# Multivariate Data Analysis Final Assignment

Marios Marios (M.Marinos@student.tudelft.nl)

November 5, 2020

#### 1. Calculate and plot the position estimation error

On the X-axis we can see the N that goes from 0 to 1000 and on y axis it's the estimation error  $\epsilon(n+1)$  with highest value of approximately 1.5.



Figure 1: Plotting the estimation error for  $\alpha = 0.1$ 

#### 2. Estimate the variance of position estimation error for different alpha values.

Continuing the question 1. I created a new column on the data frame that is the square of estimation error, and then got the mean of it. That was done for each different alpha value from -1 to 1. On the figure below we can see that the most suitable value of alpha is near  $\alpha = -0.12$  to -0.1 which is the minimum of our curve. Finally, we can observe as the alpha increases the variance.



Scatter plot of different alphas and the respective variance.

Figure 2: Plotting the variance mean for  $\alpha$  values ranging from -1 to 1

# 3. Show the variance of the estimation error can also be expressed in terms of the auto-correlation function of the process X(n).

Starting by this equation  $\sigma_{\epsilon}^2 = E[\epsilon(n+1)^2] = E[(X(n+1) - \hat{X}(n+1))^2]$  we have by expanding using the formula  $(a-b)^2$  the equation (2).

$$\hat{X}(n+1) = X(n) + \alpha(X(n) - X(n-1)) \tag{1}$$

$$\sigma_{\epsilon}^2 = E[X^2(n+1) - 2X(n+1)\hat{X}(n+1) + \hat{X}^2(n+1)] \tag{2}$$

Using in the equation 2 the equation 1 we get:

$$\sigma_{\epsilon}^{2} = E[X^{2}(n+1) - 2X(n+1)(X(n) + \alpha(X(n) - X(n-1))) + (X(n) + \alpha(X(n) - X(n-1)))^{2}]$$

$$\Rightarrow E[X^{2}(n+1) - 2X(n+1)(X(n) + \alpha X(n) - \alpha X(n-1)) + (X(n) + \alpha X(n) - \alpha X(n-1))^{2}]$$

$$By \ applying \ the \ formula \ (a+b-c)^{2} = +a^{2} + b^{2} + c^{2} + 2ab - 2ac - 2bc \ we have :$$

$$\Rightarrow E[X^{2}(n+1) - 2X(n)X(n+1) - 2\alpha X(n)X(n+1) + 2\alpha X(n+1)X(n-1)$$

$$+X^{2}(n) + \alpha^{2}X^{2}(n) + \alpha^{2}X^{2}(n-1) + 2\alpha X^{2}(n) - 2\alpha X(n)X(n-1) - 2a^{2}X(n)X(n-1)]$$

$$\Rightarrow E[(2\alpha^{2} + 2\alpha + 2)X^{2}(n) + (-2\alpha^{2} - 4\alpha - 2)X(n)X(n+1) + 2\alpha X(n)X(n+2)]$$

$$\Rightarrow (2 + 2\alpha + 2\alpha^{2})R_{X}(0) + (-2 - 4\alpha - 2\alpha^{2})R_{X}(1) + 2\alpha R_{X}(2)$$

$$\Rightarrow Therefore, \ \sigma_{\epsilon}^{2} = (2 + 2\alpha + 2\alpha^{2})R_{X}(0) + (-2 - 4\alpha - 2\alpha^{2})R_{X}(1) + 2\alpha R_{X}(2)$$

$$(3)$$

#### 4. Minimize the variance with respect to a.

In order to find the minimum of equation (3) we need to take the derivative with respect to a and find where

it's equal to 0.

$$\frac{\partial \sigma_{\epsilon}^{2}}{\partial \alpha} = (2 + 2\alpha + 2\alpha^{2})' R_{X}(0) + (-2 - 4\alpha - 2\alpha^{2})' R_{X}(1) + (2\alpha)' R_{X}(2) 
\Rightarrow (2 + 4\alpha) R_{X}(0) + (-4 - 4\alpha) R_{X}(1) + 2R_{X}(2) = 0 
\Rightarrow 2R_{X}(0) + 4\alpha R_{X}(0) - 4R_{X}(1) - 4\alpha R_{X}(1) + 2R_{X}(2) = 0 
\Rightarrow 4\alpha R_{X}(0) - 4\alpha R_{X}(1) = -2R_{X}(0) + 4R_{X}(1) - 2R_{X}(2) 
\Rightarrow \alpha(4R_{X}(0) - 4R_{X}(1)) = 4R_{X}(1) - 2R_{X}(2) - 2R_{X}(0) 
\Rightarrow \alpha = \frac{4R_{X}(1) - 2R_{X}(2) - 2R_{X}(0)}{4R_{X}(0) - 4R_{X}(1)} 
\Rightarrow \alpha = \frac{2R_{X}(1) - R_{X}(2) - R_{X}(0)}{2(R_{X}(0) - R_{X}(1))}$$
(5)

If we also take the second derivative we get  $4R_X(0) - 4R_X(1)$  which is positive if we consider the fact that  $R_X(0) \ge |R_X(k)| \forall k$ . Hence, the  $\alpha$  found is minimum.

