Отчёт

Задача 5

Титанюк Ульяна

422

1 Теоретическое решение дифференциального уравнения

1.1 Линейная задача

Решаем уравнение $u_t - \frac{u_x}{2} = 0$ с начальными условиями

$$u_0(x) = \begin{cases} 0 \text{ if } x \le 0\\ 4x \text{ if } 0 < x \le 0.25\\ 1 \text{ if } x > 0.25, \end{cases}$$

Запишем характеристическую систему уравнений:

$$\begin{cases} \dot{t} = 1\\ \dot{x} = -\frac{1}{2} \end{cases}$$

Следовательно, 2x+t=const -уравнение характеристик Общее решение уравнения: u=f(2x+t) Учитывая начальные условия, получим

$$u(t,x) = \begin{cases} 0 \text{ if } -1 \le x < -\frac{t}{2} \\ 4x \text{ if } -\frac{t}{2} \le x < \frac{1}{4} - \frac{t}{2} \\ 1 \text{ if } -\frac{t}{2} \le x < 1, \end{cases}$$

(см.Рис. 1).

Рис. 1

1.2 Нелинейная задача

Решаем уравнение $u_t - uu_x = 0$ с начальными условиями

$$u_0(x) = \begin{cases} 0 & \text{if } x \le 0\\ 4x & \text{if } 0 < x \le 0.25\\ 1 & \text{if } x > 0.25, \end{cases}$$

Запишем характеристическую систему уравнений:

$$\begin{cases} \dot{t} = 1 \\ \dot{x} = -u \\ \dot{u} = 0 \end{cases}$$

Следовательно, $x = -u_0t + x_0$. С учетом начальный условий при $x \in (0, 0.25]$ $x(t) = -4x_0t + x_0 = x_0(1-4t)$, то есть при t = 0.25 все траектории зануляются. Характеристики сталкиваются, а значит, имеем разрыв (См.Рис.2).

Рис. 2

Ищем разрыв
$$x(t)$$
:
$$\frac{dx(t)}{dt}\bigg|_{t=t^*} = \frac{[F(u)]}{u} = \frac{F(u_+) - F(u_-)}{u_+ - u_-} = \frac{\frac{-u_+^2}{2} - \frac{u_-^2}{2}}{u_+ - u_-} = -\frac{u_+ + u_-}{2}$$
 Так как $u_+ = 1, u_- = 0, \ \frac{dx(t)}{dt} = -\frac{1}{2}.$

$$\begin{cases} \dot{x} = -\frac{1}{2} \\ x(0.25) = 0 \end{cases}$$

Следовательно, x(t) = -0.5(t - 0.25). Также в области $0 \le x \le 0.25, 0 \le t \le$ 0.25 решение имеет вид $\frac{4x}{1-4t}$. Итого, см.Рис.3.

Рис. 3

2 Линейная задача

Решаем $v_t - \frac{v_x}{2} = 0$ в области $Q_T = (t,x)|0 < t \le 1, -1 \le x \le 1 = (k_1\tau,k_2h), k_1in\overline{(0,N)}, k_2h$ Начальные условия

$$v_0(x) = \begin{cases} 0 \text{ if } x \le 0\\ 4x \text{ if } 0 \le x \le 0.25\\ 1 \text{ if } x \ge 0.25, \end{cases}$$

Из теоретического решения следует, что граничные условия имеют вид: v(t,1)=1, v(t,-1)=0.

