

Radiology

Handwritten Note

MBBS Help

<http://mbbshelp.com>

<http://www.youtube.com/mbbshelp>

<http://www.facebook.com/mbbshelp.com>

Name: _____

Subject: _____ **Radiology**

- Q What kind of Radiotherapy do you use in skull base chordoma
- (a) x rays
 - (b) UV rays
 - (c) protons.
 - (d)

- Q Kernohan notch phenomenon is seen in ? Cerebral Herniation
- (a)

CT SCAN

4

Sir Godfrey Hounsfield

1972

Nobel Prize → 1979

ENGLAND

He was working for EMI (Electrical Musical Instruments)

they also ^{↓ sold} ~~made~~ BEATLES

Computed Tomography

X-Ray

Attenuation. - x-ray stopping power of tissue.

If tissue doesn't stop
x-Ray
↓
Black

Computer screen has expanded grey scale.

Hounsfield created a scale of attenuation values of each tissue

Housefield value of fat = -100

is more black than H₂O

5

Lens " " also

Brain = 20-40

- Q. -100 HU on CT — RECALL
- a) Fat
 - b) Water
 - c) Brain
 - d) Bone

- Q. AJIMS
child → c B/l Renal Tumour → CT Scan ⇒ -100 HU.
What is the mode of inheritance of the disease
Angio myolipoma → Tuberous sclerosis → AD inheritance

Supero-Inferior Dimension Appreciation

~~Orbit~~

- 1) Orbit
- 2) Sylvian fissure
- 3) A & P Horn of Lateral ventricle

At Level of Orbit -

Orbit → Temporal lobe — Brainstem

cerebellum

P.No - 14.

Lateral v. → caudate
3rd v. → thalamus

Trigeminal n/v
Basilic artery
⇒ ↑ ageing
Due to atherosclerosis of
Branch of Basilar artery
pinching on Trigeminal n/v

↓
Trigeminal Neuralgia

Rx → Carbamazepine

Inf. Horn
of Lateral ventricle.

In early Hydrocephalus
Inf. horn is 1st part to
be ballooned out.

7
Internal carotid artery
B/W frontal + Temporal lobe

Dense MCA

earliest sign of CT. of
infarct.

① Amygdala

Ant to the medial (mesial)
~~Temporal~~ Temporal lobe.

② Uncus

Hook like structure.
Most medial.

③ Hippocampus

1st part to degenerate in.
Alzheimer's Disease

cranial pharyngioma

Pharyngeal part of Rathke's Pouch. \Rightarrow remnant from Tx
Craniopharyngiome

Pituitary
Development

Cranial

Pharyngeal.

Above the Level of Orbit

8

① Aqueduct of Sylvius.

② Optic tracts

③ Uncus

↳ Uncal Herniation

Lead to compression of med Brain

④ Basilar artery

In interpeduncular fossa → it divides to form

Post. cerebral artery & terminates here

Uncal Herniation may compress this → leading to ~~blindsight~~ blindsight

UNCAL HERNIATION

9

FALSE LOCALISING SIGN

Weakness tnt on.
ipsilateral side

Putamen is M/c Site for HTN haemorrhage in Brain.

corpus callosum separates the lateral ventricles.

In case of Agenesis of corpus callosum

Parallel Lat. ventricle

RACING CAR APPEARANCE
(small Body = Big wheel)

SAH

endovascular ~~clipping~~ coiling → by Neurologist
 ↓
 if can't be done

"

endovascular clipping by neurosx

VENOUS THROMBOSIS

Venous Thrombosis is found in Hypercoagulable state

- " ♂
- " ♀
- 2) Nephritic syndrome

Sup. Sagittal sinus thrombosis

↓
 cause B/L venous infarcts.

Venous infarcts are red infarcts. (Haemorrhage)
 arterial " are ^{Pale} white infarcts.

Internal cerebral vein thrombosis

↪ infarct of thalamus. (red infarct)

Sup. Sagittal sinus is medially posteriorly placed

discontinuous data

SLIP RINGS

CT Scan only can Axial (Transverse) Sections.

12

* **Cardiac CT** → done for coronary calcium scoring
"AGATSON's SCORE"

used for screening of atherosclerosis

~ 130 - cut off atherosclerosis

~ 400 - SEVERE

IOC for: Anomalous coronary origin.

ALCAPA = anomalous ① coronary artery Pulmonary
artery ↓
MI in childhood

IOC = cardiac CT.

P4I
June 2015

Goniology Radations :-

④ α

⑤ β

⑥ γ

⑦ x-ray

⑧ IR

⑨ light

⑩ sound

α -RAYS

- Made up of Helium nuclei He_4^{+2} - 2 protons \rightarrow Heavy
2 neutrons \rightarrow charged
- LEAST PENETRATION
- Maximum ionisation potential
- " Biological Damage

β -RAYS

- made up of electron particles
- used in systemic radiotherapy
 - Iodine \rightarrow Thyroid.
 - Phosphorus \rightarrow Bone

γ -RAYS

High Energy High frequency electromagnetic waves
"intranuclear".

Max. PENETRATION.

Tc 99M
Low energy
 \Downarrow
used in diagnosis

Co 60
High Energy
 \Downarrow
used in therapy

X-RAYS

High Energy, High frequency electromagnetic waves
"EXTRANUCLEAR" in origin

Not produced by radioactive Decay

velocity of X-rays = 3×10^8 m/s

wavelength of diagnostic X-rays, 0.1 to 1 Å.

* X-Rays are produced when rapidly moving electrons are halted.
 BREHMSTRALUNG X-Ray
 means ~~bremstung~~ - BRAKING.

Kinetic energy is converted to X-Ray

Mech. of heat loss in modern X-Ray
 $=$ RADIATION.

R → Rotating anode
 Rhenium
 Radiation.

$$10^{-10} \text{ m} = 1 \text{ Å}$$

\downarrow
 diameter of atom.

- Low energy X-Rays \rightarrow no imaging

Intermediate \rightarrow cause ejection of electron from K shell

Photoelectric effect (occurring on K shell) \downarrow

e^- from L shell to K shell + energy released

[Characteristic X-Ray]

Leading to formation of characteristic image on film.

\downarrow
Image formed is Latent Image

High Energy X-ray -

Random scattering of electrons from outer shell due to high energy X-rays

COMPTON EFFECT

Thickness of Pb apron = 0.5mm thick

16

Badge on chest = TLD Badge

↓ for Radiation Dose Monitoring

Thermoluminescent Dosimetry
check every 3 months

Max. permissible dose ν for occupational diseases
of radiation

$$\frac{20 \text{ mSv}}{\text{Annum.}} \leq 80$$

Photosensitive emulsion

↪ AgBr + Iodide

Double
Coated film.

Most sensitive to → Blue Light

Least " " " → Red Light

In Dark room, Safe Light ↓ = Red Colour

Digital

Image can be
processed → post.

KVP
Kilovolt Peak

- K = contrast

- V = voltage

- P = Penetrating power

MAS

17

Miliampere second
Blackening seen in the
negative film.

Radiation Dose received
by patient

obese → KVP have to be ↑

$$\text{Contrast} \propto \frac{1}{\text{KVP}}$$

Penetration of KVP

Mammography

18

~~Target~~ → Target is made up of Molybdenum.

When e^- strike Mb → they enter Mb

↓
release of e^- from inner shell → characteristic rays

Low Voltage

Routine mammography → CC (Craniocaudal)
MLO [Mediolateral Oblique]

Single Most Imp. X-Ray in Breast

= MLO

Mammography films = Single coated

Radiation exposure in mammography = More than CXR.

Root

Routine Screening for Ductal carcinoma in situ

= Mammography

ACR = 40 yrs - annual
mammogram

American = 45 yrs
La Society (Better)

IOC for High Risk Screening DCIS \Rightarrow MRI

MRI \rightarrow DCIS = microcalcification \Rightarrow False

\hookrightarrow Ductal enhancement.

Also seen in Perimenstrual ♀ - Physiology.

\hookrightarrow False \oplus

Breast MRI \rightarrow Done in 2nd week.

Most sensitive Inv for DCIS \Rightarrow MRI

IOC for Breast Implant \rightarrow MRI
evaluating

IOC for Breast Abscess \rightarrow USG.

IOC for Scar vs recurrence - ~~USG~~ MRI.

