MA101 Mathematics I

Tutorial & Additional Problem Set - 5

SECTION - A (for Tutorial -5)

- 1. True or False? Give justifications.
 - (a) There exists distinct linear transformations $S,T:\mathbb{V}\to\mathbb{W}$ such that ker(S)=ker(T) and range(S)=range(T).
 - (b) There exists a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that none of T, T^2, T^3 is the identity transformation, but $T^4 = I$ (identity transformation).
 - (c) If $T: \mathbb{V} \to \mathbb{W}$ is a linear transformation then $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is LI in \mathbb{V} if and only if $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ is LI in \mathbb{W} .
 - (d) There exists a linear transformation T from $\mathbb{R}^2 \to \mathbb{R}^4$ such that $range(T) = \{[x, y, z, w]^T : x + y + z = 0\}.$

Solution:

- (a) True. Take $S, T : \mathbb{R}^2 \to \mathbb{R}^2$, such that $S([x, y]^T) = [x, y]^T$ and $T([x, y]^T) = [y, x]^T$.
- (b) True. Rotate every element of \mathbb{R}^2 by 90 degrees, that is $T([x,y]^T) = \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix} [x,y]^T$.
- (c) False. If $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ is LI in \mathbb{W} then $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is LI in \mathbb{V} , but the converse is not true, for example the $\mathbf{0}$ transformation.
- (d) False. From the rank nullity theorem, $rank(T) \leq 2$, but if $S = \{[x, y, z, w]^T : x + y + z = 0\}$, then dim(S) = 3.
- 2. Determine a linear transformation from $\mathbb{R}^3 \to \mathbb{R}^3$ such that $range(T) = \{[x, y, z]^T : x + 2y + z = 0\}$. If possible give two more such linear transformations with the same range.

Solution: It is enough to define T in a basis.

Take any basis, say $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ of \mathbb{R}^3 , and consider the LT T such that $T(\mathbf{e}_1) = [2, -1, 0]^T$,

 $T(\mathbf{e}_2) = [0, -1, 2]^T$ and $T(\mathbf{e}_3) = \mathbf{0}$. Then $range(T) = span\{T(\mathbf{e}_1), T(\mathbf{e}_2)\}$.

Note that $\{[2,-1,0]^T, [0,-1,2]^T\}$ is a basis of $S = \{[x,y,z]^T : x+2y+z=0\}$.

Hence $range(T) = span\{T(\mathbf{e}_1), T(\mathbf{e}_2)\} = S$ and Ker(T) is the z-axis.

If $T(\mathbf{e}_3) = \alpha(2, -1, 0)^T + \beta(0, -1, 2)^T$ then again range(T) is same but Ker(T) is different. For the same basis by making suitable choices one can also get Ker(T) as the x-axis or the y-axis. By considering different basis of \mathbb{R}^3 , one can get many more T's.

3. If $dim(\mathbb{V}) = dim(\mathbb{W})$, then show that a linear transformation $T : \mathbb{V} \to \mathbb{W}$ is one-one if and only if it is onto.

Solution: If T is onto, then $range(T) = \mathbb{W}$, hence $rank(T) = dim(\mathbb{W}) = dim(\mathbb{V})$. Hence from the rank nullity theorem $ker(T) = \{0\}$, or T is one-one.

If T is one-one, then $ker(T) = \{0\}$, hence from the rank nullity theorem, $rank(T) = dim(\mathbb{V}) = dim(\mathbb{W})$. Since range(T) is a subspace of \mathbb{W} , $rank(T) = dim(range(T)) = dim(\mathbb{W})$ implies $range(T) = \mathbb{W}$, or T is onto.

- 4. If possible find linear transformations $S: \mathbb{R}^2 \to \mathbb{R}_2[x]$ and $T: \mathbb{R}_2[x] \to \mathbb{R}^2$, such that,
 - (a) $S \circ T = I$.
 - (b) $T \circ S = I$.
 - (c) $range(T \circ S)$ is a line.
 - (d) Neither S not T is the zero transformation, but $S \circ T = 0$ (zero transformation).

