Confluence for Local Lambda-Mu Calculus

Peng Fu Computer Science, The University of Iowa

last edited: July 2, 2013

Abstract

This note is taken directly from my comprehensive exam, modulo some re-organizations.

1 Hardin's Interpretation Method

Sometimes it is inevitable to deal with reduction systems that contains more than one reduction, for example, $(\Lambda, \{ \to_{\beta}, \to_{\eta} \})$. Confluence problem for this kind of system require some nontrivial efforts to prove. Hardin's interpretion method [3] provide a way to deal with some of those reduction systems.

Lemma 1 (Interpretation lemma). Let \rightarrow be $\rightarrow_1 \cup \rightarrow_2$, \rightarrow_1 being confluent and strongly normalizing. We denote by $\nu(a)$ the \rightarrow_1 -normal form of a. Suppose that there is some relation \rightarrow_i on \rightarrow_1 normal forms satisfying:

$$\rightarrow_i \subseteq \twoheadrightarrow$$
, and $a \rightarrow_2 b$ implies $\nu(a) \twoheadrightarrow_i \nu(b)$ (†)

Then the confluence of \rightarrow_i implies the confluence of \rightarrow .

Proof. So suppose \to_i is confluent. If $a \to a'$ and $a \to a''$. So by (\dagger) , $\nu(a) \to_i \nu(a')$ and $\nu(a) \to_i \nu(a'')$. Notice that $t \to_1^* t'$ implies $\nu(t) = \nu(t')$ (By confluence and strong normalizing of \to_1). By confluence of \to_i , there exists b such that $\nu(a') \to_i b$ and $\nu(a'') \to_i b$. Since $\to_i, \to_1 \subseteq \to$, we got $a' \to \nu(a') \to b$ and $a'' \to \nu(a'') \to b$. Hence \to is confluent.

Hardin's method reduce the confluence problem of $\to_1 \cup \to_2$ to \to_i , given the confluence and strong normalizing of \to_1 , this make it possible to apply Tait-Martin-Löf's (Takahashi's) method to prove confluence of \to_i .

2 Local $\lambda\mu$ Calculus

We now show an application of Hardin's method on a concrete example, this example arise naturally in proving type preservation for Selfstar. The approach we adopt is similar to the one in [2].

Definition 1 (Local Lambda Mu Terms).

```
Terms t ::= x \mid \lambda x.t \mid tt' \mid \mu t
Closure \mu ::= \{x_i \mapsto t_i\}_{i \in \mathcal{I}}
```

The closure is basically a set of recursively defined definitions. Let \mathcal{I} be a finite nonempty index set. For $\{x_i \mapsto t_i\}_{i \in \mathcal{I}}$, we require for any $1 \leq i \leq n$, the set of free variables of t_i , $\mathsf{FV}(t_i) \subseteq dom(\mu) = \{x_1, ..., x_n\}$ and we do not allow reduction, definition substitution, substitution inside the closure, we call it *local property*, without this property, we are in the dangerous of losing confluence property(see [1] for a detailed discussion). $\mu \in t$ means the closure μ appears in t. $\vec{\mu}t$ denotes $\mu_1...\mu_n t$. $[t'/x](\mu t) \equiv \mu([t'/x]t)$. So $\mathsf{FV}(\mu t) = \mathsf{FV}(t) - dom(\mu)$.

Definition 2 (Beta-Reductions).

$$\frac{(x_i \mapsto t_i) \in \mu}{(\lambda x.t)t' \to_{\beta} [t'/x]t} \quad \frac{(x_i \mapsto t_i) \in \mu}{\mu x_i \to_{\beta} \mu t_i} \quad \frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'} \quad \frac{t \to_{\beta} t''}{tt' \to_{\beta} t''t'} \quad \frac{t' \to_{\beta} t''}{tt' \to_{\beta} tt''} \quad \frac{t \to_{\beta} t'}{\mu t \to_{\beta} \mu t'}$$

Definition 3 (Mu-Reductions).

$$\frac{dom(\mu)\#\mathsf{FV}(t)}{\mu t \to_{\mu} t} \quad \frac{t}{\mu(\lambda x.t) \to_{\mu} \lambda x.\mu t} \quad \frac{t \to_{\mu} t'}{\mu(t_1 t_2) \to_{\mu} (\mu t_1)(\mu t_2)} \quad \frac{t \to_{\mu} t'}{\lambda x.t \to_{\mu} \lambda x.t'}$$

$$\frac{t' \to_{\mu} t''}{t t' \to_{\mu} t t''} \qquad \frac{t \to_{\mu} t'}{t t' \to_{\mu} t'' t'} \qquad \frac{t \to_{\mu} t'}{\mu t \to_{\mu} \mu t'}$$

2.0.1 Confluence of Local λ_{μ} Calculus

Lemma 2. \rightarrow_{μ} is strongly normalizing and confluent.

