Richard Ehrenborg

University of Kentucky

Sharing pizza in higher dimensions

Richard Ehrenborg

University of Kentucky

Joint work with

Sophie Morel
Princeton University
École Normale Supérieure de Lyon

Margaret Readdy
University of Kentucky

Thanks to

Simons Foundation

Agence Nationale de la Recherche (France)

Pizza

Pizza

Pick any point

Cut with four equidistributed lines

Pizza Theorem [Goldberg]

The alternating sum of the areas is equal to 0.

History

[1967, Upton] Problem in Mathematics Magazine.

[1968, Goldberg] Solution for 2k equidistributed lines $k \geq 2$.

[1994, Carter and Wagon] Dissection proof for k = 2.

[1999, Hirschhorn, Hirschhorn, Hirschhorn, Hirschhorn, Hirschhorn and Hirschhorn] p people sharing pizza.

[2009, Mabry and Deiermann] Fails for an odd number of equidistributed lines.

[2012, Frederickson] Dissection proofs for $k \geq 2$.

Classical proof

 B_2 or not B_2 : that is the question

William Shakespeare, Hamlet, Act III

V real vector space of dimension n with inner product (\cdot, \cdot)

Index set E finite set of unit vectors such that $E \cap (-E) = \emptyset$

Hyperplane $H_e = \{ v \in V : (v, e) = 0 \}$

Hyperplane arrangement $\mathcal{H} = \{H_e\}_{e \in E}$

A chamber T is a connected component of $V - \bigcup_{e \in E} H_e$

 \mathcal{T} set of all chambers

Pick T_0 base chamber

Sign $(-1)^T = (-1)^k$ where k is the number of hyperplanes separating T from T_0

Pizza quantity

$$P(\mathcal{H}, K) = \sum_{T \in \mathscr{T}} (-1)^T \operatorname{Vol}(K \cap T)$$

\mathcal{H} is a Coxeter arrangement if

- the group W generated by the orthogonal reflections in the hyperplanes of \mathcal{H} is finite and
- the arrangement is closed under all such reflections

 \mathcal{H}_i arrangement in V_i

 $\mathcal{H}_1 \times \mathcal{H}_2$ arrangement in $V_1 \times V_2$ with hyperplanes

$$\{H \times V_2 : H \in \mathcal{H}_1\} \cup \{V_1 \times H : H \in \mathcal{H}_2\}$$

 \mathcal{H}_1 and \mathcal{H}_2 Coxeter $\Longrightarrow \mathcal{H}_1 \times \mathcal{H}_2$ Coxeter

Type A_n

$$V = \{(x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1 + x_2 + \dots + x_{n+1} = 0\}$$

$$\mathcal{H} = \{x_i = x_j : 1 \le i < j \le n+1\}$$

Symmetries of the n-dimensional simplex

$$A_1$$
 ———

$$A_1^n = A_1 \times A_1 \times \dots \times A_1$$
$$= \{x_i = 0 : 1 \le i \le n\}$$

Type
$$B_n$$
 (and type C_n) $n \ge 2$

$$V = \mathbb{R}^n$$

$$\mathcal{H} = \{x_i = 0 : 1 \le i \le n\} \cup \{x_i = \pm x_j : 1 \le i < j \le n\}$$