Solution:

- (a) $S \circ T : \mathbb{R}_2[x] \to \mathbb{R}_2[x]$. Note that $range(S \circ T) \leq range(S)$ and $rank(S) \leq 2$ (from the rank nullity theorem), hence $rank(S \circ T) \leq 2$. An identity map from $\mathbb{R}_2[x] \to \mathbb{R}_2[x]$ will have rank 3, hence not possible.
- (b) $T \circ S : \mathbb{R}^2 \to \mathbb{R}^2$. Define $S([a,b]^T) = a + bx$ and $T : \mathbb{R}_2[x] \to \mathbb{R}^2$ as $T(a_0 + a_1x + a_2x^2) = [a_0,a_1]^T$, then check that $T \circ S = I$.
- (c) Define $S([a,b]^T) = a + bx$ and $T: \mathbb{R}_2[x] \to \mathbb{R}^2$ as $T(a_0 + a_1x + a_2x^2) = [a_0,0]^T$, then check that $range(T \circ S)$ is a line.
- (d) Take $T(a_0 + a_1x + a_2x^2) = [a_0, 0]^T$ and $S([a, b]^T) = bx$.
- 5. Give three linear transformations from \mathbb{R}^3 to $\mathbb{W} = \{\mathbf{w} \in \mathbb{R}^5 | w_1 w_2 + w_3 w_4 + w_5 = 0\}$. Give their coordinate matrices w.r.t the ordered basis $B = \{\begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \}$ on \mathbb{R}^3 and some ordered basis of \mathbb{W} .

Solution: A basis for
$$\mathbb{W}$$
 is $B' = \left\{ \begin{bmatrix} 1\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\-1 \end{bmatrix} \right\}$

Take
$$T_2 \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ x \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
. Then $[T] = \begin{bmatrix} [T(v_1)]_{B'}, [T(v_2)]_{B'}, [T(v_3)]_{B'} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Take
$$T_3 \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ y \\ y \\ 0 \\ -x \end{bmatrix}$$
. Then

$$[T] = \begin{bmatrix} [T(v_1)]_{B'}, [T(v_2)]_{B'}, [T(v_3)]_{B'} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1\\2\\2\\0\\-1 \end{bmatrix}_{B'} & \begin{bmatrix} 1\\-1\\-1\\0\\-1 \end{bmatrix}_{B'} & \begin{bmatrix} 1\\0\\0\\0\\-1 \end{bmatrix}_{B'} \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & z_1\\x_2 & y_2 & z_2\\x_3 & y_3 & z_3\\x_4 & y_4 & z_4 \end{bmatrix},$$

where

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ x_4 & y_4 & z_4 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

In general this can be solved using GJE. Form the matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 2 & -1 & 0 \\ 0 & -1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & -1 & -1 \end{bmatrix}$$

RREF is

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

So

$$\begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ x_4 & y_4 & z_4 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix},$$

the right-top matrix.

6. Let \mathbb{V} , \mathbb{W} be finite dimensional vector spaces with bases B and B' respectively. Take a linear transformation $T: \mathbb{V} \to \mathbb{W}$. Is it true that $\operatorname{rank}(T) = \operatorname{rank}([T]_{B' \leftarrow B})$? Is it true that $\operatorname{nullity}(T) = \operatorname{nullity}([T]_{B' \leftarrow B})$?

Solution: Yes. Let $B = \{v_1, \ldots, v_n\}$ and $B' = \{w_1, \ldots, w_m\}$. Note that $A = [T]_{B' \leftarrow B} \in \mathcal{M}_{m \times n}$.

Recall: Let $x, y \in \mathbb{V}$ and $a = [x]_B$, $b = [y]_B$. This means $x = \sum a_i v_i$ and $y = \sum b_i v_i$. So $\alpha x + \beta y = \sum (\alpha a_i + \beta b_i) v_i$. So $[\alpha x + \beta y]_B = \alpha a + \beta b = \alpha [x]_B + \beta [y]_B$.

