

Appendix E – Scilab Thermal-Hydraulic Library

Thermal-hydraulic calculations can be performed with the following Scilab functions, available for download from http://www.sh2701.blogspot.se. The Scilab software can be obtained freely from http://www.scilab.org.

FUNCTION DESCRIPTION	CALL FORMATS
Fanning friction factor using the Blasius correlation.	Cf_Blasius(Re)
Two calling formats are available, with the following input parameters:	Cf_Blasius(G,Dh,vis)
Re – Reynolds number	
or:	
G – mass flux, [kg/m².s]	
Dh – hydraulic diameter, [m]	
vis – dynamic viscosity, [Pa.s]	
Fanning friction factor using the	Cf_Filonenko(Re)
Filonenko correlation.	Cf Filonenko(G,Dh,vis)
Two calling formats are available, with the following input parameters:	
Re – Reynolds number	
or:	
G – mass flux, [kg/m².s]	
Dh – hydraulic diameter, [m]	
vis – dynamic viscosity, [Pa.s]	

Fanning friction factor using the Haaland correlation.	Cf_Haaland(Re)
Two calling formats are available, with the following input parameters:	Cf_ Haaland (G,Dh,vis)
Re – Reynolds number	
or:	
G – mass flux, [kg/m².s]	
Dh – hydraulic diameter, [m]	
vis – dynamic viscosity, [Pa.s]	
Heat transfer coefficient using the Dittus-Boelter correlation.	Nu=HTC_DittusBoelter(Re, Pr)
Two calling formats are available, with the following input parameters:	<pre>htc=HTC_DittusBoelter(G, Dh, vis, con, cp)</pre>
Re – Reynolds number	Nu – Nusselt number
Pr – Prandtl number	htc – heat transfer coefficient,
or:	$[W/m^2.K]$
G – mass flux, [kg/m ² .s]	
Dh – hydraulic diameter, [m]	
vis – dynamic viscosity, [Pa.s]	
con – thermal conductivity, [W/m.K]	
cp – specific heat, [J/kg.K]	
Heat transfer coefficient using the Chen correlation.	htc=HTC_Chen(G,q2p,p,x,Dh)
One calling format is available, with the following input parameters:	htc – heat transfer coefficient, [W/m².K]
G – mass flux, [kg/m².s]	
$q2p$ – heat flux, $[W/m^2]$	
p – pressure, [bar]	
x – equilibrium quality	

Dh – hydraulic diameter, [m]	
Heat transfer coefficient using the Gnielinski correlation.	Nu=HTC_Gnielinski(Re, Pr,Cf)
Two calling formats are available, with the following input parameters:	htc=HTC_Gnielinski(G, Dh, vis, con, cp, Cf)
Re – Reynolds number	Nu – Nusselt number
Pr – Prandtl number	htc – heat transfer coefficient,
Cf – Fanning friction factor	[W/m².K]
or:	
G – mass flux, [kg/m².s]	
Dh – hydraulic diameter, [m]	
vis – dynamic viscosity, [Pa.s]	
con – thermal conductivity, [W/m.K]	
cp – specific heat, [J/kg.K]	
Cf – fanning friction factor	
Heat transfer coefficient using the Jackson correlation.	Nu=HTC_Jackson(Re, Pr,cp,rho,h,t,tw,p)
Two calling formats are available, with the following input parameters:	Dh, vis, con, cp, rho, h, t, tw,
Re – Reynolds number	p)
Pr – Prandtl number	Nu – Nusselt number
cp – bulk specific heat, [J/kg.K]	htc – heat transfer coefficient, [W/m ² .K]
rho – bulk density, [kg/m³]	
h – bulk enthalpy, [J/kg]	
t – bulk temperature, [°C]	
tw – wall temperature, [°C]	
p – pressure, [bar]	

