Lecture 4: 15 April, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

Example: Loan application data set

ID	Age	Has_job	Own_house	Credit_rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

9 Y 6 N 15

Decision tree algorithm

A: current set of attributes

Pick $a \in A$, create children corresponding to resulting partition with attributes $A \setminus \{a\}$

Stopping criterion:

- Current node has uniform class label
- A is empty no more attributes to query

If a leaf node is not uniform, use majority class as prediction

- Non-uniform leaf node identical combination of attributes, but different classes
- Attributes do not capture all criteria used for classification

Decision trees

- Tree is not unique
- Which tree is better?
- Prefer small trees
 - Explainability ▶
 - Generalize better (see later)

Unfortunately

- Finding smallest tree is NP-complete for any definition of "smallest"
- Instead, greedy heuristic

Yes

(3/3)

No

(6/6)

Goal: partition with uniform category — pure leaf

- Goal: partition with uniform category pure leaf
- Impure node best prediction is majority value

- Goal: partition with uniform category pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity

- Goal: partition with uniform category pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity
- Heuristic: reduce impurity as much as possible

- Goal: partition with uniform category pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity
- Heuristic: reduce impurity as much as possible
- For each attribute, compute weighted average impurity of children

5/13

- Goal: partition with uniform category pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity
- Heuristic: reduce impurity as much as possible
- For each attribute, compute weighted average impurity of children
- Choose the minimum

- Goal: partition with uniform category — pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity
- Heuristic: reduce impurity as much as possible
- For each attribute, compute weighted average impurity of children
- Choose the minimum
- Will see better heuristics

Algorithm

Set of attributes Ay, Az, --, Are Current impurity I For each Aj Compte weighted any inpurity I; if we Split on Ay [ask question Aj?] Choose Aj for which I - Ij is maximum

Split table into subtable with k1, Az, -, Aj-1, Aj+1, -- Ave

Misclassification rate is linear

- Misclassification rate is linear
- Impurity measure that increases more sharply performs better, empirically

- Misclassification rate is linear
- Impurity measure that increases more sharply performs better, empirically
- Entropy [Quinlan]

- Misclassification rate is linear
- Impurity measure that increases more sharply performs better, empirically
- Entropy [Quinlan]
- Gini index [Breiman]

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]
- n data items

$$n_0$$
 with $c = 0$, $p_0 = n_0/n$

$$n_1$$
 with $c = 1$, $p_1 = n_1/n$

notni = n

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]
- n data items

■
$$n_0$$
 with $c = 0$ p_0 = n_0/n
■ n_1 with $c = 1$ p_1 = n_1/n

Entropy

$$E = \underbrace{\sum_{p_0 \log_2 p_0 + p_1 \log_2 p_1}}_{\text{negative}}$$

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]
- \mathbf{n} data items

$$n_0$$
 with $c = 0$, $p_0 = n_0/n$

 n_1 with c = 1, $p_1 = n_1/n$

■ Entropy - (0 log 0) + 1 log 1 $E = -(p_0 \log_2 p_0 + p_1 \log_2 p_1)$

- Minimum when $p_0 = 1$, $p_1 = 0$ or vice versa note, declare $0 \log_2 0$ to be 0
- Maximum when $p_0 = p_1 = 0.5$

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items

$$n_0$$
 with $c = 0$, $p_0 = n_0/n$

$$n_1$$
 with $c = 1$, $p_1 = n_1/n$

■ Gini Index
$$G = 1 - (p_0^2 + p_1^2)$$

•
$$G = 0$$
 when $p_0 = 0$, $p_1 = 0$ or v.v. $G = 0.5$ when $p_0 = p_1 = 0.5$

$$||f_0-f_1|| = \frac{1}{2}$$
 $||f_0-f_1|| = \frac{1}{2}$
 $||f_0-f_1|| = \frac{1}{2}$
 $||f_0-f_1|| = \frac{1}{2}$

Madhavan Mukund Lecture 4: 15 April. 2021 DMML Apr-Jul 2021 8/13

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$
- G = 0 when $p_0 = 0$, $p_1 = 0$ or v.v. G = 0.5 when $p_0 = p_1 = 0.5$
- Entropy curve is slightly steeper, but Gini index is easier to compute

$$c = 1$$

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$
- G = 0 when $p_0 = 0$, $p_1 = 0$ or v.v. G = 0.5 when $p_0 = p_1 = 0.5$
- Entropy curve is slightly steeper, but Gini index is easier to compute
- Decision tree libraries usually use Gini index

$$c = 1$$

 Greedy strategy: choose attribute to maximize reduction in impurity maximize information gain

- Greedy strategy: choose attribute to maximize reduction in impurity maximize information gain
- Suppose an attribute is a unique identifier
 - Roll number, passport number, Aadhaar . . .

