LAGraph Algorithms

PDF build on Thursday 11th February, 2021 at 01:57 UTC

Abstract

Theoretical documentation for LAGraph.

1 Introduction

The goal of this document is to present a notation for GraphBLAS algorithms and showcase it using important GraphBLAS algorithms.

2 The GraphBLAS

Goal The goal of GraphBLAS is to create a layer of abstraction between the graph algorithms and the graph analytics framework, separating the concerns of the algorithm developers from those of the framework developers and hardware designers. To achieve this, it builds on the theoretical framework of matrix operations on arbitrary semirings [3], which allows defining graph algorithms in the language of linear algebra [4]. To ensure portability, the GraphBLAS standard defines a C API that can be implemented on a variety of hardware including GPUs.

Data structures A graph with n vertices can be stored as a square adjacency matrix $\mathbf{A} \in \mathbf{uint}^{n \times n}$, where rows and columns both represent vertices of the graph and element A(i,j) contains the number of edges from vertex i to vertex j. If the graph is undirected, the matrix is symmetric.

Navigation The fundamental step in GraphBLAS is the multiplication of an adjacency matrix with another matrix or vector over a selected semiring. For example, the operation HasMember lor.land IsLocatedIn computed over the "logical or.logical and" semiring returns a matrix representing the Places where a Forum's members are located in. Meanwhile, when computed over the conventional arithmetic "plus.times" semiring, HasMember $+.\times$ IsLocatedIn also returns the number of such Persons. A traversal from a certain set of vertices can be expressed by using a boolean vector f (often referred to as the frontier, wavefront, or queue) and setting true values for the elements corresponding to source vertices. For example, for Forums $f \in bool^{|forums|}$, flor.land HasMember returns the Persons who belong to any of the forums in f. The BFS navigation step can also be captured using other semirings such as lor.first, where first(x, y) = x; lor.second, where second(x, y) = y; and any.pair, where any(x, y) returns either x or y, and pair(x, y) = 1 [2].

2.1 Notation

Table 1 contains the notation of GraphBLAS operations Additionally, we use D = diag(j,n) to construct a diagonal matrix $D \leftarrow \{j, j, [1, 1, ..., 1]\}$. The elements of the matrix are D(j, j) = 1 for $j \in j$.

2.1.1 Masks

Masks C < M> and w < m> are used to selectively write to the result matrix/vector. The complements of the masks can be selected with the negation symbol, denoted with: C < !M> and w < !m>, respectively.

Masks with "replace" semantics (annihilating all elements outside the mask) are denoted with

- C << M>>>
- C << !M>>>
- w << m>>
- w << !m>>

The structure of the mask is denoted with:

