ESTADÍSTICA

V.A. continua parte I

Índice

- Variable aleatoria continua
 - * Introducción
 - * Función de probabilidad ó densidad
 - * Función de distribución (acumulada)
- Esperanza matemática ó media de v.a. continua
- Varianza y Desv. típica de v.a. continua

INTRODUCCIÓN

Considera el siguiente ejemplo:

- Tenemos dos dados: el primero es un dado convencional que tiene 6 caras, todas ellas equiprobables.
- El segundo, es un dado 'continuo', es decir, al tirar el dado podemos obtener cualquier número real comprendido en el intervalo [0,6]. Todos los números son equiprobables.
- Por Laplace, sabemos que en el primer caso, P(X=x)=1/6
- En el segundo caso, $P(X=x)=1/\infty = 0!!$

En general, para toda v.a. continua X, la probabilidad de que tome un determinado valor, P(X = x), es simpre igual a cero.

Este hecho es, junto al uso de la integral en lugar de sumatorios, la diferencia fundamental entre ambos tipos de variables.

¿Cómo calcular entonces probabilidades?

Función de densidad de probabilidad

La probabilidad de que X esté entre a y b se puede calcular como el área que queda debajo de la curva f(x)

Función de densidad de probabilidad

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

Es una función no negativa de integral 1.

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Ejemplo. Dada la siguiente función.

$$f(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{b-a} & 0 \le x \le 1, & \text{donde a= 0 y b=1} \\ 0 & x > 1 \end{cases}$$

- a) Dibujar la gráfica correspondiente.
- b) Comprobar que es función de densidad.
- b) Obtener la probabilidad de que un resultado esté entre 0 y 0.5

Función de distribución de v.a.continua

Para una variable aleatoria continua disponemos de un **conjunto no numerable de valores**. Y sabemos que no es posible definir una probabilidad para cada uno.

Por eso definimos previamente la **función de distribución** de probabilidad, que sí tiene un significado inmediato, y semejante al caso discreto:

$$F: \mathfrak{R} \to [0,1]$$
$$x \to F(x) = P(X \le x)$$

Definimos la **función de distribución** para la variable aleatoria continua como:

$$F(x) = \int_{-\infty}^{x} f(t)dt \qquad \forall x \in \Re$$

Donde f(x) será la **función densidad**, que es continua y definida no negativa.

Luego, si hacemos la derivada de F(x) tenemos:

$$F'(x) = f(x)$$
 para cada x donde $f(x)$ es continua.

Observa que:

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

A partir de la definición es fácil ver que:

$$P(a \le X \le b) = F(b) - F(a) = \int_{a}^{b} f(x)dx$$

De modo que la probabilidad es el área bajo la curva densidad f(x) entre x = a y x = b.

Nota: para cualquier par de valores a y b, en el caso de una variable aleatoria continua, las probabilidades correspondientes a los intervalos $a < X \le b$, a < X < b, $a \le X < b$ y $a \le X \le b$ son la misma. No así en variable discreta.

Ejercicio: cartero

Un cartero llega cada mañana entre las 8 y las 10. Definimos X = tiempo transcurrido (medido en horas) hasta que llega el cartero. Por tanto, X está entre 0 y 2.

Si la función de densidad de X es:
$$f(x) = \begin{cases} k & \text{Si } 0 \le x \le 2\\ 0 & \text{En caso contrario} \end{cases}$$

- (a) Calcula el valor de k
- (b) ¿Cuál es la probabilidad de que el cartero llegue entre las 9 y las 10?
- (c) ¿Cuál es la probabilidad de que llegue a las 9 en punto?

(a)
$$\int_{-\infty}^{\infty} f(x)dx = 1$$
$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{2} kdx = kx \Big]_{0}^{2} = 2k - 0 = 1; \quad k = 1/2$$
(b)
$$P(1 \le X \le 2) = \int_{1}^{2} (1/2)dx = (1/2)x \Big]_{1}^{2} = (1/2)(2 - 1) = 1/2$$

(c)
$$P(X=1) = 0$$

Ejercicio: función de densidad de X

Supongamos que X tiene como función densidad a $f(x) = 0.75(1-x^2)$ si $-1 \le x \le 1$, y 0 en otro caso. Encuentra **a**) la función de distribución **b**) las probabilidades $P(-1/2 \le X \le 1/2)$ y $P(1/4 \le X \le 2)$ **c**) el valor de x tal que $P(X \le x) = 0.95$

a)
$$F(x) = 0 \text{ si } x \le -1$$

 $F(x) = 0.75 \int_{-1}^{x} (1 - t^2) dt = 0.5 + 0.75x - 0.25x^3 \quad \text{si } -1 < x \le 1$
 $F(x) = 1 \text{ si } x > 1.$

b)
$$P(-\frac{1}{2} \le X \le \frac{1}{2}) = F(\frac{1}{2}) - F(-\frac{1}{2}) = 0.75 \int_{\frac{1}{4}}^{\frac{1}{2}} (1 - x^2) dx = 0.6875$$

