COVID - 19 (India) Data Analysis And Visualization

This notebook uses data analysis and visualization to analyze the effects of the ongoing COVID-19 pandemic in India , and create visualizations for important observation made during the analysis.

Language: - Python 3

Dataset: COVID-19 in India

Libraries:

- * Numpy
- * Pandas
- * Seaborn
- * Matplotlib

Importing Libraries

```
import Libraries for data analysis
import numpy as np
import pandas as pd

# Import Libraries for data visualization
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set_style(style ='whitegrid', rc = {'xtrick.bottom': True, 'ytick.left': True})
```

Reading, exploring and cleaning the data

```
In [2]: # read data from the dataset into dataframes
    age_group_details = pd.read_csv("E:\COVID19 DATA\AgeGroupDetails COVID19 INDIA.csv'
    covid_19_india = pd.read_csv("E:\COVID19 DATA\covid_19_india COVID19 INDIA.csv")
    hospital_beds_india = pd.read_csv("E:\COVID19 DATA\HospitalBedsIndiaCOVID19 INDIA.c
    icmr_testing_details = pd.read_csv("E:\COVID19 DATA\ICMRTestingDetails COVID19 INDI
    individual_details = pd.read_csv("E:\COVID19 DATA\IndividualDetails COVID19 INDIA.c
    population_india_census_2011 = pd.read_csv("E:\COVID19 DATA\population_india_census
    statewise_testing_details = pd.read_csv("E:\COVID19 DATA\StatewiseTestingDetails COVID19 INDIA.csv")
```

Exploring each of the dataframes (below)

```
In [3]: age_group_details.head()
```

6/17/23,

3, 11:33 AM						C	COVID-19 INDIA EDA	
Out[3]:		Sno	AgeGroup	Tota	IC ases	Percentage		
	0	1	0-9		22	3.18%		
	1	2	10-19		27	3.90%		
	2	3	20-29		172	24.86%		
	3	4	30-39		146	21.10%		
	4	5	40-49		112	16.18%		
In [4]:	cc	vid 1	19_india.	head())			
Out[4]:		Sno	_			UnionTerritory	ConfirmedIndianNational	ConfirmedForeignNational
00.0[.]	6:00							
	0	1	30/01/20	PM		Kerala	1	0
	1	2	31/01/20	6:00 PM		Kerala	1	0
	2	3	01/02/20	6:00 PM		Kerala	2	0
	3	4	02/02/20	6:00 PM		Kerala	3	0
	4	5	03/02/20	6:00 PM		Kerala	3	0
4								>
In [5]:]: hospital_beds_india.head()							
Out[5]:		Sno	State/UT	Numl	Primary	yHealthCenters	HMIS NumCommunityHea	althCenters_HMIS NumSub

Out[5]:		Sno	State/UT	NumPrimaryHealthCenters_HMIS	${\bf NumCommunity Health Centers_HMIS}$	NumSub
	0	1	Andaman & Nicobar Islands	27	4	
	1	2	Andhra Pradesh	1417	198	
	2	3	Arunachal Pradesh	122	62	
	3	4	Assam	1007	166	
	4	4 5 Bihar		2007	63	
						>

In [6]: icmr_testing_details.head()

23, 11:33 AM	AM COVID-19 INDIA ED				IDIA EDA					
Out[6]:		SNo	DateTime	e TotalSam _l	olesTe:	sted	TotalIndiv	ridualsTested	TotalPositiveCases	_
	0	1	13/03/20 18:00)	65	0.00		5900.0	78.0	
	1	2	18/03/20 18:00)	131	25.0		12235.0	150.0	
	2	3	19/03/20 18:00)	141	75.0		13285.0	182.0	
	3	4	20/03/20 18:00)	154	04.0		14514.0	236.0	
	4	5	21/03/20 18:00)	169	11.0		16021.0	315.0	
In [7]:	in	divi	dual_details	.head()						
Out[7]:		id (government_id	diagnosed_	date	age	gender	detected_city	detected_district	detected_sta
	0	0	KL-TS-P1	30/01/	2020	20	F	Thrissur	Thrissur	Kera
	1	1	KL-AL-P1	02/02/	2020	NaN	NaN	Alappuzha	Alappuzha	Kera
	2	2	KL-KS-P1	03/02/	2020	NaN	NaN	Kasaragod	Kasaragod	Kera
	3	3	DL-P1	02/03/	2020	45	М	East Delhi (Mayur Vihar)	Fact Dalhi	De
	4	4	TS-P1	02/03/	2020	24	М	Hyderabad	Hyderabad	Telanga
4										+
In [8]:	ро	pula	tion_india_ce	ensus_2011	. head	l()				
Out[8]:		Sno	State / Union Territory	Population		Rural lation	Urb populati		Area	
	0	1	Uttar Pradesh	199812341	1553	17278	444950	063 240,928	km2 (93,023 sq mi)	828/km2 (2,
	1	2	Maharashtra	112374333	615	56074	508182	259 307,713 k	m2 (118,809 sq mi)	365/km2 (!
	2	3	Bihar	104099452	923	41436	117580	94,163	km2 (36,357 sq mi)	1,102/km2 (2,8
	3	4	West Bengal	91276115	621	83113	290930	002 88,752	km2 (34,267 sq mi)	1,029/km2 (2,0
	4	5	Madhya Pradesh	72626809	525	57404	200694	405 308,245 k	m2 (119,014 sq mi)	236/km2 (I
4										•
In [9]:	st	atew	ise_testing_o	details.he	ad()					

