NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING ACADEMIC YEAR 2022-2023 SEMESTER 1

EE3013 SEMINCONDUCTOR DEVICES AND PROCESSING

MOS Devices

1.

- (a) For an ideal metal-SiO₂-Si diode having $N_A = 10^{17}$ cm⁻³ (p-type semiconductor), calculate the maximum width of the surface depletion region, corresponding to the onset of strong inversion. Assume kT/q = 0.0259 V, and $n_i = 9.65 \times 10^9$ cm⁻³ and permittivity of Si is 11.9x8.85x10⁻¹⁴ F/cm.
- (b) If the oxide thickness is 5 nm,
 - (i) determine the capacitance C_o for the diode.
 - (ii) Also calculate the minimum capacitance for the MOS.
- (iii) Determine the difference $(E_i E_F)$ for the semiconductor far away from the interface.
 - (iv) Estimate the threshold voltage V_T for the MOS structure.

Assume that the relative dielectric constant for the oxide is 3.9.

1 (a) For an ideal metal-SiO₂-Si diode having $N_A = 10^{17}$ cm⁻³ (p-type semiconductor), calculate the maximum width of the surface depletion region, corresponding to the onset of strong inversion. Assume kT/q = 0.0259 V, and $n_i = 9.65 \times 10^9 \text{ cm}^{-3}$ and permittivity of Si is 11.9x8.85x10⁻¹⁴ F/cm

At the onset of strong inversion

$$\psi_s = 2\psi_B = \frac{2kT}{q} \ln \left(\frac{N_A}{n_i} \right)$$

The surface depletion layer reaches a maximum W_m at this stage.

$$W_m^2 = \frac{2\varepsilon_s(2\psi_B)}{qN_A} = \frac{4\varepsilon_s kT}{q^2N_A} \ln\left(\frac{N_A}{n_i}\right)$$

Accordingly,

$$\varepsilon_s = 11.9 \times 8.85 \times 10^{-14} \text{ F/cm}$$
 $kT/q = 0.0259 \text{ V}$
 $q = 1.6 \times 10^{-19} \text{ coul. } N_A = 10^{17} \text{ cm}^{-3}$ $n_i = 9.65 \times 10^9 \text{ cm}^{-3}$ $W_m = 0.105 \text{ } \mu\text{m}$

$$W_m = 0.105 \ \mu \text{m}$$

- 1 (b) If the oxide thickness is 5 nm, (i) **determine the capacitance** C_o for the diode. (ii) Also calculate the **minimum capacitance** for the MOS. (iii) **Determine the difference** $(E_i E_F)$ for the semiconductor far away from the interface. (iv) **Estimate the threshold voltage** V_T for the MOS structure. Assume that the relative dielectric constant for the oxide is 3.9
- (i) MOS capacitance C is a series combination of oxide capacitance C_o and depletion layer capacitance, C_i :

$$C = \frac{C_o C_j}{(C_o + C_j)} \qquad \text{F.cm}^{-2}$$

where $C_j = \varepsilon_s/W$, and $C_o = \varepsilon_{ox}/d$

$$C_o = 3.9 \times 8.85 \times 10^{-14} / 5 \times 10^{-7} = 6.90 \times 10^{-7} \text{ F/cm}^2$$

Because C_j acts in series with C_o , the total MOS capacitance is smaller than C_o .

(ii) Minimum capacitance C_{min} occurs at the onset of strong inversion, when $W = W_m = 0.105 \mu m$, so that

$$\frac{1}{C_{\min}} = \frac{1}{C_o} + \frac{1}{C_j} = \frac{1}{C_o} + \frac{W_m}{\varepsilon_s} = \frac{1}{6.9 \times 10^{-7}} + \frac{1.05 \times 10^{-5}}{11.9 \times 8.85 \times 10^{-14}} C_o$$
 Accumulation

$$C_{min} = 8.76 \times 10^{-8} \text{ F/cm}^2$$

(iii) Since $E_i - E_F = q$. ψ_B far from the interface and

$$\psi_s = 2\psi_B = \frac{2kT}{q} \ln\left(\frac{N_A}{n_i}\right)$$

Substituting values,

$$\psi_s = 2\psi_B = 2 \times 0.0259 \ln \left(\frac{10^{17}}{9.65 \times 10^9} \right) = 0.84V$$

 $\psi_B = 0.42 \text{ V}; \quad E_i - E_F = q. \ \psi_B = 0.42 \text{ eV}$

(iv)
$$V_T = \frac{qN_AW_m}{C_o} + 2\psi_B = \frac{1.602 \times 10^{-19} \times 1.05 \times 10^{-5}}{6.9 \times 10^{-7}} + 0.84 = 1.08V$$

2. Calculate the flat band voltage for an n⁺-polysilicon-SiO₂-Si diode having $N_A = 10^{17}$ cm⁻³, oxide thickness d = 5 nm. Assume that $\phi_{ms} = -0.98$ V for the (n⁺ polysilicon) – (p-Si) system, Q_m and Q_{ot} are negligible and $Q_{ot}/q = 5 \times 10^{11}$ cm⁻².

The flat band voltage is given by
$$V_{FB} = \phi_{ms} - \frac{(Q_f + Q_m + Q_{ot})}{C_o}$$

Substituting
$$\phi_{ms} = -0.98 \text{ V}$$
, $Q_m = 0$, $Q_{ot} = 0$,

$$C_0 = \frac{\varepsilon_{ox}}{d}$$

$$Q_f = 5 \times 10^{11} \times 1.6 \times 10^{-19}$$
 C/ cm², and $C_o = 6.9 \times 10^{-7}$ F/cm²,

$$V_{FB} = -0.98 - 0.116 = -1.096 \text{ V}.$$

3. An enhancement type NMOS transistor with $V_T = 2$ V has its source grounded and a 3 V supply connected to the gate. In what region does the device operate for (a) $v_D = 0.5$ V? (b) $v_D = 1.0$ V? (c) $v_D = 5.0$ V? If the device parameters are $\mu_n C_{ox} = 20 \,\mu\text{A/V}^2$, $Z = 100 \,\mu\text{m}$ and $L = 10 \,\mu\text{m}$, calculate the drain current for each of the cases.

