

Universidade de Brasília

Departamento de Ciência da Computação Projeto e Análise de Algoritmos

Atividade 11 2-SAT é P

José Antônio Alcântara da Silva de Andrade Mat: 232013031

<u>Professor:</u>

Flávio Leonardo Calvacanti de Moura

Turma 02

 $\begin{array}{c} {\rm Bras{\it i}lia,\,DF} \\ 1~de~julho~de~2025 \end{array}$

Exercício

"Prove que o problema 2-SAT pertence à classe P."

Resolução

Para realizar a prova da solução, primeiramente deve-se reescrever o problema em outro formato. Para tal, considere uma expressão 2-SAT qualquer, escrita no formato de conjunções (operações AND) de disjunções (operações OR). Iremos transformá-la em formato gráfico:

- 1. Cria-se dois nós x e $\neg x$ para cada variável x da expressão.
- 2. Para cada cláusula de disjunções $(\alpha \vee \beta)$ realiza-se uma conexão direcionada de $\neg \alpha$ para β e outra de $\neg \beta$ para α . Pode-se ler a implicação que, se α é falso, então β é verdadeiro e vice-versa.

Com isso, podemos reescrever o problema. O nosso objetivo é, agora, encontrar um ciclo de arestas direcionadas tal que os caminhos entre $x \to \neg x$ e $\neg x \to x$ não ocorram, onde x é uma variável qualquer. A solução, então, será os valores atribuídos nos vértices (x indica 1 e $\neg x$ indica 0). Conversamente, podemos também descobrir que não existe solução verificando se existe um caminho tal que x implica $\neg x$ e outro que $\neg x$ implica x.

Para garantir que isso realmente é possível, primeiro iremos demonstrar que, se para uma expressão ζ temos um caminho de $\alpha \to \beta$, então também teremos um caminho de $\neg \beta \to \neg \alpha$. Seja o caminho entre α e β descrito por:

$$\alpha \to c_1 \to c_2 \to \cdots \to c_n \to \beta$$

Pela definição de construção do gráfico de ζ , teremos que se existe uma aresta (α, c_1) , então também existe uma aresta $(\neg c_1, \neg \alpha)$. Portanto, teremos que $\alpha \to c_1$ será transformado em $\neg \alpha \leftarrow \neg c_1$ e assim por diante, obtendo o caminho $\neg \beta \to \neg \alpha$:

$$\neg \alpha \leftarrow \neg c_1 \leftarrow \neg c_2 \leftarrow \cdots \leftarrow \neg c_n \leftarrow \neg \beta$$

Segundamente, iremos provar uma fórmula ζ qualquer é insatisfável se existem um caminho $x \to \neg x$ e um caminho $\neg x \to x$ simultaneamente.

Por contradição, suponha realmente exista os caminhos $x \to \neg x$ e $\neg x \to x$, e também exista um arranjo C que satisfaz ζ .

Considere que x=1, e escreva o caminho $x\to \neg x$ como:

$$x \to \cdots \to \alpha \to \beta \to \cdots \to \neg x$$

Por construção do gráfico, temos uma aresta $(y, z) \iff$ existe uma cláusula $(\neg y \lor z)$ em ζ . Portanto a aresta indica que, se y é 1, então z precisa ser 1. Como x é 1, então todos os valores da até e incluindo α devem ser 1. Analogamente, podemos fazer com que todos os literais no caminho $\beta \to \cdots \to \neg x$ sejam 0, uma vez que $\neg x = 0$.

Isso cria uma aresta (α, β) tal que $\alpha = 1$ e $\beta = 0$. Tal é equivalente a cláusula $\neg \alpha \lor \beta = 0 \lor 0 = 0$, contradizendo a assunção que existia um arranjo C satisfatório. O argumento é o mesmo para o caso x = 0.

Com isso, teremos que percorrer o gráfico é suficiente para declarar se 2-SAT possui solução. Como algoritmos de travessia de gráficos (como BFS e DFS) são polinomiais, teremos que a solução de 2-SAT é, também, polinomial. Portanto, 2-SAT \in P.