Comparaison des méthodes numériques pour résoudre les équations de Maxwell avec singularités

Kirill Brodt encadré par Patrick Ciarlet

UMA, ENSTA ParisTech

13 Novembre, 2015

Problème avec singularités

Problème avec singularités

Ω_2 $\sigma_2 > 1$	Ω_1 $\sigma_1 = 1$
Ω_3 $\sigma_3 = 1$	$ \Omega_4 \\ \sigma_4 > 1 $

Problème avec singularités

Ω_2 $\sigma_2 > 1$	Ω_1 $\sigma_1 = 1$
Ω_3 $\sigma_3 = 1$	$ \begin{array}{c} \Omega_4 \\ \sigma_4 > 1 \end{array} $

Loi de Gauss

Problème avec singularités

Ω_2 $\sigma_2 > 1$	Ω_1 $\sigma_1 = 1$
Ω_3 $\sigma_3 = 1$	$ \Omega_4 \\ \sigma_4 > 1 $

Loi de Gauss

Multiplicateur de Lagrange

Pénalisation^[1]

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

Problème avec singularités

Ω_2 $\sigma_2 > 1$	Ω_1 $\sigma_1 = 1$
Ω_3 $\sigma_3 = 1$	Ω_4 $\sigma_4 > 1$

Loi de Gauss

Multiplicateur de Lagrange système de point selle

Pénalisation^[1] système auto-adjoint coercif

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

Problème avec singularités

Ω_2 $\sigma_2 > 1$	Ω_1 $\sigma_1 = 1$
Ω_3 $\sigma_3 = 1$	Ω_4 $\sigma_4 > 1$

Loi de Gauss

Multiplicateur de Lagrange système de point selle

Pénalisation^[1] système auto-adjoint coercif $lpha \lesssim h^2$

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

Problème avec singularités

Ω_2 $\sigma_2 > 1$	Ω_1 $\sigma_1 = 1$
Ω_3 $\sigma_3 = 1$	Ω_4 $\sigma_4 > 1$

Loi de Gauss

Multiplicateur de Lagrange système de point selle

Pénalisation^[1] système auto-adjoint coercif $\alpha \lesssim h^2 \quad \alpha \lesssim h$

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

Table des matières

- 1 Equations de Maxwell en 2d avec une solution singulière Equation pour le potentiel et passage à Maxwell Multiplicateur de Lagrange vs. pénalisation
- 2 Equations de Maxwell en 3d avec une solution singulière Multiplicateur de Lagrange vs. pénalisation modifiée
- 3 Problème électrique aux valeurs propres Décomposition orthogonale de l'espace $\mathbf{H}_0(\mathbf{rot},\Omega)$ Discrétisation et la forme matricielle d'opérateur de projection

Section 1

Equations de Maxwell en 2d avec une solution singulière

	Trouver φ	ε H ¹	(Ω) tel	que
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
			ϕ_{sing}	$(\partial\Omega)$.

Ω_2	Ω_1
Ω_3	Ω_4

	Trouver ϕ div $(\sigma \nabla \phi)$	€ H ¹	(Ω) tel	que
(\mathcal{P}_{sing})	$\operatorname{div}(\boldsymbol{\sigma}\nabla\boldsymbol{\phi})$	=	0	(Ω) ,
	ϕ	=	ϕ_{sing}	$(\partial\Omega)$.

$\Omega_2 \\ \sigma_2 = \sigma > 1$	$\sigma_1 = 1$
$\sigma_3 = 1$	$\sigma_4 = \sigma > 1$
Ω_3	Ω_4

	Trouver ϕ div $(\sigma \nabla \phi)$	Ε H ¹	(Ω) tel	que
(\mathscr{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
	ϕ	=	ϕ_{sing}	$(\partial\Omega)$.

$$H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in \mathbf{L}^2(\Omega) \}$$

Ω_2 $\sigma_2 = \sigma > 1$	$\sigma_1 = 1$
$\sigma_3 = 1$	$\sigma_4 = \sigma > 1$
Ω_3	Ω_4

	Trouver $\phi \in H^1(\Omega)$ tel que			
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
			ϕ_{sing}	$(\partial\Omega)$.

$$H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in \mathbf{L}^2(\Omega) \}$$

$$\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta))$$

Ω_2 $\sigma_2 = \sigma > 1$	$\sigma_1 = 1$
$\sigma_3 = 1$	$\sigma_4 = \sigma > 1$
Ω_3	Ω_4

	Trouver φ	€ H ¹	(Ω) tel	que
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
	ϕ	=	ϕ_{sing}	$(\partial\Omega)$.

$$H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in \mathbf{L}^2(\Omega) \}$$

$$\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$$

Ω_2 $\sigma_2 = \sigma > 1$	$\sigma_1 = 1$
$\sigma_3 = 1$	$\sigma_4 = \sigma > 1$
Ω_3	Ω_4

	Trouver ϕ	€ H ¹	(Ω) tel	que
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
	ϕ	=	ϕ_{sing}	$(\partial\Omega)$.

$$H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in L^2(\Omega) \}$$

$$\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$$

Ω_2 $\sigma_2 = \sigma > 1$ c_2, s_2	$ \begin{array}{c} \Omega_1 \\ \sigma_1 = 1 \\ c_1, s_1 \end{array} $
$\sigma_3 = 1$ c_3, s_3 Ω_3	$ \sigma_4 = \sigma > 1 $ $ c_4, s_4 $ $ \Omega_4 $

ightharpoonup On s'interesse à résoudre le problème dans un domaine borné de \mathbb{R}^2

	Trouver ϕ div $(\sigma \nabla \phi)$	€ H ¹	(Ω) tel	que
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
			ϕ_{sing}	

$$H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in L^2(\Omega) \}$$

$$\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$$

Comment définir les fonctions c et s?

$\Omega_2 \\ \sigma_2 = \sigma > 1 \\ c_2, s_2$	$ \begin{array}{c} \Omega_1 \\ \sigma_1 = 1 \\ c_1, s_1 \end{array} $
$\sigma_3 = 1$ c_3, s_3 Ω_3	$\sigma_4 = \sigma > 1$ c_4, s_4 Ω_4

	Trouver ϕ div $(\sigma \nabla \phi)$	€ H ¹	(Ω) tel	que
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
			ϕ_{sing}	

Ω_2 $\sigma_2 = \sigma > 1$ c_2, s_2	$ \begin{array}{c} \Omega_1 \\ \sigma_1 = 1 \\ c_1, s_1 \end{array} $
$\sigma_3 = 1$ c_3, s_3 Ω_3	$ \sigma_4 = \sigma > 1 $ $ c_4, s_4 $ $ \Omega_4 $

$$H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in \mathbf{L}^2(\Omega) \}$$

$$\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$$

- Comment définir les fonctions c et s?

	Trouver ϕ div $(\sigma \nabla \phi)$	€ H ¹	(Ω) tel	que
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
			ϕ_{sing}	

$ \Omega_2 \sigma_2 = \sigma > 1 c_2, s_2 $	$ \begin{array}{c} \Omega_1 \\ \sigma_1 = 1 \\ c_1, s_1 \end{array} $
$ \Gamma \sigma_3 = 1 c_3, s_3 \Omega_3 $	$\sigma_4 = \sigma > 1$ c_4, s_4 Ω_4

$$H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in \mathbf{L}^2(\Omega) \}$$

$$\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$$

- Comment définir les fonctions c et s?

	Trouver $\phi \in H^1(\Omega)$ tel que $\operatorname{div}(\sigma \nabla \phi) = 0$ (Ω) ,			
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
			ϕ_{sing}	

$\Omega_2 \\ \sigma_2 = \sigma > 1 \\ c_2, s_2$	$ \begin{array}{c} \Omega_1 \\ \sigma_1 = 1 \\ c_1, s_1 \\ \uparrow \mathbf{n} \end{array} $
Γ $\sigma_3 = 1$ c_3, s_3 Ω_3	$\sigma_4 = \sigma > 1$ c_4, s_4 Ω_4

$$H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in L^2(\Omega) \}$$

$$\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$$

- Comment définir les fonctions c et s?
 - **1** $\phi_{sing}|_{\Omega_i}$ est régulière dans Ω_i et tel que $\Delta(\phi_{sing}|_{\Omega_i})=0$

 - div $(\sigma \nabla \phi_{sing}) = 0$ dans $\Omega : [\sigma \nabla \phi_{sing} \cdot \mathbf{n}]_{\Gamma} = 0$

	Trouver $\phi \in H^1(\Omega)$ tel que			
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
	I		ϕ_{sing}	$(\partial\Omega)$.

$$H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in L^2(\Omega) \}$$

$$\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$$

- Comment définir les fonctions c et s?
 - $\phi_{sing}|_{\Omega_i}$ est régulière dans Ω_i et tel que $\Delta(\phi_{sing}|_{\Omega_i})=0$

 - 3 $\operatorname{div}(\sigma \nabla \phi_{sing}) = 0 \operatorname{dans} \Omega : [\sigma \nabla \phi_{sing} \cdot \boldsymbol{n}]_{\Gamma} = 0$
 - 4 ϕ_{sing} est symétrique par rapport de l'axe $^{-\pi}/_4$

	Trouver $\phi \in H^1(\Omega)$ tel que			
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
	ϕ	=	ϕ_{sing}	$(\partial\Omega)$.

- $H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in \mathbf{L}^2(\Omega) \}$
- $\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$
- Comment définir les fonctions c et s?
 - $\phi_{sing}|_{\Omega_i}$ est régulière dans Ω_i et tel que $\Delta(\phi_{sing}|_{\Omega_i})=0$

 - 3 $\operatorname{div}(\sigma \nabla \phi_{sing}) = 0 \operatorname{dans} \Omega : [\sigma \nabla \phi_{sing} \cdot \boldsymbol{n}]_{\Gamma} = 0$
 - 4 ϕ_{sing} est symétrique (et antisymétrique) par rapport de l'axe $^{-\pi}/_4$ ($^{\pi}/_4$)

	Trouver $\phi \in H^1(\Omega)$ tel que			
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
	I		ϕ_{sing}	$(\partial\Omega)$.

$$H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in \mathbf{L}^2(\Omega) \}$$

$$\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$$

- Comment définir les fonctions c et s?
 - **1** $\phi_{sing}|_{\Omega_i}$ est régulière dans Ω_i et tel que $\Delta(\phi_{sing}|_{\Omega_i})=0$

 - 3 $\operatorname{div}(\sigma \nabla \phi_{sing}) = 0 \operatorname{dans} \Omega : [\sigma \nabla \phi_{sing} \cdot \boldsymbol{n}]_{\Gamma} = 0$
 - ϕ_{sing} est symétrique (et antisymétrique) par rapport de l'axe $^{-\pi}/_4$ ($^{\pi}/_4$)
- ▶ Dans ce cas $\phi_{sing} \notin H^2(\Omega)$.

	Trouver $\phi \in H^1(\Omega)$ tel que			
(\mathcal{P}_{sing})	$\operatorname{div}(\sigma\nabla\phi)$	=	0	(Ω) ,
	I		ϕ_{sing}	$(\partial\Omega)$.

- $H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in \mathbf{L}^2(\Omega) \}$
- $\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$
- Comment définir les fonctions c et s?
 - $\phi_{sing}|_{\Omega_i}$ est régulière dans Ω_i et tel que $\Delta(\phi_{sing}|_{\Omega_i})=0$

 - 3 $\operatorname{div}(\sigma \nabla \phi_{sing}) = 0 \operatorname{dans} \Omega \left\{ \left[\sigma \nabla \phi_{sing} . \boldsymbol{n} \right]_{\Gamma} = 0 \Rightarrow \left[\nabla \phi_{sing} \right]_{\Gamma} \neq 0, \operatorname{car} \sigma \neq 1 \right\}$
 - ϕ_{sing} est symétrique (et antisymétrique) par rapport de l'axe $^{-n}/_4$ ($^n/_4$)
- ▶ Dans ce cas $\phi_{sing} \notin H^2(\Omega)$.

$$(\mathscr{P}_{sing}) \quad \begin{array}{|l|l|} \text{Trouver } \phi \in \operatorname{H}^1(\Omega) \text{ tel que} \\ \operatorname{div}(\sigma \nabla \phi) &= 0 & (\Omega), \\ \phi &= \phi_{sing} & (\partial \Omega). \end{array}$$

- $H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in \mathbf{L}^2(\Omega) \}$
- $\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$
- Comment définir les fonctions c et s?
 - $\phi_{sing}|_{\Omega_i}$ est régulière dans Ω_i et tel que $\Delta(\phi_{sing}|_{\Omega_i})=0$
 - $\phi_{sing} \in H^1(\Omega) : [\phi_{sing}]_{\Gamma} = 0$
 - $\exists \operatorname{div}(\sigma \nabla \phi_{sing}) = 0 \operatorname{dans} \Omega : [\sigma \nabla \phi_{sing}.\mathbf{n}]_{\Gamma} = 0 \Rightarrow [\nabla \phi_{sing}]_{\Gamma} \neq 0, \operatorname{car} \sigma \neq 1$
 - ϕ_{sing} est symétrique (et antisymétrique) par rapport de l'axe $^{-\pi}/_4$ ($^{\pi}/_4$)
- ▶ Dans ce cas $\phi_{sing} \notin H^2(\Omega)$. On peut montrer^[2] $\phi_{sing} \in H^{1+\lambda}(\Omega)$, $\lambda < 1$.

^[2] Grisvard, Singularities in boundary value problems, 1992

$$(\mathscr{P}_{sing}) \quad \begin{array}{|l|l|} \text{Trouver } \phi \in \operatorname{H}^1(\Omega) \text{ tel que} \\ \operatorname{div}(\sigma \nabla \phi) &= 0 & (\Omega), \\ \phi &= \phi_{sing} & (\partial \Omega). \end{array}$$

- $H^1(\Omega) = \{ v \in L^2(\Omega) : \nabla v \in L^2(\Omega) \}$
- $\Rightarrow \phi_{sing}(r,\theta) = r^{\lambda}(c\cos(\lambda\theta) + s\sin(\lambda\theta)), \lambda(\sigma) > 0$
- Comment définir les fonctions c et s?
 - $\phi_{sing}|_{\Omega_i}$ est régulière dans Ω_i et tel que $\Delta(\phi_{sing}|_{\Omega_i})=0$
 - $\phi_{sing} \in H^1(\Omega) : [\phi_{sing}]_{\Gamma} = 0$
 - $\exists \operatorname{div}(\sigma \nabla \phi_{sing}) = 0 \operatorname{dans} \Omega : [\sigma \nabla \phi_{sing}.\mathbf{n}]_{\Gamma} = 0 \Rightarrow [\nabla \phi_{sing}]_{\Gamma} \neq 0, \operatorname{car} \sigma \neq 1$
 - ϕ_{sing} est symétrique (et antisymétrique) par rapport de l'axe $^{-\pi}/_4$ ($^{\pi}/_4$)
- ▶ Dans ce cas $\phi_{sing} \notin H^2(\Omega)$. On peut montrer^[2] $\phi_{sing} \in H^{1+\lambda}(\Omega)$, $\lambda < 1/2$.

