8. előadás (2020. április 6.)

Feltételes szélsőértékek

 $(\mathbb{R}^n \to \mathbb{R} \text{ függvényekre})$

Motiváló példák

1. példa. Pont és egyenes távolsága.

Így <u>is</u> felfogható: y = x + 2y - 4 = 0

$$\overline{OP} = \sqrt{x^2 + y^2}$$

$$\min_{P \in e} \overline{OP} = ?$$

Feladat: Adott:
$$f(x,y) := x^2 + y^2 \ ((x,y) \in \mathbb{R}^2)$$

 $g(x,y) := x + 2y - 4 \ ((x,y) \in \mathbb{R}^2)$
 $H_g := \{(x,y) \in \mathbb{R}^2 \mid g(x,y) = 0\}$ (az egyenes pontjai)

<u>Keressük</u> az f függvény minimumát a H_q halmazon.

2. példa. Határozzuk meg az egységsugarú körbe írt téglalapok között a maximális területű téglalapot.

Feladat: Adott:
$$f(x,y) := 4xy \ ((x,y) \in \mathbb{R}^2)$$

 $g(x,y) := x^2 + y^2 - 1 \ ((x,y) \in \mathbb{R}^2)$
 $H_g := \{(x,y) \in \mathbb{R}^2 \mid g(x,y) = 0\}$ (a körvonal pontjai)

Keressük az f függvény maximumát a H_g halmazon.

Elemi megoldás: $xy \le \frac{x^2 + y^2}{2} \Longrightarrow \text{négyzet.}$

Általánosan

Feladat: Adott: \bullet $U \subset \mathbb{R}^2$ nyílt halmaz,

- $f: U \to \mathbb{R}$ (célfüggvény),
- $g: U \to \mathbb{R}$ (feltételfüggvény),

$$H_g := \{(x,y) \in \mathbb{R}^2 \mid g(x,y) = 0\} \neq \emptyset.$$

Keressük az f függvény szélsőértékeit a H_g halmazon, azaz határozzuk meg az $f_{|H_g}$ függvény szélsőértékeit.

Megjegyzés. "Jó esetben" a $H_g \subset \mathbb{R}^2$ halmaz egy síkbeli "görbe". Például, ha

$$g(x,y) := x^2 + y^2 - 1 \quad ((x,y) \in \mathbb{R}^2),$$

akkor a H_q halmaz az origó középpntú 1 sugarú körvonal.

На

$$g(x,y) := (x^2 + y^2)^2 - 2a^2(x^2 - y^2) \quad ((x,y) \in \mathbb{R}^2),$$

akkor H_q a korábban már megemlített Bernoulli-féle lemniszkáta.

Definíció. Legyen $U \subset \mathbb{R}^2$ nyílt halmaz. Tegyük fel, hogy $f,g:U \to \mathbb{R}$ adott függvények és

$$a \in H_g := \{z \in U \mid g(z) = 0\} \neq \emptyset.$$

Azt mondjuk, hogy az f függvénynek a g=0 feltétel mellett az a pontban

• feltételes abszolút maximuma van, ha

$$f(x) \le f(a), \quad \forall a \in \mathcal{D}_f \cap H_g;$$

•feltételes lokális maximuma van, ha

$$\exists K(a) \subset U : f(x) \leq f(a), \quad \forall x \in K(a) \cap H_q.$$

A **minimum**mal kapcsolatban hasonló fogalmakat kapunk, ha a fentiekben a \leq egyenlőtlenség helyett \geq -t írunk.

A korábbiakkal összhangban használjuk f(a)-ra a feltételes abszolút (lokális) maximum (minimum), illetve szélsőérték, továbbá a-ra a feltételes abszolút (lokális) maximumhely (minimumhely), illetve szélsőértékhely elnevezést is.

Megjegyzés. A továbbiakban csak **lokális** szélsőértékekre fogalmazunk meg eredményeket.

- 1. megjegyzés. Az $f_{|H_g} \in \mathbb{R}^2 \to \mathbb{R}$ függvény szélsőértékeire nem alkalmazhatók az előző előadáson megfogalmazott tételek. Azokban ui. mindig feltettük, hogy a vizsgált pont az értelmezési tartomány belső pontja. Könnyen látható azonban, hogy a H_g halmaznak egyetlen pontja sem belső pont.
- **2. megjegyzés.** A feltételes szélsőértékek vizsgálatára alkalmazható módszer kitalálója *Joseph Louis Lagrange* (1736–1813) francia matematikus. Ezért a szóban forgó módszert *Lagrange-szorzók* (vagy *Lagrange-féle multiplikátorok*) *módszerének* nevezzük.