Symmetries of the n-dimensional cube and crosspolytope

Type
$$D_n$$
 $n \ge 4$

$$V = \mathbb{R}^n$$

$$\mathcal{H} = \{ x_i = \pm x_j : 1 \le i < j \le n \}$$

$$D_2 = A_1^2$$
 $D_3 = A_3$

Type E_6 , E_7 and E_8

Type
$$F_4$$

$$V = \mathbb{R}^4$$

$$\mathcal{H} = \{x_i = 0 : 1 \le i \le 4\}$$

$$\cup \{x_i = \pm x_j : 1 \le i < j \le 4\}$$

$$\cup \{x_1 \pm x_2 \pm x_3 \pm x_4 = 0\}$$

 $F_4 = \text{symmetries of the 24-cell}$

$\frac{\text{Type } G_2}{G_2 = I_2(6)}$

$$G_2 = I_2(6)$$

Type H_3 and H_4

 H_3 = symmetries of the dodecahedron and the icosahedron

 H_4 = symmetries of the 120-cell and 600-cell

Do not arise from crystallographic root systems

Type
$$I_2(k)$$
 $k \ge 2$

 $I_2(k) = \text{symmetries of the } k\text{-gon}$

 $I_2(k)$ consists of k lines

$$I_2(2) = A_1^2$$
 $I_2(3) = A_2$ $I_2(4) = B_2$

$$I_2(3) = A_2$$

$$I_2(4) = B_2$$

$$\mathbb{B}(a, R) = \{ x \in V : ||x - a|| \le R \}.$$

Theorem [Goldberg] Let \mathcal{H} be the dihedral arrangement $I_2(2k)$ in \mathbb{R}^2 for $k \geq 2$. For every point $a \in \mathbb{R}^2$ such that $0 \in \mathbb{B}(a, R)$, the pizza quantity for the disc $\mathbb{B}(a, R)$ vanishes:

$$P(\mathcal{H}, \mathbb{B}(a, R)) = 0.$$

A set $K \subseteq V$ is stable under the group W if

$$w(K) = K$$

for all $w \in W$

Lemma. \mathcal{H} Coxeter arrangement with group W. If K is stable under W and $a \in H \in \mathcal{H}$ then

$$P(\mathcal{H}, K + a) = 0$$

Lemma. \mathcal{H} Coxeter arrangement with group W. If K is stable under W and $a \in H \in \mathcal{H}$ then

$$P(\mathcal{H}, K + a) = 0$$

Theorem. Let \mathcal{H} be a Coxeter arrangement on V such that the negative of the identity map $-\operatorname{id}_V$ belongs to the Coxeter group W. Assume that \mathcal{H} is not of type A_1^n . Let K be a set stable by W. Let a be a point in V such that K contains the convex hull of $\{w(a): w \in W\}$. Then the pizza quantity of K + a vanishes, that is,

$$P(\mathcal{H}, K + a) = 0.$$

History continued

[2012, Frederickson] Type $A_1 \times I_2(2k)$ for $k \geq 2$ for balls.

[2022, Brailov] Independently proved the theorem for type B_n for balls.

$-\operatorname{id}_V \in W$

 \mathcal{H} is a product arrangement where the factors are from the types A_1 , B_n for $n \geq 2$, D_{2m} for $m \geq 2$, E_7 , E_8 , F_4 , H_3 , H_4 and $I_2(2k)$ for $k \geq 2$.

Missing: A_n for $n \ge 2$, $D_{2m+1} \text{ for } m \ge 2$, $E_6,$ $I_2(2k+1) \text{ for } k \ge 2$.

What happens with A_1^n ?

Cut also with $x_i = 2a_i$.

$$P(A_1^n, K + (a_1, \dots, a_n)) = 2^n \cdot a_1 \cdots a_n$$

$$\frac{d}{dt}P(\mathcal{H}, K + t \cdot v)$$

How much of $K + t \cdot v$ passes over the hyperplane $H_e \in \mathcal{H}$?

The restricted arrangement \mathcal{H}''_e in H_e

$$\mathcal{H}_e''' = \{ H_e \cap H_f : f \in E - \{e\} \}$$

Consider the signs

Let $V' \subseteq V$ be a subspace of codimension 2. The *intersection multiplicity* of V' is

$$\operatorname{imult}(V') = |\{e \in E : H_e \supseteq V'\}|$$

For $e \in E$ the even restricted arrangement \mathcal{H}_e is

$$\mathcal{H}_e = \{ H_e \cap H_f : f \in E - \{e\}, \text{imult}(H_e \cap H_f) \equiv 0 \text{ mod } 2 \}$$

Consider the signs

$$\mathcal{H}_e$$
 +

$$\mathcal{H}_e$$
 - +

$$\frac{d}{dt}P(\mathcal{H}, K + tv)$$

$$= 2 \cdot \sum_{e \in E} (-1)^{Z_0(e) \circ e} \cdot (v, e) \cdot P(\mathcal{H}_e, (K + tv) \cap H_e)$$

where $Z_0(e)$ is a base chamber in \mathcal{H}_e

Proposition. If K is a convex set stable under W of the Coxeter arrangement \mathcal{H} then $K \cap H_e$ is a convex set stable by the Coxeter group of the even restricted arrangement \mathcal{H}_e .

