A Notation

N The set of nonnegative integers. \mathbb{R} The set of real numbers. \mathbf{E} The expectation operator. \mathbf{Pr} $\mathbf{Pr}(x \mid y)$ denotes the probability of the stochastic variable x given y. $\pi^* = \arg\max_{\pi \in \Pi} f_{\pi}$ denotes an element $\pi^* \in \Pi$ that maximizes the function f_{π} . arg max $\pi^* = \arg\max_{\pi \in \Pi} \min f_{\pi,o}$ denotes an element $(\pi^*, o^*) \in \Pi \times O$ that takes the maxmin over $f_{\pi,o}$. arg max min For $\lambda = (\lambda_1, ..., \lambda_J)$, $\lambda \geq 0$ denotes that $\lambda_i \geq 0$ for i = 1, ..., J. $1_X(x)$ $1_X(x) = 1$ if $x \in \{X\}$ and 0 otherwise $\mathbf{1}_n = (1, 1, ..., 1) \in \mathbb{R}^n$. $N(t, s, a, b) = \sum_{k=1}^{t} 1_{(s,a,b)}(s_k, a_k, b_k).$ e: $(s, a, o) \mapsto 1.$ N(t, s, a, b)|S|Denotes the number of elements in S.

B Examples

The following example from Altman (1999) describes in more detail a model where we have a Markov decision process with constraints and where the agent doesn't have model knowledge.

Example 1 (Altman, 1999). Consider a discrete time single-server queue with a buffer of finite size L. For a given time slot, we assume that at most one customer may join the system. The state of the system at a given time slot is the number of customers in the queue. There is a delay cost c(s) given a state $s \in \{S_1, ..., S_n\}$ which one would like to keep as low as possible. The probability of a service to be completed is a^1 , where $1/a_1$ is the Quality of Service (QoS). The probability of queue arrival at time t is a^2 . The actions are given by a^1 and a^2 . Let $c^1(a^1)$ be the cost to complete the service (c^1 is increasing in a^1). c^1 should be bounded by some value v^1 . There is a cost corresponding to the throughput, $c^2(a^2)$, (c^2 is decreasing in a^2). c^2 should be bounded by some value v^2 . We assume that the number of actions is finite and actions sets are given by $a^1 \in \{A_1^1, ..., A_{l_1}^1\}$ and $a^2 \in \{A_1^2, ..., A_{l_2}^2\}$ where $0 < A_1^1 \le \cdots \le A_{l_1}^1 \le 1$ and $0 \le A_1^2 \le \cdots \le A_{l_2}^2 \le 1$. The transition probability $P(s_{k+1}, s_k, a_k^1, a_k^2)$ from state s_k to s_{k+1} given actions a_k^1 and a_k^2 is given by

$$P(s_{+}, s, a^{1}, a^{2}) = \begin{cases} (1 - a^{2})a^{1} & \text{if } L \geq s \geq 1, \\ s_{+} = s - 1 & \text{if } L \geq s \geq 1, \\ a^{2}a^{1} + (1 - a^{2})(1 - a^{1}) & \text{if } L \geq s \geq 1, \\ s_{+} = s & \text{if } L \geq s \geq 0, \\ s_{+} = s + 1 & \text{if } L \geq s \geq 0, \\ 1 - a^{2}(1 - a^{1}) & \text{if } L \geq s \geq 0, \\ s_{+} = s = 0 & \text{if } L \geq s \geq 0, \end{cases}$$

For $\gamma \in (0,1)$, the constrained Markov decision process problem is given by

$$\min_{\pi^{1},\pi^{2}} \mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^{k} c(s_{k})\right)$$
s. t.
$$\mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^{k} c^{1}(\pi^{1}(s_{k}))\right) \leq v^{1}$$

$$\mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^{k} c^{2}(\pi_{2}(s_{k}))\right) \leq v^{2},$$
(28)

which is equivalent to

$$\max_{\pi^{1},\pi^{2}} \mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^{k} r(s_{k}, \pi(s_{k}))\right)$$
s. t.
$$\mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^{k} r^{1}(s_{k}, \pi(s_{k}))\right) \geq 0$$

$$\mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^{k} r^{2}(s_{k}, \pi(s_{k}))\right) \geq 0,$$
(29)

$$where \ a_k = (a_k^1, a_k^2), \ \pi(s_k) = (\pi^1(s_k), \pi^2(s_k)), \ r(s_k, a_k) = -c(s_k), \ r^1(s_k, a_k) = -c^1(a_k^1) + v^1 \cdot (1 - \gamma), \ r^2(s_k, a_k) = -c^2(a_k^2) + v^2 \cdot (1 - \gamma)$$

Example 2 (Search Engine). In a search engine, there is a number of documents that are related to a certain query. There are two values that are related to every document, the first being a (advertisement) value u_i of document i for the search engine and the second being a value v_i for the user (could be a measure of how strongly related the document is to the user query). The task of the search engine is to display the documents in a row some order, where each row has an attention value, A_j for row j. We assume that u_i and v_i are known to the search engine for all i, whereas the attention values $\{A_j\}$ are not known. The strategy π of the search engine is to display document i in position j, $\pi(i) = j$, with probability p_{ij} . Thus, the expected average reward for the search engine is

$$R^e = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathbf{E}(u_i A_{\pi(i)})$$

and for the user

$$R^{u} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathbf{E}(v_{i} A_{\pi(i)}).$$

The search engine has multiple objectives here where it wants to maximize the rewards for the user and itself. One solution is to define a measure for the quality of service for the user, $R^u \ge \underline{R}^u$ and at the same time satisfy a certain lower bound \underline{R}^e of its own reward, that is

find
$$\pi$$
s. t. $\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathbf{E}(u_i A_{\pi(i)}) \ge \underline{R}^e$

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathbf{E}(v_i A_{\pi(i)}) \ge \underline{R}^u$$

C Proof of Theorem 1

The proof will rely on the following result.

