Due: Monday Feburary 14, 2022

Problem Set 4

NPDE is the textbook *Numerical Partial Differential Equations*. Submissions are due in the LMS, and must be typeset (e.g. LAT_EX).

1. (0 pts.) Rework PS 3, number 4 using the backward Euler time integrator

$$D_{+t}v_j^n = \nu D_{+x}D_{-x}v_j^{n+1} + f_j^{n+1}$$

Notice now that you can take a large time step (e.g. $\nu \Delta t/\Delta x$ fixed), but in doing so the observed temporal accuracy is only $O(\Delta t)$. For reference refer to Section 2.6 in the text.

The following discretization scheme is expanded and written as

$$v_j^{n+1} = v_j^n + r\left(v_{j+1}^{n+1} - 2v_j^{n+1} + v_{j-1}^{n+1}\right) + \Delta t f_j^{n+1}$$

This can be re-written in the form,

$$-rv_{j-1}^{n+1} + \left(1 + 2r\right)v_{j}^{n+1} - rv_{j+1}^{n+1} = v_{j}^{n} + \Delta t f_{j}^{n+1}$$

Now, to deal with the boundary conditions, I chose to use Implicit compatibility condition for the Dirchlet BC specified on the left boundary and an Implicit Neumann for the BC specified on the right boundary.

$$v_{-1}^{n+1} - 2v_0^{n+1} + v_1^{n+1} = \Delta x^2 \frac{\gamma_L'(t_n)}{\nu}$$
$$v_{N+1}^{n+1} - v_{N-1}^{n+1} = 2\Delta x \gamma_R(t_n)$$

Listing 1: Heat Equation - Order 4 (Q.3b)

```
function [err_norm, x, uhat, u_ex, A] = HeatEqn_ImplicitForcing(N, r, xlim1, xlim2, ...
 1
 2
                                                                        tlim1, tlim2)
    % $Author: Vignesh Ramakrishnan$
 3
   % $RIN: 662028006$
    \% \ u_{-}t - \setminus nu \ u_{-}\{xx\} = f(x,t)
    \% \ s.t \ u(x,0) = u_{-}\theta(x)
                = \langle Gamma\_L(t) \rangle
    \% \ u(0,t)
    \% u_{-}x(1,t)
                  = \langle Gamma_R(t) \rangle
    \% u_{-}\{ex\} = 2 \setminus cos(x) \setminus cos(t)
10 \% This function is a method to prove that the Difference methods work and
   |\%| will be a good approximate to the exact solution. The task is to find
12 \mid \% \text{ functions } f(x,t), u_0(x), \text{ Gamma\_L}(t) \text{ and } \text{Gamma\_R}(t), \text{ plug it in}
    % and solve using the scheme: D+t v^n_{-j} = nu D+xD-xv^{n+1}_{-j} + f^{n+1}_{-j}
14 \mid \% Inputs: N
                           - Number of elements
                            - CFL number
15 | \%
```

```
- left end of the spatial boundary
16 | \%
              xlim1
   %
              xlim2
                        - right end of the spatial boundary
17
18 | %
              tlim1
                        - start time of simulation
              tmin2
19
   1%
                        - end time of simulation
   |\%| Output: err\_norm - L2| norm of the error between the exact solution and
20
21
   1%
                           numerical solution
22
23
   nu = 1;
                                              % Co-efficient of heat conduction
24
25
                                              % Initial condition
   u0 = @(x) 2*\cos(x);
                                              % Drichlet BC on Left Boundary
26
   gL = @(t) 2*cos(t);
   gR = @(t) -2*sin(1)*cos(t);
                                              % Neumann BC on Right Boundary
27
   u0t = @(t) -2*sin(t);
                                              % u_{-}t @ x=0
29
       = @(x,t) 2*\cos(x)*(\cos(t)-\sin(t)); \% Forcing function f
30
31
   dx = (x \lim_{n \to \infty} 2 - x \lim_{n \to \infty} 1) / N;
                                              % dx - spatial discretization
32
                                              % r = CFL \ number
33
   \mathrm{d} t
        = r*dx^2;
34
                                              \% number of ghost points at BC
35
   |ng| = 1 \quad ;
                                              % Total number of spatial points
36
   |NP| = N+1+2*ng;
                                              % xlim1's index number
37
   ja = ng+1;
                                              % xlim2's index number
   jb = NP-ng;
38
39
                                              % Spatial locations
40
       = (x \lim 1 : dx : x \lim 2);
41
       = (t \lim 1 : dt : t \lim 2);
                                              \% Temporal locations t
42
                                              % Solution at previous tstep
43
   u_{prev} = zeros(NP, 1);
44
   u_curr = zeros(NP, 1);
                                              % Solution at current tstep
45
46
   % set initial conditions for the spatial grid
                     = u0(x);
   u_{prev}(ja:jb)
   u_prev(ja)
                      = gL(tlim1);
48
49
   % Set Compatability boundary condition
50
   u_prev(ng)
                      = (u0t(tlim1) - f(xlim1,tlim1))*dx^2 \dots
51
52
                             + 2*u_prev(ja) - u_prev(ja+1);
   % Set Neumann boundary condition
53
54
   u_prev(NP)
                      = u_{prev}(jb-1) + 2*gR(tlim1)*dx;
55
56
   % create Matrix A
57
   A = zeros(NP);
58
59
   for j = ng:NP
60
        if (j==ng)
61
            A(j, ng)
                       = 1;
62
            A(j, ja)
                       = -2;
63
            A(j, ja+1) = 1;
```

```
elseif (j=NP)
64
65
            A(j, jb-1) = -1;
66
            A(j, NP) = 1;
67
        else
68
            A(j, j-1) = -r;
69
            A(j,j) = 1+2*r;
            A(j, j+1) = -r;
70
71
        end
72
   end
73
74
   RHS = zeros(NP, 1);
75
76
   \% find implicit solution each time step
77
   for i=2:length(t)
        for j=ng:NP
78
79
            if j==ng
                 RHS(j) = dx^2 * u0t(t(i)) / nu;
80
81
            elseif j=NP
82
                RHS(j) = 2*dx*gR(t(i));
83
            else
                 RHS(j) = u_prev(j) + f(x(j-1),t(i))*dt;
84
85
            end
86
        end
87
        u_curr = A\backslash RHS;
88
   end
89
   u_ex = 2*cos(x)*cos(tlim2);
90
91
   uhat = u_curr(ja:jb);
92
             = u_ex - u_prev(ja:jb);
93
   err\_norm = norm(err);
94
95
   end
```

