The Ext-Group of Unitary Equivalence Classes of Unital Extensions

Yifeng Xue

Department of Mathematics, East China Normal University, Shanghai 200241, P.R. China email: yfxue@math.ecnu.edu.cn

Abstract Let \mathcal{A} be a unital separable nuclear C^* -algebra which belongs to the bootstrap category \mathcal{N} and \mathcal{B} be a separable stable C^* -algebra. In this paper, we consider the group $\operatorname{Ext}_u(\mathcal{A},\mathcal{B})$ consisting of the unitary equivalence classes of unital extensions $\tau\colon \mathcal{A}\to Q(\mathcal{B})$. The relation between $\operatorname{Ext}_u(\mathcal{A},\mathcal{B})$ and $\operatorname{Ext}(\mathcal{A},\mathcal{B})$ is established. Using this relation, we show the half-exactness of $\operatorname{Ext}_u(\cdot, \mathcal{B})$ and the (UCT) for $\operatorname{Ext}_u(\mathcal{A}, \mathcal{B})$. Furthermore, under certain conditions, we obtain the half-exactness and Bott periodicity of $\operatorname{Ext}_u(\mathcal{A},\cdot)$.

Keywords unital extension, multiplier algebra, Ext-group, quasi-unital *-homomorphism

MR(2000) Subject Classification 46L05, 46L80, 46L35

1 Introduction and Preliminaries

For a C^* -algebra \mathcal{E} , let $M_n(\mathcal{E})$ (resp. $\mathcal{E}^{1\times n}$) denote the set of all $n\times n$ (resp. $1\times n$) matrices

over
$$\mathcal{E}$$
. If $a = (a_1, \dots, a_n) \in \mathcal{E}^{1 \times n}$, we set $a^T = \begin{pmatrix} a_1^* \\ \vdots \\ a_n^* \end{pmatrix}$. Suppose \mathcal{E} has unit 1. Denote by

 $U(\mathcal{E})$ (resp. $U_0(\mathcal{E})$) the unitary group of \mathcal{E} (resp. the connected component of 1 in $U(\mathcal{E})$). The definitions of K-groups of \mathcal{E} can be found in [1]. Throughout the paper, \mathcal{A} is a separable unclear C^* -algebra with unit $1_{\mathcal{A}}$ and \mathcal{B} is a separable stable C^* -algebra.

Let $M(\mathcal{B})$ be the multiplier of \mathcal{B} and set $Q(\mathcal{B}) = M(\mathcal{B})/\mathcal{B}$. Let $\pi: M(\mathcal{B}) \to Q(\mathcal{B})$ be the quotient map. It is well-known that the C^* -algebra extension of \mathcal{A} by \mathcal{B} can be identified with $\operatorname{Hom}(A, Q(\mathcal{B}))$ (the set of all *-homomorphisms from \mathcal{A} to $Q(\mathcal{B})$). $\tau \in \operatorname{Hom}(A, Q(\mathcal{B}))$ is called to be unital extension if $\tau(1_{\mathcal{B}}) = 1_{Q(\mathcal{B})}$. Let $\operatorname{Hom}_1(A, Q(\mathcal{B}))$ be the set of all unital extensions. $\tau \in \text{Hom}(A, Q(\mathcal{B}))$ (resp. $\text{Hom}_1(A, Q(\mathcal{B}))$) is trivial, if there is a *-(resp. unital) homomorphism $\phi \colon \mathcal{A} \to M(\mathcal{B})$ such that $\tau = \pi \circ \phi$.

Two extensions $\tau_1, \tau_2 \in \text{Hom}(A, Q(\mathcal{B}))$ are unitarily equivalent (denoted by $\tau_1 \sim_u \tau_2$) if there is a unitary $u \in M(\mathcal{B})$ such that $Ad_{\pi(u)} \circ \tau_= \tau_2$. Let $[\tau]$ (resp. $[\tau]_u$) denote the unitary equivalence of τ in $\operatorname{Hom}(A, Q(\mathcal{B}))$ (resp. $\operatorname{Hom}_1(A, Q(\mathcal{B}))$) and set $\operatorname{Ext}(\mathcal{A}, \mathcal{B}) = \{ [\tau] | \tau \in \operatorname{Hom}(A, Q(\mathcal{B})) \}$, $\operatorname{Ext}_{u}(\mathcal{A},\mathcal{B}) = \{\tau|_{u} | \tau \in \operatorname{Hom}_{1}(A,Q(\mathcal{B}))\}.$

Received May 12, 2009, Accepted July 27, 2010

supported by Natural Science Foundation of China (Grant no. 10771069) and Shanghai Leading Academic Discipline Project(Grant no. B407)

Since \mathcal{B} is table, there are isometries $u_1, \dots, u_n \in M(\mathcal{B})$ such that $\sum_{i=1}^n u_i u_i^* = 1_{M(\mathcal{B})}$ (here $n = 1, 2, \dots$). Let $\tau_1, \tau_2 \in \text{Hom}(A, Q(\mathcal{B}))$ (or $\text{Hom}_1(A, Q(\mathcal{B}))$). Define $\tau_1 \oplus \tau_2 \in \text{Hom}(A, Q(\mathcal{B}))$ (or $\text{Hom}_1(A, Q(\mathcal{B}))$) by

$$(\tau_1 \oplus \tau_2)(a) = (\pi(u_1), \pi(u_2)) \operatorname{diag}(\tau_1(a), \tau_2(a))(\pi(u_1), \pi(u_2))^T, \ \forall a \in \mathcal{A}.$$

 $[\tau_1 \oplus \tau_2]$ (or $[\tau_1 \oplus \tau_2]_2$) is independent of the choice of u_1, u_2 and equivalence classes of $[\tau_i]$ (or $[\tau_i]_u$), i = 1, 2. So we can define an addition in $\operatorname{Ext}(\mathcal{A}, \mathcal{B})$ (resp. $\operatorname{Ext}_u(\mathcal{A}, \mathcal{B})$) by $[\tau_1] + [\tau_2] = [\tau_1 \oplus \tau_2]$ (resp. $[\tau_1]_u + [\tau_2] = [\tau_1 \oplus \tau_2]_u$).

Let $\tau_1, \tau_2 \in \text{Hom}(A, Q(\mathcal{B}))$ (resp. $\text{Hom}_1(A, Q(\mathcal{B}))$). $[\tau_1] = [\tau_2]$ (resp. $[\tau_1]_u = [\tau_2]_u$) means that there are (resp. unital) trivial extensions τ_0, τ'_0 such that $\tau_1 \oplus \tau_0 \sim_u \tau_2 \oplus \tau'_0$. In this case, $\text{Ext}(\mathcal{A}, \mathcal{B})$ and $\text{Ext}_u(\mathcal{A}, \mathcal{B})$ become Abelian groups by [1, Corollary 15.8.4].

 $\operatorname{Ext}_u(\mathcal{A},\mathcal{B})$ and $\operatorname{Ext}(\mathcal{A},\mathcal{B})$ are different in general. $\operatorname{Ext}(\mathcal{A},\mathcal{B})$ has Bott periodicity and sixterm exact sequences for variables \mathcal{A} or \mathcal{B} and the universal coefficient formula for \mathcal{A} and \mathcal{B} etc. $\operatorname{Ext}_u(\mathcal{A},\mathcal{B})$ has no these properties in general. But there are some relations between them. For examples, L.G. Brown and M. Dadarlat showed the following sequences

$$0 \longrightarrow \mathbb{Z}/\{h([1_{\mathcal{A}}]) | h \in \operatorname{Hom}(K_0(\mathcal{A}), \mathbb{Z})\} \longrightarrow \operatorname{Ext}_u(\mathcal{A}, \mathcal{K}) \longrightarrow \operatorname{Ext}(\mathcal{A}, \mathcal{K}) \longrightarrow 0$$
$$0 \longrightarrow \operatorname{Ext}(K_0(\mathcal{A}), [1_{\mathcal{A}}], \mathbb{Z}) \longrightarrow \operatorname{Ext}_u(\mathcal{A}, \mathcal{K}) \longrightarrow \operatorname{Hom}(K_0(\mathcal{A}), \mathcal{K}) \longrightarrow 0$$

when \mathcal{A} is in the bootstrap category \mathcal{N} (cf. [2, Proposition 1, Theorem 2]); V. Manuilov and K. Thomsen in [3] presented the six-term exact sequence for $\operatorname{Ext}(\mathcal{A}, \mathcal{B})$ and $\operatorname{Ext}_u(\mathcal{A}, \mathcal{B})$ as follows

$$K_0(\mathcal{B}) \longrightarrow \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}) \longrightarrow \operatorname{Ext}(\mathcal{A}, \mathcal{B})$$

$$\uparrow \qquad \qquad \downarrow$$

$$\operatorname{Ext}(\mathcal{A}, S\mathcal{B}) \longleftarrow \operatorname{Ext}_u(\mathcal{A}, S\mathcal{B}) \longleftarrow K_1(\mathcal{B})$$

and H. Lin characterized the strongly unitary equivalence of two full essential extensions in [4] for $A \in \mathcal{N}$ by means of the subgroup $H_1(K_0(A), K_0(B))$ of $K_0(B)$ (see below).

In spirited by above results, we will use the subgroups

$$H_1(K_0(\mathcal{A}), K_i(\mathcal{B})) = \{h([1_{\mathcal{A}}]) | h \in \operatorname{Hom}(K_0(\mathcal{A}), K_i(\mathcal{B}))\}$$

of $K_i(\mathcal{B})$, i=0,1, to give an exact sequence for $\mathrm{Ext}_u(\mathcal{A},\mathcal{B})$ and $\mathrm{Ext}(\mathcal{A},\mathcal{B})$ as follows

$$0 \longrightarrow H_1(K_0(\mathcal{A}), K_0(\mathcal{B})) \longrightarrow K_0(\mathcal{B}) \longrightarrow \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}) \longrightarrow$$
$$\longrightarrow \operatorname{Ext}(\mathcal{A}, \mathcal{B}) \longrightarrow H_1(K_0(\mathcal{A}), K_1(\mathcal{B})) \longrightarrow 0$$

in this paper when $A \in \mathcal{N}$. Using this exact sequence, we present the half–exactness of $\operatorname{Ext}_u(\cdot, \mathcal{B})$ and the (UCT) for $\operatorname{Ext}_u(A, \mathcal{B})$. Furthermore, under certain conditions, we obtain the half–exactness and Bott periodicity of $\operatorname{Ext}_u(A, \cdot)$.

2 The main result

Let p,q be projections in the C^* -algebra \mathcal{E} . p and q are equivalent in \mathcal{E} , denoted by $p \sim q$ if there is $u \in \mathcal{E}$ such that $p = u^*u$ and $q = uu^*$. Since \mathcal{B} is separable and stable, there are isometries u_1, \dots, u_n in $M(\mathcal{B})$ such that $\sum_{i=1}^n u_i u_i^* = 1_{M(\mathcal{B})} = 1, \ \forall n \geq 2$. Thus we have $K_i(M(\mathcal{B})) \cong 0$, i = 0, 1 by [1] and diag $(p, 1) \sim \text{diag}(1, 1) = 1_2$ for any projection $p \in M(\mathcal{B})$. Moreover, the index map $\partial_0 \colon K_1(Q(\mathcal{B})) \to K_0(\mathcal{B})$ and the exponential map $\partial_1 \colon K_0(Q(\mathcal{B})) \to K_1(\mathcal{B})$ given in [1] are isomorphic.

By [5] or [6], there is a trivial extension $\tau_{\mathcal{A},\mathcal{B}} \in \text{Hom}_1(\mathcal{A},Q(\mathcal{B}))$ such that $\tau_{\mathcal{A},\mathcal{B}} \oplus \tau_0 \sim_u \tau_{\mathcal{A},\mathcal{B}}$ for any unital trivial extension τ_0 , i.e., $\tau_{\mathcal{A},\mathcal{B}}$ is a unital absorbing trivial extension. Thus, $[\tau_1]_u = [\tau_2]_u$ in $\text{Ext}_u(\mathcal{A},\mathcal{B})$ iff $\tau_1 \oplus \tau_{\mathcal{A},\mathcal{B}} \sim_u \tau_2 \oplus \tau_{\mathcal{A},\mathcal{B}}$.

