1.一均匀带电球面,电荷面密度为 σ ,球面内电场强度处处为零,球面上面元 $^{\mathrm{dS}}$ 带有 σ^{dS} 的电荷,该电荷在球面内各 点产生的电场强度()

A.处处为零 B.不一定都为零

C.处处不为零 D.无法判定

设有一"无限大"均匀带正电荷的平面.取 $^{\chi}$ 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度 E 随距离平面的位置坐标 X 变化的关系曲线为(规定场强方向沿 X 轴正向为正、反之为负): ()

A.1 B.2 C.3 D.4

半径为 R 的均匀带电球体的静电场中各点的电场强度的大小 E 与距球心的距离 r 的关系曲线为:()

A. 1B. 2C.3 D.4

带电细线弯成半径为 R 的半圆形,电荷线密度为 $^{A=\lambda_0\sin\varphi}$,式中 $^{\lambda_0}$ 为一常数, $^{\phi}$ 为半径 R 与 X 轴所成的夹角,如 图所示:试求环心 / 处的电场强度:

5.用绝缘细线弯成的半圆环,半径为 R ,其上均匀地带有正电荷 Q ,试求圆心 O 点的电场强度。

6.由一根绝缘细线围成的边长为 l 的正方形线框,使它均匀带电,其电荷线密度为 $^{ extit{$\lambda$}}$,则在正方形中心处的电场强度的 大小^E =___

两个平行的"无限大"均匀带电平面,其电荷面密度分别为 $^{+\sigma}$ 和 $^{+2\sigma}$,如图所示,则 A 、 B 、 C 三个区域的电场强度分别 为: $^{E_{A}}=$ ___, $^{E_{B}}=$ ___, $^{E_{C}}=$ ___(设方向向右为正).

真空中一半径为 R 的均匀带电球面带有电荷 $^Q(Q>0)$.今在球面上挖去非常小块的面积 $^{\Delta S}$ (连同电荷),如图所示,假设不影响其他处原来的电荷分布,则挖去 $^{\Delta S}$ 后球心处电场强度的大小 $^R=$ ___,其方向为___。

, 12.下面列出的真空中静电场的场强公式,其中哪个是正确的? ()

 $ar{E}=rac{A}{2\piarepsilon_0 r^3}ar{r}$ B."无限长"均匀带电直线的电场: $(ar{r}$ 为带电直线到场点的垂直于直线的矢量)

 $ar{E}=rac{\sigma}{2arepsilon_{}}$ C."无限大"均匀带电平面的电场:

 $\bar{\vec{E}} = \frac{c R^2}{\varepsilon_0 r^3} \vec{r}$ D.半径为 R 的均匀带电球面外的电场: (\vec{r}) 为球心到场点的矢量) 13.{

A、B 为真空中两个平行的"无限大"均匀带电平面,已知两平面间的电场强度大小为 E_0 ,两平面外侧电场强度大小都为 $E_0/3$,方向如图.则 A、B 两平面上的电荷面密度分别为 $G_A=$ ___, $G_B=$ ____.

静电场/高斯定理

14.有一边长为 a 的正方形平面,在其中垂线上距中心 O 点 $^a/^2$ 处,有一电荷为 q 的正点电荷,如图所示,则通过该平面的电场强度通量为()

$$\frac{q}{3\varepsilon_0} = \frac{q}{4\pi\varepsilon_0} = \frac{q}{3\pi\varepsilon_0} = \frac{q}{6\varepsilon_0}$$

- 15.已知一高斯面所包围的体积内电荷代数和 $\sum q = 0$,则可肯定: ()
- A.高斯面上各点场强均为零.
- B.穿过高斯面上每一面元的电场强度通量均为零.
- C. 穿过整个高斯面的电场强度通量为零.
- D.以上说法都不对
- 16.一点电荷,放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化: ()
- A.将另一点电荷放在高斯面外.B.将另一点电荷放进高斯面内.
- C.将球心处的点电荷移开,但仍在高斯面内.D.将高斯面半径缩小.

