Concours commun Mines-Ponts

PREMIÈRE ÉPREUVE. FILIÈRE MP

I. Généralités sur les endomorphismes nilpotents

1) Soit $k \in \mathbb{N}^*$. Soient \mathscr{B} une base de E puis $A = \operatorname{Mat}_{\mathscr{B}}(\mathfrak{u})$.

Soit $p \in \mathbb{N}^*$ tel que $u^p = 0$ et donc tel que $A^p = 0$. X^p est annulateur de A. Les valeurs propres de A dans \mathbb{C} sont racines de ce polynôme et sont donc toutes nulles. Si on pose $\mathrm{Sp}_{\mathbb{C}}(A) = (\lambda_1, \ldots, \lambda_n) = (0, \ldots, 0)$, on sait que $\mathrm{Sp}_{\mathbb{C}}(A^k) = (\lambda_1^k, \ldots, \lambda_n^k) = (0, \ldots, 0)$ puis que

$$\operatorname{Tr}\left(u^{k}\right)=\operatorname{Tr}\left(A^{k}\right)=\sum_{i=1}^{n}\lambda_{i}^{k}=0.$$

2) Si n = 1, $\mathcal{N}_{\mathscr{B}} = \{0\}$ est un sous-espace de $\mathscr{L}(E)$, nilpotent de dimension $0 = \frac{1(1-1)}{2}$. On suppose dorénavant $n \ge 2$. Posons $\mathscr{B} = (e_1, \dots, e_n)$. Pour tout $\mathfrak{u} \in \mathscr{L}(E)$,

$$u \in \mathcal{N}_{\mathscr{B}} \Leftrightarrow \left(u\left(e_{1}\right) = 0 \; \mathrm{et} \; \forall i \in \llbracket 2, n \rrbracket, \; u\left(e_{i}\right) \in \mathrm{Vect}\left(e_{k}\right)_{1 \leqslant k \leqslant i-1}\right).$$

 $0 \text{ est un \'el\'ement de } \mathcal{N}_\mathscr{B} \text{ et si } (u,v) \in \left(\mathcal{N}_\mathscr{B}\right)^2 \text{ et } (\lambda,\mu) \in \mathbb{R}^2, \text{ alors } (\lambda u + \mu v) \left(e_1\right) = \lambda u \left(e_1\right) + \mu v \left(e_1\right) = 0 \text{ puis pour tout } i \in \llbracket 2, n \rrbracket, \ (\lambda u + \mu v) \left(e_i\right) = \lambda u \left(e_i\right) + \mu v \left(e_i\right) \in \operatorname{Vect} \left(e_k\right)_{1 \leqslant k \leqslant i-1} \text{ puis } \lambda u + \mu v \in \mathcal{N}_\mathscr{B}. \text{ Ceci montre que } \mathcal{N}_\mathscr{B} \text{ est un sous-espace de } \mathscr{L}(E).$

L'application $\phi: \ \mathscr{L}(E) \to \mathscr{M}_{\mathfrak{n}}(\mathbb{R})$ est un isomorphisme. Donc $\mathfrak{u} \ \mapsto \ \mathrm{Mat}_{\mathscr{B}}(\mathfrak{u})$

$$\dim\left(\mathcal{N}_{\mathscr{B}}\right)=\dim\left(\phi\left(\mathcal{N}_{\mathscr{B}}\right)\right)=\dim\left(T_{n}^{++}(\mathbb{R})\right)=\frac{n(n-1)}{2}$$

(car une base de $T_n^{++}(\mathbb{R})$ est $(E_{i,j})_{1\leqslant i < j \leqslant n}$).

Soient $u \in \mathcal{N}_{\mathscr{B}}$. Alors, $\operatorname{Sp}(u) = (0, \dots, 0)$ puis $\chi_u = X^n$. D'après le théorème de Cayley-Hamilton, $u^n = 0$ et donc u est nilpotent.

Finalement, dans tous les cas, $\mathcal{N}_{\mathscr{B}}$ est un sous-espace de $\mathscr{L}(\mathsf{E})$, nilpotent, de dimension $\frac{\mathfrak{n}(\mathfrak{n}-1)}{2}$.

3) Si n = 1, les éléments de $\mathcal{L}(E)$ sont les homothéties et il existe donc un et un seul élément de $\mathcal{L}(E)$ nilpotent, à savoir 0, qui est nilpotent d'indice 1. Dans ce cas, $\{\nu(u), u \in \mathcal{N}_{\mathscr{B}}\} = \{\nu(u), u \in \mathcal{N}(E)\} = \{1\}$.

Dorénavant, on suppose $n \ge 2$. Soit $\mathfrak u$ un endomorphisme nilpotent. On a vu que $\mathfrak u^n = 0$. Donc, $\nu(\mathfrak u) \le n$. Ceci montre que

$$\{v(u), u \in \mathcal{N}_{\mathscr{B}}\} \subset \{v(u), u \in \mathcal{N}(E)\} \subset [1, n].$$

Réciproquement, soit $k \in [1,n]$. Soit u l'endomorphisme de E défini par $u(e_1)=\ldots=u(e_{n-k})=0$ et pour $i\in [n-k+1,n]$, $u(e_i)=e_{i-(n-k)}$. On a $u^k(e_1)=\ldots=u^k(e_n)=0$ (par récurrence sur k) et donc $u^k=0$. Mais $u^{k-1}(e_n)=e_1\neq 0$ et donc $u^{k-1}\neq 0$. Par suite, $u\in \mathcal{N}_{\mathscr{B}}$ et v(u)=k.

