Introdução à teoria de reticulados

Gustavo Zambonin

Universidade Federal de Santa Catarina Departamento de Informática e Estatística INE5601 — Fundamentos Matemáticos da Informática

gustavo.zambonin@posgrad.ufsc.br

Contexto

- Conjuntos parcialmente ordenados (posets)
 - Par ordenado de conjunto qualquer com relação reflexiva, antissimétrica e transitiva

Contexto

- Conjuntos parcialmente ordenados (posets)
 - Par ordenado de conjunto qualquer com relação reflexiva, antissimétrica e transitiva
- Diagramas de Hasse
 - Representação gráfica intuitiva de posets

Contexto

- Conjuntos parcialmente ordenados (posets)
 - ► Par ordenado de conjunto qualquer com relação reflexiva, antissimétrica e transitiva
- Diagramas de Hasse
 - Representação gráfica intuitiva de posets
- ► Cota superior, inferior, elementos extremos
 - Supremo e ínfimo

Exemplos práticos

- Ontologias (representação de entidades e evento de acordo com categorias)
- Fluxo de informação entre dois processos estocásticos
- Descrição de herança múltipla em linguagens de programação orientadas a objetos

Exemplos práticos

- Ontologias (representação de entidades e evento de acordo com categorias)
- Fluxo de informação entre dois processos estocásticos
- Descrição de herança múltipla em linguagens de programação orientadas a objetos
- Ideia geral: estruturas abstratas que permitem a operacionalização de vários elementos em um conjunto

O termo "reticulado"

- Não são relacionados exclusivamente à teoria de ordem
- Existem reticulados geométricos (malha de pontos no plano Euclidiano)
 - ▶ Utilizados em ciência dos materiais e criptografia

O termo "reticulado"

- ▶ Não são relacionados exclusivamente à teoria de ordem
- Existem reticulados geométricos (malha de pontos no plano Euclidiano)
 - Utilizados em ciência dos materiais e criptografia
- ► Todo reticulado geométrico pode ser "convertido" para uma descrição utilizando um *poset*
 - O contrário não se aplica

Notação

- ▶ O supremo de um subconjunto K de um *poset*, sup(K), é também chamado de junção ou *join*, e denotado $\vee K$
- O ínfimo de um subconjunto K de um poset, inf(K), é também chamado de encontro ou meet, e denotado ∧K
- ▶ Um reticulado também pode ser chamado de lattice

► Um *poset* onde todos os pares de elementos possuem supremo, ou todos possuem ínfimo

- Um poset onde todos os pares de elementos possuem supremo, ou todos possuem ínfimo
- Se todos possuem supremo, é chamado de semirreticulado de junção, ou join-semilattice

- Um poset onde todos os pares de elementos possuem supremo, ou todos possuem ínfimo
- Se todos possuem supremo, é chamado de semirreticulado de junção, ou join-semilattice
- Se todos possuem ínfimo, é chamado de semirreticulado de encontro, ou meet-semilattice

- Um poset onde todos os pares de elementos possuem supremo, ou todos possuem ínfimo
- Se todos possuem supremo, é chamado de semirreticulado de junção, ou join-semilattice
- Se todos possuem ínfimo, é chamado de semirreticulado de encontro, ou meet-semilattice
- Junção e encontro são, portanto, operações binárias sobre os elementos do semirreticulado

- ▶ Formalmente, dado um *poset* (S, \preccurlyeq) e, $\forall s_1, s_2 \in S$
 - $lackbox{ O poset \'e join-semilattice}$ se $\sup(\{s_1,s_2\})$, também denotado $s_1 \lor s_2$
 - ▶ O poset é meet-semilattice se $\inf(\{s_1, s_2\})$, também denotado $s_1 \land s_2$

- ▶ Formalmente, dado um *poset* (S, \preccurlyeq) e, $\forall s_1, s_2 \in S$
 - $lackbox{ O poset \'e join-semilattice}$ se $\sup(\{s_1,s_2\})$, também denotado $s_1 \lor s_2$
 - ▶ O poset é meet-semilattice se $\inf(\{s_1, s_2\})$, também denotado $s_1 \wedge s_2$
- Note que $s_1 \lor s_2 = s_2$ e $s_1 \land s_2 = s_1$, para $s_1 \preccurlyeq s_2$

