# 1. Chapter 1: Introduction

Overview of number partitioning problem.

Application: randomized control trials.

Other applications.

• Circuit design, etc.

Importance as a basic NP-complete problem.

Two questions of interest:

- 1. What is optimal solution.
- 2. How to find optimal solution.

#### 1.1. Physical Interpretations

#### 1.2. Statistical-to-Computational Gap

## 2. Number Packing Problem

Let N be the dimensionality, and  $\Sigma_N := \{\pm 1\}$  be the binary cube. Suppose we're given  $g \sim \mathcal{N}(0, I_N)$ . We want to find  $x \in \Sigma_N$  such that we minimize  $|\langle x, g \rangle|$ .

**Definition 2.1.** Let  $\delta > 0$ . The solution set  $S(\delta; g)$  is the set of all  $x \in \Sigma_N$  that are  $\delta$ -optimal, satisfying

$$\frac{1}{\sqrt{N}}|\langle g, x \rangle| \le 2^{-\delta N}. \tag{2.1}$$

(2.1) Hi

## 2.1. Existing Results

- 1.  $X_i, 1 \le i \le n$  i.i.d. uniform from  $\{1, 2, ..., M := 2^m\}$ , with  $\kappa := \frac{m}{n}$ , then phase transition going from  $\kappa < 1$  to  $\kappa > 1$ .
- 2. Average case,  $X_i$  i.i.d. standard Normal.
- 3. Karmarkar [KKLO86] NPP value is  $\Theta(\sqrt{N}2^{-N})$  whp as  $N \to \infty$  (doesn't need Normality). 4. Best polynomial-time algorithm: Karmarkar-Karp [KK82] Discrepancy  $O(N^{-\alpha \log N}) =$  $2^{-\Theta(\log^2 N)}$  whp as  $N \to \infty$
- 5. PDM (paired differencing) heuristic fails for i.i.d. uniform inputs with objective  $\Theta(n^{-1})$ (Lueker).
- 6. LDM (largest differencing) heuristic works for i.i.d. Uniforms, with  $n^{-\Theta(\log n)}$  (Yakir, with constant  $\alpha = \frac{1}{2 \ln 2}$  calculated non-rigorously by Boettcher and Mertens). 7. Krieger -  $O(n^{-2})$  for balanced partition.
- 8. Hoberg [HHRY17] computational hardness for worst-case discrepancy, as poly-time oracle that can get discrepancy to within  $O(2^{\sqrt{n}})$  would be oracle for Minkowski problem.
- 9. Gamarnik-Kizildag: Information-theoretic guarantee  $E_n = n$ , best computational guarantee  $E_n = \Theta(\log^2 n).$

- 10. Existence of m-OGP for m = O(1) and  $E_n = \Theta(n)$ .
- 11. Absence for  $\omega(1) \le E_n = o(n)$
- 12. Existence for  $\omega(\sqrt{n\log_2 n}) \le E_n \le o(n)$  for  $m = \omega_{n(1)}$  (with changing  $\eta, \beta$ )

  1. While OGP not ruled out for  $E_n \le \omega(\sqrt{n\log_2 n})$ , argued that it is tight.

  13. For  $\varepsilon \in \left(0, \frac{1}{5}\right)$ , no stable algorithm can solve  $\omega\left(n\log^{-\frac{1}{5}+\varepsilon}n\right) \le E_n \le o(n)$ 14. Possible to strengthen to  $E_n = \Theta(n)$  (as  $2^{-\Theta(n)} \le 2^{-o(n)}$ )

# 3. Glossary and conventions

#### Conventions:

1.  $\log \text{ means } \log \text{ in base } 2$ ,  $\exp \text{ is } \exp \text{ base } 2$  -  $\operatorname{natural } \log / \exp \text{ onent } \text{ is } \ln / e^x$ .

2.

#### Glossary:

- 1. "instance"/"disorder" g, instance of the NPP problem
- 2. "discrepancy" for a given g, value of  $\min_{x \in \Sigma_N} \lvert \langle g, x \rangle \rvert$
- 3. "energy" negative exponent of discrepancy, i.e. if discrepancy is  $2^{-E}$ , then energy is E. Lower energy indicates "worse" discrepancy.
- 4. "near-ground state"/"approximate solution"

## 4. Literature Review

- [1]
  - [2]
  - [3]
  - [4]
  - [5]
  - [6]
  - [7]
  - [8]
  - [9]
  - [10]
  - [11]
  - [12]
  - [13]
  - [14]
  - [15]
  - [16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

# 5. Low-Degree Algorithms

What are algorithms of interest

For our purposes, an algorithm is a function which takes as input a problem instance  $g \sim \mathcal{N}(0, I_N)$  and outputs some  $x \in \Sigma_N$ . This definition can be extended to functions giving outputs on  $\mathbf{R}^N$  (and rounding to a vertex on the hypercube  $\Sigma_N$ ), or to taking as additional input some randomness  $\omega$ , allowing for randomized algorithms. However, most of our analysis will focus on the deterministic case.

To further restrict the category of algorithms considered, we specifically restrict to

Why study low-degree algorithms (poly time heuristic + simple)

Different notions of degree.

Overview of section

- Efron-Stein notion
- Hermite notion
- Algorithms and Stability Bounds

## 5.1. Efron-Stein Polynomials (TODO)

**Definition 5.1.** Let  $\pi$  be a probability distribution on  $\mathbf{R}$ . The  $L^2$  space  $L^2(\mathbf{R}^N, \pi^{\otimes N})$  is the space of functions  $f: \mathbf{R}^N \to \mathbf{R}$  with finite  $L^2$  norm.

$$\mathbf{E}[f^2] \coloneqq \int_{x=(x_1,\dots,x_n)\in\mathbf{R}^N} f(x)^2 \,\mathrm{d}\pi^{\otimes N}(x) < \infty.$$

Alternatively, this is the space of  $L^2$  functions of N i.i.d. random variables  $x_i$ , distributed as  $\pi$ .

Motivation for studying decompositions of functions by projecting onto coordinates.

This section largely follows [76, § 8.3].

Want to decompose

$$f = \sum_{S \subseteq [n]} f^{=S} \tag{5.1}$$

Want  $f^{=S}$  to only depend on the coordinates in S.

If  $T \nsubseteq S$  and g depends only on the coordinates in T, then  $\langle f^{=S}, g \rangle = 0$ .

**Definition 5.2.** Let  $f \in L^2(\mathbf{R}^N, \pi^{\otimes N})$  and  $J \subseteq [n]$ , with  $\overline{J} = [n] \setminus J$ . The projection of f onto J is the function  $f^{\subseteq J} : \mathbf{R}^N \to \mathbf{R}$  given by

$$f^{\subseteq J}(x) = \mathbf{E}[f(x_1, ..., x_n) \mid x_i, i \in J]$$

This is f with the  $\overline{J}$  coordinates re-randomized, so  $f^{\subseteq J}$  only depends on  $x_J$ .

In particular, we should have that

$$f^{\subseteq J} = \sum_{S \subseteq J} f^{=S} \tag{5.2}$$

First, we consider the case  $J = \emptyset$ . It is clear that  $f^{=\emptyset} = f^{\subseteq\emptyset}$ , which is the constant function  $\mathbf{E}[f]$ .

Next, if  $J = \{j\}$  is a singleton, (5.2) gives

$$f^{\subseteq \{j\}} = f^{=\emptyset} + f^{=\{j\}},$$

and as  $f^{\subseteq \{j\}}(x) = \mathbf{E}[f \mid x_j]$ , we get

$$f^{=\{j\}} = \mathbf{E}[f \mid x_i] - \mathbf{E}[f].$$

This function only depends on  $x_j$ ; all other coordinates are averaged over. It measures what difference in expectation of f is given  $x_i$ .