Ceci montre que $[1,n] \subset \{\nu(u), u \in \mathcal{N}_{\mathscr{B}}\} \subset \{\nu(u), u \in \mathcal{N}(E)\} \subset [1,n]$ et finalement que

$$\{\nu(\mathfrak{u}),\;\mathfrak{u}\in\mathcal{N}_{\mathscr{B}}\}=\{\nu(\mathfrak{u}),\;\mathfrak{u}\in\mathcal{N}(E)\}=[\![1,n]\!].$$

4) Supposons par l'absurde la famille $(x,u(x),\ldots,u^{p-1}(x))$ liée. Il existe $(\lambda_0,\ldots,\lambda_{p-1})\in\mathbb{R}^p\setminus(0,\ldots,0)$ tel que $\sum_{i=0}^{p-1}\lambda_iu^i(x)=0$. Soit $j=\min\{i\in[0,p-1]/\lambda_i\neq 0\}$. Par définition de $j,\sum_{i=j}^{p-1}\lambda_iu^i(x)=0$. En prenant les images des deux membres de cette égalité par u^{p-1-j} et en tenant compte de $u^i(x)=0$ pour $i\geqslant p$, on obtient $\lambda_ju^{p-1}(x)=0$. Ceci

deux membres de cette égalité par u^{p-1} et en tenant compte de $u^{i}(x) = 0$ pour $i \ge p$, on obtient $\lambda_{j}u^{p-1}(x) = 0$. Cect est impossible car $\lambda_{j} \ne 0$ et $u^{p-1}(x) \ne 0$. Donc, la famille $(x, u(x), \dots, u^{p-1}(x))$ est libre.

De même, si on suppose la famille $(u^{p-1}(x), u^{q-1}(y))$ libre, on a en particulier $u^{q-1}(y) \neq 0$ et donc la famille

$$(y, u(y), \dots, u^{q-1}(y))$$
 est libre. Soit $(\lambda_0, \dots, \lambda_{p-1}, \mu_0, \mu_1, \dots, \mu_{q-1}) \in \mathbb{R}^{p+q}$ tel que $\sum_{i=0}^{p-1} \lambda_i u^i(x) + \sum_{i=0}^{q-1} \mu_i u^i(y) = 0$. Si $n > q$ on prood l'image des deux membres par u^q (et on pe fait rien si $n = q$). Il reste

p > q, on prend l'image des deux membres par u^q (et on ne fait rien si p = q). Il reste

$$0 = \sum_{i=0}^{p-1} \lambda_i u^{i+q}(x) = \sum_{i=q}^{p-1} \lambda_{i-q} u^{i}(x).$$

Puisque la famille $(x, u(x), ..., u^{p-1}(x))$ est libre, ceci fournit $\lambda_0 = \lambda_1 = ... = \lambda_{p-q-1} = 0$ et il reste

$$\sum_{i=p-q}^{p-1} \lambda_i u^i(x) + \sum_{i=0}^{q-1} \mu_i u^i(y) = 0,$$

ce qui reste vrai si p=q. On prend alors l'image des deux membres u^{q-1} . On obtient $\lambda_{p-q}u^{p-1}(x)+\mu_0u^{q-1}(y)=0$

et donc
$$\lambda_{p-q}=\mu_0=0$$
 par liberté de la famille $\left(u^{p-1}(x),u^{q-1}(y)\right)$ et donc $\sum_{i=p-q+1}^{p-1}\lambda_iu^i(x)+\sum_{i=1}^{q-1}\mu_iu^i(y)=0$. Puis on

 $\mathrm{prend}\ \mathrm{l'image}\ \mathrm{par}\ \mathfrak{u}^{q-2}\ \mathrm{et}\ \mathrm{on}\ \mathrm{obtient}\ \lambda_{p-q+1}=\mu_1=0\ \ldots\ \mathrm{Par}\ \mathrm{r\'ecurrence}\ \mathrm{descendante},\ \mathrm{on}\ \mathrm{obtient}\ \lambda_{p-q}=\mu_0=\lambda_{p-q+1}=0\ \ldots$ $\mu_1=\ldots=\lambda_{p-1}=\mu_{q-1}=0 \text{ et donc la famille } \left(x,u(x),\ldots,u^{q-1}(x),y,u(y),\ldots,u^{q-1}(y)\right) \text{ est libre}.$

5) Pour tout $x \in E$, en tenant compte de $p \ge 2$, $u^{p-1}(x) = u(u^{p-2}(x)) \in Im(u)$ et donc $Im(u^{p-1}) \subset Im(u)$. Puisque $u^p = 0$, pour tout $x \in E$, $u\left(u^{p-1}(x)\right) = 0$ puis $u^{p-1}(x) \in \operatorname{Ker}(u)$. Donc, $\operatorname{Im}\left(u^{p-1}\right) \subset \operatorname{Ker}(u)$ et finalement $\operatorname{Im} (\mathfrak{u}^{p-1}) \subset \operatorname{Im}(\mathfrak{u}) \cap \operatorname{Ker}(\mathfrak{u}).$

Réciproquement, soit $x \in E$ tel que $u^{p-1}(x) \neq 0$. Soit $z \in Im(u) \cap Ker(u)$. Il existe $y \in E$ tel que z = u(y) et de plus $u^2(y) = u(z) = 0$. Si la famille $(u^{p-1}(x), z) = (u^{p-1}(x), u(y))$ est libre, d'après la question précédente, la famille $(x, u(x), \dots, u^{p-1}(x), y, u(y))$ est libre. Mais ceci est impossible car cette famille est de cardinal $p+2 \ge n+1 > n$. Donc, la famille $(\mathfrak{u}^{p-1}(x),z)$ est liée puis $z\in \mathrm{Vect}\,(\mathfrak{u}^{p-1}(x))\subset \mathrm{Im}\,(\mathfrak{u}^{p-1})$. Ceci montre que $\mathrm{Im}(\mathfrak{u})\cap \mathrm{Ker}(\mathfrak{u})\subset \mathrm{Im}\,(\mathfrak{u}^{p-1})$ et finalement que $\operatorname{Im} (\mathfrak{u}^{p-1}) = \operatorname{Im}(\mathfrak{u}) \cap \operatorname{Ker}(\mathfrak{u}).$

