

Chapter 8

Modeling long-run relationship in finance

Stationary process

Non-stationary process

Table 1 Non-stationary behavior

Non-stationary process

Table 2 Non-stationary processes

1. Stationarity and Unit Root Testing

Why do we need to test for Non-Stationarity?

- The stationarity or otherwise of a series can strongly influence its behaviour and properties e.g. persistence of shocks will be infinite for non-stationary series
- Spurious regressions. If two variables are trending over time, a regression of one on the other could have a high R^2 even if the two variables are totally unrelated
- If the variables in the regression model are **not stationary**, then the standard assumptions for asymptotic analysis will not be valid. The **usual "t-ratios" will not follow a t-distribution**, so we cannot validly undertake hypothesis tests about the regression parameters.

Value of R² for 1000 Sets of Regressions of a Non-stationary Variable on another Independent Non-stationary Variable

Value of *t*-ratio on Slope Coefficient for 1000 Sets of Regressions of a Non-stationary Variable on another Independent Non-stationary Variable

Two types of Non-Stationarity

- Various definitions of non-stationarity exist
- In this chapter, we are really referring to the weak form or covariance stationarity
- There are two models which have been frequently used to characterise non-stationarity: the **random walk model with drift** (stochastic non-stationarity):

$$y_t = \mu + y_{t-1} + u_t \tag{1}$$

and the **deterministic trend process** (deterministic non-stationarity):

$$y_t = \alpha + \beta t + u_t \tag{2}$$

where u_t is a white noise disturbance term.

Sample Plots for various Stochastic Processes: A White Noise Process

Sample Plots for various Stochastic Processes: A Random Walk and a Random Walk with Drift

Sample Plots for various Stochastic Processes: A Deterministic Trend Process

Stochastic Non-Stationarity (Random walk)

• Note that the model (1) could be generalised to the case where y_t is an explosive process:

$$y_t = \mu + \phi y_{t-1} + u_t$$

where $\phi > 1$.

- Typically, this case is ignored and we use $\phi = 1$ to characterise the non-stationarity because
 - $-\phi > 1$ does not describe many data series in economics and finance.
 - $-\phi > 1$ has an intuitively unappealing property: shocks to the system are not only persistent through time, they are propagated so that a given shock will have an increasingly large influence.

Stochastic Non-stationarity: The Impact of Shocks

To see this, consider the general case of an AR(1) with no drift:

$$y_t = \phi y_{t-1} + u_t \tag{3}$$

Let ϕ take any value for now.

• We can write: $y_{t-1} = \phi y_{t-2} + u_{t-1}$

$$y_{t-2} = \phi y_{t-3} + u_{t-2}$$

• Substituting into (3) yields: $y_t = \phi(\phi y_{t-2} + u_{t-1}) + u_t$

$$= \phi^2 y_{t-2} + \phi u_{t-1} + u_t$$

• Substituting again for y_{t-2} : $y_t = \phi^2(\phi y_{t-3} + u_{t-2}) + \phi u_{t-1} + u_t$

$$= \phi^3 y_{t-3} + \phi^2 u_{t-2} + \phi u_{t-1} + u_t$$

Successive substitutions of this type lead to:

$$y_t = \phi^T y_0 + \phi u_{t-1} + \phi^2 u_{t-2} + \phi^3 u_{t-3} + ... + \phi^T u_0 + u_t$$

The Impact of Shocks for Stationary and Non-stationary Series

• We have 3 cases:

1.
$$\phi < 1 \Rightarrow \phi^T \rightarrow 0$$
 as $T \rightarrow \infty$

So the shocks to the system gradually die away.

2.
$$\phi = 1 \Rightarrow \phi^T = 1 \forall T$$

So shocks persist in the system and never die away. We obtain:

$$y_t = y_0 + \sum_{i=0}^{\infty} u_i$$
 as $T \rightarrow \infty$

So just an infinite sum of past shocks plus some starting value of y_0 .

