LEC23, Differential Equations and
ep(At) 211
Differential Egns = Au
Exponential explate of a matrix
为数 exponential
Example: e At the differential
$\frac{du_1}{dt} = -u_1 + 2 u_2$ $u_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
$\frac{du_2}{dt} = u_1 - 2u_2 find u(t) $
1 > 7
$\rightarrow A = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix}, u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, Au = \begin{bmatrix} -u_1 + 2u_2 \\ u_1 - 2u_2 \end{bmatrix}$
A
$A = \begin{bmatrix} 1 & -2 \end{bmatrix}, M = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, Au = \begin{bmatrix} u_1 \\ u_1 \\ u_2 \end{bmatrix}$ $\begin{array}{c} 1 \\ \text{Singular} \Lambda_1 = 0, \Lambda_2 = -3 \text{(from trace)} \\ \Lambda_2 = 0 \end{array}$
A
1 singular $\Lambda_1 = 0$, $\Lambda_2 = -3$ (from trace)
1 singular $\Lambda_1 = 0$, $\Lambda_2 = -3$ (from trace)
1 singular $N_1 = 0$, $N_2 = -3$ (from trace) $N_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} Ax_1 = 0 x_1$ $N_2 = -3$

Mo Tu We Th Fr Sa Su	(eft.	Memo No Date	<i> </i>
left:	$\Lambda_i e^{\Lambda_i t} x_i$	= Aentx,	. , , ,
	(du)	right	u)
	$\Lambda x_i = A x_i$		
(entry)	need to r		
T the	is one is u	Mich interested in	n exponential
1tt	in last one:	UK = CIAKX, +	G2KX2+
	this is	for Ulet1 = A	Upc
(this is for dif	•		
so $u(t) = C$	1248	. 7	
	$\cdot \begin{bmatrix} \frac{2}{3} \end{bmatrix} + c$	2e-3t[-1]	
now use U		_ / _	-17
		7 + C2 [-1] =	
		$C_{2} = \frac{1}{3}$	
so final	$U(t) = \frac{1}{3} \left[\frac{7}{7} \right]$	I+ 3e-3+[-1]	, ->>
ŧ-	$\rightarrow \infty$, the st	perty state U	$\infty = \frac{1}{2} \left[\frac{1}{2} \right]$
1 stability	$u(t) \rightarrow 0$	/ need / Λ	<u> </u>
2 steady s	tute ni	=0 and other	Ke ∫ <0
3 Blew up	if any k	èЛ 70	

Mo Tu We Th Fr Sa Su	Memo No
DA=[ab]; so	Re 1,20 Re 1,20 the trace atd=1,712<0
(ex trace co , st.11] [-2 o] [det (A) 70	det(B) = A, · Az
recouple =) the vit	$u = SV (uncouples)$ $eigenvectors martix$ $Sv = \Lambda V \overline{At} = \Lambda V \cdot \overline{At}$ $J = e^{\Lambda t} V \cdot \overline{At} = \Lambda V \cdot \overline{At}$ $J = e^{\Lambda t} V \cdot \overline{At} = e^{\Lambda t} V \cdot \overline{At}$ $V = e^{\Lambda t} V \cdot \overline{At} = e^{\Lambda t} V \cdot \overline{At}$
eAt = Serts-1	betwo V=Cic dep
Matrix exponential $e^{At} = I + At + \frac{CAt}{2}$ $(I - At)^{-1} = I + At + CA$	12+ (AC) 3+ + CAC) 1-
$\int_{-x}^{\infty} = \tilde{\xi}(x)^n$	thing to Meetrix exponential

