Homework Assignment # 2

Ramiro Gonzalez

- 1. Show that $(\sqrt{3} + i)^4 = -8 + i8\sqrt{3}$ in the two ways listed.
 - (a) considering z = x + iy, $i^2 = -1$

$$(\sqrt{3}+i)^{2}(\sqrt{3}+i)^{2}$$

$$(2+2\sqrt{3}i)^{2}$$

$$(2+2\sqrt{3}i)(2+2\sqrt{3}i)$$

$$(4+4\sqrt{3}i+4\sqrt{3}i+12i^{2})$$

$$-8+i8\sqrt{3}$$

(b) consider,
$$r = |z| = \sqrt{x^2 + y^2}$$
, $z^n = r^n r^{in\theta}$, $(cos(\theta) + isin(\theta))^n = cos(n\theta) + isin(n\theta)$

$$e^{i\theta} = cos(\pi/6) + isin(\pi/6)$$

$$e^{in\theta} = cos(\frac{2\pi}{3}) + isin(\frac{2\pi}{3}), n = 4$$

$$e^{in\theta} = \frac{-1}{2} + \frac{\sqrt{3}}{2}i$$

$$r = \sqrt{\sqrt{3}^2 + 1^2} = 2$$

$$r^4 = 2^4 = 16$$

$$r^4 e^{i\frac{2\pi}{3}} = 16(\frac{-1}{2} + \frac{\sqrt{3}}{2}i) = -8 + 8\sqrt{3}i$$

- 2. Find Arg(z) for the following values of z:
 - (a) $Arg(1-i) = -\frac{\pi}{4}$
 - (b) $Arg((1-i)^3 = (-2-2i)) = -\frac{3\pi}{4}$
 - (c) $Arg(-\sqrt{3}+i) = \frac{2\pi}{3}$
 - (d) $Arg(\frac{2}{(i-1)}) = Arg(-1-i) = -\frac{3\pi}{4}$
- 3. Prove of the following properties of Arg for complex numbers z, z_1 and z_2 .
 - (a) $\operatorname{Arg}(z\overline{z})=0$ Let z=x+iy, $\overline{z}=x-iy$ Let w $z\overline{z}=(x^2+y^2)+i(-xy+xy)$, thus $\operatorname{Re}(w)=x^2+y^2$ and $\operatorname{Im}(w)=(-xy+xy)=0$, since $\operatorname{Re}(w)=x^2+y^2>0$, and $\operatorname{Im}(w)=0$ this means w is one dimensional extending indefinitely in the

real positive axis with no imaginary dimension which means Arg(w) = 0, also the angle between $< x^2 + y^2, 0 >= 0$

$$(a)\cos(\theta) = \frac{z \cdot \overline{z}}{||z||||\overline{z}||}$$

$$\cos(\theta) = \frac{x^2 + y^2}{\sqrt{(x^2 + y^2)^2}} = 1$$

$$\theta = \arccos(1) = 0$$

(b) $Arg(z + \overline{z}) = 0$ when Re(z) > 0

Let z = x + iy, $\overline{z} = x - iy$ then let $w = z + \overline{z} = 2x$ consider 2(-x) = 2(-Re(z)), since -2 is a point the real axis and the imaginary point is 0 then the Arg(w) = 0, π if and only if Re(z) > 0 because $Re(z) = Re(\overline{z})$.

- (c) $\operatorname{Arg}(z_1z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$ when $\operatorname{Re}(z_1) > 0$ and $\operatorname{Re}(z_2) > 0$ $\operatorname{Arg}(z\overline{z}) = \operatorname{Arg}((r_1e^{i\theta_1})(r_2e^{i\theta_1}))$ $\operatorname{Arg}(r_1r_2e^{i(\theta_1+\theta_2)}) = \theta_1 + \theta_2$ $\theta_1 + \theta_2 = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$ iff $\frac{-\pi}{2} < \operatorname{Arg}(z_1)$, $\operatorname{Arg}(z_2) < \frac{pi}{2}$ therefore $\operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$ must be grater than $-\pi$ and less than π consequently $\operatorname{Re}(z_1)$ and $\operatorname{Re}(z_2) > 0$ for this to be true. QED
- 4. Recall that arg(z) is the full set of possible values for θ . Explain (in complete sentences) why arg(1/z) = -arg z

