Chapter 9: Embedded Systems / Introduction

Practice due Apr 20, 2023 02:39 PDT Completed Checkboxes	
1/1 point (graded)	
What are some of the considerations that go into selecting a microcontroller for an application?	
✓ Does it have the necessary peripherals?	
✓ Does it have enough pins?	
✓ Does it have enough program and data memory?	
☑ Is it fast enough?	
☑ Cost	
Power consumption	
☑ Quality of documentation	
Compatibility with existing software	
✓	
Submit Try again (1 attempt remaining) 6	how answer

Practice due Apr 20, 2023 02:39 PDT Completed

Consider the SparkFun RED-V Thing Plus board with pins A-D annotated below.

Thing Plus Board Pinout

1/1 point (graded)

E Keyboard Help

Drag the pin functions to the letter labeling a pin in the photo above.

FEEDBACK

i Good work! You can identify pins on the Thing Plus board.

Thing Plus Board

1/1 point (graded)

On the RED-V Thing Plus Board, GPIO 5 can be used to (check all that apply)

- drive a pin on the board high or low
- measure whether the pin is high or low
- ✓ turn ON or OFF a blue LED be a serial clock for a SPI interface
- electrocute yourself

Submit Try again (1 attempt remaining) 6

Show answer

Now that you've learned to access GPIO registers, refer to the following excerpts from the FE310 manual to figure out how to access UART registers.

FE310 Memory Map

Base	Тор	Attr.	Description	Notes		
0x0000_0000					Debug Address Space	
0×0000_1000	0x0000_1FFF	R XC	Mode Select			
0x0000_2000	0x0000_2FFF		Reserved	1		
0×0000_3000	0x0000_3FFF	RWX A	Error Device			
0×0000_4000	0x0000_FFFF		Reserved	On-Chip Non Volatile Mem-		
0×0001_0000	0x0001_1FFF	R XC	Mask ROM (8 KiB)	ory		
0x0001_2000	0x0001_FFFF		Reserved	1 '		
0×0002_0000	0x0002_1FFF	R XC	OTP Memory Region	1		
0×0002_2000	0x001F_FFFF		Reserved	1		
0x0200_0000	0x0200_FFFF	RW A	CLINT			
0×0201_0000	0x07FF_FFFF		Reserved	1		
8×8890_8989	0x0800_1FFF	RWX A	E31 ITIM (8 K/B)			
0×0800_2000	OxORFF_FFFF		Reserved	1		
0x0C00_0000	0x0FFF_FFFF	RW A	PLIC	1		
8×1899_8888	0x1000_0FFF	RW A	AON	1		
8×1888_1888	0x1088_7FFF		Reserved	1		
0x1000_8000	0x1000_8FFF	RW A	PRCI	1		
0x1000_9000	0x1000_FFFF		Reserved	1		
0×1001_0000	0x1001_0FFF	RW A	A OTP Control	1		
0x1001 1000	0x1001_1FFF		Reserved	1		
0×1001_2000	0x1001_2FFF	RW A	GPID			
8×1861_3666	0x1001_3FFF	RW A	UART 0	On-Chip Peripherals		
8x1881_4888	0x1081_4FFF	RW A	QSPI 0	1		
0x1001_5000	0x1001_5FFF	RW A	PWM 0	1		
8x1801_6000	0x1001_6FFF	RW A	12C 0			
8x1881_7888	0x1082_2FFF		Reserved			
0x1002_3000	0x1002_3FFF	RW A	UART 1	1		
0×1002_4000	0x1002_4FFF	RW A	SPI1			
8x1862_5668	0x1082_5FFF	RW A	PWM 1			
0×1002_6000	0x1003_3FFF		Reserved	1		
0×1003_4000	0x1003_4FFF	RW A	SPI2	1		
0x1003_5000	0x1083_5FFF	RW A	PWM 2			
8×1803_6888	0x1FFF_FFFF		Reserved	1		
0×2000_0000	0x3FFF_FFFF	R XC	QSPI 0 Flash	Off Chir New Velocity May		
			(512 MiB)	Off-Chip Non-Volatile Mer		
8x4860_8668	0x7FFF_FFFF		Reserved	ory		
8088_8888	0x8080_3FFF	RWX A	E31 DTIM (16 KiB)	On-Chip Volatile Memory		
0x8000_4000	0xFFFF_FFFF		Reserved	On-Crip volatie Memory		

Offset	Name	Description
0×00	txdata	Transmit data register
0x04	rxdata	Receive data register
0x08	txctrl	Transmit control register
0x0C	rxctrl	Receive control register
0×10	ie	UART interrupt enable
0x14	ip	UART interrupt pending
0x18	div	Baud rate divisor

Table 55: Register offsets within UART memory map

Transmit Data Register (txdata)				
Register Offset		0x0		
Bits	Field Name	Attr.	Rst.	Description
[7:0]	data	RW	X	Transmit data
[30:8]	Reserved			
31	full	RO	X	Transmit FIFO full

