MATH 140B WINTER 2024: PROBLEM SET 1

Due: S 21/01/2024, by 11:59pm

Directions: You can collaborate, but must write up the solutions independently and in a good handwriting. Consulting solutions to problem sets of previous semesters or internet solutions is not allowed.

Problem 1. Prove that every Lipschitz continuous function $f: A \to \mathbb{R}$ is also uniformly continuous on A. Do the same for Hölder continuous functions.

Problem 2. Suppose $f: \mathbb{R} \to \mathbb{R}$ and that there exists some $\alpha > 1$ so that $|f(x) - f(y)| \le |x - y|^{\alpha}$ for all $x, y \in \mathbb{R}$. Show that f(x) = f(0) for all $x \in \mathbb{R}$. This is why it doesn't make sense to define a concept of Hölder continuity for $\alpha > 1$.

Problem 3. Assume that $f:[0,1]\to\mathbb{R}$ is twice differentiable and that for all $x\in[0,1]$, $f(x)f''(x)\geq 0$ and f(0)=0. Show that f is monotonic. Give an example to show that f(0)=0 is necessary for the conclusion to hold.

Problem 4. Chapter 5: 2, 3, 4, 5, 6