

INSTRUÇÕES GERAIS

- 1. Neste experimento você irá explorar o movimento de queda livre dos corpos.
- 2. Utilize a seção "Recomendações de Acesso" para melhor aproveitamento da experiência virtual e para respostas às perguntas frequentes a respeito do VirtuaLab.
- 3. Caso não saiba como manipular o Laboratório Virtual, utilize o **"Tutorial** Virtualab" presente neste Roteiro.
- 4. Caso já possua familiaridade com o Laboratório Virtual, você encontrará as instruções para realização desta prática na subseção "Procedimentos".
- Ao finalizar o experimento, responda aos questionamentos da seção "Avaliação de Resultados".

RECOMENDAÇÕES DE ACESSO

PARA ACESSAR O VIRTUALAB

ATENÇÃO:

O LABORATÓRIO VIRTUAL **DEVE SER ACESSADO POR COMPUTADOR**. ELE NÃO DEVE SER ACESSADO POR CELULAR OU TABLET.

O REQUISITO MÍNIMO PARA O SEU COMPUTADOR É UMA MEMÓRIA RAM DE 4 GB.

SEU PRIMEIRO ACESSO SERÁ UM POUCO MAIS LENTO, POIS ALGUNS PLUGINS SÃO BUSCADOS NO SEU NAVEGADOR. A PARTIR DO SEGUNDO ACESSO, A VELOCIDADE DE ABERTURA DOS EXPERIMENTOS SERÁ MAIS RÁPIDA.

- 1. Caso utilize o Windows 10, dê preferência ao navegador Google Chrome;
- 2. Caso utilize o Windows 7, dê preferência ao navegador Mozilla Firefox;
- 3. Feche outros programas que podem sobrecarregar o seu computador;
- 4. Verifique se o seu navegador está atualizado;
- 5. Realize teste de velocidade da internet.

Na página a seguir, apresentamos as duas principais dúvidas na utilização dos Laboratórios Virtuais. Caso elas não se apliquem ao seu problema, consulte a nossa seção de "Perguntas Frequentes", disponível em: https://algetec.movidesk.com/kb/pt-br/

Neste mesmo link, você poderá **usar o chat** ou **abrir um chamado** para o contato com nossa central de suporte. Se preferir, utilize os QR CODEs para um contato direto por Whatsapp (8h às 18h) ou para direcionamento para a central de suporte. Conte conosco!

PERGUNTAS FREQUENTES

1) O laboratório virtual está lento, o que devo fazer?

- a) No Google Chrome, clique em "Configurações" -> "Avançado" -> "Sistema" -> "Utilizar aceleração de hardware sempre que estiver disponível". Habilite a opção e reinicie o navegador.
- b) Verifique as configurações do driver de vídeo ou equivalente. Na área de trabalho, clique com o botão direito do mouse. Escolha "Configurações gráficas" e procure pela configuração de performance. Escolha a opção de máximo desempenho.

Obs.: Os atalhos e procedimentos podem variar de acordo com o driver de vídeo instalado na máquina.

- c) Feche outros aplicativos e abas que podem sobrecarregar o seu computador.
- d) Verifique o uso do disco no Gerenciador de Tarefas (Ctrl + Shift + Esc) -> "Detalhes". Se estiver em 100%, feche outros aplicativos ou reinicie o computador.

2) O laboratório apresentou tela preta, como proceder?

- a) No Google Chrome, clique em "Configurações" -> "Avançado" -> "Sistema" -> "Utilizar aceleração de hardware sempre que estiver disponível". Habilite a opção e reinicie o navegador. Caso persista, desative a opção e tente novamente.
- b) Verifique as configurações do driver de vídeo ou equivalente. Na área de trabalho, clique com o botão direito do mouse. Escolha "Configurações gráficas" e procure pela configuração de performance. Escolha a opção de máximo desempenho.

Obs.: Os atalhos e procedimentos podem variar de acordo com o driver de vídeo instalado na máquina.

c) Verifique se o navegador está atualizado.

