МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

АМПЛИТУДНАЯ ДИФРАКЦИОННАЯ РЕШЕТКА

Выполнил:

Деревянченко Михаил

Группа:

Б03-106

1. Аннотация

Целью данной работы являются:

- 1. Знакомство с работой и настройкой гониометра;
- 2. Определение спектральных характеристик амплитудной решётки.

2. Теоретические сведения

2.1 Амплитудная дифракционная решетка

Амплитудную решётку можно представить в виде непрозрачного экрана, в котором прорезано большое число N параллельных щелей — штрихов. Постоянство расстояний между штрихами d (период решётки, или шаг решётки) и шириной штриха b должно выдерживаться с большой точностью.

Наблюдение изображения спектра проводится с помощью зрительной трубы, настроенной на бесконечность (дифракции Фраунгофера на штрихах решётки). В этом случае амплитуда и интенсивность поля световой волны определяются углом ф между нормалью к решётке и направлением дифрагировавших лучей. Будем считать, что амплитуды всех интерферирующих волн одинаковы, т. е. фиксирована амплитуда падающей волны и постоянна площадь всех штрихов. Интенсивность дифрагированного света максимальна для углов ф_т, при которых волны, приходящие в точку наблюдения от всех щелей, оказываются в фазе:

$$d\sin\varphi_m = m\lambda$$

Величина $m = 0, \pm 1, \pm 2, \pm 3, \dots$ называется порядком спектра.

Рассмотрим качественный пример. Пусть падающее на решётку излучение содержит две спектральные линии одинаковой интенсивности. Одну линию условно назовем «красной», а другую «фиолетовой». Длина волны «красной» линии больше, чем длина волны «фиолетовой». Для угла дифракции $\phi_0 = 0$ (m = 0), когда ось зрительной трубы параллельна оси коллиматора, наблюдается наложение изображений входной щели коллиматора в «красном» и «фиолетовом» цвете друг на друга. При повороте зрительной трубы вокруг решётки в поле зрения возникает «фиолетовая» щель коллиматора, затем «красная» и т. д. Для малых углов дифракции фт угловое расстояние между порядками $\phi_{m+1} - \phi_m \approx \lambda / d$ пропорционально длине волны, поэтому «фиолетовые»

линии следуют чуть чаще, чем «красные», и возможна ситуация, когда они вновь налагаются друг на друга.

2.2 Угловая дисперсия спектральных приборов

Угловая дисперсия $D(\lambda)$ характеризует угловое расстояние между близкими спектральными линиями:

$$D(\lambda) = \frac{d \varphi}{d \lambda}$$

В современных приборах спектроскопии регистрация изображения спектров проводится не глазом, а линейкой или матрицей чувствительных к свету элементов. Угловая дисперсия позволяет определить минимальное расстояние между ячейками приёмного устройства: если требуется разрешить две спектральные линии с разностью длин волн $\delta\lambda$, то расстояние между элементами приемного устройства должно быть заметно меньше D $\delta\lambda f$, где f — фокусное расстояние объектива зрительной трубы.

Амплитудная решетка.

Выражение для угловой дисперсии дифракционной решётки:

$$D(\lambda) = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - (m\lambda)^2}}$$

Дисперсия возрастает с увеличением порядка спектра. Для малых углов дифракции $\phi << 1$ дисперсия пропорциональна порядку спектра: $D \approx m/d$.

2.3 Разрешающая способность

Рассмотрим изображения спектра для двух узких спектральных линий с длинами волн λ и $\lambda+\delta\lambda$. Для минимального значения $\delta\lambda$, которое может быть определено по результатам измерений, вводят важнейшую характеристику спектрального прибора — разрешающую способность:

$$R = \frac{\lambda}{\delta \lambda}$$

Рассмотрим физические ограничения разрешающей способности. Начнём уменьшать размер щели. В начале этого процесса будет уменьшаться интенсивность линий и их ширина. Начиная с некоторого момента будет уменьшаться только интенсивность, а ширина линий изменяться не будет. Достигнут физический предел ширины линии, и он определяется дифракцией света на апертуре решётки.

Для сравнения между собой различных спектральных приборов Релей предложил приравнять полуширину δφ(угловое расстояние между максимумом линии и её первым нулем) и расстояние между линиями Δφ. Критерий Релея удобен для различных оценок. Согласно ему для дифракционных решёток разрешающая способность определяется порядком спектра и числом штрихов:

$$R = Nm$$

Здесь под N следует понимать число одновременно работающих штрихов решётки, которое, вообще говоря, не равно суммарному числу штрихов освещённого участка решётки. Число штрихов N определяется качеством реплики, размером источника света и т. д.

3. Экспериментальная

установка

Принципиальная схема установки для изучения спектров приведена на рисунке снизу. Свет от источника S попадает на экран, в котором имеется отверстие в виде щели. Экран располагают в фокальной плоскости линзы или системы линз. Коллиматор формирует пучок света, близкий к параллельному. После коллиматора пучок лучей попадает на диспергирующий элемент (ДЭ):

амплитудную или фазовую дифракционную решётку, интерферометр Фабри–Перо или призму. Наблюдаются изображения с помощью зрительной трубы, установленной на бесконечность.

