Algoritmi e Strutture Dati

ASD: Endgame (endgame)

Testo del problema

Slides originali su: judge.science.unitn.it/slides/asd20/prog2.pdf

int main() { double result; ... out « scientific « setprecision(10) « E « " "; out « scientific « setprecision(10) « G « " ; out « scientific « setprecision(10) « T « endl; ... } $\ensuremath{\mbox{\\mbox{\s\mbox{\\mbox{\\mbox{\\mbox{\\mbox{\\mbox{\\mbox{\\mbox{\\mbox{$

Saranno accettati gli output in cui le variabili E, G, T dichiarate nell'output si discostano meno di $\frac{1}{10.000}$ dal valore calcolato usando p e t nell'Equazione ??;.

Punteggio

- Ci sono 20 casi di test: ogni test assegna un punteggio di massimo 5 punti per un totale massimo teorico di 100 punti.
- Una soluzione è valida se rispetta tutte le richieste. Soluzioni non valide fanno zero punti!
- I percorsi validi ottengono questo punteggio:
- Il punteggio viene calcolato usando l'ultima soluzione terminata con tre asterischi ***.

I parametri di valutazione sono i seguenti:

- G energia contenuta nel guanto;
- R consumo di energia del guanto per unità di tempo;
- T tempo impiegato per visitare le città;
- maxT upper bound del tempo per visitare le città;
- minT lower bound del tempo per visitare le città;
- maxG energia ottima caricabile nel guanto;

Per ogni caso di test per cui la vostra soluzione fornisce un output entro i limiti di tempo e memoria otterrete il seguente punteggio P:

$$P = \frac{G + R(maxT - T)}{maxG + R(maxT - minT)} * 5$$
(1)

nota: non è necessario che calcoliate il punteggio della vostra soluzione - vi servirebbero i parametri dei bound minT, maxG che non avete. Il vostro obiettivo è in ogni caso di **massimizzare** E.

Esempi (punteggio)

Nell'esempio di cui sopra, la risposta del sistema del valutazione è:

Soluzione valida: E(3.76) G(11.00) T(7.24) maxG(25.00) minT(1.09) maxT(35.00) randMaxT(7.24) scoreRandMaxT(0.35) 0.353090

Il punteggio è calcolato nel modo seguente:

$$P = \frac{11 + 1 \cdot (7,2444444 - 7,2444444)}{25 + 1 \cdot (7,24444444 - 1,0909091)} \cdot 5 = 0,35308994 \cdot 5 \approx 1,77$$

.1 Spiegazione del punteggio

Per ogni testcase, viene assegnato un punteggio da 0 a 1 a e poi moltiplicato per 5, secondo la formula di cui all'Equazione~1. Il messaggio resitutito da arena indica i valori delle variabili usate nella formula. Questi valori vi permettono di valutare i punti di forza e i punti deboli della vostra soluzione.

Per esempio:

```
Soluzione valida: E(254800.15) G(365036.00) T(5511.79) maxG(366798.00) minT(3266.50) maxT(729014.00) randMaxT(323342.21) scoreRandMaxT(0.99)
```

Le variabili stampate nel messaggio sono le seguenti:

- E: energia finale in output, $G(p) R \cdot T(p,t)$ (come in Eq. ??);
- G: energia contenuta nel guanto a fine percorso;
- T: tempo necessario per il percorso dichiarato;
- maxG: upper bound della quantità massima di energia che il guanto può contenere;
- minT: lower bound per il tempo necessario a compiere un giro;
- maxT: upper bound per il tempo necessario a compiere un giro;
- randMaxT: tempo richiesto da una soluzione che prende strade a caso, scegliendo pietre a caso;
- scoreRandMaxT: questo è il punteggio che la vostra soluzione ha ottenuto per il testcase corrente, che verrà poi moltiplicato per 5. In questo caso, verranno assegnati 4.95 (0.99 × 5) punti a questo test. Nel caso in cui il punteggio sia negativo, significa che il vostro percorso ha richiesto più tempo di randMaxT, e quindi il punteggio assegnato sarà 0.

Valutazione

Per la valutazione del progetto:

- Conta il punteggio dell'ultimo sorgente inviato al sistema;
- Il progetto è superato con un punteggio non inferiore a 50 punti;
- C'è un limite di 40 sottoposizioni per gruppo;

Limiti e assunzioni

- $1 \le N \le 2.000, 0 \le S < N$
- $0 \le M \le 10.000$
- $0 \le C \le 10.000.000$
- $0 \le R \le 5.000$
- $0 \le v_{\min} \le v_{\max} \le 1.000$
- $1 \le m_i \le 100.000, 1 \le e_i < 100.000$
- Ogni grafo è completo.
- Ogni grafo è non diretto.

Casi di test

- Ci sono 20 casi di test in totale.
- In almeno 3 casi su 20 in ogni città c'è una ed una sola pietra, non ci sono due città con pietre uguali.
- In almeno 3 casi su 20 tutti gli archi del grafo hanno lo stesso peso.
- In almeno 4 casi su 20 vale la disuguaglianza triangolare per i pesi degli archi del grafo.
- In almeno 10 casi su 20 non ci sono particolari limitazioni.

