This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK-BORDERS.
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

TEPOBEIGOE FILANÇAIOE

INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE

(1) N° de publication : (A n'utiliser que pour les commandes de reproduction). 2 253 794

PARIS

A1

DEMANDE DE BREVET D'INVENTION

21)

N° 74 40074

- - Déposant : Société dite : HOECHST AKTIENGESELLSCHAFT. Société par actions, résidant en République Fédérale d'Allemagne.
 - (72) Invention de :
 - (3) Titulaire : Idem (7)
 - (4) Mandataire : André Casanova.

La présente invention c nc rn des pigm nts fluorescents à la lumière du jour, l ur préparation t leur utilisati n.

On sait que l'on peut utiliser de nombreux colorants
fluorescents pour préparer d s pigments fluorescents à la lu5 mière du jour. Jusqu'à présent ce sont presque exclusivement les
composés de la série des imides de l'acide amino-4 naphtalènedicarboxylique-1,8 qui ont acquis une importance pratique. On
a utilisé en particulier le colorant du Colour Index C.I.
N° 56 200, le N-(diméthyl-2',4' phényl)-imide de l'acide amino-4
10 naphtalènedicarboxylique-1,8 pour la préparation de pigments
de ce type (cf. par ex. le brevet des Etats-Unis d'Amérique
N° 3 412 035).

En outre, on sait que l'on peut employer des produits réactionnels d'épichlorhydrine avec des N-alkyl- ou des 15 N-arylimides de l'acide amino-4 naphtalène-dicarboxylique-1,8 (cf. le brevet soviétique N° 306 160) ainsi que le N-butylimide de l'acide N-butylamino-4 naphtalène-dicarboxylique-1,8 (cf. les brevets des Etats-Unis d'Amérique Nos 3 303 168 et 3 412 035) pour préparer des pigments fluorescents à la lumière du jour.

cependant, un procédé extrêmement compliqué et en plusieurs étapes est nécessaire pour obtenir, à l'échelle industrielle, le colorant ayant le numéro 56 200 du Colour Index et, dans une plus grande mesure encore, les produits réactionnels de l'épichlorhydrine avec des N-alkyl- et N-arylimides

- 25 de l'acide amino-4 naphtalène-dicarboxylique-1,8. A cet effet, on soumet l'acénaphthène à une nitration pour obtenir le nitro-5 acénaphtène, on oxyde celui-ci avec l'acide chromique pour obtenir l'acide nitro-4 naphtalènedicarboxylique-1,8 que l'on réduit, à son tour, en l'acide amino-4 naphtalène-dicarboxylique-
- 30 1,8; et ensuite on procède à la formation de l'imide et, le cas échéant, à la réaction avec de l'épichlorhydrine. Cette synthèse très exigeante du point de vue technique, qui ne peut être effectuée qu'en utilisant des solvants différents, demande des appareils de grande envergure, pose des problèmes écologiques
- 35 difficiles, donne des rendements peu satisfaisants et rend indispensable une purification des produits finaux par recristallisation. Tout cela implique des inconvénients décisifs pour une exploitation rentable de ces colorants.

Certes, en ce qui concerne le colorant N-butylimide 40 de l'acide butylamino-4 naphtalène-dicarboxylique-1,8, on obtient, par la réaction d l'a ide sulfo-4-naphtalique avec de la n-butylamin en xcès, un colorant facilement accessible à l'échell industri ll, av c un bon rend ment t un grande pureté (cf. brevet des Etats-Unis d'Amérique N° 2 006 017), mais les propriétés tinctoriales des pigments fluorescents à la lumière du jour préparés à l'aide de ce colorant sont moins bonnes par rapport aux colorants précités, en particulier en ce qui concerne la solidité à la lumière et aux solvants, suftout la solidité, très importante, vis-à-vis des solvants 10 aromatiques.

Il résulte de ce qui vient d'être exposé qu'il est toujours souhaitable de trouver des colorants de la série des imides de l'acide amino-4 naphtalènedicarboxylique-1,8 qui soient utilisables et facilement accessibles du point de vue 15 technique, pour la préparation de pigments fluorescents à la lumière du jour.

