

Module 10 – Project

PEFT for Multiple-choice QA

Code - Data
Github

Nguyen Quoc Thai MSc in Computer Science

Objectives

PEFT

- ❖ Fine-tuning LLMs
- Adapter / Prefix / Prompt Tuning
- ❖ LoRA, QLoRA

Multiple-choice QA

- Multiple-choice Question Answering
- MedMCQA Dataset
- ❖ Fine-tuning LLaMA-3.2-1B

Outline

SECTION 1

Fine-tuning LLMs

SECTION 2

Multiple-choice QA

Training LLMs

GPT-3.5 Training

- **Fine-tuning LMs**
- Embedded models into an application (Downstream task)
- Downstream tasks: Text Classification, Text Summarization, Machine Translation

Classifier

- Model size are still growing?
- Model size scales almost two orders of magnitude quicker than single-GPU memory
- ❖ VRAM need for training / fine-tuning (full weights) GPT-3 175 B: 800− 1400 GB

Model	Parameter
GPT-4	1-1.8 T
Grok-1.5	1 T
LLaMA-4	2 T
Claude 3	200 B
Gemini 1.5	1 T
PaLM 2-Large	340 B

Parameter-Efficient Fine-Tuning (PEFT)

- Standard fine-tuning: make a new copy of the model weights for each task
- PEFT: perform fine-tuning of fewer parameters, but achieve performance on a downstream task that is comparable to fine-tuning of all parameters

Subset Fine-tuning

Layer 1 (Frozen)

Layer 2 (Frozen)

Layer 3 (Fine-tuned)

Layer 4 (Fine-tuned)

Only top K layers are fine-tuned

Adapters

Layer 1 (Frozen)

Adapter (Trainable)

Layer 2 (Frozen)

Adapter (Trainable)

Layer 3 (Frozen)

Small trainable modules between frozen layers

- **Parameter-Efficient Fine-Tuning (PEFT)**
- Standard fine-tuning: make a new copy of the model weights for each task
- PEFT: perform fine-tuning of fewer parameters, but achieve performance on a downstream task that is comparable to fine-tuning of all parameters

Prefix Fine-tuning

Trainable Input Tokens
Prefix (Frozen Model)

Tune virtual prefix token's keys/values

LoRA

Low-rank weight $W' = A \times B$

Adapters

- Add a layer to adapt for downstream tasks
- An adapter layer is simply a feed-forward neural network with one hidden layer, and a residual connection

Adapters

- Add a layer to adapt for downstream tasks
- An adapter layers is simply a feed-forward neural network with one hidden layer, and a residual connection

Adapters

Layer 1 (Frozen)

Adapter (Trainable)

Layer 2 (Frozen)

Adapter (Trainable)

Layer 3 (Frozen)

Small trainable modules between frozen layers

Adapters

```
import torch.nn as nn
class NoAdapter(nn.Module):
    def __init__(self, hidden_size=32):
        super().__init__()
        self.linear = nn.Linear(hidden_size, hidden_size)
    def forward(self, x):
        return self.linear(x)
class Adapter(nn.Module):
    def __init__(self, hidden_size=32, bottleneck_size=8):
        super().__init__()
        self.down_proj = nn.Linear(hidden_size, bottleneck_size)
        self.activation = nn.ReLU()
        self.up_proj = nn.Linear(bottleneck_size, hidden_size)
    def forward(self, x):
        return x + self.up_proj(self.activation(self.down_proj(x)))
```


Adapters

- Add adapter layers in the transformer layers of a large model
- During fine-tuning, fix the original model parameters and only tune the adapter layers.

Adapters

2-3 % of parameters needed

```
from adapters import AutoAdapterModel
                  from transformers import AutoModelForSequenceClassification
                  # Full weights
                  model = AutoModelForSequenceClassification.from_pretrained(
          109 M
                      "bert-base-uncased", num_labels=2
GLEU (Accuracy)
                  print(sum(p.numel() for p in model.parameters() if p.requires_grad))
      80.4
                  # Adapter
                  model = AutoAdapterModel.from_pretrained("bert-base-uncased")
                  model.add_adapter("imdb_adapter")
           2 M
                  model.train_adapter("imdb_adapter")
GLEU (Accuracy)
                  model.add_classification_head("imdb_adapter", num_labels=2)
   79.6 - 80.0
                  print(sum(p.numel() for p in model.parameters() if p.requires_grad))
```


Prefix-Tuning

- Optimizing continuous prompts for generation
- Learn an optimal prefix for each task
- Only 1% of parameters need to be tuned

Prefix Fine-tuning

Trainable Prefix

Input Tokens (Frozen Model)

Tune virtual prefix token's keys/values

Prefix (Translation)

Prefix (Translation)

Prefix (Summarization)

Prefix (Question Answering)

- Prefix-Tuning
 - As the tunable prefix-length increases, performance increase, with diminishing returns
 - Optimal length for table to text is 10 tokens, summarization is 200 tokens,...

