

2022

Hotel Booking

Muhammad Hassan Ali | 1000023619 Syed Muhammad Zaffar | 1000023608

Advance Machine Learning & Knowledge Discovery Department of Economy and Business University of Catania

Submitted to:

Prof. Vincenza Carchiolo 7/15/2022

Hotel Booking & Type Analysis

Table Of Content:

- 1- Introduction
 - · Attribute Specification
- 2- Expolatanory Data Analysis
 - From where the most guests are coming?
 - How much do guests pay for a room per night?
 - How does the price vary per night over the year?
 - Which are the most busy months?
 - · How long do people stay at the hotels?
- 3- Preprocessing
 - Data cleaning
 - Handling missing values
 - · Removing unnecessary rows
 - · Coulmns transformation

SUPERVISED LEARNING

- 4- Modeling
 - Logistic Regression
 - SVM-Support Vector Machine
 - KNN-K-Nearest Neighbors
- 5- Models Comparison

UNSUPERVISED LEARNING

- 6- Clustering
 - K-Means
- 7- Conclusion

DATASET

This data set contains booking information for a city hotel and a resort hotel and includes information such as when the booking was made, length of stay, the number of adults, children, and/or babies, and the number of available parking spaces, among other things. All personally identifying information has from the data. We will perform supervised, unsupervised learnings and exploratory data analysis as well with python to get insight from the data.

Attribute Specification

Attribute	Attribute Type	Description
hotel	Categorical	booking information for a city hotel or a resort hotel
is_canceled	Categorical	Value indicating if the
(Target Variable)		booking was canceled (1) or
		not (0)
lead_time	Integer	Number of days that
		elapsed between the
		entering date of the booking
		into the PMS and the arrival
		date
arrival_date_year	Integer	Year of arrival date
arrival_date_month	Categorical	Month of arrival date with
		12 categories: "January" to "December"
arrival data week number	Integer	Week number of the arrival
arrival_date_week_number	Integer	date
arrival_date_day_of_month	Integer	Day of the month of the
arrival_date_day_or_month	integer	arrival date
stays_in_weekend_nights	Integer	Number of weekend nights
staysweekenag.nes	egei	(Saturday or Sunday) the
		guest stayed or booked to
		stay at the hotel
stays_in_week_nights	Integer	Number of week nights
		(Monday to Friday) the
		guest stayed or booked to
		stay at the hotel
adults	Integer	Number of adults
children	Integer	Number of childern
babies	Integer	Number of babies
meal	Categorical	Type of meal booked.
		Categories are presented in
		standard hospitality meal
		packages: Undefined/SC –
		no meal package; BB – Bed
		& Breakfast; HB – Half board
		(breakfast and one other
	Cohorantest	meal – usually dinner);
country	Categorical	Country of origin
market_segment	Categorical	Market segment
		designation. In categories,
		the term "TA" means

		"Travel Agents" and "TO"
		means "Tour Operators"
distribution_channel	Categorical	Booking distribution
_	Ü	channel. The term "TA"
		means "Travel Agents" and
		"TO" means "Tour
		Operators"
is repeated guest	Categorical	Value indicating if the
	_	booking name was from a
		repeated guest (1) or not (0
previous_cancellations	Integer	Number of previous
_		bookings that were
		cancelled by the customer
		prior to the current booking
agent	Categorical	ID of the travel agency that
		made the booking
previous_bookings_not_canceled	Integer	Number of previous
		bookings not cancelled by
		the customer prior to the
		current booking
reserved_room_type	Categorical	Code of room type reserved.
		Code is presented instead of
		designation for anonymity
		reasons
assigned_room_type	Categorical	Code for the type of room
		assigned to the booking.
		Sometimes the assigned
		room type differs from the
		reserved room type due to
		hotel operation reasons
		(e.g. overbooking) or by
		customer request. Code is
		presented instead of
		designation for anonymity
		reasons
booking_changes	Integer	Number of changes or
		amendments made to the
		booking from the moment
		the booking was entered on
		the PMS until the moment
		of check-in or cancellation
deposit_type	Categorical	Indication on if the
		customer made a deposit to

company	Categorical	guarantee the booking. This variable can assume three categories: No Deposit – no deposit was made; Non Refund – a deposit was made in the value of the total stay cost; Refundable – a deposit was made with a value under the total cost of stay. ID of the company/entity that made the booking or
		responsible for paying the
		booking. ID is presented
		instead of designation for
		anonymity reasons
days_in_waiting_list	Integer	Number of days the booking
	_	was in the waiting list
		before it was confirmed to
		the customer
customer_type	Categorical	Type of booking, assuming
		one of four categories:
		Contract - when the booking
		has an allotment or other
		type of contract associated to it;
		Group – when the booking
		is associated to a group;
		Transient – when the
		booking is not part of a
		group or contract, and is not
		associated to other
		transient booking;
		Transient-party – when the
		booking is transient, but is
		associated to at least other
		transient booking
adr	Numeric	Average Daily Rate as
		defined
required_car_parking_spaces	Integer	Number of car parking
		spaces required by the
		customer

total_of_special_requests	Integer	Number of special requests
		made by the customer (e.g.
		twin bed or high floor)
reservation_status_date	Date	Date at which the last status
		was set. This variable can be
		used in conjunction with the
		Reservation Status to
		understand when was the
		booking canceled or when
		did the customer checked-
		out of the hotel