17.点电荷 Q 被曲面 S 所包围,从无穷远处引入另一点电荷 q 至曲面外一点,如图所示,则引入前后: ()

- A.曲面^S的电场强度通量不变,曲面上各点场强不变。
- B.曲面 S 的电场强度通量变化,曲面上各点场强不变.
- C.曲面 S 的电场强度通量变化,曲面上各点场强变化.
- D.曲面 S 的电场强度通量不变,曲面上各点场强变化.

18.两个同心均匀带电球面,半径分别为 R_a 和 R_b (R_a < R_b) ,所带电荷分别为 Q_a 和 Q_b .设某点与球心相距 R_a < r < R_b 时,该点的电场强度的大小为:()

$$\underbrace{\frac{1}{4\pi\varepsilon_0}\cdot\frac{\mathcal{Q}_a+\mathcal{Q}_b}{r^2}}_{\text{B.}} \underbrace{\frac{1}{4\pi\varepsilon_0}\cdot\frac{\mathcal{Q}_a-\mathcal{Q}_b}{r^2}}_{\text{B.}} \underbrace{\frac{1}{4\pi\varepsilon_0}\cdot\left(\frac{\mathcal{Q}_a}{r^2}+\frac{\mathcal{Q}_b}{R_b^2}\right)}_{\text{C.}} \underbrace{\frac{1}{4\pi\varepsilon_0}\cdot\frac{\mathcal{Q}_a}{r^2}}_{\text{D.}}$$

19.实验表明,在靠近地面处有相当强的电场,电场强度 $^{\frac{17}{2}}$ 垂直于地面向下,大小约为 $100~\mathrm{N/C}$;在离地面 $1.5~\mathrm{km}$ 高的地方, $^{\frac{17}{2}}$ 也是垂直于地面向下的,大小约为 $25~\mathrm{N/C}$.

- (1)假设地面上各处 痘 都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度
- (2)假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.已知:真空介电常量 $\left[arepsilon_0=8.85 imes10^{-12}~\mathrm{C}^2/\mathrm{N}$ $\mathrm{em}^2\right]$
- 20.图示一厚度为 d 的"无限大"均匀带电平板,电荷体密度为 $^{\mathcal{O}}$. 试求板内外的场强分布,并画出场强随坐标 x 变化的图线,即 $^{\mathcal{E}-x}$ 图线(设原点在带电平板的中央平面上, $^{\mathcal{O}x}$ 轴垂直于平板) .

21.{

如图所示,一厚为 b 的"无限大"带电平板 , 其电荷体密度分布为 $^{
ho=kx(0\leq x\leq b)}$,式中 k 为一正的常量.求:

- (1)平板外两侧任一点 P_1 和 P_2 处的电场强度大小;
- (2)平板内任一点 P 处的电场强度;
- (3)场强为零的点在何处?

22.图示两块"无限大"均匀带电平行平板,电荷面密度分别为 $^{+\sigma}$ 和 $^{-\sigma}$,两板间是真空.在两板间取一立方体形的高斯面,设每一面面积都是 $^{\mathfrak{S}}$,立方体形的两个面 $^{\mathfrak{M}}$ 、 $^{\mathfrak{S}}$,立方体形的两个面 $^{\mathfrak{M}}$ 、 $^{\mathfrak{S}}$, $^{\mathfrak{S}}$

23.一半径为R的"无限长"均匀带电圆柱面,其电荷面密度为G.该圆柱面内、外场强分布为 $\frac{r}{r}$ 表示在垂直于圆柱面的平面上,从轴线处引出的矢径 $\frac{\bar{E}(r)}{r} = \underline{r} = \underline{r}$

