Bayesian Deep Learning 1

- Machine Learning Models
 - measure of uncertainty : not point estimates, distribution of possible outcomes
 - deep learning models: deterministic + probability theory → Bayesian
 Deep Learning
- · Bayesian Probability Theory
 - Formalism : rational beliefs = probability theory
 - Bayesian Probabilistic Modelling

"assumptions" about underlying process

- prior: belief about parameters (μ)
- likelihood: belief in how data was generated with parameters $(X_n|\mu,\sigma^2\;N(\mu,\sigma^2))$
- → update prior belief on parameters conditioned on data

Bayes Rule

$$P(X=x|Y=y,\mathcal{H})=rac{P(Y=y|X=x,\mathcal{H})P(X=x|\mathcal{H})}{P(Y=y|\mathcal{H})}$$
 $P(\mu|\mathcal{D},\sigma,\mathcal{H})=rac{P(\mathcal{D}|\mu,\sigma,\mathcal{H})P(\mu|\sigma,\mathcal{H})}{P(\mathcal{D}|\sigma,\mathcal{H})}$: posterior = likelihood * prior / model evidence

- Basis function $\phi_k(x)$
 - ullet linear regression on $\phi_k(x)$, not on x : basis function regression
- ullet Parameterised basis functions $\phi_k^{w_k,b_k}$
 - ullet ϕ_k applied to inner product $w_k^T x + b_k$
 - Hierarchy in parametrised basis functions: input→hidden layers→output

- Bayesian Deep Learning Model
 - ullet prior distribution over parameters W $p(W) = N(W; 0_k, s^2 l_k)$
 - likelihood conditioned on \boldsymbol{W} generated observations with gaussian noise added

$$p(y|W,x) = N(y;W^T\phi(x),\sigma^2), y_n = W^T\phi(x_n) + \epsilon_n, \epsilon_n \ N(0,\sigma^2)$$

좌측: 일반 딥러닝 모델

우측: 베이지안 딥러닝 모델

학습을 통해 고정된 W 값을 찾는 것이 아니라, W의 확률분포를 찾아가는 것!