The Dataset consists of 14 variables that are categorical type, 16 variables that are of numeric type and 1 variable of Date type.

```
In [21]:
         #Importing Packages
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import missingno as msno
         import datetime
         from sklearn.preprocessing import LabelEncoder
         import plotly.express as px
         plt.style.use('fivethirtyeight')
         %matplotlib inline
         pd.set_option('display.max_columns', 32)
         import plotly.express as px
         import warnings
         warnings.filterwarnings('ignore')
```

```
In [3]: #Importing Data
df = pd.read_csv('hotel_bookings.csv')
```

After the data is loaded, the number of columns and the number of data table rows were viewed. Then, we visualized a few lines of data to get a general idea of this data, and to see if there are any missing values, which will be represented by NaN:

In [53]: df.describe()

Out[53]:

stays_in_weekend_r	arrival_date_day_of_month	arrival_date_week_number	arrival_date_year	lead_time	is_canceled	
119210.0	119210.000000	119210.000000	119210.000000	119210.000000	119210.000000	count
0.9:	15.798717	27.163376	2016.156472	104.109227	0.370766	mean
0.9	8.781070	13.601107	0.707485	106.875450	0.483012	std
0.0	1.000000	1.000000	2015.000000	0.000000	0.000000	min
0.0	8.000000	16.000000	2016.000000	18.000000	0.000000	25%
1.0	16.000000	28.000000	2016.000000	69.000000	0.000000	50%
2.0	23.000000	38.000000	2017.000000	161.000000	1.000000	75%
19.0	31.000000	53.000000	2017.000000	737.000000	1.000000	max
\						4

In [54]: df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 119210 entries, 0 to 119389
Data columns (total 32 columns):

υaτa #	Columns (total 32 columns):	Non-Nu	ll Count	Dtype
0	hotel	119210	non-null	object
1	is_canceled	119210	non-null	int64
2	<pre>lead_time</pre>	119210	non-null	int64
3	arrival_date_year	119210	non-null	int64
4	arrival_date_month	119210	non-null	object
5	arrival_date_week_number	119210	non-null	int64
6	arrival_date_day_of_month	119210	non-null	int64
7	<pre>stays_in_weekend_nights</pre>	119210	non-null	int64
8	stays_in_week_nights	119210	non-null	int64
9	adults	119210	non-null	int64
10	children	119210	non-null	float64
11	babies	119210	non-null	int64
12	meal	119210	non-null	object
13	country	119210	non-null	object
14	market_segment	119210	non-null	object
15	distribution_channel	119210	non-null	object
16	is_repeated_guest	119210	non-null	int64
17	previous_cancellations	119210	non-null	int64
18	<pre>previous_bookings_not_canceled</pre>	119210	non-null	int64
19	reserved_room_type	119210	non-null	object
20	assigned_room_type	119210	non-null	object
21	booking_changes	119210	non-null	int64
22	deposit_type	119210	non-null	object
23	agent	119210	non-null	float64
24	company	119210	non-null	float64
25	days_in_waiting_list	119210	non-null	int64
26	customer_type	119210	non-null	object
27	adr	119210	non-null	float64
28	required_car_parking_spaces	119210	non-null	int64
29	total_of_special_requests	119210	non-null	int64
30	reservation_status	119210	non-null	object
31	reservation_status_date	119210	non-null	object
dtype	es: float64(4), int64(16), objec	t(12)		
memor	ry usage: 30.0+ MB			

memory usage: 30.0+ MB

In [18]: # checking for null values

null = pd.DataFrame({'Null Values' : df.isna().sum(), 'Percentage Null Values' : (df.isna().sum()) / (df.null

Out[18]:

	Null Values	Percentage Null Values
hotel	0	0.000000
is_canceled	0	0.000000
lead_time	0	0.000000
arrival_date_year	0	0.000000
arrival_date_month	0	0.000000
arrival_date_week_number	0	0.000000
arrival_date_day_of_month	0	0.000000
stays_in_weekend_nights	0	0.000000
stays_in_week_nights	0	0.000000
adults	0	0.000000
children	4	0.003350
babies	0	0.000000
meal	0	0.000000
country	488	0.408744
market_segment	0	0.000000
distribution_channel	0	0.000000
is_repeated_guest	0	0.000000
previous_cancellations	0	0.000000
previous_bookings_not_canceled	0	0.000000
reserved_room_type	0	0.000000
assigned_room_type	0	0.000000
booking_changes	0	0.000000
deposit_type	0	0.000000
agent	16340	13.686238
company	112593	94.306893
days_in_waiting_list	0	0.000000
customer_type	0	0.000000
adr	0	0.000000
required_car_parking_spaces	0	0.000000
total_of_special_requests	0	0.000000
reservation_status	0	0.000000
reservation_status_date	0	0.000000

```
In [19]: # filling null values with zero

df.fillna(0, inplace = True)
```

In [22]: # visualizing null values
msno.bar(df)

In [23]: # adults, babies and children cant be zero at same time, so dropping the rows having all these zero at so filter = (df.children == 0) & (df.adults == 0) & (df.babies == 0) df[filter]

Out[23]:

	hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_number	arrival_date_day_of_mont
2224	Resort Hotel	0	1	2015	October	41	
2409	Resort Hotel	0	0	2015	October	42	1
3181	Resort Hotel	0	36	2015	November	47	2
3684	Resort Hotel	0	165	2015	December	53	3
3708	Resort Hotel	0	165	2015	December	53	3
			•••				
115029	City Hotel	0	107	2017	June	26	2
115091	City Hotel	0	1	2017	June	26	3
116251	City Hotel	0	44	2017	July	28	1
116534	City Hotel	0	2	2017	July	28	1
117087	City Hotel	0	170	2017	July	30	2

180 rows × 32 columns

In [24]: df = df[~filter]
df

Out[24]:

	hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_number	arrival_date_day_of_mont	
0	Resort Hotel	0	342	2015	July	27		
1	Resort Hotel	0	737	2015	July	27		
2	Resort Hotel	0	7	2015	July	27		
3	Resort Hotel	0	13	2015	July	27		
4	Resort Hotel	0	14	2015	July	27		
		•••						
119385	City Hotel	0	23	2017	August	35	3	
119386	City Hotel	0	102	2017	August	35	3	
119387	City Hotel	0	34	2017	August	35	3	
119388	City Hotel	0	109	2017	August	35	3	
119389	City Hotel	0	205	2017	August	35	2	
119210 ı	119210 rows × 32 columns							
→							>	

Exploratory Data Analysis

• From where the most guests are coming?

Out[28]:

	country	No of guests
0	PRT	20977
1	GBR	9668
2	FRA	8468
3	ESP	6383
4	DEU	6067
161	KIR	1
162	SDN	1
163	PYF	1
164	ATF	1
165	FRO	1

166 rows × 2 columns

People from all over the world are staying in these two hotels. Most guests are from Portugal and other countries in Europe.

· How much do guests pay for a room per night?

In [30]: df.head()

Out[30]:

	hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_number	arrival_date_day_of_month	st
0	Resort Hotel	0	342	2015	July	27	1	
1	Resort Hotel	0	737	2015	July	27	1	
2	Resort Hotel	0	7	2015	July	27	1	
3	Resort Hotel	0	13	2015	July	27	1	
4	Resort Hotel	0	14	2015	July	27	1	
4								-

Both hotels have different room types and different meal arrangements. Seasonal factors are also important, So the prices varies a lot.

```
In [31]: data = df[df['is_canceled'] == 0]
    px.box(data_frame = data, x = 'reserved_room_type', y = 'adr', color = 'hotel', template = 'plotly_dark')
```


The figure shows that the average price per room depends on its type and the standard deviation.

• How does the price vary per night over the year?

```
In [34]: data_resort = df[(df['hotel'] == 'Resort Hotel') & (df['is_canceled'] == 0)]
    data_city = df[(df['hotel'] == 'City Hotel') & (df['is_canceled'] == 0)]
In [35]: resort_hotel = data_resort.groupby(['arrival_date_month'])['adr'].mean().reset_index()
    resort_hotel
```

Out[35]:

	arrival_date_month	adr
0	April	75.867816
1	August	181.205892
2	December	68.410104
3	February	54.147478
4	January	48.761125
5	July	150.122528
6	June	107.974850
7	March	57.056838
8	May	76.657558
9	November	48.706289
10	October	61.775449
11	September	96.416860

```
In [36]: city_hotel=data_city.groupby(['arrival_date_month'])['adr'].mean().reset_index()
city_hotel
```

