CPSC 302 - Assignment 5

Tristan Rice, q7w9a, 25886145

Discussed with Bryan Chiu and Jerome Rasky

1. Stationary Method

1.a

$$A = M - N$$

$$Mx_{k+1} = Nx_k + b$$

$$x_{k+1} = x_k + \alpha(b - Ax_k)$$

$$x_{k+1} = x_k + \alpha b - \alpha Ax_k$$

$$x_{k+1} = (I - \alpha A)x_k + \alpha b$$

$$\frac{I}{\alpha}x_{k+1} = (\frac{I}{\alpha} - A)x_k + b$$

$$M = \frac{I}{\alpha}$$

$$T = (I - \alpha A)$$

1.b

1.b.i Converges only if $\rho(T) < 1$

Thus, only converges if $\rho(I-\alpha A)<1$.

This converges if $\max_i |1 - \alpha \lambda_i| < 1$.

1.b.ii To maximize the speed of convergence we need to minimize $\rho(T)$.

Thus, we need to find the values α that minimizes $\max_i |1 - \alpha \lambda_i|$.

If $1=\alpha\lambda_i$ for some i, that means it won't maximize $|1-\alpha\lambda_i|$, since all eigenvalues are distinct and thus at least one must be further away. Assuming one of the eigenvalues equals 1 and $\alpha=1$, the smallest possible convergence rate would be $|\lambda_1-\lambda_n|$.

For the best possible rate, we want to minimize both $|1-\alpha\lambda_1|, |1-\alpha\lambda_n|$ in order to have the fastest possible rate.

$$1 - \alpha \lambda_1 + 1 - \alpha \lambda_n = 0$$
$$\alpha \lambda_1 + \alpha \lambda_n = 2$$
$$\alpha (\lambda_1 + \lambda_n) = 2$$

$$\alpha = \frac{2}{\lambda_1 + \lambda_n}$$

Thus, we end up at the same best value for the step size in terms of maximizing the speed of convergence.

The spectral radius works out to be

$$\rho(T) = \max_{i} |1 - \frac{2\lambda_i}{\lambda_1 + \lambda_n}|$$

The closest eigenvalue to 1 will either be λ_1 or λ_n due to the scaling factor.

$$\begin{split} \rho(T) &= \max\{1 - \frac{2\lambda_n}{\lambda_1 + \lambda_n}, \frac{2\lambda_1}{\lambda_1 + \lambda_n} - 1\} \\ & \kappa_2(A) = \frac{\lambda_1}{\lambda_n} \\ & \rho(T) = \max\{1 - \frac{2}{\kappa_2(A) + 1}, \frac{2}{1 + \frac{1}{\kappa_2(A)}} - 1\} \end{split}$$

1.c

Using the convergence condition above, for the statement to hold, there must be no strictly diagonally dominant matrices with $\alpha=1$ such that $\max_i |1-\alpha\lambda_i|<1$.

A diagonal matrix is by definition strictly diagonally dominant and the eigenvalues are just the values on the diagonal.

Thus we can construct a matrix with diagonal and eigenvalues $\lambda = \{5,4,3\}$. Thus, the $\max_i |1 - \lambda_i| = |1 - 5| = 4$ and this statement is contradicted since our convergence condition fails. Thus, this statement is false.

2. Consider the two-dimensional partial differential equation ...

2.a

Since B is symmetric we can express the condition number of it in terms of:

$$\kappa_2(B) = \frac{|\lambda|_{max}}{|\lambda|_{min}}$$

Since A is also symmetric, we can find the eigenvalues of B by adding $(\alpha h)^2 I$ to each eigenvalue of A.

$$\lambda_{l,m} = 4 - 2(\cos(l\pi h) + \cos(m\pi h)) + (\alpha h)^2, 1 \leq l,m \leq N$$

We need to find the maximum and minimum eigenvalues to determine the condition number.

Since $\cos(0)=1,\cos(\pi)=-1$ we see that having l=m=1 minimizes the second term and results in the smallest eigenvector.

