1 Linear Programming

1.1 Standard Form of LP

Right-hand-side constraints $\mathbf{b}=(b_1,b_2,\dots,b_m)^{\top}$ Objective coefficients $\mathbf{c} = (c_1, c_2, \dots, c_n)^{\top}$ Decision variables $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathsf{T}}$ subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i, i = 1, ..., m$ $x_j \geq 0, j = 1, ..., n$ Structural coefficients $A \in \mathbb{R}^{m \times n}$ Maximize $z = \sum_{j=1}^{n} c_j x_j$ where $b_i \ge 0, n > m$

Transforming an LP to Standard Form

- Nonzero lower bound
- suppose $x_j \ge l_j, l_j \ne 0$, replace $x_j = x_j' + l_j, x_j' \ge 0$ • Non-positive upper bound
- suppose $x_j \ge u_j, u_j \le 0$, replace $x_j = u_j x'_j$
 - Unrestricted (or Free) Variables
- define $x_j^+, x_j^- \geq 0$, use $x_j^+ x_j^-$ substitute x_j - $x_1 + x_2 = 8$, replace $x_2 = 8 - x_1$ if x_2 is free
 - Inequality Constraints

define slack variable $s_1 \geq 0, \ ax \geq b \Leftrightarrow ax - s_1 = b$

1.2 Solving LP

Basic Feasible Solution

- basic solution is called a BFS if it satisfies the non- $\,$ may or may not be 0negativity constraints.
 - Theorem
- ∃ a feasible solution ⇔ ∃ a BFS.
- ∃ an optimal FS ↔ ∃ an optimal BFS.
- Additional remark. Each BFS corresponds to a corner point in the graphic representation of LP.

Given $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$ with $\mathbf{x}_N = 0$. Write $\mathbf{A} = (\mathbf{B}, \mathbf{N})$ (columns of A corresponding to variables in $x_B, x_N)$ $Ax = Bx_B + Nx_N = Bx_B = b, x_B = B^{-1}b \label{eq:angle}$

Proof. Assume **x** is a feasible solution, but not BFS. Can find a \mathbf{y} ($\mathbf{A}\mathbf{y} = 0$) making $\mathbf{x} + k\mathbf{y}$ to be BFS.

Simplex method A simplex form \leftrightarrow a BFS:

- The value of the objective function is equal to the $x_i \ge 0, i = 1, ..., n$ • Each basic variable corresponds to a row, and value of basic variable is right-hand side of row
- Every basic variable appears in one and only one $\ s.t. \ \sum_{j=1}^m a_{ji}y_j \ge c_i, i=1,...,n$ right-hand side of row 0 equation, but not row 0

- Each basic variable has the coefficient 1 in the equation it appears
- Each equation has only one basic variable
- Variable z only appears in row 0 with coefficient 1 The BFS is optimal iff row 0 has no negative numbers

Optimality Test Suppose $\mathbf{x} = (\mathbf{x_B}, \mathbf{x_N})$ is a BFS $x_B = B^{-1}(b - Nx_N) = B^{-1}b \\$

if non-basic variable becomes non-zero: $\mathbf{z} = c_B \mathbf{x}_B + c_N \mathbf{x}_N = c_B \mathbf{B}^{-1} \mathbf{b}$

 $\mathbf{z} = \mathbf{c_B} \mathbf{x_B} + \mathbf{c_N} \mathbf{x_N} = \mathbf{c_B} \mathbf{B}^{-1} (\mathbf{b} - \mathbf{N} \mathbf{x_N}) + \mathbf{c_N} \mathbf{x_N}$

consider a non-basic variable x_k increased $\mathbf{z} = c_B \mathbf{B}^- \mathbf{1} \mathbf{b} - (c_B \mathbf{B}^{-1} \mathbf{A}_k - c_k) \mathbf{x}_k$ $=\mathbf{c}_B\mathbf{B}^{-1}\mathbf{b}-(\mathbf{c}_B\mathbf{B}^{-1}\mathbf{N}-\mathbf{c}_N)\mathbf{x}_N$

