-Organic molecules contain only C, H, O, N and sometimes S and P

-56 204 570 organic substances have been recorded

Naproxen sodium (Aleve)

Kline-7/99

What allows for the diversity of organic compounds?

- -Carbon can make 4 bonds
- -The 4 bonds can be a combination of single, double, and triple bonds

methane, CH₄

ethanenitrile, CH₃CN

Hydrocarbons:

When an organic molecule is composed only of hydrogen and carbon, it is called a hydrocarbon:

Alkanes: Hydrocarbons with single bonds

Alkenes: Hydrocarbons with double bond(s)

Alkynes: Hydrocarbons with triple bond(s)

- -Characterized by C-C single bonds
- -Also known as saturated hydrocarbons
- -empirical formula = C_nH_{2n+2}

$$\rightarrow$$
 C_nH_{2n+2}, n=8

$$= C_8 H_{18}$$

Properties:

- -Hydrophobic (does not mix with water and other polar substances)
- -Generally low boiling points (due to weak London Dispersion Forces)
- Longer alkane molecules have higher boiling points

methane ethane propane butane pentane hexane heptane octane	CH _{4(g)} C ₂ H _{6(g)} C ₃ H _{8(g)} C ₄ H _{10(g)} C ₅ H _{12(J)} C ₆ H _{14(J)} C ₇ H _{16(J)} C ₈ H _{18(J)}	B.Pt.(C) -164 -88 -42 0 +36 +68 +98 +126
--	---	--

Some IUPAC* names of alkanes:

ethane

propane

butane

All alkanes have the suffix "ane"

*International Union of Pure and Applied Chemistry

IUPAC naming system:

Each alkane also has a prefix based on the number of carbon atoms:

```
meth = 1
eth = 2
prop = 3
but = 4
pent = 5
hex = 6
hept = 7
oct = 8
non = 9
dec = 10
undec = 11
dodec = 12
```

IUPAC naming system:

Molecular formula	Condensed Structural Formula	Name
CH ₄	CH ₄	methane
C_2H_6	CH ₃ CH ₃	ethane
C_3H_8	CH ₃ CH ₂ CH ₃	propane
C_4H_{10}	CH ₃ CH ₂ CH ₂ CH ₃	butane
C_5H_{12}	CH ₃ CH ₂ CH ₂ CH ₃	pentane
C_6H_{14}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	hexane
C_7H_{16}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	heptane
C_8H_{18}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	octane
C_9H_{20}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	nonane
$C_{10}H_{22}$	CH ₃ CH ₂ CH ₃	decane

IUPAC naming system:

Ex: methane

IUPAC naming system:

Name the following alkanes:

hexane

nonane

IUPAC naming system:

Not all alkanes are straight chains. Some alkanes have alkyl side groups (alkyl substituents) attached.

-CH ₃	methyl	Ex:
-C ₂ H ₅	ethyl	H
-C ₃ H ₇	propyl	$\begin{pmatrix} \mathbf{H} - \mathbf{C} - \mathbf{H} \end{pmatrix}$ methyl group
-C ₄ H ₉	butyl	
-C ₅ H ₁₁	pentyl	H H H H
-C ₆ H ₁₃	hexyl	н-с-с-с-с-с-н
-C ₇ H ₁₅	heptyl	Ĥ Ĥ Ĥ Ĥ Ĥ
-C ₈ H ₁₇	octyl	

name: 2-methylhexane

IUPAC naming system:

For alkanes with side groups...

locant Substituent(s) prefix suffix

Ex: 2-methylhexane

IUPAC naming system:

Name the following branched alkanes

2-methylpentane

3-methylpentane

The substituent group is usually given the lowest locant possible

IUPAC naming system:

Which name is incorrect?

