Word Equations in Synergy with Regular Constraints

František Blahoudek¹, Yu-Fang Chen², David Chocholatý¹, Vojtěch Havlena¹, Lukáš Holík¹, Ondřej Lengál¹, and Juraj Síč¹

¹Faculty of Information Technology, Brno University of Technology, Czech Republic

²Institute of Information Science, Academia Sinica, Taiwan

$$\underbrace{x = yz \land y \neq u}_{\text{(in)equations}} \land \underbrace{x \in (ab)^* a^+(b|c)}_{\text{regular constraints}} \land \underbrace{|\text{length constraints}|}_{\text{length constraints}} \land \underbrace{|\text{contains}(u, \text{replaceAll}(z, b, c))|}_{\text{more complex operations}}$$

- String manipulation in programs
 - source of security vulnerabilities
 - scripting languages rely heavily on strings
 - new examples of an intensive use of critical string operations

regular constraints length constraints
$$x = yz \land y \neq u \land x \in (ab)^* a^+(b|c) \land |x| = 2|u| + 1 \land \underbrace{\text{contains}(u, \text{replaceAll}(z, b, c))}_{\text{more complex operations}}$$

- A source of difficulty: equations with regular constraints
- Example: $zyx = xxz \land y \in a^+b^+ \land z \in b^* \land x \in a^*$
 - results in an infinite case split
 - leads to failure for all current solvers (except ours!)

regular constraints length constraints
$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land contains(u, replaceAll(z, b, c))$$
(in)equations more complex operations

- A source of difficulty: equations with regular constraints
- Example: $zyx = xxz \land y \in a^+b^+ \land z \in b^* \land x \in a^*$
 - results in an infinite case split
 - leads to failure for all current solvers (except ours!)

regular constraints length constraints
$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land \underbrace{\text{contains}(u, \text{replaceAll}(z, b, c))}_{\text{more complex operations}}$$

- A source of difficulty: equations with regular constraints
- Example: $zyx = xxz \land y \in a^+b^+ \land z \in b^+ \land x \in a^*$
 - results in an infinite case split
 - leads to failure for all current solvers (except ours!)

regular constraints length constraints
$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land contains(u, replaceAll(z, b, c))$$
(in)equations more complex operations

- A source of difficulty: equations with regular constraints
- Example: $zyx = xxz \land y \in a^+b^+ \land z \in b^+ \land x \in a^*$
 - results in an infinite case split
 - leads to failure for all current solvers (except ours!)

regular constraints length constraints
$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land contains(u, replaceAll(z, b, c))$$
(in)equations more complex operations

- A source of difficulty: equations with regular constraints
- **Example:** $\mathbf{z} \mathbf{y} \mathbf{x} = \mathbf{x} \mathbf{x} \mathbf{z} \wedge \mathbf{y} \in a^+ b^+ \wedge \mathbf{z} \in b^+ \wedge \mathbf{x} \in a^*$
 - results in an infinite case split
 - leads to failure for all current solvers (except ours!)

regular constraints length constraints
$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land contains(u, replaceAll(z, b, c))$$
(in)equations more complex operations

- A source of difficulty: equations with regular constraints
- **Example:** $\mathbf{z} \mathbf{y} \mathbf{x} = \mathbf{x} \mathbf{x} \mathbf{z} \wedge \mathbf{y} \in a^+ b^+ \wedge \mathbf{z} \in b^+ \wedge \mathbf{x} = \epsilon$
 - results in an infinite case split
 - leads to failure for all current solvers (except ours!)

regular constraints length constraints
$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land contains(u, replaceAll(z, b, c))$$
(in)equations more complex operations

- A source of difficulty: equations with regular constraints
- **Example:** $zy = z \land y \in a^+b^+ \land z \in b^+$
 - results in an infinite case split
 - leads to failure for all current solvers (except ours!)

regular constraints length constraints
$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land contains(u, replaceAll(z, b, c))$$
(in)equations more complex operations

- A source of difficulty: equations with regular constraints
- **Example:** $zy = z \wedge y \in a^+b^+ \wedge z \in b^+$
 - results in an infinite case split
 - leads to failure for all current solvers (except ours!)
 - it is **UNSAT**

Our contribution

- Decision procedure tightly integrating regular constraints with equations
- Gradually refines languages until:
 - an infeasible constraint is generated or
 - refinement becomes stable
- Complete on chain-free fragment
 - largest known decidable fragment for equations, regular, transducer, and length constraints
 - terminates for all SAT instances
- Prototype tool Noodler
 - in Python
 - competitive with existing solvers

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\Sigma = \{a, b\}$$

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- $\Sigma = \{a, b\}$
- Use equations to refine regular constraints

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- $\Sigma = \{a, b\}$
- Use equations to refine regular constraints
- Start with xyx = zu

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- $\Sigma = \{a, b\}$
- Use equations to refine regular constraints
- Start with xyx = zu
- For any solution (assignment ν) string $s = \nu(x) \cdot \nu(y) \cdot \nu(x) = \nu(z) \cdot \nu(u)$ satisfies:

$$s \in \sum_{x} \sum_{x} \sum_{x} \sum_{x} = \sum_{a(ba)^{*}} \sum_{a(ba)^{*}} u$$

