10/538068 PCT/JP2004/007159

# 日本国特許庁 JAPAN PATENT OFFICE

19.05.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 6月 5日

出 願 番 号 Application Number:

特願2003-161052

[ST. 10/C]:

[JP2003-161052]

REC'D 0 8 JUL 2004

出 願 人 Applicant(s):

トヨタ自動車株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 6月21日



今井康

【書類名】 特許願

【整理番号】 1030560

【提出日】 平成15年 6月 5日

【あて先】 特許庁長官殿

【国際特許分類】 H02P 7/63

B60L 7/14

B60L 9/18

B60L 11/18

H02J 7/00

【発明者】

【住所又は居所】 愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【氏名】 中山 寛

【特許出願人】

【識別番号】 000003207

【住所又は居所】 愛知県豊田市トヨタ町1番地

【氏名又は名称】 トヨタ自動車株式会社

【代理人】

【識別番号】 100064746

【弁理士】

【氏名又は名称】 深見 久郎

【選任した代理人】

【識別番号】 100085132

【弁理士】

【氏名又は名称】 森田 俊雄

【選任した代理人】

【識別番号】 100112715

【弁理士】

【氏名又は名称】 松山 隆夫

ページ:

2/E

【選任した代理人】

【識別番号】

100112852

【弁理士】

【氏名又は名称】 武藤 正

【手数料の表示】

【予納台帳番号】

008268

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0209333

【プルーフの要否】

要



【発明の名称】 モータ駆動装置、それを搭載した自動車および電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体

## 【特許請求の範囲】

【請求項1】 モータを駆動するインバータと、

スイッチング素子およびリアクトルを含み、前記スイッチング素子のスイッチング動作により電源と前記インバータとの間で直流電圧を変換する電圧変換器と、

前記リアクトルに流れるリアクトル電流が零点と交差するとき、前記スイッチング動作を停止するように前記電圧変換器を制御する制御回路とを備えるモータ 駆動装置。

【請求項2】 前記制御回路は、前記電源に入出力する電源電流と、前記リアクトル電流の最大値および最小値とに基づいて前記スイッチング動作を停止するか否かを判定し、その判定結果に応じて前記スイッチング動作による昇圧動作または前記スイッチング動作による降圧動作を停止するように前記電圧変換器を制御する、請求項1に記載のモータ駆動装置。

【請求項3】 前記電源電流を検出する第1の電流センサーと、

前記リアクトル電流を検出する第2の電流センサーとをさらに備え、

前記制御回路は、前記第2の電流センサーにより検出されたリアクトル電流に基づいて前記リアクトル電流の最大値および最小値を検出し、その検出したリアクトル電流の最大値および最小値と前記第1の電流センサーより検出された電源電流とに基づいて前記スイッチング動作を停止するか否かを判定する、請求項2に記載のモータ駆動装置。

【請求項4】 前記制御回路は、前記リアクトル電流の最大値の極性が前記リアクトル電流の最小値の極性と異なり、かつ、前記電源電流が前記電源から前記電圧変換器へ流れるとき、前記昇圧動作を停止するように前記電圧変換器を制御する、請求項2または請求項3に記載のモータ駆動装置。

【請求項5】 前記制御回路は、前記リアクトル電流の最大値の極性が前記



【請求項6】 前記制御回路は、前記リアクトル電流が前記零点と交差しないとき、前記スイッチング動作による昇圧動作または前記スイッチング動作による降圧動作を行なうように前記電圧変換器をさらに制御する、請求項1に記載のモータ駆動装置。

【請求項7】 前記制御回路は、前記モータの動作モードと前記リアクトル電流の最大値および最小値とに基づいて前記スイッチング動作を停止するか否かを判定し、その判定結果に応じて前記スイッチング動作による昇圧動作または前記スイッチング動作による降圧動作を停止するように前記電圧変換器を制御する、請求項1に記載のモータ駆動装置。

【請求項8】 前記制御回路は、前記モータの動作モードと前記モータが要求パワーを出力するために必要な電源電流とに基づいて前記スイッチング動作を停止するか否かを判定し、その判定結果に応じて前記スイッチング動作による昇圧動作または前記スイッチング動作による降圧動作を停止するように前記電圧変換器を制御する、請求項1に記載のモータ駆動装置。

【請求項9】 前記制御回路は、前記モータの動作モードと前記モータの要求トルクとに基づいて前記スイッチング動作を停止するか否かを判定し、その判定結果に応じて前記スイッチング動作による昇圧動作または前記スイッチング動作による降圧動作を停止するように前記電圧変換器を制御する、請求項1に記載のモータ駆動装置。

【請求項10】 前記制御回路は、当該モータ駆動装置が搭載された自動車のアクセル開度と前記モータの動作モードと前記モータの要求トルクとに基づいて前記スイッチング動作を停止するか否かを判定し、その判定結果に応じて前記スイッチング動作による昇圧動作または前記スイッチング動作による降圧動作を停止するように前記電圧変換器を制御する、請求項1に記載のモータ駆動装置。

【請求項11】 車輪と、

前記車輪を駆動するモータと、



【請求項12】 電源と、モータを駆動するインバータとの間における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体であって、

前記電圧変換を行なう電圧変換器に含まれるリアクトルに流れるリアクトル電 流が零点と交差するか否かを判定する第1のステップと、

前記リアクトル電流が前記零点と交差するとき、前記電圧変換器に含まれるスイッチング素子のスイッチング動作を停止するように前記電圧変換器を制御する第2のステップとをコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。

## 【発明の詳細な説明】

## [0001]

## 【発明の属する技術分野】

この発明は、モータを駆動するモータ駆動装置に関し、特に、スイッチングノイズを低減可能なモータ駆動装置、それを搭載した自動車およびスイッチングノイズを低減可能な電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体に関するものである。

# [0002]

# 【従来の技術】

最近、環境に配慮した自動車としてハイブリッド自動車(HybridVehicle)および電気自動車(ElectricVehicle)が大きな注目を集めている。そして、ハイブリッド自動車は、一部、実用化されている。

## [0003]

このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換した交流電圧によりモータを回転することによって動力源を得るものである。



また、電気自動車は、直流電源とインバータとインバータによって駆動される モータとを動力源とする自動車である。

### [0005]

このようなハイブリッド自動車または電気自動車においては、直流電源からの 直流電圧を昇圧コンバータによって昇圧し、その昇圧した直流電圧がモータを駆 動するインバータに供給されることも検討されている(特開平8-214592 号公報)。

## [0006]

すなわち、ハイブリッド自動車または電気自動車は、図38に示すモータ駆動装置を搭載している。図38を参照して、モータ駆動装置400は、直流電源Bと、システムリレーSR1,SR2と、コンデンサC1,C2と、双方向コンバータ310と、電圧センサー320と、インバータ330とを備える。

## [0007]

直流電源Bは、直流電圧を出力する。システムリレーSR1, SR2は、制御装置(図示せず)によってオンされると、直流電源Bからの直流電圧をコンデンサC1に供給する。コンデンサC1は、直流電源BからシステムリレーSR1, SR2を介して供給された直流電圧を平滑化し、その平滑化した直流電圧を双方向コンバータ310へ供給する。

# [0008]

双方向コンバータ310は、リアクトルL1と、NPNトランジスタTr1, Tr2と、ダイオードD1, D2とを含む。リアクトルL1の一方端は直流電源 Bの電源ラインに接続され、他方端はNPNトランジスタTr1とNPNトランジスタTr2との中間点、すなわち、NPNトランジスタTr1のエミッタとNPNトランジスタTr2のコレクタとの間に接続される。NPNトランジスタTr1, Tr2は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタTr1のコレクタは電源ラインに接続され、NPNトランジスタTr2のエミッタはアースラインに接続される。また、各NPNトランジスタTr1, Tr2のコレクターエミッタ間には、エミッタ側からコレクタ側へ



電流を流すダイオードD1, D2がそれぞれ配置されている。

## [0009]

双方向コンバータ310は、制御装置(図示せず)によってNPNトランジスタTr1, Tr2がオン/オフされ、コンデンサC1から供給された直流電圧を昇圧して出力電圧をコンデンサC2に供給する。また、双方向コンバータ310は、モータ駆動装置400が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1によって発電され、インバータ330によって変換された直流電圧を降圧して直流電源Bへ供給する。

## [0010]

コンデンサC2は、双方向コンバータ310から供給された直流電圧を平滑化し、その平滑化した直流電圧をインバータ330へ供給する。電圧センサー320は、コンデンサC2の両側の電圧、すなわち、双方向コンバータ310の出力電圧Vmを検出する。

## [0011]

インバータ330は、コンデンサC2から直流電圧が供給されると制御装置(図示せず)からの制御に基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値によって指定されたトルクを発生するように駆動される。

## [0012]

また、モータ駆動装置 4 0 0 が搭載されたハイブリッド自動車または電気自動車の回生制動時、インバータ 3 3 0 は、交流モータM 1 が発電した交流電圧を制御装置からの制御に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC 2 を介して双方向コンバータ 3 1 0 へ供給する。

# [0013]

このように、モータ駆動装置 400 においては、交流モータM 1 の駆動時、直流電源 B からの直流電圧は、昇圧されてインバータ 330 に供給され、交流モータM 1 の回生時、交流モータM 1 によって発電され、かつ、インバータ 330 によって変換された直流電圧は、降圧されて直流電源 B に供給される。

# [0014]



特開平8-214592号公報

[0015]

【特許文献2】

特開平11-235022号公報

[0016]

【特許文献3】

特開2002-369505号公報

[0017]

【特許文献4】

特開平4-145808号公報

[0018]

【発明が解決しようとする課題】

しかし、従来のモータ駆動装置は、交流モータの負荷の大きさに基づいて、昇圧制御および降圧制御の許可または禁止を判断するので、リアクトル電流の極性が反転する領域においても、昇圧制御または降圧制御が行なわれる。そのため、NPNトランジスタTr1,Tr2によるスイッチングノイズおよびスイッチング損失が増大するという問題がある。

# [0019]

図39および図40を参照して、従来の問題を詳細に説明する。図39は、リアクトル電流の極性が反転しない場合のリアクトル電流IL、NPNトランジスタTr1, Tr2を流れる電流ITr1、ITr2およびダイオードD1, D2を流れる電流ID1, ID2のタイミングチャートである。また、図40は、リアクトル電流の極性が反転する場合のリアクトル電流IL、NPNトランジスタTr1, Tr2を流れる電流ITr1、ITr2およびダイオードD1, D2を流れる電流ID1, ID2のタイミングチャートである。

# [0020]

図39を参照して、リアクトル電流の極性が反転しない場合としてリアクトル電流ILが正である場合、すなわち、双方向コンバータ310が昇圧動作を行な



## [0021]

タイミング t 1からタイミング t 3までの期間、NPNトランジスタTr 2がオンされ、直流電源B、リアクトルL1およびNPNトランジスタTr 2からなる回路を直流電源BからNPNトランジスタTr 2の方向(この方向を正の方向とする)へ直流電流が流れ、リアクトルL1に電力が蓄積される。すなわち、この期間において、NPNトランジスタTr 2を流れる電流ITr 2は増加し、リアクトル電流ILも増加する。そして、タイミング t 3において、NPNトランジスタTr 2がオフされ、NPNトランジスタTr 1がオンされる。そうすると、電流ITr 2は、0Aに減少する。そして、タイミング t 3からタイミング t 2までの期間、リアクトルL1に蓄積された電力に応じて、直流電流がリアクトルL1からダイオードD1を介してコンデンサC2側に流れる。

## [0022]

この場合、ダイオードD1を流れる電流 ID1は、タイミング t2に近づくに従って、徐々に減少する。したがって、リアクトル電流 ILもタイミング t2に近づくに従って減少する。

# [0023]

# [0024]

このような動作を繰返して、双方向コンバータ310は、昇圧動作を行なう。 そして、直流電源Bから出力される電源電流Ibは、リアクトル電流ILを平均 した電流となる。

# [0025]

図40を参照して、リアクトル電流の極性が反転する場合、タイミングt1からタイミングt4までの間、NPNトランジスタTr2がオンされ、タイミング

## [0026]

この場合、ダイオードD1を流れる電流 ID1は、タイミング t5 に近づくに従って、徐々に減少する。したがって、リアクトル電流 IL6 タイミング t5 に近づくに従って減少する。

## [0027]

## [0028]

その後、タイミング t 6において、NPNトランジスタTr1がオフされ、NPNトランジスタTr2がオンされると、電流ITr1が0Aに減少し(負の方向に流れる電流が減少するという意味)、直流電源B、ダイオードD2およびリアクトルL1からなる回路を直流電流が負の方向に流れる。そして、ダイオードD2を流れる電流ID2は、タイミング t 2に近づくに従って減少し、リアクトル電流ILも減少する(NPNトランジスタTr2側から直流電源Bの方向へ流れる電流が減少するという意味)。

## [0029]

その結果、タイミング t 1 からタイミング t 2 までの 1 周期の期間において、 N P N トランジスタ T r 1, T r 2 は、タイミング t 4 およびタイミング t 6 で スイッチングされる。

### [0030]

このような動作を繰返して、双方向コンバータ310は、昇圧動作および降圧 動作を行なう。そして、直流電源Bに入出力される電源電流Ibは、リアクトル 電流ILを平均した電流であり、この場合、0Aである。

## [0031]

上述したように、NPNトランジスタTr1, Tr2は、リアクトル電流ILの極性が反転しない場合、1周期の制御期間において1回だけスイッチングされ、リアクトル電流ILの極性が反転する場合、1周期の制御期間において2回スイッチングされる。

## [0032]

つまり、モータの負荷が小さくなり、リアクトル電流の極性が反転する領域においても、通常の昇圧動作および降圧動作を行なうと、双方向コンバータを構成するNPNトランジスタのスイッチング回数が増加する。そして、NPNトランジスタは、スイッチング動作によりスイッチングノイズを発生し、スイッチング回数の増加によりスイッチングノイズが増加する。また、スイッチング回数の増加によりスイッチング損失も増加する。

## [0033]

そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、スイッチングノイズを低減可能なモータ駆動装置を提供することである。

## [0034]

また、この発明の別の目的は、スイッチングノイズを低減可能なモータ駆動装置を搭載した自動車を提供することである。

### [0035]

さらに、この発明の別の目的は、スイッチングノイズを低減可能な電圧変換の



## [0036]

## 【課題を解決するための手段および発明の効果】

この発明によれば、モータ駆動装置は、インバータと、電圧変換器と、制御回路とを備える。インバータは、モータを駆動する。電圧変換器は、スイッチング素子およびリアクトルを含み、スイッチング素子のスイッチング動作により電源とインバータとの間で直流電圧を変換する。制御回路は、リアクトルに流れるリアクトル電流が零点と交差するとき、スイッチング動作を停止するように電圧変換器を制御する。

## [0037]

好ましくは、制御回路は、電源に入出力する電源電流と、リアクトル電流の最大値および最小値とに基づいてスイッチング動作を停止するか否かを判定し、その判定結果に応じてスイッチング動作による昇圧動作またはスイッチング動作による降圧動作を停止するように電圧変換器を制御する。

## [0038]

好ましくは、モータ駆動装置は、第1および第2の電流センサーをさらに備える。第1の電流センサーは、電源電流を検出する。第2の電流センサーは、リアクトル電流を検出する。そして、制御回路は、第2の電流センサーにより検出されたリアクトル電流に基づいてリアクトル電流の最大値および最小値を検出し、その検出したリアクトル電流の最大値および最小値と第1の電流センサーより検出された電源電流とに基づいてスイッチング動作を停止するか否かを判定する。

## [0039]

好ましくは、制御回路は、リアクトル電流の最大値の極性がリアクトル電流の最小値の極性と異なり、かつ、電源電流が電源から電圧変換器へ流れるとき、スイッチング動作による昇圧動作を停止するように電圧変換器を制御する。

## [0040]

好ましくは、制御回路は、リアクトル電流の最大値の極性がリアクトル電流の 最小値の極性と異なり、かつ、電源電流が電圧変換器から電源へ流れるとき、ス



## [0041]

好ましくは、制御回路は、リアクトル電流が零点と交差しないとき、スイッチング動作による昇圧動作またはスイッチング動作による降圧動作を行なうように 電圧変換器をさらに制御する。

## [0042]

好ましくは、制御回路は、モータの動作モードとリアクトル電流の最大値および最小値とに基づいてスイッチング動作を停止するか否かを判定し、その判定結果に応じてスイッチング動作による昇圧動作またはスイッチング動作による降圧動作を停止するように電圧変換器を制御する。

## [0043]

好ましくは、制御回路は、モータの動作モードとモータが要求パワーを出力するために必要な電源電流とに基づいてスイッチング動作を停止するか否かを判定し、その判定結果に応じてスイッチング動作による昇圧動作またはスイッチング動作による降圧動作を停止するように電圧変換器を制御する。

## [0044]

好ましくは、制御回路は、モータの動作モードとモータの要求トルクとに基づいてスイッチング動作を停止するか否かを判定し、その判定結果に応じてスイッチング動作による昇圧動作またはスイッチング動作による降圧動作を停止するように電圧変換器を制御する。

# [0045]

好ましくは、制御回路は、当該モータ駆動装置が搭載された自動車のアクセル 開度とモータの動作モードとモータの要求トルクとに基づいてスイッチング動作 を停止するか否かを判定し、その判定結果に応じてスイッチング動作による昇圧 動作またはスイッチング動作による降圧動作を停止するように電圧変換器を制御 する。

# [0046]

また、この発明によれば、自動車は、車輪と、車輪を駆動するモータと、モータを駆動する請求項1から請求項10のいずれか1項に記載のモータ駆動装置と



## [0047]

さらに、この発明によれば、電源と、モータを駆動するインバータとの間における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体は、電圧変換を行なう電圧変換器に含まれるリアクトルに流れるリアクトル電流が零点と交差するか否かを判定する第1のステップと、リアクトル電流が零点と交差するとき、電圧変換器に含まれるスイッチング素子のスイッチング動作を停止するように電圧変換器を制御する第2のステップとをコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体である。

### [0048]

この発明においては、リアクトル電流が零点と交差するとき、電圧変換器に含まれるスイッチング素子のスイッチング動作が停止される。

### [0049]

したがって、この発明によれば、スイッチング素子のスイッチング回数を低減できる。その結果、スイッチングノイズを低減できる。また、スイッチング損失を低減できる。

#### [0050]

#### 【発明の実施の形態】

本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。

#### [0051]

#### [実施の形態1]

図1は、実施の形態1によるモータ駆動装置の概略ブロック図である。図1を参照して、実施の形態1によるモータ駆動装置100は、バッテリBと、電圧センサー10,13と、電流センサー11,18,24と、コンデンサC1,C2と、昇圧コンバータ12と、インバータ14と、制御装置30とを備える。

### [0052]

交流モータM1は、ハイブリッド自動車または電気自動車の駆動輪を駆動する



## [0053]

昇圧コンバータ12は、リアクトルL1と、NPNトランジスタQ1,Q2と、ダイオードD1,D2とを含む。リアクトルL1の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタQ1とNPNトランジスタQ2との中間点、すなわち、NPNトランジスタQ1のエミッタとNPNトランジスタQ2のコレクタとの間に接続される。NPNトランジスタQ1,Q2は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタQ1のコレクタは電源ラインに接続され、NPNトランジスタQ2のエミッタはアースラインに接続される。また、各NPNトランジスタQ1,Q2のコレクターエミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2がそれぞれ配置されている。

## [0054]

インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とから成る。U相アーム15、V相アーム16、およびW相アーム17は、電源ラインとアースラインとの間に並列に設けられる。

# [0055]

U相アーム15は、直列接続されたNPNトランジスタQ3,Q4から成り、V相アーム16は、直列接続されたNPNトランジスタQ5,Q6から成り、W相アーム17は、直列接続されたNPNトランジスタQ7,Q8から成る。また、各NPNトランジスタQ3~Q8のコレクターエミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3~D8がそれぞれ接続されている。

# [0056]

各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。すなわち、交流モータM1は、3相の永久磁石モータであり、U, V, W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がNPNトランジスタQ3, Q4の中間点に、V相コイルの他端がNPNトランジス



## [0057]

直流電源Bは、ニッケル水素またはリチウムイオン等の二次電池から成る。電 Eセンサー10は、直流電源Bから出力される電圧Vbを検出し、その検出した 電圧Vbを制御装置30へ出力する。

## [0058]

システムリレーSR1, SR2は、制御装置30からの信号SEによりオン/オフされる。より具体的には、システムリレーSR1, SR2は、制御装置30からのH(論理ハイ)レベルの信号SEによりオンされ、制御装置30からのL(論理ロー)レベルの信号SEによりオフされる。

### [0059]

電流センサー11は、直流電源Bに入出力する電源電流Ibを検出し、その検出した電源電流Ibを制御装置30へ出力する。

## [0060]

コンデンサC1は、直流電源Bから供給された直流電圧を平滑化し、その平滑化した直流電圧を昇圧コンバータ12へ供給する。

## [0061]

昇圧コンバータ12は、コンデンサC1から供給された直流電圧を昇圧してコンデンサC2に供給する。より具体的には、昇圧コンバータ12は、制御装置30から信号PWMUを受けると、信号PWMUによってNPNトランジスタQ2がオンされた期間に応じて直流電圧を昇圧してコンデンサC2に供給する。

#### [0062]

また、昇圧コンバータ12は、制御装置30から信号PWMDを受けると、コンデンサC2を介してインバータ14から供給された直流電圧を降圧して直流電源Bへ供給する。

#### [0063]

さらに、昇圧コンバータ12は、制御装置30からの信号PWMSに応じて、 スイッチング動作による昇圧動作または降圧動作を停止する。



コンデンサC2は、昇圧コンバータ12から出力された直流電圧を平滑化し、 その平滑化した直流電圧をインバータ14へ供給する。

## [0065]

電圧センサー13は、コンデンサC2の両端の電圧Vmを検出し、その検出した電圧Vmを制御装置30へ出力する。

## [0066]

インバータ14は、コンデンサC2から直流電圧が供給されると制御装置 30からの信号PWMIに基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを発生するように駆動される。

## [0.067]

また、インバータ14は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置30からの信号PWMCに基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。

# [0068]

なお、ここで言う回生制動とは、ハイブリッド自動車または電気自動車を運転 するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や 、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすること で回生発電をさせながら車両を減速(または加速の中止)させることを含む。

# [0069]

電流センサー18は、リアクトルL1に流れるリアクトル電流ILを検出し、 その検出したリアクトル電流ILを制御装置30へ出力する。

## [0070]

電流センサー24は、交流モータM1に流れるモータ電流MCRTを検出し、 その検出したモータ電流MCRTを制御装置30へ出力する。

## [0071]

制御装置30は、外部に設けられたECU(Electrical Cont



## [0072]

また、制御装置30は、インバータ14が交流モータM1を駆動するとき、電圧Vb, Vm、トルク指令値TRおよびモータ回転数MRNに基づいて、後述する方法により昇圧コンバータ12のNPNトランジスタQ1, Q2をスイッチング制御するための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。

## [0073]

## [0074]

さらに、制御装置 30 は、回生制動時、電圧 V b, V m、トルク指令値 T R およびモータ回転数MRNに基づいて、インバータ 14 から供給された直流電圧を降圧するための信号 P WMDを生成し、その生成した信号 P WMDを昇圧コンバータ 12 へ出力する。これにより、交流モータ M 1 が発電した交流電圧は、直流電圧に変換され、降圧されて直流電源 B に供給される。

