TryHackMe: Incident handling with Splunk

Link: https://tryhackme.com/r/room/splunk201

Neste exercício iremos investigar um ataque cibernético de deface no site de uma organização. A solução SIEM é Splunk e categorizaremos as atividades do atacante nas 7 fases descritas na Cyber Kill Chain.

A grande corporação Wayne Enterprises recentemente enfrentou um ataque cibernético em qual os atacantes invadiram sua rede, acharam seu servidor web, e conseguiram realizar um ataque de deface no website http://www.imreallynotbatman.com. O site agora mostra a marca registrada dos atacantes, com a mensagem "YOUR SITE HAS BEEN DEFACED".

Figura 1 - Site que sofreu o deface.

Logs do Splunk estão sendo ingeridos de webserver/firewall/Suricata/Sysmon.

Algumas fontes de logs interessantes são:

- wineventlog
- winRegistry
- XmlWinEventLog
- fortigate_utm
- iic
- Nessus:scan
- Suricata
- stream:http
- stream: DNS
- stream:icmp

Reconnaissance Phase

Obs: Caso as pesquisas nesta fase não estejam funcionando para você, talvez seja necessário mudar a data das pesquisas para "All time".

Figura 2 - Configurações do splunk

A própria sala já nos guiou para prestar atenção em logs do suricata, que contém o hostname imnotreallybatman.com vindos do IP 40.80.148.42. A base da nossa query de pesquisa a partir de agora será:

Comando 1: index=botsv1 imreallynotbatman.com src=40.80.148.42 sourcetype=suricata

Somente analisando os valores de dest já temos alguns valores interessantes que podem indicar um possível ataque de Blind-SQLi. Uma estrutura parecida com a linguagem de SQL e comandos como sleep() ou comparações lógicas evidenciam que esse ataque possivelmente foi realizado.

Figura 3 - Resultado do Comando 1.

Um alerta de suricata destacou o valor CVE associado com a tentativa do ataque. Qual é o valor da CVE?

Como estamos procurando o valor da CVE, podemos tentar adicionar o valor CVE a nossa pesquisa:

Comando 2: index=botsv1 imreallynotbatman.com CVE src_ip=40.80.148.42 sourcetype=suricata

/ent	action ▼	allowed	~
	alert.action ▼	allowed	~
	alert.category ▼	Attempted Administrator Privilege Gain	~
	alert.gid ▼	1	~
	alert.rev ▼	1	~
	alert.severity ▼	1	~
	alert.signature ▼	ET WEB_SERVER Possible CVE-2014-6271 Attempt	~
	alert.signature_id ▼	2022028	~
	alert_gid ▼	1	~
	alert_rev ▼	1	~
	bytes ▼	1245	~
	category ▼	Attempted Administrator Privilege Gain	~

Figura 4 - Resultado do Comando 2.

O CVE-2014-6271 descreve uma vulnerabilidade em que comandos bash podem ser utilizados pelo header. Uma vulnerabilidade diferente da anterior, mas ainda é informação importante para mostrar que vários ataques podem ter sido feitos.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-6271

R: CVE-2014-6271

Qual é o CMS que o servidor web usa?

Vamos mudar nosso foco para o servidor Web agora. Mudando nossa pesquisa para filtrar eventos de alerta, podemos ver as diferentes categorias de alerta:

Comando 3: index=botsv1 imreallynotbatman.com src_ip=40.80.148.42 sourcetype=suricata event_type=alert

Figura 5 - Resultado do Comando 3.

Já observando o primeiro log, conseguimos achar qual é o CMS analisando somente a URL:

Figura 6 - Análise da URL nos logs.

R: Joomla

Também vale comentar que na análise dos ataques de aplicação web, conseguimos ver algumas categorias de SQLi, então estávamos certos previamente.

Qual é o web scanner que o atacante utilizou para fazer as tentativas de scan?

Usando o Comando 3 e pesquisando pela categoria "Attempted Information Leak", conseguimos um log com uma signature bem interessante:

Figura 7 - Logs de alerta de "Attempted Infiltration Leak".

"ET SCAN Acunetix Accept HTTP Header detected scan in progress"

A frase detected scan chama atenção, e após uma breve pesquisa é possível descobrir que Acunetix é um scanner de vulnerabilidades web.

Figura 8 - Pesquisa no google.com para Acutenix.

R: Acunetix

Qual é o endereço de IP do servidor imreallynotbatman.com?

Uma resposta trivial, que pode ser encontrada em qualquer log

R: 192.168.250.70

Exploitation Phase

Nesta fase, vamos ver se as tentativas de ataques foram bem sucedidas levando em consideração o IP do atacante identificado na fase anterior. Também devemos levar em consideração que o scanner de vulnerabilidades Acutenix está em uso.

O módulo faz diversas análises estatísticas, explicando seu passo a passo e detalhamento. Para mais detalhes, visite a seção exploitation do módulo. Vamos utilizar o comando final, que já está filtrando senhas e o agente do usuário na página de login administrador do site.

```
Comando 4: index=botsv1 sourcetype=stream:http

dest_ip="192.168.250.70" http_method=POST

form_data=*username*passwd* | rex field=form_data

"passwd=(?<creds>\w+)" |table _time src_ip uri http_user_agent

creds
```

Qual o URI que recebeu múltiplas tentativas de login?

_time \$	src_ip \$ / uri \$	http_user_agent \$
2016-08-10 21:45:21.325	23.22.63.114 /joomla/administrator/index.php	Python-urllib/2.7
2016-08-10 21:48:05.858	40.8 uri = /joomla/administrator/index.php	la/5.0 (Windows NT
2016-08-10 21:46:51.394	23.2 Exclude from results	□ n-urllib/2.7
2016-08-10 21:46:51.154	23.2 2016-08-10 21:45:21.325 to 2016-08-10 21:45:21.326 uri = /joomla/administrator/index.php	n-urllib/2.7
2016-08-10 21:46:51.156	23.2 View events	n-urllib/2.7
2016-08-10 21:46:50.873	23.22.03.114 /joomia/administrator/index.pnp	rytmon-urllib/2.7
2016-08-10 21:46:50.634	23.22.63.114 /joomla/administrator/index.php	Python-urllib/2.7
2016-08-10 21:46:50.627	23.22.63.114 /joomla/administrator/index.php	Python-urllib/2.7

Figura 10 - Resultado do Comando 4.

R: /joomla/administrator/index.php

Contra qual usuário as tentativas de login foram feitas?

```
Comando 5: index=botsv1 sourcetype=stream:http
dest_ip="192.168.250.70" http_method=POST
uri="/joomla/administrator/index.php"
form_data=*username*passwd* | table _time uri src_ip dest_ip
form_data
```

uri ¢	src_ip \$ 🗸	dest_ip \$ /	form_data \$
/joomla/administrator/index.php	23.22.63.114	192.168.250.70	username=admin&task=log
/joomla/administrator/index.php	23.22.63.114	192.168.250.70	username=admin&task=log
/joomla/administrator/index.php	23.22.63.114	192.168.250.70	username=admin&d9477575
/joomla/administrator/index.php	23.22.63.114	192.168.250.70	username=admin&7ec95c63
/joomla/administrator/index.php	23.22.63.114	192.168.250.70	username=admin&task=log
/joomla/administrator/index.php	23.22.63.114	192.168.250.70	username=admin&task=log

Figura 11 - Resultado do Comando 5.

R: admin

Qual foi a senha correta para o acesso administrador?

Podemos assumir que a senha correta foi a única senha que foi usada duas vezes, uma quando foi encontrada pelo programa, e uma pelo usuário tentando o bruteforce. Para isso, vamos fazer uma contagem de quantas vezes cada valor de senha foi inserido com o seguinte comando:

Comando 6: index=botsv1 sourcetype=stream:http
dest_ip="192.168.250.70" http_method=POST
form_data=*username*passwd* | rex field=form_data
"passwd=(?<creds>\w+)" | table src_ip creds | stats count by
creds

Figura 12 - Resultado do Comando 6.

R: batman

Quantas senhas únicas foram tentadas?

Investigando os fóruns do Splunk, encontramos que a função stats dc(variável) pode contar a quantidade de valores únicos encontrados. Então, modificando o comando 4:

```
Comando 7: index=botsv1 sourcetype=stream:http
dest_ip="192.168.250.70" http_method=POST
form_data=*username*passwd* | rex field=form_data
"passwd=(?<creds>\w+)" |table creds
| stats dc(creds)

dc(creds) $\delta$
```

Figura 13 - Resultado do Comando 7.

R: 412

Qual endereço de IP provavelmente está tentando um ataque de força bruta no host?

Observando o output do Comando 4, podemos deduzir que o host que está usando python como user agent é o IP que está utilizando um programa de bruteforce.

Observando a Figura X, esse IP é 23.22.63.114

R: 23.22.63.114

Após encontrar a resposta correta, qual IP o atacante usou para acessar e fazer login no painel de administrador?

Utilizando a mesma lógica do exercício anterior, o único IP que realizou login por um agente que não é o python seria o correto.

Figura 14 - Recorte dos resultados do Comando 5.

R: 40.80.148.42

Installation Phase

Quando o atacante conseguiu passar da segurança e entrou no sistema, ele vai tentar utilizar alguma forma de persistência, seja backdoor ou algum outro aplicativo. Essa é a

fase de instalação. Na última fase, descobrimos que por meio de um ataque de força bruta o atacante conseguiu entrar na página de administrador. Agora é nosso trabalho examinar qual payload foi utilizado para manter a persistência.

O desenvolvimento da sala nos levou a achar que o aplicativo para persistência é "3791.exe", para mais detalhes sobre a descoberta consulte a sala. Também nos foi dada a query relevante para utilizarmos:

```
Comando 8: index=botsv1 "3791.exe" sourcetype="XmlWinEventLog"
EventCode=1
```

Estamos procurando o 3791.exe nos event logs do windows. Esse comando servirá de base para os próximos desenvolvimentos.

Sysmon também coleta os valores hash dos processos criados. Qual o MD5 do programa 3791.exe?

Figura 15 - Resultado do Comando 8.

R: AAE3F5A29935E6ABCC2C2754D12A9AF0

Olhando os logs, qual usuário executou o programa 3791.exe no servidor?

Figura 16 - Recorte de logs do Comando 8.

R: NT AUTHORITY\IUSR

Procure o hash no VirusTotal. Qual outro nome é associado ao arquivo 3791.exe?

https://www.virustotal.com/gui/file/ec78c938d8453739ca2a370b9c275971ec46caf6e479de2b2d04e97cc47fa45d/relations

Figura 17 - Pesquisa no VirusTotal.

R: ab.exe

Action on Objective

Como o site sofreu um deface pelo adversário, o ideal seria compreender o que aconteceu no site que causou seu deface. Com a investigação, descobrir que pelo IP 23.22.63.114, o mesmo do bruteforce, o atacante fez download de um arquivo que provavelmente causou o deface.

```
Comando 9:index=botsv1

url="/poisonivy-is-coming-for-you-batman.jpeg"

dest_ip="192.168.250.70" | table _time src dest_ip

http.hostname url
```

Qual o nome do arquivo que realizou o deface no site?

R: poisonivy-is-coming-for-you-batman.jpeg

O Firewall Fortigate "fortigate_utm" detectou tentativas SQL do IP do atacante 40.80.148.42. Qual o nome da regra que foi ativada durante a tentativa de SQLi?

```
Comando 10: index=botsv1 dest_ip="192.168.250.70" sourcetype=fortigate_utm
```

# product_version 1	
a profile 3 signature	
# proto 1	
a protocol 1 16 Values, 31.4% of events	
a protocol_version 1	
# rcvdbyte 100+ Reports	
a ref 16 Top values Top values by time	
a reqtype 1 Events with this field	
# rule_id 2	
# sentbyte 100+ Top 10 Values Co	unt
a service 2 Acunetix.Web.Vulnerability.Scanner 4,2	229
# session_id 100+	
sessionid 100+ HTTP.URI.SQL.Injection 199)
a severity 6 Bash.Function.Definitions.Remote.Code.Execution 18	
a signature 16 Apache.Camel.XSLT.Component.XXE 12	
# signature_id 15	
a site 100+ PHP.CGI.Argument.Injection 10	

Figura 18 - Resultado do Comando 10.

