

Introduction to ML strategy

Orthogonalization

TV tuning example

Chain of assumptions in ML

- > Fit test set well on cost function () Biggs den set
- > Performs well in real world of the devict or (Hoppy cut pic off wars.)

Andrew Ng

Setting up your goal

Single number evaluation metric

Using a single number evaluation metric

Another example

	2	V	V	4	
Algorithm	US	China	India	Other	
A	3%	7%	5%	9%	
В	5%	6%	5%	10%	
\mathbf{C}	2%	3%	4%	5%	
D	5%	8%	7%	2%	
E	4%	5%	2%	4%	
F	7%	11%	8%	12%	

Setting up your goal

Satisficing and optimizing metrics

Another cat classification example

optimizing		Southsfice	ing /-
Classifier	Accuracy	Running time	Wakewords Trigger words
A	90%	<u>80ms</u>	Alexa, Ok Googh.
В	92%	<u>95m</u> s ←	Hey Siri, nihoobaidu
\mathbf{C}	95%	1,500ms	你好看度
Cost = accura	accuracy. #false positive		
Suggeor to	running Times S 1 optimizing N-1 sortisfici	<i>Y</i>	Maxinise ceccury. S.t. ≤ 1 false positive every Zy hours.

Andrew Ng

Setting up your goal

Train/dev/test distributions

Cat classification dev/test sets

dovelopment sot, hold out cross voludation cap

Regions:

- US
- UK
- Other Europe
- South America
- India
- China
- Other Asia
- Australia

Test

dev set t metric

Andrew Ng

True story (details changed)

Optimizing on dev set on loan approvals for medium income zip codes

X -> y (repay loan?)

Tested on low income zip codes

Guideline

Some distribution

Choose a dev set and test set to reflect data you expect to get in the future and consider important to do well on.

Setting up your goal

Size of dev and test sets

Old way of splitting data

Size of dev set

Set your dev set to be big enough to detect differences in

algorithm/models you're trying out.

Andrew Ng

Size of test set

→ Set your test set to be big enough to give high confidence in the overall performance of your system.

Setting up your goal

When to change dev/test sets and metrics

Cat dataset examples

Motore + Der: Prefor A. Youlusons: Prefor B.

→ Metric: classification error

Algorithm A: 3% error

pornographic

/ Algorithm B: 5% error

Error:
$$\sum_{i=1}^{N} \omega^{(i)} = \sum_{i=1}^{N} \omega^{(i)} = \sum_{i=1}^{N}$$

Andrew Ng

Orthogonalization for cat pictures: anti-porn

- → 1. So far we've only discussed how to define a metric to evaluate classifiers. Place to the total total and the second seco
- → 2. Worry separately about how to do well on this metric.

Another example

Algorithm A: 3% error

✓ Algorithm B: 5% error ←

→ User images

If doing well on your metric + dev/test set does not correspond to doing well on your application, change your metric and/or dev/test set.

Comparing to human-level performance

Why human-level performance?

Comparing to human-level performance

Why compare to human-level performance

Humans are quite good at a lot of tasks. So long as ML is worse than humans, you can:

- \rightarrow Get labeled data from humans. (x, y)
- Gain insight from manual error analysis:
 Why did a person get this right?
- → Better analysis of bias/variance.

Comparing to human-level performance

Avoidable bias

Bias and Variance

Bias and Variance

Cat classification

Training set error:

Dev set error:

high votone high bios high bios low bios

Cat classification example

Comparing to human-level performance

Understanding human-level performance

Human-level error as a proxy for Bayes error

Medical image classification example:

Suppose:

(a) Typical human 3 % error

- (c) Experienced doctor 0.7 % error
- \rightarrow (d) Team of experienced doctors .. 0.5 % error \leftarrow

What is "human-level" error?

Baye error 5 0.50/s

Error analysis example

Human (pary for Bayes Avoidable bias

Training error

Vorince

Dev error

Andrew Ng

Summary of bias/variance with human-level performance

Training error

Dev error

Human-level error

(pory le Bayes error)

"Available

Programming Frameworks

TensorFlow

Motivating problem

$$J(\omega) = \left[\omega^2 - 10\omega + 25\right]$$

$$(\omega - 5)^2$$

$$\omega = 5$$

```
Code example
    import numpy as np
    import tensorflow as tf
    coefficients = np.array([[1], [-20], [25]])
                                                                                                 X Ti Ito
    w = tf.Variable([0],dtype=tf.float32)
    x = tf.placeholder(tf.float32, [3,1])
    cost = x[0][0]*w**2 + x[1][0]*w + x[2][0]
                                             # (w-5)**2
    train = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    init = tf.global variables initializer()
    session = tf.Session()
                                                     with tf.Session() as session:
                                                        session.run(init)
    session.run(init)
```

print(session.run(w))

for i in range(1000):

print(session.run(w))

session.run(train, feed_dict={x:coefficients})

print(session.run(w))

Andrew Ng

Comparing to human-level performance

Surpassing humanlevel performance

Surpassing human-level performance

Team of humans One human Training error Dev error What is avoidable bios?

Problems where ML significantly surpasses human-level performance

- -> Online advertising
- -> Product recommendations
- -> Logistics (predicting transit time)
- -> Loan approvals

- Speech recognition
- Some inoge recognition
- Medul
- ECG, Skin cencer,...

Comparing to human-level performance

Improving your model performance

The two fundamental assumptions of supervised learning

1. You can fit the training set pretty well.

~ Avoidable bios

2. The training set performance generalizes pretty well to the dev/test set.

Reducing (avoidable) bias and variance

