4 Conditional probabilities and gradient descent

4.1 Discrete conditional density/distribution

Exercise 4.1. Let X and Y be two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. We assume that X is valued in \mathbb{N} and Y follows a exponential distribution with parameter 1 on \mathbb{R} . In addition, we assume that the conditional distribution of X given Y is the Poisson distribution with parameter Y. Give the distribution of (X, Y) and the conditional distribution of Y given X.

Exercise 4.2. Let X and Y be two real random variables with distribution $\mathbf{Pn}(\lambda)$ et $\mathbf{Pn}(\mu)$ respectively. Denote S = X + Y.

- (i) Give the distribution of S.
- (ii) For any $s \in \mathbb{N}$ give the conditional distribution of X given S.
- (iii) Give $\mathbb{E}[X|S]$.
- (iv) Check that $Var(\mathbb{E}[X|S]) \leq Var(X)$.

4.2 Continuous conditional density

Exercise 4.3. Let X and Y be two independent real random variables with distribution $\mathbf{Unif}([0,1])$. Denote D = X - Y.

- (i) Find the distribution of D.
- (ii) For any $d \in \mathbb{R}$ find the conditional distribution of X given D = d.
- (iii) Compute $\mathbb{E}[X|D]$.
- (iv) Check that $Var\left(\mathbb{E}\left[X|D\right]\right) \leq Var\left(X\right)$.

Exercice 4.4. Let X and Y be two independent real random variables with distribution $\mathbf{Exp}(\lambda)$, $\lambda > 0$ Denote S = X + Y.

- (i) Find the distribution of S.
- (ii) For any $s \in \mathbb{R}$ find the conditional distribution of X given S = s.
- (iii) Compute $\mathbb{E}[X|S]$.
- (iv) Check that $Var(\mathbb{E}[X|S]) \leq Var(X)$.

Exercise 4.5. Let Z = (X, Y) be a random variable on \mathbb{R}^2 such that:

- (i) X has distribution **Gamma**(2, λ) (with continuous density $f_X(x) = \lambda^2 x e^{-\lambda x} \mathbb{1}_{\mathbb{R}_+}(x)$),
- (ii) the conditional distribution of Y given X is the uniform distribution on [0, X] (i.e. the conditional density of Y given X = x is $f_{Y|X=x}(y) = (1/x)\mathbb{1}_{[0,x]}(y)$).
- 1. Find the density of Z = (X, Y) and the distribution of Y.

- 2. Find the conditional density of X given Y.
- 3. Compute the following quantities:
 - (a) $\mathbb{E}[Y|X]$,
 - (b) $\mathbb{E}[X|Y]$,
 - (c) $\mathbb{E}[X + XY|Y]$,
 - (d) $\mathbb{E}\left[\mathbb{E}\left[Y|X\right]\right]$,
 - (e) $\mathbb{E}\left[XY\right]$ (on pourra utiliser le fait que $\mathbb{E}[X^2]=6/\lambda^2).$