Álgebra Linear Avançada Pareamentos e Ortogononalidade

Adriano Moura

Unicamp

2020

Pareamentos Bilineares

Dados \mathbb{F} -espaços vetoriais V e W, defina

$$B(V, W) = \operatorname{Hom}_{\mathbb{F}}^{2}(V, W, \mathbb{F})$$
 e $B(V) = B(V, V)$.

Um elemento de B(V,W) é dito um pareamento bilinear entre V e W. No caso V=W, diz-se que um pareamento bilinear é uma forma bilinear em V. Se $\mathbb{F}=\mathbb{R}$, um produto interno em V é um exemplo de uma forma bilinear. Porém, se $\mathbb{F}=\mathbb{C}$, um produto interno não é um elemento de B(V) pois não é linear na segunda entrada.

Exercício: Suponha que $\dim(V) = m$, $\dim(W) = n$ e sejam $\alpha \in \beta$ bases para $V \in W$, respectivamente. Mostre que para qualquer matriz $A \in M_{m,n}(\mathbb{F})$, a fórmula

$$\phi(v, w) = [v]_{\alpha}^t A [w]_{\beta}$$

define um elemento $\phi \in B(V, W)$. (Compare com (7.1.7))

"Matriz de Gram"

Dados $\phi \in B(V, W)$ e famílias $\alpha = v_1, \ldots, v_m$ em V e $\beta = w_1, \ldots, w_n$ em W, a matriz de ϕ com respeito a α e β , denotada por $\alpha[\phi]_{\beta}$, é a matriz cuja entrada na posição (i, j) é $\phi(v_i, w_j)$:

$${}_{\alpha}[\phi]_{\beta} = \begin{bmatrix} \phi(v_1, w_1) & \phi(v_1, w_2) & \cdots & \phi(v_1, w_n) \\ \phi(v_2, w_1) & \phi(v_2, w_2) & \cdots & \phi(v_2, w_n) \\ \vdots & \vdots & \cdots & \vdots \\ \phi(v_m, w_1) & \phi(v_m, w_2) & \cdots & \phi(v_m, w_n) \end{bmatrix}$$

Se α e β forem bases, temos (compare com a demonstração de (7.1.5)):

$$\phi(v,w) = [v]_{\alpha}^t \alpha[\phi]_{\beta} [w]_{\beta}$$
 para quaisquer $v \in V, w \in W$.

Proposição 9.3.1

Se $\dim(V) = m$ e $\dim(W) = n$ e α e β forem bases para V e W, respectivamente, a seguinte função é um isomorfismo:

$$B(V,W) \to M_{m,n}(\mathbb{F}), \qquad \phi \mapsto {}_{\alpha}[\phi]_{\beta}.$$

Em particular, $\dim(B(V, W)) = \dim(V) \dim(W)$.

Dualidade e Radicais

Dado $\phi \in B(V, W)$, considere as funções

$$_{\phi}D:V\to W^{*}$$
 e $D_{\phi}:W\to V^{*}$

$$D_{\phi}:W\to V^*$$

dadas por

$$_{\phi}D(v)(w) = \phi(v, w) = D_{\phi}(w)(v)$$
 para quaisquer $v \in V, w \in W$.

Note que $_{\phi}D$ e D_{ϕ} são lineares. O núcleo de $_{\phi}D$ é chamado de o radical de ϕ à esquerda, enquanto que $\mathcal{N}(D_{\phi})$ é o radical à direita. Diz-se que ϕ é não degenerada à esquerda se $_{\phi}D$ é injetora. Caso contrário, ela é dita singular à esquerda. Analogamente define-se o conceito de ϕ ser singular ou não degenerada à direita usando-se D_{ϕ} .

Vetores em $\mathcal{N}(D_{\phi})$ são ditos degenerados à direita, enquanto que os de $\mathcal{N}(_{\phi}D)$ são ditos degenerados à esquerda (com respeito a ϕ).

Se
$$\alpha = v_1, \dots, v_m$$
 e $\beta = w_1, \dots, w_n$ forem bases de V e W , então
$$[D_{\phi}]_{\alpha^*}^{\beta} = {}_{\alpha}[\phi]_{\beta} \qquad \text{e} \qquad [{}_{\phi}D]_{\beta^*}^{\alpha} = ([D_{\phi}]_{\alpha^*}^{\beta})^t.$$

Se $\dim(V)$ e $\dim(W)$ forem finitas, os postos de D_{ϕ} e $_{\phi}D$ coincidem.

Formas Bilin. Simétricas, Antissimétricas e Alternadas

De agora em diante, $\phi \in B(V)$. Neste caso, se dim $(V) < \infty$, ϕ é degenerada à esquerda se, e somente se, for degenerada à direita. Por isso, passaremos a dizer simplesmente " ϕ é (não) degenerada".

Diz-se que ϕ é simétrica se

$$\phi(v, w) = \phi(w, v)$$
 para quaisquer $v, w \in V$,

antissimétrica se

$$\phi(v, w) = -\phi(w, v)$$
 para quaisquer $v, w \in V$,

e alternada se

$$\phi(v,v) = 0$$
 para qualquer $v \in V$.

Se $car(\mathbb{F}) = 2$, então ϕ é simétrica se, e só se, for antissimétrica.

Proposição 9.3.5

Seja $\alpha = (v_i)_{i \in I}$ uma base de V.