In Fig 1, r = 0.6 which should be unstable in the previous discretization scheme, but it produces results in this Implicit scheme but the error varies linearly with time step.

2. (10 pts.) Prove that the Lax-Friedrichs scheme

$$v_j^{n+1} = \frac{1}{2}(v_{j+1}^n + v_{j-1}^n) - \frac{R}{2}(v_{j+1}^n - v_{j-1}^n)$$

is convergent in the max-norm to the solution of the PDE $u_t + au_x = 0$ for $|R| \le 1$ with $R = a\Delta t/\Delta x$.

Error between exact and numerical solution

Figure 1: Error between exact and numerical solution

$$v_{j}^{n+1} = \left(\frac{1-R}{2}\right)v_{j+1}^{n} + \left(\frac{1+R}{2}\right)v_{j-1}^{n}$$
 Let, $e_{j}^{n} = v_{j}^{n} + u_{j}^{n}$

(Assume u is smooth and u_j^n is a discrete value of u in the spatial grid.)

$$e_{j}^{n+1} = \left(\frac{1-R}{2}\right)e_{j+1}^{n} + \left(\frac{1+R}{2}\right)e_{j-1}^{n} - \left\{u_{j}^{n+1} - \left(\frac{1-R}{2}\right)u_{j+1}^{n} - \left(\frac{1+R}{2}\right)u_{j-1}^{n}\right\}$$