## [0075]

さらに、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILとに基づいて、後述する方法によって、リアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するとき、NPNトランジスタQ1,Q2のスイッチング動作を停止するための信号PWMSを生成し、その生成した信号PWMSを昇圧コンバータ12へ出力する。

### [0076]

図2は、図1に示す制御装置30のブロック図である。図2を参照して、制御装置30は、インバータ制御回路301と、コンバータ制御回路302とを含む。

### [0077]

インバータ制御回路301は、トルク指令値TR、モータ電流MCRTおよび電圧Vmに基づいて、交流モータM1の駆動時、後述する方法によりインバータ14のNPNトランジスタQ3~Q8をオン/オフするための信号PWMIを生成し、その生成した信号PWMIをインバータ14へ出力する。

### [0078]

また、インバータ制御回路301は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、トルク指令値TR、モータ電流MCRTおよび電圧Vmに基づいて、交流モータM1が発電した交流電圧を直流電圧に変換するための信号PWMCを生成してインバータ14へ出力する。

#### [0079]

コンバータ制御回路302は、電源電流Ibおよびリアクトル電流ILに基づいて、後述する方法によって、リアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するとき、NPNトランジスタQ1,Q2のスイッチング動作を停止するための信号PWMSを生成し、その生成した信号PWMSを昇圧コンバータ12へ出力する。そして、コンバータ制御回路302は、リアクトル電流ILが零点と交差しないとき、次に述べる信号PWMUまたは信号PWMDを生成し、昇圧動作または降圧動作を行なうように昇圧コンバ



## [0080]

すなわち、コンバータ制御回路 302 は、トルク指令値 TR、電圧 Vb, Vm、およびモータ回転数 MRN に基づいて、交流モータ M1 の駆動時、後述する方法により昇圧コンバータ 12 の NPN トランジスタ Q1, Q2 をオン/オフするための信号 PWMU を生成し、その生成した信号 PWMU を昇圧コンバータ 12 へ出力する。

## [0081]

また、コンバータ制御回路 302 は、モータ駆動装置 100 が搭載されたハイブリッド自動車または電気自動車の回生制動時、トルク指令値 TR、電圧 Vb, Vm、およびモータ回転数 MRN に基づいてインバータ 14 からの直流電圧を降圧するための信号 PWMD を生成し、その生成した信号 PWMD を昇圧コンバータ 12 へ出力する。

## [0082]

このように、昇圧コンバータ12は、直流電圧を降圧するための信号PWMDにより電圧を降下させることもできるので、双方向コンバータの機能を有するものである。

## [0083]

図3は、図2に示すインバータ制御回路301のブロック図である。図3を参照して、インバータ制御回路301は、モータ制御用相電圧演算部41と、インバータ用PWM信号変換部42とを含む。

## [0084]

モータ制御用相電圧演算部41は、昇圧コンバータ12の出力電圧Vm、すなわち、インバータ14への入力電圧を電圧センサー13から受け、交流モータM1の各相に流れるモータ電流MCRTを電流センサー24から受け、トルク指令値TRを外部ECUから受ける。そして、モータ制御用相電圧演算部41は、トルク指令値TR、モータ電流MCRTおよび電圧Vmに基づいて、交流モータM1の各相のコイルに印加する電圧を計算し、その計算した結果をインバータ用PWM信号変換部42へ出力する。



インバータ用PWM信号変換部 42 は、モータ制御用相電圧演算部 41 から受けた計算結果に基づいて、実際にインバータ 14 の各 N P N トランジスタ Q3 ~ Q8 をオン/オフする信号 P W M I または信号 P W M I を生成し、その生成した信号 P W M I または信号 P W M I を I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I の I を I を I を I の I を I を I を I の I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を I を

### [0086]

これにより、インバータ14の各NPNトランジスタQ3~Q8は、スイッチング制御され、交流モータM1が指令されたトルクを出力するように、交流モータM1の各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値TRに応じたモータトルクが出力される。

### [0087]

なお、インバータ制御回路301が信号PWMIを生成するか信号PWMCを 生成するかは、トルク指令値TRとモータ回転数MRNとの関係に応じて決定される。図4は、モータのトルクとモータの回転数との関係を示す図である。図4 を参照して、トルクと回転数との関係が領域RG1またはRG2に存在するとき、 交流モータM1の動作モードは、駆動モード、すなわち、力行モードであり、 トルクと回転数との関係が領域RG3またはRG4に存在するとき、 交流モータM1の動作モードは、回生モードである。

#### [0088]

したがって、インバータ制御回路 301は、トルク指令値 TRとモータ回転数 MRNとの関係が領域 RG1または RG2 に存在するとき信号 PWMI を生成し、トルク指令値 TRとモータ回転数 MRNとの関係が領域 RG3または RG4に存在するとき信号 PWMC を生成する。

#### [0089]

図5は、図2に示すコンバータ制御回路302のプロック図である。図5を参照して、コンバータ制御回路302は、電圧指令演算部61と、コンバータ用デューティー比演算部62と、コンバータ用PWM信号変換部63と、制御部64と、ピーク検出部65とを含む。



電圧指令演算部61は、制御部64から信号OPEを受けると、外部ECUから受けたトルク指令値TRおよびモータ回転数MRNに基づいてインバータ入力電圧Vmの最適値(目標値)、すなわち、電圧指令Vdc\_comを演算し、その演算した電圧指令Vdc\_comをコンバータ用デューティー比演算部62へ出力する。

### [0091]

また、電圧指令演算部61は、制御部64から信号STPを受けると、インバータ入力電圧Vmの目標値を直流電源Bから出力される電圧Vbに設定するための電圧指令Vdc\_com\_0を演算し、その演算した電圧指令Vdc\_com\_0をコンバータ用デューティー比演算部62へ出力する。

## [0092]

コンバータ用デューティー比演算部62は、電圧センサー10から電圧Vbを受け、電圧センサー13から電圧Vm(=インバータ入力電圧)を受け、電圧指令演算部61から電圧指令Vdc\_comまたはVdc\_com\_0を受ける。そして、コンバータ用デューティー比演算部62は、電圧指令演算部61から電圧指令Vdc\_comを受けると、電圧Vbに基づいて、インバータ入力電圧Vmを電圧指令演算部61から出力される電圧指令Vdc\_comに設定するためのデューティー比DRUまたはDRDを演算し、その演算したデューティー比DRUまたはDRDを演算し、その演算したデューティー比DRUまたはDRDを演算し、その演算したデューティー比DRUまたはDRDを

## [0093]

インバータ入力電圧Vmが電圧指令Vdc\_comになるように電圧Vbを昇圧する場合、コンバータ用デューティー比演算部62は、インバータ入力電圧Vmが電圧指令Vdc\_comよりも低くなると、直流電源Bからインバータ14個へ直流電流を移動させてインバータ入力電圧Vmを電圧指令Vdc\_comに一致させるためのデューティー比DRUを演算してコンバータ用PWM信号変換部63へ出力し、インバータ入力電圧Vmが電圧指令Vdc\_comよりも高くなると、インバータ14側から直流電源B側へ直流電流を移動させてインバータ入力電圧Vmを電圧指令Vdc\_comに一致させるためのデューティー比DR



### [0094]

コンバータ用デューティー比演算部62は、電圧指令演算部61から電圧指令 Vdc\_com\_0を受け、かつ、制御部64から信号USTPを受けると、NPNトランジスタQ1,Q2のオンデューティーを0%に設定したデューティー 比DR\_0を演算し、その演算したデューティー比DR\_0をコンバータ用PW M信号変換部63へ出力する。

#### [0095]

また、コンバータ用デューティー比演算部62は、電圧指令演算部61から電 圧指令Vdc\_\_com\_\_0を受け、かつ、制御部64から信号DSTPを受ける と、NPNトランジスタQ1のオンデューティーを100%に設定し、かつ、N PNトランジスタQ2のオンデューティーを0%に設定したデューティー比DR \_100\_\_0を演算し、その演算したデューティー比DR\_\_100\_\_0をコンバータ用PWM信号変換部63へ出力する。

## [0096]

コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRUに基づいて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。

#### [0097]

また、コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRDに基づいて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMDを生成して昇圧コンバータ12へ出力する。

#### [0098]

さらに、コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DR\_0またはDR\_100\_0に基づいて昇



## [0099]

この場合、コンバータ用PWM信号変換部63は、デューティー比DR\_0に基づいて、NPNトランジスタQ1,Q2のオンデューティーを0%に設定した信号PWMS1 (信号PWMSの一種)を生成して昇圧コンバータ12のNPNトランジスタQ1,Q2へ出力する。

## [0100]

また、コンバータ用PWM信号変換部 63は、デューティー比DR\_100\_0に基づいて、NPNトランジスタQ1のオンデューティーを 100%に設定し、かつ、NPNトランジスタQ2のオンデューティーを 0%に設定した信号PWMS2(信号PWMSの一種)を生成して昇圧コンバータ 120 NPNトランジスタQ1、Q2へ出力する。

## [0101]

なお、昇圧コンバータ12の下側のNPNトランジスタQ2のオンデューティーを大きくすることによりリアクトルL1における電力蓄積が大きくなるため、より高電圧の出力を得ることができる。一方、上側のNPNトランジスタQ1のオンデューティーを大きくすることにより電源ラインの電圧が下がる。そこで、NPNトランジスタQ1,Q2のデューティー比を制御することで、電源ラインの電圧を直流電源Bの出力電圧以上の任意の電圧に制御可能である。

## [0102]

制御部64は、ピーク検出部65からのリアクトル電流ILの最大値ILmaxおよび最小値ILminに基づいて、リアクトル電流ILが零点と交差するか否かを判定する。そして、制御部64は、リアクトル電流ILが零点と交差するとき信号STPを生成し、その生成した信号STPを電圧指令演算部61へ出力する。また、制御部64は、リアクトル電流ILが零点と交差しないとき信号OPEを生成し、その生成した信号OPEを電圧指令演算部61へ出力する。

## [0103]



## [0104]

ピーク検出部65は、電流センサー18からのリアクトル電流ILに基づいて、リアクトル電流ILの最大値ILmaxおよび最小値ILminを検出し、その検出した最大値ILmaxおよび最小値ILminを制御部64へ出力する。

## [0105]

電圧指令V d c \_ c o m \_ 0 は、昇圧コンバータ12の出力電圧である電圧V mの目標電圧を直流電源Bから出力される電圧V b に設定するための指令であるので、コンバータ用デューティー比演算部62は、制御部64から信号USTPを受けると、昇圧コンバータ12の昇圧動作を停止し、昇圧コンバータ12の出力電圧V mを電圧V b に設定するためのデューティー比DR \_ 0を生成する。デューティー比DR \_ 0 は、NPNトランジスタQ1,Q2のオンデューティーを0%に設定したデューティー比であるので、NPNトランジスタQ1,Q2がオフされることにより、直流電流は、直流電源BからダイオードD1を介してコンデンサC2に供給され、昇圧コンバータ12の出力電圧V mは、電圧V b に等しくなる。したがって、コンバータ用デューティー比演算部62は、電圧指令演算部61から電圧指令Vdc \_ c o m \_ 0を受け、かつ、制御部64から信号USTPを受けたとき、デューティー比DR \_ 0を生成することにしたものである。

## [0106]

また、コンバータ用デューティー比演算部62は、電圧指令演算部61から電圧指令 V d c \_\_ c o m \_\_ 0 を受け、かつ、制御部64から信号 D S T P を受けると、昇圧コンバータ12の降圧動作を停止し、昇圧コンバータ12の出力電圧 V m を電圧 V b に設定するためのデューティー比 D R \_\_ 1 0 0 \_\_ 0 を生成する。デ

ューティー比DR\_100\_0は、NPNトランジスタQ1のオンデューティーを100%に設定し、かつ、NPNトランジスタQ2のオンデューティーを0%に設定するデューティー比であるので、NPNトランジスタQ1がオンされ、かつ、NPNトランジスタQ2がオフされることにより、直流電流は、コンデンサC2から直流電源Bへ流れ、昇圧コンバータ12の出力電圧Vmは、電圧Vbに等しくなる。したがって、コンバータ用デューティー比演算部62は、電圧指令演算部61から電圧指令Vdc\_com\_0を受け、かつ、制御部64から信号DSTPを受けたとき、デューティー比DR\_100\_0を生成することにしたものである。

#### [0107]

このように、デューティー比DR $_0$ 0を生成してNPNトランジスタQ1およびQ2をオフすることにより、NPNトランジスタQ1およびQ2のスイッチング動作による昇圧動作を停止でき、デューティー比DR $_1$ 00 $_0$ 0を生成してNPNトランジスタQ1をオンし、かつ、NPNトランジスタQ2をオフすることにより、NPNトランジスタQ1およびQ2のスイッチング動作による降圧動作を停止できる。

#### [0108]

図6は、リアクトル電流ILのタイミングチャートである。図6を参照して、リアクトル電流ILが零点と交差するか否かを判定する方法について説明する。リアクトル電流ILが曲線k1またはk2に従うとき、リアクトル電流ILは零点と交差しない。この場合、リアクトル電流ILの最大値ILmax1の極性は、リアクトル電流ILの最小値ILmin1の極性と同じであり、リアクトル電流ILの最大値ILmin1の極性と同じである。

#### [0109]

また、リアクトル電流ILが曲線k3またはk4に従うとき、リアクトル電流ILは零点と交差する。この場合、リアクトル電流ILの最大値ILmax3の極性は、リアクトル電流ILの最小値ILmin3の極性と異なり、リアクトル電流ILの最大値ILmi



## [0110]

したがって、制御部64は、ピーク検出部65から受けたリアクトル電流ILの最大値ILmaxの極性がピーク検出部65から受けたリアクトル電流ILの最小値ILminの極性と同じであるか否かを判定し、最大値ILmaxの極性が最小値ILminの極性と同じであるとき、リアクトル電流ILは零点と交差しないと判定し、最大値ILmaxの極性が最小値ILminの極性と異なるとき、リアクトル電流ILは零点と交差すると判定する。そして、制御部64は、リアクトル電流ILが零点と交差すると判定したとき信号STPを生成して電圧指令演算部61へ出力する。

## [0111]

制御部64は、最大値ILmaxの極性が最小値ILminの極性と同じであると判定したとき、続いて、最大値ILmaxまたは最小値ILminが正か否かを判定する。そして、制御部64は、最大値ILmaxまたは最小値ILminが正である場合、昇圧コンバータ12は昇圧動作中であると判定し、信号OPEを生成して電圧指令演算部61へ出力する。また、制御部64は、最大値ILmaxまたは最小値ILminが負である場合、昇圧コンバータ12は降圧動作中であると判定し、信号OPEを生成して電圧指令演算部61へ出力する。

### [0112]

なお、最大値ILmaxまたは最小値ILminが正である場合、電源電流Ib1は正であり、最大値ILmaxまたは最小値ILminが負である場合、電源電流Ib2は負であるので、制御部64は、最大値ILmaxまたは最小値ILminが正であるか否かの判定に代えて、電流センサー11からの電源電流Ibが正であるか否かを判定してもよい。

### [0113]

また、リアクトル電流 I L または電源電流 I b が正であるとは、リアクトル電流 I L または電源電流 I b が直流電源 B から昇圧コンバータ 1 2 の方向へ流れていることを意味し、リアクトル電流 I L または電源電流 I b が負であるとは、リアクトル電流 I L または電源電流 I b が昇圧コンバータ 1 2 から直流電源 B の方



## [0114]

制御部64は、最大値ILmaxの極性が最小値ILminの極性と異なると判定したとき、すなわち、リアクトル電流ILが零点と交差すると判定したとき、続いて、電流センサー11からの電源電流Ibが正か否かを判定する。そして、制御部64は、電源電流Ibが正であるとき、すなわち、電源電流Ib=Ib3であるとき、昇圧コンバータ12が昇圧動作中であると判定し、信号USTPを生成してコンバータ用デューティー比演算部62へ出力する。電源電流Ibが正であるとき、電源電流Ibは、直流電源Bから昇圧コンバータ12の方向へ流れているので、制御部64は、昇圧コンバータ12が昇圧動作を行なっていると判定することにしたものである。

## [0115]

また、制御部64は、電源電流 I b が負であるとき、すなわち、電源電流 I b = I b 4 であるとき、昇圧コンバータ12が降圧動作中であると判定し、信号D S T P を生成してコンバータ用デューティー比演算部62へ出力する。電源電流 I b が負であるとき、電源電流 I b は、昇圧コンバータ12から直流電源Bの方向へ流れているので、制御部64は、昇圧コンバータ12が降圧動作を行なっていると判定することにしたものである。

## [0116]

このように、制御部64は、リアクトル電流ILの最大値ILmaxおよび最小値ILminと電源電流Ibとに基づいて、リアクトル電流ILが零点と交差するか否か、および昇圧コンバータ12が昇圧動作中か降圧動作中かを判定する。

## [0117]

図7は、実施の形態1によるスイッチングノイズを低減する電圧変換の動作を 説明するためのフローチャートである。図7を参照して、一連の動作が開始され ると、コンバータ制御回路302は、外部ECUからトルク指令値TR(すなわ ち、要求トルク)を受ける(ステップS1)。また、コンバータ制御回路302 は、外部ECUからモータ回転数MRNを受け、電圧センサー10から電圧Vb



### [0118]

その後、コンバータ制御回路302のピーク検出部65は、電流センサー18からリアクトル電流ILを受け、その受けたリアクトル電流ILの最大値ILmaxおよび最小値ILminを検出する(ステップS3)。そして、制御部64は、最大値ILmaxおよび最小値ILminをピーク検出部65から受け、最大値ILmaxの極性が最小値ILminの極性と同じであるか否かを判定する(ステップS4)。

### [0119]

制御部 64 は、最大値 I L m a x の極性が最小値 I L m i n の極性と異なると判定すると、信号 S T P を生成して電圧指令演算部 61 へ出力する。そして、制御部 64 は、電流センサー 11 から電源電流 I b を受け(ステップ S5)、その受けた電源電流 I b が正か負かを判定する(ステップ S6)。

### [0120]

電源電流 I bが正であるとき、制御部 6 4 は、昇圧コンバータ 1 2 が昇圧動作を行なっていると判定し、信号 U S T P を生成してコンバータ用デューティー比演算部 6 2 へ出力する。そうすると、電圧指令演算部 6 1 は、制御部 6 4 からの



#### [0121]

そうすると、昇圧コンバータ12は、コンバータ制御回路302からの信号PWMS1に応じて、NPNトランジスタQ1,Q2のスイッチング動作を停止し、インバータ14の動作に必要な直流電流をダイオードD1を介して直流電源BからコンデンサC2に供給する。すなわち、電流制御が行なわれる(ステップS8)。そして、一連の動作が終了する。

## [0122]

一方、ステップS6において、電源電流 I bが負であると判定されたとき、制御部64は、昇圧コンバータ12が降圧動作を行なっていると判定し、信号DSTPを生成してコンバータ用デューティー比演算部62へ出力する。そうすると、電圧指令演算部61は、制御部64からの信号STPに基づいて、電圧指令Vdc\_com\_0を生成してコンバータ用デューティー比演算部62へ出力する。コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_com\_0と制御部64からの信号DSTPとに基づいて、デューティー比DR\_100\_0を生成してコンバータ用PWM信号変換部63へ出力する。そして、コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DR\_100\_0に基づいて、降圧動作を停止するための信号PWMS2を生成し、その生成した信号PWMS2を昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302は、降圧制御を禁止する(ステップS9)。



## [0123]

そうすると、昇圧コンバータ12は、コンバータ制御回路302からの信号PWMS2に応じて、NPNトランジスタQ1,Q2のスイッチング動作を停止し、NPNトランジスタQ1を介して直流電流をコンデンサC2から直流電源Bに供給する。すなわち、電流制御が行なわれる(ステップS10)。そして、一連の動作が終了する。

## [0124]

また、ステップS4において、リアクトル電流ILの最大値ILmaxの極性が最小値ILminの極性と同じであると判定されると、制御部64は、リアクトル電流ILが零点と交差していないと判断する。そして、制御部64は、さらに、最大値ILmaxまたは最小値ILminが正か否かを判定する(ステップS11)。最大値ILmaxまたは最小値ILminが正であるとき、リアクトル電流ILが正であるので、制御部64は、昇圧コンバータ12が昇圧動作を行なっていると判定し、信号OPEを生成して電圧指令演算部61へ出力する。電圧指令演算部61は、制御部64から信号OPEを受けると、外部ECUからのトルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法によって電圧指令Vdc\_comをコンバータ用デューティー比演算部62へ出力する。

## [0125]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_\_comと、電圧Vb, Vmとに基づいて、上述した方法によって、デューティー比DRUを生成してコンバータ用PWM信号変換部63へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRUに基づいて、信号PWMUを生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302は、昇圧制御を許可する(ステップS12)。

### [0126]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1, Q2は、コンバータ制御回路302からの信号PWMUに応じてオン/オフされ、直流



### [0127]

一方、ステップS11において、リアクトル電流ILの最大値ILmaxまたは最小値ILminが負であるとき、リアクトル電流ILは負であるので、コンバータ制御回路302の制御部64は、昇圧コンバータ12が降圧動作を行なっていると判定し、信号OPEを生成して電圧指令演算部61へ出力する。電圧指令演算部61は、制御部64から信号OPEを受けると、外部ECUからのトルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法によって電圧指令Vdc\_comを演算し、その演算した電圧指令Vdc\_comをコンバータ用デューティー比演算部62へ出力する。

## [0128]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_comと、電圧Vb, Vmとに基づいて、上述した方法によって、デューティー比DRDを生成してコンバータ用PWM信号変換部63へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRDに基づいて、信号PWMDを生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302は、降圧制御を許可する(ステップS14)。

### [0129]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1, Q2は、コンバータ制御回路302からの信号PWMDに応じてオン/オフされ、コンデンサC2の両端の電圧Vmが電圧指令Vdc\_comになるように電圧Vmを降圧し、その降圧した直流電圧を直流電源Bに供給する。すなわち、電圧・電流制御が行なわれる(ステップS15)。そして、一連の動作が終了する。

#### [0130]

このように、コンバータ制御回路302は、リアクトル電流ILの最大値IL



## [0131]

これにより、昇圧コンバータ12におけるNPNトランジスタQ1, Q2のスイッチング回数を低減でき、スイッチングノイズを低減できる。また、NPNトランジスタQ1, Q2のスイッチング回数の低減によりスイッチング損失を低減できる。

## [0132]

なお、コンバータ制御回路302の制御部64は、ステップS4においてリアクトル電流 I Lの最大値 I Lmaxの極性が最小値 I Lminの極性と異なるとき、リアクトル電流 I Lが零点と交差すると判定するが、この「リアクトル電流 I Lが零点と交差すると判定する」ことは、「リアクトル電流 I Lの極性が反転すると判定する」ことに等しい。

## [0133]

また、制御部64は、ステップS4においてリアクトル電流ILの最大値ILmaxの極性が最小値ILminの極性と同じであるとき、リアクトル電流ILが零点と交差しないと判定するが、この「リアクトル電流ILが零点と交差しないと判定する」ことは、「リアクトル電流ILの極性が反転しないと判定する」ことに等しい。

