第一章 整数的可除性 2020年02月25日

信息安全数学基础

陈恭亮 教授 博士生导师

上海交通大学网络空间安全学院

chengl@sjtu.edu.cn

访问主页

标题页

目 录 页

第1页共29页

返回

全屏显示

关 闭

本章主要思考的一些问题

- 1. 整数集合Z 中的整数, 对于乘法运算, 其极小整数(不能分解为两个更小整数的乘积)是什么? 这样的极小整数是唯一的吗? 用何种表示可说明它们的唯一性?
- 2. 如何判断一个正整数为素数. 编成实现厄拉托塞师筛法的算法, 可求出10000 以内的全部素数.
- 3. 编成实现欧几里得除法(定理1.1.9), 并可判断整数*a* 是否被非零整数整除.
- 4. 编成实现应用平凡除法判断一个整数(定理1.1.7) 是否为素数的算法,可判断出100000 以内的整数是否为素数.
- 5. 如何求两个整数的公因数及最大公因数. 编成实现求两个整数的最大公因数(定理1.3.4) 的算法, 可计算出100000 以内的两个整数的最大公因数.
- 6. 对给定正整数m, 编成实现判断整数a 是否与m 互素的算法.
- 7. 编成实现计算Bézout (贝祖)等式的算法(定理1.3.7). 即对于两个正整数a, b, 可计算出整数s, t 使得(3.16) 成立: $s \cdot a + t \cdot b = (a, b)$.

访问主页

标题页

目 录 页

第2页共29页

返回

全屏显示

关 闭

本章主要讲述如下问题

- 1. 整除的定义、可否推广到多项式、矩阵、整环
- 2. 素数 乘法的最小单位
- 3. 若 $c \mid a \cdot b$, 则 $c \mid a$ 或 $c \mid b$.
- 3. 若 $p \mid a \cdot b$, 则 $p \mid a$ 或 $p \mid b$.
- 4. 如何找素数
- 5. 厄拉托塞师(Eratosthenes) 筛法
- 6. 欧几里得除法 不完全商 余数
- 7. 最大公因数
- 8. 广义欧几里得除法

访问主页

标 题 页

目 录 页

第3页共29页

返回

全屏显示

关 闭

本章主要讲述如下问题

- 1. 整除 因数 倍数
- 2. 素数 合数
- 3. 厄拉托塞师(Eratosthenes) 筛法
- 4. 欧几里得除法 不完全商 余数
- 5. 整数的b-进制表示
- 6. 最大公因数
- 7. 广义欧几里得除法
- 8. 整数的性质 最小公倍数
- 9. 算术基本定理
- 10. 素数定理

访问主页

标 题 页

目 录 页

第 4 页 共 29 页

返回

全屏显示

关 闭

1.1.1 整除的概念

本节考虑关于整数的基本概念和性质: 整除和欧几里得除法. **定义1.1.1** 设a, b 是任意两个整数, 其中 $b \neq 0$. 如果存在一个整数q使得等式

$$a = q \cdot b. \tag{1}$$

成立,就称b 整除 a 或者a 被b 整除,记作 $b \mid a$,并把b 叫做a 的因数, 把a 叫做b 的**倍数**. 这时, q 也是a 的因数, 常将q 写成a/b 或 $\frac{a}{b}$. 否则, 就称b 不能整除a 或者a 不能被b 整除,记作 $b \not | a$.

注1整除定义1.1.1仅与乘法运算相关,与小学整除定义有极大区 别.

注2本整除定义1.1.1可推广为现代数学的整除定义.

注3 当b 遍历整数a 的所有因数时, -b 遍历整数a 的所有因数. **注4** 当b 遍历整数a 的所有因数时, $\frac{a}{b}$ 遍历整数a 的所有因数.

访问主页

标题页

目 录 页

第5页共29页

全屏显示

关 闭

例1.1.1 $30 = 15 \cdot 2 = 10 \cdot 3 = 6 \cdot 5$.

有2, 3, 5 分别整除30 或30 被2, 3, 5 分别整除,记作2 | 30, 3 | 30, 5 | 30. 这时, 2, 3, 5 都是30 的因数, 30 是2, 3, 5 的倍数.