The largest eigenvector is found when $l\pi h, m\pi h$ are close to π since that maximizes the second term.

$$\begin{split} \lambda_{min} &= 4 - 2(\cos(1\pi h) + \cos(1\pi h)) + (\alpha h)^2 \\ \lambda_{max} &= 4 - 2(\cos(\lfloor N \rfloor \pi h) + \cos(\lfloor N \rfloor \pi h)) + (\alpha h)^2 \end{split}$$

$$\kappa_2(B) = \frac{4 - 2(\cos(1\pi h) + \cos(1\pi h)) + (\alpha h)^2}{4 - 2(\cos(\lfloor N \rfloor \pi h) + \cos(\lfloor N \rfloor \pi h)) + (\alpha h)^2}$$

$$\kappa_2(B) = \frac{4 - 2(\cos(\lfloor N \rfloor \pi \frac{1}{N+1}) + \cos(\lfloor N \rfloor \pi \frac{1}{N+1})) + (\alpha \frac{1}{N+1})^2}{4 - 2(\cos(1\pi \frac{1}{N+1}) + \cos(1\pi \frac{1}{N+1})) + (\alpha \frac{1}{N+1})^2}$$
 > n = 1:20; N = sqrt(n) N =
$$\frac{1.9000 \quad 1.4142 \quad 1.7321 \quad 2.0000 \quad 2.2361 \quad 2.4495 \quad 2.6458 \quad 2.8284}{3.0000 \quad 3.1623 \quad 3.3166 \quad 3.4641 \quad 3.6056 \quad 3.7417 \quad 3.8730 \quad 4.0000}{4.1231 \quad 4.2426 \quad 4.3589 \quad 4.4721}$$
 > k2 = (4 -2 * (cos(floor(N) * pi /(N+1)) + cos(floor(N) * pi /(N+1))) + (alpha./(N+1)).^2)./(4-2*(cos(pi./(N+1)) + cos(pi./(N+1))) + (alpha./(N+1)).^2)
$$\frac{1.2381 \quad 1.5050 \quad 1.7508 \quad 1.9843 \quad 2.2095 \quad 2.4285 \quad 2.6428 \quad 2.8532}{3.0605 \quad 3.2650 \quad 3.4673 \quad 3.6676 \quad 3.8660 \quad 4.0629 \quad 4.2584 \quad 4.4526}$$

We see that increasing n causes the condition number to increase since the cos terms get closer to 1, -1.

5.2186

2.b

4.6456

4.8376

5.0286

```
N = 31, n = 961, k2(B) = 4.143451e+02
jacobi: 2000 iters
gaussSeidel: 1108 iters
SOR: 1090 iters
cg: 52 iters
pcg: 23 iters
N = 31, n = 961, k2(B) = 2.752810e+02
jacobi: 1525 iters
gaussSeidel: 764 iters
SOR: 752 iters
cg: 50 iters
pcg: 22 iters
N = 31, n = 961, k2(B) = 8.994868e+00
jacobi: 61 iters
gaussSeidel: 34 iters
SOR: 33 iters
cg: 20 iters
pcg: 7 iters
N = 63, n = 3969, k2(B) = 1.659380e+03
jacobi: 2000 iters
gaussSeidel: 2000 iters
SOR: 2000 iters
cg: 102 iters
pcg: 42 iters
```

N = 63, n = 3969, k2(B) = 1.101665e+03

jacobi: 2000 iters
gaussSeidel: 2000 iters

SOR: 2000 iters cg: 100 iters pcg: 37 iters

N = 63, n = 3969, k2(B) = 3.309512e+01

jacobi: 218 iters
gaussSeidel: 113 iters

SOR: 111 iters cg: 40 iters pcg: 13 iters

We see that the speed of convergence is: Jacobi > Gauss-Seidel > SOR > CG > PCG.

The difference in speed of convergence makes sense since that's what the theoretical convergence rates of the different methods tells us. We also see that with varying N,α params that the speed of convergence is correlated with the condition number. Problems that are better conditioned converge faster.

3. Suppose we wish to solve Ax = b ...

3.a

Increasing diagonalIncrement causes gsMorph to converge faster.

