Please check the examination details belo	w belole elite	ring vour candidate intermation		
Candidate surname		Other names		
Centre Number Candidate Number Pearson Edexcel International GCSE (9–1)				
Friday 17 May 2024				
Morning (Time: 2 hours)	Paper reference	4CH1/1C 4SD0/1C		
Chemistry UNIT: 4CH1 Science (Double Award) 4C PAPER: 1C	:H1/4SD	0		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 110.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

The Periodic Table of the Elements

0 He helium	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
7	19 fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ave been rep
5	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112–116 ha authenticated
4	12 C carbon 6	28 Si silicon 14	73 Ge gemanium 32	119 Sn tin 50	207 Pb lead 82	Elements with atomic numbers 112–116 have been reported but not fully authenticated
က	11 boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81	nents with atc
			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	[272] Rg roentgenium 111
			59 nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271]
			59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitnerium 109
T hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
			55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohnium 107
	mass bol number		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	relati ate atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
			45 Sc scandium 21	89 ≺ yttrium 399	139 La* lanthanum 57	[227] Ac* actinium 89
2	9 Be	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
-	7 Li lithium 3	23 Na sodium 11	39 potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Answer ALL questions.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 The box gives the names of some substances.

bromine	chlorine	diamond	ethene
iodine	lithium	methane	water

(a) Complete the table by choosing a substance from the box that matches each description.

Each substance may be used once, more than once or not at all.

(5)

Description	Substance
a good conductor of electricity	
an element that is a liquid at room temperature	
a substance that can be used to form a polymer	
an element that forms a basic oxide	
a substance that has a giant covalent structure	

(b)	Describe	a	test	for	chlorine

(2)

(Total for Question 1 = 7 marks)

- **2** This question is about the reactivities of metals.
 - (a) The table shows the reactions of four metals, P, Q, R and S, with water and with dilute hydrochloric acid.

The letters are not the symbols of the elements.

Metal	Reaction with water	Reaction with dilute hydrochloric acid
Р	no reaction	no reaction
Q	very fast reaction	(not done)
R	no reaction	slow reaction
S	slow reaction	fast reaction

(i) Deduce the order of reactivity of the metals.

(1)

(ii) Give the letter of the metal that could be zinc.

(1)

(iii) Give a word equation for the reaction between aluminium and hydrochloric acid.

(1)

(iv) Give the name of a metal that could be P.

(1)

(v) Give a reason why the reaction of Q with dilute hydrochloric acid is not done.

(1)

(b) The diagram shows the apparatus used to demonstrate the reaction between aluminium and iron(III) oxide.

When the magnesium fuse is lit, a very exothermic reaction occurs.

This is the equation for the reaction.

$$Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$$

(i) State what is meant by the term **exothermic**.

(1)

(ii) State why aluminium displaces iron.

(1)

(iii) Explain why this reaction is a redox reaction.

(2)

(Total for Question 2 = 9 marks)

3 The diagram represents an atom of element Z.

Z is not the symbol of the element.

(a) (i) Give the number of the group to which element Z belongs.

(1)

(ii) Give the number of the period to which element Z belongs.

(1)

(iii) Give the formula of the compound that forms when Z reacts with fluorine.

(1)

(b) One mole of Z contains 6.0×10^{23} atoms.

Calculate the number of electrons in one mole of atoms of element Z.

Give your answer in standard form.

(2)

number of electrons =

(c) A sample of element Z contains three isotopes. The table shows the numbers of particles in the nucleus of each isotope and the percentage abundance of each isotope.

Isotope	Number of protons	Number of neutrons	Percentage abundance
1	12	12	79.0
2	12	13	10.0
3	12	14	11.0

Use the information in the table to calculate the relative atomic mass (A_r) of element Z.

Give your answer to one decimal place.

(4)

A_ =

(d) Deduce the name of element Z.

(1)

(Total for Question 3 = 10 marks)

- 4 Caffeine is a stimulant found in coffee, tea and some soft drinks.
 - (a) The molecular formula of caffeine is $C_8H_{10}N_4O_2$
 - (i) Determine the number of atoms in one molecule of caffeine.

(1)

(ii) Calculate the relative formula mass (M_r) of caffeine.

(2)

M =

(iii) Give the empirical formula for caffeine.

(1)

(b) Ethanol can be obtained from a solution of caffeine in ethanol using this apparatus.

(i) Give the name of the method of separation shown in the diagram.

(1)

(ii) Describe what happens to the ethanol vapour in apparatus X.

(2)

(c) Calcium bromide is an ionic compound.

