

🔽 🚺 \pmb Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15050029402

FCC REPORT (BLE)

CELUMAX MOBILE S.A.S Applicant:

Address of Applicant: Cra 20# 13-61 ofc 201 Bogota-Colombia

Equipment Under Test (EUT)

Product Name: **Smart Phone**

Model No.: Ultra

FCC ID: 2AEXB-12ULTRA

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 May., 2015

Date of Test: 12 May., to 05 Jun., 2015

Date of report issued: 05 Jun., 2015

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	05 Jun., 2015	Original

Prepared by:	War Dick	Date:	05 Jun., 2015
	Report Clerk	-	
Reviewed by:	o' man	Date:	05 Jun., 2015

he and live

Project Engineer

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Project No.: CCIS150500294RF

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	
4		T SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	18
	6.6	BAND EDGE	
	6.6.1	00.000000 =00.00	
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	Radiated Emission Method	30
7	TES	T SETUP PHOTO	35
8		CONSTRUCTIONAL DETAILS	26

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	CELUMAX MOBILE S.A.S	
Address of Applicant: Cra 20# 13-61 ofc 201 Bogota-Colombia		
Manufacturer:	Shenzhen kleadtone technology co. LTD	
Address of Manufacturer:	Room B201, Garden City Cyber Port, No. 1079 Nanhai Road, Nanshan District, Shenzhen, China	

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	Ultra
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-1.65 dBi
Power supply:	Model: HNFL050100UU Input:100-240V AC, 50/60Hz, 0.2A Output:5V DC, 1A
AC adapter:	Rechargeable Li-ion Battery DC3.8V-1900mAh

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS150500294RF

Report No: CCIS15050029402

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016	

Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -1.65 dBi.

6.2 Conducted Emission

T D	F00 Peri 45 0 0 edit 45 00	7			
Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.4: 2009				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Frequency range (MHz)	Limit (d Quasi-peak	dBuV) Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
Test setup:	Reference Plane				
	AUX Equipment E.U.T EMI Receiver Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Neutral:

Trace: 3

Site

Condition

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL : Smart phone : Ultra EUT : Ultra
Test Mode : BLE mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Colin
Remark :

Kemark	:								
		Read	LISN	Cable		Limit	Over		
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
	MHz	₫₿uѶ	dB	₫B	dBu₹	dBu₹	<u>dB</u>		
1	0.178	24.90	0.28	10.77	35.95	54.59	-18.64	Average	
2	0.270	38.44	0.26	10.75	49.45	61.12	-11.67	QP	
3	0.354	38.62	0.25	10.73	49.60	58.87	-9.27	QP	
4	0.354	29.27	0.27	10.73	40.27	48.87	-8.60	Average	
5	0.398	38.67	0.25	10.72	49.64	57.90	-8.26	QP	
2 3 4 5 6 7 8 9	0.398	26.29	0.28	10.72	37.29	47.90	-10.61	Average	
7	0.611	34.92	0.22	10.77	45.91	56.00	-10.09	QP	
8	0.759	20.09	0.23	10.80	31.12	46.00	-14.88	Average	
9	2.664	12.38	0.27	10.93	23.58	46.00	-22.42	Average	
10	3.436	28.24	0.29	10.91	39.44	56.00	-16.56	QP	
11	10.179	34.97	0.25	10.94	46.16	60.00	-13.84	QP	
12	10.733	19.90	0.31	10.93	31.14	50.00	-18.86	Average	

Line:

Trace: 1

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE Site Condition

EUT Smart phone Ultra Model

Test Mode : BLE mode Power Rating : AC120/60Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Colin

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>		dBu∜	dBu₹	<u>dB</u>	
1	0.182	29.31	0.28	10.77	40.36	54.42	-14.06	Average
2	0.226	38.74	0.27	10.75	49.76	62.61	-12.85	QP
3	0.358	42.69	0.27	10.73	53.69	58.78	-5.09	QP
1 2 3 4 5 6 7 8	0.358	35.37	0.27	10.73	46.37	48.78	-2.41	Average
5	0.406	31.19	0.28	10.72	42.19	47.73	-5.54	Average
6	0.442	38.68	0.28	10.74	49.70	57.02	-7.32	QP
7	0.595	37.33	0.25	10.77	48.35	56.00	-7.65	QP
8	0.683	24.62	0.22	10.77	35.61	46.00	-10.39	Average
9	1.888	30.47	0.26	10.95	41.68	56.00	-14.32	QP
10	5.249	19.53	0.30	10.84	30.67	50.00	-19.33	Average
11	5.390	32.91	0.30	10.84	44.05	60.00	-15.95	QP
12	9.552	18.82	0.31	10.92	30.05	50.00	-19.95	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-3.38		
Middle	-3.44	30.00	Pass
Highest	-3.73		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.4:2009 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.76		
Middle	0.76	>500	Pass
Highest	0.76		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.04		
Middle	1.04	N/A	N/A
Highest	1.05		

Test plot as follows:

Highest channel 99% OBW

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-3.98		
Middle	-4.09	8.00	Pass
Highest	-4.37		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	9 and 15.205				
Test Method:	ANSI C63.4: 20	09					
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value		
	Above 1GHz	Peak	1MHz	10Hz	Average Value		
Limit:	Freque Above 1	GHz		0	Remark Average Value Peak Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:	Sheet. Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier						
Test Instruments:	Refer to section	5.7 for details	}				
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart phone EUT : Ultra Model Test mode : BLE -L Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Colin REMARK :

