

SOC Design Peripheral - GPIO

Jiin Lai

Topics

- GPIO Introduction
- GPIO During RESET
- Bit banging Software to transmit/receive data

GPIO Overview

- CPU use memory-mapped IO register to read or write digital signals, and set the direction of the pin
- The GPIO pins can be shared with one or more special-purpose peripherals
- It may generate interrupts when an event occurs on an input pin

Example Usage: Switch input / LED output

- GPIO
 - Input: program can determine if input signal is a 1 or a 0
 - Output: program can set output to 1 or 0
- Can use this to interface with external devices
 - Input: switch
 - Output: LEDs

GPIO Alternative Functions

- Pins may have different features
- To enable an alternative function, set up the appropriate register
- May also have analogue paths for ADC / DAC etc.
- Advantages:
 - Saves space on the package
 - Improves flexibility

Pull-Up & Pull-Down Resistors

Ensure a known value on the output if a pin is left
 floating

- The pin value is:
 - High when SW1 is not pressed
 - Low when SW1 is pressed

Input Synchronization & Debouncing

- External signals are asynchronous to internal clock flip-flop can enter metastability
- Mechanical Switch generates bouncing signal
- It needs input synchronization and debouncing circuit

CPU Using Memory-IO to Access GPIO

GPIO during RESET

GPIO pin state during RESET

• If a GPIO pin can be used for input and output depends on operation mode. Reset to input mode (avoid bus conflict), until programmed to

output

GPIO pin state during RESET

- If a GPIO pin can be used for input and output depends on operation mode. Reset to input mode (avoid bus conflict), until programmed to output
- The (dip)switch pin is used a mode configuration during reset, and as a GPIO during system operation.
- The dipswitch pad has weak pullup or pulldown as a default value, and can be over-ridden by a resistors. The resistor value does not affect the normal operation.
- If the input/output mode has to be determined before system starts, use a dip-switch latched by reset

Software Emulation – Bit banging

Bit Banging Software programming

- Software generates transmitted signals or process received signals (substitute for dedicated hardware)
- Directly set and samples the state of GPIOs
- Data buffers provided to relax software timing requirements
- Use for simple protocol (UART, SPI, I2C)

Transmits a byte of data on an SPI BUS.

```
// transmit byte serially, MSB first
void send 8bit serial data(unsigned char data)
 int i;
 // select device (active low)
  output low(SD CS);
 // send bits 7..0
 for (i = 0; i < 8; i++)
    // consider leftmost bit
    // set line high if bit is 1, low if bit is 0
    if (data & 0x80) 1
      output high (SD DI);
    else
      output low(SD DI);
    // pulse the clock state to indicate that bit value should be read
    output low(SD CLK);
    delay();
    output high(SD CLK);
    // shift byte left so next bit will be leftmost
    data <<= 1;
 // deselect device
 output high(SD CS);
```


Supplement

User Project GPIO (MPRJ)

GPIO memory address map:

C header name	address	description
reg_gpio_data	0x21000000	GPIO input/output (low bit) GPIO output readback (16th bit)
reg_gpio_ena	0x21000004	GPIO output enable (0 = output, 1 = input)
reg_gpio_pu	0x21000008	GPIO pullup enable (1 = pullup, 0 = none)
reg_gpio_pd	0x2100000c	GPIO pulldown enable (1 = pulldown, 0 = none)
reg_pll_out_dest	0x2f000000	PLL clock output destination (low bit)
reg_trap_out_dest	0x2f000004	Trap output destination (low bit)
reg_irq7_source	0x2f000008	IRQ 7 input source (low bit)

Table 1 reg_gpio_data

0х	x21000003 0x21000002											0x21000001 0x21000000														add	ires				
GPIO output readback											GPIO input/output														valu	ıe					
31 30 2	29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	bit	

Table 2 reg_gpio_ena

0x21000007	0x21000006	0x21000005	address	
(undefined,	reads zero)	GPIO out	put enable	value
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0	bit

Table 3 reg_gpio_pu

0x2100000b	0x2100000a	0x21000009	address	
(undefined,	reads zero)	GPIO pi	value	
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0	bit

Table 4 reg_gpio_pd

	C)×2	10	00	000	f		0x2100000e										0x2100000d 0x2100000c														address
Г	(undefined, reads zero)													GPIO pin pull-down (inv										ve	rte	d)		value				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	bit