Out[36]:

	arrival_date_month	adr
0	April	111.962267
1	August	118.674598
2	December	88.401855
3	February	86.520062
4	January	82.330983
5	July	115.818019
6	June	117.874360
7	March	90.658533
8	May	120.669827
9	November	86.946592
10	October	102.004672
11	September	112.776582

```
In [37]: final_hotel = resort_hotel.merge(city_hotel, on = 'arrival_date_month')
    final_hotel.columns = ['month', 'price_for_resort', 'price_for_city_hotel']
    final_hotel
```

Out[37]:

	month	price_for_resort	price_for_city_hotel
0	April	75.867816	111.962267
1	August	181.205892	118.674598
2	December	68.410104	88.401855
3	February	54.147478	86.520062
4	January	48.761125	82.330983
5	July	150.122528	115.818019
6	June	107.974850	117.874360
7	March	57.056838	90.658533
8	May	76.657558	120.669827
9	November	48.706289	86.946592
10	October	61.775449	102.004672
11	September	96.416860	112.776582

Now we observe here that month column is not in order, and if we visualize we will get improper conclusions.

So, first we have to provide right hierarchy to month column.

```
In [39]: import sort_dataframeby_monthorweek as sd

def sort_month(df, column_name):
    return sd.Sort Dataframeby Month(df, column name)
```

```
In [40]: final_prices = sort_month(final_hotel, 'month')
final_prices
```

Out[40]:

	month	price_for_resort	price_for_city_hotel
0	January	48.761125	82.330983
1	February	54.147478	86.520062
2	March	57.056838	90.658533
3	April	75.867816	111.962267
4	May	76.657558	120.669827
5	June	107.974850	117.874360
6	July	150.122528	115.818019
7	August	181.205892	118.674598
8	September	96.416860	112.776582
9	October	61.775449	102.004672
10	November	48.706289	86.946592
11	December	68.410104	88.401855

<Figure size 1224x576 with 0 Axes>

This plot clearly shows that prices in the Resort Hotel are much higher during the summer and prices of city hotel varies less and is most expensive during Spring and Autumn .

• Which are the most busy months?

```
In [43]: resort_guests = data_resort['arrival_date_month'].value_counts().reset_index()
resort_guests.columns=['month','no of guests']
resort_guests
```

Out[43]:

	month	no of guests
0	August	3257
1	July	3137
2	October	2575
3	March	2571
4	April	2550
5	May	2535
6	February	2308
7	September	2102
8	June	2037
9	December	2014
10	November	1975
11	January	1866

```
In [44]: city_guests = data_city['arrival_date_month'].value_counts().reset_index()
    city_guests.columns=['month','no of guests']
    city_guests
```

Out[44]:

	month	no of guests
0	August	5367
1	July	4770
2	May	4568
3	June	4358
4	October	4326
5	September	4283
6	March	4049
7	April	4010
8	February	3051
9	November	2676
10	December	2377
11	January	2249

```
In [45]: final_guests = resort_guests.merge(city_guests,on='month')
    final_guests.columns=['month','no of guests in resort','no of guest in city hotel']
    final_guests
```

Out[45]:

	month	no of guests in resort	no of guest in city hotel
0	August	3257	5367
1	July	3137	4770
2	October	2575	4326
3	March	2571	4049
4	April	2550	4010
5	May	2535	4568
6	February	2308	3051
7	September	2102	4283
8	June	2037	4358
9	December	2014	2377
10	November	1975	2676
11	January	1866	2249

```
In [46]: final_guests = sort_month(final_guests, 'month')
final_guests
```

Out[46]:

	month	no of guests in resort	no of guest in city hotel
0	January	1866	2249
1	February	2308	3051
2	March	2571	4049
3	April	2550	4010
4	May	2535	4568
5	June	2037	4358
6	July	3137	4770
7	August	3257	5367
8	September	2102	4283
9	October	2575	4326
10	November	1975	2676
11	December	2014	2377

- The City hotel has more guests during spring and autumn, when the prices are also highest, In July and August there are less visitors, although prices are lower.
- Guest numbers for the Resort hotel go down slighty from June to September, which is also when the prices are highest. Both hotels have the fewest guests during the winter.
- · How long do people stay at the hotels?

```
In [48]: filter = df['is_canceled'] == 0
    data = df[filter]
    data.head()
```

Out[48]:

	hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_number	arrival_date_day_of_month	st
0	Resort Hotel	0	342	2015	July	27	1	
1	Resort Hotel	0	737	2015	July	27	1	
2	Resort Hotel	0	7	2015	July	27	1	
3	Resort Hotel	0	13	2015	July	27	1	
4	Resort Hotel	0	14	2015	July	27	1	
4								•

```
In [49]: data['total_nights'] = data['stays_in_weekend_nights'] + data['stays_in_week_nights']
data.head()
```

