Notes

MAT224H1, Fall 2019

Ziyue Yang

Chapter 2. Linear Transformations, Basis, Dimension Theorem

Definition. Let U, W be subspaces of vector space V. The sum of U and W, denoted U+W, is the subspace

$$U + W = \operatorname{Span}(U \cup W) = \{u + w | u \in U \text{ and } w \in W\}.$$

In addition, if $U \cap W = \{0\}$, then the sum is called direct sum, denoted $U \oplus W$.

Definition. Let V, W be non-zero finite-dimensional vector spaces. Let $\alpha = v_1, \ldots, v_n, \beta = w_1, \ldots, w_m$ be bases for V and W resepctively, and let $T \in L(V, W)$. The matrix representation wrt the bases α and β is denoted $[T]_{\alpha}^{\beta}$ such that for all $x \in V$,

$$[Tx]_{\beta} = [T]_{\alpha}^{\beta} [x]_{\alpha}.$$

Definition. The matrix $[I]^{\beta}_{\alpha}$ is called the change of basis matrix from α -coordinates to β -coordinates, such that for every $x \in V$,

$$[x]_{\beta} = [I]_{\alpha}^{\beta} [x]_{\alpha}.$$

Definition. Matrices A, B are similar if there exists invertible matrix S such that

$$A = SBS^{-1}$$

Theorem. Let $\alpha = v_1, \ldots, v_n$ be a basis for vector space V.

- If $\beta = w_1, \ldots, w_n$ is a basis for V, the change of basis matrix $[I]^{\beta}_{\alpha}$ is invertible and its inverse is $[I]^{\alpha}_{\beta}$.
- If $S \in M_{n \times n}(\mathbb{R})$ is invertible, then there is a basis β for V such that $S = [I]^{\alpha}_{\beta}$.

Theorem. Let V be n-dimensional vector space, and let $T \in L(V)$.

• Let α, β be two bases for V, and let $S = [I]_{\alpha}^{\beta}$. Then S is invertible and

$$[T]^{\alpha}_{\alpha} = [I]^{\alpha}_{\beta} [T]^{\beta}_{\beta} [I]^{\beta}_{\alpha} = S[T]^{\beta}_{\beta} S^{-1}.$$

• Let $S \in M_{n \times n}(\mathbb{R})$ be invertible, and let α be a basis for V. Then there exists basis β for V such that

$$[T]^\alpha_\alpha = S[T]^\beta_\beta S^{-1}.$$

Theorem. If $U \cap W = \{0\}$, then each vector in $U \oplus W$ is uniquely expressible as a sum of a vector in U and a vector in W.

Theorem (Dimension Theorem). Let V, W be vector spaces. Suppose V is finite-dimensional, and let $T \in L(V, W)$. Then

$$\dim(\ker T) + \dim(\operatorname{Im} T) = \dim(V).$$

Theorem (Rank-Nullity Theorem). For any matrix A,

nullity $A + \operatorname{rank} A = \operatorname{number} \operatorname{of} \operatorname{columns} \operatorname{of} A$.

Theorem. Let $A, B \in M_{n \times n}(\mathbb{R})$, then A and B are similar iff there exists n-dimensional vector space V with bases α, β , and there exists $T \in L(V)$ such that

$$A = [T]^{\alpha}_{\alpha}$$
 and $B = [T]^{\beta}_{\beta}$.

Chapter 4. Eigen and Diagonalizability

Definition. $x \in V$ is an eigenvector if $x \neq 0$ and $Tx = \lambda x$ for some $\lambda \in \mathbb{R}$. λ is called an eigenvalue of T corresponding to x.

Definition. For a given eigenvalue λ , the eigenspace E_{λ} is defined as

$$E_{\lambda} = \{ x \in V, Tx = \lambda x \}. \tag{1}$$

Definition. A linear mapping T of finite-dimensional vector space V is said to be diagonalizable if there exists a basis of V, all of whose vectors are eigenvectors of T.

Definition. The geometric multiplicity of λ is the dimension of associated subspace $E_{\lambda}(T)$.

Definition. The algebraic multiplicity of λ is the number of times λ appears as a root of $p_T(\lambda)$.

Theorem. Let x_i be eigenvectors of $T: V \to V$ corresponding to distinct eigenvalues λ_i . Then $\{x_1, x_2, \dots, x_k\}$ is a linearly independent subset of V.

