Advanced Machine Learning

Understand Mappings

Mappings, Linear Maps, Solving Linear Systems

Outline

- 1. Mappings
- 2. Linear Maps

Transforming Data

- In the last lecture we spent time developing a sophisticate view of vector spaces and operators
- At a mathematical level machine learning can be viewed as performing an inverse mapping

 Although our mappings are not necessarily linear in either direction we learn a lot by understanding linear operators

Transforming Data

- In the last lecture we spent time developing a sophisticate view of vector spaces and operators
- At a mathematical level machine learning can be viewed as performing an inverse mapping

 Although our mappings are not necessarily linear in either direction we learn a lot by understanding linear operators

Transforming Data

- In the last lecture we spent time developing a sophisticate view of vector spaces and operators
- At a mathematical level machine learning can be viewed as performing an inverse mapping

 Although our mappings are not necessarily linear in either direction we learn a lot by understanding linear operators

- Given m observations $\{(\boldsymbol{x}_k,y_k)|k=1,...,m\}$ and p unknown $\boldsymbol{w}=(w_1,w_2,...w_p)$ such that $\boldsymbol{x}_k^\mathsf{T}\boldsymbol{w}=y_k$ then to find \boldsymbol{w}
- ullet Define the $design\ matrix$ as the matrix of feature vectors

$$\mathbf{X} = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} \\ \boldsymbol{x}_2^\mathsf{T} \\ \dots \\ \boldsymbol{x}_m^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mp} \end{pmatrix}$$

- and the target vector $\boldsymbol{y} = (y_1, y_2, \cdots, y_m)^\mathsf{T}$
- ullet Then if m=p we have $oldsymbol{y}=\mathbf{X}oldsymbol{w}$ or $oldsymbol{w}=\mathbf{X}^{-1}oldsymbol{y}$

- Given m observations $\{(\boldsymbol{x}_k,y_k)|k=1,...,m\}$ and p unknown $\boldsymbol{w}=(w_1,w_2,...w_p)$ such that $\boldsymbol{x}_k^\mathsf{T}\boldsymbol{w}=y_k$ then to find \boldsymbol{w}
- ullet Define the $design\ matrix$ as the matrix of feature vectors

$$\mathbf{X} = egin{pmatrix} oldsymbol{x}_1^\mathsf{T} \ oldsymbol{x}_2^\mathsf{T} \ \cdots \ oldsymbol{x}_m^\mathsf{T} \end{pmatrix} = egin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \ x_{21} & x_{22} & \cdots & x_{2p} \ dots & dots & \ddots & dots \ x_{m1} & x_{m2} & \cdots & x_{mp} \end{pmatrix}$$

- and the target vector $\boldsymbol{y} = (y_1, y_2, \cdots, y_m)^\mathsf{T}$
- ullet Then if m=p we have $oldsymbol{y}=\mathbf{X}oldsymbol{w}$ or $oldsymbol{w}=\mathbf{X}^{-1}oldsymbol{y}$

- Given m observations $\{(\boldsymbol{x}_k,y_k)|k=1,...,m\}$ and p unknown $\boldsymbol{w}=(w_1,w_2,...w_p)$ such that $\boldsymbol{x}_k^\mathsf{T}\boldsymbol{w}=y_k$ then to find \boldsymbol{w}
- ullet Define the $design\ matrix$ as the matrix of feature vectors

$$\mathbf{X} = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} \\ \boldsymbol{x}_2^\mathsf{T} \\ \dots \\ \boldsymbol{x}_m^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mp} \end{pmatrix}$$

- and the target vector $\boldsymbol{y} = (y_1, y_2, \cdots, y_m)^\mathsf{T}$
- ullet Then if m=p we have $oldsymbol{y}=\mathbf{X}oldsymbol{w}$ or $oldsymbol{w}=\mathbf{X}^{-1}oldsymbol{y}$

- Given m observations $\{(\boldsymbol{x}_k,y_k)|k=1,...,m\}$ and p unknown $\boldsymbol{w}=(w_1,w_2,...w_p)$ such that $\boldsymbol{x}_k^\mathsf{T}\boldsymbol{w}=y_k$ then to find \boldsymbol{w}
- ullet Define the $design\ matrix$ as the matrix of feature vectors

$$\mathbf{X} = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} \\ \boldsymbol{x}_2^\mathsf{T} \\ \dots \\ \boldsymbol{x}_m^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mp} \end{pmatrix}$$