The table shows the formulae and melting points of caffeine and calcium bromide.

Name	Formula	Melting point in °C	
caffeine	C ₈ H ₁₀ N ₄ O ₂	235	
calcium bromide	CaBr ₂	730	

The relative formula mass of calcium bromide is similar to the relative formula mass of caffeine.

Explain why calcium bromide has a much higher melting point than caffeine.

(Total for Question 4 = 12 marks)

(5)

5 A student uses paper chromatography in an experiment to separate the dyes in four different felt tip pens, E, F, G and H.

The diagram shows the appearance of the paper before and after the experiment.

level reached by solvent

baseline

E F G H

before

after

(a) (i) The chromatography paper is placed in a solvent. Explain why the spots on the baseline are placed above the level of the solvent.

(2)

(ii) Explain which two felt tip pens contain the same dye.

(2)

(iii) The student thought that both F and G contained only one dye. Explain why the student can only be certain about one of these dyes.	(2)
(b) Calculate the R _f value for the dye in G.	
Show your working.	(3)
R _f value =	
(Total for Question 5 = 9	marks)

-	This question is about some Group 1 elements and their compounds.	
((a) A teacher adds a small piece of sodium to a trough of water.	
	(i) Give two observations that are made when sodium reacts with water.	(2)
	(ii) After the reaction has stopped, the teacher adds a few drops of phenolphthalein to the solution in the trough. Explain the colour of the phenolphthalein after it is added to the solution.	
	Explain the colour of the phenoiphthalem after it is added to the solution.	(2)
	b) A student does a flame test to see if a white solid contains lithium ions.	
	b) A student does a flame test to see if a white solid contains lithium ions. They clean a platinum wire before using it for the flame test.	
((2)
(They clean a platinum wire before using it for the flame test.	(2)
·····	They clean a platinum wire before using it for the flame test.	(2)
(They clean a platinum wire before using it for the flame test.	(2)
(They clean a platinum wire before using it for the flame test. (i) Explain why the student needs to clean the platinum wire.	
(They clean a platinum wire before using it for the flame test. (i) Explain why the student needs to clean the platinum wire. (ii) What is the colour of the flame if the solid contains lithium ions?	
(They clean a platinum wire before using it for the flame test. (i) Explain why the student needs to clean the platinum wire. (ii) What is the colour of the flame if the solid contains lithium ions? A lilac	

(c) Potassium aluminium sulfate can be used in baking.

Anhydrous potassium aluminium sulfate has the formula KAl(SO₄)₂

(i) Give the formula of each ion in potassium aluminium sulfate.

(2)

potassium ion

aluminium ion

sulfate ion

(ii) Potassium aluminium sulfate is normally found as a hydrated salt, with the formula $KAl(SO_4)_2.xH_2O$

When 23.7 g of the hydrated salt is heated to remove all the water, 12.9 g of the anhydrous salt is formed.

Calculate the value of x.

[for KAl(SO₄)₂,
$$M_r = 258$$
 for H₂O, $M_r = 18$]

(4)

x =

(Total for Question 6 = 13 marks)

- 7 This question is about nitrogen and its compounds.
 - (a) What is the approximate percentage by volume of nitrogen in the atmosphere?

(1)

- **■ B** 20%
- **D** 80%
- (b) Complete the dot-and-cross diagram for a molecule of nitrogen.

Show outer electrons only.

(2)

N N

- (c) Nitrogen dioxide produced in car engines reacts with water vapour and oxygen in the atmosphere to form nitric acid.
 - (i) Give a chemical equation for this reaction.

(2)

(ii) Nitric acid forms acid rain.

State one environmental effect of acid rain.

(1)

- (d) Ammonium carbonate contains nitrogen.
 - (i) What is the formula of ammonium carbonate?

(1)

- A NH₃CO₃
- B (NH₃)₂CO₃
- C NH₄CO₃
- \square **D** $(NH_4)_2CO_3$

(ii)	A technician finds an unlabelled bottle on a shelf that could be ammonium carbonate solution. Describe tests that the technician should do to confirm that the solution contains ammonium ions and carbonate ions.	
	Contains ammonium ions and carbonate ions.	(6)
 	(Total for Question 7 = 13 n	narks)

- 8 This question is about hydrocarbons.
 - (a) The molecular formula C_4H_8 represents all the isomers of an alkene.
 - (i) Explain what is meant by the term isomers.

(2)

(ii) The displayed formula of one of the isomers of the alkene is shown.

