# Scientific Computing: Molecular dynamics

Problemsheet 1

Jimin Kim, Christian Nix, Noah Schlenker

03. Mai 2024

Technical University of Munich

# Outline



Mac Setup

Particle container

Design pattern

Force calculation

References

# Mac Setup

# Using docker to remotelz build the project



Problem: xerces is not available on MacOS and code will be evaluated on a Linux system

Solution: Clion offers remote toolchains to build, run, and debug project

- Similar to WSL described on problem sheet for Windows
- Create Docker container with Ubuntu base image and all necessary files and libraries
- Create a new toolchain in Clion
- Configure Clion's Cmake profile and configuration to use the created docker image
- Use the IDE as you normally would
- Even connect to the container via terminal to do intensive debugging

Be aware that this approach will have its limits

Particle container

# Realization of the particle container using vectors



Task: Create a class to encapsulate the particles for convenient iteration

Solution: class ParticleContainer

- Storing particles as a std::vector
- Iterator functions for convenient particle iteration
- Pairwise iterator with only unique pairs
- $\Rightarrow$  Operators for range-based loop conditions (e.g. for (**begin**; **end**; ++;))

# Design pattern

# Refactoring with the strategy pattern



**Problem:** Methods for I/O and calculations will change frequently

**Solution:** Strategy as the implemented design pattern

Define a family of algorithms and encapsulate them

### • Structure:

- Simulation as the highest layer for choosing strategy
- Compartmentalizing I/O, model and physics
- Enabling Combinations of physics functions through strategy

### • Benefits:

- Simple Swapping algorithms
- Isolation of implementation details
- Open/Closed Principle: Introduction of new strategies without context change

**Force calculation** 





Task: Implement Force calculation with the pairwise iterator

**Solution:** Skip repeating calculations due to  $F_{ij} = -F_{ji}$ 



Figure 1: Pattern of pairwise Force calculation

References



 $\begin{tabular}{ll} \hline & https://refactoring.guru/design-patterns/strategy \\ \hline \end{tabular}$