Monday, November 7, 2016 9:11 AM

$$lm: (0,\infty) \longrightarrow (\infty,\infty)$$
 is $l-l$ and $\frac{onto}{l}$ given $\chi \in (-\infty,\infty)$

Can find $n \in \mathbb{N}$ s.t. $ln(2^{-n}) = -n ln(2) \in \chi \leq n ln(2) = ln(2^n)$

so by $lVT = \frac{1}{2}y$ s.t. $ln(y) = \chi$.

Inverse function:

Definition:
$$y = \exp(x) \Leftrightarrow x = en(y)$$

recall:
$$(f'')'(x) = \frac{1}{f(f'(x))}$$

$$f = lm, f^{-1} = exp$$

$$\frac{\partial}{\partial x} (exp(x)) = \frac{1}{ln'(exp(x))}$$

$$= exp(x)$$

$$but en(u) = \frac{1}{u}$$

$$ln(uv) = ln(u) + ln(v)$$

$$ln(w/v) = ln(u) - ln(v)$$

$$ln(u^{r}) = rln(u) \quad \text{where } s \in \Omega$$

Corresponding properties:

In
$$exp(x+y) = exp(x) exp(y)$$

$$|z| \exp(x-y) = \exp(x)/\exp(y)$$

(3)
$$e^{x}p(x)^{r} = exp(rx)$$
 where $r \in Q$

$$f_{\underline{\mathcal{C}}} = f_{\underline{\mathcal{C}}} =$$

(1)
$$x+y=en(u)+en(v)=en(uv)$$

So $exp(x+y)=uv=exp(x) exp(y)$

(2)
$$x-y = ln(u) - ln(v) = ln(u/v)$$

 $50 exp(x-y) = u/v = exp(x)/exp(y)$

(5)
$$rx = rln(u) = en(u^r)$$

So $exp(rx) = u^r = exp(x)^r$

Theorem: IF a > 0 and $\lambda \in \mathbb{R}$ then lyma" = exp(\lambda ln(a))

Proof: We have $\alpha = \exp(\ln(\alpha))$. Hence by (3), $\forall r \in \Omega$, $\alpha^r = \exp(\ln(\alpha))^r = \exp(r\ln(\alpha))$ so $\lim_{r \to \lambda} \alpha^r = \lim_{r \to \infty} \exp(r\ln(\alpha)) = \exp(\lim_{r \to \lambda} r\ln(\alpha)) = \exp(\lambda \ln(\alpha))$

Definition if $\alpha > 0$ and $\alpha \in \mathbb{R}$, $\alpha^{\alpha} = \exp(\pi \ln(\alpha))$.

Definition
$$e = exp(i) \Leftrightarrow ln(e) = 1$$
 so $e^x = exp(x)$

$$\frac{\partial}{\partial x}(\alpha^{x}) = \frac{1}{14}\left(\exp(x \ln(\alpha))\right) = \exp(x \ln(\alpha)) \frac{\partial}{\partial x}(x \ln(\alpha))$$

$$= \exp(x \ln(\alpha)) \ln(\alpha) = \alpha^{x} \ln(\alpha)$$

$$\int_{0}^{x} dx = \frac{\alpha^{x}}{en(\alpha)} + C \quad \text{provided } \alpha \neq 1$$

$$\frac{d}{dx}(e^{x}) = e^{x} \qquad \int_{0}^{x} e^{x} dx = e^{x} + C$$

Proof: $(1+\frac{1}{n})^n \hat{\beta}_{n=1}^\infty$ is an increasing sequence and lim $(1+\frac{1}{n})^n = e$.

Proof: $(1+\frac{1}{n})^n$ extend to a function $f(x) = (1+\frac{1}{x})^x$ for x > 0.

I't suffices to show $\lim_{x \to 0} f(x) = e$ and f is increasing.

Let $v = \frac{1}{x}$, $g(x) = (1+u)^{\frac{1}{n}}$ so $f(x) = g(\frac{1}{x})$ so the above g is decreasing and $\lim_{x \to 0} f(x) = e$ $g'(u) = \int_{u}^{1} (exp(\frac{1}{u}\ln(1+u))) = exp(\frac{1}{u}\ln(1+u)) \frac{1}{u^2} \frac{1}{u}\ln(1+u)$ $= exp(\frac{1}{u}\ln(1+u)) \left(\frac{-1}{u^2}\ln(1+u) + \frac{1}{u}\frac{1}{u}\right)$ $= exp(\frac{1}{u}\ln(1+u)) \left(\frac{-1}{u^2}\ln(1+u) + \frac{1}{u}\frac{1}{u}\right)$

h(n) := u - (1+u) ln(1+u), g' lms same sign as h. $h'(u) = -ln(1+u) < 0 \text{ for } u \in (0, \infty)$ $h(0) = 0, so h(u) < 0 \text{ on } (0, \infty)$

So g' < O So g is decreasing so f is increasing. NOW $\lim_{x \to \infty} f(x) = \lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \exp\left(\frac{\ln(1+u)}{u}\right) = \exp\left(\frac{\lim_{x \to 0^+} \frac{\ln(1+u)}{u}}{u}\right)$ $= \exp\left(\frac{\lim_{x \to 0^+} \frac{1}{1+u}}{u}\right) \quad (L'+1)$ $= \exp(1)$

 $e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$

Theorem if $\chi \geq 0$, $\chi \in \mathbb{N}$, Then $e^{\chi} \geq \sum_{j=0}^{\infty} \frac{\chi^{j}}{j!}$

Page 3

Proof: By induction.

if
$$x \ge 0$$
 $e^x \ge 1$, so have case $(n=0)$ holds.

 $n \Rightarrow n+1$
 $e^{\frac{1}{2}} \ge \frac{5}{2} + \frac{1}{2} = \frac{1}{2}$

et =
$$\sum_{j=0}^{n} \frac{t^{j}}{j!}$$
 for $t \in [0, x]$ x fixed
so $\int_{0}^{\infty} e^{t} dt = \sum_{j=0}^{n} \int_{0}^{\infty} \frac{x^{j}}{j!} dt$
 $e^{x} - 1 > \sum_{j=0}^{n} \frac{x^{j}}{0+i!}$
 $e^{x} > \sum_{j=0}^{n} \frac{x^{j}}{j!}$

Next time:

$$\left(\left| \frac{1}{n} \right|^{n} \right)^{n} < \sum_{j=0}^{n} \frac{1}{j!} \leq e$$

$$e$$

$$e$$