АлГем

Сергей Григорян

11 сентября 2024 г.

1 Упражняемся

 $A \in M_{m*n}$ Произвольную і-ую строку будем записывать в виде:

$$A_{i*} = \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix}.$$

Определение 1.1. Линейная комбинация (ЛК) строк A_{1*}, \dots, A_{m*} наз-ся форм. алг. выр-е:

$$\alpha_1 A_{1*} + \alpha_2 A_{2*} + \dots + \alpha_m A_{m*} \in M_{1n}.$$

- ${\bf Утверждение} \ {\bf 1.1.} \ a) \ \Pi y cmb \ A \in M_{m*n}, B \in M_{n*k}. \ Torda \ cmpoки$ матрицы AB явл ${\bf JK}$ строк матрицы B с коэф. из соотв. строки матрицы A
 - b) Столбцы матрицы AB явл. ΠK столбцов матрицы A c коэф. из cooms. cmonбцов матрицы B.

Доказательство. b) Пусть $C = AB \in M_{m*k}$

$$C_{*j} = \begin{pmatrix} c_{1j} \\ c_{2j} \\ \vdots \\ c_{mj} \end{pmatrix} = \begin{pmatrix} \sum_{s=1}^{n} a_{1s} b_{sj} \\ \sum_{s=1}^{n} a_{2s} b_{sj} \\ \vdots \\ \sum_{s=1}^{n} a_{ms} b_{sj} \end{pmatrix} = \sum_{s=1}^{n} b_{sj} \begin{pmatrix} a_{1s} \\ a_{2s} \\ \vdots \\ a_{ms} \end{pmatrix} = \sum_{s=1}^{n} b_{sj} A_{*s}.$$

2 Векторная алгебра

 V_i - линейное пространство і-ого измерения. (i=1,2,3)

Определение 2.1. Две точки $X, Y \in V_i$ определяют направленный отрезок, если известно, какая из этих точек первая, какая вторая.

 \overline{XY} - направленный отрезок.

 $|\overline{XY}| = XY$ - длина напр. отр.

Обозначение.

 $\overline{0}$ - нулевой напр. отр..

Определение 2.2. $\overline{XY} = \overline{X'Y'} \iff$

- a) XY = X'Y'
- b) \overline{XY} и $\overline{X'Y'}$ коллинеарны (\exists прямая, || им обоим)
- c) \overline{XY} и $\overline{X'Y'}$ сонаправлены.

Определение 2.3. Вектор - это класс направленных отрезков, кот. равны некоторому фиксированному напр. отр.

Обозначение. $\overline{a}, \overline{b}, \overline{c}$

Утверждение 2.1. Два напр. отр. \overline{XY} и $\overline{X'Y'}$ определяют (порождают) один и тот же вектор т. и т. т., когда они равны.

Доказательство.

- а) Необходимое: Пусть \overline{XY} и $\overline{X'Y'}$ опр. один и тот же вектор $\Rightarrow \overline{XY} = \overline{X'Y'} = \overline{a}$
- **b)** Достаточное: Пусть $\overline{XY} = \overline{X'Y'} \Rightarrow$ они содерж. в одном классе $\overline{a} \Rightarrow$ они опред. один и тот же вектор.

Определение 2.4. $\overline{XY} = \overline{a} \iff$ он порождает вектор a

3 Операции с векторами

3.1 І. Сложение

<u>Замечание</u>. При данном векторе \overline{a} и фикс. точке X, то найдётся напр. $\overline{XY} = \overline{a}$

Определение 3.1. Пусть напр. отр. \overline{XY} опр. \overline{a} , \overline{YZ} опр. \overline{b} : Сумма векторов: вектором $\overline{a}+\overline{b}$ назыв. вектор, порожд. \overline{XZ}

Замечание. Данное опр. корректно, и не зависит от начальной точ-

 $\frac{\text{Sum} \cdot \text{Respective}}{\kappa u X}$

Доказательство. ***Рисунок***

3.2 Умножение вектора на $\lambda \in \mathbb{R}$

Рассм. напр. отр. $\overline{a} = \overline{XY}$ и \overline{XZ} :

- a) $XZ = |\lambda| * XY$
- b) \overline{XZ} коллинеарен \overline{XY}
- c) \overline{XZ} сонаправлен \overline{XY} , при $\lambda>0$ \overline{XZ} прот. направлен. \overline{XY} при $\lambda<0$:

Вектор, определяемы напр. отр. \overline{XZ} , наз-ся вектором $\lambda \overline{a}$