Proposition 2. The random process $\{\Delta_k\}$ taking values in \mathbb{R} and defined as

$$\Delta_{k+1}(x) = (1 - \alpha_k(x))\Delta_k(x) + \alpha_k(x)F_k(x)$$

converges to zero with probability 1 under the following assumptions:

i. For all
$$x$$
, $0 \le \alpha_k(x) \le 1$, $\sum_k \alpha_k(x) = \infty$, and $\sum_k \alpha_k^2(x) < \infty$

ii.
$$\|\mathbf{E}(F_k(x) \mid \mathcal{F}_k)\|_{\infty} \le \gamma \|\Delta_k\|_{\infty}$$
, with $\gamma < 1$

iii.
$$\mathbf{E}(F_k - \mathbf{E}(F_k(x)) \mid \mathcal{F}_k))^2 \leq C(1 + ||\Delta_k||_{\infty}^2)$$
, for some constant $C > 0$

where \mathcal{F}_k is the sigma algebra $\sigma(\Delta_t, F_{t-1}, \alpha_{t-1}, t \leq k)$.

Proof. Consult (Jaakkola et al., 1994).

Now let

$$\Delta_k(s, a, o) = Q_k(s, a, o) - Q^*(s, a, o)$$

Subtracting Q^* from the right and left hand sides of the second equality in (12) implies that

$$\Delta_{k+1}(s, a, o) = (1 - \alpha(s, a, o))\Delta_k(s, a, o) + + \alpha(s, a, o)(R(s, a, o) + \gamma \mathbf{E}(Q_k(s_+, \pi_k(s_+), o)) - Q^*(s, a, o)).$$

We will show that Δ_k satisfies the conditions of Proposition 2 Introduce the sigma algebra $\mathcal{F}_k = \sigma(\Delta_t, F_{t-1}, \alpha_{t-1}, t \leq k)$.

Define

$$F_k(s, a, o) = 1_{(s,a,o)}(s_k, a_k, o_k) \times (R(s,a,o) + \gamma \mathbf{E}(Q_k(s_+, \pi_k(s_+), o)) - Q^*(s,a,o))$$

If $(s, a, o) \neq (s_k, a_k, o_k)$, then $F_k(s, a, o) = 0$. Else,

$$\begin{split} \mathbf{E}(F_{k}(s,a,o) \mid \mathcal{F}_{k}) &= \sum_{s_{+}} P(s,a,s_{+}) \mathbf{1}_{(s,a,o)}(s_{k},a_{k},o_{k}) \times (R(s,a,o) + \\ & \gamma \mathbf{E}(Q_{k}(s_{+},\pi_{k}(s_{+}),o)) - Q^{\star}(s,a,o)) \\ &= \sum_{s_{+}} P(s,a,s_{+}) \left(R(s,a,o_{k}) + \\ & \gamma \mathbf{E}(Q_{k}(s_{+},\pi_{k}(s_{+}),o_{k})) - Q^{\star}(s,a,o_{k}) \right) \\ &= \sum_{s_{+}} P(s,a,s_{+}) \left(R(s,a,o_{k}) + \gamma \mathbf{E}(Q_{k}(s_{+},\pi_{k}(s_{+}),o_{k})) - \\ & R(s,a,o_{k}) - \gamma \mathbf{E}(Q^{\star}(s_{+},\pi^{\star}(s_{+}),o_{k})) \right) \\ &= \gamma \sum_{s_{+}} P(s,a,s_{+}) \left(\mathbf{E}(Q_{k}(s_{+},\pi_{k}(s_{+}),o_{k})) - \\ & \mathbf{E}(Q^{\star}(s_{+},\pi^{\star}(s_{+}),o_{k})) \right) \end{split}$$

If $\mathbf{E}(Q_k(s_+, \pi_k(s_+), o_k)) \geq \mathbf{E}(Q^*(s_+, \pi^*(s_+), o_k))$, then

$$\begin{aligned} & \left| \mathbf{E}[Q_{k}(s_{+}, \pi_{k}(s_{+}), o_{k})] - \mathbf{E}[Q^{\star}(s_{+}, \pi^{\star}(s_{+}), o_{k})] \right| \\ &= \left| \mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), o_{k})) - \mathbf{E}(Q^{\star}(s_{+}, \pi^{\star}(s_{+}), o_{k})) \right| \\ &= \left| R(s, a, o_{k}) + \mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), o_{k})) - R(s, a, o_{k}) - \mathbf{E}(Q^{\star}(s_{+}, \pi^{\star}(s_{+}), o_{k})) \right| \\ &\leq \left| R(s, a, o_{k}) + \mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), o_{k})) - R(s, a, o^{\star}) - \mathbf{E}(Q^{\star}(s_{+}, \pi^{\star}(s_{+}), o^{\star})) \right| \\ &\leq \left| R(s, a, o^{\star}) + \mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), o^{\star})) - R(s, a, o^{\star}) - \mathbf{E}(Q^{\star}(s_{+}, \pi^{\star}(s_{+}), o^{\star})) \right| \\ &\leq \left| R(s, a, o^{\star}) + \mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), o^{\star})) - R(s, a, o^{\star}) - \mathbf{E}(Q^{\star}(s_{+}, \pi_{k}(s_{+}), o^{\star})) \right| \\ &\leq \left| \mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), o^{\star}) - Q^{\star}(s_{+}, \pi_{k}(s_{+}), o^{\star})) \right| \\ &\leq \left| \max_{s, a, o} |Q_{k}(s, a, o) - Q^{\star}(s, a, o)| \right| \\ &= \left\| Q_{k} - Q^{\star} \right\|_{\infty}. \end{aligned}$$

