Seshadri constants of equivariant vector bundles on toric varieties

Bivas Khan

(Joint with Jyoti Dasgupta and Aditya Subramaniam)

IISc-IISER Pune Twenty-20 Symposium

September 18, 2021

Positivity of line bundles

"Positivity" of line bundles means that it has "many global sections".

Positivity of line bundles

Framework: All varieties are nonsingular projective defined over \mathbb{C} .

Let \mathcal{L} be a line bundle on X and $s_0, s_1, \ldots s_N$ be a \mathbb{C} -basis for $H^0(X, \mathcal{L})$. Then there is the associated **Kodaira map**

$$\phi_{\mathcal{L}}: X \setminus Bs(\mathcal{L}) \longrightarrow \mathbb{P}^N$$
, defined by $x \longmapsto [s_0(x): s_1(x): \ldots: s_N(x)]$,

where $Bs(\mathcal{L}) := \mathbb{V}(s_0) \cap \ldots \cap \mathbb{V}(s_N)$ is the base locus of the line bundle \mathcal{L} .

- The line bundle $\mathcal L$ is called globally generated if $Bs(\mathcal L)=\emptyset$. In addition, if $\phi_{\mathcal L}$ defines a closed embedding $\phi_{\mathcal L}: X \hookrightarrow \mathbb P^N$, then $\mathcal L$ is said to be very ample.
- The line bundle $\mathcal L$ is called ample if there exists a positive integer m such that $\mathcal L^{\otimes m}$ is very ample.

Some criteria for ampleness

Theorem 1 (Nakai-Moishezon-Kleiman criterion)

Let $\mathcal L$ be a line bundle on a projective variety X. Then $\mathcal L$ is ample if and only if

$$\mathcal{L}^{\dim V} \cdot V > 0$$

for every positive dimensional irreducible subvariety $V \subseteq X$.

■ A line bundle \mathcal{L} is called numerically effective (nef) if $\mathcal{L} \cdot C \geq 0$ for all irreducible curves C in X.

Seshadri constants

Theorem 2 (Seshadri criterion for ampleness (1972))

A line bundle $\mathcal L$ be on X is ample if and only if for every point $x\in X$ there exists a positive number ε such that

$$\frac{\mathcal{L} \cdot C}{\text{mult}_x C} \ge \varepsilon$$

for all curves C passing through x.

Seshadri constants are introduced by Demailly(1992).

Definition 1

Let \mathcal{L} be a nef line bundle on a complex projective variety X. For a point $x \in X$, the Seshadri constant of \mathcal{L} at x is defined to be

$$\varepsilon(X, \mathcal{L}, x) := \inf_{x \in C} \frac{\mathcal{L} \cdot C}{\text{mult}_x C}.$$

Connection with Fujita conjecture

Let \mathcal{L} be an ample line bundle on X and $n = \dim(X)$.

- If $\varepsilon(X, \mathcal{L}, x) > \frac{n}{n+1}$ for all $x \in X$ then $K_X + (n+1)\mathcal{L}$ is globally generated.
- If $\varepsilon(X,\mathcal{L},x) > \frac{2n}{n+2}$ for all $x \in X$ then $K_X + (n+2)\mathcal{L}$ is very ample.

Miranda(1993): too optimistic to conclude Fujita conjecture.

Fix any $\delta>0$, then there exists a smooth surface X, a point $x\in X$, and an ample line bundle $\mathcal L$ on X such that

$$\varepsilon(X, \mathcal{L}, x) < \delta.$$

Note: In the above example the Seshadri constant is small only at a "very special" point.

Guiding problems on Seshadri constants

Note that for any $x \in X$,

$$0 \le \varepsilon(X, \mathcal{L}, x) \le \sqrt[n]{\mathcal{L}^n}$$
.

Some of the guiding problems on Seshadri constants involve:

Computing Seshadri constants

Giving bounds on them

Checking if they are irrational (Nagata Conjecture -1958)

Some known results

Let \mathcal{L} be an **ample and globally generated** line bundle on a variety X, then

$$\varepsilon(X, \mathcal{L}, x) \ge 1$$

for all $x \in X$.

