Data Mining Fundamentals

Topics

- Data and Data Types
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Data Exploration and Visualization

Topics

- Data and Data Types
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Data Exploration and Visualization

What is Data?

- Collection of objects defined by attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color, temperature, daily revenue
 - Variable, field, characteristic, feature, predictor, etc.
- A collection of attributes describe an object
 - Record, point, case, sample, entity, entry, instance, etc.

Objects

Attribute Values

Each attribute has a set of values which objects draw from.

- The same attribute can be mapped to different attribute value sets
 - Example: Movie ratings can be represented as strings ("one", "two") or integers (1, 2)
- Different attributes can be mapped to the same set of values
 - Example: Age and ID number are both usually represented as integers

Attribute Classification

Discrete

- Has a finite or countably infinite set of values
- Examples: zip codes, click counts, colors, gender
- Often represented as integer variables
- Binary attributes are a special case of discrete attributes

Continuous

- Has real numbers as attribute values
- **Examples:** temperature, height, or weight
- Often represented as floating-point variables

Attribute Classification

Categorical

- Always discrete
- Represented as strings
- Nominal
 - Has no natural order
 - Ex: eye color, zip codes, gender
- Ordinal
 - Has a natural order
 - Ex: sibling number, clothing size

Numeric

- Represented as numbers
- Interval
 - Degree of difference is meaningful
 - Ex: Temperature in °C or °F
- Ratio
 - Interval, with a unique and non-arbitrary 0
 - Ex: Length, weight, duration

Types of Data Sets

Record

- Data Matrix
- Document Data
- Transaction Data

Graph

- World Wide Web
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Sequential Data

Record Data

Data that consists of a collection of records, each of which consists of a fixed set of attributes

Pid	Pid Sex		Pclass	Survived		
2	Female	38	1	Yes		
3	Female	26	3	Yes		
5	Male	35	3	No		
7	Male	54	1	No		
13	Male	20	3	No		
14	Male	39	3	No		
21	Male	35	2	No		
24	Male	28	1	Yes		
34	Male	66	1	No		
54	Female	29	2	Yes		

Record: Data Matrix

If all attributes in our set are numeric, we can use an *n* x *m* matrix to represent the data, where there are *n* rows, one for each object, and *m* columns, one for each attribute.

Projection of x Load	Projection of y load	Distance	Load	Thickness	
10.23	5.27	15.22	2.7	1.2	
12.65	6.25	16.22	2.2	1.1	

The data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute.

Record: Document Data

Each document becomes a "term vector"

	team	coach	play	ball	score	game	Win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

unleash the data scientist in you

Each component (attribute) of the vector represents a term

The value of each component is the number of times the corresponding term occurs in the document

Record: Transaction Data

Each record is a "transaction" and has an associated set of "items"

Consider a grocery store. The set of products purchased by a customer during one shopping trip constitutes a transaction while the individual products that were purchased are the items.

TID	Items			
1	Bread, Coke, Milk			
2	Beer, Bread			
3	Beer, Coke, Diaper, Milk			
4	Beer, Bread, Diaper, Milk			
5	Coke, Diaper, Milk			

Graph Data

Data which consists of a list of "vertices" and "edges" which connect two vertices.

Graph: HTML Data

```
<a href="papers/papers.html#bbbb">
Data Mining </a>
<a href="papers/papers.html#aaaa">
Graph Partitioning </a>
<a href="papers/papers.html#aaaa">
Parallel Solution of Sparse Linear System of Equations </a>
<a href="papers/papers.html#ffff">
N-Body Computation and Dense Linear System Solvers</a>
```

Vertices: Websites

Edges: Directed from a page with a link to the linked page

unleash the data scientist in you

Ordered Data

Data with an ordering among objects which needs to be preserved

 Whether data is ordered or not will depend on the question being asked

Four score and seven years ago our fathers brought forth on this continent, a new nation, conceived in Liberty, and dedicated to the proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure.

unleash the data scientist in you

Ordered: Medical Data

Genomic sequence data

 Ordered if we are trying to predict the next triplet in a sequence.

