SEMAINE DU 30/04 AU 04/05

1 Cours

Algèbre linéaire (révisions)

Espaces vectoriels, théorie de la dimension, applications linéaires.

Dérivabilité

- **Définition et premières propriétés** Définition comme limite du taux de variation. Équation de la tangente. Fonction dérivée. Opérations sur les dérivées (somme, produit, quotient, composée, application réciproque).
- **Étude globale des fonctions dérivables** Condition nécessaire d'extremum local. Théorème de Rolle. Théorèmes d'égalité et d'inégalité des accroissements finis. Une fonction dérivable à dérivée bornée est lipschitzienne. Application aux suites récurrentes $u_{n+1} = f(u_n)$. Dérivée et sens de variation. Théorème de la limite de la dérivée.
- **Dérivées successives** Dérivée $n^{\text{ème}}$. Fonctions de classe \mathcal{C}^n ou \mathcal{C}^∞ . Opérations sur les dérivées successives (somme, produit, quotient, composée, application réciproque). Formule de Leibniz. Théorème de prolongement \mathcal{C}^k . Formule de Taylor avec reste intégral. Inégalité de Taylor-Lagrange.
- Fonctions à valeurs complexes Définition de la dérivabilité. Une fonction est dérivable/ \mathcal{C}^k si et seulement si ses parties réelle et imaginaire le sont. Inégalité des accroissements finis lorsque le module de la dérivée est majoré.

Intégration

- **Intégration des fonctions en escalier** Définition d'une fonction en escalier sur un segment, de son intégrale sur ce segment. Propriétés de l'intégrale : linéarité, positivité, croissance, relation de Chasles.
- **Intégration des fonctions continues par morceaux** Définition d'une fonction continue par morceaux sur un segment. Approximation uniforme d'une fonction continue par morceaux par une fonction en escalier (hors-programme). Intégrale d'une fonction continue par morceaux. Propriétés de l'intégrale : linéarité, positivité, croissance, inégalité triangulaire, relation de Chasles. Une fonction **continue** et de signe constant admet une intégrale nulle sur [a, b] **si et seulement si** elle est nulle sur [a, b].
- Calcul de primitives et d'intégrales Définition d'une primitive d'une fonction continue. Si f continue, $x \mapsto \int_a^x f(t)dt$ est l'unique primitive de f nulle en a. Deux primitives différent d'une constante. Si F est une primitive de f, $\int_a^b f(t)dt = F(b) F(a)$. Intégration par parties. Changement de variables.

Approximation d'intégrales Sommes de Riemann et convergence.

Intégration des fonctions à valeurs complexes Intégrale d'une fonction continue par morceaux à valeurs complexes. Inégalité triangulaire.

2 Méthodes à maîtriser

- ightharpoonup Démontrer qu'une fonction est dérivable ou de classe \mathcal{C}^n par opérations.
- Établir des inégalités via les accroissements finis.
- ▶ Étudier la convergence d'une suite du type $u_{n+1} = f(u_n)$ où f est K-lipschitzienne avec $K \in [0, 1[$.
- ▶ Utiliser la formule de Leibniz dans le cas où un des facteurs est un polynôme de faible degré.
- ▶ Utilisation de l'inégalité de Taylor-Lagrange pour prouver la convergence de séries.
- ▶ Majorer, minorer, encadrer une intégrale par croissance de l'intégrale ou inégalité triangulaire.
- ▶ Étudier une suite définie par des intégrales (souvent une IPP pour déterminer une relation de récurrence).
- Étudier une fonction définie par une intégrale à bornes variables (notamment calculer sa dérivée).
- ► Connaître les différentes techniques de calcul d'intégrales et de primitives.
- Reconnaître des sommes de Riemann.