Continuing on to sets of two coordinates, some brief manipulation gives, for  $J=\{i,j\}$ ,

$$\begin{split} f^{\subseteq \{i,j\}} &= f^{=\varnothing} + f^{=\{i\}} + f^{=\{j\}} + f^{=\{i,j\}} \\ &= f^{\subseteq\varnothing} + \left( f^{\subseteq \{i\}} - f^{\subseteq\varnothing} \right) + \left( f^{\subseteq \{j\}} - f^{\subseteq\varnothing} \right) + f^{=\{i,j\}} \\ &\therefore f^{=\{i,j\}} = f^{\subseteq \{i,j\}} - f^{\subseteq \{i\}} - f^{\subseteq \{j\}} + f^{\subseteq\varnothing}. \end{split}$$

Inductively, all the  $f^{=\!J}$  can be defined via the principle of inclusion-exclusion.

This construction, along with some direct calculations, leads to the following theorem on Efron-Stein decompositions:

**Theorem 5.3** ([76, Thm 8.35]). Let  $f \in L^2(\mathbf{R}^N, \pi^{\otimes N})$ . Then f has a unique decomposition as

$$f = \sum_{S \subseteq [n]} f^{=S}$$

where the functions  $f^{=S} \in L^2(\mathbf{R}^N, \pi^{\otimes N})$  satisfy

- 1.  $f^{=S}$  depends only on the coordinates in S;
- 2. if  $T \subseteq S$  and  $g \in L^2(\mathbf{R}^N, \pi^{\otimes N})$  only depends on coordinates in T, then  $\langle f^{=S}, g \rangle = 0$ .

In addition, this decomposition has the following properties:

- 3. Condition 2. holds whenever  $S \nsubseteq T$ .
- 4. The decomposition is orthogonal:  $\langle f^{=S}, f^{=T} \rangle = 0$  for  $S \neq T$ .
- 5.  $\sum_{S \subseteq T} f^{=S} = f^{\subseteq T}.$
- 6. For each  $S \subseteq [n]$ ,  $f \mapsto f^{=S}$  is a linear operator.

**Definition 5.4.** The *Efron-Stein degree* of a function  $f \in L^2(\mathbf{R}^N, \pi^{\otimes N})$  is

$$\deg_{\mathrm{ES}}(f) = \max_{S \subseteq [n] \text{ s.t. } f = S \neq 0} |S|.$$

If  $f = (f_1, ..., f_M) : \mathbf{R}^N \to \mathbf{R}^M$  is a multivariate function, then the Efron-Stein degree of f is the maximum degree of the  $f_i$ .

Intuitively, the Efron-Stein degree is the maximum size of multivariate interaction that f accounts for. Of course, this degree is also bounded by N.

As we are interested in how a function behaves under small changes in its input, we are led to consider the following "noise operator." First, we need the following notion of distance between problem instances:

**Definition 5.5.** For  $p \in [0,1]$ , and  $x \in \mathbb{R}^N$ , we say  $y \in \mathbb{R}^N$  is *p-resampled from x* if y is chosen as follows: for each  $i \in [n]$ , independently,

$$y_i = \begin{cases} x_i & \text{with probability } p \\ \text{drawn from } \pi & \text{with probability } 1 - p \end{cases}$$

We say (x, y) is a p-resampled pair.

Note that being p-resampled and being p-correlated are rather different - for one, there is a nonzero probability that, for  $\pi$  a continuous probability distribution, x=y when they are p-resampled, even though this a.s. never occurs.

**Definition 5.6.** For  $p \in [0, 1]$ , the *noise operator* is the linear operator  $T_p$  on  $L^2(\mathbf{R}^N, \pi^{\otimes N})$ , defined by, for y p-resampled from x

$$T_p f(x) = \mathbf{E}_{y \text{ p-resampled from } x} [f(y)]$$

In particular,  $\langle f, T_p f \rangle = \mathbf{E}_{(x,y) \ p\text{-resampled}}[f(x) \cdot f(y)].$ 

**Lemma 5.7.** Let  $p \in [0,1]$  and  $f \in L^2(\mathbf{R}^N, \pi^{\otimes N})$  have Efron-Stein decomposition  $f = \sum_{S \subseteq [n]} f^{=S}$ . Then

$$T_p f(x) = \sum_{S \subseteq [n]} p^{|S|} f^{=S}.$$

*Proof*: Let J denote a p-random subset of [n], i.e. with J formed by including each  $i \in [n]$  independently with probability p. By definition,  $T_p f(x) = \mathbf{E}_J [f^{\subseteq J}(x)]$  (i.e. pick a random subset of coordinates to fix, and re-randomize the rest). We know by Theorem 5.3 that  $f^{\subseteq J} = \sum_{S \subset J} f^{=S}$ , so

$$T_p f(x) = \mathbf{E}_J \left[ \sum_{S \subseteq J} f^{=S} \right] = \sum_{S \subseteq [n]} \mathbf{E}_J [I(S \subseteq J)] \cdot f^{=S} = \sum_{S \subseteq [n]} p^{|S|} f^{=S},$$

since for a fixed  $S \subseteq [n]$ , the probability that  $S \subseteq J$  is  $p^{|S|}$ 

Putting these facts together, we can derive the following stability bound on functions of bounded Efron-Stein degree.

**Theorem 5.8.** Let  $p \in [0,1]$  and let  $f = (f_1, ..., f_M) : \mathbf{R}^N \to \mathbf{R}^M$  be a multivariate function with Efron-Stein degree D and each  $f_i \in L^2(\mathbf{R}^N, \pi^{\otimes N})$ . Suppose that (x, y) are a p-resampled pair under  $\pi^{\otimes N}$ , and  $\mathbf{E} \|f(x)\|^2 = 1$ . Then

$$\mathbf{E}||f(x) - f(y)||^2 \le 2(1 - p^D) \le 2(1 - p)D. \tag{5.3}$$

*Proof*: Observe that

$$\mathbf{E} \|f(x) - f(y)\|^2 = \mathbf{E} \|f(x)\|^2 + \mathbf{E} \|f(y)\|^2 - 2\mathbf{E} \langle f(x), f(y) \rangle$$

$$= 2 - 2 \left( \sum_i \mathbf{E} [f_i(x) f_i(y)] \right)$$

$$= 2 - 2 \left( \sum_i \langle f_i, T_p f_i \rangle \right).$$
(5.4)

Here, we have for each  $i \in [n]$  that

$$\langle f_i, T_p f_i \rangle = \left\langle \sum_{S \subseteq [n]} f_i^{=S}, \sum_{S \subseteq [n]} p^{|S|} f_i^{=S} \right\rangle = \sum_{S \subseteq [n]} p^{|S|} \left\| f_i^{=S} \right\|^2,$$

by Lemma 5.7 and orthogonality. Now, as each  $f_i$  has Efron-Stein degree at most D, the sum above can be taken only over  $S \subseteq [n]$  with  $0 \le |S| \le D$ , giving the bound

$$p^{D}\mathbf{E}[f_{i}(x)^{2}] \leq \langle f_{i}, T_{p}f_{i} \rangle = \mathbf{E}[f_{i}(x) \cdot T_{p}f_{i}(x)] \leq \mathbf{E}[f_{i}(x)^{2}].$$

Summing up over *i*, and using that  $\mathbf{E}||f(x)||^2 = 1$ , gives

$$p^D \leq \sum_i \left\langle f_i, T_p f_i \right\rangle = \mathbf{E} \left\langle f(x), f(y) \right\rangle \leq 1.$$

Finally, we can substitute into (5.4) to get

$$\mathbf{E} \| f(x) - f(y) \|^2 \le 2 - 2p^D = 2(1 - p^D) \le 2(1 - p)D,$$

<sup>&</sup>lt;sup>1</sup>This follows from the identity  $(1-p^D) = (1-p)(1+p+p^2+...p^{D-1})$ ; the bound is tight for  $p \approx 1$ .

as desired.

