

배당과 때매차익을 고려한 주식상품의 재발견

SeeStock

강동화 김보배 임형진 정희도

SeeStock

팔 로 잉

...

팀원 4 평균 수익률 18.98% 홀

홀딩 기간 **2년**

꺼진 주식도 다시 보자

#필터링 포트폴리오 백테스팅 #정기예금만큼의 안정성 #배당과 매매차익을 포함한 그 이상의 수익성 #총배당금 예측을 통한 실제적인 포트폴리오 수익률 #주식에 대한 새로운 가치를 추구

KRX.DACON 님 외 8증권사가 팔로우합니다.

NEW 배당 필터링 기존 고배당50,배당성장50지수에 배당 안정성을 추가한 필터링

DDM무형을 통한 기대수익률

DDM모형을 통한 기대수익률, WACC 요구수익률 필터링

기대수익률>요구수익률

BACKTESTING

BUY&HOLD전략, 적정 기간을 홀딩한 홀딩 수익률 백테스팅

INTERACTIVE PLOT

승률, 손익비를 고려한 트레이딩 우위 ODDS, 전략성과 INTERATIVE PLOT

총배당금 예측

배당관련 선행연구를 바탕으로 한 다중선형회귀분석을 통한 총 배당금 예측

필터 NO.1,2 : NEW 배당 필터링

KRX의 배당지수 선정 기준에 배당 안정성 필터를 넣다!

필터 NO.1: KRX 배당지수 필터링

01-1.배당지수선정기준

(1단계) KOSPI, KOSDAQ KONEX
 2단계

 고배당50

 2단계

 배당성장50

KOSPI

고배당50지수 심사기준

- (1) 시장규모기준
- : 일평균시가총액 순위 상위 80% 이내 (일평균시총 800억원 미만 종목 제외)
- (2) 유동성기준
- : 일평균거래대금 순위 상위 80% 이내
- (3) 배당기준
- : 최근 3사업연도 연속 배당 실시 및 평
- 균 배당성향 90% 미만
- (4) 재무기준
- : 최근 3사업연도 연속 당기순이익 실현

출처: KRX

KOSPI>

배당성장50지수 심사기준

- (1) 시장규모기준
- : 일평균 시총 순위 상위 50%이내
- (2) 유동성기준
- : 일평균거래대금 순위 상위 70% 이내
- (3) 배당기준
- : 최근 7사업연도 연속 배당 실시 및 최
- 근 5사업연도 평균 배당성향 60% 미만
- (4) 배당성장기준
- : 최근 사업연도 DPS 최근 7사업연도
- 평균 DPS 대비증가
- (5) 재무기준
- : 최근 5사업연도 연속 당기순이익 실현

출처 : KRX

필터 NO.2: NEW 배당 안정성 필터링

02.배당안정성기준

〈배당안정성〉 DPS/DPS표준편차

주당 배당금(DPS, Divedend per Shares)을 표준편차로 나누어 이를 필 터링으로 사용하는 이유는,

배당금의 변동성이 큰 기업에 대한 패널티를 적용하여 배당을 안정적으로 지급하는 기업을 추출하기 위함이다.

출처 : KRX

필터 NO.2: NEW 배당 필터링

전체 지수에서 22개의 기업을 찿다!!

필터 NO.3: 기대수익률>요구수익률 필터

03.요구수익률필터링

22개의 기업에서 요구수익률을 만족시키는 21개의 기업으로 필터링

STEP 3 D+g > WACC필터링

21개 기업 최종 모델 포트폴리오 선정

$$WACC = Re\left(\frac{E}{V}\right) + Rd(1-t)\left(\frac{D}{V}\right)$$

STEP 2

가중평균자본비용 WACC 구하기

- 3) Rm : KOSPI의 5개년 평균 수익률 4) Beta : 5개년 월별 주식의 시장대비 민감도 5) Rd(이자비용) : 기업이 자금 차입을 위해 지불하는 이자율

STEP 1

고든의 배당성장모형(DDM)으로

배당수익률(d) + 매출액성장률(g)을 구하다!

$$P_0 = \frac{D_0(1+g)}{(k_e - g)} = \frac{D_1}{(k_e - g)}$$

요구수익률(ke) = 배당수익률(d=D1/P0) + 성장률(g)