^[2] Grisvard, Singularities in boundary value problems, 1992

On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing}) \Leftrightarrow \boxed{ (\mathscr{P}_{V,sing}) \quad \middle| \begin{array}{c} \mathsf{Trouver} \ \phi \in \mathsf{H}^1(\Omega) \ \mathsf{tel} \ \mathsf{que} \ \phi = \phi_{sing} \ (\partial \Omega) \ \mathsf{et} \\ \int_{\Omega} \sigma \nabla \phi . \nabla \psi = 0 \qquad \qquad \forall \psi \in \mathsf{H}^1_0(\Omega). \end{array}}$$

On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing}) \Leftrightarrow \left(\mathscr{P}_{V,sing}\right) \qquad \boxed{ \begin{aligned} &\text{Trouver } \phi \in \operatorname{H}^1(\Omega) \text{ tel que } \phi = \phi_{sing} \left(\partial \Omega\right) \text{ et} \\ &\underbrace{\int_{\Omega} \sigma \nabla \phi. \nabla \psi}_{a(\phi,\psi)} = 0 \end{aligned}} \quad \forall \psi \in \operatorname{H}^1_0(\Omega).$$

On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing}) \Leftrightarrow \boxed{ (\mathscr{P}_{V,sing}) } \qquad \boxed{ \begin{aligned} & \text{Trouver } \phi \in \operatorname{H}^1(\Omega) \text{ tel que } \phi = \phi_{sing} \left(\partial \Omega \right) \text{ et} \\ & \underbrace{\int_{\Omega} \sigma \nabla \phi. \nabla \psi}_{a(\phi,\psi)} = 0 \end{aligned}} \qquad \forall \psi \in \operatorname{H}^1_0(\Omega).$$

a est coercive sur $\mathrm{H}^1_0(\Omega)$ et d'après Lax-Milgram ($\mathscr{P}_{V,sing}$) est bien posé.

On discrétise le problème ($\mathscr{P}_{V,sing}$).

On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing}) \Leftrightarrow (\mathscr{P}_{V,sing}) \qquad \boxed{ \begin{aligned} & \text{Trouver } \phi \in \mathrm{H}^1(\Omega) \text{ tel que } \phi = \phi_{sing} \left(\partial \Omega \right) \text{ et} \\ & \underbrace{\int_{\Omega} \sigma \nabla \phi. \nabla \psi}_{a(\phi,\psi)} = 0 \end{aligned}} \qquad \forall \psi \in \mathrm{H}^1_0(\Omega).$$

a est coercive sur $\mathrm{H}^1_0(\Omega)$ et d'après Lax-Milgram ($\mathscr{P}_{V,sing}$) est bien posé.

lacktriangle On discrétise le problème ($\mathscr{P}_{V,sing}$). Soit \mathscr{T}_h une triangulation

On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing}) \Leftrightarrow \boxed{ (\mathscr{P}_{V,sing}) \quad \left| \begin{array}{c} \mathsf{Trouver} \, \phi \in \mathsf{H}^1(\Omega) \; \mathsf{tel} \; \mathsf{que} \, \phi = \phi_{sing} \, (\partial \Omega) \; \mathsf{et} \\ \underbrace{\int_{\Omega} \sigma \nabla \phi. \nabla \psi}_{a(\phi,\psi)} = 0 & \forall \psi \in \mathsf{H}^1_0(\Omega). \end{array} \right.}$$

a est coercive sur $\mathrm{H}^1_0(\Omega)$ et d'après Lax-Milgram ($\mathscr{P}_{V,sing}$) est bien posé.

On discrétise le problème ($\mathscr{P}_{V,sing}$). Soit \mathscr{T}_h une triangulation conforme

On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing}) \Leftrightarrow \boxed{ (\mathscr{P}_{V,sing}) \quad \left| \begin{array}{c} \mathsf{Trouver} \ \phi \in \mathsf{H}^1(\Omega) \ \mathsf{tel} \ \mathsf{que} \ \phi = \phi_{sing} \ (\partial \Omega) \ \mathsf{et} \\ \underbrace{\int_{\Omega} \sigma \nabla \phi. \nabla \psi}_{a(\phi,\psi)} = 0 & \forall \psi \in \mathsf{H}^1_0(\Omega). \end{array} \right.}$$

- On discrétise le problème ($\mathscr{P}_{V,sing}$). Soit \mathscr{T}_h une triangulation conforme
 - ▶ h_i diamètre d'un triangle $T \in \mathcal{T}_h$ et $h = \max_i h_i$

On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing}) \Leftrightarrow \boxed{ (\mathscr{P}_{V,sing}) } \qquad \boxed{ \begin{aligned} & \text{Trouver } \phi \in \mathrm{H}^1(\Omega) \text{ tel que } \phi = \phi_{sing} \left(\partial \Omega \right) \text{ et} \\ & \underbrace{\int_{\Omega} \sigma \nabla \phi. \nabla \psi}_{a(\phi,\psi)} = 0 \end{aligned} } \qquad \forall \psi \in \mathrm{H}^1_0(\Omega).$$

- lacktriangle On discrétise le problème ($\mathscr{P}_{V,sing}$). Soit \mathscr{T}_h une triangulation conforme
 - ▶ h_i diamètre d'un triangle $T \in \mathcal{T}_h$ et $h = \max_i h_i$
 - ▶ $V_h \subset H^1(\Omega)$ un sous-espace de dimension finie

On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing}) \Leftrightarrow \boxed{ (\mathscr{P}_{V,sing}) \quad \left| \begin{array}{c} \mathsf{Trouver} \ \phi \in \mathsf{H}^1(\Omega) \ \mathsf{tel} \ \mathsf{que} \ \phi = \phi_{sing} \left(\partial \Omega \right) \ \mathsf{et} \\ \int_{\Omega} \sigma \nabla \phi . \nabla \psi \\ = 0 & \forall \psi \in \mathsf{H}^1_0(\Omega). \end{array} \right.}$$

- lacktriangle On discrétise le problème ($\mathscr{P}_{V,sing}$). Soit \mathscr{T}_h une triangulation conforme
 - ▶ h_i diamètre d'un triangle $T \in \mathcal{T}_h$ et $h = \max_i h_i$
 - ▶ $V_h \subset H^1(\Omega)$ un sous-espace de dimension finie

On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing}) \Leftrightarrow \boxed{ (\mathscr{P}_{V,sing}) \quad \left| \begin{array}{c} \mathsf{Trouver} \ \phi \in \mathsf{H}^1(\Omega) \ \mathsf{tel} \ \mathsf{que} \ \phi = \phi_{sing} \ (\partial \Omega) \ \mathsf{et} \\ \underbrace{\int_{\Omega} \sigma \nabla \phi . \nabla \psi}_{a(\phi,\psi)} = 0 & \forall \psi \in \mathsf{H}^1_0(\Omega). \end{array} \right.}$$

a est coercive sur $\mathrm{H}^1_0(\Omega)$ et d'après Lax-Milgram ($\mathscr{P}_{V,sing}$) est bien posé.

- lacktriangle On discrétise le problème ($\mathscr{P}_{V,sing}$). Soit \mathscr{T}_h une triangulation conforme
 - ▶ h_i diamètre d'un triangle $T \in \mathcal{T}_h$ et $h = \max_i h_i$
 - ▶ $V_h \subset H^1(\Omega)$ un sous-espace de dimension finie

On prend l'espace des éléments finis nodaux de type Lagrange P_k .

Formulation variationnelle et discrétisation

On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing}) \Leftrightarrow (\mathscr{P}_{V,sing}) \qquad \boxed{ \begin{aligned} & \text{Trouver } \phi \in \operatorname{H}^1(\Omega) \text{ tel que } \phi = \phi_{sing} \left(\partial \Omega \right) \text{ et} \\ & \underbrace{\int_{\Omega} \sigma \nabla \phi. \nabla \psi}_{a(\phi,\psi)} = 0 \end{aligned}} \qquad \forall \psi \in \operatorname{H}^1_0(\Omega).$$

a est coercive sur $\mathrm{H}^1_0(\Omega)$ et d'après Lax-Milgram ($\mathscr{P}_{V,sing}$) est bien posé.

- lacktriangle On discrétise le problème ($\mathscr{P}_{V,sing}$). Soit \mathscr{T}_h une triangulation conforme
 - ▶ h_i diamètre d'un triangle $T \in \mathcal{T}_h$ et $h = \max_i h_i$
 - ▶ $V_h \subset H^1(\Omega)$ un sous-espace de dimension finie

$$\left| \begin{array}{c} (\mathcal{P}_{V,sing}^h) \middle| \begin{array}{c} \text{Trouver } \phi_h \in \mathsf{V}_h \text{ tel que } \phi_h = \Pi_h \phi_{sing} \left(\partial \Omega \right) \text{ et} \\ \int_{\Omega} \sigma \nabla \phi_h . \nabla \psi_h = 0 & \forall \psi_h \in \mathsf{V}_h^0. \end{array} \right|$$

• On prend l'espace des éléments finis nodaux de type Lagrange P_k .

$$||\phi-\phi_h||_{\mathrm{H}^1(\Omega)}\lesssim h^{\lambda},\quad ||\phi-\phi_h||_{\mathrm{L}^2(\Omega)}\lesssim h^{2\lambda}$$

Convergence des éléments finis nodaux pour le potentiel

Lorsqu'on se trouve en deux dimensions on peut prendre $E = \sigma \operatorname{rot} \phi$ comme champ électrique, où l'opérateur rot est défini $(\frac{\partial}{\partial v}, -\frac{\partial}{\partial x})^t$.

- Lorsqu'on se trouve en deux dimensions on peut prendre $E = \sigma \operatorname{rot} \phi$ comme champ électrique, où l'opérateur rot est défini $(\frac{\partial}{\partial y}, -\frac{\partial}{\partial x})^{t}$.
 - $\mathbf{1} \quad \operatorname{rot} \mathbf{E} = \operatorname{rot} \sigma \operatorname{\mathbf{rot}} \phi = -\operatorname{div} \sigma \nabla \phi = 0, \text{ avec } \operatorname{rot} \mathbf{E} = \frac{\partial E_y}{\partial x} \frac{\partial E_x}{\partial y}$

- Lorsqu'on se trouve en deux dimensions on peut prendre $E = \sigma \operatorname{rot} \phi$ comme champ électrique, où l'opérateur rot est défini $(\frac{\partial}{\partial y}, -\frac{\partial}{\partial x})^t$.
 - 1 rot $E = \operatorname{rot} \sigma \operatorname{rot} \phi = -\operatorname{div} \sigma \nabla \phi = 0$, avec rot $E = \frac{\partial E_y}{\partial x} \frac{\partial E_x}{\partial y}$
 - $2 \operatorname{div} \sigma^{-1} \mathbf{E} = \operatorname{div} \sigma^{-1} \sigma \operatorname{rot} \Phi = 0$

- Lorsqu'on se trouve en deux dimensions on peut prendre $E = \sigma \operatorname{rot} \phi$ comme champ électrique, où l'opérateur rot est défini $(\frac{\partial}{\partial y}, -\frac{\partial}{\partial x})^t$.
 - 1 rot $E = \operatorname{rot} \sigma \operatorname{rot} \phi = -\operatorname{div} \sigma \nabla \phi = 0$, avec rot $E = \frac{\partial E_y}{\partial x} \frac{\partial E_x}{\partial y}$
 - 2 div $\sigma^{-1}\mathbf{E} = \text{div}\,\sigma^{-1}\sigma\,\mathbf{rot}\,\Phi = 0$
- On s'interesse donc à résoudre le problème électrique

	Trouver <i>E</i>	∈ H	(rot	$(0,\Omega)$ tel que
(P)	rot rot E	=	0	(Ω),
(\mathscr{E}_{sing})	$\operatorname{div}\sigma^{-1}\boldsymbol{E}$	=	0	(Ω),
	Ε.τ	=	g	$(\partial\Omega)$.

$\begin{array}{c} \Omega_2 \\ \sigma_2 > 1 \end{array}$	$ \Omega_1 $ $ \sigma_1 = 1 $
Ω_3 $\sigma_3 = 1$	Ω_4 $\sigma_4 > 1$

- Lorsqu'on se trouve en deux dimensions on peut prendre $E = \sigma \operatorname{rot} \phi$ comme champ électrique, où l'opérateur rot est défini $(\frac{\partial}{\partial y}, -\frac{\partial}{\partial x})^{t}$.
 - 1 rot $E = \operatorname{rot} \sigma \operatorname{rot} \phi = -\operatorname{div} \sigma \nabla \phi = 0$, avec rot $E = \frac{\partial E_y}{\partial x} \frac{\partial E_x}{\partial y}$
 - 2 div $\sigma^{-1}\mathbf{E} = \text{div}\,\sigma^{-1}\sigma\,\mathbf{rot}\,\Phi = 0$
- On s'interesse donc à résoudre le problème électrique

	Trouver <i>E</i>	∈ H	(ro	$t,\Omega)$ tel que
(P)	\mathbf{rot} rot \mathbf{E} $\mathrm{div} \sigma^{-1} \mathbf{E}$	=	0	(Ω),
(\mathcal{E}_{sing})	$\operatorname{div} \sigma^{-1} \boldsymbol{E}$	=	0	(Ω),
	E. au	=	g	$(\partial\Omega)$.