Definition 4 (μ -Normal Forms).

$$n ::= x \mid \mu x_i \mid \lambda x.n \mid nn'$$

We require $x_i \in dom(\mu)$.

Definition 5 (μ -Normalize Function).

```
m(x) := x m(\lambda y.t) := \lambda y.m(t)

m(t_1t_2) := m(t_1)m(t_2) m(\vec{\mu}y) := y \text{ if } y \notin dom(\vec{\mu}).

m(\vec{\mu}y) := \mu_i y \text{ if } y \in dom(\mu_i). m(\vec{\mu}(tt')) := m(\vec{\mu}t)m(\vec{\mu}t')

m(\vec{\mu}(\lambda x.t)) := \lambda x.m(\vec{\mu}t).
```

Lemma 3. Let Φ denote the set of μ normal form, for any term t, $m(t) \in \Phi$.

Proof. One way to prove this is first identify t as $\overrightarrow{\mu_1}t'$, here $\overrightarrow{\mu_1}$ means there are zero or more closures and t' does not contains any closure at head position. Then we can proceed by induction on the structure of t':

Base Cases: t' = x, obvious.

Step Cases: If $t' = \lambda x.t''$, then $m(\overrightarrow{\mu_1}(\lambda x.t'')) \equiv \lambda x.m(\overrightarrow{\mu_1}t'')$. Now we can again identify t'' as $\overrightarrow{\mu_2}t'''$, where t''' does not have any closure at head position. Since t''' is structurally smaller than $\lambda x.t''$, by IH, $m(\overrightarrow{\mu_1}\overrightarrow{\mu_2}t''') \in \Phi$, thus $m(\overrightarrow{\mu_1}(\lambda x.t'')) \equiv \lambda x.m(\overrightarrow{\mu_1}t'') \in \Phi$.

For $t' = t_1 t_2$, we can argue similarly as above.

Note that the last three rules follows from the first rule. For the second one, because $n \to_{\beta} t$ implies $\lambda x.n \to_{\beta} \lambda x.t$ and $m(\lambda x.t) \equiv \lambda x.m(t)$. The others follow similarly.

Definition 7 (Parallelization).

Thriffin 7 (Paranelization).
$$\frac{(x_i \mapsto t_i) \in \mu}{\mu x_i \Rightarrow_{\beta \mu} m(\mu t_i)} \qquad \frac{n_1 \Rightarrow_{\beta \mu} n'_1 \quad n_2 \Rightarrow_{\beta \mu} n'_2}{(\lambda x. n_1) n_2 \Rightarrow_{\beta \mu} m([n'_1/x] n'_2)}$$

$$\frac{n \Rightarrow_{\beta \mu} n'}{\lambda x. n \Rightarrow_{\beta \mu} \lambda x. n'} \qquad \frac{n' \Rightarrow_{\beta \mu} n''' \quad n \Rightarrow_{\beta \mu} n''}{nn' \Rightarrow_{\beta \mu} n''n'''}$$

Lemma 4. $\rightarrow_{\beta\mu}\subseteq \Rightarrow_{\beta\mu}\subseteq \rightarrow_{\beta\mu}^*$.

Lemma 5. If $n_2 \Rightarrow_{\beta\mu} n'_2$, then $m([n_2/x]n_1) \Rightarrow_{\beta\mu} m([n'_2/x]n_1)$.

Proof. By induction on the structure of n_1 . We list a few non-trivial cases:

Base Cases: $n_1 = x$, $n_1 = \mu x_i$, Obvious.

Step Case: $n_1 = \lambda y.n$. We have $m(\lambda y.[n_2/x]n) \equiv \lambda y.m([n_2/x]n) \stackrel{IH}{\Rightarrow}_{\beta\mu} \lambda y.m([n_2'/x]n) \equiv m(\lambda y.[n_2'/x]n)$.

