Homework 2

Instructor: Lijun Zhang Name: 方盛俊, StudentId: 201300035

Notice

- The submission email is: zhangzhenyao@lamda.nju.edu.cn.
- Please use the provided Latex file as a template.
- If you are not familiar with LaTeX, you can also use Word to generate a PDF file.

Problem 1: Convex functions

(a)

令
$$g(x)=-\log x$$
,求导可得 $g'(x)=-rac{1}{x}, g''(x)=rac{1}{x^2}>0$

所以 $g(x) = -\log x$ 是严格凸的.

而 $f_i(x) = -\log x_i = -\log A_i^T x = g(A_i^T x)$, 其中 A_i 第 i 分量为 1, 其他分量为 0, 可以看出 $f_i(x)$ 是凸函数的仿射映射函数, 也是严格凸函数.

因此 $f(x) = \sum_{i=1}^n f_i(x)$ 为严格凸函数的和, 结果也是严格凸的.

(b)

 \Rightarrow :

因为 f 是一个二阶可微的凸函数, 因此 $\forall x,y$ 有

$$f(y)\geqslant f(x)+
abla f(x)^T(y-x)$$

$$f(x) \geqslant f(y) + \nabla f(y)^T (x - y)$$

两式相加可得

$$\nabla f(x)^T (x-y) \geqslant \nabla f(y)^T (x-y)$$

最后有
$$(\nabla f(x) - \nabla f(y))^T (x - y) \geqslant 0$$
 成立

因为我们有
$$(\nabla f(x) - \nabla f(y))^T (x - y) \geqslant 0$$

令
$$g(t) = f(tx + (1-t)y)$$
, 则 $g'(t) = \nabla f(tx + (1-t)y)^T(x-y)$

即证
$$g'(t)\geqslant g'(0)$$
, 即 $[\nabla f(tx+(1-t)y)^T-\nabla f(y)](x-y)\geqslant 0$

经过观察, 计算 tx+(1-t)y-y=tx-ty=t(x-y), 那么我们只需将 tx+(1-t)y 带入 x 的位置, 根据 $(\nabla f(x)-\nabla f(y))^T(x-y)\geqslant 0$ 有

$$(
abla f(x) -
abla f(y))^T t(x-y) \geqslant 0$$
 成立, 因为 $t \geqslant 0$, 可知 $g'(t) \geqslant g'(0)$

最后有
$$f(x) = g(1) = g(0) + \int_0^1 g'(t) \mathrm{d}t \geqslant g(0) + g'(0) = g(y) + \nabla f(y)(x-y)$$

(c)

$$g(\theta x_{1} + (1 - \theta)x_{2}, \theta t_{1} + (1 - \theta)t_{2})$$

$$= (\theta t_{1} + (1 - \theta)t_{2})f(\frac{\theta x_{1} + (1 - \theta)x_{2}}{\theta t_{1} + (1 - \theta)t_{2}})$$

$$= (\theta t_{1} + (1 - \theta)t_{2})f(\frac{\theta t_{1}}{\theta t_{1} + (1 - \theta)t_{2}} \cdot \frac{x_{1}}{t_{1}} + \frac{(1 - \theta)t_{2}}{\theta t_{1} + (1 - \theta)t_{2}} \cdot \frac{x_{2}}{t_{2}})$$

$$\leq (\theta t_{1} + (1 - \theta)t_{2})(\frac{\theta t_{1}}{\theta t_{1} + (1 - \theta)t_{2}} \cdot f(\frac{x_{1}}{t_{1}}) + \frac{(1 - \theta)t_{2}}{\theta t_{1} + (1 - \theta)t_{2}} \cdot f(\frac{x_{2}}{t_{2}}))$$

$$= \theta t_{1}f(\frac{x_{1}}{t_{1}}) + (1 - \theta)t_{2}f(\frac{x_{2}}{t_{2}})$$

$$= \theta g(x_{1}, t_{1}) + (1 - \theta)g(x_{2}, t_{2})$$

因此 g 也是凸函数.

Problem 2: Concave function

先证明不等式
$$\left(\sum_{i=1}^n (x_i+y_i)^p
ight)^{rac{1}{p}}\geqslant \left(\sum_{i=1}^n x_i^p
ight)^{rac{1}{p}}+\left(\sum_{i=1}^n y_i^p
ight)^{rac{1}{p}}$$

令
$$a_i=x_i^p, b_i=y_i^p$$
, 则 $x_i=a_i^{rac{1}{p}}, y_i=b_i^{rac{1}{p}}$, 且 $x_i,y_i\geqslant 0$

原式两边乘p次方可转化为

$$\sum_{i=1}^n (a_i^{rac{1}{p}}+b_i^{rac{1}{p}})^p\geqslant \left(\left(\sum_{i=1}^n a_i
ight)^{rac{1}{p}}+\left(\sum_{i=1}^n b_i
ight)^{rac{1}{p}}
ight)^p$$

用 $\frac{1}{p}$ - Norm 范数表示该不等式即为

$$\sum_{i=1}^n \left\| inom{a_i}{b_i}
ight\|_{rac{1}{p}} \geqslant \left\| \sum_{i=1}^n inom{a_i}{b_i}
ight\|_{rac{1}{p}}$$

由范数的三角不等式 $\|x+y\|_{\frac{1}{p}} \leqslant \|x\|_{\frac{1}{p}} + \|y\|_{\frac{1}{p}}$ 即可知该式成立.