#### 5.2. Hermite Polynomials (TODO)

Alternatively, we can consider the much more restrictive (but more concrete) class of honest polynomials. When considered as functions of independent Normal variables, such functions admit a simple description in terms of *Hermite polynomials*, which enables us to prove similar bounds as Theorem 5.8. This theory is much more classical, so we encourage the interested reader to see [76, § 11] for details.

To start, we consider the following space of  $L^2$  functions:

**Definition 5.9.** Let  $\gamma_N$  be the N-dimensional standard Normal measure on  $\mathbf{R}^N$ . Then the N-dimensional Gaussian space is the space  $L^2(\mathbf{R}^N, \gamma^N)$  of  $L^2$  functions of N i.i.d. standard Normal random variables.

Note that under the usual  $L^2$  inner product,  $\langle f, g \rangle = \mathbf{E}[f \cdot g]$ , this is a separable Hilbert space.

It is a well-known fact that the monomials  $1, z, z^2, ...$  form a complete basis for  $L^2(\mathbf{R}, \gamma)$  [76, Thm 11.22]. However, these are far from an orthonormal "Fourier" basis; for instance, we know  $\mathbf{E}[z^2] = 1$  for  $z \sim \mathcal{N}(0,1)$ . By the Gram-Schmidt process, these monomials can be converted into the *(normalized) Hermite polynomials*  $h_j$  for  $j \geq 0$ , given as

$$h_0(z) = 1,$$
  $h_1(z) = z,$   $h_2(z) = \frac{z^2 - 1}{\sqrt{2}},$   $h_3(z) = \frac{z^3 - 3z}{\sqrt{6}},$  ... (5.5)

Note here that each  $h_i$  is a degree j polynomial.

It is then straightforward to show the following:

**Theorem 5.10** ([76, Prop 11.30]). The Hermite polynomials  $(h_j)_{j\geq 0}$  form a complete orthonormal basis for  $L^2(\mathbf{R}, \gamma)$ .

To extend this to  $L^2(\mathbf{R}^N, \gamma^N)$ , we can take products. For a multi-index  $\alpha \in \mathbb{N}^N$ , we define the multivariate Hermite polynomial  $h_\alpha : \mathbf{R}^N \to \mathbf{R}$  as

$$h_{\alpha}(z) \coloneqq \prod_{j=1}^{N} h_{\alpha_{j}}(z_{j}).$$

The degree of  $h_{\alpha}$  is clearly  $|\alpha| = \sum_{j} \alpha_{j}$ .

**Theorem 5.11.** The Hermite polynomials  $(h_{\alpha})_{\alpha \in \mathbb{N}^N}$  form a complete orthonormal basis for  $L^2(\mathbf{R}^N, \gamma^N)$ . In particular, every  $f \in L^2(\mathbf{R}^N, \gamma^N)$  has a unique expansion in  $L^2$  norm as

$$f(z) = \sum_{\alpha \in \mathbb{N}^N} \hat{f}(\alpha) h_{\alpha}(z).$$

As a consequence of the uniqueness of the expansion in , we see that polynomials are their own Hermite expansion. Namely, let  $H^{\leq k} \subseteq L^2(\mathbf{R}^N, \gamma^N)$  be the subset of multivariate polynomials of degree at most k. Then, any  $f \in H^{\leq k}$  can be Hermite expanded as

$$f(z) = \sum_{\alpha \in \mathbb{N}^N} \hat{f}(\alpha) h_{\alpha}(z) = \sum_{|\alpha| \le k} \hat{f}(\alpha) h_{\alpha}(z).$$

Thus,  $H^{\leq k}$  is the closed linear span of the set  $\{h_{\alpha} : |\alpha| \leq k\}$ .

Def. noise operator/Ornstein-Uhlenbeck operator

Compute effect of noise operator on Hermite polys

Thrm. Hermite polys form basis for 1D Gaussian space

Thrm. Products of Hermite polys form basis for N-dim Gaussian space

Noise operator on arbitrary function with given Hermite expansion

**Definition 5.12.** Let (g, g') be N-dimensional standard Normal vectors. We say (g, g') are p-correlated if  $(g_i, g'_i)$  are p-correlated for each  $i \in [n]$ , and these pairs are mutually independent.

In a similar way to the Efron-Stein case, we can consider the resulting "noise operator," as a way of measuring a the effect on a function of a small change in the input.

**Definition 5.13.** For  $p \in [0,1]$ , the *Gaussian noise operator*  $T_p$  is the linear operator on  $L^2(\mathbf{R}^N, \gamma^N)$ , given by

$$T_p f(x) = \mathbf{E}_{y \text{ p-correlated to } x} [f(y)] = \mathbf{E}_{y \sim \mathcal{N}(0, I_N)} \Big[ f\Big(px + \sqrt{1 - p^2}y\Big) \Big]$$

In particular, a straightforward computation with the Normal moment generating function gives

Remark that degree D function can be expressed in terms of degree D and lower Hermite polynomials - gives a Hilbert basis which reflects the natural algebraic grading.

Thrm. Function stability for degree D polynomials.

# 5.3. Algorithms

Def. Randomized algorithm

Def. degree of algorithm is degree as multivariate function.

Discussion of how low-degree algs are approximate for class of Lipschitz algorithms?

Need for rounding function to land on  $\Sigma_N$ 

Construction of randomized rounding function.

Constr. rounded algorithm.

Lemma. stability of rounding

Thrm. Stability of randomized algorithms (part 1 of Prop 1.9)

Show that Markov gives a useful bound on

**Lemma 5.14.** Let  $f: \mathbf{R}^N \to \mathbf{R}^N$ ,  $p \in [0,1]$ , and X,Y marginally N-dimensional standard Normal vectors. Suppose that  $\mathbf{E} \|f(X)\|_2^2 = 1$  and either of the following cases hold:

I. (X, Y) are a p-resampled pair, and f is a degree-D function.

II. (X, Y) are p-correlated, and f is a degree-D polynomial.

Then

$$\mathbf{E} \|f(X) - f(Y)\|_{2}^{2} \le 2(1 - p^{D}).$$

### 5.4. Algorithms

**Definition 5.15.** A randomized algorithm is a measurable function  $\mathcal{A}^{\circ}:(g,\omega)\mapsto x\in\mathbf{R}^{N}$ , where  $\omega\in\Omega_{N}$  is an independent random variable in some Polish space. Such an  $\mathcal{A}^{\circ}$  is deterministic if it does not depend on  $\omega$ .

