Второй замечательный предел и его следствия

Докажем, что справедлива формула $\lim_{x\to\infty}(1+\frac{1}{x})^x=e$. Но прежде изменим определение Коши с учетом того, что переменная x стремится не к конечному значению a, когда для попадания x в окрестность a следует выполнить неравенство $|x-a|<\delta$ при достаточно малом $\delta>0$, а к бесконечности. Переменная x окажется в окрестности бесконечности, если окажется по модулю больше достаточно большой величины. Таким образом, **определение Коши** в случае $x\to\infty$ будет выглядеть так: $b=\lim_{x\to\infty}f(x)$, если для любого $\varepsilon>0$ существует число $M=M(\varepsilon)>0$ такое, что для любого числа $x\in X$, удовлетворяющего условию |x|>M, выполняется неравенство $|f(x)-b|<\varepsilon$.

Пусть x > 0, то есть $x \to +\infty$. Рассмотрим неравенство

$$(1 + \frac{1}{[x]+1})^{[x]+1} (1 + \frac{1}{[x]+1})^{-1} = (1 + \frac{1}{[x]+1})^{[x]} < (1 + \frac{1}{x})^x < (1 + \frac{1}{[x]})^{[x]+1} =$$

$$= (1 + \frac{1}{[x]})^{[x]} (1 + \frac{1}{[x]})$$
(*)

Очевидно, что $\lim_{x\to +\infty} (1+\frac{1}{\lceil x \rceil})^{[x]} = e$, так как при $x \ge 1$ величина [x] —

натуральное число — и мы имеем последовательность, участвующую в определении числа e . Аналогично, $\lim_{x\to +\infty} (1+\frac{1}{[x]+1})^{[x]+1} = e$. Теперь остается

применить неравенство (*) и теорему о двух милиционерах.

Для случая x < 0 сделаем замену x = -y. Тогда

$$(1+\frac{1}{x})^x = (1-\frac{1}{y})^{-y} = (\frac{y-1}{y})^{-y} = (\frac{y}{y-1})^y = (1+\frac{1}{y-1})^{y-1}(1+\frac{1}{y-1}).$$

При $x \to -\infty$ имеем: $y \to +\infty$. Поэтому можно применить уже доказанную формулу для положительной переменной y-1. Доказательство завершено.

Прологарифмируем обе части второго замечательного предела — получим $\lim_{x\to\infty}(x\cdot\ln(1+\frac{1}{x}))=1$. Если теперь заменить $\frac{1}{x}$ переменной t, которая стремится к нулю при стремлении x к бесконечности, получим следствие из второго замечательного предела

1)
$$\lim_{t\to 0} \frac{\ln(1+t)}{t} = 1$$
.

Другим следствие второго замечательного предела является предел, получаемый из предыдущего заменой $z = \ln(1+t)$:

2)
$$\lim_{z\to 0} \frac{e^z - 1}{z} = 1$$
.

Рассмотрим теперь предел $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x}$. Сделаем замену $(1+x)^{\alpha}=e^{z}$.

При такой замене $x \to 0$ тогда и только тогда, когда $z \to 0$. Получим $\lim_{x \to 0} \frac{(1+x)^{\alpha}-1}{x} = \lim_{z \to 0} \frac{e^{z}-1}{e^{z/\alpha}-1} = \lim_{z \to 0} \frac{e^{z}-1}{z} \cdot \lim_{z \to 0} \frac{z/\alpha}{e^{z/\alpha}-1} \cdot \alpha = \alpha$. (Во втором

выражении равенства числитель и знаменатель умножены на z и сделан переход к пределу в соответствии со вторым следствием.)

Таким образом, третьим следствием второго замечательного предела является

3)
$$\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha$$
.

Бесконечно малые и бесконечно большие функции

Определение 1. Функция $\alpha(x)$ называется бесконечно малой функцией («бесконечно малой величиной» или просто «бесконечно малой») при $x \to x_0$, если $\lim_{x \to x_0} \alpha(x) = 0$, то есть если для $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0$ тчо $\forall x, |x - x_0| < \delta(\varepsilon)$ ($|\alpha(x)| < \varepsilon$).

