A Prezime, ime, br. indeksa:
• Pri deljenju polinoma x^4+x^2+1 sa x^2-x+1 nad \mathbb{R} , količnik je, a ostatak je
• Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B, +, \cdot, ', 0, 1)$ za sve $a, b \in B$: 1) $(1')' = a' \cdot 0' + a + b$ 2) $a + ab = 1' + a \cdot 0'$ 3) $a \cdot 1' = bb'$ 4) $1 + a' = 0' + b$ 5) $(a')' \cdot (b')' = (a' + b')'$
• Odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja $z=-1+2e^{-i\frac{\pi}{3}}$: $Re(z)=$, $Im(z)=$, $ z =$, $\arg(z)=$, $\overline{z}=$, $z^{-1}=$.
• Neka su funkcije $f:(0,1)\to (0,1)$ i $g:(0,1)\to (0,1)$ definisane sa $f(x)=\sqrt[7]{x}$ i $g(x)=\sqrt{1-x}$. Izračunati:
1) $f^{-1}(x) =$ 2) $g^{-1}(x) =$ 3) $(f \circ g)(x) =$ 4) $(f \circ g)^{-1}(x) =$ 5) $(g^{-1} \circ f^{-1})(x) =$
• $\arg(0) = $, $\arg(-i\sqrt{2}) = $, $\arg(-\sqrt{2}) = $, $\arg(i\sqrt{2}) = $, $\arg(\sqrt{2}) = $, $\arg(1 - \frac{1}{\sqrt{2}}) = $.
• Zaokružiti broj (ili brojeve) ispred struktura koje su grupe. 1) $(\{-1,1\},\cdot)$ 2) $(\mathbb{Z}_5\setminus\{0\},\cdot)$ 3) (\mathbb{N},\cdot) 4) (\mathbb{Q}^+,\cdot) 5) (\mathbb{R},\cdot) 6) $(\{-1,0,1\},\cdot)$ 7) $(\{\binom{1\ 2}{1\ 2},\binom{1\ 2}{2\ 1}\},\circ)$

$ullet$ Za svaku od datih relacija u skupu $A=\{1,2,3\}$ zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija.
$\begin{array}{lll} \text{(relacija ",nije manji od")}: & R S A T F, \\ \text{(relacija ",deli")}: & R S A T F, \\ \rho = \{(1,3),(1,2),(2,1)\}: & R S A T F, \\ \rho = \emptyset: & R S A T F, \\ \rho = \emptyset: & R S A T F, \\ \end{array} \qquad \begin{array}{ll} \rho = \{(1,1),(2,2),(3,3),(3,1),(3,2),(2,1)\}: & R S A T F, \\ \rho = \{(1,1),(2,2),(3,3),(1,2),(2,1)\}: & R S A T F, \\ \rho = \{(1,1),(2,2),(3,3),(1,2),(2,1)\}: & R S A T F. \end{array}$
$\bullet \ \left\{ e^{i(\arg z + \arg z^{-1})} z \in \mathbb{C} \setminus \{0\} \right\} = \left\{ \qquad \qquad \right\} \qquad \qquad \left\{ e^{i(\arg z - \arg(-z))} z \in \mathbb{C} \setminus \{0\} \right\} = \left\{ \qquad \qquad \right\}$
• Bijektivne funkcije su:1) $f:(1,\infty) \to \mathbb{R}^+, \ f(x) = \log_3 x$ 2) $f:(-\infty,-2) \to (-\infty,4), \ f(x) = -x^2 - 4x$ 3) $f:(-\frac{\pi}{2},\frac{\pi}{2}) \to \mathbb{R}, f(x) = \operatorname{arctg} x$ 4) $f:(\frac{\pi}{3},\frac{2\pi}{3}) \to (\frac{\sqrt{3}}{2},1], \ f(x) = \sin x$ 5) $f:\mathbb{R} \to \mathbb{R}, \ f(x) = e^x$
• Ako je $z \in \mathbb{C}$ tada je $z^6 = 64 \Leftrightarrow z \in \{2, -2, 1 + i\sqrt{3}, -1 - i\sqrt{3}, \}$
• Ako je p polinom stepena 3 nad proizvoljnim poljem F tada: 1) p je nesvodljiv nad F akko p nema korena u F 2) ako p ima 3 korena u F onda je p svodljiv nad F 3) ništa od prethodnog
• Zaokružiti grupoide sa neutralnim elementom, koji nisu grupe: 1) $(\mathbb{Z}_7 \setminus \{0\}, \cdot)$ 2) $(\{f f : \mathbb{R} \to \mathbb{R}\}, \circ)$ 3) $(\mathbb{Z}_4, +)$ 4) (\mathbb{Z}_4, \cdot) 5) $(\{3k k \in \mathbb{Z}\}, \cdot)$ 6) $(\mathbb{R}[x], \cdot)$ 7) $(\mathbb{N} \cup \{0\}, +)$ 8) (\mathbb{Z}, \cdot)
• Bar jedan najveći zajednički delitelj za polinome $P(t) = 2(t-4)^7(t+9)^3(t-5)^5(t+17)^3$ i $Q(t) = 7(t-3)^2(t-15)(t-4)^3(t+17)^5$ je:
• Zaokružiti brojeve ispred algebarskih struktura koja su polja. 1) $\Big(\{f_k f_k(x)=kx,k\in\mathbb{R}\},+,\circ\Big)$
$\mathbf{2)} \ (\mathbb{R}^{\mathbb{R}},+,\cdot) \ \mathbf{3)} \ (\mathbb{R}[t],+,\cdot) \ \mathbf{4)} \ (\mathbb{Z}_4,+,\cdot) \ \mathbf{5)} \ (\mathbb{Q},+,\cdot) \ \mathbf{6)} \ (\mathbb{Z}_3,+,\cdot) \ \mathbf{7)} \ \left(\{f f:\mathbb{R} \overset{1-1}{\underset{\mathrm{na}}{\rightarrow}} \mathbb{R}\},+,\circ\right)$
• Neka je $\mathcal{G} = (\{7^n n \in \mathbb{N}\}_{\equiv_3}, \cdot)$, gde je · množenje po modulu 3 u skupu $\{7^n n \in \mathbb{N}\}_{\equiv_3}$. 1) \mathcal{G} je grupoid. 2) U \mathcal{G} postoji neutralni elemenat. 3) \mathcal{G} je grupa.
• Zaokružiti grupe : 1) $(\mathbb{C} \setminus \{0\}, \cdot)$ 2) $(\{-1, 1\}, \cdot)$ 3) $(\{-1, i, 1, -i\}, \cdot)$ 4) $(\{z z^6 = 1, z \in \mathbb{C}\}, \cdot)$ 5) $((0, 1), \cdot)$ 6) $((-\infty, 0), \cdot)$ 7) $((0, \infty), \cdot)$ 8) $(\mathbb{Q} \setminus \{0\}, \cdot)$ 9) $(\{e^{i\theta} \theta \in \mathbb{R}\}, \cdot)$
• Zaokružiti oznaku polja za koje važi da je polinom t^3+t+1 svodljiv nad njima. \mathbb{Q} \mathbb{R} \mathbb{C} \mathbb{Z}_3 \mathbb{Z}_5
• $\left\{dg(P) \mid P \text{ je nesvodljiv polinom nad poljem } \mathbb{C}\right\} = \left\{\right\}$
• $\left\{dg(P) \mid P \text{ je nesvodljiv polinom nad poljem } \mathbb{R}\right\} = \left\{\right\}$