**Example.** Let  $U = (U_1, ..., U_N)$  be i.i.d. Unif([-1,1]). Then, we define the random coordinatewise function

$$round_{U}(x) = (round_{U_1}(x_1), ..., round_{U_N}(x_N)),$$

where we define

$$round_U(x) = \begin{cases} 1 & x \ge U \\ -1 & x < U \end{cases}$$

**Example.** Given a real-valued algorithm  $\mathcal{A}^{\circ}$ , we can convert it into a  $\Sigma_N$ -valued algorithm  $\mathcal{A}$  via

$$\mathcal{A}(g,\omega,\boldsymbol{U}) \coloneqq \text{round}_{\boldsymbol{U}}(\mathcal{A}^{\circ}(g,\omega)).$$

**Definition 5.16.** Algorithm  $\mathcal{A}$  is  $(\varepsilon, \eta, p_{\text{unstable}})$ -stable if, for g, g'  $(1 - \varepsilon)$ -correlated/resampled, we have

$$\mathbf{P}(\|\mathcal{A}(g) - \mathcal{A}(g')\| \le \eta \sqrt{N}) \ge 1 - p_{\text{unstable}}.$$

By the will of God (i.e. writeup pending), we have the following:

**Lemma 5.17.** Algorithm  $\mathcal{A}$  with degree  $\leq D$  and norm  $\mathbf{E} \|\mathcal{A}(g)\|^2 \leq CN$  has

$$\mathbf{E} \| \mathcal{A}(g) - \mathcal{A}(g') \|^2 \le 2CN\varepsilon D,$$

and (because of randomized rounding)

$$\mathbf{E}\|\mathcal{A}(g) - \mathcal{A}(g')\|^4 \le 16CN^2\varepsilon D.$$

Thus,

$$\mathbf{P}\Big(\|\mathcal{A}(g)-\mathcal{A}(g')\| \geq \eta \sqrt{N}\Big) \leq \frac{16CN^2\varepsilon D}{\eta^4N^2} \asymp \frac{\varepsilon D}{\eta^4}.$$

As a consequence, a degree D algorithm  $\mathcal{A}$  has  $p_{\text{unstable}} = o_{N(1)}$  for  $\eta^4 \gg \varepsilon D$ .

[76]

[60]

# 6. Summary of Parameters

| Parameter | Meaning                                                                                                                                                   | Desired Direction | Intuition                                                                                                                                          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| N         | Dimension                                                                                                                                                 | Large             | Showing hardness asymptotically, want "bad behavior" to pop up in low dimensions.                                                                  |
| δ         | Solution tightness; want to find $x$ such that $ \langle g, x \rangle  \le 2^{-\delta N}$                                                                 | Small             | Smaller $\delta$ implies weaker solutions, e.g. $\delta=0$ is just finding solutions $\leq 1$ . Want to show even weak solutions are hard to find. |
| E         | Solution tightness; "energy level"; want to find $x$ such that $ \langle g, x \rangle  \leq 2^{-E}$                                                       | Small             | Smaller $E$ implies weaker solutions, and can consider full range of $1 \ll E \ll N$ . Know that $E > (\log^2 N)$ by Karmarkar-Karp                |
| D         | Algorithm degree (in either<br>Efron-Stein sense or usual<br>polynomial sense.)                                                                           | Large             | Higher degree means more complexity. Want to show even complex algorithms fail.                                                                    |
| ε         | Complement of correlation/ resample probability; (g,g') are $(1 - \varepsilon)$ -correlated.                                                              | Small             | $\varepsilon$ is "distance" between g, g'. Want to show that small changes in disorder lead to "breaking" of landscape.                            |
| η         | Algorithm instability; $\mathcal{A}$ is stable if $\ \mathcal{A}(g) - \mathcal{A}(g')\  \le \eta \sqrt{N}$ , for $(g, g') (1 - \varepsilon)$ -correlated. | Large             | Large $\eta$ indicates a more unstable algorithm; want to show that even weakly stable algorithms fail.                                            |

Table 1: Explanation of Parameters

# 7. Conditional Landscape Obstruction

Explain what the obstruction is.

We start with a bound on the geometry of the binary hypercube.

**Lemma 7.1.** Suppose that  $K \le N/2$ , and let  $h(x) = -x \log(x) - (1-x) \log(x)$  be the binary entropy function. Then, for p := K/N,

$$\sum_{k \le K} \binom{N}{k} \le \exp(Nh(p)) \le \exp\left(2Np\log\left(\frac{1}{p}\right)\right).$$

*Proof*: Consider a Bin(N, p) random variable S. Summing its PMF from 0 to K, we have

$$1 \ge \mathbf{P}(S \le K) = \sum_{k \le K} {N \choose k} p^k (1-p)^{N-k} \ge \sum_{k \le K} {N \choose k} p^K (1-p)^{N-K}.$$

Here, the last inequality follows from the fact that  $p \leq (1-p)$ , and we multiply each term by  $\left(\frac{p}{1-p}\right)^{K-k} < 1$ . Now rearrange to get

$$\begin{split} \sum_{k \leq K} \binom{N}{k} &\leq p^{-K} (1-p)^{-(N-K)} \\ &= \exp(-K \log(p) - (N-K) \log(1-p)) \\ &= \exp\left(N \cdot \left(-\frac{K}{N} \log(p) - \left(\frac{N-K}{N}\right) \log(1-p)\right)\right) \\ &= \exp(N \cdot (-p \log(p) - (1-p) \log(1-p))) = \exp(Nh(p)). \end{split}$$

The final equality then follows from the bound  $h(p) \le 2p \log(1/p)$  for  $p \le 1/2$ .

**Lemma 7.2** (Hypercube Neighborhood Size). Fix  $x \in \Sigma_N$ , and let  $\eta \leq \frac{1}{2}$ . Then the number of x' within distance  $2\sqrt{\eta N}$  of x is

$$\left|\left\{x' \in \Sigma_N \mid \|x - x'\| \le 2\eta \sqrt{N}\right\}\right| \le \exp(2\eta \log(1/\eta)N)$$

*Proof*: Let k be the number of coordinates which differ between x and x' (i.e. the Hamming distance). We have  $\|x - x'\|^2 = 4k$ , so  $\|x - x'\| \le 2\sqrt{\eta N}$  iff  $k \le N\eta$ . Moreover, for  $\eta \le \frac{1}{2}$ ,  $k \le \frac{N}{2}$ . Thus, by Lemma 7.1, we get

$$\sum_{k \le N\eta} {N \choose k} \le \exp(Nh(\eta)) \le \exp(2\eta \log(1/\eta)N).$$

Next, we can consider what this probability is in the case of correlated Normals.

**Lemma 7.3.** Suppose (g, g') are  $(1 - \varepsilon)$ -correlated Normal vectors, and let  $x \in \Sigma_N$ . Then

$$\mathbf{P}(|\langle g', x \rangle| \le 2^{-E} \mid g) \le \exp\left(-E - \frac{1}{2}\log(\varepsilon) + O(\log N)\right).$$

*Proof*: Let  $\tilde{g}$  be an independent Normal vector to g, and observe that g' can be represented as  $g' = pg + \sqrt{1-p^2}\tilde{g}$ , for  $p = 1-\varepsilon$ . Thus,  $\langle g', x \rangle = p\langle g, x \rangle + \sqrt{1-p^2}\langle \tilde{g}, x \rangle$ . Observe  $\langle g, x \rangle$  is constant given g, and  $\langle \tilde{g}, x \rangle$  is a Normal r.v. with mean 0 and variance N, so  $\langle g', x \rangle \sim \mathcal{N}(p\langle g, x \rangle, (1-p^2)N)$ . This random variable is nondegenerate for  $(1-p^2)N > 0$ , with density bounded above as

$$\varphi_{g}(z) = \frac{1}{\sqrt{2\pi(1 - p^{2})N}} e^{-\frac{(z - p(g,x))^{2}}{2(1 - p^{2})N}} \le \frac{1}{\sqrt{2\pi(1 - p^{2})N}}$$

$$\le \frac{1}{\sqrt{2\pi\varepsilon N}} = \exp\left(-\frac{1}{2}\log(\varepsilon) + O(\log N)\right)$$

Integrating this bound over the interval  $|z| \le 2^{-E}$ , we conclude that

$$\mathbf{P}\big(|\langle g', x \rangle| \le 2^{-E} \mid g\big) = \int_{|z| < -2^{-E}} \varphi_{g, |S|}(z) \, \mathrm{d}z \le \exp\bigg(-E - \frac{1}{2} \log(\varepsilon) + O(\log N)\bigg). \qquad \Box$$

Note for instance that here  $\varepsilon$  can be exponentially small in E (e.g.  $\varepsilon = \exp(-E/10)$ ), which for the case  $E = \Theta(N)$  implies  $\varepsilon$  can be exponentially small in N.

