Experiment no: 10

Aim: Write a program for 15-puzzle problem with branch and bound technique.

Software required: C

Theory:

Theor	/ :	
	A0A 10	
	Ain Write a program for 15 paggle problem using branch and bound technique.	
	Though The 13 puzzle poolen consists of 15 nubround tites on a square frame with a capacity of 16 tiles. We are	
	given a minitial arrangement of me titles and me objections to transfoom it into the quest arrangement through a	
	series of noves sometimes got a good arrangement. The most we provide a	
	meny had to a good oronangement. The most straightforward way to wolve the propole is to sharch to state space	
	for goal state ad use the path from hit al whate to goal state as an answer.	
	Algorithm: Begin	
	while fire rade. get \$ 00 da	
	· chaose a boarding rode, h such that k & live. noch . set.	
	- general children of node ket cooker parding hours bound. - sk = E(i, 2i): I is dild f k l 2 i it hours bound?	

	- For each elever (i, 2i) in Sk do		
1	-if 2i > U then		
	- kill child.		
	- else if child is a solution then.		
	1)=25 unggent heat = wild;		
	-use add child I to live, nod set		
	and if.		
	end, wile , end.		
	Conclusion:		
	Conclusion: This is puzzle problem using branch and bound technique is understood and inplemented successfully.		

```
Source Code:
#include<stdio.h>
int m=0,n=4;
int cal(int temp[10][10],int t[10][10])
{
int i,j,m=0;
for(i=0; i < n; i++)
\mathsf{for}(\mathsf{j}{=}0;\mathsf{j}<\mathsf{n};\mathsf{j}{+}{+})
{
if(temp[i][j]!=t[i][j]) \\
m++;
}
return m;
}
int check(int a[10][10],int t[10][10])
{
int i,j,f=1;
```

```
for(i=0;i < n;i++)
for(j=0;j < n;j++)
if(a[i][j]!=t[i][j])
f=0;
return f;
}
int main()
{
int p,i,j,n=4,a[10][10],t[10][10],temp[10][10],r[10][10];
int m=0,x=0,y=0,d=1000,dmin=0,l=0;
printf("\nEnter the matrix to be solved,space with zero :\n");
for(i=0;i < n;i++)
for(j=0;j < n;j++)
scanf("%d",&a[i][j]);
printf("\nEnter the target matrix,space with zero :\n");
for(i=0;i < n;i++)
for(j=0;j < n;j++)
scanf("%d",&t[i][j]);
printf("\nEntered Matrix is :\n");
for(i=0;i < n;i++)
{
for(j=0;j < n;j++)
printf("%d\t",a[i][j]);
printf("\n");
}
printf("\nTarget Matrix is :\n");
for(i=0;i < n;i++)
{
for(j=0;j < n;j++)
printf("%d\t",t[i][j]);
printf("\n");
```

```
}
while(!(check(a,t)))
{
l++;
d=1000;
\mathsf{for}(\mathsf{i=0};\mathsf{i}<\mathsf{n};\mathsf{i++})
for(j=0; j < n; j++)
{
if(a[i][j]==0)
{
x=i;
y=j;
}
}
//To move upwards
for(i=0;i < n;i++)
for(j=0; j < n; j++)
temp[i][j]=a[i][j];
if(x!=0)
{
p=temp[x][y];
temp[x][y]=temp[x-1][y];
temp[x-1][y]=p;
}
m=cal(temp,t);
dmin=l+m;
if(dmin < d)
{
d=dmin;
for(i=0;i < n;i++)
\mathsf{for}(\mathsf{j}{=}0;\mathsf{j}<\mathsf{n};\mathsf{j}{+}{+})
```

```
r[i][j]=temp[i][j];
}
//To move downwards
for(i=0;i < n;i++)
for(j=0;j < n;j++)
temp[i][j]=a[i][j];
if(x!=n-1)
{
p=temp[x][y];
temp[x][y]=temp[x+1][y];
temp[x+1][y]=p;
}
m=cal(temp,t);
dmin=l+m;
if(dmin < d)
{
d=dmin;
for(i=0;i < n;i++)
for(j=0; j < n; j++)
r[i][j]=temp[i][j];
}
//To move right side
for(i=0;i < n;i++)
for(j=0; j < n; j++)
temp[i][j]=a[i][j];
if(y!=n-1)
{
p=temp[x][y];
temp[x][y]=temp[x][y+1];
temp[x][y+1]=p;
}
```

```
m=cal(temp,t);
dmin=l+m;
if(dmin < d)
{
d=dmin;
for(i=0;i < n;i++)
for(j=0;j < n;j++)
r[i][j]=temp[i][j];
}
//To move left
for(i=0;i < n;i++)
for(j=0; j < n; j++)
temp[i][j]=a[i][j];
if(y!=0)
{
p=temp[x][y];
temp[x][y]=temp[x][y-1];
temp[x][y-1]=p;
}
m=cal(temp,t);
dmin=l+m;
if(dmin < d)
{
d=dmin;
for(i=0;i < n;i++)
for(j=0; j < n; j++)
r[i][j]=temp[i][j];
}
printf("\nCalculated Intermediate Matrix Value :\n");
for(i=0;i < n;i++)
{
```

```
for(j=0;j < n;j++)
printf("%d\t",r[i][j]);
printf("\n");
}
for(i=0;i < n;i++)
for(j=0;j < n;j++)
{
    a[i][j]=r[i][j];
    temp[i][j]=0;
}
printf("Minimum cost : %d\n",d);
}
return 0;
}</pre>
```

Analysis:

Algorithm	15-puzzle problem
Time Complexity	O(n²)
Space Complexity	O(n)

Output:

```
Y 2 3
Enter the matrix to be solved, space with zero:
1 2 3 4 5 6 0 8 9 10 7 11 13 14 15 12
Enter the target matrix, space with zero:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
Entered Matrix is :
        2
                3
                        4
        6
                        8
                0
        10
               7
                       11
13
        14
               15
                        12
Target Matrix is:
        2
                3
                        4
5
        6
                7
                        8
        10
               11
                       12
13
        14
                15
                        0
Calculated Intermediate Matrix Value:
1
        2
                3
                        4
        6
               7
                        8
        10
                0
                        11
        14
              15
                        12
Minimum cost: 4
Calculated Intermediate Matrix Value:
```

```
. <sup>7</sup> →
                 11
                          12
         10
13
                 15
        14
                          0
Calculated Intermediate Matrix Value :
1
                          4
        2
                 3
5
        6
                 7
                          8
        10
                 0
                          11
13
        14
                 15
                          12
Minimum cost: 4
Calculated Intermediate Matrix Value :
                 3
                          4
        6
                 7
                          8
        10
                 11
                          0
        14
13
                 15
                          12
Minimum cost: 4
Calculated Intermediate Matrix Value :
        2
                 3
                          4
        6
                 7
                          8
        10
                 11
                          12
13
        14
                 15
                          0
Minimum cost : 3
...Program finished with exit code 0
Press ENTER to exit console.
```

Conclusion: 15-puzzle problem has been studied and implemented.