- and the target vector $\boldsymbol{y} = (y_1, y_2, \cdots, y_m)^\mathsf{T}$
- ullet Then if m=p we have $oldsymbol{y}=\mathbf{X}oldsymbol{w}$ or $oldsymbol{w}=\mathbf{X}^{-1}oldsymbol{y}$

- If m>p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then ${\bf X}$ isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then ${\bf X}$ isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- ullet If m>p then ${f X}$ isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then ${\bf X}$ isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then ${\bf X}$ isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $ypprox {\sf X} w\Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- ullet If m>p then ${f X}$ isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X}m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m > p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $oldsymbol{y}pprox \mathbf{X}oldsymbol{w}\Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $ypprox {\sf X} w\Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

ullet The error of input pattern $oldsymbol{x}_k$ is

$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$

The squared error

$$E(\boldsymbol{w}|\mathcal{D}) = \sum_{k=1}^{m} (\boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{w} - y_k)^2 = \sum_{k=1}^{m} \epsilon_k^2 = \|\boldsymbol{\epsilon}\|^2$$

We can define the error vector

$$\epsilon = \mathsf{X} w - y$$

(note that
$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$
)

ullet The error of input pattern $oldsymbol{x}_k$ is

$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$

The squared error

$$E(\boldsymbol{w}|\mathcal{D}) = \sum_{k=1}^{m} (\boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{w} - y_k)^2 = \sum_{k=1}^{m} \epsilon_k^2 = \|\boldsymbol{\epsilon}\|^2$$

We can define the error vector

$$\epsilon = \mathsf{X} w - y$$

(note that
$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$
)

ullet The error of input pattern $oldsymbol{x}_k$ is

$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$

The squared error

$$E(\boldsymbol{w}|\mathcal{D}) = \sum_{k=1}^{m} (\boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{w} - y_k)^2 = \sum_{k=1}^{m} \epsilon_k^2 = \|\boldsymbol{\epsilon}\|^2$$

We can define the error vector

$$\epsilon = \mathsf{X} w - y$$

(note that
$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$
)

ullet The error of input pattern $oldsymbol{x}_k$ is

$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$

The squared error

$$E(\boldsymbol{w}|\mathcal{D}) = \sum_{k=1}^{m} (\boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{w} - y_k)^2 = \sum_{k=1}^{m} \epsilon_k^2 = \|\boldsymbol{\epsilon}\|^2$$

We can define the error vector

$$\epsilon = \mathsf{X} w - y$$

(note that
$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$
)

Finding a Minimum

• The minima of a one dimensional function, f(x), are given by f'(x) = 0

• The minima of an n-dimensions function $f(\boldsymbol{x})$ are given by the set of equations

$$\frac{\partial f(\boldsymbol{x})}{\partial x_i} = 0 \quad \forall i = 1, \dots n$$

Finding a Minimum

• The minima of a one dimensional function, f(x), are given by f'(x) = 0

ullet The minima of an n-dimensions function $f(oldsymbol{x})$ are given by the set of equations

$$\frac{\partial f(\boldsymbol{x})}{\partial x_i} = 0 \quad \forall i = 1, \dots n$$

Gradients

ullet The **grad** operator $oldsymbol{
abla}$ is the gradient operator in high dimensions

$$oldsymbol{
abla} f(oldsymbol{x}) = egin{pmatrix} rac{\partial f(oldsymbol{x})}{\partial x_1} \ rac{\partial f(oldsymbol{x})}{\partial x_2} \ dots \ rac{\partial f(oldsymbol{x})}{\partial x_n} \end{pmatrix}$$

The partial derivatives (curly d's)

$$\frac{\partial f(\boldsymbol{x})}{\partial x_i}$$

means differentiate with respect to x_i treating all other components x_j as constants

Gradients

ullet The **grad** operator $oldsymbol{
abla}$ is the gradient operator in high dimensions

$$oldsymbol{
abla} f(oldsymbol{x}) = egin{pmatrix} rac{\partial f(oldsymbol{x})}{\partial x_1} \ rac{\partial f(oldsymbol{x})}{\partial x_2} \ dots \ rac{\partial f(oldsymbol{x})}{\partial x_n} \end{pmatrix}$$