IOC for Solid vs cystic - USG

IOC \rightarrow Lump
young ♀ $=$ USG

USG has poor sensitivity for ~~DCIS~~ DCIS.

Inflammation

♀ presents ∞ inflamed Breast

Intracapsular Implant Rupture in USG.

20

↓ STEP LADDER PATTERN

↳ step ladder pattern in abd → small bowel obstruction.

BIRADS

Breast Imaging Reporting + Data System.

PIRADS → Prostate

TIRADS → Thyroid.

LIRADS → Liver

↳ By American College of Radiology

BIRADS 0 Inadequate for opinion.
Advise - USG.
Mammography

BIRADS 1 Normal } Continue routine screening.

BIRADS 2 Benign }

BIRADS 3 probably Benign. < 2% chance of malignancy

↳ Short term 6 month follow up

BIRADS 4 suspicious of malignancy

a = low

b = intermediate

c = high

BIRADS	5	s/o malignancy } > 95%
BIRADS	6	1/4 Biopsy proven malignancy

21

BIRADS -

- a) mammo
- b) USG
- c) ~~MRI~~ MRI
- d) all of above

Q ♀, multiple Breast Lesions -
one - benign.
other - malignant

BIRADS -?

↳ Single impression based on most malignant lesion.

BIRADS used in different from mammography.
 ↓
 Each Breast given separate BIRADS

1

Q. MRI magnet is switched off in betⁿ study ? -
 ↳ False.

↓
 always on.

Mg. field strength = 1.5 Tesla
 " " " of Earth
 = 50 mT.

In 3T MRI → twice Mg field
 → Better Image Quality

7 Tesla & 0.5 Tesla are also in research..

→ Helium Liquid

MRI room fitting i.
 [copper] meshwork
 & FARADAY's CAGE

H^+ protons → DIPOLE

H^+ ions get aligned in our body sideways to Magnetic field

RF pulse when introduced → H^+ ions will go towards RF pulse

When RF pulse switched off → H^+ comes back to its normal position.

Spin lattice Relaxation Time-

↳ Time required by H^+ to return to (1) position

T_1 (spin) lattice relaxation time

T_2 (spin) spin relaxation time

T_1 -WI → Based on spin-lattice relaxation time

T_2 WI → Based on spin-spin relaxation time

T_E Echo time short

$T_E = \text{Long}$

T_R Repetition Time. short

$T_R = \text{Long}$

Relative CI
↳ Claustrophobia

MRI - safe in ♀,

T_1 WI

T_2 WI

① CSF

Dark

white

Hypo intense

Hyper intense

② FAT

white

less white

Equally hyperintense on ♂

③ Cortical Bone Ca^{2+}	Dark	Dark
④ AIR	Dark	Dark
⑤ Tendon Ligament Meniscus	Dark	Dark
⑥ Hemosiderin.	Dark	Dark
⑦ Flowing Blood	Dark	Dark. Flow void. ⑧

of loss of flow void
↓
Thrombosis.

⑧ Calcification & Hemosiderin.

not visualised in MRI.
can't be differentiated

To differentiate them

susceptibility weighted imaging (SWI)

Salt & pepper appearance
↑
Nodularity.

	<u>T₁ WI</u>	<u>T₂ WI</u>	<u>FLAIR</u>
CSF	Dark	white.	25 Dark (free water)
Oedema	Dark	white (preferred in Brain pathology)	white *
Melanoma	White	Dark	
Melanin (Magnetic)			

When A & P Horn are same
↳ Lateral Bow Tie

Cartilage is seen on MRI.

ACL → from intercondyle to Ant. Tibia.

Cinema Hall Pain -

due to Chondromalacia patella

seen - Behind the patella → patellar cartilage softer
esp.

absence of Bow Tie

= Meniscal Tear.

PATELLA ALTA :-

26

Patella Higher than the N position

PATELLA - 'BAJA' :-

Patella Lower than the N position

STIR MRI → for Bone Edema.

↓ Short T1 Inversion Recovery		
Marrow	T ₁ WI	T ₂ WI
→ White	White	Dark
Edema → Dark	White	White

↑ Suppression
signal of marrow fat

Injury to medo-collateral Ligament ⇒ conservative Management

More commonly injured

Degenerated tendon of adductor Magnus

Bankart's lesion.

→ seen in antero-inf. glenoid labrum.

Hillsach's lesion.

→ seen in postero-lateral Humerus

Reverse Hillsach → antero-medial
In post-Disslocation

Hatchet Defect → In. Ankylosing Spondylitis

Supraglenoid labrum → related to Long Head of Biceps.

1st Inv to be done in rotator cuff tear = USG

IOC for Rotator cuff tear = MRI

Gold Std Arthroscopy

CT

Ac. Head Injury

Ac. Brain H'ge

Calcification

IOC

Neurological
→ MRI

Cortex of Bone → Seen better in ~~#~~ CT Scan

so, for # → CT.

for Marrow → MRI.

Stress # → may or may not be cortical #
so, Better seen in MRI

B/L multiple stress # → Bone Scan

IOC for Acute OM \Rightarrow MRI.

28

Intraosseous Bone Tumour \Rightarrow MRI

AVN \Rightarrow MRI

Italian

Q. Chronic alcohol taking, Red wine developed necrosis of corpus callosum. \in syndrome?

"MARCHI FAVA BIGNAMI"

LIPOMA in Brain? Yes

\uparrow
only congenital

M/c Site of Lipoma in Brain = **Pericallosal**

M/c Pineal Gland Tx = Germinaloma

Pinealoblastoma \rightarrow associated \in Retinoblastoma

Pineal is located in post. part of 3rd ventricle

\downarrow
compress sup. colliculus \in required for vertical gaze

So, in pineal enlarge, compress sup. colliculus

PERINAUD Sx (upward gaze palsy)

Tuber cinereum

↓ ↗ Ant to mamillary Body

Hypothalamic Hamartoma

→ ① Presents = Precocious Puberty

② Gelastic seizures.

↗ Bouts of Laughter .

On MRI

(1) white spot

↗ Post- Pituitary

pituitary gland

↗ appears white due to
vasopressin properties.
(ADH). as it has magnetic

CV Junc' (Crano Vertebral)

Clivus + Vertebra + Occipital

Btw basiphenoed & basiscutus

Odontoid process

Tonsil is above the level of foramen magnum 30

* Small Posterior Fossa

Tonsil goes below foramen magnum
↓
Tonsillar Herniation.

Chiari - I Malformation.
+

Spina Bifida / myelomeningocele

Arnold Chiari malformation
Chiari - II Malformation

Q. Y when Chiari I malformation will present to hospital?

ans 2nd Decade → SYRINGOMYELIA

Arnold Chiari malformation.

↳ LEMON SIGN } in antenatal USG
BANANA SIGN }

TECTAL BEAKING →

LUSCHKADEL SKULL → biconcave skull

DANDY WALKER

31

♀ presents quadriparese.

Cong. C-V Juncⁿ Ab(N)

* Rheumatoid arthritis → inflammation of synovium in C1-C2 region.

↓
Distance Betⁿ atlas & axis ↑

[atlanto-axial Dislocation].

↓ pressure on spinal cord

* Upward migration of odontoid process into foramen magnum → BASILAR INVAGINATION

* DOWN'S SYNDROME

CV Juncⁿ abnormalities +

So, before operating → X-Ray Neck is imp. in Down's syndrome

↓
to look for CV Juncⁿ Abnormalities

MORQUI Syndrome

Mucopolysaccharidosis

w/ Jun⁺ ab(β) +

OSTEO-MALACIA

Softening of skull base

Osteogenesis imperfecta

Paget's Disease

Clavus

[Skull Base Ab(N)]

CHORDOMA

- ① Remnant of notochord may form Tx
- ② M/C → Sacrococcygeal area
- ③ also seen in clavus
- ④ Physalliferous cells
↳ cells of notochord

Radiotherapy

Congenital Midline Cyst / Thoerwaldt Cyst

Pharyngeal endoderm comes to join notochord

MR Spectroscopy

33

choline ↑ → ↑ cell membrane → Malignancy

Creatinine ↓ → metabolism ↑

NAA ↓ → glomer or no neuron ↑↑

NAA is metabolized by Asparatoylase

so ↑ NAA → ↓ of asparatoacylase

CANAVAN's Sx

Alanine Peak on MR Spectroscopy \Rightarrow MENINGIOMA₃₄

DW-MRI

Based on Brownian ~~Moving~~ Motion \rightarrow

Ischaemia \rightarrow ATP \downarrow \rightarrow Na⁺/K⁺ ATPase stop working

+
neuron swelling
(cytotoxic oedema)

↓
endothelial cells damage

on routine CT/MRI \leftarrow vasogenic oedema

appears on 6-24 hrs

3-30 min. of onset \rightarrow 4 by DW-MRI.
use of thrombolytic can be done

Functional MRI

MRCP

Ioc for choledochal cyst \rightarrow MRCP.

