代数学方法

卷一:基础架构

更新日期: 2025 年 04 月 21 日 aytony

目录

1.	集合论	. 3
2	范畴论其础	1

1. 集合论

2. 范畴论基础

练习 2.1: 设 $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ 是任意范畴中的态射。证明若 $A \xrightarrow{gf} C$ 和 $B \xrightarrow{hg} D$ 皆为同构,则 f,g,h 全是同构。

证明: 因为 gf,hg 都是同构所以 f,g 都是单态射, g,h 都是满态射。由于它们是同构, 所以存在 φ,ψ 使得 $\varphi gf=1_A,\psi hg=1_B$ 。

要证明 f 是同构, 只要证明 $\varphi gf=1_A$ 且 $f\varphi g=1_B$, 前者是假设, 而由 $f\varphi gf=f1_A=f$ 右消去 f 得到后者。

要证明 g 是同构,只要证明 $\psi hg = 1_B$ 且 $g\psi h = 1_C$,前者是假设,后者由 $g\psi hg = g1_B = g$ 使用右消去得到。

要证明 h 是同构,只要证明 $g\psi h=1_C$ 且 $hg\psi=1_D$,前者由 $g\psi hg=g1_B=g$ 使用左消去得到,后者由 $\psi hg\psi=1_B\psi=\psi$ 使用左消去得到,这是因为 $\psi gf=1_A$ 可逆从而 ψ 是满态射。

练习 2.2: 对范畴 C, C' 定义其并 C ★ C' 如下:

$$Ob(C \star C') := Ob(C) \sqcup Ob(C'),$$

$$\operatorname{Hom}_{\mathsf{C}\star\mathsf{C}\prime}(X,Y) \coloneqq \begin{cases} \operatorname{Hom}_{\mathsf{C}}(X,Y) & X,Y \in \operatorname{Ob}(\mathsf{C}) \\ \operatorname{Hom}_{\mathsf{C}\prime}(X,Y) & X,Y \in \operatorname{Ob}(\mathsf{C}') \\ \text{$\not{\boxtimes}$ } & X \in \operatorname{Ob}(\mathsf{C}),Y \in \operatorname{Ob}(\mathsf{C}') \\ \varnothing & X \in \operatorname{Ob}(\mathsf{C}'),Y \in \operatorname{Ob}(\mathsf{C}). \end{cases}$$

为 $C \star C'$ 中的态射合理地定义合成和单位元,并验证 $C \star C'$ 确实构成范畴;它包含 C 和 C' 作为全子范畴。对于有限序数范畴,证明 $n \star m$ 同构于 n + m。

证明: 先定义合成。对 $\forall X,Y,Z \in \mathrm{Ob}(\mathsf{C} \star \mathsf{C}'), f \in \mathrm{Hom}_{\mathsf{C} \star \mathsf{C}'}(X,Y), g \in \mathrm{Hom}_{\mathsf{C} \star \mathsf{C}'}(Y,Z)$ 存在,我们分类讨论。

- I. 若 $X,Y,Z \in Ob(C)$ 或 Ob(C'),则分别按照 C 或 C' 中定义的态射合成方式进行合成:
- 2. 若 $X, Y \in Ob(C), Z \in Ob(C')$, 那么 $g \in Hom_{C\star C'}(Y, Z)$ 是唯一的,因为这个集合是独点集,直接定义 $g \circ f$ 为 $Hom_{C\star C'}(X, Z)$ 这个独点集中的唯一元素即可;
- 3. 若 $X \in Ob(C)$, $Y, Z \in Ob(C')$, 那么 $f \in Hom(X, Y)$ 是唯一的,定义 $g \circ f$ 是 Hom(X, Z) 中的唯一元素即可;
- 4. 不可能出现其他情况,因为不会有从 Ob(C') 到 Ob(C) 的态射存在。

