HELSINGIN YLIOPISTO MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Pro gradu -tutkielma

Stone-Čech kompaktisointi

Pekka Keipi

Ohjaaja: Erik Elfving 3. huhtikuuta 2017

Sisältö

1	Johdanto	2
2	Esitietoja	3
3	Uniformiset rakenteet	4
4	Pseudometriikat	8
5	Pseudometriikan määrittämä uniformisuus	10
6	Uniformisoituvat avaruudet	16
7	Hausdorff uniforminen avaruus	17

Luku 1 Johdanto

Esitietoja

Olkoon X joukko ja V ja W karteesisen tulon $X \times X$ osajoukkoja. Merkitään tällöin seuraavasti:

 $V\circ W=\{(x,z)\mid \text{ on olemassa sellainen }y\in X \text{ jolla }(x,y)\in V \text{ ja }(y,z)\in W\}$ ja $W^2=W\circ W.$

Määritelmä 2.1. Ympäristö. Olkoon (X, \mathcal{T}) topologinen avaruus ja $x \in X$ alkio. Osajoukko $A \in X$, johon alkio x kuuluu, on alkion x ympäristö, jos on olemassa avoin osajoukko $B \subset X$, joka sisältää osajoukon A.

Määritelmä 2.2. Ympäristökanta. Olkoon (X, \mathcal{T}) topologinen avaruus ja $x \in X$ alkio. Kokoelma B(x) alkion x ympäristöjä on alkion x ympäristökanta (topologiassa \mathcal{T}), jos jokainen alkion x ympäristö sisältää kokoelman B(x) jonkin jäsenen.

Esimerkki 2.3. Jos B on avaruuden (X, \mathcal{T}) kanta ja $x \in X$, niin $\{A \mid x \in A \in B\}$ on alkion x eräs ympäristökanta. Käänteisesti, jos jokaisella $x \in X$ on annettu ympäristökanta B(x) avaruudessa (X, \mathcal{T}) , niin $\bigcup \{B(x) \mid x \in X\}$ on avaruuden (X, \mathcal{T}) kanta.

Lause 2.4. Olkoon A joukon X peite. Tällöin A on joukon X erään topologian \mathcal{T} esikanta. Lisäksi \mathcal{T} on karkein niistä joukon X topologioista, joilla $A \subset \mathcal{T}$. Tämä topologia \mathcal{T} on peitteen A yksikäsitteisesti määräämä, ja sitä sanotaan peitteen A virittämäksi joukon X topologiaksi.

Todistus. Topologia II [3] lause 2.19.

Määritelmä 2.5. Topologioiden vertailu. Olkoon X joukko ja \mathcal{T}_1 ja \mathcal{T}_2 topologioita joukolle X. Topologia \mathcal{T}_2 on karkeampi kuin topologia \mathcal{T}_1 , jos jokaisella $U \in \mathcal{T}_2$ pätee $U \in \mathcal{T}_1$, eli $\mathcal{T}_2 \subset \mathcal{T}_1$. Tällöin \mathcal{T}_1 on hienompi kuin \mathcal{T}_2 .

Uniformiset rakenteet

Tässä kappaleessa tutustutaan uniformisiin rakenteisiin ja näiden keskeisiin ominaisuuksiin [1].

Määritelmä 3.1. Uniforminen rakenne (tai uniformisuus) joukolle X annetaan karteesisen tulon $X \times X$ potenssijoukon $\mathcal{P}(X \times X)$ osajoukkona \mathcal{U} , jolle pätee

- (U1) Jos $V \in \mathcal{U}$ ja $V \subset W \subset X \times X$ niin $W \in \mathcal{U}$,
- (U2) Jokainen äärellinen leikkaus joukon \mathcal{U} alkioista kuuluu joukkoon \mathcal{U} ,
- (U3) Joukko $\{(x,x) \mid x \in X\}$ on jokaisen joukon $V \in \mathcal{U}$ osajoukko,
- (U4) Jos $V \in \mathcal{U}$, niin $V^{-1} = \{(y, x) \mid (x, y) \in V\} \in \mathcal{U}$,
- (U5) Jos $V \in \mathcal{U}$, niin on olemassa sellainen $W \in \mathcal{U}$, jolla $W^2 \subset V$.

Uniformisen rakenteen muodostavia joukkoja $V \in \mathcal{U}$ sanotaan uniformisuuden \mathcal{U} lähistöiksi. Joukkoa X joka on varustettu uniformisuudella \mathcal{U} sanotaan uniformiseksi avaruudeksi.

Huomautus~3.2. Uniformisuuden \mathcal{U} lähistöön (entourage) $V \in \mathcal{U}$ kuuluvan pisteparin $(x,y) \in V$ pisteiden $x,y \in X$ sanotaan olevan V-lähellä, "tarpeeksi lähellä" tai "mielivaltaisen lähellä" toisiaan.

Huomautus 3.3. Mikäli muut ehdot pätevät, voidaan ehdot (U4) ja (U5) korvata yhtäpitävällä ehdolla

(Ua) Jos $V \in \mathcal{U}$, niin on olemassa sellainen $W \in \mathcal{U}$, jolla $W \circ W^{-1} \subset V$.

Huomautus 3.4. Jos joukko X on tyhjä, niin ehdon (U3) nojalla joukon X uniformiteetti \mathcal{U} on tyhjä. Erityisesti $\{\emptyset\}$ on joukon X ainoa ehdot täyttävä uniformiteetti, jos joukko X on tyhjä.

