Coursework 2

8 December 2023

Problem Sheet 7 **Problem** 3 1

Step 1: T is well-defined. Let $f \in L^2(0,1)$, then

$$\begin{split} \|Tf\|_{L^2(0,1)}^2 &= \int_0^1 \left| \int_0^1 e^{-st} f(t) \, dt \right|^2 \, ds \\ &\stackrel{\mathsf{T.I.}}{\leq} \int_0^1 \left(\int_0^1 \left| e^{-st} \right| \left| f(t) \right| \, dt \right)^2 \, ds \\ &\stackrel{\mathsf{H\"{o}der's}}{\leq} \int_0^1 \left(\left(\int_0^1 e^{-2st} \, dt \right)^{\frac{1}{2}} \|f\|_{L^2(0,1)} \right)^2 \, ds \\ &= \|f\|_{L^2(0,1)}^2 \int_0^1 \int_0^1 e^{-2st} \, dt \, ds \\ &= \|f\|_{L^2(0,1)}^2 \int_0^1 \frac{1 - e^{-2s}}{2s} \, ds \\ &\stackrel{(1)}{\leq} \|f\|_{L^2(0,1)}^2 \\ &< \infty \end{split}$$

where (1) follows as $\frac{1-e^{-2s}}{2s} \leq 1$ for $s \in (0,1)$. Therefore, $Tf \in L^2(0,1)$ and so the map $T:L^2(0,1) \to L^2(0,1)$ is well-defined.

 $\frac{\mathsf{Step}\ 2\colon T\in\mathcal{L}\left(L^2(0,1),L^2(0,1)\right).}{\mathsf{Note}\ \mathsf{that}\ \mathsf{for}\ f_1,f_2\in L^2(0,1)\ \mathsf{and}\ \lambda\in\mathbb{R}\ \mathsf{we}\ \mathsf{have}\ \mathsf{that}}$

$$T(f_1 + \lambda f_2)(s) = \int_0^1 e^{-st} (f_1 + \lambda f_2)(t) dt$$
$$= \int_0^1 e^{-st} f_1(t) dt + \lambda \int_0^1 e^{-st} f_2(t) dt$$
$$= Tf_1(s) + \lambda Tf_2(s).$$

Therefore, T is a linear map. Recall from Step 1 that

$$||Tf||_{L^2(0,1)} \le ||f||_{L^2(0,1)}$$

and so

$$||T||_{L^2(0,1)\to L^2(0,1)} = \sup_{0\neq f\in L^2(0,1)} \frac{||Tf||_{L^2(0,1)}}{||f||_{L^2(0,1)}} \le 1.$$

Hence, T is a bounded linear map which implies that $T \in \mathcal{L}(L^2(0,1), L^2(0,1))$. Step 3: $T \in \mathcal{K}(L^2(0,1), L^2(0,1))$.

For $f \in L^2(0,1)$ such that $||f||_{L^2(0,1)} \leq 1$ let $x,y \in (0,1)$. Then observe that

$$\begin{split} |Tf(x) - Tf(y)| &= \left| \int_0^1 \left(e^{-xt} - e^{-yt} \right) f(t) \, dt \right| \\ &\stackrel{\mathsf{T.I.}}{\leq} \int_0^1 \left| e^{-xt} - e^{-yt} \right| |f(t)| \, dt \\ &\stackrel{\mathsf{H\"{o}der's}}{\leq} \left(\int_0^1 \left| e^{-xt} - e^{-yt} \right|^2 \, dt \right)^{\frac{1}{2}} \|f\|_{L^2(0,1)} \\ &\leq \left(\int_0^1 \left| e^{-xt} - e^{-yt} \right|^2 \, dt \right)^{\frac{1}{2}}. \end{split}$$

Using the the mean value theorem we note that for $t\in (0,1)$ we have that

$$\begin{aligned} \left| e^{-xt} - e^{-yt} \right| &\leq \left| x - y \right| \sup_{z \in (0,1)} \left| \frac{d}{dt} e^{-zt} \right| \\ &= \left| x - y \right| \sup_{z \in (0,1)} \left| -te^{-zt} \right| \\ &\leq \left| x - y \right|. \end{aligned}$$

