

BASEMENT

LIBRARY
OF THE
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Dewey

D28
M414
831-76

ON SUMS OF LOGNORMAL RANDOM VARIABLES*

by

E. Barouch and Gordon M. Kaufman
=

WP 831-76

February 1976

ON SUMS OF LOGNORMAL RANDOM VARIABLES*

by

E. Barouch and Gordon M. Kaufman

WP 831-76

February 1976

ABSTRACT

Approximations to the characteristic function of the lognormal distribution are computed and used to calculate approximations to the density of sums of lognormal random variables.

* This research was supported by NSF grant no. SIA 74-22773.

The authors thank their colleague Hung Cheng for a very fruitful discussion.

✓✓✓

✓✓✓

No. C31 TC

On Sums of Lognormal Random Variables*

by

E. Barouch and Gordon M. Kaufman

1. Introduction

The lognormal distribution has been used as a model for empirical data generating processes in a wide variety of disciplines. Aitcheson and Brown [1] cite over 100 applications. In portfolio analysis (Lintner [3]) and in statistical studies of the deposition of mineral resources (Barouch and Kaufman [2] and Uhler [4]) sums $X_1 + \dots + X_N = K$ of lognormal random variables (rvs) are of central interest.

Here we compute approximations to the density of a sum of N mutually independent and identically distributed lognormal rvs. As is well known, the density of a sum of independent, identically distributed rvs is given by the inverse Fourier (or LaPlace) transform of the N th power of the characteristic function, so we begin by studying the characteristic function of a lognormal density. We perform an asymptotic analysis of it in its various regions for N and $\text{Var}(X_i) = \sigma_i^2$ large and compute approximations to the density of the sum by transforming back.

We find that (a) for values of K larger than its mean, the density of K is approximately a three parameter lognormal density (cf. (44)); (b) for values of K near its mean, the density contains both lognormal-like and normal-like components, (cf. (45)); (c) for values of K larger than order one but smaller than its mean, the density is approximately a three parameter lognormal density, (cf. (46)) and (d) for values of K smaller than order one, the density is approximately lognormal (cf. (47)).

0726744

* The authors thank their colleague Hung Cheng for a very fruitful discussion.

2. Lognormal Characteristic Function

2.1 Properties of the Characteristic Function and Approximations

The characteristic function $G(y)$ of the lognormal distribution is defined by

$$G(y) = \frac{1}{\sigma\sqrt{2\pi}} \int_0^{\infty} \exp\{-iyx - \frac{1}{2\sigma^2} \log^2 x\} \frac{dx}{x} \quad (1)$$

where y is complex with $\operatorname{Im}y \leq 0$ and μ has been set equal to 0 without loss of generality. The function $G(y)$ is analytic everywhere in the lower half of the complex y plane, and continuous from below for real y . However, $G(y)$ is not analytic near $y = 0$, and this greatly enhances the difficulty of approximating $G(y)$.

An obvious way to attempt computation of $G(y)$ is to expand e^{-iyx} in a Taylor series around zero and integrate term by term; i.e. to express $G(y)$ in a moment series. In so doing, we are expanding $G(y)$ around a point at which $G(y)$ is non-analytic. Hence it is not at all surprising that this expansion fails in every respect. The first few terms of such an expansion cannot be looked upon as a "small y " approximation to $G(y)$ as the resulting polynomial is analytic while $G(y)$ is not. Furthermore, since the $(n+1)$ st term in the series is $(-i)^n y^n \frac{1}{n!} e^{-iy^2/2}$, this moment series is divergent for all $y \neq 0$. Trying hard, the moment series can be viewed as an asymptotic series provided that σ^2 is very small. This fact is not very useful, since for σ^2 small enough, the series is well approximated by $e^{-iy^2/2}$, the characteristic function of a density concentrated on the point 1.

Consider a point $y = \xi - i\eta$, $\eta > 0$ and rewrite $G(y)$ as

$$G(y) = \frac{1}{\sigma\sqrt{2\pi}} \int_0^\infty \exp\{-\eta x - i\xi x - \frac{1}{2\sigma^2} \log^2 x\} \frac{dx}{x} \quad (2)$$

As long as η remains positive we may expand $e^{-i\xi x}$ in a power series, since we are expanding $G(y)$ around a point in its domain of analyticity. Hence we may write

$$G(y) = \sum_{j=0}^{\infty} \frac{(-i\xi)^j}{j!} \frac{1}{\sigma\sqrt{2\pi}} \int_0^\infty \exp\{-\eta x - \frac{1}{2\sigma^2} \log^2 x\} x^{j-1} dx \quad (3)$$

The limit $\eta \rightarrow 0$ is not allowed after expanding since these two operations do not commute and a study of $G(y)$ based on (3) must be done with extreme caution. Each term in (3) can be derived from the first term, by differentiating with respect to η . This is allowed since the series is uniformly convergent.

Consequently, to construct a good approximation to $G(y)$ we need only study its behavior for y lying on the negative imaginary axis. This of course is not surprising, since any operation on $G(y)$ can be performed by deforming the contour of integration through the axis $\text{Im}y < 0$.

