NASA TECHNICAL MEMORANDUM

Report No. 53951

CASE FILE COPY

MIE SCATTERING: A COMPUTER PROGRAM AND AN ATLAS

By Nadine A. Bicket and Gilmer A. Gary Space Sciences Laboratory

September 29, 1969

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

	TECHNICA	L REPORT STAND	ARD TITLE PAGE
1. REPORT NO. TM X-53951	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CA	TALOG NO.
4. TITLE AND SUBTITLE	<u> </u>	5. REPORT DATE	
		September	29, 1969
Mie Scattering: A Computer P	rogram and an Atlas	6. PERFORMING OR	GANIZATION CODE
7. AUTHOR(S)		e PERFORMING ORG	ANIZATION REPORT #
Nadine A. Bicket and Gilmer A	. Gary	8. FERT ORMING GRO	ANIZATION NEPONT #
9. PERFORMING ORGANIZATION NAME AND AD		10. WORK UNIT NO.	
		10.	•
George C. Marshall Space Flig		11. CONTRACT OR G	RANT NO.
Marshall Space Flight Center,	Alabama 35812		
		13. TYPE OF REPORT	& PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS	•		
		Technical Mem	orandum
Manual Control of the		14. SPONSORING AG	ENCY CODE
15. SUPPLEMENTARY NOTES		L	
Drong rad by: Space Sciences T	aboratory, Science and Engineeri	ng Directorate	
Prepared by: Space Sciences 1	aboratory, belence and Engineeri	ng Directorate	
16. ABSTRACT			
of particles and effects of diffe	Iie Scattering is given, with applic rent lens apertures of the flux-col ulates amplitude functions, efficie	lecting device.	A computer
	th adaptations for tape filing in the		
	ations versus scattering angle on t		
,		_	
	integrations and an Atlas of scatte	ering intensity g	rapus
are included.			
17. KEY WORDS	18. DISTRIBUTION STA	TEMENT	
	Announce in	STAR.	
		Gilma W. Go	un :
19. SECURITY CLASSIF, (of this report)	20. SECURITY CLASSIF, (of this page)	21. NO. OF PAGES	22. PRICE
Unclassified	Unclassified	101	\$3.00

		•	>
			d
			kų.

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
MIE SCATTERING	2
Theory The Computer Program	
APPLICATIONS	5
Distributions	
APPENDIX A: MIE COMPUTER PROGRAMS	14
APPENDIX B: NUMERICAL INTEGRATION METHODS USED	27
APPENDIX C: MIE SCATTERING ATLAS	30
REFERENCES	94

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Physical representation of the intensities	3
2.	Lens aperture	12
3.	Intensity comparison of a 6 degree aperture with that of a 0-degree aperture	13
	LIST OF TABLES	
Table	Title	Page
1.	Sample of MIESCA Printout for $\alpha = 5.0$, $m = 1.33$	6
2.	Normalized Distribution for $m = 1.3 - 0.0i$	10
3.	Effect of Aperture with Changing Angle of Observation	12
4.	Gauss-Legendre Weights and Abscissas	27
5.	Gauss-Laguerre Weights and Abscissas for $n = 15$	29
	PROGRAM LISTINGS	
List		Page
1.	File Subroutine MIE on MIETAP	15
2.	Call up filed MIETAP in DRYRUN	19
3.	SC 4020 adaptation of MIESCA (main program only)	21

TECHNICAL MEMORANDUM X-53951

MIE SCATTERING: A COMPUTER PROGRAM AND AN ATLAS

SUMMARY

A computer program for calculating the Mie Scattering parameters is presented with applications in distributions of particle size and effects of different lens apertures of a detector. The computer program, * MIESCA, calculates the amplitude functions, efficiency factors, intensities, and polarizations. The program was adapted for magnetic tape filing in the Univac 1108 and for plotting intensities and polarization versus scattering angle on the SC 4020 plotter. An Appendix and an Atlas of scattering intensity graphs are included. This report provides a basis for a program to evaluate characteristics of the radiation scattered by a dilute cloud of particles.

INTRODUCTION

Electromagnetic radiation passing through a dilute cloud of particles is scattered and absorbed by the particles in the cloud. The characteristics of the scattered radiation are determined by the wavelength, λ , of the incident radiation, the complex refractive index, m, of the medium, and the size and shape of the discrete particles in the medium. Therefore, information about the state of the medium can be provided by the measurement and proper interpretation of the characteristics of the scattered radiation. The numerical determination of the characteristics of the scattered radiation for given particle models is of prime importance. This report provides the first step in a program for the evaluation of characteristics of the radiation scattered by a dilute cloud of particles. Programs for scattering by a single spherical particle (Mie Scattering) are presented.

T-027 (ATM Contamination Measurement) and S-073 (Gegenshein/Zodiacal Light) are two photometric experiments assigned to the first AAP flights. The T-027 objective is to study the spacecraft contaminant cloud by observing the scattered light of the particles. The S-073 objective is to study the interplanetary dust by scattered light. The scattering programs presented and to be developed will be available for use in data analysis for the T-027 and S-073 flight experiments.

^{*}The basic program was developed by Brown Engineering Company under NASA Contract NAS8-20166.

MIE SCATTERING

Theory

In the T-027 and S-073 AAP experiments, light scattering by particles will prove to be important in data analysis. Therefore, this initial report provides an Atlas of Mie Scattering diagrams for different particle sizes to aid in the identification of possible contamination for T-027 and in synthesizing a zodiacal light model for S-073. Light scattering by spheres of arbitrary size and refractive index are described by Mie Scattering. The angular distribution of intensity of scattered radiation was obtained by Mie, and independently by others, who successfully applied Maxwell's equations with the appropriate boundary conditions. The basic expressions for the radiation scattered by a sphere of radius a, and of a material with a complex refractive index m, are [1]:

$$i_1 = \left| \sum_{n=1}^{\infty} \left\{ A_n \frac{d P_n(x)}{dx} + B_n \left[x \frac{d P_n(x)}{dx} - (1-x)^2 \frac{d^2 P_n(x)}{dx^2} \right] \right\} \right|^2$$

$$i_2 = \left| \sum_{n=1}^{\infty} \left\{ A_n \left[x \frac{d P_n(x)}{dx} - (1 - x^2) \frac{d^2 P_n(x)}{dx^2} \right] + B_n \frac{d P_n(x)}{dx} \right\} \right|^2$$

$$K = \frac{2}{\alpha^2} \sum_{n=1}^{\infty} \frac{n^2 (n+1)^2}{2n+1} \left(\left| A_n \right|^2 + \left| B_n \right|^2 \right)$$

where $P_n(x)$ is a Legendre polynomial of order n, and $x = -\cos(\theta)$. An and B_n are amplitude functions (linear combinations of Ricatti-Bessel, Ricatti-Hankel functions and their derivatives, with arguments $\alpha = (2\pi a)/\lambda$ and $m\alpha$). The physical significance of i_1 and i_2 , the intensity functions, is that they are the intensities of the two incoherent plane-polarized components of light scattered by a single particle (Fig. 1). When this particle is illuminated by randomly polarized light of unit intensity, then $(\lambda^2 i_1)/(8\pi^2)$ and $(\lambda^2 i_2)/(8\pi^2)$ are the radiant intensities of the scattered components with electric vectors perpendicular and parallel, respectively, to the plane of observation. The differential scattering cross section per particle is

Figure 1. Physical representation of the intensities.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\left(\theta,\lambda\right) = \frac{\lambda^2}{8\pi^2}\left(\mathbf{i}_1 + \mathbf{i}_2\right)$$

 Q_{sca} is the scattering coefficient or efficiency, defined by the ratio of the scattering cross section to the geometric cross section of the particles. (The scattered wave intensity is obtained by integration of the radial component of the Poynting vector of the scattered wave over the surface of a sphere surrounding the particle.) The angular distribution function, $f(\theta)$, the fraction of scattered radiation directed into a solid angle in the direction of θ , is defined as

$$f(\theta) = \frac{i_1 + i_2}{2\pi \alpha^2 Q_{sca}}$$

Substituting the expression for $f(\theta)$ into the expression for the differential scattering cross section yields:

$$\frac{d\sigma}{d\Omega} (\theta, \lambda) = \frac{\lambda^2 \alpha^2}{4\pi} Q_{sca} f(\theta)$$
.