#### 5. Calculate and plot optimal value of $\alpha$ as a function of $\rho$

If we plug in the function given  $R_X(k) = \sigma_X^2 \rho^{|k|}$  into equation (5) we get  $\alpha = \frac{2\sigma_X^2 \rho - \sigma_X^2 \rho^2 - \sigma_X^2}{2(\sigma_X^2 - \sigma_X^2 \rho)}$ . If we get out the factor  $\sigma^2$  in both the numerator and the denominator and thus they cancel.

$$\alpha = \frac{2\rho - \rho^2 - 1}{2(1 - \rho)} \Rightarrow \frac{-(\rho - 1)^2}{2(1 - \rho)} \Rightarrow \frac{\rho - 1}{2}$$
 (6)



Figure 3: Plotting the variance mean for  $\alpha$  values ranging from -1 to 1

#### 6. Estimate the value of from the data X(n), and find the optimal value of $\alpha$

Now, if we calculate the

$$R_X(1) = E[(n)X(n+1)] = \sigma_X^2 \rho$$
  
 $R_X(2) = E[(n)X(n+2)] = \sigma_X^2 \rho^2$ 

So we have the case of k = 1, k = 2 and we have to estimate the E[X(n)X(n+1)] and E[X(n)X(n+2)] respectively to find out the estimation of  $\rho$ .

$$E[(n)X(n+1)] = \frac{1}{N} \sum_{i=1}^{N-1} X(i)X(i+1) \Rightarrow \rho = 0.8686$$

$$E[(n)X(n+2)] = \frac{1}{N} \sum_{i=1}^{N-2} X(i)X(i+2) \Rightarrow \rho^2 = 0.76797 \dots \Rightarrow \rho = \pm \sqrt{0.76797}$$

Given the values of  $\rho$ , we can calculate the optimal  $\alpha$  based on the equation (6). For k=1 we have  $\alpha=-0.0657$ . If we now consider the k=2 and do the same we have for the 2 different  $\rho's$  we get  $\alpha=-0.06183\ldots$  So we can conclude that the optimal value of  $\alpha$  is around  $\alpha\approx-0.063\ldots$ 

#### 7. Estimate the autocorrelation function based on the input file

To estimate autocorrelation function using the following equation:

$$R_X(k) = \frac{1}{N} \sum_{i=1}^{N-k} X(i) * X(i+k)$$
 (7)

We have to consider that we can **only sum** until N-k rather than N as we have finite amount of data. Using equation 6. we get the below plot:



Figure 4: Plotting the variance mean for  $\alpha$  values ranging from -1 to 1

## 8. Use the result under part (g.) and Equation (4) to plot the variance of position estimation error (n + 1) as a function of $\alpha$

Using the estimate of the Autocorrelation function and equation (3) we plot the variance of position estimation error as a function of  $\alpha$ .  $\alpha \in [-1, 1]$  increasing it by 0.01.



: of estimation of variance for different alphas using autocorrelation fun

Figure 5: Plotting the variance of position estimation error as a function of  $\alpha$ .

By observing Figure 5 a suitable value for a would be around -0.11 which line up with the previous results and it looks very similar in what we got on question (2).

#### 9. Use the result under parts (d.) and (g.) to find the optimal value of $\alpha$

If we fill in the  $R_X(0)$ ,  $R_X(1)$ ,  $R_X(2)$  from question 7. in equation (4), we can calculate the actual optimal minimum  $\alpha$ :

$$(4\alpha + 2) * 1.0418186912944625 + (-4\alpha - 4) * 0.9055397698880611 + 2 * 0.8005967705204181 = 0 \tag{8}$$

By solving equation (8), the optimal  $\alpha$  is:

-0.114969804997615

## 10. Explain the differences (if they exist) between the calculated optimal/suitable values of $\alpha$ in parts (b.), (f.), and (i.).

The values obtained from question 2, 9 seems very similar, if not exactly the same, thus there is no difference in calculated values of  $\alpha$ . If we consider now the optimal  $\alpha$  that was obtained from question 6 is a bit difference than the  $\alpha$  obtained from question 2 and question 9. That makes quite sense, because

calculating the  $\alpha$  on question 6 we only consider one estimated value of the autocorrelation function whereas on the two others we get into account all the data provided.

| Question 2 | -0.117 |
|------------|--------|
| Question 6 | -0.063 |
| Question 9 | -0.115 |

Table 1: Table of different optimal alphas.