Доказательство. to do by yourself

Теорема 3.1. Операции "+"и "* λ "удовл. след. св-вам:

1. Коммутативность сложения (Вытекает из св-в параллелограмма):

$$\overline{a} + \overline{b} = \overline{b} + \overline{a}.$$

2. Ассоциативность сложения:

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}).$$

- 3. $\exists \overline{o} \colon \overline{o} + \overline{a} = \overline{a} + \overline{o} = \overline{a}, \forall \overline{a} \in V_i$
- 4. $\forall \overline{a} \in V_i \ \exists (-\overline{a}) \in V_i : \overline{a} + (-\overline{a}) = (\overline{-a}) + \overline{a} = \overline{o}$
- 5. Унитарность:

$$1 * \overline{a} = \overline{a}, \forall \overline{a} \in V_i.$$

6.

$$(\lambda*\mu)*\overline{a}=\lambda*(\mu*\overline{a}).$$

7.

$$(\lambda + \mu) * \overline{a} = \lambda \overline{a} + \mu * \overline{a}.$$

8.

$$\lambda(\overline{a} + \overline{b}) = \lambda \overline{a} + \lambda \overline{b}.$$

<u>Замечание</u>. Mн-во векторов является действительным линейным пространством отн-но мн-ва \mathbb{R} .

4 Системы векторов в пр-ве V_i

$$V_i, i = 1, 2, 3$$

$$\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n} \in V_i$$

Обозначение.

$$\sum_{i=1}^{n} \alpha_i \overline{v_i}$$
 - наз-ся ЛК векторов.

Если $\alpha_i = 0, \forall i = 1 \cdots n$, то такая ЛК наз-ся **тривиальной**. Если $\exists i : \alpha_i \neq 0$, то ЛК **нетривиальная**.

Определение 4.1 (ЛЗ система векторов). Система векторов $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ наз-ся линейно зависимой (ЛЗ), если \exists нетривиальная ЛК этих векторов, равная \overline{o}

Определение 4.2 (ЛНЗ сис. вект.). Система векторов $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ назся линейно независимой (ЛНЗ), если $\not \equiv$ нетривиальной ЛК этих векторов, равной \overline{o}

Пример.

$$\overline{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overline{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \overline{c} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \text{ - ЛН3 cucm. вект..}$$

Док-во ЛНЗ: предствить, что есть коэф-ты, дающие Л $K=\overline{o}$, и показать, что она тривиальная.

Утверждение 4.1. Система векторов $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ - $\mathcal{I}\mathcal{I}\mathcal{I}$ \iff хотя бы один из них представим в виде $\mathcal{I}\mathcal{K}$ остальных.

Доказательство. a) **Heoбх:** пусть $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_n})$ - ЛЗ:

$$\Rightarrow \exists$$
 нетрив. ЛК : $\alpha_1 \overline{v_1} + \alpha_2 \overline{v_2} + \dots + \alpha_n \overline{v_n} = \overline{o}$.

Пусть $\alpha_i \neq 0$:

$$\frac{\alpha_1}{\alpha_i} \overline{v_1} + \dots + \overline{v_i} + \dots + \frac{\alpha_n}{\alpha_i} \overline{v_n} = \overline{o}.$$

$$\overline{v_i} = -\frac{\alpha_1}{\alpha_i} \overline{v_1} - \dots - \frac{\alpha_n}{\alpha_i} \overline{v_n}.$$

b) Дост.: Пусть
$$\overline{v_i} = \lambda_1 \overline{v_1} + \dots + \lambda_n \overline{v_n}$$

$$\Rightarrow \lambda_1 \overline{v_1} + \dots + \lambda_n \overline{v_n} - \overline{v_i} = \overline{o}.$$

<u>Замечание</u>. *HEBEPHO* было бы сформ. утв. вот так: каждый из вектор выразим в виде ЛК остальных.

Пример.

$$\overline{a},\overline{b}$$
 - неколлин..

 \Rightarrow Для $(\overline{a} \ \overline{a} \ \overline{b})$ - это неверно, т. к. b не выразим через a. $Ho\ 1*\overline{a}+(-1)*\overline{a}+0*\overline{b}=\overline{o}$ - нетривиальная ЛК.

<u>Утверждение</u> 4.2. *a)* Если система $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ - ЛЗ \Rightarrow всякая её надсистема тоже ЛЗ

b) Если система $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ - ЛНЗ \Rightarrow , то всякая её подсистема ЛНЗ.

