ANALÍTICA AVANZADA DE DATOS: CONCEPTOS BÁSICOS

A. Alejandra Sánchez Manilla asanchezm.q@gmail.com

Tareas del Reconocimiento de Patrones

Etapas en un sistema de RP

Recopilación de datos

Segmentación

Extracción de características

Preprocesamiento

Tareas del RP

Ciclo de Diseño

Recolectar Datos Seleccionar modelo Evaluar modelo

Seleccionar Entrenar modelo

Seleccionar rasgos modelo

Tipos de Aprendizaje

Aprendizaje Supervisado

- Se proporciona un conjunto de datos, usado para entrenar al sistema RP, el cual consta de patrones acompañados de sus clases (valor objetivo).
- Es un enfoque dirigido por el concepto.
- Si el objetivo del sistema RP es asignar una categoría entonces estamos ante una tarea de clasificación. Si, por otro lado, la salida del sistema consiste un 1 o más valores continuos entonces estamos ante una tarea de regresión.

Analítica Avanzada de Datos

6

Aprendizaje no Supervisado

- O clustering, no existe un experto. El sistema RP forma agrupaciones naturales basándose en los patrones de entrenada.
- Es un enfoque dirigido por los datos, cuyo objetivo es descubrir grupos de datos similares.
- Dado un determinado conjunto de datos o una función de costo, diferentes sistemas de clustering pueden conducirnos a diferentes agrupaciones de los datos.
- Generalmente el usuario debe suponer el número de cluster de antemano. ¿Cómo evitar una representación inadecuada de los datos?

Aprendizaje por Reforzamiento

- El objetivo es encontrar acciones adecuadas en una situación dada de forma que se maximice una recompensa.
- En este enfoque no se da un valor objetivo, sino que se debe encontrar la solución mediante un proceso de prueba y error.
- Alcanzar un balance entre explotar las acciones conocidas que producen una recompensa y explorar nuevas acciones.
- Ejemplo: un robot debe decir entre entrar a un cuarto a recolectar más basura o buscar un estación para recargar su batería.

Notación Básica

Símbolo	Significado	Consideraciones
A	Conjunto genérico de donde se toman	Ejemplos: $A = \{0,1\}$
	valores para las entradas de los	
	patrones (vectores)	
X	Banco de datos (conjunto de patrones)	
N	Cardinalidad del conjunto de patrones	$N= X ,\ N\in\mathbb{Z}^+$
x^i	<i>i</i> -ésimo patrón del conjunto de	$x^i \in X, \ i = \{1, 2,, N\}$
	patrones	
n	Dimensión de los patrones, es decir	$n \in \mathbb{Z}^+$
	número de rasgos o atributos	
x_i^i	La j-ésima componente del patrón i	$i = \{1,2,\ldots,N\}$
,		$j = \{1, 2, \dots, n\}$
С	Número de clases	$c \in \mathbb{Z}^+$
ω_k	k-ésima clase	$k = \{1, 2,, c\}$

10

Notación Básica

Símbolo	Significado	Consideraciones
E	Conjunto de entrenamiento.	$E \cup P = X$
P	Conjunto de prueba.	$E \cap P = \emptyset$
N_E	Cardinalidad del conjunto de	
	entrenamiento	
N_P	Cardinalidad del conjunto de	
	prueba	
$N_E(\omega_k)$	Número de patrones de la clase k	
	en el conjunto de entrenamiento	
$N_P(\omega_k)$	Número de patrones de la clase k	
	en el conjunto de prueba	
\widetilde{x}	Patrón cuya clase se desconoce.	No es necesario agregar un
		índice, salvo que se
		requiera un ordenamiento.

Patrón: un conjunto de rasgos que representan un objeto o problema. También se le conoce como *instancia* o *vector característico*

Nos referimos a cada rasgo del patrón con la siguiente notación x_j^i lo que significa el *j*-ésimo rasgo del *i*-ésimo patrón

Clases:

- Es la categoría a la que pertenece un patrón
- La etiqueta que se le asigna a un patrón

Se considera que los ejemplos que se le presentarán a un algoritmo de aprendizaje, para su entrenamiento, son un par [entrada-salida], donde la entrada es el patrón y la salida es la clase.

Importancia de los atributos

¿Qué atributos son más útiles? (Criterio de eficacia)

Analítica Avanzada de Datos

13

Importancia de los atributos

Los rasgos adecuados nos permiten diferenciar un patrón (objeto) de otro.

Una buena selección de atributos nos permite:

- Enfocarnos en información relevante.
- Reducción de datos
- Mejoras en los resultados.

Problema: generalmente no sabemos cual seleccionar, que representan y como ajustarlos.