■ Ein-Lazarsfeld (1993): Let X be a smooth projective surface, and \mathcal{L} be an ample line bundle on X. Then

$$\varepsilon(X, \mathcal{L}, x) \ge 1$$

for "very general point" $x \in X$.

Characterization of \mathbb{P}^n : The only smooth projective variety with ample tangent bundle is \mathbb{P}^n (Mori (1979)).

Let X be a smooth Fano variety of dimension n. Then

$$X = \mathbb{P}^n \iff \varepsilon(X, -K_X, x) \ge n + 1 \text{ for some } x \in X,$$

(Bauer-Szemberg (2009)).

Example 2

lacksquare Consider the line bundle $\mathcal{L}=\mathcal{O}_{\mathbb{P}^n}(1)$ on \mathbb{P}^n , then for every $x\in\mathbb{P}^n$

$$\varepsilon(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1), x) = 1.$$

Take a line C passing through x, then the ratio $\frac{\mathcal{L}\cdot C}{\operatorname{mult}_x C}=1$. So $\varepsilon(\mathbb{P}^n,\mathcal{O}_{\mathbb{P}^n}(1),x)\leq 1$.

The equality follows from Bézout's theorem:

$$\mathcal{L} \cdot C \geq \text{mult}_x C$$
.

Aim: To compute Seshadri constants for vector bundles.

Seshadri constant for vector bundles

 ${\sf X}$: nonsingular complex projective variety, ${\cal E}$: vector bundle on X

 $\pi:\mathbb{P}(\mathcal{E})\to X$: projectivized bundle associated to \mathcal{E}

 $\xi:=\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$: tautological line bundle on $\mathbb{P}(\mathcal{E})$

A vector bundle \mathcal{E} on X is ample (resp. nef) if the tautological line bundle ξ is ample (resp. nef) on the projectivized bundle $\mathbb{P}(\mathcal{E})$.

Definition 3 (Hacon (2000), Fulger-Murayama (2021))

The Seshadri constant of a nef vector bundle \mathcal{E} at $x \in X$ is defined to be

$$\varepsilon(X, \mathcal{E}, x) := \inf_{C \subset \mathbb{P}(\mathcal{E})} \frac{\xi \cdot C}{\operatorname{mult}_x \pi_* C},$$

where the infimum is taken over all curves C on $\mathbb{P}(\mathcal{E})$ that meet $\pi^{-1}(x)$ but not completely contained in $\pi^{-1}(x)$.

Some known results

■ Let \mathcal{E} be an **ample and globally generated** vector bundle on a smooth complex projective curve X, then for all $x \in X$

$$\varepsilon(X, \mathcal{E}, x) \ge 1.$$

■ Hacon (2000): Let \mathcal{E} be a nef vector bundle on a smooth complex projective curve X, then for all $x \in X$

$$\varepsilon(X, \mathcal{E}, x) = \mu_{min}(\mathcal{E}),$$

where $\mu_{min}(\mathcal{E})$ denotes the smallest slope of any quotient bundle of \mathcal{E} . Here slope of the vector bundle \mathcal{E} is $\mu(\mathcal{E}) = \frac{\deg(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}$.

■ Fulger-Murayama (2021): If $\mathcal{E} = \mathcal{E}_1 \oplus \cdots \oplus \mathcal{E}_r$ is a nef vector bundle on a variety X, then for any $x \in X$

$$\varepsilon(X, \mathcal{E}, x) = \min_{1 < i < r} \{ \varepsilon(X, \mathcal{E}_i, x) \}.$$

Some known results

■ \mathcal{E} semistable discriminant zero nef vector bundle of rank r on a variety X, then for all $x \in X$,

$$\varepsilon(X,\mathcal{E},x) = \frac{1}{r}\,\varepsilon(X,\det(\mathcal{E}),x).$$

■ Another Characterization of \mathbb{P}^n : Let X be a smooth Fano variety of dimension n with nef tangent bundle. Then

$$X = \mathbb{P}^n \iff \varepsilon(X, \mathscr{T}_X, x) > 0 \text{ for some } x \in X,$$

(Fulger-Murayama (2021)).

