Cryptology

Security

Cryptology

Cryptography

Cryptanalysis

Cryptogram

Requirements / Goals / Attributes / ...

CIA Triad

Objectives

Confidentiality

Integrity

Availability

Authentication

Non-repudiation

Electronical computation

Attack

Adversary

Corrupted /

Malicious Party

Terminology

(§ 6)

Quantum computation

Countermeasures

Defences

Mitigations

Deteriorate

Corrupt

Impersonate

Mechanical computation

Attacks		
Passive	vs.	Active
Outsider	>	Insider

Oscar / Eve

Secure all!

Alice Bob

Charlie

Daisy

Kerckhoffs's principle

Only keep hidden the key.

(e.g., make the construction, and constants public)

Principle of (key) separation

Use different keys for different contexts, compartmentalize.

(e.g., minimise the damage of a leak)

Principle of diversity

Use different types of ... cryptographic algorithms.

(e.g., avoid same attacks against all)

Principle of simplicity

Keep everything simple.

(e.g., unnecessary complexity brings in risks)

Security by default

Keep default configuration as secure as possible.

(e.g., deny access by default)

Ethics!

Principle of minimal trust

Minimise the number of trusted entities, don't trust easily.

(e.g., do not say your secret to everyone)

Principle of the weakest link

A system cannot be more secure than its weaker component (link).

(e.g., secure all components)

Principle of least privilege

Grant the exact privileges required to perform the job.

(e.g., do not grand less or more privileges)

Security by design

Build in security from start.

(e.g., integrate security in the design and all the phases of the system)

Principle of modularization

Keep things modular.

(e.g., easily change one cipher with another)

Defence in depth

Use diverse security strategies at different layers.

(e.g., use physical and technical security)

Security by obscurity (?)

Oblivious Transfer, Obfuscation, Covert Channels, ..., Kleptography, Standardisation ...

www.ruxandraolimid.weebly.com/pagesonsecurity

Substitution

... ciphers

Rail Fence (variants)

Key: 3

Plaintext: variant

Ciphertext: VITAARN / VAAINRT

Permutations (variants)

123 123 123 123 per mut ati onx erp utm tia nxo 231 231 231 231

Key: (2,3,1)

Plaintext: permutation

Ciphertext: ERPUTMTIANXO

213 123 per erp mut utm ati tia onx nxo

Key: (2,3,1)

Plaintext: permutation

Ciphertext: EUTNRTIXPMAO

Monoalphabetic

Caesar Cipher (Shift Cipher)

Plaintext: hello Ciphertext: JGNNQ

No. of keys: 26

Brute force

Simple Substitution

Plaintext: hello Ciphertext: NRTTC

No. of keys: 26!

Frequency analysis

Polyalphabetic

PlayFair

(I=J)

Key: CIPHER

Plaintext: This is a B

Ciphertext: YDPQPQBD

Vigenère cipher

Vigenère square 26 Caesar alphabets

Key: CAR

Plaintext: Secret message

Ciphertext: UETTEK OEJUAXG

... encryption

Encryption: c = Enc(k, m)Decryption: m = Dec(k,c)

Correctness:

Dec(k,Enc(k,m)) = m

Shorter keys

Key distribution

Private keys never leave the owner

Computational cost & speed

Encryption: $c = \text{Enc}(pk_B, m)$ Decryption: $m=Dec(sk_{R},c)$

Correctness:

 $Dec(sk_B, Enc(pk_B, m)) = m$

Terminology

k: symmetric key *m*: plaintext pk: public key

c: ciphertext sk: private (secret) key Enc: encryption alg. (pk,sk): public-private Dec: decryption alg. key pair

Cryptanalysis

No. of keys

for N bi-directional communicating parties

Each: N-1 [k]

Total: N(N-1)/2 [k]

VS.