Доказательство. a) $\exists \alpha_1, \cdots, \alpha_n$,- не все равны \overline{o} , тогда $\sum_{i=1}^n \alpha_i \overline{v_i} = \overline{o}$ $\Rightarrow \sum_{i=1}^n \alpha_i \overline{v_i} + \sum_{i=n+1}^{n+k} 0 * \overline{v_j} = \overline{o}$

b) Пусть подсистема $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_k})$ - ЛЗ (от прот.), тогда по а), $(\overline{v_1} \ \cdots \ \overline{v_n})$ - ЛНЗ \Rightarrow Противоречие

Утверждение 4.3. Пусть $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_n})$ - ЛНЗ сист. векторов в $\overline{V_i}$. Тогда каждый вектор $\overline{w} \in V_i$ выражется через $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_n})$ не более чем одним способом.

Доказательство.

$$\overline{w} = (\overline{v_1} \quad \overline{v_2} \quad \cdots \quad \overline{v_n}) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \overline{V}\alpha = \overline{V}\beta$$

$$\Rightarrow \overline{o} = \overline{V}(\alpha - \beta).$$

5 Понятие базиса лин. пр-ва. Базисы в пр- вах V_i

Утверждение 5.1. а) Пусть $\overline{a} \neq \overline{o}$ и \overline{b} коллинеарен \overline{a} . Тогда $\overline{b} = \lambda \overline{a}$.

- b) Пусть $\overline{a_1}, \overline{a_2}$ не коллин. $u\ \overline{b}$ компл. $\overline{a_1}, \overline{a_2}$. Тогда $\overline{b} = \lambda_1 \overline{a_1} + \lambda_2 \overline{a_2}$
- c) Пусть $\overline{a_1},\overline{a_2},\overline{a_3}$ не комплан. Тогда всякий вектор представим в виде $\overline{b}=\lambda_1\overline{a_1}+\lambda_2\overline{a_2}+\lambda_3\overline{a_3}$

Доказательство. а) (***Картинка***)

$$\lambda = \begin{cases} \frac{XZ}{XY},$$
если Y и Z лежат на одной стороне с $X\\ -\frac{XZ}{XY},$ если Y и Z лежат на разных сторонах отн. $X \Rightarrow \overline{b} = \lambda \overline{a}$

b) Оба вектора $\overline{a_1}, \overline{a_2}$ - ненулевые. (***Картинка***)

$$\overline{b} = \overline{b_1} + \overline{b_2} = \overline{XZ_1} + \overline{XZ_2} = \lambda_1 \overline{a_1} + \lambda_2 \overline{a_2}$$

с) $\overline{a_1},\overline{a_2},\overline{a_3}$ порожд. $\overline{XY_1},\overline{XY_2},\overline{XY_3},$ а вектор b - \overline{XZ} . $\overline{a_1},\overline{a_2}$ - не коллин., (***Картинка***) $Z'=l\cap(X_1Y_1Y_2)$

$$\overline{b} = \overline{b_1} + \overline{b_2} = \overline{XZ'} + \overline{Z'Z} = \lambda_1 \overline{a_1} + \lambda_2 \overline{a_2} + \lambda_3 \overline{a_3}$$

Следствие. 1) Система, сост. только из \overline{o} - $\mathcal{I}3$.

- 2) Система, сост. из двух колин. векторов ЛЗ.
- 3) Система, сост. из трёх комплан. векторов ЛЗ.
- 4) Любая сист., сост. из четырех векторов в пр-ве ЛЗ.

Доказательство. 1) $1*\overline{o}=\overline{o}$

2) $\overline{a}, \overline{b}$ - коллин.

Если $\overline{a}=\overline{o}$ - ЛЗ система \Rightarrow (a,b)- надсистема ЛЗ \Rightarrow она ЛЗ Если $\overline{a}\neq\overline{o}\Rightarrow\overline{b}=\lambda\overline{a}\Rightarrow(\overline{a},\overline{b})$ - ЛЗ

3) Пусть $\overline{a_1}, \overline{a_2}, \overline{b}$ - компл.

Если $\overline{a_1}, \overline{a_2}$ - коллин., то $(\overline{a_1}, \overline{a_2})$ - ЛЗ $\Rightarrow (\overline{a_1}, \overline{a_2}, \overline{b})$ - ЛЗ, как надсистема.

