1. Consider a continuous random variable X with the probability density function

$$f_{\rm X}(x) = \frac{x^3}{60}$$
, $2 \le x \le 4$, zero elsewhere.

Recall: The cumulative distribution function of X is

$$F_X(x) = 0,$$
 $x < 2,$ $F_X(x) = P(X \le x) = \int_2^x \frac{u^3}{60} du = \frac{u^4}{240} \Big|_2^x = \frac{x^4 - 16}{240},$ $2 \le x < 4$

 $F_X(x) = 1, x \ge 4.$

Consider a continuous random variable X, with p.d.f. f and c.d.f. F, where F is strictly increasing on some interval I, F = 0 to the left of I, and F = 1 to the right of I. I may be a bounded interval or an unbounded interval such as the whole real line. $F^{-1}(u)$ is then well defined for 0 < u < 1.

Fact 1: Let $U \sim \text{Uniform}(0, 1)$, and let $X = F^{-1}(U)$. Then the c.d.f. of X is F.

Proof: $P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x).$

<u>Fact 2</u>: Let U = F(X); then U has a Uniform (0, 1) distribution.

<u>Proof</u>: $P(U \le u) = P(F(X) \le u) = P(X \le F^{-1}(u)) = F(F^{-1}(u)) = u.$

$$u = F(x) = \frac{x^4 - 16}{240}$$
 \Rightarrow $x = (240 u + 16)^{0.25} = F^{-1}(u).$

```
> u = runif(1000)
> x = (240*u+16)^0.25
>
> hist(x, prob=TRUE)
> curve(x^3/60, add=TRUE)
```

Histogram of x

Probability histogram of 1,000 simulated values of X with the probability density function $f_X(x)$ superimposed. They are indeed very close.

2. Consider a discrete random variable X with the probability mass function

$$p_{X}(x) = \frac{x^3}{100},$$

$$x = 1, 2, 3, 4,$$

zero elsewhere.

х	$p_{\mathrm{X}}(x)$	$F_{X}(x)$
1	0.01	0.01
2	0.08	0.09
3	0.27	0.36
4	0.64	1.00

$$F_X(x) = \begin{cases} 0 & x < 1 \\ 0.01 & 1 \le x < 2 \\ 0.09 & 2 \le x < 3 \\ 0.36 & 3 \le x < 4 \\ 1 & x \ge 4 \end{cases}$$

 $U \sim Uniform(0, 1)$.

$$\Rightarrow \qquad x = 1$$

$$\Rightarrow \qquad x = 2$$

$$\Rightarrow \qquad x = 3$$

$$\Rightarrow \qquad x = 4$$

$$x = 1$$

$$\Rightarrow$$

$$\Rightarrow$$

$$r = 3$$

$$\Rightarrow$$

$$x = 4$$