Lemma 2.1. Let \mathcal{E} be a C^* -algebra with unit 1. Assume that there are isometries $v_1, \dots, v_n \in \mathcal{E}$ with $\sum_{i=1}^n v_i v_i^* = 1$. Let p a projection in $M_n(\mathcal{E})$ and u be a unitary in $M_n(\mathcal{E})$. Set

$$q = (v_1, \dots, v_n)p(v_1, \dots, v_n)^T, \ w = (v_1, \dots, v_n)u(v_1, \dots, v_n)^T.$$

Then q is a projection in \mathcal{E} and w is unitary in \mathcal{E} . Furthermore, [q] = [p] in $K_0(\mathcal{E})$ and [w] = [u] in $K_1(\mathcal{E})$.

Proof. It is easy to check that q is a projection and w is unitary in \mathcal{E} . Set $X = \begin{pmatrix} v_1 & \cdots & v_n \\ 0 & \cdots & \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} p$.

Then $X^*X = p$ and $XX^* = \operatorname{diag}(q, 0) \in M_n(\mathcal{E})$.

The rest comes from [7, Corollary] or the proof of Lemma 3.1 in [8].

Lemma 2.2. Let $\tau \in \text{Hom}(\mathcal{A}, Q(\mathcal{B}))$ be a nonunital extension. If $[\tau(1_{\mathcal{A}})] = 0$ in $K_0(Q(\mathcal{B}))$, then there is a unital extension τ_0 such that $\tau \oplus \tau_{\mathcal{A},\mathcal{B}} \oplus 0 \sim_u \tau_0 \oplus 0$. when τ is trivial, τ_0 can be chosen as a trivial extension.

Proof. Put $q = \tau(1_{\mathcal{A}})$. Let u_1, u_2 be isometries in $M(\mathcal{B})$ with $u_1u_1^* + u_2u_2^* = 1$. Since [q] = 0 in $K_0(Q(\mathcal{B}))$, we can find $v \in M_2(Q(\mathcal{B}))$ such that $vv^* = 1_2$, $v^*v = \operatorname{diag}(q, 1)$. Set $V_0 = (\pi(u_1), \pi(u_2))v(\pi(u_1), \pi(u_2))^T$ and $\tau_0 = Ad_{V_0} \circ (\tau \oplus \tau_{\mathcal{A},\mathcal{B}})$. Then $V_0V_0^* = 1$ and $\tau_0(1_{\mathcal{A}}) = 1$. Note that for any $a \in \mathcal{A}$,

$$\begin{pmatrix} V_0 & 0 \\ 1 - V_0^* V_0 & V_0^* \end{pmatrix} \operatorname{diag}((\tau \oplus \tau_{\mathcal{A},\mathcal{B}})(a), 0) \begin{pmatrix} V_0^* & 1 - V_0^* V_0 \\ 0 & V_0 \end{pmatrix} = \operatorname{diag}(\tau_0(a), 0).$$

The assertion follows.

When τ is trivial, there is a nonunital *-homomorphism $\phi: \mathcal{A} \to M(\mathcal{B})$ such that $\tau = \pi \circ \phi$. Let $p = \phi(1_{\mathcal{A}})$. Since [p] = 0, there is $u \in M(\mathcal{B})$ such that $uu^* = 1_2$ and $u^*u = \text{diag}(p, 1)$. Let $\psi: \mathcal{A} \to M(\mathcal{B})$ be a unital *-homomorphism such that $\tau_{\mathcal{A},\mathcal{B}} = \pi \circ \psi$. Set $U_0 = (u_1, u_2)u(u_1, u_2)^T$ and

$$\psi_0(a) = U_0(u_1, u_2) \operatorname{diag}(\phi(a), \psi(a))(u_1, u_2)^T U_0^*, \ \forall a \in \mathcal{A}.$$

Then $\tau_0 = \pi \circ \psi_0$ is a unital trivial extension and $\tau \oplus \tau_{\mathcal{A},\mathcal{B}} \oplus 0 \sim_u \tau_0 \oplus 0$.

Define the map $\Phi_{\mathcal{A},\mathcal{B}} \colon K_0(\mathcal{B}) \to \operatorname{Ext}_u(\mathcal{A},\mathcal{B})$ by $\Phi_{\mathcal{A},\mathcal{B}}(x) = [Ad_v \circ \tau_{\mathcal{A},\mathcal{B}}]_u$, where $v \in U(Q(\mathcal{B}))$ such that $\partial_0([v]) = x$.

Lemma 2.3. Keeping symbols as above, we have $\Phi_{A,B}$ is a homomorphism and moreover,

- (1) Ker $\Phi_{\mathcal{A},\mathcal{B}} \subset H_1(K_0(\mathcal{A}),K_0(\mathcal{B}));$
- (2) $\Phi_{\mathcal{A},\mathcal{B}} = [Ad_v \circ \tau_0]_u$ for any unital trivial extension τ_0 .

Proof. We first prove that $\Phi_{\mathcal{A},\mathcal{B}}$ is well-defined. If there is $v' \in U(Q(\mathcal{B}))$ such that $\partial_0([v]) = \partial_0([v']) = x$, then $v_0 = v'v^* \in U_0(Q(\mathcal{B}))$ and hence there exists $u_0 \in U_0(M(\mathcal{B}))$ such that $\pi(u_0) = v_0$. Thus, $Ad_v \circ \tau_{\mathcal{A},\mathcal{B}} \sim_u Ad_{v'} \circ \tau_{\mathcal{A},\mathcal{B}}$.

Now let $x_1, x_2 \in K_0(\mathcal{B})$ and choose $v_1, v_2 \in U(Q(\mathcal{B}))$ such that $\partial_0([v_i]) = x_i$, i = 1, 2. Then $\partial_0([\operatorname{diag}(v_1, v_2)]) = x_1 + x_2$. Let u_1, u_2 be isometries in $M(\mathcal{B})$ such that $u_1u_1^* + u_2u_2^* = 1$. Set $z = (\pi(u_1), \pi(u_2))\operatorname{diag}(v_1, v_2)\pi(u_1), \pi(u_2))^T$. Then $[z] = [\operatorname{diag}(v_1, v_2)]$ in $K_1(\mathcal{B})$ by Lemma 2.1 and $\partial_0([z]) = x_1 + x_2$. Moreover, we have

$$[Ad_z \circ (\tau_{\mathcal{A},\mathcal{B}} \oplus \tau_{\mathcal{A},\mathcal{B}})]_u = [(Ad_{v_1} \circ \tau_{\mathcal{A},\mathcal{B}}) \oplus (Ad_{v_2} \circ \tau_{\mathcal{A},\mathcal{B}})]_u = [Ad_{v_1} \circ \tau_{\mathcal{A},\mathcal{B}}]_u + [Ad_{v_2} \circ \tau_{\mathcal{A},\mathcal{B}}]_u$$

in $\operatorname{Ext}_u(\mathcal{A},\mathcal{B})$. Let $w_0 \in U(M(\mathcal{B}))$ such that $\tau_{\mathcal{A},\mathcal{B}} \oplus \tau_{\mathcal{A},\mathcal{B}} = Ad_{\pi(w_0)} \circ \tau_{\mathcal{A},\mathcal{B}}$ and put $z_0 = \pi(w_0^*)z\pi(w_0)$. Then $[z_0] = [z]$ in $K_1(Q(\mathcal{B}))$ and

$$\begin{split} \Phi_{\mathcal{A},\mathcal{B}}(x_1 + x_2) = & [Ad_{z_0} \circ \tau_{\mathcal{A},\mathcal{B}}]_u = [Ad_z \circ (\tau_{\mathcal{A},\mathcal{B}} \oplus \tau_{\mathcal{A},\mathcal{B}}]_u \\ = & [Ad_{v_1} \circ \tau_{\mathcal{A},\mathcal{B}}]_u + [Ad_{v_2} \circ \tau_{\mathcal{A},\mathcal{B}}]_u \\ = & \Phi_{\mathcal{A},\mathcal{B}}(x_1) + \Phi_{\mathcal{A},\mathcal{B}}(x_2). \end{split}$$

When x = 0 in $K_0(\mathcal{B})$, there is $u \in U(M(\mathcal{B}))$ such that $v = \pi(u)$ and consequently, $[Ad_v \circ \tau_{\mathcal{A},\mathcal{B}}]_u = 0$ in $\operatorname{Ext}_u(\mathcal{A},\mathcal{B})$.

Let $e \in \text{Ker } \Phi_{\mathcal{A},\mathcal{B}}$. Then there is $v \in U(Q(\mathcal{B}))$ such that $\partial_0([v]) = e$ and $[Ad_v \circ \tau_{\mathcal{A},\mathcal{B}}]_u = 0$ in $\text{Ext}_u(\mathcal{A},\mathcal{B})$. Thus, we can find $u \in U(M(\mathcal{B}))$ such that $(Ad_v \circ \tau_{\mathcal{A},\mathcal{B}}) \oplus \tau_{\mathcal{A},\mathcal{B}} = Ad_{\pi(u)} \circ \tau_{\mathcal{A},\mathcal{B}}$. Set

$$\tilde{v} = (\pi(u_1), \pi(u_2)) \operatorname{diag}(v, 1) (\pi(u_1), \pi(u_2))^T.$$

Then $[\tilde{v}] = [v]$ in $K_1(\mathcal{B})$ by Lemma 2.1 and

$$Ad_{\pi(u)} \circ \tau_{\mathcal{A},\mathcal{B}} = Ad_{\tilde{v}} \circ (\tau_{\mathcal{A},\mathcal{B}} \oplus \tau_{\mathcal{A},\mathcal{B}}) = Ad_{\tilde{v}} \circ Ad_{\pi(w_0)} \circ \tau_{\mathcal{A},\mathcal{B}}.$$

Set $\hat{v} = \pi(u^*)\tilde{v}\pi(w_0)$. Then $[\hat{v}] = [v]$ and $Ad_{\hat{v}} \circ \tau_{\mathcal{A},\mathcal{B}} = \tau_{\mathcal{A},\mathcal{B}}$. Therefore, we can define a unital extension $\hat{\tau} \colon C(\mathbf{S}^1, \mathcal{A}) \to Q(\mathcal{B})$ by $\hat{\tau}(a) = \tau_{\mathcal{A},\mathcal{B}}(a)$ for $a \in \mathcal{A}$ and $\hat{\tau}(z1_{\mathcal{A}}) = \hat{v}, z \in \mathbf{S}^1$.

Let $\theta_{\mathcal{A}} \colon K_0(\mathcal{A}) \to K_1(S\mathcal{A})$ be the Bott map given in [1, Definition 9.1.1] and let $i_{\mathcal{A}} \colon K_1(S\mathcal{A})$ $\to K_1(C(\mathbf{S}^1, \mathcal{A}))$ be the inclusion. Then $h = \partial_0 \circ \hat{\tau}_*^1 \circ i_{\mathcal{A}} \circ \theta_{\mathcal{A}} \in \operatorname{Hom}(K_0(\mathcal{A}), K_0(\mathcal{B}))$ and $h([1_{\mathcal{A}}]) = \partial_0([\hat{v}]) = e$, where $\hat{\tau}_*^1$ is the induced map of $\hat{\tau}$ on $K_1(C(\mathbf{S}^1, \mathcal{A}))$. This proves (1).

(2) Let $w \in U(M_2(\mathcal{B}))$ such that $\pi_2(w) = \operatorname{diag}(v, v^*)$, where π_k is the induced homomorphism of π on $M_k(\mathcal{B})$. Put

$$w_1 = (u_1, u_2)w(u_1, u_2)^T$$
 and $v_0 = (\pi(u_1), \pi(u_2)) \operatorname{diag}(v_1, v_2)(\pi(u_1), \pi(u_2))^T$.