Toric varieties

Definition 4

A toric variety X: A normal complex variety which contains a torus $T \cong (\mathbb{C}^*)^n$ as a dense open subset such that:

$$\begin{array}{ccc}
T \times T & \longrightarrow & T \\
\downarrow & & \downarrow \\
T \times X & \longrightarrow & X
\end{array}$$

Example 5

 \blacksquare $(\mathbb{C}^*)^n$, \mathbb{C}^n and \mathbb{P}^n .

Theorem 3 (Fundamental theorem for toric varieties)

The category of toric varieties is equivalent to the category of fans.

$$X_{\Delta} \longleftrightarrow \Delta_{X}$$
.

Combinatorial Data:
$$M = \operatorname{Hom}(T, \mathbb{C}^*)$$
, $N = M^{\vee}$, fan Δ in $N \otimes \mathbb{R} \cong \mathbb{R}^n$.

- Cone $\sigma \in \Delta \leadsto$ affine variety U_{σ} , distinguished point $x_{\sigma} \in U_{\sigma}$.
- x_{σ} is a torus fixed point $\Leftrightarrow \sigma \in \Delta$ is n-dimensional.
- 1-dimensional cone $\rho \in \Delta$ \leadsto invariant divisors D_{ρ} .
- (n-1)-dimensional cone $\tau \in \Delta$ \leadsto invariant curves $V(\tau) \cong \mathbb{P}^1$.

Figure: Fan of \mathbb{P}^2

Toric vector bundle

Definition 6

A T-equivariant vector bundle or toric vector bundle: A vector bundle $\pi:\mathcal{E}\to X$ on X with a lift of the action of T on the total space \mathcal{E} in such a way that:

- lacktriangledown the projection map π is equivariant, and
- f 2 the torus T acts linearly on the fibers.

Example 7

line bundle, tangent bundle, cotangent bundle

Klyachko's classification theorem

 \mathcal{E} : rank r toric vector bundle on X, $E = \mathcal{E}(1_T)$: the fiber at $1_T \in T \subset X$.

Klyachko (1990)

$$\mathcal{E} \longleftrightarrow E \supset \ldots \supset E^{\rho}(i) \supset E^{\rho}(i+1) \supset \ldots \mathbf{0},$$

indexed by invariant prime divisors satisfying certain compatibility conditions.

For each cone $\sigma \in \Delta$, there is a decomposition into eigenspaces as follows

$$E = \bigoplus_{u \in \mathbf{u}(\sigma)} L_u^{\sigma},$$

where $\mathbf{u}(\sigma) \subset M$ is the associated characters of the toric vector bundle \mathcal{E} .

(Hering-Mustață-Payne (2010)): $\{\mathbf{u}(\sigma)\}_{\sigma}$ determines the restriction of \mathcal{E} to the invariant curves.

Seshadri constant for toric vector bundle

■ X toric variety; $x \in X$ a **torus fixed point** and \mathcal{E} a nef toric vector bundle on X. Then

$$\varepsilon(X, \mathcal{E}, x) = \min \{ \mu_{min}(\mathcal{E}|_C) \mid x \in C \text{ and } C \text{ is an invariant curve} \}$$
 (Hering-Mustață-Payne (2010)).

Goal: To compute Seshadri at arbitrary points.

Recall: to compute Seshadri constant at $x \in X$, we need to compute the ratios

$$\frac{\xi \cdot C}{\operatorname{mult}_x \pi_* C}, \quad \text{for all } C \subset \mathbb{P}(\mathcal{E}).$$

Key ingredient: the description of the Mori cone $\overline{\mathrm{NE}}(\mathbb{P}(\mathcal{E}))$: the closed cone of curves of the projectived bundle $\mathbb{P}(\mathcal{E})$.

Mori Cone

X: toric variety; \mathcal{E} : toric vector bundle on X; l_1, \ldots, l_m : invariant curves in X.

$$\mathbb{P}(\mathcal{E}|l_i) \stackrel{\gamma_i}{\longrightarrow} \mathbb{P}(\mathcal{E})$$

$$\downarrow^{\pi_i} \qquad \qquad \downarrow^{\pi}$$

$$\downarrow^{l_i} \stackrel{}{\longrightarrow} X$$

■ Since $\mathbb{P}(\mathcal{E}|l_i)$ is a toric variety, there is an invariant fiber curve Σ_i and invariant section curve Ω_i such that $\overline{\mathrm{NE}}(\mathbb{P}(\mathcal{E}|l_i) = \mathsf{Cone}(\Sigma_i, \Omega_i)$.

