CS & IT

ENGINERING

Discrete Mathematics

Mathematical Logic

DPP 02 Discussion notes

TOPICS TO BE COVERED

01 Question

02 Discussion

Q.1

Which of the following is/are logical equivalence?

1.
$$\sim (p \rightarrow q)$$
 $\sim (p \rightarrow q)$ \sim

- A. I and II
- B. I and III
- C. II and IV
- D. II and III

Q.2

Consider the following statement

$$S_1: (p \to q) \land (p \to r)$$

 $(\mp \to) \land (\mp \to)$

$$S_2: p \rightarrow (q \wedge r)$$

- A. S_1 is tautology (b_1C)
- S_1 is contingency \checkmark
- S_1 is logically equivalence to $S_2 \mid \neg \lor \lor \lor \lor$
- D. None of these

Which of the following is logically equivalence?

$$(p \rightarrow r) \lor (q \rightarrow r)$$

(a,b)

В.

$$(p \leftrightarrow q) \lor (q \rightarrow r)$$

C.

D.

$$(p \leftrightarrow r) \land (q \leftrightarrow r)$$

Consider the following statement

$$S_1: \sim (p \leftrightarrow q) \quad \gamma((p \rightarrow q) \land (q \rightarrow p)) = (p \land q) \lor (q \land p)$$

$$S_2: p \leftrightarrow \sim q$$

Which of the following is correct?

- A. S_1 is tautology
- B. S₂ is contradiction
- C. S₁ is equivalence to S2
- D. None of these

Consider the following statement

$$S_1: \sim (p \vee (\sim p \wedge q)) \qquad \neg (p \vee (\neg p \wedge q))$$

$$S_2$$
: $\sim p \land \sim q$

Which of the following is correct?

- A. S_1 is tautology
- B. S₂ is contradiction
- C. S₁ is equivalence to S2
- D. S₁ is not equivalence to S2