First, we consider the probability of a solution being optimal for a resampled instance.

**Lemma 7.4.** Suppose (g, g') are  $(1 - \varepsilon)$ -resampled Normal vectors, and let  $x \in \Sigma_N$ . Then,

$$\mathbf{P}(|\langle g', x \rangle| \le 2^{-E} | g, g \ne g') \le 2^{-E + O(1)}.$$

*Proof*: Let  $S = \{i \in [N] : g_i \neq g_i'\}$  be the set of indices where g and g' differ. We can express

$$\langle g', x' \rangle = \sum_{i \in [N]} g'_i x_i = \sum_{i \notin S} g_i x_i + \sum_{i \in S} g_{i'} x_i \sim \mathcal{N} \left( \sum_{i \notin S} g_i x_i, |S| \right).$$

Let  $\mu := \sum_{i \notin S} g_i x_i$ . The conditional distribution of interest can now be expressed as  $\mathbf{P}(|\langle g', x' \rangle| \le 2^{-E} \mid g, |S| \ge 1)$ . Given  $|S| \ge 1$ , the quantity  $\langle g', x' \rangle$  is a nondegenerate random variable, with density bounded above as

$$\varphi_{g,|S|}(z) = \frac{1}{\sqrt{2\pi|S|}} e^{-\frac{(z-\mu)^2}{2|S|}} \le \frac{1}{\sqrt{2\pi|S|}} \le \frac{1}{\sqrt{2\pi}}.$$

Hence, the quantity of interest can be bounded as

$$\mathbf{P}(|\langle g', x \rangle| \le 2^{-E} \mid g, g \ne g') \le \int_{|z| \le -2^{-E}} \varphi_{g, |S|}(z) \, \mathrm{d}z \le \sqrt{\frac{2}{\pi}} 2^{-E} = 2^{-E + O(1)}.$$

Note that in the resampled case, we can compute the probability that g = g' as

$$\mathbf{P}(g = g') = \prod_{i=1}^{N} \mathbf{P}(g_i = g_{i'}) = (1 - \varepsilon)^N,$$

which for  $\varepsilon \ll 1$  is approximately  $1 - N\varepsilon$ . Thus, for  $\varepsilon \gg \omega\left(\frac{1}{N}\right)$ , we have

$$\mathbf{P}(|\langle g', x \rangle| \le 2^{-E} \mid g) \le 2^{-E + O(1)}$$

# 8. Proof of Low-Degree Hardness in Linear Energy Regime.

Throughout this section, we let  $E = \delta N$  for some  $\delta > 0$ , and aim to rule out the existence of low-degree algorithms achieving these energy levels. This corresponds to the statistically optimal regime, as per [54].

For now, let  $\mathcal{A}$  denote a  $\Sigma_N$ -valued deterministic algorithm. We discuss the extension to random,  $\mathbf{R}^N$ -valued algorithms later on in (section ???).

### 8.1. Hermite Case

First, we consider

Assume for sake of contradiction that  $p_{\text{solve}} \ge \Omega(1)$ .

Let g, g' be  $(1 - \varepsilon)$ -correlated instances. We define the following events:

$$\begin{split} S_{\text{solve}} &= \{\mathcal{A}(g) \in S(E;g), \mathcal{A}(g') \in S(E;g')\} \\ S_{\text{stable}} &= \left\{ \|\mathcal{A}(g) - \mathcal{A}(g')\| \leq 2\sqrt{\eta N} \right\} \\ S_{\text{cond}} &= \left\{ \|x' \in S(E;g') \text{ such that} \right\} \\ \|x - x'\| \leq 2\sqrt{\eta N} \end{split}$$

In this case, set  $\varepsilon = 2^{-\delta N} = o(1)$ 

**Lemma 8.1.** There exists an  $\eta > 0$  of constant order such that

$$P(S_{cond}) \ge 1 - e^{-cN}$$

for an arbitrary constant c.

$$D = o(2^{N}).$$

$$D\varepsilon = \frac{D}{2^{N}} * 2^{(1-\delta)N}$$

**Lemma 8.2.** For any  $\omega(\log^2 N) \le E \le \Theta(N)$ , there exist choices of  $\varepsilon$ ,  $\eta$  (depending on N, E) such that  $\mathbf{P}(S_{\text{ogd}}) = o(1)$ .

Proof: Observe that

$$\mathbf{P}(S_{\text{ogp}}) = \mathbf{E}[\mathbf{P}(S_{\text{ogp}} \mid g)]. \tag{8.1}$$

Conditional on g, we can compute  $\mathbf{P}(S_{\text{ogp}} \mid g) = \mathbf{P}(\exists x' \in S(E; g'), \|x - x'\| \leq 2\eta \sqrt{N})$  by setting  $x = \mathcal{A}(g)$  (so x only depends on g), and union bounding Lemma 7.4 over the x' within  $2\eta \sqrt{N}$  of x, as per Lemma 7.2:

$$P(S_{\text{ogp}} | g) \le \exp_2(-E + N\eta^2 \log_2(1/\eta^2) + O(1)).$$

We want to choose  $\eta$  such that

$$-E + N\eta^2 \log_2(1/\eta^2) = -\Omega(N)$$
 
$$\frac{E}{N} > \eta^2 \log(1/\eta^2)$$

Using the fact that  $\sqrt{2x} \ge -x \log_2 x$ , it suffices to pick  $\eta^2$  with

$$\frac{E}{N} > 2\eta,$$

so  $\eta^2 := \frac{E^2}{2N^2}$  is a valid choice.

By the choice of  $\eta^2 \ll (h^{-1})(\delta) \asymp 1$ , this bound gives  $\mathbf{P}(S_{\text{ogp}}|g) \leq \exp_2(-O(N)) = o(1)$ . Integrating over g gives the overall bound.

When  $CD\varepsilon N^2 = \omega_{N(1)}$  (i.e. goes to infinity),

$$\mathbf{P}(S_{\text{stable}}) \le \frac{16CD\varepsilon N^2}{16\eta^4 N^2}$$
$$= \frac{CD\varepsilon}{\eta^4} = \frac{4CD\varepsilon N^4}{E^4}$$

 $D\varepsilon \to 0$  same as  $D = o(\frac{1}{\varepsilon}) = o(N)$ .

Lemma 8.3.  $P(S_{\text{solve}}, S_{\text{stable}}) \leq P(S_{\text{ogp}}) = o(1)$ .