Then $\pi(w_1) = v_0$ and

$$Ad_{v} \circ \tau_{0} \oplus Ad_{v^{*}} \circ \tau_{\mathcal{A},\mathcal{B}} = Ad_{\pi(w_{1})} \circ (\tau_{0} \oplus \tau_{\mathcal{A},\mathcal{B}})$$
$$Ad_{v} \circ \tau_{\mathcal{A},\mathcal{B}} \oplus Ad_{v^{*}} \circ \tau_{\mathcal{A},\mathcal{B}} = Ad_{\pi(w_{1})} \circ (\tau_{\mathcal{A},\mathcal{B}} \oplus \tau_{\mathcal{A},\mathcal{B}}).$$

Thus,
$$[Ad_v \circ \tau_0]_u = [Ad_v \circ \tau_{\mathcal{A},\mathcal{B}}]_u$$
 in $\operatorname{Ext}_u(\mathcal{A},\mathcal{B})$.

Let \mathcal{N} be the bootstrap category defined in [1] or [9]. Then for any $\mathcal{A} \in \mathcal{N}$, we have following exact sequence (UCT) (cf. [10]):

$$0 \to \operatorname{Ext}_{\mathbb{Z}}(K_*(\mathcal{A}), K_*(\mathcal{B})) \xrightarrow{\kappa^{-1}} \operatorname{Ext}(\mathcal{A}, \mathcal{B}) \xrightarrow{\Gamma_{\mathcal{A}, \mathcal{B}}} \operatorname{Hom}(K_0(\mathcal{A}), K_1(\mathcal{B})) \oplus \operatorname{Hom}(K_1(\mathcal{A}), K_0(\mathcal{B})) \to 0$$

where $\Gamma_{\mathcal{A},\mathcal{B}}([\tau]) = (\partial_1 \circ \tau_*^0, \partial_0 \circ \tau_*^1)$ and τ_*^i is the induced homomorphism of τ on $K_i(\mathcal{A})$, i = 0, 1, κ is a bijective natural map from $\operatorname{Ker} \Gamma_{\mathcal{A},\mathcal{B}}$ onto $\operatorname{Ext}_{\mathbb{Z}}(K_*(\mathcal{A}), K_*(\mathcal{B})) = \operatorname{Ext}_{\mathbb{Z}}(K_0(\mathcal{A}), K_0(\mathcal{B})) \oplus \operatorname{Ext}_{\mathbb{Z}}(K_1(\mathcal{A}), K_1(\mathcal{B}))$.

By means of (UCT), we can obtain our main result in the paper as follows.

Theorem 2.4. Suppose that A is a separable nuclear unital C^* -algebra and \mathcal{B} is a separable C^* -algebra. If $A \in \mathcal{N}$, then we have following exact sequence of groups:

$$0 \longrightarrow H_1(K_0(\mathcal{A}), K_0(\mathcal{B})) \xrightarrow{j_{\mathcal{B}}} K_0(\mathcal{B}) \xrightarrow{\Phi_{\mathcal{A}, \mathcal{B}}} \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}) \longrightarrow \underbrace{i_{\mathcal{A}, \mathcal{B}}}_{i_{\mathcal{A}, \mathcal{B}}} \operatorname{Ext}(\mathcal{A}, \mathcal{B}) \xrightarrow{\rho_{\mathcal{A}, \mathcal{B}}} H_1(K_0(\mathcal{A}), K_1(\mathcal{B})) \longrightarrow 0,$$

where, $j_{\mathcal{B}}$ is an inclusion, $i_{\mathcal{A},\mathcal{B}}([\tau]_u) = [\tau]$, $\forall \tau \in \text{Hom}_1(\mathcal{A}, Q(\mathcal{B}))$ and $\rho_{\mathcal{A},\mathcal{B}}([\tau]) = \partial_1([\tau(1_{\mathcal{A}})])$, $\forall \tau \in \text{Hom}(\mathcal{A}, Q(\mathcal{B}))$.

Proof. Let $[u] \in H_1(K_0(\mathcal{A}), K_1(\mathcal{B}))$. Then there is $h \in \text{Hom}(K_0(\mathcal{A}), K_1(\mathcal{B}))$ such that $[u] = h([1_{\mathcal{A}}]) \in K_1(\mathcal{B})$. By (UCT), there is $\tau \in \text{Hom}(\mathcal{A}, Q(\mathcal{B}))$ such that $\Gamma_{\mathcal{A}, \mathcal{B}}([\tau]) = (h, 0)$. Therefore,

$$[u] = h([1_{\mathcal{A}}]) = \partial_1(\tau^0_*([1_{\mathcal{A}}])) = \partial_1([\tau(1_{\mathcal{A}})]) = \rho_{\mathcal{A},\mathcal{B}}([\tau]),$$

that is, $\rho_{\mathcal{A},\mathcal{B}}$ is surjective.

Since $[1_{M(\mathcal{B})}] = 0$ in $K_0(M(\mathcal{B}))$ implies that $[1_{Q(\mathcal{B})}] = 0$ in $K_0(Q(\mathcal{B}))$, we have $\rho_{\mathcal{A},\mathcal{B}}([\tau]) = 0$ when τ is a unital extension and hence $\operatorname{Ran}(i_{\mathcal{A},\mathcal{B}}) \subset \operatorname{Ker} \rho_{\mathcal{A},\mathcal{B}}$. Now let $[\tau] \in \operatorname{Ker} \rho_{\mathcal{A},\mathcal{B}}$ and put $q = \tau(1_{\mathcal{A}})$. Then $\partial_1([q]) = 0$ and hence by Lemma 2.2, there is a unital extension τ_0 such that $\tau \oplus \tau_{\mathcal{A},\mathcal{B}} \oplus 0 \sim_u \tau_0 \oplus 0$. Thus, $[\tau] = [\tau_0]$ in $\operatorname{Ext}(\mathcal{A},\mathcal{B})$, i.e., $\operatorname{Ker} \rho_{\mathcal{A},\mathcal{B}} \subset \operatorname{Ran}(i_{\mathcal{A},\mathcal{B}})$.

Let $v \in U(Q(\mathcal{B}))$. we can pick $u \in U(\mathrm{M}_2(M(\mathcal{B})))$ such that $\mathrm{diag}\,(v,v^*) = \pi_2(u)$. It follows from $\pi_2(u)\,\mathrm{diag}\,(\tau_{\mathcal{A},\mathcal{B}},0)\pi_2(u^*) = \mathrm{diag}\,(Ad_v \circ \tau_{\mathcal{A},\mathcal{B}},0)$ that $\mathrm{Ran}\,(\Phi_{\mathcal{A},\mathcal{B}}) \subset \mathrm{Ker}\,i_{\mathcal{A},\mathcal{B}}$. On the other hand, let τ be a unital extension such that $\tau \oplus \tau_1 \sim_u \tau_2$ for some trivial extensions τ_1 and τ_2 . If τ_1,τ_2 are all unital, then $[\tau]_u = 0$; if τ_1,τ_2 are all non–unital, then by Lemma 2.2, we can find unital trivial extensions τ_1' and τ_2' such that $\tau_i \oplus \tau_{\mathcal{A},\mathcal{B}} \oplus 0 \sim_u \tau_i' \oplus 0$, i=1,2. Consequently, $\tau \oplus \tau_1' \oplus 0 \sim_u \tau_2' \oplus 0$ and hence

$$\tau \oplus \tau_{AB} \oplus 0 \sim_{u} \tau \oplus \tau'_{1} \oplus \tau_{AB} \oplus 0 \sim_{u} \tau'_{2} \oplus \tau_{AB} \oplus 0 \sim_{u} \tau_{AB} \oplus 0 \sim_{u} \tau_{AB} \oplus \tau_{AB} \oplus 0,$$

i.e., there is $u \in U(M(\mathcal{B}))$ such that $\tau \oplus \tau_{\mathcal{A},\mathcal{B}} \oplus 0 = Ad_{\pi(u)} \circ (\tau_{\mathcal{A},\mathcal{B}} \oplus \tau_{\mathcal{A},\mathcal{B}} \oplus 0)$. Let u_1, u_2 be isometries in $M(\mathcal{B})$ such that $u_1u_1^* + u_2u_2^* = 1$. Set $w = (u_1, u_2)^T u(u_1, u_2) \in U(M_2(M(\mathcal{B})))$. Then

$$\operatorname{diag}\left(\tau\oplus\tau_{\mathcal{A},\mathcal{B}}(a),0\right)=\pi_{2}(w)\operatorname{diag}\left(\tau_{\mathcal{A},\mathcal{B}}\oplus\tau_{\mathcal{A},\mathcal{B}}(a),0\right)\pi_{2}(w)^{*},\ \forall\,a\in\mathcal{A}.$$

It follows that $\pi_2(w)$ has the form $\pi_2(w) = \operatorname{diag}(v_1, v_2)$ and hence $\tau \oplus \tau_{\mathcal{A}, \mathcal{B}} = Ad_{v_1} \circ (\tau_{\mathcal{A}, \mathcal{B}} \oplus \tau_{\mathcal{A}, \mathcal{B}})$. Let $w_0 \in U(M(\mathcal{B}))$ such that $\tau_{\mathcal{A}, \mathcal{B}} \oplus \tau_{\mathcal{A}, \mathcal{B}} = Ad_{\pi(w_0)} \circ \tau_{\mathcal{A}, \mathcal{B}}$. Put $x = \partial_0([v_1\pi(w_0)])$. Then $\Phi_{\mathcal{A}, \mathcal{B}}(x) = [Ad_{v_1\pi(w_0)} \circ \tau_{\mathcal{A}, \mathcal{B}}]_u = [\tau \oplus \tau_{\mathcal{A}, \mathcal{B}}]_u = [\tau]_u$.

By Lemma 2.3 (1), $\operatorname{Ker} \Phi_{\mathcal{A},\mathcal{B}} \subset \operatorname{Ran}(j_{\mathcal{B}})$. We now prove $\operatorname{Ran}(j_{\mathcal{B}}) \subset \operatorname{Ker} \Phi_{\mathcal{A},\mathcal{B}}$.

Let $x \in H_1(K_0(\mathcal{A}), K_0(\mathcal{B}))$. Then there is $h \in \text{Hom}(K_0(\mathcal{A}), K_0(\mathcal{B}))$ such that $x = h([1_{\mathcal{A}}])$. Let $p_{\mathcal{A}} \colon K_1(C(\mathbf{S}^1, \mathcal{A})) \to K_1(S\mathcal{A})$ be the projective map. Set $h_0 = h \circ \theta_{\mathcal{A}}^{-1} \circ p_{\mathcal{A}}$. Then $h_0 \in \text{Hom}(K_1(C(\mathbf{S}^1, \mathcal{A})), K_0(\mathcal{B}))$ with $h_0([z1_{\mathcal{A}}]) = h \circ \theta_{\mathcal{A}}^{-1}([z1_{\mathcal{A}}]) = h([1_{\mathcal{A}}]) = x$. Thus, by (UCT), there is $\tilde{\tau} \in \text{Hom}(C(\mathbf{S}^1, \mathcal{A}), Q(\mathcal{B}))$ such that $\Gamma_{C(\mathbf{S}^1, \mathcal{A}), \mathcal{B}}([\tilde{\tau}]) = (0, h_0)$, i.e., $\partial_0 \circ \hat{\tau}_*^1 = h_0$ and $\partial_1 \circ \hat{\tau}_*^0 = 0$. So $[\tilde{\tau}(1_{\mathcal{A}})] = 0$ in $K_0(Q(\mathcal{B}))$. In this case, $\tilde{\tau}$ can be chosen as the unital one by Lemma 2.2. Set $v = \tilde{\tau}(z1_{\mathcal{A}})$ and let τ be the restriction of $\tilde{\tau}$ on \mathcal{A} . Then $x = \partial_0([v])$ and $v\tau(a) = \tau(a)v$, $\forall a \in \mathcal{A}$. Pick $w \in U(M_2(M(\mathcal{B})))$ such that $\pi_2(w) = \text{diag}(v, v^*)$. Note that

$$\pi_2(w) \operatorname{diag}(\tau(a), \tau_{\mathcal{A}, \mathcal{B}}(a)) \pi_2(w)^* = \operatorname{diag}(v\tau(a)v^*, v^*\tau_{\mathcal{A}, \mathcal{B}}(a)v), \ \forall a \in \mathcal{A}.$$

We have

$$[\tau]_u = [Ad_v \circ \tau]_u + [Ad_{v^*} \circ \tau_{\mathcal{A},\mathcal{B}}]_u = [\tau]_u + [Ad_{v^*} \circ \tau_{\mathcal{A},\mathcal{B}}]_u$$

which implies that $[Ad_{v^*} \circ \tau_{\mathcal{A},\mathcal{B}}]_u = 0$ in $\operatorname{Ext}_u(\mathcal{A},\mathcal{B})$ since $\operatorname{Ext}_u(\mathcal{A},\mathcal{B})$ is a group. So $\phi_{\mathcal{A},\mathcal{B}}(x) = [Ad_v \circ \tau_{\mathcal{A},\mathcal{B}}]_u = -[Ad_{v^*} \circ \tau_{\mathcal{A},\mathcal{B}}]_u = 0$.

