

Ayudantía 6 - Relaciones

Héctor Núñez, Paula Grune, Manuel Irarrázaval

Resumen

Clase de equivalencia

Dado $x \in A$, la clase de equivalencia de x bajo \sim es el conjunto

$$[x]_{\sim} = \{ y \in A \mid x \sim y \}$$

Conjunto cuociente

Sea \sim una relación de equivalencia sobre un conjunto A. El conjunto cuociente de A con respecto a \sim es el conjunto de todas las clases de equivalencia de \sim :

$$A/{\sim} = \{[x] \mid x \in A\}$$

Orden Parcial

Una relación R sobre un conjunto A es un orden parcial si es **reflexiva**, **antisimétrica** y **transitiva**.

A la relación se le denota como $x \leq y$. Y diremos que el par (A, \leq) es un **orden parcial**.

Orden Total

Una relación \leq sobre un conjunto A es un orden total si es una relación de orden parcial y además es conexa.

Elemento mínimo y máximo

Sean (A, \preceq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

1. x es una **cota inferior** de S si para todo $y \in S$ se cumple que $x \leq y$.

- 2. x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \leq x \Rightarrow y = x$.
- 3. x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Ínfimo y supremo

Sea (A, \preceq) un orden parcial y $S \subseteq A$. Diremos que s es un ínfimo de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \preceq s$. Es decir, el ínfimo es la mayor cota inferior.

Análogamente se define el supremo de un conjunto.

Ejercicios

Pregunta 1

- (a) Sea \prec una relación sobre $\mathbb{N} \times \mathbb{N}$ definida de la siguiente forma. Para cada $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$, se tiene que $(a,b) \prec (c,d)$ si y solo si $a \leq c$ y $b \leq d$, donde < es la relación de orden usual sobre los naturales. Demuestre que \prec es un orden parcial pero no un orden total sobre $\mathbb{N} \times \mathbb{N}$.
- (b) Sea \leq una relación sobre $\mathbb{N} \times \mathbb{N}$ definida de la siguiente forma. Para cada $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$, se tiene que $(a, b) \leq (c, d)$ si y solo si (a < c) o $(a = c \text{ y } b \leq d)$, donde < es la relación de orden usual sobre los naturales. Demuestre que \leq es un orden total sobre $\mathbb{N} \times \mathbb{N}$.
- (c) Generalice la definición de la relación \leq definida en (b) para el caso \mathbb{N}^k , con $k \geq 3$. Demuestre que la relación resultante es un orden total sobre \mathbb{N}^k .

Pregunta 2

Sea A un conjunto. Una relación binaria \prec sobre A se dice orden estricto si es asimétrica y transitiva.

- (a) Demuestre que si \prec es un orden estricto, entonces \prec^{-1} es un orden estricto.
- (b) Definimos

$$\preceq := \prec \cup I_A, \qquad \succeq := \prec^{-1} \cup I_A, \qquad I_A = \{(x, x) \mid x \in A\}.$$

Demuestre las siguientes afirmaciones (asumiendo que ≺ es también conexo):

- $(I) \prec^{-1} \subsetneq \succeq .$
- (II) $\leq \cap \succeq = I_A$.
- (III) $\prec \cup \prec^{-1} = (A \times A) \setminus I_A$.

Pregunta 3

- 1. Sea (A, \preceq) un orden total, y $S \subseteq A$ tal que S es finito y no vacío. Demuestre que $\sup(S)$ e $\inf(S)$ existen y pertenecen a S. Hint: use inducción.
- 2. Sea (A, \preceq) un orden total, y $S_1 \subseteq A$ tal que tiene supremo. Suponga ahora que existe $S_2 \subsetneq S_1$ tal que para todo $x \in S_1$ existe $y \in S_2$ tal que $x \preceq y$. Demuestre que S_2 tiene supremo, y que sup $(S_2) = \sup(S_1)$.