3. ϕ >1. Now given shocks become <u>more</u> influential as time goes on, since if ϕ >1, ϕ 3> ϕ 2> ϕ etc.

Autoregressive Processes with differing values of ϕ (0, 0.8, 1)

Detrending a Stochastically Non-stationary Series

• Going back to our 2 characterisations of non-stationarity, the r.w. with drift:

$$y_t = \mu + y_{t-1} + u_t \tag{1}$$

and the trend-stationary process

$$y_t = \alpha + \beta t + u_t \tag{2}$$

• The two will require different treatments to induce stationarity. The second case is known as deterministic non-stationarity and what is required is detrending. The first case is known as stochastic non-stationarity, if we let

$$\Delta y_t = y_t - y_{t-1}$$

and

$$L y_t = y_{t-1}$$

SO

$$(1-L) y_t = y_t - L y_t = y_t - y_{t-1}$$

If we take (1) and subtract y_{t-1} from both sides:

$$y_t - y_{t-1} = \mu + u_t$$

$$\Delta y_t = \mu + u_t$$

We say that we have induced stationarity by "differencing once".

Detrending a Series: Using the Right Method

- Although trend-stationary and difference-stationary series are both "trending" over time, the **correct approach needs to be used in each case**.
- Note: If we first difference the trend-stationary series, it would "remove" the non-stationarity, but at the expense on introducing an MA(1) structure into the errors.
- Note: Conversely if we try to detrend a series which has stochastic trend, then we will not remove the non-stationarity.
- We will now concentrate on the **stochastic non-stationarity model** which is more common to describe most series in economics or finance.

Definition of Non-Stationarity

• Consider again the simplest stochastic trend model:

$$y_t = y_{t-1} + u_t$$
or
$$\Delta y_t = u_t$$

• We can generalise this concept to consider the case where the series contains more than one "unit root". That is, we would need to apply the first difference operator, Δ , more than once to induce stationarity.

Definition

If a non-stationary series, y_t must be differenced d times before it becomes stationary, then it is said to be **integrated of order** d. We write $y_t \sim I(d)$.

So if $y_t \sim I(d)$ then $\Delta^d y_t \sim I(0)$.

An I(0) series is a stationary series

An I(1) series contains one unit root,

e.g.
$$y_t = y_{t-1} + u_t$$

Characteristics of I(0), I(1) and I(2) Series

- An **I(2)** series contains two unit roots and so would require differencing twice to induce stationarity.
- I(1) and I(2) series can wander a long way from their mean value and cross this mean value rarely.
- I(0) series should cross the mean frequently.
- <u>Note</u>: The majority of economic and financial series contain a single unit root, although some are stationary and consumer prices have been argued to have 2 unit roots.

How do we test for a unit root?

- The early and pioneering work on testing for a unit root in time series was done by **Dickey and Fuller**.
- The basic objective of the test is to test the null hypothesis that $\phi = 1$ in:

$$y_t = \phi y_{t-1} + u_t$$

against the one-sided alternative ϕ < 1. So we have

 H_0 : series contains at least a unit root (ϕ =1)

vs. H_1 : series is stationary (ϕ <1)

• We usually use the regression:

$$\Delta y_t = \psi y_{t-1} + u_t$$

so that a test of $\phi=1$ is equivalent to a test of $\psi=0$ (since $\phi-1=\psi$).

Different forms for the DF Test Regressions

- Dickey Fuller tests are also known as τ tests: τ , τ_u , τ_τ . (page 623)
- The null (H_0) and alternative (H_1) models in each case are
 - i) $H_0: y_t = \phi y_{t-1} + u_t \text{ with } \phi = 1$ $H_1: y_t = \phi y_{t-1} + u_t \text{ with } \phi < 1$

This is a test for a random walk against a stationary autoregressive process of order one (AR(1))

ii)
$$H_0: y_t = \phi y_{t-1} + \mu + u_t \text{ with } \phi = 1$$

 $H_1: y_t = \phi y_{t-1} + \mu + u_t \text{ with } \phi < 1$

This is a test for a random walk against a stationary AR(1) with drift.

iii)
$$H_0: y_t = \phi y_{t-1} + \mu + \lambda t + u_t \text{ with } \phi = 1$$

 $H_1: y_t = \phi y_{t-1} + \mu + \lambda t + u_t \text{ with } \phi < 1$

This is a test for a random walk against a stationary AR(1) with drift and a time trend.

