Le logarithme est une fonction aussi importante que l'exponentielle. C'est le logarithme qui donne l'ordre de grandeur de certaines quantités physiques, par exemple la puissance d'un séisme ou celle d'un son.

Cours 1 (Le logarithme décimal).

On commence avec le logarithme décimal qui est plus facile à appréhender. Le logarithme décimal d'un nombre réel positif x, est l'exposant y de ce nombre écrit sous la forme $x = 10^y$. Autrement dit :

$$x = 10^y \iff y = \log_{10}(x)$$

Exemples.

- $\log_{10}(10^2) = 2$, $\log_{10}(10^3) = 3$, $\log_{10}(10\,000) = 4$,...
- On a aussi $\log_{10}(10) = 1$, $\log_{10}(1) = 0$.
- Comme $0.1 = \frac{1}{10} = 10^{-1}$, on a $\log_{10}(0.1) = -1$.
- Le logarithme est défini pour n'importe quel x > 0. Par exemple pour x = 25.5, on a $\log_{10}(x) = 1.4065...$ Ce qui signifie que $10^{1.4065...} = 25.5$.

Propriété. La propriété fondamentale du logarithme est :

$$\log_{10}(a \times b) = \log_{10}(a) + \log_{10}(b)$$

Par exemple $a = 10^2$, $b = 10^3$, on a $a \times b = 10^2 \times 10^3 = 10^{2+3} = 10^5$. On a bien

$$\log_{10}(a) + \log_{10}(b) = \log_{10}(10^2) + \log_{10}(10^3) = 2 + 3 = 5 = \log_{10}(10^5) = \log_{10}(a \times b)$$

LOGARITHME 2

Cours 2 (Le(s) logarithme(s) avec Python).

Avertissement : il y a un conflit entre mathématiciens et informaticiens pour la notation du logarithme!

• Logarithme décimal.

— Notation mathématique : $log_{10}(x)$

— Commande Python: log(x,10)

· Logarithme népérien.

Notation mathématique : ln(x)Commande Python : log(x)

• Logarithme en une autre base.

— Notation mathématique : $\log_b(x)$

— Commande Python:log(x,b)

Exemple: avec x = 25.5, alors on calcule $\log_{10}(x)$ par la commande $\log(25.5,10)$ qui renvoie

$$\log_{10}(x) \simeq 1.406540180433955$$

On vérifie le résultat en calculant 10^y , où y = 1.4065... par la commande 10**y qui renvoie :

Bien sûr, tous les calculs effectués par Python avec les nombres flottants sont des calculs approchés.

Activité 1 (Logarithme décimal - Échelle de Richter).

Objectifs : comprendre l'échelle de Richter qui mesure la force d'un tremblement de terre.

On quantifie la force d'un séisme par un nombre, appelé *magnitude*, qui dépend de la puissance délivrée par une secousse :

$$M = \frac{2}{3} \log_{10} \left(\frac{E}{E_0} \right) - 3.2$$

où:

- log₁₀ est le logarithme décimal,
- E est l'énergie délivrée par le séisme (exprimée en joules),
- $E_0 = 1.6 \times 10^{-5}$ joules est une énergie de référence.

Description	Magnitude	Effets	Fréquence moyenne
Micro	moins de 1.9	Micro tremblement de terre, non ressenti.	8 000 par jour
Très mineur	2.0 à 2.9	Généralement non ressenti mais détecté/enregistré.	1 000 par jour
Mineur	3.0 à 3.9	Souvent ressenti sans causer de dommages.	50 000 par an
Léger	4.0 à 4.9	Secousses notables d'objets à l'intérieur des maisons,	6 000 par an
		bruits d'entrechoquement. Les dommages restent très	
		légers.	
Modéré	5.0 à 5.9	Peut causer des dommages significatifs à des édifices	800 par an
		mal conçus dans des zones restreintes. Pas de dommages	
		aux édifices bien construits.	
Fort	6.0 à 6.9	Peut provoquer des dommages sérieux sur plusieurs di-	120 par an
		zaines de kilomètres. Seuls les édifices adaptés résistent	
		près du centre.	
Très fort	7.0 à 7.9	Peut provoquer des dommages sévères dans de vastes	18 par an
		zones; tous les édifices sont touchés près du centre.	
Majeur	8.0 à 8.9	Peut causer des dommages très sévères dans des zones	1 par an
		à des centaines de kilomètres à la ronde. Dommages	
		majeurs sur tous les édifices, y compris à des dizaines	
		de kilomètres du centre.	
Dévastateur	9.0 et plus	Dévaste des zones sur des centaines de kilomètres à	1 à 5 par siècle
		la ronde. Dommages sur plus de 1 000 kilomètres à la	
		ronde.	

