

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕЛРА «I	Ірограммное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №3 по курсу «Моделирование» на тему: «Генераторы случайных чисел»

Студент	ИУ7-71Б (Группа)	(Подпись, дата)	<u>Постнов С. А.</u> (Фамилия И. О.)
Преподава	атель	(Подпись, дата)	Рудаков И. В. (Фамилия И. О.)

СОДЕРЖАНИЕ

У	Условие лабораторной работы					
1	Teo	ретическая часть	4			
	1.1	Методы генерации чисел	4			
	1.2	Табличный способ	4			
	1.3	Алгоритмиический способ	4			
	1.4	Критерий оценки случайности последовательности	5			
2	Пра	актическая часть	6			

Условие лабораторной работы

Целью лабораторной работы является написание программы для генерации одно-, двух- и трехразрядных чисел табличным и алгоритмическим способами. Необходимо разработать количественный критерий случайности для чисел, сгенерированных табличным и алгоритмическим способами.

1 Теоретическая часть

1.1 Методы генерации чисел

Существует три метода получения последовательности случаных чисел:

- 1) аппаратный;
- 2) табличный;
- 3) алгоритмический.

1.2 Табличный способ

Табличный способ подразумевает использование файла (таблицы), содержащего случайные числа.

1.3 Алгоритмиический способ

В качестве алгоритмического способа генерации псевдослучайных чисел был выбран линейный конгруэнтный метод. Линейный конгруэнтный метод является одной из простейших и наиболее употребительных в настоящее время процедур, имитирующих случайные числа. В этом методе используется операция mod(x,y), возвращающая остаток от деления первого аргумента на второй. Каждое последующее случайное число рассчитывается на основе предыдущего случайного числа по формуле 1.1.

$$r_{i+1} = mod(kr_i + b, M) \tag{1.1}$$

, где M — модуль (0 < M), k — множитель (0 <= k < M), b — приращение (0 <= b < M), r_0 — начальное значение $(0 <= r_0 < M)$. Последовательность случайных чисел, полученных с помощью данной формулы, называется линейной конгруэнтной последовательностью.

1.4 Критерий оценки случайности последовательности

В качестве критерия для оценки полученных последовательностей чисел была выбрана метрика колебаний последовательности. В этом критерии будет учитываться:

- 1) среднее значение разницы между соседними элементами (чем больше разброс между значениями, тем выше считается случайность);
- 2) отклонение этой разницы от среднего (меньшая регулярность в изменениях).

Значение критерия вычисляется по формуле 1.2. Чем выше значение метрики, тем более случайной считается последовательность.

$$m = meanAbsD/meanD (1.2)$$

, где meanAbsD — среднее абсолютное отклонение от среднего, meanD — среднее разницы между соседними элементами.

2 Практическая часть

На рисунке 2.1 представлен графический интерфейс разработанной программы.

Рисунок 2.1 – Графический интерфейс разработанной программы

На рисунках 2.2 - 2.3 представлены результаты работы программы.

Рисунок 2.2 – Значения метрик в первом случае

• •	● ● ● Генератор случайных чисел													
Таблі	Табличный метод							Метрика колебаний последовательности:						
4	2	9	8	1	9	6	2	4	5	Табличный метод: 0-9: 0.5968				
47	14	94	84	77	43	89	41	33	75	0-99: 0.5137 0-999: 0.5165				
501	35	289	220	745	308	59	921	688	852	Алгоритмический метод:				
Алго	ритми	ческий	і метод	ı						0-9: 0.2146 0-99: 0.2046				
6	5	8	4	7	3	7	3	0	3	0-999: 0.2084				
64	53	82	43	70	38	76	33	3	32	Пользовательская таблица:				
644	535	822	437	709	386	763	331	38	325	0.0000				
Поль	Пользовательская таблица:													
1		2	3		4		5		6	7 8 9 10				
	Сгенерировать													

Рисунок 2.3 – Значения метрик во втором случае