The Computer Program

The form of the general formulas is not amenable to computer computation, so numerical methods must be employed [1]. The most fundamental factors in the Mie solution are the amplitude functions, which can be calculated by the following formulas:

$$A_{n} = i^{2n+1} \frac{2n+1}{n(n+1)} \frac{\psi_{n}(\alpha) \frac{d \psi_{n}(\beta)}{d\beta} - m \psi_{n}(\beta) \frac{d \psi_{n}(\alpha)}{d\alpha}}{\zeta_{n}(\alpha) \frac{d \psi_{n}(\beta)}{d\beta} - m \psi_{n}(\beta) \frac{d \zeta_{n}(\alpha)}{d\alpha}}$$

$$B_{n} = -i^{2n+1} \frac{2n+1}{n(n+1)} \frac{\psi_{n}(\beta) \frac{d \psi_{n}(\alpha)}{d \alpha} - m \psi_{n}(\alpha) \frac{d \psi_{n}(\beta)}{d \beta}}{\psi_{n}(\beta) \frac{d \zeta_{n}(\alpha)}{d \alpha} - m \zeta_{n}(\alpha) \frac{d \psi_{n}(\beta)}{d \beta}}$$

where

 $\psi_{\mathbf{n}}$ is a Ricatti-Bessel function, of order n, and

 ξ_n is a Ricatti-Hankel function, of order n.

Also,

$$\alpha = \frac{2\pi a}{\lambda}$$
 and $\beta = m\alpha = \alpha (m^*-ik)$,

where the basic parameters are defined:

a = radius of a spherical particle

 λ = wavelength of incident radiation

m = complex refractive index

m* = real part of m

k = imaginary part of m (extinction coefficient of the particle material)

$$i = (-1)^{\frac{1}{2}}$$

From the amplitude functions, the efficiency factors for total extinction, scattering and absorption are computed:

$$Q_{ext} = \frac{2}{\alpha^2} Im \sum_{n=1}^{\infty} n(n+1) (-1)^n (A_n - B_n)$$

$$Q_{sca} = \frac{2}{\alpha^2} \sum_{n=1}^{\infty} \frac{n^2(n+1)^2}{2n+1} (|A_n|^2 + |B_n|^2)$$

$$Q_{abs} = Q_{ext} - Q_{sca}$$

The computer input is composed of the scattering angle, the refractive index of the medium, and α . The program computes and prints out the efficiency factors, both intensities i_1 and i_2 , their sum, and the polarization. (The polarization is defined as: $i_1 - i_2/i_1 + i_2$.) An example of the computer output is given in Table 1, for which $\alpha = ALT = 5.0$, $\theta = XTH1 = 0$ degree (5 degrees) 180 degrees, and $m^* = EM = 1.33$. An SC 4020 plot for these values is also included in the Atlas. Appendix A gives the details for the graphical display using the Univac 1108 — SC 4020 plotter which was used to produce the Atlas (Appendix C). Appendix A gives the 1108 user information concerning the Mie computer programs.

APPLICATIONS

Dilute clouds of particles are normally polydispersed and are observed through finite apertures; therefore, integrations over θ and α are necessary for data analysis. This section considers integrations over particle size distribution and finite angular apertures.

TABLE 1. SAMPLE OF MIESCA PRINTOUT FOR $\alpha = 5.0$, m = 1.33

	0.00		IMEBAI	1.458355	785368	5/3415	400051	.021881	000235	200000	000000	000000*	្ចាំពេលពី 🕶	,000000	= 3.59103	05CAT = 3.59103
	[M(M) = .	L10MS	RELBNI	*246441.	.194088	-,375414	141358	-, U36858	,008516	-,000735	.000053	-,000003	000000	••000000	FACTOR FOR EXTINCTION GEAT = 3.59183	SCALTERING ASCAL
	RE(M) = 1.330 [M(M) = .00D 5.00	AMPLITUDE FUNCTIONS	IM(AN)	ml = 490366	. 932537	· 539430	,295756	= 043298	*001244	-, 000020	.000000	-, 000000	• 000000	** 000000		EFFICIENCY FACTOR FOR SCA
DATA SET NO. 5	INDEX ALPHA ==		RECANA	*119825	。U25744	* 153892	213585	.118090	019586	*00232s	000221	4.000017	•• 000001	. 101000	EFFICIENCY	EFFICIEACY
DATAS	REFRACTIVE		Z	-	2	m	3 -	Un∉	•	7	00	٥	0.	-		

00000

EFFICIENCY FACTOR FOR ABSORPTION WABS

TABLE 1. (Concluded)

THETA(DEG)	er er	2	ı	11+12
0	85.69708	89798	c	171.79595
'n	5/ 1290	47U42	0.038	14.15661
2	78.54441	507	.091.185	56.05165
5	68 - 32704	91937	155	36-24645
20	0.692	9077	1474	3.5931
25	7+04097	85379	022645	00.49346
. OE	3	1887	147	19
35	.50980	.20437	\sim	.71417
40	540	64925	415735	6 - 3 4 5 6 8
45	1	52885	L	6.59923
50	.81412	.075UB	0675	8.48921
5.5	• 06795	.6307	1240	1.70069
9	.96182	•50826	7	+47009
5.9	525	.7807.	5.2	5-63323
7.0	2	3440	~	.74521
7.5	~7	.66037	~	•17,330
8.0	5570		2174	.96989
85	2	.07566	447421	.86808
06	2 • 1 9 2 2 3 2	1.626137	.146256	3.818369
9.5	.37864	329	4019	+6169.
001	Э	1239	2961	77872
105	2.941924	03301	7837	.97993
110		-	*250236	.70871
115	.584193	1.015545	269640	975
120	150871	2090	5626	*17177
125	~		277	675
130	0.30 B	1.098189	5	.60127
135	\sim	20081	5391	.71719
140	10712	1.338979	Ø	. 4461U
145	9.2	1.489183	4528	.54910
150	.50045	1.630480	1.059	*13093
155	.79244	1 • 755150	051	.54759
160	3	672	-,171578	*18749
165	8	7169	212464	238
	C	.0646	23	•65989
175	S	2.131574	035566	4 - 116732
96	7.156285	.1562	000000	

Distributions

The zodiacal cloud is composed of many different sizes of particles, whose distribution is generally assumed to be of an exponential form:

$$N = Na_0 \left(\frac{a}{a_0}\right)^{-p} \approx N\alpha_0 \left(\frac{\alpha}{\alpha_0}\right)^{-p}$$

where a and α are as previously defined, and p is dependent on a min, a and some "breakpoint" a between them [2]. Other types of distributions, such as aerosol distributions, will be considered for T-027.

The first distribution examined was the exponentially decreasing function $e^{-\alpha}$. The choice of $e^{-\alpha}$ is convenient because,

$$\int_{0}^{\infty} e^{-\alpha} d\alpha = 1$$

So, the percentage of each size particle in the distribution can be found easily on the basis of its fractional part of the whole.

