Problem Statement

Suggest Edit

You are given an array 'a' of 'n' integers.

A majority element in the array 'a' is an element that appears more than 'n' / 2 times.

Find the majority element of the array.

It is guaranteed that the array 'a' always has a majority element.

Example:

Input: 'n' = 9, 'a' = [2, 2, 1, 3, 1, 1, 3, 1, 1]

Output: 1

Explanation: The frequency of '1' is 5, which is greater than 9 / 2. Hence '1' is the majority element.

9

9/2 = 4

eg:
$$125$$
 125
 125
 $127[125]$
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125

 $\frac{1}{\sqrt{2}}$ Bonne force. Count he freg - DCN2)

Marduney - D(2N)

Ophmal Approach:

· Moore's Voling Algorishm: anr[1:17757515775577555]

· Mooris Voting Algorithm:

Ne count the current element when and when element is not found we reduce the count. When count we reached zero, we update the element.

- 1. Maintain element and count variable.
- 2. Increase court if found the element or être deercase if court reaches

 Zero update the element.
- 3 The element of last we got can be a majority element.
- 4. So, we iterate and check if the count of element is the greater than M2

 hum we return then or the -1

Pende code.