

Assignment - 3

Pradyoth Singenahalli Prabhu - 02071847

Woodi Raghavendra Varun - 02070206

Bharath Anand - 02044023

- 1.
- a. fasle
- b. false
- c. false
- d. True
- e. false
- f. fasle
- g. fasle
- 2.

Using the matrices, we can compute the accuracy and cost for each model:

Accuracy for Model M1:

```
Accuracy = (True Positives + True Negatives) / Total
Accuracy = (100 + 200) / (100 + 50 + 150 + 200)
Accuracy = 300 / 500 = 0.6
Cost for Model M1:
Cost = (True Positives * Cost of False Negatives + False Positives * Cost of False Positives + True Negatives * Cost of True Negatives
Cost = (100 * 50 + 50 * 1 + 200 * 0) / (100 + 50 + 150 + 200)
Cost = 5050 / 500 = 10.1
```

Therefore, the accuracy of Model M1 is **0.6** and the cost of Model M1 is **10.1**.

Accuracy for Model M2:

```
Accuracy = (True Positives + True Negatives) / Total
Accuracy = (200 + 200) / (200 + 90 + 10 + 200)
Accuracy = 400 / 500 = 0.8
Cost for Model M2:
Cost = (True Positives * Cost of False Negatives + False Positives * Cost of False Positives + True Negatives * Cost of True Negatives
Cost = (200 * 50 + 90 * 1 + 200 * 0) / (200 + 90 + 10 + 200)
Cost = 10090/500 = 20.18
```

Therefore, the accuracy of Model M2 is 0.8 and the cost of Model M2 is 20.18.

3.a.

PERMUTATION 1, (h1)

		S1	S2	S3	S4
1	Α	1	0	1	0
2	E	0	1	0	1
3	В	1	0	0	1
4	G	1	0	1	0

		S1	S2	S3	S4
5	F	1	0	1	0
6	С	0	1	0	1
7	D	0	1	0	1
		1	2	1	2

PERMUTATION 2, (h2)

		S1	S2	S3	S4
1	E	0	1	0	1
2	В	1	0	0	1
3	С	0	1	0	1
4	F	1	0	1	0
5	G	1	0	1	0
6	Α	1	0	1	0
7	D	0	1	0	1
		2	1	4	1

PERMUTATION 3, (h3)

		S1	S2	S3	S4
1	D	0	1	0	1
2	В	1	0	0	1
3	F	1	0	1	0
4	G	1	0	1	0
5	Α	1	0	1	0
6	E	0	1	0	1
7	С	0	1	0	1
		2	1	3	1

The Signature matrix is as follows,

	S1	S2	S3	S4
h1	1	2	1	2
h2	2	1	4	1
h3	2	1	3	1

3.b.

(1). the original representation in ${\it M}$

```
\begin{aligned} & \text{Sim}(\text{S1} \ , \ \text{S1}) = \text{Sim}(\text{S2} \ , \ \text{S2}) = \text{Sim}(\text{S3} \ , \ \text{S3}) = \text{Sim}(\text{S4} \ , \ \text{S4}) = 1 \\ & \text{Sim}(\text{S1} \ , \ \text{S2}) = 0/7 = 0 = \text{Sim}(\text{S2} \ , \ \text{S1}) \\ & \text{Sim}(\text{S1} \ , \ \text{S3}) = 3/4 = 0.75 = \text{Sim}(\text{S3} \ , \ \text{S1}) \\ & \text{Sim}(\text{S1} \ , \ \text{S4}) = 1/7 = 0.14 = \text{Sim}(\text{S4} \ , \ \text{S1}) \\ & \text{Sim}(\text{S2} \ , \ \text{S3}) = 0/6 = 0 = \text{Sim}(\text{S3} \ , \ \text{S2}) \\ & \text{Sim}(\text{S2} \ , \ \text{S4}) = 3/4 = 0.75 = \text{Sim}(\text{S4} \ , \ \text{S2}) \\ & \text{Sim}(\text{S3} \ , \ \text{S4}) = 0/7 = 0 = \text{Sim}(\text{S4} \ , \ \text{S3}) \end{aligned}
```

	S1	S2	S3	S4
S1	1	0	0.75	0.14
S2	0	1	0	0.75
S3	0.75	0	1	0
S4	0.14	0.75	0	1

(2). Minhashing generated by the permutations in question (a)

Permutation 1:

Assignment - 3 2

```
\begin{aligned} & \text{Sim}(\text{S1} \ , \ \text{S1}) = \text{Sim}(\text{S2} \ , \ \text{S2}) = \text{Sim}(\text{S3} \ , \ \text{S3}) = \text{Sim}(\text{S4} \ , \ \text{S4}) = 1 \\ & \text{Sim}(\text{S1} \ , \ \text{S2}) = \theta/7 = \theta = \text{Sim}(\text{S2} \ , \ \text{S1}) \\ & \text{Sim}(\text{S1} \ , \ \text{S3}) = 3/4 = \theta.75 = \text{Sim}(\text{S3} \ , \ \text{S1}) \\ & \text{Sim}(\text{S1} \ , \ \text{S4}) = 1/7 = \theta.14 = \text{Sim}(\text{S4} \ , \ \text{S1}) \\ & \text{Sim}(\text{S2} \ , \ \text{S3}) = \theta/6 = \theta = \text{Sim}(\text{S3} \ , \ \text{S2}) \\ & \text{Sim}(\text{S2} \ , \ \text{S4}) = 3/4 = \theta.75 = \text{Sim}(\text{S4} \ , \ \text{S2}) \\ & \text{Sim}(\text{S3} \ , \ \text{S4}) = \theta/7 = \theta = \text{Sim}(\text{S4} \ , \ \text{S3}) \end{aligned}
```

	S1	S2	S3	S4
S1	1	0	0.75	0.14
S2	0	1	0	0.75
S3	0.75	0	1	0
S4	0.14	0.75	0	1

Permutation 2:

```
Sim(S1 , S1) = Sim(S2 , S2) = Sim(S3 , S3) = Sim(S4 , S4) = 1

Sim(S1 , S2) = 0/7 = 0 = Sim(S2 , S1)

Sim(S1 , S3) = 3/4 = 0.75 = Sim(S3 , S1)

Sim(S1 , S4) = 1/7 = 0.14 = Sim(S4 , S1)

Sim(S2 , S3) = 0/6 = 0 = Sim(S3 , S2)

Sim(S2 , S4) = 3/4 = 0.75 = Sim(S4 , S2)

Sim(S3 , S4) = 0/7 = 0 = Sim(S4 , S3)
```

	S1	S2	S3	S4
S1	1	0	0.75	0.14
S2	0	1	0	0.75
S3	0.75	0	1	0
S4	0.14	0.75	0	1

Permutation 3:

```
 \begin{aligned} & \text{Sim}(\text{S1 , S1}) = \text{Sim}(\text{S2 , S2}) = \text{Sim}(\text{S3 , S3}) = \text{Sim}(\text{S4 , S4}) = 1 \\ & \text{Sim}(\text{S1 , S2}) = 0/7 = 0 = \text{Sim}(\text{S2 , S1}) \\ & \text{Sim}(\text{S1 , S3}) = 3/4 = 0.75 = \text{Sim}(\text{S3 , S1}) \\ & \text{Sim}(\text{S1 , S4}) = 1/7 = 0.14 = \text{Sim}(\text{S4 , S1}) \\ & \text{Sim}(\text{S2 , S3}) = 0/6 = 0 = \text{Sim}(\text{S3 , S2}) \\ & \text{Sim}(\text{S2 , S4}) = 3/4 = 0.75 = \text{Sim}(\text{S4 , S2}) \\ & \text{Sim}(\text{S3 , S4}) = 0/7 = 0 = \text{Sim}(\text{S4 , S3}) \end{aligned}
```

	S1	S2	S3	S4
S1	1	0	0.75	0.14
S2	0	1	0	0.75
S3	0.75	0	1	0
S4	0.14	0.75	0	1

3.c.

х		S1	S2
0	Α	1	0
1	В	1	0
2	С	0	1
3	D	0	1
4	E	0	1
5	F	1	0
6	G	1	0

Using two hashing functions: $h(x) = (x + 1) \mod 7$ and $g(x) = (2x + 3) \mod 7$

Assignment - 3

```
For x = 0,

h(0) = (0 + 1) \mod 7 = 1 \mod 7 = 1

g(0) = (2*0 + 3) \mod 7 = 3 \mod 7 = 3
For x = 1,

h(1) = (1 + 1) \mod 7 = 2 \mod 7 = 2

g(1) = (2*1 + 3) \mod 7 = 5 \mod 7 = 5
For x = 2,

h(2) = (2 + 1) \mod 7 = 3 \mod 7 = 3

g(2) = (2*2 + 3) \mod 7 = 7 \mod 7 = 0
For x = 3,

h(3) = (3 + 1) \mod 7 = 4 \mod 7 = 4

g(3) = (2*3 + 3) \mod 7 = 9 \mod 7 = 2
For x = 4,

h(4) = (4 + 1) \mod 7 = 5 \mod 7 = 5

g(4) = (2*4 + 3) \mod 7 = 11 \mod 7 = 4
For x = 5,

h(5) = (5 + 1) \mod 7 = 6 \mod 7 = 6

g(5) = (2*5 + 3) \mod 7 = 13 \mod 7 = 5
h(6) = (6 + 1) \mod 7 = 7 \mod 7 = 2

g(6) = (2*6 + 3) \mod 7 = 15 \mod 7 = 5
```

Signatures after hashing are,

6 1

S1

S2

0

h(x)

h(x)	S1	S2
0	1	0
1	1	0
2	1	0
3	0	1
4	0	1
5	0	1
6	1	0
g(x)	S1	S2
g(x) 0	S1 0	S2 1
0	0	1
0	0	1 0
0 1 2	0 1 0	1 0 1

Assignment - 3 4