Implémentez un modèle de scoring

Data & Analytics Eric Blanvillain - 07-03-2022

Introduction - Problématique

Mission:

- Développer un modèle de scoring de la probabilité de défaut de remboursement du client
- Développer un dashboard interactif

Objectifs:

- Aider à la décision d'accorder ou non un prêt à un client potentiel
- Expliquer de façon la plus transparente possible les décisions d'octroi de crédit
- Permettre aux clients de disposer des informations les plus pertinentes

EDA

Analyse de la donnée initiale

CONSTRUCTION DU MODÈLE

Méthodologie D'entraînement du modèle Performance du modèle

NOTE MÉTHODOLOGIQUE

Rédaction de la note méthodologique du modèle

DASHBOARD

Réalisation du dashboard Sauvegarde sur un dépôt GitHub

DÉPLOIEMENT

Déploiement du modèle via share.streamlit.io https://share.streamlit.io /dashboard.py

Introduction - Compétition Kaggle

Introduction - Présentation de la donnée

7 jeux de données 218 variables 307 511 clients

Introduction - Structure du projet

PART I

EXPLORATION ET ANALYSE INITIALE

Exploration initiale : variable cible (TARGET)

Donnée binaire (0 et 1)

Défaillants: 1

Non défaillants : 0

Déséquilibre des données de part la distribution de la variable TARGET

Défaillants : 8,07%, classe minoritaire

Non défaillants : 91,9%, classe majoritaire

- -> Nous ne pouvons pas fournir les données telles quelles à nos algorithmes, qui peuvent être sensibles au déséquilibre des données
- -> Nous devons utiliser des mesures telles que le score ROC-AUC, la perte de log, le score F1, la matrice de confusion pour une meilleure évaluation du modèle

Exploration initiale: process pour chaque dataset

*cf annexes: Erreurs, Valeurs manquantes, Imputation

FEATURE ENGINEERING MERGING, FEATURE SELECTION

PART II

Step 1 : Feature Engineering (1/...)

VARIABLES QUANTITATIVES

AUTOMATIQUE

Création de variables statistiques

['count', 'min', 'max', 'mean', 'var']

EXT_SOURCE_...

EXT_SOURCE_1 EXT_SOURCE_2 EXT_SOURCE_3

DAYS_-...

DAYS_BIRTH
DAYS_LAST_PHONE_CHANGE
DAYS_EMPLOYED
DAYS_ID_PUBLISH

AMT_...

AMT_GOOD_PRICE

FLOORMAX_...

FLOORSMAX_AVG FLOORSMAX_MEDI

Données extérieures

sources moy, min, max, var sources somme , somme pondérée

Temps écoulé depuis...

diff âge - temps travaillé ratio temps travaillé / âge

Crédit

ratio crédit / revenu ratio revenu / annuité / âge ratio crédit / annuité ratio crédit / annuité / âge crédit > demande ? crédit > GoodPrice

Renseignements domicile

domicile somme (moy, med, mode)

Famille

nombre d'adultes dans la famille ratio revenu / nbre enfants revenu par tête

Step 1 : Feature Engineering (2/...)

VARIABLES QUALITATIVES

MANUEL

REG_... / LIV_...

REG_CITY_NOT_WORK_CITY REG_CITY_NOT_LIVE_CITY REG_CITY_NOT_WORK_CITY Lieu d'habitation Lieu de travail Ville Région

flag région (sum)

Création de variables « **métier** »

FLAG_DOC_... / FLAG_...

FLAG_DOCUMENT_3 FLAG_EMP_PHONE Doc demandés Contacts

flag documents (sum) flag contacts sum (phone, email, mobil)

Step 1 : Feature Engineering (3/...)

TARGET_ NEIGHBORS_ 500_MEAN

Variable qui contient la moyenne de la variable 'TARGET' des 500 voisins d'une ligne particulière. Les voisins sont calculés en utilisant les EXT_SOURCE et CREDIT_ANNUITY_RATIO.

