Due: Oct. 08, 2021 (Friday)

Impulse Function, $\delta(t)$, and its Fourier Transform

1. As shown in the figures, h(t) and g(t) are both *infinite impulse function trains*. Please determine the Fourier Transform pairs of h(t) and g(t) function. You may use the Linearity and Time Shifting properties of Fourier Transform.

2. A function h(t) is defined as $h(t) = \begin{cases} A \cdot \cos(2\pi f_o t), & \text{for } |t| < T \\ 0, & \text{for } |t| > T \end{cases}$, (a). please show that the Fourier transform of h(t) in f-domain is $H(f) = A^2 \cdot T \cdot \left[Q(f + f_o) + Q(f - f_o) \right]$, where $Q(f) = \frac{\sin(2\pi Tf)}{2\pi Tf}$, (b) please plot the functions of h(t) and H(f) for the cases of $f_o \cdot T = 10$, 100, and 1000. (c). what happens to H(f) if $f_o \cdot T \to \infty$

Convolution and convolution theory

3. Please determine and plot the convolution of x(t) and h(t)

- 4. Prove the frequency convolution theory, i.e., if $\{x(t), X(f)\}$ and $\{h(t), H(f)\}$ are Fourier transform pairs, then $\{x(t)h(t), X(f)*H(f)\}$ is also a Fourier transform pair.
- 5. Show that [f(t)*g(t)]*h(t)=f(t)*[g(t)*h(t)]

Relation between Fourier Integration Transform (FT) and Fourier Series Expansion (FS)

6. (a). As shown in the figure, please determine the Fourier Series Expansion (FS) of a periodic function $\tilde{h}(t)$

(b). As shown in the figure, please determine the Fourier transform (FT) of a non-periodic function h(t)

(c). Can you derive and verify the relationship between the Fourier transform of h(t) and the Fourier series coefficient of $\tilde{h}(t)$