Total: N [sk], N [pk]

Each: 1 [sk], N-1 [pk]

Unconditional (Information-theoretical)

Conditional (Computational)

... security

Provides security against an adversary with no restrictions

(e.g., unlimited computing power, time, memory)

Stands against brute force

Good in theory, poor in practice

For all m possible plaintext (i.e., in \mathcal{M}) and any c ciphertext (i.e., in C) such that Pr[C=c]>0, it holds:

$$Pr[M=m \mid C=c] = Pr[M=m]$$

Perfect secrecy (Shannon 1949)

For all m_0 , m_1 plaintexts of the same length (i.e., $|m_0| = |m_1|$) and for all c ciphertext, it holds:

$$Pr[Enc(k,m_0)=c] = Pr[Enc(k,m_1)=c]$$

where the key k is randomly chosen in the key space \mathcal{K}

Theorem (limitation):

Let (Enc, Dec) be a perfectly-secret encryption scheme over a plaintext space \mathcal{M} and a key space \mathcal{K} . Then it holds that $|\mathcal{K}| \ge |\mathcal{M}|$ (i.e., the length of the key is larger or equal to the length of the message).

Provides security against an adversary with computational restrictions

(e.g., limited computing power, time, memory)

Suitable for practice

Weaker than unconditional security

A scheme is secure if any adversary \mathcal{A} that runs the attack in a time t succeeds the attack with probability at most ε .

Time t, probability ε can be:

- Fixed
- Functions of a security parameter: n

PPT(Probabilistic Polynomial in Time) Adversary:

- t(n) is **polynomial** in n
- $\varepsilon(n)$ is **negligible** in n:

 $\forall p(n), \exists n_d \text{ such that } \forall n \geqslant n_d \text{ it holds } \varepsilon(n) < 1/p(n)$ $p(n) = n^d$ and d constant

10

Vernam Cipher (1917)

Encryption: $c = k \oplus m$ Decryption: $m = k \oplus c$

The key *k:*

- is as long as the plaintext *m* and the ciphertext *c*
- is uniformly random chosen in ${\mathcal K}$

 $k: 0 1 1 0 1 1 0 0 \oplus m: 1 0 1 1 1 0 0 1$ c: 1 1 0 1 0 1 0 1

$$k: \mathbb{B} \ \mathbb{V} \ \mathbb{Q} \ \mathbb{G} \ \mathbb{F} \ \mathbb{B} \ \bigoplus$$
 $m: \mathbb{N} \ \mathbb{O} \ \mathbb{T} \ \mathbb{I} \ \mathbb{M} \ \mathbb{E} \ (\mathsf{mod} \ \mathsf{26})$
 $c: \mathbb{O} \ \mathbb{J} \ \mathbb{J} \ \mathbb{O} \ \mathbb{R} \ \mathbb{F}$

Multiple use of the same key k

$$c_1 = k \oplus m_1$$
, $c_2 = k \oplus m_2$, $c_3 = k \oplus m_3$, ...

1. Ciphertext-only attack: A just observes the ciphertexts

A finds relations between plaintexts: $c_1 \oplus c_2 = m_1 \oplus m_2$

- 2. Known-plaintext attack: \mathcal{A} knows (at least) one pair (m_1, c_1) encrypted with k \mathcal{A} finds the key k, then decrypts any c: $k = m_1 \oplus c_1$, then $m_2 = k \oplus c_2$
- 3. Chosen-plaintext attack (CPA): A can obtain the encryption of a plaintext of his/her choice
- 4. Chosen-ciphertext attack (CCA): \mathcal{A} can obtain the decryption of a cipertext of his/her choice For 3 and 4, \mathcal{A} can apply the same attack from 2.

One Time Pad (OTP)

Perfect secrecy

Encryption: $c = k \oplus m$ Decryption: $m = k \oplus c$

Stream Ciphers

Synchronized Mode

Encryption: $c_1 | | c_2 | | c_3 ... = (IV, PRG(k, IV) \oplus m_1 | | m_2 | | m_3 ...)$

Decryption: $m_1 | | m_2 | | m_3 ... = PRG(k, IV) \oplus c_1 | | c_2 | | c_3 ...$

IV chosen uniformly at random

Unsynchronized Mode

Encryption: $c_i = (IV_i, PRG(k,IV_i) \oplus m_i)$ Decryption: $m_i = PRG(k,IV_i) \oplus c_i$

 IV_1 , IV_2 , ... chosen uniformly at random (and thus independent)

