Details of the ARM Architecture

Sommerakademie in Leysin AG 2 – Effizientes Rechnen

John Doe

University of Awesomeness

August 2016

John Doe: ARM Architecture

Outline

ARM is a RISC computer architecture / processor design

- ARM is a RISC computer architecture / processor design
- Developed by Advanced RISC Machines Ltd. (ARM), formerly Acorn, first released 1985

- ARM is a RISC computer architecture / processor design
- Developed by Advanced RISC Machines Ltd. (ARM), formerly Acorn, first released 1985
- Licensing technology (IP) to semiconductor fabricators, NOT manufacturing themselves

- ARM is a RISC computer architecture / processor design
- Developed by Advanced RISC Machines Ltd. (ARM), formerly Acorn, first released 1985
- Licensing technology (IP) to semiconductor fabricators, NOT manufacturing themselves
- Mainly used in **embedded systems**, e.g. mobile phones, tablets, ...

- ARM is a RISC computer architecture / processor design
- Developed by Advanced RISC Machines Ltd. (ARM), formerly Acorn, first released 1985
- Licensing technology (IP) to semiconductor fabricators, NOT manufacturing themselves
- Mainly used in embedded systems, e.g. mobile phones, tablets, ...
- Advantages:
 - Low power comsumption
 - Price sensitive
 - Flexibility

- ARM is a RISC computer architecture / processor design
- Developed by Advanced RISC Machines Ltd. (ARM), formerly Acorn, first released 1985
- Licensing technology (IP) to semiconductor fabricators, NOT manufacturing themselves
- Mainly used in embedded systems, e.g. mobile phones, tablets, ...
- Advantages:
 - Low power comsumption
 - Price sensitive
 - Flexibility
- As of 2014 50 billion ARM chips produced thus far, 15 bn in 2015
 Share of about 90 % at smartphones

• RISC / CISC: Reduced / Complex Instruction Set Computing

- RISC / CISC: Reduced / Complex Instruction Set Computing
- RISC: simple, but powerful instructions, executed in one cycle
- CISC: more and complex instructions, more work done in the core

- RISC / CISC: Reduced / Complex Instruction Set Computing
- RISC: simple, but powerful instructions, executed in one cycle
- CISC: more and complex instructions, more work done in the core
- RISC architecture reduces hardware complexity and emphasizes software/compiler complexity

- RISC / CISC: Reduced / Complex Instruction Set Computing
- RISC: simple, but powerful instructions, executed in one cycle
- CISC: more and complex instructions, more work done in the core
- RISC architecture reduces hardware complexity and emphasizes software/compiler complexity

Summary

RISC reduces amount of hardware, CISC focuses performance

1 Instructions: Only basic instructions, complicated operations synthesized by elementary instructions, fixed length

- Instructions: Only basic instructions, complicated operations synthesized by elementary instructions, fixed length
- Pipelines: Instructions always decoded in one pipeline stage, no need for microprograms

- Instructions: Only basic instructions, complicated operations synthesized by elementary instructions, fixed length
- Pipelines: Instructions always decoded in one pipeline stage, no need for microprograms
- Registers: Larger, general-purpose register set. Serves as fast memory store

- Instructions: Only basic instructions, complicated operations synthesized by elementary instructions, fixed length
- Pipelines: Instructions always decoded in one pipeline stage, no need for microprograms
- Registers: Larger, general-purpose register set. Serves as fast memory store
- Load/Store architecture: Processor operates only on registers. Load and Store instructions access external memory

Registers

• Total of 16 registers, each 32-bit in size

Registers

- Total of 16 registers, each 32-bit in size
- Usually three dedicated registers:
 - r13 as stack pointer, designates stack memory frame
 - r14 as link register, return address for subroutines
 - r15 as program counter, address of next instruction

Registers

- Total of 16 registers, each 32-bit in size
- Usually three dedicated registers:
 - r13 as stack pointer, designates stack memory frame
 - r14 as link register, return address for subroutines
 - r15 as program counter, address of next instruction
- Additionally "Current Program Status Register" (CPSR)