When calculating an intensity for particles with a size distribution, the different intensities for each α must be weighted according to the distribution. For a particular θ ,

$$I_{\text{total}}(\theta) = \int_{\alpha_{\min}}^{\alpha_{\max}} I(\alpha, \theta) e^{-\alpha} d\alpha .$$

Then, this must be normalized to give

$$\int_{\alpha}^{\alpha} \max_{\min} e^{-\alpha} d\alpha = 1$$

By Gauss-Legendre Quadrature, this can be numerically integrated in a Fortran program. (See Appendix B.) An example for m = 1.3 - 0.0i, $\alpha_{min} = 0.1$ and $\alpha_{max} = 10.0$ is in Table 2.

Apertures

The angular aperture of the objective lens of a photometric system distorts the observed scattering distribution. This effect is being studied in connection with the T-027 data analysis. It is impossible to record the intensity at a single θ , just as it is impossible to measure the integral or "area" under a point. An integral must be taken over some interval. The interval in this study is the lens aperture. The intensity is calculated over the whole aperture and the "integrated" intensity distribution is determined. Effects of changing the angular aperture of the flux collecting device must be studied to insure correct interpretation of measured scattering distributions. Widening the lens aperture smoothes the intensity distributions and reduces the number of maxima.

The flux, Φ , is the integral of the intensity over the solid angle. Gucker and Tuma [3] have developed a method of modifying the flux equation.

$$\Phi(\eta,\omega) = \left(\frac{\lambda}{2\pi}\right)^2 \int_{\theta=\eta-\omega}^{\theta=\eta+\omega} (i_1 + i_2) \sin\theta \cos^{-1}\left(\frac{\cos\omega - \cos\theta \cos\eta}{\sin\theta \sin\eta}\right) d\theta$$

for computation, where η = angle of observation, ω is the angle of aperture, and θ is the scattering angle (Fig. 2). After normalizing (by dividing through by $\left(\frac{\lambda}{2\pi}\right)^2$), the flux equation becomes:

$$\Phi(\eta,\omega) = \sum_{k=1}^{n} \left[i_1(\theta_k,\alpha,m) + i_2(\theta_k,\alpha,m) \right] \cdot a_k(\eta,\omega)$$

$$a_k(\eta, \omega) = \frac{A_k(\eta, \omega)}{2\pi R^2 (1 - \cos \omega)}$$

TABLE 2. NORMALIZED DISTRIBUTION FOR m = 1.3 - 0.0i

THETA	REFRACTIVE	INDEX	GAUSSIAN INTEGRAL
• Ú()	1 • 3 3 0	•000 [500+45267
5 • U (i	1 • 3 3 0	•000 I	456 • 38535
10.00	1.330	•000 I	349.38321
15.00	1.330	1 000•	232 • 01636
20.00	1.330	*000 I	142 • 33855
25.00	1.330	•000 I	86 • 94949
30.00	1.330	•000 1	54.83612
35 • UN	1.330	1 սսս	35•36060
40.00	1.330	•000 1	23 • 25 8 27
45.UN	1.330	•000 I	15.83237
50.on	1.330	1 000 I	11-13292
55.0n	1.330	.000 I	7.98860
60 • ប់ព	1.330	• 000 I	5 • 8 6 7 4 4
65.UO	1.330	• 000 I	4 + 4 4 5 6 0
70 • Un	1.330	.000 1	3 • 45 446
75.UQ	1.330	1 000	2.72970
80.ún	1.330	• 000 1	2.20637
85.Un	1.330	• 000 I	1.83888
90.0n	1.330	• 000 -1	1.56772
95.Un	1.330	•000 I	1.36423
100 • Un	1.330	• 000 I	1.23165
105.00	1.330	•000 I	1.14852
110.00	1.330	1 000	1.08819
115.UN	1.330	•000 I	1.06764
120.00	1.330	•000 I	1.09373
125.00	1.330	1 000.	1.13248
130.00	1.330	1 000 I	1.19065
135.00	1.330	•000 1	1.30211
140.00	1.330	•000 I	1.42800
145.00	1.330	• 000 I	1.54782
150.00	1.330	•000 I	1.75570
155•60	1.330	•006 1	2.01904
160 • On	1.330	•000 1	2.05120
165.00	1.330	•000 1	1.75837
170.00	1.330	• 000 I	1+51055
175.00	1.350	• 000 I	1.57733
180ំ•០ប	1.330	•000 I	1.68700

where

$$A_{k}(\eta,\omega) = \frac{4\omega}{nb}, R^{2} \cdot \sum_{j=1}^{b} \cos^{-1} \left(\frac{\cos \omega - \cos \eta \, \cos \gamma_{k,j}}{\sin \eta \, \sin \gamma_{k,j}} \right) \sin \gamma_{k,j}$$

and

$$\theta_{k} = \eta - \omega \left(\frac{n - 2k + 1}{n} \right)$$
, $\gamma_{k,j} = \eta - \frac{\omega}{n} \left(n - 2k + 3 - \frac{2j + 1}{b} \right)$.

The angular apertures are divided into n strips, which are, in turn, subdivided into b substrips. Table 3 was produced from the computer program using an aperture of $2\omega = 6$ degrees, an observation angle η , n = 5, b = 4, and with the Mie program ($\alpha = 10.0$, m = 1.33). Figure 3 shows implicitly the aperture smoothing effect for these values (cf. Atlas for $\alpha = 10$).

More applications for the Mie program will be developed in the future. These will include a further analysis of the smoothing effects of both the polydispersions and the aperture. Other computer programs to be developed will be concerned with

- 1. Zodiacal models developed in full
- 2. Contaminant cloud models developed in detail to predict distributions and intensities
 - 3. Problems associated with nonspherical particles.

Figure 2. Lens aperture.

TABLE 3. EFFECT OF APERTURE WITH CHANGING ANGLE OF OBSERVATION

θ (deg)	Total Intensity (6 deg)	Total Intensity (0 deg)
150	20, 1	20.0
151	15, 2	14.0
152	12.0	10.0
153	10.9	8.1
154	12.1	9.0
155	15.5	12.3
156	20.7	17.8

Figure 3. Intensity comparison of a 6-degree aperture with that of a 0-degree aperture.

APPENDIX A

MIE COMPUTER PROGRAMS

File Tape on Univac 1108

A more efficient use of computer time has been realized by filing large subroutines on tape for use in the Univac 1108 computer. Then, the calling program (e.g., an integration), can have a minimum execution time with no computer printout. The resultant control cards which are used for filing the Mie program on magnetic tape are given in Program List 1 where MIESCA is the Run Identification, MIE is the filed subroutine, MIETAP is the name of the newly formed tape, 000000 is the identification (ID) number, and 5 is the maximum number of minutes of computer time.

