DMA Domácí koronaúkol č. 6b

Tento úkol se neodevzdává.

Toto jsou příklady vhodné obtížnosti pro semestrální písemku (no dobrá, u trojky je tranzitivita trochu triková, ale jinak je to standard). Nejprve vždy příklad vyřešte samostatně a snažte se o pěkný zápis důkazů, pak se podívejte na další strany na řešení.

Pro následující relace \mathcal{R} vyšetřete, zda splňují základní čtyři vlastnosti (reflexivita, symetrie, antisymetrie, tranzitivita).

Poznámka: Vyšetřit znamená rozhodnout zda platí či neplatí a odpověď dokázat.

- **1.** \mathcal{R} na \mathbb{Z} ; $a\mathcal{R}b$ právě tehdy, když $a^2 \leq b^2$.
- **2.** \mathcal{R} na \mathbb{R} ; $a\mathcal{R}b$ právě tehdy, když |a-b|=2.
- **3.** \mathcal{R} na \mathbb{Z} ; $a\mathcal{R}b$ právě tehdy, když $a\cdot b\geq 0$.

Řešení jsou na dalších stranách.

Řešení:

1.

Reflex: platí. Dk: $a \in \mathbb{Z}$ lib. Víme, že $a^2 = a^2$, proto $a^2 \le a^2$ a tedy $a\mathbb{R}a$.

Poznámky: a) Každý důkaz musí vést od známého k tomu, co chceme dokázat. Nelze napsat něco jako: $a\mathcal{R}a$ proto $a^2 \leq a^2$.

b) Každý důkaz někde začne. Obvykle začínáme předpokladem, ale to platí jen pro důkazy implikace. Implikaci vidíme u symetrie, antisymetrie a tranzitivity, ale ne u reflexivity. Kde tedy začneme u ní? Něčím, co je známo, nějakým obecně platným faktem.

Sym: neplatí. Pp: Platí $13\mathcal{R}14$ (neboť $13^2 \le 14^2$), ale neplatí $14\mathcal{R}13$ (neboť neplatí $14^2 \le 13^2$).

Poznámky: a) To v těch závorkách je u takto zjevné věci možno vynechat, ale pro jistotu jsem to napsal, abych si šplhnul u zkoušejícího.

- b) Protipříklad musí splnit předpoklad, ale nesplnit závěr. Takže třeba dvojice $a=3,\ b=2$ není protipříkladem proti symetrii, protože nesplňuje předpoklad.
- c) Poznámka k zápisu: Protipříklad jsou ty objekty (zde čísla), která zlobí. Proto je potřeba psát protipříklady tak, aby bylo jasné, kdo to je. Nejlepší je natvrdo $a=13,\,b=14$. Tady jsem napsal text, který je na hranici, ale když vidím na začátku to $13\mathcal{R}14$, tak mi dojde, že protipříkladem jsou ta čísla 13 a 14. Není vhodné napsat jen

"pp: platí $13^2 \le 14^2$, ale neplatí $14^2 \le 13^2$ "

protože tím nutíme čtenáře, aby si rozšifroval, co to vlastně ten náš protipříklad je.

Antisym: neplatí. Když to necítíme intuitivně, zkusíme napsat důkaz a uvidí se.

Takže vezmeme $a, b \in \mathbb{Z}$ splňující $a\mathcal{R}b$ a $b\mathcal{R}a$. Pak $a^2 \leq b^2$ a $b^2 \leq a^2$. Odtud $a^2 = b^2$. Umíme z toho odvodit, že a = b? Asi ne, protože ve hře jsou i záporná čásla, to nás inspiruje k vytvoření protipříkladu. Závěr: Antisym neplatí. Pp: a = 13, b = -13. Pak $a\mathcal{R}b$ a $b\mathcal{R}a$ (tedy splněn předpoklad), ale $a \neq b$ (neplatí závěr).

Poznámka: Je vidět, že pokud bychom tuto relaci uvažovali třeba na \mathbb{N} , tak už by antisymetrie platila. Důkaz by pak vypadal takto:

 $a,b\in\mathbb{N}$. Předp. $a\mathcal{R}b$ a $b\mathcal{R}a$. Pak $a^2\leq b^2$ a $b^2\leq a^2$. Odtud $a^2=b^2$ neboli |a|=|b|. Protože $a,b\geq 0$, znamená to a=b.

Všimněte si, jak se zase držíme formátu pro důkaz implikace (z jejího předpokladu nějakými skoky dojdeme k jejímu závěru).

U důkazů vlastností netrvám na tom, že je třeba psát slovo "předpoklad", považuje se to za samozřejmé.

Tranz: platí. Dk: $a, b, c \in \mathbb{Z}$. Předp.: \underline{aRb} a \underline{bRc} . Pak $a^2 \leq b^2$ a $b^2 \leq c^2$. Odtud $a^2 \leq c^2$ a tedy \underline{aRc} . Poznámka: Eliminace b z daných rovnic je tradiční postup.

Opět si všimněte tradiční formy důkazu implikace: Začneme předpokladem, trocha hraní a skončíme závěrem. Začátek i konec jsou v řeči relace, nezačali jsme rovnou skokem do $a^2 \le b^2$ a podobně.

2. Tato relace nám umožňuje skákat po reálné ose skoky o velikosti 2.

Reflex: neplatí. Pp: Zvolíme a=7 (překvapení!). Pak $|a-a|=0\neq 2$, tedy neplatí $a\mathcal{R}a$.

Poznámka: Myslím, že by u zkoušky stačilo napsat

Pp: Neplatí $7\mathcal{R}7$.

Ale když budete mít čas, raději napište víc.

