BUNDESREPUBLIK DEUTSCHLAND

[®] Off nl gungsschrift [®] DE 44 24 412 A 1

6) Int. Cl.6: H 04 B 7/26

H 04 B 7/185 H 04 B 7/00 G 01 S 5/12

DEUTSCHES PATENTAMT

②1 Aktenzeichen:②2 Anmeldetag:

P 44 24 412.6 12. 7. 94

Offenlegungstag:

18. 1.96

① Anmelder:

ESG Elektroniksystem- und Logistik GmbH, 81875 München, DE

(4) Vertreter:

H. Weickmann und Kollegen, 81679 München

② Erfinder:

Petersen, Jens, 82211 Breitbrunn, DE

66) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 41 36 136 C1 DE 39 18 668 C2 DE 42 11 933 A1 DE 41 30 367 A1 DE 40 34 429 A1 DE 40 32 198 A1

FAIRHEAD, Steve: Using GPS to enhance the control and effectiveness of a public transport system. In: Electronic Engi- neering, April 1993, S.49,51,53; KRAUSE, von Erik: Satellitennavigation. Auf den Punkt gebracht. In: Yacht 12/88, S.44-48; STANSELL, Thomas A.: Civil GPS from a Future Perspective. In: Proceedings Of The IEEE, Vol.71, No.10, Oct. 1983, S.1187-1192;

TOSHIYUKI ITOH;

et.al.: Navigation Systems Using GPS for Vehicles. In: SAE Technical Paper Series, No. 861360,

ISSN 0148-7191, S9186, S.1-13;

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Funktelekommunikationssystem mit Satelliten-Navigation
- Bei einem herkömmlichen Funktelekommunikationssystem zur Übertragung von Informationen zwischen stationären Sende-/Empfangseinheiten und mobilen Sende-/Empfangseinheiten wird vorgeschlagen, die mobilen Einheiten zusätzlich mit einem Satellitennavigationsampfänger zu versehen zur selbständigen Ermittlung eines Positions-Rohwertes. Die stationären Einheiten werden ebenfalls mit einem Satellitennavigationsempfänger versehen zur selbsttätigen Ermittlung eines Referenzpositions-Rohwertes eines Referenzortes mit bekannter genauer geographischer Position als Referenzpositions-Normalwert sowie einer Fehlerbestimmungseinheit zur Bestimmung von Positionsbestimmungsfehlern durch Vergleich des momentan ermittelten Referenzpositions-Rohwerts mit dem Referenzpositions-Normalwert. Bei den mobilen Einheiten oder bei den stationären Einheiten erfolgt dann die Korrektur der Positions-Rohwerte mit im wesentlichen zeitgleich ermittelten Bestimmungsfehlern, wobei die hierzu erforderliche Übertragung der Positionsrohwerte bzw. der Positionsbestimmungsfehler per Funk über den für die sprachliche information benutzten Funkkanai erfolgt.

ren. Ein einziger Satellitennavigationsempfänger mit genauer geographischer Position in diesem Teilgebiet reicht aus. Im Falle eines UKW-Sendesystems kann das Teilgebiet zusammenfallen mit dem Sender bzw. der Senderkette gleicher UKW-Frequenz. Schließlich ist auch der bauliche Aufwand auf seiten der mobilen Einheiten aufgrund der Fortschritte in der Miniaturisierung von Funkkomponenten und von Computerkomponenten vergleichsweise gering. Die mobilen Einheiten können u. U. auch als Handgeräte realisiert werden, die ne- 10 ben ihrer Funktion als Funktelephon bzw. UKW-Radio auch noch die Funktion eines differentiellen Satellitennavigationsempfängers erfüllen.

