Nanomagnetism and Spintronics

Lecture 3

Magnetic free energy terms

Prof. Riccardo Bertacco

Department of Physics – Politecnico di MIlano

E-mail: <u>riccardo.bertacco@polimi.it</u>

Tel: 02 23999663

$$(E_S - E_t = 25)$$

Exchange interaction
$$(E_S - E_t = 25)$$

$$\mathcal{X} = -255 \cdot 5 \cdot 5 \cdot (1)$$

$$\overline{M}_{\lambda}$$

Hp: cousider classical spins

 $E = -3S^2 Z \cos \phi_{ij} = \cot + \frac{3S^2}{2} Z \phi_{ij}^2$ Sefue the RESUCES MOTHENT $m = \frac{9}{10} M_{Sof}$ $|\phi_{ij}|^2 |m_i - m_j|^2 |\nabla_{ij} \nabla_{ij}|$

My birection My Cosines

1 co dy = 1 - dy

E= SS2 Z [(Ty. T))M]2 My = Q LATTICE PARAMETER

 $= 4 \int_{1}^{1} \left[\left(M_{x} \right)^{2} + \left(M_{y} \right)^{2} + \left(M_{z} \right)^{2} \right] d^{2}$

with $A = 255^2 = 2$: number of sites on the lunit cell for cubic lettice $A = 40255^2$ for hexogonal close packed

(Mi-my)

exercise Find the expression for exchange energy in a sample cubic lotice $|\phi_{ej}| = |\overline{w_{i}} - \overline{w_{j}}| = |\Delta M_{x}\overline{u} + \Delta M_{y}\overline{j} + \Delta M_{z}\overline{\kappa}|^{2}$ = (Ty. \overline{\tau_x}^2 + (Ty. \overline{\tau_y}^2 + (\tay. \overline{\tau_y}^2) = [(Ty. \overline{\tay})_m]^2 E = 55² 2 2/(Ty. \overline{\tau}_x)^2 + (\overline{\tay}. \overline{\tay}_x)^2 + (\overline{\tay}. \overline{\tay}_{\tau_2})^2 = For a simple aubic there are 6 meanest neighbours Mej = = Qj 12 (a) mx 2+ (a) my 2+ (a) mz 2 1+ +2[(Q()mx)2+(Q()my)2+(Q()mz)2] My- ±QK

$$\begin{aligned} & \geq_{1} = 2a^{2} \left[\left(\nabla_{Mx} \right)^{2} + \left(\nabla_{My} \right)^{2} + \left(\nabla_{Mz} \right)^{2} \right] \\ & = 3S^{2} \left[2a^{2} \left[\% \right] = 3S^{2} \left[2a^{2} \right] \right] \\ & = 2 \left[\left(\nabla_{Mx} \right)^{2} + \left(\nabla_{My} \right)^{2} + \left(\nabla_{Mz} \right)^{2} \right] d^{2} \\ & = 2 \left[\left(\nabla_{Mx} \right)^{2} + \left(\nabla_{My} \right)^{2} + \left(\nabla_{Mz} \right)^{2} \right] d^{2} \\ & \times \text{with } A = 2 S^{2} \left[EXCHANGE STIFFNESS \right] \\ & \text{in general for a cubic lottice } A = 2 S^{2} 2 \\ & \text{in general for a cubic lottice } A = 2 S^{2} 2 \\ & = 2 \left[S^{2} + 2 \right]$$

Anisotropy We are looking for on the orientation	The dypeno	dence of Helmotz frem en.
consider a sol	une Dush	Huifren înside and
	<i>t</i>	
Suppose MI = 113	M = H Hsot	$\begin{cases} M_{\times} = Sin \partial - cos \rho \\ My = sin \partial sin \rho \\ Mz = cos \partial \end{cases}$
$F_{AN}(M) = ?$	on fav(mi)=	Fan = ?

ANISOTROPY ENERGY SURFACES

OAN Sten in is doncted along OA EASY AXES: local minima

HARS AXIS: " molama

Uniaxial anisotropy

fan (m) emust be undranged upar retation around the amostropy omust be an wen function of M2= cold Mx2+m3=1-m2=1-000=sould is the good sandole for the expansion of for fan = 16+ 4500°0+ 16500°0+ 13500°0+ --K: lungy Usually for = No+ Kisûres Sume b) if k1 < 0 Q) uf K150

EASY AXIS ANISOTROPY (MINIMA FOR 9=0,11) EASY PLANE ANISOTROPY

(MINIMA FOR D= 11)

Figure 2.1: Uniaxial anisotropies represented by energy surfaces. The length of the plotted radial coordinate is proportional to the energy density for that direction. The anisotropy constants are chosen to illustrate different cases at similar energy scales. (left) Easy perpendicular direction (right) Easy plane

ANISOTROPY FIELD (Ha) (FOR EASY AXIS ANISOTROPY)
the is defined as the fuld needed to sotenate I
along the hard exil-
ell of a factor of any is the only every term to be
considered in F
gl= K, sin² S _ hotset cos (20)
= Kysin ² D-juotsHsinD
29 = (21/12010 - 100 MsH) (000) Sind = 100 MsH 29 = +21/1 (0020 + 100 MsH) wind (0=+1) sind 29 + 21/1 (0020 + 100 MsH) wind
$\frac{\partial^2 GL}{\partial \theta^2} = +2K_1 \cos 2\theta + \ln M + \ln M$ $\frac{\partial^2 GL}{\partial \theta^2} = -2K_1 - \ln M + > 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -2K_1 - \ln M + > 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial \theta^2} = -4K_1 - \ln M + \sim 0$ $\frac{\partial^2 GL}{\partial$
to= 2ki inducates the shough of the anishopy

Magnetocrystalline anisotropy

Magnetocrystalline anisotropy energy surfaces

Single-ion anisotropy

Due to electrostatic interaction of the orbitals containing impaired electross with the crystal field-

Grystal fuld tands to stobilier 2 particular orbital (e.g. teg an octobolish opmunetry): L is fixed!

