ESE GATE PSUs State Engg. Exams

WORKDOOK 2025

Detailed Explanations of Try Yourself *Questions*

Mechanical EngineeringDesign of Machine Elements

Static & Fluctuating Stresses

Detailed Explanation

of

Try Yourself Questions

T1: Solution

 \Rightarrow

 \Rightarrow

 $\sigma = \frac{P}{A}$ $\frac{600 \times 10^{6}}{3 \times 5} = \frac{20 \times 10^{3}}{(120 - 20) \times 10^{-3} \times t}$ $t = \frac{2 \times 10^{5}}{4 \times 10^{7}} = 5 \times 10^{-3} \text{ m} = 5 \text{ mm}$

T2: Solution

Mean stress,

Variable stress,

Soderberg's formula,

 \Rightarrow

$$\sigma_m = \frac{200 + (-100)}{2} = 50 \text{ MPa}$$

$$\sigma_{V} = \frac{200 - (-100)}{2} = 150 \text{ MPa}$$

$$\frac{1}{N} = \frac{\sigma_m}{\sigma_v} + \frac{\sigma_v}{\sigma_e}$$

$$\frac{1}{2} = \frac{50}{0.55 \times \sigma_u} + \frac{150}{0.5 \times \sigma_u} = \frac{1}{\sigma_u} \left[\frac{50}{0.55} + \frac{150}{0.5} \right]$$

 $\sigma_{tt} = 781.818 \, \text{MPa} \approx 781.82 \, \text{MPa}$

T3: Solution

$$\sigma_{\text{max}} = \frac{32M_{\text{max}}}{\pi d^3} = \frac{32 \times 500}{\pi d^3} = \frac{5092.96 \times 10^3}{d^3} \text{MPa}$$

$$\sigma_{\min} = \frac{32M_{\min}}{\pi d^3} = \frac{32 \times -200}{\pi d^3} = \frac{-2037.18 \times 10^3}{d^3} MPa$$

$$\sigma_{\text{mean}} = \frac{\sigma_{\text{max}} + \sigma_{\text{min}}}{2} = \frac{1527.89 \times 10^3}{d^3} \text{MPa}$$

$$\sigma_{v} = \frac{\sigma_{\text{max}} - \sigma_{\text{min}}}{2} = \frac{3565.07 \times 10^{3}}{q^{3}} \text{ MPa}$$

For ductile material-using Soderberg equation

$$\frac{1}{N} = \frac{\sigma_m}{\sigma_y} + \frac{\sigma_v}{\sigma_e} \qquad [\sigma_e = 0.5 \,\sigma_u]$$

$$\frac{1}{2.5} = \frac{1527.89 \times 10^3}{400 \,d^8} + \frac{3565.07 \times 10^3}{\frac{540}{2} \times d^8}$$

$$d^{3} = 2.5 \times 10^{3} \times \left[\frac{1527.89}{400} + \frac{3565.07 \times 2}{540} \right] = 34.91 \text{ mm}$$

$$d \approx 35 \text{ mm}$$

Welded, Riveted and Bolted Joint

Detailed Explanation of

Try Yourself Questions

T1: Solution

Pitch of rivets,

$$p = \frac{\pi(D+t)}{\text{No. of rivets/row}} = \frac{\pi(1600+30)}{45}$$
= 113.8 mm \times 115 mm

Efficiency,

$$\eta_C = 1 - \frac{d}{\rho} = 1 - \frac{35}{115} = 69.56 \% \simeq 70\%$$

T2: Solution

Permissible tensile stress,

$$(\sigma_t)_{\text{max}} = \frac{\sigma_y}{N} = \frac{380}{2.5} = 152 \text{ MPa}$$

Stiffness in the bolt,
$$K_b = \frac{W}{\delta} = \frac{AE}{L} = \left(\frac{\pi}{4} Q^2\right) \frac{E}{L} = \frac{\pi}{4} Q^2 \times \frac{207000}{100}$$

= 1625.77 Q^2 N/mm

The area A_c of the two plates (which is in compression),

$$A_C = \frac{\pi}{4}(2d)^2 - \frac{\pi}{4}d^2 = 2.356 d^2$$

Combined stiffness of the two plates

$$K_C = \frac{A_c E_C}{L} = \frac{2.356 d^2 \times 71000}{100} = 1672.9 d^2 \text{ N/mm}$$

$$\Delta P = P \left[\frac{K_b}{K_b + K_c} \right] = 20 \times 10^3 \left[\frac{1625.77 d^2}{1625.77 d^2 + 1672.9 d^2} \right]$$