Out[9]:			Date			State	TotalS	Samples	Neg	ative	Posit	ive		
	0	2020-	-04-17 Ar	ndaman	and Nicob	ar Islands		1403.0	12	210.0	1	2.0		
	1	2020-	-04-24 Ar	ndaman	and Nicob	ar Islands		2679.0		NaN	2	7.0		
	2	2020-	-04-27 Ar	ndaman	and Nicob	ar Islands		2848.0		NaN	3	3.0		
	3	2020-	-05-01 Ar	ndaman	and Nicob	ar Islands		3754.0		NaN	3	3.0		
	4	2020-	-04-02		Andhr	a Pradesh		1800.0	1	175.0	13	2.0		
In [10]:	di		ctwise_te		_details									
Out[10]:		SINo	State_Co	de	State	Distric	t_Key	Dist	rict	Confi	rmed	Active	Recovered	Dece
	0	0		UN U	State nassigned	UN_Unass	igned	Unassig	ned		0	C	0	
	1	1		AN	Andaman and Nicobar Islands	AN_Nic	cobars	Nicok	oars		0	C	0	
	2	2		AN	Andaman and Nicobar Islands		h and Iiddle Iaman	North a Mic Andar	ddle		1	C) 1	
	3	3		AN	Andaman and Nicobar Islands		South Iaman	So Andar	outh man		51	19	32	
	4	0		AP	Andhra Pradesh		oreign cuees	Fore Evacu	-		434	C) 434	
4														•
In [11]:	СО	vid_1	L9_detail	Ls . hea	d()									
Out[11]:		Sno	Date	Time	State/Ur	nionTerrito	ry Co	nfirmedl	Indiar	nNatio	nal (Confirm	nedForeignNa	tional
	0	1	30/01/20	6:00 PM		Kera	ala				1			0
	1	2	31/01/20	6:00 PM		Kera	ala				1			0
	2	3	01/02/20	6:00 PM		Kera	ala				2			0
	3	4	02/02/20	6:00 PM		Kera	nla				3			0
	4	5	03/02/20	6:00 PM		Kera	ala				3			0
4														•
In [12]:	ро	pulat	ion_indi	ia_cen	sus_2011		/ Unio	on Terr	itory	y'] =	рори	ılatio	n_india_cer	ısus_;
		-			_	For Ahmed		indivi	dual _.	_deta	ils['	detec	ted_distric	t'].

```
# udpate the city name for Ahmedabad
individual_details['detected_city'] = individual_details['detected_city'].apply(langled)
```

Data Analysis And Visualization

- 1. Cumulative number of cases (categorised by current health status) grouped by date.
- 1.1 Creating a dataframe with number of cases (categorised by current health status) grouped by date [CUMULATIVE]

```
In [13]:
    date_cumulative = covid_19_india.groupby('Date').sum()
    date_cumulative.reset_index(inplace = True)

# change the date format to 'YYYY-MM-DD'
    date_cumulative['Date'] = date_cumulative['Date'].apply(lambda date : '20' + '-'.ja'

# sort the rows by date (in ascending order)
    date_cumulative.sort_values('Date', inplace = True)

# calculate the number of active cases
    date_cumulative['Active'] = date_cumulative['Confirmed'] - (date_cumulative['Cured')

date_cumulative = date_cumulative[['Date', 'Confirmed', 'Cured', 'Deaths', 'Active']

# dataframe with number of cases (categorised by current health status) grouped by date_cumulative.head()
```

Out[13]:

	Date	Confirmed	Cured	Deaths	Active
100	2020-01-30	1	0	0	1
103	2020-01-31	1	0	0	1
0	2020-02-01	2	0	0	2
4	2020-02-02	3	0	0	3
8	2020-02-03	3	0	0	3

1.2 Plot

```
In [14]: plt.figure(figsize=(20, 8), dpi = 100)
    sns.lineplot(x = 'Date', y = 'Confirmed', data = date_cumulative, label = 'Cured', colors.lineplot(x = 'Date', y = 'Deaths', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Active', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Active', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Active', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Active', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Cured', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Cured', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Deaths', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Active', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Deaths', data = date_cumulative, label = 'Deaths', colors.lineplot(x = 'Date', y = 'Deaths', data = date_cumulative, label = 'Deaths', data = date_cumula
```


2. Total Positive Cases In Each Age Group

2.1 Plot

```
In [15]: plt.figure(figsize=(8, 5), dpi = 100)
    sns.barplot(x = 'AgeGroup', y = 'TotalCases', data = age_group_details, palette =
    plt.title('Total positive cases in each age group')
    plt.xlabel('Age group')
    plt.ylabel('Total positive cases')
    plt.tight_layout()
    plt.show()
```


