SECOND SEMESTER 2020-2021

Course Handout Part II

Date: 16.01.2021

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BITS F463
Course Title : Cryptography

Instructor-in-Charge : **Prof. G Geethakumari**

1. Scope and Objectives of the Course:

Cryptography is an indispensable tool for protecting information in computer systems. Learning to reason about the security of cryptographic constructions and to apply this knowledge to real-world applications forms the crux of this course.

The objectives of the course are:

- Insight into private key cryptographic schemes and their implementation as well as Public key cryptographic mechanisms and their applications
- Hands-on exposure to cryptographic algorithms to various real-life security applications in the cyber space

2. Textbooks:

T1: Cryptography and Network Security: Principles and Practice, William Stallings, 6th Edition, Pearson Education, 2014.

3. Reference books:

R1: Cryptography and Network Security, Behrouz A. Forouzan, McGraw-Hill, 2007

R2: Applied Cryptography, Bruce Schneier, Wiley Student Edition, Second Edition, Singapore, 2010

R3: Handbook of Applied Cryptography: Alfred Menezes, Paul van Oorschot, and ScoF Vanstone, CRC Press, NY, 2001.

R4: Cryptography: Theory and Practice, Douglas Stinson, Chapman and Hall/CRC, 3rd Edition, 2005.

Online Study Material:

http://online.stanford.edu/course/cryptography https://www.coursera.org/course/crypto

4. Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1	Overview of Computer Security Concepts and relevance of cryptography	OSI Security Architecture, Security attacks, Models and Mechanisms	T1 Chapter 1
2-3	Introduction to Cryptography	Understanding of classical cryptosystems	T1 Chapter 2
4-5		Classical Encryption Techniques	T1 Chapter 2
6-8		Block Ciphers and the Data Encryption Standard	
9-11	To learn about various symmetric ciphers and standards	Basic Concepts in Number Theory and Finite Fields	
12-14		Advanced Encryption Standard	T1 Chapter 5
15-17		Block Cipher Operation	T1 Chapter 6
18-19		Pseudorandom Number Generators	T1 Chapter 7.1 -7.3
20-21		Stream Ciphers	T1 Chapter 7.4 – 7.8
22-23		More on Number Theory	T1 Chapter 8
24-26	To learn about various asymmetric ciphers and standards	Public-Key Cryptography and RSA	T1 Chapter 9
27-29		Other Public-Key Cryptosystems	T1 Chapter 10
30-32		Cryptographic Hash functions	T1 Chapter 11
33-35	Learn about cryptographic data integrity algorithms	Message Authentication Codes	T1 Chapter 12
36-38		Digital Signatures	T1 Chapter 13
39-42	To learn about the role of mutual trust in key management schemes	Key Management and Distribution; User Authentication	T1 Chapter 14, Chapter 15

5. Evaluation Scheme:

Sl No.	Component	Duration	Weightage (%)	Date & Time	Nature of Component
1	Mid Sem Test	90 min	35%	02/03 3.30 - 5.00PM	Open Book
2	Programming Assignments(online): 2Nos	ТВА	35% (17.5% pre -mid)		Open Book
3	Comprehensive Exam	120 min	30%	05/05 AN	Open Book

6.Consultation Hour: To be announced in the class

7. Notices: The notices for this course would be posted in CMS.

8. Make-up Policy: No makeup exam allowed without prior permission.

9. Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE BITS F463