mxm matrix-matrix multiplication C < M > + = A + × B vxm vector-matrix multiplication w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + = u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w < m > + u + × A w	op./method	name	notation
mxv matrix-vector multiplication $w < m > + = A + \times u$ eWiseAdd element-wise addition $C < M > + = A \cup [op] B$ set union of patterns $v < m > + = u \cup [op] v$ eWiseMult element-wise multiplication $C < M > + = A \cap [op] B$ set intersection of patterns $v < m > + = u \cap [op] v$ extract extract submatrix $C < M > + = A(i, j)$ $v < m > + = A(i, j)$ $v < m > + = A(i, j)$ extract column vector $v < m > + = A(i, j)$ extract row vector $v < m > + = A(i, j)$ extract row vector $v < m > + = A(i, j)$ extract row vector $v < m > + = A(i, j)$ extract submatrix vith mask for C $C < M > (i, j) + = A$ assign matrix to submatrix with mask for C $C < M > (i, j) + = A$ assign scalar to subvector with mask for C $C < M > (i, j) + = A$ subassign (GxB) assign scalar to subvector with submask for $C(i, j)$ $C(i, j) < M > + = A$ subassign scalar to subvector with submask for $v(i)$ $v < m > (i) + = A$ subassign scalar to subvector with submask for $v(i)$ $v < m > (i) + m > A$ apply unary operator $v < v < v < v < (i) + $	mxm	matrix-matrix multiplication	$C < M > + = A + . \times B$
eWiseAdd clement-wise addition set union of patterns $C < M > + = A \cup [op] B$ $w < m > + = u \cup [op] v$ eWiseMult clement-wise multiplication set intersection of patterns $C < M > + = A \cap [op] B$ $w < m > + = u \cup [op] v$ extract extract submatrix set intersection of patterns $C < M > + = A(i, j)$ $v > + = A(i, j$	vxm		$w < m > + = u + . \times A$
eWiseMult set union of patterns	mxv	matrix-vector multiplication	$w < m > + = A + . \times u$
eWiseMult element-wise multiplication set intensection of patterns	eWiseAdd		t = 3
ewisenuitset intersection of patterns $w < m > + = u \cap [op] v$ extractextract submatrix $C < M > + = A(i, j)$ extract cow vector $w < m > + = A(i, j)$ extract row vector $w < m > + = A(i, j)$ extract subvector $w < m > + = u(i)$ assignassign matrix to submatrix with mask for C assign vector to subvector with mask for C assign vector to subvector with mask for w assign scalar to submatrix with submask for w assign scalar to submatrix with submask for (i, j) assign vector to submetrix with submask for (i, j) assign vector to subvector with submask for (i, j) apply unary operator $(i, j) < M > + = A$ assign vector (i, j) apply unary operatorcelectapply unary operator $(i, j) < M > + = A$ $(i, j) < M > + = A$ celectapply select operator $(i, j) < M > + = A$ $(i, j) < M > + = A$ reducereduce matrix to column vector reduce matrix to scalar reduce vector to scalar s + = + A s + A <br< td=""><td>set union of patterns</td><td>$\mathtt{w} < \mathtt{m} > + = \mathtt{u} \cup [\mathtt{op}] \mathtt{v}$</td></br<>		set union of patterns	$\mathtt{w} < \mathtt{m} > + = \mathtt{u} \cup [\mathtt{op}] \mathtt{v}$
extract submatrix $w < m > + m \cap p v$ extract submatrix $v < m > + m \cap p v$ extract column vector $v < m > + m \cap p v$ extract row vector $v < m > + m \cap p v$ extract row vector $v < m > + m \cap p v$ assign matrix to submatrix with mask for $v \in m \cap p v$ assign scalar to submatrix with mask for $v \in m \cap p v$ assign vector to subvector with mask for $v \in m \cap p v$ assign scalar to submatrix with submask for $v \in m \cap p v$ assign scalar to submatrix with submask for $v \in m \cap p v$ assign scalar to submatrix with submask for $v \in m \cap p v$ assign scalar to submatrix with submask for $v \in m \cap p v$ assign scalar to submatrix with submask for $v \in m \cap p v$ assign scalar to submatrix with submask for $v \in m \cap p v$ assign scalar to subvector with submask for $v \in m \cap p v$ apply apply unary operator $v \in m \rightarrow p v$ extract apply select operator $v \in m \rightarrow p v$ reduce matrix to column vector reduce matrix to scalar reduce vector to scalar reduce vector to scalar reduce vector to scalar $v \in m \rightarrow p v$ transpose transpose $v \in m \rightarrow p v$ kronecker Kronecker multiplication $v \in m \rightarrow p v$ new matrix new matrix new matrix from tuples vector $v \in m \cap p v$ duplicate matrix duplicate matrix duplicate matrix con a $v \in m \rightarrow p v$	eWiseMult		t = 1
