

Introduction to Machine Learning

Chapter 5: Introduction to Classification

Bernd Bischl, Christoph Molnar, Daniel Schalk, Fabian Scheipl

Department of Statistics - LMU Munich

CLASSIFICATION

We want to assign new observations to known categories according to criteria learned from a training set.

CLASSIFICATION

Assume we are given a *classification problem*:

$$\begin{aligned} x \in \mathcal{X} & \text{feature vector} \\ y \in \mathcal{Y} = \{1, \dots, g\} & \textit{categorical} \text{ output variable (label)} \\ \mathcal{D} = \left\{ \left(x^{(1)}, y^{(1)} \right), \dots, \left(x^{(n)}, y^{(n)} \right) \right\} & \text{observations of } x \text{ and } y \end{aligned}$$

Classification usually means to construct g discriminant functions $f_1(x), \dots f_g(x)$, so that we choose our class as

$$h(x) = \arg\max_{k} f_k(x)$$

for
$$k = 1, 2, ..., g$$
.

This divides the feature space into g decision regions $\{x \in \mathcal{X} | h(x) = k\}$. These regions are separated by the decision boundaries where ties occur between these regions.

CLASSIFICATION

LINEAR CLASSIFIER

If these functions $f_k(x)$ can be specified as linear functions, we will call the classifier a *linear classifier*. We can then write a decision boundary as $x^T\theta = 0$, which is a hyperplane separating two classes.

If only 2 classes exist (**binary classification**), we can simply use a single discriminant function $f(x) = f_1(x) - f_2(x)$ (note that it would be more natural here to label the classes with $\{+1, -1\}$ or $\{0, 1\}$).

Note that all linear classifiers can represent non-linear decision boundaries in our original input space if we include *derived features* like higher order interactions, polynomials or other transformations of x in the model.

LINEAR CLASSIFIER

CLASSIFICATION APPROACHES

Two fundamental approaches exist to construct classifiers: The **generative approach** and the **discriminant approach**.

They tackle the classification problem from different angles:

 Generative classification approaches assume a data generating process in which the distribution of the features x is different for the various classes of the output y, and try to learn these conditional distributions:

"Which y tends to have x like these?"

 Discriminant approaches use empirical risk minimization based on a suitable loss function:

"What is the best prediction for y given these x?"

GENERATIVE APPROACH

The generative approach models p(x|y=k), usually by making some assumptions about the structure of these distributions, and employs the Bayes theorem:

$$\pi_k(x) = \mathbb{P}(y = k|x) = \frac{\mathbb{P}(x|y = k)\mathbb{P}(y = k)}{\mathbb{P}(x)} \propto \rho(x|y = k)\pi_k$$

to allow the computation of $\pi_k(x)$.

The discriminant functions are then $\pi_k(x)$ or $\log p(x|y=k) + \log \pi_k$. Prior class probabilities π_k are easy to estimate from the training data.

Examples:

- Naive Bayes classifier
- Linear discriminant analysis (generative, linear)
- Quadratic discriminant analysis (generative, not linear)

Note: LDA and QDA have 'discriminant' in their name, but are generative models! (... sorry.)

GENERATIVE APPROACH

Representation: Conditional feature distributions p(x|y=k) and prior label probabilities π_k .

Often restricted to certain kinds of distributions (e.g. $\mathcal{N}(\mu, \Sigma)$) depending on the specific method, representation then via the distributions' parameters.

Optimization: Often analytic solutions (LDA, QDA); density estimation (Naive Bayes).

Evaluation: Classification loss functions. Typically: negative log posterior probability.

DISCRIMINANT APPROACH

The *discriminant approach* tries to optimize the discriminant functions directly, usually via empirical risk minimization.

$$\hat{f} = \underset{f \in H}{\operatorname{arg\,min}} \mathcal{R}_{\operatorname{emp}}(f) = \underset{f \in H}{\operatorname{arg\,min}} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(x^{(i)}\right)\right).$$

Examples:

- Logistic regression (discriminant, linear)
- kNN classifier (discriminant, not linear)

Representation and optimization depend on the specific learner. Evaluation via classification loss functions.