SA22225226 李青航

390

2种,显然让每个集合选第一个数代表(或者第二个数),刚好相异。如果第一,第二个数交替代表,必会有不相异的,所以不行。

当 n set时,也是2种

399

- 1. $A \rightarrow a, B \rightarrow a, C \rightarrow b, D \rightarrow d, a \not\rightarrow B$
- 2. $B \rightarrow d, d \not\rightarrow D$
- 3. $D \rightarrow b, b \not\rightarrow C$
- 4. $C \rightarrow a, a \not\rightarrow A$
- 5. $A \rightarrow b, b \not\rightarrow A$
- 6. $A \rightarrow c$

到6. 没有拒绝发生结束。稳定的完美婚姻为

$$A \longleftrightarrow c, C \longleftrightarrow a, D \longleftrightarrow b, B \longleftrightarrow d$$

405

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

\otimes	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

421

将 Z_2 的两个取值0,1带入, $0^3+0+1=1,1^3+1+1=3$,因此在 Z_2 中没有根把多项式的一个根i加到 Z_2 中,得到i $^3+i+1$,或等价地

$$i^3 = -i - 1 = 1 + i$$

所得域中的元素是

$${a + b\mathbf{i} + c\mathbf{i}^2}$$

其中 $\{a,b,c\}$ 在 Z_2 中

i.
$$(1+i) + (1+i+i^2) = i^2$$

ii.
$$(1+i^2) + (1+i^2) = 0$$

iii.
$$i^{-1} = i^2 + 1$$

iv.
$$i^2 \times (1 + i + i^2) = 1$$

$$v. (1+i)(1+i+i^2) = i$$

vi.
$$(1+i)^{-1} =$$

423

有
$$b = 20, v = 18, k = 9, r = 10, bk = vr$$

$$\lambda = \frac{r(k-1)}{v-1} = \frac{80}{17}$$

不存在

442

n=6,r=5,编程得

450

Construct 2 MOLS of order 8

_							_
0	3	4	7	1	2	5	6
1	2	5	6	0	3	4	7
2	1	6	5	3	0	7	4
3	0	7	4	2	1	6	5
4	7	0	3	5	6	1	2
5	6	1	2	4	7	0	3
6	5	2	1	7	4	3	0
7	4	3	0	6	5	2	1