In order to find the argument of z we find the angle made by real and imaginary coefficients in the xy-plane this angle can be any possible value so therefore it is added or subtracted to multiple periods. Recall that $z^n = r^n e^{in\theta}$ where n can be negative or positive which means the angle when n = -1 is negative thus we have $arg(z^{-1}) = -\theta + 2n_2\pi$ since n_2 can be plus or minus factoring the negative gives rise to $arg(z^{-1}) = -(\theta - 2n_2\pi)$ however $-2n_2\pi$ is equivalent to $2n_2\pi$ therefore $arg(z^{-1}) = -arg(z)$. In conclusion $arg(z^{-1}) = -arg(z)$ because the angle is negated and since it can be any angle it can be added or subtracted by a period multiple.

let n = -1, we know $n_2 = \pm n_2 = \mp n_2$

$$z^{-1} = \frac{1}{r}e^{-i\theta}$$

$$arg(\frac{1}{r}e^{-i\theta}) = -\theta \pm 2n_2\pi$$

$$(-1)arg(\frac{1}{r}e^{-i\theta}) = (-1)(-\theta \pm 2n_2\pi)$$

$$-arg(\frac{1}{r}e^{-i\theta}) = \theta \mp 2n_2\pi$$

$$-arg(1/z) = \theta \mp 2n_2\pi = arg(z)$$

Q.E.D

5. Let $P(z) = a_n z^n + a_{n-1} z^{(n-1)} \dots a_1 z^1 + a_0$ be a polynomial where each $a_i \in \mathbb{R}$ i.e., each a_i is a real number). Show that if z_r is a complex number which satisfies $P(z_r) = 0$, then $P(\overline{z_r}) = 0$.

We know $\overline{z_1 z_2} = \overline{z_1 z_2}$, and $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ also since $a_i \in \mathbb{R}$ then $\overline{a_i} = a_i$ Given: $P(z_r) = \sum_{i=0}^n a_r z_n^r = 0$ Since $\overline{P(z_r)} = \overline{0} = 0$, so we prove $\overline{P(z_r)} = P(\overline{z_r})$

Using properties known.

* $\overline{z_i}^n = \overline{z_i}^n$, let z = x + iy and $\overline{z} = x - iy$

$$*\overline{(x+iy)^n} = \overline{(x-iy)^n}$$

By de moivre's formula.

$$*\overline{r^n[\cos(n\theta) + \sin(n\theta)i]} = r^n[\cos(n\theta) - \sin(n\theta)i]$$

$$r^{n}[cos(n\theta) - sin(n\theta)i] = r^{n}[cos(n\theta) - sin(n\theta)i]$$

$$\overline{P(z_r)} = \overline{\sum_{i=0}^n a_r z_r^n} = \sum_{i=0}^n \overline{a_r} \overline{z_r^n} = \sum_{i=0}^n a_r \overline{z_r^n} = \sum_{i=0}^n a_r \overline{z_r^n} = P(\overline{z_r})$$

$$O.E.D$$

Note: This establishes that complex roots of a real valued polynomial come in complex conjugate pairs.

6. Find all the roots of the equation $z^4 - 4z^3 + 6z^2 - 4z + 5 = 0$ given that $z_1 = i$ is a root. (Hint: Use the previous problem!) We know i is a root so -i is also a root therefore:

$$(z-i)(z+i) = z^2 + 1$$

$$LongDivision: (z^2+1)\sqrt{z^4-4z^3+6z^2-4z+5} = z^2-4z+5$$

$$Roots: z^2-4z+5 = (2\pm i)$$

Answer: $i, -i, (2 \pm i)$

7. Let z be any complex number and let n be an integer. Prove that $z^n + (\overline{z})^n$ must be a real number.

let
$$z = x + iy$$
, $\overline{z} = x - iy$
 $x = r\cos(\theta)$, $y = r\sin(\theta)$
 $z^n + (\overline{z})$
 $r^n[(\cos(\theta) + i\sin(\theta))^n + (\cos(\theta) - \sin(\theta))^n]$, we can use Demovier's formula.

$$r^n[cos(n\theta) + isin(n\theta) + (cos(-n\theta) + sin(-n\theta))]$$
, since $n = \pm n$
 $r^n(2cos(n\theta) = \in \mathbb{R}$, by properties of trig functions. Q.E.D

8. Below I have found and plotted the sixth roots of unity. That is, the six solutions to $z^6 = 1$. Find and plot the eight roots which solve solution to $z^8 = 1$. (Hint: If you are doing this in \LaTeX , you can either include a figure as a PDF, or you can draw the figure itself in \LaTeX using the tikz package like I did when making the Figure below.) let $z^n = (re^{i\theta}) = 1e^{0+2\pi k}$

$$r^n = 1$$
$$n\theta = \frac{2\pi k}{n}$$

$$n = 1, 2, 3, 4, 5, 6, 7, \theta = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{\pi}{1}, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}$$

Figure 1: ShareLaTeX logo