 $P(\frac{1}{4} \le X \le 2) = F(2) - F(\frac{1}{4}) = 0.75 \int_{\frac{1}{4}}^{1} (1 - x^2) dx = 0.3164$

c)
$$P(X \le x) = F(x) = 0.5 + 0.75x - 0.25x^3 = 0.95 \Rightarrow x \approx 0.73$$

Ejercicio: f(x) con valor absoluto

Una variable aleatoria continua, X, tiene por función de densidad $f(x) = ke^{-|ax|}$ definida en $-\infty < x < \infty$, donde a es un número positivo. Determínese el valor de a para que $P(X \le 3) = 0.6$.

$$0.6 = P(X \le 3) = \int_{-\infty}^{3} k e^{-|ax|} dx = \int_{-\infty}^{0} k e^{ax} dx + \int_{0}^{3} k e^{-ax} dx = \frac{k}{a} \left(2 - e^{-3a} \right)$$

$$1 = \int_{-\infty}^{\infty} k e^{-|ax|} dx = \int_{-\infty}^{0} k e^{ax} dx + \int_{0}^{+\infty} k e^{-ax} dx = \frac{2k}{a} \Longrightarrow k = \frac{a}{2}$$

Sustituyendo el valor de k en $\frac{k}{a}(2-e^{-3a})=0.6$ resulta:

$$a = \frac{\ln(0.8)}{-3} = 0.743$$

Ejercicio 51. Sea X una variable aleatoria que tiene como función de densidad de probabilidad $f(x) = a(1+x^2)$ si $x \in (0,3)$ y f(x) = 0 en los demás casos. Se pide:

- 1. Hallar a y la función de distribución de X.
- 2. Hallar la probabilidad de que X esté comprendido entre 1 y 2.
- 3. P(X < 1).
- 4. P(X < 2|X > 1).

1.
$$\int_0^3 a (1+x^2) dx = 1 \Longrightarrow a = \frac{1}{12}.$$

$$F(x) = \int_0^x a (1+s^2) ds = a \left[s + \frac{1}{3} s^3 \right]_0^x = \frac{1}{12} (x + \frac{1}{3} x^3)$$

2.
$$P(1 < X < 2) = F(2) - F(1) = \frac{5}{18}$$
.

3.
$$P(X < 1) = F(1) = \frac{1}{9}$$
.

4.
$$P(X < 2|X > 1) = \frac{P(1 < X < 2)}{P(X > 1)} = \frac{F(2) - F(1)}{1 - F(1)} = \frac{45}{144}$$
.

Ejercicio 52. Sea Y una variable aleatoria con función de densidad dada por:

$$p_Y(y) = \begin{cases} 0.2 & -1 \le y \le 0 \\ 0.2 + k y & 0 < y \le 1 \\ 0 & en \ el \ resto \end{cases}$$

- 1. Determinar el valor de k.
- 2. Determinar la función de distribución, $F_Y(y)$.
- 3. Calcular $P(0 \le Y \le 0.5)$.
- 4. P(Y > 0.5|Y > 0.1).

$$\int_{-1}^{y} f(t)dt = \int_{-1}^{y} 0.2dt$$

$$\int_{-1}^{0} 0.2 dy + \int_{0}^{1} (0.2 + ky) dy = 1 \Longrightarrow k = 1,2$$

$$2.$$

$$\int_{-1}^{y} f(t)dt = \int_{-1}^{0} 0.2dt + \int_{0}^{y} (0.2 + 1.2t)dt$$

$$F(y) = \begin{cases} 0.2y + 0.2 & -1 \le y \le 0 \\ 0.6y^{2} + 0.2y + 0.2 & 0 < y \le 1 \\ 0 & en el resto \end{cases}$$

3.
$$P(0 \le Y \le 0.5) = F(0.5) - F(0) = 0.25$$
.

4.
$$P(Y > 0.5|Y > 0.1) = \frac{P(Y > 0.5)}{P(Y > 0.1)} = \frac{1 - F(0.5)}{1 - F(0.1)} = 0.71.$$

Ejercicio 59. Sea una variable aleatoria X, que tiene como función de densidad:

$$p_X(x) = \begin{cases} \frac{x+6}{50} & -6 \le x \le 4\\ 0 & resto \end{cases}$$

- 1. Calcular la función de distribución de X.
- 2. Hallar k, si $P(k \le x \le k+1) = 0.09$.

$$F_X(x) = \int_{-c}^{x} \frac{x+6}{50} dx = \frac{1}{50} (\frac{1}{2}x^2 + 6x + 18)$$

2.

$$P(k \le x \le k+1) = F_X(k+1) - F_X(k) = 0.09 \Longrightarrow k = -2$$

Esperanza matemática o media

$$\mu = \sum_{i} x_{j} f(x_{j})$$
 (Distribución discreta)

$$\mu = \int_{-\infty}^{\infty} xf(x)dx$$
 (Distribución continua)

