow 0$$

で、各 G^j が \mathbf{Z}_V の直和となるものが存在する.

復習: $G \in \operatorname{Mod}(\mathbf{Z}_Y)$ に対し,

$$\mathfrak{S} \coloneqq \{(V,s); V \in \mathsf{Open}(Y), s \in \Gamma(V;G)\}$$

とし、各 $(V,s) \in \mathfrak{S}$ に対し、 $\mathbf{Z}_Y(V,s) \coloneqq \mathbf{Z}_V \in \operatorname{Mod}(\mathbf{Z}_Y)$ とおき、 $P \coloneqq \bigoplus_{(V,s) \in \mathfrak{S}} \mathbf{Z}_Y(V,s)$ とおく、 $\operatorname{Hom}_{\mathbf{Z}_Y}(\mathbf{Z}_V,G) \cong \Gamma(V;G)$ より、各 $\varphi \colon \mathbf{Z}_V \to G$ に対し、 $s \in G(V)$ がただ一つある。これにより全射 $P \twoheadrightarrow G$ が得られる。各 $y \in Y$ に対し、 $P_y = \bigoplus_{(V,s),y \in V} \mathbf{Z}$ である。 (復習終わり)

 $\operatorname{Ker}(P \to G)$ に対し、同様に \mathbf{Z}_V の直和からの全射が構成できる. これを繰り返して、分解

$$\rightarrow G^{-r} \rightarrow \cdots \rightarrow G^0 \rightarrow G \rightarrow 0$$

で、 \mathbf{Z}_V の直和となるものが得られる。よって、どの j についても、 $G^j \otimes_{\mathbf{Z}_Y} K$ は f 柔軟である。 実際、 $(\bigoplus \mathbf{Z}_V) \otimes_{\mathbf{Z}_Y} K \cong \bigoplus (\mathbf{Z}_V \otimes_{\mathbf{Z}_Y} K) \cong \bigoplus K_V$ であり、茎ごとに \mathbf{c} 柔軟なので.この分解に $-\otimes_{\mathbf{Z}_Y} K$ をあてた

$$\rightarrow G^{-r} \otimes_{\mathbf{Z}_{V}} K \rightarrow \cdots \rightarrow G^{0} \otimes_{\mathbf{Z}_{V}} K \rightarrow G \otimes_{\mathbf{Z}_{V}} K \rightarrow 0$$

は K が平坦なので完全である。したがって,r を十分大きくとれば, $f_!$ のコホモロジー次元が有限であるという仮定から,(2.3) を用いて, $G\otimes_{\mathbf{Z}_Y}K$ も f 柔軟であることが従う。

(ii) Sh(Y) の完全列

$$0 \to G_1 \to G_2 \to G_3 \to 0$$

に対し,

$$0 \to G_1 \otimes_{\mathbf{Z}_Y} K \to G_2 \otimes_{\mathbf{Z}_Y} K \to G_3 \otimes_{\mathbf{Z}_Y} K \to 0$$

は f 柔軟である. いま,

$$0 \to f_!(G_1 \otimes_{\mathbf{Z}_Y} K) \to f_!(G_2 \otimes_{\mathbf{Z}_Y} K) \to f_!(G_3 \otimes_{\mathbf{Z}_Y} K) \to 0$$

のストーク

$$0 \to (f_!(G_1 \otimes_{\mathbf{Z}_Y} K))_x \to (f_!(G_2 \otimes_{\mathbf{Z}_Y} K))_x \to (f_!(G_3 \otimes_{\mathbf{Z}_Y} K))_x \to 0 \tag{(a)}$$

を考えると、これらは、 $W = f^{-1}(x)$ とおくとき

$$0 \to \Gamma_c(W; (G_1 \underset{\mathbf{Z}_Y}{\otimes} K)|_W) \to \Gamma_c(W; (G_2 \underset{\mathbf{Z}_Y}{\otimes} K)|_W) \to \Gamma_c(W; (G_3 \underset{\mathbf{Z}_Y}{\otimes} K)|_W) \to 0$$

である. $G_j \otimes K$ たちは f 柔軟なので,これらは W で c 柔軟であり, $f_!$ が完全であることから, \mathbf{z}_Y (\mathfrak{b}) は完全である.よって,もとの層の系列も完全である.