Out[49]:

	hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_number	arrival_date_day_of_month	st
0	Resort Hotel	0	342	2015	July	27	1	
1	Resort Hotel	0	737	2015	July	27	1	
2	Resort Hotel	0	7	2015	July	27	1	
3	Resort Hotel	0	13	2015	July	27	1	
4	Resort Hotel	0	14	2015	July	27	1	

5 rows × 33 columns

Out[50]:

	total_nights	hotel	Number of stays
0	0	City Hotel	251
1	0	Resort Hotel	371
2	1	City Hotel	9155
3	1	Resort Hotel	6579
4	2	City Hotel	10983
57	46	Resort Hotel	1
58	48	City Hotel	1
59	56	Resort Hotel	1
60	60	Resort Hotel	1
61	69	Resort Hotel	1

62 rows × 3 columns

Preprocessing

arrival year, month and day to arrival date

Then we merge the three columns 'arrival_date_year', 'arrival_date_month', 'arrival date day_of_month' into a column called "arrival_date", containing the day, month and year of the client's arrival in datetime form. To do this, we run the following code:

Out[15]:

	hotel	is_canceled	lead_time	arrival_date_week_number	stays_in_weekend_nights	stays_in_week_nights	adults	childre
30372	Resort Hotel	0	2	47	0	1	2	0.
61649	City Hotel	1	101	52	2	5	2	1.
55171	City Hotel	1	189	32	2	5	2	0.
59734	City Hotel	1	166	45	0	3	1	0.
49858	City Hotel	1	265	17	0	4	2	0.
4980	Resort Hotel	1	212	16	2	5	2	0.
80630	City Hotel	1	54	53	1	3	2	0.
41345	City Hotel	0	133	33	2	2	2	0.
55	Resort Hotel	0	1	27	0	1	2	2.
32435	Resort Hotel	0	1	8	0	2	1	0.
10 rows	s × 30 co	olumns						
4								+

Verifiying that the timestamp of the variable reservation_status_date must occur after or at the same date as the input variable arrival_date

```
In [16]: #Visualizing the types of our dataframe's variables
         df.dtypes
Out[16]: hotel
                                                     object
         is_canceled
                                                      int64
         lead_time
                                                      int64
         arrival_date_week_number
                                                      int64
         stays in weekend nights
                                                      int64
         stays_in_week_nights
                                                      int64
         adults
                                                      int64
         children
                                                    float64
         babies
                                                      int64
         meal
                                                     object
         country
                                                     object
         market_segment
                                                     object
         distribution_channel
                                                     object
         is_repeated_guest
                                                      int64
         previous cancellations
                                                      int64
         previous_bookings_not_canceled
                                                      int64
         reserved room type
                                                     object
         assigned room_type
                                                     object
         booking_changes
                                                      int64
                                                     object
         deposit_type
                                                    float64
         agent
         company
                                                    float64
         days_in_waiting_list
                                                      int64
         customer type
                                                     object
         adr
                                                    float64
         required_car_parking_spaces
                                                      int64
         total_of_special_requests
                                                      int64
         reservation_status
                                                     object
         reservation status date
                                                     object
         arrival date
                                            datetime64[ns]
         dtype: object
```

```
In [17]: #Transforming the reservation_status_date variable type to Datetime
df["reservation_status_date"]=pd.to_datetime(df["reservation_status_date"], format = '%Y-%m-%d')
```

object is_canceled int64 lead_time int64 arrival_date_week_number int64 stays in weekend nights int64 int64 stays_in_week_nights adults int64 children float64 babies int64 meal object country object market_segment object distribution_channel object is_repeated_guest int64 int64 previous_cancellations previous_bookings_not_canceled int64 reserved room type object assigned room type object booking changes int64 deposit_type object agent float64 company float64 days in waiting list int64 customer type object adr float64 required_car_parking_spaces int64 int64 total_of_special_requests reservation_status object reservation status date datetime64[nsl arrival date datetime64[ns] dtype: object

Data Cleaning:

We propose to treat the missing values, to use the approach of filling each empty box with the median of the values of the column to which this empty box belongs, and we can extend this solution, by adding another column which will contain two values, True or False, to indicate if the value of the first column is original or it is calculated by the median. We implement this solution for the two columns "agent" and "company" as it is illustrated in the following figure:

```
In [19]: #Filling null values in these two columns with the mean of values of each column
for column in ['agent','company']:
    df[column] = df[column].fillna(df[column].mean())
```

```
In [20]: #Vizualizing the sum of missing values in each variable
         df.isnull().sum()
Out[20]: hotel
                                              0
         is_canceled
                                              0
         lead_time
                                              0
         arrival_date_week_number
                                              0
         stays_in_weekend_nights
                                              0
         stays_in_week_nights
                                              0
         adults
                                              0
         children
         babies
         meal
                                              0
         country
                                              0
         market_segment
                                              0
         distribution_channel
                                              0
         is_repeated_guest
                                              0
         previous_cancellations
                                              0
         previous_bookings_not_canceled
         reserved room type
                                              0
         assigned room type
                                              0
                                              0
         booking_changes
                                              0
         deposit_type
         agent
                                              0
         company
                                              0
         days_in_waiting_list
         customer_type
                                              0
         adr
                                              0
                                              0
         required_car_parking_spaces
         total_of_special_requests
                                              0
         reservation_status
                                              0
         reservation status date
                                              0
         arrival date
                                            492
         dtype: int64
```

```
In [22]:
         #Vizualizing the sum of missing values in each variable
         df.isnull().sum()
Out[22]: hotel
                                             0
          is_canceled
                                             0
          lead_time
                                             0
          arrival_date_week_number
                                             0
          stays in weekend nights
                                             a
          stays_in_week_nights
                                             0
          adults
          children
          babies
          meal
          country
                                             0
         market_segment
                                             a
          distribution_channel
                                             a
          is_repeated_guest
                                             0
          previous_cancellations
                                             0
          previous_bookings_not_canceled
          reserved room type
          assigned room type
          booking changes
                                             0
          deposit_type
                                             a
          agent
          company
          days in waiting list
          customer type
          adr
          required_car_parking_spaces
                                             а
          total_of_special_requests
          reservation_status
                                             a
          reservation status date
                                             0
          arrival date
                                             0
          dtype: int64
```

We check if there are duplicate lines, if so we opt to delete them, using the following command:

```
In [23]: #Droping the duplicated values
df.drop_duplicates( inplace = True)
```

Transformation: in order to properly treat categorical variables, we propose the creation of columns among the number of categories for each variable. Each column is filled with the values 0 and 1. The value 0 replaces NULL, and 1 means that the corresponding row has this category. In our case; we first specify the categorical variables; and we transform them as follows:

```
In [27]: df.dtypes
Out[27]: hotel
                                                     object
                                                      int64
          is canceled
          lead time
                                                      int64
                                                      int64
          arrival date week number
          stays in weekend nights
                                                      int64
          stays_in_week_nights
                                                      int64
          adults
                                                      int64
          children
                                                    float64
          babies
                                                      int64
         meal
                                                      int32
          country
                                                      int32
          market segment
                                                      int32
          distribution_channel
                                                      int32
          is repeated guest
                                                      int64
                                                      int64
          previous_cancellations
          previous_bookings_not_canceled
                                                      int64
          reserved room type
                                                      int32
          assigned room type
                                                      in+32
                                                      int64
          booking changes
          deposit_type
                                                      int32
          agent
                                                    float64
                                                    float64
          company
          days_in_waiting_list
                                                      int64
          customer_type
                                                      int32
                                                    float64
          required car parking spaces
                                                      int64
          total_of_special_requests
                                                      int64
          reservation_status
                                                     object
                                             datetime64[ns]
          reservation_status_date
          arrival date
                                             datetime64[ns]
          hotel Num
                                                      int32
          dtype: object
```

Modeling

From a demographic perspective, if we have precise data we will predict whether it is a resort hotel or a city hall. Supervised learning techniques will allow us to accomplish such a task, including Logistic Regression, KNN, SVM. In other words, the problem is purely a classification problem, which emphasizes segmentation of individuals based on the target variable hotel. This will help the hotel to divide the guests into groups based on the type of host. Which means a significant increase in profits and relevant revenue management.

```
Logistic Regrssion

In [32]: #Importing the train_test_split module for spliting data
from sklearn.model_selection import train_test_split
#Importing datetime
import datetime as dt

In [33]: #transforming Datetime variables to numerical variables
df['numerical_larrival_date']=df['arrival_date'].map(dt.datetime.toordinal)
df['numerical_reservation_status_date']=df['reservation_status_date'].map(dt.datetime.toordinal)

In [34]: #transforming is_canceled to a numerical variable
df["is_canceled"].replace({'not canceled': 0,'canceled':1}, inplace=True)
df["reservation_status"].replace({'Canceled': 0,'Check-Out':1,'No-Show':2}, inplace=True)

In [35]: #Defining X (target values) and Y (usefull columns)
usefull_columns = df.columns.difference(['hotel','hotel_Num','arrival_date','reservation_status_date'])
X = df[usefull_columns]
Y = df["hotel_Num"].astype(int)
```

```
In [36]: #Spliting data to train data and test data
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size = 0.3,random_state=150)
```

