

Introdução a Programação Roteiro

- Conceitos Iniciais de Lógica
- Conceito de Algoritmo
- Tipos de Algoritmos

Conceitos Iniciais de Lógica

O que é a Lógica?

Vem do grego logiké, que significa "arte de raciocinar".

Coerência de raciocínio, de ideias.

 A Lógica ensina a colocar Ordem no Pensamento.

Conceitos Iniciais de Lógica

O que é Lógica?

"Ciência que tem por objetivo determinar, por entre todas as operações intelectuais que tendem para o conhecimento do verdadeiro, o que são válidas, e as que não são".

Raciocínio lógico:

Exemplo:

1º Premissa: O ser humano é racional

2º Premissa: Você é um ser humano

Conclusão: Logo, você é racional.

Conceitos Iniciais de Lógica

Sequência Lógica são passos executados até atingir um objetivo ou solução de um problema.

Exemplo: "Chupar uma bala":

- Pegar a bala
- Retirar o papel
- Colocar a bala na boca
- Chupar a bala
- Jogar o papel no lixo

Existe lógica no nosso dia-a-dia?

A lógica sempre nos acompanha;

Quando falamos ou escrevemos estamos expressando nosso pensamento

Precisamos então usar a lógica;

Exemplo:

A gaveta está fechada.

A caneta está dentro da gaveta.

Precisamos primeiro abrir a gaveta para depois pegar a caneta.

Conceitos Iniciais de Lógica

Exemplos de aplicação da lógica

- O quarto está fechado e meu livro está no quarto. Então, preciso primeiro abrir o quarto para pegar o livro.
- Rosa é mãe de Ana, Paula é filha de Rosa, Júlia é filha de Ana. Então, Júlia é neta de Rosa e sobrinha de Paula.
- Todo mamífero é animal e todo cavalo é mamífero.
 Então, todo cavalo é animal.
- Todo mamífero bebe leite e o homem bebe leite. Então, todo homem é mamífero e animal (mas não é um cavalo).

Conceitos Iniciais de Lógica

DESAFIO:

Criar a solução para o problema das Torres de Hanoi:

Inicialmente você têm-se três hastes, A, B e C, sendo que na haste A repousam três anéis de diâmetros diferentes, em ordem decrescente de diâmetro.

Conceitos Iniciais de Lógica

"Você deve transferir os três anéis da *haste* A para C, utilizando B se for necessário".

Sabendo que:

- deve-se mover um único anel por vez.
- um anel de diâmetro maior, não pode repousar sobre algum outro de diâmetro menor.

Conceitos Iniciais de Lógica

Passo 1:

mova disco menor para terceiro eixo

Conceitos Iniciais de Lógica

Passo 2:

mova disco médio para segundo eixo

Conceitos Iniciais de Lógica

Passo 3:

mova disco menor para segundo eixo

Conceitos Iniciais de Lógica

Passo 4:

mova disco maior para terceiro eixo

Conceitos Iniciais de Lógica

• Passo 5:

mova disco menor para primeiro eixo

Conceitos Iniciais de Lógica

• Passo 6:

mova disco médio para terceiro eixo

Conceitos Iniciais de Lógica

• Passo 7:

mova disco menor para terceiro eixo

Conceitos de Algoritmo

O que é um Algoritmo?

- É uma sequência de passos que visa atingir um objetivo bem definido [Forbellone,1999].
- É a descrição de uma sequência de passos que deve ser seguida para a realização de uma tarefa [Ascencio,1999].
- É uma sequência finita de instruções ou operações cuja execução, em tempo finito, resolve um problema computacional [Salvetti, 1999].
- São regras formais para a obtenção de um resultado ou da solução de um problema, englobando fórmulas de expressões aritméticas [Manzano,1997].

Introdução a Programação Características do Algoritmo

- Finitude: um algoritmo tem de terminar ao fim de um número finito de passos.
- Definitude: cada passo do algoritmo tem de ser definido com precisão.
- Entrada: um algoritmo pode ter zero ou mais entradas.
- Saídas: um algoritmo tem uma ou mais saídas.
- Eficácia: todas as operações feitas por um algoritmo têm de ser básicas.

