Introducción del Curso

IE-425
Redes de Computadoras
Eduardo Navas

Introducción (1)

- 50's
 - Mainframe Centralizado
 - Tarjetas Perforadas (punch cards)
 - No había comunicación de datos
 - 1 Aplicación a la vez (batch processing)
- 60's
 - Costos de Mainframes bajan (centralizado)
 - Procesamiento en línea reemplaza a tarjetas
 - Ahora los datos se introducen por terminales

Introducción (2)

- -70's
 - Aparecen minicomputadores (centralizado)
 - Se dan mayores desarrollos
 - Se desarrollan Front Ends para Mainframes
 - Al final de la década aparecen las primeras microcomputadores
- 80's
 - Nuevas tecnologías
 - Satélites (desde los 70's)
 - Fibra Optica

Introducción (3)

- -80's
 - Aparecen las PCs
 - Aparecen las LANs
 - Interconexión de LANs (bridges, Routers)
- 90's
 - Explosión de Interconexión de LANs
 - LAN in a box
 - Switches
 - Backplanes
 - Nuevas Aplicaciones
 - Automatización de Oficinas
 - Bases de Datos Distribuidas

Introducción (4)

- 90's
 - Explosión de Internet
 - Compresión de Video
 - Bajan los costos de Almacenamiento
 - Inicio de Aplicaciones Multimedia
- 2000's
 - Integración de Redes (una sola red)
 - Voz
 - Datos
 - Video

Introducción (5)

- 2000's y 2010's
 - Aplicaciones Interactivas (VOD, juegos linea)
 - Períodicos / Revistas en Línea
 - Redes Sociales (facebook, etc.)
- Conclusión
 - Estamos en la Revolución de la Información
 - Prensa Escrita: hace más de 150 años
 - Broadcast (Radio, TV): hace más de 75 años
 - Internet: 90's y 2000's
 - Han producido fuertes cambios en la Sociedad

Hardware de Red (1)

- Existen 2 puntos claves para diferenciar las redes de computadoras
 - Tecnología de Conmutación
 - Tamaño de la Red
- Tecnología de Conmutación
 - Redes de Propagación (broadcast networks)
 - Redes Punto-a-Punto

Hardware de Red (2)

Tamaño de Redes:

Tamaño	Tipo
Personal	PAN (Personal Area Network) »
Hogar	HAN (Home Area Network) → LAN
Edificio	LAN (Local Area Network) »
Ciudad	MAN (Metropolitan Area Network) »
País	WAN (Wide Area Ntwork) »
Planeta	Internet (Interconnection of Networks)

Hardware de Red (3)

- PAN: Conecta dispositivos en el rango de una persona
 - Ejemplo: Bluetooth es considerada una PAN:

Hardware de Red (4)

 LAN: Conecta dispositivos en la casa o Oficina/Edificio

Hardware de Red (5)

- MAN: Conecta dispositivos en una red de Area Metropolitana
 - Red de CATV
 - Red XDSL

Hardware de Red (6)

- WAN: Conecta dispositivos en una red de Area Ancha, por ejemplo en un país
 - Un ISP también sería una WAN
 - Un VPN puede ser también una WAN

Hardware de Red (7)

- En general, el tamaño de la red define la tecnología de conmutación
- A menor tamaño: Broadcast
- A mayor tamaño: Punto-a-Punto

Hardware de Red (8)

- Redes Broadcast
 - Existe un único canal de comunicaciones que es compartido por todas las computadoras
 - Los paquetes que se envían son recibidos por todas las computadoras
 - En un campo de dirección se especifica a quién va el paquete
 - Analogía: En un pasillo de un hotel, Juan llama a Pedro. Todos oyen, pero solo Pedro contesta
 - Estos sistemas permiten tener una dirección especial de broadcast

Hardware de Red (9)

- Redes Broadcast
 - Además, también permite otro tipo de dirección especial: Multicast
- Redes Punto-a-Punto
 - Son redes en las que existen múltiples conexiones entre 2 computadoras
 - El mensaje pasa por equipos intermedios
 - Varias posibilidades para llegar a un destino
 - Algoritmos de entrutamiento son esenciales

Hardware de Red (10)

- Redes Punto-a-Punto
 - Relación: Red Subred Hosts

Red = Hosts + Subred

Hardware de Red (11)

- Redes Punto-a-Punto
 - La función de la subred en una red WAN es la de transportar mensajes de Host a Host
 - En la mayoría de los casos, la subred se compone de:
 - Elementos de Conmutación (routers, switches)
 - Líneas de Transmisión (circuitos, canales)
 - En una subred puede haber:
 - Conexiones indirectas (figura anterior)
 - Conexiones directas

Hardware de Red (12)

- Redes Punto-a-Punto
 - Principio de funcionamiento: Store & Forward
 - Mensaje es recibido completamente en cada nodo intermedio
 - Se queda ahí, hasta que la línea de salidad requerida se desocupe

