M444 – Complex Analysis

Pierre-Olivier Parisé

University of Hawai'i at Manoa Chapter 4

Section 4.5: Zeros and Singularities

Definition 4.5.1

Let Ω be a region, f be analytic on Ω , and $z_0 \in \Omega$.

① z_0 is a **zero of order** m of f if $f(z_0) = 0$ and if there is an analytic function g in a neighborhood $B_r(z_0)$ of z_0 such that $g(z_0) \neq 0$ and

$$f(z) = (z - z_0)^m g(z) \quad (z \in B_r(z_0)).$$

- ② z_0 is a **simple zero** of f if it is a zero of order 1 (m = 1).
- ③ z_0 is an **isolated zero** if there is a neighborhood $B_r(z_0)$ such that $f(z) \neq 0$ for any $B'_r(z_0)$.

Example. Consider $f(z) = z^2 - 2z + 1$.

The function f is analytic on $\Omega = \mathbb{C}$ and f(1) = 0.

We see that

$$f(z) = (z-1)^2 = (z-1)^2 g(z)$$

with g(z)=1 is such that g is analytic in $\mathbb C$ and $g(1)\neq 0$. Therefore, $z_0=1$ is a zero of order 2.

Notice that $f(z) \neq 0$ for any $z \neq 1$. So $z_0 = 1$ is an isolated zero.

Example. Consider the function $f(z) = z^3(e^z - 1)$.

The function f is analytic on $\Omega = \mathbb{C}$ and f(0) = 0.

To find the order of the zero, we write

$$z^{3}(e^{z}-1)=z^{3}\left(\sum_{n=0}^{\infty}\frac{z^{n}}{n!}-1\right)=z^{3}\sum_{n=1}^{\infty}\frac{z^{n}}{n!}=\sum_{m=0}^{\infty}\frac{z^{m+4}}{(m+1)!}.$$

Then

$$z^{3}(e^{z}-1)=z^{4}\sum_{m=0}^{\infty}\frac{z^{m}}{(m+1)!}=z^{4}g(z)$$

where $g(z) = \sum_{m=0}^{\infty} \frac{z^m}{(m+1)!}$.

Notice here that, for $|z| \leq R$,

- we have $|z^m|/(m+1)! \le R^m/(m+1)!$.
- The series $\sum_{m=0}^{\infty} c_m = \sum_{m=0}^{\infty} R^m/(m+1)!$ is convergent from the ratio test:

$$\lim_{m\to\infty}\frac{|c_m|}{|c_{m+1}|}=\frac{1}{R}\lim_{m\to\infty}\frac{1}{m+2}=0<1.$$

• Every function $z^m/(m+1)!$ is analytic on $B_R(0)$.

Therefore g(z) is analytic in any disk $B_R(0)$ and

$$g(0) = 1 + 0 + 0 + \cdots = 1 \neq 0.$$

Hence, the zero $z_0 = 0$ is a zero of order m = 4.

Also, we can get that $f(z) \neq 0$ in any neighborhood $B_r(0)$. This means $z_0 = 0$ is an isolated zero.

Theorem 4.5.2

Let f be an analytic function on a region Ω . Let $z_0 \in \Omega$ such that $f(z_0) = 0$. Then exactly one of the following two assertions holds:

- (i) f is identically zero in a neighborhood of z_0 .
- (ii) z_0 is an isolated zero of f.

Proof. Let $B_R(z_0) \subset \Omega$ be an open disk. Then, since f is analytic on Ω , it is also analytic on $B_R(z_0)$. We can therefore write

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad |z - z_0| < R,$$

where $a_n = \frac{f^{(n)(z_0)}}{n!}$.

① Assume $a_n = 0$ for any n. Then f(z) = 0 for any $z \in B_R(z_0)$ and the case \hat{i} is true.

② Assume that case (i) is false, and let $a_n \neq 0$ for some $n \geq 0$.

