4 Der Hilbertsche Nullstellensatz

Satz 7. Sei K ein (nicht notwendig algebraisch abgeschlossener) Körper, und A eine endlich erzeugte K-Algebra. Dann ist A Jacobson'sch, d.h. für jedes Primideal $\mathfrak{p} \subset A$ gilt:

$$\mathfrak{p} = \bigcap_{\mathfrak{m} \supset \mathfrak{p}} \mathfrak{m}, \quad \mathfrak{m} \text{ max. Ideale}$$

Ist $\mathfrak{m} \subset A$ ein maximales Ideal, so ist die Körpererweiterung $K \subset A/\mathfrak{m}$ endlich.

Beweis. Algebra II / kommutative Algebra.

Korollar 8.

- (i) Sei A eine e.e. (endlich erzeugte) k-Algebra (k sei algebraisch abgeschlossen), $\mathfrak{m} \subseteq A$ ein maximales Ideal. Dann ist $A/\mathfrak{m} = k$.
- (ii) Jedes maximale Ideal $\mathfrak{m} \subset k[\underline{T}]$ hat die Form $\mathfrak{m} = (T_1 x_1, \dots, T_n x_n)$ mit $x_1, \dots, x_n \in k$.
- (iii) Für ein k-Ideal $\mathfrak{A} \subset k[\underline{T}]$ gilt:

$$\mathrm{rad}(\mathfrak{A}) = \sqrt{\mathfrak{A}} \stackrel{(i)}{=} \bigcap_{\mathfrak{A} \subseteq \mathfrak{p} \subseteq k[\underline{T}]} \mathfrak{p} = \bigcap_{\mathfrak{A} \subseteq \mathfrak{m}} \bigcap_{\max.\subseteq k[\underline{T}]} \mathfrak{m}$$

Beweis.

- (i) $k \to A \to A/\mathfrak{m}$ ist Isomorphismus, da k keine echte algebraische Körpererweiterung besteht.
- (ii) Es ist

$$k[T_1, \dots, T_n] \longrightarrow T/\mathfrak{m} = k$$

$$T_i \longmapsto x_i$$

Es folgt: $\mathfrak{m} = (T_1 - x_1, \dots, T_n - x_n)$, da letztes bereits maximal. (\supseteq klar.)

(iii) (i) Algebra II. (ii) Theorem.