Présentation des protocoles RSAES-OAEP et RSASSA-PSS

M2 MIC - Cryptographie asymétrique

Jérémie Nekam et Daniel Resende

PARIS

DIDEROT

Mardi 24 octobre 2017

Introduction

- Introduction
- RSAES-OAEP
 - Génération des clés RAES-OAEP
 - Utilisation d'OAEP avec RSA
 - Chiffrement/déchiffrement de RAES-OAEP
 - Sécurité du protocole

- Introduction
- RSAES-OAEP
 - Génération des clés RAES-OAEP
 - Utilisation d'OAEP avec RSA
 - Chiffrement/déchiffrement de RAES-OAEP
 - Sécurité du protocole
- RSASSA-PSS
 - PSS
 - Utilisation de PSS avec RSA
 - Sécurité du protocole

- Introduction
- RSAES-OAEP
 - Génération des clés RAES-OAEP
 - Utilisation d'OAEP avec RSA
 - Chiffrement/déchiffrement de RAES-OAEP
 - Sécurité du protocole
- RSASSA-PSS
 - PSS
 - Utilisation de PSS avec RSA
 - Sécurité du protocole
- 4 Conclusion/Recommandation

- Introduction
- 2 RSAES-OAEP
- RSASSA-PSS
- 4 Conclusion/Recommandation

Deux protocoles pour deux utilisations différentes :

Deux protocoles pour deux utilisations différentes :

RSAES-OAEP Protocole de chiffrement/déchiffrement

Deux protocoles pour deux utilisations différentes : RSAES-OAEP Protocole de chiffrement/déchiffrement RSASSA-PSS Protocole de signature

Pourquoi utiliser OAEP?

D. Bleichembacher a trouvé une attaque CCA-2 sur le protocole suivant :

Pourquoi utiliser OAEP?

D. Bleichembacher a trouvé une attaque CCA-2 sur le protocole suivant :

Definition (PKCS #1 v1)

Soit M le message à chiffrer. On note $EB = 00 \parallel 02 \parallel Padding \parallel 00 \parallel M$

Le schéma OAEP standard

Algorithme 1 Schéma OAEP

Require: Un message m, un aléa r et deux oracles G et H.

Ensure: Un message m' tel que $m' = s \parallel t$.

Figure - OAEP

- Introduction
- 2 RSAES-OAEP
 - Génération des clés RAES-OAEP
 - Utilisation d'OAEP avec RSA
 - Chiffrement/déchiffrement de RAES-OAEP
 - Sécurité du protocole
- 3 RSASSA-PSS
- 4 Conclusion/Recommandation

• La génération des clés,

- La génération des clés,
- Le schéma EM-OAEP.

- La génération des clés,
- Le schéma EM-OAEP.
- La primitive RSAEP (resp. RSADP) pour le chiffrement (resp. déchiffrement).

Génération des clés RAES-OAEP

Clés publiques

On garde les mêmes clés (n,e) avec les mêmes propriétés que le RSA classique.

Génération des clés RAES-OAEP

Clés publiques

On garde les mêmes clés (n,e) avec les mêmes propriétés que le RSA classique.

Clés privées

• soit (p, q, d) tel que $e \cdot d = 1 \mod (ppcm(p-1, q-1))$,

Génération des clés RAES-OAEP

Clés publiques

On garde les mêmes clés (n,e) avec les mêmes propriétés que le RSA classique.

Clés privées

- soit (p, q, d) tel que $e \cdot d = 1 \mod (ppcm(p-1, q-1))$,
- soit (p,q,dP,dQ,qInv) où $q\cdot qInv=1$ mod p, $e\cdot dP=1$ mod q et $e\cdot dP=1$ mod q.

Le schéma EM-OAEP

Algorithme 2 Schéma EM-OAEP

Require: Un message m, un aléa seed et Hash des données spécifiant la fonction

de hachage à utiliser **Ensure:** Un message EM.

