Package 'nebula'

February 16, 2024

```
Type Package
Title Negative Binomial Mixed Models Using Large-Sample Approximation
     for Differential Expression Analysis of ScRNA-Seq Data
Version 1.5.3
Date 2024-02-15
Maintainer Liang He <hyx520101@gmail.com>
     A fast negative binomial mixed model for conducting association analysis of multi-subject single-
     cell data. It can be used for identifying marker genes, differential expression and co-
     expression analyses. The model includes subject-
     level random effects to account for the hierarchical structure in multi-subject single-
     cell data. See He et al. (2021) <doi:10.1038/s42003-021-02146-6>.
License GPL-3
Encoding UTF-8
LazyData true
Imports Rcpp (>= 1.0.7), nloptr, stats, Matrix, methods, Rfast, trust,
     parallelly (>= 1.34.0), doFuture (>= 0.12.2), future (>=
     1.32.0), foreach (>= 1.5.2), doRNG (>= 1.8.6), Seurat,
     SingleCellExperiment
LinkingTo Rcpp, RcppEigen
Depends R (>= 4.1)
RoxygenNote 7.3.1
URL https://github.com/lhe17/nebula
BugReports https://github.com/lhe17/nebula/issues
Suggests knitr, utils, rmarkdown
VignetteBuilder knitr
NeedsCompilation yes
Author Liang He [aut, cre],
     Raghav Sharma [ctb]
Repository CRAN
```

Date/Publication 2024-02-15 23:00:02 UTC

2 nebula-package

R topics documented:

nebula-package			Veg or											_		_		•		•	pr	О	xir	nc	ati	ion	
Index																											9
	scToNeb			 •				•			•	•	•	•	•		•	•	•			•		•		•	8
	sample_seurat																							•			7
	sample_data																							•			7
	nebula																							•			5
	nbresidual																										
	group_cell																							•			3
	nebula-package .																										2

Description

A fast negative binomial mixed model for conducting association analysis of multi-subject single-cell data. It can be used for identifying marker genes, differential expression and co-expression analyses. The model includes subject-level random effects to account for the hierarchical structure in multi-subject single-cell data. See He et al. (2021) <doi:10.1038/s42003-021-02146-6>.

Details

nebula is an R package for performing association analysis using a fast negative binomial mixed model for multi-subject single-cell data.

Author(s)

NA

Maintainer: Liang He <hyx520101@gmail.com>

References

He, L., Davila-Velderrain, J., Sumida, T. S., Hafler, D. A., Kellis, M., & Kulminski, A. M. (2021). NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data. Communications biology, 4(1), 1-17.

```
library(nebula)
data(sample_data)
pred = model.matrix(~X1+X2+cc,data=sample_data$pred)
re = nebula(count=sample_data$count,id=sample_data$sid,pred=pred)
```

group_cell 3

|--|

Description

Group cells according to subject IDs

Usage

```
group_cell(count, id, pred = NULL, offset = NULL)
```

Arguments

count	A raw count matrix of the single-cell data. The rows are the genes, and the columns are the cells. The matrix can be a matrix object or a sparse dgCMatrix object.
id	A vector of subject IDs. The length should be the same as the number of columns of the count matrix.
pred	A design matrix of the predictors. The rows are the cells and the columns are the predictors. If not specified, an intercept column will be generated by default.
offset	A vector of the scaling factor. The values must be strictly positive. If not specified, a vector of all ones will be generated by default.