Not true for the restricted arrangement \mathcal{H}''_e

Proposition. If K is a translate of convex set stable under W of the Coxeter arrangement \mathcal{H} then $K \cap H_e$ is the translate of a convex set stable by the Coxeter group of the even restricted arrangement \mathcal{H}_e .

$$E = \{e_i : 1 \le i \le 3\}$$

$$\cup \{(e_i + e_j)/\sqrt{2} : 1 \le i < j \le 3\}$$

$$\cup \{(e_i - e_j)/\sqrt{2} : 1 \le i < j \le 3\}$$

e	(v, e)	$ \operatorname{type}(\mathcal{H}_e) $	$P(\mathcal{H}_e, (K+tv) \cap H_e)$
e_i			
$(e_i + e_j)/\sqrt{2}$			
$(e_i - e_j)/\sqrt{2}$			

$$v = e_1 + e_2 + e_3$$

e	(v, e)	$ \operatorname{type}(\mathcal{H}_e) $	$P(\mathcal{H}_e, (K+tv)\cap H_e)$
$\overline{e_i}$	1		
$(e_i + e_j)/\sqrt{2}$	$\sqrt{2}$		
$(e_i - e_j)/\sqrt{2}$	0		

$$v = e_1 + e_2 + e_3$$

e	(v,e)	$ \operatorname{type}(\mathcal{H}_e) $	$P(\mathcal{H}_e, (K+tv)\cap H_e)$
$\overline{e_i}$	1	B_2	
$(e_i + e_j)/\sqrt{2}$	$\sqrt{2}$	A_1^2	
$(e_i - e_j)/\sqrt{2}$	0		

$$v = e_1 + e_2 + e_3$$

e	(v, e)	$ \operatorname{type}(\mathcal{H}_e) $	$P(\mathcal{H}_e, (K+tv) \cap H_e)$
$\overline{e_i}$	1	B_2	0
$(e_i + e_j)/\sqrt{2}$	$\sqrt{2}$	A_1^2	
$(e_i - e_j)/\sqrt{2}$	0		

e	(v,e)	$ \operatorname{type}(\mathcal{H}_e) $	$P(\mathcal{H}_e, (K+tv)\cap H_e)$
$\overline{e_i}$	1	B_2	0
$(e_i + e_j)/\sqrt{2}$	$\sqrt{2}$	A_1^2	
$(e_i - e_j)/\sqrt{2}$	0		

Only three non-zero terms remain. They cancel!

$$\frac{d}{dt}P(\mathcal{H}, K + tv) = 0$$

$$\frac{d}{dt}P(\mathcal{H}, K + tv) = 0 \implies P(\mathcal{H}, K + tv) = \text{constant}$$

 $P(\mathcal{H}, K) = 0$

We can prove the theorem case by case...

... need better idea!

Definition. Call an hyperplane arrangement $\mathcal{H} = \{H_e\}_{e \in E}$ even if:

- (i) \mathcal{H} has type A_1 , or
- (ii) there exists $e \in E$ such that \mathcal{H}_e is even

Equivalently,

(ii) for all $e \in E \neq \emptyset$ we have \mathcal{H}_e is even

For Coxeter arrangements:

$$-\operatorname{id}_V \in W$$

 \mathcal{H} is a product arrangement where the factors are from the types A_1 , B_n for $n \geq 2$, D_{2m} for $m \geq 2$, E_7 , E_8 , F_4 , H_3 , H_4 and $I_2(2k)$ for $k \geq 2$.

 \mathcal{H} is even

Theorem. \mathcal{H} an n-dimensional even Coxeter arrangement. $K \subseteq V$, stable set by the Coxeter group W. Assume $0 \in K + a$. Then the pizza quantity $P(\mathcal{H}, K + a)$ is a polynomial homogenous of degree n in the variable $a = (a_1, \ldots, a_n)$.

Remark.

