BỘ MÔN HỆ THỐNG THÔNG TIN KHOA CÔNG NGHỆ THỐNG TIN – ĐẠI HỌC KHOA HỌC TỰ NHIỀN TP HCM

CƠ SỞ DỮ LIỆU NÂNG CAO Chương 05: PHỤ THUỘC DỮ LIỆU (DATA DEPENENCE)

Giảng viên: TS. Nguyễn Trần Minh Thư

- Phụ thuộc hàm (PTH)
- Hệ quả từ PTH
- Luật dẫn Armstrong
- Suy dẫn từ tập PTH
- Bao đóng của tập PTH
- Bao đóng của tập thuộc tính X
- Phủ & Phủ tối thiểu
- PTH & Khóa

- Phụ thuộc hàm (PTH)
- Hệ quả từ PTH
- Luật dẫn Armstrong
- Suy dẫn từ tập PTH
- Bao đóng của tập PTH
- Bao đóng của tập thuộc tính X
- Phủ & Phủ tối thiểu
- PTH & Khóa

- Phụ thuộc hàm (Functional Dependencies): là một loại RBTV rất quan trọng để phát hiện các thiết kế CSDL tốt
- Có thể biểu diễn RBTV bằng PTH.
- Phụ thuộc hàm (PTH) thể hiện sự phụ thuộc của một tập thuộc tính (Y) đối với một tập thuộc tính khác(X) trong cùng một lược đồ quan hệ
- Định nghĩa dựa trên những ngữ nghĩa, qui tắc tìm hiểu được từ môi trường ứng dụng

Phụ thuộc hàm

- Định nghĩa: Nếu X, Y là hai tập thuộc tính của Q (X, Y ⊆ Q⁺),
 Y phụ thuộc hàm trên X (ký hiệu X → Y), nếu mỗi giá trị tại X trong Q xác định duy nhất một giá trị của Y trong R.
- Cho quan hệ Q(X, Y, Z), với X, Y, Z là các tập thuộc tính, X ≠
 ∅, Y ≠ ∅, Z có thể ∅.
 - Một thể hiện TQ của Q thỏa PTH X→Y nếu:
 ∀q,q'∈TQ, q.X = q'.X =>q.Y = q'.Y
 - TQ *vi phạm* PTH X→Y nếu:

 $\exists q, q' \in TQ: q.X = q'.X và q.Y \neq q'.Y$

- PTH X→Y được gọi là định nghĩa trên Q nếu ∀TQ là thể hiện của Q,
 TQ thỏa PTH này
- PTH X→Y gọi là *phụ thuộc hàm hiển nhiên* nếu Y⊆ X

Đặc trưng của PTH

• Biểu diễn bằng đồ thị:

- PTH có hiệu lực về ngữ nghĩa (về nghĩa) của các thuộc tính trong một quan hệ.
- Yếu tố quyết định cho một PTH liên quan đến một thuộc tính hoặc một tập các thuộc tính ở bên trái mũi tên.

Staff Branch

staffNo	sName	position	salary	branchNo	bAddress
SL21	John White	Manager	30000	B005	22 Deer Rd, London
SG37	Ann Beech	Assistant	12000	B003	163 Main St, Glasgow
SG14	David Ford	Supervisor	18000	B003	163 Main St, Glasgow
SA9	Mary Howe	Assistant	9000	B007	16 Argyll St, Aberdeen
SG5	Susan Brand	Manager	24000	B003	163 Main St, Glasgow
SL41	Julie Lee	Assistant	9000	B005	22 Deer Rd, London

4.0 Ví dụ về PTH

Α	В	С
1	1	2
1	1	3
2	1	3
2	1	2

Tìm tổng số PTH có thể là bao nhiêu?