We can compute the truncation error as follows,

$$u_{j}^{n+1} = \left[u + \Delta t u_{t} + \frac{\Delta t^{2}}{2!} u_{tt} + \frac{\Delta t^{3}}{3!} u_{ttt} + \mathcal{O}(\Delta t^{4}) \right]_{j}^{n}$$

$$u_{j+1}^{n} = \left[u + \Delta x u_{x} + \frac{\Delta x^{2}}{2!} u_{xx} + \frac{\Delta x^{3}}{3!} u_{xxx} + \mathcal{O}(\Delta x^{4}) \right]_{j}^{n}$$

$$u_{j-1}^{n} = \left[u - \Delta x u_{x} + \frac{\Delta x^{2}}{2!} u_{xx} - \frac{\Delta x^{3}}{3!} u_{xxx} + \mathcal{O}(\Delta x^{4}) \right]_{n}^{j}$$

$$\begin{split} u_{j}^{n+1} - \left(\frac{1-R}{2}\right) u_{j+1}^{n} - \left(\frac{1+R}{2}\right) u_{j-1}^{n} &= \\ \left[\Delta t u_{t} + \frac{\Delta t^{2}}{2!} u_{tt} + \mathcal{O}(\Delta t^{3}) + \right. \\ \left. R \Delta x u_{x} + R \frac{\Delta x^{3}}{3!} u_{xxx} + \dots \dots \right. \\ &- \frac{\Delta x^{2}}{2!} u_{xx} - \frac{\Delta x^{4}}{4!} u_{xxxx} + \mathcal{O}(\Delta x^{6}) \right]_{j}^{n} \end{split}$$

Combining the terms in blue, we get,

$$(\Delta t \ u_t + R\Delta x \ u_x) = \Delta t (u_t + au_x) = 0$$

Now, combining this we get the truncation error to be,

$$u_j^{n+1} - \left(\frac{1-R}{2}\right)u_{j+1}^n - \left(\frac{1+R}{2}\right)u_{j-1}^n = \mathcal{O}(\Delta t^2) + \mathcal{O}(\Delta t \Delta x^2) + \mathcal{O}(\Delta x^2) \approx A\left(\Delta t^2 + \Delta t \Delta x^2 + \Delta x^2\right)$$
$$\tau_j^n = A\left(\Delta t^2 + \Delta t \Delta x^2 + \Delta x^2\right)$$

The error equation becomes,

$$e_{j}^{n+1} = \left(\frac{1-R}{2}\right) e_{j+1}^{n} + \left(\frac{1+R}{2}\right) e_{j-1}^{n} + \tau_{j}^{n}$$

$$e_{j}^{n+1} = \left(\frac{1-R}{2}\right) e_{j+1}^{n} + \left(\frac{1+R}{2}\right) e_{j-1}^{n} + A\left(\Delta t^{2} + \Delta t \Delta x^{2} + \Delta x^{2}\right)$$

Take the max norm of the above equation (absolute value) and set $E^n = \max_i e_j^n$

If,
$$k = 1 - R = 1 + (-R)$$
 and, $0 \le (|R| = m^2) \le 1$

$$0 \le \left| \frac{1 - R}{2} \right| \le \frac{1}{2} (|1| + |-R|) \le 1$$
Similarly, $0 \le \left| \frac{1 + R}{2} \right| \le \frac{1}{2} (|1| + |R|) \le 1$

$$\begin{aligned} \left| e_j^{n+1} \right| &\leq \left(\frac{1-R}{2} \right) \left| e_{j+1}^n \right| + \left(\frac{1+R}{2} \right) \left| e_{j-1}^n \right| + A \left(\Delta t^2 + \Delta t \Delta x^2 + \Delta x^2 \right) \\ &E^{n+1} \leq E^n + A \left(\Delta t^2 + \Delta t \Delta x^2 + \Delta x^2 \right) \\ &\leq E^{n-1} + 2A \left(\Delta t^2 + \Delta t \Delta x^2 + \Delta x^2 \right) \\ &\leq E^{n-2} + 3A \left(\Delta t^2 + \Delta t \Delta x^2 + \Delta x^2 \right) \end{aligned}$$

 $E^{0} + (n+1) A \left(\Delta t^{2} + \Delta t \Delta x^{2} + \Delta x^{2}\right)$ $\leq (n+1) A \left(\Delta t^{2} + \Delta t \Delta x^{2} + \Delta x^{2}\right), \text{ as } E^{0} = 0$ $\leq (n+1) A \left(\frac{R^{2}}{a^{2}} \Delta x^{2} + \frac{R}{a} \Delta x^{3} + \Delta x^{2}\right) \to 0, \text{ as, } \Delta x \to 0$

Hence, it is convergent.

