Perceptron

```
27 * #nav_links {|
28 width: 50%;
29 float: right;
                                                                                                                          float: right;

30
31
32
33 * #section_1{
    width: 190%;
    height: 500px;
    box-sizing: border-box;
    box-sizing: border-box;
    boxeground-color: #f0f3f7;
    position: relative;

ple-box{
                                                                                                                                                                                                  49
50 v #other_links {
51 float: left;
52 list-style-type: none;
52
                                                                                                                                                                                  51
52
53 }
54
55 v sother_links li {
55 v sother_links li {
6 display: inline;
6 padding: 20px;
padding: 20px;
                                                                                                                                                                                                                                                      60 #sign_in_up {
61 * #sign_in_up {
62    float: right;
62    list-style-type: none;
THE RESTRICTION OF THE PARTY OF
```

커리큘럼

- 1. History of Artificial intelligence
- 2. Perceptron
- 3. Multiperceptron
- 4. Neural network
- 5. Deep Neural Network
- 6. Convolution Neural Network
- 7. Recurrent Neural Network
- 8. Autoencoder
- 9. Generative Adversarial Network

퍼셉트론이란?

Perceptron → Perception + neuron

Perceptron

퍼셉트론이란?

$$if\sum_{i}^{n}w_{i}x_{i}\ \geq heta
ightarrow y=1$$

$$if\sum_{i}^{n}w_{i}x_{i}\ < heta
ightarrow y=0$$

퍼셉트론을 활용한 게이트 구현

OR GATE

●(1,1)

(0,1)

 x_2

(0,0)

(1,0) €

<i>x</i> ₁	<i>x</i> ₂	у
0	0	0
0	1	0
1	0	0
1	1	1

 x_1

0

AND 게이트

<i>x</i> ₁	<i>x</i> ₂	у
0	0	0
0	1	1
1	0	1
1	1	0

OR 게이트

퍼셉트론의 한계

<i>x</i> ₁	<i>x</i> ₂	у
0	0	0
0	1	1
1	0	1
1	1	0

Multilayer perceptron

Activation function

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