再定义单位元。对 $\forall X \in \mathrm{Ob}(\mathsf{C} \star \mathsf{C}')$,若 $X \in \mathrm{Ob}(\mathsf{C})$,那么定义 1_X 为 C 中 X 的单位态射;否则定义 1_X 为 C' 中 X 的单位态射。

再验证 C * C' 构成范畴:

1. 对 $\forall f \in \text{Mor}(C \star C')$, 由定义知道 f 的定义域和值域一定都是 $Ob(C \star C')$ 中的元素;

- 2. 上文已经定义了单位态射;
- 3. 上文定义的复合运算对 C*C' 封闭;
- 4. 复合运算有结合律。对 $\forall f, g, h \in \text{Mor}(C \star C')$ 且它们可进行复合,若 $f, g, h \in \text{Mor}(C)$ 或 $f, g, h \in \text{Mor}(C')$,那么由于 C, C' 是范畴,它们自然是结合的;否则, (hg)f, h(gf) 一定都是从 Ob(C) 中一元素映射到 Ob(C') 中一元素,而这是一个 独点集,所以它们两个一定相同。
- 5. 容易验证 $\forall f: X \to Y \in \operatorname{Mor}(C \star C')$ 有 $f1_X = f = 1_Y f$ 。

直接按定义容易验证 C, C' 是 C * C' 的全子范畴。

练习 2.3: 选定 Grothendieck 宇宙,证明其中全体有限全序集及其间的保序映射构成一个范畴 Ord_f 。证明有限序数 $0,1,\cdots$ 构成此范畴的骨架。

证明: TODO

练习 2.4: 设 C 为范畴,并对每个 $X,Y \in \mathrm{Ob}(\mathsf{C})$ 在 $\mathrm{Hom}_{\mathsf{C}}(X,Y)$ 上给定二元关系 \mathcal{R} 。构造相应的商范畴 C/\mathcal{R} 连同函子 $Q:\mathsf{C}\to\mathsf{C}/\mathcal{R}$ 使得

- 对任意 C 中态射 f, g 有 $f\mathcal{R}g \Rightarrow Q(f) = Q(g)$;
- 函子 Q 在对象集上是双射;
- 对任何函子 $S: C \to C'$ 满足 $f\mathcal{R}g \Rightarrow S(f) = S(g)$ 者, 存在唯一的函子 $\overline{S}: C/\mathcal{R} \to C'$ 使得 $S = \overline{S}Q$ 。

说明 $Q: \mathbb{C} \to \mathbb{C}/\mathcal{R}$ 的唯一性。

证明:基于 \mathcal{R} 定义等价关系 \mathcal{R}' ,使得对 $\forall f,g \in \operatorname{Mor}(\mathsf{C})$ 有 $f\mathcal{R}'g$,如果 $f\mathcal{R}g$,并基于传递性进行扩充。那么 Q(f) = Q(g) 当且仅当 $f\mathcal{R}'g$ 。基于选择公理对 $\operatorname{Mor}(\mathsf{C})$ 中的 \mathcal{R}' -等价类选定代表元,由这些代表元作为态射和 $\operatorname{Ob}(\mathsf{C})$ 作为对象构成的范畴记为 C/\mathcal{R} 。

对每个 $f \in \text{Mor}(C)$, 记其代表元为 $Q(f) \in \text{Mor}(C/\mathcal{R})$, 对 $X \in \text{Ob}(C)$ 令 Q(X) = X, 这样就定义了函子 Q, 容易看出它的函子性。容易证明它服从前两个条件。

对于第三个条件,对 $\forall Q(f) \in \operatorname{Mor}(\mathbb{C}/\mathcal{R})$,令 $\overline{S}(Q(f)) = S(f)$ 即可。由于 f 可能不唯一,先说明 \overline{S} 是良定的。设 f,f' 满足 Q(f) = Q(f'),那么 $f\mathcal{R}'g$,从而选择公理保证 S(f) = S(g)。容易看出 $S = \overline{S}Q$ 。 \overline{S} 存在性得证。