3. (10 pts.) Prove that the scheme

$$D_{+t}v_j^n = \nu D_{+x} D_{-x} v_j^n + a D_{0x} v_j^n$$

is convergent in the max-norm to the solution of the PDE $u_t = \nu u_{xx} + au_x$, under certain constraints on Δx and Δt . What are these constraints? Use the notation $r = \nu \Delta t/\Delta x^2$ and $\sigma = a\Delta t/\Delta x$.

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} = \frac{\nu}{\Delta x^2} \left(v_{j+1}^n - 2v_j^n + v_{j-1}^n \right) + \frac{a}{2\Delta x} \left(v_{j+1}^n - v_{j-1}^n \right)$$

$$v_{j+1}^n = v_j^n + r \left(v_{j+1}^n - 2v_j^n + v_{j-1}^n \right) + \frac{\sigma}{2} \left(v_{j+1}^n - v_{j-1}^n \right)$$

$$v_{j+1}^n = \left(r - \frac{\sigma}{2} \right) v_{j-1}^n + (1 - 2r) v_j^n + \left(r + \frac{\sigma}{2} \right) v_{j+1}^n$$

$$v_{j+1}^n = \left(1 - 2r \right) v_j^n + r \left[v_{j+1}^n + v_{j-1}^n \right] + \frac{\sigma}{2} \left(v_{j+1}^n - v_{j-1}^n \right)$$

Performing a DFT,

$$\begin{split} \frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-ij\xi} v_j^{n+1} &= \hat{V}^{n+1} \\ \frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-ij\xi} v_j^n &= \hat{V}^n \\ \frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-i(j)\xi} v_{j+1}^n &= \frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-i(m-1)\xi} v_m^n &= e^{i\xi} \; \hat{V}^n \\ \frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-ij\xi} v_{j-1}^n &= e^{-i\xi} \hat{V}^n \end{split}$$

Substituting it into the equation,

$$\hat{V}^{n+1} = (1 - 2r) \hat{V}^n + r \left[e^{i\xi} + e^{-i\xi} \right] \hat{V}^n + \frac{\sigma}{2} \left[e^{i\xi} - e^{-i\xi} \right] \hat{V}^n$$

$$\hat{V}^{n+1} = (1 - 2r + 2r \cos \xi + i\sigma \sin \xi) \hat{V}^n$$

$$\hat{V}^{n+1} = (1 - 2r (1 - \cos \xi) + i\sigma \sin \xi) \hat{V}^n$$

$$|a(\xi)|^2 = (1 - 2r (1 - \cos \xi))^2 + (\sigma \sin \xi)^2 \le 1$$

$$\implies |a(\xi)|^2 = 1 + 4r^2 (1 - \cos \xi)^2 - 4r (1 - \cos \xi) + \sigma^2 (1 - \cos^2 \xi) \le 1$$

Let $z = \cos \xi$

$$4r^{2}(1-z) - 4r + \sigma^{2}(1+z) \le 0$$

 $\begin{array}{l} \text{If } z=-1,\,r\leq\frac{1}{2}.\\ \text{If } z=1,\,\sigma^2\leq 2r\leq 1. \end{array}$

Therefore, the 2 constraints are,

$$\Delta x^2 - a^2 \Delta t^2 \ge 0 \tag{1}$$

$$\Delta x^2 - 2\nu \Delta t \ge 0 \tag{2}$$

- 4. (15 pts.) Determine the formal order of accuracy of the following difference equations (i.e. investigate the truncation error). Throughout, use the definitions $r = \nu \Delta t/\Delta x^2$ and $\sigma = a\Delta t/\Delta x$.
 - (a) For the PDE $u_t = \nu u_{xx} au_x$ consider the discretization

$$D_{+t}v_{j}^{n} = \nu D_{+x}D_{-x}v_{j}^{n} - aD_{0x}v_{j}^{n}.$$

Let
$$e_j^n = v_j^n - u_j^n$$
,

$$D_{+t} (e_j^n + u_j^n) = \nu D_{+x} D_{-x} (e_j^n + u_j^n) - a D_{0x} (e_j^n + u_j^n)$$

