

Density functional theory in solid state physics

Lecture 6

Organisation

- My stupidity: RRZE does not send emails with initial passwords for the HPC
- You can set your password for the HPC account yourself by logging into your IdM page (https://www.idm.fau.de/go)
- Under "Special services", you should find an entry with "Username phyv****". By clicking on the wheel symbol, you can change your password
- I will update the tutorial on StudOn accordingly

Summary

- Which exchange-correlation functional to choose depends on requirements and available computational power
- Local exchange-correlation functionals:
 - Computationally cheap
 - Especially good for structual properties, also for phonons. Workhorses of practical DFT.
 - Bad electronic properties for systems with strong electron-electron interaction
 - metaGGAs in principle the best local functionals can achieve, but difficult to implement
- Non-local (hybrid) functionals:
 - Expensive
 - Good for electronic properties, especially band gaps and accurate singleelectron energies
 - Similar accuracy for structural properties as good GGAs and metaGGAs

Kohn-Sham DFT for periodic systems

- (Infinite) crystalline solid: Periodicity with lattice vectors \vec{a}_1 , \vec{a}_2 , \vec{a}_3
- $v(\vec{r})$ has the same periodicity, shifting by vector $\vec{T}_{lmn} = l\vec{a}_1 + m\vec{a}_2 + n\vec{a}_3$ transforms $v(\vec{r})$ into itself,

$$v(\vec{r} + \vec{T}_{lmn}) = v(\vec{r})$$

• Electron density $n(\vec{r})$ and single-particle orbitals $\phi_i(\vec{r})$ are also periodic, Bloch functions (in the periodic directions)

$$F_k(r) = f_k(r)e^{ikr}$$

(k goes over whole reciprocal space)

- Reducible scheme: Only consider
 k-vectors in first Brillouin zone
- We now describe orbitals in terms of three numbers: k-vector, band index n, spin direction σ:

$$\varphi_{kn\sigma}(\vec{r}) = u_{kn\sigma}(\vec{r})e^{i\vec{k}\cdot\vec{r}}$$

Kohn-Sham DFT for periodic systems

Kohn-Sham equations for periodic systems:

$$\left(-\frac{1}{2}\nabla^2 + v(\vec{r}) + \int \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} d\vec{r}' + v_{XC}^{\sigma}(\vec{r})\right) \varphi_{kn\sigma}(\vec{r}) = \varepsilon_{kn\sigma} \varphi_{kn\sigma}(\vec{r})$$

Electron density will then be an integral over Brillouin zone

$$n(\vec{r}) = \sum_{i,\sigma}^{occ} f_{occ}(\varepsilon_i) |\phi_{i\sigma}(\vec{r})|^2 \to n(\vec{r}) = \sum_{n,\sigma}^{occ} \int f_{occ}(\varepsilon_{kn\sigma}) |u_{kn\sigma}(\vec{r})|^2 dk$$
Occupation of state i

Similary for other properties, such as total energy:

$$E_{tot} = \sum_{n,\sigma}^{occ} \int f_{occ}(\varepsilon_{kn\sigma}) \varepsilon_{kn\sigma} dk$$

In practice, integrals cannot be done analytically → numerical integration

Mean value k-point

Approximate integral by sum over set of N discrete points, i.e.

$$n(\vec{r}) \approx \sum_{n,\sigma}^{occ} \sum_{k}^{N} f_{occ}(\varepsilon_{kn\sigma}) |u_{kn\sigma}(\vec{r})|^{2} w_{k}$$
Weight of "k-point" k

- For computational reasons: Want N to be as small as necessary
- Simplest approximation: take one or a few "special" points for the integration
- Γ point usually is a bad choice
- Baldereschi's "mean-value point" (*Phys. Rev. B 7, 5212 (1973)*): special point in Brillouin zone that approximates the average value \bar{f} of a k-periodic function.