30 的所有因数是

 $\{\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30\},\$

或是

 $\{\mp 1, \mp 2, \mp 3, \mp 5, \mp 6, \mp 10, \mp 15, \mp 30\},\$

或是

$$\{\pm 30 = 30/\pm 1, \pm 15 = 30/\pm 2, \pm 10 = 30/\pm 3, \pm 6 = 30/\pm 5, \pm 5 = 30/\pm 6, \pm 3 = 30/\pm 10, \pm 2 = 30/\pm 15, \pm 1 = 30/\pm 30\}.$$

又例如: 7 | 84, -7 | 84, 5 | 20, 3 / 8, 5 / 12, 13 | 0, 11 | 11.

* 0 是任何非零整数的倍数. 1 是任何整数的因数. 任何非零整数a 是其自身的的倍数, 也是其自身的因数.

访问主页

标 题 页

目 录 页

第6页共29页

返回

全屏显示

关 闭

例1.1.2 设a, b为整数. 若 $b \mid a$, 则 $b \mid (-a)$, $(-b) \mid a$, $(-b) \mid (-a)$. 证 设 $b \mid a$, 则存在整数q 使得 $a = q \cdot b$. 因而,

$$(-a) = (-q) \cdot b, \quad a = (-q) \cdot (-b), \quad (-a) = q(-b).$$

因为-q, q 都是整数, 根据整除的定义, 有

$$b \mid (-a), (-b) \mid a, (-b) \mid (-a).$$

定理1.1.1 设 $a, b \neq 0, c \neq 0$ 是整数. 若 $c \mid b, b \mid a,$ 则 $c \mid a.$ (传递性) 证 设 $c \mid b, b \mid a$, 根据整除的定义, 分别存在整数 q_1, q_2 使得

$$b = q_2 \cdot c, \quad a = q_1 \cdot b.$$

因此, 我们有 $a = q_1 \cdot b = q_1(q_2 \cdot c) = q \cdot c$.

因为 $q = q_1 \cdot q_2$ 是整数, 所以根据整除的定义, 有 $c \mid a$.

注 数学证明的表述.

例1.1.3 因为7 | 42, 42 | 84, 所以7 | 84.

访问主页

标 题 页

目 录 页

第7页共29页

返回

全屏显示

关 闭

定理1.1.2 设a, b, $c \neq 0$ 是整数. 若 $c \mid a$, $c \mid b$, 则 $c \mid a \pm b$.(加法运算)证 设 $c \mid a$, $c \mid b$, 那么存在整数 q_1 , q_2 分别使得

$$a = q_1 \cdot c, \quad b = q_2 \cdot c.$$

因此, $a \pm b = q_1 \cdot c \pm q_2 \cdot c = (q_1 \pm q_2) \cdot c$.

因为 $q_1 \pm q_2$ 是整数, 所以 $a \pm b$ 被c 整除.

例4 因为7 | 14, 7 | 84, 所以

$$7 \mid (84 + 14) = 98, \quad 7 \mid (84 - 14) = 70.$$

定理1.1.3 设 $a, b, c \neq 0$ 是整数. 若 $c \mid a, c \mid b$, 则对任意整数s, t, 有 $c \mid s \cdot a + t \cdot b$. (整系数线性组合)

证 设c|a, c|b, 那么存在整数 q_1, q_2 分别使得

$$a = q_1 \cdot c, \quad b = q_2 \cdot c.$$

因此, $s \cdot a + t \cdot b = s(q_1 \cdot c) + t(q_2 \cdot c) = (s \cdot q_1 + t \cdot q_2) \cdot c$. 因为 $s \cdot q_1 + t \cdot q_2$ 是整数, 所以 $s \cdot a + t \cdot b$ 被c 整除.

访问主页

标 题 页

目 录 页

第8页共29页

返回

全屏显示

关 闭

例1.1.5 因为7|14, 7|21,故

$$7|(3 \cdot 21 - 4 \cdot 14) = 7$$
, $7|(3 \cdot 21 + 4 \cdot 14) = 119$.

例1.1.6 设n, a, b, $c \neq 0$ 是三个整数, $c \mid a \cdot n$, $c \mid b \cdot n$. 如果存在整数s, t, 使得 $s \cdot a + t \cdot b = 1$, 则 $c \mid n$.

证 设 $c \mid a \cdot n, c \mid b \cdot n$, 因为存在整数s, t, 使得 $s \cdot a + t \cdot b = 1$, 根据定理3, 有

$$c \mid s(a \cdot n) + t(b \cdot n) = (s \cdot a + t \cdot b)n = n.$$

因此, $c \mid n$.

定理1.1.3 可推广为:

定理1.1.4 若整数 a_1, \ldots, a_n 都是整数 $c \neq 0$ 的倍数,则对任意n 个整数 s_1, \ldots, s_n ,整数

$$s_1 \cdot a_1 + \cdots + s_n \cdot a_n$$

是c的倍数.

访问主页

标 题 页

目 录 页

第9页共29页

返回

全屏显示

关 闭

例1.1.7 因为7|14, 7|21, 7|35, 所以

$$7|(5 \cdot 21 + 4 \cdot 14 - 3 \cdot 35) = 56.$$

定理1.1.5 设a, b 都是非零整数. 若 $a \mid b$, $b \mid a$, 则 $a = \pm b$. **证** 设 $a \mid b$, $b \mid a$, 那么存在两个整数 q_1 , q_2 分别使得

$$a = q_1 \cdot b, \quad b = q_2 \cdot a.$$

从而,

$$a = q_1 \cdot b = q_1(q_2 \cdot a) = (q_1 \cdot q_2) \cdot a.$$

这样, $q_1 \cdot q_2 = 1$. (为什么?)

因为 q_1, q_2 是整数, 所以 $q_1 = q_2 = \pm 1$. 进而, $a = \pm b$.

访问主页

标 题 页

目 录 页

第 10 页 共 29 页

返回

全屏显示

关 闭

素数

前面考虑了整除和因数, 现考虑不能继续分解的整数. 更确切地说 是关于乘法运算的整数最小元素.

定义1.1.2 设整数 $n \neq 0$, ±1. 如果除了显然因数±1 和±n 外, n 没有其它因数, 则n 叫做**素数** (或**质数** 或**不可约数**). 否则, n 叫做**合数**.

因n 和-n 同为素数或合数, 故约定<mark>素数总是指正整数</mark>, 通常写成p.

例1.1.8 整数 2, 3, 5, 7 都是素数; 整数4, 10, 21, 30 都是合数.

因为 $4 = 2 \cdot 2$, $10 = 2 \cdot 5$, $21 = 3 \cdot 7$,

 $30 = 2 \cdot 15 = 3 \cdot 10 = 5 \cdot 6.$

访问主页

标 题 页

目 录 页

第 11 页 共 29 页

返回

全屏显示

关 闭

下面证明素数的存在性,即每个合数必有素因子.

最小的非单位元为素数(乘法).

定理1.1.6 设 n 是一个正合数, p 是 n 的一个大于1 的最小正因数, 则 p 一定是素数, 且 $p \leq \sqrt{n}$.

证 反证法. 若p 不是素数,则存在q, 1 < q < p,使得

$$q \mid p$$
. $extstyle p \mid n$,

由定理1.1.1,有

这与p 是最小正因数矛盾. 故p 是素数.

因为n 是合数, 所以

$$n = n_1 \cdot p, \quad 1$$

因此,

$$p^2 \le n, \qquad p \le \sqrt{n}.$$

证毕

访问主页 标题页 目录页 第 12 页 共 29 页

返 回

全屏显示

关 闭

1.1.2 厄拉托塞师(Eratosthenes) 筛法

根据定理1.1.6, 立即得到一个整数为素数的判别法则.

定理1.1.7 设n > 1. 若对所有的素数 $p \le \sqrt{n}$, 有 $p \nmid n$, 则n 是素数.

*应用定理1.1.7, 我们有一个寻找素数的确定性方法, 通常叫做厄拉托塞师(Eratosthenes) 筛法.

对任意给定的正整数N,要求出所有不超过N 的素数. 我们列出N 个整数, 从中删除 $\leq \sqrt{N}$ 的所有素数 p_1, \ldots, p_k 的倍数. 具体地是依次删除,

$$p_1$$
 的倍数: $2 \cdot p_1, \ldots, \left\lfloor \frac{N}{p_1} \right\rfloor \cdot p_1;$

 p_k 的倍数: $2 \cdot p_k, \ldots, \left\lceil \frac{N}{p_k} \right\rceil \cdot p_k,$

余下的整数(不包括1) 就是所要求的不超过N 的素数.

