Particle spectrograph

Wave operator and propagator

α				2 r3+r5)	$\frac{+r_5)+t_1}{(2r_3+r_5)t_1}$		$\frac{r_5)+t_1}{r_3+r_5)t_1}$
$\mathfrak{r}_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{2 (k + 2 k^3)^2 (2 r_3 + r_5) t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_1^{\#1} \dagger^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + \alpha$	$\tau_{1}^{\#2} +^{\alpha}$

uge generators	Multiplicities	1	1	3	3	3	5	16
Source constraints/gauge generators	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} = 0$	$t_1^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$t_{2^{+}}^{\#1}\alpha\beta - 2ik \sigma_{2^{+}}^{\#1}\alpha\beta = 0$	Total constraints:

$\sigma_{2^{ ext{-}}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}\alpha_{\beta}$)	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0	
	$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_{2}^{#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 \cdot t_1}$	
$\tau_0^{\#2}$	0	0	0	0	
$\tau_0^{\#1}$	0	0	0	0	
$\sigma_{0}^{\#1}$	$\frac{1}{6 k^2 r_3}$	0	0	0	
	$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1} \uparrow$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ †	

			1, 3	×		$\alpha\beta$	امال	-	
0	С		0			$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
0	O	0	0			$\omega_{2}^{\#1}{}_{lphaeta}f_{2}^{\#1}{}_{lphaeta}$	<u>t1</u> 2	$\frac{i k t_1}{\sqrt{2}}$	0
0	C)	0			3	-αβ		Χθχ
τ ₀ + Τ	7#2 +	- +0,	$\sigma_{0}^{\#1}$ \dagger	<u> </u>			$\omega_2^{\#1} +^{\alpha\beta}$	$f_2^{#1} + \alpha^{\beta}$	$\omega_{2}^{#1} +^{\alpha eta \chi}$
Û	Þ	,	0	$\overline{lkt_1}$	3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$	
	_				,)		

0

α					kt_1		1
$f_{1^-}^{\#2}$	0	0	0	<u>ikt1</u> 3	$\left \frac{1}{3}\bar{l}\sqrt{2}kt_1\right $	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	1 7	0	$-\frac{1}{3}i\sqrt{2}kt_1$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (2 r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-rac{1}{3}$ ikt $_1$
$f_{1}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}_{+\alpha\beta} \ f_{1}^{\#1}_{+\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$+^{\alpha\beta} \left k^2 \left(2 r_3 + r_5 \right) - \frac{t_1}{2} \right $	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_{1}}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1^{-}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} \dagger^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{\#2} +^{lpha}$

	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0^+}^{\#1}\dagger$	$6 k^2 r_3$	0	0	0
$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 - t_1$

Massive and massless spectra

 $-\frac{1}{2} > 0$

Odd

 $_{_{\chi}}^{\kappa}$ - $6t_{1}$ $\omega_{_{\kappa}{^{\lambda}}}^{\kappa\lambda}$ $\omega_{_{\kappa\lambda}}^{}$ + $6\,f^{lphaeta}\,\, \tau_{_{lphaeta}}$ + $6\,\omega^{lphaeta\chi}\,\,\sigma_{lphaeta\chi}^{}$ -

 $S_F == \iiint \left(\frac{1}{6} \left(-2 t_1 \ \omega_{\kappa \alpha}^{\ \alpha'} \ \omega_{\kappa \alpha}^{\ \prime} \right) \right)$

 $12 r_3 \partial_i \omega^{K\lambda}_{\kappa}$

Quadratic pole							
Pole residue:	$-\frac{1}{(2r_3+r_5)t_1^2} > 0$						
Polarisations:							

 $12t_1\ \omega_{_{IK}\theta}\ \partial^\kappa f^{'\theta} - 2t_1\ \omega_{_{I\alpha}}^{\ \alpha}\ \partial^\kappa f^{'}_{\ \kappa} - 2t_1\ \omega_{_{I\lambda}}^{\ \lambda}\ \partial^\kappa f^{'}_{\ \kappa} + 3t_1\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\lambda\alpha} +$

 $3t_1 \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} + 3t_1 \partial_{\kappa} f^{\lambda}_{\theta}$

 $2t_1 \omega_{\kappa\alpha}^{} \partial^{\kappa} f'_{} + 2t_1 \omega_{\kappa\lambda}^{} \partial^{\kappa} f'_{} + 4t_1 \partial^{\alpha} f_{} \partial^{\kappa} f'_{} - 2t_1 \partial_{\kappa} f^{\lambda}_{}$

 $12 r_3 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial_\kappa \omega^{\kappa\lambda\theta} - 6 r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial_\kappa \omega^{\kappa\lambda\theta} + 24 r_3 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} +$

 $6 \, r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \, \partial_\kappa \omega^{\theta \kappa \lambda} - 12 \, r_3 \, \partial_\theta \omega_\lambda^{\ \alpha}_{\ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} + 6 \, r_5 \, \partial_\theta \omega_\lambda^{\ \alpha}_{\ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda}_{\ \alpha}$

 $2 r_2 \partial_\theta \omega_{\alpha\beta}^{ \beta} \partial_\kappa \omega^{\alpha\beta\theta} - 4 r_2 \partial_\theta \omega_{\alpha\beta}^{ \kappa} \partial_\kappa \omega^{\theta\alpha\beta} + 12 r_3 \partial_\alpha \omega_\lambda^{ \alpha}_{ \theta} \partial_\kappa \omega^{\theta\kappa\lambda}$

Unitarity conditions

 $r_2 < 0 \&\& r_5 < -2 r_3 \&\& t_1 < 0$