Hints of Problem Set - 8

SPRING 2020

MATHEMATICS-II (MA10002)(Integral Calculus)

1. (a) Ans.
$$8xye^{2x^2}$$
 [Use $J = \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$]

(b) Ans.
$$e^{2x}$$
 [,,]

(c) Ans.
$$-8 + \frac{2u^2}{v^2} \left[\text{Use J} = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \right]$$

(d) Ans.
$$\rho^2 \sin \phi$$
 [Use J= $\begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta} \end{vmatrix}$]

2. (a) Ans. -6 [hints. u=y-x, v=y+
$$\frac{x}{3}$$
]

(b) Ans.
$$\frac{1}{3} \log \frac{3}{2}$$
 [hints. $u = \frac{y^2}{x}, v = xy$]

(c) Ans.
$$\frac{125}{4}$$

(d) Ans.
$$\frac{1}{6}[\sqrt{2} + \log(1 + \sqrt{2})]$$

(e) Ans.
$$\frac{4a^3}{9}(3\pi - 4)$$
 [hints. Change into polar coordinates $x = r\cos\theta$, $y = r\sin\theta$]

(f) Ans. 24 [hints.
$$u=\frac{2x-y}{2}$$
, $v=\frac{y}{2}$ and $w=\frac{z}{3}$]

(g) Ans.
$$\frac{4\pi}{3}(e-1)$$
 [hints. change it to the spherical coordinates]

3. (a) Ans.
$$2a^2(\pi-2)$$
 [Surface area $=\iint_D \sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial x})^2}dxdy$]

- (b) Ans. 5176.8958
- (c) Ans. a^2
- (d) Ans. 15 [hints. take u=2x-3y+2, v=x+2y, w=x-z, Calculate jacobian and use the formula $V = \iiint |\frac{\partial(x,y,z)}{\partial(u,v,w)}| du dv dw$]

(e) Ans.
$$\frac{7\pi}{6}$$
 [hints. Surface area $=\iint_D \sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial x})^2}dxdy$]

(f) Ans.
$$\frac{2\pi}{3}$$
 [hints Surface area = $\iint_D \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial x})^2} dxdy$]

(g) Ans.
$$\frac{3}{2}$$
 [hints. Volume= $\iiint dV$]

(h) Ans. $\frac{\pi}{8}(e^4 - 5)$ [hints. put x=rcos θ , y=rsin θ , z=z, compute Jacobian and corrossponding range in the region D]