

Deep Learning for Physicists

Lecture #5: Convolutional neural networks | Part 1

Kosmas Kepesidis

Previous lecture...

- Fully-connected networks as a basic network architecture
- Fully-connected networks can be used for both regression and classification tasks
- Reviewed related objective functions
- Challenges of training of deep neural networks
- Methods of network stabilization

About the course

- Course content:
 - ➤ Architectures of deep neural networks
 - Fully-connected neural networks
 - Convolutional neural networks (CNNs)
 - Recurrent neural networks (RNNs)
 - Graph networks
 - Hybrid architectures

Outline

Convolutional neural networks (CNNs) | Part 1

- Convolutions of image-like data
- Convolutional layers
- Multi-dimensional convolutions
- Important operations in CNNs
- Short- and long-range correlations
- CNNs vs. fully-connected networks

Convolutional neural networks (CNNs) | Part 2

- Reconstruction tasks
- Advanced concepts
- Applications in physics

Convolutional neural networks (CNNs) Part 1

Convolutional neural networks (CNNs)

- For data with inherent symmetries, there exist dedicated network architectures that are superior to the basic fully-connected networks
- We focus our attention on data that have a particular structure: 2D grid-like data (such as pixels in an image)
 - > Refer to this structure as **spatial domain** in contrast to **feature space**
 - > Features space refers to higher-level patterns that can exist on top of the spatial domain

Convolutional neural networks (CNNs)

- Interpretation is detached from the spatial domain: semantic meaning
- Why are fully-connected neural networks not successful in such a context?
 - ➤ Input would consist of all pixels of the image
 - ➤ The applied transformation that brings information from one layer to the next will imply that each pixel will be correlated to every other: resulting to an enormous number of parameters to be adapted
 - > We expect similar **semantic meaning** to populate neighboring areas on the image
- CNNs originated in the 1990s, developed based on the concept of translation invariance
- Although old concept, breakthrough began in 2012 (ImageNet)
- Now CNNs are one of the most important architectures, driving innovation in deep learning and computer vision

- CNNs analyzes data in segments and subsequently merge information
 Process only local groups of pixels of an image, then combine the extracted features
- This approach is implemented using **sliding filters** over an image
- Example: convolution using two filters for an image with three color channels (RGB=red, green, blue)

- Each filter moves over the image and at each position, pixel values are weighted with the respective filter weights
- Resulting values are added up over the neighborhood – this results into a single value per filter position
- Assume single-channel image transformation similar to that of fully-connected network:

$$x_i' = \sum_{x_j \in N_i} W_i \cdot x_j + b$$

- $\triangleright x_i$ runs over all pixels in the neighborhood N_i of pixel i
- $\triangleright W_i$ are (as usual) the adaptable weights and b the bias

- In general, x_i and W_i are vectors accounting for multiple channels
 - For an RGB input, the filters have a depth of 3 and act on all input channels simultaneously
- Just as for fully-connected nets, a nonlinearity is applied using activation function: $y_i' = \sigma(x_i')$
- During a convolutional operation:
 - > the information at a given filter position is aggregated over its neighborhood
 - ➤ Result is a single value by performing:
 - 1. linear transformation, i.e. summing over the neighborhood
 - 2. applying a nonlinearity

Translational invariance:

 \triangleright Parameters W_i and b do not depend on the position of the filter (no i-dependence)

$$> x_i = \sum_{x_i \in N_i} W_i \cdot x_j + b$$

- > Same parameters applied all over the grid: weight sharing
- > Convolutional operation is **translational invariant**
- ➤ Weight sharing also leads to lower # of parameters to be adapted

Feature mapping: result of single-filter convolution operation

- > Feature map preserves "image-like" structure of data
- ➤ Generate as many feature maps as filters: adapting the amount of retained information

- Thought example: weight sharing
 - > Consider single filter of size equal to the size of the entire image

- ➤ Each pixel is linked to every other pixel in the image and is scaled with an individual weight so, no weight sharing possible
- > Result is a fully-connected layer with a single node
- ➤ More filters would correspond to more nodes on a fully-connected layer
- > Thus, a fully-connected layer can be expressed using convolutional filters of maximum size
- ➤ Moderate filter sizes are essential for exploiting spatial symmetry

- Feature maps produced by a convolution can be input to subsequent convolutions
- A set of convolutions, using n_f filters of given filter size and activation function σ , defines a **convolutional layer**
- Convolutional layers are building block of convolutional networks

- Number of parameters of CNNs determines their efficiency
- As filter slides over the pixels of an image, each channel in the filter has its own set of parameters:

$$n_T = n_c \cdot n_w \cdot n_h \cdot n_f + n_f$$

- n_T : total number of parameters per layer
- n_c : number of channels
- n_w : width
- n_h : height of filter
- n_f : total number of filters (and feature maps)

- Comprehensive example: parameter counting
 - ➤ Sliding two 3x3 filter over an RBG image
 - ➤ At each pixel, information of this pixel and the 8 neighboring ones is collected, for all three color channels
 - ➤ This information per pixel is multiplied by adaptive weights and collected into a single response
 - > Subsequently, the nonlinearity is applied to the response

$$Y'_{i,j,f} = \sigma \left(\sum_{k=-1}^{1} \sum_{l=-1}^{1} \sum_{c=1}^{3} W_{k,l,c,f} X_{i+k,j+l,c} + b_f \right)$$

• Comprehensive example: parameter counting

$$Y'_{i,j,f} = \sigma \left(\sum_{k=-1}^{1} \sum_{l=-1}^{1} \sum_{c=1}^{3} W_{k,l,c,f} X_{i+k,j+l,c} + b_f \right)$$

 \succ (i, j): position of input (central) and output pixel

> c: color channel

 $\triangleright f$: filter index

 $\triangleright k, l$: indices for aggregation over neighboring pixels

➤ So, how many parameters?