3 Total cases in india each of its state and union territories

3.1 Creating a dataframe with important data from each state/union territory as well as india

```
In [16]: temp_state = covid_19_india.groupby('State/UnionTerritory').max()
    temp_state.reset_index(inplace = True)
    temp_state['Active'] = temp_state['Confirmed'] - (temp_state['Cured'] + temp_state
    temp_state = temp_state[['State/UnionTerritory', 'Confirmed', 'Cured', 'Deaths', ',
    temp_state.rename(columns = {'State/UnionTerritory': 'State / Union Territory'}, in
    temp_state['State / Union Territory'] = temp_state['State / Union Territory'].apply

# calculate the number of cases (categorised by current health status) for India an
    # index number 41 is chosen to avoid any loss of data (as of now, the total number
    temp_state.loc[41] = ['India', temp_state['Confirmed'].sum(), temp_state['Cured'].sump_state.head()
```

```
State / Union Territory Confirmed Cured Deaths Active
Out[16]:
           0 Andaman and Nicobar Islands
                                                   33
                                                           33
                                                                            0
                                                 2090
                                                         1056
                                                                   46
                                                                          988
                           Andhra Pradesh
           2
                         Arunachal Pradesh
                                                            1
                                                                    0
                                                                            0
           3
                                   Assam
                                                   65
                                                           39
                                                                    2
                                                                           24
           4
                                     Bihar
                                                  831
                                                          383
                                                                    6
                                                                          442
```

```
In [17]: # calculate India's total area
    total_area_india_km2 = population_india_census_2011['Area'].apply(lambda area : flootal_area_india_km2 = population_india_census_2011[['State / Union Territory', 'Population_temp_population['Population density (per km2)'] = temp_population['Density'].apply temp_population.drop(columns = ['Density'], inplace = True)

# calculate India's total population
    total_population_india = temp_population['Population'].sum()

# calculate India's total population density
    density_india = total_population_india / total_area_india_km2

temp_population.loc[41] = ['India', total_population_india, density_india]
    temp_population.head()
```

C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\3334464457.py:5: SettingWithCopy Warning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user guide/indexing.html#returning-a-view-versus-a-copy

temp_population['Population density (per km2)'] = temp_population['Density'].app ly(lambda density : float(density.split('/')[0].replace(',', '')))

C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\3334464457.py:6: SettingWithCopy Warning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user_guide/indexing.html#returning-a-view-versus-a-copy

temp_population.drop(columns = ['Density'], inplace = True)

C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\3334464457.py:14: SettingWithCop yWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user guide/indexing.html#returning-a-view-versus-a-copy

temp_population.loc[41] = ['India', total_population_india, density_india]

Out[17]:

	State / Union Territory	Population	Population density (per km2)
0	Uttar Pradesh	199812341	828.0
1	Maharashtra	112374333	365.0
2	Bihar	104099452	1102.0
3	West Bengal	91276115	1029.0
4	Madhya Pradesh	72626809	236.0

In [18]: statewise_data = pd.merge(left = temp_state, right = temp_population, on = 'State

select India's data from the merged dataframe and storing it as a series in a val india_data = statewise_data.iloc[-1]

drop India's data stored in the last row of the dataframe statewise_data.drop(statewise_data.tail(1).index, inplace = True)

store India's data in a row with index number 41 in the dataframe statewise data.loc[41] = india data

dataframe with important data from each state/union territory as well as India statewise data.head()

Out[18]:

:		State / Union Territory	Confirmed	Cured	Deaths	Active	Population	Population density (per km2)
	0	Andaman and Nicobar Islands	33	33	0	0	380581	46.0
	1	Andhra Pradesh	2090	1056	46	988	49577103	303.0
	2	Arunachal Pradesh	1	1	0	0	1383727	17.0
	3	Assam	65	39	2	24	31205576	397.0
	4	Bihar	831	383	6	442	104099452	1102.0

3.2 Plot

3.3 Number of cases in india

```
In [20]: total_cases_national = statewise_data.loc[41]['Confirmed']
    active_national = statewise_data.loc[41]['Cured']
    cured_national = statewise_data.loc[41]['Cured']
    deaths_national = statewise_data.loc[41]['Deaths']
    print('NUMBER OF CASES IN INDIA\n')
    print(f'Total: {total_cases_national}')
    print(f'Active: {active_national}')
    print(f'Cured" {cured_national}')
    print(f'Deaths: {deaths_national}')

NUMBER OF CASES IN INDIA
Total: 74404
Active: 47600
```

4 Non - cumulative number of cases (categorised by current health status) grouped by date

Cured" 24386 Deaths: 2418 4.1 Creating a dataframe with number of cases (categorised by current health status) grouped by date [NON - CUMULATIVE]

```
datewise count = individual details[individual details['current status'] != 'Migra'
In [21]:
                          datewise_count = datewise_count.groupby(['diagnosed_date', 'current_status']).count
                          datewise_count.fillna(0, inplace = True)
                          datewise_count.reset_index(inplace = True)
                          # change the date format to 'YYYY-MM-DD'
                          datewise_count['diagnosed_date'] = datewise_count['diagnosed_date'].apply(lambda datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnosed_datewise_count['diagnose_datewise_count['diagnosed_datewise_count['diagnosed_datewise_co
                          datewise_count.sort_values('diagnosed_date', inplace = True)
                          datewise_count.rename(columns = {'Deceased': 'Deaths', 'Hospitalized': 'Active', '
                          # calculate the total number of confirmed cases
                          datewise_count['Confirmed'] = datewise_count['Active'] + datewise_count['Cured'] +
                          datewise_count['Deaths'] = datewise_count['Deaths'].apply(lambda num : int(num))
                          datewise_count['Active'] = datewise_count['Active'].apply(lambda num : int(num))
                          datewise_count['Cured'] = datewise_count['Cured'].apply(lambda num : int(num))
                          datewise_count['Confirmed'] = datewise_count['Confirmed'].apply(lambda num : int(number))
                          datewise_count = datewise_count[['diagnosed_date', 'Confirmed', 'Deaths', 'Cured',
                          # dataframe with number of cases (categorised by current health status) grouped by
                          datewise_count.head()
```

Out[21]:	current_status	diagnosed_date	Confirmed	Deaths	Cured	Active
	56	2020-01-30	1	0	1	0
	1	2020-02-02	1	0	1	0
	4	2020-02-03	1	0	1	0
	2	2020-03-02	2	0	2	0
	5	2020-03-03	1	0	1	0