$\begin{array}{c} \Omega_2 \\ \sigma_2 > 1 \end{array}$	Ω_1 $\sigma_1 = 1$
Ω_3 $\sigma_3 = 1$	Ω_4 $\sigma_4 > 1$

 $\mathbf{H}(\mathrm{rot},\Omega) = \{ \mathbf{v} \in \mathbf{L}^2(\Omega) : \mathrm{rot} \, \mathbf{v} \in \mathbf{L}^2(\Omega) \}$

- Lorsqu'on se trouve en deux dimensions on peut prendre $E = \sigma \operatorname{rot} \phi$ comme champ électrique, où l'opérateur rot est défini $(\frac{\partial}{\partial y}, -\frac{\partial}{\partial x})^t$.
 - 1 rot $E = \operatorname{rot} \sigma \operatorname{rot} \phi = -\operatorname{div} \sigma \nabla \phi = 0$, avec rot $E = \frac{\partial E_y}{\partial x} \frac{\partial E_x}{\partial y}$
 - 2 $\operatorname{div} \sigma^{-1} \mathbf{E} = \operatorname{div} \sigma^{-1} \sigma \operatorname{rot} \Phi = 0$
- On s'interesse donc à résoudre le problème électrique

	Trouver <i>E</i>	∈ H	(rot	$t,\Omega)$ tel que
(e)	\mathbf{rot} rot \mathbf{E} $\mathrm{div} \sigma^{-1} \mathbf{E}$	=	0	(Ω) ,
(\mathcal{E}_{sing})	$\mathrm{div}\sigma^{-1}\pmb{E}$	=	0	(Ω) ,
	E. au	=	g	$(\partial\Omega)$.

Ω_2 $\sigma_2 > 1$	Ω_1 $\sigma_1 = 1$	١,
Ω_3 $\sigma_3 = 1$	Ω_4 $\sigma_4 > 1$	•

- $\mathbf{H}(\mathrm{rot},\Omega) = \{ \mathbf{v} \in \mathbf{L}^2(\Omega) : \mathrm{rot} \, \mathbf{v} \in \mathbf{L}^2(\Omega) \}$
- g est défini par $E.\tau = \sigma \operatorname{rot} \phi.\tau$ sur $\partial \Omega$

- Lorsqu'on se trouve en deux dimensions on peut prendre $E = \sigma \operatorname{rot} \phi$ comme champ électrique, où l'opérateur rot est défini $(\frac{\partial}{\partial y}, -\frac{\partial}{\partial x})^t$.
 - 1 rot $E = \operatorname{rot} \sigma \operatorname{rot} \phi = -\operatorname{div} \sigma \nabla \phi = 0$, avec rot $E = \frac{\partial E_y}{\partial x} \frac{\partial E_x}{\partial y}$
 - 2 div $\sigma^{-1} \mathbf{E} = \text{div } \sigma^{-1} \sigma \operatorname{rot} \Phi = 0$
- On s'interesse donc à résoudre le problème électrique

	Trouver $E \in \mathbf{H}(\text{rot}, \Omega)$ tel que				
(P)	rot rot E				
(\mathcal{E}_{sing})	$\mathrm{div}\sigma^{-1}m{E}$	=	0	(Ω) ,	
	Ε.τ	=	g	$(\partial\Omega)$.	

- $H(rot, \Omega) = \{ \boldsymbol{v} \in \mathbf{L}^2(\Omega) : rot \, \boldsymbol{v} \in \mathbf{L}^2(\Omega) \}$
- g est défini par $E.\tau = \sigma \operatorname{rot} \phi.\tau$ sur $\partial \Omega$

Remarque: $E = \sigma \operatorname{rot} \phi \operatorname{et} \phi \in H^{1+\lambda}(\Omega) \Rightarrow E \in H^{\lambda}(\Omega), \operatorname{avec} 0 < \lambda < 1/2.$

• Comment prendre en compte la contrainte $\operatorname{div} \sigma^{-1} E = 0$ dans Ω ?

$$(\mathscr{E}_{sing}) \quad \begin{array}{|l|l|} \hline \text{Trouver } \pmb{E} \in \mathbf{H}(\mathrm{rot}, \Omega) \text{ tel que} \\ \pmb{\mathrm{rot}} \mathrm{rot} \pmb{E} &=& 0 \quad (\Omega), \\ \mathrm{div} \, \sigma^{-1} \pmb{E} &=& 0 \quad (\Omega), \\ \pmb{E}.\pmb{\tau} &=& g \quad (\partial \Omega). \\ \hline \end{array}$$

• Comment prendre en compte la contrainte div $\sigma^{-1}E = 0$ dans Ω ?

```
(\mathscr{E}_{sing}) \quad \begin{array}{|c|c|c|} \hline \text{Trouver } \pmb{E} \in \mathbf{H}(\text{rot}, \Omega) \text{ tel que} \\ \pmb{\text{rot}} \text{ rot} \pmb{E} & = & 0 & (\Omega), \\ & \text{div} \sigma^{-1} \pmb{E} & = & 0 & (\Omega), \\ \pmb{E}.\pmb{\tau} & = & g & (\partial \Omega). \\ \hline \end{array}
```

Comment prendre en compte la contrainte div $\sigma^{-1}E = 0$ dans Ω ?

• Comment prendre en compte la contrainte $\operatorname{div} \sigma^{-1} E = 0$ dans Ω ?

On passe à la formulation variationnelle dite *mixte*

$$(\mathscr{E}\mathscr{M}_{sing,V}) \quad \begin{array}{|l|l|l|} & \text{Trouver } (\pmb{E},p) \in \mathbf{H}(\mathrm{rot},\Omega) \times \mathrm{H}^1_0(\Omega) \text{ telle que } \pmb{E}.\pmb{\tau} = g(\partial\Omega) \text{ et} \\ & \int_{\Omega} \mathrm{rot} \pmb{E} \mathrm{rot} \, \pmb{v} + \int_{\Omega} \sigma^{-1} \pmb{v}.\nabla p &= 0 \quad \forall \pmb{v} \in \mathbf{H}_0(\mathrm{rot},\Omega), \\ & \int_{\Omega} \sigma^{-1} \pmb{E}.\nabla q &= 0 \quad \forall q \in \mathrm{H}^1_0(\Omega). \end{array}$$

• Comment prendre en compte la contrainte div $\sigma^{-1}E = 0$ dans Ω ?

On passe à la formulation variationnelle dite mixte

$$(\mathscr{E}\mathscr{M}_{sing,V}) \quad \begin{array}{|l|l|l|} & \mathsf{Trouver}\,(E,p) \in \mathbf{H}(\mathrm{rot},\Omega) \times \mathrm{H}^1_0(\Omega) \; \mathsf{telle} \; \mathsf{que} \; E.\pmb{\tau} = g(\partial\Omega) \; \mathsf{et} \\ & \int_{\Omega} \mathrm{rot} \, E \mathrm{rot} \, \pmb{v} + \int_{\Omega} \sigma^{-1} \pmb{v}. \nabla p & = & 0 \quad \forall \pmb{v} \in \mathbf{H}_0(\mathrm{rot},\Omega), \\ & \int_{\Omega} \sigma^{-1} E. \nabla q & = & 0 \quad \forall q \in \mathrm{H}^1_0(\Omega). \end{array}$$

⇒ Gràce à la séquence exacte, $q ∈ H_0^1(Ω) ⇒ ∇q ∈ H_0(rot, Ω)$, on a p ≡ 0

• Comment prendre en compte la contrainte $\operatorname{div} \sigma^{-1} E = 0$ dans Ω ?

On passe à la formulation variationnelle dite mixte

$$(\mathscr{E}\mathscr{M}_{sing,V}) \quad \begin{array}{|l|l|l|} & \mathsf{Trouver}\,(E,p) \in \mathbf{H}(\mathrm{rot},\Omega) \times \mathrm{H}^1_0(\Omega) \; \mathsf{telle} \; \mathsf{que} \; E.\pmb{\tau} = g(\partial\Omega) \; \mathsf{et} \\ & \int_{\Omega} \mathrm{rot} \, E \mathrm{rot} \, \pmb{v} + \int_{\Omega} \sigma^{-1} \pmb{v}. \nabla p & = & 0 \quad \forall \pmb{v} \in \mathbf{H}_0(\mathrm{rot},\Omega), \\ & \int_{\Omega} \sigma^{-1} E. \nabla q & = & 0 \quad \forall q \in \mathrm{H}^1_0(\Omega). \end{array}$$

For Grace a la séquence exacte, $q \in H_0^1(\Omega) \Rightarrow \nabla q \in H_0(\text{rot}, \Omega)$, on a $p \equiv 0$ $E \text{ solution de } (\mathscr{E}_{sing}) \Leftrightarrow (E, 0) \text{ solution de } (\mathscr{E} \mathscr{M}_{sing, V}).$

Comment prendre en compte la contrainte $\operatorname{div} \sigma^{-1} E = 0$ dans Ω ?

$$(\mathscr{E}\mathscr{M}_{sing}) \quad \begin{vmatrix} \operatorname{Trouver} E \in \mathbf{H}(\operatorname{rot},\Omega) \text{ tel que} \\ \operatorname{rot} \operatorname{rot} E + \sigma^{-1} \nabla p &= 0 \quad (\Omega), \\ \operatorname{div} \sigma^{-1} E &= 0 \quad (\Omega), \\ E.\tau &= g \quad (\partial \Omega). \end{vmatrix}$$

On passe à la formulation variationnelle dite mixte

$$(\mathscr{E}\mathscr{M}_{sing,V}) \quad \begin{array}{|l|l|l|} & \mathsf{Trouver}\,(E,p) \in \mathbf{H}(\mathrm{rot},\Omega) \times \mathrm{H}^1_0(\Omega) \; \mathsf{telle} \; \mathsf{que} \; E.\tau = g(\partial\Omega) \; \mathsf{et} \\ & \int_{\Omega} \mathsf{rot} \, E \mathsf{rot} \, \boldsymbol{v} + \int_{\Omega} \sigma^{-1} \boldsymbol{v}.\nabla p &= 0 \quad \forall \boldsymbol{v} \in \mathbf{H}_0(\mathsf{rot},\Omega), \\ & \int_{\Omega} \sigma^{-1} E.\nabla q &= 0 \quad \forall q \in \mathrm{H}^1_0(\Omega). \end{array}$$

- For Grace a la séquence exacte, $q \in H_0^1(\Omega) \Rightarrow \nabla q \in H_0(\text{rot}, \Omega)$, on a $p \equiv 0$ [E solution de (ε_{sing}) ⇔ (E, 0) solution de (ε_{sing}, ν).]
- ▶ $a(\cdot, \cdot) = \int_{\Omega} \text{rot} \cdot \text{rot} \cdot \text{est coercive sur } \{ \boldsymbol{v} \in \mathbf{H}_0(\text{rot}, \Omega) : \text{div} \sigma^{-1} \boldsymbol{v} = 0 \} \text{ et } b(\cdot, \cdot) = \int_{\Omega} \sigma^{-1} \cdot ... \text{ vérifie la condition inf-sup, donc } (\mathscr{E} \mathcal{M}_{sing,V}) \text{ est bien posé.}$

8/39

$$(\mathscr{E}\mathscr{M}^h_{sing,V}) \quad \begin{array}{|l|l|l|} & \mathsf{Trouver}\,(E_h,p_h) \in \mathbf{X}_h \times \mathsf{V}^0_h \, \mathsf{telle} \, \mathsf{que} \, E_h.\boldsymbol{\tau} = \Pi_h g\,(\partial\Omega) \, \mathsf{et} \\ & \int_{\Omega} \mathsf{rot} \, E_h \, \mathsf{rot} \, \boldsymbol{v}_h + \int_{\Omega} \sigma^{-1} \boldsymbol{v}_h. \nabla p_h &= 0 \quad \forall \boldsymbol{v}_h \in \mathbf{X}^0_h, \\ & \int_{\Omega} \sigma^{-1} E_h. \nabla q_h &= 0 \quad \forall q_h \in \mathsf{V}^0_h. \end{array}$$

Soit $\mathbf{X}_h \subset \mathbf{H}(\mathrm{rot}, \Omega)$ un sous-espace de dimension finie

$$(\mathscr{E}\mathscr{M}^h_{sing,V}) \quad \left| \begin{array}{l} \mathsf{Trouver}\,(E_h,p_h) \in \mathbf{X}_h \times \mathbf{V}^0_h \, \mathsf{telle} \, \mathsf{que} \, E_h.\boldsymbol{\tau} = \Pi_h g(\partial\Omega) \, \mathsf{et} \\ \int_{\Omega} \mathsf{rot} \, E_h \, \mathsf{rot} \, \boldsymbol{v}_h + \int_{\Omega} \sigma^{-1} \, \boldsymbol{v}_h. \nabla p_h &= 0 \quad \forall \, \boldsymbol{v}_h \in \mathbf{X}^0_h, \\ \int_{\Omega} \sigma^{-1} E_h. \nabla q_h &= 0 \quad \forall \, q_h \in \mathbf{V}^0_h. \end{array} \right|$$

lacktriangle On prend l'espace des éléments finis d'arête de type Raviart-Thomas \mathscr{R}_k .

$$(\mathscr{E}\mathscr{M}^h_{sing,V}) \quad \middle| \begin{array}{l} \mathsf{Trouver}\,(E_h,p_h) \in \mathbf{X}_h \times \mathbf{V}^0_h \, \mathsf{telle} \, \mathsf{que}\, E_h.\pmb{\tau} = \Pi_h g\,(\partial\Omega) \, \mathsf{et} \\ \int_{\Omega} \mathsf{rot}\, E_h \mathsf{rot}\, \pmb{v}_h + \int_{\Omega} \sigma^{-1} \pmb{v}_h.\nabla p_h &= 0 \quad \forall\, \pmb{v}_h \in \mathbf{X}^0_h, \\ \int_{\Omega} \sigma^{-1} E_h.\nabla q_h &= 0 \quad \forall\, q_h \in \mathbf{V}^0_h. \end{array}$$

