Domain 3: Security Engineering						CISSP Ch	neat Sheet S	Series compari tech	
Security Models and Concepts Security architecture frameworks		Security Models - Provides access rights including discretionary access control				Evaluation and Assurance Levels Evaluates operating systems, application and systems. But not		Hardware architecture	
	A 2D model considering interrogations such as what, where and when with, etc. With various views such as planner, owner,	MATRIX t (Access control model) -	to subjects for different o - Read, write and execute	objects. te access defined in ACL as matrix	Trusted Computer System Evaluation Criteria	network part. Consider only about confidentiality. Operational assurance requirements for TCSEC are: System Architecture,	Multitask Multi prograi	two or more tasks. Simultaneous running of	
Sherwood Applied	designer etc.	-	-A subject cannot read da simple security rule)	apability lists. data at a higher security level. (A.K.A	(TCSEC)	System Integrity, Covert Channel analysis, Trusted Facility Management and Trusted recovery. A collection of criteria based on the Bell-LaPadula model used	Multi-proce	CPU consists or more	
Business Security Architecture (SABSA) Information Technology		-	- Subject in a defined security level unless it is a	ecurity level cannot write to a lower s a trusted subject. (A.K.A *-property	Orange Book	to grade or rate the security offered by a computer system product.	2: -1- 0	Processing Types One security level at a	
Infrastructure Library (ITIL)	Set of best practices for IT service management	(Confidentiality model)	•	es discretionary access control. write access should write and read at	Red Book Green Book	Similar to the Orange Book but addresses network security. Password Management.	Single St	time. Multiple security levels at	
Security architecture d ISO/IEC 27000 Series	Establish security controls published by Standardization (ISO)	t	the same security level (A - Tranquility prevents secu		Trusted Computer System Evaluation	Evaluates operating systems, application and systems. But not network part. Consider only about confidentiality. Operational assurance requirements for TCSEC are: System Architecture,	Firmwa	a time. Software built in to in the	
Control Objectives for Information and Related	Define goals and requirements for security controls and the	-	- Cannot read data from a simple integrity axiom)	a lower integrity level (A.K.A The	Criteria (TCSEC)	System Integrity, Covert Channel analysis, Trusted Facility Management and Trusted recovery.	Base Input (ROM. Output Set of instructions used to	
Technology (CobiT) Types of security mode	mapping of IT security controls to business objectives.	-	,	n object at a higher integrity level.	ITSEC	Consider all 3 CIA (integrity and availability as well as confidentiality	,	Mobile Security	
State Machine Models	Check each of the possible system state and ensure the proper	(Integrity model) -	- Cannot invoke service at invocation property)	at higher integrity. (A.K.A The	TCSEC D	Explanation Minimal protection	Device Encrypti	ion • Remote wiping • Remote lock out s (voice, face recognition, pattern, pin,	
State Masimis	state. Allocate each security subject a security label defining the	t	to a high security level.	formation flow from a low security level	C1	DAC; Discretionary Protection (identification, authentication, resource protection)	password) • A tracking (IM	Application installation control • Asset MIE) • Mobile Device Management •	
Multilevel Lattice Models	highest and lowest boundaries of the subject's access to the system. Enforce controls to all objects by dividing them into	-	User: An active agentTransformation Procedu as read, writes, and modif	dure (TP): An abstract operation, such dify, implemented through	C2 B1	DAC; Controlled access protection MAC; Labeled security (process isolation, devices)		& Internet Security	
Matrix Board Models	levels known as lattices. Arrange tables known as matrix which includes subjects and objects defining what actions subjects can take upon another.	F	Programming • Constrained Data Item (n (CDI): An item that can be manipulated	B2 B3	MAC; Structured protection MAC; security domain	Network Segm	nentation (Isolation) • Logical Isolation vsical isolation (Network segments) •	
Matrix Based Models	objects defining what actions subjects can take upon another object. Consider the state of the system at a point in time for a	CLARK WILSON		em (UDI): An item that can be via read and write operations	A Common criteria assura	MAC; verified protection	Applicati	ion firewalls • Firmware updates	
Noninterference Models		(Integrity model)	- Enforces separation of d - Requires auditing	·	EAL0 EAL1	Inadequate assurance Functionality tested	Internal	hysical Security vs external threat and mitigation	
Information Flow Models	which can violate the security policy.	-	- Commercial use - Data item whose integrit	rity need to be preserved should be	EAL2 EAL3	Structurally tested Methodically tested and checked	Natural threats	Hurricanes, tornadoes, earthquakes floods, tsunami, fire, etc	