- ϕ é simétrica se, e só se, $\alpha[\phi]_{\alpha}$ o for.
- ϕ é antissimétrica se, e só se, $\alpha[\phi]_{\alpha}$ o for.
- ϕ é alternada se, e só se, $\alpha[\phi]_{\alpha}$ for antissim. e $\phi(v_i, v_i) = 0 \ \forall \ i \in I$.

Ortogonalidade

Dados $v, w \in V$, diz-se que

$$v \perp_{\phi} w \qquad \Leftrightarrow \qquad \phi(v, w) = 0.$$

Assim, \perp_{ϕ} define uma relação binária em V. Em geral, \perp_{ϕ} não é simétrica, isto é, $v \perp_{\phi} w \implies w \perp_{\phi} v$.

Proposição 9.3.7

A relação de ortogonalidade \perp_{ϕ} é simétrica se, e somente se, ϕ for simétrica ou alternada.

Um vetor v é dito isotrópico com respeito a ϕ se $v \perp_{\phi} v$.

Assim, ϕ é alternada se, e somente se, todo vetor é isotrópico.

Dada uma família α de vetores em V, define-se

$$\alpha^{\perp_{\phi}} = \{ w \in V : v \perp_{\phi} w \, \forall \, v \in \alpha \} \quad e^{-\perp_{\phi}} \alpha = \{ v \in V : v \perp_{\phi} w \, \forall \, w \in \alpha \}.$$

Estes conjuntos são subespaços, mas $\alpha^{\perp_{\phi}} \neq {}^{\perp_{\phi}}\alpha$ em geral. A igualdade vale se ϕ for simétrica ou antissimétrica. Além disso,

$$\mathcal{N}(D_{\phi}) = V^{\perp_{\phi}}$$
 e $\mathcal{N}(_{\phi}D) = {}^{\perp_{\phi}}V.$

Demonstração da Proposição 9.3.7

Suponha que \perp_{ϕ} é simétrica e considere a relação binária em V dada por

$$v \sim w \qquad \Leftrightarrow \qquad \phi(v, w) = \phi(w, v)$$

que é simétrica e reflexiva. Dados $u, v, w \in V$, defina

$$\vartheta = \vartheta_{v,w}^u = \phi(u,v)w - \phi(u,w)v$$

e observe que

$$\phi(u,\vartheta) = \phi(u,v)\phi(u,w) - \phi(u,w)\phi(u,v) = 0.$$

Ou seja, $u \perp_{\phi} \vartheta$. Como \perp_{ϕ} é simétrica, segue que $\vartheta \perp_{\phi} u$. Isto é,

$$\phi(u,v)\phi(w,u) = \phi(u,w)\phi(v,u) \quad \forall \ u,v,w \in V.$$

Em particular,

$$u \sim v \quad \Rightarrow \quad \phi(u, v)(\phi(w, u) - \phi(u, w)) = 0 \quad \forall \ w \in V.$$

Invertendo o papel de u e v na construção de ϑ segue que

$$u \sim v$$
 \Rightarrow $\phi(u, v)(\phi(w, v) - \phi(v, w)) = 0 \ \forall \ w \in V.$

Juntando ambas as conclusões temos

(1)
$$u \sim v \implies u \perp_{\phi} v \quad \text{ou} \quad u \sim V \text{ e } v \sim V.$$

Como \sim é reflexiva, também temos, para todo $v \in V,$

(2)
$$v \perp_{\phi} v \text{ ou } v \sim V.$$

Observe também que, se u e v são isotrópicos, vale

$$\phi(u \pm v, u \pm v) = \pm(\phi(u, v) + \phi(v, u)).$$

Portanto,

(3)
$$u \pm v$$
 são isotrópicos \Leftrightarrow $\phi(u,v) = -\phi(v,u)$.

Mostremos que, se ϕ não é simétrica, então ϕ deve ser alternada. Tome $u, v \in V$ tais que $\phi(u, v) \neq \phi(v, u)$. Em particular, segue de (2) que u e v são isotrópicos. Suponha, por contradição, que ϕ não é alternada e tome $w \in V$ não isotrópico. Segue novamente de (2) que $u \sim w$ e $v \sim w$. Mas então, por (1), temos $u \perp_{\phi} w$ e $v \perp_{\phi} w$. Logo,

$$(4) u + w \perp_{\phi} u.$$

Por outro lado, $\phi(u+w,v)=\phi(u,v)\neq\phi(v,u)=\phi(v,u+w)$ e segue de (2) que u+w é isotrópico. Usando (3) junto com (4), concluímos que w=(u+w)-u é isotrópico, que é uma contradição.

Observações Finais

Lema 9.3.6

Se $\dim(V)$ é finita, são equivalentes:

Além disso, $\operatorname{pt}(\phi) = \dim(V) - \dim(V^{\perp_{\phi}}) = \dim(V) - \dim(^{\perp_{\phi}}V).$

Veja também o Corolário 9.3.4,

Dado um subespaço W de V, a restrição de $\phi \in B(V)$ a $W \times W$ é um elemento de B(W). Denotaremos tal restrição por $\phi|_{W}$.

Observe que, mesmo que ϕ seja não degenerada, a restrição pode o ser. De fato, se $w \in V$ é isotrópico e W = [w], então a restrição de ϕ a W é nula e, portanto, degenerada.

Reciprocamente, mesmo que ϕ seja degenerada, se w não é isotrópico, então a restrição de ϕ a [w] é não degenerada.