- On prend l'espace des éléments finis d'arête de type Raviart-Thomas \mathscr{R}_k .
 - Comme on a préservé la propriété de séquence exacte au niveau discret, on a alors p_h = 0

$$(\mathscr{E}\mathscr{M}^h_{sing,V}) \quad \left| \begin{array}{l} \mathsf{Trouver}\,(E_h,p_h) \in \mathbf{X}_h \times \mathbf{V}^0_h \ \mathsf{telle} \ \mathsf{que} \ E_h.\boldsymbol{\tau} = \Pi_h g\,(\partial\Omega) \ \mathsf{et} \\ \int_{\Omega} \mathsf{rot} \, E_h \, \mathsf{rot} \, \boldsymbol{v}_h + \int_{\Omega} \sigma^{-1} \boldsymbol{v}_h.\nabla \, p_h \ = \ 0 \quad \forall \, \boldsymbol{v}_h \in \mathbf{X}^0_h, \\ \int_{\Omega} \sigma^{-1} E_h.\nabla \, q_h \ = \ 0 \quad \forall \, q_h \in \mathbf{V}^0_h. \end{array} \right|$$

- lacktriangle On prend l'espace des éléments finis d'arête de type Raviart-Thomas \mathscr{R}_k .
 - Comme on a préservé la propriété de séquence exacte au niveau discret, on a alors p_h ≡ 0
 - a est coercive sur l'espace discret et b vérifie la condition inf-sup discréte on peut donc établir que (ℰℳ^h_{sing,V}) est bien posé

$$(\mathscr{E}\mathscr{M}^h_{sing,V}) \quad \begin{array}{|l|l|} \text{Trouver } (E_h,p_h) \in \mathbf{X}_h \times \mathbf{V}^0_h \text{ telle que } E_h.\boldsymbol{\tau} = \Pi_h g(\partial\Omega) \text{ et} \\ \int_{\Omega} \operatorname{rot} E_h \operatorname{rot} \boldsymbol{v}_h + \int_{\Omega} \sigma^{-1} \boldsymbol{v}_h.\nabla p_h &= 0 \quad \forall \boldsymbol{v}_h \in \mathbf{X}^0_h, \\ \int_{\Omega} \sigma^{-1} E_h.\nabla q_h &= 0 \quad \forall q_h \in \mathbf{V}^0_h. \end{array}$$

- lacktriangle On prend l'espace des éléments finis d'arête de type Raviart-Thomas \mathscr{R}_k .
 - Comme on a préservé la propriété de séquence exacte au niveau discret, on a alors p_h ≡ 0
 - a est coercive sur l'espace discret et b vérifie la condition inf-sup discréte on peut donc établir que (ℰℳ^h_{sing,V}) est bien posé

$$||E - E_h||_{\mathbf{H}(\mathrm{rot},\Omega)} \lesssim h^{\lambda} \quad ||E - E_h||_{\mathbf{L}^2(\Omega)} \lesssim h^{2}$$

Convergence des éléments finis d'arêtes (point selle)

On passe à la formulation variationnelle discrète

$$(\mathscr{E}\mathscr{P})^h_{sing,V} \quad \middle| \quad \text{Trouver } E_h \in \mathbf{X}_h \text{ tel que } E_h.\boldsymbol{\tau} = g(\partial\Omega) \text{ et} \\ \int_{\Omega} \operatorname{rot} E_h \operatorname{rot} \boldsymbol{v}_h + \alpha(h) \int_{\Omega} \sigma^{-1} E_h.\boldsymbol{v}_h = 0 \quad \forall \boldsymbol{v}_h \in \mathbf{X}_h^0.$$

 $\alpha(h) > 0$ et $\alpha \lesssim h^2$ dans l'article^[1]

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

On passe à la formulation variationnelle discrète

$$(\mathscr{E}\mathscr{P})_{sing,V}^{h} \quad | \quad \text{Trouver } E_h \in \mathbf{X}_h \text{ tel que } E_h.\boldsymbol{\tau} = g(\partial\Omega) \text{ et} \\ \int_{\Omega} \operatorname{rot} E_h \operatorname{rot} \boldsymbol{\nu}_h + \alpha(h) \int_{\Omega} \sigma^{-1} E_h.\boldsymbol{\nu}_h = 0 \quad \forall \boldsymbol{\nu}_h \in \mathbf{X}_h^0.$$

$$\alpha(h) > 0$$
 et $\alpha \lesssim h^2$ dans l'article^[1]

lacktriangle On va ici examiner le paramètre lpha :

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

On passe à la formulation variationnelle discrète

$$\left| \begin{array}{c} (\mathscr{E}\mathscr{P})_{sing,V}^h & \text{Trouver } E_h \in \mathbf{X}_h \text{ tel que } E_h.\boldsymbol{\tau} = g(\partial\Omega) \text{ et} \\ \int_{\Omega} \operatorname{rot} E_h \operatorname{rot} \boldsymbol{v}_h + \alpha(h) \int_{\Omega} \sigma^{-1} E_h.\boldsymbol{v}_h = 0 & \forall \boldsymbol{v}_h \in \mathbf{X}_h^0. \end{array} \right|$$

$$\alpha(h) > 0$$
 et $\alpha \lesssim h^2$ dans l'article^[1]

- lacktriangle On va ici examiner le paramètre lpha :
 - On fixe le pas h et on varie α

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

On passe à la formulation variationnelle discrète

$$(\mathscr{E}\mathscr{P})_{sing,V}^{h} \quad | \quad \text{Trouver } E_h \in \mathbf{X}_h \text{ tel que } E_h.\boldsymbol{\tau} = g(\partial\Omega) \text{ et} \\ \int_{\Omega} \operatorname{rot} E_h \operatorname{rot} \boldsymbol{\nu}_h + \alpha(h) \int_{\Omega} \sigma^{-1} E_h.\boldsymbol{\nu}_h = 0 \quad \forall \boldsymbol{\nu}_h \in \mathbf{X}_h^0.$$

$$\alpha(h) > 0$$
 et $\alpha \lesssim h^2$ dans l'article^[1]

- lacktriangle On va ici examiner le paramètre lpha :
 - ightharpoonup On fixe le pas h et on varie α
 - ightharpoonup On fixe le paramètre α et on varie h

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

On passe à la formulation variationnelle discrète

$$(\mathscr{E}\mathscr{P})^h_{sing,V} \quad \middle| \quad \text{Trouver } E_h \in \mathbf{X}_h \text{ tel que } E_h.\boldsymbol{\tau} = g(\partial\Omega) \text{ et} \\ \int_{\Omega} \operatorname{rot} E_h \operatorname{rot} \boldsymbol{v}_h + \alpha(h) \int_{\Omega} \sigma^{-1} E_h.\boldsymbol{v}_h = 0 \quad \forall \boldsymbol{v}_h \in \mathbf{X}_h^0.$$

$$\alpha(h) > 0$$
 et $\alpha \lesssim h^2$ dans l'article^[1]

- lacktriangle On va ici examiner le paramètre lpha :
 - On fixe le pas h et on varie α
 - On fixe le paramètre α et on varie h
 - On prend $\alpha = \alpha(h)$

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

On passe à la formulation variationnelle discrète

$$(\mathscr{E}\mathscr{P})^h_{sing,V} \quad \middle| \quad \text{Trouver } E_h \in \mathbf{X}_h \text{ tel que } E_h.\boldsymbol{\tau} = g(\partial\Omega) \text{ et} \\ \int_{\Omega} \operatorname{rot} E_h \operatorname{rot} \boldsymbol{v}_h + \alpha(h) \int_{\Omega} \sigma^{-1} E_h.\boldsymbol{v}_h = 0 \quad \forall \boldsymbol{v}_h \in \mathbf{X}_h^0.$$

$$\alpha(h) > 0$$
 et $\alpha \lesssim h^2$ dans l'article^[1]

- lacktriangle On va ici examiner le paramètre lpha :
 - ightharpoonup On fixe le pas h et on varie α
 - On fixe le paramètre α et on varie h
 - On prend $\alpha = \alpha(h)$

1
$$\alpha = h^{\lambda}$$
, où $h = h_{max} = \max_i h_i$

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

On passe à la formulation variationnelle discrète

$$(\mathscr{E}\mathscr{P})^h_{sing,V} \quad \middle| \quad \text{Trouver } E_h \in \mathbf{X}_h \text{ tel que } E_h.\boldsymbol{\tau} = g(\partial\Omega) \text{ et} \\ \int_{\Omega} \operatorname{rot} E_h \operatorname{rot} \boldsymbol{v}_h + \alpha(h) \int_{\Omega} \sigma^{-1} E_h.\boldsymbol{v}_h = 0 \quad \forall \boldsymbol{v}_h \in \mathbf{X}_h^0.$$

$$\alpha(h) > 0$$
 et $\alpha \lesssim h^2$ dans l'article^[1]

- lacktriangle On va ici examiner le paramètre lpha :
 - On fixe le pas h et on varie α
 - On fixe le paramètre α et on varie h
 - On prend $\alpha = \alpha(h)$
 - 1 $\alpha = h^{\lambda}$, où $h = h_{max} = \max_i h_i$
 - $\alpha = h_{min}^{\lambda}$, où $h_{min} = \min_i h_i$

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

2 $\alpha = h_{min}^{\lambda}$, où $h_{min} = \min_i h_i$

^[1] CIARLET, Wu et Zou, « Edge element methods for Maxwell's equations with strong convergence for Gauss' laws », 2014

Multiplicateur de Lagrange vs. Pénalisation

Multiplicateur de Lagrange vs. Pénalisation

		$\mathcal{R}_1 - P$	1			\mathscr{R}_1		
	Dof	nnZ	$\epsilon_h^{ m rot}(E)$	CPU	Dor	ΝΝΖ	$\epsilon_h^{\mathrm{rot}}(E)$	CPU
	493	5,359	2.60_{-1}	0.014	359	1,715	2.64_{-1}	0
	1,993	22,309	1.94_{-1}	0.001	1,474	7,210	1.97_{-1}	0
	7,741	87,811	1.44_{-1}	0.006	5,765	28,505	1.46_{-1}	0.002
	30,633	349,869	1.06_{-1}	0.033	22,894	113,830	1.07_{-1}	0.007
	120,585	1,381,917	7.80_{-2}	0.158	90,278	450,110	7.90_{-2}	0.038
4	483,725	5,553,227	5.70_{-2}	0.888	362,473	1,809,805	5.77_{-2}	0.142
$\frac{nnz}{dof} \approx 11.5 \frac{dof(\mathcal{R}_1 - P_1)}{dof(\mathcal{R}_1)} \approx 1.33$			$\frac{nnz}{dof} \approx 5$					
		$\mathcal{R}_2 - P_2$				\mathscr{R}_2		
	Dof	7		CDII				
		nnZ	$\epsilon_h^{\mathrm{rot}}(E)$	CPU	Dof	nnZ	$\epsilon_h^{\mathrm{rot}}(\mathbf{\textit{E}})$	CPU
	1,663	36,415	$\frac{\epsilon_h^{\text{rot}}(\mathbf{E})}{1.44_{-1}}$	0.002	DOF 1,170	13,188		0.001
	1,663 6,853						1.51_1	
	· ·	36,415	1.44_1	0.002	1,170	13,188	1.51 ₋₁ 1.11 ₋₁	0.001
]	6,853	36,415 152,965	1.44_{-1} 1.06_{-1}	0.002 0.009	1,170 4,860	13,188 55,608	1.51 ₋₁ 1.11 ₋₁ 8.14 ₋₂	0.001 0.002
	6,853 26,851	36,415 152,965 604,531	$ \begin{array}{r} 1.44_{-1} \\ 1.06_{-1} \\ 7.84_{-2} \end{array} $	0.002 0.009 0.042	1,170 4,860 19,110	13,188 55,608 220,140	$ \begin{array}{r} 1.51_{-1} \\ 1.11_{-1} \\ 8.14_{-2} \\ 5.96_{-2} \end{array} $	0.001 0.002 0.007
4	6,853 26,851 106,733	36,415 152,965 604,531 2,413,645	$ \begin{array}{r} 1.44_{-1} \\ 1.06_{-1} \\ 7.84_{-2} \\ 5.75_{-2} \end{array} $	0.002 0.009 0.042 0.212	1,170 4,860 19,110 76,100	13,188 55,608 220,140 879,688	$ \begin{array}{c} 1.51_{-1} \\ 1.11_{-1} \\ 8.14_{-2} \\ 5.96_{-2} \\ 4.38_{-2} \end{array} $	0.001 0.002 0.007 0.026

13/39

Résumé 2d

Solutions singulières $\phi \in H^{1+\lambda}(\Omega)$ et $E \in H^{\lambda}(\Omega)$, $0 < \lambda < 1/2$

- Solutions singulières $\phi \in H^{1+\lambda}(\Omega)$ et $E \in H^{\lambda}(\Omega)$, $0 < \lambda < 1/2$
- Pour ϕ_h : ordre de convergence λ en norme H^1 et 2λ en norme H(rot) en urilisant les éléments finis nodaux

- Solutions singulières $\phi \in H^{1+\lambda}(\Omega)$ et $E \in H^{\lambda}(\Omega)$, $0 < \lambda < 1/2$
- Pour ϕ_h : ordre de convergence λ en norme H^1 et 2λ en norme H(rot) en urilisant les éléments finis nodaux
- Pour E_h : ordre de convergence λ en norme \mathbf{L}^2 en utilisant les éléments finis d'arêtes

- Solutions singulières $\phi \in H^{1+\lambda}(\Omega)$ et $E \in H^{\lambda}(\Omega)$, $0 < \lambda < 1/2$
- 2 Pour ϕ_h : ordre de convergence λ en norme H^1 et 2λ en norme H(rot) en urilisant les éléments finis nodaux
- Pour E_h : ordre de convergence λ en norme \mathbf{L}^2 en utilisant les éléments finis d'arêtes

Multiplicateur de Lagrange λ en norme $\mathbf{H}(\mathbf{rot})$

Pénalisation λ en norme $\mathbf{H}(\mathrm{rot})$, $\alpha \lesssim h_{min}^{\lambda}$

- Solutions singulières $\phi \in H^{1+\lambda}(\Omega)$ et $E \in H^{\lambda}(\Omega)$, $0 < \lambda < 1/2$
- 2 Pour ϕ_h : ordre de convergence λ en norme H^1 et 2λ en norme H(rot) en urilisant les éléments finis nodaux
- Pour E_h : ordre de convergence λ en norme L^2 en utilisant les éléments finis d'arêtes

Multiplicateur de Lagrange Pénalisation λ en norme $\mathbf{H}(\mathrm{rot})$, $\alpha \lesssim h_{min}^{\lambda}$ erreurs identiques