Let $x \in K_0(\mathcal{B})$. Write $[x]_{\mathcal{A},\mathcal{B}}$ to denote the equivalence class of x in $K_0(\mathcal{B})/H_1(K_0(\mathcal{A}),K_0(\mathcal{B}))$. Since $\text{Ker }\Phi_{\mathcal{A},\mathcal{B}}=H_1(K_0(\mathcal{A}),K_0(\mathcal{B}))$ by Theorem 2.4, we can define the homomorphism

$$\Phi'_{AB}: K_0(\mathcal{B})/H_1(K_0(\mathcal{A}), K_0(\mathcal{B})) \to \operatorname{Ext}_u(\mathcal{A}, \mathcal{B})$$

by $\Phi'_{\mathcal{A},\mathcal{B}}([x]_{\mathcal{A},\mathcal{B}}) = \Phi_{\mathcal{A},\mathcal{B}}(x)$. Thus, we have

Corollary 2.5. Let A, B, $i_{A,B}$ and $\rho_{A,B}$ be as in Theorem 2.4. Then we have following exact sequence of groups:

$$0 \longrightarrow K_0(\mathcal{B})/H_1(K_0(\mathcal{A}), K_0(\mathcal{B})) \xrightarrow{\Phi_{\mathcal{A}, \mathcal{B}}^{\prime}} \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}) \xrightarrow{i_{\mathcal{A}, \mathcal{B}}} \operatorname{Ext}(\mathcal{A}, \mathcal{B}) \xrightarrow{\rho_{\mathcal{A}, \mathcal{B}}^{\prime}} H_1(K_0(\mathcal{A}), K_1(\mathcal{B})) \longrightarrow 0.$$

3 The half–exactness of $\operatorname{Ext}_u(\cdot,\mathcal{B})$ and the (UCT) for $\operatorname{Ext}_u(\mathcal{A},\mathcal{B})$

Let \mathcal{J} be a closed ideal of the separable nuclear unital C^* -algebra \mathcal{A} and let $q: \mathcal{A} \to \mathcal{A}/\mathcal{J} = \mathcal{C}$ be the quotient map. Then \mathcal{J} and \mathcal{C} are nuclear. Define $q^*: \operatorname{Ext}(\mathcal{C}, \mathcal{B}) \to \operatorname{Ext}(\mathcal{A}, \mathcal{B})$ and $q_u^*: \operatorname{Ext}_u(\mathcal{C}, \mathcal{B}) \to \operatorname{Ext}_u(\mathcal{A}, \mathcal{B})$ respectively, by $q^*([\tau]) = [\tau \circ q]$ and $q_u^*([\tau]_u) = [\tau \circ q]_u$. Let i^* (resp. i_u^*) be the induced homomorphism of the inclusion $i: \mathcal{J} \to \mathcal{A}$ on $\operatorname{Ext}(\mathcal{A}, \mathcal{B})$ (resp. $\operatorname{Ext}_u(\mathcal{A}, \mathcal{B})$).

Proposition 3.1. Let \mathcal{J} , \mathcal{A} and \mathcal{C} be as above. Suppose that \mathcal{A} and \mathcal{C} are all in \mathcal{N} . Then

$$\operatorname{Ext}_{u}(\mathcal{C}, \mathcal{B}) \xrightarrow{q_{u}^{*}} \operatorname{Ext}_{u}(\mathcal{A}, \mathcal{B}) \xrightarrow{i_{u}^{*}} \operatorname{Ext}(\mathcal{J}, \mathcal{B})$$
(3.1)

is exact in the middle (i.e., Ran (q_u^*) = Ker i_u^*). In addition, if there exists a unital *-homomorphism $r: \mathcal{C} \to \mathcal{A}$ such that $q \circ r = \mathrm{id}_{\mathcal{C}}$, then (3.1) is split exact.

Proof. It is clear that $H_1(K_0(\mathcal{C}), K_i(\mathcal{B})) \subset H_1(K_0(\mathcal{A}), K_i(\mathcal{B})) \subset K_i(\mathcal{B}), i = 0, 1$. Let

$$i_1: H_1(K_0(\mathcal{C}), K_1(\mathcal{B})) \to H_1(K_0(\mathcal{A}), K_1(\mathcal{B}))$$

be the inclusion and define

$$i_0: K_0(\mathcal{B})/H_1(K_0(\mathcal{C}), K_0(\mathcal{B})) \to K_0(\mathcal{B})/H_1(K_0(\mathcal{A}), K_0(\mathcal{B}))$$

by $i_0([x]_{\mathcal{C},\mathcal{B}}) = [x]_{\mathcal{A},\mathcal{B}}$. Let $x \in K_0(\mathcal{B})$ and $v \in U(Q(\mathcal{B}))$ such that $\Phi_{\mathcal{A},\mathcal{B}}(x) = [Ad_v \circ \tau_{\mathcal{A},\mathcal{B}}]_u$. Since $\tau_{\mathcal{C},\mathcal{B}} \circ q \in \text{Hom}_1(\mathcal{A},Q(\mathcal{B}))$ is trivial extension, we have by Lemma 2.3 (2),

$$q_u^* \circ \Phi'_{\mathcal{C},\mathcal{B}}([x]_{\mathcal{C},\mathcal{B}}) = [Ad_v \circ \tau_{\mathcal{C},\mathcal{B}} \circ q]_u = [Ad_v \circ \tau_{\mathcal{A},\mathcal{B}}]_u = \Phi_{\mathcal{A},\mathcal{B}}(x) = \Phi'_{\mathcal{A},\mathcal{B}} \circ i_0([x]_{\mathcal{C},\mathcal{B}}).$$

It is easy to check that $q^* \circ i_{\mathcal{C},\mathcal{B}} = i_{\mathcal{A},\mathcal{B}} \circ q_u^*$, $i^* \circ i_{\mathcal{A},\mathcal{B}} = i_u^*$ and $i_1 \circ \rho_{\mathcal{C},\mathcal{B}} = \rho_{\mathcal{A},\mathcal{B}} \circ q^*$. So we get following commutative diagram of Abelian groups:

in which Ran (q^*) = Ker i^* by [1, Theorem 15.11.2] and two columns are exact by Corollary 2.5.

Since $q \circ i = 0$, we have $i_u^* \circ q_u^* = 0$ and hence $\operatorname{Ran}(q_u^*) \subset \operatorname{Ker} i_u^*$. Noting that i_0 is surjective and i_1 is injective, we can use the commutative diagram (3.2) to obtain that $\operatorname{Ker} i_u^* \subset \operatorname{Ran}(q_u^*)$. Thus, (3.1) is exact in the middle.

If the *-homomorphism $r: \mathcal{C} \to \mathcal{A}$ satisfies $q \circ r = \mathrm{id}_{\mathcal{C}}$, then $r_u^* \circ q_u^* = \mathrm{id}$ on $\mathrm{Ext}_u(\mathcal{C}, \mathcal{B})$ and i_0 , i_1 are all identity maps. So q_u^* is injective. Since i^* is surjective by [1, Theorem 15.11.2], there is $[\tau'] \in \mathrm{Ext}(\mathcal{A}, \mathcal{B})$ such that $i^*([\tau']) = [\tau]$. Pick $[\tau''] \in \mathrm{Ext}(\mathcal{C}, \mathcal{B})$ with $\rho_{\mathcal{C}, \mathcal{B}}([\tau'']) = i_1^{-1} \circ \rho_{\mathcal{A}, \mathcal{B}}([\tau'])$.

Using $\rho_{\mathcal{A},\mathcal{B}} \circ q^* = i_1 \circ \rho_{\mathcal{C},\mathcal{B}}$, we get that $\rho_{\mathcal{A},\mathcal{B}} \circ q^*([\tau'']) = \rho_{\mathcal{A},\mathcal{B}}([\tau'])$. Thus, there is $[\tau_0]_u \in \operatorname{Ext}_u(\mathcal{A},\mathcal{B})$ such that $i_{\mathcal{A},\mathcal{B}}([\tau_0]_u) = [\tau'] - q^*([\tau''])$. From $i^* \circ i_{\mathcal{A},\mathcal{B}} = i_u^*$, $\operatorname{Ran}(q^*) = \operatorname{Ker} i^*$, $i^*([\tau']) = [\tau]$, we get that $[\tau] = i_u^*([\tau_0])$, i.e., i_u^* is surjective. In this case, (3.1) becomes an exact sequence:

$$0 \longrightarrow \operatorname{Ext}_{u}(\mathcal{C}, \mathcal{B}) \xrightarrow{q_{u}^{*}} \operatorname{Ext}_{u}(\mathcal{A}, \mathcal{B}) \xrightarrow{i_{u}^{*}} \operatorname{Ext}(\mathcal{J}, \mathcal{B}) \longrightarrow 0$$
(3.3)

with $r_u^* \circ q_u^* = \text{id.}$ Define homomorphism $\rho \colon \text{Ext}(\mathcal{J}, \mathcal{B}) \to \text{Ext}_u(\mathcal{A}, \mathcal{B})$ by

$$\rho([\sigma]) = [\sigma']_u - q_u^* \circ r_u^*([\sigma']_u) \quad \text{with} \quad [\sigma] = i_u^*([\sigma']_u).$$

It is easy to check that ρ is well-defined and $i_u^* \circ \rho = \operatorname{id}$ on $\operatorname{Ext}(\mathcal{J}, \mathcal{B})$. Thus, (3.3) is split exact.

