Proposition 18.7. Let A be an $m \times m$ diagonalizable (complex or real) matrix with eigenvalues $\lambda_1, \ldots, \lambda_m$, and let $\lambda = \lambda_\ell$ be an arbitrary eigenvalue of A (not necessary simple). For any μ such that

$$\mu \neq \lambda$$
 and $|\mu - \lambda| < |\mu - \lambda_j|$ for all $j \neq \ell$,

if x^0 does not belong to the subspace spanned by the eigenvectors associated with the eigenvalues λ_j with $j \neq \ell$, then

$$\lim_{k \to \infty} \left(\frac{(\lambda - \mu)^k}{|\lambda - \mu|^k} \right) x^k = v,$$

where v is an eigenvector associated with λ . Furthermore, if both λ and μ are real, we have

$$\lim_{k \to \infty} x^k = v \qquad if \ \mu < \lambda,$$

$$\lim_{k \to \infty} (-1)^k x^k = v \qquad if \ \mu > \lambda.$$

Also, if we define the sequence $(\lambda^{(k)})$ by

$$\lambda^{(k+1)} = (x^{k+1})^* A x^{k+1},$$

then

$$\lim_{k \to \infty} \lambda^{(k+1)} = \lambda.$$

The condition of x^0 may seem quite stringent, but in practice, a vector x^0 chosen at random usually satisfies it.

If A is a Hermitian matrix, then we can say more. In particular, the inverse iteration algorithm can be modified to make use of the newly computed $\lambda^{(k+1)}$ instead of μ , and an even faster convergence is achieved. Such a method is called the *Rayleigh quotient iteration*. When it converges (which is for almost all x^0), this method eventually achieves cubic convergence, which is remarkable. Essentially, this means that the number of correct digits is tripled at every iteration. For more details, see Trefethen and Bau [176] (Lecture 27) and Demmel [48] (Section 5.3.2).

18.8 Summary

The main concepts and results of this chapter are listed below:

- QR iteration, QR algorithm.
- Upper Hessenberg matrices.
- Householder matrix.