Lake chain of stones appearance \rightarrow on chr. Pancreatic.

Linear filling Defect in Bile Duct = worm
Biliary Ascaris

- Minor papilla is ~~narrow~~^{narrow}, so there is not much space for drainage
 presents in ~~obstruction~~ Pancreatitis recurrent

Diffusion Tensor Imaging

Pt. underwent RTA 1 month back, since then he is comatose. → CT scan looks (N)

↳ Diffuse Axonal Injury

M/c site → Grey-white Junction

By Diffusion Tensor Imaging → can be A

HR angiography is used to screen cerebral ~~angiography~~ aneurysm

IOC for cerebral aneurysm → CT scan.

ADPKD → have more chance of Berry aneurysm
 MR angiography for screening

single ACA \rightarrow Azygous ACA

36

If thrombosis occurs

B/L infarction [B/L inferior seen in venous thrombosis]

Fetal PCA

B Blood supply from Int carotid artery

Thalamus derive blood supply from ^(B) PCA

In case if of fetal PCA

If thrombosis occurs

B/L thalamus infarct.

Artery of Percheron. \rightarrow D/D ~~venous~~

Internal

venous infarct.

Recurrent artery of Heubner

37

↳ Branch of Ant. cerebral artery
commonly injured by Sx while clipping ~~an~~
ant. cerebral artery aneurysm.

Q Pt develops ~~superficial~~ ^{superclinoid} ICA stenosis.
Idiopathic + progressive

Collateral formation occurs gradually

Moya - Moya Disease.

Puff of smoke appearance

MR Venography

38

* Vein of Galen malformation

Congenital AV fistula in mid brain.

↓
vein of Galen deleted

↓
Hydrocephalus

High output cardiac failure

Ioc = MR Venography

Dye

CT Scan → Iodinated contrast
↳ Radio-opaque

~~HCl + soft tissue~~

Most Radio-opaque dense soft tissue of Body

= THYROID

Iodinated
contrast

↓
Ionec
Monomer Demer

Non-Ionec
Monomer Demer

Depending on Benzene Ring

Iodine : Particle ratio \Rightarrow **3:2** (Monomer) $\frac{1400-6600}{39}$ mosm
 " " \Rightarrow **6:2** (Dimer) $600-800$ mosm.

not used nowadays due to ↑ osmolality → Anticoagulant (Desirable) Property

Used for long angiographic procedure
 (Low osmolality + anticoagulant)

Iodine : Particle ratio
 3:1

Iodine : Particle ratio
 6:1

300 mosm
 (isosmolar)

e.g.
 - Iohexol
 - Ioversol
 - Iopamidol.

- Iodixanol
 - Iotrolan

Idiosyncrasy

Direct S. Histamine release

Anaphylactoid Rxn.

Non-IgE

Adrenaline - life saving

Tubulo-interstitial injury

Non-allergic Nephropathy

Transient

Test Dose prediction → No

Contrast Nephropathy ↗ ,

rise in S-creatinine at least 0.5mg or 25%
baseline

measured after 48 hrs.

Prevention → Hydration

use non-ionic dye

[N-acetyl cysteine] ~~↓~~
[Sod. bicarbonate]

Preserve Trial

2018 → No role of N-acetyl cysteine
& Sod. Bicarbonate,

GADOLINIUM -

Used in MRI

Lanthanide

Para-Magnetic substance → Unpaired electron in
outer shell \oplus
Reduces T_1

CERMR → ~~T_1 wt~~ . ② T_2 wt ③ FLAIR

It is used as chelated form \rightarrow Gd-DTPA

Gadolinium in itself is toxic substance.

Crosses Placental Barrier \rightarrow

Teratogenic

↓
Should be "avoided in ♀"

Gd-DTPA

If $\text{eGFR} < 30 \text{ mL/min}$ in CRF

Renal Excretion

↓

Gd accumulates

↓

Painful, multisystem fibrosis
FATAL

↓
Nephrogenic Systemic Fibrosis

In case of renal failure \rightarrow plain MRI, CT.

Gd-DTPA \rightarrow doesn't cross BBB

If there is inflammation in Brain or aggressive neoplasm.

↓

they take up dye

Determinant of enhancement in Brain \rightarrow BBB

other tissues \rightarrow vascularity

CXR

28/3/18

43

True or False

- 1) CXR-PA view is mandatory in RTA \Rightarrow FALSE.
↓
CXR-AP view - True

- 2) AP-CXR.

a) Erect

b) Supine

↙ Both.

AP + PA views are according to rays.

Lateral + Oblique views are according to films kept
RH side \rightarrow Lt lateral

By default if side not mentioned \Rightarrow Left Lateral

Steeple Sign on Neck X-Ray = CROUP

Measure the Dist Betⁿ spinous process and medial end of clavicle. Should be equidistant

If not, called ROTATION

¶ Rotation of on CXR -

- a) Asymmetry in lung lucency & can be mistaken as pathology
- b) Asymmetry - HILAR
- c) Apparent Cardiomegaly

 Apparent cardiomegaly in CXR is due to

- 1) supine view
- 2) expiration view
- 3) Rotation

* Hilum = Bl. of Pulmonary artery + upper lobe veins

L.N.

T_x

Dilatation of P. artery

If L.N. +nt → Hilum will not be concave
It will be convex.

Bronchovascular markings are usually +nt in.

Medial $\frac{2}{3}$ rd of Lung

Plethora = ↑ BVM

= > medial $\frac{2}{3}$ rd of Lung

Air Bronchogram seen in Pneumonia

Fluid Detected	
By X Ray	100 - 200mL (150mL)

Vanishing Lung :- BULLA.

~~Ventral pleura not~~ vanishing Pleura Line Sign Absent
~~lowest contour not~~ parallel to chest wall.

- * RTA \in Blunt Abd Trauma \rightarrow 1st STEP evaluation
- FAST \rightarrow focused Assessment \in Sonography in Trauma
- ↓
- Done By ER Physician.
- Take under 5 min.
- Hemoperitoneum.

How much Blood can be detected by FAST
 $>200\text{ mL}$ ($50-250\text{ mL}$)

IOC for Blunt Abd. Trauma : **[CECT.]**

FAST is 1st Inv.

~~FAST~~ in.
IOC for Blunt Abd. Trauma, haemodynamically unstable
= **[FAST]**

COLLAPSE OF LUNG

- Loss of aeration.
- Evidence of volume loss
 - ↓
 - Trachea
 - mediastinum.
 - P fissure

In children. collapse of lung → F-B.

In chronic smoker " → Bronchogenic Cancer

SILHOUETTE SIGN

Mediastinal border can ~~only~~ only be obscured by pathology
& are in direct contact
anatomical.

Q. Aortic knob is ~~obscured~~ obscured by

- (A) LUL - Ant
- (B) LUL - Post
- (C) Singular
- (D) LLL.

Aortic knob is in post. part

↳ Application of silhouette
sign.

(---) - aortic knob⁴⁷

↓
Posterior aspect part
of aortic arch.
from where descending
aorta is visible.

* Lingula is part of ① upper lobe

LUL collapse

oblique fissure goes anteriorly

Hyperinflation of lower lobe

LUL-collapse → not easy to see as. hyperinflation
of LL obscures collapse of UL

Difference B/w collapse + consolidation

↓
vol. loss

↓
vol. maintained

Q. Air Bronchogram is a sign of Alveolar Pathology

Pores of Kohn [appear white]

Pus spreads through pores of
Kohn & not by Bronchus.

