Конспект по теории вычислимости IV семестр, 2021 год Современное программирование, факультет математики и компьютерных наук, СПбГУ (лекции Пузыниной Светланы Александровны)

Тамарин Вячеслав

February 14, 2021

Contents

1	Вычислимость. Система вычислимости по Клини			
1.1 Рекурсивные		Рекур	сивные функции	3
		1.1.1	Простейшие функции	3
		1.1.2	Операторы	3
		1.1.3	Функции	4
		1.1.4	Оператор ограниченной минимизации	6
		1.1.5	Предикаты	6
		1.1.6	Теоремы про рекурсии	8
	1.2	Равно	сильность МТ и $\mathbf{ЧР\Phi}$	10
			Исходный код на https://github.com/tamarinvs19/theory_university	

Некоторые доказательства были опущены на лекции, но написаны мной. Они выделены оранжевыми символами:Исправляйте, дополняйте, меняйте. Чем меньше недоказанных утверждений, тем лучше!

Index

k-местная частичная функция, 3

кусочное задание функции, 10 общерекурсивная функция, 4 оператор минимизации, 4 оператор ограниченной минимизации, 6 оператор примитивной рекурсии, 3 оператор суперпозиции, 3 предикаты, 7 примитивно рекурсивная функция, 4 простейшие функции, 3

рекурсия возвратная, 9 рекурсия совместная, 10 частично рекурсивная функция, 4

Chapter 1

Вычислимость. Система вычислимости по Клини

1.1 Рекурсивные функции

Лекция 1: †

Определение 1

Пусть функция $f: \mathbb{N}^k \to \mathbb{N}$, $k \in \mathbb{N}$, где $\mathbb{N} = \{0, 1, 2, \ldots\}$. Такая функция называется k-местной частичной функцией. Если k = 0, то f = const.

11 feb

1.1.1 Простейшие функции

Простейшими будем называть следующие функции:

- Нуль местный нуль функция без аргументов, возвращающая 0;
- Одноместный нуль 0(x) = 0;
- Функция следования s(x) = x + 1;
- Функция выбора (проекция) $I_n^m(x_1, \dots x_n) = x_m$

1.1.2 Операторы

Определим три оператора:

• Функция f получается оператором суперпозиции из функций h и g, где

$$h(y_1,...,y_m), g_i(x_1,...,x_n); 1 \le i \le n,$$

если

$$f=h(g_1(x_1,\ldots,x_n),\ldots g_m(x_1,\ldots,x_n)).$$

Оператор обозначается S.

• Функция $f^{(n+1)_1}$ получается оператором примитивной рекурсией из $g^{(n)}$ и $h^{(n+2)}$, если

$$\begin{cases} f(x_1, \dots x_n, 0) = g(x_1, \dots x_n) \\ f(x_1, \dots x_n, y + 1) = h(x_1, \dots x_n, y, f(x_1, \dots x_n, y)) \end{cases}$$

¹Здесь и далее $f^{(n)}$ обозначается функция, принимающая n аргументов, то есть n-местная

Оператор обозначается \mathbf{R} .

• Функция f задается **оператором минимизации** (**M**), если она получается из функции g следующим образом:

$$\begin{split} f(x_1, \dots x_n) &= \mu y \big[g(x_1, \dots x_n, y) = 0 \big] = \\ &= \begin{cases} y & g(x_1, \dots x_n, y) = 0 \land g(x_1, \dots x_n, i)^2 \neq 0 \ \forall i < y \\ \uparrow^3 & else \end{cases} \end{split}$$

Пример 1.1.1.

$$x - y = \begin{cases} x - y, & x \ge y \\ \uparrow, & x < y \end{cases}$$

Можно задать по другому, чтобы g была **ПРФ**:

$$x - y = \mu y[|(x + z) - y| = 0].$$

1.1.3 Функции

Определение 2: Примитивно рекурсивная функция

Функция f называется **примитивно рекурсивной** (**ПРФ**), если существует последовательность таких функций $f_1, \ldots f_k$, что все f_i либо простейшие, либо получены из предыдущих $f_1, \ldots f_{i-1}$ с помощью одного из операторов **S** и **R** и $f = f_k$.

Пример 1.1.2. Докажем, что $f(x,y) = x + y - \mathbf{\Pi} \mathbf{P} \mathbf{\Phi}$. По **R** можем получить f так:

$$\begin{cases} f(x,0) &= x = I_1^1(x) = g \\ f(x,y+1) &= (x+y)+1 = s(f(x,y)) = \mathbf{S}(I_3^3(x,y,f(x,y)) = h \end{cases}.$$

Теперь построим последовательность функций f_i , где последним элементом будет f, полученный с помощью \mathbf{R} :

$$I_1^1$$
, s, I_3^3 , $h = \mathbf{S}(s, I_3^3)$, f.