As long as $0 \in K + a$, $P(\mathcal{H}, K + a)$ is independent of K

Proof. $n = 1 \Longrightarrow \mathcal{H} = A_1 \Longrightarrow P(\mathcal{H}, K + a) = 2a$

Induction step:

$$P(\mathcal{H}, K + a) - P(\mathcal{H}, K)$$

$$= 2 \cdot \sum_{e \in E} (-1)^{Z_0(e) \circ e} \cdot (a, e) \cdot \int_0^1 P(\mathcal{H}_e, (K + ta) \cap H_e) dt$$

Polynomials in a:

(a, e) homogenous of degree 1

$$P(\mathcal{H}_e, (K+ta) \cap H_e)$$
 homogenous of degree $n-1$

$$P(\mathcal{H}, K) = 0$$

Proof of Pizza Theorem.

Consider the hypersurface

$$X = \{ a \in V : P(\mathcal{H}, K + a) = 0 \}$$

X is hypersurface of degree n.

X contains hyperplanes H in Coxeter arrangement \mathcal{H}

If
$$|\mathcal{H}| > n$$
 then $X = V$ and $P(\mathcal{H}, K + a) = 0$

If
$$|\mathcal{H}| = n$$
 then \mathcal{H} has type A_1^n

[Ira Gessel, October 28, 2006]

Is Analysis Necessary?

The best way to show that the two sets

$$\bigcup_{\substack{T\\ (-1)^T=1}} ((K+a)\cap T) \qquad \text{and} \qquad \bigcup_{\substack{T\\ (-1)^T=-1}} ((K+a)\cap T)$$

have the same volume, is a dissection proof.

Definition. Let C(V) be a *nice* family of subsets of V, satisfying:

- (i) closed by finite intersections,
- (ii) affine isometries,
- (iii) if $C \in \mathcal{C}(V)$ and D is a closed affine half-space of V, then $C \cap D \in \mathcal{C}(V)$ and
- (iv) closed with respect to Cartesian products, that is, if $C_i \in \mathcal{C}(V_i)$ for i = 1, 2 then $C_1 \times C_2 \in \mathcal{C}(V_1 \times V_2)$.

Definition. We denote by K(V) the quotient of the free abelian group $\bigoplus_{C \in \mathcal{C}(V)} \mathbb{Z}[C]$ on $\mathcal{C}(V)$ by the relations:

- $-[\varnothing] = 0;$
- $-[C \cup C'] + [C \cap C'] = [C] + [C'] \text{ for all } C, C' \in \mathcal{C}(V)$ such that $C \cup C' \in \mathcal{C}(V)$;
- -[g(C)] = [C] for $C \in \mathcal{C}(V)$ and affine isometry g of V.

For $C \in \mathcal{C}(V)$ we still denote the image of C in K(V) by [C].

K pizza

 ${\cal H}$ hyperplane arrangement

Define the abstract pizza quantity to be

$$P(\mathcal{H}, K) = \sum_{T \in \mathscr{T}(\mathcal{H})} (-1)^T \cdot [T \cap K].$$

The Abstract Pizza Theorem.

Let \mathcal{H} be a Coxeter hyperplane arrangement with Coxeter group W in an n-dimensional space V such that $-\operatorname{id}_V \in W$. Assume that \mathcal{H} does not have type A_1^n . Let $K \in \mathcal{C}(V)$ and $a \in V$. Suppose that K is stable by the group W and contains the convex hull of the set $\{w(a) : w \in W\}$. Then the abstract pizza quantity vanishes:

$$P(\mathcal{H}, K + a) = 0,$$

that is, this identity holds in K(V).

Let s_{β} be the orthogonal reflection in the hyperplane H_{β} .

Definition. A subset Φ of V is a pseudo-root system if:

- (a) Φ is a finite set of unit vectors;
- (b) for all $\alpha, \beta \in \Phi$, we have $s_{\beta}(\alpha) \in \Phi$.

Note that condition (b) implies that $\alpha \in \Phi$ implies $-\alpha \in \Phi$ by setting $\alpha = \beta$. Elements of Φ are called *pseudo-roots*.

$$\Phi = \Phi^+ \sqcup \Phi^-$$

 Φ^+ = positive pseudo-roots,

 Φ^- = negative pseudo-roots.

Definition [Herb]. Let Φ be a pseudo-root system with Coxeter group W. A 2-structure for Φ is a subset φ of Φ satisfying the following properties:

(a) The subset φ is a disjoint union

$$\varphi = \varphi_1 \sqcup \varphi_2 \sqcup \cdots \sqcup \varphi_r,$$

where the φ_i are pairwise orthogonal subsets of φ and each of them is an irreducible pseudo-root system of type A_1 , B_2 or $I_2(2^k)$ for $k \geq 3$.