ARM Instruction Set differs from a strict RISC implementation:

 Load/Store multiple instructions have variable cycle length, higher code density, better performance by sequential memory access

ARM Instruction Set differs from a strict RISC implementation:

- Load/Store multiple instructions have variable cycle length, higher code density, better performance by sequential memory access
- Conditional executions possible, reducing branches

ARM Instruction Set differs from a strict RISC implementation:

- Load/Store multiple instructions have variable cycle length, higher code density, better performance by sequential memory access
- Conditional executions possible, reducing branches
- Inline barrel shifter

ARM Instruction Set differs from a strict RISC implementation:

- Load/Store multiple instructions have variable cycle length, higher code density, better performance by sequential memory access
- Conditional executions possible, reducing branches
- Inline barrel shifter

Supported instruction set modes:

- Jazelle provides direct support of Java bytecode
- Thumb instructions

Thumb Instructions

• 16-Bit long instruction subset with most used instructions

Thumb Instructions

- 16-Bit long instruction subset with most used instructions
- Enhances code density substantially, about 30 % saving
- Important for embedded devices

Thumb Instructions

- 16-Bit long instruction subset with most used instructions
- ullet Enhances code density substantially, about 30 % saving
- Important for embedded devices
- Lack of performance due to less functionality

Basic Pipeline Scheme

- Up to ARM7 : Fetch Decode Execute
- With ARM9: Fetch Decode Execute Memory Write
- With ARM10 : Fetch Issue Decode Execute Memory Write
- Newer generations up to 14 stage pipeline (e.g. ARM Cortex-A8)
- ARM Cortex-A8 first to incorporate superscalar elements

Basic Pipeline Scheme

- Up to ARM7 : Fetch Decode Execute
- With ARM9 : Fetch Decode Execute Memory Write
- With ARM10 : Fetch Issue Decode Execute Memory Write
- Newer generations up to 14 stage pipeline (e.g. ARM Cortex-A8)
- ARM Cortex-A8 first to incorporate superscalar elements

Classical distinction between RISC and CISC blurs the more it has been developing

Power Consumption: RISC Architecture

- RISC architecture means processor design with less transistors
- ⇒ Less switching activity and thus less power consumption!

Power Consumption: RISC Architecture

- RISC architecture means processor design with less transistors
- ⇒ Less switching activity and thus less power consumption!

Comparison: ARM Cortex-A9 Intel Core i7-960

26 Million Transistors 731 Million Transistors

Power Consumption: RISC Architecture

- RISC architecture means processor design with less transistors
- ⇒ Less switching activity and thus less power consumption!

Comparison: ARM Cortex-A9 Intel Core i7-960

26 Million Transistors 731 Million Transistors

0.5 - 1.9 W 130 W (TDP)

Power Consumption: SoCs

• ARM design allows purpose-oriented optimization

Power Consumption: SoCs

- ARM design allows purpose-oriented optimization
- **System-on-a-Chip** (SoC): Suitable additional components melted together with ARM core
- Only required components ⇒ Only required power

• Due to low power consumption: heat dissipation generally lower

- Due to low power consumption: heat dissipation generally lower
- Hot spots can be problematic during longer computing times
- Difficult to spread the heat in little cases

- Due to low power consumption: heat dissipation generally lower
- Hot spots can be problematic during longer computing times
- Difficult to spread the heat in little cases
- Liquid cooling/heat pipe technique in smartphones

Figure: http://www.zdnet.com/article/
fujitsu-has-a-cool-liquid-answer-to-hot-spots-in-smartphones/

John Doe: ARM Architecture 19/1

The ARM Ecosystem

- Licensing model allows various companies to implement technology
- SoCs for every conceivable purpose powered by ARM cores
- Creating versatile, specialized market based on a common architecture
- ARM instruction set already dominant on smartphone market (Android and iOS)