Theorem. x is an eigenvector of T with eigenvalue $\lambda \iff x \in \ker(T - \lambda I)$.

Theorem. Let V be finite-dimensional vector space, and let $T \in L(V)$. Suppose

$$p_T(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \dots (\lambda - \lambda_k)^{n_k} q(\lambda)$$

where $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of T, and $q(\lambda)$ is some polynomial. Then the following are equivalent:

- \bullet T is diagonalizable.
- For all λ of T, the AM and GM of λ are equal.
- $V = E_{\lambda_1}(T) + \cdots + E_{\lambda_k}(T)$.
- $[T]^{\alpha}_{\alpha}$ is similar to a diagonal matrix for any basis α of V.

Chapter 5. \mathbb{C}, F

Definition. The set of complex numbers \mathbb{C} is the real vector space \mathbb{R}^2 together with multiplication operator \odot defined by

$$\begin{bmatrix} a \\ b \end{bmatrix} \odot \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ac - bd \\ ad + bc \end{bmatrix}$$

The standard basis for \mathbb{C} is commonly written as the list $\{1, i\}$.

Definition. A field is a set F together with two operations called addition (+) and multiplication (\odot) such that the following axioms hold

- 1. (AA) Additive Associativity. $\forall a, b, c \in F, (a+b) + c = a + (b+c)$
- 2. (AC) Additive Commutativity. $\forall a, b \in F, a+b=b+a$
- 3. (Z) Zero (or additive identity). $\exists ! 0 \in F$ such that $\forall a \in F, a + 0 = a$
- 4. (AI) Additive Inverse. $\forall a \in F, \exists ! (-a) \in F \text{ such that } a + (-a) = 0$
- 5. (MA) Multiplicative Associativity. $\forall a, b, c \in F, a + (b + c) = (a + b) + c$
- 6. (MC) Multiplicative Commutativity. $\forall a, b \in F, a \odot b = b \odot a$
- 7. (D) Distributivity. $\forall a, b, c \in F, a \odot (b+c) = a \odot b + a \odot c$
- 8. (O) One. $\exists ! 1 \in F$ such that $\forall a \in F, 1 \odot a = a$
- 9. (MI) Multiplicative Inverse. $\forall a \neq 0 \in F, \exists ! a^{-1} \in F \text{ such that } a \odot a^{-1} = 0$

Definition. A field F is called algebraically closed if every non-constant polynomial with coefficients in F has a root in F.

Theorem (Fundamental Theorem of Algebra). Every polynomial p(x) of degree n with complex coefficients has a unique factorization of the form

$$p(x) = a(x - a_1)^{n_1}(x - a_2)^{n_2} \dots (x - a_k)^{n_k}$$

where a and a_i 's are complex numbers and n_i 's are natural numbers such that

$$n = n_1 + n_2 + \dots + n_k = \sum_{i=1}^k n_i.$$

Chapter 6

Triangular Form

Definition. Let $T:V\to V$ be a linear mapping. A subspace $W\subset V$ is said to be invariant (or stable) under T if $T(W)\subset W$.

Definition. A linear mapping $T:V\to V$ on a finite-dimensional vector space V is said to be triangularizable if there exists a basis β such that $[T]^{\beta}_{\beta}$ is upper-triangular.

Theorem. Let V be a vector space, let $T \in L(V)$, and let $\beta = \{x_1, \ldots, x_n\}$ be a basis for V. Then $[T]^{\beta}_{\beta}$ is upper-triangular \iff each of the subspaces $W_i = \operatorname{Span}\{x_1, \ldots, x_i\}^{-1}$ is invariant under T.

Theorem. Let $T: V \to V$, let $W \subset V$ be invariant subspace. Then the characteristic polynomial of $T|_W$ divides the polynomial of T. This implies that every eigenvalues of $T|_W$ is also an eigenvalue of T.

Theorem. Let V be a finite-dimensional vector space over a field F, and let $T:V\to V$ be a linear mapping. Then T is triangularizable \iff the characteristic polynomial equation of T has $\dim(V)$ roots in the field F.

Theorem. Assume the characteristic polynomial of T has $n = \dim(V)$ roots in F. If $W \subset V, W \neq V$ is an invariant subspace under T. Then there exists a vector $x \neq 0$ in V such that $x \notin W$, and $W + \operatorname{Span}(\{x\})$ is invariant under T.

