Тензорный анализ сингулярного спектра

Хромов Никита Андреевич, гр.20.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Отчет по производственной практике (научно-исследовательская работа) (6 семестр)

Санкт-Петербург, 2023

Введение

Временной ряд длины
$$N$$
: $X = (x_1, x_2, \dots, x_N)$. $X = T + P + R$.

Возможные задачи:

- **1** Выделение сигнала из ряда: нахождение T + P;
- Отделение компонент сигнала: нахождение Т и Р.

Одним из методов решения этих задач является метод Singular Spectrum Analysis (SSA) Golyandina et al. (2001), Analysis of time series structure: SSA and related techiques.

Введение

SSA: ряд X
$$\Rightarrow$$
 матрица \mathbf{X} \Rightarrow SVD \mathbf{X} , Tensor SSA: ряд X \Rightarrow тензор \mathcal{X} \Rightarrow тензорное разложение \mathcal{X} .

- Примеры тензорных разложений:
 - High-order singular value decomposition (HOSVD);
 - Canonical polyadic decomposition (CPD).
- Для выделения сигнала и оценки его параметров в работе Papy et al. (2005) применялось HOSVD, и в работе De Lathauwer et al. (2011) применялось CPD.

Задача: изучить различные варианты тензорных разложений, применить их в задаче анализа временного ряда и сравнить результаты с SSA.

Из тензорных разложений первым было выбрано HOSVD, так как оно имеет наибольшее сходство с SVD.

Описание HOSDV

Пусть имеется тензор $\mathcal{A} \in \mathbb{C}^{I_1 \times I_2 \times ... \times I_M}$, тогда HOSVD \mathcal{A} :

$$\mathcal{A} = \sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} \dots \sum_{i_M=1}^{I_M} \mathcal{Z}_{i_1, i_2, \dots, i_M} U_{i_1}^{(1)} \circ U_{i_2}^{(2)} \circ \dots \circ U_{i_M}^{(M)},$$

где

- ullet ${f U}^{(n)} = \left[U_1^{(n)}, \dots, U_{I_n}^{(n)}
 ight] -$ унитарные матрицы;
- ullet Тензор $\mathcal{Z} \in \mathbb{C}^{I_1 imes I_2 imes ... imes I_M}$ удовлетворяет свойствам
 - полная ортогональность:

$$\langle \mathcal{Z}_{i_n=\alpha}, \mathcal{Z}_{i_n=\beta} \rangle = 0 \qquad \alpha \neq \beta,$$

упорядоченность:

$$\|\mathcal{Z}_{i_n=1}\| \geqslant \|\mathcal{Z}_{i_n=2}\| \geqslant \ldots \geqslant \|\mathcal{Z}_{i_n=I_n}\|.$$

Свойства HOSVD

Все свойства представлены в работе De Lathauwer et al. (2000).

- ullet HOSVD единственное M-ортогональное разложение.
- ullet При M=2 HOSVD совпадает с SVD.
- Пусть $\mathrm{rank}_n(\mathcal{A})$ размерность пространства векторов измерения n тензора. Если в HOSVD тензора \mathcal{A} r_n наибольший индекс такой, что $\|\mathcal{Z}_{i_n=r_n}\|>0$, то $r_n=\mathrm{rank}_n(\mathcal{A})$.

0

$$\|\mathcal{A}\|^{2} = \sum_{i=1}^{R_{1}} \left(\sigma_{i}^{(1)}\right)^{2} = \sum_{i=1}^{R_{2}} \left(\sigma_{i}^{(2)}\right)^{2} = \dots = \sum_{i=1}^{R_{M}} \left(\sigma_{i}^{(M)}\right)^{2} = \|\mathcal{Z}\|^{2}$$
$$\sigma_{i}^{(n)} = \|\mathcal{Z}_{i_{n}=i}\|, \qquad R_{n} = \operatorname{rank}_{n}(\mathcal{A}).$$

