

Model Development Phase Template

Date	15 March 2024
Team ID	SWTID1720116037
Project Title	Ecommerce Shipping Prediction Using Machine Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Support Vector Machine

```
from sklearn import svm
svm_model = svm.SVC(gamma='auto',C=5,kernel='rbf')
svm_model.fit(X_train,y_train)
y_pred = svm_model.predict(X_test)
print(classification_report(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
```

Artificial Neural Network

```
7]: ann = Sequential()
  ann.add(Dense(64, input_dim=8, activation='relu'))
  ann.add(Dense(128, activation='relu'))
  ann.add(Dense(128, activation='relu'))
  ann.add(Dense(1, activation='sigmoid'))
  ann.compile(loss="binary_crossentropy", optimizer='SGD',metrics=['accuracy'])
  ann.fit(X_train, y_train, epochs=200, batch_size=15)
```

```
predictions = (ann.predict(X_test) > 0.5)
print(classification_report(y_test,predictions))
```



```
Random Forest Classifier

']: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score, classification_report

# Define the hyperparameter grid
params = {
    'n_estimators': [200, 250, 300], # Increase the number of estimators
    'criterion': ['gini', 'entropy'],
    'max_depth': [Mone, 5, 10], # Add max_depth parameter
    'min_samples_split': [2, 5, 10], # Add min_samples_split parameter
    'min_samples_leaf': [1, 5, 10] # Add min_samples_leaf parameter
}

# Perform hyperparameter tuning
rf_model = GridSearchCV(estimator=RandomForestClassifier(), param_grid=params, scoring='accuracy', cv=5)
rf_model.fit(X_train, y_train)

# Get the best-performing model and its hyperparameters
best_model = rf_model.best_estimator_
best_params = rf_model.best_params_
```

Model Validation and Evaluation Report:

Make predictions on the test data
y_pred = best_model.predict(X_test)

Evaluate the model's performance
print("Best Parameters:", best_params)
print("Accuracy:", accuracy_score(y_test, y_pred))

print("Classification Report:")

print(classification_report(y_test, y_pred))

Model	C	lassifica	ation [Report	t	Accuracy	Confusion Matrix
Random	print(clas			rt(y_test	., y_pred))	69%	array([[858, 37], [636, 669]])
Forest	accuracy macro avg weighted avg	0.57 0.94 0.76 0.79	0.96 0.51 0.73 0.69	0.72 0.66 0.69 0.69 0.69	895 1305 2200 2200 2200		

ANN	print(classif 69/69 0 1 accuracy macro avg weighted avg	precision 0.57 0.84 0.71	- 0s 2ms/		support 895 1305 2200 2200 2200	68%	<pre>print(confusion_matrix(y_test,y_pred))</pre>
							array([[769, 126], [600, 705]])
	print(classi	fication repo	ort(y test	y pred))			<pre>print(confusion_matrix(y_test,y_pred))</pre>
a		precision		f1-score	support		
Support	0	0.55	0.85	0.67	895		
Vector	1		0.53	0.65	1305	66%	
	2000201			0.66	2200	0070	
Machine	accuracy macro avg weighted avg	0.69 0.72	0.69 0.66	0.66 0.66	2200 2200 2200		
							array([[757, 138], [612, 693]])