

Figure 1: Correlation between features

1 Dataset

The Aidelman dataset contains 3.300.000 samples and each sample is labeled as an $H\alpha$ emitting object (EM) and/or a Be star (Be). Each sample includes measurements from 10 different channels: u, g, r, $H\alpha$, i, J, H, K, W1 and W2.

2 Experiments

2.1 EM classification

In order to establish a baseline performance for classifying EM objects, we split the dataset 80/20, obtaining training and test subsets, and we train three common models using SKLearn:

- Random Forest, with a max depth of 6
- 3-layer neural network, with (10,10) hidden states
- Gradient Boosting, with 300 tree estimators

Figure 2: F-Score for train (left) and test (right) sets when classifying stars as EM or not.

Train:		Model	fscore p	recision	recall
0	RandomForestClassifier	0.951191	0.90809	5 0.998581	
1	MLPClassifier	0.954169	0.91915	3 0.991958	}
2	${\tt GradientBoostingClassifier}$	0.951439	0.91114	5 0.995461	
Test:		Model :	fscore pr	ecision	recall
0	RandomForestClassifier	0.951387	0.90836	9 0.998682	!
1	MLPClassifier	0.954212	0.91933	0.991846	;
2	GradientBoostingClassifier	0.951507	0.91136	7 0.995345	