APPENDIX E - SCILAB THERMAL-HYDRAULIC LIBRARY

G – mass flux, [kg/m ² .s]	
Dh – hydraulic diameter, [m]	
vis – dynamic viscosity, [Pa.s]	
con – thermal conductivity, [W/m.K]	
The rest of the parameters have the same meaning as in the first call format.	
Heat transfer coefficient using the Petukhov-Kirillov correlation.	<pre>Nu = HTC_PetukhovKirillov(Re, Pr, Cf)</pre>
Two calling formats are available, with the following input parameters:	<pre>htc=HTC_PetukhovKirillov(G, Dh, vis, con, cp,)</pre>
Re – Reynolds number	
Pr – Prandtl number	Nu – Nusselt number
Cf – Fanning friction factor	htc – heat transfer coefficient, [W/m².K]
or:	
G – mass flux, [kg/m².s]	
Dh – hydraulic diameter, [m]	
vis – dynamic viscosity, [Pa.s]	
con – thermal conductivity, [W/m.K]	
cp – specific heat, [J/kg.K]	
Wall temperature in subcooled boiling using the Jens-Lottes correlation.	Tw = TW_JensLottes(q2p,p) Tw =
Two calling formats are available, with the following input parameter:	TW_JensLottes(q2p,p,Tsat)
q2p – wall heat flux, [W/m²]	
p – pressure, [bar]	
or:	
$q2p$ – wall heat flux, $[W/m^2]$	
p – pressure, [bar]	
Tsat – saturation temperature, [°C]	

Wall temperature in subcooled boiling using the Thom correlation. Tw = Two calling formats are available, with the following input parameter:

q2p – wall heat flux, $[W/m^2]$

p – pressure, [bar]

or

q2p – wall heat flux, $[W/m^2]$

p – pressure, [bar]

Tsat – saturation temperature, [°C]

 $Tw = TW_Thom(q2p,p)$

Tw = TW Thom(q2p,p,Tsat)

Specific enthalpy distribution in heated channel.

Input parameters:

z – axial coordinate, [m]

Axs – channel cross-section area at z-locations, [m²]

Ph – heated perimeter, [m]

hin – inlet specific enthalpy, [J/kg]

G – mass flux, [kg/m².s]

q2p – heat flux, $[W/m^2]$

h=EnergyEquation1D(z,Axs, Ph,hin,G,q2p)

h – specific enthalpy distribution in channel

Pressure distribution in a channel.

Input parameters:

z – axial coordinate, [m]

Dh – channel hydraulic diameter, [m]

 $G - mass flux, [kg/m^2.s]$

pin – inlet pressure, [Pa]

rho – bulk fluid density, [kg/m³]

vis - bulk fluid dynamic viscosity, [Pa.s]

[p] = Momentum Equation 1D(z,
Dh, G, pin, rho, vis, Cf, gvec)

p – pressure distribution in a channel, [Pa]

APPENDIX E - SCILAB I HERWAL-HIDRAULIC LIBRARI		
Cf – Fanning friction factor		
gvec – gravity vector projected on the channel axis, [m/s ²]		
Pressure and specific enthalpy distribution in a heated channel with single-phase flow.	<pre>[h,p]=ChannelSolver(z,Axs ,Pw,Ph,pin,Gin,tin,twin,q 2p,gvec,htc_opt,Cf_opt)</pre>	
Input parameters:	h – specific enthalpy	
z – axial coordinate, [m]	p – pressure distribution in a channel, [Pa]	
Axs – channel cross-section area, [m ²]		
Pw – wetted perimeter, [m]		
Ph – heated perimeter, [m]		
pin – inlet pressure, [Pa]		
Gin – inlet mass flux, [kg/m².s]		
tin – inlet temperature, [°C]		
twin – wall temperature at inlet, [°C]		
$q2p$ – heat flux, $[W/m^2]$		
gvec – gravity vector projected on the channel axis, $[m/s^2]$		
htc_opt – heat transfer coefficient option; string ('DittusBoelter', or 'PetukhovKirillov', or 'Jackson')		
Cf_opt – friction factor option; string ('Haaland' or 'Blasius')		