访问主页

标 题 页

目 录 页

第 13 页 共 29 页

返回

全屏显示

关 闭

例1.1.9 求出所有不超过N = 100 的素数.

解 因 为 $\leq \sqrt{100} = 10$ 的 所 有 素 数 为 2, 3, 5, 7, 所 以 依 次 删 除 2, 3, 5, 7 的 倍 数,

$$2 \cdot 2$$
, $3 \cdot 2$, $4 \cdot 2$, ..., $49 \cdot 2$, $50 \cdot 2$

$$2 \cdot 3$$
, $3 \cdot 3$, $4 \cdot 3$, ..., $32 \cdot 3$, $33 \cdot 3$

$$2 \cdot 5$$
, $3 \cdot 5$, $4 \cdot 5$, ..., $19 \cdot 5$, $20 \cdot 5$

$$2 \cdot 7$$
, $3 \cdot 7$, $4 \cdot 7$, ..., $13 \cdot 7$, $14 \cdot 7$.

余下的整数(不包括1) 就是所要求的不超过N = 100 的素数. 我们将上述解答列表如下:

访问主页

标 题 页

目 录 页

第 14 页 共 29 页

返回

全屏显示

关 闭

SE TO TONG THE SECOND S

对于素数 $p_1=2$,

对于素数 $p_2 = 3$	对干	素数n ₂	= 3.
----------------	----	------------------	------

1	2	3	A	5	ß	7	8	9	10	1	2	3	5	7	ß
11	1 2	13	14	15	1 6	17	18	19	2 0	11		13	1 15	17	19
21	2 2	23	2 4	25	2 6	27	2 8	29	3 0	½ 1		23	25	2 7	29
31	$\beta 2$	33	3 4	35	ß 6	37	\$ 8	39	4 0	31		\$ 3	35	37	3 9
41	A 2	43	$\cancel{A}4$	45	A 6	47	A 8	49	5 0	41		43	A5	47	49
51	5 2	53	5 4	55	5 6	57	<i>5</i> 8	59	6 0	5 1		53	55	<i>5</i> 7	59
61	62	63	64	65	66	67	68	69	7 70	61		6 3	65	67	6 9
71	7 /2	73	7 /4	75	7 76	77	7 /78	79	, 80	71		73	7 75	77	79
81	82	83	84	85	, 86	87	\$ 8	89	,9 0	% 1		83	85	<i>,</i> 87	89
91	/9 2	93	ß 4	95	Ø 6	97	/9 8	99	1 00	91		/9 3	95	97	/9 9

访问主页

标 题 页

目 录 页

第 15 页 共 29 页

返回

全屏显示

关 闭

对于素数 $p_3=5$,

对于素数 $p_4 = 7$,

1 2	2 3	5	7		1
11	13		17	19	1
	23	2 5		29	
31		\$ 5	37		3
41	43		47	49	4
	53	5 5		59	
61		6 5	67		6
71	73		77	79	7
	83	% 5		89	
91		Ø 5	97		Ø

1	2 3	5	7	
11	13		17	19
	23			29
31			37	
41	43		47	4 9
	53			59
61			67	
71	73		<i>7</i> 77	79
	83			89
Ø 1			97	

访问主页

标 题 页

目 录 页

第 16 页 共 29 页

返回

全屏显示

关 闭

余下整数(不包括1) 就是所求的不超过N=100 的素数:

1	2	3	5	7	
11		13		17	19
		23			29
31				37	7
41		43		47	,
		53			59
61				67	,
71		73			79
		83			89
				97	,

即2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

访问主页

标 题 页

目 录 页

第 17 页 共 29 页

返回

全屏显示

关 闭

定理1.1.8 素数有无穷多个.

证 反证法. 假设只有有限个素数. 设它们为 p_1, p_2, \ldots, p_k . 考虑整数

$$n=p_1\cdot p_2\cdots p_k+1.$$

因为 $n > p_i$, i = 1, ..., k, 所以n 一定是合数. 根据定理1.1.6, n的大于1 的最小正因数p 是素数. 因此, p 是 p_1 , p_2 , ..., p_k 中的某一个, 即存在j, $1 \le j \le k$, 使得 $p = p_j$. 根据定理3, 我们有

$$p \mid n - (p_1 \cdots p_{j-1} \cdot p_{j+1} \cdots p_k) \cdot p_j = 1.$$

这是不可能的. 故存在有无穷多个素数.