Computing the DF Test Statistic

We can write

$$\Delta y_t = \mu + \lambda t + u_t$$

and the alternatives may be expressed as

$$\Delta y_t = \psi y_{t-1} + \mu + \lambda t + u_t$$

with $\mu=\lambda=0$ in case i), and $\lambda=0$ in case ii) and $\psi=\phi-1$. In each case, the tests are based on the *t*-ratio on the y_{t-1} term in the estimated regression of Δy_t on y_{t-1} , plus a constant in case ii) and a constant and trend in case iii). The test statistics are defined as

test statistic =
$$\frac{\psi}{\wedge}$$

 $SE(\psi)$

• The test statistic does not follow the usual *t*-distribution under the null, since the null is one of non-stationarity, but rather follows a non-standard distribution.

Critical Values for the DF Test

Significance level	10%	5%	1%
C.V. for constant	-2.57	-2.86	-3.43
but no trend			
C.V. for constant	-3.12	-3.41	-3.96
and trend			

Table 4.1: Critical Values for DF and ADF Tests (Fuller, 1976, p373).

The null hypothesis of a unit root is rejected in favour of the stationary alternative in each case if the test statistic is more negative than the critical value (left-tailed test)

The Augmented Dickey Fuller (ADF) Test

• The tests above are only valid if u_t is white noise. In particular, u_t will be autocorrelated if there was autocorrelation in the dependent variable of the regression (Δy_t) which we have not modelled. The solution is to "augment" the test using p lags of the dependent variable. The alternative model in case (i) is now written:

$$\Delta y_{t} = \psi y_{t-1} + \sum_{i=1}^{p} \alpha_{i} \Delta y_{t-i} + u_{t}$$

• The same critical values from the DF tables are used as before. A problem now arises in determining the optimal number of lags of the dependent variable.

There are 2 ways:

- use the frequency of the data to decide (12 lags if monthly, 4 lags if quarterly)
- use information criteria

Testing for Higher Orders of Integration

Consider the simple regression:

$$\Delta y_t = \psi y_{t-1} + u_t$$

We test \mathbf{H}_0 : $\psi = \mathbf{0}$ (at least 1 unit root) vs. \mathbf{H}_1 : $\psi < \mathbf{0}$ (stationary).

- If H_0 is rejected we simply conclude that y_t is stationary.
- But what do we conclude if H_0 is not rejected? The series contains a unit root, but is that it? No! What if $y_t \sim I(2)$? We would still not have rejected. So we now need to test

$$\mathbf{H_0}$$
: $y_t \sim \mathbf{I(2)}$ (at least 2 unit roots) vs. $\mathbf{H_1}$: $y_t \sim \mathbf{I(1)}$ (1 unit root)

We would continue to test for a further unit root until we rejected H_0 .

- We now regress $\Delta^2 y_t$ on Δy_{t-1} (plus lags of $\Delta^2 y_t$ if necessary).
- Now we test $H_0: \Delta y_t \sim I(1)$ which is equivalent to $H_0: y_t \sim I(2)$.
- So in this case, if we do not reject (unlikely), we conclude that y_t is at least I(2).

Criticism of Dickey-Fuller test

• Main criticism is that the power of the tests is low if the process is stationary but with a root close to the non-stationary boundary.

e.g. the tests are poor at deciding whether

$$\phi = 1 \text{ or } \phi = 0.95,$$

especially with small sample sizes.