Causes:-

1) Pulmonary consolidation

2) Pulmonary edema = alveolar fluid

3) Hyaline Membrane Disease

↳ alveole collapse due to absence of surfactant
but bronches don't ⇒ air Bronchogram

If Bronchus is occluded \Rightarrow (B) alveole + Bronchus⁴⁸ occluded.

So, no air Bronchogram

* Air-Bronchogram usually absent in Bronchogenic Cancer exception. (I) adeno ca in situ (Broncho-alveolar Ca)

Pre-invasive

Adeno ca in situ

← architecture is maintained
only alveole involved

(II) Pulmonary Lymphoma

Interstitial Pneumonia

* Viral Pneumonia

Mycoplasma

Pneumocystis carinii pneumonia

} \Rightarrow alveole of wall are thickened
No alveolar exudate

= RETICULAR OPACITIES ON CXR

Interstitial Lung Disease

Silicosis

Sarcoidosis

\Rightarrow thickening of alveolar wall is even more

RETICULONODULAR OPACITIES on CXR

HONEY COMB LUNG \rightarrow irreversible changes in ILD.

IOC for ILD = HRCT

49

Thickness of section = 1-2 mm

These sections are widely spaced

Then reconstruct image by Bone Image Reconstruction Algorithm.

Q. HRCT of Lung Simple

- a) thick slice thickness
- b) Large field of view
- c) Bone algorithm.

IOC for Bronchiectasis = Volumetric HRCT

Thin continuous section

It enables 3D reconstruction of image

BALL VALVE MECHANISM

In some Bacterial pneumonia

Air gets trapped inside, so air cyst formation occurs

air
cyst

(Pneumatocele)

(S) Pneumocystis Jiroveci

- 1) Staph. Pneumoniae
- 2) Klebsiella
- 3) Hydrocarbon poisoning
- 4) Lung injury.

Pneumocystis Jirovecii

50

- = Reticular pattern of parasites.
- = Pneumatocele

~~Pl. effusion.~~

ASPERGILLUS

1) Immuno compromised

↳ Angio-invasive aspergillosis

↓
Red infarcts formed around fungal

CT = HALO SIGN

Reverse Halo Appearance on CT Scan = ATOLL SIGN

Cryptogenic Organizing
Pneumonia
(Bronchiolitis obliterans)

HYDATID

51

- 1) IOC = CECT.
- 2) "GHARBI" classification → USG HYDATID
(Egypt endemic for Hydatid)

3)

If only endocyst ruptures but outer layers are intact
→ fluid comes out

water-Lilly sign = CAMALOTE sign

Rising sun sign

SIGNS ON X-RAY DEPENDENT ON ⚡ LAYER PERFORATES

Outer Layer → Aire crescent sign.

Outer 2 Layers → onion-peel

Innermost layer → ~~onion peal~~
water-Lilly
or
Camalote sign,

DUPLEX DRAINING SYSTEM

52

- ① M/c cong. anomaly of upper urinary tract
- ② Weigert-Meyer Law = upper moiety drains lower in the UB hydronephrosis
↓
Papilla then cortex.
- ③ upper pole is more prone to "obstruction" & lower pole more prone to reflux.
- ④ If ureter gets fused, ureteric reflux may occur
YO-YO REFLUX.
- = DROOPING LILY SIGN
- "Non-functional upper pole

Q. all these are features of CXR - HYDATID except

- a) Water lily
~~b)~~ drooping lily
(c) floating lily
d) Rising sign

Atavism

Q. 21 yr old male c haemoptysis & X-ray → canon-ball
a) TB

~~b)~~ Testicular Tx

adolescents :-

Osteosarcoma

child :- Wilm's Tumour.

Neuroblastoma goes to Bone.

STAGING OF SARCOIDOSIS ON CXR (SCADDIN G'S₅₃)

- ① LN - 1
- ② LN + Parenchymal - 2
- ③ ' Parenchymal - 3
- ④ Fibrosis - 4.

- Innominate artery 54°
- (1) Brachiocephalic artery
 - (2) common carotid
 - (3) L. Subclavia
 - (4) Trachea
 - (5) esophagus

L1

- ② LL lymphatics get [Kerley B lines] = Horizontal lines at lung base from below engorged

Batwing appearance = Alveolar oedema

8-12 mm of Hg = (N) PWP

13-19 mm Hg = Perivascular cuff → cephalisation of
'LOWER LOBE' Blood flow

20-24 mm Hg = Interstitial oedema Kerley B
A

Phantom Tx

>25 mm Hg = Alveolar oedema Batwing

Pleural effusions

ARDS

non-cardiogenic Pulmonary oedema

PWP → (N)

Here, Pulmonary capillaries permeability ↑

↓
No LL dominance

Here Diffuse Opacity occurs-

No cephalisation

Cardiac size - (N)

NewBorn. comes \in sunray
appearance at hilum. +
thickened by Horizontal fissure
 \Downarrow

TRANSIENT TACHYPNOEA OF NEWBORN

upto 48 hrs - CXR

sunray appearance are due to lymphatics engorged

smallest unit of lung \Leftarrow is CT visible

$= 2^{\circ}$ Pulmonary Lobule

centrilobular (Bs)
Endobronchial TB

Lymphatic (Any Disease)

Interlobular Septa

\Downarrow
Septal Lines on CT

$=$ Kerley B Lines on CXR

KERLEY B LINES CXR. (Septal Lines on CT)

1) LVF

2) Sarcoidosis \rightarrow nodules are around in lymphatics

3) Lymphangitis Carcinomatosa - cancer spreading
 \Downarrow through lymphatics of lung

Lymphatics are involved in all the 3.

alveole filled in surfactant like lepoprotein
 ↓
 groundglass appearance

ALVEOLAR PROTEINOSIS
 ↓
 CRAZY PAVEMENT

RHD

Left Atrial enlargement \Rightarrow straightening of ① Border
 ↓
 ① auricle & is present below MPA

Q.earliest - CXR - RHD.

② straightening of ③ Heart Border

④ Bulge below MPA

3rd ~~MIDDLE~~ MOGUL SIGN ON CXR

If ⑤ atrium gets enlarged due to other disease.
 ↳ 3rd Mogul sign is absent

EBSTEIN'S ANOMALY

RA enlargement

Narrow vascular pedicle as reaches below \Rightarrow gets widened

→ Box-SHAPED HEART

→ Pulm. oligemia

LA enlargement

widens carina
pushes oesophagus posteriorly

Hoffman Rigler sign.

enlarges anteriorly

Obliteration of Metasternal space

Retrosternal space widening CXR → EMPHYSEMA

→ on lateral chest xR

HOFFMAN RIGLER SIGN ⇒ LV enlarges posteriorly to IVC

" MILLER SIGN - CT ⇒ ANGIOFIBROMA

61

Separation Epidural Fat Pads on Lateral view
= OREO COOKIE SIGN

Oligoemia =

+ Box shaped Heart = Ebstein's anomaly
+ Boot " " = TOF

CARDIAC MRI

Most accurate Inv for Ventricular Func' Assessment.
(Gold Std.)

IOC → for Cardiac Tx

IOC → for Pericardial Thickness

Indicated for Myocardial Evaluation.

SCAR ASSESSMENT → Delayed Enhancement

Indicated for Iron Deposit → Hemochromatosis

Apical HCM.

Arrhythmogenic RV Dysplasia (ARVD)

↳ fibrofatty replacement of RV wall

IOC for Myocardial vitality.

USG

PZT (Pb Zirconium Titanium)

↓
PIEZOELECTRIC EFFECT

Parameters

1) velocity of sound \propto Density of medium

$$\text{AIR} = 330 \text{ m/s}$$

$$\boxed{\text{Human Body} = 1540 \text{ m/s}}$$

2) wavelength depends on thickness

$$\boxed{\lambda = 2T}$$

T = thickness

$$\boxed{\frac{C}{\lambda} = \text{FREQUENCY}}$$

3) Frequency \propto Image Resolution.

$$d \frac{1}{\text{depth Penetration}}$$

Routine abd. or. Obst. USG

63

frequency = 3.5 to 5 MHz

TVS/TRUS - 5-7.5 MHz

Superficial orbit
thyroid }
Breast } 8-12 MHz

Endoscopic USG 12-20 MHz

That's y, USG is not a good modality for Pancreas

But Endoscopic USG is a good modality for Pancreas
[Frequency Higher = good Resolution.]

Water doesn't reflect sound & let go.

