Primalidad y factorización

Agustín Santiago Gutiérrez

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Campamento Caribeño ACM-ICPC 2016

- 🚺 Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Definición

Aritmética módulo M (\mathbb{Z}_M)

La aritmética módulo M consiste en una modificación de la aritmética usual de números enteros, en la cual trabajamos únicamente con el resto de los números al ser divididos por un cierto entero fijo M>0, ignorando "todo lo demás" de los números involucrados.

Definición

Aritmética módulo M (\mathbb{Z}_M)

La aritmética módulo M consiste en una modificación de la aritmética usual de números enteros, en la cual trabajamos únicamente con el resto de los números al ser divididos por un cierto entero fijo M>0, ignorando "todo lo demás" de los números involucrados.

 Así, 11 = 18 si estamos trabajando módulo 7, pues ambos dejan un resto de 4 en la división por 7. Esto se suele notar 11 = 18(mód 7)

Definición

Aritmética módulo M (\mathbb{Z}_M)

La aritmética módulo M consiste en una modificación de la aritmética usual de números enteros, en la cual trabajamos únicamente con el *resto* de los números al ser divididos por un cierto entero fijo M > 0, ignorando "todo lo demás" de los números involucrados.

- Así, 11 = 18 si estamos trabajando módulo 7, pues ambos dejan un resto de 4 en la división por 7. Esto se suele notar 11 ≡ 18(mód 7)
- Una forma operacional de ver esta aritmética es suponer que todo el tiempo tenemos los números reducidos al rango de enteros en [0, M), y tomamos el resto de la división por M para devolverlos a ese rango luego de cada operación.

Propiedades

A los efectos de realizar sumas, restas y productos, la aritmética módular es análoga a la aritmética usual, manteniendo sus propiedades importantes.

- $a + b \equiv b + a \pmod{M}$
- $\bullet (a+b) + c \equiv a + (b+c) (\mathsf{m\'od}\ M)$
- 0 es el neutro de la suma.
- Para todo a existe un único inverso aditivo modular -a, $a + (-a) \equiv 0 \pmod{M}$. $a b \equiv a + (-b) \pmod{M}$
- $a \cdot b \equiv b \cdot a \pmod{M}$
- $\bullet (a \cdot b) \cdot c \equiv a \cdot (b \cdot c) (\mathsf{mod}\ M)$
- 1 es el neutro del producto.
- $(a+b) \cdot c \equiv a \cdot c + b \cdot c \pmod{M}$

Forma operacional en el código

Supongamos que se tiene que computar una suma de los números enteros a [0] hasta a [N-1], pero solamente nos importan los últimos 4 dígitos (equivale a trabajar módulo 10000).

```
int result = 0;
for (int i = 0; i < N; i++)
result = (result + a[i]) %10000;</pre>
```

Como decíamos antes, a nivel de operaciones trabajar con aritmética modular equivale a simplemente tomar módulo luego de cada operación aritmética básica.

Problema ante números negativos

Sin embargo, la implementación anterior puede resultar problemática al trabajar con números **negativos**.

- Si por ejemplo fuera N = 2, a[0]=123 y a[1]=-200, el código anterior produce -77, que puede no ser lo deseado.
- Incluso si no hay números negativos en el problema, es muy común que restemos números en nuestra solución.
- Estos resultados con valores negativos ocurren porque el resultado de la división entera se redondea hacia cero en los lenguajes y plataformas más populares.

Problema ante números negativos

Sin embargo, la implementación anterior puede resultar problemática al trabajar con números **negativos**.

- Si por ejemplo fuera N = 2, a[0]=123 y a[1]=-200, el código anterior produce -77, que puede no ser lo deseado.
- Incluso si no hay números negativos en el problema, es muy común que restemos números en nuestra solución.
- Estos resultados con valores negativos ocurren porque el resultado de la división entera se redondea hacia cero en los lenguajes y plataformas más populares.
- Solución:

```
int MOD (int x, int M) {return ((x %M) + M) %M;}
```


Cuidado con el overflow

- Otro problema al que es especialmente común enfrentarse al trabajar con aritmética modular es el peligro de tener overflow en las operaciones.
- Por esto es que tomamos módulo luego de cada operación, y no solamente al final de todo el programa.
- Truquito en C++: Tener en cuenta el tipo __int128, entero de 128 bits. No está presente en todo judge, pero puede ser muy útil cuando está disponible.