Если удалить из схемы диспергирующий элемент, а коллиматор и зрительную трубу расположить на одной оси, то можно увидеть чёткое изображение входной щели коллиматора.

Диспергирующий элемент перераспределяет интенсивность падающего на него излучения по углам в зависимости от длины волны: каждой монохроматической компоненте излучения с длиной волны λ соответствует один или несколько углов $\phi(\lambda)$ на выходе прибора, в направлении которых интенсивность прошедшей волны максимальна. Иными словами, диспергирующий элемент пространственно разделяет монохроматические составляющие падающего на него излучения, осуществляя тем самым его физическое разложение по спектру. При известной зависимости $\phi(\lambda)$ по измеряемому углу поворота ϕ зрительной трубы можно определить длину волны спектральной линии.

Каждый спектральный прибор предназначен для решения конкретной задачи спектроскопии. Выбор прибора для исследования спектра какого-либо источника должен заключаться в сравнении его характеристик с требуемыми. Наиболее важными характеристиками являются угловая дисперсия, разрешающая способность(о которых написано в теоретических сведениях) и дисперсионная область.

Дисперсионная область (или область дисперсии) — предельная ширина спектрального интервала Δλ прибора, для которой дифракционные максимумы соседних порядков не перекрываются. Она определяет диапазон длин волн, при которых прибор может быть использован для анализа спектра.

4. Проведение измерений

и обработка результатов

В начале проводим настройку/юстировку гониометра. Далее измеряем угловые координаты спектральных компонент ртути первого порядка.

Цвет	λ,нм	φ
Фиолетовый	404.7	11°40′36′′
Зеленый	546.1	15°45′2″
Желтый 1	577.0	16°44′21″
Желтый 2	579.1	16°44′35′′

По полученным значениям строим график зависимости λ от $\sin \phi$, уччитывая, что измерения проводились для номера порядка спектра m=1. Он является линейным(что соответсвует теории), откуда получаем расстояния между штрихами

$$d = \frac{\lambda}{\sin \varphi} = 2.10 \pm 0.03 \text{ мкм}$$

Далее значения угловой дисперсии в разных порядках спектра. В качестве приращения длины волн возьмём разность длин волн между близкими друг к другу жёлтыми компонентами ртути.

m	$arphi_{ extsf{1}}$ (1 желтая полоса)	$arphi_2$ (2 желтая полоса)	$\mathbf{d}arphi$
-3	61°24′30′′	61°48′6′′	-0°23′36″
-2	35°34′21″	35°43′55′′	0°9′34′′
-1	16°46′22′′	16°49′59′′	0°3′37′′
0	0°0′1′′	0°0′1″	0°0′0′′
1	16°41′21′′	16°44′35′′	0°3′14″
2	34°54′41′′	35°4 ′40′′	0°9′59′′
3	58°35′33′′	58°55′30′′	0°19′57′′

По измеренным данным строим график зависимости угловой дисперсии D от порядка спектра m.

Полученные точки графика(кроме 1) с учетом погрешности ложатся на теоретическую кривую $D(\lambda) = \frac{m}{\sqrt{d^2 - (m\,\lambda)^2}}$. Неточность может быть связана с неидеальной настройкой положения решетки(она может быть не перпендикулярна столику с маленькой погрешностью, но даже она может внести вклад в итоговый результат).

Наконец, оценим разрешимый спектральный интервал. Измерим координаты границ желтой спектральной линии ртути для порядков m = -1, -2, -3.

m	φ_1	$arphi_2$	$\Delta \varphi$
-3	58°35′1″	58°35′58′′	0°0′57′′
-2	34°53′49′′	34°54′23′′	0°0′34′′
-1	16°41′52′′	16°41′47′′	0°0′5″

Усредняя полученные значения получаем $\Delta \varphi = (12 \pm 0.3) \cdot 10^{-5}$ радиан и $\delta \lambda = (0.240 \pm 0.006)$ нм. Отсюда получаем разрешающую способность:

$$R = \frac{\lambda}{\delta \lambda} = 2409 \pm 57$$

Число эффектривно работающих штрихов решётки:

$$N = \frac{R}{m} = (m = 1) = 2409 \pm 57$$

Эффективный размер:

$$L = N * d = 5.00 \pm 0.15 \text{ MM}$$

5. Вывод

В данной работе мы ознакомились с оптическим прибором для исследования спектров - гониометром, исследовали зависимости распеределения спектральных линий, вычислили разрешающую способность прибора, угловую дисперсию, характерное число эффективно работающих штрихов.

В работе предполагалось наблюдение фиолетовой, зеленой, желтой, синей и красной линий(спектр ртути), но были замечены только первые 3. Это может быть связано с тем, что последние 2 были довольно сильно смещены по вертикали, что опять же объясняется неидеальной перпендикулярностью решетки и столика. Но несмотря на многочисленные корректировки положения системы и изменения наклона коллиматора и зрительной трубы, их обнаружить не удалось.