Let $A=[A_1,A_2,\ldots,A_n]$. Then a set of columns A_{i_1},\ldots,A_{i_k} of A are linearly independent if and only if $Tv_{i_1}, \ldots, Tv_{i_k}$ are linearly independent. This is because

$$w = \sum \alpha_j T v_{i_j} = 0 \text{ iff } [w]_{B'} = 0 \text{ iff } [\sum \alpha_j T v_{i_j}]_{B'} = 0 \text{ iff } \sum \alpha_j [T v_{i_j}]_{B'} = 0 \text{ iff } \sum \alpha_j A_{i_j} = 0.$$

So, rank(T) = rank(A). Also, this implies nullity(T) = nullity(A).

Alternatively since $[Tv_1 \dots Tv_n] = [w_1 \dots w_m][T]_{B' \leftarrow B}$,

$$[Tv_1 \dots Tv_n] \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = [w_1 \dots w_m][T]_{B' \leftarrow B} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \text{ for any scalars } \alpha_1, \dots, \alpha_n.$$
Since $\{w_1, \dots, w_m\}$ is LI, $\sum_{i=1}^n \alpha_i Tv_i = 0$ iff $\sum_{i=1}^n \alpha_i A_i = 0$, hence whatever is the linear

independence and dependence relationship between the Tv_i 's, the same holds for the A_i 's.

SECTION - B: ADDITIONAL PROBLEMS

- 1. True or False? Give justifications.
 - (a) A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as $T([x,y]^T) = [x,y]^T$ for $x \neq 0$ and $T([0,y]^T) = [0,0]^T$ satisfies $T(c[x,y]^T) = cT([x,y]^T)$ but is not a linear transformation.
 - (b) Given vector spaces \mathbb{V} and \mathbb{W} , for any $\mathbf{v}_1, \mathbf{v}_2$ in V and $\mathbf{w}_1, \mathbf{w}_2$ in W, there exists a linear transformation $T: \mathbb{V} \to \mathbb{W}$ such that $T(\mathbf{v}_1) = \mathbf{w}_1$ and $T(\mathbf{v}_2) = \mathbf{w}_2$.
 - (c) There exists a 2×2 matrix which transforms $[2,6]^T$ to $[1,0]^T$ and $[1,0]^T$ to $[1,5]^T$.
 - (d) Given an invertible linear transformation $T: \mathbb{V} \to \mathbb{W}$ there exists basis B and B' in \mathbb{V} and \mathbb{W} respectively such that I (identity matrix) is the matrix of T.

Solution:

- (a) True. $T(c[x,y]^T) = cT([x,y]^T)$ is easy to check. But for $y \neq 0$, $T([-1,y]^T) + T([1,y]^T) =$ $[-1, y]^T + [1, y]^T = [0, 2y]^T \neq [0, 0]^T = T([-1, y]^T + [1, y]^T).$
- (b) False. For example if $\mathbf{v}_1, \mathbf{v}_2$ is LD, say $\mathbf{v}_1 = [1, 0]^T$ and $\mathbf{v}_2 = [2, 0]^T$ and $\mathbf{w}_1 = [1, 0]^T$ and $\mathbf{w}_2 = [0,1]^T$, then there exists no LT $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(\mathbf{v}_1) = \mathbf{w}_1$ and $T(\mathbf{v}_2) = \mathbf{w}_2$.
- (c) True. This is just the change of basis matrix.
- (d) True. Since T is invertible it takes every basis of \mathbb{U} to a basis of \mathbb{W} . Consider any basis B of \mathbb{U} , then T takes the basis B to a basis say B' of \mathbb{W} . Then $[T]_{B \leftarrow B'} = I$.
- 2. Determine a linear transformation from $\mathbb{R}^2 \to \mathbb{R}^3$ such that $Ker(T) = \{[x,y]^T : 2x + y = 0\}.$

Solution: Take an $[x,y]^T$ satisfying 2x+y=0, for example $[-1,2]^T$ and take T such that $T([-1,2]^T) = \mathbf{0}$. Since T has to be defined on a basis, take any other $[a,b]^T$ such that $\{[-1,2]^T,[a,b]^T\}$ forms a basis of \mathbb{R}^2 and define $T([a,b]^T)$, such that $T([a,b]^T)\neq \mathbf{0}$, then this will give a required T. For example take $[a,b]^T = [1,0]^T$ and $T([1,0]^T) = [1,0]^T$.

