Linked Data 101

for geospatial

Paul van Genuchten ISRIC.org Marco Neumann KONA

Table of Contents

- Context
- Linked data 101
- Use Cases
- GeoSPARQL

Some history of the authors

Paul van Genuchten

- ISRIC; World Soil Information
- SDI & Standardisation for >10yr
- GeoNetwork & pygeoapi

Marco Neumann

- Information Scientist KONA
- Semantic Technology Expert
- Creator of GeoSPARQL.org (fuseki)

We met at a (virtual) ogcapi.ogc.org sprint

GEONOVUM TESTBED SPATIAL DATA ON THE WEB

Best Practices Summary

Best Practice 1: Use globally unique persistent HTTP

URIs for Spatial Things

Best Practice 2: Make your spatial data indexable by

search engines

Best Practice 3: Link resources together to create the

Web of data

Best Practice 4: Use spatial data encodings that match

your target audience

Best Practice 5: Provide geometries on the Web in a

usable way

Best Practice 6: Provide geometries at the right level

of accuracy, precision, and size

Best Practice 7: Choose coordinate reference systems

to suit your user's applications

Best Practice 8: State how coordinate values are

encoded

Best Practice 9: Describe relative positioning

Best Practice 10: Use appropriate relation types to link

Spatial Things

Best Practice 11: Provide information on the changing

nature of spatial things

Best Practice 12: Expose spatial data through

'convenience APIs'

Best Practice 13: Include spatial metadata in dataset

metadata

Best Practice 14: Describe the positional accuracy of

spatial data

OGC API

Should we add more Linked Data?

- A json-ld profile for OGC API Features / Records?
- A TTL output encoding for pygeoapi?
- A SPARQL endpoint on GeoServer?
- Let's ask Marco!
- But first, some basic concepts of RDF

Quick overview of linked data

Concept	Description	In GeoSpatial	
Triple	Subject Predicate Object	cate Object Feature attribute	
RDF	Resource Description Framework	e Description Framework Relational databases	
Graph	Collection of triples	Data Data	
TripleStore	Persistence for triples	Database	
URI	Identifier	ID attribute	
SPARQL	Query language	SQL	
Ontology / Vocabulary	Definition of a data model	Schema	
OWL	Syntax to describe ontologies (Web Ontology Language)	UML / XSD	
Encoding / Serialisation	RDF can be encoded as turtle, json-ld, rdf-xml, without loss of information	Rendering?	

4 Star; Use (W3C) standards

For example: URI's to identify things.

https://www.w3.org/TR/cooluris

- 1. Be on the web
- 2. Be unambiguous
- 3. Simple, stable, manageable
 - Prevent organisational/product/project names
 - A webpage about a object is not the object itself

5 star; Link your data

- Use common ontologies to describe data
- Re-Use existing (wikipedia) identifiers

Cases for linked data in Geospatial

Case 1: Create RDF from table data?

Mint a URI based on unique column schema.org/identifier

Table is type schema.org/Product

A	Α	В	С
1	ITEM ID	CATEGORY	NAME
2	AT89321	Electronics	B-Brand 30" TV
3	DB35467	Appliances	DoorMan Doorstop
4	DB12901	Appliances	Energy Saving Bulb
5	DB68436	Appliances	EnviroBlend 9000
6	RA22980	Movies & TV	eSports Live 2010
7	RA22981	Movies & TV	eSports Live 2011
8	RA22982	Movies & TV	eSports Live 2012
9	DB11371	Appliances	Pastry Bag Tips (Pack)
10	FS99123	Apparel	Royal Crown Coat
11	AT57671	Electronics	TeleCo 23" TV
12	AT57235	Electronics	TeleCo 50" TV

Columns as predicates from common ontologies schema.org/name


```
"@context": {
  "name": "http://schema.org/name",
  "image": {
    "@id": "http://schema.org/image",
    "@type": "@id"
  },
  "homepage": {
    "@id": "http://schema.org/url",
    "@type": "@id"
},
"name": "Manu Sporny",
"homepage": "http://manu.sporny.org/",
"image": "http://manu.sporny.org/images/manu.png"
```


Software using this approach

Fiona

A python wrapper for GDAL, has an option to convert spatial files to GeoJson-Id D2RQ

An application that exposes a relational database as SPARQL endpoint <u>pygeoapi</u>

Implementation of OGC API with option to provide a ld-context for json data GeoServer

Implementation of OGC API with option to provide a ld-context for geojson

Case 2: Consume RDF with GIS Desktop tooling

A SPARQL query as a source for a QGIS layer https://github.com/sparqlunicorn/sparqlunicornGoesGIS

Case 3; Spatial analyses within the RDF context

- SPARQL extended with spatial predicates and filters

```
PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#</a>
PREFIX ogc: <a href="http://www.opengis.net/ont/geospargl#">PREFIX ogc: <a href="http://www.opengis.net/ont/geospargl#">http://www.opengis.net/ont/geospargl#</a>>
PREFIX geom: <a href="mailto://geovocab.org/geometry#">PREFIX geom: <a href="mailto://geovocab.org/geometry#">http://geovocab.org/geometry#</a>
PREFIX ce: <a href="http://circulareconomyexample.com/ontology/">http://circulareconomyexample.com/ontology/>
SELECT *
WHERE {
      ?actor a ce:CollectionPoint .
      ?actor rdfs:label ?label .
      ?actor geom:geometry [ogc:asWKT ?g] .
      OPTIONAL ( ?actor ce:freeRL ?freeRL
      OPTIONAL ( ?actor ce:fairTrade ?fairTrade
      FILTER
            bif:st intersects (?g, bif:st point ([MY LATITUDE], [MY LONGITUDE], 10) &&
            ?freeRL = 'yes' &&
            ?fairTrade = 'yes'
```


An ontology to describe (and query) spatial

History Linked Spatial Data on The Web

SQL > Relational SQL Spatial (Simple Features) 1999

RDF > Graph 1999 RDF Spatial 2003

> SPARQL > Spatial SPARQL Query (Jena) 2007 SPARQL > GeoSPARQL 10/2009 - 06/2012

(Full) OGC GeoSPARQL support (Jena) 06/2019

OGC GeoSPARQL

- Standard released by the OGC in 2012
- 6 Components
 - Core
 - Topology Vocabulary Extension
 - Geometry Extension
 - Geometry Topology Extension

0

0

OGC GeoSPARQL

- Standard released by the OGC in 2012
- 6 Components
 - Core
 - Topology Vocabulary Extension
 - Geometry Extension
 - Geometry Topology Extension
 - RDFS Entailment Extension
 - Query Rewrite Extension

Thank you for your attention