TGGGCTGCCTGCTGCGACCAGGG

Ordered: Climate Data

Spatial-Temporal Data

 Ordered if distance in space or time is important to our question

Average monthly temperature of land and ocean

Topics

- Data and Data Types
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Data Exploration and Visualization

Data Quality

Questions to Ask

- What problems should we worry about?
 - Noise
 - Outliers
 - Missing values
 - Duplicates
 - Domain specific problems
- How can we detect these problems?
- What can we do about these problems?

Noise

An invalid signal overlapping valid data

Examples: distortion of a person's voice over the phone; "snow" on a television screen; human inconsistency in labeling

Outliers

Data objects with characteristics that are considerably different than most of the other data objects in the data set

Missing Values

Reasons for missing values

- Information is not collected or lost
 - People decline to give their age and weight
- Attributes may not be applicable to all cases
 - Annual income is not applicable to children

Handling missing values

- Remove object from dataset
- Ignore the missing value (not always possible)
- Replace with static value (mean, median, mode, etc)
- Replace with random value (weighted by frequency of value)

Duplicate Data

Data objects that represent an identical instance

- Example: Same person with multiple email addresses
- Major issue when merging data from multiple sources
- Carefully filter your data and remove/merge duplicates

Topics

- Data and Data Types
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Data Exploration and Visualization

Data Preprocessing Techniques

- Sampling
- Object Transformation
- Attribute Transformation
- Attribute Reduction

Sampling

Sampling is the main technique employed for data selection

- It is often used for both the preliminary investigation of the data and the final data analysis
- Widely used in traditional statistical studies

Statisticians sample because **obtaining** the entire set of data of interest is too expensive or time consuming

Data miners sample because **processing** the entire set of data of interest is too expensive or time consuming

unleash the data scientist in you

Sampling: Key Principle

A sample will work almost as well as using the entire data set if the sample is representative.

Types of Sampling

Simple

There is an equal probability of selecting any particular item

Stratified

- Split the data into several partitions
- Select fixed number of random samples from each partition

Without replacement

 As each item is selected, it is removed from the population

With replacement

- Objects are not removed from the population as they are selected for the sample
- The same object can be selected more than once

Sample Size

How large a sample should we use?

8000 points

2000 Points

500 Points

Data Preprocessing Techniques

- Sampling
- Object Transformation
- Attribute Transformation
- Attribute Reduction

Object Aggregation

- Combine two or more objects into a single object
 - Examples: Average, sum, difference, product
- Why do this?
 - Change of scale (cities -> states -> nations)
 - Stability of data (reduces variance)

Aggregation

Variation of Precipitation in Australia

Standard Deviation of Average Monthly Precipitation

Standard Deviation of Average Yearly Precipitation

Mapping Objects to a New Space

Find patterns by transforming representation

- Example: Fourier transform, Wavelet transform
- Common in signal processing applications

unleash the data scientist in you

Data Preprocessing Techniques

- Sampling
- Object Transformation
- Attribute Transformation
- Attribute Reduction

Attribute Transformations

- Standardization
 - Force numeric column to have mean 0 and standard deviation 1
 - Subtract mean and divide by standard deviation
- Normalization
 - Set minimum value to 0 and maximum value to 1
 - Subtract minimum and divide by new maximum

Attribute Transformations

- Functional Transformation
 - Map the set of values of a given attribute to a new set of values such that each old value can be identified with one of the new values
 - Example functions: x^k , log(x), e^x , |x|
- Feature Extraction
 - Create new column from old
 - Domain Specific
 - Example: Extract profit earned from total transaction price

Data Preprocessing Techniques

- Sampling
- Object Transformation
- Attribute Transformation
- Attribute Reduction

Curse of Dimensionality

As dimensionality increases, data becomes increasingly sparse in the space that it occupies