Portfolio Modeling

유니버스구축및팩터디자인

1차 필터링:고배당/배당성장

2차 필터링:배당안전성 - DPS의 표준편차

3차필터링: 요구수익률 상회 기업

횡적리스크모델 :팩터가중치결정

주가가높은특정종목이 포트폴리오 수익률에 끼칠영향을 고려해종목별 동일 가중치를 부여 생성한클래스내 equal weight() 메소드활용 리스크 관리 종적리스크모델

Buy&Hold 및정기예금과의유사성을고려해

:팩터와 무위험자산의비중조절

매수시점에 모든가용현금을주식에투자 단일결제라는점에서 매매수수료무시가능

최종결과

1년 Buy&Hold

2년 Buy&Hold

1) KRX API로 포트폴리오 기업 주식 정보 가져오기

```
# KRX API 인 pykrx로 필터링된 기업리스트 주식 정보 가져오기
stock_code = portfolio_code
res = pd.DataFrame()
for ticker in stock_code:
    df = stock.get_market_ohlcv_by_date(fromdate=start_sp, todate=end_sp, ticker=ticker)
    df = df.assign(종목코드=ticker, 종목명=stock.get_market_ticker_name(ticker))
    res = pd.concat([res, df], axis=0)
    time.sleep(1)
res = res.reset_index()
res
```

2-1) 1년 배당금데이터가져오기

```
# portfolio_df['종목명']으로 된 csv파일을 각각 파일 이름으로 불러오기
import os
folders = os.listdir('./KRX')
folders

for i in folders:
    globals()[i.split('.')[0]] = pd.read_csv(f'./KRX/{i}',encoding='CP949')
    globals()[i.split('.')[0]].drop(columns=['87','~FSI***HSZ-','HBP','HER','M***HER','M***HER','HBPS','PBR'],axis=1,inplace=True)
    globals()[i.split('.')[0]].set_index('일자',inplace=True)
    div_df = pd.concat([LF,LS,NI스틸,SK텔레콤,고려산업,급강철강,노루페인트,대용,대상활당소,대정화급,대한제당,대한제문,삼천리,세방전지,유니드,유한양행,태경산업,태경케이틸,한설,한화,현대학화질],axis=1)
div_df.columns = ['LF','LS','NI스틸','SK텔레콤','고려산업','금강철강','노루페인트','대용','대상활당소','대항제문','대한제문','삼천리','세방전지','유니드','유한양행','태경산업','태경케이럴','한참','
div_df.dropna(inplace=True)
div_df.sort_index()
div_df.index = div_df.index.str.replace('/','-')
```


2-2) 2년 배당금데이터가져오기

```
# portfolio df['종목명']으로 된 csv파일을 각각 파일 이름으로 불러오기
 folders = os.listdir('./KRX/')
 for i in folders:
     globals()[i.split('.')[0]] = pd.read_csv(f'./KRX/{i}',encoding='CP949')
     globals()[i.split('.')[0]].drop(columns=['배당수익률','대비','등락률','PER','선행 EPS','선행 PER','BPS','PBR'],axis=1,inplace=True)
     globals()[i.split('.')[0]].set_index('일자',inplace=True)
div_df2 = pd.concat([LF,LS,NI스틸,SK텔레콤,고려산업,금강철강,노루페인트,대동,대상홀딩스,대정화금,대한제당,대한제분,삼천리,세방전지,유니드,유한양행,태경산업,태경케미컬,한섬,한화,현대백화점],axis=1)
div_df2.columns = [['LF','LF','LS','LS','NI스틸','NI스틸','SK텔레콤','SK텔레콤','고려산업','고려산업','금강철강','금우페인트','노루페인트','대동','대동','대동','대상홀딩스','대상홀딩스','대정화금','대정화금',
div_df2.dropna(inplace=True)
div_df2 = div_df2.sort_index()
div_df2.index = div_df2.index.str.replace('/','-')
div df2 = div df2[::250]
list = ('LF','LS','NI스틸','SK텔레콤','고려산업','금강철강','노루페인트','대동','대상홀딩스','대정화금','대한제당','대한제당','삼천리','세방전지','유니드','유한양행','태경산업','태경케미컬','한섬','한화','현대백화점')
for i in list:
   div_df2[i,'2년배당수익률'] = (div_df2[i,'주당배당금']+div_df2[i,'주당배당금'].shift(-1))/div_df2[i,'종가']
div_df2=div_df2.swaplevel(0,1, axis=1)['2년배당수익률']
div_df2=(div_df2*100).dropna()
```