Figure - EM-OAEP

Chiffrement/déchiffrement de RAES-OAEP

RSAEP - Chiffrement

On garde les mêmes paramètres et propriétés que le RSA classique.

Chiffrement/déchiffrement de RAES-OAEP

RSAEP - Chiffrement

On garde les mêmes paramètres et propriétés que le RSA classique.

Algorithme 4 RSADP - Déchiffrement

```
Require: Un message chiffré c et une clé privé K = (n, p, q, d) ou
  (p, q, dP, dQ, qInv).
Ensure: Un message clair m
  if c n'est pas une entrée valide then
    return ERREUR
  end if
  if K = (n, p, q, d) then
    return m = c^d \mod n
  end if
  m_1 = c^{dP} \mod p
  m_2 = c^{dQ} \mod q
  h = (m_1 - m_2) \cdot qInv \ modp
  return m = m_2 + q \cdot h
```

Sécurité du protocole

Definition (Sécurité sémantique)

Soit m_0, m_1 deux messages choisies par l'attaquant. Soit c un challenge qui est le chiffré de m_0 ou m_1 .

On dit qu'un protocole est sémantiquement sûr si l'attaquant ne peut pas distinguer m_0 ou m_1 .

Attaque de Shoup [Sho01]

Proposition

Le protocole f-OAEP n'est pas totalement sémantiquement sûr.

Idées de preuve pour l'attaque de Shoup [Sho01]

Definition (Xor-malléable)

Soit f une permutation à sens unique avec trappe. On dit que f est xor-malléable, si on a une probabilité non-négligeable de pouvoir calculer $f(t\oplus a)$ en connaissant f(t) et a.

Idées de preuve pour l'attaque de Shoup [Sho01]

Definition (Xor-malléable)

Soit f une permutation à sens unique avec trappe. On dit que f est xor-malléable, si on a une probabilité non-négligeable de pouvoir calculer $f(t\oplus a)$ en connaissant f(t) et a.

Théorème

S'il existe un schéma xor-malléable alors il existe un permutation à sens-unique avec trappe qui tel que lorsqu'on utilise OEAP le schéma de chiffrement qui en résulte n'est pas sûr dans un modèle d'oracle aléatoire.

Soit f_0 xor-malléable sur k_0 bits. Soit un A algorithme qui calcule $f_0(t\oplus\delta)$ à partir de $(f_0,f_0(t),\delta)$.

Soit f telle que $f(s \parallel t) = s \parallel f(t)$ une permutation à sens-unique avec trappe où $s \in \{0,1\}^{n+k_1}$ et $t \in \{0,1\}^{k_0}$.

On pose que le schéma OAEP utilise f.

L'attaquant reçoit le chalenge y' , il peux l'écrire tel que $y' = s' \parallel f_0(t')$.

L'attaquant choisi un message arbitraire différent de zéro Δ tel que :

$$\begin{array}{lll} \mathbf{v} &=& A(\mathbf{f}_0,f_0(t'),H(s)\oplus H(s'))\\ \mathbf{y} &=& \mathbf{s}\parallel v\\ \mathrm{Si}\ y\ \mathrm{est}\ \mathrm{un}\ \mathrm{chiffrement}\ \mathrm{valide}\ \mathrm{de}\ x=x'\oplus (\delta 0^{k_1})et\mathbf{v}=\mathbf{f}_0(t'\oplus H(s)\oplus H(s')).\\ \mathbf{t} &=& \mathbf{t}'\oplus H(s')\oplus H(s)\\ \mathbf{r} &=& \mathbf{H}(\mathbf{s})\oplus t\\ &=& \mathbf{H}(\mathbf{s}')\oplus t'\\ &=& \mathbf{r}' \end{array}$$

Si l'attaquant déchiffre y à l'aide d'un oracle aléatoire, alors il a x. Et peux donc calculer x'.

