PES UNIVERSITY, BANGALORE-85

(Established under Karnataka Act. No. 16 of 2013)

Scheme and Solution

Q.	Scheme and Solution	Marks	
No.			
1a	Propane is a common gas used for cooking and home heating. Each molecule		
	of propane is comprised of 3 atoms of carbon, and 8 atoms of hydrogen		
	written as C ₃ H ₈ . When propane burns, it combines with oxygen gas O ₂ to		
	form carbon dioxide CO ₂ and water H ₂ O. Balance the chemical equation	2	
	$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$ that describes this process.		
	Solution: Balance the chemical equation is	2	
	$aC_3H_8 + bO_2 \rightarrow cCO_2 + dH_2O$		
	for atoms of carbon we have 3a=c	2	
	for atoms of hydrogen we have a8=2d		
	for atoms of oxygen we have 2b=2c+d		
	thus expressing all the variables in terms of a we have		
	c=3a, b=5a, d=4a		
	$aC_3H_8 +5a O_2 \rightarrow 3aCO_2 +4a H_2O$		
	after cancelling the common factor a we have		
	$C_3H_8 + 5 O_2 \rightarrow 3CO_2 + 4 H_2O$		
b	Use the Gauss – Jordan method to invert the following matrices		
	$A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$	1	
	Solution: $[A:I] = \begin{bmatrix} 1 & 2 & -1:1 & 0 & 0 \\ -1 & 1 & 2: & 0 & 1 & 0 \\ 2 & -1 & 1: & 0 & 0 & 1 \end{bmatrix}$	4	
	$R_2 \rightarrow R_2 + R_1, R_3 \rightarrow R_3 - 2 R_1$	4	
	$R_3 \rightarrow R_3 + 5R_2/3,$		
	$R_1 \rightarrow R_1 + R_3/14, R_2 \rightarrow R_3 - R_2/14$		
	$R_1 \rightarrow R_1 - 28R_3/42$,	2	
	After reducing to [I: A ⁻¹] = $\begin{bmatrix} 1 & 0 & 0: 3/14 & -1/14 & 5/14 \\ 0 & 1 & 0: 5/14 & 3/14 & -1/14 \\ 0 & 0 & 1:-1/14 & 5/14 & 3/14 \end{bmatrix}$		

С	Write down the elementary matrices E, F, G associated with the system of	
	equations $2u + v + 3w = -1$, $4u + v + 7w = 5$, $-6u - 2v - 12w = -2$. Also	
	find the LU decomposition of A.	
	Solution: the given equations in the matrix form is Ax=b	
	Where $A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & 7 \\ -6 & -2 & -12 \end{bmatrix}, x = \begin{bmatrix} u \\ v \\ w \end{bmatrix}, b = \begin{bmatrix} -1 \\ 5 \\ -2 \end{bmatrix}$	1
	First: $R_2 \rightarrow R_2$ -2 R_1	
	Second: $R_3 \rightarrow R_3 + 3 R_1$	3
	Third: $R_3 \rightarrow R_3 + R_2$	
	Then $U = \begin{bmatrix} 2 & 1 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{bmatrix}$	1
	$E = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}, \qquad G = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$	
	L=G ⁻¹ F ⁻¹ E ⁻¹	
	$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & -1 & 1 \end{bmatrix}$	2
2a	Reduce these matrices to their echelon form to find their rank. Also find a	
	special solution to each of the free variables.	
	[1 2 2 4 6]	2
	$A = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix}$	
	Solution: step 1: $R_2 \rightarrow R_2$ - R_1 step 2: $R_3 \rightarrow R_3$ - R_2	1
	The echelon form is $\begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	3
	$R_1 \rightarrow R_1 - 2R_2$	
	Row reduce form is $\begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
	Now the free variables are x_2 , x_4 , x_5	
	The special solutions are (-2, 1, 0, 0, 0), (0, 0, -2, 1, 0), (0, 0, -3, 0, 1)	
<u> </u>	l	l .