$$D_{+t} e_j^n = \nu D_{+x} D_{-x} e_j^n - a D_{0x} e_j^n - (D_{+t} u_j^n - \nu D_{+x} D_{-x} u_j^n + a D_{0x} u_j^n)$$

$$D_{+t}u_{j}^{n} = \left[u_{t} + \frac{\Delta t}{2}u_{tt} + \mathcal{O}(\Delta t^{2})\right]_{j}^{n} = \left[u_{t} + \mathcal{O}(\Delta t)\right]_{j}^{n}$$

$$D_{+x}D_{-x}u_{j}^{n} = \left[u_{xx} + \frac{\Delta x^{2}}{12}u_{xxxx} + \mathcal{O}(\Delta x^{4})\right]_{j}^{n} = \left[u_{xx} + \mathcal{O}(\Delta x^{2})\right]_{j}^{n}$$

$$D_{0x}u_{j}^{n} = \left[u_{x} + \frac{\Delta x^{2}}{3!}u_{xxx} + \mathcal{O}(\Delta x^{4})\right]_{j}^{n} = \left[u_{x} + \mathcal{O}(\Delta x^{2})\right]_{j}^{n}$$

$$D_{+t}e_{j}^{n} = \nu D_{+x}D_{-x}e_{j}^{n} - aD_{0x}e_{j}^{n} - \left(\left[u_{t} - \nu u_{xx} + au_{x} + \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x^{2}) \right]_{j}^{n} \right)$$

The terms in blue sum up to 0 since it is the actual PDE.

Therefore, truncation error is,

$$\tau_j^n = \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x^2)$$

(b) For the PDE $u_t = \nu u_{xx} - au_x$ consider the discretization

$$D_{+t}v_i^n = \nu D_{+x}D_{-x}v_i^{n+1} - aD_{0x}v_i^{n+1}.$$

Similar to last problem,

$$D_{+t}e_i^n = \nu D_{+x}D_{-x}e_i^{n+1} - aD_{0x}e_i^{n+1} - \left(D_{+t}u_i^n - \nu D_{+x}D_{-x}u_i^{n+1} + aD_{0x}u_i^{n+1}\right)$$

$$\begin{split} D_{+t}u_{j}^{n} &= \left[u_{t} + \frac{\Delta t}{2}u_{tt} + \mathcal{O}(\Delta t^{2})\right]_{j}^{n} = \left[u_{t} + \mathcal{O}(\Delta t)\right]_{j}^{n} \\ D_{+x}D_{-x}u_{j}^{n+1} &= \left[u_{xx} + \frac{\Delta x^{2}}{12}u_{xxxx} + \mathcal{O}(\Delta x^{4})\right]_{j}^{n+1} \\ &= \left[u_{xx}\right]_{j}^{n+1} + \frac{\Delta x^{2}}{12}\left[u_{xxxx}\right]_{j}^{n+1} + \left[\mathcal{O}(\Delta x^{4})\right]_{j}^{n+1} \\ &= \left[u_{xx} + \Delta t \ u_{txx} + \mathcal{O}(\Delta t^{2})\right]_{j}^{n} + \frac{\Delta x^{2}}{12}\left[u_{xxxx} + \Delta t \ u_{txxxx} + \mathcal{O}(\Delta t^{2})\right]_{j}^{n} + \mathcal{O}(\Delta x^{4}) \\ D_{0x}u_{j}^{n+1} &= \left[u_{x} + \frac{\Delta x^{2}}{3!}u_{xxx} + \mathcal{O}(\Delta x^{4})\right]_{j}^{n+1} \\ &= \left[u_{x} + \Delta t \ u_{tx} + \mathcal{O}(\Delta t^{2})\right]_{j}^{n} + \frac{\Delta x^{2}}{2!}\left[u_{xxx} + u_{txxx} + \mathcal{O}(\Delta t^{2})\right]_{j}^{n} + \mathcal{O}(\Delta x^{4}) \end{split}$$

$$D_{+t}u_{j}^{n} - \nu D_{+x}D_{-x}u_{j}^{n+1} + aD_{0x}u_{j}^{n+1} = \left[u_{t} - \nu u_{xx} + au_{x} + \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x^{2})\right]_{j}^{n}$$
$$\tau_{j}^{n} = \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x^{2})$$