Increasing the diagonal entries of A increases the spectral radius of A. This increase causes the spectral radius of the convergence matrix to go down since the iteration matrix is $I-M^{-1}A$.

3.b

N/A

4. The smoothing factor ...

4.a

 ${\cal A}$ is the discrete Laplacian.

$$\begin{split} x_{k+1} &= x_k + \omega D^{-1}(b - Ax_k) \\ x_{k+1} &= (I - \omega D^{-1}A)x_k + \omega D^{-1}b \end{split}$$

$$T_{\omega} = I - \omega D^{-1} A$$

$$T_\omega v_{l,m} = (I - \omega D^{-1}A)v_{l,m}$$

$$T_{\omega}v_{l,m}=v_{l,m}-\omega D^{-1}Av_{l,m}$$

The definition of an eigenvector and eigenvalue pair is

$$Av = \lambda v$$

The diagonal values for A are all the same by definition, thus you can write $D=dI, D^{-1}=I/d$.

$$T_\omega v_{l,m} = v_{l,m} - \omega d^{-1} \lambda_{l,m} v_{l,m}$$

$$T_\omega v_{l,m} = (1-\omega d^{-1}\lambda_{l,m})v_{l,m}$$

Thus for T_{ω} the eigen vectors are the same, and the eigenvalues are $1-\omega d^{-1}\lambda_{l,m}$ where $\lambda_{l,m}$ are the eigenvalues of A.

4.b

The eigenvalues for A are

$$\lambda_{l,m} = 4 - 2(\cos(l\pi h) + \cos(m\pi h)), 1 \le l, m \le N$$

Thus, the eigenvalues of the iteration matrix are:

$$\mu_{l,m} = 1 - \omega d^{-1} (4 - 2(\cos(l\pi h) + \cos(m\pi h)))$$

d=4 for the 2D Laplacian

$$\mu_{l,m}=1-\omega(1-\frac{1}{2}(\cos(l\pi h)+\cos(m\pi h)))$$

 $|\mu_{l,m}|$ is maximized when $l=\frac{N+1}{2}, m=1$ or when l=m=N.

Thus those factors are:

$$\begin{split} \mu_{(N+1)/2,1} &= 1 - \omega(1 - \frac{1}{2}(\cos(\frac{(N+1)\pi}{2(N+1)}) + \cos(\frac{\pi}{N+1}))) \\ \mu_{(N+1)/2,1} &= 1 - \omega(1 - \frac{1}{2}(\cos(\frac{\pi}{2}) + \cos(\frac{\pi}{N+1}))) \\ \mu_{(N+1)/2,1} &= 1 - \omega(1 - \frac{1}{2}\cos(\frac{\pi}{N+1})) \\ \lim_{N \to \infty} \mu_{(N+1)/2,1} &= 1 - \omega(1 - \frac{1}{2}\cos(0)) \\ \lim_{N \to \infty} \mu_{(N+1)/2,1} &= 1 - \omega(1 - \frac{1}{2}) \\ \lim_{N \to \infty} \mu_{(N+1)/2,1} &= 1 - \frac{\omega}{2} \\ \\ \lim_{N \to \infty} \mu_{N,N} &= 1 - \omega(1 - \frac{1}{2}(\cos(\pi) + \cos(\pi))) \\ \lim_{N \to \infty} \mu_{N,N} &= 1 - \omega(1+1) = 1 - 2\omega \end{split}$$

Since these both are maxes we need to solve for a ω^* that maximizes them both.

$$1 - 2\omega^* + 1 - \frac{\omega^*}{2} = 0$$
$$2\omega^* + \frac{\omega^*}{2} = 2$$
$$5\omega^* = 4$$
$$\omega^* = \frac{4}{5}$$

We can plug this value back into the earlier eigenvalue expressions to get

$$\mu^* = |1 - 2(\frac{4}{5})| = \frac{3}{5}$$

4.c

$$\mu_{l,m} = 1 - \omega d^{-1} (4 - 2(\cos(l\pi h) + \cos(m\pi h)))$$

In this case, $\omega=1, d=4$.

$$\begin{split} \mu_{l,m} &= 1 - (1 - \frac{1}{2}(\cos(l\pi h) + \cos(m\pi h))) \\ \mu_{l,m} &= \frac{1}{2}(\cos(l\pi h) + \cos(m\pi h)) \\ h &= \frac{1}{N+1} \end{split}$$

We're interested in the maximum eigenvalue of the iteration matrix. In this case, that's when $|\cos(\frac{l,m\pi}{N+1})|$ is largest. That means the insides is closest to 0.