Hardware de Red (13)

- Estructura de Internet: Red de Redes
 - Los hosts se conectan a Internet por medio de ISPs (Internet Service Providers)
 - Podemos decir, que los ISPs de acceso se conectan o interconectan a otros ISPs
 - Esto permite que 2 hosts puedan intercambiar paquetes entre sí
 - La evolución de esta estructura se ha dado por factores económicos y políticas nacionales

Arquitectura de Red (1)

- Las redes de computadoras son diseñadas de una manera muy estructurada
- Para reducir complejidad: se usan varios niveles o capas
- El propósito de un nivel es ofrecer servicios a los niveles superiores
 - De manera, que los niveles superiores no necesiten los detalles de como se realizan estos servicios
- El número de niveles varía de acuerdo a la red o Arquitectura de Red

Arquitectura de Red (2)

- El nivel n de una máquina (host) lleva una conversación virtual con el nivel n de la otra máquina
- Las reglas y convenciones que se usan en esta conversación se conoce como Protocolo n
- Cuando se transmiten datos de un nivel n de una máquina a otra máquina, no se transmite directamente
 - Se hace indirectamente por medio niveles inferiores

Arquitectura de Red (3)

- Solo el nivel 1 o Físico de una máquina se comunica directamente con el nivel 1 o Físico de la otra máquina
 - Nivel 1: Comunicación Física
 - Niveles 2 o superiores: Comunicación Virtual
- En cada nivel existe una interfaz que define operaciones y servicios que un nivel inferior le ofrece al nivel superior

Arquitectura de Red (4)

– Ejemplo:

Tanenbaum & Wetherall, © Pearson Education-Prentice Hall 2011

Arquitectura de Red (5)

– Ejemplo más técnico:

Arquitectura de Red (6)

- Para la operación de esta Arquitectura se necesita:
 - Introducir bits de control en cada nivel
 - Encabezado (header)
 - Nivel 2 introduce Header y Trailer
 - Nivel 1 no introduce bits de control
 - H3: header nivel 3
 - H2: header nivel 2
 - T2: trailer nivel 2

Arquitectura de Red (7)

- Unos puntos importantes a tener en cuenta:
 - Niveles superiores no entienden headers de niveles inferiores
 - Por esto no se pasa esta información
 - Headers de niveles superiores se consideran como parte de los datos en nivel inferior
 - No son entendidos por el nivel inferior
 - » H3M1: se ve como datos en nivel 2

Arquitectura de Red (9)

- Los niveles deben de estar bien definidos para minimizar el paso de información y poder reemplazarlos fácilmente
 - E.g: Línea telefónica por Satélite
- El conjunto de niveles y protocolos define:
 - Arquitectura de Red o Software de la red

Arquitectura OSI (1)

- La ISO (International Standards
 Organization) desarrolló un modelo de 7
 niveles para una Arquitectura de Red
- Esta Arquitectura es la OSI (Open Systems Interconnection)

Arquitectura OSI (2)

OSI (Open Systems Interconnection)

Arquitectura OSI (3)

- Nivel Físico
 - Se encarga de transmisión de bits
 - Modulación, Tb, Rb, Mux, Canal
 - Características mecánicas conectores
- Nivel de Enlace de Datos
 - Tipo de Servicio
 - Con Conexión
 - Sin Conexión
 - Función de establecer y terminar enlace lógico
 - Transmitir datos de forma confiable

Arquitectura OSI (4)

- Nivel de Enlace de Datos
 - Define estructura de trama
 - Control de flujo
 - Evita que un TX rápido sature a RX lento
 - Direccionamiento
 - E.g. direcciones MAC
- Nivel de Red
 - Controla operación de subred
 - Interfaz Host-Nodo
 - Direccionamiento

Arquitectura OSI (5)

- Nivel de Red
 - Enrutamiento
 - Control de congestión
 - Adaptación de tamaños de paquetes
 - Cobro de paquetes
 - Tipo de Servicio
 - Con Conexión
 - Sin Conexión

Arquitectura OSI (6)

- Nivel de Transporte
 - Nivel Host-a-Host
 - Transferencia confiable de Host-a-Host
 - Múltiples conexiones lógicas en mismo canal físico
 - Tipos de Servicio
 - Con Conexión
 - Sin Conexión
 - Establece/Termina conexiones en la red
 - Parte del sistema operativo del Host

Arquitectura OSI (7)

- Nivel de Sesión
 - Estructura de Comunicación entre aplicaciones
 - Mecanismos de recuperación de sesiones
 - Sincronización
 - Passwords
 - Usuarios
- Nivel de Presentación
 - Conversión de códigos (e.g ASCII a EBCDIC)
 - Formato de Archivos
 - Longitud de líneas, columnas de pantallas
 - Compresión de datos (se podría poner aquí)

Arquitectura OSI (8)