(c) For the PDE $u_t = -au_x$ consider the discretization

$$D_{+t}v_j^n = -aD_{-x}v_j^{n+1}.$$

Similar to the previous problem.

$$D_{+t}e_j^n = -aD_{-x}e_j^{n+1} - \left(D_{+t}u_j^n + aD_{-x}u_j^{n+1}\right)$$

$$D_{+t}u_{j}^{n} = \left[u_{t} + \frac{\Delta t}{2}u_{tt} + \mathcal{O}(\Delta t^{2})\right]_{j}^{n} = \left[u_{t} + \mathcal{O}(\Delta t)\right]_{j}^{n}$$

$$D_{-x}u_{j}^{n+1} = \left[u_{x} - \frac{\Delta x^{2}}{2!}u_{xx} + \frac{\Delta x^{3}}{3!}u_{xxx} + \mathcal{O}(\Delta x^{4})\right]_{j}^{n+1}$$

$$= \left[u_{x} + \Delta t u_{tx} + \mathcal{O}(\Delta t^{2})\right]_{j}^{n} - \frac{\Delta x^{2}}{2!}\left[u_{xx} + \Delta t u_{txx} + \mathcal{O}(\Delta t^{2})\right]_{j}^{n} + \mathcal{O}(\Delta x^{4})$$

$$\tau_j^n = \left[u_t + au_x + \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x^2) \right]_j^n = \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x^2)$$

5. (15 pts.) Investigate the stability of the schemes from number 4 above, and discuss any limitations on parameters that you find are required to guarantee stability. Again use the definitions $r = \nu \Delta t/\Delta x^2$ and $\sigma = a\Delta t/\Delta x$. Hint: using the DFT is probably simplest.

I'm going to assume that the coefficients ν , a are positive in all three cases considered. So if, Δt , Δx are set to be positive numbers, the parameters r, σ are positive constants.

(a) For the PDE $u_t = \nu u_{xx} - au_x$, consider the discretization

$$D_{+t}v_j^n = \nu D_{+x}D_{-x}v_j^n - aD_{0x}v_j^n$$

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} = \frac{\nu}{\Delta x^2} \left(v_{j+1}^n - 2v_j^n + v_{j-1}^n \right) - \frac{a}{2\Delta x} \left(v_{j+1}^n - v_{j-1}^n \right)$$

$$v_{j+1}^n = v_j^n + r \left(v_{j+1}^n - 2v_j^n + v_{j-1}^n \right) - \frac{\sigma}{2} \left(v_{j+1}^n - v_{j-1}^n \right)$$

$$v_{j+1}^n = \left(r + \frac{\sigma}{2} \right) v_{j-1}^n + (1 - 2r) v_j^n + \left(r - \frac{\sigma}{2} \right) v_{j+1}^n$$

$$v_{j+1}^n = \left(1 - 2r \right) v_j^n + r \left[v_{j+1}^n + v_{j-1}^n \right] - \frac{\sigma}{2} \left(v_{j+1}^n - v_{j-1}^n \right)$$

Performing a DFT,

$$\begin{split} \frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-ij\xi} v_j^{n+1} = & \hat{V}^{n+1} \\ \frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-ij\xi} v_j^n = & \hat{V}^n \\ \frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-i(j)\xi} v_{j+1}^n = \frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-i(m-1)\xi} v_m^n = e^{i\xi} \; \hat{V}^n \\ \frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-ij\xi} v_{j-1}^n = e^{-i\xi} \hat{V}^n \end{split}$$

Substituting it into the equation,

$$\hat{V}^{n+1} = (1 - 2r) \hat{V}^n + r \left[e^{i\xi} + e^{-i\xi} \right] \hat{V}^n - \frac{\sigma}{2} \left[e^{i\xi} - e^{-i\xi} \right] \hat{V}^n$$

$$\hat{V}^{n+1} = (1 - 2r + 2r \cos \xi - i\sigma \sin \xi) \hat{V}^n$$

$$\hat{V}^{n+1} = (1 - 2r (1 - \cos \xi) - i\sigma \sin \xi) \hat{V}^n$$

$$|a(\xi)|^2 = (1 - 2r (1 - \cos \xi))^2 + (\sigma \sin \xi)^2 \le 1$$

$$\implies |a(\xi)|^2 = 1 + 4r^2 (1 - \cos \xi)^2 - 4r (1 - \cos \xi) + \sigma^2 (1 - \cos^2 \xi) \le 1$$

