### CS 5/6110, Software Correctness Analysis, Spring 2022

Ganesh Gopalakrishnan School of Computing University of Utah Salt Lake City, UT 84112



Summary of the basics of Static Analysis

- (0) where we left off was Live Variable Analysis
  Discuss that using slide-deck #4 of Andersson-Moller
- (1) Basics from PhD thesis by Dorra Ben Khalifa

https://tel.archives-ouvertes.fr/tel-03509266

- (2) from Moller/Schwartzbach
- (3) from the SPARTA team (Android)

## Purpose of this lecture

- To familiarize you with resources to learn and practice static analysis (these are more practical tools below)
  - Eva tool (part of Frama-C)
  - ASTREE tool (academic groups have used it)
    - industrial-strength
      - Used by Airbus, French companies, ...
  - Coverity, Galois Inc tools, ...
    - Similar deal in the US
  - SPARTA
    - Facebook's academic incubator
    - Has a good set of tutorials

## Purpose of this lecture

- To familiarize you with resources to learn and pedagogical static analysis
  - Schwartzbach's notes
    - SCALA implementation
    - LLVM Implementation
  - https://cs.au.dk/~amoeller/spa/

## Excerpts from the Ben Khalifa thesis

#### 2.2 Static Analysis by Abstract Interpretation

Static program analysis aims at automatically determining whether a program satisfies some particular properties such as "the program never dereferences a null pointer", "the program never divides by zero", "the user-specified assertions are never violated", etc. Abstract interpretation [CC77a, CH78, CC92] provides the mathematical theory to design such analysis. It consists of a general theory for approximating the behavior of programs, developed by Patrick Cousot and Radhia Cousot in the late 1970s, as a unifying framework for static program analysis. Abstract interpretation gathers the concepts necessary to build an approximate static analysis.

## Excerpts from the Ben Khalifa thesis

**Definition 2.5** (Relation). A binary relation  $\mathcal{R}$  between two sets  $\mathcal{A}$  and  $\mathcal{B}$  is a subset of the Cartesian product  $\mathcal{A} \times \mathcal{B}$ . We often write  $x \mathcal{R} y$  for  $(x, y) \in \mathcal{R}$ . We present hereafter some important properties which may hold for a binary relation  $\mathcal{R}$  over a set  $\mathcal{S}$ :

- $\forall x \in \mathcal{S} : x \mathcal{R} x$  (reflexivity),
- $\forall x \in \mathcal{S} : \neg(x \mathcal{R} x)$  (irreflexivity),
- $\forall x, y \in \mathcal{S} : x \mathcal{R} y \Rightarrow y \mathcal{R} x$  (symmetry),
- $\forall x, y \in S : x \mathcal{R} y \land y \mathcal{R} x \Rightarrow x = y$  (anti-symmetry),
- $\forall x, y, z \in \mathcal{S} : x \mathcal{R} y \land y \mathcal{R} z \Rightarrow x \mathcal{R} z$  (transitivity),
- $\forall x, y \in S : x \mathcal{R} y \vee y \mathcal{R} x$  (totality).



**Figure 2.3:** Hasse diagram for the partial order set of  $(\mathcal{P}(a, b, c), \subseteq)$ .

**Definition 2.6** (Partial Order, Poset). A Partial order  $\sqsubseteq$  on a set  $\mathcal{P}$  is a relation  $\sqsubseteq \in \mathcal{P} \times \mathcal{P}$  that is reflexive, anti-symmetric and transitive. A partial order set, or poset,  $(\mathcal{P}, \sqsubseteq)$  is a set  $\mathcal{P}$  equipped by a partial order  $\sqsubseteq$ .