Poznámka: Nestačí napsat, že "reflexivita neplatí, protože $|a-a| \neq 2$ ". Vždy je nutno ukázat konkrétní protipříklad. Tím se dokáže, že skutečně existuje případ, kdy dojde k selhání.

Proč je to důležité? Představme si relaci danou xSy pokud $x=y^3$. Platí reflexivita? To by muselo vždy platit, že $x=x^3$, zjevný nesmysl. Pokud bychom teď zajásali, že je reflexivita špatně, tak je to předčasné, já jsem totiž tuto relaci vtipně definoval na množině $A=\{-1,0,1\}$. Tak, a teď hledejte protipříklad.

Sym: platí. Dk: $a, b \in \mathbb{R}$. Předpoklad: \underline{aRb} , odtud |a - b| = 2. Pak také

$$|b-a| = |-(a-b)| = |a-b| = 2,$$

Poznámka: Umím si představit, že rovnost |a-b|=|b-a| by studenti uměli odůvodnit i jinak.

Poznámka: Pokud napíšeme, že "Symetrie platí, protože |b-a|=|a-b|", tak je to vlastně pravda, protože jsme tím vystihli klíčový krok, a v nějakém pojednání by to stačilo, ať si to čtenář doplní sám. Ale zde trénujeme psaní důkazů, takže to chceme mít pěkně, ať je vidět úplný důkaz implikace.

Antisym: neplatí. Když to necítíme intuitivně, zkusíme napsat důkaz a uvidí se.

Takže vezmeme $a, b \in \mathbb{R}$ splňující $a\mathcal{R}b$ a $b\mathcal{R}a$. Pak |a-b|=2 a |b-a|=2. To je vlastně dvakrát zopakovaná stejná informace, že |a-b|=2, z toho rovnost nevymlátíme.

Závěr: Antisym neplatí. Pp: a = 12, b = 14. Pak $a\mathcal{R}b$ a $b\mathcal{R}a$, ale $a \neq b$.

Tranz: neplatí. Pp: Zvolíme $a=1,\,b=3,\,c=5$. Pak $1\mathcal{R}3$ a $3\mathcal{R}5$, ale neplatí $1\mathcal{R}5$.

Poznámka: Je dobré si uvědomit, že je také možné vzít jako protipříklad $a=1,\,b=3,\,c=1.$

3.

Reflex: platí. Dk: Všechna $a \in \mathbb{Z}$ splňují $a^2 \geq 0$ neboli $a \cdot a \geq 0$, proto \underline{aRa} .

Sym: platí. Dk: $a, b \in \mathbb{Z}$. Předpoklad: \underline{aRb} , odtud $a \cdot b \geq 0$. Díky komutativitě také $b \cdot a \geq 0$ a tedy bRa.

To byl důkaz vzorový. Nejstručnější ještě akceptovatelná verze vypadá takto:

 $a, b \in \mathbb{Z}: a\mathcal{R}b \longrightarrow ab \geq 0 \longrightarrow ba \geq 0 \longrightarrow b\mathcal{R}a.$

Cokoliv ještě stručnějšího už znamená ztrátu bodů.

Antisym: neplatí. Když to necítíme intuitivně, zkusíme napsat důkaz a uvidí se.

Takže vezmeme $a, b \in \mathbb{Z}$ splňující $a\mathcal{R}b$ a $b\mathcal{R}a$. Pak $ab \geq 0$ a $ba \geq 0$. To je dvakrát zopakovaná informace, že $ab \geq 0$, z toho asi a = b neodvodíme.

Závěr: Antisym neplatí. Pp: a = 1, b = 3. Pak $a\mathcal{R}b$ a $b\mathcal{R}a$, ale $a \neq b$.

Tranz: Tohle je ta lepší otázka. Aby tranzitivita platila, museli bychom být schopni z informace, že $ab \ge 0$ a $bc \ge 0$, nějak dostat, že $ac \ge 0$.

Člověka může napadnout, že $ab \ge 0$ typicky znamená, že obě čísla jsou kladná nebo obě záporná.

Verze obě kladná: a, b > 0, pak z bc > 0 máme i c kladné, proto je ac > 0.

Verze obě záporné: a, b < 0, pak z $bc \ge 0$ máme i c záporné, proto je $ac \ge 0$.

To vypadá nadějně, dokud člověka nenapadne (doufejme), že je i nula. Pak už není tak těžké najít protipříklad.

Závěr: Tranzitivita neplatí. Pp: a = 13, b = 0, c = -13. Pak $13\mathcal{R}0$ a $0\mathcal{R}(-13)$, ale neplatí $13\mathcal{R}(-13)$.

Alternativa: U relací daných vzorcem obvykle zkoušíme tranzitivitu dokázat eliminací "prostředníka" algebrou. Zde máme nerovnosti, tedy není možné si z první vyjádřit b a dosadit do druhé. Můžeme ale nerovnice navzájem vydělit:

$$\frac{ab}{bc} \ge 0 \implies \frac{a}{c} \ge 0 \implies \frac{ac}{c^2} \ge 0 \implies ac \ge 0.$$

To vypadá slibně, ovšem (vždy ve střehu!) hned v prvním zlomku vidíme, že to funguje pouze pro $bc \neq 0$, což by nás mělo navést na správnou cestu k protipříkladu.

Alternativa: Označíme si x=ab, pak víme, že $x\geq 0$. Odtud $b=\frac{x}{a}$, dosadíme do druhé rovnice, máme $\frac{x}{a}c\geq 0$ neboli $\frac{x}{a^2}\cdot ac\geq 0$. Protože $x\geq 0$ a $a^2\geq 0$, odvodíme, že $ac\geq 0$. I zde je ovšem problém s nulami.