extract column vector extract row vector extract row vector $w < m > + = A(i, j)$ extract subvector $w < m > + = A(i, j)$ assign matrix to submatrix with mask for C $C < M > (i, j) + = A$ assign scalar to submatrix with mask for C $C < M > (i, j) + = A$ assign scalar to submatrix with mask for C $C < M > (i, j) + = A$ assign scalar to submatrix with mask for C $C < M > (i, j) + = A$ assign scalar to submatrix with mask for C $C < M > (i, j) + = A$ assign scalar to submatrix with submask for C		set intersection of patterns	$\mathbf{w} < \mathbf{m} > + = \mathbf{u} \cap [\mathbf{op}] \mathbf{v}$
extract row vector extract subvector $w < m > + = A(i, \cdot)$ $w < m > + = A(i, \cdot)$ $w < m > + = A(i, \cdot)$ assign matrix to submatrix with mask for C assign scalar to submatrix with mask for C assign vector to subvector with mask for C assign scalar to submatrix with mask for C assign scalar to subvector with mask for C $C < M > (i, j) + = A$ assign wector to subvector with mask for C $C < M > (i, j) + = A$ assign scalar to submatrix with submask for C $C < M > (i, j) + = A$ assign scalar to subvector with submask for C	extract		(, 5)
extract row vector extract subvector extract subvector extract subvector $w < m > + = A(1, \cdot)$ $w < m > + = u(1)$ assign matrix to submatrix with mask for C assign scalar to submatrix with mask for C assign vector to subvector with mask for W assign scalar to submatrix with submask for W assign scalar to submatrix with submask for W assign scalar to submatrix with submask for $C(1, j)$ $C(1, j) < M > + = A$ assign scalar to submatrix with submask for $C(1, j)$ $C(1, j) < M > + = A$ assign vector to subvector with submask for $W(1, j)$ $W(1, j) < W > + = A$ assign vector to subvector with submask for $W(1, j)$ $W(1, j) < W > + = A$ apply apply unary operator $C < M > + = A(1, 1, j)$ select apply select operator $C < M > + = A(1, j)$ reduce matrix to column vector reduce matrix to column vector reduce matrix to scalar reduce vector to scalar $C < M > + = A(1, j)$ transpose transpose $C < M > + = A(1, j)$ transpose transpose $C < M > + = A(1, j)$ new matrix $A = TYPEPRECISION(n, m)$ new matrix from tuples vector from tuples vector from tuples $C < A > A(1, x) > A $ $A = A(1, x) > A $ $A $			(, 5)
assign matrix to submatrix with mask for C assign scalar to submatrix with mask for C assign vector to subvector with mask for W w <m> (i, j) + = S w <m> (i, j) + S</m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m>			(· ·)
assign scalar to submatrix with mask for C assign vector to subvector with mask for C assign vector to subvector with mask for C assign vector to subvector with mask for C assign scalar to subvector with mask for C assign matrix to submatrix with submask for C		extract subvector	w < m > + = u(i)
assign vector to subvector with mask for w assign scalar to subvector with mask for w w < m > (i) + = u assign scalar to subvector with mask for w w < m > (i) + = s assign scalar to subvector with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign scalar to submatrix with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign vector to subvector with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign scalar to subvector with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign vector to subvector with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign vector to subvector with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign vector to subvector with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign vector to subvector with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign vector to subvector with submask for $C(i,j)$ $C(i,j) < M > + = A$ apply unary operator	assign	~	
assign vector to subvector with mask for w assign vector to subvector with mask for w assign scalar to subvector with mask for w assign matrix to submatrix with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign scalar to submatrix with submask for $C(i,j)$ $C(i,j) < M > + = S$ assign vector to subvector with submask for $w(i)$ assign scalar to subvector with submask for $w(i)$ assign vector to scalar to subvector with submask for $w(i)$ assign vector has assign vector to scalar apply select operator		<u> </u>	(, 5)
assign matrix to submatrix with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign scalar to submatrix with submask for $C(i,j)$ $C(i,j) < M > + = A$ assign scalar to submatrix with submask for $C(i,j)$ $C(i,j) < M > + = B$ assign vector to subvector with submask for $W(i)$ $W(i) < M > + = B$ assign scalar to subvector with submask for $W(i)$ $W(i) < M > + = B$ apply apply unary operator		<u> </u>	· /
