AE 2008 40-52

1

EE24BTECH11005 - Arjun Pavanje

40) A clamped-clamped beam, subjected to a point load P at the midspan, is shown in the figure below. The magnitude of the moment reaction at the two fixed ends of the beam is

a) $\frac{PI}{2}$

b) $\frac{PL}{4}$

c) $\frac{PL}{8}$

d) $\frac{PL}{16}$

41) Which of the following statement(s) is/are true about the state of a body in plane strain condition?

P: All the points in the body undergo displacements in one plane only, for example the x - y plane, leading to $\varepsilon_{zz} = \gamma_{xz} = \gamma_{yz} = 0$.

Q: All the components of stress perpendicular to the plane of deformation, for example the x-y plane, of the body are equal to zero, i.e. $\sigma_{zz} = \tau xz = \tau yz = 0$

R: Except the normal component, all the other components of stress perpendicular to the plane of deformation of the body, for example the x-y plane, are equal to zero, i.e. $\sigma_{zz} \neq 0$, $\tau_{sz} = \tau_{yz} = 0$.

a) P only

b) Q only

c) P and Q

d) P and R

42) An aircraft with a turbojet engine flies at a velocity of 100m/s. If the jet exhaust velocity is 300m/s, the propulsive efficiency of the engine, assuming a negligible fuel-air ratio, is

a) 0.33

b) 0.50

43) An axial compressor that generates a stagnation pressure ratio of 4.0, operates with inlet and exit stagnation temperatures of $300K$ and $480K$, respectively. If the ratio of specific heats γ is 1.4, the isentropic effeciency of the compressor is,			
a)	0.94	b) 0.81	
c)	0.72	d) 0.63	
44) An aircraft with a turboprop engine produces a thrust of $500N$ and flies at $100m/s$. If the propeller efficiency is 0.5, the shaft power produced by the engine is			
a)	50kW	b) 100 <i>kW</i>	
c)	125kW	d) 500 <i>kW</i>	
45) A rocket has an initial mass of $150kg$. After operating for a duration of $10s$, its final mass is $50kg$. If the acceleration due to gravity is $9.81m/s^2$ and the thrust produced by the rocket is $19.62kN$, the specific impulse of the rocket is			
a)	400 <i>s</i>	b) 300s	
c)	200 <i>s</i>	d) 100s	
46) Consider the vector field $\mathbf{v} = \begin{pmatrix} -\frac{y}{r^2} \\ \frac{x}{r^2} \end{pmatrix}$ where $r = \sqrt{x^2 + y^2}$. The contour integral $\oint \mathbf{v} \cdot \mathbf{ds}$ where \mathbf{ds} is tangent to the contour that encloses the origin is, (accurate to two decimal places)			
	47) The magnitude of the x-component of the unit vector at the point $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ that is normal		
to equipotential lines of the potential function $\phi(r) = \frac{1}{r^2+4}$, where $r = \sqrt{x^2 + y^2}$ is, (accurate to two decimal places)			
48) As Le) Assuming ISA standard sea level conditions, the density of air $\left(\ln kg/m^3\right)$ at Leh, which has an altitude of 3500m above mean sea level is		
he atı	(accurate to two decimal places) 9) Consider a cubical tank of side $2m$ with its top open. It is filled with water up to a height of $1m$. Assuming the density of water to be $1000kg/m^3$, $g = 9.81m/s^2$ and the atmospheric pressure to be $100kPa$, the net hydrostatic force (in kN) on the side face of the tank due to the air and water is (accurate to two decimal places)		
50) Ai to	n aircraft with mass of 400,000kg cruit drag ratio at cruise is 15. Assuming g	ses at $240m/s$ at an altitude of $10km$. Its lift g as $9.81m/s^2$, the power (in MW) needed	
51) A		to two decimal places) has a $C_{L_{\alpha}} = 5$ d in radians). The coefficient of moment	

d) 0.80

c) 0.67

of the aircraft about the center of gravity is given as $C_{M,C,g} = 0.05 - 4\alpha$. The mean aerodynamic chord of the aircraft wing is 1m. The location (positive towards the nose) of the neutral point of the aircraft from the center of gravity is ______ (accurate to two decimal places)

52) An aircraft with a gross weight of 2000kg has a speed of 130m/s at sea level, where the conditions are: 1 atmosphere (pressure), 288K (temperature), and 1.23kg/m³ (density). The speed (in m/s) required by the aircraft at an altitude of 9000m, where the conditions are: 0.31 atmosphere, 230K, and 0.47kg/m³, to maintain a steady, level flight is _______ (accurate to two decimal places)