SWW 1156-213

Tranzystory krzemowe epiplanarne małej mocy wielkiej częstotliwości.

Tranzystor BF214 jest przeznaczony do stosowania we wzmacniaczach pośredniej częstotliwości odbiorników radiowych AM oraz AM-FM i pośredniej częstotliwości fonii odbiorników telewizyjnych.

Tranzystor BF215 jest przeznaczony do stosowania we wstępnych stopniach głowic odbiorników radiowych FM.

DANE TECHNICZNE

Wartości dopuszczalne parametrów eksploatacyjnych

Napięcie kolektor- -baza	U_{CB0}	.30	V
Napięcie kolektor-	$U_{CE_0} \ U_{EB_0} \ I_C$	30	V
emiter		4	V
Napięcie emiter-baza		30	mA
Prąd kolektora	t _j	448	K
Temperatura złącza		(175	°C)
Zakres temperatury	t_{stg}	248358	K
składowania		(-25+85	°C)
Moc strat kolektora przy $t_{amb} = 298 \text{ K}$ (25°C)	P_C	- 165	mW

Parametry termiczne

Rezystancja termiczna			
złacze-otoczenie	$R_{th(1-a)}$	900	K/W
złącze-obudowa	$R_{th(j-c)}$	500	K/W

TRANZYSTOR BF214

Parametry statyczne

$przy t_{amb} = 298 K$				
(25°C)		min.	maks.	
Współczynnik wzmoc-		-		
nienia prądowego				
$przy U_{CE} = 10 V,$				
$I_C = 1 \text{ mA}$	h_{21E}	90	330	
Prąd zerowy				
kolektora				
$przy U_{CB} = 10 V$	I_{CB0}		100	nA
Napięcie przebicia				
kolektor-baza				
$przy I_C = 10 \mu A,$,	
$I_E = 0$	$U_{(BR)CB0}$	30		V
Napięcie przebicia	7.7			
kolektor-emiter			1	
$przy I_C = 2 mA,$				
$I_B=0$	$U_{(BR)CE0}$	30	_	V
Napięcie przebicia				
emiter-baza				
$przy I_E = 10 \mu A,$				
$I_C = 0$	$U_{(BR)EB0}$	4		V

Parametry dynamiczne

* 1 w				
$\operatorname{przy}t_{amb}=298\mathrm{K}$				
(25°C)	•	typ.	maks.	
Częstotliwość gra-				
niczna	•			
$przy U_{CE} = 10 V,$				
$I_C = 1 \text{ mA},$				
f = 100 MHz	f_T	250	_	MHz
Stała czasowa sprzęże-		* *		
nia zwrotnego				
$przy U_{CE} = 10 V,$				•
$I_C = 1 \text{ mA},$	*			
f = 50 MHz	$r_{bb}{}'C_c$	15	22	ps
Współczynnik szumów				
$przy U_{CE} = 10 V,$				
$I_{\rm C}=1~{\rm mA},$	*1			
f = 0.2 MHz,				
$R_g = 300 \Omega$	\boldsymbol{F}	1,2	_	dB
$przy U_{CE} = 10 V,$				• • "
$I_C = 1 \text{ mA},$				
f = 1 MHz,				
$R_g = 50 \Omega$	F	3,5	_	dΒ
$przy U_{CE} = 10 V,$				
$I_C = 1 \text{ mA},$				
f = 1 MHz,		•		
$R_q = 300 \Omega$	F	1,2		dΒ
*				