4.2 plot

```
In [22]: datewise_count.drop(columns = ['Confirmed']).plot.bar(x= 'diagnosed_date', stacked
    plt.title('NON-CUMULATIVE NUMBER OF CASES (categorised by current health status) gr
    plt.xlabel('Date')
    plt.ylabel('Number of cases')
    plt.tight_layout()
    plt.show()
```


5 Important COVID-19 statistics of india and each of its states and union territories

5.1 calculation from availbale data

```
In [23]: # calculate total cases per million people for each state/ union Territory and indicated statewise_data['Total cases per million people'] = statewise_data['Confirmed'] / s

# calculation recovery rate (%) for each state / Union Territory and indiastatewise_data['Recovery rate(%)'] = statewise_data['Cured'] / statewise_data['Confirmed'] / statewise_data['Confirmed'] / statewise_data['Deaths per million people for each state / Union territory and indiastatewise_data['Deaths per million people'] = statewise_data['Deaths'] / statewise_data['Confirmed'] / statewise_data['Confirmed'] / statewise_data['Deaths'] / statewise_data['Confirmed'] / statewis
```

Out[23]:		State / Union Territory	Confirmed	Cured	Deaths	Active	Population	Population density (per km2)	Total cases per million people	Recovery rate(%)	
	0	Andaman and Nicobar Islands	33	33	0	0	380581	46.0	86.709531	100.000000	C
	1	Andhra Pradesh	2090	1056	46	988	49577103	303.0	42.156558	50.526316	(
	2	Arunachal Pradesh	1	1	0	0	1383727	17.0	0.722686	100.000000	(
	3	Assam	65	39	2	24	31205576	397.0	2.082961	60.000000	(
	4	Bihar	831	383	6	442	104099452	1102.0	7.982751	46.089049	(
•											•

5.2 Total cases per million people(plot)

```
In [24]: plt.figure(figsize=(11,7),dpi =100)
sns.barplot(x = 'State / Union Territory', y = 'Total cases per million people', da
plt.title('Total cases per million people in india and each of its state and UTs')
```

```
plt.xticks(rotation =90)
plt.tight_layout()
plt.show()
```


5.3 Recovery rate(%) (plot)

```
In [25]: plt.figure(figsize=(11, 7), dpi = 100)
    sns.barplot(x = 'State / Union Territory', y = 'Recovery rate(%)', data = statewise
    plt.title('Recovery rate(%) in India and each of its states and UTs')
    plt.xticks(rotation = 90)
    plt.tight_layout()
    plt.show()
```


5.4 Deaths per million people (plot)

```
In [26]: plt.figure(figsize=(11,7), dpi = 100)
    sns.barplot(x= 'State / Union Territory', y = 'Deaths per million people', data =
    plt.title('Deaths per million people in india and each of its states and UTs')
    plt.xticks(rotation = 90)
    plt.tight_layout()
    plt.show()
```


5.5 Fatality rate(%)(plot)

```
In [27]: plt.figure(figsize=(11,7), dpi = 100)
    sns.barplot(x = 'State / Union Territory', y = 'Fatality rate(%)', data = statewise
    plt.title('Fatality rate(%) in india and each of its states and UTs')
    plt.xticks(rotation = 90)
    plt.tight_layout()
    plt.show()
```


6 Age distribution of positive cases in india and each of its states and union territories.

6.1 Data cleaning

```
In [28]: # create a list of the Indian states where positive covid-19 cases have been report
         list_of_states = list(individual_details['detected_state'].unique())
         # create a list of nationalities of all the positive COVID=19 cases reported in inc
         list_of_nations = list(individual_details[individual_details['nationality'].isnull
         temp_age = individual_details[['age','detected_state', 'nationality', 'current_state']
         for i in temp_age.index:
             if temp_age.loc[i]['detected_state'] in list_of_states and temp_age.loc[i]['na
                 # assign nationality as 'India', if detected state is in the list of india
                 temp age.loc[i]['nationality'] = 'India'
         # select only those cases whose nationality is mentioned 'India'
         temp_age = temp_age[temp_age['nationality']=='India']
         # drop the rows where age is mentioned as 'F' or 'M'
         temp_age = temp_age[(temp_age['age'] != 'F') & (temp_age['age'] != 'M')]
         # drop the rows where ahe is not mentioned
         temp_age.dropna(subset = ['age'], inplace = True)
         # if age is mentioned as '28-35', update it with the mean value , i.e 31(actual med
         \# typecast age given as a string into a floating point number first , and them into
         temp_age['age'] = temp_age['age'].apply(lambda age : 3 if age == '28-35' else int()
         temp_age.head()
```

Out[28]:		age	detected_state	nationality	current_status
	0	20	Kerala	India	Recovered
	3	45	Delhi	India	Recovered
	4	24	Telangana	India	Recovered
	23	45	Uttar Pradesh	India	Recovered
	25	16	Uttar Pradesh	India	Recovered

6.2 plot (States and Union territories)

```
In [29]: plt.figure(figsize=(13,7), dpi = 100)
    sns.boxplot(x = 'detected_state', y = 'age', data = temp_age, palette = 'Set1')
    plt.title('Age distribution of positive cases in Indian states and UTs')
    plt.xlabel('State / Union Territory')
    plt.ylabel('Age')
    plt.xticks(rotation =90)
    plt.tight_layout()
    plt.show()
```


