Laurent Lanteigne/12279717

November 19th, 2021

Question 1. Derive the formulas to the mean $\mathbb{E}[p]$ and the variance $\mathbb{V}[p]$ of the transaction price p with the variables mentioned.

In this model we have 3 possible states in our sample so we have $\Omega := \{a, \frac{a+b}{2}, b\}$ with an associated probability measure $\mathbb{P} := \{\rho_u, \rho_m, \rho_l\}$ respectively. From this model we can compute it's first two moments as below.

$$\mathbb{E}[p] = \sum_{i \in \mathbb{P}} \mathbb{P}(p_i = \omega_i) \rho_i$$

$$= b\rho_l + \frac{a+b}{2} \rho_m + a\rho_u$$

$$= b\rho_l + \frac{a+b}{2} (1 - \rho_u - \rho_l) + a\rho_u$$

$$= \frac{a}{2} (1 + \rho_u - \rho_l) + \frac{b}{2} (1 + \rho_l - \rho_u).$$

Let's compute $(\mathbb{E}[p])^2$ next.

$$(\mathbb{E}[p])^2 = \frac{a^2}{4} \left(1 + \rho_u^2 + \rho_l^2 + 2\rho_u - 2\rho_l - 2\rho_u \rho_l \right) + \frac{b^2}{4} \left(1 + \rho_u^2 + \rho_l^2 + 2\rho_l - 2\rho_u - 2\rho_u \rho_l \right) + \frac{ab}{2} \left(1 - \rho_l^2 - \rho_u^2 + 2\rho_l \rho_u \right).$$

Let's now compute the second moment $\mathbb{E}[p^2]$.

$$\begin{split} \mathbb{E}[p^2] &= \sum_{i \in \mathbb{P}} \mathbb{P}(p_i = \omega_i) \rho_i^2 \\ &= b^2 \rho_l + \frac{(a+b)^2}{4} \left(1 - \rho_u - \rho_l \right) + a^2 \rho_u \\ &= \frac{a^2}{4} \left(3\rho_u + 1 - \rho_l \right) + \frac{b^2}{4} \left(3\rho_l + 1 - \rho_u \right) + \frac{ab}{4} \left(2 - \rho_u - \rho_l \right). \end{split}$$

We are now equipped with all the elements to compute the variance using the well known formula $\mathbb{V}[p] = \mathbb{E}[p^2] - (\mathbb{E}[p])^2$.

$$V[p] = \mathbb{E}[p^{2}] - (\mathbb{E}[p])^{2}$$

$$= \frac{a^{2}}{4} \left[3\rho_{u} + 1 - \rho_{l} - \left(1 + \rho_{u}^{2} + \rho_{l}^{2} + 2\rho_{u} - 2\rho_{l} - 2\rho_{u}\rho_{l} \right) \right]$$

$$+ \frac{b^{2}}{4} \left[3\rho_{l} + 1 - \rho_{u} - \left(1 + \rho_{u}^{2} + \rho_{l}^{2} + 2\rho_{l} - 2\rho_{u} - 2\rho_{u}\rho_{l} \right) \right]$$

$$- \frac{2ab}{4} \left[1 - \rho_{u} - \rho_{l} - \left(1 - \rho_{l}^{2} - \rho_{u}^{2} + 2\rho_{l}\rho_{u} \right) \right]$$

$$= \frac{a^{2}}{4} \left(\rho_{u} + \rho_{l} - \rho_{u}^{2} - \rho_{l}^{2} + 2\rho_{u}\rho_{l} \right)$$

$$+ \frac{b^{2}}{4} \left(\rho_{u} + \rho_{l} - \rho_{u}^{2} - \rho_{l}^{2} + 2\rho_{u}\rho_{l} \right)$$

$$- \frac{2ab}{4} \left(\rho_{u} + \rho_{l} - \rho_{u}^{2} - \rho_{l}^{2} + 2\rho_{u}\rho_{l} \right)$$

$$= \left(\frac{a - b}{2} \right)^{2} \left(\rho_{u} + \rho_{l} - (\rho_{u} - \rho_{l})^{2} \right) \quad \Box$$

Question 2. Simplify your results in Question 1 by assuming that $|\rho_l - \rho_u| = \delta \ll 1$ so that higher than first order terms of $|\rho_l - \rho_u|$ can be omitted. In practice, this is the situation when order flow has no significant directional upward or downward movements.

Since $\mathbb{E}[p]$ has no 2nd order terms, it will be the same for Question 2 and as well true for Question 3. As for the variance, we can omit the term $(\rho_u - \rho_l)^2 \to 0$, so the variance becomes

$$\mathbb{V}[p] = \left(\frac{a-b}{2}\right)^2 (\rho_u + \rho_l) \quad \Box$$

Note, in the case $\rho_l = \rho_u$ we have the symmetric binary case and the variance does match that scenario.

