Convex Optimization Problems

Goran Banjac

Large-Scale Convex Optimization ETH Zurich

March 17, 2020

Optimization problem in standard form

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_j(x)=0, \quad j=1,\ldots,p$

- $x \in \mathbb{R}^n$ is the optimization variable
- $f: \mathbb{R}^n \mapsto \mathbb{R}$ is the *objective function*
- $g_i : \mathbb{R}^n \mapsto \mathbb{R}$ are the inequality constraint functions
- $h_j \colon \mathbb{R}^n \mapsto \mathbb{R}$ are the equality constraint functions

optimal value:

$$p^* = \inf \{ f(x) \mid g_i(x) \le 0, \ i = 1, \dots, m, \ h_j(x) = 0, \ j = 1, \dots, p \}$$

- $p^* = +\infty$ if problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$ if problem is unbounded below

Local and global minima

- x is feasible if it satisfies the constraints (both explicit and implicit)
- a feasible x is optimal if $f(x) = p^*$
- x is locally optimal if there exists an R > 0 such that x is optimal for

minimize
$$f(z)$$
 subject to
$$g_i(z) \leq 0, \qquad i=1,\ldots,m$$

$$h_j(z) = 0, \qquad j=1,\ldots,p$$

$$\|z-x\| \leq R$$

- examples: (with n = 1, m = p = 0)
 - $f(x) = e^x$: $p^* = 0$, no optimal point
 - $-f(x) = -\log x$, dom $f = \mathbb{R}_{++}$: $p^* = -\infty$
 - $f(x) = x \log x$, $\operatorname{dom} f = \mathbb{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
 - $-f(x)=x^3-3x$: $p^*=-\infty$, local optimum at x=1

Feasibility problem

find
$$x$$

$$\text{subject to}\quad g_i(x) \leq 0, \quad i=1,\ldots,m$$

$$h_j(x) = 0, \quad j=1,\ldots,p$$

• can be seen as a special case of the general problem with f(x) = 0:

minimize
$$0$$
 subject to
$$g_i(x) \leq 0, \quad i=1,\dots,m$$

$$h_j(x)=0, \quad j=1,\dots,p$$

- $p^* = 0$ if there exists a feasible x
- $p^{\star} = +\infty$ if no x satisfies the constraints

Convex optimization problem

standard form convex optimization problem

minimize
$$f(x)$$
 subject to
$$g_i(x) \leq 0, \quad i=1,\dots,m$$

$$a_j^T x = b_j, \quad j=1,\dots,p$$

- f and g_i are convex, equality constraints are affine
- equality constraints are often written as Ax = b
- feasible set and the set of minimizers are convex
- any locally optimal point of a convex problem is globally optimal

Epigraph reformulation

standard form convex problem is equivalent to

minimize
$$t$$
 subject to
$$f(x)-t\leq 0$$

$$g_i(x)\leq 0, \qquad i=1,\dots,m$$

$$Ax=b$$

• example: piecewise-affine minimization

minimize
$$\max_{i=1,\ldots,m} (a_i^T x + b_i)$$

equivalent to

$$\begin{aligned} & \text{minimize} & & t \\ & \text{subject to} & & a_i^T x + b_i \leq t, \quad i = 1, \dots, m \end{aligned}$$

Strict and strong convexity

• function $f \colon \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is *strictly convex* if for all $x,y \in \mathbb{R}^n$ and $\theta \in (0,1)$:

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

- convexity definition with strict inequality; no flat (affine) regions
- example: f(x) = 1/x for x > 0

• f is σ -strongly convex if $f - \frac{\sigma}{2} \| \cdot \|_2^2$ is convex, or equivalently, for all $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) - \frac{\sigma}{2}\theta(1 - \theta)||x - y||_2^2$$

Existence and uniqueness of minimizers

- strictly (strongly) convex functions have unique minimizers
- strictly convex functions may not have a minimizer (e.g., $-\log x$)
- strongly convex functions always have a unique minimizer
- a minimizer exists if feasible set is nonempty and compact

Optimality criterion for differentiable objective

• $x \in \mathbb{R}^n$ is a minimizer if and only if it is feasible and

$$\nabla f(x)^T (y-x) \ge 0$$
 for all feasible y

• if nonzero, $-\nabla f(x)$ defines a supporting hyperplane to feasible set $\mathcal C$ at x

Linear program (LP)

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{x \mid a_i^T x \le b_i, i = 1, \dots, m\}$$

is center of largest inscribed ball

$$\mathcal{B} = \{ x_c + u \mid ||u||_2 \le r \}$$

• $a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c + u) \mid ||u||_2 \le r\} = a_i^T x_c + r||a_i||_2 \le b_i$$

maximize
$$r$$
 subject to $a_i^T x_c + r \|a_i\|_2 \leq b_i, \quad i=1,\ldots,m$

