UNIVERSITY OF OSLO

IN4310 Linear Algebra Review

ali@uio.no

A Bit of Background

Research Agenda: Learning under Resource Constraints in Real World

Associate Professor, Department of Informatics, University of Oslo Principal Investigator, SFI Visual Intelligence
Norwegian Centre for Knowledge-driven Machine Learning (Integreat)
European Laboratory for Learning and Intelligent Systems (ELLIS) Member https://alirk.github.io/

Norwegian Centre for Knowledge-driven Machine

A Bit of Background

What Is This Course About?

Algorithms, Practice, Theory, Major Issues of Deep Learning

Main Application: Image Data

Not a Pure Programming and Math/Stats Course

Useful Tools for Industry/Academic Career

Matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ a & b & c \end{bmatrix}$$

Notation

 $A \in \mathbb{R}^{m \times n}$ matrix with m rows and n columns with real entries

 $\mathbf{x} \in \mathbb{R}^n$ n-dimensional column vector

 \mathbf{x}^{\top} the transpose of \mathbf{x} (row vector)

 $\mathbf{a}_j \in \mathbb{R}^m$ or $A_{:,j} \in \mathbb{R}^m$ j-th column of A

$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$$

$$A = \begin{bmatrix} \mathbf{b}_1^\top \\ \vdots \\ \mathbf{b}_m^\top \end{bmatrix}$$

Vector-Vector Products and Matrix-Vector Products

Let $\mathbf{x}, \mathbf{v} \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$

Inner product or dot product $\mathbf{x}^{\top}\mathbf{y} = \sum_{i=1}^{n} x_i y_i$

Outer product
$$\mathbf{x}\mathbf{y}^{ op} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_ny_1 & x_ny_2 & \cdots & x_ny_n \end{bmatrix}$$

Writing
$$A$$
 by rows $\mathbf{y} = A\mathbf{x} = \begin{bmatrix} \mathbf{b}_1^\top \\ \vdots \\ \mathbf{b}_m^\top \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{b}_1^\top \mathbf{x} \\ \vdots \\ \mathbf{b}_m^\top \mathbf{x} \end{bmatrix}$

Writing
$$A$$
 by columns $\mathbf{y} = A\mathbf{x} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n \mathbf{a}_i x_i$

Transpose, Symmetric Matrices, and Trace [1]

Transpose of $A \in \mathbb{R}^{m \times n}$ denoted by $A^{\top} \in \mathbb{R}^{n \times m}$ $\left(A^{\top}\right)_{ij} = A_{ji}$

$$\left(A^{\top}\right)^{\top} = A; \quad (AB)^{\top} = B^{\top}A^{\top}; \quad (A+B)^{\top} = A^{\top} + B^{\top}$$

Square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^{\top}$

Trace of a square matrix $\operatorname{tr}(A) = \sum_{i=1}^n A_{ii}$

$$\operatorname{tr}(A) = \operatorname{tr}(A^{\top}); \quad \operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B); \quad \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

$$\operatorname{tr}(ABC) = \operatorname{tr}(BCA) = \operatorname{tr}(CAB)$$

Norms

Informally a measure of the length of a vector

Euclidean or
$$\ell_2$$
 norm $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$

$$\|\mathbf{x}\|_2^2 = \mathbf{x}^{\top}\mathbf{x}$$

$$\ell_1$$
 norm $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$

$$\ell_{\infty} \text{ norm } \|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$$

$$\ell_p$$
 norm for some $p \ge 1$ $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$

Frobenius norm
$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{\operatorname{tr}(A^{\top}A)}$$

Quadratic Forms and Positive Semidefinite Matrices

Let $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^n$. The scalar $\mathbf{x}^{\top} A \mathbf{x}$ is quadratic form

$$\mathbf{x}^{\top} A \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i A_{ij} x_j$$

$$\mathbf{x}^{\top} A \mathbf{x} = (\mathbf{x}^{\top} A \mathbf{x})^{\top} = \mathbf{x}^{\top} A^{\top} \mathbf{x} = \mathbf{x}^{\top} \left(\frac{1}{2} A + \frac{1}{2} A^{\top} \right) \mathbf{x}$$

A symmetric A is positive definite if for all non-zero \mathbf{x} , $\mathbf{x}^{\top}A\mathbf{x}>0$ A is positive semidefinite if for all non-zero \mathbf{x} , $\mathbf{x}^{\top}A\mathbf{x}\geq0$ $(A\succeq0)$ A is negative definite if for all non-zero \mathbf{x} , $\mathbf{x}^{\top}A\mathbf{x}<0$ A is negative semidefinite if for all non-zero \mathbf{x} , $\mathbf{x}^{\top}A\mathbf{x}\leq0$ $(A\preceq0)$ A is indefinite if it is neither PSD nor NSD

Eigenvalues and Eigenvectors

Given $A\in\mathbb{R}^{n\times n}$, $\lambda\in\mathbb{C}$ is an eigenvalue of A with corresponding non-zero eigenvector $\mathbf{x}\in\mathbb{C}^n$ if $A\mathbf{x}=\lambda\mathbf{x}$

 (λ, \mathbf{x}) is an eigenvalue-eigenvector pair if $(\lambda \mathbf{I} - A)\mathbf{x} = 0, \ \mathbf{x} \neq 0$

 $(\lambda \mathbf{I} - A)\mathbf{x} = 0$ has non-zero solution iff $\lambda \mathbf{I} - A$ is singular

$$\det(\lambda \mathbf{I} - A) = 0$$

Trace equals sum of eigenvalues $\operatorname{tr}(A) = \sum_{i=1}^n \operatorname{eig}(A) = \sum_{i=1}^n \lambda_i$

Determinant equals product of eigenvalues $\det(A) = \prod_{i=1}^{n} \lambda_i$

Matrix Calculus: Gradient

 $g: \mathbb{R}^{m \times n} \to \mathbb{R}$ takes an $m \times n$ matrix input and returns a real value

The gradient of g w.r.t. A is a matrix of partial derivatives

$$\nabla_{A}g(A) = \begin{bmatrix} \frac{\partial g(A)}{\partial A_{11}} & \frac{\partial g(A)}{\partial A_{12}} & \dots & \frac{\partial g(A)}{\partial A_{1n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g(A)}{\partial A_{m1}} & \frac{\partial g(A)}{\partial A_{m2}} & \dots & \frac{\partial g(A)}{\partial A_{mn}} \end{bmatrix}$$

 $f: \mathbb{R}^n \to \mathbb{R}$ takes an *n*-dimensional vector input

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

Matrix Calculus: Hessian

 $f:\mathbb{R}^n o \mathbb{R}$ takes a vector input and returns a real scalar

The Hessian matrix w.r.t. \mathbf{x} is $n \times n$ matrix of partial derivatives

$$\nabla_{\mathbf{x}}^{2} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n}^{2}} \end{bmatrix}$$

$$\left(\nabla_{\mathbf{x}}^2 f(\mathbf{x})\right)_{ij} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}$$

Exercise: Suppose $f(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x}$. Then show

$$\nabla_{\mathbf{x}} \mathbf{x}^{\top} A \mathbf{x} = 2A \mathbf{x}, \quad \nabla_{\mathbf{x}}^2 \mathbf{x}^{\top} A \mathbf{x} = 2A$$

Hint: Show
$$\frac{\partial f(\mathbf{x})}{\partial x_i} = 2\sum_{j=1}^n A_{ij}x_j$$
 and $\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} = 2A_{ij}$

References

[1] Z. Kolter and C. Do. Linear algebra review. https: //cs229.stanford.edu/section/cs229-linalg.pdf.