

От ведущего инженера АСУ ТП Семёнова Артемия Александровича

ОБЪЯСНИТЕЛЬНАЯ

РИЗИВИТОННА

Данный документ описывает причины останова выполнения программы ПЛК 992CS100 АСУТП ЗИФ «Павлик» 03.08.2021.

Все ниже описываемые работы выполнял ведущий инженер АСУ ТП Семёнов А A с согласования начальника службы АСУ ТП Доровика Р В.

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ

ПЛК — программируемый логический контроллер;

OB — организационные блоки для выполнения пользовательских программ;

FB, FC — блоки содержащие пользовательские программы.

ОПИСАНИЕ СЛУЧИВШЕГОСЯ

ПЛК 992CS100 (SIEMENS S7-400 CPU416-3DP) АСУТП ЗИФ «Павлик» управляет оборудованием и техпроцессами: сорбции; ADR; «обезврежки»; насосами хвостов сорбции; насосами гидро-подпора 065PU887U01, 065PU888U01; сгустителями 080TN450, 080TN590.

В конфигурации ПЛК прописано множество сетевых устройств PROFIBUS, которые в данный момент отключены (обесточены). Это могут быть агрегаты на обслуживании (ремонт насоса), так и резерв заложенный на подключение нового оборудования. ПЛК опрашивает данные устройства, и не получив ответ, пишет сообщение об ошибке в диагностический буфер (смотрите рисунок 1 в приложении).

Любое изменение конфигурации требует останова ПЛК и управляемого им оборудования. Поэтому подключить новые агрегаты по требованию возможно только если заложен резерв. По этой же причине невозможно отключить в конфигурации временно выведенное из работы оборудование не остановив половину технологии.

Большое кол-во недоступных по сети устройств заполняют весь буфер сообщениями, вытесняя записи о других событиях, что усложняет оперативную диагностику. Размер буфера ПЛК 120 записей.

Для решения проблемы была разработана программа ПЛК «DBUF_READ» (FB111), копирующая отфильтрованные события из диагностического буфера в таблицу в памяти (DB блок).

Программа «DBUF_READ» протестирована на стендовом ПЛК, ошибок не выявлено. 02.08.2021 программа запущена на рабочем ПЛК 992CS100, с вызовом из организационного блока ОВ1, выполняемого циклически. За сутки работы в отфильтрованную таблицу не было занесено ни одной записи. Но так как ПЛК несёт большое кол-во периферии, то за этот период должны случиться какие либо события, из чего сделан вывод, что в буфер обмена попадают сообщения только об отсутствующих PROFIBUS устройствами, а остальным не хватает в нём места. Тогда была выдвинута идея, что если вызывать программу сразу после возникновения событий, то их еще не успеют затереть сообщения о выключенном оборудовании. Для обработки аварий в ПЛК SIEMENS S7-400 предусмотрены ОВ80-89 запускаемые после обнаружения неисправностей. Вызов программы решено было добавить в данные блоки. Вызовы из ОВ80-89 тестировались на стендовом ПЛК, аварийных остановок не случилось. При добавлении вызова в ОВ85 рабочего ПЛК 992CS100, после прогрузки в 15:29:55, произошёл немедленный останов контроллера. Так как действия приведшие к этому были ясны, вызов программы из всех ОВ удалён, ПЛК запущен через Warm Restart.

ПРИЧИНЫ ОСТАНОВА

Анализ показал, что останов произошёл из-за переполнения local stack (L) памяти. Данная память используется для временных переменных ОВ, FB, FC (описанные в разделе «TEMP» блока) и для внутренних нужд вызываемых блоков. Для ОВ1, из которого вызывается большая часть программ, размер данной памяти 1 килобайт, для ОВ обработчиков аварий (ОВ80-89) 250 байт (смотрите рисунок 3 в приложении). Программа «DBUF_READ», для сохранения 30 записей из диагностического буфера, использует массив размером 600 байт (30 записей по 20 байт каждая), +130 байт для прочих нужд, итого 730байт. Пока FB111 вызывался из ОВ1, его 1024 байт L памяти было достаточно, но как только вызов программы был добавлен в ОВ85 с 250 байтами L памяти, произошла ошибка её переполнения (смотрите рисунок 2 приложения). На стендовом ПЛК данная проблема не была обнаружена так как ОВ 80-89 вызываются по прерыванию на аварии, которые за время отладки не случились. ОВ85 в рабочем ПЛК запускается как реакция на отсутствующие в сети устройства.

