# 第三章一阶理论

#### 吉建民

USTC jianmin@ustc.edu.cn

2021年5月11日

#### **Used Materials**

Disclaimer: 本课件采用了陈小平老师讲义内容和汪芳庭《数理逻辑》教材中内容。

#### Table of Contents

引言: 自然数的定义

带等词的谓词演算  $K^+$ 

形式算术

# 1. Peano Postulates (1889)

- 1. 0 是自然数;
- 2. 对任何自然数 x,存在唯一的自然数 x,称为 x 的后继;
- 3. 0 不是任何自然数 x 的后继;
- 4. 任何两个不同的自然数的后继也不同;
- 5. 任何集合,若它包含 0 和它的每一个元素的后继,则它包含 所有自然数。

# 2. Gottlob Frege (1884)

- 1. 0 是不等于自身的事物的集合;
- 2. 1 是仅由 0 组成的集合;
- 3. 2 是仅由 0 和 1 组成的集合;
- 4. ...

# 3. Von Neumann 表述 (1922, 19 岁)

- 1.  $0 =_{df} \{ \}$ , the empty set;
- 2.  $x' =_{df} x \cup \{x\}$ .

It follows that each natural number is equal to the set of all natural numbers less than it:

$$0 = \{ \},\$$

$$1 = 0 \cup \{0\} = \{0\} = \{ \{ \} \},\$$

$$2 = 1 \cup \{1\} = \{0, 1\} = \{ \{ \}, \{ \{ \} \} \},\$$

$$3 = 2 \cup \{2\} = \{0, 1, 2\} = \{ \{ \}, \{ \{ \} \}, \{ \{ \} \} \} \},\$$

$$n = n - 1 \cup \{n - 1\} = \{0, 1, \dots, n - 1\}$$

### 4. Peano 公设的形式化

- ▶ 引入一阶公式集 Γ<sub>N</sub>,表示 Peano 公设,为此取 K(Y),包含 个体常元 0,一元函数符号 ¹,一元谓词符号 N。
- ▶ Γ<sub>N</sub> 的每一个模型中, 0, ′, N 必须分别解释为自然数 0, 后继函数 (+1) 和 "是自然数"
  - (P1) N(0)
  - (P2)  $\forall x (N(x) \rightarrow \exists! y (y = x' \land N(y)))$
  - (P3)  $\forall x \neg (0 = x')$
  - (P4)  $\forall x \forall y (x' = y' \rightarrow x = y)$
  - (P5)  $P(0) \wedge \forall x (P(x) \rightarrow P(x')) \rightarrow \forall x P(x)$  P 是任何谓词符号

#### 对所有谓词符号 Q:

$$\exists! x \, Q(x) =_{df} \exists x \, (Q(x) \land \forall y \, (Q(y) \leftrightarrow (y=x)))$$

其中 y 不在 Q(x) 中出现。



# 思考

- ▶ 思考题 3-1: (P5) 是怎样表达了 Peano 第五公设的?
- ▶ 上述 "=" 是什么?
  - ▶ x = y 指 x 与 y 代表同一语法对象(符号,项,公式,同一 个表达式)
  - ▶ 所有 "=" 改写为 "≈", 称为 "等词符号", x≈y表示
     I(x) = I(y)

#### 注:

- ▶ K 表示一阶逻辑的形式推理系统(一阶谓词演算)
- ▶ K(Y) 表示 K 的全体公式的集合,其中  $Y = \{x_1, \ldots, x_n, \ldots\}$  为个体变元的集合

#### Table of Contents

引言: 自然数的定义

带等词的谓词演算 K+

形式算术

# **K**<sup>+</sup> 定义

- ▶  $K^+$  的语言比 K(Y) 多一个二元谓词符号  $\approx$  , 视为非逻辑符号 ,  $\approx$  称为  $K^+$  的常谓词符号
- ▶ K<sup>+</sup> 的推理设施增加下列等词公设:
  - (E1)  $u \approx u$
  - (E2)  $u_k \approx u \rightarrow f_i^n(u_1, \dots, u_k, \dots, u_n) \approx f_i^n(u_1, \dots, u, \dots, u_n)$
  - (E3)  $u_k \approx u \rightarrow (P_i^n(u_1, \ldots, u_k, \ldots, u_n) \rightarrow P_i^n(u_1, \ldots, u, \ldots, u_n))$