Määritelmä 3.5. Olkoon X joukko ja joukko $\mathcal{U} \subset X \times X$ sen uniformiteetti. Tällöin lähistöjen joukko $B \subset \mathcal{U}$ on uniformiteetin \mathcal{U} kanta, jos jokaiselle lähistölle $V \in \mathcal{U}$ löytyy kannan alkio $W \in B$, jolla pätee $W \subset V$.

Määritelmä 3.6. Olkoon X joukko. Joukko $B \subset \mathcal{P}(X \times X)$ on joukon X erään uniformisuuden kanta, jos joukolle B pätee

- (B1) Jos $V_1, V_2 \in B$ niin on olemassa sellainen $V_3 \in B$, jolla $V_3 \subset V_1 \cap V_2$,
- (B2) Joukko $\{(x,x) \mid x \in X\}$ on jokaisen joukon $V \in B$ osajoukko,
- (B3) Jos $V \in B$, niin on olemassa sellainen $V' \in B$, jolla $V' \subset V^{-1}$,
- (B4) Jos $V \in B$, niin on olemassa sellainen $W \in B$, jolla $W^2 \subset V$.

Määritelmä 3.7. Seuraavan lauseen olemassaolon peruste.

Lause 3.8. Uniformisen avaruuden topologia. Olkoon joukko X varustettu uniformisuudella \mathcal{U} . Olkoon $x \in X$ alkio ja $V \in \mathcal{U}$ lähistö avaruudessa X. Olkoon

$$V(x) = \{ y \in X \mid (x, y) \in V \} \quad ja \quad B(x) = \{ V(x) \mid V \in \mathcal{U} \}$$

joukkoja. Uniformiteetti \mathcal{U} määrää topologian joukolle X niin, että joukko V(x) on (lähistön V määräämä) ympäristö alkiolle x ja joukko B(x) on alkion x kaikkien ympäristöjen joukko kyseisessä topologiassa.

Todistus. Olkoon joukko X varustettu uniformisuudella \mathcal{U} . Olkoon $x \in X$ alkio, $V \in \mathcal{U}$ lähistö avaruudessa X ja joukot V(x) ja B(x) kuten edellä. Alkiolle x pätee $x \in V(x)$, joten joukko V(x) on epätyhjä. Jokaiselle lähistölle $V, W \in \mathcal{U}$ pätee

$$V(x) \cup W(x) = \{ y \in X \mid (x, y) \in V \text{ tai } (x, y) \in W \}$$

= $\{ y \in X \mid (x, y) \in V \cup W \} \in B(x),$

ja

$$V(x) \cap W(x) = \{ y \in X \mid (x, y) \in V \text{ ja } (x, y) \in W \}$$

= $\{ y \in X \mid (x, y) \in V \cap W \} \in B(x)$

sillä määritelmän 3.1 ehtojen (U1) ja (U2) nojalla $V \cup W \in B$ ja $V \cap W \in B$. Tällöin on olemassa yksikäsitteinen topologia, jossa B(x) on alkion x kaikkien ympäristöjen joukko.[1]

Huomautus 3.9. Uniformiteetin määräämää topologiaa sanotaan uniformiteetin indusoimaksi topologiaksi.

Määritelmä 3.10. Olkoot X ja X' uniformeja avaruuksia ja $f: X \to X'$ kuvaus. Kuvaus f on uniformisti jatkuva (tasaisesti jatkuva), jos jokaiselle avaruuden X' lähistölle V' on olemassa avaruuden X lähistö V niin, että jokaiselle $(x, y) \in V$ pätee $(f(x), f(y)) \in V'$.

Korollaari 3.11. Olkoot X ja X' uniformeja avaruuksia ja $f: X \to X'$ uniformisti jatkuva kuvaus. Olkoon $g: X \times X \to X' \times X'$ kuvaus, jolla pätee g(x,y) = (f(x),f(y)) kaikilla $x,y \in X$. Tällöin jos V' on avaruuden X' lähistö, niin alkukuva $g^{\leftarrow}V'$ on avaruuden X lähistö.

Todistus. Suora seuraus edellisestä määritelmästä ja uniformisuuden ehdosta (U1).

Lause 3.12. Olkoot X ja X' uniformeja avaruuksia ja $f: X \to X'$ uniformisti jatkuva kuvaus. Tällöin kuvaus f on jatkuva, kun varustetaan joukot X ja Y uniformiteettiensa indusoimilla topologioilla.

Todistus. Olkoot X ja X' uniformeja avaruuksia ja $f\colon X\to X'$ uniformisti jatkuva kuvaus. Olkoon $g\colon X\times X\to X'\times X'$ kuvaus, jolla pätee g(x,y)=(f(x),f(y)) kaikilla $x,y\in X$. Olkoon V' avaruuden X' lähistö ja $x'\in X'$ alkio. Avaruuden X' uniformiteetin indusoimassa topologiassa kaava

$$V'(x') = \{ y' \in X' \mid (x', y') \in V' \}$$

määrää alkion x' ympäristön avaruudessa X. Korollaarin 3.11 mukaan lähistön V' alkukuva $g \leftarrow V'$ on avaruuden X lähistö. Olkoon nyt $x \in X$ sellainen alkio, jolla f(x) = x'. Tällöin joukko $g \leftarrow V'(x)$ on alkion x ympäristö. Erityisesti ympäristö $g \leftarrow V'(x)$ kuvautuu ympäristöön V'(x'), sillä ehdosta $(x, y) \in g \leftarrow V'$ seuraa $(x', f(y)) \in V'$ kaikilla $y \in X$.

