

Collecting user annotations for training neural network-based object detectors

Presentazione della prova finale di:

Tommaso Redaelli Matricola 830442

Relatore: Prof. Gianluigi Ciocca

Co-relatore: Dr. Luigi Celona

Anno Accademico 2019 – 2020

What is object detection

Classification

Localization

Detection

WHAT and WHERE the objects are

Neural network approach

"Deep learning neural network models learn to map inputs to outputs given a training dataset of examples."

Single example of training:

- Ground-truth:
 - Bounding box -

[47, 39, 142, 125] «Apple»

- Label

Idea and goal

Provide suggestions on depicted objects

Allow user to validate and add new detections

Use annotations to retrain or build new neural networks

YOLO neural network

Training process

System structure

Mongo database

Reference mechanism

```
Grape
Apple
                                                 Orange
   id: ...,
                                                   id: ...,
                           id: ...,
   refer id: 3,
                           refer id: 3, -
                                                   refer_id: 5,
   collection: ....
                           collection: ....
                                                   collection: ....
   type: ...
                           type: ...
                                                   type: ...
Validation
                                    Validation
   id: 3,
                                      id: 5,
   img: ...
                                      img: ...
   detections: |
                                      detections: |
               {'Apple': ... },
                                                   {'Orange': ... }
               {'Grape': ... }
                                      type: ...
   type: ...
```

Server – Components integration

Server – Routing

Controller

Front-End

Complete use cycle

Android app

Typical usage flow

Detections

- Apple
- Banana
- Broccoli
- Grape
- Lemon
- Orange
- Pear
- Pineapple
- Tomato

Accuracy

Apple	75% - 85%
Banana	60% - 80%
Broccoli	70% - 85%
Grape	<i>50% - 60%</i>
Lemon	70% - 80%
Orange	75% - 85%
Pear	50% - 60%
Pineapple	80% - 85%
Tomato	70% - 75%

Retrain

Starting Detector [A]

Trained on 209 imgs - →

Accuracy: 44%

Retrained Detector [B]
90 more annotated imgs
Accuracy: 70%

Limits

▶ Detection time (already optimized thorugh *multi-threading*)

Possible improvements

- ▶ GPU computing
 - Real-time
 - Video detection

- No universal format for category names
- No check on the honesty of the user annotations

Different and unsorted detections for a single object

- Guide user through a hierarchy of categories
- Queue of to-be-annotated images
- Multiple user validation
- Sort multiple detection by score
- Non-max suppressor