

Pilani Campus

Computer Networks (CS F303)

Virendra Singh Shekhawat Department of Computer Science and Information Systems

innovate achieve lead

BITS Pilani

Pilani Campus

Second Semester 2020-2021 Module-3 < Transport layer > Lecture: 14

Topics

- Transport Layer
- TCP Protocol
 - Connection Establishment
 - TCP Segment Structure
 - Reliable data transfer
 - Flow control
 - Congestion control

- Point to Point protocol
 - One sender and one receiver
- Reliable in-order byte stream
 - No message boundaries
- Pipelined
 - Window size is set by congestion and flow control
- Full duplex data
 - Bi-directional data flow in same connection
- Connection oriented
 - Handshaking (exchange of control msgs)
- Flow controlled
 - Sender do not overwhelm receiver

TCP Segment Structure

lead

TCP Sequence Numbers and ACKs

outgoing segment from sender

source port #			dest port #	
sequence number				
acknowledgement number				
			rwnd	
checksum			urg pointer	

incoming segment to sender

source port #			dest port #		
sequence number					
acknowledgement number					
		А	rwnd		
checksum			urg pointer		

TCP views data as stream of bytes

Sequence number reflects stream of transmitted bytes not segments

Sequence number of a segment – Byte stream number of the first byte in the segment

Connection Management

- Before exchanging data, sender/receiver do "handshake"
 - Agree on connection parameters


```
Socket clientSocket =
  newSocket("hostname", "port
  number");
```

```
application

connection state: ESTAB
connection Variables:
  seq # client-to-server
        server-to-client
        rcvBuffer size
        at server, client

network
```

```
Socket connectionSocket =
  welcomeSocket.accept();
```

2-way Handshake

 Will 2-way handshake always work in network?

TCP 3-way Handshake

Lost ACK Scenario

Cumulative ACK

Data received from app

- Create segment with seq #
- seq # is byte-stream number of first data byte in segment
- Start timer if not already running

Timeout

- Retransmit segment that caused timeout
- Restart timer
- ACK received
 - If ack acknowledges previously unacked segments
 - Update what is known to be ACKed (Shift window)
 - Start timer if there are still unACKed segments

Is TCP GBN or SR...?

- 1. Is out of order segments are individually ACKed?
- 2. Are ACKs cumulative?
- 3. How many timers are maintained by sender?
- 4. Is TCP receiving out of order segments?

Example: TCP Reliable Data Transfer

TCP Connection States

TCP Flow Control

- Receiver advertises free buffer space by including rwnd value in TCP header
 - RcvBuffer size set via socket options (typical default is 4096 bytes)
 - many operating systems auto adjustRcvBuffer
- Sender limits amount of unacked ("inflight") data to receiver's rwnd value

- How to set TCP Timeout value?
 - Must be longer than RTT
 - Too short vs. too long

- How to estimate RTT?
 - RTT: measured time from segment transmission until ACK receipt

RTT Estimation

EstimatedRTT = $(1-\alpha)$ *EstimatedRTT + α *SampleRTT

- Influence of past sample decreases exponentially fast
- Typical value of $\alpha = 0.125$

Timeout Interval

- Timeout Interval
 - Estimated RTT + "Safety margin"
 - Large variation in Estimated RTT → large safety margin

```
DevRTT = (1-\beta)*DevRTT +

\beta*|SampleRTT-EstimatedRTT|

(typically, \beta = 0.25)
```


Example: Timeout Interval

• Consider three RTT samples (in ms): 150, 200 and 210 in that order. Assume initial estimated RTT= 200 ms, initial DevRTT = 50 ms, β = 0.25 and α = 0.125

Thank You