Лекция 4. 06 Марта 2025

Способы задания языков:

• Описательный. К сожалению не для всех типов грамматик его можно осуществить. Но для грамматик типа 3 есть способ описания в виде регулярных выражений. Он основан на определении праволинейного языка.

 $PM \leftrightarrow PB$ Если G — праволинейная грамматика, то L(G) — ...

Регулярные множества и праволинейныйе грамматики

Язык определяется праволинейни грамматикой т.и.т.т., когда он является регулярным множеством.

- Лемма 3. Множества $\emptyset, \{\varepsilon\},$ иa для всех $a \in \Sigma$ являтся праволинейными языками.
- Док-во:
- 1. $G = ((\{S\}), \Sigma, P, S)$ праволинейная грамматика, для которой L(G) =
- 2. $G(\{S\}, \Sigma, \{S \to \varepsilon\}, S)$ праволинейная грамматика для ...
- 3. $G_{\pi} = (\{S\}, \Sigma, \{s \to a\}, S\})$ праволинейная грамматика, для которой $L(G) = \{a\}$
- Лемма 4. Если PиQ праволинейные языки, то языки
- 1. $P \cup Q$,
- 2. PQ,
- 3. P^*

тоже праволинейные.

• Док-во конструктивное — мы строим эти грамматики:

Так как P и Q — праволинейные, то \exists праволинейные грамматики $G_P=(N_1,\Sigma,P_1,S_1)$ и $G_Q=(N_2,\Sigma,P_2,S_2)$, для которых $L(G_P)=P$ и $L\bigl(G_Q\bigr)=Q$ Считаем что $N_1\cap N_2=\emptyset$.

1. $G_3=(N_1\cup N_2,\Sigma,P_1\cup P_2\cup \{S_3\to S_1\mid S_2\},S_3)$ — праволинейная $L(G_3)=L(G_P)\cup L(G_Q)$, так как для каждого вывода $S_3\Rightarrow w$

т.к. для каждого вывода $S_3 \overset{+}{\underset{G_3}{\Rightarrow}} w$ и обратно.

Так как G_3 — праволинейная грамматка, то $L(G_3)$ — праволинейный язык

2. $G_4 = (N_1 \cup N_2, \Sigma, P_4, S_1) -$ праволинейная.

 P_{\prime} :

- 1. Если $A \to xB$ есть в P_1 , то $A \to xB$ принадлежит P_4 .
- 2. Если $A \to x$ есть в P_1 , то $A \to xS_2$ принадлежит P_4 .
- 3. Все правила из P_2 принадлежит P_4 .

Отметим, что если $S_1 \overset{+}{\underset{G_P}{\Rightarrow}} w$, то $S_1 \overset{+}{\underset{G_4}{\Rightarrow}} wS_w$, а если $S_2 \overset{+}{\underset{G_O}{\Rightarrow}} x$, то $S_2 \overset{+}{\underset{G_4}{\Rightarrow}} x$.

Таким образом $L_{G_P}L_{G_O}\subseteq L(G_4)$.

 $\mathbb{V}_{\mathbb{A}}$

4/

Mor gorennee uz empoku W_Z ropogumb yanuwamuku $L(G_p)$ $L(G_Q)$ W_A WS_2

Пусть $S_1 \overset{+}{\underset{G_4}{\Rightarrow}} w$. Т.к. в G_4 нет правил $A \to x$, попавших из P_1 , то этот вывод можно сделать так: $S_1 \overset{+}{\underset{G_4}{\Rightarrow}} x S_2 \overset{+}{\underset{G_4}{\Rightarrow}}$, где w = xy и все правила в выводе $S \overset{+}{\underset{G_4}{\Rightarrow}} w S_2$ попали в P_4 по (1) и (2).

Следовательно, должны быть выводы $\left(S_1\Rightarrow \overset{+}{G_P}\right)$ и $S_2\Rightarrow \overset{+}{G_Q}y.$

Отсюда $L(G_4) \subseteq L_{G_P}L(G_Q)$

- 3. Пусть $G_5 = (N_1 \cup \{S_5\}, \Sigma, P_5, S_5)$ такая, что $S_5 \in N_1$ и P_5 :
 - 1. A o xB есть в $P_1 \Rightarrow (A o xB) \in P_5$
 - 2. $(A \rightarrow x) \in P_1 \Rightarrow (A \rightarrow xS_5), (A \rightarrow x) \in P_5$
 - 3. $(S_5 \to S_1 \mid \varepsilon) \in P_5$

Очевидно, что

$$S_5 \overset{+}{\underset{G_5}{\Longrightarrow}} x_1 S_5 \overset{+}{\underset{G_5}{\Longrightarrow}} x_1 x_2 S_5 \overset{+}{\underset{G_5}{\Longrightarrow}} \dots \overset{+}{\underset{G_5}{\Longrightarrow}} x_1 x_2 \dots x_{n-1} x_n$$

 \Leftrightarrow , когда $S_1 \overset{+}{\underset{G_P}{\Rightarrow}} x_1, S_1 \overset{+}{\underset{G_P}{\Rightarrow}} x_2, ..., S_1 \overset{+}{\underset{G_P}{\Rightarrow}} x_n$

Отсюда следует, что $L(G_4) = (L(G_P)) *$

Теорема.