PTH	Yes/No		
$A \rightarrow A$	yes		
$A \rightarrow B$	yes		
$A \rightarrow C$	No		
A→AB	yes		
$A \rightarrow AC$	No		
A→BC	No		
A→ABC	No		
$AB \rightarrow C$	No		
•••			

- Việc nhận diện PTH dựa vào ý nghĩa của thuộc tính và mối quan hệ của chúng trong quan hệ.
- Dựa vào dữ liệu trên Staff:
 - staffNo → sName
 - sName → staffNo
- Tuy nhiên, chỉ có pth:
 - staffNo → sName

Staff

staffNo	sName	position	salary	branchNo
SL21	John White	Manager	30000	B005
SG37	Ann Beech	Assistant	12000	B003
SG14	David Ford	Supervisor	18000	B003
SA9	Mary Howe	Assistant	9000	B007
SG5	Susan Brand	Manager	24000	B003
SL41	Julie Lee	Assistant	9000	B005

Xét lược đồ quan hệ

Phim(Tênphim, Nămsx, Thờilượng, Loạiphim, Xưởngsx, Diễnviên)

Và thể hiện quan hệ

Tênphim	Nămsx	Thờilượng	Loạiphim	Xưởngsx	Diễnviên
Star Wars	1977	124	color	Fox	Carrie Fisher
Star Wars	1977	124	color	Fox	Mark Hamill
Star Wars	1977	124	color	Fox	Harrison Ford
Mighty Ducks	1991	104	color	Disney	Emilio Esteves
Wayne's World	1992	95	color	Paramount	Dana Carvey
Wayne's World	1992	95	color	Paramount	Mike Meyers

Tìm được nhiều PTH

Tênphim Nămsx → Thờilượng

Tênphim Nămsx → Loại

Tênphim Nămsx → Xưởngsx

Tênphim Năm $\mathsf{x} o \mathsf{D}$ iễnviên

Không là phụ thuộc hàm

Xét thể hiện r1

Tênphim	Nămsx	Thờilượng	Loạiphim	Xưởngsx	Diễnviên
Star Wars	1977	124	color	Fox	Carrie Fisher
Star Wars	1977	124	color	Fox	Mark Hamill
Star Wars	1977	124	color	Fox	Harrison Ford
Mighty Ducks	1991	104	color	Disney	Emilio Esteves
Wayne's World	1992	95	color	Paramount	Dana Carvey
Wayne's World	1992	95	color	Paramount	Mike Meyers

Tênphim → Loại

Xét thể hiện r2

Tênphim	Nămsx	Thờilượng	Loạiphim	Xưởngsx	Diễnviên
Star Wars	1977	124	color	Fox	Carrie Fisher
Star Wars	1977	124	color	Fox	Mark Hamill
Star Wars	1977	124	color	Fox	Harrison Ford
Mighty Ducks	1991	104	color	Disney	Emilio Esteves
Kingkong	1993	120	color	Paramount	Fay Wray
Kingkong	1993	120	Black/white	Paramount	Robert Amstrong

PTH phải được định nghĩa trên lược đồ quan hệ
Thỏa với mọi thể hiện của quan hệ

- Phụ thuộc hàm (PTH)
- Hệ quả từ PTH
- Luật dẫn Armstrong
- Suy dẫn từ tập PTH
- Bao đóng của tập PTH
- Bao đóng của tập thuộc tính X
- Phủ & Phủ tối thiểu
- PTH & Khóa

Hệ quả từ tập PTH

- Cho F là tập các PTH định nghĩa trên Q
 - •PTH f là <u>hệ quả</u> của F, ký hiệu F = f nếu f được thỏa trong tất cả các thể hiện TQ của Q
- Ví dụ: Xét lược đồ R(A, B, C, G, H, I) và PTH F định nghĩa trên R

F = { f1: A
$$\rightarrow$$
 B
f2: A \rightarrow C
f3: CG \rightarrow H
f4: CG \rightarrow I
f5: B \rightarrow H }