Step Case: $n_1 = nn'$. We have $m([n_2/x]n[n_2/x]n') \equiv m([n_2/x]n)m([n_2/x]n') \stackrel{IH}{\Rightarrow}_{\beta\mu} m([n_2'/x]n)m([n_2'/x]n') \equiv m([n_2/x]n)m([n_2/x]n') \stackrel{IH}{\Rightarrow}_{\beta\mu} m([n_2/x]n') \stackrel{IH}{\Rightarrow}_{\beta\mu} m($ $m([n_2'/x]n[n_2'/x]n).$

Lemma 6. $m(m(t)) \equiv m(t)$ and $m([m(t_1)/y]m(t_2)) \equiv m([t_1/y]t_2)$.

Proof. The first equality is by lemma 3. For the second equality, we prove it through similar method as lemma 3: We identify t_2 as $\overrightarrow{\mu_1}t_2'$, t_2' does not contains any closure at head position. We proceed by induction on the structure of t_2' :

Base Cases: For $t'_2 = x$, we use $m(m(t)) \equiv m(t)$.

Step Cases: If $t'_2 = \lambda x.t''_2$, then $m(\overrightarrow{\mu_1}(\lambda x.[t_1/y]t''_2)) \equiv \lambda x.m(\overrightarrow{\mu_1}([t_1/y]t''_2)) \equiv \lambda x.m(\overrightarrow{\mu_1}\overrightarrow{\mu_2}([t_1/y]t''_2))$, where t_2'' as $\overrightarrow{\mu_2}t_2'''$ and t_2''' does not have any closure at head position. Since t_2''' is structurally smaller than $\lambda x.t_2''$, $m([m(t_1)/y]m(\overrightarrow{\mu_1}(\lambda x.t_2'')))$

For $t_2' = t_a t_b$, we can argue similarly as above.

Lemma 7. If $n_1 \Rightarrow_{\beta\mu} n'_1$ and $n_2 \Rightarrow_{\beta\mu} n'_2$, then $m([n_2/x]n_1) \Rightarrow_{\beta\mu} m([n'_2/x]n'_1)$.

Proof. We prove this by induction on the derivation of $n_1 \Rightarrow_{\beta\mu} n'_1$.

Base Case:

$$\overline{n \Rightarrow_{\beta\mu} n}$$

By the lemma 5.

Base Case:

$$\frac{x_i \mapsto t_i \in \mu}{\mu x_i \Rightarrow_{\beta \mu} m(\mu t_i)}$$

Because $y \notin FV(\mu x_i)$ and μ is local.

Step Case:

$$\frac{n_a \Rightarrow_{\beta\mu} n'_a \quad n_b \Rightarrow_{\beta\mu} n'_b}{(\lambda x. n_a) n_b \Rightarrow_{\beta\mu} m([n'_a/x] n'_b)}$$

We have $m((\lambda x.[n_2/y]n_a)[n_2/y]n_b) \equiv (\lambda x.m([n_2/y]n_a))m([n_2/y]n_b)$ $\stackrel{IH}{\Rightarrow}_{\beta\mu} m([m([n_2'/y]n_b')/x]m([n_2'/y]n_a')) \equiv m([n_2'/y]([n_b'/x]n_a')).$ The last equality is by lemma 6.

Step Case:

$$\frac{n \Rightarrow_{\beta\mu} n'}{\lambda x.n \Rightarrow_{\beta\mu} \lambda x.n'}$$

We have $m(\lambda x.[n_2/y]n) \equiv \lambda x.m([n_2/y]n) \stackrel{IH}{\Rightarrow}_{\beta\mu} \lambda x.m([n_2'/y]n') \equiv m(\lambda x.[n_2'/y]n')$

Step Case:

$$\frac{n_a \Rightarrow_{\beta\mu} n'_a \quad n_b \Rightarrow_{\beta\mu} n'_b}{n_a n_b \Rightarrow_{\beta\mu} n'_a n'_b}$$

We have $m([n_2/y]n_a[n_2/y]n_b) \equiv m([n_2/y]n_a)m([n_2/y]n_b)$ $\Rightarrow_{\beta\mu}^{IH} m([n'_2/y]n'_a)m([n'_2/y]n'_b) \equiv m([n'_2/y](n'_an'_b)).$

Lemma 8. If $n \Rightarrow_{\beta\mu} n'$ and $n \Rightarrow_{\beta\mu} n''$, then there exist n''' such that $n'' \Rightarrow_{\beta\mu} n'''$ and $n' \Rightarrow_{\beta\mu} n'''$. So $\rightarrow_{\beta\mu}$ is confluent.