Question 3. Simplify your results in Question 1 by assuming that $\rho_m \ll 1$ so that higher than first order terms of ρ_m can be omitted. In practice, this is the situation when "off exchanges" trades (such as those in "dark pools") are rare.

We have that $\rho_m = 1 - \rho_u - \rho_l$, therefore the second order term of ρ_m we have

$$\rho_m^2 = 1 + \rho_u^2 + \rho_l^2 - 2\rho_u - 2\rho_l + 2\rho_u\rho_l$$

Let's now expand the terms inside the variance from Question 1 and express it in terms of ρ_m^2 .

$$V[p] = \left(\frac{a-b}{2}\right)^{2} \left(\rho_{u} + \rho_{l} - (\rho_{u} - \rho_{l})^{2}\right)$$

$$= \left(\frac{a-b}{2}\right)^{2} \left(-\rho_{u}^{2} - \rho_{l}^{2} + 2\rho_{u}\rho_{l} + \rho_{u} + \rho_{l}\right)$$

$$= \left(\frac{a-b}{2}\right)^{2} \left(-1 + 1 - \rho_{u}^{2} - \rho_{l}^{2} + 2\rho_{u} - \rho_{u} + 2\rho_{l} - \rho_{l} - 2\rho_{u}\rho_{l} + 4\rho_{u}\rho_{l}\right)$$

$$= \left(\frac{a-b}{2}\right)^{2} \left(\underbrace{-1 - \rho_{u}^{2} - \rho_{l}^{2} + 2\rho_{u} + 2\rho_{t} - 2\rho_{u}\rho_{l}}_{-\rho_{m}^{2}} + 1 - \rho_{u} - \rho_{l} + 4\rho_{u}\rho_{l}\right)$$

$$= \left(\frac{a-b}{2}\right)^{2} \left(1 - \rho_{u} - \rho_{l} + 4\rho_{u}\rho_{l}\right) \quad \Box$$

Question 4. Let T_* be the "market microstructure characteristic time scale" for this stock. It can be derived by relating the variance calculated from Question 1-3 with the variance of a continuous arithmetic Brownian price process with a constant volatility of σ ; that is

$$\sqrt{\mathbb{V}[p]} \sim p_0 \sigma T_*^{\gamma} \tag{1}$$

Here p_0 is a base price so that the dimensions on both sides of Equation 1 becomes the same. In this assignment, let's assume $\gamma = \frac{1}{3}$ to reflect potential fat-tail distribution of price returns. Based on the simplified version of Question 2 and 3 respectively, give the formulas of T_* as a function of the following variables: $b, a, \rho_l, \rho_u, \rho_m, \sigma, p_0$. Comment on how T_* changes as the market becomes more or less "fat-tailed" in return distribution (i.e., γ decreases or increases).

Let's start by defining the standard deviations of Question 2 and 3 respectively as follows:

$$\sigma_2 = \left| \frac{a-b}{2} \right| \sqrt{\rho_u + \rho_l}$$

$$\sigma_3 = \left| \frac{a-b}{2} \right| \sqrt{1 - \rho_u - \rho_l + 4\rho_u \rho_l}.$$

Using the formula

$$T \sim \left[\frac{\sigma}{\sigma p_0} \right]^{\frac{1}{\gamma}},$$

leads us to

$$T_{2} = \left[\frac{\left| \frac{a-b}{2} \right| \sqrt{\rho_{u} + \rho_{l}}}{\sigma p_{0}} \right]^{\frac{1}{\gamma}}$$

$$T_{3} = \left[\frac{\left| \frac{a-b}{2} \right| \sqrt{1 - \rho_{u} - \rho_{l} + 4\rho_{u}\rho_{l}}}{\sigma p_{0}} \right]^{\frac{1}{\gamma}}.$$

As the respective T_* for Question 2 and 3.

Let

$$f(x) = a^{1/x} = e^{\log(a^{1/x})} = e^{1/x \log a}$$

then it's derivative is

$$f'(x) = \frac{\mathrm{d}}{\mathrm{dx}} (\log ax^{-1}) f(x) = -\frac{\log a \cdot a^{1/x}}{x^2}.$$

Under assumption that $\gamma > 0$. This means that when $a \in (0,1)$ then the derivative is increasing when $\gamma > 1$ or (x > 1) and when $a \ge 1$ the derivative is decreasing for $\gamma < 1$. So depending on the inputs in the model, as the market becomes more or less "fat-tailed" the time scale will either decrease or increase.

Although, it is fair to assume that the denominator σp_0 will be larger than the numerator. Under that scenario, this implied $a \in (0,1)$ so as the market becomes more and more fat-tailed (i.e. $\gamma \to 0$), we expect the microstructure time scale to decrease.

Question 5. See plot below for Question 5.

Question 6. From the above plot, we see that when the time scale spent of the process to move from a random bid-ask bounce into it's random walk process decreases. This seems to be in agreement with users of "Dark pool" where assets spends less time in random bid-ask prices and more time on their asset price dynamics which leads to lower variance.