**Definition 2.7** (Lower and Upper Bounds). Let  $(\mathcal{P}, \sqsubseteq)$  be a poset, and  $\mathcal{S} \subseteq \mathcal{P}$ . An element  $u \in \mathcal{P}$  is an *upper bound* of  $\mathcal{S}$  if  $\forall s \in \mathcal{S}, s \sqsubseteq u$ . The element u is the *least upper bound*, or *join*, of  $\mathcal{S}$ , denoted by  $\sqcup \mathcal{S}$ , if  $u \sqsubseteq u'$  for each upper bound u' of  $\mathcal{S}$ . Similarly, the element  $l \in \mathcal{P}$  is a *lower bound* of  $\mathcal{S}$  if  $\forall s \in \mathcal{S}, u \sqsubseteq s$ . The element l is the *greatest lower bound*, or *meet*, of  $\mathcal{S}$ , denoted by  $\sqcap \mathcal{S}$ , if  $l' \sqsubseteq l$  for each lower bound l' of  $\mathcal{S}$ .



**Figure 2.3:** Hasse diagram for the partial order set of  $(\mathcal{P}(a, b, c), \subseteq)$ .

**Definition 2.8** (Chain and Complete Partial Order). Let  $(\mathcal{P},\sqsubseteq)$  be a poset. A *chain*  $\mathcal{C} = (x_i)_{i\in\mathbb{N}}$  is a monotone sequence of elements of  $\mathcal{P}$ :  $x_0 \sqsubseteq x_1 \sqsubseteq \cdots \sqsubseteq x_n \sqsubseteq x_{n-1} \sqsubseteq \cdots$ . A *complete partial order* (*CPO*) is a poset  $(\mathcal{P},\sqsubseteq)$  such that  $\mathcal{P}$  has a least element  $\bot$  and every chain  $\mathcal{C}$  has a least upper bound  $\bot \mathcal{C}$ .

**Definition 2.9** (Lattice). A lattice  $(\mathcal{P}, \sqsubseteq, \sqcup, \sqcap)$  is a poset where each pair of elements  $a, b \in \mathcal{P}$ , has a least upper bound denoted by  $a \sqcup b$ , and a greatest lower bound denoted by  $a \sqcap b$ . If it exists, the least element  $\sqcup \mathcal{P}$  is denoted  $\bot$ , called *bottom*. The greatest element  $\sqcap \mathcal{P}$  is denoted  $\top$ , called *top*.

**Example 2.4.** An integer interval lattice can be constructed as follows:

$$(\{[a,b]|a,b\in\mathbb{Z},a\leqslant b\}\cup\{\bot\},\subseteq,\sqcup,\cap).$$

Here, the set of integers [a,b] is comprised between a and b with  $a \le b$ . The smallest element  $\bot$  represents the empty set  $\varnothing$ . The partial order is  $\subseteq$  and  $\cap$  is the greatest lower bound, as intervals are closed under intersection. However, they are not closed under set union, hence, the least upper bound can be defined as  $[a,b] \sqcup [a',b'] = [\min(a,a'),\max(b,b')]$ , while  $\exists x : x \sqcup \bot = \bot \sqcup x = x$ . Indeed,  $[a,b] \sqcup [a',b']$  computes the smallest interval containing intervals [a,b] and [a',b'].

**Definition 2.10** (Complete Lattice). A complete lattice  $(\mathcal{P}, \sqsubseteq, \sqcup, \neg, \bot, \top)$  is a poset such that for any subset of  $\mathcal{P}$ , possibly infinite, the least upper bound and the greatest lower bound are defined. Noting that in a complete lattice  $\top$  and  $\bot$  always exist.

**Example 2.5.** The integer interval lattice of Example 2.4 is not a complete lattice as the infinite family of intervals  $\{[0,i] \mid i \ge 0\}$  has no least upper bound.

**Definition 2.11** (Monotonic Function). Let  $(\mathcal{P}_1,\sqsubseteq_1)$  and  $(\mathcal{P}_2,\sqsubseteq_2)$  be two posets. A function  $f:\mathcal{P}_1\to\mathcal{P}_2$  is said to be *monotonic* if and only if:

$$\forall x, y \in \mathcal{P}_1, x \sqsubseteq_1 y \Rightarrow f(x) \sqsubseteq_2 f(y) . \tag{2.9}$$