Язык является регулярным множеством ⇔ он праволинейный.

• Док-во:

Необходимость:

Следует из лемм 3 и 4, индукцией по числу шагов построерния регулярного ниножества, гед одни шаг — это применение одного из правил, определяющих регулярные множества.

Достаточность:

Пусть
$$G=(N,\Sigma,P,S)$$
 — праволинейная грамматика и $N=\{A_1,A_2,...,A_n\}.$

Можно построить старндартную систему уравнений с регулярными коффициентами, неизвестными которой являются нетерминалы из N.

Уравнение для A_i будет иметь вид: $A_i = a_{i0} + a_{i1}A_1 + ...a_{in}$, где

- 1. $a_{i0}=w_1+...+w_k$, если $A_I\to w_1\mid...\mid w_k$ все правила с левой частью A_i и правой частью, состоящей только из терминалов ($k=0\Rightarrow a_{i0}=0$)
- 2. Для j>0 $a_{ij}=x_1+\ldots+x_m$, если $A_i\to x_1A_j\mid\ldots\mid x_mA_j$ все правила с левой частью A_i и правой частью, оканчивающуюся на A_j (если m=0, то $a_{ij}=0$)/

Решая эту систему уравнений получаем решенеи
еfдля $N = \{A_1, A_2, ..., A_n\}$

Для S получаем PB f(S), которое определяет язык L(G).

Но алгоритм строит f(S) как язык, обозначаемый некоторым PB.

Таким образом, L(G) — регулярное множество.

Пример на доске:

Пример построения грамматики по PB

Рассмотрим регулярное выражение (0+1)*2. Построим праволинейную грамматику, определяющую тот же язык:

• Для языков $\{0\}, \{1\}, \{2\}$ определим грамматики (согласно леммам):

$$G_0 = (\{S_i\}, \{0, 1, 2\}, \{S_i\} \to 0\}, S_i)$$

$$G_1 = (\{S_i\}, \{0,1,2\}, \{S_i\} \to 1\}, S_i)$$

$$G_2 = (\{S_i\}, \{0,1,2\}, \{S_i\} \rightarrow 2\}, S_i)$$

• Для РВ 0+1 по грамматикам G_0 и G_1 строим грамматику

$$\begin{split} P_3 &= \{S_3 - S_0, \\ S_3 - S_1, \\ S_0 - 0, \\ S_1 - 1, \} \end{split}$$

• Для PB $(0+1)^*$ по грамматике G_3 строим грамматику $G_4=(\{S_4,S_3,S_0,S_1\},\{0,1,2\},P_4,S_4)$, где P_4

•
$$S_4 \rightarrow S_3 \mid \varepsilon$$

$$S_3 \rightarrow S_0 \mid S_1$$

$$S_0 \rightarrow 0S_4 \mid 0$$

$$S_1 \rightarrow 1S_4 \mid 1$$

• Для PB(0+1)*2. Построим праволинейную грамматику

$$G_5 = \{\{S_4, S_3, S_0, S_1, S_2\}, \{0, 1, 2\}, P_5, \text{что-то}\}$$
 где P_5 :

определяющую тот же язык.

• Пусть дана грамматика, определяемая правилами:

$$S \rightarrow 0A \mid 1B \mid \varepsilon A \rightarrow 0A \mid 1B \mid 2B \rightarrow 0B \mid 1A$$

• рассмотрим систему уравнений:

$$S = 0A + 1B - \varepsilon$$
$$A = 0A + 1B - 2$$
$$B = 0B - 1A$$

• Выразим B = 0 * 1A и подставим его значение в 1-е и 2-е уравнения:

$$S = 0A + 10*1A - \varepsilon$$
$$A = 0A + 10*1A - 2$$
$$B = 0*1A$$

• Выразим $A = \{0 + 10 * 1\} * 2$ и подставим его в первое уравнение:

$$S = 0(0 + 10*1)*2 + 10*1(0 + 10*1)*2 + \varepsilon$$

$$A = (0 - 10*1)*2$$

$$B = 0*1A$$

Выражение ля S можно преобразовать к виду $S = (0-10*1) + 2 + \varepsilon$

Это РВ будет определять то же регулярное множество (регулярный язык), что и данная праволинейная грамматика.

Конечные автоматы и регулярные множества.

Наибольшую популярность получили именно конечные автоматы, потому что они служат не только для описания регулярных языков, но и для описания модели алгоритма, работающего в режиме дискретных шагов, — именно так работают почти все алгоритмы, ведь это заложено в определении.