Else, if $\mathbf{E}(Q_k(s_+, \pi_k(s_+), o_k)) \leq \mathbf{E}(Q^*(s_+, \pi^*(s_+), o_k))$, then

$$\begin{aligned} & \left| \mathbf{E}[Q_{k}(s_{+}, \pi_{k}(s_{+}), o_{k})] - \mathbf{E}[Q^{\star}(s_{+}, \pi^{\star}(s_{+}), o_{k})] \right| \\ &= \left| \mathbf{E}(Q^{\star}(s_{+}, \pi^{\star}(s_{+}), o_{k})) - \mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), o_{k})) \right| \\ &\leq \left| \mathbf{E}(Q^{\star}(s_{+}, \pi^{\star}(s_{+}), o_{k})) - \mathbf{E}(Q_{k}(s_{+}, \pi^{\star}(s_{+}), o_{k})) \right| \\ &= \left| \left| \mathbf{E}(Q_{k}(s_{+}, \pi^{\star}(s_{+}), o_{k}) - Q^{\star}(s_{+}, \pi^{\star}(s_{+}), o_{k})) \right| \\ &\leq \max_{s, a, o} |Q_{k}(s, a, o) - Q^{\star}(s, a, o)| \\ &= \left\| Q_{k} - Q^{\star} \right\|_{\infty}. \end{aligned}$$

Thus,

$$\|\mathbf{E}(F_{k}(s, a, o))\|_{\infty} =$$

$$= \gamma \max_{s, a, o} \left| \sum_{s_{+}} P(s, a, s_{+}) \left(\mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+}))) - \mathbf{E}(Q^{*}(s_{+}, \pi^{*}(s_{+}), \phi_{k}(s_{+}))) \right) \right|$$

$$\leq \gamma \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left| \left(\mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+}))) - \mathbf{E}(Q^{*}(s_{+}, \pi^{*}(s_{+}), \phi_{k}(s_{+}))) \right) \right|$$

$$\leq \gamma \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left| \left(\mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+}))) - \mathbf{E}(Q^{*}(s_{+}, \pi^{*}(s_{+}), \phi_{k}(s_{+}))) \right) \right|$$

$$\leq \gamma \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left| \left(\mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+}))) - \mathbf{E}(Q^{*}(s_{+}, \pi^{*}(s_{+}), \phi_{k}(s_{+})) \right) \right|$$

$$\leq \gamma \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left| \left(\mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+}))) - \mathbf{E}(Q^{*}(s_{+}, \pi^{*}(s_{+}), \phi_{k}(s_{+})) \right) \right|$$

$$\leq \gamma \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left| \left(\mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+})) - \mathbf{E}(Q^{*}(s_{+}, \pi^{*}(s_{+}), \phi_{k}(s_{+})) \right) \right|$$

$$\leq \gamma \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left| \left(\mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+})) - \mathbf{E}(Q^{*}(s_{+}, \pi^{*}(s_{+}), \phi_{k}(s_{+})) \right) \right|$$

$$\leq \gamma \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left| \left(\mathbf{E}(Q_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+})) - \mathbf{E}(Q^{*}(s_{+}, \pi^{*}(s_{+}), \phi_{k}(s_{+})) \right) \right|$$

$$= \gamma \|Q_{k} - Q^{*}\|_{\infty}$$

$$= \gamma \|\Delta_{k}\|_{\infty}$$

where the first inequality follows from the triangle inequality and the fact that $P(s, a, s_+) \ge 0$. Also, we have that

$$\mathbf{E}(F_{k} - \mathbf{E}(F_{k}) \mid \mathcal{F}_{k}))^{2} =$$

$$= \gamma^{2} \mathbf{E} \Big(Q_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+})) - Q^{*}(s_{+}, \pi^{*}(s_{+}), \phi_{k}(s_{+})) -$$

$$- \sum_{s_{+}} P(s, a, s_{+}) \left(Q_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+})) - Q^{*}(s_{+}, \pi^{*}(s_{+}), \phi_{k}(s_{+})) \right) \Big)^{2}$$

$$= \gamma^{2} \mathbf{E} \Big(\Delta_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+})) -$$

$$- \sum_{s_{+}} P(s, a, s_{+}) \left(\Delta_{k}(s_{+}, \pi_{k}(s_{+}), \phi_{k}(s_{+})) \right) \Big)^{2}$$

$$\leq C(1 + \|\Delta_{k}\|_{\infty}^{2}).$$

Thus, $\Delta_k = Q_k - Q^*$ satisfies the conditions of Proposition 2 and hence converges to zero with probability 1, i. e. Q_k converges to Q^* with probability 1.

D Proof of Theorem 2

Lemma 1. Let the operator **T** be given by

$$(\mathbf{T}Q)(s, a, o) = \sum_{s_{+}} P(s, a, s_{+}) \max_{\pi \in \Pi} \min_{o \in O} \left(R(s, a, o) + \mathbf{E}(Q(s_{+}, \pi(s_{+}), o)) \right).$$
(31)

Then,

$$\|\mathbf{T}Q_1 - \mathbf{T}Q_2\|_{\infty} \le \|Q_1 - Q_2\|_{\infty}$$

Proof.

