Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Fig.2

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Fig.3

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Fig.4

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK
Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Fig.5

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Welcome to your Power Webench™!

"Tools for the power design engineer"

START HERE ~605

to design a power supply.

How to Use Webench

Just four easy steps to design a power supply! Just click on the items below for help on that step.

Han the

The half the

7

را*ه*

173

The state of the s

choose a specific part or input your system specifications to find those devices that fit.

a design will be created for you including any necessary passive components and important calculated operating values.

3 Analyze a Design use WebSim™, the online power simulator, to validate your design electrically, and WebTHERM™, the online thermal simulator to visualize the thermal behavior of your design.

buy a part, a kit of parts, or an evaluation board.

See Our Disclaimer

Features

WebSIM™ is a browser-based simulator which allows you to probe points in the

My Designs

Your last 4 designs:

- Design#6
- Design#5
- Design#4
- Design#3

MYDesigns Shows all of your Designs ~ 670

My WebSIM™ Simulations ~680

My WebTHERM™ Simulations ~ 690

My BuildIt Orders ~6 95

Other Power Webench Tools

Switchers Made Simple™ is downloadable software that enables you to develop a complete power supply design on your local PC. This covers Simple Switcher devices and includes discrete component and manufacturer selection.

- SMS 6.1 (for LM267x and LM259x buck regulators, and LM258x and LM2577 boost & flyback regulators)
 Updated!
- SMS 3.3 (for LM257X)

Wireless Webench Tools

Wireless Easy PLL Design Assistant

F16.6

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified Site Terms & Conditions of Use . Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement . MY: Preferences . Feedback

The state of the s

T.

Œ1

F16. 7

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Your Design Specifications

VinMin-20 OV	Output	#1			 	
VinMin: 20.0V VinMax: 22.0V	Vout=	5.0V				
v iniviax: 22.0 v	Iout=	5.0A				

Suggested Switching Regulators - Buck Topology

Product Folder	Webench Tools	Max Curr.					Freq. kHz	Est. Price
LM2678-5.0	Create Design WebTHERM™ enabled Build It - Custom Kit	5.0A -806_	84%	Y	Y		260	\$3.84
LM2678-ADJ	Create Design WebTHERM™ enabled Build It - Custom Kit	5.0A -8∞	84%	Y	Y	Adj. Vout	260	\$3.84
LM2679-5.0	Create Design WebTHERM™ enabled Build It - Custom Kit	5.0A -806	84%	Y	Y	SoftStart, Adj. Peak Current Limit	260	\$4.07
LM2679-ADJ	Create Design WebTHERM™ enabled Build It - Custom Kit	5.0A _506	84%	Y	1	SoftStart, Adj. Peak Current Limit, Adj. Vout	260	\$4.07

Suggested Switching Regulators - Flyback Topology

Product Folder	Webench Tools	Max Curr.				Other Features	Freq. kHz	Est. Price
LM2585-5.0	Create Design	3.0A	93%	N	N	SoftStart	100	\$3.42
L <u>M2585-ADJ</u>	Create Design	3.0A	80%	N	N	SoftStart, Adj. Vout	100	\$3.42
LM2586-5.0	Create Design	3.0A	80%	Y	N	Sync, SoftStart	100	\$3.45
LM2586-ADJ	Create Design	3.0A	80%	Y	N	Sync, SoftStart, Adj. Vout	100	\$3.45
LM2587-5.0	Create Design	5.0A	80%	N	N	SoftStart	100	\$4.51
LM2587-ADJ	Create Design	5.0A	80%	N	N	SoftStart, Adj. Vout	100	\$4.51
LM2588-5.0	Create Design	5.0A	80%	Y	N	Sync, SoftStart	100	\$4.61
LM2588-ADJ	Create Design	5.0A	80%	Y	N	Sync, SoftStart, Adj. Vout	100	\$4.61
LM2577-ADJ	Create Design	3.0A	80%	N	N	SoftStart, Adj. Vout	52	\$3.15

And the state of t

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Products > Analog - Regulators > Simple Switchers > LM2679

भारतीयन निवासिक

Live Simulation

Buy LM2679-5.0 Evaluation Board

LM2679 SIMPLE SWITCHER 5A Step-Down Voltage Regulator with Adjustable Current Limit

Generic P/N 2679

Contents

- General Description
- Features

- Applications
- Datasheet
- Package Availability, Models, Samples & Pricing
- Design Tools

