Instructors: Birgit K Whaley, Alp Sipahigil, Geoffrey Pennington

Physics c191: Introduction to Quantum Computing

Homework 1

kdeoskar@berkeley.edu

Question 1:

We want to show that a single cubit pure state can be described by only two real parameters.

An arbitrary single cubit pure state is an element of $\mathcal{H} = \mathbb{C}^2$. We can write it as a linear combination of the basis states $|0\rangle, |1\rangle$:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Writing the complex coefficients in polar form, $\alpha = r_1 e^{i\phi_1}$, $\beta = r_2 e^{i\phi_2}$ we can write

$$\begin{aligned} |\psi\rangle &= r_1 e^{i\phi} |0\rangle + r_2 e^{i\phi} |1\rangle \\ &= e^{i\phi_1} \left[r_1 |0\rangle + r_2 e^{i(\phi_2 - \theta_1)} |1\rangle \right] \end{aligned}$$

Physically, any two states related by a global phase are equivalent, because only the amplitude squared matter when it comes to measurements and $|e^{i\phi}|^2 = 1$ for any angle ϕ . Thus, we can ignore the global phase ϕ_1 in our expression for $|\psi\rangle$.

We also have the normalization condition

$$|r_1|^2 + |r_2e^{i(\phi_2 - \phi_1)}|^2$$

 $\implies r_1^2 + r_2^2 = 1$

Thus, an arbitrary single cubit pure state (up to global phase) is completely described by the parameters r_1, r_2 such that $r_1^2 + r_2^2 = 1$ i.e. $(r_1, r_2) \in \mathbb{S}^1$ $\phi := (\phi_2 - \phi_1) \in [0, 2\pi]$.

But since (r_1, r_2) must be a point on the unit circle, we can instead just use the angle corresponding to the point (r_1, r_2) given by $\phi = \arctan(r_2/r_1) \in [-\pi/2, \pi/2]$.

So, our single cubit pure state is completely described by two angles, $\phi \in [0, 2\pi]$ and $\theta \in [-\pi/2, \pi/2]$ i.e. states correspond to points on the unit sphere \mathbb{S}^2 .

Equivalently, working with $\theta \in [0, \pi]$ (same interval as earlier), we can imagine using the usual

spherical coordinates to describe points on \mathbb{S}^2 . Taking $|0\rangle$ and $|1\rangle$ to be the North and South poles respectively i.e.

$$|0\rangle = \begin{pmatrix} x = 0 \\ y = 0 \\ z = 1 \end{pmatrix}$$

$$|1\rangle = \begin{pmatrix} x = 0 \\ y = 0 \\ z = -1 \end{pmatrix}$$

we can write an arbitrary state $|\psi\rangle$ as a linear point on the sphere. (Finish this.)

Thus a general single cubit pure state can be written as

$$|\psi\rangle = e^{i\gamma} \left[\cos(\theta/2)|0\rangle + e^{i\phi} \sin(\theta/2)|1\rangle \right]$$

Question 1

1. We want to find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices I,X,Y,Z and show that $X^2=Y^2=Z^2=I$