		3	<u> З.Контрол</u>	ьные з	адания	на тем	<u>y «T</u>	ермодина	мика	<u>a»</u>		
<u>1(A)</u>	Ha	скольн	ко изменит	ся внут	ренняя	энергия	гели	ия массой	200Γ	при	увелич	ении
темпе	рату	ры на 2	20°C?									
1) 12,5	5 кД:	Ж	3) 11	кДж								
2) 15 H	кДж		4) 30	кДж								
<u>2(A)</u> (Срав	нить н	внутренние	энергии	неона	и гелия	при	одинаковых	к темі	перат	ypax. M	Гассы

- газов одинаковы.
- 1) 5:1
- 2) 1:5
- 3) 1:2
- 4) 1:3
- 3(А) При уменьшении объема одноатомное газа в 3,6 раза его давление увеличилось на 20%. Во сколько раз изменилась внутренняя энергия?
- 1) увеличилась в 5 раз
- 2) уменьшилось в 3 раза
- 3) уменьшилось в 4 раза
- 4) увеличилась в 3 раза
- 4(A) На нагревание текстолитовой пластины массой 200 г от 30°C до 90°C потребовалось затратить 18 кДж энергии. Какова удельная теплоемкость текстолита?
- 1) $0.75 \frac{\mu_{\text{Kr K}}}{\kappa_{\text{Kr K}}}$ 2) $1 \frac{\mu_{\text{Kr K}}}{\kappa_{\text{Kr K}}}$
- 3) $1.5 \frac{\text{Дж}}{\text{кг K}}$ 4) $3 \frac{\text{Дж}}{\text{кг K}}$

- 5(А) Какое количество теплоты поглощается при плавлении льда массой 5 кг, если начальная температура льда -10°С?
- $(\lambda=3,3\cdot10^5$ Дж/кг;c=2100Дж/кг°C)
- 1) 2000 кДж
- 3) 1805 кДж
- 2) 2500 кДж
- 4) 1000 кДж
- **6(A)** Какое количество теплоты требуется для нагревания воды массой 0,75 кг от 20°С до 100°С и последующее образование пара массой 250 г?
- 1) 727 кДж
- 3) 600 кДж
- 2) 920 кДж
- 4) 827 кДж
- 7(A) При полном сгорании антрацита массой 10 кг выделяется $2,9 \cdot 10^7$ Дж энергии. Чему равна удельная теплота сгорания антрацита?
- 1) 4·10⁶ Дж/кг
- 3) 9·10⁶ Дж/кг 4) 7·10⁶ Дж/кг
- 2) $2.9 \cdot 10^6$ Дж/кг
- 8(A) Когда в бак с водой при 5°C добавили ещё 3л воды при 100°C и перемешали воду, то температура воды в баке стала равна 35°C. Пренебрегая потерями теплоты на нагревание бака и окружающей среды, определите начальный объем воды в баке.
- 1) 6,6 л
- 2) 5 л
- 3) 7,6 л
- 4) 8 л

9(A) Чему равна работа совершенная газом при переходе из состояния 1 в состояние 2?

- 1) 1100 Дж
 - 2) 600 Дж
 - 3) 400 Дж
 - 4) 300 Дж

10(A) В некотором процессе газ совершил работу равную 5МДж, а его внутренняя энергия уменьшилась на 2МДж. Какое количество теплоты передано газу в этом процессе?

- 1) 7 МДж
- 3) 6 МДж
- 2) 5 МДж
- 4) 3 МДж

 $\underline{\mathbf{11(A)}}$ Тепловой двигатель за цикл получает от нагревателя количество теплоты равное 3 кДж и отдает холодильнику 2,4 кДж. КПД двигателя равен ...

- 1)20%
- 2) 25%
- 3) 80%
- 4)120%

12(B) Для охлаждения лимонада массой 200г в него бросили кубики льда при 0°С. Масса каждого кубика 8 г. Первоначальная температура лимонада 30°С. Сколько целых кубиков надо бросить в лимонад чтобы установилась температура 15°С? Удельная теплоемкость лимонада такая же как у воды.

<u>13(B)</u> Чему равно изменение внутренней энергии газа, если ему передано количество теплоты 500 Дж, а газ при постоянном давлении 10^5 Па расширился на 3 дм³?

14(C) Рассчитайте КПД тепловой машины использующей в качестве рабочего тела одноатомный газ и работающий по циклу изображенному на графике.

 \mathbf{V}

4.Ответы к заданиям по термодинамике

1.Ответы к обучающим заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12B	13B	14C
1	3	4	3	1	2	4	2	3	1	4	27°C	-349 Дж	10%

$$\frac{14(C)}{Q_{H}} = \frac{A_{\Pi O \Pi O 3 H}}{Q_{H}} = \frac{100\%}{Q_{H}} = \frac{A_{\Pi O \Pi O 3 H}}{Q_{H}} = \frac{1}{2} 3p_{0} 3V_{0} + \frac{3}{2} 7p_{0} V_{0} = \frac{3}{2} vR \Delta T \qquad T_{2} = 8T_{0} \qquad u3$$

$$\frac{P_{0}V_{0}}{T_{0}} = \frac{2P_{0}4V_{0}}{T_{2}} \qquad Q_{\Pi O D O 0} = \frac{1}{2} 3p_{0} 3V_{0} + \frac{3}{2} 7p_{0} V_{0} = 15vRT_{0} \qquad \eta = \frac{3vRT_{0}}{30vRT_{0}} \cdot 100\% = 10\%$$

2.Ответы к тренировочным заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12B	13B	14C
3	1	3	2	1	4	4	3	1	1	2	60°C	2,5 кДж	8 %

3.Ответы к контрольным заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12B	13B	14C
1	2	2	3	3	4	2	1	2	4	1	4	200 Дж	17 %