DSP HW2-1 HMM Training and Testing

教授:李琳山 助教:陳冠宇

Outline

- 1. Introduction
- 2. Hidden Markov Model Toolkit (HTK)
- 3. Homework Problems
- 4. Submission Requirements

Introduction

- Construct a digit recognizer monophone ling | yi | er | san | si | wu | liu | qi | ba | jiu
- Free tools of HMM: Hidden Markov Toolkit (HTK) http://htk.eng.cam.ac.uk/
- Training data, testing data, scripts, and other resources all are available on http://speech.ee.ntu.edu.tw/DSP2017Autumn/

Flowchart

Hidden Markov Model Toolkit (HTK)

Feature Extraction

Feature Extraction - HCopy

HCopy -C lib/hcopy.cfg -S scripts/training_hcopy.scp

Convert wave to 39 dimension MFCC.

- -C lib/hcopy.cfg
 - input and output form e.g. wav -> MFCC_Z_E_D_A
 - parameters of feature extraction
 - Chapter 7 Speech Signals and Front-end Processing
- -S scripts/training_hcopy.scp
 - a mapping from Input file name to output file name

speechdata/training/ N110022.wav

MFCC/training/ N110022.mfc **Training Flowchart**

Training Flowchart

Initialize model - HCompV

HCompV -C lib/config.cfg -o hmmdef -M hmm -S scripts/training.scp lib/proto

Compute global mean and variance of features

- -C lib/config.cfg
 - set format of input feature (MFCC_Z_E_D_A)
- -o hmmdef -M hmm
 - set output name: hmm/hmmdef
- -S scripts/training.scp
- a list of training data lib/proto
 - a description of a HMM model HTK MMF format here (# states)!

Initial MMF Prototype

MMF: HTKBook chapter 7


```
~o <VECSIZE>39 <MFCC Z E D A>
~h "proto"
<BeginHMM>
<NumStates> 5
<State> 2
<Mean>39
<Variance>39
1.01.01.01.01.01.01.01.01.01.01.0...
<State> 3
<Mean>39
<Variance>39
<TransP>5
0.01.00.00.00.0
0.00.50.50.00.0
0.00.00.50.50.0
0.00.00.00.50.5
0.00.00.00.00.0
<EndHMM>
```

Initial HMM

- bin/macro
 Produce MMF contains vFloor
- bin/models_1mixsil add silence HMM

hmm/hmmdef

hmm/models

Training Flowchart

Adjust HMMs - HERest

Basic problem 3 for HMM

• Given O and an initial model λ =(A,B, π), adjust λ to maximize

Adjust HMMs - HERest

HERest -C lib/config.cfg -S scripts/training.scp -I labels/Cleano8TR.mlf -H hmm/macros -H hmm/models -M hmm lib/models.lst

Adjust parameters λ to maximize $P(O|\lambda)$

- one iteration of EM algorithm
- run this command three times => three iterations
- –I labels/Clean08TR.mlf
 - set label file to "labels/Clean08TR.mlf"
- -o lib/models.lst
 - a list of word models (liN (零), #i (一), #er (二),... jiou (九), sil)

Add SP Model

bin/spmodel_gen hmm/models hmm/models

Add "sp" (short pause) HMM definition to MMF file "hmm/

hmmdef"

Modify HMMs - HHEd

HHEd -H hmm/macros -H hmm/models -M hmm lib/sil1.hed lib/models_sp.lst

lib/sil1.hed

- a list of command to modify HMM definitions
- lib/models_sp.lst
 - a new list of model (liN (零), #i (一), #er (二),... jiou (九), sil, sp)

Training Flowchart

Adjust HMMs Again - HERest

HERest -C lib/config.cfg -S scripts/training.scp -I labels/Cleano8TR_sp mlf -H hmm/macros -H hmm/models -M hmm lib/models_sp lst

Increase Number of Mixtures - HHEd

HHEd -H hmm/macros -H hmm/models
-M hmm lib/mix2_10.hed lib/models_sp.lst

Modification of Models

```
lib/mix2_10.hed
```

```
MU 2 {liN.state[2-4].mix}
```

...