 $= 9857.12 \,\mathrm{N}$

Resultant load on bolt

$$P_b = P_i + \Delta P = 10000 + 9857.12 = 19857.12 \text{ N}$$

$$(\sigma_t)_{\text{max}} = \frac{P_b}{A}$$

$$152 = \frac{19857.12}{\frac{\pi}{4} d_c^2}$$

 \Rightarrow

$$d_c = 12.897 \,\mathrm{mm}$$

$$d = \frac{d_c}{0.8} = 16.12125 \text{ mm}$$

Corresponding bolt is M 20.

T3: Solution

Area of two welds,

 $A = 2(100 \times t) = (200 t) \text{ mm}^2$

Primary shear stress

$$\tau_1 = \frac{P}{A} = \frac{20 \times 10^3}{200 t} = \left(\frac{100}{t}\right) MPa$$

Moment of inertia of two welds,

$$I = 2I_{xx}$$

$$I_{xx} = \frac{100t^3}{12} + Ay_1^2 = \frac{100t^3}{12} + (100t)(100)^2 \text{ mm}^4$$

Since dimension t is very small compared with 100, so term t^3 can be neglected.

Therefore,

$$I_{rr} = (100^3 t) \, \text{mm}^4$$

$$I = 2I_{xx} = t \times \left(\frac{bd^2}{2}\right) = t \times \left(\frac{100 \times 200^2}{2}\right) = 2 \times 10^6 t \text{ mm}^4$$
$$= 2 \times (10^6 t) \text{ mm}^4$$

Bending stress in the top weld

$$\sigma_b = \frac{M_b y}{I} = \frac{(20 \times 10^3 \times 200) \times 100}{2 \times 10^6 t} = \frac{200}{t} MPa$$

Maximum shear stress

$$\tau = \sqrt{\left(\frac{\sigma_b}{2}\right)^2 + \tau_1^2} = \sqrt{\left(\frac{200}{2t}\right)^2 + \left(\frac{100}{t}\right)^2}$$

 \Rightarrow

$$\tau = \frac{141.42}{t} MPa$$

 \Rightarrow

$$100 = \frac{141.42}{t}$$

 \Rightarrow

$$t = 1.4142 \,\mathrm{mm}$$

 \rightarrow

$$h = \frac{t}{0.707} = 2 \text{ mm}$$

Bearings

Detailed Explanation of

Try Yourself Questions

T1: Solution

Life of bearing in millions of revolutions

$$= \left(\frac{C}{W}\right)^3 = \left(\frac{35}{45}\right)^3 = 0.4705$$

$$L = 60 \, NL_{LL}$$

$$\Rightarrow$$

Life in hours,
$$L_H = \frac{L}{60N} = \frac{0.4705 \times 10^6}{60 \times 1800} = 4.356 \,\text{hrs}$$

This the life expected for 90% of the bearings.

The average life expectancy is 5 times of the above life.

i.e.

Average life =
$$5 \times 4.356 = 21.78$$
 hrs

T2: Solution

Heat generated,

$$H_g = \mu VW = 0.003 \times 30 \times 10^3 \times \frac{\pi \times 0.1 \times 1200}{60} = 565.5 \text{ watts}$$

Heat dissipation rate = 96 J/m²/sec./°C

=
$$96 \times \left[\frac{100}{1000} \times \frac{100}{1000} \times 20 \right]$$
 J/sec/°C = 19.2 J/sec/°C

Heat dissipated, $H_d = 19.2 \times \Delta t \text{ J/sec.}$

Equating,
$$H_g = H_d$$

 $565.5 = 19.2 \Delta t$

 \Rightarrow

Surface temperature = 29.45 + room temperature

 $\Delta t = 29.45^{\circ}C$

$$= 29.45 + 35 = 64.45$$
°C

T3: Solution

$$L = 60 \text{ NL}_{H} = 60 \times 900 \times 2000 = 108 \times 10^{6} \text{ revolutions}$$

$$L = \left(\frac{C}{W}\right)^{3} \times 10^{6}$$

$$108 \times 10^{6} = \left(\frac{C}{2.0}\right)^{3} \times 10^{6}$$

$$C = 9.5 \text{ kN} = 9500 \text{ N}$$

:. 6204 bearing is suitable

T4: Solution

Given, W = 6 kN = 6000 N, N = 1500 rpm, D = 0.05 m, L = 0.05 m, S = 0.121, $C = 50 \times 10^{-6} \text{ m}$

$$P = \frac{W}{LD} = \frac{6000}{50 \times 10^{-3} \times 50 \times 10^{-3}} = 2.4 \times 10^{6} \text{ Pa}$$