Siis ympäristön alkukuva on ympäristö ja siten uniformisti jatkuva kuvaus on jatkuva.

Lause 3.13. Olkoot X, X' ja X'' uniformeja avaruuksia ja $f: X \to X'$ ja $g: X' \to X''$ uniformisti jatkuvia kuvaksia. Tällöin yhdistetty kuvaus $g \circ f: X \to X''$ on uniformisti jatkuva.

Todistus. Olkoot X, X' ja X'' uniformeja avaruuksia, $f: X \to X'$ ja $g: X' \to X''$ uniformisti jatkuvia kuvaksia ja V'' avaruuden X'' lähistö. Tällöin uniformisti jatkuvan kuvauksen määritelmän nojalla on olemassa avaruuden X' lähistö V', jolla jokaisella $(x', y') \in V'$ pätee $(g(x'), g(y')) \in V''$. Edelleen lähistölle V' on olemassa avaruuden X lähistö V, jolla jokaisella $(x, y) \in V$ pätee $(f(x), f(y)) \in V'$. Näin ollen lähistölle V'' on olemassa lähistö V, jolla jokaisella $(x, y) \in V$ pätee $(g(f(x)), g(f(y))) \in V''$, eli $((g \circ f)(x), (g \circ f)(y)) \in V''$. Siis yhdistetty kuvaus $g \circ f: X \to X''$ on uniformisti jatkuva.

Määritelmä 3.14. Olkoot X ja X' uniformeja avaruuksia ja $f: X \to X'$ bijektiivinen kuvaus. Kuvaus f on isomorfismi, jos sekä kuvaus f että sen käänteiskuvaus f^{-1} ovat uniformisti jatkuvia.

Määritelmä 3.15. Uniformiteettien vertailtavuus. Olkoon X joukko ja \mathcal{U}_1 ja \mathcal{U}_2 uniformiteetteja joukolle X. Uniformiteetti \mathcal{U}_1 on hienompi kuin uniformiteetti \mathcal{U}_2 , jos identtinen kuvaus $id: (X, \mathcal{U}_1) \to (X, \mathcal{U}_2)$ on uniformisti jatkuva. Tällöin uniformiteetti \mathcal{U}_2 on karkeampi kuin uniformiteetti \mathcal{U}_1 . Jos lisäksi pätee $\mathcal{U}_1 \neq \mathcal{U}_2$, niin \mathcal{U}_1 on aidosti hienompi kuin \mathcal{U}_2 ja vastaavasti \mathcal{U}_2 on aidosti karkeampi kuin \mathcal{U}_1 . Sanotaan, että kahta uniformiteettia \mathcal{U}_1 ja \mathcal{U}_2 voidaan vertailla, jos \mathcal{U}_1 on hienompi kuin \mathcal{U}_2 . Uniformiteeteille \mathcal{U}_1 ja \mathcal{U}_2 pätee $\mathcal{U}_1 = \mathcal{U}_2$, jos \mathcal{U}_1 on sekä hienompi että karkeampi kuin \mathcal{U}_2 .

Korollaari 3.16. Olkoon X joukko ja \mathcal{U}_1 ja \mathcal{U}_2 uniformiteetteja joukolle X. Uniformiteetti \mathcal{U}_1 on hienompi kuin uniformiteetti \mathcal{U}_2 jos ja vain jos jokaisella lähistöllä $V \in \mathcal{U}_2$ pätee $V \in \mathcal{U}_1$.

Korollaari 3.17. Olkoon X joukko, \mathcal{U}_1 ja \mathcal{U}_2 uniformiteetteja joukolle X ja \mathcal{U}_1 on hienompi kuin \mathcal{U}_2 . Tällöin uniformiteetin \mathcal{U}_1 indusoima topologia on hienompi kuin uniformiteetin \mathcal{U}_2 indusoima topologia.

Määritelmä 3.18. Kuvausperheen indusoima uniformiteetti (initial uniformities). Olkoon X joukko ja Y_i uniformiteetilla varustettuja joukkoja kaikilla $i \in I$, jollain indeksijoukolla I. Olkoon $f_i \colon X \to Y_i$ uniformisti jatkuvia kuvauksia kaikilla $i \in I$. Olkoon $g = f_i \times f_i \colon X \times X \to Y_i \times Y_i$ kuvaus kaikilla $i \in I$. Olkoon

$$B = \left\{ \bigcap_{i \in I} g^{\leftarrow}(V_i) \mid V_i \in \mathcal{U}_i \right\}$$

missä \mathcal{U}_i on avaruuden Y_i uniformiteetti. Tällöin B on kanta eräälle avaruuden X uniformiteetille \mathcal{U} . Kyseinen uniformiteetti \mathcal{U} on karkein niistä uniformiteeteista, joiden suhteen kaikki kuvaukset f_i ovat uniformisti jatkuvia.

Määritelmä 3.19. Uniformiteettien pienin yläraja. Olkoon X joukko ja I jokin indeksijoukko. Olkoon $(\mathcal{U}_i)_{i\in I}$ perhe uniformiteetteja joukolle X. Tällöin perheen $(\mathcal{U}_i)_{i\in I}$ pienin yläraja on uniformiteetti \mathcal{U} , joka on kuvausten $id: X \to (X, \mathcal{U}_i)$ määritelmän 3.18 mukaisesti indusoima.

Pseudometriikat

Tässä kappaleessa tutustutaan pseudometriikoihin, jotka ovat tavanomaisten metriikoiden yleistys. Lisää aiheesta [2].

