Breve curso de LATEX

Prof. Miguel Frasson

ICMC

Como funciona o LATEX

Objetivo

Escrever documentos, a priori para impressão.

MAS pode-se fazer ...

- ▶ PDF com links, no computador
- Apresentações em PDF como essa!

Como funciona o LATEX

Edição de texto usando EDITOR apropriado escreve-se *arquivo*.tex que descreve o documento

Compilação "roda-se" o programa LATEX (ou equivalente)

em geral, de dentro do editor

Visualização é gerado arquivo pdf (ou outros) para visualização ou impressão

Prós e contras

Contras...

- Não se vê o resultado enquanto se digita (como M\$ Word)
- ▶ Demora-se um pouco para aprender

Prós e contras

MAS (uma vez aprendido) ...

Prós... que compensam

- ► LATEX é mais fácil ☺ (fórmulas, referências, citações, sumário, etc.)
- Resultado bonito e profissional
- Gratuito e disponível para todos os sistemas

Instalação

Windows: $MikT_EX \rightarrow www.miktex.org$

Versão básica (Basic MikTEX Installer)

- ightharpoonup pequena (\approx 300Mb)
- ▶ Precisa de internet: instala pacotes conforme são usados

Versão completa (MikTEX Net Installer)

- $\triangleright \approx 4Gb$
- ▶ 1°) Download (complete) \rightarrow 2°) Install
- ► Funciona sem internet

Versão Portátil (MikTEX Portable)

- Roda direto do pendrive, não precisa instalar
- Precisa de internet: instala pacotes conforme são usados

Instalação

Mac: MacTEX

Versão completa e fácil de instalar

Linux: TEXlive

Oferecida entre os programas disponíveis

Online, sem instalação

SHARELATEX

- www.sharelatex.com
- Gratuito para uso pessoal

Editor padrão: TeXWorks

Editor padrão: TeXWorks

TeXWorks

- Já vem instalado quando instala-se o MikTEX
- ► Iterface funcional só o botão de rodar ● e o menu de programas

► Visualizador de PDF com busca LATEX ↔ PDF

A linguagem LATEX

- Essencialmente é texto ...
- ... organizado com comandos e ambientes LATEX.

Básico de comandos em LATEX

Comandos

 \commando

ou

Exemplos

- ▶ \alpha $(\rightarrow \alpha)$
- ▶ \sqrt{2} $(\rightarrow \sqrt{2})$

Comandos em LATEX

Agrupando com chaves {...}

- **Texto** \rightarrow 5 caracteres: T, e, x, t, o
- ightharpoonup {Texto} ightarrow 1 grupo = 1 coisa

Exemplo

- ▶ \textbf arg1
 - → escreve arg1 em negrito (bf = bold face = negrito)
- ▶ \textbf Texto \rightarrow Texto (arg1 = T)
- ► \textbf{Texto} → Texto (arg1 = Texto)

Ambientes

Ambiente

- Outro conceito importante é o ambiente
 - ightarrow delimita uma região do texto para um certo fim

```
\begin{nome-do-ambiente}
Texto dentro do ambiente
\end{nome-do-ambiente}
```

Exemplos

\begin{equation}
$$x^2 - 1 = 0$$
 $x^2 - 1 = 0$ (1) \end{equation}

Estrutura básica: preâmbulo e corpo do texto

```
\documentclass[12pt]{article}
% aqui declaram-se os pacotes usados,
% definem-se comandos e formatações

\begin{document}
0 texto do documento vem aqui.
\end{document}
```

Classes dos documentos

Para cada tipo, classes de documento

Classes comuns

- ▶ report, book, amsbook → livros
- ▶ article, amsart → artigos
- ▶ beamer (como neste slide) → apresentações

Estendendo LATEX: pacotes

Pacotes

\usepackage[opções]{pacote}

```
babel hifenação e localização (opção brazil) inputenc acentuação (opção utf8 no nosso caso, latin1) geometry dimensões de margens, etc. amsmath, amssymb ambientes de fórmulas, símbolos (\sharp : \mathbb{R}) etc. graphicx inclusão de imagens (jpg, png, pdf). tikz desenho de figuras \bigstar \bigcirc \breve{\triangle} bm (bold math) fórmulas em negrito e^{i\pi}+1=0. multicol Texto em várias colunas.
```

e muitíssimos outros (centenas).