Die Korrektur der Positions-Rohwerte in die korrigierten Positionswerte kann zentral in den stationären 15 Einheiten (oder in einer der mit dem übrigen stationären Einheiten zur Übertragung der Satelliten-Navigationsdaten verbundenen stationären Einheit) oder dezentral in den mobilen Einheiten vorgenommen werden. In vielen Fällen ist die Information über die genaue momenta- 20 ne Position der mobilen Einheit sowohl bei der mobilen Einheit als auch an stationärer Stelle (insbesondere in einer Einsatzzentrale) von Bedeutung. Hierzu wird vorgeschlagen, daß die wenigstens eine mit der Korrektureinrichtung verbundene Referenzeinheit zur Übermitt- 25 lung korrigiert er Positionswerte an die jeweilige mobile Einheit ausgebildet ist bzw. daß die mit den Korrektureinrichtungen ausgebildeten mobilen Einheiten zur Übermittlung der korrigierten Positionswerte an die wenigstens eine Referenzeinheit ausgebildet sind.

Besonders vorteilhaft ist, wenn die Übertragungsund Empfangseinrichtungen zur Übertragung der Positionsrohwerte bzw. der Positionsbestimmungsfehler bzw. der korrigierten Positionswerte über den für die Übertragung der Informationen vorgesehenen Funkkanal ausgebildet sind. Dies erspart nicht nur die Bereitstellung eines weiteren Funkkanals, sondern ermöglicht auch den unveränderten Einsatz der Sende- bzw. Empfangseinheit des Funktelephons bzw. des UKW-Radios oder Funkrufempfängers für die Übertragung der Posi- 40 len Einheiten als Funktelefon ausgebildet sind. tions-Rohwerte bzw. der Positionsbestimmungsfehler.

Damit die Übertragung im gleichen Kanal nicht weiter stört, wird vorgeschlagen, daß die Übertragungsund Empfangseinrichtungen zur gleichzeitigen Übertragung der Positionsrohwerte bzw. der Positionsbestim- 45 mungsfehler bzw. der korrigierten Positionswerte mit der Information ausgebildet sind mit Überlagerung der Positionsrohwerte bzw. Positionsbestimmungsfehler auf die Sprachinformation bei analoger Übertragung in einem Frequenzbereich oberhalb der menschlichen 50 oberen Hörgrenze und bei digitaler Übertragung mit entsprechender unterscheidender Codierung.

Um sicherzustellen, daß von den jeweiligen mobilen Einheiten die selben Satelliten empfangen werden wie von der Referenzstation, wird vorgeschlagen, daß das 55 Sendegebiet der stationären Einheiten in mehrere Teilgebiete unterteilt ist und daß in jedem Teilgebiet wenigstens eine Referenz-Einheit vorgesehen ist zur Bestimmung von für das jeweilige Teilgebiet geltenden Positionsbestimmungsfehlern.

Besonders bevorzugt ist vorgesehen, daß die stationären Einheiten mit einer Zentrale verbunden und zur Weiterleitung von korrigierten Positionswerten bestimmter mobiler Einheiten an die Zentrale ausgebildet sind. Von der Zentrale aus kann dann der genaue Ort 65 der beteiligten mobilen Einheiten festgestellt werden. Im Falle eines Mobil-Sprechfunksystems kann die Zentrale aufgrund ihrer genauen Kenntnis des momentanen

Orts der mobilen Einheiten z. B. auch eine Lotsen-Funktion über Sprechfunk vornehmen.

Besonders bevorzugt ist vorgesehen, daß die Zentrale als Einsatzzentrale für mit den mobilen Einheiten verse-5 hene Fahrzeuge und/oder Personen insbesondere von Sicherheitsdiensten, Rettungsdiensten, Feuerwehren, Kurierdiensten, Transportunternehmen für Personen oder Güter, Vermessungsdiensten, Lagereinrichtungen oder Lotsendiensten ausgebildet ist.

Bevorzugt ist das Funktelekommunikationssystem nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, daß wenigstens eine der stationären Einheiten als Referenzeinheit ausgebildet und mit anderen stationären Einheiten zur Übertragung von Satelliten-Navigationsdaten verbunden ist.

