4) Basic solution

A set of *n* linear independent solutions of a homogeneous *n*-order linear ODE Ly = 0 is called the **basic solution** of Ly = 0 on $I: \{y_1(x), y_2(x), ..., y_n(x)\}.$

5) Superposition principle

The fundamental theorem for the homogeneous linear ODE is the **Superposition Principle**: For a homogeneous linear ODE Ly = 0, any linear combination of two basic solutions on interval I is again its solution.

- 6) If y_1 is a solution of $y^{(n)} + P_1(x)y^{(n-1)} + \cdots + P_n(x)y = f_1(x)$ and y_2 is a solution of $y^{(n)} + P_1(x)y^{(n-1)} + \cdots + P_n(x)y = f_2(x)$, then $y_1 + y_2$ should be the solution of equation $y^{(n)} + P_1(x)y^{(n-1)} + \cdots + P_n(x)y = f_1(x) + f_2(x)$.
- 7) Structure of the general solution of homogeneous linear ODE and nonhomogeneous linear ODE. General solution of homogeneous linear ODE:

A linear combination of *n* basic solutions of the homogeneous *n*-order linear ODE Ly = 0, such as $Y(x) = c_1y_1(x) + c_2y_2(x) + \cdots + c_ny_n(x)$

General solution of nonhomogeneous linear ODE (y):

The general solution of homogeneous linear ODE Ly = 0 (Y) +

One particular solution of its corresponding nonhomogeneous linear ODE $Ly = R(x)(y^*)$: $y = Y + y^*$

11-2. 2nd-order linear ODE with constant coefficients

1) 2nd-order homogeneous linear ODE with constant coefficients

If a and b are constant, the following equation is a 2-order linear ODE with constant coefficients:

$$Ly = y'' + ay' + by = 0 ag{11-2}$$

To solve this equation, using $y = e^{\lambda x}$ (λ : constant) and substitute it into above equation, we obtain the **characteristic equation**:

$$\lambda^2 + a\lambda + b = 0$$

Suppose the solution of the characteristic equation is λ_1 and λ_2 . From algebra we know that above quadratic equation may have 3 kinds of roots, according to the sign of a^2 -4b.

<u>Case 1.</u> $\lambda_1 \neq \lambda_2$ and both are real numbers. $e^{\lambda_1 x}$ and $e^{\lambda_2 x}$ are the basis of the Ly = 0, so the general solution of Ly = 0 is

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

<u>Case 2.</u> $\lambda_1 = \lambda_2$, $e^{\lambda_1 x}$ and $x e^{\lambda_1 x}$ are the basis of the Ly = 0, so the general solution of Ly = 0 is $y = (c_1 + c_2 x)e^{\lambda_1 x}$

<u>Case 3.</u> λ_1 and λ_2 are complex conjugate roots, if $\lambda_1 = \alpha + i\beta$, $\lambda_2 = \alpha - i\beta$, $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$ are the basis of Ly = 0, so that the general solution is,

$$y = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$$

2) 2nd-order nonhomogeneous linear ODE with constant coefficients
The 2nd-order nonhomogeneous linear ODE with constant coefficients is like