Source: « Magnitude (Sismologie) » Wikipédia.

1. Programme une fonction magnitude (E) qui renvoie la magnitude d'un séisme dont l'énergie *E* est donnée.

Exemple. Vérifie qu'un séisme libérant une énergie $E_1 = 10^6$ joules est de magnitude 4.

- 2. Pour des énergies de la forme $E = 10^i$, calcule la magnitude correspondante jusqu'à obtenir un séisme de magnitude supérieure à 9.
- 3. Par tâtonnement, balayage ou en résolvant une équation, trouve l'énergie environ nécessaire pour obtenir un séisme de magnitude 7.
- 4. Vérifie expérimentalement, puis montre mathématiquement, que si $E_2 = 1000E_1$ alors $M_2 = M_1 + 2$ (quelle que soit l'énergie E_1). Trouve expérimentalement (ou mathématiquement) quel facteur k, avec $E_2 = kE_1$ permet d'obtenir $M_2 = M_1 + 1$ (quelle que soit l'énergie E_1).

Activité 2 (Logarithme décimal - Décibels).

Objectifs: calculer le niveau sonore.

On mesure le niveau de bruit en décibels (dB) qui correspond à la puissance d'un son (par rapport à une puissance de référence). La formule est

$$D = 20\log_{10}\left(\frac{P}{P_0}\right)$$

où:

- log₁₀ est le logarithme décimal,
- P est la pression mesurée du son (exprimée en pascal Pa),
- $P_0 = 2 \times 10^{-5}$ Pa est une pression de référence.
- 1. Programme une fonction decibels (P) qui renvoie le niveau de bruit d'un son de puissance *P* donnée.

Exemple. Vérifie qu'une puissance P = 1 Pa, correspond à D = 94 décibels.

2. Complète le tableau suivant :

Bruit	Pression (Pa)	Niveau (dB)
Moteur d'avion à réaction (à 1 mètre)	632	
Marteau-piqueur (à 1 mètre)	2	
Niveau de dommage à l'oreille	P > 0.355	
Niveau de gêne		D > 70
Conversation (à 1 mètre)	0.002 à 0.02	
Chambre calme		10 à 20
Seuil de l'audition à 1kHz (à l'oreille)	$2 \cdot 10^{-5}$	
Chambre anéchoïque		-10

Source: « Sound pressure » Wikipédia.

Cours 3 (Échelle logarithmique).

Relation y = ax + b. On considère des données du type (x_i, y_i) et on veut étudier le lien entre y_i et x_i . On détecte facilement une relation affine du type y = ax + b en plaçant les points sur un graphique. Une telle relation existe si et seulement si les points sont tous sur une même droite.

Ci-dessous des points vérifiant la relation $y = \frac{1}{2}x + 1$.

Points de coordonnées (x, y)

Relation $y=10^{ax+b}$. Les données sont du type (x_i,y_i) mais cette fois la relation est du type $y=10^{ax+b}$. Si on trace les points directement sous la forme (x,y) on ne voit rien de spécial (figure ci-dessous à gauche, les points rouges). Par contre si on place les points $(x,\log_{10}(y))$ alors les points sont alignés (figure ci-dessous à droite, les points verts). (Preuve : comme $y=10^{ax+b}$ alors $\log_{10}(y)=ax+b$.) Ci-dessous des points vérifiant la relation $y=10^{\frac{1}{5}x-1}$.

Relation $y = bx^a$. Les données sont du type (x_i, y_i) avec la relation $y = bx^a$. Le tracé des points (x, y) ne donne rien (figure ci-dessous à gauche, les points rouges). Par contre le tracé des points $(\log_{10}(x), \log_{10}(y))$ donne des points alignés (figure ci-dessous à droite, les points bleus). (Preuve : comme $y = bx^a$ alors $\log_{10}(y) = \log_{10}(bx^a)$ donc $\log_{10}(y) = \log_{10}(b) + \log_{10}(x^a)$, d'où $\log_{10}(y) = a\log_{10}(x) + \log_{10}(b)$. Si on pose $Y = \log_{10}(y)$ et $X = \log_{10}(x)$ on trouve une relation affine $Y = aX + \log_{10}(b)$.) Ci-dessous des points vérifiant la relation $y = 2x^{\frac{1}{2}}$ (c'est-à-dire $y = 2\sqrt{x}$).

