

## Mathématiques

Classe: BAC

Chapitre: Equations différentielles

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba





Equations différentielles de type : y' = ay + b

Théorème

Soit a un réel non nul. L'ensemble des solutions de l'équation différentielle y'=ay est l'ensemble des fonctions définies sur  $\mathbb{R}$  par  $x \mapsto ke^{ax}$  où k est une constante.

Théorème

Soit a et b deux réels tels que a non nul. L'ensemble des solutions de l'équation différentielle y'=ay+b est l'ensemble des fonctions définies sur  $\mathbb{R}$  par  $x\mapsto ke^{ax}-\frac{b}{a}$  où k est une constante réelle.

Conséquences

Soit a et b deux réels tels que a non nul. Pour tous réels  $x_0$  et  $y_0$ , léquation différentielle y'=ay+b admet une unique solution qui prend la valeur  $y_0$  en  $x_0$  c'est la fonction f définie sur  $\mathbb R$  par :  $f(x)=\left(y_0+\frac{b}{a}\right)e^{a(x-x_0)}-\frac{b}{a}$ 

Equations différentielles de type :  $y'' + w^2y = 0$ 

Théorème

Soit w un réel non nul. L'ensemble des solutions de l'équation différentielle  $y'' + w^2y = 0$  est l'ensemble des fonctions définies sur  $\mathbb{R}$  par:  $f(x) = a\cos(wx) + b\sin(wx)$  où a et b sont des réels quelconques.

Conséquences

Soit w un réel non nul et  $x_0, y_0$  deux réels. L'équation différentielle  $y'' + w^2y = 0$  admet une unique solution dans  $\mathbb{R}$  vérifiant  $f(0) = x_0$  et  $f'(0) = y_0$ .

C'est la fonction définie sur  $\mathbb{R}$  par :  $f(x) = \frac{y_0}{w}\sin(wx) + x_0\cos(wx)$ 







Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba



www.takiacademy.com



**73.832.000**