ДЗ 19.7. Агаев Хамза РЗ234 (поток 1.5).

№1

$$\Delta = t \frac{\overline{S}}{\sqrt{n}}$$

$$0.2 = t * \frac{2}{\sqrt{626}}$$

$$t = \frac{\sqrt{626}}{10} = 2,502$$

№2

$$(S(1-a), S(1+a))$$

 $y = \Phi(t) = 0.9876$

$$\begin{cases} 3*(1-a) = 2 \\ 3*(1+a) = 4 \end{cases} = > \begin{cases} 1-a = \frac{2}{3} \\ 1+a = \frac{4}{3} \end{cases} = > a = \frac{1}{3}$$

$$\begin{cases} a = \frac{1}{3} \\ n = 10 \end{cases} = > \gamma = 0.8$$

№3

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} \frac{l_i + l_{i+1}}{n} m_i = \frac{1}{400} (955*5 + 965*35 + 975*60 + 985*72 + 995*80 + 1005*60 + 1015*55 + 1015*5$$

$$+1025*20 + 1035*10 + 1045*3) = 994,2$$

$$\sigma_{\theta} = \sqrt{\frac{1}{n} \sum_{i=1}^{k} m_i \left(\frac{l_i + l_{i+1}}{n} - \bar{x}\right)^2} = \sqrt{\frac{1}{400}(139944)} = 18,7$$

№4

i	x_i	y_i	x_i^2	x_i^3	x_i^4	x_i^5	x_i^6	$x_i y_i$	$x_i^2 y_i$	$x_i^3 y_i$
1	-4	-5,1	16	-64	256	-1024	4096	20,4	-81,6	326,4
2	-3	-3,5	9	-27	81	-243	729	10,5	-31,5	94,5
3	-2	-2	4	-8	16	-32	64	4	-8	16
4	-1	-0,15	1	-1	1	-1	1	0,15	-0,15	0,15
5	0	0,3	0	0	0	0	0	0	0	0
6	1	1,2	1	1	1	1	1	1,2	1,2	1,2
7	2	2,4	4	8	16	32	64	4,8	9,6	19,2
8	3	3,8	9	27	81	243	729	11,4	34,2	102,6
9	4	6	16	64	256	1024	4096	24	96	384
\sum_{i}	0	2,95	60	0	708	0	9780	76,45	19,75	944,05

$$\begin{cases} 9a_0 + 0a_1 + 60a_2 + 0a_3 = 2,95 \\ 0a_0 + 60a_1 + 0a_2 + 708a_3 = 76,45 \\ 60a_0 + 0a_1 + 708a_2 + 0a_3 = 19,75 \\ 0a_0 + 708a_1 + 0a_2 + 9780a_3 = 944,05 \end{cases} = > \begin{cases} 9a_0 + 60a_2 = 2,95 \\ 60a_1 + 708a_3 = 76,45 \\ 60a_0 + 708a_2 = 19,75 \\ 708a_1 + 9780a_3 = 944,05 \end{cases}$$

$$a_0 = 0.312; a_1 = 0.927; a_2 = 0.002; a_3 = 0.029$$

 $y = 0.312 + 0.927x + 0.002x^2 + 0.029x^3$

$$\bar{x} = \frac{1}{200} (2.5*133 + 7.5*45 + 12.5*15 + 17.5*4 + 22.5*2 + 27.5*1) = 5$$

$$M[X] = \int_0^{+\infty} x f(x) dx = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\frac{1}{\lambda} = \bar{x} = > \frac{1}{\lambda} = 5 = > \lambda = 0.2$$