PROGRAM LIST 1. FILE SUBROUTINE MIE ON MIETAP

```
aRUN.A MIESCA. 800880. NADINEBIN219.5
BASG.T MIETAP.T.32024
aMSG.W PLEASE PUT WRITE RING IN TAPE 32024
aFOR.IS MIE
      SUBROUTINE MIE(XTH1, EM, ALT, XI1, XI2, X12, POLAR)
      DIMENSION EM(2).BET(2).XJNB(2).XJNBP(2).AUS3(2).RBSB(2).RBSBP(2)
     1.RHNK(2).RHNKP(2).P1(2).P2(2).P3(2).XNUMA(2).XNUMB(2).XDENA(2).
     1 XDENR(2) + AN(2) + BN(2) + XTH(37) + PN(37) + PNP(37) + S1NR(37) + S1NI(37) +
     1S2NR(37)+S2NI(37)+S1R(37)+S2R(37)+S1I(37)+S2I(37)+XX(37)+
     1AAUKS(37), AAUX(37)
      COMMON NOXNOALPOBETOAUX10AUX20AUX30AUX40AUX5(2)0AUX6(2)0AUX0
     1 AUKS . VX
      I=1
      ALP=ALT
      XTH(1)=XTH1
      PI=3-1415927
      DEG=PI/180.
   52 CALL ZXR(EM+ALP+BET+1)
   13 M=1
      XTH(I)=XTH(I)*DEG
   56 S1R(I)=0.
      S1I(I)=0.
      S2R(I)=0.
   11 S2I(I)=0.
      N=1
      AEXTED.
      ASCAT=0.
   12 XN=FLOAT(N)
      CALL RECJ(XJN+XJNP+XJN1+XJN1P+XJNB+XJNBP+AUS1+AUS2+AUS3)
      AUX1=XJN
      AUX2=XJN1
      AUX3=AUS1
      AUX4=AUS2
      CALL ZEQUATAUX5.XJNB)
      CALL ZEQUA(AUX6+AUS3)
      RBS=ALP*XJN
      RBSP=XJN+ALP+XJNP
      CALL ZMULT(BET.XJNB.RBSB)
      CALL ZMULT (BET . XJNBP .P1)
      CALL ZADD(XJNB.P1.RBSBP)
      RHNK(1)=RBS
      RHNK(2)=(-1.)**N*XJN1*ALP
      RHNKP(1)=RBSP
      RHNKP(2)=(-1.)**N*XJN1P*ALP+(-1)**N*XJN1
      CA = \{(XN + XN + 1 \cdot) * (-1) * * N \} / \{XN * XN + XN\}
      CB=-CA
      CALL ZXR(RBSBP,RBS,PI,1)
      CALL 7XR(RBSB,RBSP,P2,1)
      CALL ZMULT(EM.P2.P3)
      CALL ZSUB(P1.P3.XNUMA)
      CALL ZMULT (EM.P1.P3)
      CALL ZSUB(P3.P2.XNUMB)
      CALL ZMULT(RHNK.RBSBP.P1)
      CALL ZMULT (RBSB+RHNKP+P2)
      CALL ZMULT(EM.P2.P3)
      CALL: ZSUB(P1.P3.XDENA)
      CALL ZMULT(EM.P1.P3)
      CALL ZSUB(P3.P2.XDENB)
      CALL ZXI(XNUMA,CA,P1,1)
      CALL ZDIV(P1.XDENA.AN)
```

PROGRAM LIST 1. (Continued)

```
CALL ZXI(XNUMB+CB+P1+1)
      CALL ZDIV(P1 . XDENB . BN)
   17 CXN=XN+(XN+1-)+(-1-)++N
      AEXN=CXN+(AN(2)-BN(2))
      AEXT=AEXT+AEXN
      ABSAN=ZMOD(AN)
      ABSBN=ZMOD(BN)
      CKN=(xN*xN*(XN+1.)*(XN+1.))/(XN+XN+1.)
      ASCN=CKN*(ABSAN*ABSAN+ABSBN*ABSBN)
      ASCAT=ASCAT+ASCN
      IF(ABSAN--0000001)21+21+23
   21 IF (ABSBN-.0000001)22.22.23
   22 IF (XN-ALP) 23 + 23 + 25
   23 CONTINUE
   18 CONTINUE
      VX=-COS(XTH(I))
      IF(N-1)41,41,42
   42 AUKS=AAUKS(I)
      AUX=AAUX(I)
   41 CALL RECP(XLNP+XLNPP+AUS)
      PN(I)=XLNP
      PNP(I)=XLNPP
      AAUKS(I)=PN(I)
      AAUX(I)=AUS
      XX(I)=XN*(XN+1.)*PN(I)-VX*PNP(I)
      SINR(I)=AN(1)*PNP(I)*BN(1)*XX(I)
      S1NI(I)=AN(2)*PNP(I)+BN(2)*XX(I)
      S2NR(I)=BN(1)*PNP(I)+AN(1)*XX(I)
      S2NI(I)=BN(2)*PNP(I)+AN(2)*XX(I)
      SIR(I)=SIR(I)+SINR(I)
      S1I(I)=S1I(I)+S1NI(I)
      S2R(I)=S2R(I)+S2NR(I)
  100 S2I(I)=S2I(I)+S2NI(I)
  101 N=N+1
      60 TO 12
   25 ASCAT=ASCAT+2./(ALP+ALP)
      AEXT=AEXT+2./(ALP+ALP)
      AABS=AEXT-ASCAT
      XI1=S1R(I)*S1R(I)+S1I(I)*S1I(I)
      XI2=S2R(I)*S2R(I)*S2I(I)*S2I(I)
  116 POLAR=(XI1-XI2)/(XI1+XI2)
      X12=XI1+XI2
      RETURN
      END
aFOR. IS RECP
      SUBROUTINE RECP(PN.PNP.AUS)
      DIMENSION BET(2)
      COMMON N.XN.ALP.BET.AUX1.AUX2.AUX3.AUX4.AUX5(2).AUX6(2).AUX.
     1 AUKS . VX
      IF(N-1)1.1.2
    1 PN=VX
      PNP=1.
      AUS= ((2. *XN+1.) *PN*VX-XN)/(XN+1.)
      GO TO 3
    2 PN=AUX
      IF (ABS (VX-1.000000)+0.000001)21.21.22
   22 IF (ABS(VX+1,0000000)-0,000001)21,21,23
   21 PNP=(XN*XN+XN)*PN/(VX+VX)
      60 TO 24
   23 PNP=(-XN+VX*PN+XN*AUKS)/(1.-VX*VX)
   S4 AUS=((S**XN+1")*AX*bN-XN*AUK2)/(XN+1")
```

PROGRAM LIST 1. (Continued)

```
3 RETURN
      END
aFOR. IS RECJ
      SUBROUTINE RECJ(XJN+XJNP+XJN1+XJN1P+XJNB+XJNBP+AUS1+AUS2+AUS3)
      DIMENSION XJNB(2).XJNBP(2).XJNB(2).XJ1B(2).BET(2).
     1 X J 2 B (2) + P1 (2) + P2 (2) + Q1 (2) + Q2 (2) + AUS3(2) + SINB (2) + COSB (2)
      COMMON N.XN. ALP. BET. AUX1 . AUX2. AUX3. AUX4. AUX5 (2). AUX6 (2). AUX.
     1AUKS-VX
      IF(N-1)1,1,2
    1 XJO=SIN(ALP)/ALP
      XJ1=XJO/ALP-COS(ALP)/ALP
      XJN=XJ1
      XJM1=XJO/ALP-XJ1
      NJM2=(-XJM1)/ALP-XJO
      SMLX=INLX
      XJ2=3.*XJ1/ALP-XJ0
      XJNP=(XJ0-2.*XJ2)/3.
      XJM3=(-3.)*XJM2/ALP-XJM1
      XJN1P=((-2.)*XJM3+XJM1)/(-3.)
      CALL ZSC(BET+SINB+COSB+1)
      CALL ZDIV(SINB.BET.XJOB)
      CALL: ZDIV(XJOB+BET+Q1)
      CALL ZSC(BET.SINB.COSB.2)
      CALL ZDIV(COSB.BET.Q2)
CALL ZSUB(01.Q2.XJ1B)
      CALL ZEQUA(XJNB.XJ1B)
      CALL ZXR(XJ1B+3-+P1+1)
      CALL ZDIV(P1.BET.01)
      CALL ZSUB(Q1,XJDB,XJ2B)
      CALL ZXR(XJ28.2..P1.1)
      CALL ZSUB(XJOB,P1,P2)
      CALL ZXR(P2.3.,XJNBP.2)
      AUS1=XJ2
      AUS2=XJM3
      CALL ZEQUA(AUS3.XJ2B)
      GO TO 3
    2 XJN=AUX3
      XJN1=AUX4
      AUS1=(2.*XN+1.)*AUX3/ALP-AUX1
      XJNP=(XN+AUX1-(XN+1) *AUS1)/(2. *XN+1.)
      AUS2=AUX4*(-2.*(XN+1.)+1.)/ALP-AUX2
      XJN1P=(-(XN+1.)*AUS2+XN*AUX2)/(-2.*(XN+1.)+1.)
      CALL ZEQUA(XJNB.AUX6)
      C=2.*XN+1.
      CALL ZXR(AUX6+C+P1+1)
      CALL ZDIV(P1.BET.Q1)
      CALL ZSUB(Q1+AUX5+AUS3)
      CALL: ZXR(AUX5+XN+P1+1)
      CALL ZXR(AUS3,XN+1.,P2,1)
      CALL ZSUB(P1'+P2+P1)
      CALL ZXR(P1+C+XJNBP+2)
    3 RETURN
      END
aFOR.IS ZDIV
      SUBROUTINE ZDIV(A+B+C)
      DIMENSION A(2), B(2), C(2), BSTAR(2)
      CALL ZCONJ(B.BSTAR)
      CALL ZMULT(A,BSTAR,C)
      C(1)=C(1)/(ZMOD(B)*ZMOD(B))
      C(2)=C(2)/(ZMOD(B)*ZMOD(B))
      RETURN
```

