CS621/CSL611 Quantum Computing For Computer Scientists

Quantum Search

Dhiman Saha Winter 2024

IIT Bhilai

D 1 1 1 A1 1 1 1

Revisiting Simon's Algorithm

From The Index View Perspective

Problem Definition

Assumptions:

- Given any $u \in \{0, 1\}^n$, can efficiently compute f(u).
- Nonzero $s \in \{0, 1\}^n$.
- $f(u) = f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.

Problem Definition

Assumptions:

- Given any $u \in \{0, 1\}^n$, can efficiently compute f(u).
- Nonzero $s \in \{0, 1\}^n$.
- $f(u) = f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s: compute f for many inputs, hope to find collision.

Problem Definition

Assumptions:

- Given any $u \in \{0, 1\}^n$, can efficiently compute f(u).
- Nonzero $s \in \{0, 1\}^n$.
- $f(u) = f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum evaluations of f.

Step 1. Set up pure zero state

- This example is for a function f with 3-bit input and 3-bit output
- Each column is a parallel universe.
- Step 3 will apply the function f (a specific function in this example), computing f(u) in universe u.

Step 2.0. Hadamard₀

- This example is for a function f with 3-bit input and 3-bit output
- Each column is a parallel universe.
- Step 3 will apply the function f (a specific function in this example), computing f(u) in universe u.

Step 2.1. Hadamard₁

- This example is for a function f with 3-bit input and 3-bit output
- Each column is a parallel universe.
- Step 3 will apply the function f (a specific function in this example), computing f(u) in universe u.

Step 2.2. Hadamard₂

- This example is for a function f with 3-bit input and 3-bit output
- Each column is a parallel universe.
- Step 3 will apply the function f (a specific function in this example), computing f(u) in universe u.

Adapted from Bernstein's Invited Talk at Indocrypt 2021

Step 3a. C₀NOT₃

Step 3b. More entry shuffling

- 1, 0, 0, 0, 1, 0, 0, 0,
- 0, 1, 0, 0, 0, 1, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 1, 0, 0, 0, 1, 0,
- 0, 0, 0, 1, 0, 0, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0
- 0, 0, 0, 0, 0, 0, 0.

Step 3c. More entry shuffling

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1.

Step 3d. More entry shuffling

 Each column is a parallel universe performing its own computations

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0.

0, 0, 0, 0, 0, 0, 0, 1,

Step 3e. More entry shuffling

- 0, 0, 0, 0, 0, 0, 0.

Step 3f. More entry shuffling

- 0, 1, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 1, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 1, 0, 0, 0, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 1, 0, 0, 1, 0.

Step 3g. More entry shuffling

- 0, 1, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 1, 0, 0, 0,
- 0, 0, 0, 0, 0, 1, 0, 0,
- 1, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 1, 0, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 1, 0, 0, 0, 0, 1.

Step 3h. More entry shuffling

0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

Step 3i. More entry shuffling

1, 0, 0, 0, 0, 0, 0, 0.

Step 3j. Final entry shuffling

1, 0, 0, 0, 0, 1, 0, 0.

Step 3j. Final entry shuffling

- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 1, 0, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 1, 0, 0, 0, 0, 1,
- 0, 1, 0, 0, 1, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- **1**, 0, 0, 0, 0, **1**, 0, 0.

- Each column is a parallel universe performing its own computations
- Note: u and $u \oplus 101$ match

Adapted from Bernstein's Invited Talk at Indocrypt 2021

Step 4.0. Hadamard₀

• Notation: $\overline{1}$ means -1

Step 4.1. Hadamard₁

• Notation: $\overline{1}$ means -1

Step 4.2. Hadamard₂

• Notation: $\overline{1}$ means -1

Step 5. Measure

- 0, 0, 0, 0, 0, 0, 0, 0,
- $2, 0, \overline{2}, 0, 0, \overline{2}, 0, 2,$
- 0, 0, 0, 0, 0, 0, 0, 0,
- $2, 0, \overline{2}, 0, 0, 2, 0, \overline{2},$
- $2, 0, 2, 0, 0, \overline{2}, 0, \overline{2},$
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 2, 0, 2, 0, 0, 2, 0, 2.

- Notation: $\overline{1}$ means -1
- Obtain some information about the period of f: a random vector orthogonal to 101

Adapted from Bernstein's Invited Talk at Indocrypt 2021

Step 5. Measure

- 0, 0, 0, 0, 0, 0, 0, 0,
- $2, 0, \overline{2}, 0, 0, \overline{2}, 0, 2,$
- 0, 0, 0, 0, 0, 0, 0, 0,
- $2, 0, \overline{2}, 0, 0, 2, 0, \overline{2},$
- $2, 0, 2, 0, 0, \overline{2}, 0, \overline{2},$
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 2, 0, 2, 0, 0, 2, 0, 2.

- Notation: $\overline{1}$ means -1
- Obtain some information about the period of f: a random vector orthogonal to 101
- Repeat to figure out 101

Adapted from Bernstein's Invited Talk at Indocrypt 2021