	LF	LS	NI스틸	SK텔레콤	고려산업	금강철강	노루페인트	대동	대상홀딩스	대정화금	대한제분	삼천리	세방전지	유니드	유한양행	태경산업	태경케미컬
일자																	
2010- 12-20	2.503912	1.951220	3.125000	10.681818	5.882353	8.602151	7.621951	2.469136	7.621951	4.347826	4.406780	3.773585	1.592357	3.874539	1.208459	6.329114	6.849315
2011- 12-21	1.777778	2.848101	5.617978	12.287582	7.032349	6.956522	11.725293	2.604167	7.177033	6.545455	4.529617	5.434783	1.508121	3.451493	1.711027	9.202454	8.797654
2012- 12-21	2.523659	2.714441	5.813953	11.677019	3.592814	8.064516	8.978676	1.848429	4.231975	7.486631	4.181818	4.800000	1.472135	4.021448	1.453488	8.862629	6.593407
2013- 12-27	2.420575	3.132832	5.420054	8.263736	4.803493	7.874016	7.812500	1.700680	2.857143	5.365854	2.884615	4.669261	1.181818	2.936242	1.486486	6.185567	5.617978
2015- 01-07	3.169014	4.807692	4.405286	6.975881	3.888889	7.434944	4.175365	1.128205	1.624650	5.313496	3.020134	3.745318	1.608579	3.756708	1.963746	5.110733	5.504587
2016- 01-11	3.960396	6.459948	3.976143	9.556650	3.865979	4.494382	4.012036	1.230425	1.823056	3.875969	2.601156	4.782147	1.724138	4.899777	1.264755	6.407767	4.958678

3)모델포트폴리오클래스화

- i) 바이앤 홀딩 수익률을 구하는 알고리즘
- ii) 해당 종목에 동일 비중을 주는 알고리즘
- iii) 매매차익과 배당금을 고려한 백테스팅 알고리즘을 클래스화

```
class ModelPortfolio:
   def __init__(self, prices, holding_period, df_div):
       self.holding_returns = self.get_holding_returns(prices,holding_period)
       self.cs_risk_weight = self.equal_weight(prices)
       self.port_rets = self.backtest(df_div,self.holding_returns,self.cs_risk_weight)
   def get_holding_returns(self,prices, holding_period):
       holding_returns = (prices.pct_change(periods=holding_period).shift(-holding_period).dropna(0)) *100
       return holding_returns
   def equal_weight(self,prices):
       #prices = prices.iloc[-holding_period:,:]
       weight = pd.DataFrame(index=prices.index,columns=prices.columns).fillna(1/len(prices.columns))
       return weight
   def backtest(self,df_div,holding_returns,weight):
       hold_rets = ((holding_returns*weight).dropna()).sum(axis=1)
       div = ((df_div*weight).dropna()).sum(axis=1)
       port_rets = (hold_rets + div).dropna()
       return port_rets
# price 가격 가져오는 함수
def get_price_df(path):
   df = pd.read_csv(path).dropna()
   df = df.drop(columns=['Unnamed: 0'])
    return df
```


4) 주가데이터와배당금데이터를 가지고 class 함수를 실행하는 알고리즘

4-1) 1년홀딩수익률계산

```
port_rets1 = portfolio_returns(prices=prices1,holding_period=250,df_div=div_df)
port_rets1.index = pd.to_datetime(port_rets1.index)
port_rets1
```

4-2) 2년 홀딩수익률계산

```
port_rets2 = portfolio_returns(prices=prices1,holding_period=500,df_div=div_df)
port_rets2.index = pd.to_datetime(port_rets2.index)
port_rets2
```


5) 요약통계함수

```
# 손익비를 보여주는 요약통계 함수
def describe_winloss(df):
    _desc_df = df.describe()
    total = df.notna().sum()
    _win_df, _loss_df = df.applymap(lambda e: e if e>=0 else np.nan), df.applymap(lambda e: e if e<0 else np.nan)
    _desc_df = _desc_df.append(pd.Series(((df >= 0).sum() / total), name='win_rate'))
    _desc_df = _desc_df.append(pd.Series(_win_df.count(), name='win_count'))
    _desc df = _desc df.append(pd.Series(_win_df.mean(), name='win_return_mean'))
    _desc_df = _desc_df.append(pd.Series(_win_df.median(), name='win_return_median'))
    _desc_df = _desc_df.append(pd.Series(((df < 0).sum() / total), name='loss_rate'))
    _desc_df = _desc_df.append(pd.Series(_loss_df.count(), name='loss_count'))
    _desc_df = _desc_df.append(pd.Series(_loss_df.mean(), name='loss_return_mean'))
    _desc_df = _desc_df.append(pd.Series(_loss_df.median(), name='loss_return_median'))
    _desc_df = _desc_df.append(pd.Series(_desc_df.loc['win_return_mean']/(-1*_desc_df.loc['loss_return_mean']), name='return_dist'))
    _desc_df = _desc_df.append(pd.Series(((_desc_df.loc['win_rate']*_desc_df.loc['return_dist'])-(-1*_desc_df.loc['loss_rate']*1))*100,name='trading_odds'))
    return _desc_df
```