The current basic solution is optimal if and only if the reduced cost is nonnegative for all non-basic variables $\bar{c_k} = \mathbf{c_B} \mathbf{B}^{-1} \mathbf{A_k} - c_k$ referred as reduced cost

Ratio Test non-basic variable x_k increased $x_B = B^{-1}(b - Nx_N) = B^{-1}b - B^{-1}A_kx_k$ To keep non-negativity, $(\mathbf{x_B})_i \geq 0$ ratio test argmin $(\mathbf{B}^{-1}\mathbf{b})_i/(\mathbf{B}^{-1}\mathbf{A}_k)_i$

Sensitivity Analysis

Shadow Price Optimal of dual variable: $\lambda = c_B B^{-1}$ In the optimal solution, if a constraint is not tight (< • **Definition**. For an LP in the standard form, a or >), then its shadow price must be 0, if tight (=),

Constraint Analysis

- Non-basic variable $\mathbf{c}_j + \Delta c_j$ $\mathbf{c_B}\mathbf{B}^{-1}\mathbf{A_j} - (c_j + \Delta c_j) \ge 0$
 - Basic variable $\mathbf{c}_j + \Delta c_j$

optimal solution unchange within range, vice versa $(\mathbf{c_B} + \Delta c_i)\mathbf{B}^{-1}(\mathbf{A_N}, \mathbf{I}) - (\mathbf{c_N}, \mathbf{0}, ...) \ge 0$

optimal solution always change. Basic variable $\mathbf{b}_r\colon \mathbf{x}_{\mathbf{B}}' = \mathbf{B}^{-1}\mathbf{b}' \geq 0, \ \Delta S = \Delta \mathbf{b}_r \cdot \lambda_r$ change beyond range, vice versa

1.4 Duality

s.t. $\sum_{i=1}^{n} a_{ji} x_i \le b_j, j = 1, ..., m$ **Primal:** max $z = \sum_{i=1}^{n} c_i x_i$

Dual: max $w = \sum_{j=1}^{m} b_j y_j$

 $y_i \ge 0, j = 1, ..., m$

Dual model (MIN) Variable y_j is free Constraint i is \leq Constraint i is = Constraint i is ≥ Variable $y_j \ge 0$ Variable $y_j \le 0$ Primal model (MAX) Variable x_i is free Constraint j is \leq Constraint j is = Constraint j is \geq Variable $x_i \ge 0$ Variable $x_i \leq 0$

Weak Duality $Z(x) \le W(y)$ proof: $cx \le yAx \le yb$

Strong Duality If either of Primal or Dual has an optimal feasible bounded solution, then 1. the other problem also has ofbs, 2. z = w

Reduced cost for non-basic variables $c_B B^{-1} N - c_N \ge 0$, $\mathbf{proof}\colon \operatorname{suppose}\, x^* = (x_B, x_N)$ is optimal solution, Let $\mathbf{y} = \mathbf{c_B} \mathbf{B}^{-1}$, we have:

- $\mathbf{y}\mathbf{A} = \mathbf{y}(\mathbf{B}\ N) = (\mathbf{c}_B, \mathbf{c}_B \mathbf{B}^{-1} N) \geq (\mathbf{c}_B, \mathbf{c}_B) = \mathbf{c}$
 - y is feasible to the dual
- $\bullet \ yb=c_BB^{-1}b=c_Bx_B=cx^*$
 - \bullet y is optimal to the dual

Complementary Slackness Any feasible solution \mathbf{x}, \mathbf{y} , they both are optimal iff for any i:

proof: If 1,2 true, $(yA - c)x = 0 \rightarrow yAx = cx$ or If \mathbf{x} , \mathbf{y} optimal, $\mathbf{y}\mathbf{b} = \mathbf{c}\mathbf{x}$ and $(\mathbf{y}\mathbf{A} - \mathbf{c})\mathbf{x} = \mathbf{0}$, implies 1,2. $(1) \ \mathbf{x_i} > 0 \rightarrow (\pi \mathbf{A})_i = \mathbf{c_i}, \qquad (2) \ \mathbf{x_i} = 0 \leftarrow (\pi \mathbf{A})_i > \mathbf{c_i}$ $\mathbf{y}\mathbf{b} = \mathbf{c}\mathbf{x}$, from strong duality, \mathbf{x} , \mathbf{y} optimal.

