김정수교수님

13주 2강

무선통신공학

본 강의 콘텐츠는 학습 용도 외의 불법적 이용, 무단 전재 및 배포를 금지합니다.

● 통화권확장

- 중계기: 전파 전달이 어려운 지역까지 전파를 전달하여 통화권을 확장함
- 건물 안이나, 지하, 터널 등 전파가 잘 도달되지 않는 지역
- 기지국의 무선 주파수(Radio Frequency) 신호를 제 3의 전송 매체를 통해 원하는 원격 지역에 전송하여 다시 무선 주파수 신호로 재생하는 방식
- 채널을 할당하여 가입자 용량을 증대하는 것이 아니라, 단순히 기지국으로부터의 신호를 특정 지역으로 증폭 및 재전송하는 역할만 하는 것

● 통화권확장

- 성능면에서는 기지국이 월등히 중계기보다는 좋은 특성
- 비용면에서 기지국은 중계기에 비해 비용이 많이 드는 단점
- 소규모 음영지역을 해소하기 위해서는 기지국의 설치라는 점이 비용 및 성능 측면에서 과다 투자 가능성
- 무선망 설계 및 서비스 사업자는 음영지역 해소 방안을 중계기로 해결하는 경우가 일반적

● 중계기의 종류

구분	서비스 종류	커버리지 확장
지상 중계기	옥외 중계기 주파수 변환 중계기 광중계기 마이크로 웨이브 중계기 레이저 중계기	옥외 커버리지 확장용
지하 및 인빌딩 중계기	광분산 중계기 I/F분산 중계기 RF 중계기 소형 중계기 복합방식 중계기	전파 음영지역 확장용

- 광중계기(Optic Repeater)
- 기지국의 RF신호를 특성이 우수한 광 링크를 이용해 서비스 지역으로 전송함으로써 안정성이 뛰어나며 양질의 신호를 전달할 수 있음
- 보다 넓은 지역의 고출력 서비스를 구현

- 광분산중계기(Optic Distributed Repeater)
- 3~5개의 대형빌딩을 별도의 광케이블을 통해 독립된 하나의 작은 셀(In-building Pico Cell)로 묶어 빌딩 외부 기지국과는 별도로 서비스를 제공
- 하나의 큰 빌딩에 각 층마다 광케이블로 연결하여 서비스 지역을 확보하는 기술
- 특정 기지국의 신호를 증폭하여 층별로 설치된 분산 안테나를 통해 다른 기지국들의 신호보다 더 큰 레벨로 재방사

- RF 중계기(Radio Frequency Repeater)
- Donor 안테나를 통해 수신된 기지국 신호가 듀플렉서를 통해 저잡음 증폭기(LNA)에 입력돼 저잡음 증폭
- 증폭된 신호는 국부 발진기의 발진주파수와 혼합해 중간주파수로 낮춰준 다음 중간 주파수대에서 원하는 주파수대만을 통과시키고 다시 주파수를 높여주는 고출력 증폭기를 통해 증폭한 후 서비스 안테나로 음영 지역을 서비스
- 송수신 안테나간의 간섭으로 인하여 송수신 안테나를 물리적으로 이격시켜야 한다. 그래서 이격도를 완벽히 구현하는 중계기와 간섭을 제거하는 알고리즘을 채택하는 중계기가 제안되었음

● 광중계기와 RF 중계기 비교

중계기 형태	대출력 광중계기	광분산 중계기	간섭제거 RF 중계기
경제성	고가의 설치비 고가의 유지 보수 비용	고가의 설치비 고가의 유지 보수비용	고가의 설치비 저가의 유지 보수비용
기술력	광신호 변화	광신호 변화 분산 기술 필요	고도의 정밀한 간섭제거기법
통화영역	매우 넓음	매우 넓음	넓음
문제점	상호변조(IF) 간섭 발생	Active 소자의 증가 로 고장률 높음	발진 문제 해결을 위한 알고리즘 필요
안정성	매우 안정적 시스템	안정적인 시스템	외부환경에 민감 불안정한 시스템
적합한 환경	도심 지형의 대형 건물 적합 (FDD방식 적합)	도심 지형의 대형 건물 적합 (TDD방식 적합)	이격된 장소 (지하철, 터널 등 넓은 분야확대 가능)

♥ 주파수 변환 중계기

- 기지국의 RF 신호를 사용하지 않는 빈 FA(Frequency Assignment) 신호로 변환하여 안테나로 전송한 후, 원격지에서 수신하여 다시 원래의 주파수 신호로 변환
- 입 출력 안테나간의 주파수가 다르기 때문에 발진 방지
- 빈 주파수 대역이 필요하기 때문에 주파수대역 내 주파수 사용률이 높은 도심 등에서는 사용이 불가능
- 경제성 매우 우수

● 레이져 중계기

- RF 신호를 레이저 신호로 변환하여 전송 후, 원격지에서 수신하여 다시 RF 신호로 변환하여 안테나로 송신
- 주파수 사용 허가가 불필요
- 안개나 폭우 등의 날씨 변화에 민감
- 레이저 구간 사이 LOS 확보 및 레이저 빔 포커스 유지

무선망 설계 과정

● 무선망 설계 과정

• 실제 기지국 설치에서 무엇보다도 중요한 것은 기지국을 설치 할 건물 등 부동산에 의해 기지국 설계가 이론과는 많은 차이를 가지고 응용되는 사례도 많이 있음

