

UE 4AM01 - MMC partie Fluides 1ère session - Jeudi 5 janvier 2017 - 3h

L'usage de documents et d'appareils électroniques est interdit.

En cas de blocage sur une question, l'énoncé est rédigé de manière telle que les questions suivantes peuvent souvent être résolues. Vous apporterez un soin particulier à la rédaction.

1 Déformations d'une bulle

1.1 Pulsation de Minnaert

Une onde acoustique consiste en des perturbations de pression, de vitesse et de masse volumique, couplées, qui se propagent. Lorsqu'une bulle de gaz (de masse volumique négligeable) sphérique de rayon R immergée dans de l'eau de masse volumique ρ est irradiée par une onde acoustique, elle reste approximativement sphérique mais son volume, donc son rayon varie au cours du temps à la fréquence de l'onde acoustique. Une bulle se comporte en fait comme un oscillateur harmonique dont la raideur, c'est-à-dire la résistance aux variations de son volume, est liée à la compressibilité du gaz κ et l'inertie est liée à la masse de l'eau mise en mouvement lorsque le volume de la bulle varie.

- 1. Par analyse dimensionnelle, proposez une loi pour la pulsation propre ω_M de cet oscillateur, appelée pulsation de Minnaert.
- 2. L'air étant assimilable à un gaz parfait, sa compressibilité est telle que $\kappa \sim \frac{1}{P}$, où P est la pression de l'air au repos. Calculez numériquement l'ordre de grandeur de la fréquence de Minnaert $f_M = \frac{\omega_M}{2\pi}$ d'une bulle d'air de rayon 1 mm à la pression atmosphérique.

1.2 Ondes à la surface de la bulle

Les oscillations du volume de la bulle au passage de l'onde acoustique sont susceptibles d'induire des ondes à sa surface (vagues), comme le montre la figure 1. La propagation de ces ondes de surface résulte de la compétition entre la raideur de la surface de la bulle (résistance à son augmentation d'aire), traduite par sa tension de surface γ (homogène à une énergie par unité de surface), et l'inertie de l'eau mise en mouvement lorsque la surface de la bulle est déformée.

- 3. Par analyse dimensionnelle, proposez une loi pour la relation de dispersion reliant le nombre d'onde k de l'onde de surface et sa pulsation ω_V , en supposant qu'elle ne fait pas intervenir le rayon de la bulle, ce qui est bien vérifié dans la pratique.
- 4. La longueur d'onde maximale λ_{max} des ondes à la surface de la bulle est égale à son périmètre. Exprimez la pulsation minimale ω_{V1} en-dessous de laquelle aucune onde ne peut être excitée à la surface de la bulle.

5. Dans la pratique, les ondes à la surface de la bulle ne sont excitables qu'à des fréquences proches de la fréquence de Minnaert, où les oscillations de volume sont de grande amplitude. Déduisez-en l'expression et la valeur numérique du rayon minimal de la bulle R_{min} en-dessous duquel aucune onde de surface n'est excitée par oscillations de volume de la bulle à la fréquence de Minnaert. On donne $\gamma \simeq 0,07 \text{ N} \cdot \text{m}^{-1}$.

FIGURE 1 – Onde de surface à la surface d'une bulle induite par les oscillations du volume de la bulle au passage d'une onde acoustique. L'onde de surface présente ici 8 crêtes, donc la longueur d'onde de l'onde de surface vaut ici $1/8^e$ de son périmètre.

2 Ecoulement convergent ou divergent dans un coin

L'objectif de ce problème est d'étudier certains aspects de l'écoulement convergent ou divergent dû à une source/puits ponctuelle de matière et limité par deux parois faisant un coin, schématisé sur la figure 3 b. Cet écoulement schématise par exemple l'estuaire d'un fleuve (figure 2 a), le "diffuseur" en aval de la turbine d'une centrale hydroélectrique (figure 2 b), ou encore le pavillon des instruments à vent.

FIGURE 2 - (a) Estuaire d'un fleuve. (b) Diffuseur en aval de la turbine d'une centrale hydroélectrique vue en coupe.

Tout au long de l'énoncé, on considère un écoulement bidimensionnel dans le plan (Oxy), incompressible, stationnaire, d'un fluide de masse volumique ρ , de viscosité cinématique ν dû à l'existence d'une source/puits de matière ponctuel situé à l'origine O. Loin de la source/puits, la pression du fluide est homogène constante, notée p_0 .