*Proof*: The first inequality follows from definition, with  $x = \mathcal{A}(g)$  and  $x' = \mathcal{A}(g')$ . For the second, observe that

$$\mathbf{P}(S_{\text{ogp}}) = \mathbf{E}[\mathbf{P}(S_{\text{ogp}} \mid g)].$$

Now, let  $M = \delta N$ , we can compute  $\mathbf{P}(S_{\text{ogp}} \mid g) = \mathbf{P}(\exists x' \in S(\delta; g'), \|x - x'\| \leq \eta \sqrt{N})$  by setting  $x = \mathcal{A}(g)$  (so x only depends on g), and union bounding Lemma 7.4 over the x' within  $\eta \sqrt{N}$  of x, as per Lemma 7.2:

$$\mathbf{P}(S_{\text{ogp}} \mid g) \le \exp_2\left(-\delta N + Nh\left(\frac{\eta^2}{4}\right) + O(\log_2 N)\right).$$

By the choice of  $\eta^2 \ll (h^{-1})(\delta) \asymp 1$ , this bound gives  $\mathbf{P}(S_{\text{ogp}}|g) \leq \exp_2(-O(N)) = o(1)$ . Integrating over g gives the overall bound.

However, by the choice of parameters above, we also have

$$\mathbf{P}(S_{\text{solve}}, S_{\text{stable}}) \ge \mathbf{P}(S_{\text{solve}}) + \mathbf{P}(S_{\text{stable}}) - 1$$

$$\ge p_{\text{solve}}^4 + p_{\text{unstable}} \ge \Omega(1) - o(1) = \Omega(1),$$
(8.2)

which is a contradiction.

## 9. Randomized Rounding Things

Claim: no two adjacent points on  $\Sigma_N$  (or pairs within k=O(1) distance) which are both good solutions to the same problem. The reason is that this would require a subset of k signed coordinates  $\pm g_{\{i_1\}}, ..., \pm g_{\{i_k\}}$  to have small sum, and there are only  $2^k$  binom $\{N\}\{k\}l=O(N^k)$  possibilities, each of which is centered Gaussian with variance at least 1, so the smallest is typically of order  $\Omega(N^{\{-k\}})$ .

Thus, rounding would destroy the solution.

Say we're in the case where rounding changes the solution. (i.e. rounding moves x to point that
is not the closest point x\*\*, whp.)

- Let  $p_1, ..., p_N$  be the probabilities of disagreeing with  $x_*$  on each coordinate.
  - We know that  $\sum p_i$  diverges (this is equivalent to the statement that rounding will changes the solution whp).
  - Reason: for each coord, chance of staying at that coordinate is  $e^{-\Theta(p_i)}$ .
- For each i, flip coin with heads prob  $2p_i$ , and keep all the heads.
  - By Borel-Cantelli type argument, typical number of heads will be  $\omega(1)$ .
- For every coin with a head, change coord with prob 50%, if tails, keep coord.
  - Randomized rounding in artificially difficult way. (I.e. this multistage procedure accomplishes the same thing as randomized rounding.)
- Now, randomized rounding is done by choosing a random set of  $\omega(1)$  coordinates, and making those iid Uniform in  $\{-1, 1\}$ .
- Pick a large constant (e.g. 100), and only randomize the first 100 heads, and condition on the others (i.e. choose the others arbitrarily). Note that since  $100l = \omega(1)$ , there are at least 100 heads whp.
- Now rounded point is random point in 100 dimensional subcube, but at most one of them is a good solution by the claim at the top of the page.
- Combining, the probability for rounding to give a good solution is at most  $o(1) + 2^{\{-100\}}$ . Since 100 is arbitrary, this is o(1) by sending parameters to 0 and/or infinity in the right order.

[76]

# **Bibliography**

- [1] D. Achlioptas and A. Coja-Oghlan, "Algorithmic Barriers from Phase Transitions," in 2008 49th Annual IEEE Symposium on Foundations of Computer Science, Oct. 2008, pp. 793–802. doi: 10.1109/FOCS.2008.11.
- [2] D. Achlioptas and F. Ricci-Tersenghi, "On the Solution-Space Geometry of Random Constraint Satisfaction Problems." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/cs/0611052
- [3] L. Addario-Berry, L. Devroye, G. Lugosi, and R. I. Oliveira, "Local Optima of the Sherrington-Kirkpatrick Hamiltonian." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1712.07775
- [4] B. Alidaee, F. Glover, G. A. Kochenberger, and C. Rego, "A New Modeling and Solution Approach for the Number Partitioning Problem," *Journal of Applied Mathematics and Decision Sciences*, vol. 2005, no. 2, pp. 113–121, Jan. 2005, doi: 10.1155/JAMDS.2005.113.
- [5] M. F. Argüello, T. A. Feo, and O. Goldschmidt, "Randomized Methods for the Number Partitioning Problem," *Computers & Operations Research*, vol. 23, no. 2, pp. 103–111, Feb. 1996, doi: 10.1016/0305-0548(95)E0020-L.
- [6] L. Asproni, D. Caputo, B. Silva, G. Fazzi, and M. Magagnini, "Accuracy and Minor Embedding in Subqubo Decomposition with Fully Connected Large Problems: A Case Study about the Number Partitioning Problem," *Quantum Machine Intelligence*, vol. 2, no. 1, p. 4, Jun. 2020, doi: 10.1007/s42484-020-00014-w.

[7] B. Aubin, W. Perkins, and L. Zdeborová, "Storage Capacity in Symmetric Binary Perceptrons," *Journal of Physics A: Mathematical and Theoretical*, vol. 52, no. 29, p. 294003, Jul. 2019, doi: 10.1088/1751-8121/ab227a.

- [8] A. S. Bandeira, A. Perry, and A. S. Wein, "Notes on Computational-to-Statistical Gaps: Predictions Using Statistical Physics." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1803.11132
- [9] N. Bansal, "Constructive Algorithms for Discrepancy Minimization." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1002.2259
- [10] B. Barak, S. B. Hopkins, J. Kelner, P. K. Kothari, A. Moitra, and A. Potechin, "A Nearly Tight Sumof-Squares Lower Bound for the Planted Clique Problem." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1604.03084
- [11] H. Bauke, S. Franz, and S. Mertens, "Number Partitioning as a Random Energy Model," *Journal of Statistical Mechanics: Theory and Experiment*, vol. 2004, no. 4, p. P4003, Apr. 2004, doi: 10.1088/1742-5468/2004/04/P04003.
- [12] M. Bayati, D. Gamarnik, and P. Tetali, "Combinatorial Approach to the Interpolation Method and Scaling Limits in Sparse Random Graphs," *The Annals of Probability*, vol. 41, no. 6, Nov. 2013, doi:10.1214/12-AOP816.
- [13] Q. Berthet and P. Rigollet, "Computational Lower Bounds for Sparse PCA." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1304.0828
- [14] S. Boettcher and S. Mertens, "Analysis of the Karmarkar-Karp Differencing Algorithm," *The European Physical Journal B*, vol. 65, no. 1, pp. 131–140, Sep. 2008, doi: 10.1140/epjb/e2008-00320-9.
- [15] C. Borgs, J. Chayes, and B. Pittel, "Phase Transition and Finite-size Scaling for the Integer Partitioning Problem," *Random Structures & Algorithms*, vol. 19, no. 3–4, pp. 247–288, Oct. 2001, doi: 10.1002/rsa.10004.
- [16] M. Brennan and G. Bresler, "Optimal Average-Case Reductions to Sparse PCA: From Weak Assumptions to Strong Hardness." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1902.07380
- [17] M. Brennan, G. Bresler, and W. Huleihel, "Reducibility and Computational Lower Bounds for Problems with Planted Sparse Structure." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1806.07508
- [18] K. Chandrasekaran and S. Vempala, "Integer Feasibility of Random Polytopes." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1111.4649
- [19] W.-K. Chen, D. Gamarnik, D. Panchenko, and M. Rahman, "Suboptimality of Local Algorithms for a Class of Max-Cut Problems," *The Annals of Probability*, vol. 47, no. 3, May 2019, doi: 10.1214/18-AOP1291.