Sommerfeld number,

$$S = \left(\frac{D}{C}\right)^2 \times \frac{ZN}{P}$$

$$\Rightarrow$$

$$0.121 = \left(\frac{50 \times 10^{-3}}{50 \times 10^{-6}}\right)^2 \times \frac{Z \times 1500}{60 \times 2.4 \times 10^6}$$

 \Rightarrow

 $Z = 0.011616 \text{ Ns/m}^2 = 0.11616 \text{ Poise} = 11.62 \text{ cP}$

Brakes

Detailed Explanation of

Try Yourself Questions

T1: Solution

$$D = 300 \text{ mm} = 0.3 \text{ m}$$

$$T = 75 \text{ N-m}$$

$$T = F_t \times r = \mu R_N \times r$$

$$75 = 0.35 \times R_N \times 0.15$$

$$\Rightarrow R_N = 1428.57 \text{ N}$$

$$F_T = \mu R_N = 0.35 \times 1428.57 = 500 \text{ N}$$

$$P \times (250 + 200) + F_T \times 50 = R_N \times 200$$

⇒ $P \times 450 + 500 \times 50 = 1428.57 \times 200$

⇒ $P = 579.365 \,\text{N}$

T2: Solution

 \Rightarrow

Tension ratio,

$$\frac{T_1}{T_2} = e^{\mu\theta}$$

$$= e^{\frac{\pi \times 270}{180} \times 0.2} = 2.566$$

$$T = (T_1 - T_2)$$
 ...(i)

Torque equation

$$\frac{P \times 60}{2\pi N} = T_1 - T_2$$

$$\Rightarrow$$

$$\frac{30 \times 10^{3} \times 60}{2\pi \times 400} = (T_{1} - T_{2}) \times r \qquad \Rightarrow r = 1 \text{ m}$$

$$(T_{1} - T_{2}) = 716.197 \text{ N} \qquad \dots(ii)$$

From Eq (i) and (ii) we get

$$T_1 = 1173.54 \,\mathrm{N}$$

 $T_2 = 457.34$

So, maximum tension = T_1 = 1173.54 N

T3: Solution

Drum diameter =
$$850 \, \text{mm}$$

Thickness of block = $75 \, \text{mm}$
 μ = 0.4

$$\frac{T_1}{T_2} = \left(\frac{1 + \mu \tan 7.5^{\circ}}{1 - \mu \tan 7.5^{\circ}}\right)^{12}$$

$$\frac{T_1}{T_2} = \left(\frac{1 + 0.4 \tan 7.5^{\circ}}{1 - 0.4 \tan 7.5^{\circ}}\right)^{12}$$

$$\frac{T_1}{T_2} = 3.5432$$

By taking moment about 'O'

$$P \times 500 + T_1 \times 30 = T_2 \times 150$$

 $P \times 500 + 3.5432 \times 30T_2 = T_2 \times 150$
 $P \times 500 = 43.704 T_2$

Power absorbed by blocks

$$P = (T_1 - T_2)\omega \times \frac{d}{2}$$

$$d = 850 + 2 \times 75 = 1000$$

$$225 \times 10^3 \times 10^3 = (T_2 \times 3.5432 - T_2) \times \frac{2\pi \times 240}{60} \times \frac{1000}{2}$$

$$T_2 = 7040.27 \text{ N}$$

$$P \times 500 = 43.704 \times 7040.27$$

$$P = 615.35 \text{ N}$$

Friction Clutches

Detailed Explanation of

Try Yourself Questions

T1: Solution

Pressure variation for uniform wear is given by

$$P = \frac{W}{2\pi (r_0 - r_i)r}$$

Maximum pressure occurs at smallest radius,

$$P_{\text{max}} = \frac{W}{2\pi (r_0 - r_i)r_i} = \frac{8000}{2\pi (0.2 - 0.1)0.1} = 127323.9 \text{ N/m}^2$$
$$= 127.3 \text{ kN/m}^2$$