ANECHOIC
[BLACK]

Some amount to reflect & some amount of to transmit

HYPRE ECHOIC
(white)

wall → Air filled structure on USG appears [HYPRE ECHOIC]

Full Bladder is req for looking at pelvic organs.
 ↓
 at full bladder → bowel loops (Hyperactive)
 are displaced upwards

In TVS → empty bladder

Acoustic shadow:- Anything that reflect sound have a shadow

Double Duct Sign → Periampullary cancer

IoC for Gallstones = USG.

X-ray - 10% gallstones are radio-opaque

IoC for Acute Cholecystitis = USG.

- ↓
- Distended GB
- Thick oedematous wall
- Pericholecystic Fluid
- Sonographic 'MURPHY' +ve

BEST Inv. for Ac. cholecytstis = Tc HIDA 65
 (Hepato-biliary Imeno
 Di-acetic acid)

HIDA taken up by Liver

② HIDA reaches GB in 30mn

But in Ac cholecytstis \Rightarrow cystic duct is Blocked.
 Dye can't reach there

NON - VISUALISATION GB on Tc HIDA = Ac. Cholecytstis

\Rightarrow To differentiate Bet' solid & cystic \Rightarrow USG

DOPPLER

Any moving object in producing sound will produce frequency shift

Cap. ~~color~~ Doppler is based on frequency
 colour " " " " Direct?

DOPPLER

① IUG - DVT

② Carotid stenosis screening

③ Gastroenteric Torsion

- Q. Tissue Harmonic Imaging now used in
- CT
 - MRI
 - ~~USG~~
 - PET

US - ELASTOGRAPHY

for Hardness of Tissue

Guide Breast Biopsy

Fibroscan. → LIVER

MRI guided HIFU

High Intensity Focussed USG

Thermocoagulation ⇒ FIBROIDS

PACS (Picture Archiving & Communication System)

Software connects Radiology & other parts of hospitals

Std Digital Format = DICOM.

(Digital Imaging & communication in Medicine)

IOC for Ureteral Tract Stones = NCCT

67

Use Acid X-Ray → Radiolucent
CT → visible

X-Ray ⊥ } → Indinavir
CT ⊥ } → Pure Matrix Stone

↓
Diagnosed on Ureteroscopy

IOC for Ureteral Tract TB = CECT (Not IVP)

TB ON IVP

Calyceal irregularity = MOTH EATEN CALYCES
FEATHERY APPEARANCE OF CALYCES.

Hiked Up Pelvis

KERR's KINK Appearance

SAW TOOTH URETER

[SAW Tooth Colon
↳ Diverticulosis].

Ureter } -
Pepe stem

Saw Tooth.
Ureter.

GOLF HOLE URETERIC
ORIFICE on
cystoscopy

= THIMBLE BLADDER

Small low
capacity thick walled bladder

cystoscopy

68

In TB → Kidney calcifies
Not the Bladder
↓
Cement / Putty /
Autonephrectomy

Q. Calcified Bladder , resembling fetal skull
= SCHISTOSOMIASIS

 elongated, hypertrophied = Christmas Tree Bladder
Bladder Pine Tree

= NEUROGENIC BLADDER

Tear Drop or Pear

↳ PELVIC HAEMATOMA

can be seen physiologically in
Pelvic Lipomatosis.

Extraperitoneal Rupture
Dye accumulates in Pre-
vesicle space

MOIAR TOOTH SIGN ON CT

Abdomen

Molar Tooth Sign on MRI Brain = JOUBERT's SYNDROME

vermis absent

Med Brain abnormalities

PAPILLARY NECROSIS

→ DM.

CYST

Kidney cyst

BOSNIAK CLASSIFICATION

URETEROCELE

Adder Head
appearance on IVP.

○ Simple cyst - 1 } 70

 Calcification
thin septa

meninally
complicated
cyst - 2 }

Ignore

 Nodular septal calcification 2F → follow up

 Thick enhancing Septa 3 → indeterminate } Surgical Options

 Solid enhancing 4
Clearly Malignant }

PCKD

2 Types

Larger Cysts scattered

Dye taken up by kidney tissue not by cyst

SWISS CHEESE NEPHROGRAM

Smaller cysts radiating from hilum

Dye taken by Renal Hilus
not by cyst

SUNRAY - IVP
STRIATED NEPHROGRAM

SPIDER LEG - IVP

BELL-SHAPED CALYCES

MULTI CYSTIC DYSPLASTIC KIDNEY

→ U/L

→ Developmental

NON-visualised kidney
on IVP

↑ No renal tissue +nt
to take up the dye

ACUTE PYELONEPHRITIS

wedge shaped areas of infarcts
or coagulopathic necrosis

↓
"STRIATED NEPHROGRAM"

WHITE MATTER DISORDERS

MRI is the most sensitive modality.

MULTIPLE SCLEROSIS

72

PERI-VENULAR predominant disorder

MS is → white matter +
Glycogen matter.

Both

or

white matter

DAWSON'S FINGER

↓ to lateral ventricle

But seen in "SAGITTAL PLANE"

MS has a relapsing remitting course

"Active Demyelination"

Dye when given is taken by inflammatory area.

Cg ⇒ OPEN RING SIGN

open end = cortical side

Q. Child comes to you & developmental delay

MRI shows Abnormal signal in white matter

Inborn errors of metabolism.

[DYSMYELINATION].

Child \approx white matter \approx Large Head

73

ALEXANDER

CANAVAN'S

- 1) frontal lobe - begins.
(frontal predominant)
- 2) Rosenthal fibres
- 3) Fibrinoid Leukodystrophy

- 1) Diffusely entire white matter

Spongiform Leukodystrophy -

MR spectroscopy = \uparrow NAA

[ASPA \rightarrow aspartoacylase \rightarrow Breaks
NAA]

* "Subcortical 'U' fibers are spared."

① KRABBE \rightarrow globoid leukodystrophy [THALAMIC]

② Metachromatic Leukodystrophy \rightarrow arylsulphatase A deficiency

\leftarrow perivenular \Rightarrow TIGROID PATTERN
sparing

~~Peroxisome Dis~~

* Peroxisome Disorder, X-linked Adrenoleukodystrophy
"xx"

occipital Predominant

Lorenzo's oil \rightarrow effective in this disease

Q. PML (Progressive Multifocal Leukoencephalopathy)

seen in HIV pt

caused by JC virus

\downarrow
involve oligodendrocytes

\downarrow
no myelination

Usually PML is non-enhancing (don't take cyt^{Hg} dye) bcoz there is no inflammation. So BBB is preserved.

* CHRONIC ISCHAEMIA [white matter problem due to age related narrowing]

Subcortical arteriosclerotic
Leukoencephalopathy
(BINSWANGER. DISEASE)
presents w dementia

GENETIC CAUSES
(notch-3 mutⁿ)
(CADASIL)

Cerebral autosome

Dominant arteriopathy
Subcortical & Infarction &
leukoencephalopathy
↑ M/J form of hereditary
stroke disorder.

CJD

- prion Disease
- cortical spongiform [Grey Matter]
 - ↓
 - cortex
 - caudate
 - putamen

RING ENHANCING LESIONS

NEUROCYSTICEROSIS

Vegetative
if metally nice is alive [viable stage]

↓
VESICULAR STAGE

(filled w clear water)

Membrane is intact in vesicular stage

75

↓
So, no surrounding inflammation

↓ → No BBB damage

So, non-enhancing

Colloidal

* When parasite is dying degenerating

↓
fluid becomes turbid [COLLOIDAL STAGE]

↓
membrane will degenerate

↓
attack by immune system

↓
Now BBB damage

↓
Dye is taken up

↓
Ring Enhancing Lesions

Granular stage

on MRI → thick walled enhancing
Lesion.

Dead Stage

No inflammation

No enhancement

Nodular calcified

TOXOPLASMOSIS

- Ring enhancing lesion
- Eccentric nodule
- HIV + pt

BRAIN ABSCESS

Ring enhancing lesion
Pus in centre → thick & viscous.

