

Provisioning Private Clouds

Stakeholders:

- Users
- Operators
- Service providers

Resource Provisioning

Resource provisioning

- Bringing virtual and physical resources online
 - Hands-on deployment for physical resources
 - "Racking" and connecting power and network cables
 - Bootstrapping
 - Getting resources into a "ready" state (e.g., reachable over the network)

Resource provisioning

- Bringing virtual and physical resources online
 - Hands-on deployment for physical resources
 - "Racking" and connecting power and network cables
 - Bootstrapping
 - Getting resources into a "ready" state (e.g., reachable over the network)

- Resource provisioning also happens incrementally over time
 - Upgrades, removal of obsolete resources, deployment of new resources

Overview of resource provisioning

Installation and Inventory

Installation and inventory

- Cannot be entirely zero-touch for physical infrastructures
 - Assume we are dealing with commodity general-purpose resources
 - For virtual infrastructures, cloud provider APIs are used to provision resources
 - "Infrastructure as Code"
 - For plug-and-play appliances, configuration may be preinstalled

Installation and inventory

- Cannot be entirely zero-touch for physical infrastructures
 - Assume we are dealing with commodity general-purpose resources
 - For virtual infrastructures, cloud provider APIs are used to provision resources
 - "Infrastructure as Code"
 - For plug-and-play appliances, configuration may be preinstalled
- Goal is to minimize the amount of manual handling
 - Focus on getting the device connected and reachable
 - Zero-touch provisioning tools take it from there

Documenting the infrastructure

- Managing infrastructure requires ground truth about it
 - Organizations
 - Sites
 - Racks
 - Switches
 - Servers
 - Storage
 - Other equipment
 - Deployment
 - Power and networking

Documenting the infrastructure

- Managing infrastructure requires ground truth about it
 - Organizations
 - Sites
 - Racks
 - Switches
 - Servers
 - Storage
 - Other equipment
 - Deployment
 - Power and networking

Device:

- Rack and rack position
- Manufacturer
- Model
- Serial number
- Device type
- MAC addresses
- Power outlet
- Switch ports and VLANs

Infrastructure planning

Infrastructure documentation (after the fact)

BGP-MUX @ Univ. of Wisconsin - Michael Blodgett Tue Jan 23 2018 - r1.2

Overview of resource provisioning

Example: Cabling in NetBox

Cables

ID	Label	Side A	Termination A	Side B	Termination B	Status	Туре	Length	Color
165	_	mgmtswitch1.prod1.stanford1	gbe3	node1.prod1.stanford1	bmc	Connected	CAT6	2 Feet	
166	_	mgmtswitch1.prod1.stanford1	gbe4	node2.prod1.stanford1	bmc	Connected	CAT6	2 Feet	
167	_	mgmtswitch1.prod1.stanford1	gbe5	node3.prod1.stanford1	bmc	Connected	CAT6	2 Feet	
168	_	mgmtswitch1.prod1.stanford1	gbe6	node4.prod1.stanford1	bmc	Connected	CAT6	3 Feet	
169	_	mgmtswitch1.prod1.stanford1	gbe7	node5.prod1.stanford1	bmc	Connected	CAT6	3 Feet	
170	_	mgmtswitch1.prod1.stanford1	gbe11	spine1.prod1.stanford1	eth0	Connected	CAT6	5 Feet	
171	_	mgmtswitch1.prod1.stanford1	gbe12	spine2.prod1.stanford1	eth0	Connected	CAT6	5 Feet	
172	_	mgmtswitch1.prod1.stanford1	gbe13	leaf1.prod1.stanford1	eth0	Connected	CAT6	5 Feet	
173	_	mgmtswitch1.prod1.stanford1	gbe14	leaf2.prod1.stanford1	eth0	Connected	CAT6	5 Feet	
174	_	mgmtswitch1.prod1.stanford1	gbe15	node1.prod1.stanford1	gbe0	Connected	CAT6	2 Feet	
175	_	mgmtswitch1.prod1.stanford1	gbe16	node2.prod1.stanford1	gbe0	Connected	CAT6	2 Feet	
176	_	mgmtswitch1.prod1.stanford1	gbe17	node3.prod1.stanford1	gbe0	Connected	CAT6	2 Feet	
177	_	mgmtswitch1.prod1.stanford1	gbe18	node4.prod1.stanford1	gbe0	Connected	CAT6	3 Feet	
178	_	mamtswitch1.prod1.stanford1	abe19	node5.prod1.stanford1	abe0	Connected	CAT6	3 Feet	

