MÓDULO B - RESPOSTAS

MB.02.
$$Q = 0.317 \text{ m}^3/\text{s}$$

MB.03.
$$\overline{Q}_{L} = \frac{1}{31536} \cdot [A \cdot (P - EVT) - x \cdot (EV - EVT)]$$

$$\overline{Q}_L = Q \cdot (1 - \frac{x}{A}) + \frac{1}{31536} \cdot (P - EV) \cdot x$$

onde:
0. 0. em. m³/s

MB.04.
$$q = 15,85 \text{ l/s.km}^2$$

MB.05.
$$q_L = 14,90 \text{ l/s.km}^2$$

MB.06.
$$\phi = 0.318$$
 onde $\phi = \frac{A_L}{A}$

MB.07.
$$A_B = 2102,4 \text{ km}^2$$

MB.08. O valor da área da bacia é irrelevante neste problema. Ao fazer a dedução da fórmula envolvendo q (vazão específica), P (precipitação) e EVT (evapotranspiração) verifica-se que a área da bacia é simplificada.

$$q = \frac{P - EVT}{31,536}$$

MB.11.
$$q_L = 17.2 \text{ l/s.km}^2$$

MB.12.
$$\frac{\Delta Q}{Q} = -2.33\%$$

MB.13.
$$\Delta Q = 86,41 \text{ l/s (decréscimo)}$$

MB.15. a)
$$q = \frac{P \cdot c}{31,536}$$
 b) $h_e = P \cdot (1-c)$

c)

1	-		
	Р	q	h _e
	(mm)	(l/s.km²)	(mm)
	1000	22,20	300
	1200	26,64	360
	1600	35,51	480
	1800	39,95	540

MB.16.
$$A = \frac{7425}{P \cdot c}$$

ÁREA (km²)					
	P (mm)				
c (adm)	150	200	250	300	

0,35	141,4	106,1	84,9	70,7
0,40	123,8	92,8	74,3	61,9
0,45	110,0	82,5	66,0	55,0
0,50	99,0	74,3	59,4	49,5

MB.17. a)
$$Q = \frac{PRE-EVT}{31,536} \cdot \text{ÁREA}$$

b) $Q_L = \frac{(PRE-EVT) \cdot \text{ÁREA-}(EV-EVT) \cdot Z}{31,536}$

onde: Q, QL _{em} I/s ÁREA, Z _{em} km² PRE, EVT, EV _{em} mm

MB.18.
$$\frac{E_1 - E_2}{E_1} = \frac{\phi \cdot (EV - EVT)}{P - EVT}$$

MB.19. a) $\Delta V = 535,1472 \times 10^6 \text{ m}^3$ b) $h_{EF} = 94,76 \text{ mm}$ c) $q = 1096,8 \text{ l/s.km}^2$

$$\label{eq:mb20} \begin{aligned} \text{MB.20.} \qquad & Q = Q_o \cdot e^{-\alpha \cdot \Delta T} \\ & \text{V} = 58,687 \text{x} 10^6 \quad m^3 \end{aligned}$$

MB.21.
$$Q_{01/02/75} = 38,25 \text{ m}^3/\text{s}$$

MB.23. Total escoado: 16,6 mm Total de perdas: 115 mm (149480 m³)

MB.24. EVAPOTRANSPIRAÇÃO POTENCIAL

THORNTHWAITE

Mês	JAN	FEV	MAR	ABR	MAI	JUN
EVTp (mm)	122,3	101,6	92,3	75,6	47,2	38,8

Mês	JUL	AGO	SET	OUT	NOV	DEZ
EVTp (mm)	46,1	59,1	74,1	85,6	108,9	114,8

MB.25. EVAPOTRANSPIRAÇÃO POTENCIAL-- SERRA

Mês	JAN	FEV	MAR	ABR	MAI	JUN
EVTp (mm)	113,8	94,7	86,5	71,5	45,7	37,8

Mês	JUL	AGO	SET	OUT	NOV	DEZ
EVTp (mm)	44,7	56,7	70,3	80,9	101,7	107,3

MB.26. $E_0 = 3.8 \text{ mm/dia}$

MB.27.

t	E _o	
12	3,1	
15	3,5	
18	3,8	
21	4,0	
24	4,4	

h	E _o
0,4	4,1
0,5	4,0
0,6	3,8
0,7	3,4
0,8	3,0

2,8 3.3

n/D	E _o	V ₂	
0,2	3,2	1	
0,3	3,4	2	

0,4	3,8
0,5	4,1
0.6	43

3	3,8
4	4,0
5	4,4

MB.28.