DESCRIÇÃO DO LABORATÓRIO

MATERIAIS NECESSÁRIOS

- Cesto;
- Sensor fotoelétrico;
- Multicronômetro;
- Plano vertical;
- Eletroímã;
- Esferas de aço.

PROCEDIMENTOS

1. REALIZANDO AS LIGAÇÕES ELÉTRICAS

Conecte o cabo do eletroímã, o cabo do sensor de passagem e o cabo da chave liga/desliga ao cronômetro.

Conecte o cabo do eletroímã na chave liga/desliga.

Conecte o cabo do cronômetro na chave liga/desliga.

2. LIGANDO CRONÔMETRO

Conecte a fonte de alimentação na fonte de energia e ligue o cronômetro.

SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO

3. ACIONANDO O ELETROÍMÃ

Ligue a chave, acionando o botão liga/desliga.

4. POSICIONANDO A ESFERA

Posicione a esfera menor no eletroímã.

5. MEDINDO O DIÂMETRO DA ESFERA

Realize a medida do diâmetro da esfera, observando, de perto, o eletroímã.

6. POSICIONANDO O SENSOR

Posicione o sensor 100 mm abaixo da esfera. Observe que, como o diâmetro da esfera já foi medido no passo anterior, você deverá mover o sensor até a posição (100 + D_{esfera menor}) mm.

7. PROMOVENDO A QUEDA LIVRE DA ESFERA

Desligue o eletroímã, para que a esfera caia livremente. Após a queda da esfera é possível verificar o tempo no visor do cronômetro. Anote este valor!

Ligue novamente o eletroímã para que a esfera seja fixada e não caia sobre o cesto.

8. REPETINDO O EXPERIMENTO

Posicione a esfera novamente no plano vertical, resete o cronômetro e certifique-se que serão realizadas cinco medições. Realize o experimento para cada esfera nas posições (100 + D_{esfera menor}) mm, (200 + D_{esfera menor}) mm, (300 + D_{esfera menor}) mm, (400 + D_{esfera menor}) mm, (500 + D_{esfera menor}) mm.

Crie uma tabela semelhante à apresentada e anote os valores encontrados para cada uma das 5 repetições do experimento.

Pos. sensor (mm)	T ₁ (s)	T ₂ (s)	T ₃ (s)	T ₄ (s)	T ₅ (s)	T _{médio} (s)	g (m/s²)	V (m/s)
100 + Desfera menor								
200 + Desfera menor								
300 + Desfera menor								
400 + D _{esfera menor}								
500 + Desfera menor								

Você usará esta tabela para anotar os valores da aceleração da gravidade e da velocidade da esfera que irá calcular.

9. POSICIONANDO A ESFERA DA MESA

Posicione a esfera sobre a mesa para reiniciar o experimento.

10. ENSAIANDO A SEGUNDA ESFERA

Repita o experimento a partir do passo 3 para a outra esfera. Neste caso as posições do sensor deverão ser ajustadas em (100 + D_{esfera maior}) mm, (200 + D_{esfera maior}) mm, (300 + D_{esfera maior}) mm, (400 + D_{esfera maior}) mm, (500 + D_{esfera maior}) mm.

Pos. sensor (mm)	T ₁ (s)	T ₂ (s)	T ₃ (s)	T ₄ (s)	T ₅ (s)	T _{médio} (s)	g (m/s²)	V (m/s)
100 + D _{esfera maior}								
200 + D _{esfera maior}								
300 + Desfera maior								
400 + Desfera maior								
500 + D _{esfera maior}								

11. ANALISANDO OS RESULTADOS

Siga para a seção "Avaliação de Resultados", neste roteiro, e responda de acordo com o que foi observado no experimento.