- Greedy strategy: choose attribute to maximize reduction in impurity maximize information gain
- Suppose an attribute is a unique identifier
 - Roll number, passport number, Aadhaar . . .
- Querying this attribute produces partitions of size 1
 - Each partition guaranteed to be pure
 - New impurity is zero

- Greedy strategy: choose attribute to maximize reduction in impurity maximize information gain
- Suppose an attribute is a unique identifier
 - Roll number, passport number, Aadhaar . . .
- Querying this attribute produces partitions of size 1
 - Each partition guaranteed to be pure
 - New impurity is zero
- Maximum possible impurity reduction, but useless!

 Tree building algorithm blindly picks attribute that maximizes information gain

- Tree building algorithm blindly picks attribute that maximizes information gain
- Need a correction to penalize attributes with highly scattered attributes

10 / 13

- Tree building algorithm blindly picks attribute that maximizes information gain
- Need a correction to penalize attributes with highly scattered attributes
- Extend the notion of impurity to attributes

- Attribute takes values $\{v_1, v_2, \dots, v_k\}$
- v_i appears n_i times across n rows
- $p_i = n_i/n$

11 / 13

Madhavan Mukund Lecture 4: 15 April, 2021 DMML Apr-Jul 2021

- Attribute takes values $\{v_1, v_2, \dots, v_k\}$
- v_i appears n_i times across n rows

Madhavan Mukund Lecture 4: 15 April, 2021 DMML Apr-Jul 2021 11/13

- Attribute takes values $\{v_1, v_2, \dots, v_k\}$
- \mathbf{v}_i appears n_i times across n rows
- $p_i = n_i/n$
- Entropy across ★ values

$$-\sum_{i=1}^k p_i \log_2 p_i$$

• Gini index across k values

$$1 - \sum_{i=1}^k p_i^2$$

■ Extreme case, each $p_i = 1/n$

Madhavan Mukund Lecture 4: 15 April, 2021 DMML Apr-Jul 2021 12 / 13

- **E**xtreme case, each $p_i = 1/n$
- Entropy

$$-\sum_{i=1}^{n} \frac{1}{n} \log_2 \frac{1}{n} = -n \cdot \frac{1}{n} (-\log_2 n) = \log_2 n$$

12 / 13

Madhavan Mukund Lecture 4: 15 April, 2021 DMML Apr-Jul 2021

- **Extreme** case, each $p_i = 1/n$
- Entropy

$$-\sum_{i=1}^{n} \frac{1}{n} \log_2 \frac{1}{n} = -n \cdot \frac{1}{n} (-\log_2 n) = \log_2 n$$

■ Gini index

$$1 - \sum_{i=1}^{n} \left(\frac{1}{n}\right)^2 = 1 - \frac{n}{n^2} = \frac{n-1}{n}$$

12 / 13

Madhavan Mukund Lecture 4: 15 April, 2021 DMML Apr-Jul 2021

- **Extreme** case, each $p_i = 1/n$
- Entropy

$$-\sum_{i=1}^{n} \frac{1}{n} \log_2 \frac{1}{n} = -n \cdot \frac{1}{n} (-\log_2 n) = \log_2 n$$

■ Gini index

$$1 - \sum_{i=1}^{n} \left(\frac{1}{n}\right)^2 = 1 - \frac{n}{n^2} = \frac{n-1}{n}$$

 \blacksquare Both increase as n increases

n increases

1, 1/2 - - Vn

- Extreme case, each $p_i = 1/n$
- Entropy

$$-\sum_{i=1}^{n} \frac{1}{n} \log_2 \frac{1}{n} = -n \cdot \frac{1}{n} (-\log_2 n) = \log_2 n$$

Gini index

$$1 - \sum_{i=1}^{n} \left(\frac{1}{n}\right)^{2} = 1 - \frac{n}{n^{2}} = \frac{n-1}{n}$$

 \blacksquare Both increase as n increases

Penalizing scattered attributes

- Divide information gain by attribute impurity
- Information gain ratio(A)

$$\frac{\mathsf{Information}\text{-}\mathsf{Gain}(\mathsf{A})}{\mathsf{Impurity}(\mathsf{A})}$$

 Scattered attributes have high denominator, counteracting high numerator