Test_size = 0.3 means that 30% of the initial data is dedicated to model testing, and the 70% is dedicated to model training. Random state means the degree of randomness with which we will divide our dataset

```
In [37]: #Importing some needed metrics for evaluating the models
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import plot_confusion_matrix
```

```
In [38]: #Training our Logistic Regressing model
    logisticR = LogisticRegression()
    logisticR.fit(X_train,Y_train)
    Y_pred= logisticR.predict(X_test)
    Y_train_pred = logisticR.predict(X_train)
    acc_logrest= accuracy_score(Y_test,Y_pred)
```

```
In [39]: #metrics and accuracy score
print('Recall Score :',recall_score(Y_test,Y_pred))
print('Precision Score :',precision_score(Y_test,Y_pred))
print('F1 Score :',f1_score(Y_test,Y_pred))
print('-----')
print('Accuracy Score :',accuracy_score(Y_test,Y_pred))
```

And we can see that our model's accuracy is 87%, which represents a good performance.

```
In [40]: #Ploting the confusion matrix
plot_confusion_matrix(logisticR,X_test,Y_test)
```

Out[40]: <sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay at 0x17700589c70>

SVM - Support Vector Machine

```
In [41]: #Importing the needed packages for SVM algorithme
         from sklearn import svm
         from sklearn.svm import SVC
In [42]: from sklearn.preprocessing import MinMaxScaler
         scaling = MinMaxScaler(feature_range=(-1,1)).fit(X_train)
         X_train = scaling.transform(X_train)
        X_test = scaling.transform(X_test)
In [43]: #Defining an SVM classifier
         from sklearn.svm import SVC
         svclassifier = SVC(kernel='linear')
         svclassifier.fit(X_train, Y_train)
Out[43]: SVC(kernel='linear')
In [44]: #Training the model
         Y_pred = svclassifier.predict(X_test)
         acc svm= accuracy score(Y test,Y pred)
In [45]: #metrics and accuracy scores
         print('Recall Score :',recall_score(Y_test,Y_pred))
         print('Precision Score :',precision_score(Y_test,Y_pred))
         print('F1 Score :',f1_score(Y_test,Y_pred))
         print('----')
         print('Accuracy Score :',accuracy_score(Y_test,Y_pred))
         Recall Score : 0.8567524267269815
         Precision Score : 0.8922367258808519
         F1 Score : 0.8741346153846153
         Accuracy Score : 0.907265063228366
```

We have as a result a classification rate of 90%, considered as a very good precision.

KNN - K-Nearest Neighbors

```
In [46]: #Importing the needed packages for KNN algorithme
    from sklearn.preprocessing import StandardScaler
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import classification_report, confusion_matrix
    from sklearn.metrics import mean_squared_error
    from math import sqrt
```

In this section, we will plot the mean error for the predicted values of the test set for all K values between 1 and 40. first the error mean for all predicted values where K is between 1 and 40, In each iteration, the average error for the predicted values of the set of test is calculated and the result is added to the error list:

```
In [47]: error = []

# Calculating error for K values between 1 and 40
for i in range(1, 40):
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X_train, Y_train)
    pred_i = knn.predict(X_test)
    error.append(np.mean(pred_i != Y_test))
```

```
In [48]: plt.figure(figsize=(12, 6))
   plt.plot(range(1, 40), error, color='red', linestyle='dashed', marker='o',markerfacecolor='blue', markers
   plt.title('Error Rate K Value')
   plt.xlabel('K Value')
   plt.ylabel('Mean Error')
```

Out[48]: Text(0, 0.5, 'Mean Error')

Note that the use of the value 1 for K is the most optimal. In order to train the KNN algorithm, we rely on the use of Scikit-Learn. The first step is to import the KNeighborsClassifier class from from the sklearn.neighbors library. This class is initiated with a parameter, (n_neighbors). This is basically the value of K. The last step is to make predictions about our test data. To do this, we run the following script:

```
In [49]: #Defining an KNN classifier and training the model
    classifier = KNeighborsClassifier(n_neighbors=1)
        classifier.fit(X_train, Y_train)
        Y_pred = classifier.predict(X_test)
        acc_knn=accuracy_score(Y_test,Y_pred)
```

Recall Score : 0.9270568278201866 Precision Score : 0.9329476479514416

F1 Score : 0.9299929094776648

Accuracy Score : 0.9475399383656264

The results show that our KNN algorithm was able to rank the test set records with an accuracy of 94%, which is excellent given the high dimensionality of our dataset.

```
In [51]: #Ploting the confusion matrix
plot_confusion_matrix(classifier,X_test,Y_test)
```

Out[51]: <sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay at 0x1770070c910>

Models Comparison

Following is the chunk of code by which we drawn models comparison.