Определение 3: Частично рекурсивная функция

Функция f называется **частично рекурсивной функцией** (**ЧРФ**), если существует последовательность функций $f_1, \ldots f_k$, таких что f_i либо простейшая, либо получается из предыдущих с помощью одного из операторов **S**, **R**, **M**.

Замечание. Частично рекурсивная функция может быть не везде определена. Но примитивно рекурсивная определена везде.

Замечание. Существуют частично рекурсивные функции, которые всюду определены, но при этом не являются $\Pi P \Phi$.

Определение 4

Общерекурсивная функция — всюду определенная частично рекурсивная.

Пример 1.1.3. $\mu y[x+y+1=0]$ — нигде не определена, но получается из последовательности других функций с помощью операторов.

Лемма 1. Следующие функции являются ПРФ:

1.
$$const^{(n)}$$

2.
$$x + y$$

3.
$$x \cdot y$$

4. x^{y} , где 0^{0} можем определить, как хотим

5.
$$sg(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$$

$$6. \ \overline{sg}(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$$

7.
$$x \div 1 = \begin{cases} 0 & x = 0 \\ x - 1 & x > 0 \end{cases}$$

8.
$$x - y = \begin{cases} 0 & x < y \\ x - y & else \end{cases}$$

9.
$$|x - y|$$

- 1. Сначала можем получить нужное число последовательной суперпозицией функции следования (получили константу от одной переменной), затем проецируем I_1^n , чтобы получить n переменных.
- 2. Доказали выше в примере 1.1.2.
- 3. f(x,y) = xy определим так:

$$\begin{cases} f(x,0) &= 0 \\ f(x,y+1) &= f(x,y) + x \end{cases}$$

а складывать мы умеем.

4.
$$f(x,y) = x^y$$
:

$$\begin{cases} f(x,0) &= 1 = s(0) \\ f(x,y+1) &= f(x,y) * y \end{cases}$$

Умножать тоже можно по пролому пункту.

5.
$$sg(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$$

$$\begin{cases} sg(0) &= 0 \\ sg(x+1) &= 1 = s(0) \end{cases}$$

- 6. Аналогично
- 7. $f(x) = x \div 1$

$$\begin{cases} f(0) &= 0 \\ f(x+1) &= x = I_1^1(x) \end{cases}$$

8.
$$f(x,y) = x - y$$

$$\begin{cases} f(x,0) &= x = I_1^1(x) \\ f(x,y+1) &= f(x,y) - 1 \end{cases}$$

9.
$$f(x,y) = |x - y| = (x - y) + (y - x)$$

Замечание. Обычное вычитание не является **ПРФ**, так как не везде определено на \mathbb{N} .

1.1.4 Оператор ограниченной минимизации

Определение 5: Оператор ограниченной минимизации

Функция $f^{(n)}$ задается **оператором ограниченной минимизации** из функций $g^{(n+1)}$ и $h^{(n)}$, если

$$\mu y \le h(\overline{x}) [g(\overline{x}, y) = 0]^a$$
.

Это означает, что

$$f(\overline{x}) = \begin{cases} y & g(\overline{x},y) = 0 \land y \leq h(\overline{x}) \land g(\overline{x},i) \neq 0^b \ \forall i < y \\ h(\overline{x}) + 1 & else \end{cases}.$$

Утверждение. Пусть $g^{(n-1)}$, $h^{(n)}$ — примитивно рекурсивные функции, $f^{(n)}$ получается из g и h с помощью ограниченной минимизации, то f тоже **ПРФ**.

 \Box Заметим, что f можно получить следующим образом:

$$f(\overline{x}) = \sum_{y=0}^{h(x)} \prod_{i=0}^{y} \operatorname{sg}(g(\overline{x}, i)).$$

Внутреннее произведение равно единице только тогда, когда все $g(\overline{x},i) \neq 0$. Если для некоторого y обнуляется $g(\overline{x},y)$, то все произведения, начиная с y+1, будут равны нулю, поэтому просуммируются только y единиц. Если же такого y нет, получим сумму из $h(\overline{x})+1$ единицы. Именно это и нужно.

