LOGISTIC REGRESSION USED CARS

In [1]:

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="white")#white background for seaborn plots
sns.set(style="whitegrid",color_codes=True)
import warnings
warnings.simplefilter(action="ignore")
df=pd.read_csv(r"C:\Users\prajapath Arjun\Downloads\used_cars_data.csv")
print(df)
```

	S.No.					Name	Location	
0	0				_	R LXI CNG	Mumbai	\
1	1		Ну	undai Cret		•	Pune	
2	2					nda Jazz V	Chennai	
3	3					Ertiga VDI	Chennai	
4	4		А	udi A4 New	2.0 TDI M	ultitronic	Coimbatore	
7240	7240		1/-7	l				
7248	7248		AOT	kswagen Ve			Hyderabad	
7249	7249				_	olo GT TSI	Mumbai	
7250	7250					Diesel XV	Kolkata -	
7251	7251				_	olo GT TSI	Pune	
7252	7252 I	Mercedes-Ben	z E-Cla	ss 2009-20	13 E 220 C	DI Avan	Kochi	
	Year K	ilometers_Dr	ivan Eu	al Tyna Tr	ancmiccion	Owner Tyne	Mileage	
0	2010	-	2000	CNG	Manual	First	26.6 km/kg	
1	2015		1000	Diesel	Manual	First	19.67 kmpl	
2	2013		6000	Petrol	Manual	First	18.2 kmpl	
3	2011		7000	Diesel	Manual	First	20.77 kmpl	
						_	· · · · · · · · · · · · · · · · · · ·	
4	2013	4	0670	Diesel	Automatic	Second	15.2 kmpl	
 7248	2011	8	··· 9411	 Diesel	 Manual	 First	20.54 kmpl	
7249	2015		9000	Petrol	Automatic	First	17.21 kmpl	
7250	2012	28000		Diesel	Manual	First	23.08 kmpl	
7251	2013		2262	Petrol	Automatic	Third	17.2 kmpl	
7252	2013		2443	Diesel	Automatic	First	10.0 kmpl	
1232	2014	,	2443	Diesei	Automatic	FILSC	10.0 KIIIPI	
	Engine	Power	Seats	New Price	Price			
0	998 CC	58.16 bhp	5.0	_ NaN	1.75			
1	1582 CC	126.2 bhp	5.0	NaN	12.50			
2	1199 CC	88.7 bhp	5.0	8.61 Lakh	4.50			
3	1248 CC	88.76 bhp	7.0	NaN	6.00			
4	1968 CC	140.8 bhp	5.0	NaN	17.74			
		•••						
7248	1598 CC	103.6 bhp	5.0	NaN	NaN			
7249	1197 CC	103.6 bhp	5.0	NaN	NaN			
7250	1461 CC	63.1 bhp	5.0	NaN	NaN			
7251	1197 CC	103.6 bhp	5.0	NaN	NaN			
7252	2148 CC	170 bhp	5.0	NaN	NaN			
		2,0 0.1.p	3.0	Hall				
[7253	rows x	14 columns]						

In [2]:

```
df.describe()
```

Out[2]:

	S.No.	Year	Kilometers_Driven	Seats	Price
count	7253.000000	7253.000000	7.253000e+03	7200.000000	6019.000000
mean	3626.000000	2013.365366	5.869906e+04	5.279722	9.479468
std	2093.905084	3.254421	8.442772e+04	0.811660	11.187917
min	0.000000	1996.000000	1.710000e+02	0.000000	0.440000
25%	1813.000000	2011.000000	3.400000e+04	5.000000	3.500000
50%	3626.000000	2014.000000	5.341600e+04	5.000000	5.640000
75%	5439.000000	2016.000000	7.300000e+04	5.000000	9.950000
max	7252.000000	2019.000000	6.500000e+06	10.000000	160.000000

In [3]:

df.shape

Out[3]:

(7253, 14)

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	S.No.	7253 non-null	int64
1	Name	7253 non-null	object
2	Location	7253 non-null	object
3	Year	7253 non-null	int64
4	Kilometers_Driven	7253 non-null	int64
5	Fuel_Type	7253 non-null	object
6	Transmission	7253 non-null	object
7	Owner_Type	7253 non-null	object
8	Mileage	7251 non-null	object
9	Engine	7207 non-null	object
10	Power	7207 non-null	object
11	Seats	7200 non-null	float64
12	New_Price	1006 non-null	object
13	Price	6019 non-null	float64

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

In [5]:

```
df.isnull().sum()
```

Out[5]:

S.No. 0 Name 0 Location 0 0 Year Kilometers_Driven 0 Fuel_Type 0 0 Transmission 0 Owner_Type 2 Mileage Engine 46 Power 46 Seats 53 New_Price 6247 1234 Price dtype: int64

In [6]:

```
ax = df["Seats"].hist(bins=15, density=True, stacked=True, color='cyan', alpha=0.6)
df["Seats"].plot(kind='density', color='teal')
ax.set(xlabel='Seats')
plt.xlim(-0,15)
plt.show()
```


In [7]:

```
print(df["Seats"].mean(skipna=True))
print(df["Seats"].median(skipna=True))
```

5.2797222222222

5.0

In [8]:

```
print(df["New_Price"].isnull().sum()/df.shape[0]*100)
print(df["Price"].isnull().sum()/df.shape[0]*100)
print(df["Mileage"].isnull().sum()/df.shape[0]*100)
print(df["Engine"].isnull().sum()/df.shape[0]*100)
print(df["Power"].isnull().sum()/df.shape[0]*100)
```

86.12987729215497

17.01364952433476

0.02757479663587481

0.6342203226251206

0.6342203226251206

In [9]:

```
print(df["Engine"].value_counts())
sns.countplot(x='Engine',data=df,palette='Set3')
plt.xlim(-0,45)
plt.show()
```

```
Engine
1197 CC
           732
1248 CC
           610
           370
1498 CC
998 CC
           309
1198 CC
           281
1489 CC
             1
1422 CC
             1
2706 CC
             1
1978 CC
1389 CC
             1
Name: count, Length: 150, dtype: int64
```


In [10]:

```
data=df.copy()
data['Seats'].fillna(df['Seats'].median(skipna=True),inplace=True)
data.drop('New_Price',axis=1,inplace=True)
data['Price'].fillna(df['Price'].median(skipna=True),inplace=True)
data['Mileage'].fillna(df['Mileage'].value_counts(),inplace=True)
data.drop('Engine',axis=1,inplace=True)
data.drop('Power',axis=1,inplace=True)
```

In [11]:

data.isnull().sum()

Out[11]:

S.No. 0 Name 0 Location 0 0 Year 0 Kilometers_Driven 0 Fuel_Type Transmission 0 Owner_Type 0 2 Mileage 0 Seats Price 0 dtype: int64

In [12]:

data.head()

Out[12]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mil
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	k
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	1
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	
4									

In [13]:

```
plt.figure(figsize=(15,8))
ax=df["Price"].hist(bins=10,density=True,stacked=True,color='teal',alpha=0.6)
df["Price"].plot(kind='density',color='teal')
ax=data["Price"].hist(bins=10,density=True,stacked=True,color='orange',alpha=0.6)
data["Price"].plot(kind='density',color='orange')
ax.legend(['Mileage','Seats'])
ax.set(xlabel='Price')
plt.xlim(-10,90)
plt.show()
```


In [14]:

```
training=pd.get_dummies(data,columns=["S.No."])
final_train=training
final_train.head()
```

Out[14]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	;
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	
3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmpl	
4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	

5 rows × 7263 columns

In [15]:

```
plt.figure(figsize=(15,8))
ax=sns.kdeplot(final_train["Price"][final_train.Year==1],color='darkturquoise',alpha=0.6)
sns.kdeplot(final_train["Kilometers_Driven"][final_train.Year==0],color="lightgreen",alpha=0.6
plt.legend(['Cars','density'])
ax.set(xlabel='Year')
```

Out[15]:

[Text(0.5, 0, 'Year')]

In [16]:

```
plt.figure(figsize=(20,20))
avg_survival_byage=final_train[['Seats','Price']].groupby(['Price'],as_index=False).mean()
g=sns.barplot(x='Seats',y='Price',data=avg_survival_byage,color="LightSeaGreen")
plt.show()
```


In [17]:

```
sns.barplot(x='Price',y='Year',data=final_train,color="mediumturquoise")
plt.show()
```


In [18]:

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.barplot(x='Year',y='Seats',data=df,color='aquamarine')
plt.show()
```