1. tétel. (Szükséges feltétel a feltételes lokális szélsőértékre.)

Tegyük fel, hogy

- (a) $U \subset \mathbb{R}^2$ nyílt halmaz és az $f, g: U \to \mathbb{R}$ függvényeknek léteznek a parciális deriváltjaik és ezek folytonosak az U halmazon;
- (b) $az(x_0, y_0) \in U$ pontban az f függvénynek a g = 0 feltételre vonatkozóan feltételes lokális szélsőértéke van;
- (c) $g'(x_0, y_0) = (\partial_1 g(x_0, y_0), \partial_2 g(x_0, y_0)) \neq (0, 0).$

Ekkor van olyan $\lambda \in \mathbb{R}$ valós szám (ezt **Lagrange-szorzónak** szokás nevezni), hogy az

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) \qquad ((x,y) \in U)$$

Lagrange-függvénynek (x_0, y_0) stacionárius pontja, azaz

$$\mathcal{L}'(x_0, y_0) = (\partial_x \mathcal{L}(x_0, y_0), \partial_y \mathcal{L}(x_0, y_0)) = (0, 0).$$

A tétel alkalmazása:

 1^o Képezzük az

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) \qquad ((x,y) \in U)$$

Lagrange függvényt.

 2^{o} Az x, y, λ ismeretlenekre megoldjuk a következő egyenletrendszert:

$$\partial_x \mathcal{L}(x,y) = \partial_x f(x,y) + \lambda \partial_x g(x,y) = 0,$$

$$\partial_y \mathcal{L}(x,y) = \partial_y f(x,y) + \lambda \partial_y g(x,y) = 0,$$

$$g(x,y) = 0.$$

Az így kapott (x_0, y_0) pont(ok)ban lehet(nek) a feltételes lokális szélsőértékhelyek.

Megjegyzés. Az $\mathcal{L}'(x_0, y_0) = (0, 0)$ csak *szükséges*, de *nem elégséges* feltétel a feltételes lokális szélsőértékre.

Tétel. (A feltételes lokális szélsőértékre vonatkozó másodrendű elégséges feltétel.) *Tegyük fel, hogy*

(a) $U \subset \mathbb{R}^2$ nyílt halmaz és az $f, g : U \to \mathbb{R}$ függvényeknek léteznek a másodrendű parciális deriváltjaik és ezek folytonosak az U halmazon;

(b) $az(x_0, y_0) \in U$ pontban a $\lambda_0 \in \mathbb{R}$ számmal teljesül a szükséges feltétel.

Tekintsük ezzel a λ_0 számmal az

$$\mathcal{L}(x,y) := f(x,y) + \lambda_0 g(x,y) \qquad ((x,y) \in U)$$

Lagrange-függvényt. Legyen

$$D(x_0, y_0; \lambda_0) := \det \begin{bmatrix} 0 & \partial_1 g(x_0, y_0) & \partial_2 g(x_0, y_0) \\ \partial_1 g(x_0, y_0) & \partial_{11} \mathcal{L}(x_0, y_0) & \partial_{12} \mathcal{L}(x_0, y_0) \\ \partial_2 g(x_0, y_0) & \partial_{21} \mathcal{L}(x_0, y_0) & \partial_{22} \mathcal{L}(x_0, y_0) \end{bmatrix}.$$

Ekkor,

ha $D(x_0, y_0; \lambda_0) > 0 \Longrightarrow (x_0, y_0)$ feltételes lokális **maximumhely**, ha $D(x_0, y_0; \lambda_0) < 0 \Longrightarrow (x_0, y_0)$ feltételes lokális **minimumhely**.

- 1. megjegyzés. A fentiekben két változó és egy egyenlőségi feltétel mellett vizsgáltuk a feltételes szélsőérték-problémát. Az eredmények kiterjeszthetők arra az esetre is, amikor az f célfüggvény n-változós $(2 < n \in \mathbb{N})$, és ekkor az egyetlen g = 0 feltétel helyett több egyenlőségi feltételt is előírhatunk.
- **2. megjegyzés.** A gyakorlat felvet számos olyan szélsőérték-problámát, amelyekben a változókra tett korlátozó feltételek *nem egyenlőségekkel*, hanem *egyenlőtlenségekkel* adottak. Az ilyen típusú problémákat (*lineáris*) programozási feladatoknak hívják. Vizsgálatukhoz nem az *analízis*, hanem a *lineáris algebra* eszköztárát lehet felhasználni.