Проверим, что можно получить $a(\overline{x},y) = \sum_{i=0}^{y} g(\overline{x},i)$ и $m(\overline{x},y) = \prod i = 0^{y} g(\overline{x},i)$ с помощью примитивной рекурсии:

$$\begin{cases} a(\overline{x},0) &= g(\overline{x},0) \\ a(\overline{x},y+1) &= a(\overline{x},y) + g(\overline{x},y+1) \end{cases} \begin{cases} m(\overline{x},0) &= g(\overline{x},0) \\ m(\overline{x},y+1) &= m(\overline{x},y) \cdot g(\overline{x},y+1) \end{cases}$$

Замечание. 0(x) можно исключить из определения простейших функций, так как она получается с помощью **R** для нульмерного 0 и $I_2^2(x,y)$:

$$0(y) = \begin{cases} 0(0) &= 0\\ 0(y+1) &= I_2^2(y,0) \end{cases}$$

1.1.5 Предикаты

aЗдесь и далее $\overline{x} = x_1, \dots x_n$.

 $^{{}^{}b}$ Аналогично, подразумевается, что функция определена в этих точках

Определение 6

Предикат — условие задающее подмножество: $R \in \mathbb{N}^k$.

Предикат называется **примитивно рекурсивным (общерекурсивным)**, его характеристическая функция примитивно рекурсивная (общерекурсивная).

$$\chi_R(\overline{x}) = \begin{cases} 1, & \overline{x} \in R \\ 0, & \overline{x} \notin R \end{cases}.$$

Утверждение.

- Если R,Q примитивно рекурсивные (общерекурсивные) предикаты, то $P \lor Q, P \land Q, P \to Q, \neg P$ тоже примитивно рекурсивные (общерекурсивные).
- Предикаты =, ≤, ≥, <, > тоже примитивно и общерекурсивны.
- Проверим, что характеристические функции примитивно / общерекурсивны:

$$\chi_{P\vee Q}(\overline{x}) = \chi_{P}(\overline{x}) \cdot \chi_{Q}(\overline{x})$$

$$\chi_{P\wedge Q}(\overline{x}) = \operatorname{sg}(\chi_{P}(\overline{x}) + \chi_{Q}(\overline{x}))$$

$$\chi_{P\to Q}(\overline{x}) = \operatorname{\overline{sg}}(\chi_{P}(\overline{x}) + \operatorname{\overline{sg}}(\chi_{Q}(\overline{x})))$$

$$\chi_{\neg P}(\overline{x}) = \operatorname{\overline{sg}}(\chi_{P}(\overline{x}))$$

• Аналогично выразим, через простейшие:

$$\chi_{x=y}(x) = \overline{sg}(|x-y|) = \begin{cases} 1, & x = y \\ 0, & x \neq y \end{cases}$$
$$\chi_{x < y}(x) = sg(x - y)$$

Остальные можем выразить также или через уже проверенные < и ¬.

Лемма 2. Следующие функции являются примитивно рекурсивными:

- 1. $\left\lfloor \frac{x}{y} \right\rfloor$, считаем, что $\left\lfloor \frac{x}{0} \right\rfloor = x$
- 2. $\operatorname{Div}(x,y) = \begin{cases} 1, & y \mid x \\ 0, & else \end{cases}$
- 3. Prime(x) = $\begin{cases} 1, & x \in \mathbb{P} \\ 0, & else \end{cases}$
- 4. $f(x) = p_x$, где p_x x-тое простое число, $p_0 \coloneqq 2$
- 5. ex(i,x) степень простого числа p_i разложении $x, ex(i,0)\coloneqq 0$
- 1. $f(x,y) = \left\lfloor \frac{x}{y} \right\rfloor$. Найдем минимальное k, что f'(x,y,k) = yk > x. Чтобы получить $f(x,y) = \min(k \mid f'(x,y,k)) 1$. Используем оператор минимизации:

$$f(x,y) = \mu k [\neg f'(x,y,k) = 0] - 1.$$

- 2. $\operatorname{Div}(x,y) = \left\lfloor \frac{x}{y} \right\rfloor \cdot y = x$
- 3. Определим $\mathrm{Div}'(x,y) = (y \le 1) \lor (\neg \mathrm{Div}(x,y))$, эта функция проверяет, что y не является нетривиальным делителем x.

Теперь, используя ограниченную минимизацию, выразим Prime(x):

$$Prime(x) = (\mu y \le h(x)[Div'(x,y) = 0]) = x$$
, где $h(x) = x - 1$.

То есть мы посмотрели на все меньшие числа, если среди них найдется нетривиальный делитель, то число не простое.