PROGRAM LIST 1. (Continued)

```
END
aFOR IS ZSUR
      SUBROUTINE ZSUB(A+B+C)
      DIMENSION A(2).8(2).C(2)
      C(1)=A(1)-B(1)
      C(2)=A(2)-B(2)
      RETURN
      END
aFOR. IS ZADD
      SUBROUTINE ZADD(A.B.C)
      DIMENSION A(2) . B(2) . C(2)
      C(1)=A(1)+B(1)
      C(2)=A(2)+B(2)
      RETURN
      END
aFOR.IS ZMUL
      SUBROUTINE ZMULT(A+B+C)
      DIMENSION A(2).B(2).C(2)
      C(1)=A(1)+B(1)-A(2)+B(2)
      C(2)=A(1)*B(2)+A(2)*B(1)
      RETURN
      END
aFor. IS ZCON
      SUBROUTINE ZCONJ(A+ASTAR)
      DIMENSION A(2) ASTAR(2)
      ASTAR(1)=A(1)
      ASTAR(2) =- A(2)
      RETURN
      END
aFOR, IS ZMOD
     FUNCTION ZMOD(A)
      DIMENSION A(2)
      ZMOD=SGRT(A(1) +A(1)+A(2)+A(2))
      RETURN
      END
aFOR.IS RTHX
      SUBROUTINE RTHXY(RTH+A)
      DIMENSION RTH(2) .A(2)
      A(1)=RTH(1) + COS(RTH(2))
      A(2)=RTH(1)+SIN(RTH(2))
      RETURN
      END
aFOR.IS ZXR
      SUBROUTINE ZXR(A+R+C+N)
      DIMENSION A(2) +C(2)
      60 TO(1.2).N
    1 C(1)=A(1)*R
      C(2)=A(2)+R
      GO TO 3
    2 C(1)=A(1)/R
      C(2)=A(2)/R
    3 RETURN
      END
afor, IS ZXI
      SUBROUTINE ZXI(A.XI.C.N)
      DIMENSION A(2) ((2)
      GO TO(1.2).N
    1 C(1)=-A(2)*XI
      C(2)=A(1)*XI
      60 TO 3
    2 C(1)=A(2)/XI
```

PROGRAM LIST 1. (Concluded)

```
C(2) =- A(1)/XI
    3 RETURN
      END
aFOR.IS ZSC
      SUBROUTINE ZSC(A+SINA+COSA+N)
      DIMENSION A(2)+SINA(2)+COSA(2)+C1(2)+C2(2)+RTH1(2)+RTH2(2)
      RTH1(1)=1.
      RTH1(7)=A(1)
      RTH2(1)=1.
      RTH2(2)=-A(1)
      ER1=EXP(-A(2))
      ERZ=EXP(A(2))
      CALL RTHXY(RTH1.C1)
      CALL RTHXY (RTH2+C2)
      CALL: ZXR(C1+ER1+C1+1)
CALL: ZXR(C2+ER2+C2+1)
      60 TO (1+2).N
    I CALL ZSUB(C1.C2.C1)
      CALL ZXI(C1+2+SINA+2)
      GO TO 3
    2 CALL 7ADD(C1.C2.C1)
      CALL ZXR(C1+2-+COSA+2)
    3 RETURN
      END
aFOR, IS ZEQU
      SUBROUTINE ZEQUA(A.B)
      DIMENSION A(2) .B(2)
      A(1)=B(1)
      A(2)=B(2)
      RETURN
      END
aMAP.IS A.R
IN MIE
aCOPOUT TPFs., MIETAP.
aREWIND MIETAP.
BERS
aCOPIN MIETAP .. TPFS. .
BREWIND MIETAP.
ƏFIN
aFIN'
```

For calling MIE out of the tape file [4], the following sequence is used, with tape label 32024, Run ID, and calling program DRYRUN.

PROGRAM LIST 2. CALL UP FILED MIETAP IN DRYRUN

```
@RUN, A DRYRUN, 000000, NAME
@ASG, T MIETAP, T, 32024
@COPIN MIETAP., TPF$.
@REWIND MIETAP
@FOR, IS DRYRUN
...
Main program
```

```
CALL MIE (XTH1, EM, ALT, XI1, XI2, X12, POLAR) ...
```

@MAP, IS A, B

@X

IN DRYRUN

@XQT

Data

@FIN

SC 4020 Plots

The plots used in the Atlas were done by the SC 4020 plotter called up in the Univac 1108 MIESCA program. For the example in the text with $\alpha = 5.0$, we used Program List 3 for the main program. (Subroutines are the same as for Program List 1.)

The dimension statements and the data statements supplying the abscissa and ordinate labels are labeled A.

The first card needed for addressing the plotter is the CALL IDENT (CAMRAS), labeled B. Depending on the number in parentheses, the output will be on paper or microfilm:

```
CAMRAS = 35 film
CAMRAS = 9 paper
CAMRAS = 1 film and paper.
```

The values for the array to be plotted are generated in the program. The CALL SMXYV (MX, MY) is inserted (labeled E), where MX, MY are fixed-point integers which designate whether the linear or nonlinear (logarithmic) mode is to be used.

```
If [4] MX \neq 0, MY \neq 0 log in X, log in Y

MX \neq 0, MY = 0 log in X, linear in Y

MX = 0, MY \neq 0 linear in X, log in Y

MX = 0, MY = 0 linear in X, linear in Y.
```

SMXYV must be called each time before there is a change of mode. Now, QUKLOG and QUIK3V can be labeled F. The general forms for calling the subroutines are:

```
CALL QUIK3V(L, ISYM, FLDX, FLDY, NP, X, Y)
CALL QUIK3L(L, XL, XR, YB, YT, ISYM, FLDX, FLDY, NP, X, Y)
CALL QUKLOG(L, XL, XR, YB, YT, ISYM, FLDX, FLDY, NP, X, Y)
```