De plus, ce qui précède montre que $\operatorname{Im}(\mathfrak{u}^{p-1}) \subset \operatorname{Vect}(\mathfrak{u}^{p-1}(x))$ et donc $\operatorname{dim}(\operatorname{Im}(\mathfrak{u}^{p-1})) \leqslant 1$. Puisque $\mathfrak{u}^{p-1} \neq 0$, on a aussi dim $(\operatorname{Im}(\mathfrak{u}^{p-1})) \geqslant 1$ et finalement dim $(\operatorname{Im}(\mathfrak{u}^{p-1})) = 1$.

II. Endomorphismes de rang 1 d'un espace euclidien

6) Soit $x \in E \setminus \{0\}$. Soit $a \in E$. Soient $(z_1, z_2) \in E^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

$$(\alpha \otimes x)(\lambda z_1 + \mu z_2) = (\alpha | \lambda z_1 + \mu z_2) x = \lambda (\alpha | z_1) x + \mu (\alpha | z_2) x = \lambda \alpha \otimes x (z_1) + \mu \alpha \otimes x (z_2)$$

et donc $a \otimes x \in \mathcal{L}(E)$.

Soient $(a, b) \in E^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Pour tout $z \in E$,

$$((\lambda a + \mu b) \otimes x)(z) = ((\lambda a + \mu b)|z)x = \lambda(a|z)x + \mu(b|z)x = (\lambda a \otimes x + \mu b \otimes x)(z)$$

et donc $(\lambda a + \mu b) \otimes x = \lambda a \otimes x + \mu b \otimes x$. L'application ϕ : $E \rightarrow \mathscr{L}(E)$ est linéaire.

Soit $a \in E$. Puisque $x \neq 0$

$$\alpha \in \mathrm{Ker}(\phi) \Rightarrow \alpha \otimes x = 0 \Rightarrow \forall z \in E, \ (\alpha|z)x = 0 \Rightarrow \forall z \in E, \ \alpha|z = 0 \Rightarrow \alpha \in E^{\perp} = \{0\} \Rightarrow \alpha = 0.$$

Donc, φ est injective puis φ réalise un isomorphisme de E sur $\text{Im}(\varphi)$ qui est donc de dimension π . Soit $\mathfrak{u} \in \text{Im}(\varphi)$. Donc, il existe $a \in E$ tel que $u = a \otimes x$. Mais alors, pour tout $z \in E$, $u(z) = (a \otimes x)(z) = (a|z)x \in Vect(x)$ et donc $Im(u) \subset Vect(x)$. Ceci montre que $\operatorname{Im}(\varphi) \subset \{\mathfrak{u} \in \mathscr{L}(\mathsf{E}) / \operatorname{Im}(\mathfrak{u}) \subset \operatorname{Vect}(\mathfrak{x})\} = \Phi$.

Soit \mathcal{B} une base de E de premier vecteur x. Pour $\mathfrak{u} \in \mathcal{L}(\mathsf{E})$, $\mathfrak{u} \in \Phi$ si et seulement si $\mathrm{Mat}_{\mathcal{B}}(\mathfrak{u})$ est de la forme

$$\begin{pmatrix} \alpha_1 & \dots & \alpha_n \\ 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix} = \sum_{j=1}^n \alpha_j E_{1,j}.$$
 L'ensemble de ces matrices est un sous-espace de $\mathcal{M}_n(\mathbb{R})$ de dimension n (car

de base $(E_{1,j})_{1\leqslant j\leqslant n}$) et donc $\dim(\Phi)=n$, l'application qui à un endomorphisme associe sa matrice dans $\mathscr B$ étant un isomorphisme d'espaces vectoriels.

Ainsi, $\operatorname{Im}(\varphi) \subset \Phi$ et $\operatorname{dim}(\operatorname{Im}(\varphi)) = \operatorname{dim}(\Phi) < +\infty$. Donc, $\operatorname{Im}(\varphi) = \Phi = \{u \in \mathcal{L}(E) / \operatorname{Im}(u) \subset \operatorname{Vect}(x)\}$. φ réalise donc un isomorphisme de E sur $\{u \in \mathcal{L}(E) / \operatorname{Im}(u) \subset \operatorname{Vect}(x)\}$.

7) Soit
$$\mathscr{B} = (e_1, \dots, e_n)$$
 une base orthonormée de E. Posons $\mathfrak{a} = \sum_{i=1}^n \mathfrak{a}_i e_i$ et $\mathfrak{x} = \sum_{i=1}^n \mathfrak{x}_i e_i$. Pour $\mathfrak{i} \in [\![1,n]\!]$,
$$(\mathfrak{a} \otimes \mathfrak{x})(e_i) = (\mathfrak{a}|e_i)\mathfrak{x} = \mathfrak{a}_i\mathfrak{x}$$

et donc, la i-ème coordonnée de $(a \otimes x)(e_i)$ dans la base \mathcal{B} est a_ix_i . Puisque la trace de $a \otimes x$ est la somme de ces nombres, on obtient

$$\operatorname{Tr}(\mathfrak{a} \otimes x) = \sum_{i=1}^n \mathfrak{a}_i x_i = (\mathfrak{a}|x) \; (\operatorname{car} \mathscr{B} \; \operatorname{est \; orthonorm\acute{e}e}).$$

