Name:		
Pid.		

1. Show that if $a, b \in \mathbb{Z}$, then $a^2 - 4b + 2 \neq 0$.

Solution:

2. Show that there are irrational numbers a and b such that a^b is rational.

~ 1	
So	lutions

3. We denote by $\{0,1\}^n$ sequences of 0's and 1's of length n. Show that it is possible to order elements of $\{0,1\}^n$ so that two consecutive strings are different only in one position.

α	•
S O	lution:
$\mathbf{v}_{\mathbf{U}}$	iuuioii.

4. Let us define n! as follows: 1! = 1 and $n! = (n-1)! \cdot n$. Show that $n! \geq 2^n$ for any $n \geq 4$.

Solution: