# COMMODITY PRICE FORECASTING USING MULTI-MARKET FINANCIAL TIME SERIES DATA

#### **GROUP MEMBERS**

SAMWEL ONGECHI

MARILYN AKINYI

**ERICK MAUTI** 

LYDIAH CHUMBA

**ROSE MIRITI** 

ISAAC ONYANGO

**RODGERS OTIENO** 

PRESENTED BY: GROUP 5

TM: GEORGE KAMUNDIA

# BUSINESS UNDERSTANDING

- Volatility in commodity markets impacts global trade and investments
- Forecasting helps producers, traders, and policymakers make informed decisions

#### **BUSINESS PROBLEM**

Predicting commodity returns is particularly challenging due to:

- Market volatility
- Time-lagged effects
- Dependencies across different financial instruments How can we leverage time series data to predict commodity price movements?

# **STAKEHOLDERS**

- Commodity traders optimize trading strategies
- Investors –To manage portfolio risk
- Policy makers and regulators anticipate inflationary trends
- Financial Analysts provide data-driven forecasts



# **OBJECTIVES**

- To preprocess and integrate multi-market financial time series data for commodities.
- To explore and analyze patterns, correlations, and volatility in commodity returns.
- To develop predictive models for selected commodity prices and spreads.
- To evaluate model accuracy and stability using appropriate performance metrics.
- To generate insights that can support trading strategies and risk management.

# DATA UNDERSTANDING

- Sources: Kaggle (London Metal Exchange (LME), Japan Exchange Group (JPX), U.S. stock markets.
- Target pairs and Train labels
- **Time horizon**: Daily
- Challenges: missing values, seasonality, volatility, external shocks

# **VISUALIZATIONS (EDA)**

- Understand the distributions of target variables and features.
- Identify trends, patterns, and outliers in the data.
- Explore relationships between features and targets, including correlations and potential predictive signals.
- Visualize time series behaviors since this is a temporal dataset.

# VISUALIZATIONS (EDA) CONT.....

#### **Correlation Analysis**



# VISUALIZATIONS (EDA) CONT.....

- Applied 0.9 correlation threshold to flag highly correlated pairs.
- A total of 5 pairs exceeded this threshold, meaning they may introduce multicollinearity risks if included together in models.

#### Distribution of Features & Targets



# **BOXPLOT OF FEATURES & TARGETS**



# **TARGET TRENDS OVER TIME**



### **DATA PREPARATION**

- Cleaning missing values & outliers
- Normalization / scaling of variables
- Mapping
- Handling stationarity: differencing, log returns
- Feature engineering: lags, rolling averages, volatility measures



# **MODELING**

## **BASELINE MODELS**

- Linear Regression
- Random Forest
- XGBoost
- LightGBM

# **ADVANCE MODELS**

- Gradient Boosting
- ElasticNet
- SVR
- MLP Regressor

TIME SERIES MODEL- SARIMA

# **EVALUATION**

- Mean Absolute Error (MAE): Average magnitude of prediction errors.
- Root Mean Squared Error (RMSE): Measures error magnitude with greater penalty for larger deviations.
- R-squared (R<sup>2</sup>): Proportion of variance explained by the model.
- MAPE (Mean Absolute Percentage Error)
- SMAPE (Symmetric MAPE)
- Directional Accuracy: Percentage of correct predictions in the direction of price movement.

# **EVALUATION**

| MAE    | RMSE   | R2       | MAPE     | SMAPE    | tional Acc | Model            | mbinedScc |
|--------|--------|----------|----------|----------|------------|------------------|-----------|
| 0.0197 | 0.0289 | 0.5504   | 402.3945 | 107.2267 | 0.74       | Ridge_Tuned      | 3.6867    |
| 0.0224 | 0.0332 | 0.4202   | 351.0624 | 108.4613 | 0.7228     | Ridge            | 3.3827    |
| 0.0224 | 0.0332 | 0.4194   | 351.5111 | 108.4612 | 0.7227     | LinearRegression | 3.3807    |
| 0.0225 | 0.0333 | 0.4154   | 359.1141 | 108.7319 | 0.7222     | SARIMA+Ridge     | 3.3717    |
| 0.0232 | 0.0362 | 0.3513   | 346.8279 | 111.7668 | 0.7219     | RandomForest     | 3.2334    |
| 0.0237 | 0.0371 | 0.319    | 352.7172 | 111.854  | 0.7102     | GradientBoosting | 3.1504    |
| 0.024  | 0.0376 | 0.3046   | 375.5492 | 113.6642 | 0.7049     | LightGBM         | 3.112     |
| 0.0255 | 0.0397 | 0.1742   | 412.7278 | 115.5255 | 0.6927     | XGBoost          | 2.8353    |
| 0.031  | 0.0457 | -0.041   | 420.2271 | 140.6937 | 0.5804     | SVR              | 2.216     |
| 0.0297 | 0.0451 | -0.0058  | 114.3862 | 183.1374 | 0.019      | SARIMA           | 1.5354    |
| 0.0297 | 0.0451 | -0.0049  | 113.0884 | 185.035  | 0          | ElasticNet       | 1.5113    |
| 0.0297 | 0.0451 | -0.0049  | 113.0884 | 185.035  | 0          | Lasso            | 1.5113    |
| 0.0325 | 0.0474 | -0.1467  | 400.3438 | 152.7311 | 0          | NaivePersistence | 1.2184    |
| 0.125  | 0.1858 | -16.9889 | 2923.832 | 155.6005 | 0.5402     | MLP              | -30.1365  |