$$I = \int_{BZ} f(\vec{k}) dk = V_{BZ} \bar{f}$$

- Dictated by crystal symmetry, tabulated for cubic and hexagonal lattices
- For simple cubic: $\vec{k}_{SC}^* = \frac{\pi}{a}(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, for FCC: $\vec{k}_{FCC}^* = \frac{2\pi}{a}(0.6223, 0.2953, 0)$

"Special k-points" sets

Sets of "special points" to give optimally fast convergence

Sum over all all vectors that are equivalent by symmetry

• Chadi & Cohen (*Phys. Rev. B 8, 5747 (1973)*): $f(\vec{k}) = \underbrace{f_0}_{\bar{f}} + \sum_{m=1}^{\infty} f_m \sum_{|R|=C_m} e^{i\vec{k}\cdot\vec{R}}$

Contributions decrease strongly with m

$$f_0 = \sum_{i=1}^{N} \alpha_i f(\vec{k}_i) - \underbrace{\sum_{m} \sum_{i=1}^{N} \alpha_i f_m \sum_{|R| = C_m} e^{i\vec{k} \cdot \vec{R}}}_{\text{choose } \vec{k}_i \text{ such that } \approx 0}$$

- k-point set dependent on crystal symmetry
- For simple cubic: Single k-point

$$\vec{k_1} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$$

(in units of $2\pi/a$)

Four k-points set

$$\vec{k}_1 = (\frac{1}{8}, \frac{1}{8}, \frac{1}{8}), \quad \alpha_1 = \frac{1}{8}; \quad \vec{k}_2 = (\frac{3}{8}, \frac{1}{8}, \frac{1}{8}), \quad \alpha_2 = \frac{3}{8};$$

$$\vec{k_3} = (\frac{3}{8}, \frac{3}{8}, \frac{1}{8}), \quad \alpha_2 = \frac{3}{8}; \quad \vec{k_4} = (\frac{3}{8}, \frac{3}{8}, \frac{3}{8}), \quad \alpha_4 = \frac{1}{8}.$$

Higher N k-point set

$$\vec{k}_i = \frac{1}{8} (1/2^n, 1/2^n, 1/2^n)$$

• Similar sets for 2D BZ: Cunningham (Phys. Rev. B 10, 4988 (1974))

Monkhorst-Pack grids

- Most relevant nowadays: Monkhorst-Pack grids (Phys. Rev. B 13 5188 (1976))
- Uniformly spaced grid of n1 x n2 x n3 k-points
- Γ -centered (unshifted) grid: $\vec{k}_{l,m,n} = \frac{l}{n_1} \vec{b}_1 + \frac{m}{n_2} \vec{b}_2 + \frac{n}{n_3} \vec{b}_3$ with $l = -\frac{n_1 1}{2}, ..., 0, 1, ..., \frac{n_1}{2}$

Only included if I is even

• Advantage: an easy-to-generate set of k-points, yields an approximate function $ilde{f}(ec{k})$ with the correct symmetry

Shifted Monkhorst-Pack grids

• "Shifted" grids: $\vec{k}_{l,m,n} = \frac{l-1}{n1}\vec{b}_1 + \frac{m-1}{n2}\vec{b}_2 + \frac{n-1}{n3}\vec{b}_3$

- (Fully) shifted grids do not contain the Γ-point
- Do we need to use the full k-point grid in calculations?
- Use unshifted or shifted grids for calculations?

Time-reversal symmetry

- Use symmetry operations to reduce full k-point grid
- Time-reversal symmetry: Contribution of $-\vec{k}$ to propertes is equal to that of \vec{k}

- Electron density: $n(\vec{r}) \approx \sum_{n,\sigma}^{occ} \sum_{k}^{N_{red}} f_{occ}(\varepsilon_{kn\sigma}) |u_{kn\sigma}(\vec{r})|^2 w_k$
- TRS is essentially always applicable, reduction of k-points in grid typically by factor 1.5-2

Irreducible k-points set

- Similarly: Crystal symmetry determines sets of \vec{k} -points that contribute equally, define "irreducible" set of k-points.
- For example a square/cubic lattice with full symmetry:

- Degree of reduction depends on crystal symmetry, large speed gains for highly symmetric materials
- Bravais lattice determines whether a shifted or an unshifted grid gives less irred. k-points

Convergence of k-point sampling

- How dense should the sampling be? Depends on the material
- Good practice to do a ,convergence test' for each new material to ensure meaningful results

 Total energy differences usually converge faster than the absolute total energy, due to error cancellation

Basis sets

How do we describe the single-particle orbitals? Typically using a basis set

The planewave basis

- "Solid state point of view": Atoms are a perturbation to the homogeneous electrons gas
- Idea: Use a basis set that inherently mirrors the 3D translation symmetry of the crystal
- Bloch wave-type orbitals in crystals: $\phi_{kn\sigma}(\vec{r}) = u_{kn\sigma}(\vec{r})e^{i\vec{k}\cdot\vec{r}}$
- $u_{kn\sigma}(\vec{r})$ is periodic in space, so we can expand it in terms of plane waves:

$$u_{kn\sigma}(\vec{r}) = \sum_{\vec{G}} c_{kn\sigma}(\vec{G}) e^{i\vec{G}\cdot\vec{r}}$$

Reciprocal lattice vector, $\vec{G} = l\vec{b}_1 + m\vec{b}_2 + n\vec{b}_3$

- In real space: $\phi_{kn\sigma}(\vec{r}) = \sum_{\vec{G}} c_{kn\sigma}(\vec{G}) e^{i(\vec{k} + \vec{G}) \cdot \vec{r}}$
- QUANTUMESPRESSO

• In reciprocal space: $c_{kn\sigma}(\vec{G}) = FT \{ \phi_{kn\sigma}(\vec{r}) \}$

Energy cutoff of planewave expansion

- In principle, have to sum over infinitely many \vec{G}
- In practice, this is not possible. But: contributions of "longer" \vec{G} 's become smaller
- Define "cutoff energy" for the largest \vec{G} that is still included:

$$E_{cut} = \frac{\left|\vec{G}_{max}\right|^2}{2}$$

$$\varphi_{kn\sigma}(\vec{r}) \approx \sum_{\vec{G}}^{\vec{G}_{max}} c_{kn\sigma}(\vec{G}) e^{i(\vec{k}+\vec{G})\cdot\vec{r}}$$

- Advantage: Plane waves are easy to handle and unbiased.
- It is simple to improve the basis set quality by increasing E_{cut}
- The smoother the electron density of the system, the lower E_{cut} can be chosen

Convergence test for cutoff energy

• Good practice: convergence test for the cutoff energy for every new system

Kohn-Sham equations & planewaves

- Plane wave basis allows for simple treament of all terms in KS Eq.
- Kinetic energy and Hartree potential/energy are more easily evaluated in a plane wave basis
- Kinetic energy: $T^S = \sum_{k,n,\sigma} \int \varphi_{kn\sigma}^*(\vec{r}) \frac{1}{2} \nabla^2 \varphi_{kn\sigma}(\vec{r}) dr$ $= \frac{1}{2} \sum_{k,n,\sigma} \sum_{\vec{G}} \sum_{\vec{G}'} \int \left(c_{kn\sigma}^*(\vec{G}) e^{-i(\vec{k} + \vec{G}') \cdot \vec{r}} \right) \nabla^2 \left(c_{kn\sigma}^*(\vec{G}) e^{i(\vec{k} + \vec{G}) \cdot \vec{r}} \right) dr$ $= \frac{1}{2} \sum_{k,n,\sigma} \sum_{\vec{G}} |\vec{k} + \vec{G}|^2 c_{kn\sigma}^*(\vec{G}) c_{kn\sigma}(\vec{G})$
- Hartree potential: $v_H(\vec{r}) = \int \frac{n(\vec{r}')}{|\vec{r} \vec{r}'|} dr' = \dots = FT^{-1} \left[\underbrace{\frac{4\pi}{V} \frac{n(\vec{G})}{G^2}}_{v_H(\vec{G})} \right]$

