Differential Geometry

R.Rusev

1 Smooth Manifolds

Definition 1.1 (Chart). An *n*-dimensional chart on a set M is a map $\varphi: U \to \tilde{U}$, where:

- $U \subseteq M$ is a subset,
- $\tilde{U} \subseteq \mathbb{R}^n$ is a non-empty open subset,
- φ is a bijection.

A chart is often denoted by (U, φ) , and \tilde{U} always refers to the range of φ .

Then U is called a *coordinate domain* and φ the *coordinate map*. The coordinate map is a vector-valued function with components usually denoted as x^1, \ldots, x^n (or y^1, \ldots, y^n , etc.), and called *coordinates on* U determined by the chart (U, φ) . Accordingly, we often write $(U, \varphi = (x^1, \ldots, x^n))$.

Definition 1.2 (Chart Around a Point). A chart on M around a point $p \in M$ is a chart (U, φ) such that $p \in U$.

Definition 1.3 (Centered Chart). A chart (U, φ) around a point $p \in M$ is said to be centered at p if $\tilde{U} = \varphi(U) \ni 0$ and $\varphi(p) = 0$.

Example 1.1. The identity map id : $\mathbb{R}^n \to \mathbb{R}^n$ is an *n*-dimensional chart on \mathbb{R}^n whose associated coordinates are the standard coordinates t^1, \ldots, t^n .

The chart (\mathbb{R}^n, id) is also called the *standard chart* on \mathbb{R}^n .

The standard chart on \mathbb{R}^n is centered at 0.

Definition 1.4 (Coordinate Map Associated with a Frame). Let V be an n-dimensional real vector space, and let $R = (e_1, \ldots, e_n)$ be a basis (frame) of V. The *coordinate map associated with* R is the vector space isomorphism

$$\varphi_R: V \to \mathbb{R}^n, \quad v \mapsto \varphi_R(v) := (x^1(v), \dots, x^n(v)),$$

where the components $x^{i}(v)$ are determined by the unique expression

$$v = \sum_{i=1}^{n} x^{i}(v)e_{i}.$$

Example 1.2. Example 1.1 can be generalized by considering any *n*-dimensional real vector space V and any frame $R = (e_1, \ldots, e_n)$ of V.

The coordinate map $\varphi_R: V \to \mathbb{R}^n$ defined as in Definition 1.4 maps each vector $v \in V$ to its coordinate tuple with respect to the frame R.

The pair (V, φ_R) forms an *n*-dimensional chart on V, and it is centered at 0, since $\varphi_R(0) = 0$ and $\varphi_R(V) = \mathbb{R}^n$.

Example 1.3 (Stereographic Charts on the Sphere). Consider the Euclidean space \mathbb{R}^{n+1} with standard coordinates t^1, \ldots, t^{n+1} . For a point $P = (P^1, \ldots, P^{n+1}) \in \mathbb{R}^{n+1}$, define the Euclidean norm by

 $||P|| := \sqrt{(P^1)^2 + \dots + (P^{n+1})^2}$

The n-dimensional unit sphere is the subset

$$S^n := \left\{ P \in \mathbb{R}^{n+1} \mid ||P|| = 1 \right\}.$$

Define the north and south poles as

$$P_{+} := (0, \dots, 0, 1), \quad P_{-} := (0, \dots, 0, -1),$$

and the corresponding open subsets

$$U_+ := S^n \setminus \{P_+\}, \quad U_- := S^n \setminus \{P_-\}.$$

For $P \in U_+$, the line through P and P_+ intersects the hyperplane $t^{n+1} = 0$ at a unique point with coordinates $(X_+^1(P), \ldots, X_+^n(P))$. This defines the *stereographic projection* from the north:

$$\varphi_+: U_+ \to \mathbb{R}^n, \quad \varphi_+(P) := (X_+^1(P), \dots, X_+^n(P)).$$

Similarly, projection from P_{-} defines the stereographic projection from the south:

$$\varphi_{-}: U_{-} \to \mathbb{R}^{n}, \quad \varphi_{-}(P) := (X_{-}^{1}(P), \dots, X_{-}^{n}(P)).$$

Both (U_+, φ_+) and (U_-, φ_-) are *n*-dimensional charts on S^n . The chart from the north is centered at the south pole P_- , and the chart from the south is centered at the north pole P_+ .

Example 1.4 (Orthogonal Projection Charts on the Sphere). Let $S^n \subset \mathbb{R}^{n+1}$ be the n-dimensional sphere defined as before.

We first define the open unit n-disk:

$$D^n := \{ P \in \mathbb{R}^n \mid ||P|| < 1 \},$$

where ||x|| denotes the standard Euclidean norm in \mathbb{R}^n .

For each index i = 1, ..., n + 1, we consider the open subsets of S^n :

$$U_{i,\pm} := \left\{ P \in S^n \mid \pm P^i > 0 \right\},$$

which are the portions of the sphere where the *i*-th coordinate is strictly positive (for $U_{i,+}$) or strictly negative (for $U_{i,-}$).

Now define the orthogonal projection map:

$$\pi_i : \mathbb{R}^{n+1} \to \mathbb{R}^n, \quad \pi_i(P^1, \dots, P^{n+1}) := (P^1, \dots, \widehat{P^i}, \dots, P^{n+1}),$$

where the hat \widehat{P}^i means that the *i*-th component is omitted. This is simply the projection of a point in \mathbb{R}^{n+1} onto the hyperplane $t^i = 0$.