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- $\Sigma = \{a, b\}$
- Use equations to refine regular constraints
- Start with xyx = zu
- For any solution (assignment ν) string $s = \nu(x) \cdot \nu(y) \cdot \nu(x) = \nu(z) \cdot \nu(u)$ satisfies:

$$s \in \overbrace{\Sigma^*}^{x} \overbrace{\Sigma^*}^{y} \overbrace{\Sigma^*}^{x} \cap \overbrace{a(ba)^*}^{z} \overbrace{(baba)^*a}^{u}$$

■ Refine x, y from the left side xyx using special intersection

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathit{xyx}}$ left side, keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - lacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathit{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathit{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{xyx} \cap_{\epsilon} \mathcal{A}_{zu}$$

- Construct automata for both sides
 - lacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathit{xyx}}$ left side, keep ϵ transitions
- Construct intersection $\mathcal{A}_{xyx} \cap_{\epsilon} \mathcal{A}_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - lacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathsf{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathsf{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathit{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{xyx} \cap_{\epsilon} \mathcal{A}_{zu}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathit{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{xyx} \cap_{\epsilon} \mathcal{A}_{zu}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathsf{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathit{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{xyx} \cap_{\epsilon} \mathcal{A}_{zu}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathsf{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathsf{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathsf{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathsf{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{xyx} \cap_{\epsilon} \mathcal{A}_{zu}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathit{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathsf{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\mathcal{A}_{\mathit{xyx}} \cap_{\epsilon} \mathcal{A}_{\mathit{zu}}$$

- Construct automata for both sides
 - \blacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare $\mathcal{A}_{\mathit{xyx}}$ left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - lacktriangle keep ϵ transitions

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$A_{zu} \xrightarrow{X} \underbrace{a, b}_{\downarrow} \xrightarrow{a, b}_{\downarrow} \underbrace{A_{xyz}}_{\downarrow}$$

$$A_{zu} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \underbrace{A_{xyz}}_{\downarrow}$$

$$A_{zu} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \underbrace{A_{xyz}}_{\downarrow}$$

$$A_{xyx} \cap_{\epsilon} A_{zu}$$

- Construct automata for both sides
 - lacksquare \mathcal{A}_{zu} concatenation of right side
 - lacksquare \mathcal{A}_{xyx} left side, keep ϵ transitions
- Construct intersection $A_{xyx} \cap_{\epsilon} A_{zu}$
 - synchronous product construction
 - \blacksquare keep ϵ transitions
- Variables x and y are nicely separated

Noodlification and unification

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- Split product into noodles
 - \blacksquare values of y depends on values of x

Noodlification and unification

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- Split product into noodles
 - \blacksquare values of *y* depends on values of *x*

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- Split product into noodles
 - \blacksquare values of y depends on values of x
- Noodle languages:
 - $L_1^x = (ab)^*a$
 - $L^{\bar{y}} = \epsilon$
 - $L_2^x = \epsilon$

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- Split product into noodles
 - \blacksquare values of y depends on values of x
- Noodle languages:

$$L_1^x = (ab)^*a$$

$$L^y = \epsilon$$

$$L_2^x = \epsilon$$

- Unification:
 - intersect langs for the same variable

$$\blacksquare \text{ Lang}(x) = L_1^x \cap L_2^x =$$

■ Lang
$$(y) = L^{\bar{y}} =$$

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- Split product into noodles
 - \blacksquare values of y depends on values of x
- Noodle languages:
 - $L_1^x = (ab)^*a$
 - $L^y = \epsilon$
 - $L_2^x = \epsilon$
- Unification:
 - intersect langs for the same variable
 - Lang $(x) = L_1^x \cap L_2^x = (ab)^* a \cap \epsilon = \emptyset$
 - Lang $(y) = L^{\bar{y}} = \epsilon$

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- Split product into noodles
 - \blacksquare values of y depends on values of x
- Noodle languages:
 - $L_1^x =$
 - $L^{\bar{y}} =$
 - $\blacksquare L_2^x =$
- Unification:
 - intersect langs for the same variable
 - $\blacksquare \mathsf{Lang}(x) = L_1^x \cap L_2^x =$
 - Lang $(y) = L^{\bar{y}} =$

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$A_{zu} \xrightarrow{x} \underbrace{a,b_{0}}_{Q} \underbrace{a,b_{0}}_{Q} \underbrace{a,b_{0}}_{A_{xyz}}$$

$$A_{zu} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \underbrace{(q,3)}_{Q} \underbrace{(r,3)}_{Q} \underbrace{(r,3)}_{Q}$$

$$a \xrightarrow{A} \underbrace{a \xrightarrow{A}}_{Q} \underbrace{(q,3)}_{Q} \underbrace{(r,2)}_{Q}$$

$$a \xrightarrow{A} \underbrace{b \xrightarrow{A}}_{Q} \underbrace{a \xrightarrow{A}}_{Q} \underbrace{b}_{Q} \underbrace{a \xrightarrow{A}}_{Q} \underbrace{b}_{Q}$$

$$A_{xyx} \cap_{\epsilon} A_{zu}$$

- Split product into noodles
 - \blacksquare values of y depends on values of x
- Noodle languages:
 - $L_1^x = a(ba)^*$