运用上述方法可证明形为4k+3的素数有无穷多个, 但无法证明形为4k+1的素数有无穷多个. 需要更多技巧.

访问主页

标 题 页

目 录 页

第 18 页 共 29 页

饭 回

全屏显示

关 闭

1.1.3 欧几里得(Euclid)除法-最小非负余数

因为不是任意两个整数之间都有整除关系, 所以我们引进欧几里 得(Euclid)除法或带余数除法.

定理1.1.9 (欧几里得除法) 设a, b 是两个整数, 其中b > 0. 则存在惟一的整数q, r 使得

$$a = q \cdot b + r, \quad 0 \le r < b \tag{2}$$

证: (存在性) 考虑一个整数序列

$$\dots$$
, $-3 \cdot b$, $-2 \cdot b$, $-b$, 0 , b , $2 \cdot b$, $3 \cdot b$, \dots

它们将实数轴分成长度为b 的区间, 而a 必定落在其中的一个区间中. 因此存在一个整数q 使得

$$q \cdot b \le a < (q+1)b.$$

我们令 $r = a - q \cdot b$, 则有 $a = q \cdot b + r$, $0 \le r < b$.

访问主页

标 题 页

目 录 页

第 19 页 共 29 页

返回

全屏显示

关 闭

(惟一性) 如果分别有整数 q, r 和 q_1 , r_1 满足(2), 则

$$a = q \cdot b + r, \quad 0 \le r < b,$$

 $a = q_1 \cdot b + r_1, \quad 0 \le r_1 < b.$

两式相减,有 $(q-q_1)b = -(r-r_1)$.

当 $q \neq q_1$ 时, 左边的绝对值 $\geq b$, 而右边的绝对值< b. 这是不可能的. 故 $q = q_1$, $r = r_1$.

定义1.1.3 (2) 式中的q 叫做a 被b 除所得的不完全商, r 叫做a 被b 除所得的余数.

推论 在定理1.1.9 的条件下, $b \mid a \Leftrightarrow r = 0$.

注1 推论表明整除的定义等价于小学的整除定义. 并可用余数r=0 作为a 被b 整除的判断.

注2 欧几里得除法在密码算法中起着**核心作用**, 其改进关系到密码系统的效率. 如 $b = 2^u + v$, v 很小.

访问主页

标 题 页

目 录 页

第 20 页 共 29 页

返 回

全屏显示

关 闭

如何求q 和r

给定正整数 a, b, 求 q 和 r 使得 $a = q \cdot b + r$, $0 \le r < b$? 可以做如下计算

1) 如果a < b, 则取 q = 0, r = a. 否则, 令

$$a_1 = a - b, \quad q_1 = 1.$$

2) 如果 $a_1 < b$, 则取 $q = q_1, r = a_1$. 否则, 令

$$a_2 = a_1 - b = a - 2 \cdot b$$
, $q_2 = q_1 + 1 = 2$.

如此下去, 存在k 使得

$$0 < a_k = a_{k-1} - b = a - k \cdot b < b, \quad q_k = q_{k-1} + 1 = k.$$

(k+1) 最后, 取 $q = q_k = k, r = a_k$, 有

$$a = q \cdot b + r, \quad 0 \le r < b.$$

访问主页

标 题 页

目 录 页

第21页共29页

返回

全屏显示

关 闭

函数[x]

为了更好的描述不完全商和余数,以及今后表述一些数学概念和问题,我们引进一个数学符号.

定义1.1.4 设x 是一个实数. 我们称x 的整数部分为小于或等于x 的最大整数, 记成[x]. 这时, 我们有

$$[x] \le x < [x] + 1.$$

例1.1.10 [3.14] = 3, [-3.14] = -4, [3] = 3, [-3] = -3.

注1 定理1.1.9 中不完全商q 和余数r 可写为

$$q = \left[\frac{a}{b}\right], \qquad r = a - \left[\frac{a}{b}\right] \cdot b.$$

事实上, 由 $a = q \cdot b + r$, 有 $\frac{a}{b} = q + \frac{r}{b}$.