- ▶ Formalmente, dado um *poset* (S, \preccurlyeq) e, $\forall s_1, s_2 \in S$
 - ▶ O poset é join-semilattice se $\sup(\{s_1, s_2\})$, também denotado $s_1 \vee s_2$
 - ▶ O poset é meet-semilattice se $\inf(\{s_1, s_2\})$, também denotado $s_1 \wedge s_2$
- Note que $s_1 \lor s_2 = s_2$ e $s_1 \land s_2 = s_1$, para $s_1 \preccurlyeq s_2$
- Exemplo clássico: tome um conjunto qualquer T
 - ▶ O poset $(\mathcal{P}(T) \setminus \emptyset, \subseteq)$ é um join-semilattice
 - ▶ O poset $(\mathcal{P}(T) \setminus T, \subseteq)$ é um meet-semilattice

- Um poset onde qualquer par do conjunto possui um ínfimo e um supremo
- ▶ Formalmente, um poset (S, \preccurlyeq) é um **reticulado** ou lattice quando, $\forall s_1, s_2 \in S$, $\inf(\{s_1, s_2\})$ e $\sup(\{s_1, s_2\})$ existem
- ▶ De maneira equivalente, um reticulado é um poset que, ao mesmo tempo, é um join-semilattice e meet-semilattice

Reticulados

▶ Considere o *poset* (\mathbb{Z}^+ , |). Este *poset* é um reticulado?

- ▶ Considere o *poset* (\mathbb{Z}^+ , |). Este *poset* é um reticulado?
 - ▶ Observe que, para quaisquer $a, b \in \mathbb{Z}^+$, inf $(\{a, b\}) = \mathsf{mmc}(a, b)$ e $\mathsf{sup}(\{a, b\}) = \mathsf{mdc}(a, b)$
 - ▶ Portanto, $(\mathbb{Z}^+, |)$ é um reticulado

- ▶ Considere o *poset* (\mathbb{Z}^+ , |). Este *poset* é um reticulado?
 - Observe que, para quaisquer $a, b \in \mathbb{Z}^+$, $\inf(\{a, b\}) = \operatorname{mmc}(a, b)$ e $\sup(\{a, b\}) = \operatorname{mdc}(a, b)$
 - ▶ Portanto, $(\mathbb{Z}^+, |)$ é um reticulado
- ► Considere o *poset* ($\mathcal{P}(T)$, \subseteq). Este *poset* é um reticulado?

- ▶ Considere o *poset* (\mathbb{Z}^+ , |). Este *poset* é um reticulado?
 - Observe que, para quaisquer $a, b \in \mathbb{Z}^+$, $\inf(\{a, b\}) = \operatorname{mmc}(a, b)$ e $\sup(\{a, b\}) = \operatorname{mdc}(a, b)$
 - ▶ Portanto, $(\mathbb{Z}^+, |)$ é um reticulado
- ► Considere o *poset* ($\mathcal{P}(T)$, \subseteq). Este *poset* é um reticulado?
 - Observe que, para quaisquer $t_1, t_2 \in \mathcal{P}(T)$, inf $(\{t_1, t_2\}) = t_1 \cap t_2$ e sup $(\{t_1, t_2\}) = t_1 \cup t_2$
 - ▶ Portanto, $(\mathcal{P}(T), \subseteq)$ é um reticulado

Reticulados

Considere os posets acima. Estes são reticulados?

- Considere os posets acima. Estes são reticulados?
 - O primeiro *poset* não é um reticulado, pois não existe $\inf(\{b, c\})$, enquanto o segundo *poset* é

Reticulados limitados

- ► Um reticulado que possui elementos máximo e mínimo, ou seja, ⊤ e ⊥, é chamado de limitado
- Respectivamente, são os elementos identidade para as operações de encontro e junção

Reticulados limitados

- ► Um reticulado que possui elementos máximo e mínimo, ou seja, ⊤ e ⊥, é chamado de limitado
- Respectivamente, são os elementos identidade para as operações de encontro e junção
- ▶ Portanto, dado um reticulado (S, \preccurlyeq) , e $\forall s \in S$,
 - ⊥ ≼ s ≼ T
 - $ightharpoonup s \lor \bot = s, \quad s \land \bot = \bot$
 - $ightharpoonup s \wedge \top = s, \quad s \vee \top = \top$

Reticulados completos

- Um reticulado onde todos os seus subconjuntos têm supremo e ínfimo é chamado de completo
- ► Formalmente, para um reticulado (S, \preccurlyeq) , $\forall T \in \mathcal{P}(S)$, $\land T \in \lor T$ existem
- De maneira equivalente, um reticulado é completo se é um join-semilattice completo e um meet-semilattice completo ao mesmo tempo
- ► Todo reticulado completo é também limitado

- ▶ Dado um reticulado (S, \preccurlyeq) , um **sub-reticulado**, ou *sublattice*, é um subconjunto não-vazio finito de S com as operações de junção e encontro herdadas de \preccurlyeq
- Exemplo: tome o reticulado abaixo

O subconjunto parcialmente ordenado abaixo é um sub-reticulado do reticulado apresentado anteriormente?