Let $\operatorname{Ext}_{\mathbb{Z}}(K_0(\mathcal{A}), [1_{\mathcal{A}}], K_0(\mathcal{B}))$ be the set of isomorphism classes of all extensions of $K_0(\mathcal{A})$ by $K_0(\mathcal{B})$ with base point of the form

$$0 \longrightarrow K_0(\mathcal{B}) \longrightarrow (G, g_0) \stackrel{\phi}{\longrightarrow} (K_0(\mathcal{A}), [1_{\mathcal{A}}]) \longrightarrow 0,$$

where $\phi(g_0) = [1_{\mathcal{A}}]$. The natural map from $\operatorname{Ext}_{\mathbb{Z}}(K_0(\mathcal{A}), [1_{\mathcal{A}}], K_0(\mathcal{B}))$ to $\operatorname{Ext}_{\mathbb{Z}}(K_0(\mathcal{A}), K_0(\mathcal{B}))$ has the kernel isomorphic to $K_0(\mathcal{B})/H_1(K_0(\mathcal{A}), K_0(\mathcal{B}))$ (cf. [2, P584]). Define the homomorphism

$$\bar{\Gamma}_{\mathcal{A},\mathcal{B}} \colon \operatorname{Ext}_{u}(\mathcal{A},\mathcal{B}) \to \operatorname{Hom}_{0}(K_{0}(\mathcal{A}),K_{1}(\mathcal{B})) \oplus \operatorname{Hom}(K_{1}(\mathcal{A}),K_{0}(\mathcal{B})),$$

by $\bar{\Gamma}_{\mathcal{A},\mathcal{B}}([\tau]_u) = (\partial_1 \circ \tau^0_*, \partial_0 \circ \tau^1_*)$ for $\partial_1 \circ \tau^0_*([1_{\mathcal{A}}]) = 0$ $([1_{Q(\mathcal{B})}] = 0$ in $K_0(Q(\mathcal{B}))$, where $\mathrm{Hom}_0(K_0(\mathcal{A}), K_1(\mathcal{B})) = \{h \in \mathrm{Hom}(K_0(\mathcal{A}), K_1(\mathcal{B})) | h([1_{\mathcal{A}}]) = 0\}.$

Let $[\tau]_u \in \operatorname{Ker} \bar{\Gamma}_{\mathcal{A},\mathcal{B}}$. We have following isomorphism classes of extensions

$$0 \longrightarrow K_0(\mathcal{B}) \longrightarrow (K_0(E), [1_E]) \xrightarrow{\phi_*^0} (K_0(\mathcal{A}), [1_{\mathcal{A}}]) \longrightarrow 0$$
$$0 \longrightarrow K_1(\mathcal{B}) \longrightarrow K_1(E) \xrightarrow{\phi_*^1} K_1(\mathcal{A}) \longrightarrow 0,$$

where $E = \{(a,b) \in \mathcal{A} \oplus M(\mathcal{B}) | \pi(b) = \tau(a)\}, \ \phi(a,b) = a, \ \forall (a,b) \in E$. So there exists a natural map $\bar{\kappa}$ from $\text{Ker } \bar{\Gamma}_{\mathcal{A},\mathcal{B}}$ to $\text{Ext}_{\mathbb{Z}}(K_0(\mathcal{A}),[1_{\mathcal{A}}],K_0(\mathcal{B})) \oplus \text{Ext}_{\mathbb{Z}}(K_1(\mathcal{A}),K_1(\mathcal{B})) \triangleq \text{Ext}_{\mathbb{Z}}(K_*(\mathcal{A}),[1_{\mathcal{A}}],K_*(\mathcal{B}))$. Moveover, we have

Proposition 3.2. Suppose that A is a separable nuclear unital C^* -algebra and B is a separable stable C^* -algebra. If $A \in \mathcal{N}$, then $\bar{\kappa}$ is bijective and the following sequence of groups is exact:

$$0 \longrightarrow \operatorname{Ext}_{\mathbb{Z}}(K_{*}(\mathcal{A}),[1_{\mathcal{A}}],K_{*}(\mathcal{B})) \xrightarrow{\bar{\kappa}^{-1}} \operatorname{Ext}_{u}(\mathcal{A},\mathcal{B}) \xrightarrow{\bar{\Gamma}_{\mathcal{A},\mathcal{B}}}$$
$$\longrightarrow \operatorname{Hom}_{0}(K_{0}(\mathcal{A}),K_{1}(\mathcal{B})) \oplus \operatorname{Hom}(K_{1}(\mathcal{A}),K_{0}(\mathcal{B})) \longrightarrow 0.$$

Proof. Let $(h_0, h_1) \in \text{Hom}_0(K_0(\mathcal{A}), K_1(\mathcal{B})) \oplus \text{Hom}(K_1(\mathcal{A}), K_0(\mathcal{B}))$. Then we can find $[\tau] \in \text{Ext}(\mathcal{A}, \mathcal{B})$ such that $\Gamma_{\mathcal{A}, \mathcal{B}}([\tau]) = (h_0, h_1)$ by (UCT). Since $h_0([1_A]) = \partial_1 \circ \tau_*^0([1_A]) = 0$, we can pick a unital extension τ_0 with $[\tau] = [\tau_0]$ in $\text{Ext}(\mathcal{A}, \mathcal{B})$ by Lemma 2.2. Thus,

$$\bar{\Gamma}_{AB}([\tau_0]_u) = \Gamma_{AB}([\tau_0]) = \Gamma_{AB}([\tau]) = (h_0, h_1),$$

that is, $\bar{\Gamma}_{\mathcal{A},\mathcal{B}}$ is surjective.

When $[\tau] \in \operatorname{Ker} \Gamma_{\mathcal{A},\mathcal{B}}$, $[\tau(1_{\mathcal{A}})] = 0$ in $K_0(Q(\mathcal{B}))$. So there is a unital extension τ_1 such that $[\tau_1] = [\tau]$ in $\operatorname{Ext}(\mathcal{A},\mathcal{B})$ and hence $i_{\mathcal{A},\mathcal{B}}([\tau_1]_u) = [\tau]$, $[\tau_1]_u \in \operatorname{Ker} \bar{\Gamma}_{\mathcal{A},\mathcal{B}}$, i.e., $i_{\mathcal{A},\mathcal{B}} \colon \operatorname{Ker} \bar{\Gamma}_{\mathcal{A},\mathcal{B}} \to \operatorname{Ker} \Gamma_{\mathcal{A},\mathcal{B}}$ is surjective. Clearly, $\operatorname{Ran} (\Phi'_{\mathcal{A},\mathcal{B}} \subset \operatorname{Ker} \bar{\Gamma}_{\mathcal{A},\mathcal{B}})$. Thus, we get the exact sequence

$$0 \longrightarrow K_0(\mathcal{B})/H_1(K_0(\mathcal{A}), K_0(\mathcal{B})) \stackrel{\Phi'_{\mathcal{A}, \mathcal{B}}}{\longrightarrow} \operatorname{Ker} \bar{\Gamma}_{\mathcal{A}, \mathcal{B}} \stackrel{i_{\mathcal{A}, \mathcal{B}}}{\longrightarrow} \operatorname{Ker} \Gamma_{\mathcal{A}, \mathcal{B}} \longrightarrow 0$$

by Corollary 2.5. Therefore, we can deduce from following commutative diagram that $\bar{\kappa}$ is bijective.

4 The half-exactness of $\operatorname{Ext}_u(\mathcal{A},\cdot)$

Let \mathcal{B}_1 , \mathcal{B}_2 be separable stable C^* -algebras and ϕ is a *-homomorphism of \mathcal{B}_1 to \mathcal{B}_2 . Let $\phi_*^i: K_i(\mathcal{B}_1) \to K_i(\mathcal{B}_2)$ be the induced homomorphism of ϕ on $K_i(\mathcal{B}_1)$, i = 0, 1. Then

$$\phi_*^i((H_1(K_0(\mathcal{A}), K_i(\mathcal{B}_1))) \subset H_1(K_0(\mathcal{A}), K_i(\mathcal{B}_2)), i = 0, 1.$$

Define the homomorphism

$$\hat{\phi}_* \colon K_0(\mathcal{B}_1) / H_1(K_0(\mathcal{A}), K_0(\mathcal{B}_1)) \to K_0(\mathcal{B}_2) / H_1(K_0(\mathcal{A}), K_0(\mathcal{B}_2))$$

by $\hat{\phi}_*([x]_{\mathcal{A},\mathcal{B}_1}) = [\phi^0_*(x)]_{\mathcal{A},\mathcal{B}_2}, \forall x \in K_0(\mathcal{B}_1).$

Let $\mathcal{B}_1, \mathcal{B}_2$ and ϕ be as above. If $\overline{\phi(\mathcal{B}_1)\mathcal{B}_2} = \mathcal{B}_2$ (especially, ϕ is surjective), then ϕ has a unique extension $\bar{\phi}$ from $M(\mathcal{B}_1)$ to $M(\mathcal{B}_2)$ such that $\bar{\phi}$ is strictly continuous and $\bar{\phi}(1_{M(\mathcal{B}_1)}) = 1_{M(\mathcal{B}_2)}$ by [11, Corollary 1.1.15]. Let $\pi_{\mathcal{B}_i}$ be the quotient map from $M(\mathcal{B}_i)$ onto $Q(\mathcal{B}_i)$, i = 1, 2 and let $\hat{\phi} \colon Q(\mathcal{B}_1) \to Q(\mathcal{B}_2)$ be the unital *-homomorphism induced by $\bar{\phi}$ such that $\hat{\phi} \circ \pi_{\mathcal{B}_1} = \pi_{\mathcal{B}_2} \circ \bar{\phi}$. In this case, we can define homomorphisms $\phi_* \colon \operatorname{Ext}(\mathcal{A}, \mathcal{B}_1) \to \operatorname{Ext}(\mathcal{A}, \mathcal{B}_2)$ and $\phi_*^u \colon \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}_1) \to \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}_2)$ respectively by

$$\phi_*([\tau]) = [\hat{\phi} \circ \tau], \ \forall [\tau] \in \operatorname{Ext}(\mathcal{A}, \mathcal{B}_1), \quad \phi_*^u([\tau]_u) = [\hat{\phi} \circ \tau]_u, \ \forall [\tau]_u \in \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}_1).$$

In general, according to [11, Lemma 1.3.19, Corollary 1.1.15], ϕ is homotopic to a quasiunital *-homomorphism $\phi_0 \colon \mathcal{B}_1 \to \mathcal{B}_2$ (i.e., $\overline{\phi_0(\mathcal{B}_1)\mathcal{B}_2} = p\mathcal{B}_2$ for some projection $p \in M(\mathcal{B}_2)$) and ϕ_0 has a unique extension $\bar{\phi}_0 \colon M(\mathcal{B}_1) \to M(\mathcal{B}_2)$ with $p = \bar{\phi}_0(1_{M(\mathcal{B}_1)})$ such that $\bar{\phi}_0$ is strictly continuous. In this case, we define $\phi_*([\tau]) = [\hat{\phi}_0 \circ \tau], \ \forall [\tau] \in \text{Ext}(\mathcal{A}, \mathcal{B}_1)$ and $\phi_*^u([\tau]_u) =$ $[\hat{\phi}_0 \circ \tau']_u, \ \forall \tau \in \text{Hom}_1(\mathcal{A}, Q(\mathcal{B}_1))$, where

$$\tau'(a) = (\pi_{\mathcal{B}_2}(u_1), \pi_{\mathcal{B}_2}(u_2)) \Big(\operatorname{diag} \big(\hat{\phi}_0 \circ \tau(a), 0 \big) + \pi_{\mathcal{B}_2}(W) \operatorname{diag} \big(\tau_{\mathcal{A}, \mathcal{B}_2}(a), 0 \big) \pi_{\mathcal{B}_2}(W^*) \Big) \begin{pmatrix} \pi_{\mathcal{B}_2}(u_1^*) \\ \pi_{\mathcal{B}_2}(u_2^*) \Big) \Big),$$

 $\forall a \in \mathcal{A} \text{ and } W \in M_2(M(\mathcal{B}_2)) \text{ such that } W^*W = \operatorname{diag}(1_{M(\mathcal{B}_2)}, 0), WW^* = \operatorname{diag}(1_{M(\mathcal{B}_2)} - p, 1_{M(\mathcal{B}_2)}), \text{ and } u_1, u_2 \text{ are isometries in } M(\mathcal{B}_2) \text{ with } u_1u_1^* + u_2u_2^* = 1_{M(\mathcal{B}_2)}. \text{ The } \phi_* \text{ above is well-defined (cf. [12, Remark 2.9])}. In order to show <math>\phi_*^u$ is well-defined, we need following lemma.

Lemma 4.1. Let $\sigma_t : \mathcal{A} \to M(\mathcal{B})$ be unital completely positive maps for all t in [0,1] such that $t \mapsto \sigma_t(a)$ is strictly continuous for every a in \mathcal{A} and $t \mapsto \sigma_t(ab) - \sigma_t(a)\sigma_t(b)$ is norm-continuous from [0,1] to \mathcal{B} for all $a,b \in \mathcal{A}$. Put $\tau_t = \pi \circ \sigma_t \in \text{Hom}_1(\mathcal{A}, Q(\mathcal{B})), \forall t \in [0,1]$. Suppose that $\mathcal{A} \in \mathcal{N}$. Then $[\tau_0]_u = [\tau_1]_u$ in $\text{Ext}_u(\mathcal{A}, \mathcal{B})$.

