NBT-BiLA

Vardhman Mehta, Divye Jain & Kevin Zhao CSE 481N: NLP Capstone | University of Washington

Abstract

Task-oriented dialogue systems have seen a recent boom, especially due to the advent and popularity of virtual assistants like Alexa and the Google Assistant. One of the core components of these modern dialogue systems is the belief tracker, which approximates the user's goal at each step in the conversation. There has been a significant amount of work done to design these state trackers, like an *End-to-End Trainable Task-Oriented Dialogue System* or a more recent model like the *Neural Belief Tracker*. In this capstone project we propose an improvement using Bidirectional LSTM and Attention over the existing architecture to create *NBT-BiLA*.

Data

- Wizard-of-OZ v2.0 (*WoZ2.0*) dataset (avg: 4.0 turns)
- Training (600 dialogues); <u>Validation</u> (200 dialogues); <u>Test</u> (400 dialogues).
- Second Dialogue State Tracking Challenge (*DSTC2*) dataset (avg: 5.5 turns)
 - o Training (2207 dialogues); Test (1117 dialogues)

Network Architecture

NBT-BiLA network architecture: A bidirectional LSTM layer is added on top of the <u>user utterances representation</u>. The model concatenates the representation from the forward and backward layers. This representation (S^r) is then coalesced with the context representation (H^c) of the slot value pairs by adding an Attention layer. The output is then added to the <u>semantic decoding layer</u> of the original NBT model and the data continues down the downstream architecture.

Ablation: Representation Learning

Paragram Embeddings

Elmo Embeddings

Embedding	Validation Set Accuracy				
Variant	Food	Joint	Price	Area	
			Range		
Paragram +	97.1	95.3*	98.7	98.3	
BiLSTM					
ELMo +	96.3	94.1	98.8	98.1	
BiLSTM					

Results and Conclusion

This project shows that by improving:

- Representation learning
- Semantic decoding

With the help of

- Recurrent architecture (BiLSTM)
- Scaled Dot-product Attention

Reasonable gains on the joint accuracy

- WoZ2.0 dataset
- DSTC2 dataset

DataSet Model	Model	Test Set Accuracy			
	Model	Food	Joint	Price Range	Area
WOZ	NBT-CNN	-	84.8	-	-
WOZ	NBT-BiLA	90.4	86.3*	95.1	96.3
DSTC2	NBT-CNN	80.2	68.7	90.9	88.2
DSTC2	NBT-BiLA	86.1	73.2*	82.1	92.6

Ablation: Semantic Decoding

Semantic	Validation Set Accuracy			
Decoding	Food	Joint	Price	Area
			Range	
General At-	0.0	0.0	10.8	7.4
tention				
Dot Product	7.9	31.9	98.7	99.3
Attention				
Scalar Dot	99.2	98.9*	99.5	100
Product				
Attention				