MU 3 {sil.state[2-4].mix}

You can modify # of Gaussian mixture here.

This value tells HTK to change the mixture number from state 2 to state 4. If you want to change # state, check lib/proto.

You can increase # Gaussian mixture here.

Check HTKBook 17.8 HHEd for more details

Adjust HMMs Again - HERest

HERest -C lib/config.cfg -S scripts/training.scp -I labels/Cleano8TR_sp mlf -H hmm/macros -H hmm/models -M hmm lib/models_sp lst

Training Flowchart

Testing Flowchart

Construct Word Net - HParse

HParse lib/grammar_sp lib/wdnet_sp

lib/grammar_sp

- regular expression
- easy for user to construct

lib/wdnet_sp

- output word net
- the format that HTK understand

Viterbi Search - HVite

HVite -H hmm/macros -H hmm/models -S scripts/testing.scp -C lib/config.cfg -w lib/wdnet_sp -l '*' -i result/result.mlf -p o.o -s o.o lib/dict lib/models_sp.lst

- -w lib/wanec sp • input word net -i result/result.mlf • output MLF file
- lib/dict
 - dictionary: a mapping from word to phone sequences ling -> liN, er -> #er, — -> sic_i i, -> chi i i

Compared With Answer - HResults

HResults -e "???" sil -e "???" sp

-I labels/answer.mlflib/models_sp.lstresult/result.mlf

Longest Common Subsequence (LCS)

Report - Part 1 (40%) - Run Baseline

- 1. Download HTK tools and homework package
- 2. Set PATH for HTK tools: set_htk_path.sh
- 3. Execute (bash shell script)

01_run_HCopy.sh

02_run_HCompV.sh

 $03_training.sh$

04_testing.sh

- 4. You can find accuracy in "result/accuracy" the baseline accuracy is 74.34%
- 5. Put the screenshot of your result on the report.

Useful tips

- 1. To unzip files

 unzip XXXX.zip

 tar -zxvf XXXX.tar.gz
- 2. To set path in "set_htk_path.sh" PATH=\$PATH:"~/XXXX/XXXX"
- 3. In case shell script is not permitted to run... *chmod 744 XXXX.sh*

Report - Part 2 (40%) - Improve Accuracy

 Acc > 95% for full credit; 90~95% for partial credit and put the screenshot of your result on the

Part 2 - Attention 1

 Executing 03_training.sh twice is different from doubling the number of training iterations.
 To increase the number of training iterations, please modify the script, rather than run it many times.

```
for i in 0 1 2;
do
    echo "iteration $i"
    HERest -C $config -I $label \
        -t 250.0 150.0 1000.0 -S $data_list \
        -H $macro -H $model -M $mmf_dir $model_list
done
```

Part 2 - Attention 2

• Every time you modified *any parameter or file*, you should run *OO_clean_all.sh* to remove all the files that were produced before, and restart all the procedures. If not, the new settings will be performed on the previous files, and hence you will be not able to analyze the new results.

(Of course, you should record your current results before starting the next experiment.)

Report - Part 3 (30%)

- Write a report describing your training process and accuracy.
 Number of states, Gaussian mixtures, iterations, ...
 How some changes effect the performance
 Other interesting discoveries
- Well-written report may get +10% bonus.

Submission Requirements

- 4 shell scripts your modified 01~04_XXXX.sh
- 1 accuracy file with only your best accuracy (The baseline result is not needed.)
- proto, mix2_10.hed your modified hmm prototype and file which specifies the number of GMMs of each state
- 1 report (in PDF format)
 the filename should be hw2-1_bXXXXXXX.pdf (your student ID)
- Put above 8 files in a folder (named after your student ID), and compress into 1 zip file and upload it to Ceiba.

If you have any problem...

- Check for hints in the linux and shell scripts. ex 鳥哥
- Check the HTK book.
- Ask friends who are familiar with Linux commands or Cygwin. (link: how to HTK on Cygwin)
- Contact the TA:

email: ntudigitalspeechprocessingta@gmail.com

title: [HW2-1] bxxxxxxxx (your student number)