华罗庚协会讨论班题目

华仔

1 第一周

1.1 课上题目

1.1: 设 $a,b\in\mathbb{N}^+, \frac{a+1}{b}+\frac{b+1}{a}\in\mathbb{Z}$, 证明:

$$(a,b) \le \sqrt{a+b}$$

wzl 供题

1.2: $a, b \in \mathbb{N}^+, (a, b) = 1$, 证明: $(a + b, a^2 + b^2)$ 为 1 或者 2

wzl 供题

 $1.3: n \ge m > 0$, 证明 a 为正整数, 其中

$$a = \frac{(m,n)}{n} \cdot C_n^m$$

wzl 供题

1.4: p, q 为素数, q = p + 2, 证明: $p + q|p^q + q^p$

wzl 供题

1.5: $m, n \in \mathbb{N}^+, m > n$, 证明:

$$[m,n] + [m+1,n+1] > \frac{2mn}{\sqrt{m-n}}$$

wzl 供题

1.6: 试证明: 任意大于 2 的偶数,可以写成两个无平方因子数之和.

学长供题

1.2 未讲完的题目

1.0: 证明不等式 $[\sqrt{\alpha}] + [\sqrt{\alpha + \beta}] + [\sqrt{\beta}] \ge [\sqrt{2\alpha}] + [\sqrt{2\beta}]$ 对任意不小于 1 的实数 α 和 β 成立 wzl 供题

1.1: 设 a, b, c, d 为整数, (a - c)|(ab + cd), 则:

$$(a-c)|(ad+bc)$$

wzl 供题

1.2: 设 a, b 都是正整数, $a^2 + ab + 1$ 被 $b^2 + ab + 1$ 整除, 证明:

a = b

wzl 供题

1.3: 证明存在无穷多个正整数 n, 使得

$$n|(2^n+2), (n-1)|(2^n+1)$$

wzl 供题

1.4: 设 p 是素数, $x, y, z \in \mathbb{Z}$ 满足 0 < x < y < z < p, $x^3 \equiv y^3 \equiv z^3 \pmod{p}$, 证明:

$$(x+y+z)|(x^2+y^2+z^2)|$$

wzl 供题

1.5: 给定
$$C>0$$
, 对 $n=\prod_{i=1}^n P_i^{\alpha_i}$,定义 $\mho(n)=\sum_{p_i>C}\alpha_i$,求: $\Phi:z\to z$ 使得对于 $\forall a,b\in\mathbb{N}^+,a>b$ 有:

$$\mho(\Phi(a) - \Phi(b)) \le \mho(a - b)$$

学长供题