Calculus II Integrals of the form $\int \sin^n x \cos^m x dx$, theory

Todor Milev

2019

 $\int \sin^m x \cos^n x dx$

When n - odd:

 $\int \sin^m x \cos^n x dx$

When m - odd:

$$\int \sin^m x \cos^n x dx = \int \sin^m x \cos^{n-1} x d(\sin x)$$

When
$$n - \text{odd}$$
:
 $\cos x dx$
 $= d(\sin x)$

$$\int \sin^m x \cos^n x dx$$

When m - odd:

$$\int \sin^m x \cos^n x dx = \int \sin^m x \cos^{n-1} x d(\sin x)$$
$$= \int \sin^m x \left(1 - \sin^2 x\right)^{\frac{n-1}{2}} d(\sin x)$$

When
$$n - \text{odd}$$
:
 $\cos x dx$
 $= d(\sin x)$
Express $\cos x$
via $\sin x$

$$\int \sin^m x \cos^n x dx$$

When m – odd:

$$\int \sin^m x \cos^n x dx = \int \sin^m x \cos^{n-1} x d(\sin x)$$
$$= \int \sin^m x \left(1 - \sin^2 x\right)^{\frac{n-1}{2}} d(\sin x)$$

When n - odd: $\cos x dx$ $= d(\sin x)$ Express $\cos x$ via $\sin x$

$$\int \sin^m x \cos^n x dx$$

When m – odd:

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m} x \cos^{n-1} x d(\sin x)$$

$$= \int \sin^{m} x \left(1 - \sin^{2} x\right)^{\frac{n-1}{2}} d(\sin x)$$

$$= \int u^{m} \left(1 - u^{2}\right)^{\frac{n-1}{2}} du$$
When $m - \text{odd}$:
$$\text{Set } \sin x = u$$
When $m - \text{odd}$:

 $\int \sin^m x \cos^n x dx$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m} x \cos^{n-1} x d(\sin x)$$

$$= \int \sin^{m} x \left(1 - \sin^{2} x\right)^{\frac{n-1}{2}} d(\sin x)$$

$$= \int u^{m} \left(1 - u^{2}\right)^{\frac{n-1}{2}} du$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m-1} x \cos^{n} x d(-\cos x)$$
When $n - \text{odd}$:
$$= \cos x dx$$

$$= d(\sin x)$$
Express $\cos x$
via $\sin x$
Set $\sin x = u$
When $m - \text{odd}$:
$$\sin x dx$$

$$= d(-\cos x)$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m} x \cos^{n-1} x d(\sin x)$$

$$= \int \sin^{m} x \left(1 - \sin^{2} x\right)^{\frac{n-1}{2}} d(\sin x)$$

$$= \int u^{m} \left(1 - u^{2}\right)^{\frac{n-1}{2}} du$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m-1} x \cos^{n} x d(-\cos x)$$

$$= -\int \left(1 - \cos^{2} x\right)^{\frac{m-1}{2}} \cos^{n} x d(\cos x)$$
Express $\cos x$
via $\sin x$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x dx$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x dx$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m} x \cos^{n-1} x d(\sin x)$$

$$= \int \sin^{m} x \left(1 - \sin^{2} x\right)^{\frac{n-1}{2}} d(\sin x)$$

$$= \int u^{m} \left(1 - u^{2}\right)^{\frac{n-1}{2}} du$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m-1} x \cos^{n} x d(-\cos x)$$

$$= -\int \left(1 - \cos^{2} x\right)^{\frac{m-1}{2}} \cos^{n} x d(\cos x)$$
Express $\cos x$
via $\sin x$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x dx$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m} x \cos^{n-1} x d(\sin x)$$

$$= \int \sin^{m} x \left(1 - \sin^{2} x\right)^{\frac{n-1}{2}} d(\sin x)$$

$$= \int u^{m} \left(1 - u^{2}\right)^{\frac{n-1}{2}} du$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m-1} x \cos^{n} x d(-\cos x)$$