 \Rightarrow Ta có f6: : A \rightarrow H là phụ thuộc hàm hệ quả từ F

Hệ quả từ tập PTH

- Xét lịch xếp lớp của một cơ sở giảng dạy trong một ngày, ta có các phụ thuộc hàm sau:
 - f1: GV, Giờ → Lớp
 (nếu biết giảng viên và giờ dạy, ta sẽ biết được lớp mà
 giảng viên dạy vào giờ đó)
 - f2: Giờ, Lớp → Phòng (Cho một giờ học và lớp học cụ thể, ta sẽ biết được lớp đang học phòng nào vào giờ đó)
 - ⇒ Nếu biết giảng viên và giờ dạy, ta sẽ biết Phòng mà giảng viên dạy vào giờ đó
 - \Rightarrow f3: GV,Giò \rightarrow Phòng

(f3) là <u>hệ quả</u> của (f1) và (f2)

- Phụ thuộc hàm (PTH)
- Hệ quả từ PTH
- Luật dẫn Armstrong
- Suy dẫn từ tập PTH
- Bao đóng của tập PTH
- Bao đóng của tập thuộc tính X
- Phủ & Phủ tối thiểu
- PTH & Khóa

Luật dẫn Amstrong (Amstrong's Axioms)

Luật phản hồi/phản xạ/hiển nhiên (Reflexivity)

(FD1)

$$\forall Y \subseteq X, X \rightarrow Y$$

Luật mở rộng (Augmentation)

(FD2)

Thì X, Z→ Y, Z với mọi Z

Luật bắc cầu (Transitivity)

Nếu
$$X \rightarrow Y$$
 và $Y \rightarrow Z$

Thì
$$X \rightarrow Z$$

Luật dẫn Amstrong (Amstrong's Axioms)

Hệ tiên đề Amstrong là một tập luật dẫn hợp lệ và đầy đủ (Armstrong's Axioms are sound & complete).

Các luật bổ sung:

Luật hợp (Union)

Nếu
$$X \rightarrow Y$$
 và $X \rightarrow Z$

Thì
$$X \rightarrow Y$$
, Z

Luật phân rã (Decomposition)

Thì
$$X \rightarrow Z$$
 và $Y \rightarrow Z$

Luật dẫn Amstrong (Amstrong's Axioms)

Chứng minh các luật sau:

(FD6)
$$\begin{array}{c} \text{N\'eu X} \rightarrow \text{Y v\'a Y, W} \rightarrow \text{Z} \\ \text{Thì X, W} \rightarrow \text{Z} \end{array}$$

(FD7) Nếu
$$X \rightarrow Y$$
 và $Z \subseteq Y$
Thì $X \rightarrow Z$

- Phụ thuộc hàm (PTH)
- Hệ quả từ PTH
- Luật dẫn Armstrong
- Suy dẫn từ tập PTH.
- Bao đóng của tập PTH
- Bao đóng của tập thuộc tính X
- Phủ & Phủ tối thiểu
- PTH & Khóa

PTH suy dẫn (Inference FDs)

- Cho trước một tập PTH F trên 1 lược đồ quan hệ
- Có thể suy luận "quan hệ phải thỏa một tập PTH khác nào đó"
- Khả năng suy dẫn nhằm khám phá thêm tập PTH là rất cần thiết để thiết kế các lược đồ quan hệ đạt chất lượng tốt
- f là một PTH được <u>suy dẫn</u> từ F, ký hiệu F f, nếu:
 - Tồn tại một chuỗi phụ thuộc hàm f₁, f₂,...f_n, với:
 - $f_n = f$
 - $f_i \in F$ hoặc được suy từ những phụ thuộc hàm $f_j \in F$ nhờ vào <u>luật dẫn</u>
- F' là tập các PTH suy dẫn từ F nhờ vào tập luật dẫn R (F ⊆ F')

PTH suy dẫn (Inference FDs)

•Xét lược đồ R(A,B,C) thỏa tập PTH

$$F = \{ f1: A \rightarrow B \\ f2: B \rightarrow C \}$$

Ta có thể suy diễn R còn thỏa PTH

- Phụ thuộc hàm (PTH)
- Hệ quả từ PTH
- Luật dẫn Armstrong
- Suy dẫn từ tập PTH
- Bao đóng của tập PTH
- Bao đóng của tập thuộc tính X
- Phủ & Phủ tối thiểu
- PTH & Khóa