Let m be the least index such that $a_m \neq 0$. This means $a_j = 0$ for $0 \leq j \leq m-1$, but $a_m \neq 0$. Therefore, for $|z-z_0| < R$, we have

$$f(z) = a_m(z - z_0)^m + a_{m+1}(z - z_0)^{m+1} + \cdots$$

= $(z - z_0)^m (a_m + a_{m+1}(z - z_0)^{m+1} + \cdots)$
= $(z - z_0)^m g(z)$

where $g(z) = a_m + a_{m+1}(z - z_0)^{m+1} + \cdots$ is an analytic function in $B_R(z_0)$ with $g(z_0) = a_m \neq 0$.

Because |g(z)| is a continuous function, we can find a neighborhood $B_r(z_0)$ with $r \le R$ such that $g(z) \ne 0$ on $B_r(z_0)$. Hence

$$f(z) = (z - z_0)^m g(z) \neq 0$$

for any $z \in B'_r(z_0)$. Hence z_0 is an isolated zero, which is case (ii).

Consequence. If f is analytic on a region Ω and $z_0 \in \Omega$ with $f(z_0) = 0$ is an isolated zero, then there exists

- (1) an integer $m \geq 1$
- (2) a real number r > 0
- (3) an an analytic function λ on $B_r(z_0)$ with $\lambda(z) \neq 0$ for any $z \in B_r(z_0)$ such that

$$f(z) = (z - z_0)^m \lambda(z) \quad \forall z \in B_r(z_0).$$

Moreover, it this case, the zero z_0 is of order m and

$$f(z_0) = f'(z_0) = \cdots = f^{(m-1)}(z_0) = 0,$$

but $f^{(m)}(z_0) \neq 0$.

Other consequence. A nonzero analytic function f on a region Ω has isolated zeros.

Theorem 4.5.5 (Identity Principle)

Suppose that

- ① f and g are two analytic functions on a region Ω .
- ② there is a sequence (z_n) of distinct points of Ω such that $f(z_n) = g(z_n)$ for all n.
- 3 there is a $z_0 \in \Omega$ such that $z_n \to z_0$.

Then f(z) = g(z) for all $z \in \Omega!$

Proof. Notice that z_n is a zero of h = f - g. Using continuity, we have

$$h(z_0) = h\left(\lim_{n\to\infty} z_n\right) = \lim_{n\to\infty} h(z_n) = 0.$$

If h is nonzero, then z_0 should be an isolated zero. Hence, there is r > 0 such that $h(z) \neq 0$ for any $z \in B_r(z_0)$.

However, $z_n \to z_0$ and $h(z_n) = 0$ for all n. Therefore, there is some N such that $|z_n - z_0| < r \ (n \ge N)$ and $h(z_n) = 0$. A contradiction.

Hence, h(z) = 0, $\forall z \in \Omega$, showing that $f(z) = g(z) \ \forall z \in \Omega$.

Example. Let $f(z) = \frac{z^2 - 1}{z - 1}$, for $z \neq 1$.

Then notice that f is analytic in any deleted neighborhood $B_r'(1)$, r > 0 but is undefined at z = 1. We call z = 1 an **isolated singularity** of f.

Notice also that

$$\lim_{z \to 1} f(z) = \lim_{z \to 1} \frac{z^2 - 1}{z - 1} = \lim_{z \to 1} \frac{(z + 1)(z - 1)}{z - 1} = 2.$$

Then define f(1) := 2. We can now show that f'(z) exists in $B_r(1)$, for r > 0. Indeed, f is analytic on $B'_r(1)$ already. Now, at z = 2, we have

$$\lim_{z \to 2} \frac{f(z) - 2}{z - 1} = \lim_{z \to 2} \frac{z^2 - z - z + 1}{(z - 1)(z - 1)} = \lim_{z \to 2} \frac{(z - 1)^2}{(z - 1)^2} = 1.$$

Therefore $z_0 = 1$ is called a **removable singularity**.

Definition 4.5.8 (Removable Singularity)

An isolated singularity z_0 of an analytic function z_0 is called **removable** if f can be redefine at z_0 so that it is analytic on $B_r(z_0)$.