4. Пусть f'(x) = количество простых $\leq x$.

$$\begin{cases} f'(0) &= 0 \\ f'(x+1) &= \text{Prime}(x+1) + f(x) \end{cases}$$

Теперь можно вычислить f(x): для этого определим функцию g(x,y) = (f'(y) = x),

$$f(x) = \mu y [\neg f'(x, y) = 0].$$

5. Чтобы найти степень вхождения простого числа p_i в x, сначала находим это простое число по номеру, затем находим минимальное k, что x не делится на p_i^k и вычитаем единицу.

1.1.6 Теоремы про рекурсии

Теорема 1.1.1 (Канторовская нумерация). Пусть $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$:

$$\pi(x,y) = \frac{1}{2}(x+y)(x+y+1) + y.$$

- Тогда для любого z существует единственное представление $z = \pi(x, y)$.
- Причем функции x(z), y(z) примитивно рекурсивные.

• Запишем $\pi(x,y) = \binom{x+y}{2} + y$. Заметим, что для n > m верно

$$\binom{n}{2} - \binom{m}{2} \ge \binom{n}{2} - \binom{n-1}{2} = n-1.$$

Предположим, что x + y > x' + y' и $\pi(x, y) = \pi(x', y')$. Тогда

$$y'-y=\binom{x+y}{2}-\binom{x'+y'}{2}\geqslant x+y-1\geqslant x'+y'.$$

Но $y \ge 0$, $x' \ge 0$, поэтому единственный возможный вариант, когда они равны нулю, а x + y = x' + y' + 1. Проверим на равенство $\pi(x, y)$ и $\pi(x', y')$:

$$\pi(x,y) = \frac{1}{2}x(x+1) = \frac{1}{2}(y'+1)(y'+2) = \frac{1}{2}y'(y'+1) + y'+1$$

$$\pi(x',y') = \frac{1}{2}y'(y'+1) + y'$$

Равенства нет.

• Можно по-честному все посчитать и выразить x(z), y(z). Пусть

$$w = x + y$$

$$t = \frac{1}{2}w(w+1) = \frac{w^2 + w}{2}$$

$$z = t + y$$

Решим квадратное уравнение, чтобы выразить w через t (отрицательный корень можем сразу отбросить):

$$w = \frac{-1 + \sqrt{8t+1}}{2}.$$

Запишем неравенство:

$$t \le z = t + y < t + (w + 1) = \frac{(w + 1)^2 + (w + 1)}{2}.$$

Отсюда

$$w \le \frac{-1 + \sqrt{8z + 1}}{2} < w + 1.$$

Тогда

$$w = \left\lfloor \frac{-1 + \sqrt{8z + 1}}{2} \right\rfloor$$
$$t = \frac{w^2 + w}{2}$$
$$y = z - t$$
$$x = w - y$$

Таким образом, мы выразили через z обе координаты. Единственный момент — нужно извлекать корень, в натуральную степень возводить мы умеем, поэтому можем с помощью ограниченной минимизации перебрать все меньшие числа, возвести их в квадрат и сравнить с нашим числом.

Теорема 1.1.2 (Возвратная рекурсия). Зафиксируем *s*. Пусть

$$\begin{cases} f(\overline{x},0) &= g(\overline{x}) \\ f(\overline{x},y+1) &= h(\overline{x},y,f(\overline{x},t_1(y)),\dots f(\overline{x},t_s(y))) \end{cases}$$

где
$$t_i(y) \leq y \ \forall 1 \leq i \leq s, g^{(n)}, h^{(n+1+s)}, t_i^{(1)},$$

Тогда, если g, h, t_i — примитивно / общерекурсивные, то и f тоже.

Основная идея этой теоремы — можем использовать все ранее вычисленные значения функции, а не только предыдущее.

Построим с помощью примитивной рекурсии функцию $m(\overline{x}, y)$, которая возвращает закодированную последовательность $f(\overline{x}, i)$, $0 \le i \le y$.

Кодировать будем так: каждому $f(\bar{x}, i)$ будет соответствовать p_i (*i*-ое простое число) в степени $1 + f(\bar{x}, i)$.