Dans le repère orthonormé cartésien $(O, \mathbf{e}_x, \mathbf{e}_y)$, un point M est repéré par le vecteur $\mathbf{OM} = x\mathbf{e}_x + y\mathbf{e}_y$. On emploiera aussi les coordonnées circulaires (r, θ) centrées sur O (voir la figure 3 a), dans lesquelles un point M est repéré par le vecteur $\mathbf{OM} = r\mathbf{e}_r$, avec $\mathbf{e}_r = \cos\theta \ \mathbf{e}_x + \sin\theta \ \mathbf{e}_y$.

FIGURE 3 -

2.1 Préambule : écoulement source/puits de fluide parfait

Dans ce préambule, on considère un écoulement de fluide parfait.

- 1. Dans cette question, on considère qu'aucune paroi ne limite l'écoulement, si bien que le fluide diverge/converge radialement dans toutes les directions $\theta \in [0 \ 2\pi]$. L'écoulement est schématisé sur la figure 3 a dans le cas particulier d'un puits. En vous aidant éventuellement du formulaire donné à la fin de l'énoncé,
 - (a) montrez que le champ de vitesse

$$\mathbf{v} = \frac{Q}{2\pi r} \mathbf{e}_r \tag{1}$$

est incompressible,

- (b) déterminez l'expression du champ de pression p au sein de l'écoulement,
- (c) montrez que Q est le débit volumique par unité de hauteur du puits/source. Quel est le signe de Q si c'est un puits? Une source?
- 2. Dans cette question, on considère que l'écoulement est restreint angulairement dans un intervalle $\theta \in [0 \ \alpha]$ par deux parois solides semi-infinies dans la direction radiale, imperméables et planes, formant un coin, comme schématisé sur la figure 3 b. Justifiez pourquoi le champ de vitesse radial donné à la question précédente est toujours valable pour cette géométrie d'écoulement.

2.2 Ecoulement dans le coin en tenant compte de la viscosité

A partir de maintenant, on ne néglige plus les effets de la viscosité. On considère donc l'écoulement d'un fluide visqueux dans un coin d'angle α dû à une source/puits ponctuelle de matière située en O, de débit volumique par unité de hauteur Q donné, comme schématisé sur la figure 3 b. On suppose qu'en présence d'effets visqueux, l'écoulement reste radial : $\mathbf{v} = u \, \mathbf{e}_r$.

3. En effectuant l'analyse dimensionnelle du problème, justifiez la loi

$$u = \frac{Q}{r}f(\theta, X, \text{Re})$$

où X et Re sont deux grandeurs sans dimensions dont vous donnerez l'expression, Re s'interprétant comme un nombre de Reynolds caractéristique de l'écoulement. Dans la suite, on utilisera la notation simplifiée $u = \frac{Q}{r} f(\theta)$.

4. (a) En injectant la forme du champ de vitesse $\mathbf{v} = u \, \mathbf{e}_r$ dans l'équation de Navier-Stokes, montrez d'abord que

$$\frac{p}{\rho} = \frac{2\nu}{r}u + \frac{p_0}{\rho} + \frac{g(r)}{\rho},$$

où g est une fonction inconnue. Que vaut g dans la limite $r \to +\infty$?

(b) En injectant la forme $u=\frac{Q}{r}f(\theta)$ pour u dans l'équation de Navier-Stokes, en déduire que

$$2ff' + \frac{4}{Re}f' + \frac{1}{Re}f''' = 0 (2)$$

- (c) Traduisez la conservation du débit volumique de l'écoulement et les conditions aux limites imposées à l'écoulement en égalités que doit vérifier f. Le problème est-il bien posé?
- (d) Pourquoi le problème décrit par l'équation (2) est-il singulier? Où se situe a priori la singularité?

Postlude : il se trouve que ce problème admet une solution exacte. L'allure de l'écoulement dépend de manière cruciale du signe de Q et aussi du nombre de Reynolds 1 .

2.3 Approximation de couche limite dans la limite $\text{Re} \to \infty$

Pour $\text{Re} \gg 1$, l'écoulement analysé dans la partie précédente présente au voisinage des parois une structure de type couche limite - écoulement extérieur qui motive une analyse perturbative des équations gouvernant l'écoulement au voisinage de la paroi. C'est l'objet de cette partie.

On considère donc toujours l'écoulement d'un fluide visqueux dans un coin d'angle $\alpha \sim 1$ dû à une source/puits ponctuelle de matière située en O, de débit volumique par unité de hauteur Q donné, dans la limite $\text{Re} \gg 1$. On se focalise sur le voisinage d'une des deux parois, plus précisément sur une portion de longueur L de la paroi de direction $\theta = 0$, voir la figure 4. On suppose que les effets de la viscosité sur l'écoulement du fluide ne sont sensibles qu'au proche voisinage de la paroi, dans la couche limite visqueuse, d'épaisseur caractéristique très inférieure à la distance entre les parois D et qu'à l'extérieur de cette couche limite l'écoulement est bien décrit par le modèle d'écoulement de fluide parfait étudié en partie 2.1.

