$$\begin{array}{c}
R_2 \to R_2 - 4R_1 \\
R_3 \to R_3 - 3R_1
\end{array}
\to \begin{pmatrix}
1 & 2 & 3 & | & 9 \\
0 & -3 & -6 & | & -12 \\
0 & -5 & -11 & | & -23
\end{pmatrix}$$

$$\begin{array}{c}
R_2 \to \frac{1}{3}R_2
\end{array}
\to \begin{pmatrix}
1 & 2 & 3 & | & 9 \\
0 & 1 & 2 & | & 4 \\
0 & 5 & -11 & | & -23
\end{pmatrix}$$

Hasta aquí, este proceso es idéntico al anterior; pero ahora sólo se hace cero el número (-5) que está debajo del primer 1 en el segundo renglón:

Sustitución hacia atrás

Eliminación gaussiana

La matriz aumentada del sistema (y los coeficientes de la matriz) se encuentran ahora en la forma escalonada por renglones y se puede ver de inmediato que $x_3 = 3$. Después se usa la **sustitución hacia atrás** para despejar primero x_2 y después x_1 . La segunda ecuación queda $x_2 + 2x_3 = 4$. Entonces $x_2 + 2(3) = 4$ y $x_2 = -2$. De igual manera, de la primera ecuación se obtiene $x_1 + 2(-2) + 3(3) = 9$ o $x_1 = 4$. Así, de nuevo se obtiene la solución (4, -2, 3). El método de solución que se acaba de emplear se llama **eliminación gaussiana**.

Se cuenta con dos métodos para resolver los ejemplos de sistemas de ecuaciones:

i) Eliminación de Gauss-Jordan

Se reduce por renglón la matriz aumentada a la forma escalonada reducida por renglones usando el procedimiento descrito en la página 10.

ii) Eliminación gaussiana

Se reduce por renglón la matriz aumentada a la forma escalonada por renglones, se despeja el valor de la última incógnita y después se usa la sustitución hacia atrás para las demás incógnitas.

¿Cuál método es más útil? Depende; al resolver sistemas de ecuaciones en una computadora se prefiere el método de eliminación gaussiana porque significa menos operaciones elementales por renglones. De hecho, como se verá en el apéndice C, para resolver un sistema de n ecuaciones con n incógnitas usando la eliminación de Gauss-Jordan se requieren aproximadamente $\frac{n^3}{2}$ sumas y multiplicaciones, mientras que la eliminación gaussiana requiere sólo $\frac{n^3}{3}$ sumas y multiplicaciones. La solución numérica de los sistemas de ecuaciones se estudiará en el apéndice D. Por otro lado, a veces es esencial obtener la forma escalonada reducida por renglones de una matriz (una de éstas se estudia en la sección 2.4). En estos casos la eliminación de Gauss-Jordan es el método preferido.

Ahora estudiaremos la solución de un sistema general de *m* ecuaciones con *n* incógnitas. La mayor parte de las soluciones de los sistemas se hará mediante la eliminación de Gauss-Jordan debido a que en la sección 2.4 esto se necesitará. Debe tenerse en mente, sin embargo, que la eliminación gaussiana suele ser un enfoque más conveniente.

El sistema general $m \times n$ (de m ecuaciones con n incógnitas) está dado por

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$
(1.2.10)