因此我们带入 $\theta x + (1-\theta)y$ 即可知

$$\left(\sum_{i=1}^n (heta x_i + (1- heta) y_i)^p
ight)^{rac{1}{p}}\geqslant \left(\sum_{i=1}^n (heta x_i)^p
ight)^{rac{1}{p}} + \left(\sum_{i=1}^n ((1- heta) y_i)^p
ight)^{rac{1}{p}} = \ heta\left(\sum_{i=1}^n x_i^p
ight)^{rac{1}{p}} + (1- heta)\left(\sum_{i=1}^n y_i^p
ight)^{rac{1}{p}}$$

即 $f(\theta x + (1 - \theta)y) \geqslant \theta f(x) + (1 - \theta)f(y)$ 成立.

因此
$$f(x) = \left(\sum_{i=1}^n x_i^p\right)^{rac{1}{p}}$$
 在 $\mathrm{dom}(f) = \mathbb{R}_{++}$ 时是一个凹函数.

Problem 3: Convexity

(a)

首先对 $x \neq y$ 的情况进行分析.

因为 ψ 是一个严格凸函数, 根据定义有 $\psi(\theta x + (1-\theta)y) < \theta \psi(x) + (1-\theta)\psi(y)$

我们考虑过 x,y 两点的函数 $g(t)=\psi(ty+(1-t)x), t\in[0,1]$

我们求导可得 $g'(t) =
abla \psi(ty + (1-t)x)^T(y-x)$

因为 ψ 是严格凸函数, 因此 g 也是严格凸函数, 我们有 $g(0)>g(1)+g'(1)\cdot(0-1)$

即
$$\psi(x) > \psi(y) - \nabla \psi(y)^T (y-x) = \psi(y) + \nabla \psi(y)^T (x-y)$$

即有
$$\Delta_{\psi}(x,y) = \psi(x) - \psi(y) - \langle
abla \psi(y), x - y
angle > 0$$

对于 x = y 的情况, 带入即可知

$$\Delta_{\psi}(x,y) = \psi(x) - \psi(x) - \langle \nabla \psi(y), x - x \rangle = 0$$

综上我们有 $\psi(x,y) \geqslant 0, \forall x,y \in \Omega$ 且当且仅当 x=y 时取到等号.

(b)

要证
$$L(y) + \Delta_{\psi}(y,x_0) \geqslant L(x^*) + \Delta_{\psi}(x^*,x_0) + \Delta_{\psi}(y,x^*)$$

即证
$$L(y) + \psi(y) - \psi(x_0) - \nabla \psi(x_0)^T (y - x_0) \geqslant L(x^*) + \psi(x^*) - \psi(x_0) - \nabla \psi(x_0)^T (x^* - x_0) + \psi(y) - \psi(x^*) - \nabla \psi(x^*)^T (y - x^*)$$

即证
$$L(y)\geqslant L(x^*)+[
abla\psi(x_0)-
abla\psi(x^*)]^T(y-x^*)$$

由
$$L(y)$$
 是凸函数可知 $L(y) \geqslant L(x^*) + \nabla L(x^*)^T (y - x^*)$

令
$$f(x) = L(x) + \Delta_{\psi}(x, x_0) = L(x) + \psi(x) - \psi(x_0) - \nabla \psi(x_0)^T (x - x_0)$$
, 因为其是数个凸函数相加, 结果仍然是凸函数

求梯度得 $\nabla f(x)=\nabla L(x)+\nabla \psi(x)-\nabla \psi(x_0)$,因为在 $x=x^*$ 处取得最小值,因此有 $\nabla f(x^*)=\nabla L(x^*)+\nabla \psi(x^*)-\nabla \psi(x_0)=0$

因此
$$\nabla L(x^*) = \nabla \psi(x_0) - \nabla \psi(x^*)$$
, 带入 $L(y) \geqslant L(x^*) + \nabla L(x^*)^T (y - x^*)$

可知
$$L(y) \geqslant L(x^*) + [\nabla \psi(x_0) - \nabla \psi(x^*)]^T (y - x^*)$$
 成立

因此原式成立.