Bao đóng của tập PTH (Closure of a Set of FDs)

- Cho F là tập các PTH định nghĩa trên R
- Tập hợp các PTH của F và hệ quả từ F được gọi là bao đóng (closure) của F
- Ký hiệu F+

- Từ tập F ban đầu ta sử dụng các luật dẫn để tìm bao đóng F⁺
- Áp dụng luật dẫn vào F cho đến khi không không thể áp dụng được nữa

Tập F⁺ rất lớn

Nếu F quá lớn, tìm F⁺ sẽ khó khăn và tốn thời gian

Để tính F+ dựa trên F ta làm như sau:

Bước 1:

 $F^+ = F$

Bước 2:

LĂP

- Với mỗi pth f trong F^{+:}
 Áp dụng tính phản xạ và tính tăng trưởng trên f và thêm
 các PTH kết quả vào F⁺

CHO ĐẾN KHI F+ không thể thay đổi được nữa

 Xét lược đồ R(A, B, C, G, H, I) và PTH F định nghĩa trên R:

```
F = \{ f1: A \rightarrow B \\ f2: A \rightarrow C \\ f3: CG \rightarrow H \\ f4: CG \rightarrow I \\ f5: B \rightarrow H \\ \}
A \rightarrow B, B \rightarrow H: A \rightarrow H \\ CG \rightarrow H: CG \rightarrow H: CG \rightarrow H: AG \rightarrow I \\ A \rightarrow C, CG \rightarrow I: AG \rightarrow I \\ f5: B \rightarrow H \\ \}
```

•Tìm được nhiều PTH trong F+

- Bài toán thực tế
 - Cho một PTH f: $X \rightarrow Y$
 - Xác định f có thuộc bao đóng F⁺ hay không
- Giải quyết
 - Tìm bao đóng F⁺
 - Kiểm tra f có nằm trong F⁺ không
- Tìm bao đóng F⁺ có hiệu quả ???
- Chuyển sang bài toán thành viên:
 - Ta chỉ cần tìm bao đóng của tập thuộc tính X dựa trên
 - Kiểm tra Y có thuộc bao đóng của X hay không

- Phụ thuộc hàm (PTH)
- Hệ quả từ PTH
- Luật dẫn Armstrong
- Suy dẫn từ tập PTH
- Bao đóng của tập PTH
- Bao đóng của tập thuộc tính X
- Phủ & Phủ tối thiểu
- PTH & Khóa

Bao đóng thuộc tính (Attribute Clousure)

- Ký hiệu X⁺_F
- Định nghĩa:

$$X_F^+ = \{ Y \mid X \rightarrow Y \text{ được suy dẫn từ } F \}$$

Là tập hợp những VP của các PTH có VT là X nằm trong F

•Ta thấy:

$$X \subseteq X^+_F$$

$$X \subset \mathbb{R}^+$$


```
Bước 1: X^+_F = X
                        Tìm các PTH trong
Bước 2:
                        có VT là các thuộc tính nằm trong X+F
                        có VP không nằm trong X<sup>+</sup><sub>F</sub>
Lặp {
        Nếu (có f : U \rightarrow V thuộc F) và (U \subseteq X<sup>+</sup><sub>F</sub>)
        Thì X^+_F = X^+_F \cup V
} cho đến khi (X+ = R+) hoặc (không còn thay đổi
được nữa)
```


- •R(A, B, C, D, E, F)
- •F = { $AB \rightarrow C$, $BC \rightarrow AD$, $D \rightarrow E$, $CF \rightarrow B$ }
- Tìm AB+_F
- $\bullet AB^{+}_{F} = AB$
- AB→C: ABC
- •BC→AD: ABCD
- D→E: ABCDE
- Ngừng

$$AB_{F}^{+} = \{A, B, C, D, E\}$$

- •R(A, B, C, D, E, F)
- •F = { $AB \rightarrow C$, $BC \rightarrow AD$, $D \rightarrow E$, $CF \rightarrow B$ }
- Kiểm tra PTH AB→D có suy dẫn từ F không?
- $AB^{+}_{F} = \{A, B, C, D, E\}$
- Có D trong bao đóng
- Kết luận AB→D suy dẫn từ F