(b) Let $\varphi^+ = \varphi \cap \Phi^+$. If w is an element in W such that $w(\varphi^+) = \varphi^+$ then the sign of w is positive, that is, $(-1)^w = 1$.

History continued

[2000, Herb] Introduced 2-structures to study the characters of discrete series representations.

Let $\mathcal{T}(\Phi)$ denote the set of 2-structures for Φ .

The group W acts transitively on $\mathcal{T}(\Phi)$.

Hence all 2-structures of Φ have the same type.

_	Type of Φ	Type of φ	Type of Φ	Type of φ	
	A_{2m}	A_1^m	E_7	A_1^7	
	A_{2m+1}	A_1^{m+1}	E_8	A_1^{8}	
	B_{2m}	B_2^m	F_4	B_2^2	
	B_{2m+1}	$B_2^m \times A_1$	H_3	A_{1}^{3}	
	D_{2m}	A_1^{2m}	H_4	A_1^4	
	D_{2m+1}	A_1^{2m}	$I_2(r)$	A_1	(r odd)
	E_6	A_1^4	$I_2(r \cdot 2^k)$	$I_2(2^k)$	$(k \ge 1)$

 Φ pseudo-root system

 φ 2-structure of Φ

$$rank(\Phi) = rank(\varphi) \iff -id \in W$$

Each 2-structure has a sign, that is,

$$\epsilon: \mathcal{T}(\Phi) \longrightarrow \{\pm 1\}.$$

Properties:

(i)

$$\sum_{\varphi \in \mathcal{T}(\Phi)} \epsilon(\varphi) = 1$$

(ii) For $w \in W$ such that $w(\varphi \cap \Phi^+) \subseteq \Phi^+$. Then the following identity holds:

$$\epsilon(w(\varphi)) = (-1)^w \cdot \epsilon(\varphi).$$

Theorem. Let $\Phi \subset V$ be a normalized pseudo-root system. Choose a positive system $\Phi^+ \subset \Phi$ and let \mathcal{H} be the hyperplane arrangement $(H_{\alpha})_{\alpha \in \Phi^+}$ on V with base chamber corresponding to Φ^+ . For every 2-structure $\varphi \in \mathcal{T}(\Phi)$, let \mathcal{H}_{φ} be the hyperplane arrangement $(H_{\alpha})_{\alpha \in \varphi^+}$ with the base chamber containing the base chamber of \mathcal{H} . Then we have

$$P(\mathcal{H}, K) = \sum_{\varphi \in \mathcal{T}(\Phi)} \epsilon(\varphi) \cdot P(\mathcal{H}_{\varphi}, K).$$

Extremely brief sketch of the proof of the Abstract Pizza Theorem:

Case 1: The 2-structure φ contains a factor of B_2 or $I_2(2^k)$.

Then we prove

$$P(\mathcal{H}_{\varphi}, K) = 0$$

by reducing it to 2-dimensions and (carefully) moving pieces around.

History continued

[1807, Wallace], [1833, Bolyai], [1835, Gerwien]

Two polygons are scissors-congruent if and only if they have the same area.

Case 2: The 2-structure φ has type A_1^n .

$$P(\mathcal{H}_{\varphi}, K + a) = \left[\prod_{i=1}^{n} (0, 2(a, e_i)e_i) \right],$$

where $\varphi^{+} = \{e_1, \dots, e_n\}.$

Thus $P(\mathcal{H}, K + a)$ is a signed sum of parallelotopes.

This sum is zero by an extension of the Wallace–Bolyai–Gerwien theorem to parallelotopes.

Let V_i denote the *i*th intrinsic volume.

Corollary. With the same assumptions as in the abstract pizza theorem:

$$\sum_{T \in \mathscr{T}} (-1)^T V_i((K+a) \cap T) = 0.$$

Other pizza results and open problems.

Returning to classical pizza quantity, that is, volume.