因此,
$$q = \left[\frac{a}{b}\right]$$
.

访问主页

标 题 页

目 录 页

第 22 页 共 29 页

返回

全屏显示

关 闭

注2 定理1.1.9 中, 先计算不完全商 $q = \begin{bmatrix} a \\ \overline{b} \end{bmatrix}$,

再计算余数 $r = a - \left[\frac{a}{b}\right] b$.

例1.1.11 设b = 15.

当
$$a = 255$$
 时,

$$a = 17b + 0, \quad q = \left\lceil \frac{255}{15} \right\rceil = 17, \quad r = 0 < 15;$$

当a = 417 时,

$$a = 27b + 12$$
, $q = \left\lceil \frac{417}{15} \right\rceil = 27$, $0 < r = 12 < 15$;

当a = -81 时,

$$a = -6b + 9$$
, $q = \left[\frac{-81}{15}\right] = -6$, $0 < r = 9 < 15$.

访问主页

标 题 页

目 录 页

第 23 页 共 29 页

返回

全屏显示

关 闭

整数为素数的确定性检验

应用定理1.1.7和欧几里得除法,可具体判断一个整数是否为素数.

例1.1.12 证明N = 137 为素数.

解 因为 $\leq \sqrt{137} < 12$ 的所有素数为

所以依次用2, 3, 5, 7, 11 去试除:

$$137 = 68 \cdot 2 + 1,$$

$$137 = 45 \cdot 3 + 2$$

$$137 = 26 \cdot 5 + 3$$

$$137 = 19 \cdot 7 + 4,$$

$$137 = 12 \cdot 11 + 5.$$

因此, $2 \cancel{1}37$, $3 \cancel{1}37$, $5 \cancel{1}37$, $7 \cancel{1}37$, $11 \cancel{1}37$. 由定理1.1.7, N = 137 为素数.

访问主页

标 题 页

目 录 页

第 24 页 共 29 页

返回

全屏显示

关 闭

1.1.3 欧几里得(Euclid)除法—一般余数

实际运用欧几里得除法时,可根据需要将余数取成其它形式.

定理1.1.10 (欧几里得除法) 设a, b 是两个整数, 其中b > 0. 则对任意的整数c, 存在惟一的整数q, r 使得

$$a = q \cdot b + r, \quad c \le r < b + c \tag{3}$$

证: (存在性) 考虑一个整数序列

$$\dots$$
, $-3 \cdot b + c$, $-2 \cdot b + c$, $-b + c$, c , $b + c$, $2 \cdot b + c$, $3 \cdot b + c$, \dots

它们将实数轴分成长度为 b 的区间, 而 a 必定落在其中的一个区间中. 因此存在一个整数q 使得

$$q \cdot b + c \le a < (q+1)b + c.$$

我们令 $r = a - q \cdot b$, 则有

$$a = q \cdot b + r$$
, $c \le r < b + c$.

访问主页

标 题 页

目 录 页

第 25 页 共 29 页

返回

全屏显示

关 闭

(惟一性) 如果分别有整数q, r 和 q_1 , r_1 满足(3), 则

$$a = q \cdot b + r, \quad c \le r < b + c,$$

 $a = q_1 \cdot b + r_1, \quad c \le r_1 < b + c.$

两式相减,我们有

$$(q-q_1)b = -(r-r_1).$$

当 $q \neq q_1$ 时,

$$|(q-q_1)b| \ge b,$$
 $|-(r-r_1)| < b.$

这是不可能的. 故 $q = q_1$, $r = r_1$.

访问主页

标 题 页

目 录 页

第 26 页 共 29 页

饭 回

全屏显示

关 闭

余数的表示

运用欧几里得除法和余数(c < r < b + c - 1)时, 常采用如下形式的余数.

- 1. 当c = 0 时, 有b + c = b 及0 < r < b 1 < b. 这时r 叫做最小非负余数.
- 2. 当c = 1 时, 有b + c = b + 1 及1 < r < b. 这时r 叫做最小正余数.
- 3. 当c = -b + 1 时, 有b + c = 1 及-b < -b + 1 < r < 0. 这时r 叫做最大非 正余数.
- 4. 当c = -b 时, 有b + c = 0 及-b < r < -1 < 0. 这时r 叫做最大负余数.