Иначе, $\overline{a_1},\overline{a_2}$ - не коллин. $\Rightarrow b=\lambda_1\overline{a_1}+\lambda_2+\overline{a_2}$ - ЛЗ

4) $\overline{a_1}, \overline{a_2}, \overline{a_3}, \overline{b}$:

Если $\overline{a_1}, \overline{a_2}, \overline{a_3}$ - компл. $\Rightarrow (\overline{a_1}, \overline{a_2}, \overline{a_3}, \overline{b})$ - ЛЗ, как надсистема ЛЗ сист.

Иначе $\Rightarrow \overline{b} = \alpha_1 \overline{a_1} + \alpha_2 \overline{a_2} + \alpha_3 \overline{a_3}$.

Утверждение 5.2. Пусть $(\overline{a_1},\overline{a_2},\ldots,\overline{a_n})$ - ЛНЗ сист. вект. u $(\overline{a_1},\overline{a_2},\ldots,\overline{a_n},\overline{b})$ - ЛЗ. Тогда:

$$\bar{b} = \sum_{i=1}^{n} \alpha_i \overline{a_i}$$

Доказательство. В нетрив. ЛК:

$$\alpha_1 \overline{a_1} + \alpha_2 \overline{a_2} + \ldots + \alpha_n \overline{a_n} + \beta \overline{b} = \overline{o}$$

Предположим, что $\beta=0\Rightarrow$ противоречие с условием $\Rightarrow \beta \neq 0 \Rightarrow$:

$$\bar{b} = -\frac{\alpha_1}{\beta} \bar{a}_1 - \dots - \frac{\alpha_n}{\beta} \bar{a}_n$$

Определение 5.1. V - лин. пр-во (над \mathbb{R}).

Система векторов $(\overline{e_1},\overline{e_2},\ldots,\overline{e_n})$ - наз-ся базисом в $V_i,$ если:

- a) $(\overline{e_1}, \overline{e_2}, \dots, \overline{e_n})$ Π H3
- b) Каждый вектор $\overline{v} \in V_i$ представим в виде ЛК:

$$\overline{v} = \alpha_1 \overline{e_1} + \alpha_2 \overline{e_2} + \ldots + \alpha_n \overline{e_n}, \alpha_i \in \mathbb{R}$$

Пример.

$$M_{3*1}(\mathbb{R}) \colon \overline{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overline{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \overline{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$\overline{v} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \sum_{i=1}^3 \alpha_i \overline{e_i}$$

Замечание.

$$\overline{v} = \begin{pmatrix} \overline{e_1} & \overline{e_2} & \dots & \overline{e_n} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$
 - коор-т столбец \overline{v} в базисе \overline{e}

Утверждение 5.3. Если в V фикс. базис $G = (\overline{e_1} \ \overline{e_2} \ \dots \ \overline{e_n})$, то всякий вектор $\overline{v} \in V$ однозначно раскладывается по одному базису. (т. е. имеет однозначно опред. коор-тный столбец)

Доказательство. См. прошлую лекцию

<u>Утверждение</u> **5.4.** Пусть в пр-ве V фикс. базис G, $\overline{v} \iff_{G} \alpha, \overline{w} \iff_{G} \beta$. Тогда:

$$\overline{v} + \overline{w} \iff_{G} \alpha + \beta,$$
$$\lambda \overline{v} \iff_{G} \lambda \alpha$$

Доказательство.

$$\overline{v} = G\alpha$$

$$\overline{v} = G\beta$$

$$\Rightarrow \overline{v} + \overline{w} = G(\alpha + \beta)$$

$$\lambda \overline{v} = \lambda G\alpha = G(\lambda \alpha)$$

6 Описание базисов в пр-вах V_1, V_2, V_3

Теорема 6.1 (О ЛНЗ системах векторов).

1) Система, состоящая из одного **ненулевого** вектора \overline{a} - ЛНЗ

- 2) Система, сост. из двух неколлин. векторов $\overline{a_1}, \overline{a_2}$ ЛНЗ
- 3) Система, сост. из трёх некомплан. векторов $\overline{a_1}, \overline{a_2}, \overline{a_3}$ ЛНЗ

Доказательство. 1) От. противного, пусть $\lambda \neq 0$ и $\lambda \overline{a} = \overline{o}$:

 $|\lambda||\overline{a}| = 0!!!$ Два ненулевых числа в умнож. дают 0.

- 2) От. противного, пусть $\overline{a_1}, \overline{a_2}$ ЛЗ. Б. О. О. (без ограничения общности) $\overline{a_2} = \lambda \overline{a_1}$ противоречие.
- 3) От. пр., пусть $(\overline{a_1} \ \overline{a_2} \ \overline{a_3})$ ЛЗ. Б. О. О. $\overline{a_3} = \lambda_1 \overline{a_1} + \lambda_2 \overline{a_2}$ противоречие.

