

Drought Impact on Maple Syrup **Production**

Team B4: Chris Chang, Jacinto Lemarroy, Mengxin Li, Shiyu Ye, Ying Li

Table of Contents

Data Overview

Data Sources:

National Oceanic and Atmospheric Administration (NOAA), United States Department of Agriculture (USDA), National Drought Mitigation Center

Dataset Information

• 22 variables

Introduction and Problem Statement

Main Objective

Understand drought factors affecting maple syrup production

Information Sources

NOAA, weather websites, college research websites

Sectors

Agriculture, Manufacturing, Energy, and Tourism

Initial Ideas

- Golf course
- New England livestock
- Maple trees

Data Overview

Data Preprocessing

- Missing value: drought related variable for
 64 rows (1992 to 1999)
- Data processing goal:
 - Predict "None", "D0", "D1", "D2", "D3", "D4"
 - o Calculate **DSCI**
- Input: SPI: W0-W4; SPI: D0-D4; 'State', 'Year', 'Avg. Temperature', 'Precipitation', 'SPI-Drought state', 'SPI-Wet state'

Feature Engineering

Outlier Check

Pid not drop for the further analysis

01	Overall Production of Each State				
02	Overall Correlation Heatmap				
03	Average Temperature on Gallons				
04	Average Temperature on Value				
05	Extreme Maximum Air Temperature on Gallons				
06	Extreme Minimum Air Temperature on Gallons				
07	Average Precipitation on Gallons				
08	SPI drought				

Overall Production of Each State

Top Three States:

- Vermont
- New York
- Maine

Decline Period:

- 2010, 2012, 2021
- Weather related

Overall Trend:

- Increase
- Stationary

Variable Heatmap - Correlation Matrix

Positive correlation

Gallons vs Value

- 0.75

- 0.50

- 0.25

- 0.00

-0.25

- -0.50 - -0.75

Negative correlation

Average Temperature vs Gallons Average Temperature vs Value

Multicollinearity Issue

Drought-related variables

NIDIS

Average Temperature vs. Gallons/Value

Slope = -3.84 Slope = -1.10

Drought Levels and Gallon Production

Regression Analysis

01 Regression of Each State

O2 Single-variate Regression on all states

03 Multivariate Regression on all states

Regression of each state

Linearity Check

NIDIS

- 1. Variables 'Yield per Taps' and 'Number of Taps' is highly related to target variable 'Gallons'.
- 2. On average, a tapped maple will produce 10 to 20 gallons of sap per tap. \rightarrow Linear relationship?
- 3. Sugar concentration variability might affect the final production in gallons! \rightarrow Or not??

Linearity Check

NIDIS

- 1. Variables such as 'SPI Wet' and 'Avg Temperature' are distracting
- 2. However, in reality, 'Drought conditions are harder on the trees than wet conditions. The wet ground will supply plenty of moisture for the sap to run but the drought may mean lower sugar.'

Regression - Considering maple growing season

- 1. Growing season: Last year's September to the second year's February, but only precipitation!
- 2. Most of the states, R square increased!
- 3. Connecticut decreased dramatically!

Conclusion: Using precipitation during growing season and average temperature of the whole year!

State	R-square	R-square(growing season)	Difference
ME	52.80%	52.60%	-0.20%
VT	76.40%	82.70%	6.30%
MH	80.10%	80.30%	0.20%
NY	57.50%	58.00%	0.50%
PA	37.60%	41.70%	4.10%
CT	49.90%	42.90%	-7.00%
MA	56.60%	56.60%	0.00%

Feature Selection - Maine as an example

- 1. Eliminated D1, D2, D3, D4 because of these variables' collinearity with the D0.
- Kept DSCI for saving the overall drought effect on regressions

VIF Factor	features
1.810565e+11	const
3.800000e+00	Avg.Temperature_one_year
4.600000e+00	<pre>Avg.Temperature_six_month</pre>
1.140000e+01	Precipitation_one_year
8.800000e+00	Precipitation_six_month
8.530393e+09	none
inf	D0
inf	D1
inf	D2
inf	D3
NaN	D4
inf	DSCI
1.420000e+01	SPI-Drought
1.760000e+01	SPI-Wet
4.100000e+00	EMNT(in air)
3.700000e+00	EMXT(in air)
4.700000e+00	Number of Taps
6.300000e+00	Yield per Tap

Feature Selection - Maine as an example

NIDIS

- 1. D0 which was previously insignificant now became statistically significant.
- 2. The SPI drought stayed significant.
- 3. Variable 'none' is negative. → But not significant!

Limitation:

Most of the variables still not significant! Check all states!!!