We now focus our attention on

$$G(y) = \frac{1}{\sigma\sqrt{2\pi}} \int_0^\infty \exp\{-yx - \frac{1}{2\sigma^2} \log^2 x\} \frac{dx}{x}$$

for real positive y (namely $y = -i\eta$, $\eta > 0$, and so henceforth $\eta \equiv y$).

We further assume that σ^2 is large.

Immediate properties of $G(y)$ are:

- (i) $G(0) = 1$
- (ii) $\lim_{y \rightarrow \infty} G(y) = 0$

$$\begin{aligned} \text{(iii)} \quad & |G(y)| \leq 1 \\ \text{(iv)} \quad & \frac{\partial G}{\partial y} = -e^{\sigma^2/2} G(y e^{\sigma^2}) \\ \text{(v)} \quad & \frac{\partial^2 G}{\partial y^2} = e^{2\sigma^2} G(y e^{2\sigma^2}) \end{aligned}$$

From properties (iv) and (v), it is apparent that differentiating $G(y)$ rescales y by e^{σ^2} . If e^{σ^2} is large, even if y is small, sufficient differentiation moves $G(y)$ to its asymptotic region. For example if $y = 0(1)$, $\frac{\partial G}{\partial y}$ is a constant times $G(y e^{\sigma^2})$. Thus, when we wish to perform an integration involving $G(y)$, asymptotic evaluation of $G(y)$ may be necessary.

Let $y \rightarrow \infty$, and $\log y/\sigma^2$ be large. Change variables in $G(y)$: $yx = z$ to obtain

$$G(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}\log^2 y\right\} \int_0^\infty \exp\left\{-z - \frac{1}{2\sigma^2}\log^2 z\right\} z^{\sigma^{-2}\log y} \frac{dz}{z} \quad (4)$$

Since $\frac{\log y}{\sigma^2}$ is assumed large and positive, the major contribution to (4) cannot come from $z \sim 0$. Thus, $\frac{1}{2\sigma^2}\log^2 z$ is small compared with z , and can be dropped. This is of course a crude approximation. To improve it we expand $\exp\left\{-\frac{1}{2\sigma^2}\log^2 z\right\}$ in a power series. As long as $\log y/\sigma^2 > 0$ the resulting term by term integration is uniformly convergent. Equation (4) takes the form

$$G(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2} \log^2 y} \sum_{j=0}^{\infty} \left(-\frac{1}{2\sigma^2}\right)^j \frac{1}{j!} \int_0^{\infty} e^{-z} (\log z)^{2j} z^{j-2} \log y \frac{dz}{z}$$

(5)

The integrals in (5) can be expressed in terms of derivatives of the Γ function:

$$\int_0^{\infty} e^{-z} (\log z)^{2j} z^{\sigma-2} \log y \frac{dz}{z} = \Gamma^{(2j)}(\sigma^{-2} \log y) \quad (6)$$

with $\frac{\log y}{\sigma^2} > 0$.

Then $G(y)$ takes the form

$$G(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \sum_{j=0}^{\infty} \left(-\frac{1}{2\sigma^2}\right)^j \frac{1}{j!} \Gamma^{(2j)}(\sigma^{-2} \log y) \quad (7)$$

This expansion is exact but not really useful for computation since higher derivatives of the Γ function are very complicated. We now make use of the assumption that $\log y/\sigma^2$ is large, and approximate

$$\Gamma^{(2j)}(\sigma^{-2} \log y) \approx \psi^{2j}(\sigma^{-2} \log y) \Gamma(\sigma^{-2} \log y) \quad (8)$$

where ψ is the logarithmic derivative of the Γ function. To justify this approximation we write a table:

$$\Gamma(\alpha)$$

$$\Gamma'(\alpha) = \psi(\alpha) \Gamma(\alpha)$$

$$\Gamma''(\alpha) = \{\psi^2(\alpha) + \psi'(\alpha)\} \Gamma(\alpha)$$

$$\Gamma'''(\alpha) = \{\psi^3(\alpha) + 3\psi(\alpha)\psi'(\alpha) + \psi''(\alpha)\} \Gamma(\alpha)$$

$$\Gamma''''(\alpha) = \{\psi^4(\alpha) + 6\psi^2(\alpha)\psi'(\alpha) + 4\psi(\alpha)\psi''(\alpha) + 3\psi'^2(\alpha) + \psi'''(\alpha)\} \Gamma(\alpha)$$

with $\alpha = \log y/\sigma^2$. If we substitute the leading term in the asymptotic series of $\psi(\alpha)$ which is $\log \alpha$, $\psi'(\alpha) \sim \frac{1}{\alpha}$, we can drop all derivatives of ψ compared with ψ , and $\Gamma^{(2j)}(\alpha) \approx [\psi(\alpha)]^{2j} \Gamma(\alpha)$. Substitution of (8) into (7) yields a summable series for $G(y)$:

$$G(y) \approx \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \Gamma(\sigma^{-2} \log y) \exp\left\{-\frac{1}{2\sigma^2} \psi^2(\sigma^{-2} \log y)\right\} \quad (9)$$