Parametric Table							
Multiple Output Capability	No						
On/Off Pin	Yes						
Error Flag	Yes						
Input Voltage, min (Volt)	8,15						
Input Voltage, max (Volt)	40						
Output Current, max	5 Amps						
Output Voltage (Volt)	5,12,3.30						
Adjustable Output Voltage	No,Yes						
Switching Frequency (Hz)	260000						
Adjustable Switching Frequency	No						
Sync Pin	No						
Efficiency (%)	84,92,82						
Flyback	No						
Step-up	No						
Step-down	Yes						

F16. 9

JO

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Webtherm - Thermal Simulation Websim - Electrical Simulation

Cor	mponents					
	Manufacturer		Attributes	Thermally Modelled*		
	Vishay- Vitramon	VJ1206Y103KXAAT	0.0100 uF	Y	Select Alternate Part	
	Vishay- Sprague	594D156X0035D2T	NumCaps=3 15.000 uF,0.2650 Ohms		Select Alternate Part	
Cout	Vishay- Sprague	594D187X0016R2T	NumCaps=1 180.00 uF,0.0650 Ohms		Select Alternate Part	
	Vishay- Vitramon	VJ1206A392JXAAT	0.0039 uF	Y	Select Alternate Part	
7	International Rectifier	6CWQ03FN	0.450000 V		Select Alternate Part	~/
117	National Semiconductor	LM2679S-ADJ	ADJV,Buck		Select Alternate Part	
L1	Coiltronics	UP4B-150	15.000 uH,0.0200 Ohms		Select Alternate Part	
Rfb1	Vishay-Dale	CRCW1206- 1001FRT1	1000 Ohms	Υ	Select Alternate Part	
Rfb2	Vishay-Dale	CRCW1206- 3161FRT1	3160 Ohms	Y	Select Alternate Part	
Rilim	Vishay-Dale	CRCW1206- 4991FRT1	4990 Ohms	Y	Select Alternate Part	

*Components marked "Y" are not required for Thermal Simulation.

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Design: Design#7

VinMin =

Device: LM2679

Mar 17 2001 3:39PM

ID: 266796_7

Design Requirements

20.00 V

Output #1 Vout= 5.00 V

VinMax = 22.00 V

Iout= 5.00 A

Select Alternate for Component D1											
Please select from the list of available alternates below. Click on the											
"Update BOM " button when you are done, [
Alternates	Part # Manufacturer	Thermally Modelled	Voltage Drop	Max Rated Current	Voltage			Quantity Available			
Custom O		N	Limit = 0.00 ⁷	Limit >= 5.00	Limit >=. 26.4	~1112					
10	<u>6CWQ03FN</u> International Rectifier		0.45000 V	7.000 A	30.00 V	10.42 6.73 2.38	\$0.85	>10 in stock			
20	50WQ03FN International Rectifier		0.46000 V	5. 5 00 A	30.00 V	10.42 6.73 2.38	\$1.83	>10 in stock			
30	12CWQ03FNTRL International Rectifier		0.47000 V `	12.00 A	30.00 V	10.42 6.73 2.38	\$0.82	>10 in stock			
40	<u>50WQ04FN</u> International Rectifier		0.51000 V	5.500 A	40.00 V	10.42 6.73 2.38	\$1.33	>10 in stock			
5 ⊚	12CWQ04FN International Rectifier		0.52000 V	12.00 A	40.00 V	10.42 6.73 2.38	\$1.48	>10 in stock			
60	6CWQ04FN International Rectifier		0.53000 V	7.000 A	40.00 V	10.42 6.73 2.38	\$1.00	>10 in stock			
70	50WQ06FN International Rectifier		0.57000 V	5.500 A	60.00 V	10.42 6.73 2.38	\$1.07	>10 in stock			
80	12CWQ06FN International Rectifier		0.61000 V	12.00 A	60.00 V	10.42 6.73 2.38	\$0.72	>10 in stock			
0 و	6CWQ06FNTR International Rectifier		0.61000 V	7.000 A	60.00 V	10.42 6.73 2.38	\$1.08	>10 in stock			

F16. 11

Title: METHOD TO PERFORM THERMAL SIMULATION
OF AN ELECTRONIC CIRCUIT ON A NETWORK
Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Vin: 22.00 V Iout: 5.00 A SUBMIT

0	Operating Values								
#	Description	Parameter	Value						
1	Pulse Width Modulation (PWM) frequency	Frequency	260 kHz						
2	Continuous or Discontinuous Conduction mode, inductor current goes to zero in Discontinuous Conduction	Mode	Cont						
3	Total Output Power	Pout	25.0 W						
4	Vin operationg point	Vin Op	22.00 V						
5	Iout operating point	Iout Op	5.00 A						

