Probabilistic Modeling, Learnability and Uncertainty Estimation for Interaction Prediction in Movie Rating Datasets: Supplementary Material

Anonymous Author(s)

A Proof of Mathematical Results

In this appendix, we show that low-rank PMFs are learnable in the sense of L^1 norm and further show that this implies an analogue of an excess risk bound in our implicit feedback context: there exists an algorithm which, consuming fewer than $\widetilde{O}((m+n)r/\epsilon^2)$ samples, picks a low rank distribution whose expected recall at k is guaranteed to be within ϵ of the best possible recall at k achievable.

A.1 Relating the L^1 Loss to the Recall at k

Let $p \in \mathbb{R}^n$ (resp. $\widehat{p} \in \mathbb{R}^n$) be a distribution over [n] (which, as in standard notation, stands for $\{1, 2, ..., n\}$). We write $p_{[i]}$ (resp. $\widehat{p}_{[i]}$) for the *i*th element of p (resp. \widehat{p}) when written in decreasing order. We also write σ (resp. $\widehat{\sigma}$) for the permutation of [n] such that $p_{[i]} = p_{\sigma(i)}$ (resp. $\widehat{p}_{[i]} = \widehat{p}_{\widehat{\sigma}(i)}$).

If we draw a test (multi) set $\Omega' = \{y_1, \dots, y_{N'}\} \subset [n]$ consisting of N' i.i.d. samples from p, the Recall@k of a scoring function p or \widehat{p} is defined as the number of test samples belong to the top k items as determined by the scoring function p or \widehat{p} :

$$R_{N'}^{k} := \frac{1}{N} \sum_{o=1}^{N'} 1_{y_o \in \sigma^{-1}([k])}, \tag{1}$$

$$\widehat{R}_{N'}^{k} := \frac{1}{N} \sum_{o=1}^{N'} 1_{y_o \in \widehat{\sigma}^{-1}([k])}.$$
 (2)

This is a random variable. Note that by the i.i.d. assumption its expectation doesn't depend on N' and is calculated as follows:

$$\mathbb{E}(R_{N'}^{k}) = \mathbb{E}(R_{1}^{k}) = \sum_{i \in \sigma^{-1}([k])} p_{i}, \tag{3}$$

$$\mathbb{E}(\widehat{R}_{N'}^k) = \mathbb{E}(\widehat{R}_1^k) = \sum_{i \in \widehat{\sigma}^{-1}([k])} p_i. \tag{4}$$

By abuse of notation, we write $\mathbb{E}(R^k)$ for $\mathbb{E}(R_1^k)$ and $\widehat{\mathbb{E}}(\widehat{R}^k)$ for $\widehat{\mathbb{E}}(\widehat{R}_1^k)$.

The quantity $\mathbb{E}(R^k)$ represents the **best possible expected recall**, and is analogous to the Bayes Error in classic Learning Theory. $\mathbb{E}(\widehat{R}^k_{N'})$ is the true expected recall of the trained model \widehat{p} , thus, the quantity $\mathbb{E}(\widehat{R}^k_{N'}) - \mathbb{E}(R^k)$ is analogous to the excess risk in learning theory.

We also define the (empirical) estimated recall at k as follows:

$$\widehat{\mathbb{E}}(\widehat{R}_1^k) = \sum_{i \in \widehat{\sigma}^{-1}([k])} \widehat{p}_i = \sum_{i \le k} \widehat{p}_{[i]}.$$
 (5)

We will now prove the following:

Proposition A.1. If $\|p - \widehat{p}\|_1 \le \epsilon$ for some $\epsilon > 0$, then we have:

$$\mathbb{E}(R^k) - \epsilon \le \widehat{\mathbb{E}}(\widehat{R}^k) \le \mathbb{E}(R^k) + \epsilon. \tag{6}$$

In particular, since we certainly have $\mathbb{E}(\widehat{R}^k) \leq \widehat{\mathbb{E}}(\widehat{R}^k) + \epsilon$, we also have the following bound on the excess risk:

$$\mathbb{E}(\widehat{R}^k) - \mathbb{E}(R^k) \le 2\epsilon. \tag{7}$$

Proof. We can rewrite the quantity $\mathbb{E}(R^k) = \sum_{i \leq k} p_{[i]}$ as $\max_{\substack{|S|=k \ S \subset [n]}} \sum_{i \in S} p_i$ (and similarly for $\widehat{\mathbb{E}}(\widehat{R}^k)$).

Thus, we have

$$\widehat{\mathbb{E}}(\widehat{R}^{k}) = \sum_{i \leq k} \widehat{p}_{[i]} = \max_{\substack{|S|=k \\ S \subset [n]}} \sum_{i \in S} \widehat{p}_{i}$$

$$\leq \max_{\substack{|S|=k \\ S \subset [n]}} \sum_{i \in S} p_{i} + \epsilon$$

$$= \sum_{i \leq k} p_{[i]} + \epsilon = \mathbb{E}(R^{k}) + \epsilon, \tag{8}$$

where at the second line (8) we have used the condition $\|p - \widehat{p}\|_1$.