Concerning the accuracy, we had as result 94% for KNN, 90% for SVM, and 86% for Logistic Regression. The greatest value is that of KNN ... In other words with Knn 94% of our predictions will be correct, it therefore represents the best model to adopt. Which is logical, in the literature we find that when the training data is much bigger than the other features, KNN is better than SVM. Besides KNN is easy to implement. Yet KNN is slower in execution time than LR, but not slow enough than SVM. From a more global perspective, KNN and SVM support nonlinear solutions, and they are unparameterized where Parameterized Logistic Regression, deals with linear solutions. SVM is less computationally demanding than kNN and it is easier to interpret but can only identify a limited set of patterns. On the other hand, kNN can find very complex models but its output is more difficult to interpret.

Clustering with K-Means

After we used supervised algorithms in the first part, now we have considered an unsupervised problem, a clustering problem based on K-Means, and we will analyze the results of each cluster to identify the most profitable clients in our data set based on lead time and ADR. The first challenge that we encounter when we want to use clustering with K-means, is to determine the

optimal number of clusters that we want to have as results. So first to determine the number of clusters, we used the Elbow method:

```
In [54]: import sklearn.cluster as cluster
In [55]: df_Short = df[['lead_time','adr']]
In [56]: K=range(1,12)
          wss = []
          for k in K:
              kmeans=cluster.KMeans(n_clusters=k,init="k-means++")
              kmeans=kmeans.fit(df_Short)
              wss iter = kmeans.inertia
              wss.append(wss_iter)
In [57]: mycenters = pd.DataFrame({'Clusters' : K, 'WSS' : wss})
Out[57]:
              Clusters
                              wss
                       1.039543e+09
           0
            1
                    2 4.978291e+08
           2
                       3.707516e+08
            3
                    4 2.674674e+08
                      2.267966e+08
            5
                      1.939704e+08
            6
                       1.705141e+08
           7
                       1.444610e+08
           8
                       1.284159e+08
                      1.144940e+08
           10
                   11 1.025504e+08
In [58]: sns.scatterplot(x = 'Clusters', y = 'WSS', data = mycenters, marker='*')
Out[58]: <AxesSubplot:xlabel='Clusters', ylabel='WSS'>
                 1e9
             1.0
             0.8
          SS 0.6
             0.4
             0.2
                           2
                                                                      8
                                         4
                                                        6
                                                                                   10
                                                    Clusters
```

To determine the optimal number of clusters, one must select the value of k after which the distortion begins to decrease linearly. Thus, we conclude that the optimal number of clusters for the data is 4. So we ran the k-means algorithm based on lead time and ADR with a number of clusters equal to 4, and we displayed the cluster centers:

```
In [59]: kmeans = cluster.KMeans(n_clusters=4 ,init="k-means++")
In [60]: kmeans = kmeans.fit(df[['lead time', 'adr']])
In [61]: kmeans.cluster_centers_
Out[61]: array([[144.98898383, 107.46222962],
                [ 26.40389407, 74.85986442],
                  37.71738588, 170.31215415],
                [286.76676038, 92.19575368]])
In [62]: df['Clusters'] = kmeans.labels_
```

Then we displayed the number of observations belonging to each cluster:

```
In [63]: df['Clusters'].value counts()
Out[63]: 1
               41032
               23871
         2
               19973
         3
                9225
         Name: Clusters, dtype: int64
```

Finally we have displayed the clusters:

```
sns.lmplot(x="lead time", y="adr", hue = 'Clusters', data=df)
In [64]:
         plt.ylim(0, 600)
         plt.xlim(0, 800)
         plt.show()
```


The clients with the lowest lead time and the highest ADR ie the clients that appear in the green cluster are considered to be the most profitable. While the red category shows the lowest ADR and the highest (least profitable) delivery time. With regard to unsupervised learning in general - it is important to remember that this is largely a method of exploratory analysis - the goal is not necessarily to predict but rather to reveal information about data that may not have been taken into account before.

Conclusion

unsupervised. We have found that, for the first type, KNN remains the best in terms of performance, for our case. And for the unsupervised, K-means allowed us to visualize the most profitable customers and the least profitable customers, based on the two variables lead_time (Number of days elapsed between the date of entry of the reservation in the PMS and the client arrival date) and adr (Average daily rate as defined by dividing the sum of all accommodation transactions by the total number of nights), and we used the result of this algorithm (which is under graph form) to ask specific questions about the variation in profitability of our customers, in order to give the hotel manager ideas to make their customers more profitable. Overall, the ideal model chosen for machine learning very often depends on the problem. There will be some datasets where KNN could fail miserably, so it is good to implement all the other models, for each problem, in order to judge the performance of each and choose the best model to adopt. It all comes down to specifying the variables to be processed, and choosing the right machine learning model.