2.3.1 Ecoulement extérieur

Exprimons l'écoulement de fluide parfait extérieur à la couche limite, noté dans la suite \mathbf{v}_e , (et p_e sa pression) au proche voisinage de la paroi.

5. Montrez qu'au proche voisinage de la paroi, c'est-à-dire pour $y \ll D(x)$, le champ de vitesse de l'écoulement de fluide parfait (1) s'écrit de manière approchée

$$\mathbf{v}_e \simeq \frac{Q}{2\pi x} \mathbf{e}_x.$$

On le note dans la suite $\mathbf{v}_e = u_e \mathbf{e}_x$ avec $u_e = \frac{Q}{2\pi x}$

6. Montrez que

$$p_e = p_0 - \frac{1}{2}\rho u_e^2.$$

^{1.} cf. H. Schlichting, Boundary-Layer Theory, Mc Graw-Hill.

Figure 4 -

2.3.2 Adimensionnement à l'échelle de la couche limite visqueuse

Dans la suite, on adopte définitivement les coordonnées cartésiennes, et on pourra s'aider du formulaire donné à la fin de l'énoncé. On note $\mathbf{v} = u(x,y)\mathbf{e}_x + v(x,y)\mathbf{e}_y$ le champ de vitesse de l'écoulement dans la couche limite, p(x,y) son champ de pression. On note δ l'épaisseur caractéristique de la couche limite, supposée telle que $\delta \ll D(L)$ dans la limite $\text{Re} \gg 1$. Dans la suite, on note \bar{z} la partie analytique de la grandeur z.

- 7. (a) Justifiez pourquoi l'échelle de u est $|u_e(L)|$, notée U dans la suite. On note V l'échelle de v, pour l'instant indéterminée.
 - (b) En adimensionnant l'équation de conservation de la matière écrite en coordonnées cartésiennes à l'échelle de la couche limite et lui appliquant le principe de moindre dégénérescence, exprimez V en fonction de U et ε , avec $\varepsilon = \frac{\delta}{L}$. Montrez que $\varepsilon \ll 1$.
- 8. En notant δp l'échelle de p, adimensionnez l'équation de Navier-Stokes écrite en coordonnées cartésiennes à l'échelle de la couche limite, c'est-à-dire n'exprimez les équations qu'à l'aide de parties analytiques, du nombre d'Euler Eu = $\frac{\delta p}{\rho U^2}$, du nombre de Reynolds Re = $\frac{UL}{\nu}$ et de ε . Effectuez ensuite les simplifications automatiques.
- 9. Exprimez les conditions imposées à la vitesse à la paroi sous forme dimensionnée, puis adimensionnée.
- 10. Montrez que le raccordement des champs de vitesse et de pression du domaine intérieur (couche limite) et du domaine extérieur (écoulement de fluide parfait) implique :

$$\begin{cases} \bar{u}(\bar{x}, \bar{y} \to +\infty) \to \frac{s}{\bar{x}} \\ \bar{p}(\bar{x}, \bar{y} \to +\infty) \to -\frac{1}{2\bar{x}^2} \\ \delta p = \rho U^2 \end{cases}$$

avec s = 1 dans le cas d'une source, -1 dans le cas d'un puits.

2.3.3 Analyse physique

- 11. En effectuant une analyse physique de la composante de l'équation de Navier-Stokes parallèle à la direction de l'écoulement principal, c'est-à-dire en identifiant les termes moteur, frein et conséquence de l'écoulement, montrez que
 - (a) $\delta \sim \frac{L}{\sqrt{\text{Re}}}$,
 - (b) puis que $\frac{\partial \bar{p}}{\partial \bar{y}} = 0$,
 - (c) enfin que $\bar{p}(\bar{x}) = -\frac{1}{2\bar{x}^2}$. Dans la limite Re $\gg 1$, a-t-on bien $\delta \ll D(L)$?

