Combined Bending and Axial Forces-Braced Frames

Objectives:

- 1. Review AISC requirements for Design of Members with Combined Forces.
- 2. Review typical applications of beam-column.
- 3. Understand and apply AISC column stability requirements.
- 4. Use Approximate Methods to evaluate second-order $P-\delta$ effects.
- 5. Develop computer models for braced frames and evaluate beam-columns.

Design Requirements

- Combined Forces (AISC Specifications):
 - Chapter H: Combined Forces
 - Includes Chapters D through F (Design for Tension, Compression, and Flexure)
 - Chapter C: Stability: Direct Analysis Method
 - Appendix 7: Alternative Stability Analysis Methods
 - Appendix 8: Approximate 2nd Order Analysis
 - Part 6: Design Tables

Combination of multiple states of stress:

- The basic principle for design is an interaction equation which combines forces from axial (Tension or Compression) and bending loads. Shear is checked independently.
- Modes of failure are analyzed independently. This is not completely realistic, but is sufficiently accurate for design purposes.

16.1.H1.1: Doubly and Singly Symmetric Members: Flexure and Compression

For
$$\frac{P_r}{P_c} \ge 0.2$$
; $\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$ Equation H1-1a

 P_r = required axial compressive strength from 2nd ORDER ANALYSIS (from LRFD load combinations).

 P_c = available design axial compressive strength LRFD (strength from Chapter E).

 M_r = required flexural strength from 2nd ORDER ANALYSIS (from LRFD load combinations).

 M_c = available design flexural strength LRFD (strength from Chapter F).

x = strong axis bending y = weak axis bending

16.1.H1.1: Doubly and Singly Symmetric Members: Flexure and Compression

For
$$\frac{P_r}{P_c} < 0.2$$
;

$$\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0$$

Equation H1-1b

16.1.H1.2: Doubly and Singly Symmetric Members: Flexure and Tension

The same equations are used for tension and compression.

(H1-1a and H1-1b)

Substitute:

 P_r = required axial tensile strength (from LRFD load combinations)

 P_c = available design axial tensile strength LRFD (strength from Chapter D)

Additionally, for M_c

 C_b can be increased by $\sqrt{1 + \frac{\alpha P_r}{P_{ey}}}$ per Section H1.2.

Lateral torsional buckling design strength increases due to tension.

Applications: Beam-Columns with Simple Shear connections

Simple shear connection eccentricity

(a) Connection to Column Flange

(b) Connection to Column Web

$$e = \frac{d}{2} + 2.5$$
" For beams framing into column flange $e = \frac{t_w}{2} + 2.5$ " For beams framing into column web $e = \frac{b}{2} + 2.5$ " For beams framing into face of HSS

Applications: Misc. Combined Forces

Applications: Misc. Connection Eccentricity

(a) Connection to the Column Flange

(b) Connection to the Column Web

Applications: Misc. Connection Eccentricity

Stability Analysis and Design Chapter C

C1: General Requirements

The following effects on stability must be considered in the analysis and design of steel structures:

- 1. All flexural, shear and axial deformations.
- 2. Second-order, P- Δ and P- δ Amplification
- 3. Geometric imperfections.
- 4. Reduced stiffness due to inelasticity.
- 5. Uncertainties in stiffness and strength.

Stability Analysis and Design Chapter C

Chapter C1 General Requirements:

C1.1 Direct Analysis Method is the prescribed method and is applicable to any structure.

C1.2 Alternative Methods described in Appendix 7 (Effective Length and First-Order) may be used provided specified constraints are satisfied.

Note: Direct Analysis is REQUIRED if $\Delta_{2nd\ Order}/\Delta_{1st\ Order} > 1.5$ ($B_2 > 1.5$) (See Section Appendix 7.2.1)

DIRECT ANALYSIS METHOD

Key Features:

- Does not distinguish between different LLRS (e.g. braced or moment frames).
- Additional lateral "Notional" loads to account for geometric imperfections.
- Reduced stiffness of structure is utilized to account for inelasticity and uncertainty of second-order effects.
- No K values required. K=1.0 (all columns)
 No alignment charts!

Chapter C2: Calculation of <u>Required</u> Strengths C2.1 General Analysis Requirements:

- C2.1(1): Use reduce stiffnesses for all elements that contribute to stability.
- C2.1(2): Second-order analysis is required. Approximate method in Appendix is acceptable.
- C2.1(3): Include all loads that influence stability, including leaning columns and other elements not part of the *Lateral Force Resisting System (LFRS)*.
- C2.1(4): Use LRFD factored load combinations for Second-order analysis. For ASD, multiply load combinations by 1.6 and divide results by 1.6 to obtain required strengths of components.

C2.2 Consideration of Imperfections:

C2.2(b): Use Notional Loads to represent geometric imperfections.

$$N_i = 0.002\alpha Y_i$$
 (Eq. C2-1) where, $N_i = \text{horizontal "notional" load applied at level } i$ $Y_i = \text{gravity load applied at level } i$ $\alpha = 1.0 (LRFD)$.002 = 1/500 out-of-plumbness

Note: Notional loads are applied to all load combinations and in each direction separately unless second order to first order drift ratio is ≤ 1.7 . Then, apply notional loads only to gravity load combinations

C2.3 Adjustments to stiffness:

C2.3(1): Apply a factor of 0.8 to all member stiffnesses (.8EI) contributing to stability. Suggest apply to <u>all</u> primary members.

