

Data Understanding

Describe the data being used for this project.

Questions to consider:

- Where did the data come from, and how do they relate to the data analysis questions?
- What do the data represent? Who is in the sample and what variables are included?
- What is the target variable?
- What are the properties of the variables you intend to use?

In [95]:

Import standard packages

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
from pprint import pprint

import operator

from itertools import groupby

%matplotlib inline

```
In [104]:
          # FILE_PATH = (Path(__file__).with_name("title.basics.csv")).absolute()
          def load_datasets():
              Load various data sets
              args: None
              return (dataframe): title_basics, title_ratings
              title_basics = pd.read_csv("title.basics.csv")
              title_ratings = pd.read_csv("title.ratings.csv")
              return title_basics, title_ratings
          def merge_datasets(dataframe_a, dataframe_b, common_column):
              Merges provided dataframes and returns a common dataframe
              args (dataframes, string): dataframe_a, dataframe_b, common_column
              returns (dataframe): merged_dataframe
              return pd.merge(dataframe_a, dataframe_b, on=common_column)
          def remove_duplicates(dataframe, column):
              Remove duplicates based on passed column
              args: dataframe, column
              return dataframe.drop_duplicates(subset=column, keep="last")
          def drop_empty_titles(dataframe):
              Remove empty genres from the dataframe
              args (dataframe): dataframe
              returns (dataframe): dataframe
              .....
              return dataframe.dropna(subset=["genres"]) # inplace=True
          def group_data_by_genre_and_start_year(data_list):
              Group data based on genre
              args: (list): data_list
              return: (list of lists): grouped_data_list
              print(data list[:5])
              data_list = sorted(data_list, key=operator.itemgetter("start_year"), rever
              return [list(group_item[1]) for group_item in groupby(data_list, key=operat
```

```
def group_data_by_year(data list):
    .....
def process_data(grouped_data_list):
    Process data
    return (list of dictionaries): processed_data_list
    Example Response:
    processed data = [
        {"Year": "2012", "Genre": "War", "Votes": 200000, "AverageRating": 7},
        {"Year": "2013", "Genre": "War", "Votes": 200000, "AverageRating": 5},
        {"Year": "2014", "Genre": "Action", "Votes": 200100, "AverageRating": 7]
    grouped_list = []
    for data_list in grouped_data_list:
        processed_data = []
        for key, data in groupby(data_list, key=operator.itemgetter("genres"))
            grouped_data = list(data)
            year = grouped data[0].get("start year")
            total_votes = sum(data.get("numvotes") for data in grouped_data)
            average_votes = total_votes / len(grouped_data)
            average_rating = sum(data.get("averagerating") for data in grouped
            dic = {"Year": year, "Genre": key, "Votes": total_votes, "AverageVot
            processed data.append(dic)
        lst = sorted(processed_data, key=operator.itemgetter("AverageVotes", "/
        grouped_list.append(lst[0])
    return grouped_list
title_basics, title_ratings = load_datasets()
df = merge_datasets(title_basics, title_ratings, "tconst")
df = remove duplicates(df, "original title")
df = drop_empty_titles(df)
data_list = df.to_dict("records")
grouped_data = group_data_by_genre_and_start_year(data_list)
grouped_data_list = process_data(grouped_data)
column_names = ["Year", "Genre", "Votes", "AverageVotes", "AverageRating"]
df = pd.DataFrame(grouped_data_list, columns=column_names)
df.to_excel("file.xlsx", index=False)
df.head(15)
```

enres': 'Drama', 'averagerating': 6.9, 'numvotes': 4517}, {'tconst': 'tt006 9204', 'primary_title': 'Sabse Bada Sukh', 'original_title': 'Sabse Bada Sukh', 'start_year': 2018, 'runtime_minutes': nan, 'genres': 'Comedy,Drama', 'averagerating': 6.1, 'numvotes': 13}, {'tconst': 'tt0100275', 'primary_title': 'The Wandering Soap Opera', 'original_title': 'La Telenovela Errante', 'start_year': 2017, 'runtime_minutes': 80.0, 'genres': 'Comedy,Drama,Fantas y', 'averagerating': 6.5, 'numvotes': 119}]

Out[104]:

	Year	Genre	Votes	AverageVotes	AverageRating
0	2019	Action,Adventure,Sci-Fi	737360	368680.0	7.9
1	2018	Action,Adventure,Sci-Fi	670926	670926.0	8.5
2	2017	Action,Drama,Sci-Fi	560270	560270.0	8.1
3	2016	Action,Adventure,Comedy	820847	820847.0	8.0
4	2015	Action,Adventure,Fantasy	784780	784780.0	8.0
5	2014	Adventure,Drama,Sci-Fi	1299334	1299334.0	8.6

Data Preparation

Describe and justify the process for preparing the data for analysis.

Questions to consider:

- Were there variables you dropped or created?
- · How did you address missing values or outliers?
- Why are these choices appropriate given the data and the business problem?

In [6]: # Here you run your code to clean the data

Data Modeling

Describe and justify the process for analyzing or modeling the data.

Questions to consider:

- How did you analyze or model the data?
- How did you iterate on your initial approach to make it better?
- Why are these choices appropriate given the data and the business problem?

In []:

Here you run your code to model the data

Evaluation

Evaluate how well your work solves the stated business problem.

Questions to consider:

- How do you interpret the results?
- How well does your model fit your data? How much better is this than your baseline model?
- How confident are you that your results would generalize beyond the data you have?
- How confident are you that this model would benefit the business if put into use?

Conclusions

Provide your conclusions about the work you've done, including any limitations or next steps.

Questions to consider:

- What would you recommend the business do as a result of this work?
- What are some reasons why your analysis might not fully solve the business problem?
- · What else could you do in the future to improve this project?