• Zaokružiti broj (ili	brojeve) ispred jednakosti ko	oje su tačne u skupu kompleksnih	n brojeva:
$1) \ z\overline{z} = z ^2$	2) $Re(z) = \frac{1}{2}(z - z)$	3) $ z_1+z_2 = z_1 + z_2 $	4) $\overline{z} \in \mathbb{R} \implies z = \overline{z}$
$5) \ \overline{z_1 \cdot z_2} = \overline{z}_1 \cdot \overline{z}_2$	6) $ z_1 \cdot z_2 = z_1 \cdot z_2 $	7) $z \neq 0 \Rightarrow z^{-1} = z ^{-2}\overline{z}$	8) $ z = 1 \Rightarrow z^{-1} = \overline{z}$

- Zaokružiti brojeve ispred sirjektivnih funkcija:
 - 1) $f:(0,\frac{\pi}{4})\to(0,\infty), \ f(x)=\lg x$ 2) $f:\mathbb{R}^+\to\mathbb{R}, \ f(x)=3-x$ 3) $f:\mathbb{R}\to\mathbb{R}, \ f(x)=x^2$ **4)** $f: \mathbb{R} \to [0, \infty), \ f(x) = x^2$ **5)** $f: [0, \infty) \to [0, \infty), \ f(x) = x^2$ 6) $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = \ln x$
- Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom prstenu $(F,+,\cdot)$: 1) a + bc = (a + b)(a + c) 2) $(F \setminus \{0\}, +)$ je grupa 3) (F, \cdot) je grupa 4) operacija + je distributivna prema · 5) $ab = 0 \Rightarrow a = 0 \lor b = 0$ 6) $a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$ 7) $a \cdot 0 = 0$ 8) $(F \setminus \{0\}, \cdot)$ je grupa
- Funkcija $f: (\frac{\pi}{6}, \frac{2\pi}{3}) \longrightarrow (-1, 1)$ definisana sa $f(x) = \cos x$ je: 1) sirjektivna i nije injektivna 2) injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna
- Navesti geometrijsku interpretaciju skupova A,B,C,D,E i sledećih kompleksnih funkcija $f:\mathbb{C}\to\mathbb{C}$, $g:\mathbb{C}\to\mathbb{C},\ h:\mathbb{C}\to\mathbb{C}$ i $s:\mathbb{C}\to\mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija $f,\ g,$

```
f(z) = \frac{1}{2}\overline{z}(-1 + i\sqrt{3}) je ______
q(z) = ze^{i\frac{\pi}{7}} je
h(z) = iI_m(z) je ____
s(z) = |z|e^{i\arg(-z)} \wedge s(0) = 0 je ______
A = \{z | |z^7| = i^8\} je _____
B = \{z | z^7 = i^8\} je _____
C = \{z | z = -\overline{iz}\} je _____
D = \{e^{i(\arg z + \arg(\overline{z}))} | z \in \mathbb{C} \setminus \{0\}\} \text{ ie } \underline{\hspace{1cm}}
E = \{z | iI_m(z) = iR_e(z)\} je _____
```

