Señales	\mathbf{y}	sistemas
Verano	20	017-2018
Examer	ı F	rinal -

Nombre:	

Tiempo limite: Mucho	Carne

- Este examen consta de 4 paginas (incluyendo la portada) y 5 preguntas.
- El total de puntos es de 94.
- C mamut si hace cosas a lapiz porque no puede reclamar.
- Si tiene dudas con su procedimiento y piensa que esta malo deje de hacer el problema porue **no** le dare puntos.
- Esta prohibido llorar durante el examen.
- Este examen no tiene tildes ni nada de eso porque no se quisieron poner.
- Sume todo bien y con tranquilidad.
- Disfrute el examen.
- Debe saber hablar arabe para resolver el examen de manera correcta.
- El incumplimiento de lo dicho anteriormente sera penalizado con 10 cartas en el juego al iniciar la proxima partida.
- Inserte aqui mas reglas >:v

Firma

Tabla de calificacion.

Question	Points	Score
1	15	
2	18	
3	20	
4	19	
5	22	
Total:	94	

1. (15 points) Series de Laurent

Dada la siguiente funcion de variable compleja.

$$f(z) = \frac{z}{-z^2 - z + 2}$$

- (a) (3 points) Indique cuantas regiones de convergencia son posibles para la serie de Laurent centrada en $z_0 = 1 + j$.
- (b) (12 points) Encuentre la serie de Laurent que corresponda a la region de convergencia relacionada a una serie que solo contenga parte de Taylor, en referencia a las regiones definidas en el punto anterior.

2. (18 points) Ortogonalidad

Dadas las siguientes funciones:

$$r_0(t) = \begin{cases} 1 & 0 < t < 1 \\ 0 & \text{en el resto} \end{cases}$$

$$r_1(t) = \begin{cases} 1 & 0 < t < 0, 5 \\ -1 & 0, 5 < t < 1 \\ 0 & \text{en el resto} \end{cases}$$

$$r_2(t) = \begin{cases} 1 & 0 < t < 0, 25 \\ -1 & 0, 25 < t < 0, 5 \\ 1 & 0, 5 < t < 0, 75 \\ -1 & 0, 75 < t < 1 \\ 0 & \text{en el resto} \end{cases}$$

- (a) (6 points) D
muestre que estas funciones forman un conjunto ortogonal sobre el interbal
o $t \in [0,1].$
- (b) (3 points) ¿Es tambien ortogonal este conjunto? Justifiue su respuesta.
- (c) (6 points) Represente la señal $f(t) = t \frac{1}{2}$ en el interbalo $t \in [0, 1]$ utilizando una convinación lineal de este conjunto de funciones.
- (d) (3 points) Grafique la representacion de f(t) utilizando $r_0(t)$, $r_1(t)$ y $r_2(t)$ como la combinacion lineal obtenida en el punto anterior.

3. (20 points) Series de Fourier

Considere la siguiente funcion de periodo T=4 definida por:

$$x(t) = \begin{cases} \sin(\pi t) & 0 \le t \le 2\\ 0 & 2 \le t \le 4 \end{cases}$$

Demuestre que los coeficientes de una serie trigonometrica de Fourier $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{-jw_0kt}$ utilizada para sintetizar la funcion x(t) estan dados por la expresion:

$$c_k = \begin{cases} 0 & k = 0\\ \frac{1}{4j} & k = 2\\ \frac{-1}{4j} & k = -2\\ 0 & k \text{ par}\\ \frac{2}{\pi - \pi k^2} & k \text{ impar} \end{cases}$$

4. (19 points) Analisis de sistemas en tiempo continuo

Considere un sistema caracterizado por la siguiiente ecuacion diferencial:

$$\frac{d^3}{dt^3}y(t) + 6\frac{d^2}{dt^2}y(t) + 11\frac{d}{dt}y(t) + 6y(t) = x(t)$$

- (a) (11 points) Determine la respuesta de estado cero del sistema cuando la entrada es $x(t) = e^{-4t}u(t)$.
- (b) (8 points) Determine la respuesta natural del sistema si:

$$y(0^{-}) = 1$$
 $\frac{d}{dt}y(t)|_{t\to 0^{-}} = -1$ $\frac{d^{2}}{dt}y(t)|_{t\to 0^{-}} = 1$

5. (22 points) Analisis de sistemas en tiempo discreto

Considere un sistema LTI casual descrito por el siguieente diagraa de polos y ceros:

Figura 1: Diagrama de polos y ceros del sistema.

- (a) (3 points) Encuentre la funcion de transferencia del sistema H(z) en la forma racional $\frac{N(z)}{D(z)}$ sin factorizar. Considere una ganancia en funcion K=1
- (b) (12 points) Determine la respuesta al impulso h(n) del sisteman. Defina la expresion mas simplificada posible de la misma.
- (c) (3 points) Considere que la entrada del sistema es x(n) y la salida y(n). Encuentre la ecuación de diferenciass recursva que determina la salida del mismo.
- (d) (4 points) Defina un diagrama de bloques que represente el sistema anterior de forma equivalente.