Proposition 8 (Hering-Mustață-Payne (2010))

Take $C_0 := \eta_i(\Sigma_i)$ and $C_i := \eta_i(\Omega_i)$, then the Mori cone is given by

$$\overline{\mathrm{NE}}(\mathbb{P}(\mathcal{E})) = \Big\{ a_0 C_0 + \dots + a_m C_m \mid a_i \in \mathbb{R}_{\geq 0} \ \text{ for } i = 0, \dots, m \Big\}.$$

In particular, $\overline{\mathrm{NE}}(\mathbb{P}(\mathcal{E}))$ is a polyhedral cone.

Seshadri constants of equivariant vector bundles on projective spaces

Theorem 9 (Dasgupta- __ - Aditya)

Let $\mathcal E$ be a "nice" nef equivariant vector bundle of rank r on the projective space $X=\mathbb P^n\ (n\geq 2)$. Then for any point $x\in X$, we have

$$\varepsilon(\mathcal{E}, x) = \min_{1 \le i \le m} \left\{ \mu_{\min}(\mathcal{E}|l_i) \right\}.$$

Example 10

■ Uniform bundle: a bundle of splitting type (a_1, \ldots, a_r) , i.e., for any line $l \subset \mathbb{P}^n$, we have

$$\mathcal{E}|_l \cong \mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^1}(a_r).$$

■ $\mathscr{T}_{\mathbb{P}^n}$ is a uniform bundle with splitting type (2,1, ...,1), hence for any $x \in \mathbb{P}^n$ the Seshadri constant is given by

$$\varepsilon(\mathscr{T}_{\mathbb{P}^n}, x) = 1.$$

Hirzebruch surface

Figure: $\mathcal{H}_{c_{1,2}} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(c_{1,2}))$

Figure: Fan for $\mathcal{H}_{c_{1,2}}$

- We have $D_1 \equiv D_1' \equiv f$, $D_2' \equiv D_2 c_{1,2} D_1 \equiv \Gamma_2$
- The Picard group is $\operatorname{Pic}(X) = \mathbb{Z}D_1 \oplus \mathbb{Z}D_2.$
- lacksquare The Nef cone is $\mathsf{Nef}(X) = \mathbb{R}_{\geq 0} D_1 \oplus \mathbb{R}_{\geq 0} D_2.$
- The Mori cone is $\overline{\mathrm{NE}}(X) = \mathbb{R}_{\geq 0}\Gamma_2 \oplus \mathbb{R}_{\geq 0}f.$

Seshadri constants of equivariant vector bundles on Hirzebruch surfaces

Theorem 11 (Dasgupta- __ - Aditya)

Let \mathcal{E} be an equivariant nef vector bundle of rank r on the Hirzebruch surface $X_2=\mathcal{H}_{c_{1,2}}$ satisfying the following conditions:

$$\mu_{\min}(\mathcal{E}|_{D_1}) = \mu_{\min}(\mathcal{E}|_{D_1'}) \text{ and } \mu_{\min}(\mathcal{E}|_{D_2}) \geq \mu_{\min}(\mathcal{E}|_{D_1}).$$

Then for any $x \in X_2$, the Seshadri constant is given by:

$$\varepsilon(X_2,\mathcal{E},x) = \begin{cases} \min\{\mu_{\min}(\mathcal{E}|_{D_1}),\, \mu_{\min}(\mathcal{E}|_{D_2'})\}, & \text{if } x \in \Gamma_2, \\ \mu_{\min}(\mathcal{E}|_{D_1}), & \text{if } x \notin \Gamma_2. \end{cases}$$

Seshadri constants of line bundles on Hirzebruch surfaces have been computed by Syzdek (2005), García (2006), Hanumanthu-Mukhopadhyay (2017).