14

Pseudo-Random Generator (PRG)

G deterministic is PRG if for all seed with |seed| = n:

1.
$$l(n) = |G(s)| > |s| = n$$
 (expansion)

2. $\forall \mathcal{D}$ PPT, $\exists \varepsilon(n)$ negligible such that

$$\mathsf{Adv}^{\mathsf{PRG}}_{\mathcal{D},G}(n) = |\Pr[\mathcal{D}(r) = 1] - \Pr[\mathcal{D}(G(s)) = 1]| \le \varepsilon(n)$$

where $r \leftarrow {R \{0,1\}}^{l(n)}$ and $s \leftarrow {R \{0,1\}}^n$ (pseudo-randomness)

 \mathcal{D} : distinguisher

 $\mathcal{D}()$ output: 0 = not random, 1 = random PPT: Probabilistic Polynomial in Time $r \leftarrow \mathbb{R} \{0,1\}^{l(n)} : r$ is random on l(n) bits $s \leftarrow \mathbb{R} \{0,1\}^n : s$ is random on n bits

Indistinguishability from random

A unpredictable PRG is secure (*Theorem Yao'82*) A predictable PRG is insecure!

G is PRG (cryptographically strong) if $\forall \mathcal{A}$ PPT, $\exists \varepsilon(n)$ negligible such that:

$$\Pr[\mathsf{Dist}^{\mathsf{PRG}}_{\mathcal{A},G}(n)=1] \leq \frac{1}{2} + \varepsilon(n)$$

increased capabilities

Stronger security

interceptions integrations

15

adaptive adversary

 $\pi = (\text{Enc, Dec})$ is semantically secure if $\forall \mathcal{A}$ PPT, $\exists \ \varepsilon(n)$ negligible such that $\Pr[\text{Priv}^{\text{eav}}_{\mathcal{A},\pi}(n)=1] \leq \frac{1}{2} + \varepsilon(n)$ $\Pr[\text{Priv}^{\text{eav}}_{\mathcal{A},\pi}(n)=1] \leq \frac{1}{2} + \varepsilon(n)$ and 0 otherwise

CPA-security (Chosen-Plaintext Attack)

 $b' \in \{0,1\}$

Semantic security + Adversary c' = Enc(k, m')

m' c' = Enc(k, m')Encryption Oracle $k(\leftarrow \text{Gen}(1^n))$

 $\pi = (\text{Enc, Dec}) \text{ is CPA-secure if } \forall \mathcal{A} \text{ PPT, } \exists \ \varepsilon(n) \text{ negligible such that}$ $\Pr[\text{Priv}^{\text{cpa}}_{\mathcal{A},\pi}(n)=1] \leq \frac{1}{2} + \varepsilon(n) \qquad \text{Priv}^{\text{cpa}}_{\mathcal{A},\pi}(n)=1 \text{ if } b'=b \text{ and } 0 \text{ otherwise}$

CCA-security (Chosen-Ciphertext Attack)

CPA-security + Adversary
$$m' = Dec(k, c')$$
 Decryption Oracle $k(\leftarrow Gen(1^n))$

 $\pi = (\text{Enc, Dec}) \text{ is CCA-secure if } \forall \mathcal{A} \text{ PPT, } \exists \ \varepsilon(n) \text{ negligible such that}$ $\Pr[\text{Priv}^{\text{cca}}_{\mathcal{A},\pi}(n)=1] \leq \frac{1}{2} + \varepsilon(n) \qquad \qquad \Pr[\text{Priv}^{\text{cca}}_{\mathcal{A},\pi}(n)=1 \text{ if } b'=b \text{ and } 0 \text{ otherwise}$

 Π semantic secure at multiple interceptions \Rightarrow Π non-deterministic; Π CCA-secure \Rightarrow Π non-malleable

ww.raxanaraonnina.weepiy.co

Block Ciphers

Computational secrecy

Encryption: c = PRP(k,m)Decryption: $m = PRP^{-1}(k,c)$

the encryption is **dependent** on the values

- Computational secrecy Encryption: $c = PRG(k) \oplus m$ **PRG** Decryption: $m = PRG(k) \oplus c$ PRG: Pseudo-Random Generator keystream IV: Initialization Vector 1 bit! 1 bit
 - encrypts bit-by-bit

