Cross City Deep Transfer Learning Model for Crime Prediction

Nazia Afreen (1605015) Anisha Islam (1605038)

Supervised By:
Dr.Tanzima Hashem
Professor
Department of CSE, BUET

■ Efficient allocation of human resources in high-risk areas

- Efficient allocation of human resources in high-risk areas
- Safety of people

- Crime Prediction in regions where no crime data is available
 - Assumption of crime data availability in existing crime prediction models
 - Crime data not properly recorded in developing countries
 - Inability to predict crime in those regions by the current architectures

- Crime Prediction in regions where no crime data is available
 - Assumption of crime data availability in existing crime prediction models
 - Crime data not properly recorded in developing countries
 - Inability to predict crime in those regions by the current architectures

We introduce Transfer Learning in crime domain

■ Use cross-domain data like geographical data, demographic data, points of interest data, check-in data ^{1,2,3}

¹Huang et al., CIKM., 2018

²Rayhan et al., 2020

³Rumi et al., EPJ Data Science., 2018

- Use cross-domain data like geographical data, demographic data, points of interest data, check-in data ^{1,2,3}
- Capture temporal dependency between different crimes, inter-relation between different categories of crime, correlation between crime and ubiquitous data ¹

¹Huang et al., CIKM., 2018

²Rayhan et al., 2020

³Rumi et al., EPJ Data Science., 2018

- Use cross-domain data like geographical data, demographic data, points of interest data, check-in data ^{1,2,3}
- Capture temporal dependency between different crimes, inter-relation between different categories of crime, correlation between crime and ubiquitous data 1
- Incorporate dynamic intra-region temporal dependency, inter-region spatial correlation ^{4,5}

¹Huang et al., CIKM., 2018

²Rayhan et al., 2020

³Rumi et al., EPJ Data Science., 2018

⁴Huang et al., The World Wide Web Conference, 2019

⁵Sun et al., ECML PKDD, 2020

Limitation

Use of historical crime data [1]-[5]

Related Works

	Objective	Region Similar- ity	External Features Used	Cross- City	Target Do- main Data Used
[6]	Predict crowd flow using bike flow data	Pearson Co- efficient	Check-ins	Yes	Yes
[7]	Detect ride-sharing cars using taxi and bus data	-	-	-	Yes
[8]	Chain store site recommendation	Autoencoder	POI, Check-ins	Yes	-
[9]	Thermal comfort prediction	-	Indoor and outdoor environmental fea- tures, Age, Gender	Yes	Yes
[10]	Trajectory based routing preference learning	Jaccard Similarity	Road network	-	Yes
[11]	Transfer urban human mobility via POI embeddings	-	-	Yes	Yes
[12]	Taxi volume prediction, bike volume prediction, water qual- ity prediction	-	-	Yes	Yes

Thesis Goal

■ Develop Transfer Learning based deep learning model in the crime domain to predict crimes of various categories at a particular time instance in a target city region

- Input
 - Source City

- Input
 - Source City
 - Region Graph
 - Point of Interest
 - Road Network
 - Taxi Trip (Inflow and Outflow)
 - Type wise Crime Event
 - Theft, Robbery, Assault, Burglary, Narcotics

- Input
 - Source City
 - Region Graph
 - Point of Interest
 - Road Network
 - Taxi Trip (Inflow and Outflow)
 - Type wise Crime Event
 - Theft, Robbery, Assault, Burglary, Narcotics

Target City

- Input
 - Source City
 - Region Graph
 - Point of Interest
 - Road Network
 - Taxi Trip (Inflow and Outflow)
 - Type wise Crime Event
 - Theft, Robbery, Assault, Burglary, Narcotics

- Target City
 - Region Graph
 - Point of Interest
 - Arts, Education, Shops, Professional, Travel etc
 - Road Network
 - Taxi Trip (Inflow and Outflow)

■ Output

• Prediction of the number of crime occurrences of different categories at a particular time in a specific region of a target city

Challenges

■ Find out the attributes that affect the crime occurrences in a region

Challenges

- Find out the attributes that affect the crime occurrences in a region
- Identify the similar regions that have similar crime patterns based on external attributes

■ Address the issues, our proposed model consists of four units

- Address the issues, our proposed model consists of four units
 - Region-Representation Learning Unit

- Address the issues, our proposed model consists of four units
 - Region-Representation Learning Unit
 - Region Similarity Learning Unit

- Address the issues, our proposed model consists of four units
 - Region-Representation Learning Unit
 - Region Similarity Learning Unit
 - Crime Embedding Learning Unit

- Address the issues, our proposed model consists of four units
 - Region-Representation Learning Unit
 - Region Similarity Learning Unit
 - Crime Embedding Learning Unit
 - Crime Prediction Unit