3. Cointegration: An Introduction

• In most cases, if we combine two variables which are I(1), then the combination will also be I(1).

• Sometimes, the combination will be $I(0) \rightarrow$ cointegration.

Definition of Cointegration (Engle & Granger, 1987)

- Many time series are non-stationary but "move together" over time.
- Let z_t be a $k \times 1$ vector of variables, then the components of z_t are cointegrated of order (1,1) if
 - i) All components of z_t are I(1)
 - ii) There is at least one vector of coefficients α such that $\alpha' z_t \sim \mathbf{I}(\mathbf{0})$
- If variables are cointegrated, it means that a linear combination of them will be stationary.
- There may be up to r linearly independent cointegrating relationships (where $r \le k$ -1), also known as **cointegrating vectors**. r is also known as the **cointegrating rank** of z_r .
- A cointegrating relationship may also be seen as a long term relationship.

Cointegration and Equilibrium

- Examples of possible Cointegrating Relationships in finance:
 - spot and futures prices
 - ratio of relative prices and an exchange rate
 - equity prices and dividends
- Market forces arising from **no arbitrage conditions** should ensure an equilibrium relationship.
- Note: No cointegration implies that series could wander apart without bound in the long run.

4. Equilibrium Correction Models or Error Correction Models (ECM)

- When the concept of non-stationarity was first considered, a usual response was to independently take the first differences of a series of I(1) variables.
- The problem with this approach is that pure first difference models have no long run solution.

e.g. Consider y_t and x_t both I(1).

The model we may want to estimate is

$$\Delta y_t = \beta \Delta x_t + u_t$$

But this collapses to nothing in the long run.

• The definition of the long run that we use is where

$$y_t = y_{t-1} = y$$
; $x_t = x_{t-1} = x$.

• Hence all the difference terms will be zero, i.e. $\Delta y_t = 0$; $\Delta x_t = 0$.

Specifying an ECM

• One way to get around this problem is to use both first difference and levels terms, e.g.

$$\Delta y_{t} = \beta_{1} \Delta x_{t} + \beta_{2} (y_{t-1} - \gamma x_{t-1}) + u_{t}$$
 (2)

- y_{t-1} - γx_{t-1} is known as the **error correction term**.
- Providing that y_t and x_t are cointegrated with cointegrating coefficient γ , then $(y_{t-1}-\gamma x_{t-1})$ will be I(0) even though the constituents are I(1).
- We can thus validly use OLS on (2).
- The **Granger representation theorem** shows that any cointegrating relationship can be expressed as an equilibrium correction model.

5. Testing for Cointegration in Regression: Residual Based Approach

• The model for the **equilibrium correction term** can be generalised to include more than two variables:

$$y_{t} = \beta_{1} + \beta_{2}x_{2t} + \beta_{3}x_{3t} + \dots + \beta_{k}x_{kt} + u_{t}$$
 (3)

- u_t should be I(0) if the variables y_t , x_{2t} , ... x_{kt} are cointegrated.
- So what we want to test is the residuals of equation (3) to see if they are non-stationary or stationary. We can use the \mathbf{DF} / \mathbf{ADF} test on u_t .

So we have the regression

$$\Delta \hat{u}_t = \psi \hat{u}_{t-1} + v_t$$

• However, since this is a test on the residuals of an actual model, \hat{u}_t , then the critical values are changed.

Testing for Cointegration in Regression: Conclusions

- Engle and Granger (1987) have tabulated a new set of critical values and hence the test is known as the **Engle Granger (E.G.) test**.
- What are the null and alternative hypotheses for a test on the residuals of a potentially cointegrating regression?