It can be shown that the restriction of π_i to $U_{i,\pm}$ maps onto the open unit disk D^n :

$$\pi_i: U_{i,\pm} \to D^n$$
.

Thus, each pair $(U_{i,\pm}, \pi_i)$ defines an *n*-dimensional chart on S^n . These are called the orthogonal projection charts onto the $t^i = 0$ hyperplane.

Each such chart is centered at the point

$$(0,\ldots,\pm 1,\ldots,0)\in S^n,$$

where the value ± 1 occurs in the *i*-th coordinate.

Example 1.5 (Affine Charts on the Projective Space). Consider $\mathbb{R}^{n+1} \setminus \{0\}$ with standard coordinates (t^0, \ldots, t^n) . Define an equivalence relation \sim by declaring

$$P \sim Q$$
 if and only if $P = \lambda Q$ for some $\lambda \in \mathbb{R} \setminus \{0\}$.

That is, two points are equivalent if they lie on the same line through the origin.

The n-dimensional real projective space is defined as the quotient

$$\mathbb{RP}^n := \left(\mathbb{R}^{n+1} \setminus \{0\}\right) / \sim.$$

Equivalently, \mathbb{RP}^n is the set of lines through the origin in \mathbb{R}^{n+1} . An element of \mathbb{RP}^n is denoted by an equivalence class

$$[P] = [P^0 : \cdots : P^n],$$

where $(P^0, \ldots, P^n) \in \mathbb{R}^{n+1} \setminus \{0\}$ and the P^i are called *homogeneous coordinates* of [P]. To define charts on \mathbb{RP}^n , fix $i \in \{0, \ldots, n\}$ and consider the open subset

$$U_i := \left\{ [P^0 : \dots : P^n] \in \mathbb{RP}^n \mid P^i \neq 0 \right\}.$$

On U_i , we define the coordinate map $\varphi_i: U_i \to \mathbb{R}^n$ by

$$\varphi_i([P^0:\cdots:P^n]):=\left(\frac{P^0}{P^i},\ldots,\frac{\widehat{P^i}}{P^i},\ldots,\frac{P^n}{P^i}\right),$$

where the hat $\hat{\cdot}$ indicates omission of the *i*-th coordinate. This map is well-defined and bijective.

The inverse is given by

$$\varphi_i^{-1}(Q^1, \dots, Q^n) = [Q^1 : \dots : 1 : \dots : Q^n],$$

where the number 1 is placed in the *i*-th position (i.e., the coordinate that was omitted). Each pair (U_i, φ_i) defines an *n*-dimensional chart on \mathbb{RP}^n , called an *affine chart*. The chart (U_i, φ_i) is centered at the point

$$[0:\cdots:1:\cdots:0],$$

where the 1 appears in the i-th position.

Remark 1.1. Given an *n*-dimensional chart (U, φ) on a set M, we can use the coordinate map φ to identify the coordinate domain U with its image $\tilde{U} := \varphi(U) \subset \mathbb{R}^n$. This allows us to transfer notions from calculus such as continuity, differentiability, and smoothness from \tilde{U} to U.

For example, a function $f: U \to \mathbb{R}$ is said to be *smooth at a point* $p \in U$ if the composition $f \circ \varphi^{-1}: \tilde{U} \to \mathbb{R}$ is smooth at $\varphi(p)$.

To extend this idea to the entire set M, we require a collection of charts $\mathcal{A} = \{(U, \varphi)\}$ that covers M i.e., $M = \bigcup_{(U,\varphi)\in\mathcal{A}} U$. Then, for a function $f: M \to \mathbb{R}$ and a point $p \in M$, we define f to be *smooth at* p if there exists a chart $(U,\varphi) \in \mathcal{A}$ around p such that $f \circ \varphi^{-1} : \varphi(U) \to \mathbb{R}$ is smooth at $\varphi(p)$.

However, this definition may depend on the choice of chart unless the family \mathcal{A} satisfies certain compatibility conditions. This leads us to the notion of a *smooth atlas*.

Definition 1.5 (Compatible Charts). Let $(U, \varphi = (x^1, \dots, x^n))$ and $(V, \psi = (y^1, \dots, y^n))$ be two *n*-dimensional charts on a set M. These charts are said to be *compatible* if either:

- The domains do not overlap: $U \cap V = \emptyset$, or
- The domains overlap $(U \cap V \neq \emptyset)$, and the following two conditions are satisfied:
 - 1. The images $\varphi(U \cap V) \subset \mathbb{R}^n$ and $\psi(U \cap V) \subset \mathbb{R}^n$ are open subsets.
 - 2. The map $\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$ is a diffeomorphism, that is, a smooth bijection with a smooth inverse.

The map $\psi \circ \varphi^{-1}$ is called the *transition map* between the charts (U, φ) and (V, ψ) , or between the coordinate systems (x^1, \ldots, x^n) and (y^1, \ldots, y^n) .

Definition 1.6 (Atlas). An *n*-dimensional atlas (or smooth atlas) on a set M is a collection $\mathcal{A} = \{(U, \varphi)\}$ of n-dimensional charts satisfying the following conditions:

• Covering: The charts cover M, that is,

$$M = \bigcup_{(U,\varphi)\in\mathcal{A}} U.$$

• Compatibility: Any two charts in A are pairwise compatible.

An atlas allows us to transfer the tools of calculus from \mathbb{R}^n to the set M by using coordinate charts.

Before introducing examples, we note that there are several ways to generate new charts that are compatible with those already in the atlas.