PROGRAM LIST 3. SC 4020 ADAPTATION OF MIESCA (MAIN PROGRAM ONLY)

```
ARUN.A MIESCA.400980.GARYMIESCAT1.2
aFOR. IS GARYGA
  THIS PROGRAM COMPUTES THE MIE SOLUTIONS FOR ARBITRARY PHYSICAL
   PARAMETERS.
   DESCRIPTION OF INPUT PARAMETERS -
          ---- TOTAL NUMBER OF SETS OF INPUT PHYSICAL PARAMETERS
     EACH SET OF INPUT PHYSICAL PARAMETERS CONTAINS -
C
          --- THE PARAMETER ALPHA
C
     AI P
           --- THE COMPLEX REFRACTIVE INDEX
C
     EM
     EACH SET OF INPUT PHYSICAL PARAMETERS IS FOLLOWED BY A SET OF
C
C
     OPTION CODES
C
     NOPT1 --- ONE DIGIT NUMBER INDICATING HOW THE INTENSITY
C
                FUNCTIONS ARE TO BE COMPUTED
C
                1 - THE INTENSITY FUNCTIONS ARE COMPUTED FOR
С
                     SCATTERING ANGLES VARYING FROM 0 TO 180 DEGREES
C
                    AT 5 DEGREE INTERVALS
                2 - THE INTENSITY FUNCTIONS ARE COMPUTED FOR SPECIFIED
C
                     SCATTERING ANGLES
     NOPT2 --- ONE DIGIT NUMBER INDICATING WHETHER THE AMPLITUDE
C
C
                FUNCTIONS ARE TO BE PRINTED
                1 - YES
C
                2 - NO
C
     NOPTS --- ONE DIGIT NUMBER INDICATING WHETHER THE INTENSITY
C
                FUNCTIONS ARE TO BE COMPUTED
С
                1 - YES
                2 - NO
С
     NOTE - WHEN NOPT3=2, IT OVERRIDES NOPT1 NOPT1 MUST BE SET EQUAL
C
     TO 1 IN THIS CASE
C
     WHEN NOPT1=2. ADDITIONAL PARAMETERS MUST FOLLOW THE SAME SET OF
     INPUT PHYSICAL PARAMETERS -
          ---- NUMBER OF SPECIFIED SCATTERING ANGLES
C
     NOTE - M MUST BE SMALLER THAN OR EQUAL TO 37
     XTH --- A VECTOR OF LENGHTH M WITH XTH(I) EQUAL TO THE I-TH
C
                SPECIFIED SCATTERING ANGLE EXPRESSED IN DEGREES
   DESCRIPTION OF OUTPUT QUANTITIES -
     AN.BN ---- THE COMPLEX AMPLITUDE FUNCTIONS
C
     XII.XI2 -- THE INTENSITY FUNCTIONS
     AEXT ---- THE EFFICIENCY FACTOR FOR TOTAL EXTINCTION
C
     ASCAT --- THE EFFICIENCY FACTOR FOR SCATTERING
C
     AARS ---- THE EFFICIENCY FACTOR FOR ABSORPTION
     POLAR ---- DEGREE OF POLARIZATION
     ALL OUTPUT QUANTITIES ARE PRINTED UNLESS THEY HAVE BEEN RULED OUT
C
     BY THE OPTION CODES
   REMARKS -
     IN ALL COMPUTATIONS OF INFINITE SERIES, CONVERGENCE IS ASSUMED
C
     TO HAVE BEEN ACHIEVED WHEN BOTH AMPLITUDE FUNCTIONS ARE SMALLER
C
C
     THAN OR EQUAL TO 1.0E-07, AND THE NUMBER OF TERMS COMPUTED
C
     EXCEEDS THE VALUE OF ALP.
      DIMENSION EM(2) *BET(2) *XJNB(2) *XJNBP(2) *AUS3(2) *RBSB(2) *RBSBP(2)
     1 .RHNK(2) .RHNKP(2) .P1(2) .P2(2) .P3(2) .XNUMA(2) .XNUMB(2) .XDENA(2) .
     1XDENB(2) .AN(2) .BN(2) .XTH(37) .PN(37) .PNP(37) .S1NR(37) .S1NI(37) .
     152NR(37) • S2NI(37) • S1R(37) • S2R(37) • S1I(37) • S2I(37) • XX(37) •
     1AAUKS(37), AAUX(37)
      DIMENSION ARRAY1 (2000) .BRRAY1 (2000) .CRRAY1 (2000) .DRRAY1 (2000) .
     1ARRAY2(2000) *BRRAY2(2000) *CRRAY2(2000) *DRRAY2(2000)
     DIMENSION AFDX(12) . AFDY(12) . BFDY(12) . CFDY(12) . DFDY(12)
```

PROGRAM LIST 3. (Continued)

```
DATA AFDX/72H THETA DEGREES
      1
       DATA AFDY/72H1000 TIMES INTENSITY 1 ( * ) AND 1000 TIMES INTENSITY
      12(+)
       DATA BFDY/72H1000 TIMES INTENSITY 1 ( • ) AND 1000 TIMES INTENSITY
Α
      12(+)
       DATA CFDY/72H 1000 TIMES ( INTENSITY 1 + INTENSITY 2 )
       DATA DFDY/72H POLARIZATION
      3
       COMMON NoXNoALPoBETOAUX10AUX20AUX30AUX40AUX5(2)0AUX6(2)0AUX0
      1 AUKS . VX
       COMMON V(4). ISTORE (901)
       CALL IDENY(1)
    1 FORMAT(14)
     2 FORMAT (3F10.3.5X.311)
     3 FORMAT(1HO, *REFRACTIVE INDEX RE(M) = *, F7.3,33%, *IM(M) = *, F7.3,
      1/01H .*PARAMETER ALPHA =*0F7.20/)
     4 FORMAT(F8.3)
     5 FORMAT(1HO.19X. AMPLITUDE FUNCTIONS .//.3X. N. .7X. RE(AN).
      18X, *IM(AN) *, 8X, *RE(BN) *, 8X, *IM(BN) *,/)
     6 FORMAT (14,4F14.6)
     7 FORMAT(1H0.9X. ** EFFICIENCY FACTOR FOR EXTINCTION GEXT =*.
      1F8.5.//.10x. FFFICIENCY FACTOR FOR SCATTERING OSCAT = ...
      1F8.5.//.10X. *EFFICIENCY FACTOR FOR ABSORPTION GABS = ...
      1F8.5./)
     8 FORMAT (1HD . "SCAT ANGLE", 8X. "INTENSITY FUNCTIONS", 4X.
      1*DEGREE OF POLARIZATION*,/,1HD, *THETA(DEG) *, 9X,
      1 *I1 * • 1 3 X • * I2 * • 14 X • * P * • 13 X • * I 1 + I2 * • / )
     9 FORMAT(1H .16.4X.2F15.6.4X.F9.6.F15.6)
    10 FORMAT (1H .F7.3.3X.2F15.6.4X.F9.6.F15.6)
  1010 FORMAT (1H1 . DATA SET NO. ". 13.5X. MIE SCATTERING")
       PI=3-1415927
       DEG=PI/180.
       READ(5.1)NI
       NN=1
    50 CONTINUE
       WRITE(6.1010)NN
 C 50 READ( ... ETC.
       READ(5,2)ALP,EM(1),EM(2),NOPT1,NOPT2,NOPT3
       WRITE(6.3)EM(1).EM(2).ALP
       60 TO(51,52),NOPT2
    51 WRITE(6,5)
    52 CALL ZXR(EM+ALP+BET+1)
       60 TO(13,14),NOPT1
 * 13 H=37
       60 TO 53
    14 READ(5,1)M
    53 DO 11 I=1.M
       GO TO(54.55) . NOPTI
 * 54 XTH(I)=FLOAT(I-1)+5.+DEG
       GO TO 56
    55 READ(5.4)XTH(I)
       XTH(I)=XTH(I)*DEG
    56 S1R(I)=0.
       S11(1)=0.
       S2R(I)=0.
    11 S2I(I)=0.
       N=1
       AEXT=n.
       ASCAT=0.
```