Stream Ciphers

the encryption of one bit is **independent** on the value of other bits in the plaintext (but only depends on the corresponding bit)

Less resources

Many broken

- More resources
- Seem more secure

encrypts in blocks of bits

of all bits in plaintext block

Pages on SecuRity by Ruxandra F. Olimid

16

Electronic Code Book (ECB)

Encryption: $c_i = F(k, m_i)$ Decryption: $m_i = F^{-1}(k, c_i)$

Output Feedback (OFB)

Encryption: $c_0 = IV$; $c_i = F^{(i)}(k, IV) \oplus m_i$ Decryption: $m_i = F^{(i)}(k, IV) \oplus c_i$

Cipher Feedback Mode (CFB)

Encryption: $c_0 = IV$; $c_i = F(k, c_{i-1}) \oplus m_i$ Decryption: $m_i = F(k, c_{i-1}) \oplus c_i$

Cipher Block Chaining (CBC)

Encryption: $c_0 = IV$; $c_i = F(k, c_{i-1} \oplus m_i)$ Decryption: $m_i = F^{-1}(k, c_i) \oplus c_{i-1}$

Propagating Cipher Block Chaining (PCBC)

Encryption: $c_0 = IV$; $c_i = F(k, c_{i-1} \oplus m_{i-1} \oplus m_i)$ Decryption: $m_0=0^n$; $m_i=F^{-1}(k,c_i)\oplus c_{i-1}\oplus m_{i-1}$

Counter Mode (CTR)

Encryption: $c_0 = ctr$; $c_i = F(k,ctr+i) \oplus m_i$ Decryption: $m_i = F(k, ctr+i) \oplus c_i$

18

Tag generation: t = Mac(k, m)

Tag verification: Vrfy(k,m,t) = 1 for a valid tag, 0 otherwise

Correctness: $\forall m \in \mathcal{M}, k \in \mathcal{K} \ \text{Vrfy}(k,m,\text{Mac}(k,m)) = 1$

No. of keys

for N bi-directional communicating parties

Each: N-1 [k]

Total: N(N-1)/2 [k]

 $Mac^{forge}_{\mathcal{A}\pi}(n) = 1$ if Vrfy(k,m,t)=1 and 0 otherwise

 $\pi = (Mac, Vrfy)$ is existentially unforgeable under an adaptive chosen message attack if $\forall \mathcal{A} \text{ PPT, } \exists \ \varepsilon(n) \text{ negligible such that}$

$$\Pr[\mathsf{Mac}^{\mathsf{forge}}_{\mathcal{A},\pi}(n)=1] \leq \varepsilon(n)$$

Terminology

* Message Integrity Codes (MIC)

k: symmetric key t: tag *m*: plaintext

Mac: tag generation algorithm Vrfy: tag verification algorithm

Hash Function

 $H: \{0,1\}^* \rightarrow \{0,1\}^{l(n)}$ (fixed output length)

I(n) = poly(n), with n the security parameter {0,1}*: sequence on bits, regardless its size

s.t.: such that A: adversary

Security (3)

Collision resistance

Hash^{coll}_{A,H}(n)=1 if:

A outputs

 $x,y \in \{0,1\}^* \text{ s.t.}$

 $x \neq y$ and H(x) = H(y)

 $\operatorname{Hash}^{\operatorname{coll}}_{\mathcal{A} H}(n)=0$, otherwise

H is *collision resistant* if $\forall A$ PPT,

 $\exists \varepsilon(n)$ negligible s.t.:

 $Pr[Hash^{coll}_{\mathcal{A},H}(n)=1] \leq \varepsilon(n)$

Second pre-image resistance

Hash^{2nd-pre-img}_{A,H}(n)=1 if:

given $x \in \{0,1\}^*$, \mathcal{A} outputs $y \in \{0,1\}^* \text{ s.t.}$

 $x \neq y$ and H(x) = H(y)

 $\operatorname{Hash}^{\operatorname{2nd-pre-img}}_{\operatorname{A},H}(n)=0$, otherwise