We can compute corrections to any order desired. For instance, in order to obtain the next term we write

$$\Gamma^{(2j)}(\alpha) = \psi^{2j}(\alpha) \Gamma(\alpha) + j(2j-1) \psi'(\alpha) \psi^{2j-2}(\alpha) \Gamma(\alpha) \quad (10)$$

which yields

$$\begin{aligned} G(y) &\approx \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \Gamma(\sigma^{-2} \log y) \exp\left\{-\frac{1}{2\sigma^2} \psi^2(\sigma^{-2} \log y)\right\} \\ &\quad * \left\{ 1 - \frac{1}{2\sigma^2} \psi'(\frac{\log y}{\sigma^2}) [1 - \frac{1}{\sigma^2} \psi^2(\frac{\log y}{\sigma^2})] + O([\psi'(\frac{\log y}{\sigma^2})]^2) \right\} \end{aligned} \quad (11)$$

This expansion breaks down when $\psi'(\alpha)$ can no longer be neglected

relative to $\psi(\alpha)$ and is particularly bad for $\alpha \rightarrow 0$ ($y \sim 1$).

Also, (9) is valid for $y \gtrsim e^{\sigma^2/2}$; surprisingly, (9) works well for y close to $\exp\{\frac{1}{2}\sigma^2\}$.

We have already argued why $y \rightarrow 0$ is not legitimate here. Properties (ii) and (iii) are immediate for (9), and it satisfies (iv) to the order of approximation computed. [If (iv) is obeyed, the rest of the derivatives are immediate]. To see this, we neglect ψ' , differentiate (9), and show

that the result equals $-\exp\left\{-\frac{1}{2}\sigma^2\right\}$ times (9) with argument ye^{σ^2} in place of y . Property (iv) takes the form

$$\begin{aligned}
 & \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\log^2 y\right\} \Gamma(\sigma^{-2}\log y) \exp\left\{-\frac{1}{2\sigma^2}\psi^2(\sigma^{-2}\log y)\right\} \\
 & \times (y\sigma^2)^{-1} \log y + (y\sigma^2)^{-1} \psi(\sigma^{-2}\log y) \\
 & - (y\sigma^4)^{-1} \psi(\sigma^{-2}\log y) \psi'(\sigma^{-2}\log y) \\
 = & - \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}\log^2 y\right\} \frac{\log y}{y\sigma^2} \Gamma(\sigma^{-2}\log y) \exp\left\{-\frac{1}{2\sigma^2}[\psi(\sigma^{-2}\log y) + \frac{\sigma^2}{\log y}]^2\right\}
 \end{aligned} \tag{12}$$

Approximating

$$\begin{aligned}
 & \exp\left\{-\frac{1}{2\sigma^2}[\psi(\sigma^{-2}\log y) + \frac{\sigma^2}{\log y}]^2\right\} \\
 & \approx \exp\left\{-\frac{1}{2\sigma^2}\psi^2(\sigma^{-2}\log y)\right\} [1 - \frac{\psi(\sigma^{-2}\log y)}{\log y}]
 \end{aligned}$$

and neglecting ψ' in the LHS of (12) we obtain (after some simplification) the identity

$$\frac{\log y}{\sigma^2} - \frac{1}{\sigma^2} \psi(\sigma^{-2}\log y) = \frac{\log y}{\sigma^2} \left\{1 - \frac{1}{\log y} \psi\left(\frac{\log y}{\sigma^2}\right)\right\} \tag{14}$$

Thus, equation (iv) is obeyed by (9) when we keep all large and order 1 terms. The complicated way in which the equation is obeyed is due to the rich structure of $G(y)$, despite its "simple" integral representation

Next we study $G(y)$ for small y . It seems reasonable to expect that for very small y , $G(y)$ can be approximated by a polynomial composed of the first few terms of its moment expansion. However, it must be done carefully: since $G(y)$ is not analytic in a neighborhood of $y = 0$ a meaningful small y approximation must possess this feature. Furthermore, since the asymptotic expansion of $G(y)$ for large y does not exhibit an additive polynomial, one must show how the polynomial disappears as y increases.

We begin with $y = 0(\exp\{-\frac{3}{2}\sigma^2\})$, since this is a relevant order of y for sampling without replacement and proportional to random size (cf. [2]) and then generalize. Adding and subtracting $1 - yx$ from $\exp\{-yx\}$ write $G(y)$ for $y = 0(\exp\{-\frac{3}{2}\sigma^2\})$ as

$$\begin{aligned} G(y) &= \frac{1}{\sigma\sqrt{2\pi}} \int_0^\infty \exp\{-yx - \frac{1}{2\sigma^2}\log^2 x\} \frac{dx}{x} \\ &= 1 - y \exp\{\frac{1}{2}\sigma^2\} \\ &\quad + \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{1}{2\sigma^2}\log^2 y\} \int_0^\infty (e^{-z} - 1 + z) \exp\{-\frac{1}{2\sigma^2}\log^2 z\} z^{\sigma^{-2}\log y} \frac{dz}{z} \end{aligned} \tag{15}$$