Parametry czwórnikowe

Punkt pracy: $U_{CE} = 10 \text{ V}$, $I_{C} = 1 \text{ mA}$, f = 0.5 MHz

*		typ.	maks.	
Admitancja wejściowa				
$\mathbf{Y}_{11e} = \mathbf{g}_{11e} + \mathrm{j}\omega \mathbf{C}_{11e}$	g _{11e}	0,3	_	mS
	C_{11e}	15		pF
Admitancja przenosze-				
nia wstecz				_
$\mathbf{Y}_{12e} = \mathbf{Y}_{12e} \cdot e^{\mathbf{j}_{\mathbf{q}}_{12e}}$	$ \mathbf{Y}_{12e} $	1,9		μS
	$arphi_{12e}$	-90		0
Admitancja przenosze-				
nia w przód				_
$\mathbf{Y_{21e}} = \mathbf{Y_{21e}} \cdot e^{\mathbf{j_{\phi}21e}}$	$ \mathbf{Y}_{21e} $	35		mS o
	$arphi_{21e}$	0 .		
Admitancja wyjściowa				
$\mathbf{Y_{22e}} = g_{22e} + \mathbf{j}\omega C_{22e}$	922 e	3		μS
	C_{22e}	2,3	_	pF
Punkt pracy: Uce	$= 10 \text{ V}, I_C = 1 \text{ r}$	nA, f =	10,7 M	Hz
Admitancja wejściowa				
$\mathbf{Y}_{11e} = \mathbf{g}_{11e} + \mathbf{j}\omega \mathbf{C}_{11e}$	g_{11e}	0,42	_	, mS
- He Wife 5 110	C _{11e}	15		\mathbf{pF}
Admitancja przenosze-	***			
nia wstecz				
$\mathbf{Y}_{12e} = \mathbf{Y}_{12e} \cdot e^{\mathbf{j} \mathbf{\phi}^{12e}}$	Y _{12e}	35		μS
1201	$arphi_{12e}$	-90		0
	•			
Admitancja przenosze-				
nia w przód				~
$\mathbf{Y}_{21e} = \mathbf{Y}_{21e} \cdot e^{j\varphi_{21e}}$	Y 21e	35		mS °
•	\$21e	-8	_	•
Admitancja wyjściowa		_		~
$\mathbf{Y}_{\mathbf{22e}} = g_{\mathbf{22e}} + \mathbf{j}\omega \mathbf{C}_{\mathbf{22e}}$	922e	5		μS
	C_{22e}	2,2	_	рF

TRANZYSTOR BF215

Parametry statyczne

przy $t_{amb} = 298 \text{ K}$ (25°)		min.	maks.	
Współczynnik wzmoc-				
nienia prądowego	•			
$przy U_{CE} = 10 V,$	_			
$I_{\rm C} = 1 {\rm mA}$	h_{21E}	40	165	
Prąd zerowy				
kolektora			•	
$przy U_{CB} = 10 V$	I_{CB0}		100	nA
Napięcie wejściowe				
baza-emiter	,			
$przy U_{CE} = 10 V,$				
$I_{\rm C}=1~{\rm mA}$	U_{BE}	0,65	0,74	V
Napięcie przebicia				
kolektor-baza				
przy $I_C = 10 \mu\text{A}$,				
$I_B = 0$	$U_{(BR)CB0}$	30	_	V
Naplecie przebicia				
kolektor-emiter				
$\text{przy } I_C = 2 \text{ mA}.$				

$I_B=0$	U(BR)CE0 30	_	v
Vapięcie przebicia emiter-baza			
$ przy I_R = 10 \mu A, $ $I_C = 0 $	U _{(BR)EB0} 4,5	5 —	v

Parametry dynamiczne

$przy t_{amb} = 298 K$					
(25°C)		min.	typ.	maks.	
Częstotliwość gra-		·			
niczna					
$przy U_{CE} = 10 V,$					
$I_C = 1 \text{ mA},$					
f = 100 MHz	f_T	150	250		MHz
Stała czasowa sprzęże-					
nia zwrotnego					
$przy U_{CE} = 10 V,$					
$I_C = 1 \text{ mA},$					
f = 50 MHz	$r_{bb}'C_C$,	12	15	ps
Pojemność sprzężenia					
zwrotnego					,
$przy U_{CE} = 10 V,$					
$I_{\rm C}=1~{\rm mA},$					_
f = 1 MHz,	$-C_{12e}$		_	0,7	pF
Współczynnik szumów					
$przy U_{CE} = 10 V,$					
$I_C = 1 \text{ mA},$					
f = 0.2 MHz,	_				150
$R_g = 300 \Omega$	F	-	1,2	_	$d\mathbf{B}$
$przy U_{CE} = 10 V,$					
$I_C = 1 \text{ mA},$					
f = 1 MHz,	-				40
$R_g = 50 \Omega$, F	_	3,5	_	dΒ
$przy U_{CE} = 10 V,$					
$I_C = 1 \text{ mA},$					
f = 1 MHz,	_				מנג
$R_g = 300 \Omega$	F	_	1,2		ďΒ
$przy U_{CE} = 10 V,$,
$I_{\mathbf{C}} = 1 \text{ mA},$					
f = 100 MHz,	_		0.5		dB
$R_g = 100 \Omega$	F		3,5		uв