$$\|\mathbf{T}Q_{1} - \mathbf{T}Q_{2}\|_{\infty} = \max_{s,a,o} \left| \sum_{s_{+}} P(s,a,s_{+}) \left(\max_{\pi \in \Pi} \min_{o \in O} (R(s,a,o) + \mathbf{E}(Q_{1}(s_{+},\pi(s_{+}),o))) - \max_{\pi \in \Pi} \min_{o \in O} (R(s,a,o) + \mathbf{E}(Q_{2}(s_{+},\pi(s_{+}),o))) \right) \right|$$

$$\leq \max_{s,a,o} \sum_{s_{+}} P(s,a,s_{+}) \left| \max_{\pi \in \Pi} \min_{o \in O} (R(s,a,o) + \mathbf{E}(Q_{1}(s_{+},\pi(s_{+}),o))) - \max_{\pi \in \Pi} \min_{o \in O} (R(s,a,o) + \mathbf{E}(Q_{2}(s_{+},\pi(s_{+})),o))) \right|$$

$$(32)$$

where the last inequality follows from the triangle inequality and the fact that $P(s, a, s_+) \ge 0$. Without loss of generality, assume that

$$\max_{\pi \in \Pi} \min_{o \in O} (R(s, a, o) + \mathbf{E}(Q_1(s_+, \pi(s_+), o)))$$

$$\geq \max_{\pi \in \Pi} \min_{o \in O} (R(s, a, o) + \mathbf{E}(Q_2(s_+, \pi(s_+), o)))).$$

Introduce

$$(\pi_i, o_i) = \arg \max_{\pi \in \Pi} \min_{o \in O} R(s, a, o) + \mathbf{E}(Q_i(s_+, \pi(s_+), o)).$$

Then,

$$\left| \max_{\pi \in \Pi} \min_{o \in O} \left(R(s, a, o) + \mathbf{E}(Q_1(s_+, \pi(s_+), o)) \right) - \right|$$
 (33)

$$- \max_{\pi \in \Pi} \min_{o \in O} \left(R(s, a, o) + \mathbf{E}(Q_2(s_+, \pi(s_+), o)) \right)$$

$$= \max_{\pi \in \Pi} \min_{o \in O} \left(R(s, a, o) + \mathbf{E}(Q_1(s_+, \pi(s_+), o)) \right) -$$
(34)

$$= \max_{\pi \in \Pi} \min_{o \in O} \left(R(s, a, o) + \mathbf{E}(Q_1(s_+, \pi(s_+), o)) \right) - \max_{\pi \in \Pi} \min_{o \in O} \left(R(s, a, o) + \mathbf{E}(Q_2(s_+, \pi(s_+), o)) \right)$$
(34)

$$= R(s, a, o_1) + \mathbf{E}(Q_1(s_+, \pi_1(s_+), o_1)) - (R(s, a, o_2) + \mathbf{E}(Q_2(s_+, \pi_2(s_+), o_2)))$$

$$\leq R(s, a, o_2) + \mathbf{E}(Q_1(s_+, \pi_1(s_+), o_2)) - (R(s, a, o_2) + \mathbf{E}(Q_2(s_+, \pi_2(s_+), o_2)))$$

$$\leq R(s, a, o_2) + \mathbf{E}(Q_1(s_+, \pi_1(s_+), o_2)) - (R(s, a, o_2) + \mathbf{E}(Q_2(s_+, \pi_1(s_+), o_2)))$$

=
$$|\mathbf{E}(Q_1(s_+, \pi_1(s_+), o_2)) - Q_2(s_+, \pi_1(s_+), o_2))|$$

$$\leq \max_{s_{+},a,o} |Q_{1}(s_{+},a,o) - Q_{2}(s_{+},a,o)| \tag{35}$$

$$= \|Q_1 - Q_2\|_{\infty}.$$
 (36)

Combining (32)–(36) implies that

$$\|\mathbf{T}Q_{1} - \mathbf{T}Q_{2}\|_{\infty} \leq \\ \leq \max_{s,a,o} \sum_{s_{+}} P(s,a,s_{+}) \|Q_{1} - Q_{2}\|_{\infty} \\ = \|Q_{1} - Q_{2}\|_{\infty}$$
(37)

and the proof is complete.

Lemma 2. The operator **T** given by (31) is a span semi-norm, that is

$$\|\mathbf{T}Q_1 - \mathbf{T}Q_2\|_s \le \|Q_1 - Q_2\|_s \tag{38}$$

where

$$||Q||_s \triangleq \max_{s,a,o} Q(s,a,o) - \min_{s,a,o} Q(s,a,o).$$

Proof. We start off by noting the trivial inequalities

$$\max_{s',a',o'} (Q_1(s',a',o') - Q_2(s',a',o'))
\geq Q_1(s_+,a_+,o) - Q_2(s_+,a_+,o)
\geq \min_{s',a',o'} (Q_1(s',a',o') - Q_2(s',a',o')).$$
(39)

Also, let

$$o_i = \arg\min_{o \in O} R(s, a, o) + Q_i(s_+, \pi(s_+), o)$$

and

$$a_i = \arg\max_{a \in A} Q_i(s, a, o_j), \quad i \neq j.$$

The definition of the span semi-norm implies that

$$\|\mathbf{T}Q_{1} - \mathbf{T}Q_{2}\|_{s} = \left\| \sum_{s_{+}} P(s, a, s_{+}) \left(\max_{\pi \in \Pi} \min_{o \in O} (R(s, a, o) + \mathbf{E}(Q_{1}(s_{+}, \pi(s_{+}), o))) - \max_{\pi \in \Pi} \min_{o \in O} (R(s, a, o) + \mathbf{E}(Q_{2}(s_{+}, \pi(s_{+}), o))) \right) \right\|_{s}$$

$$= \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left(\max_{\pi \in \Pi} \min_{o \in O} (R(s, a, o) + \mathbf{E}(Q_{1}(s_{+}, \pi(s_{+}), o))) - \max_{\pi \in \Pi} \min_{o \in O} (R(s, a, o) + \mathbf{E}(Q_{2}(s_{+}, \pi(s_{+}), o))) \right)$$