Activité 3 (Le logarithme décimal - Échelle logarithmique).

Objectifs : utiliser le logarithme pour détecter des comportements particuliers.

- 1. Programme une fonction $afficher_points_xy(points)$ qui affiche (en rouge) chaque point de coordonnées (x, y) à partir d'une liste de points.
 - Programme une fonction afficher_points_xlogy(points) qui affiche (en vert) chaque point de coordonnées $(x, \log_{10}(y))$ à partir d'une liste de points (x, y) donnée.
 - Programme une fonction afficher_points_logxlogy(points) qui affiche (en bleu) chaque point de coordonnées ($\log_{10}(x)$, $\log_{10}(y)$) à partir d'une liste de points (x, y) donnée.
- 2. Voici trois séries de données (x, y):

х	y
2	5.66
3	10.39
5	22.36
7	37.04
11	72.97

х	у
2	5
3	6.5
5	9.5
7	12.5
11	18.5

x	у
2	5.01
3	6.31
5	10.00
7	15.84
11	39.81

Reconnais par affichage graphique, celle qui est de la forme y = ax + b, celle qui est de la forme $y = 10^{ax+b}$ et celle de la forme $y = bx^a$.

Bonus. Calcule les constantes a et b qui conviennent dans chacun des cas.

Utiliser Matplolib. Voici un bref programme qui affiche un point rouge de coordonnées (2,5) et un point bleu de coordonnées (7,2).

```
import matplotlib.pyplot as plt
plt.scatter(2,5,color="red")
plt.scatter(7,2,color="blue")
plt.axes().set_aspect('equal')
plt.xlim(xmin=0)
plt.ylim(ymin=0)
plt.grid()
plt.show()
```


Cours 4 (Logarithme népérien).

• La *fonction logarithme népérien* est la fonction $\ln :]0, +\infty[\to \mathbb{R}$ qui vérifie :

$$ln(1) = 0$$
 et $ln(x \times y) = ln(x) + ln(y)$

- La fonction logarithme est strictement croissante, $\lim_{x\to 0^+} \ln(x) = -\infty$, $\lim_{x\to +\infty} \ln(x) = +\infty$.
- $\ln(1/x) = -\ln(x)$, $\ln(x^n) = n\ln(x)$.
- La dérivée du logarithme est : $\ln'(x) = \frac{1}{x}$.

• La fonction logarithme ln :]0,+ ∞ [$\rightarrow \mathbb{R}$ est la bijection réciproque de la fonction exponentielle exp : $\mathbb{R} \rightarrow$]0,+ ∞ [, c'est-à-dire :

$$y = \ln(x) \iff x = \exp(y)$$

Plus précisément :

$$\exp(\ln(x))$$
 pour tout $x > 0$,
 $\ln(\exp(x))$ pour tout $x \in \mathbb{R}$.

- On note $e = \exp(1) = 2.718...$ et alors $\ln(e) = 1$.
- Le logarithme et l'exponentielle permettent de définir une puissance avec des exposants réels : $a^b = \exp(b \ln(a))$.

Cours 5 (Tables de logarithmes).

Le logarithme a été introduit au début des années 1600 pour effectuer facilement des multiplications à plusieurs chiffres nécessaires aux calculs astronomiques.

« Arithmetica logarithmica » Tables de logarithmes de H. Briggs, 1624.

Tables de logarithmes.

Le préalable est de calculer une table des logarithmes, c'est-à-dire les valeurs approchées de $\ln(x)$ pour plein de valeurs de x. Par exemple, voici le début d'une table de logarithme avec 4 décimales après la

LOGARITHME 8

virgule:

х	$y = \ln(x)$
1.000	0.0000
1.001	0.0010
• • •	•••
1.123	0.1160
1.124	0.1169
• • •	•••
2.000	0.6931
2.001	0.6936
2.002	0.6941
• • •	

	12 - 12 (14)
X	$y = \ln(x)$
•••	•••
2.567	0.9427
2.568	0.9431
• • •	•••
2.718	0.9999
2.719	1.0003
• • •	•••
2.884	1.0592
2.885	1.0595
2.886	1.0599
• • • •	•••

Lecture de la table.

