FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Studie účelnosti zbudování vodní cesty Dunaj-Odra-Labe – zadání č. 2

Obsah

1	$ m ilde{U}vod$	2
	1.1 Autoři	2
	1.2 Ověřování validity modelu	
2	Rozbor tématu	2
	2.1 Popis použitých postupů	4
	2.2 Popis použitých technologií	
3	Koncepce modelu	5
	3.1 Forma konceptuálního modelu	5
4	Architektura simulačního modelu	7
	4.1 Návrh objektově orientovaného modelu	8
	4.2 Načítání trasy a transportovaného objemu	8
5	Podstata simulačních experimentů a jejich průběh	8
	5.1 Popis použití simulátoru	Ć
	5.2 Dokumentace jednotlivých experimentů	6
6	Závěr	11
7	Reference	11

1 Úvod

Cílem zadaného projektu bylo prostudovat zdroje, zabývající se účelností vybudování vodního koridoru Dunaj-Odra-Labe, a podle zjištěných údajů stanovit kvalifikovaný odhad roční poptávky po lodní přepravě mezi zvolenými uzly.

Součástí zadání bylo také navrhnout a implementovat model SHO (Systém hromadné obsluhy – IMS přednášky [1] slide č. 139) dopravní cesty, včetně stavebních prvků.

1.1 Autoři

Autory projektu jsou Roman Blanco (xblanc01) a Adam Jež (xjezad00) – studenti 3. ročníku bakalářského studia na Fakultě Informačních technologii VUT v Brně. Prioritním zdrojem informací týkajících se zadaného tématu byly veřejně přístupné zdroje. Některé informace nám byly poskytnuty autory projektu zabývajícího se výstavbou koridoru.

1.2 Ověřování validity modelu

Ověřování validity modelu probíhalo pomocí experimentů, a to simulací ve virtuálním prostředí (Validace modelu – IMS přednášky [1] slide č. 37). Ověřovalo se, zda modelová situace odpovídá reálné situaci, přičemž informace byly čerpány pouze z věrohodných zdrojů. Jelikož reálný systém, určený simulovaným modelem, v současné době neexistuje, jako validní jsme model prohlásili na základě informací získaných z těchto zdrojů.

2 Rozbor tématu

Informace, potřebné pro úspěšnou implementaci byly vyhledány na veřejně přístupných stránkách na internetu. Problémem při využívání těchto zdrojů byla skutečnost, že mnoho informací, bylo uvedeno pouze v sumarizovaných hodnotách za období celého roku. Pro některé hodnoty tak musel být použit kvalifikovaný odhad, podpořený údaji čerpanými ze statistik a dalších databází. Mimo již zmíněných veřejně přístupných webových stránek nám také často jako zdroj údajů posloužily diplomové či bakalářské práce. Níže je uveden souhrn hodnot, které jsme tímto způsobem získali:

Hodnoty týkající se plavební komory:

- doba uzavření vrat plavební komory je 60 sekund (Studie [3] strana č. 44)
- doba otevření vrat plavební komory je 30 sekund (Studie [3] strana č. 44)
- doba vplutí do plavební komory je 516 sekund (Studie [3] strana č. 44)
- doba vyplutí z plavební komory je 355 sekund (Studie [3] strana č. 44)
- nízká plavební komora je taková, u níž výškový rozdíl mezi hladinami toku před a za komorou není větší než 12.5 m. Pokud plavební komora vyrovnává výšku hladiny přesahující 12.5 m, nazýváme ji vysokou plavební komorou (Studie [3] strana č. 45)
- napuštění nebo vypuštění 1 výškového metru nízké plavební komory odpovídá doba 40 s (Studie [3] strana č. 45)
- napuštění nebo vypuštění 1 výškového metru vysoké plavební komory odpovídá doba 25,45 s (Studie
 [3] strana č. 45)

Hodnoty týkající se plavby v tunelu:

- bezpečná rychlost lodi při plavbě v tunelu je 2,22 m/s [3]
- hranice, kdy se začne aplikovat seskupování je 3470 m (Studie projektu [3] stana č. 48).