It follows that

$$|Tf(x) - Tf(y)| \le |x - y| \tag{1}$$

which implies that $T\left(\bar{B}^{L^2(0,1)}\right)\subseteq\mathcal{C}^0(0,1)$. Hence, for a sequence $(f_n)_{n\in\mathbb{N}}\subseteq\bar{B}^{L^2(0,1)}$ we have that $(Tf_n)_{n\in\mathbb{N}}\subseteq\mathcal{C}^0(0,1)$. As

$$Tf_n(0) = \int_0^1 f_n(t) dt \le \int_0^1 |f_n(t)| dt \le ||1||_{L^2(0,1)} ||f_n||_{L^2(0,1)} \le 1$$

for any $n \in \mathbb{N}$, it follows by using (1) that

$$|Tf_n(x)| < |Tf_n(x) - Tf_n(0)| + |Tf_n(0)| < |x| + 1 < 2$$

for all $n \in \mathbb{N}$ and $x \in (0,1)$. Which implies that $(Tf_n)_{n \in \mathbb{N}}$ is bounded. Moreover, for any $\epsilon > 0$, let $\delta = \epsilon$ so that for any $x,y \in (0,1)$ such that $|x-y| < \delta$ we have

$$|Tf_n(x) - Tf_n(y)| \stackrel{\text{(1)}}{\leq} |x - y| < \delta = \epsilon$$

for all $n \in \mathbb{N}$. This implies that the sequence $(Tf_n)_{n \in \mathbb{N}} \subseteq \mathcal{C}^0(0,1)$ is also equicontinuous. Therefore, it admits a convergent by the Arzela-Ascoli theorem and so $T\left(\bar{B}^{L^2(0,1)}\right)$ is pre-compact. Hence, the operator T is compact.

Problem Sheet 8 Problem 4

(i)

Let $(u_n) \subseteq F$ be a sequence that converges to u in H. Then for fixed v_i it follows that

$$\begin{aligned} |(u, v_i) - (u_n, v_i)| &= |(u - u_n, v_i)| \\ &\stackrel{\mathsf{C.S}}{\leq} \|u - u_n\| \|v_i\|. \end{aligned}$$

The right-hand side tends to 0 as $n \to \infty$ as $\|u - u_n\| \to 0$ by assumption and $\|v_i\|$ is a finite constant. Therefore, $0 = (u_n, v_i) \to (u, v_i)$ and so $(u, v_i) = 0$. Hence, $u \in F$ meaning F is closed.

(ii)

Expanding out the equation $M\Lambda = V$ we see that

$$\begin{pmatrix} \lambda_1(v_1, v_1) + \dots + \lambda_n(v_1, v_n) \\ \vdots \\ \lambda_1(v_n, v_1) + \dots + \lambda_n(v_n, v_n) \end{pmatrix} = \begin{pmatrix} (u, v_1) \\ \vdots \\ (u, v_n) \end{pmatrix}.$$

Using the properties of the inner product this is equivalent to

$$\begin{pmatrix} (v_1, \sum_{k=1}^n \lambda_k v_k) \\ \vdots \\ (v_n, \sum_{k=1}^n \lambda_k v_k) \end{pmatrix} = \begin{pmatrix} (v_1, u) \\ \vdots \\ (v_n, u) \end{pmatrix}.$$

In other words, we want to find $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that

$$\left(v_i, \sum_{k=1}^n \lambda_k v_k\right) = (v_i, u)$$

for all $i \in \{1, \dots, n\}$. Which is equivalent to finding a $\tilde{u} \in \operatorname{span}(v_1, \dots, v_n) =: M$ such that $(v, \tilde{u}) = (v, u)$ for all $v \in M$. In particular, $(u - \tilde{u}, v) = 0$ for all $v \in M$.

Claim 1. Let H be a real Hilbert space. For a linearly independent set of vectors $\{v_1, \ldots, v_n\} \subseteq H$ the set $M := \operatorname{span}(v_1, \ldots, v_n) \subset H$ is a closed and convex linear subspace.