Конечный автомат — это:

- Формальная система
- Помнит только конечное количество информации
- Информация представляется его состояниями
- Состояние изменяется под воздействием входов
- Правила, которые говорят, как изменять состояние под воздействием входов, называются переходами

Что является ключевой особенностью? Объект, названный нами автоматом, короче давайте рисовать.

Этот автомат умеет работать с некоторыми символами, поступающими на вход.

$$\underbrace{a(t) \longrightarrow \square}_{\text{BXOII}} S(t)$$

$$a_i \in \Sigma, s(t+1) = \delta(s(t), a(t)) -$$
функция перехода

Допустимые входы

- Дана последовательность входов (входная строка).
- Начать в начальном состоянии и следовать по переходу по каждому очередному символу входной строки.
- Вход принимается, если вы перенеслись в финальное (принимающее) состояние после чтения всех входных символов.

Язык автомата

- Множество строк, принимаемых автоматом A, являются *языком* автомата A.
- Обзонгачается L(A)
- Различные множества финальных состояний ightarrow Разные языки.

Детерминированный конечный автомат

- Формализм для определения языков, состоящих из:
 - Конечного множества состояний (Обозначается обычно Q)
 - Входной алфавит (∑, обычно)
 - Функция переходов (δ , обычно)
 - Начальное состояние (q_0 в Q, обычно)
 - Финальные состояния ($F \subseteq Q$, обычно)

Примечание: на зачёте, отвечая на вопрос про детерминированный конечный автомат, нужно не только перечислить эти компоненты, но и дать определение функции переходов, иначе ответ будет неполный

$$A = (Q, \Sigma, \delta, q_0, F)$$

$$\delta: Q \times \Sigma \to Q$$

Функция переходов

• Имеет два аргумента: состояние и входной символ.

- $\delta(q,a)=$ состояние, в которое КДА переходит, если он в состоянии q получает на вход символ a.
- Замечание: всегда есть следующее состояние добавим *Мёртвое состояние* если нет переходов (Пример далее)
- Форма задания: таблица переходов, граф.
- Функцию пееходов можно доопределить для слов:

$$\delta^{\star}(q,a) = \delta(q,a)$$
 если $|a| = 1$
$$\delta^{\star}(q,aw) = \delta(\delta^{\star}(q,w),a)$$

Начальное состояние указывается стрелочкой \rightarrow , а конечное (заключительное) — звёздочкой \star

Пример:

Matriusa repenogob:

| do a, ... ak stergorkoù ramerosomis harabestou coembrune

* d2

* d2

* d4

Расширенная дельта

- Мы не будем различать обозначения δ и δ^\star
- Причина: $\delta^\star(q,a)=\delta(\delta^\star(q,\epsilon),a)=\delta(q,a)$ Расширенная дельта δ^\star

Пример: Распозначание строк, оканчивающихся на "ing"

Пример: Протокол для пересылки данных

Ready data in Sending Lineous

Theoret

Showet

Пример: Строки без 11

- Строка еще не иммет 11. Не оканчивается 1.
- Строка еще не имеет 11. Но оканчивается на 1.
- Найдены две 1 идущие подряд

соглашение: Строки и символы.

- ...w, x, y, z строки
- a, b, c, \dots одиночные входные символы

Язык КДА

- Автоматы всех видов определяют языки.
- Если A автомат, L(A) его язык.
- Для КДА A, L(A) есть множество строк, помечающих пути из начального состояния в финальное
- Формально: L(A)

Доказательство равенства множеств

Часто нам нужно доказать, что два описания множеств определят фактически одно и то же множество.

В нашем случае одно множество "КДА"

Док-во

- В общем, чтобы доказать S=T, нам нужно доказать две части: $S\subseteq T \land T\subseteq S$. То есть
- Если w есть в S, то $w \in T$
- $w \in T \Rightarrow w \in S$
- В нашем случае:

S=L(A), т.е., quote.angle.l.double S — есть язык нашего автомата A quote.angle.r.double

T= в словах языка нет двух последовательных единиц

Часть 1: $S \subseteq T$

•

• Доказатьельство индукцией по..

Индуктивная гипотеза

 $\delta(A,w)=A\Rightarrow$ последовательные $1\notin w\wedge w$ не заканчивается на 1

$$\delta(A, w) = B \Rightarrow$$

- Базис: |w|=0; т.е. $w=\varepsilon$
 - ▶ (1) выполняется, т.к. ∈ не имеет 1 совсем
- (2) выполняется т.к. $\delta(a,b)$ не является B

Индуктивный шаг

- Пусть (1) и (2) выполняются для строк короче чем $w \dots$
- По предположению ...
- Так как w не пуста, можно записать w=xa

Индуктивный шаг — 2

• Нужно доказать (1)

Индуктивный шаг — 3

• Так как $\delta(A, w) =$

Часть 2: $T \subseteq S$

- Теперь мы должны доказать: если w не имеет 11, то принимается
- От противного: если