~~Dise~~ Diffusion ~~not~~ watered. - MRI = Bright

METASTASIS

M/c site :- Grey - white matter Junction

THYROID OPHTHALMOPATHY

COCA-COLA BOTTLE appearance

Tendon $\ddot{\wedge}$ \textcircled{N}

Body of M/s Blood

BRAIN TUMOURS

1) \sqsubset Tx shows Calcification
" Ca^{2+} COME "

C \rightarrow craniopharyngioma

A \rightarrow astrocytoma

C \rightarrow choroid plexus papilloma

O \rightarrow oligodendroglioma

M \rightarrow meningioma

E \rightarrow ependymoma

Q. 1 of the following Brain T_x is Not Glioma 77

a) astrocytoma

b) ~~Glioma~~ ganglioglioma → Neural cell origin T_x.

c) ependymoma

d) oligodendrogloma

Q. Neurocytoma → neural cell origin T_x

Q. GANGLIOGLIOMA → (B) glial + neural origin

Q. Child has large head. CT scan reveal calcified T_x. in his lateral & ventricle. III, IV ventricles are dilated.

Ans → choroid plexus Papilloma

over production Hydrocephalus.

OLIGODENDRO GLIOMA -

↳ glial T_x 1 has cortical extensions.

↓
H/O seizure

↳ show calcification.

↳ frontal lobe of Brain.

- FRIED EGG APPEARANCE on Microscopy
- CHICKEN WIRE LIKE VASCULATURE

EPENDYMO M A -

Glial T_x

children → 4th ventricle

adult → spinal cord & supratentorial Region

hence from IV ventricle it spreads to
cisterna magna & CP angle cistern.

Q A young ^{man} comes to you with headache. MRI shows mass in IVth ventricle extending into surrounding CSF spaces

Ans → Ependymoma

CP Angle Tx

1> vestibular schwannoma

2> Meningioma

3> Epidermoid cyst

↓
Rich. in keratin like fluid

epidermoid cyst

Brownian Motion \rightarrow
so, Non-enhancing on
DW-MRI - Bright

• Arachnoid cyst
CSF → located in
middle cranial fossa

4) Ependymoma

It spreads to CP angle

79

MEDULLOBLASTOMA

» Posterior fossa "midline"

» It arises from vermis & sup. medullary velum.

3) malignant Tx

Invades sup. part of IVth ventricle.

4) Earlier considered PNET (Primitive neuroectodermal Tx)

↓
from WHO 2016 no term ~~can~~ has been changed to "Embryonal Tumour"

5) Radiosensitive Tx

6) The flow of CSF in IVth ventricle cause

CSF-DROP metastasis

⇒ Lepto meningeal Metastasis

↓
to spinal cord

↓
Sugar Icing or coating - MRI.
"Zuckerguss"

CRANIOPHARYNGIOMA

80

Histologically

↓
Adamantinous
"C"

↓
Papillary

Cystic

Solid

Children

Adult

Calification.

no calcification.

GLIOBLASTOMA ⇒ Butterfly glioma

- Tx is condensed in centre due to condensation of fibres in corpus callosum.
- Crosses Midline, highly malignant
- Other Tx & crosses Midline ⇒ "Lymphoma"
 - go HIV pt.
 - Steroid responsive Tx
 - So, Biopsy should be taken before starting steroid

MENINGIOMA

Dural Based Tx on MRI

Dural Tail Sign.

Shows intense enhancement becoz of extra-arachnoid location.

Mother-In-Law Sign.

Hyperostosis skull

VESTIBULAR SCHWANOMA = CP angle Tx

81

H/o - Hearing Loss
Tinnitus.

~~Macroscopic~~ Microscopic finding → Anton 1
" B

Veruccous Bodies.

On MRI → Ice-cream cone appearance

Associated: - NR - 2

PITUITARY ADENOMA

↑ ← optic chiasma

 Diaphragma sella → to protect from pressure
opening for infundibulum

Macroadenoma if size $> 10\text{mm}$

Signs on MRI

- 1) Snowman.
- 2) Cottage loaf
- 3) figure of 8

Congenital deficient diaphragma sella

↓
ICP pushes pituitary

↓

causes ballooning of sella

" EMPTY SELLA SYNDROME " - 1°

2° → Pseudotumour cerebri

Due to Tetracycline

Vit A ~~over~~ toxicity

→ J-shaped sella
↳ seen in Mucopolysaccharidoses.

→ X-Ray skull:

erosion of post. clinoid process

[earliest
x-ray sign of
Raised CT.]

→ clinoid process

NEURO CUTANEOUS SYNDROME

1) STURGE - WEBER SYNDROME or ENCEPHALO-TRIGEMINAL ANGIOMATOSIS

Port-wine stain.

H/o seizure

Not inherited Disorder

No Brain Tx

Congenital Glaucoma

2) TUBEROUS SCLEROSIS

AD

Seizure + MR + Adenoma sebacea

Cardiac Ts associated w/ Tuberous sclerosis

= "Rhabdomyoma"

CMV infi → Periventricular calcification.

Tuberous sclerosis has also association in
Peculiarities of lung

83

Q. A smoker comes in Honey comb lung in upper lobe. Bizzare arrangement.. 48

Ans :- LCH (Langerhans cell Histiocytosis).
↓
eosinophilic Granuloma

NF 1

1) Cafe-au-lait spots (~~coast~~ coast of California)

2) Peripheral + spinal NF

3) Plexiform NF

4) ~~not~~ associated in

Mesodermal Dysplasia

↓
skeletal / Bony Defects.

+nt

↓
sphenoidal Dysplasia

Empty Bare socket sign

due to absence of greater wing

⇒ due to sphenoidal Dysplasia

BONE Tx

5 steps :

- 1) Look for whether
Immature
Mature

2) Location

- a) Single / multiple
- ↑ ↓
Single Multiple

3) Bone

c) Where in the bone -

Lipiphysis
Metaphysis
Diaphysis

3) Patterns of destruction

Wall marginated
Geographic Lytic
Lesion.

← → Permeative
↓
Moth eaten

4) Matrix

Osteoid

Ivory
Homogeneous

Chondroid

Stippled

Flaccid
Popcorn

Areca
Rings

* Lung Hamartoma \Rightarrow CXR \rightarrow Popcorn appearance 85

* Pulmonary chondroma \rightarrow associated with GIST.

a) Beyond the Bone or not

as cortical break \rightarrow can also be due to #.

b)

b) Periosteum elevated \Rightarrow Periosteal Reaction

\Rightarrow Chronic osteomyelitis
Osteoid Osteoma

Solid

\Rightarrow Tx grows in spurts

Multilamellar

= Onion Peel X-Ray = EWING'S SARCOMA

Periosteum is attached to Bone by Sharpy's fibres.

||||

→ Stimulated → EWING'S SARCOMA (less aggressive)

|||

→ Divergent mineralization of Sharpy's fibres

OSTEOGENIC SARCOMA. (more aggressive)

→ CODMAN Δ

↓
malignancy

BENIGN LESIONS IN BONE

1> HEMANGIOMA

found in vertebra

2> LIPOMA

METASTATIC

osteoblastic

Prostate

Breast

↑
osteolytic

Breast

Pulsatile

Thyroid
Rce

DExA Scan.

87

Bone Mineral Density.

Osteoporosis

Z score = comparing Bone Density \pm same age \times same sex

T score = comparing Bone Density \pm young age

WHO Scoring.

T score $< -2.5 \Rightarrow$ Osteoporosis

T score -1 to $-2.5 \Rightarrow$ Osteopenia

Rx - Bisphosphonates

Acute OM

earliest X-Ray sign \Rightarrow Blurring of tissue planes
or soft tissue swelling

7-10 Days \Rightarrow Bony changes

IOC \Rightarrow MRI. \rightarrow marrow oedema (24-48 hrs of onset)

sequesterum :- PATHOGENOMIC OF
Dead Bone [CHRONIC OM]

Dense \downarrow on X-Ray as no demineralization
occurs :
involucrum [PYOGENIC OM]

Pyogenic OM → bldg extensive new bone

88

TB OM :- osteoporosis +
almost no periosteal reaction
no new bone formation

MADURA MYCETOMA

MRI :-

Dot in a circle sign

ARTHRITIS

OSTEO Arthritis

- wear & tear of articular cartilage
- Loss of joint space
in wt. Bearing (medial tibio femoral compartment)

Horizontal spurs.

