Mini-projet: Sujet n° F-k

Evaluation de performance par simulation d'une file d'attente

Consignes: Un rapport bien détaillé est à déposer sur Arche pour le 28.02.2024.

Contenu du rapport :

- Présentation générale des indicateurs de performances étudiés
- o Simulation d'une file d'attente M/M/K
- Application:
 - Calcul de mesures de performance
 - Etudes de sensibilité
- Conclusions

1. Simulation d'une file d'attente M/M/K

Une file d'attente simple est décrite par un processus d'arrivé et un processus de départ de clients. L'arrivée des clients à la station est généralement décrite par un processus stochastique de comptage.

- A_n variable aléatoire mesurant l'instant d'arrivée du n^{ième} client
- T_n variable aléatoire mesurant le temps séparant l'arrivée du (n-1)^{ième} client et celle du n^{ième} client

Le temps de service/traitement d'une station est généralement décrit par un processus stochastique.

- D_n variable aléatoire mesurant l'instant de départ du n^{ième} client
- X_n variable aléatoire mesurant le temps de service du n^{ième} client (temps entre début et fin de service)

a. Simulation d'un processus d'arrivée : processus de Poisson

Supposons que le temps d'inter-arrivée des clients suive une loi exponentielle avec un taux d'arrivée constant λ. Le processus d'arrivée correspond donc à un processus de Poisson

Algorithme de simulation d'un processus de Poisson:

```
T(1)= - ln(rand)/λ; % Temps d'arrivé du 1<sup>er</sup> client
i=1;
Faire
u=- ln(rand)/λ; % Temps entre 2 arrivées consécutives
T(i+1)=T(i) + u; % Temps d'arrivée du (i+1)<sup>ime</sup> client
i=i+1;
Tant que T(i) ≤T<sub>fin</sub> % T<sub>fin</sub> est la durée d'observation donnée
```

b. Simulation d'un processus de départ

Le temps de service suive une loi exponentielle de paramètre µ. Simuler le processus de départ des clients.

Algorithme de simulation du processus de départ

```
TS=-ln(rand)/µ; % Temps de service du 1er client
D(1)=T(1)+TS; % Temps de départ du 1 er client
i=1;
Faire
TS=-ln(rand)/µ;
D(i+1)=max(T(i+1),D(i))+ TS; % Temps de départ du (i+1)<sup>ime</sup> client
i=i+1;
Tant que D(i) ≤T<sub>fin</sub> % T<sub>fin</sub> est la durée d'observation donnée
```


Illustration de processus d'arrivée et de départ

2. Application

Considérons un système de bases de données. Supposons que le temps entre deux arrivées consécutives suit une loi exponentielle avec une moyenne de **324-24***k requêtes par seconde. Le temps de traitement est ainsi supposé suivre une loi exponentielle avec une durée moyenne de traitement de (**0.5***k+1) ms/requête. Le buffer peut accueillir une infinité de requêtes (capacité infinie).

- 1. Utilisez le programme créé ci-dessus afin de simuler l'évolution du nombre de requêtes dans le système pour une durée d'une minute. A partir de données simulées, calculez, avec un niveau de confiance de 95%, le temps moyen d'attente, temps moyen de service, nombre moyen de requêtes dans le système, taux d'occupation du serveur, le débit ?
- 2. Même question 1 pour le cas où le taux d'arrivée des requêtes varie de **324-24*(k+1)** à **324-*****24*** requêtes/seconde. Commentez-vous les résultats obtenus
- 3. On suppose maintenant la taille du buffer est limitée et varie de 1 à **10+2*** *k* requêtes. Modifiez votre programme afin de prendre en compte cette contrainte ? Calculez ensuite le taux de pertes. Tracer le taux de pertes en fonction de la taille du buffer.