III. Deux lemmes

8) Soient $k \in \mathbb{N}^*$ puis $\left(\left(f_0^{(k)}, \ldots, f_k^{(k)}\right), \left(g_0^{(k)}, \ldots, g_k^{(k)}\right)\right) \in \left(\left(\mathcal{L}(E)\right)^k\right)^2$ tels que pour tout $t \in \mathbb{R}$, $\sum_{i=0}^k t^i f_i^{(k)} = \sum_{i=0}^k t^i g_i^{(k)}$. Soit $j \in [0, k]$. En dérivant l'égalité précédente j fois puis en évaluant en t = 0, on obtient $j! f_j^{(k)} = j! g_j^{(k)}$ puis $f_j^{(k)} = g_j^{(k)}$. Ceci montre l'unicité de $\left(f_0^{(k)}, \ldots, f_k^{(k)}\right)$.

 $\begin{aligned} & \text{Montrons par récurrence que pour tout } k \in \mathbb{N}^*, \text{ il existe } \left(f_0^{(k)}, \dots, f_k^{(k)}\right) \in \left(\mathscr{L}(E)\right)^k \text{ tel que pour tout } t \in \mathbb{R}, \ (u+t\nu)^k = \sum_{i=0}^k t^i f_i^{(k)} \text{ où de plus } f_0^{(k)} = u^k \text{ et } f_1^{(k)} = \sum_{i=0}^{k-1} u^i \nu u^{k-1-i}. \end{aligned}$

- $\bullet \ (u+t\nu)^1 = u+t\nu = f_0^{(1)} + tf_1^{(1)} \ \text{où} \ f_0^{(1)} = u = u^1 \ \text{et} \ f_1^{(1)} = \nu = \sum_{i=0}^0 u^i \nu^{1-i}. \ L'affirmation \ \text{est donc vraie quand} \ k=1.$
- Soit $k \ge 1$. Supposons qu'il existe $\left(f_0^{(k)}, \dots, f_k^{(k)}\right) \in (\mathscr{L}(E))^k$ tel que pour tout $t \in \mathbb{R}$, $(u + tv)^k = \sum_{i=0}^k t^i f_i^{(k)}$ où

de plus $f_0^{(k)}=u^k$ et $f_1^{(k)}=\sum_{i=0}^{k-1}u^ivu^{k-1-i}$. Alors, pour tout réel t,

$$\begin{split} (u+tv)^{k+1} &= (u+tv)^k (u+tv) = \left(\sum_{i=0}^k t^i f_i^{(k)}\right) (u+tv) \\ &= \sum_{i=0}^k t^i f_i^{(k)} u + \sum_{i=0}^k t^{i+1} f_i^{(k)} v = f_0^{(k)} u + \sum_{i=1}^k t^i \left(f_i^{(k)} u + f_{i-1}^{(k)} v\right) + t^{k+1} f_k^{(k)} v \\ &= \sum_{i=0}^{k+1} t^i f_i^{(k+1)} \end{split}$$

où $f_0^{(k+1)} = f_0^{(k)} u = u^{k+1} \in \mathscr{L}(E)$ puis pour $i \in \llbracket 1, k \rrbracket$, $f_i^{(k+1)} = f_i^{(k)} u + f_{i-1}^{(k)} v \in \mathscr{L}(E)$ et $f_{k+1}^{(k+1)} = f_k^{(k)} v \in \mathscr{L}(E)$. De plus,

$$f_1^{(k+1)} = f_1^{(k)} u + f_0^{(k)} v = \sum_{i=0}^{k-1} u^i v u^{(k+1)-1-i} + u^k v = \sum_{i=0}^{(k+1)-1} u^i v u^{(k+1)-1-i}.$$

Le résultat est démontré par récurrence.

9) Puisque \mathcal{V} est un sous-espace de $\mathcal{L}(\mathsf{E})$, pour tout réel t , $\mathsf{u} + \mathsf{t} \mathsf{v} \in \mathcal{V}$. Par définition de p , pour tout réel t ,

$$\sum_{i=0}^{p-1} t^i f_i^{(p)} = (u + tv)^p = 0_{\mathscr{L}(E)} = \sum_{i=0}^{p-1} t^i 0_{\mathscr{L}(E)}.$$

Par unicité, on en déduit que $\sum_{i=0}^{p-1} u^i v u^{p-1-i} = f_1^{(p)} = 0$.

 $\mathbf{10)} \, \operatorname{Soit} \, k \in \mathbb{N}. \, \operatorname{Tr}\left(f_1^{(k+1)}\right) = \operatorname{Tr}\left(\sum_{i=0}^k u^i \nu u^{k-i}\right) = \sum_{i=0}^k \operatorname{Tr}\left(u^i \nu u^{k-i}\right) = \sum_{i=0}^k \operatorname{Tr}\left(u^{k-i} u^i \nu\right) = (k+1) \operatorname{Tr}\left(u^k \nu\right).$

D'autre part, pour tout $t \in \mathbb{R}$, $u + tv \in \mathcal{V} \subset \mathcal{N}(E)$ et donc, d'après la question 1, pour tout $t \in \mathbb{R}$,

$$0 = \operatorname{Tr}\left((u + tv)^{k+1}\right) = \sum_{i=0}^{k+1} t^{i} \operatorname{Tr}\left(f_{i}^{(k+1)}\right).$$

En particulier, le coefficient de t est nul ce qui fournit $0 = \operatorname{Tr}\left(f_1^{(k+1)}\right) = (k+1)\operatorname{Tr}\left(u^kv\right)$ et finalement $\operatorname{Tr}\left(u^kv\right) = 0$. Ceci établit la validité du lemme A.