Quadratic program (QP)

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + q^Tx \\ \text{subject to} & Gx \leq h \\ & Ax = b \end{array}$$

- $P \in \mathbb{S}^n_+$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples of QPs

least-squares

minimize
$$||Ax - b||_2^2$$

- analytical solution $x^* = (A^T A)^{-1} A^T b$
- can add linear constraints, e.g., $l \le x \le u$

linear program with random cost

minimize
$$\bar{c}^Tx + \gamma x^T \Sigma x = \mathbb{E} \, c^T x + \gamma \text{var}(c^T x)$$
 subject to $Gx \leq h$
$$Ax = b$$

- c is random vector with mean \bar{c} and covariance Σ
- hence, c^Tx is random variable with mean \bar{c}^Tx and variance $x^T\Sigma x$
- $\gamma>0$ is risk aversion parameter, controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TP_0x + q_0^Tx\\ \text{subject to} & \frac{1}{2}x^TP_ix + q_i^Tx + r_i \leq 0, \quad i=1,\ldots,m\\ & Ax = b \end{array}$$

- $P_i \in \mathbb{S}^n_+$, so objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbb{S}^n_{++}$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone program (SOCP)

minimize
$$f^Tx$$
 subject to $\|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \quad i=1,\dots,m$
$$Fx=g$$
 $(A_i\in\mathbb{R}^{n_i\times n},\,F\in\mathbb{R}^{p\times n})$

inequalities are called second-order cone constraints:

$$(A_i x + b_i, c_i x + d_i) \in \text{second-order cone in } \mathbb{R}^{n_i + 1}$$

- for $n_i = 0$, reduces to an LP
- if $c_i = 0$, reduces to a QCQP
- more general than QCQP

Conic programming

conic form problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Gx \leq_{\mathcal{K}} h \\ & Ax = b \end{array}$$

- $\mathcal{K} \subseteq \mathbb{R}^m$ is a proper convex cone
- ullet reduces to linear programs when $\mathcal{K}=\mathbb{R}^m_+$
- ullet reduces to second-order cone programs when ${\mathcal K}$ is second-order cone

Semidefinite program (SDP)

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\ldots+x_nF_n+G\preceq 0$
$$Ax=b$$

with $F_i, G \in \mathbb{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints, e.g.,

$$x_1\bar{F}_1 + x_2\bar{F}_2 + \ldots + x_n\bar{F}_n + \bar{G} \leq 0, \quad x_1\hat{F}_1 + x_2\hat{F}_2 + \ldots + x_n\hat{F}_n + \hat{G} \leq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \bar{F}_1 & 0 \\ 0 & \hat{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \bar{F}_2 & 0 \\ 0 & \hat{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \bar{F}_n & 0 \\ 0 & \hat{F}_n \end{bmatrix} + \begin{bmatrix} \bar{G} & 0 \\ 0 & \hat{G} \end{bmatrix} \leq 0$$

Quasiconvex optimization

- function $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is *quasiconvex* if all its sublevel sets are convex
- quasiconvex optimization problem:

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$
$$Ax = b$$

where f is quasiconvex and f_1, \ldots, f_m are convex

· can have local minimizers that are not global

Solving quasiconvex optimization problems

convex representation of sublevel sets of f

- \bullet if f is quasiconvex, then there exists a family of functions ϕ_t such that
 - $\phi_t(x)$ is convex in x for fixed t
 - t-sublevel set of f is 0-sublevel set of ϕ_t , *i.e.*,

$$f(x) \le t \iff \phi_t(x) \le 0$$

quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \quad g_i(x) \le 0, \ i = 1, \dots, m, \quad Ax = b$$

- ullet for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \ge p^*$; otherwise, $t \le p^*$
- ullet can use bisection and solve a sequence of problems for varying t

Composite minimization

convex composite minimization problem

minimize
$$f(x) + g(x)$$

(f and g are convex closed proper)

- many convex optimization problems can be represented in this form
 - constrained optimization ($g = \mathcal{I}_{\mathcal{C}}$)
 - regularized optimization $(g = \gamma \| \cdot \|)$
 - feasibility problems $(f = \mathcal{I}_{\mathcal{C}}, g = \mathcal{I}_{\mathcal{D}})$
- many algorithms for large-scale optimization are designed for solving composite minimization problems

References

- these lecture notes are based to a large extent on the following material:
 - Stanford EE364a class developed by Stephen Boyd
 - Lund course on Large-Scale Convex Optimization developed by Pontus Giselsson
- the original slides can be downloaded from

https://web.stanford.edu/class/ee364a/lectures.html https://archive.control.lth.se/ls-convex-2015/