

Atrás

Tiempo restante 1:00:13

Pregunta 3

Sin responder aún

Puntaje de 4.00

♥ Señalar con bandera la pregunta Los lenguajes de programación no pertenecen a los lenguajes formales, porque solamente los entienden las computadoras.

Elija una;

- O Verdadero
- Falso

Tiempo restante 0:57:58

Pregunta 4

Sin responder aún

Puntaje de 4.00

Señalar con bandera la pregunta Indique si es verdadero o falso el siguiente enunciado, con base a la Jerarquía de Chomsky: Las gramáticas tipo 0, sus producciones no tienen restricciones, ni del lado derecho ni del lado izquierdo.

Elija una;

- Verdadero
- O Falso

¿Qué autómata finito es equivalente a la siguiente expresión regular?

a* (b | c | d) c*

Seleccione una:

O Ninguna es correcta

Pregunta 6

Sin responder aún

Puntaje de 4.00

Señalar con bandera la pregunta En una expresión regular, ¿cómo se le llaman a los siguientes símbolos () |*+?

Seleccione una:

- Metadatos
- Todas son correctas
- Metasímbolos

Borrar mi elección

Pregunta 7

Sin responder

Puntaje de 40.00

Señalar con bandera la pregunta

Expresión	Regular:	bc	(ac	l b) +
EXPICATOR	ricgular.				, .

Instrucciones: Aplicando el Método del Árbol a la expresión regular anterior, conteste los espacios vacíos con las respuestas correctas (existen 3 grupos de respuestas, cada grupo tiene un color diferente); asegúrese de contestar con base a su ejercicio. No es permitido modificar la expresión regular.

*Para obtener calificación de este ejercicio, es requisito enviar el archivo PDF con la solución completa (paso a paso) al correo zaguirre@ingenieria.usac.edu.gt (en el caso no se reciba el archivo correcto, sacará cero puntos).

no se rectou et archivo correcto, sucura cero pantos).				
Árbol Binario (grupo 1): tiene nodos en total; existen nodos que tienen Follow				
Pos.				
¿Cuántos nodos son Anulables?				
¿Cuántos nodos son de concatenación?				
¿Cuál es el First Pos de la raíz? ¿Cuál es el Last Pos de la raíz?				
¿Cuál es el First Pos del nodo + ? ¿Cuál es el Last Pos del nodo + ?				

S

Tabla de Follow Pos (grupo 2): Llene los datos que hacen falta en la tabla del FOLLOW POS.

Hoja	Terminal	Follow Pos	
1		2	
2	с		
3	a		
4	с		
5	b	3,5,6	

Tabla de Transiciones (grupo 3): indique los elementos que forman el estado inicial:

El ejercicio tiene en total estados; de estos estados, ¿cuántos son de
aceptación?
¿El ejercicio completo, cuántas transiciones tiene?
¿El estado inicial tiene 1 transición (falso/verdadero)?
¿El estado inicial es de aceptación (si/no)?
¿Cuántos terminales existen?
Indique los elementos de un estado de aceptación:

3 3, 4 4 11 10 b 2, 3, 4	1, 2, 3 3, 4, 5	a 2, 3, 4	5, 6 3, 5, 6
2,3 c	4 3, 5 Estado Inicial = { 1, 6 }	12	
4, 5, 6	Estado Inicial = { 1 } 4 Estado Inicial = { 1, 2 }	falso	
3, 5	verdadero	0 3, 5, 6	
6	Si	1	