11) Soit $y \in E$. Pour tout entier naturel non nul k, $\left(u + \frac{1}{k}v\right)^{p-1}(y) = u^{p-1}(y) + \frac{1}{k}f_1^{(p-1)}(y) + \sum_{i=2}^{p-1}\frac{1}{k^i}f_i^{(p-1)}(y)$ puis $f_1^{(p-1)}(y) = \lim_{k \to +\infty} k\left(\left(u + \frac{1}{k}v\right)^{p-1}(y) - u^{p-1}(y)\right).$

 $\mathrm{Pour\;tout\;} k \in \mathbb{N}^*, \mathrm{puisque\;} u + \frac{1}{k} \nu \in \mathcal{V} \mathrm{\;et\;} u \in \mathcal{V}, k \left(\left(u + \frac{1}{k} \nu \right)^{p-1} (y) - u^{p-1} (y) \right) \in K(\mathcal{V}). \ K(\mathcal{V}) \mathrm{\;est\;un\;ferm\'e} \mathrm{\;de\;} l'\mathrm{espace\;de} \mathrm{\;de\;} l'\mathrm{\;espace\;de\;} l'\mathrm{\;espace\;de\;}$

dimension finie E en tant que sous-espace de E. Donc, la limite de la suite convergente $\left(k\left(\left(u+\frac{1}{k}\nu\right)^{p-1}(y)-u^{p-1}(y)\right)\right)_{k\in\mathbb{N}^*}$ d'éléments de $K(\mathcal{V})$ est encore un élément de $K(\mathcal{V})$ ou encore $f_1^{(p-1)}(y)\in K(\mathcal{V})$.

Ensuite, $uf_1^{(p-1)} = \sum_{i=0}^{p-2} u^{i+1} v u^{p-2-i} = \sum_{j=1}^{p-1} u^j v u^{p-1-j} = f_1^{(p)} - v u^{p-1} = -v u^{p-1}$ d'après la question 9. Soit alors $x \in \text{Im}(u^{p-1})$. Il existe $y \in E$ tel que $x = u^{p-1}(y)$ puis

$$\nu(x) = \nu\left(u^{p-1}(y)\right) = -u\left(f_1^{(p-1)}(y)\right) = u\left(-f_1^{(p-1)}(y)\right) \in u\left(K(\mathcal{V})\right)$$

 $\textbf{12)} \ \operatorname{Soit} \ x \in \mathcal{V}^{\bullet} \setminus \{0\} \ \operatorname{tel} \ \operatorname{que} \ K(\mathcal{V}) \subset \operatorname{Vect}(x) + \mathcal{V}x. \ \operatorname{Soit} \ u \in \mathcal{V} \ \operatorname{tel} \ \operatorname{que} \ x \in \operatorname{Im} \left(u^{p-1}\right). \ \operatorname{Soit} \ y \in K(\mathcal{V}).$

Montrons par récurrence que pour tout $k \in \mathbb{N}$, il existe $y_k \in K(\mathcal{V})$ et $\lambda_k \in \mathbb{R}$ tels que $y = \lambda_k x + u^k (y_k)$.

- $y = \lambda_0 x + u^0 (y_0)$ avec $\lambda_0 = 0$ et $y_0 = y \in K(\mathcal{V})$. Le résultat est donc vrai quand k = 0.
- Soit $k \geqslant 0$. Supposons qu'il existe $y_k \in K(\mathcal{V})$ et $\lambda_k \in \mathbb{R}$ tels que $y = \lambda_k x + u^k (y_k)$. Puisque $y_k \in K(\mathcal{V}) \subset \mathrm{Vect}(x) + \mathcal{V}x$, il existe $\mu_k \in \mathbb{R}$ et $\nu_k \in \mathcal{V}$ tel que $y_k = \mu_k x + \nu_k(x)$ de sorte que

$$y = \lambda_k x + u^k \left(\mu_k x + \nu_k(x) \right) = \lambda_k x + \mu_k u^k(x) + u^k \left(\nu_k(x) \right).$$

Si k=0, $\lambda_k x + \mu_k u^k(x) = \lambda_{k+1} x$ avec $\lambda_{k+1} = \lambda_k + \mu_k$. Si $k\geqslant 1$, puisque $x\in \mathrm{Im}\left(u^{p-1}\right)$ et que $u^p=0$, on a $u^k(x)=0$ et donc $\lambda_k x + \mu_k u^k(x) = \lambda_{k+1} x$ avec $\lambda_{k+1} = \lambda_k$. Dans tous les cas, il existe $\lambda_{k+1}\in\mathbb{R}$ tel que

$$y = \lambda_{k+1} x + u^k (v_k(x)).$$

Ensuite, puisque $x \in \text{Im}\left(u^{p-1}\right)$ et $v_k \in \mathcal{V}$, $v_k(x) \in u(K(\mathcal{V}))$ d'après la question 11. Donc, il existe $y_{k+1} \in \mathcal{K}(\mathcal{V})$ tel que $v_k(x) = u\left(y_{k+1}\right)$ puis

$$y = \lambda_{k+1}x + u^{k+1}(y_{k+1}).$$

Le résultat est démontré par récurrence.