Määritelmä 4.1. Olkoon X joukko ja $f: X \times X \to [0, +\infty]$ kuvaus. Kuvaus f on pseu-dometriikka, jos seuraavat ehdot pätevät:

- (P1) f(x,x) = 0 kaikilla $x \in X$,
- (P2) f(x,y) = f(y,x) kaikilla $x, y \in X$,
- (P3) $f(x,y) \le f(x,z) + f(z,y)$ kaikilla $x,y,z \in X$.

Huomautus 4.2. Pseudometriikan määritelmästä saadaan metriikan määritelmä, jos rajoitutaan äärellisiin arvoihin ja vahvistetaan ehtoa (P1) muotoon

(M1)
$$f(x,y) = 0 \Leftrightarrow x = y$$
 kaikilla $x, y \in X$.

Metriikan ehdot täyttävä kuvaus on pseudometriikka, joten jokainen metriikka on myös pseudometriikka.

Esimerkki 4.3. Euklidinen etäisyys on pseudometriikka.

Esimerkki 4.4. Olkoon X epätyhjä joukko ja $f: X \times X \to [0, +\infty]$ sellainen kuvaus, jolla

$$f(x,y) = \begin{cases} 0, & \text{jos } x = y\\ \infty, & \text{muulloin.} \end{cases}$$

Tällöin f on pseudometriikka.

Esimerkki 4.5. Olkoon X epätyhjä joukko ja $g: X \to \mathbb{R}$ (äärellisarvoinen) kuvaus. Tällöin kuvaus $f: X \times X \to [0, +\infty]$ kaavalla f(x, y) = |g(x) - g(y)| on pseudometriikka.

Esimerkki 4.6. Olkoon X kaikkien muotoa $g: [0,1] \to \mathbb{R}$ olevien jatkuvien kuvausten joukko. Tällöin kuvaus $f: X \times X \to [0,+\infty]$ kaavalla $f(x,y) = \int_0^1 |x(t)-y(t)| dt$ määrittää pseudometriikan joukolle X.

Huomautus 4.7. Ehdosta (P3) seuraa, että jos $f(x,z)+f(z,y)<\infty$ niin $f(x,y)<\infty$. Tällöin koska kaavat $f(x,z)\leq f(x,y)+f(y,z)$ ja $f(y,z)\leq f(y,x)+f(x,z)$ pätevät, niin myös kaava $|f(x,z)-f(z,y)|\leq f(x,y)$ pätee.

Esimerkki 4.8. Olkoon f pseudometriikka joukolle X ja $\lambda \in \mathbb{R}$ reaaliluku, jolla $\lambda > 0$. Tällöin kuvaus λf , jolla $(\lambda f)(x) = \lambda(f(x))$ kaikilla $x \in X \times X$ on pseudometriikka.

Esimerkki 4.9. Olkoon $(f_i)_{i\in I}$ perhe joukon X pseudometriikoita. Tällöin summakuvaus

$$f: X \times X \to [0, +\infty], \quad f(x, y) = \sum_{i \in I} f_i(x, y)$$

kaikilla $x, y \in X$ on pseudometriikka.

Esimerkki 4.10. Olkoon $(f_i)_{i\in I}$ perhe joukon X pseudometriikoita. Tällöin kaikilla alkioilla $x, y \in X$ kaavasta

$$f_i(x,y) \le f_i(x,z) + f_i(z,y)$$

seuraa kaava

$$\sup_{i \in I} f_i(x, y) \le \sup_{i \in I} \left(f_i(x, z) + f_i(z, y) \right).$$

Tällöin kuvaus

$$f: X \times X \to [0, +\infty], \quad f(x, y) = \sup_{i \in I} f_i(x, y)$$

kaikilla $x, y \in X$ on pseudometriikka.

Pseudometriikan määrittämä uniformisuus

Oletamme koko luvun 5 ajan, että $\mathbb{R}_+ = \{a \in \mathbb{R} \mid a > 0\}.$

Lause 5.1. Olkoon $a \in \mathbb{R}_+$ reaaliluku ja $U_a \subset \mathbb{R}^n \times \mathbb{R}^n$ joukko kaavalla

$$U_a = \{(x, y) \mid x, y \in \mathbb{R}^n, |x - y| \le a\}.$$

Kokoelma $B = \{U_a \mid a \in \mathbb{R}_+\}$ muodostaa joukon \mathbb{R}^n uniformisuuden kannan.

Todistus. Määritelmän 3.6 ehdot pätevät:

- (B1) Olkoon $a_1, a_2 \in \mathbb{R}_+$ reaalilukuja, joilla $a_1 \leq a_2$. Olkoon $x, y \in \mathbb{R}$ ja jos $|x y| \leq a_1$, niin $|x y| \leq a_2$. Näin ollen $U_{a_1} \subset U_{a_2}$ ja siis $U_{a_1} \subset U_{a_1} \cap U_{a_2}$,
- (B2) Olkoon $x \in \mathbb{R}^n$. Tällöin kaikilla $a \in \mathbb{R}_+$ pätee |x x| = 0 < a, joten joukko $\{(x, x) \mid x \in X\}$ on jokaisen joukon $U_a \in B$ osajoukko,
- (B3) Olkoon $x', y' \in \mathbb{R}^n$ ja $a \in \mathbb{R}_+$. Tällöin jos $|x' y'| \le a$ niin myös $|y' x'| \le a$. Näin ollen

$$U_a = \{(x, y) \mid x, y \in \mathbb{R}^n, |x - y| \le a\}$$

=\{(y, x) \cdot x, y \in \mathbb{R}^n, |x - y| \le a\}
=U_a^{-1}.