Texto e fórmulas

- Digite texto normalmente.
- Novo parágrafo → deixe uma linha em branco.
- Fórmulas no parágrafo \rightarrow entre \$ e \$: \sqrt{x}
- ► Fórmulas em destaque → entre \[e \]... ou outros

Exemplo

```
Seja $f(x)$ a função dada por
\[
f(x) = \frac{x^2 + 1}{\cos x}
\]
```

Seja f(x) a função dada por

$$f(x) = \frac{x^2 + 1}{\cos x}$$

Acentos

Escreva acentos normalmente

Use pacote inputenc para acentuar normalmente

\usepackage[utf8]{inputenc}

Use a opção certa

utf8 - codificação UTF-8 latin1 - codificação ISO 8859-1 = Latin-1

Mudando formatação

Estilo de fontes

Tamanho das fontes

```
        Declaração
        Efeito

        {\small ...}
        Texto

        {\large ...}
        Texto

        {\Large ...}
        Texto

        {\LARGE ...}
        Texto
```

Formatação e grupos

- Grupos (texto entre chaves)
 limitam o escopo de comandos de formatação.
- Toda formatação definida em um grupo perde o efeito ao final do grupo

Capítulos e seções

Comandos de seccionamento

- ▶ \chapter{...}
- ▶ \section{...}
- ▶ \subsection{...}
- ▶ \subsubsection{...}

Seccionamento e referências

Referenciando capítulos e seções

Numeração automática \rightarrow use \label e \ref

Exemplo

```
\chapter{Teoria} \label{cap: teoria}
\section{Notação} \label{sec: notacao}
\section{Resultados} \label{sec: resultados}
... ver seção \ref{sec: notacao} ...
```

Capítulo 1 Teoria

- 1.1 Notação
- 1.2 Resultados

```
... ver seção 1.1 ...
```

Seccionamento e sumário

Sumário

\tableofcontents → sumário automático

► Comandos de seccionamento adicionam entradas ao sumário

Dica (Incluir coisas no sumário)

- Capítulos não numerados não são incluídos no sumário
- ► \chapter*{Introdução} % cap. Introdução não numerado \addcontentsline{toc}{chapter}{Introdução}

Dividindo o documento em arquivos

- documentos grandes são divididos em capítulos e seções
- é mais complicado lidar com arquivos de texto muito grandes
- pode-se dividir o documento em partes, cada parte em arquivos separados.

Incluir com \input

\input{arquivo} % não colocar a extensão .tex

 inclui o conteúdo do arquivo.tex como se este estivesse digitado ali.

Exemplo de dissertação típica

Exemplo

```
\documentclass[12pt]{report}
... % preâmbulo
\begin{document}
  \input{capa}
  \input{folharosto}
  \tableofcontents
  \input{intro}
                           % cap. Introdução
  \input{teoria}
                           % cap. Teoria
  \input{aplicacoes}
                           % cap. Aplicações
   \bibliographystyle{acm}
   \bibliography{teixeira}
\end{document}
```

Inserindo imagens

```
\usepackage{graphicx} % no cabeçalho
```

\includegraphics[ajustes]{arquivo}

Principais ajustes

- scale=número redimensionar a imagem
- ▶ width=tamanho comprimento
- ► height=tamanho altura

Exemplo de inserção

\includegraphics[width=2cm]{smiley.pdf}

Tipos de arquivos possíveis de incluir

- pdf
- ▶ jpg
- png

Figuras e tabelas

Elementos "flutuantes"

- ▶ figuras ou tabelas
- podem ser grandes
 - → isto dificulta seu posicionamento na página
- ▶ ∴ figuras e tabelas podem deslocar-se na página
 - → são flutuantes

