3 Punkte	Lösung: Integrale mit Delta - Funktionen
	i) $\int_{-3}^{0} \delta(x-1) dx = 0$ da $x_0 = -1 \notin (-3, 0)$
	ii) $\int_{-1}^{4} e^{x} \delta(x) dx = 1$ $dax_{0} = 0 \in (-1, +1)$ und $e^{0} = 1$
	(iii) $\int_{-\infty}^{\infty} \cos x \delta(x-\pi) dx = \cos \pi = -1 \qquad da x_0 = \pi \in (-\infty, \infty)$
	iv) $\int \cos x \delta(x-\pi) dx = 0$ da $x_0 = \pi \varphi(-\infty, 3)$
	v) $\int_{-\infty}^{\infty} x f(x) \delta(x) dx = 0. f(0) = 0 da x_0 = 0 \in (-\infty, \infty)$ Problematical $f(x) = 1/2$ o. A. A merke: $\int_{-\infty}^{\infty} x \delta(x) dx = 0$ gilt mit allen Grenzen
	Amerke: $\int x \delta(x) dx = 0$ gilt mit allen Grenzen
	vi) $\int_{-\infty}^{\infty} (x^2+3) \delta(5-x) dx = (5^2+3) = 28$, da $x_0 = 5 \in (-\infty)$