Momentos de orden k, centrados en el origen

$$E(X^{k}) = \sum_{j} x_{j}^{k} f(x_{j})$$
 (Distribución discreta)

$$E(X^k) = \int_{-\infty}^{\infty} x^k f(x) dx$$
 (Distribución continua)

Varianza y desviación típica

$$\sigma^2 = \sum_{j} (x_j - \mu)^2 f(x_j)$$
 (Distribución discreta)

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$
 (Distribución continua)

$$\sigma^2 = E(X^2) - (E(X))^2$$

Momentos de orden k, centrados en la media

$$E((X - \mu)^k) = \sum_{j} (x_j - \mu)^k f(x_j)$$
 (Distribución discreta)

$$E((X - \mu)^k) = \int_{-\infty}^{\infty} (x - \mu)^k f(x) dx$$
 (Distribución continua)

Observa que para
$$k = 2$$
: $\sigma^2 = E((X - \mu)^2)$

Ejercicio: f(x) de v.a. continua

La variable aleatoria X tiene función de densidad de probabilidad

$$f(x) = \begin{cases} k(7-2x) & 0 \le x \le 3\\ 0 & \text{en otro caso.} \end{cases}$$

Determinar k, la esperanza y la varianza de X.

$$1 = \int_0^\infty f(x)dx = k \int_0^3 (7 - 2x)dx = k (7x - x^2)_0^3 = k (21 - 9) = 12k,$$

por lo que $k=1/12\,$ y la función de densidad es

$$\begin{split} E[X] &= \int_{-\infty}^{\infty} x f(x) dx = \frac{1}{12} \int_{0}^{3} x (7-2x) dx = \frac{1}{12} \left(\frac{7}{2} x^{2} - \frac{2}{3} x^{3} \right)_{0}^{3} = \frac{1}{12} \left(\frac{63}{2} - 18 \right) = \frac{13.5}{12} = 1.125 \\ E[X^{2}] &= \int_{-\infty}^{\infty} x^{2} f(x) dx = \frac{1}{12} \int_{0}^{3} x^{2} (7-2x) dx = \frac{1}{12} \left(\frac{7}{3} x^{3} - \frac{2}{4} x^{4} \right)_{0}^{3} = \frac{1}{12} \left(63 - \frac{81}{2} \right) = \frac{22.5}{12} \\ Var[X] &= E[X^{2}] - E[X]^{2} = \frac{22.5}{12} - \left(\frac{13.5}{12} \right)^{2} = 0.61. \end{split}$$

Transformaciones de variables aleatorias

Densidad
$$f(x) = \begin{cases} 3/2 \ x^2 - 1 \le x \le 1 \\ 0 \ en \ el \ resto \end{cases}$$

Distribución
$$F(x) = \begin{cases} 0 & x < -1 \\ 1/2 & (x^3 + 1) & -1 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

Transformación o cambio de variable aleatoria———

¿Cuál será la función de densidad de probabilidad transformada g(y)?

$$Y = u(X) = 2X$$

$$y = u(x) = 2x$$

$$x = u^{-1}(y) = w(y) = y/2$$

$$G(y) = P(Y \le y) = P(2X \le y) = P(X \le y/2) = F(y/2)$$
$$g(y) = G'(y) = F'(y/2) \frac{1}{2} = f(y/2) \frac{1}{2}$$

$$g(y) = \begin{cases} 3/16 \ y^2 - 2 \le y \le 2 \\ 0 \ en \ el \ resto \end{cases}$$

$$G(y) = \begin{cases} 0 & y < -2 \\ 1/2 \left[(y/2)^3 + 1 \right] & -2 \le y \le 2 \\ 1 & y > 2 \end{cases}$$

Resumen de

Variable aleatoria unidimensional

Sean a y b constantes.

(1)
$$E(aX + b) = aE(X) + b$$
 (3) $E(X_1 + X_2) = E(X_1) + E(X_2)$

(2)
$$V(aX + b) = a^2V(X)$$
 (4) $\sigma^2 = V(X) = E(X^2) - (E(X))^2$

Función de distribución de una v.a. X

$$F(x) = P(X \le x) \quad \forall x \in \mathbb{R}$$

$$P(x_1 < X \le x_2) = F(x_2) - F(x_1) \quad \forall x_1, x_2 \in \mathbb{R}$$

Esperanza de una v.a. X

peranza de una v.a.
$$X$$
 Momentos centrados en el origen

$$\mathrm{E}[X] = \sum_{k} x_{k} P(X = x_{k}) \qquad m_{k} = \mathrm{E}[X^{k}] = \sum_{n} x_{n}^{k} P(X = x_{n}) \quad \text{v.a. discreta}$$

$$E[X] = \int_{-\infty}^{+\infty} x \ f(x) dx \qquad m_k = E[X^k] = \int_{-\infty}^{+\infty} x^k f(x) dx \qquad \text{v.a. continua}$$