C2.3(2): Apply additional factor, τ_b , to all members (typically columns) whose flexural stiffness contributes to stability.

Reduce Stiffness EI^* per Section C2.3:

$$EI^* = 0.8 \tau_b EI.$$

E = modulus of elasticity

I =moment of inertia about axis of bending

 t_h = reduction factor for inelastic action

Note: Required for all members that contribute to lateral stability of the structure (safe to include for all members).

Reduce Stiffness, *EA** per Section C2.3:

$$EA* = 0.8EA$$

E =modulus of elasticity

A =cross sectional member area

Required for all members that contribute to lateral stability of the structure (safe to include for all members).

Reduce Flexural Stiffness EI^* per Section C2.3:

 τ_b = Reduction Factor for Inelastic Action

$$\tau_{\rm b} = 1.0$$
 for $\frac{\alpha P_{\rm r}}{P_{\rm y}} \le 0.5$ Eq. C2-2a

$$\tau_{\rm b} = 4 \left[\frac{\alpha P_{\rm r}}{P_{\rm y}} \left(1 - \frac{\alpha P_{\rm r}}{P_{\rm y}} \right) \right] \text{ for } \frac{\alpha P_{\rm r}}{P_{\rm y}} > 0.5$$
 Eq. C2-2b

 P_r = required axial compressive strength

$$P_y = F_y A =$$
 member yield strength

$$a = 1.0 (LRFD), 1.6 (ASD)$$

Note: If an additional notional load of $N_i = .001\alpha Y_i$ is applied at all levels in all load combinations (even if Section C2.2b(4) applies), $\tau_b = 1$ per Section C2.3(3).

Column Stability Analysis: Chapter C2: Required Strengths

Direct Analysis Method (DAM)

- 1. Replace EI* with .8 τ_b EI and EA* by 0.8EA in all members. K=1 all columns.
- Conduct first and second-order analysis with reduced stiffnesses. Computer or Approximate Methods (Appendix 8)
- 3. Add notional loads at each level to <u>all load combinations</u> to account for geometric imperfections. Note: exceptions C2b(4).
- 4. Include leaning columns effects for unbraced frames.

Column Stability Analysis: Chapter C2: Required Strengths

Effective Length Method (ELM): Appendix 7

- 1. No reduction in elastic stiffness, use *El* and *EA*. Use alignment charts to determine K.
- 2. Conduct first and second-order analysis. Computer or Approximate Methods (Appendix 8)
- 3. Add notional loads to account for geometric imperfections to gravity only load combinations.
- 4. Include leaning columns effects for unbraced frames.

Second-Order Effects:

Braced Frame pin-pin

Unbraced Frame Fixed-Free

Second-Order Effects:

Braced Frame

Amplified First Order Moments-Braced Frame

$$M_r = B_l M_{nt} + B_2 M_{lt}$$

Eq. A-8-1

 M_r = second order required flexural strength

 B_1 = amplification factor to account for second order effects caused by displacements along member length (P- δ effects).

 M_{nt} = first order moment, assuming no lateral translation of frame (from load combinations).

 B_2 = amplification factor to account for second order effects caused by displacements of member ends (P- Δ effects).

 M_{lt} = first order moment caused by lateral translation of frame (from load combinations).

Amplified First Order Axial Forces-Braced Frame:

$$P_r = P_{nt} + B_2 P_{lt}$$

Eq A-8-2

 P_r = second order required axial strength.

 P_{nt} = first order axial force, assuming no lateral translation of frame (from load combinations).

 B_2 = amplification factor to account for second order effects caused by displacements of member ends (P- Δ effects).

 P_{lt} = first order axial force caused by lateral translation of frame (from load combinations).

Amplified Moment Factor

Braced Frame: No Translation

$$B_1 = \left(\frac{C_m}{1 - \alpha \frac{P_r}{P_{e1}}}\right) \ge 1 \qquad \text{Eq. A-8-3}$$

$$P_{e1} = \frac{\pi^2 EI^*}{(K_1 L^2)}$$
 Eq. A-8-5

 $K_1 = 1$ (DAM) or less since there is no end translation (ELM)

* Use .8 $\tau_b EI$ for DAM and EI for ELM

$$\alpha$$
=1.0 for LRFD design

$$\alpha$$
=1.6 for ASD design

Amplified First Order Analysis

Braced Frame: No Translation

For cases where member has end moment only (no transverse loads between brace points are applied):

 $C_m = 0.6 - 0.4(M_1/M_2)$

Equation A-8-4

 M_1 = smaller first order end moment

 M_2 = larger first order end moment

Amplified First Order Analysis

Modification Coefficient, C_m

Amplified First Order Analysis

Braced Frame: No Translation

For cases where loads are present transverse to the member:

$$C_m = 1 - \psi \frac{\alpha P_r}{P_{e1}}$$

ψ from Table C-A-8.1

Example 1-Braced Frame

Given: Braced Frame

Find:

1. Evaluate W10x33 Columns.

Method: LRFD, ELM, include 1/500 out-of-plumbness, 3 in. connection eccentricity. Appendix 8

Example 2-Braced Frame

Given: Braced Frame

Find:

1. Design Column, LRFD.

Method: ELM, include l/500 out-of-plumbness, 3 inconnection eccentricity. Appendix 8

Example 3-Braced Frame

Design Column.

Method: LRFD, DAM-Ch C, include 1/500 out-of-plumbness, 3 in. connection eccentricity. Appendix 8

HW#4- Handout

Due 10/6/14