Master Plan - Isak Hammer Solving Cahn-Hilliard Equation using CutCIP

Version: February 25, 2023

	Phase 1	Phase 2	Phase 3	Phase 4	Report
Estimated time	2-3 Weeks	4-5 Weeks	2 Weeks	3 Weeks	
Problem	CutDG for $-\Delta u = f$	CutCIP for $\Delta^2 u = f$	CutCIP for $\partial_t u + \Delta^2 u = g$	CutCIP for $\partial_t u + \Delta^2 u + f(u) = g$	Progress in report
Goals	 Analysis ✓ Coercivity ✓ Boundedness ✓ A priori estimates ✓ Condition number ✓ Constructing face based g_h Implementation ✓ Poisson CutDG ✓ L² convergence ✓ H¹ convergence ✓ a_h, * convergence ✓ Implement № Implement № elements 	 Analysis ✓ Initial problem setup	 Analysis BDF analysis Implementation □ First plot □ L²L² convergence □ L²H¹ convergence 	• Implementation \square Fixed point method \square L^2L^2 convergence \square L^2H^1 convergence	□ Introduction □ Mathematical background □ CutDG $-\Delta u = f$ ☑ Bounded and coercive □ A priori estimates □ Condition number □ Constructing g_h □ Numerical experiments □ CutCIP for $\Delta^2 u = f$ □ Weak form in H^4 □ Construction of CutCIP □ Well-posedness □ A priori estimates □ Numerical experiments □ CutCIP for $\partial_t u + \Delta^2 u = g$ □ Time discretization □ Numerical experiments □ CutCIP for $\partial_t u + \Delta^2 u + f(u) = g$ □ Fixed point methods □ Numerical experiments
Comments	Mostly based on (Gürkan and Massing, 2019)	† Not prioritized			Marked done only if it is 95% done.Page counter: 21
Digression		Aggregated FEM (Badia, Verdugo, and Martín, 2018) for \mathcal{P}^k , $k = 1, 2, 3$		Solve $\partial_t u + \kappa(u)\Delta^2 u = g$	

	January Fe		oruary March		rch	April		N.	lay	June	
Introduction											
Phase 1			j i								
Phase 2						<u> </u>					
Phase 3			1						1		
Phase 4						1			1		
Final											
	0 9	%	25	%		50 9	%	75	%	100	%

What have I done this week?

- Very productive since last time. Mostly been busy verifying every single sentence in Gürkan and Massing, 2019. There is some minor details here and there, but I agree very much with the proofs.
- Here is some numerical results.

What am I planning to do next week?

- Seems like the next 5 weeks will be the most intense part of my master thesis.
- Start easy with coercivity and boundedness for Biharmonic Equation.

Other

- 1) Maybe exam in mid of April?
- 2) Easter 5.-10. April