Treating the above integral in the same way as (4), we obtain

$$\begin{aligned} G(y) &= 1 - y \exp\{\frac{1}{2}\sigma^2\} + \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{1}{2\sigma^2}\log^2 y\} \sum_{j=0}^{\infty} \left\{ \left(-\frac{1}{2\sigma^2} \right)^j \frac{1}{j!} \right. \\ &\quad \times \left[\frac{\partial^{2j}}{\partial \alpha^{2j}} \int_0^\infty (e^{-z} - 1 + z) z^{\frac{\sigma^{-2}\log y}{z}} dz \right] \} \end{aligned} \tag{16}$$

for $\alpha = \sigma^{-2}\log y$

In (16), $-2 < \alpha < -1$, and so the integral exists. In fact, this integral is an integral representation of $\Gamma(\alpha)$ for α negative and non-integer valued. Given (16) the method used to compute an expansion for large y can be used and we find that for $y = 0(\exp\{-m + \frac{1}{2}\sigma^2\})$ and integer m , we can add and subtract a polynomial of the m^{th} degree from $\exp\{-yx\}$ to obtain

$$G(y) \approx \sum_{j=0}^m \frac{(-y)^j}{j!} \exp\left\{\frac{1}{2}j^2\sigma^2\right\} + \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}\log^2 y\right\} \Gamma\left(\frac{\log y}{\sigma^2}\right) \exp\left\{-\frac{1}{2\sigma^2}\psi^2\left(\frac{\log y}{\sigma^2}\right)\right\} \quad (17)$$

$$\text{for } -m > \frac{\log y}{\sigma^2} > -(m+1)$$

This expansion possesses both of the features needed for it to be a meaningful approximation to $G(y)$ for small y ; it is non-analytic at $y = 0$ and has a polynomial piece. However, it has two major defects: it is not defined at $y = \exp\{-m\sigma^2\}$ for integer m , and it appears as if $G(y)$ is discontinuous at $y = \exp\{-m\sigma^2\}$. Hence formula (17) can be regarded at best as an approximation of limited validity. Furthermore, it does not explain the relation between the rising power of the polynomial term as y decreases and the lognormal term. Therefore further analysis is needed.

We split the integral representation of $G(y)$ into a sum $I_1 + I_2$ of two integrals defined by

$$I_1(y) = \frac{1}{\sigma\sqrt{2\pi}} \int_0^{1/y} \exp\left\{-yx - \frac{1}{2\sigma^2}\log^2 x\right\} \frac{dx}{x} \quad \text{and} \quad (18)$$

$$I_2(y) = \frac{1}{\sigma\sqrt{2\pi}} \int_{1/y}^{\infty} \exp\left\{-yx - \frac{1}{2\sigma^2}\log^2 x\right\} \frac{dx}{x}$$

When y is sufficiently small, I_2 is small compared with I_1 and in the limit $y \rightarrow 0$, $I_1 = G(0) = 1$. Consequently, we first analyze I_1 for y small. Expanding $\exp\{-yx\}$ and integrating term by term we obtain a uniformly convergent series:

$$\begin{aligned} I_1(y) &= \frac{1}{\sigma\sqrt{2\pi}} \sum_{j=0}^{\infty} \frac{(-y)^j}{j!} \int_0^{1/y} \exp\left\{-\frac{1}{2\sigma^2} \log^2 x\right\} x^j \frac{dx}{x} \quad (19) \\ &= \frac{1}{2} \sum_{j=0}^{\infty} \frac{(-y)^j}{j!} \exp\left\{\frac{1}{2} j^2 \sigma^2\right\} \operatorname{erfc}\left[\frac{\log(ye^{j\sigma^2})}{\sqrt{2}\sigma}\right] \end{aligned}$$

with

$$\operatorname{erfc}(z) \equiv \frac{2}{\sqrt{2\pi}} \int_z^{\infty} \exp\{-t^2\} dt \equiv 1 - \operatorname{erf}(z) \quad (20)$$

for $z \geq 0$. In (19) we must distinguish between three types of terms: setting $y = \exp\{-\lambda\sigma^2\}$, with $\lambda > 0$

$$\sigma(j - \lambda) < 0, \quad (21a)$$

$$\sigma(j - \lambda) > 0, \quad (21b)$$

$$\sigma(j - \lambda) \approx 0. \quad (21c)$$

The argument in (19) is $\frac{1}{\sqrt{2}}\sigma(j - \lambda)$, hence there are a finite number of terms for which $j - \lambda < 0$. Since σ^2 is assumed large, there may be one term for which $\sigma(j - \lambda) \approx 0$ (when $j - \lambda = O(\sigma^{-1})$, there is only one such term). Remaining terms are of type $\sigma(j - \lambda) > 0$.

We replace $\operatorname{erfc}(\cdot)$ in each term for which $j - \lambda > 0$ by its asymptotic expansion, namely,

$$\operatorname{erfc}(z) = \frac{1}{z\sqrt{\pi}} \exp\{-z^2\} \left[1 + \sum_{\ell=1}^{\infty} (-1)^\ell \frac{(2\ell-1)!!}{(2z^2)^\ell} \right] \quad (22)$$