 H_0 : unit root in cointegrating regression's residuals (not cointegrated)

 H_1 : residuals from cointegrating regression are stationary (cointegrated)

6. Methods of Parameter Estimation in Cointegrated Systems: The Engle-Granger Approach

- There are (at least) 3 methods we could use: Engle Granger, Engle and Yoo, and Johansen.
- The Engle Granger 2 Step Method

This is a single equation technique which is conducted as follows:

Step 1:

- Make sure that all the individual variables are I(1).
- Then estimate the cointegrating regression (3) using OLS.
- Save the residuals of the cointegrating regression, \hat{u}_t .
- Test these residuals to ensure that they are I(0).

Step 2:

- Use the step 1 residuals as one variable in the error correction model e.g.

$$\Delta y_t = \beta_1 \Delta x_t + \beta_2(\hat{u}_{t-1}) + u_t$$

and we can test hypothesis about the parameters, forecast the values of y

The Engle-Granger Approach: Some Drawbacks

This method suffers from a number of problems:

- 1. Unit root and cointegration tests can have **low power in finite samples**
- 2. We are forced to **treat the variables asymmetrically** and to specify one as the dependent and the other as independent variables.
- 3. Cannot perform any hypothesis tests about the actual cointegrating relationship estimated at stage 1.
- Problem 1 is a small sample problem that should disappear **asymptotically**.
- Problem 2 is addressed by the **Johansen approach**.
- Problem 3 is addressed by the Engle and Yoo approach or the **Johansen approach**.

8. Testing for and Estimating Cointegrating Systems Using the Johansen Technique Based on VARs

• To use Johansen's method, we need to turn the VAR of the form

$$\begin{aligned} \mathbf{y}_t = & \beta_1 \quad \mathbf{y}_{t-1} \quad + \quad \beta_2 \quad \mathbf{y}_{t-2} \quad + \dots + \quad \beta_k \quad \mathbf{y}_{t-k} \quad + \quad u_t \\ \mathbf{g} \times \mathbf{1} & g \times g \quad g \times 1 \quad g \times g \quad g \times 1 \quad g \times g \quad g \times 1 \quad g \times 1 \end{aligned}$$

(where y is a set of g variables that are I(1) which might be co-integrated), into a VECM, which can be written as

$$\Delta y_{t} = \Pi \ y_{t-k} + \Gamma_{1} \ \Delta y_{t-1} + \Gamma_{2} \ \Delta y_{t-2} + \dots + \Gamma_{k-1} \ \Delta y_{t-(k-1)} + u_{t}$$

where
$$\Pi = (\sum_{j=1}^{k} \beta_i) - I_g$$
 and $\Gamma_i = (\sum_{j=1}^{i} \beta_j) - I_g$

 Π is a **long run coefficient matrix** since all the $\Delta y_{t-i} = 0$.

Review of Matrix Algebra necessary for the Johansen Test

- Let Π denote a $g \times g$ square matrix and let c denote a $g \times 1$ non-zero vector, and let λ denote a set of scalars.
- λ is called a **characteristic root** or set of roots of Π if we can write

$$\Pi c = \lambda c$$

$$g \times g g \times 1 \quad g \times 1$$

We can also write

$$\prod c = \lambda I_p c$$

and hence

$$(\Pi - \lambda I_g)c = 0$$

where I_g is an identity matrix.

Review of Matrix Algebra (cont'd)

• Since $c \neq 0$ by definition, then for this system to have zero solution, we require the matrix $(\Pi - \lambda I_g)$ to be singular (i.e. to have zero determinant).

$$|\Pi - \lambda I_g| = 0$$

- For example, let Π be the 2 × 2 matrix $\Pi = \begin{bmatrix} 5 & 1 \\ 2 & 4 \end{bmatrix}$
- Then the characteristic equation is

$$|\Pi - \lambda I_g| = \begin{bmatrix} 5 & 1 \\ 2 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

$$= \begin{vmatrix} 5-\lambda & 1\\ 2 & 4-\lambda \end{vmatrix} = (5-\lambda)(4-\lambda) - 2 = \lambda^2 - 9\lambda + 18$$

Review of Matrix Algebra (cont'd)

- This gives the solutions $\lambda = 6$ and $\lambda = 3$.
- The characteristic roots are also known as **eigenvalues**.
- The rank of a matrix is equal to the number of linearly independent rows or columns in the matrix
 - = the order of the largest square matrix we can obtain from Π which has a non-zero determinant
 - = number of its characteristic roots (eigenvalues) that are different from zero.