G=0 terms are excluded, they cancel with the average electrostatic potential of the nucleii

• Hartree energy:
$$E_H = \int \int \frac{n(\vec{r}\,)n(\vec{r}')}{|\vec{r}-\vec{r}'|} dr' dr = \frac{4\pi}{2V} \sum_{\vec{G}\neq 0} \frac{n(\vec{G})n(\vec{G})}{G^2}$$

Kohn-Sham equations & planewaves

• In most codes: Kohn-Sham equation in reciprocal space

$$\sum_{\vec{G}'} \left[\frac{1}{2} |\vec{k} + \vec{G}|^2 \delta_{GG'} + v(\vec{G} - \vec{G}') + v_H(\vec{G} - \vec{G}') + v_{XC}(\vec{G} - \vec{G}') \right] c_{ik}(\vec{G}') = \varepsilon_{ik} c_{ik}(\vec{G})$$

• $v(\vec{G} - \vec{G}')$ and $v_{XC}(\vec{G} - \vec{G}')$ $c_{ik}(\vec{G}')$ from Fourier transformation, solve for c_{ik}

Plane wave basis also allows efficient implementation of exact exchange

$$E^{HF} = -\frac{1}{2} \sum_{i,j,k,q} \int \int \frac{\phi_{ik}^*(\vec{r})\phi_{jq}^*(\vec{r}')\phi_{ik}(\vec{r}')\phi_{jq}(\vec{r})}{|\vec{r} - \vec{r}'|} dr' dr = \dots = -\frac{4\pi}{2V} \sum_{i,j,k,q} \sum_{\vec{G}} \frac{\left|C_{ikjq}(\vec{G})\right|^2}{\left|\vec{q} - \vec{k} + \vec{G}\right|^2}$$

with
$$C_{ikjq}(\vec{G}) = \sum_{\vec{G}'} c_{ik}^* (\vec{G}') c_{jq} (\vec{G} + \vec{G}') = \sqrt{V} FT [\phi_{ik}^* (\vec{r}) \phi_{jq} (\vec{r})]$$

• Similar expression for non-local exact exchange potential $\frac{dE^{HF}}{dc_{ik}^*(\vec{G}')}$, solve GKS in rec. space

Discrete Fourier Transforms

- Planewave basis allows efficient DFT calculations through use of Fast Fourier Transforms (N_{PW} is chosen as a product of small prime numbers)
- FFT reduces scaling from $O(N_{PW}^2) \rightarrow O(N_{PW} \log(N_{PW}))$
- Substantial reduction, as N_{PW} is of order 10000-100000 in most practical calculations
- Fourier transformation between discrete grids in real and reciprocal space.

Planewaves and reduced dimensionality

- A weakness of planewaves: Satisfaction of 3D periodic boundary conditions is required in all calculations
- For lower dimensional materials (atoms, molecules, surfaces): need to "pad" system with vacuum layer to reduce residual interaction between periodic images

- For low-dimensional systems, this leads to an unfavourable increase in the basis size, as $N_{PW} \propto V$ for a given E_{cut}
- Vacuum thickness is chosen as a tradeoff between efficiency and accuracy
- (in exchange, we can sample only 1 k-point in the "non-periodic" directions)

Problems from core electrons

- A general problem of planewave basis: Best suited for rather smooth electron densities or single-particle wavefunctions.
- But: Electron density varies strongly around the nuclei, wavefunctions of core electrons are quite localized and can oscillate in the core region strongly due to orthogonality constraints
 - \rightarrow very high E_{cut} required to properly describe this behaviour, i.e. massive basis set size

Problems from core electrons

- A general problem of planewave basis: Best suited for rather smooth electron densities or single-particle wavefunctions.
- But: Electron density varies strongly around the nuclei, wavefunctions of core electrons are quite localized and can oscillate in the core region strongly due to orthogonality constraints
 - \rightarrow very high E_{cut} required to properly describe this behaviour, i.e. massive basis set size