25.有两个电荷都是^{十q} 的点电荷,相距为^{2a}. 今以左边的点电荷所在处为球心,以^a 为半径作一球形高斯面. 在球面上取两块相等的小面积 ^{S_1} 和 ^{S_2},其位置如图所示. 设通过 ^{S_1} 和 ^{S_2} 的电场强度通量分别为 ^{Φ_1} 和 ^{Φ_2},通过整个球面的电场强度通量为 ^{Φ_S},则

 $A.\Phi_1 > \Phi_2$, $\Phi_S = q/\varepsilon_0$, $B.\Phi_1 < \Phi_2$, $\Phi_S = 2q/\varepsilon_0$

C. $\Phi_1 = \Phi_2$, $\Phi_S = q/\varepsilon_0$. D. $\Phi_1 < \Phi_2$, $\Phi_S = q/\varepsilon_0$

26.在点电荷 $^{+q}$ 的电场中,若取图中 P 点处为电势零点 ,则 M 点的电势为 ()

A. $\frac{q}{4\pi\varepsilon_0 a}$ B. $\frac{q}{8\pi\varepsilon_0 a}$ C. $\frac{-q}{4\pi\varepsilon_0 a}$ D. $\frac{-q}{8\pi\varepsilon_0 a}$

27.电荷面密度为+ $^{\sigma}$ 和 – $^{\sigma}$ 的两块"无限大"均匀带电的平行平板,放在与平面相垂直的 x 轴上的+ $^{\alpha}$ 和 – $^{\alpha}$ 位置上,如图 所示.设坐标原点 O 处电势为零,则在 $^{-\alpha}$ < x < $+\alpha$ 区域的电势分布曲线为 ()

A.1 B.2 C.3 D.4

28.如图,在点电荷 q 的电场中,选取以 q 为中心、 R 为半径的球面上一点 P 处作电势零点,则与点电荷 q 距离为 r 的 P "点的电势为()

30.有 N 个电荷均为 q 的点电荷,以两种方式分布在相同半径的圆周上:一种是无规则地分布,另一种是均匀分布.比较这两种情况下在过圆心 O 并垂直于圆平面的 z 轴上任一点 P (如图所示)的场强与电势,则有 ()

A.场强相等,电势相等 B.场强不等,电势不等 C.场强分量 E_x 相等,电势相等 D.场强分量 E_x 相等,电势不等 31.一"无限大"带负电荷的平面,若设平面所在处为电势零点,取 E_x 轴垂直电平面,原点在带电平面处,则其周围空间各点电势 E_x 随距离平面的位置坐标 E_x 变化的关系曲线为:()

A.1 B.2 C.3 D.4

32.如图所示,两个同心球壳.内球壳半径为 R_1 ,均匀带有电荷 Q ;外球壳半径为 R_2 ,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为 r 处的 P 点的场强大小及电势分别为:()

$$U = \frac{Q}{4\pi\varepsilon_0 R_1} \quad D = \frac{Q}{4\pi\varepsilon_0 R_1} \quad D = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \quad E = \frac{Q}{4\pi\varepsilon_0 r^2} \quad U = \frac{Q}{4\pi\varepsilon_0 r} \quad D = \frac{Q}{4\pi\varepsilon_0 r^2} \quad U = \frac{Q}{4\pi\varepsilon_0 R_1} \quad D = \frac{Q}{4\pi\varepsilon_0 r^2} \quad D = \frac{Q}{4\pi\varepsilon_0 R_1} \quad$$

33.如图所示,两个同心的均匀带电球面,内球面半径为 R_1 、带电荷 Q_1 ,外球面半径为 R_2 、带电荷 Q_2 .设无穷远处为电势零点,则在两个球面之间、距离球心为 r 处的 P 点的电势 U 为:()

$$\mathbf{A.} \frac{Q_1 + Q_2}{4\pi\varepsilon_0 r} \mathbf{B.} \frac{Q_1}{4\pi\varepsilon_0 R_1} + \frac{Q_2}{4\pi\varepsilon_0 R_2} \mathbf{C.} \frac{Q_1}{4\pi\varepsilon_0 r} + \frac{Q_2}{4\pi\varepsilon_0 R_2} \mathbf{D.} \frac{Q_1}{4\pi\varepsilon_0 R_1} + \frac{Q_2}{4\pi\varepsilon_0 r}$$

