

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Курс «Методы машинного обучения»

Отчет по лабораторной работе №1: «Создание "истории о данных"»

Выполнила:

студентка группы ИУ5-24М

Мащенко Е. И.

Проверил:

Балашов А.М.

Цель работы

Изучение различных методов визуализация данных и создание истории на основе данных.

Задание

Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:

- 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
- 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков.
- 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
- 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
- 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.

Выполнение работы

Лабораторная работа №1 B [1]: ► from datetime import datetime import pandas as pd import seaborn as sns B [2]: # # Enable inline plots %matplotlib inline sns.set(style="ticks") # Set plots formats to save high resolution PNG from IPython.display import set_matplotlib_formats set_matplotlib_formats("retina") <ipython-input-2-52d19245dee9>:9: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly us e `matplotlib_inline.backend_inline.set_matplotlib_formats()` set_matplotlib_formats("retina") B [3]: M pd.set_option("display.width", 70) B [4]: M data = pd.read_csv("insurance.csv") B [5]: ▶ data.dtypes Out[5]: age int64 object float64 int64 object object float64 sex bmi children smoker region charges dtype: object B [6]: ▶ data.head() age sex bmi children smoker region charges **0** 19 female 27.900 0 yes southwest 16884.92400 1 18 male 33.770 no southeast 1725.55230 **2** 28 male 33.000 3 no southeast 4449.46200 3 33 male 22.705 no northwest 21984.47061 **4** 32 male 28.880 0 no northwest 3866.85520 B [7]: ► data.shape Out[7]: (1338, 7) B [8]: M data.describe() Out[8]: age bmi children count 1338.000000 1338.000000 1338.000000 1338.000000 mean 39.207025 30.663397 1.094918 13270.422265 std 14.049960 6.098187 1.205493 12110.011237 min 18.000000 15.960000 0.000000 1121.873900 25% 27.000000 26.296250 0.000000 4740.287150

Визуальное исследование датасета

64.000000 53.130000

Оценим распределение целевого признака — расходы на страхование:

5.000000 63770.428010

 50%
 39.00000
 30.400000
 1.000000
 9382.033000

 75%
 51.00000
 34.693750
 2.000000
 16639.912515

B [9]: N sns.distplot(data["charges"])

c:\User\AppData\Local\Programs\Python\Python38\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distpl ot' is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot' (a figure-level function with similar flexibility) or `histplot' (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='charges', ylabel='Density'>

B [10]: N sns.boxplot(x=data['charges'])

Out[10]: <AxesSubplot:xlabel='charges'>

B [13]: ▶ sns.kdeplot(data=data, x="charges", hue="sex", cut=0, fill=True, common_norm=False, alpha=0.4)

Out[13]: <AxesSubplot:xlabel='charges', ylabel='Density'>

B [14]: N sns.kdeplot(data=data, x="charges", hue="smoker", cut=0, fill=True, common_norm=False, alpha=0.4)

Out[14]: <AxesSubplot:xlabel='charges', ylabel='Density'>

B [15]: ▶ sns.pairplot(data)

Out[15]: <seaborn.axisgrid.PairGrid at 0x1151e4f8490>

B [17]: M sns.heatmap(data.corr(), annot=True, fmt='.3f')

Out[17]: <AxesSubplot:>