Also returning to balls $\mathbb{B}(a, R) = \{x \in V : ||x - a|| \le R\}.$

Theorem. Let $\mathcal{H} = \{H_e\}_{e \in E}$ be a Coxeter arrangement in an n-dimensional space V. Assume that $|\mathcal{H}| \equiv n \mod 2$, $|\mathcal{H}| > n \mod 0 \in \mathbb{B}(a, R)$. Then

$$P(\mathcal{H}, \mathbb{B}(a, R)) = 0.$$

Returning to classical pizza quantity, that is, volume.

Also returning to balls $\mathbb{B}(a, R) = \{x \in V : ||x - a|| \le R\}.$

Theorem. Let $\mathcal{H} = \{H_e\}_{e \in E}$ be a Coxeter arrangement in an n-dimensional space V. Assume that $|\mathcal{H}| \equiv n \mod 2$, $|\mathcal{H}| > n \mod 0 \in \mathbb{B}(a, R)$. Then

$$P(\mathcal{H}, \mathbb{B}(a, R)) = 0.$$

SURGEON GENERAL'S WARNING:

This result contains

CALCULUS.

Note: The $-id_V \in W$ condition implies $|\mathcal{H}| \equiv n \mod 2$.

This result also holds for types A_n where $n \equiv 0, 1 \mod 4$ and E_6 .

Open problem: Find a dissection proof.

Open problem:

- $-A_n$ where $n \geq 3$, $n \equiv 2, 3 \mod 4$
- $-D_n$ where $n \geq 5$, $n \equiv 1 \mod 2$

[Mabry and Deiermann]

For \mathcal{H} of type $I_2(m)$, $m \geq 3$, m odd, $0 \in \mathbb{B}(a, R)$ and $a \in T$ where T is a chamber,

$$(-1)^{(m+1)/2} \cdot (-1)^T \cdot P(\mathcal{H}, \mathbb{B}(a, R)) > 0$$

$$m \equiv 3 \bmod 4$$

Conjecture. Let \mathcal{H} be a Coxeter arrangement and let $a \in V$ such that $0 \in \mathbb{B}(a, R)$. Assume that $|\mathcal{H}| > \dim(V)$ and $|\mathcal{H}| \not\equiv \dim(V) \mod 2$. Then

$$P(\mathcal{H}, \mathbb{B}(a, R)) = 0 \iff a \in \bigcup_{H \in \mathcal{H}} H$$

Refined conjecture. Let \mathcal{H} be a Coxeter arrangement of type A_n or D_n in an n-dimensional space V. Let a be a point in V such that $0 \in \mathbb{B}(a, R)$ and assume that the point a lies in the interior of a chamber T of the arrangement \mathcal{H} .

 (A_n) Assuming that $n \equiv 2$ or $3 \mod 4$ then the sign given by

$$(-1)^{\lfloor (n+1)/4 \rfloor} \cdot (-1)^T \cdot P(\mathcal{H}, \mathbb{B}(a, R)) > 0.$$

 (D_n) Assuming that n is odd then the sign given by $(-1)^T \cdot P(\mathcal{H}, \mathbb{B}(a, R)) < 0.$

Where do the signs come from?

How to compute the pizza quantity explicitly?

We can compute the first few terms of the multivariate Taylor series

$$P(\mathcal{H}, \mathbb{B}(a, 1))$$

in the variable $a \in V$.

When \mathcal{H} has type A_n , its 2-structures have the type A_1^k where $k = \lfloor (n+1)/2 \rfloor$.

When \mathcal{H} has type D_n , n odd, its 2-structures have the type A_1^{n-1} .

The idea is to use the identity

$$P(\mathcal{H}, \mathbb{B}(a, 1)) = \sum_{\varphi \in \mathcal{T}(\Phi)} \epsilon(\varphi) \cdot P(\mathcal{H}_{\varphi}, \mathbb{B}(a, 1))$$

Lemma. Let V be an n-dimensional space and let \mathcal{H} be the Coxeter arrangement of type A_1^k . That is, $\mathcal{H} = \{H_f\}_{f\in E}$ where $E = \{f_1, \ldots, f_k\}$ is a set of k orthogonal unit vectors. Let a be a point in V such that $0 \in \mathbb{B}(a, 1)$. Then $P(\mathcal{H}, \mathbb{B}(a, 1))$ is given by the k-dimensional integral

$$\int_0^{(f_1,a)} \cdots \int_0^{(f_k,a)} \left(1 - t_1^2 - \cdots - t_k^2\right)^{(n-k)/2} dt_1 \cdots dt_k.$$

times the constant $2^k \cdot \beta_{n-k}$ where β_m is the volume of the m-dimensional unit ball.