Table 56: Transmit Data Register

Transm	it Control Reg	jister (1	exctrl)
Register Offset		0x8		
Bits	Field Name	Attr.	Rst.	Description
0	txen	RW	8x9	Transmit enable
1	nstop	RW	8x9	Number of stop bits
[15:2]	Reserved			
[18:16]	txcnt	RM	8x9	Transmit watermark level
121:101	Decembed			

[31:19] Reserved | Table 58: Transmit Control Register

UART1 Base Address

1/1 point (graded)

What is the base address for the UART1? Express your answer as a hexadecimal number with a leading 0x and an underscore in the middle, like $0\times1003_6000$.

which line of	f code correctly declares a pointer to the 32-bit UART1 txctrl register?	
O volatile	uint32_t *UART1_TXCTRL = (uint32_t*)0×10013000;	
O volatile	uint32_t *UART1_TXCTRL = (uint32_t*)0×10023000;	
volatile	uint32_t *UART1_TXCTRL = (uint32_t*)0×10023008;	
O volatile	bit *UART1_TXCTRL_TXEN = (bit*)0×10023000;	
~		
Submit	Try again (1 attempt remaining) 🚯	Show
	ing questions, let the following expressions substitute for normal C syntax, which EdX ca these questions:	n't
• shl = <<		
• shr = >>		
and = &		
Bit Setting	g	
1/1 point (grad		
Which line of	f code correctly enables the UART1 transmitter without disturbing any of the other contr	ol bit
O *UART	1_TXCTRL = 1;	
O *UART	1_TXCTRL0 = 1;	
O *UART	1_TXCTRL = 1 shi 0;	
• *UART	1_TXCTRL0 = (1 shi 0);	
O *UART	1_TXCTRL0 = (0 shi 1);	
~		
Submit	Try again (1 attempt remaining) 🚯	Show
Waiting		
1/1 point (grad	ed)	
Suppose UAI data register	RT1_TXDATA is declared as a pointer to 0×10013000. What line of code will wait until the r is not full?	tran
while ((*UART1_TXDATA shr 31) and 1);	
O while ((*UART1_TXDATA shr 32) and 1);	
O	!(*UART1_TXDATA shr 32) and 1);	
O while (!	*UART1_TXDATA_FULL);	

Practice due Apr 20, 2023 02:39 PDT Completed

Suppose the highlighted line were commented out in the pinMode function. What would be different, if anything?

Parameterized Delay

1/1 point (graded)

What are benefits of expressing delay in terms of DUR rather than as absolute numbers in the code. Check all that apply.

The delay function can only take a #define because its input is an int, not a uint64_t, and it lacks a prototype declared in the header. It is easy to change the tempo of the output by changing only one number. ✓ It emphasizes the relative delays of the pulses. To dereference the structure point in logarithmic time using far jumps and abstract data types while facilitating real-time garbage collection and type isomorphism as our resources were tasked to do. Quidquid latine dictum sit, altum sonatur.

Submit Try again (1 attempt remaining) (1)

Show answer

Practice due Apr 20, 2023 02:39 PDT Completed

interfacing

1/1 point (graded)

E Keyboard Help

Drag and drop to indicate the best way to interface various devices to a micro controller.

Practice due Apr 20, 2023 02:39 PDT Completed	
Baud Rate	
1/1 point (graded)	
If the sckdiv register contains 79, what frequency will SCK operate at? Express your answer in Hz.	
100000	
100000	
Submit Try again (1 attempt remaining) 6 Show a	inswer
Register Address	
1/1 point (graded)	
What is the address of the SPI1 RXDATA register? Express your answer as an 8-digit hexadecimal number no leading $0x$.	with
0×1002404C ✓	
Submit Try again (1 attempt remaining) (9 Show a	inswer
Suppose we declare:	
volatile uint32_t *SPI1_TXDATA = (uint32_t*)0×10024000;	
int full;	
Consider the following code:	
(a) full = *SPI1_TXDATA >> 31;	
(b) full = (*SPI_TXDATA >> 31) & 0×1;	
(c) full = *SPI1_TXDATA = (1 << 31);	
(d) while ((*SPI1_TXDATA >> 31) & 0×1) full = 1;	
SPI1 TXDATA FULL	
1/1 point (graded)	
Which of the lines of code above correctly return the SPI1 TXDATA FULL bit without relying on bitfields? Choose all that apply.	
☑ a	

Show answer

✓ b

_ c

_ d

Submit Try again (1 attempt remaining) 6

Show answer

Show answer

WHO_AM_I Register

Try again (1 attempt remaining) 🚯

1/1 point (graded)

If you read the accelerometer's WHO_AM_I register at address OF, what should you expect to get back if the accelerometer is correctly wired to the microcontroller? Express your answer in decimal.

Practice due Apr 30, 2023 23:59 PDT Completed

Design Principles

1/1 point (graded)

What are the four design principles guiding the RISC-V architecture?

Simplicity favors regularity	
Make the assembly language resemble the high level language	
✓ Make the common case fast	
✓ Smaller is faster	
More instructions make for a faster computer	
✓ Good design demands good compromise	
Semper ubi sub ubi	
✓	
Submit Try again (1 attempt remaining) 6	Show answer