Übungsfragen

ACID-Prinzipien

Wofür steht das "A" in ACID?

- a) Access
 - b) Atomicity
 - c) Allocation
 - d) Architecture

Lösung: b) Atomicity

Welche Eigenschaft sorgt dafür, dass Transaktionen keine ungültigen Daten hinterlassen?

- a) Isolation
 - b) Atomicity
 - c) Durability
 - d) Consistency

✓ Lösung: d) Consistency

Was verhindert das "Isolation"-Prinzip?

- a) Stromausfälle
 - b) Unvollständige Transaktionen
 - c) Beeinflussung paralleler Transaktionen
 - d) Datenverlust nach dem Commit

Lösung: c) Beeinflussung paralleler Transaktionen

Wann gilt eine Transaktion als dauerhaft gespeichert?

- a) Nach dem ersten SQL-Befehl
 - b) Sobald sie im RAM liegt
 - c) Nach einem Rollback
 - d) Nach einem erfolgreichen Commit

Lösung: d) Nach einem erfolgreichen Commit

Erkläre in einem Satz, was "Atomicity" bedeutet.

☑ **Lösung:** Eine Transaktion wird vollständig ausgeführt oder gar nicht – es gibt keine Teilergebnisse.

Was versteht man unter einem "Dirty Read" und wie hilft ACID, das zu vermeiden?

Lösung: Ein "Dirty Read" ist das Lesen von Daten aus einer nicht abgeschlossenen Transaktion.

Das ACID-Prinzip "Isolation" verhindert solche Probleme, indem es Transaktionen voneinander abschirmt..

Nenne ein Beispiel aus dem Alltag, bei dem das ACID-Prinzip wichtig ist.

∠ Lösung: Beim Online-Banking – z. B. beim Überweisen eines Betrags zwischen zwei Konten müssen beide Operationen (Abbuchung und Gutschrift) als atomare Transaktion erfolgen.

Wie unterstützt Write-Ahead Logging das "Durability"-Prinzip?

Lösung: WAL sorgt dafür, dass alle Änderungen vorab protokolliert werden, sodass sie auch nach einem Systemabsturz wiederhergestellt werden können.