Applications of ARM

Segments for ARM in 2015

	Devices Shipped (Million of Units)	TAM 2010 Chips	10 ARM Share	TAM 2015 Devices	Chips/ Unit	TAM 2015 Chips	Key Growth Areas for ARM
Mobile	Smart Phone	1,200	90%	1,100	3-5	4,000	←
	Feature Phone	1,900	90%	650	2-3	2,000	`
	Low End Voice	570	95%	700	1-2	1,300	
	Portable Media Players	300	70%	120	1-3	250	
	Mobile Computing* (apps only)	230	10%	750	1	750	←
7	PCs & Servers (apps only)	220	0%	250	1	250	
	Digital Camera	200	80%	150	1-2	250	
	Digital TV & Set-top-box	450	35%	500	1-4	1,200	—
<u>e</u>	Networking	750	25%	800	1-2	1,400	`
Non-Mobile	Printers	120	65%	200	1	200	
	Hard Disk & Solid State Drives	670	85%	1,100	1	1,100	←
å	Automotive	1,800	10%	2,200	1	2,200	
	Smart Card	5,400	6%	7,700	1	7,700	
l	Microcontrollers	5,800	10%	9,000	1	9,000	
	Others **	1,800	15%	2,000	1	2,000	Source: ABI, Gartner, Semico, Instat, IDC.
	Total	22,000	28%	27,000		34,000	and ARM estimates

Figure: http://www.cityindex.co.uk/market-analysis/market-news/40069092016/arm-shares-steady-on-firm-grip-of-smartphone-market/

John Doe: ARM Architecture 21/ 1

Competition with PC Market

Figure: http://gadgets.ndtv.com/mobiles/news/smart-logic-samsung-chips-away-at-intel-lead-234639

John Doe: ARM Architecture 22/1

64-bit ARM Architecture

- ARM Cortex-A50 series released in 2013 with 64-bit architecture
- First consumer device: iPhone 5S with Apple A7 processor
- Improvements:
 - Using 64-bit adresses, no 3.5 GB memory limitation
 - 31 instead of 15 general purpose registers

Future Markets

Mar	kets	for	ARM	1 in	2020
I I a I	1/6 63	101	/ \ \ \		

Devices Shipped (Million of Units)		2020 Devices	Chips per Device	TAM 2020 Chips	Device CAGR	Chip CAGR
Smart Mobile*	Apps Processors	2,800	1	2,800	8%	8%
Smart Mobile	Connectivity, Sensors, etc.		2-4	8,400		10%
Voice / Feature	Phones	150	1-2	250	-25%	-20%
DTV and STB		720	1-3	1,100	7%	8%
Consumer Ente	rtainment	150	1-2	200	-8%	-9%
Computer Perip	herals	700	1-2	1,400	4%	6%
Servers		20	Many	100	12%	12%
Networking Infr	astructure	1,600	1-2	1,800	5%	5%
Hard Disk and	SSD	700	1	700	1%	1%
	Apps Processors	90	1	450	1%	40%
Automotive	Other Automotive Chips		Many	4,500		10%
Smartcards		12,000	1	12,000	6%	6%
Microcontroller	s	17,000	1	17,000	10%	10%
Embedded Con	nectivity	5,000	- 1	5,000	100%	100%
Other **		3,000	1-2	4,000	30%	30%
Total				60,000		10%

^{*} Includes smartphones, tablets and laptops

Figure: http://www.nextplatform.com/2015/10/06/why-are-we-still-waiting-for-arm-servers/

25/1

Key Growth Areas for ARM Mobile Apps

> Enterprise Infrastructure

Embedded intelligence

Source: Gartner, IDC, WSTS, and ARM estimates

Enterprise

Embedded

^{* *} Includes other applications not listed

• Radical new approach to processor design

- Radical new approach to processor design
- Key concept: Register Belt instead of random access registers
- Shall improve performance by less register accesses

Figure: http://millcomputing.com/blog/wp-content/uploads/2014/02/intro_belt.png

John Doe: ARM Architecture

- Radical new approach to processor design
- Key concept: Register Belt instead of random access registers
- Shall improve performance by less register accesses

Problems:

Very, very, complex programming

<insert obligatory cookie/potato meme here>

Sänk ju!