注:在汪芳庭《数理逻辑》书中,以上三种形式的公式叫做等词公理,所有等词公理组成的集记为 *E*。

# 例子 1

#### 等词公设并不是有效式。

- ▶ 令  $K^+(Y)$  不含函数和个体常元,谓词只有  $\approx$ ,考虑  $\mathcal{M} = (\mathbb{N}, \emptyset, \mathbb{P})$ ,使  $\approx^{\mathcal{M}}$  是 >
- M ⊭ u ≈ u
- ▶ 对所有 K 公理 p, 有 M |= p

### 定理 1

#### 定理

任给一阶结构  $\mathcal{M}=(\mathbb{D},\mathbb{F},\mathbb{P})$ ,若  $\approx^{\mathcal{M}}$  为  $\mathbb{D}$  上的相等,则所有等词公设是  $\mathcal{M}$  有效的。

#### 证明.

设  $\mathcal{M}$  使  $\approx^{\mathcal{M}}$  为  $\mathbb{D}$  上相等,考虑 (E1)。 对任何  $I=(\mathcal{M},V)$  和项 u,存在  $d\in\mathbb{D}$ ,使 I(u)=d。 于是

$$I(u \approx u) = t$$
 iff  $(I(u), I(u)) \in \approx^{\mathcal{M}}$  iff  $(d, d) \in \approx^{\mathcal{M}}$ .

故显然  $I(u \approx u) = t$ , 由 I 的任意性, 得  $\mathcal{M} \models u \approx u$ . 习题 3-1: (E2) 和 (E3) 的证明。

# 思考

▶ 在  $K^+$  的模型中,  $\approx^{\mathcal{M}}$  是否一定是  $\mathbb D$  上相等?

# 例子 2

- ▶ 取  $K^+(Y)$  同例子 1,考虑  $\mathcal{M}'$  使  $\approx^{\mathcal{M}'}$  为  $\mathbb{N}$  上 "有相同奇偶性"
- ▶ 易证, M' 是 K<sup>+</sup> 的一个模型
- ▶ (E1) 和 (E2) 是 M' 有效的
- ▶ 考虑 (E3), 它在 K<sup>+</sup>(Y) 表现形式为:

$$u_k \approx u \rightarrow (u_1 \approx u_k \rightarrow u_1 \approx u)$$

#### 或者

$$u_k \approx u \rightarrow (u_k \approx u_n \rightarrow u \approx u_n)$$

可以验证: 对一切  $I = (\mathcal{M}', V)$ , 上述两种公式是真的

# 思考

- ▶ 思考题 3-2:
  - ► L 是否强迫 "→" 解释为实质蕴含?
  - ► K<sup>+</sup> 模型将 "≈" 规定到什么程度?

# 定理(≈等价性)

#### 定理 (≈ 等价性)

若  $\mathcal{M}$  是一个  $K^+$  模型,则  $\approx^{\mathcal{M}}$  是  $\mathbb{D}$  上等价关系。

### 证明.

只需证明在语法中有下列的  $K^+$  的定理:

- 1.  $\vdash_{K^+} t \approx t$
- 2.  $\vdash_{K^+} t \approx u \rightarrow u \approx t$
- 3.  $\vdash_{K^+} t \approx u \rightarrow (u \approx v \rightarrow t \approx u)$

证 1, 由于 (E1), 显然成立

# 定理(≈等价性)con't

证明.

. . .

证 2, 不涉及 (UG), 因此只需证  $\{t \approx u\} \vdash_{K^+} u \approx t$ .

- (1)  $t \approx u \rightarrow (t \approx t \rightarrow u \approx t)$ 
  - ≈ t) (E3) 前提

(2)  $t \approx u$ (3)  $t \approx t \rightarrow u \approx t$ 

MP(1)(2)

(4)  $t \approx t$ 

(E1)

(5)  $u \approx t$ 

MP(1)(2)

证 3, 利用上述结果

(6)  $t \approx u \rightarrow u \approx t$ 

- 演绎定理 (2)(5)
- (7)  $u \approx t \rightarrow (u \approx v \rightarrow t \approx v)$
- (E3)
- (8)  $t \approx u \rightarrow (u \approx v \rightarrow t \approx v)$  HS(6)(7)