6	Operating Point at Vin= 22.00 V,5.00 A								
#	Description	Parameter	Value						
	Bode Plot Crossover Frequency, indication of bandwidth of supply	Cross Freq	97.7 kHz						
1/	Steady State PWM Duty Cycle, range limits from 0 to 100	Duty Cycle	25.8 %						
3	Steady State Efficiency	Efficiency	85.3 %						
4	IC Junction Temperature	IC Tj	120 øC						
5	IC Junction to Ambient Thermal Resistance	II (I neta IA I	34.9 øC/W						
6	Bode Plot Phase Margin	Phase Marg	71.0 Deg						
7	Peak-to-peak ripple voltage	Vout p-p	0.07 V						

F16.12A

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

0	Current Analysis								
#	Description	Parameter	Value						
1	Input Capacitor RMS ripple current	Cin IRMS	2.2 A						
2	Output Capacitor RMS ripple current	Cout IRMS	0.20 A						
3	Peak Current in IC for Steady State Operating Point	IC Ipk	5.5 A						
4	ICs Maximum rated peak current	IC Ipk Max	7.4 A						
5	Average input current	Iin Avg	2.3 A						
6	Inductor ripple current, peak-to-peak value	L Ipp	1.1 A						

Р	Power Dissipation Analysis								
#	Description	Parameter	Value						
1	Input Capacitor Power Dissipation	Cin Pd	0.43 W						
2	Output Capacitor Power Dissipation	Cout Pd	0.0026 W						
3	Diode Power Dissipation	Diode Pd	1.9 W						
4	IC Power Dissipation	IC Pd	1.4 W						
5	Inductor Power Dissipation	L Pd	0.50 W						
-11-			10						
	Quick Search Parametric See Our Search Disclaimer	Product Tree	Back To Webench						

<u>About Languages</u>. <u>Website Guide</u>. <u>About "Cookies"</u>. National is <u>QS 9000 Certified</u> <u>Site Terms & Conditions of Use</u>. Copyright 2001 © National Semiconductor Corporation <u>Privacy/Security Statement</u>. <u>MY: Preferences</u>. <u>Feedback</u>

F16. 12B

The state of the s

Man And

H H HAND H

[=i

1 Choose a Part 2 Create a Design 3 Analyze a Design 4 Build It! ♠ MYDesigns **Electrical Simulation** Thermal Simulation Websim **Control Panel** Design#7 7 AC **VFB** Rfb2 V IN Vishay-Dale CRCW1246-3161 I_IC RANGE Ohm I_IN Vishay-Dale CRCW1200-1001F 10000hm LM2679-ADJ Cb 1206Y103KXAAT Vishay-Vitramon 0.010000 uF ்லோ I_Ĺ1 Coiffronies UP4B-130 15.000 uH 0 020000 Ohm International Rectifier 12CWQ04FN 0.520000Volt Cin Vin Vishay-Spragu 15.000 uF 0.265000 Ohm ague 594D156X0035D2T Custom Part Ci Vi 18 Rilim 20.00 V Vishay-Dale CRCW1206-4991 RT LD1 Css 4990 Ohm 0,1 Vishay-Vitramon VJ1206A3 2JXAAT 0.0039 UF

F16.13

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Start a new WebTHERM simulation

This will take about 20 seconds to create the your board layout to prepare for WebTHERM. Check the status of previous simulations for this design below.

WebTHERM™ Simulations:

Simulation

ID Name

Status

Date

Comments

(click to view)

No WebTHERM™ simulation info.

Click here to see a list of all of your WebTHERM Simulations.

C15.50

Please click Refresh to get updated status of your simulations.

We will also send you email notification when your simulations are complete. It will contain a URL which can be clicked for viewing your simulations.

Queued time is dependent on the number of requests in the queue.

Processing time for each simulation is estimated about 2-3 minutes.

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified Site Terms & Conditions of Use . Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement . MY: Preferences . Feedback

mi, Įm:

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

113

Œ,

M. M.

100

Fig. 15A

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Design Assistant Messages

<u>About Languages</u>. <u>Website Guide</u>. <u>About "Cookies"</u>. National is <u>QS 9000 Certified</u> <u>Site Terms & Conditions of Use</u>. Copyright 2001 © National Semiconductor Corporation <u>Privacy/Security Statement</u>. **MY:** <u>Preferences</u>. <u>Feedback</u>

F16. 15B

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Start a new WebTHERM simulation

This will take about 20 seconds to create the your board layout to prepare for WebTHERM.

Check the status of previous simulations for this design below.

WebTHERM™ Simulations:

Simulation

ID Name Status Date

ate Comments

Design ID: 7

(click to view)
7 = Design ID Sin

Simulations for Design ID: 7

Simulation for

Mar 17 2001

Design 7

queued

5:05:45 PM

Please click Refresh to get updated status of your simulations.