• Comprehensive example: parameter counting

$$Y'_{i,j,f} = \sigma \left(\sum_{k=-1}^{1} \sum_{l=-1}^{1} \sum_{c=1}^{3} W_{k,l,c,f} X_{i+k,j+l,c} + b_f \right)$$

- \triangleright 3 x 3 x 3 = 27 adaptive weights per filter
- \triangleright 27 + 1 = 28, due to bias term
- For two filters: 56 total parameters!

$$>$$
 (32 x 32 x 3 + 1) = 3073!

Multi-dimensional convolutions

- Concept of convolutions can be extended to *N*-dimensions:
 - \triangleright N-dimensional filters scan N-dimensional grid and produce N-dimensional feature maps
 - ➤ However, few Deep Learning frameworks can support convolutions in more than 3-4 dimensions

- Interesting fact:
 - > Important symmetries or correlations between certain dimensions might exist
 - ➤ To help the model take advantage of possible symmetries or extract important correlations, one should carefully choose filter sizes and share weights over specific dimensions

Multi-dimensional convolutions

- Example: capturing symmetries
 - Assume a regular 2D grid of sensors that measure signal traces: $A_{x,y}(t)$
 - The traces of each detector might show similar patterns could be useful to have parameter sharing along spatial dimensions
 - Appropriate filter would be 3-dimensional: (n_x, n_y, n_t)

• Zero padding:

- For being able to apply filters on the pixels at the edges of an image, as well as for preserving the initial resolution, **zero padding** is used
- ➤ i.e. a frame of zeros is added around the image

• Striding:

- Feature maps' size can be controlled by increasing the size of steps between subsequent applications of a filter
- \succ It can be of benefit in cases of large-images to apply the filter every n steps
- > This is known as **strided convolution**

Dilating:

- ➤ In another variant, called **dilating**, the filter has gaps that rapidly reduce the image size
- Typically used when a large receptive field of view is needed within a few layers
- ➤ Size of gaps inside the filter is another hyperparameter to be tuned

Pooling:

- ➤ Instead of modifying the convolutional operation (filter), **pooling** is a way of down-sampling
- ightharpoonup Aggregate information of neighborhood using a patch of size $a \times b$
- > Two flavors: max pooling, average pooling
- > Extension to the entire feature map: global pooling
 - > entire feature maps are reduced to a single value
 - This technique reduces the number of outputs dramatically
 - ➤ It is usually used in the end of the architecture

- Adding fully-connected layer:
 - ➤ After a few convolutional and pooling layers, sufficient number of features have been extracted
 - ➤ These features can be used a the input of a fully-connected layer
 - ➤ The fully-connected layer learns an extra mapping and is responsible for making the final predictions

- Adding fully-connected layer:
 - The number of weights for fully-connected layers scale with the number of inputs
 - ➤ If feature maps are of high resolution, application of the fully-connected layer will be prone to overfitting
 - Appropriate reduction of the image size via regularization or global-pooling helps overcoming this issue

- Short- and long-range correlations
 - ➤ In CNNs, complex operations are divided into simpler layers of lower complexity: hierarchy learning
 - ➤ In a single convolutional layer, input pixels (or features) are linked to their immediate neighbors how can long-range correlations be represented?
 - For subsequent layers, convolutional operations are applied to the responses (features) of the previous layer
 - > In this way, the region where correlations can be exploited is increasing
 - ➤ In computer vision, this is called **receptive field of view** what is the largest area in which correlations can be exploited

- Short- and long-range correlations
 - The constantly increasing **receptive field of view** with increasing the number of layers of CNNs is a demonstration of the concept of **hierarchy learning**
 - ➤ In the first layers, short-range correlations are exploited and lead to more global features
 - ➤ Long-range correlations and more detailed and task-specific features are learned in later layers

CNNs vs. fully-connected networks

- Assume 1D convolution and input data with regular structure:
 - \triangleright time traces A(t) measured in fixed intervals Δt
- The filter has length of 3 and is applied 5 times using zero padding
- The shape of weight matrix W for the linear mapping of a fully-connected network would be 5 × 7
- In the case of CNNs, only links to neighboring pixels are considered, the weight matrix has a quasi-diagonal form

CNNs vs. fully-connected networks

- Number of weights is further reduced as the shame filter is shared over the entire signal (weight sharing)
- This corresponds to a massive reduction of adaptive parameters compared to fully-connected networks
- However, this reduction is justified from symmetry considerations and thus does not affect the descriptive power of the model
- Advantages:
 - Simplified optimization (training)
 - 2. Reducing the chances of overfitting
 - > Less parameters involved
 - ➤ Weight-sharing reduces impact of fluctuations

CNNs vs. fully-connected networks

- Importance of weight sharing:
 - > Assume we want to build a cat detector
 - ➤ Suppose that during the training of a CNN one filter was learned, which produces a high response when encountering the face or head of a cat
 - > Whenever the response is strong, we can identify a cat
 - ➤ Since this filter is shared over the entire image, it is location-independent it does not matter where the cat is on the image
 - > Training benefits: less trained parameters
 - > Practical advantage: not only detect the cat but also locate its position

Summary

- Convolutional neural networks (CNNs) are the standard architecture for building deep networks to process image-like data
- CNNs simplify the underlying numerical problem by using symmetries that exist in images
- By sliding small filters with adaptive weights over the input, the convolutional operation can deal with variable input and output sizes
- Exploiting symmetry in data allows to reduce the total number of model parameters