

Corso di Laurea in Ingegneria Informatica

COMUNICAZIONI NUMERICHE – 15-02-10

Esercizio 2

1) Si calcoli lo spettro e l'energia del segnale

$$z(t) = rect\left(\frac{t - T/2}{T}\right) \cdot e^{-\frac{t}{\tau}} + \sin c\left(\frac{t}{T}\right) \cos\left(2\pi f_0 t + \vartheta\right)$$

dove $T >> 1/f_0$ e $\tau >> T$.

Esercizio 2

Al ricevitore di Fig. 1 viene applicato il segnale PAM in banda base $r(t) = \sum_i a_i g_T(t-iT) \cos^4(2\pi f_0 t + \vartheta) + w(t)$ con $f_0 >> 1/T$, $\vartheta = -\pi/4$, simboli a_i , indipendenti ed equiprobabili, appartenenti all'alfabeto $A \equiv [-1,1]$. Il rumore w(t) introdotto dal canale è Gaussiano, a media nulla, con densità spettrale di potenza $S_W(f) = \frac{N_0}{2}$. L'impulso $g_T(t) = rect\left(\frac{t}{T/2}\right)$. Nell'ipotesi che la risposta impulsiva del filtro in ricezione $g_R(t)$ sia $g_R(t) = rect\left(\frac{t}{T/2}\right)$ si calcoli:

- 1) L'energia trasmessa media per simbolo
- 2) La potenza media della componente di rumore all'uscita del filtro in ricezione $g_R(t)$
- 3) La Probabilità di Errore su bit.