# [0134]

再び、図1を参照して、モータ駆動装置100における全体動作について説明する。全体の動作が開始されると、制御装置30は、Hレベルの信号SEを生成してシステムリレーSR1,SR2へ出力する。これによりシステムリレーSR1,SR21,DR2はオンされ、直流電源Bは直流電圧をシステムリレーSR1,SR2を介してコンデンサC1に供給する。コンデンサC1は、直流電源Bからの直流



## [0135]

電圧センサー10は、直流電源Bから出力される電圧Vbを検出し、その検出した電圧Vbを制御装置30へ出力する。また、電圧センサー13は、コンデンサC2の両端の電圧Vmを検出し、その検出した電圧Vmを制御装置30へ出力する。さらに、電流センサー24は、交流モータM1に流れるモータ電流MCRTを検出して制御装置30へ出力する。そして、制御装置30は、外部ECUからトルク指令値TRおよびモータ回転数MRNを受ける。

#### [0136]

そうすると、制御装置30は、電圧Vb,Vm、モータ電流MCRTおよびトルク指令値TRに基づいて、上述した方法により信号PWMIまたは信号PWMCを生成し、その生成した信号PWMIまたは信号PWMCをインバータ14へ出力する。また、インバータ14が交流モータM1を駆動するとき、電圧Vb,Vm、トルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。インバータ14が交流モータM1によって発電された交流電圧を直流電圧に変換するとき、電圧Vb,Vm、トルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWMDを生成し、その生成した信号PWMDを昇圧コンバータ12へ出力する。

#### [0137]

そうすると、昇圧コンバータ12は、信号PWMUに応じて、NPNトランジスタQ2をオン/オフして直流電源Bから出力される電圧Vbを昇圧し、その昇圧した直流電圧をコンデンサC2に供給する。コンデンサC2は、昇圧コンバータ12からの直流電圧を平滑化してインバータ14に供給する。インバータ14は、コンデンサC2によって平滑化された直流電圧を制御装置30からの信号PWMIによって交流電圧に変換して交流モータM1を駆動する。これによって、交流モータM1は、トルク指令値TRによって指定されたトルクを発生する。

## [0138]

また、インバータ14は、交流モータM1が発電した交流電圧を制御装置30からの信号PWMCによって直流電圧に変換し、その変換した直流電圧を昇圧コンバータ12へ供給する。昇圧コンバータ12は、インバータ14からの直流電圧を制御装置30からの信号PWMDによって降圧し、その降圧した直流電圧を直流電源Bに供給して直流電源Bを充電する。

## [0139]

そうすると、電流センサー11は、直流電源Bから出力される電源電流Ibを検出し、その検出した電源電流Ibを制御装置30へ出力する。また、電流センサー18は、リアクトルL1に流れるリアクトル電流ILを検出し、その検出したリアクトル電流ILを制御装置30へ出力する。

## [0140]

そして、制御装置30のコンバータ制御回路302は、リアクトル電流ILに基づいて、リアクトル電流ILの最大値ILmaxおよび最小値ILminを検出し、その検出した最大値ILmaxおよび最小値ILminに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定する。

# [0141]

リアクトル電流ILが零点と交差するとき、コンバータ制御回路302は、さらに、電源電流Ibに基づいて、リアクトル電流ILが零点と交差するのは、昇圧動作時か降圧動作時かを判定する。そして、コンバータ制御回路302は、昇圧動作時にリアクトル電流ILが零点と交差すると判定すると、昇圧動作を停止するための信号PWMS1を生成して昇圧コンバータ12へ出力する。昇圧コンバータ12のNPNトランジスタQ1、Q2は、信号PWMS1に応じてオフされ、昇圧コンバータ12は、スイッチング動作による昇圧動作を停止する。また、コンバータ制御回路302は、降圧動作時にリアクトル電流ILが零点と交差すると判定すると、降圧動作を停止するための信号PWMS2を生成して昇圧コンバータ12へ出力する。昇圧コンバータ12のNPNトランジスタQ1は、信号PWMS2に応じてオンされ、NPNトランジスタQ2はオフされ、昇圧コンバータ12は、スイッチング動作による降圧動作を停止する。

## [0142]

また、リアクトル電流 I Lが零点と交差しないとき、コンバータ制御回路 3 0 2 は、さらに、リアクトル電流 I Lの最大値 I Lmaxまたは最小値 I Lminが正か否かを判定する。そして、コンバータ制御回路 3 0 2 は、最大値 I Lmaxまたは最小値 I Lminが正であると判定すると、昇圧動作を許可するための信号 PWM Uを生成して昇圧コンバータ 1 2 へ出力する。昇圧コンバータ 1 2 の N P N トランジスタ Q 1 , Q 2 は、信号 PWM Uに応じてオン/オフされ、昇圧コンバータ 1 2 は、スイッチング動作による昇圧動作を行なう。また、コンバータ制御回路 3 0 2 は、最大値 I Lmaxまたは最小値 I Lminが負であると判定すると、降圧動作を許可するための信号 PWM Dを生成して昇圧コンバータ 1 2 へ出力する。昇圧コンバータ 1 2 の N P N トランジスタ Q 1 , Q 2 は、信号 PWM Dに応じてオン/オフされ、昇圧コンバータ 1 2 は、スイッチング動作による降圧動作を行なう。

### [0143]

このように、モータ駆動装置100においては、リアクトル電流ILが零点と交差するとき、昇圧コンバータ12のNPNトランジスタQ1,Q2は、スイッチング動作を停止するため、NPNトランジスタQ1,Q2のスイッチング回数を低減でき、スイッチングノイズを低減できる。また、スイッチング回数の低減により、スイッチング損失も低減できる。

#### [0144]

なお、この発明においては、スイッチングノイズを低減する電圧変換の制御は、実際にはCPU(Central Processing Unit)によって行なわれ、CPUは、図7に示すフローチャートの各ステップを備えるプログラムをROM(Read Only Memory)から読出し、その読出したプログラムを実行して図7に示すフローチャートに従って、昇圧コンバータ12のスイッチング動作による昇圧動作または降圧動作を制御する。したがって、ROMは、図7に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。

## [0145]



### [0146]

そうすると、演算されたリアクトル電流ILの最大値ILmaxおよび最小値ILminを検出し、その検出した最大値ILmaxおよび最小値ILminと演算された電源電流Ibとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作または降圧動作が停止される。また、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作または降圧動作が停止される。また、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作または降圧動作が行なわれる。

### [0147]

## [0148]

ピーク検出部65は、演算部からのリアクトル電流ILに基づいて、最大値ILmaxおよび最小値ILminを検出し、その検出した最大値ILmaxおよび最小値ILminを制御部64へ出力する。

## [0149]



## [実施の形態2]

図8は、実施の形態2によるモータ駆動装置の概略ブロック図である。図8を参照して、モータ駆動装置100Aは、モータ駆動装置100の電流センサー11を削除し、制御装置30を制御装置30Aに代えたものであり、その他は、モータ駆動装置100と同じである。

## [0150]

制御装置30Aは、外部ECUからのトルク指令値TRおよびモータ回転数MRNと、電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、後述する方法によってリアクトル電流ILが零点と交差するか否かを判定する。そして、制御装置30Aは、リアクトル電流ILが零点と交差するとき、スイッチング動作による昇圧動作または降圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作または降圧動作を行なうように昇圧コンバータ12を制御する。

## [0151]

制御装置30Aは、その他、制御装置30と同じ機能を果たす。

図9は、図8に示す制御装置30Aのブロック図である。図9を参照して、制御装置30Aは、制御装置30のコンバータ制御回路302をコンバータ制御回路302Aに代えたものであり、その他は、制御装置30と同じである。

## [0152]

コンバータ制御回路302Aは、トルク指令値TR、モータ回転数MRNおよびリアクトル電流ILに基づいて、後述する方法によって、リアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するとき、NPNトランジスタQ1,Q2のスイッチング動作を停止するための信号PWMSを生成し、その生成した信号PWMSを昇圧コンバータ12へ出力する。そして、コンバータ制御回路302Aは、リアクトル電流ILが零点と交差しないとき、信号PWMUまたは信号PWMDを生成し、スイッチング動作による昇圧動作または降圧動作を行なうように昇圧コンバータ12を制御する。

### [0153]

コンバータ制御回路302Aは、その他、コンバータ制御回路302と同じ機能を果たす。

### [0154]

図10は、図9に示すコンバータ制御回路302Aのブロック図である。図10を参照して、コンバータ制御回路302Aは、コンバータ制御回路302の制御部64を制御部64Aに代えたものであり、その他は、コンバータ制御回路302と同じである。

### [0155]

制御部64Aは、外部ECUからトルク指令値TRおよびモータ回転数MRNを受け、その受けたトルク指令値TRおよびモータ回転数MRNに基づいて、交流モータM1の動作モードが力行モードであるか回生モードであるかを判定する。

### [0.156]

より詳細には、制御部64Aは、図4に示すモータのトルクとモータの回転数との関係をマップとして保持しており、外部ECUからのトルク指令値TRおよびモータ回転数MRNがマップの領域 $RG1\sim RG4$ のいずれに存在するかによって交流モータM1の動作モードが力行モードであるか回生モードであるかを判定する。

### [0157]

より具体的には、制御部64Aは、外部ECUからのトルク指令値TRおよびモータ回転数MRNがマップの領域RG1,RG2に存在するとき、交流モータM1の動作モードは力行モードであると判定し、外部ECUからのトルク指令値TRおよびモータ回転数MRNがマップの領域RG3,RG4に存在するとき、交流モータM1の動作モードは回生モードであると判定する。

#### [0158]

そして、制御部64Aは、交流モータM1の動作モードが回生モードであるとき、リアクトル電流ILの最大値ILmaxが零よりも小さいか否かを判定する。制御部64Aは、最大値ILmaxが零よりも小さいとき、信号OPEを生成



## [0159]

交流モータM1の動作モードが回生モードであるときにリアクトル電流ILの最大値ILmaxが零よりも小さいか否かを判定するのは、交流モータM1の動作モードが回生モードであるとき、リアクトル電流ILは、図6に示す曲線k2または曲線k4に従って変動し、最大値ILmaxが零よりも小さいときリアクトル電流ILは零点と交差せず、最大値ILmaxが零以上であるときリアクトル電流ILは零点と交差するので、最大値ILmaxが零よりも小さいか否かを判定することにより、リアクトル電流ILが零点と交差するか否かを判定できるからである。

## [0160]

また、制御部64Aは、交流モータM1の動作モードが力行モードであるとき、リアクトル電流ILの最小値ILminが零よりも大きいか否かを判定する。制御部64Aは、最小値ILminが零よりも大きいとき、信号OPEを生成して電圧指令演算部61へ出力し、最小値ILminが零以下であるとき、信号STPおよび信号USTPを生成してそれぞれ電圧指令演算部61およびコンバータデューティー比演算部62へ出力する。

# [0161]

交流モータM1の動作モードが力行モードであるときにリアクトル電流ILの最小値ILminが零よりも大きいか否かを判定するのは、交流モータM1の動作モードが力行モードであるとき、リアクトル電流ILは、図6に示す曲線k1または曲線k3に従って変動し、最小値ILminが零よりも大きいときリアクトル電流ILは零点と交差せず、最小値ILminが零以下であるときリアクトル電流ILは零点と交差するので、最小値ILminが零よりも大きいか否かを判定することにより、リアクトル電流ILが零点と交差するか否かを判定できるからである。

### [0162]

図11は、実施の形態2によるスイッチングノイズを低減する電圧変換の動作 を説明するためのフローチャートである。図11を参照して、一連の動作が開始 されると、コンバータ制御回路302Aは、外部ECUからトルク指令値TR( すなわち、要求トルク) およびモータ回転数MRNを受ける (ステップS21) 。また、コンバータ制御回路302Aは、電圧センサー10から電圧Vbを受け 、電圧センサー13から電圧Vmを受ける。そして、コンバータ制御回路302 Aの電圧指令演算部61は、トルク指令値TRおよびモータ回転数MRNに基づ いて、上述した方法によって、電圧指令 V d c \_\_c o mを演算し、その演算した 電圧指令Vdc\_comをコンバータ用デューティー比演算部62へ出力する。 そして、コンバータ用デューティー比演算部62は、電圧指令演算部61からの 電圧指令Vdc\_comと、電圧Vb,Vmとに基づいて、上述した方法によっ てデューティー比DRUまたはDRDを生成してコンバータ用PWM信号変換部 63へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューテ ィー比演算部62からのデューティー比DRUまたはDRDに基づいて信号PW MUまたは信号PWMDを生成し、その生成した信号PWMUまたは信号PWM Dを昇圧コンバータ12へ出力する。そして、昇圧コンバータ12は、信号PW MUおよび信号PWMDに応じて、それぞれ、スイッチング動作による昇圧動作 および降圧動作を行なう(ステップS22)。

### [0163]

その後、コンバータ制御回路302Aのピーク検出部65は、電流センサー18からリアクトル電流ILを受け、その受けたリアクトル電流ILの最大値ILmaxおよび最小値ILminを検出する(ステップS23)。そして、制御部64Aは、外部ECUからトルク指令値TRおよびモータ回転数MRNを受け、その受けたトルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法によって交流モータM1の動作モードが回生モードであるか力行モードであるかを判定する(ステップS24)。

#### [0164]

制御部64Aは、交流モータM1の動作モードが回生モードであると判定したとき、さらに、ピーク検出部65から受けたリアクトル電流ILの最大値ILm



### [0165]

制御部64Aは、最大値ILmaxが零よりも小さいと判定したとき、リアクトル電流ILが零点と交差していないと判断し、信号OPEを生成して電圧指令演算部61へ出力する。電圧指令演算部61は、制御部64Aから信号OPEを受けると、外部ECUからのトルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法によって電圧指令Vdc\_comを演算し、その演算した電圧指令Vdc\_comをコンバータ用デューティー比演算部62へ出力する。

### [0166]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_comと、電圧Vb, Vmとに基づいて、上述した方法によって、デューティー比DRDを生成してコンバータ用PWM信号変換部63へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRDに基づいて、信号PWMDを生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Aは、降圧制御を許可する(ステップS26)。

## [0167]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1, Q2は、コンバータ制御回路302Aからの信号PWMDに応じてオン/オフされ、コンデンサC2の両端の電圧<math>Vmが電圧指令 $Vdc\_com$ になるように電圧Vmを降圧し、その降圧した直流電圧を直流電源Bに供給する。すなわち、電圧・電流制御が行なわれる(ステップS27)。そして、一連の動作が終了する。

# [0168]

一方、ステップS25において、リアクトル電流ILの最大値ILmaxが零以上であるとき、制御部64Aは、昇圧コンバータ12の降圧動作時にリアクトル電流ILが零点と交差すると判定し、信号STPおよび信号DSTPを生成し、その生成した信号STPおよび信号DSTPをそれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部62へ出力する。電圧指令演算部61は、制御部64Aから信号STPを受けると、電圧指令Vdc\_com\_0を演算



### [0169]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_com\_0と、制御部64Aからの信号DSTPとに基づいて、上述した方法によって、デューティー比DR\_100\_0を生成してコンバータ用PWM信号変換部63へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DR\_100\_0に基づいて、信号PWMS2を生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Aは、降圧制御を禁止する(ステップS28)。

### [0170]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1は、コンバータ制御回路302Aからの信号PWMS2に応じてオンされ、NPNトランジスタQ2は信号PWMS2に応じてオフされ、昇圧コンバータ12は、スイッチング動作による降圧動作を停止する。そして、昇圧コンバータ12は、NPNトランジスタQ1を介してコンデンサC2から直流電源Bへ直流電流を供給する。すなわち、電流制御が行なわれる(ステップS29)。そして、一連の動作が終了する。

#### [0171]

また、ステップS24において、交流モータM1の動作モードが力行モードであると判定されると、コンバータ制御回路302Aの制御部64Aは、ピーク検出部65から受けたリアクトル電流ILの最小値ILminが零よりも大きいか否かを判定する(ステップS30)。

#### [0172]

制御部64Aは、最小値ILminが零よりも大きいと判定したとき、リアクトル電流ILが零点と交差していないと判断し、信号OPEを生成して電圧指令演算部61へ出力する。電圧指令演算部61は、制御部64Aから信号OPEを受けると、外部ECUからのトルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法によって電圧指令Vdc\_comを演算し、その演算した電



圧指令 V d c \_\_c o mをコンバータ用デューティー比演算部 6 2 へ出力する。

## [0173]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_comと、電圧Vb, Vmとに基づいて、上述した方法によって、デューティー比DRUを生成してコンバータ用PWM信号変換部63へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRUに基づいて、信号PWMUを生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Aは、昇圧制御を許可する(ステップS31)。

### [0174]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1,Q2は、コンバータ制御回路302Aからの信号PWMUに応じてオン/オフされ、昇圧コンバータ12の出力電圧Vmが電圧指令Vdc\_comに一致するように直流電源Bからの直流電圧Vbを昇圧し、その昇圧した直流電圧をコンデンサC2に供給する。すなわち、電圧・電流制御が行なわれる(ステップS32)。そして、一連の動作が終了する。

## [0175]

一方、制御部64Aは、ステップS30においてリアクトル電流 I Lの最小値 I Lminが零以下であると判定したとき、昇圧コンバータ12の昇圧動作時に リアクトル電流 I Lが零点に交差すると判定する。そして、制御部64Aは、信号STPおよび信号USTPを生成し、その生成した信号STPおよび信号USTPをそれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部62へ出力する。

そうすると、電圧指令演算部61は、制御部64Aからの信号STPに基づいて、電圧指令Vdc\_com\_0を生成してコンバータ用デューティー比演算部62は、電圧指令演算部612へ出力する。コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_com\_0と制御部64Aからの信号USTPとに基づいて、デューティー比DR\_0を生成してコンバータ用PWM信号変換部63へ出力する。そして、コンバータ用PWM信号変換部63は、コンバータ用デュー



### [0176]

そうすると、昇圧コンバータ12は、コンバータ制御回路302Aからの信号 PWMS1に応じて、NPNトランジスタQ1, Q2のスイッチング動作を停止し、インバータ14の動作に必要な直流電流をダイオードD1を介して直流電源 BからコンデンサC2に供給する。すなわち、電流制御が行なわれる(ステップ S34)。そして、一連の動作が終了する。

## [0177]

このように、コンバータ制御回路302Aは、トルク指令値TRとモータ回転数MRNとに基づいて交流モータM1の動作モードを判定し、その判定した動作モードとリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、リアクトル電流ILが零点と交差するか否かを判定する。そして、コンバータ制御回路302Aは、リアクトル電流ILが零点と交差するとき、スイッチング動作による昇圧動作または降圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作または降圧動作を行なうように昇圧コンバータ12を制御する。

## [0178]

これにより、昇圧コンバータ12におけるNPNトランジスタQ1、Q2のスイッチング回数を低減でき、スイッチングノイズを低減できる。また、NPNトランジスタQ1、Q2のスイッチング回数の低減によりスイッチング損失を低減できる。

#### [0179]

なお、この発明においては、スイッチングノイズを低減する電圧変換の制御は、実際にはCPUによって行なわれ、CPUは、図11に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図11に示すフローチャートに従って、昇圧コンバータ12のスイッチング動作による昇圧動作または降圧動作を制御する。したがって、ROMは、図



### [0180]

モータ駆動装置100Aの全体動作は、モータ駆動装置100の全体動作のうち、スイッチングノイズを低減させるコンバータ制御回路302の動作を、上述したコンバータ制御回路302Aの動作に代えたものであり、その他は、モータ駆動装置100の動作と同じである。

### [0181]

その他は、実施の形態1と同じである。

#### 「実施の形態3]

図12は、実施の形態3によるモータ駆動装置の概略ブロック図である。図12を参照して、実施の形態3によるモータ駆動装置100Bは、モータ駆動装置100の電流センサー11,18を削除し、制御装置30を制御装置30Bに代えたものであり、その他は、モータ駆動装置100と同じである。

## [0182]

制御装置30Bは、外部ECUからのトルク指令値TRおよびモータ回転数MRNに基づいて、後述する方法により、リアクトル電流ILが零点と交差するかを判定する。そして、制御装置30Bは、リアクトル電流ILが零点と交差するとき、スイッチング動作による昇圧動作または降圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作または降圧動作を行なうように昇圧コンバータ12を制御する。

## [0183]

制御装置30Bは、その他、制御装置30と同じ機能を果たす。

図13は、図12に示す制御装置30Bのブロック図である。図13を参照して、制御装置30Bは、制御装置30のコンバータ制御回路302をコンバータ制御回路302Bに代えたものであり、その他は、制御装置30と同じである。

### [0184]

コンバータ制御回路302Bは、トルク指令値TRおよびモータ回転数MRN



## [0185]

コンバータ制御回路302Bは、その他、コンバータ制御回路302と同じ機能を果たす。

## [0186]

図14は、図13に示すコンバータ制御回路302Bのブロック図である。図14を参照して、コンバータ制御回路302Bは、コンバータ制御回路302の制御部64を制御部64Bに代え、ピーク検出部65を演算部66に代えたものであり、その他は、コンバータ制御回路302と同じである。

## [0187]

演算部 66 は、外部 ECU からトルク指令値 TR およびモータ回転数 MRN を受け、電圧センサー 10 から電圧 V b を受ける。そして、演算部 66 は、トルク指令値 TR およびモータ回転数 MRN を式(1)に代入して要求パワー Pcom を演算する。

[0188]

【数1】

 $Pcom = TR \times MRN$ 

...(1)

### [0189]

そして、演算部 6.6 は、要求パワーP c.omを式(2)に代入して、交流モータM1が要求パワーP c.omを出力するために必要なリアクトル電流 I.L.d.c. c.omを演算する。

### [0190]

【数2】

$$\frac{1}{2}L(ILdc\_com)^{2} = Pcom$$

$$\downarrow \Rightarrow ILdc\_com = \sqrt{\frac{2Pcom}{L}}$$
...(2)

但し L:リアクトルのインダクタンス

ILdc\_com:必要なリアクトル電流

## [0191]

また、演算部 6.6 は、式(1)により演算した要求パワーP.c.omを式(3)に代入して昇圧コンバータ 1.2の電圧指令 $V.d.c._c.om$ を演算する。

[0192]

【数3】

$$\frac{1}{2}C(Vdc\_com)^2 = Pcom$$

$$\downarrow Vdc\_com = \sqrt{\frac{2Pcom}{C}}$$
...(3)

但し C:インバータ入力側のコンデンサの容量

Vdc\_com: 昇圧コンバータの電圧指令値

# [0193]

そして、演算部 6 6 は、式(3)により演算した電圧指令 V d c \_\_c o m と電圧センサー 1 0 から受けた電圧 V b とを式(4)に代入して電圧変換比 E X R を演算する。

[0194]

【数4】

$$EXR = \frac{Vdc\_com}{Vb} \qquad \cdots (4)$$
[ 0 1 9 5 ]



[0196]

## 【数5】

 $ILdc\_com = Ibdc\_com \times DR$ 

但し DR:トランジスタQ2のオンデューティー

## [0197]

なお、必要な電源電流 I b d c \_\_ c o m は、N P N トランジスタ Q 1 , Q 2 の 1 つの制御周期に流れる電流である。

... (5)

