ENGINEERING CHEMISTRY

Common for all branches

Credits:3		Course Code - Category: CSE 123 - BS			
Sessional Marks:40	O 4	E 1	P 0	T 0	L 3
End Exam Marks:60	•	•	v	am: 3 Hours	End Ex

Course Objectives:

- ➤ To familiarize Engineering Chemistry and its applications
- > To provide knowledge on problem associated with impure water and various treatment technologies
- > To train the students on the principles and applications of electrochemistry,
- ➤ To introduce nano, smart and composite materials

Course Outcomes:

By the end of the semester, the student will be able to:					
CO1	entify the problems associated with raw water in various applications and can adopt suitable technologies for domestic and industrial feed waters.				
CO2	nderstand the concepts of electro chemistry for design of suitable batteries and solar energy in view of environmental protection.				
CO3	elect and design of suitable materials to prevent corrosion and to protect various parts from corrosion.				
CO4	eneralize the properties of semiconducting and ceramic materials, can select suitable materials for specific applications.				
CO5	Analyze the importance of nano, composite and smart materials.				

SYLLABUS

UNIT I 12 Periods

Water Chemistry: Introduction- Impurities in water; Hardness of water – types of Hardness, units and calcium carbonate equivalents, problems, disadvantages of hard water; Boiler troubles- Scale & Sludge formation, prevention- Internal treatment - (Phosphate, Carbonate and Calgon conditioning) ,Caustic embrittlement

Water treatment techniques: Softening of water by ion exchange method- Principle, Process, advantages; Desalination of water – Reverse Osmosis and Eelectrodialysis; WHO standards for drinking water, Municipal water treatment - Sedimentation, Coagulation, Chlorination-Break point chlorination.

Learning Outcomes:

At the end of this unit the student will be able to

- List the differences between temporary and permanent hardness of water (L1)
- Illustrate the problems associated with hard water (L2)
- Explain the principles of reverse osmosis, electrodialysis and municipal water treatment processes (L2)
- **Solve** problems associated with hard water scale and sludge (L3)

UNIT-II 10 Periods

Electrochemical cells: Electrode potential, Nernst equation, reference electrodes-SHE and Calomel electrode, Electrochemical series, Electrochemical cell, Cell potential; Primary cells – Dry cell, alkaline battery, hydrogen-oxygen, methanol fuel cells – working of the cells; Secondary cells – lead acid, lithium ion batteriesworking of the batteries including cell reactions.

Solar Energy: Photovoltaic cell -Working & applications, Photo galvanic cells with specific examples

Learning Outcomes:

At the end of this unit the student will be able to

- Apply Nernst equation for calculating electrode and cell potentials (L3)
- Explain the theory and construction of battery and fuel cells (L2)
- **Identify** the applications of solar energy (L2)
- **Construct** different cells (L3)

UNIT – III 10 Periods

Corrosion Chemistry: Definition, Theories of corrosion-Chemical corrosion, metal oxide formation, Pilling Bedworth rule, Electrochemical theory of corrosion, differential aeration cell corrosion, galvanic corrosion; Factors affecting corrosion

Prevention and control: Protection- cathodic protection, Corrosion inhibitors, electroplating of Copper and electroless plating of Nickel, organic coatings-paint and varnish

Learning Outcome:

At the end of this unit the student will be able to

- Apply Pilling Bedworth rule for corrosion and corrosion prevention (L3)
- **Demonstrate** the corrosion prevention methods and factors affecting corrosion (L2)
- **Develop** the corrosion resistant materials for industrial and marine applications (L5)
- **Identify** different organic coatings (L3)

UNIT IV 10 Periods

Semiconducting Materials: Band theory of solids – band diagrams for conductors, semiconductors and insulators, Role of doping on band structures. Organic semiconductors and applications.

Ceramic Materials: Cement – raw materials, Manufacturing process, Setting and hardening of cement (hydration and hydrolysis equations); Refractories- classification; engineering applications of ceramics

Learning Outcome:

At the end of this unit the student will be able to

- **Explain** the manufacturing of portland cement (L2)
- Enumerate the reactions at different temperatures in the manufacture of cement (L2)
- **Describe** the mechanism of conduction in conducting polymers (L2)
- **List out** the applications of ceramics (L2)

UNIT V 10 Periods

Nanomaterials: Introduction to Nanomaterial- nanoparticles, nanocluster, carbon nanotube (CNT); Chemical synthesis of nanomaterials- sol-gel method; Characterization- Principle and applications of Scanning electron microscope (SEM) and Transmission electron microscope (TEM).

Polymer Composites: Definition, constituents of composites, types - Fiber Reinforced Plastics, Particulate composites, Layer composites, engineering applications of composites;

Smart polymers: Introduction, types of smart polymers and applications

Learning Outcome:

At the end of this unit the student will be able to

- **Classify** nanomaterials (L2)
- **Explain** the synthesis and characterisation of nanomaterials (L2)
- Explain the different types of composites and their applications (L2)
- **Identify** different types of smart materials (L2)

Prescribed Text Book

- 1. P.C. Jain and M. Jain "Engineering Chemistry" 16th edition, DhanapathiRai& Sons, Delhi. 2015.
- 2. S.S. Dara "A text book of Engineering Chemistry" 15 th edition, S. Chand& Co. New Delhi, 2014.

Reference books

- 1. O.G.Palanna "Engineering Chemistry" Tata McGraw Hill Education pvt ltd, New Delhi, 2009.
- 2. V.Raghavan "A Material Science and Engineering" 5th edition, Printice Hall India Ltd, 2011.