6.3 Plot (india)

```
In [30]: plt.figure(figsize=(5,5), dpi = 100)
    sns.boxplot(x = 'nationality',y = 'age', data =temp_age, palette = 'viridis')
    plt.title('Age distribution of positive cases in india')
    plt.xlabel('')
    plt.ylabel('Age')
    plt.tight_layout()
    plt.show()
```


7 National descriptive statistics (Age)

7.1 Ages of all positive cases in india

```
print('NATIONAL DESCRIPTIVE STATISTICS (Age of all positive cases in india)\n')
In [31]:
         print(temp_age.describe()['age'])
         NATIONAL DESCRIPTIVE STATISTICS (Age of all positive cases in india)
                   2318.000000
         count
                     38.234254
         mean
                     17,283662
         std
                     0.000000
         min
         25%
                     25.000000
         50%
                     36.000000
         75%
                     50.000000
                     98.000000
         Name: age, dtype: float64
```

7.2 Ages of positive cases in india (grouped by current health status)

```
In [32]: print('NATIONAL DESCRIPTIVE STATISTICS (Age of positive cases in India , grouped by print(temp_age.groupby('current_status').describe()['age'])
```

NATIONAL DESCRIPTIVE STATISTICS (Age of positive cases in India , grouped by curre nt health status)

	count	mean	std	min	25%	50%	75%	max
current_status								
Deceased	43.0	59.860465	16.359912	1.0	50.0	65.0	70.00	85.0
Hospitalized	2165.0	37.783372	16.970881	0.0	25.0	36.0	50.00	98.0
Recovered	110.0	38.654545	18.443783	1.0	24.0	35.0	50.25	96.0

8 Correlation between population (or, population desity) and total positive cases

8.1 Heat map

```
In [33]: plt.figure(figsize=(6,4), dpi = 100)
    sns.heatmap(statewise_data[['Confirmed','Population', 'Population density (per km2
    plt.yticks(rotation = 0)
    plt.tight_layout()
    plt.show()
```


8.2 Simple linear regression (independent variable: population, dependent variable: total positive cases)

```
In [34]: sns.jointplot(x = 'Population', y = 'Confirmed', data = statewise_data.drop(41), k.
    plt.ylabel('Total positive cases')
    plt.tight_layout()
    plt.show()
```


8.3 simple linear regression (independent variable : Density per km2, dependent variable : Total positive cases)

```
In [35]: sns.jointplot(x = 'Population density (per km2)', y = 'Confirmed', data = statewise
    plt.ylabel('Total positive cases')
    plt.tight_layout()
    plt.show()
```


9 public health facilities in india and each of its states and union territories

9.1 Creating a dataframe with public health facility details for each state / UT and india.

```
In [36]: hospital_details = hospital_beds_india[['State/UT', 'TotalPublicHealthFacilities_H/ hospital_details.rename(columns = {'State/UT': 'State / Union Territory'}, inplace hospital_details['State / Union Territory'] = hospital_details['State / Union Terr: hospital_details.dropna(inplace = True) hospital_details['TotalPublicHealthFacilities_HMIS'] = hospital_details['TotalPubl: hospital_details['NumPublicBeds_HMIS'] = hospital_details['NumPublicBeds_HMIS'].app

# merge (or, add) the details for Dadra and Nagar Haveli & Daman and Diu (as the founded = hospital_details[(hospital_details['State / Union Territory'] == 'Dadra and hospital_details.drop(index = [7, 8, 36], inplace = True) hospital_details.loc[36] = ['Dadra and Nagar Haveli and Daman and Diu', dnhdd['Total hospital_details.loc[37] = ['India', hospital_details['TotalPublicHealthFacilities] hospital_details = pd.merge(left = hospital_details, right = temp_population.drop()
```

calculate public health facility details per 1000 people for each state/UT as well
hospital_details['TotalPublicHealthFacilities/1000 people'] = (hospital_details['TotalPublicBeds/1000 people'] = (hospital_details['NumPublicBeds_H/

dataframe with public health facility details for each state/UT and India
hospital_details.head()

```
C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\2037430088.py:2: SettingWithCopy
Warning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
 hospital_details.rename(columns = {'State/UT': 'State / Union Territory'}, inpla
ce = True)
C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\2037430088.py:3: SettingWithCopy
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
 hospital_details['State / Union Territory'] = hospital_details['State / Union Te
rritory'].apply(lambda name : str(name).replace('&', 'and'))
C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\2037430088.py:4: SettingWithCopy
Warning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
 hospital_details.dropna(inplace = True)
C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\2037430088.py:5: SettingWithCopy
Warning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
 hospital_details['TotalPublicHealthFacilities_HMIS'] = hospital_details['TotalPu
blicHealthFacilities_HMIS'].apply(lambda count : int(str(count).replace(',', '')))
C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\2037430088.py:6: SettingWithCopy
Warning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
 hospital_details['NumPublicBeds_HMIS'] = hospital_details['NumPublicBeds_HMIS'].
apply(lambda count : int(str(count).replace(',', '')))
C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\2037430088.py:10: SettingWithCop
yWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
 hospital_details.drop(index = [7, 8, 36], inplace = True)
C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\2037430088.py:11: SettingWithCop
yWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user guide/indexing.html#returning-a-view-versus-a-copy
 hospital details.loc[36] = ['Dadra and Nagar Haveli and Daman and Diu', dnhdd['T
otalPublicHealthFacilities HMIS'], dnhdd['NumPublicBeds HMIS']]
C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\2037430088.py:13: SettingWithCop
yWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user guide/indexing.html#returning-a-view-versus-a-copy
 hospital details.sort values('State / Union Territory', inplace = True)
```