- Algoritmo para trocar uma lâmpada
 - Pegar uma escada;
 - Posicionar a escada embaixo da lâmpada;
 - Buscar uma lâmpada nova;
 - Subir na escada;
 - Retirar a lâmpada velha;
 - Colocar a lâmpada nova;

Exemplo de Algoritmo

- Algoritmo para
 - Pegar uma esca definido?
 - Posicionar a escada
 - Buscar uma lâmpada
 - Subir na escada;
 - Retirar a lâmpada velha;
 - Colocar a lâmpada nova;

xo da lâmpada;

Tem objetivo bem

ova;

Exemplo de Algoritmo

- Algoritmo para
 - Pegar uma esca
 - Posicionar a escada
 - Buscar uma lâmpada
 - Subir na escada;
 - Retirar a lâmpada velha;
 - Colocar a lâmpada nova;

Sim: Trocar uma lâmpada

xo da lâmpada;

ova;

Exemplo de Algoritmo

- Algoritmo para
- E se a lâmpada não tivesse queimada?

xo da lâmpada;

- Pegar uma esca
- Posicionar a escada
- Ova.
- Buscar uma lâmpada
- Subir na escada;
- Retirar a lâmpada velha;
- Colocar a lâmpada nova;

- Algoritmo para trocar uma lâmpada
 - Pegar uma escada;
 - Posicionar a escada embaixo da lâmpada;
 - Buscar uma lâmpada nova;
 - Acionar o interruptor;
 - Se a lâmpada não acender
 - Subir na escada;
 - Retirar a lâmpada velha;
 - Colocar a lâmpada nova;

- Algoritmo p
 - Pegar uma
 - Posicionar
- E se a lâmpada não estiver queimada? Para que pegamos a escada?
- Buscar uma lâmp
- Acionar o interru
- Se a lâmpada não acender
 - Subir na escada;
 - Retirar a lâmpada velha;
 - Colocar a lâmpada nova;

- Algoritmo para trocar uma lâmpada
 - Acionar o interruptor;
 - Se a lâmpada não acender
 - Pegar uma escada;
 - Posicionar a escada embaixo da lâmpada;
 - Buscar uma lâmpada nova;
 - Acionar o interruptor;
 - Subir na escada;
 - Retirar a lâmpada velha;
 - Colocar a lâmpada nova;

- Algoritmo p
 - Acionar o i
 - Se a lâmpa

E se a lâmpada nova não funcionar?

- Pegar uma escada
- Posicionar a escacionar a aixo da lâmpada;
- Buscar uma lâmp a nova;
- Acionar o interruptor;
- Subir na escada;
- Retirar a lâmpada velha;
- Colocar a lâmpada nova;

Exemplo de Algoritmo

- Acionar o interruptor;
- Se a lâmpada não acender
 - Pegar uma escada;
 - Posicionar a escada embaixo da lâmpada;
 - Buscar uma lâmpada nova;
 - Acionar o interruptor;
 - Subir na escada;
 - Retirar a lâmpada queimada;
 - Colocar a lâmpada nova;
 - Se a lâmpada nova não acender
 - Retirar a lâmpada queimada;
 - Colocar outra lâmpada nova;

Exemplo de Algoritmo

- Acionar o interruptor;
- Se a lâmpa
 - Pegar um
 - Posicional

Quantas vezes eu vou repetir?

- Buscar uma lamp
- Acionar o interru
- Subir na escada;
- Retirar a lâmpad deimada;
- Colocar a lâmpada nova;
- Se a lâmpada nova não acender
 - Retirar a lâmpada queimada;
 - Colocar outra lâmpada nova;

Exemplo de Algoritmo

- Acionar o interruptor;
- Se a lâmpada não acender
 - Pegar uma escada;
 - Posicionar a escada embaixo da lâmpada;
 - Buscar uma lâmpada nova;
 - Acionar o interruptor;
 - Subir na escada;
 - Retirar a lâmpada queimada;
 - Colocar a lâmpada nova;
 - Enquanto a lâmpada não acender
 - Retirar a lâmpada não acender;
 - Colocar uma lâmpada nova;

Exercício de Fixação

- P1 Construa um algoritmo para ir ao banco e retirar dinheiro:
- P2 Construa um algoritmo para realizar um empréstimo de um livro na biblioteca:
- P3 Construa um algoritmo para tomar um bom banho:
- P4 Construa um algoritmo para assistir um filme no cinema:

Funcionamento do Computador

ENTRADA: São os dados de entrada do algoritmo

PROCESSAMENTO: São os procedimentos utilizados para chegar ao resultado final

SAÍDA: São os dados já processados

Conceitos Iniciais de Lógica

 A programação computacional pode ser resumida em 3 passos básicos

Conceitos Iniciais de Lógica

• Exemplo 1 – Exibir a soma de dois números

Conceitos Iniciais de Lógica

Exemplo 2 – Exibir a média de dois números

Introdução a Programação Dicas para Construção de Algoritmos

- Usar somente um verbo por frase
- Imaginar que você está desenvolvendo um algoritmo para pessoas que não trabalham com informática
- Usar frases curtas e simples
- Ser objetivo
- Procurar usar palavras que n\u00e3o tenham sentido d\u00fabio

FUNDAÇÃO CENTRO DE ANÁLISE. PESOUIS ESTRATÉGIA para Construção de Algoritmos

Estratégia para Construção de Algoritmos

Desenvolva um algoritmo para resolver o problema

Execute o algoritmo desenvolvido com dados para os quais o resultado seja conhecido.

