This is the fifth homework assignment. Students should tick in TUWEL problems they have solved and upload their detailed solutions by 20:00 on Monday November 13, 2023.

1. Basketball free throws

Two professional basketball players, Bobby and Eliot, each throw twelve free throws with a basketball. Bobby makes 85% of the free throws he tries, while Eliot makes 78% of the free throws he tries. Player who achives the highest score wins the game. It is assumed that the two players do not influence each other when throwing. Use R to compute the probability that Eliot will win the game.

2. Mail order company

A mail order company provides free examination of its products for 7 days. If not completely satisfied, a customer can return the product within that period and get a full refund. According to past records of the company, an average of 2 of every 10 products sold by this company are returned for a refund.

- (a) Compute the probability that no more than 6 of the 40 products sold by this company on a given day will be returned for a refund.
- (b) Use a Poisson distribution to approximate the probability in (a). What can be said about the accuracy of this approximation?

3. Human resource testing

Some human resource depretments administer standard IQ tests to all employees. The Stanford-Binet test scores are well modeled by a Normal model with expectation 100 and standard deviation 16.

- (a) If the applicant pool is well modeled by this distribution, what is the probability that a randomly selected applicant would have the score between 84 and 116?
- (b) For the IQ test administered by human resources, what cutoff value would separate the middle 90%?

4. Coin throws

An unfair coin is thrown 600 times. The probability of geting a tail in each throw is $\frac{1}{4}$.

- (a) Use a Binomial distribution to compute the probability that the number of heads obtained does not differ more than 10 from 440.
- (b) Use a Normal approximation without a continuity correction to calculate the probability in (a). How does the result change if the approximation is provided with a continuity correction?

5. Cars arrivals

Suppose cars arrive at a parking lot at a rate of 50 per hour. Assume that the process is modeled by a Poisson random variable with $\lambda = 50$.

- (a) Compute the probability that in the next hour the number of cars that arrive at this parking lot will be between and including 54 and 62.
- (b) Compare the value obtained in (a) with the probability calculated by using a Normal approximation.