Similarly, we also have

$$\widehat{\mathbb{E}}(\widehat{R}^k) = \sum_{i \le k} \widehat{p}_{[i]} = \max_{\substack{|S| = k \\ S \subseteq [n]}} \sum_{i \in S} \widehat{p}_i$$
 (9)

$$\geq \max_{\substack{|S|=k\\S=|I|}} \sum_{i \in S} p_i - \epsilon \tag{10}$$

$$= \sum_{i \le k} p_{[i]} - \epsilon = \mathbb{E}(R^k) - \epsilon, \tag{11}$$

where at the second line (10) we have used the condition $||p - \hat{p}||_1$. The result follows.

We now consider the recommender systems setting, where the recall is defined user-wise and averaged over the users. In this case, we have a ground truth distribution $P \in \mathbb{R}^{m \times n}$ and its estimated version $\widehat{P} \in \mathbb{R}^{m \times n}$. We fix k and define the recall of user i as $R^{k,i}$ via formula (1) where $p \leftarrow p_{i,\cdot} \in \mathbb{R}^n$ is now the normalized version of the ith row of P (i.e. $p_{i,j} = P_{i,j}/p_i$ with $p_i := \sum_{j \in [n]} P_{i,j}$. We can similarly define the

RecSys 2025, Prague, Czechia,

quantities relative to \widehat{P} . We define the aggregated recall w.r.t. the ranking provided by \widehat{P} (resp. P) by $\widehat{R}^{k,\mathrm{all}} := \frac{1}{m} \sum_{i \leq m} \widehat{R}^{k,i}$ (resp. $R^{k,\mathrm{all}} := \frac{1}{m} \sum_{i \leq m} R^{k,i}$).

Proposition A.2. Assume that $p_i = \frac{1}{m}$ for all i, and $\|\widehat{P} - P\|_1 \le \epsilon$. Then we have the following excess risk bound:

$$\mathbb{E}(\widehat{R}^{k,all}) \le \mathbb{E}(R^{k,all}) + 2\epsilon. \tag{12}$$

Proof. Let ϵ_i be defined as $||p_{i,\cdot} - \widehat{p}_{i,\cdot}||_1$. Then by Proposition A.1 we certainly have

$$\mathbb{E}(\widehat{R}^{k,\text{all}}) = \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} \widehat{R}^{k,i}\right]$$
(13)

$$= \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\widehat{R}^{k,i} \le \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}R^{k,i} + 2\epsilon_i$$
 (14)

$$\leq \mathbb{E}(R^{k,\text{all}}) + 2\frac{1}{m} \sum_{i=1}^{m} \epsilon_i \tag{15}$$

$$= \mathbb{E}(R^{k,\text{all}}) + 2\frac{1}{m} \sum_{i=1}^{m} \|p_{i,\cdot} - \widehat{p}_{i,\cdot}\|$$
 (16)

$$\leq \mathbb{E}(R^{k,\text{all}}) + 2\frac{1}{m} \sum_{i=1}^{m} \left\| mP_{i,\cdot} - m\widehat{P}_{i,\cdot} \right\|$$
 (17)

$$= \mathbb{E}(R^{k,\mathrm{all}}) + 2 \left\| P - \widehat{P} \right\|_{1} \le \mathbb{E}(R^{k,\mathrm{all}}) + 2\epsilon, \tag{18}$$

where at equation (14) we have used Proposition A.1 and at equation (17) we have used the assumption that $p_i = \frac{1}{m}$ for all *i*. The result follows.

A.2 Bounding the L1 Loss

We have established above that if we can control the L1 loss, then we can control the excess risk defined in terms of Recall@k for any k. To control the L^1 loss, we use the following result from [2] which ultimately follows from results on Sheffé tournaments in non-parametric density estimation [1].

Proposition A.3 (Adaptation of Proposition 2.1 in [2]). Let $\mathcal{H}_{m \times n,r}$ denote the set of non-negative rank r distributions over $[m] \times [n]$. Let $p \in \mathcal{H}_{m \times n,r}$ be a probability distribution from which we observe N i.i.d samples. There exists an estimator $\widehat{p} \in \mathcal{H}_{m \times n,r}$ (depending on the N samples) such that for any $\delta > 0$, the following holds with probability $\geq 1 - \delta$:

$$\left\|p-\widehat{p}\right\|_1 \leq 7\sqrt{\frac{(m+n)r\log(2(m+n)rN)}{N}} + 7\sqrt{\frac{\log(\frac{3}{\delta})}{2N}}.$$

By combining Proposition A.3 with Proposition A.2, we obtain the following:

Theorem A.4. Let $\mathcal{H}_{m \times n,r}$ denote the set of non-negative rank r distributions over $[m] \times [n]$. Let $p \in \mathcal{H}_{m \times n,r}$ be a probability distribution from which we observe N samples. There exists an estimator $\widehat{p} \in \mathcal{H}_{m \times n,r}$ (depending on the N

samples) such that for any $\delta > 0$, the following excess risk bound for the recall at k holds with probability $\geq 1 - \delta$: $\mathbb{E}(\widehat{R}^{k,all}) - \mathbb{E}(R^{k,all}) \leq$

$$14\sqrt{\frac{(m+n)r\log(2(m+n)rN)}{N}} + 14\sqrt{\frac{\log(\frac{3}{\delta})}{2N}}.$$
 (19)

References

- [1] L. Devroye and G. Lugosi. 2001. *Combinatorial Methods in Density Estimation*. Springer, New York.
- [2] Robert A Vandermeulen and Antoine Ledent. 2021. Beyond smoothness: Incorporating low-rank analysis into nonparametric density estimation. Advances in Neural Information Processing Systems 34 (2021), 12180– 12193.