Определение 2. Функция A(x) называется бесконечно большой функцией («бесконечно большой величиной» или просто «бесконечно большой») при $x \to x_0$, если для $\forall M > 0 \;\; \exists \delta = \delta(M) > 0 \;\; \text{тчо} \;\; \forall x, \big| x - x_0 \big| < \delta(M) \;\; (\big| \alpha(x) \; \big| > M)$.

Замечание 1. При предыдущих обозначениях функция $\frac{1}{A(x)}$ при $x \to x_0$

бесконечно малая, а $\frac{1}{\alpha(x)}$ - бесконечно большая.

Известны следующие свойства бесконечно малых.

- 1) Сумма конечного числа бесконечно малых бесконечно малая.
- 2) Произведение бесконечно малой и ограниченной величины величина бесконечно малая.
- 3) $\lim_{x\to a} f(x) = b$ тогда и только тогда, когда $f(x) = b + \alpha(x)$, где $\alpha(x)$ является бесконечно малой величиной при $x\to a$.

Сравнение бесконечно малых величин

1. Если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = K$, причем $0 < |K| < \infty$, функции $\alpha(x)$ и $\beta(x)$ называется бесконечно малыми одного порядка малости при $x \to x_0$.

 Π р и м е р. Функции $(1+x)^3-1$ и x – бесконечно малые величины одного порядка малости при $x \rightarrow 0$.

Определение 4. Функции $\alpha(x)$ и $\beta(x)$ называется эквивалентными

бесконечно малыми при
$$x \to x_0$$
, если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$.

 Π р и м е р. Функции x и $\sin x$ – эквивалентные бесконечно малые величины при $x \rightarrow 0$.

Определение 5. Функция $\alpha(x)$ называется бесконечно малой более высокого

порядка малости, чем
$$\beta(x)$$
, при $x \to x_0$, если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$.

 Π р и м е р. Функция x^2 – бесконечно малая величина более высокого порядка малости, чем $\sin x$ при $x \to 0$.

Односторонние пределы

Число b называется **левым пределом** функции f(x) при $x \rightarrow a$ (пределом слева), если для любой последовательности значений аргумента x_n , стремящейся к a слева $(x_n < a)$ соответствующая ей функциональная последовательность $f(x_n)$ сходится к b. Обозначение $\lim_{x \rightarrow a-0} f(x) = b$.

Соответствующее определение Коши имеет вид: для $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0$ такое, что для $\forall x, \ 0 < a - x < \delta$, справедливо ($|f(x) - b| < \varepsilon$).

Определение 4. Число b называется **правым пределом** функции f(x) при $x \to a$ (пределом справа), если для любой последовательности значений аргумента x_n , стремящейся к a справа $(x_n > a)$ соответствующая ей функциональная последовательность $f(x_n)$ сходится к b. Обозначение $\lim_{x\to a+0} f(x) = b$.

Соответствующее определение Коши имеет вид: для $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0$ такое, что для $\forall x, \ 0 < x - a < \delta$, справедливо ($|f(x) - b| < \varepsilon$).

Существование предела в точке означает, что пределы слева и справа существуют и равны.

Функция, непрерывная в точке

Пусть функция y = f(x) задана на множестве $X \subset \mathbb{R}$ и $a \in X$, то есть функция определена в точке x = a. Если $\lim_{x \to a} f(x) = f(a)$, то говорят, что эта функция непрерывна в точке a. По-другому можно записать свойство непрерывности так: $\lim_{x \to a} f(x) = f(\lim_{x \to a} x)$. Свойство непрерывности функций передается суперпозиции этих функций: если y = f(x) непрерывна в точке a, а функция z = g(y) непрерывна в точке b = f(a), то функция z = h(x) = g(f(x)) непрерывна в точке a.

Функция, непрерывная в каждой точке множества X, называется непрерывной на множестве X. График непрерывной функции представляет собой непрерывную кривую. Все известные из школьного математического курса функции непрерывны в областях, где они заданы: многочлены, e^x , $\ln x$ при x > 0, $\sin x$, $\cos x$, $\tan x$ при $\tan x \neq \pi x$, $\tan x \Rightarrow \pi x$,

Пример разрывной функции — функция $y = \operatorname{sgn} x = \begin{cases} 1, \ x > 0, \\ -1, \ x < 0. \end{cases}$ Доказать, что она имеет разрыв в точке x = 0 можно с применением определения Гейне. Зададим последовательность $x_n = \frac{(-1)^n}{n}$. Очевидно, что общий член последовательности стремится к нулю с ростом номера, причем четные члены последовательности — положительные числа, нечетные — отрицательные. Нетрудно заметить, что $f(x_n) = (-1)^n$. Поскольку последовательность $(-1)^n$ не имеет предела, то в соответствии с определением Гейне функция $y = \operatorname{sgn} x$ не имеет предела в точке x = 0, и поэтому не может быть непрерывной в этой точке, как бы мы ее в этой точке ни определяли.