2.1 Явная схема

$$\frac{v_m^{n+1} - v_m^n}{\tau} - \frac{v_{m+1}^n - v_m^n}{2h} = 0$$

2.1.1 Аппроксимация

$$\begin{array}{l} v_m^{n+1}=v+\tau\dot{v}+\frac{\tau^2}{2}\ddot{v}+\frac{\tau^3}{6}\dddot{v}+O(\tau^4)\\ v_{m+1}^n=v+hv'+\frac{h^2}{2}v''+\frac{h^3}{6}v'''+O(h^4)\\ \dot{v}+\frac{\tau}{2}\ddot{v}+\frac{\tau^2}{6}\dddot{v}-\frac{v'}{2}-\frac{h}{4}v''-\frac{h^2}{12}v'''+O(\tau^3+h^3)=0\\ \text{остаточный член аппроксимации: }O(\tau+h). \end{array}$$

2.1.2 Дифференциальное приближение

$$\begin{split} \dot{v} - \frac{v'}{2} &= -\frac{\tau}{2} \ddot{v} + \frac{\tau^2}{6} \dddot{v} + \frac{h}{4} v'' + \frac{h^2}{12} v''' + O(\tau^3 + h^3) \\ \ddot{v} - \frac{\dot{v'}}{2} &= -\frac{\tau}{2} \dddot{v} + \frac{h}{4} \dot{v}'' + O(\tau^2 + h^2) \\ \dot{v'} - \frac{v''}{2} &= -\frac{\tau}{2} \ddot{v}' + \frac{h}{4} v''' + O(\tau^2 + h^2) \end{split}$$

$$\begin{split} \ddot{v} - \frac{v''}{4} &= -\frac{\tau}{2} (\, \dddot{v} + \frac{1}{2}) + \frac{h}{4} (\dot{v}'' + \frac{v'''}{2}) + O(\tau^2 + h^2) \\ \dddot{v} &= \frac{v'''}{8} + O(\tau + h) \\ \ddot{v}' &= \frac{v'''}{4} + O(\tau + h) \\ \dot{v}'' &= \frac{v'''}{2} + O(\tau + h) \\ \dot{v} - \frac{v'}{2} &= -\frac{\tau}{8} v'' - \frac{\tau^2}{12} v''' - \frac{\tau h}{8} v''' + \frac{h}{4} v''' + \frac{\tau^2}{8} v''' + \frac{h^2}{12} v''' + O(\tau^3 + h^3) \\ \dot{v} - \frac{v'}{2} &= -\frac{\tau}{8} v'' + \frac{h}{4} v'' + \frac{\tau^2}{24} v''' - \frac{\tau h}{8} v''' + \frac{h^2}{12} v''' + O(\tau^3 + h^3) \end{split}$$

2.1.3 Спектральная устойчивость

Заменяя $v_m^n=\lambda^n e^{im\phi}$ получим $\lambda=1+\frac{\tau}{2h}(e^{i\phi}-1)$ - окружность с центром в $1-\frac{\tau}{2h}$ радиуса $\frac{\tau}{2h}$. Необходимое условие устойчивости - окружность лежит в единичном круге, т.е. $\frac{\tau}{2h}\leq 1$.

2.1.4 Численное решение

Граничные условия примут вид: v(t,1)=1 перейдет в $v^n_{M_h}=1 \ \forall n \in \overline{0,N}, \ \mathrm{a}\ v(t,-1)=0$ в $v^n_0=0 \ \forall n \in \overline{0,N}.$ Тогда $\left\{v^{n+1}_m\right\}$ считается по $\left\{v^n_m\right\}$ согласно системе: $v^{n+1}_m=v^n_m-\tau\frac{v^n_{m+1}-v^n_m}{2h}, m \in \overline{1,M_h-1}.$ Результаты расчетов:

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	2.034375e+00	4.489844e-01	2.034375e+00	3.161862e-01
0.010	0.100	2.026005e+00	4.796207e-01	2.026005e+00	3.380020e-01
0.001	0.100	2.025084e+00	4.822149e-01	2.025084e+00	3.398893e-01
0.100	0.010	1.960000e+00	6.688000e-01	1.484848e+00	6.824490e-01
0.010	0.010	2.061181e+00	5.042041e-01	2.061181e+00	3.653653e-01
0.001	0.010	2.090565e+00	5.080720e-01	2.090565e+00	3.681681e-01
0.100	0.001	1.996000e+00	7.390000e-01	1.996000e+00	8.345567e-01
0.010	0.001	1.996000e+00	7.392880e-01	1.934109e+00	8.348820e-01
0.001	0.001	2.023275e+00	5.004748e-01	2.023275e+00	3.638493e-01