Prefix-Tuning

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import get_peft_model, PrefixTuningConfig, TaskType
model_name = "bert-base-uncased"
# Load model & tokenizer
model = AutoModelForSequenceClassification.from_pretrained(
    model_name, num_labels=2
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Prefix Tuning config
peft_config = PrefixTuningConfig(
    task_type=TaskType.SEQ_CLS,
    num_virtual_tokens=10,
    encoder_hidden_size=768, # for bert-base
    prefix_projection=True
                             # optional: adds an MLP to project prefix tokens
# Wrap model with PEFT
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
```


- **Prompt-Tuning**
- Prefix-tuning learn a sequence of prefixes (are prepended at every transformer layer)
- Prompt-tuning uses a single prompt representation is prepended to the embedded input

Prompt-Tuning

- Trainable params: 18,436
- All params: 109,500,676
- Trainable%: 0.016

```
model name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
   model_name, num_labels=2
# Prompt Tuning config
peft_config = PromptTuningConfig(
    task_type=TaskType.SEQ_CLS,
    num_virtual_tokens=20,
    tokenizer_name_or_path=model_name,
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
```


Prompt-Tuning

Experiments (Evaluating on SuperBLEU)

Low-rank Adaptation (LoRA)

* By freezing the pre-trained model weights and injecting trainable rank decomposition matrices into each layer of the Transformer architecture.

Low-rank Adaptation (LoRA)

* By freezing the pre-trained model weights and injecting trainable rank decomposition matrices into each layer of the Transformer architecture.

- Low-rank Adaptation (LoRA)
- LoRA reimagines fine tuning not as learning better parameters, but as adjustments required to the existing parameters to make them better
- Pre-trained language models have a low "intrinsic dimension"

$$W_0x + \Delta Wx = W_0x + BAx$$

LoRA Explained

Saving memory with LoRA: The full 5x5 matrix above has 25 values in it, whereas if count the values in the decomposed matrices, there just 10

$$W_0 x + \Delta W x = W_0 x + BA x$$

$$B=0$$

r

$$A = \mathcal{N}(0, \sigma^2)$$

1

2

-1

X

3 -1 2 0

. 0 =

 2
 3
 -1
 2
 0

 4
 6
 -2
 4
 0

 -2
 -3
 1
 -2
 0

 6
 9
 -3
 6
 0

 2
 3
 -1
 2
 0

How Does LoRA Work?

- First, freeze the model parameters (Using these parameters to make inferences, not update them)
- Create two matrices, calculate the change matrix (delta W)

Model Parameters

1	0	2	3	-1
2	0	2	2	1
1	1	2	3	3
2	0	1	1	1
1	2	3	1	1

Fine tune matrices A & B

	2	3	-1	2	0	Change Matrix					
1							2	3	-1	2	0
2							4	6	-2	4	0
-1						=	-2	-3	1	-2	0
3							6	9	-3	6	0
1							2	3	-1	2	0

- **How Does LoRA Work?**
- Pass through the frozen weights and the change matrix

Input

Calculate the loss and update matrices A and B

How Does LoRA Work?

At inference time, add the change matrix to the frozen weights and pass the input.

- **QLoRA: Efficient Finetuning of Quantized LLMs**
- QLoRA: save memory without sacrificing performance
- ❖ 4-bit NormalFloat (NF4) via Block-wise Quantization
- Double Quantization
- Paged Optimizers
- Combined with LoRA

Sign 1 bit

FP32

FP16

Fine-tuning LLMs

- FP32: Single Precision Floating Point
- FP16: Half Precision Floating Point
- BFLOAT16: Brain Floating Point

- Quantization
- FP32: Quantization: mapping input values from a large set (often a continuous set) to outputs values in a (countable) smaller set.
- Quantize from dtype FP32 to target dtype INT8.
- ❖ INT8: [-127, 127]

$$X^{Int8} = \text{round}\left(\frac{127}{absmax(X^{FP32})}X^{FP32}\right) = \text{round}\left(c^{FP32}X^{FP32}\right)$$

c: constant

FP32 0.1 0.2 0.4
$$C = \frac{127}{0.4} = 317.5$$
 32 64 127 INT8

$$dequant(c^{FP32}X^{FP32}) = \frac{X^{Int8}}{c^{FP32}} = X^{FP32}$$

- **QLoRA: 4-bit NormalFloat (NF4)**
- Find quantiles in each chunks
- Use fixed distribution zero-mean normal distribution with standard deviation σ

=> The main limitation of quantile quantization: process of quantile estimation very expensive

QLoRA: 4-bit NormalFloat (NF4)

Step 1: Estimate the 2k + 1 quantiles of a theoretical N(0, 1) distribution to obtain a k-bit quantile quantization data type for normal distributions

$$q_{i} = \frac{1}{2} \left(Q_{X} \left(\frac{i}{2^{k} + 1} \right) + Q_{X} \left(\frac{i}{2^{k} + 1} \right) \right)$$

 Q_X the quantile function of the standard normal distribution N(0,1)

- \diamond Step 2: Take this data type and normalize its values into the [-1, 1] range
- ❖ Step 3: Quantize an input weight tensor by normalizing into the [−1, 1] range through absolute maximum rescaling

QLoRA: Double Quantization

- **QLoRA: Double Quantization**
- > The process of quantizing the quantization constants for additional memory savings

QLoRA: Paged Optimizers

- Page Optimizers to manage memory spikes
- Allocate paged memory for the optimizer states which are then automatically evicted to CPU RAM when the GPU runs out-of-memory and paged back into GPU memory when the memory is needed in the optimizer update step

QLoRA: Efficient Finetuning of Quantized LLMs

4-bit Transformer

Outline

SECTION 1

Fine-tuning LLMs

SECTION 2

Multiple-choice QA

Multiple-choice QA Dataset

Question

A 40-year-old man has megaloblastic anemia and early signs of neurological abnormality. The drug most probably required is

Retrieval Module

A Folic acid

B Iron sulphate

C Erythropoietin

D Vitamin B12

Context / Explanation

Deficienty of vitamin B12 results in megaloblastic anemia and demyelination. It can cause subacute combined degeneration of the spinal cord and periphenal neuritis.

Classification Model

Classifier

Preprocessing

Question

Training

Generation Model

Preprocessing

- Prompting Model (LLMs)
 - In-context Learning

•	

	A	Choose the correct option for the following question		Ques	stion:	<quest< th=""><th>tion></th><th>Choice:</th><th><a></th><th>> <</th><th><c> <[</c></th><th>)></th><th>Answer</th><th><a></th></quest<>	tion>	Choice:	<a>	> <	<c> <[</c>)>	Answer	<a>	
Quartien	В														
Question	\mathbf{C}	[45, 57, 120,]		34		[79, 160]		90	[356, 23, 92,]				134	356	
	D														
		45	57	120	•••	34	79	160	90	356	23	92		134	356
	Output		57	120		34	79	160	90	356	23	92	•••	134	356
	Input	45	57	120		34	79	160	90	356	23	92	•••	134	
Preprocessing															

Prompting Model (LLMs)

Question

