ExampleBostonDataset

alexaoh

3/9/2021

Example: Boston data set

```
(Taken from Stefanie Muff's lecture on Trees: Module 8 in TMA4268, spring 2021). Thank you! ;)) (ISLR book, Sections 8.3.2 to 8.3.4.)
```

Remember the data set: The aim is to predict the median value of owner-occupied homes (in 1000\$)

We first run through trees, bagging and random forests - before arriving at boosting.

```
library (MASS)
train = sample(1:nrow(Boston), nrow(Boston)/2)
head(Boston)
       crim zn indus chas
                           nox
                                  rm age
                                             dis rad tax ptratio black lstat
## 1 0.00632 18 2.31
                      0 0.538 6.575 65.2 4.0900
                                                 1 296
                                                           15.3 396.90 4.98
## 2 0.02731 0 7.07
                       0 0.469 6.421 78.9 4.9671
                                                   2 242
                                                           17.8 396.90
                                                                        9.14
## 3 0.02729 0 7.07
                       0 0.469 7.185 61.1 4.9671
                                                  2 242
                                                           17.8 392.83 4.03
## 4 0.03237 0 2.18
                       0 0.458 6.998 45.8 6.0622
                                                  3 222
                                                           18.7 394.63 2.94
## 5 0.06905 0 2.18
                       0 0.458 7.147 54.2 6.0622
                                                  3 222
                                                           18.7 396.90 5.33
## 6 0.02985 0 2.18
                       0 0.458 6.430 58.7 6.0622
                                                  3 222
                                                           18.7 394.12 5.21
## medv
## 1 24.0
## 2 21.6
## 3 34.7
## 4 33.4
## 5 36.2
## 6 28.7
```

Regression tree

```
library(tree)
tree.boston=tree(medv~.,Boston,subset=train,control = tree.control(nrow(Boston), mindev = 0.005))
summary(tree.boston)

##
## Regression tree:
## tree(formula = medv ~ ., data = Boston, subset = train, control = tree.control(nrow(Boston),
## mindev = 0.005))
## Variables actually used in tree construction:
## [1] "rm" "lstat" "age" "crim" "black" "nox" "ptratio"
## Number of terminal nodes: 13
## Residual mean deviance: 7.353 = 1765 / 240
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ~8.1400 -1.4360 -0.1615 0.0000 1.4640 12.8600

plot(tree.boston)
text(tree.boston,pretty=0)
```


Remember:

- The tree() function has a built-in default stopping criterion.
- You can change this with the control option, for example by setting control = tree.control(mincut = 2, minsize = 4, mindev = 0.001). Here we used mindev=0.005.

Need to prune?

cv.boston=cv.tree(tree.boston)
plot(cv.boston\$size,cv.boston\$dev,type='b')

It looks like a tree with 6 leaves would work well.

Pruning

So we are pruning to a 6-node tree here:

```
prune.boston=prune.tree(tree.boston,best=6)
plot(prune.boston)
text(prune.boston,pretty=0)
```


Test error for full tree

We calculate the test error for the pruned tree: $\,$

```
yhat=predict(prune.boston,newdata=Boston[-train,])
boston.test=Boston[-train,"medv"]
plot(yhat,boston.test, pch=20)
abline(0,1)
```



```
mean((yhat-boston.test)^2) # Calculate test MSE.
## [1] 35.16439
```

Bagging

Remember: For bagging you can use the randomForest() function, but include all variables (here mtry=13).

```
library(randomForest)
bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,importance=TRUE)
bag.boston
## Call:
   randomForest(formula = medv ~ ., data = Boston, mtry = 13, importance = TRUE,
                                                                                       subset = train)
                  Type of random forest: regression
##
                       Number of trees: 500
##
## No. of variables tried at each split: 13
##
##
             Mean of squared residuals: 11.39601
##
                      % Var explained: 85.17
```

Test error for bagged tree

```
yhat.bag = predict(bag.boston,newdata=Boston[-train,])
plot(yhat.bag, boston.test,pch=20)
abline(0,1)
```



```
bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,ntree=25)
yhat.bag = predict(bag.boston,newdata=Boston[-train,])
mean((yhat.bag-boston.test)^2)
```

[1] 23.66716

Random forest

Let's go from bagging to a random forest¹, using 6 randomly selected predictors for each tree:

```
set.seed(1)
rf.boston=randomForest(medv~.,data=Boston,subset=train,mtry=6,importance=TRUE)
yhat.rf = predict(rf.boston,newdata=Boston[-train,])
mean((yhat.rf-boston.test)^2)
```

[1] 19.62021

It's interesting to see how the prediction error further decreased with respect to simple bagging.

Variable importance

importance(rf.boston)

```
%IncMSE IncNodePurity
## crim
           16.697017
                        1076.08786
## zn
            3.625784
                          88.35342
## indus
            4.968621
                         609.53356
## chas
            1.061432
                          52.21793
## nox
           13.518179
                         709.87339
## rm
           32.343305
                        7857.65451
## age
           13.272498
                         612.21424
## dis
            9.032477
## rad
            2.878434
                          95.80598
## tax
            9.118801
                         364.92479
## ptratio
            8.467062
                         823.93341
## black
            7.579482
                         275.62272
## 1stat
           27.129817
                        6027.63740
```

Interpretation?

And the variable importance plots

¹n.b., why are we now speaking of a forest and no longer of a tree?

To understand what this means, please check again the meaning of the variables by typing ?Boston.

Boosting

And finally, we are boosing the Boston trees! We boost with 5000 trees and allow the interaction depth (number of splits per tree) to be of degree 4:

```
library(gbm)
set.seed(1)
boost.boston=gbm(medv~.,data=Boston[train,],
                  distribution="gaussian",
n.trees=5000,interaction.depth=4)
summary(boost.boston,plotit=FALSE)
                var
                        rel.inf
## rm
                 rm 43.9919329
## 1stat
              1stat 33.1216941
## crim
                     4.2604167
               crim
## dis
                dis
                     4.0111090
## nox
                     3.4353017
                nox
## black
              black
                     2.8267554
                     2.6113938
## age
                age
                     2.5403035
## ptratio ptratio
## tax
                tax
                     1.4565654
## indus
              indus
                     0.8008740
## rad
                {\tt rad}
                     0.6546400
## zn
                 zn
                     0.1446149
## chas
               chas
                     0.1443986
```

Partial dependency plots - integrating out other variables

rm (number of rooms) and lstat (% of lower status population) are the most important predictors. Partial dependency plots show the effect of individual predictors, integrated over the other predictors see @hastie_etal2009, Section 10.13.2.

```
plot(boost.boston,i="rm",ylab="medv")
```


plot(boost.boston,i="lstat",ylab="medv")

Prediction on test set

- Calculate the MSE on the test set, first for the model with $\lambda = 0.001$ (default), then with $\lambda = 0.2$.
- We could have done cross-validation to find the best λ over a grid, but it seems not to make a big difference.

Further reading

- Videoes on YouTube by the authors of ISL, Chapter 8, and corresponding slides.
- Solutions to exercises in the book, chapter 8

References