Lab meeting

Line Detecting & Tracking in Thermal Images

Contents

- LSD
- M-LSD
- HAWP
- SOLD2
- Future Tasks

LSD

• Without changing any parameters

M-LSD

• Towards Light-weight and Real-time Line Segment Detection (2021)

HAWP

• Holistically-Attracted Wireframe Parsing (2020)

SOLD2

- Self-supervised Occlusion-aware Line Description and Detection (2021)
- Input: gray-scale img/ Output: J, H, D
- Robust to occlusion (descriptor)

SOLD2

		Wireframe [18]		ETH3D [49]	
Lines	Desc	Precision ↑	Recall↑	Precision [†]	Recall↑
LSD [57]	LBD [65]	0.496	0.597	0.132	0.376
	LLD [55]	0.123	0.116	0.085	0.230
	WLD [24]	0.528	0.804	0.127	0.398
	SOLD ² (Ours)	0.591	0.889	0.159	0.525
Ours	SOLD ² (Ours)	0.882	0.688	0.196	0.538
Ours w/ NMS	SOLD ² (Ours)	0.777	0.949	0.190	0.688

Figure 7: Line matches visualization. Comparison of line matches between LSD [57] + WLD [24] and our method with correct matches, incorrect ones, and unmatched lines. SOLD² provides fewer but more repeatable lines that can be matched in poorly textured areas and with repetitive patterns.

SOLD2

SOLD2 (occlusion)

SOLD2 +Clahe

• Almost same with Original SOLD2

SOLD2 +Unsharp mask

SOLD2 +Unsharp mask

SOLD2 (matching)

frame_0896.png- matched lines

SOLD2 (matching)

frame_1059.png- matched lines

SOLD2 (matching)

frame_0179.png- matched lines

frame_0187.png- matched lines

SOLD2 (training)

• Can't recognize line in the thermal image

Future Tasks

- Using SOLD2 and Training with own dataset (using DJI Mavic 3T)
- Making artificial environment with distinct thermal divisions
- Training with patterned16-bit images

Fig. 3: Checkerboard Thermal Image

Training your own model

All training parameters are located in configuration files in the folder config . Training SOLD² from scratch requires several steps, some of which taking several days, depending on the size of your dataset.

- ► Step 1: Train on a synthetic dataset
- ▶ Step 2: Export the raw pseudo ground truth on the Wireframe dataset with homography adaptation
- ▶ Step3: Compute the ground truth line segments from the raw data
- ▶ Step 4: Train the detector on the Wireframe dataset
- ▶ Step 5: Train the full pipeline on the Wireframe dataset

Future Tasks

- Using SOLD2 and Training with own dataset (using DJI Mavic 3T)
- Making artificial environment with distinct thermal divisions
- Training with patterned 16-bit images

Thank You

for Listening