Problema

Se o resultado do teste de qualidade não for satisfatório, altere o algoritmo e submeta-o a um novo teste de qualidade.

Entenda o problema com a maior precisão possível, identifique os dados; identifique os resultados desejados

O algoritmo concluído e testado, pronto para ser aplicado

Produto Final

Construção de Algoritmo

 Podemos pensar também num algoritmo como um "mecanismo" de transformação de entradas em saídas.

Assim, um algoritmo ao ser "executado", receberá algumas entradas, que serão processadas e nos devolverá algumas saídas.

Exemplo de Algoritmo

Calcular a média final dos alunos da 3ª Série. Os alunos realizarão quatro provas: P1, P2, P3 e P4.

Para montar o algoritmo proposto, faremos três perguntas:

a) Quais são os dados de entrada?

R: Os dados de entrada são P1, P2, P3 e P4

b) Qual será o processamento a ser utilizado?

R: O procedimento será somar todos os dados de entrada e dividi-los por 4 (quatro)

$$\frac{P1 + P2 + P3 + P4}{4}$$

c) Quais serão os dados de saída?

R: O dado de saída será a média final

Testando o Algoritmo

Informe Nota da Prova 1
Informe Nota da Prova 2
Informe Nota da Prova 3
Informe Nota da Prova 4

p1	p2	р3	p4	media (p1+p2+p3+p4)/4
6	7	6	9	(6+7+6+9)/4 = 7
5	5	8	10	(5+5+8+10)/4 = 7

Tipos de Algoritmos

Descrição Narrativa

consiste em analisar o enunciado do problema e escrever, utilizando uma linguagem natural ou passos a serem seguidos.

Vantagem

Não é necessário aprender nenhum conceito novo, pois uma língua natural, já é bem conhecida.

Desvantagem

A linguagem natural abre espaços para várias interpretações, o que dificulta a transcrição do algoritmo.

Tipos de Algoritmos

Exemplo da Descrição Narrativa

Um algoritmo para mostrar o resultado da soma de dois números:

Passo 1 – Receber dois números que serão somados.

Passo 2 - Somar os números.

Passo 3 – Mostrar o resultado obtido da soma.

Tipos de Algoritmos

Fluxograma

Consiste em analisar o enunciado do problema e escrever, utilizando símbolos gráficos predefinidos.

Vantagem

O entendimento de elementos gráficos é mais simples que o entendimento de textos.

Desvantagem

É necessário aprender a simbologia dos fluxogramas, além disso o algoritmo não apresenta muitos detalhes.

Tipos de Algoritmos

Fluxograma

FIGURA	SIGNIFICADO		
	Figura para definir início e fim do algoritmo		
	Figura usada no processamento de cálculo, atribuições e processamento de dados em geral		
	Figura utilizada na representação de entrada de dados		
	Figura utilizada para representação da saída de dados		
	Figura que indica o processo seletivo ou condicional, possibilitando o desvio no caminho do processamento		
	Símbolo geométrico usado como conector		
+	Símbolo que identifica o sentido do fluxo de dados, permitindo a conexão entre as outras figuras existentes		

Tipos de Algoritmos

Exemplo de Fluxograma

Tipos de Algoritmos

Pseudocódigo ou Portugol

consiste em analisar o enunciado do problema e escrever, por meio de regras predefinidas os passos a serem seguidos para sua resolução.

Vantagem

É permitido a passagem do algoritmo para qualquer linguagem de programação, basta conhecer as palavras reservadas.

Desvantagem

É necessário aprender as regras do pseudocódigo.