3. megjegyzés. Most a feltételt megadó g(x,y) = 0 egyenletről lesz szó. Tegyük fel, hogy ebből az egyenletből (például) az y változó kifejezhető az x változó $f\ddot{u}ggv\acute{e}nyek\acute{e}nt$, azaz létezik olyan $\varphi \in \mathbb{R} \to \mathbb{R}$ függvény, amelyre $g(x,\varphi(x)) = 0$ teljesül. A $H_g = \{(x,y) \mid g(x,y) = 0\} \subset \mathbb{R}^2$ halmaz tehát a φ függvény garfikonja, ami "jó" esetben egy síkbeli "görbe".

Az f függvénynek a H_g halmaz pontjaiban felvett értékeit a $h(x) := f(x, \varphi(x))$ valós-valós függvénnyel lehet kifejezni.

A kétváltozós függvényekre vonatkozó feltételes szélsőérték-problémát a szóban forgó esetben a h egyváltozós függvény szélsőérték-problémájára lehet visszavezetni.

Az esetek "többségében" a g(x,y)=0 egyenletből nem lehet (például) az y változót kifejezni az x változó explicit függvényeként (vagy lehet, de csak nagyon bonyolult módon).

Vannak és fontosak azonban azok az eredmények, amelyek az egyenlet megold-hatóságára, vagyis a fentiekben megemlített φ függvénynek a létezésére adnak feltételeket, és φ explicit alakjáról semmit sem állítanak.

Implicit függvények

(Egyenletek megoldása)

Probléma. Adott: $f \in \mathbb{R}^2 \to \mathbb{R}$ olyan függvény, amelyre

$$H := \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = 0\} \neq \emptyset.$$

Kérdés:

$$\left\{
\begin{array}{l}
\text{Megoldhat\'o-e az} \\
f(x,y) = 0 \\
\text{egyenlet } y\text{-ra?}
\end{array}
\right\} \iff \left\{
\begin{array}{l}
\text{Van-e olyan } \varphi \in \mathbb{R} \to \mathbb{R}: \\
f(x,\varphi(x)) = 0?
\end{array}
\right\}$$

Definíció. Legyen $f \in \mathbb{R}^2 \to \mathbb{R}$ egy adott függvény. Ha létezik olyan $I \subset \mathbb{R}$ nyílt intervallum és $\varphi : I \to \mathbb{R}$ függvény, hogy

$$f(x, \varphi(x)) = 0 \quad (\forall x \in I),$$

akkor azt mondjuk, hogy a φ függvény az f(x,y)=0 implicit alakban van megadva; másképpen fogalmazva: φ megoldása az f(x,y)=0 implicit egyenletnek.

A probléma vizsgálata: Legyen $f(x,y) := x^2 + y^2 - 1$ $((x,y) \in \mathbb{R}^2)$.

- Csak lokális tétel várható.
- C környezetében $\exists \varphi$.
- A(-1,0) és B(1,0) környezetében $\not\equiv \varphi$.

Mi jellemzi A-t és B-t?

<u>Észrevétel</u>: $\partial_2 f(x,y) = 2y \Longrightarrow \partial_2 f(A) = \partial_2 f(B) = 0.$

A többi C pontban (ahol $\exists \varphi$) $\partial_2 f(C) \neq 0$.

Szerencse: az általános esetben is ezen múlik a φ függvény létezése.

- 1. tétel. (Egyváltozós implicitfüggvény-tétel.) Legyen $\Omega \subset \mathbb{R}^2$ nyílt halmaz és $f: \Omega \to \mathbb{R}$. Tegyük fel, hogy
 - (a) f folytonosan deriválható Ω -n,
 - (b) $az(a,b) \in \Omega$ pointban f(a,b) = 0 és $\partial_2 f(a,b) \neq 0$.

