

(TBD) ATM: Alchemist Transformers-based Multi-modal Sentiment Analysis Model (Deliverable 1)

Tongxi Liu†, Yutong Li†, Lexie Wang†, Kexin Gao†, Gina-Anne Levow, Haotian Zhu

Department of Linguistics University of Washington

{ltxom, lyt826, lexwang, kexing66, levow, haz060}@uw.edu

Abstract

In this project, we plan to train a Alchemist Transformers-based Multi-modal Sentiment Analysis Model (ATM) on the Multimodal Corpus of Sentiment Intensity (CMU-MOSI) dataset. Starting from a monomodal statistic-based machine learning model as the baseline, we analyze the performance of the current state-of-art models and develop new or improved strategies for this task. Lastly, we attempt to perform an adaptation task on CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset.

1 Introduction

CMU-MOSI dataset is a collection of 2199 opinion video clips (Zadeh et al., 2016). Each opinion video is annotated with sentiment in the range [-3,3]. The dataset is rigorously annotated with labels for subjectivity, sentiment intensity, per-frame and per-opinion annotated visual features, and permilliseconds annotated audio features.

CMU-MOSEI dataset is the largest dataset of multimodal sentiment analysis and emotion recognition to date (Bagher Zadeh et al., 2018). The dataset contains more than 23,500 sentence utterance videos from more than 1000 online YouTube speakers. The dataset is gender balanced. All the sentences utterance are randomly chosen from various topics and monologue videos. The videos are transcribed and properly punctuated.

2 Task description

Approach: For our baseline approach, we will use Naive Bayes or SVM (Joachims, 2005) to build a sentiment classifier and only use text data.

In our baseline approach II, We plan to use the Transformer model(Vaswani et al., 2017), e.g. fine tune BERT (Devlin et al., 2018), for the sentiment analysis task on text data of CMU-MOSI dataset. Inspired by the multimodal analysis (Poria et al., 2017), we will also experiment with multimodal fusion methods to improve the performance further.

Comparison: After completing the training of our baseline model and multimodal model, we will compare our models' performances to that of the state-of-the-art models that have achieved high performance on the CMU-MOSI dataset (Hu et al., 2022). We expect the comparison results to reveal the advantages and limitations of our model architecture, which would consequently guide us to potential improvements in data-preprocessing methods, architecture design, and parameter selection.

Improvement: As mentioned above,

Adapation: We will adapt our pre-trained model to the CMU-MOSEI dataset, an upgraded version of MOSI, annotated with sentiment and emotion (the MOSI dataset only contains sentiment labels). We plan to finetune our model with a slice of MO-SEI dataset and test the adaptation results on the new prediction task.

Evaluation: For the main task on MOSI and the adaptation task on MOSEI, we follow the evaluation methods in previous works (Han et al., 2021; Hu et al., 2022), using mean absolute error (MAE), Pearson correlation (Corr), seven-class classification accuracy (ACC-7), binary classification accuracy (ACC-2) and F1 score as performance evaluation metrics. We will also analyze model limitation, ethical risks and future work of our study.

3 System Overview

PLACEHOLDER

4 Approach

PLACEHOLDER

[†]Four alchemists equally contributed to this work. (TBD) Liu focuses on the methodology of chrysopoeia, the process of fitting raw material into gold. Wang controls the alloying process to fuse multimodal materials into one. Li creates panaceas to cure overfitting/underfitting. Gao devotes to making an elixir of life for the model to adapt to new tasks.

073	5 Results	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakol Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is al you need. In <i>Advances in Neural Information Processing Systems</i> , volume 30. Curran Associates, Inc.
074	PLACEHOLDER	
075	6 Discussion	
076	PLACEHOLDER	Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis Philippe Morency. 2016. MOSI: multimodal corpus of sentiment intensity and subjectivity analysis ir online opinion videos. <i>CoRR</i> , abs/1606.06259.
077	7 Ethical considerations	
078	PLACEHOLDER	A Appendix
079	8 Conclusion	PLACEHOLDER
080	PLACEHOLDER	
081	References	
082	AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria,	
083	Erik Cambria, and Louis-Philippe Morency. 2018.	
084	Multimodal language analysis in the wild: CMU-	
085	MOSEI dataset and interpretable dynamic fusion	
086	graph. In Proceedings of the 56th Annual Meeting of	
087	the Association for Computational Linguistics (Vol-	
088	ume 1: Long Papers), pages 2236–2246, Melbourne,	
089	Australia. Association for Computational Linguistics.	
090	Jacob Devlin, Ming-Wei Chang, Kenton Lee, and	
091	Kristina Toutanova. 2018. Bert: Pre-training of deep	
092	bidirectional transformers for language understand-	
093	ing. arXiv preprint arXiv:1810.04805.	
094	Wei Han, Hui Chen, and Soujanya Poria. 2021. Im-	
095	proving multimodal fusion with hierarchical mutual	
096	information maximization for multimodal sentiment	
097	analysis. In Proceedings of the 2021 Conference on	
098	Empirical Methods in Natural Language Processing,	
099	pages 9180–9192, Online and Punta Cana, Domini-	
100	can Republic. Association for Computational Lin-	
101	guistics.	
102	Guimin Hu, Ting-En Lin, Yi Zhao, Guangming Lu,	
103	Yuchuan Wu, and Yongbin Li. 2022. UniMSE: To-	
104	wards unified multimodal sentiment analysis and	
105	emotion recognition. In Proceedings of the 2022	
106	Conference on Empirical Methods in Natural Lan-	
107	guage Processing, pages 7837-7851, Abu Dhabi,	
108	United Arab Emirates. Association for Computa-	
109	tional Linguistics.	
110	Thorsten Joachims. 2005. Text categorization with sup-	
111	port vector machines: Learning with many relevant	
112	features. In Machine Learning: ECML-98: 10th	
113	European Conference on Machine Learning Chem-	
114	nitz, Germany, April 21-23, 1998 Proceedings, pages	
115	137–142. Springer.	
116	Soujanya Poria, Erik Cambria, Rajiv Bajpai, and Amir	
117	Hussain. 2017. A review of affective computing:	
118	From unimodal analysis to multimodal fusion. Infor-	
119	mation fusion, 37:98–125.	