Math 690 F2017: Topics in Data Analysis and Computation Homework 5

Xiuyuan Cheng

- 1. (Non-local means) Apply non-local means to the problem of (patch based) image denoising, and consider the following modifications
 - (i) Self-tuning of the σ in heat kernel: let

$$W_{ij} = \exp\{-\frac{\|x_i - x_j\|^2}{2\sigma_i\sigma_j}\},\,$$

where σ_i equals the distance of the k-the nearest neighbor of data point x_i . The parameter k is set to be a constant, e.g. k = 10.

(ii) The combination of both local and non-local means: let

$$W_{ij} = \exp\{-\frac{\|x_i - x_j\|^2}{2\sigma_i \sigma_j}\} \cdot \exp\{-\frac{\|u_i - u_j\|^2}{2\sigma^2}\}$$

where u_i stands for the position of the center pixel of the patch on the 2D grid.

What are the effects of these modifications? Compare the performance with e.g. PCA.

2. (\mathbb{Z}_2 synchronization) The problem is to recover some arbitrary signs $\{z_i\}_{i=1}^n$ on n nodes, $z_i = \pm 1$, from $\frac{n(n-1)}{2}$ noise-corrupted observations: when i < j,

$$G_{ij} = \begin{cases} z_i z_j, & \text{with prob. } p, \\ W_{ij}, & \text{with prob. } 1 - p, \end{cases}$$

and $G_{ij} = G_{ji}$, $G_{ii} = 1$, and W is a symmetric matrix consisting of i.i.d. random signs, i.e. $W_{ij} = \pm 1$ with prob. $\frac{1}{2}$. Apply spectral methods, i.e. using the eigenvector associated with the largest eigenvalue, to the problem, and study how the successful sign recovery depends on the correct-observation rate p and the number of nodes n.