Hodnoty týkající se plavby v akvaduktu:

- $\bullet\,$ rychlost při plavbě v tunelu je 2,77 m/s [3]
- $\bullet\,$ hranice, kdy se začne aplikovat seskupování je 2090 m[3]

Obecné hodnoty při plavbě:

- rychlost plavby v kanálu je 3,33 m/s [7]
- rychlost plavby po proudu toku řeky je 4,16 m/s [7]
- $\bullet\,$ rychlost plavby proti proudu toku řeky je 1,66 m/s [7]
- maximální náklad lodi je 4000 tun

Dále jsme také pracovali s těmito informacemi:

- tunely jsou navrhovány jako jednolodní, tedy lodi v tunelu se nemohou pohybovat proti sobě. Lodě, které se chystají projet tunelem stejným směrem se mohou seskupit za účelem zrychlení plavby (Kniha [6] strana č. 157)
- je plánovaná vodní třída Vb, kde mohou plout motorové nákladní lodě o nosnosti 2500 tun, nebo menší řičně-námořní lodě a tlačné soupravy s nosností 4000 tun (Kniha [6] strana č. 136)
- provoz plavebních komor je 24 hodin denně (Studie projektu [3] strana č. 38)

Velmi dobrým zdrojem informací o plánované trase koridoru byly materiály volně dostupné na internetové stránce projektu, který se problematikou vodního koridoru Dunaj-Odra-Labe dlouhodobě intenzivně zabývá, a také literatura [6], kterou nám poskytli její autoři.

2.1 Popis použitých postupů

V literatuře i na webových stránkách byly zobrazeny všechny části plánovaného koridoru s potřebnými údaji o trase:

- délky tunelů
- délky akvaduktů
- výškové rozdíly u plavebních komor

V knize byl také údaj určující, na kolikátém kilometru se stavební prvky nachází, z čehož bylo možné určit vzdálenosti mezi těmito prvky a tedy i délky úseků řek. (obrazek. č 1). Označeny nebyly pouze polohy přistavů, tedy přibližná poloha přistavů byla odhadnuta pomocí blízkých stavebních prvků.

2.2 Popis použitých technologií

- C++ cplusplus.com
- SIMLIB www.fit.vutbr.cz/~peringer/SIMLIB/
- g++ www.cprogramming.com/g++.html
- GNU/Linux, distribuce Fedora, Ubuntu fedoraproject.org/, ubuntu.com

Příloha 12. e. - Přehledná situace a schématický podélný profil etapy 4

Obrázek 1: Ukázka jedné etapy koridoru z poskytnuté literatury

3 Koncepce modelu

3.1 Forma konceptuálního modelu

Petriho síť na obrázku č. 2 zobrazuje mechanismus proplutí tunelem (stejný mechanismus lze aplikovat při proplouváníí mostu). Proměnná M udává počet lodí, které mohou vplout do tunelu zároveň. Ve téměř všech tunelech je tato proměnná rovna 1. Výjimkou je tunel Vrcholový, a to kvůli své délce – 7600 metrů. U tohoto tunelu je proměnná M nastavena na hodnotu 3

a to zejména kvůli blízkým plavebním komorám. Nastavení vyšší proměnné tak sníží časovou ztrátu lodí při následném překonávání plavebních komor. Hodnota je určena na základě tabulky ve studii (Studie projektu [3] – stana č. 48).

počet lodí v závěsu	1	2	3	4	5	6	7
L_{mez} pro jednoduché pl. k. (km)	3,47	6,94	10,42	13,89	17,36	20,83	24,30
L_{mez} pro dvojité pl. k. (km)	1,63	3,26	4,88	6,51	8,14	9,77	11,40

Proměnná T udává čas potřebný k proplutí tunelu. Tento čas je určený délkou tunelu a bezpečnou rychlostí v těchto jednolodních tunelech, která činí 8 km/h (Studie projektu [3] – strana č. 47, poznámka pod čarou). Pro jednoduchost byl v petriho síti zanedbán mechanismus, který je pro správné fungování simulace nutný – timeout. Po určité době bez proplutí lodě se směr tunelu automaticky změní. Doba byla navržena jako dvojnásobek proplouvací doby.

Obrázek 2: Petriho síť proplutí tunelu

Petriho síť na obrázku č. 3 zobrazuje mechanismus proplutí plavební komorou. Proměnná X určuje čas, za který:

- 1. loď vpluje do komory
- 2. zavřou se vrata komory
- 3. naplní se komora
- 4. otevřou se vrata
- 5. loď vypluje z komory

Kromě naplnění komory jsou všechny konstanty získané ze studie[3] (Studie projektu - strana č.46-47). Doba napuštění (popř. vypuštění – časy jsou totožné) se odvíjí od výšky, kterou komora pomáhá překonávat. Doba naplnění jednoho metru v komoře byla zjištěna ze studie[3] (Studie projektu - strana č. 44). Rozlišuje se také mezi vysokými a nízkými plavebními komorami. Ve vysokých komorách se může voda plnit rychleji. Proměnná T udává čekací dobu, po kterou, pokud není plavební komora nijak využita, je komora přečerpána kvůli čekajícímu plavidlu na opačné hladině, než je aktuální hladina komory. Hodnotu proměnné T jsme určili experimentováním.