Since $\sum_{j=0}^{\infty} \frac{(-1)^j}{j!} [j + \sigma^{-2} \log y]^{-1}$ is a series representation of the incomplete gamma function $\gamma(\sigma^{-2} \log y; 1)$, (25) may be rewritten as

$$I_1(y) \approx \sum_{j=0}^k \frac{(-y)^j}{j!} \exp\left\{-\frac{1}{2} j^2 \sigma^2\right\} + \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \gamma(\sigma^{-2} \log y; 1) \quad (26)$$

$$+ \frac{(-1)^{k+1}}{(k+1)!} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \left[\frac{1}{2} \exp\left\{-\frac{1}{2\sigma^2} \log^2 (ye^{(k+1)\sigma^2})\right\} \operatorname{erfc}\left(\frac{1}{\sqrt{2\sigma}} \log ye^{(k+1)\sigma^2}\right) \right.$$

$$\left. - (\sigma \sqrt{2\pi} (1 + k + \sigma^{-2} \log y))^{-1} \right]$$

Even though $\gamma(\sigma^{-2} \log y; 1)$ has a pole for $\sigma^{-2} \log y$ a negative integer, when $y = \exp\{-(k+1)\sigma^2\}$ the pole of $\gamma(\sigma^{-2} \log y; 1)$ is cancelled by that of $(1 + k + \sigma^{-2} \log y)^{-1}$ so that (26) is a legitimate representation of $I_1(y)$ for all small y .

We now turn to $y \approx 1$ and first consider $y > 1$. Then $\log(ye^{j\sigma^2}) > 0$ or $j - \lambda > 0$ for all j except $j = 0$, so

$$I_1(y) = \frac{1}{2} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \sum_{j=1}^{\infty} \frac{(-1)^j}{j!} \exp\left\{-\frac{1}{2\sigma^2} \log^2 (ye^{j\sigma^2})\right\} \operatorname{erfc}\left(\frac{\log(ye^{j\sigma^2})}{\sqrt{2\sigma}}\right)$$

$$+ \frac{1}{2} \operatorname{erfc}\left(\frac{\log y}{\sqrt{2\sigma}}\right) \quad (27)$$

The approximation (26) to $I_1(y)$ for small y was computed keeping only the first term of the asymptotic series for $\operatorname{erfc}(\cdot)$; it is not clear a priori that this leads to an accurate approximation to $I_1(y)$ when $y = O(1)$, so we replace the asymptotic series for $\operatorname{erfc}(\frac{1}{\sqrt{2\sigma}} \log y)$ with its series expansion for small argument $z \geq 0$,

$$\operatorname{erf}(z) = e^{-z^2} \sum_{j=0}^{\infty} \frac{z^{2j+1}}{\Gamma(\frac{3}{2} + j)}, \quad \operatorname{erfc}(z) = 1 - \operatorname{erf}(z),$$

and approximate $I_1(y)$ with

$$\begin{aligned} I_1(y) &\approx \frac{1}{2\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}\log^2 y\right\} \sum_{j=2}^{\infty} \frac{(-1)^j}{j!} [j + \sigma^{-2}\log y]^{-1} \\ &+ \frac{1}{2}[1 - \exp\left\{-\frac{1}{2\sigma^2}\log^2 y\right\} \sum_{j=0}^{\infty} \frac{1}{\Gamma(\frac{3}{2} + j)} \left(\frac{\log y}{\sqrt{2\sigma}}\right)^{2j+1}] \quad (28) \\ &- \frac{1}{2}y \exp\left\{\frac{1}{2}\sigma^2\right\} \operatorname{erfc}\left(\frac{1}{\sqrt{2\sigma}}\log y e^{\sigma^2}\right) \end{aligned}$$

When σ^2 is large the last term in (28) can be incorporated into the first sum.

For $y \approx 1$, $y < 1$, and σ^2 large enough so that $\log(ye^{\sigma^2}) > 0$,

$$\begin{aligned} I_1(y) &= \frac{1}{2} \exp\left\{-\frac{1}{2\sigma^2}\log^2 y\right\} \sum_{j=1}^{\infty} \frac{(-1)^j}{j!} \exp\left\{-\frac{1}{2\sigma^2}\log^2(ye^{j\sigma^2})\right\} \operatorname{erfc}\left(\frac{1}{\sqrt{2\sigma}}\log(ye^{j\sigma^2})\right) \\ &+ \frac{1}{2}[2 - \operatorname{erfc}\left(-\frac{1}{\sqrt{2\sigma}}\log y\right)] \\ &\approx \frac{1}{2\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}\log^2 y\right\} \sum_{j=2}^{\infty} \frac{(-1)^j}{j!} [j + \sigma^{-2}\log y]^{-1} \quad (29) \\ &+ \frac{1}{2}[1 - \exp\left\{-\frac{1}{2\sigma^2}\log^2 y\right\} \sum_{j=0}^{\infty} \frac{1}{\Gamma(\frac{3}{2} + j)} \left(-\frac{\log y}{\sqrt{2\sigma}}\right)^{2j+1}] \\ &- \frac{1}{2}y \exp\left\{\frac{1}{2}\sigma^2\right\} \operatorname{erfc}\left(\frac{1}{\sqrt{2\sigma}}\log y e^{\sigma^2}\right) \end{aligned}$$