• For example, the determinant of Π above $\neq 0$, therefore it has rank 2.

The Johansen Test and Eigenvalues

- Some properties of the eigenvalues of any square matrix A:
 - 1. the sum of the eigenvalues is the trace (sum of elements on main diagonal)
 - 2. the product of the eigenvalues is the determinant
 - 3. the number of non-zero eigenvalues is the rank
- Returning to Johansen's test, the VECM representation of the VAR was

$$\Delta y_{t} = \prod y_{t-1} + \Gamma_{1} \Delta y_{t-1} + \Gamma_{2} \Delta y_{t-2} + \dots + \Gamma_{k-1} \Delta y_{t-(k-1)} + u_{t}$$

• The test for cointegration between the y's is calculated by looking at the rank of the Π matrix via its eigenvalues.

The Johansen Test and Eigenvalues (cont'd)

• The eigenvalues denoted by λ_i are put in order:

$$1 > \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_g > 0$$

Note: If $\lambda_i = 0$, $\ln(1-\lambda_i) = 0$ If λ_i is non-zero and <1, then $\ln(1-\lambda_i) < 0$.

The Johansen Test Statistics

• The test statistics for cointegration are formulated as

$$\lambda_{trace}(r) = -T \sum_{i=r+1}^{g} \ln(1 - \hat{\lambda}_i)$$

and

$$\lambda_{\max}(r, r+1) = -T\ln(1 - \hat{\lambda}_{r+1})$$

where $\hat{\lambda}_i$ is the estimated value for the *i*th ordered eigenvalue from the Π matrix, r is the number of cointegrating vectors under H_o

 λ_{trace} tests the null that the number of cointegrating vectors is less than or equal to r against an alternative of more than r.

 $\lambda_{trace} = 0$ when all the $\lambda_i = 0$, so it is a joint test.

 λ_{max} tests the null that the number of cointegrating vectors is r against an alternative of r+1.

The Johansen Testing Sequence

- If the test statistic is greater than the critical value from Johansen's tables, reject the null hypothesis.
- The testing sequence under the null is r = 0, 1, ..., g-1 so that the hypotheses for λ_{trace} are

$$H_0: r = 0$$
 vs $H_1: 0 < r \le g$
 $H_0: r = 1$ vs $H_1: 1 < r \le g$
 $H_0: r = 2$ vs $H_1: 2 < r \le g$
...
 $H_0: r = g-1$ vs $H_1: r = g$

• We keep increasing the value of r until we no longer reject the null.

Interpretation of Johansen Test Results

- But how does this correspond to a test of the rank of the Π matrix?
- r is the rank of Π .
- Π cannot be of full rank (g) since this would correspond to the original y_t being stationary.
- If Π has zero rank, there is no cointegration.
- For $1 < \text{rank}(\Pi) < g$, there are multiple cointegrating vectors.

Decomposition of the Π **Matrix**

• For any 1 < r < g, Π is defined as the product of two matrices:

$$\Pi = \alpha \quad \beta'$$

$$g \times g \quad g \times r \quad r \times g$$

- β contains the **cointegrating vectors** while α gives the amount of each cointegrating vector in each equation, called "adjustment parameter"
- For example, if g=4 and r=1, α and β will be 4×1 , and Πy_{t-k} will be given by:

$$\Pi = \begin{pmatrix} \alpha_{11} \\ \alpha_{12} \\ \alpha_{13} \\ \alpha_{14} \end{pmatrix} (\beta_{11} \quad \beta_{12} \quad \beta_{13} \quad \beta_{14} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}_{t-k} \text{ or } \Pi = \begin{pmatrix} \alpha_{11} \\ \alpha_{12} \\ \alpha_{13} \\ \alpha_{14} \end{pmatrix} (\beta_{11}y_1 \quad \beta_{12}y_2 \quad \beta_{13}y_3 \quad \beta_{14}y_4)_{t-k}$$