Theorem. If T is triangularizable, with eigenvalues λ_i and respective multiplicities m_i , then there exists basis β for V such that $[T]^{\beta}_{\beta}$ is upper-triangular, and the diagonal entries of $[T]^{\beta}_{\beta}$ are m_1 of λ_1 's, followed by m_2 of λ_2 's, and so on.

Theorem (Cayley-Hamilton). Let $T \in L(V)$ on finite-dimensional vector space V, and let $p(t) = \det(T - tI)$ be its characteristic polynomial. Assume that p(t) has $\dim(V)$ roots in the field F over which V is defined. Then p(T) = 0 (the zero mapping on V). Note that the linear mapping p is defined as

$$p(T) = a_n T^n + a_{n-1} T^{n-1} = \dots + a_2 T^2 + a_1 I.$$

Corollary. Under all linear mappings $T: V \to V$,

- $\{0\}$ and V are invariant subspaces under T.
- $\ker(T)$ and $\operatorname{Im}(T)$ are invariant subspaces under T.
- If λ is an eigenvalue of T, then the eigenspace E_{λ} is invariant under T^2 .

Nilpotent, Jordan Canonical

Definition. A matrix $A \in M_{n \times n}(\mathbb{R})$ is said to be nilpotent if $A^k = 0$ for some $k \in \mathbb{N}$.

Definition. A direct sum of matrices is a block diagonal matrix, i.e. every off-diagonal block is zero:

$$A \oplus B = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$$

this can be genenralized from 2 to n.

¹Note that the subspaces W_i are related as $\{0\} \subset W_1 \subset \cdots \subset W_{n-1} \subset W_n = V$. The W_i form an increasing sequence of subspaces.

²This is true since for $v \in E_{\lambda}$, $Tv = \lambda v \in E_{\lambda}$.

Definition. A Jordan matrix J is a direct sum of Jordan blocks

$$J = J_{n_1}(\lambda_1) \oplus J_{n_2}(\lambda_2) \oplus \cdots \oplus J_{n_r}(\lambda_r)$$

where $n_i \in \mathbb{N}, 1 \leq i \leq r$.

Definition. A nilpotent Jordan block is a Jordan block with eigenvalue 0. We denote the $k \times k$ nilpotent Jordan block $J_k(0)$ by J_k .

A nilpotent Jordan Matrix J is a direct sum of Jordan blocks

$$J = J_{n_1} \oplus \cdots \oplus J_{n_r}$$

where $n_i \in \mathbb{N}, 1 \leq i \leq r$.

Definition. Let V be a vector space, let $T \in L(V)$, and let $x \in V$. The cyclic subspace generated by x, denoted C(x), is defined to be

$$C(x) = \operatorname{Span}\{x, Tx, T^2x, T^3x, \dots\}$$

A subspace $W \subseteq V$ is called cyclic with respect to T if there exists $x \in V$ such that W = C(x).

Definition. A Jordan form for an $n \times n$ matrix A is a Jordan matrix J to which A is similar, meaning for some invertible $n \times n$ matrix S.

$$J = SAS^{-1}$$

Definition. Let J and \mathcal{J} be $n \times n$ nilpotent Jordan matrices. Then J is similar to \mathcal{J} iff rank $J^p = \operatorname{rank} \mathcal{J}^p$ for each $p = 1, \ldots, n$.

Theorem. Let V be a finite-dimensional vector space, let and $N:V\to V$ be a linear mapping. Then N has one eigenvalue $\lambda=0$ with multiplicity $n=\dim(V)\iff N$ is nilpotent.

Proof. Let $N: V \to V$ be a linear mapping on finite-dimensional vector space V, with only one eigenvalue $\lambda = 0$, with multiplicity $n = \dim(V)$. Then by the Cayley-Hamilton theorem, $N^n = 0$, hence nilpotent. Conversely, if N is nilpotent, with $N^k = 0, k \in \mathbb{N}$. Then every eigenvalue of N is equal to 0.

Corollary. • $N^{k-1}(x)$ is an eigenvector of N with eigenvalue $\lambda = 0$.

- C(x) is an invariant subspace of V under N.
- The cycle generated by $x \neq 0$ is a linearly independent set. Hence $\dim(C(x)) = k$.

Corollary. Each nilpotent matrix is similar to a nilpotent Jordan matrix (that is unique up to the ordering of the direct summands). Re-worded in the language of linear transformations, the claim is: If V is a finite-dimensional vector space and $T \in L(V)$ is nilpotent, then there exists a basis α for V such that $[T]^{\alpha}_{\alpha}$ is a nilpotent Jordan matrix.