3 Questions de cours

- ▶ **Série exponentielle** Soit $x \in \mathbb{R}$. A l'aide de l'inégalité de Taylor-Lagrange, montrer que la série $\sum_{n \in \mathbb{N}} \frac{x^n}{n!}$ converge et que sa somme vaut e^x .
- ▶ **Lemme de Riemann-Lebesgue :** Soit f de classe C^1 sur [a, b]. Montrer que

$$\lim_{n\to +\infty} \int_a^b f(t) e^{int} \ dt = 0$$

- ▶ Banque CCP 64 Soit f un endomorphisme d'un espace vectoriel de dimension finie n.
 - 1. Démontrer que $E = \operatorname{Im} f \oplus \operatorname{Ker} f \implies \operatorname{Im} f = \operatorname{Im} f^2$.
 - 2. Démontrer que $\operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Ker} f = \operatorname{Ker} f^2$.
 - 3. Démontrer que $\operatorname{Im} f = \operatorname{Im} f^2 \implies E = \operatorname{Im} f \oplus \operatorname{Ker} f$.
- ▶ Banque CCP 56 On pose pour $x \in]1, +\infty[$, $H(x) = \int_{x}^{x^2} \frac{dt}{\ln t}$.
 - 1. Montrer que H est de classe C^1 sur $]1, +\infty[$ et calculer sa dérivée.
 - 2. Montrer que la fonction $\mathfrak u$ définie par $\mathfrak u(\mathfrak x)=\frac{1}{\ln(\mathfrak x)}-\frac{1}{\mathfrak x-1}$ admet une limite finie en 1.
 - 3. En utilisant cette fonction u, montrer que H admet une limite finie en 1^+ .
- ▶ **Banque CCP 62** Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^2 f 2\operatorname{Id}_E = 0$.
 - 1. Prouver que f est bijectif et exprimer f^{-1} en fonction de f.
 - 2. Prouver que $E = Ker(f 2 Id_E) \oplus Ker(f + Id_E)$.
 - 3. On suppose maintenant que E est de dimension finie. Montrer que $Im(f + Id_E) = Ker(f 2Id_E)$.
- ▶ Banque CCP 71 Soit p le projecteur de \mathbb{R}^3 sur le plan P d'équation x + y + z = 0 parallèlement à la droite d'équations $x = \frac{y}{2} = \frac{z}{3}$.
 - 1. Vérifier que $\mathbb{R}^3 = P \oplus D$.
 - 2. Soit $u = (x, y, z) \in \mathbb{R}^3$. Déterminer p(u).
- ▶ **Banque CCP 59** Soit $n \in \mathbb{N}$. Pour $P \in \mathbb{R}_n[X]$, on pose f(P) = P P'.
 - 1. Montrer que $f \in \mathcal{L}(\mathbb{R}_n[X])$.
 - 2. Montrer que f est bijectif.
 - 3. Déterminer f^{-1} .
- ▶ Banque CCP 85 Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.
 - 1. Rappeler la formule de Taylor pour les polynômes.
 - 2. En déduire que α est racine de multiplicité r de P si et seulement si $P^{(r)}(\alpha) \neq 0$ et pour tout $k \in [0, r-1], P^{(k)}(\alpha) = 0$.
 - 3. Déterminer deux réels a et b tels que 1 soit racine double du polynôme $P = X^5 + aX^2 + bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.
- ▶ Banque CCP 87 Soient $a_0, ..., a_n$ des éléments deux à deux distincts d'un corps \mathbb{K} .
 - 1. Montrer que si $(b_0, \ldots, b_n) \in \mathbb{K}^{n+1}$, il existe un unique polynôme P tel que deg $P \leqslant n$ et $P(a_k) = b_k$ pour tout $k \in [\![0,n]\!]$.
 - 2. Soit $k \in [0, n]$. Expliciter ce polynôme P, que l'on notera L_k lorsque $b_i = \delta_{i,k}$ pour tout $i \in [0, n]$.
 - 3. Prouver que pour tout $p \in [0, n]$, $\sum_{k=0}^{n} a_k^p L_k = X^p$.