浙江理工大学 2023—2024 学年第一学期

《高等数学 A1》期中试卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考 试中自觉遵守这些规定, 保证按规定的程序和要求参加考试, 如有违反, 自愿按 《浙江理工大学学生违纪处分规定》有关条款接受处理。

复核 教师

签名

承诺人签名:			学号:				班级:				任课教师: _		
								四		五.			
题号		二	1	2	3	4	5	1	2	1	2	总分	
得分													
阅卷 教师													
签名													
(本试卷共4页)													
一、选择题(本题共 6 小题,每小题 4 分,满分 24 分) 1.设有数列 $\{x_n\}$ 与 $\{y_n\}$,下列结论正确的是()													
A.若 $\lim_{n\to\infty} x_n y_n = 0$, 则必有 $\lim_{n\to\infty} x_n = 0$ 或 $\lim_{n\to\infty} y_n = 0$.													
B.若 $\lim_{n\to\infty} x_n y_n = \infty$, 则必有 $\lim_{n\to\infty} x_n = \infty$ 或 $\lim_{n\to\infty} y_n = \infty$.													
$C. 若 x_n y_n$ 有界,则必有 x_n 与 y_n 都有界.													
$D.$ 若 $x_n y_n$ 无界,则必有 x_n 或 y_n 无界.													
2.函数 $y = \frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{3}{x}}} + \frac{\sin x}{ x }$ 在 $x = 0$ 处为() 间断点.													
A.可去			B.跳跃 C			C.无穷	C.无穷 I			D.振荡			
3.已知直线 $y = x 与 y = \log_a x$ 相切,则 $a = ($													
A. <i>e</i>			В. е	-1		C.	$e^{e^{-1}}$]	D. e^e			
4.设 $y = x^2 + 2x - 1(x > 0)$,则其反函数 $x = \varphi(y)$ 在 $y = 2$ 处的导数为()													
A.4		Е	$3.\frac{1}{4}$		C.6	Ď		$D.\frac{1}{6}$					
5.下列机	及限求解	军中,	正确的)								
A. $\lim_{x\to 0^+}$	$x \ln x =$	1	B. $\lim_{x\to a}$	$ \frac{x^2 \sin x}{\sin x} $	$\frac{1}{x} = 1$	C	$\lim_{x\to 1} x$	$\frac{1}{1-x} = e$		D. $\lim_{x \to a}$	$\max_{\infty} x \sin x$	$\frac{1}{x} = 1$	

6.设函数 f(x)在 $(-\infty,+\infty)$ 上有定义,则下列命题正确的是(

A.若 f(x)在 $(-\infty,+\infty)$ 上可导且单调增加,则对一切 $x \in (-\infty,+\infty)$,都有 f'(x) > 0.

- B.若 f(x) 在点 x_0 处取得极值,则 $f'(x_0) = 0$.
- C.若 $f''(x_0) = 0$, 则 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点坐标.
- D.若 $f'(x_0) = 0$, $f''(x_0) = 0$, $f'''(x_0) \neq 0$, 则 x_0 一定不是 f(x)的极值点.

二、填空题(本题共6小题,每小题4分,满分24分)

- 3.设 $y = \lim_{t \to 0} x (1 + t^2) \frac{x}{\sin t^2}$,则 dy =______.
- 4.若函数 $y = \frac{2-x}{2+x}$, 则 $y^{(n)} =$ ______.
- 5.设 f(u)可导, $y = f(x^2)$ 在 $x_0 = -1$ 处取得增量 $\Delta x = 0.05$ 时,函数增量 Δy 的线性部分为 0.15,则 f'(1) =______.
- 6.函数 $y = x\sqrt{5-x}$ 在[0,5]上满足拉格朗日中值定理的 $\xi =$ ______.

三、解答题(本题共5小题,每小题6分,满分30分)

1.计算
$$\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{\cos^2 x}{x^2} \right)$$
.

2.讨论 $f(x) = \lim_{n \to \infty} \frac{x^{2n+1} - x}{x^{2n} + 1}$ 的连续性.

3.已知
$$f(x) = \begin{cases} ax^2 + b, x < 1 \\ 1 + xe^x, x \ge 1 \end{cases}$$
在定义域上处处可导,求 a, b .

4.已知函数 y = y(x) 是由方程 $(\cos y)^x = (\sin x)^y$ 所确定的隐函数,求 dy.

5.设函数
$$x = x(y)$$
 由参数方程
$$\begin{cases} x = t - \ln(1 + t^2) \text{ 所确定, } \\ y = \arctan t \end{cases}$$
 求 $\frac{d^2x}{dy^2}$.

四、综合题(本题共2小题,每小题7分,满分14分)

1.求函数 $y = \frac{x^3}{(x-1)^2}$ 的单调区间、极值、凹凸区间、拐点及渐近线.

2.讨论 k 的不同取值,确定方程 $\ln x - \frac{x}{e} + k = 0$ 在区间 $(0,+\infty)$ 内根的个数.

五、证明题(本题共2小题,每小题4分,满分8分)

1.求证: 当 0 < x < 2 时, $\ln x \ge \frac{x}{4} - \frac{3}{4x} + \frac{1}{2}$.

2.设函数在 [0,3]上连续,在 (0,3)内可导,且 f(0)+f(1)+f(2)=3,f(3)=1,证明:至少存在一点 $\xi \in (0,3)$,使得 $f'(\xi)=0$.