The partial derivatives (curly d's)

$$rac{\partial f(m{x})}{\partial x_i}$$

means differentiate with respect to x_i treating all other components x_j as constants

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = \mathbf{0}$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$\boldsymbol{w} = \left(\mathbf{X}^\mathsf{T}\mathbf{X}\right)^{-1}\mathbf{X}^\mathsf{T}\boldsymbol{y} = \mathbf{X}^+\boldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$\boldsymbol{w} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\boldsymbol{y} = \mathbf{X}^+\boldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

$$\|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2 = (\mathbf{X}\boldsymbol{w} - \boldsymbol{y})^{\mathsf{T}}(\mathbf{X}\boldsymbol{w} - \boldsymbol{y})$$

- ullet Where we have used $oldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} oldsymbol{y} = oldsymbol{y}^\mathsf{T} \mathbf{X} oldsymbol{w}$
- ullet Also $oldsymbol{
 abla} w^{\mathsf{T}} M w = M w + M^{\mathsf{T}} w$
- If $\mathbf{M} = \mathbf{M}^\mathsf{T}$ (i.e. \mathbf{M} is symmetric) then $\mathbf{\nabla} \mathbf{w}^\mathsf{T} \mathbf{M} \mathbf{w} = 2 \mathbf{M} \mathbf{w}$
- $(X^TX)^T = X^TX$ so that X^TX is symmetric

$$\|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2 = (\mathbf{X}\boldsymbol{w} - \boldsymbol{y})^{\mathsf{T}}(\mathbf{X}\boldsymbol{w} - \boldsymbol{y})$$

- ullet Where we have used $oldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} oldsymbol{y} = oldsymbol{y}^\mathsf{T} \mathbf{X} oldsymbol{w}$
- ullet Also $oldsymbol{
 abla} w^{\mathsf{T}} M w = M w + M^{\mathsf{T}} w$
- If $\mathbf{M} = \mathbf{M}^\mathsf{T}$ (i.e. \mathbf{M} is symmetric) then $\mathbf{\nabla} \mathbf{w}^\mathsf{T} \mathbf{M} \mathbf{w} = 2 \mathbf{M} \mathbf{w}$
- $(X^TX)^T = X^TX$ so that X^TX is symmetric

$$\|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2 = (\mathbf{X}\boldsymbol{w} - \boldsymbol{y})^\mathsf{T}(\mathbf{X}\boldsymbol{w} - \boldsymbol{y}) = (\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T} - \boldsymbol{y}^\mathsf{T})(\mathbf{X}\boldsymbol{w} - \boldsymbol{y})$$

- ullet Where we have used $oldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} oldsymbol{y} = oldsymbol{y}^\mathsf{T} \mathbf{X} oldsymbol{w}$
- ullet Also $oldsymbol{
 abla} w^{\mathsf{T}} M w = M w + M^{\mathsf{T}} w$
- If $\mathbf{M} = \mathbf{M}^\mathsf{T}$ (i.e. \mathbf{M} is symmetric) then $\mathbf{\nabla} \mathbf{w}^\mathsf{T} \mathbf{M} \mathbf{w} = 2 \mathbf{M} \mathbf{w}$
- $(X^TX)^T = X^TX$ so that X^TX is symmetric

$$||\mathbf{X}\boldsymbol{w} - \boldsymbol{y}||^2 = (\mathbf{X}\boldsymbol{w} - \boldsymbol{y})^\mathsf{T}(\mathbf{X}\boldsymbol{w} - \boldsymbol{y}) = (\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T} - \boldsymbol{y}^\mathsf{T})(\mathbf{X}\boldsymbol{w} - \boldsymbol{y})$$
$$= \boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\boldsymbol{y} + \boldsymbol{y}^\mathsf{T}\boldsymbol{y}$$