Confinement	Read and Write are allowed or restricted using a specific memory location, e.g. Sandboxing.	-	audited - An integrity verification properties their integrity ag	n procedure (IVP) -scans data items and against external threats	LACO	Methodically designed, tested and reviewed Semi-formally designed and tested Semi-formally verified, designed and tested	Politically motivated threats	Bombs, terrorist actions, etc	
Data in Use	Scoping & tailoring Security Modes	Information flow model	Information is restricted to permitted by the security	d to flow in the directions that are ty policy. Thus flow of information from	EAL6 EAL7 ITSEC security evaluati	Semi-formally verified, designed and tested Formally verified, designed and tested tion criteria - required levels	Power/utility	General infrastructure damage (electricity telecom, water, gas, etc)	
Dodicated Security Mode	Use a single classification level. All objects can access all subjects, but users they must sign an NDA and approved prior	-	one security level to anoth		D + E0 C1 + E1	Minimum Protection Discretionary Protection (DAC)	Man Made threats	Sabotage, vandalism, fraud, theft	
	to access on need-to-know basis All users get the same access level but all of them do not get	Brewer and Nash	_	n object if, and only if, the subject	C1 + E1 C2 + E2 B1 + E3	Controlled Access Protection (Media cleansing for reusability) Labelled Security (Labelling of data)	Major sources to check	Liquids, heat, gases, viruses, bacteria, movement: (earthquakes),	
System High Security Mode	the need-to-know clearance for all the information in the system.	(A.K.A Chinese wall	cannot read another object- Prevents conflict of inter Citation		B2 + E4 B3 + E5	Structured Domain (Addresses Covert channel) Security Domain (Isolation)	Natu	radiation, etc	
Compartmented Security Mode	nave need-to-know clearance and an NDA, and formal approval	ŀ	https://ipspecialist.net/fu els-how-they-work/	fundamental-concepts-of-security-mod	A + E6	Verified Protection (B3 + Dev Cycle) ection profile components	Tornadoes,	Move or check location, frequency of occurrence, and impact. Allocate budget.	
Multilevel Security Mode	for all access required information. Use two classification levels as System Evaluation and Assurance Levels	Graham-Denning Model F	Rule 1: Transfer Access, F	nfidentiality and Integrity,) -BLP + Biba s, Rule 2: Grant Access, Rule 3: Delete	Descriptive Elements requ	s • Rationale • Functional Requirements • Development assurance quirements • Evaluation assurance requirements	Floods	Raised flooring server rooms and offices to keep computer devices .	
	Assurance Levels Virtualization	rules	destroy Object, Rule 7: Cre	bject, Rule 5: Create Object, Rule 6: Create Subject, Rule 8: Destroy	Certification & Accredit	Evaluation of security and technical/non-technical features to ensure		UPS, Onsite generators	
Guest operating syster	ems run on virtual machines and hypervisors run on one or more		set to preserve integrity.		Certification Accreditation	if it meets specified requirements to achieve accreditation. Declare that an IT system is approved to operate in predefined	Temperature	Fix temperature sensors inside server rooms , Communications - Redundant internet links, mobile	
Virtualization security threats	host physical machines. Trojan infected VMs, misconfigured hypervisor		Web Secur		NIACAP Accreditation	conditions defined as a set of safety measures at given risk level. Process	·	communication links as a back up to cable internet.	
threats Cloud computing models	Software as A Service (SaaS) Infrastructure As A Service	OWASP		n security project. OWASP creates edures, and tools to use with web		n • Phase 2: Verification • Phase 3: Validation • Phase 4: Post Accreditation		Man-Made Threats Avoid areas where explosions can	
Cloud computing threats	(IaaS), Platform As A Service (PaaS) Account hijack, malware infections, data breach, loss of data	I E	Injection / SQL Injection, E Exposure, XML External E	n, Broken Authentication, Sensitive Data I Entity, Broken Access Control, Security	Accreditation Types Type Accreditation	Evaluates a system distributed in different locations.	Explosions	occur Eg. Mining, Military training etc.	
	Memory Protection	OWASP Top 10	Misconfiguration, Cross-S Deserialization, Using Cor	s-Site Scripting (XSS), Insecure components with Known Vulnerabilities,	System Accreditation Site Accreditation	Evaluates an application system. Evaluates the system at a specific location.	⊢ Ire I	Minimum 2 hour fire rating for walls, Fire alarms, Fire extinguishers.	
Register Stack Memory Segment	Directly access inbuilt CPU memory to access CPU and ALU. Used by processors for intercommunication.	l A	Insufficient Logging and Mattackers try to exploit by	d Monitoring by allowing user input to modify the	Symme	etric vs. Asymmetric Encryption		Deploy perimeter security, double locks, security camera etc. Use measures to avoid physical	