$$= -\int \left(1 - \cos^{2} x\right)^{\frac{m-1}{2}} \cos^{n} x d(\cos x)$$
Express $\cos x$
via $\sin x$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x dx$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m} x \cos^{n-1} x d(\sin x)$$

$$= \int \sin^{m} x \left(1 - \sin^{2} x\right)^{\frac{n-1}{2}} d(\sin x)$$

$$= \int u^{m} \left(1 - u^{2}\right)^{\frac{n-1}{2}} du$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m-1} x \cos^{n} x d(-\cos x)$$

$$= -\int \left(1 - \cos^{2} x\right)^{\frac{m-1}{2}} \cos^{n} x d(\cos x)$$

$$= -\int \left(1 - u^{2}\right)^{\frac{m-1}{2}} u^{n} du$$
When $n - \text{odd:}$

$$\cos x dx$$

$$= d(\sin x)$$
Express $\cos x$

$$\sin x dx$$

$$= d(-\cos x)$$
Express $\cos x$

$$via $\sin x$
Set $\cos x = u$$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m} x \cos^{n-1} x d(\sin x)$$

$$= \int \sin^{m} x \left(1 - \sin^{2} x\right)^{\frac{n-1}{2}} d(\sin x)$$

$$= \int u^{m} \left(1 - u^{2}\right)^{\frac{n-1}{2}} du$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m-1} x \cos^{n} x d(-\cos x)$$

$$= -\int \left(1 - \cos^{2} x\right)^{\frac{m-1}{2}} \cos^{n} x d(\cos x)$$
Express $\cos x$
via $\sin x$

$$= d(-\cos x)$$

$$= \cos x dx$$

$$= d(\sin x)$$
When $x = x$

$$= \cos x dx$$
via $\sin x = x$

$$= \cos x dx$$

$$= \sin x dx$$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x$

 $=-\int \left(1-u^2\right)^{\frac{m-1}{2}}u^n\mathrm{d}u$

If both m, n- even,

Set $\cos x = u$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m} x \cos^{n-1} x d(\sin x)$$

$$= \int \sin^{m} x \left(1 - \sin^{2} x\right)^{\frac{n-1}{2}} d(\sin x)$$

$$= \int u^{m} \left(1 - u^{2}\right)^{\frac{n-1}{2}} du$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m-1} x \cos^{n} x d(-\cos x)$$

$$= -\int \left(1 - \cos^{2} x\right)^{\frac{m-1}{2}} \cos^{n} x d(\cos x)$$

$$= -\int \left(1 - u^{2}\right)^{\frac{m-1}{2}} u^{n} du$$
When $n - \text{odd:}$

$$\sin x dx$$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x$
Set $\cos x = u$

If both m, n- even, use $\begin{vmatrix} \sin^2 x & = & \frac{1-\cos(2x)}{2} \\ \cos^2 x & = & \frac{\cos(2x)+1}{2} \end{vmatrix}$ and substitute s = 2x to

lower trig powers. Repeat above considerations.

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m} x \cos^{n-1} x d(\sin x)$$

$$= \int \sin^{m} x \left(1 - \sin^{2} x\right)^{\frac{n-1}{2}} d(\sin x)$$

$$= \int u^{m} \left(1 - u^{2}\right)^{\frac{n-1}{2}} du$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m-1} x \cos^{n} x d(-\cos x)$$

$$= -\int \left(1 - \cos^{2} x\right)^{\frac{m-1}{2}} \cos^{n} x d(\cos x)$$

$$= -\int \left(1 - u^{2}\right)^{\frac{m-1}{2}} u^{n} du$$
When $n - \text{odd:}$

$$\sin x dx$$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x$

$$= d(-\cos x)$$
Express $\cos x$
via $\sin x$
Set $\cos x = u$

If both m, n- even, use $\begin{vmatrix} \sin^2 x & = & \frac{1-\cos(2x)}{2} \\ \cos^2 x & = & \frac{\cos(2x)+1}{2} \end{vmatrix}$ and substitute s = 2x to

lower trig powers. Repeat above considerations.