Or, par la présente invention, la Demanderesse a trouvé de nouveaux pigments fluorescents à la lumière du jour qui répondent aux besoins de la pratique, et où les colorants utilisés sont faciles à préparer à l'échelle industrielle. Ces pigments fluorescents à la lumière du jour, à base de résines de condensation, contiennent, incorporés sous une forme mono-moléculaire, des colorants de formule I

25

$$0=C$$

$$C=0$$

$$HN-R_{2} = OH_{Z}$$

$$(1)$$

30

dans laquelle R₁ désigne un reste alkyle, cycloalkyle ou aryle 35 éventuellement substitué, ou bien un reste hétérocyclique, et

R₂ désigne un reste alkylène qui peut être interrompu par des hétéroatomes, des restes isocycliques ou hétérocycliques, ou bien un reste cycloalkylène.

Parmi ces colorants on peut souligner par exemple 40 ceux dans lesquels R_4 désigne un reste alkyle à chaîne droite

ou ramifiée ayant de 1 à 8 atomes de carbone, en particulier 1 à 5 atomes de carbone, qui peut être substitué par des atomes d'halogène tels que le chlore, par des groupes carbalcoxy, carboxy, alkylsulfonyles, carbamoyles, sulfamoyles, amino, tri-5 fluorométhyl, acyles ou acylamino, ces groupes contenant des groupes hydroxy, alcoxy inférieurs ayant de 2 à 6 atomes de carbones, tels que des groupes acétyles, benzoyles, chloro- ou méthyl-benzoyles, acétylamino, benzoylamino, chloro- ou méthyl-Benzoylamino ou phénylsulfonylamino, par des restes aromatiques 10 tels que les restes phényliques ou naphtyliques ou par des restes hétérocycliques, et en outre un reste cycloaliphatique, par exemple un reste cyclohexyle, alkyloyclohexyle ou halogénocyclohexyle, ainsi qu'un reste aromatique, en particulier de la série benzénique et naphtalénique où les noyaux aromatiques 15 peuvent être substitués dans de larges limites, et d'autre part enfin un reste hétérocyclique tel qu'un reste appartenant à la série des pyridines, pyrazoles, imidazoles, triazoles, oxazoles, thiazoles, thiadiazoles ou à la série des pyrimidines et leurs dérivés à groupements benzo,

et dans laquelle R₂ désigne un reste alkylène à chaîne droite ou ramifiée ayant de 1 à 8 atomes de carbone, en particulier 2 à 6 atomes de carbone, qui peut être interrompu par des hétéroatomes tels que des atomes de soufre ou d'azote, en particulier par des atomes d'oxygène, ou par des noyaux isocycliques tels que des restes cycloalkyliques ou aryliques ou bien par des restes hétérocycliques, ou encore dans laquelle R₂ représente un reste cycloalkylène, par exemple un reste cyclopentylène ou cyclohexylène, et

z désigne le nombre 1 ou 2, de préférence 1.

Ces restes dont le symbole est R₂ peuvent contenir, le cas échéant, d'autres substituants non ionogènes tels que des groupes hydroxy, alcoxy, aryloxy, carbalcoxy, cyano ou alkylsulfonyles ou des restes aryles.

Les colorants les plus remarquables répondent à la 35 formule générale II

(Voir formule II page sulvante)

10

Dans cette formule

R₃ représente un reste hydroxyalkyle ayant de 1 à 8 atomes de carbone, de préférence de 1 à 5 atomes de carbone, ou bien un reste phényle qui peut être substitué par des atomes de chlore, de brome, des groupes alkyles ayant de 1 à 4 atomes de carbone, des groupes alcoxy ayant de 1 à 4 atomes de carbone, des groupes carbamoyles, cyano, nitro, sulfamoyles, alkylsulfonyles ayant de 1 à 6 atomes de carbone, des groupes acétylamino, ou bien des groupes benzoylamino substitués par du chlore ou des groupes méthyles, ou bien le reste triazolyle ou le reste benzimidazolyle, et

R_{\(\psi\)} représente un reste alkylène à chaîne droite ou ramifiée ayant de 1 à 8 atomes de carbone, de préférence de 2 à 6 atomes de carbone, qui, comme groupe intermédiaire, peut contenir un reste phénylène ou cyclohexylène ou un atome d'oxygène, ou qui représente un reste dycloalkylène, en particulier cyclohexylène, R_{\(\psi\)} pouvant contenir en outre dans la partie aliphatique ou cycloaliphatique au moins un groupe hydroxy lié.