As $y \rightarrow 1$, both (28) and (29) approach the same limit, namely,

$$\begin{aligned} \lim_{y \rightarrow 1} I_1(y) &\approx \frac{1}{2}\left\{1 - \exp\left\{-\frac{1}{2}\sigma^2\right\}\operatorname{erfc}\left(\frac{\sigma}{\sqrt{2}}\right) + \frac{1}{\sigma\sqrt{2\pi}} \sum_{j=2}^{\infty} \frac{(-1)^j}{j!j}\right\} \\ &= \frac{1}{2}\left\{1 - \exp\left\{-\frac{1}{2}\sigma^2\right\}\operatorname{erfc}\left(\frac{\sigma}{\sqrt{2}}\right) + \frac{1}{\sigma\sqrt{2\pi}}[1 + \operatorname{Ei}(-1) - \gamma]\right\} \end{aligned} \quad (30)$$

where $\gamma = .57721 56649$, Euler's constant and

$$\operatorname{Ei}(-1) = - \int_1^\infty e^{-t} t^{-1} dt \approx .21938 3934.$$

We conclude our discussion of $G(y)$ with an asymptotic analysis of $I_2(y)$ as defined by (18). When y is large the principal contribution to $G(y)$ is from $I_2(y)$ and is of the form (11). When y is small, $I_2(y)$ is small, but when $y \approx 1$, $I_2(y)$ is of the same order as $I_1(y)$.

Consider $y \approx 1$ and σ^2 large first. Rewrite

$$I_2(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}\log^2 y\right\} \int_0^1 \exp\left\{-\frac{1}{z} - \frac{1}{2\sigma^2}\log^2 z\right\} z^{-\sigma^2\log y} \frac{dz}{z} \quad (31)$$

When $y \approx 1$ and σ^2 is large the major contribution to $I_2(y)$ comes from $z \approx 1$ and so we approximate

$$\frac{1}{z} \approx \frac{1}{2-z} \approx 1 - (1-z) + (1-z)^2 \approx z. \quad (32)$$

If we replace $1/z$ with z in (31) when $y \approx 1$ and σ^2 is large, we see that $I_2(y) \approx I_1(y^{-1})$ and $I \approx I_1(y) + I_1(y^{-1})$ where I_1 is given by (28) and (29).

For $y \ll 1$ we write

$$I_2(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}\log^2 y\right\} \int_1^\infty \exp\left\{-z - \frac{1}{2\sigma^2}\log^2 z\right\} z^{\sigma^2\log y} \frac{dz}{z} \quad (33)$$

When σ^2 is large $\sigma^{-2} \log^2 z \ll z$ for $1 \leq z \leq \exp\{\sigma^2\}$ and in this region we may expand $\exp\{-\frac{1}{2\sigma^2} \log^2 z\}$; the contribution from the region $z > \exp\{\sigma^2\}$ is small for large σ^2 and so we ignore it. Explicitly

$$I_2(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \sum_{j=0}^{\infty} \frac{1}{j!} \left(-\frac{1}{2\sigma^2}\right)^j \frac{\partial^{2j}}{\partial \alpha^{2j}} \Gamma(\alpha; 1) \quad (34)$$

where for negative α , $\Gamma(\alpha; 1)$ is the incomplete gamma function

$$\Gamma(\alpha; 1) = \frac{1}{e^{\Gamma(1-\alpha)}} \int_0^\infty e^{-t} t^{-\alpha} \frac{dt}{1+t} \quad (35)$$

For α large and negative a standard steepest descent calculation yields

$$\Gamma(\alpha; 1) \approx \frac{\sqrt{\pi}}{e^{\Gamma(1-\alpha)}} e^{-\theta} \theta^{-\alpha} \left[2 + \theta + \frac{2}{\theta}\right]^{-1/2} \quad (36)$$

with $\theta = -(1 + \alpha + \frac{1}{\alpha})$ so that the leading term in an asymptotic expansion of $I_2(y)$, $y \ll 1$ is

$$\begin{aligned} I_2(y) &\approx \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} [\Gamma(1 - \sigma^{-2} \log y)]^{-1} \\ &\times \exp\left\{-\frac{\log y}{\sigma^2} - \frac{\sigma^2}{\log y}\right\} \left[-\frac{\log y}{\sigma^2} - \frac{\sigma^2}{\log y} - 1\right]^{1/2 - \sigma^{-2} \log y} \\ &\times \left[\left(\frac{\log y}{\sigma^2} + \frac{\sigma^2}{\log y}\right)^2 + 1\right]^{-1/2}. \end{aligned} \quad (37)$$

By differentiating (37) with respect to α , higher order terms may be computed if desired.

2.2 Summary of Approximations to $G(y)$

The approximations to $G(y)$ for σ^2 large computed in 2.1 are:

(1) For $y \ll 1$ and $-(k+1) \leq \frac{\log y}{\sigma^2} \leq -k$,

$$\begin{aligned} G(y) &\approx \sum_{j=0}^k \frac{(-y)^j}{j!} \exp\left\{\frac{1}{2} j^2 \sigma^2\right\} + \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \gamma(\sigma^{-2} \log y; 1) \\ &+ \frac{(-1)^k}{k!} \left[\frac{1}{2} \exp\left\{-\frac{1}{2\sigma^2} \log^2(y e^{k\sigma^2})\right\} \operatorname{erfc}\left(\frac{1}{\sqrt{2\sigma}} \log(y e^{k\sigma^2})\right) - \frac{1}{\sigma \sqrt{2\pi} [k+\sigma^{-2} \log y]} \right] \\ &+ \frac{(-1)^{k+1}}{(k+1)!} \left[\frac{1}{2} \exp\left\{-\frac{1}{2\sigma^2} \log^2(y e^{(k+1)\sigma^2})\right\} \operatorname{erfc}\left(\frac{1}{\sqrt{2\sigma}} \log(y e^{(k+1)\sigma^2})\right) \right. \\ &\quad \left. - \frac{1}{\sigma \sqrt{2\pi} [k+1+\sigma^{-2} \log y]} \right] + I_2(y) \end{aligned} \quad (38)$$

