Vijkstra's algorithm.
A neework (N.A) with weights Wig 20 for
each arc (i,j) = A.
Goul: Shurtest S to t Path/length
S
Digkstra:
Det $l(S) = 0$, $R = \{S\}$.
For all $n \in \mathbb{N} - \mathbb{R}$: $l(n) = \{ wsn. (s,n) \in \mathbb{A} \}$
2). select n=N-R S.t. l(n) = min { l(v): VENT?
3) For every VEN-R with (n,v) EA, set
$L(v) = min \{ L(v), L(n) + Wnv \}.$
g. Ser R=RUInj.
O. If R=N: terminate else: go back to step 2
else: go back to step 2

	R	6(5)	1 (a)	l(b)l	(C)	$\ell(d)$	l(t)
N=C	S,C	0	2		(s) + Ws	· (cc)+W	lcd 灰
n = a/d	S.c.d	0	LCSI+WSA	4) + wdb	1	2	7
$n = \alpha$		0	2	eid) + walk	/		7
n = b			2	4			(b)+WH
n=t			2	4	/	L	6
			流潮	这位	初步	忘.	
	0	1					

 $S \rightarrow c \rightarrow b \rightarrow t$

Floyd-Warshal $n \times n$ matrix D, Entries $dij = \int Wij$ if (i.j.) CA $oldsymbol{\infty}$ otherwise.

Ceiven D, a triangle operation for fixed node j is: $dix = min \{ dix, dij + djx \}$, for all $i, k \in \mathbb{N}$ $(i, k \neq j)$.

20 To

Theorem: if we perform a triangle operation for all $j \in N$, each dix becomes equal to the length of Shortest path from i to k, assuming $W_{ij} > 0$ for all $(i,j) \in A$ Proof: 13/2 (leave 34).

Algorithm.

aiven D: for j=1,....n:

for
$$i=1,...,n$$
:

for $k=1,...,n$:

 $dix=min i dix.diy+dyxi$

if there are no negative weight cycles, the

Previous therem still holds

if there is a negative weight cycle, it will

cause die to become negative: If this

occurs Shortest path will not exist.

It is portest path will not exist.

It is portest path will not exist.

 $i = \frac{1}{2} \cdot \frac{1}{4} \cdot$

$\frac{1}{2}$ ∞ ∞ ∞ ∞ ∞
$j=2: \begin{bmatrix} \infty & \infty & \infty & 1 \\ 2 & \infty & 1 & 3 \end{bmatrix}$ $\infty & \infty & \infty & \infty$ $-2 & -4 & -3 & -1 \end{bmatrix}$
$\begin{bmatrix} -2 & -4 & -2 & -1 \end{bmatrix}$
7 - 5 (-1-)
Thomas Compacting
There is a negative weight cycle.
weight cycle.