1.	True or False? Statement coverage always satisfies decision coverage.
	○ True
	False

If a < 5 or b > 7

$$X = 50;$$

$$c = a + b;$$

Else

$$c = a - b;$$

If X = 50 and c > 6

$$Z = 10;$$

Else

$$Z = 12;$$

Test Case 1: a=2, b=10, c=12, X=25

Test Case 2: a=3, b=4, c=4, X=25

Test Case 1: a=2, b=10, c=12, X=50

Test Case 2: a=5, b=1, c=4, X=25

Don't know why this is wrong

Test Case 1: a=3, b=10, c=13, X=50

Test Case 2: a=5, b=1, c=4, X=25

Test Case 1: a=3, b=10, c=13, X=50

Test Case 2: a=1, b=2, c=3, X=50

3. Given the code below, which set of test cases will achieve 100% decision coverage?

If a < 5 or b > 7

X = 50;

c = a + b;

Else

X = 25;

c = a - b;

If X = 50 and c > 6

Z = 10;

Else

Z = 12;

- Test Case 1: a=3, b=10, c=13, X=50
 - Test Case 2: a=1, b=2, c=3, X=50
- Test Case 1: a=3, b=10, c=13, X=50

 Test Case 2: a=3, b=4, c=4, X=25
- Test Case 1: a= 3, b=10, c=13, X=50
 Test Case 2: a=5, b=1, c=4, X=25
- Test Case 1: a=2, b=10, c=12, X=25

 Test Case 2: a=3, b=4, c=4, X=25

5. What is the cyclomatic complexity of the given control flow diagram?

- 5
- 2
- 0 8
- 0 4

6. Given the code below, what is the correct set of DU Paths?

A = 2; B=2Get a, b Node 1 X = 0If a >= 5 (Predicate I) Then c = x + 3 (Node 2) Else c = 0 (Node 3) If b < 4 (Predicate II) Then b = c + 4 (Node 4) Else b = c + 2 (Node 5) 4/7 3/7 5/7 2/7 8. True or False? Huang's Theorem helps reduce the number of iterations over a path during anomaly testing. True

False

7. Based on the code and the DU paths below, what coverage does the test case provide?

9.	Static analysis techniques are applied during program execution.
	○ True
	False

$$y = y + 1$$

else

$$x = x - 1$$
 (4)
 $y = y - 1$

endif

- $(x_0 > 0)$ and $(y_0 > 0)$ and $(x_0 >= 0)$ or $(x_0 >= 0)$
- $(x_0 > 0) \text{ or } (y_0 > 0)$ and $((x_0 >= 0) \text{ or } (y_0 >= 0)]$
- ($(x_0 > 0)$ and $(y_0 > 0)$] and $((x_0 >= 0)$ and $(y_0 >= 0)$]
- $(x_0 > 0)$ or $(y_0 > 0)$] and $(x_0 >= 0)$ and $(y_0 >= 0)$]