Alternativ hierzu besteht jedoch auch die Möglichkeit, daß die wenigstens eine Referenzeinheit von einer mobilen Einheit gebildet ist. Es kann dann ein beliebiger Teilnehmer des Funktelekommunikationssystems für sich und weitere Mitglieder des Systems eine Positionsbestimmung nach dem differentiellen Satellitennavigationssystem vornehmen, ohne daß das System als solches, insbesondere die stationären Einheiten, in irgendeiner Weise anzupassen sind.

Besonders geringer zusätzlicher Aufwand zur Einrichtung des erfindungsgemäßen Systems ist dann erforderlich, wenn, wie in einer Ausführungsform der Erfindung vorgeschlagen wird, die stationären Einheiten von den Sendern einer Rundfunksenderkette, insbesondere im UKW-Bereich, gebildet sind und die mobilen Einheiten jeweils einen Rundfunksempfangsteil aufweisen.

Es kann jedoch auch vorgesehen sein, daß die stationären Einheiten die Sender einer Funkruf-Senderkette sind und daß die mobilen Einheiten als Funkrufempfänger ausgebildet sind.

Besonders attraktiv ist auch die Ausführungsform der Erfindung, die dadurch gekennzeichnet ist, daß die stationären Einheiten von den Sende-/Empfangseinheiten eines Mobilfunksystems gebildet sind und daß die mobi-

Die Erfindung betrifft ferner ein Verfahren zum Betrieb eines Funktelekommunikationssystems zur Übertragung von Informationen, insbesondere Sprachinformationen oder Rundfunkprogramminformationen zwischen stationären Einheiten, nämlich Sende-/Empfangseinheiten oder Sendeeinheiten und mobilen Einheiten, nämlich Sende-/Empfangseinheiten bzw. Empfangseinheiten, welches dadurch gekennzeichnet ist, daß man zusätzlich zur Information Satelliten-Navigationsdaten für die Ortsbestimmung nach dem differentiellen Satelliten-Navigationsverfahren überträgt.

Die Erfindung wird im folgenden an bevorzugten Ausführungsbeispielen anhand der Zeichnung erläutert. Es zeigt:

Fig. 1 eine grobschematische Übersichtsdarstellung des erfindungsgemäßen Funktelekommunikationssystems mit Satellitennavigation am Beispiel eines Mobiltelefonsystems;

Fig. 2 eine grobschematische Blockdiagramm-Dar-60 stellung des inneren Aufbaus einer mobilen sowie einer als Referenzwert ausgebildeten Einheit des Systems gemäß Fig. 1; und

Fig. 3 eine Darstellung entsprechend Fig. 2, jedoch für den Fall eines UKW-Rundfunksystems.

In Fig. 1 ist ein herkömmliches Mobilfunksystem 10 dargestellt aus einem Netz stationärer Sende-/Empfangseinheiten (Zentralstationen) 12, die untereinander über Leitungen 14 miteinander verbunden sind. Diese

stationären Einheiten 12 sind entsprechend dem Aufbau des jeweiligen Netzes mit einer Reihe unselbständiger Antenneneinheiten 18 verbunden, die über das jeweilige Sende- und Empfangsgebiet 16a bzw. 16b verteilt sind, um eine flächendeckende Sprechfunkverbindung mit mobilen Einheiten 20 innerhalb des Gebiets 16a bzw. 16b auch bei geringer Sendeleistung der mobilen Einheiten 20 sicherzustellen. Die Verbindung zwischen den Einheiten 12 und den Einheiten 18 kann über die Leitung 14 oder über Funkstrecken 22 erfolgen.