We will also send you email notification when your simulations are complete. It will contain a URL which can be clicked for viewing your simulations.

Queued time is dependent on the number of requests in the queue.

Processing time for each simulation is estimated about 2-3 minutes.

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified Site Terms & Conditions of Use . Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement . MY: Preferences . Feedback

F15. 16

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Start a new WebTHERM simulation

This will take about 20 seconds to create the your board layout to prepare for WebTHERM.

Check the status of previous simulations for this design

Check the status of previous simulations for this designation.

WebTHERM™ Simulations:

Simulation

ID Name

Status

Date

Comments

Design ID: 7

(click to view)

7 = Design ID

Simulations for Design ID: 7

Simulation for

Mar 17 2001

Design 7

processing 5:05:57 PM

Please click Refresh to get updated status of your simulations.

We will also send you email notification when your simulations are complete. It will contain a URL which can be clicked for viewing your simulations.

Queued time is dependent on the number of requests in the queue.

Processing time for each simulation is estimated about 2-3 minutes.

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified Site Terms & Conditions of Use . Copyright 2001 @ National Semiconductor Corporation Privacy/Security Statement . MY: Preferences . Feedback

Fig. 17

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Start a new WebTHERM simulation

This will take about 20 seconds to create the your board layout to prepare for WebTHERM.

Check the status of previous simulations for this design below.

Design ID: 7

WebTHERM™ Simulations:

Simulation

Name Status **Date Comments** ID

(click to view)

7 = Design ID Simulations for Design ID: 7

Simulation for

completed 5:10:22 PM Design 7

Please click Refresh to get updated status of your simulations.

We will also send you email notification when your simulations are complete. It will contain a URL which can be clicked for viewing your simulations.

Queued time is dependent on the number of requests in the queue.

Processing time for each simulation is estimated about 2-3 minutes.

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified Site Terms & Conditions of Use . Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement . MY: Preferences . Feedback

1-19.18

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Design: Design#7

Device: LM2679 Mar 17 2001 3:39:00:000PM ID: 266796 7

Design Requirements

Output #1 VinMin = 20.00 V Vout= 5.00

Edge 4

VinMax = 22.00 V Iout= 5.00Α

WebTHERM™

Powered by:

Download Flomerics SMARTPART™

model

Do another simulation

Simulation ID: 1 **Name This** Simulation: Simulation for Design 7

Environment:

Operating **Conditions** Vin: 22.00 V Iout: 5.00 A

Ambient Temperature On Top: On 30 °C **Bottom:** 30 °C

Board Conditions Copper Weight 0.5 OZ. (0.01778 mm) **Board Orientation:** Component Side Up

Air Flow **Direction Velocity:** of Air flow: No Fan

Edge Temperatures:

Edge 3 Insulated

Temperature Bar Scaling Click here to recolor your thermal image.

Max Colorbar Temperature Min Colorbar Temperature

F16. 19A

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Operating Temperatures								
Layer	Max Temp.	Manufacturer	Part#	Warnings				
Cìn	L	Vishay- Sprague	594D156X0035D2T					
Cout	<u> </u>	Vishay- Sprague	594D187X0016R2T					
D1 - Diode	188°C	International Rectifier	12CWQ04FN					
IC - Die	174°C	National Semiconductor	LM2679	There is some potential problem with this design.				
IC - Top	165°C							
.1 - nductor	82°C	Coiltronics	UP4B-150					
PCB	182°C							

Design Assistant Messages

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified Site Terms & Conditions of Use . Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement . MY: Preferences . Feedback

F16.193

Žasi.

1111

Į...i.

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Design: Design#7

Device: LM2679 Mar 17 2001 3:39:00:000PM ID: 266796 7

Design Requirements Output

#1 Vout= 20.00 V 5.00 Α

VinMax =22.00 V

Iout= 5.00

WebTHERM™

VinMin =

Powered by:

Download Flomerics SMARTPART™ model

Do another simulation

Simulation ID: 3 Name This Simulation:

Simulation for Design 7

Edge Temperatures:

Edge 1 Insulated

Environment:

Operating **Conditions** Vin: 22.00 V Iout: 5.00 A

Ambient **Temperature** On On Top: **Bottom:** 30 °C 30 °C

Board Conditions Copper Weight 0.5 OZ. (0.01778 mm) **Board Orientation:**

Component Side Up

Air Flow **Direction Velocity:** of Air

> flow: 400 LFM

Edge 3 Insulated

Temperature Bar Scaling

Click here to recolor your thermal image.

