Objectifs

- Savoir produire une expression littérale.
- Savoir simplifier une expression littérale.
- Savoir utiliser une expression littérale.
- Savoir tester l'égalité d'expression littérales.

I. Expression littérale

Définition

Une expression littérale est une expression numérique qui contient une où plusieurs lettres. Ces lettres désignent des nombres, ce sont des inconnues.

Exemples

Les formules de calcul de périmètres et d'aires sont des exemples d'expressions littérales :

- Aire d'un rectangle : $2 \times (L+l)$;
- périmètre d'un cercle : $2 \times r \times \pi$ (ici π n'est pas une inconnue qui désigne un nombre, c'est un nombre).

II. Simplifications d'écritures

1) Symbole de multiplication

Méthode

Par convention, on simplifie l'écriture d'une expression littérale en supprimant au maximum les symboles $\ll \times \gg$:

- $3 \times a$ s'écrit 3a;
- $a \times b$ s'écrit ab;
- $4 \times (a-2)$ s'écrit $4 \times (a-2)$ (se lit 4 facteur de a moins 2)
- $15 + 4 \times a$ s'écrit 15 + 4a

- 2×3 ne s'écrit pas 23;
- On écrit 2a, on n'écrit pas a2;
- ightarrow Le nombre s'écrit toujours devant la lettre.

2) Nombres au carré et au cube

Méthode

- 3×3 s'écrit 3^2 ;
- 6×6 s'écrit 6^2 ;
- $5 \times 5 \times 5$ s'écrit 5^3 ;
- $x \times x$ s'écrit x^2 (et se lit « x au carré»);
- $x \times x \times x$ s'écrit x^3 (et se lit « x au cube»).

Exemples

$$a \times 4 \times 2 \times a = 4 \times 2 \times a \times a$$

$$a \times 4 \times 2 \times a = 8a^2$$

$$a \times 2 \times 3 \times a \times b = 2 \times 3 \times a \times a \times b$$

$$a \times 2 \times 3 \times a \times b = 6a^2b$$

$$a \times 2 \times a \times (7-1) = 2 \times (7-1) \times a \times a$$

$$a \times 2 \times a \times (7-1) = 12a^2$$

$$a \times 2 \times (2+b+3) \times a = 2 \times a \times a \times (2+3+b)$$

$$a \times 2 \times (2+b+3) \times a = 2a(5+b)$$

III. Valeur d'une expression littérale

Définition

Calculer la valeur d'une expression littérale c'est assigner une valeur à chaque lettre pour pouvoir effectuer les calculs.

Remarques

- Lorsque qu'une même lettre est présente plusieurs fois dans la même expression, elle désigne toujours le même nombre.
- Quand on veut calculer une expression littérale, il est indispensable d'écrire les symboles de multiplications sous entendues. Quand on multiplie deux nombres, le symbole «×» doit être présent.

Exemple

Calculer la valeur de $5x^2 + 3(x-1) + 4y^3$, avec x = 4 et y = 10:

$$A = 5 \times x \times x + 3 \times (x - 1) + 4 \times y \times y \times y$$

$$A = 5 \times 4 \times 4 + 3 \times (4 - 1) + 4 \times 10 \times 10 \times 10$$

$$A = 80 + 3 \times 3 + 4000$$

$$A = 80 + 9 + 4000$$

$$A = 4089$$

IV. Vérifier une égalité

Définition

Une égalité est composée de deux membres séparés par le symbole =. Une égalité est vraie lorsque ses deux membres ont la même valeur.

Exemples

- 1 $4 \times 10 = 100 60$ est une égalité vraie car $4 \times 10 = 40$ et 100 60 = 40.
- **2** $4 \times 10 = 40 + 3$ est une égalité fausse car $4 \times 10 = 40$ et 40 + 3 = 43.

Propriétés

- Une égalité d'expressions littérales est vraie si elle est vraie pour toutes les valeurs attribuées aux lettres.
- Il suffit de trouver un contre-exemple pour montrer que deux expressions ne sont pas égales.

Méthode

Pour Vérifier que deux expressions littérales sont égales :

- 1 On choisit une valeur à attribuer à chaque inconnue.
- 2 On calcule les valeurs des deux expressions.
- 3 Si les valeurs sont différentes, alors on a terminé : l'égalité est fausse.
- 4 Si les valeurs sont les mêmes, on simplifie les deux expressions.
- 5 Si les deux expressions simplifiées sont les mêmes, alors l'égalité est vraie.

Exemple

On veut vérifier l'égalité : 2 + 3x = 5x :

- 1 Je choisis x = 0.
- 2

$$2 + 3x = 2 + 3 \times x$$

 $2 + 3x = 2 + 3 \times 0$
 $2 + 3x = 2 + 0$
 $2 + 3x = 2$

$$5x = 5 \times x$$
$$5x = 5 \times 0$$
$$5x = 0$$

3 Les valeurs sont différentes donc l'égalité est fausse.

Exemple

On veut vérifier l'égalité : $2 + 4x + 3 = 1.5 \times x \times 2 + x + 5$:

- 1 Je choisis x = 0.
- 2

$$A = 2 + 4x + 3$$
 $B = 1,5 \times x \times 2 + x + 5$
 $A = 2 + 4 \times x + 3$ $B = 1,5 \times 0 \times 2 + 0 + 5$
 $A = 2 + 4 \times 0 + 3$ $B = 0 + 0 + 5$
 $A = 2 + 0 + 3$ $B = 5$

- 3 Les valeurs sont égales, donc l'égalité est vraie pour x=0.
- 4

$$A = 2 + 4x + 3$$
 $B = 1,5 \times x \times 2 + x + 5$ $A = 2 + 3 + 4x$ $B = 1,5 \times 2 \times x + x + 5$ $B = 3x + x + 5$ $B = 3x + x + 5$ $B = (x + x + x) + x + 5$ $B = 4x + 5$

Les deux expressions simplifiées sont les mêmes, donc l'égalité est vraie (pour tout x).