CSE-303: COMPUTER GRAPHICS

PROFESSOR DR. SANJIT KUMAR SAHA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

JAHANGIRNAGAR UNIVERSITY, SAVAR, DHAKA

DISPLAYS - PIXELS

- Pixel: the smallest element of picture.
 - integer position (*i*, *j*)
 - color information (r, g, b)

SCAN CONVERSION

- **Scan conversion** is defined as the process of representing continuous *graphic object* as a collection of discrete pixels.
 - Various graphic objects are
 - Point
 - Line
 - Rectangle, Square
 - Circle, Ellipse
 - Sector, Arc
 - Polygons

SCAN CONVERSION...

- Scan conversion is required to convert vector data to raster format for a scan line display device
 - Convert each graphic object to a set of regular pixels.
 - Determine inside/outside areas when filling polygons.
 - Scan-convert curves

SCAN CONVERSION ALGORITHMS

- 1. Scan conversion of point
- 2. Scan conversion of line
- 3. Scan conversion of circle
- 4. Scan conversion of ellipse
- 5. Scan conversion of polygons

SCAN CONVERTING A POINT

MODELLING CO-ORDINATES

Mathematically vectors are defined in an infinite, "real-number" Cartesian coordinate system

SCREEN COORDINATES

- Also known as device co-ordinates, pixel coordinates
- On display hardware we deal with finite, discrete coordinates
- X, Y values in positive integers
- 0,0 is measured from top-left usually with +Y pointing down

SCAN CONVERTING A POINT

- Each pixel on graphic display does not represent a mathematical point like P(2.6,3.33). But it can be accommodated to the nearest position by applying few mathematical functions such as
 - Ceil p \approx (3,4)
 - Floor $p \approx (2,3)$
 - Greatest integer function $p \approx (3,3)$
 - Round $p \approx (3,3)$

SCAN CONVERSION

- 1. Scan conversion of point
- 2. Scan conversion of line
- 3. Scan conversion of circle
- 4. Scan conversion of ellipse

SCAN CONVERSION OF LINE

• A straight line may be defined by two endpoints and an equation. In fig the two endpoints are described by (x_1,y_1) and (x_2,y_2) . The equation of the line is used to determine the x, y coordinates of all the points that lie between these two endpoints.

PROPERTIES OF GOOD LINE DRAWING ALGORITHM

• Line should appear straight: We must appropriate the line by choosing addressable points close to it. If we choose well, theline will appear straight, if not, we shall produce crossed lines.

• Lines should terminate accurately: Unless lines are plotted accurately, they may terminate at the wrong place.

Fig: Uneven line density caused by bunching of dots.

• Lines should have constant density: Line density is proportional to the no. Of dots displayed divided by the length of the line.

To maintain constant density, dots should be equally spaced.

- Line density should be independent of line length and angle: This can be done by computing an approximating line-length estimate and to use a line-generation algorithm that keeps line density constant to within the accuracy of this estimate.
- Line should be drawn rapidly: This computation should be performed by special-purpose hardware.

SCAN CONVERTING A LINE

How does a machine draw lines?

- 1. Give it a start and end position.
- 2. Figure out which pixels to colour in between these...
 - How do we do this?
 - Line-drawing algorithms: DDA, Bresenham's algorithm

SCAN CONVERTING A LINE

Line and its slope

- The slope of a line (*m*) is defined by its start and end coordinates
- The diagram below shows some examples of lines and their slopes

PROBLEM

• Given two points (P,Q) on the screen (with integer coordinates) determine which pixels should be drawn to display a unit width line.

PROBLEM...

• Given two points (P,Q) on the screen (with integer coordinates) determine which pixels should be drawn to display a unit width line.

PROBLEM...

• Given two points (P,Q) on the screen (with integer coordinates) determine which pixels should be drawn to display a unit width line.

LINE DRAWING ALGORITHMS

- 1. DDA Line Algorithm
- 2. Bresenham's Line Algorithm

- Digital differential analyser is an algorithm for scan-converting lines
- The original differential analyzer
 was a physical machine developed by
 Vannevar Bush at MIT in the 1930's
 in order to solve ordinary differential equations.
- It calculates pixel positions along a line by taking unit step increment along one direction and calculating corresponding coordinate position based on the *rate of change* of the coordinate (δx or δy) (*incremental approach*) ¹⁷

Basic concept

• For each part of the line the following holds true:

$$m = \frac{\Delta y}{\Delta x}$$
 \Rightarrow $\Delta y = m\Delta x$

- If $\delta x = 1$ i.e. 1 pixel then ... $\Delta y = m$
- i.e. For each pixel we move right (along the x axis), we need to move down (along the y-axis) by m pixels.
- In pixels, the gradient represents how many pixels we step upwards (δy) for every step to the right (δx)

Derivation

Assume that $0 \le m \le 1$, $\delta x \ge 0$ and $\delta y \ge 0$

For a point $p(x_i, y_i)$ on a line we know that

$$Y_i = mx_i + b$$

At next position $p(x_{i+1}, y_{i+1})$

$$y_{i+1} = mx_{i+1} + b$$

Having unit step increment along x-axis means $x_{i+1} = x_i + 1$

Therefore
$$y_{i+1} = m(x_i + 1) + b$$

 $= mx_i + m + b$
 $= mx_i + b + m$
 $= y_i + m$

Simple algorithm

```
1. Input (x1,y1) and (x2,y2)
2. Let x = x1; y = y1;
   M = (y2-y1)/(x2-x1);
3. Draw pixel (x, y)
4. WHILE (x < x2) //i.e. We reached the second
   endpoint
5. {
       X = x + 1; //step right by one pixel
       Y = y + m; //step down by m pixels
       Draw pixel (round(x), round(y));
```


Sample at unit *x*:

$$x_{k+1} = x_k + \Delta x$$
$$= x_k + 1$$

$$y_{k+1} = y_k + \Delta y$$
$$= y_k + m \cdot \Delta x$$
$$= y_k + m \cdot (1)$$

Sample at unit *x*:

$$x_{k+1} = x_k + \Delta x$$
$$= x_k + 1$$

$$y_{k+1} = y_k + \Delta y$$
$$= y_k + m \cdot \Delta x$$
$$= y_k + m \cdot (1)$$

Example

Sample at unit *x*:

$$x_{k+1} = x_k + \Delta x$$
$$= x_k + 1$$

$$y_{k+1} = y_k + \Delta y$$
$$= y_k + m \cdot \Delta x$$
$$= y_k + m \cdot (1)$$

Example

Sample at unit *x*:

$$x_{k+1} = x_k + \Delta x$$
$$= x_k + 1$$

$$y_{k+1} = y_k + \Delta y$$
$$= y_k + m \cdot \Delta x$$
$$= y_k + m \cdot (1)$$

Example

Sample at unit *x*:

$$x_{k+1} = x_k + \Delta x$$
$$= x_k + 1$$

$$y_{k+1} = y_k + \Delta y$$
$$= y_k + m \cdot \Delta x$$
$$= y_k + m \cdot (1)$$

Example

Sample at unit *x*:

$$x_{k+1} = x_k + \Delta x$$
$$= x_k + 1$$

$$y_{k+1} = y_k + \Delta y$$
$$= y_k + m \cdot \Delta x$$
$$= y_k + m \cdot (1)$$

Example

Sample at unit *x*:

$$x_{k+1} = x_k + \Delta x$$
$$= x_k + 1$$

Corresponding *y* pos.:

$$y_{k+1} = y_k + \Delta y$$
$$= y_k + m \cdot \Delta x$$
$$= y_k + m \cdot (1)$$

Consider endpoints: P1(0,0), P2(7,4)

Exercise

1. Consider endpoints:

Calculate the points that made up the line P1 P2

2. Now, consider endpoints:

Calculate the points that made up the line P3 P4

What happened with P3P4?????

Limitations

- Rounding integers takes time
- Variables y and m must be a real or fractional binary because the slope is a fraction
- Real variables have limited precision, summing an inexact slope m repetitively introduces a cumulative error buildup

Rounding error

- Note that the actual pixel position is actually stored as a REAL number (in C/C++/java a float or a double)
- But we round off to the nearest whole number just before we draw the pixel.
- e.g. If m=0.333 ...

X	Y	Rounded { x, y }
1.0	0.33	{1,0}
2.0	0.66	{ 2, 0 }
3.0	0.99	{3,1}
4.0	1.32	{4,1}

LINE DRAWING ALGORITHMS

- 1. DDA line algorithm
- 2. Bresenham's line algorithm

Introduction

• One disadvantage of DDA is the *rounding part* which can be

expensive

 Developed by jack Bresenham at IBM in the early 1960s

- One of the earliest algorithms in computer graphics
- The algorithm is based on essentially the same principles but is completely based on integer variables

Basic concept

- Find the <u>closest integer coordinates</u> to the actual line path using only <u>integer arithmetic</u>
- Candidate for the next pixel position

• No division, efficient comparison, no floating point operations

Derivation

- The algorithm is derived for a line having slope 0< m < 1 in the first quadrant.
- Pixel position along the line are plotted by taking unit step increments along the x-direction and determining y-coordinate value of the nearest pixel to the line at each step.
- Can be generalized for all the cases

• Let us assume that $p(x_k, y_k)$ is the currently plotted pixel. $Q(x_{k+1}, y_{k+1}) \leftrightarrow (x_{k+1}, y)$ is the next point along the actual path of line. We need to decide next pixel to be plotted from two candidate positions $q1(x_k+1, y_k)$ or $q2(x_k+1, y_k+1)$

Given the equation of line

$$y = mx + b$$

Thus actual value of y at $x = x_{k+1}$ is given by

$$y = mx_{k+1} + b = m(x_k + 1) + b$$

Let $d_1 = |QQ_1| = distance of y_k from actual value of y$

$$= y - y_k = m(x_k + 1) + b - y_k$$

 $d_2 = |QQ_2| = distance of actual value of y from y_k + 1$

$$= y_{k+1} - y = (y_k + 1) - [m(x_k + 1) + b]$$

The difference between these 2 separations is

$$d_1-d_2 = 2m(x_k + 1) + 2b - y_k - (y_k + 1)$$
$$= 2m(x_k + 1) - 2y_k + 2b - 1$$

We can define a decision parameter p_k for the k^{th} step to by simplifying above equation such that the sign of p_k is the same as the sign of d_1 - d_2 , but involves only integer calculations.

Define
$$p_k = \delta x (d_1 - d_2)$$

$$= \Delta x (2m(x_k + 1) - 2y_k + 2b - 1)$$

$$= \Delta x (2\frac{\Delta y}{\Delta x}(x_k + 1) - 2y_k + 2b - 1)$$

$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + 2\Delta y + \Delta x (2b - 1)$$

$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$$
where $c = 2\Delta y + \Delta x (2b - 1)$ a constant

If
$$p_k < 0$$

$$\Rightarrow (d_1 - d_2) < 0$$

$$\Rightarrow \text{Distance } d_1 \text{ is less than } d_2$$

$$\Rightarrow y_k \text{ is closer to line-path}$$
hence $q_1(x_k + 1, y_k)$ is the better choice

 $q_2(x_k+1, y_k+1)$ is the better choice

Else

Thus if the parameter p_k is negative lower pixel is plotted else upper pixel is plotted

