Entanglement branching operator and its applications

Kenji Harada Graduate School of Informatics, Kyoto Univ., Japan

Reference: "Entanglement branching operator", Phys. Rev. B 97, 045124 (2018)

Tensor network, tensor network algorithm, and entanglement flow

Tensor network algorithm

TEBD, CTM, TRG, HOTRG, ...

Entanglement branching operator

Split of a composite entanglement flow in a link

Improvement of HOTRG by entanglement branching

Necessary condition of a proper real-space RG

Gu and Wen, Phys. Rev. B **80**, 155131 (2009) Evenly and Vidal, Phys. Rev. Lett. **115**, 180405 (2015)

erase entanglements under a renormalized scale - TNR based on TRG (not HOTRG)

HOTRG algorithm

Improvement of HOTRG by entanglement branching

Necessary condition of a proper real-space RG

Gu and Wen, Phys. Rev. B **80**, 155131 (2009) Evenly and Vidal, Phys. Rev. Lett. **115**, 180405 (2015)

 $\stackrel{>}{\triangleright}$ erase entanglements under a renormalized scale \longrightarrow TNR based on TRG (not HOTRG)

O HOTRG algorithm

Pick up a red entanglement flow

Xie et al., Phys. Rev. B 86, 045139 (2012)

Gather loop entanglement structures in the combination of *R* and *L*.

Improvement of HOTRG by entanglement branching

Necessary condition of a proper real-space RG

Gu and Wen, Phys. Rev. B **80**, 155131 (2009) Evenly and Vidal, Phys. Rev. Lett. **115**, 180405 (2015)

erase entanglements under a renormalized scale -> TNR based on TRG (not HOTRG)

O HOTRG algorithm

Pick up a red entanglement flow

There is no entanglement between L and R.

Gather loop entanglement structures in the combination of *R* and *L*.

Example: HOTRG of 2D Ising model

Example: HOTRG of 2D Ising model

Many-body decomposition and derivation of PEPS

- Tensor decomposition
 - Matrix-based decomposition yields only a two-body tensor network
 - Many-body decomposition by entanglement branching

Derivation of PEPS based on many-body decomposition

If the area law of entanglement entropy holds, bond dimensions of a derived PEPS are finite

The metric in PEPS is related to entanglement strength

Summary

- Entanglement branching operator
 - split of a composite entanglement flow in a link
 - optimization problem by squeezing operators for EB operator
 - · iteration method can be applied
- Applications of entanglement branching operators
 - improvement of HOTRG
 - proper RG
 - new tensor network state
 - many-body decomposition
 - derivation of PEPS

Example: HOTRG of 2D Ising model

Scaling dimensions by $D=24\,$

	exact	HOTRG with EB op.	TNR
spins		$2^{16} \sim 2^{20}$	2^{18}
c	0.5	0.49996(2)	0.50001
σ	0.125	0.12515(3)	0.1250004
ϵ	1	1.0002(1)	1.00009
	1.125	1.1250(1)	1.12492
	1.125	1.1252(1)	1.12510
	2	2.0009(2)	1.99922
	2	2.0013(2)	1.99986
	2	2.0029(4)	2.00006
	2	2.008(1)	2.00006

$$\Delta_i = -\frac{1}{2\pi} \log(\lambda_i/\lambda_0)$$

1.8 T_c(HOTRG) 1.1T_c ln(2) 1.6 1.4 1.2 Entropy 0.8 0.6 0.4 Entropy = $-\text{Tr}\tilde{\Lambda}\log\tilde{\Lambda}, \quad \tilde{\Lambda} = \Lambda/\text{Tr}\Lambda$ 0.2 12 14 10 16 Renormalization step

Reference: K.H., Phys. Rev. B 97, 045124 (2018), Evenly and Vidal, Phys. Rev. Lett. 115, 180405 (2015)

New tensor network state as like MERA

Repeating a new HOTRG procedure to a tensor network representation of a density operator

New tensor network Log correction of E.E.: ok!

Splitting the shortest entanglement flow

Entanglement branching

Squeezing operators

Optimization problem for B and w

Iteration method to solve an optimization problem

Algorithm

- (1) Initialize B randomly.
- (2) Set the values of bond dimension of links a and b I, and initialize w and v randomly.
- (3) Iteratively update B, w, and v to minimize the squared distance.
- (4) Increase bond dimensions of links a and b, and extend bond dimensions of w and v. New elements of w and v are initialized as zero, but other elements are unchanged.
- (5) Go back to (3), until bond dimensions of links a and b reach a limit of them.

Optimization process of branching operator

Corner Double Line (CDL) tensor + random unitary

Entanglement branching operator

Split of a composite entanglement flow in a link

Bond dimensions on a link *a* and *b* are squeezable, when *B*, *W*, and *V* are optimized

The pair of branching operators can be freely inserted on a link

Minimization of a distance between two tensor networks

$$\left\| \sum_{j=k}^{i} \frac{l}{l} - \sum_{j=k}^{i} \frac{l}{l} \right\|^{2} = const - \left\| \sum_{k=0}^{B} \frac{l}{l} \right\|^{2}$$

solvable by applying an iteration method