Examenul de bacalaureat 2012 Proba E.c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$ \sqrt{12} > 3 $ $ 2\sqrt{2} < 3 $	2p
	$2\sqrt{2} < 3$	2 p
	$2\sqrt{2} < 3 < \sqrt{12}$	1p
2.	x și y sunt soluțiile ecuației $t^2 - 5t + 6 = 0$	2p
	$t_1 = 2, t_2 = 3$	2 p
	$S = \{(2,3),(3,2)\}$	1p
3.	g(1) = 1	2p
	f(g(1)) = f(1) = 1	3 p
4.	$C_n^2 = 10$	2p
	n = 5	3 p
5.	Fie M mijlocul segmentului $(AB) \Rightarrow M(4,3)$	2 p
	OM = 5	3 p
6.	$\frac{MN}{N} = \frac{MP}{N}$	2 p
	$\sin P \sin N$	
	MN = 8	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	Suma elementelor de pe diagonala principală a matricei este egală cu $m + (-m) + 2$	3p
	Finalizare	2 p
b)	$\det A = -2m^2 - 2m + 12$, unde A este matricea sistemului	3р
	$m \in \mathbb{R} \setminus \{-3, 2\}$	2 p
c)	Pentru $m=1 \Rightarrow x_1=4$, $y_1=2$, $z_1=1$	4p
	Finalizare	1p
2.a)	Pentru $m = 0 \Rightarrow f = X^3 + 1$	2 p
	Restul este egal cu $f(1) = 2$	3 p
b)	f(-1) = -1 + m - m + 1 = 0	3p
	$X+1 \mid f$	2p
c)	$f = (X+1)(X^2 + (m-1)X + 1)$	2p
	f are trei rădăcini reale $\Leftrightarrow X^2 + (m-1)X + 1$ are două rădăcini reale $\Leftrightarrow m^2 - 2m - 3 \ge 0$	2 p
	$m \in (-\infty, -1] \cup [3, +\infty)$	1p

Probă scrisă la **Matematică**

Varianta 3

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \left(\frac{2x^2 - 1}{x^2 + 2}\right)' = \frac{4x(x^2 + 2) - 2x(2x^2 - 1)}{(x^2 + 2)^2} =$	3p
	$=\frac{10x}{\left(x^2+2\right)^2}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x^2 - 1}{x^2 + 2} = 2$	3p
	Ecuația asimptotei orizontale la graficul funcției f spre $+\infty$ este $y=2$	2 p
c)	$f'(x) \ge 0$ pentru orice $x \in [0,1] \Rightarrow f$ este crescătoare pe intervalul $[0,1]$	2p
	$0 \le x \le 1 \Rightarrow f(0) \le f(x) \le f(1) \Rightarrow -\frac{1}{2} \le f(x) \le \frac{1}{3}$, oricare ar fi $x \in [0, 1]$	3p
2.a)	$I_1 = \int_0^1 \frac{x}{x+1} dx =$	2p
	$ = \int_{0}^{1} \left(1 - \frac{1}{x+1} \right) dx = \left(x - \ln(x+1) \right) \Big _{0}^{1} = 1 - \ln 2 $	3p
b)	$I_n + I_{n+1} = \int_0^1 \left(\frac{x^n}{x+1} + \frac{x^{n+1}}{x+1} \right) dx =$	2p
	$= \int_{0}^{1} \frac{x^{n}(x+1)}{x+1} dx = \frac{1}{n+1}$	3p
c)	$\frac{x^{2012}}{2} \le \frac{x^{2012}}{x+1} \le \frac{x^{2012}}{1} \text{ pentru orice } x \in [0, 1]$	2p
	$\int_{0}^{1} \frac{x^{2012}}{2} dx \le \int_{0}^{1} \frac{x^{2012}}{x+1} dx \le \int_{0}^{1} x^{2012} dx$	1p
	$\frac{1}{4026} \le I_{2012} \le \frac{1}{2013}$	2p