ISYS1055/1057/3412 (Practical) Database Concepts

Assessment 4: Database Design Project

Course Name: Database Concepts (2250)

Student Name: Antony Rosario John Peter

Student ID: \$3940203

Student Email: s3940203@student.rmit.edu.au

Part B: Designing the Database (10%)

Task B.1: Designing an Entity Relationship Model

Entity Relationship Model for Data on COVID-19 (coronavirus) vaccinations by Our World

Assumptions:

- As given in the requirement, we need to have an entity of four countries, Australia, Germany, Italy, and United States, but we have the same details in the Vaccinations Entity
- I have created an entity called Country's_Daily_observation and have combined the data of Australia, Germany, Italy and United States into single table and rest of the information can be fetched from Vaccinations Entity
- I have created a new entity called Location_list with Locations and ISO_Code as attributes where ISO_Code will be the primary key of the entity

- Instead of having the location names in the entities, I have planned to replace them with ISO Code
- Here, the count of location name in Locations entity and the count of unique location names in Vaccinations does not equal, So I have taken the ISO_Code from Vaccinations entity as well to create the Location_list entity
- We have multi-valued attributes in some entities will be managed in later part of the Schema

Task B.2: Mapping an ER Model to a Relational Database Schema

Step 1: Strong Entities

Location_list (<u>ISO_Code</u>, Locations)

Step 2: Weak Entities

- Locations (<u>ISO_Code*</u>, <u>LastObservationDate</u>, Vaccines [1...N], Source_Name,
 Source_Website)
- Vaccinations (<u>ISO_Code*</u>, <u>Date</u>, TotalVaccinations, Total_Vaccinations_per_hundred,
 People_vaccinated, People_vaccinated_per_hundred, People_fully_vaccinated,
 People_fully_vaccinated_per_hundred, Total_Boosters,
 Total_Boosters_per_hundred, Daily_Vaccinations_raw, Daily_Vaccinations,
 Daily_Vaccinations_per_millions, Daily_People_Vaccinated,
 Daily_People_Vaccinated_per_hundred)
- Vaccinations by manufacturers (ISO Code*, Date, Vaccines, Total Vaccinations)
- Vaccinations_by_age_group (<u>ISO_Code*</u>, <u>Date</u>, <u>Age_group</u>,
 People_Vaccinated_per_hundred, People_Fully_Vaccinated_per_hundred,
 People_with_booster_per_hundred)
- US_State_Vaccinations (<u>ISO_Code*,Date, Location</u>, Total_vaccinations,
 Total_distributed, People_vaccinated, People_fully_vaccinated_per_hundred,
 Total_vaccinations_per_hundred, People_fully_vaccinated,
 People_vaccinated_per_hundred, Distributed_per_hundred,
 Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million,
 Share_doses_used, Total_boosters, Total_boosters_per_hundred)
- Country's Daily Observation (ISO Code*, Date, Vaccine [1...N], Source_url)

Step 3: One-to-One Relationships

Locations has a 1...1 relationship with Location_list, but ISO_Code is already included in Locations as a foreign key, together with LastObservationDate makes the primary key of Locations.

Locations (<u>ISO Code*, LastObservationDate</u>, Vaccines [1...N], Source_Name,
 Source Website)

US_State_Vaccinations has a 1...1 relationship with Location_list, but ISO_Code is already included in US_State_Vaccinations as a foreign key, together with Date, Location makes the primary key of US_State_Vaccinations.

US_State_Vaccinations (<u>ISO_Code*, Date, Location</u>, Total_vaccinations,
 Total_distributed, People_vaccinated, People_fully_vaccinated_per_hundred,
 Total_vaccinations_per_hundred, People_fully_vaccinated,
 People_vaccinated_per_hundred, Distributed_per_hundred,
 Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million,
 Share_doses_used, Total_boosters, Total_boosters_per_hundred)

Step 4: One-to-Many Relationships

As we have already included ISO_Code as foreign key with 1...N relationship, so no further action is required.

Step 5: Many-to-Many Relationships

Nothing to do here, we don't have any Many to Many relationship

Step 6: Multi-valued Attributes

As we can see in Locations, Vaccinations_by_age_group and Country's_Daily_Observation have Multi-valued Attributes of Vaccines

So, I have created a new entity named Vaccine_list, which consist of all the unique types of vaccines which are given in above listed four entities and have created a Vaccine_ID for all the individual Vaccines.