Definitions of density and distance between points become less meaningful

Exercise

- Randomly generate 500 points
- •Compute difference of max and min distance between any pair of points

Attribute Aggregation

- Combine two or more attributes into one attribute
 - Examples: Average, sum, difference, product
- Why do this?
 - Reduce redundancy
 - Reduce variance

Feature Subset Selection

- Remove features from dataset
 - Redundant features
 - Duplicate much or all of the information contained in one or more other attributes
 - Example: purchase price of a product and the amount of sales tax paid
 - Irrelevant features
 - Contain no information that is useful for the data mining task at hand
 - Example: student ID is often irrelevant when predicting GPA

Feature Subset Selection

Techniques

- Brute-force
 - Try all possible feature subsets as input to data mining algorithm
- Embed
 - Feature selection occurs naturally as part of the data mining algorithm
- Manual Filter
 - Features are selected before data mining algorithm is run
- Wrapper
 - Use a data mining algorithm as a black box to find best subset of attributes

Dimensionality Reduction

- Most columns have small correlations with target
- Combine columns to create fewer, but more correlated, columns
- Useful for visualization of high-dimensionality datasets
- Techniques:
 - Principle Component Analysis
 - Singular Value Decomposition
 - Others: various supervised and non-linear techniques

Topics

- Data and Data Types
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Data Exploration and Visualization

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Larger when objects are more alike
- Often falls in the range [0,1]

Dissimilarity

- Numerical measure of how different two data objects are
- **Smaller** when objects are more alike
- Minimum dissimilarity is often 0; upper limit varies

Proximity

Refers to both similarity/dissimilarity

Similarity/Dissimilarity for Single Attributes

Attribute	Dissimilarity	Similarity	
Type			
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \\ 0 & ext{if } p eq q \end{array} ight.$	
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$	
Interval or Ratio	d = p - q	$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{d}$	
		$s = 1 - \frac{d - min_d}{max_d - min_d}$	

p and q are the attribute values for two data objects

Object Dissimilarity

Euclidean Distance

•
$$d(p,q) = \sqrt{\sum_{k=1}^{m} (p_k - q_k)^2}$$

- *m* is the number of dimensions (attributes)
- p_k and q_k are the kth attribute values (components) of data objects p and q_k , respectively.
- Most common distance metric

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p 4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Object Similarity

Cosine Similarity

$$\cos(p,q) = \frac{p \cdot q}{|p||q|} = \frac{\sum_{k=1}^{m} p_k * q_k}{\sqrt{\sum_{k=1}^{m} p_k^2} \sqrt{\sum_{k=1}^{m} q_k^2}}$$

Example:

$$p = [3, 2, 0, 5, 0, 0, 0, 2, 0, 0]$$

$$q = [1, 0, 0, 0, 0, 0, 1, 0, 2]$$

$$p \cdot q = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$|p| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{\mathbf{0.5}} = (42)^{\mathbf{0.5}} = 6.481$$

$$|q| = (1*1+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{\mathbf{0.5}} = (6)^{\mathbf{0.5}} = 2.245$$

$$\cos(p,q) = .3150$$

General Similarity

Correlation

- Measures the linearity of the relationship between attributes or objects
- Standardize two objects or attributes (p and q) and then take their dot product

$$p'_k = (p_k - mean(p))/std(p)$$

$$q'_k = (q_k - mean(q))/std(q)$$

$$correlation(p,q) = p' \cdot q'$$

Visually Evaluating Correlation

Scatter plots between two attributes, with correlations from -1 to 1

Topics

- Data and Data Types
- Data Quality
- Data Preprocessing
- Similarity and Dissimilarity
- Data Exploration and Visualization

What is data exploration?