Dieses jedermann zugängliche und bereits weitgehend flächendeckend erstellte Mobilfunksystem 10 wird nun gemäß der Erfindung dazu eingesetzt, um praktisch jedermann ohne größeren Aufwand mittels Kombinaeine genaue Positionsbestimmung mit Hilfe der differentiellen Satellitennavigation zu ermöglichen. Hierzu ist gemäß Fig. 2 jede der mobilen Einheiten 20 neben ihrer herkömmlichen Mobilfunkeinheit 24 samt Sende-/Empfangsteil 26 mit einem Satellitennavigationsemp- 20 fänger 28 üblichen Aufbaus zu versehen sowie mit einer Zentraleinheit 30, die den Gesamtbetrieb der mobilen Einheit 20 steuert und für den notwendigen Datentransfer sorgt. Falls das üblicherweise bereits bei der herkömmlichen Mobilfunkeinheit 24 vorgesehene Display 25 samt Tastatur nicht ausreicht, kann eine gesonderte Anzeige- und Bedieneinheit 32 vorgesehen sein.

Auch den stationären Einheiten 12 ist zumindest ein gemeinsamer Satelliten-Navigationsempfänger 34 zugeordnet. Bei sehr großem Sende- und Empfangsgebiet 30 kann dieses in mehrere Teilgebiete 16a, 16b unterteilt werden, wobei jeweils ein Satelliten-Navigationsempfänger jedem Teilgebiet zugeordnet ist. Für die differentielle Satelliten-Navigation ist nämlich wesentlich, daß die jeweilige mobile Einheit mit ihrem Satelliten-Navi- 35 gationsempfänger die Signale von zumindest drei bis vier Satelliten empfängt, deren Signale gleichzeitig auch von der Referenzeinheit (hier von der stationären Einheit mit den Satelliten-Navigationsempfänger 34) empfängt. Bei einem sich beispielsweise über ganz Europa 40 erstreckenden Sende- und Empfangsgebiet ist diese Bedingung jedoch zumindest bei den derzeit eingesetzten Satelliten mit relativ niedriger Flugbahn nicht erfüllt, so daß in die Teilgebiete unterteilt werden muß. Im jeweiligen Teilgebiet reicht es aus, wenn ein einziger Satelli- 45 tennavigationsempfänger mehreren stationären Einheiten 12 zugeordnet ist, wobei der entsprechende Datentransfer über die Leitung 14 erfolgen kann.

Zur Durchführung des differentiellen Satellitennavigationsverfahrens wird die genaue, am besten geodä- 50 tisch vermessene Position der Antenne des Satellitennavigationsempfängers 34 benötigt. Diese Position wird im folgenden als Referenzpositions-Normalwert RN bezeichnet. Auf Grund der systembedingten Ungenauigkeit der Satellitennavigation unterscheidet sich diese 55 von dem vom Satellitennavigationsempfänger 34 ermittelten und mit Referenzpositions-Rohwert RR bezeichneten, errechneten Positionswert. Die Positionsberechnung erfolgt in üblicher Weise dadurch, daß aus den durch Zeitvergleich ermittelten Laufzeiten der Signale 60 von beispielsweise vier Satelliten die jeweilige momentane Satellitenentfernung E1 bis E4 bestimmt wird. Da die momentane Satellitenposition bekannt ist, kann hieraus durch Triangulationsrechnung die Position des Satelliten-Navigationseinheit berechnet werden. Dies 65 Verfahren ist jedoch mit einem relativ großer Fehler behaftet, so daß die momentane Position nur mit relativ großer Ungenauigkeit von z. B. 100-200 m ermittelt

werden kann. Es wird daher gemäß dem bekannten differentiellen Satelliten-Navigationsverfahren der Referenzpositions-Rohwert RR mit dem genau bekannten Referenzpositions-Normalwert RN in einer Fehlerbestimmungseinheit 38 einer Zentraleinheit 36 der Referenzeinheit (stationäre Einheit 12) verglichen und hieraus ein Positionsbestimmungsfehler PF abgeleitet. Dieser mit der Zeit variierende Positionsbestimmungsfehler PF wird zur Fehlerkorrektur der Positionsrohwerte 10 PR der mobilen Einheiten 20 verwendet, die ihren Positionsrohwert PR unter Zugrundelegung von Signallaufzeiten derselben vier Satelliten berechnen.