Vaccine_list (Vaccine_ID, Vaccine_Name)

Step 7: Higher Degree Relationships

Nothing to do here, we do not have any ternary relationship

Special Case:

Nothing to do here, we do not have any Special Cases.

Relational Database Schema:

- Location_list (<u>ISO_Code</u>, Locations)
- Locations (<u>ISO Code*, LastObservationDate</u>, Vaccines [1...N], Source_Name, Source_Website)
- Vaccinations (<u>ISO Code*</u>, <u>Date</u>, TotalVaccinations, Total_Vaccinations_per_hundred, People_vaccinated, People_vaccinated_per_hundred, People_fully_vaccinated, People_fully_vaccinated_per_hundred, Total_Boosters, Total_Boosters_per_hundred, Daily_Vaccinations_raw, Daily_Vaccinations, Daily_Vaccinations_per_millions, Daily_People_Vaccinated, Daily_People_Vaccinated_per_hundred)
- Vaccinations_by_manufacturers (ISO_Code*, Date, Vaccine, Total_Vaccinations)
- Vaccinations_by_age_group (<u>ISO_Code*</u>, <u>Date</u>, <u>Age_group</u>,
 People_Vaccinated_per_hundred, People_Fully_Vaccinated_per_hundred,
 People with booster per hundred)
- US_State_Vaccinations (<u>ISO_Code*,Date, Location</u>, Total_vaccinations,
 Total_distributed, People_vaccinated, People_fully_vaccinated_per_hundred,
 Total_vaccinations_per_hundred, People_fully_vaccinated,
 People_vaccinated_per_hundred, Distributed_per_hundred,
 Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million,
 Share_doses_used, Total_boosters, Total_boosters_per_hundred)
- Country's_Daily_Observation (ISO_Code*, Date, Vaccine [1...N], Source_url)
- Vaccine list (Vaccine ID, Vaccine Name)

Normalisation:

- 1. Functional Dependencies:
 - ISO_Code -> Locations
 - ISO_Code, LastObservationDate -> Vaccines [1...N], Source_Name, Source_Website
 - ISO_Code, Date -> TotalVaccinations, Total_Vaccinations_per_hundred,
 People_vaccinated, People_vaccinated_per_hundred, People_fully_vaccinated,
 People_fully_vaccinated_per_hundred, Total_Boosters,
 Total_Boosters_per_hundred, Daily_Vaccinations_raw, Daily_Vaccinations,
 Daily_Vaccinations_per_millions, Daily_People_Vaccinated,
 Daily_People_Vaccinated_per_hundred
 - ISO Code, Date, Vaccines -> Total Vaccinations

- ISO_Code, Date, Age_group -> People_Vaccinated_per_hundred,
 People_Fully_Vaccinated_per_hundred, People_with_booster_per_hundred
- ISO_Code, Date, Location -> Total_vaccinations, Total_distributed,
 People_vaccinated, People_fully_vaccinated_per_hundred,
 Total_vaccinations_per_hundred, People_fully_vaccinated,
 People_vaccinated_per_hundred, Distributed_per_hundred,
 Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million,
 Share_doses_used, Total_boosters, Total_boosters_per_hundred
- ISO_Code, Date -> Vaccine [1...N], Source_url
- Vaccine_ID -> Vaccine_Name

2. Highest Normal Form:

- Location list (ISO Code, Locations) -> 3NF
- Locations (<u>ISO_Code*</u>, <u>LastObservationDate</u>, Vaccines [1...N], Source_Name,
 Source_Website)
 - -- A Non primary key attribute has a multi-valued attribute, failed 1NF
- Vaccinations (<u>ISO Code*</u>, <u>Date</u>, TotalVaccinations,
 Total_Vaccinations_per_hundred, People_vaccinated,
 People_vaccinated_per_hundred, People_fully_vaccinated,
 People_fully_vaccinated_per_hundred, Total_Boosters,
 Total_Boosters_per_hundred, Daily_Vaccinations_raw, Daily_Vaccinations,
 Daily_Vaccinations_per_millions, Daily_People_Vaccinated,
 Daily People Vaccinated per hundred) -> 3NF
- Vaccinations_by_manufacturers (<u>ISO_Code*, Date, Vaccine</u>, Total_Vaccinations) -> 3NF
- Vaccinations_by_age_group (<u>ISO_Code*, Date, Age_group</u>,
 People_Vaccinated_per_hundred, People_Fully_Vaccinated_per_hundred,
 People_with_booster_per_hundred) -> 3NF
- US_State_Vaccinations (<u>ISO_Code*,Date, Location</u>, Total_vaccinations,
 Total_distributed, People_vaccinated, People_fully_vaccinated_per_hundred,
 Total_vaccinations_per_hundred, People_fully_vaccinated,
 People_vaccinated_per_hundred, Distributed_per_hundred,
 Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million,
 Share_doses_used, Total_boosters, Total_boosters_per_hundred) -> 3NF
- Country's_Daily_Observation (ISO_Code*, Date, Vaccine [1...N], Source_url)
 - -- A Non primary key attribute has a multi-valued attribute, failed 1NF
- Vaccine_list (<u>Vaccine_ID</u>, Vaccine_Name) -> 3NF