Banco de datos (dataset)

Iris Data Set

Download: Data Folder, Data Set Description

Abstract: Famous database; from Fisher, 1936

Data Set Characteristics:	Multivariate	Number of Instances:	150	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	4	Date Donated	1988-07-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	449872

Banco de datos

Un banco de datos esta generalmente organizado como una matriz de $\it N$ filas (patrones) \times $\it n$ columnas (rasgos), con una columna extra para la clase.

	Largo del Sépalo (n ₁)	Ancho del Sépalo (n ₂)	Largo del Pétalo (n₃)	Ancho del Pétalo (n ₄)	Clase (n ₅)
$\overline{N_1}$	5.9	3.0	4.2	1.5	Iris-versicolor
N_2	6.9	3.1	4.9	1.5	Iris-versicolor
N_3	4.6	3.2	1.4	0.2	Iris-setosa
÷	:	:	:	:	:
N_{150}	7.7	3.8	6.7	2.2	Iris-virginica

Tipos de atributos (numéricos)

- Un atributo numérico es aquel que toma valores que se encuentran en el dominio de los números enteros o reales.
- Ejemplos:
 - edad (ℕ)
 - largo del pétalo (\mathbb{R} +)
 - temperatura (\mathbb{R})

Además:

- **Discretos:** toman valores finitos o contables.
- Continuos: aquellos que toman valores reales.
- **Binarios:** tipo especial de atributo discreto que solamente toma valores de 0 y 1.

Tipos de atributos (categóricos)

Un atributo categórico es aquel cuyos valores son tomados de un conjunto de símbolos o cadenas.

Ejemplos:

- sexo (F,M)
- estado civil (Soltero, Casado, Viudo)

Además:

- Nominal: son datos que no tienen un orden, por tanto, solo operaciones de comparación (igualdad) tienen sentido. Ejemplo: estado civil.
- Ordinal: son datos que si representan un orden, por tanto, aquí si es lógico el uso de comparaciones de igualdad o desigualdad (mayor o menor). Ejemplo: nivel de educación (primaria, secundaria, posgrado).

Tipos de atributos (representación)

 Si se considera un banco de datos con n atributos numéricos cada punto puede representarse como una tupla:

$$x^i = (x_1^i, x_2^i, \dots, x_n^i) \in \mathbb{R}^n$$

O como un vector columna:

$$x^{i} = \begin{pmatrix} x_{1}^{i} \\ x_{2}^{i} \\ \vdots \\ x_{n}^{i} \end{pmatrix} = (x_{1}^{i}, x_{2}^{i}, \dots, x_{n}^{i})^{T} \in \mathbb{R}^{n}$$

20

Clases

- Desde el punto de vista del problema de clasificación, los problemas pueden dividirse en:
 - Biclases: solo existen 2 categorías para los patrones en el dominio del problema. Ejemplo: problemas médicos, pacientes sanos o enfermos
 - Multiclase: existen más de 2 categorías para los patrones en el dominio del problema. Ejemplo: detección de intrusiones en una red, diferentes tipos de ataque

Clases - Problema biclase

■ Clases exclusivas: son solo 2 clases y un objeto solo puede tener asignada una clase/categoría

Clase: imagen color

Clase: imagen blanco/negro

No puede ser ambas al mismo tiempo.

Clases - Problema multiclase

■ Clases no exclusivas: un objeto puede tener múltiples clases/categorías asignadas (multietiqueta)

Clases - Problema multiclase

■ Clases exclusivas: un objeto solo puede tener asignada una clase/categoría

Complejidad de Datos - Valores perdidos

• Este problema se presenta cuando el valor para al menos un rasgo de un patrón en el conjunto de datos no se encuentra presente.

• Causas: mal funcionamiento de equipos de medición, cambio en el diseño durante la captura de datos, imposibilidad de colectar los datos, entre otras.

Valores perdidos ¿Cómo lidiar con ellos?

Eliminar los patrones cuyos atributos contienen valores perdidos.

Largo de Sépalo	Ancho de Sépalo	Largo de Pétalo	Ancho de Pétalo	Clase
4.9	3.5	1.4	0.2	Setosa
4.6	3.1	NaN	0.2	Setosa
6.9	3.1	4.9	1.5	Versicolor
5.7		4.1	1.3	Versicolor
6.2	3.4	5.4	2.3	Virginica

Largo de Sépalo	Ancho de Sépalo	Largo de Pétalo	Ancho de Pétalo	Clase
4.9	3.5	1.4	0.2	Setosa
6.9	3.1	4.9	1.5	Versicolor
6.2	3.4	5.4	2.3	Virginica

Imputación

- Si el atributo que tiene valores perdidos es **numérico** se *rellenan los valores con el valor promedio o la mediana del atributo*
- Si el atributo que tiene valores perdidos es **categórico** se *rellenan los valores con la moda del atributo*

sklearn.impute.SimpleImputer donde se puede usar mean, median, constant y most frequent

Imputación

Se pueden diseñar estrategias más elaboradas para la imputación.