where $\gamma(\sigma^{-2} \log y; 1)$ is an incomplete gamma function whose singularities at integer $-k$ and $-(k+1)$ are cancelled by the singularities of $[k + \sigma^{-2} \log y]^{-1}$ and $[k + 1 + \sigma^{-2} \log y]^{-1}$ respectively, and $I_2(y)$ is given by (37). An asymptotic evaluation of $I_2(y)$ when y is small (cf. formula [37]) shows it to be small by comparison with $I_1(y)$.

(2) For $y \approx 1$ and $y > 1$, with $I_1(y)$ given by (28),

$$\begin{aligned} G(y) &\approx I_1(y) + I_1(y^{-1}) \approx \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \sum_{j=2}^{\infty} \frac{(-1)^j}{(j-1)!} [j^2 - \sigma^{-2} \log^2 y]^{-1} \\ &- \frac{1}{2} \exp\left\{\frac{1}{2\sigma^2}\right\} [y \operatorname{erfc}\left(\frac{1}{\sigma \sqrt{2}} \log y e^{\sigma^2}\right) + \frac{1}{y} \operatorname{erfc}\left(\frac{1}{\sigma \sqrt{2}} \log y^{-1} e^{\sigma^2}\right)] \\ &+ 1 - \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \sum_{j=0}^{\infty} \frac{1}{\Gamma(\frac{3}{2}+j)} \left(\frac{\log y}{\sigma \sqrt{2}}\right)^{2j+1} \end{aligned} \quad (39)$$

(3) For $y = 1$,

$$G(1) \approx 1 - \exp\left\{\frac{1}{2\sigma^2}\right\} \operatorname{erfc}\left(\frac{\sigma}{\sqrt{2}}\right) + \frac{1}{\sigma \sqrt{2\pi}} [1 + \operatorname{Ei}(-1) - \gamma] \quad (40)$$

where $\gamma = .5772156649$ and $\operatorname{Ei}(-1) = .219383934$.

(4) For $y \approx 1$ and $y < 1$, (39) with y replaced by y^{-1} and $I_1(y)$ given by (29).

(5) For $y \gg 1$,

$$\begin{aligned} G(y) &\approx \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} \log^2 y\right\} \Gamma(\sigma^{-2} \log y) \exp\left\{-\frac{1}{2\sigma^2} \psi^2(\sigma^{-2} \log y)\right\} \\ &\times \left[1 - \frac{1}{2\sigma^2} \psi'(\sigma^{-2} \log y)(1 - \sigma^{-2} \psi^2(\sigma^{-2} \log y))\right] \end{aligned} \quad (41)$$

Figure 1 displays the graph of $G(y)$ for $\sigma^2 = 3.0$ and $\mu = 0$ and an approximation to it using the above approximation formulae. The solid line is drawn through points computed to five digits accuracy by numerical integration of (1).

Figure 1

Numerical $G(y)$ for $\sigma^2 = 3.0$, $\nu = 0$

Approximation formula (1)

3. Inversion of $[G(y)]^N$

The density $h(K)$ of the sum of N lognormal random variables is

$$h(K) = \frac{1}{2\pi i} \int_{\lambda-i\infty}^{\lambda+i\infty} \exp\{Ky\} [G(y)]^N dy. \quad (42)$$

The major contribution to this integral comes from the region $Ky = O(1)$.

Since $G(y)$ has a different form for each of the regions $y \ll 1$, $y \approx 1$, and $y \gg 1$, the functional form of $h(K)$ is different for differing orders of K . For each of the following cases N and σ^2 are assumed large.

(1) $K > NM_1$. For this case we approximate $G(y)$ by (38) and write

$$G(y) \approx e^{-yM_1} a(y) + \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{1}{2}\log^2 y\} b(y) \quad (43)$$

with $a(0) = 1$. The number of terms in $a(y)$ is determined by the magnitude of K . Approximating $[G(y)]^N$ by the first two terms of the binomial expansion of $G(y)$ expressed as (43),

$$[G(y)]^N \approx \exp\{-NM_1y\} [a^N(y) + \frac{Ne^{M_1y}}{\sigma\sqrt{2\pi}} \exp\{-\frac{1}{2}\log^2 y\} b(y) a^{N-1}(y)],$$

the integral (42) is approximated by a sum of two integrals. If $a(y) \equiv 1$ the first, that with integrand $\exp\{(K - NM_1)y\} a^N(y)$, vanishes; when

$a(y) \approx 1$ for $y \approx 0$ it is exponentially small. Consequently we approximate

$$\begin{aligned}
 h(K) &\approx \frac{1}{2\pi i} \cdot \frac{N}{\sigma\sqrt{2\pi}} \int_{\lambda-i\infty}^{\lambda+i\infty} \exp\{(K - [N-1]M_1)y - \frac{1}{2\sigma^2} \log^2 y\} b(y) a^{N-1}(y) dy \\
 &\approx \frac{N}{\sigma\sqrt{2\pi}} \frac{\exp\{-\frac{1}{2\sigma^2} \log^2(K - [N-1]M_1)\}}{K - [N-1]M_1} \\
 &\times b(\{K - [N-1]M_1\}^{-1}) a^{N-1}(\{K - [N-1]M_1\}^{-1})
 \end{aligned} \tag{44}$$

Corrections to (44) can be computed in a straightforward fashion.