En posant $\delta=\frac{L}{\sqrt{\text{Re}}},$ on a donc comme système d'équations régissant la couche limite visqueuse :

$$\begin{cases}
\frac{\partial \bar{u}}{\partial \bar{x}} + \frac{\partial \bar{v}}{\partial \bar{y}} = 0 \\
\bar{u}\frac{\partial \bar{u}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{u}}{\partial \bar{y}} = -\frac{1}{\bar{x}^3} + \frac{\partial^2 \bar{u}}{\partial \bar{y}^2} \\
\bar{u}(\bar{x}, \bar{y} = 0) = \bar{v}(\bar{x}, \bar{y} = 0) = 0 \\
\bar{u}(\bar{x}, \bar{y} \to +\infty) \to \frac{s}{\bar{x}}
\end{cases} \tag{3}$$

2.3.4 Solution invariante d'échelle / autosimilaire

- 12. Pourquoi le système d'équations (3) est-il susceptible de posséder une solution invariante d'échelle / autosimilaire?
- 13. En imposant des changements d'échelle d'un facteur z^* à toutes les grandeurs \bar{z} intervenant dans le système (3), montrez que le groupe de changements d'échelle laissant le problème (3) invariant est tel que :

$$\begin{cases} u^* = \frac{1}{x^*} \\ v^* = \frac{1}{y^*} \\ x^* = y^* \end{cases}$$

Combien y-a-t-il de facteurs d'échelle indépendants dans ce groupe de changements d'échelles laissant le système (3) invariant?

14. En imposant à la solution $\{\bar{u} = f(\bar{x}, \bar{y}), \bar{v} = g(\bar{x}, \bar{y})\}$ du système (3) d'être invariante par ce même groupe de changements d'échelle, montrez que :

$$\begin{cases} \bar{u} = \bar{x}^{-1} f\left(\frac{\bar{y}}{\bar{x}}\right) \\ \bar{v} = \bar{x}^{-1} g\left(\frac{\bar{y}}{\bar{x}}\right) \end{cases}$$

- 15. En définissant la variable d'autosimilarité $\eta = \frac{\bar{y}}{\bar{x}}$, injectez les expressions $\bar{u} = \bar{x}^{-1}f(\eta)$ et $\bar{v} = \bar{x}^{-1}g(\eta)$ dans le système (3) et montrez :
 - (a) d'abord que $g' = f + \eta f'$,
 - (b) puis que $g = \eta f$,
 - (c) que par ailleurs -fg' + gf' = -1 + f'',

(d) enfin que f vérifie :

$$\begin{cases} f'' + f^2 - 1 = 0 \\ f(0) = 0 \\ f(+\infty) = s, \end{cases}$$

équation différentielle dont la solution (dépendant de manière cruciale de la valeur de s) permet d'écrire la solution invariante d'échelle/autosimilaire du problème de couche limite recherchée.

- 16. En définissant la frontière entre la couche limite et le domaine extérieur comme $\eta \sim 1$, montrez que l'épaisseur caractéristique de la couche limite visqueuse est telle que $\delta \sim x$. Quelle est la forme de cette frontière?
- 17. En se rappelant que l'épaisseur caractéristique de la couche limite visqueuse se développant le long d'une plaque plane dans un écoulement uniforme de vitesse U est telle que $\delta \sim \sqrt{\frac{\nu x}{U}}$, comment aurait-on pu d'emblée prédire le comportement de l'épaisseur de la couche limite visqueuse dans le cas d'un écoulement divergent/convergent comme celui étudié dans ce problème?

Fomulaire

Equations bilan en coordonnées cartésiennes

Pour un champ de vitesse bidimensionnel $\mathbf{v} = u(x, y, t)\mathbf{e}_x + v(x, y, t)\mathbf{e}_y$ et un champ de pression bidimensionnel p(x, y, t):

— Conservation de la matière au sein d'un écoulement incompressible :

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

— Bilan de quantité de mouvement pour un écoulement incompressible (équation de Navier-Stokes) :

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$\frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial^2 v}{\partial y} + \frac{\partial^2$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

Equations bilan en coordonnées circulaires

Pour un champ de vitesse bidimensionnel $\mathbf{v} = u(r, \theta, t)\mathbf{e}_r + v(r, \theta, t)\mathbf{e}_\theta$ et un champ de pression bidimensionnel $p(r, \theta, t)$:

— Conservation de la matière au sein d'un écoulement incompressible :

$$\frac{1}{r}\frac{\partial(ru)}{\partial r} + \frac{1}{r}\frac{\partial v}{\partial \theta} = 0$$

— Bilan de quantité de mouvement pour un écoulement incompressible (équation de Navier-Stokes) :

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + \frac{v}{r} \frac{\partial u}{\partial \theta} - \frac{v^2}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \nu \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} - \frac{u}{r^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial v}{\partial \theta} \right)$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{v}{r} \frac{\partial v}{\partial \theta} + \frac{uv}{r} = -\frac{1}{\rho} \frac{1}{r} \frac{\partial p}{\partial \theta} + \nu \left(\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} - \frac{v}{r^2} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial u}{\partial \theta} \right)$$