H is second pre-image resistant if $\forall \mathcal{A} \text{ PPT, } \exists \ \varepsilon(n) \text{ negligible s.t.}$:

 $Pr[Hash^{2nd-pre-img}_{A,H}(n)=1] \le \varepsilon(n)$

First pre-image resistance

Hash^{1st-pre-img}_{A.H}(n)=1 if:

given X, A outputs

 $x \in \{0,1\}^* \text{ s.t.}$

H(x) = X

 $\mathsf{Hash}^{\mathsf{1st\text{-}pre\text{-}img}}_{\mathcal{A},H}(n)=0$, otherwise

H is first pre-image resistant if $\forall A$

PPT, $\exists \varepsilon(n)$ negligible s.t.:

 $Pr[Hash^{1st-pre-img}_{A,H}(n)=1] \le \varepsilon(n)$

one-way function

Pseudo-Random Function (PRF)

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ such that:

- 1. $\forall k \in \mathcal{K}, x \in \mathcal{X}$, \exists a PPT algorithm that (efficiently) computes $F_k(x)$ (efficiency)
- 2. \forall algorithm PPT \mathcal{D} , $\exists \varepsilon(n)$ negligible such that

$$\mathsf{Adv}^{\mathsf{PRF}}_{\mathcal{D},F}(n) = |\Pr[\mathcal{D}(f) = 1] - \Pr[\mathcal{D}(F_k(.)) = 1]| \le \varepsilon(n)$$

where $f \leftarrow^{R} \text{Func}(\mathcal{X}, \mathcal{Y})$ and $k \leftarrow^{R} \mathcal{K}(pseudo-randomness)$

Pseudo-Random Permutation (PRP)

A bijection $F: \mathcal{X} \times \mathcal{K} \rightarrow \mathcal{X}$, with F PRF

(Y = X)

 \mathcal{D} : distinguisher $\mathcal{D}()$ output: 0 = not random, 1 = randomPPT: Probabilistic Polynomial in Time Func(X, Y): the set of all functions from X to Y, \mathcal{K} ={0,1} n f \leftarrow Func(X, Y): f is random function in Func(X, Y) k is random key

Indistinguishability
from random
functions /
permutations

F is PRF if $\forall \mathcal{A}$ PPT, $\exists \varepsilon(n)$ negligible such that: $\Pr[\mathsf{Dist}^{\mathsf{PRF}}_{\mathcal{A},F}(n)=1] \leq \frac{1}{2} + \varepsilon(n)$

Pages on SecuRity by Ruxandra F. Olimid

DLP

- \mathcal{A} is given: (G,q,g,A) with G cyclic group of order q, q generator and $A = g^a$, $a \leftarrow R Z_a$
- \mathcal{A} returns: a' in Z_{α}

The experiment outputs:

1 if $A = g^{a'}$, 0 otherwise $\forall \mathcal{A} \text{ PPT, } \exists \varepsilon(n) \text{ negligible such that:}$ $Pr[DLP_{\alpha}(n)=1] \leq \varepsilon(n)$

CDH

- \mathcal{A} is given: (G,q,g,A,B) with G cyclic group of order q, q generator, $A = g^a, B = g^b$, $a,b \leftarrow RZ_a$
- \mathcal{A} returns: K in Z_{α}

The experiment outputs:

1 if $K = g^{ab}$, 0 otherwise $\forall \mathcal{A} \text{ PPT}, \exists \varepsilon(n) \text{ negligible such that:}$ $Pr[CDH_{\alpha}(n)=1] \leq \varepsilon(n)$

DDH

 $\forall \mathcal{A}$ PPT, $\exists \varepsilon(n)$ negligible such that: $Pr[A(G,q,g,g^a,g^b,g^c)=1]$ - $\Pr[\mathcal{A}(G,q,g,g^a,g^b,g^{ab})=1] \leq \varepsilon(n)$ for a,b,c \leftarrow ^R Z_q

DLP: Discrete Logarithm Problem DDH: Decisional Diffie-Hellman Problem CDH: Computational Diffie-Hellman Problem

Attacks: no authentication of parties, Man-in-the-Middle