We are constrained by $\frac{N+1}{2} \leq l \leq N, 1 \leq m \leq N.$ Thus, $|\cos(...)|$ is maximized when l=m=N.

$$\mu_{l,m}=\frac{1}{2}(\cos(\frac{N\pi}{(N+1)})+\cos(\frac{N\pi}{N+1}))$$

If we take the limit

$$\lim_{N \rightarrow \infty} \mu_{l,m} = \frac{1}{2}(\cos(\pi) + \cos(\pi))$$

$$\lim_{N \rightarrow \infty} \mu_{l,m} = -1$$

The scaling factor $\mu*(\omega=1)=|-1|=1$. Since the scaling factor is 1, that means no scaling occurs and that Jacobi is not an effective smoother.

gsMorph.m Page 1

```
close all
clear
image1 = imread('gauss.jpg');
image2 = imread('dyoung.jpg');
N = length(image1);
%% Create 5-point finite difference Laplacian on a square
A = delsq(numgrid('S', N+2));
%% Increment the diagonal by diagonalIncremement
diagonalIncremement = 0.5;
A=A+diagonalIncremement*speye(length(A));
%% Create b such that image2 is answer to Ax = b
b = A*cast(reshape(image2, N^2, 1), 'double');
%% Make image1 our initial guess to Ax = b
x0 = cast(reshape(image1, N^2, 1), 'double');
%% Visualize initial guess
image(reshape(x0,N,N))
colormap(gray(256))
axis equal off tight
drawnow
%% Set up matrix splitting of A
D = diag(diag(A));
L = -1 * tril(A, -1);
U = -1 * triu(A, 1);
% The iteration matrix for Gauss-Seidel uses the lower triangular matrix of A
% instead of the diagonal.
M = inv(D-L);
%% Prepare diagonal splitting version of Jacobi method
%% Perform Jacobi iteration
x = x0;
          % initial guess
numIterations = 50;
                      % number of iterations
for iter = 2:numIterations
  xold = x;
                      % update previous solution
  x = M * (b + U * x); %M * (b + DSU*x); % compute current solution
  % print out current error
  eiter = norm(x - cast(reshape(image2, N^2, 1), 'double'))/e0
  % visualize current solution
  cla
  image(reshape(x,N,N))
  colormap(gray(256))
  axis equal off tight
  pause (.25)
end
```