	2000		Antenna Factor						
2	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2390.000 2390.000					55.94 45.14			

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Smart phone Model : Ultra Test mode : BLE -L Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Colin REMARK :

TITLE TO	r :								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
,	MHz	—dBuV		<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	22.35	27.58	6.63	0.00	56.56	74.00	-17.44	Peak
2	2390.000	10.93	27.58	6.63	0.00	45.14	54.00	-8.86	Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone Model : Ultra

. Ultra
lest mode : BLE -H
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Colin
REMARK :

Huni:55%

	Freq		Antenna Factor						
	MHz	dBu₹		d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Test channel: Highest

Vertical:

Site Condition 3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT Smart phone Model : Ultra : BLE -H Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C
Test Engineer: Colin
REMARK : Huni:55%

RIIRIO									
	Freq		Antenna Factor						Remark
-	MHz	dBu₹	— <u>d</u> B/m	d <u>B</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2009 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
Totaloutomouto	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 25.MAY.2015 17:04:30

30MHz~25GHz

Middle channel

Date: 25.MAY.2015 17:05:15

30MHz~25GHz

Highest channel

Date: 25.MAY.2015 17:06:41

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4:2009									
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:										
•	Frequency									
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value									
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	Above IGHZ	Peak	1MHz	10Hz	Average Value					
Limit:										
	Frequency		Limit (dBuV/m	@3m)	Remark					
	30MHz-88MHz		40.0		Quasi-peak Value					
	88MHz-216MHz		43.5		Quasi-peak Value					
	216MHz-960MH	z	46.0		Quasi-peak Value					
	960MHz-1GHz		54.0		Quasi-peak Value					
	Above 1GHz	_	54.0		Average Value					
			74.0		Peak Value le 0.8 meters above					
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenre the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit specified B for the EUT have 10 dB	at a 3 meter e the position was set 3 m hich was mount and ver neasurement. Suspected ementhe anterest the rota table maximum reasurement suspected ementhe anterest the rota table maximum reasurement, suspected ementhe anterest the rota table maximum reasurement is son level of the cified, then the would be restant and would be restant and margin would set in the rota table and with the	camber. The nof the highest teters away funted on the trailed from one the maximutical polarizations on the Enna was turned ding. In Maximum Hamilton away to the EUT in peresting could be corted. Other do be re-tested.	table was st radiation. From the incop of a variance meter to the important of the importan	rotated 360 degrees					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Smart phone : Ultra Model

Test mode : BLE

Power Rating : AC120V/60Hz

Test Engineer: Colin REMARK Environment : Temp: 25.5°C Huni:55%

T									
	Freq		Antenna Factor				Limit		Remark
	4								
_	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1	37.680	41.83	13.01	0.50	29.92	25.42	40.00	-14.58	QP
2	66.266	47.53	10.16	0.76	29.75	28.70	40.00	-11.30	QP
1 2 3 4 5	82.071	44.39	9.28	0.86	29.62	24.91	40.00	-15.09	QP
4	100.581	37.93	13.11	0.97	29.52	22.49	43.50	-21.01	QP
5	228.490	51.35	11.57	1.52	28.66	35.78	46.00	-10.22	QP
6	942.131	45.32	21.37	3.44	27.75	42.38	46.00	-3.62	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : Smart phone : Ultra

Model Test mode : BLE

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Colin

Huni:55%

	Freq		Antenna Factor						Remark
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBu√/m	dB	
1	31.955	44.85	12.32	0.45	29.97	27.65	40.00	-12.35	QP
2	66.266	46.34	10.16	0.76	29.75	27.51	40.00	-12.49	QP
3	81.783	43.31	9.28	0.86	29.63	23.82	40.00	-16.18	QP
4	228.490	46.44	11.57	1.52	28.66	30.87	46.00	-15.13	QP
2 3 4 5	457.507	41.97	15.59	2.28	28.88	30.96	46.00	-15.04	QP
6	942.131	45.98	21.37	3.44	27.75	43.04	46.00	-2.96	QP

Above 1GHz

Т	Test channel:			Lowest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.75	31.53	8.90	40.24	45.94	74.00	-28.06	Vertical
4804.00	45.64	31.53	8.90	40.24	45.83	74.00	-28.17	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.93	31.53	8.90	40.24	37.12	54.00	-16.88	Vertical
4804.00	36.47	31.53	8.90	40.24	36.66	54.00	-17.34	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	46.01	31.58	8.98	40.15	46.42	74.00	-27.58	Vertical
4882.00	45.57	31.58	8.98	40.15	45.98	74.00	-28.02	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	37.56	31.58	8.98	40.15	37.97	54.00	-16.03	Vertical
4882.00	36.69	31.58	8.98	40.15	37.10	54.00	-16.90	Horizontal

Т	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.33	31.69	9.08	40.03	47.07	74.00	-26.93	Vertical
4960.00	45.65	31.69	9.08	40.03	46.39	74.00	-27.61	Horizontal

Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.99	31.69	9.08	40.03	38.73	54.00	-15.27	Vertical
4960.00	36.57	31.69	9.08	40.03	37.31	54.00	-16.69	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366