Example 12

Consider the tangent bundle $\mathcal{E}=\mathscr{T}_{X_2}$ on the Hirzebruch surface X_2 . Then the associated filtrations $(E,\{E^i(j)\}_{i=1,\dots,4;\,j\in\mathbb{Z}})$ are given by:

$$E^i(j) = \left\{ egin{array}{ll} \mathbb{C}^2 & j \leqslant 0 \ & & \ ext{Span } (v_i) & j = 1 \ & \ 0 & j > 1 \end{array}
ight. .$$

$$\mathcal{E}\otimes\mathcal{O}(D)$$
 is nef, where $D=a_1D_1+a_2D_2$, $a_1\geq c_{1,2},\,a_2\geq 0$.

$$\begin{split} \left. \left(\mathcal{E} \otimes \mathcal{O}(D) \right) \right|_{D_{\mathbf{1}}'} &= \mathcal{O}_{\mathbb{P}^1}(a_2) \oplus \mathcal{O}_{\mathbb{P}^1}(2+a_2), \\ \left(\mathcal{E} \otimes \mathcal{O}(D) \right) \right|_{D_{\mathbf{1}}} &= \mathcal{O}_{\mathbb{P}^1}(a_2) \oplus \mathcal{O}_{\mathbb{P}^1}(2+a_2), \\ \left(\mathcal{E} \otimes \mathcal{O}(D) \right) \right|_{D_{\mathbf{2}}'} &= \mathcal{O}_{\mathbb{P}^1}(a_1-c_{1,2}) \oplus \mathcal{O}_{\mathbb{P}^1}(2+a_1), \\ \left(\mathcal{E} \otimes \mathcal{O}(D) \right) \right|_{D_{\mathbf{2}}} &= \mathcal{O}_{\mathbb{P}^1}(a_1+c_{1,2} \ a_2+c_{1,2}) \oplus \mathcal{O}_{\mathbb{P}^1}(a_1+c_{1,2} \ a_2+2). \end{split}$$

The Seshadri constant is given by

$$\varepsilon(\mathcal{E} \otimes \mathcal{O}(D), x) = \begin{cases} \min\{a_1 - c_{1,2}, a_2\}, & \text{if } x \in \Gamma_2, \\ a_2, & \text{if } x \notin \Gamma_2. \end{cases}$$

Bott towers

Bott towers are a particular class of nonsingular projective toric varieties. They were constructed by Grossberg-Karshon (1994).

For an integer $n \geq 0$, a **Bott tower of height** n

$$X_n \longrightarrow X_{n-1} \longrightarrow \ldots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow X_0 = \{\mathsf{point}\}$$

is defined inductively as an iterated \mathbb{P}^1 -bundle so that

$$X_k = \mathbb{P}(\mathcal{O}_{X_{k-1}} \oplus \mathcal{L}_{k-1})$$

for a line bundle \mathcal{L}_{k-1} over X_{k-1} .

So $X_1 = \mathbb{P}^1$ and X_2 is a Hirzebruch surface and so on.

Seshadri constant on Bott towers

Theorem 13 (Biswas-Dasgupta-Hanumanthu-__)

Let $x \in X_n$. We have constructed smooth curves $\Gamma_n, \Gamma_n^{(2)}, \ldots, \Gamma_n^{(n)}$ in X_n , which generate the Mori cone of X_n . The Seshadri constant of a nef line bundle \mathcal{L} is given as follows:

$$\varepsilon(X_n, \mathcal{L}, x) = \min_{i} \left\{ \mathcal{L} \cdot \Gamma_n^{(i)} \mid x \in \Gamma_n^{(i)} \right\}.$$

Theorem 14 (Dasgupta- - Aditya)

Let $\mathcal E$ be an equivariant nef vector bundle of rank r on X_3 satisfying "certain" conditions. Then the Seshadri constants of $\mathcal E$ at any $x\in X_3$ are given by

$$\varepsilon(X_3,\mathcal{E},x) = \min_{\mathbf{i}} \left\{ \mu_{\min}(\mathcal{E}|_{\Gamma_3^{(i)}}) \mid x \in \Gamma_3^{(i)} \right\}.$$

Thank You