Minimum pressure occurs at largest radius,

$$P_{\text{min}} = \frac{W}{2\pi(r_0 - r_i)r_0} = \frac{8000}{2\pi(0.2 - 0.1)0.2} = 63.66 \,\text{kN/m}^2$$

T2: Solution

Design torque,

$$T = 2 \times 50 = 100 \text{ N-m}$$

For uniform wear conditions, pressure variation is given by

$$P = \frac{C}{r} = \frac{W}{2\pi(r_0 - r_i)r}$$

Maximum pressure occurs at inner radius i.e. at $r = r_i$

So,
$$P_{\text{max}} = \frac{W}{2\pi(r_0 - r_i)r_i}$$

$$\Rightarrow 1 \times 10^{6} = \frac{W}{2\pi \left(\frac{0.1}{2} - \frac{0.065}{2}\right) \times \frac{0.065}{2}}$$

$$\Rightarrow W = 3573.56 \,\mathrm{N}$$

$$T = \mu W R_m \cdot n$$

$$100 = 0.08 \times 3573.56 \times \left(\frac{0.1}{2} + \frac{0.065}{2}\right) \times n$$

 \rightarrow

 $n = 8.479 \simeq 9$ pair of contact surface

Generally we take friction disk in such a way so that total number of contact pair are even, so answer should be 10.

 $P = T \cdot \omega$

T3: Solution

Also,

Also,

 $873.8 = T \times \frac{2\pi \times 900}{60}$ T = 9.272 $T = I\alpha$ $T = (mk^{2}) \alpha$ $9.272 = 14 \times (160)^{2} \times \alpha$ $\alpha = 25.87 \text{ rad/se } c^{2}$ $\omega_{F} = \omega_{i} + \alpha t$ $t = \frac{2\pi \times 900}{60 \times 25.87} = 3.64 \text{ sec}$

T4: Solution

 \Rightarrow

 \Rightarrow

 \Rightarrow

$T = \frac{P \times 60}{2\pi N} = \frac{20 \times 10^3 \times 60}{2\pi \times 4000} = 47.746 = \mu WR_m$ $R_m = \frac{T}{\mu W}$

 $\frac{2}{3} \left(\frac{r_0^3 - r_i^3}{r_0^2 - r_i^2} \right) = \frac{T}{\mu \times P \times \pi \left(r_0^2 - r_i^2 \right)}$ $\left(r_0^3 - r_i^3 \right) = \frac{3T}{2\mu P\pi} \Rightarrow r_0^3 = r_i^3 + \frac{3T}{2\mu P\pi}$ $= \left(50 \times 10^{-3} \right)^3 - \frac{3 \times 47.746}{2 \times 0.3 \times 1.2 \times 10^6 \times \pi}$ $r_i = 0.0395 \text{ m} = 39.5 \text{ mm}$

T5: Solution

Torque,

$$r_i = r_0 - b \sin \alpha = 350 - 130 \sin 12.5 = 321.863 \text{ mm}$$

$$r_m = \frac{350 + 321.863}{2} = 335.93 \text{ mm}$$

$$T = \frac{\mu W}{\sin \alpha} \times r_m$$

 $W = \frac{T \sin \alpha}{\mu r_m} = \frac{400 \times 1000 \times 0.21644}{0.4 \times 335.93}$ $= 644.298 \text{ N} \simeq 644.3 \text{ N}$

Gears

Detailed Explanation of

Try Yourself Questions

T1: Solution

$$\frac{N_p}{N_g} = 2 = \frac{T_g}{T_p}$$

$$S_w$$
 (or) $P_w = kQwd_p$
 $k = 1.5 \text{ N/mm}^2$

$$Q = \frac{2T_g}{T_p + T_g} = \frac{2}{1 + \frac{T_p}{T_g}} = \frac{2}{1 + \frac{1}{2}} = \frac{4}{3}$$

$$w = 100 \, \text{mm}$$

$$d_p = 400 \,\mathrm{mm}$$

 $P_w = kQwd_p$

$$P_{u} = kQwd_{s}$$

=
$$1.5 \times \frac{4}{3} \times 100 \times 400 = 80000 \text{ N} = 80 \text{ kN}$$

