Лекция II

1 Принцип Архимеда

Напомним, доказанное в прошлой лекции утверждение.

Утверждение 1. Пусть h > 0. Тогда для всякого $x \in \mathbb{R}$ существует единственное $k \in \mathbb{Z}$ такое, что

$$(k-1)h \le x < kh.$$

Непосредственно из принципа Архимеда вытекают следствия.

Следствие 1. $\forall \varepsilon > 0 \, \exists n \in \mathbb{N} \, make, \, umo \, \frac{1}{n} < \varepsilon.$

Следствие 2. Пусть $x \in \mathbb{R}$ такое, что $x \ge 0$, и для всех $n \in \mathbb{N}$ выполняется $x < \frac{1}{n}$. Тогда x = 0.

Следствие 3. $\forall x \in \mathbb{R} \ \exists ! k \in \mathbb{Z} \ make, \ umo \ k \leq x < k+1.$

Следствие 4. $\forall a, b \in \mathbb{R}$ таких, что a < b, $\exists r \in \mathbb{Q}$ такое, что a < r < b.

Доказательство. С помощью следствия 1 выберем $n \in \mathbb{N}$ так, что

$$0 < \frac{1}{n} < b - a$$
.

Выбрав $b=\frac{1}{n}$ и x=a, из принципа Архимеда получим, что существует $m\in\mathbb{Z}$, для которого выполняется

$$\frac{m-1}{n} \le a < \frac{m}{n}.$$

Предположим, что $b \leq \frac{m}{n}$. Тогда справедливо неравенство

$$\frac{m-1}{n} \le a < b \le \frac{m}{n},$$

из которого вытекает, что $b-a \le \frac{1}{n}$. Полученное противоречие доказывает, что $\frac{m}{n} < b$.

Положив
$$r = \frac{m}{n} \in \mathbb{Q}$$
, имеем $a < r < b$.

 $^{^1}$ Число k называется *целой частью числа x* и обозначается [x]. Разность $\{x\}\coloneqq x-[x]$ называют *дробной частью числа x*.

2 Лемма о вложенных отрезках

Определение 1. Функция натурального аргумента называется *последовательностью*. Значение этой функции в $n \in \mathbb{N}$ называется *п-ым членом последовательности*.

Определение 2. Пусть $\{X_i\}_{i=1}^{\infty}$ – последовательность множеств. Тогда $\{X_i\}_{i=1}^{\infty}$ называется *последовательностью вложенных множеств*, если

$$X_1\supset X_2\supset X_3\supset \ldots\supset X_n\supset \ldots.$$

Лемма 1 (Принцип Коши-Кантора). Пусть $\{I_i\}_{i=1}^{\infty}$ – последовательность вложенных отрезков $I_i = [a_i, b_i]$. Тогда существует $c \in \mathbb{R}$ такая, что для всех $i \in \mathbb{N}$ точка $c \in I_i$.

Более того, если в последовательности есть отрезки сколь угодно малой длины, то есть $\forall \varepsilon > 0 \, \exists k \in \mathbb{N}$ такое, что $|I_k| < \varepsilon$, то такая точка с является единственной.

Доказательство. Рассмотрим множества $A = \{a_i : i \in \mathbb{N}\}$ и $B = \{b_j : j \in \mathbb{N}\}$ – левых и правых границ отрезков I_i , соответственно. Между элементами этих множеств имеет место неравенство

$$a_i \leq b_j$$
.

В противном случае (то есть, когда $b_j < a_i$), отрезки I_i и I_j не пересекаются, а это противоречит тому, что по условию леммы $\{I_i\}_{i=1}^\infty$ является последовательностью вложенных отрезков.

Применим к множествам A и B аксиому полноты (аксиома VII из лекции I). По этой аксиоме существует $c \in \mathbb{R}$ такое, что для всех $a_i \in A$ и всех $b_j \in B$ выполняется $a_i \leq c \leq b_j$, а значит и неравенство

$$a_i \le c \le b_i$$

которое гласит, что $c \in I_i$ для всех $i \in \mathbb{N}$.

 $\hat{\Pi}$ редположим, что существуют две точки c_1 и c_2 , которые лежат во всех отрезках нашей последовательности. Если эти точки различны, то для определенности считаем, что $c_1 < c_2$. Итак для всех $i \in \mathbb{N}$ мы имеем, что

$$a_i \le c_1 < c_2 \le b_i$$
.