2-methylpentane

The substituent group is usually given the lowest locant possible

IUPAC naming system:

Name the following branched alkanes

2,3-dimethylhexane

3-ethylpentane

IUPAC naming system:

Name the following branched alkane

- 1. Find the longest continuous chain of C atoms (parent chain)
- 2. Identify any substitutents

2,4 -dimethylpentane

IUPAC naming system:

Name the following branched alkane

The order of substituents in the name is based on alphabetical order

4,5,5-triethyl-3,6,6-trimethylnonane

Drawing alkanes:

3 types of diagrams

Structural diagram

Condensed diagram

Line diagram

Drawing alkanes:

Line diagrams:

Every end or point on a line diagram represents a carbon atom. Hydrogen atoms are not shown.

Drawing alkanes:

Draw the following alkanes using line diagrams

methylbutane

3-ethyl-3,4-dimethylheptane

When two possible names exist:

3-ethyl-5-methylheptane or 5-ethyl 3 methylheptane?

The ethyl has priority (and gets the lower number) because it comes before methyl in the alphabet.

Homework:

```
Page 14 #1, 2
Page 17 #1, 2, 4-7
```

- -Ring-like structures of alkanes
- -empirical formula = C_nH_{2n}

$$\rightarrow$$
 C_nH_{2n}, n=6

$$= C_6 H_{12}$$

IUPAC naming system:

Name the following alkanes:

cyclobutane

cyclooctane

cyclopentane

The prefix "cyclo" is added to the alkane name

IUPAC naming system:

Name the following alkanes:

4-ethyl-1,1,2-trimethylcyclohexane

methylcyclohexane

propylcyclobutane

IUPAC naming system:

Draw the following alkanes using line structures:

1,1-dipropylcyclopropane

1-ethyl-1,2,5-trimethylcyclopentane

IUPAC naming system:

Which name is correct?

When two different substituents (ex. ethyl and methyl) can be assigned the same number, then the group that comes first in the alphabet gets the lowest number.

Properties:

Cycloalkanes have higher boiling points than their straight-chain (alkane) counterparts

Physical Properties of Alkan	es and Cycloalkanes
------------------------------	---------------------

Compounds	Вр, ℃	Mp, °C	Density, d_4^{20} , g mi ⁻¹
propane	-42	-187	0.580*
cyclopropane	-33	-127	0.689ª
butane	-0.5	-135	0.5794
cyclobutane	13	-90	0.689
pentane	36	-130	0.626
cyclopentane	49	-94	0.746
hexane	69	-95	0.659
cyclohexane	81	7	0.778
heptane	98	-91	0.684
cycloheptane	119	-8	0.810
octane	126	-57	0.703
cyclooctane	151	15	0.830
nonane	151	-54	0.718
cyclononane	178	11	0.845

Notice cycloalkanes have higher densities, meaning their molecules have less space between one another

Cycloalkane molecules stack closer together due to their ring conformations forming "stackable" shapes. The closer distance allows stronger London dispersion forces.

"Boat" vs "chair" conformations of cyclohexane

Chair conformation of cyclohexane

Boat conformation of cyclohexane

"Boat" vs "chair" conformations

CHAIR/CHAIR INTERCONVERIONS OR "RING FLIP"
IN CYCLOHEXANE

"Envelope" vs "half-chair" conformations of cyclopentane

The planar conformation has too much torsional strain. The envelope and half-chair conformations relieve the strain.

- -Alkanes with halogen atoms
- -Also known as alkyl halides

IUPAC naming system:

Halogen groups: **-F** fluoro

-CI chloro

-Br bromo

-I iodo

Just like alkyl substituents, the halogens are placed at the beginning of the name, and are ordered alphabetically.

2-Chloro-2methylpropane

2-Chloro-2,3dimethylpentane

1-Chloro-2,**2**dimethylpropane

IUPAC naming system:

Name the following haloalkanes:

1,2-dibromo-1-chlorobutane

2-bromo-2-methylpropane

2-bromo-2-chloro-1,1,1-trifluoroethane