Приведенный пример точки разрыва — **точка разрыва первого рода**. В соответствии с определением точки разрыва первого рода функция должна иметь пределы при x, стремящимся к точке разрыва слева и при x, стремящимся к точке разрыва справа, только эти пределы не совпадают. В случае функции $y = \operatorname{sgn} x$ предел слева в точке разрыва x = 0 равен -1, предел справа равен 1.

Точкой разрыва второго рода функции f(x) называется такая предельная точка множества X, на котором задана функция, что хотя бы один из пределов (слева или справа) функции в этой точке не существует или бесконечен. В качестве примера 1 можно привести функцию $y = \operatorname{tg} x$. В точке $x = \pi/2$ функция не определена, но эта точка является предельной для множества определения функции. При стремлении $x \in \pi/2$ слева значения функции, постоянно увеличиваясь, стремятся $x \in \pi/2$ справа, значения функции, уменьшаясь, стремятся $x \in \pi/2$.

Пример 2 — функция $f(x) = e^{1/x}$. При стремлении $x \times 0$ слева предел равен 0, при стремлении $x \times 0$ справа функция становится бесконечно большой.

Пример 3 — функция $f(x) = \sin 1/x$. При стремлении $x \kappa 0$ слева и справа предел не существует, хотя функция ограничена по величине.

Функция, непрерывная в каждой точки множества X, называется непрерывной на множестве X.

Свойства функций, непрерывных на отрезке.

Пусть функция f(x) непрерывна на отрезке [a,b]. Тогда справедливы следующие свойства.

- 1. Функция f(x) ограничена на [a,b].
- 2. Если $M = \max_{x \in [a,b]} f(x)$, $m = \min_{x \in [a,b]} f(x)$, то $\exists x_M, x_m \in [a,b]$ такие, что $f(x_M) = M, f(x_m) = m$.
- 3. Если $f(a) \cdot f(b) < 0$ (значения на концах отрезка имеют разные знаки), то $\exists x_0 \in [a,b]$ такое, что $f(x_0) = 0$.

Доказательство. Для доказательства мы воспользуемся леммой о вложенных отрезках. Разделим отрезок [a,b] пополам и проверим значение $f(\frac{a+b}{2})$. Если

 $f(\frac{a+b}{2})=0$, то $x_0=\frac{a+b}{2}$ и теорема доказана. В противном случае выберем ту половину отрезка, на границах которой функция имеет разные знаки. Разделим этот новый отрезок пополам и проверим значение функции в этой середине.... Продолжая указанный процесс, мы либо получим значение 0 у функции в одной из середин получаемых отрезков, либо получим последовательность вложенных отрезков $[a_n,b_n],\ n\in\mathbb{N}$, обладающих свойствами: $[a_n,b_n]\subset [a_{n-1},b_{n-1}],\ b_n-a_n\to 0$ при $n\to\infty$ и $f(a_n)\cdot f(b_n)<0$. В соответствии с леммой о вложенных отрезках $\exists \lim_{n\to\infty} a_n=\lim_{n\to\infty} b_n=c\in [a,b]$. В силу непрерывности функции на отрезке $\lim_{n\to\infty} f(a_n)=\lim_{n\to\infty} f(b_n)=f(c)$. В силу того, что знаки $f(a_n)$ и $f(b_n)$ разные, f(c)=0. Следовательно, $x_0=c$.

Следствиями 3-го свойства являются следующие свойства:

- 3-а. Функция f(x) принимает все промежуточные значения между f(a) и f(b). (Для доказательства следует применить свойство 3 к функции $f_1(x) = f(x) k$ для любого значения k между f(a) и f(b)).
- 3-б. Функция f(x) принимает все промежуточные значения между M и m, где M и m из свойства 2. (Для доказательства следует применить свойство 3-а для функции f(x) на отрезке $[x_m, x_M]$).