Parametry czwórnikowe

Punkt pracy: $U_{CB} = 10 \text{ V}, -I_E = 1 \text{ mA}, f = 100 \text{ MHz}$

		typ.	
Admitancja wejściowa			_
$Y_{11e} = g_{11e} + j\omega C_{11e}$	g_{11e}	33	mS
	C_{11e}	9	pF
Admitancja przenosze- nia wstecz			
$\mathbf{Y}_{12e} = \mathbf{Y}_{12e} \cdot e^{j\varphi^{12e}}$	$ \mathbf{Y}_{12e} $	380	μS
. , ,	\$12e	-90	0
Admitancja przenosze- nia w przód			
$\mathbf{Y}_{21e} = \mathbf{Y}_{21e} \cdot e^{j\varphi_{21e}}$	Y21e	33	mS
• • • • • • • • • • • • • • • • • • • •	φ_{21e}	145	0
Admitancja wyjściowa			
$\mathbf{Y}_{\mathbf{22e}} = \mathbf{g}_{\mathbf{22e}} + \mathbf{j}\omega \mathbf{C}_{\mathbf{22e}}$	<i>9</i> 22e	44	μS
	C22e	1,5	pF

Zależność temperaturowa mocy strat $P_C = f(t_{amb})$

Charakterystyka wyjściowa $I_C = f\left(U_{CE}\right);\ I_B$ — parametr

Charakterystyka wyjściowa $I_C = f(U_{CB}); I_E$ — parametr

Charakterystyka wejściowa $I_B = f(U_{BE})$

Charakterystyka przejściowa $I_C = f(I_B)$

Zależność statycznego współczynnika wzmocnienia prądowego znormalizowanego od prądu kolektora $h_{21E}(n)=f\left(I_{C}\right)$

Zależność pojemności sprzężenia zwrotnego od napięcia $-C_{12e}=f\left(U_{CE}\right)$

Zależność częstotliwości granicznej od prądu kolektora $f_T = f\left(I_C\right)$

Zależność stałej czasowej sprzeżenia zwrotnego od prądu emitera $r_{\rm bb}'C_C={\rm f}\,(I_E)$

Zależność współczynnika szumów i optymalnej konduktancji źródła od częstotliwości F i $G_{sopt}=f\left(f\right)$

4

Zależność parametrów Y od częstotliwości Y = f(f)

Zależność parametrów Y od częstotliwości Y = f(f) .

Zależność admitancji wejściowej od prądu emitera $g_{11e};\ C_{11e}=f\left(I_{E}\right)$

Zależność admitancji przenoszenia wstecz od prądu emitera $|Y_{12e}|$; $\varphi_{12e}=f\left(I_{E}\right)$

Zależność admitancji przenoszenia w przód od prądu emitera $|Y_{21e}|; \ \varphi_{21e}=f(I_E)$

Zależność admitancji wyjściowej od prądu emitera $g_{22e};\ C_{22e}=f\left(I_{E}\right)$

Zależność admitancji wejściowej od prądu emitera $g_{11e};\ C_{11e}=f\left(I_{E}\right)$

Zależność admitancji przenoszenia wstecz od prądu emitera $|Y_{12e}|; \varphi_{12e} = f(I_E)$

Zależność admitancji przenoszenia w przód od prądu emitera $|Y_{21e}|;~\varphi_{21e}=f~(I_E)$

Zależność admitancji wyjściowej od prądu emitera $g_{22e};\ C_{22e}=f\left(I_{\rm E}\right)$.

Zależność admitancji wejściowej od prądu emitera $g_{11b};\ C_{11b}=f\left(I_{E}\right)$

Zależność admitancji przenoszenia wstecz od prądu emitera $|Y_{12b}|; \ \varphi_{12b}=f(I_{\rm E})$

Zależność admitancji przenoszenia w przód od prądu emitera $|Y_{21b}|; \ \varphi_{21b} = f(I_E)$

Zależność admitancji wyjściowej od prądu emitera $g_{22e};\ C_{22e}=f\left(I_{E}\right)$

PRODUCENT

NAUKOWO-PRODUKCYJNE CENTRUM PÓŁPRZEWODNIKÓW "TEWA" ul. Komarowa 5 02-675 Warszawa

Telefon: 431431 Teleks: 813219 DYSTRYBUTOR

BIURO ZBYTU SPRZĘTU TELERADIOTECHNICZNEGO ul. Nowogrodzka 50 00-695 Warszawa Telefony: 289411, 286471 Teleks: 813435