- Pour chercher le logarithme d'un nombre x il suffit de consulter la table de la gauche vers la droite. Par exemple, on lit que pour x = 1.123 on a $\ln(x) \simeq 0.1160$.
- L'opération inverse est tout aussi utile, étant donné un nombre y, trouver le réel x tel que $\ln(x) = y$. Cela revient à calculer $x = \exp(y)$! Pour cela on lit la table de droite à gauche. Par exemple quelle est l'exponentielle de y = 0.6931? C'est environ x = 2.000.

Multiplications faciles.

Voici le principe pour calculer $a \times b$ sans efforts.

On voit qu'il suffit de faire une addition et trois recherches dans la table.

Exemple. a=1.124 et b=2.567. On veut calculer $a\times b$. On cherche $\ln(a)$ dans la table, on trouve $\ln(a)\simeq 0.1169$, puis $\ln(b)\simeq 0.9427$. On calcule $\ln(a)+\ln(b)\simeq 1.0596$. On a donc $\ln(a\times b)\simeq 1.0596$. On cherche dans la table quel nombre x correspond à un logarithme y=1.0596. L'entrée qui correspond le mieux est c=2.885. Bilan : $a\times b\simeq 2.885$.

Remarques historiques.

- H. Briggs a calculé les tables de logarithmes pour 30 000 entrées avec 14 décimales pour chaque logarithme.
- Les tables calculées étaient souvent les tables du logarithme décimal \log_{10} . L'avantage est le suivant : une fois que vous avez la table de \log_{10} pour $x=1.001, x=1.002, \ldots, x=9.999, x=10.000$, alors

9 LOGARITHME

vous savez calculer le logarithme décimal de n'importe quel nombre. Par exemple comment calculer le logarithme décimal de x = 574.5? Il suffit de décaler la virgule :

$$\log_{10}(574.5) = \log_{10}(100 \times 5.745) = \log_{10}(100) + \log_{10}(5.745) = 2 + \log_{10}(5.745)$$

Il ne reste plus qu'à consulter la table pour connaître $log_{10}(5.745)$.

Activité 4 (Logarithme népérien).

Objectifs : utiliser les propriétés du logarithme népérien pour faire des multiplications sans efforts.

1. Propriétés du logarithme. Vérifie expérimentalement avec Python les propriétés du logarithme :

$$\ln(a\times b) = \ln(a) + \ln(b) \qquad \ln(1/a) = -\ln(a)$$

$$\ln(a/b) = \ln(a) - \ln(b) \qquad \ln(a^n) = n\ln(a)$$

$$\ln(\sqrt{a}) = \frac{1}{2}\ln(a) \qquad a^b = \exp\left(b\ln(a)\right)$$
 Prends par exemple $a=2,\ b=3,\ n=7,\ \text{puis}\ a=3/2,\ b=1/3,\ n=\pi.$

Vérifie aussi expérimentalement que $\lim_{x\to 0^+}\ln(x)=-\infty$, $\ln(1)=0$, $\ln(e)=1$. Convaincs-toi expérimentalement que $\ln(e^n) = n$ et que l'on a $\lim_{x \to +\infty} \ln(x) = +\infty$.

2. Tables simulées. Programme une fonction table_ln(x,N) et une fonction table_exp(x,N) qui renvoie la valeur du logarithme (ou de l'exponentielle) en x, tronquée à N chiffres après la virgule. Ces deux fonctions jouent le rôle de la consultation des tables de logarithmes à *N* décimales.

Exemple. Avec x = 54 et N = 4, alors $\ln(x) = 3.988984046...$ et table_ $\ln(x, N)$ renvoie 3.9889. *Indications.* Étant donnés x et N (ex. x = 12.3456789 et N = 2):

- on peut multiplier par une puissance de 10 pour décaler la virgule (ex. $x \times 100 = 1234.6789$),
- puis prendre la partie entière (E(1234.56789) = 1234),
- puis décaler la virgule cette fois vers la droite en divisant par la même puissance de 10 (1234/100 = 12.34).
- 3. Multiplication par les tables. Programme une fonction multiplication (a,b,N) qui renvoie une valeur approchée de $a \times b$ sans faire directement de multiplication, mais en consultant les tables :
 - cherche dans la table une valeur approchée de ln(a) et ln(b),
 - calcule $\gamma = \ln(a) + \ln(b)$,
 - cherche dans la table une valeur approchée de $\exp(\gamma) = a \times b$.

On a bien remplacé une multiplication, par une addition.

Exemple. Calcule 98.765 × 43.201. Combien doit valoir N pour obtenir une valeur approchée du produit avec 3 chiffres exacts après la virgule?

Cours 6 (Logarithme en base quelconque).