Tipos de Algoritmos

Exemplo de Pseudocódigo ou Portugol

```
Algoritmo_Soma
   Declare N1, N2, M: Numérico;
   Escreva ("Digite o primeiro número");
   Leia (N1);
   Escreva ("Digite o segundo número");
   Leia (N2);
   M \leftarrow N1 + N2;
   Escreva ("O resultado da soma é: ", M);
FimAlgoritmo
```


Tipos de Algoritmos - Características

De Análise Pesquisa Tipos de Algoritmos — Como funciona no Computador

Exemplo de Pseudocódigo ou Portugol

Algoritmo_Soma

Memória

N1	N2	M

→ Declare N1, N2, M : Numérico;

Escreva ("Digite o primeiro número");

Leia (N1);

Escreva ("Digite o segundo número");

Leia (N2);

 $M \leftarrow N1 + N2$;

Escreva ("O resultado da soma é: ", M);

FimAlgoritmo

Tipos de Algoritmos – Como funciona no Computador

Exemplo de Pseudocódigo ou Portugol

Algoritmo_Soma

Declare N1, N2, M: Numérico;

Memória

N1	N2	M

Escreva ("Digite o primeiro número");

Leia (N1);

Escreva ("Digite o segundo número");

Leia (N2);

 $M \leftarrow N1 + N2$;

Escreva ("O resultado da soma é: ", M);

FimAlgoritmo

Digite o primeiro número

–

Tipos de Algoritmos – Como funciona no Computador

Exemplo de Pseudocódigo ou Portugol

Algoritmo_Soma

Declare N1, N2, M: Numérico;

Escreva ("Digite o primeiro número");

→ Leia (N1);

Escreva ("Digite o segundo número");

Leia (N2);

 $M \leftarrow N1 + N2$;

Escreva ("O resultado da soma é: ", M);

FimAlgoritmo

Memória

N1	N2	M
12		

Digite o primeiro número

12

Tipos de Algoritmos – Como funciona no Computador

Exemplo de Pseudocódigo ou Portugol

Algoritmo_Soma

Declare N1, N2, M: Numérico;

Escreva ("Digite o primeiro número");

Leia (N1);

Escreva ("Digite o segundo número");

Leia (N2);

 $M \leftarrow N1 + N2$;

Escreva ("O resultado da soma é: ", M);

FimAlgoritmo

Memória

N1	N2	M
12		

Digite o primeiro número

12

Digite o segundo número

Tipos de Algoritmos – Como funciona no Computador

Exemplo de Pseudocódigo ou Portugol

Algoritmo_Soma

Declare N1, N2, M: Numérico;

Escreva ("Digite o primeiro número");

Leia (N1);

Escreva ("Digite o segundo número");

→ Leia (N2);

 $M \leftarrow N1 + N2$;

Escreva ("O resultado da soma é: ", M);

FimAlgoritmo

Memória

N1	N2	M
12	3	

Digite o primeiro número

12

Digite o segundo número

3

Tipos de Algoritmos – Como funciona no Computador

Exemplo de Pseudocódigo ou Portugol

Algoritmo_Soma

Declare N1, N2, M: Numérico;

Escreva ("Digite o primeiro número");

Leia (N1);

Escreva ("Digite o segundo número");

Leia (N2);

 \rightarrow M \leftarrow N1 + N2;

Escreva ("O resulta

FimAlgoritmo

Memória

N1	N2	M
12	3	15

Digite o primeiro número

12

Digite o segundo número

3

É feito internamente, sem o usuário visualizar

Tipos de Algoritmos – Como funciona no Computador

Exemplo de Pseudocódigo ou Portugol

Algoritmo_Soma

Declare N1, N2, M: Numérico;

Escreva ("Digite o primeiro número");

Leia (N1);

Escreva ("Digite o segundo número");

Leia (N2);

 $M \leftarrow N1 + N2$;

→ Escreva ("O resultado da soma é: ", M);

FimAlgoritmo

Memória

N1	N2	М
12	3	15

Digite o primeiro número

12

Digite o segundo número

3

O resultado da soma é: 15

Conclusão

• Programar não é um ato mecânico, consegue-se através do estudo e principalmente do treino!!!

• "O Conhecimento da linguagem é necessário, mas não é de todo suficiente. Programação é o simples ato de escrever idéias: é ter essas idéias, é ser criativo e engenhoso!"

Algoritmos

Exercícios - Resolva os algoritmos conforme o tipo de Pseudocódigo ou Portugol ensinados em sala:

- 1 Faça um algoritmo para mostrar o resultado da subtração de dois números:
- 2 Faça um algoritmo para mostrar o resultado da multiplicação de dois números:
- 3 Faça um algoritmo para mostrar o resultado da divisão de dois números:
- 4 Faça um algoritmo para mostrar o cálculo da soma de três números e a diferença da soma pelo primeiro número informado:
- 5 Faça um algoritmo para mostrar o resultado das operações de: soma, subtração, multiplicação e divisão entre dois números:

