Which of the following is the best approach for a patient with TNBC who suffers recurrent, metastatic breast cancer 8 months after completion of adjuvant chemotherapy with an anthracycline + cyclophosphamide + taxane?

- 1. Platinum-containing combination chemotherapy
- 2. Bevacizumab-containing combination therapy
- 3. Clinical trial with other agents targeting VEGF/VEGFR, EGFR, mTOR, PARP

Which of the following is the best approach for a patient with TNBC who suffers recurrent, metastatic breast cancer 8 months after completion of adjuvant chemotherapy with an anthracycline + cyclophosphamide + taxane?

1. Platinum-containing combination chemotherapy

28.1%

2. Bevacizumab-containing combination therapy

34.4%

3. Clinical trial with other agents targeting VEGF/VEGFR, EGFR, mTOR, PARP

Optimizing Outcomes in Metastatic Triple-Negative Breast Cancer (TNBC): The Search for Targets

David Miles, MD, FRCP
Mount Vernon Cancer Centre
United Kingdom

Optimizing Outcomes in Metastatic Triple-Negative Breast Cancer (TNBC): The Search for Targets

RCP entre

Optimizing Outcomes in Metastatic Triple-Negative Breast Cancer (TNBC): The Search for Targets

Optimizing Outcomes in Metastatic Triple-Negative Breast Cancer (TNBC): The Search for Targets

Triple-Negative Breast Cancer: Hazard Rates for Distant Recurrence

Chemotherapy in TNBC

Reference	Regimen	n	Prior treatment	Response rate (RR)	PFS	os
046/048 (2008)	Capecitabine (Cap) + Ixabepilone	230 213	A + T A + T	15% 31%	1.7 m 4.2 m	9 m 10.3 m
Solti-0701	Cap 1g/m2 bd	33	0-1	NR	2.5 m	16.1 m
AC01B07	Gemcitabine (Gem) 1g/m2 OR Cap 1g/m2 bd	27	0-1	NR	2.6 m	NR
EGF30001 (2009)	Paclitaxel (Pac) 175	60	0	NR	4.8 m	NR
E2100	Pac 90mg/m ² , D1, 8, 15	110	0	NR	5.3 m	NR
AVADO	Docetaxel 100/m ² , D1	52	0	NR	5.4 m	NR
Ribbon-1	Taxane or anthracycline	50	0	NR	4.2 m	NR

Platinum-Containing Regimens in TNBC

Reference	Regimen	n	Prior treatment	RR	PFS/DFS	os
Sirohi, et al	Mitomycin C, vinblastine cisplatin (Cis)	34	0-5	41%	6 m	11 m
Bhattacharyya, et al	CtxMtx (metronomic) Cis	66	1	62%	13 m	16 m
Isakoff, et al	Carboplatin (Carbo) or cis	86	0-1	30%	3.2 m	NR
			BRCA1/2	?+ve 55%: B	RCA1/2-ve26%	
Staudacher, et al	Cis + ifosfamide	93	0-2 (A+T)	33%	6 m	22 m
		BRC	A1/2+ve 5/11 re	sponses		
O'Shaughnessy, et al	Gem 1 g/m² D1,8, Carbo AUC2, d1,8 q3w	62	0-3	32%	3.6 m	7.7 m
O'Shaughnessy, et al	Gem 1 g/m² D1,8, Carbo AUC2, D1,8 q3w	258	0-2	30%	4.1 m	11.1 m
Baselga, et al	Cis 75 mg/m2 D1 q3w	58	0-1	10%	1.5 m	9.4 m

Sirohi B, et al. *Ann Oncol.* 2008;19(11):1847-1852. Bhattacharyya G, et al. *Eur J Cancer Suppl.* 2009;7(2): Abstract 41LBA. Isakoff S, et al. *J Clin Oncol.* 2011;29(15S): Abstract 1025. Staudacher L, et al. *Ann Oncol.* 2011;22(4):848-856. O'Shaughnessy J, et al. *N Engl J Med.* 2011;364(3):205-214. O'Shaughnessy J, et al. *J Clin Oncol.* 2011;29(suppl): Abstract 1007. Baselga J, et al. *J Clin Oncol.* 2013;31(20):2586-2592.