En particulier, pour k = p, en tenant compte de $u^p = 0$, on a $y = \lambda_p x \in \operatorname{Vect}(x)$. Ceci montre que $K(\mathcal{V}) \subset \operatorname{Vect}(x)$. Puisque $x \in \operatorname{Im}(u^{p-1})$ et que $u^p = 0$, on a u(x) = 0. Soit alors $v \in \mathcal{V}$. D'après la question précédente,

$$v(x) \in u(K(V)) \subset u(Vect(x)) = Vect(u(x)) = \{0\}$$

et donc v(x) = 0. Ceci montre le lemme B.

IV. Démonstration du théorème de Gerstenhaber

13) • L'application $\phi: \mathcal{V} \to E$ est linéaire. Donc, $\mathcal{W} = \mathrm{Ker}(\phi)$ est un sous-espace vectoriel de \mathcal{V} et $\mathcal{V}x = \mathrm{Im}(\phi)$ $v \mapsto v(x)$

est un sous-espace vectoriel de E.

- 14) D'après le théorème du rang, $\dim(\mathcal{V}) = \dim(\operatorname{Im}(\varphi)) + \dim(\operatorname{Ker}(\varphi)) = \dim(\mathcal{V}x) + \dim(\mathcal{W})$ puis

$$\dim(\mathcal{V}) = \dim(\mathcal{V}x) + \dim(\mathrm{Ker}(\psi)) + \dim(\mathrm{Im}(\psi)) = \dim(\mathcal{V}x) + \dim(\mathcal{Z}) + \dim(\overline{\mathcal{V}}).$$

15) D'après la question 6, l'application $\Phi: \alpha \mapsto \alpha \otimes x$ est un isomorphisme de E sur $\{u \in \mathcal{L}(E) / \operatorname{Im}(u) \subset \operatorname{Vect}(x)\}$. Soit $u \in \mathcal{Z}$. Alors, pour tout $z \in H$, $\pi(u(z)) = 0$ et donc $u(z) \in H^{\perp} = \operatorname{Vect}(x)$. Par suite, \mathcal{Z} est un sous-espace de $\{u \in \mathcal{L}(E) / \operatorname{Im}(u) \subset \operatorname{Vect}(x)\}$. Soit $L = \Phi^{-1}(\mathcal{Z})$. Alors, L est un sous-espace vectoriel de E tel que $\mathcal{Z} = \Phi(L) = \{\alpha \otimes x, \ \alpha \in L\}$. De plus, Φ étant un isomorphisme, $\dim(L) = \dim(\mathcal{Z})$.

Soit $a \in L$. D'après la question 7, $(a|x) = \text{Tr}(a \otimes x) = 0$ (d'après la question 1 car $a \otimes x \in \mathcal{N}$). Donc, $\forall a \in L$, (a|x) = 0 et ceci montre que $x \in L^{\perp}$.

16) Soient $u \in V$ et $a \in L$. Soit $v = a \otimes x \in \mathcal{Z} \subset V$. Pour tout $y \in E$,

$$\mathfrak{u}\circ\nu(y)=\mathfrak{u}\left(\mathfrak{a}\otimes x(y)\right)=\mathfrak{u}((\mathfrak{a}|y)x)=(\mathfrak{a}|y)\mathfrak{u}(x)=\mathfrak{a}\otimes\mathfrak{u}(x)(y)$$

et donc $u \circ v = a \otimes (u(x))$. Puisque u et v sont dans V, le lemme A et la question 7 permettent d'affirmer que

$$0 = \operatorname{Tr}(\mathfrak{u} \circ \mathfrak{v}) = \operatorname{Tr}(\mathfrak{a} \otimes \mathfrak{u}(\mathfrak{x})) = (\mathfrak{a}|\mathfrak{u}(\mathfrak{x})).$$

Donc, pour tout $u \in V$ et tout $a \in L$, $u(x) \in a^{\perp}$ puis pour tout $u \in V$, $u(x) \in L^{\perp}$ et finalement $Vx \subset L^{\perp}$.

De même, pour $k \in \mathbb{N}$, $u \in \mathcal{V}$ et $a \in L$, (en remplaçant u par u^k), $0 = \operatorname{Tr}(u^k \circ \nu) = (a|u^k(x))$. Donc, pour tout $k \in \mathbb{N}$ et tout $u \in \mathcal{V}$, $u^k(x) \in L^{\perp}$.

17) Soit $\lambda \in \mathbb{R}^*$. Si, par l'absurde, $\lambda x \in \mathcal{V}x$, alors il existe $u \in \mathcal{V}$ tel que $u(x) = \lambda x$. Puisque $x \neq 0$, λ est une valeur propre non nulle de u. Ceci contredit le fait qu'un endomorphisme nilpotent admet 0 pour unique valeur propre. Donc, pour tout $\lambda \in \mathbb{R}^*$, $\lambda x \notin \mathcal{V}$.

Donc, $\text{Vect}(x) \cap \mathcal{V}x = \{0\}$ ou encore la somme $\text{Vect}(x) + \mathcal{V}x$ est directe. De plus, Vect(x) et $\mathcal{V}x$ sont des sous-espaces de L^{\perp} d'après les deux questions précédentes. Par suite,

$$n = \dim(L) + \dim(L^{\perp}) \geqslant \dim(L) + \dim(\operatorname{Vect}(x) + \mathcal{V}x) = \dim(L) + \dim(\operatorname{Vect}(x)) + \dim(\mathcal{V}x)$$

et donc

$$\dim(\mathcal{V}x) + \dim(L) \leqslant n - \dim(\operatorname{Vect}(x)) = n - 1.$$

18) Soit $u \in \mathcal{W}$. Alors, $u \in \mathcal{V}$ et u(x) = 0. Pour $y \in E$, posons $y = y_1 + z$ avec $y_1 \in \text{Vect}(x)$ et $z \in H$.

$$u(y) = u(y_1) + u(z) = u(z) = u(\pi(y)).$$

Donc, $u \circ \pi = u$.