Die Referenzeinheit (stationäre Einheit 12) hat im übrigen den herkömmlichen Aufbau einer Mobilfunktion von Mobilfunktelephon und Satellitennavigation 15 zentralstation mit Mobilfunkeinheit 40 samt Sende- und Empfangsteil 42 zur Vermittlung von Telefongesprächen zwischen den Netzteilnehmern.

> Die Fehlerkorrektur mit Hilfe des Positionsfehlers PF kann zentral, d. h. in der stationären Einheit 12 erfolgen. wie in Fig. 2 dargestellt ist. Hierzu wird von der jeweiligen mobilen Einheit 20 der momentane Positions-Rohwert PR ermittelt und über den Sende- und Empfangsteil 26 an die stationäre Einheit 12 per Funk weitergeleitet. Dies erfolgt über denselben Funkkanal, über den auch die herkömmliche Telekommunikation erfolgt, also über den die Sprachinformationen SI, ggf. ergänzt durch Dateninformation, ausgetauscht werden. Um u. U. zeitgleich mit der Sprachinformationsübermittlung auch die Navigationsdatenübermittlung durchführen zu können, werden bei analoger Übertragung die Navigationsdaten (hier die Positions-Rohwerte PR) in einen oberhalb der oberen menschlichen Hörgrenze liegenden Frequenzbereich transferiert. Bei digitaler Übertragung kann bei entsprechender unterscheidender Datencodierung die Ermittlung der Sprachinformation ebenfalls zeitgleich mit der Übermittlung der Navigationsdaten erfolgen.

> Die stationäre Einheit 12 empfängt die Positions-Rohwerte PR über ihren Sende-/Empfangsteil 42 und leitet sie in die Zentraleinheit 36 weiter (zusammen mit der Angabe der benutzten Satelliten). Eine Korrektureinrichtung 44 innerhalb der Zentraleinheit 36 empfängt sowohl diesen Positions-Rohwert PR als auch den im wesentlichen zeitgleich ermittelten Positionsbestimmungsfehler PF und errechnet hieraus einen korrigierten Positionswert PW. Dieser wird dann wiederum über die Sende-/Empfangseinheit 42 per Funk an die jeweilige mobile Einheit 20 zurückgesendet. Deren Sende-und Empfangsteil 26 gibt den Positionswert PW weiter an die zentrale Einheit 30. Diese veranlaßt ggf. eine entsprechende Anzeige auf der Anzeige- und Bedienungseinheit 32.

> Unter den Positionsrohwerten PR wird in diesem Zusammenhang sowohl der sich aus der trigonometrischen Berechnung ergebende eine Ergebniswert verstanden als auch der "Positions-Vektor" aus den einzelnen Entfernungswerten E₁ – E₄ der verwendeten Satelliten. Bei Verwendung dieses Positionsvektors zur Korrektur ergibt sich eine höhere Genauigkeit des Endergebnisses.

> Alternativ oder zusätzlich kann die Fehlerkorrektur der Positionsrohwerte PR auch dezentral in der jeweiligen mobilen Einheit 20 erfolgen. Wie in Fig. 2 mit strichlierter Umrißlinie angedeutet ist, weist die zentrale Einheit 30 in einem solchen Fall eine Korrektureinrichtung 46 auf. Diese erhält von der stationären Einheit 12 wiederum über den normalen Funkkanal den Positionsbestimmungsfehler PF (in Fig. 2 in runde Klammern gesetzt), um mit diesem dann den zeitgleich ermittelten

stationären Einheiten 12 sind entsprechend dem Aufbau des jeweiligen Netzes mit einer Reihe unselbständiger Antenneneinheiten 18 verbunden, die über das jeweilige Sende- und Empfangsgebiet 16a bzw. 16b verteilt sind, um eine flächendeckende Sprechfunkverbindung mit mobilen Einheiten 20 innerhalb des Gebiets 16a bzw. 16b auch bei geringer Sendeleistung der mobilen Einheiten 20 sicherzustellen. Die Verbindung zwischen den Einheiten 12 und den Einheiten 18 kann über die Leitung 14 oder über Funkstrecken 22 erfolgen.

