伽马探测预习报告

- □ 学生签名
- □ 教师签名

【概述】

 γ 射线是一种高能光子。实验通过对核衰变放射光子测量,了解通过物理相互作用将光子的能量转多个荧光光子,并通过光电倍增管测量荧光光子数,转变为可测量的电信号,从而进一步理解光子能谱与光谱的异同。 γ 涉嫌事波长短于 $0.2\mathring{A}$ 。呈电中性。

实验目的

- 1. 测定γ谱仪的能量分辨率以及能量线性;
- 2. 测定已知源的y能谱,并作能谱分析;
- 3. 随机数据处理;

【实验原理】

伽马射线与物质的相互作用

光电效应

当能量 E_{γ} 的入射 γ 光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去, 光子本身消失,发射出去的电子称为光电子,这种过程称为光电效应。发射出光电子的动能

$$E_e=E_{\gamma}-B_i$$

其中, B_i 为束缚电子所在壳层的结合能, 这里内部的电子脱离束缚壳层,此时原子被激发,外部壳层的电子会填补进刚刚脱离的电子形成的空位并放出特征X涉嫌。 γ 涉嫌与物质原子发生光电效应的反应截面 $b \propto Z^5, b \propto E_{\gamma}^{\frac{7}{2}}$. 从而我们知道:

- 重元素的光电效应反应截面大于轻元素
- 低能伽马射线比高能发生光电效应的反应截面更大
- 当伽马射线能量低至接近电子结合能, $E_{\gamma} \sim B_i$,反应截面最大

康普顿效应

γ光子与自由静止的电子发生碰撞,而将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射改变了原来的能量和方向。计算给出反冲电子的动能为

$$E_e = rac{E_\gamma^2(1-\cos heta)}{m_0c^2 + E_\gamma(1-\cos heta)} = rac{E_y}{1 + rac{m_0c^2}{E_\gamma(1-\cos heta)}}$$

可见当 $heta=180^\circ$ 时,反串电子动能取最大 E_m ,为康普顿边界 $E_C=E_m=rac{E_\gamma}{1+rac{m_0c^2}{2E_\gamma}}$

电子对效应

现在不改变散射角度,考虑 γ 光子的能量 E_{γ} .当 $E_{\gamma} > 2m_0c^2$, γ 光子从对其有核库仑场作用的核旁经过时,可能转为为一堆正负电子。此时

$$E_{\gamma}=E_{e}^{+}+E_{e}^{-}+2m_{0}c^{2}$$

湮灭产生两个光子,湮灭时,正负电子动能为0,总能量等于电子对静止能量。者两个光子会被物质吸收若干个或者发生康普顿散射

闪烁伽马能谱仪

闪烁谱仪的各部分:

探头与高压

闪烁体

在次级带电粒子的作用下产生数目与入射γ光子能量相关的荧光光子。它们光电倍增管,在其光敏阴极再次发生光电效应产生光电子,再数次放大,最后在倍增管阳极形成脉冲信号

- 光电倍增管
- 分压电路
- 屏蔽外壳

Nal(TI)闪烁体探测器测量 γ 能谱形状

图的纵轴代表各道址中的脉冲数目,横轴为道址,对应于脉冲幅度或γ射线的能量。

编号	吸收过程	闪烁体吸收能量	谱仪采集信号的脉冲幅度
1	光电效应	E_{γ}	全能峰内
2	康普顿散射,散射γ射线逃逸	散射电子的能量:	│ 康普顿分布区内
		0 ~ E _c	
3	康普顿散射,散射γ射线被吸收	E_{γ}	全能峰内
4	多次康普顿散射,散射γ射线逃逸	0 ~ E _y	整个能谱,其中脉冲幅度介于
			E _{c~Ey} 会降低全能峰的峰谷比
5	电子对效应产生的正电子慢化湮灭产生的 2 个湮灭光子	E_{γ} -1.02 MeV	正比于 E _y -1.02 MeV 位置处出
	均逃逸		现能峰,称为双逃逸峰
6	电子对效应产生的正电子慢化湮灭产生的 2 个湮灭光	E _γ -1.02 MeV +0.51 MeV	正比于 E _y -0.51 MeV 位置处出
	子,其中一个被晶体吸收		现能峰,称为单逃逸峰