$$- \min_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left(\max_{\pi \in \Pi} \min_{o \in O} (R(s, a, o) + \mathbf{E}(Q_{1}(s_{+}, \pi(s_{+}), o))) - \max_{\pi \in \Pi} \min_{o \in O} (R(s, a, o) + \mathbf{E}(Q_{2}(s_{+}, \pi(s_{+}), o))) \right)$$

$$\leq \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left(\max_{\pi \in \Pi} (R(s, a, o_{2}) + \mathbf{E}(Q_{1}(s_{+}, \pi(s_{+}), o_{2}))) - \max_{\pi \in \Pi} (R(s, a, o_{2}) + \mathbf{E}(Q_{2}(s_{+}, \pi(s_{+}), o_{2}))) \right)$$

$$- \min_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left(\max_{\pi \in \Pi} (R(s, a, o_{1}) + \mathbf{E}(Q_{1}(s_{+}, \pi(s_{+}), o_{1}))) \right)$$

$$\leq \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left(Q_{1}(s_{+}, a_{1}, o_{2}) - Q_{2}(s_{+}, a_{1}, o_{2}) \right)$$

$$- \min_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \left(Q_{1}(s_{+}, a_{2}, o_{1}) - Q_{2}(s_{+}, a_{2}, o_{1}) \right)$$

$$\leq \max_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \times \max_{s', a', o'} \left(Q_{1}(s', a', o') - Q_{2}(s', a', o') \right)$$

$$- \min_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \times \min_{s', a', o'} \left(Q_{1}(s', a', o') - Q_{2}(s', a', o') \right)$$

$$- \min_{s, a, o} \sum_{s_{+}} P(s, a, s_{+}) \times \min_{s', a', o'} \left(Q_{1}(s', a', o') - Q_{2}(s', a', o') \right)$$

$$= \max_{s', a', o'} \left(Q_{1}(s', a', o') - Q_{2}(s', a', o') - Q_{2}(s', a', o') \right)$$

$$= \max_{s', a', o'} \left(Q_{1}(s', a', o') - Q_{2}(s', a', o') - Q_{2}(s', a', o') \right)$$

$$= \|Q_{1} - Q_{2}\|_{s}.$$

For convenience, let $e:(s,a,o)\mapsto 1$ be a constant tensor with all elements equal to 1.

Lemma 3. Let $f \in \Phi$ be given, where the set Φ is defined as in Definition 2 and let

$$\mathbf{T}'(Q) = \mathbf{T}(Q) - f(Q) \cdot \mathbf{e}$$

The ordinary differential equation (ODE)

$$\dot{Q}(t) = \mathbf{T}'(Q(t)) - Q(t) \tag{41}$$

has a unique globally asymptotically stable equilibrium Q^* , with $f(Q^*) = v^*$, where Q^* and v^* satisfy [17].

Proof. Introduce the operator

$$\widehat{\mathbf{T}}(Q) = \mathbf{T}(Q) - v \cdot \mathbf{e}.$$

According to lemma 1 we have that

$$\|\mathbf{T}Q_1 - \mathbf{T}Q_2\|_{\infty} \le \|Q_1 - Q_2\|_{\infty}$$

and hence, T is Lipschitz. It's easy to verify that

$$\widehat{\mathbf{T}}(Q_1) - \widehat{\mathbf{T}}(Q_2) = \mathbf{T}(Q_1) - \mathbf{T}(Q_2)$$

and therefore

$$\|\widehat{\mathbf{T}}(Q_1) - \widehat{\mathbf{T}}(Q_2)\|_{\infty} \le \|Q_1 - Q_2\|_{\infty},$$

$$\|\widehat{\mathbf{T}}(Q_1) - \widehat{\mathbf{T}}(Q_2)\|_{s} \le \|Q_1 - Q_2\|_{s}.$$

Now consider the ODE:s

$$\dot{Q}(t) = \widehat{\mathbf{T}}(Q(t)) - Q(t) \tag{42}$$

and

$$\dot{Q}(t) = \mathbf{T}'(Q(t)) - Q(t) = \hat{\mathbf{T}}(Q(t)) + (v - f(Q)) \cdot e. \tag{43}$$

Note that since **T** and f are Lipschitz, the ODE:s (42) and (43) are well posed.

Since **T** is Lipschitz and span semi-norm, the rest of the proof becomes identical to Theorem 3.4 along with Lemma 3.1, 3.2, and 3.3 in (Abounadi et al.) 2001b) and hence omitted here. \Box

Proposition 3 (Borkar & Meyn, 2000: Theorem 2.5). Consider the asynchronous algorithm given by

$$Q_{k+1} = Q_k + \alpha_k (h(Q_k) + M_{k+1})$$

where $\alpha_k(s, a, o) = 1_{(s,a,o)}(s_k, a_k, o_k) \times \beta_{N(k,s,a,o)}$. Suppose that

1. M_k is a martingale sequence with respect to the sigma algebra $\mathcal{F}_k = \sigma(Q_t, M_t, t \leq k)$, that is

$$\mathbf{E}(M_{k+1} \mid \mathcal{F}_k) = 0$$

and that there exists a constant $C_1 > 0$ such that

$$\mathbf{E}(\|M_{k+1}\|^2 \mid \mathcal{F}_k) \le C_1(1 + \|Q_k\|^2).$$

- 2. Assumptions 4 and 5 hold.
- 3. The limit

$$h_{\infty}(X) = \lim_{z \to \infty} \frac{h(zX)}{z}$$

exists.

4. $\dot{Q}(t) = h(Q(t))$ has a unique globally asymptotically stable equilibrium Q^* .