34.真空中一半径为 R 的球面均匀带电 Q ,在球心 Q 处有一电荷为 q 的点电荷,如图所示.设无穷远处为电势零点,则在球内离球心 Q 距离为 r 的 P 点处的电势为 ()

$$A \cdot \frac{q}{4\pi\varepsilon_0 r} B \cdot \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r} + \frac{Q}{R} \right) \cdot C \cdot \frac{q+Q}{4\pi\varepsilon_0 r} D \cdot \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r} + \frac{Q-q}{R} \right)$$

36.半径为 r 的均匀带电球面 1 ,带有电荷 q ,其外有一同心的半径为 R 的均匀带电球面 2 ,带有电荷 Q ,则此两球面之间的电势差 U_1-U_2 为:()

$$\mathbf{A} \cdot \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r} - \frac{1}{R} \right)_{\mathbf{B}} \cdot \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R} - \frac{1}{r} \right)_{\mathbf{C}} \cdot \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r} - \frac{Q}{R} \right)_{\mathbf{D}} \cdot \frac{q}{4\pi\varepsilon_0 r}$$

37.电荷 q 均匀分布在长为 2l 的细杆上,求在杆外延长线上与杆端距离为 a 的 P 点的电势 $^{(1)}$ 设无穷远处为电势零点 $^{(2)}$. 38.图示两个半径均为 R 的非导体球壳,表面上均匀带电,电荷分别为 $^{+Q}$ 和 $^{-Q}$,两球心相距为 d $^{(d)}$ $^{(2)}$ $^{(2)}$. 求两球心间的电势差 .

39.AC 为一根长为 2l 的带电细棒,左半部均匀带有负电荷,右半部均匀带有正电荷.电荷线密度分别为 $^{-1}$ 和 $^{-1}$ 和 $^{-1}$,如图所示.O 点在棒的延长线上,距 A 端的距离为 l .P 点在棒的垂直平分线上,到棒的垂直距离为 l .以棒的中点 B 为电势的零点.则 O 点电势 U = ____; P 点电势 U = ____ .

40.一半径为 R 的均匀带电圆盘,电荷面密度为 $^\sigma$,设无穷远处为电势零点,则圆盘中心 0 点的电势 $^U = __$.

42.如图所示,两同心带电球面,内球面半径为 r_1 = 5 cm,带电荷 q_1 = 3×10°C;外球面半径为 r_2 = 20 cm,带电荷 q_2 = -6×10°C,设无穷远处电势为零,则空间另一电势为零的球面半径 r = ____ .

43.{图示 BCD 是以 O 点为圆心,以 R 为半径的半圆弧,在 A 点有一电荷为 +q 的点电荷,O 点有一电荷为 -q 的点电荷.线段 $\overline{BA}=R$.现将一单位正电荷从 B 点沿半圆弧轨道 BCD 移到 D 点,则电场力所作的功为___.

44.已知一平行板电容器,极板面积为 S ,两板间隔为 d ,其中充满空气.当两极板上加电压 U 时,忽略边缘效应,两极板间的相互作用力 F = ___ .

45.电荷以相同的面密度 $^{\sigma}$ 分布在半径为 $^{r_1=10}$ cm 和 $^{r_2=20}$ cm 的两个同心球面上.设无限远处电势为零,球心处的电势为 $^{U_0=300}$ V.

- (1)求电荷面密度⁰.
- (2)若要使球心处的电势也为零,外球面上应放掉多少电荷? $\left[\mathcal{E}_0=8.85\times10^{-12}\ \mathrm{C}^2/\mathrm{N}$ •m $^2\right]$