O subconjunto parcialmente ordenado abaixo é um sub-reticulado do reticulado apresentado anteriormente?

- ▶ Não, pois $a \lor b = c$, que não está presente
 - Entretanto, é um reticulado por si só

Os subconjuntos parcialmente ordenados abaixo são sub-reticulados do reticulado apresentado anteriormente?

Respectivamente, sim, e não, pois $a \wedge b$ e $a \vee b$ não estão presentes

 Uma função bijetora que mapeia elementos de um reticulado para outro pode ser chamada de isomorfismo

- Uma função bijetora que mapeia elementos de um reticulado para outro pode ser chamada de isomorfismo
- ► Formalmente, tome dois reticulados $(S_1, \preccurlyeq), (S_2, \preccurlyeq)$, uma função $f: S_1 \to S_2$, e elementos quaisquer $a, b \in S_1$

- Uma função bijetora que mapeia elementos de um reticulado para outro pode ser chamada de isomorfismo
- ▶ Formalmente, tome dois reticulados $(S_1, \preccurlyeq), (S_2, \preccurlyeq)$, uma função $f: S_1 \to S_2$, e elementos quaisquer $a, b \in S_1$
- ▶ Para que exista um isomorfismo, f deve preservar as operações de junção e encontro

- Uma função bijetora que mapeia elementos de um reticulado para outro pode ser chamada de isomorfismo
- ▶ Formalmente, tome dois reticulados $(S_1, \preccurlyeq), (S_2, \preccurlyeq)$, uma função $f: S_1 \to S_2$, e elementos quaisquer $a, b \in S_1$
- Para que exista um isomorfismo, f deve preservar as operações de junção e encontro
 - ► $f(a \lor b) = f(a) \lor f(b)$ (isomorfismo de junção)

- Uma função bijetora que mapeia elementos de um reticulado para outro pode ser chamada de isomorfismo
- ▶ Formalmente, tome dois reticulados $(S_1, \preccurlyeq), (S_2, \preccurlyeq)$, uma função $f: S_1 \to S_2$, e elementos quaisquer $a, b \in S_1$
- Para que exista um isomorfismo, f deve preservar as operações de junção e encontro
 - ► $f(a \lor b) = f(a) \lor f(b)$ (isomorfismo de junção)
 - ▶ $f(a \land b) = f(a) \land f(b)$ (isomorfismo de encontro)

Isomorfismo entre reticulados

Os reticulados acima são isomórficos, pois, por exemplo, $f(2 \lor 5) = f(2) \lor f(5) \Rightarrow \{x, z\} = \{x\} \lor \{z\}$

- Operações binárias através de supremos e ínfimos
- Identidades através da possível presença de elementos máximo e mínimo

- Operações binárias através de supremos e ínfimos
- Identidades através da possível presença de elementos máximo e mínimo
- Uma álgebra é uma tupla composta de um conjunto e operações de aridade finita e relações
 - ► Reticulados admitem uma descrição algébrica
 - ▶ Notação equivalente: $(S, \preccurlyeq) \Leftrightarrow (S, \lor, \land)$

- ► Consolidando as definições mostradas anteriormente
- Para um reticulado (S, \preccurlyeq) , existe um reticulado (S, \lor, \land) de tal modo que, $\forall s_1, s_2 \in S$

- Consolidando as definições mostradas anteriormente
- Para um reticulado (S, \preccurlyeq) , existe um reticulado (S, \lor, \land) de tal modo que, $\forall s_1, s_2 \in S$
 - $\blacktriangleright \sup(\{s_1,s_2\}) \Leftrightarrow s_1 \vee s_2$

- Consolidando as definições mostradas anteriormente
- Para um reticulado (S, \preccurlyeq) , existe um reticulado (S, \lor, \land) de tal modo que, $\forall s_1, s_2 \in S$
 - $ightharpoonup \sup (\{s_1, s_2\}) \Leftrightarrow s_1 \vee s_2$
 - $\blacktriangleright \inf(\{s_1,s_2\}) \Leftrightarrow s_1 \wedge s_2$

- Consolidando as definições mostradas anteriormente
- Para um reticulado (S, \preccurlyeq) , existe um reticulado (S, \lor, \land) de tal modo que, $\forall s_1, s_2 \in S$
 - $ightharpoonup \sup (\{s_1, s_2\}) \Leftrightarrow s_1 \vee s_2$
 - $\qquad \qquad \mathsf{inf}\big(\{s_1,s_2\}\big) \Leftrightarrow s_1 \wedge s_2$