 - $L_2^x = (ba)^*a$
- Unification:
 - intersect langs for the same variable
 - Lang $(x) = L_1^x \cap L_2^x = a(ba)^* \cap (ba)^*a = a$
 - \blacksquare Lang $(y) = L^y = (ab)^*$

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in a \land y \in (ab)^* \land w \in \Sigma^*$$

- Split product into noodles
 - \blacksquare values of y depends on values of x
- Noodle languages:
 - $L_1^x = a(ba)^*$
 - $L^{\bar{y}} = (ab)^*$
 - $L_2^x = (ba)^*a$
- Unification:
 - intersect langs for the same variable
 - Lang $(x) = L_1^x \cap L_2^x = a(ba)^* \cap (ba)^* a = a$
 - $\blacksquare \text{ Lang}(y) = L^y = (ab)^*$

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in a \land y \in (ab)^* \land w \in \Sigma^*$$

Refine further with ww = xa:

$$\sum_{x}^{w} \sum_{x}^{w} \cap a a.$$

$$xyx = zu \wedge ww = xa \wedge u \in (baba)^*a \wedge z \in a(ba)^* \wedge x \in a \wedge y \in (ab)^* \wedge w \in a$$

Refine further with ww = xa:

$$\stackrel{w}{\underset{a}{\longleftarrow}} \stackrel{w}{\underset{a}{\longleftarrow}} = \stackrel{x}{\underset{a}{\longleftarrow}} \stackrel{a}{\underset{a}{\longleftarrow}} a.$$

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in a \land y \in (ab)^* \land w \in a$$

Refine further with ww = xa:

$$\stackrel{w}{\rightleftharpoons} \stackrel{w}{\rightleftharpoons} \stackrel{x}{\rightleftharpoons} \stackrel{a}{\rightleftharpoons} a.$$

■ Languages in equations match:

$$xyx = zu \wedge ww = xa \wedge u \in (baba)^*a \wedge z \in a(ba)^* \wedge x \in a \wedge y \in (ab)^* \wedge w \in a$$

Refine further with ww = xa:

$$\stackrel{w}{\rightleftharpoons} \stackrel{w}{\rightleftharpoons} \stackrel{x}{\rightleftharpoons} \stackrel{a}{\rightleftharpoons} \stackrel{a}{\rightleftharpoons} a.$$

■ Languages in equations match:

■ Because of **stability** (next slide), enough to decide SAT

Stability of equation system

■ Single-equation system Φ : $s = t \land \bigwedge_{x \in \mathbb{X}} x \in \mathsf{Lang}_{\Phi}(x)$ where Lang_{Φ} : $\mathbb{X} \to \mathcal{P}(\Sigma^*)$

System Φ has solution iff there is refinement Lang of Lang $_{\Phi}$ where Lang(s) = Lang(t).

■ If all variables occurring in t occur in s = t exactly once:

System Φ has solution iff there is refinement Lang of Lang $_{\Phi}$ where Lang $(s) \subseteq \text{Lang}(t)$.

■ Can be extended to multiple-equation system

Experimental evaluation

	PyEx-Hard (20,023)			Kaluza-Hard (897)			Str 2 (293)			Slog (1,896)		
	T/Os	time	time-T/O	T/Os	time	time-T/O	T/Os	time	time-T/O	T/Os	time	time-T/O
Noodler	39	5,266	2,926	0	46	46	3	198	18	0	165	165
Z3	2,802	178,078	9,958	207	15,360	2,940	149	8,955	15	2	332	212
CVC5	112	12,523	5,803	0	55	55	92	5,525	5	0	14	14
Z3str3RE	814	49,744	904	10	622	22	149	8,972	32	55	4,247	947
Z3str4	461	28,114	454	17	1,039	19	154	9,267	27	208	16,508	4,028
Z3-Trau	108	33,551	27,071	0	201	201	10	724	124	5	970	670
OSTRICH	2,979	214,846	36,106	111	14,912	8,252	238	14,497	217	2	13,601	13,481
Sloth	463	371,373	343,593	0	3,195	3,195		N/A		202	24,940	12,820
Retro	3,004	199,107	18,867	148	16,404	7,524	1	299	239		N/A	

- T/Os = timeouts
- time = total run time in seconds

- time—T/O = run time without timeouts
- best values are in bold

Comparison with CVC5 and Z3str4 on PyEx-Hard

Discussion

- Can beat well established solvers
 - can solve more benchmarks
 - average time is low
- Often complementary to other solvers
- Preprocessing is important

Figure: Hardest 1,023 formulae of PyEx-Hard

Future work

Current status:

$$\underbrace{x = yz \land y \neq u}_{\text{(in)equations}} \land \underbrace{x \in (ab)^* a^+(b|c)}_{\text{regular constraints}} \land \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \land \underbrace{|x| = 2|u| + 1}_{\text{more complex operations$$

- Currently working on:
 - improved decision procedure handling other constraints
 - fast C++ implementation within Z3