AVALIAÇÃO DOS RESULTADOS

ENSAIANDO A PRIMEIRA ESFERA

- 1. Construa o gráfico "Posição do sensor x Tempo médio" e observe a relação entre as variáveis posição e tempo. Qual função melhor descreveria esta relação? Exemplos: função linear, quadrática, cúbica etc.
- 2. Construa o gráfico "Posição do sensor x Tempo médio ao quadrado" e observe a relação entre as variáveis posição e tempo. Qual função melhor descreveria esta relação? Exemplos: função linear, quadrática, cúbica etc.
- 3. Compare os gráficos construídos anteriormente. Você observou alguma diferença entre eles? Se sim, qual o motivo desta diferença?
- 4. Utilize a equação (5) do resumo teórico para calcular o valor da aceleração da gravidade em cada ponto e complete a tabela que você fez anteriormente. Em seguida compare os valores encontrados.

$$g = \frac{2h}{t^2} \tag{5}$$

- 5. Em seguida compare os valores encontrados. Houve diferença nos valores encontrados? Se sim, o que você acha que proporcionou essa diferença?
- 6. Utilize a equação (4) do resumo teórico para calcular o valor da velocidade instantânea em cada ponto e complete a tabela.

$$v = g.t \tag{4}$$

7. Construa o gráfico da "Velocidade x Tempo". Qual o comportamento da velocidade?

ENSAIANDO A SEGUNDA ESFERA

- Compare os valores obtidos para a aceleração da gravidade. Houve diferença nos valores encontrados? Explique-a.
- 2. Compare os gráficos de "Velocidade x Tempo" obtidos com as duas esferas. A velocidade varia igualmente para as duas esferas?
- 3. Compare os tempos de queda das esferas. Explique o resultado!
- 4. Com base nos resultados obtidos e nos seus conhecimentos, como seria o comportamento do tempo se o experimento fosse realizado com uma esfera ainda menor do que as que você utilizou no experimento?

TUTORIAL VIRTUALAB

1. REALIZANDO AS LIGAÇÕES ELÉTRICAS

Neste passo você irá conectar todos os componentes elétricos do circuito abaixo. Isto inclui conectar o sensor, o eletroímã, o cronômetro e a chave liga/desliga, de modo a possibilitar o adequado andamento do experimento.

No sistema de medidas para o experimento, cada componente exerce uma função para a obtenção dos dados. A chave liga/desliga é utilizada para acionar o eletroímã, permitindo, assim, que a esfera seja fixada no topo da haste de ensaio. Desative a chave liga/desliga para que a esfera caia em queda livre. O sensor fotoelétrico é utilizado para identificar a passagem da esfera pela posição determinada. O eletroímã é utilizado para fixar a esfera no topo da haste de ensaio, sendo acionado e desativado pela chave liga/desliga. Por fim, o cronômetro é utilizado para registrar o tempo que a esfera percorre o trajeto determinado até o sensor em queda livre.

Acesse a câmera "Cronômetro, clicando com o botão esquerdo do mouse sobre o menu superior esquerdo.

Visualize os acoplamentos e cabos.

Conecte o eletroímã ao cronômetro, clicando com o botão esquerdo do mouse sobre o cabo vermelho em destaque, arrastando-o e colocando-o na posição indicada.

12

E-mail: contato@algetec.com.br | Site: www.algetec.com.br

Conecte o cabo do sensor de passagem ao cronômetro, clicando com o botão esquerdo do mouse sobre o cabo amarelo em destaque, arrastando-o e colocando-o na posição indicada.

Conecte o cabo da chave liga/desliga ao cronômetro, clicando com o botão esquerdo do mouse sobre o cabo azul em destaque, arrastando-o e colocando-o na posição indicada.

Conecte o cabo do eletroímã na chave liga/desliga, clicando com o botão esquerdo do mouse sobre o cabo em destaque, arrastando-o e colocando-o na posição indicada.

Em seguida, conecte o cabo que vai do cronômetro para a chave liga/desliga, clicando com o botão esquerdo do mouse sobre o cabo em destaque, arrastando-o e colocando-o na posição indicada.

2. LIGANDO O CRONÔMETRO

Acesse a câmera "Bancada".