Siis jokaiselle U_a pätee $U_a \subset U_a^{-1}$.

(B4) Olkoon $a \in \mathbb{R}_+$ reaaliluku ja $x, y, z \in \mathbb{R}^n$ sellaisia pisteitä, joilla $|x - z| \le a$ ja $|z - y| \le a$, eli $(x, z) \in U_a$ ja $(z, y) \in U_a$. Tällöin kolmioepäyhtälön avulla saadaan

$$|x-y| \stackrel{\triangle-\text{ey}}{\leq} |x-z| + |z-y| \leq a+a = 2a,$$

eli $|x-y| \leq 2a$. Tästä seuraa, että $U_a^2 = U_{2a}$, joten jokaiselle reaaliluvun $b \in \mathbb{R}_+$ määräämälle joukolle U_b löytyy joukko $U_{b/2}$, jolla $U_{b/2}^2 \subset U_b$.

Siis kokoelma $B = \{U_a \mid a \in \mathbb{R}_+\}$ muodostaa joukon \mathbb{R}^n uniformisuuden kannan.

Edeltävää lausetta voidaan yleistää seuraavasti:

Lause 5.2. Olkoon X joukko ja f pseudomeriikka joukolle X. Tällöin pseudometriikka f määrittää sellaisen uniformiteetin joukolle X, jonka kannan muodostaa kokoelma $B = \{f^{\leftarrow}[0,a] \subset X \times X \mid a \in \mathbb{R}_+\}.$

Todistus. Olkoon $a \in \mathbb{R}_+$ reaaliluku ja merkitään joukkoa $f^{\leftarrow}[0,a] \subset X \times X$ kaavalla $f^{\leftarrow}[0,a] = U_a$. Määritelmän 3.6 ehdot pätevät:

(B1) Olkoon $a_1, a_2 \in \mathbb{R}_+$ reaalilukuja, joilla $a_1 \leq a_2$. Tällöin

$$U_{a_1} = f^{\leftarrow}[0, a] \subset f^{\leftarrow}[0, b] = U_{a_2}$$

ja siis $U_{a_1} \subset U_{a_1} \cap U_{a_2}$,

- (B2) Kuvaus f on pseudometriikka, joten pseudometriikan ehdon (P1) nojalla kaikilla $x \in X$ pätee f(x,x)=0. Toisin sanoen jokainen alkio pistepareista (x,x) muodostuvasta joukosta $\{(x,x)\mid x\in X\}$ kuvautuu pseudomeriikassa nollaksi. Näin ollen joukko $\{(x,x)\mid x\in X\}$ kuuluu sisältyy jokaisen suljetun välin [0,a] alkukuvaan $f^\leftarrow[0,a]$ kaikilla $a\in\mathbb{R}_+$.
- (B3) Pseudometriikan ehdosta (P2) seuraa, että f(x,y) = f(y,x) kaikilla $x,y \in X$. Tällöin $(x,y) \in U_a \Leftrightarrow (y,x) \in U_a$ ja siis $U_a^{-1} = U_a$, eli jokaiselle U_a pätee $U_a \subset U_a^{-1}$.
- (B4) Olkoon $a \in \mathbb{R}_+$ reaaliluku ja $x, y, z \in X$ sellaisia alkioita, joilla $f(x, z) \leq a$ ja $f(z, y) \leq a$, eli $(x, z) \in U_a$ ja $(z, y) \in U_a$. Tällöin pseudometriikan ehdosta (P3) seuraa

$$f(x,y) \le f(x,z) + f(z,y) \le a + a = 2a$$
,

eli $f(x,y) \leq 2a$. Tästä seuraa, että $U_a^2 = U_{2a}$, joten jokaiselle reaaliluvun $b \in \mathbb{R}_+$ määräämälle joukolle U_b löytyy joukko $U_{b/2}$, jolla $U_{b/2}^2 \subset U_b$.

Siis kokoelma $B = \{U_a \mid a \in \mathbb{R}_+\} = \{f^{\leftarrow}[0, a] \mid a \in \mathbb{R}_+\}$ muodostaa joukon \mathbb{R}^n uniformisuuden kannan ja voimme nyt muodostaa seuraavan määritelmän.

Määritelmä 5.3. Olkoon X joukko ja f ja g pseudomeriikoita joukolle X. Tällöin lauseen 5.2 nojalla pseudometriikat f ja g määrittävät jotkut uniformiteetit joukolle X. Pseudometriikat f ja g ovat ekvivalentteja, jos ne määräävät saman uniformiteetin.

Korollaari 5.4. Olkoon X joukko ja f ja g pseudomeriikoita joukolle X. Määritelmästä 5.3 seuraa, että pseudometriikan f määräämä uniformiteetti \mathcal{U}_f on karkeampi kuin pseudometriikan g määräämä uniformiteetti \mathcal{U}_g , jos ja vain jos jokaiselle $a \in \mathbb{R}_+$ on olemassa $b \in \mathbb{R}_+$, jolla $g(x,y) \leq b \Rightarrow f(x,y) \leq a$ kaikilla $x,y \in X$.

Lisäksi, jos kaikilla $x,y \in X$ pätee $f(x,y) \leq b \Rightarrow g(x,y) \leq a$ niin f ja g ovat ekvivalentteja pseudometriikoita.

