CSE 221: Algorithms Graph Algorithms

Mumit Khan

Computer Science and Engineering **BRAC** University

References

- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Second Edition. The MIT Press, September 2001.
- Jon Kleinberg and Éva Tardos, Algorithm Design. Pearson Education, 2006.
- M. Goodrich and R. Tamassia, Algorithm Design. John-Wiley and Sons. 2002.

Last modified: July 21, 2009

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.

Introduction to graph algorithms

• All about weighted graphs.

Introduction to graph algorithms

- All about weighted graphs.
- Minimum-cost Spanning Tree algorithms.

Mumit Khan Licensed under @@@@ CSE 221: Algorithms

- All about weighted graphs.
- Minimum-cost Spanning Tree algorithms.
- Shortest Path algorithms.

Mumit Khan

- All about weighted graphs.
- Minimum-cost Spanning Tree algorithms.
- Shortest Path algorithms.
- Computing transitive closure.

Mumit Khan

- All about weighted graphs.
- Minimum-cost Spanning Tree algorithms.
- Shortest Path algorithms.
- Computing transitive closure.
-

- All about weighted graphs.
- Minimum-cost Spanning Tree algorithms.
- Shortest Path algorithms.
- Computing transitive closure.
- . . .
- Excellent applications of Greedy and Dynamic Programming strategies.

Mumit Khan

Contents

- Graph Algorithms
 - Minimum-cost Spanning Tree algorithms
 - Shortest Path algorithms
 - 0
 - a

Spanning trees

Definition

A subgraph T of a undirected graph G = (V, E) is a spanning tree of G if it is a tree and contains every vertex of G.

Licensed under @@@@ Mumit Khan CSE 221: Algorithms

Spanning trees

Definition

A subgraph T of a undirected graph G = (V, E) is a spanning tree of G if it is a tree and contains every vertex of G.

Given the following graph:

Spanning trees

Definition

A subgraph T of a undirected graph G = (V, E) is a spanning tree of G if it is a tree and contains every vertex of G.

Given the following graph:

The spanning trees are:

Mumit Khan

Spanning trees

Definition

A subgraph T of a undirected graph G = (V, E) is a spanning tree of G if it is a tree and contains every vertex of G.

Given the following graph:

The spanning trees are:

CSE 221: Algorithms Mumit Khan Licensed under

Definition

A subgraph T of a undirected graph G = (V, E) is a spanning tree of G if it is a tree and contains every vertex of G.

Given the following graph:

The spanning trees are:

Mumit Khan

Licensed under

CSE 221: Algorithms

Spanning trees of weighted graphs

Given the following graph:

Spanning trees of weighted graphs

Given the following graph:

The spanning trees (with associated total weights) are:

$$\sum_{e \in T} w(e) = 74$$

$$\sum_{e \in T} w(e) = 71$$

$$\sum_{e\in\mathcal{T}}w(e)=72$$

Mumit Khan

Licensed under

CSE 221: Algorithms

Definition

The minimum-cost spanning tree of a graph A spanning tree T of a undirected graph G = (V, E) is a minimum-cost spanning tree of G if the total weight $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized.

Licensed under @@@@ Mumit Khan CSE 221: Algorithms

Definition

The minimum-cost spanning tree of a graph A spanning tree T of a undirected graph G = (V, E) is a minimum-cost spanning tree of G if the total weight $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized.

Mumit Khan

Minimum-cost Spanning Tree (MST)

Definition

The minimum-cost spanning tree of a graph A spanning tree T of a undirected graph G = (V, E) is a minimum-cost spanning tree of G if the total weight $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized.

6 / 18 Mumit Khan Licensed under CSE 221: Algorithms

Minimum-cost Spanning Tree (continued)

Uniqueness of MST

The minimum-cost spanning tree may not be unique!

Uniqueness of MST

The minimum-cost spanning tree may not be unique!

Uniqueness of MST

The minimum-cost spanning tree may not be unique!

Uniqueness of MST

The minimum-cost spanning tree may not be unique!