ВЫВОД

Для избежания данной ситуации:

- при обработке заметных объёмов данных использовать только память DB;
- более тщательно тестировать код перед внедрением в рабочий ПЛК.

СООБЩЕНИЯ В ДИАГНОСТИЧЕСКОМ БУФЕРЕ НЕТ ПОДКЛЮЧЕНИЯ К УСТРОЙСТВАМ ПО СЕТИ PROFIBUS

Рисунок 1: Нет подключения к устройствам по сети PROFIBUS. Π EPE Π O Π HEH Π E Π AM Π HUE Π AM Π M

Рисунок 2: Переполнение памяти Local Stack (снимок с тестового ПЛК).

КОНФИГУРАЦИЯ ПЛК, ВЫДЕЛЕНИЕ L ПАМЯТИ ОВ

Рисунок 3: Конфигурация ПЛК, выделение L памяти ОВ.

РАСПРЕДЕЛЕНИЕ LOCAL STACK ПАМЯТИ

Рисунок 4: Распределение Local Stack памяти.

```
2
     Программа DBUF_READ
 3
 4
     FUNCTION_BLOCK FB 111
 5
     TITLE =Read Diagnostic Buffer CPU and Save Events to Table
 6
     //FB читает события из Diagnostic Buffer, исключает не нужные записи и сохраняет
 7
     //в таблицу EVENS DB FB
 8
     //Семёнов А. А.
 9
    AUTHOR : ART
10
    VERSION: 0.1
11
12
13
14
       EVENTS : ARRAY [0 .. 30 ] OF //Таблица с очищенными сообщениями из Diag Buffer
15
       STRUCT
16
        ID : WORD ;
17
        Priority : BYTE ;
        OB Number : BYTE ;
18
        BlockType : BYTE ;
19
        MemArea : BYTE ;
20
21
        SourceOfError : INT ;
22
        BlockNo : INT ;
23
        ErrorAddr : WORD ;
24
        TimeStamp : DATE_AND_TIME ;
25
       END_STRUCT ;
26
       CURSOR : INT ; //Позиция курсора по таблице EVENTS
27
     END VAR
     VAR TEMP
28
29
       1 evnts : ARRAY [0 .. 30 ] OF //Таблица с EVENTами из DIAG BUFFER
30
       STRUCT
        ID : WORD ;
31
32
        Priority : BYTE ;
33
        OB_Number : BYTE ;
        BlockType : BYTE ;
34
35
        MemArea : BYTE ;
36
        SourceOfError : INT ;
37
        BlockNo : INT ;
38
        ErrorAddr : WORD ;
39
        TimeStamp : DATE_AND_TIME ;
40
       END_STRUCT ;
41
       1 evnt : STRUCT
                        //Просматриваемое на исключения событие
42
        ID : WORD ;
43
        Priority : BYTE ;
        OB_Number : BYTE ;
44
45
        BlockType : BYTE ;
        MemArea : BYTE ;
46
47
        SourceOfError : INT ;
48
        BlockNo : INT ;
49
        ErrorAddr : WORD ;
50
        TimeStamp : DATE_AND_TIME ;
       END_STRUCT ;
51
52
       szl_header : STRUCT
53
       LENGTHDR : WORD ;
54
        N DR : WORD ;
55
       END STRUCT ;
       sf51_ret_val : INT ; //+++ SFC51 - Simatic system Function Return Value >< 0 -> Error
56
57
       sfc20_ret_val : INT ;
58
       db_nr : INT ; //Вычисленный номер DB FB
59
       loop_cnt : INT ; //Счётчик итераций цикла
       l_cursor : INT ; //Позиция для записи в таблице с EVENTами EVENT_SIZE : INT ; //Размер в байтах записи события в таблице
60
61
       DBUF_EVENTS_MAX_NUM : INT ; //Макс кол-во элементов прочитахных из Diag Buffer
62
63
       EVENTS_TBL_SIZE : INT ; //Размер таблицы с очищенными EVENТами
64
       EXCEPT_EVNTS : ARRAY [0 .. 4 ] OF //Hex ID EVENTOB ИСКЛЮЧАЕМЫХ ИЗ ТАБЛИЦЫ
65
       WORD;
66
       t_src_any : ANY ; //Указатель на EVNT в грязной таблице
67
       t dst any : ANY ; //Указатель на EVNT в чистой таблице
       1 addr : DWORD ;
68
       temp0 : WORD ;
69
```

```
70
        temp1 : WORD ;
 71
        AON : BOOL ;
        AOFF : BOOL ;
 72
        sfc51_busy : BOOL ;
 73
 74
      END VAR
 75
      BEGIN
 76
      NETWORK
      TITLE =
 77
 78
      //
 79
      //
 80
      //
 81
      //
 82
      //
 83
      //
 84
 85
 86
      NETWORK
 87
      TITLE =Инициализация констант
 88
            Размер записи 1го EVENTa в таблице в байтах
 89
 90
            Τ
                   #EVENT_SIZE;
 91
 92
      //-- Максимальное кол-во EVENToв прочитанных из Diag Buffer
 93
            L
 94
            Τ
                   #DBUF_EVENTS_MAX_NUM;
 95
 96
            Размер таблицы с сохранёнными EVENTами
 97
            L
            Т
                   #EVENTS_TBL_SIZE;
 98
 99
            Перечень Event Id исключаемых из таблицы
100
      //--
101
            L
                   W#16#39B1;
                   #EXCEPT EVNTS[0];
            Т
102
103
            L
                   W#16#39B2;
104
            Т
                   #EXCEPT_EVNTS[1];
105
            L