Pour la préparation des nouveaux pigments fluorescents à la lumière du jour on mentionnera, parmi les colorants précités de formule I, en particulier les colorants de formule III

35

30.

40

EAD ORIGINAL

dans laquelle

5

10

R₅ représente un reste hydroxyalkyle ayant de 1 à 5 atomes de carbone, le reste cyclohexyle ou phényle qui peut être substitué par un atome de chlore, des groupes méthyle, éthyle, méthoxy ou éthoxy, mais de préférence le reste phényle qui peut être substitué par 1 à 3 groupes méthyle et

Alk représente un reste alkylène à chaîne droite ou ramifiée ayant de 2 à 5 atomes de carbone, et

Z désigne le nombre 1 ou 2, de préférence 1.

Il faut souligner en particulier les pigments fluorescents à la lumière du jour qui contiennent des colorants de la formule III, dans laquelle R₅ représente le reste β-hydroxy-éthyle, le reste cyclohexyle ou diméthylphényle, et Alk désigne le reste éthylène ou propylène, de préférence le reste éthylène ou n-propylène, ou bien le reste hydroxy-2 propylène-1,3, et z-est-égal-à-1.

On peut préparer les pigments fluorescents à la lumière du jour, jaunes tirant sur le vert et brillants, selon l'invention, en incorporant les colorants de la formule I précitée aux composantes de départ de résines de condensation ou à leurs précondensats, on condense les composantes de résine par chauffage, et on convertit les résines colorées ainsi obtenues selon les méthodes usuelles en la forme pigmentaire la plus favorable à l'application correspondante.

Quelques-uns des colorants utilisés selon l'invention sont connus (cf. brevets des Etats-Unis d'Amérique N° 2006 017 et 2415 373). On peut obtenir les nouveaux colorants selon des procédés connus, par exemple en faisant réagir une mole d'un anhydride d'acide halogéno-4 naphtalène-dicarboxylique-1,8 d'abord avec une mole d'une amine de la formule H₂N-R₁ dans laquelle R₁ a la signification mentionnée ci-dessus, pour obtenir un composé de formule IV

dans laquelle Hal représente un atome d'halogène et R₁ a la signification précédemment mentionnée, t en faisant réagir ensuite ce composé de formule IV avec une autre mole d'une amine de formule H₂N-R₂-OH, dans laquelle R₂ a la signification précédemment donnée, pour obtenir un colorant de formule I. On peut également préparer des composés de formule I pour lesquels R₁ désigne R₂-OH, en faisant réagir un anhydride d'acide halogéno-4 naphtalène-dicarboxylique-18 avec une amine de formule H₂N-R₂-OH dans laquelle R₂ a la signification précé10 demment donnée. Afin de fixer l'acide H-Hal libéré on peut travailler soit avec un excès mono-molaire d'amine de formule H₂N-R₂-OH, ou bien en présence d'un accepteur d'acides.

Comme résines de condensation pour les pigments fluorescents à la lumière du jour revendiqués, on mentionnera 15 surtout les produits qui ne sont pas souples, qui ne forment pas de fibres et qui sont cassants et qui, par conséquent, peuvent être-facilement-convertis-en-une-forme-finement-divisée par concassage. En outre, il est avantageux que les résines aient un point de ramollissement relativement élevé, de préférence 20 au-dessus de 100°C environ, afin d'éviter, à cause des températures existant pendant le broyage, une agglomération et une agglutination des particules de résine. De plus, dans les agents liants des vernis utilisés généralement pour la préparation de peintures ou d'encres d'impression, ainsi que dans des solvants 25 tels que l'éther de pétrole, le toluène ou des xylènes, les résines devront être insolubles ou presque insolubles et ne pas gonfler. En outre, les résines doivent avoir une bonne transparence et une solidité suffisante à la lumière. Des résines qui répondent à ces exigences et qui, en partie, ont été déjà 30 utilisées pour préparer des pigments fluorescents à la lumière du jour sont largement connues.

Les résines à base de mélamine et de formaldéhyde, obtenues par condensation d'une mole de mélamine avec 1,5 à 6, de préférence 2,5 à 3,5 moles de formaldéhyde ou d'agents cédant 35 du formaldéhyde, sont particulièrement appropriées.