Figuras

Elementos das figuras (ambiente figure)

Posições

```
h = here = aqui
t = top = topo da página
b = bottom = pé da página
p = page = em página separada
```

Exemplo de figura (inserindo imagem)

Exemplo

```
\usepackage{graphicx}  % no preâmbulo

\begin{figure}[hb]
  \centering
  \includegraphics[width=2cm]{smiley.pdf}
  \caption{Sorria, você NÃO está sendo filmado.}
  \label{fig: sorria}
\end{figure}
```


Figura: Sorria, você NÃO está sendo filmado.

Estilos principais do modo matemático

Estilo em linha

A fórmula fica misturada ao texto na mesma linha.

Exemplo

Seja
$$f(x) = \int_0^x \frac{\sin x}{x} dx$$
 a área . . .

Estilo em destaque

A fórmula se separa do texto, centralizada e com mais espaço.

Exemplo

Seja

$$f(x) = \int_0^x \frac{\sin x}{x} dx$$

a área ...

Modo matemático

Estilo em linha

- **>** \$... \$
- **▶** \(... \)

Exemplo

A fórmula de Euler, dada por $e^{i\pi} + 1 = 0$, é considerada uma das mais bonitas fórmulas matemáticas.

A fórmula de Euler, dada por $e^{i\pi} + 1 = 0$, é considerada uma das mais bonitas fórmulas matemáticas.

Modo matemático

Estilo destaque SEM numeração

- **▶** \[... \]
- ▶ \begin{equation*} ... \end{equation*}

Exemplo

```
A fórmula de Euler é dada por
\[
  e^{i\pi} + 1 = 0.
\]
```

A fórmula de Euler é dada por

$$e^{i\pi} + 1 = 0.$$

Modo matemático

Modo destaque COM numeração

▶ \begin{equation} ... \end{equation}

Exemplo

```
A fórmula de Euler é dada por 
\begin{equation} \label{eq: euler} 
e^{i\pi} + 1 = 0. 
\end{equation} 
... Ver \eqref{eq: euler}.
```

A fórmula de Euler é dada por

$$e^{i\pi} + 1 = 0. (2)$$

... Ver (2).

Elementos simples

Elementos simples		
Tipo	T _E X (modo matem.)	PDF
Letras latinas	a b x y z A B X Y	abxyzABXY
Letras gregas minúsc.	\alpha \delta	$\alpha\delta$
Letras gregas maiúsc.	\Omega \Delta	ΩΔ
Outros símbolos	\infty \exists	$\infty \exists$
	\varnothing	Ø

Mais:

- ► Apostila LATEX de A a B, p. 39.
- ► Compreensive LATEX symbols list (CTAN) symbols-a4.pdf

Ops...

Modo matemático não é itálico!

\textit{diferente do esperado}
diferente do esperado

diferente do esperado diferente do esperado

Relações binárias

Mais:

- ► Apostila LATEX de A a B, p. 38.
- ► Compreensive LATEX symbols list (CTAN) symbols-a4.pdf

Delimitadores

Delimitadores			
()	()	[]	
1.1		XL XI	
\langle \rangle	$\langle \ \rangle$	\lbrace \rbrace	{}

Tamanhos		(obs: $\x = \dfrac12$)
(\x)	$(\frac{1}{2})$	\left(\x\right) $\left(\frac{1}{2}\right)$
<pre>\bigl(\x \bigr)</pre>	$\left(\frac{1}{2}\right)$	\Bigl(\x \Bigr) $\left(\frac{1}{2}\right)$
<pre>\biggl(\x \biggr)</pre>	$\left(\frac{1}{2}\right)$	\Biggl(\x \Biggr) $\left(\frac{1}{2}\right)$

Fontes matemáticas

Caligráficas

\mathcal{letra}

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Blackboard Bold

(\usepackage{amssymb})

\mathbb{letra}

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Double Stroke

(\usepackage{dsfont})

