

Devoir Surveillé (1 heure)	\$2ale ≯2X⊗\$ I +0edlade \$18+ ∧ \$0ell#3e ∧3H@@\$ ∧
Nom et prénom :	
$Num\'ero:$	
Exercice 1 (6 points)	
1. Quelle est la sortie du code suivant?	
x1 = 2 x2 = 10 x1, $x2 = x2$, $x1\mathbf{print}(5*x1**x2*2)$	
2. Combien de fois la lettre "x" sera-t-elle affichée?	
<pre>compteur = 0 while compteur < 7 : print("x") compteur = compteur + 1</pre>	
□ 0 □ 5 □ 7 □ 10	
3. Quelle est la sortie du code suivant?	
$\begin{array}{c} \mathbf{def} & f(x): \\ & \mathbf{return} & 1/x \end{array}$	
$\mathbf{print}\left(\right.f\left(2\right)+f\left(4\right)\right)$	
Exercice 2(6 points)	
Écrire une fonction qui prend un nombre x et renvoie son image $f(x) = 1 - \frac{1}{(1+x)^3}$ en vérifian	at d'abord que $x \neq -1$.
$(1+x)^{\alpha}$	

Exercice 3 (8 points)	
Écrire une fonction $somme_pairs(borne)$ qui prend une borne et calcule la somme des nombres porne (incluse).	pairs de 0 à cette
$Exemple: somme_impairs(6)$ renvoie 12.	