Max Colorbar Temperature Min Colorbar Temperature 128 °C ۰c

F/G. 20A

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Operatin	Operating Temperatures										
Layer Max Temp.		Manufacturer Part#		Warnings							
Cin	50°C	Vishay- Sprague	594D156X0035D2T								
Cout	5000	Vishay- Sprague	594D187X0016R2T	;							
D1 - Diode	128°C	International Rectifier	12CWQ04FN								
IC - Die	112°C	National Semiconductor	LM2679	There is some potential problem with this design.							
IC - Top	97°C										
L1 - Inductor	46°C	Coiltronics	UP4B-150								
PCB	123°C										

Design Assistant Messages

<u>About Languages</u>. <u>Website Guide</u>. <u>About "Cookies"</u>. National is <u>QS 9000 Certified</u> <u>Site Terms & Conditions of Use</u>. Copyright 2001 © National Semiconductor Corporation <u>Privacy/Security Statement</u>. **MY:** <u>Preferences</u>. <u>Feedback</u>

F16 2013

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Your design is supported by a Webench Custom Evaluation Kit. Ordering this kit from Pioneer-Standard provides you with everything you need to realize a prototype of your design quickly and at a very low price.

If for some reason you decide not to order the Custom Evaluation Kit you can always $\underline{\text{order only the}}$ IC from us here.

Custom Evaluation Kit
Bill of

Materials

View Assembly Doc Order this Kit from Pioneer-Standard >>

Item	Manufacturer Part	Qty	Attributes	Component Name(s)	Pioneer Price	Pioneer Availability
1	International Rectifier 12CWQ04FN	1	VFatlo = 0.52 V	D1	\$1.48	> 10 In Stock
2	Keystone 5015	4		TP1, TP2, TP3, TP6	\$0.20	> 10 In Stock
3	National Semiconductor 551011367-011	1	Surface Mount, etc	PC Board	\$5.00	> 10 In Stock
4	Vishay-Sprague 594D156X0035D2T	3	Cap = 15uF ESR = 0.265 Ohms	Cin	\$1.00	> 10 In Stock
5	Vishay-Sprague 594D187X0016R2T	1	Cap = 180uF ESR = 0.065 Ohms	Cout	\$1.00	> 10 In Stock
6	Vishay-Dale CRCW1206- 1001FRT1 ■	1	Resistance = 1000 Ohms	Rfb1	\$0.03	> 10 In Stock
7	Vishay-Dale CRCW1206- 3161FRT1 ■	1	Resistance = 3160 Ohms	Rfb2	\$0.03	> 10 In Stock
8	Vishay-Dale CRCW1206- 4991FRT1	1	Resistance = 4990 Ohms	Rilim	\$0.03	> 10 In Stock
9	National Semiconductor LM2679S-ADJ	1	Package=S, Voltage option=ADJ, Topology=Buck	IC	\$4.75	> 10 In Stock

Fig. 21A

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

	(E)		L	Total	\$17.77	In Stock
13	Vishay-Vitramon VJ1206Y104KXAAT	1		Cinx	\$0.05	> 10
12	Vishay-Vitramon VJ1206Y103KXAAT ■	1	Cap = 0.01uF	Cb	\$0.05	> 10 In Stock
11	Vishay-Vitramon VJ1206A392JXAAT ■	1	Cap = 0.0039uF	Css	\$0.05	> 10 In Stock
10	Coiltronics UP4B-150	1	L = 15uH DCR = 0.02 Ohms	L1	\$1.50	> 10 In Stock

Bill of Materials

View Assembly Doc Order this Kit from Pioneer-Standard >>

Order the IC

- · Order the LM2679S-ADJ in volume.
- Order a Free Sample

Generic Eval Board for LM2679

- Buy Eval Board for LM2679
- Download Protel File (See Notes below)

The Protel files are saved as Self Extracting Zip Archives. To download a product's Protel file, click on the corresponding "Protel file now" link, and save the link as a file on your computer. Then run the file on your computer (double click). This will automatically decompress the Protel file to your computer's disk. **Note:** You must have Protel software or other software that can read Protel PCB layout files in order to take advantage of these Protel files.

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified Site Terms & Conditions of Use . Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement . MY: Preferences . Feedback

F15 213

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Assembly Document for Your LM2679 Design #:7

Download the Board Layout in Protel format.