Ces résines peuvent contenir additionnellement des amides d'acides aryl- ou aralkylsulfoniques et une quantité additionnelle de formaldéhyde nécessaire pour leur condensation, de manière avantageuse environ 0,5 à 3 moles. Par rapport à la 40 mélamine, les amides de l'acide sulfonique peuvent être contenus

en une proportion allant jusqu'à 20 fois la quantité en poids. Des résines utilisables selon l'invention sont décrites par xemple dans les brevets des Etats-Unis d'Amérique Nos 2 809 954 et 2 851 424.

Les nouveaux pigments fluorescents à la lumière du jour se distinguent par une très bonne solidité à la migration, telle que les solidités aux solvants et au surlaquage, en particulier par une solidité excellente à des solvants aromatiques, et ils sont supérieurs à des pigments fluorescents lo à la lumière du jour que l'on prépare avec des colorants connus, par exemple à l'aide du colorant C.I. 56 200. Les pigments fluorescents selon l'invention ont également un plus grand pouvoir tinctorial, une intensité fluorescente accrue et un meilleur brillant.

La meilleure rentabilité des pigments fluorescents qui en découle est encore considérablement accrue d'une part par un mode de préparation plus facile des colorants de l'invention : ces derniers-se-préparent en général par un procédé en une phase, à l'exclusion de solvants et sans appareillage compliqué ; d'autre part, grâce à de meilleures conditions écologiques, par le meilleur rendement et une plus grande pureté par rapport aux colorants connus que l'on n'obtient que difficilement. C'est ainsi que les nouveaux pigments fluorescents à la lumière du jour représentent un progrès technique considérable.

Les exemples suivants illustrent l'invention. Les parties indiquées s'entendent en poids.

On mélange 88,8 parties de toluène-sulfonamide et 6,7 parties de paraformaldéhyde avec 1,3 partie du colorant de 30 formule

35

EXEMPLE 1:

et on fait fondre les composantes à 160°C. On introduit 21,8 parties de mélamine dans la masse fondue limpide et jaune, on continu à agiter p ndant 10 à 15 minutes, et on introduit ensuite à cette température, par portions, 21,7 parties de paraformal5 déhyde. On continue à agiter pendant 15 minutes et on duroit la masse fondue visqueuse à 160°C pendant 3 heures; après refroidissement on la concasse et on la broie à l'état mouillé dans un broyeur à billes. Après le séchage on triture 10,8 parties du pigment ainsi obtenu avec 27 parties d'un vernis à base de 10 résine d'acrylate dans du xylène et 8 parties de xylène, de manière usuelle. Les laquages obtenus avec ce vernis sont très brillants, de couleur jaune tirant sur le vert, et intenses; ils ont une bonne solidité aux solvants.

EXEMPLE 2:

15 On chauffe à 130°C un mélange de 102,6 parties de paratoluène-sulfonamide, 1,8 partie de colorant de formule

20

et 25 parties de mélamine. On introduit, par portions, dans la masse fondue, en 10 minutes, 30 parties de paraformaldéhyde, et tout en agitant on augmente la température en 10 minutes à 160°C. Après avoir agité pendant 20 minutes à cette température 25 on verse la masse fondue visqueuse et, après avoir laissé refroidir, on la concasse. On obtient un pigment vert-jaune qui permet d'obtenir, incorporé dans un vernis acrylique, des laquages brillants vert-jaune solides au surlaquage.

EXEMPLE 3:

On condense à 120°C, pour former une masse fondue, un mélange consistant en 51,4 parties de toluènesulfonamide, 12,6 parties de mélamine, 24,0 parties de paraformaldényde et 1,5 partie du colorant de formule

- On durcit ensuite la masse fondue homogène obtenue à 160°C pendant deux heures. Après avoir refroidi et broyé, on obtient un pigment jaune-vert brillant. Après avoir été incorporées de façon habituelle dans du poly(chlorure de vinyle) plastifié, deux parties de ce pigment fluorescent fournissent une
- 10 coloration vert-jaune à fluorescence verte intense.

Au lieu des colorants mentionnés ci-dessus, on peut utiliser avec un succès comparable les colorants de formule I indiqués dans le tableau suivant, qui, dans leur ensemble, fournissent des pigments fluorescents brillants de couleur 15 jaune tirant sur le vert à jaune-vert.