Свойства HOSVD

- Векторы тензора $\mathcal A$ по измерению n в основном содержат вклады в направлении $U_1^{(n)}$, величина этого вклада равна $\sigma_1^{(n)^2}$. Следующий по величине вклад по измерению n достигается в направлении $U_2^{(n)}$, перпендикулярном $U_1^{(n)}$, с величиной $\sigma_2^{(n)^2}$, и т.д.
- ullet Определим тензор $\hat{\mathcal{A}}$ отбрасыванием наименьших сингулярных значений $\sigma_{I'_n+1}^{(n)}, \sigma_{I'_n+2}^{(n)}, \dots, \sigma_{R_n}^{(n)}$, тогда

$$\|\mathcal{A} - \hat{\mathcal{A}}\|^2 \leqslant \sum_{i_1 = I_1' + 1}^{R_1} \left(\sigma_{i_1}^{(1)}\right)^2 + \ldots + \sum_{i_M = I_M' + 1}^{R_M} \left(\sigma_{i_M}^{(M)}\right)^2.$$

Описание метода HOSVD SSA

Имеется временной ряд $\mathbf{X}=(x_1,x_2,\dots,x_N)$. Приведём формулировки алгоритма HOSVD SSA для решения различных задач.

Входные данные алгоритма: $I,L:1\leqslant I,L\leqslant N,\ I+L\leqslant N+1.$ Траекторный тензор: тензор размерности $I\times L\times J=N-I-J+2$, строится по ряду:

$$\mathcal{X}_{i,l,j} = x_{i+l+j-2}$$
 $i \in \overline{1:I}, l \in \overline{1:L}, j \in \overline{1:J}.$

Слои траекторного тензора:

$$\mathcal{X}_{,,j} = \begin{pmatrix} x_j & x_{j+1} & \dots & x_{j+L-1} \\ x_{j+1} & x_{j+2} & & \vdots \\ \vdots & & \ddots & \vdots \\ x_{j+I-1} & \dots & \dots & x_{j+I+L-2} \end{pmatrix}.$$

HOSVD SSA: отделение компонент сигнала

Задача: отделение компонент сигнала в ряде.

- lacktriangle Вложение: выбор параметров I,L и построение по ним траекторного тензора \mathcal{X} ;
- 2 Разложение: Проведение HOSVD траекторного тензора \mathcal{X} , получение его представления в виде

$$\mathcal{X} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{j=1}^{J} \mathcal{Z}_{i,l,j} \mathbf{U}_{i}^{(1)} \circ \mathbf{U}_{l}^{(2)} \circ \mathbf{U}_{j}^{(3)};$$

HOSVD SSA: отделение компонент сигнала

• Группировка: разбиение множества индексов $\mathfrak{S} = \{1,\,2\,\ldots,\,\min(I,L,J)\} \text{ по смыслу на }$ непересекающиеся множества $\mathfrak{S}_k,\,k\in\overline{1:m}$ и построение по этому разбиению тензоров

$$\mathcal{X}^{(\mathfrak{S}_k)} = \sum_{i \in \mathfrak{S}_k} \sum_{l \in \mathfrak{S}_k} \sum_{j \in \mathfrak{S}_k} \mathcal{Z}_{i,l,j} \mathbf{U}_i^{(1)} \circ \mathbf{U}_l^{(2)} \circ \mathbf{U}_j^{(3)}.$$

ullet Восстановление: получение рядов $\mathsf{X}^{(k)} = \mathsf{X}^{(\mathfrak{S}_k)}$ по тензорам $\mathcal{X}^{(\mathfrak{S}_k)}$ посредством их усреднения вдоль плоскостей $i+l+j=\mathrm{const}$.

Результат алгоритма: набор рядов $\mathsf{X}^{(k)}$ таких, что

$$X = \sum_{k=1}^{m} X^{(k)}.$$

HOSVD SSA: отделение сигнала усечением HOSVD

Задача: выделение сигнала из ряда.

Способы реализации HOSVD SSA для решения этой задачи: усечение HOSVD и High-order orthogonal iteration (HOOI). Начнём с усечения HOSVD.

