Terminology, Representation and Basic Problems

Data - Observations

A sequence of observations from a finite and discrete set, e.g. measurements of weather patterns, daily values of stocks, the composition of DNA or proteins, or ...

$$\mathbf{X} = \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$$

Typical question/problem: How likely is a given **X**, i.e. p(**X**)?

We need a model that describes how to compute p(X)

Simple Models (1)

Observations are independent and identically distributed

$$\mathbf{x}_1$$
 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4 \cdots

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N) = \prod_{n=1}^N p(\mathbf{x}_n)$$

Too simplistic for realistic modelling of many phenomena

Simple Models (2)

The *n*'th observation in a chain of observations is influenced only by the *n*-1'th observation, i.e.

$$p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1})=p(\mathbf{x}_n|\mathbf{x}_{n-1})$$

The chain of observations is a 1st-order Markov chain, and the probability of a sequence of *N* observations is

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \prod_{n=1}^N p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}) = p(\mathbf{x}_1) \prod_{n=2}^N p(\mathbf{x}_n|\mathbf{x}_{n-1})$$

The model, i.e. $p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$:

A sequence of observations:

the *n*-1'th observation, i.e.

$$p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1})=p(\mathbf{x}_n|\mathbf{x}_{n-1})$$

The chain of observations is a 1st-order Markov chain, and the probability of a sequence of N observations is

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \prod_{n=1}^N p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}) = p(\mathbf{x}_1) \prod_{n=2}^N p(\mathbf{x}_n|\mathbf{x}_{n-1})$$

by

What if the *n'*th observation in a chain of observations is influenced by a corresponding hidden variable?

Latent values

Observations

What if the *n*'th observation in a chain of observations is influenced by a corresponding hidden variable?

Markov Model

Hidden Markov Model

Latent values

Observations

What if the *n*'th observation in a chain of observations is influenced

The joint distribution

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z}_1, \dots, \mathbf{z}_N) = p(\mathbf{z}_1) \left[\prod_{n=2}^N p(\mathbf{z}_n | \mathbf{z}_{n-1}) \right] \prod_{n=1}^N p(\mathbf{x}_n | \mathbf{z}_n)$$

Hidden Markov Model

Observations

Observations

Transition probabilities

Notation: In Bishop, the hidden variables \mathbf{z}_n are positional vectors, e.g. if $\mathbf{z}_n = (0,0,1)$ then the model in step n is in state k=3

Transition probabilities: If the hidden variables are discrete with K states, the conditional distribution $p(\mathbf{z}_n \mid \mathbf{z}_{n-1})$ is a $K \times K$ table \mathbf{A} , and the marginal distribution $p(\mathbf{z}_1)$ describing the initial state is a K vector $\mathbf{\pi}$

The probability of going from state *j* to state *k* is:

$$A_{jk} \equiv p(z_{nk} = 1 | z_{n-1,j} = 1)$$
$$\sum_{k} A_{jk} = 1$$

The probability of state *k* being the initial state is:

$$\pi_k \equiv p(z_{1k} = 1)$$
$$\sum_k \pi_k = 1$$

ities

e positional vectors, state *k*=3 ...

s are discrete with *K* and ial state is a *K*

vector **π** ...

The probability of going from state *j* to state *k* is:

$$A_{jk} \equiv p(z_{nk} = 1 | z_{n-1,j} = 1)$$

$$\sum_{k} A_{jk} = 1$$

The probability of state *k* being the initial state is:

$$\pi_k \equiv p(z_{1k} = 1)$$
$$\sum_{k=1}^{\infty} \pi_k = 1$$

The transition probabilities:

Notat

e.g. if

Trans states the m vecto

$$p(\mathbf{z}_n|\mathbf{z}_{n-1},\mathbf{A}) = \prod_{k=1}^K \prod_{j=1}^K A_{jk}^{z_{n-1,j}z_{nk}}$$

$$p(\mathbf{z}_1|\pi) = \prod_{k=1}^K \pi_k^{z_{1k}}$$

tors,

vith *K* and

The probability of going from state *j* to state *k* is:

$$A_{jk} \equiv p(z_{nk} = 1 | z_{n-1,j} = 1)$$

$$\sum_{k} A_{jk} = 1$$

The probability of state *k* being the initial state is:

$$\pi_k \equiv p(z_{1k} = 1)$$

$$\sum_{k} \pi_k = 1$$

Emission probabilities

Emission probabilities: The conditional distributions of the observed variables $p(\mathbf{x}_n \mid \mathbf{z}_n)$ from a specific state

If the observed values \mathbf{x}_n are discrete (e.g. D symbols), the emission probabilities $\boldsymbol{\phi}$ is a KxD table of probabilities which for each of the K states specifies the probability of emitting each observable ...

$$p(\mathbf{x}_n|\mathbf{z}_n,\phi) = \prod_{k=1}^K p(\mathbf{x}_n|\phi_k)^{z_{nk}}$$

Emission prob

Emission probabilities: The condition observed variables $p(\mathbf{x}_n \mid \mathbf{z}_n)$ from a specific

If the observed values \mathbf{x}_n are discrete (expression) probabilities $\boldsymbol{\phi}$ is a KxD table of probability states specifies the probability of emitting

$$p(\mathbf{x}_n|\mathbf{z}_n,\phi) = \prod_{k=1}^K p(\mathbf{x}_n|\phi_k)^{z_{nk}}$$

HMM joint probability distribution

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[\prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

Observables:

Latent states:

Model parameters:

$$\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$$
 $\mathbf{Z} = {\mathbf{z}_1, \dots, \mathbf{z}_N}$ $\Theta = {\pi, \mathbf{A}, \phi}$

$$\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$$

$$\Theta = \{\pi, \mathbf{A}, \phi\}$$

If A and ϕ are the same for all n then the HMM is homogeneous

Example – 2-state HMM

Observable: {A, C, G, T}, States: {0,1}

```
A = \begin{pmatrix} 0.95 & 0.05 \\ 0.10 & 0.90 \end{pmatrix}
\pi = \begin{pmatrix} 1.00 \\ 0.00 \end{pmatrix}
\phi = \begin{pmatrix} 0.25 & 0.25 & 0.25 \\ 0.20 & 0.30 & 0.30 \end{pmatrix}
```


Example – 7-state HMM

Observable: {A, C, G, T}, States: {0,1, 2, 3, 4, 5, 6}

```
0.30 0.25 0.25 0.20
0.00 0.00 0.90 0.10 0.00 0.00 0.00
                                              0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00
                                                                  0.20 0.35 0.15 0.30
                                              0.00
                                                                  0.40 0.15 0.20 0.25
0.00 1.00 0.00 0.00 0.00 0.00 0.00
                                              0.00
                                                                  0.25 0.25 0.25 0.25
0.00 0.00 0.05 0.90 0.05 0.00 0.00
                                              1.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00
                                                                  0.20 0.40 0.30 0.10
                                              0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00
                                                                  0.30 0.20 0.30 0.20
                                              0.00
0.00 0.00 0.00 0.10 0.90 0.00 0.00
                                                                  0.15 0.30 0.20 0.35
                                              0.00
```


HMMs as a generative model

A HMM generates a sequence of observables by moving from latent state to latent state according to the transition probabilities and emitting an observable (from a discrete set of observables, i.e. a finite alphabet) from each latent state visited according to the emission probabilities of the state ...

Model *M*:

A run follows a sequence of states:

 H H L L H

And emits a sequence of symbols:

Computing P(X,Z)

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[\prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

```
def joint_prob(x, z):
    Returns the joint probability of x and z
    p = init_prob[z[0]] * emit_prob[z[0]][x[0]]
    for i in range(1, len(x)):
        p = p * trans_prob[z[i-1]][z[i]] * emit_prob[z[i]][x[i]]
    return p
```

Computing P(X,Z)