5. i) 当
$$b$$
 为偶数, $c = -\frac{b}{2}$ 时, 有 $b + c = \frac{b}{2}$ 及 $-\frac{b}{2} \le r \le \frac{b-2}{2} < \frac{b}{2}$

5. i) 当
$$b$$
 为偶数, $c = -\frac{b}{2}$ 时, 有 $b + c = \frac{b}{2}$ 及 $-\frac{b}{2} \le r \le \frac{b-2}{2} < \frac{b}{2}$, ii) 当 b 为偶数, $c = -\frac{b-2}{2}$ 时, 有 $b + c = \frac{b+2}{2}$ 及 $-\frac{b}{2} < -\frac{b-2}{2} \le r \le \frac{b}{2}$,

iii) 当
$$b$$
 为奇数, $c = -\frac{b-1}{2}$ 时, 有 $b+c = \frac{b+1}{2}$ 及

$$-\frac{b}{2} < -\frac{b-1}{2} \le r \le \frac{b-1}{2} < \frac{b}{2}.$$

总之,我们有

$$-\frac{b}{2} \le r < \frac{b}{2} \qquad \vec{\mathfrak{A}} \qquad -\frac{b}{2} < r \le \frac{b}{2}.$$

这时, r 叫做绝对值最小余数.

访问主页

标题页

目 录 页

第27页共29页

返 回

全屏显示

关 闭

例1.1.13 设b=7. 则

余数r = 0, 1, 2, 3, 4, 5, 6 为最小非负余数.

余数r = 1, 2, 3, 4, 5, 6, 7 为最小正余数.

余数r = 0, -1, -2, -3, -4, -5, -6 为最大非正余数.

余数r = -1, -2, -3, -4, -5, -6, -7 为最大负余数.

余数r = -3, -2, -1, 0, 1, 2, 3 为绝对值最小余数.

例1.1.14 设b = 8. 则

余数r = 0, 1, 2, 3, 4, 5, 6, 7 为最小非负余数.

余数r = 1, 2, 3, 4, 5, 6, 7, 8 为最小正余数.

余数r = 0, -1, -2, -3, -4, -5, -6, -7 为最大非正余数.

余数r = -1, -2, -3, -4, -5, -6, -7, -8 为最大负余数.

余数r = -4. -3, -2, -1, 0, -1, -2, -3

或r = -3, -2, -1, 0, 1, 2, 3, 4 为绝对值最小余数.

访问主页

标题页

目 录 页

第 28 页 共 29 页

返回

全屏显示

关 闭

作业2020-02-25

1. 补充定理1.1.4 之证明:

定理1.1.4 若整数 a_1, \ldots, a_n 都是整数 $c \neq 0$ 的倍数,则对任意n 个整数 s_1, \ldots, s_n ,整数 $s_1 \cdot a_1 + \cdots + s_n \cdot a_n$ 是c 的倍数.

- 2. (习题1.8 (13)) 证明: 4k + 3 形式的素数有无穷多个.
- 3. (习题1.8 (20)) 证明: 当 $n = 0, 1, 2, \dots, 39$ 时, 整数 $n^2 + n + 41$ 都是素数.
- 4. (习题1.8 (21)) 证明: 当n > 1 时, $1 + \frac{1}{2} + \cdots + \frac{1}{n}$ 不是整数. 思考题:
- 1. (思考1.8 (1)) 整数集合Z中的整数,对于乘法运算,其极小整数(不能分解为两个更小整数的乘积)是什么?这样的极小整数是唯一的吗?用何种表示可说明它们的唯一性?
- 2. (思考1.8 (2)) 如何判断一个正整数为素数. 编成实现厄拉托塞师筛法的算法, 可求出10000 以内的全部素数.
- 3. (思考1.8 (3)) 编成实现欧几里得除法, 并可判断整数 是否被非零整数整除.
- 4. (思考1.8 (4)) 编成实现应用平凡除法判断一个整数是否为素数的算法,可判断出100000 以内的整数是否为素数.

访问主页

标 题 页

目 录 页

4 | **>>**

第29页共29页

返回

全屏显示

关 闭