Todistus. Olkoon X joukko ja f ja g pseudomeriikoita joukolle X. Määritelmän 5.2 mukaan pseudometriikan f määrittämän uniformiteetin \mathcal{U}_f kannan muodostaa kokoelma $B_f = \{f^{\leftarrow}[0, a] \subset X \times X \mid a \in \mathbb{R}_+\}$. Tällöin uniformiteetti \mathcal{U}_f on kokoelma

$$\mathcal{U}_f = \{ V \subset X \times X \mid f^{\leftarrow}[0, a] \subset V, \text{ jollain } a \in \mathbb{R}_+ \}.$$

Vastaavasti uniformiteeti
n \mathcal{U}_g kannan muodostaa kokoelma $B_g=\{g^\leftarrow[0,a]\subset X\times X\mid a\in\mathbb{R}_+\}$ ja uniformiteetti
 \mathcal{U}_g on kokoelma

$$\mathcal{U}_g = \{ V \subset X \times X \mid g^{\leftarrow}[0, a] \subset V, \text{ jollain } a \in \mathbb{R}_+ \}.$$

Osoitetaan väitteen implikaatio molempiin suuntiin.

- \Rightarrow Olkoon uniformiteetti \mathcal{U}_f karkeampi kuin \mathcal{U}_g ja näin ollen määritelmän 3.15 mukaan identtinen kuvaus $id: (X, \mathcal{U}_g) \to (X, \mathcal{U}_f)$ on uniformisti jatkuva. Määritelmän 3.10 mukaan tällöin jokaiselle lähistölle $V' \in \mathcal{U}_f$ on olemassa lähistö $V \in \mathcal{U}_g$, jolla pätee jos $(x,y) \in V$, niin $(x,y) \in V'$ kaikila $x,y \in X$. Tarkastelemalla uniformiteettien kantojen jäseniä saamme edeltävän seuraavaan muotoon: Jokaisella $a \in \mathbb{R}_+$ on olemassa $b \in \mathbb{R}_+$ niin, että kaikilla $x,y \in X$ pätee $(x,y) \in g^{\leftarrow}[0,b] \Rightarrow (x,y) \in f^{\leftarrow}[0,a]$, eli $g(x,y) \leq b \Rightarrow f(x,y) \leq a$.
- \Leftarrow Olkoon jokaiselle $a \in \mathbb{R}_+$ on olemassa $b \in \mathbb{R}_+$, jolla $g(x,y) \leq b \Rightarrow f(x,y) \leq a$, eli $(x,y) \in g^{\leftarrow}[0,b] \Rightarrow (x,y) \in f^{\leftarrow}[0,a]$, kaikilla $x,y \in X$. Siis jokaiselle uniformiteetin \mathcal{U}_f kannan jäsenelle $f^{\leftarrow}[0,a'], a' \in \mathbb{R}_+$ on olemassa uniformiteetin \mathcal{U}_g kannan jäsen $g^{\leftarrow}[0,b'], b' \in \mathbb{R}_+$ niin, että $(x,y) \in g^{\leftarrow}[0,b'] \Rightarrow (x,y) \in f^{\leftarrow}[0,a']$, kaikilla $x,y \in X$. Näin ollen identtinen kuvaus $id: (X,\mathcal{U}_g) \to (X,\mathcal{U}_f)$ on uniformisti jatkuva ja siten uniformiteetti \mathcal{U}_g on uniformiteettia \mathcal{U}_f hienompi. Siis pseudometriikan f määräämä uniformiteetti \mathcal{U}_g .

Lisäksi määritelmistä 3.15 ja 5.3 seuraa, että jos \mathcal{U}_f on sekä hienompi että karkeampi kuin \mathcal{U}_q , niin pseudometriikat f ja g ovat ekvivalentteja.

Määritelmä 5.5. Olkoon X joukko ja $(f_i)_{i\in I}$ perhe pseudometriikkoja joukolle X. Tällöin pseudometriikkojen f_i määrittämien uniformiteettien \mathcal{U}_{f_i} pienintä ylärajaa sanotaan perheen $(f_i)_{i\in I}$ määrittämäksi uniformiteetiksi.

Määritelmä 5.6. Olkoon X joukko ja $(f_i)_{i\in I}$ ja $(g_j)_{j\in J}$ perheitä pseudometriikoista joukolle X. Perheet (f_i) ja (g_j) ovat ekvivalentteja, jos niiden määrittämät uniformiteetit ovat samoja.

Määritelmä 5.7. Olkoon X joukko ja $(f_i)_{i\in I}$ perhe pseudometriikoita joukolle X. Olkoon $g_H \colon X \to [0, \infty]$ kuvaus, jolla $g_H(x) = \sup_{i \in H} f_i(x)$ ja $H \subset I$ äärellinen joukko. Nyt

$$\{g_H^{\leftarrow}([0,a]) \subset X \times X \mid H \subset I \text{ ""a\"arellinen}, a \in \mathbb{R}, a > 0\}$$

on joukon X erään uniformiteetin kanta. Olkoon $g_{H'}$ pseudometriikoita ja $H' \subset \mathcal{P}(I)$ äärellinen potenssijoukon osajoukko. Nyt

$$\sup_{H \in H'} (g_H) \in (g_H)_{H \subset I}$$

ja $H \subset I$ äärellinen joukko. Tällöin sanotaan, että perhe (g_H) on saturoitu (saturated), ekvivalentti perheen $(f_i)_{i\in I}$ kanssa ja saatu saturoimalla perhe $(f_i)_{i\in I}$.

Mikäli indeksijoukko I on äärellinen, niin perheen $(f_i)_{i\in I}$ määräämä uniformiteetti on sama kuin pseudometriikan $g=\sup_{i\in I}f_i$ määräämä.