- ullet Where we have used $oldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} oldsymbol{y} = oldsymbol{y}^\mathsf{T} \mathbf{X} oldsymbol{w}$
- ullet Also $oldsymbol{
 abla} w^{\mathsf{T}} M w = M w + M^{\mathsf{T}} w$
- ullet If $oldsymbol{M} = oldsymbol{M}^{\mathsf{T}}$ (i.e. $oldsymbol{M}$ is symmetric) then $oldsymbol{
 abla} oldsymbol{w}^{\mathsf{T}} oldsymbol{M} oldsymbol{w} = 2 oldsymbol{M} oldsymbol{w}$
- $(X^TX)^T = X^TX$ so that X^TX is symmetric

$$||\mathbf{X}\boldsymbol{w} - \boldsymbol{y}||^2 = (\mathbf{X}\boldsymbol{w} - \boldsymbol{y})^\mathsf{T}(\mathbf{X}\boldsymbol{w} - \boldsymbol{y}) = (\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T} - \boldsymbol{y}^\mathsf{T})(\mathbf{X}\boldsymbol{w} - \boldsymbol{y})$$
$$= \boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\boldsymbol{y} + \boldsymbol{y}^\mathsf{T}\boldsymbol{y}$$

- ullet Where we have used $oldsymbol{w}^\mathsf{T} \mathbf{X}^\mathsf{T} oldsymbol{y} = oldsymbol{y}^\mathsf{T} \mathbf{X} oldsymbol{w}$
- ullet Also $oldsymbol{
 abla} w^{\mathsf{T}} M w = M w + M^{\mathsf{T}} w$
- ullet If $oldsymbol{M} = oldsymbol{M}^{\mathsf{T}}$ (i.e. $oldsymbol{M}$ is symmetric) then $oldsymbol{
 abla} oldsymbol{w}^{\mathsf{T}} oldsymbol{M} oldsymbol{w} = 2 oldsymbol{M} oldsymbol{w}$
- $(X^TX)^T = X^TX$ so that X^TX is symmetric

$$||\mathbf{X}\boldsymbol{w} - \boldsymbol{y}||^2 = (\mathbf{X}\boldsymbol{w} - \boldsymbol{y})^\mathsf{T}(\mathbf{X}\boldsymbol{w} - \boldsymbol{y}) = (\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T} - \boldsymbol{y}^\mathsf{T})(\mathbf{X}\boldsymbol{w} - \boldsymbol{y})$$
$$= \boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\boldsymbol{y} + \boldsymbol{y}^\mathsf{T}\boldsymbol{y}$$

- ullet Where we have used $m{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} m{y} = m{y}^{\mathsf{T}} \mathbf{X} m{w}$, $\sum\limits_{i,j} w_i X_{ji} y_j = \sum\limits_{i,j} y_i X_{ij} w_j$
- ullet Also $oldsymbol{
 abla} w^{\mathsf{T}} M w = M w + M^{\mathsf{T}} w$
- ullet If $oldsymbol{M} = oldsymbol{M}^{\mathsf{T}}$ (i.e. $oldsymbol{M}$ is symmetric) then $oldsymbol{
 abla} oldsymbol{w}^{\mathsf{T}} oldsymbol{M} oldsymbol{w} = 2 oldsymbol{M} oldsymbol{w}$
- $(X^TX)^T = X^TX$ so that X^TX is symmetric

$$||\mathbf{X}\boldsymbol{w} - \boldsymbol{y}||^2 = (\mathbf{X}\boldsymbol{w} - \boldsymbol{y})^\mathsf{T}(\mathbf{X}\boldsymbol{w} - \boldsymbol{y}) = (\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T} - \boldsymbol{y}^\mathsf{T})(\mathbf{X}\boldsymbol{w} - \boldsymbol{y})$$
$$= \boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\boldsymbol{y} + \boldsymbol{y}^\mathsf{T}\boldsymbol{y}$$