Если мы построим эту функцию, то $f(\overline{x}, y)$ — уменьшенная на 1 степень y-ого простого, обозначим функцию, которая это делает:

$$f(\overline{x}, y) = ith(y, m(\overline{x}, y)).$$

Вернемся к построению *m*:

$$\begin{cases} m(\overline{x},0) &= 2^{1+g(\overline{x})} \\ m(\overline{x},y+1) &= m(\overline{x},y) \cdot p_{y+1}^{1+h(\overline{x},y,\text{ith}(t_1(y),m(\overline{x},y)),\dots \text{ith}(t_k(y),m(\overline{x},y)))} \end{cases}$$

Теорема 1.1.3 (Совместная рекурсия). Пусть $f_i^{(n+1)}$, $1 \le i \le k$ — рекурсии,

$$\begin{cases} f_i(\overline{x},0) &= g_i(\overline{x}) \\ f_i(\overline{x},y+1) &= h_i(\overline{x},y,f_1(\overline{x},y),\dots f_k(\overline{x},y)) \end{cases}$$

Если $g_i^{(n)}$, $h_i^{(k+2)}$, $1 \le i \le k$ — примитивно / общерекурсивные, то f_i тоже.

Основная идея этой теоремы — можем использовать y-е значение каждой из k функций.

 \square Заметим, что канторовскую функцию можно, последовательно применив несколько раз, расширить до k-местной. Обозначим полученную функцию за c, а обратные за $c_1, \ldots c_k$.

Давайте просто объединим все f_i в одну функцию

$$m(\overline{x},y) = c(f_1(\overline{x},y), \dots f_k(\overline{x},y)).$$

Теперь каждую f_i можно вычислить

$$f_i(\overline{x}, y) = c_i(m(\overline{x}, y)).$$

Чтобы получить m достаточно использовать примитивную рекурсию:

$$\begin{cases} m(\overline{x},0) &= c\left(g_1(\overline{x}), \dots g_k(\overline{x})\right) \\ m(\overline{x},y+1) &= c(\\ &h_1\left(\overline{x},y,c_1(m(\overline{x},y)),\dots c_k(m(\overline{x},y))\right),\\ &\vdots\\ &h_k\left(\overline{x},y,c_1(m(\overline{x},y)),\dots c_k(m(\overline{x},y))\right) \\) \end{cases}$$

Теорема 1.1.4 (Кусочное задание функции). Пусть $R_0, \dots R_k$ — отношения a , такие что $\bigsqcup_{i=0}^k R_i = \mathbb{N}^{m-b}$. Для $|\overline{x}| = n$ кусочно зададим функцию $f^{(n)}$:

$$f(\overline{x}) = \begin{cases} f_0(\overline{x}), & \text{если } R_0(\overline{x}) \\ f_1(\overline{x}), & \text{если } R_1(\overline{x}) \\ \vdots & \vdots \\ f_k(\overline{x}), & \text{если } R_k(\overline{x}) \end{cases}$$

Если $f_i^{(n)}$, R_i — примитивно / общерекурсивны, то и f тоже.

^аНабор предикатов

 b То есть для $i \neq j$ верно $R_i \cap R_i = \emptyset$.

 \square Рассмотрим характеристические функции χ_{R_i} для R_i . Тогда

$$f(\overline{x}) = \sum_{i=0}^{k} f_i(\overline{x}) \cdot \chi_{R_i}(\overline{x}).$$

А это просто сумма произведений, которые мы можем вычислять.

1.2 Равносильность МТ и ЧРФ

Теорема 1.2.1. Функция вычисляется машиной Тьюринга тогда и только тогда, когда она частично рекурсивная.

 \square Если $f(x_1, \dots x_n) = y$, то считаем, что МТ получаем $1^{x_1}01^{x_2}0\dots 01^{x_n}$ и должна выдать 1^y ; если f не определена, МТ должна зацикливаться и наоборот.

$$2 \Longrightarrow 1$$

- Для простых функций можем построить МТ напрямую.
- Для операторов S, R, M:
 - **S:** Пусть есть набор функций $h^{(n)}$, $g_1^{(m)}$, ..., $g_n^{(m)} \longrightarrow f^{(m)}$, для каждой из которых есть машина Тьюринга M_h и M_{g_i} .

Хотим построить MT M_S для S.

Сделаем это так:

- Копируем весь вход n раз:

$$(1^{x_1}01^{x_2}\dots01^{x_n}*)^n$$
.

– Запускаем M_{g_i} на соответствующей части полученного входа. Если нужно что-то записать, то будем сдвигать всю правую часть на нужное число клеток, чтобы освободить для место.

МТ запускаем псведопараллельно (по очереди даем поработать).

В каждой часть после окончания работы оставляем только ответ:

$$1^{y_1} * 1^{y_2} \dots * 1^{y_n}$$

где
$$y_i = g_i(x_1, \ldots x_m)$$
.

- Запускаем на этом результате M_h .

R:

M:

