НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО» Факультет прикладної математики Кафедра прикладної математики

Звіт із лабораторної роботи №4

із дисципліни «Розподілені і хмарні обчислення»

 Виконав:
 Керівник:

 студент групи КМ-01
 доцент кафедри ПМА

 Скорденко Д. О.
 Ліскін В. О.

3MICT

Вступ	3
1 Основна частина	4
2 Опис програми [Тестовий приклад]	Ę
Висновки	7
Попаток Кол пістінги	5

Мета: розпаралелити метод Гаусса для вирішення СЛАР. Дослідний приклад:

$$A = \begin{bmatrix} 8 & 7 & 3 \\ -7 & -4 & -4 \\ -6 & -5 & -4 \end{bmatrix} b = \begin{bmatrix} 18 \\ -11 \\ -15 \end{bmatrix}$$

Рішення:

$$X = \begin{bmatrix} 5 \\ -1 \\ -5 \end{bmatrix}$$

1 ОСНОВНА ЧАСТИНА

Опис програми: Для реалізації паралелізму буде використовуватись 'Rayon'. Для порівняння швидоксті обчислень буде використовуватись 'Criterion'. Для матриць / векторів буде використовуватись 'ndarray'.

Порівняння буде проведено на різних к-стях відрізків $n \in [10, 100, 1000]$, та при різній к-сті потоків $nworkers \in [1, 2, 4, 8]$

Рисунок 2.1 - Характеристики системи

Рисунок 2.2 - К-сть ядер процесора

Таблиця 2.1 - Порівняння швидкодії

n	nworkers	time
10	1	10.621 μs 10.930 μs 11.370 μs
10	2	17.354 μs 17.776 μs 18.270 μs
10	4	32.124 µs 32.884 µs 33.736 µs
10	8	54.917 μs 55.216 μs 55.558 μs
100	1	1.5261 ms 1.5530 ms 1.5841 ms
100	2	1.6093 ms 1.6221 ms 1.6357 ms
100	4	1.9064 ms 1.9908 ms 2.0801 ms
100	8	2.6843 ms 2.7242 ms 2.7629 ms
1000	1	1.7285 s 1.7489 s 1.7719 s
1000	2	1.2366 s 1.2536 s 1.2761 s
1000	4	1.0471 s 1.0660 s 1.0836 s
1000	8	987.86 ms 994.92 ms 1.0031 s

ВИСНОВКИ

На малих об'ємах обчислень збільшення к-сті потоків призводить до погіршення продуктивності.

На більших об'ємах збільшення потоків призводить до збільшення продуктивності, однак після певної к-сті потоків ефект покращення продуктивності стає незначним.

Додаток

Код лістінги

```
*Примітка: У код лістингах при копіюванні втрачається форматування (не
копіюються пробіли). Файли прикріплено до цього pdf (вкладка
"прикріплені файли").
                         Listing 1: lineareq.rs
use rayon::prelude::*;
use ndarray::prelude::*;
pub fn gauss (mut m: Array<f64, Dim<[usize; 2]≫) → Array<f64, Dim<[usize;</pre>
    let (nrows, ncols) = m.dim();
    // Прямий хід
    (0..nrows).into_iter().for_each(|i| {
        (0..ncols).rev().into_iter().for_each(|j| {
            m[[i,j]] /= m[[i,i]];
        });
        let _m = m.clone();
        m
            .slice_mut(s![i+1..nrows, ..])
            .axis_iter_mut(Axis(0))
            .into_par_iter()
```

```
9
```

```
.for_each(|mut row| {
            let scale = row[i];
            (i..ncols).into_iter().for_each(|k| {
                row[k] -= scale * _m[[i,k]];
            });
        });
});
// Зворотній хід
let mut xx = Array::<f64, _>::zeros(nrows);
xx[nrows - 1] = m[[nrows - 1, nrows]];
(0..nrows-1).rev().into_iter().for_each(|i| {
    xx[i] = m[[i, nrows]];
    (i+1..nrows).into_iter().for_each(|j| {
        xx[i] -= m[[i,j]] * xx[j];
    });
});
XX
```

Listing 2: lib.rs

}

Listing 3: main.rs

```
use lab_4::lineareq::gauss;
use ndarray::prelude::*;

fn main() {
    let m = array![
        [8., 7., 3., 18.],
        [-7., -4., -4., -11.],
        [-6., 5.0, -4.0, -15.0],
    ];

    println!("Input: {}", m);

    let m = gauss(m);
    println!("Result: {}", m);
}
```