**Definition 2.12** (Continuous Function). Let  $(\mathcal{P}_1,\sqsubseteq_1)$  and  $(\mathcal{P}_2,\sqsubseteq_2)$  be two posets. A function  $f:\mathcal{P}_1\to\mathcal{P}_2$  is said to be *continuous* if it preserves existing least upper bounds of chains that is, for each chain  $\mathcal{C}\subseteq\mathcal{P}_1$ , if  $\sqcup\mathcal{C}$  exists then we have:

$$f(\sqcup \mathcal{C}) = \sqcup \{ f(x) | x \in \mathcal{C} \} . \tag{2.10}$$

#### 2.2.2 Fixpoints

Once a language includes loops, the analysis needs to build a loop invariant, holding before entering the loop and after each iteration, upon re-entering the body. This invariant corresponds to a *fixpoint*. In the following, we recall the fundamental theorems due to Alfred Tarski [Tar55] and Stephen Cole Kleene [Bir67].

**Definition 2.13** (Fixpoint Computation). Let  $(\mathcal{P}, \sqsubseteq, \sqcup, \sqcap)$  be a lattice and let  $F : \mathcal{P} \to \mathcal{P}$ . An element  $x \in \mathcal{P}$  is called a *fixpoint* of F if F(x) = x. Similarly, it is called a *pre-fixpoint* if  $x \sqsubseteq F(x)$ , and a *post-fixpoint* if  $F(x) \sqsubseteq x$ . If there exists, the *least fixpoint* of F, denoted by  $\mathsf{lfp}(F)$ , is a fixpoint of F such that, for every fixpoint  $x \in \mathcal{P}$  of F,  $\mathsf{lfp}(F) \sqsubseteq x$ . The *greatest fixpoint* of F denoted by  $\mathsf{gfp}(F)$  is defined similarly.

**Theorem 2.1** (Tarski's Fixpoint Theorem). The set of fixpoints of a monotonic function  $F: \mathcal{P} \to \mathcal{P}$  over a complete lattice is also a complete lattice.

*Proof.* By Tarski in [Tar55].

In particular, Tarski's theorem implies that a monotonic function among a complete lattice has a least fixpoint lfp.

**Theorem 2.2** (Kleene's Fixpoint Theorem). Let  $(\mathcal{P}, \sqsubseteq)$  be a CPO and let  $F : \mathcal{P} \to \mathcal{P}$  be a continuous function. Then F has a least fixpoint such that

$$\mathsf{lfp}(F) = \sqcup \{F^i(\bot) \mid i \in \mathbb{N}\} \ . \tag{2.11}$$

*Proof.* Found in [Cou78].

Figure 2.4: A simple integer loop and its semantic equations.

#### iteration 1:

$$x_2^1 = ]-\infty,99] \cap ([0,0] \cup \bot)$$
  
=  $[0,0]$   
 $x_3^1 = [0,0] + [1,1]$   
=  $[1,1]$   
 $x_4^1 = [100,+\infty[\cap([0,0] \cup [1,1])$   
=  $\bot$ 

#### iteration 2:

$$x_{2}^{2} = ]-\infty,99] \cap ([0,0] \cup [1,1])$$

$$= [0,1]$$

$$x_{3}^{2} = [0,1] + [1,1]$$

$$= [1,2]$$

$$x_{4}^{2} = [100, +\infty[\cap([0,0] \cup [1,2])$$

$$= \bot$$

#### **iteration** i + 1 (i < 100):

$$x_2^{i+1} = ] - \infty,99] \cap ([0,0] \cup [1,i])$$

$$= [0,i]$$

$$x_3^{i+1} = [0,i] + [1,1]$$

$$= [1,i+1]$$

$$x_4^{i+1} = [100, +\infty[\cap([0,0] \cup [1,i])$$

$$= \bot$$

**Definition 2.16** (Widening). Let  $(\mathcal{D},\sqsubseteq)$  be a poset. A widening operator  $\nabla:(\mathcal{D}\times\mathcal{D})\to\mathcal{D}$  is such that:

- 1.  $\forall x, y \in \mathcal{D}$ , we have  $x \sqsubseteq x \bigtriangledown y$  and  $y \sqsubseteq x \bigtriangledown y$ ;
- 2. for all increasing chains  $x_0 \sqsubseteq x_1 \sqsubseteq \ldots \sqsubseteq x_n \sqsubseteq \ldots$ , the increasing chain

$$y_0 = x_0$$

0 1

$$\forall n \in \mathbb{N}, y_{n+1} = y_n \bigtriangledown x_{n+1}$$

is ultimately stationary,  $\exists l \ge 0 : \forall j \ge l : y_j = y_l$ .

