University of California, Los Angeles

Background

- Effective diagnosis of medical conditions, including brain tumors and strokes, requires accurately distinguishing between unhealthy brain tissues and tumors from healthy brain tissue
- Image segmentation is crucial in analyzing medical images and is considered the first and critical step in many clinical applications, including accurate detection of brain lesions
- Current techniques use FLAIR, DW, and CAT to image the brain for brain lesion detection and image segmentation implementation.
 - **FLAIR** (fluid attenuation inversion recovery) removes cerebrospinal fluid from images by implementing an inversion recovery sequence
 - **DWI-MRI** (diffusion weighted magnetic resonance imaging) measures the restricted diffusion of water within known tissues in order to produce neural tract images
 - **CAT** (Computerized Axial Tomography) scans utilize X-ray tests to produce cross- sectional images of bones, muscles, fats, and organs, including the brain
- We will focus on analyzing the **DWI-MRI** technique by observing and studying abnormalities within the brain by observing areas appearing unusually brighter or darker than normal brain tissue

Methods

- Obtained a combination of data from the BRATS (BRAin Tumor Segmentation) and other online brain tumor datasets (figshare)
- Modified the TensorFlow pix2pix, an open source machine learning library in order to train, tune, build, and test our neural network with Python
- Processed MRI brain scans to manually identify the location of brain lesions in order to train the neural network
- Utilized image modifying software to highlight brain lesions
 - Potential source of error due to lack of professional brain lesion identification
- Constructed scripts to
 - Prepare images for training
 - Split images into training and testing datasets
 - Train, tune, and test the model
 - Modify the max_epochs parameter of each model
 - Compute accuracy of each model
 - Display testing results into an HTML file

Training

Figure 1: Training Data

Left half of each image is the ground truth (isolated brain lesion)

Right half of each image is the original MRI brain scan

- Paired ground truth lesions with corresponding brain scans
- Randomly split data set into training and testing directories
 - Trained on 35 brain scans, tested on 9
 - Relatively small dataset may be a potential source of error
- Trained data set on 10 models by modifying the maximum number of epochs (iterations) from 20 to 200 in increments of 20
- Compared the accuracy of each model by averaging the Structural Similarity Image Index (SSIM) of each model's guess/truth pair

Testing

Figure 2: Testing Data

Trained model outputs a guess for each unseen brain scan

Model accuracy computed between guess and actual lesion against the SSIM index

Results

- Machine learning algorithm accurately identified brain lesions when the max_epochs parameter approached 200
- However, there is an accuracy and performance trade-off
 - Training the model at 200 epochs took 8 hours on a personal laptop while only taking 20 minutes at 20 epochs

Figure 3: Accuracy vs. Max Epochs
Increasing the max_epochs parameter increases the average accuracy of the
model but also increases the training time

Conclusion

- The neural network automates the tedious but crucial step of identifying abnormalities within the brain
- With further training, tuning, and testing on a larger dataset, the neural network should be able to highlight brain lesions more quickly and accurately
- A well-trained doctor utilizing a neural network with minimal error could increase the confidence of their diagnosis
- This could save lives by detecting lesions when doctors miss them and prevent unnecessary surgeries when doctors misinterpret an MRI scan

References

Chen, Liang, et al. "Fully Automatic Acute Ischemic Lesion Segmentation in DWI using Convolutional Neural Networks." *ScienceDirect*, 13 June 2017, https://www.sciencedirect.com/science/article/pii/S221315821730147X. Accessed 6 May 2018.

Chilla, Geetha, et al. "Diffusion Weighted Magnetic Resonance Imaging and its Recent Trend." *US National Library of Medicine*, 5 June 2015, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426106/. Accessed 3 May 2018.

"Computed Tomography (CT or CAT) Scan of the Brain." *Johns Hopkins Medicine*, 4 April 2018,

https://www.hopkinsmedicine.org/healthlibrary/test_procedures/neurological/computed_tomography_ct_or_cat_scan_of_the_brain_92,p07650. Accessed 6 May 2018. Lao, Zhiqiang, et al. "Computer-Assisted Segmentation of White Matter Lesions." *Advances in Pediatrics*., U.S. National Library of Medicine, Mar. 2008, www.ncbi.nlm.nih.gov/pmc/articles/PMC2528894/. Accessed 3 May 2018.

Noh, Hyeonwoo, et al. "Learning Deconvolution Network for Semantic Segmentation." *IEEE*, 18 February 2016, https://ieeexplore.ieee.org/document/7410535/. Accessed 6 May 2018.