Introduction to Mobile Ad-Hoc Networks

■ By Quan Le-Trung, *Dr.techn*.

http://sites.google.com/site/quanletrung/

Contents

- Ad hoc networks Differences to other networks
- MANET characteristics
- MANET applications
- Technical challenges
- Quiz on MANET applications design

How are mobile ad hoc networks different?

Ad hoc ≈ "for a particular purpose", improvised

- •No infrastructure *flat network*
- Radio communication shared medium
- Every computer or device (node) is a router as well as end host
- Nodes are in general autonomous
- Mobility dynamic topology
- Limited energy and computing resources

Differences to other Wireless Networks

Differences to Wired Networks – Radio (802.11x MAC)

- Varying signal-to-noise ratio
- Different rates = different transmission ranges
- •CSMA
- Channel contention
- Obstructions
- Interference, e.g., "hidden terminals"

Differences to Wired Networks - The Effect of a Shared Channel

Bandwidth decreases asymptotically with hop count

- Nodes interfere with next hops
- Over longer paths interference is constant

Source: Holland et al. 2002

MANET characteristics: Why Ad Hoc Networks?

- Setting up of fixed access points and backbone infrastructure is not always viable
 - ❖ Infrastructure may not be present in a disaster area or war zone
 - ❖ Infrastructure may not be practical for shortrange radios; Bluetooth (range ~ 10m)
- Ad hoc networks:
 - Do not need backbone infrastructure support
 - Are easy to deploy
 - Useful when infrastructure is absent, destroyed or impractical

MANET Characteristics

- Host movement frequent
- Topology change frequent

- No infrastructure. Multi-hop wireless links.
- Data must be routed via intermediate nodes.

Multi-Hop Wireless

May need to traverse multiple links to reach destination

Mobile Ad-hoc Network

- Self-configuring network of mobile routers (and associated hosts) connected by wireless links
- This union forms a random topology
- Routers move randomly free
- Topology changes rapidly and unpredictably
- Standalone fashion or connected to the larger Internet
- Suitable for emergency situations like natural or human-induced disasters, military conflicts, emergency medical situations, etc.

Mobile Ad-hoc Network

While MANETs are self contained, they can also be tied to an IP-based global or local network – Hybrid MANETs

Network Architectures

- No Infrastructure (ad hoc networks):
 - * no base stations; no fixed network infrastructure

MANET

- MANET = Mobile Ad Hoc Networks
 - * multi-hop communication
 - * needs support of dynamic routing protocols

Hybrid Mobile Ad-hoc Network

Hybrid Mobile Ad-hoc Network

Hybrid Mobile Ad-hoc Network

IEFT MANET Working Group

- goal:
 - to standardize an interdomain unicast routing protocol which provides one or more modes of operation, each mode specialized for efficient operation in a given mobile networking "context", where a context is a predefined set of network characteristics.
- a dozen candidate routing protocols have been proposed
- http://datatracker.ietf.org/wg/manet/charter/

MANET Applications

- ad hoc conferencing
- home networking
- emergency services
- personal area network (PAN)
- ubiquitous computing
 - * "computers are all around us, constantly performing mundane tasks to make our lives a litter easier"
 - * "Ubiquitous intelligent internetworking devices that detect their environment, interact with each other, and respond to changing environmental condition will create a future that is as challenging to imagine as a science fiction scenario."

MANET Applications - Military

- Unknown terrain
- Limit the range of communication

Directional antennas

 Destroyed infrastructure

MANET Applications – Disaster Relief

Disaster relief

- Earthquakes, tsunamis, hurricanes
- Wiped out infrastructure
- Search & rescue

MANET Applications – Economic & Commercial

- Community Mesh networks
- Access extensions
- Personal Area Networks (PANs)
- Ad hoc Gaming (on subway, cafés, etc)

Networking Scenario: To Internet

SkyPilot NeighborNet

SkyPilot Network, USA

Sensor Dust:

- * a large collection of tiny sensor devices
 - > once situated, the sensors remain stationary
 - largely homogeneous
 - power is likely to be a scarce resource, which determines the lifetime of the network
- can offer detailed information about terrain or environmental dangerous conditions.
- Intelligent Transportation System:
 - * may be integrated with cars, positioning devices, etc.

And some video clips

- Car2car communication
- Robotic MANETs

Technical Factors, Challenges

- scalability
- power budget vs. latency
- protocol deployment and incompatibility standards
- wireless data rate
 - e.g., TCP over multi-hop wireless links
- security issues

Many Physical Variations

- Symmetric Deployments
 - all nodes have identical capabilities and responsibilities
- Asymmetric Deployments
 - Capabilities
 - transmission ranges and radios may differ
 - battery life at different nodes may differ
 - processing capacity may be different at different nodes
 - speed of movement
 - Responsibilities
 - only some nodes may route packets
 - some nodes may act as leaders of nearby nodes (e.g., cluster head)

Many Application Variations

- Traffic characteristics may differ in different ad hoc networks
 - bit rate
 - timeliness constraints
 - reliability requirements
 - unicast / multicast / geocast
 - host-based addressing / content -based addressing / capability -based addressing
- May co-exist (and co-operate) with an infrastructurebased network

Many Mobility Variations

- Mobility patterns may be different
 - people sitting at an airport lounge
 - New York taxi cabs
 - kids playing
 - military movements
 - personal area network
- Mobility characteristics
 - speed
 - predictability
 - direction of movement
 - pattern of movement
 - uniformity (or lack thereof) of mobility characteristics among different nodes

Challenges

- Limited wireless transmission range
- Broadcast nature of the wireless medium
 - Hidden terminal problem (see next slide)
- Packet losses due to transmission errors
- Mobility-induced route changes
- Mobility-induced packet losses
- Battery constraints
- Potentially frequent network partitions
- Ease of snooping on wireless transmissions (security hazard)

Quiz 1: In-class Presentation

- Within 30 minutes, design your own MANET applications
 - Application scenarios
 - Technical challenges
 - Benefits/Costs
 - Prepare slides and present your MANET applications within 15 minutes
 - ► Any one?