练习 2.5: 设 $F: C_1 \to C_2$ 和 $G: C_2 \to C_3$ 为范畴等价(即:具有逆拟函子),证明 $GF: C_1 \to C_3$ 也是等价,其拟逆可以取为 F 和 G 的拟逆之合成。

证明: 设 $F': C_2 \to C_1$ 和 $G': C_3 \to C_2$ 分别为 F,G 的拟逆函子,那么有同构 $\varphi: F'F \overset{\sim}{\to} \mathrm{id}_{C_1}, \varphi': FF' \overset{\sim}{\to} \mathrm{id}_{C_2}, \psi: G'G \overset{\sim}{\to} \mathrm{id}_{C_2}$ 和 $\psi': GG' \overset{\sim}{\to} \mathrm{id}_{C_3}$ 。那么容易看出 F'G' 为 GF 的拟逆函子,这是因为

$$F'G'GF \xrightarrow{\operatorname{id}_{F'} \circ \psi \circ \operatorname{id}_{F}\left(\sim\right)} F'F \xrightarrow{\qquad \varphi'\left(\sim\right)} \operatorname{id}_{\mathsf{C}_{1}},$$

$$GFF'G' \xrightarrow{\operatorname{id}_{F} \circ \varphi' \circ \operatorname{id}_{G'}\left(\sim\right)} GG' \xrightarrow{\hspace*{1cm} \psi'\left(\sim\right)} \operatorname{id}_{\mathsf{C}_{3}}.$$

其中自然映射的合成均为横合成。

练习 2.6: 详述例 2.6.8 中各个伴随对的余单位。

练习 2.7: 记 Ring 为以环为对象,环同态为态射的范畴,注意到这里的环皆含乘法 幺元,同态按定义须保幺元。如果不假设环含幺,所得范畴记为 Rng(这可能是本 书中唯一一次考虑这类环)。证明显然的函子 Ring → Rng 具有左伴随。

证明: 即证明遗忘函子 $G: Ring \to Rng$ 具有左伴随。直接令函子 $F: Rng \to Ring$, 将每个环 R 映射到其幺元化环 R^+ , 这里的 R 的幺元化环 R^+ 定义为

$$R^+ = R \times \mathbb{Z}, \qquad (r, n) \times (s, m) = (rs + nr + ms, nm),$$

其中单位元为 (0,1)。

然后证明 $F \neq G$ 的左伴随。只要证明对 $\forall R \in Ob(Rng), S \in Ob(Ring)$ 构造自 然同构

$$\varphi: \operatorname{Hom}_{\mathsf{Ring}}(R^+, S) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{Rng}}(R, S^-).$$

构造 φ 如下:

1. 对环同态 $f: R^+ \to S$ 定义 $g: R \to S^-, r \mapsto f(r, 0)$;

2. 对环同态 $q: R \to S^-$ 定义 $f: R^+ \to S, (r,n) \mapsto q(r) + n \cdot 1_{S}$ 。

容易证明两个映射互为逆, 并保持环同态结构。

练习 2.8: 设 (F, G, φ) 是伴随对,则

1. $\eta: \mathrm{id}_{\mathsf{C}_1} \to GF$ 为同构当且仅当 F 是全忠实函子; 2. $\varepsilon: FG \to \mathrm{id}_{\mathsf{C}_2}$ 为同构当且仅当 G 是全忠实函子。

提示 基于对偶性 (以 C^{op} 代 C),仅需证 (1)。先证明对所有 C_1 中的态射 $f: X \to C_2$ Y 都有 $\varphi(Ff) = \eta_V f: X \to GFY$: 这是缘于 φ 的自然性导致图表

