SOLUTIONS SHEET 9

YANNIS BÄHNI

Exercise 1.

Lemma 1.1. Let $1 \leq p < \infty$. Then $g_n, h_n, k_n \in L^p(\mathbb{R})$ for all $n \in \mathbb{N}$.

Proof. We have that

$$||g_n||_p^p = \int_{\mathbb{R}} |f(x-n)|^p dx = \int_{\mathbb{R}} |f(y)| dy = ||f||_p^p,$$

$$||h_n||_p^p = n^{-1} \int_{\mathbb{R}} |f(x/n)|^p dx = \int_{\mathbb{R}} |f(y)|^p dy = ||f||_p^p,$$

$$||k_n||_p^p = \int_{\mathbb{R}} |f(x)e^{inx}|^p dx = \int_{\mathbb{R}} |f(x)|^p dx = ||f||_p^p,$$

and since $f \in C_c^{\infty}(\mathbb{R})$ implies that $f \in L^p(\mathbb{R})$, the claim follows.

Exercise 2.

а.

b. Suppose that $x_n \to x$ and $||x_n|| \to ||x||$. By lemma 6.2.1. we have that $f(x_n) \to f(x)$ for all $f \in H^*$. Using the *Riesz representation theorem* this is equivalent to $\langle y, x_n \rangle \to \langle y, x \rangle$ for all $y \in H$. But then

$$||x - x_n||^2 = \langle x - x_n, x - x_n \rangle = ||x||^2 - 2 \operatorname{Re} \langle x, x_n \rangle + ||x_n||^2 \to 0$$

since Re is a continuous function and $\langle x, x_n \rangle \to ||x||^2$.

Exercise 3.

a.

Lemma 1.2. *Let* $0 < \varepsilon < 1$ *and define*

$$I_{\varepsilon}(f) := \varepsilon^{-1} \int_{0}^{\varepsilon} f(x) dx$$

for $f \in L^{\infty}(0,1)$. Then $I_{\varepsilon} \in \left(L^{\infty}(0,1)\right)^*$ and $||I_{\varepsilon}|| = 1$ for all $0 < \varepsilon < 1$. Proof. Let $f \in L^{\infty}(0,1)$. Then we have that $|f| \leq ||f||_{\infty} \lambda$ -a.e. Hence

$$|I_{\varepsilon}(f)| = \varepsilon^{-1} \left| \int_0^{\varepsilon} f(x) dx \right| \le \varepsilon^{-1} \int_0^{\varepsilon} |f(x)| \, dx \le ||f||_{\infty} \tag{1}$$

and thus I_{ε} is bounded and thus continuous. Clearly I_{ε} is \mathbb{C} -linear by the \mathbb{C} -linearity of the integral. Moreover, using (1) we get that

$$||I_{\varepsilon}|| = \sup_{\|f\|_{\infty} = 1} |I_{\varepsilon}(f)| \le \sup_{\|f\| = 1} ||f||_{\infty} = 1.$$

Conversly, setting $f := \chi_{(0,1)} \in L^{\infty}(0,1)$, we get that $|I_{\varepsilon}(f)| = 1$ and hence by ||f|| = 1

$$||I_{\varepsilon}|| = \sup_{\|g\|_{\infty} = 1} |I_{\varepsilon}(g)| \ge |I_{\varepsilon}(f)| = 1.$$

Exercise 4.

a. First we show that $\|\cdot\|_{\sigma}$ is well defined. Let $x^* \in X^*$, then we have

$$\|x^*\|_{\sigma} = \sum_{k=1}^{\infty} 2^{-k} |x^*(x_k)| \le \sum_{k=1}^{\infty} 2^{-k} \|x^*\| \|x_k\| = \|x^*\| \sum_{k=1}^{\infty} 2^{-k} = \|x^*\| < \infty$$

since $x_k \in S_X$ and $\sum_{k=1}^{\infty} 2^{-k} = 1$. Hence $\|x^*\|_{\sigma} \leq \|x^*\|$ holds. Let $\lambda \in \mathbb{K}$. Then we have that

$$\|\lambda x^*\|_{\sigma} = \sum_{k=1}^{\infty} 2^{-k} |\lambda x^*(x_k)| = \sum_{k=1}^{\infty} 2^{-k} |\lambda| |x^*(x_k)| = |\lambda| \sum_{k=1}^{\infty} 2^{-k} |x^*(x_k)| = |\lambda| \|x^*\|_{\sigma}.$$

Let $y^* \in X^*$. Then the triangle inequality follows from

$$||x^* + y^*||_{\sigma} = \sum_{k=1}^{\infty} 2^{-k} |x^*(x_k) + y^*(x_k)|$$

$$\leq \sum_{k=1}^{\infty} 2^{-k} |x^*(x_k)| + \sum_{k=1}^{\infty} 2^{-k} |y^*(x_k)|$$

$$= ||x^*||_{\sigma} + ||y^*||_{\sigma}.$$

Lastly, clearly $\|x^*\| = 0$ if $x^* = 0$. Conversly, suppose that $\|x^*\| = 0$. Hence $x^*(x_k) = 0$ for all $k \in \mathbb{N}$. Let $Y \in X$. Since $\overline{\text{span}\{x_k : k \in \mathbb{N}\}} = X$, we find a sequence $(y_n)_{n \in \mathbb{N}}$ in $\text{span}\{x_k : k \in \mathbb{N}\}$, such that $y_n \to y$. Moreover, for each $n \in \mathbb{N}$ we have that $y_n = \sum_{k=1}^{\infty} \lambda_k^{(n)} x_k$ for $\lambda_k^{(n)} \in \mathbb{K}$ and $\lambda_k^{(n)} = 0$ for all but finitely many $k \in \mathbb{N}$. Hence

$$x^*(y) = \lim_{n \to \infty} x^*(y_n) = \lim_{n \to \infty} \sum_{k=1}^{\infty} \lambda_k^{(n)} x^*(x_k) = 0$$

by the continuity of x^* and so $x^* = 0$.