 $= \mathsf{G}(\mathsf{r}) \oplus s' \oplus (\delta 0^{k_1})$ $= (\mathsf{x}' \oplus \delta) \parallel 0^{k_1}$

 $z = G(r) \oplus s$

 $\mathsf{s} = \mathsf{s}' \oplus (\delta \parallel 0^{k_1})$

Idées de preuve pour l'attaque de Shoup [Sho01]

Théorème

Il existe un oracle aléatoire tel que une permutation à sens-unique avec trappe existe.

La deux théorèmes précédents nous donnent le corollaire suivant :

Corollaire

Il existe un oracle aléatoire tel que la construction d'OAEP n'est pas sûr.

Réduction de RSA-OAEP

Proposition ([FOPS00])

1 Le problème d'inverser partiellement la fonction RSA se réduit au problème de sécurité de RSA-OAEP en complexité (en temps) quadratique.

Réduction de RSA-OAEP

Proposition ([FOPS00])

- Le problème d'inverser partiellement la fonction RSA se réduit au problème de sécurité de RSA-OAEP en complexité (en temps) quadratique.
- **1** Le problème d'inverser complètement la fonction RSA se réduit au problème d'inverser partiellement la fonction RSA en complexité (en temps) quadratique.

Réduction de RSA-OAEP

Proposition ([FOPS00])

- Le problème d'inverser partiellement la fonction RSA se réduit au problème de sécurité de RSA-OAEP en complexité (en temps) quadratique.
- 2 Le problème d'inverser complètement la fonction RSA se réduit au problème d'inverser partiellement la fonction RSA en complexité (en temps) quadratique.

Exemple

Pour une clés de 1024 bits, la complexité de la réduction est de 2^{40} .

- Introduction
- 2 RSAES-OAEP
- RSASSA-PSS
 - PSS
 - Utilisation de PSS avec RSA
 - Sécurité du protocole
- 4 Conclusion/Recommandation

RSASSA-PSS

RSASSA-PSS est un protocole de signature et de vérification d'un message chiffré par une clé publique RSA .

Fonctionnement

Le Protocole se décompose en :

- Le codage EMSA-PSS
- Puis la signature RSA en 3 parties

EMSA-PSS

Signature RSA

Elle se déroule en 3 parties à l'aide de 3 fonctions que nous allons expliquer

- OS2IP
- RSASP1
- I2OSP

Vérification

RSASSA-PSS - Verify

Elle prend en argument la clé public du signataire , le message signé , et sa signature

Algorithme 5 RSASSA-PSS-*verify*

```
Require: Un message signé M et une clé public K = (n, e) et une signature S.
Ensure: Signature Valid ou Signature invalid.
  if si la taille de S n'est pas k octets then
    return Signature invalide
  end if
  s = \mathsf{OS2IP}(S)
  m = \mathsf{RSAVP1}((n,e),s):
  EM = I2SOP(m, emlen) ou emlem = (tailledenenbit-1)/8
  if EMSA-PSS-verify(EM, M, tailledenenbit -1) = "Consitent" then
    return Signature Valide
    return Signature invalide
  end if
```

EMSA-PSS-verify

Sécurité

La sécurité de ce schéma de Signature comparé autre schéma réside sur le fait qu'il soit probabiliste plutôt que déterministe grâce à la génération aléatoire de Salt.

- Introduction
- 2 RSAES-OAEP
- RSASSA-PSS
- 4 Conclusion/Recommandation

Conclusion/Recommandation

- OAEP II est préférable de plus utiliser OAEP, et plutôt REACT ou d'autres protocoles de PKCS #1.5.
 - PSS L'algorithme est encore utilisé.

De plus, ils ont une sécurité sémantique partielle

Bibliographie

Hieu Phan Duong.

Securite et efficacite des schÃ@mas cryptographiques. 2010.

Eiichiro Fujisak, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern.

Rsa-oaep is secure under the rsa assumption.

2000.

Pkcs 1 v2.2 : Rsa cryptography standard.

2000.

RSA Laboratory.

Rsaes-oaep encryption scheme.

2000.

Victor Shoup.

Oaep reconsidered.

2001.