Monolithic Operating System Architecture	All of the code working in kernel mode/system.	SQL Injections:	back-end/server of the we	web application or execute harmful ecial characters inside SQL codes		Use a private key which is a secret key between two parties. Each party needs a unique and separate private key.		Use measures to avoid physical access to critical systems. Eg. Fingerprint scanning for doors.	
Memory Addressing Register Addressing	Identification of memory locations by the processor. CPU access registry to get information.	SQL Injection prevention: \	Validate the inputs and pa	parameters.	Symmetric Algorithms	Number of keys = $x(x-1)/2$ where x is the number of users. Eg. DES, AES, IDEA, Skipjack, Blowfish, Twofish, RC4/5/6, and		Site Selection	
Immediate Addressing Direct Addressing		(XSS)	webpages.	utting invalidated scripts inside T requests of the http web pages with	Stream Based Symmetric	CAST. ic Encryption done bitwise and use keystream generators Eg. RC4.	Physical	Deter Criminal Activity - Delay Intruders - Detect Intruders - Assess	
Indirect Addressing	Same as direct addressing but not the actual memory location.	ŀ	HTML forms to carry out	ET requests of the http web pages with ut malicious activity with user accounts. by authorization user accounts to carry	Plack Symmetric Cinhar	Encryption done by dividing the message into fixed-length	security goals	Situation - Respond to Intrusion Visibility - External Entities -	
	Value stored in registry is used as based value by the CPU.	t		Random string in the form, and store it		blocks Eg. IDEA, Blowfish and, RC5/6. Use public and private key where both parties know the public and the private key known by the owner .Public key encrypts	Site selection issues	Accessibility - Construction - Internal Compartments	
	Cryptographic Terminology Convert data from plaintext to cipher text.		Cryptograp		Asymmetric Algorithms	the message, and private key decrypts the message. 2x is total number of keys where x is number of users. Eg. Diffie-Hellman,		Middle of the building (Middle floor)	
Encryption Decryption Key	Convert data from plaintext to cipher text. Convert from ciphertext to plaintext.	-	P - Privacy (Confidentiality A – Authentication			RSA, El Gamal, ECC, Knapsack, DSA, and Zero Knowledge Proof.	Server room	Single access door or entry pointFire detection and suppression	
Key Synchronous	A value used in encryption conversion process. Encryption or decryption happens simultaneously.		I - Integrity N - Non-Repudiation.		Symmetric Algorithms Use of private key which i	Asymmetric Algorithms Hybrid Cryptography Use of both Symmetric and	security	systemsRaised flooringRedundant power supplies	
Asynchronous	Encryption or decryption requests done subsequently or after a waiting period. Single private key use for encryption and decryption	•	 Key space = 2n. (n is number Confidentiality Integrity 	nber of key bits)	Use of private key which i secret key	pairs Use of public and private key Asymmetric encryption. Eg. SSL/TLS	- and	Solid /Unbreakable doors 8 feet and taller with razor wire.	
Symmetric Asymmetrical	Single private key use for encryption and decryption. Key pair use for encrypting and decrypting. (One private and one public key)	Use of Cryptography	IntegrityProof of origin		Provides confidentiality be not authentication or	integrity, authentication, and or a data file into a smaller	Fences and Gates	Remote controlled underground concealed gates.	
-	one public key) Use to verify authentication and message integrity of the sender. The message use as an input to a hash functions for		Non-repudiationProtect data at restProtect data in transit		nonrepudiation One key encrypts and	or a data file into a smaller fixed length chunks. One key encrypts and other Encrypted with the private	Perimeter Intrusion	Infrared Sensors - Electromechanical Systems - Acoustical Systems -	
Digital Signature	sender. The message use as an input to a hash functions for validating user authentication. A one-way function, convert message to a hash value used to		Codes vs. Cip	phers	One key encrypts and decrypts	One key encrypts and other key decrypts Encrypted with the private key of the sender. Message Authentication	Detection Systems	CCTV - Smart cards - Fingerprint/retina scanning	
Hash	A one-way function, convert message to a hash value used to verify message integrity by comparing sender and receiver values.	Classical Ciphers	Substitution cipher, Trans Concealment.	nsposition cipher, Caesar Cipher,	Larger key size. Bulk encryptions	Small blocks and key sizes Code (MAC) used to encrypt the hash function with a	Lighting Systems	Continuous Lighting - Standby Lighting - Movable Lighting - Emergency Lighting	
Digital Certificate Plaintext	An electronic document that authenticate certification owner. Simple text message.	Modern Ciphers	Block cipher, Stream ciphe	oher, Steganography, Combination. xt to another written text to hide original		symmetric key. Allows for more trade-offs	Media storage	Offsite media storage - redundant	
Ciphertext	Normal text converted to special format where it is unreadable without reconversion using keys.	Concealment Cipher t	text. Uses a key to substitute le	e letters or blocks of letters with	raster and less complex.	Slower. More scalable. between speed, complexity, and scalability.		Faraday Cage to avoid electromagnetic emissions - White	