- Solutions singulières $\phi \in H^{1+\lambda}(\Omega)$ et $E \in H^{\lambda}(\Omega)$, $0 < \lambda < 1/2$
- 2 Pour ϕ_h : ordre de convergence λ en norme H^1 et 2λ en norme H(rot) en urilisant les éléments finis nodaux
- Pour E_h : ordre de convergence λ en norme \mathbf{L}^2 en utilisant les éléments finis d'arêtes

Multiplicateur de Lagrange λ en norme $\mathbf{H}(\mathrm{rot})$	Pénalisation λ en norme $\mathbf{H}(\mathrm{rot}), \boxed{\alpha \lesssim h_{min}^{\lambda}}$						
erreurs identiques							
système de point selle taille plus gros (multiplicateur)	système auto-adjoint et coercif pas besoin de multiplicateur						

Section 2

Equations de Maxwell en 3d avec une solution singulière

	Trouver $E \in \mathbf{H}(\mathbf{rot}, \Omega)$ tel que					
(<i>P</i>)	rotrot <i>E</i>	=	0	(Ω) ,		
(\mathscr{E}_{sing})	$\mathrm{div} \pmb{arepsilon} \pmb{E}$	=	ρ	(Ω) ,		
	$E \times n$	=	g	$(\partial\Omega).$		

• On s'interesse à résoudre le problème dans $\Omega = \Omega_{2d} \times]0, a[, a > 0]$

$$(\mathscr{E}_{sing}) \begin{tabular}{ll} & \mathsf{Trouver} \ E \in \mathbf{H}(\mathbf{rot},\Omega) \ \mathsf{tel} \ \mathsf{que} \\ & \mathsf{rot} \ \mathsf{rot} \ E = 0 & (\Omega), \\ & \mathsf{div} \ \varepsilon E = \rho & (\Omega), \\ & E \times n = g & (\partial \Omega). \\ \end{tabular}$$

 ρ ∈ L²(Ω) et g ∈ L²(∂Ω) à valeurs tangentielles

$$(\mathscr{E}_{sing}) \quad \begin{array}{|c|c|} \hline \text{Trouver } \pmb{E} \in \mathbf{H}(\mathbf{rot}, \Omega) \text{ tel que} \\ \mathbf{rot} \mathbf{rot} \pmb{E} &= 0 & (\Omega), \\ \mathrm{div} \pmb{\varepsilon} \pmb{E} &= \rho & (\Omega), \\ \pmb{E} \times \pmb{n} &= \pmb{g} & (\partial \Omega). \\ \hline \end{array}$$

- ▶ $\rho \in L^2(\Omega)$ et $\mathbf{g} \in \mathbf{L}^2(\partial \Omega)$ à valeurs tangentielles
- $E = \nabla \Psi$, où $\Psi = \Phi_{sing}(r, \theta) f(z)$ avec $f(z) = \sin(\frac{2\pi}{a}z)$

$$(\mathscr{E}_{sing}) \quad \begin{array}{|c|c|} \hline \text{Trouver } \pmb{E} \in \mathbf{H}(\mathbf{rot}, \Omega) \text{ tel que} \\ \mathbf{rotrot} \pmb{E} &= 0 & (\Omega), \\ \operatorname{div} \pmb{\varepsilon} \pmb{E} &= \rho & (\Omega), \\ \pmb{E} \times \pmb{n} &= \pmb{g} & (\partial \Omega). \\ \hline \end{array}$$

- $\rho \in L^2(\Omega)$ et $\mathbf{g} \in L^2(\partial \Omega)$ à valeurs tangentielles
- **►** $E = \nabla \Psi$, où $\Psi = \Phi_{sing}(r, \theta) f(z)$ avec $f(z) = \sin(\frac{2\pi}{a}z)$ **►** $\rho = \text{div } \varepsilon E = f \text{div}_{2d} \varepsilon \nabla_{2d} \Phi_{sing} + \varepsilon \Phi_{sing} \frac{\partial^2 f}{\partial z^2} = -\varepsilon \Phi_{sing} (\frac{2\pi}{a})^2 \sin(\frac{2\pi}{a}z)$

$$(\mathscr{E}_{sing}) \quad \begin{array}{|c|c|} \hline \text{Trouver } \pmb{E} \in \mathbf{H}(\mathbf{rot}, \Omega) \text{ tel que} \\ \pmb{\mathsf{rot}} \pmb{\mathsf{rot}} \pmb{E} &= 0 & (\Omega), \\ \mathrm{div} \, \pmb{\varepsilon} \pmb{E} &= \rho & (\Omega), \\ \pmb{E} \times \pmb{n} &= \pmb{g} & (\partial \Omega). \\ \hline \end{array}$$

- $\rho \in L^2(\Omega)$ et $\mathbf{g} \in L^2(\partial \Omega)$ à valeurs tangentielles
- **►** $E = \nabla \Psi$, où $\Psi = \Phi_{sing}(r, \theta) f(z)$ avec $f(z) = \sin(\frac{2\pi}{a}z)$ **►** $\rho = \text{div } \varepsilon E = f \text{div}_{2d} \varepsilon \nabla_{2d} \Phi_{sing} + \varepsilon \Phi_{sing} \frac{\partial^2 f}{\partial z^2} = -\varepsilon \Phi_{sing} (\frac{2\pi}{a})^2 \sin(\frac{2\pi}{a}z)$
- g est défini par $E \times n$ sur $\partial \Omega$

$$(\mathscr{E}_{sing}) \quad \begin{array}{|c|c|} \hline \text{Trouver } \pmb{E} \in \mathbf{H}(\mathbf{rot}, \Omega) \text{ tel que} \\ \pmb{\mathsf{rot}} \pmb{\mathsf{rot}} \pmb{E} &= 0 & (\Omega), \\ \mathrm{div} \, \pmb{\varepsilon} \pmb{E} &= \rho & (\Omega), \\ \pmb{E} \times \pmb{n} &= \pmb{g} & (\partial \Omega). \\ \hline \end{array}$$

- $\rho \in L^2(\Omega)$ et $\mathbf{g} \in L^2(\partial \Omega)$ à valeurs tangentielles
- **►** $E = \nabla \Psi$, où $\Psi = \Phi_{sing}(r, \theta) f(z)$ avec $f(z) = \sin(\frac{2\pi}{a}z)$ **►** $\rho = \text{div } \varepsilon E = f \text{div}_{2d} \varepsilon \nabla_{2d} \Phi_{sing} + \varepsilon \Phi_{sing} \frac{\partial^2 f}{\partial z^2} = -\varepsilon \Phi_{sing} (\frac{2\pi}{a})^2 \sin(\frac{2\pi}{a}z)$
- g est défini par $E \times n$ sur $\partial \Omega$
- rot E = 0 dans Ω

On passe directement à la formulation variationnelle discrète

$$(\mathscr{E}\mathscr{M}_{V}^{h}) \left| \begin{array}{c} \mathsf{Trouver} \ (E_{h},p_{h}) \in \mathbf{X}_{h} \times \mathsf{V}_{h}^{0} \ \mathsf{tel} \ \mathsf{que} \ E \times n = \Pi_{h} \mathbf{g}(\partial \Omega) \ \mathsf{et} \\ \int_{\Omega} \mathsf{rot} \ E_{h}. \ \mathsf{rot} \ \boldsymbol{v}_{h} + \int_{\Omega} \varepsilon \boldsymbol{v}_{h}. \nabla p_{h} &= 0 \qquad \forall \ \boldsymbol{v}_{h} \in \mathbf{X}_{h}^{0}, \\ \int_{\Omega} \varepsilon E_{h}. \nabla q_{h} &= -\int_{\Omega} \rho \, q_{h} \quad \forall \, q_{h} \in \mathsf{V}_{h}^{0}. \end{array} \right|$$

On passe directement à la formulation variationnelle discrète

$$\left| \begin{array}{c|c} \mathcal{E} \mathcal{M}_V^h \\ \hline \\ (\mathcal{E} \mathcal{M}_V^h) \end{array} \right| \begin{array}{c|c} \mathsf{Trouver} \ (E_h, p_h) \in \mathbf{X}_h \times \mathbf{V}_h^0 \ \mathsf{tel} \ \mathsf{que} \ E \times \mathbf{n} = \Pi_h \mathbf{g} (\partial \Omega) \ \mathsf{et} \\ \hline \\ \int_{\Omega} \mathbf{rot} \ E_h . \mathbf{rot} \ \mathbf{v}_h + \int_{\Omega} \varepsilon \mathbf{v}_h . \nabla p_h &= 0 \qquad \forall \mathbf{v}_h \in \mathbf{X}_h^0, \\ \hline \\ \int_{\Omega} \varepsilon E_h . \nabla q_h &= -\int_{\Omega} \rho \, q_h \quad \forall \, q_h \in \mathbf{V}_h^0. \end{array}$$

↓ $\mathbf{X}_h \subset \mathbf{H}(\mathbf{rot}, \Omega)$ un sous-espace de dimension fini et $\mathbf{X}_h^0 = \mathbf{X}_h \cap \mathbf{H}_0(\mathbf{rot}, \Omega)$

On passe directement à la formulation variationnelle discrète

- **>** $\mathbf{X}_h \subset \mathbf{H}(\mathbf{rot}, \Omega)$ un sous-espace de dimension fini et $\mathbf{X}_h^0 = \mathbf{X}_h \cap \mathbf{H}_0(\mathbf{rot}, \Omega)$ **>** $\mathbf{V}_h \subset \mathbf{H}^1(\Omega)$ un sous-espace de dimension fini et $\mathbf{V}_h^0 = \mathbf{V}_h \cap \mathbf{H}_0^1(\Omega)$

On passe directement à la formulation variationnelle discrète

$$\left| \begin{array}{c} \left(\mathscr{E} \mathscr{M}_{V}^{h} \right) \middle| & \text{Trouver} \left(E_{h}, p_{h} \right) \in \mathbf{X}_{h} \times \mathbb{V}_{h}^{0} \text{ tel que } \boldsymbol{E} \times \boldsymbol{n} = \Pi_{h} \boldsymbol{g} \left(\partial \Omega \right) \text{ et} \\ \int_{\Omega} \mathbf{rot} \, \boldsymbol{E}_{h}. \, \mathbf{rot} \, \boldsymbol{v}_{h} + \int_{\Omega} \varepsilon \boldsymbol{v}_{h}. \nabla p_{h} & = 0 \qquad \forall \boldsymbol{v}_{h} \in \mathbf{X}_{h}^{0}, \\ \int_{\Omega} \varepsilon \boldsymbol{E}_{h}. \nabla q_{h} & = -\int_{\Omega} \rho \, q_{h} & \forall \, q_{h} \in \mathbb{V}_{h}^{0}. \end{array} \right|$$

- **>** $\mathbf{X}_h \subset \mathbf{H}(\mathbf{rot}, \Omega)$ un sous-espace de dimension fini et $\mathbf{X}_h^0 = \mathbf{X}_h \cap \mathbf{H}_0(\mathbf{rot}, \Omega)$ **>** $\mathbf{V}_h \subset \mathbf{H}^1(\Omega)$ un sous-espace de dimension fini et $\mathbf{V}_h^0 = \mathbf{V}_h \cap \mathbf{H}_0^1(\Omega)$
- $brack {}$ On prend les éléments finis d'arêtes de type Nédélec \mathscr{N}_k comme \mathbf{X}_h et les éléments finis nodaux de type Lagrange P_k comme V_h

Convergence avec $\mathcal{N}_1 - P_1$

Ordre de convergence $^{1}/_{2} + \lambda$ en norme \mathbf{L}^{2} et $\mathbf{H}(\mathbf{rot})$

Convergence avec $\mathcal{N}_1 - P_1$

Ordre de convergence $^{1}/_{2} + \lambda$ en norme \mathbf{L}^{2} et $\mathbf{H}(\mathbf{rot})$

Problème magnétostatique

• On a pris le gradient $\nabla \Psi$ comme E dans (\mathscr{E}_{sing})

	Trouver $E \in \mathbf{H}(\mathbf{rot}, \Omega)$ tel que					
(@)	$ \mathbf{rotrot} \mathbf{E} = 0 \qquad (\Omega),$					
(\mathcal{E}_{sing})	$\mathrm{div} \pmb{arepsilon} \pmb{E}$	=	ρ	(Ω) ,		
	$E \times n$	=	g	$(\partial\Omega).$		

Problème magnétostatique

▶ On a pris le gradient $\nabla \Psi$ comme E dans (\mathscr{E}_{sing})

On formule un problème magnétostatique pour le potentiel *A* : rot *A* = *B*

	Trouver $A \in \mathbf{H}(\mathbf{rot}, \Omega)$ tel que $\mathbf{rot} \mu^{-1} \mathbf{rot} A = 0 (\Omega),$				
(4.)	$\mathbf{rot}\mu^{-1}\mathbf{rot}A$	= 0		(Ω) ,	
(\mathscr{A}_{sing})	div <i>A</i>	=	0	(Ω) ,	
	$A \times n$	=	g	$(\partial\Omega)$.	