Первые два шага в этом алгоритме — вложение и разложение, были описаны выше.

- ullet Усечение: выбор ранга сигнала r и обнуление матриц-слоёв тензора $\mathcal Z$ с номерами k>r по каждому измерению. Построение по этому усечению тензора $\hat{\mathcal X}$.
- f a Восстановление: усреднение тензора $\hat{\mathcal{X}}$ вдоль плоскостей $i+l+j=\mathrm{const.}$

Результат алгоритма: полученный усреднением ряд \hat{X} будем считать сигналом.

HOSVD SSA: отделение сигнала с помощью HOOI

Задача: выделение сигнала из ряда.

Второй способ использует HOOI — метод приближения тензора другим тензором с меньшими значениями n-рангов. В отличие от усечения, этот метод является оптимальным.

Первый шаг алгоритма — вложение, совпадает с предыдущими алгоритмами, поэтому опишем его начиная со второго шага.

- ullet HOOI: Выбор ранга сигнала r и применение к ${\mathcal X}$ HOOI с набором n-рангов $(r,\,r,\,r)$. Результат оптимальное приближение тензором $\hat{{\mathcal X}}$ с n-рангами r.
- **3** Восстановление: усреднение тензора $\hat{\mathcal{X}}$ аналогично восстановлению в варианте с усечением.

Результат алгоритма: полученный усреднением ряд \hat{X} будем считать сигналом.

Свойства HOSVD SSA, разделимость рядов

Разделимость и ранг рядов являются важными понятиями в теории SSA. Рассмторим эти понятия для алгоритма HOSVD SSA

Разделимость рядов

Утверждение

Если временные ряды \tilde{X} и \hat{X} длины N слабо I- и L-разделимы в смысле теории SSA, то существует такое HOSVD траекторного тензора \mathcal{X} ряда $X=\tilde{X}+\hat{X}$, что его можно в виде суммы HOSVD траекторных тензоров рядов \tilde{X} и \hat{X} .

Понятие слабой разделимости рядов из SSA применимо к тензорному случаю

Свойства HOSVD SSA, ранг ряда

Ранг ряда

Утверждение

Пусть временной ряд X имеет конечный ранг d в терминах SSA. Тогда для любых значений параметров I и L таких, что

$$d \leqslant \min(I, L, N - I - L + 2),$$

количество ненулевых сингулярных чисел по каждому измерению в HOSVD траекторного тензора $\mathcal X$ этого ряда с параметрами I и L будет равно d.

Понятие ранга ряда имеет тот же смысл в терминах HOSVD SSA, что и в стандартной теории SSA, причём ряды конечного ранга имеют одинаковые ранги в тензорном и стандартном случаях.

Примеры слабой разделимости

- Экспонента и косинус с экспоненциально-модулированной амплитудой: $\tilde{x}_n=e^{-\alpha n}\cos(2\pi n/T+\varphi),\,\hat{x}_n=e^{\alpha n},$ $n\in\overline{1:N}.$
 - Если (N+2) : T, то при выборе I, L: I+L < N+1, делящихся нацело на T $\check{\mathbf{X}}$ и $\hat{\mathbf{X}}$ слабо разделимы.
- Два косинуса: $\tilde{x}_n = \cos(2\pi\omega n + \varphi), \ \hat{x}_n = \cos(2\pi\omega' n + \varphi'), \ 0 < \omega < 1/2$. тогда ряд $\tilde{\mathbf{X}}$ отделим от ряда $\hat{\mathbf{X}}$ в смысле Tensor SSA тогда и только тогда, когда $\tilde{\mathbf{X}}$ и $\hat{\mathbf{X}}$ слабо разделимы тогда и только тогда, когда $\omega \neq \omega', \ I, L, J > 2$ и $I\omega, I\omega', L\omega, L\omega', J\omega, J\omega'$ целые числа.

В последнем примере при одинаковых амплитудах происходит смешение компонент и в теории SSA говорят, что наблюдается приближённая разделимость.