Now,

T2: Solution

$$\phi = 20^{\circ}$$

Power =
$$20 \text{ kW} = 20 \times 10^3 \text{ W}$$

$$N_P = 300 \, \text{rpm}$$

Velocity ratio =
$$\frac{T_g}{T_P}$$
 = 3

$$\sigma_{OG} = 100 \text{ MPa} = 100 \times 10^6 \text{ N/m}^2$$

= 100 N/mm²

$$\sigma_{OP} = 120 \text{ MPa} = 120 \times 10^6 \text{ N/m}^2$$
 $T_P = 15$
 $T_G = 3 T_P = 3 \times 15 = 45$
 $b = 14 \text{ m}$
 $\sigma_{es} = 600 \text{ MPa} = 600 \text{ N/mm}^2$
 $E_P = 200 \text{ GPa} = 200 \times 10^3 \text{ N/mm}^2$
 $E_S = 100 \text{ GPa} = 100 \times 10^3 \text{ N/mm}^2$

Module:

let

m = Module in mm and

 D_P = Pitch circle diameter of the pinion in mm

Pitch line velocity,

$$V = \frac{\pi D_P N_P}{60} = \frac{\pi m T_P N_P}{60} = \frac{\pi \times m \times 15 \times 300}{60}$$
$$= 0.235 \text{ m m/s}$$

Assuming steady load condition and 8-10 hours of service per day, the service factor C_s is taken as 1, i.e. $C_s = 1$.

We know that the design tangential tooth load,

$$W_T = \frac{P}{V} \times C_S = \frac{20 \times 10^3}{0.235m} \times 1 = \frac{85.10 \times 10^3}{m} \text{ N}$$

and Velocity factor,

$$C_v = \frac{3}{3+v} = \frac{3}{3+0.235m}$$

Tooth from factor for pinion

$$y_p = 0.154 - \frac{0.912}{T_p} = 0.154 - \frac{0.912}{15} = 0.0932$$

And tooth from factor for gear

$$y_g = 0.154 - \frac{0.912}{T_g} = 0.154 - \frac{0.912}{45} = 0.133$$

:.

$$\sigma_{PO} \times y_p = 120 \times 0.0932 = 11.184$$

 $\sigma_{OG} \times y_G = 100 \times 0.133 = 13.3$

Since $(\sigma_{OP} \times y_P)$ is less than $(\sigma_{OG} \times y_G)$ therefore the pinion is weaker. Now using the Lewis equation to the pinion, we have

pinion, we have
$$W_T = \sigma_{wp} \times b\pi m y_p = \sigma_{OP} \times C_v b\pi m y_p \qquad [\because \sigma_{wp} = \sigma_{OP} \times C_v]$$

$$\frac{85.1 \times 10^3}{m} = 120 \times \left(\frac{3}{3 + 0.235m}\right) \times (14m \times \pi m \times 0.0932)$$

$$\frac{85.1 \times 10^3}{m} = \frac{1475.69}{(3 + 0.235m)}$$

$$\Rightarrow \qquad \frac{57.66}{m} = \frac{m^2}{3 + 0.235m} = 172.98 + 13.55 \ m = m^3$$

$$\Rightarrow \qquad m^3 - 13.55 \ m - 172.98 = 0$$

$$m = 6.37 \ mm \approx 7 \ mm$$
 Face width:
$$b = 14 \ m = 14 \times 7 = 98 \ mm$$

$$D_p = mT_p = 7 \times 15 = 105 \ mm$$

$$D_q = mT_q = 7 \times 45 = 315 \ mm$$

Checking the gears for wear:-

Ratio factor,

14

$$Q = \frac{2 \times VR}{VR + 1} = \frac{2 \times 3}{3 + 1} = 1.5$$

Load stress factor =
$$\frac{(\sigma_{es})^2 \sin \phi}{1.4} \left[\frac{1}{E_P} + \frac{1}{E_g} \right]$$

$$= \frac{600^2 \times \sin 20^{\circ}}{1.4} \left[\frac{1}{200 \times 10^3} + \frac{1}{100 \times 10^3} \right]$$
$$= 1.3192 \text{ N/mm}^2$$

The maximum or limiting load for wear

$$W_w = D_P \times bQ K$$

= 105 × 98 × 1.5 × 1.319
= 20358.765 N = 20.358 kN

Tangential load on tooth,

$$W_T = \frac{85.1 \times 10^3}{m} = \frac{85.1 \times 10^3}{7}$$
$$= 12157 \text{ N} = 12.157 \text{ kN}$$

Since maximum wear load (20.358 kN) is more than the tangential load (12.157 kN) on the tooth, the design is satisfactory from the wear point of view.