- Consolidando as definições mostradas anteriormente
- Para um reticulado (S, \preccurlyeq) , existe um reticulado (S, \lor, \land) de tal modo que, $\forall s_1, s_2 \in S$
 - $\blacktriangleright \sup(\{s_1,s_2\}) \Leftrightarrow s_1 \vee s_2$
 - $\qquad \qquad \mathsf{inf}\big(\{s_1,s_2\}\big) \Leftrightarrow s_1 \wedge s_2$
- No caso de um reticulado limitado, existe um reticulado $(S, \vee, \wedge, \perp, \top)$ de tal modo que, adicionalmente,

- Consolidando as definições mostradas anteriormente
- Para um reticulado (S, \preccurlyeq) , existe um reticulado (S, \lor, \land) de tal modo que, $\forall s_1, s_2 \in S$
 - ▶ $\sup(\{s_1, s_2\}) \Leftrightarrow s_1 \vee s_2$
 - $\qquad \mathsf{inf}(\{s_1,s_2\}) \Leftrightarrow s_1 \wedge s_2$
- No caso de um reticulado limitado, existe um reticulado $(S, \vee, \wedge, \perp, \top)$ de tal modo que, adicionalmente,
 - $ightharpoonup \perp \preccurlyeq s_1 \preccurlyeq \top$

- Consolidando as definições mostradas anteriormente
- Para um reticulado (S, \preccurlyeq) , existe um reticulado (S, \lor, \land) de tal modo que, $\forall s_1, s_2 \in S$
 - $\blacktriangleright \sup(\{s_1,s_2\}) \Leftrightarrow s_1 \vee s_2$
 - $\qquad \qquad \mathsf{inf}\big(\{s_1,s_2\}\big) \Leftrightarrow s_1 \wedge s_2$
- No caso de um reticulado limitado, existe um reticulado $(S, \vee, \wedge, \perp, \top)$ de tal modo que, adicionalmente,
 - $ightharpoonup \perp \preccurlyeq s_1 \preccurlyeq \top$
 - $ightharpoonup s_1 \lor \bot = s_1, \quad s_1 \land \bot = \bot$

- Consolidando as definições mostradas anteriormente
- Para um reticulado (S, \preccurlyeq) , existe um reticulado (S, \lor, \land) de tal modo que, $\forall s_1, s_2 \in S$
 - $\blacktriangleright \sup(\{s_1,s_2\}) \Leftrightarrow s_1 \vee s_2$
 - $\qquad \qquad \mathsf{inf}\big(\{s_1,s_2\}\big) \Leftrightarrow s_1 \wedge s_2$
- No caso de um reticulado limitado, existe um reticulado $(S, \vee, \wedge, \perp, \top)$ de tal modo que, adicionalmente,
 - $ightharpoonup \perp \preccurlyeq s_1 \preccurlyeq \top$
 - $ightharpoonup s_1 \lor \bot = s_1, \quad s_1 \land \bot = \bot$
 - $ightharpoonup s_1 \wedge \top = s_1, \quad s_1 \vee \top = \top$

▶ Para um reticulado qualquer (S, \lor, \land) , e $\forall a, b, c \in S$

- ▶ Para um reticulado qualquer (S, \lor, \land) , e $\forall a, b, c \in S$
 - ▶ $a \lor b = b \lor a$, $a \land b = b \land a$ (comutatividade)

- ▶ Para um reticulado qualquer (S, \lor, \land) , e $\forall a, b, c \in S$
 - ▶ $a \lor b = b \lor a$, $a \land b = b \land a$ (comutatividade)
 - ▶ $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$ (associatividade)

- ▶ Para um reticulado qualquer (S, \lor, \land) , e $\forall a, b, c \in S$
 - ▶ $a \lor b = b \lor a$, $a \land b = b \land a$ (comutatividade)
 - ▶ $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$ (associatividade)
 - $ightharpoonup a \lor (a \land b) = a$, $a \land (a \lor b) = a$ (absorção)

- ▶ Para um reticulado qualquer (S, \lor, \land) , e $\forall a, b, c \in S$
 - ▶ $a \lor b = b \lor a$, $a \land b = b \land a$ (comutatividade)
 - ▶ $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$ (associatividade)
 - $ightharpoonup a \lor (a \land b) = a, \ a \land (a \lor b) = a \ (absorção)$
 - ▶ $a \lor a = a$, $a \land a = a$ (idempotência, derivada da absorção)