### [0198]

そして、演算部66は、演算した電圧変換比EXRと必要な電源電流Ibdc \_\_comとを制御部64Bへ出力する。

# [0199]

制御部64Bは、外部ECUからトルク指令値TRおよびモータ回転数MRNを受け、演算部66から電圧変換比EXRおよび必要な電源電流Ibdc\_comを受ける。

# [0200]

また、制御部64Bは、昇圧比と電源電流 I b との関係を示すマップおよび降 圧比と電源電流 I b との関係を示すマップを保持している。図15は、昇圧比と 電源電流 I b との関係を示す図である。また、図16は、降圧比と電源電流 I b との関係を示す図である。

# [0201]

図15を参照して、I b r e f 1 は、E の臨界電流値を表わす。そして、E の臨界電流値 E b E e E E d E は、交流モータE の動作モードが力行モードであるときにリアクトル電流 E E L が零点と交差するときの必要な電源電流 E b d c E c o

mの電流値である。

## [0202]

電源電流 I bが正の臨界電流値 I b r e f 1以下のとき、昇圧比は直線 k 5 に 従って一定値を保持する。そして、電源電流 I bが正の臨界電流値 I b r e f 1 よりも大きくなると、昇圧比は、直線 k 6 と直線 k 7 とによって囲まれる領域 R G 5 に存在する。

### [0203]

図16を参照して、I b r e f 2 は、負の臨界電流値を表わす。そして、負の臨界電流値 I b r e f 2 は、交流モータM 1 の動作モードが回生モードであるときにリアクトル電流 I L が零点と交差するときの必要な電源電流 I b d c \_\_ c o mの電流値である。

### [0204]

電源電流 I b が負の臨界電流値 I b r e f 2以上のとき、降圧比は直線 k 8 に 従って一定値を保持する。そして、電源電流 I b が負の臨界電流値 I b r e f 2 よりも小さくなると、降圧比は、直線 k 9 と直線 k 1 0 とによって囲まれる領域 R G 6 に存在する。

### [0205]

そして、制御部64Bは、図15に示すマップおよび図16に示すマップを保持している。

#### [0206]

制御部64Bは、トルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法によって交流モータM1の動作モードが回生モードであるか力行モードであるかを判定する。そして、制御部64Bは、交流モータM1の動作モードが力行モードであるとき、演算部66から受けた電圧変換比EXR(この場合は昇圧比)および必要な電源電流Ibdc\_comが図15に示すマップの直線k5上に存在するか領域RG5に存在するかを判定する。

## [0207]

制御部64Bは、電圧変換比EXRおよび必要な電源電流Ibdc\_comが直線k5上に存在すると判定したとき、リアクトル電流ILが零点と交差すると



## [0208]

電圧変換比EXRおよび必要な電源電流Ibdc\_comが直線k5上に存在すると判定することは、必要な電源電流Ibdc\_comが正の臨界電流値Ibreflよりも大きいか否かを判定し、必要な電源電流Ibdc\_comが正の臨界電流値Ibrefl以下であると判定することに相当する。また、電圧変換比EXRおよび必要な電源電流Ibdc\_comが領域RG5に存在すると判定することは、必要な電源電流Ibdc\_comが正の臨界電流値Ibreflよりも大きいか否かを判定し、必要な電源電流Ibdc\_comが正の臨界電流値Ibreflよりも大きいか否かを判定し、必要な電源電流Ibdc\_comが正の臨界電流値Ibreflよりも大きいと判定することに相当する。

## [0209]

制御部 64Bは、電圧変換比EXRおよび必要な電源電流  $Ibdc\_com$ が直線 k5上に存在すると判定したとき、信号STPおよび信号USTPを生成し、その生成した信号STPおよび信号USTPをそれぞれ電圧指令演算部 61 およびコンバータ用デューティー比演算部 62へ出力する。

## [0210]

また、制御部64Bは、電圧変換比EXRおよび必要な電源電流Ibdc\_c omが領域RG5に存在すると判定したとき、信号OPEを生成して電圧指令演 算部61へ出力する。

## [0211]

# [0212]

制御部64Bは、電圧変換比EXRおよび必要な電源電流Ibdc\_comが直線k8上に存在すると判定したとき、リアクトル電流ILが零点と交差すると

判断し、電圧変換比EXRおよび必要な電源電流Ibdc\_comが領域RG6に存在すると判定したとき、リアクトル電流ILが零点と交差していないと判断する。

### [0213]

電圧変換比EXRおよび必要な電源電流Ibdc\_comが直線k8上に存在すると判定することは、必要な電源電流Ibdc\_comが負の臨界電流値Ibref2よりも小さいか否かを判定し、必要な電源電流Ibdc\_comが負の臨界電流値Ibref2以上であると判定することに相当する。また、電圧変換比EXRおよび必要な電源電流Ibdc\_comが領域RG6に存在すると判定することは、必要な電源電流Ibdc\_comが負の臨界電流値Ibref2よりも小さいか否かを判定し、必要な電源電流Ibdc\_comが負の臨界電流値Ibref2よりも小さいか否かを判定し、必要な電源電流Ibdc\_comが負の臨界電流値Ibref2よりも小さいか否かを判定し、必要な電源電流Ibdc\_comが負の臨界電流値Ibref2よりも小さいと判定することに相当する。

### [0214]

制御部 64Bは、電圧変換比 EXR および必要な電源電流  $Ibdc\_com$ が直線 k8上に存在すると判定したとき、信号 STP および信号 DSTP を生成し、その生成した信号 STP および信号 DSTP をそれぞれ電圧指令演算部 61 およびコンバータ用デューティー比演算部 62 へ出力する。

#### [0215]

また、制御部64Bは、電圧変換比EXRおよび必要な電源電流Ibdc\_comが領域RG6に存在すると判定したとき、信号OPEを生成して電圧指令演算部61へ出力する。

#### [0216]

なお、コンバータ制御回路302Bにおいては、コンバータ用デューティー比 演算部62は、演算したデューティー比DRUおよびDRDをコンバータ用PW M信号変換部63および演算部66へ出力する。

#### [0217]

図17は、実施の形態3によるスイッチングノイズを低減する電圧変換の動作 を説明するためのフローチャートである。図17を参照して、一連の動作が開始 されると、コンバータ制御回路302Bは、外部ECUからトルク指令値TR(



## [0218]

そして、制御部64Bは、外部ECUからトルク指令値TRおよびモータ回転数MRNを受け、その受けたトルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法によって交流モータM1の動作モードが回生モードであるか力行モードであるかを判定する(ステップS43)。

## [0219]

制御部64Bは、交流モータM1の動作モードが回生モードであると判定したとき、さらに、図16に示すマップを参照して、演算部66から受けた必要な電源電流 I b d c \_\_ c o mおよび電圧変換比EXRが直線 k 8上に存在するか領域 R G 6 に存在するかを判定することにより、必要な電源電流 I b d c \_\_ c o mが 負の臨界電流値 I b r e f 2よりも小さいか否かを判定する(ステップS44)。

### [0220]

制御部64Bは、必要な電源電流 I b d c \_\_c o mが負の臨界電流値 I b r e f 2よりも小さいと判定したとき、リアクトル電流 I L が零点と交差していないと判断し、信号OPEを生成して電圧指令演算部61へ出力する。電圧指令演算部61は、制御部64Bから信号OPEを受けると、外部ECUからのトルク指令値 T R およびモータ回転数M R N に基づいて、上述した方法によって電圧指令 V d c \_\_c o mを演算し、その演算した電圧指令 V d c \_\_c o mをコンバータ用デューティー比演算部62へ出力する。

## [0221]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_comと、電圧Vb, Vmとに基づいて、上述した方法によって、デ



ユーティー比DRDを生成してコンバータ用PWM信号変換部63および演算部66へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRDに基づいて、信号PWMDを生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Bは、降圧制御を許可する(ステップS45)。

### [0222]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1, Q2は、コンバータ制御回路302Bからの信号PWMDに応じてオン/オフされ、コンデンサC2の両端の電圧<math>Vmが電圧指令 $Vdc\_com$ になるように電圧Vmを降圧し、その降圧した直流電圧を直流電源Bに供給する。すなわち、電圧・電流制御が行なわれる(ステップS46)。そして、一連の動作が終了する。

### [0223]

一方、ステップS44において、必要な電源電流 I b d c \_\_c o mが負の臨界電流値 I b r e f 2以上であるとき、制御部64Bは、昇圧コンバータ12の降圧動作時にリアクトル電流 I L が零点と交差すると判定し、信号STPおよび信号DSTPを生成し、その生成した信号STPおよび信号DSTPをそれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部62へ出力する。電圧指令演算部61は、制御部64Bから信号STPを受けると、電圧指令Vdc \_ c o m \_ 0 をコンバータ用デューティー比演算部62へ出力する。

### [0224]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_com\_0と、制御部64Bからの信号DSTPとに基づいて、上述した方法によって、デューティー比DR\_100\_0を生成してコンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DR\_100\_0に基づいて、信号PWMS2を生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Bは、降圧制御を禁止する(ステップS47)。

### [0225]



### [0226]

また、ステップS43において、交流モータM1の動作モードが力行モードであると判定されると、コンバータ制御回路302Bの制御部64Bは、さらに、図15に示すマップを参照して、演算部66から受けた必要な電源電流Ibdc comおよび電圧変換比EXRが直線k5上に存在するか領域RG5に存在するかを判定することにより、必要な電源電流Ibdc comが正の臨界電流値 Ibref1よりも大きいか否かを判定する(ステップS49)。

## [0227]

制御部64Bは、必要な電源電流Ibdc\_comが正の臨界電流値Ibref1よりも大きいと判定したとき、リアクトル電流ILが零点と交差していないと判断し、信号OPEを生成して電圧指令演算部61へ出力する。電圧指令演算部61は、制御部64Bから信号OPEを受けると、外部ECUからのトルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法によって電圧指令Vdc\_comをコンバータ用デューティー比演算部62へ出力する。

## [0228]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_comと、電圧Vb, Vmとに基づいて、上述した方法によって、デューティー比DRUを生成してコンバータ用PWM信号変換部63および演算部66へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRUに基づいて、信号PWMUを生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302B



## [0229]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1, Q2は、コンバータ制御回路302Bからの信号PWMUに応じてオン/オフされ、昇圧コンバータ12の出力電圧Vmが電圧指令 $Vdc\_comc$ 一致するように直流電源Bからの直流電圧Vbを昇圧し、その昇圧した直流電圧をコンデンサC2に供給する。すなわち、電圧・電流制御が行なわれる(ステップS51)。そして、一連の動作が終了する。

### [0230]

一方、制御部64Bは、ステップS49において必要な電源電流 I b d c \_ c o mが正の臨界電流値 I b r e f 1以下であると判定したとき、昇圧コンバータ12の昇圧動作時にリアクトル電流 I L が零点に交差すると判定する。そして、制御部64Bは、信号STPおよび信号USTPを生成し、その生成した信号STPおよび信号USTPをそれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部62へ出力する。

## [0231]

そうすると、電圧指令演算部61は、制御部64Bからの信号STPに基づいて、電圧指令Vdc\_com\_0を生成してコンバータ用デューティー比演算部62へ出力する。コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_com\_0と制御部64Bからの信号USTPとに基づいて、デューティー比DR\_0を生成してコンバータ用PWM信号変換部63へ出力する。そして、コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DR\_0に基づいて、スイッチング動作による昇圧動作を停止するための信号PWMS1を生成し、その生成した信号PWMS1を昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Bは、昇圧制御を禁止する(ステップS52)。

## [0232]

そうすると、昇圧コンバータ12は、コンバータ制御回路302Bからの信号 PWMS1に応じて、NPNトランジスタQ1, Q2のスイッチング動作を停止



## [0233]

このように、コンバータ制御回路302Bは、トルク指令値TRと、モータ回転数MRNとに基づいて交流モータM1の動作モードを判定し、その判定した動作モードと必要な電源電流Ibdc\_comおよび電圧変換比EXRとに基づいてリアクトル電流ILが零点と交差するか否かを判定する。そして、コンバータ制御回路302Bは、リアクトル電流ILが零点と交差するとき、スイッチング動作による昇圧動作または降圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作または降圧動作を存止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作または降圧動作を行なうように昇圧コンバータ12を制御する。

## [0234]

これにより、昇圧コンバータ12におけるNPNトランジスタQ1, Q2のスイッチング回数を低減でき、スイッチングノイズを低減できる。また、NPNトランジスタQ1, Q2のスイッチング回数の低減によりスイッチング損失を低減できる。

### [0235]

なお、この発明においては、スイッチングノイズを低減する電圧変換の制御は、実際にはCPUによって行なわれ、CPUは、図17に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図17に示すフローチャートに従って、昇圧コンバータ12のスイッチング動作による昇圧動作または降圧動作を制御する。したがって、ROMは、図17に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ (CPU) 読取り可能な記録媒体に相当する。

## [0236]

モータ駆動装置100Bの全体動作は、モータ駆動装置100の全体動作のうち、スイッチングノイズを低減させるコンバータ制御回路302の動作を、上述したコンバータ制御回路302Bの動作に代えたものであり、その他は、モータ

駆動装置100の動作と同じである。

## [0237]

その他は、実施の形態1と同じである。

### [実施の形態4]

図18は、実施の形態4によるモータ駆動装置の概略ブロック図である。図18を参照して、実施の形態4によるモータ駆動装置100Cは、モータ駆動装置100の電流センサー11,18を削除し、制御装置30を制御装置30Cに代えたものであり、その他は、モータ駆動装置100と同じである。

### [0238]

制御装置30Cは、外部ECUからのトルク指令値TRおよびモータ回転数MRNに基づいて、後述する方法によってリアクトル電流ILが零点と交差するか否かを判定する。そして、制御装置30Cは、リアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作または降圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作または降圧動作を行なうように昇圧コンバータ12を制御する。

## [0239]

制御装置30℃は、その他、制御装置30と同じ機能を果たす。

図19は、図18に示す制御装置30Cのブロック図である。図19を参照して、制御装置30Cは、制御装置30のコンバータ制御回路302をコンバータ制御回路302Cに代えたものであり、その他は、制御装置30と同じである。

### [0240]

コンバータ制御回路302Cは、トルク指令値TRおよびモータ回転数MRNに基づいて、後述する方法によって、リアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するとき、NPNトランジスタQ1,Q2のスイッチング動作を停止するための信号PWMSを生成し、その生成した信号PWMSを昇圧コンバータ12へ出力する。そして、コンバータ制御回路302Cは、リアクトル電流ILが零点と交差しないとき、信号PWMUまたは信号PWMDを生成し、スイッチング動作による昇圧動作または降圧動作を行

なうように昇圧コンバータ12を制御する。

### [0241]

コンバータ制御回路302Cは、その他、コンバータ制御回路302と同じ機能を果たす。

### [0242]

図20は、図19に示すコンバータ制御回路302Cのブロック図である。図20を参照して、コンバータ制御回路302Cは、コンバータ制御回路302の制御部64を制御部64Cに代え、ピーク検出部65を演算部66Aに代えたものであり、その他は、コンバータ制御回路302と同じである。

### [0243]

演算部66Aは、外部ECUからトルク指令値TRおよびモータ回転数MRNを受け、電圧センサー10から電圧Vbを受ける。そして、演算部66Aは、トルク指令値TR、モータ回転数MRNおよび電圧Vbに基づいて、上述した式(1)、(3)および(4)を用いて電圧変換比EXRを演算し、その演算した電圧変換比EXRを制御部64Cへ出力する。

#### [0244]

制御部64Cは、外部ECUからトルク指令値TRおよびモータ回転数MRNを受け、演算部66Aから電圧変換比EXRを受ける。また、制御部64Cは、昇圧比と要求トルク(すなわち、トルク指令値TR、以下同じ)との関係を示すマップおよび降圧比と要求トルクとの関係を示すマップを保持している。図21は、昇圧比と要求トルクとの関係を示す図である。また、図22は、降圧比と要求トルクとの関係を示す図である。

#### [0245]

図21を参照して、TRref1は、正の臨界トルク値を表わす。そして、正の臨界トルク値TRref1は、交流モータM1の動作モードが力行モードであるときにリアクトル電流 ILが零点と交差するときの要求トルクのトルク値である。

### [0246]

要求トルクが正の臨界トルク値TRref1以下のとき、昇圧比は直線 k 1 1



## [0247]

図22を参照して、TRref2は、負の臨界トルク値を表わす。そして、負の臨界トルク値TRref2は、交流モータM1の動作モードが回生モードであるときにリアクトル電流 I Lが零点と交差するときの要求トルクのトルク値である。

## [0248]

要求トルクが負の臨界トルク値TRref2以上のとき、降圧比は直線k14に従って一定値を保持する。そして、要求トルクが負の臨界トルク値TRref2よりも小さくなると、降圧比は、直線k15と直線k16とによって囲まれる領域RG8に存在する。

# [0249]

そして、制御部64Cは、図21に示すマップおよび図22に示すマップを保持している。

# [0250]

制御部64Cは、トルク指令値TR(すなわち、要求トルク)およびモータ回転数MRNに基づいて、上述した方法によって交流モータM1の動作モードが回生モードであるか力行モードであるかを判定する。そして、制御部64Cは、交流モータM1の動作モードが力行モードであるとき、外部ECUからの要求トルク(以下、「要求トルクTRdc\_com」と表す)および演算部66Aからの電圧変換比EXR(この場合は、昇圧比)が図21に示すマップの直線k11上に存在するか領域RG7に存在するかを判定する。

## [0251]

制御部64Cは、要求トルクTRdc\_comおよび電圧変換比EXRが直線 k 1 1 上に存在すると判定したとき、リアクトル電流 I Lが零点と交差すると判断し、要求トルクTRdc\_comおよび電圧変換比EXRが領域RG7に存在すると判定したとき、リアクトル電流 I Lが零点と交差していないと判断する。

## [0252]

要求トルクTRdc\_comおよび電圧変換比EXRが直線k11上に存在すると判定することは、要求トルクTRdc\_comが正の臨界トルク値TRref1よりも大きいか否かを判定し、要求トルクTRdc\_comが正の臨界トルク値TRref1以下であると判定することに相当する。また、要求トルクTRdc\_comおよび電圧変換比EXRが領域RG7に存在すると判定することは、要求トルクTRdc\_comが正の臨界トルク値TRref1よりも大きいか否かを判定し、要求トルクTRdc\_comが正の臨界トルク値TRref1よりも大きいか否かを判定し、要求トルクTRdc\_comが正の臨界トルク値TRref1よりも大きいと判定することに相当する。

## [0253]

制御部64Cは、要求トルクTRdc\_comおよび電圧変換比EXRが直線 k 1 1上に存在すると判定したとき、信号STPおよび信号USTPを生成し、その生成した信号STPおよび信号USTPをそれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部62へ出力する。

## [0254]

また、制御部64Cは、要求トルクTRdc\_comおよび電圧変換比EXRが領域RG7に存在すると判定したとき、信号OPEを生成して電圧指令演算部61へ出力する。

## [0255]

一方、交流モータM1の動作モードが回生モードであるとき、制御部64Cは、外部ECUから受けた要求トルク $TRdc\_com$ および演算部66Aから受けた電圧変換比EXR(この場合、降圧比)が図22に示すマップの直線 k14上に存在するか領域 RG8に存在するかを判定する。

# [0256]

制御部64Cは、要求トルクTRdc\_comおよび電圧変換比EXRが直線 k 1 4 上に存在すると判定したとき、リアクトル電流 I L が零点と交差すると判断し、要求トルクTRdc\_comおよび電圧変換比EXRが領域RG8に存在すると判定したとき、リアクトル電流 I L が零点と交差していないと判断する。

### [0257]

要求トルクTRdc\_comおよび電圧変換比EXRが直線k14上に存在すると判定することは、要求トルクTRdc\_comが負の臨界トルク値TRref2よりも小さいか否かを判定し、要求トルクTRdc\_comが負の臨界トルク値TRref2よりも小さいか否かを判定することに相当する。また、要求トルクTRdc\_comおよび電圧変換比EXRが領域RG8に存在すると判定することは、要求トルクTRdc\_comが負の臨界トルク値TRref2よりも小さいか否かを判定し、要求トルクTRdc\_comが負の臨界トルク値TRref2よりも小さいと判定することに相当する。

### [0258]

制御部 64 Cは、要求トルクTR  $dc_c$  o mおよび電圧変換比EXRが直線 k14上に存在すると判定したとき、信号STPおよび信号DSTPを生成し、その生成した信号STPおよび信号DSTPをそれぞれ電圧指令演算部 61 およびコンバータ用デューティー比演算部 62 へ出力する。

## [0259]

また、制御部64Cは、要求トルクTRdc\_comおよび電圧変換比EXRが領域RG8に存在すると判定したとき、信号OPEを生成して電圧指令演算部61へ出力する。

### [0260]

図23は、実施の形態4によるスイッチングノイズを低減する電圧変換の動作を説明するためのフローチャートである。図23を参照して、一連の動作が開始されると、コンバータ制御回路302Cは、外部ECUから要求トルクTRdc comおよびモータ回転数MRNを受ける(ステップS61)。また、コンバータ制御回路302Cは、電圧センサー10から電圧Vbを受ける。そして、コンバータ制御回路302Cの演算部66Aは、要求トルクTRdc\_com、モータ回転数MRNおよび電圧Vbに基づいて、上述した方法によって電圧変換比EXRを演算して制御部64Cへ出力する。

## [0261]

そうすると、制御部64Cは、要求トルクTRdc\_comおよびモータ回転数MRNに基づいて、上述した方法によって、交流モータM1の動作モードが力



## [0262]

そして、制御部64Cは、交流モータM1の動作モードが回生モードであると判定したとき、さらに、図22に示すマップを参照して、外部ECUから受けた要求トルクTRdc\_comおよび電圧変換比EXRが直線k14上に存在するか領域RG8に存在するかを判定することにより、要求トルクTRdc\_comが負の臨界トルク値TRref2よりも小さいか否かを判定する(ステップS63)。

### [0263]

制御部64Cは、要求トルクTRdc\_comが負の臨界トルクTRref2よりも小さいと判定したとき、リアクトル電流ILが零点と交差していないと判断し、信号OPEを生成して電圧指令演算部61へ出力する。電圧指令演算部61は、制御部64Cから信号OPEを受けると、外部ECUからの要求トルクTRdc\_comおよびモータ回転数MRNに基づいて、上述した方法によって電圧指令Vdc\_comをコンバータ用デューティー比演算部62へ出力する。

### [0264]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令 V d c c o m と、電圧 V b 、 V m とに基づいて、上述した方法によって、デューティー比 D R D を生成してコンバータ用 P W M 信号変換部63へ出力する。コンバータ用 P W M 信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比 D R D に基づいて、信号 P W M D を生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302 C は、降圧制御を許可する(ステップ S 6 4)。

#### [0265]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1,Q2は、コンバータ制御回路302Cからの信号PWMDに応じてオン/オフされ、コンデンサC2の両端の電圧Vmが電圧指令Vdc\_comになるように電圧Vmを降圧し、その降圧した直流電圧を直流電源Bに供給する。すなわち、電圧・電