b	For every c, find R and the special solutions to $Ax = 0$:	
	$A = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 4 & 4 \\ 1 & c & 2 & 2 \end{bmatrix}$	
	Solution: step 1: $R_2 \rightarrow R_2$ - $2R_1$, $R_3 \rightarrow R_3$ - R_1	2
		1
	We get = $\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & c - 1 & 0 & 0 \end{bmatrix}$	2
	Case 1: If $c=1$, then the free variables are x_2 , x_3 , x_4	2
	special solutions to $Ax = 0$ are $(-1, 1, 0, 0)$, $(-2, 0, 1, 0)$, $(-2, 0, 0, 1)$	
	case 2: If $c\neq 0$, then the free variables are x_3 , x_4	
	special solutions to $Ax = 0$ are (-2, 0, 1, 0), (-2, 0, 0, 1)	
С	If the column space of A is spanned by the vectors (1, 4, 2), (2, 5, 1) and (
	3, 6, 0) find all those vectors that span the left null space of A. Determine	
	whether or not the vector $\mathbf{b} = (4, -2, 2)$ is in that subspace. What are the	
	dimensions of C (A^T) and N (A^T)?	
	Solution: the left null space of A is N (A^{T})={x: A^{T} x=0}	1
	Now we solve the equation $A^{T}x=0$	
	The aug[A ^T :0]= $\begin{bmatrix} 1 & 4 & 2 & :0 \\ 2 & 5 & 1 & :0 \\ 3 & 6 & 0 & :0 \end{bmatrix}$	1
	step 1: $R_2 \rightarrow R_2$ - $2R_1$, $R_3 \rightarrow R_3$ - R_1	
	step 2: $R_3 \rightarrow R_3$ - R_2	
	step 3: $R_1 \rightarrow R_1 + 4/3R_2$	3
	step 4: $R_2 \rightarrow R_2/-3$	
	the row reduced form is $R = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	
	the free variables are x ₃	
	the basis for $N(A^T)$ is $(2, -1, 1)$	
	the vector $(4, -2, 2)$ is in $N(A^T)$ since $(4, -2, 2)=2(2, -1, 1)$.	
		2

3a	On the space P ₃ of cubic polynomials, what matrix represents $\frac{d^2}{dt^2}$? Find its						
	null space and column space. What do they mean in terms of polynomials?						
	Solution: the cubic polynomials is $P_3=1+x+x^2+x^3$.						
		-	$\frac{d^2}{dt^2}(P_3) = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$	0 0 2 0 ₇ 0 0 0 6 0 0 0 0 0 0 0 0			3
	$N\left(\frac{d^2}{dt^2}\text{P3}\right) = (1, 0, 0, 0), (0, 1, 0, 0)$						
	$C\left(\frac{d^2}{dt^2}P3\right) =$	= (2, 0, 0, 0),	(0, 6, 0, 0)				
	It is a linear c	combination of	of standard ba	ısis.			
b	What multipl	$e ext{ of } a = (1, 1)$	1, 1) is closes	t to $b = (2,$	4, 4)? Find	also the point	
	on the line th	rough b that i	s closest to a				
	Solution: the	projection ma	atrix is p1 =	\hat{x} a, where \hat{x}	$=\frac{a^Tb}{a^Ta}$		1
	_	_			ии		2
	We get $\hat{x} = \frac{10}{3}$						
	b must be a multiple of 10/3 such that, a is closest to the point b=(2, 4, 4).						
	the point on the line through b that is closest to a						2
	the projection matrix is $p2 = \hat{x}b$, where $\hat{x} = \frac{b^T a}{b^T b}$						
	We get $\hat{x} = \frac{10}{36}$						
	a must be a m	nultiple of 10/	36 such that,	b is closest to	o the point a=	=(1, 1, 1).	
С	An ice- crean	n vendor reco	rds the numb	er of hours o	f sun shine (x	() versus the	
	number of ice	e- creams solo	d in an hour (y) at his sho	p from Mond	lay to Friday	
	and found the following data:						
	X	2	3	5	7	9	
	у	4	5	7	10	15	
	Find the best values of m and c that suit the equation $y = mx + c$. If there is a						
	weather forecast that says there would be 8 hours of sun shine the next day,						
	estimate the number of ice- creams that he expects to sell on that day.						
	Solution: y =	mx+c					2

	The equations are 4=2m+c, 5=3m+c, 7=5m+c, 10=7m+c, 15=9m+c	
	The matrix form is Ax=b, where $A = \begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 5 & 1 \\ 7 & 1 \\ 9 & 1 \end{bmatrix}$, $x = \begin{bmatrix} m \\ c \end{bmatrix}$, $b = \begin{bmatrix} 4 \\ 5 \\ 7 \\ 10 \\ 15 \end{bmatrix}$	3
	The normal equation is $A^{T}Ax=A^{T}b$	
	After solving we get $\begin{bmatrix} 168 & 26 \\ 26 & 5 \end{bmatrix} \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} 263 \\ 41 \end{bmatrix}$	
	Solution of m=1.613, c=0.305	
	y = 1.613x + 0.305	2
	at x=8, y=13.209	
4a	Find the largest Eigen value and the corresponding Eigen vector of a matrix	
	$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ by using the initial vector $\mathbf{x}_0 = (1, 1, 1)$.	
	Solution: the power method is	2
	Step1; $Ax_0=\lambda x_1$	
	$\begin{vmatrix} Ax_{0=} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	4
	This process is continued	
	We get λ =3.4146, x=(0.7071, -1, 0.7071)	
b	Find orthogonal vectors q_1 , q_2 , q_3 by Gram-Schmidt method from	
	a = (1, 1, 0), b = (1, 0, 1) and $c = (0, 1, 1)$	
	solution: the G-S method	3
	$q_1 = \frac{a}{\ a\ }, \qquad q_2 = \frac{e2}{\ e2\ }, where \ e2 = b - (q_1^T b)q_1,$	2
	$q_3 = \frac{e3}{\ e3\ }, \text{where } e3 = c - (q_1^T c)q_1 - (q_2^T c)q_2$	2
	$q_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \ q_2 = \left(\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right), \ q_3 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$	
С	Factor the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ in to SAS ⁻¹ . Also find SAS ⁻¹ .	2
	Solution: the Eigen values are λ =0, 2.	1