Ekkor

- 1^o van olyan K(a) =: U és K(b) =: V nyîlt halmaz \mathbb{R} -ben, hogy minden $x \in U$ ponthoz létezik egyetlen $\varphi(x) \in V$, amelyre $f(x, \varphi(x)) = 0$;
- 2^o az így definiált $\varphi: U \to V$ függvény folytonosan deriválható U-n és

$$\varphi'(x) = -\frac{\partial_1 f(x, \varphi(x))}{\partial_2 f(x, \varphi(x))}$$
 $(x \in U).$

- **1. megjegyzés.** Világos, hogy $\varphi(a) = b$. A φ függvényt az $f(x, \varphi(x)) = 0$ $(x \in U)$ egyenlőség "implicit" (= nem kifejtett, burkolt, rejtett) módon definiálja. Innen származik a tétel neve.
- **2.** megjegyzés. Másként: Ha $f \in C^1(\mathbb{R}^2)$, akkor az f(x,y) = 0 egyenlet megoldható y-ra x függvényében minden olyan (a,b) pont valamely környezetében, amelyben f(a,b) = 0 és $\partial_2 f(a,b) \neq 0$.

- **2. tétel.** (Implicitfüggvény-tétel az általános esetben.) Legyenek $\Omega_1 \subset \mathbb{R}^{n_1}$, $\Omega_2 \subset \mathbb{R}^{n_2}$ nyílt halmazok $(n_1, n_2 \in \mathbb{N})$ és $f: \Omega_1 \times \Omega_2 \to \mathbb{R}^{n_2}$. Tegyük fel, hogy,
 - (a) f folytonosan deriválható az $\Omega_1 \times \Omega_2$ halmazon,
 - (b) $az(a,b) \in \Omega_1 \times \Omega_2 \ pontban \ f(a,b) = 0 \ és \det \partial_2 f(a,b) \neq 0.$

Ekkor

1º létezik a-nak olyan $K(a) =: U_1 \subset \Omega_1$ és b-nek olyan $K(b) =: U_2 \subset \Omega_2$ környezete, hogy minden $x \in U_1$ ponthoz létezik egyetlen $\varphi(x) \in U_2$, amelyre $f(x, \varphi(x)) = 0 \in \mathbb{R}^{n_2}$;

 2^{o} az így definiált $\varphi: U_{1} \to U_{2}$ függvény folytonosan deriválható U_{1} -en és $\varphi'(x) = -\left[\partial_{2}f(x,\varphi(x))\right]^{-1} \cdot \partial_{1}f(x,\varphi(x)) \qquad (x \in U_{1}).$

1. megjegyzés. A tételben $\partial_2 f(a,b)$ jelöli az f függvény második változócsoport szerinti parciális deriváltját az (a,b) pontban. Ez az alábbi módon definiált $n_2 \times n_2$ -típusú mátrix:

$$\partial_2 f(a,b) := (\mathbb{R}^{n_2} \supset \Omega_2 \ni y \mapsto f(a,y) \in \mathbb{R}^{n_2})'_{y=b} \in \mathbb{R}^{n_2 \times n_2}$$

A $\partial_1 f(a,b)$ derivált definíciója hasonló.

2. megjegyzés. A tételnek egyenletrendszerek *megoldhatóságával* kapcsolatos értelmezés is adható.

Legyen $n_1, n_2 \in \mathbb{N}$, $x = (x_1, x_2, \dots, x_{n_1}) \in \mathbb{R}^{n_1}$, $y = (y_1, y_2, \dots, y_{n_2}) \in \mathbb{R}^{n_2}$ és $f = (f_1, f_2, \dots, f_{n_2}) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^{n_2}$.

Tekintsük az f(x,y) = 0 egyenletrendszert, amelyet komponensekre bontott alakban így írhatunk fel:

$$f_1(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0,$$

$$f_2(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0,$$

$$\vdots$$

$$f_{n_2}(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0.$$

Itt az $y_1, y_2, \ldots, y_{n_2}$ számok az ismeretlenek és $x_1, x_2, \ldots, x_{n_1}$ a paraméterek. Feltesszük, hogy ismerjük ennek egy megoldását, azaz tudjuk, hogy az $a=(a_1,a_2,\ldots,a_{n_1})$ paraméter esetén $b=(b_1,b_2,\ldots,b_{n_2})$ egy megoldás, vagyis f(a,b)=0. A fenti egyenletrendszerből szeretnénk kifejezni az y_1,y_2,\ldots,y_{n_2} ismeretleneket az x_1,x_2,\ldots,x_{n_1} paraméterek függvényében. A 2. tétel szerint ez minden a-hoz közeli x esetén megtehető, ha f folytonosan deriválható és $\partial_2 f(a,b) \neq 0$; a megoldások egyértelműek és x-nek folytonosan deriválható függvényei.