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[\prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

```
$ python hmm jointprob.py hmm-7-state.txt test seq100.txt
         > sea100
         p(x,z) = 1.8619524290102162e-65
def jo $ python hmm_jointprob.py hmm-7-state.txt test_seq200.txt
         > sea200
         p(x,z) = 1.6175774997005771e-122
         $ python hmm jointprob.py hmm-7-state.txt test seq300.txt
         > seq300
         p(x,z) = 3.0675430597843052e-183
         $ python hmm jointprob.py hmm-7-state.txt test seq400.txt
                                                                                  [x[i]]
         > seq400
         p(x,z) = 4.860704144302979e-247
         $ python hmm jointprob.py hmm-7-state.txt test seq500.txt
         > sea500
         p(x,z) = 5.258724342206735e-306
         $ python hmm jointprob.py hmm-7-state.txt test seq600.txt
         > seq600
         p(x,z) = 0.0
```

Computing P(X,Z)

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[\prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

```
$ python hmm jointprob.py hmm-7-state.txt test seq100.txt
         > sea100
         p(x,z) = 1.8619524290102162e-65
def jo $ python hmm_jointprob.py hmm-7-state.txt test seq200.txt
         > sea200
         p(x,z) = 1.6175774997005771e-122
         $ python hmm jointprob.py hmm-7-state.txt test seq300.txt
         > seq300
         p(x,z) = 3.0675430597843052e-183
         $ python hmm jointprob.py hmm-7-state.txt test seq400.txt
                                                                                  [x[i]]
         > seq400
         p(x,z) = 4.860704144302979e-247
         $ python hmm jointprob.py hmm-7-state.txt test seq500.txt
         > sea500
         p(x,z) = 5.258724342206735e-306
         $ python hmm jointprob.py hmm-7-state.txt test seq600.txt
         > seq600
         p(x,z) = 0.0
```

Should be >0 by construction of **X** and **Z**

Representing numbers

A floating point number n is represented as $n = f * 2^e$ cf. the IEEE-754 standard which specify the range of f and e

Item	Single precision	Double precision
Bits in sign	1	1
Bits in exponent	8	11
Bits in fraction	23	52
Bits, total	32	64
Exponent system	Excess †27	Excess 1023
Exponent range	-126 to +127	-1022 to +1023
Smallest normalized number	2-126	2-1022
Largest normalized number	approx. 2.128	approx. 2 ¹⁰²⁴
Decimal range	approx. 10 ⁻³⁸ to 10 ³⁸	approx. 10 ⁻³⁰⁸ to 10 ³⁰
Smallest denormalized number	approx. 109-45	approx. 10 ⁻³²⁴

Figure B-5. Characteristics of IEEE floating-point numbers.

See e.g. Appendix B in Tanenbaum's Structured Computer Organization for further details.

The problem – Too small numbers

For the simple HMM, the joint-probability p(X,Z) is

$$p(\mathbf{X}, \mathbf{Z}) = 1 \cdot \prod_{n=2}^{N} 1 \cdot \prod_{n=1}^{N} \frac{1}{2} = \left(\frac{1}{2}\right)^n = 2^{-n}$$

If n > 467 then 2^{-n} is smaller than 10^{-324} , i.e. cannot be represented

The problem – Too small numbers

For the simple HMM, the joint-probability p(X,Z) is

$$p(\mathbf{X}, \mathbf{Z}) = 1 \cdot \prod_{n=2}^{N} 1 \cdot \prod_{n=1}^{N} \frac{1}{2} = \left(\frac{1}{2}\right)^n = 2^{-n}$$

If n > 467 then 2^{-n} is smaller than 10^{-324} , i.e. cannot be represented

No problem representing

$$\log p(\mathbf{X}, \mathbf{Z}) = -n$$

as the decimal range is approx -10³⁰⁸ to 10³⁰⁸

Solution: Compute log P(X,Z)

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[\prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

Use log(XY) = log X + log Y, and define log 0 to be -inf

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = \log p(\mathbf{z}_1|\pi) + \sum_{n=2}^{N} \log p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) + \sum_{n=1}^{N} \log p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