Note that in our cases, n and k have different parity.

Putting everything together...

For a root system Φ with positive roots Φ^+ the Jacobian is

$$J(a) = \prod_{\alpha \in \Phi^+} (\alpha, a).$$

Note that the Jacobian is the polynomial which is zero on all the hyperplanes in the arrangement associated with Φ .

Moreover, any skew symmetric polynomial on V factors as the Jacobian times a polynomial invariant under W.

type	n	k	$ \Phi^+ $	leading term		
A_2	2	1	3	$\frac{1}{2} \cdot J(a)$		
A_3	3	2	6	$-\frac{1}{2\cdot 3}\cdot J(a)$		
A_6	6	3	21	$-\frac{3\cdot 7\cdot 11\cdot 13}{2^8}\cdot J(a)$		
A_7	7	4	28	$\frac{3 \cdot 11 \cdot 13 \cdot 17 \cdot 19}{2^8} \cdot J(a)$		

type	n	k	$ \Phi^+ $	leading term
D_3	3	2	6	$-\frac{1}{2\cdot 3}\cdot J(a)$
D_5	5	4	20	$-\frac{11\cdot 13}{2^3\cdot 5}\cdot J(a)$
D_7	7	6	42	$-\frac{11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31}{2^4\cdot 3\cdot 7}\cdot J(a)$

Note that these are **Huge** calculations:

The calculation for A_{10} requires calculations with polynomials with 332640 terms of degree 55.

The sign conjecture is true in dimensions at most 7 in a neighborhood around the origin.

Hard truth:

Inequalities are harder than equalities.

[Hirschhorn⁵]

p people sharing a pizza. Dihedral arrangement of type $I_2(2p)$ Number of slices 4pEvery person takes every pth slice Distribution is fair

Open problem:

 $p \ge 3$ people in $d \ge 3$ dimensions

Which arrangements guarantee a fair division of $\mathbb{B}(a, R)$?

One solution for p = d = 4.

$$\mathcal{H}_1 = \{ x_i = \pm x_j : 1 \le i < j \le 4 \}$$

$$\mathcal{H}_2 = \{ x_i = 0 : 1 \le i \le 4 \} \cup \{ x_1 \pm x_2 \pm x_3 \pm x_4 = 0 \}$$

Both \mathcal{H}_1 and \mathcal{H}_2 have type D_4 .

The type of $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2$ is F_4 .

T chamber of \mathcal{H} .

Let T_i be the unique chamber in \mathcal{H}_i containing T.

$$(-1)^T = (-1)^{T_1} \cdot (-1)^{T_2}$$

For T a chamber of \mathcal{H} give the slice $T \cap K$ to person $((-1)^{T_1}, (-1)^{T_2})$

Let V_{s_1,s_2} be the amount person (s_1,s_2) receives.

 \mathcal{H}_1 satisfies pizza theorem $\Longrightarrow V_{1,1} + V_{1,-1} = 1/2$ pizza

 \mathcal{H}_2 satisfies pizza theorem $\Longrightarrow V_{1,1} + V_{-1,1} = 1/2$ pizza

 \mathcal{H} satisfies pizza theorem $\Longrightarrow V_{1,1} + V_{-1,-1} = 1/2$ pizza

$$\implies V_{1,1} = V_{1,-1} = V_{-1,1} = V_{-1,-1} = 1/4 \text{ pizza}$$

Bon appétit!

Happy Birthday Einar!

References:

Richard Ehrenborg, Sophie Morel and Margaret Readdy, Sharing pizza in n dimensions, Transactions of the American Mathematical Society 375 (2022), 5829–5857.

Richard Ehrenborg, Sophie Morel and Margaret Readdy, Pizza and 2-structures, *Discrete and Computational Geometry* **70** (2023), 1221–1244.

Richard Ehrenborg, Conjectures for cutting pizza with Coxeter arrangements, to appear in *Experimental Mathematics*.

(Just Google "Pizza Ehrenborg")