重庆大学课程设计报告

课程设计题目: MIPS 浮点运算的整数实现 学 院: 计算机学院 专业班级: 计算机科学与技术 01 班 2018 年 级: 学 生: 王智超 学 号: 20181819 完成时间: 2020年 6月 25日 成 绩: 90 指导教师: 钟将

重庆大学教务处制

		优秀	良好	中等	及格	不及格	
项目	分值	$100 > x \ge 90$	$90 > x \ge 70$	$80 > x \ge 70$	$70 > x \ge 60$	x < 60	评分
		参考标准					
学 习	15	学习态度认真,	学习态度比较	学习态度尚	学习态度尚	学习马虎,	
态度		科学作风严谨,	认真, 科学作	好,遵守组织	可,能遵守	纪律涣散,	
		严格保证设计	风良好,能按	纪律,基本保	组织纪律,	工作作风不	
		时间并按任务	期圆满完成任	证设计时间,	能按期完成	严谨, 不能	
		书中规定的进	务书规定的任	按期完成各	任务	保证设计时	
		度开展各项工	务	项工作		间和进度	
		作					
技术	25	设计合理、理论	设计合理、理	设计合理,理	设计基本合	设计不合	
水 平		分析与计算正	论分析与计算	论分析与计	理,理论分	理,理论分	
与 实		确,实验数据准	正确,实验数	算基本正确,	析与计算无	析与计算有	
际能		确,有很强的实	据比较准确,	实验数据比	大错, 实验	原则错误,	
力		际动手能力、经	有较强的实际	较准确,有一	数据无大错	实验数据不	
		济分析能力和	动手能力、经	定的实际动		可靠,实际	
		计算机应用能	济分析能力和	手能力,主要		动手能力	
		力, 文献查阅	计算机应用能	文献引用、调		差, 文献引	
		能力强、引用合	力, 文献引用、	查调研比较		用、调查调	
		理、调查调研非	调查调研比较	可信		研有较大的	
		常合理、可信	合理、可信			问题	
创新	10	有重大改进或	有较大改进或	有一定改进	有一定见解	观念陈旧	
		独特见解,有一	新颖的见解,	或新的见解			
		定实用价值	实用性尚可				
论 文	50	结构严谨, 逻	结构合理,符	结构合理,层	结构基本合	内容空泛,	
(计算		辑性强, 层次	合逻辑, 文章	次较为分明,	理,逻辑基	结构混乱,	
书、图		清晰, 语言准	层次分明, 语	文理通顺,基	本清楚,文	文字表达不	
纸) 撰		确, 文字流	言准确, 文字	本达到规范	字尚通顺,	清,错别字	
写 质		畅,完全符合规	流畅,符合规	化要求, 书写	勉强达到规	较多, 达不	
量		范化要求,书写	范化要求, 书	比较工整;图	范化要求;	到规范化要	
		工整或用计算	写工整或用计	纸比较工整、	图纸比较工	求; 图纸不	
		机打印成文;图	算机打印成	清晰	整	工整或不清	
		纸非常工整、清	文; 图纸工整、			晰	
		断	清晰				

指导教师评定成绩:

指导教师签名:

MIPS 浮点运算的整数实现

王智超

1 小组分工说明

王智超:负责实现方案。

负责使用 Mars 编写汇编,用整数完成浮点数的加法。 负责课程设计报告的填写。

2 设计方案

(1) 总体设计思路

首先,我们要用到 \$s0、\$s1、\$s2、\$s3、\$s4、\$s5,因此需要将其保存到堆栈中;接着将存储在 \$a0 的第一个浮点数按照 IEEE754 分解成三部分符号位、指数、尾数,通过左右移位操作将三部分提取出来,并分别存储在 \$s0、\$s1、\$s2,第二个浮点数 \$a1 同样操作,存储在 \$s3、\$s4、\$s5,同时分别在尾数的最高位添加上隐藏的 1,方便进行运算。其次,进行两个浮点数的加法运算。

第一步,要进行指数对齐,比较两个数的指数,将指数较小的数进行右移,直到其指数与较大的相匹配。

第二步,通过符号位,判断两个数是否为负数,若是负数,将其转化成补码形式,方便进行带负数的加法运算(也即减法),然后将尾数相加得到一个结果,同样若结果为负数,要取反加1,然后将\$a2(存储结果的寄存器)的最高位(符号位)置为1,指数位置为跟指数较大的一样。

第三步,要对结果进行规格化,要求表示为小数点左边只有一位非零数 1 的形式,这就要找到尾数相加的结果中第一个 1 出现的位置,然后将结果进行左移或者右移操作,右移时增大指数,左移时减小指数。