GENERAL DESCRIPTION

Fig. 22A

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

The LM2679 SMD Evaluation Board is designed to provide a flexible PCB platform for customers to develop and test custom power supply designs using tools available on the POWER.NATIONAL.COM website. The LM2679BU1PWB is a single sided surface mount layout using 1oz copper. The overall board dimensions are 2.475" x 2.700" All components are mounted on the topside copper. WEBENCHTM has automatically placed the components on this board to make sure that the input capacitor Cin (and Cinx) and the diode D1 are as close to the IC as is reasonable minimizing stray circuit inductance. L1 and Cout should also be as close to the IC as reasonable but mostly to minimize the overall dimensions of the required PCB area for the power supply.

The LM2679 SMD Evaluation Board consists of a single layer PCB layout providing major landing areas on the PCB for the Power conversion components: Inductor, Diode, Input and Output Capacitors as well as parameter setting small signal passive (resistors and capacitors) in 1206 packages and surface mount test points. Some components are optional or specific to an application, these are highlighted in the schematic. The PCB layout can be optimized for a specific design and lends itself to be dimensionally scalable (i.e. your particular design may have unused board area that can be "cut out" in the final application. This topic is covered in the PCB Layout Optimization section.

Bill of Materials (BOM).

Item	Manufacturer Part	Qty	Attributes	Component Name(s)
1	International Rectifier 12CWQ04FN	1	VFatio = 0.52 V	D1
2	Keystone 5015	4		TP1, TP2, TP3, TP6
3	National Semiconductor 551011367-011	1	Surface Mount, etc	PC Board
4	Vishay-Sprague 594D156X0035D2T	3	Cap = 15uF ESR = 0.265 Ohms	Cin
5	Vishay-Sprague 594D187X0016R2T	1	Cap = 180uF ESR = 0.065 Ohms	Cout
6	Vishay-Dale CRCW1206-1001FRT1 ■	1	Resistance = 1000 Ohms	Rfb1
7	Vishay-Dale CRCW1206-3161FRT1	1	Resistance = 3160 Ohms	Rfb2
8	Vishay-Dale CRCW1206-4991FRT1	1	Resistance = 4990 Ohms	Rilim
9	National Semiconductor LM2679S-ADJ	1	Package=S, Voltage option=ADJ, Topology=Buck	IC
10	Coiltronics UP4B-150	1	L = 15uH DCR = 0.02 Ohms	L1
11	Vishay-Vitramon VJ1206A392JXAAT	1	Cap = 0.0039uF	Css
12	Vishay-Vitramon VJ1206Y103KXAAT	1	Cap = 0.01uF	Cb
13	Vishay-Vitramon VJ1206Y104KXAAT	1		Cinx

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

SCHEMATIC

The schematic for the LM2679 is shown in FIGURE 2. U1, L1, D1, Cin and Cout are the basic power conversion components. Cinx as a high frequency bypass to the input to the LM2679. Rf1, Rfb2, and Cf form the feedback network for the adjustable version of the LM2679. For Fixed output versions a zero Ohm resistor (jumper) should be used for Rfb2 (Rfb1 and Cf should be left off the board), this can be replaced by a copper trace as shown in the PCB Layout Optimization section. A space is reserved for a pull-down resistor, Ron, for the ON/OFF (Active low) pin, this may be desired if a Tri-State gate is driving this pin. Otherwise, if the ON/OFF pin is left floating, the LM2679 is normally ON.

FIGURE 2. - Schematic

Download the Schematic file in Protel format.

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated to check for instabilities and thermally simulated to make sure critical temperatures are not exceeded.

Soldering components to the Board

If board assembly is done in house it is best to tack down one terminal on the board then solder the other terminal. For the LM2679 the tab on the back of the TO-263 package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Testing

It is best to power up the board by setting the supply voltage to the lowest operating input voltage (Vin min) and set the supplies current limit to zero. With the supply off connect up the supply to Vin and GND. Connect a DVM to Vout and GND. Turn on the supply and slowly turn up the current limit. If the voltage starts to rise on the supply continue increasing the current while watching the output voltage. If the current increases on the supply but the voltage remains near zero there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the supply is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

F15 220

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

ARTWORK

FIGURE 3 shows the topside copper and FIGURE 4 shows the bottom side copper.

The intent of the this board is to provide a flexible PCB layout to allow many different designs to be implemented using the same layout. In lower power designs you may find unused board space, that is not needed for electrical or thermal purposes. The overall layout lends itself to shrinking the design by trimming off the outer edges of the board.

Download the GERBER file for this PC Board.