Algorithme utilisé : **KNeighborsClassifier** de sklearn k (nombre de voisins) = 500

- Création de 2 dataframes : (à partir de train et test)
 neighbors_train (307 511, 4) / neighbors_test (48 744, 4)
 On récupère la cible 'TARGET' : train_target = train.TARGET
- On entraine le classificateur à l'aide de la méthode **fit()** knn.**fit**(neighbors_**train**, train_target)
- On récupère les **500 voisins** pour chaque ligne train_500_neighbors = knn.kneighbors(neighbors_train)[1] test_500_neighbors = knn.kneighbors(neighbors_test)[1]

On ajoute les moyennes de la cible des 500 voisins dans **une nouvelle colonne** : train['TARGET_NEIGHBORS_500_MEAN'] = [train['TARGET'].iloc[ele].mean()for ele in train_500_neighbors] test['TARGET_NEIGHBORS_500_MEAN'] = [train['TARGET'].iloc[ele].mean()for ele in test_500_neighbors]

Step 2 : Merging

Ordre d'assemblage des tables	Nombre de variables initial (par table)	Nombre de variables après FE
Application_train	122	209
bureau bureau_balance	17 3	51
previous_application	37	78
POS_CASH_balance	8	4
installments_payments	8	20
credit_card_balance	23	3
TOTAL	218	365

REMARQUES:

- 1. Une méthode de filtrage (corrélation de Pearson) est appliquée après FE à chaque table pour éliminer les **variables colinéaires**
- 2. application_test (48744 clients) : traité en parallèle pendant l'étude. contient les mêmes variables que le jeu utilisé pour l'entraînement du modèle. (Sauf variable cible) utilisé dans la partie dashboard pour simuler des nouveaux clients

train	(307511, 365)
test	(48744, 364)

FEATURE SÉLECTION

Step 3 : Feature Selection

Jeu de donnée après feature engineering

(307511, 365)

La feature selection est un processus de sélection d'un sousensemble de variables qui sont les plus pertinentes pour la modélisation et l'objectif commercial du problème*

	Boruta	BoostAroota	LightGBM
Nombre de variables sélectionnées :	151	162	257
Taille jeu de données	(307511, 151)	(307511, 162)	(307511, 257)

Jeu de donnée après feature engineering

(307511, 109)

Tables après FS	Taille	
train	(307511, 109)	
test	(48744, 108)	
1 ligne par client		

*cf annexes: Feature Selection

PART III MODÉLISATION

Step 1 : Resampling (SMOTE / Modèle)

SMOTE (Synthetic Minority Oversampling Technique) Consiste à synthétiser des éléments pour la classe minoritaire, à partir de ceux qui existent déjà en choisissant aléatoirement un point de la classe minoritaire et à calculer les k plus proches voisins de ce point.

Modèle : on peut indiquer à certains modèles le déséquilibre en réglant un hyperparamètre (exemple : « **class_weight = 'balanced'** » pour LightGBM).

*cf annexe : Resampling (SMOTE)

Step 2 : Model Selection avec Pycaret

Step 3 : Problématique métier, métrique et fonction de coût

Dans notre problème de classification binaire, le coût des faux positifs n'est pas le même que celui des faux négatifs.

Minimiser les pertes:

faux positifs : non défaillants prédits défaillants

-> l'organisme prêteur perd les intérêts que le prêt aurait générés.

faux négatifs : défaillants prédits non défaillants

-> l'organisme prêteur perd ainsi la somme prêtée.

Matrice de confusion		Classe prédite	
		Classe 0 : non- défaillant	Classe 1 : defaillant
Classe réelle	Classe 0 : non- défaillant	Vrais négatifs TN	Faux Positifs FP
	Classe 1 : defaillant	Faux Négatifs FN	Vrais Positifs

Un intérêt plus grand sera porté aux faux négatifs, encore plus coûteux que les faux positifs

CRÉATION D'UNE MÉTRIQUE ET D'UNE FONCTION COÛT

Choix arbitraire de pénalisation :

- Mauvais prêts : pénalisation de -10
- Bons prêts : gain de 1

Step 4 : Optimisation du meilleur modèle (1/2)

LightGBM, plus rapide, retenu. **Optimisation** : selon <u>2 métriques</u> et sur <u>2 jeux de données</u>

Métrique : **Score AUC** (aire sous la courbe). Plus le modèle est performant, plus l'aire sous la courbe est maximisé.

ROC CURVE

1.0

0.8

1.0

0.8

1.0

0.0

0.0

0.2

0.4

0.4

0.5

0.5

0.6

0.7

0.7

0.8

0.8

1.0

MÉTRIQUES

Métrique : « bancaire » créée par nous mêmes, permettant de pénaliser les erreurs les plus coûteuses et donc limiter les pertes.

Jeu de données
rééquilibré
avec SMOTE
(OVERSAMPLING)

JEUX DE DONNÉES

Jeu de données
non rééquilibré
Réglage LightGBM
: « class_weight =
'balanced' »

*cf annexe: Optimisation des paramètres du modèle LightGBM

Step 4 : Optimisation du meilleur modèle (2/2)

1. Rappel et précision

But dans le cas d'une classification de prêts bons ou mauvais il faut :

Maximiser le rappel au détriment de la précision (diminuer les faux négatifs pour augmenter le rappel)

2. Conclusion LightGBM

L"hyperparamètre class_weight = 'balanced' donne de meilleurs résultats. C'est la stratégie de rééquilibrage que nous choisirons.