Proof. By induction on the derivation of $n \Rightarrow_{\beta\mu} n'$.

Base Case:

$$\overline{n \Rightarrow_{\beta\mu} n}$$

Obvious.

Base Case:

$$\overline{\mu x_i \Rightarrow_{\beta\mu} m(\mu t_i)}$$

Obvious.

Step Case:

$$\frac{n_1 \Rightarrow_{\beta\mu} n_1' \quad n_2 \Rightarrow_{\beta\mu} n_2'}{(\lambda x. n_1) n_2 \Rightarrow_{\beta\mu} m([n_1'/x] n_2')}$$

Suppose $(\lambda x.n_1)n_2 \Rightarrow_{\beta\mu} (\lambda x.n_1'')n_2''$, where $n_1 \Rightarrow_{\beta\mu} n_1''$ and $n_2 \Rightarrow_{\beta\mu} n_2''$. By lemma 7 and IH, we have $m([n_1'/x]n_2') \Rightarrow_{\beta\mu} m([n_1'''/x]n_2''')$. We also have $(\lambda x.n_1'')n_2'' \Rightarrow_{\beta\mu} m([n_1'''/x]n_2''')$, where $n_1'' \Rightarrow_{\beta\mu} n_1'''$ and $n_2' \Rightarrow_{\beta\mu} n_2'''$ and $n_2' \Rightarrow_{\beta\mu} n_2'''$.

Suppose $(\lambda x.n_1)n_2 \Rightarrow_{\beta\mu} m([n_2''/x]n_1'')$, where $n_1 \Rightarrow_{\beta\mu} n_1''$ and $n_2 \Rightarrow_{\beta\mu} n_2''$. By lemma 7 and IH, we have $m([n_1'/x]n_2') \Rightarrow_{\beta\mu} m([n_1'''/x]n_2''') \Rightarrow_{\beta\mu} m([n_1'''/x]n_2''')$.

The other cases are either similar to the one above or easy.

One can also use Takahashi's method([4]) to prove the lemma above. We will not explore that here.

Lemma 9. $m(\vec{\mu}\vec{\mu}t) \equiv m(\vec{\mu}t) \text{ and } m(\vec{\mu}([t_2/x]t_1)) \equiv m([\vec{\mu}t_2/x]\vec{\mu}t_1)$

Proof. We can prove this using the same method as lemma 3. We will not prove it here.

Lemma 10. If $a \to_{\beta} b$, then $m(a) \to_{\beta\mu} m(b)$.

Proof. We prove this by induction on the derivation (depth) of $a \to_{\beta} b$. We list a few non-trial cases:

Base Case:

$$\frac{(x_i \mapsto t_i) \in \mu}{\mu x_i \to_\beta \mu t_i}$$

We have $m(\mu x_i) \equiv \mu x_i \rightarrow_{\beta\mu} m(\mu t_i)$.

Base Case:

$$\frac{}{(\lambda x.t)t' \to_{\beta} [t'/x]t}$$

We have $m((\lambda x.t)t') \equiv (\lambda x.m(t))m(t') \rightarrow_{\beta\mu} m([m(t)/x]m(t')) \equiv m([t'/x]t)$.

Step Case:

$$\frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'}$$

By IH, we have $m(\lambda x.t) \equiv \lambda x.m(t) \stackrel{IH}{\to}_{\beta\mu} \lambda x.m(t') \equiv m(\lambda x.t')$.

Step Case:

$$\frac{t \to_{\beta} t'}{\mu t \to_{\beta} \mu t'}$$

We want to show $m(\mu t) \to_{\beta\mu} m(\mu t')$. If $dom(\mu) \# FV(t)$, then $m(\mu t) \equiv m(t) \to_{\beta\mu}^{IH} m(t') \equiv m(\mu t')$. Of course, here we assume beta-reduction does not introduce any new variable.