Conecte a fonte de alimentação do cronômetro à fonte de energia, clicando com o botão esquerdo do mouse sobre a fonte de alimentação e arraste-a para a posição em destaque.

Agora é possível visualizar a tela do cronômetro.

Ligue o cronômetro, clicando com o botão esquerdo do mouse no botão "Power".

3. ACIONANDO O ELETROÍMÃ

Clique com o botão esquerdo do mouse no botão da chave para que ele mude de posição, acionando a chave e ligando o eletroímã.

4. POSICIONANDO A ESFERA

Posicione a esfera menor no eletroímã, clicando com o botão direito do mouse na esfera menor (Peso = 7g) e selecione a opção "Posicionar no plano vertical".

5. MEDINDO O DIÂMETRO DA ESFERA

Observe o diâmetro da esfera, acessando a câmera "Eletroímã".

Anote esse valor!

6. POSICIONANDO O SENSOR

Acesse a câmera "Plano vertical".

Posicione o sensor 100 mm abaixo da esfera, clicando com o botão esquerdo do mouse sobre ele.

Observe que, como o diâmetro da esfera já foi medido no passo anterior, você deverá mover o sensor até a posição (100 + D_{esfera menor}) mm.

7. PROMOVENDO A QUEDA LIVRE DA ESFERA

Desligue o eletroímã, para que a esfera caia livremente, clicando com o botão esquerdo do mouse sobre a chave (liga/desliga).

Após a queda da esfera é possível verificar o tempo no visor do cronômetro. Anote este valor!

Ligue novamente o eletroímã para que a esfera seja fixada e não caia sobre o cesto.

8. REPETINDO O EXPERIMENTO

Acesse a câmera "cesto".

Posicione a esfera novamente no plano vertical, clicando com o botão direito do mouse sobre a esfera e selecionando a opção "Posicionar no plano vertical".

Resete o cronômetro, clicando com o botão esquerdo do mouse no botão "Reset" do cronômetro.

Realize cinco medições.

Realize o experimento para cada esfera nas posições 100 + Desfera menor) mm, (200 + Desfera menor) mm, (300 + Desfera menor) mm, (400 + Desfera menor) mm, (500 + Desfera menor) mm.

Crie uma tabela semelhante à apresentada e anote os valores encontrados para cada uma das 5 repetições do experimento.

Pos. sensor (mm)	T ₁ (s)	T ₂ (s)	T ₃ (s)	T ₄ (s)	T ₅ (s)	T _{médio} (s)	g (m/s²)	V (m/s)
100 + D _{esfera menor}								
200 + D _{esfera menor}								
300 + D _{esfera menor}								
400 + Desfera menor								
500 + D _{esfera menor}								

Você usará esta tabela para anotar os valores da aceleração da gravidade e da velocidade da esfera que irá calcular.

9. POSICIONANDO A ESFERA NA MESA

Acesse a câmera "Cesto".

Posicione a esfera sobre a mesa, clicando com o botão direito do mouse sobre a esfera e selecione a opção "Posicionar na mesa".

10. ENSAIANDO A SEGUNDA ESFERA

Repita o experimento a partir do passo 3 para a outra esfera. Neste caso as posições do sensor deverão ser ajustadas em (100 + D_{esfera maior}) mm, (200 + D_{esfera maior}) mm, (300 + D_{esfera maior}) mm, (400 + D_{esfera maior}) mm, (500 + D_{esfera maior}) mm.

Pos. sensor (mm)	T ₁ (s)	T ₂ (s)	T ₃ (s)	T ₄ (s)	T ₅ (s)	T _{médio} (s)	g (m/s²)	V (m/s)
100 + Desfera maior								
200 + D _{esfera maior}								
300 + D _{esfera maior}								
400 + D _{esfera maior}								
500 + Desfera maior								

11. ANALISANDO OS RESULTADOS

Siga para a seção "Avaliação de Resultados", neste roteiro, e responda de acordo com o que foi observado no experimento.