Estadística Muestreo - TCL

17. Una máquina llena bolsas de patatas fritas con un contenido neto medio de 130 gr y una desviación estándar de 5 gr.

- (a) Si se toma una muestra aleatoria de 50 bolsas, ¿cuál es la probabilidad de que la media muestral esté entre $128~{\rm gr}~{\rm y}~132~{\rm gr}$?
- (b) Cual debería ser el tamaño de la muestra para tener una probabilidad menor o igual a 0.025 de que la media muestral sea mayor que 131 gr.

Solución

(a) Si se toma una muestra aleatoria de 50 bolsas, ¿cual és la probabilidad de que la media muestral esté entre 128 gr y 132 gr. ?

Dado que la muestra es de tamaño 50, podemos aplicar el TCL que nos asegura que la media muestral sigue una distribución que podemos aproximar a una distribución normal de paràmetros $\mu=130$ y $\sigma=5/\sqrt{50}$. Por lo tanto:

$$P(128 < \bar{X} \le 132) = P\left(\frac{128 - 130}{5/\sqrt{50}} < Z \le \frac{132 - 130}{5/\sqrt{50}}\right) = P(-2.83 < Z \le 2.83)$$

$$P(128 < \bar{X} \le 132) = P(Z \le 2.83) - P(Z \le -2.83) = P(Z \le 2.83) - (1 - P(Z \le 2.83)) = P(Z \le 2.83) - (1 - P(Z \le 2.83)) = P(Z \le 2.83) - (1 - P(Z \le 2.83)) = P(Z \le 2.83) - (1 - P(Z \le 2.83)) = P(Z \le 2.83) - (1 - P(Z \le 2.83)) = P(Z \le 2.83) - (1 - P(Z \le 2.83)) = P(Z \le 2.83) = P(Z \le 2.83)$$

$$P(128 < \bar{X} \le 132) = 2 \cdot P(Z \le 2.83) - 1 = 2 \cdot 0.99767 - 1 = 0.99534$$

$$P(128 < \bar{X} \le 132) = 0.99534$$

(b) ¿Cuál debería ser el tamaño de la muestra para tener una probabilidad menor o igual a 0.025 de que la media muestral sea mayor que 131 gr?

Si asumimos que n será suficientemente grande, podemos aplicar el TCL y, como en el apartado anterior, tendremos que:

$$P(\bar{X} > 131) = 1 - P(\bar{X} \le 131) = 1 - P\left(Z \le \frac{131 - 130}{5/\sqrt{n}}\right) \le 0.025$$

En la tabla de la distribución normal estándar encontramos que el valor 1.96 deja una probabilidad de 0.025 en la cola derecha. Entonces, $\frac{\sqrt{n}}{5} \ge 1.96$, aislando n obtenemos el resultado: $\boxed{n \ge 96.04}$ Tendremos que escoger una muestra de al menos 97 bolsas.