

Hybleland L9-Lesson 08 Similar Triangle III-Assignment

Practice 1.

AMC10 2000 / Problem 16

The diagram show 28 lattice points, each one unit from its nearest neighbors. Segment AB meets segment CD at E. Find the length of segment AE.

A. $\frac{4\sqrt{5}}{3}$ B. $\frac{5\sqrt{5}}{3}$ C. $\frac{12\sqrt{5}}{7}$ D. $2\sqrt{5}$ E. $\frac{5\sqrt{65}}{9}$

Practice 2.

AMC10B 2017 / Problem 15

Rectangle ABCD has AB=3 and BC=4. Point E is the foot of the perpendicular from B to diagonal \overline{AC} . What is the area of $\triangle ADE$?

A. 1 B. $\frac{42}{25}$ C. $\frac{28}{15}$ D. 2 E. $\frac{54}{25}$

Practice 3.

In parallelogram ABDC, shown here, points E and F are the midpoints of side AB and BC, respectively. AF meets DE at G and BD at H. Find the area of quadrilateral BHGE if the area of ABCD is 60.

(A)10 (B)9 (C)8 (D)7 (E)

Practice 4. (Mathcounts)

In rectangle ABCD, shown here, point M is the midpoint of side BC, and point N lies on CD such that DN:NC=1:4. Segment BN intersects AM and AC at points R and S, respectively. If NS:SR:RB=x:y:z, where x, y and z are positive integers, what is the minimum possible value of x+y+z?

Practice 5.

In trapezoid ABCD, AB=3CD and AB // CD. E is the midpoint of the diagonal AC. BE meets AD at F. Find the value of AF:FD.

 $(C)\frac{10}{7}$ $(D)\frac{11}{6}$ $(E)\frac{12}{5}$

Practice 6.

As is shown in figure below, in trapezoid ABCD, AD // BC, \(\subseteq B=90^\circ\), AB=7, AD=9, BC=12. E is a random point on BC. Connect DE and make $EF \perp DE$, it intersects with AB at point F.

- (1) If point F coincides with point B, find the length of CE.
- (2) If point F is on segment AB, and AF=CE, find the length of CE.

Practice 7.

IN THE LAND

Square ABCD has a side length of 1 and E is the midpoint of AB. Connect CE, B is on the line where $BF \perp CE$ and it intersects with AC at point F. Find the length of AF.

Practice 8.

As is shown in the figure below, in Rt \triangle ABC , CD is the attitude of hypotenuse AB. The angle bisector of \angle BAC intersects with BC and CD respectively at points E and F.

- (1) Prove: CF=CE
- (2) Prove: $\frac{CE}{BE} = \frac{AC}{AB}$

IN IN THE LAND