[20] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, "An Application of Bin-Packing to Multiprocessor Scheduling," SIAM Journal on Computing, vol. 7, no. 1, pp. 1–17, Feb. 1978, doi: 10.1137/0207001.

- [21] E. G. Coffman and G. S. Lueker, *Probabilistic Analysis of Packing and Partitioning Algorithms*. in Wiley-Interscience Series in Discrete Mathematics and Optimization. New York: J. Wiley & sons, 1991.
- [22] A. Coja-Oghlan and C. Efthymiou, "On Independent Sets in Random Graphs," *Random Structures & Algorithms*, vol. 47, no. 3, pp. 436–486, Oct. 2015, doi: 10.1002/rsa.20550.
- [23] D. Corus, P. S. Oliveto, and D. Yazdani, "Artificial Immune Systems Can Find Arbitrarily Good Approximations for the NP-hard Number Partitioning Problem," *Artificial Intelligence*, vol. 274, pp. 180–196, Sep. 2019, doi: 10.1016/j.artint.2019.03.001.
- [24] Y. Deshpande and A. Montanari, "Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1502.06590
- [25] I. Diakonikolas, D. M. Kane, and A. Stewart, "Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1611.03473
- [26] V. Feldman, E. Grigorescu, L. Reyzin, S. Vempala, and Y. Xiao, "Statistical Algorithms and a Lower Bound for Detecting Planted Clique." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1201.1214
- [27] F. F. Ferreira and J. F. Fontanari, "Probabilistic Analysis of the Number Partitioning Problem," *Journal of Physics A: Mathematical and General*, vol. 31, no. 15, p. 3417, Apr. 1998, doi: 10.1088/0305-4470/31/15/007.
- [28] D. Gamarnik and E. C. Kızıldağ, "Algorithmic Obstructions in the Random Number Partitioning Problem." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/2103.01369
- [29] D. Gamarnik, E. C. Kızıldağ, W. Perkins, and C. Xu, "Algorithms and Barriers in the Symmetric Binary Perceptron Model." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/2203.15667
- [30] D. Gamarnik and E. Kizildag, "Computing the Partition Function of the Sherrington-Kirk-patrick Model Is Hard on Average," *The Annals of Applied Probability*, vol. 31, no. 3, Jun. 2021, doi: 10.1214/20-AAP1625.
- [31] D. Gamarnik, A. Jagannath, and A. S. Wein, "Hardness of Random Optimization Problems for Boolean Circuits, Low-Degree Polynomials, and Langevin Dynamics." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/2004.12063
- [32] D. Gamarnik and I. Zadik, "High-Dimensional Regression with Binary Coefficients. Estimating Squared Error and a Phase Transition." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1701.04455

[33] D. Gamarnik and I. Zadik, "The Landscape of the Planted Clique Problem: Dense Subgraphs and the Overlap Gap Property." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1904.07174

- [34] D. Gamarnik and M. Sudan, "Limits of Local Algorithms over Sparse Random Graphs." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/1304.1831
- [35] D. Gamarnik and A. Jagannath, "The Overlap Gap Property and Approximate Message Passing Algorithms for \$p\$-Spin Models." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1911.06943
- [36] D. Gamarnik, "The Overlap Gap Property: A Geometric Barrier to Optimizing over Random Structures," *Proceedings of the National Academy of Sciences*, vol. 118, no. 41, p. e2108492118, Oct. 2021, doi: 10.1073/pnas.2108492118.
- [37] D. Gamarnik, A. Jagannath, and S. Sen, "The Overlap Gap Property in Principal Submatrix Recovery," *Probability Theory and Related Fields*, vol. 181, no. 4, pp. 757–814, Dec. 2021, doi: 10.1007/s00440-021-01089-7.
- [38] D. Gamarnik and M. Sudan, "Performance of Sequential Local Algorithms for the Random NAE-\$K\$-SAT Problem," *SIAM Journal on Computing*, vol. 46, no. 2, pp. 590–619, Jan. 2017, doi: 10.1137/140989728.
- [39] D. Gamarnik and I. Zadik, "Sparse High-Dimensional Linear Regression. Algorithmic Barriers and a Local Search Algorithm." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/ abs/1711.04952
- [40] M. R. Garey and D. S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-Completeness*. in A Series of Books in the Mathematical Sciences. New York: W. H. Freeman, 1979.
- [41] I. P. Gent and T. Walsh, "Analysis of Heuristics for Number Partitioning," *Computational Intelligence*, vol. 14, no. 3, pp. 430–451, 1998, doi: 10.1111/0824-7935.00069.
- [42] I. Gent and T. Walsh, "Phase Transitions and Annealed Theories: Number Partitioning as a Case Study," *Instituto Cultura*, Jun. 2000.
- [43] C. Harshaw, F. Sävje, D. Spielman, and P. Zhang, "Balancing Covariates in Randomized Experiments with the Gram-Schmidt Walk Design." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/1911.03071
- [44] T. Hastie, R. Tibshirani, and J. Friedman, *The Elements of Statistical Learning*. in Springer Series in Statistics. New York, NY: Springer New York, 2009. doi: 10.1007/978-0-387-84858-7.
- [45] H. Hatami, L. Lovász, and B. Szegedy, "Limits of Locally–Globally Convergent Graph Sequences," *Geometric and Functional Analysis*, vol. 24, no. 1, pp. 269–296, Feb. 2014, doi: 10.1007/s00039-014-0258-7.
- [46] R. Hoberg, H. Ramadas, T. Rothvoss, and X. Yang, "Number Balancing Is as Hard as Minkowski's Theorem and Shortest Vector." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/1611.08757

[47] S. B. Hopkins, P. K. Kothari, A. Potechin, P. Raghavendra, T. Schramm, and D. Steurer, "The Power of Sum-of-Squares for Detecting Hidden Structures." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1710.05017

