线

封

题

封 ...

密

题号	_	=	III	四	五	六	七	八	九	+	基本题 总分	附加题
得分												
评卷人												

一. (每题 5 分,共 25 分)简答题

1.已知一个放大器的电压增益 A_{u=uo}/u_i 为 30<mark>dB</mark>, 输入电阻 R_i 为 1K , 信号源的内阻 R_s 为 500 , 求源电压增益 A_{us=uo}/u_s。

不 ··· 2.下图两个电路是什么滤波电路?图 b电路与图 a电路相比,有什么优点?

答:图 a 是无源低通滤波电路。

图 b 是有源低通滤波电路。优点是提高了电压放大倍数和带负载能力。

3.下图电路中的二极管可视为理想二极管, 判断该二极管是截止还是导通, 并求电压 U。。

答:二极管导通, Uo=-10V

4.场效应管与晶体管相比,其输入电阻有什么特点?在温度变化下,场效应管与晶体管 谁性能更好?

答:与晶体管相比,场效应管的输入电阻更高。在温度变化下,场效应管性能更好。

5.基本放大电路常见的三种组态是什么?双极型三极管输出特性上可以划分为三个工作区域,分别是什么?

三种组态分别为:共射,共基,共集。 ------ (3分)

三个工作区域: 饱和区, 放大区, 截至区。 ------ (2分)

二、(15 分) 电路如图所示 , 假设运放为理想的。 已知: $R_{11}=R_{12}=R_{f1}$, $R_{21}=R_{f2}$, $V_{l1}=2V$, $V_{l2}=3V$ 。试求: V_{O1} 和 V_{O2} 。.

解:
$$V_{o1} = -\left(\frac{R_{f1}}{R_{11}}V_{i1} + \frac{R_{f1}}{R_{12}}V_{i2}\right) = -5V_{o}$$
 ------ (8分)

$$V_{o2} = -\frac{R_{f2}}{R_{21}} V_{o1} = 5V_{o}$$
 ---- (7分)

- 三、 (20分)电路如图示,晶体管的 =100, rbb =100, UBEQ=0.7V。
 - (1) 求静态工作点 Q(I_{BQ}, I_{CQ}, U_{CEQ});
 - (2) 画出微变等效电路;
 - (3) 求电压放大倍数 Au、输入电阻 Ri、输出电阻 Ro。

解:(1)
$$U_{BQ} = \frac{R_{b1}}{R_{b1} + R_{b2}} V_{cc} = 2V$$

$$I_{CQ} \approx I_{EQ} = \frac{U_{BQ} - 0.7}{R_{e}} = 1.3 \text{ mA}$$

$$I_{BQ} = \frac{I_{EQ}}{1 + \beta} \approx 13 \, \text{\muA}$$

$$U_{CEQ} = V_{cc} - I_{EQ} (R_C + R_E) = 12 - 1.3(5 + 1) = 4.2V$$

(2)该电路的微变等效电路为

(3)
$$r_{be} = r_{bb} + (1 + \beta) \frac{26}{I_{EQ}} = 100 + 101 * \frac{26}{1.3} = 2.1 k\Omega$$

$$A_{u} = -\frac{\beta (R_{c} //R_{L})}{r_{be}} = -95$$

$$R_i = R_{b1} / / R_{b2} / / r_{be} = 1.4 k\Omega$$

$$R_o = R_c = 5 k\Omega$$

四、(15分)两级放大电路如下图所示,设两个三极管的 1、2、rbe1、rbe2已知。

- a) T1、T2 接法是什么组态? T1 组态放在第一级的好处是什么?
- b) 写出电压放大倍数 A_u = U_o/U_i、输入电阻 R_i和输出电阻 R_o的表达式。

解:T1 是共集组态 ,T2 是共射组态。 T1 组态放在第一级的好处是提高整个放大器的输入电阻。

$$\begin{split} \dot{A_u} &= U_o / U_i = A_{u1} A_{u2} \approx 1 \underbrace{ \left(-\frac{\beta_2 \left(R_c / / R_L \right)}{r_{be2}} \right)}_{pe2} = -\frac{\beta_2 \left(R_c / / R_L \right)}{r_{be2}} \\ & \neq r_{be2} \end{split}$$

$$\dot{\beta}_{e2} = \frac{(1 + \beta_1) \left(R_e / / R_{i2} \right)}{r_{be1} + (1 + \beta_1) \left(R_e / / R_{i2} \right)} = \frac{(1 + \beta_1) \left(R_e / / R_{b2} / / r_{be2} \right)}{r_{be1} + (1 + \beta_1) \left(R_e / / R_{b2} / / r_{be2} \right)} \approx 1 \end{split}$$

输入电阻
$$R_i = R_{i1} = R_{b1} / / R_i = R_{b1} / / (r_{be1} + (1 + \beta_1) (R_e / / R_{b2} / / r_{be2}))$$
 ,

输出电阻 $R_o = R_c$

五、(10分)反馈放大电路如下图所示。

- a) 指出反馈支路,说明反馈的组态(包括:正 /负,直流/交流,电压/电流,串联/并联)
- b) 若满足深度负反馈条件下,求闭环电压增益。

解: a) 反馈元件为 R2,反馈类型:交直流电压并联负反馈;

b)
$$\frac{u_1}{R_1} = \frac{-u_o}{R_2}$$
, 所以 $A_{uf} = \frac{u_o}{u_1} = -\frac{R_2}{R_1}$

- a) 当 R_W 的滑动端在中点时 , uo=0 , 求静态工作点 ^I ^{BQ} , ^I CQ , ^U CEQ 。
- b) 输出端接负载, RL=6K ,且 Rw 的滑到中点,求差模电压放大倍数 Ad、共模电压 放大倍数 Ad、共模抑制比 K CMR、输入电阻、输出电阻。

解:该差分电路的发射极电流
$$I_{EQ} = \frac{V_{EE} - 0.7}{2 R_{e}} = 0.72 \text{ mA} \approx I_{CQ}$$

$$I_{BQ} = I_{CQ} / \beta = 0.0072 \text{ mA}$$
,

$$U_{CEQ} = V_{CC} - I_{CQ} (R_C + \frac{R_W}{2} + 2R_e) - (-V_{EE}) = -3.4 \text{ V}$$

差模电压放大倍数为:

$$A_{ud} = -\frac{\beta((R_c + R_W) / / R_L)}{r_{be}} = -38.5$$

共模电压放大倍数为:

$$A_{uc} = 0$$
 $K_{CM R} = \left| \frac{A_{ud}}{A_{uc}} \right| = \infty$

$$R_{id} = 2 r_{be} = 7.8 k \Omega$$

$$R_{od} = 2(R_c + \frac{R_W}{2}) = 6.1 \text{ k}\Omega$$

附加题

一.(12分)电路如图, T1、T2 完全对称, Vces=1V,

求: 1. 输出最大功率;

2. 在最大输出功率时的效率

3. 当电容 C2 短路后,会出现什么现象?

- 二、(18分)图示电路中各运放均为理想运放,稳压管的稳定电压均为 $U_{Z=4V}$,稳压管的正向导通压降可忽略,三极管的饱和压降 $U_{CES=0.5V}$, =100,输入电压 u_i 为图中方波。
- (1) 分析在输入电压 ui 的正半周(ui=5V) 负半周(ui=-5V)时间内,三极管各位于什么工作区(截止、放大、饱和)。
- (2) A₁ ~ A₃ 各组成什么应用电路?
- (3) 设 t=0 时, 电容电压为 0, 分别画出 u₀₁、u₀₂、u₀₃、u₀的波形图.