T(min)	2	5	10	20	30	60	90	150
f(cm/h)	8,76	7,90	6,45	4,68	3,59	1,76	1,10	0,75

MB.29. Q = $181.9 \text{ m}^3/\text{s}$

MB.30. Equação logarítmica: $v = a \cdot y^b$

Velocidade média obtida pela integração do perfil das velocidades:

$$\overline{v} = \frac{a \cdot h^b}{b+1}$$

Posição onde $v = \psi$: $y^* = \frac{h}{(b+1)^{1/2}}$

Para $b = \frac{1}{5} \implies y^* = 0.40 \text{ h}$ ou 60% da profundidade.

MB.31.

DISTÂNCIA (m)	ME = 0	= 0 2		•	4		6		8		0	12 = MD	
PROFUNDIDADE (m)	0	1	,0	3	ó	5	,5	4	ó	1,	.5	0	
v (20%) (m/s)	0,0	1	,4	2,0		3	,0	2,4		1,5		0,0	
v (80%) (m/s)	0,0	0,6		1,2		2,0		1,6		1,1		0,0	
vmv (m/s)	0,0	1	,0	1	.6 2		,5 2		,0	1,3		0,0	
vma (m/s)	0,50		1,30		2,0	05	5 2,3		1,0	65	0,65		
A (m ²)	1,0		4	,0	8,5		9,5		5,	,5		1,5	
a (m³/s)	0.50		5.20		17.425		21.3	375 9.0		775		0.975	

 $Q = 54,55 \text{ m}^3/\text{s}.$

MB.32.

a) Seção transversal:

b) Curva COTA x ÁREA:

c) $Q = 58.9 \text{ m}^3/\text{s}$; U = 0.63 m/s.

- d) Método de Stevens, por exemplo.
- Ver página 176, Capítulo 2, do Volume I da "Coleção ABRH de Recursos Hídricos".
- \bullet Usando a fórmula de Chèzy e supondo $\,C\!\sqrt{i}\,$ constante, a fórmula abaixo permite uma avaliação teórica da curva chave:

$$Q = 0.434 \cdot A\sqrt{R}$$

MB.33. a) Curva de descarga:

b) Extrapolação: Ver página 170, Capítulo 2, do Volume I da "Coleção ABRH de Recursos Hídricos".

MB.34. Fluviograma para o período de 01/08 a 10/09:

MB.35.

a) Curva de Descarga:

c)

TABELA 3												
LEITURA DE	Q											
RÉGUA (m)	(m³/s)											
0,50	157,18											
0,75	175,97											
1,00	196,08											
1,20	215,00											
1,40	240,00											
1.70	270.00											

2,60	470,00
4,80	1755,00
5,90	2830,00

MB.36. Separação do escoamento superficial:

VOLUMES:

Linha Reta: V = 1,835x10⁹ m³
 Tempo Fixo: V = 1,815x10⁹ m³
 Depleção Dupla: V = 1,828x10⁹ m³

MB.37. Hipótese:

Área da bacia = 1000 km² Coeficiente C = 0,2

a) Constante de Depleção: K = 0,81

Fim do escoamento Super: dia 11 às 12 horas

b) Método da Linha Reta:

DIA	5		ŝ	7		8		9		10		11		12	
HORA	12	0	12	0	12	0	12	0	12	0	12	0	12	0	12
VAZÃO (m ³ /s)	5.6	5.0	4.5	10	39.5	75	82	74	62	43	20	14.5	8	7.2	6.5

$$\Sigma$$
Qs = 363,75

Q _{super} (m ³ /s)	0	0	0	5,15	34,3	69,4	76,1	67,7	55,4	36,0	12,7	6,8	0	0	0
Q _{sub} (m ³ /s)	5,6	5,0	4,5	4,85	5,20	5,55	5,90	6,25	6,60	6,95	7,30	7,65	8,0	7,2	6,5

c) Volume escoado: $V = 15,714x10^6 \text{ m}^3$

d) Precipitação: Total = 78,57 mm

Efetiva = 15,71 mm

e) Hidrograma Unitário (P_{efetiva} = 10 mm):

$$Q_{10} = 0,636 \cdot Q_{super}$$

Q ₁₀ =Q _u (m ³ /s) 0	0	0	3,28	21,8	44,2	48,4	43,1 1	35,2	22,9	8,08	4,36	0	0	0
---	---	---	------	------	------	------	-----------	------	------	------	------	---	---	---

MB.38.
$$A = \frac{24750}{P} \text{ km}^2$$

MB.39. Área da bacia: $A_B = 825 \text{ km}^2$