Cryptosystem	The set of components used for encryption. Includes algorithm, key and key management functions.	Substitution Ciphers	different letters or block of stenography.	k of letters. I.e. One-time pad,	Out-of-band key exchange	ge In-band key exchange Hash Functions and Digital Certificates Hashing use message	Electricity	noise results in signal interference - Control Zone: Faraday cage + White	
Cryptanalysis	Breaking decrypting ciphertext without knowledge of cryptosystem used.	Transposition Ciphers t		e letters of the original message where the positions to which the letters are		digests.	Chatin.	use anti-static spray, mats and wristbands when handling electrical	
Cryptographic Algorithm Cryptography	Procedure of enciphers plaintext and deciphers cipher text. The science of hiding the communication messages from		Common Algor	orithms		Key Escrow and Recovery s divided into two parts and handover to a third party.	Static Electricity	wristbands when handling electrical equipment - Monitor and maintain humidity levels.	
Cryptology	unauthorized recipients. Cryptography + Cryptanalysis	Symmetric/ Algorithm Asymmetric	•		,	PKI	HVAC control levels	Heat - High Humidity - Low Humidity	
Decipher Encipher	Convert the message as readable. Convert the message as unreadable or meaningless.		128-bit	64 bit cipher block size and 56 bit key with 8 bits parity.	F	Recipient's Public Key - Encrypt message		• 100F can damage storage media such as tape drives.	
One-time pad (OTP) Key Clustering	Encipher all of the characters with separate unique keys. Different encryption keys generate the same plaintext	DES Symmetric	64 bit Lucifer algorithm	• 16 rounds of transposition and substitution	K	Recipient's Private Key - Decrypt message Sender's Private Key - Digitally sign		• 175 F can cause computer and electrical equipment damage.	
Key Clustering Key Space	message. Every possible key value for a specific algorithm.	3 DES or		(ECB, CBC, CFB, OFB, CTR) 3 * 56 bit keys		Sender's Public Key - Verify Signature		 350 F can result in fires due to paper based products. HVAC: UPS, and surge protectors 	
Algorithm	A mathematical function used in encryption and decryption of data; A.K.A. cipher.		56 bit*3 DES	Slower than DES but higher security (DES EE3, DES EDE3 ,DES EEE2, DES	Certificates	Provides authorization between the parties verified by CA.	HVAC Guidelines	 HVAC: UPS, and surge protectors to prevent electric surcharge. Noise: Electromagnetic 	
Cryptology Transposition	The science of encryption. Rearranging the plaintext to hide the original message; A.K.A. Permutation			Use 3 different bit size keys Examples Bitlocker, Microsoft EFS	Certificate Authority	Authority performing verification of identities and provides certificates.		Interference (EMI), Radio Frequency Interference	
Substitution	Permutation. Exchanging or repeating characters (1 byte) in a message with	AES Symmetric	256 bit algorithm	·	Registration Authority Certification Path	Help CA with verification. Certificate validity from top level.		Temperatures, Humidity • Computer Rooms should have 15° C = 23°C temperature and 40 = 60%	
Vernam	another message. Key of a random set of non-repeating characters. A.K.A. One	<u> </u>		64 bit cipher blocks each block divide to 16 smaller	Validation Certification Revocation	, ,		C - 23°C temperature and 40 - 60% (Humidity) • Static Voltage	
Confusion	orialigning a key value during each choice of the choryphonic	IDEA symmetric	128 bit	blocks Each block undergo 8 rounds of	List Online Certificate status	valid certificates list	lovels	 Static Voltage 40v can damage Circuits, 1000v Flickering monitors, 1500v can 	
Diffusion Avalanche Effect	Changing the location of the plaintext inside the cipher text. When any change in the key or plaintext significantly change the ciphertext.	- atrio		transformation Example PGP	protocol (OCSP) Cross-Certification	Create a trust relationship between two CA's	Voltage levels control	cause loss of stored data, 2000v can cause System shut down or reboot,	
Split Knowledge	Segregation of Duties and Dual Control.	Blowfish Symmetric	32-448bit	64 bit Block cipher 64 bit Block cipher	· += kovile	Digital Signatures		17000 v can cause complete electronic circuit damage.	
Work factor Nonce	The time and resources needed to break the encryption. Arbitrary number to provide randomness to cryptographic	TwoFish Symmetric	128, 192, 256	128 bit blocks		n, nonrepudiation, and integrity	Equipment safety	Fire proof Safety lockers - Access control for locking mechanisms such as keys and passwords.	
Block Cipher	function. Dividing plaintext into blocks and assign similar encryption algorithm and key.	RC4 Symmetric	40-2048	Example SSL and WEP • Stream cipher	Users register public key	eys with a certification authority (CA). nerated by the user's public key and validity period according to	Water leakage	Maintain raised floor and proper	