Obrázek 3: Petriho síť proplutí plavební komorou

4 Architektura simulačního modelu

Následující kapitola pojednává o implementační části projektu. Pro pochopení implementace je potřeba mít alespoň minimální znalosti jazyka C++ a objektově orientovaného programování. K umožnění experimentů s realným systémem bylo nejprve nutno z nabytých znalostí vytvořit abstraktní model a poté simulační model (Princip Modelování a simulace – IMS přednášky [1] slide č. 9-10).

4.1 Návrh objektově orientovaného modelu

Všechny prvky (stavební prvky, řeka), které mají značný časový vliv na dobu plavby lodě, mají svou vlastní třídu.

• třída WaterItem

jedná se o abstraktní třídu, z níž jsou zděděny všechny prvky vodní cesty. Třida se stará o odchytávání statistik pomocí metod **Start** a **End**. Dále třida obsahuje dvě fronty – každá fronta pro jeden směr plavby.

Rozhraní třídy výžaduje implementaci metod getType a getLegth. Sémantikou metody getType je vracení typu prvku vodní cesty, getType analogicky vrací jejich délky.

• třída Chamber

tato třída je abstrakcí plavební komory. Dědí výše popisovanou třídu WaterItem.

Metody implementované v ní jsou seize, release a performAction.

Metoda seize se stará o povolení vjezdu lodi do plavební komory a zabránění dalším lodím využít komoru ve chvíli kdy je obsazena. Pokud se hladina plavební komory neshoduje s hladinou po které přijíždí loď, je loď zařazena do fronty a je nastaven timeout, po jehož uplynutí se plavební komora naprázdno přečerpá, pokud není do doby vypršení timeoutu plavební komora využita. Metoda performaction vykoná úkon vplutí do komory, napuštění komory a vyplutí z ní.

Hodnota timeout nebyla ve zdrojích nalezena, a bylo nutno ji odhadnout na základě experimentů. Hodnota je dvojnásobkem doby pro proplutí plavební komorou.

U dalších tříd je účel této metody stejný.

Metoda release zařídí případné aktivování dalšího plavidla ve frontě.

• třídy Tunel a Bridge

také obsahuje metody seize, performaction a release. Rozdíl u metody seize je, že lodě se střídají v proplouvání tunelem. Na základě délky tunelu (či mostu) se lodě seskupují.

• třídy Channel, Port a River

třídy implementují pouze metodu **performAction**, v níž se počítá doba proplutí daným místem. Speciálně u třídy **River**, která je abstrakcí tekoucí řeky, jsme brali v úvahu i směr toku.

• třída CargoShip

Dědí od třídy **Process** z knihovny SIMLIB. Implementuje metodu **behaviour**, ve které podle typu právě proplouvaného prvku vyvolá odpovídající akci. Objekt této třídy má daný počáteční i koncový uzel symbolizující přístav.

4.2 Načítání trasy a transportovaného objemu

Třídy načítají údaje o trase ze zdrojových souborů ve složce input.

V souboru *info.tsv* jsou uloženy informace o všech prvcích vodní trasy. Typ každého prvku je určen identifikátorem, podle něhož se dále rozhoduje o zpusobu zacházení se souvisejícími údají.

V souboru *connections.tsv* jsou dvojice identifikátorů jejichž prvky se nachází v trase bezprostředně za sebou.

Dále jsou zde konfigurační soubory, které určují trasu a převezený objem za rok. Jednotkou je 1000 tun.

5 Podstata simulačních experimentů a jejich průběh

Za cíl jsme si stanovili zjistit propustnost simulovaného vodního koridoru. Simulovali jsme 3 různé scénáře a porovnáním zjišťovali jejich vliv na časovou náročnost dané trasy.

5.1 Popis použití simulátoru

make přeloží aplikaci a vytvoří spustitelný soubor

make run spustí aplikaci s 6 různými scénáři, výstup je uložen do 6 souboru ve stejné složce jako Makefile. Názvy soubourů odpovídající spuštěnému scénáři a mají koncovku .out. Soubory obsahují histogram

pro stavební prvky koridoru.

Na konci souboru jsou vypsány jednotlivé trasy vypsány jako histogram.

Pod výpisi se nachází statistiky k frontám daného stavebního prvků

make clean odstraní veškeré soubory vytvořené příkazy make a make run

5.2 Dokumentace jednotlivých experimentů

Scénář TREND – Prognóza objemu přepravy (Analýza hospodářského potenciálu [4] – strana č. 226)

	rok 2020	rok 2050
Hodonín - Otrokovice	7470 tis. t	10280 tis. t
Otrokovice - Přerov	7600 tis. t	14600 tis. t
Přerov - Mošnov	8100 tis. t	11150 tis. t
Mošnov - Ostrava	6520 tis. t	8970 tis. t
Přerov - Olomouc	4850 tis. t	6680 tis. t
Olomouc - Pardubice	4740 tis. t	6530 tis. t

