Padrão arquitetural hierárquico (tiered)

Grupo 2

Sistemas Distribuídos

Assuntos abordados

- Definição
- Vantagens
- Desvantagens

Definição

Definição

INF INSTITUTO DE INFORMÁTICA

Como é definido o padrão arquitetural hierárquico?

Escalabilidade: Um sistema distribuído com uma arquitetura hierárquica permite que a carga seja distribuída de maneira eficiente entre os nós de processamento. Isso facilita a escalabilidade do sistema, permitindo que ele lide com um aumento na demanda de maneira eficaz.

Desempenho: A arquitetura hierárquica facilita a otimização do desempenho, já que tarefas específicas podem ser atribuídas a nós específicos em diferentes níveis da hierarquia. Os nós de processamento mais próximos da camada superior podem lidar com tarefas mais complexas e de alto nível, enquanto os nós nas camadas inferiores podem ser responsáveis por tarefas mais simples e específicas.

Tolerância a falhas: Em um sistema hierárquico, a falha de um único nó ou de uma camada não afeta <u>necessariamente</u> todo o sistema. O impacto de uma falha é limitado ao escopo da camada ou do nó afetado.

Gerenciamento simplificado: A estrutura hierárquica facilita o gerenciamento e a administração do sistema distribuído. As responsabilidades podem ser divididas de forma clara entre as camadas e os nós, tornando mais fácil a implementação de políticas de segurança, gerenciamento de recursos e controle de acesso. Além disso, a manutenção e atualização do sistema podem ser mais simples, pois as alterações podem ser implementadas em camadas ou nós específicos, sem afetar o sistema como um todo

INFORMÁTICA

Modularidade: O padrão hierárquico promove a modularidade e a reutilização de componentes. Cada camada ou nó pode ser projetado como um módulo independente, com interfaces claras definindo a interação entre eles. Isso permite que diferentes partes do sistema sejam desenvolvidas, testadas e atualizadas separadamente, facilitando o desenvolvimento ágil e a introdução de novas funcionalidades.

Desvantagens

INSTITUTO DE INFORMÁTICA

Ponto único de falha: O padrão hierárquico pode ter um ponto único de falha se um nó ou camada crítica falhar. Se a camada superior ou um nó centralizado falhar, isso pode afetar todo o sistema distribuído.

Escalabilidade limitada: À medida que o sistema se expande, adicionar mais nós ou camadas pode se tornar complexo, Isso pode resultar em gargalos ou dificuldades para atender a demanda crescente.

Complexidade de gerenciamento: O gerenciamento das dependências entre os componentes também pode se tornar mais complexo, à medida que a hierarquia aumenta.

Sobrecarga de comunicação: A comunicação entre as camadas ou nós geralmente precisa passar por vários níveis intermediários. Isso pode resultar em uma sobrecarga de comunicação, com um aumento no tempo e no consumo de recursos necessários para transmitir informações entre as partes do sistema, afetando o desempenho.

Rigidez na adição ou remoção de nós: A adição de novos nós requer ajustes na hierarquia existente e na redistribuição de tarefas. Da mesma forma, a remoção de nós pode ser complicada e exigir uma reorganização cuidadosa