Mumit Khan

Uniqueness of MST

The minimum-cost spanning tree may not be unique!

Key observation

However, if the weights are all distinct (i.e., $w(u_i, v_i) \neq w(u_k, v_l)$ unless i = k and j = l), then it is indeed unique.

Computing an MST

- We grow the tree one edge at a time, starting with a graph $G' = (V, \emptyset).$
- At each step, add a new safe edge, ensuring that it does not create a cycle (why?).
- If adding an edge guarantees that the tree after each step is a subset of some MST, then the final result will be an MST.

Licensed under Mumit Khan CSE 221: Algorithms 8 / 18

- We grow the tree one edge at a time, starting with a graph $G' = (V, \emptyset)$.
- At each step, add a new safe edge, ensuring that it does not create a cycle (why?).
- If adding an edge guarantees that the tree after each step is a subset of some MST, then the final result will be an MST.

Key question

How do we pick the next safe edge?

Computing an MST

- We grow the tree one edge at a time, starting with a graph $G' = (V, \emptyset).$
- At each step, add a new safe edge, ensuring that it does not create a cycle (why?).
- If adding an edge guarantees that the tree after each step is a subset of some MST, then the final result will be an MST.

Key question

How do we pick the next safe edge?

Which algorithm design strategy does this question remind you of?

Prim's algorithm to compute an MST

```
MST-PRIM(G, w, r)
      for each u \in V[G]
             do key[u] \leftarrow \infty
                 \pi[u] \leftarrow \text{NIL}
     key[r] \leftarrow 0
 5 Q \leftarrow V[G]
      while Q \neq \emptyset
             do u \leftarrow \text{EXTRACT-MIN}(Q)
 8
                  for each v \in Adj[u]
 9
                        do if v \in Q and w(u, v) < key[v]
10
                                then \pi[v] \leftarrow u
11
                                       kev[v] \leftarrow w(u,v)
```

Mumit Khan

Prim's algorithm to compute an MST

```
MST-PRIM(G, w, r)
      for each u \in V[G]
             do key[u] \leftarrow \infty
                 \pi[u] \leftarrow \text{NIL}
     key[r] \leftarrow 0
 5 Q \leftarrow V[G]
      while Q \neq \emptyset
             do u \leftarrow \text{EXTRACT-MIN}(Q)
 8
                  for each v \in Adj[u]
 9
                        do if v \in Q and w(u, v) < key[v]
10
                                then \pi[v] \leftarrow u
11
                                        kev[v] \leftarrow w(u,v)
```

Running time

$$O(V \lg V + E \lg V) = O(E \lg V)$$

Licensed under @@@@ Mumit Khan CSE 221: Algorithms 9 / 18

Kruskal's algorithm to compute an MST

```
MST-Kruskal(G, w)
   A \leftarrow \emptyset
   for each vertex v \in V[G]
3
         do MAKE-SET(v)
   sort the edges of E into non-decreasing order by weight w
4
   for each edge (u, v) \in E, taken in non-decreasing order by weight
5
         do if FIND-SET(u) \neq FIND-SET(v)
6
               then A \leftarrow A \cup \{(u, v)\}
8
                      UNION(u, v)
9
   return A
```

Kruskal's algorithm to compute an MST

```
MST-Kruskal(G, w)
   A \leftarrow \emptyset
   for each vertex v \in V[G]
3
         do MAKE-SET(v)
   sort the edges of E into non-decreasing order by weight w
4
   for each edge (u, v) \in E, taken in non-decreasing order by weight
5
         do if FIND-SET(u) \neq FIND-SET(v)
6
               then A \leftarrow A \cup \{(u, v)\}
8
                      UNION(u, v)
9
   return A
```