Stream Cipher	algorithm and key. Encrypt bit wise - one bit at a time with corresponding digit of	,	2048	• 256 Rounds of transformation 255 rounds transformation	the certificate issuer and	d digital signature algorithm identifier.	Water realiza	drainage systems. Use of barriers such as sand bags Fire retardant materials - Fire	
Dumpster Diving	the keystream. Unauthorized access a trash to find confidential information. Sending spoofed messages as originate from a trusted source.		2048 CAST 128	• 32, 64 & 128 bit block sizes		Digital Certificate - Steps Enrollment - Verification - Revocation	Fire safety	suppression - Hot Aisle/Cold Aisle Containment - Fire triangle (Oxygen -	
Phishing Social Engineering	Sending spoofed messages as originate from a trusted source. Mislead a person to provide confidential information. A moderate level hacker that uses readily found code from the	CAST Symmetric	Dit) CAST 256	64 bit block 12 transformation rounds 128 bit block 48 rounds	S	phy Applications & Secure Protocols		Heat - Fuel) - Water, CO2, Halon Fire extinguishers	
Script kiddie	A moderate level hacker that uses readily found code from the internet.		CAST 256	transformation		BitLocker: Windows full volume encryption feature (Vista)	Class	Type Suppression	
•		Diffie - Asymmetric		No confidentiality, authentication, or non-repudiation	Hardware -BitLocker and truecrypt	onward) • truecrypt: freeware utility for on-the-fly encryption (discontinued)	A	Common Water, SODA combustible acid	
Variable long	length output	Hellman		Secure key transfer Uses 1024 keys		A hardware chip installed on a motherboard used to manage	В	Liquid CO2, HALON,	
MD2	MD Hash Algorithms 128-bit hash, 18 rounds of computations			 Public key and one-way function for encryption and digital signature 	Hardware-Trusted Platform Module (TPM)	Symmetric and asymmetric keys, hashes, and digital certificates. TPM protect passwords, encrypt drives, and		SODA acid	
MD4	100 hit hook 2 younds of computations E10 hits block sizes	RSA Asymmetric	4096 bit	 verification Private key and one-way function for decryption and digital signature 		manage digital permissions. Encrypts entire packet components except Data Link Control	<u> </u>	Electrical CO2, HALON Metal Dry Powder	
MD5	Merkle-Damgård construction Variable, 0 <d≤512 bits,="" merkle="" structure<="" td="" tree=""><td></td><td></td><td>generation • Used for encryption, key exchange</td><td>Link encryption End to end encryption</td><td>information.</td><td>D</td><td>Metal Dry Powder</td></d≤512>			generation • Used for encryption, key exchange	Link encryption End to end encryption	information.	D	Metal Dry Powder	
SHA-0	Phased out, collision found with a complexity of 2^33.6 (approx 1 hr on standard PC) Retired by NIST			and digital signatures Used for encryption, key exchange	Ena to ena enaryption	Privacy (Encrypt), Authentication (Digital signature), Integrity,	Water based suppression	Wet pipes - Dry Pipe - Deluge	
SHA-1		Elgamal Asymmetric	Any key size Hellman	and digital signatures	Email (PGP)	(Hash) and Non-repudiation (Digital signature) Email (Secure MIME (S/MIME): Encryption for confidentiality, Hashing for	systems	• HI VIS clothes	
	well funded attackers) 224, 256, 384, or 512 bits, 64 or 80 rounds of computations,	Elliptic Curve Asymmetric	Δny key size	Used for encryption, key exchange and digital signatures		integrity, Public key certificates for authentication, and Message Digests for nonrepudiation.	Personnel safety	Safety garments /BootsDesign and Deploy an Occupant	
SHA-2	512 or 1024 bits block sizes, Merkle-Damgård construction	Cryptosyste m (ECC)	Any key size	Speed and efficiency and better security	Web application Cross-Certification	SSL/TLS. SSL encryption, authentication and integrity. Create a trust relationship between two CA's		Emergency Plan (OEP) Programmable multiple control	
Lloo	Cryptograph	nic Attacks				(Privacy, authentication, Integrity, Non Repudiation).		Programmable multiple control locksElectronic Access Control - Digital	
Passive Attacks infor	ormation.	Algebraic Attack Uses kn		•	IPSEC	Tunnel mode encrypt whole packet (Secure). Transport mode encrypt payload (Faster)	Internal Security	scanning, Sensors • Door entry cards and badges for	
atten	empting to break encryption keys, algorithm. attacker uses multiple encrypted texts to find out the key used for	Analysis patterns	ns in ciphertext.	and transposition ciphers use repeated	IPSEC components	Authentication Header (AH): Authentication, Integrity, Non repudiation. Encapsulated Security Payload (ESP): Privacy,	Security,	staff • Motion Detectors- Infrared, Heat	
Attack encry	attacker uses multiple encrypted texts to find out the key used for cryption.	easier th	than message with its own		IPSEC components	Authentication, and Integrity. Security Association (SA): Distinct Identifier of a secure connection.		Based, Wave Pattern, Photoelectric, Passive audio motion	
Known Plaintext An at	attacker uses plain text and cipher text to find out the key used for	Dictionary Attacks Uses 2"	al the words in the diction	nary to find out correct key	ISAKMP	Internet Security Association Key Management Protocol		Create, distribute, transmission,	