PROGRAM LIST 3. (Continued)

```
12 XN=FLOAT(N)
        CALL RECJEXJN - XJNP -XJNI - XJNIP - XJNB - 
       AUX1=XJN
        AUX2=XJNT
       AHX3=AHS8
        AUX4=AUS2
        CALL ZEQUA(AUX5.XJNB)
        CALL 7FQUA(AUX5 AUS3)
        RBS=ALP*XJN
        PRSP=XJN+ALP*XJNP
        CALL ZMULT(BET . XJNB . RBSB)
        CALL ZMULT (BET . XJNBP .P1)
        CALL ZADD(XJNB P1 RBSBP)
        RHNK(1)=RBS
        RHNK(2)=(-1.)**N*XJN1*ALP
        RHNKP(1)=RBSP
        RHNKP(2)=(-1..)**N*XJN1P*ALP+(-1)**N*XJN1
        CA=({XN+XN+1.3*(-1)**N}/(XN*XN+XN)
        CR=-CA
        CALL ZXR(RBSBP+RBS+P1+1)
        CALL ZXR(RBSB.RBSP.P2.1)
        CALL PHULT (EM. P2.P3)
        CALL 7SUB(P1 P3 XNUMA)
        CALL ZMULT(FM.P1.P3)
        CALL ZSUR(P3.P2.XNUMB)
        CALL ZMULT (RHNK . RBSBP . P1)
         CALL ZMULT (RBSB . RHNKP . P2)
        CALL ZMULT (EN. PZ.P3)
        CALL 7SUR(P1 .P3 . XDENA)
         CALL ZHULT (EM.P1.P3)
         CALL 7SUR (P3.P2.XDENB)
         CALL ZXI (XNUMA . CA . P1 . 1 )
         CALL ZDIV(PI .XDENA .AN)
         CALL: ZXI(XNUMB 2CB P1 91)
         CALL ZDIV(P1 , XDEN8 , BN)
         60 TO(16+171+NOPT2
 16 WRITE(5,6)N,AN(1),AN(2),BN(1),BN(2)
 17 CXN=XN*(XN*1.)*(-1.)**N
         AEXN=CXN*(AN(2)-BN(2))
         AEXT=AEXT+AEXN
         ABSAN=ZMOD(AN)
         ABSBN=ZMOD(BN)
         CKN= (XN + XN + (XN + 1 . ) + (XN + 1 . ) ) / (XN + XN + 1 . )
         ASCN=CKN*(ABSAN*ABSAN*ABSBN*ABSBN)
         ASCAT=ASCAT+ASCH
          IF (ABSAN-a0000001)21,21,23
 21 IF(ABSBN-.0000001)22,22,23
 22 IF(XN-ALP)23+23+25
 23 GO TO(18:101):NOPT3
 18 DO 100 I=1 M
          VX=-COS(XTH(I))
          TF (N-1) 41 - 41 - 42
  42 AUKS=AAUKS(T)
          AUX=AAUX(T)
  41 CALL RECP(XLNP.XLNPP.AUS)
          PN(I)=XLNP
          PNP(I)=XLNPP
          AAUKS(I)=PN(I)
          AAUX (I) = AUS
          XX(I)=XN*(XN+1.)*PN(I)-VX*PNP(I)
          SINR(I)=AN(1)*PNP(I)*BN(1)*XX(I)
```

PROGRAM LIST 3. (Concluded)

```
SINI(I)=AN(2)*PNP(I)*BN(2)*XX(I)
      S2NR(I)=BN(1)*PNP(I)*AN(1)*XX(I)
      S2NI(I)=BN(2)*PNP(I)+AN(2)*XX(I)
      SIR(I)=SIR(I)+SINR(I)
      S11(I)=S11(I)+S1NI(I)
      S2R(I)=S2R(I)+S2NR(I)
  100 S2I(I)=S2I(I)+S2NI(I)
  IOI NEN+1
      GO TO 12
   25 ASCAT=ASCAT+2./(ALP*ALP)
      AEXT=AEXT+2./(ALP+ALP)
      AABS=AEXT-ASCAT
      WRITE(6.7) AEXT. ASCAT. AABS
      GO TO(103,104),NOPT3
  103 WRITE(6,8)
      DO 102 I=1 M
      XI1=S1R(I)*S1R(I)+S1I(I)*S1I(I)
      XI2=S2R(I)*S2R(I)*S2I(I)*S2I(I)
      IF(XI2)115,115,116
  115 XI2=.0000001
      WRITE(6.117)I
  117 FORMAT (1H .6X.9HBRRAY 2 (.15.32H) IS LESS THAN OR EQUAL TO ZERO.)
  116 POLAR=(XI1-XI2)/(XI1+XI2)
      GO TO(105+106)+NOPT1
* 105 NTH=(I-1)*5
      X12=XI1+XI2
      WRITE (5,9)NTH, XII, XIZ, POLAR, X12
      ARRAY1(I) = FLOAT(NTH)
      BRRAY1(I) = FLOAT(NTH)
      CRRAY1(I) = FLOAT(NTH)
      DRRAYI(I) = FLOAT(NTH)
D
      ARRAYZ(I) = XII
      BRRAY2(I) = XI2
      CRRAY2(I) = X12
     DRRAY2(I) = POLAR
      60 TO 102
  106 ANG=XTH(I)/DEG
      X12=XI1+XI2
      WRITE(6.10) ANG.XII.XIZ.POLAR.X12
      60 TO 102
  IN2 CONTINUE
      60 TO (1011-1012).NOPT1
 1011 CONTINUE
   E CALL SMXYV(0.1)
      CALL QUKLOG(-1.00..180...1.1000...1H*.AFDX.AFDY.-M.ARRAY1.ARRAY2)
      CALL OUKLOG (0.0..180...1.1000..1H+.AFDX.BFDY.-M.BRRAY1.BRRAY2)
      CALL GUKLOG(-1.0..180...1.1000..1H+.AFDX.CFDY.-M.CRRAY1.CRRAY2)
   E CALL SMXYV(0.0)
      CALL QUIK3V(-1+1H++AFDX+DFDY+-M+DRRAY1+DRRAY2)
 1012 CONTINUE
  104 NN=NN+1
      IF (NN-NI)50 - 50 - 110
  110 CALL ENDJOB
      STOP
      END
```

where L

Fixed point integer which represents the number of graphs per frame (1, 2, or 3). If L is negative, the frame will be advanced, the grid for the first graph plotted, scaled, labeled, and the X and Y points will be plotted. If L is positive, the grid for the second or third is plotted, scaled, and labeled, and the X and Y points are plotted. If L is zero, the X and Y points are plotted using the previous grid. For example, suppose that the user wants three graphs on a frame. If two graphs are desired on the middle grid, then in four calls the L values, in order, would be -3, 3, 0, 3.

XL, XR

Floating point data values which represent the least and greatest X value respectively (for horizontal axis).

YB, YT

Floating point data values which represent the least and greatest Y value respectively (for vertical axis).

ISYM

Fixed point integer which contains the plotting symbol to be used. This may be a single Hollerith character or an integer identifying the desired symbol. The Univac 1108 and the SC-4020 do not have identical characters.

FLDX, FLDY

Fixed point integer arrays which contain Fieldata labels for the X and Y axes. FLDX and FLDY must each contain 12 words. The information to be centered must be left justified in the 72 character field. Remaining characters not used must be filled with blanks.

NP

Fixed point integer which represents the number of points to be plotted. If NP is negative, the plotted points will be connected by straight line segments.

X, Y

Floating point one dimensional arrays which contain X-and Y-coordinates of data to be plotted. X contains X-coordinates. Y contains Y-coordinates.

The very last call of SC 4020 routines must be the card CALL ENDJOB (G), or some of the last frame of the graphs might be lost.

The lines marked by an asterisk (*) are for the cards that can be altered to change the number of points plotted. For example, if the 5 in these cards (e.g., XTH(1) = FLOAT (I-1)* 5* DEG) is replaced by a 1 (as it was in the Atlas for $\alpha=10\to100$), and M is changed to 181, then points will be plotted at 1 degree intervals of θ instead of 5 degree intervals. It should be remembered that all the 37's in the first dimension statement (with an asterisk) should be changed to 181's. The results of this program in printout for $\alpha=5.0$ are found in Table 1 of the text. The SC 4020 plot for $\alpha=5.0$ is in the Atlas.