補題 $oldsymbol{2.3.}$ K を平坦かつ f 柔軟な $oldsymbol{\mathbf{Z}}_Y$ 加群とし,F を A_X 入射加群とする.

- (i) 前層 $f_K^! F$ は層である.
- (ii) $G \in \operatorname{Mod}(A_Y)$ に関して関手的な自然同型

$$\operatorname{Hom}_{A_X}(f_!(G \otimes_{\mathbf{Z}_Y} K), F) \xrightarrow{\sim} \operatorname{Hom}_{A_Y}(G, f_K^! F)$$

が存在する. また, $f_K^! F$ は A_Y 入射加群である.

証明. (i) $-\otimes_{\mathbf{Z}_Y} K$ をたんに $-\otimes K$ で表す. V を Y の開集合とし, $(V_j)_j$ を V の開被覆とする.

$$\bigoplus_{j,k} A_{V_j \cap V_k} \to \bigoplus_j A_{V_j} \to A_V \to 0$$

は完全である. *1 これに完全関手 $f_{!}(-\otimes K)$ をあてて完全列

$$\bigoplus_{j,k} f_!(A_{V_j \cap V_k} \otimes K) \to \bigoplus_j f_!(A_{V_j} \otimes K) \to f_!(A_V \otimes K) \to 0$$

を得る. さらに左完全な反変関手 $\operatorname{Hom}_{A_X}(-,F)$ をあてて、完全列

$$0 \to \operatorname{Hom}_{A_X}(f_!(A_V \otimes K), F) \to \operatorname{Hom}_{A_X}(\bigoplus_j f_!(A_{V_j} \otimes K), F) \to \operatorname{Hom}_{A_X}(\bigoplus_{j,k} f_!(A_{V_j \cap V_k} \otimes K), F)$$

を得る. これは極限を交換すれば

$$0 \to f_K^! F(V) \to \prod_j f_K^! F(V_j) \to \prod_{j,k} f_K^! F(V_j \cap V_k)$$

 $^{^{*1}}$ 開集合は小さい方から大きい方へ随伴射が生える. $A_{jk}\to A_j, A_k$ はそれぞれ $s_{jk}\mapsto s_{jk}$ と $s_{jk}\mapsto -s_{jk}$ で定める. A_{V_j} の台は V に含まれるので,各切断の和の台も被覆の条件から V に含まれるので全射の方も成り立つ.

であり、 $f_K^! F$ が層であることが示された.

(ii) アーベル群の射

$$\alpha(G) \colon \operatorname{Hom}_{A_X}(f_!(G \otimes K), F) \to \operatorname{Hom}_{A_Y}(G, f_K^! F)$$

を定める. $\phi \in \operatorname{Hom}_{A_X}(f_!(G \otimes K), F)$ とする. $V \in \operatorname{Open}(Y)$ に対し、次 A_X 加群の射がある.

$$G(V) \otimes f_!(A_Y \otimes K_V) \xrightarrow{?} f_!(G \otimes K_V)$$

$$\xrightarrow{\text{adj.}} f_!(G \otimes K)$$

$$\xrightarrow{\rho} F.$$

よって, Hom ・テンソル随伴から,G(V) から $f_K^!F(V)=\operatorname{Hom}(f_!(A_Y\otimes K_V),F)$ への射を得る. この射は $V\in\operatorname{Open}(Y)$ について関手的.よって, $\alpha(G)(\phi)\in\operatorname{Hom}_{A_Y}(G,f_K^!F)$.

 $\alpha(G)$ が同型であることを

- (a) $G = A_V$ の場合,
- (b) $G = \bigoplus_i A_{V_i}$ の場合,
- (c) 一般の場合
- の3段階で示す.
 - (a) $G = A_V$ のとき,

$$\operatorname{Hom}_{A_X}(f_!(G \otimes K), F) \cong \operatorname{Hom}_{A_X}(f_!(A_V \otimes K), F)$$

$$\cong (f_K^! F)(V)$$

$$\cong \operatorname{Hom}_{A_Y}(A_V, f_K^! F)$$

$$= \operatorname{Hom}_{A_Y}(G, f_K^! F)$$

なので同型.