3. Decomposing into 3NF relations

Using Text to Columns option in Microsoft Excel, I have separated multi-valued attributes into columns.

After splitting the comma separated values in Vaccine column, I used Pivot-Longer function to change to columns into row, so all the individual vaccines used will be in each tuple for the respective location and date

- Location_list (ISO Code, Locations) -> 3NF
- Locations (<u>ISO_Code*</u>, <u>LastObservationDate</u>, <u>Vaccines</u>, Source_Name,
 Source_Website) -> <u>3NF</u>
- Vaccinations (<u>ISO Code*, Date</u>, TotalVaccinations,
 Total_Vaccinations_per_hundred, People_vaccinated,
 People_vaccinated_per_hundred, People_fully_vaccinated,
 People_fully_vaccinated_per_hundred, Total_Boosters,
 Total_Boosters_per_hundred, Daily_Vaccinations_raw, Daily_Vaccinations,
 Daily_Vaccinations_per_millions, Daily_People_Vaccinated,
 Daily_People_Vaccinated_per_hundred) -> 3NF
- Vaccinations_by_manufacturers (<u>ISO_Code*, Date, Vaccine</u>, Total_Vaccinations) -> 3NF
- Vaccinations_by_age_group (<u>ISO_Code*</u>, <u>Date</u>, <u>Age_group</u>,
 People_Vaccinated_per_hundred, People_Fully_Vaccinated_per_hundred,
 People_with_booster_per_hundred) -> 3NF
- US_State_Vaccinations (<u>ISO_Code*,Date, Location</u>, Total_vaccinations,
 Total_distributed, People_vaccinated, People_fully_vaccinated_per_hundred,
 Total_vaccinations_per_hundred, People_fully_vaccinated,
 People_vaccinated_per_hundred, Distributed_per_hundred,
 Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million,
 Share_doses_used, Total_boosters, Total_boosters_per_hundred) -> 3NF
- Country's Daily Observation (ISO Code*, Date, Vaccine, Source url)
- Vaccine_list (Vaccine_ID, Vaccine_Name) -> 3NF

4. Final Relationship Schema:

I have created a relation between the entities which has the vaccine names with the Vaccine_List entity and replaced all the vaccine names with Vaccine_ID and link the relation

Below given is the Final Relationship Schema:

Location_list (ISO Code, Locations)

Vaccine_list (<u>Vaccine_ID</u>, Vaccine_Name)

Locations (<u>ISO Code*, LastObservationDate, Vaccine ID, Source_Name, Source_Website</u>)

Vaccinations (ISO Code*, Date, TotalVaccinations, Total_Vaccinations_per_hundred, People_vaccinated, People_vaccinated, People_fully_vaccinated, People_fully_vaccinated, People_fully_vaccinated_per_hundred, Total_Boosters, Total_Boosters_per_hundred, Daily_Vaccinations_raw, Daily_Vaccinations, Daily_Vaccinations_per_millions, Daily_People_Vaccinated, Daily_People_Vaccinated per_hundred)

Vaccinations_by_manufacturers (<u>ISO Code*, Date, Vaccine ID</u>, Total_Vaccinations)

Vaccinations_by_age_group (<u>ISO_Code*</u>, <u>Date</u>, <u>Age_group</u>,
People_Vaccinated_per_hundred, People_Fully_Vaccinated_per_hundred,
People_with_booster_per_hundred)

US_State_Vaccinations (ISO_Code*, Date, Location, Total_vaccinations,
Total_distributed, People_vaccinated, People_fully_vaccinated_per_hundred,
Total_vaccinations_per_hundred, People_fully_vaccinated,
People_vaccinated_per_hundred, Distributed_per_hundred, Daily_vaccinations_raw,
Daily_vaccinations, Daily_vaccinations_per_million, Share_doses_used,
Total_boosters, Total_boosters_per_hundred)

Country's Daily Observation (ISO Code*, Date, Vaccine ID, Source_url)