Examen terminal du 13 mai 2022 Partie Structures algébriques

Barême indicatif: Str. alg. I. 2 pts; Str. alg. II. 5 pts; Str. alg. III. 3pts.

Exercice 1. Str. alg. I.

Soit $R, +, \cdot$ un anneau commutatif et soit S un idéal de R. Montrer que l'application

$$\overline{\cdot}: R/S \times R/S \longrightarrow R/S:$$

 $(x+S,y+S) \longmapsto (x+S)\overline{\cdot}(y+S) := x \cdot y + S$

est bien définie.

Exercice 2. Str. alg. II.

 ${\it Partie A.-}$ Soient G un groupe, N un sous-groupe distingué de G et H un sous-groupe de G. Soit

$$NH := \{ nh \mid n \in N, h \in H \}.$$

Notez que si $x \in NH$, alors $x^{-1} \in NH$. Effectivement, si $x \in NH$, alors il existe $n \in N, h \in H$ tel que x = nh. Alors

$$x^{-1} = h^{-1}n^{-1} = (h^{-1}n^{-1})(hh^{-1}) = (h^{-1}n^{-1}h)h^{-1}.$$

Comme $N \subseteq G$, $h^{-1}n^{-1}h \in N$ et donc $x^{-1} \in NH$.

- 1. Montrer que NH est un sous-groupe de G.
- 2. Supposons que H est aussi un sous-groupe distingué de G. Montrer que $NH \subseteq G$.

Partie B.- Soit G le groupe diédral $D_8 = \{id, r, r^2, r^3, s, sr, sr^2, sr^3\}$ à 8 éléments, i.e. le groupe des isométries du plan qui laissent invariant le carré. Pour rappel, r est la rotation d'angle $\pi/2$, s est une réflexion et $r^ks = sr^{4-k}$, $1 \le k \le 4$. Soit $N = \{id, r^2\}$ et $H = \{id, s\}$.

- 1. Montrer que N est un sous-groupe distingué de D_8 .
- 2. Calculer les classes à gauche suivant N dans D_8 .
- 3. Est-ce que H est un sous-groupe distingué de D_8 ? Justifier votre réponse.
- 4. Expliciter le sous-groupe NH.
- 5. Est-ce que NH est un sous-groupe distingué de D₈? Justifier votre réponse.

Exercice 3. Str. alg. III.

- 1. Montrer que $x^4 + x + 1$ est un polynôme irréductible dans $\mathbb{F}_2[x]$.
- 2. Justifier pourquoi $K = \mathbb{F}_2[x]/(x^4 + x + 1)$ est un corps à 16 éléments. Lister ses éléments.
- 3. Soit α la classe de x dans K. Déterminer l'inverse de x dans K.