R: HTTP.URI.SQL.Injection

Command and Control Phase

O atacante fez o upload de um arquivo para o servidor antes de realizar o deface. Para isso, ele fez com que o servidor se conecta-se com um servidor malicioso hosteado pelo adversário, e usou DNS Dinâmico para resolver seu endereço. Nosso objetivo é encontrar o IP que o atacante usou para DNS.

```
Comando 11: index=botsv1 sourcetype=stream:http
dest_ip=23.22.63.114 "poisonivy-is-coming-for-you-batman.jpeg"
src_ip=192.168.250.70
```

Esse ataque fez uso de DNS dinâmico para resolver o IP malicioso. Qual o nome do domínio qualificado completo associado ao ataque?

```
server_rtt_packets: 2
server_rtt_sum: 64714
site: prankglassinebracket.jumpingcrab.com:1337
src_headers: GET /poisonivy-is-coming-for-you-batman.jpeg |
Host: prankglassinebracket.jumpingcrab.com:1337

src_in: 192 168 250 70
Figure 40 Decuktede de Compande 44
```

Figura 19 - Resultado do Comando 11.

R: prankglassinebracket.jumpingcrab.com

Weaponization Phase

Descobrimos domínios e IPs relacionados ao adversário durante a nossa investigação. Agora, usaremos OSINT para tentar extrair mais informações. Sites usados:

https://whois.domaintools.com/po1s0n1vy.com https://www.virustotal.com/gui/domain/www.po1s0n1vy.com/relations https://www.robtex.com/ip-lookup/23.22.63.114

Qual endereço de IP P01s0n1vy atrelou a domínios pré-programados para atacar a Wayne Enterprises?

Date resolved	Detections	Resc	olver	IP	
2024-02-17	0 / 93		sTotal	38.207.236.88	
2024-01-29	0 / 93	Virus	sTotal	156.254.170.147	
2023-05-25	0 / 93	Virus	sTotal .	172.67.187.244	
2023-05-25	0 / 93	Virus	sTotal .	104.21.7.173	
2021-09-03	3 / 93	Virus	sTotal .	34.102.136.180	
2018-08-30	3 / 93	Virus	sTotal .	91.195.240.117	
2018-05-19	0 / 93	Virus	sTotal	23.22.63.114	
Siblings (5) ①					
ftp.po1s0n1vy.com	0 / 93	64.29.151.221			
illian.po1s0n1vy.com	0 / 93	64.29.151.221			
lillian.po1s0n1vy.com	0 / 93	64.29.151.221			
po1s0n1vy.com	0 / 93	52.213.114.86	38.207.236.88	156.254.170.147	

Figura 20 - Pesquisa no VirusTotal.

O endereço de IP na Figura X está atrelado ao domínio P01s0n1vy e bate com o IP que estava realizando o brute force previamente.

R: 23.22.63.114

Baseado nos dados adquiridos do ataque e fontes de OSINT comuns, qual endereço de email provavelmente está atrelado ao grupo P01s0n1vy?

Usando o site alienvault para procurar sobre o domínio suspeito https://otx.alienvault.com/indicator/hostname/www.po1s0n1vy.com

Figura 21 - Pesquisa no Alienvault.

Conseguimos ver que o email atrelado ao domínio é lillian.rose@po1s0n1vy.com

R: lillian.rose@po1s0n1vy.com

Delivery Phase

Agora que identificamos endereços de IP, domínios e emails relacionados ao adversário, nosso objetivo é usar essa informação em plataformas de threat hunting e OSINT para achar mais malware relacionado ao adversário.

https://www.threatminer.org/host.php?q=23.22.63.114#gsc.tab=0&gsc.q=23.22.63.114&gsc.page=1

https://www.virustotal.com/gui/file/9709473ab351387aab9e816eff3910b9f28a7a70202e250ed46dba8f820f34a8

https://www.hybrid-analysis.com/sample/9709473ab351387aab9e816eff3910b9f28a7a7020 2e250ed46dba8f820f34a8?environmentId=100

Qual é o HASH do malware associado ao grupo APT?

Olhando nossa fonte no threat miner:

Figura 22 - Pesquisa no Threat Miner.

R: c99131e0169171935c5ac32615ed6261

Qual o nome do malware associado a infraestrutura Poison Ivy?

Checando nossa fonte no VirusTotal:

Figura 23 - Segunda pesquisa no VirusTotal.

R: MirandaTateScreensaver.scr.exe