Bootstrapping

Bootstrapping -> From bricks to "ready"

- Goal: Minimize amount of manual configuration
 - Want to get devices manageable over the network
- Cannot avoid manual configuration

Bootstrapping

- Configure VLANs on management switch
- Configure management server needs to boot from USB stick
- Configure management services on management server using Ansible
- Configure Compute
 Servers to boot from the
 mgmt server via iPXE
- Configure fabric switches to boot from the mgmt server via Nginx

Bootstrapping -> From bricks to "ready"

- Goal: Minimize amount of manual configuration
 - Want to get devices manageable over the network
- Cannot avoid manual configuration
 - But can still try to minimize work
 - Preconfigure as much as possible locally before shipping devices to the field
 - Use DHCP with MAC addresses to avoid configuring interfaces on hosts

Automated configuration

- Automate configuration as soon as machines are reachable
 - Ansible, Puppet, Chef
- Generate inputs to configuration system from inventory

Automated configuration

- Automate configuration as soon as machines are reachable
 - Ansible, Puppet, Chef
- Generate inputs to configuration system from inventory

Provisioning

- After servers are configured, we need to provision the cluster
 - Kubernetes deployment
 - OpenStack deployment
- Automation during the provisioning phase
 - Require a provisioning API
 - Like the ones provided by cloud providers

Provisioning APIs

Provisioning APIs

Provisioning in the public vs private clouds

Public clouds

- On-demand capacity
- Untrusted tenants and apps

Private clouds

- Planned capacity
- Trusted tenants and applications

Infrastructure as Code

Provisioning

- Command-line interface
- Graphical user interface
- Programmatic API

Provisioning

- Command-line interface
- Graphical user interface
- Programmatic API

Human interaction with a CLI or GUI is time-consuming and error prone.

Declarative interface to provisioning

- Specify provisioning in a declarative language
 - What Kubernetes clusters should be instantiated
 - On which resources
 - And specific configuration
- Automate calls to programmatic provisioning API

Declarative interface to provisioning

- Specify provisioning in a declarative language
 - What Kubernetes clusters should be instantiated
 - On which resources
 - And specific configuration
- Automate calls to programmatic provisioning API

Terraform

- Declare infrastructure providers (GCP, Rancher)
- For each provider
 - Declare resources and their baseline configuration
 - IP addresses, VLANs, access keys, roles
 - Declare Kubernetes configuration
 - Controller nodes, worker nodes, CNI plugin (container network interface), proxies

Terraform

- Declare infrastructure providers (GCP, Rancher)
- For each provider
 - Declare resources and their baseline configuration
 - IP addresses, VLANs, access keys, roles
 - Declare Kubernetes configuration
 - Controller nodes, worker nodes, CNI plugin (container network interface), proxies

 Files containing these declarative commands are checked into code repositories → Infrastructure as Code

Terraform

- Declare infrastructure providers (GCP, Rancher)
- For each provider
 - Declare resources and their baseline configuration
 - IP addresses, VLANs, access keys, roles
 - Declare Kubernetes configuration
 - Controller nodes, worker nodes, CNI plugin (container network interface), proxies

- Files containing these declarative commands are checked into code repositories → Infrastructure as Code
 - Changes to configuration trigger execution of the provisioner

Platform Definition

What is a platform?

Applications

What is a platform?

What about providing additional functionality for applications?

Applications

What is a platform?

What about providing additional functionality for applications?

Applications