#### **Example 2.9.** Taking again Example 2.7, the widening operator $\nabla$ is defined by:

Ben K

$$[a,b] \bigtriangledown [a',b'] = [c,d] \quad with \quad c = \begin{cases} -\infty & \text{if } a' \leqslant a \\ a & \text{otherwise} \end{cases} et \quad d = \begin{cases} +\infty & \text{if } b \leqslant b' \\ b & \text{otherwise} \end{cases}.$$

Narrowing helps to recover precision lost by widening steps. It is used to enforce or accelerate the convergence of decreasing iteration sequences. It is defined as follows:

**Definition 2.17** (Narrowing). Let  $(\mathcal{D}, \sqsubseteq)$  be a poset. A narrowing operator  $\triangle : (\mathcal{D} \times \mathcal{D}) \to \mathcal{D}$  is such that:

- 1. for all element  $x, y \in \mathcal{D}$ , if  $x \supseteq y$  we have  $x \supseteq (x \triangle y) \supseteq y$ ;
- 2. for all decreasing chains  $x_0 \supseteq x_1 \supseteq \ldots \supseteq x_n \supseteq \ldots$ , the decreasing chain

$$y_0 = x_0$$

$$\forall n \in \mathbb{N}, y_{n+1} = y_n \triangle x_{n+1}$$

is ultimately stationary,  $\exists l \ge 0 : \forall j \ge l : y_j = y_l$ .

**Example 2.10.** The narrowing operator  $\triangle$  on the interval domain of Example 2.7 is:

$$[a,b] \triangle [a',b'] = [c,d]$$
 with  $c = \begin{cases} a' & \text{if } a = -\infty \\ a & \text{otherwise} \end{cases}$   $d = \begin{cases} b' & \text{if } b = +\infty \\ b & \text{otherwise} \end{cases}$ .

#### Widening steps:

$$x_2^{10} = [0, 9] \nabla [0, 10]$$

$$= [0, \infty[$$

$$x_3^{10} = [0, \infty[+[1, 1]$$

$$= [1, \infty[$$

$$x_4^{10} = [100, \infty[ \cap ([0, 0] \cup [1, \infty[)$$

$$= [100, \infty[$$

#### Narrowing steps:

$$x_2^{11} = [0, \infty[\triangle[0, 99]]$$

$$= [0, 99]$$

$$x_3^{11} = [0, 99] + [1, 1]$$

$$= [1, 100]$$

$$x_4^{11} = [100, \infty[\cap([0, 0] \cup [1, 100])]$$

$$= [100, 100]$$

Figure 2.6: Widening and narrowing steps of the example of Figure 2.4

.

A good intro to widening and narrowing in the context of SPARTA (of Facebook) appears in <a href="https://youtu.be/\_fa7vkVJhF8">https://youtu.be/\_fa7vkVJhF8</a>

# Widening / Narrowing

- Widening in Sparta seems to be based on existing programlevel constraints
  - Apparently not practical always
  - See Slide 23 of Moller/Andersson
    - McCarthy's "91 function"!
    - http://www.cs.us.es/~mjoseh/pub/Proving\_termination\_with\_multiset\_orderings\_in\_PVS.pdf
    - https://www.cs.umd.edu/~mvz/handouts/wift-tutorial.pdf
- Narrowing "not implemented" in Sparta

# Cool things in the SPARTA talk

#### Making things fast: Bourdoncle's Algorithm

Classic dataflow analysis: Every time the variables in any block change, repeat the analysis on **all** basic blocks in method until fixed point is reached

To get to a fixed point more quickly, we want to iterate on innermost loops first

To do that, we need to decompose the CFG into nested loops:

"Tarjan's SCC algorithm applied recursively"
Parallel implementation available soon!