Как формализовать приближённую и точную разделимость в теории HOSVD SSA пока неясно.

Сравнение HOSVD SSA и Basic SSA

- $x_n = 2e^{0.035n}$, шум белый гауссовский, $\sigma^2 = 2.25$;
- $x_n = 2 + 0.1n$, шум белый гауссовский, $\sigma_1^2 = 2.25$,, $\sigma_2^2 = 0.04$;
- $x_n=30\cos(2\pi n/12)$, шум белый гауссовский, $\sigma^2=25$, и красный, $\delta=\sqrt{5},\,\varphi_1=0.5,\varphi_2=0.9.$

Оценка точности — RMSE по 500 реализациям шума: X — ряд длины N, S_i — выделенный в i-м эксперименте сигнал, тогда

$$\widehat{\text{RMSE}}(m) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \widehat{\text{MSE}}(\mathsf{S}_i, \mathsf{X})}, \qquad \widehat{\text{MSE}}(\mathsf{S}, \mathsf{X}) = \frac{1}{N} \sum_{k=1}^{N} (s_i - x_i)^2.$$

Во всех этих случаях метод SSA показал точность отделения сигнала выше, чем HOSVD SSA.

Сравнение HOSVD SSA и Basic SSA

Таблица: RMSE восстановленного с помощью SSA сигнала, порождённого косинусом. N=71

L вид шума	12	24	30	36
белый, $\sigma^2 = 25$	1.82	1.42	1.40	1.42
красный, $\varphi=0.5$	1.31	1.03	1.01	1.03
красный, $\varphi=0.9$	1.88	1.37	1.34	1.36

Таблица: RMSE восстановленного с помощью HOSVD SSA с использованием HOOI сигнала, порождённого косинусом. N=71

I imes L вид шума	12×12	12×24	12×30	24×24	24×30	30×36
белый, $\sigma^2 = 25$	1.63	1.53	1.56	1.65	1.62	1.49
красный, $\varphi=0.5$	1.17	1.12	1.14	1.21	1.19	1.08
красный, $\varphi=0.9$	1.56	1.42	1.44	1.54	1.51	1.39

Особый случай

Приведём особый пример, в котором HOSVD SSA оказался точнее базового SSA.

$$x_n = \sin(2\pi n/3 + \pi/2), n \in \overline{1:9}.$$

Шум: красный с параметрами $\delta=0.1,\, \varphi=0.9.$

Таблица: RMSE восстановленного с помощью различных методов короткого сигнала, порождённого синусом.

SSA	HOSVD SSA (HOSVD)	HOSVD SSA (HOOI)		
0.116	0.110	0.095		

Заключение

Таким образом:

- Описан и реализован алгоритм HOSVD SSA.
- Выведены аналоги важных свойств SSA для метода HOSVD SSA.
- Описаны примеры использования метода.
- Проведено численное сравнение точности методов HOSVD SSA и SSA, найден особый случай.

Остаётся для изучения:

- Изучение причин возникновения особого случая.
- Определение точной и приближённой разделимости, нахождение метода отделения компонент при отсутствии точной.
- Возможность применения других тензорных разложений (CPD).
- Подтверждение результатов, утверждающих о преимуществах Tensor SSA над SSA.

Список литературы

- Golyandina Nina, Nekrutkin Vladimir, Zhigljavsky Anatoly. Analysis of time series structure: SSA and related techiques. Chapman & Hall/CRC, 2001.
- Papy J. M., De Lathauwer L., Van Hu el S. Exponential data tting using multilinear algebra: the single-channel and multi-channel case // Numerical Linear Algebra with Applications. 2005. P. 809–826.
- De Lathauwer Lieven. Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank- $(L_r,L_r,1)$ Terms // SIAM Journal on Matrix Analysis and Applications. 2011. P. 1451–1474.
- De Lathauwer Lieven, De Moor Bart, Vandewalle Joos. A Multilinear Singular Value Decomposition // SIAM Journal on Matrix Analysis and Applications. 2000. P. 1253–1278.