- (b) $G = \bigoplus_i A_{V_i}$ のとき、 $\alpha(G) = \prod_i \alpha(A_{V_i})$ なので、(a) の結果からこれも同型.
- (c) G が一般のとき, [KS90, Prop.2.4.12] より, 完全列

$$0 \to G'' \to G' \to G \to 0$$

で、 $G'\cong \bigoplus_j A_{V_j}$ となるものがある. (G'' は全射 $G'\twoheadrightarrow G$ の核として得られる.)よって、(b) より $\alpha(G')$ は同型. 次の可換図式を考える.

$$0 \longrightarrow \operatorname{Hom}(f_{!}(G \otimes K), F) \longrightarrow \operatorname{Hom}(f_{!}(G' \otimes K), F) \longrightarrow \operatorname{Hom}(f_{!}(G'' \otimes K), F)$$

$$\downarrow^{\alpha(G)} \qquad \qquad \downarrow^{\alpha(G')} \qquad \qquad \downarrow^{\alpha(G'')}$$

$$0 \longrightarrow \operatorname{Hom}(G, f_{K}^{!}F) \longrightarrow \operatorname{Hom}(G', f_{K}^{!}F) \longrightarrow \operatorname{Hom}(G'', f_{K}^{!}F).$$

補題 2.2 より,2 つの行はどちらも完全. $\alpha(G')$ は同型なので,左の可換性から $\alpha(G)$ は単射.同じことを $\alpha(G'')$ にやれば $\alpha(G'')$ は単射.よって,五項補題から $\alpha(G)$ は同型.(左に 0 の同型を追加する.)

 $\operatorname{Hom}_{A_Y}(-,f_K^!F)$ が完全関手であることから, $f_K^!F$ が入射加群であることもわかる. \Box $f_!$ のコホモロジー次元を $\leq r$ とする.

補題 2.4. \mathbf{Z}_Y に対し、分解 $0 \to \mathbf{Z}_Y \to K^0 \to \cdots \to K^r \to 0$ で、各 K^j が平坦かつ f 柔軟な \mathbf{Z}_Y 加群となるものが存在する.

証明. 入射分解と同じように分解を構成する.

入射分解の復習 $\hat{Y}\coloneqq (Y,P(Y))$ を Y に離散位相を入れた空間とし, $p\colon \hat{Y}\to Y$ を自然な連続写像とする.F を \mathbf{Z}_Y 加群とする. $p^{-1}F\in \mathrm{Mod}(\mathbf{Z}_{\hat{Y}})$ に対し,入射加群 $I\in \mathrm{Mod}(\mathbf{Z}_{\hat{Y}})$ への単射

$$0 \to p^{-1}F \to I$$

があったとする.この I と単射に対し,左完全関手 p_* を適用すると, $0 \to F \to p_*I$ は $\operatorname{Mod}(\mathbf{Z}_Y)$ における完全列である.(ここに $p_*p^{-1}F = (\operatorname{id}_Y)_*(\operatorname{id}_Y)^{-1} = F$ である.) p_* は入射的対象を保つので, p_*I は入射加群である.

最初の完全列を構成する. $F'\in \mathrm{Mod}(\mathbf{Z}_{\hat{Y}})$ とすると, 各点 $y\in Y$ に対し, $\mathrm{Mod}(\mathbf{Z}_{\hat{Y},y})=\mathrm{Mod}(\mathbf{Z})$ における完全列

$$0 \to F_y' \to I_y$$

が存在する. $(\operatorname{Mod}(\mathbf{Z})$ は充分入射的対象を持つのだった.) 単射の積は単射なので, Y 全体で積を取った

$$0 \to \prod_{y \in Y} F_y' \to \prod_{y \in Y} I_y$$

も完全である. したがって, $\operatorname{Mod}(\mathbf{Z}_{\hat{Y}})$ での入射加群 $I=\prod_{y\in Y}I_y$ への単射 $F\to I$ が得られた. この操作を余核に対して繰り返し行えば, $F\in\operatorname{Mod}(\mathbf{Z}_Y)$ の入射分解が得られる.

(復習終わり)

 \mathbf{Z}_Y の入射分解を

$$0 \to \mathbf{Z}_Y \to K^0 \to \cdots \to K^r \to 0$$

とする. 入射加群は c 柔軟であり,したがって f 柔軟である.したがって,この分解は c 柔軟分解である.

各項の平坦性を見る.

参考文献

[KS90] Masaki Kashiwara, Pierre Schapira, *Sheaves on Manifolds*, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990.