Dieses jedermann zugängliche und bereits weitgehend flächendeckend erstellte Mobilfunksystem 10 wird nun gemäß der Erfindung dazu eingesetzt, um praktisch iedermann ohne größeren Aufwand mittels Kombination von Mobilfunktelephon und Satellitennavigation 15 eine genaue Positionsbestimmung mit Hilfe der differentiellen Satellitennavigation zu ermöglichen. Hierzu ist gemäß Fig. 2 jede der mobilen Einheiten 20 neben ihrer herkömmlichen Mobilfunkeinheit 24 samt Sende-/Empfangsteil 26 mit einem Satellitennavigationsemp- 20 fänger 28 üblichen Aufbaus zu versehen sowie mit einer Zentraleinheit 30, die den Gesamtbetrieb der mobilen Einheit 20 steuert und für den notwendigen Datentransfer sorgt. Falls das üblicherweise bereits bei der herkömmlichen Mobilfunkeinheit 24 vorgesehene Display 25 samt Tastatur nicht ausreicht, kann eine gesonderte Anzeige- und Bedieneinheit 32 vorgesehen sein.

Auch den stationären Einheiten 12 ist zumindest ein gemeinsamer Satelliten-Navigationsempfänger 34 zugeordnet. Bei sehr großem Sende- und Empfangsgebiet 30 kann dieses in mehrere Teilgebiete 16a, 16b unterteilt werden, wobei jeweils ein Satelliten-Navigationsempfänger jedem Teilgebiet zugeordnet ist. Für die differentielle Satelliten-Navigation ist nämlich wesentlich, daß die jeweilige mobile Einheit mit ihrem Satelliten-Navi- 35 gationsempfänger die Signale von zumindest drei bis vier Satelliten empfängt, deren Signale gleichzeitig auch von der Referenzeinheit (hier von der stationären Einheit mit den Satelliten-Navigationsempfänger 34) empfängt. Bei einem sich beispielsweise über ganz Europa 40 erstreckenden Sende- und Empfangsgebiet ist diese Bedingung jedoch zumindest bei den derzeit eingesetzten Satelliten mit relativ niedriger Flugbahn nicht erfüllt, so daß in die Teilgebiete unterteilt werden muß. Im jeweiligen Teilgebiet reicht es aus, wenn ein einziger Satellitennavigationsempfänger mehreren stationären Einheiten 12 zugeordnet ist, wobei der entsprechende Datentransfer über die Leitung 14 erfolgen kann.

Zur Durchführung des differentiellen Satellitennavigationsverfahrens wird die genaue, am besten geodätisch vermessene Position der Antenne des Satellitennavigationsempfängers 34 benötigt. Diese Position wird im folgenden als Referenzpositions-Normalwert RN bezeichnet. Auf Grund der systembedingten Ungenauigkeit der Satellitennavigation unterscheidet sich diese 55 Berechnung ergebende eine Ergebniswert verstanden von dem vom Satellitennavigationsempfänger 34 ermittelten und mit Referenzpositions-Rohwert RR bezeichneten, errechneten Positionswert. Die Positionsberechnung erfolgt in üblicher Weise dadurch, daß aus den durch Zeitvergleich ermittelten Laufzeiten der Signale 60 von beispielsweise vier Satelliten die jeweilige momentane Satellitenentfernung E1 bis E4 bestimmt wird. Da die momentane Satellitenposition bekannt ist, kann hieraus durch Triangulationsrechnung die Position des Satelliten-Navigationseinheit berechnet werden. Dies 65 Verfahren ist jedoch mit einem relativ großer Fehler behaftet, so daß die momentane Position nur mit relativ großer Ungenauigkeit von z.B. 100-200 m ermittelt