                   W#16#0;
106
            Т
                   #EXCEPT_EVNTS[2];
107
            L
                   W#16#0;
            Т
108
                   #EXCEPT_EVNTS[3];
109
            L
                   W#16#0;
110
                   #EXCEPT_EVNTS[4];
111
     NETWORK
112
113
     TITLE =
114
                   #AON;
115
            0
116
            ON
                   #AON;
117
            =
                        699.0;
                   L
                        699.0;
118
            Α
                   L
119
            BLD
                   102;
                   #AON;
120
            =
                       699.0;
121
            AN
                   L
122
            =
                   #AOFF;
123
     NETWORK
124
      TITLE =Чтение Diagnostic Buffer CPU
      //EVENTы из DIAG Buffer сохраняются в локальный массив #t_evnts
125
126
                   #AON;
            Α
127
            =
                   L
                        699.0;
            BLD
128
                   103;
            CALL SFC
129
                        51 (
130
                  REQ
                                            := L
                                                     699.0,
131
                  SZL ID
                                            := W#16#1A0,
132
                  INDEX
                                            := W#16#14,
133
                  RET_VAL
                                            := #sf51_ret_val,
134
                  BUSY
                                            := #sfc51_busy,
135
                  SZL_HEADER
                                            := #szl_header,
136
                  DR
                                            := #1 evnts);
137
                   0;
138
      NETWORK
```

```
139
      TITLE =
140
141
            Α(
                  #szl_header.LENGTHDR;
142
            L
            Т
143
                  #temp0;
144
            SET
145
            SAVE
146
            CLR
147
            Α
                  BR;
148
            )
            JNB
149
                  _001;
150
            L
                  #szl_header.N_DR;
151
            Τ
                  #temp1;
152
      001: NOP
     NETWORK
153
154
     TITLE =Открытие DB FB
155
                  DINO; // Homep DB FB
156
            Т
157
                  #db_nr;
158
            OPN
                  DB [#db_nr];
159
160
            L
                  #CURSOR;
161
            Т
                  #l_cursor;
162
      NETWORK
163
     TITLE =Создание указателей на таблицы
164
      // Собираем указатели на таблицы l_evnts и EVNTS_CLR
165
            LAR1 P##t_src_any;
            LAR2 P##t_dst_any;
166
                  B#16#10;
167
            Т
                  B [AR1,P#0.0];
168
            Т
                  B [AR2, P#0.0];
169
                  B#16#2; // Type BYTE
170
            L
            Τ
                  B [AR1, P#1.0];
171
172
            Т
                  B [AR2,P#1.0];
173
            L
                  #EVENTS_TBL_SIZE; //Event Len 20 Byte
174
            Т
                  W [AR1,P#2.0];
            Т
                  W [AR2,P#2.0];
175
            L
176
                  #db_nr;
            Т
                  W [AR1,P#4.0];
177
           Т
178
                  W [AR2,P#4.0];
179
     //
           L
180
            SLD
      //
                  3
181
                  P##1_evnts;
            L
182
            Т
                  D [AR1,P#6.0];
183
      //
            L
                  B#16#84
                                                //mem DB
                                                             L
                                                                     B#16#84
184
      //
            L
                  B#16#87
185
      //
            Т
                  B [AR1,P#6.0]
186
      //--
187
      //
            L
                  0
188
            SLD
                  3
189
190
            L
                  P##EVENTS;
191
            Τ
                  D [AR2,P#6.0];
192
      //
            L
                  B#16#84
                                                //mem DB