Solution Overview: Pipeline

- Our proposed model consists of four units
 - Region-Representation Learning Unit
 - Region Similarity Learning Unit
 - Crime Embedding Learning Unit
 - Crime Prediction Unit

Solution Overview: Pipeline

Region Representation Learning Unit

- Crime occurrences demonstrate
 - Spatial dependency
 - Temporal dependency
 - External feature correlation
 - Point of Interest
 - Taxi Inflow and Outflow
 - Road Junction
- Dynamically incorporates all three interrelations to learn region embedding

Spatial Dependency

■ Crime occurrences exhibit spatial dependency

Figure: Chicago Community Areas

Figure: Spatial Dependency

Temporal Dependency

■ Crime occurrences show temporal correlation

Figure: Chicago Community Area 24

Figure: Temporal Dependency

External Feature Correlation

■ Crime occurrences exhibit correlation with taxi outflow data

Figure: Chicago Community Area 8

Figure: Influence of Taxi Outflow data

External Feature Correlation

■ Crime occurrences exhibit correlation with taxi inflow data

Figure: Chicago Community Area 8

Figure: Influence of Taxi Inflow data

External Feature Correlation

■ Crime occurrences has dependency with POI

Figure: Correlation between density of POI and crime occurrences of Chicago City

Region Representation Learning Unit

- Our proposed model consists of four units
 - Region-Representation Learning Unit
 - Region Similarity Learning Unit
 - Crime Embedding Learning Unit
 - Crime Prediction Unit

Solution Overview: Pipeline

Region Similarity Learning Unit

- Region matching as the basis for transfer learning
 - Similar regions have similar crime patterns
- For a specific target region, topmost *k* similar source regions are learned

Attention Based Region Similarity

Figure: Attention based similarity

Pearson Correlation Based Region Similarity

Figure: Pearson correlation based similarity

Regions with Similar Taxi Outflow

■ For crime categories Theft and Robbery, for a target precinct 19, the source communities with similar taxi outflow

Figure: Similar Taxi Outflow for Theft for Precinct 19

Figure: Similar Taxi Outflow for Robbery for Precinct 19

Regions with Similar Taxi Inflow

■ For crime categories Theft and Robbery, for a target precinct 19, the source communities with similar taxi inflow

240

| R50 |

Figure: Similar Taxi Inflow for Theft for Precinct 19

Figure: Similar Taxi Inflow for Robbery for Precinct 19

Regions with Similar POI

■ For crime categories Theft and Robbery, for a target precinct 19, the source communities with similar POI category

Figure: Similar POI for Theft for Precinct 19

Figure: Similar POI for Robbery for Precinct 19

Solution Overview

- Our proposed model consists of four units
 - Region-Representation Learning Unit
 - Region Similarity Learning Unit
 - Crime Embedding Learning Unit
 - Crime Prediction Unit

Solution Overview: Pipeline

Crime Embedding Learning Unit

■ Crime embedding of each source region is learned in this module

Figure: Crime embedding of source region

hGAT

■ The architecture used to learn crime embedding

Figure: hGAT Overview

Solution Overview

- Our proposed model consists of four units
 - Region-Representation Learning Unit
 - Region Similarity Learning Unit
 - Crime Embedding Learning Unit
 - Crime Prediction Unit

Solution Overview: Pipeline

Crime Prediction Unit

■ Predicts crime of different categories in a particular time step in a target region

Figure: Crime prediction unit

Solution Overview

- Our proposed model consists of four units
 - Region-Representation Learning Unit
 - Region Similarity Learning Unit
 - Crime Embedding Learning Unit
 - Crime Prediction Unit

Datasets

Source Region				
Chicago Source City	Chicago Crime Data(2019)	167,638 crime records of		
		five categories		
	Chicago Taxi Trip Data(2019)	29,110,097 Taxi trip data		
		of Green Taxi and Yellow		
		Taxi		
	Chicago POI Data(2019)	18,943 POIs of 7 cate-		
		gories		
	Chicago Road Network Data	-		

Datasets

Source Region				
Chicago Source City	Chicago Crime Data(2019)	167,638 crime records of		
		five categories		
	Chicago Taxi Trip Data(2019)	29,110,097 Taxi trip data		
		of Green Taxi and Yellow		
		Taxi		
	Chicago POI Data(2019)	18,943 POIs of 7 cate-		
		gories		
	Chicago Road Network Data	-		
Target Region				
New York Target City	NYC Taxi Trip Data(2019)	34,738,922 Taxi trip data		
		of Green Taxi and Yellow		
		Taxi		
	NYC POI Data(2019)	20,500 POIs of 7 cate-		
		gories		
	NYC Road Network Data	-		