### [0266]

一方、ステップS63において、要求トルクTRdc\_comが負の臨界トルク値TRref2以上であるとき、制御部64Cは、昇圧コンバータ12の降圧動作時にリアクトル電流ILが零点と交差すると判定し、信号STPおよび信号DSTPを生成し、その生成した信号STPおよび信号DSTPをそれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部62へ出力する。電圧指令演算部61は、制御部64Cから信号STPを受けると、電圧指令Vdc\_com\_0を演算し、その演算した電圧指令Vdc\_com\_0をコンバータ用デューティー比演算部62へ出力する。

## [0267]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_\_com\_\_0と、制御部64Cからの信号DSTPとに基づいて、上述した方法によって、デューティー比DR\_\_100\_\_0を生成してコンバータ用PWM信号変換部63は、コンバータ用アWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DR\_\_100\_\_0に基づいて、信号PWMS2を生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Cは、降圧制御を禁止する(ステップS66)。

# [0268]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1は、コンバータ制御回路302Cからの信号PWMS2に応じてオンされ、<math>NPNトランジスタQ2は信号PWMS2に応じてオフされ、昇圧コンバータ12は、スイッチング動作による降圧動作を停止する。そして、昇圧コンバータ12は、NPNトランジスタQ1を介してコンデンサC2から直流電源Bへ直流電流を供給する。すなわち、電流制御が行なわれる(ステップS67)。そして、一連の動作が終了する。

# [0269]

また、ステップS62において、交流モータM1の動作モードが力行モードであると判定されると、コンバータ制御回路302Cの制御部64Cは、さらに、

図21に示すマップを参照して、外部ECUから受けた要求トルクTRdc\_comおよび演算部66Aから受けた電圧変換比EXRが直線k11上に存在するか領域RG7に存在するかを判定することにより、要求トルクTRdc\_comが正の臨界トルク値TRref1よりも大きいか否かを判定する(ステップS68)。

#### [0270]

制御部64Cは、要求トルクTRdc\_comが正の臨界トルク値TRref 1よりも大きいと判定したとき、リアクトル電流ILが零点と交差していないと 判断し、信号OPEを生成して電圧指令演算部61へ出力する。電圧指令演算部 61は、制御部64Cから信号OPEを受けると、外部ECUからの要求トルク TRdc\_comおよびモータ回転数MRNに基づいて、上述した方法によって 電圧指令Vdc\_comを演算し、その演算した電圧指令Vdc\_comをコン バータ用デューティー比演算部62へ出力する。

### [0271]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_comと、電圧Vb,Vmとに基づいて、上述した方法によって、デューティー比DRUを生成してコンバータ用PWM信号変換部63へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRUに基づいて、信号PWMUを生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Cは、昇圧制御を許可する(ステップS69)。

#### [0272]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1, Q2は、コンバータ制御回路302Cからの信号PWMUに応じてオン/オフされ、昇圧コンバータ12の出力電圧Vmが電圧指令Vdc\_comに一致するように直流電源Bからの直流電圧Vbを昇圧し、その昇圧した直流電圧をコンデンサC2に供給する。すなわち、電圧・電流制御が行なわれる(ステップS70)。そして、一連の動作が終了する。

#### [0273]



#### [0274]

そうすると、電圧指令演算部61は、制御部64Cからの信号STPに基づいて、電圧指令Vdc\_\_com\_\_0を生成してコンバータ用デューティー比演算部62へ出力する。コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_\_com\_\_0と制御部64Cからの信号USTPとに基づいて、デューティー比DR\_\_0を生成してコンバータ用PWM信号変換部63へ出力する。そして、コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DR\_\_0に基づいて、スイッチング動作による昇圧動作を停止するための信号PWMS1を生成し、その生成した信号PWMS1を昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Cは、昇圧制御を禁止する(ステップS71)。

## [0275]

そうすると、昇圧コンバータ12は、コンバータ制御回路302Cからの信号 PWMS1に応じて、NPNトランジスタQ1, Q2のスイッチング動作を停止し、インバータ14の動作に必要な直流電流をダイオードD1を介して直流電源 BからコンデンサC2に供給する。すなわち、電流制御が行なわれる(ステップS72)。そして、一連の動作が終了する。

### [0276]

このように、コンバータ制御回路302Cは、トルク指令値TRと、モータ回転数MRNとに基づいて交流モータM1の動作モードを判定し、その判定した動作モードと要求トルクTRdc\_comおよび電圧変換比EXRとに基づいてリアクトル電流ILが零点と交差するか否かを判定する。そして、コンバータ制御回路302Cは、リアクトル電流ILが零点と交差するとき、スイッチング動作



## [0277]

これにより、昇圧コンバータ12におけるNPNトランジスタQ1, Q2のスイッチング回数を低減でき、スイッチングノイズを低減できる。また、NPNトランジスタQ1, Q2のスイッチング回数の低減によりスイッチング損失を低減できる。

### [0278]

なお、この発明においては、スイッチングノイズを低減する電圧変換の制御は、実際にはCPUによって行なわれ、CPUは、図23に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図23に示すフローチャートに従って、昇圧コンバータ12のスイッチング動作による昇圧動作または降圧動作を制御する。したがって、ROMは、図23に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。

## [0279]

モータ駆動装置100Cの全体動作は、モータ駆動装置100の全体動作のうち、スイッチングノイズを低減させるコンバータ制御回路302の動作を、上述したコンバータ制御回路302Cの動作に代えたものであり、その他は、モータ駆動装置100の動作と同じである。

## [0280]

その他は、実施の形態1と同じである。

## [実施の形態5]

図24は、実施の形態5によるモータ駆動装置の概略ブロック図である。図24を参照して、実施の形態5によるモータ駆動装置100Dは、モータ駆動装置100の電流センサー11,18を削除し、制御装置30を制御装置30Dに代えたものであり、その他は、モータ駆動装置100と同じである。

## [0281]



### [0282]

制御装置30Dは、その他、制御装置30と同じ機能を果たす。

図25は、図24に示す制御装置30Dのブロック図である。図25を参照して、制御装置30Dは、制御装置30のコンバータ制御回路302をコンバータ制御回路302Dに代えたものであり、その他は、制御装置30と同じである。

### [0283]

コンバータ制御回路302Dは、トルク指令値TR、モータ回転数MRNおよびアクセル開度ACCに基づいて、後述する方法によって、リアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するとき、NPNトランジスタQ1,Q2のスイッチング動作を停止するための信号PWMSを生成し、その生成した信号PWMSを昇圧コンバータ12へ出力する。そして、コンバータ制御回路302Dは、リアクトル電流ILが零点と交差しないとき、信号PWMUまたは信号PWMDを生成し、昇圧動作または降圧動作を行なうように昇圧コンバータ12を制御する。

### [0284]

コンバータ制御回路302Dは、その他、コンバータ制御回路302と同じ機能を果たす。

### [0285]

図26は、図25に示すコンバータ制御回路302Dのブロック図である。図26を参照して、コンバータ制御回路302Dは、コンバータ制御回路302の制御部64を制御部64Dに代え、ピーク検出部65を演算部66に代えたものであり、その他は、コンバータ制御回路302と同じである。

## [0286]

演算部 6 6 は、上述したように、トルク指令値 T R、モータ回転数M R N およびデューティー比 D R (= D R U または D R D) に基づいて、上述した式 (1) ~ (5) を用いて必要な電源電流 I b d c \_\_ c o m および電圧変換比 E X R を演算し、その演算した必要な電源電流 I b d c \_\_ c o m および電圧変換比 E X R を制御部 6 4 D へ出力する。

## [0287]

制御部64Dは、外部ECUからトルク指令値TR、モータ回転数MRNおよびアクセル開度ACCを受け、演算部66から必要な電源電流Ibdc\_comおよび電圧変換比EXRを受ける。また、制御部64Dは、昇圧比とアクセル開度との関係を示すマップおよび降圧比と必要な電源電流との関係を示すマップを保持している。図27は、昇圧比とアクセル開度との関係を示す図である。

### [0288]

図27を参照して、ACCref1は、臨界アクセル開度値を表わす。そして、臨界アクセル開度値ACCref1は、交流モータM1の動作モードが力行モードであるときにリアクトル電流 I Lが零点と交差するときのアクセル開度 A C C C の値である。

## [0289]

アクセル開度ACCが臨界アクセル開度値ACCref1以下のとき、昇圧比は直線k17に従って一定値を保持する。そして、アクセル開度ACCが臨界アクセル開度値ACCref1よりも大きくなると、昇圧比は、直線k18と直線k19とによって囲まれる領域RG9に存在する。

### [0290]

そして、制御部64Dは、図16に示すマップおよび図27に示すマップを保持している。

## [0291]

制御部64Dは、トルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法によって交流モータM1の動作モードが回生モードであるか力行モードであるかを判定する。そして、制御部64Dは、交流モータM1の動作モード

が力行モードであるとき、外部ECUからのアクセル開度ACCおよび演算部66からの電圧変換比EXR(この場合は、昇圧比)が図27に示すマップの直線k17上に存在するか領域RG9に存在するかを判定する。

### [0292]

制御部64Dは、アクセル開度ACCおよび電圧変換比EXRが直線k17上に存在すると判定したとき、リアクトル電流ILが零点と交差すると判断し、アクセル開度ACCおよび電圧変換比EXRが領域RG9に存在すると判定したとき、リアクトル電流ILが零点と交差していないと判断する。

## [0293]

アクセル開度ACCおよび電圧変換比EXRが直線k17上に存在すると判定することは、アクセル開度ACCが臨界アクセル開度値ACCref1よりも大きいか否かを判定し、アクセル開度ACCが臨界アクセル開度値ACCref1以下であると判定することに相当する。また、アクセル開度ACCおよび電圧変換比EXRが領域RG9に存在すると判定することは、アクセル開度ACCが臨界アクセル開度MCCref1よりも大きいか否かを判定し、アクセル開度ACCが臨界アクセル開度MCCref1よりも大きいと判定することに相当する。

### [0294]

制御部64Dは、アクセル開度ACCおよび電圧変換比EXRが直線k17上に存在すると判定したとき、信号STPおよび信号USTPを生成し、その生成した信号STPおよび信号USTPをそれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部62へ出力する。

#### [0295]

また、制御部64Dは、アクセル開度ACCおよび電圧変換比EXRが領域RG9に存在すると判定したとき、信号OPEを生成して電圧指令演算部61へ出力する。

#### [0296]

一方、交流モータM1の動作モードが回生モードであるとき、制御部64Dは、上述した制御部64Bの機能と同じ機能を果たす。

### [0297]

図28は、実施の形態5によるスイッチングノイズを低減する電圧変換の動作を説明するためのフローチャートである。図28を参照して、一連の動作が開始されると、コンバータ制御回路302Dは、外部ECUからトルク指令値TR(すなわち、要求トルク)およびモータ回転数MRNを受ける(ステップS81)。また、コンバータ制御回路302Dは、電圧センサー10から電圧Vbを受ける。そして、コンバータ制御回路302Dの演算部66は、要求トルクTR、モータ回転数MRN、電圧Vbおよびデューティー比DRUまたはDRDに基づいて、上述した方法によって必要な電源電流Ibdc\_comおよび電圧変換比EXRを演算して制御部64Dへ出力する(ステップS83)。

## [0298]

そうすると、制御部64Dは、要求トルクTRおよびモータ回転数MRNに基づいて、上述した方法によって、交流モータM1の動作モードが力行モードであるか回生モードであるかを判定する(ステップS84)。

## [0299]

## [0300]

制御部64Dは、必要な電源電流 I b d c \_\_c o mが負の臨界電流値 I b r e f 2よりも小さいと判定したとき、リアクトル電流 I L が零点と交差していないと判断し、信号OPEを生成して電圧指令演算部61へ出力する。電圧指令演算部61は、制御部64Dから信号OPEを受けると、外部ECUからのトルク指令値 T R およびモータ回転数M R N に基づいて、上述した方法によって電圧指令 V d c \_\_c o mを 演算し、その演算した電圧指令 V d c \_\_c o mを コンバータ用デューティー比演算部62へ出力する。

## [0301]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_comと、電圧Vb, Vmとに基づいて、上述した方法によって、デューティー比DRDを生成してコンバータ用PWM信号変換部63へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRDに基づいて、信号PWMDを生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Dは、降圧制御を許可する(ステップS86)。

## [0302]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1,Q2は、コンバータ制御回路302Dからの信号PWMDに応じてオン/オフされ、コンデンサC2の両端の電圧Vmが電圧指令Vdc\_comになるように電圧Vmを降圧し、その降圧した直流電圧を直流電源Bに供給する。すなわち、電圧・電流制御が行なわれる(ステップS87)。そして、一連の動作が終了する。

# [0303]

一方、ステップS 8 5 において、必要な電源電流 I b d c \_\_c o mが負の臨界電流値 I b r e f 2以上であるとき、制御部 6 4 Dは、昇圧コンバータ1 2 の降圧動作時にリアクトル電流 I Lが零点と交差すると判定し、信号S T P および信号D S T P をそれぞれ電 E 指令演算部 6 1 およびコンバータ用デューティー比演算部 6 2 へ出力する。電圧指令演算部 6 1 は、制御部 6 4 Dから信号S T P を受けると、電圧指令 V d c \_\_c o m \_\_0 を演算し、その演算した電圧指令 V d c \_\_c o m \_\_0 をコンバータ 用デューティー比演算部 6 2 へ出力する。

# [0304]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令 V d c \_\_ c o m \_\_ 0 と、制御部64Dからの信号DSTPとに基づいて、上述した方法によって、デューティー比DR\_100\_0を生成してコンバータ用PWM信号変換部63へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DR\_100\_0に基づ



## [0305]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1は、コンバータ制御回路302Dからの信号PWMS2に応じてオンされ、<math>NPNトランジスタQ2は信号PWMS2に応じてオフされ、昇圧コンバータ12は、スイッチング動作による降圧動作を停止する。そして、昇圧コンバータ12は、NPNトランジスタQ1を介してコンデンサC2から直流電源Bへ直流電流を供給する。すなわち、電流制御が行なわれる(ステップS89)。そして、一連の動作が終了する。

## [0306]

また、ステップS84において、交流モータM1の動作モードが力行モードであると判定されると、コンバータ制御回路302Dの制御部64Dは、さらに、図27に示すマップを参照して、外部ECUから受けたアクセル開度ACCおよび演算部66から受けた電圧変換比EXRが直線k17上に存在するか領域RG9に存在するかを判定することにより、アクセル開度ACCが臨界アクセル開度値ACCref1よりも大きいか否かを判定する(ステップS90)。

## [0307]

制御部64Dは、アクセル開度ACCが臨界アクセル開度値ACCref1よりも大きいと判定したとき、リアクトル電流ILが零点と交差していないと判断し、信号OPEを生成して電圧指令演算部61へ出力する。電圧指令演算部61は、制御部64Dから信号OPEを受けると、外部ECUからのトルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法によって電圧指令Vdc\_comを演算し、その演算した電圧指令Vdc\_comをコンバータ用デューティー比演算部62へ出力する。

# [0308]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_comと、電圧Vb, Vmとに基づいて、上述した方法によって、デューティー比DRUを生成してコンバータ用PWM信号変換部63へ出力する。



## [0309]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1, Q2は、コンバータ制御回路302Dからの信号PWMUに応じてオン/オフされ、昇圧コンバータ12の出力電圧Vmが電圧指令 $Vdc\_comc$ 一致するように直流電源Bからの直流電圧Vbを昇圧し、その昇圧した直流電圧をコンデンサC2に供給する。すなわち、電圧・電流制御が行なわれる(ステップS92)。そして、一連の動作が終了する。

# [0310]

一方、制御部64Dは、ステップS90においてアクセル開度ACCが臨界アクセル開度値ACCref1以下であると判定したとき、昇圧コンバータ12の昇圧動作時にリアクトル電流ILが零点に交差すると判定する。そして、制御部64Dは、信号STPおよび信号USTPを生成し、その生成した信号STPおよび信号USTPをそれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部62へ出力する。

# [0311]

そうすると、電圧指令演算部61は、制御部64Dからの信号STPに基づいて、電圧指令Vdc\_com\_0を生成してコンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令Vdc\_com\_0と制御部64Dからの信号USTPとに基づいて、デューティー比DR\_0を生成してコンバータ用PWM信号変換部63へ出力する。そして、コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DR\_0に基づいて、スイッチング動作による昇圧動作を停止するための信号PWMS1を生成し、その生成した信号PWMS1を昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Dは、昇圧制御を禁止する(ステップS93)。

## [0312]

そうすると、昇圧コンバータ12は、コンバータ制御回路302Dからの信号 PWMS1に応じて、NPNトランジスタQ1, Q2のスイッチング動作を停止し、インバータ14の動作に必要な直流電流をダイオードD1を介して直流電源 BからコンデンサC2に供給する。すなわち、電流制御が行なわれる(ステップ S94)。そして、一連の動作が終了する。

## [0313]

# [0314]

交流モータM1の動作モードが回生モードであるときに、必要な電源電流Ibdc\_comに基づいてリアクトル電流ILが零点と交差するか否かを判定することにしたのは、回生モードにおけるアクセル開度を考えることができないからである。

### [0315]

そして、コンバータ制御回路302Dは、リアクトル電流ILが零点と交差するとき、スイッチング動作による昇圧動作または降圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作または降圧動作を行なうように昇圧コンバータ12を制御する。

### [0316]

これにより、昇圧コンバータ12におけるNPNトランジスタQ1, Q2のス



## [0317]

なお、この発明においては、スイッチングノイズを低減する電圧変換の制御は、実際にはCPUによって行なわれ、CPUは、図28に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図28に示すフローチャートに従って、昇圧コンバータ12のスイッチング動作による昇圧動作または降圧動作を制御する。したがって、ROMは、図28に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。

## [0318]

モータ駆動装置100Dの全体動作は、モータ駆動装置100の全体動作のうち、スイッチングノイズを低減させるコンバータ制御回路302の動作を、上述したコンバータ制御回路302Dの動作に代えたものであり、その他は、モータ駆動装置100の動作と同じである。

# [0319]

その他は、実施の形態1,3と同じである。

# [実施の形態6]

図29は、実施の形態6によるモータ駆動装置の概略ブロック図である。図29を参照して、実施の形態6によるモータ駆動装置100Eは、モータ駆動装置100の電流センサー11,18を削除し、制御装置30を制御装置30Eに代えたものであり、その他は、モータ駆動装置100と同じである。

# [0320]

制御装置30Eは、外部ECUからのトルク指令値TR、モータ回転数MRN およびアクセル開度ACCに基づいて、後述する方法によってリアクトル電流 I Lが零点と交差するか否かを判定する。そして、制御装置30Eは、リアクトル 電流 I Lが零点と交差するときスイッチング動作による昇圧動作または降圧動作 を停止するように昇圧コンバータ12を制御し、リアクトル電流 I Lが零点と交



## [0321]

制御装置30Eは、その他、制御装置30と同じ機能を果たす。

図30は、図29に示す制御装置30Eのブロック図である。図30を参照して、制御装置30Eは、制御装置30のコンバータ制御回路302をコンバータ制御回路302Eに代えたものであり、その他は、制御装置30と同じである。

## [0322]

コンバータ制御回路302 Eは、トルク指令値TR、モータ回転数MRNおよびアクセル開度ACCに基づいて、後述する方法によって、リアクトル電流ILが零点と交差するとき、が零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するとき、NPNトランジスタQ1、Q2のスイッチング動作を停止するための信号PWMSを生成し、その生成した信号PWMSを昇圧コンバータ12へ出力する。そして、コンバータ制御回路302 Eは、リアクトル電流ILが零点と交差しないとき、信号PWMUまたは信号PWMDを生成し、スイッチング動作による昇圧動作または降圧動作を行なうように昇圧コンバータ12を制御する。

# [0323]

コンバータ制御回路302Eは、その他、コンバータ制御回路302と同じ機能を果たす。

# [0324]

図31は、図30に示すコンバータ制御回路302Eのブロック図である。図31を参照して、コンバータ制御回路302Eは、コンバータ制御回路302の制御部64を制御部64Eに代え、ピーク検出部65を演算部66Aに代えたものであり、その他は、コンバータ制御回路302と同じである。

# [0325]

演算部66Aは、上述したように、トルク指令値TR、モータ回転数MRNおよび電圧Vbに基づいて、上述した式(1)、(3)および(4)を用いて電圧変換比EXRを演算し、その演算した電圧変換比EXRを制御部64Eへ出力する。

# [0326]

制御部64Eは、外部ECUからトルク指令値TR、モータ回転数MRNおよびアクセル開度ACCを受け、演算部66Aから電圧変換比EXRを受ける。また、制御部64Eは、昇圧比とアクセル開度との関係を示すマップおよび降圧比と要求トルクTRdc\_comとの関係を示すマップを保持している。すなわち、制御部64Eは、図22に示すマップおよび図27に示すマップを保持している。

## [0327]

制御部 64 E は、トルク指令値 T R およびモータ回転数 M R N に基づいて、上述した方法によって交流モータ M 1 の動作モードが回生モードであるか力行モードであるかを判定する。そして、制御部 64 E は、交流モータ M 1 の動作モードが力行モードであると判定したとき、上述した制御部 64 D の機能と同じ機能を果たす。また、制御部 64 E は、交流モータ M 1 の動作モードが回生モードであると判定したとき、上述した制御部 64 C の機能と同じ機能を果たす。

# [0328]

つまり、制御部64Eは、交流モータM1の動作モードが回生モードであるとき、外部ECUからの要求トルクTRdc\_comに基づいてリアクトル電流ILが零点と交差するか否かを判定し、交流モータM1の動作モードが力行モードであるとき、外部ECUからのアクセル開度ACCに基づいてリアクトル電流ILが零点と交差するか否かを判定する。そして、制御部64Eは、回生モードおよび力行モードにおいて、リアクトル電流ILが零点と交差していないと判定したとき、信号OPEを生成して電圧指令演算部61へ出力する。また、制御部64Eは、交流モータM1の力行モードにおいてリアクトル電流ILが零点と交差すると判定したとき、信号STPおよび信号USTPをそれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部62へ出力する。さらに、制御部64Eは、交流モータM1の回生モードにおいてリアクトル電流ILが零点と交差すると判定したとき、信号STPおよび信号DSTPを生成し、その生成した信号STPおよび信号DSTPを生成し、その生成した信号STPおよび信号DSTPを生成し、その生成した信号STPおよび信号DSTPをとれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部

62へ出力する。

## [0329]

図32は、実施の形態6によるスイッチングノイズを低減する電圧変換の動作を説明するためのフローチャートである。図32に示すフローチャートは、図28に示すフローチャートにおいてステップS81~ステップS89をステップS100~ステップS107に代えたものであり、その他は、図28に示すフローチャートと同じである。

## [0330]

図32を参照して、一連の動作が開始されると、コンバータ制御回路302Eは、外部ECUからトルク指令値TR(すなわち、要求トルクTRdc\_com)およびモータ回転数MRNを受ける(ステップS100)。また、コンバータ制御回路302Eは、外部ECUからアクセル開度ACCを受ける(ステップS101)。さらに、コンバータ制御回路302Eは、電圧センサー10から電圧Vbを受ける。そして、コンバータ制御回路302Eの演算部66Aは、要求トルクTRdc\_com、モータ回転数MRN、および電圧Vbに基づいて、上述した方法によって電圧変換比EXRを演算して制御部64Eへ出力する。