Step 5 : Meilleur modèle et seuil de solvabilité (1/2)

faux négatifs : LightGBM « métrique bancaire » < LightGBM ROC_AUC -> perte de la somme prêtée

faux positifs: LightGBM « métrique bancaire » > LightGBM ROC_AUC -> perte des intérêts

Métrique bancaire utilisée pour fixer le seuil de solvabilité

Step 5 : Meilleur modèle et seuil de solvabilité (2/2)

Step 6 : Modèle optimisé et interprétabilité LGBMClassifier

	Défaut	Optimisé
n_estimators	100	10 000
learning_rate	0,1	0,05
objective	None	'binary'
class_weight	None	'balanced'
boosting_type	'gbdt'	'gbdt'
num_leaves	31	48
max_depth	-1	11
min_split_gain	0	0,1
min_child_weight	0,001	80
min_child_samples	20	18
subsample	1	0,73
colsample_bytree	1	0,67
reg_alpha	0	0,3
gamma	0	0,15

PART IV DASHBOARD

SIDEBAR

INFORMATIONS CLIENTS

âge, sexe, situation familiale, ancienneté, revenu

INFOS GRAPHIQUES

Infos graphiques et statistiques supplémentaires tirés de l'analyse exploratoires de données.

✓ PRET A DEPENSER "interactif dashboard"

Client ID
Please select a client ID
208550

APPLICATION PRINCIPALE

- 1- Sélection d'un client
- 2- Risque de défaut de paiement
- a) Réglage du seuil de solvabilité Seuil réglable de 0 à 1 (défaut : 0,41)
- b) Jauge de prédiction
- Score de prédiction de 0 à 100 associé à un qualificatif
- Comparaison avec le score des 20 plus proches voisins

SHAP

Deploiement du dashboard

Dépôt GitHub:

https://github.com/EricBlanvillain/P7_blanvillain_eric/tree/main/dashboard

En local:

cd dashboard streamlit run dashboard.py

A distance:

https://share.streamlit.io/ericblanvillain/p7_blanvillain_eric/main/dashboard/dashboard.py

CONCLUSION

Conclusions et axes d'améliorations

CONCLUSIONS

Notre étude portait sur un problème de classification binaire présentant un déséquilibre de classe.

Modèle final: LightGBM optimisé sur la métrique ROC_AUC.

Mise en place de stratégies pour optimiser le meilleur modèle et obtenir une performance maximale:

- 1. différentes solutions de rééquilibrage de classe testées et comparées
- 2. création de nouvelles variables facilement explicables (demande client)
- 3. création d'une métrique métier et fixation d'un seuil de solvabilité optimum.

AMÉLIORATIONS POSSIBLES

- 1. Optimisation plus fine des hyperparamètres du modèle
- 2. Modification de la métrique créée, avec l'aide d'un expert métier
- 3. Création de variables plus pertinentes avec l'expert

Bibliographie

- "Home Credit Default Risk." Kaggle (1st Place Solution Discussion). https://www.kaggle.com/c/home-credit-default-risk/discussion/64821
- Rao, Rishabh. "Home Credit Default Risk-an End to End ML Case Study-Part 1: Introduction and Eda." Medium. TheCyPhy, November 1, 2020. https://medium.com/thecyphy/home-credit-default-risk-part-1-3bfe3c7ddd7a
- Rao, Rishabh. "Home Credit Default Risk-an End to End ML Case Study-Part 2: Feature Engineering and Modelling." Medium. TheCyPhy, November 1, 2020. https://medium.com/thecyphy/home-credit-default-risk-part-2-84b58c1ab9d5
- Narkhede, Sarang. "Understanding AUC Roc Curve." Medium. Towards Data Science, June 15, 2021.
 https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
- Residentmario. "Automated Feature Selection with Boruta." Kaggle. Kaggle, April 20, 2018.
 https://www.kaggle.com/residentmario/automated-feature-selection-with-boruta
- Dansbecker. "Shap Values." Kaggle. Kaggle, November 9, 2021. https://www.kaggle.com/dansbecker/shap-values
- Charfaoui, Younes. "Hands-on with Feature Selection Techniques: Embedded Methods." Medium. Heartbeat, September 24, 2021. https://heartbeat.comet.ml/hands-on-with-feature-selection-techniques-embedded-methods-84747e814dab