Theorem 4.5.12

Assume that f is analytic on $0 < |z - z_0| < R$. The following are equivalent:

- ① f has a removable singularity at z_0 .
- ② $f(z) = \sum_{n=0}^{\infty} a_n (z z_0)^n$ for $0 < |z z_0| < R$.
- ③ $\lim_{z\to z_0} f(z)$ exists.
- 4 $\lim_{z\to z_0} |f(z)|$ exists and is finite.
- \bigcirc f is bounded in a neighborhood of z_0 .
- (6) $\lim_{z\to z_0} (z-z_0)f(z) = 0.$

Note. If z_0 is a removable singularity, then we get

$$f(z_0) = \lim_{z \to z_0} f(z) = a_0.$$

Example. Consider $f(z) = \frac{\cos z}{z}$, for $z \neq 0$.

Recall that for a singularity to be removable, we need to verify that

$$\lim_{z\to 0}|f(z)|$$

exists and is finite.

We have

$$\lim_{z \to 0} \frac{1}{|f(z)|} = \lim_{z \to 0} \frac{|z|}{|\cos z|} = \frac{0}{1} = 0$$

and hence

$$\lim_{z\to 0}|f(z)|=\infty.$$

The singularity z = 0 is not removable and we will call it a pole.

Definition 4.5.8 (Poles)

A isolated singularity z_0 of an analytic function is called a **pole** if

$$\lim_{z\to z_0}|f(z)|=\infty.$$

Expanding $\cos z$ in its Taylor series around $z_0 = 0$, we get

$$f(z) = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} = \frac{1}{z} - \frac{z}{2} + \frac{z^3}{24} - \frac{z^5}{720} + \cdots$$

We notice that $a_{-1} = 1$ and $a_{-n} = 0$ for any $n \ge 2$.

The highest index m such that $a_{-m} \neq 0$ and $a_{-n} = 0$ for any $n \geq m$ is called the **order of the pole**.

Equivalently, we can define the order of a pole z_0 of a function f as the order of the zero z_0 of the function $g(z) = \frac{1}{f(z)}$ for $z \neq z_0$ and $g(z_0) = 0$.

Theorem 4.5.15

Let $m \ge 1$ be an integer and R > 0. Assume that f is analytic on $A_{0,R}(z_0)$. Then the following are equivalent.

- ① f has a pole of order m at z_0 .
- ② There is an r > 0 and a non-vanishing analytic function ϕ on $B_r(z)$ such that

$$f(z) = \frac{\phi(z)}{(z-z_0)^m}, \quad 0 < |z-z_0| < \min\{r, R\}.$$

③ There exists a complex number $\alpha \neq 0$ such that

$$\lim_{z\to z_0}(z-z_0)^m f(z)=\alpha.$$

4 The Laurent series expansion of f has the form

$$f(z) = \frac{a_{-m}}{(z-z_0)^m} + \frac{a_{-m+1}}{(z-z_0)^{m-1}} + \cdots + \frac{a_{-1}}{z-z_0} + a_0 + \cdots$$

Example. Consider $f(z) = e^{1/z}$, for $z \neq 0$.

The point z = 0 is a pole or a removable singularity if either

- $\lim_{z\to 0} |f(z)|$ exists and is finite.
- $\lim_{z\to 0} |f(z)| = \infty$.

However, if z = iy with $y \to 0$, then

$$\lim_{z \to 0} |f(z)| = \lim_{y \to 0} |e^{-i/y}| = 1;$$

and if z = x with $x \to 0^+$, then

$$\lim_{z \to 0} |f(z)| = \lim_{x \to 0^+} e^{1/x} = \infty.$$

So $\lim_{z\to 0} |f(z)|$ does not exist!

Definition 4.5.8 (Essential Singularities)

An isolated singularity z_0 of an analytic function is called an **essential** singularity if

$$\lim_{z \to z_0} |f(z)|$$
 does not exist.

Notice that

$$e^{1/z} = \sum_{n=0}^{\infty} \frac{(1/z)^n}{n!} = 1 + \frac{1}{z} + \frac{1}{2z^2} + \frac{1}{6z^3} + \cdots$$

We have $a_{-m} \neq 0$ for infinitely many integer m > 0.

Theorem 4.5.17

Suppose that f is analytic in a region $\Omega \setminus \{z_0\}$. Let

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{a_{-m}}{(z - z_0)^m}$$

be the Laurent expansion of f in some $A_{0,R}(z_0)$.

Then, z_0 is an essential singularity if and only if $a_{-n} \neq 0$ for infinitely many n > 0.