```
Choose the correct
          option for the
A
       following question
```

Question: <question> Choice: <A> <C> <D> Answer <A>

В

```
from datasets import load_dataset
ds = load_dataset("openlifescienceai/medmcqa")
del ds["test"]
```

```
data_prompt = """Choose the correct option for the following question.
```

```
### Question:
{}
### Choice:
{}
### Answer:
11 11 11
id2label = {
    0: 'A',
    1: 'B',
    2: 'C',
    3: 'D'
```



```
from unsloth import FastLanguageModel
max_seq_length = 2048
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="unsloth/Llama-3.2-1B-bnb-4bit",
    max_seq_length=max_seq_length,
    load_in_4bit=True,
    dtype=None,
model = FastLanguageModel.get_peft_model(
    model,
    r=16
    lora_alpha=16,
    lora_dropout=0,
    target_modules=[
        "q_proj", "k_proj", "v_proj", "up_proj",
        "down_proj", "o_proj", "gate_proj"],
    use_rslora=True,
    use_gradient_checkpointing="unsloth",
    random_state = 42,
    loftq_config = None,
print(model.print_trainable_parameters())
```



```
trainer=SFTTrainer(
    model=model,
    tokenizer=tokenizer,
    args=args,
    train_dataset=process_ds["train"],
    eval_dataset=process_ds["validation"],
    dataset_text_field="text",
)
```

```
∨args = TrainingArguments(
         output_dir="med-mcga-llama-3.2-1B-4bit-lora",
         logging_dir="logs",
         learning_rate=3e-4,
         lr_scheduler_type="linear",
         per_device_train_batch_size=64,
         gradient_accumulation_steps=16,
         num_train_epochs=2,
         eval_strategy="steps",
         save_strategy="steps",
         logging_strategy="steps",
         eval_steps=50,
         save_steps=50,
         logging_steps=50,
         save_total_limit=1,
         load_best_model_at_end=True,
         fp16=not is_bfloat16_supported(),
         bf16=is_bfloat16_supported(),
         optim="adamw_8bit",
         weight_decay=0.01,
         warmup_steps=10,
         seed=0,
```


Github - Demo

Multiple-choice Question Answering

Model: LLaMA-3.2-1B. Dataset: MedMCQA

Prompt:

"Choose the correct option for the following question. ### Question: Which of the following is not true to

"Choose the correct option for the following question.

Question:

Which of the following is not true for myelinated nerve fibers:

Choice:

- A. Impulse through myelinated fibers is slower than non-myelinated fibers.
- $\ensuremath{\mathsf{B}}.$ Membrane currents are generated at nodes of Ranvier.
- C. Saltatory conduction of impulses is seen.
- D. Local anesthesia is effective only when the nerve is not covered by myelin shea

Answer:

Objectives

PEFT

- ❖ Fine-tuning LLMs
- Adapter / Prefix / Prompt Tuning
- ❖ LoRA, QLoRA

Multiple-choice QA

- Multiple-choice Question Answering
- MedMCQA Dataset
- ❖ Fine-tuning LLaMA-3.2-1B

Thanks! Any questions?