For enhancement NMOS transistor, V_T is positive = 2 V

→ If, $V_{GS} \ge 2$ V then transistor is ON.

* If V_{DS} < (V_{GS} – 2) then the transistor is said to be in the triode region and equation (1) is valid:

$$I_D = K_n \left[(V_{GS} - V_T) V_{DS} - V_{DS}^2 / 2 \right] - - - - (1)$$

* If $V_{DS} \ge (V_{GS} - 2)$ then the transistor is said to be in the saturation region and equation (2) is valid:

$$K_n = \mu_n Cox (Z/L) = (200)(100/10) = 200$$

(a) With source common, $V_{DS} = 0.5 \text{ V}$; $V_{GS} = 3 \text{ V}$; $V_{GS} - V_T = 1 \text{ V}$. (Triode region) \rightarrow Equation (1) is valid.

$$I_{D} = K_{n} \left[(V_{GS} - V_{T})V_{DS} - V_{DS}^{2} / 2 \right]$$

$$= 200[(3-2)0.5 - (0.5)^{2} / 2]$$

$$= 75 \mu A$$

(b) V_{DS} = 1.0 V; V_{GS} = 3 V; V_{GS} − V_T = 1 V. Operating point is at the knee of triode and saturation region
 → Equation (1) or Equation (2) can be used.

$$I_{DS} = \frac{K_n}{2} (V_{GS} - V_T)^2 = 100(3 - 2)^2 = 100 \mu A$$

(c) $V_{DS} = 5.0 \text{ V}$; $V_{GS} = 3 \text{ V}$; $V_{GS} - V_{T} = 1 \text{ V}$. Operating point is in the saturation region

Linear or Triode

→ Equation (2) should be used.

$$I_{DS} = \frac{K_n}{2} (V_{GS} - V_T)^2 = 100 \,\mu\text{A}$$

An enhancement PMOS transistor has $K_p = 80 \, \mu\text{A/V}^2$ and $V_T = -1.5 \, \text{V}$. The gate is connected to -3.5 V and the source to ground. Find the drain current for (a) $V_D = -1 \, \text{V}$, (b) $V_D = -2 \, \text{V}$ and (c) $V_D = -5 \, \text{V}$.

For the enhancement mode PMOS transistor, a simple way to deal with PMOS is to use the same formulae but all the parameters involved use magnitude (ignore negative sign).

$$V_T$$
 is negative = -1.5 V, V_{GS} = -3.5 V $\rightarrow |V_{GS}| - |V_T| = 3.5 - 1.5 = 2 V$

* If $|V_{DS}| < (|V_{GS}| - |V_T|)$, then the transistor is said to be in the triode region and equation (1) is valid.

$$I_{D} = K_{n} \left[\left(\left| V_{GS} \right| - \left| V_{T} \right| \right) \left| V_{DS} \right| - \left| V_{DS} \right|^{2} / 2 \right] \qquad ---- (1)$$

* If $|V_{DS}| > (|V_{GS}| - |V_T|)$, then the transistor is said to be in the saturation region and equation (2) is valid.

$$I_{DS} = \frac{K_p}{2} (|V_{GS}| - |V_T|)^2$$
 ---- (2)

4 (a)
$$V_{DS} = -1 \text{ V}$$

 $|V_{DS}|$ (1V)< $|V_{GS}|$ - $|V_{T}|$ (2V). Hence, the PMOS operates in triode region.

$$I_D = K_n \left[(|V_{GS}| - |V_T|) |V_{DS}| - |V_{DS}|^2 / 2 \right]$$

= 80[(3.5-1.5)×1-1²/2] = 120 \(\mu A\)

(b)
$$V_{DS} = -2 \text{ V}$$

$$|V_{DS}|$$
 (2V)= $|V_{GS}|$ - $|V_T|$ (2V).

Operating point is at the knee of triode and saturation regions. Equation (1) or Equation (2) can be used.

$$I_{DS} = \frac{K_p}{2} (|V_{GS}| - |V_T|)^2$$
$$= 40(3.5 - 1.5)^2 = 160 \mu A$$

$$I_D = K_n \left[(|V_{GS}| - |V_T|) |V_{DS}| - |V_{DS}|^2 / 2 \right]$$

= 80[(3.5-1.5)×2-2²/2]=160 \(\mu A\)

(c)
$$V_{DS} = -5 \text{ V}$$

 $|V_{DS}|$ (5V)> $|V_{GS}|$ - $|V_{T}|$ (2V). Operating point is in the saturation region. Equation (2) should be used.

$$I_{DS} = \frac{K_p}{2} (|V_{GS}| - |V_T|)^2$$
$$= 40(3.5 - 1.5)^2 = 160 \mu A$$

Q5: For an ideal MOS diode fabricated on a n-Si substrate:

- (i) Sketch the energy band diagrams when it is in (i) accumulation, (ii) depletion, and (iii) inversion. Indicate E_c , E_v , E_i and E_f in the diagrams.
- (ii) Sketch the high-frequency capacitance versus voltage diagram and indicate the regions corresponding to (i) accumulation, (ii) depletion, and (iii) inversion.

Solution:

Accumulation

Depletion

(ii) High-frequency C-V Plot