Shaft

Detailed Explanation of

Try Yourself Questions

T1: Solution

:.

$$T = 50 \text{ Nm}$$

$$\tau = 140 \text{ MPa} \quad N = 2$$

$$\tau_{\text{permissible}} = \frac{140}{N} = 70 \text{ MPa}$$

$$\tau_{\text{per}} = \frac{16T}{\pi d^3}$$

$$d \ge \left(\frac{16T}{\pi \tau_{\text{per}}}\right)^{1/3}$$

$$d \ge \left(\frac{16 \times 50}{\pi \times 70 \times 10^6}\right)^{1/3}$$

$$d \ge 0.015379 \text{ m}$$

 $d \ge 15.379 \,\mathrm{mm}$ $d \approx 16 \,\mathrm{mm}$

T2: Solution

Given;

Torsional rigidity,

$$\begin{aligned} d_{s} &= 100 \text{ mm, } d_{o} = 2 \text{ } d_{i}; \text{ } G_{s} = G_{h}, \text{ } \tau_{s} = \tau_{h}, \text{ } L_{s} = L_{h} \\ k &= \frac{T}{\theta} = \frac{GJ}{L} \\ k \text{ } \alpha \text{ } J & \text{ (As per given data)} \\ J_{s} &= \frac{\pi d_{s}^{\ 4}}{32} \\ J_{h} &= \frac{\pi}{32} (d_{o}^{\ 4} - d_{i}^{\ 4}) = \frac{\pi}{32} d_{o}^{\ 4} \left[1 - \left(\frac{1}{2}\right)^{4} \right] = \frac{15}{16} \times \frac{\pi}{32} d_{o}^{\ 4} \end{aligned}$$

and
$$\tau_{s} = \frac{16T}{\pi d_{s}^{3}}$$

$$\tau_{h} = \frac{16T}{\pi d_{o}^{3} \times 15/16} = \frac{256T}{15 \times \pi d_{o}^{3}}$$

$$\vdots$$

$$\tau_{s} = \tau_{h}$$

$$\frac{16T}{\pi d_{s}^{3}} = \frac{256T}{15 \times \pi d_{o}^{3}}$$
or
$$d_{o}^{3} = d_{s}^{3} \left(\frac{16}{15}\right)$$

$$d_{o} = \left(\frac{16}{15}\right)^{1/3} \times d_{s} = 1.0217 \times 100 = 102.175 \text{ mm}$$

$$\frac{k_{s}}{k_{h}} = \frac{J_{s}}{J_{h}} = \left(\frac{d_{s}}{d_{o}}\right)^{4} \times \frac{16}{15} = \left(\frac{100}{102.17}\right)^{4} \times \frac{16}{15} = 0.9787$$

T3: Solution

Given, d = 60 mm, D = 100 mm, $G_s = 2$ G_{A1}

$$(Z_P)_{\text{Hollow shaft}} = \frac{J_{\text{Hollow}}}{D/2} = \frac{\pi}{16} \frac{(D^4 - d^4)}{D}$$
$$(Z_P)_{\text{Solid shaft}} = \frac{J_{\text{solid}}}{D_1/2} = \frac{\pi}{16} D_1^3$$

From the given condition,

$$\frac{D^4 - d^4}{D} = D_1^3$$

$$\ddot{\cdot}$$

$$D_1^3 = \frac{100^4 - 60^4}{100}$$

 $D_1 = 95.4786 \text{ mm} \approx 95.5 \text{ mm} \text{ Ans.}$

Ratio of torsional rigidity

$$= \frac{(GJ)_{\text{Steel}}}{(GJ)_{\text{Alloy}}} = 2\frac{J_{\text{Steel}}}{J_{\text{Alloy}}}$$

 $= \frac{(GJ)_{\text{Steel}}}{(GJ)_{\text{Alloy}}} = 2\frac{J_{\text{Steel}}}{J_{\text{Alloy}}}$ Assume L same for both

or

Ratio =
$$\frac{2(D^4 - d^4)}{D_1^3 \cdot D} = \frac{2(100^4 - 60^4)}{100 \times (95.4)^3} = 2.005 \approx 2 \text{ Ans.}$$