Draw displayed formulae for two other alkene isomers with the molecular formula $\rm C_4 \rm H_8$

(2)

alkene isomer 1

alkene isomer 2

(b) But-1-ene reacts with bromine to form a compound with molecular formula $\rm C_4H_8Br_2$

What is the name given to this type of reaction?

(1)

- **A** addition
- B combustion
- C decomposition
- **D** substitution

() – 1		
(c) The	e alkene C_3H_6 can be polymerised to form the polymer poly(propene).	
(i)	Draw the repeat unit of poly(propene).	
		(1)
(;;)	There are two methods for disposing of polymors such as poly(propose)	
(11)	These are two methods for disposing of polymers such as poly(propene).	
	method 1 burying them in landfill sites	
	method 2 burning them to release heat energy	
	State one environmental problem linked to each of these methods of disposal.	
		(2)
	method 1	
	method 2	

(d) Complete combustion of one mole of an alkane produces 396 g of carbon dioxide and 180 g of water.

This is the equation for the reaction.

alkane +
$$xO_2 \rightarrow yCO_2 + zH_2O$$

Calculate the values of x, y and z.

[for
$$CO_2$$
, $M_r = 44$ for H_2O , $M_r = 18$]

(3)

- (e) In a petrol engine, incomplete combustion occurs because there is a limited supply of oxygen.
 - (i) Petrol contains octane, C₈H₁₈

Complete the equation for this reaction, including state symbols.

(2)

$$C_8H_{18}(l) + \dots O_2(\dots O_2(\dots O_1) \rightarrow \dots O_1) + 3C(\dots O_1) + \dots O_2(\dots O_1)$$

(ii) Explain one problem for humans caused by a product of this incomplete combustion.

(2)

(Total for Question 8 = 15 marks)

9 A student uses this apparatus to investigate the rate of reaction between marble chips and dilute hydrochloric acid.

This is the equation for the reaction.

$$\mathsf{CaCO_3} \ + \ \mathsf{2HCl} \ \rightarrow \ \mathsf{CaCl_2} \ + \ \mathsf{H_2O} \ + \ \mathsf{CO_2}$$

- (a) During the reaction the reading on the balance decreases because mass is lost from the flask.
 - (i) State why mass is lost from the flask.

(1)

(ii) State the purpose of the cotton wool.

(1)

(b) This is a graph of the student's results.

(i) Explain the shape of the graph.

You should assume that the marble chips are in excess.

(4)

(ii) On the grid, draw the curve you would expect to obtain if the student uses the same volume of hydrochloric acid but with half the concentration.

Assume that all other conditions are kept the same.

(2)

		(Total for Question 9 -	- 1 1 11101 K3/
		(Total for Question 9 =	: 11 marks)
	·	·	(3)
Assume that all other con-	ditions are kept the san	ne as in the initial experim	ent.
Explain, using particle coll affect the rate of this react		smaller marble chips wo	uld
·	-		•
(c) The student repeats the e	vacriment using the say	no mass of smaller marble	o chine

10 A student investigates the reaction between magnesium and nitric acid.

The student uses this method.

- add 40 cm³ of dilute nitric acid to a glass beaker
- record the temperature of the acid
- find the mass of a strip of magnesium ribbon
- · add the magnesium ribbon to the nitric acid
- when all the magnesium has reacted, record the highest temperature reached
- (a) Complete the chemical equation for this reaction.

(1)

$$\rm Mg \ + \ 2HNO_3 \ \rightarrow \ \dots \ + \ \dots \ + \ \dots$$

(b) The thermometer shows the highest temperature reached.

Complete the table by giving the temperatures to the nearest 0.1°C

(2)

starting temperature of the acid in °C	
highest temperature reached in °C	
temperature rise in °C	16.4

	(c)	(i)	Show that the heat	energy change ((O) for this	reaction is	about 2800 J
--	-----	-----	--------------------	-----------------	--------------	-------------	--------------

[for 1.0 cm^3 of solution, mass = 1.0 g]

[for the solution, $c = 4.2 \text{ J/g/}^{\circ}\text{C}$]

(2)

(ii) The mass of magnesium used by the student was 0.12 g.

Calculate the value of the enthalpy change (ΔH), in kJ/mol, for the magnesium reacting with nitric acid.

Give your answer to two significant figures, including a sign in your answer.

(4)

$$\Delta H =$$
 kJ/mol

(d) Explain why using a polystyrene cup, instead of a glass beaker, would give a more accurate result.

(2)

(Total for Question 10 = 11 marks)

TOTAL FOR PAPER = 110 MARKS

BLANK PAGE