~~osteophytes~~ osteophytes

↓
- Subchondral sclerosis

- cyst

- Loose Bodies

RHEUMATOID arthritis

synovial inflammation

- Bare area - erosions
as inflamed synovium
initially set up Bare area

- Joint space narrowing
(~~more~~ symmetrical)

- Dislocated

Deformities

- swan-neck

Boutonniere

- Deformity & out erosions

↓
SLE

JACOUD's Anthropathy

TB Arthritis

Inflammatory Jt. Disease
Hyperemia
↓

- Periarticular osteoporosis ← earliest sign of TB knee
- ↓
- Erosion.
- ↓
- Joint space narrowing

Phemister's TRIAD

POTT'S SPINE

Blood supply of Disc → "AVASCULAR"

earliest finding in TB spine → "Disc space narrowing"

~~People not consuming~~

~~GOAT~~

BRUCELLOSIS → OM of spine

People not consuming pasteurized milk

Anterosuperior corner

PEDRO PON SIGN

Q. On X-Ray =

90

Density ↑
Debris +
Distension.
Dislocation
Disorganized

Repetited Trauma
↓
Neuropathy.

Ans - CHARCOT's Jt
+
e.g. in. DM.

⇒ 1st MTP

⇒ PSEUDOGOUT → Deposits of CPPD (calcium pyro-phosphate deposit).
↓
Chondrocalcinosis.

⇒ In DIP

METABOLIC DISEASES

⇒ RICKETS

Gaulest X-Ray finding → Loss of provisional zone of calcification.

→ splaying cupping ~~Bro~~ Fraying

growth plate
widening
On giving Vit D → Recovery of provisional zone
(Healing Rickets)

white line of Frenkel.

OSTEOMALACIA

PELVIS

Looser's Zone seen in

- 1) Pubic Rami
- 2) Neck of femur
- Ribs
- Scapula (Outer)

Symmetrical

LOOSER'S ZONE

Disease = Looser's Zone

- 1) Osteomalacia
- 2) Fibrous Dysplasia
- 3) Paget's Disease

TRIRADIATE

Champagne
Glass
Pelvis

ACHONDROPLASIA

- AD
- Rhizomelic Dwarfism.
(proximal Bones shorter)

- Trident Hand

lumbar
- ~~Ankylosis~~ canal stenosis.

- Foramen Magnum stenosis

PELVIS
(Pelvic cavity gets triangular)

~~ep.~~
~~Chevron~~
Metaphys.
Chevron
Sign

THANATOPHORIC

DWARFISM

92

- Lethal cond"
- B.

P

* EPIPHYSEAL ENLARGEMENT :-

- 1) JRA (In child)
- 2) Hemophilic arthropathy
- 3) Bony Dysplasia → TREVOR's

"Telephone Handle
Long BONES"

* EPIPHYSEAL DYSGENESIS:-

- 1) Hypothyroidism

↳ Delayed Bone Age
↳ Wormian Bones

← Prominent Intra-sutural
Skull Bones,

Osteogenesis Imperfecta
Down's Syndrome

Rickets

Pyknodystosis.

Hypothyroidism

Osteogenesis Imperfecta → Diaphyseal #

→ Different stage of Healing
(Battered Baby syndrome)

In accidental trauma → same stage of healing

* SCURVY

Osteoid formation ↓

In copper deficiency → Pseudo scurvy

~~Osteoid~~

Mineralization

93

Thin Bones → only margin is prominent
(Pencil thin cortex).

Provisional Zone becomes ⇒ White Line of Frenkel
dense

~~Mineralization~~ → Scorbutic zone or
doesn't occur Thummefeld zone
in this area

Pelkan spur

Cong Syphilis

Erosion table → Wimberger
Metaphysis sign
"Congenital syphilis"

Celery Stock
Stalk

Long. Rubella

striations.

ANKYLOSING SPONDYLITIS

94

Sero -ve spondylitis

earliest sign → Sacroileitis *

IOC ⇒ "MRI"

X-Ray 1st → Blurring of subchondral cortex on.
(iliac) side of SI jt.

Changes in vertebrae are due to entheses - ites

where ↓ tendon + ligament
are inserted

↓
Inflammation of
Disco-vertebral fascia

in ankylosing spondylitis ⇒ through & through
(CARROT STICK #)

← syndesmophytes
vertically arranged
outer Disc fibres

↓
BAMBOO SPINE

DAGGER SIGN
(Internal disc fibres)

PAGET'S DISEASE

95

Mosaic

- Lytic
- Mixed
- Blastic

Initially → osteolytic lesions

Osteoblastic lesion

↳ cotton wool spots

Skull becomes elongated

Blade of grass.

osteoporosis circumscripta

"TAM O SHANTER" SKULL
Scottish cap

Signs

Skull

Spine

Long Bone

cotton wool

Picture frame
ivory

Blade of grass

osteoporosis circumscripta

skull

Tam o shanter skull

OSTEOPETROSIS

Defect of osteoclast

THALASSEMIA

Diploic Widening
Hair on end skull

SICKLE CELL ANAEMIA

96

Bone Infarct
Snow cap Humerus

H-shaped
vertebrae

LEUKEMIA

Presence of Metaphyseal Lucency

NUCLEAR MEDICINE

nuclear scan
Scintigraphy

SPET

PET

NUCLEAR SCAN

M/⁹⁹C isotope — T_c 99 M \rightarrow metastable isomer,
 $t_{1/2} \rightarrow 6$ hours

produced by Molybdenum Generator

- Gamma rays

Energy \rightarrow 140 KeV

LIGAND \rightarrow T_c - HIDA-
 T_c - MDP

Cardiac scintigraphy

Myocardial Perfusion scintigraphy

Thallium

Tc - Tetrofosmin

Tc - Sestamibi

[Ischaemia → COLD]

Myocardial Infarct scintigraphy

Tc - Pyrophosphate

Binds ↑ to infarcted tissue

[Infarct → HOT]

Tc - RBC MUGA scan → [multi-uptake Gated Acquisition]
 ↓
 ventricular funcⁿ

[Most accurate investigation for ventricular funcⁿ = MRI]

DYNAMIC RENOGRAM

Tc - MAG 3

↓

Tubular Secretion +

GFR

↓

after
Renal funcⁿ

Tc - DTPA

↓

Purely GFR

ana.

GFR

STATIC RENOGRAM

- Tc - DMSA

- Structure

- Scarring

↑
Reflux

- Post ~~washout~~ value

VUR - I_{oc}
MCU
PUV

after

Distribution of Renal Funcⁿ

* T_c - RBC

To locate the site of lower GI Bleeding
as little as 0.1 mL/min

* T_c Heat Damaged - RBC

To locate book for residual [splenic] Tissue
post-Splenectomy

* T_c - Peritumour

Physiologically \rightarrow choroid plexus
 - salivary gland
 - thyroid
 - gastric mucosa

Salivary gland

Only \uparrow salivary gland Tx HOT on T_c -Scan
 \Rightarrow Warthin's Tx (OK)
 \Rightarrow Adeno-Lymphoma

Gastric Mucosa

[IOc = T_c peritumour]

* T_c - Sulfur Colloid

Taken by \uparrow macrophages

- Reticular endothelial system

~~Liver~~

Liver of Kupffer cells +nt

Q Hepatic lesion. Rich in Kupffer HOT on T_c - colloid scan
 \Rightarrow FNH focal nodular hyperplasia

SPECT

99

Single Photon Emission Computed Tomography.

- Tc^{99m} .

- $I-123$

3D

multiple gamma cameras.

* Tc - SESTAMIBI SPECT

- used for 3D localisation of Parathyroid Adenoma
- for Myocardial Perfusion

* Tc - HMPAO - SPECT OR NIMHANS

- cerebellar Perfusion

* DAT SCAN

I^{123} Isoflupane

caudate &
putamen

→ COMMA SHAPED appearance (N)

In parkinsonism
• • → "period"

PET Scan (Positron Emission Tomography)

100

- Cyclotron Generated Isotopes

↓
particle accelerator
accelerator

Position. (e^+)
Anti-matter
+
 e^- electron MATTER
Annihilation.

^{18}F luoro-Deoxy Glucose $\boxed{\text{FDG}}$.

↓
non-metabolizable glucose analogue

'WARBURG EFFECT'

Cancer cells have

more glucose transporter \rightarrow Aerobic Glycolysis

Cancer cells take up FDG + form $\text{FDG}-\text{G}-\text{PO}_4$.