- Nivel de Aplicaciones
 - Son las aplicaciones en la red
 - Bases de datos distribuidas
 - Correo eletrónico
 - Transferencia de archivos
 - Ejecución remota de programas

Arquitectura OSI (9)

- Aclarar relación: Servicios, Interfaces y Protocolos
- Servicios:
 - Cada nivel N realiza un servicio a su nivel superior N+1
 - La definición del servicio indica lo que hace el Nivel N
 - Pero no indica como se accede al servicio
 - El servicio se define por medio de una serie de operaciones que se realizan (primitivas)
 - Pero no dice como hacerlas tampoco

Arquitectura OSI (10)

– Interfaces:

- La interfaz del nivel N indica al nivel N+1 como acceder al servicio del nivel N
- Indica cuales parámetros se usan

– Protocolos:

- Son las implementaciones de los servicios
- Son el conjunto de reglas que rigen el formato significado que se intercambia en la comunicación virtual de un Nivel N
- OSI hace un buen trabajo explicando esto

Arquitectura OSI (11)

- Ejemplo de Servicio de Conexión en OSI
- Orientado a Conexión vrs. Sin Conexión
 - Sin Conexión: los mensajes se manejan separadamente (e.g. servicio postal)
 - Solo tiene una fase
 - Transferencia de datos

Arquitectura OSI (12)

- Ejemplo de Servicio de Conexión en OSI
- Orientado a Conexión vrs. Sin Conexión
 - Orientado a Conexión requiere 3 fases (e.g. servicio telefónico)
 - Establecimiento Conexión
 - Transferencia de Datos
 - Desconexión
 - Orientado a Conexión da confiabilidad
 - Como ejemplo puede requerir 6 primitivas

Arquitectura OSI (13)

 Posibles primitivas de un servicio con conexión

Primitive	Meaning
LISTEN	Block waiting for an incoming connection
CONNECT	Establish a connection with a waiting peer
ACCEPT	Accept an incoming connection from a peer
RECEIVE	Block waiting for an incoming message
SEND	Send a message to the peer
DISCONNECT	Terminate a connection

Arquitectura OSI (14)

 Posible ejemplo de como estas primitivas se implementa

Arquitectura TCP/IP (1)

Modelo Arquitectura TCP/IP

4	Aplicación
3	Transporte
2	Internet
1	Host-a Red

- 1- Host a Red
 - No lo especifica, solo indica que hay que conectarse a la Red
 - Deja los detalles a los desarrolladores de esa tecnología

Arquitectura TCP/IP (2)

- 2-Nivel Internet (Interconnection of Networks)
 - Servicio: Sin Conexión (Análogo a Sist Correo)
 - Desde el diseño de la arquitectura se tenía el concepto de interconexión de redes
 - Función:
 - Inyecta paquetes a la red
 - Los paquetes viajan independientemente (Sin conexión)

Arquitectura TCP/IP (3)

- 3-Nivel de Transporte
 - Nivel de fin-a-fin (igual a OSI)
 - Se desarrollaron 2 protocolos
 - UDP: Sin Conexión
 - TCP: Con Conexión
 - UDP:
 - Sin conexión
 - No confiable
 - Sin control de flujo (puede ser mejor para velocidades altas)
 - Orientado a aplicaciones de 1 solo paquete o pocos

Arquitectura TCP/IP (4)

- 3-Nivel de Transporte
 - TCP:
 - Orientado a Conexión
 - Confiable
 - Control de Flujo
 - Control de Congestión
- 4-Aplicación
 - Telnet: login remoto
 - FTP: transferencia de archivos
 - SMTP: correo electrónico
 - DNS: Servidores de nombres
 - HTTP: aplicación web

Arquitectura TCP/IP (5)

- Historia de Redes
 - Arpanet: primera red
 - Fue desarrollada por el Depto. Defensa EUA
 - Red privada
 - Arpanet evoluciona a Internet
 - Internet es una red púbica
 - Otras arquitecturas
 - SNA de IBM
 - Decnet de Digital

Arquitectura TCP/IP (6)

- Compración OSI y TCP/IP
 - Similitudes
 - Basados en niveles o capas
 - Orden de niveles
 - Diferencias
 - OSI
 - » Primero se definió el modelo y luego los protocolos
 - » No se podía preveer todo por lo que hubo parches
 - » Explica bien otras arquitecturas
 - » Nivel de transporte solo Con Conexión

Arquitectura TCP/IP (6)

- Diferencias
 - TCP/IP
 - » Los protocolos se hicieron primero
 - » Modelo es descripción de protocolos: todo calza
 - » No es útil describiendo otras arquitecturas
 - » Nivel de tranporte: Con Conexión y Sin Conexión
- Críticas a OSI
 - Momento equivocado
 - Muy burocrático
 - Muy complejo y teórico

Arquitectura TCP/IP (7)

Concepto de apocalipsis de los elefantes

 Ventaja e TCP/IP: buenas implementaciones, gratis y adoptado por Microsoft