Then, $Q_k \to Q^*$ with probability 1 as $k \to \infty$ for any initial value Q(0).

Proof of Theorem 2. Introduce the operator

$$(\mathbf{T}Q)(s,a,o) = \sum_{s_+} P(s,a,s_+) \max_{\pi \in \Pi} \min_{o \in O} \left(R(s,a,o) + \mathbf{E}(Q(s_+,\pi(s_+),o)) \right).$$

For convenience, let

$$\alpha_k(s, a, o) = 1_{(s,a,o)}(s_k, a_k, o_k) \cdot \beta_{N(k,s,a,o)},$$

$$M_{k+1}(s, a, o) = \max_{\pi \in \Pi} \min_{o \in O} (R(s, a, o) + \mathbf{E}(Q_k(s_{k+1}, \pi(s_{k+1}), o))) - (\mathbf{T}Q_k)(s, a, o),$$

and

$$h(Q) = \mathbf{T}Q - f(Q) \cdot \mathbf{e} - Q.$$

Then,

$$Q_{k+1} = Q_k + \alpha_k (h(Q_k) + M_{k+1}).$$

We will now show that conditions 1 - 4 in Proposition 3 hold, and therefore $Q_k \to Q^*$ with probability 1, where Q^* is the solution to (17).

1. Let \mathcal{F}_k be the sigma algebra $\sigma(Q_t, M_t, t \leq k)$. Clearly,

$$\mathbf{E}(M_{k+1} \mid \mathcal{F}_k) = 0$$

and

$$\mathbf{E}(\|M_{k+1}\|^2 \mid \mathcal{F}_k) \le C_1(1 + \|Q_k\|^2)$$

for some constant $C_1 > 0$.

- 2. We have supposed that assumptions 4 and 5 hold.
- 3. Let $h(X) = \mathbf{T}(X) X f(X)$ e and introduce

$$(\bar{\mathbf{T}}Q)(s, a, o) = \max_{a_{+} \in A} \sum_{s_{+}} P(s, a, s_{+}) Q(s_{+}, a_{+}, o).$$
(44)

Then, the limit

$$h_{\infty}(X) = \lim_{z \to \infty} h(zX)/z$$
$$= \tilde{\mathbf{T}}(X) - X - f(X) \cdot \mathbf{e}$$

exists.

4. By noting that

$$h(x) = \mathbf{T}(X) - X - f(X) \cdot \mathbf{e} = \mathbf{T}'(X) - X$$

we can apply Lemma 3 and conclude that $\dot{Q}(t) = h(Q(t))$ has a unique globally asymptotically stable equilibrium Q^* .

Thus, according to Proposition 3 the iterators Q_k in (18) converge to Q^* , where $h(Q^*) = 0$ and hence the unique solution to (17). Thus, the policy $\pi^* \in \Pi$ given by

$$\pi^{\star}(s) = \arg\max_{\pi} \min_{o \in O} Q^{\star}(s, \pi(s), o)$$

maximizes (13), and the proof is complete.

E Proof of Theorem 3

Let

$$\mathcal{L}(\pi, j) = \mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^k r^j(s_k, \pi(s_k))\right).$$

Consider the zero-sum game

$$\max_{\pi \in \Pi} \min_{j \in [J]} \mathcal{L}(\pi, j).$$

Suppose that π is a policy such that

$$\mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^k r^j(s_k, \pi(s_k))\right) < 0$$

for some j. Then,

$$\mathcal{L}(\pi, j) < 0$$

which implies

$$\min_{j \in [J]} \mathcal{L}(\pi, j) < 0.$$

Thus, if

$$\max_{\pi \in \Pi} \min_{j \in [J]} \mathcal{L}(\pi, j) \ge 0$$

then, there must exist a policy π that satisfies

$$\mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^k r^j(s_k, \pi(s_k))\right) \ge 0 \tag{45}$$

for all j, and we get

$$\min_{j \in [J]} \mathcal{L}(\pi, j) \ge 0.$$

On the other hand, suppose that

$$\max_{\pi \in \Pi} \min_{j \in [J]} \mathcal{L}(\pi, j) < 0.$$

Then, there doesn't exist a policy π such that

$$\mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^k r^j(s_k, \pi(s_k))\right) \ge 0$$

for all j, because it would imply that

$$\max_{\pi \in \Pi} \min_{j \in [J]} \mathcal{L}(\pi, j) \ge 0$$

which is a contradiction, and the proof is complete.

F Proof of Theorem 5

Let

$$\mathcal{L}(\pi, j) = \lim_{T \to \infty} \mathbf{E}\left(\frac{1}{T} \sum_{k=0}^{T-1} r^{j}(s_{k}, \pi(s_{k}))\right)$$

where the expectation is taken over s_k and π . The rest of the proof is similar to the proof of Theorem 3

G Proof of Theorem 6

According to Theorem 5 (23) is equivalent to the zero-sum Markov-Bandit game (24), which is equivalent to the zero-sum Markov-Bandit game given by the tuple (S, A, O, P, R) with the objective

$$\max_{\pi \in \Pi} \min_{o \in O} \quad \lim_{T \to \infty} \mathbf{E} \left(\frac{1}{T} \sum_{k=0}^{T-1} R(s_k, \pi(s_k), o) \right). \tag{46}$$

Assumption 3 implies that $|R(s, a, o)| \leq 2c$ for all $(s, a, o) \in S \times A \times O$. Now let Q^* be the solution to the maximin optimality equation 17. According to Theorem 2 Q_k in the recursion given by 18 converges to Q^* with probability 1 under Assumptions 2 3 4 and 5 By definition, the optimal policy π^* maximizes the expected average reward of the zero-sum Markov-Bandit game 46. Hence,

$$\pi^{\star}(s) = \operatorname*{arg\,max\,min}_{\pi \in \Pi} \mathbf{E}\left(Q^{\star}(s, \pi(s), o)\right)$$

and the proof is complete.

