Detector de colisiones

David Calle Daza 201710031010

Medellín, 15 de mayo de 2018

Designed Data Structure

Graphic 1: Geographic representation of the Quadtree

Graphic 2: Abstract representation of the Quadtree nodes

Data Structure Operations

Function	Complexity
Insert	O(log s)
Query	O(log n)
Print	O(n)
Detect collitions	O(nlog n)

Graphic 3: Function Query by Quadtree

Chart 1: Complexity of Quadtree's functions.

Design Criteria of the Data Structure

- To solve the problem, we should compare the distance between ALL bees.
- Do this explicitly, would have a complexity of O(n²).
- The Quadtree divide every bee in individual quadrants, which would simplify the problem.
- ALL Quadtree operations have complexities lower tan O(nlog n).
- Use another kind of tree is lower efficient, therefore, efficient to solve the problem.

Time and Memory Consumption

Graphic 4: Total memory and total time using arrays.

Time and Memory Consumption

Graphic 5: Total memory and total time using Quadtree.

Implementation

Graphic 6: Quadtree implementation with 1.000 bees.

Report in arXiv

Ño