Value

count: A reordered count matrix. If the cells are already grouped, the function returns NULL.

id: A reordered subject ID vector.

pred: A reordered design matrix of the predictors.

offset: A reordered vector of the scaling factor.

```
library(nebula)
data(sample_data)
pred = model.matrix(~X1+X2+cc,data=sample_data$pred)
df_order = group_cell(count=sample_data$count,id=sample_data$sid,pred=pred)
```

4 nbresidual

nbresidual Extract Pearson residuals from the results of NEBULA	nbresidual	Extract Pearson residuals from the results of NEBULA	
---	------------	--	--

Description

Extract Pearson residuals from the results of NEBULA

Usage

```
nbresidual(nebula, count, id, pred = NULL, offset = NULL, conditional = FALSE)
```

Arguments

nebula	An object of the result obtained from running the function nebula.
count	A raw count matrix of the single-cell data. The rows are the genes, and the columns are the cells. The matrix can be a matrix object or a sparse dgCMatrix object.
id	A vector of subject IDs. The length should be the same as the number of columns of the count matrix.
pred	A design matrix of the predictors. The rows are the cells and the columns are the predictors. If not specified, an intercept column will be generated by default.
offset	A vector of the scaling factor. The values must be strictly positive. If not specified, a vector of all ones will be generated by default.
conditional	A logical value. By default (FALSE), the function returns marginal Pearson residuals. If TRUE, the function will return conditional Pearson residuals.

Value

residuals: A matrix of Pearson residuals. The number of columns is the number of cells in the count matrix. The rows correspond to gene IDs reported in the result from nebula.

gene: Gene names corresponding to the row names of the count matrix.

```
library(nebula)
data(sample_data)
pred = model.matrix(~X1+X2+cc,data=sample_data$pred)
re = nebula(count=sample_data$count,id=sample_data$sid,pred=pred)
resid = nbresidual(re,count=sample_data$count,id=sample_data$sid,pred=pred)
```

nebula 5

nebula	Association analysis of a multi-subject single call data set using a fast
Перита	Association analysis of a multi-subject single-cell data set using a fast
	negative binomial mixed model

Description

Association analysis of a multi-subject single-cell data set using a fast negative binomial mixed model

Usage

```
nebula(
  count,
  id,
  pred = NULL,
 offset = NULL,
 min = c(1e-04, 1e-04),
 \max = c(10, 1000),
 model = "NBGMM",
 method = "LN",
  cutoff_cell = 20,
  kappa = 800,
  opt = "lbfgs"
  verbose = TRUE,
  cpc = 0.005,
 mincp = 5,
  covariance = FALSE,
  output_re = FALSE,
  reml = 0,
  ncore = 2,
  fmaxsize = Inf
)
```

Arguments

count	A raw count matrix of the single-cell data. The rows are the genes, and the columns are the cells. The matrix can be a matrix object or a sparse dgCMatrix object.
id	A vector of subject IDs. The length should be the same as the number of columns of the count matrix.
pred	A design matrix of the predictors. The rows are the cells and the columns are the predictors. If not specified, an intercept column will be generated by default.
offset	A vector of the scaling factor. The values must be strictly positive. If not specified, a vector of all ones will be generated by default.
min	Minimum values for the overdispersions parameters σ^2 and ϕ . Must be positive. The default is c(1e-4,1e-4).

6 nebula

max Maximum values for the overdispersions parameters σ^2 and ϕ . Must be positive.

The default is c(10,1000).

model 'NBGMM', 'PMM' or 'NBLMM'. 'NBGMM' is for fitting a negative binomial

gamma mixed model. 'PMM' is for fitting a Poisson gamma mixed model. 'NGLMM' is for fitting a negative binomial lognormal mixed model (the same

model as that in the lme4 package). The default is 'NBGMM'.

method 'LN' or 'HL'. 'LN' is to use NEBULA-LN and 'HL' is to use NEBULA-HL.

The default is 'LN'.

cutoff_cell The data will be refit using NEBULA-HL to estimate both overdispersions if

the product of the cells per subject and the estimated cell-level overdispersion

parameter ϕ is smaller than cutoff_cell. The default is 20.

kappa Please see the vignettes for more details. The default is 800.

opt 'lbfgs' or 'trust'. Specifying the optimization algorithm used in NEBULA-LN.

