

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (II) 1749267 A1

(51)5 С 21 Д 9/08 В 21 Д 21/00

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 4875801/02
(22) 22.10.90
(46) 23.07.92. Бюл. № 27
(71) Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам "Бурение"
(72) В.П.Панков, В.А.Юрьев, В.Г.Никитченко, Д.Л.Поправка, М.В.Рогожина и А.Т.Ярыш
(56) Патент США № 3487673, кл. 62-282, 1979.

Савин Г.А. Волочение труб. - М.: Металлургия, 1982, с. 89-92.
Шурупов А.К., Фрейберг М.А. Производство труб экономических профилей. - Свердловск: Металлургиздат, 1963, с. 221-225.

Изобретение относится к обработке металла давлением, в частности к технологии изготовления гофрированных труб.

Основными операциями в технологическом процессе изготовления тонкостенных гофрированных труб является холодная деформация, например волочение и прокатка труб, химическая обработка, термическая обработка для снятия остаточных напряжений, возникающих в результате деформации и профилирования методом накатки.

Известен способ изготовления труб с продольными гофрами путем двухэтапного формования трубы-заготовки, причем на первом этапе ее гофрируют радиальными усилиями, а на втором этапе обжимают в профилированной волоке.

Однако возникающие в результате сложной деформации остаточные напряжения не дают достаточной поперечной прочности, металл становится хрупким и

2

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ГОФРИРОВАННОГО СТАЛЬНОГО ПЛАСТЫРЯ
(57) Сущность изобретения: термообработку пластиря токами высокой частоты осуществляют после гофрирования, а смазочный слой наносят повторно после охлаждения. Предлагаемый способ позволяет за счет повышения пластичных свойств металла надежно обеспечить герметизацию ремонтируемого участка скважины. 1 табл.

непригоден в качестве пластиря при ремонте обсадной колонны в скважине.

Для снятия остаточных напряжений трубы подвергают термической обработке - отжигу в печах типа ПСО-06 или ПСО-09 и получения на трубах окисной пленки, выполняющей функции подмазочного покрытия и обладающей достаточной пористостью и адсорбционной способностью к смазке.

Известен также способ, при котором тонкостенные профильные трубы правят растяжением и раздачей с нагревом на электротермическом оборудовании. Сначала заготовку трубы нагревают токами сопротивления до температуры отжига, а затем после охлаждения раздают при помощи конической оправки.

Недостаток способа заключается в том, что при наложении пластиря из неотожженных труб может происходить разрыв по профильной образующей, а при наложении

пластыря из отожженных труб с последующим гофрированием может происходить образование микротрещин во впадинах и на выступах продольных гофр при деформации их до цилиндрической формы, когда ее плотно прижимают (накатывают) дорнирующей головкой к внутренней поверхности обсадной колонны. В результате не обеспечивается надежность герметизации из-за низкой пластичности металла гофрированного пластиря.

Целью изобретения является повышение надежности герметизации обсаженной скважины путем повышения пластичности металла пластиря.

Сущность изобретения заключается в том, что термообработку токами высокой частоты осуществляют после гофрирования, а затем повторно наносят смазочный слой.

В результате знакопеременных деформаций, которым подвергается металл труб при гофрировании как в процессе изготовления пластирей, так и при раздаче в процессе установки в скважинах, происходит значительное упрочнение металла, причем наибольшие значения упрочнений приходятся на впадины гофрированных труб.

Изменение твердости (Нv) стали марки 10 при термообработке, гофрировании и раздаче пластиря показано в таблице.

Из таблицы видно, что твердость металла пластиря после раздачи в обсадной трубе достигает наибольших значений, если пластирь изготавливается из нетермообработанной трубы. При изготовлении пластирей из предварительно термообработанных круглых труб при гофрировании твердость несколько снижается по сравнению с нетермообработанными заготовками, но после раздачи твердость возрастает почти до той же величины, что и без термообработки. После термической обработки гофрированных труб с нагревом токами высокой частоты твердость их снижается значительно, а после раздачи она меньше, чем у нетермообработанных.

В отличие от печного или газового нагрева при обработке заготовки токами высокой частоты происходит незначительное изменение формы ее профиля, на поверхности трубы образуется тонкий слой окалины, который не отслаивается в процессе деформации - раздачи. Смазочный слой наносится на внутреннюю поверхность отожженных продольно-гофрированных труб после их охлаждения. Он предохраняет внутреннюю поверхность от коррозионного разрушения в процессе эксплуатации и снижения осевых усилий в процессе раздачи пластирей.

При мер. Для ремонта обсадной колонны диаметром 146 мм с толщиной стенки 8 мм пластирь изготавливают из тонкостенной трубы диаметром 130 мм с толщиной стенки 3 мм из стали марки 10. Длина трубы 9-11,5 м.

На внутреннюю поверхность трубы наносят слой графитовой или другой смазки, предназначенной для снижения усилий гофрирования. Гофрирование цилиндрической трубы производят на специальной установке через роликовую головку с внутренней профильной оправкой. Получается продольно-гофрированная труба с наружным диаметром 116 мм и числом гофр 6 или 8. Затем производится рихтовка гофрированной трубы после отрезки ее на заданную длину.

Затем производится термическая обработка продольно-гофрированной трубы - нормализация с нагревом токами высокой частоты на установке ВЧГ 30/6. При этом продольно-гофрированная труба устанавливается горизонтально на роликовых опорах и с определенной скоростью продвигается через индуктор.

Охлаждение трубы производится на воздухе. Смазка, которая была нанесена перед гофрированием, выгорает.

Так как в скважине при установке пластиря в интервале ремонта производится раздача пластиря до круглой формы и прижатия к стенке обсадной трубы, то при этом возникают большие контактные нагрузки между пластирем и инструментом для раздачи. Для снижения этих нагрузок на внутреннюю поверхность пластиря наносится вторично смазочный слой, который служит как для снижения усилий, возникающих при раздаче пластиря, так и для предохранения этой поверхности от коррозионного разрушения в процессе эксплуатации.

Сочетание термической обработки пластирей после гофрирования и нанесение смазочного слоя на внутреннюю поверхность после термической обработки позволяют повысить пластичность металла пластирь обеспечить благодаря этому надежность герметизации ремонтируемой скважины.

50

Формула изобретения

Способ изготовления гофрированного стального пластиря, преимущественно для ремонта обсаженной скважины, включающий термообработку заготовки, нанесение смазочного слоя на внутреннюю поверхность заготовки и ее гофрирование, отличающийся тем, что, с целью повышения надежности герметизации обсаженной скважины путем по-

10

15

20

25

30

35

40

45

50

55

вышения пластичности металла пластиря, термообработку токами высокой частоты

осуществляют после гофрирования, а затем повторно наносят смазочный слой.

Исходное состоя- ние материала	Вид обработки			
	До гофрирования	После гофриро- вания	Термообработка после гофрирова- ния (нормализа- ция) с нагревом токами высо- кой частоты	После раздачи
Без термообра- ботки	1570	1750	-	2020
С термообрабо- ткой	1350	1660	-	1966
Без термообра- ботки	1570	1750	1350	1750

Редактор Н.Гунько

Составитель М.Рогожина
Техред М.Моргентал

Корректор И.Муска

Заказ 2565

Тираж

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101

BEST AVAILABLE COPY