Henry Jacobs

October 3, 2021

Professor Boady

Homework 3

1.

Construct a proof for the argument: $x \forall x Fx \lor \neg \forall x Fx$

1
$$\neg (\forall xFx \lor \neg \forall xFx)$$
2 $\forall xFx$
3 $\forall xFx \lor \neg \forall xFx$ $\lor I 2$
4 $\downarrow \bot$ $\neg E 1, 3$
5 $\neg \forall xFx$ $\neg I 2-4$
6 $\forall xFx \lor \neg \forall xFx$ $\lor I 5$
7 $\downarrow \bot$ $\neg E 1, 6$
8 $\forall xFx \lor \neg \forall xFx$ $IP 1-7$

© Congratulations! This proof is correct.

2.

Construct a proof for the argument: $\forall x (Fx \rightarrow Gx)$, $\exists xFx : \exists xGx$

1
$$\forall x(Fx \rightarrow Gx)$$

2 $\exists xFx$
3 Fc
4 $Fc \rightarrow Gc$ $\forall E 1$
5 Gc $\rightarrow E 3, 4$
6 $\exists xGx$ $\exists E 2, 3-6$

∓ NEW LINE

₩ NEW SUBPROOF

 $\ensuremath{\mbox{\ensuremath{\mbox{\odot}}}}$ Congratulations! This proof is correct.

CHECK PROOF

START OVER

Proof:

Construct a proof for the argument: $\forall x (\neg Mx \lor Ljx), \forall x (Bx \to Ljx), \forall x (Mx \lor Bx) :: \forall x Ljx$

```
\forall x (\neg Mx \lor Ljx)
2
    \forall x(Bx \to Ljx)
3
    \forall x (Mx \vee Bx)
    ¬Mc ∨ Ljc
                                ∀E 1
5
    Bc → Ljc
                                ∀E 2
6
    Mc ∨ Bc
                                ∀E 3
7
8
       \neg Mc
9
        Вс
10
         Ljc
                                →E 5, 9
11
         Мс
12
                                ¬E 8, 11
13
         Ljc
                                X 12
                                ∨E 6, 9–10, 11–
14
       Ljc
                                13
15
    Ljc
                                ∨E 4, 7–7, 8–14
16 ∀xLjx
                                ∀I 15
                        ₩ NEW SUBPROOF
   ∓ NEW LINE
```

[©] Congratulations! This proof is correct.

4.

Construct a proof for the argument: $Pa \lor Qb$, $Qb \rightarrow b = c$, $\neg Pa :: Qc$

© Congratulations! This proof is correct.

Proof:

Construct a proof for the argument: $\forall x \forall y (Rxy \rightarrow x = y) : Rab \rightarrow Rba$

1
$$\forall x \forall y (Rxy \rightarrow x = y)$$

2 $\forall y (Ray \rightarrow a = y)$ $\forall E 1$
3 $(Rab \rightarrow a = b)$ $\forall E 2$
4 \boxed{Rab}
5 $\boxed{a = b}$ $\rightarrow E 3, 4$
6 \boxed{Rbb} $= E 4, 5$
7 \boxed{Rba} $= E 5, 6$
8 $\boxed{Rab \rightarrow Rba}$ $\rightarrow I 4-7$

© Congratulations! This proof is correct.