Proof. Set I = [0,1] and $I\mathcal{B} = \{f : I \to \mathcal{B} \text{ continuous}\}$. Let $\Lambda_i : I\mathcal{B} \to \mathcal{B}$ be $\Lambda_i(f) = f(i)$, $i = 0, 1, \forall f \in I\mathcal{B}$. Since $M(I\mathcal{B}) = \{f : I \to M(\mathcal{B}) \text{ strictly continuous}\}$ and Λ_i is surjective, we have $\bar{\Lambda}_i(f) = f(i)$, $i = 0, 1, \forall f \in M(I\mathcal{B})$. Note that $\Lambda^i_{j*} : K_i(\mathcal{I}\mathcal{B}) \to K_i(\mathcal{B})$ is isomorphic, i, j = 0, 1 and $\Lambda_{j*} : \text{Ext}(\mathcal{A}, I\mathcal{B}) \to \text{Ext}(\mathcal{A}, \mathcal{B})$ is also isomorphic by [1, Theorem 19.5.7], j = 0, 1 as $C_0((0, 1], \mathcal{B})$, $C_0([0, 1), \mathcal{B})$ are contractible and

$$0 \longrightarrow C_0((0,1],\mathcal{B}) \longrightarrow I\mathcal{B} \longrightarrow \mathcal{B} \longrightarrow 0, \quad 0 \longrightarrow C_0([0,1],\mathcal{B}) \longrightarrow I\mathcal{B} \longrightarrow \mathcal{B} \longrightarrow 0$$

are split exact.

Consider following diagram of exact sequences obtained by Corollary 2.5.

$$0 \longrightarrow \frac{K_0(I\mathcal{B})}{H_1(K_0(\mathcal{A}), K_0(I\mathcal{B}))} \stackrel{\Phi'_{\mathcal{A}, I\mathcal{B}}}{\longrightarrow} \operatorname{Ext}_u(\mathcal{A}, I\mathcal{B}) \stackrel{i_{\mathcal{A}, I\mathcal{B}}}{\longrightarrow} \operatorname{Ext}(\mathcal{A}, I\mathcal{B}) \stackrel{\rho_{\mathcal{A}, I\mathcal{B}}}{\longrightarrow} H_1(K_0(\mathcal{A}), K_1(I\mathcal{B})) \longrightarrow 0$$

$$\hat{\Lambda}_{j*} \downarrow \qquad \qquad \Lambda_{j*}^u \downarrow \qquad \qquad \Lambda_{j*}^1 \downarrow \qquad \qquad \Lambda_{j*}^1 \downarrow \qquad \qquad .$$

$$0 \longrightarrow \frac{K_0(\mathcal{B})}{H_1(K_0(\mathcal{A}), K_0(\mathcal{B}))} \stackrel{\Phi'_{\mathcal{A}, \mathcal{B}}}{\longrightarrow} \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}) \stackrel{i_{\mathcal{A}, \mathcal{B}}}{\longrightarrow} \operatorname{Ext}(\mathcal{A}, \mathcal{B}) \stackrel{\rho_{\mathcal{A}, \mathcal{B}}}{\longrightarrow} H_1(K_0(\mathcal{A}), K_1(\mathcal{B})) \longrightarrow 0$$

According to the definitions of homomorphisms in the diagram, it is easy to verify that this diagram is commutative. Since $\hat{\Lambda}_{j*}$, Λ_{j*} and Λ_{j*}^1 are all isomorphic, we have Λ_{j*}^u is isomorphic by 5–Lemma, j=0,1.

Let $R: \mathcal{B} \to I\mathcal{B}$ be given by R(x)(t) = x, $\forall x \in \mathcal{B}$ and $t \in I$. Then $\Lambda_j \circ R = \mathrm{id}_{\mathcal{B}}$ and $\overline{R(\mathcal{B})(I\mathcal{B})} = I\mathcal{B}$, j = 0, 1. So $R_*: \mathrm{Ext}_u(\mathcal{A}, \mathcal{B}) \to \mathrm{Ext}_u(\mathcal{A}, I\mathcal{B})$ is well-defined and $\Lambda_{j*}^u \circ R_*^u = \mathrm{id}_{\mathcal{B}}$ on $\mathrm{Ext}_u(\mathcal{A}, \mathcal{B})$, j = 0, 1. Therefore, $\Lambda_{0*}^u = \Lambda_{1*}^u$ by above argument.

Now the map $\tilde{\sigma}(a)(t) = \sigma_t(a)$, $\forall a \in \mathcal{A}$ and $t \in I$ defines a unital completely map from \mathcal{A} to $M(I\mathcal{B})$ with $\tilde{\sigma}(ab) - \tilde{\sigma}(a)\tilde{\sigma}(b) \in I\mathcal{B}$, $\forall a, b \in \mathcal{A}$. Put $\tilde{\tau} = \pi_{I\mathcal{B}} \circ \tilde{\sigma}$. Then $\tilde{\tau} \in \text{Hom}_1(\mathcal{A}, Q(I\mathcal{B}))$ and $\Lambda_{j*}^u([\tilde{\tau}]_u) = [\tau_j]_u$, j = 0, 1, so that $[\tau_0]_u = [\tau_1]_u$.

Proposition 4.2. Let $A \in \mathcal{N}$ be a unital separable nuclear C^* -algebra and $\mathcal{B}_1, \mathcal{B}_2$ be separable stable C^* -algebras. Let $\phi \colon \mathcal{B}_1 \to \mathcal{B}_2$ be a *-homomorphism. We have

- (1) $\operatorname{Ext}_u(\cdot, \mathcal{B})$ is homotopic invariant for first variable in the class of separable nuclear algebras belonging to \mathcal{N} ;
- (2) $\phi_*^u : \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}_1) \to \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}_2)$ given above is well-defined;
- (3) $\operatorname{Ext}_u(\mathcal{A}, \cdot)$ is homotopic invariant for second variable in the class of separable, stable C^* algebras;
- $(4) \phi_* \circ i_{\mathcal{A},\mathcal{B}_1} = i_{\mathcal{A},\mathcal{B}_2} \circ \phi_*^u, \ \phi_*^u \circ \Phi'_{\mathcal{A},\mathcal{B}_1} = \Phi'_{\mathcal{A},\mathcal{B}_2} \circ \hat{\phi}_*.$

Proof. (1) Let A_1 , A_2 be unital separable nuclear C^* -algebras which is in \mathcal{N} . Let α_1 , α_2 be unital *-homomorphisms from A_1 to A_2 . Suppose that there is a path of unital *-homomorphism ρ_t from A_1 to A_2 for all $t \in [0,1]$ such that $t \mapsto \rho_t(a)$ is continuous from [0,1] to A_2 for ever $a \in A_1$ and $\rho_0 = \alpha_1$, $\rho_1 = \alpha_2$.

Let $\tau \in \text{Hom}_1(\mathcal{A}, Q(\mathcal{B}))$. Then there is a unital completely positive map $\sigma \colon \mathcal{A}_2 \to M(\mathcal{B})$ such that $\tau = \pi \circ \tau$. Set $\sigma_t = \sigma \circ \rho_t$ and $\tau_t = \pi \circ \sigma_t$, $\forall t \in [0, 1]$. Obviously, $\{\sigma_t | t \in [0, 1]\}$ satisfies the conditions given in Lemma 4.1. Thus, $\alpha_1^*([\tau]_u) = [\tau \circ \rho_0]_u = [\tau \circ \rho_1]_u = \alpha_2^*([\tau]_u)$.

- (2) If ϕ is homotopic to another quasi-unital *-homomorphism ϕ' , then by [11, Lemma 3.1.15], there is a path λ_t of *-homomorphism from $M(\mathcal{B}_1)$ to $M(\mathcal{B}_2)$, $\forall t \in [0, 1]$ such that
 - (a) $t \mapsto \lambda_t(x)$ is strictly continuous for every $x \in M(\mathcal{B}_1)$;
 - (b) $t \mapsto \lambda_t(b)$ is norm-continuous from [0,1] to \mathcal{B}_2 for any $b \in \mathcal{B}_1$;
 - (c) $\lambda_0 = \bar{\phi}_0, \lambda_1 = \bar{\phi}'.$

Put $\hat{p}(t) = \lambda_t(1_{M(\mathcal{B}_1)})$. Then \hat{p} is a projection in $M(I\mathcal{B}_2)$ and hence there is partial isometry \hat{w} in $M_2(M(I\mathcal{B}_2))$ such that

$$\hat{w}^*\hat{w} = \text{diag}(1_{M(IB_2)}, 0) \text{ and } \hat{w}\hat{w}^* = \text{diag}(1_{M(IB_2)} - \hat{p}, 1_{M(IB_2)}).$$

Simple computation shows that W (resp. \hat{w}) has the form $W = \begin{pmatrix} w_1 & 0 \\ w_2 & 0 \end{pmatrix}$ (resp. $\hat{w} = \begin{pmatrix} \hat{w}_1 & 0 \\ \hat{w}_2 & 0 \end{pmatrix}$) with

$$w_1 w_1^* = 1_{M(\mathcal{B}_2)} - p, \ w_1 w_2^* = 0, \ w_2 w_2^* = 1_{M(\mathcal{B}_2)}, \ w_1^* w_1 + w_2^* w_2 = 1_{M(\mathcal{B}_2)};$$
$$\hat{w}_1 \hat{w}_1^* = 1_{M(\mathcal{B}_2)} - \hat{p}, \ \hat{w}_1 \hat{w}_2^* = 0, \ \hat{w}_2 \hat{w}_2^* = 1_{M(\mathcal{B}_2)}, \ \hat{w}_1^* \hat{w}_1 + \hat{w}_2^* \hat{w}_2 = 1_{M(\mathcal{B}_2)}.$$

Set $v = w_1^* \hat{w}_1(0) + w_2^* \hat{w}_2(0)$. Then v is unitary in $M(\mathcal{B}_2)$ and $w_1 v = \hat{w}_1(0)$, $w_2 v = \hat{w}_2(0)$. Let v(t) be a strictly continuous path in $U(M(\mathcal{B}_2))$ $(t \in [0,1])$ such that v(0) = v, $v(1) = 1_{M(\mathcal{B}_2)}$. Set

$$\hat{W}_i(t) = \begin{cases} \hat{w}_i(0)v^*(2t) & 0 \le t \le 1/2\\ \hat{w}_i(2t-1) & 1/2 \le t \le 1 \end{cases}, \quad i = 1, 2, \quad \hat{W} = \begin{pmatrix} \hat{W}_1 & 0\\ \hat{W}_2 & 0 \end{pmatrix}.$$

Then $\hat{W} \in M(I\mathcal{B}_2)$ with $\hat{W}(0) = W$. Set

$$\hat{q}(t) = \begin{cases} p & 0 \le t \le 1/2 \\ \hat{p}(2t-1) & 1/2 \le t \le 1 \end{cases}, \quad \hat{\lambda}_t = \begin{cases} \bar{\phi}_0 & 0 \le t \le 1/2 \\ \lambda_{2t-1} & 1/2 \le t \le 1 \end{cases}.$$

Clearly, $\hat{q}(t) = \hat{\lambda}_t(1_{M(\mathcal{B}_2)})$ and $\hat{\lambda}_t$ satisfies Condition (a), (b) and (c), and

$$\hat{W}^*\hat{W} = \text{diag}(1_{M(\mathcal{B}_2)}, 0), \quad \hat{W}\hat{W}^* = \text{diag}(1_{M(\mathcal{B}_2)} - \hat{q}, 1_{M(\mathcal{B}_2)}).$$

Let $q = \bar{\phi}'(1_{M(\mathcal{B}_1)})$. Pick $W' \in M_2(M(\mathcal{B}_2))$ such that $W'W'^* = \operatorname{diag}(1_{M(\mathcal{B}_2)}, 0)$, $W'^*W' = \operatorname{diag}(1_{M(\mathcal{B}_2)} - q, 1_{M(\mathcal{B}_2)})$. If $W' \neq \hat{W}(1)$, using above method, we can choose $\hat{\lambda}_t$ and \hat{W} such that $\hat{W}(1) = W'$.

Let $\tau \in \text{Hom}_1(\mathcal{A}, Q(\mathcal{B}_1))$ with $\tau = \pi_{\mathcal{B}_1} \circ \sigma$ for some unital completely positive map $\sigma \colon \mathcal{A} \to M(\mathcal{B}_2)$ and let $\tau_{\mathcal{A}, \mathcal{B}_2} = \pi_{\mathcal{B}_2} \circ \psi$ for some unital *-homomorphism $\psi \colon \mathcal{A} \to M(\mathcal{B}_2)$. Set

$$\sigma_t(a) = (u_1, u_2)(\operatorname{diag}(\hat{\lambda}_t \circ \sigma(a), 0) + \hat{W}(t)\operatorname{diag}(\psi(a), 0)\hat{W}^*(t))(u_1, u_2)^T, \ \forall a \in \mathcal{A}$$

Note that $\sigma(ab) - \sigma(a)\sigma(b) \in \mathcal{B}_1$, $\forall a, b \in \mathcal{A}$ and $\hat{\lambda}_t$ satisfies Condition (a), (b) and (c). So we have $[\pi_{\mathcal{B}_2} \circ \sigma_0]_u = [\pi_{\mathcal{B}_2} \circ \sigma_1]_u$ by Lemma 4.1, that is, ϕ_*^u is well-defined.

- (3) By (2), we can assume that $\phi_1, \phi_2 \colon \mathcal{B}_1 \to \mathcal{B}_2$ are quasi-unital *-homomorphisms which are homotopic. Using the same methods as in the proof of (2), we have $\phi_{1*}^u = \phi_{2*}^u$.
- are homotopic. Using the same methods as in the proof of (2), we have $\phi_{1*}^u = \phi_{2*}^u$.

 (4) Put $r = \begin{pmatrix} \pi_{\mathcal{B}_2}(p) & 0 \\ 0 & 0 \end{pmatrix}$ and $U = \begin{pmatrix} r & 1_2 r \\ 1_2 r & r \end{pmatrix} \in U_0(\mathrm{M}_4(Q(\mathcal{B}_2)))$, where 1_2 is the unit of $\mathrm{M}_2(Q(\mathcal{B}_2))$. Then for any $\tau \in \mathrm{Hom}_1(\mathcal{A}, Q(\mathcal{B}_1))$ and any $a \in \mathcal{A}$,

$$\operatorname{diag}\left(\begin{pmatrix} \hat{\phi}_0 \circ \tau(a) & \\ & 0 \end{pmatrix} + \pi_{\mathcal{B}_2}^{(2)}(W) \begin{pmatrix} \tau_{\mathcal{A},\mathcal{B}_2}(a) & \\ & 0 \end{pmatrix} \pi_{\mathcal{B}_2}^{(2)}(W^*), 0 \right)$$

$$= U \begin{pmatrix} \hat{\phi}_0 \circ \tau(a) & \\ & \pi_{\mathcal{B}_2}^{(2)}(W) \begin{pmatrix} \tau_{\mathcal{A},\mathcal{B}_2}(a) & \\ & 0 \end{pmatrix} \pi_{\mathcal{B}_2}^{(2)}(W^*) \end{pmatrix} U^*,$$

where $\pi_{\mathcal{B}_2}^{(n)}$ represents the induced homomorphism of $\pi_{\mathcal{B}_2}$ on $M_n(M(\mathcal{B}_2))$. Put

$$\bar{W} = \begin{pmatrix} W & 1_2 - WW^* \\ 1_2 - W^*W & W^* \end{pmatrix} \in U(M_4(M(\mathcal{B}_2))).$$

Since $1_2 - W^*W = \text{diag}(0,1)$, it follows that for every $a \in \mathcal{A}$,

$$\operatorname{diag}\left(\pi_{\mathcal{B}_2}^{(2)}(W)\begin{pmatrix}\tau_{\mathcal{A},\mathcal{B}_2}(a) & \\ & 0\end{pmatrix}\pi_{\mathcal{B}_2}^{(2)}(W^*),0\right)=\pi_{\mathcal{B}_2}^{(4)}(\bar{W})\operatorname{diag}\left(\begin{pmatrix}\tau_{\mathcal{A},\mathcal{B}_2}(a) & \\ & 0\end{pmatrix},0\right)\pi_{\mathcal{B}_2}^{(4)}(\bar{W}^*).$$

Therefore, $i_{\mathcal{A},\mathcal{B}_2} \circ \phi_*^u([\tau]_u) = [\hat{\phi}_0 \circ \tau] = \phi_* \circ i_{\mathcal{A},\mathcal{B}_1}([\tau]_u)$ in $\operatorname{Ext}_u(\mathcal{A},\mathcal{B}_2)$.

Let $x \in K_0(\mathcal{B}_1)$. Then there is $v \in U(Q(\mathcal{B}_1))$ such that $\partial_0([v]) = x$ and $\Phi'_{\mathcal{A},\mathcal{B}_1}([x]_{\mathcal{A},\mathcal{B}_1})$ = $[Ad_v \circ \tau_{\mathcal{A},\mathcal{B}_1}]_u$. Let $\tau_{\mathcal{A},\mathcal{B}_1} = \pi_{\mathcal{B}_1} \circ \psi_0$ for some unital *-homomorphism $\psi_0 \colon \mathcal{A} \to M(\mathcal{B}_1)$ and set

$$\tilde{\psi}(a) = (u_1, u_2) \left(\begin{pmatrix} \bar{\phi}_0 \circ \psi_0(a) \\ 0 \end{pmatrix} + W \begin{pmatrix} \psi_0(a) \\ 0 \end{pmatrix} W^* \right) (u_1, u_2)^T, \ \forall \ a \in \mathcal{A},$$

$$\tilde{v} = (\pi_{\mathcal{B}_2}(u_1), \pi_{\mathcal{B}_2}(u_2)) \operatorname{diag} (\hat{\phi}_0(v) + 1_{Q(\mathcal{B}_2)} - \pi_{\mathcal{B}_2}(p), 1_{Q(\mathcal{B}_2)}) (\pi_{\mathcal{B}_2}(u_1), \pi_{\mathcal{B}_2}(u_2))^T \in U(Q(\mathcal{B}_2)).$$

Then $\tilde{\psi} \colon \mathcal{A} \to M(\mathcal{B}_2)$ is a unital *-homomorphism and

$$\phi_*^u \circ \Phi_{\mathcal{A},\mathcal{B}_1}'([x]_{\mathcal{A},\mathcal{B}_1}) = [Ad_{\tilde{v}} \circ (\pi_{B_2} \circ \tilde{\psi})]_u = [Ad_{\tilde{v}} \circ \tau_{\mathcal{A},\mathcal{B}_2}]_u,$$

by Lemma 2.3. Noting that $[\tilde{v}] = [\hat{\phi}_0(v) + 1_{Q(\mathcal{B}_2)} - \pi_{\mathcal{B}_2}(p)]$ in $K_1(Q(\mathcal{B}_2))$ by Lemma 2.1 and

$$\partial_0([\hat{\phi}_0(v) + 1_{Q(\mathcal{B}_2)} - \pi_{\mathcal{B}_2}(p)]) = [\phi_{0*}^0(x)] = [\phi_{*}^0(x)],$$

We have

$$\Phi'_{\mathcal{A},\mathcal{B}_{2}} \circ \hat{\phi}_{*}([x]_{\mathcal{A},\mathcal{B}_{1}}) = \Phi'_{\mathcal{A},\mathcal{B}_{2}}([\phi^{0}_{*}(x)]_{\mathcal{A},\mathcal{B}_{2}}) = [Ad_{\tilde{v}} \circ \tau_{\mathcal{A},\mathcal{B}_{2}}]_{u} = \phi^{u}_{*} \circ \Phi'_{\mathcal{A},\mathcal{B}_{1}}([x]_{\mathcal{A},\mathcal{B}_{1}}).$$

Remark 4.3. In the definition of ϕ_*^u , we can replace $\tau_{\mathcal{A},\mathcal{B}_2}$ by any unital extension $\mu \colon \mathcal{A} \to Q(\mathcal{B}_2)$. Let ϕ_0 , W and u_1, u_2 be as above and let $\mu_0 \colon \mathcal{A} \to Q(\mathcal{B}_2)$ be a unital trivial extension. Put

$$\tau_0'(a) = \operatorname{diag}(\hat{\phi}_0 \circ \tau(a), 0) + \pi_{\mathcal{B}_2}(W) \operatorname{diag}(\tau_{\mathcal{A}, \mathcal{B}_2}(a), 0) \pi_{\mathcal{B}_2}(W^*),$$

$$\tau_0''(a) = \operatorname{diag}(\hat{\phi}_0 \circ \mu_0(a), 0) + \pi_{\mathcal{B}_2}(W) \operatorname{diag}(\mu(a), 0) \pi_{\mathcal{B}_2}(W^*),$$

$$\tau_1'(a) = \operatorname{diag}(\hat{\phi}_0 \circ \tau(a), 0) + \pi_{\mathcal{B}_2}(W) \operatorname{diag}(\mu(a), 0) \pi_{\mathcal{B}_2}(W^*),$$

$$\tau_1''(a) = \operatorname{diag}(\hat{\phi}_0 \circ \mu_0(a), 0) + \pi_{\mathcal{B}_2}(W) \operatorname{diag}(\tau_{\mathcal{A}, \mathcal{B}_2}(a), 0) \pi_{\mathcal{B}_2}(W^*),$$

$$\tau''(a) = (\pi_{\mathcal{B}_2}(u_1), \pi_{\mathcal{B}_2}(u_2)) \tau_0'(a) (\pi_{\mathcal{B}_2}(u_1), \pi_{\mathcal{B}_2}(u_2))^T,$$

$$\tau''(a) = (\pi_{\mathcal{B}_2}(u_1), \pi_{\mathcal{B}_2}(u_2)) \tau_1'(a) (\pi_{\mathcal{B}_2}(u_1), \pi_{\mathcal{B}_2}(u_2))^T,$$

 $\forall a \in \mathcal{A}$. Since $U \operatorname{diag}(\tau'_0(a), \tau''_0(a))U^* = \operatorname{diag}(\tau'_1(a), \tau''_1(a)), \ \forall a \in \mathcal{A}$, where U is given in the proof of Proposition 4.2 (4) and

$$(\pi_{\mathcal{B}_2}(u_1), \pi_{\mathcal{B}_2}(u_2))\tau_0''(\cdot) \begin{pmatrix} \pi_{\mathcal{B}_2}(u_1^*) \\ \\ \pi_{\mathcal{B}_2}(u_2^*) \end{pmatrix}, \ \pi_{\mathcal{B}_2}(u_1), \pi_{\mathcal{B}_2}(u_2))\tau_1''(\cdot) \begin{pmatrix} \pi_{\mathcal{B}_2}(u_1^*) \\ \\ \\ \pi_{\mathcal{B}_2}(u_2^*) \end{pmatrix}$$

are all unital trivial extensions, we obtain that $[\tau']_u = [\tau'']_u$ in $\operatorname{Ext}_u(\mathcal{A}, \mathcal{B}_2)$.

Let \mathcal{I} be a closed ideal of \mathcal{B} and let $\Lambda \colon \mathcal{B} \to \mathcal{B}/\mathcal{I} = \mathcal{D}$ be the canonical homomorphism. Then \mathcal{I} and \mathcal{D} are all stable by [13, Corollary 2.3 (ii)].