# [0331]

そうすると、制御部64Eは、要求トルクTRdc\_comおよびモータ回転数MRNに基づいて、上述した方法によって、交流モータM1の動作モードが力で 行モードであるか回生モードであるかを判定する(ステップS102)。

# [0332]

そして、制御部64Eは、交流モータM1の動作モードが回生モードであると判定したとき、さらに、図22に示すマップを参照して、外部ECUから受けた要求トルクTRdc\_comおよび演算部66Aから受けた電圧変換比EXRが直線k14上に存在するか領域RG8に存在するかを判定することにより、要求トルクTRdc\_comが負の臨界トルク値TRref2よりも小さいか否かを判定する(ステップS103)。

### [0333]

制御部64Eは、要求トルクTRdc\_\_comが負の臨界トルク値TRref

2よりも小さいと判定したとき、リアクトル電流 I Lが零点と交差していないと判断し、信号OPEを生成して電圧指令演算部 6 1 へ出力する。電圧指令演算部 6 1 は、制御部 6 4 Eから信号OPEを受けると、外部ECUからのトルク指令値 T R およびモータ回転数M R N に基づいて、上述した方法によって電圧指令 V d c \_ c o mを 演算し、その演算した電圧指令 V d c \_ c o mを コンバータ用デューティー比演算部 6 2 へ出力する。

# [0334]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令 V d c \_ c o m と、電圧 V b , V m とに基づいて、上述した方法によって、デューティー比DRDを生成してコンバータ用PWM信号変換部63へ出力する。コンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DRDに基づいて、信号 PWMDを生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Eは、降圧制御を許可する(ステップS104)。

# [0335]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1, Q2は、コンバータ制御回路302Eからの信号PWMDに応じてオン/オフされ、コンデンサC2の両端の電圧<math>Vmが電圧指令 $Vdc\_com$ になるように電圧Vmを降圧し、その降圧した直流電圧を直流電源Bに供給する。すなわち、電圧・電流制御が行なわれる(ステップS105)。そして、一連の動作が終了する。

#### [0336]

一方、ステップS103において、要求トルクTRdc\_comが負の臨界トルク値TRref2以上であるとき、制御部64Eは、昇圧コンバータ12の降圧動作時にリアクトル電流ILが零点と交差すると判定し、信号STPおよび信号DSTPを生成し、その生成した信号STPおよび信号DSTPをそれぞれ電圧指令演算部61およびコンバータ用デューティー比演算部62へ出力する。電圧指令演算部61は、制御部64Eから信号STPを受けると、電圧指令Vdc\_com\_0をコンバータ用デューティー比演算部62へ出力する。

## [0337]

コンバータ用デューティー比演算部62は、電圧指令演算部61からの電圧指令 V d c \_ c o m \_ 0 と、制御部64Eからの信号DSTPとに基づいて、上述した方法によって、デューティー比DR\_100\_0を生成してコンバータ用PWM信号変換部63は、コンバータ用デューティー比演算部62からのデューティー比DR\_100\_0に基づいて、信号PWMS2を生成して昇圧コンバータ12へ出力する。これにより、コンバータ制御回路302Eは、降圧制御を禁止する(ステップS106)。

# [0338]

そうすると、昇圧コンバータ12において、NPNトランジスタQ1は、コンバータ制御回路302Eからの信号PWMS2に応じてオンされ、<math>NPNトランジスタQ2は信号PWMS2に応じてオフされ、昇圧コンバータ12は、スイッチング動作による降圧動作を停止する。そして、昇圧コンバータ12は、<math>NPNトランジスタQ1を介してコンデンサC2から直流電源Bへ直流電流を供給する。すなわち、電流制御が行なわれる(ステップS107)。そして、一連の動作が終了する。

# [0339]

また、ステップS102において、交流モータM1の動作モードが力行モードであると判定されると、上述したステップS90~ステップS94(図28参照)が実行される。そして、一連の動作が終了する。

# [0340]

このように、コンバータ制御回路302Eは、トルク指令値TRと、モータ回転数MRNとに基づいて交流モータM1の動作モードを判定し、その判定した動作モードとアクセル開度ACCおよび要求トルクTRdc\_comとに基づいてリアクトル電流ILが零点と交差するか否かを判定する。すあわち、コンバータ制御回路302Eは、交流モータM1の動作モードが力行モードであるとき、アクセル開度ACCに基づいてリアクトル電流ILが零点と交差するか否かを判定し、交流モータM1の動作モードが回生モードであるとき、要求トルクTRdc\_comに基づいてリアクトル電流ILが零点と交差するか否かを判定する。

# [0341]

交流モータM1の動作モードが回生モードであるときに、要求トルクTRdc \_comに基づいてリアクトル電流ILが零点と交差するか否かを判定すること にしたのは、回生モードにおけるアクセル開度を考えることができないからであ る。

## [0342]

そして、コンバータ制御回路302Eは、リアクトル電流ILが零点と交差するとき、スイッチング動作による昇圧動作または降圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作または降圧動作を行なうように昇圧コンバータ12を制御する。

### [0343]

これにより、昇圧コンバータ12におけるNPNトランジスタQ1, Q2のスイッチング回数を低減でき、スイッチングノイズを低減できる。また、NPNトランジスタQ1, Q2のスイッチング回数の低減によりスイッチング損失を低減できる。

# [0344]

なお、この発明においては、スイッチングノイズを低減する電圧変換の制御は、実際にはCPUによって行なわれ、CPUは、図32に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図32に示すフローチャートに従って、昇圧コンバータ12のスイッチング動作による昇圧動作または降圧動作を制御する。したがって、ROMは、図32に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。

### [0345]

モータ駆動装置100Eの全体動作は、モータ駆動装置100の全体動作のうち、スイッチングノイズを低減させるコンバータ制御回路302の動作を、上述したコンバータ制御回路302Eの動作に代えたものであり、その他は、モータ駆動装置100の動作と同じである。

### [0346]

その他は、実施の形態1,4,5と同じである。

なお、上述したモータ駆動装置100,100A,100B,100C,10 0D,100Eは、1つの交流モータを駆動するものと説明したが、この発明に おいては、モータ駆動装置は、複数のモータを駆動するものであってもよい。こ の場合、モータ駆動装置は、複数のモータに対応して複数のインバータを含む。 そして、複数のインバータは、昇圧コンバータ12の出力側であるコンデンサC 2の両端に並列に接続される。

### [0347]

以下、モータ駆動装置100を搭載したハイブリッド自動車について説明する。図33は、図1に示すモータ駆動装置100を搭載したハイブリッド自動車110の断面図を示す。なお、図33においては、モータ駆動装置100は、2つのモータ60,70を駆動するモータ駆動装置として示されている。

### [0348]

図33を参照して、モータ駆動装置100のモータ60は、ハイブリッド自動車110の前輪111に近接して配置される。IPM(Intelligent Power Module)80は、モータ60の近くに配置され、ケーブル93を介してモータ60と接続される。直流電源Bおよび昇圧コンバータ12は、前輪111と後輪112との間に配置される。そして、直流電源Bは、ケーブル91を介して昇圧コンバータ12と接続され、昇圧コンバータ12は、ケーブル92を介してIPM80および81と接続される。モータ60は、前輪111およびエンジン240に連結される。

#### [0349]

モータ70は、ハイブリッド自動車110の後輪112に近接して配置される。 IPM81は、モータ70の近くに配置される。そして、IPM81は、ケーブル94を介してモータ70と接続される。モータ70は、後輪112と連結される。

#### [0350]

なお、ケーブル91,92は、(+,-)を有する高圧直流電源線である。ま



### [0351]

図34は、図1に示すモータ駆動装置100を搭載したハイブリッド自動車110の駆動システムを示す概略プロック図である。図34を参照して、駆動システム200は、モータ駆動装置100と、前輪111と、後輪112と、動力分割機構210と、ディファレンシャルギア(DG:Differential Gear) 220, 230と、エンジン240と、モータジェネレータMG1~MG3とを備える。

#### [0352]

駆動システム 200 においては、モータジェネレータMG1, MG2はモータ 60 に相当し、モータジェネレータMG3はモータ70 に相当する。そして、モータ60が2つのモータジェネレータMG1, MG2によって構成されることに対応して、IPM80は、2つのインバータ80A, 80Bからなる。インバータ80Aは、モータジェネレータMG1を駆動し、インバータ80Bは、モータジェネレータMG2を駆動する。また、IPM81は、インバータ81Aを含む。そして、インバータ81Aは、モータジェネレータMG3を駆動する。

### [0353]

モータジェネレータMG1は、動力分割機構210を介してエンジン240と連結される。そして、モータジェネレータMG1は、エンジン240を始動し、またはエンジン240の回転力によって発電する。

#### [0354]

また、モータジェネレータMG2は、動力分割機構210を介して前輪111 を駆動する。

#### [0355]

さらに、モータジェネレータMG3は、後輪112を駆動する。

図35は、図34に示す動力分割機構210の模式図を示す。図35を参照して、動力分割機構210は、リングギア211と、キャリアギア212と、サンギア213とから成る。エンジン240のシャフト251は、プラネタリキャリア253を介してキャリアギア212に接続され、モータジェネレータMG1の

シャフト252は、サンギア213に接続され、モータジェネレータMG2のシャフト254は、リングギア211に接続されている。なお、モータジェネレータMG2のシャフト254は、DG220を介して前輪111の駆動軸に連結される。

## [0356]

モータジェネレータMG1は、シャフト252、サンギア213、キャリアギア212およびプラネタリキャリア253を介してシャフト251を回転し、エンジン240を始動する。また、モータジェネレータMG1は、シャフト251、プラネタリキャリア253、キャリアギア212、サンギア213およびシャフト252を介してエンジン240の回転力を受け、その受けた回転力によって発電する。

# [0357]

再び、図34を参照して、駆動システム200が搭載されたハイブリッド自動車の始動時、発進時、軽負荷走行モード、中速低負荷走行モード、加速・急加速モード、低 $\mu$ 路走行モードおよび減速・制動モードにおける駆動システム200の動作について説明する。なお、始動時、発進時、軽負荷走行モード、中速低負荷走行モード、加速・急加速モード、低 $\mu$ 路走行モードおよび減速・制動モードにおけるモータ60,70のトルク指令値TR1,TR2および信号PWMU,PWMD,PWMI1,PWMI2,PWMC1,PWMC2を表1に示す。

### [0358]

## 【表1】

|                            | 1      |        |         |                  |          |         |         |
|----------------------------|--------|--------|---------|------------------|----------|---------|---------|
| 信号 PWMI2<br>or<br>信号 PWMC2 |        | PWMI21 | -       |                  | PWMI22   | PWM123  | PWMC2   |
| 信号 PWMI1<br>or<br>信号 PWMC1 | PWMI11 | PWMI12 | PWMI13  | PWMI11           | PWMI14   | PWMC1   | PWMC1   |
| 信号 PWMU<br>or<br>信号 PWMD   | PWMU1  | PWMU2  | PWMU3   | PWMU1            | PWMU4    | PWMU5   | PWMD1   |
| モ-9 70 のNか<br>指令値 TR2      |        | TR21   |         | †<br>8<br>1<br>1 | TR22     | TR23    | TR24    |
| モラ60のMが<br>指令値 TR.1        | TR11   | TR12   | TR13    | TR11             | TR14     | TR15    | TRIG    |
| M7゚リッド<br>自動車の状態           | 始動時    | 発進時    | 軽負荷走行干片 | 中速低負荷走行七十        | 加速·急加速于广 | 低μ路走行モド | 減速-制動モト |

# [0359]

まず、ハイブリッド自動車110のエンジン始動時における駆動システム20 0の動作について説明する。一連の動作が開始されると、制御装置30は、外部 ECUからトルク指令値TR11およびモータ回転数MRN1を受ける。そして 、制御装置30は、トルク指令値TR11、モータ回転数MRN1、電圧センサ ー10からの電圧Vb、電圧センサー13からの電圧Vmに基づいて信号PWM U1を生成して昇圧コンバータ12へ出力する。また、制御装置30は、電圧Vmと、電流センサー24からのモータ電流MCRT1(モータ電流MCRTの一種)と、トルク指令値TR11とに基づいて、上述した方法によって信号PWMI11を生成し、その生成した信号PWMI11をインバータ80Aへ出力する

## [0360]

そうすると、昇圧コンバータ12は、制御装置30からの信号PWMU1に応じて直流電源Bからの直流電圧を昇圧してインバータ80Aに供給する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作を行なうように昇圧コンバータ12を制御する。

# [0361]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作を行ない、電圧指令Vdc\_comに一致する電圧Vmをインバータ80Aに供給する。

# [0362]

インバータ80Aは、昇圧コンバータ12からの直流電圧を信号PWMI11 に応じて交流電圧に変換し、トルク指令値TR11によって指定されたトルクを 出力するようにモータジェネレータMG1を駆動する。

# [0363]

これによって、モータジェネレータMG1は、動力分割機構210を介してエンジン240のクランクシャフト251を回転数MRN1で回転し、エンジン240を始動する。これにより、ハイブリッド自動車110のエンジン始動時における駆動システム200の動作が終了する。

## [0364]

次に、ハイブリッド自動車110の発進時における駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は、トルク指令値TR12およびTR21と、モータ回転数MRN1, MRN2とを外部ECUから受ける。この場合、トルク指令値TR12は、始動後のエンジン240の回転力によってモータジェネレータMG1を発電機として機能させるためのトルク指令値TR121と、モータジェネレータMG2を発進用に用いるためのトルク指令値TR122とからなる。トルク指令値TR21は、モータジェネレータMG3を発進用に用いるためのトルク指令値である。

# [0365]

制御装置30は、トルク指令値TR122と、モータ電流MCRT1と、電圧センサー13からの電圧Vmとに基づいて、上述した方法によって信号PWMI12を生成してインバータ80Bへ出力する。また、制御装置30は、トルク指令値TR121と、モータ電流MCRT1と、電圧Vmとに基づいて、上述した方法によって信号PWMC1を生成してインバータ80Aへ出力する。さらに、制御装置30は、トルク指令値TR21と、モータ電流MCRT2と、電圧センサー13からの電圧Vmとに基づいて上述した方法により信号PWMI21を生成してインバータ81Aへ出力する。さらに、制御装置30は、トルク指令値TR122またはTR21、電圧Vb、Vmおよびモータ回転数MRN1またはMRN2に基づいて、上述した方法によって信号PWMU2を生成して昇圧コンバータ12へ出力する。

### [0366]

そうすると、昇圧コンバータ12は、制御装置30からの信号PWMU2に応じて、直流電源Bから出力された電圧Vbを昇圧し、その昇圧した直流電圧をインバータ80Bおよび81Aへ供給する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作を停止するように昇圧コンバータ



## [0367]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作を行ない、電圧指令Vdc\_comに一致する電圧Vmをインバータ80Bおよび81Aに供給する。また、インバータ80Aは、モータジェネレータMG1がエンジン240の回転力により発電した交流電圧を信号PWMC1によって直流電圧に変換し、その変換した直流電圧をインバータ80Bに供給する。インバータ80Bは、昇圧コンバータ12からの直流電圧とインバータ80Aからの直流電圧とを受け、その受けた直流電圧を信号PWMI12に応じて交流電圧に変換し、トルク指令値TR122によって指定されたトルクを出力するようにモータジェネレータMG2は、動力分割機構210およびディファレンシャルギア220を介して前輪111を駆動する。

# [0368]

また、インバータ81Aは、昇圧コンバータ12からの直流電圧を受け、その受けた直流電圧を信号PWMI21によって交流電圧に変換してトルク指令値TR21によって指定されたトルクを出力するようにモータジェネレータMG3を駆動する。そして、モータジェネレータMG3は、ディファレンシャルギア230を介して後輪112を駆動する。

#### [0369]

このようにして、ハイブリッド自動車110の前輪111はモータジェネレータMG2によって回転され、後輪112はモータジェネレータMG3によって回転され、ハイブリッド自動車110は4WDで発進する。これにより、ハイブリッド自動車110の発進時における駆動システム200の動作が終了する。

### [0370]

次に、ハイブリッド自動車110が軽負荷走行モードにある場合の駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は



### [0371]

制御装置30は、トルク指令値TR13と、モータ回転数MRN1と、電圧センサー10からの電圧Vbと、電圧センサー13からの電圧Vmとに基づいて信号PWMU3を生成して昇圧コンバータ12へ出力する。また、制御装置30は、電圧Vmと、電流センサー24からのモータ電流MCRT1と、外部ECUからのトルク指令値TR13とに基づいて、上述した方法によって信号PWMI13を生成し、その生成した信号PWMI13をインバータ80Bへ出力する。

### [0372]

そうすると、昇圧コンバータ12は、制御装置30からの信号PWMU3に応じて直流電源Bからの直流電圧を昇圧してインバータ80Bに供給する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作を行なうように昇圧コンバータ12を制御する。

#### [0373]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作を行ない、電圧指令Vdc\_comに一致する電圧Vmをインバータ80Bに供給する。

### [0374]

そして、インバータ80Bは、昇圧コンバータ12からの直流電圧を信号PW MI13に応じて交流電圧に変換し、トルク指令値TR13によって指定されたトルクを出力するようにモータジェネレータMG2を駆動する。そして、モータ

ジェネレータMG2は、動力分割機構210およびディファレンシャルギア220を介して前輪111を駆動し、ハイブリッド自動車110は、モータジェネレータMG2によって軽負荷走行を行なう。これにより、ハイブリッド自動車110が軽負荷走行モードにある場合の駆動システム200の動作が終了する。

## [0375]

次に、ハイブリッド自動車110が中速低負荷走行モードにある場合の駆動システム200の動作について説明する。この場合の駆動システム200の動作は、上述したハイブリッド自動車110のエンジン240の始動時における駆動システム200の動作と同じである。そして、モータジェネレータMG1は、エンジン240を始動し、ハイブリッド自動車は、エンジン240の駆動力によって走行する。

### [0376]

次に、ハイブリッド自動車110が加速・急加速モードにある場合の駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は、トルク指令値TR14およびTR22と、モータ回転数MRN1,MRN2とを外部ECUから受ける。トルク指令値TR14は、モータジェネレータMG1を発電機として機能させるためのトルク指令値TR141とモータジェネレータMG2を加速・急加速用に用いるためのトルク指令値TR142とからなる。トルク指令値TR22は、モータジェネレータMG3を加速・急加速用に用いるためのトルク指令値である。

# [0377]

制御装置30は、トルク指令値TR142と、モータ電流MCRT1と、電圧センサー13からの電圧Vmとに基づいて、上述した方法によって信号PWMI14を生成してインバータ80Bへ出力する。また、制御装置30は、トルク指令値TR141と、モータ電流MCRT1と、電圧Vmとに基づいて、上述した方法によって信号PWMC1を生成してインバータ80Aへ出力する。さらに、制御装置30は、トルク指令値TR22と、モータ電流MCRT2と、電圧センサー13からの電圧Vmとに基づいて上述した方法により信号PWMI22を生成してインバータ81Aへ出力する。さらに、制御装置30は、トルク指令値T



#### [0378]

そうすると、昇圧コンバータ12は、制御装置30からの信号PWMU4に応じて、直流電源Bから出力された電圧Vbを昇圧し、その昇圧した直流電圧をインバータ80Bおよび81Aへ供給する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作を存止する。

# [0379]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作を行ない、電圧指令Vdc\_comに一致する電圧Vmをインバータ80Bおよび81Aに供給する。

#### [0380]

そして、インバータ80Aは、モータジェネレータMG1がエンジン240の回転力(エンジン240の回転数は加速前よりも高くなっている。)により発電した交流電圧を信号PWMC1によって直流電圧に変換し、その変換した直流電圧をインバータ80Bに供給する。インバータ80Bは、昇圧コンバータ12からの直流電圧とインバータ80Aからの直流電圧とを受け、その受けた直流電圧を信号PWMI14に応じて交流電圧に変換し、トルク指令値TR142によって指定されたトルクを出力するようにモータジェネレータMG2を駆動する。

#### [0381]

そして、モータジェネレータMG2は、動力分割機構210およびディファレンシャルギア220を介して前輪111を駆動する。

### [0382]

また、インバータ81Aは、昇圧コンバータ12からの直流電圧を受け、その受けた直流電圧を信号PWMI22によって交流電圧に変換してトルク指令値TR22によって指定されたトルクを出力するようにモータジェネレータMG3を駆動する。そして、モータジェネレータMG3は、ディファレンシャルギア230を介して後輪112を駆動する。

## [0383]

このようにして、ハイブリッド自動車110の前輪111はエンジン240およびモータジェネレータMG2によって回転され、後輪112はモータジェネレータMG3によって回転され、ハイブリッド自動車110は4WDで加速・急加速する。これにより、ハイブリッド自動車110の加速・急加速モードにおける駆動システム200の動作が終了する。

#### [0384]

次に、ハイブリッド自動車110が低 $\mu$ 路走行モードにある場合の駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は、トルク指令値TR15, TR23およびモータ回転数MRN2を外部ECUから受ける。なお、トルク指令値TR15は、モータジェネレータMG2を回生モードで駆動するためのトルク指令値であり、トルク指令値TR23は、モータジェネレータMG3を駆動モータとして用いるためのトルク指令値である。

## [0385]

制御装置30は、トルク指令値TR15、モータ電流MCRT1および電圧Vmに基づいて、上述した方法によって信号PWMC1を生成してインバータ80Bへ出力する。

## [0386]

この低μ路走行モードにおいては、エンジン240は前輪111を駆動しており、前輪111の駆動力の一部がモータジェネレータMG2に伝達される。

# [0387]

そうすると、インバータ80Bは、信号PWMC1に応じて、モータジェネレータMG2を回生モードで駆動し、前輪111の駆動力の一部を受けてモータジ



### [0388]

また、制御装置30は、トルク指令値TR23と、モータ電流MCRT2と、電圧Vmとに基づいて信号PWMI23を生成してインバータ81Aへ出力する。インバータ81Aは、インバータ80Bからの直流電圧を受け、その受けた直流電圧を信号PWMI23によって交流電圧に変換してトルク指令値TR23によって指定されたトルクを出力するようにモータジェネレータMG3を駆動する。そして、モータジェネレータMG3は、ディファレンシャルギア230を介して後輪112を駆動する。これにより、ハイブリッド自動車110は、エンジン240の駆動力によって前輪111を駆動し、前輪111の駆動力の一部を受けてモータジェネレータMG2が発電した電力によって後輪112を駆動し、4WDにより低μ路走行を行なう。この場合、昇圧コンバータ12は停止されているのでスイッチングノイズは低減する。

### [0389]

モータジェネレータMG2が発電した電力によってモータジェネレータMG3が後輪112を駆動できない場合、制御装置30は、トルク指令値TR23と、モータ回転数MRN2と、電圧センサー10からの電圧Vbと、電圧センサー13からの電圧Vmとに基づいて上述した方法により信号PWMU5を生成して昇圧コンバータ12へ出力する。

#### [0390]

昇圧コンバータ12は、制御装置30からの信号PWMU5に基づいて、直流電源Bからの直流電圧を昇圧してインバータ81Aに供給する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作を行なうように昇圧コンバータ12を制御す

