Lecture 37, Nov. 16

37.1 Algorithm (Fermat Test). *Input n.*

Each step randomly choose $a \in [1, n-1]$ with gcd(a, n) = 1. If $a^{n-1} \neq 1 \mod n$ then n is composite. Otherwise repeat. After repeating k-times, output n is probably prime.

- **37.2 Definition.** Let n be composite and gcd(a,n)=1. We call a is a Fermat witness if $a^{n-1} \neq 1 \mod n$, otherwise we call a a Fermat Liar.
- **37.3 Example.** 1 is always a Fermat Liar.
- **37.4 Proposition.** If there exists a Fermat Witness, then at least half of $a \in [1, n-1]$ (gcd(a, n) = 1) are Fermat Witness.

Proof. Let a_1, a_2, \dots, a_r are all Fermat Liars. Let a be a Fermat Witness. Then we have aa_i with $i \in [1, r]$ are Fermat Witness.

- **37.5 Definition** (Carmichael Number). A composite n is called Carmichael number if for all a with gcd(a, n) we have $a^{n-1} = 1 \mod n$.
- **37.6 Lemma.** Let n be prime. The solution to $x^2 = 1 \mod n$ are exactly $x = \pm 1 \mod n$.

Proof. Since $x^2 = 1 \mod n$, then $n \mid (x^2 - 1)$ and then $n \mid (x + 1)(x - 1)$. Since n is prime, then either $n \mid (x + 1)$ or $n \mid (x - 1)$.

37.7 Proposition. Let n be prime with gcd(a, n) = 1.

$$n-1=2^rd$$

then either $a^d = 1 \mod n$ or at least one of

$$a^d$$
, a^{2d} , a^{2^2d} , a^{2^3d} , ..., $2^{2^{r-1}d} = -1 \mod n$

37.8 Algorithm (Miller-Rabin Test). Input odd n. Then $n-1=2^rd$ where d is odd. Each step randomly pick $a \in [1, n-1]$ with gcd(a, n) = 1.

Compute

$$a^d \mod n$$
 $a^{2d} \mod n$
 $a^{2^2d} \mod n$
 \dots
 $a^{2^{r-1}d} \mod n$

If $a^d \neq 1 \mod n$ and all the remainders above $\neq -1$, then output n is composite. After k-time, output n is probably prime.

- **37.9 Definition.** Let n be composite and gcd(a, n) = 1. We call a a strong lair if a lies to you in Miller-Rabin test. Otherwise we call it a strong witness.
- **37.10 Proposition.** Let n be composite. At least 3/4 of $a \in [1, n-1]$ with gcd(a, n) = 1 are strong witness.