Soit alors $z \in H$. Montrons par récurrence que pour tout $k \in \mathbb{N}$, $(\overline{\mathfrak{u}})^k(z) = \pi(\mathfrak{u}^k(z))$.

- $\pi(u^{0}(z)) = \pi(z) = z \text{ car } z \in H \text{ et donc } \pi(u^{0}(z)) = (\overline{u})^{0}(z).$
- Soit $k \ge 0$. Supposons que $(\overline{\mathfrak{u}})^k(z) = \pi(\mathfrak{u}^k(z))$. Alors,

$$\begin{split} (\overline{\mathfrak{u}})^{k+1}\left(z\right) &= \overline{\mathfrak{u}}\left(\left(\overline{\mathfrak{u}}\right)^{k}\left(z\right)\right) \\ &= \overline{\mathfrak{u}}\left(\pi\left(\mathfrak{u}^{k}(z)\right)\right) \text{ (par hypothèse de récurrence)} \\ &= \pi\left(\mathfrak{u}\left(\pi\left(\mathfrak{u}^{k}(z)\right)\right)\right) = \pi\left(\mathfrak{u}\left(\mathfrak{u}^{k}(z)\right)\right) \text{ (car } \mathfrak{u}\circ\pi = \mathfrak{u}) \\ &= \pi\left(\mathfrak{u}^{k+1}(z)\right). \end{split}$$

On a montré par récurrence que pour tout $z \in H$, pour tout $k \in \mathbb{N}$, $(\overline{u})^k(z) = \pi(u^k(z))$.

Soit $u \in \mathcal{W}$. Soit $p \in \mathbb{N}^*$ tel que $u^p = 0$. Alors, $\overline{u}^p = \pi \circ u^p = 0$ et donc \overline{u} est nilpotent. Ainsi, tout élément de $\overline{\mathcal{V}}$ est nilpotent. Donc, $\overline{\mathcal{V}}$ est un sous-espace de $\mathscr{L}(H)$ d'après la question 13, nilpotent d'après ce qui précède.

19)

$$\begin{split} \dim\left(\mathcal{V}\right) &= \dim\left(\mathcal{V}x\right) + \dim\left(\mathcal{Z}\right) + \dim\left(\overline{\mathcal{V}}\right) \text{ (d'après la question 14)} \\ &= \dim\left(\mathcal{V}x\right) + \dim(L) + \dim\left(\overline{\mathcal{V}}\right) \text{ (d'après la question 15)} \\ &\leqslant n - 1 + \dim\left(\overline{\mathcal{V}}\right) \text{ (d'après la question 17)} \\ &\leqslant n - 1 + \frac{(n-2)(n-1)}{2} \text{ (car } \dim(H) = n - 1 \text{ et par hypothèse de récurrence)} \\ &= \frac{n(n-1)}{2}. \end{split}$$

$$20) \ \dim\left(\overline{\mathcal{V}}\right) = \dim(\mathcal{V}) - (\dim(\mathcal{V}x) + \dim(L)) \geqslant \dim(\mathcal{V}) - (n-1) = \frac{n(n-1)}{2} - (n-1) = \frac{(n-2)(n-1)}{2}.$$
 Puisque d'autre part, $\dim\left(\overline{\mathcal{V}}\right) \leqslant \frac{(n-2)(n-1)}{2},$ on en déduit que $\dim\left(\overline{\mathcal{V}}\right) = \frac{(n-2)(n-1)}{2}.$

Ensuite, on sait d'après la question 17 que la somme $Vect(x) + \mathcal{V}x$ est directe. Donc,

$$\begin{split} \dim\left(\operatorname{Vect}(x)\oplus\mathcal{V}x\right) + \dim(L) &= 1 + \dim(\mathcal{V}x) + \dim(L) = 1 + \dim(\mathcal{V}) - \dim\left(\overline{\mathcal{V}}\right) \\ &= 1 + \frac{n(n-1)}{2} - \frac{(n-2)(n-1)}{2} = n. \end{split}$$

Ainsi, $\operatorname{Vect}(x) \oplus \mathcal{V}x$ est un sous-espace de L^{\perp} tel que $\dim (\operatorname{Vect}(x) \oplus \mathcal{V}x) = n - \dim(L) = \dim (L^{\perp}) < +\infty$. Donc, $L^{\perp} = \operatorname{Vect}(x) \oplus \mathcal{V}x$. Mais alors, d'après la question 16, pour tout $v \in \mathcal{V}$ et tout $k \in \mathbb{N}$, $v^k(x) \in \operatorname{Vect}(x) \oplus \mathcal{V}x$.

21) $\overline{\mathcal{V}}$ est un sous-espace nilpotent de $\mathscr{L}(\mathsf{H})$ où H est de dimension $\mathsf{n}-\mathsf{1}$. Par hypothèse, de récurrence, il existe une base $\mathsf{B}_\mathsf{H}=(e_2,\ldots,e_\mathsf{n})$ de H dans laquelle tout élément de $\overline{\mathcal{V}}$ est représenté par une matrice triangulaire supérieure stricte.

Puisque d'autre part, $\dim(\overline{\mathcal{V}}) = \frac{(n-1)(n-2)}{2} = \dim(T_n^{++}(\mathbb{R})), \ \overline{\mathcal{V}}$ est exactement l'espace des endomorphismes de H représenté dans B_H par une matrice triangulaire supérieure stricte.