Scénář VYSOKÝ – Prognóza objemu přepravy (Analýza hospodářského potenciálu [4] – strana č. 230)

	rok 2020	rok 2050
Hodonín - Otrokovice	9730 tis. t	14660 tis. t
Otrokovice - Přerov	9710 tis. t	14620 tis. t
Přerov - Mošnov	10020 tis. t	15090 tis. t
Mošnov - Ostrava	9890 tis. t	14900 tis. t
Přerov - Olomouc	5820 tis. t	8770 tis. t
Olomouc - Pardubice	5610 tis. t	8450 tis. t

Scénář NÍZKÝ – Prognóza objemu přepravy (Analýza hospodářského potenciálu [4] – strana č. 230)

	rok 2020	rok 2050
Hodonín - Otrokovice	5170 tis. t	6340 tis. t
Otrokovice - Přerov	5260 tis. t	6450 tis. t
Přerov - Mošnov	5610 tis. t	6880 tis. t
Mošnov - Ostrava	4500 tis. t	5530 tis. t
Přerov - Olomouc	3340 tis. t	4090 tis. t
Olomouc - Pardubice	3260 tis. t	4000 tis. t

Maximální nosnost tlačných souprav na trati tohoto koridoru je 4000 tun. Tento údaj vychází z vodní třída Vb jak bylo uvedeno již výše. S tímto předpokladem a plánovaným objemem přepravy jsme vyčíslili počet tlačných souprav, který bude potřebný k převezení daného objemu (viz obrázek č. 4)

Obrázek 4: Počet lodí na daných úsecích

Graf na obrázku č. 5 je zobrazen průměrný čas plavby lodi s daným scénářem, vyprůměrovaný z jednotlivých úseků. Může se zdát matoucí, že průměrný čas plavby s počtem lodí klesá, avšak tento jev způsobuje, že u komor dojde k timeoutu – jelikož lodě čekající u plavebních komor příliš dlouho, jsou komory přečerpány naprázdno. Větší počet lodí tedy zvyšuje šanci setkání páru lodí u plavební komory. Směr lodí na úsecích je dán poměrem 50:50. Lodě jsou generovány na základě exponenciálního rozložení (Exponenciální rozložení – IMS přednášky [1] slide č. 91)

Obrázek 5: Průměr časů pro úseky dané scénáři

Na grafu číslo 6 je zobrazena průměrná délka plavby. Pro zjištění maximální únosné propustnosti jsme si vybrali úsek Pardubice – Olomouc, jelikož tento úsek je proložen největším počtem plavebních komor a také největším tunelem s délkou 7600 metrů.

Z grafu lze vyčíst, že hraniční počet lodí při kterém doba plavby roste jen mírně, se pohybuje okolo hodnoty 85000 lodí za rok. Za touto hranicí se u plavebních komor a tunelů začínají tvořit velké frony. Tato hraniční hodnota je přibližně čtyřnásobek očekávaného počtu lodí ve vysokém scénáři na rok 2050

Obrázek 6: Průměrná délka plavby

6 Závěr

V této dokumentaci byla studována simulace ve vodním koridoru. Ověřili jsme validitu modelu, ve kterém jsme testovali, zda chování simulovaného systému odpovídá reálné situaci.

Provedli jsme mnoho experimentů, z nichž vyplývá, že výstavba koridoru bude stačit přepokládanému vytížení. Dle našich výsledků by měl být koridor schopný snést až 4-krát vyšší vytížení, než bylo plánovano ve scénáři pro vysoký scénář v roce 2050 pro daný úsek, bude-li zachována přípustné doby plavby.

Z důvodu velkého množství experimentů byly pro potřeby dokumentace vybrány pouze ty nejpodstatnější.

7 Reference

- [1] Peringer, P.: Modelování a simulace, Přednášky. Brno, Září 2014
- [2] Mapy s etapami výstavby koridoru http://d-o-l.cz/index.php/cs/kestazeni/category/14
- [3] Studie projektu výstavby vodního koridoru D-O-L, Ministerstvo průmyslu a obchodu http://d-o-l.cz/index.php/cs/kestazeni/category/6
- [4] Analýza hospodářského potenciálu dopravního koridoru http://d-o-l.cz/index.php/cs/kestazeni/category/27
- [5] Plánovaná trasa koridoru zaznačená v Google Maps http://povodne.aspone.cz/Maps/dol.html
- [6] Podzimek, J.: Křižovatka tří moří, Vodní koridor Dunaj-Odra-Labe, vydání 2., In:Hejkal, 2012, ISBN: 978-80-254-0105-7
- [7] Velek, P.: Studie trasovani vodniho koridoru Dunaj Odra Labe http://www.vse.cz/vskp/show_file.php?soubor_id=1218287