Problème magnétostatique

lacktriangle On a pris le gradient $abla\Psi$ comme $m{E}$ dans (\mathscr{E}_{sing})

$$(\mathscr{E}_{sing}) \quad \begin{array}{|c|c|} \hline \text{Trouver } \pmb{E} \in \mathbf{H}(\mathbf{rot}, \Omega) \text{ tel que} \\ \pmb{\mathsf{rot}} \pmb{\mathsf{rot}} \pmb{E} &= 0 & (\Omega), \\ \mathrm{div} \varepsilon \pmb{E} &= \rho & (\Omega), \\ \pmb{E} \times \pmb{n} &= \pmb{g} & (\partial \Omega). \\ \hline \end{array}$$

On formule un problème magnétostatique pour le potentiel *A* : rot *A* = *B*

$$(\mathscr{A}_{sing}) \quad \begin{array}{|c|c|c|} \hline \text{Trouver } A \in \mathbf{H}(\mathbf{rot}, \Omega) \text{ tel que} \\ \mathbf{rot} \, \mu^{-1} \mathbf{rot} A &= 0 & (\Omega), \\ \operatorname{div} A &= 0 & (\Omega), \\ A \times \mathbf{n} &= \mathbf{g} & (\partial \Omega). \\ \hline \end{array}$$

►
$$A = (0, 0, \Phi_{sing})^t$$
, $\mathbf{rot}A = (\frac{\partial \Phi_{sing}}{\partial y}, -\frac{\partial \Phi_{sing}}{\partial x}, 0)^t \neq 0$

Convergence avec $\mathcal{N}_1 - P_1$

Ordre de convergence $^{1}/_{2} + \lambda$ n norme \mathbf{L}^{2} Ordre de convergence λ en norme $\mathbf{H}(\mathbf{rot})$

Convergence avec $\mathcal{N}_1 - P_1$

Ordre de convergence $^{1}/_{2} + \lambda$ n norme \mathbf{L}^{2} Ordre de convergence λ en norme $\mathbf{H}(\mathbf{rot})$

Pénalisation

La démarche est un peu différente. On passe à l'approximation suivante

$$\left| \begin{array}{c} (\mathscr{E} \mathscr{P}_V^h) \end{array} \right| \quad \text{Trouver } \boldsymbol{E}_h \in \mathbf{X}_h \text{ tel que } \boldsymbol{E}_h \times \boldsymbol{n} = \Pi_h \boldsymbol{g}(\partial \Omega) \text{ et} \\ \int_{\Omega} \mathbf{rot} \, \boldsymbol{E}_h \cdot \mathbf{rot} \, \boldsymbol{v}_h + \alpha(h) \int_{\Omega} \varepsilon \boldsymbol{E}_h \cdot \boldsymbol{v}_h = \alpha(h) \int_{\Omega} \varepsilon \nabla \chi_h \cdot \boldsymbol{v}_h \quad \forall \, \boldsymbol{v}_h \in \mathbf{X}_h^0. \end{array}$$

Pénalisation

La démarche est un peu différente. On passe à l'approximation suivante

$$\left| \begin{array}{c} (\mathscr{E} \mathscr{P}_V^h) \end{array} \right| \ \, \text{Trouver} \, \boldsymbol{E}_h \in \mathbf{X}_h \, \text{tel que} \, \boldsymbol{E}_h \times \boldsymbol{n} = \Pi_h \boldsymbol{g}(\partial \Omega) \, \, \text{et} \\ \int_{\Omega} \mathbf{rot} \, \boldsymbol{E}_h . \, \mathbf{rot} \, \boldsymbol{v}_h + \alpha(h) \int_{\Omega} \varepsilon \boldsymbol{E}_h . \boldsymbol{v}_h = \alpha(h) \int_{\Omega} \varepsilon \nabla \chi_h . \boldsymbol{v}_h \quad \forall \, \boldsymbol{v}_h \in \mathbf{X}_h^0. \end{array}$$

 \star χ_h est la solution du problème

$$(\mathscr{X}_{V}^{h}) \quad \middle| \quad \text{Trouver } \chi_{h} \in V_{h}^{0} \text{ tel que} \\ \int_{\Omega} \varepsilon \nabla \chi_{h} . \nabla \psi_{h} = -\int_{\Omega} \rho \psi_{h} \quad \forall \psi_{h} \in V_{h}^{0}.$$

Pénalisation

La démarche est un peu différente. On passe à l'approximation suivante

$$\left| \begin{array}{c} (\mathscr{E} \mathscr{P}_V^h) \end{array} \right| \quad \text{Trouver } E_h \in \mathbf{X}_h \text{ tel que } E_h \times \mathbf{n} = \Pi_h \mathbf{g}(\partial \Omega) \text{ et} \\ \int_{\Omega} \mathbf{rot} \, E_h \cdot \mathbf{rot} \, \mathbf{v}_h + \alpha(h) \int_{\Omega} \varepsilon E_h \cdot \mathbf{v}_h = \alpha(h) \int_{\Omega} \varepsilon \nabla \chi_h \cdot \mathbf{v}_h \quad \forall \, \mathbf{v}_h \in \mathbf{X}_h^0. \end{aligned}$$

χ_hest la solution du problème

$$(\mathscr{X}_{V}^{h}) \quad \middle| \begin{array}{l} \mathsf{Trouver} \ \chi_{h} \in \mathsf{V}_{h}^{0} \ \mathsf{tel} \ \mathsf{que} \\ \int_{\Omega} \varepsilon \nabla \chi_{h} . \nabla \psi_{h} = -\int_{\Omega} \rho \psi_{h} \quad \forall \psi_{h} \in \mathsf{V}_{h}^{0}. \end{array}$$

▶ Comme d'habitude, on prend les éléments finis d'arêtes de type Nédélec \mathcal{N}_k comme \mathbf{X}_h et les éléments finis nodaux de type Lagrange P_k comme \mathbf{V}_h

Convergence avec \mathcal{N}_1 et $\alpha = h_{min}^{\lambda}$

Convergence avec $\lambda = 0.45$ Convergence avec $\lambda = 0.15$

 $\alpha=h_{min}^{\lambda}$ est suffisant. Aucune diminution n'améliore l'erreur Ordre de convergence λ en norme $\mathbf{H}(\mathbf{rot})$ et ordre de convergence $^{1}/_{2}+\lambda$ en norme \mathbf{L}^{2} .

Convergence avec \mathcal{N}_1 et $\alpha = h_{min}$

 $\alpha=h_{min}$ est suffisant. Aucune diminution n'améliore l'erreur. Ordre de convergence $^1/_2+\lambda$ en norme $\mathbf{H}(\mathbf{rot})$.

Convergence avec \mathcal{N}_2 et $\alpha = h_{min}^{\lambda}$

Convergence avec $\lambda = 0.45$ Convergence avec $\lambda = 0.15$

 $\alpha=h_{min}^{\lambda}$ est suffisant. Aucune diminution n'améliore l'erreur. Ordre de convergence λ en norme $\mathbf{H}(\mathbf{rot})$ et ordre de convergence $^{1}/_{2}+\lambda$ en norme \mathbf{L}^{2}

Convergence avec \mathcal{N}_2 et $\alpha = h_{min}$

Convergence avec $\lambda = 0.45$ Convergence avec $\lambda = 0.15$

 $\alpha = h_{min}$ se révèle meilleur.

Multiplicateur de Lagrange vs. Pénalisation \boldsymbol{E}_h

Convergence avec $\lambda = 0.45$ Convergence avec $\lambda = 0.15$

Multiplicateur de Lagrange vs. Pénalisation $\mathbf{rot} E_h$

Multiplicateur de Lagrange vs. Pénalisation A_h

Convergence avec $\lambda = 0.45$ Convergence avec $\lambda = 0.15$

Multiplicateur de Lagrange vs. Pénalisation $\mathbf{rot} A_h$

Multiplicateur de Lagrange vs. Pénalisation pour \boldsymbol{E}_h

	\mathcal{N}_1 –	1			\mathcal{N}_1		
Dof	nnZ	$\epsilon_h^{\rm rot}(\mathbf{E})$	CPU	Dor	nnZ	$\epsilon_h^{ m rot}(E)$	CPU
1,626	34,652	6.55_{-1}	0.003	1,186	16,672	6.55_{-1}	0.001
14,331	340,239	3.09_{-1}	0.055	10,887	167,427	3.09_{-1}	0.039
45,383	1,112,348	2.16_{-1}	0.339	34,913	550,703	2.16_{-1}	0.186
109,282	2,724,905	1.62_{-1}	4.165	84,624	1,353,504	1.62_{-1}	0.756
<u>nnz</u> dof	$\frac{nnz}{dof} \approx 24.5 \frac{dof(\mathcal{R}_1 - P_1)}{dof(\mathcal{R}_1)} \approx 1.3$ $\frac{nnz}{dof} \approx 15$						
			\mathcal{N}_2				
	_	Dof	nnZ	$\epsilon_h^{\mathrm{rot}}(\mathbf{E})$	CPU		
		5,920	232,568	4.10_{-1}	0.012		
		57,030	2,381,820	9.71_{-2}	0.363		
		185,470	7,874,420	5.78_{-2}	146.602		
	_		nnz _	40			

Résumé en 3d

	en norme	$\mathcal{N}_1 - P_1$	\mathscr{N}_1	\mathcal{N}_2
Électro ($\alpha = h_{min}$)	\mathbf{L}^2	$^{1}/_{2}+\lambda$	$^{1}/_{2}+\lambda$	
$(\mathbf{rot}E=0)$	H(rot)	$^{1}/_{2}+\lambda$	$^{1}/_{2}+\lambda$	
Magnéto ($\alpha=h_{min}^{\lambda}$)	\mathbf{L}^2	$^{1}/_{2}+\lambda$	$^{1}/_{2}+\lambda$	$^{1}/_{2}+\lambda$
$(\mathbf{rot} A \neq 0)$		λ	λ	λ

Section 3

Problème électrique aux valeurs propres

🕨 On s'interesse à résoudre un problème dans un domaine borné Ω

$$(\mathscr{E}_{\lambda}) \quad \left| \begin{array}{l} \mathsf{Trouver} \ (\boldsymbol{E} \neq \boldsymbol{0}, \lambda) \in \mathbf{H}_0(\mathbf{rot}, \Omega) \times \mathbb{R} \ \mathsf{telle} \ \mathsf{que} \\ \mathbf{rot} \ \mu^{-1} \mathbf{rot} \ \boldsymbol{E} &= \lambda \varepsilon \boldsymbol{E} \\ \mathrm{div} \ \varepsilon \boldsymbol{E} &= 0 \end{array} \right. \quad (\Omega),$$

lacktriangle On s'interesse à résoudre un problème dans un domaine borné Ω

$$(\mathscr{E}_{\lambda}) \quad \begin{array}{|l|l|l|} \hline \text{Trouver } (\mathbf{\textit{E}} \neq 0, \lambda) \in \mathbf{\textit{H}}_{0}(\mathbf{rot}, \Omega) \times \mathbb{R} \text{ telle que} \\ \mathbf{rot} \, \mu^{-1} \mathbf{rot} \, \mathbf{\textit{E}} &= \lambda \varepsilon \mathbf{\textit{E}} & (\Omega), \\ \mathrm{div} \, \varepsilon \mathbf{\textit{E}} &= 0 & (\Omega). \\ \hline \end{array}$$

▶ $0 < \mu_{min} \le \mu \le \mu_{max} < \infty$ et $0 < \varepsilon_{min} \le \varepsilon \le \varepsilon_{max} < \infty$

lacktriangle On s'interesse à résoudre un problème dans un domaine borné Ω

$$(\mathscr{E}_{\lambda}) \quad \begin{array}{|c|c|} \text{Trouver } (\boldsymbol{E} \neq \boldsymbol{0}, \lambda) \in \mathbf{H}_{0}(\mathbf{rot}, \Omega) \times \mathbb{R} \text{ telle que} \\ \mathbf{rot} \, \mu^{-1} \, \mathbf{rot} \, \boldsymbol{E} &= \lambda \varepsilon \boldsymbol{E} & (\Omega), \\ \mathrm{div} \, \varepsilon \boldsymbol{E} &= 0 & (\Omega). \end{array}$$

- ▶ $0 < \mu_{min} \le \mu \le \mu_{max} < \infty$ et $0 < \varepsilon_{min} \le \varepsilon \le \varepsilon_{max} < \infty$
- On passe à la formulation variationnelle

$$(\mathscr{E}_{V,\lambda}) \quad \begin{array}{|l|l|l|} \hline \text{Trouver} & (E \neq 0,\lambda) \in \mathbf{H}_0(\mathbf{rot},\Omega) \times \mathbb{R} \text{ telle que} \\ \hline \int_{\Omega} \mu^{-1} \mathbf{rot} \, E.\mathbf{rot} \, \boldsymbol{v} &= \lambda \int_{\Omega} \varepsilon E.\boldsymbol{v} & \forall \boldsymbol{v} \in \mathbf{H}_0(\mathbf{rot},\Omega), \\ \hline \int_{\Omega} \varepsilon E.\nabla q &= 0 & \forall q \in \mathbf{H}_0^1(\Omega). \end{array}$$

lacktriangle On s'interesse à résoudre un problème dans un domaine borné Ω

$$(\mathscr{E}_{\lambda}) \quad | \begin{array}{c} \mathsf{Trouver} \ (\boldsymbol{E} \neq \boldsymbol{0}, \lambda) \in \mathbf{H}_{0}(\mathbf{rot}, \Omega) \times \mathbb{R} \ \mathsf{telle} \ \mathsf{que} \\ \mathbf{rot} \ \mu^{-1} \mathbf{rot} \ \boldsymbol{E} \ = \ \lambda \varepsilon \boldsymbol{E} \\ \mathrm{div} \ \varepsilon \boldsymbol{E} \ = \ 0 \end{array} \quad (\Omega).$$

- ▶ $0 < \mu_{min} \le \mu \le \mu_{max} < \infty$ et $0 < \varepsilon_{min} \le \varepsilon \le \varepsilon_{max} < \infty$
- On passe à la formulation variationnelle

$$(\mathscr{E}_{V,\lambda}) \quad \left| \begin{array}{l} \mathsf{Trouver} \; (\boldsymbol{E} \neq \boldsymbol{0},\lambda) \in \mathbf{H}_0(\mathbf{rot},\Omega) \times \mathbb{R} \; \mathsf{telle} \; \mathsf{que} \\ \int_{\Omega} \mu^{-1} \, \mathbf{rot} \, \boldsymbol{E}.\mathbf{rot} \, \boldsymbol{v} &= \lambda \int_{\Omega} \varepsilon \boldsymbol{E}.\boldsymbol{v} \quad \forall \, \boldsymbol{v} \in \mathbf{H}_0(\mathbf{rot},\Omega), \\ \int_{\Omega} \varepsilon \boldsymbol{E}.\nabla q &= 0 \qquad \forall \, q \in \mathbf{H}_0^1(\Omega). \end{array} \right|$$

Est-ce-que $\lambda=0$ est une valeur propre du problème $(\mathscr{E}_{V,\lambda})$?

