Asymptotics In-Class Practice Problems

Recall the definitions we have introduced in class:

Big-Oh

Let $f, g: \mathbb{N} \to \mathbb{R}$ such that $g(n) \geq 0$.

We say that $f(n) \in O(g(n))$ or $f \in O(g)$ if $\exists B, b$, both positive, such that

$$0 \le |f(n)| \le Bg(n) \ \forall n \ge b$$

Big-Omega

Let $f,g:\mathbb{N}\to\mathbb{R}^+$. We say that $f(n)\in\Omega(g(n))$ or $f\in\Omega(g)$ if $\exists A,a$, both positive, such that

$$0 \le Ag(n) \le f(n) \ \forall n \ge b$$

Big-Theta

Let $f,g: \mathbb{N} \to \mathbb{R}^+$. We say that $f(n) \in \Theta(g(n))$ or $f \in \Theta(g)$ if $\exists A,B,k$, all positive, such that

$$Ag(n) \le f(n) \le Bg(n) \ \forall n \ge k$$

Practice Questions:

- 1. Is $2^{n+1} \in O(2^n)$? What about 2^{2n} ? Provide proof.
- 2. Suppose $f \in O(g)$. Is $kf(n) \in O(g(n))$ for $k \in \mathbb{R}$, $k \neq 0$? If so, prove it. If not, provide a counterexample.
- 3. For non-negative functions, is the relation big-Oh (provide proof):
 - a. Reflexive?
 - b. Symmetric? [cf Homework 4]
 - c. Transitive?
- 4. Show that for any $k, d \ge 0$, $n^k \in O(n^d) \Leftrightarrow d \ge k$ 5. Let $f(n) = n^2$ and $g(n) = \frac{1}{2}n^2$. Show that: $2^{f(n)} \notin O(2^{g(n)})$
- 6. Let $f, g: \mathbb{N} \to \mathbb{R}^+$. Show that $f \in O(g) \Leftrightarrow g \in \Omega(f)$
- 7. Let $f, g: \mathbb{N} \to \mathbb{R}^+$. Show that $f \in \Theta(g) \Leftrightarrow f \in O(g)$ and $f \in \Omega(g)$
- 8. Using any previous results on this practice sheet or from class/HWs/labs, show the following. Do not use A, B, k, a, b, etc.:
 - a. Ω is reflexive
 - b. Ω is not symmetric
 - c. Ω is transitive