The approximation (44) to $h(K)$ shows that for large $K > NM_1$, $h(K)$ is lognormal-like; i.e. the leading term of an asymptotic expansion of it is composed of a three parameter ($\mu=0$, σ^2 , $(N-1)M_1$) lognormal density with argument $K - (N-1)M_1$, times a correction.

(2) $K \approx NM_1$. This case requires specification of the scales of N and K - different scales give different answers. In particular, for $N = 0(\exp\{2\sigma^2\})$ and $K = 0(\exp\{\frac{5}{2}\sigma^2\})$, $a(y)$ may be approximated by $\exp\{-yM_1 + \frac{1}{2}Vy^2\}$. Upon expanding $[G(y)]^N$ written as (43) and integrating term by term we obtain

$$\begin{aligned}
 f(K) &\approx (2\pi\sigma^2)^{-\frac{1}{2}N} b^N(K) \exp\{-\frac{N}{\sigma^2} \log^2 K\} \\
 &+ \sum_{j=0}^{N-1} \left[\binom{N}{j} (2\pi V(N-j))^{-\frac{1}{2}} \exp\left\{-\frac{(K - (N-j)M_1)^2}{2(N-j)V}\right\} \right. \\
 &\quad \times \left. \left\{ (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2\sigma^2} \log^2 \frac{|K - (N-j)M_1|}{(N-j)V}\right\} b\left(\frac{(N-j)V}{|K - (N-j)M_1|}\right)^j \right\} \right]
 \end{aligned} \tag{45}$$

(3) $1 < K < (N-1)M_1$. This case may be treated in the same way as case (1) with $(N-1)M_1 - K$ replacing $K - (N-1)M_1$:

$$h(K) \approx \frac{N}{\sigma\sqrt{2\pi}} [(N-1)M_1 - K]^{-1} \exp\left\{-\frac{1}{2\sigma^2} \log^2((N-1)M_1 - K)\right\}$$
(46)

$$b([(N-1)M_1 - K]^{-1}) a^{N-1}([(N-1)M_1 - K]^{-1})$$

(4) $K \ll 1$. Use the expansion (11) of $G(y)$ in its asymptotic region:

$$\begin{aligned} h(K) &\approx \frac{1}{2\pi i} \cdot \frac{1}{\sigma\sqrt{2\pi}} \int_{\lambda-i\infty}^{\lambda+i\infty} \exp\left\{Ky - \frac{1}{2\sigma^2} \log^2 y - \frac{1}{2\sigma^2} \psi^2(\sigma^{-2} \log y) \Gamma(\sigma^{-2} \log y) dy\right\} \\ &\approx \left(\frac{N}{\sigma^2\sqrt{2\pi}}\right)^{\frac{1}{2}} \exp\left\{-\frac{N}{2\sigma^2} \log^2 K\right\} \frac{1}{K} \\ &\times N^{-\frac{1}{2}} (\sigma\sqrt{2\pi})^{-(N-1)} \Gamma^N(-\sigma^2 \log K) \exp\left\{-\frac{N}{2\sigma^2} \psi^2\left(-\frac{\log K}{\sigma^2}\right)\right\} \end{aligned}$$
(47)

References

- [1] Aitcheson, J. and J. A. C. Brown, The Lognormal Distribution, New York: Cambridge University Press, 1957.
- [2] Barouch, E. and Kaufman, G., "A Probabilistic Model of Oil and Gas Discovery", Proceedings of the IDASA Energy Conference, Laxenburg, Austria, May, 1975.
- [3] Lintner, J., "The Lognormality of Security Returns, Portfolio Selection and Market Equilibrium", forthcoming, 1976.
- [4] Uhler, F., "Production, Reserves, and Economic Return in Petroleum Exploration and Reservoir Development Programs, 1975 (forthcoming).

PAGEMENT

Date Due

		Lib-26-67

MAR

4

T-J5 143 w no.830- 76
Kalwani, Manoh/A parsimonious descript
726387 D*BKS 00020642

3 9080 000 656 071

T-J5 143 w no.831- 76
Barouch, Eytan/On sums of lognormal ra
726741 D*BKS 00020640

3 9080 000 656 022

HO28.M414 no.832- 76
Lindsay, Cathie/The retraining programs
726736 D*BKS 00020637

3 9080 000 655 958

HO28.M414 no.833- 76
Piskor, Wladys/Bibliographic survey of
726744 D*BKS 00020498

3 9080 000 654 399

HO28.M414 no.834- 76
Silk, Alvin J./Pre-test market evaluat
731050 D*BKS 00035423

3 9080 000 840 295