Määritelmä 5.8. Olkoon uniformiteetit \mathcal{U} ja \mathcal{U}' saturoitujen perheiden $(f_i)_{i\in I}$ ja $(g_j)_{j\in J}$ määräämiä. Uniformiteetti \mathcal{U} on karkeampi kuin uniformiteetti \mathcal{U}' , jos jokaisella $i\in I$ ja $a\in\mathbb{R},\ a>0$ löytyy $j\in J$ ja $b\in\mathbb{R},\ b>0$, joilla ehdosta $g_j(x,y)\leq b$ seuraa $f_i(x,y)\leq a$.

Lemma 5.9. Olkoon X joukko ja \mathcal{U} uniformiteetti joukolle X. Tällöin on olemassa pseudometriikkaperhe $(f_i)_{i\in I}$, joka määrittää uniformiteetin \mathcal{U} .

Todistus. Jokaiselle $U \in \mathcal{U}$ määritellään perhe (U_n) , jolla $V_1 \subset U$ ja $V_{n+1}^2 \subset V_n$ kaikilla $n \in \mathbb{N}, n \geq 1$. Nyt perhe (V_n) on kanta eräälle joukon X uniformiteetille \mathcal{U}_V , joka on karkeampi kuin \mathcal{U} . Erityisesti \mathcal{U} on uniformiteettien $\mathcal{U}_V, V \in \mathcal{U}$ pienin yläraja. Tällöin lemma on seuraus seuraavasta lauseesta, sillä (U_n) on uniformiteetin \mathcal{U} numeroituva kanta.

Lause 5.10. Olkoon X joukko ja \mathcal{U} uniformiteetti joukolle X. Jos uniformiteetilla \mathcal{U} on numeroituva kanta, niin on olemassa pseudometriikka $f: X \times X \to R_+$, jonka määräämä uniformiteetti on identtinen uniformiteetin \mathcal{U} kanssa.

Todistus. Olkoon (V_n) numeroituva kanta uniformiteetille \mathcal{U} . Tällöin olkoon (U_n) perhe symmetrisiä uniformiteetin \mathcal{U} lähistöjä, joilla $U_1 \subset V_1$ ja $U_{n+1}^3 \subset U_n \cap V_n$, kun $n \geq 1$. Nyt (U_n) on myös uniformiteetin \mathcal{U} kanta ja erityisesti $U_{n+1}^3 \subset U_n \cap V_n$, kun $n \geq 1$.

Olkoon $g: X \times X \to \mathbb{R}_+$ kuvaus, jolla

$$g(x,y) = \begin{cases} 0 &, \text{ jos } (x,y) \in U_n \text{ kaikilla } n \geq 1 \\ 1 &, \text{ jos } (x,y) \not\in U_1. \\ 2^{-k} &, \text{ jos } (x,y) \in U_n \text{ kaikilla } n \leq k \text{ ja } (x,y) \not\in U_{k+1} \end{cases}$$

Nyt g on symmetrinen, positiivinen ja g(x,x) = 0 kaikilla $x \in X$. Olkoon nyt $f: X \times X \to R_+$ kuvaus, jolla

$$f(x,y) = \inf \sum_{i=0}^{p-1} g(z_i, z_{i+1}),$$

missä $p \in \mathbb{N}, p \geq 1$ ja $(z_i)_{0 \leq i \leq p}$ joukon X alkioista muodostuva jono, jossa $z_0 = x$ ja $z_p = y$. Kuvauksen f määrittelystä seuraa, että f on symmetrinen, kolmioepäyhtälö pätee ja kaavat $f(x,y) \geq 0$ ja f(x,x) = 0 pätevät kaikilla $x,y \in X$. Siis f on pseudometriikka. Näytetään seuraavaksi, että epäyhtälöt

(5.11)
$$\frac{1}{2}g(x,y) \le f(x,y) \le g(x,y)$$

pätevät. Kaavan oikea puoli, eli $f(x,y) \leq g(x,y)$ seuraa siitä, että

$$f(x,y) = \inf \sum_{i=0}^{p-1} g(z_i, z_{i+1}) \le \sum_{i=0}^{1} g(z_i, z_i + 1) = g(z_0, z_1) = g(x, y).$$

Yhtälön vasen puoli osoitetaan induktion avulla. Olkoon $p \in \mathbb{N}$ luku. Nyt jokaisella p+1 alkion jonolla joukon X alkioita $(z_i)_{0 \le i \le p}$, jolla $z_0 = x$ ja $z_p = y$, saadaan

(5.12)
$$\sum_{i=0}^{p-1} g(z_i, z_{i+1}) \ge \frac{1}{2} g(x, y).$$

Jos p = 1, niin summassa on vain yksi termi

$$g(z_0, z_1) = g(x, y) \ge \frac{1}{2} g(x, y).$$

Merkitään

$$a = \sum_{i=0}^{p-1} g(z_i, z_{i+1}).$$

Määrittelyn nojalla $g(x,y) \leq 1$, joten jos $a \geq 1/2$, niin yhtälö 5.12 pätee muodossa $a \geq \frac{1}{2} \geq \frac{1}{2}g(x,y)$. Oletetaan, että a < 1/2 ja että h on suurin niistä indekseistä q, joilla $\sum_{i < g} g(z_i, z_{i+1}) \leq a/2$. Tällöin

$$\sum_{i < h} g(z_i, z_{i+1}) \le a/2 \quad \text{ja} \quad \sum_{i < h+1} g(z_i, z_{i+1}) > a/2,$$

