CS578/STAT590: Introduction Machine Learning	Fall 2014	
Problem Set 4		
Handed Out: Dec 3	Due: Dec 18	

Questions

1. Boosting

In this problem you will have to use the AdaBoost algorithm to learn a function, mapping examples in \mathbb{R}^2 to a boolean value. The space of weak learner considered by the algorithm consists of hypotheses of the form: $x_i > A$ where A is an Integer, and $i = \{1, 2\}$. Run the AdaBoost algorithm for two rounds using the data appearing in the table below, at each round AdaBoost chooses the weak learner that minimizes the error (ϵ) . Your answer should consist of:

- (1) The weak hypothesis used at each round, and its error
- (2) The distribution D_i over the examples for each round
- (3) The final hypothesis after running two rounds.

index	x_1	x_2	y
1	1	10	-
2	4	4	-
3	8	7	+
4	5	6	-
5	3	16	-
6	7	7	+
7	10	14	+
8	4	2	-
9	4	10	+
10	8	8	-

2. Naïve Bayes

You are given a collection of m documents written in a language consisting of four symbols a, b, c, d, each document is n symbols long. Each document is associated with a binary label ("good" or "bad" document). We can represent the documents using a multinomial distribution. Given a document, we denote by a_i, b_i, c_i, d_i , the count of each one of the symbols in the document, and define the distribution:

$$P(D_i | y=1) = \frac{n!}{a_i!b_i!c_i!}\alpha_1^{a_i}\beta_1^{b_i}\gamma_1^{c_i}\delta_1^{d_i}$$

where α_1 ($\beta_1, \gamma_1, \delta_1$) is the probability that a symbol a (and respectively, b, c, d) appears in a document labeled as "good". Similarly we define

$$P(D_i | y=0) = \frac{n!}{a_i!b_i!c_i!}\alpha_0^{a_i}\beta_0^{b_i}\gamma_0^{c_i}\delta_0^{d_i}$$

where α_0 ($\beta_0, \gamma_0, \delta_0$) is the probability that a symbol a (and respectively, b, c, d) appears in a document labeled as "bad"¹.

(1) Write the joint log-likelihood of a document and labels (i.e., $log P(D_i, y_i)$).

3. Bayesian Network

You are given a Bayesian network, defined over four variables. The variable A is binary, and the rest of the variables take 3 values.

- (1) How many parameters are needed to define the network?
- (2) Write the expression calculating (a) P(A=1, D=2) (b) P(A=1,D=2| C=1)

4. Variable Elimination

Given the "Burglar Alarm" network we saw in class, compute P(Mary calls).

- (1) Write the expression calculating P(Mary calls), according to the network below. How many operations are needed to compute it?
- (2) Run the variable elimination algorithm. How many operations are needed now? (write down each step)

Note that $\alpha_i + \beta_i + \gamma_i + \delta_i = 1$