Sensor de Temperatura Digital com Termistor KY-001

O módulo KY-001 é composto por um sensor digital de temperatura DS18B20 para Arduino, Raspberry Pi, e ESP32. Este sensor é caracterizado por fornecer leituras de temperatura de 9 a 12 bits, realiza medições na faixa de -55° a 125°C, em ambiente seco, úmido ou submerso, não necessitando de um componente externo para isso, além de apresentar os valores em graus celsius.

O DS18B20 conta com precisão de ±0,5°C na faixa de medição de -10°C a 85°C, outrossim, apresenta faixas de medição distintas, podendo ter o incremento de 0,5°C (9 bits), 0,25°C (10 bits), 0,125°C (11 bits) e 0,0625°C (12 bits), sendo essa última a resolução padrão. O sensor de temperatura vem equipado com uma função de alarme, com valores acionadores programáveis.

As especificações resumidas consistem em:

• Chipset: DS18B20

• Voltagem de Operação: 3.0V até 5.5V

• Comunicação: One-Wire Bus

• Alcance de Medição de Temperatura: -55°C to 125°C

• Acurácia de Medição de Temperatura: ±0.5C (entre -10°C até 85°C)

• **Dimensão da Placa:** 18.5mm x 15mm

Este sensor pode ser usado para calcular a temperatura de soluções líquidas ou ambientes rígidos, em outras palavras, como um termômetro, ou para ativar dispositivos sensíveis ao calor, como o termovelocímetro, os quais são comuns em armazéns de combustível.

CONEXÃO:

Os componentes do projeto são:

- 1 Arduino Uno Rev 3
- 3 jumpers para as conexões
- 1 Sensor de Temperatura KY-001

CÓDIGO:

```
#include <OneWire.h>
#include <DallasTemperature.h>
#define ONE_WIRE_BUS 2

OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);

void setup(void)
{
    Serial.begin(9600);
    sensors.begin();
}

void loop(void)
{
    sensors.requestTemperatures();
    Serial.println(sensors.getTempCByIndex(0));
    delay(2000);
}
```

OUTPUT(Exemplo em um ambiente de 24°C):

```
24
24
24
24
24
24
24
```

O código necessita das bibliotecas *One Wire* e *Dallas Temperature*. A biblioteca *One Wire* serve para prover comunicação entre o sensor de temperatura e a biblioteca *Dallas Temperature*, a qual proporciona a temperatura sendo registrada no sensor, em Celsius ou Fahrenheit.

CARREGAR O OUTPUT EM UM ARQUIVO

Logo abaixo segue um código, o qual armazena 10 vezes o *output* da *serial*, em um arquivo .csv, e o momento em que o dado foi guardado. Nós necessitamos de instalar o módulo *pyserial*, e importar as bibliotecas *datetime*, *time*, *serial*(do módulo *pyserial*) para a realização do código abaixo.

```
import serial
import csv
from datetime import datetime
import time
#Conexão com a Serial
serial port = 'COM1'
baud rate = 9600
serial timeout = 2
ser = serial.Serial(serial port, baud rate, timeout = serial timeout)
#Criação de um arquivo .csv, e armazenamento de 10 dados
CSV FILE = 'temperatura.csv'
with open(CSV FILE, 'w', newline='') as file:
   writer = csv.writer(file)
   while i <= 10:
     data = ser.readline().decode().strip()
     ano = datetime.now().year
     mes = datetime.now().month
     dia = datetime.now().day
     hora = datetime.now().hour
     minuto = datetime.now().minute
      segundo = datetime.now().second
     writer.writerow([id, data, ano, mes, dia, hora, minuto, segundo])
     i = i+1
      time.sleep((1000000-datetime.now().microsecond)/1000000)
ser.close()
file.close()
```

ARQUIVO .CSV GERADO (EXEMPLO):

id,temperatura,ano,mes,dia,hora,minuto,segundo

0,24,2023,6,29,0,45,40 1,24,2023,6,29,0,45,41 2,24,2023,6,29,0,45,42 3,24,2023,6,29,0,45,43 4,24,2023,6,29,0,45,44 5,24,2023,6,29,0,45,45 6,24,2023,6,29,0,45,46 7,24,2023,6,29,0,45,46 7,24,2023,6,29,0,45,47 8,24,2023,6,29,0,45,48 9,24,2023,6,29,0,45,49 10,24,2023,6,29,0,45,50

Carregar os dados em um Banco de Dados(PostgreSQL)

Em seguida, se encontra um código que armazena 10 vezes o *output* da *serial*, em uma tabela de um banco de dados *PostgreSQL*, e o momento em que o dado foi guardado. Nós necessitamos de instalar o módulo *pyserial*, para a leitura dos dados da *serial*, e o módulo *psycopg2* para a conexão com o banco de dados. Neste código criamos uma tabela chamada temperatura, com a coluna *id* como chave primária, e mais 7 colunas, que consistem em 'temperatura'(*output* da *serial*), ano, mês, dia, hora, minuto e segundo.

```
#Importação das bibliotecas necessárias
import serial
import psycopg2
from datetime import datetime
#Conexão com a Serial
serial port = 'COM1'
baud rate = 9600
serial timeout = 2
ser = serial.Serial(serial port, baud rate, timeout = serial timeout)
conn = psycopg2.connect(
   host="xxxxxxxx",
   port=xxxxx,
   user="xxxxxxxx",
   password="xxxxxxxx"
csr = conn.cursor()
csr.execute("""
   CREATE TABLE temperatura (
       temperatura VARCHAR(3),
conn.commit()
data2 = []
```

```
id = str(j)
  temp = str(ser.readline().decode().strip())
  ano = str(datetime.now().year)
 mes = str(datetime.now().month)
  dia = str(datetime.now().day)
 hora = str(datetime.now().hour)
 minuto = str(datetime.now().minute)
  segundo = str(datetime.now().second)
  data = (id, temp, ano, mes, dia, hora, minuto, segundo)
 data2.append(data)
         args = ','.join(csr.mogrify("(%s, %s, %s, %s, %s, %s, %s, %s)",
i).decode('utf-8')
                  for i in data2)
 csr.execute("INSERT INTO temperatura VALUES " + (args))
 conn.commit()
 time.sleep((1000000-datetime.now().microsecond)/1000000)
  data2 = []
```

Tabela no Banco de Dados(Exemplo):

	123 id 🔻	ABC temperatura 🔻	ABC year 🔻	ABC month 🔻	ABC day ▼	ABC hour 🔻	ABC minute 🔻	RBC second ▼
1	0	24	2023	6	29	1	2	32
2	1	24	2023	6	29		2	33
3	2	24	2023	6	29		2	34
4		24	2023	6	29		2	35
5	4	24	2023	6	29		2	36
6	5	24	2023		29		2	37
7	6	24	2023	6	29		2	38
8	7	24	2023	6	29		2	39
9	8	24	2023	6	29		2	40
10	9	24	2023	6	29		2	41
11	10	24	2023	6	29		2	42

Dessa forma, podemos ter um armazenamento de temperatura preciso, e constante, o que poderia ser empregado para armazenar dados de um experimento, o qual necessita de uma vigilância de longo prazo de algum elemento ou de um ambiente, e a variação de sua temperatura.