Inverz függvények

 $(\mathbb{R}^n \to \mathbb{R}^n \text{ típusú függvények})$

<u>Emlékeztető.</u> Valós-valós függvények inverzének a létezésére, illetve az inverz függvény deriválhatóságára több eredményt ismertünk meg. Most a következő *lokális* jellegű állításra emlékeztetünk:

Tegyük fel, hogy az $f: I \to \mathbb{R}$ ($I \subset \mathbb{R}$ nyílt intervallum) függvény folytonosan deriválható I-n és egy $a \in I$ pontban $f'(a) \neq 0$. Ekkor

 $1^o \ f \ lokálisan \ invertálható, \ azaz \ \exists \ K(a) =: U \ \ \'es \ \exists \ K(f(a)) =: U,$

 $f_{|U}:U\to V$ függvény bijekció (következésképpen invertálható),

 2^{o} az f^{-1} inverz függvény folytonosan deriválható V-n és

(*)
$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} (y \in V).$$

Megjegyzés. Érdemes felidézni az állítás bizonyítását, valamint a (*) képlet geometriai jelentését.

A többváltozós esetben hasonló állítás érvényes.

- **1. tétel.** (Inverzfüggvény-tétel.) Legyen $\Omega \subset \mathbb{R}^n$ nyílt halmaz és $f: \Omega \to \mathbb{R}^n$. Tegyük fel, hogy,
 - (a) f folytonosan deriválható Ω -n,
 - (b) $az \ a \in \Omega \ pontban \det f'(a) \neq 0.$

Ekkor

1º f lokálisan invertálható, azaz van olyan K(a) =: U és K(f(a)) =: V, hogy az $f_{|U}: U \to V$ bijekció (következésképpen invertálható),

 2^{o} az f^{-1} inverz függvény folytonosan deriválható V-n és

$$(**) (f^{-1})'(y) = [f'(f^{-1}(y))]^{-1} (y \in V).$$

- 1. megjegyzés. Az inverz függvény létezése a többváltozós esetben <u>minőségileg</u> <u>bonyolultabb</u> az egyváltozós esetnél; ez tehát egy olyan pont, ahol az egyváltozós analógia létezik ugyan, a immár nem elegendő.
- **2. megjegyzés.** Az f függvény explicit alakjának az ismeretében f^{-1} helyettesítési értékeire általában nincs explicit képlet; viszont (**) alapján a derivált helyettesítési értékei az f' helyettesítési értékeinek felhasználásával már kiszámíthatók.

3. megjegyzés. A tételnek egyenletrendszerek megoldásával kapcsolatos értelmezés is adható. Legyen $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ és $y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$. Jelölje $f_i \in \mathbb{R}^n \to \mathbb{R}$ (i = 1, 2, ..., n) az f függvény koordinátafüggvényeit: $f = (f_1, f_2, ..., f_n) \in \mathbb{R}^n \to \mathbb{R}^n$. Tekintsük az

$$f(x) = y$$

egyenletet. A komponensekre bontott alakba írva kapjuk az n egyenletből álló

$$f_1(x_1, x_2, \dots, x_n) = y_1,$$

 $f_2(x_1, x_2, \dots, x_n) = y_2,$
 \vdots
 $f_n(x_1, x_2, \dots, x_n) = y_n$

egyenletrendszert, amelyben az y_1, y_2, \ldots, y_n számokat paramétereknek tekintjük, és x_1, x_2, \ldots, x_n az ismeretlenek.

Legyen $a = (a_1, a_2, \ldots, a_n) \in \mathcal{D}_f$ és $b = (b_1, b_2, \ldots, b_n) := f(a)$. Tegyük fel, hogy f folytonosan deriválható az a pont egy $k(a) \subset \mathcal{D}_f$ környezetében, továbbá teljesül (a könnyen ellenőrizhető) det $f'(a) \neq 0$ feltétel. Ekkor a fenti tétel azt állítja, hogy az egyenletrendszer megoldható az x_1, x_2, \ldots, x_n ismeretlenekre az y_1, y_2, \ldots, y_n paraméterek függvényében, ha az x és az y pontokat a és b elegendően kicsiny környezetére korlátozzuk; a megoldás egyértelmű és folytonosan differenciálható.