Proof. It is clear that M is a linear subspace, from which the convexity of M easily follows. Suppose that we have a sequence $(m_k)_{k\in\mathbb{N}}\subseteq M$ that is convergent in H to m. Note that due to the linear independence of $\{v_1,\ldots,v_n\}$ we have a bijection from M to \mathbb{R}^n given by $m_k=\sum_{i=1}^n x_i^{(k)}v_i\mapsto \left(x_1^{(k)},\ldots,x_n^{(k)}\right)$. Since norms in finite dimensions are equivalent, it follows that the sequences $\left(x_i^{(k)}\right)$ are Cauchy for each $i\in\{1,\ldots,n\}$ in \mathbb{R} as $(m_k)_{k\in\mathbb{N}}$ is Cauchy in M. Therefore, as \mathbb{R} is complete it follows that each sequence $\left(x_i^{(k)}\right)_{k\in\mathbb{N}}$ converges to some $x_i\in\mathbb{R}$. Hence, $(m_k)_{k\in\mathbb{N}}$ converges to $m:=\sum_{i=1}^n x_iv_i\in M$. Therefore, M is closed. \square

Claim 2. Let H be a Hilbert space. Let $K \subset H$ be a closed and convex linear subspace. Then for $f \in H$, its projection onto K, as given by the Hilbert Projection theorem, is characterised by the unique vector $u \in K$ such that

$$(f - u, v) = 0 (2)$$

for all $v \in K$.

Proof. Recall, that the original characterisation of the projection of f onto K is the unique vector $u \in K$ such that

$$||f - u|| = \min_{v \in K} ||f - v||. \tag{3}$$

Suppose that $u \in K$ satisfies (2). Then for $v \in K$ as $u - v \in K$ we that (f - u, u - v) = 0 by (2). Hence,

$$||f - v||^2 = ||f - u + u - v||^2$$

$$= ||f - u||^2 + 2(f - u, u - v) + ||u - v||^2$$

$$= ||f - u||^2 + ||u - v||^2.$$

In particular, this implies that $\|f-v\|^2 \ge \|f-u\|^2$ for all $v \in K$. Conversely, suppose that (3) is satisfied for u. Then for $v \in K$ and $t \in \mathbb{R}$, as K is a linear subspace, we have that $u+tv \in K$ and so $\|f-u\|^2 \le \|f-(u+tv)\|^2$. Therefore,

$$0 \le ||f - (u + tv)||^2 - ||f - u||^2 = 2t(u - f, v) + t^2||v||^2 =: g(t).$$

If $(u-f,v)\neq 0$, then as g(t) is minimised by $t=-\frac{(u-f,v)}{\|v\|^2}$ we get a minimum of

$$g\left(-\frac{(u-f,v)}{\|v\|^2}\right) = -2\frac{(u-f,v)^2}{\|v\|^2} + \frac{(f-u,v)^2}{\|v\|^2} = -\frac{(u-f,v)^2}{\|v\|^2} < 0.$$

This is a contradiction and so it must be the case that (f - u, v) = 0.

Using Claim 1 we can apply Claim 2 to deduce that \tilde{u} is the unique projection of u onto M, which we denote $P_M u \in M$. As the set $\{v_1, \dots, v_n\}$ is linearly independent we can write

$$P_M u = \lambda_1 v_1 + \cdots + \lambda_n v_n$$

for unique $\lambda_1, \dots, \lambda_n \in \mathbb{R}^n$. Hence, there is a unique solution for $\Lambda \in \mathbb{R}^n$ satisfying $M\Lambda = V$.

(iii)

Note that if $u \in F$, it is clear that for any $m = \sum_{i=1}^n \mu_i v_i \in M$ we have

$$\left(u, \sum_{i=1}^{n} \mu_i v_i\right) = \sum_{i=1}^{n} \mu_i(u, v_i) = 0.$$

Thus $u\in M^\perp$ and $F\subseteq M^\perp$. On the other hand, let $\tilde{m}\in M^\perp$. Then as $v_i\in M$ for all $i\in\{1,\ldots,n\}$, it follows that $(\tilde{m},v_i)=0$ for all $i\in\{1,\ldots,n\}$. Hence, $\tilde{m}\in F$ and so $F=M^\perp$. As M is closed, it follows by using Problem Sheet 8 Problem 2(iii) that $F^\perp=\left(M^\perp\right)^\perp=M$. Hence using by part (ii) we get that $P^\perp u=P_M u=\sum_{i=1}^n\lambda_i v_i$. Now let $\tilde{u}=u-P^\perp u$. We are now going to show that $Pu=\tilde{u}$. As $v_i\in M=F^\perp$ we can use the characterisation of $P^\perp u$ given in Claim 2to deduce that