C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\2037430088.py:14: SettingWithCop
yWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
hospital_details.loc[37] = ['India', hospital_details['TotalPublicHealthFaciliti
es_HMIS'].sum(), hospital_details['NumPublicBeds_HMIS'].sum()]

Out[36]:		State / Union Territory	TotalPublicHealthFacilities_HMIS	NumPublicBeds_HMIS	Population	TotalPublicHealth
	0	Andaman and Nicobar Islands	34	1246	380581	
	1	Andhra Pradesh	1666	60799	49577103	
	2	Arunachal Pradesh	199	2320	1383727	
	3	Assam	1220	19115	31205576	
	4	Bihar	2146	17796	104099452	

9.2 Populatiojn of each state/UT (plot)

```
In [37]: plt.figure(figsize=(13,8), dpi = 100)
    sns.barplot(x = 'State / Union Territory', y = 'Population', data = hospital_detail
    plt.title('Population of each State/Ut')
    plt.xticks(rotation =90)
    plt.tight_layout()
    plt.show()
```


9.3 Total public health facilities in each state/ UT (plot)

```
In [38]: plt.figure(figsize=(13,8), dpi = 100)
    sns.barplot(x = 'State / Union Territory', y = 'TotalPublicHealthFacilities_HMIS',
    plt.title('Total Public Health Facilities')
    plt.xticks(rotation = 90)
    plt.tight_layout()
    plt.show()
```


9.4 Number of public beds in each state / UT (plot)

```
In [39]: plt.figure(figsize=(13, 8), dpi = 100)
    sns.barplot(x = 'State / Union Territory', y = 'NumPublicBeds_HMIS', data = hospita
    plt.title('Number of public beds in each state/UT')
    plt.ylabel('Number of public beds')
    plt.xticks(rotation = 90)
    plt.tight_layout()
    plt.show()
```


9.5 Total public health facilities per 1000 people in each state / UT and india (plot)

9.6 Number of public beds per 1000 people in each state / UT and india (plot)

```
In [41]: plt.figure(figsize=(13, 8), dpi = 100)
    sns.barplot(x = 'State / Union Territory', y = 'NumPublicBeds/1000 people', data = plt.title('Number of public beds per 1000 people')
    plt.ylabel('Number of public beds per 1000 people')
    plt.xticks(rotation = 90)
    plt.tight_layout()
    plt.show()
```


9.7 Correlation heat map

```
In [42]: plt.figure(figsize=(8,7), dpi = 100)
    sns.heatmap(hospital_details.corr(), cmap = 'viridis_r')
    plt.tight_layout()
    plt.show()
```


10 Indian Council Of Medical Research (ICMR) testing details:

##10.1 Data Cleaning

```
In [43]: testing_details = icmr_testing_details[['TotalSamplesTested', 'TotalPositiveCases'
    # change the date format to 'YYYY-MM-DD'
    testing_details['Date'] = icmr_testing_details['DateTime'].apply(lambda dt : '20'-
    testing_details = testing_details[['Date', 'TotalSamplesTested', 'TotalPositiveCase
    # dataframe with date-wise testing details provided by the Indian Council Of Medicatesting_details.head()

C:\Users\meanu\AppData\Local\Temp\ipykernel_18472\1500444293.py:4: SettingWithCopy
    Warning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
    testing_details['Date'] = icmr_testing_details['DateTime'].apply(lambda dt : '2
0'+ '-'.join(dt.split(' ')[0].split('/'[::-1])))
```

Out[43]:		Date	TotalSamplesTested	TotalPositiveCases
	0	2013-03-20	6500.0	78.0
1 2		2018-03-20	13125.0	150.0
		2019-03-20	14175.0	182.0
	3	2020-03-20	15404.0	236.0
	4	2021-03-20	16911.0	315.0

10.2 Total sample tested and total positiv cases reported on each date (plot)

```
In [44]: plt.figure(figsize=(16,6), dpi = 100)
    sns.lineplot(x = 'Date', y = 'TotalSamplesTested', data = testing_details, label =
    sns.lineplot(x = 'Date', y = 'TotalPositiveCases', data = testing_details, label =
    plt.title('Indian Council Of Medical Research (ICMR) testing details')
    plt.ylabel('Count')
    plt.legend(loc = 0)
    plt.xticks(rotation = 90)
    plt.tight_layout()
    plt.show()
```


10.3 Simple linear regression (independent varible: Total sample tested, dependent variable: Total positive cases)

11 State/Union territories and districts with the highest and lowest number of confirmed COVID-19 cases

11.1 Data cleaning and creation of appropriate series

```
In [46]: # series : states /UTs (highest number of confirmed COVID-19 cases)
    states_highest = statewise_data.groupby('State / Union Territory').mean()['Confirmed # state: state / UTs (Lowest number of confirmed COVID-19 cases)
    states_lowest = statewise_data.groupby('State / Union Territory').mean()['Confirmed # series districts (highest number of confirmed COVID -19 cases)
    district_highest= individual_details['detected_district'].value_counts().head(10)
```

11.2 States/ UTs (highest number of confirmed COCID-19 cases)

(A) plot

```
In [47]: plt.figure(figsize=(8, 5), dpi = 100)
    sns.barplot(x = states_highest.values, y = states_highest.index, palette = 'viridi:
    plt.title('TOP 10 STATES /UTs WITH THE HIGHEST NUMBER OF CONFIRMED COVID-19 CASES'
    plt.xlabel('Total number of confirmed cases')
    plt.ylabel('State / Union Territory')
    plt.tight_layout()
    plt.show()
```