Теорема 6.2 (Об описании базиса в V_i). Система векторов является:

- а) базисом в $V_1 \iff$ она состоит из одного вектора $\overline{e} \neq \overline{o}$
- b) базисом в $V_2 \iff$ она сост. из двух неколин. векторов $\overline{e_1}, \overline{e_2}$
- c) базисом в $V_3 \iff$ она сост. из трёх некомпл. векторов $\overline{e_1}, \overline{e_2}, \overline{e_3}$ Доказательство.
 - а) $V_1 : \overline{e} \neq 0$ (ЛНЗ сист.)

$$orall ar{b} \in V_1(ar{b} = \lambda \overline{e}) \Rightarrow (\overline{e})$$
 - базис в V_1 .

Если $\overline{e_1}, \overline{e_2} \in V_1 \Rightarrow$ они коллин. \Rightarrow ЛЗ и аналогично (\overline{o}) - ЛЗ.

b) V_2 - фикс. $(\overline{e_1},\overline{e_2})$ - неколл. \Rightarrow ЛНЗ.

$$\forall b \in V_2 \underset{\text{Утв. 1}}{\Rightarrow} \overline{b} = \lambda_1 \overline{e_1} + \lambda_2 \overline{e_2} \Rightarrow (\overline{e_1}, \overline{e_2})$$
- базис.

Почему нет других? $(\overline{e_1} \ \overline{e_2} \ \overline{e_3})$ - компл. \Rightarrow ЛЗ. Если $(\overline{e_1} \ \overline{e_2})$ - коллин. \Rightarrow через них выр-ся только коллин. им вектора.

c)
$$(\overline{e_1} \ \overline{e_2} \ \overline{e_3})$$
 - некомпл. \Rightarrow ЛНЗ:

$$\forall b \in V_3 \colon b = \sum_{i=1}^3 \alpha_i \overline{e_i} \Rightarrow \text{ базис.}$$

Почему нет других?

$$(\overline{e_1} \ \overline{e_2} \ \overline{e_3} \ \overline{e_4})$$
 - ЛЗ

 $(\overline{e_1} \ \overline{e_2} \ \overline{e_3})$ - компланарный, то тогда ЛЗ

- $-\overline{e_1}||\overline{e_2}$ очев.
- $-\overline{e_1}/|\overline{e_2}$ образ. плоскость.

7 Матрица перехода от одного базиса к другому

$$V$$
: два базиса: $G = (\overline{e_1} \ \overline{e_2} \ \dots \ \overline{e_n}), G' = (\overline{e_1}' \ \overline{e_2}' \ \dots \ \overline{e_n}')$

$$\overline{e_1}' = S_{11}\overline{e_1} + S_{21}\overline{e_2} + \ldots + S_{n1}\overline{e_n}$$

:

$$\overline{e_n} = S_{1n}\overline{e_1} + S_{2n}\overline{e_2} + \ldots + S_{nn}\overline{e_n}$$

 \Rightarrow

$$S' = \begin{pmatrix} S_{11} & S_{12} & \dots & S_{1n} \\ S_{21} & S_{22} & \dots & S_{2n} \\ \vdots & \dots & \dots & \vdots \\ S_{n1} & S_{n2} & \dots & S_{nn} \end{pmatrix} = S_{G \to G'}$$

- матрица перехода от G к G^{\prime}

$$\begin{pmatrix} \overline{e_1}' \\ \overline{e_2}' \\ \vdots \\ \overline{e_n}' \end{pmatrix} = S^T \begin{pmatrix} \overline{e_1} \\ \overline{e_2} \\ \vdots \\ \overline{e_n} \end{pmatrix}$$

Утверждение 7.1. Пусть в V фикс. G и G' - базисы и G' = GS. Пусть $\overline{a} \iff_{G'} \alpha$ и $\overline{a} \iff_{G'} \alpha'$. Тогда $\alpha = S\alpha'$.

Доказательство.

$$\overline{a} = G\alpha$$

$$\overline{a} = G'\alpha' = GS\alpha' \Rightarrow \alpha = S\alpha'$$

Определение 7.2. Базис G наз-ся ортогональным, если все базис. векторы попарно ортогональны.

Определение 7.3. Базис G наз-ся ортонормированным (ОНБ), если он ортогональный и нормированный ($\forall i \colon |\overline{e_i}| = 1$).