joten $\sum_{i>h} g(z_i, z_{i+1}) \leq a/2$. Induktio-oletuksen nojalla $g(x, z_h) \leq a, g(z_{h+1}, y) \leq a$ ja toisaalta myös $g(x, z_h) \leq a$ pätevät. Olkoon $k \in \mathbb{N}$ pienin luku, jolla $2^{-k} \leq a$. Tällöin $k \geq 2$ ja kuvauksen g määrittelystä seuraa, että $(x, z_h) \in U_k, (z_h, z_{h+1}) \in U_k$ ja $(z_{h+1}, y) \in U_k$. Nyt $(x, y) \in U_k^3 \subset U_{k-1}$ ja edelleen $g(x, y) \leq 2^{-(k-1)} = 2^{1-k} \leq 2a$, eli $1/2g(x, y) \leq a$. Nyt epäyhtälöt 5.11 on osoitettu päteviksi ja niistä seuraa, että jokaisella a > 0 pätee $U_k \subset f^{\leftarrow}([0, a])$, kun $2^{-k} < a$. Toisaalta myös $f^{\leftarrow}([0, a]) \subset U_k$, joten joukot $f^{\leftarrow}([0, a])$ muodostavat kannan uniformiteetille \mathcal{U} . Siis löydettiin pseudometriikka f, joka määrittelee uniformiteetin \mathcal{U} .

Korollaari 5.13.

Uniformisoituvat avaruudet

Tässä luvussa perehdytään uniformisoituviin avaruuksiin (uniformizable space).

Määritelmä 6.1. Topologinen avaruus (X, \mathcal{T}) on *uniformisoituva*, jos seuraava ominaisuus pätee:

(Z1) Kaikille alkioilla $x_0 \in X$ ja kaikille alkion x_0 ympäristöillä V_0 on olemassa jatkuva reaaliarvoinen kuvaus $f: X \to [0, 1]$, jolla $f(x_0) = 0$ ja f(y) = 1 kaikilla $y \in X \setminus V_0$.

Hausdorff uniforminen avaruus

Tässä luvussa määritellään Hausdorff uniformiset avaruudet ja esitetään niiden ominaisuuksia, oleellisimpana täydelliseen Hausdorff uniformiseen avaruuteen laajentaminen.

Määritelmä 7.1. Olkoon X joukko ja \mathcal{U} uniformiteetti joukolle X. Uniformiteetti \mathcal{U} on Hausdorff, jos kaikille $x, y \in X, x \neq y$ on olemassa pseudometriikka $f_i \in (f_i)_{i \in I}$, jolla $f_i(x, y) \neq 0$. Erityisesti, jos uniformiteetti \mathcal{U} on Hausdorff ja yhden pseudometriikan f määrittämä, niin $f(x, y) \neq 0$ kaikilla $x, y \in X$.

Uniformiteetti \mathcal{U} ei ole Hausdorff, jos on olemassa sellaiset alkiot $x,y\in X$, joilla $x\neq y$ ja $f_i(x,y)=0$ kaikilla $i\in I$.

- **Lemma 7.2.** Olkoon X uniforminen avaruus, $A \subset X$ epätyhjä osajoukko ja f pseudometriikka joukolle X. Tällöin pseudometriikan rajoittuma $f|_A: A \times A \to [0, \infty]$ kaavalla $f|_A(x) = f(x)$ kaikilla $x \in A \times A$ on pseudometriikka joukolle A.
- **Lemma 7.3.** Olkoon X uniforminen avaruus, $A \subset X$ epätyhjä osajoukko ja $(f_i)_{i \in I}$ pseudometriikkaperhe, joka määrää joukon X uniformiteetin. Tällöin joukon X uniformiteetti määrää joukolle A saman uniformiteetin kuin pseudometriikkaperhe $(f_i|_A)_{i \in I}$.
- **Määritelmä 7.4.** Olkoon X uniforminen avaruus. Tällöin on olemassa täydellinen (complete) Hausdorff uniforminen avaruus \hat{X} ja uniformisti jatkuva kuvaus $i \colon X \to \hat{X}$, jolle pätee seuraava ominaisuus:
 - (P) Olkoon Y täydellinen Hausdorff uniforminen avaruus ja $f\colon X\to Y$ uniformisti jatkuva kuvaus. Tällöin on olemassa yksikäsitteinen uniformisti jatkuva $g\colon \hat{X}\to Y$, jolla pätee $f=g\circ i$

Olkoon lisäksi X_1 täydellinen Hausdorff uniforminen avaruus ja $i_1: X \to X_1$ uniformisti jatkuva kuvaus, jolla on ominaisuus (P). Tällöin on olemassa yksikäsitteinen isomorfismi $\varphi: \hat{X} \to X_1$, jolla pätee $i_1 = \varphi \circ i$.

Korollaari 7.5. Jos X on Hausdorff uniforminen avaruus, niin "kanoninen kuvaus" $i: X \to \hat{X}$ määrää isomorfismin $X \to X'$, jossa X' on tiheä joukossa \hat{X} .

 $Huomautus\ 7.6.$

Lause 7.7.

Määritelmä 7.8.

Korollaari 7.9.

Esimerkki 7.10.

Lemma 7.11.

Kirjallisuutta

- [1] Nicolas Bourbaki: General Topology Part 1, 1. painos, Hermann, 1966.
- [2] Nicolas Bourbaki: General Topology Part 2, 1. painos, Hermann, 1966.
- [3] Jussi Väisälä: Topologia II, 2. korjattu painos, Limes ry, 2005.