Homotopy Theory and Characteristic Classes

CUI Jiaqi East China Normal University

February 17, 2025

Abstract

This is the notes of a course given by Prof. Ma Langte in 25spring at Shanghai Jiaotong University.

Contents

Ι	Homotopy Theory	1
1	Cofibrations and Fibrations 1.1 Cofibrations	2 2
II	Generalized Homology	4
ΤΤ	I Characteristic Classes	4

Part I

Homotopy Theory

Let **TOP** be the category of topological spaces. Then we can take a quotient of **TOP** and get the homotopy category $h-\mathbf{TOP}$. The quotient may bring more algebraic structures. For example, Mor (S^1, X) , the homotopy classes of maps from S^1 to X, is the fundamental group of X. Our goal is to study functors from hmotopy category to some algebraic categories.

Let \mathbf{TOP}^o be the pointed topological category, where the sum is wedge sum $(X, x_0) \wedge (Y, y_0) =$ $X \sqcup Y/x_0 \sim y_0$ and the product is the smash product $(X, x_0) \lor (Y, y_0) = X \times Y/\{x_0\} \times Y \cup X \times \{y_0\}$. Similarly, we can take a quotient to get $h - \mathbf{TOP}^o$.

Let $\mathbf{TOP}(2)$ be the category of pairs and $h - \mathbf{TOP}(2)$ be its quotient. Fix $K \in \mathrm{Ob}(\mathbf{TOP})$. Let's consider \mathbf{TOP}^K , the category of spaces under K. Its objects are maps $f: K \to X$ and morphisms are maps $\alpha: X \to Y$ such that $\alpha \circ f = g$.

If $K = \{*\}$ is a single point set, then $\mathbf{TOP}^{\{*\}} = \mathbf{TOP}^o$ is the pointed topological category. Take X = K. A morphism from $f: K \to X$ to id: $K \to K$ is $K \to K$ such that $K \to K$ such that $K \to K$ is $K \to K$.

When $K \subset X$, $f = i : K \hookrightarrow X$, we say that r is a retraction.

We have $r: X \to K$ is a deformation retraction, if and only if $i \circ r \simeq \mathrm{id}_X$ rel K, if and only if $r: X \to K$ is a homotopy equivalence in \mathbf{TOP}^K .

Fix $B \in \text{Ob}(\mathbf{TOP})$. Let's consider \mathbf{TOP}_B , the category of spaces over B, where the objects are $p: X \to B$ and morphisms are $f: X \to Y$ such that $p = q \circ f$.

Take X = B. A morphism from id: $B \to B$ to $q: Y \to B$ is $s: B \to Y$ such that $q \circ s = \mathrm{id}_B$.

Then s is called a section of q.

Similarly, we can define $h - \mathbf{TOP}^K$ and $h - \mathbf{TOP}_B$.

1 Cofibrations and Fibrations

1.1 Cofibrations

Definition 1.1. A map $i: A \to X$ has the homotopy extension property (HEP) for a space Y if for all homotopy $h: A \times I \to Y$ and $f: X \to Y$ with $f \circ i(a) = h(a, 0)$, there exists $H: X \times I \to Y$ satisfies

We say $i: A \to X$ is a cofibration if it has HEP for each $Y \in \text{Ob}(\mathbf{TOP})$.

Recall the mapping cylinder: if $i: A \to X$ is a map, then $Z(i) := (A \times I) \sqcup X/(a, 1) \sim i(a)$.

Proposition 1.2. Given a map $i: A \to X$. The followings are equivalent:

- 1. $i: A \to X$ is a cofibration.
- 2. i has HEP for Z(i).

3. The map

$$s: Z(i) \to X \times I$$
$$(a,t) \mapsto (f(a),t),$$
$$x \mapsto (x,1)$$

has a retraction.

Proof. $(1)\Longrightarrow(2)$ is only by definition.

(2) \Longrightarrow (1): By definition, there exists $K: X \times I \to Z(i)$ such that the following diagram is commutative.

For any Y and homotopy $h: A \times I \to Y$ and $f: X \to Y$ with $f \circ i(a) = h(a, 0)$, we define

$$F: Z(i) \to Y$$
$$(a,t) \mapsto h(a,t)$$
$$x \mapsto f(x).$$

Then $F \circ K$ is as desired.

(2) \Longrightarrow (3): We can easily check that the extension $K: X \times I \to Z(i)$ in the proof of (2) \Longrightarrow (1) is a retraction of s.

(3) \Longrightarrow (2): Let r be a retraction of s. For any homotopy $h: A \times I \to Z(i)$ and $f: X \to Z(i)$ with $f \circ i(a) = h(a,0)$, we define

$$\sigma: Z(i) \to Z(i)$$

$$(a,t) \mapsto h(a,t)$$

$$x \mapsto f(x).$$

Then we can verify that $H = \sigma \circ r : X \times I \to Z(i)$ extends h.

Corollary 1.3. When $A \subset X$, $i: A \hookrightarrow X$ is the inclusion map. Then $i: A \to X$ is a cofibration \iff $A \times I \cup X \times \{1\}$ is a retraction of $X \times I$.

Therefore, we can easily check that whether $i:A\hookrightarrow X$ is a cofibration. For example, let (X,A) be a manifold with boundary.

Definition 1.4 (Push-Out of Cofibration). Given a commutative diagram,

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow j & & \downarrow J \\
X & \xrightarrow{F} & Y
\end{array}$$

the push-out of j along f is the initial object of this diagram, i.e. $j: B \to Y, F: X \to Y$, s.t. $\forall Z$ with $J': B \to Z, F': X \to Z$ satisfying $J' \circ f = F' \circ j$, $\exists !$ map $p: Y \to Z$ such that the diagram is commutative.

In our setting, we can construct $Y = X \sqcup B/f(a) \sim j(a)$ directly.

Part II

Generalized Homology

Part III

Characteristic Classes