

Clustering Customers & Generating a Customer Value Prediction Model by Alina Aufenanger

Introduction

## Company

TheLook - an
E-Commerce clothing
shop operating since
2019.

### Data

Stored in Google Data
Base containing tables
on Users, Orders, Order
Items, Products, etc.

### First steps

Getting better insights into the business by conducting customer segmentation.

Types of Segmentation













RFM vs K-Means Clustering



- Rates customers on a scale of 1-5 for each RFM variable.
- Segments customers based on their total RFM score.
- Provides a straightforward and interpretable segmentation based on predefined score thresholds.

### K-Means Model

- Utilizes machine learning to group similar customers into 'k' clusters.
- Considers raw RFM variables as features for clustering.
- Allows for a more data-driven and adaptive segmentation based on patterns in the data.
- The decision to set 'k' to 3 is driven by business knowledge.



Customer Segmentation with K-Means







**Customer Segments Overview** 

|                       | Active Customer | Casual Customer | Quiet Customer |
|-----------------------|-----------------|-----------------|----------------|
| Total Customers       | 1,756           | 3,537           | 8,726          |
| Average Revenue       | \$ 1,074        | \$ 123          | \$ 157         |
| Average Revenue/Order | \$ 334          | \$ 97           | \$ 110         |
| Average Orders        | 3               | 1               | 1              |
| Average Lifetime      | 508 days        | 43 days         | 102 days       |

# CUSTOMER VALUE PREDICTION

Generating a customer centric revenue prediction model based on historical data

#### Features

**Total Orders** 

Days since Registration (T)

Days between First & Last Order (LT)

K-Means Customer Cluster

#### Process

PowerTransform: T, LT

MinMaxScaler: all X

#### **Best Model**

GradientBoostingRegressor
(min\_samples\_leaf=2, random\_state=42, subsample=0.8)

MAE Train 120, Test 121 R2 Train 0.74, Test 0.72

Best Features Total Orders (88%)

# CONCLUSIONS

### Usage

High-level business planning: setting revenue targets, developing marketing strategies, decision support

#### Limitations

Absence of concrete time component: model is based on historical data & its predictive power may diminish if there are significant changes in customer behavior.

Heavily depending on Total Orders Component

### **Next Steps**

### Scenario Analysis:

Conduct scenario analyses by inputting hypothetical changes to customer features into the model. This can help simulate the potential impact of business decisions on customer revenue and guide strategic planning.

### Follow up on:

Product & Price Analysis, Implement Time Series
Analysis