交换。米田引理(定理 2.5.1)表明 $\eta_Y: Y \xrightarrow{\sim} GFY$ 当且仅当 $f \mapsto \eta_Y f$ 给出双射 $\operatorname{Hom}(X,Y) \xrightarrow{\sim} \operatorname{Hom}(X,GFY)$,其中 X 取遍 C_1 的对象;既然 φ 是同构,这又相当于 $f \mapsto Ff$ 是双射,亦即 F 是全忠实的。

证明: 先证必要性, 设 $\eta: \mathrm{id}_{\mathsf{C}_1} \to GF$ 为同构, 那么只要证明对 $\forall X, Y \in \mathrm{Ob}(\mathsf{C}_1)$ 映射

$$F: \operatorname{Hom}_{\mathsf{C}_1}(X,Y) \to \operatorname{Hom}_{\mathsf{C}_2}(FX,FY)$$

是双射。由于 η 是同构,对 $\forall f: X \to Y$ 有

$$\eta_Y \circ f = GF(f) \circ \eta_X,$$

因为 η_X , η_Y 是同构, 所以 $f \to GF(f)$ 是双摄, 又因为 φ 是伴随对的自然同构, 于是得到

$$\varphi(F(f)) = \eta_Y \circ f,$$

于是 $f \mapsto F(f)$ 是双射, 那么 F 是全忠实的。

再证充分性, 假设 F 是全忠实的, 那么 $\forall X \in Ob(C_1)$ 映射

$$F: \mathrm{Hom}_{\mathsf{C}_1}(X,X) \to \mathrm{Hom}_{\mathsf{C}_2}(FX,FX)$$

是双摄,存在唯一态射 $\eta_X: X \to GFX$ 使 $F(\eta_X) = \mathrm{id}_{FX}$,且 η_X 是同构。因此 η 是同构。

练习 2.9: 假设 C 既是完备也是余完备的。对于小范畴 I,证明对角函子 $\Delta: C \to C^I$ (定义 2.7.1) 有左、右伴随函子,阐释它们与 C 中的 \lim_{\to} 与 \lim_{\to} 的关系,相应的单位和余单位作何解释?

练习 2.10: 设域 \mathbb{K} 为域,证明在 \mathbb{K} -向量空间范畴 $\mathsf{Vect}_f(\mathbb{K})$ 里,每个对象都同构于一些有限维子空间间的 \lim_{\to} 。将此想法移植到交换群范畴 Ab (考虑有限生成交换群的 \lim_{\to})。

练习 2.11: 设 C 是 C' 的全子范畴,包含函子记为 $J: C \to C'$ 。说明对任意两个函子 $F, G: C_0 \rightrightarrows C$,与 J 的横合成诱导双射

$$\operatorname{Hom}_{\operatorname{Fct}\;(\operatorname{\mathsf{C}}_0,\operatorname{\mathsf{C}}\prime)}(JF,JG) = \operatorname{Hom}_{\operatorname{Fct}\;(\operatorname{\mathsf{C}}_0,\operatorname{\mathsf{C}})}(F,G).$$

证明: 对任意自然变换 $\varphi \in \operatorname{Hom}(JF,JG)$, 定义 $\psi \in \operatorname{Hom}(F,G)$ 为 $\psi_X = J^{-1}(\varphi_X)$, 因为 J 是全忠实的,所以 J^{-1} 良定。

然后验证 ψ 的自然性,即对 \mathbf{C}_0 中态射 $f:X\to Y$,要验证 $\psi_Y\circ F(f)=G(f)\circ\psi_X$ 交换。这是因为

$$J(\psi_Y\circ F(f))=\varphi_Y\circ JF(f)=JG(f)\circ \varphi_X=J(G(f)\circ \psi_X),$$

上式使用了J的函子性, φ 的自然性和J的忠实性。

练习 2.12: 在带基点的集合范畴 Set。中描述积和余积,证明它是完备且余完备的。 推广到 Top_{\bullet} 的情形。

练习 2.13: 考虑忘却函子 $Set_{\bullet} \to Set$,找出 U 的左伴随,并证明 U 无右伴随。