- •R(A, B, C, D, E, F)
- •F = { $AB \rightarrow C$, $BC \rightarrow AD$, $D \rightarrow E$, $CF \rightarrow B$ }
- •Kiểm tra PTH D→A có suy dẫn từ F không?
- • $D^{+}_{F} = \{D, E\}$
- ·Không có A trong bao đóng
- •Kết luận D→A không suy dẫn từ F

Một số tính chất

- Tương đương
 - Hai tập PTH F1 và F2 gọi là tương đương

$$F1 \equiv F2 \iff F1^+ = F2^+$$

•Bổ đề

F1 ≡ F2 ⇔ F1 là hệ quả của F2 và F2 là hệ quả của F1

- •R(A, B, C, D, E)
- •F1 = $\{A \rightarrow BC, A \rightarrow D, CD \rightarrow E\}$
- •F2 = { $A \rightarrow BCE, A \rightarrow ABD, CD \rightarrow E$ }
- •F1 ≡ F2 ?

- Chứng minh
 - •F1 là hệ quả của F2 ⇒ F1 được suy dẫn từ F2
 - F2 là hệ quả của F1 ⇒ F2 được suy dẫn từ F1

- •{A \rightarrow BCE, A \rightarrow ABD, CD \rightarrow E} \rightarrow {A \rightarrow BC, A \rightarrow D, CD \rightarrow E}
 - Ta thấy F1 ⊆ F2, hiển nhiên F1 là hệ quả của
 F2
- •{A \rightarrow BC, A \rightarrow D, CD \rightarrow E} \rightarrow {A \rightarrow BCE, A \rightarrow ABD, CD \rightarrow E}
 - Xét F2 có A→E, tìm xem F1 có A→E?

- •R(A, B, C, D, E)
- •F1 = $\{A \rightarrow BC, A \rightarrow D, CD \rightarrow E\}$
- •F2 = { A→BCDE }
- •F1 ≡ F2 ?

- Chứng minh
 - •F1 là hệ quả của F2 ⇒ F1 được suy dẫn từ F2
 - F2 là hệ quả của F1 ⇒ F2 được suy dẫn từ F1

- \bullet {A \rightarrow BCDE} \rightarrow {A \rightarrow BC, A \rightarrow D, CD \rightarrow E}
 - Xét CD→E không thuộc trong F2
 - •F1 không được suy dẫn từ F2
 - •F1 không là hệ quả của F2
- $\bullet \{A {\rightarrow} BC, \, A {\rightarrow} D, \, CD {\rightarrow} E\} \rightarrow \{A {\rightarrow} BCDE\}$
 - Xét F2 có A→E

Mục tiêu chương

- Phụ thuộc hàm (PTH)
- Hệ quả từ PTH
- Luật dẫn Armstrong
- Suy dẫn từ tập PTH
- Bao đóng của tập PTH
- Bao đóng của tập thuộc tính X
- Phủ & Phủ tối thiểu
- PTH & Khóa

- Cho F là tập các PTH định nghĩa trên R
- •Xét một tập PTH G định nghĩa trên R

PTH đầy đủ

Xét X
$$\rightarrow$$
 Y
Nếu $\neg \exists$ X' \subset X sao cho
F \equiv F $-$ {X \rightarrow Y} \cup {X' \rightarrow Y}

Thì Y phụ thuộc đầy đủ vào X

Y phụ thuộc hàm vào X và không phụ thuộc hàm vào tập con nào của X

PTH đầy đủ

- •R(A, B, C, D, E, I)
- •F = { $A \rightarrow BCD$, $BCD \rightarrow E$, $CD \rightarrow EI$ }
- •BCD→E là phụ thuộc hàm đầy đủ không?