Problem 4: Projection

(a)

因为 $\Pi_X(x)$ 是在凸集 X 上离 x 最近的点,因此与 $x-\Pi_X(x)$ 垂直的,过点 $\Pi_X(x)$ 的超平面 S_x 是 X 的一个支撑超平面,同理 S_y 也是 X 的一个支撑超平面.

过 $\Pi_X(x), \Pi_X(y), x$ 三点作一个二维平面 P, 将 $y - \Pi_X(y)$ 直线投影至 P 上得 $y' - \Pi_X(y)$, 其中的 x - y' 与 $\Pi_X(x) - \Pi_X(y)$ 平行. 并且 P 分别与 S_x, S_y 形成了两条切线 l_x, l_y , P 与 X 的交集形成了一个新的二维凸集 X'.

通过这种方式,根据点乘的几何意义即可将问题转化为 $\|\Pi_X(x)-\Pi_X(y)\|_2^2\leqslant [\Pi_X(x)-\Pi_X(y)]^T(x-y')$

对于 $x, y', \Pi_X(x), \Pi_X(y)$ 在同一条直线上时易知成立.

对于不在同一条直线上的情况,设 $\Pi_X(x)$ 和 $\Pi_X(y)$ 的中点为 O,且以 $O - \Pi_X(y)$ 为横坐标轴正方向建立坐标系,且凸集 X' 位于横坐标轴下方,x,y' 位于横坐标轴上方.接下来证明位于 O 左侧的过 $\Pi_X(x)$ 的切线 l_x 斜率大于等于零, l_y 斜率小于等于零.

使用反证法, 假设 l_x 斜率小于零, 即 l_x 向右下方倾斜, 那么 O 就会处于 l_x 的下方, 再根据支撑超平面的性质可知, O 点不在凸集 X 上, 这与 $O=\frac{\Pi_X(x)+\Pi_X(y)}{2}$ 位于凸集 X 上矛盾. 因此假设不成立, l_x 斜率大于等于零, 同理 l_y 斜率小于等于零.

然后观察图像,我们可知 $\Pi_X(x)-\Pi_X(y)$,x-y' 同向,并且 $\Pi_X(x)-\Pi_X(y)$,x-y', l_x , l_y 形成了一个梯形,因此我们有 $\|\Pi_X(x)-\Pi_X(y)\|_2 \leqslant \|x-y\|_2$

可知
$$\|\Pi_X(x)-\Pi_X(y)\|_2^2\leqslant [\Pi_X(x)-\Pi_X(y)]^T(x-y')=\|\Pi_X(x)-\Pi_X(y)\|_2\|x-y\|_2$$
 成立.

综上可知, $\|\Pi_X(x) - \Pi_X(y)\|_2^2 \leq \langle \Pi_X(x) - \Pi_X(y), x - y \rangle$ 成立.

(b)

曲 (a) 有
$$\|\Pi_X(x) - \Pi_X(y)\|_2^2 \leqslant \langle \Pi_X(x) - \Pi_X(y), x - y \rangle$$

而由点乘的几何意义我们可知 $\langle\Pi_X(x)-\Pi_X(y),x-y\rangle=\|\Pi_X(x)-\Pi_X(y)\|_2\cdot\|x-y\|_2\cdot\cos\theta$

因此我们有 $\|\Pi_X(x) - \Pi_X(y)\|_2 \leqslant \|x - y\|_2 \cdot \cos \theta \leqslant \|x - y\|_2$

Problem 5:

(a)

$$f^*(y) = \sup_{x \in \mathrm{dom} f} (yx - \max\{0, 1-x\})$$

显然, $f^*(y)$ 的定义域为 [-1,0], 均为在 x=1 处取得最大值, 即

$$f^*(y) = y - \max\{0, 1 - 1\} = y$$

(b)

$$f(x) = \ln(1 + e^{-x})$$
 的图像如图所示

因为
$$\lim_{x \to -\infty} rac{\ln(1+e^{-x})}{-x} = 1, \lim_{x \to +\infty} \ln(1+e^{-x}) = 0$$

所以
$$y=-x$$
 和 $y=0$ 是 $f(x)=\ln(1+e^{-x})$ 的两条渐近线.

因此
$$f^*(y)$$
 的定义域为 $(-1,0)$, $(yx-\ln(1+e^{-x}))'=y+rac{e^{-x}}{1+e^{-x}}$

即
$$y+(y+1)e^{-x}=0\Rightarrow x=-\ln rac{-y}{y+1}$$
 时有最大值

$$f^*(y) = y \cdot (-\ln \frac{-y}{y+1}) - \ln(1 + \frac{-y}{y+1}) = (y+1)\ln(y+1) - y\ln(-y)$$