Predicting Hospital Readmissions

Mia Lussier Adam Eschenlauer Benjamin Mia Zixuan Wu Justin Dobratz Katie Almeida

Agenda

O1. BACKGROUND & QUESTION

02 METHODS

O3. RESULTS

04 DISCUSSION

OI. BACKGROUND & QUESTION

KEY NUMBERS

\$1.19 trillion

Spend on healthcare in the U.S.

33%

Healthcare expenditure on hospital care

l in 4

Patients hospitalized will have readmission within 30-days

Readmissions

- Centers for Medicare and Medicaid Services (CMS) reduces payments to hospitals based on 30-day readmissions
- Many evidence-based programs to reduce hospital readmissions
- Limited resources available for these programs

Questions

Can we predict readmissions in patients 65+?

potential cost-savings from a predictive model?

O2. METHODS

Data Source

Annual survey administered by the Agency for Healthcare Research and Quality (AHRQ) of families, individuals, medical providers, and employers in the U.S.

Survey Components:

- Household
- Insurance/Employer
- Medical provider
- Nursing home (1996)

MEPS: Household Component

Collects person level information: 30,461 individuals (326,327,888 weighted) and 1,502 variables

- demographics
- health conditions
- health status
- use of medical services
- charges and source of payment
- access to care
- satisfaction with care
- health insurance coverage
- income
- employment

Predictor Variables Used in Analysis

Demographics

- -Age
- -Sex
- -Marital Status

Chronic conditions

- -Asthma
- -Diabetes
- -Coronary HD
- -High BP
- -Cancer
- -Stroke
- -Emphysema
- -Stroke

Limitations

- -Chronic
- -Cognitive
- -Health Status

Utilization

- -Total Prescriptions
- -Outpatient Visits
- -ED Visits
- -Dental Visits
- -Home Care Day
- -Inpatient Stay

Social determinants of health

- -Family Income
- -Years of Education
- -Residence Region

Data Preparation

Data Subset:

- Population (65 and older)
- Independent Variables
 - Table 2 (23 variables)
- Dependent Variable
 - Readmissions
 - Discharges >=2

Table 2: Predictor Variables Included in Analysis

Predictor variable	MEPS Name	Variable type	
Prescribed Medications	RXTOT18	Continuous	
Age	AGE18X	Continuous	
Sex	SEX	Binary	
Household income	FAMINC18	Categorical	
Perceived health status	RTHLTH31	Categorical	
Geographic location	REGION18	Categorical	
Education	EDUCYR	Categorical	
Marital status	MARRY18X	Binary	
Cognitive limitation	COGLIM31	Binary	
Physical limitation	WLKLIM31	Binary	
# ER Visits	ERTOT18	Continuous	
# Dental Visits	DVTOT18	Continuous	
# Home Care Days	HHTOTD18	Continuous	
# Outpatient Visits	OPTOTV18	Continuous	
# Inpatient Days	IPNGTD18	Continuous	
Cancer Diagnosis	CANCERDX	Binary	
Arthritis Diagnosis	ARTHDX	Binary	
Coronary HD Diagnosis	CHDDX	Binary	
Diabetes Diagnosis	DIABDX_M18	Binary	
Stroke Diagnosis	STRKDX	Binary	
Asthma Diagnosis	ASTHDX	Binary	
High BP Diagnosis	BPMLDX	Binary	
Emphysema Diagnosis	EMPHDX	Binary	

Simple Models

- -k Nearest Neighbor
 - -Naive Bayes
- -Logistic Regression
- -Classification Tree

Ensemble Models

- -Random Forest
 - -Bagging
 - -Boosting
 - -XG Boosting

03.

Results

Exploratory Analysis

Total Patients: 3,394 | W/Readmission: 162 | Average Age: 74 | Female: 54.4%

Model Performance

Table 3 :Performance Metrics by Model

	Model Type	Accuracy	Sensitivity	Specificity
4	Logistic Regression	96.2%	42.6%	99.1%
ple	K-nearest neighbor	96.7%	27.5%	99.6%
SIMI I	Naive bayes	93.1%	30.8%	98.3%
0)	Classification tree	97.1%	42.4%	99.6%
nsemble	Bagging	96.7%	57.1%	98.6%
	Random Forest	97.0%	63.3%	98.9%
	Boosting	96.6%	63.9%	98.3%
П	XG Boosting	96.8%	60.2%	98.9%

ROC Curve: Top Five Models

Figure 1:ROC Curve Model Comparison: Top Five Models

Table 4: Area Under Curve

Model	AUC	
Boosting	95.8%	
XG Boosting	97.4%	
Bagging	97.5%	
Random Forest	98.0%	
Logistic	92.1%	

Comparative Cost Analysis by Model (\$)

Table 5: Comparitive Cost Analysis by Model (Annual)

Predicted				
4	TP	FN		
Actual	135	27		
Act	FP	TN		
	26	3,206		
	Predicted			
-	TP	FN		
Actual	109	53		
A	FP	TN		
	35	3,197		
	Predicted			
-	TP	FN		
Actual	129	33		
A	FP	TN		
	18	3,214		
	Predicted			
<u>a</u>	TP	FN		
Actual	64	98		
A	FP	TN		
	28	3,204		

Model	Expected Cost (\$)		
Model	Total	Per Capita	
Boosting	\$ 423,400.00	\$ 124.75	
XG Boosting	\$ 823,100.00	\$ 242.52	
Random Forest	\$ 510,600.00	\$ 150.44	
Logistic	\$ 1,503,600.00	\$ 443.02	
Current State	\$ 2,462,400.00	\$725.52	
Cost Averted (max)	\$ 2,039,000.00	\$ 600.77	

^{*} Calculated by applying national average cost per readmission (\$15,200) in 2018 to False Negatives and a \$500 case management cost per capita to False Positives.

HCUP, 2021

04.

Discussion

Strengths and Limitations

Strengths

- # of models tested adds to sensitivity analysis of methods
- Generalizability of results due to use of national survey data set
- Strong predictive results indicate potential for cost savings

Limitations

- Unable to perform exhaustive analysis due to sheer # of variables in data
- Analysis does not stratify readmissions by timeframe: 30, 60, and 90 days
- Data frame does not contain variables for all CMS designated medical conditions

Current and Future Plans

Additional years of data

Use in practice to enroll patients in TOC programs

Proof of Concept

Expand Data Set 30-day readmissions

Integrate in EHR

Analyze results

Current step

Restrict based on time to readmission and conditions Test effects of interventions using model for inclusion

THANKS!

What questions do you have?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik and illustrations

Hartman, M., Martin, A. B., Benson, J., Catlin, A., & The, N. H. E. A. T. (2020). National Health Care Spending In 2018: Growth Driven By Accelerations In Medicare And Private Insurance Spending. *Health Affairs*, *39*(1), 8–17. https://doi.org/10.1377/hlthaff.2019.01451

Medical Expenditure Panel Survey Background. (n.d.). Retrieved November 24, 2020, from https://meps.ahrq.gov/mepsweb/about_meps/survey_back.jsp

NHE Fact Sheet | *CMS*. (n.d.). Retrieved September 23, 2020, from https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik and illustrations