# **EVALUATION CONT.....**

| MAE    | RMSE   | R2       | MAPE     | SMAPE    | tional Acc | Model            | mbinedSco |
|--------|--------|----------|----------|----------|------------|------------------|-----------|
| 0.0197 | 0.0289 | 0.5504   | 402.3945 | 107.2267 | 0.74       | Ridge_Tuned      | 3.6867    |
| 0.0224 | 0.0332 | 0.4202   | 351.0624 | 108.4613 | 0.7228     | Ridge            | 3.3827    |
| 0.0224 | 0.0332 | 0.4194   | 351.5111 | 108.4612 | 0.7227     | LinearRegression | 3.3807    |
| 0.0225 | 0.0333 | 0.4154   | 359.1141 | 108.7319 | 0.7222     | SARIMA+Ridge     | 3.3717    |
| 0.0232 | 0.0362 | 0.3513   | 346.8279 | 111.7668 | 0.7219     | RandomForest     | 3.2334    |
| 0.0237 | 0.0371 | 0.319    | 352.7172 | 111.854  | 0.7102     | GradientBoosting | 3.1504    |
| 0.024  | 0.0376 | 0.3046   | 375.5492 | 113.6642 | 0.7049     | LightGBM         | 3.112     |
| 0.0255 | 0.0397 | 0.1742   | 412.7278 | 115.5255 | 0.6927     | XGBoost          | 2.8353    |
| 0.031  | 0.0457 | -0.041   | 420.2271 | 140.6937 | 0.5804     | SVR              | 2.216     |
| 0.0297 | 0.0451 | -0.0058  | 114.3862 | 183.1374 | 0.019      | SARIMA           | 1.5354    |
| 0.0297 | 0.0451 | -0.0049  | 113.0884 | 185.035  | 0          | ElasticNet       | 1.5113    |
| 0.0297 | 0.0451 | -0.0049  | 113.0884 | 185.035  | 0          | Lasso            | 1.5113    |
| 0.0325 | 0.0474 | -0.1467  | 400.3438 | 152.7311 | 0          | NaivePersistence | 1.2184    |
| 0.125  | 0.1858 | -16.9889 | 2923.832 | 155.6005 | 0.5402     | MLP              | -30.1365  |
|        |        |          |          |          |            |                  |           |

# EVALUATION CONT....

- **Best Model** `Ridge Tuned` achieved the highest Combined Score, outperforming both untuned Ridge and advanced ensemble models.
- -Strong Baselines: Ridge` and `LinearRegression` ranked closely behind, showing that linear methods remain competitive.
- -**Hybrid Success:** SARIMA+Ridge` performed better than standalone SARIMA, proving that combining time-series modeling with machine learning improves results.
- Tree-based Models: `RandomForest` and `GradientBoosting` showed strong but slightly weaker performance compared to tuned Ridge.
- **Weaker Models:** `ElasticNet`, `Lasso`, and `NaivePersistence` underperformed significantly, while `MLP` collapsed with highly negative R<sup>2</sup>.
- **SARIMA Alone:**Bare SARIMA struggled, but adding Ridge correction significantly boosted its performance.

# **ENSEMBLE MODELING**

| Rank | Model                  | R2     | Directional Accuracy |
|------|------------------------|--------|----------------------|
| 1    | Ensemble-Weighted-Top3 | 0.7227 | 0.8028               |
| 2    | Ensemble-Mean-Top3     | 0.6716 | 0.784                |
| 3    | Ridge_Tuned            | 0.5504 | 0.74                 |
| 4    | Ridge                  | 0.4202 | 0.7228               |
| 5    | LinearRegression       | 0.4194 | 0.7227               |
| 6    | SARIMA+Ridge           | 0.4154 | 0.7222               |
| 7    | RandomForest           | 0.3513 | 0.7219               |
| 8    | GradientBoosting       | 0.319  | 0.7102               |

# **EVALUATION CONT....**

- Best single model R<sup>2</sup>: 0.5504
- Best ensemble R<sup>2</sup>: 0.7227
- R<sup>2</sup> improvement: +0.1723
- The ensemble outperforms individual models, providing more accurate predictions.

# FEATURE IMPORTANCE

| Rank | Feature                 | Importance |
|------|-------------------------|------------|
| 1    | US_Stock_OIH_adj_close  | 0.1853     |
| 2    | US_Stock_HAL_adj_close  | 0.1216     |
| 3    | US_Stock_CVE_adj_close  | 0.1055     |
| 4    | LME_CA_Close            | 0.0887     |
| 5    | US_Stock_OKE_adj_close  | 0.0882     |
| 6    | US_Stock_OXY_adj_close  | 0.0832     |
| 7    | LME_ZS_Close            | 0.0813     |
| 8    | US_Stock_DVN_adj_close  | 0.0758     |
| 9    | LME_PB_Close            | 0.0579     |
| 10   | US_Stock_TRGP_adj_close | 0.0535     |
| 11   | LME_AH_Close            | 0.0491     |
| 12   | US_Stock_TECK_adj_close | 0.0279     |
| 13   | JPX_Platinum_Standard_  | 0.0276     |
| 14   | JPX_Gold_Standard_Futu  | 0.0157     |
| 15   | US_Stock_HL_adj_close   | 0.0132     |

# **RECOMMENDATIONS**

- Go with the Ensemble-Weighted-Top3
  Model
- Energy Sector Features Matter Most
- Markets Don't Move in Isolation

# **NEXT STEP**

- Strengthen Validation Testing
- Smarter Feature Engineering
- Build a Monitoring System

# LIMITATIONS

#### Market regimes change

- The model is tuned for today's conditions but markets evolve
- Over-reliance on energy features might reduce accuracy in tech-led or defensive markets.
- External shocks (wars, pandemics, policy changes)

#### Validation Gaps

- Back tests are based on past data true future-proofing is untested.
- Assumes markets remain liquid execution could fail during crises.