Carboplatin vs Docetaxel Triple-Negative Trial (TNT)

tnAcity: Study Design

Phase II study start: June 2013

Phase II estimated completion (primary analysis): June 2015

Phase III 'go/no go' decision: Sep 2015

What About Bevacizumab?

First-Line Bevacizumab (E2100, AVADO, Ribbon-1, n = 2447): Subset Analyses

	_	Mediai mor		Median OS, months				
	PFS HR (95% CI)	BEV	Non- BEV	BEV	Non- BEV	1-year OS diff	OS HR	
TNBC (n = 621)	0.63 (0.52-0.76)	8.1	5.4	18.9	17.5	6.1% (1.5-13.6)	0.96 (0.79- 1.16)	
Prior (neo) adjuvant taxane (n = 558)	0.54 (0.44-0.67)	9.2	6.0	26.7	20.5	7.3% (3.0-11.6)	0.72 (0.57- 0.90)	
TNBC and prior taxane	NR	NR	NR	25.6	15.0	16%	0.61 (0.40- 0.94)	

First-Line Chemotherapy ± Bevacizumab Overall Survival (TNBC, Taxane Pretreated)

Miles D, et al. Ann Oncol. 2010;21(Suppl 8): Abstract 279PD.

Efficacy Data From First-Line Studies With Bevacizumab in TNBC

Trial	ORR	PFS, months	HR -PFS/ 95%CI	os
TURANDOT (n = 130)				
Paclitaxel + BEV	49%	9.0	1.37 (0.93-2.0)	78 (1 year)
Capecitabine + BEV	19%	5.6	1.37 (0.93-2.0)	63 (1 year)
ATHENA (n = 585)	49%	7.2	(6.6-7.8) months	18.3 months (16.4-19.7)
CALGB 40502 (n = 218)				
Nab-paclitaxel + BEV		≈ 7	0.93 (P = .74)	NR
Paclitaxel + BEV		≈ 7		NR
Ixabepilone + BEV		≈ 5	1.46 (<i>P</i> = .06)	NR
AVAREG (n = 106)				
Paclitaxel + BEV		8.3	(7.8-8.8) months	NR

Brodowicz T, et al. *Cancer Res.* 2013;73(24 Suppl): Abstract P6-06-40. Thomssen C, et al. *Oncology*. 2012;82(4):218-27. Rugo H, et al. *J Clin Oncol*. 2012;30(15S): Abstract CRA1002. Dank M, et al. *Anticancer Res.* 2014;34(3):1275-1280.

Some of these agents may not be currently approved by the US Food and Drug Administration or European Medicines Agency for this indication.

Identification of Human TNBC Subtypes

Basal-like 1: Cell cycle, DNA repair and proliferation genes

Basal-like 2: Growth factor signaling (EGFR, MET, Wnt, IGF1R)

IM: Immune cell processes (medullary breast cancer)

M: Cell motility and differentiation, EMT processes

MSL: Similar to M but growth factor signaling, low levels of proliferation genes (metaplastic cancers)

LAR: Androgen receptor and downstream genes, luminal features

Olaparib in MBC: Patients With BRCA1/2 Mutations

Efficacy	Olaparib 400 mg bid (n = 27)	Olaparib 100 mg bid (n = 27)	
ORR	11 (41%)*	6 (22%)	
CR	1 (4%)	0	
PR	10 (37%)	6 (22%)	
PFS	5.7 months	3.8 months	

Olaparib in Ovarian and TNBC

	Status	Responses	
Ovarian cancer	BRCA1/2	7/17	41%
Ovarian cancer	Non-BRCA	11/46	24%
Breast cancer	BRCA1/2	0/8	0
Breast cancer	Non-BRCA	0/15	0

PARPi in Combination?