- [48] S. Hopkins, "Statistical Inference and the Sum of Squares Method," 2018.
- [49] S. B. Hopkins, J. Shi, and D. Steurer, "Tensor Principal Component Analysis via Sum-of-Squares Proofs." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1507.03269
- [50] B. Huang and M. Sellke, "Strong Low Degree Hardness for Stable Local Optima in Spin Glasses." Accessed: Jan. 30, 2025. [Online]. Available: http://arxiv.org/abs/2501.06427
- [51] M. Jerrum, "Large Cliques Elude the Metropolis Process," *Random Structures & Algorithms*, vol. 3, no. 4, pp. 347–359, Jan. 1992, doi: 10.1002/rsa.3240030402.
- [52] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," *Operations Research*, vol. 37, no. 6, pp. 865–892, 1989, Accessed: Mar. 15, 2025. [Online]. Available: http://www.jstor.org/stable/171470
- [53] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, "Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning," *Operations Research*, vol. 39, no. 3, pp. 378–406, 1991, Accessed: Mar. 15, 2025. [Online]. Available: http://www.jstor.org/stable/171393
- [54] N. Karmarkar, R. M. Karp, G. S. Lueker, and A. M. Odlyzko, "Probabilistic Analysis of Optimum Partitioning," *Journal of Applied Probability*, vol. 23, no. 3, pp. 626–645, 1986, doi: 10.2307/3214002.
- [55] N. Karmarker and R. M. Karp, "The Differencing Method of Set Partitioning," 1983. Accessed: Mar. 15, 2025. [Online]. Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/1983/6353.html
- [56] M. Kearns, "Efficient Noise-Tolerant Learning from Statistical Queries," *Journal of the ACM*, vol. 45, no. 6, pp. 983–1006, Nov. 1998, doi: 10.1145/293347.293351.
- [57] E. C. Kızıldağ, "Planted Random Number Partitioning Problem." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/2309.15115
- [58] J. Kojić, "Integer Linear Programming Model for Multidimensional Two-Way Number Partitioning Problem," *Computers & Mathematics with Applications*, vol. 60, no. 8, pp. 2302–2308, Oct. 2010, doi: 10.1016/j.camwa.2010.08.024.
- [59] R. E. Korf, "From Approximate to Optimal Solutions: A Case Study of Number Partitioning," in *Proceedings of the 14th International Joint Conference on Artificial Intelligence Volume 1*, in IJCAI'95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Aug. 1995, pp. 266–272.
- [60] R. E. Korf, "A Complete Anytime Algorithm for Number Partitioning," *Artificial Intelligence*, vol. 106, no. 2, pp. 181–203, Dec. 1998, doi: 10.1016/S0004-3702(98)00086-1.

[61] R. E. Korf, "Multi-Way Number Partitioning," in *Proceedings of the 21st International Joint Conference on Artificial Intelligence*, in IJCAI'09. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Jul. 2009, pp. 538–543.

- [62] P. K. Kothari, R. Mori, R. O'Donnell, and D. Witmer, "Sum of Squares Lower Bounds for Refuting Any CSP." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1701.04521
- [63] J. Kratica, J. Kojić, and A. Savić, "Two Metaheuristic Approaches for Solving Multidimensional Two-Way Number Partitioning Problem," *Computers & Operations Research*, vol. 46, pp. 59–68, Jun. 2014, doi: 10.1016/j.cor.2014.01.003.
- [64] A. M. Krieger, D. Azriel, and A. Kapelner, "Nearly Random Designs with Greatly Improved Balance," *Biometrika*, vol. 106, no. 3, pp. 695–701, Sep. 2019, doi: 10.1093/biomet/asz026.
- [65] D. Kunisky, A. S. Wein, and A. S. Bandeira, "Notes on Computational Hardness of Hypothesis Testing: Predictions Using the Low-Degree Likelihood Ratio." Accessed: Mar. 16, 2025. [On-line]. Available: http://arxiv.org/abs/1907.11636
- [66] J. Lauer and N. Wormald, "Large Independent Sets in Regular Graphs of Large Girth," *Journal of Combinatorial Theory, Series B*, vol. 97, no. 6, pp. 999–1009, Nov. 2007, doi: 10.1016/j.jctb.2007.02.006.
- [67] A. Levy, H. Ramadas, and T. Rothvoss, "Deterministic Discrepancy Minimization via the Multiplicative Weight Update Method." Accessed: Mar. 16, 2025. [Online]. Available: http:// arxiv.org/abs/1611.08752
- [68] S. Lovett and R. Meka, "Constructive Discrepancy Minimization by Walking on The Edges." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1203.5747
- [69] G. S. Lueker, "A Note on the Average-Case Behavior of a Simple Differencing Method for Partitioning," *Operations Research Letters*, vol. 6, no. 6, pp. 285–287, Dec. 1987, doi: 10.1016/0167-6377(87)90044-7.
- [70] R. Meka, A. Potechin, and A. Wigderson, "Sum-of-Squares Lower Bounds for Planted Clique," in *Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing*, Portland Oregon USA: ACM, Jun. 2015, pp. 87–96. doi: 10.1145/2746539.2746600.
- [71] R. Merkle and M. Hellman, "Hiding Information and Signatures in Trapdoor Knapsacks," *IEEE Transactions on Information Theory*, vol. 24, no. 5, pp. 525–530, Sep. 1978, doi: 10.1109/TIT.1978.1055927.
- [72] S. Mertens, "The Easiest Hard Problem: Number Partitioning." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/cond-mat/0310317
- [73] S. Mertens, "A Physicist's Approach to Number Partitioning," *Theoretical Computer Science*, vol. 265, no. 1, pp. 79–108, Aug. 2001, doi: 10.1016/S0304-3975(01)00153-0.
- [74] M. Mézard, T. Mora, and R. Zecchina, "Clustering of Solutions in the Random Satisfiability Problem," *Physical Review Letters*, vol. 94, no. 19, p. 197205, May 2005, doi: 10.1103/Phys-RevLett.94.197205.

[75] W. Michiels, J. Korst, E. Aarts, and J. Van Leeuwen, "Performance Ratios for the Differencing Method Applied to the Balanced Number Partitioning Problem," *STACS* 2003, vol. 2607. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 583–595, 2003. doi: 10.1007/3-540-36494-3\_51.

- [76] R. O'Donnell, "Analysis of Boolean Functions." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/2105.10386
- [77] P. Raghavendra, T. Schramm, and D. Steurer, "High-Dimensional Estimation via Sum-of-Squares Proofs." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1807.11419
- [78] M. Rahman and B. Virag, "Local Algorithms for Independent Sets Are Half-Optimal," *The Annals of Probability*, vol. 45, no. 3, May 2017, doi: 10.1214/16-AOP1094.
- [79] T. Rothvoss, "Constructive Discrepancy Minimization for Convex Sets." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1404.0339
- [80] V. Santucci, M. Baioletti, and G. Di Bari, "An Improved Memetic Algebraic Differential Evolution for Solving the Multidimensional Two-Way Number Partitioning Problem," *Expert Systems with Applications*, vol. 178, p. 114938, Sep. 2021, doi: 10.1016/j.eswa.2021.114938.
- [81] R. H. Storer, S. W. Flanders, and S. David Wu, "Problem Space Local Search for Number Partitioning," *Annals of Operations Research*, vol. 63, no. 4, pp. 463–487, Aug. 1996, doi: 10.1007/BF02156630.
- [82] L.-H. Tsai, "Asymptotic Analysis of an Algorithm for Balanced Parallel Processor Scheduling," *SIAM Journal on Computing*, vol. 21, no. 1, pp. 59–64, Feb. 1992, doi: 10.1137/0221007.
- [83] P. Turner, R. Meka, and P. Rigollet, "Balancing Gaussian Vectors in High Dimension." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1910.13972
- [84] M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint. in Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press, 2019. doi: 10.1017/9781108627771.
- [85] A. S. Wein, "Optimal Low-Degree Hardness of Maximum Independent Set." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/2010.06563
- [86] J. Wen *et al.*, "Optical Experimental Solution for the Multiway Number Partitioning Problem and Its Application to Computing Power Scheduling," *Science China Physics, Mechanics & Astronomy*, vol. 66, no. 9, p. 290313, Sep. 2023, doi: 10.1007/s11433-023-2147-3.
- [87] B. Yakir, "The Differencing Algorithm LDM for Partitioning: A Proof of a Conjecture of Karmarkar and Karp," *Mathematics of Operations Research*, vol. 21, no. 1, pp. 85–99, Feb. 1996, doi: 10.1287/moor.21.1.85.
- [88] L. Zdeborová and F. Krzakala, "Statistical Physics of Inference: Thresholds and Algorithms," *Advances in Physics*, vol. 65, no. 5, pp. 453–552, Sep. 2016, doi: 10.1080/00018732.2016.1211393.