

LABORATORY ASSESSMENT OF VACUUM-BASED CRACK MONITORING SENSOR

19 Jun 02 Ken LaCivita
Materials Engineer
Air Force Research
Laboratory

Duncan Barton
R&D Manager
Structural Monitoring

ACKNOWLEDGEMENTS

- **Mr Jack Coate - AFRL/MLSC**
- **Mr John Brausch - AFRL/MLSA**
- **Mr Keith McClellan - Structural Monitoring Systems, Ltd.**
- **Mr Michael Waddell - AFRL/MLO**

OUTLINE

- **Background**
- **Similar Technologies**
- **Technology Description**
- **Testing**
- **Test Results**
- **Current Status of CVM Technology**
- **Conclusions/Recommendations**

BACKGROUND

- AFRL was introduced to novel crack detection technology - Comparative Vacuum Monitoring (CVM™)
 - Developed by Structural Monitoring Systems (SMS) based in Australia
 - Nondestructive Evaluation (NDE) Team had interest in technology and an immediate need for real time crack detection monitoring
- Agreement was made for use of equipment in exchange for an informal assessment

SIMILAR TECHNOLOGIES

- Other crack detection/monitoring technologies:

- Crack Detection Gage (filament-type)

- Crack Propagation Gage (filament-type)

- Crack Detection Gage (foil-type)

- Electro-Potential Difference

Test
Leads

Test
Article

TECHNOLOGY DESCRIPTION

- **CVM Concept:**
 - Small volume under vacuum
 - Measure air ingress caused by leak (surface crack)

System schematic

TECHNOLOGY DESCRIPTION

- **Sensor Pad**
 - **Self adhesive, flexible polymer**
 - **Channels molded on one surface**

Typical sensor pads

TECHNOLOGY DESCRIPTION

- Sensor Pad
 - Crack growth beneath pad is detected when “vacuum gallery” is opened to atmospheric pressure

TECHNOLOGY DESCRIPTION

- Sensor Pad
 - Configured for crack detection or crack growth

Sensor pad schematic for crack detection

TECHNOLOGY DESCRIPTION

- System Equipment:
 - Kvac (constant vacuum source)
 - Pulls vacuum on sensor pad
 - Reference for relative pressure measurement
 - SIM (flow sensing device)
 - Monitors relative pressure in low conductive media

System schematic

TECHNOLOGY DESCRIPTION

TESTING

- Primary purpose:
 - Grow natural cracks in engine turbine blades
 - 0.020 - 0.080" **WITHOUT** starter notches
- Secondary purpose:
 - Evaluate novel vacuum-based sensor for lab applications

TESTING

- **Test Article**
 - **Inconel 713 turbine blade**
 - **Edge crack desired perpendicular to trailing edge**

TESTING

- Test Approach
 - AFRL/MLSC Structural Test Facility
 - 3 point cyclic bending
 - 10 Hz, increase load every 10000 cycles

TEST RESULTS

- Natural cracks detected in two blades
 - 0.047" convex side/0.077" concave

- 0.047" convex side/0.077" concave

CURRENT STATUS OF CVM TECHNOLOGY

- **Failure Modes and Effects Analysis**
 - Risks being examined for on-aircraft installation
- **Independent tests of sensor and adhesive constituents**
 - Neutral pH
 - Negligible mobile ions
- **Performance through paint evaluated**
 - Able to detect cracks through various thicknesses and ages of paint systems (note: paint cracked)
- **Effect of long vacuum ducting evaluated**
 - Sensitivity is governed by gallery spacing

CURRENT STATUS OF CVM TECHNOLOGY

- Portable in-field unit evaluation - IN WORK
- Validation trials on flying aircraft - IN WORK
- Long-term environmental program - PLANNED
 - Temperature and humidity extremes
 - Chemical and UV exposure
 - Sensors will be overcoated with sealant

CONCLUSIONS/ RECOMMENDATIONS

- Crack growth on turbine blade without starter notch proved challenging
 - Experimental test method - trial & error approach
 - Unpredictable crack growth rates
 - Dependent on test operator to stop test once crack detected

CONCLUSIONS/ RECOMMENDATIONS

- CVM is an effective alternative means for surface crack detection in a lab environment
 - 0.020" sensitivity possible
 - User-friendly operation
 - Adheres with minimal surface prep
 - Complex geometry applications
- On-aircraft applications need further evaluation