PTH thừa

Xét $X \rightarrow Y$ là thừa nếu $F \equiv F - \{X \rightarrow Y\}$

$$F = \{ f1: A \rightarrow B \\ f2: B \rightarrow C \\ f3: A \rightarrow C \}$$

- •Cho F là tập các PTH định nghĩa trên R
 - Mà VP chỉ chứa 1 thuộc tính
- •PTH G gọi là PTT
 - Nếu G là một phủ
 - G chỉ chứa những PTH đầy đủ
 - G không chứa những PTH thừa
- Ký hiệu: G=PTT(F)

- •R(A, B, C, D)
- \bullet F = { A \rightarrow B, B \rightarrow A, B \rightarrow C, A \rightarrow C, C \rightarrow A }
- •PTT(F) ?
- Mọi VP đều có 1 thuộc tính
- Các PTH đều đầy đủ
- Có thể bỏ phụ thuộc hàm thừa nào?

- •Xét A→B
 - $\bullet A^{+}_{F-\{A\to B\}} = (AC)$
 - A→B không là phụ thuộc hàm thừa
- •Xét B→A
 - $\bullet B^{+}_{F \{B \rightarrow A\}} = BCA$
 - B→A là phụ hàm thừa

- Nếu bỏ đi B→A và A→C thì
- $F' = \{ A \rightarrow B, B \rightarrow C, C \rightarrow A \}$
- F' ≡ F nên F'=PTT(F)
 - Chỉ cần xét F được suy dẫn từ F'
- Nếu bỏ đi B→C
- $F'' = \{A \rightarrow B, B \rightarrow A, A \rightarrow C, C \rightarrow A\}$
- F" ≡ F nên F"=PTT(F)

 $F' \equiv F"$

Thuật toán tìm G=PTT(F)

- 1. $G \leftarrow F$
- 2. Thay $m\tilde{\delta}i$ $PTH X \rightarrow \{A_1, A_2,, A_n\}$ trong G thành n $FDs X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n$.
- 3. Với mỗi PTH X → A trong G

 Với mỗi thuộc tính B mà là một phần tử của X

 Nếu ((G {X → A }) ∪ {(X {B}) → A}) là

 tương đương với G,

 Thì thay thế X → A bằng (X {B}) → A

 trong G.
- 4. Với mỗi PTH còn lại $X \rightarrow A$ trong GNếu $(G - \{X \rightarrow A\})$ là tương đương với G, thì xóa $X \rightarrow A$ từ G.

Thuật toán tìm G=PTT(F)

- (A, B, C)
- $F = \{AB \rightarrow C, A \rightarrow B, B \rightarrow C\}$
- PTT(F) ?
- Mọi VP đều có 1 thuộc tính
- Có AB→C không là PTH đầy đủ
 - Thay thế bằng các PTH đầy đủ
- Có thể bỏ phụ thuộc hàm thừa nào?

Thuật toán tìm G=PTT(F)

- $F = \{A \rightarrow C, A \rightarrow B, B \rightarrow C\}$
- Có thể bỏ phụ thuộc hàm thừa nào?

Mục tiêu chương

- Phụ thuộc hàm (PTH)
- Hệ quả từ PTH
- Luật dẫn Armstrong
- Suy dẫn từ tập PTH
- Bao đóng của tập PTH
- Bao đóng của tập thuộc tính X
- Phủ & Phủ tối thiểu
- PTH & Khóa

PTH & Khóa

Khóa

- Là một tập các thuộc tính dùng để xác định tính duy nhất của mỗi bộ trong quan hệ
- → Các bộ trong quan hệ khác nhau từng đôi một

R

• Gồm

Siêu khóa

Khóa

Khóa chính

Α	В	C	D
Х	1	10	а
X	2	20	а
у	1	40	b
у	1	40	С
Z	1	50	d

```
Tập hợp các thuộc tính
ABCD
ABC, ABD, ACD, BCD
AB, AC, AD, BC, BD, CD
A, B, C, D
Siêu khóa
ABCD, ABD, ACD, BCD, BD, CD
Khóa
BD, CD
```