H Simulations

In this section we will consider two additional examples for discounted rewards.

H.1 Static Process Example 1

In this subsection, we consider an example with 1 state (denoted as 1), 2 actions (denoted as 1,2), and two constraints. Let the reward function for the two constraints, $r^{j}(s,a)$ be given as

$$r^{1}(1,1) = 1$$
 $r^{1}(1,2) = -1$ $r^{2}(1,1) = -1$ $r^{2}(1,2) = 1$ (47)

The aim of this example is to find a feasible policy that satisfies the discounted constraints. We let $\gamma = \frac{1}{2}$ in this example. Since there is only a single state, we will ignore the first variable of state in the following. We note that the only stationary policy that satisfies the constraints in this example is $\pi(1) = \pi(2) = 0.5$ due to the symmetry of the two constraints. We will now illustrate that the proposed algorithm will achieve a feasible policy that satisfies the constraints.

First, we define the reward function R(a, o) for Markov zero-sum Bandit Game, $a, o \in \{1, 2\}$ as

$$R(1,1) = 1$$
 $R(2,1) = -1$ $R(1,2) = -1$ $R(2,2) = 1$ (48)

We let the initial value for the Q-function be 0 and assume that the action for k = 0 is 1. For the learning rate, we adopt $\alpha_k = \frac{1}{k+1}$. We also label the policy in time-step i as π_i . According to Theorem 4, we can use the update rule in Eq. (12) to obtain the feasible policy. For k = 0, we have

$$(\pi_1, o_0) = \arg \max_{\pi \in \Pi} \min_{o \in O} Q_0(\pi_0(s), o)$$
(49)

Since $Q_0 = 0$ for all $(a, o) \in \mathcal{A} \times \mathcal{O}$ and then the objective is not dependent on π , any arbitrarily policy can be used. Let us choose π as a half-half policy such that $\pi_1(1) = \pi_1(2) = 0.5$ and assume $a_1 = 2$. Similarly, o_0 can be arbitrary and we assume $o_0 = 1$. We also let $a_0 = 1$. Using $a_0 = 1, o_0 = 1, \pi_1(1) = \pi_1(2) = 0.5$, the Q-table update is given as

$$Q_1(1,1) = (1 - \alpha_0(1,1))Q_0(1,1) + \alpha_0(1,1)(R(1,1) + \gamma \mathbf{E}(Q_0(\pi_0,1)))$$

$$= R(1,1) = 1$$
(50)

At the end of k = 0, we get $Q_1(1,1) = 1$ and $Q_1(1,2) = Q_1(2,1) = Q_1(2,2) = 0$.

For k = 1, we have

$$(\pi_2, o_1) = \arg \max_{\pi \in \Pi} \min_{o \in O} Q_1(s, \pi(s), o)$$
(51)

Since $Q_1(2,1) = Q_1(2,2) = 0$, the maxmin problem will again have result 0 whatever the policy π_2 is. Thus, we still assume that $\pi_2(1) = \pi_2(2) = 0.5$ and next action $a_2 = 1$. However, it follows that $o_1 = 2$ because $Q_1(1,1) = 1$. Since $a_1 = 2$, $o_1 = 2$, $\pi_2(1) = \pi_2(2) = 0.5$, the Q-table update is

$$Q_2(2,2) = (1 - \alpha_1(2,2))Q_1(2,2) + \alpha_1(2,2)(R(2,2) + \gamma \mathbf{E}(Q_1(\pi_1,2)))$$

= 0.5 * 0 + 0.5 * (1 + 0.5 * 0) = 0.5

At the end of k = 1, we get $Q_2(1,1) = 1$, $Q_2(2,2) = 0.5$ and $Q_2(1,2) = Q_2(2,1) = 0$.

For k=2, we have

$$(\pi_3, o_2) = \arg \max_{\pi \in \Pi} \min_{o \in O} Q_2(s, \pi(s), o)$$
 (53)

To solve this problem, it is equivalent to solve the following problem

$$\operatorname{arg\,max}_{z} \quad z
s.t. \quad z < Q_{2}(s, \pi(s), o) \quad \text{for} \quad o = 1, 2$$
(54)

Assume $\pi_3(1) = p$, $\pi_3(2) = 1 - p$, this is equivalent to solve the equation that $p * Q_2(1,1) + (1-p) * Q_2(1,2) = p * Q_2(1,2) + (1-p) * Q_2(2,2)$, which gives the result $\pi_3(1) = \frac{1}{3}$ and $\pi_3(2) = \frac{2}{3}$ and we assume the next action

 $a_3 = 2$. Due to the equality in the above equation, o_2 can again can be arbitrary and we assume $o_2 = 2$. Since $a_2 = 1$, the Q-table update is

$$Q_3(1,2) = (1 - \alpha_2(1,2))Q_2(1,2) + \alpha_2(1,2)(R(1,2) + \gamma \mathbf{E}(Q_2(\pi_2,2)))$$

$$= \frac{2}{3} * 0 + \frac{1}{3} * [-1 + 0.5 * (\frac{1}{3} * Q_2(1,2) + \frac{2}{3} * Q_2(2,2))] = -\frac{5}{18}$$
(55)

At the end of k=2, we get $Q_3(1,1)=1$, $Q_3(2,2)=0.5$ and $Q_3(1,2)=-\frac{5}{18}$ and $Q_3(2,2)=0.5$

For k = 3, we have

$$(\pi_4, o_3) = \arg \max_{\pi \in \Pi} \min_{o \in O} Q_3(s, \pi(s), o)$$
(56)

