1

11.9.3.17

EE23BTECH11017 - Eachempati Mihir Divyansh*

Question: If the 4^{th} , 10^{th} and 16^{th} terms of a G.P. are x, y, and z, respectively. Prove that x, y, z are in G.P. **Solution:**

TABLE 0
GIVEN INFORMATION

Symbol	Value	Description
x	$x(0) r^4$	x (4)
у	$x(0) r^{10}$	x(10)
z	$x(0) r^{16}$	x(16)
r	$y^{\frac{1}{6}}x^{-\frac{1}{6}}$	$\frac{x(n)}{x(n-1)}$
x(0)	$x^{\frac{5}{3}}y^{-\frac{2}{3}}$	First term
x(n)	$x(0) r^n u(n)$	General Term

1) From Table 0,

$$x = x(4) = x(0) r^4$$
 (1)

$$y = x(10) = x(0) r^{10}$$
 (2)

$$z = x(16) = x(0) r^{16}$$
 (3)

Consider $\frac{x(10)}{x(4)}$ and $\frac{x(16)}{x(10)}$;

$$\implies \frac{x(10)}{x(4)} = \frac{x(0) r^{10}}{x(0) r^4} = r^6 \tag{4}$$

$$\implies \frac{x(16)}{x(10)} = \frac{x(0) r^{16}}{x(0) r^{10}} = r^6$$
 (5)

From (4) and (5), x(4), x(10), x(16) are in G.P.

 \therefore x, y, z are in G.P.

2) x(0) and r can be expressed in terms of x, y, and z in the following manner.

$$\Longrightarrow \frac{y}{x} = r^6 \tag{6}$$

$$\implies r = \sqrt{6} \frac{y}{x} = \left(\frac{y}{x}\right)^{\frac{1}{6}} \tag{7}$$

$$\Longrightarrow x = x(0) r^4 \tag{8}$$

$$\Longrightarrow x(0) = \frac{x}{r^4} \tag{9}$$

$$=x\left(\frac{x}{v}\right)^{\frac{4}{6}}\tag{10}$$

$$\therefore x(0) = x^{\frac{5}{3}} y^{-\frac{2}{3}} \text{ and } r = \left(\frac{y}{x}\right)^{\frac{1}{6}} = y^{\frac{1}{6}} x^{-\frac{1}{6}} \quad (11)$$

3) Z-transform: $x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
 (12)

$$X(z) = \frac{x(0)}{1 - rz^{-1}} \tag{13}$$

 $ROC = \{z : |z| > |r|\}$

Substituting r and x(0) from (11),

$$X(z) = \frac{x^{\frac{5}{3}}y^{-\frac{2}{3}}}{1 - \left(\frac{y}{z}\right)^{\frac{1}{6}}z^{-1}}$$
(14)

4) Example

Let
$$x(0) = \frac{1}{256}$$
 and $r = 2$ (15)

$$x = x(4) = x(0) r^4 = \frac{1}{256} (2)^4 = \frac{1}{16}$$
(16)

$$\implies x = \frac{1}{16} \tag{17}$$

$$y = x(10) = x(0) r^{10} = \frac{1}{256} (2)^{10} = 4$$
 (18)

$$\implies y = 4$$
 (19)

$$z = x(16) = x(0) r^{16} = \frac{1}{256} (2)^{16} = 256$$
 (20)

$$\implies z = 256 \tag{21}$$

Fig. 1. Stem Plot of x(n) v/s n