1.5 Transportation Problem

source with supplying capacity s_i , destination with demand d_i , cost c_{ij} , transportation plan x_{ij} $x_{ij} \geq 0, i = 1, ..., m, j = 1, ..., n.$ $\sum_{j=1}^{n} x_{ij} = s_i, i = 1, ..., m$ $\sum_{i=1}^{m} x_{ij} = d_i, i = 1, ..., n$ $\min \sum_{i=1}^{m} \sum_{j=1}^{n} \tilde{c}_{ij} x_{ij}$

If total supply = demand, coefficience matrix contains $\mathbf{p} = \mathbf{c_B} \mathbf{B}^{-1}$ is basic variables for dual problem, contains $k \le m + n - 1$ linearly independent row vectors, k basic variables, k non-zero elements in optimal solution. k elements. Thus always a shadow price = 0.

1.6 Cooperative Game

An allocation is a distribution of Ground Coalition V(S): function gives cost of a coalition S(subset of N)N: set of players

V(N), s.t. $\sum_{i \in N} x_i = V(N)$

develop core allocation rules $\sum_{i \in S} x_i \leq V(S), \forall S$

1.7 Max Flow Problem

Original network G, feasible flow x, residual network G = (N, A), flow on arc x_{ij} , capacity of flow in arc U_{ij} , source node s, destination node t, Max flow value v(x). G(x), residual capacity r_{ij} , argumenting path P.

min $\sum u_{ij}w_{ij}$ s.t. $\pi_1 - \pi_i + w_{1i} \ge 0, \pi_i - \pi_n + w_{in} \ge$ Min cut The capacity of a cut (S,T) is sum of capac-Dual LP (min cut): $\pi_i \in \{0,1\}$ two sets, w_{ij} cut edge ities of all forward arcs, CAP(S,T)= $\sum_{i \in S} \sum_{j \in T} u_{ij}$. $0, -\pi_1 + \pi_n \ge 1, w_{ij} \ge 0, \pi$ free

backward $F_x(S,T)=\sum_{i\in S}\sum_{j\in T}x_{ij}-\sum_{i\in S}\sum_{j\in T}x_{ji}$ Claim: 1. $F_x(S,T)=v$ =flow into t. 2. $F_x(S,T)\leq$ Weak Duality Theorem for Max Flow Problem define flow across the cut: flow on forward arcs capacity of a cut. Weak: $v(x) \leq CAP(S,T)$

Strong Duality: Max Flow Min Cut Theorem The following are equivalent. $1 \Rightarrow 2, 3 \Rightarrow 1, 2 \Rightarrow 3$

- 1 A flow x is maximum
- 2 There is no augmenting path in ${\cal G}(x).$
- 3 There is an s-t cut (S, T) whose capacity is the flow value of x.
 - * Corollary. The maximum flow value is the minimum value of a cut

.. 8 Min Cost Network Flow

- Problem input
- Network G=(N,A)
- Flow cost c_{ij} for each arc (i,j) in ${\cal A}$
- Lower and upper bounds l_{ij}, u_{ij} for each arc
 - Supply or demand b(j) for each node j
 - **Decisions** Flow x_{ij} for each arc
- Objective min total flow cost $\sum_{(i,j)} x_{ij} c_{ij}$
- Lower and upper bounds
- Constraints
- Flow conservation
- sible is that total supply is equal to total demand

- A necessary condition for the problem to be fea-

 $A_{ij} \in \{-1,0,1\},$ each column has exactly one 1 & -1 LP with Consecutive 1's in Columns (Each row k is **LP Formulation** min $\mathbf{cx} \ s.t. \ \mathbf{Ax} = \mathbf{b}, \mathbf{x} \ge 0$ multiplied by -1 and added to row k+1) \rightarrow IP