$$0 = (u - P^{\perp}u, v_i) = (\tilde{u}, v_i).$$

Which implies that $\tilde{u} \in F$. Moreover, for $v \in F$ we have

$$(u - \tilde{u}, v) = (u - (u - P^{\perp}u), v) = (P^{\perp}u, v) \stackrel{(1)}{=} 0,$$

where (1) follows from the fact that $P^{\perp}u \in F^{\perp}$. Hence, as F is a closed and convex linear subspace we can use Claim 2 to deduce that $Pu = \tilde{u} = u - P^{\perp}u$.

Problem Sheet 9 Problem 5

Step 1: Show that S is closed.

Let $(f_n)_{n\in\mathbb{N}}\subset S$ be a sequence converging to $f\in H$. Let $f\mathbf{1}_E$ be non-zero on a set $F\subset E$. Note that as $F\subset E$ it must be the case that each f_n is almost everywhere zero in F, hence,

$$||f - f_n||_{L^2(\mathbb{R}^d)}^2 = \int_{\mathbb{R}^d} (f - f_n)^2$$
$$= \int_F (f - f_n)^2 + \int_{\mathbb{R}^d \setminus F} (f - f_n)^2$$
$$\geq \int_F f^2.$$

If F has non-zero measure then $\int_F f^2 = c > 0$ as $f^2 > 0$ on F. This then implies that $\|f - f_n\|_{L^2(\mathbb{R}^2)} \ge c$ for all $n \in \mathbb{N}$, which contradicts the assumption that $\|f - f_n\|_{L^2(\mathbb{R}^d)} \to 0$ as $n \to \infty$. Therefore, F has zero measure meaning f is zero almost everywhere in E as we know f is zero on $E \setminus F$. Hence, $f \in S$ meaning S is closed. Step 2: Show that S is linear, and in particular convex.

Let $f,g\in S$ and $0\neq\lambda\in\mathbb{R}$. Then by construction $f\mathbf{1}_E$ and $g\mathbf{1}_E$ are non-zero on zero-measures sets $F_1,F_2\subset E$ respectively. Suppose that $(f+\lambda g)\mathbf{1}_E$ is non-zero on the set $F\subset E$. It is clear that if $(f+\lambda g)\mathbf{1}_E\neq 0$ then

either $f\mathbf{1}_E \neq 0$ or $g\mathbf{1}_E \neq 0$. Hence $F \subset F_1 \cup F_2$ which implies that F also has zero-measure as $F_1 \cup F_2$ has zero measure. Therefore, $f + \lambda g \in S$ and the set S is linear, which in particular means it is convex. Step 3: For $f \in L^2\left(\mathbb{R}^d\right)$, find its projection, Pf, onto S.

 $\overline{\text{For } f \in L^2\left(\mathbb{R}^d\right) \text{ let}}$

$$(Pf)(x) = \begin{cases} f(x) & x \in \mathbb{R}^d \setminus E \\ 0 & x \in E. \end{cases}$$

Clearly, $(Pf) \in S$. Moreover, for $g \in S$ we have that

$$\begin{split} (f-Pf,g) &= \int_{\mathbb{R}^d} (f-Pf) \cdot g \\ &= \int_E (f-Pf) \cdot g + \int_{\mathbb{R}^d \backslash E} (f-Pf) \cdot g \\ &= \int_E f \cdot g \\ &\leq \int_E |f| |g| \\ &\overset{\text{H\"older's}}{\leq} \|f\|_{L^2(E)} \|g\|_{L^2(E)} \\ &= 0. \end{split}$$

Therefore, $(f-Pf,g)\leq 0$ for all $g\in S$, hence as we know S is a linear subspace from Step 2 it is clear that $(f-Pf,g-Pf)\leq 0$ for all $g\in S$. Thus, Pf is the projection of f onto S. Step 4: For $f\in L^2\left(\mathbb{R}^d\right)$ find its projection, $P^\perp f$, onto S^\perp .

As S is closed we can use Problem Sheet 8 Problem 3 part (iii) to conclude that

$$P^{\perp}f = f - Pf = \begin{cases} 0 & x \in \mathbb{R}^d \setminus E \\ f(x) & x \in E. \end{cases}$$