Best Buy Project Week:

Sales Forecast for Slow-selling SKUs

Team: Random Sampler

Ashish Dhiman, Anshit Verma, Yibei Hu

Executive Summury

Objective

7-day sales forecast for 539 slow-moving items based on their 4 year performance and other exogenous factors.

Modelling

Result

RMSE: 2.21

Run Time: ~ 4H

Exploratary Data Analysis: Patterns & Classifications

Bucket 3: high var & high mean

Bucket 1 Individuals

Bucket 1 Aggregate

Summary

Bucket 2 Individuals

Bucket 2 Aggregate

Bucket 3 Individuals

Bucket 3 Aggregate

Benchmark: The Null Model

Null Good

Construction:

Naively predicting with last training day's value.

RMSE:

5.29

Null Bad

Performance:

Good in low volatility SKUs

Summary EDA Benchmark Model Results Business Impact

Modeling Approach: Overview of the Ensemble Approach

Model

Results

Business Impact

Model 1: Basic Models (Holt-Winters & Prophet)

Holt-Winter Good

Holt-Winters Bad

Bucket Size:

311 SKUs

RMSE:

4.83

Runtime:

~2.7s / SKUs

9.6% improvement over null model

Summary EDA Benchmark Model Results Business Impact

Model 2 expands on the philosophy of Prophet by applying STL decompostion to SKUs and using models to indviduall predict those. Holiday variables created from prophet also feed in as exogeneous variables.

Model 2: ML Models over STL/MSTL decomposition (2/2)

Actual/Predicted sales of sku:469 from 2022-05-01 to 2022-08-07 700 actual predicted Prediction week 600 500 400 300 200 100 SALES DATE

Actual/Predicted sales of sku:469 from 2022-05-01 to 2022-08-07

700 - actual predicted
Prediction week

500 - 400 - 200

SALES_DATE

Bucket Size:

80 SKUs

RMSE:

100

3.23

39% improvement over null model

Runtime:

~70s / SKUs

* Includes Prophet, Training + Scoring

Summary Benchmark Model Results Business Impact

Model 3: Probabilistic Models | HMM (1/2)

Specific SKUs are modelled as Hidden Markov Chain, with observed variables constructed out of lagged daily units. Forecasting is implemented as a search through probable observation variables to find the most probable observation vector.

Summary Benchmark Model Results Business Impact

Model 3: Probabilistic Models | HMM (2/2)

HMM Good

Bucket Size:

109 SKUs

RMSE:

2.21

58.23% improvement over null model

HMM Bad

~80s / SKUs

Training + Scoring

Summary Benchmark Model Results Business Impact

Aggregated Result

RMSE

2.21

58.23% improvement over null model. 9.6% -Prophet / Holt-Winters 29.4% - STL/MSTL 28.8% - HMM

Run Time

~4H

Training + Scoring

RMSE Dist. for single SKUs

The 90% percentile of single SKU RSME is 2.93. The RMSE is right skewed, which distorted the prediction

Result

Business Impact and Future Outlook

Retter prediction would reduce the cost for inventary storage and purchase. Improve inventary turnover while lower storage cost.

Distribution

More accurate in time needs prediction would lead to better supply chain decisions that increase batch delivery and lower deliver cost.

Delivery

More precise prediction would assist customer to make in-time purchase, which would improve longterm customer loyalty.

Business Impact

Results

RS Thank You!

Ashish Dhiman: https://www.linkedin.com/in/ashish1610dhiman/

Anshit Verma: https://www.linkedin.com/in/anshitverma/

Yibei Hu: https://www.linkedin.com/in/olivia-hu9908/

rmse du null	205	2					
rmse_du_prophet	68		null	205	2	410	
rmse_du_STL	65		stl/mstl/prophet	150	70	10500	
rmse_du_15	39		hmm	39	75	2925	
rmse_du_60	30					13835	3.84305556
rmse_du_90	29						
rmse_du_max	29						
rmse_du_30	27						
rmse_du_45	23						
rmse_du_MSTL	15						
rmse du holt	9						

Appendix 2: Class/ model mapping

Appendix 3: Each Model's effect in average RMSE reduction(Train data)

