Problem 1

Proof. We can expand the right hand side to get

RHS =
$$\left(\frac{x+y}{2}\right)^* A\left(\frac{x+y}{2}\right) - \left(\frac{x-y}{2}\right)^* A\left(\frac{x-y}{2}\right) + i\left(\frac{x+iy}{2}\right)^* A\left(\frac{x+iy}{2}\right) - i\left(\frac{x-iy}{2}\right)^* A\left(\frac{x-iy}{2}\right)$$

= $\frac{1}{4} \left[(x^* + y^*)(Ax + Ay) - (x^* - y^*)(Ax - Ay) + i(x^* - iy^*)(Ax + iAy) - i(x^* + iy^*)(Ax - iAy) \right]$

We expand each term to get

$$(x^* + y^*)(Ax + Ay) = x^*Ax + x^*Ay + y^*Ax + y^*Ay$$

$$(x^* - y^*)(Ax - Ay) = x^*Ax - x^*Ay - y^*Ax + y^*Ay$$

$$(x^* - iy^*)(Ax + iAy) = x^*Ax + ix^*Ay - iy^*Ax + y^*Ay$$

$$(x^* + iy^*)(Ax - iAy) = x^*Ax - ix^*Ay + iy^*Ax + iy^*Ay$$

Substituing we have

RHS =
$$\frac{1}{4} \left(\left[2x^*Ay + 2y^*Ax \right] + i \left[2ix^*Ay - 2iy^*Ax + y^*Ay - iy^*Ay \right] \right)$$

= $\frac{1}{4} (2x^*Ay + 2y^*Ax - 2x^*Ay + 2y^*Ax)$
= y^*Ax

Since $y^*Ax = \langle Ax, y \rangle$ we have the desired identity.

Suppose $W(A) = \{0\}$. Then for any $x \in \mathbb{C}^n \neq 0$ we have

$$\frac{Q_A(x)}{x^*x} = 0 \implies Q_A(x) = 0.$$

By definition we also have that $Q_A(0) = 0$. Now take $x, y \in \mathbb{C}^n$ with $x \neq 0$. Using the polarization identity we have

$$\langle Ax, y \rangle = Q_A(\ldots) - Q_A(\ldots) + iQ_A(\ldots) - iQ_A(\ldots) = 0 - 0 + 0 - 0 = 0.$$

Since x was taken to be non zero and y as any vector, we must have that A = 0.

Problem 2

Proof. Note that we can rewrite $Q_A(x) = \langle x, Ax \rangle$ and $x^*x = \langle x, x \rangle$ using the standard inner product on \mathbb{C}^n . The lower bound follows quickly from Cauchy Schwarz,

$$r(A) = \sup_{x \in \mathbb{C}^n \setminus \{0\}} \left| \frac{\langle x, Ax \rangle}{\langle x, x \rangle} \right| \leq \sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{\|Ax\|_2 \|x\|_2}{\|x\|_2^2} = \sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{\|Ax\|_2}{\|x\|_2} = \|A\|.$$

Note first that $|Q_A(x)| \le r(A) ||x||_2^2$. Therefore if $x \in \mathbb{C}^n$ from (1) and the triangle inequality we have

$$\begin{split} |\langle Ax, y \rangle| &\leq \left| Q_{A} \left(\frac{x+y}{2} \right) \right| + \left| Q_{A} \left(\frac{x-y}{2} \right) \right| + \left| Q_{A} \left(\frac{x+iy}{2} \right) \right| + \left| Q_{A} \left(\frac{x-iy}{2} \right) \right| \\ &\leq r(A) \left(\left\| \frac{x+y}{2} \right\|_{2}^{2} + \left\| \frac{x-y}{2} \right\|_{2}^{2} \right) + r(A) \left(\left\| \frac{x+iy}{2} \right\|_{2}^{2} + \left\| \frac{x-iy}{2} \right\|_{2}^{2} \right) \\ &= r(A) \left(2 \left\| \frac{x}{2} \right\|_{2}^{2} + 2 \left\| \frac{y}{2} \right\|_{2}^{2} \right) + r(A) \left(2 \left\| \frac{x}{2} \right\|_{2}^{2} + 2 \left\| \frac{iy}{2} \right\|_{2}^{2} \right) \\ &= r(A) \left(2 \left\| \frac{x}{2} \right\|_{2}^{2} + 2 \left\| \frac{y}{2} \right\|_{2}^{2} \right) + r(A) \left(2 \left\| \frac{x}{2} \right\|_{2}^{2} + 2 \left\| \frac{y}{2} \right\|_{2}^{2} \right) \\ &= 2r(A) \left(2 \left\| \frac{x}{2} \right\|_{2}^{2} + 2 \left\| \frac{y}{2} \right\|_{2}^{2} \right) \\ &= 2r(A) \left(\frac{1}{2} \|x\|_{2}^{2} + \frac{1}{2} \|y\|_{2}^{2} \right) \\ &= r(A) \left(\|x\|_{2}^{2} + \|y\|_{2}^{2} \right) \end{split}$$