3. Show that there exists a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^4$ such that none of T, T^2, T^3 is a zero transformation, but $T^4 = \mathbf{0}$. Is it possible to get such a transformation from $\mathbb{R}^3 \to \mathbb{R}^3$?

Solution:

(a) Note that for any LT T in \mathbb{R}^4 , $nullity(T) \leq nullity(T^2) \leq nullity(T^3) \leq nullity(T^4)$. If nullity(T) = 0 then check that $nullity(T^2) = nullity(T^3) = nullity(T^4) = 0$. Then T^4 becomes invertible.

If $nullity(T) = nullity(T^2)$, then check that $nullity(T) = nullity(T^2) = nullity(T^3) = nullity(T^4)$. Hence if $T^4 = \mathbf{0}$, then $T = T^2 = T^3 = T^4 = \mathbf{0}$.

Similarly if $nullity(T^2) = nullity(T^3)$, then check that $nullity(T^2) = nullity(T^3) = nullity(T^4)$. Hence if $T^4 = \mathbf{0}$, then $T^2 = T^3 = T^4 = \mathbf{0}$.

By similar argument we get $nullity(T^3) \neq nullity(T^4)$.

Hence in order to get the required LT we have to take a T such that $1 \leq nullity(T) < nullity(T^2) < nullity(T^3) < nullity(T^4)$, which will imply $nullity(T^4) = 4$, or $T^4 = \mathbf{0}$.

For example take $T(\mathbf{x}) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{x}$ or $T(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}) = \begin{bmatrix} x_2 \\ x_3 \\ x_4 \\ 0 \end{bmatrix}$.

This is not possible in \mathbb{R}^3 since for the above to happen $nullity(T) \geq 1$ and hence $nullity(T^4) \geq 4$, but since T^4 is a LT from \mathbb{R}^3 to \mathbb{R}^3 , $nullity(T^4) \leq 3$.

4. Let $T: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ be defined as: $T(A) = A - A^T$ for all $A \in \mathcal{M}_2(\mathbb{R})$. Find a basis for range(T) and for null(T).

Solution: Since T is taking every 2×2 real matrix to a skew symmetric matrix and $T(\begin{bmatrix} x & y \\ z & w \end{bmatrix}) = \begin{bmatrix} 0 & y - z \\ z - y & 0 \end{bmatrix}$, $range(T) = span\{\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\}$, and $null(T) = span\{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\}$.

5. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by, $T(x,y,z)^T = (x+y,x+y-z)^T$. Fix ordered basis $\{v_1,v_2,v_3\}$ and $\{w_1,w_2\}$, in $\mathbb{V} = \mathbb{R}^3$ and $\mathbb{W} = \mathbb{R}^2$ respectively, where $v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \text{ and } w_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, w_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

- (a) Find the matrix of the linear transformation with respect to these ordered bases. Find the coordinates of $(1,2,3)^T$ and $T(1,2,3)^T$ with respect to the ordered bases.
- (b) Find the matrix of the linear transformation if the ordered basis in \mathbb{R}^3 is changed to $\{v_2, v_1, v_3\}$, the basis of \mathbb{R}^2 is as given.
- (c) Find the matrix of the linear transformation if the ordered basis in \mathbb{R}^3 is changed to $\{3v_1, v_2, v_3\}$, the basis of \mathbb{R}^2 is as given.

- (d) Find the matrix of the linear transformation if the ordered basis in \mathbb{R}^2 is changed to $\{w_2, w_1\}$, the basis of \mathbb{R}^3 is as given.
- 6. (*) Suppose all vectors in the the unit square $0 \le x \le 1$, $0 \le y \le 1$ are transformed to $A(x,y)^T$, where A is a 2×2 matrix.
 - (a) For which A is the region square again and has area 1?
 - (b) For which A is the region square again?
 - (c) For which A is the region a line?
 - (*) means optional.