Limiti delle risorse

- Tempo di esecuzione: 5 secondi (soft limit), 5,5 secondi (hard limit)
- Memoria: 64 MB

Dataset di esempio

Per gli input forniti nel dataset di esempio non è stata calcolata una soluzione ottima. Per questo motivo il dataset non contiene anche i relativi output, solitamente messi a disposizione.

Istruzioni di compilazione

Di seguito riportiamo le istruzioni per testare i vostri progammi su vari sistemi. Si suppone che il sorgente con il vostro codice si chiami file endgame.cpp. I file endgame.cpp, grader.cpp e endgame.h devo stare nella stessa cartella.

Sistemi GNU/Linux

```
/usr/bin/g++ -DEVAL -std=c++11 -02 -pipe -static -s -o endgame endgame.cpp grader.cpp
```

Sistemi Mac OS X

Su sistemi Mac OS X usate il seguente comando di compilazione:

```
/usr/bin/g++ -DEVAL -std=c++11 -02 -pipe -o endgame endgame.cpp grader.cpp
```

Se ottente un errore del tipo: use of undeclared identifier quick_exit, sostituite in grader.cpp l'istruzione quick_exit(EXIT_SUCCESS); con exit(EXIT_SUCCESS);.

Sistemi Windows

Per il sistema Windows 10 potete installare il "Windows Subsystem for Linux". Successivamente potete installare i tool necessari per usare Visual Studio Code² o Visual Studio 2017³ seguendo le relative guide riportate nelle note. Usando questo sistema fate attenzione a dove salvate i file e a quale nome gli date in quanto potreste avere delle difficoltà con percorsi che contengano spazi e caratteri speciali.

In alternativa, o per sistemi precedenti a Windows 10 potete installare $Cygwin^4$, un ambiente completamente POSIX-compatibile per Windows. Anche in questo caso esistono guide per configurare i comuni editor disponibili su Windows di modo che utilizzino l'ambiente Cygwin, come per esempio Visual Studio⁵.

Una volta installato Cygwin è possibile simulare quanto avviane su arena compilando il proprio sorgente senza includere l'header endgame.h e il grader grader.cpp:

```
/usr/bin/g++ -DEVAL -std=c++11 -02 -pipe -static -s -o endgame endgame.cpp
```

e lanciare il comando come:

```
timeout.exe 5 ./endgame
```

timeout.exe arresterà il programma dopo 5 secondi.

¹https://docs.microsoft.com/en-us/windows/wsl/install-win10

²https://code.visualstudio.com/docs/cpp/config-wsl

 $^{^3}$ https://devblogs.microsoft.com/cppblog/targeting-windows-subsystem-for-linux-from-visual-studio/

⁴https://www.cygwin.com/

 $^{^5}$ https://devblogs.microsoft.com/cppblog/using-mingw-and-cygwin-with-visual-cpp-and-open-folder/

Esempi di input/output

File input.txt	File output.txt
5 0 5 5 1.0 1.0 11.0 2 1 1 9 2 7 2 1 2 9 2 0 1 3 0 1 3 1 1 1 1 2 1 3 4 8 4 7 8 1 3 2 1 2	3.755555556 11.0 7.2444444444 1 0 -1 2 -1 0 1 2 3 4 0 ***
File input.txt	File output.txt
6 3 6 0 1 1.0 1.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-3.1000000000e+01 0.000000000e+00 3.100000000e+01 -1 -1 -1 -1 -1 -1 3 2 5 0 4 1 3 *** -2.7000000000e+01 0.000000000e+00 2.700000000e+01 -1 -1 -1 -1 -1 -1 -1 3 2 5 0 1 4 3 ***

File input.txt	File output.txt
5 2 8 100 0 1.0 1.0 1 6 1 3 1 9 1 4 15 8 11 16 15 6 15 1 5	2.7000000000e+01 2.700000000e+01 5.000000000e+00 0 3 2 -1 4 -1 -1 1 2 0 1 3 4 2 *** 3.0000000000e+01 3.000000000e+01 5.000000000e+00 1 3 2 0 4 -1 -1 -1 2 1 3 0 4 2 *** 3.2000000000e+01 3.200000000e+01 5.0000000000e+00 0 3 1 -1 4 -1 2 -1 2 0 1 3 4 2 ***
2 2 2 3 3 3 5 5 3 4 2 0 1	4.00000000000e+01 4.000000000e+01 5.000000000e+00 3 -1 2 -1 4 0 -1 1 2 0 3 1 4 2 ***
1 0 1 4	4.2000000000e+01 4.200000000e+01 5.000000000e+00 1 3 2 -1 4 0 -1 -1 2 1 0 3 4 2
1 0 2 2 4 4	4.5000000000e+01 4.500000000e+01 5.000000000e+00 3 -1 1 -1 4 0 2 -1 2 1 0 3 4 2 ***
4 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	