5-1) 1년홀딩수익률승률

```
port_rets1_df = pd.DataFrame(port_rets1,columns=['1y'])
describe_winloss(port_rets1_df)
```

5-2) 2년홀딩수익률승률

```
port_rets2_df = pd.DataFrame(port_rets2,columns=['2y'])
describe_winloss(port_rets2_df)
```


6) cufflinks와 plotly로 interactive plot을 생성

6-1) 1년 BUY&HOLD 전략수익률 plot

Portfolio Returns-1Y BUY&HOLD Strategy final1.iplot(title='Portfolio Returns-1Y BUY&HOLD Strategy')

6-2) 2년 BUY&HOLD 전략수익률 plot

Portfolio Returns-2Y BUY&HOLD Strategy
final2.iplot(title='Portfolio Returns-2Y BUY&HOLD Strategy')

승률 1회트레이딩시승리인지 Hit Ratio 패배인지알려주는확률 요약통계 'win_rate'

Hit Ratio = 0이상의수익률을기록한 횟수/0미만 수익률횟수

<포트폴리오 승률>

전략이 확률적 우위

확률적 우위 Trading Edge

Trading Odds

| 승률과손익비를동시에 고려한 값으로, 0보다클때 효과적인 트레이딩 전략

| = 승률 * 수익의평균 - (1 - 승률) * 손실의평균

1Y 포트폴리오 확률적 우위(예금 대비):

124.3624%

2Y 포트폴리오 확률적 우위 (예금 대비): 188.8333 %

손익비평균적하락대비Return Distribution평균적수익의비율P&L Ratio요약통계 'Return_dist'

P&L Ratio= 수익의평균/손실의평균

Multiple Regression 방법

EDA를통한이상치및결측치확인 <u>변수추출방법</u>

결측치

Box-plot

Heatmap, VIF

Stepwise방법

다중회귀모델생성

Box-plot을통해이상치값확인

다중공선성이있다고판단되어지는변수들 을VIF를통해<mark>하나씩</mark>제거

해당모델의적합한모델선정

OLS함수를이용한다중화귀모델

결과(모델의 적합성확인

Train data: 80% Test data: 20%

R-squared 및 Adj.R-squared 확인

> AIC, BIC Durbin-Watson Cond, No

P-value Skew(왜도) Kurtosis(첨도)

OLS Regressions Results

1)다중회귀분석 summary

	OLS Regression	〈 유의성 변	수〉 🚶	< Stepwi	ise >	< Stepwise	+ 유의성〉
Dep. Variable:	OLS Reglession 총배당금	R-squared:	0.674	R-squared:	0.667	R-squared:	0.667
' Model:	OLS	Adj. R-squared:	0.665	Adj. R-squared:	0.654	Adj. R-squared:	0.654
Method:	Least Squares	F-statistic:	77.09	F-statistic:	50.40	F-statistic:	50.40
Date:	Mon, 01 Aug 2022	Prob (F-statistic):	9.81e-52	Prob (F-statistic):	7.66e-39	rob (F-statistic):	7.66e-39
Time:	09:38:37	Log-Likelihood:	-1882.2	Log-Likelihood:	-1503.8	Log-Likelihood:	-1503.8
No. Observations:	231	AIC:	3778.	AIC:	3024.	AIC:	3024.
Df Residuals:	224	BIC:	3803.	BIC:	3049.	BIC:	3049.
Df Model:	6						
Covariance Type:	nonrobust						

Adj.R-squared

0.65대로 유지되는 모습을 보임

AIC / BIC

stepwise 실행 이후 줄어 들었으나 여전히 높은 편

OLS Regressions Results

2) 잔차의 독립성, 왜도, 첨도, 다중공선성확인

〈유의성 변수〉

	Omnibus:	21.273	Durbin-Watson:	2.007
Prob	(Omnibus):	0.000	Jarque-Bera (JB):	98.305
	Skew:	-0.024	Prob(JB):	4.50e-22
	Kurtosis:	6.581	Cond. No.	4.76