(B) Data table

In [48]: print('TOP 10 STATES/UTs WITH THE HIGHEST NUMBER OF CONFIRMED COVID-19 CASES\n')
print(states_highest)

TOP 10 STATES/UTs WITH THE HIGHEST NUMBER OF CONFIRMED COVID-19 CASES

State / Union Territory Maharashtra 24427.0 Gujarat 8903.0 Tamil Nadu 8718.0 Delhi 7639.0 4126.0 Rajasthan Madhya Pradesh 3986.0 Uttar Pradesh 3664.0 West Bengal 2173.0 Andhra Pradesh 2090.0 Punjab 1914.0 Name: Confirmed, dtype: float64

11.3 States / UTs (lowest number of confirmed COVID-19 cases)

(A)plot

```
In [49]: plt.figure(figsize=(8, 5), dpi = 100)
    sns.barplot(x = states_lowest.values, y = states_lowest.index , palette = 'viridis
    plt.title('TOP 10 STATES / UTs WITH LOWEST NUMBER OF CONFIRMED COVID - 19 CASES')
    plt.xlabel('Total number of confirmed cases')
    plt.ylabel('State/Union Territory')
    plt.tight_layout()
    plt.show()
```


(B) Data table

```
In [50]: print('TOP 10 STATES / UTs WITH THE LOWEST NUMBER OF CONFIRMED COVID-19 CASES\n')
    print(states_lowest)
```

TOP 10 STATES / UTs WITH THE LOWEST NUMBER OF CONFIRMED COVID-19 CASES

State / Union Territory Arunachal Pradesh 1.0 Mizoram 1.0 1.0 Nagaland Manipur 2.0 Goa 7.0 Meghalaya 13.0 Puducherry 13.0 Andaman and Nicobar Islands 33.0 Ladakh 42.0 Chhattisgarh 59.0 Name: Confirmed, dtype: float64

11.4 Districts (highest number of conformed COVID-19 cases)

(A) plot

```
In [51]: plt.figure(figsize=(8, 5), dpi = 100)
sns.barplot(x = district_highest.values, y = district_highest.index, palette = 'vi
```

```
plt.title('TOP 10 DISTRICTS WITH THE HIGHEST NUMBER OF CONFIRMED COVID-19 CASES')
plt.xlabel('Total number of confirmed cases')
plt.ylabel('District')
plt.tight_layout()
plt.show()
```


(B) Data table

In [52]: print('TOP 10 DISTRICTS WITH THE HIGHEST NUMBER OF CONFIRMED COVID -19 CASES\n')
 print(district_highest)

TOP 10 DISTRICTS WITH THE HIGHEST NUMBER OF CONFIRMED COVID -19 CASES

Mumbai 2687 Ahmedabad 2181 Indore 1036 Jaipur 808 Pune 680 Hyderabad 557 Chennai 528 Surat 526 Thane 392 374 Agra

Name: detected_district, dtype: int64

11.5 District (Lowest number if confirmed COVID-19 cases)

DISTRICTS WITH ONLY 1 CONFIRMED COVID-19 CASE

Kalimpong

Kathua

Hooghly

Dohad

Siddipet

Imphal East

Washim

Puri

Jehanabad

Lakhisarai

Howrah

Kamrup

Lakhimpur

Golaghat

Tapi

South Salmara Mankachar

Chittorgarh

Nanded

South 24 Parganas

Rajsamand

Ayodhya

Madhepura

East Delhi

Shahjahanpur

Balrampur

Surendranagar

Cuttack

Jangoan

Pudukkottai

The Dangs

Dharmapuri

Ramban

Lohit

Badgam

North Tripura

Mahabubabad

Alirajpur

Pauri Garhwal

Gomati

Parbhani

Hailakandi

Giridih

Fatehabad

Aizawl

Imphal West

Sirmaur

Dhenkanal

Sri Muktsar Sahib

Beed

Bhadohi

Koderma

Charkhi Dadri

Rajnandgaon

Mahe

Bilaspur

Mau

Gondia

Kishtwar

North and Middle Andaman

Sindhudurg

Gonda

Ferozepur

Barabanki
North East Delhi
Jamnagar
Unnao
Kodagu
Morbi
Durg
Almora
Jalaun

12 Date - wise growth rate(%) of conformed casesin India

12.1 Calculation from available data

Out[54]:		Date	Confirmed	Cured	Deaths	Active	Growth rate(%)
	0	2020-01-30	1	0	0	1	NaN
	1	2020-01-31	1	0	0	1	0.0
	2	2020-02-01	2	0	0	2	100.0
	3	2020-02-02	3	0	0	3	50.0
	4	2020-02-03	3	0	0	3	0.0

12.2 Plot

13.1 Creating a dataframe with testing details of India and each of its states and UTs

```
In [56]:
    statewise_testing_details.rename(columns = {'State': 'State / Union Territory'}, is
    statewise_testing_details = statewise_testing_details.groupby('State / Union Territ
    statewise_testing_details.reset_index(inplace = True)

# add population of each state /UTs to the existing dataframe to create a new merge
    statewise_testing_details = pd.merge(left = statewise_testing_details[['State / Un:

# CAlculate and add india's testing details to the dataframe
    statewise_testing_details.iloc[-1]= ['India', statewise_testing_details['TotalSamp.

# calculate total samples per million people for each state / union territory and is
    statewise_testing_details['Total samples per million people'] = statewise_testing_details['Total samples for each state/ union territory and Incistatewise_testing_details['Positive cases per 1000 samples'] = statewise_testing_details['Positive cases per 1000 samples'] = statewise_testing_details.head()
```