APPENDIX B

NUMERICAL INTEGRATION METHODS USED

Gauss-Legendre Quadrature

Gauss' formula for integration [5] is:

$$\int_{-1}^{1} f(x) dx = \sum_{i=1}^{n} w_{i} f(x_{i}) + R_{n}$$

 R_n is a remainder term, negligible for the applications in this report. The x_i 's are the i zeros of Legendre polynomials, $P_n(x)$, and the w_i 's are the weighting functions determined by

$$w_i = \frac{2}{(1-x_i)^2} \left[P_n^1(x_i)\right]^2$$
,

and are listed in Table 4, for n = 16.

TABLE 4. GAUSS-LEGENDRE WEIGHTS AND ABSCISSAS

	±X	i		n = 16		W		
0.09501	25098	37637	440185		0.18945	06104	55068	496285
0.28160	35507	79258	913230		0.18260	34150	44923	588867
0.45801	67776	57227	386342		0.16915	65193	95002	538189
0.61787	62444	02643	748447		0.14959	59 888	16576	732081
0.75540	44083	55003	033895		0.12462	89712	55533	872052
0.86563	12023	87831	743880		0.09515	85116	82492	784810
0.94457	50230	73232	576078		0.06225	35239	38647	892863
0.98940	09349	91649	932596		0.02715	24594	11754	094852

For an arbitrary interval (a, b) the general formula can be modified to give:

$$\int_{a}^{b} f(y) dy = \frac{b-a}{2} \sum_{i=1}^{n} w_{i} f(y_{i}) + R_{n}$$

where,

$$y_i = \left(\frac{b-a}{2}\right)x_i + \left(\frac{b+a}{2}\right)$$

This integration procedure was used in the aperture and distribution applications.

Gauss-Laguerre Quadrature

The Gauss-Laguerre equation for numerical integration is of the form

$$\int_{0}^{\infty} e^{-x} f(x) dx = \sum_{i=1}^{n} w_{i} f(x_{i})$$

and is useful for integrations which do not have a finite upper limit. The equation is used in one distribution application with a semi-infinite interval and a distribution according to e^{-X} .

A table of w_i 's and x_i 's for n = 15 is presented in Table 5.

Trapezoidal Quadrature

The trapezoidal quadrature method was used as a check because it is not as accurate as the two aforementioned methods. The extended trapezoidal rule (without the remainder) is

$$\int_{a}^{b} f(x) dx = h \left[\frac{f(a)}{2} + f(a+1) + \dots + f(b-1) + \frac{f(b)}{2} \right]$$

where (a,b) is the interval, f(x) is the function, and h is the increment of integration [5].

TABLE 5. GAUSS-LAGUERRE WEIGHTS AND ABSCISSAS FOR n = 15 [5]

x _i	w	$\mathbf{w_i^e}^{\mathbf{x_i}}$
0.093307812017	(- 1)2.18234885940	0. 239578170311
0.492691740302	(- 1)3.42210177923	0. 560100842793
1.215595412071	(- 1)2.63027577942	0. 887008262919
2.269949526204	(- 1)1.26425818106	1. 22366440215
3.667622721751	(- 2)4.02068649210	1. 57444872163
5.425336627414	(- 3)8.56387780361	1. 94475197653
7.565916226613	(- 3)1.21243614721	2. 34150205664
10.120228568019	(- 4)1.11674392344	2. 77404192683
13.130282482176	(- 6)6.45992676202	3. 25564334640
16.654407708330	(- 7)2.22631690710	3. 80631171423
20.776478899449	(- 9)4.22743038498	4. 45847775384
25.623894226729	(-11)3.92189726704	5. 27001778443
31.407519169754	(-13)1.45651526407	6. 35956346973
38. 530683306486	(-16)1.48302705111	8.03178763212
48. 026085572686	(-20)1.60059490621	11.5277721009

APPENDIX C

MIE SCATTERING ATLAS

The following graphs, produced by the SC 4020 plotter, give

- 1. the scattering intensities (i₁ and i₂)
- 2. the total scattering intensity $(i_1 + i_2)$
- 3. the polarization, $(i_1 i_2)/(i_1 + i_2)$.

For $\alpha=0.5$, 0.9, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0, the points are plotted for 5-degree intervals of the scattering angle. For $\alpha=10.0$, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, and 100.0, the points are plotted for intervals of 1 degree. The refractive index is m=1.33.

At $\alpha=0.5$ the graphs have the form of Rayleigh Scattering. As α increases, the symmetry becomes more and more distorted and the complexity of the scattering diagram for large spheres is seen.

For the first set of graphs, $\alpha=0.5$, the meaning of each curve is explicitly indicated. For $\alpha=0.5$ and 0.9 the ordinate for the intensities has been multiplied by 10^3 . The points for the two components of the intensity are labeled with an asterisk (*) for i_1 and a plus (+) for i_2 .

REFERENCES

- 1. Sodek, B. A.; and Chou, C. Y.: Debris Cloud Brightness: Mie and Rayleigh Scattering. Summary Report, ATM Optical Contamination Study, Brown Engineering Company, Contract No. NAS8-20166, January 1967.
- 2. Aller, L. H.; Duffner, G.; Dworetsky, M.; Gudehus, D.; Kilston, S.; Leckrone, D.; Montgomery, J.; Oliver, J.; and Zimmerman, E.: Some Models of the Zodiacal Cloud, The Zodiacal Light and the Interplanetary Medium. J. L. Weinberg (ed.), NASA SP-150, Washington, D. C., 1967.
- 3. Gucker, Frank T.; and Tuma, Jiri: Influence of the Collecting Lens Apertures on the Light Scattering Diagrams from Single Aerosol Particles. J. Colloid and Interface Sci., vol. 27, no. 3, July 1968.
- 4. Programmer Procedures Manual. Computation Laboratory, NASA-MSFC, Marshall Space Flight Center, Alabama, 1969.
- 5. Abramowitz, M.; and Stegun, I. A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, D. C., 1965.

MIE SCATTERING: A COMPUTER PROGRAM AND AN ATLAS

By Nadine A. Bicket and Gilmer A. Gary

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

WILLIAM C. SNODDY

Chief, Space Thermophysics Division

CÆRHARD B. HELLER

Director, Space Sciences Laboratory

INTERNAL

DIR

Dr. von Braun

DEP-T

AD-S

Dr. Ernst Stuhlinger

MA-PA

Mr. Arthur Thompson Mr. Mark Russell

S&E-SSL-DIR

Mr. Heller Mr. Hembree

S&E-SSL-X

Dr. James Dozier Mr. Hoyt Weathers

S&E-SSL-P

Mr. Naumann

S&E-SSL-PO

Mr. Phil Tashbar

Mr. Walding Moore, Jr.

Mr. John Williams

S&E-SSL-S

Dr. Werner Sieber

S&E-SSL-SE

Mr. Leonard Yarbrough

S&E-SSL-N

Mr. Stern

S&E-SSL-T

Mr. William C. Snoddy

S&E-SSL-TE

Mr. Ed Miller

S&E-SSL-TR

Mr. Gary Arnett Mr. Don Wilkes

S&E-SSL-TT

Mr. Billy P. Jones Mr. Ted Calvert Dr. G. A. Gary (5) Mr. Paul Craven

Miss Nadine Bicket (10)

S&E-SSL-C

Mr. James Mathis Reserve (10)

A&TS-PAT

Mr. L. D. Wofford, Jr.

I-RM-M

A&TS-MS-IP (2)

A&TS-MS-IL (8)

A&TS-MS-T (6)

A&TS-MS-H

A&TS-TU

PM-PR-M

EXTERNAL

Dr. H. P. Brown School of Engineering Washington University St. Louis, Missouri 63130

Scientific and Technical Information Facility (25)
P. O. Box 33
College Park, Maryland 20740
Attn: NASA Representative (S-AK/RKT)