Soit $\lambda = 0$. Si E est la fonction propre du $(\mathscr{E}_{V,\lambda})$, on a $E = \nabla \phi$, $\phi \in H^1_0(\Omega)$.

$$(\mathscr{E}_{V,\lambda}) \quad \begin{array}{|l|l|l|} \hline \text{Trouver } (\pmb{E} \neq 0,\lambda) \in \mathbf{H}_0(\mathbf{rot},\Omega) \times \mathbb{R} \text{ telle que} \\ \int_{\Omega} \mu^{-1} \mathbf{rot} \, \pmb{E}.\mathbf{rot} \, \pmb{v} &=& \lambda \int_{\Omega} \varepsilon \pmb{E}.\pmb{v} \quad \forall \pmb{v} \in \mathbf{H}_0(\mathbf{rot},\Omega), \\ \int_{\Omega} \varepsilon \pmb{E}.\nabla q &=& 0 \qquad \forall q \in \mathbf{H}_0^1(\Omega). \\ \hline \end{array}$$

Soit $\lambda=0$. Si E est la fonction propre du $(\mathscr{E}_{V,\lambda})$, on a $E=\nabla\phi,\,\phi\in\mathrm{H}^1_0(\Omega)$.

```
(\mathscr{E}_{V,\lambda}) \quad \begin{array}{|l|l|l|} \hline \text{Trouver} \ (\pmb{E} \neq 0, \lambda) \in \mathbf{H}_0(\mathbf{rot}, \Omega) \times \mathbb{R} \ \text{telle que} \\ \int_{\Omega} \mu^{-1} \mathbf{rot} \, \pmb{E}.\mathbf{rot} \, \pmb{v} &= \lambda \int_{\Omega} \varepsilon \pmb{E}.\pmb{v} \quad \forall \pmb{v} \in \mathbf{H}_0(\mathbf{rot}, \Omega), \\ \int_{\Omega} \varepsilon \pmb{E}. \nabla q &= 0 \qquad \forall q \in \mathbf{H}_0^1(\Omega). \end{array}
```

▶ $\nabla H_0^1(\Omega) = {\nabla p \in \mathbf{H}_0(\mathbf{rot}, \Omega) : p \in H_0^1(\Omega)}$ contient les fonctions propres

Soit $\lambda=0$. Si E est la fonction propre du $(\mathscr{E}_{V,\lambda})$, on a $E=\nabla \phi,\,\phi\in \mathrm{H}^1_0(\Omega)$.

```
(\mathscr{E}_{V,\lambda}) \quad \begin{array}{|l|l|l|} \hline \text{Trouver } (\pmb{E} \neq 0,\lambda) \in \mathbf{H}_0(\mathbf{rot},\Omega) \times \mathbb{R} \text{ telle que} \\ \int_{\Omega} \mu^{-1} \mathbf{rot} \, \pmb{E}.\mathbf{rot} \, \pmb{v} &=& \lambda \int_{\Omega} \varepsilon \pmb{E}.\pmb{v} \quad \forall \pmb{v} \in \mathbf{H}_0(\mathbf{rot},\Omega), \\ \int_{\Omega} \varepsilon \pmb{E}.\nabla q &=& 0 \qquad \forall q \in \mathbf{H}_0^1(\Omega). \\ \hline \end{array}
```

- ▶ $\nabla H_0^1(\Omega) = {\nabla p \in \mathbf{H}_0(\mathbf{rot}, \Omega) : p \in H_0^1(\Omega)}$ contient les fonctions propres
- Mais, à cause de contrainte sur $E = \nabla \phi$: $\int_{\Omega} \varepsilon E \cdot \nabla q = 0 \,\forall \, q \in \mathrm{H}_0^1(\Omega)$ on a forcement E = 0 dans Ω . Il n'y a donc pas de valeur propre nulle!

Soit $\lambda = 0$. Si E est la fonction propre du $(\mathscr{E}_{V,\lambda})$, on a $E = \nabla \phi$, $\phi \in H^1_0(\Omega)$.

$$(\mathscr{E}_{V,\lambda}) \quad \begin{array}{|l|l|l|} \hline \text{Trouver } (\pmb{E} \neq 0,\lambda) \in \mathbf{H}_0(\mathbf{rot},\Omega) \times \mathbb{R} \text{ telle que} \\ \hline \int_{\Omega} \mu^{-1} \mathbf{rot} \, \pmb{E}.\mathbf{rot} \, \pmb{v} &=& \lambda \int_{\Omega} \varepsilon \pmb{E}.\pmb{v} \quad \forall \pmb{v} \in \mathbf{H}_0(\mathbf{rot},\Omega), \\ \hline \int_{\Omega} \varepsilon \pmb{E}.\nabla q &=& 0 \qquad \forall q \in \mathbf{H}_0^1(\Omega). \\ \hline \end{array}$$

- ▶ $\nabla H_0^1(\Omega) = {\nabla p \in \mathbf{H}_0(\mathbf{rot}, \Omega) : p \in H_0^1(\Omega)}$ contient les fonctions propres
- Mais, à cause de contrainte sur $E = \nabla \phi$: $\int_{\Omega} \varepsilon E \cdot \nabla q = 0 \,\forall q \in \mathrm{H}_0^1(\Omega)$ on a forcement E = 0 dans Ω . Il n'y a donc pas de valeur propre nulle!
- On décompose l'espace $\mathbf{H}_0(\mathbf{rot},\Omega)$ à deux sous-espace orthogonaux $\nabla H^1_0(\Omega)$ et \mathbf{U}_0 ou bien

$$\mathbf{H}_0(\mathbf{rot},\Omega) = \nabla \mathbf{H}_0^1(\Omega) \stackrel{\perp}{\oplus} \mathbf{U}_0,$$

où $\mathbf{U}_0 = \{ \boldsymbol{u} \in \mathbf{H}_0(\mathbf{rot}, \Omega) : \int_{\Omega} \varepsilon \boldsymbol{u}. \nabla q = 0 \ \forall \ q \in \mathbf{H}_0^1(\Omega) \}$ l'espace à divergence nulle.

ightharpoonup On définit un opérateur de projection orthogonale sur \mathbf{U}_0

$$\mathscr{P}_{\mathbf{U}}: \mathbf{H}_0(\mathbf{rot}, \Omega) \to \mathbf{U}_0.$$

Soit $E = \nabla \phi + \mathbf{u}$ avec $\phi \in \mathrm{H}^1_0(\Omega)$ et $\mathbf{u} \in \mathbf{U}_0$, donc $\mathscr{P}_{\mathbf{U}}E = \mathbf{u}$.

lacktriangle On définit un opérateur de projection orthogonale sur ${f U}_0$

$$\mathscr{P}_{\mathbf{U}}: \mathbf{H}_0(\mathbf{rot}, \Omega) \to \mathbf{U}_0.$$

Soit $E = \nabla \phi + \mathbf{u}$ avec $\phi \in H_0^1(\Omega)$ et $\mathbf{u} \in \mathbf{U}_0$, donc $\mathscr{P}_{\mathbf{U}}E = \mathbf{u}$.

On passe à la formulation variationnelle

$$(\mathscr{U}_{V,\lambda}) \quad \middle| \quad \text{Trouver } (\boldsymbol{u} \neq 0, \lambda) \in \mathbf{U}_0 \times \mathbb{R} \text{ telle que} \\ \int_{\Omega} \mu^{-1} \operatorname{\mathbf{rot}} \boldsymbol{u}.\operatorname{\mathbf{rot}} \boldsymbol{v} = \lambda \int_{\Omega} \varepsilon \boldsymbol{u}.\boldsymbol{v} \quad \forall \boldsymbol{v} \in \mathbf{U}_0,$$

lacktriangle On définit un opérateur de projection orthogonale sur ${f U}_0$

$$\mathscr{P}_{\mathbf{U}}: \mathbf{H}_0(\mathbf{rot}, \Omega) \to \mathbf{U}_0.$$

Soit $E = \nabla \phi + u$ avec $\phi \in H_0^1(\Omega)$ et $u \in U_0$, donc $\mathscr{P}_U E = u$.

On passe à la formulation variationnelle

$$(\mathscr{U}_{V,\lambda}) \quad \middle| \begin{array}{l} \mathsf{Trouver}\,(\boldsymbol{u}\neq 0,\lambda) \in \mathbf{U}_0 \times \mathbb{R} \; \mathsf{telle} \; \mathsf{que} \\ \int_{\Omega} \mu^{-1} \, \mathsf{rot} \, \boldsymbol{u}. \, \mathsf{rot} \, \boldsymbol{v} = \lambda \int_{\Omega} \varepsilon \boldsymbol{u}. \boldsymbol{v} \quad \forall \, \boldsymbol{v} \in \mathbf{U}_0, \end{array}$$

$$(\mathscr{PE}_{V,\lambda}) \quad \left| \begin{array}{l} \mathsf{Trouver}\,(E,\lambda) \in \mathbf{H}_0(\mathbf{rot},\Omega) \times \mathbb{R} \; \mathsf{telle} \; \mathsf{que}\, \mathscr{P}_{\mathbf{U}}E \neq 0 \; \mathsf{et} \\ \int_{\Omega} \mu^{-1} \, \mathbf{rot}\, \mathscr{P}_{\mathbf{U}}E. \, \mathbf{rot}\, \mathscr{P}_{\mathbf{U}} \boldsymbol{v} = \lambda \int_{\Omega} \varepsilon \mathscr{P}_{\mathbf{U}}E. \mathscr{P}_{\mathbf{U}} \boldsymbol{v} \quad \forall \, \boldsymbol{v} \in \mathbf{H}_0(\mathbf{rot},\Omega). \end{array} \right.$$

lacktriangle On définit un opérateur de projection orthogonale sur ${f U}_0$

$$\mathscr{P}_{\mathbf{U}}: \mathbf{H}_0(\mathbf{rot}, \Omega) \to \mathbf{U}_0.$$

Soit $E = \nabla \phi + u$ avec $\phi \in H_0^1(\Omega)$ et $u \in U_0$, donc $\mathscr{P}_U E = u$.

On passe à la formulation variationnelle

$$(\mathcal{U}_{V,\lambda}) \quad | \quad \text{Trouver } (\boldsymbol{u} \neq 0, \lambda) \in \mathbf{U}_0 \times \mathbb{R} \text{ telle que} \\ \int_{\Omega} \mu^{-1} \operatorname{\mathbf{rot}} \boldsymbol{u}. \operatorname{\mathbf{rot}} \boldsymbol{v} = \lambda \int_{\Omega} \varepsilon \boldsymbol{u}. \boldsymbol{v} \quad \forall \boldsymbol{v} \in \mathbf{U}_0,$$

ou bien

$$(\mathscr{PE}_{V,\lambda}) \quad | \text{Trouver } (E,\lambda) \in \mathbf{H}_0(\mathbf{rot},\Omega) \times \mathbb{R} \text{ telle que } \mathscr{P}_{\mathbf{U}}E \neq 0 \text{ et} \\ \int_{\Omega} \mu^{-1} \mathbf{rot} \mathscr{P}_{\mathbf{U}}E \cdot \mathbf{rot} \mathscr{P}_{\mathbf{U}}v = \lambda \int_{\Omega} \varepsilon \mathscr{P}_{\mathbf{U}}E \cdot \mathscr{P}_{\mathbf{U}}v \quad \forall v \in \mathbf{H}_0(\mathbf{rot},\Omega).$$

L'avantage de cette formulation est

lacktriangle On définit un opérateur de projection orthogonale sur ${f U}_0$

$$\mathscr{P}_{\mathbf{U}}: \mathbf{H}_0(\mathbf{rot}, \Omega) \to \mathbf{U}_0.$$

Soit $E = \nabla \phi + u$ avec $\phi \in H_0^1(\Omega)$ et $u \in U_0$, donc $\mathscr{P}_U E = u$.

On passe à la formulation variationnelle

$$(\mathcal{U}_{V,\lambda}) \quad | \quad \text{Trouver } (\boldsymbol{u} \neq 0, \lambda) \in \mathbf{U}_0 \times \mathbb{R} \text{ telle que} \\ \int_{\Omega} \mu^{-1} \operatorname{\mathbf{rot}} \boldsymbol{u}. \operatorname{\mathbf{rot}} \boldsymbol{v} = \lambda \int_{\Omega} \varepsilon \boldsymbol{u}. \boldsymbol{v} \quad \forall \boldsymbol{v} \in \mathbf{U}_0,$$

$$(\mathscr{PE}_{V,\lambda}) \quad | \text{Trouver } (E,\lambda) \in \mathbf{H}_0(\mathbf{rot},\Omega) \times \mathbb{R} \text{ telle que } \mathscr{P}_{\mathbf{U}}E \neq 0 \text{ et} \\ \int_{\Omega} \mu^{-1} \mathbf{rot} \mathscr{P}_{\mathbf{U}}E \cdot \mathbf{rot} \mathscr{P}_{\mathbf{U}} \boldsymbol{v} = \lambda \int_{\Omega} \varepsilon \mathscr{P}_{\mathbf{U}}E \cdot \mathscr{P}_{\mathbf{U}} \boldsymbol{v} \quad \forall \boldsymbol{v} \in \mathbf{H}_0(\mathbf{rot},\Omega).$$

- L'avantage de cette formulation est
 - à supprimer toutes les valeurs propres nulles

lacktriangle On définit un opérateur de projection orthogonale sur ${f U}_0$

$$\mathscr{P}_{\mathbf{U}}: \mathbf{H}_0(\mathbf{rot}, \Omega) \to \mathbf{U}_0.$$

Soit $E = \nabla \phi + \mathbf{u}$ avec $\phi \in H_0^1(\Omega)$ et $\mathbf{u} \in \mathbf{U}_0$, donc $\mathscr{P}_{\mathbf{U}}E = \mathbf{u}$.