- Neka je $\{1, -2\}$ skup svih korena polinoma $f(x) = x^3 + ax^2 + bx + c$, gde su $a, b, c \in \mathbb{R}$. Tada skup svih mogućnosti za a je ______, skup svih mogućnosti za b je ______ i skup svih mogućnosti za c je
- Napisati primer (ukoliko postoji):

A ZADACI

- 1) Funkcije f čiji su originali i slike iz skupa $\{1,2,3,4,5\}$: $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$ 2) Injektivne funkcije f skupa $\{1,2,3,4,5\}$ u skup $\{1,2,3,4\}$: $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$ 3) Neinjektivne funkcije f skupa $\{1,2,3,4\}$ u skup $\{1,2,3,4\}$: $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$ 4) Sirjektivne funkcije f skupa $\{1,2,3,4\}$ u skup $\{1,2,3,4\}$: $f = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ 5) Nesirjektivne funkcije f skupa $\{1,2,3,4\}$ u skup $\{1,2,3,4\}$: $f = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ 6) Injektivne funkcije f skupa $\{1,2,3,4\}$ u skup $\{1,2,3,4\}$: $f = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ 7) Sirjektivne funkcije f skupa $\{1,2,3,4\}$ u skup $\{1,2,3,4\}$: $f = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$
- Ako je $A = \left\{ dg(P) \mid P(x) = ax^3 + bx + c \text{ je polinom nad poljem realnih brojeva i } c \neq 0 \right\}$, tada je: 1) $A = \{3\}$ 2) $A = \{3, 2\}$ 3) $A = \{3, 1\}$ 4) $A = \{3, 1, 0\}$ 5) $A = \{3, 2\}$

5) $A = \{3, 2, 1, 0\}$

1. Napisati SVE proste implikante i SVE minimalne disjunktivne normalne forme Bulove funkcije

25.11.2018.

f(x, y, z, u) = xyzu' + xyz'u' + xy'zu' + xy'z'u' + x'y'z'u' + x'y'z'u + x'yz'u.

Napomena: tablicu nacrtati kao na slici desno.

Napomena: tablicu nacrtati kao na slici desno. $y \ y \ y$ 2. Neka je $A = \{\rho e^{i\frac{2k}{7}\pi} | \rho > 0 \land k \in \{-3, -2, -1, 0, 1, 2, 3\}\} = \{\rho e^{i\frac{2k}{7}\pi} | \rho > 0 \land k \in \{..., -3, -2, -1, 0, 1, 2, 3, ...\}\}.$ $A = \{\rho e^{i\frac{2k}{7}\pi} | \rho > 0 \land k \in \mathbb{Z}\}.$ Dokazati da je (A, \cdot) komutativna grupa, gde je · množenje kompleksnih brojeva. Naći jednu 7-članu podgrupu grupe (A, \cdot) .

Naci jednu 7-cianu podgrupu grupe (A, \cdot) . **2'.** $A_{\rho} = \{\rho e^{i\frac{2k}{7}\pi} \mid k \in \{-3, -2, -1, 0, 1, 2, 3\}\} = \{\rho e^{i\frac{2k}{7}\pi} \mid k \in \{..., -3, -2, -1, 0, 1, 2, 3, ...\}\}, \ \rho > 0.$ $A_{\rho} = \{\rho e^{i\frac{2k}{7}\pi} \mid k \in \mathbb{Z}\}, \ \rho > 0.$ Dokazati da je (A_{ρ}, \cdot) je komutativna grupa samo za $\rho = 1$, gde je · množenje kompleksnih brojeva. Naći podgrupe grupe (A_1,\cdot) . Napomena: $A=\bigcup A_{\rho}$

3. Neka je $p(x) = x^5 - 4x^4 + 4x^3 + 4x^2 - 12x + 8$ polinom nad poljem \mathbb{R} . Nad poljima \mathbb{C} i \mathbb{R} rastaviti p(x) na proizvod nesvodljivih polinoma (faktorisati), ako se zna da je 1+i jedan njegov kompleksni koren.