We need to solve the problem in the Equation (54) to get the result of π_4 and the result is $\pi_4(1) = \frac{7}{16}$ and $\pi_4(2) = \frac{9}{16}$ and σ_3 can be arbitrary, thus we assume that $\sigma_3 = 1$. Since $\sigma_3 = 1$, the Q-table update is given as

$$Q_4(2,1) = (1 - \alpha_3(2,1))Q_3(2,1) + \alpha_3(2,1)(R(2,1) + \gamma \mathbf{E}(Q_3(1,1)))$$

$$= \frac{3}{4} * 0 + \frac{1}{4} * (-1 + 0.5 * (\frac{7}{16} * Q_3(1,1) + \frac{9}{16} * Q_3(2,1))) = -\frac{3}{8} - \frac{1}{4} = -\frac{25}{128}$$
(57)

At the end of k = 3, we get $Q_4(1,1) = 1$, $Q_4(2,2) = 0.5$ and $Q_4(1,2) = -\frac{5}{18}$ and $Q_4(2,1) = -\frac{25}{128}$.

Based on these steps, we can keep on computing the update for Q-table. However, the computation is hard to do manually, and involves random choice of actions based on policy π . Thus, we simulate the performance of the algorithm and the Q-values $Q_k(i,j)$ for iterations k are depicted in Fig. $\boxed{3}$

Figure 3: Convergence result for Example 1

We note that $Q_k(1,1)$ and $Q_k(2,2)$ converges to 1, while $Q_k(1,2)$ and $Q_k(2,1)$ converges to -1. According to the optimal Bellman equation,

$$Q^*(s, a, o) = R(s, a, o) + \gamma \cdot \mathbf{E} \left(Q^*(s_+, \pi^*(s_+), o) \right)$$
(58)

we know $Q^*(1,1) = 1 + 0.5 * [0.5 * Q^*(1,1) + 0.5 * Q^*(2,1)]$, which means

$$3Q^*(1,1) = 4 + Q^*(2,1) \tag{59}$$

Similarly, we have

$$3Q^*(2,1) = -4 + Q^*(1,1) \tag{60}$$

Combining these two equations, we have $Q^*(1,1) = -Q^*(2,1) = -1$. Similarly, $Q^*(2,2) = -Q^*(1,2) = -1$. Thus, we see that the algorithm successfully have the whole Q table converges to Q^* , which shows the correctness of the theorem. Moreover,

$$\pi^* = \operatorname*{arg\,max\,min}_{\pi \in \Pi} Q^*(s, \pi(s), o) \tag{61}$$

which gives $\pi^*(1|s) = \pi^*(2|s) = 0.5$ and we know this is the only feasible policy. Thus, we see that the Q-values of the proposed algorithm converges to that of the optimal policy and the policy converges to the only feasible policy in this example.

H.2 Static Process Example 2

We consider a static process (that is, the state is constant) and an agent that takes action from the action set $A = \{1, 2, 3\}$. There are three objectives given by the reward functions r_1, r_2 , and r_3 defined as

$$r^{j}(a) = \begin{cases} \frac{1}{2} & \text{if } a = j\\ 0 & \text{otherwise} \end{cases}$$

Note that we have dropped the dependence of the reward functions r_j on the state s as the state s is assumed to be constant. Let the discount factor be $\gamma = \frac{1}{2}$ and let

$$\alpha_0 = \alpha_1 = \alpha_2 = \alpha = \frac{1}{3}.$$

The agent would then be looking for a probability distribution over the set A, $\mathbf{Pr}(a)$ for $a \in A$, that simultaneously satisfies the objectives

$$\mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^k r^j(a_k)\right) \ge \frac{1}{3}, \quad j = 1, 2, 3.$$

Figure 4: A plot of the maximum of $|p_1 - \hat{p}_1| + |p_2 - \hat{p}_3| + |p_3 - \hat{p}_3|$ over 1000 iterations, as a function of the number of time steps.

Now suppose that the agent takes action $a_k = 1$ with probability p_1 . Then we have that

$$\mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^k r^1(a_k)\right) = p_1.$$

Similarly, we find that if the agent takes the action $a_k = j$ with probability p_j , j = 2, 3, then

$$\mathbf{E}\left(\sum_{k=0}^{\infty} \gamma^k r^j(a_k)\right) = p_j.$$

Without loss of generality, suppose that $p_1 \leq p_2 \leq p_3$. Now the equality $p_1 + p_2 + p_3 = 1$ together with the Arithmetic-Geometric Mean Inequality imply that

$$\frac{1}{3} = \frac{p_1 + p_2 + p_3}{3} \ge \sqrt[3]{p_1 p_2 p_3} \ge p_1$$

with equality if and only if $p_1=p_2=p_3=\frac{1}{3}$. Thus, in order to satisfy all of the three objectives, the agent's mixed strategy is unique and given by $p_1=p_2=p_3=\frac{1}{3}$.

We have run 1000 iterations of a simulation of the learning algorithm as given by Theorem $\boxed{4}$ over 5000 time steps (with respect to the time index k). As the above calculations showed, the probability distribution of the optimal policy is given by $p_1 = p_2 = p_3 = \frac{1}{3}$. Let $\hat{p}_1, \hat{p}_2, \hat{p}_3$ be the estimated probabilities based on the Q-learning algorithm given by Theorem $\boxed{4}$ In Figure $\boxed{4}$ we see a plot of the maximum of the total error

$$|p_1 - \hat{p}_1| + |p_2 - \hat{p}_2| + |p_3 - \hat{p}_3|$$

over all iterations, as a function of the number of time steps. We see that it converges after 1000 time steps and stays stable for the rest of the simulation.