The default is 'lbfgs'. If it is 'trust', a trust region algorithm based on the Hessian

matrix will be used for optimization.

verbose An optional logical scalar indicating whether to print additional messages. De-

fault is FALSE.

cpc A non-negative threshold for filtering low-expression genes. Genes with counts

per cell smaller than the specified value will not be analyzed.

mincp A positive integer threshold for filtering low-expression genes. A gene will not

be analyzed if its number of cells that have a non-zero count is smaller than the

specified value.

covariance If TRUE, nebula will output the covariance matrix for the estimated log(FC),

which can be used for testing contrasts.

output_re If TRUE, nebula will output the subject-level random effects. Only effective for

model='NBGMM' or 'NBLMM'.

reml Either 0 (default) or 1. If it is one, REML will be used to estimate the overdis-

persions.

ncore The number of cores used for parallel computing.

fmaxsize The maximum allowed total size (in bytes) of global variables (future.globals.maxSize)

when using parallel computing.

Value

summary: The estimated coefficient, standard error and p-value for each predictor.

overdispersion: The estimated cell-level and subject-level overdispersions σ^2 and ϕ^{-1} .

convergence: More information about the convergence of the algorithm for each gene. A value of -20 or lower indicates a potential failure of the convergence. A value of one indicates that the convergence is reached due to a sufficiently small improvement of the function value. A value of -10 indicates that the convergence is reached because the gradients are close to zero (i.e., the critical point) and no improvement of the function value can be found.

algorithm: The algorithm used for analyzing the gene. More information can be found in the vignettes.

covariance: The covariance matrix for the estimated log(FC).

random_effect: The subject-level random effects.

sample_data 7

Examples

```
library(nebula)
data(sample_data)
pred = model.matrix(~X1+X2+cc,data=sample_data$pred)
re = nebula(count=sample_data$count,id=sample_data$sid,pred=pred)
```

sample_data

An example data set for testing nebula

Description

A dataset containing a count matrix, subject IDs, a data frame of predictors and scaling factors.

Usage

```
sample_data
```

Format

A list of four objects:

count A raw count matrixsid A vector of subject IDspred A data frame of three predictorsoffset A vector of scaling factors

sample_seurat

An example data set for testing scToNeb

Description

A Seurat object containing a subset (1000 genes and 1000 cells) of the eight-pancreas scRNA-seq datasets.

Usage

```
data("sample_seurat")
```

Format

A Seurat object

Source

https://github.com/satijalab/seurat-data

8 scToNeb

Examples

```
data(sample_seurat)

scToNeb

Retrieve data from Seurat or SingleCellExperiment object to prepare for use in nebula
```

Description

Retrieve data from Seurat or SingleCellExperiment object to prepare for use in nebula

Usage

```
scToNeb(
  obj,
  assay = NULL,
  id = NULL,
  pred = NULL,
  offset = NULL,
  verbose = TRUE
)
```

Arguments

obj	Seurat or SingleCellExperiment object to create data set for Nebula.
assay	Assay to retrieve counts from the corresponding Seurat count matrix.
id	Sample ID to use metadata object i.e. obj\$id.
pred	$Character\ vector\ of\ predictors\ from\ metadata\ in\ Seurat\ or\ Single Cell Experiment\ objects.$
offset	Metadata column corresponding to per-cell scaling factor e.g. TMM.
verbose	Indicating whether to print additional messages.

Value

data_neb: A list usable for nebula.

```
## Not run:
library(Seurat)
library(nebula)

data("sample_seurat")
re <- scToNeb(obj = sample_seurat, assay = "RNA", id = "replicate", pred = c("celltype", "tech"))
## End(Not run)</pre>
```

Index

```
* datasets

sample_data, 7

sample_seurat, 7

* package

nebula-package, 2

group_cell, 3

nbresidual, 4

nebula, 5

nebula-package, 2

sample_data, 7

sample_seurat, 7

scToNeb, 8
```