werden kann. Es wird daher gemäß dem bekannten differentiellen Satelliten-Navigationsverfahren der Referenzpositions-Rohwert RR mit dem genau bekannten Referenzpositions-Normalwert RN in einer Fehlerbestimmungseinheit 38 einer Zentraleinheit 36 der Referenzeinheit (stationäre Einheit 12) verglichen und hieraus ein Positionsbestimmungsfehler PF abgeleitet. Dieser mit der Zeit variierende Positionsbestimmungsfehler PF wird zur Fehlerkorrektur der Positionsrohwerte 10 PR der mobilen Einheiten 20 verwendet, die ihren Positionsrohwert PR unter Zugrundelegung von Signallaufzeiten derselben vier Satelliten berechnen.

Die Referenzeinheit (stationäre Einheit 12) hat im übrigen den herkömmlichen Aufbau einer Mobilfunkzentralstation mit Mobilfunkeinheit 40 samt Sende- und Empfangsteil 42 zur Vermittlung von Telefongesprächen zwischen den Netzteilnehmern.

Die Fehlerkorrektur mit Hilfe des Positionsfehlers PF kann zentral, d. h. in der stationären Einheit 12 erfolgen. wie in Fig. 2 dargestellt ist. Hierzu wird von der jeweiligen mobilen Einheit 20 der momentane Positions-Rohwert PR ermittelt und über den Sende- und Empfangsteil 26 an die stationäre Einheit 12 per Funk weitergeleitet. Dies erfolgt über denselben Funkkanal, über den auch die herkömmliche Telekommunikation erfolgt, also über den die Sprachinformationen SI, ggf. ergänzt durch Dateninformation, ausgetauscht werden. Um u. U. zeitgleich mit der Sprachinformationsübermittlung auch die Navigationsdatenübermittlung durchführen zu können, werden bei analoger Übertragung die Navigationsdaten (hier die Positions-Rohwerte PR) in einen oberhalb der oberen menschlichen Hörgrenze liegenden Frequenzbereich transferiert. Bei digitaler Übertragung kann bei entsprechender unterscheidender Datencodierung die Ermittlung der Sprachinformation ebenfalls zeitgleich mit der Übermittlung der Navigationsdaten erfolgen.

Die stationäre Einheit 12 empfängt die Positions-Rohwerte PR über ihren Sende-/Empfangsteil 42 und leitet sie in die Zentraleinheit 36 weiter (zusammen mit der Angabe der benutzten Satelliten). Eine Korrektureinrichtung 44 innerhalb der Zentraleinheit 36 empfängt sowohl diesen Positions-Rohwert PR als auch den im wesentlichen zeitgleich ermittelten Positionsbestimmungsfehler PF und errechnet hieraus einen korrigierten Positionswert PW. Dieser wird dann wiederum über die Sende-/Empfangseinheit 42 per Funk an die jeweilige mobile Einheit 20 zurückgesendet. Deren Sende-und Empfangsteil 26 gibt den Positionswert PW weiter an die zentrale Einheit 30. Diese veranlaßt ggf. eine entsprechende Anzeige auf der Anzeige- und Bedienungseinheit 32.

Unter den Positionsrohwerten PR wird in diesem Zusammenhang sowohl der sich aus der trigonometrischen als auch der "Positions-Vektor" aus den einzelnen Entfernungswerten E₁-E₄ der verwendeten Satelliten. Bei Verwendung dieses Positionsvektors zur Korrektur ergibt sich eine höhere Genauigkeit des Endergebnisses.