Ej.: Calcular media por categorías de algún rasgo

stado	Salario	Años de experiencia		Estado	Salario	Años de experienci
Y	57,400	10		NY	57,400	10
2	45,000	7		TX	45,000	7
	52,300	9		NJ	52,300	9
2	39,500	5	7	TX	39,500	5
	35,800	4		NY	35,800	4
		6		TX	42,250	6
Y	55,600	9		NY	55,600	9

Imputación

Se pueden diseñar estrategias más elaboradas para la imputación.

Ej.: Calcular media por categorías de la clase

Largo de Sépalo	Ancho de Sépalo	Largo de Pétalo	Ancho de Pétalo	Clase
4.9	3.5	1.4	0.2	Setosa
4.6	3.1		0.2	Setosa
6.9	3.1	4.9	1.5	Versicolor
5.7	3.8	4.1	1.3	Setosa
6.2	3.4	5.4	2.3	Versicolor

Imputación

Se pueden diseñar estrategias más elaboradas para la imputación.

Ej.: Calcular media por categorías de la clase

Largo de Sépalo	Ancho de Sépalo	Largo de Pétalo	Ancho de Pétalo	Clase
4.9	3.5	1.4	0.2	Setosa
4.6	3.1	2.7	0.2	Setosa
6.9	3.1	4.9	1.5	Versicolor
5.7	3.8	4.1	1.3	Setosa
6.2	3.4	5.4	2.3	Versicolor

Uso de algoritmos:

- Usar algoritmos que sean robustos en el manejo de valores perdidos:
 KNN, Random Forest o GradientBoostingClassifier
- Usar un algoritmo de clasificación o regresión para realizar la imputación

Complejidad de Datos - Valores atípicos (outliers)

 Los patrones atípicos son datos que presentan una diferencia significativa del resto de elementos en un conjunto de datos o en una clase en particular.

Causas:

- Malas mediciones al capturar los datos.
- Mal etiquetado del patrón al asignarle una clase.
- Características propias del concepto que se aprende.

Patrones atípicos ¿Cómo lidiar con ellos?

- 1. Eliminar patrones atípicos que presenten valores evidentemente imposibles, un ejemplo sería edades negativas.
- 2. Tratar de normalizar los datos.
- 3. Calcular la desviación estándar y seleccionar datos que se alejen un determinado número de desviaciones estándar de la media del atributo que se analiza para ser eliminados del conjunto de datos.
- 4. Usar algoritmos que se vean menos afectados por valores atípicos, por ejemplo los Random Forest.
- 5. Métodos de proximidad como clustering, densidad o vecinos mas cercanos.

Patrones atípicos ¿Cómo lidiar con ellos?

1. Eliminar registros con valores evidentemente imposibles:

Edad	Sexo	Glucosa	Colesterol	Clase
56	F	1.4	2.3	Sano
46	M	5.7	5.7	Enfermo
75	F	4.9	8.9	Enfermo
-41	M	2.1	1.3	Sano
25	M	1.3	2.3	Sano

Edad	Sexo	Glucosa	Colesterol	Clase
56	F	1.4	2.3	Sano
46	M	5.7	5.7	Enfermo
75	F	4.9	8.9	Enfermo
25	M	1.3	2.3	Sano

Patrones atípicos ¿Cómo lidiar con ellos?

Normalizar y Estandarización:

- El escalado de rasgos es uno de los pasos de procesamiento de datos más importantes en el aprendizaje automático
- Los algoritmos calculan la distancia entre los rasgos que están sesgados hacia valores numéricamente más grande si los datos no están escalados

Largo de Sépalo	Ancho de Sépalo	Largo de Pétalo	Ancho de Pétalo	Clase
4.9	3.5	1.4	0.2	Setosa
40	3.1	1.2	0.2	Setosa
6.9	3.1	4.9	1.5	Versicolor
5.7	3.5	4.8	1.3	Versicolor
6.2	3.4	5.4	50	Virginica

Patrones atípicos ¿Cómo lidiar con ellos?

Normalizar y Estandarización:

Normalización	Estandarización				
Valores mínimos o máximos son usados para el escalado de datos.	La media y la desviación estándar son usados para el escalado de datos.				
Escala los valores en el rango [0,1] o [-1,1]	No esta limitado a un rango.				
Se ve afectado por valores atípicos.	Se ve menos afectado por valores atípicos.				
Es útil si no sabemos la distribución de los datos.	Es útil cuando la distribución de los datos es normal o gaussiana.				
Llamada normalización por escala.	Llamada normalización Z-score				

Patrones atípicos ¿Cómo lidiar con ellos?