- ▶ Para um reticulado qualquer (S, \lor, \land) , e $\forall a, b, c \in S$
 - ▶ $a \lor b = b \lor a$, $a \land b = b \land a$ (comutatividade)
 - ▶ $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$ (associatividade)
 - $ightharpoonup a \lor (a \land b) = a, \ a \land (a \lor b) = a \ (absorção)$
 - ▶ $a \lor a = a$, $a \land a = a$ (idempotência, derivada da absorção)
- ▶ Para um reticulado limitado qualquer $(S, \lor, \land, \bot, \top)$

- ▶ Para um reticulado qualquer (S, \lor, \land) , e $\forall a, b, c \in S$
 - ▶ $a \lor b = b \lor a$, $a \land b = b \land a$ (comutatividade)
 - ▶ $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$ (associatividade)
 - $ightharpoonup a \lor (a \land b) = a, \ a \land (a \lor b) = a \ (absorção)$
 - ▶ $a \lor a = a$, $a \land a = a$ (idempotência, derivada da absorção)
- ▶ Para um reticulado limitado qualquer $(S, \lor, \land, \bot, \top)$
 - $ightharpoonup a \lor \bot = a, \ a \land \top = a \ (identidade)$

Reticulados complementados

- ▶ Um reticulado qualquer $(S, \lor, \land, \bot, \top)$ é complementado se, $\forall a, b \in S$, $a \lor b = \top$ e $a \land b = \bot$
- ► Então, *a* é complemento de *b* e vice-versa
 - ▶ Um complemento de a pode ser denotado por a^{\perp}
- Complementos não necessariamente são únicos
 - Dois elementos estão relacionados se têm um complemento em comum

Reticulados distributivos

▶ Um reticulado qualquer $(S, \lor, \land, \bot, \top)$ é **distributivo** se, $\forall a, b, c \in S$,

- Todo elemento de um reticulado distributivo terá até um complemento
- ► Todo reticulado distribuído é isomórfico a um reticulado $(\mathcal{P}(S), \cup, \cap, \emptyset, S)$, para qualquer S

Reticulados distributivos

- ▶ Um reticulado qualquer $(S, \lor, \land, \bot, \top)$ é **distributivo** se, $\forall a, b, c \in S$,
 - ▶ $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ (distribuição de \lor sobre \land)

- Todo elemento de um reticulado distributivo terá até um complemento
- ► Todo reticulado distribuído é isomórfico a um reticulado $(\mathcal{P}(S), \cup, \cap, \emptyset, S)$, para qualquer S

Reticulados distributivos

- ▶ Um reticulado qualquer $(S, \lor, \land, \bot, \top)$ é **distributivo** se, $\forall a, b, c \in S$,
 - ▶ $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ (distribuição de \lor sobre \land)
 - ▶ $a \land (b \lor c) = (a \land b) \lor (a \land c)$ (distribuição de \land sobre \lor)
- Todo elemento de um reticulado distributivo terá até um complemento
- ► Todo reticulado distribuído é isomórfico a um reticulado $(\mathcal{P}(S), \cup, \cap, \emptyset, S)$, para qualquer S

Exemplo

Reticulados distributivos

ightharpoonup Um reticulado é distributivo se e somente se não ter um sub-reticulado isomórfico a M_3 ou N_5

Exemplo

Reticulados distributivos

- ► Um reticulado é distributivo se e somente se não ter um sub-reticulado isomórfico a M_3 ou N_5
 - $M_3: x \wedge (y \vee z) = x \wedge 1 \neq 0 \vee 0 = (x \wedge y) \vee (x \wedge z)$

Exemplo

Reticulados distributivos

- ▶ Um reticulado é distributivo se e somente se não ter um sub-reticulado isomórfico a M_3 ou N_5
 - $M_3: x \wedge (y \vee z) = x \wedge 1 \neq 0 \vee 0 = (x \wedge y) \vee (x \wedge z)$
 - $N_5: x \wedge (y \vee z) = x \wedge 1 \neq 0 \vee z = (x \wedge y) \vee (x \wedge z)$

Material de estudo

- B. Kolman, R. Busby, and S. Ross. Discrete Mathematical Structures. 4th edition, 1999.
- K. H. Rosen.

 Discrete Mathematics and Its Applications.
 7th edition, 2011.
 - ► Kolman: leitura das páginas 207-215 e resolução dos exercícios 1-7, 11, 13-16, 20, na página 216.
 - ► Rosen: leitura das páginas 626-627 e resolução dos exercícios 43-44, 46-48, 50-52, na página 632.