On passe à la formulation variationnelle

$$(\mathscr{U}_{V,\lambda}) \quad | \quad \text{Trouver } (\boldsymbol{u} \neq 0, \lambda) \in \mathbf{U}_0 \times \mathbb{R} \text{ telle que} \\ \int_{\Omega} \mu^{-1} \operatorname{\mathbf{rot}} \boldsymbol{u}. \operatorname{\mathbf{rot}} \boldsymbol{v} = \lambda \int_{\Omega} \varepsilon \boldsymbol{u}. \boldsymbol{v} \quad \forall \boldsymbol{v} \in \mathbf{U}_0,$$

$$(\mathscr{PE}_{V,\lambda}) \quad | \quad \text{Trouver } (E,\lambda) \in \mathbf{H}_0(\mathbf{rot},\Omega) \times \mathbb{R} \text{ telle que } \mathscr{P}_{\mathbf{U}}E \neq 0 \text{ et} \\ \int_{\Omega} \mu^{-1} \mathbf{rot} \mathscr{P}_{\mathbf{U}}E.\mathbf{rot} \mathscr{P}_{\mathbf{U}}v = \lambda \int_{\Omega} \varepsilon \mathscr{P}_{\mathbf{U}}E.\mathscr{P}_{\mathbf{U}}v \quad \forall v \in \mathbf{H}_0(\mathbf{rot},\Omega).$$

- L'avantage de cette formulation est
 - à supprimer toutes les valeurs propres nulles
 - 2 à éviter la contrainte sur la divergence

lacktriangle On définit un opérateur de projection orthogonale sur ${f U}_0$

$$\mathscr{P}_{\mathbf{U}}: \mathbf{H}_0(\mathbf{rot}, \Omega) \to \mathbf{U}_0.$$

Soit $E = \nabla \phi + u$ avec $\phi \in H_0^1(\Omega)$ et $u \in U_0$, donc $\mathscr{P}_U E = u$.

On passe à la formulation variationnelle

$$(\mathcal{U}_{V,\lambda}) \quad | \quad \text{Trouver } (\boldsymbol{u} \neq 0, \lambda) \in \mathbf{U}_0 \times \mathbb{R} \text{ telle que} \\ \int_{\Omega} \mu^{-1} \operatorname{\mathbf{rot}} \boldsymbol{u}. \operatorname{\mathbf{rot}} \boldsymbol{v} = \lambda \int_{\Omega} \varepsilon \boldsymbol{u}. \boldsymbol{v} \quad \forall \boldsymbol{v} \in \mathbf{U}_0,$$

$$\left| \begin{array}{c} (\mathscr{PE}_{V,\lambda}^h) & \left| \begin{array}{c} \mathsf{Trouver} \ (E_h,\lambda_h) \in \mathbf{X}_h^0 \times \mathbb{R} \ \mathsf{telle} \ \mathsf{que} \ \mathscr{P}_{\mathbf{U}}^h E_h \neq 0 \ \mathsf{et} \\ \int_{\Omega} \mu^{-1} \ \mathsf{rot} \mathscr{P}_{\mathbf{U}}^h E_h \cdot \mathsf{rot} \mathscr{P}_{\mathbf{U}}^h v_h = \lambda_h \int_{\Omega} \varepsilon \mathscr{P}_{\mathbf{U}}^h E_h \cdot \mathscr{P}_{\mathbf{U}}^h v_h & \forall \, v_h \in \mathbf{X}_0^h. \end{array} \right.$$

- L'avantage de cette formulation est
 - 1 à supprimer toutes les valeurs propres nulles
 - 2 à éviter la contrainte sur la divergence

$$\partial e_1 = -l + m,$$

 $\partial e_2 = -m + n,$
 $\partial e_3 = -n + l,$

$$\begin{aligned}
\partial e_1 &= -l + m, \\
\partial e_2 &= -m + n, & \mathbb{G} &= (\mathbb{G}_{e,n}) = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} & e_1 & e_3 &= \{n, l\} \\
e_2 & & & e_3 &= \{n, l\} \\
e_2 & & & & e_1 &= \{l, m\} \end{aligned}$$

On définit un opérateur frontière ∂

$$\begin{aligned}
\partial e_1 &= -l + m, \\
\partial e_2 &= -m + n, & \mathbb{G} &= (\mathbb{G}_{e,n}) = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} & e_1 & e_3 &= \{n, l\} \\
e_2 & & & e_3 &= \{n, l\} \\
e_2 & & & & e_1 &= \{l, m\}
\end{aligned}$$

Soit $\{w^e\}_e$ une base de \mathbf{X}_h et $\{w^n\}_n$ une base de \mathbf{V}_h .

- Soit $\{w^e\}_e$ une base de \mathbf{X}_h et $\{w^n\}_n$ une base de \mathbf{V}_h .
 - ▶ pour $E_h \in \mathbf{X}_h$ on a $E_h = \sum_e M_e(E_h) w^e$, où $M_e(E_h) = \int_e E_h . t$

- Soit $\{w^e\}_e$ une base de \mathbf{X}_h et $\{w^n\}_n$ une base de \mathbf{V}_h .
 - ▶ pour $E_h \in \mathbf{X}_h$ on a $E_h = \sum_e M_e(E_h) w^e$, où $M_e(E_h) = \int_e E_h . t$
 - **▶** pour $\phi_h \in V_h$ on a $\phi_h = \sum_n \alpha_n w^n$, où $\alpha_n = \phi_h(n)$

$$\begin{aligned}
\partial e_1 &= -l + m, \\
\partial e_2 &= -m + n, & \mathbb{G} &= (\mathbb{G}_{e,n}) = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} e_1 & e_3 &= \{n, l\} \\
e_2 & & & e_3 &= \{n, l\} \\
e_2 & & & & e_1 &= \{l, m\}
\end{aligned}$$

- Soit $\{w^e\}_e$ une base de \mathbf{X}_h et $\{w^n\}_n$ une base de \mathbf{V}_h .
 - ▶ pour $E_h \in \mathbf{X}_h$ on a $E_h = \sum_e M_e(E_h) w^e$, où $M_e(E_h) = \int_e E_h . t$
 - $\begin{array}{l} \blacktriangleright \ \, \mathsf{pour}\, \phi_h \in \mathsf{V}_h \, \mathsf{on} \, \mathsf{a} \, \phi_h = \sum_n \alpha_n w^n, \, \mathsf{où} \, \alpha_n = \phi_h(n) \\ \qquad \qquad \qquad \sum_e M_e(E_h) \, w^e = \sum_n \alpha_n \nabla w^n + \sum_e M_e(\boldsymbol{u}_h) \, w^e. \end{array}$

$$\begin{array}{lll} \partial e_1 = -l + m, \\ \partial e_2 = -m + n, & \mathbb{G} = (\mathbb{G}_{e,n}) = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{array}{l} e_1 & e_3 = \{n, l\} \\ e_2 \\ e_3 & l \end{array} \begin{array}{l} e_1 = \{l, m\} \end{array}$$

- Soit $\{w^e\}_e$ une base de X_h et $\{w^n\}_n$ une base de V_h .
 - ▶ pour $E_h \in \mathbf{X}_h$ on a $E_h = \sum_e M_e(E_h) w^e$, où $M_e(E_h) = \int_e E_h . t$
- On peut montrer^[3] que $\nabla w^n = \sum_e \mathbb{G}_{e,n} w^e$
 - [3] RAPETTI et BOSSAVIT, « Whitney Forms of Higher Degree », 2009

En forme vectorielle

$$\vec{E} = \mathbb{G}\vec{\alpha} + \vec{U}$$

En forme vectorielle

$$\vec{E} = \mathbb{G}\vec{\alpha} + \vec{U}$$

$$\int_{\Omega} \varepsilon \mathbf{E}_h . \nabla w^n = \int_{\Omega} \varepsilon \nabla \phi_h . \nabla w^n$$

En forme vectorielle

$$\vec{E} = \mathbb{G}\vec{\alpha} + \vec{U}$$

$$\int_{\Omega} \varepsilon \mathbf{E}_h . \nabla w^n = \int_{\Omega} \varepsilon \nabla \phi_h . \nabla w^n$$

$$\mathbb{G}^t \mathbb{M}_a^{\varepsilon} \vec{E} = \mathbb{K}_s^{\varepsilon} \vec{\alpha}$$

En forme vectorielle

$$\vec{E} = \mathbb{G}\vec{\alpha} + \vec{U}$$

• On effectue le produit scalaire de $E_h = \nabla \phi_h + u_h$ par $\nabla w^n \in \nabla V_h$

$$\int_{\Omega} \varepsilon \mathbf{E}_h . \nabla w^n = \int_{\Omega} \varepsilon \nabla \phi_h . \nabla w^n$$

$$\mathbb{G}^t \mathbb{M}_a^{\varepsilon} \vec{E} = \mathbb{K}_s^{\varepsilon} \vec{\alpha}$$

▶ $\mathbb{M}_a^{\varepsilon}$ matrice de masse d'arêtes : $(\mathbb{M}_a^{\varepsilon})_{e',e} = \int_{\Omega} \varepsilon w^e w^{e'}$

En forme vectorielle

$$\vec{E} = \mathbb{G}\vec{\alpha} + \vec{U}$$

$$\int_{\Omega} \varepsilon \mathbf{E}_h . \nabla w^n = \int_{\Omega} \varepsilon \nabla \phi_h . \nabla w^n$$

$$\mathbb{G}^t \mathbb{M}_a^{\varepsilon} \vec{E} = \mathbb{K}_s^{\varepsilon} \vec{\alpha}$$

- ▶ $\mathbb{M}_a^{\varepsilon}$ matrice de masse d'arêtes : $(\mathbb{M}_a^{\varepsilon})_{e',e} = \int_{\Omega} \varepsilon w^e w^{e'}$
- ▶ $\mathbb{K}_s^{\varepsilon}$ matrice de rigidité nodale : $(\mathbb{K}_n^{\varepsilon})_{n,m} = \int_{\Omega} \varepsilon \nabla w^m . \nabla w^n$

En forme vectorielle

$$\vec{E} = \mathbb{G}\vec{\alpha} + \vec{U}$$

$$\int_{\Omega} \varepsilon \mathbf{E}_h . \nabla w^n = \int_{\Omega} \varepsilon \nabla \phi_h . \nabla w^n$$

$$\mathbb{G}^t \mathbb{M}_a^{\varepsilon} \vec{E} = \mathbb{K}_s^{\varepsilon} \vec{\alpha}$$

- ▶ $\mathbb{M}_{a}^{\varepsilon}$ matrice de masse d'arêtes : $(\mathbb{M}_{a}^{\varepsilon})_{e',e} = \int_{\Omega} \varepsilon w^{e} w^{e'}$
- ▶ $\mathbb{K}_{s}^{\varepsilon}$ matrice de rigidité nodale : $(\mathbb{K}_{n}^{\varepsilon})_{n,m} = \int_{\Omega} \varepsilon \nabla w^{m} . \nabla w^{n}$
- On a $\vec{\alpha} = (\mathbb{K}_s^{\varepsilon})^{-1} \mathbb{G}^t \mathbb{M}_a^{\varepsilon} \vec{E}$ ou bien pour $\vec{U} = \vec{E} \mathbb{G} \vec{\alpha} = (\mathbb{I}_d \mathbb{G}(\mathbb{K}_s^{\varepsilon})^{-1} \mathbb{G}^t \mathbb{M}_a^{\varepsilon}) \vec{E}$.

En forme vectorielle

$$\vec{E} = \mathbb{G}\vec{\alpha} + \vec{U}$$

$$\int_{\Omega} \varepsilon \mathbf{E}_h . \nabla w^n = \int_{\Omega} \varepsilon \nabla \phi_h . \nabla w^n$$

$$\mathbb{G}^t \mathbb{M}_a^{\varepsilon} \vec{E} = \mathbb{K}_s^{\varepsilon} \vec{\alpha}$$

- ▶ $\mathbb{M}_{a}^{\varepsilon}$ matrice de masse d'arêtes : $(\mathbb{M}_{a}^{\varepsilon})_{e',e} = \int_{\Omega} \varepsilon w^{e} w^{e'}$
- ▶ $\mathbb{K}_{s}^{\varepsilon}$ matrice de rigidité nodale : $(\mathbb{K}_{n}^{\varepsilon})_{n,m} = \int_{\Omega} \varepsilon \nabla w^{m} . \nabla w^{n}$
- On a $\vec{\alpha} = (\mathbb{K}_s^{\varepsilon})^{-1} \mathbb{G}^t \mathbb{M}_a^{\varepsilon} \vec{E}$ ou bien pour $\vec{U} = \vec{E} \mathbb{G} \vec{\alpha} = (\mathbb{I}_d \mathbb{G}(\mathbb{K}_s^{\varepsilon})^{-1} \mathbb{G}^t \mathbb{M}_a^{\varepsilon}) \vec{E}$.
- ightharpoonup Opérateur $\mathscr{P}_{\mathbf{U}}^h$ s'écrit sous la forme matricielle

$$\mathbb{Q}^{\varepsilon} = \mathbb{I}_{d} - \mathbb{G}(\mathbb{K}_{s}^{\varepsilon})^{-1} \mathbb{G}^{t} \mathbb{M}_{a}^{\varepsilon}$$

Expériences numériques

(\mathbb{K}, \mathbb{M})	$(\mathbb{K}, \mathbb{M}\mathbb{Q})$	$(\mathbb{K}+\alpha\mathbb{M},\mathbb{M}\mathbb{Q})$	$(\mathbb{Q}^t \mathbb{K} \mathbb{Q}, \mathbb{Q}^t \mathbb{M} \mathbb{Q})$	$(\mathbb{Q}\mathbb{K}\mathbb{Q}+\mathbb{Q}^t\mathbb{K}\mathbb{Q}^t,\ldots\mathbb{M})$
9.86	2.46	9.86	6.55	9.86
9.87	-3.28	9.87	9.86	9.87
19.74	6.94	19.74	9.87	19.74
39.31	9.86	39.31	19.74	39.31
39.47	9.87	39.47	39.31	39.47
49.27	-16.89	49.27	39.47	49.27
49.28	19.74	49.28	44.32	49.28
78.67	-27.91	78.67	49.27	78.67
88.34	-38.41	88.34	49.27	88.34
88.36	-39.25	88.36	49.28	88.36

Bibliographie

- P. CIARLET, H. Wu et J. Zou, « Edge element methods for maxwell's equations with strong convergence for gauss' laws », SIAM J. Numer. *Anal.*, t. 52, p. 779–807, 2014. DOI: 10.1137/120899856.
- P. Grisvard, Singularities in boundary value problems, sér. Recherches en mathématiques appliquées. Paris, Milan, Barcelone: Masson Berlin Heidelberg New York, 1992, ISBN: 3540554505. adresse: http://opac.inria.fr/record=b1076896.
 - F. RAPETTI et A. BOSSAVIT, « Whitney forms of higher degree », SIAM Journal on Numerical Analysis, t. 47, no 3, p. 2369–2386, juin 2009. DOI: 10.1137/070705489. adresse:

https://hal-supelec.archives-ouvertes.fr/hal-00763881.