

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:

Judy Mei												
UB Person Number:									Instructions:			
5 ① ① ② ③ ④ ⑥ ⑦ ⑧ ⑨	① ① ① ② ③ ④ ⑤ ⑥ ⑦ ③ 9	2 ① ① ③ ③ ③ ④ ⑤ ⑥ ⑦ ⑦ ③ ③ ③ ③ ③ ④ ⑥ ② ③ ③ ④ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥	\$\\ 0 \\ 0 \\ 2 \\ \tag{4} \\ 6 \\ 6 \\ 7 \\ 8 \\ 9	7 ① ① ② ③ ③ ④ ⑤ ⑥ ⑥ ③ ③ 9		(a) (3) (4) (4) (5) (5) (6) (6) (7) (7) (8) (8)			 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work. 			
1		2	I	3		4	5		6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad w = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- (a)) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

b) It is linearly dependent since the reduced form contains at free variable invegring it has infinetally many solutions.

a)
$$b=7$$
 | where did this come from?
 $b=-6$

(2.)(10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \qquad A \times -13$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 - 1 \end{bmatrix} \rightarrow A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

a)
$$A = [T(e_1) \quad T(e_2)]$$
 where $e_1 = [o] \quad e_2 = [o]$

$$T(e_1) = T([o]) = [i]$$

$$T(e_1) = T[[o]) = [-2]$$
b) ?

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

True. - why?

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

Thre. In order 10 be limearly monopeneral, each Column is a piviot column. So if you do set Eury's threy will both Still have a piviot column in each column.

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False, V - why?

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True, ~ why?