Soit *b* un réel positif. Le *logarithme en base b* est défini par

$$\log_b(x) = \frac{\ln(x)}{\ln(b)}$$

Par exemple

$$\log_7(49) = \frac{\ln(49)}{\ln(7)} = \frac{\ln(7^2)}{\ln(7)} = \frac{2\ln(7)}{\ln(7)} = 2$$

• Logarithme décimal. Si b=10, on a la formule $\log_{10}(x)=\frac{\ln(x)}{\ln(10)}$

- Logarithme népérien. Si b=e, on a $\log_e(x)=\frac{\ln(x)}{\ln(e)}=\ln(x)$.
- Logarithme en base 2. Il est particulièrement utile en informatique! Avec b=2, on a $\log_2(x)=\frac{\ln(x)}{\ln(2)}$. Il vérifie que $\log_2(2^k)=k$.

Exemple. On peut coder n = 256 entiers (de 0 à 255) sur k = 8 bits. Quel est le lien entre n et k? On a $\log_2(256) = \log_2(2^8) = 8$, c'est-à-dire $k = \log_2(n)$.

Activité 5 (Logarithme en base quelconque).

Objectifs: travailler avec des logarithmes dans d'autres bases.

1. Logarithme entier en base 10. Le logarithme entier en base 10 est le plus grand entier k tel que $10^k \le x$. Programme une boucle « tant que » qui renvoie cet entier k. Vérifie que c'est aussi la partie entière de $\log_{10}(x)$.

Indication. Attention au décalage!

Exemple. Avec x = 666, alors $10^2 = 100 \le x < 1000 = 10^3$ donc le logarithme entier de x en base 10 vaut $\ell = 2$. Par ailleurs $\log_{10}(x) = 2.823...$ dont la partie entière est bien 2.

2. Logarithme entier en base 2. Fais le même travail avec le logarithme entier en base 2 qui est le plus grand entier k tel que $2^k \le x$. Vérifie que c'est bien la partie entière de $\log_2(x)$.

Exemple. Avec x = 666, alors $2^9 = 512 \le x < 1024 = 2^{10}$. Donc le logarithme entier de x en base 2 vaut $\ell = 9$. Par ailleurs $\log_2(x) = 9.379...$ dont la partie entière est bien 9.

3. **Dichotomie.** Voici une variante du jeu de la devinette. Il s'agit de trouver un entier k parmi les entiers de [0, n[. On propose une réponse i, et on obtient la réponse « intervalle de gauche [0, i[» ou « intervalle de droite [i, n[». On gagne quand on a obtenu un intervalle ne contenant qu'un élément. Pour optimiser mes chances je décide de couper l'intervalle en deux à chaque fois.

Question. Au bout de combien d'étapes suis-je certain de trouver l'entier *k* ?

Travail à faire. Programme une fonction dichotomie(n) qui renvoie cet entier k dans le pire des cas.

Indications. Il ne s'agit pas vraiment de programmer le jeu mais seulement d'étudier le pire des cas. Pars d'un intervalle d'entiers [0, n[. Divise à chaque étape l'intervalle en deux sous-intervalles en coupant au milieu (de rang n//2). Attention une partie peut être plus grande que l'autre si n est impair. Garde l'intervalle le plus grand. Continue tant que la longueur de cet intervalle est strictement supérieure à 1. Compte le nombre de découpages effectués.

Exemple. n = 6 et l'entier à trouver est k = 4. Les entiers possibles sont donc dans [0,5].

- Je propose i = n//6 = 3. On me répond : « l'entier à trouver est dans l'intervalle de droite [3, 5] ».
- L'intervalle [3,5] est de longueur n'=3, je découpe au rang n'//2=1 donc en deux sous-intervalles [3] et [4,5]. On me répond : « l'entier à trouver est dans l'intervalle de droite [4,5] ».
- L'intervalle [4,5] est de longueur n" = 2, je découpe au rang n"//2 = 1 donc en deux sous-intervalles [4] et [5]. On me répond : « l'entier à trouver est dans l'intervalle de gauche [4] ».
 Comme c'est un intervalle qui ne contient qu'un seul entier, j'ai gagné. Il m'a fallu 3 étapes.

Arbre. Voici le schéma de toutes les configurations possibles avec la méthode de la dichotomie, pour n = 6. Certains entiers (0 et 3) sont trouvés en 2 étapes. Les autres nécessitent 3 étapes.

Réponse. Pour n donné, compare ta réponse avec :

- $\log_2(n)$, le logarithme de n en base 2,
- le logarithme entier de n en base 2.