\mathds{letra}

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Índices e expoentes

Índices e expoentes

$$x^2$$
 x^2 x_n x_n x_n x_n x_n x_n x_n x_n erro

Somatórios e integrais

$$\sum_{i=1}^{i} \int \frac{1}{n^2} = \frac{\pi^2}{6}$$

$$\sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

$$\int_0^\pi \sin x \, dx = 2$$

$$\int_0^{\pi} \sin x \, dx = 2$$

Frações

$\begin{array}{c} \{a\}\{b\} \\ \\ \{frac\{a\}\{b\} \\ \\ Estilo \ destaque \end{array} \begin{array}{c} \frac{a}{b} \\ \frac{a}{b} \end{array}$

Forçando modo

- ▶ \tfrac → fração estilo em linha $(t \rightarrow \textstyle)$
- ▶ \d frac → fração estilo destaque (d → \d isplaystyle)

$$\[\int \frac{1}{x} dx = \int \frac{1}{x} dx \]$$

$$\int \frac{1}{x} dx = \int \frac{1}{x} dx$$

Raízes

Raízes		
	\sqrt{x}	\sqrt{X}
	\sqrt[3]{x}	$\sqrt[3]{X}$

$$\sqrt{3-2\sqrt2} = \sqrt2-1$$

$$\sqrt{3-2\sqrt{2}}=\sqrt{2}-1$$

Funções, limites, ...

Funções, limites, ...

```
\cos cos \sin sin \tan tan
\det det \log log \exp exp
```

\sen não existe!

\newcommand{\sen}{\operatorname{sen}}

$$\lim_{x\to 0} \frac{x \to 0}{ x} = 1$$

$$\lim_{x\to 0}\frac{\operatorname{sen} x}{x}=1$$

Matrizes

Exemplo

```
\begin{pmatrix}

1 & 2 & 3 \\
-1 & 0 & 5 \\
0 & 3 & 4
\end{pmatrix}

(1 2 3)
-1 0 5)
0 3 4
```

```
Seja A=\left(\frac{smallmatrix}{0 \& 1 \lor -1 \& 0}\right)

\frac{end\{smallmatrix\} \lor a matriz...}{}

Seja A=\left(\frac{0}{-1}\frac{1}{0}\right) a matriz...
```

Ambientes de várias linhas

Alinhado

$$a_1 = b_1 + c_1$$

$$a_2 = b_2 + c_2 - d_2 + e_2$$
(3)

Segue da equação (3) ...

Ambientes de várias linhas

Centralizado

$$a_1 = b_1 + c_1$$

$$a_2 = b_2 + c_2 - d_2 + e_2$$
(4)

Segue da equação (4) ...

Numeração e referência

Numero ou não?				
COM numeração	SEM numeração			
equation	equation*			
align	align*			
gather	gather*			

Comandos

Definindo comandos

- ▶ #1 primeiro parâmetro
- ▶ #2 segundo parâmetro
- **>**

Exemplos

Exemplo (comando sem argumento)

```
Seja a\in\mathbb{R} tal que ...
```

 $\mbox{\newcommand}(R){\mathbb{R}}$

Exemplos

Exemplo (comando com 1 argumento)

Suponha que se use muitas vezes o par (x_1, x_2) , (y_1, y_2) , (k_1, k_2) etc.

```
\newcommand{\V}[1]{(#1_1,#1_2)}
```

```
... considere o vetor V{\theta}
```

 \dots considere o vetor $(\theta_1, \theta_2) \dots$

Para aprender mais

- Foi contado só uma parte da história
- ► Há vários manuais e livros sobre LATEX. Leia e experimente.
- Na internet há algumas listas de discussão (como o Google groups Latex-br) e blogs sobre LATEX.
- É fácil encontrar como fazer qualquer coisa em LATEX. Faça uma busca.
 (potencialize os resultados com buscas em inglês)

Dica

Acima de tudo, USE o LATEX!

FIM

FIM

Agora é só por a mão na massa.