Studio di funzione – Parametro variabile lambda

In caso di equazioni contenenti un parametro variabile λ , bisogna:

- 1) Ricondursi in forma: $f(x) = \lambda$
- 2) Studiare la funzione f(x) e disegnare una stima del grafico
- 3) Considerare l'equazione $f(x) = \lambda$ come lo studio delle intersezioni fra f(x) e la retta $g(x) = \lambda$ Dedurre quindi, basandosi sul grafico di f(x), per quali possibili valori della retta $y = \lambda$ varino i numeri di soluzioni

Esempio:

Calcolare , al variare di λ , il numero delle soluzioni di: $\log^4(x) - \lambda - 2\log^2(x) = 0$

Riscrivo come: $\log^4(x) - 2\log^2(x) = \lambda$

Studio la funzione: $f(x) = \log^4(x) - 2\log^2(x)$

• PARTE 1: Studio di f(x)

1) Studio Dominio:

$$D = \mathbb{R}^+ - \{0\}$$

2) Studio Segno:

Pongo f(x) > 0

Risolvo:
$$\log^4(x) - 2\log^2(x) > 0 \implies [\dots] \implies x < \frac{1}{e^{\sqrt{2}}} \lor x > e^{\sqrt{2}}$$

$$f(x)$$
 si trova sopra l'asse delle x per: $x < \frac{1}{e^{\sqrt{2}}} \, \forall \, x > e^{\sqrt{2}}$

$$f(x)$$
 si trova sotto l'asse delle x per: $\frac{1}{e^{\sqrt{2}}} < x < e^{\sqrt{2}}$

Cancello le zone dove la funzione non passa:

3) Studio simmetrie:

Non serve provare a verificare se f(x) è pari o dispari.

Basta osservare il grafico per capire che non è né pari né dispari.

4) Studio intersezioni con gli assi:

4.1) Asse x:

$$\begin{cases} y = f(x) \\ y = 0 \end{cases} \Rightarrow \text{Risolvo: } \log^4(x) - 2\log^2(x) = 0 \Rightarrow [\dots] \Rightarrow x = 1 \lor x = \frac{1}{e^{\sqrt{2}}} \lor x = e^{\sqrt{2}}$$

4.2) Asse y:

 $\begin{cases} y = f(x) \\ x = 0 \end{cases} \Rightarrow \text{Non posso risolvere } f(0), \text{ perché } x = 0 \text{ non appartiene al dominio di } f(x) \Rightarrow f(x) \text{ non interseca asse } y$

5) Ricerca asintoti:

5.1) Asintoti verticale

 $\lim_{x\to 0^-} f(x) \Rightarrow \text{Non lo studio, } 0^- \text{ non appartiene al dominio}$

$$\lim_{x \to 0^+} f(x) = [\dots] = +\infty \ \Rightarrow \ \mathsf{C'} \, \mathsf{e} \, \, \mathsf{un} \, \, \mathsf{asintoto} \, \, \mathsf{verticale} \colon \mathsf{per} \, x \to 0^+ \, , f(x) \to +\infty$$

5.2) Asintoti orizzontali

 $\lim_{x\to -\infty} f(x) \Rightarrow \text{Non lo studio}, x\to -\infty \text{ non appartiene al dominio}$

 $\lim_{x\to +\infty} f(x) = [\dots] = +\infty \ \Rightarrow \ \text{Non c'è un asintoto orizzontale (gli asintoti orizzontali sono per } y = \ell \text{ , con } \ell \text{ finito)}$

5.3) Asintoti obliqui

 $\lim_{x \to -\infty} f(x) \cdot \frac{1}{x} \Rightarrow \text{Non lo studio}, x \to -\infty \text{ non appartiene al dominio}$

 $\lim_{x \to +\infty} f(x) \cdot \frac{1}{x} = [\dots] = 0 \quad \Rightarrow \quad \text{Non c'è un asintoto obliquo}$

6) Studio monotonia

6.1) Studio zone monotonia

Pongo
$$f'(x) > 0 \Rightarrow \frac{4 \log^3(x) - 2 \cdot 2 \log(x)}{x} > 0 \Rightarrow [\dots] \Rightarrow \frac{1}{e} < x < 1 \lor x > e$$
 $f(x)$ è monotona crescente per: $\frac{1}{e} < x < 1 \lor x > e$

f(x) è monotona decrescente per: $0 < x < \frac{1}{e}$ V 1 < x < e

6.2) Individuazione punti di massimo e minimo

$$f\left(\frac{1}{e}\right) = -1$$

$$f(1) = 0$$

$$f(e) = -1$$

NB: Dal grafico, f(x) SEMBRA che abbia un asintoto obliquo, ma (come ad esempio per le parabole) in realtà f(x) è sempre lievemente curva, e non è possibile tracciare una tangente.

• PARTE 2: Variazione di λ

$$\log^4(x) - 2\log^2(x) = \lambda$$

Per $\lambda > 0$, ci sono 2 soluzioni positive

Per $\lambda = 0$, ci sono 3 soluzioni positive

Per $-1 < \lambda < 0$, ci sono 4 soluzioni positive

Per $\lambda = -1$, ci sono 2 soluzioni positive

Per $\lambda < -1$, non ci sono soluzioni

NB:

Una soluzione è positiva quando l'incrocio di f(x) con $g(x) = \lambda$ avviene a destra dell'asse delle y (dove x > 0). Viceversa, una soluzione è negativa quando l'incrocio avviene a sinistra dell'asse delle y (dove x < 0).

Provo a verificare con un risolutore online:

Esempio 1:

$$\log^4(x) - 2\log^2(x) = -1$$

2 soluzioni: $x = \frac{1}{e} \cong 0.37 \quad \forall \quad x = e \cong 2.72$

Esempio 2:

$$\log^4(x) - 2\log^2(x) = -\frac{1}{2}$$

4 soluzioni:
$$x = \frac{1}{e\sqrt{\frac{2+\sqrt{2}}{2}}} \approx 0.27 \quad \forall \quad x = \frac{1}{e\sqrt{\frac{2-\sqrt{2}}{2}}} \approx 0.58 \quad \forall \quad x = e\sqrt{\frac{2-\sqrt{2}}{2}} \approx 1.72 \quad \forall \quad x = e\sqrt{\frac{2+\sqrt{2}}{2}} \approx 3.7$$