But it doesn't undergo glycolysis.

↓

So cancer cells now emit radiation due to FDG

↓
so used in staging of cancer
• Recurrent Tumour

• Response to therapy

101

↓
as metabolism is ↓ first than the
size of Tumour on chemotherapy

Drawbacks of FDG

1) **Hypoglycemia**

FDG will not be taken up in case of hyperglycemia due to competitive ⊕ of GLUT receptors.

2) **Tx ⊕ c Low metabolic Rate.**

→ carcinoid }
→ BAC } FDG ⊕ Tx.

3) **Brain.**

glucose hungry organ.

High uptake of FDG.

So, Brain Tx are missed

Brain is **FDG-avid**

4) **Brown Fat**

metabolically active fat (thermogenesis)
found in supraclavicular area

So, ↑ uptake of FDG in this region.

* B/L symmetrical supraclavicular uptake of FDG
↳ Physiological

Prevention / Management

→ Keeping pt warm

→ Pre-medication = BZD.

Alternatives to FDG

102

① C₁₁-methionine PET

Preferred for **Brain** Tx evaluation (NIMHANS)

② Naf PET

for **Bone** Metastasis

Better than MDP

IOC for clinically suspect Phaeochromocytoma

= **MRI Abdomen**

Extra-adrenal → Paragangloma

On MR I → Light Bulb sign

→ Hepatic Haemangioma

→ Meningioma

→ Phaeochromocytoma

Light Bulb appearance on X-Ray

Post Dislocation of shoulder.

[Dislocation is more easily diagnosed by X-Ray]
↳ Anterior Dislocation.

Extra-abdominal Phaeo =

Paragangloma seeking Isotope

③ **Fluoro DOPA PET**

④ **I₁₂₃ MIBG.**

(noradrenergic analogue)

⑤ 68-Gallium DOTATATE PET Scan.

103

DOTA TOC

→ Neuroendocrine Tx.

(for sarcoidosis - 67 gallium)

⑥ 68-Gallium PSMA PET

[Prostate specific membrane Antigen]

→ for prostate malignancy

⑦ PET/CT

⑧ PET/MRI

PROSTATE

→ MRI is preferred

→ PI-RADS

Ioc for Fistula In Ano →

a) Fistulogram

b) MRI

c) CT

d) PET

Intersphincteric.

MRl → Due to relation of sphincters to fistula

LUTETIUM - 177

104

$t_{1/2}$ - 6.7 days

Strong β emitter, weak γ emitter

* Lu-DOTATATE

Used for inoperable neuroendocrine Tx.

RADIOEMBOLISATION

Used in Liver Tx.

Radioactive agent through catheter directly to liver

↓
Yttrium-90 microspheres
"Pure β rays"

Phosphorus }
 Strontium }
 Samarium } Bone seeking β emitter

<u>Phosphorus</u>	<u>Strontium</u>
1) β -emitter	β -emitter
2) More penetrating power	Less
3) marrow suppression S/E	safer

RADIUM - 223

$t_{1/2}$ - 11.4 days

α -emitter

Bone seeking

~~Damaged Tx~~

more safe than strontium as less penetration¹⁰⁵

I¹²³ - $t_{1/2}$ - 13 hours

I¹²⁴ → PET Scan

I¹²⁵ $t_{1/2}$ - 60 days

I¹²⁷ → Stable iodine isotope

I¹³¹ $t_{1/2}$ - 8 days

I¹²³ -
- cyclotron generated
- gamma emitter
- Function.

I¹²⁵ -
- for RIA's
- Brachytherapy

I¹³¹ -
- produce both β + γ
 β - well differentiated thyroid cancer
- Imaging

● TELETHERAPY / EXTERNAL BEAM.

⇒ H/c method of Radiotherapy

Machine used → Cobalt machine.

Co 60 → artificial
 $t_{1/2} = \textcircled{5.2} \text{ years}$.

Co 60 → \downarrow β N^o 60 + \textcircled{P} (1.25 Mev)
→ gamma rays are killing Tx.

Drawbacks :-

106

- 1) Decay products
- 2) Half life
- 3) Fixed energy emission.

Hence, nowadays machine used = **LINAC**
(linear accelerator)

= M/c radiation used → X-Rays
in cancer therapy

= M/c " for deep seated T_x → X-rays

= electron used for superficial lymphoma

"**MYCOIDES FUNGOIDES**"

Intra-operative RT

LINAC vs COBALT

No isotope related concerns

No half life

Switch off/on.

alter energy → orthovoltage.

super voltage

megavoltage (MV)

Maximum skin burns.

a) cobalt

b) orthovoltage

c) super voltage

d) megavoltage

CONFORMAL RT

107

Intensity modulated RT

eye.

⇒ intensity is conforming to 3D
shape + Relationship to

Used in

- Prostate
- Head + Neck

STEREOTACTIC Radio Sx

Gamma knife → invented by LAR LEKSEIL

Used for Brain

~~as~~ Indications

- 1) vestibular schwannoma
- 2) Pituitary adenoma
- 3) meningioma
- 4) Trigeminal neuralgia
- 5) cerebral metastasis < 10.
- 6) AV malformation

Lekseil's Frame

r knife

Focussed γ radiations on Tx

Inately cell swell

DNA gets damaged

then shrinking

\rightarrow if Tx near optic chiasma

γ -knife won't be used as it swells
inately

AV malformation

HTN Bleed

- 1) Putamen
- 2) Caudate
- 3) Thalamus
- 4) Pons
- 5) Cerebellum

Q Young pt in emergency shows lobar Hge
may be AV Malformation

Q. old pt c non HT lebar hge
↓
Amyloid angiopathy.

109

r ~~knife~~ knife cause thrombosis of neder
↓
thus damaging malformation.

- * STEREOTACTIC BODY RT / Cyberknife
 - Based on LINAC
 - Whole Body
 - Frameless

* PROTON BEAM THERAPY

X-Ray γ Gamma rays. wave
r Ray γ Photon.

protons -
heavy
charged.

(2) Pediatric Brain Tx → Sx is preserved compared to RT
But now ↑ role of proton Beam therapy.

(3) Uveal Melanoma

BRACHYTHERAPY

110

- Done ~~for~~ in contact cavity substance.

Adv :-

- High Dose To Tx

Disad :-

Radiation exposure to Doctor

REMOTE AFTER LOADER -

- new update
- ↓ radiation exposure to doctors

M/c isotope used in Brachytherapy \Rightarrow **I¹⁹² Rhodium**
 $t_{1/2} = 74 \text{ days}$

② **Cesium - 137**
 $t_{1/2} = 30 \text{ years}$

TYPES

* Permanent Implants

✓ Palladium

✓ I - 125

Gold → for **malignant** ascites.

oldest isotope → **Radium 226**
 $t_{1/2} \rightarrow 1600 \text{ yrs.}$

Radium no longer used bcz of harmful decay products.

How to measure Radiation exposure?

Def"	Common	SI Unit
<u>Total Radiation exposure</u>	Roentgen	<u>Coulomb</u> / <u>Kg</u>
<u>Absorbed radiation</u>	RAD	GRAY, $100 \cdot \text{RAD}$ Joule / Kg
<u>Biological equivalent effectiveness</u>	REM	SIEVERT. $= 100 \text{ REM}$

How to measure Radioactivity

<u>Common</u>	<u>SI</u>
<u>Curie</u>	<u>Becquerel</u> , 1 d/sec

MOA of Radiation Injury = Free Radicle DNA mediated damage.

Most sensitive phase of cell cycle - $G_2 M$

Least - Late S

sensitive phase of cell cycle.

Fetus most sensitive at - 8-15 weeks 112

Max. permissible Dose - 0.5 RAD.

Cong. malformation is seen after - 5 RAD

* ♂ Blood cell most sensitive - Lymphocyte

* Tissue " " Bone marrow

GIT

Ioc for CHPS → USG.

Ioc in pediatric Ac. Abdomen → USG.

INTESTINAL OBSTRUC"

Ioc → ECT.

Best X-Ray → X-Ray Abd. (supine)

BOWEL TB

conical
caecum.

Gloccal
valve

fecal structures.
↗ strong sign
↗ inverted umbrella sign or
Fleischner sign

Asc. colon shortens → pulled up caecum
So, go no more 90°

goose neck (obtuse angle)
ileum