Analytic Attack An attacker uses known weaknesses of the algorithm

Factoring Attack By using the solutions of factoring large numbers in RSA

Reverse

Engineering

Replay Attacks Attacker sends the same data repeatedly to trick the receiver.

Statistical Attack An attacker uses known statistical weaknesses of the algorithm

Use a cryptographic device to decrypt the key

Key exchange used by IPsec .Consists of OAKLEY and

Internet Key Exchange Internet Security Association and Key Management Protocol

authentication.

Authentication, use to create and manage SA, key generation.

(ISAKMP). IKE use Pre-Shared keys, certificates, and public key

Wired Equivalent Privacy (WEP): 64 & 128 bit encryption. Wi-Fi

Protected Access (WPA): Uses TKIP. More secure than WEP

WPA2: Uses AES. More secure than WEP and WPA.

(IKE)

Wireless encryption

application for key distribution,

should be stored secure by

safety systems to check the

designated person only.

faults.

Key

management

Testing

storage - Automatic integration to

storage, and handling. Backup keys

Pilot testing for all the backups and

working condition and to find any

impersonate another user to obtain the cryptographic key used.

Calculate the execution times and power required by the cryptographic

Try all possible patterns and combinations to find correct key.

Chosen Plaintext An attacker sends a message to another user expecting the user will

Social Engineering | An attacker attempts to trick users into giving their attacker try to

forward that message as cipher text.

device. A.K.A. Side-Channel attacks

Uses linear approximation

Attack

Attack

Brute Force

Differential

Cryptanalysis

Linear

Cryptanalysis