

Recall Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the PriorityQueue ADT
 - insert(k, x)inserts an entry with key kand value x
 - removeMin()
 removes and returns the
 entry with smallest key

- Additional methods
 - min()
 returns, but does not
 remove, an entry with
 smallest key
 - size(), isEmpty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Recall PQ Sorting

- We use a priority queue
 - Insert the elements with a series of insert operations
 - Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: O(n²) time
 - Sorted sequence gives insertion-sort: O(n²) time
- Problem: slow phase 1 or slow phase 2.

```
Algorithm PQ-Sort(S, C)
```

Input sequence *S*, comparator *C* for the elements of *S*

Output sequence S sorted in increasing order according to C

P ← priority queue with comparator *C*

while $\neg S.isEmpty$ ()

 $e \leftarrow S.remove(S. first())$

P.insertItem(e, e)

while ¬*P.isEmpty*()

 $e \leftarrow P.removeMin().getKey()$

S.addLast(e)

Heaps

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
- Heap-Order: for every internal node v other than the root,
 key(v) ≥ key(parent(v))
- Complete Binary Tree: let h be the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth h − 1, the internal nodes
 are to the left of the external nodes

 The last node of a heap is the rightmost node of maximum depth

Height of a Heap

- □ Theorem: A heap storing n keys has height $O(\log n)$ Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i = 0, ..., h-1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- □ We store a (key, element) item at each internal node
- We keep track of the position of the last node

Insertion into a Heap

- Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z
 (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Upheap

- ullet After the insertion of a new key k, the heap-order property may be violated
- ullet Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- ullet Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- \square Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

Removal from a Heap (§ 7.3.3)

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

http://www.cs.usfca.edu/~galles/visualization/ HeapSort.html

Heap-Sort

- Consider a priority queue
 with n items implemented by
 means of a heap
 - the space used is O(n)
 - methods insert and removeMin take O(log n) time
 - methods size, isEmpty, and min take time O(1) time
- Using a heap-based priority queue, we can sort a sequence of n elements in O(n log n) time

Algorithm **PQ-Sort(S, C)**

Input sequence *S*, comparator *C* for the elements of *S*

Output sequence S sorted in increasing order according to C

 $P \leftarrow$ priority queue with comparator C

while ¬S.isEmpty()

 $e \leftarrow S.remove(S. first())$

P.insertItem(e, e)

while ¬*P.isEmpty*()

 $e \leftarrow P.removeMin().getKey()$

S.addLast(e)

Vector-based Heap Implementation

http://www.cs.usfca.edu/ ~galles/visualization/Heap.html

- We can represent a heap with n keys by means of a vector of length n + 1
- For the node at rank i
 - the left child is at rank 2i
 - the right child is at rank 2i + 1
- Links between nodes are not explicitly stored
- □ The cell of at rank 0 is not used
- Operation insert corresponds to inserting at rank n + 1
- Operation removeMin corresponds to removing at rank n
- Yields in-place heap-sort

	2	5	6	9	7
0	1	2	3	4	5

© 2010 Goodrich, Tamassia

Heaps

13