If $dom(\mu) \cap FV(t) \neq \emptyset$, then identify t as $\overrightarrow{\mu_1}t''$, where t'' does not contain any closure at head position. We do case analyze on the structure of t'':

Case. $t'' = x_i \in dom(\overrightarrow{\mu_1})$ or $x_i \notin dom(\overrightarrow{\mu_1})$, these cases will not arise.

Case. $t'' = \lambda y.t_1$, then it must be that $t' = \overrightarrow{\mu_1}(\lambda y.t_1')$ where $t_1 \to_{\beta} t_1'$. So we get $\mu \overrightarrow{\mu_1} t_1 \to_{\beta} \mu \overrightarrow{\mu_1} t_1'$. By IH(depth of $\mu \overrightarrow{\mu_1} t_1 \to_{\beta} \mu \overrightarrow{\mu_1} t_1'$ is smaller), we have $m(\mu \overrightarrow{\mu_1} t_1) \to_{\beta\mu} m(\mu \overrightarrow{\mu_1} t_1')$. Thus $m(\mu \overrightarrow{\mu_1}(\lambda y.t_1)) \equiv \lambda y.m(\mu \overrightarrow{\mu_1} t_1) \to_{\beta\mu} \lambda y.m(\mu \overrightarrow{\mu_1} t_1') \equiv m(\mu \overrightarrow{\mu_1}(\lambda y.t_1'))$.

Case. $t'' = t_1 t_2$ and $t' = \overrightarrow{\mu_1}(t_1't_2)$, where $t_1 \to_{\beta} t_1'$. We have $\mu \overrightarrow{\mu_1} t_1 \to_{\beta} \mu \overrightarrow{\mu_1} t_1'$. By IH(depth of $\mu \overrightarrow{\mu_1} t_1 \to_{\beta} \mu \overrightarrow{\mu_1} t_1'$ is smaller), $m(\mu \overrightarrow{\mu_1} t_1) \to_{\beta\mu} m(\mu \overrightarrow{\mu_1} t_1')$. Thus $m(\mu \overrightarrow{\mu_1}(t_1 t_2)) \equiv m(\mu \overrightarrow{\mu_1} t_1) m(\mu \overrightarrow{\mu_1} t_2) \to_{\beta\mu} m(\mu \overrightarrow{\mu_1} t_1') m(\mu \overrightarrow{\mu_1} t_2) \equiv m(\mu \overrightarrow{\mu_1}(t_1't_2))$. For $t'' = t_1 t_2'$, where $t_2 \to_{\beta} t_2'$, we can argue similarly.

Case. $t'' = (\lambda y.t_1)t_2$ and $t' = \overrightarrow{\mu_1}([t_2/y]t_1)$. $m(\mu\overrightarrow{\mu_1}((\lambda y.t_1)t_2)) \equiv (\lambda y.m(\mu\overrightarrow{\mu_1}t_1)))m(\mu\overrightarrow{\mu_1}t_2) \rightarrow_{\beta\mu} m([m(\mu\overrightarrow{\mu_1}t_2)/y]m(\mu\overrightarrow{\mu_1}t_1)) \equiv m([\mu\overrightarrow{\mu_1}t_2/y]\mu\overrightarrow{\mu_1}t_1) \equiv m(\mu\overrightarrow{\mu_1}[t_2/y]t_1) (\text{lemma 9})$.

Theorem 1. $\rightarrow_{\beta} \cup \rightarrow_{\mu}$ is confluent.

Proof. We know by diamond property of $\Rightarrow_{\beta\mu}$, $\rightarrow_{\beta\mu}$ is confluent. Since \rightarrow_{μ} is strongly normalizing and confluent, and by lemma 10 and Hardin's interpretation lemma(lemma 1), we conclude $\rightarrow_{\beta} \cup \rightarrow_{\mu}$ is confluent.

References

- [1] Zena M. Ariola and Jan Willem Klop. Lambda calculus with explicit recursion. *Information and Computation*, 139(2):154 233, 1997.
- [2] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence properties of weak and strong calculi of explicit substitutions. J. ACM, 43(2):362–397, 1996.
- [3] Thérèse Hardin. Confluence results for the pure strong categorical logic ccl. λ-calculi as subsystems of ccl. Theor. Comput. Sci., 65(3):291–342, July 1989.
- [4] Masako Takahashi. Parallel reductions in lambda-calculus. Inf. Comput., 118(1):120–127, 1995.