PTH & Khóa

- Phụ thuộc hàm cho phép ta diễn tả các RBTV không thể diễn tả bằng siêu khóa.
 - Vd., lược đồ Muon(tenkh, magdmuon, tench, sotien)
 - Ta muốn có tập các pth sau:

 $magdmuon \rightarrow sotien$ $magdmuon \rightarrow tencn$

nhưng không muốn có pth (vì một giao dịch mượn có thể của nhiều khách hàng):

 $magdmuon \rightarrow tenkh$

Đồ thị của PTH

- Đồ thị phụ thuộc hàm là một đồ thị vô hướng, với:
 - Một tập nút tượng trưng cho tập PTH, ký hiệu O với tên PTH bên cạnh.
 - Một tập nút tượng trưng cho các thuộc tính, ký hiệu ●
 với tên thuộc tính bên cạnh.
 - Một tập cung có hướng nối một nút PTH(thuộc tính) đến một nút thuộc tính (PTH).
 - Một cung xuất phát từ nút thuộc tính A đến một nút PTH f, cùng với một cung từ nút PTH f đến nút thuộc tính B, biểu diễn cho PTH A→B
- Khi F có nhiều PTT, đồ thị của F có chứa chu trình.

Đồ thị của PTH

Cho $F = \{f_1: A \rightarrow BC; f_2: B \rightarrow A; f_3: AD \rightarrow E; f_4: BD \rightarrow E \}$ Đồ thị của F:

- Thuật toán xác định khóa của quan hệ:
 - 1. Xây dựng các tổ hợp có thể có từ Q⁺
 - 2. Với mỗi tổ hợp K \subseteq Q⁺ thỏa điều kiện K \rightarrow Q⁺ thì K là một siêu khóa của Q. Gọi \mathcal{K} = {các siêu khóa của Q}
 - 3. Kiểm tra Min (\mathcal{K}) Nếu \exists K' \mid K' \subset K , K' \rightarrow Q⁺ thì loại K ra khỏi \mathcal{K}
 - Thực tế, kết hợp bước 2 và bước 3: bắt đầu xét từ những tổ hợp có ít phần tử nhất, nếu tìm được một tổ hợp K_i thỏa điều kiện (i) thì loại bỏ ngay các tổ hợp có chứa K_i

58

Vấn đề: Số tổ hợp có thể có từ Q⁺ sẽ rất lớn nếu Q⁺
 lớn → Cần giới hạn số tổ hợp cần khảo sát

- Giới hạn số lượng tổ hợp:
 - Thuộc tính nguồn:
 - A là một thuộc tính nguồn nếu $\neg \exists f: X \rightarrow Y \in F \mid A \in Y$
 - Trên đồ thị PTH, thuộc tính nguồn không có cung vào
 - Nhận xét: mọi thuộc tính nguồn phải xuất hiện trong mọi khóa của Q
 - Thuộc tính đích:
 - B là một thuộc tính đích nếu $\neg \exists f: X \rightarrow Y \in F \mid B \in X$
 - Trên đồ thị PTH, thuộc tính đích chỉ có cung vào, không có cung ra.
 - Nhận xét: thuộc tính đích không xuất hiện trong bất kỳ khóa nào của Q

• Cho Q(ABCDEG) với

$$F = \{f_1: AD \rightarrow B; f_2: EG \rightarrow A; f_3: BC \rightarrow G\}$$

Xác định các khóa của Q?

- Không có thuộc tính đích
- Có 3 thuộc tính nguồn: E, D, C
- Có một chu trình qua các nút G, A, B. Các tổ hợp có thể xây dựng: G, A, B, GA, GB, AB, GAB
- Thử xem: K_1 = (EDCG): $K_1 \rightarrow Q^+$ K_2 = (EDCA): $K_2 \rightarrow Q^+$

$$K_3 = (EDCB): K_3 \rightarrow Q^+$$

- ➤Cả 3 tổ hợp này là tổ hợp nhỏ nhất.
- $ightharpoonup K_1, K_2, K_3$ là 3 khóa của Q