UNLESS OTHERWISE SPECIFIED NOTES:

- I. NO FAB SHOP LOGO(DATE CODE REQUIRED)
- 2. APPLY GREEN (LPI) SOLDERMASK ON BOTH SIDES
- 3. NO SILKSCPEEN
- 4. ADD UL PATING ON BOTTOM SIDE
- 5. MATERIAL: FR-1, OPEEN
- 6. BOARD THICKNESS: 0.063 with I oz Copper
- 7. FINISH: TIN-LEAD

FIGURE 3 - Topside Copper

UNLESS OTHERWISE SPECIFIED NOTES:

- 1. NO FAB SHOP LOGO(DATE CODE REQUIRED)
- 2. APPLY GREEN (LPI) SOLDERMASK ON BOTH SIDES
- 3. NO SILKSCREEN
- 4. ADD UL PATING ON BOTTOM SIDE
- 5. MATERIAL: FP-1, GREEN
- 6. BOARD THICKNESS: 0.063 with I oz Copper
- 7. FINISH: TIN/LEAD

Fin 220 +

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

FIGURE 4 - Bottom Side Copper

Downloadable files

Schematic File

The Schematic File in Protel format.

Board Layout File

Board Layout in Protel format.

GERBER File

GERBER file for making the PC Board.

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified Site Terms & Conditions of Use . Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement . MY: Preferences . Feedback

F19 22E

OF AN ELECTRONIC CIRCUIT ON A NETW Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

WEBENCH Documentation

Assembly Doc.

The Webench Assembly Document describes in detail how to build your design. It contains the specific assembly diagram for your design, a complete bill of materials and other PC board images and assembly instructions.

Design Doc.

The WEBENCH Design Document provides a single web page describing your entire design including; design specifications, calculated values, WebSIM simulation results and WebTHERM simulation results.

<u>LM2679 Folder</u> へ 2420

LM2679 Product Folder is full of documentation about the National IC used in your design.

My Orders

My Orders is a list of all of your on-line orders.

WEBENCH Downloads

You can download these files to integrate this design into your local CAD environment.

These file are self-extracting zip files. For the files stored in Protel format you will need the Protel application or equivalent CAD software capable of opening such files.

Schematic File

The Schematic File in Protel format.

Board Layout File

Board Layout in Protel format.

GERBER File

About Languages . Website Guide . About "Cookies" . National is <u>QS 9000 Certified</u>
Site Terms & Conditions of Use . Copyright 2001 © National Semiconductor Corporation
Privacy/Security Statement . MY: Preferences . Feedback

F19. 23

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Design Document for Your LM2679 Design #:7

Table of Contents

- 1. Introduction
- 2. Design Specifications
- 3. Schematic
- 4. Operating Values
- 5. The Selected IC
- 6. BOM Bill of Materials
- 7. WebTHERM Results
- 8. Build It!
- Appendices

Introduction

Custom power supply designs using tools are available on the POWER.NATIONAL.COM website.

Design Specifications

Design: Design#7

Device: LM2679 Mar 17 2001 3:39PM ID: 266796 7

#1

Design Requirements Output VinMin = 20.00 V Vout= 5.00

٧ VinMax = Iout= 5.00Α 22.00 V

Schematic

Use WebSIM to display your schematic.

Operating Values

123 24A

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Operating Values					
#Description	Parameter	Value			
1 Pulse Width Modulation (PWM) frequency	Frequency	260 kHz			
2 Continuous or Discontinuous Conduction mode, inductor current goes to zero in Discontinuous Conduction	Mode	Cont			
3 Total Output Power	Pout	25.0 W			

Operating Point at Vin= 22.00 V							
#Description Parameter Value							
Bode Plot Crossover Frequency, indication of bandwidth of supply	Cross Freq	97.7 kHz					
2 Steady State PWM Duty Cycle, range limits from 0 to 100	Duty Cycle	25.8 %					
3 Steady State Efficiency	Efficiency	85.3 %					
4 IC Junction Temperature	IC Tj	120 øC					
5 IC Junction to Ambient Thermal Resistance	ICThetaJA	34.9 øC/W					
6 Bode Plot Phase Margin	Phase Marg	71.0 Deg					
7 Peak-to-peak ripple voltage	Vout p-p	0.07 V					

Current Analysis						
# Description	Parameter	Value				
1 Input Capacitor RMS ripple current	Cin IRMS	2.2 A				
2 Output Capacitor RMS ripple current	Cout IRMS	0.20 A				
3 Peak Current in IC for Steady State Operating Point	IC Ipk	5.5 A				
4 ICs Maximum rated peak current	IC Ipk Max	7.4 A				
5 Average input current	Iin Avg	2.3 A				
6 Inductor ripple current, peak-to-peak value	L Ipp	1.1 A				

Power Dissipation Analysis		
#Description	Parameter	Value
1 Input Capacitor Power Dissipation	Cin Pd	0.43 W
Output Capacitor Power Dissipation	Cout Pd	0.0026 W
3 Diode Power Dissipation	Diode Pd	1.9 W
IC Power Dissipation	IC Pd	1.4 W
Inductor Power Dissipation	L Pd	0.50 W