Models

With Transfer Learning					
Model Ver-	Train(X,Y)	Test	Similarity Mechanism		
sion					
M1	(NYC feature embedding +	NYC crime	Attention Based Similarity		
	Chicago crime embedding,	data			
	Chicago crime data)				
M2	(NYC feature embedding +	NYC crime	Pearson Correlation Based Sim-		
	Chicago crime embedding,	data	ilarity		
	Chicago crime data)				

Models

Models

With Transfer Learning						
Model Ver- sion	Train(X,Y)	Test	Similarity Mechanism			
M1	(NYC feature embedding + Chicago crime embedding, Chicago crime data)	NYC crime data	Attention Based Similarity			
M2	(NYC feature embedding + Chicago crime embedding, Chicago crime data)	NYC crime data	Pearson Correlation Based Similarity			
Without Transfer Learning						
Model Ver- sion	Train(X,Y)	Test	Similarity Mechanism			
M3	(NYC feature embedding, NYC crime data)	NYC crime data	-			
M4	(NYC feature embedding + NYC crime embedding, NYC crime data)	NYC crime data	-			

Performance Comparison

Figure: NYC Precinct 19, Crime Category: Theft

Performance Comparison

Figure: NYC Precinct 19, Crime Category: Assault

Performance Comparison

Figure: NYC Precinct 19, Crime Category: Narcotics

Comparison Between Similarity Measurement Techniques

Figure: Similar Chicago regions for NYC Precinct: 19, and crime category: Theft based on Attention values

Figure: Similar Chicago regions for NYC Precinct: 19, and crime category: Theft based on Pearson Correlation values

Comparison Between Number Of Similar Regions

Figure: Optimal number of similar regions for Precinct 19

Figure: Optimal number of similar regions for Precinct 88

Our Contribution

- A novel transfer learning based deep learning model for crime prediction
- A novel dynamic region similarity approach as a basis of transfer learning
- Evaluate framework on real world dataset

Future Work

- Crime prediction using multiple source cities
- Adaptation of the model for cross-categorical crime prediction

References I

- [1] Chao Huang, Junbo Zhang, Yu Zheng, et al. "DeepCrime: Attentive hierarchical recurrent networks for crime prediction". In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018, pp. 1423–1432.
- [2] Yeasir Rayhan and Tanzima Hashem. "AIST: An Interpretable Attention-based Deep Learning Model for Crime Prediction". In: arXiv preprint arXiv:2012.08713 (2020).
- [3] Shakila Khan Rumi, Ke Deng, and Flora Dilys Salim. "Crime event prediction with dynamic features". In: *EPJ Data Science* 7.1 (2018), p. 43.
- [4] Chao Huang, Chuxu Zhang, Jiashu Zhao, et al. "Mist: A multiview and multimodal spatial-temporal learning framework for citywide abnormal event forecasting". In: The World Wide Web Conference. 2019, pp. 717–728.
- [5] Jiao Sun, Mingxuan Yue, Zongyu Lin, et al. "CrimeForecaster: Crime Prediction by Exploiting the Geographical Neighborhoods' Spatiotemporal Dependencies". In: Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part V. Springer International Publishing. 2021, pp. 52–67.
- [6] Leye Wang, Xu Geng, Xiaojuan Ma, et al. "Cross-City Transfer Learning for Deep Spatio-Temporal Prediction". In: ().

References II

- [7] Leye Wang, Xu Geng, Xiaojuan Ma, et al. "Ridesharing car detection by transfer learning". In: Artificial Intelligence 273 (2019), pp. 1–18.
- [8] Bin Guo, Jing Li, Vincent W Zheng, et al. "Citytransfer: Transferring inter-and intra-city knowledge for chain store site recommendation based on multi-source urban data". In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1.4 (2018), pp. 1–23.
- [9] Nan Gao, Wei Shao, Mohammad Saiedur Rahaman, et al. "Transfer learning for thermal comfort prediction in multiple cities". In: Building and Environment (2021), p. 107725.
- [10] Chenjuan Guo, Bin Yang, Jilin Hu, et al. "Learning to route with sparse trajectory sets". In: 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE. 2018, pp. 1073–1084.
- [11] Renhe Jiang, Xuan Song, Zipei Fan, et al. "Transfer Urban Human Mobility via POI Embedding over Multiple Cities". In: ACM Transactions on Data Science 2.1 (2021), pp. 1–26.
- [12] Huaxiu Yao, Yiding Liu, Ying Wei, et al. "Learning from multiple cities: A meta-learning approach for spatial-temporal prediction". In: The World Wide Web Conference. 2019, pp. 2181–2191.

THANK YOU

Any Questions?