Solution: Compute log P(X,Z)

$$\log p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta}) = \log p(\mathbf{z}_1 | \pi) + \sum_{n=2}^{N} \log p(\mathbf{z}_n | \mathbf{z}_{n-1}, \mathbf{A}) + \sum_{n=1}^{N} \log p(\mathbf{x}_n | \mathbf{z}_n, \phi)$$

```
def log_joint_prob(self, x, z):
    """
    Returns the log transformed joint probability of x and z
    """
    logp = log(init_prob[z[0]]) + log(emit_prob[z[0]][x[0]])
    for i in range(1, len(x)):
        logp = logp + log(trans_prob[z[i-1]][z[i]]) + log(emit_prob[z[i]][x[i]])
    return logp
```

Solution: Compute log P(X,Z)

$$\log p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta}) = \log p(\mathbf{z}_1 | \pi) + \sum_{n=2}^{N} \log p(\mathbf{z}_n | \mathbf{z}_{n-1}, \mathbf{A}) + \sum_{n=1}^{N} \log p(\mathbf{x}_n | \mathbf{z}_n, \phi)$$

```
$ python hmm log jointprob.py hmm-7-state.txt test seq100.txt
def log_joint > seq100
log p(x,z) = -149.04640541441395
     Returns t $ python hmm_log_jointprob.py hmm-7-state.txt test_seq200.txt
                 > sea200
     111111
                 \log p(x,z) = -280.43445168576596
     logp = lo
                  $ python hmm log jointprob.py hmm-7-state.txt test seq300.txt
     for i in
                  > seq300
          logp log p(x,z) = -420.25219508298494
                                                                                         [z[i]][x[i]]
     return lo
                  $ python hmm log jointprob.py hmm-7-state.txt test seq400.txt
                  > seq400
                  \log p(x,z) = -567.1573346564519
                  $ python hmm log jointprob.py hmm-7-state.txt test seq500.txt
                  > sea500
                  \log p(x,z) = -702.9311499793356
                  $ python hmm log jointprob.py hmm-7-state.txt test seq600.txt
                  > seq600
                  log p(x,z) = -842.0056730984585
```

Using HMMs

- Determine the likelihood of a sequence of observations.
- Find a plausible underlying explanation (or decoding) of a sequence of observations.

Using HMMs

- Determine the likelihood of a sequence of observations.
- Find a plausible underlying explanation (or decoding) of a sequence of observations.

$$p(\mathbf{X}|\mathbf{\Theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta})$$

Using HMMs

- Determine the likelihood of a sequence of observations.
- Find a plausible underlying explanation (or decoding) of a sequence of observations.

$$p(\mathbf{X}|\mathbf{\Theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta})$$

The sum has K^N terms, but it turns out that it can be computed in $O(K^2N)$ time, but first we will consider **decoding**

Decoding using HMMs

Given a HMM Θ and a sequence of observations $\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}_N$, find a plausible explanation, i.e. a sequence $\mathbf{Z}^* = \mathbf{z}^*_1, ..., \mathbf{z}^*_N$ of values of the hidden variable.

Decoding using HMMs

Given a HMM Θ and a sequence of observations $\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}_N$, find a plausible explanation, i.e. a sequence $\mathbf{Z}^* = \mathbf{z}^*_1, ..., \mathbf{z}^*_N$ of values of the hidden variable.

Viterbi decoding

Z* is the overall most likely explanation of **X**:

$$\mathbf{Z}^* = \arg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta})$$

Decoding using HMMs

Given a HMM Θ and a sequence of observations $\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}_N$, find a plausible explanation, i.e. a sequence $\mathbf{Z}^* = \mathbf{z}^*_1, ..., \mathbf{z}^*_N$ of values of the hidden variable.

Viterbi decoding

Z* is the overall most likely explanation of **X**:

$$\mathbf{Z}^* = \arg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta})$$

Posterior decoding

 \mathbf{z}^* is the most likely state to be in the *n*'th step:

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N)$$

Summary

- Terminology of hidden Markov models (HMMs)
- Viterbi- and Posterior decoding for finding a plausible underlying explanation (sequence of hidden states) of a sequence of observation
- Next: Algorithms for computing the Viterbi and Posterior decodings efficiently