MOSFET OP AMP

```
o differential inputs - wide range of common mode inputs
```

· Very large open-loop gain - negative feedback networks to create amplification to filtering circults independent of op amp design

· Very large in put Impedence - prevents loading 'high impedence' outputs (accuracy not lost)

Dow output impedance - enables driving small impedance loads without loss of linearity lacuracy

· High band width - allows amplification of high frequency signals

Negative feedback network can control system's gain + bandwidth -circuits can also be easily cascaded

input -> Differential gain -> voltage gain -> current gain -> output

· ideal opamp has infinite open loop gain

common source amp

Lowering output impedance: Source follower

Source follower = common drain amplifier -provides amplifier with current gain reduce output impedance so amplifier can deliver more aurent with less V drop

assuming Q7 in sat in fig 6.5:

$$V_S = V_{in} + V_{SG} = V_{IN} + \sqrt{\frac{i_D}{v_{IK}}} + |V_{th}|$$

tracks input voltage with offset Vth. Source voltage "follows" the input voltage

Source follower gain $A_V = \frac{V_{out}}{V_{in}} = \frac{g_m(r_o||R_{source})}{1 + g_m(r_o||R_{source})}$

as long as gm (roll Asource) >> 1 → gain will approx be Av=1v (if transistor in Sat & has high K')

source follower output resistance

Final design: Op amp

Satisfies: provides differential input overall gain exceeds 60 aB input resistances nearly co output impedance reasonably low

1. Small signal model for entire opamp

→ in terms of transistor params + I ref

Differential Amp: Q 5,6,9,10 CS Amp: Q4 & Q8A-B

Q5 & Q6: Input (Vint input signals)
-amplifies difference in the zinputs Qq & Q10 : active load

-high output impedance (more V gain)

Av(Diffe Amp) = 9ms (ro6 | rog)

Similar to page 68 on the manual

Source follower Gain (corrent gain) Q7A+B

Av(sf) \$1 (page 70, lab manual)

Open leop Gain: product of all gains Avagen) = Avagen × Avagen × Acomp Aucopen) = Aucdiff amp) x Aucopen)

Aveols = (gm ((roc || roq)) x (gmy (roz || ro4))

Estimate output resistance of CD output amp in 6.3

Vout = OV

Common drain = source follower

Common drain:
$$R_{OUT} = \frac{1}{g_m} \| r_o \| R_{SOURCE}$$

Page 71

$$g_{m} = \sqrt{2K \frac{W}{L} l_{D}}$$
 $l_{D} = 200 \mu A (+ask 6.5.1)$
 $g_{m} = 8.8 \text{ m/S}$
 $l_{D} = \frac{138}{7.8}$

page 71
$$r_0 = \frac{1}{\lambda_0 \mid_0}$$

r.= 625 Ω

$$\lambda_{p} = .008$$

$$\lambda_{p} = .000 \mu A$$

 $= \frac{1}{8.8 \times 10^{-3}} \left| 625 \right| 10 \, \text{K}$ $= \left(8.8 \times 10^{-3} + \frac{1}{625} + \frac{1}{10 \, \text{K}}\right)^{-1}$ r_o = 95,2Ω

Fig 6.5 : R source = 10 ks