subassign (GxB)assign scalar to submatrix with submask for $C(i,j)$ assign vector to subvector with submask for $w(i)$ assign scalar to subvector with submask for $w(i)$ $w(i) < m > + = s$ applyapply unary operator $C < M > + = f(()A)$ $w < m > + = f(()u)$ selectapply select operator $C < M > + = A < f(()A, k) > w < m > + = u < f(()u, k) > w < m > + = u < f(()u, k) > w < m > + = [+A] reducereduce matrix to column vectorw < m > + = [+A] s + = [+A] s + = [+a]reduce vector to scalars + = [+a] s + = [+u]transposeC < M > + = A'kroneckerKronecker multiplicationC < M > + = kron(A, B)newnew matrix new vectorA = TYPEPRECISION(n, m) u = TYPEPRECISION(n)buildmatrix from tuples wector from tuplesC < {\{i,j,x\}} < A \{i,j,x\} < A \{i,j,x\} < A \{i,j,x\} < UextractTuplesextract index/value arrays\{i,j,x\} < A \{i,x\} < Udupduplicate matrix duplicate vectorC < A W < UextractElementextract scalar elementS = A(i,j) S = u(i)$		assign scalar to subvector with mask for w	$\mathbf{w} < \mathbf{m} > (\mathbf{i}) + = \mathbf{s}$
assign vector to subvector with submask for $w(i)$ assign vector to subvector with submask for $w(i)$ $w(i) < m > + = u$ $w(i) < m > + = s$ apply apply unary operator $ \begin{array}{c} C < M > + = f(()A) \\ w < m > + = f(()u) \\ w < m > + = u \\ w(i) < m > + = s \\ \end{array} $ apply select operator $ \begin{array}{c} C < M > + = A < f(()A, k) > \\ w < m > + = u < f(()u) \\ w < m > + = f(()u) \\ w < m > + = u < f(()u) \\ w < m > + = f(()u) \\ w < m > + = u < f(()u) \\ w < m > + = f(()u) \\ w < m > + = u < f(()u) \\ w < m > + = f(()u) \\ w < m > + = u < f(()u) \\ w < m > + = f(u) \\ w < m > +$	subassign (GxB)	· · · · · · · · · · · · · · · · ·	
assign vector to subvector with submask for $w(1)$ assign scalar to subvector with submask for $w(1)$ $w(1) < m > + = u$ apply apply unary operator $ \begin{array}{c} C < M > + = f(()A) \\ w < m > + = f(()u) \\ w < m > + = u < f(()u) \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + = u < f(()u, k) > \\ w < m > + u < f(()u, k) > \\ w < m > + u < f(()u, k) > \\ w < m > + u < f(u, u, u) > \\ w < m > + u < u < u < f(u, u) > \\ w < u < u < u < u < u < u < u < u < u <$		9	
apply apply unary operator $ \begin{array}{c} \textbf{C} < \texttt{M} > + = \textbf{f}(()\textbf{A}) \\ \textbf{w} < \textbf{m} > + = \textbf{f}(()\textbf{u}) \\ \\ \textbf{select} \\ \textbf{apply select operator} \\ \textbf{v} < \textbf{m} > + = \textbf{A} < \textbf{f}(()\textbf{A}, \textbf{k}) > \\ \textbf{w} < \textbf{m} > + = \textbf{u} < \textbf{f}(()\textbf{u}, \textbf{k}) > \\ \textbf{w} < \textbf{m} > + = \textbf{u} < \textbf{f}(()\textbf{u}, \textbf{k}) > \\ \textbf{v} < \textbf{m} > + = \textbf{u} < \textbf{f}(()\textbf{u}, \textbf{k}) > \\ \textbf{v} < \textbf{m} > + = \textbf{u} < \textbf{f}(()\textbf{u}, \textbf{k}) > \\ \textbf{v} < \textbf{m} > + = \textbf{u} < \textbf{f}(()\textbf{u}, \textbf{k}) > \\ \textbf{v} < \textbf{m} > + = \textbf{u} < \textbf{f}(()\textbf{u}, \textbf{k}) > \\ \textbf{v} < \textbf{m} > + = \textbf{u} < \textbf{f}(()\textbf{u}, \textbf{k}) > \\ \textbf{v} < \textbf{m} > + = \textbf{u} < \textbf{f}(()\textbf{u}, \textbf{k}) > \\ \textbf{v} < \textbf{m} > + = \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{m} > + = \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{m} > + = \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{m} > + = \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{m} > + = \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{m} > + = \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{m} > + = \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{m} > + = \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{m} > + = \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{m} > + = \textbf{f} < \textbf{f} \\ \textbf{m} < \textbf{m} < \textbf{f} < \textbf{m} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{m} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{v} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f} \\ \textbf{f} < \textbf{f}$		•	
apply unary operator $ w < m> + = f(()u) $ select apply select operator		assign scalar to subvector with submask for $w(i)$	$\mathtt{w(i)} < \mathtt{m} > + = \mathtt{s}$
selectapply select operator $C < M>+ = A < f(()A, k)>$ $w < m>+ = u < f(()u, k)>$ reduce matrix to column vector $w < m>+ = [+A]$ $s+=[+A]$ $s+=[+u]$ reduce vector to scalar $s+=[+A]$ $s+=[+u]$ transposetransposetranspose $C < M>+ = A'$ kroneckerKronecker multiplication $C < M>+ = kron(A,B)$ newnew matrix new vector $A = TYPEPRECISION(n,m)$ $u = TYPEPRECISION(n)$ buildmatrix from tuples vector from tuples $C < {i, j, x}$ $w < {i, j, x}<-A$ ${i, j, x}<-A$ extractTuplesextract index/value arrays ${i, j, x}<-A$ ${i, x}<-u$ dupduplicate matrix duplicate vector $C < A$ $w < u$ extractElementextract scalar element $s = A(i, j)$ $s = u(i)$ setElementset element $C(i, j) = s$	annly	apply unary operator	
reduce matrix to column vector $w < m > + = u < f((\dot)u, \dot u) >$ reduce matrix to column vector $w < m > + = [+A]$ reduce vector to scalar $s + = [+A]$ reduce vector to scalar $s + = [+u]$ transpose transpose $c < m > + = A$ kronecker Kronecker multiplication $c < m > + = A$ kronecker Kronecker multiplication $c < m > + = A$ new matrix $c < m > + = A$ new matrix $c < m > + = A$ new matrix $c < m > + = A$ new reduce matrix $c < m > + = A$ kronecker $c < m > + = A$ kr	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	apply analy operation	w < m > + = f(()u)
reduce matrix to column vector reduce matrix to scalar reduce vector to scalar transpose transpose	select	apply select operator	() , ,
reducereduce watrix to scalar reduce vector to scalar $s+=[+A]$ $s+=[+u]$ transposetranspose $C < M > + = A'$ kroneckerKronecker multiplication $C < M > + = kron(A, B)$ newnew matrix new vector $A = TYPEPRECISION(n, m)$ $u = TYPEPRECISION(n)$ buildmatrix from tuples vector from tuples $C < - \{i, j, x\}$ $w < - \{i, x\}$ extractTuplesextract index/value arrays $\{i, j, x\} < - A$ $\{i, j, x\} < - u$ dupduplicate matrix duplicate vector $C < - A$ $w < - u$ extractElementextract scalar element $s = A(i, j)$ $s = u(i)$ setElementset element			w < m > + = u < f(()u, k) >
reduce vector to scalar $s+=\stackrel{\cdot}{[}+u\stackrel{\cdot}{]}$ transpose transpose $C < M>+=A^{\prime}$ kronecker Kronecker multiplication $C < M>+=kron(A,B)$ new matrix $new \text{ new matrix } u = TYPEPRECISION(n,m)$ new vector $u = TYPEPRECISION(n)$ build $matrix \text{ from tuples } vector for a finite of the problem of the pr$	reduce		
transposetranspose $C < M > + = A'$ kroneckerKronecker multiplication $C < M > + = kron(A, B)$ newnew matrix new vector $A = TYPEPRECISION(n, m)$ $u = TYPEPRECISION(n)$ buildmatrix from tuples vector from tuples $C < -\{i, j, x\}$ $v < -\{i, x\}$ extractTuplesextract index/value arrays $\{i, j, x\} < -A$ $\{i, x\} < -u$ dupduplicate matrix duplicate vector $C < -A$ $v < -u$ extractElementextract scalar element $S = A(i, j)$ $S = u(i)$ setFlementset element			
kronecker Kronecker multiplication $C < M > + = kron(A, B)$ new new matrix new vector $A = TYPEPRECISION(n, m)$ build matrix from tuples vector from tuples $C < -\{i, j, x\}$ extractTuples extract index/value arrays $\{i, j, x\} < -A$ dup duplicate matrix duplicate vector $C < -A$ extractElement extract scalar element $S = A(i, j)$ set Element set element $C(i, j) = s$		reduce vector to scalar	s+=[+u]
new new matrix new vector $A = TYPEPRECISION(n,m)$ build matrix from tuples vector from tuples $C <- \{i, j, x\}$ extractTuples extract index/value arrays $\{i, j, x\} <- A$ dup duplicate matrix duplicate vector $C <- A$ extractElement extract scalar element $S = A(i, j)$ setElement set element $C(i, j) = S$	transpose	transpose	C < M > + = A'
new new vector $u = \text{TYPEPRECISION(n)}$ build matrix from tuples vector from tuples $C <- \{i, j, x\}$ vector from tuples extractTuples extract index/value arrays $\{i, j, x\} <- A$ $\{i, x\} <- u$ dup duplicate matrix duplicate vector $C <- A$ we under the content of the content o	kronecker	Kronecker multiplication	C < M > + = kron(A, B)
new vector $u = \text{TYPEPRECISION(n)}$ build matrix from tuples $C \leftarrow \{i, j, x\}$ vector from tuples $w \leftarrow \{i, x\}$ extractTuples extract index/value arrays $\{i, j, x\} \leftarrow A$ $\{i, j, x\} \leftarrow A$ $\{i, j, x\} \leftarrow a$ duplicate matrix $C \leftarrow A$ duplicate vector $W \leftarrow a$ extractElement extract scalar element $S = A(i, j)$ $S = B(i, j)$ $S = $	new	new matrix	$A = TYPEPRECISION(\mathtt{n},\mathtt{m})$
build vector from tuples $w < -\{i,x\}$ extractTuples extract index/value arrays		new vector	$\mathtt{u} = TYPEPRECISION(\mathtt{n})$
vector from tuples $w <= \{1, x\}$ extractTuples extract index/value arrays $\{i, j, x\} <= A$ dup duplicate matrix duplicate vector $C <= A$ extractElement extract scalar element $s = A(i, j)$ setElement set element $C(i, j) = s$	build		C <- {i,j,x}
extractiuples extract index/value arrays		vector from tuples	w <- {i,x}
	extractTuples	extract index/value arrays	
			{i,x}<- u
extractElement extract scalar element	dup		C<- A
extractElement extract scalar element $s = u(i)$ set element $C(i,j) = s$		duplicate vector	w<- u
	extractElement	extract scalar element	, , , , , , , , , , , , , , , , , , ,
			s = u(i)
$\mathtt{w}(\mathtt{i}) = \mathtt{s}$	setElement	set element	
		SOU CICIADIA	w(i) = s

Table 1: GraphBLAS operations and methods based on [1]. *Notation:* Matrices and vectors are typeset in bold, starting with uppercase (\mathbf{A}) and lowercase (\mathbf{u}) letters, respectively. Scalars including indices are lowercase italic (\mathbf{k} , \mathbf{i} , \mathbf{j}) while arrays are lowercase bold italic (\mathbf{x} , \mathbf{i} , \mathbf{j}). + and \times are the addition and multiplication operators forming a semiring and default to conventional arithmetic + and \times operators. + is the accumulator operator.

```
• C < \{M\} >
```

- $C < !\{M\} >$
- $w < \{m\} >$
- $w < !\{m\} >$

Combining structure and replace semantics is possible:

```
• C << {M} >>
```

- C << !{M}>>>
- w << {m}>>>
- w << !{m}>>>

Initializing scalars, vectors, and matrices (GraphBLAS methods):

```
• s = fp64()
```

- w = fp32(n)
- A = uint16(m, n)
- A = int64(k, m)

3 Algorithms

LAGraph [5] implements graph algorithms using the GraphBLAS C API [6]. Here are a few algorithms that could be included in this document:

Algorithm 1: BFS / Levels variant.

Algorithm 2: BFS / Parents variant.

Algorithm 3: Direction Optimizing (push/pull) BFS.

Algorithm 4: Multi-source breadth-first search.

Algorithm 5: All-pairs shortest distance (on undirected, unweighted graphs) [7].

```
Data: ...
   Result: ...
 1 Function APD(A, n, deg)
       Z = A
       {\bf Z} + = {\bf A} + . \times {\bf A}
       B = \{ \langle Z, offdiag \rangle \} //  use the pattern as a Boolean matrix
 4
       if A == B then
        return A
 6
       T = APD(B, n, deg)
 7
       X = T + . \times A
 8
       {\tt Tscaled} = {\tt T} + . \times {\tt diag}((){\tt deg})
 9
       Xfiltered = X < X, X < Tscaled >
10
       return (2 \times T) MINUS Xfiltered
11
12 Function APD(A)
       deg = [+A]
13
       Distance = APD(A, n, deg)
14
      sp = [+Distance]
15
```

Algorithm 6: Betweenness centrality.

