

TAREFA DA SEMANA 14

01. (1,25 pontos, sendo 0,25 por item) Calcule as seguintes integrais definidas:

a)
$$\int_{3}^{5} 3x^{2} dx$$

b)
$$\int_0^{\pi} \sin x \, dx$$

c)
$$\int_0^\pi \cos x \ dx$$

d)
$$\int_0^{\sqrt{3}} \frac{1}{1+x^2} dx$$

e)
$$\int_{1}^{4} \left(e^{2x} + \sqrt{x} - 1\right) dx$$

02. (1,2 ponto, sendo 0,4 por item) Calcule as seguintes integrais definidas. Dica: Utilize o método de integração substituição.

a)
$$\int_{2}^{5} \frac{2x}{x^2 - 3} dx$$

b)
$$\int_0^{\pi/2} \cos^2 x \cdot \sin x \, dx$$

c)
$$\int_0^1 \frac{1}{(2x+1)^3} dx$$

03. (0,8 ponto, sendo 0,4 por item) Calcule as seguintes integrais definidas. Dica: Utilize o método de integração por partes.

a)
$$\int_{2}^{4} x \cdot \ln x \, dx$$

b)
$$\int_{0}^{\pi/3} x \cdot \cos x \, dx$$

04. (0,5 ponto) Determine a área compreendida entre o gráfico da função $f(x) = 4x^3 + 5$ e o eixo x, para $-1 \le x \le 1$.

05. (0,75 ponto) Determine a área compreendida entre o gráfico da função $f(x) = -x^2 + 16$ e o eixo x.

06. (0,5 ponto) Encontre a área da região limitada por cima por $f(x) = e^x$, por baixo por $g(x) = \operatorname{sen} x$, e pelos lados por x = 0 e $x = \frac{\pi}{2}$.

07. (1,0 ponto) Determine a área compreendida entre os gráficos das funções $f(x) = -x^2 + 2x + 15$ e g(x) = 3x + 13.

08. (1,0 ponto) Determine a área compreendida entre os gráficos das funções $f(x) = x \in g(x) = x^2$.

09. (1,0 pontos) Determine a área compreendida entre os gráficos das funções $f(x) = x^2$ e $g(x) = -x^2 + 2x$.

10. (1,0 pontos) Calcule a área da região limitada pelos gráficos de $y = x^3$, y = 2x e y = x.

11. (1,0 ponto, sendo 0,25 por item) Calcule as seguintes derivadas:

a)
$$\frac{d}{dx}\int_3^x e^{2t} dt$$

b)
$$\frac{d}{dx} \int_0^{5x^2} \sin(t^2) dt$$

c)
$$\frac{d}{dx} \int_{\sin x}^{2} t^3 dt$$

$$\mathbf{d)} \ \frac{d}{dx} \int_{x^2}^{3x} \frac{1}{t} \, dt$$

28 INTEGRAIS

29

GABARITO DA TAREFA DA SEMANA 14

01. a)
$$\int_3^5 3x^2 dx = 98$$

b)
$$\int_0^{\pi} \sin x \, dx = 2$$

c)
$$\int_0^{\pi} \cos x \, dx = 0$$

d)
$$\int_{0}^{\sqrt{3}} \frac{1}{1+x^2} dx = \frac{\pi}{3}$$

e)
$$\int_1^4 \left(e^{2x} + \sqrt{x} - 1\right) dx = \frac{e^8 - e^2}{2} + \frac{5}{3}$$

02. a)
$$\int_{2}^{5} \frac{2x}{x^{2} - 3} dx = \ln 22$$

b)
$$\int_0^{\pi/2} \cos^2 x \cdot \sin x \, dx = \frac{1}{3}$$

c)
$$\int_0^1 \frac{1}{(2x+1)^3} dx = \frac{2}{9}$$

03. a)
$$\int_2^4 x \cdot \ln x \, dx = 8 \ln 4 - 2 \ln 2 - 3 = 7 \ln 4 - 3$$

b)
$$\int_0^{\pi/3} x \cdot \cos x \, dx = \frac{\pi\sqrt{3}}{6} - \frac{1}{2}$$

04.
$$A = \int_{-1}^{1} (4x^3 + 5) dx = 10$$

05.
$$A = \int_{-4}^{4} (-x^2 + 16) dx = \frac{256}{3}$$

06.
$$A = \int_0^{\pi/2} (e^x - \sin x) dx = e^{\pi/2} - 2$$

07.
$$A = \int_{-2}^{1} [f(x) - g(x)] dx = 4.5$$

08.
$$A = \int_0^1 (x - x^2) dx = \frac{1}{6}$$

09.
$$A = \int_0^1 [g(x) - f(x)] dx = \frac{1}{3}$$

10.
$$A = \int_0^1 (2x - x) dx + \int_1^{\sqrt{2}} (2x - x^3) dx = \frac{3}{4}$$

11. a)
$$\frac{d}{dx} \int_3^x e^{2t} dt = e^{2x}$$

b)
$$\frac{d}{dx} \int_0^{5x^2} \operatorname{sen}(t^2) dt = 10x \cdot \operatorname{sen}(25x^4)$$

c)
$$\frac{d}{dx} \int_{\text{sen} x}^{2} t^3 dt = -\text{sen}^3 x \cdot \cos x$$

d)
$$\frac{d}{dx} \int_{x^2}^{3x} \frac{1}{t} dt = -\frac{2}{x} + \frac{1}{x} = -\frac{1}{x}$$

INTEGRAIS