CS 170 Final Cheat Sheet

Euclid's GCD: O(n³) def gcd(a,b): if b==0: return a return gcd(b, a mod b) Extended GCD: O(n³) def extended-gcd(a,b): if b==0: return (1, 0, a) (x', y', d) = extended-gcd(b, a mod b) return (y', x' - floor(a/b)*y', d)

if d divides a and b and d = ax + by for some integers s and y, then $d = \gcd(a, b)$

Multiplicative Inverse

inverse of a,

$$ax \equiv 1 \pmod{N}$$

for any $a \pmod{N}$, a has a multiplicative inverse if and only if they are relatively prime, gcd(a,N) = 1

Fermat's Little Theorem

given a prime (or carmic hael) p, $a^{p-1} \equiv 1 (\text{mod } p)$

RSA Euler's Theorem

$$m^{(p-a)(q-1)} = 1 \pmod{p}$$

Master's Theorem

If

 $T(n) = aT(\lceil n/b \rceil) + O(n^d) \text{ for } a>0, b>1 \text{, and } d \geq 0,$ then,

$$T(n) = \begin{cases} O(n^d) & ifd > log_b a \\ O(n^d log n) & ifd = log_b a \\ O(n^{log_b a}) & ifd < lob_b a \end{cases}$$

Fast Fourier Transform

not done yet

Search Algorithms

Depth First Search

```
def explore(G,v): #Where G = (V,E) of a Graph
  visited(v) = true
  previsit(v)
  for each edge(v,u) in E:
        if not visited(u):
            explore(u)
  postvisit(v)

def dfs(G):
  for all v in V:
        if not visited(v):
```

explore(v)

Previsit = count till node added to the queue Postvisit = count till you leave the given node A directed Graph has a cycle if it has a back edge found during DFS

Directed Acyclic Graphs

Every DAG has a source and sink

Greedy Algorithms

Kruskal's MST Algorithm $O(E \log v)$

Repeatedly add the next lightest edge that doesn't produce a cycle.

```
Input: A connected undirected graph G = (V,E) with edge
    weights w
Output: A minimum spanning tree defined by the edges X

for all u in V:
    makeset(u)
X = {}
Sort the edges E by weight
for all edges {u,v} in E, in increasing order of weight:
    if find(u) != find(v):
        add edge {u,v} to X
        union(u,v)
```

The above algorithm utilizes disjoint sets to determine whether adding a given edge creates a cycle. Basically by checking whether or not both sets have the same root ancestor.

Disjoint Sets Data Structure

Contains a function, "find" that returns the root a given set.

Properties of Trees (undirected acyclic graphs)

- A tree with n nodes has n-1 edges
- Any connected undirected graph G(V,E), with |E| = |V| 1 is a tree
- An undirected graph is a tree if and only if there is a unique path between any pair of nodes.

Cut Property

Suppose edges X are part of a minimum spanning tree of G=(V,E). Pick any subset of nodes S for which X does not cross between S and V-S, and let e be the lightest edge across the partition. Then $X\cup e$ is part of some Minimum Spanning Tree.

Prim's Algorithm

(an alternative to Kruskal's Algorithm and similar to Dijkstras) On each iteration, the subtreedefined by x grows by one edge, the lightest between a vertex in S and a vertex outside S.

Huffman Encoding

A means to encode data using the optimal number of bits for each character given a distribution.

```
Huffman(f):
```

```
Output: An encoding tree with n leaves
let H be a priority queue of integers, ordered by f
for i=1 to n: insert(H,i)
   i=deletemin(H), j=deletemin(H)
   create a node numbered k with children i,j
   f[k] = f[i]+f[j]
   insert(H,k)
```

Input: An array f{1...n] of frequencies

Horn Formulas

Horn Formulas are a framework expressing logical facts and deriving conclusions. A Horn Clause is a possible solution to the Formulas. Variables are represented by two kinds of clauses:

1. Implications, whose left-hand side is an AND of any numbers of positive literals and whose right-hand side is a signle positive literal. ("If the conditions on the left hold, then the one on the right mush also be true.")

$$(z \wedge w) \Rightarrow u$$

2. Pure negative clauses, consisting of an OR of any number of negative literals.

$$(\bar{u} \vee \bar{v} \vee \bar{y})$$

The a greedy algorithm to solve a Horn Formula:

```
Input: a Horn formula
Output: a satisfying assignment, if one exists

set all variables to false
while there is an implication that is not satisfied:
    set the right-hand variable of the implication to true
if all pure negative clases are satisfied:
    return the assignment
return 'The formula is not satisfiable.'
```

Set Cover Algorithm

(example. This is the Schools distributed across towns problem.)

```
Output: A selection of the Si whose union is B.

Repeat until all elements of B are covered:

Pick the set Si with the largest number of uncovered elements.
```

Input: A set of elements B; sets S1,...,Sm

Disjoint Sets Data Structure

asdfjkl;

Dynamic Programming

Longest Increasing Subsequence: $O(n^2)$

The following algorithm starts at one side of the list and finds the max length of sequences terminating at that given node, recursively following backlinks. Then given all the lengths of paths terminating at that given node choose the max length. Without memoization, this solution would be exponential time.

```
L = {}
for j=1,2,...,n:
    L[j] = 1+max{L[i]:(i,j) in E}
    # The (i,j) represents all the edges that go from
    # a node to j.
return max(L)
```

Edit Distance (Spelling Suggestions)

This algorithm works by basically choosing the min of the options for every given letter. (The 3 options being adding a gap inbetween letters of one of the strings or matching the two letters and moving on.)

ex) Snowy and Sunny have an edit distance of 3 with this configuration

S _ N O W Y S U N N _ Y

Linear Programming

Properties of Linear Programs

- To turn a maximization problem into a minimization (or vice versa) just multiply the coeficients of the objective function by -1.
- 2. To turn an inequality constraint like $\sum_{i=1}^{n} a_i x_i \leq b$ into an equation, introduce a new variable S and use, $\sum_{i=1}^{n} a_i x_i + s > b$, $s \geq 0$ (S is known as a slack variable)
- 3. To change an inequality constraint into inequalities rewrite ax=b,

as $ax \le b$ and $ax \ge b$

4. If a linear program has an unbounded value then its dual must be infeasible.

Solving Linear Programs with the Simplex method

typically polynomial time, but in worst case, exponential

let v be any vertex of the feasible region while there is a neighbor v of v with a better value: set v = v return v

This is easily seen in a 2d or even sometimes a 3d graph of the constraints

Proving Optimality of a Linear Program Result, Duality

$$\begin{array}{ll} \max x_1 + 6x_2 \\ \text{Inequality} & \text{multiplier} \\ x_1 \leq 200 & y_1 \\ x_2 \leq 300 & y_2 \\ x_1 + x_2 \leq 400 & y_3 \\ x_1, x_2 \geq 0 \\ (y_1 + y_2)x_1 + (y_2 + y_3)x_2 \leq 200y_1 + 300y_2 + 400y_3 \end{array}$$

```
resulting in, min 200y_1 + 300y_2 + 400y_3 y_1 + y_3 \ge 1 y_2 + y_3 \ge 6
```

Which both result in the same optimum (via simplex) thus proving optimality.

Zero Sum Games

 $y_1, y_2, y_3 \geq 0$

Max Flow Algorithm

Start with zero flow.

Repeat:

Choose an appropriate path from s to t, and increase flow along the edges of this path as much as possible.

Max Flow Min Cut Theorem

The size of the maximum flow in a network equals the capacity of the smallest (s,t)-cut, where and (s,t)-cut partitions the vertices into two disjoint groups L and R such that s (start) is in L and t (goal) is in R.

Bipartite Matching