學號:B03901076 系級:電機三 姓名:林尚謙

1. (1%)請比較有無 normalize(rating)的差別。並說明如何 normalize. 將 training data 的 rating 減去平均後除以標準差來做 normalize,以 normalize 過後的 rating 作為 training 的 target,並在 testing 的時候根據 training 的 mean 和 std 做還原。使用相同模型架構(MFmodel,有加入 bias, latent_dim 為 15),對有無 normalize 來做比較:

無 normalize:

有 normalize:

可以發現在有 normalize 的情況下,因為 training 的 target 是經過 normalize 的較小範圍,loss 相較之下會比較小,但最後還要做還原,所以不 代表結果是比較好的。在訓練的過程中,有經過 normalize 的 valid_loss 會比較快進入收斂(overfitting),而最終預測的準確率,沒有 normalize 略高於有 normalize 過的,這次的 case 中 normalize 並沒有帶來明顯的好處。

有無 normalize	無 normalize	有 normalize
RMSE(public score)	0.86799	0.87047

2. (1%)比較不同的 latent dimension 的結果。

分別使用相同的模型架構(MFmodel,有加入bias,沒有做normalize),改變兩個 Embedding layer 的 latent dimension 來做比較:

laten dimension	10	15	20
RMSE	0.86806	0.87050	0.87006
laten dimension	25	30	35
RMSE	0.87002	0.87244	0.86669

latent dimension 在 10~35 的範圍內,訓練出來的模型預測準確率沒有明顯相關性,而訓練時 batch_size 的影響還比較大。而觀察訓練過程的 traing_loss 和 valid_loss,發現如果 latent dimension 越大,讓 training_loss 下降的程度會越快,也會越早進入 overfitting,應該是 Embedding layer 有越大的 latent dimension,會有更複雜的結構和參數可以去趨向 training 的 target,但並不會使最後的預測準確率跟著增加。

latent dimension = 15

latent dimension = 30

3. (1%)比較有無 bias 的結果。 使用相同的模型架構(MFmodel, latent_dim 為 15,沒有做 normalize),對有 無加入 bias 來做比較:

有無 bias	有 bias	有 user bias	有 movie bias	無 bias
RMSE	0.86799	0.87000	0.87111	0.87229

$$r_{i,j} = U_i \cdot V_j + b_i^{user} + b_j^{movie}$$

有加入 bias 可以提升模型預測的準確率, bias 等於每個 user 和每部 movie 自己的趨勢特性,例如可能有一個 user 評分都傾向偏低,加上 bias 後就會考慮進去,使最後預測出的 rating 也會降低。

4. (1%)請試著用 DNN 來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF 和 NN 的結果,討論結果的差異。

DNN 模型架構:

Layer (type)	Output Shape	Param #
input_57 (InputLayer)	(None, 1)	0
input_58 (InputLayer)	(None, 1)	0
embedding_103 (Embedding)	(None, 1, 150)	906000
embedding_104 (Embedding)	(None, 1, 150)	592800
flatten_103 (Flatten)	(None, 150)	0
flatten_104 (Flatten)	(None, 150)	0
embedding_105 (Embedding)	(None, 1, 1)	3952
dot_29 (Dot)	(None, 1)	0
flatten_105 (Flatten)	(None, 1)	0
add_26 (Add)	(None, 1)	0

Total params: 1,502,752 Trainable params: 1,502,752 Non-trainable params: 0

我將 user embedding 和 movie embedding(latent_dim = 150)concatenate 在一起後,經過一個僅有一層 hidden layer 的 DNN 後,在 output layer 用 regression 問題去處理,輸出最終的 rating 分數。雖然只有一層的 hidden layer,但已經可以達到比 MF 還要好的準確率(public score 可達 0.85)。觀察 MF 與 NN 的訓練過程,訓練一開始 NN 較快把 loss 下降到一定範圍,但 NN 模型

在後半段訓練過程中 training_loss 和 valid_loss 分開的比較慢,可能是在NN 模型中,在 concatenate 完兩個 embedding layer 進入 DNN 模型時,還有hidden layer 到 output layer 前,都有加上 dropout layer,防止訓練太早進入 overfitting,最後也得到了較好的預測準確率。

- 5. (1%)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作圖。
- 6. (BONUS)(1%)試著使用除了 rating 以外的 feature,並說明你的作法和結果, 結果好壞不會影響評分。