LM2679 The Selected IC

NSID = LM2679S-ADJ Topology = Buck Package = S

BOM - Bill of Materials

Item	Manufacturer Part	Qty	Attributes	Component Name(s)
1	International Rectifier 12CWQ04FN	1	VFatlo = 0.52 V	D1
	Keystone 5015	4		TP1, TP2, TP3, TP6

Fig. 24B

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

3	National Semiconductor 551011367-011	1	Surface Mount, etc	PC Board
4	Vishay-Sprague 594D156X0035D2T	3	Cap = 15uF ESR = 0.265 Ohms	Cin
5	Vishay-Sprague 594D187X0016R2T	1	Cap = 180uF ESR = 0.065 Ohms	Cout
6	Vishay-Dale CRCW1206-1001FRT1	1	Resistance = 1000 Ohms	Rfb1
7	Vishay-Dale CRCW1206-3161FRT1	1	Resistance = 3160 Ohms	Rfb2
8	Vishay-Dale CRCW1206-4991FRT1	1	Resistance = 4990 Ohms	Rilim
9	National Semiconductor LM2679S-ADJ	1	Package=S, Voltage option=ADJ, Topology=Buck	IC
10	Coiltronics UP4B-150	1	L = 15uH DCR = 0.02 Ohms	L1
11	Vishay-Vitramon VJ1206A392JXAAT	1	Cap = 0.0039uF	Css
12	Vishay-Vitramon VJ1206Y103KXAAT ■	1	Cap = 0.01uF	Cb
13	Vishay-Vitramon VJ1206Y104KXAAT	1		Cinx

WebTHERM - Thermal Simulation Results

You have performed 3 WebTHERM thermal simulation(s) on this design. Here are the results of the most recent one.

Yout GND

F15. 24C

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

Be sure to electrically simulate this design using WebSIM.

Build It!

Webench provides both custom and generic evaluation boards to assist you in the building of prototypes of your design. Additionally, for some designs, it is possible to order the complete BOM (Bill of Materials) on-line using Webench.

A custom evaluation board is available for your design!

Webench provides a custom evaluation board which may be on-line ordered from Pioneer-Standard for designs like yours using National LM2679S-ADJ configured in the Buck topology.

Appendices

A. You have performed 3 thermal simulation(s) on this design.

ID	Simulation Name	Date
1	Simulation for Design 7	Mar 17 2001 5:10 PM
2	Simulation for Design 7	Mar 17 2001 5:19 PM
3	Simulation for Design 7	Mar 17 2001 5:23 PM
B. No	electrical simulation(s) perform	ned on this design.

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified Site Terms & Conditions of Use . Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement . MY: Preferences . Feedback

Fig. 241

Inventors: Rex Allison; Martin Garrison; Jeffrey Perry

Docket No.: 50019.44US01/P04884

[Webench™

[WebTHERM™

[WebSIM™

[BuildIt

Designs]

Simulations]

Simulations]

Orders]

Tim Sullivan - You	have 7 designs stored in your	personal wo	rkspace.
Design Davis	Creation Modification Design	Commonto	Design

ID	Design Name	Device	Creation Date	Modification Date	Design Assistant	Comments	Design Operations
7	Design#7	LM2679	Mar 17 2001 3:39PM	Mar 17 2001 3:57PM	power		Modify, Analyze, Build, Add Notes Delete, Share
6	Design#6	LM2679	Mar 15 2001 3:23PM	Mar 15 2001 3:23PM	power		Modify, Analyze, Build, Add Notes Delete, Share
5	Design#5	LM2679	Mar 15 2001 11:41AM	Mar 15 2001 11:44AM	power		Modify, Analyze, Build, Add Notes Delete, Share
4	Design#4	LM2679	Mar 13 2001 9:52AM	Mar 13 2001 10:03AM	power		Modify, Analyze, Build, Add Notes Delete, Share
3	Design#3	LM2679	Mar 13 2001 9:52AM		power		Modify, Analyze, Build, Add Notes Delete, Share
2	Design#2	LM2678	Mar 13 2001 9:50AM		power		Modify, Analyze, Build, Add Notes Delete, Share
1	Design#1		Mar 13 2001 9:50AM		power		Modify, Analyze, <u>Build,</u> Add Notes Delete, Share
	uick Search	Para Se	metric earch	See Our Disclaimer	Prodi Tre	uct e v	Back To Jebench

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified Site Terms & Conditions of Use . Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement . MY: Preferences . Feedback