Theorem (Decomposition Theorem). Let V be a finite dimensional vector space, and let $T \in L(V)$. Then V can be decomposed into a direct sum of cyclic subspaces.

Theorem. Let V be a finite-dimensional vector space and let $T \in L(V)$ be nilpotent. Then there exists a basis α for V such that $[T]^{\alpha}_{\alpha}$ is a nilpotent Jordan matrix.

Theorem. Let A be an $n \times n$ matrix, and let J and \mathcal{J} be two nilpotent Jordan matrices that are similar to A. Then J can be obtained from \mathcal{J} by permuting its direct summands.

Generalized Eigenspaces & Jordan Forms

Definition. Let V be a finite-dimensional vector space and let $T \in L(V)$. Let λ be an eigenvalue of T with algebraic multiplicity m. The λ -generalized eigenspace is

$$K_{\lambda} = \ker(T - \lambda I)^m$$

The non-zero vectors in K_{λ} are called generalized eigenvectors.

Theorem. Let V be a finite-dimensional complex vector space and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of $T \in L(V)$. Then

$$V = K_{\lambda_1} \oplus K_{\lambda_2} \oplus \cdots \oplus K_{\lambda_k}$$

Theorem (Jordan's Theorem). Let V be a finite-dimensional complex vector space and let $T \in L(V)$. Then there exists a basis α for V such that $[T]^{\alpha}_{\alpha}$ is in Jordan form.

Corollary. Let $A, B \in M_{n \times n}(\mathbb{C})$ have the same set of eigenvalues. Then A and B are similar iff rank $(A - \lambda I)^p = \operatorname{rank}(B - \lambda I)^p$ for each eigenvalue λ of A, and each $p = 1, 2, \ldots, n$.

Writing Assignments

Writing Assignment 1

1. Let x_1, \ldots, x_n be vectors in a vector space V where at least one of the vectors is nonzero. Then

$$span\{x_1,...,x_r\} = span\{x_j, j = 1,...,r \text{ and } x_j \neq 0\}$$

2. Let U be a subset of vector space V. Then $\operatorname{span}(U)$ is the intersection of all the subspaces of V that contains U. Furthermore, if $U = \emptyset$, then $\operatorname{span}(U) = \operatorname{span}\{\emptyset\} = \{0\}$, which is the smallest subspace possible for vector space V.

Writing Assignment 2

Let V be an n-dimensional vector space. Let W_1 and W_2 be unequal subspaces of V, each of dimension n-1. Then

$$V = W_1 + W_2 = \{w_1 + w_2 | w_1 \in W_1 \text{ and } w_2 \in w_2\}$$
$$\dim(W_1 \cap W_2) = n - 2.$$

Writing Assignment 3

- 1. T has a left inverse \iff T is injective.
- 2. If α is a basis for V and β is a basis for W, then $[T]^{\beta}_{\alpha}$ has a left inverse iff its columns are linearly independent.
- 3. T has a right inverse \iff T is surjective. If α is a basis for V and β is a basis for W, then $[T]^{\beta}_{\alpha}$ has a left inverse iff its rows are linearly independent.

Writing Assignment 4

Let A, B be $n \times n$ matrices.

- 1. If A is similar to B, then $A \lambda I$ is similar to $B \lambda I$, $\forall \lambda \in \mathbb{R}$.
- 2. If $\exists \lambda \in R$ such that $A \lambda I$ is similar to $B \lambda I$, then A is similar to B.
- 3. Consider basis α, β of \mathbb{R}^n , where

$$\alpha = v_1, v_2, \dots, v_n$$
$$\beta = w_1, w_2, \dots, w_n$$

Define $n \times n$ matrices A, B as

$$A = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$
$$B = \begin{bmatrix} w_1 & w_2 & \dots & w_n \end{bmatrix}$$

Let
$$C = [I]^{\beta}_{\alpha}$$
. Then $A = BC$ and $C = B^{-1}A$.

Writing Assignment 5

- 1. Let $A, B \in M_{n \times n}(\mathbb{R})$. If A and B are each similar to a diagonal matrix, and have the same eigenvectors (not necessarily the same eigenvalues). Then AB = BA. We say A and B are commute.
- 2. Let $A \in M_{n \times n}(\mathbb{R})$. Suppose the only eigenvalues of A are ± 1 and A is similar to a diagonal matrix. Then $A^{-1} = A$.