Alternativ oder zusätzlich kann die Fehlerkorrektur der Positionsrohwerte PR auch dezentral in der jeweiligen mobilen Einheit 20 erfolgen. Wie in Fig. 2 mit strichlierter Umrißlinie angedeutet ist, weist die zentrale Einheit 30 in einem solchen Fall eine Korrektureinrichtung 46 auf. Diese erhält von der stationären Einheit 12 wiederum über den normalen Funkkanal den Positionsbestimmungsfehler PF (in Fig. 2 in runde Klammern gesetzt), um mit diesem dann den zeitgleich ermittelten

Hierzu 2 Seite(n) Zeichnungen

8. Funktelekommunikationssystem nach Anspruch 7, dadurch gekennzeichnet, daß die Zentrale als Einsatzzentrale (50) für mit den mobilen Einheiten versehene Fahrzeuge und oder Personen und/oder Personen insbesondere von Sicherheitsdiensten, 5 Rettungsdiensten, Feuerwehren, Kurierdiensten, Transportunternehmen für Personen oder Güter, Vermessungsdiensten, Lagereinrichtungen oder Lotsendiensten ausgebildet ist.

9. Funktelekommunikationssystem nach einem der 10 vorhergehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens eine der stationären Einheiten (12, 12') als Referenzeinheit ausgebildet und mit anderen stationären Einheiten zur Übertragung von Satelliten-Navigationsdaten (PR, PF, PW) ver- 15 bunden ist.

10. Funktelekommunikationssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die stationären Einheiten (12') von den Sendern einer Rundfunksenderkette, insbeson- 20 dere im UKW-Bereich, gebildet sind und daß die mobilen Einheiten (20') jeweils ein Rundfunksempfangsteil (24', 26') aufweisen.

11. Funktelekommunikationssystem nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß 25 die stationären Einheiten die Sender einer Funkruf-Senderkette sind und daß die mobilen Einheiten als

Funkrufempfänger ausgebildet sind.

12. Funktelekommunikationssystem nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß 30 die wenigstens eine Referenzeinheit von einer mobilen Einheit gebildet ist.

13. Funktelekommunikationssystem nach einem der Ansprüche 1-9 und 12, dadurch gekennzeichnet, daß die stationären Einheiten (12) von den Sen- 35 de-/Empfangseinheiten eines Mobilfunksystems (10) gebildet sind und daß die mobilen Einheiten jeweils als Funktelefon (20) ausgebildet sind.

14. Funktelekommunikationssystem nach einem der vorhergehenden Ansprüchen, dadurch gekenn- 40 zeichnet, daß wenigstens eine der stationären und/ oder mobilen Einheiten (20') mit einem elektronischen Karten-Orientierungssystem verbunden ist, insbesondere für die Lokalisierung des momentanen Standorts einer mobilen Einheit zu Lande, zu 45 Wasser oder in der Luft.

15. Funktelekommunikationssystem nach Anspruch 14, dadurch gekennzeichnet, daß wenigstens eine der stationären und/- oder mobilen Einheiten (20') mit einem elektronischen Straßenkarten- 50 Orientierungssystem verbunden ist zur Lokalisierung des momentanen Standorts in einem Straßennetz aufgrund des Positionswertes (PW).

16. Verfahren zum Betrieb eines Funktelekommunikationssystems zur Übertragung von Informatio- 55 nen, insbesondere Sprachinformationen (SI) oder Rundfunkprogramminformationen (PI) zwischen stationären Einheiten, nämlich Sende-/Empfangseinheiten (12) oder Sendeeinheiten (12') und mobilen Einheiten, nämlich Sende-/Empfangseinheiten 60 (20) bzw. Empfangseinheiten (20'), insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man zusätzlich zur Information Satelliten-Navigationsdaten für die Ortsbestimmung nach dem differentiellen Satelliten- 65 Navigationsverfahren überträgt.

- Leerseite -

Nummer:

Int. Cl.6:

Offenlegungstag:

DE 44 24 412 A1 H 04 B 7/26

18. Januar 1996

Nummer: Int. Cl.⁶:

Off nlegungstag:

DE 44 24 412 A1 H 04 B 7/26

18. Januar 1996