Don't forget spar orbitanterection Hoo = & L. S

This given by 5 and therefore the easy oxis is that along which spunorbit energy is minimized

NOTE: This is the case of weak Spin orbit completely

For sharp spur orbit, it induces a def. of the orbitals if \$ bleaks \$7 & ENERGY COST!

Two-ions anisotropy

This term reflects the anisotropy of depolar interaction between two magnetic moments

A A The D D D To Toul HT

For two arterocting olyphed

Ep-EHT = 3/10/112

GT73

However the dyple-dyple interaction are the entire between must be considered.

For a cubic lottice we have seen that there is no net depoter contribution to the local field => NO TWO-LOUS ANISOTROPY

In non-autochtuces depolar interaction can give oppreciable magnetic anisotropy.

Cubic anisotropy

Law (no) must respect the cubic symmetry = D expansion in terms containing:

[Mxmy2+mym2+m2mx] fundanged upon {mxmym2} exchange of x, y, 2

NOTE: The other possible combination (mx+my+mz+) oupends on the other two.

 $\{m_{X}^{4}, m_{Y}^{4}, m_{Z}^{4}\}$ + $2[m_{X}m_{Y}^{2}, m_{Y}^{2}] + M_{Z}^{2}m_{X}^{2}] = (m_{X}^{2}, m_{Y}^{2}, m_{Z}^{2}) = 1$

for (M) = 16 + 14 [1] + K21 | + ---

Bu spherical condinates:

fan(m) = Ko + K1 (sin² d sin² d + co² d) sin² d + K2 sin² 2 d + --
uf d=1/2 (m stay in the film plane, for mustance)

Jan = Ko + Ky sin 29

Domain formation

In any case it costs energy to make a DW; why danains form?

The mason is the minimization of demognetizing energy =

= magnetostotic energy =

= dipoler enngy

EN = - Mo ST. Hadd = Mo Stardo

CLOSURE DOTTAIN STRUCTURE

Domains and domain walls

Fig. 6.20 (a) A Bloch wall. (b) A Néel wall.

Si
$$S_{i}$$

A 18A $E = 25S_{i}.S_{2} = 25S_{0}.S_{2} = 25S_{0}.S_{0}$

The energy $COST$ for $D \neq 0$ is:

 $DE = 15S_{0}^{2}S_{0}^{2}$ of $D < 1 = 0$?

TORA BLOCH DW The spoins rotate by it over Nsites

 $\Delta E = N. \left(SS_{0}^{2} \right) = S_{0}^{2}S_{0}^{2}$

The energy per unitaria is

 $D_{SW} = \frac{\Delta E}{Q^{2}} = \frac{SS_{0}^{2}S_{0}^{2}}{NQ^{2}}$

SUBJETATION (CONFIG.

=D SINGLE DOMAIN CONFIG. SHOULD BE FAVORED!!

But we must consider also ausothopy! Assume Equ-Ksie (KSO) The ausothopy energy contribution abouted to a BW: $\sum_{i=1}^{N} K su^{2} S_{i} = \frac{N}{N} \int_{0}^{N} K su^{2} S dO = \frac{N}{N} K$ in terms of energy per unit area: NK. a The total energy cost of a BW is: GBW = SSETTE + NKQ NQE Z SHALL DOMAINS OLERW = O Equilibrium configuration: N= TS 1 25

the swoll of the DW To: large K => thing large 5 => twck $S = NQ = TISV \frac{25}{KQ}$ OBWER = NSVEST for the exchange energy we used $A = 255^2 \frac{2}{3}$ S= IT VAK

Width and energy per unit surface of a Bloch DW

	Ms (MA m ⁻¹)	A (pJ m ⁻¹)	K1 (kJ m ⁻³)	δ (nm)
Ni ₈₀ Fe ₂₀	0.84	10	0.15	800
Fe	1.71	21	48	64
Со	1.44	31	410	24

For te
$$S = 11 \sqrt{\frac{21.10^{-12}}{48.10^3}} \sim 6.4.10^{-8} \text{m}$$

 $S = 11 \sqrt{\frac{21.10^{-12}}{48.10^3}} \sim 6.4.10^{-8} \text{m}$

Exercise

- 1. Si consideri un film sottile di Co nella configurazione micro magnetica a chiusura di flusso rappresentata in figura 1, con domini prevalenti aventi bordi paralleli all'asse di anisotropia uniassiale (K= 5·10⁵ Jm⁻³) e domini triangolari, agli estremi, con magnetizzazione perpendicolare all'asse di anisotropia. L'energia per unità di superficie associata alle pareti di dominio a 180° vale σw = 4x10⁻³ Jm⁻², mentre il contributo all'energia totale delle pareti a 90° ai bordi può essere trascurato nell'ipotesi che L >>D.
 - a) Dimostrare che in queste condizioni la larghezza dei domini D si può esprimere come:

$$D = \sqrt{\frac{2\sigma_w L}{K}}$$

b) Nell'ipotesi che L sia pari a 5 mm calcolare la larghezza dei domini

Fig. 1: Vista dall'alto della configurazione magnetica del film di Co

