

Introduction to NL2SQL

Zecheng Zhan 2019/09/08

What is NL2SQL

Semantic Parsing: NL2SQL

• 输入: [自然语言, 要查询的schema]

• 输出: SQL语句

Table

Player	No.	Nationality	Position	Years in Toronto	School/Club Team
Antonio Lang	21	United States	Guard-Forward	1999-2000	Duke
Voshon Lenard	2	United States	Guard	2002-03	Minnesota
Martin Lewis	32, 44	United States	Guard-Forward	1996-97	Butler CC (KS)
Brad Lohaus	33	United States	Forward-Center	1996	Iowa
Art Long	42	United States	Forward-Center	2002-03	Cincinnati

Question:

Who is the player that wears number 42?

SQL:

SELECT player WHERE no. = 42

Result:

Art Long

Figure 1: An example of the WikiSQL task.

How to NL2SQL

Implication: NL2SQL

- Sketch-Based
 - SQLNet
 - TypeSQL
 - IncSQL
 - SQLova
- Generated-Based
 - Seq2SQL
 - SyntaxSQLNet
 - Coares2Fine
 - IRNet

How to NL2SQL: Sketch-Based

Implication: NL2SQL:Sketch-Based

- Sketch-Based
 - SQLNet
 - TypeSQL
 - IncSQL
 - SQLova

Figure 2: Sketch syntax and the dependency in a sketch

$$R\left(q\left(y\right),q_{g}\right)=\begin{cases} -2, & \text{if } q\left(y\right) \text{ is not a valid SQL query} \\ -1, & \text{if } q\left(y\right) \text{ is a valid SQL query and executes to an incorrect result} \\ +1, & \text{if } q\left(y\right) \text{ is a valid SQL query and executes to the correct result} \end{cases}$$

How to NL2SQL: Spider DateSet

Yale Semantic Parsing and Text-to-SQL Challenge

- Complex SQL queries
 - Different SQL Components
 - GroupBy;OrderBy;Limit;Having
 - Nested Query (Sub-query)
- Cross Domain Databases
 - Multi-Table

Annotators create:

Complex
question
What are the name and budget of the departments
with average instructor salary greater than the
overall average?

Complex
SQL
SELECT T2.name, T2.budget
FROM instructor as T1 JOIN department as
T2 ON T1.department_id = T2.id
GROUP BY T1.department_id
HAVING avg(T1.salary) >
(SELECT avg(salary) FROM instructor)

How to NL2SQL: Generated-Based

Implication: NL2SQL:Generated-Based

- 符合SQL语法规范
 - Vanilla Seq2Seq [X]
 - Seq2Tree (Search Constrained Seq2Seq)
- 如何处理 Cross-domain
 - Schema Linking

How to NL2SQL: Generated-Based

Implication: NL2SQL:Generated-Based

- 符合SQL语法规范
 - Vanilla Seq2Seq [X]
 - Seq2Tree (Search Constrained Seq2Seq)

- 如何处理 Cross-domain
 - Schema Linking

NL: Find the names of all the customers and staff members.

SQL: SELECT customer_details FROM customers UNION SELECT staff details FROM staff

How to NL2SQL: Generated-Based

Implication: NL2SQL:Generated-Based

Figure 4: An overview of the neural model to synthesize SemQL queries. Basically, IRNet is constituted by an NL encoder, a schema encoder and a decoder. As shown in the figure, the column 'book title' is selected from the schema, while the second column 'year' is selected from the memory.

References

- 1. A Syntactic Neural Model for General-Purpose Code Generation
- 2. Towards Complex Text-to-SQL in Cross-Domain Database with Intermediate Representation
- 3. SEQ2SQL: GENERATING STRUCTURED QUERIES FROM NATURAL LANGUAGE USING REINFORCEMENT LEARNING
- 4. SQLNet: GENERATING STRUCTURED QUERIES FROM NATURAL LANGUAGE WITHOUT REINFORCEMENT LEARNING
- 5. TypeSQL: Knowledge-based Type-Aware Neural Text-to-SQL Generation
- 6. TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic Parsing and Code Generation
- 7. Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task
- 8. Representing Schema Structure with Graph Neural Networks for Text-to-SQL Parsing
- 9. SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-DomainText-to-SQL Task
- 10. Global Reasoning over Database Structures for Text-to-SQL Parsing

Thanks