る。

### [0391]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作を行ない、電圧指令Vdc\_comに一致する電圧Vmをインバータ81Aに供給する。

### [0392]

そして、インバータ81Aは、昇圧コンバータ12およびインバータ80Bから供給された直流電圧を信号PWMI23によって交流電圧に変換してモータジェネレータMG3を駆動する。そして、モータジェネレータMG3は、ディファレンシャルギア230を介して後輪112を駆動する。これにより、ハイブリッド自動車110は、エンジン240の駆動力によって前輪111を駆動し、前輪111の駆動力の一部を受けてモータジェネレータMG2が発電した電力および直流電源Bからの電力によって後輪112を駆動し、4WDにより低 $\mu$ 路走行を行なう。

### [0393]

これにより、ハイブリッド自動車110の低μ路走行モードにおける駆動システム200の動作が終了する。

#### [0394]

最後に、ハイブリッド自動車110が減速・制動モードにある場合の駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は、外部ECUからトルク指令値TR16,TR24を受ける。そして、制御装置30は、トルク指令値TR16,TR24に応じて、モータジェネレータMG2および/またはモータジェネレータMG3を回生モードで駆動する。すなわち、制御装置30は、トルク指令値TR16,TR24と、モータ電流MCRT1,MCRT2と、電圧Vmとに基づいて、それぞれ、信号PWMC1および信号PWMC2をそれぞれ、インバータ80Bおよびインバータ81Aへ出力する。また、制御装置30は、トルク指令値TR16,TR24、モータ回転数MRN1,MRN2およ



## [0395]

そうすると、インバータ80Bは、モータジェネレータMG2が発電した交流電圧を信号PWMC1に基づいて直流電圧に変換して昇圧コンバータ12へ供給する。また、インバータ81Aは、モータジェネレータMG3が発電した交流電圧を信号PWMC2に基づいて直流電圧に変換して昇圧コンバータ12へ供給する。そして、昇圧コンバータ30は、インバータ80Bおよび81Aからの直流電圧を信号PWMD1に基づいて降圧する。

## [0396]

この場合、制御装置30は、電流センサー11からの電源電流Ibと、電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による降圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による降圧動作を行なうように昇圧コンバータ12を制御する。

## [0397]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による降圧動作を行ない、昇圧コンバータ12の出力電圧Vmが電圧指令Vdc\_comに一致するように電圧Vmを降圧して直流電源Bを充電する。

### [0398]

これにより、ハイブリッド自動車110は、回生プレーキおよび/または機械 ブレーキによって減速・制動を行なう。そして、ハイブリッド自動車110の減 速・制動時における駆動システム200の動作が終了する。

# [0399]

なお、上記においては、モータ駆動装置100を駆動システム200に用いた場合について説明したが、モータ駆動装置100に代えてモータ駆動装置100



### [0400]

図36は、図1に示すモータ駆動装置100を搭載した電気自動車110Aの断面図である。なお、図36においても、モータ駆動装置100は、2つのモータ60,70を駆動するモータ駆動装置として示されている。図36を参照して、電気自動車110Aは、ハイブリッド自動車110のエンジン240を削除し、IPM80をIPM90に代えたものであり、その他は、ハイブリッド自動車110と同じである。

### [0401]

図37は、図1に示すモータ駆動装置100を搭載した電気自動車110Aの電気駆動システムを示す概略プロック図である。図37を参照して、電気駆動システム200Aは、モータ駆動装置100と、モータジェネレータMG1, MG2と、前輪111Aと、後輪112Aと、ディファレンシャルギア220, 230とを備える。

### [0402]

電気駆動システム 2 0.0 Aにおいては、モータジェネレータMG 1 はモータ 6 0 に相当し、モータジェネレータMG 2 はモータ 7 0 に相当する。そして、モータ 6 0 が 1 つのモータジェネレータMG 1 によって構成されることに対応して、IPM 9 0 は、1 つのインバータ 9 0 Aを含む。インバータ 9 0 Aは、モータジェネレータMG 1 を駆動する。また、IPM 8 1 に含まれるインバータ 8 1 Aは、モータジェネレータMG 2 を駆動する。

#### [0403]

モータジェネレータMG1は、前輪111Aを駆動する。また、モータジェネレータMG2は、後輪112Aを駆動する。

#### [0404]

電気駆動システム 200 A が搭載された電気自動車 110 A の発進時、軽負荷 走行モード、中速低負荷走行モード、加速・急加速モード、低 μ 路走行モードお よび減速・制動モードにおける電気駆動システム 200 A の動作について説明す る。なお、発進時、軽負荷走行モード、中速低負荷走行モード、加速・急加速モ



[0.405]

# 【表2】

| Mプリッド<br>自動車の状態 | t-9 60 のトルク<br>指令値 TR1 | E-9 70 のMが<br>指令値 TR2 | 信号 PWMU<br>or<br>信号 PWMD | 信号 PWMI.1<br>or<br>信号 PWMC1 | 信号 PWMI2<br>or<br>信号 PWMC2               |
|-----------------|------------------------|-----------------------|--------------------------|-----------------------------|------------------------------------------|
| 発進時             | TR11                   | TR21                  | PWMU1                    | PWMT11                      | PWHI21                                   |
| 軽負荷走行干,         | TR12                   |                       | PWMU2                    | PWMI12                      | \$ 5 P P P P P P P P P P P P P P P P P P |
| 中速低負荷走行干。       | TR13                   |                       | PWMU3                    | PWMI13                      |                                          |
| 加速·急加速+-ド       | TR14                   | TR22                  | PWMU4                    | PWMI14                      | PWMI22                                   |
| 低µ路走行干广         | TR15                   | TR23                  | PWMD1                    | PWMC11                      | PWMI23                                   |
| 減速·制動モト         | TR16                   | TR24                  | PWMD2                    | PWMC12                      | PWMC21                                   |

# [0406]

まず、電気自動車110Aの発進時における電気駆動システム200Aの動作



### [0407]

制御装置30は、電圧Vmと、モータ電流MCRT1と、外部ECUからのトルク指令値TR11とに基づいて、上述した方法によって信号PWMI11を生成し、その生成した信号PWMI11をインバータ90Aへ出力する。また、制御装置30は、トルク指令値TR21と、モータ電流MCRT2と、電圧Vmとに基づいて信号PWMI21を生成し、その生成した信号PWMI21をインバータ81Aへ出力する。

### [0408]

さらに、制御装置30は、トルク指令値TR11またはTR21と、電圧Vb, Vmと、モータ回転数MRN1またはMRN2とに基づいて、上述した方法によって信号PWMU1を生成して昇圧コンバータ12へ出力する。

#### [0409]

そうすると、昇圧コンバータ12は、直流電源Bからの直流電圧を制御装置30からの信号PWMU1に応じて昇圧し、その昇圧した直流電圧をインバータ90A,81Aへ供給する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作を存止するように昇圧コンバータ12を制御し、

### [0410]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング



### [0411]

インバータ90Aは、昇圧コンバータ12からの直流電圧を信号PWMI11 に応じて交流電圧に変換し、トルク指令値TR11によって指定されたトルクを 出力するようにモータジェネレータMG1を駆動する。そして、モータジェネレ ータMG1は、ディファレンシャルギア220を介して前輪111Aを駆動する

## [0412]

また、インバータ81Aは、昇圧コンバータ12から供給された直流電圧を信号PWMI21によって交流電圧に変換してトルク指令値TR21によって指定 されたトルクを出力するようにモータジェネレータMG2を駆動する。そして、モータジェネレータMG2は、ディファレンシャルギア230を介して後輪112Aを駆動する。

## [0413]

このようにして、電気自動車110Aの前輪111Aは、モータジェネレータ MG1によって回転され、後輪112Aは、モータジェネレータMG2によって 回転され、電気自動車110Aは、4WDで発進する。これにより、電気自動車110Aの発進時における電気駆動システム200Aの動作が終了する。

### [0414]

次に、電気自動車110Aが軽負荷走行モードにある場合の電気駆動システム 200Aの動作について説明する。一連の動作が開始されると、制御装置30は 、トルク指令値TR12およびモータ回転数MRN1を外部ECUから受ける。

## [0415]

制御装置30は、電圧Vmと、モータ電流MCRT1と、トルク指令値TR12とに基づいて、上述した方法によって信号PWMI12を生成し、その生成した信号PWMI12をインバータ90Aへ出力する。また、制御装置30は、トルク指令値TR21と、電圧Vb, Vmと、モータ回転数MRN1とに基づいて、上述した方法によって信号PWMU2を生成し、その生成した信号PWMU2



### [0416]

そうすると、昇圧コンバータ12は、直流電源Bからの直流電圧を制御装置30からの信号PWMU2に応じて昇圧し、その昇圧した直流電圧をインバータ90Aへ供給する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作を行なうように昇圧コンバータ12を制御する。

### [0417]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作を行ない、電圧指令Vdc\_comに一致する電圧Vmをインバータ90Aに供給する。

#### [0418]

インバータ90Aは、昇圧コンバータ12からの直流電圧を信号PWMI12に応じて交流電圧に変換し、トルク指令値TR12によって指定されたトルクを出力するようにモータジェネレータMG1を駆動する。そして、モータジェネレータMG1は、ディファレンシャルギア220を介して前輪111Aを駆動し、電気自動車110Aは、モータジェネレータMG1によって軽負荷走行を行なう。これにより、電気自動車110Aが軽負荷走行モードにある場合の電気駆動システム200Aの動作が終了する。

#### [0419]

次に、電気自動車110Aが中速低負荷走行モードにある場合の電気駆動システム200Aの動作について説明する。一連の動作が開始されると、制御装置30は、外部ECUからトルク指令値TR13およびモータ回転数MRN1を受ける。そして、制御装置30は、電圧Vmと、モータ電流MCRT1と、トルク指

ページ: 100/

令値TR13とに基づいて、上述した方法によって信号PWMI13を生成し、その生成した信号PWMI13をインバータ90Aへ出力する。また、制御装置30は、トルク指令値TR13と、電圧Vb, Vmと、モータ回転数MRN1とに基づいて、上述した方法によって信号PWMU3を生成し、その生成した信号PWMU3を昇圧コンバータ12へ出力する。

#### [0420]

そうすると、昇圧コンバータ12は、直流電源Bからの直流電圧を制御装置30からの信号PWMU3に応じて昇圧し、その昇圧した直流電圧をインバータ90Aへ供給する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作を行なうように昇圧コンバータ12を制御する。

### [0421]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作を行ない、電圧指令Vdc\_comに一致する電圧Vmをインバータ90Aに供給する。

#### [0422]

インバータ90Aは、昇圧コンバータ12からの直流電圧を信号PWMI13 に応じて交流電圧に変換し、トルク指令値TR13によって指定されたトルクを 出力するようにモータジェネレータMG1を駆動する。

### [0423]

これによって、モータジェネレータMG1は、ディファレンシャルギア220を介して前輪111Aを駆動する。そして、電気自動車110Aは、中速低負荷で走行する。これにより、電気自動車110Aの中速低負荷走行モードにおける電気駆動システム200Aの動作が終了する。

### [0424]

次に、電気自動車110Aが加速・急加速モードにある場合の電気駆動システム200Aの動作について説明する。一連の動作が開始されると、制御装置30は、トルク指令値TR14およびTR22とモータ回転数MRN1,MRN2とを外部ECUから受ける。なお、トルク指令値TR14は、モータジェネレータMG1を加速・急加速用に用いるためのトルク指令値であり、トルク指令値TR22は、モータジェネレータMG2を加速・急加速用に用いるためのトルク指令値である。

### [0425]

制御装置30は、電圧Vmと、モータ電流MCRT1と、トルク指令値TR14とに基づいて、上述した方法によって信号PWMI14を生成し、その生成した信号PWMI14をインバータ90Aへ出力する。また、制御装置30は、電圧Vmと、モータ電流MCRT2と、トルク指令値TR22とに基づいて、上述した方法によって信号PWMI22を生成し、その生成した信号PWMI22をインバータ81Aへ出力する。さらに、制御装置30は、トルク指令値TR14またはTR22と、電圧Vb、Vmと、モータ回転数MRN1またはMRN2とに基づいて、信号PWMU4を生成し、その生成した信号PWMU4を昇圧コンバータ12へ出力する。

## [0426]

そうすると、昇圧コンバータ12は、直流電源Bからの直流電圧を制御装置30からの信号PWMU4に応じて昇圧し、その昇圧した直流電圧をインバータ90Aおよび81Aへ供給する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するときスイッチング動作による昇圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作を存止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による昇圧動作を行なうように昇圧コンバータ12を制御する。

### [0427]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による昇圧動作を行ない、電圧指令Vdc\_comに一致する電圧Vmをインバータ90Aおよび81Aに供給する。

### [0428]

インバータ90Aは、昇圧コンバータ12からの直流電圧を信号PWMI14 に応じて交流電圧に変換し、トルク指令値TR14によって指定されたトルクを 出力するようにモータジェネレータMG1を駆動する。そして、モータジェネレ ータMG1は、ディファレンシャルギア220を介して前輪111Aを駆動する

#### [0429]

また、インバータ81Aは、昇圧コンバータ12から供給された直流電圧を信号PWMI22によって交流電圧に変換してトルク指令値TR22によって指定されたトルクを出力するようにモータジェネレータMG2を駆動する。そして、モータジェネレータMG2は、ディファレンシャルギア230を介して後輪112Aを駆動する。

### [0430]

このようにして、電気自動車110Aの前輪111Aは、モータジェネレータ MG1によって回転され、後輪112Aは、モータジェネレータMG2によって回転され、電気自動車110Aは、4WDで加速・急加速する。これにより、電気自動車110Aの加速・急加速モードにおける電気駆動システム200Aの動作が終了する。

#### [0431]

次に、電気自動車110 Aが低 $\mu$  路走行モードにある場合の電気駆動システム 200 Aの動作について説明する。一連の動作が開始されると、制御装置 30 は、トルク指令値TR15, TR23とモータ回転数MRN1, MRN2とを外部 ECUから受ける。なお、トルク指令値TR15は、モータジェネレータMG1 を回生モードで駆動するための信号であり、トルク指令値TR23は、モータジェネレータMG2を駆動モータとして用いるためのトルク指令値である。

## [0432]

制御装置30は、トルク指令値TR15、電圧Vmおよびモータ電流MCRT1に基づいて、上述した方法によって信号PWMC11を生成し、その生成した信号PWMC11をインバータ90Aへ出力する。また、制御装置30は、トルク指令値TR23、電圧Vmおよびモータ電流MCRT2に基づいて、上述した方法によって信号PWMI23を生成し、その生成した信号PWMI23をインバータ81Aへ出力する。さらに、制御装置30は、トルク指令値TR15またはTR22、電圧Vb, Vmおよびモータ回転数MRN1またはMRN2に基づいて、上述した方法によって信号PWMD1を生成して昇圧コンバータ12へ出力する。

## [0433]

そうすると、インバータ90Aは、信号PWMC11に応じて、モータジェネレータMG1を回生モードで駆動し、前輪111Aの駆動力の一部を受けてモータジェネレータMG1が発電した交流電圧を直流電圧に変換して昇圧コンバータ12およびインバータ81Aへ供給する。インバータ81Aは、インバータ90Aから供給された直流電圧を信号PWMI23によって交流電圧に変換してトルク指令値TR23によって指定されたトルクを出力するようにモータジェネレータMG2を駆動する。そして、モータジェネレータMG2は、ディファレンシャルギア230を介して後輪112Aを駆動する。

# [0434]

また、昇圧コンバータ12は、インバータ90Aからの直流電圧を制御装置30からの信号PWMD1に応じて降圧し、その降圧した直流電圧によって直流電源Bを充電する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による降圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による降圧動作を行なうように昇圧コンバータ12を制御する。



昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による降圧動作を行ない、電圧指令Vdc\_comに一致するように電圧Vmを降圧して直流電源Bを充電する。

#### [0436]

これにより、電気自動車110 Aは、前輪111 Aの駆動力の一部を受けてモータジェネレータMG 1 が発電した電力によって後輪112 Aを駆動するとともに直流電源Bを充電し、低 $\mu$  路走行を行なう。その結果、電気自動車110 Aは、安定して低 $\mu$  路走行を行なう。そして、電気自動車110 Aの低 $\mu$  路走行時における電気駆動システム 200 Aの動作が終了する。

#### [0437]

最後に、電気自動車110Aが減速・制動モードにある場合の電気駆動システム200Aの動作について説明する。一連の動作が開始されると、制御装置30は、トルク指令値TR16,TR24およびモータ回転数MRN1,MRN2を外部ECUから受ける。トルク指令値TR16は、モータジェネレータMG1を回生モードで駆動するためのトルク指令値であり、トルク指令値TR24は、モータジェネレータMG2を回生モードで駆動するためのトルク指令値である。

#### [0438]

制御装置30は、トルク指令値TR16,TR24、電圧Vm、およびモータ電流MCRT1,MCRT2に基づいて、信号PWMC12および/または信号PWMC21を生成してそれぞれインバータ90Aおよび/またはインバータ81Aへ出力する。また、制御装置30は、トルク指令値TR16またはTR24、電圧Vb,Vmおよびモータ回転数MRN1またはMRN2に基づいて、信号PWMD2を生成し、その生成した信号PWMD2を昇圧コンバータ12へ出力する。

#### [0439]

インバータ90Aは、信号PWMC12に応じて、モータジェネレータMG1 を回生モードで駆動し、前輪111Aの駆動力の一部を受けてモータジェネレー タMG1が発電した交流電圧を直流電圧に変換して昇圧コンバータ12へ供給する。また、インバータ81Aは、信号PWMC21に応じて、モータジェネレータMG2を回生モードで駆動し、後輪112Aの駆動力の一部を受けてモータジェネレータMG2が発電した交流電圧を直流電圧に変換して昇圧コンバータ12へ供給する。

# [0440]

そして、昇圧コンバータ12は、インバータ90Aおよび/または81Aからの直流電圧を制御装置30からの信号PWMD2によって降圧し、その降圧した直流電圧によって直流電源Bを充電する。そして、制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILの最大値ILmaxおよび最小値ILminとに基づいて、上述した方法によってリアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するか否かを判定し、リアクトル電流ILが零点と交差するときスイッチング動作による降圧動作を停止するように昇圧コンバータ12を制御し、リアクトル電流ILが零点と交差しないときスイッチング動作による降圧動作を行なうように昇圧コンバータ12を制御する。

# [0441]

昇圧コンバータ12は、リアクトル電流ILが零点と交差するとき、スイッチング動作を停止し、リアクトル電流ILが零点と交差しないとき、スイッチング動作による降圧動作を行ない、電圧指令Vdc\_comに一致するように電圧Vmを降圧して直流電源Bを充電する。

### [0442]

これにより、電気自動車110Aは、回生ブレーキおよび/または機械ブレーキによって減速・制動を行なう。そして、電気自動車110Aの減速・制動時における電気駆動システム200の動作が終了する。

## [0443]

なお、上記においては、電気自動車110Aは、モータ駆動装置100を搭載すると説明したが、この発明は、これに限らず、電気自動車110Aは、モータ駆動装置100A, 100B, 100C, 100D, 100Eのいずれかを搭載してもよい。

### [0444]

# [好ましい実施形態]

この発明によるモータ駆動装置においては、制御回路は、リアクトル電流の最大値の極性がリアクトル電流の最小値の極性と同じであることを検出すると、スイッチング動作による昇圧動作または降圧動作を行なうように電圧変換器を制御する。

#### [0445]

また、この発明によるモータ駆動装置においては、制御回路は、リアクトル電流の最大値またはリアクトル電流の最小値が正であるとき、スイッチング動作による昇圧動作を行なうように電圧変換器を制御する。

#### [0446]

さらに、この発明によるモータ駆動装置においては、制御回路は、リアクトル 電流の最大値またはリアクトル電流の最小値が負であるとき、スイッチング動作 による降圧動作を行なうように電圧変換器を制御する。

### [0447]

さらに、この発明によるモータ駆動装置は、電流センサーをさらに備える。電流センサーは、リアクトル電流を検出する。そして、制御回路は、電流センサーにより検出されたリアクトル電流に基づいてリアクトル電流の最大値および最小値を検出し、その検出したリアクトル電流の最大値および最小値とモータの動作モードとに基づいてスイッチング動作を停止するか否かを判定する。

#### [0448]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モータが力行モードであり、かつ、リアクトル電流の最小値が零以下であるとき、スイッチング動作による昇圧動作を停止するように電圧変換器を制御する。

#### [0449]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが力行モードであり、かつ、リアクトル電流の最小値が正であるとき、スイッチング動作による昇圧動作を行なうように電圧変換器をさらに制御する。

#### [0450]



#### [0451]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが回生モードであり、かつ、リアクトル電流の最大値が負であるとき、スイッチング動作による降圧動作を行なうように電圧変換器をさらに制御する。

#### [0452]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが力行モードであり、かつ、必要な電源電流が正の臨界電流値以下であるとき、昇圧動作を停止するように電圧変換器を制御する。そして、正の臨界電流値は、モータの動作モードが力行モードであるときにリアクトル電流が零点と交差するときの必要な電源電流の電流値である。

## [0453]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが力行モードであり、かつ、必要な電源電流が正の臨界電流値よりも大きいとき、スイッチング動作による昇圧動作を行なうように電圧変換器をさらに制御する。

#### [0454]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータが力行モードにおいて要求パワーを出力するときの電圧変換器における昇圧比と、必要な電源電流との関係を示し、かつ、正の臨界電流値が含まれるマップを保持しており、必要な電源電流をマップに含まれる正の臨界電流値と比較した比較結果に応じてスイッチング動作による昇圧動作を停止し、またはスイッチング動作による昇圧動作を存止し、またはスイッチング動作による昇圧動作を存止し、またはスイッチング動作による昇圧動作を行なうように電圧変換器を制御する。

#### [0455]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが回生モードであり、かつ、必要な電源電流が負の臨界電流値以上であるとき、スイッチング動作による降圧動作を停止するように電圧変換器を制御す



### [0456]

さらに、この発明によるモータ駆動装置においては、制御回路は、モードの動作モードが回生モードであり、かつ、必要な電源電流が負の臨界電流値よりも小さいとき、スイッチング動作による降圧動作を行なうように電圧変換器をさらに制御する。

#### [0457]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータが回生モードにおいて要求パワーを出力するときの電圧変換器における降圧比と、必要な電源電流との関係を示し、かつ、負の臨界電流値が含まれるマップを保持しており、必要な電源電流をマップに含まれる負の臨界電流値と比較した比較結果に応じてスイッチング動作による降圧動作を停止し、またはスイッチング動作による降圧動作を存止し、またはスイッチング動作による降圧動作を存止し、またはスイッチング動作による降圧動作を行なうように電圧変換器を制御する。

### [0458]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが力行モードであり、かつ、要求トルクが正の臨界トルク値以下であるとき、スイッチング動作による昇圧動作を停止するように電圧変換器を制御する。そして、正の臨界トルク値は、モータの動作モードが力行モードであるときにリアクトル電流が零点と交差するときの要求トルクのトルク値である。

### [0459]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが力行モードであり、かつ、要求トルクが正の臨界トルク値よりも大きいとき、スイッチング動作による昇圧動作を行なうように電圧変換器をさらに制御する。

## [0460]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータが力 行モードにおいて要求パワーを出力するときの電圧変換器における昇圧比と、要 求トルクとの関係を示し、かつ、正の臨界トルク値が含まれるマップを保持して