Theorem 4.4. Let the short exact sequence $0 \longrightarrow \mathcal{I} \stackrel{j}{\longrightarrow} \mathcal{B} \stackrel{\Lambda}{\longrightarrow} \mathcal{D} \longrightarrow 0$ be given as above. Suppose that $A \in \mathcal{N}$ is a unital separable unclear C^* -algebra and

- (i) there is a completely positive map $\Psi \colon \mathcal{D} \to \mathcal{B}$ such that $\Lambda \circ \Psi = \mathrm{id}_{\mathcal{D}}$;
- (ii) Ran (\hat{j}_*) = Ker $\hat{\Lambda}_*$;
- (iii) $j_*^1: H_1(K_0(\mathcal{A}), K_1(\mathcal{I})) \to H_1(K_0(\mathcal{A}), K_1(\mathcal{B}))$ is injective.

Then

$$\operatorname{Ext}_{u}(\mathcal{A}, \mathcal{I}) \xrightarrow{j_{*}^{u}} \operatorname{Ext}_{u}(\mathcal{A}, \mathcal{B}) \xrightarrow{\Lambda_{*}^{u}} \operatorname{Ext}_{u}(\mathcal{A}, \mathcal{D})$$

$$(4.1)$$

is exact in the middle. Especially, if the ψ in Condition (i) is a *-homomorphism, then j_*^u is injective, Λ_*^u is surjective in (4.1) and (4.1) is split exact.

Proof. Let $j_0: \mathcal{I} \to \mathcal{B}$ be a quasi-unital *-homomorphism with $\bar{j}_0(1_{M(\mathcal{I})}) = p \in M(\mathcal{B})$ such that j_0 is homotopic to j. Then $\Lambda \circ j_0: \mathcal{I} \to \mathcal{D}$ is homotopic to $\Lambda \circ j = 0$. So $(\Lambda \circ j_0)_*^u = 0$ by Proposition 4.2. Let $\tau \in \text{Hom}_1(\mathcal{A}, Q(\mathcal{I}))$. Then $\Lambda_*^u \circ j_*^u([\tau]_u) = [\hat{\Lambda} \circ \tau']_u$, where

$$\tau'(a) = (\pi(u_1), \pi(u_2)) \left(\begin{pmatrix} \hat{j}_0 \circ \tau(a) & \\ & 0 \end{pmatrix} + \pi^{(2)}(W) \begin{pmatrix} \tau_{\mathcal{A}, \mathcal{B}}(a) & \\ & 0 \end{pmatrix} \pi^{(2)}(W^*) \right) (\pi(u_1), \pi(u_2))^T,$$

 $\forall a \in \mathcal{A} \text{and } W^*W = \operatorname{diag}(1,0), \ WW^* = \operatorname{diag}(1-p,1). \text{ Set } v_i = \pi(u_i), \ i=1,2, \ p_0 = \bar{\Lambda}(p)$ and $W_0 = \bar{\Lambda}(W)$. Since v_1, v_2 are isometries with $v_1v_1^* + v_2v_2^* = 1$ and $\hat{\Lambda} \circ \tau_{\mathcal{A},\mathcal{B}} \colon \mathcal{A} \to Q(\mathcal{D})$ is a trivial unital extension and $W_0^*W_0 = \operatorname{diag}(1,0), \ W_0W_0^* = \operatorname{diag}(1-p_0,1)$ in $M_2(M(\mathcal{D}))$. Noting that $\overline{\Lambda \circ j_0} = \bar{\Lambda} \circ \bar{j}_0$, we have $\widehat{\Lambda \circ j_0} = \hat{\Lambda} \circ \hat{j}_0$. Therefore, $\Lambda_*^u \circ j_*^u([\tau]_u) = (\Lambda \circ j_0)_*^u([\tau]_u) = 0$, i.e., $\operatorname{Ran}(j_*^u) \subset \operatorname{Ker} \Lambda_*^u$.

In order to prove $\operatorname{Ker} \Lambda^u_* \subset \operatorname{Ran} (j^u_*)$, we consider following diagram:

In (4.2), three columns are exact by Corollary 2.5, the first row is exact by Condition (ii) and the third row is exact by [1, Theorem 19.5.7]. It is easy to check that following two diagrams

$$K_{0}(Q(\mathcal{I})) \xrightarrow{\hat{j}_{0*}^{0}} K_{0}(Q(\mathcal{B})) \qquad K_{0}(Q(\mathcal{B})) \xrightarrow{\hat{\Lambda}_{*}^{0}} K_{0}(Q(\mathcal{D}))$$

$$\begin{array}{ccc} \partial_{1} \downarrow & & \partial_{1} \downarrow & & \partial_{1} \downarrow & & \partial_{1} \downarrow & & \\ K_{1}(\mathcal{I}) & \xrightarrow{\hat{j}_{0*}^{1}} & K_{1}(\mathcal{B}) & & K_{1}(\mathcal{B}) & \xrightarrow{\Lambda_{*}^{1}} & K_{1}(\mathcal{D}) \end{array}$$

are commutative. Thus, $\rho_{\mathcal{A},\mathcal{B}} \circ j_* = j_*^1 \circ \rho_{\mathcal{A},\mathcal{I}}$, $\Lambda_*^1 \circ \rho_{\mathcal{A},\mathcal{B}} = \rho_{\mathcal{A},\mathcal{D}} \circ \Lambda_*$. Finally, the diagram (4.2) is commutative by Proposition 4.2 (4). We can deduce the assertion from (4.2).

Corollary 4.5. Let \mathcal{I} , \mathcal{B} , \mathcal{D} and j, Λ be as in Theorem 4.4. Assume that \mathcal{D} is contractible and there is a completely positive map $\Psi \colon \mathcal{D} \to \mathcal{B}$ such that $\Lambda \circ \Psi = \mathrm{id}_{\mathcal{D}}$. Then $j_*^u \colon \mathrm{Ext}_u(\mathcal{A}, \mathcal{I}) \to \mathrm{Ext}_u(\mathcal{A}, \mathcal{B})$ is isomorphic.

Proof. The assumptions indicate that \hat{j}_* , j_* and j_*^1 are all isomorphic. By using Theorem 4.4, Proposition 4.2 (3) to the commutative diagram (4.2), we can obtain the assertion.

Corollary 4.6. Let $A \in \mathcal{N}$ be a unital separable nuclear C^* -algebra and \mathcal{B} be a separable nuclear stable C^* -algebra. Then $\operatorname{Ext}_u(A, S^2\mathcal{B}) \cong \operatorname{Ext}_u(A, \mathcal{B})$, where $S^2\mathcal{B} = C_0(\mathbb{R}^2) \otimes \mathcal{B}$.

Proof. Let S be the unilateral shift on l^2 and let $T_0 = C^*(S - I_{l^2})$ be the C^* -subalgebra in $B(l^2)$ generated by $S - I_{l^2}$. Then we have a short exact sequence:

$$0 \longrightarrow \mathcal{B} \xrightarrow{j} T_0 \otimes \mathcal{B} \xrightarrow{q} S\mathcal{B} \longrightarrow 0 \tag{4.3}$$

and also have $K_i(T_0 \otimes \mathcal{B}) \cong 0$, i = 0, 1 (cf. [14]). Set

$$C_q = \{(x, f) \in (T_0 \otimes \mathcal{B}) \oplus C_0([0, 1), S\mathcal{B}) | q(x) = f(0) \}.$$

Then we have following exact sequences of C^* -algebras

$$0 \longrightarrow \mathcal{B} \stackrel{e}{\longrightarrow} C_q \longrightarrow C_0([0,1), SB) \longrightarrow 0 \tag{4.4}$$

$$0 \longrightarrow S^2 \mathcal{B} \stackrel{i}{\longrightarrow} C_q \longrightarrow T_0 \otimes \mathcal{B} \longrightarrow 0. \tag{4.5}$$

Since $C_0([0,1), S\mathcal{B})$ is contractible, applying Corollary 4.5 to (4.4), we get that e_*^u : $\operatorname{Ext}_u(\mathcal{A}, \mathcal{B}) \to \operatorname{Ext}_u(\mathcal{A}, C_q \otimes \mathcal{K})$ is isomorphic. We also obtain that e_* : $\operatorname{Ext}(\mathcal{A}, \mathcal{B}) \to \operatorname{Ext}(\mathcal{A}, C_q \otimes \mathcal{K})$ and e_*^i : $K_i(\mathcal{B}) \to K_i(C_q)$ are all isomorphic, i = 0, 1. Set

$$\partial_u = (e_*^u)^{-1} \circ i_*^u, \ \hat{\partial} = (\hat{e}_*)^{-1} \circ \hat{i}_*, \ \partial = (e_*)^{-1} \circ i_*, \ \partial^1 = (e_*^1)^{-1} \circ i_*.$$

Then we have following commutative diagram of exact sequences by Proposition 4.2:

$$0 \to \frac{K_0(\mathcal{B})}{H_1(K_0(\mathcal{A}), K_0(\mathcal{B}))} \stackrel{\Phi'_{\mathcal{A}, \mathcal{B}}}{\longrightarrow} \operatorname{Ext}_u(\mathcal{A}, \mathcal{B}) \stackrel{i_{\mathcal{A}, \mathcal{B}}}{\longrightarrow} \operatorname{Ext}(\mathcal{A}, \mathcal{B}) \stackrel{\rho_{\mathcal{A}, \mathcal{B}}}{\longrightarrow} H_1(K_0(\mathcal{A}), K_1(\mathcal{B})) \to 0$$

$$\hat{\partial} \uparrow \qquad \qquad \hat{\partial} \downarrow \qquad \qquad \hat{\partial} \uparrow \qquad \qquad \hat{\partial}^1 \downarrow \qquad$$

Since $K_i(T_0 \otimes \mathcal{B}) \cong 0$, i = 0, 1, it follows from (4.5) that \hat{i}_* , i_* and i_*^1 are all isomorphic. Thus, $\hat{\partial}$, ∂ and ∂^1 are isomorphic in above commutative diagram and consequently, ∂_u is isomorphic. \square

Acknowledgement The author is grateful to Professor Huaxin Lin for his helpful suggestions while preparing this paper.

References

- [1] Blackadar, B.: K-Theory for Operator Algebras (2nd ed), CUP, 1998.
- [2] Brown, L.G., Dadarlat, M.: Extensions of C^* -algebras and quasidiagonlity, J. London Math. Soc., 53, 582–600 (1996).
- [3] Manuilov, V. and Thomsen, K.: The group of unital C^* -extensions, 151–156 in C^* -Algebras and Elliptic THeory, Trends in Mathematics, Birkäuser, 2006.
- [4] Lin, H.: Unitary equivalences for essential extensions of C^* -algebras, $Proc.\ Amer.\ Math.\ Soc.$, 137, 3407–3420, (2009).
- [5] Lin, H.: Stable approximate unitary equivalence of homomorphisms, *J. Operator Theory*, 47, 343–378, (2002).
- [6] Thomsen, K.: On absorbing extensions, Proc. Amer. Math. Soc., 129, 1409–1417, (2001).
- [7] Xue, Y.: The connected stable rank of the purely infinite simple C^* -algebras, $Proc.\ Amer.\ Math.\ Soc.,\ 127,\ 3671–3676,\ (1999).$
- [8] Xue, Y.: The general stable rank in non-stable K-theory, Rocky Mount. J. Math., 30, 761–775, (2000).
- [9] Lin, H.: An Introduction to the Classification of Amenable C^* -Algebras, World Scientific, 2001.
- [10] Rosenberg, J., Schochet, C.: The Kuneth theorem and the universal coefficient theorem for Kasparov's generalized functor, *Duke Math. J.*, 55, 431–474, (1987).
- [11] Jensen, K.K., Thomsen. K.: Elements of KK-Theory, Birkäuser, Boston, 1991.
- [12] Schochet, C.L.: The fine structure of the Kasparov groups I: continuity of the KK-pairing, J. Funct. Anal., 186, 25–61, (2001).
- [13] Rørdam, M.: Stable C^* -algebras, 1–23 in Operator Algebras and Applications, Advanced Studies in Pure Mathematics, 2003.
- [14] Cuntz, J.: K-theory and C*-algebras, 55-79 in Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), Lecture Notes in Math. 1046, Springer, Berlin, 1984.
- [15] Hu, S., Lin, H., Xue, Y.: Tracial limit of C*-algebras, Acta Math. Sinica, 19, 535-556, (2003).