Commence par le cas où n est une puissance de 2.

Combien faut-il d'étapes au maximum pour déterminer un entier entre 0 et 1000?

4. **Logarithme en base quelconque.** Programme une fonction $logarithme_base(x,b)$ qui renvoie le logarithme de x en base b selon la formule :

$$\log_b(x) = \frac{\ln(x)}{\ln(b)}.$$

Vérifie ta fonction en comparant ton résultat avec la commande Python log(x,b). En prenant b = 10 on obtient log_{10} , le logarithme décimal. Quelle valeur de la base b, donne le logarithme népérien ln?

5. Nombre de chiffres dans une base quelconque.

- Le nombre de chiffres de l'écriture décimale d'un entier n est l'entier k tel que $10^{k-1} < n \le 10^k$. Autrement dit c'est $k = E(\log_{10}(x)) + 1$ (où E(x) désigne la partie entière d'un réel x).
- Le nombre de chiffres de l'écriture binaire d'un entier n est l'entier k tel que $2^{k-1} < n \le 2^k$. Autrement dit c'est $k = E(\log_2(x)) + 1$.
- Plus généralement, le nombre de chiffres de l'écriture en base b d'un entier n est l'entier k tel que $b^{k-1} < n \le b^k$. Autrement dit c'est $k = E(\log_b(x)) + 1$.

Exemple. Prenons n = 123.

- En base 10, on a $10^2 < 123 \le 10^3$, le nombre de chiffres est bien k = 3 et $\log_{10}(x) = 2.089...$, on retrouve bien $k = E(\log_{10}(x)) + 1 = 2 + 1 = 3$.
- En base 2, on a $64 = 2^6 < 123 \le 2^7 = 128$, il faut donc k = 7 chiffres. Ce qui se vérifie aussi par $k = E(\log_2(123)) + 1 = E(6.942...) + 1 = 7$. Enfin la commande bin (123) renvoie '0b1111011' l'écriture binaire de n est donc 1.1.1.1.0.1.1 et nécessite 7 chiffres.
- En base 16, on a $16^1 < 123 \le 16^2 = 128$, il faut donc k = 2 chiffres. Ce qui se vérifie aussi par $k = E(\log_{16}(123)) + 1 = E(1.735...) + 1 = 2$. Enfin la commande hex (123) renvoie '0x7b' l'écriture hexadécimale de n est donc 7.B et nécessite 2 chiffres.

Programme une fonction $nombre_de_chiffres(n,b)$ qui renvoie le nombre de chiffres nécessaires à l'écriture de l'entier n en base b.

Vérifie tes résultats en base 2 à l'aide de bin() et en base 16 avec hex().

Activité 6 (Calcul du logarithme I).

Objectifs : utiliser des formules qui permettent de calculer nous-même le logarithme.

1. Logarithme par série (1).

On a la formule:

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} + \dots + (-1)^{k-1} \frac{u^k}{k} + \dots$$

En posant x = 1 + u (et donc u = x - 1) cela permet de calculer $\ln(x)$. Attention cette formule n'est valable que pour $u \in]-1,+1[$ c'est-à-dire pour x proche de 1.

Programme une fonction logarithme_serie_1(x,N) qui pour $x \in]0,2[$, renvoie la valeur approchée de $\ln(x)$ en calculant la somme de termes $(-1)^{k-1}\frac{u^k}{k}$, pour k < N.

Indications.

- Commence par poser u = x 1, puis calcule la somme.
- Le terme $(-1)^{k-1}$ vaut -1 si k est pair et +1 si k est impair.

Pour x = 1.543 et N = 10, quelle approximation de $\ln(x)$ obtiens-tu? Compare avec la fonction Python.

2. Logarithme par série (2).

On a la formule:

$$\ln\left(\frac{1+u}{1-u}\right) = 2u + 2\frac{u^3}{3} + 2\frac{u^5}{5} + \cdots$$

valable pour $u \in]-1,+1[$. Déduis-en une fonction logarithme_serie_2(x,N) qui pour $x \in]0,2[$, renvoie la valeur approchée de $\ln(x)$ avec des termes ne dépassant pas le degré N.

Indications.

- Vérifie que si on pose $x = \frac{1+u}{1-u}$ alors $u = \frac{x-1}{x+1}$.
- Calcule une somme de termes $2\frac{u^k}{k}$ pour k parcourant la liste donnée par range $(1, \mathbb{N}, 2)$.