第四步,对尾数进行舍入,去掉最高位的隐藏位 1 后,将结果截断成 23 位,赋给 \$a2 的低 23 位,同时,给 \$a2 的指数位也进行赋值,得到浮点数相加的的结果。

最后从堆栈中恢复使用过的寄存器。

对于浮点数的整数运算检测,我们随机产生两个浮点数,同时用 mips 的 add.s 指令进行计算,将两者的结果进行比较,如果一致,则认为计算正确。

(2) yourfunc 模块设计

1

```
59 #进行指数对齐
60 slt $10, $21, $34
60 beq $10, $0, $hift_right_second ##$$10$\text{$\sigma}$70$\text{$\sigma}$70$\text{$\sigma}$91. $34, $31
63 srlv $32, $32, $31 #$\text{$\sigma}$-\text{$\sigma}$\text{$\sigma}$81. $34 #$\text{$\sigma}$81. $34 #$\text{$\sigma}$81. $34 #$\text{$\sigma}$81. $34 #$\text{$\sigma}$81. $34 #$\text{$\sigma}$81. $31 #$\text{$\sigma}$-\text{$\sigma}$\text{$\sigma}$85, $35, $31 #$\text{$\sigma}$-\text{$\sigma}$\text{$\sigma}$80\text{$\text{$\sigma}$85 $\text{$\sigma}$10 move $34, $31 #$\text{$\sigma}$\text{$\sigma}$82, $31 #$\text{$\text{$\sigma}$82, $32, $30 #$\text{$\text{$\sigma}$82, $32, $30 #$\text{$\sigma}$82, $32, $30 #$\text{$\sigma}$82 move $33, $3, $1, $10$\text{$\sigma}$83, $3, $1, $10$\text{$\sigma}$83, $35, $1, $\text{$\sigma}$81 $\text{$\sigma}$83, $35, $1, $\text{$\sigma}$83, $35, $1, $\text{$\sigma}$83, $35, $1, $\text{$\sigma}$83, $35, $1, $\text{$\sigma}$84 $\text{$\sigma}$85, $35, $1, $\text{$\sigma}$85, $\text{$\sigma}$8
```

图 1: 指数对齐截图

图 2: 结果规格化截图

浮点数的加法重点部分主要是指数的对齐和结果的规格化,指数对齐要进行比较,将指数较小的数进行右移,直到其指数与较大的相匹配。而对于结果的规格化,要首先将计算的结果从补码形式转化为原码,然后通过移位,使得二进制小数点左边只有一位非零数,右移时增大指数,左移时减小指数。

3 设计结果

(1) 总体设计思路

```
133 getrandom:
     li $v0, 43
134
                           #getrandom
      addi $a0, $0, 10 #
135
136 syscall
     sub $sp, $sp, 4
137
     s.s $f0, ($sp)
138
     lw $a0, ($sp)
139
140 addi $a0, $a0, 0x2000000
141 andi $a0, $a0, 0xfffff000
     sw $a0, ($sp)
142
143
     1.s $f0, ($sp)
     addi $sp, $sp, 4
144
145 jr $ra
```

图 3: 随机产生浮点数输入截图

图 4: 输出结果截图

结果分析:通过随机产生两个浮点数输入,用 mips 的指令 add.s 进行计算,同时用我们的 yourfunc 模块进行浮点数的整数运算,得到两个结果,将两个结果进行比较,如果相同,则认为该次计算正确,good 的数量加 1。总共(total)产生 100 次输入,结果显示 good 的数量为 100,在一定精度范围内,通过了测试程序,说明 yourfunc 模块正确,可以完成浮点数运算的整数实现。

4 总结(可选)

(1) 通过这次课程设计,对 mips 的汇编指令的使用更加熟练,并且熟练掌握了 IEEE754 中单精度浮点数的表示和计算规则。同样,对用汇编语言编写代码的繁杂性和 debug 的复杂性有了更深的认识,

(2) 浮点数的整数实现在此次设计中要求的精度不是很高,因此没有考虑保护位、舍入位、粘贴位等增加尾数舍入精度的位,但正确通过了测试程序。

5 参考文献

- [1] Patterson D, Hennessy J, 帕特森, et al. 计算机组成与设计: 硬件/软件接口 [M]. 机械工业出版社, 2007.
- [2] Larus J R . Assemblers, Linkers, and the SPIM Simulator[J]. Computer Organization and Design, 1994, 13(2):A-2–A-72.