

I
SEQUENCE LISTING

<110> Levite, Mia

<120> METHODS OF AND PHARMACEUTICAL COMPOSITIONS FOR MODULATING T-LYMPHOCYTE ADHESION, MIGRATION, GENE EXPRESSION AND FUNCTION BY GLUTAMATE AND ANALOGS THEREOF

<130> 27644

<160> 9

<170> PatentIn version 3.1

<210> 1

<211> 2747

<212> DNA

<213> Homo sapiens

<400> 1		
tgacgactcc tgagttgcgc ccatgcttt gtcagctcg ttttaggcgt agcatggcca	60	
ggcagaagaa aatggggcaa agcgtgctcc gggcggttt cttttagtc ctggggctt	120	
tgggtcattc tcacggagga ttcccaaca ccatcagcat aggtggactt ttcatgagaa	180	
acacagtgcgca ggagcacagc gcttccgct ttgcgtgca gttatacaac accaaccaga	240	
acaccaccga gaagcccttc catttgaatt accacgtaga tcacttggat tcctccaata	300	
gttttccgt gacaaatgct ttctgctccc agttctcgag aggggtgtat gccattttgc	360	
gattctatga ccagatgtca atgaacaccc tgaccttctt ctgtggggcc ctgcacacat	420	
cctttgttac gcctagcttc cccactgacg cagatgtgca gtttgcatac cagatgcgcc	480	
cagccttggaa gggcgctatt ctgagtcttc tgggtcatta caagtggag aagtttgt	540	
acctctatga cacagaacga ggattttcca tcctccaagg gattatggaa gcagcagtgc	600	
aaaacaactg gcaagtaaca gcaaggctcg tggaaacat aaaggacgtc caagaattca	660	
ggcgcatcat tgaagaaatg gacaggagc aggaaaagcg atacttgatt gactgcgaag	720	
tcgaaaggat taacacaatt ttgaaacagg ttgtgatcct agggaaacac tcaagaggtt	780	
atcactacat gctcgctaactgggttta ctgatattt actggaaaga gtcatgcatt	840	
ggggagccaa cattacaggt ttccagattt tcaacaatga aaaccctatg gttcagcagt	900	
tcatacagcg ctgggtgagg ctggatgaaa gggattcccc tgaagccaa aatgcaccac	960	
taaagtatac atctgcattt acacacgacg caataactggt catagcagaa gcttccgct	1020	
acctgaaaggag gcagcgagta gatgtgtccc ggagaggaag tgctggagac tgcttagcaa	1080	
atcctgctgt gcccggagt caaggaattt atatttgagag agctctgaaa atgggtcaag	1140	
tacaaggaat gactggaaat attcaattt acacttatgg acgttaggaca aattatacca	1200	
tcgatgtgta taaaatggaa gtcagtgct ctcgaaaaggc tggctactgg aacgagtatg	1260	
aaagggttgt gccttctca gatcagcaaa tcagcaatga cagtcattcc tcagagaatc	1320	
ggaccatagt agtactacc attctggat caccatatgt aatgtacaag aagaaccatg	1380	
agcaactgga agggaaatgaa cgatatacg gctattgtgt agacctagcc tatgaaatag	1440	
ccaaacatgt aaggatcaaa tacaattgtt ccatcggtgg tgacggggaa tatggtgcaa	1500	
gggatccaga gactaaaata tggAACGGCA tggttgggaa acttgtctat gggagagctg	1560	
atatacgatgt tgctccactc actataacat tggccgtga agaagtctata gattttcaa	1620	
agccattaat gagcctgggc atctccatca tgataaagaa gcctcagaaa tcaaaaccag	1680	
gcgtattctc atttctggat cccctggctt atgaaatctg gatgtgcatt gtcttgctt	1740	
acattggagt cagcgttagtt ctttccttag tcagcaggtt cagtcattat gaatggcact	1800	

tggaaagacaa	caatgaagaa	cctcgtgacc	cacaaaagtcc	tcctgatcct	ccaaatgaat	1860
ttgaaatatt	taacagtctt	tggtttcct	tgggtgcctt	tatgcagcaa	ggatgtgata	1920
tttctccaag	atcactctcc	ggcgcattg	ttggaggggt	ttggtggttc	ttcacccctga	1980
tcataatttc	ttcctatact	gccaatctcg	ctgcttcct	gactgtggag	aggatggttt	2040
ctcccataga	gagtgcgaa	gacttagcta	aacagactga	aattgcata	gggaccctgg	2100
actccggtc	aacaaaagaa	ttttcagaa	gatccaaaat	tgctgtgtac	gagaaaatgt	2160
ggtcttacat	gaaatcagcg	gagccatctg	tgtttaccaa	aacaacagca	gacggagtgg	2220
cccgagtgcg	aaagtccaag	ggaaaagttcg	cttccctgct	ggagtcaacc	atgaatgagt	2280
acattgagca	gagaaaaacca	tgtgatacga	tgaaaagttgg	tggaaatctg	gattccaaag	2340
gctatggtgt	ggcaaccct	aaaggctcg	cattaggaaa	tgctgttaac	ctggcagttat	2400
taaaactgaa	tgagcaaggc	ctctggaca	aattgaaaaaa	caaatggtgg	tacgacaaag	2460
gagagtgcgg	cagcgggggc	ggtgactcca	aggacaagac	cagcgctctg	agcctgagca	2520
atgtggcagg	cgtttctat	atacttgcg	gaggctctggg	gctggccatg	atggggctt	2580
tgatagaatt	ctgttacaaa	tcacgggcag	agtccaaacg	catgaaactc	acaaagaaca	2640
ccccaaaactt	taagctgct	cctgccacca	acactcagaa	ttatgctaca	tacagagaag	2700
gctacaacgt	gtatgaaaca	gagagtgtt	agatctaggg	atccctt		2747

<210> 2
<211> 3056
<212> DNA
<213> Homo sapiens

<400> 2	tgacgactcc	ttagttgcgc	ccatgctctt	gtcagcttcg	ttttaggcgt	agcatggcca	60
	ggcagaagaa	aatggggcaa	agcgtgcctc	ggcggtctt	cttttttagtc	ctggggcttt	120
	tgggtcattc	tcacggagga	ttccccaaca	ccatcagcat	aggtggactt	ttcatgagaa	180
	acacagtgc	ggagcacagc	gctttccgct	ttgccgtgc	gttatacaac	accaaccaga	240
	acaccaccga	gaagcccttc	catttgaatt	accacgtaga	tcacttggat	tcctccaata	300
	gttttccgt	gacaaatgct	ttctgctccc	agttctcgag	aggggtgtat	gccatcttg	360
	gattctatga	ccagatgtca	atgaacaccc	tgacctcctt	ctgtggggcc	ctgcacacat	420
	cctttgttac	gcctagcttc	cccactgacg	cagatgtgc	gttgtcatc	cagatgcgcc	480
	cagccttgaa	gggcgcattt	ctgagtcttc	tgggtcatta	caagtggag	aagtttgt	540
	acctctatga	cacagaacga	ggatttcca	tcctccaagc	gattatggaa	gcagcagtgc	600
	aaaacaactg	gcaagtaaca	gcaaggctcg	tggaaacat	aaaggacgtc	caagaattca	660
	ggcgcacat	tgaagaaatg	gacaggaggc	aggaaaagcg	atacttgatt	gactgcgaag	720
	tcgaaaggat	taacacaatt	ttgaaacagg	ttgtgatcct	agggaaacac	tcaagaggtt	780
	atcactacat	gctcgctaac	ctgggtttt	ctgatattt	actggaaaga	gtcatgcat	840
	ggggagccaa	cattacaggt	ttccagattt	tcaacaatga	aaaccctatg	gttcagcagt	900
	tcatacagcg	ctgggtgagg	ctggatgaaa	ggaaattccc	tgaagccaag	aatgcaccac	960
	taaagtatac	atctgcattt	acacacgacg	caatactggt	catagcagaa	gctttccgct	1020
	acctgaggag	gcagcgagta	gatgtgtccc	ggagaggaag	tgctggagac	tgcttagcaa	1080
	atcctgctgt	gcccggagt	caaggaattt	atattgagag	agctctgaaa	atggtgcaag	1140
	tacaaggaat	gactggaaat	attcaattt	acacttatgg	acgttaggaca	aattatacca	1200