7	电子对效应产生的正电子慢化湮灭产生的 2 个湮灭光子	Eγ	全能峰内
	均被晶体吸收		
8	电子对效应产生的正电子慢化湮灭产生的一个湮灭光子	E _γ -1.02 MeV+0.51 MeV+康	分布再康普顿连续区内(若散
	在晶体中发生康普顿散射	普顿散射贡献	射γ被吸收则仍在全能峰内)
9	γ射线在源及周围物质上发生反散射后(θ=π),进入闪	$E_b=E_{\gamma}-E_c$	称为反散射峰,出现在相对于
	烁体被全部吸收		全能峰完全确定的位置上。
10	γ射线在源及周围物质上发生康普顿散射后(θ≠π),散	E_{γ} - $E_{max} \sim E_{\gamma}$	分布在全能峰低能段与康普顿
	射光子被闪烁体被全部吸收		散射边缘处
11	γ射线在源及周围物质上发生电子对效应后的湮灭光子 <i>,</i>	0.51 MeV	峰位在 0.51 MeV 处
	其中一个湮灭光子从周围物质逃逸后被闪烁体吸收。		

表 D6-2 γ 射线在闪烁体中各种相互作用过程对能谱 分布的贡献及周围物质散射对谱形的影响[3]

谱仪能量刻度和分辨率

能量刻度

闪烁谱仪测得的 γ 射线能谱的形状及能量值由核素的衰变纲图所决定。是各核素的特征反应。但脉冲幅度和工作条件相关 \Longrightarrow 应用 γ 谱仪测定未知射线能谱时,必须先用已知能量的核素能谱来标定 γ 谱仪。

能量E和道址N:

从而只需要求得k,b即可。

分辨率

$$\eta = rac{FWHM}{E_{\gamma}} imes 100\%$$

其中FWHW = Full Width Half Maximum。闪烁谱仪测量中,会伴随统计涨落。我们可以进行统计分析。

【预习思考题】

1. 简述v光子与物质的相互作用类型,及其产生的次级粒子与原入射光子的能量关系。

根据相互作用的方式和7光子的能量不同,有光电效应、康普顿效应、电子对效应。

类型	光电效应	康普顿效应	电子对效应
能量	全部转移且 $E_e \leq E_\gamma$	部分转移,光子弹性散射	$E_{\gamma}>2m_{0}c^{2}$,光子非弹性散射

2. 探测器中的光电倍增管,射线的光电效应会对其测量产生影响吗?影响能有多大?

没有看懂题目。光电倍增管内部就是在进行光电效应。

- 3. 有一单能γ源,能量为2MeV,根据γ与物质的相互作用及Nal(TI)闪烁能谱仪输出信号幅度的关系,预测能谱形状。 全能峰吸收2MeV具有,具有全能峰(光电峰)、湮灭峰、和峰
- **4**. 闪烁谱仪是常用的γ能谱仪,简述闪烁谱仪的的结构图和各部分功能。 闪烁体、光电倍增管、分压电路、屏蔽外壳

闪烁体是同于产生荧光光子的。其数目与γ射线能量相关 光电倍增管能在低能级光度学和光谱学方面测量波长200~1200纳米的极微弱辐射功率。 分压电路可以调整光电倍增管打拿极的电压

外壳可以减弱, 如热电子、欧姆漏电、切伦科夫光子等噪声

【仪器用具】

编号	仪器用具名称	数量	主要参数(型号,规格等)
1	核信号发生器	1	NMS-6014-SIG,输出信号电压范围 0-5V
2	通用核信息采集器	1	NMS-6014-GD,采样频率 250MHz,带宽
			100MHz;输入范围 0-5V,8192 道,最大
			计数率 10M/s,死时间 100ns;
3	计算机	1	安装有 Labview2014 及虚拟核数据采集软
			件
4	示波器	1	RIGOL DS2202A,带宽 200MHZ,双通
			道,采样频率 1GSa/s