	The vectors are $x_1 = k \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $x_2 = k \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	2
	$S = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \Lambda = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}, S^{-1} = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$	2
	$S\Lambda S^{-1} = A$, $SAS^{-1} = \Lambda$.	
5a	Let A be an $n \times d$ matrix with right singular vectors v_1, v_2, \ldots, v_r , left singular	
	vectors u_1, u_2, \ldots, u_r , and corresponding singular values $\sigma_1, \sigma_2, \ldots, \sigma_r$. Then	
	$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T.$	
	Solution: For each singular vector \mathbf{v}_j , $A = \sum_{i=1}^r \sigma_i u_i v_i^T v_j$. Since any vector \mathbf{v}_j	
	can be expressed as a linear combination of the singular vectors plus a vector	
	perpendicular to the vi , $A_v = \sum_{i=1}^r \sigma_i u_i v_i^T v_j$ and by Lemma 1.4, $A =$	
	$\sum_{i=1}^{r} \sigma_i u_i v_i^T.$	
	The decomposition is called the singular value decomposition, SVD, of A. In	
	matrix notation $A = UDV^{T}$ where the columns of U and V consist of the left	
	and right singular vectors, respectively, and D is a diagonal matrix whose	
	diagonal entries are the singular values of A.	
	For any matrix A, the sequence of singular values is unique and if the singular	
	values are all distinct, then the sequence of singular vectors is unique also.	
	However, when some set of singular values are equal, the corresponding	
	singular vectors span some subspace. Any set of orthonormal vectors spanning	
	this subspace can be used as the singular vectors.	
b	Test the following matrices for positive or semi definite	
	$A = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix}, B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$	
	Solution: Case A: $A = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix}$, we get the $U = \begin{bmatrix} 5 & 2 & 1 \\ 0 & 6/5 & 8/5 \\ 0 & 0 & 8/3 \end{bmatrix}$	2
	$L^{-1}x = \begin{bmatrix} 1 & 2/5 & 1/5 \\ 0 & 1 & 4/3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$	2
	$x^{T}Ax = 5(u+2v/5+w/5)^{2}+6/5(v+4w/3)^{2}+8w^{2}/3>0$	3
	$\lambda_1\lambda_2\lambda_3=16$	
	$\lambda_1 + \lambda_2 + \lambda_3 = 12$	

	T	
	pivots are 5, $6/5$, $8/3 > 0$	
	Therefore A is Positive definite.	
	Case B: $B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ we get the $U = \begin{bmatrix} 2 & -1 & -1 \\ 0 & 3/2 & -3/2 \\ 0 & 0 & 0 \end{bmatrix}$	
	pivots are 2, $3/2$, $0 \ge 0$	
	Therefore B is semi definite.	
С	Find SVD for Matrix $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & 2 \end{bmatrix}$.	
	Solutions: $A^{T}A = \begin{bmatrix} 9 & -1 \\ -1 & 9 \end{bmatrix}$, Eigen values of $A^{T}A$ are 10, 8.	2
	Eigen vectors are $x_1 = (1, -1), x_2 = (1, 1)$	_
	Matrix $V = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$.	1
	Singular values of A are $\sigma_1 = \sqrt{10}$, $\sigma_2 = \sqrt{8}$	-
	Eigen values of AA ^T are 10, 8, 0.	
	Therefore	2
	$u_1 = \frac{AV_1}{\sigma_1} = \begin{bmatrix} 1/\sqrt{5} \\ -2/\sqrt{5} \\ 0 \end{bmatrix}$	٢
	Similarly	
	$u_2 = \frac{AV_2}{\sigma_2} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	2
	So u_3 has to be orthogonal to u_2 and u_1 , we get.	2
	$u_3 = \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \\ 0 \end{bmatrix}$	
	Therefore $A = \begin{bmatrix} 1/\sqrt{5} & 0 & 2/\sqrt{5} \\ -2/\sqrt{5} & 0 & 1/\sqrt{5} \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{10} & 0 \\ 0 & \sqrt{8} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$ $A = U\Sigma V^{T}$	
	027	