¿Qué pasa con la división?

 ¿Podemos operar modularmente con la división tal cual lo hacemos con sumas, restas y productos?

¿Qué pasa con la división?

- ¿Podemos operar modularmente con la división tal cual lo hacemos con sumas, restas y productos?
- NO. Por ejemplo:

$$\frac{10}{2} \equiv 5 (\text{m\'od } 8), \, \text{pero } 10 \equiv 2 (\text{m\'od } 8) \, \text{y} \, \frac{2}{2} \equiv 1 \not \equiv 5 (\text{m\'od } 8)$$

 Podemos garantizar que este "truco" funciona cuando el módulo es un número primo.

```
\frac{27}{3} \equiv 2 \pmod{7}, 27 \equiv 6 \pmod{7} y \frac{6}{3} \equiv 2 \pmod{7}
Pero solo si el divisor no es cero (módulo p) \frac{140}{14} \equiv 3 \pmod{7}, pero 140 \equiv 14 \equiv 0 \pmod{7} y \frac{0}{0} \equiv ? \pmod{7}
```

¿Qué pasa con la división?

- ¿Podemos operar modularmente con la división tal cual lo hacemos con sumas, restas y productos?
- NO. Por ejemplo:

$$\frac{10}{2} \equiv 5 (\text{m\'od } 8), \, \text{pero } 10 \equiv 2 (\text{m\'od } 8) \, \text{y} \, \, \frac{2}{2} \equiv 1 \not \equiv 5 (\text{m\'od } 8)$$

 Podemos garantizar que este "truco" funciona cuando el módulo es un número primo.

$$\frac{27}{3}\equiv 2(\text{m\'od }7),\ 27\equiv 6(\text{m\'od }7)\ \text{y}\ \frac{6}{3}\equiv 2(\text{m\'od }7)$$
 Pero solo si el divisor **no es cero** (m\'odulo p) $\frac{140}{14}\equiv 3(\text{m\'od }7),\ \text{pero }140\equiv 14\equiv 0(\text{m\'od }7)\ \text{y}\ \frac{0}{0}\equiv ?(\text{m\'od }7)$

 ¿Pero y si aún con un módulo primo, la división modular no resulta una división entera?

$$\frac{12}{3} \equiv 4 (\text{m\'od 7}) \text{, pero } 12 \equiv 5 (\text{m\'od 7}) \text{ y } \frac{5}{3} \equiv ? (\text{m\'od 7})$$

Inversos modulares

Definición

Decimos que *b* es inverso de *a* módulo *M* si $a \cdot b \equiv 1 \pmod{M}$.

Notar que solo un $a \not\equiv 0 \pmod{M}$ podría tener un inverso, y de existir el inverso es único, y a su vez a resulta ser el inverso de b.

Inversos modulares

Definición

Decimos que *b* es inverso de *a* módulo *M* si $a \cdot b \equiv 1 \pmod{M}$.

Notar que solo un $a \not\equiv 0 \pmod{M}$ podría tener un inverso, y de existir el inverso es único, y a su vez a resulta ser el inverso de b.

Teorema

Si p es un número primo, entonces todo número $a \not\equiv 0 \pmod{p}$ tiene un inverso módulo p.