- ullet Where we have used $m{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} m{y} = m{y}^{\mathsf{T}} \mathbf{X} m{w}$, $\sum\limits_{i,j} w_i X_{ji} y_j = \sum\limits_{i,j} y_i X_{ij} w_j$
- ullet Also $oldsymbol{
 abla} w^{\mathsf{T}} M w = M w + M^{\mathsf{T}} w$
- If $\mathbf{M} = \mathbf{M}^\mathsf{T}$ (i.e. \mathbf{M} is symmetric) then $\mathbf{\nabla} \mathbf{w}^\mathsf{T} \mathbf{M} \mathbf{w} = 2 \mathbf{M} \mathbf{w}$
- $(X^TX)^T = X^TX$ so that X^TX is symmetric

$$||\mathbf{X}\boldsymbol{w} - \boldsymbol{y}||^2 = (\mathbf{X}\boldsymbol{w} - \boldsymbol{y})^\mathsf{T}(\mathbf{X}\boldsymbol{w} - \boldsymbol{y}) = (\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T} - \boldsymbol{y}^\mathsf{T})(\mathbf{X}\boldsymbol{w} - \boldsymbol{y})$$
$$= \boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\boldsymbol{y} + \boldsymbol{y}^\mathsf{T}\boldsymbol{y}$$

- Where we have used $m{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} m{y} = m{y}^{\mathsf{T}} \mathbf{X} m{w}$, $\sum_{i,j} w_i X_{ji} y_j = \sum_{i,j} y_i X_{ij} w_j$
- ullet Also $oldsymbol{
 abla} w^{\mathsf{T}} M w = M w + M^{\mathsf{T}} w$
- If $\mathbf{M} = \mathbf{M}^\mathsf{T}$ (i.e. \mathbf{M} is symmetric) then $\mathbf{\nabla} \mathbf{w}^\mathsf{T} \mathbf{M} \mathbf{w} = 2 \mathbf{M} \mathbf{w}$
- $(X^TX)^T = X^TX$ so that X^TX is symmetric

$$||\mathbf{X}\boldsymbol{w} - \boldsymbol{y}||^2 = (\mathbf{X}\boldsymbol{w} - \boldsymbol{y})^\mathsf{T}(\mathbf{X}\boldsymbol{w} - \boldsymbol{y}) = (\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T} - \boldsymbol{y}^\mathsf{T})(\mathbf{X}\boldsymbol{w} - \boldsymbol{y})$$
$$= \boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^\mathsf{T}\mathbf{X}^\mathsf{T}\boldsymbol{y} + \boldsymbol{y}^\mathsf{T}\boldsymbol{y}$$

- Where we have used $m{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} m{y} = m{y}^{\mathsf{T}} \mathbf{X} m{w}$, $\sum\limits_{i,j} w_i X_{ji} y_j = \sum\limits_{i,j} y_i X_{ij} w_j$
- ullet Also $oldsymbol{
 abla} w^{\mathsf{T}} M w = M w + M^{\mathsf{T}} w$
- ullet If $oldsymbol{M} = oldsymbol{M}^{\mathsf{T}}$ (i.e. $oldsymbol{M}$ is symmetric) then $oldsymbol{
 abla} oldsymbol{w}^{\mathsf{T}} oldsymbol{M} oldsymbol{w} = 2 oldsymbol{M} oldsymbol{w}$
- $(X^TX)^T = X^TX$ so that X^TX is symmetric

$$\nabla w^{\mathsf{T}} \mathbf{M} w$$

$$\nabla w^{\mathsf{T}} \mathbf{M} w$$

$$\nabla \boldsymbol{w}^{\mathsf{T}} \mathbf{M} \boldsymbol{w} = \begin{pmatrix} \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_3} \\ \vdots \end{pmatrix} \sum_{i,j} w_i M_{ij} w_j$$

$$\nabla \boldsymbol{w}^{\mathsf{T}} \mathbf{M} \boldsymbol{w} = \begin{pmatrix} \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_3} \\ \vdots \end{pmatrix} \sum_{i,j} w_i M_{ij} w_j = \begin{pmatrix} \sum_j M_{1j} w_j + \sum_i w_i M_{i1} \\ \sum_j M_{2j} w_j + \sum_i w_i M_{i2} \\ \sum_j M_{3j} w_j + \sum_i w_i M_{i3} \\ \vdots \end{pmatrix}$$

$$\nabla \boldsymbol{w}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{w} = \begin{pmatrix} \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_3} \\ \vdots \end{pmatrix} \sum_{i,j} w_i M_{ij} w_j = \begin{pmatrix} \sum_j M_{1j} w_j + \sum_i w_i M_{i1} \\ \sum_j M_{2j} w_j + \sum_i w_i M_{i2} \\ \sum_j M_{3j} w_j + \sum_i w_i M_{i3} \\ \vdots \end{pmatrix}$$
$$= \boldsymbol{M} \boldsymbol{w} + \boldsymbol{M}^{\mathsf{T}} \boldsymbol{w}$$