№6

$$y = \bar{y} + r_{xy} \frac{S_y}{S_x} (x - \bar{x})$$

$$\bar{x} = \frac{20^{*4} + 25(6 + 8) + 30(10 + 32 + 4) + 35(3 + 12 + 1) + 40(9 + 6 + 5)}{100} = \frac{3170}{100} = 31.7$$

$$\bar{y} = \frac{16(4 + 6) + 26(8 + 10) + 36(32 + 3 + 9) + 46(4 + 12 + 6) + 56(1 + 5)}{100} = 35.6$$

$$s_x^2 = \frac{20^{2*4} + 25^2(6 + 8) + 30^2(10 + 32 + 4) + 35^2(3 + 12 + 1) + 40^2(9 + 6 + 5)}{100} - 31.7^2 = 28.61$$

$$s_y^2 = \frac{16^2(4 + 6) + 26^2(8 + 10) + 36^2(32 + 3 + 9) + 46^2(4 + 12 + 6) + 56^2(1 + 5)}{100} - 35.6^2 = 103.84$$

$$S_x = \sqrt{28.61} \approx 5.349$$

$$S_y = \sqrt{103.84} \approx 10.19$$

$$Cov(x, y) = (20^{*1}6^{*4} + 25^{*1}6^{*6} + 25^{*2}26^{*8} + 30^{*2}26^{*1}0 + 30^{*3}36^{*3}2 + 35^{*3}36^{*3} + 40^{*3}6^{*9} + 30^{*4}6^{*4} + 35^{*4}6^{*1}2 + 40^{*4}6^{*6} + 35^{*5}56^{*1} + 40^{*5}56^{*5})/100 - 31.7^{*3}5.6 = 41.68$$

$$r_{xy} = \frac{Cov(x, y)}{s_x s_y} = \frac{41.68}{5.349^{*1}0.19} = 0.7647$$

№7

 $y = 35.6 + 0.7647 * \frac{10.19}{5.349} (x - 31.7)$

y = 1,457x - 10,5798

Номер интервала	Интервал	Середина интервала \bar{x}_i	Частота m_i	$x_i m_i$	$(x_i - \bar{x})m_i$	$\left(x_i - \bar{x}\right)^2 m_i$	$\frac{m_i}{m}$
1	0 - 5	2,5	15	37,5	139,5	1297,35	0,06
2	5 – 10	7,5	75	562,5	322,5	1386,75	0,3

3	10 – 15	12,5	100	1250	70	49	0,4
4	15 – 20	17,5	50	875	285	1624,5	0,2
5	20 - 25	22,5	10	225	107	1144,9	0,04
\sum_{i}	_	_	250	2950	924	5502,5	1

$$\bar{x} = \frac{1}{n} \sum_{i=0}^{k} \bar{x}_i m_i = \frac{2950}{250} = 12$$

$$D_{e} = \frac{1}{n} \sum_{i=1}^{k} (\bar{x}_{i} - \bar{x})^{2} m_{i} = \frac{1}{n} \sum_{i=1}^{k} (\bar{x}_{i})^{2} m_{i} - \bar{x} = 22,01$$

$$\sigma_{\scriptscriptstyle \theta} = \sqrt{D_{\scriptscriptstyle \theta}} = 4,691$$

$$S_e^2 = \frac{\sum (x_i - \bar{x})m_i}{\sum m_i - 1} = \frac{5502.5}{249} = 22,098$$

$$S_6 = 4,701$$

$$m'_i = mP_i = 250P_i$$

Интервал	m_i	$x_1 = \frac{\left(x_i - \bar{x}\right)}{S_\theta}$	$x_2 = \frac{\left(x_{i+1} - \bar{x}\right)}{S_6}$	$\Phi(x_1)$	$\Phi(x_2)$	$P_i = \Phi(x_2) - \Phi(x_1)$	$m_i' = 250P_i$
0 - 5	15	-2,5102	-1,4465	-0,5000	-0,4265	0,0735	18,4
5 – 10	75	-1,4465	-0,3829	-0,4265	-0,1517	0,2748	68,7
10 – 15	100	-0,3829	0,6807	-0,1517	0,2549	0,4066	101,65
15 – 20	50	0,6807	1,7443	0,2549	0,4599	0,205	51,25
20 - 25	10	1,7443	2,808	0,4599	0,5000	0,0401	10
\sum_{i}	250	_	_	-	_	1	250

$$x_{\text{набл}}^2 = \sum_{i=1}^5 \frac{\left(m_i - m_i'\right)^2}{m_i'} = 1,26$$