q2.m Page 1

```
% set global config options
global iters;
global tol;
iters = 2000;
tol = 10^{-6};
% setup plot
f = figure();
title('2.b Convergence of methods');
ploti = 0;
for N = [31 63]
  for alpha = sqrt([0 10 1000])
    % increment plot number
    ploti = ploti + 1;
    % compute B and b from Bx=b
    n = N^2;
    h = 1/(N+1);
    c = (alpha * h)^2;
    B = delsq(numgrid('S', N + 2)) + c*speye(n);
    b = B*ones(N^2, 1);
    % x is the initial guess
    x = zeros(n, 1);
 k2 = (4 -2 * (\cos(floor(N) * pi / (N+1)) + \cos(floor(N) * pi / (N+1))) + (alpha./(N+1)).^2)./(4-2*(\cos(pi./(N+1)) + \cos(pi./(N+1))) + (alpha./(N+1)).^2); 
    fprintf('N = %d, n = %d, k2(B) = %d \ n', N, n, k2);
    % compute the residuals and iteration counts for each method.
    [\sim, jr, i] = jacobi(B, x, b);
    fprintf('jacobi: %d iters\n', i)
[~, gsr, i] = gaussSeidel(B, x, b);
    fprintf('gaussSeidel: %d iters\n', i)
    [\sim, sorr, i] = SOR(B, x, b);
    fprintf('SOR: %d iters\n', i)
     [~, cgr, i] = CG(B, x, b);
    fprintf('cg: %d iters\n', i)
    [\sim, pcgr, i] = PCG(B, x, b);
    fprintf('pcg: %d iters\n', i)
    \ensuremath{\,^{\circ}} plot the residual vectors
    subplot(3, 2, ploti);
    semilogy(getx(jr), jr, getx(gsr), gsr, getx(sorr), sorr, getx(cgr), cgr, getx(pc
gr), pcgr);
    legend('jacobi', 'gaussSeidel', 'SOR', 'CG', 'PCG');
    xlabel('iterations');
    ylabel('relative residual');
    title(sprintf('N = %d, alpha = %d', N, alpha))
    fprintf('\n');
  end
end
% save plot
saveas(f, 'q2.png');
%% getx returns a vector 1, 2, ..., len(b).
function x = getx(b)
  x = 1:max(size(b));
end
%% gaussSeidel solves Bx=b using the Gauss-Seidel method.
function [x, relres, i] = gaussSeidel(B, x, b)
  global iters;
  global tol;
  % Create matrix splitting of B
  D = diag(diag(B));
  L = -1*tril(B, -1);
  U = -1*triu(B,1);
```

q2.m Page 2

```
% Compute iteration matrix
 M = inv(D-L);
  r0 = residual(B, x, b);
  rs = [r0];
  for i = 1:iters
   x = M * (b + U * x); % compute current solution
    r = residual(B, x, b);
    rs = [rs, r];
    if r/r0 < tol
     break
    end
  end
  relres = rs/norm(b, 2);
end
%% jacobi solves Bx=b using the Jacobi method.
function [x, relres, i] = jacobi(B, x, b)
  global iters;
  global tol;
  % Create matrix splitting of B
  D = diag(diag(B));
  L = -1*tril(B, -1);
 U = -1*triu(B, 1);
  % Compute iteration matrix
 M = inv(D);
  % cache LPU for better performance
 LPU = (L+U);
  r0 = residual(B, x, b);
  rs = [r0];
  for i = 1:iters
    x = M*(LPU*x + b); % compute current solution
    r = residual(B, x, b);
    rs = [rs, r];
    if r/r0 < tol
      break
    end
  end
  relres = rs/norm(b, 2);
end
%% CG solves Bx=b using the Conjugate Gradient method. function [x, relres, i] = CG(B, x, b)
  global iters;
  global tol;
  [x, \sim, \sim, i, relres] = pcg(B, b, tol, iters, [], [], x);
end
%% PCG solves Bx=b using the Conjugate Gradient method with a incomplete
%% Cholesky IC(0).
function [x, relres, i] = PCG(B, x, b)
 global iters;
  global tol;
  L = ichol(B);
  [x, \sim, \sim, i, relres] = pcg(B, b, tol, iters, L, L', x);
end
function [x, relres, i] = SOR(B, x, b)
  global iters;
  global tol;
  % Create matrix splitting of B
 D = diag(diag(B));
 L = -1*tril(B, -1);
 U = -1*triu(B,1);
  % Compute iteration matrix
```

q2.m Page 3

```
M = inv(D-L);
  jacobiM = inv(D);
 % compute damping factor
 spectral_radius = max(abs(eig(jacobiM)));
 w = 2 / (1 + sqrt(1 - spectral_radius^2));
 r0 = residual(B, x, b);
 rs = [r0];
  for i = 1:iters
   xnew = M * (b + U * x); % compute GS

x = w * xnew + (1-w) * x; % damp GS according to damping factor w
   r = residual(B, x, b);
   rs = [rs, r];
if r/r0 < tol
     break
    end
  end
 relres = rs/norm(b, 2);
end
%% residual computes the residual of Bx = b
function r = residual(B, x, b)
 r = norm(b - B*x, 2);
end
```