Sentiment Classification Using Linear Regression

1. Introduction

Sentiment classification is a vital task in Natural Language Processing (NLP) that involves identifying the emotional tone behind text data. While classification models are typically used, this experiment explores the use of **Linear Regression** for predicting sentiment classes based on textual data. Using **TF-IDF** for feature extraction and **label encoding** for sentiment labels, the model aims to minimize prediction error and assess feasibility for classification tasks.

2. Methodology

2.1 Feature Extraction

- Term Frequency-Inverse Document Frequency (TF-IDF) was used to transform raw text into numerical features.
- This method reduces the weight of commonly used words and emphasizes rare but meaningful terms.

2.2 Label Encoding

 The sentiment labels were encoded numerically using LabelEncoder, converting classes such as positive, neutral, and negative into integers.

2.3 Regression Model

- A Linear Regression model was trained using the TF-IDF-transformed data and encoded sentiment labels.
- Despite being a regression model, predictions were **rounded and clipped** to the nearest valid class to simulate classification behavior.

2.4 Evaluation Metrics

To evaluate the regression model as a classifier:

- Mean Squared Error (MSE)
- R² Score
- Approximate Accuracy (after rounding predictions)
- Visuals:
 - o Actual vs Predicted Scatter Plot
 - o Residuals Histogram

3. Results and Analysis

3.1 Performance Metrics

Metric	Value	
Mean Squared Error	≈ 0.3496	
R ² Score	≈ 0.5167	
Approx. Accuracy	≈ 68.42%	

3.2 Scatter Plot: Actual vs Predicted

- The scatter plot indicates the spread of predicted values vs actual encoded classes.
- A tighter grouping along the diagonal suggests better fit and separability.

3.3 Residual Analysis

- **Histogram** of residuals shows the distribution of prediction errors.
- Line plot of residuals highlights systematic bias or trends over sample indices.

4. Conclusions and Recommendations

- 1. **Linear Regression**, while not a traditional choice for classification, can approximate sentiment classification reasonably well when predictions are post-processed.
- 2. The **MSE and R**² provide insights into how well sentiment labels (as numeric values) were predicted.
- 3. The **rounded accuracy** gives a crude but useful benchmark for classification performance.
- 4. However, for production-ready classification tasks, using models like **Logistic Regression, SVM, or Random Forest** is **highly recommended** due to their inherent capability to deal with discrete target labels and probabilistic interpretation.