Out[56]:		State / Union Territory	TotalSamples	Positive	Population	Total samples per million people	Positive cases per 1000 samples
	0	Andaman and Nicobar Islands	3754.0	33.0	380581	9863.866036	8.790623
	1	Andhra Pradesh	191874.0	2051.0	49577103	3870.214038	10.689307
	2	Arunachal Pradesh	2257.0	2.0	1383727	1631.102089	0.886132
	3	Assam	21791.0	64.0	31205576	698.304688	2.936992
	4	Bihar	37430.0	796.0	104099452	359.560010	21.266364

13.2 Total samples per million people(plot)

```
In [57]: plt.figure(figsize=(11,7), dpi = 100)
    sns.barplot(x = 'State / Union Territory', y = 'Total samples per million people',
    plt.title('Total samples per million people in India and each of its states and UT:
```

```
plt.xticks(rotation = 90)
plt.tight_layout()
plt.show()
```


13.3 Positive cases per 1000 samples (plot)

```
In [58]: plt.figure(figsize=(11, 7), dpi =100)
    sns.barplot(x = 'State / Union Territory', y = 'Positive cases per 1000 samples', o
    plt.title('Positive cases per 1000 samples in India and each of its states and UTs
    plt.xticks(rotation =90)
    plt.tight_layout()
    plt.show()
```


Important Covid-19 details of India and each of its states and union territories

IMPORTANT COVID-19 DETAILS OF INDIA AND EACH OF ITS STATES AND UNION TERRITORIES

Out[59]:

	State / Union Territory	Confirmed	Cured	Deaths	Active	Recovery rate(%)	Fatality rate(%)	Total cases per million people	Deaths per million people
Sno									
0	India	74404	24386	2418	47600	32.775120	3.249825	61.462052	1.997409
1	Maharashtra	24427	5125	921	18381	20.980882	3.770418	217.371702	8.195822
2	Gujarat	8903	3246	537	5120	36.459620	6.031675	147.303861	8.884890
3	Tamil Nadu	8718	2134	61	6523	24.478091	0.699702	120.836575	0.845496
4	Delhi	7639	2512	86	5041	32.883885	1.125802	455.029000	5.122725
5	Rajasthan	4126	2378	117	1631	57.634513	2.835676	60.191015	1.706822
6	Madhya Pradesh	3986	1860	225	1901	46.663322	5.644757	54.883315	3.098030
7	Uttar Pradesh	3664	1873	82	1709	51.118996	2.237991	18.337206	0.410385
8	West Bengal	2173	612	198	1363	28.163829	9.111827	23.806885	2.169242
9	Andhra Pradesh	2090	1056	46	988	50.526316	2.200957	42.156558	0.927848
10	Punjab	1914	171	32	1711	8.934169	1.671891	68.989535	1.153430
11	Telangana	1326	830	32	464	62.594268	2.413273	37.881738	0.914190
12	Jammu and Kashmir	934	455	10	469	48.715203	1.070664	76.139037	0.815193
13	Karnataka	925	433	31	461	46.810811	3.351351	15.140282	0.507404
14	Bihar	831	383	6	442	46.089049	0.722022	7.982751	0.057637
15	Haryana	780	342	11	427	43.846154	1.410256	30.767456	0.433900
16	Kerala	524	489	4	31	93.320611	0.763359	15.685776	0.119739
17	Odisha	437	116	3	318	26.544622	0.686499	10.411153	0.071472
18	Chandigarh	187	28	3	156	14.973262	1.604278	177.175612	2.842390
19	Jharkhand	172	79	3	90	45.930233	1.744186	5.213996	0.090942
20	Tripura	154	2	0	152	1.298701	0.000000	41.917115	0.000000
21	Uttarakhand	69	46	1	22	66.666667	1.449275	6.840968	0.099144
22	Assam	65	39	2	24	60.000000	3.076923	2.082961	0.064091
23	Himachal Pradesh	65	39	2	24	60.000000	3.076923	9.468867	0.291350
24	Chhattisgarh	59	54	0	5	91.525424	0.000000	2.309632	0.000000
25	Ladakh	42	21	0	21	50.000000	0.000000	153.284672	0.000000
26	Andaman and Nicobar Islands	33	33	0	0	100.000000	0.000000	86.709531	0.000000
27	Puducherry	13	9	1	3	69.230769	7.692308	10.417059	0.801312
28	Meghalaya	13	10	1	2	76.923077	7.692308	4.381694	0.337053

COVID-19 INDIA EDA

6/17/23, 11:33 AM

		State / Union Territory	Confirmed	Cured	Deaths	Active	Recovery rate(%)	Fatality rate(%)	Total cases per million people	Deaths per million people
	Sno									
	29	Goa	7	7	0	0	100.000000	0.000000	4.799303	0.000000
	30	Manipur	2	2	0	0	100.000000	0.000000	0.778092	0.000000
	31	Arunachal Pradesh	1	1	0	0	100.000000	0.000000	0.722686	0.000000
	32	Nagaland	1	0	0	1	0.000000	0.000000	0.505433	0.000000
	33	Mizoram	1	1	0	0	100.000000	0.000000	0.911406	0.000000
In []:										
In []:										
In []:										
In []:										
In []:										
In []:										
In []:										
In []:										
In []:										
In []:										
In []:										
In []:										
In []:										
In []:										