Let $z = \cos \xi$

$$4r^{2}(1-z) - 4r + \sigma^{2}(1+z) \le 0$$

If
$$z = -1$$
, $r \le \frac{1}{2}$.
If $z = 1$, $\sigma^2 \le 2r \le 1$.

If these conditions are met, then the scheme is stable.

(b) For the PDE $u_t = \nu u_{xx} - au_x$, consider the discretization

$$D_{+t}v_j^n = \nu D_{+x}D_{-x}v_j^{n+1} - aD_{0x}v_j^{n+1}$$

$$v_j^{n+1} - v_j^n = \left(r - \frac{\sigma}{2}\right)v_{j+1}^{n+1} - 2rv_j^{n+1} + \left(r + \frac{\sigma}{2}\right)v_{j-1}^{n+1}$$

Taking a DFT,

$$\frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-ij\xi} v_{j+1}^{n+1} = \frac{1}{\sqrt{2\pi}} \sum_{m=-\infty}^{\infty} e^{-i(m-1)\xi} v_m^{n+1} \equiv e^{i\xi} \hat{V}^{n+1}$$

$$\frac{1}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} e^{-ij\xi} v_{j-1}^{n+1} = \frac{1}{\sqrt{2\pi}} \sum_{m=-\infty}^{\infty} e^{-i(m+1)\xi} v_m^{n+1} \equiv e^{-i\xi} \hat{V}^{n+1}$$

$$\cos \xi = \frac{e^{i\xi} + e^{-i\xi}}{2}$$

$$\sin \xi = \frac{e^{i\xi} - e^{-i\xi}}{2i}$$

$$\hat{V}^{n+1} - \hat{V}^n = \left(r - \frac{\sigma}{2}\right) e^{i\xi} \hat{V}^{n+1} - 2r\hat{V}^{n+1} + \left(r + \frac{\sigma}{2}\right) e^{-i\xi} \hat{V}^{n+1}$$

$$\hat{V}^{n+1} = \frac{1}{[1 + 2r(1 - \cos\xi) + i\sigma\sin\xi]} \hat{V}^n$$

$$\implies a(\xi) = \frac{[1 + 2r(1 - \cos\xi) - i\sigma\sin\xi]}{(1 + 2r(1 - \cos\xi))^2 + \sigma^2\sin^2\xi}$$

$$|a(\xi)|^2 = \frac{1}{(1 + 2r(1 - \cos\xi))^2 + \sigma^2\sin^2\xi}$$

If $|a(\xi)| \leq 1$, then this is a stable scheme.

If,
$$\cos \xi = -1$$
,
 $8r^2 + 4r \ge 0$
 $4r(2r+1) > 0$

This is always true since we assumed $r \geq 0$

If,
$$\cos \xi = 1$$
,
 $4r + 2\sigma^2 > 0$

This is also true since $r \ge 0$ and $\sigma \ge 0$. Hence this is a stable scheme as $|a(\xi)| \le 1$ always.

 $D_{+t}v_i^n = -aD_{-x}v_i^{n+1}.$

(c) For the PDE $u_t = -au_x$ consider the discretization

$$v_{j}^{n+1} - v_{j}^{n} = -\sigma v_{j}^{n+1} + \sigma v_{j-1}^{n+1}$$

$$\hat{V}^{n+1} = \frac{1}{1 + \sigma (1 - e^{-i\xi})} \hat{V}^{n}$$

$$e^{-i\xi} = \cos \xi - i \sin \xi$$

$$\implies |a(\xi)|^{2} = \frac{1}{(1 + \sigma (1 - \cos \xi))^{2} + \sigma^{2} (1 - \cos^{2} \xi)}$$

The denominator is positive and always greater than 1, this stable is always stable since $|a(\xi)| \leq 1$