======================================	OLS Regre	ssion Resul	.ts			
Dep. Variable:						
	у		 ed :		0.437	
Model:	0LS	Adj. R-s	quared:		0.222	
Method:	Least Squares	F-statis	tic:		2.035	
Date: Sa	it, 30 Apr 2022	Prob (F-	<pre>-statistic):</pre>		0.0918	
Time:	19:30:05	Log-Like	:lihood:		-395.49	
No. Observations:	30	AIC:			809.0	
Df Residuals:	21	BIC:			821.6	
Df Model:	8					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
const	5.712e+05	2e+06	0.285	0.778	-3.59e+06	4.74e+06
Avg.Temperature_one_yea	r 1.444e+04	2.51e+04	0.577	0.570	-3.77e+04	6.65e+04
Precipitation_one_year	-1.099e+04	9317.630	-1.179	0.252	-3.04e+04	8390.840
none	-3808.0987	3415.346	-1.115	0.277	-1.09e+04	3294.503
DØ	1.164e+04	6486.454	1.795	0.087	-1846.981	2.51e+04
SPI-Drought	-1.169e+04	4463.465	-2.619	0.016	-2.1e+04	-2409.188
SPI-Wet	5648.9504	3451.947	1.636	0.117	-1529.766	1.28e+04
EMNT(in air)	-2646.5757	5818.757	-0.455	0.654	-1.47e+04	9454.191
EMXT(in air)	-2967.7046	1.98e+04	-0.150	0.882	-4.42e+04	3.83e+04
Omnibus:	1.870	 Durbin-W	 /atson:		0.995	
Prob(Omnibus):	0.393	Jarque-B	Bera (JB):		1.432	
Skew:	0.341	Prob(JB)	:		0.489	
Kurtosis:	2.175	Cond. No) .		1.00e+04	

- None No lag effect
- Incorporating previous year's precipitation explains more variance in maple syrup production.
- However, this is not the case for average temperature.

	Lag effect column	R_squared
One_Year	None	0.459
	Temperature	0.370
	Precipitation	0.467
	Both	0.388
Six_month	None	0.317
	Temperature	0.301
	Precipitation	0.303
	Both	0.272

Multivariate Regression (All States)

OLS Regression Results						
Dep. Variable:	Gallons	R-square	:d:		0.473	
Model:	OLS	Adj. R-s	quared:		0.438	
Method:	Least Squares	F-statis	tic:		13.51	
Date: Sur	n, 01 May 2022	Prob (F-	statistic):		3.82e-21	
Time:	17:55:32	Log-Like	lihood:		-2933.1	
No. Observations:	210	AIC:			5894.	
Df Residuals:	196	BIC:			5941.	
Df Model:	13					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
const	-1.111e+09	5.51e+09	-0.202	0.840	-1.2e+10	9.75e+09
Avg.Temperature_one_year	-7.574e+04	8818.466	-8.588	0.000	-9.31e+04	-5.83e+04
Precipitation_six_month	-1.864e+04	7552.788	-2.468	0.014	-3.35e+04	-3743.322
none	1.113e+07	5.51e+07	0.202	0.840	-9.75e+07	1.2e+08
D0	-6.437e+11	2.82e+12	-0.228	0.820	-6.21e+12	4.92e+12
D1	-1.287e+12	5.65e+12	-0.228	0.820	-1.24e+13	9.85e+12
D2	-9.656e+11	4.24e+12	-0.228	0.820	-9.32e+12	7.39e+12
D2	-9.656e+11	4.24e+12	-0.228	0.820	-9.32e+12	7.39e+12
D3	-2.575e+12	1.13e+13	-0.228	0.820	-2.48e+13	1.97e+13
D4	-3.219e+12	1.41e+13	-0.228	0.820	-3.11e+13	2.46e+13
DSCI	6.437e+11	2.82e+12	0.228	0.820	-4.92e+12	6.21e+12
SPI-Drought	-1.909e+04	3613.510	-5.284	0.000	-2.62e+04	-1.2e+04
SPI-Wet	8488.4794	1562.595	5.432	0.000	5406.821	1.16e+04
EMNT(in air)	3422.8589	2292.318	1.493	0.137	-1097.916	7943.633
EMXT(in air)	2.243e+04	6767.305	3.315	0.001	9088.080	3.58e+04

Conclusion

• Average temperature (1-year), Precipitation (6-months), SPI Wet, SPI Drought, and Extreme maximum temperature were significant indicators that explained the variation in gallon production in all states.

0

• Limitations and Challenges

- Limited data volume to draw causal inference about how drought affects maple production or make accurate predictions on production with appropriate ML models
- Data granularity issues
 - Data sources had variables that were on different scale, different level, different years than ours,
- Lack of response from maple syrup connoisseurs, maple syrup companies, or government agencies, farms
- Put more effort in learning about factors that influence the growth of maple tree and syrup production

- Add more features (Soil, Geological variables etc.) to improve model.
- Find granular data (monthly, weekly, daily) to perform more accurate analysis.
- Design dashboard (Tableau, PowerBI) for data visualization.
- Create database to store and update data since our data is continuous.
- Expand drought impact analysis on other crops eg. apples, corn, soybeans.

THANK YOU

