Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2111 Laboratorio de Circuitos Eléctricos

Profesores: Ing. Carlos Mauricio Segura Quirós – Ing. Sergio Morales Hernández II Semestre 2019

Laboratorio #2

Teoremas de superposición y Thévenin, Norton

Objetivo

Comprobar experimentalmente los teoremas de Thévenin, Norton, superposición y máxima transferencia de potencia en circuitos resistivos en corriente directa.

Cuestionario introductorio:

- 1 Explique el teorema de superposición.
- 2 Explique los teoremas de Thévenin y Norton.
- 3 Explique el teorema de máxima transferencia de potencia.
- 4 Realice todos los cálculos indicados en el procedimiento. Anote los valores teóricos correspondientes a los datos con subíndice T (Teórico). Considere los siguientes valores de resistencias teóricas: R₁= R₄= R₅= R₆= 1kΩ.

Equipo

- Multímetro digital¹
- 1 Fuente dual de tensión CD ajustable¹
- 1 Alambre para protoboard (cable UTP)²
- 1 Protoboard²
- 3 Resistencias de 1kΩ ²
- 1 Potenciómetro 2 kΩ²

Escuela de Ingeniería Electrónica

¹ Presente en el Laboratorio

² Lo debe traer el estudiante

Circuitos de Medición

Figura 1 Circuitos de medición

Procedimiento

A. Teorema de superposición

- 1. Arme el circuito como se muestra en la figura 1 (A). Considere R_4 , R_5 y R_6 con valor de $1k\Omega$.
- 2. Mida las tensiones de las fuentes.
- 3. Desconecte la fuente de -12V y sustitúyala por el equivalente de una fuente de tensión apagada. Mida la corriente en R₆ (sentido a-b).

IR6T=_____IR6E=___

- 4. Vuelva a conectar la fuente de -12V.
- 5. Desconecte la fuente de 15V y sustitúyala por el equivalente de una fuente de tensión apagada. Si está utilizando un multímetro analógico, considere la polaridad de la corriente medida. Mida la corriente en R₆ (sentido a-b).

IR6T=_____IR6E=____

6. Conecte nuevamente ambas fuentes, como se muestra en la figura 1 (A). Mida la corriente en R₆ (sentido a-b).

 $I_{R6T} = I_{R6E} =$

7. Tabule adecuadamente los datos obtenidos en esta sección.

B. Teorema de Thévenin y Norton

- Utilice el mismo circuito empleado en la sección anterior. En esta sección determinaremos el equivalente de Thévenin y el equivalente de Norton entre los terminales a y b. La resistencia R₆ será considerada como la resistencia de carga
- 2. Mida el voltaje de Thévenin entre las terminales a y b.

 $V_{abT} = V_{abE} =$

3. Desconecte las fuentes y sustitúyalas por el equivalente de una fuente de tensión apagada. Bajo estas condiciones encuentre la resistencia equivalente de Thévenin entre a y b.

RabT=_____ RabE=____

5. Tabule adecuadamente los datos obtenidos en esta sección.

C. Teorema de máxima transferencia de potencia

- 1. Arme el circuito como se muestra en la figura 1 (B).
- 2. Ajuste 15V en la fuente y ajuste el potenciómetro a 250 Ω . Conecte la fuente. Mida y anote la corriente en la tabla 1.
- 3. Ajuste el potenciómetro a los demás valores indicados en la tabla 1. Para cada valor, mida la corriente del circuito y complete la tabla.
- 4. Variación de la resistencia de carga y corriente de carga

Tabla 1 Variación de la resistencia de carga y corriente de carga

R _{Carga} (kΩ)	Corriente (mA)		Potencia en la carga (mW)	
	Teórica	Experimental	Teórica	Experimental
0,25				
0,5				
1				
1,25				
1,5				

Evaluación

- 1. Con las mediciones realizadas, demuestre que se cumple:
 - (a) El principio de superposición
 - (b) El teorema de Thévenin
 - (c) El teorema de Norton
- 2. Obtenga la ecuación $P = f(R_L)$ y grafíquela
- 3. Grafique los datos de la tabla 1 en el mismo sistema de coordenadas del punto anterior y compare.