DQ Checks of 2024 Data

Track Variables

December 17, 2024

Pawan Johnson

Prof. Carl Gwilliam

Dr. Monika Weilers

Prof. Monica D'Onofrio

University of Liverpool

Introduction

- Verify the quality of track reconstruction in 2024 data
- Compare with 2023 data and identify any discrepancies
- Detailed objectives highlighted in the following TODO List: [General Physics Meeting 19 Nov]

Data Description

- 2024 data can be found in the directories
 - /eos/experiment/faser/phys/2024/p0011
 - /eos/experiment/faser/phys/2024/p0012
- 2023 data can be found in the directory
 - /eos/experiment/faser/phys/2023/p0010
- The runlist (luminosities) used are from: /afs/cern.ch/user/t/torrence/public/faser/runlist/
 - ../runlist/2024/faser_runlist_2024_stable.csv
 - ../runlist/2023/faser_runlist_2023_stable.csv
- Runs excluded from above list
 - 11214 0 Lumi; 11705,6 Pb Col.; 10417-63 HighGain
 - **16851,2** Directory is empty
 - 16932, 16943, 16972 ROOT Files empty
- No cuts have been applied, since we want to look at the DQ

Overview of Tracking Variables

- New tracking variables have been added to the 2024 NTuples
 - Track hitSet
 - Track_module_eta0
 - Track_module_phi0
- There are 56 tracking variables in total (excluding the above)
- They can be broadly classified as:
 - Track Parameters (e.g. χ^2 , charge, etc.) (10)
 - Track Positions at various modules (24)
 - Track Momentum (angles) at various modules (22)

Distribution of Track Parameters

- Number of Tracks
- Track Charge
- Track χ^2
- Track nDoF [in Backup]
- Track In Station [in Backup]
- Track nLayers [in Backup]
- Track Propagation Error

Distribution of Number of Tracks

- Overall a higher number of tracks in 2024
- Partially can be due to much higher muon rate in 2024
- See this talk to see the difference in backgrounds \$\frac{12}{2}\$ April General Meeting

Figure: Distribution of Number of Tracks

Distribution of Track Charge

- We have a higher percentage of anti-muons
- Consistent with earlier observation of "Much larger population of very high energy positive muons" [see Talk]

Figure: Distribution of Track Charge

Distribution of Track χ^2

- Overall we observe a lower Track χ^2 in 2024
- Do we understand why?

Figure: Distribution of Track χ^2

Track Propagation Error [SKIP]

Figure: Distribution of Track Propagation Error

Track Positions (x, y)

- Vetonu
- VetoStation 1 [in Backup]
- VetoStation 2 [in Backup]
- Trigger/Timing Station [in Backup]
- Tracking Station 1
- Tracking Station 3
- Preshower 1 [in Backup]
- Preshower 2 [in Backup]
- Calo
- Max Radius

Track Positions at Vetonu

Figure: Track Position x at VetoNu

Figure: Track Position y at VetoNu

- Sharper Distribution in 2024: More particles on center? REF?
- The ypeak has shifted to the positive side. Expected with the change in beam crossing angle
- Same comments hold for the rest of the positions.

Track Positions at Tracking Station 1

Only qualitative difference from the VetoNu plots are the sharper peaks here which are from the cut off at 125 mm. And the dips in the x-distributions at around 60mm are from the geometry of the tracking stations.

Track Positions at Tracking Station 3

Figure: Track Position x at Tracking Station 3

Figure: Track Position y at Tracking Station 3

Track Positions at Calo

Figure: Track Position x at Calo

Figure: Track Position y at Calo

Track Positions at Max Radius

Track Angle (θ_x, θ_y) at Various Stations

- Vetonu
- VetoStation 1 [in Backup]
- VetoStation 2 [in Backup]
- Trigger/Timing Station [in Backup]
- Tracking Station 1
- Tracking Station 3
- Preshower 1 [in Backup]
- Preshower 2 [in Backup]
- Calo
- Track Momenta at Station 1

Note: Track angles defined as $\theta_{\rm X}=\arctan rac{p_{\rm X}}{p_{\rm Z}}$ and $\theta_{\rm Y}=\arctan rac{p_{\rm Y}}{p_{\rm Z}}$