Running time

 $O(E \lg E)$

Mumit Khan

Licensed under

CSE 221: Algorithms

w(u, v)	(u, v)
3	(5,8)
5	(2,3)
6	(1,2)
7	(3,6)
8	(2,8)
9	(3,4)
10	(6,8)
12	(1,3)
14	(2,5)
15	(6,7)

$$|V| = 8$$
$$|E| = 10$$
$$|T| = 0$$

w(u, v)	(u, v)
3	(5,8)
5	(2,3)
6	(1,2)
7	(3,6)
8	(2,8)
9	(3,4)
10	(6,8)
12	(1,3)
14	(2,5)
15	(6,7)

$$|V| = 8$$

 $|E| = 10$
 $|T| = 0$

Vertex sets:

Vertex sets:

$$\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\} \Longrightarrow \{1\},\{2\},\{3\},\{4\},\cfrac{\{5,8\}}{,\{6\},\{7\}}$$

Mumit Khan

12 / 18

Kruskal's algorithm in action

Vertex sets:

Mumit Khan Licensed under @@@@ CSE 221: Algorithms

,8) ,3) ,2)
,2)
,
C \
,6)
,8)
,4)
,8)
,3)
,5)
,5)

$$|V| = 8$$

$$|E| = 10$$

$$|T| = 3$$

Vertex sets:

$$\{1\},\{2,3\},\{4\},\{5,8\},\{6\},\{7\} \Longrightarrow \{1,2,3\},\{4\},\{5,8\},\{6\},\{7\}$$

Mumit Khan

Licensed under

CSE 221: Algorithms

w(u, v)	(u, v)
√ 3	(5,8)
√ 5	(2,3)
√ 6	(1,2)
7	(3,6)
8	(2,8)
9	(3,4)
10	(6,8)
12	(1,3)
14	(2,5)
15	(6,7)
	. ,

$$|V| = 8$$

$$|E| = 10$$

$$|T| = 4$$

Vertex sets:

$$\{1, 2, 3\}, \{4\}, \{5, 8\}, \{6\}, \{7\} \Longrightarrow \{1, 2, 3, 6\}, \{4\}, \{5, 8\}, \{7\}$$

Mumit Khan

w(u, v)	(u, v)
√ 3	(5,8)
√ 5	(2,3)
√ 6	(1,2)
√ 7	(3,6)
8	(2,8)
9	(3,4)
10	(6,8)
12	(1,3)
14	(2,5)
15	(6,7)

$$|V| = 8$$

$$|E| = 10$$

$$|T| = 5$$

Vertex sets:

 $\{1, 2, 3, 6\}, \{4\}, \{5, 8\}, \{7\} \Longrightarrow \{1, 2, 3, 5, 6, 8\}, \{4\}, \{7\}$

Mumit Khan

Licensed under @

CSE 221: Algorithms

w(u,v)	(u, v)
√ 3	(5,8)
√ 5	(2,3)
√ 6	(1,2)
√ 7	(3,6)
√ 8	(2,8)
9	(3,4)
10	(6,8)
12	(1,3)
14	(2,5)
15	(6,7)

$$|V| = 8$$

$$|E| = 10$$

$$|T| = 6$$

Vertex sets:

 $\{1, 2, 3, 5, 6, 8\}, \{4\}, \{7\} \Longrightarrow \{1, 2, 3, 4, 5, 6, 8\}, \{7\}$

Mumit Khan

Licensed under

CSE 221: Algorithms

w(u, v)	(u, v)
√ 3	(5,8)
√ 5	(2,3)
√ 6	(1,2)
√ 7	(3,6)
√ 8	(2,8)
√ 9	(3,4)
10	(6,8)
12	(1,3)
14	(2,5)
15	(6,7)

$$|V| = 8$$

 $|E| = 10$

$$|L| = 10$$

$$|T| = 6$$

Vertex sets:

 $\{1, 2, 3, 4, 5, 6, 8\}, \{7\} \Longrightarrow \{1, 2, 3, 4, 5, 6, 8\}, \{7\}$

Mumit Khan

w(u, v)	(u, v)
√ 3	(5,8)
√ 5	(2,3)
√ 6	(1,2)
√ 7	(3,6)
√ 8	(2,8)
√ 9	(3,4)
× 10	(6,8)
12	(1,3)
14	(2,5)
15	(6,7)
	(')

$$|V| = 8$$
$$|E| = 10$$
$$|T| = 6$$

Vertex sets:

 $\{1, 2, 3, 4, 5, 6, 8\}, \{7\} \Longrightarrow \{1, 2, 3, 4, 5, 6, 8\}, \{7\}$

(u, v)
(5,8)
(2,3)
(1,2)
(3,6)
(2,8)
(3,4)
(6,8)
(1,3)
(2,5)
(6,7)

$$|V| = 8$$
$$|E| = 10$$
$$|T| = 6$$

Vertex sets:

 $\{1, 2, 3, 4, 5, 6, 8\}, \{7\} \Longrightarrow \{1, 2, 3, 4, 5, 6, 8\}, \{7\}$

w(u,v)	(u, v)
√ 3	(5,8)
√ 5	(2,3)
√ 6	(1,2)
√ 7	(3,6)
√ 8	(2,8)
√ 9	(3,4)
× 10	(6,8)
× 12	(1,3)
× 14	(2,5)
15	(6,7)

$$|V| = 8$$

 $|E| = 10$

$$|T| = 7$$

Vertex sets:

 $\{1, 2, 3, 4, 5, 6, 8\}, \{7\} \Longrightarrow \{1, 2, 3, 4, 5, 6, 7, 8\}$

Mumit Khan

Licensed under @@@@

CSE 221: Algorithms

w(u, v)	(u, v)
√ 3	(5,8)
√ 5	(2,3)
√ 6	(1,2)
√ 7	(3,6)
√ 8	(2,8)
√ 9	(3,4)
× 10	(6,8)
× 12	(1,3)
× 14	(2,5)
√ 15	(6,7)
	` ,

$$|V| = 8$$
$$|E| = 10$$
$$|T| = 7$$

Vertex sets:

 $\{1, 2, 3, 4, 5, 6, 7, 8\}$

Licensed under

,8) ,3) ,2)
,2)
(6)
(8,
(4)
(8,
(3)
,5)

$$|V| = 8$$
$$|E| = 10$$

$$|T| = 7$$

Vertex sets:

 $\{1, 2, 3, 4, 5, 6, 7, 8\}$

Contents

- Graph Algorithms
 - Minimum-cost Spanning Tree algorithms
 - Shortest Path algorithms

Dijkstra's algorithm for SSSP

```
DIJKSTRA(G, s)
      for each v \in V[G]
              do d[v] \leftarrow \infty
                  \pi[v] \leftarrow \text{NIL}
      d[s] \leftarrow 0
 5 S \leftarrow \emptyset
 6 Q \leftarrow V[G]
      while Q \neq \emptyset
 8
              do u \leftarrow \text{EXTRACT-MIN}(Q)
 9
                   S \leftarrow S \cup \{u\}
10
                   for each vertex v \in Adj[u]
11
                          do if d[v] > d[u] + w(u, v)
                                 then d[v] \leftarrow d[u] + w(u, v)
12
13
                                         \pi[v] \leftarrow u
```

Mumit Khan

```
DIJKSTRA(G, s)
      for each v \in V[G]
              do d[v] \leftarrow \infty
                  \pi[v] \leftarrow \text{NIL}
     d[s] \leftarrow 0
 5 S \leftarrow \emptyset
 6 Q \leftarrow V[G]
      while Q \neq \emptyset
 8
              do u \leftarrow \text{EXTRACT-MIN}(Q)
 9
                  S \leftarrow S \cup \{u\}
                   for each vertex v \in Adj[u]
10
11
                         do if d[v] > d[u] + w(u, v)
                                 then d[v] \leftarrow d[u] + w(u, v)
12
```

Graph Algorithms

Running time

13

$$O((V+E) \lg V)$$

Mumit Khan

Licensed under @@@@

CSE 221: Algorithms

 $\pi[v] \leftarrow u$

CSE 221: Algorithms 15 / 18 Mumit Khan Licensed under

CSE 221: Algorithms 15 / 18 Mumit Khan Licensed under

CSE 221: Algorithms 15 / 18 Mumit Khan Licensed under

