MRI:

T1 vs. T2 Weighting
Spin Echo
Gradient Echo
Inversion Recovery

Jesse Knight

ENGG 4040 Medical Imaging Modalities

Nov 13 2015

Overview

Review:

- Resonance
- T1 & T2
- Spatial Encoding

Spin Echo

- Sequence
- Equation

T1 and T2 Weighting

Gradient Echo

- Sequence
- Equation

Inversion Recovery

- Sequence
- Equation

Summary

Review: Resonance

Magnetic Field

- Atoms spinning & precessing due to B_o
- Precession f_i proportional to B

Transverse RF Pulse

- 90° RF* pulse "knocks" spin axes down
 *(rotating frame of reference)
- Creates net moment M in rotating XY plane

Review: T₁ and T₂

T1

- Rate of recovery of moment in B_o direction: M_Z
- "Spin-Lattice"

$$Mz = M_0 \left(1 - e^{-\left(\frac{t}{T_1}\right)} \right)$$

T₂

- Rate of decay of moment in B₁ direction: M_{XY}
- "Spin-Spin"

$$Mzy = M_0 \left(e^{-\left(\frac{t}{T2}\right)} \right)$$

Review: Spatial Encoding

 Slice Select: During RF only excite one plane

 Phase Encode: phase varies across plane in other direction

Spin Echo Sequence

- Refocus M_{XY} using 180 °
- Multiple 180° pulses:
 Multiple echoes

... Faster Acquisition

RF

GS

GP

GF

Echo

Spin Echo Equation (Signal Magnitude)

$$\Psi_{SE} = \Psi_0 e^{-\left(\frac{TE}{T2}\right)} \left(1 - e^{-\left(\frac{TR}{T1}\right)}\right)$$

T1 & TR

- Long TR: more M_Z recovered for next excitation
- Amount of M_Z recovered depends on tissue T₁

T₂ & TE

- Very long TE: signal strength (M_{XY}) decays too much
- Very short TE: tissue T2 has minimal impact

T₁ and T₂ Weighting

$$\Psi_{SE} = \Psi_0 \; e^{-\left(\frac{\mathit{TE}}{\mathit{T2}}\right)} \Big(1 - e^{-\left(\frac{\mathit{TR}}{\mathit{T1}}\right)}\Big)$$

T1-Weighting

T1 ≈ TR

- \rightarrow
- Emphasize differences in M_Z recovery

Short TE

- \rightarrow
- Minimize impact of T2

T2-Weighting

T2 ≈ TE

- \rightarrow
- Maximize contrast of T2

Long TR

- \rightarrow
- Allow full M_7 recovery

T₁ and T₂ Weighting

T1-Weighting

T2-Weighting

- Dark: short T2

Summary: Spin Echo Weighting

$$\Psi_{SE} = \Psi_0 e^{-\left(\frac{TE}{T2}\right)} \left(1 - e^{-\left(\frac{TR}{T1}\right)}\right)$$

$$\{T1, T2\} \sim (x, y)$$

Gradient Echo Sequence

- Another way to refocus M_{XY} : use spatial gradients to de/re-phase spins
- -o.5 Gf during phase encode
 +1.0 Gf during readout
- Again, multiple gradients:
 Multiple echoes: "Fast GE"
 ... Faster Acquisition

Gradient Echo Equation

$$\Psi_{GE} = \Psi_0 e^{-\left(\frac{TE}{T2^*}\right)} \left(1 - e^{-\left(\frac{TR}{T1}\right)}\right) \left(\frac{\sin \theta}{1 - \cos \theta \cdot e^{-\left(\frac{T1}{TR}\right)}}\right)$$

Why $\theta \neq 90^{\circ}$?

- We don't need 180° to act on XY plane!
- Faster!
 - ... Need not wait for M_Z recove
- What if $\theta = 90^{\circ}$?

Inversion Recovery Sequence

- Want to null the signal from a tissue "K".
- Apply 180° before
 90° pulse so M_{Z"K"} is
 zero when we apply 90°
- Multiple echoes?
 Nope...

Inversion Recovery Equation

$$\Psi_{IR} = \Psi_0 e^{-\left(\frac{TE}{T2}\right)} \left(1 + e^{-\left(\frac{TR}{T1}\right)} - 2e^{-\left(\frac{TI}{T1}\right)}\right)$$

Selecting TI

• Not simply (1/2) T_{1_K} : these are exponential decays!

$$TI = ln(2) \cdot T1_K$$

- Can null signal from any tissue!
- However: tissues with similar T1 will be affected
- Typically, IR sequences are T2-weighted, e.g. FLAIR

Case Study: White Matter Lesions

- Lesions of MS; correlated with Alzheimer's, stroke risk
- T1: no contrast
- T2: bright, but periventricular uncertainty...
- FLAIR: just right!

Summary: SE $(T_1 \& T_2)$ vs. GE vs. IR

$$\Psi_{SE} = \Psi_0 e^{-\left(\frac{TE}{T2}\right)} \left(1 - e^{-\left(\frac{TR}{T1}\right)}\right)$$

180° flip → rephase

$$\Psi_{\text{SE,T}_1} \approx \Psi_0 \left(1 - e^{-\left(\frac{TR}{T_1}\right)} \right)$$

Bright: short T1

$$\Psi_{\text{SE,T}_2} \approx \Psi_0 e^{-\left(\frac{TE}{T2}\right)}$$

Bright: long T2

$$r_{SE,T_2} \sim r_0 c$$

 $\Psi_{GE} = \Psi_0 e^{-\left(\frac{TE}{T2^*}\right)} \left(1 - e^{-\left(\frac{TR}{T1}\right)}\right) \left(\frac{\sin \theta}{1 - \cos \theta \cdot e^{-\left(\frac{T1}{TR}\right)}}\right) \quad \text{Gradients} \rightarrow \text{rephase}$

$$\Psi_{IR} = \Psi_0 e^{-\left(\frac{TE}{T2}\right)} \left(1 + e^{-\left(\frac{TR}{T1}\right)} - 2e^{-\left(\frac{TI}{T1}\right)}\right)$$

Null specific tissue