

1. **Inizio dell'esecuzione:**

- Tutti i processi sono in coda per l'esecuzione.
- Il sistema seleziona il primo processo in coda, ad esempio P1, e gli assegna 12 millisecondi di tempo di CPU.

2. **Esecuzione di P1:**

- P1 esegue per 12 millisecondi.
- Se il processo completa la sua esecuzione prima del termine delle 12 millisecondi, viene posto in attesa.

3. **Interruzione di P1:**

- Dopo 12 millisecondi, P1 viene interrotto, indipendentemente dallo stato della sua esecuzione.
- Se P1 non è ancora completo, viene posto in fondo alla coda dei processi in attesa.

4. **Selezione del prossimo processo:**

- Il sistema seleziona il prossimo processo in coda, ad esempio P2, e gli assegna 12 millisecondi di tempo di CPU.

5. **Esecuzione di P2:**

- P2 esegue per 12 millisecondi.
- Se P2 completa prima del termine delle 12 millisecondi, viene messo in attesa.

6. **Interruzione di P2:**

- Dopo 12 millisecondi, P2 viene interrotto, indipendentemente dallo stato della sua esecuzione.
- Se P2 non è ancora completo, viene posto in fondo alla coda dei processi in attesa.

7. **Esecuzione di P3:**

- Il sistema seleziona P3 e gli assegna 12 millisecondi di tempo di CPU.
- P3 esegue per 12 millisecondi o fino al completamento, se è più breve.

8. **Interruzione di P3:**

- Se P3 completa prima delle 12 millisecondi, viene messo in attesa.
- Se P3 non è ancora completo, viene posto in fondo alla coda dei processi in attesa.

9. **Ripetizione del ciclo:**

- Il ciclo continua fino a quando tutti i processi sono completati.

Utilizzeremo l'algoritmo di scheduling Round Robin con un time slice di 12 millisecondi per calcolare i tempi di attesa e di turnaround medi per i processi dati. Seguendo il procedimento, otteniamo il seguen

L'operazione continua in modo ciclico fino al completamento di tutti i processi. Il time slice di 12 millisecondi determina quanto tempo ciascun processo ha a disposizione prima di passare al successivo, ga

| Tempo | Esecuzione | Processo in esecuzione | Coda dei processi |

0 -	-	P1, P3, P5, P2, P4
6 12	P1	P3, P5, P2, P4
18 12	P3	P5, P2, P4, P1
30 12	P5	P2, P4, P1, P3
42 12	P2	P4, P1, P3, P5
54 12	P4	P1, P3, P5, P2
66 12	P1	P3, P5, P2, P4
78 12	P3	P5, P2, P4, P1
90 12	P5	P2, P4, P1, P3
102 12	P2	P4, P1, P3, P5
114 12	P4	P1, P3, P5, P2
126 6	P1	P3, P5, P2, P4
132 6	P3	P5, P2, P4, P1
138 6	P5	P2, P4, P1, P3
144 6	P2	P4, P1, P3, P5
150 6	P4	P1, P3, P5, P2

Ora, calcoliamo i tempi di attesa e di turnaround per ogni processo:

| Processo | Tempo di attesa | Tempo di turnaround |

P1	48	62	- 1	
P2	12	60	- 1	
P3	50	88		
P4	58	84	- 1	
P5	36	98	- 1	

Infine, calcoliamo i tempi medi:

- Tempo di attesa medio: \((48 + 12 + 50 + 58 + 36) / 5 = 40.8\)
- Tempo di turnaround medio: \((62 + 60 + 88 + 84 + 98) / 5 = 78.4\)

- Tempo di attesa medio: \(40.8\) millisecondi
- Tempo di turnaround medio: \((78.4\) millisecondi

										30	31	32	ు	34	აა	30	٥/	ುಂ	39	40
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
			_																	
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
															fin	e p1				

arantendo una distribuzione equa delle risorse di CPU tra i processi attivi.

nte risultato:

41	42	43	44	45	46														
41	42	43	44	45	46														
					46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
41	42	43	44	45	46	47	48	49	50										
Δ 1	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

	62	63	64	65	66	67	68	69	70	71	72
62 63 64 65 66 67 68 69 70 71 72											

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

113 114 120 121 116 117 fine p5 fine p3 fine p4