tcgatgtgt	tgaaatgaaa	gtcagtggct	ctcgaaaagc	tggctactgg	aacgagtatg	1260
aaaggtttgt	gccttctca	gatcagcaaa	ttagaatga	cagtgcattcc	tcagagaatc	1320
ggaccatagt	agtgactacc	attctgaaat	caccatatgt	aatgtacaag	aagaaccatg	1380
agcaactgga	aggaaatgaa	cgatatacgaa	gctattgtgt	agacctagcc	tatgaaatag	1440
ccaaacatgt	aggatcaaa	tacaaattgt	ccatcggtgg	tgacggaaa	tatggtgcaa	1500
ggatccaga	gactaaaata	tggAACGGCA	tggttgggaa	acttgcgttat	gggagagctg	1560
atatagttgt	tgctccactc	actataacat	tggccgtga	agaagtata	gattttcaa	1620
agccattaaat	gagcctgggc	atctccatca	tgataaaagaa	gcctcagaaa	tcaaaaccag	1680
gcgtattctc	atttctggat	ccccctggctt	atgaaatctg	gatgtgcatt	gtctttgctt	1740
acattggagt	cagcgttagtt	cttttcctag	tcagcagggtt	cagtccttat	gaatggcact	1800
tggaaagacaa	caatgaagaa	cctcgtgacc	cacaaagtcc	tcctgatctt	ccaaatgaat	1860
ttggaaatatt	taacagtctt	tggtttcct	tgggtgcctt	tatgcagca	ggatgtgata	1920
tttctccaag	atcaactctcc	gggcgcattt	ttgggggggt	ttgggtggttc	ttcacccctga	1980
tcataatttc	ttcctataact	gccaaatctcg	ctgctttctt	gactgtggag	aggatggttt	2040
ctcccataga	gagtgtgaa	gacttagcta	aacagactga	aattgcata	gggaccctgg	2100
actccggttc	aacaaaagaa	tttttcagaa	gatccaaaat	tgctgtgtac	gagaaaatgt	2160
ggtcttacat	gaaatcagcg	gagccatctg	tgtttaccaa	aacaacacga	gacggagtgg	2220
cccggagtgcg	aaagtccaag	ggaaagttcg	ctttcctgct	ggagtcaacc	atgaatgagt	2280
acatttgagca	gagaaaaacca	tgtgatacga	tggaaatgttgg	tggaaatctg	gattccaaag	2340
gctatggtgt	ggcaaccctt	aaaggctcag	cattaggaac	gcctgtaaac	cttgcagtt	2400
tggaaactcag	tgaacaaggc	atcttagaca	agctgaaaaaa	caaatggtgg	tacgataagg	2460
ggaaatgtgg	agccaaggac	tccgggagta	aggacaagac	cagcgctctg	agcctgagca	2520
atgtggcagg	cgtttctat	atactgtcg	gaggctgtgg	gctggccatg	atgggtggctt	2580
tgtatagaatt	ctgttacaaa	tcacgggcag	agtccaaacg	catgaaactc	acaaagaaca	2640
cccaaaactt	taagcctgct	cctgccacca	acactcagaa	ttatgctaca	tacagagaag	2700
gctacaacgt	gtatgaaaca	gagagtgtta	agatcttaggg	atcccttccc	actggaggca	2760
tgtatgaga	ggaaatcacc	gaaaacgtgg	ctgcttcaag	gatcctgagc	cagatttcac	2820
tctccttgg	gtcgggcattg	acacgaatat	tgctgtgttgg	gcaatgaccc	ttcaatagga	2880
aaaactgatt	tttttttcc	ttcagtgcc	tatggaaacac	tctgagactc	gcgacaatgc	2940
aaaccatcat	tgaaatctt	ttgcttgct	tgaaaaaaaaaa	taattaaaaat	aaaaaccaac	3000
aaaaatggac	atgcatcaaa	cccttgcgtgt	attaatattt	attatagttt	tcattha	3056

<210> 3
<211> 14
<212> RNA
<213> Artificial sequence

<220>
<223> Consensus sequence for the hairpin ribozyme

<220>
<221> misc_feature
<222> (1)..(3)
<223> Any nucleotide residue

<220>
<221> misc_feature

<222> (5)..(5)
 <223> Any nucleotide residue

<220>
 <221> misc_feature
 <222> (9)..(14)
 <223> Any nucleotide residue

<400> 3
 nnnbngucnn nnnn

14

<210> 4
 <211> 21
 <212> DNA
 <213> Artificial sequence

<220>
 <223> synthetic single strand oligonucleotide

<400> 4
 gcagtgggcc ttcaactcta c

21

<210> 5
 <211> 24
 <212> DNA
 <213> Artificial sequence

<220>
 <223> synthetic single strand oligonucleotide

<400> 5
 ggatgggact ctaattcgta tata

24

<210> 6
 <211> 21
 <212> DNA
 <213> Artificial sequence

<220>
 <223> synthetic single strand oligonucleotide

<400> 6
 caggtccagg ggtcttggc c

21

<210> 7
 <211> 22
 <212> DNA
 <213> Artificial sequence

<220>
 <223> synthetic single strand oligonucleotide

<400> 7
 ggcagaccga gatgaatcct ca

22

<210> 8
 <211> 20
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Synthetic single strand oligonucleotide

<400> 8
 cgataacttga ttgactgcga

20

<210> 9
 <211> 20
 <212> DNA
 <213> Artificial sequence

5

<220>
<223> Synthetic single strand oligonucleotide
<400> 9
tactatggtc cgattctctg

20