(tableau pages suivantes)

TABLEAU

Exem-	-R ₁	-R ₂ - OH
4	сн ₃	-сн ₂ -сн-сн ₃
5.	dito	он -сн ₂ -сн ₂ -о-сн ₂ -сн ₂ -он
6.	dito	———ОН
7.	dito	-сн ₂ —Сн ₂ он
8.	dito	-сн ₂ —Сн ₂ он
9•	СH ₃	-сн ₂ -сн ₂ -он
3 . •	сн3	
11.	dito dito	-сн ₂ -сн ₂ -сн ₂ -он -сн ₂ -сн ₂ -мн-сн ₂ -сн ₂ -он
·		

Exem-	-R ₁	-R ₂ - OH
12.	-€- сн3	-сн ₂ -сн ₂ -он
13.	dito	-сн ₂ -сн-сн ₃
14.	Сн_3	-сн ₂ -сн ₂ -он
15.	CH ₃	-сн ₂ -сн-сн ₃ он
16.	—(H)	-сн ₂ -сн ₂ -о-сн ₂ -сн ₂ -он
17.	dito	-сн ₂ -сн-сн ₃
18.	dito	-сн ₂ -сн ₂ -сн ₂ -он
19.	и — ин	-сн ₂ -сн ₂ -он
20.	dito	-сн ₂ -сн ₂ -о-сн ₂ -сн ₂ -он

Exem-		-R ₂ - он
21.	CH ₃	-сн ₂ -сн ₂ -он
22.	-сн ₂ -сн ₂ -он	-сн ₂ -сн ₂ -о-сн ₂ -сн ₂ -он
23.	dito	-сн ₂ -сн ₂ -сн ₂ -он
24.	dito	-сн ₂ -сн-сн ₃
25.	dito	-СН ₂ -СН ₂ -NH-СН ₂ -СН ₂ -ОН
26.	-CH ₂ -CH-CH ₃	- ОН
27.	dito	-сн ₂ -сн ₂ -он
28.	dito	-сн ₂ -сн ₂ -сн ₂ -он
29.	-сн ₂ -сн ₂ -он	-сн ₂ -сн-сн ₂ -он сп ₂ -сн ₃
30.	Сн3	-СH ₂ -СH-СH ₂ -ОН ОН
31.	dito	-сн ₂ -сн ₂ -сн ₂ -он
32.	—(H)	$-\text{сн}_2$ -сн $_2$ -сн $_2$ -он
33.	dito	-сн ₂ -сн-сн ₂ -он он

REVENDICATIONS

1.- Pigments fluoresc nts à la lumière du jour à base de résines de condensation contenant des composés d formule général I

0=C R1

(I)

dans laquelle

R₁ représente un reste alkyle, cyclo-alkyle ou aryle éventuellement substitué ou bien un reste hétéro-

cyclique, et

représente un reste alkylène qui peut être interrompu par des hétéro-atomes, des restes isocycliques ou hétéro-cycliques, ou bien R₂ représente un reste cyclo-alkylène,
R₂ pouvant être substitué par d'autres substituants non ionogènes, et

z représente le nombre 1 ou 2.

2.- Pigments fluorescents à la lumière du jour selon la revendication 1, caractérisés en ce que la résine est une résine à base de mélamine/formaldéhyde que l'on a obtenue par condensation de mélamine avec du formaldéhyde ou avec des agents cédant du formaldéhyde et, le cas échéant, d'amides d'acides aryl- et/ou aralkyl-sulfoniques.

3.- Pigments fluorescents à la lumière du jour
 0 selon l'une des revendications 1 et 2, qui contiennent des composés de formule générale II

