Proof of Linearity of Hadamard Code given by Sylvester Matrices

Mitsuru Takigahira

証明

数学的帰納法で示す。

$$n=2^m$$
 のとき

- Sylvester Matrix $\mathcal{E} S_m$
- S_m から生成される Hadamard Code を C_m
- $\bullet \ \ \textit{$C_m$} = \{ \textbf{u}_1^{(m)}, \bar{\textbf{u}}_1^{(m)}, \ldots, \textbf{u}_{2^m}^{(m)}, \bar{\textbf{u}}_{2^m}^{(m)} \}$

と表記することにする

証明 (1/3)

m=0 のとき

$$S_m = (1) \text{ or } (-)$$
 より、 $C_0 = \{(1), (0)\}$ よって、 C_0 は (1) を基底として線形になり、 C_0 は線形符号。

帰納法の仮定

 $m=k\geq 0$ のとき C_k が線形になると仮定する。 このとき C_k は 2^{k+1} 個の符号 $\{\mathbf{u}_1^{(k)}, \bar{\mathbf{u}}_1^{(k)}, \dots, \mathbf{u}_{2^k}^{(k)}, \bar{\mathbf{u}}_{2^k}^{(k)}\}$ を持ち、これらは k+1 個の基底 $\mathbf{e}_1^{(k)}, \dots, \mathbf{e}_{k+1}^{(k)}$ をもち、線形である。

証明 (2/3)

S_{k+1} から作られる符号の線形性

補題
$$6.24$$
 より $S_{k+1} = \begin{pmatrix} S_k & S_k \\ S_k & -S_k \end{pmatrix}$ なので、 C_{k+1} に含まれる符号は $1 \leq i \leq 2^k$ に対して、 $(\mathbf{u}_i^{(k)}, \mathbf{u}_i^{(k)}), (\bar{\mathbf{u}}_i^{(k)}, \bar{\mathbf{u}}_i^{(k)}), (\mathbf{u}_i^{(k)}, \bar{\mathbf{u}}_i^{(k)}), (\bar{\mathbf{u}}_i^{(k)}, \mathbf{u}_i^{(k)})$ の形になる。帰納法の仮定から、 $1 \leq i \leq 2^k$ のとき $\mathbf{u}_i^{(k)}, \bar{\mathbf{u}}_i^{(k)}$ はそれぞれ $\mathbf{e}_1^{(k)}, \dots, \mathbf{e}_{k+1}^{(k)}$ の線型結合で表せるので、 $1 \leq i \leq k+1$ のもと $\mathbf{e}_i^{(k+1)} = (\mathbf{e}_i^{(k)}, \mathbf{e}_i^{(k)})$ とおけば、 $(\mathbf{u}_i^{(k)}, \mathbf{u}_i^{(k)}), (\bar{\mathbf{u}}_i^{(k)}, \bar{\mathbf{u}}_i^{(k)})$ の形の符号は $\mathbf{e}_1^{(k+1)}, \dots, \mathbf{e}_{k+1}^{(k+1)}$ の線型結合で表せる。

証明 (3/3)

S_{k+1} から作られる符号の線形性

更に、 C_k は線形符号なので、 $\mathbf{0} = (0...0)$ を含むため、 C_{k+1} は $(\mathbf{0}, \bar{\mathbf{0}}) = (0...01...1)$ を含み、これは $(\mathbf{u}_i^{(k)}, \mathbf{u}_i^{(k)}), (\bar{\mathbf{u}}_i^{(k)}, \bar{\mathbf{u}}_i^{(k)})$ の形ではない。 $\mathbf{e}_{k+2}^{(k+1)} = (0...01...1)$ とおくと、 $1 \le i \le 2^k$ に対し $\mathbf{e}_{k+2}^{k+1} + (\bar{\mathbf{u}}_i^{(k)}, \bar{\mathbf{u}}_i^{(k)}) = (\bar{\mathbf{u}}_i^{(k)}, \mathbf{u}_i^{(k)})$ かつ $\mathbf{e}_{k+2}^{(k+1)} + (\mathbf{u}_i^{(k)}, \mathbf{u}_i^{(k)}) = (\mathbf{u}_i^{(k)}, \bar{\mathbf{u}}_i^{(k)})$ よって、 C_k が線形のとき C_{k+1} は $\mathbf{e}_i^{(k+1)}, \ldots, \mathbf{e}_{k+2}^{(k+1)}$ を基底として線形となる。

以上から、数学的帰納法により、Sylvester Matrix から作られる Hadamard Code は線形であることが示された。