

UNIVERSITY OF GHANA

(All rights reserved)

BSc/BA, FIRST SEMESTER EXAMINATIONS: 2016/2017

SCHOOL OF ENGINEERING

DEPARTMENT OF BIOMEDICAL ENGINEERING

FAEN 201: CALCULUS II (4 credits)

INSTRUCTION:

ANSWER ANY FIVE OUT OF THE FOLLOWING SEVEN QUESTIONS TIME ALLOWED:

THREE (3) HOURS

1. (a) Let $a_n = \frac{2n-7}{3n+2}$ be a sequence of real numbers for all integers $n \ge 1$.

i. Show that a_n is a monotone increasing sequence.

(8 marks)

ii. Use the $\varepsilon-N$ definition of a convergent sequence to show that the sequence a_n converges to $\frac{2}{3}$.

(b) Test for convergence or divergence for the series $\sum_{n=1}^{\infty} \left[\frac{\ln n}{2n^3 - 1} \right]$. (10 marks)

(c) Let p be a real number such that p > 1 and $p \neq 0$. Prove by induction that for every integer $n \geq 2$, $(1+p)^n > 1+np$.

2. (a) Evaluate

i.
$$\lim_{n \to \infty} \left\{ \frac{7^{n+1} + 2^n}{7^n - 2^n} \right\}, n \in \mathbb{N};$$
 (5 marks))

ii.
$$\lim_{n \to \infty} \left[\sqrt{n^2 + 3n} - \sqrt{n^2 - 3n} \right], n \in \mathbb{N}, n \ge 3.$$
 (10 marks)

(b) Given that $f(x, y) = x^2 \sin(x + y)$,

i. Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$. (4 marks)

ii. Hence or otherwise, show that $x\frac{\partial f}{\partial x} = [x + 2\tan(x + y)]\frac{\partial f}{\partial y}$. (6 marks)

(c) Test for convergence or divergence for each improper integral:

i.
$$\int_2^\infty \frac{\cos^2 x}{x^2} dx$$
; ii. $\int_3^\infty \frac{dx}{x + e^x} dx$. (15 marks)

EXAMINER: E. Djabang

Page 1 of 3

11 c

- 3. (a) Let $f(x,y) = 3x^2y + y^3 3x^2 3y^2 + 2$.
 - i. Find the critical points of f(x, y). (12 marks)
 - ii. Determine the nature of each critical point found in (i). (8 marks)
 - (b) i. State Green's theorem in the xy-plane. (3 marks)
 - ii. Verify Green's theorem for $\oint 4x^2ydx + 2ydy$, where C is the boundary of the triangle with vertices (0,0), (1,2) and (0,2). (17 marks)
- 4. (a) For the series $\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots$
 - i. Find a_n , the n^{th} term of the series; (3 marks)
 - ii. Express a_n in partial fractions; (8 marks)
 - iii. Find $S_n = \sum_{r=1}^n a_r$, the sum of the n^{th} term of the series; (10 marks)
 - iv. Evaluate $\lim_{n\to\infty} S_n$. (3 marks)
 - (b) Evaluate $\int_{y=0}^{y=8} \int_{x=0}^{x=4} \frac{1}{16} \left[64 8x + y^2 \right] dx dy$. (16 marks)
- 5. (a) If $\phi = x^2yz^3$ and $A = xz\mathbf{i} y^2\mathbf{j} + 2x^2y\mathbf{k}$, find i. $\nabla \phi$ ii. $\nabla \times A$ iii. $\operatorname{div}(\phi A)$ (14 marks)
 - (b) i. Compute the Laplacian $\nabla^2 f(x, y, z)$ of the function

$$f(x,y,z) = 2x^3y - 3y^2z$$

(8 marks)

ii. Find the directional derivative of $f(x,y,z)=2x^3y-3y^2z$ at the point P(2,1,-1) in the direction from P towards the point Q(5,-1,4).

(18 marks)

6. (a) Give a precise definition of the Gamma function.

Show that
$$\int_0^M x^{\nu} e^{-x} dx = \left[-x^{\nu} e^{-x} \right]_0^M - \int_0^M (-e^{-x} v x^{\nu-1}) dx$$
 (10 marks)

(b) Given that $\frac{\Gamma(u)\Gamma(v)}{2\Gamma(u+v)} = \int_0^{\frac{\pi}{2}} \sin^{2u-1}\theta \cos^{2v-1}\theta d\theta$, find in terms of the Gamma function

i.
$$\int_0^{\frac{\pi}{2}} \sin^4 \theta \cos^5 \theta \, d\theta;$$

ii.
$$\int_0^{\pi} \cos^4 \theta \, d\theta$$
. (12 marks)

- (c) An ellipse in the xy-plane has centre at the origin with semi-major and semi-minor axes of lengths 4 and 3 respectively.
 - i. Write down parametric equations for the ellipse in terms of the parameter $0 \le t \le 2\pi$. (6 marks)
 - ii. How much work is done by the force $F = (3x 4y)\mathbf{i} + (4x + 2y)\mathbf{j}$ in moving a particle once around the ellipse in the counter clockwise direction? (18 marks)
- 7. (a) Use the ratio test to find the interval of convergence for the power series

i.
$$\sum_{n=1}^{\infty} \left[\frac{(x-5)^n}{n^2} \right]$$
 ii. $\sum_{n=1}^{\infty} n! (2x+1)^n$. (14 marks)

- (b) Find $\int_C xy^3 ds$, where C is the quarter circle $C = [\cos t, \sin t]$, $0 \le t \le \frac{\pi}{2}$ and $\frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$ (10 marks)
- (c) The temperature $T(^{\circ}C)$ at position (x,y) in the xy-plane is given by $T(x,y)=x^2e^{-y}$.
 - i. At the point (2, 1), find the direction in which the temperature increases most rapidly. (10 marks)
 - ii. Find the rate of increase of the temperature in the direction found in (i). (6 marks)