Normalizar y Estandarización:

- Normalización: escalar los datos
- **Estandarización:** escalar la distribución (distribución normal)

Desbalance de Clases

Este fenómeno se presenta cuando el número total de instancias en una clase (clase mayoritaria) es significativamente mayor que el número de instancias de otra clase (clase minoritaria).

$$IR = rac{\# instancias \ clase \ mayoritaria}{\# instancias \ en \ la \ clase \ minoritaria}$$

Un banco de datos se considera desbalanceado, si IR > 1.5; de lo contrario se dice que el banco de datos está balanceado.

Este es un problema que se presenta a menudo en situaciones comunes de la vida real.

Desbalance de Clases

- Porque es importante atacar este problema:
 - Pobre desempeño de los clasificadores: regresión logística, maquinas de soporte vectorial y árboles de decisión.
 - Proceso de aprendizaje guiado por métricas globales presenta un BIAS hacia la clase mayoritaria.
 - Instancias de la clase minoritaria pueden ser ignorada.

Clase

Setosa
Setosa
Setosa
Versicolor
Versicolor
Versicolor

Virginica Virginica Virginica

Desbalance de Clases

1. Métodos de muestreo: submuestreo

Largo de Sépalo	Ancho de Sépalo	Largo de Pétalo	Ancho de Pétalo	Clase					
4.9	3.0	1.4	0.2	Setosa		Largo de	Ancho	Largo de	Ancho de
4.6	3.1	1.5	0.2	Setosa		Sépalo	Sépalo	Pétalo	Pétalo
5.0	3.6	1.4	0.2	Setosa		4.9	3.0	1.4	0.2
4.4	2.9	1.4	0.2	Setosa		4.6	3.1	1.5	0.2
4.8	3.0	1.4	0.2	Setosa		4.8	3.0	1.4	0.2
5.0	3.3	1.4	0.2	Setosa		6.9	3.1	4.9	1.5
6.9	3.1	4.9	1.5	Versicolor	5	5.7	3.5	4.9	1.3
5.7	3.5	4.9	1.3	Versicolor		6.9	3.1	4.9	1.5
6.9	3.1	4.9	1.5	Versicolor		6.2	3.4	5.4	2.3
6.2	3.4	5.4	2.3	Virginica		6.2	3.4	5.4	2.3
6.2	3.4	5.4	2.3	Virginica		6.2	3.4	5.4	2.3
6.2	3.4	5.4	2.3	Virginica					

Analítica Avanzada de Datos

39

Desbalance de Clases

1. Métodos de muestreo: sobremuestreo

						Largo de Sépalo	Ancho de Sépalo	Largo de Pétalo	Ancho de Pétalo	Clase
Largo de	Ancho de	Largo de			4.9	3.0	1.4	0.2	Setosa	
Sépalo	Sépalo	Pétalo	Pétalo		Setosa	4.6	3.1	1.5	0.2	Setosa
4.9	3.0	1.4	0.2	Setosa		4.8	3.0	1.4	0.2	Setosa
4.6	3.1	1.5	0.2	Setosa		6.9	3.1	4.9	1.5	Versicolo
4.8	3.0	1.4	0.2	Setosa		5.7	3.5	4.9	1.3	Versicolo
6.9	3.1	4.9	1.5	Versicolor	7	6.9	3.1	4.9	1.5	Versicolo
6.2	3.4	5.4	2.3	Virginica		6.2	3.4	5.4	2.3	Virginica
6.2	3.4	5.4	2.3	Virginica		6.1	3.8	5.2	2.6	Virginica
						6.0	3.1	5.8	2.1	Virginica

Desbalance de Clases

3. Deshacerse de la clase minoritaria y tratar el problema con uno de detección de anomalías.

- 4. A nivel de algoritmo:
 - Ajustar el peso de la clase.
 - Ajustar el umbral de decisión.
 - Modificar el algoritmo para que sea más sensitivo a clases raras.

Referencias

- [1] Leondes, C.T. (2018). Image Processing and Pattern Recognition. California: Academic Press.
- [2] **Duda, R.O., Hart, P.E. & Stork, D.G. (2001)**. *Pattern Classification*. 2nd edition. Wiley-Interscience.
- [3] **Marques de Sá, J:P. (2001).** Pattern Recognition: Concepts, Methods and Applications. Berlin: Springer-Verlag.
- [4] **Kuncheva, L. (2014)**. Combining Pattern Classifiers: Methods and Algorithms. 2nd edition. USA: Wiley.
- [5] Witten, I.H., Frank, E. & Hall, M.A. (2011). Data Mining: Practical Machine Learning Tools and Techniques. 3rd edition. USA: Elsevier.
- [6] Murty, N.M. & Devi, V.S. (2011). Pattern Recognition: An Algorithmic Approach. Springer.
- [7] **Zaki, M.J. & Meira, W. (2014).** Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press.
- [8] Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H. & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. *Expert Systems With Applications*, 73, 220-239.