GEOMETRIA E ALGEBRA LINEARE 1

Prova scritta del 31/01/2022

Proff. L. Mari e T. Pacini

ESERCIZIO 1 (17 pt.)

In $\mathbb{R}^{2,2}$ con il prodotto scalare $X\cdot Y=\operatorname{tr}({}^t\!XY)$ si consideri l'endomorfismo f

$$f(X) = XA - {}^{t}\!AX, \quad \text{dove} \quad A = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}.$$

Sia $\mathcal B$ la base di $\mathbb R^{2,2}$ formata da

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

(i) (2 pt). Provare che

$$M^{\mathscr{B}}(f) = \left(\begin{array}{cccc} 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ -1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{array}\right)$$

- (ii) (4 pt). Determinare $\ker f$, $\operatorname{Im} f$ e $\ker f^{\perp}$, e stabilire se la somma $\ker f + \operatorname{Im} f$ è diretta.
- (iii) (4 pt). Si consideri il sottospazio

$$W := \left\{ \left(\begin{array}{cc} a & b \\ -b & c \end{array} \right) \ : \ a, b, c \in \mathbb{R} \right\}.$$

Determinare la dimensione ed una base per i seguenti sottospazi:

$$f(W), f^{-1}(W), f(W) \cap f^{-1}(W), f(W) + f^{-1}(W).$$

(iv) (5 pt). Verificare che il sottospazio

$$Z := \mathscr{L}(E_1 + E_4, E_2 - E_3, E_2 + E_3)$$

è invariante per f, e determinare se la restrizione $f:Z\to Z$ è diagonalizzabile e/o simmetrico.

(v) (2 pt). Determinare se $\ker f \leq \ker(f \circ f)$ e se questi due sottospazi coincidono. Si noti: \circ significa composizione.

ESERCIZIO 2 (16 pt.)

Sia $M := \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Siano ϕ la forma bilineare e Q la forma quadratica su \mathbb{R}^2 associate ad M. Scriviamo $\mathbf{x} = (x_1, x_2)$.

(i) (3 pt) Classificare le seguenti coniche:

$$Q(\mathbf{x}) = 1, \ \ Q(\mathbf{x}) = 0, \ \ Q(\mathbf{x}) = -1.$$

- (ii) (3 pt) Dire qual e' il massimo numero possibile di vettori \mathbf{x} linearmente indipendenti tali che $Q(\mathbf{x}) > 0$. Ripetere per $Q(\mathbf{x}) = 0$ e per $Q(\mathbf{x}) < 0$.
- (iii) (2 pt) Trovare (se possibile) un vettore $\mathbf{x} \neq \mathbf{0}$ che sia ϕ -ortogonale a se stesso ed un vettore $\mathbf{x}' \neq \mathbf{0}$ che sia ϕ -ortogonale ad ogni vettore di \mathbb{R}^2 e tali che \mathbf{x} , \mathbf{x}' siano linearmente indipendenti.
- (iv) (3 pt) Trovare (se possibile) 3 parametri $k \in \mathbb{R}$ tale che $M + k \operatorname{Id}$ abbia rispettivamente segnatura (2,0), (1,1), (0,2).
- (v) (3 pt) Sia W il sottospazio generato dal vettore (1,2). Trovare W^{\perp} e $(W^{\perp})^{\perp}$. Trovare un sottospazio W' tale che $(W')^{\perp} \neq W^{\perp}$. Si noti: \perp significa ϕ -ortogonale.
- (vi) (2 pt) Classificare la seguente conica:

$$Q(\mathbf{x}) + 2x_1 + x_2 = -1.$$