3. HAFTA

Doğrusal Zamanla Değişmeyen Sistemler Konvolüsyon Toplamı

Representation of DT Signals by Impulses:

- Representation of DT Signals by Impulses:
 - More generally,

$$x[n] = \cdots + x[-3]\delta[n+3] + x[-2]\delta[n+2]$$

$$+ x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1]$$

$$+ x[2]\delta[n-2] + x[3]\delta[n-3] + \cdots$$

$$= \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k]$$

- The sifting property of the DT unit impulse
- x[n] = a superposition of scaled versions of shifted unit impulses $\delta[n-k]$

■ DT Unit Impulse Response & Convolution Sum:

$$\begin{array}{c} \text{input} \longrightarrow \text{Linear System} \longrightarrow \text{output} \\ \\ \delta[n] \longrightarrow \text{Linear System} \longrightarrow h_0[n] \\ \\ \delta[n-1] \longrightarrow \text{Linear System} \longrightarrow h_1[n] \\ \\ \delta[n-2] \longrightarrow \text{Linear System} \longrightarrow h_2[n] \\ \\ \vdots \\ \\ \delta[n-k] \longrightarrow \text{Linear System} \longrightarrow h_k[n] \end{array}$$

■ DT Unit Impulse Response & Convolution Sum:

$$x[n] \longrightarrow \text{Linear System} \longrightarrow y[n]$$

$$x[0] \cdot \delta[n] \longrightarrow \text{Linear System} \longrightarrow h_0[n] \cdot x[0]$$

$$x[1] \cdot \delta[n-1] \longrightarrow \text{Linear System} \longrightarrow h_1[n] \cdot x[1]$$

$$x[2] \cdot \delta[n-2] \longrightarrow \text{Linear System} \longrightarrow h_2[n] \cdot x[2]$$

$$x[k] \cdot \delta[n-k] \longrightarrow \text{Linear System} \longrightarrow h_k[n] \cdot x[k]$$

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k] \implies y[n] = \sum_{k=-\infty}^{+\infty} x[k]h_k[n]$$

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k] \implies y[n] = \sum_{k=-\infty}^{+\infty} x[k]h_k[n]$$

$$\vdots$$

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k] \implies y[n] = \sum_{k=-\infty}^{+\infty} x[k]h_k[n]$$

$$\vdots$$

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k] \implies y[n] = \sum_{k=-\infty}^{+\infty} x[k]h_k[n]$$

$$\vdots$$

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]h_k[n]$$

$$\vdots$$

- If the linear system is also time-invariant
 - · Then,

$$h_k[n] = h_0[n-k] = h[n-k]$$

■ Hence, for an LTI system,

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k] = \sum_{k=-\infty}^{+\infty} x[n-k]h[k]$$

- Known as the convolution of x[n] & h[n]
- · Referred as the convolution sum or superposition sum
- Symbolically, y[n] = x[n] * h[n] = h[n] * x[n]

$$= \cdots + x[-1]h[n+1] + x[0]h[n] + x[1]h[n-1] + x[2]h[n-2] + \cdots$$

1. Birim darbe cevabi $h(n)=(-1)^n u(n)$ şeklinde verilen doğrusal zamanla değişmeyen sistemin x(n)=u(n)-u(n-3) işaretine cevabi y(n) yi hesaplayınız. $y(n)=\sum_{k=-\infty}^m x(k)h(n-k) \ 2p$ x(k) $y(n)=\sum_{k=-\infty}^m x(k)h(n-k) \ 2p$ x(k) $y(n)=\sum_{k=-\infty}^m x(k)h(n-k) \ 2p$ x(k) $y(n)=0 \ 3p$ $y(n)=0 \ 3p$ y(