<Stepwise>

	Omnibus:	20.786	Durbin-Watson:	1.961
Prob	o(Omnibus):	0.000	Jarque-Bera (JB):	93.110
	Skew:	0.035	Prob(JB):	6.04e-21
	Kurtosis: 6.484		Cond. No.	4.84

〈Stepwise + 유의성〉

Omn	Omnibus:		Durbin-Watson:	1.961
Prob(Omnibus):		0.000	Jarque-Bera (JB):	93.110
S	kew:	0.035	Prob(JB):	6.04e-21
Kurt	osis:	6.484	Cond. No.	4.84

Pred와 ytest 비교 - 1) Stepwise로 변수 선택

Pred와 ytest 비교 − 2) 유의성 검정을 통한 변수 선택

470402.70355191285 685.859098905827

Pred와 ytest 비교 − 3) Stepwise + 유의성검정을 통한 변수 선택

459956.63993009843 678.2010320915904

기대효과

하나 안전성을 추가로 고려한 새로운 배당 안 전과 관련된 정보상품 제공 가능

• 예금상품의 이자를 대체하고 매매차익을 통한 알파 창출 기회 제공

세엣. 총배당금 예측을 통한 개선된 포트폴리오 수익률

• 연도별 총배당금 예측함으로써 전 회계연도의 주당배당금으로 배당수익률을 추정했던 기존의 포트폴리오 수익률 개선

O8 INDEX

한계

하나. 주식 포트폴리오에 따른 리스크 무시 못함

- 승률이 100%인 예금에 비해서는 승률이 낮음
- 횡적,종적 리스크를 고려하지 않은 단순한 전략 (필터링, Buy&Hold)만으로도 충분한 전략적 우위가 있다는 점에서 의의가 있음

두울, 예측을 위한 변수 데이터가 패널데이터

- 기업과 연도에 상관없다는 가정하에 다중회귀분 석을 진행했지만 특정 기업의 고유한 특성이 있 어 Adj.R-squared 값이 0.654로 나옴
- 포트폴리오 기업과 연도에 영향을 받는 데이터
 특성상 패널 회귀모델이 생략된 변수의 위험을
 줄이고 다중 공선성도 줄일 수 있을 거라 기대됨

 $Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 Z_i + \mu_{it}$

기대효과

하나 안전성을 추가로 고려한 새로운 배당 안 전과 관련된 정보상품 제공 가능

두울, 백테스트 시 기업들의 배당수 차익을 동시에 고려

• 예금상품의 이자를 대체하고 매매자의들 동안 알파 창출 기회 제공

<mark>세엣.</mark> 총배당금 예측을 통한 개선된 포트폴리오 수익률

• 연도별 총배당금 예측함으로써 전 회계연도의 주당배당금으로 배당수익률을 추정했던 기존의 포트폴리오 수익률 개선

O8 INDEX

한계

하나, 주식 포트폴리오에 따른 리스크 무시 못함

- 승률이 100%인 예금에 비해서는 승률이 낮음
- 횡적,종적 리스크를 고려하지 않은 단순한 전략 (필터링, Buy&Hold)만으로도 충분한 전략적
- 우 맛있다는 점에서 의의가 있음

두울. 예측을 위한 변수 데이터가 패널데이터

- 기업과 연도에 상관없다는 가정하에 다중회귀분 석을 진행했지만 특정 기업의 고유한 특성이 있 어 Adj.R-squared 값이 0.654로 나옴
- 포트폴리오 기업과 연도에 영향을 받는 데이터
 특성상 패널 회귀모델이 생략된 변수의 위험을
 줄이고 다중 공선성도 줄일 수 있을 거라 기대됨

 $Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 Z_i + \mu_{it}$

SeeStock Member's Role

Kang Donghwa

#DB 관리자 #해귀톤 최종발표자

Kim Bobae

#경제,통계,파이썬 총괄매니저 #노션관리자 #PPT 일러스트레이터

Im Hyeongjin

#통계, 파이썬 디밸로퍼 #해귀톤 중간발표자

Jung Heedo

#경제 프로페서 #해귀톤 아이디어발표자

SeeStock Member's Role

Kang Donghwa

#DB 관리자 #해귀톤 최종발표지

Kim Bobae

#경제,통계,파이썬 총괄매니저 #노션관리자 #PPT 일러스트레이터

#통계, 파이썬 디밸로퍼 #해귀톤 중간발표자

Jung Heedo

#경제 프로페서 #해귀톤 아이디어발표지

THANK YOU