Очевидно, что разность $0 < c_2 - c_1$ меньше, чем длина $|I_i| := b_i - a_i$ любого отрезка I_i . Поэтому в последовательности $\{I_i\}_{i=1}^\infty$ не может быть отрезков, длина которых меньше, чем $c_2 - c_1 > 0$. Следовательно, если в последовательности есть отрезки сколь угодно малой длины, то существует единственная общая точка отрезков из последовательности.

3 Лемма о конечном покрытии

Определение 3. Система $S = \{X\}$ множеств *покрывает* множество Y, если $Y \subset \bigcup_{X \in S} X$. Сама система S называется при этом *покрытием* множества Y.

Лемма 2 (Принцип Бореля-Лебега). Пусть $S = \{U\}$ – покрытие отрезка [a,b] интервалами. Тогда существует конечный набор $\{U_1,\dots,U_d\}$ интервалов такой, что $[a,b]\subset\bigcup_{i=1}^d U_i$.

Иными словами, из любого покрытия отрезка интервалами можно извлечь конечное подпокрытие.

Доказательство. Обозначим через $I_1 = [a, b]$. Пусть отрезок I_1 нельзя покрыть конечным числом интервалов из системы S, тогда и одну из его половин тоже нельзя покрыть конечным числом интервалов из этой системы. Обозначим эту половину через I_2 . Повторив это рассуждение с отрезком I_2 , мы получим одну из его половин I_3 , которую нельзя покрыть конечным числом интервалов из S, и так далее.

Тем самым, возникает последовательность вложенных отрезков

$$I_1\supset I_2\supset I_3\supset \ldots\supset I_i\supset \ldots,$$

среди которых могут быть отрезки сколь угодно малой длины, так как $|I_i| = \frac{b-a}{2^i}$. По лемме о вложенных отрезках существует единственная точка $c \in \mathbb{R}$, лежащая во всех отрезках I_i этой последовательности.

Поскольку отрезок [a,b] содержит точку c, а сам содержится в объединении интервалов системы S, то найдется интервал $U=(\alpha,\beta)$ системы, который содержит точку c. Пусть $\varepsilon=\min\{c-\alpha,\beta-c\}$ — расстояние от точки c до ближайшей границы интервала. Поскольку в последовательности $\{I_i\}$ могут быть отрезки сколь угодно малой длины, то найдется отрезок I_k такой, что $|I_k|<\varepsilon$. В силу того, что $c\in I_k$, отрезок I_k содержится в интервале $U=(\alpha,\beta)$. Мы получили противоречие c тем, что отрезок I_k нельзя покрыть конечным набором интервалов системы.

4 Лемма о предельной точке

Определение 4. Пусть $X \subset \mathbb{R}$. Тогда точка $p \in \mathbb{R}$ называется *предельной* точкой множества X, если любая окрестность² этой точки содержит бесконечно много точек из X.

Лемма 3 (Принцип Больцано-Вейерштрасса). Пусть $X \subset \mathbb{R}$ – бесконечное ограниченное³ множество. Тогда существует хотя бы одна предельная точка множества X.

Доказательство. Поскольку X – ограниченное подмножество \mathbb{R} , то существует отрезок [a,b] такой, что X ⊂ [a,b]. Мы хотим показать, что хотя бы одна точка этого отрезка является предельной точкой множества X.

Предположим обратное: ни одна точка отрезка не является предельной точкой множества X. Это означает, что у любой точки $x \in [a,b]$ существует окрестность U(x) такая, что мощность $|U(x) \cap X| < \infty$. Иными словами, окрестность U(x) либо вообще не содержит точек из X, либо содержит лишь конечное

 $^{^{2}}$ Окрестность точки – это любой интервал, содержащий данную точку.

 $^{^3}$ Множество $X \subset \mathbb{R}$ называется *ограниченным*, если ∃C > 0 такая, что для всех $x \in X$ выполняется |x| < C.

число таких точек. Система интервалов $\{U(x)\}_{x\in[a,b]}$ образует покрытие отрезка [a,b] и самого множества X:

$$X \subset [a,b] \subset \bigcup_{x \in [a,b]} U(x).$$

По лемме о конечном покрытии (лемма 2) найдутся точки $x_1, \dots, x_d \in [a,b]$ такие, что

$$X \subset [a,b] \subset U(x_1) \cup ... \cup U(x_d).$$

Каждый из интервалов $U(x_i)$ содержит не более конечного числа точек из X, поэтому и объединение всех таких интервалов содержит не более конечного числа таких точек. Следовательно, множество X является конечным. Полученное противоречие доказывает лемму.