Erreurs / Aberrations détectées

Alignement des 2 jeux de données

- feature CODE_GENDER has different values: {'XNA'}
- feature NAME_INCOME_TYPE has different values: {'Maternity leave'}
- feature NAME_FAMILY_STATUS has different values: {'Unknown'}

Variable 'CODE GENDER'

Le jeu d'entraînement contient seulement 4 valeurs nommés 'XNA' pour la colonne renseignant le genre

Variable 'NAME_INCOME_TYPE'

La colonne 'NAME_INCOME_TYPE' prend la valeur 'Maternity leave' uniquement pour le jeu d'entraînement , et pour seulement 5 emprunteurs

Variable 'NAME_FAMILY_STATUS' De la même manière, pour la colonne NAME_FAMILY_STATUS, il y a seulement deux fois la valeur Unknown et uniquement pour le jeu d'entraînement.

Correction des aberrations détectées lors de l'EDA

- # Suppression des aberrations détectées chez la variable "DAYS EMPLOYED"
- # Suppression des aberrations détectées chez les variables "OBS"

Valeurs manquantes

	Nombre de valeurs manquantes	% de valeurs manquantes
COMMONAREA_MEDI	214865	69.870000
COMMONAREA_MODE	214865	69.870000
COMMONAREA_AVG	214865	69.870000
NONLIVINGAPARTMENTS_MODE	213514	69.430000
NONLIVINGAPARTMENTS_MEDI	213514	69.430000
NONLIVINGAPARTMENTS_AVG	213514	69.430000
FONDKAPREMONT_MODE	210295	68.390000
LIVINGAPARTMENTS_MEDI	210199	68.350000
LIVINGAPARTMENTS_AVG	210199	68.350000
LIVINGAPARTMENTS_MODE	210199	68.350000
FLOORSMIN_MODE	208642	67.850000
FLOORSMIN_AVG	208642	67.850000
FLOORSMIN_MEDI	208642	67.850000
YEARS_BUILD_MEDI	204488	66.500000
YEARS_BUILD_MODE	204488	66.500000
YEARS_BUILD_AVG	204488	66.500000
OWN_CAR_AGE	202929	65.990000
LANDAREA_AVG	182590	59.380000
LANDAREA_MODE	182590	59.380000
LANDAREA_MEDI	182590	59.380000
BASEMENTAREA_MEDI	179943	58.520000
BASEMENTAREA_MODE	179943	58.520000
BASEMENTAREA_AVG	179943	58.520000
EXT_SOURCE_1	173378	56.380000
NONLIVINGAREA_MODE	169682	55.180000
NONLIVINGAREA_AVG	169682	55.180000
NONLIVINGAREA_MEDI	169682	55.180000
ELEVATORS_MODE	163891	53.300000
ELEVATORS_AVG	163891	53.300000
ELEVATORS_MEDI	163891	53.300000

Suppression des colonnes NAN > 60%

Variables supprimées :

['OWN_CAR_AGE', 'YEARS_BUILD_AVG', 'COMMONAREA_AVG', 'FLOORSMIN_AVG', 'LIVINGAPARTMENTS_AVG', 'NONLIVINGAPARTMENTS_AVG', 'YEARS_BUILD_MODE', 'COMMONAREA_MODE', 'FLOORSMIN_MODE', 'LIVINGAPARTMENTS_MODE', 'NONLIVINGAPARTMENTS_MODE', 'YEARS_BUILD_MEDI', 'COMMONAREA_MEDI', 'FLOORSMIN_MEDI', 'LIVINGAPARTMENTS_MEDI', 'NONLIVINGAPARTMENTS_MEDI', 'FONDKAPREMONT_MODE']

Imputation : trois façons de procéder

Imputation BASIQUE

Qualitative

Imputation avec une constante

(Imputation avec le mode)

2

Imputation BASIQUE +

Oualitative

Imputation avec une constante

(Imputation avec le mode)

Librairie verstack NaNImputer()

3

Imputation ADVANCED

Qualitative

Imputation avec XGBClassifier

Quantitative

Imputation avec la médiane

Duantitative

Imputation avec la médiane + EXT_SOURCE : XGBRegressor

Quantitative

Imputation avec XGBRegressor

Feature Selection

Méthodes de Feature Selection La feature selection est un processus de sélection d'un sousensemble de variables qui sont les plus pertinentes pour la modélisation et l'objectif commercial du problème

Boruta

BoostAroota

Heuristics:

Forward Selection

Backward Elimination

Recursive Feature Elimination

Methodical:

Best First Search

DFS

Stochastic:

Random Hill

Climbing

Simulated Annealing

LightGBM

Lasso Regression

Ridge Regression

Elastic Nets

Decision Trees

RF

Resempling (SMOTE)

1 Defaillants0 Non défaillants

Initial

Échantillon: 500

1 0.10 0 0.90

SMOTE

Échantillon: 500

1 0.45 0 0.55

Optimisation bayésienne du modèle LightGBM

+ Trace gardée des résultats d'évaluation passés pour former un modèle probabiliste

L'optimisation bayésienne construit un modèle de probabilité de la fonction objectif afin de **proposer des choix plus intelligents pour le prochain ensemble d'hyperparamètres à évaluer**. Au fur et à mesure que le nombre d'observations augmente, la distribution postérieure s'améliore et l'algorithme devient plus sûr des régions de l'espace des paramètres qui valent la peine d'être explorées et de celles qui ne le sont pas.

Optimisation des paramètres du modèle LightGBM

Hyperparamètres	Descriptions	Notes	Nos hyperparamètres
num_estimators	Le nombre maximum d'arbres qui peuvent être construits lors de la résolution de problèmes d'apprentissage automatique.	Utiliser un très grand nombre d'itérations si utilisation de l'arrêt précoce.	num_estimators: 10 000
learning_rate	Le taux d'apprentissage.	En général, nous utilisons un taux d'apprentissage de 0,05 ou moins pour la formation, tandis qu'un taux d'apprentissage de 0,10 ou plus est utilisé pour modifier les hyperparamètres.	learning_rate: 0.05
max_depth	Profondeur de l'arbre.	Une valeur plus grande est généralement meilleure, mais la vitesse d'overfitting augmente. Typique : 6, généralement [3, 12].	max_deph: 11
lamda_l1 lambda_l2	Régularisation L1 pour le boosting Régularisation L2 pour le boosting		reg_alpha: 0,3 reg_lambda: 0,15
colsample_bytree	Rapport de sous-échantillonnage des colonnes lors de la construction de chaque arbre.		colsample_bytree: 0,67
subsample	Rapport de sous-échantillon de l'instance d'apprentissage.		subsample: 0,73
num_leaves	Le nombre maximum de feuilles dans l'arbre résultant.		num_leaves: 48
min_split_gain	Réduction de la perte minimale requise pour effectuer une partition supplémentaire sur un nœud feuille de l'arbre. Le nombre minimum d'échantillons d'entraînement dans une feuille.	Cette technique est extrêmement utile lorsque vous essayez de construire des arbres profonds, mais que vous essayez également d'éviter de construire des branches inutiles de ces arbres (overfitting).	min_split_gain: 0,1
min_child_weight	Somme minimale de poids d'instance (hessian) nécessaire dans un enfant (feuille).		min_child_weight: 80
min_child_samples	Nombre minimum de données nécessaires dans un enfant (feuille).		min_child_samples: 18
objective	Binary Description : Application sigmoïde comme fonction d'activation. Entropie croisée comme fonction de perte.		binary

Feature importance : LightGBM

	Valeur TARGET moyenne des 500 voisins les plus proches de chaque ligne, où	Variables bancaires
TARGET_NEIGHBOORS_500	chaque voisinage est défini par les trois sources externes (1,2,3) et le ratio crédit/intérêts	
DAYS_BIRTH	Âge du client en jours au moment de la demande	
DAYS_REGISTRATION	Combien de jours avant la demande le client a-t-il modifié son inscription?	Variables personnelles
DAYS_ID_PUBLISH	Combien de jours avant la demande le client a-t-il modifié le document d'identité avec lequel il avait demandé le prêt?	
CREDIT_ANNUITY_RATIO	Ratio montant du crédit/annuité	Variables externes
EXT_SOURCE_2	Score normalisé provenant d'une source de données externe	variables externes
EXT_SOURCE_SUM	Somme des 3 variables EXT_SOURCE	
DAYS_EMPLOYED	Combien de jours avant la demande la personne a-t-elle commencé son emploi actuel	Feature engineering
AMT_ANNUITY	Intérêts du prêt	
DAYS_CREDIT_max	Combien de jours avant la demande actuelle le client a-t-il fait une demande de crédit auprès de Home Credit	
EXT_SOURCE_3	Score normalisé provenant d'une source de données externe	
SELLERPLACE_AREA_sum	Zone de vente du lieu de vente de la demande précédente	app_train
ANNUITY_INCOME	Ratio intérêt/revenu du client	bureau
AMT_CREDIT_SUM_mean	Score normalisé provenant d'une source de données externe	previous