1 Function MSBFS // The NumSp structure holds the number of shortest paths for each node and starting vertex discovered so far. // Initialized to source vertices. $NumSp < -\{s, [1, 1, ..., 1]\}$ // The Frontier holds the number of shortest paths for each node and starting vertex discovered so far. // Initialized to source vertices. Frontier < NumSp>= A(s,:) d = 0// The Sigmas matrices store frontier information for each level of the BFS phase. // BFS phase (forward sweep) 5 do// $Sigmas[d](:,s) = d^{th}$ level frontier from source vertex s Sigmas[d] = bool(n, nsver)6 Sigmas[d](:,:) = Frontier// Convert matrix to Boolean 7 NumSp = NumSp + Frontier// Accumulate path counts Frontier << NumSp>>= A' + . × Frontier // Update frontier 9 while nvals(Frontier) > 010 NumSpInv = fp32(n, nsver)11 NumSpInv = 1.0DIV NumSp12 BCU = fp32(n, nsver)13 BCU(:) = 1.0// Make BCU dense, initialize all elements to 1.014 W = fp32(n, nsver)15 // Tally phase (backward sweep) for i = d - 1 downto 0 do 16 W << Sigmas[i] >>= NumSpInv DIV BCU 17 $\mathbb{W} \ll \operatorname{Sigmas}[i-1] >>= \mathbb{A} + ... \mathbb{W}$ // Add contributions by successors and mask with that 18 BFS level's frontier. $BCU += W \times NumSp$ 19 // Row reduce BCU and subtract nsver from every entry to account for 1 extra value per BCU row element delta = [+BCU]20 delta MINUS = nsver21

Algorithm 7: PageRank (used in Graphalytics).

```
Data: alpha constant (damping factor)
  Result: ...
1 Function PageRank
      pr(:) = 1/n
      outdegrees = [+_i A(:,j)]
3
      for k = 1 to numIterations do
4
         importance = pr DIV outdegrees
5
         importance = times(()importance, alpha)
                                                         // apply the times(()x,s) = x \cdot s operator
6
         importance = importance + . \times A
         danglingVertexRanks < !outdegrees >= pr(:)
8
         totalDanglingRank = (alpha)/(n) \times [+ danglingVertexRanks]
9
         pr = (1 - alpha)/(n) + totalDanglingRank
10
         pr = pr + importance
11
```

Algorithm 8: Algebraic Bellman-Ford.

Algorithm 9: Delta-stepping SSSP.

```
Data:
```

```
A, A_H, A_L \in \mathtt{fp}(|V|, |V|)
            s, i \in uint()
            \Delta \in \mathtt{fp}()
            \mathtt{t},\mathtt{t}_{\mathtt{Req}}\in\mathtt{fp}(|\mathtt{V}|)
            t_{B_i}, e \in uint(|V|)
  1 Function DeltaStepping
               {\tt A_L} = {\tt A} < 0 < {\tt A} \le \Delta >
               \mathtt{A}_{\mathtt{H}} = \mathtt{A} < \Delta < \mathtt{A} >
  3
               t(:) = \infty
  4
               t(s) = 0
  5
               while nvals(t < i\Delta \le t >) \ne 0 do
  6
                        s = 0
  7
                        \mathsf{t}_{\mathtt{B}_{\mathsf{i}}} = \mathsf{t} < \mathsf{i}\Delta \leq \mathsf{t} < (\mathsf{i}+1)\Delta >
  8
                        while t_{B_i} \neq 0 do
  9
                                t_{Req} = A_L' + . \times (t \times t_{B_i})
10
                                e = t < 0 < e + t_{B_i} >
                                \mathtt{t}_{\mathtt{B}_{\mathtt{i}}} = \mathtt{t} < \mathtt{i}\Delta \leq \mathtt{t}_{\mathtt{Req}} < (\mathtt{i}+1)\Delta > \times (\mathtt{t}_{\mathtt{Req}} \cup [\mathtt{min}]\,\mathtt{t})
12
                            \mathtt{t}=\mathtt{t}\cup [\mathtt{min}]\,\mathtt{t}_{\mathtt{Req}}
13
                        \texttt{t}_{\texttt{Req}} = \texttt{A}_{\texttt{H}} \, \texttt{'} + . \times (\texttt{t} \times \texttt{e})
14
                        \mathtt{t} = \mathtt{t} \cup [\mathtt{min}] \, \mathtt{t}_{\mathtt{Req}}
15
                        \mathtt{i}=\mathtt{i}+1
16
```

Algorithm 10: All-pairs shortest path (Floyd-Warshall algorithm).