$$(*)$$

Using Cauchy Schwarz we can reformulate the matrix norm as

$$||A|| = \sup_{\|x\|_2 = \|y\|_2 = 1} |\langle Ax, y \rangle|.$$

By taking this supremum of the extreme sides in the previous derivation, we have

$$||A|| = \sup_{\|x\|_2 = \|y\|_2 = 1} |\langle Ax, y \rangle| \le \sup_{\|x\|_2 = \|y\|_2 = 1} r(A) \Big(||x||_2^2 + ||y||_2^2 \Big) = r(A)(1^2 + 1^2) = 2r(A).$$

Hence $||A|| \leq 2r(A)$.

Problem 3

Example 0.1 (||A|| = r(A)). Note that for the identity matrix I that

$$\frac{Q_I(x)}{x^*x} = \frac{x^*Ix}{x^*x} = \frac{x^*x}{x^*x} = 1$$

when $x \neq 0$. Therefore $W(I) = \{1\}$ and hence r(I) = 1. We also have

$$\frac{\|Ix\|_2}{\|x\|_2} = \frac{\|x\|_2}{\|x\|_2} = 1$$

when $x \neq 0$. Therefore ||I|| = 1 as well meaning ||I|| = r(I).

Example 0.2 (||A|| = 2r(A)). Consider the matrix

$$A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}.$$

Take $x \in \mathbb{C}^2 \neq 0$ with components x_1 and x_2 . We have

$$\left| \frac{Q_A(x)}{x^* x} \right| = \left| \frac{x^* A x}{x^* x} \right| = \left| \frac{\left(\overline{x_1} - \overline{x_2}\right) \left(\frac{2x_1}{0} \right)}{|x_1|^2 + |x_2|^2} \right| = \left| \frac{2x_1 \overline{x_2}}{|x_1|^2 + |x_2|^2} \right| = \frac{2|x_1||x_2|}{|x_1|^2 + |x_2|^2}.$$

Note that

$$0 \le (|x_1| - |x_2|)^2 = |x_1|^2 - 2|x_1||x_2| + |x_2|^2 \implies 0 \le \frac{2|x_1||x_2|}{|x_1|^2 + |x_2|^2} \le 1.$$

The upper bound is achieved with x = 1, hence r(A) = 1. Consider ||A||. Note that

$$||A|| = \left(\sup_{x \in \mathbb{C}^2 \setminus \{0\}} \frac{||Ax||_2^2}{||x||_2^2}\right)^{\frac{1}{2}}$$

by the monotonicity of the square root. We then have

$$\frac{\|Ax\|_{2}^{2}}{\|x\|_{2}^{2}} = \frac{\left\| \begin{pmatrix} 2x_{2} \\ 0 \end{pmatrix} \right\|_{2}}{|x_{1}|^{2} + |x_{2}|^{2}} = \frac{4|x_{2}|^{2}}{|x_{1}|^{2} + |x_{2}|^{2}}.$$

Note that $|x_2|^2 \le |x_2|^2 + |x_1|^2$ meaning

$$\frac{|x_2|^2}{|x_1|^2 + |x_2|^2} \le 1 \implies \frac{4|x_2|^2}{|x_1|^2 + |x_2|^2} \le 4.$$

This upper bound is achieved with $x_1 = 0$ and $x_2 = 1$ hence $||A|| = \sqrt{4} = 2$. Therefore ||A|| = 2r(A).

Problem 4

Proof. Consider the characteristic polynomial $p_N(t)$. Since N is purely upper triangular, we have $p_N(t) = \det(N - tI) = (-1)^n t^n$. By the Cayley-Hamilton theorem, we have that $\mathbf{0} = p_N(N) = (-1)^n N^n$ which means $N^n = \mathbf{0}$. Therefore N is nilpotent.