Для
$$\alpha=0.05$$
 и $k=2$: $x_{\kappa p}^2 \big(0.05;2\big)=6.0$

$$x_{{\scriptscriptstyle Ha6A}}^2 < x_{\kappa p}^2 = > \,$$
 гипотеза не отвергается

x_i	$ar{x}_i$	m_i	$\bar{x}_i m_i$	$\left(\bar{x}_i - \bar{x}\right)^2 m_i$
40,24 - 40,26	40,25	1	40,25	0,0025
40,26 – 40,28	40,27	4	161,08	0,0036
40,28 – 40,30	40,29	6	241,74	0,0006
40,30 – 40,32	40,31	11	443,41	0,0011
40,32 – 40,34	40,33	15	604,95	0,0135
40,34 – 40,36	40,35	16	645,6	0,04
40,36 – 40,38	40,37	12	484,44	0,0588
40,38 – 40,40	40,39	7	282,73	0,0567
40,40 - 40,42	40,41	5	202,05	0,0605
40,42 - 40,44	40,43	3	121,29	0,0507
\sum_{i}	-	80	3227,54	0,288

$$\bar{x} = \frac{1}{n} \sum_{i=0}^{k} \bar{x}_i m_i = \frac{3227,54}{80} = 40,3$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\bar{x} - x_i)^2 m_i = 0,004$$

$$S = \sqrt{0,004} = 0,063$$

$$F^*(x) = \int_{-\infty}^{x} \frac{1}{0,063\sqrt{2\pi}} \exp\left(-\frac{(t-40,3)^2}{2*0,004}\right) dt = \frac{1}{2} + \Phi\left(\frac{x-40,3}{0,063}\right)$$

$$\lambda_{onsim} = \max \left| F(x_i) - F^*(x_i) \right| *\sqrt{n} = (0.6714 - 0.597) *\sqrt{80} = 0.665$$

$$\lambda_{\kappa p} = 1,63$$

$$\lambda_{onыm} < \lambda_{\kappa p} = >$$
 гипотеза согласуется

№9

Заметим, что это геометрическое распределение. Известно, что первый начальный момент есть математическое ожидание m, равное $\frac{1}{D}$, тогда система сводится к уравнению

$$m = \frac{1}{p} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
. То есть $p = \frac{1}{\bar{x}}$.

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a;b] \\ 0, & x \notin [a;b] \end{cases}$$

Используя выборку $x_1, \ x_2, \ \dots, \ x_n$, находим выборочные первый начальный и второй

центральные моменты:
$$\bar{x} = \frac{1}{n} \sum_{i=0}^{k} x_i$$
, $\sigma_n^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$

Для равномерного распределения имеем теоретические моменты
$$m_x = \frac{a+b}{2}, \ \ \sigma_x^2 = \frac{\left(b-a\right)^2}{12}$$

Прировняем теоретические моменты выборочным и получаем систему двух уравнений с двумя неизвестными для нахождения оценок параметров a, b:

$$\begin{cases} \frac{a+b}{2} = \bar{x} \\ \frac{(b-a)^2}{12} = D \end{cases}$$
$$a = \bar{x} - \sqrt{3D}, \ b = \bar{x} + \sqrt{3D}$$

№11

Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к оценке математического ожидания при помощи доверительного интервала

$$\bar{x} - t_{\gamma} \frac{S}{\sqrt{n}} \le m_x \le \bar{x} + t_{\gamma} \frac{S}{\sqrt{n}}$$

$$\begin{cases} n = 16 \\ \gamma = 0.999 \end{cases} = > t = 4.07$$

$$42.8 - 4.07 * \frac{8}{\sqrt{16}} \le m_x \le 42.8 + 4.07 * \frac{8}{\sqrt{16}}$$

$$34.66 \le m_x \le 50.94$$