193
                  B [AR2,P#6.0]
      //
            Τ
194
195
196
      NETWORK
197
      TITLE =
      //Прочитанные из Diag Buffer EVENTы в цикле LOOP просматриваются в массиве
198
199
      //t evnts и если запись не содержит исключения, то копируется в таблицу
200
      //EVENTS
      //на позицию указанную курсором l_{cursor}, после чего курсор смещается на +1
201
202
      //запись.
203
      // Инициализация цикла на 20 элементов
204
            L
                  #DBUF_EVENTS_MAX_NUM;
205
      nxt: T
                  #loop_cnt;
206
207
      //-- Вычисление адреса EVENTA в таблице
```

```
208
                  #DBUF EVENTS MAX NUM;
209
           L
                  #loop_cnt;
210
           - I
                  #EVENT_SIZE; // Размер EVENTA 20 byte
            L
211
           *I
212
           SLD
213
                  3;
214
           Τ
                  D [AR1,P#6.0];
215
           L
                  B#16#87; // Тип памяти (h84 - DB; h87 - LD)
216
           Т
                  B [AR1,P#6.0];
217
218
219
     //-- Копируем событие в Т память для анализа
220
           CALL SFC
                     20 (
                                         := #t_src_any,
221
                 SRCBLK
222
                 RET VAL
                                          := #sfc20_ret_val,
223
                 DSTBLK
                                          := #1 evnt);
224
225
     //-- Проверяем на исключения
            0(
226
                  #1 evnt.ID;
227
            L
228
            L
                  #EXCEPT_EVNTS[0];
229
            ==I
230
            )
           0(
231
232
            L
                  #l_evnt.ID;
233
           L
                  #EXCEPT_EVNTS[1];
234
           ==I
235
           )
           0(
236
237
                  #l_evnt.ID;
           L
                 #EXCEPT_EVNTS[2];
238
           L
239
           ==T
240
           0(
241
242
           L
                  #l_evnt.ID;
243
           L
                 #EXCEPT_EVNTS[3];
244
           ==I
245
            )
           0(
246
247
           L
                  #l_evnt.ID;
248
           L
                  #EXCEPT_EVNTS[4];
249
           ==I
                  ;
250
            )
                  ;
251
252
           JCB
                  IADD;
253
254
     //-- Вычисление адреса позиции в таблице EVENTS
255
                  #1 cursor;
            L
256
            L
                  #EVENT_SIZE; //Размер EVENTa в байтах
257
            *I
                  0; // Таблица EVNEES начинается с 0 байта в DB
258
           L
259
           +I
260
           SLD
                  3;
261
            Τ
                  D [AR2,P#6.0];
                  B#16#84; // Тип памяти (h84 - DB; h87 - LD)
262
           L
263
           Т
                  B [AR2,P#6.0];
264
     //-- Копирование EVENT'a
265
           CALL SFC 20 (
266
                 SRCBLK
267
                                         := #t src any,
                 RET VAL
268
                                          := #sfc20 ret val,
269
                 DSTBLK
                                          := #t dst any);
270
271
     //-- Смещение курсора на +1
           L #l_cursor;
272
273
            L
                  1;
274
            +I
275
            Τ
                  #1_cursor;
276
```

```
//-- Если позиция курсора > 20 то сбрасываем его в 0
278
            L
                  #1_cursor;
279
            L
                  #EVENTS_TBL_SIZE;
280
           >I
281
           JNB
                  IADD;
282
            L
                  0;
            Т
283
                  #1_cursor;
284
285
286
     IADD: NOP
                  0;
287
                  #loop_cnt;
288
           L
           LOOP nxt;
289
290
           NOP
                  0;
291
292
     NETWORK
293
      TITLE =Сохранение позиции курсора в DB
            L
                  Р##CURSOR; //Указатель на курсор в DB
294
            Т
295
                  #l_addr;
                  #1_cursor;
296
            L
            Т
                  DBW [#1_addr];
297
      END_FUNCTION_BLOCK
298
299
300
```