Algorithm 11: FastSV algorithm.

```
1 Function FastSV
 \mathbf{2}
       n = nrows(A)
       gf = f
 3
       dup = gf
 4
       mngf = gf
       \{i, x\} < -f
       repeat
          // Step 1: Stochastic hooking
           mngf = mngf min A
 8
           mngf = mngf second.min gf
           f(x) = f \min mngf
10
           // Step 2: Aggressive hooking
           \mathtt{f} = \mathtt{f}\,\mathtt{min}\,\mathtt{mngf}
11
           // Step 3: Shortcutting
           f = f \min gf
12
           // Step 4: Calculate grandparents
           \{i, x\} \leftarrow f
13
           gf = f(x)
14
           // Step 5: Check termination
           diff = dup \neq gf
15
           sum = [+_i diff(i)]
16
           dup = gf
17
       \mathbf{until}\ \mathtt{sum} == 0
18
```

Algorithm 12: Triangle count (Cohen's algorithm).

Algorithm 13: Triangle count (Sandia).

Algorithm 14: Triangle count (FLAME).

```
1 Function TriangleCountFlame
2 | for i = 2 to n - 1 do
3 | A_{20} = A(i + 1 : n, 0 : i - 1)
4 | a_{10} = A(0 : i - 1, i)
5 | a_{12} = A(i, i + 1 : n)
6 | t + = a_{10} + . \times A_{20} + . \times a_{12}
```

Algorithm 15: Local clustering coefficient.

Algorithm 16: *k*-truss algorithm.

```
1 Function KTruss
2
     C <- A
     nonzeros <- nvals(C)
3
     for i = 1 to n - 1 do
4
        C < C > = C + . land C
5
        C = C < C \ge k - 2 >
6
        if nonzeros == nvals(C) then
7
         break
8
9
        nonzeros <- nvals(C)
```

Algorithm 17: Louvain algorithm (WIP).

```
1 Function Louvain
      G += G'
 \mathbf{2}
      k = [+A]
 3
      \mathbf{m} = (1)/(2)[+k]
 4
      S <- I
 5
 6
      vertices_changed <- nvals(k)</pre>
 7
      while vertices_changed > 0 do
 8
          for j \in range(|V|) do
 9
10
              v = G(j,:)
              t_q = v any.pair S
11
              sr = S(j,:)
12
              S(j,:) = empty
13
              q <- k
15
              q < k > x = -k(j)/m
16
              q + = v
17
18
              q_1 < t_q >= q + . \times S
19
              t = (q_1 == [\max q_1])
20
              while nvals(t) \neq 1 do
21
                 p = random() \times t
22
                t = (p == [\max p])
23
              S(j,:) = t
24
25
              if nvals(sr \times t) == 0 then
26
               vertices_changed = nvals(k)
27
              vertices\_changed = vertices\_changed - 1
28
```

Algorithm 18: Community detection using label propagation (for undirected graphs).

References

- [1] T. A. Davis, "Algorithm 1000: SuiteSparse:GraphBLAS: Graph algorithms in the language of sparse linear algebra," ACM Trans. Math. Softw., 2019. [Online]. Available: https://doi.org/10.1145/3322125
- [2] —. (2020) User guide for SuiteSparse:GraphBLAS, version 3.3.3. https://people.engr.tamu.edu/davis/GraphBLAS.html.
- [3] J. Kepner *et al.*, "Mathematical foundations of the GraphBLAS," in *HPEC*. IEEE, 2016. [Online]. Available: https://doi.org/10.1109/HPEC.2016.7761646
- [4] J. Kepner and J. R. Gilbert, Eds., *Graph Algorithms in the Language of Linear Algebra*. SIAM, 2011. [Online]. Available: https://doi.org/10.1137/1.9780898719918
- [5] T. Mattson *et al.*, "LAGraph: A community effort to collect graph algorithms built on top of the GraphBLAS," in *GrAPL at IPDPS*, 2019. [Online]. Available: https://doi.org/10.1109/IPDPSW.2019.00053
- [6] T. G. Mattson *et al.*, "GraphBLAS C API: Ideas for future versions of the specification," in *HPEC*. IEEE, 2017. [Online]. Available: https://doi.org/10.1109/HPEC.2017.8091095
- [7] R. Seidel, "On the all-pairs-shortest-path problem in unweighted undirected graphs," J. Comput. Syst. Sci., vol. 51, no. 3, pp. 400–403, 1995. [Online]. Available: https://doi.org/10.1006/jcss.1995.1078