Project Development Phase Model Performance Test

Date	10 November 2022	
Team ID	PNT2022TMID16670	
Project Name	Project Name Exploratory Analysis of Rainfall Data in India for Agricultur	
Maximum Marks	10 Marks	

Model Performance Testing:

S.N o.	Parameter	Values	Screenshot
1.	Metrics	Classification Model: Random Forest	Random forest Confusion matrix
		Confusion Matrix – [[31372 1448] [4726 4691]] Accuracy Score- 0.8538248455145963	<pre>conf_matrix = metrics.confusion_matrix(y_test,t1) fig,ax = plt.subplots(figsize=(7.5,7.5)) ax.matshow(conf_matrix,alpha=0.3) for i in range(conf_matrix.shape[0]): for j in range(conf_matrix.shape[1]): ax.text(x=j, y=i, s=conf_matrix[i,j], va ='center', ha='center',size='xx-large plt.xlabel('Predictions',fontsize=18) plt.ylabel('Actuals',fontsize=18) plt.title('Confusion Matrix',fontsize=18) plt.show()</pre>
		0.8538248455145963	Confusion Matrix
		Classification Report – Accuracy: 0.8538248455145963 Precision: 0.7641309659553673 Recall: 0.49814165870234683 F1-score: 0.6031113396760092	31372 1448 sention 4726 4691 Predictions
			<pre>t1 = Rand_forest.predict(X_test_scaled)</pre>
			<pre>print("Rand_forest:",metrics.accuracy_score(y_test,t1))</pre>
			Rand_forest: 0.8538248455145963

```
print("*"*10, "Classification Report", "*"*10)
                                               print("-"*30)
                                               print(classification_report(y_test, t1))
                                               print("-"*30)
                                               ******* Classification Report *******
                                                          precision recall f1-score support
                                                               0.87 0.96
                                                        0
                                                                                0.91
                                                                                        32820
                                                              0.76 0.50 0.60
                                                                                        9417
                                                                               0.85
                                                                                      42237
                                                  accuracy
                                                 macro avg 0.82 0.73
ighted avg 0.85 0.85
                                                                                 0.76
                                                                                        42237
                                               weighted avg
                                                                                 0.84
                                                                                        42237
                                               -----
2. Tune the
                Hyperparameter Tuning &
                                                Hyperparameter Tuning
   Model
                Validation Method -
                RandomizedSearchCV
                                              : from sklearn.ensemble import RandomForestRegressor
                                                rf = RandomForestRegressor(random_state = 42)
                                                from pprint import pprint
                                                # Look at parameters used by our current forest
                                                print('Parameters currently in use:\n')
                                                pprint(rf.get_params())
                                                Parameters currently in use:
                                                {'bootstrap': True,
                                                 'ccp_alpha': 0.0,
                                                 'criterion': 'mse',
                                                 'max_depth': None,
                                                 'max features': 'auto',
                                                 'max leaf nodes': None,
                                                 'max_samples': None,
                                                 'min_impurity_decrease': 0.0,
                                                 'min_impurity_split': None,
                                                 'min_samples_leaf': 1,
                                                 'min_samples_split': 2,
                                                 'min_weight_fraction_leaf': 0.0,
                                                 'n estimators': 100,
                                                 'n_jobs': None,
                                                 'oob_score': False,
                                                 'random_state': 42,
                                                 'verbose': 0,
                                                 'warm_start': False}
```

```
n_estimators = [10,20,30,50]
max_features = ['autor', 'sqrt']
max_features = ['autor', 'autor', 'autor',
```