20 de febrero de 2017

La Ley de Ohm Ω

"La Tensión V que aparece entre los extremos de un conductor es proporcional a la Intensidad I que circula por él"

$$V = R \cdot I$$

Tensión Intensidad Resistencia V: Voltios [V] I: Amperios [A] R: Ohmios $[\Omega]$

Georg Simon Ohm (1789-1854)Físico Matemático Alemán

Un conductor tiene una resistencia de 1 Ω cuando aplicándole 1 V, circula 1 A.

Resistividad ρ (rho)

La **Resistividad** es la resistencia que posee un conductor de un Material específico de 1 metro de longitud y 1 m² de sección.

 $\rho = R \frac{S}{I}$

Material	Resistividad (en 20 °C-25 °C) (Ω·m).
Grafeno	$1,00 \times 10^{-8}$
Plata	1,59 x 10 ⁻⁸
Cobre	1,71 x 10 ⁻⁸
Oro	2,35 x 10 ⁻⁸
Aluminio	2,82 x 10 ⁻⁸
Hierro	$8,90 \times 10^{-8}$
Platino	10,60 x 10 ⁻⁸
Estaño	11,50 x 10 ⁻⁸
Acero inoxidable 301	72,00 x 10 ⁻⁸
Grafito	60,00 x 10 ⁻⁸

Sharpen your pencil ¿Cuál es la resistencia de un conductor de cobre de 1m de longitud y 1,5 mm² de sección?