### [0461]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが回生モードであり、かつ、要求トルクが負の臨界トルク値以上であるとき、スイッチング動作による降圧動作を停止するように電圧変換器を制御する。そして、負の臨界トルク値は、モータの動作モードが回生モードであるときにリアクトル電流が零点と交差するときの要求トルクのトルク値である。

# [0462]

さらに、この発明によるモータ駆動装置においては、制御回路は、モードの動作モードが回生モードであり、かつ、要求トルクが負の臨界トルク値よりも小さいとき、スイッチング動作による降圧動作を行なうように電圧変換器をさらに制御する。

### [0463]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータが回生モードにおいて要求パワーを出力するときの電圧変換器における降圧比と、要求トルクとの関係を示し、かつ、負の臨界トルク値が含まれるマップを保持しており、要求トルクをマップに含まれる負の臨界トルク値と比較した比較結果に応じてスイッチング動作による降圧動作を停止し、またはスイッチング動作による降圧動作を行なうように電圧変換器を制御する。

# [0464]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが力行モードであるとき、アクセル開度に基づいてスイッチング動作による昇圧動作を停止するか否かを判定し、モータの動作モードが回生モードであるとき、要求トルクに基づいてスイッチング動作による降圧動作を停止するか否かを判定する。

# [0465]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動

作モードが力行モードであり、かつ、アクセル開度が臨界アクセル開度値以下であるとき、スイッチング動作による昇圧動作を停止するように電圧変換器を制御する。そして、臨界アクセル開度値は、モータの動作モードが力行モードであるときにリアクトル電流が零点と交差するときのアクセル開度の値である。

### [0466]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが力行モードであり、かつ、アクセル開度が臨界アクセル開度値よりも大きいとき、スイッチング動作による昇圧動作を行なうように電圧変換器をさらに制御する。

### [0467]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータが力行モードにおいて要求パワーを出力するときの電圧変換器における昇圧比と、アクセル開度との関係を示し、かつ、臨界アクセル開度値が含まれるマップを保持しており、アクセル開度をマップに含まれる臨界アクセル開度値と比較した比較結果に応じてスイッチング動作による昇圧動作を停止し、またはスイッチング動作による昇圧動作を行なうように電圧変換器を制御する。

# [0468]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが回生モードであり、かつ、要求トルクが負の臨界トルク値以上であるとき、スイッチング動作による降圧動作を停止するように電圧変換器を制御する。そして、負の臨界トルク値は、モータの動作モードが回生モードであるときにリアクトル電流が零点と交差するときの要求トルクのトルク値である。

# [0469]

さらに、この発明によるモータ駆動装置においては、制御回路は、モードの動作モードが回生モードであり、かつ、要求トルクが負の臨界トルク値よりも小さいとき、スイッチング動作による降圧動作を行なうように電圧変換器をさらに制御する。

# [0470]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータが回

生モードにおいて要求パワーを出力するときの電圧変換器における降圧比と、要求トルクとの関係を示し、かつ、負の臨界トルク値が含まれるマップを保持しており、要求トルクをマップに含まれる負の臨界トルク値と比較した比較結果に応じてスイッチング動作による降圧動作を停止し、またはスイッチング動作による降圧動作を行なうように電圧変換器を制御する。

#### [0471]

さらに、この発明によるモータ駆動装置においては、制御回路は、当該モータ 駆動装置が搭載された自動車のアクセル開度とモータの動作モードとモータが要 求パワーを出力するために必要な電源電流とに基づいてスイッチング動作を停止 するか否かを判定し、その判定結果に応じてスイッチング動作による昇圧動作ま たはスイッチング動作による降圧動作を停止するように電圧変換器を制御する。

#### [0472]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが力行モードであるとき、アクセル開度に基づいてスイッチング動作による昇圧動作を停止するか否かを判定し、モータの動作モードが回生モードであるとき、必要な電源電流に基づいてスイッチング動作による降圧動作を停止するか否かを判定する。

#### [0473]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが力行モードであり、かつ、アクセル開度が臨界アクセル開度値以下であるとき、スイッチング動作による昇圧動作を停止するように電圧変換器を制御する。そして、臨界アクセル開度値は、モータの動作モードが力行モードであるときにリアクトル電流が零点と交差するときのアクセル開度の値である。

#### [0474]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが力行モードであり、かつ、アクセル開度が臨界アクセル開度値よりも大きいとき、スイッチング動作による昇圧動作を行なうように電圧変換器をさらに制御する。

#### [0475]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータが力行モードにおいて要求パワーを出力するときの電圧変換器における昇圧比と、アクセル開度との関係を示し、かつ、臨界アクセル開度値が含まれるマップを保持しており、アクセル開度をマップに含まれる臨界アクセル開度値と比較した比較結果に応じてスイッチング動作による昇圧動作を停止し、またはスイッチング動作による昇圧動作を存止し、またはスイッチング動作による昇圧動作を存止し、またはスイッチング動作による昇圧動作を存むうように電圧変換器を制御する。

#### [0476]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータの動作モードが回生モードであり、かつ、必要な電源電流が負の臨界電流値以上であるとき、スイッチング動作による降圧動作を停止するように電圧変換器を制御する。そして、負の臨界電流値は、モータの動作モードが回生モードであるときにリアクトル電流が零点と交差するときの必要な電源電流の電流値である。

#### [0477]

さらに、この発明によるモータ駆動装置においては、制御回路は、モードの動作モードが回生モードであり、かつ、必要な電源電流が負の臨界電流値よりも小さいとき、スイッチング動作による降圧動作を行なうように電圧変換器をさらに制御する。

## [0478]

さらに、この発明によるモータ駆動装置においては、制御回路は、モータが回生モードにおいて要求パワーを出力するときの電圧変換器における降圧比と、必要な電源電流との関係を示し、かつ、負の臨界電流値が含まれるマップを保持しており、必要な電源電流をマップに含まれる負の臨界電流値と比較した比較結果に応じてスイッチング動作による降圧動作を停止し、またはスイッチング動作による降圧動作を停止し、またはスイッチング動作による降圧動作を停止し、またはスイッチング動作による降圧動作を行なうように電圧変換器を制御する。

# [0479]

この発明によるプログラムにおいては、第1のステップは、リアクトル電流の最大値および最小値を検出する第1のサブステップと、リアクトル電流の最大値の極性がリアクトル電流の最小値の極性と異なるとき、リアクトル電流が零点と交差すると判定する第2のサブステップと、リアクトル電流の最大値の極性がリ

アクトル電流の最小値の極性と同じであるとき、リアクトル電流が零点と交差しないと判定する第3のサブステップとを含む。また、第2のステップは、第2のサブステップの後、電源に入出力する電源電流を検出する第4のサブステップと、電源電流が電源から電圧変換器へ流れるとき、スイッチング動作による昇圧動作を停止するように電圧変換器を制御する第5のサブステップと、電源電流が電圧変換器から電源へ流れるとき、スイッチング動作による降圧動作を停止するように電圧変換器を制御する第6のサブステップとを含む。

#### [0480]

また、この発明によるプログラムは、リアクトル電流が零点と交差しないとき、スイッチング動作による昇圧動作またはスイッチング動作による降圧動作を行なうように電圧変換器を制御する第3のステップをさらにコンピュータに実行させる。

### [0481]

さらに、この発明によるプログラムにおいては、第3のステップは、第3のサブステップの後、リアクトル電流の最大値またはリアクトル電流の最小値が正であるとき、スイッチング動作による昇圧動作を行なうように電圧変換器を制御する第7のサブステップと、第3のサブステップの後、リアクトル電流の最大値またはリアクトル電流の最小値が負であるとき、スイッチング動作による降圧動作を行なうように電圧変換器を制御する第8のサブステップとを含む。

#### [0482]

さらに、この発明によるプログラムにおいては、第1のステップは、リアクトル電流の最大値および最小値を検出する第1のサブステップと、モータの動作モードが力行モードであり、かつ、リアクトル電流が零点と交差すると判定する第2のサブステップと、モータの動作モードが回生モードであり、かつ、リアクトル電流の最大値が零以上であるとき、モータの回生モードにおいてリアクトル電流が零点と交差すると判定する第3のサブステップと、モータの動作モードが力行モードであり、かつ、リアクトル電流の最小値が零よりも大きいとき、モータの力行モードにおいてリアクトル電流が零点と交差しないと判定する第4のサブステ



### [0483]

さらに、この発明によるプログラムは、リアクトル電流が零点と交差しないとき、スイッチング動作による昇圧動作またはスイッチング動作による降圧動作を行なうように電圧変換器を制御する第3のステップをさらにコンピュータに実行させる。

# [0484]

さらに、この発明によるプログラムにおいては、第3のステップは、第4のサブステップの後、スイッチング動作による昇圧動作を行なうように電圧変換器を制御する第8のサブステップと、第5のサブステップの後、スイッチング動作による降圧動作を行なうように電圧変換器を制御する第9のサブステップとを含む。

# [0485]

さらに、この発明によるプログラムにおいては、第1のステップは、モータが 要求パワーを出力するために必要な電源電流を決定する第1のサブステップと、 モータの動作モードが力行モードであり、かつ、必要な電源電流が正の臨界電流 値以下であるとき、モータの力行モードにおいてリアクトル電流が零点と交差す ると判定する第2のサブステップと、モータの動作モードが回生モードであり、 かつ、必要な電源電流が負の臨界電流値以上であるとき、モータの回生モードに おいてリアクトル電流が零点と交差すると判定する第3のサブステップと、モー タの動作モードが力行モードであり、かつ、必要な電源電流が正の臨界電流値よ りも大きいとき、モータの力行モードにおいてリアクトル電流が零点と交差しな いと判定する第4のサブステップと、モータの動作モードが回生モードであり、 かつ、必要な電源電流が負の臨界電流値よりも小さいとき、モータの回生モードにおいてリアクトル電流が零点と交差しないと判定する第5のサブステップとを含む。また、第2のステップは、第2のサブステップの後、スイッチング動作による昇圧動作を停止するように電圧変換器を制御する第6のサブステップと、第3のサブステップの後、スイッチング動作による降圧動作を停止するように電圧変換器を制御する第7のサブステップとを含む。そして、正の臨界電流値は、モータの動作モードが力行モードにあるときにリアクトル電流が零点と交差するときの必要な電源電流の電流値である。また、負の臨界電流値は、モータの動作モードが回生モードにあるときにリアクトル電流が零点と交差するときの必要な電源電流の電流値である。

#### [0486]

さらに、この発明によるプログラムは、リアクトル電流が零点と交差しないとき、スイッチング動作による昇圧動作またはスイッチング動作による降圧動作を行なうように電圧変換器を制御する第3のステップをさらにコンピュータに実行させる。

### [0487]

さらに、この発明によるプログラムにおいては、第3のステップは、第4のサブステップの後、スイッチング動作による昇圧動作を行なうように電圧変換器を制御する第8のサブステップと、第5のサブステップの後、スイッチング動作による降圧動作を行なうように電圧変換器を制御する第9のサブステップとを含む

#### [0488]

さらに、この発明によるプログラムにおいては、第1のステップは、モータの 要求トルクを受ける第1のサブステップと、モータの動作モードが力行モードで あり、かつ、要求トルクが正の臨界トルク値以下であるとき、モータの力行モー ドにおいてリアクトル電流が零点と交差すると判定する第2のサブステップと、 モータの動作モードが回生モードであり、かつ、要求トルクが負の臨界トルク値 以上であるとき、モータの回生モードにおいてリアクトル電流が零点と交差する と判定する第3のサブステップと、モータの動作モードが力行モードであり、か つ、要求トルクが正の臨界トルク値よりも大きいとき、モータの力行モードにおいてリアクトル電流が零点と交差しないと判定する第4のサブステップと、モータの動作モードが回生モードであり、かつ、要求トルクが負の臨界トルク値よりも小さいとき、モータの回生モードにおいてリアクトル電流が零点と交差しないと判定する第5のサブステップとを含む。また、第2のステップは、第2のサブステップの後、スイッチング動作による昇圧動作を停止するように電圧変換器を制御する第6のサブステップと、第3のサブステップの後、スイッチング動作による降圧動作を停止するように電圧変換器を制御する第7のサブステップとを含む。そして、正の臨界トルク値は、モータの動作モードが力行モードにあるときにリアクトル電流が零点と交差するときの要求トルクのトルク値である。

### [0489]

さらに、この発明によるプログラムは、リアクトル電流が零点と交差しないとき、スイッチング動作による昇圧動作またはスイッチング動作による降圧動作を行なうように電圧変換器を制御する第3のステップをさらにコンピュータに実行させる。

### [0490]

さらに、この発明によるプログラムにおいては、第3のステップは、第4のサプステップの後、スイッチング動作による昇圧動作を行なうように電圧変換器を制御する第8のサブステップと、第5のサブステップの後、スイッチング動作による降圧動作を行なうように電圧変換器を制御する第9のサブステップとを含む。

### [0491]

さらに、この発明によるプログラムにおいては、第1のステップは、自動車のアクセル開度を受ける第1のサブステップと、モータが要求パワーを出力するために必要な電源電流を決定する第2のサブステップと、モータの動作モードが力行モードであり、かつ、アクセル開度が臨界アクセル開度値以下であるとき、モータの力行モードにおいてリアクトル電流が零点と交差すると判定する第3のサ

ブステップと、モータの動作モードが回生モードであり、かつ、必要な電源電流が負の臨界電流値以上であるとき、モータの回生モードにおいてリアクトル電流が零点と交差すると判定する第4のサブステップと、モータの動作モードが力行モードであり、かつ、アクセル開度が臨界アクセル開度値よりも大きいとき、モータの力行モードにおいてリアクトル電流が零点と交差しないと判定する第5のサブステップと、モータの動作モードが回生モードであり、かつ、必要な電源電流が負の臨界電流値よりも小さいとき、モータの回生モードにおいてリアクトル電流が零点と交差しないと判定する第6のサブステップとを含む。また、第2のステップは、第3のサブステップの後、スイッチング動作による昇圧動作を停止するように電圧変換器を制御する第7のサブステップと、第4のサブステップの後、スイッチング動作による降圧動作を停止するように電圧変換器を制御する第8のサブステップとを含む。そして、臨界アクセル開度値は、モータの動作モードが力行モードにあるときにリアクトル電流が零点と交差するときのアクセル開度の値である。また、負の臨界電流値は、モータの動作モードが回生モードにあるときにリアクトル電流が零点と交差するときの必要な電源電流の電流値である。

### [0492]

さらに、この発明によるプログラムは、リアクトル電流が零点と交差しないとき、スイッチング動作による昇圧動作またはスイッチング動作による降圧動作を行なうように電圧変換器を制御する第3のステップをさらにコンピュータに実行させる。

#### [0493]

さらに、この発明によるプログラムにおいては、第3のステップは、第5のサブステップの後、スイッチング動作による昇圧動作を行なうように電圧変換器を制御する第9のサブステップと、第6のサブステップの後、スイッチング動作による降圧動作を行なうように電圧変換器を制御する第10のサブステップとを含む。

#### [0494]

さらに、この発明によるプログラムにおいては、第1のステップは、自動車の

アクセル開度を受ける第1のサブステップと、モータの要求トルクを受ける第2 のサブステップと、モータの動作モードが力行モードであり、かつ、アクセル開 度が臨界アクセル開度値以下であるとき、モータの力行モードにおいてリアクト ル電流が零点と交差すると判定する第3のサブステップと、モータの動作モード が回生モードであり、かつ、要求トルクが負の臨界トルク値以上であるとき、モ ータの回生モードにおいてリアクトル電流が零点と交差すると判定する第4のサ ブステップと、モータの動作モードが力行モードであり、かつ、アクセル開度が 臨界アクセル開度値よりも大きいとき、モータの力行モードにおいてリアクトル 電流が零点と交差しないと判定する第5のサブステップと、モータの動作モード が回生モードであり、かつ、要求トルクが負の臨界トルク値よりも小さいとき、 モータの回生モードにおいてリアクトル電流が零点と交差しないと判定する第6 のサブステップとを含む。また、第2のステップは、第3のサブステップの後、 スイッチング動作による昇圧動作を停止するように電圧変換器を制御する第7の サブステップと、第4のサブステップの後、スイッチング動作による降圧動作を 停止するように電圧変換器を制御する第8のサブステップとを含む。臨界アクセ ル開度値は、モータの動作モードが力行モードにあるときにリアクトル電流が零 点と交差するときのアクセル開度の値である。また、負の臨界トルク値は、モー タの動作モードが回生モードにあるときにリアクトル電流が零点と交差するとき の要求トルクのトルク値である。

### [0495]

さらに、この発明によるプログラムは、リアクトル電流が零点と交差しないとき、スイッチング動作による昇圧動作またはスイッチング動作による降圧動作を行なうように電圧変換器を制御する第3のステップをさらにコンピュータに実行させる。

# [0496]

さらに、この発明によるプログラムにおいては、第3のステップは、第5のサブステップの後、スイッチング動作による昇圧動作を行なうように電圧変換器を制御する第9のサブステップと、第6のサブステップの後、スイッチング動作による降圧動作を行なうように電圧変換器を制御する第10のサブステップとを含

む。

# [0497]

今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなく て特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内で のすべての変更が含まれることが意図される。

# 【図面の簡単な説明】

- 【図1】 実施の形態1によるモータ駆動装置の概略ブロック図である。
- 【図2】 図1に示す制御装置のブロック図である。
- 【図3】 図2に示すインバータ制御回路のブロック図である。
- 【図4】 モータのトルクとモータの回転数との関係を示す図である。
- 【図5】 図2に示すコンバータ制御回路のブロック図である。
- 【図6】 リアクトル電流のタイミングチャートである。
- 【図7】 実施の形態1によるスイッチングノイズを低減する電圧変換の動作を説明するためのフローチャートである。
  - 【図8】 実施の形態2によるモータ駆動装置の概略ブロック図である。
  - 【図9】 図8に示す制御装置のブロック図である。
  - 【図10】 図9に示すコンバータ制御回路のブロック図である。
- 【図11】 実施の形態2によるスイッチングノイズを低減する電圧変換の動作を説明するためのフローチャートである。
  - 【図12】 実施の形態3によるモータ駆動装置の概略ブロック図である。
  - 【図13】 図12に示す制御装置のブロック図である。
  - 【図14】 図13に示すコンバータ制御回路のブロック図である。
  - 【図15】 昇圧比と電源電流との関係を示す図である。
  - 【図16】 降圧比と電源電流との関係を示す図である。
- 【図17】 実施の形態3によるスイッチングノイズを低減する電圧変換の動作を説明するためのフローチャートである。
  - 【図18】 実施の形態4によるモータ駆動装置の概略ブロック図である。
  - 【図19】 図18に示す制御装置のブロック図である。



- 【図20】 図19に示すコンバータ制御回路の機能ブロック図である。
- 【図21】 昇圧比と要求トルクとの関係を示す図である。
- 【図22】 降圧比と要求トルクとの関係を示す図である。
- 【図23】 実施の形態4によるスイッチングノイズを低減する電圧変換の 動作を説明するためのフローチャートである。
  - 【図24】 実施の形態5によるモータ駆動装置の概略ブロック図である。
  - 【図25】 図24に示す制御装置のブロック図である。
  - 【図26】 図25に示すコンバータ制御回路のブロック図である。
  - 【図27】 アクセル開度と昇圧比との関係を示す図である。
- 【図28】 実施の形態5によるスイッチングノイズを低減する電圧変換の 動作を説明するためのフローチャートである。
  - 【図29】 実施の形態6によるモータ駆動装置の概略ブロック図である。
  - 【図30】 図29に示す制御装置のブロック図である。
  - 【図31】 図30に示すコンバータ制御回路のブロック図である。
- 【図32】 実施の形態6によるスイッチングノイズを低減する電圧変換の動作を説明するためのフローチャートである。
- 【図33】 図1に示すモータ駆動装置を搭載したハイブリッド自動車の断面図である。
- 【図34】 図1に示すモータ駆動装置を搭載したハイブリッド自動車の駆動システムを示す概略プロック図である。
  - 【図35】 図34に示す動力分割機構の模式図である。
- 【図36】 図1に示すモータ駆動装置を搭載した電気自動車の断面図である。
- 【図37】 図1に示すモータ駆動装置を搭載した電気自動車の電気駆動システムを示す概略ブロック図である。
  - 【図38】 従来のモータ駆動装置の概略ブロック図である。
- 【図39】 リアクトル電流の極性が反転しない場合のリアクトル電流、NPNトランジスタを流れる電流およびダイオードを流れる電流のタイミングチャートである。

ページ: 121/E



# 【符号の説明】

10, 13, 320 電圧センサー、11, 18, 24 電流センサー、12 昇圧コンバータ、14,80A,80B,81A,90A,330 インバー タ、15 U相アーム、16 V相アーム、17 W相アーム、30,30A, 30日,30日,30日 制御装置、41 モータ制御用相電圧演算部 、42 インバータ用PWM信号変換部、60,70 モータ、61 電圧指令 演算部、62 コンバータ用デューティー比演算部、63 コンバータ用PWM 信号変換部、64,64A,64B,64C,64D,64E 制御部、65 ピーク検出部、66,66A 演算部、80,81,90 IPM、91~94 ケーブル、100, 100A, 100B, 100C, 100D, 100E, 4 00 モータ駆動装置、110 ハイブリッド自動車、110A 電気自動車、 111, 111A 前輪、112, 112A 後輪、200 駆動システム、2 00A 電気駆動システム、210 動力分割機構、211 リングギア、21 2 キャリアギア、213 サンギア、220,230 ディファレンシャルギ ア、251, 252, 254 シャフト、253 プラネタリキャリア、240 エンジン、301 インバータ制御回路、302,302A,302B,30 2C, 302D, 302E コンバータ制御回路、310 双方向コンバータ、 L1 リアクトル、Q1~Q10, Tr1, Tr2 NPNトランジスタ、C1 , C 2 コンデンサ、D 1 ~ D 8 ダイオード、B 直流電源、S R 1, S R 2 システムリレー、M1 交流モータ、MG1, MG2, MG3 モータジェネ レータ。



【書類名】

図面

# 【図1】



【図2】



【図3】



【図4】











【図7】



【図8】



【図9】







# 【図11】







# 【図13】











# 【図16】



【図17】



【図18】



【図19】











# 【図22】



#### 【図23】







# 【図25】











【図28】







# 【図30】







【図32】























【図38】







# 【図40】



【書類名】

要約書

【要約】

【課題】 スイッチングノイズを低減可能なモータ駆動装置を提供する。

【解決手段】 制御装置30は、電流センサー11からの電源電流Ibと電流センサー18からのリアクトル電流ILとを受ける。そして、制御装置30は、リアクトル電流ILに基づいて最大値ILmaxおよび最小値ILminを検出し、その検出した最大値ILmaxおよび最小値ILminと電源電流Ibとに基づいてリアクトル電流ILが零点と交差するか否かを判定する。制御装置30は、リアクトル電流ILが零点と交差するとき、信号PWMSを生成して昇圧コンバータ12へ出力する。昇圧コンバータ12は、信号PWMSに応じて、スイッチング動作による昇圧動作または降圧動作を停止する。

【選択図】

図 1

#### 出願人履歴情報

識別番号

[000003207]

1. 変更年月日 [変更理由]

1990年 8月27日 新規登録

住 所 名

愛知県豊田市トヨタ町1番地

トヨタ自動車株式会社

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

### IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.