- Visualization and calculation to better understand characteristics of data
- Key motivations
 - Helping to select the right tool for preprocessing or analysis
 - Making use of humans' abilities to recognize patterns
 - People can recognize patterns not captured by data analysis tools
- Exploratory Data Analysis (EDA)
 - Subfield of statistics created by statistician John Tukey
 - Seminal book is Exploratory Data Analysis by Tukey
 - Nice online introduction in Chapter 1 of the NIST Engineering Statistics Handbook (http://www.itl.nist.gov/div898/handbook/index.htm)

Summary Statistics

- Numbers that summarize properties of the data
 - Frequency counts
 - Center mean
 - Spread standard deviation
- Most can be calculated in a single pass through the data

Frequency and Mode

- Frequency
 - Percentage measuring how often a given attribute value occurs in the data set
 - Example: 'gender' in US population
 - 'female' has a frequency of about 50%
- Mode
 - Most frequent attribute value in data set
- Typically used with categorical data

Percentiles

- Used for continuous attributes
 - The pth percentile is the value x_p such that p% of the observed values of x are less than x_p
 - Example: The 50th percentile is the value x_{50} such that 50% of all values of x are less than x_{50}

Percentiles

Example: You are the fourth tallest person in a group of 20

80% of people are shorter than you:

That means you are at the **80th percentile**.

If your height is 1.85m then "1.85m" is the 80th percentile height in that group.

Measures of Center

- Mean
 - $mean(X) = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - The most common measure of the center of a set of points
 - Very sensitive to outliers
- Median

•
$$median(X) = \begin{cases} X_{\frac{(n+1)}{2}} & if \ m \ is \ odd \\ \frac{1}{2} \left(X_{\frac{n}{2}} + X_{\frac{n}{2}+1} \right) & if \ m \ is \ even \end{cases}$$

Not sensitive to outliers

Measures of Spread

- Range
 - range(x) = max(x) min(x)
- Variance and standard deviation
 - The most common measures of the spread of a set of points
 - $variance(x) = stdev(x)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$
 - Sensitive to outliers
- Others
 - Average absolute deviation: $AAD(x) = \frac{1}{n} \sum_{i=1}^{n} |x_i \bar{x}|$
 - Median absolute deviation: $MAD(x) = median(\{|x_i \bar{x}|\})$
 - Interquartile range: $IQR(x) = x_{75} x_{25}$

Visualization

- Represent data in a visual or tabular format
 - Characteristics of the data and relationships among data items or attributes can be analyzed and/or reported.
- One of the most powerful and appealing techniques for data exploration.
 - Humans have a well developed ability to analyze large amounts of information that is presented visually
 - Detect general patterns and trends
 - Detect outliers and unusual patterns

Example: Sea Surface Temperature

 The following shows the Sea Surface Temperature (SST) for July 1982

• Tens of thousands of data points are summarized in a

single figure

Representation

- The mapping of information to a visual format
- Translate data into graphical elements such as points, lines, shapes, and colors
- Examples
 - Objects are often represented as points
 - Their attribute values can be represented as the position of the points or the characteristics of the points, e.g., color, size, and shape
 - If position is used, then relationships between points can often be perceived.

Histograms

- Shows the distribution of values of a single variable
- Divide the values into bins and show a bar plot of the number of objects in each bin
- The height of each bar indicates the number of objects
- Shape of histogram depends on the number of bins experiment

Two-Dimensional Histograms

Show the joint distribution of the values of two attributes

Box Plots

- Invented by J. Tukey
- Displays distribution of data

Example of Box Plots

Box plots can be used to compare attributes

Scatter Plots

- Attribute values determine the position of each point
- Two-dimensional scatter plots most common
- Use the size, shape, and color of markers to display supplementary attributes
 - Effectively create 3, 4, or higher dimensional plots
- Arrays of scatter plots compactly summarize factor relationships

Scatter Plot Array of Iris Attributes

Contour Plots

- Used for continuous attributes on a spatial grid
- Partition the plane into regions of similar values
- "Contour lines" that form the boundaries of these regions connect points with equal values
- Examples:
 - Elevation
 - Climate Data

Contour Plot: SST Dec, 1998

Questions?