35

dans laquelle

- représente un reste hydroxyalkyle ayant de 1 à 8 atomes R₃. de carbone, de préférence de 1 à 5 atomes d carb n, ou bien un reste phényle qui peut être substitué par 5 des atomes de chlore, de brome, des groupes alkyles ayant de 1 à 4 atomes de carbone, des groupes alcoxy ayant de 1 à 4 atomes de carbone, des groupes carbamoyles, cyano, nitro, sulfamoyles, alkylsulfonyles ayant de 1 à 6 atomes de carbone, des groupes acétylamin, ou bien des groupes benzoylamino substitués par du 10 chlore ou des groupes méthyles, ou bien le reste triazolyle ou le reste benzimidazolyle et représente un reste alkylène à chaîne droite ou ramifiée ayant de 1 à 8 atomes de carbone, de préférence de 2 à 6 atomes de carbone, qui, comme groupe 15 intermédiaire, peut contenir un reste phénylène ou cyclohexylène ou un atome d'oxygène, ou qui représente un reste cycloalkylène, en particulier cyclohexylène, R_h pouvant contenir en outre dans la partie aliphatique 20 ou cycloaliphatique au moins un groupe hydroxy lié.
 - 4.- Pigments fluorescents à la lumière du jour selon l'une des revendications 1 et 2, contenant des composés de formule I, dans laquelle R₁ représente le reste β-hydroxy-éthyle, le reste cyclohexyle ou diméthylphényle, R₂ représente le reste éthylène ou propylène ou le reste hydroxy-2-propylène-1,3, et z est égal à 1.
- 5.- Pigments fluorescents à la lumière du jour selon l'une des revendications 1 et 2, contenant un composé de formule I, dans laquelle R₁ désigne le reste β-hydroxyéthyle,
 30 R₂ le reste éthylène et z est égal à 1.
 - 6.- Pigments fluorescents à la lumière du jour selon l'une des revendications 1 et 2, contenant un composé de formule I, dans laquelle R_1 représente le reste cyclohexyle, R_2 le reste éthylène et z est égal à 1.
- 7.- Pigments fluorescents à la lumière du jour selon l'une des revendications 1 et 2, contenant un composé de formule I, dans laquelle R, représente le reste diméthyl-2,4 phényle, R₂ le reste éthylène et z est égal à 1.

- 8.- Pigments fluorescents à la lumière du jour selon l'une des revendicati ns 1 et 2, contenant un omposé de formule I, dans laquelle R_1 représente le reste cyclohexyle, R_2 le reste n-propylène et z est égal à 1.
- 9.- Pigments fluorescents à la lumière du jour selon l'une des revendications 1 et 2, contenant un composé de formule I, dans laquelle R₁ désigne le reste β-hydroxyéthyle, R₂ le reste n-propylène et z est égal à 1.
- 10.- Pigments fluorescents à la lumière du jour 10 selon l'une des revendications 1 et 2, contenant un composé de formule I, dans laquelle R₁ désigne le reste diméthyl-2,4 phényle, R₂ le reste n-propylène et z est égal à 1.
- 11.- Pigments fluorescents à la lumière du jour selon l'une des revendications 1 et 2, contenant un 5 composé de formule I, dans laquelle R, représente le reste β-hydroxyéthyle, R₂ le reste hydroxy-2 propylène et z est égal
- 12.- Pigments fluorescents à la lumière du jour selon l'une des revendications 1 et 2, contenant un composé de formule I, dans laquelle R₁ représente le reste cyclohexyle, R₂ le reste hydroxy-2 propylène et z est égal à 1.
 - 13.- Pigments fluorescents à la lumière du jour selon l'une des revendications 1 et 2, contenant un composé de formule I, dans laquelle R₁ désigne le reste diméthyl-2,4 phényle, R₂ le reste hydroxy-2 propylène et z est égal à 1.
 - 14.- Procédé de préparation de pigments fluorescents à la lumière du jour, caractérisé en ce qu'on ajoute les colorants mentionnés et définis dans la revendication 1 à des composantes de départ de résines de condensation ou à
- leurs précondensats en ce qu'on condense les composantes de la résine par chauffage et en ce qu'on convertit les résines colorées ainsi obtenues en une forme pigmentaire selon des méthodes usuelles.
- 15.- Utilisation de pigments fluorescents à la 35 lumière du jour définis dans la revendication 1 ou préparés selon la revendication 14, pour la teinture de peintures, de laques, d'encres d'impression et de matières plastiques.

16.- Pigments fluorescents à la lumière du jour préparés selon le procédé de la revendication 14.

17.- Peintures, laques, encres d'impression et matières plastiques préparéesavec un pigment fluorescent 5 selon l'une des revendications 1 à 13 ou 16 ou bien avec un pigment fluorescent préparé selon la revendication 14.