

BM40A1500 DATA STRUCTURES AND ALGORITHMS

ALGORITHM ANALYSIS

2024

ALGORITHM ANALYSIS

- How fast an algorithm is?
 - Typically to the most critical information
- How much memory it requires?
- How do you compare two algorithms in terms of efficiency?
 - ❖ Implementing the algorithms as computer programs and comparing them in practice is problematic:
 - Implementing two or more algorithms while we only need one is time-consuming.
 - The result of the test depends on how well the algorithms were implemented.
 - * Even the better algorithm might not be good enough for your purpose.
 - We need a way to compare algorithms without implementing them.

GROWTH RATE

- Growth rate: how the running time increases when the size of the input increases?
- The number of basic operations:
 - * Example:

$$T(n) = 3n^2 + 3n + 1$$

GROWTH RATE

GROWTH RATE

f(n)	n	\mathbf{n}'	Change	n′/n
10 <i>n</i>	1000	10,000	n' = 10n	10
20n	500	5000	n' = 10n	10
$5n\log n$	250	1842	$\sqrt{10}n < n' < 10n$	7.37
$2n^2$	70	223	$n' = \sqrt{10}n$	3.16
2^n	13	16	n' = n + 3	

n – a slow computer (10 000 operations per second)

n' – a fast computer (100 000 operations per second)

BEST, WORST AND AVERAGE CASE

Example: sequential search

❖Best case: T(n) = 3

❖Worst case: T(n) = 2n + 1

❖Average case: T(n) = ?

ASYMPTOTIC ANALYSIS

- The exact number of basic operations is typically not interesting.
 - Depends on the implementation of the algorithm.
 - → Comparing two algorithms is challenging.
 - The running time depends on the speed of the computer.
 - For more complex algorithms, the exact number of basic operations is very challenging (or impossible) to estimate.
- ❖It is typically more interesting to know the type of growth rate:
 - \Leftrightarrow E.g., linear (T = cn), quadratic ($T = cn^2$), or exponential growth rate ($T = ca^n$).
 - \diamond Growth rate $c_1 n$ is almost always preferable over $c_2 n^2$ even if c_1 is much larger than c_2 .
- →Asymptotic analysis

UPPER AND LOWER BOUND

- Upper bound (O)
 - ❖ The big-Oh notation: O(f(n))

T(n) is in O(f(n)) if there exist positive constants c and n_0 such that $T(n) \le cf(n)$ for all $n > n_0$.

For example:

$$T(n) = 2n^2 + 10$$

*
$$T(n)$$
 is in $O(n^2)$ $(c = 3, n_0 = 3)$

 \star Lower bound (Ω)

T(n) is in $\Omega(f(n))$ if there exist positive constants c and n_0 such that $T(n) \ge cf(n)$ for all $n > n_0$.

THETA NOTATION (Θ)

An algorithm is $\Theta(f(n))$ if it is in O(f(n)) and it is in $\Omega(f(n))$.

The (tight) upper and lower bounds are the same.

- It is better to use Θ notation rather than big-Oh notation whenever we have sufficient knowledge about an algorithm to be sure that the upper and lower bounds indeed match.
 - → We will mainly use Θ notation in this course.
- However, some problems have no definitive Θ analysis.
 - e.g., we might not have all the information about the algorithm.

CALCULATING RUNNING TIME

Examples:

sum = sum + 1

```
a = b
                                              \Theta(n)
for i = 1 to n
                           T(n)=24
  sum = sum + 1
for i = 1 to n
                         \Theta(n^2)
  for j = 1 to n
                                              ( n 2)
     sum = sum + 1 4
for i = 1 to n
```


CALCULATING RUNNING TIME

More examples:

for
$$i = 1$$
 to n^2
 $sum = sum + 1$

$$\Theta(u_s)$$

$$\Theta(u)$$

$$\bigcirc (n^2)$$

CALCULATING RUNNING TIME

- More examples:
 - (efficient) sorting

note that the inscription sort is not efficient

Testing all subsets

$$2^5$$
 subets $\Theta(2^n)$

Testing all permutations

ADDITIONAL NOTES

- Upper/lower bounds are not the same as worst/best cases!
 - * The worst and best cases define the cost for a specific input instance.
 - * The upper and lower bounds describe our understanding of the growth rate.
 - An algorithm might have different upper (and lower) bounds for the best and worst case.
- Asymptotic analysis is an estimating technique and does not tell us about the relative merits of two programs where one is always "slightly faster" than the other.
 - * Two $\Theta(n^2)$ algorithms are not necessarily equally good.
 - However, it is a very useful tool when determining if a particular algorithm is worth considering for implementation.
- Sometimes it is useful to represent the bounds using multiple parameters.
 - \diamond For example, an algorithm that goes through an $N \times M$ matrix is $\Theta(MN)$.

ADDITIONAL NOTES

- The exact same notation can be used for analyzing the space requirements.
 - \diamond For example, an array of *n* integers, requires *cn* bytes which is $\Theta(n)$.
- Some textbooks use big-O notation instead of Θ notation.
 - * For most of algorithms, the Big-Oh notation and Θ notation correspond to each other, that is if algorithm is in O(n) it is $\Theta(n)$.
 - * E.g,. Laaksonen and Cormen et al. use big-O notation.
- Instead of growth rate and running time, the term computational complexity is commonly used when describing how efficient the algorithm is.
 - \bullet E.g. "an algorithm has a time complexity of O($n \log n$)."