# 定理(等项可替换性)

### 定理 (等项可替换性)

- 1.  $\vdash_{K^+} u \approx v \rightarrow t(u) \approx t(v)$ , 其中项 u 是项 t(u) 的一个子项, 项 t(v) 是在 t(u) 中将 u 的某些出现替换为 v 的结果
- 2.  $\vdash_{K^+} u \approx v \rightarrow (p(u) \rightarrow p(v))$ , 其中 p(x) 是任意公式, u, v 对 p(x) 中 x 自由

等词公设刻画了"相等"的最重要的性质

# 正规模型

#### 定义(正规模型)

设  $\Gamma \subseteq K^+(Y)$ ,  $\mathcal{M} = (\mathbb{D}, \mathbb{F}, \mathbb{P})$  是  $\Gamma$  的  $K^+$  模型。若  $\approx^{\mathcal{M}}$  为  $\mathbb{D}$  上相等,则称  $\mathcal{M}$  为  $\Gamma$  的正规  $K^+$  模型。

### 定理:正规模型存在性

### 定理 (正规模型存在性)

若  $\Gamma$  有  $K^+$  模型,则  $\Gamma$  一定有正规  $K^+$  模型。

### 证明.

(思路) 设  $\mathcal{M} = (\mathbb{D}, \mathbb{F}, \mathbb{P})$  是  $\Gamma$  的一个  $K^+$  模型。 考虑  $\mathcal{M}$  关于  $\approx$  的商结构  $\mathcal{M}^{\approx} = (\mathbb{D}^{\approx}, \mathbb{F}^{\approx}, \mathbb{P}^{\approx})$ ,其中  $\mathbb{D}^{\approx}$  是由  $\mathbb{D}$  中关于  $\approx^{\mathcal{M}}$  的等价类为个体形成的集合(论域)

$$\mathbb{D}^{\approx} =_{df} \{ [x] \mid x \in \mathbb{D} \}$$

 $\mathbb D$  中等价/不等价的元素映射为  $\mathbb D^pprox$  中相等/不想等的元素。  $\mathbb F$  中所有函数的定义域和值域也相应地从  $\mathbb D$  改为  $\mathbb D^pprox$  ,于是变换

为  $\mathbb{D}^{\approx}$  上的函数。

 $\mathbb{P}$  中所有关系的定义域从  $\mathbb{D}^n$  变换为  $(\mathbb{D}^{\approx})^n$  由此得到一个一阶结构  $\mathcal{M}^{\approx}=(\mathbb{D}^{\approx},\mathbb{F}^{\approx},\mathbb{P}^{\approx})$ 。

### 定理: 正规模型存在性 con't

#### 证明.

证明  $\mathcal{M}^{pprox}$  是  $\Gamma$  的一个  $\mathcal{K}^{+}$  模型,从而得到  $\Gamma$  的一个正规  $\mathcal{K}^{+}$  模 型。

 $(u^{\mathcal{M}}) \approx^{\mathcal{M}} (v^{\mathcal{M}})$  在  $\mathcal{M}$  中成立  $\Rightarrow u^{\mathcal{M}}$  与  $v^{\mathcal{M}}$  等价  $\Rightarrow u^{\mathcal{M}^{\approx}}$  与 v<sup>M≈</sup> 相等。

验证对所有  $p \in \Gamma$  和等词公设,有  $\mathcal{M}^{\approx} \models p$ 。 所以  $\mathcal{M}^{\approx}$  是一个正规模型。

习题 3-2: 对任意  $p \in \Gamma$ , 有  $\mathcal{M} \models p$ , 证明  $\mathcal{M} \models p \Rightarrow \mathcal{M}^{\approx} \models p$ .

# 定理

#### 定理

设  $E^*$  为 E 的任何相容扩充(使  $E \subseteq E^*$  且  $E^*$  相容),则  $E^*$  有非正规模型。

习题 3-3: P. 138 练习 1.

1. 设项 t, u 都对公式  $p(x_i)$  中  $x_i$  自由,且不含  $x_i$ 。求证

$$E \cup \{\exists! x_i p(x_i), p(t)\} \vdash p(u) \rightarrow u \approx t,$$

#### 这里规定

$$\exists! x_i \, p(x_i) = \exists x_i \, (p(x_i) \land \forall x_j \, (p(x_j) \to x_i \approx x_j)),$$

其中  $x_i$  不在  $p(x_i)$  中出现。

#### Table of Contents

引言: 自然数的定义

带等词的谓词演算  $K^+$ 

形式算术