Phase II study veliparib (ABT-888) + temozolomide

Isakoff S, et al, *J Clin Oncol.* 2010;28(15S): Abstract 1019.

Phase I study olaparib + paclitaxel

Dent R, et al. *Breast Cancer Res.* 2013;15(5):R88.

Phase I study olaparib + cisplatin

Balmaña J, et al. *Ann Oncol*. 2014;25(8):1656-1663.

Paclitaxel 90 (D1,8,15) + olaparib	Cohort 1 n = 9 (no G-CSF)	Cohort 2 n = 10 (G-CSF)
CR	0	0
PR	3	3
Unconfirmed PR	1	2

"Olaparib in combination with cisplatin 75 mg/m(2) was not considered tolerable"

"Promising antitumor activity in patients with germline BRCA1/2 mutations was observed"

What Is the Prevalence of BRCA1 Mutation in Patients With TNBC?

Approximately 10%-30%

Table I	Studies with over 50 cases that have evaluated BRCA1 mutation prevalence in TN cancers						
Number of cases	BRCAI mutations (%)	Unselected/selected	Selection criteria	Reference			
144	20 (14)	Unselected		Collins et al (2009)			
96	9 (9)	Selected	Bilateral and/or family history of breast cancer.	Zhang et al (2011)			
93	32 (34)	Selected	Seen in Genetic clinics and underwent BRCA testing.	Atchley et al (2008)			
77	12 (16)	Unselected		Gonzalez-Angulo et al (2011)			
64	19 (30)	Selected	Ashkenazi Jewish heritage. Tested for founder mutations.	Comen et al (2011)			
63	8 (13)	Selected and unselected	TN <41 years	Evans et al (2011)			
54	5 (9)	Selected	TN <40 years and did not qualify for testing according to ASCO guidelines	Young et al (2009)			
Abbreviation: TN = Triple-negative.							

"For now, perhaps the simplest recommendation is to test women under age 50 years with triple-negative breast cancer and women with a family history of early-onset breast cancer or ovarian cancer" Steven Narod JCO

Tesaro Trial in *BRCA1 | BRCA2* Carriers With Advanced Breast Cancer

BRCA1 / BRCA2 carriers

Advanced taxane pretreated breast cancer

R

Treatment of physicians choice

TNBC Subtypes: (Some) Research Strategies

Basal-like 1: Cell cycle, DNA repair and proliferation genes

Basal-like 2: Growth factor signaling (EGFR, MET, Wnt, IGF1R)

IM: Immune cell processes (medullary breast cancer)

M: Cell motility and differentiation, EMT processes

MSL: Similar to M but growth factor signaling, low levels of proliferation genes (metaplastic cancers)

LAR: Androgen receptor and downstream genes, luminal features

PARPi, ± DNA damaging agents homologous recombination deficiency assay (BRCA-1 ness)

EGFR (cetuximab, lapatinib)
Self-renewal pathways (stem cell)
Wnt
Notch (PF03084014, AACR 2012

Immune check point
PD1/PDL1, CTLA4
Vaccines: MUC1, NYO-ESO1

Plus
Pl3Ki, RAS/MEK/Erk,
MET, PTEN
etc, etc

Agents targeting androgen receptor (enzalutamide, bicalutamide, etc)

Conclusions: Treatment of TNBC

- No standard therapy for metastatic TNBC
 - No evidence that one chemotherapy is superior to another
 - Are triple negative breast cancers truly more susceptible to platinum-based vs other chemotherapy (hence TNT)?
 - Which sub-groups benefit most?
 - Is there a difference between cisplatin and carboplatin?
- Most active agents currently licensed for use appear to be:
 - Cisplatin based chemotherapy
 - Chemotherapy + bevacizumab
- Find out BRCA1/2 status and put your patients into clinical trials
 - Entry criteria MUST reflect the natural history of the disease

