# Calcul Scientifique - Cours

24 Janvier, 2024

#### Louis Thevenet

### Table des matières

| . Recherche de valeurs propres et vecteurs propres |  |
|----------------------------------------------------|--|
| 1.1. Localisation des valeurs propres              |  |
| 1.2. Algorithme de la puissance itérée             |  |
| 1.3. Algorythme de Jacobi                          |  |

## 1. Recherche de valeurs propres et vecteurs propres

### 1.1. Localisation des valeurs propres

#### Théorème 1.1.1: d'Hadamard-Gershgorin

Soit  $A \in M_n(\mathbb{C})$ , les valeurs propres de A ont des images dans le plan complexe et qui appartiennent à  $\bigcup_{i=1}^n D_i$  avec  $D_i = \left\{ z \in \frac{\mathbb{C}}{|z-a_{i,i}|} \le \sum_{j=1}^n |a_{i,j}| \right\}$ 

Remarque : si  $A\in M_n(\mathbb{R})$  et si toutes les valeurs propres de A sont réelles, alors  $D_i$  et  $\bigcup_{i=1}^n D_i$  sont des intervalles de  $\mathbb{R}$ .

#### Corollaire 1.1.1.1:

$$\rho(A) \leq \max_{i=1,\dots,n} \sum_{j=1}^n \bigl|a_{i,j}\bigr|$$

### 1.2. Algorithme de la puissance itérée



```
Input : Matrice A \in \mathcal{M}_n(\mathbb{R})
Output : (\lambda_1, v_1) couple propre associé à la plus grande (en module) valeur
propre.
x_0 \in \mathbb{R}^n donné et p = 0
\beta_p = x_p^T \cdot A \cdot x_p
repeat
   y_{p+1} = A \cdot x_p
   x_{p+1} = y_{p+1} / ||y_{p+1}||

\beta_{p+1} = x_{p+1}^{T} \cdot A \cdot x_{p+1}
until \left|\beta_{p+1} - \beta_p\right| / \left|\beta_p\right| < \varepsilon
\lambda_1 = \beta_{p+1} et v_1 = x_{p+1}
```

Fig. 1. – Méthode de la puissance itérée

- 1ère application de l'algorithme : on obtient  $\lambda_1$  et un  $\stackrel{\rightarrow}{\mathrm{vp}}$  associé
- 2ème application de l'algorithme : on obtient  $\lambda_2$  et un  $\stackrel{\frown}{\text{vp}}$  associé
- En n passages, on obtient les vp et une base de vp associés

## Exercise I:

• Soit  $x \in \mathbb{R}^n$ 

Si  $A - \alpha I$  n'est pas inversible, alors  $A - \alpha I$  singulière et  $\alpha$  est valeur propre de A.

$$Au = \lambda u \Rightarrow (A - \alpha I) = (\lambda - \alpha)u$$

$$\Rightarrow \frac{1}{\lambda \neq \alpha} u = (A - \alpha I)^{-1} u$$

$$\Rightarrow u \stackrel{\rightarrow}{\text{vp}} \text{ de } (A - \alpha I)^{-1}$$

$$\Rightarrow \mu = \frac{1}{\lambda - \alpha} \text{ vp associée}$$

• Résoudre  $Ay_{i+1} = x_i \Leftrightarrow y_{i+1} = A^{-1}x_i$  L'algo est presque celui de la Fig. 1 appliqué

Supposons que  $\lambda_1,...,\lambda_n$  vp et  $v_1,...,v_n\stackrel{\rightarrow}{\text{vp}}$  associés à AAlors,  $\left(\frac{1}{\lambda_1}, v_1\right), ..., \left(\frac{1}{\lambda_n}, v_n\right)$  sont vp et  $\overrightarrow{\text{vp}}$  associés à  $A^{-1}$ 

## 1.3. Algorythme de Jacobi

## Définition 1.3.1:

- **Définition 1.3.1**:
   Procédé itératif :  $\begin{cases} A_1 = A \\ A_{k+1} = \Theta_k^{-1} A_k \Theta_k \end{cases}$
- Jusqu'à congergence :  $\lim_{k\to\infty}A_k=D=\operatorname{diag}(\lambda_1,...,\lambda_n)$  Choix de  $\Theta_k$ ? Une matrice orthogonale (donc  $\Theta_k^{-1}=\Theta_k^T$ ) car  $\forall$ :

  - $A_k$ a les mêmes vp que  $A \; (\stackrel{\rightarrow}{\text{vp}} \; \text{différents})$

Pour obtenir les v<br/>p de A,il suffit que  ${\cal A}_k$  converge vers une matrice diagonale.