Ensembles dénombrables

Exercice 1 - Premiers exemples d'ensembles dénombrables. Montrer que les ensembles suivants sont dénombrable en exhibant une bijection avec $\mathbb N$:

- 1. l'ensemble des entiers naturels non nul noté $\mathbb{N} \setminus \{0\}$;
- 2. l'ensemble des entiers naturels pairs 2N;
- 3. l'ensemble des entiers naturels impairs 2N + 1;
- 4. l'ensemble des nombres entiers multiples de 3 noté $3\mathbb{N}$;
- 5. l'ensemble des entiers relatifs \mathbb{Z} ;
- 6. l'ensemble des couples d'entiers naturels noté \mathbb{N}^2 (on pourra considérer la fonction $(p,q) \longmapsto 2^p(2q+1)-1$ ou bien énumérer les cases d'une grille infinie).

Exercice 2 - Critères de dénombrabilité. Montrer que les ensembles suivants sont dénombrable :

- 1. I'ensemble \mathbb{N}^k pour $k \in \mathbb{N} \setminus \{0\}$;
- 2. l'ensemble des nombres rationnels noté \mathbb{Q} ;
- 3. l'ensemble des parties finies de \mathbb{N} .

Exercice 3 - Existence de nombres transcendants. Un nombre (réel ou complexe) est *algébrique* s'il est racine d'un polynôme à coefficients entiers. Par exemple $\sqrt{2}$ est algébrique car racine de $X^2 - 2$, i est algébrique car racine de $X^2 + 1$...

Un nombre est *transcendant* s'il n'est pas algébrique. Le but de l'exercice est de montrer l'existence de nombre transcendant. En général il est difficile de montrer qu'un nombre est transcendant.

- 1. On note $\mathbb{Z}_n[X] \subset \mathbb{Z}[X]$ l'ensemble des polynômes entiers de degré inférieur ou égal à n. Montrer que $\mathbb{Z}_n[X]$ est dénombrable.
- 2. Montrer que l'ensemble des nombres algébriques est dénombrable.
- 3. En déduire l'existence de nombres transcendants.

Remarque : On peut montrer par des méthodes avancées que π et e sont transcendants.

Exercice 4 - E et $\mathcal{P}(E)$ ne sont pas en bijection. Soient E un ensemble non vide et $f: E \to \mathcal{P}(E)$ une application.

- 1. Posons $A = \{x \in E : x \notin f(x)\}$. Soit $x \in E$, montrer que $x \in f(x) \cup A$ et que $x \notin f(x) \cap A$.
- 2. Montrer que l'application f ne peut pas être surjective.
- 3. En déduire que E et $\mathcal{P}(E)$ ne sont pas équipotents.

Exercice 5 - Existence de langages non reconnu par un algorithme. Soit \mathcal{A} un alphabet fini.

- 1. Montrer que l'ensemble des mots fini \mathcal{A}^* est dénombrable.
- 2. Montrer que l'ensemble des langages sur \mathcal{A} , c'est à dire $\mathcal{P}(\mathcal{A}^*)$, n'est pas dénombrable.
- 3. Un langage $\mathcal{L} \subset \mathcal{A}^*$ est reconnu par un programme s'il existe un programme qui prend en entrée un mot $u \in \mathcal{A}^*$ et renvoie 1 si $u \in \mathcal{L}$ et renvoie 0 si $u \notin \mathcal{L}$ (il calcule la fonction caractéristique de \mathcal{L}). Montrer qu'il existe des langages qui ne sont pas reconnu par un programme. On dit que le langage est indécidable.

Exercice 6 - Exemples d'ensembles non dénombrables. Montrer que [0,1],]0,1[,]0,1[, \mathbb{R} et $\mathcal{P}(\mathbb{N})$ sont équipotents deux à deux.

Exercice 7. Soit $f: \mathbb{N} \longrightarrow \mathbb{R}$ une application. On définit $(u_n)_{n \in \mathbb{N}^*}$ la suite à valeur dans $\{0, 1, \dots, 9\}$ tel que u_n est le $n^{\text{ème}}$ décimale de f(n).

On définit le nombre réel $r = \overline{0, v_1 v_2 v_3 \dots v_n \dots}$ tels que pour fou $n \in \mathbb{N}^*$ on a $v_n = 1$ si $u_n = 0$ et $v_n = 0$ si $u_n \neq 0$.

- 1. Montrer que r n'a pas d'antécédent par f.
- 2. En déduire que $\mathbb R$ n'est pas dénombrable.

Ensembles dénombrables (Méthodes)

Comment montrer qu'un ensemble est dénombrable?

Soit *X* un ensemble, il y a essentiellement quatre méthodes pour montrer que *X* est dénombrable :

- on montre qu'il est fini ou on exhibe une bijection entre X et \mathbb{N} ;
- on exhibe une injection de X dans \mathbb{N} ;
- on exhibe une surjection de \mathbb{N} dans X;
- on exprime *X* comme un produit fini d'ensembles dénombrables ou comme union dénombrable d'ensembles dénombrables.

Comment montrer qu'un ensemble n'est pas dénombrable?

On montre que cet ensemble est en bijection avec un ensemble non-dénombrable.

Comment montrer que deux ensembles sont équipotents?

Pour montrer que deux ensembles A et B sont équipotent (ou on même cardinal), il y a essentiellement deux méthodes :

- on exhibe une bijection de *A* dans *B*;
- on exhibe une injection de *A* dans *B* et une injection de *B* dans *A*;