Track Momenta at VetoNu

Figure: Track ThetaX at VetoNu

Figure: Track ThetaY at VetoNu

Needs investigation to understand why the difference

Track Angles at Tracking Station 1

 $\textbf{Figure:} \ \, \mathsf{Track} \ \, \mathsf{ThetaX} \ \, \mathsf{at} \ \, \mathsf{Tracking} \ \, \mathsf{Station} \ \, \mathsf{1}$

 $\textbf{Figure:} \ \mathsf{Track} \ \mathsf{ThetaY} \ \mathsf{at} \ \mathsf{Tracking} \ \mathsf{Station} \ 1$

- There is a peak in 2024 data at -0.07 rad. Do we understand why?
- Similar features observed in the Background studies. [See Page 15-16]

Track Angles at Tracking Station 3

Figure: Track ThetaX at Tracking Station 3

Figure: Track ThetaX at Tracking Station 3

Track Angles at Calo

Figure: Track ThetaX at Calo

Figure: Track ThetaY at Calo

Track Momenta at Tracking Station 1

Figure: Track momentum at Station 1 (linear p scale)

Figure: Track momentum at Station 1 (log p scale)

Figure: Track momentum at Station 1 (positive)

Figure: Track momentum at Station 1 (negative)

Track Momenta at Tracking Station 1 (contd.)

- We have more high momenta positively charged muons in 2024.
- Background studies again showed similar features.
- See Page 15-16 of earlier talk

Figure: Background studies (slide15)

2024 Runs Splits

- Due to the higher backgrounds FaserNu had to be replaced every 10 ifb.
- The replacement schedule was as follows

Box	Installed	Removed	Lumi (ifb)
F241	20/3	6/5	11.6
Tungsten only	6/5	12/6	18.5
F242	12/6	8/7	9.9
CaloNu	10/7	4/10	69.8
F243	4/10	22/10	11.9

Table: Replacement Schedule [Source: FASER General Meeting 8.11.24]

Yield Plots of 2023

Yield Plots of F241- 2024

Yield Plots of Tungsten only- 2024

Yield Plots of F242- 2024

Yield Plots of CaloNu - 2024

Yield Plots of F243- 2024

Directions going Forward

- Understand the DQ of other variables
- Investigate and understand the changes in Track Momenta
- Have a proper run-list for the 2024 data (also for 2023)

Micellaneous

- Similar plots can be made using the compareproductions_faser tool. Some of the plots were used for validation.
- Link to Repo containing the code for plots in this presentation.
- Link to variants of the plots more more filtered like charge separated, good tracks only etc. [Will be added to above repo]
- Detailed yield plots were presented by Oscar. [See previous DQ Talk]

Backup

Distribution of Track in Station [SKIP]

There are always 0 tracks in Station0. Possibly an issue in NTupleDumper. Haven't located this yet.

Track_nLayers [SKIP]

Figure: Distribution of Track_nLayers

Track Positions at Veto Station 1 [SKIP]

Figure: Track Position x at Veto Station 1

Figure: Track Position y at Veto Station 1

Track Positions at Veto Station 2 [SKIP]

Figure: Track Position x at Veto Station 2

Figure: Track Position y at Veto Station 2

Track Positions at Trigger [SKIP]

Figure: Track Position x at Trigger/Timing Station

Figure: Track Position y at Trigger/Timing Station

Track Positions at Preshower 1 [SKIP]

Figure: Track Position x at Preshower 1

Figure: Track Position y at Preshower 1

Track Positions at Preshower 2 [SKIP]

Figure: Track Position x at Preshower 2

Figure: Track Position y at Preshower 2

Track Momenta at VetoStation 1 [SKIP]

Figure: Track ThetaX at atVetoStation 1

Figure: Track ThetaY at VetoStation 1

Track Angles at VetoStation 2 [SKIP]

Figure: Track ThetaX at VetoStation 2

Figure: Track ThetaY at VetoStation 1

Track Angles at Trigger [SKIP]

Figure: Track ThetaX at Trigger

Figure: Track ThetaY at Trigger

Track Angles at Preshower 1 [SKIP]

Figure: Track ThetaX at Preshower 1

Figure: Track ThetaY at Preshower 1

Track Angles at Preshower 2 [SKIP]

Figure: Track ThetaX at Preshower 2

Figure: Track ThetaY at Preshower 2