Pour x = 1.543 et N = 10, quelle approximation de $\ln(x)$ obtiens-tu? Compare avec la fonction précédente et la fonction Python.

3. Réduction d'intervalle.

Les deux formules précédentes sont valables pour x proche de 1 (en fait 0 < x < 2). Pour obtenir le logarithme d'un nombre x > 0 quelconque, il faut se ramener dans l'intervalle]0, 2[.

On a la propriété suivante, pour chaque x > 0 il existe un réel y avec 0.5 < y < 1.5 et un entier $k \in \mathbb{Z}$ tel que :

$$x = ye^k$$

où $e = \exp(1)$. Par les propriétés du logarithme, montre que :

$$ln(x) = ln(y) + k$$
.

Programme une fonction $reduction_intervalle_e(x)$ qui renvoie la valeur y et l'entier k demandés.

Exemple. Avec x = 10, on écrit $x = \frac{10}{e^2} \cdot e^2$ avec $y = \frac{10}{e^2} = 1.35...$ et k = 2.

Indications. Tant que x > 1.5 alors divise x par e et chaque fois incrémente la valeur de k. Il faut ensuite aussi considérer le cas où x < 0.5.

4. Logarithme par série (3).

Programme une fonction logarithme_serie_3(x,N) qui renvoie une valeur approchée de ln(x) quel que soit x > 0.

Indications.

- Commence par te ramener à $y \in]0.5, 1.5[$ par la fonction reduction_intervalle_e(x) qui renvoie une valeur y et k.
- Calcule ln(y) par une de tes fonctions précédentes.
- Puis utilise la formule ln(x) = ln(y) + k.

Pour x = 154.3 et N = 10, quelle approximation de ln(x) obtiens-tu?

Même si les formules de cette activité sont efficaces, ce n'est pas comme cela que les ordinateurs calculent les logarithmes!

Activité 7 (Calcul du logarithme II).

Objectifs: étudier des algorithmes encore plus efficaces pour calculer les logarithmes.

1. Logarithme comme réciproque de l'exponentielle.

On sait calculer la valeur de l'exponentielle (voir la fiche « Exponentielle »). Le logarithme est la bijection réciproque de l'exponentielle, autrement dit :

$$\exp(x) = y \iff y = \ln(x)$$

Pour calculer ln(x) on procède ainsi :

- On fixe x > 0.
- On résout l'équation d'inconnue $y : « \exp(y) = x »$.

Pour résoudre l'équation $\exp(y) = x$ (d'inconnue y) on utilise par exemple la méthode de Newton pour trouver le zéro de la fonction $f(y) = \exp(y) - x$ (voir la fiche « Dérivée »). Ce qui donne dans la pratique :

- Fixer x > 0.
- Définir $u_0 = 1$.
- Puis par récurrence $u_{n+1} = u_n \frac{\exp(u_n) x}{\exp(u_n)}$
- La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $y = \ln(x)$.

Programme cette méthode en une fonction $logarithme_inverse(x,N)$ qui renvoie le terme u_N de la suite comme valeur approchée de ln(x). Compare avec les méthodes de l'activité précédente.

2. Réduction d'intervalle.

Pour x > 0 il existe un réel y tel que $1 \le y < 10$ et un entier $k \in \mathbb{Z}$ tel que

$$x = y \cdot 10^k$$

Programme une fonction reduction_intervalle_10(x) qui renvoie ce y et ce k.

Exemple.
$$x = 617.4 = 6.174 \times 100 = 6.174 \times 10^2$$
, donc $y = 6.174$ et $k = 2$.

Indication. Base-toi sur le modèle de la fonction $reduction_intervalle_e(x)$ de l'activité précédente.

3. Algorithme Cordic.

C'est cet algorithme qui est implémenté dans les calculatrices et utilise des puissances de 10 pour calculer ln(x). Pour les ordinateurs c'est la version en base 2 qui est préférée.

Programme l'algorithme suivant en une fonction $logarithme_cordic(x,N)$. Pour x=1.543 et N=10 quelle approximation de ln(x) obtiens-tu? Compare avec les fonctions précédentes.

Algorithme.