To put p_k in the iterative form, we derived that

$$p_k = 2\Delta y.x_k - 2\Delta x.y_k + c$$

Replacing k = k + 1

$$p_{k+1} = 2\Delta y.x_{k+1} - 2\Delta x.y_{k+1} + c$$

subtract p_k from p_{k+1}

$$p_{k+1} - p_k = 2\Delta y(x_{k+1} - x_k) - 2\Delta x(y_{k+1} - y_k)$$
$$p_{k+1} = p_k + 2\Delta y - 2\Delta x(y_{k+1} - y_k)$$

$$y_{k+1} = \begin{cases} y_k & \text{if } p_k < 0 \\ y_k + 1 & \text{otherwise} \end{cases}$$

$$\therefore p_{k+1} = \begin{cases} p_k + 2\Delta y & \text{if } p_k < 0 \\ p_k + 2\Delta y - 2\Delta x & \text{otherwise} \end{cases}$$

The first parameter p_0 is directly computed as:

$$p_0 = 2 \delta y.x_0 - 2 \delta x.y_0 + c$$

= $2 \delta y.x_0 - 2 \delta x.y_0 + 2 \delta y + \delta x (2b-1)$

Since (x_0, y_0) satisfies the line equation, we also have

$$y_0 = \delta y / \delta x * x_0 + b$$
$$b = y_0 - \delta y / \delta x * x_0$$

Combining the above 2 equations, we will have

$$p_0 = 2\delta y - \delta x$$

The constants $2\delta y$, $2\delta y - \delta x$ and $2\delta y - 2\delta x$ are calculated once.

Steps for Bresenham's line drawing algorithm (for |m| < 1.0)

- 1. Input the two line end-points (x_0, y_0) and (x_1, y_1)
- 2. Plot the point (x_0, y_0)
- 3. Compute $\delta x = x_1 x_0$, $\delta y = y_1 y_0$
- 4. Initialize $p_0 = 2\delta y \delta x$
- 5. At each x_k along the line, starting at k = 0, perform the following test.

If
$$p_k < 0$$

The next point to plot is
$$(x_k+1, y_k)$$

 $p_k = p_k + 2\delta y$

Else

the next point to plot is (x_k+1, y_k+1) $P_k = p_k + 2\delta y - 2\delta x$

- 6. Repeat step 5 $(\delta x 1)$ times
- 7. Exit 41

Exercise

Calculate pixel positions that made up the line connecting endpoints: (12, 10) and (17, 14).

1.
$$(x_0, y_0) = ?$$

2.
$$\Delta x = ?$$
, $\Delta y = ?$, $2\Delta y = ?$, $2\Delta y - 2\Delta x = ?$

3.
$$p_0 = 2\Delta y - \Delta x = ?$$

k	p_k	(x_{k+1},y_{k+1})

Bresenham's Line Algorithm

Exercise

Calculate pixel positions that made up the line connecting endpoints: (12, 10) and (17, 14).

1.
$$(x_0, y_0) = (12,10)$$

2.
$$\Delta x = 5$$
, $\Delta y = 4$, $2\Delta y = 8$, $2\Delta y - 2\Delta x = -2$

3.
$$p_0 = 2\Delta y - \Delta x = 3$$

k	p_k	(x_{k+1},y_{k+1})
0	3	
1		
2		

Bresenham's Line Algorithm

Exercise

Calculate pixel positions that made up the line connecting endpoints: (12, 10) and (17, 14).

1.
$$(x_0, y_0) = (12,10)$$

2.
$$\Delta x = 5$$
, $\Delta y = 4$, $2\Delta y = 8$, $2\Delta y - 2\Delta x = -2$

3.
$$p_0 = 2\Delta y - \Delta x = 3$$

k	p_k	(x_{k+1},y_{k+1})
0	3	(13, 11)
1	1	(14, 12)
2	-1	(15, 12)
3	7	(16, 13)
4	5	(17, 14)

Exercise: trace for (20,10) to (30,18)

Answer

k	p_{k}	(x_{k+1}, y_{k+1})
0	6	(21,11)
1	2	(22,12)
2	-2	(23,12)
3	14	(24,13)
4	10	(25,14)
5	6	(26,15)
6	2	(27,16)
7	-2	(28,16)
8	14	(29,17)
9	10	(30,18)