D'après la question 3 et par définition de $\overline{\mathcal{V}}$, il existe $\mathfrak{u} \in \mathcal{W} \subset \mathcal{V}$ tel que $\overline{\mathfrak{u}}$ est nilpotent d'indice $\mathfrak{n}-1$. Mais alors, $\pi \circ \mathfrak{u}^{n-2} = \overline{\mathfrak{u}}^{n-2} \neq 0$ et donc \mathfrak{u} est d'indice de nilpotence supérieur ou égal à $\mathfrak{n}-1$. Ceci montre que le nilindice générique de \mathcal{V} est supérieur ou égal à $\mathfrak{n}-1$.

Supposons de plus $\mathcal{V}x = \{0\}$. Puisque $e_1 = x$ est un vecteur non nul de H^{\perp} , la famille $B = (e_1, e_2, \dots, e_n) = \{x\} \cup B_H$ est une base de E.

Puisque $\mathcal{V}x = \{0\}$, pour tout $u \in \mathcal{V}$, u(x) = 0 et donc, pour tout $u \in \mathcal{V}$, la première colonne de $\mathrm{Mat}_B(u)$ est nulle. Mais alors, pour tout $u \in \mathcal{V}$, $\mathrm{Mat}_B(u)$ est triangulaire supérieure stricte.

22) Par définition du nilindice p de \mathcal{V} , il existe $u \in \mathcal{V}$ tel que $u^{p-1} \neq 0$ (avec $p-1 \geqslant 1$) et donc tel que Im $(u^{p-1}) \neq \{0\}$. On peut donc choisir un élément x dans $\mathcal{V}^{\bullet} \setminus \{0\}$, ce que l'on fait.

Soit $v \in \mathcal{V}$ tel que $v(x) \neq 0$. Si $v^{p-1} = 0$, on a immédiatement $\operatorname{Im}(v^{p-1}) \subset \operatorname{Vect}(x) \oplus \mathcal{V}x$. Supposons maintenant $v^{p-1} \neq 0$. Donc, v est de nilindice égal à $p \geqslant n-1$. D'après la question 5, $\operatorname{Im}(v^{p-1}) = \operatorname{Im}(v) \cap \operatorname{Ker}(v)$ et de plus dim $\left(\operatorname{Im}(v^{p-1})\right) = 1$. Soit $j = \operatorname{Max}\left\{i \in [1, p-1]/v^i(x) \neq 0\right\}$. $v^j(x)$ est dans $\operatorname{Im}(v)$ car $j \geqslant 1$ et $v^j(x) \in \operatorname{Ker}(u)$ car $v\left(v^j(x)\right) = v^{j+1}(x) = 0$ (par définition de j). Ainsi, $v^j(x)$ est un vecteur non nul de $\operatorname{Im}(v) \cap \operatorname{Ker}(v) = \operatorname{Im}(v^{p-1})$ et finalement $\operatorname{Im}(v^{p-1}) = \operatorname{Vect}(v^j(x))$. D'après la question $v^j(x) \in \operatorname{Vect}(x) \oplus \mathcal{V}x$ et on a donc montré que $\operatorname{Im}(v^{p-1}) \subset \operatorname{Vect}(x) \oplus \mathcal{V}x$.

23) Si $\nu(x) \neq 0$, alors $\operatorname{Im} \left(\nu^{p-1} \right) \subset \operatorname{Vect}(x) \oplus \mathcal{V} x$ d'après la question précédente. On suppose dorénavant $\nu(x) = 0$. Pour tout réel non nul t, $(\nu + t\nu_0)(x) = t\nu_0(x) \neq 0$. Pour tout réel non nul t, $\nu + t\nu_0$ est donc un élément de \mathcal{V} ne s'annulant pas en x. D'après la question 22, pour tout réel non nul t, $\operatorname{Im} (\nu + t\nu_0)^{p-1} \subset \operatorname{Vect}(x) \oplus \mathcal{V} x$.

Maintenant, $\text{Vect}(x) \oplus \mathcal{V}x$ est un sous-espace de l'espace E qui est de dimension finie. Donc, $\text{Vect}(x) \oplus \mathcal{V}x$ est un fermé de E.

Soit $y \in E$. Pour tout réel non nul t, $(v + tv_0)^{p-1}(y) \in \operatorname{Vect}(x) \oplus \mathcal{V}x$. Quand t tend vers 0, puisque $\operatorname{Vect}(x) \oplus \mathcal{V}x$ est un fermé de E, on obtient $v^{p-1}(y) \in \operatorname{Vect}(x) \oplus \mathcal{V}x$. On a montré que pour tout $y \in E$, $v^{p-1}(y) \in \operatorname{Vect}(x) \oplus \mathcal{V}x$ et donc encore une fois, $\operatorname{Im}\left(v^{p-1}\right) \subset \operatorname{Vect}(x) \oplus \mathcal{V}x$.

24) Donc, s'il existe $v_0 \in \mathcal{V}$ tel que $v_0(x) \neq 0$, alors pour tout $v \in \mathcal{V}$, Im $(v^{p-1}) \subset \operatorname{Vect}(x) \oplus \mathcal{V}x$ puis $\mathcal{V}^{\bullet} \subset \operatorname{Vect}(x) \oplus \mathcal{V}x$ et finalement $K(\mathcal{V}) \subset \operatorname{Vect}(x) \oplus \mathcal{V}x$. D'après le lemme B, pour tout $v \in \mathcal{V}$, v(x) = 0 ce qui contredit $v_0(x) \neq 0$.

Donc, il n'existe pas d'élément ν_0 de $\mathcal V$ tel que $\nu_0(x) \neq 0$ ou encore pour tout $\nu \in \mathcal V$, $\nu(x) = 0$. Ceci achève la démonstration du théorème de Gerstenhaber.