 To understand gradients we sometimes need to go back to components

$$\nabla \boldsymbol{w}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{w} = \begin{pmatrix} \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_3} \\ \vdots \end{pmatrix} \sum_{i,j} w_i M_{ij} w_j = \begin{pmatrix} \sum_j M_{1j} w_j + \sum_i w_i M_{i1} \\ \sum_j M_{2j} w_j + \sum_i w_i M_{i2} \\ \sum_j M_{3j} w_j + \sum_i w_i M_{i3} \\ \vdots \end{pmatrix}$$
$$= \boldsymbol{M} \boldsymbol{w} + \boldsymbol{M}^{\mathsf{T}} \boldsymbol{w}$$

 It is tedious to compute these things component-wise, but when you need to understand what is going on then go back to the basics

Outline

- 1. Mappings
- 2. Linear Maps

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained
- This is very typical of most machine learning problems

 If we have less data-points than parameters then there will be multiple solutions

What is the Inverse?

Many points can map to the same points

What is the Inverse?

Many points can map to the same points

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- ullet Solving the inverse problem $(oldsymbol{w} = oldsymbol{(X^TX)}^{-1}oldsymbol{X}^Toldsymbol{y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- ullet Solving the inverse problem $(m{w} = (m{X}^{\mathsf{T}}m{X})^{-1}m{X}^{\mathsf{T}}m{y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- ullet Solving the inverse problem $(m{w} = m{(X^TX)}^{-1} m{X}^T m{y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- ullet Solving the inverse problem $(m{w} = m{(X^TX)}^{-1} m{X}^T m{y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- ullet Solving the inverse problem $(oldsymbol{w} = ig(oldsymbol{X}^\mathsf{T} oldsymbol{X} ig)^{-1} oldsymbol{X}^\mathsf{T} oldsymbol{y})$ is said to be ill-posed
- The inverse $(X^TX)^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- ullet Solving the inverse problem $(m{w} = (m{X}^{\mathsf{T}}m{X})^{-1}m{X}^{\mathsf{T}}m{y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

III-Conditioned Matrices

- Ill-conditioning in machine learning occurs when a very small change in the learning data causes a large change in the predictions of the learning machine
- In linear regression the matrix $\mathbf{X}^T\mathbf{X}$ is ill-conditioned when we have as many data points as parameters
- Much of machine learning is concerned with making learning machines better conditioned
- Adding regularisers is one approach to achieve this

- Ill-conditioning in machine learning occurs when a very small change in the learning data causes a large change in the predictions of the learning machine
- In linear regression the matrix $\mathbf{X}^T\mathbf{X}$ is ill-conditioned when we have as many data points as parameters
- Much of machine learning is concerned with making learning machines better conditioned
- Adding regularisers is one approach to achieve this

- Ill-conditioning in machine learning occurs when a very small change in the learning data causes a large change in the predictions of the learning machine
- In linear regression the matrix $\mathbf{X}^T\mathbf{X}$ is ill-conditioned when we have as many data points as parameters
- Much of machine learning is concerned with making learning machines better conditioned
- Adding regularisers is one approach to achieve this

- Ill-conditioning in machine learning occurs when a very small change in the learning data causes a large change in the predictions of the learning machine
- In linear regression the matrix $\mathbf{X}^T\mathbf{X}$ is ill-conditioned when we have as many data points as parameters
- Much of machine learning is concerned with making learning machines better conditioned
- Adding regularisers is one approach to achieve this

Summary

- Linear mappings are commonly used in machine learning algorithms such as regression
- We will often meet the pseudo-inverse involving inverting X^TX
- They can be inherently unstable to noise in the inputs

Summary

- Linear mappings are commonly used in machine learning algorithms such as regression
- \bullet We will often meet the pseudo-inverse involving inverting X^TX
- They can be inherently unstable to noise in the inputs

Summary

- Linear mappings are commonly used in machine learning algorithms such as regression
- We will often meet the pseudo-inverse involving inverting X^TX
- They can be inherently unstable to noise in the inputs