Hypothesis Testing Using Johansen

- Engle-Granger did not allow us to do hypothesis tests on the cointegrating relationship itself, but the Johansen approach does.
- If there exist *r* cointegrating vectors, only these linear combinations will be stationary.
- **Idea:** We can test a hypothesis about one or more coefficients in the cointegrating relationship by viewing the hypothesis as a restriction on the Π matrix.

Hypothesis Testing Using Johansen (cont'd)

• A **test statistic** to test this hypothesis is given by

$$-T\sum_{i=1}^{r}\left[\ln(1-\lambda_i)-\ln(1-\lambda_i^*)\right] \sim \chi^2(m)$$

where,

- λ_i^* are the characteristic roots of the restricted model
- λ are the characteristic roots of the unrestricted model
- r is the number of non-zero characteristic roots in the unrestricted model, and m is the number of restrictions.

Cointegration Tests using Johansen: Three Examples

Example 1: Hamilton(1994, pp.647)

- Does the PPP relationship hold for the US / Italian exchange rate price system?
- A VAR was estimated with 12 lags on 189 observations. The **Johansen test statistics** were:

r	$\lambda_{ ext{max}}$	critical value		
0	22.12	20.8		
1	10.19	14.0		

• Conclusion: there is **one cointegrating relationship**.

Example 3: Are International Bond Markets Cointegrated?

• Mills & Mills (1991)

• If financial markets are cointegrated, this implies that they have a "common stochastic trend".

Data:

- Daily closing observations on redemption yields on government bonds for 4 bond markets: US, UK, West Germany, Japan.
- For cointegration, a necessary but not sufficient condition is that the yields are nonstationary. All 4 yields series are I(1).

Testing for Cointegration Between the Yields

- The Johansen procedure is used. There can be at most 3 linearly independent cointegrating vectors.
- Mills & Mills use the trace test statistic: $\lambda_{trace}(r) = -T \sum_{i=r+1}^{s} \ln(1 \hat{\lambda}_i)$ where λ_i are the ordered eigenvalues.

Johansen Tests for Cointegration between International Bond Yields

r (number of cointegrating	Test statistic	Critical Values			
vectors under the null hypothesis)		10%	5%		
0	22.06	35.6	38.6		
1	10.58	21.2	23.8		
2	2.52	10.3	12.0		
3	0.12	2.9	4.2		

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.

Testing for Cointegration Between the Yields (cont'd)

- Conclusion: No cointegrating vectors.
- The paper then goes on to estimate a VAR for the first differences of the yields, which is of the form k

$$\Delta X_{t} = \sum_{i=1}^{k} \Gamma_{i} \Delta X_{t-i} + \upsilon_{t}$$

where

$$X_{t} = \begin{bmatrix} X(US)_{t} \\ X(UK)_{t} \\ X(WG)_{t} \\ X(JAP)_{t} \end{bmatrix}, \Gamma_{i} = \begin{bmatrix} \Gamma_{11i} & \Gamma_{12i} & \Gamma_{13i} & \Gamma_{14i} \\ \Gamma_{21i} & \Gamma_{22i} & \Gamma_{23i} & \Gamma_{24i} \\ \Gamma_{31i} & \Gamma_{32i} & \Gamma_{33i} & \Gamma_{34i} \\ \Gamma_{41i} & \Gamma_{42i} & \Gamma_{43i} & \Gamma_{44i} \end{bmatrix}, \nu_{t} = \begin{bmatrix} \nu_{1t} \\ \nu_{2t} \\ \nu_{3t} \\ \nu_{4t} \end{bmatrix}$$
They set $k = 8$.