- Entrée : un nombre x > 0, un nombre d'itérations N.
- Sortie : une approximation de ln(x).
- Préalable : calculer une fois pour toute la valeur de $\ln(10)$ et les valeurs $\ln(1+10^{-i})$ pour i variant de 0 à N-1. Ces calculs peuvent être fait par n'importe quelle méthode précédente et les résultats conservés dans une table.
- Réduction : trouver $y \in [1,10[$ et $k \in \mathbb{Z}$ tel que $x = y \cdot 10^k$. Utiliser la fonction reduction_intervalle_10().
- Poser $p = \ln(10)$.
- Pour i allant de 0 à N-1:
 - Soit $q = 1 + 10^{-i}$.
 - Tant que $qy \leq 10$, faire :
 - $-y \leftarrow qy$
 - $-p \leftarrow p \ln(q)$
- Renvoyer $p + k \ln(10)$ comme approximation de $\ln(x)$.

Commentaires. Nous n'expliquons pas pourquoi cet algorithme fonctionne mais voici pourquoi il est performant : cet algorithme ne fait aucune multiplication, mais seulement des additions, des décalages de virgules et des consultations dans une table pré-établie. En effet, à chaque étape, il y a la multiplication $q \times y$ à calculer, mais c'est une « fausse » multiplication :

$$q \cdot y = (1 + 10^{-i}) \times y = y + \frac{y}{10^{i}}$$

Or diviser un nombre par une puissance de 10 revient simplement à décaler la virgule à droite. Par exemple :

$$(1+10^{-2}) \times 8.765 = 8.765 + \frac{8.765}{100} = 8.765 + 0.08765 = 8.85265$$

On n'a effectué que des additions et des décalages de virgules.

4. Algorithme de Briggs.

L'algorithme suivant a permis à Briggs en 1624 de calculer à la main le logarithme de 30 000 nombres avec 14 décimales après la virgule.

L'idée est basée sur la propriété :

$$\ln(\sqrt{x}) = \frac{1}{2}\ln(x).$$

Autrement dit $\ln(x^{1/2}) = \frac{1}{2}\ln(x)$, puis d'itérer le processus : $\ln(\sqrt{\sqrt{x}}) = \frac{1}{2}\ln(\sqrt{x})$, autrement dit $\ln(x^{1/4}) = \frac{1}{4}\ln(x)$. Puis par récurrence, on calcule $\ln(x^{1/2^n}) = \frac{1}{2^n}\ln(x)$. Au bout d'un certain nombre de racines carrées successives (n = 54 pour Briggs!) on obtient

$$x^{\frac{1}{2^n}} \simeq 1$$

On utilise alors que $\ln(u) \simeq u - 1$ si u est suffisamment proche de 1 (autrement dit $\ln(1 + v) \simeq v$ si v est proche de 0).

Exemple. On souhaite calculer une valeur approchée de ln(3).

- n = 0, x = 3,
- $n = 1, x^{1/2} = \sqrt{x} = \sqrt{3} = 1.7320...$
- n = 2, $x^{1/4} = \sqrt{\sqrt{x}} = \sqrt{\sqrt{2}} = \sqrt{1.7320...} = 1.3160...$
- n = 3, $x^{1/8} = \sqrt{\sqrt{\sqrt{x}}} = \sqrt{x^{1/4}} = \sqrt{1.3160...} = 1.1472...$
- n = 4, $x^{1/16} = 1.0710...$
- $n = 5, x^{1/32} = 1.0349...$

Quand on considère que l'on est suffisamment proche de 1 on utilise l'approximation :

$$ln(1+0.0349...) \simeq 0.0349$$

On a donc $\ln\left(3^{1/32}\right) \simeq 0.0349$ et donc $\frac{1}{32}\ln(3) \simeq 0.0349$ ce qui donne

$$ln(3) \simeq 32 \times 0.0349 \simeq 1.1168$$

C'est une approximation à 0.02 près de ln(3) = 1.0986...

Programme l'algorithme suivant en une fonction logarithme_briggs (x, epsilon) renvoyant le logarithme de x, selon un certain paramètre de précision ϵ . Pour x=1.543, et $\epsilon=10^{-10}$ quelle approximation de $\ln(x)$ obtiens-tu? Combien a-t-il fallu extraire de racines carrées? Compare avec les fonctions précédentes.

Algorithme.

- Entrée : un nombre x > 0, une précision ϵ .
- Sortie : une approximation de ln(x).

Descente.

- Poser n = 0.
- Tant que $|x-1| > \epsilon$, faire :

$$-x \leftarrow \sqrt{x}$$

$$-n \leftarrow n+1$$

Remontée.

- Poser $\ell = x 1$.
- Pour i allant de 0 à n-1, faire :

$$-\ell \leftarrow 2\ell$$

• Renvoyer ℓ comme approximation de ln(x).