Inversos modulares: utilidad

- Recordemos que para realizar 3/2 = 1,5, en realidad podríamos multiplicar directamente por el inverso de 2, es decir $3 \cdot 0,5 = 1,5$
- Lo mismo podemos hacer modularmente. Por ejemplo,
 5 · 3 ≡ 1(mód 7), así que inv(3) = 5. Y entonces recordando el ejemplo anterior:
 ½ ≡ 4(mód 7),

```
\frac{3}{3} \equiv 4 (\text{mod } 7),
12 \equiv 5 (\text{mod } 7) \text{ y}
\frac{5}{3} \equiv 5 \cdot inv(3) \equiv 5 \cdot 5 \equiv 4 (\text{mod } 7)
```

- De esta forma, ya podemos dividir modularmente al trabajar con un número primo (excepto cuando el divisor se hace 0 módulo p).
- ¿Pero cómo calculamos los inversos?

- Aritmética modular
 - Operaciones, estructuraFermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- 3 Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Pequeño teorema de Fermat

Teorema

Si p es primo y $a \not\equiv 0 \pmod{p}$, entonces $a^{p-1} \equiv 1 \pmod{p}$

- Por ejemplo $6^{30} = 7131416765184947029025 \cdot 31 + 1$
- ¿Para qué puede servir este teorema?

Aplicación 1: Cálculo de inversos

- Recordemos que dado $a \neq 0$, si encontramos algún número x tal que $a \cdot x \equiv 1 \pmod{p}$, x será automáticamente el inverso de a.
- Si tomamos $x = a^{p-2}$, ¿Cuánto vale $a \cdot x$?

Aplicación 1: Cálculo de inversos

- Recordemos que dado $a \neq 0$, si encontramos algún número x tal que $a \cdot x \equiv 1 \pmod{p}$, x será automáticamente el inverso de a.
- Si tomamos $x = a^{p-2}$, ¿Cuánto vale $a \cdot x$?
- Tenemos $a \cdot x = a^{p-1} \equiv 1 \pmod{p}$ por el Pequeño Teorema de Fermat.
- Luego para cada a su inverso será simplemente a^{p-2} .

Aplicación 2: Testeo de residuo cuadrático

Definición

Un resto r se dice un residuo cuadrático módulo p si existe x tal que $x^2 \equiv r \pmod{p}$

Por ejemplo los residuos cuadráticos módulo 5 son 0, 1, 4. Notar que 0 siempre es residuo cuadrático módulo *p*.

• Si $r \neq 0$ es residuo cuadrático, ¿Cuánto vale $r^{\frac{p-1}{2}}$?

Aplicación 2: Testeo de residuo cuadrático

Definición

Un resto r se dice un residuo cuadrático módulo p si existe x tal que $x^2 \equiv r \pmod{p}$

Por ejemplo los residuos cuadráticos módulo 5 son 0, 1, 4. Notar que 0 siempre es residuo cuadrático módulo *p*.

- Si $r \not\equiv 0$ es residuo cuadrático, ¿Cuánto vale $r^{\frac{\rho-1}{2}}$?
- $r \equiv x^2$ para algún $x \not\equiv 0$, y entonces $r^{\frac{p-1}{2}} \equiv (x^2)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$
- Se puede verificar que además si para algún r vale $r^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, r es residuo cuadrático módulo p.

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Potenciación logarítmica

- En los ejemplos anteriores hemos reducido algunos problemas a calcular a^b módulo M, para enteros no negativos a, b, M.
- ¿Cómo hacemos esto más eficientemente que realizando b 1 multiplicaciones?

Potenciación logarítmica

```
typedef long long tint;
    tint potlog(tint a, tint b, const tint M)
        tint res = 1:
        while (b > 0)
            if (b\% 2 != 0)
                res = MOD(res*a, M);
            a = MOD(a*a, M);
            b /= 2;
10
11
12
        return res;
```

Invariante de ciclo: La respuesta que deseamos es $res \cdot (a^b \text{ módulo } M)$ Este método realiza solamente $O(\lg b)$ multiplicaciones.

- Aritmétic
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

- Aritmética modula
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

- - Operaciones, estructura

 - Potenciación logarítmica
- - - Algoritmo ingenuo
- Factorización

 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Factorización directa

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Factorización directa

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criha
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Factorización directa