polycal パッケージのデモ

tattsan

1 動機

ZR氏の「冬休み課題②:円周率を使わない話」を読んだ。

http://d.hatena.ne.jp/zrbabbler/20131231/1388478052 (http://t.co/NjEtKJwLy0)

\expandafter がよくわからない人のための課題とあり、自分にはちょうどよいと思った。ただ

「もはや全く以て TeX ネタじゃない…」

という ZR 氏の一人ボケツッコミが気になった。これは是非とも $\mathbf{T}_{\mathbf{E}}\mathbf{X}$ **で解かねばなるまい**。そこで既存の polynom パッケージに微分や積分のルーチンを追加する polycal パッケージを作成した。

https://github.com/tattsan/polycal

その結果、大して理解していない \expandafter をあちこちに書く羽目になった。以下 polycal パッケージを利用してニセ円の面積を計算する。

2 問題の説明

%(with pict2e and color package)
\setlength{\unitlength}{1cm}
\begin{picture}(2,2)
\color{blue}\put(1,1){\circle*{2}}
\end{picture}

課題は「上の図形の面積を円周率を用いずに求めてください」というもの。「円周率を用いずに」の部分も ZR 氏のサイトに解説されている。pict2e が描く円は 3 次ベジェ曲線による近似であり、上の例の第 1 象限部分は

で表される。このため囲まれた部分の面積はせいぜい 2 次の無理数で π は現れない。

3 面積の計算

まず変数の宣言。本当の変数 t と文字定数 a, b を変数扱いする。

\polyset{vars=tab}

次に3次ベジェによる円もどき曲線の定義。

 $\label{lem:polydefine} $$ \prod_{t=0}^3*1+3(1-t)^2t*1+3(1-t)t^2*a+t^3*0} $$ \prod_{t=0}^3*0+3(1-t)^2t*a+3(1-t)t^2*1+t^3*1} $$$

ここで a は

$$a = \frac{4}{3} \left(\sqrt{2} - 1 \right)$$

であるが、この値の代入は最後に行なう。この \x,\y を表示させるには \polyprint を用いる。

\begin{align*}
 x &= \polyprint\x, & y &= \polyprint\y.
\end{align*}

$$x = 2t^3 - 3t^2 - 3at^3 + 3at^2 + 1,$$
 $y = -2t^3 + 3t^2 + 3at^3 - 6at^2 + 3at.$

表示されるのは簡約後の数式である。次にこれを微分する。

\polydiff\dx{t}\x \polydiff\dy{t}\y
\begin{align*}
 dx &= (\polyprint\dx)\,dt, & dy &= (\polyprint\dy)\,dt.
\end{align*}

$$dx = (6t^2 - 6t - 9at^2 + 6at) dt,$$
 $dy = (-6t^2 + 6t + 9at^2 - 12at + 3a) dt.$

次に面積要素を定義する。円の面積を計算するため、 $\frac{1}{2}(xdy-ydx)$ の 4 倍を dS と定めよう。

\polymul\dSA\x\dy \polymul\dSB\y\dx
\polysub\dS\dSA\dSB \polymul\dS\{2}\dS
\begin\{align*\}
 dS &=2(xdy-ydx)\\
 &=(\polyprint\dS)\,dt.
\end\{align*\}

$$dS = 2(xdy - ydx)$$

= $(-12t^2 + 12t - 18a^2t^4 + 36a^2t^3 - 18a^2t^2 + 12at^4 - 24at^3 + 36at^2 - 24at + 6a) dt$.

次は積分だ。

\polyint\St{t}\dS
\polysubstnum\S{t}{1}\St
\[S = \int_0^1dS = \polyprint\S. \]

$$S = \int_0^1 dS = -\frac{3}{5}a^2 + \frac{12}{5}a + 2.$$

最後に a の値を代入しよう。まずは $b=\sqrt{2}$ として、 $a=\frac{4}{3}(b-1)$ を代入する。

\polysubst\S{a}{(4/3)(b-1)}\S \[S=\polyprint\S. \]

$$S = -\frac{16}{15}b^2 + \frac{16}{3}b - \frac{34}{15}.$$

最後にbに $\sqrt{2}$ を代入する。これが答だ!

\polysubstsqrt\S{b}{2}\S \Huge

\[\polyset{delims={\left.}{\right.}} S=\polyprint\S. \]

$$S = \frac{-22}{5} + \frac{16}{3}\sqrt{2} \,.$$

4 パラメータaのチューニング

ところで $a=\frac{4}{3}(\sqrt{2}-1)$ という値は、曲線が $t=\frac{1}{2}$ で円上の点 $\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ を通過するように決めたものらしい。これだとベジェ曲線が完全に円の外側に位置することになるが、もう少し内側にひっこめた方が円からの最大偏差を減らせる。そこで例えば

$$\int_{0}^{1} (x^{2} + y^{2})dt = 1$$

となるようにaを定めてみればどうだろう。これも T_{PX} で計算してみよう。

\polymul\xx\x\x \polymul\yy\y\y \polyadd\rr\xx\yy
\polyint\It{t}\rr \polysubstnum\I{t}{1}\It
\[I = \int_0^1(x^2+y^2)dt= \polyprint\I \]

$$I = \int_0^1 (x^2 + y^2)dt = \frac{6}{35}a^2 + \frac{13}{35}a + \frac{26}{35}a^2$$

 $\polysub\J\I{1}$

\begin{align*}

I-1 &= \polyprint\J \\ &= \polyfactorize\J
\end{align*}

$$I - 1 = \frac{6}{35}a^2 + \frac{13}{35}a - \frac{9}{35}$$
$$= \frac{6}{35}\left(a + \frac{13}{12} + \frac{\sqrt{385}}{12}\right)\left(a + \frac{13}{12} - \frac{\sqrt{385}}{12}\right)$$

これより $a = \frac{1}{12} \left(\sqrt{385} - 13 \right)$ が得られる。再度面積を計算すると

\polysubstnum\SS{t}{1}\St

 $\polysubst\SS{a}{(1/12)(b-13)}\SS$

\polysubstsqrt\SS{b}{385}\SS \Huge

\[\polyset{delims={\left.}{\right.}} S_2=\polyprint\SS. \]

$$S_2 = \frac{-349}{120} + \frac{37}{120} \sqrt{385} \,.$$