Получены следующие графики:

Рис. 4. $\tau = 0.001, h = 0.1$

Рис. 5. $\tau = 0.001, h = 0.001$

Теперь рассмотрим случай равномерного дробления сетки, при исходных данных $\tau=0.1, h=0.1.$ Причем $\tau_k=\frac{\tau}{2^k}$ и $h_k=\frac{h}{2^k}$ $\Delta(v,v^k)_\alpha=||v-v^k||_\alpha, \delta(v,v^k)_\alpha=\frac{||v-v^k||_\alpha}{||v||_\alpha}:$

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v, \cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.050000	0.050000	9.514595e-01	5.266888e-01	9.514595e-01	3.709076e-01
v^2	0.025000	0.025000	9.995810e-01	5.799972e-01	9.995810e-01	4.084487e-01
v^3	0.012500	0.012500	9.996094e-01	5.800000e-01	9.996094e-01	4.084507e-01
v^4	0.006250	0.006250	9.996094e-01	5.800000e-01	9.996094e-01	4.084507e-01
u	00.100	0.100	2.034375e+00	4.489844e-01	2.034375e+00	3.161862e-01

Для $\tau = 0.001, h = 0.01$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v, \cdot)_{L_1,h}$
v^1	0.005000	0.005000	9.999996e-01	5.594117e-01	9.999996e-01	4.053708e-01
v^2	0.002500	0.002500	1.000000e+00	6.200000e-01	1.000000e+00	4.492754e-01
v^3	0.001250	0.001250	1.000000e+00	6.200000e-01	1.000000e+00	4.492754e-01
v^4	0.000625	0.000625	1.000000e+00	6.200000e-01	1.000000e+00	4.492754e-01
u	0.010	0.010	2.061181e+00	5.042041e-01	2.061181e+00	3.653653e-01

2.2 Неявная схема

$$\frac{v_m^{n+1} - v_m^n}{\tau} - \frac{v_{m+1}^{n+1} - v_{m-1}^{n+1}}{4h} = \frac{\omega h^2}{\tau} \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2}$$

2.2.1 Аппроксимация

$$\begin{array}{l} v_m^{n+1} = v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + \frac{\tau^3}{6} \dddot{v} + O(\tau^4) \\ v_{m\pm 1}^n = v \pm h v' + \frac{h^2}{2} v'' \pm \frac{h^3}{6} v''' + O(h^4) \\ v_{m\pm 1}^{n+1} = v + \dot{v} \pm h v' + \frac{\tau^2}{2} \ddot{v} \pm \dot{v'} \tau h + \frac{h^2}{2} v'' + \frac{\tau^3}{6} \dddot{v} \pm \frac{\tau^2 h}{2} \ddot{v'} + \frac{\tau h^2}{2} \dot{v''} \pm \frac{h^3}{6} v''' + O(h^4 + \tau^4) \\ \dot{v} + \frac{\tau}{2} \ddot{v} + \frac{\tau^2}{6} \dddot{v} - \frac{v'}{2} - \frac{\tau}{2} \dot{v'} + \frac{\tau^2}{4} \ddot{v'} - \frac{h^2}{12} v''' + O(\tau^3 + h^3) = \frac{\omega h^2}{\tau} (v'' + \frac{h^2}{12} v'''') + O(\tau^3 + h^3) \\ \text{остаточный член аппроксимации: } O(\tau + h^2 + \frac{h^2}{\tau}). \end{array}$$

2.2.2 Дифференциальное приближение

$$\begin{split} \dot{v} - \frac{v'}{2} - \frac{\omega h^2}{\tau} v'' &= -\frac{\tau}{2} (\ddot{v} - \dot{v'}) - \frac{\tau^2}{6} (\ddot{v} - \frac{3}{2} \ddot{v'}) - \frac{h^2}{12} v''' + O(\tau^3 + h^3 + \frac{h^4}{\tau}) \\ \ddot{v} - \frac{\dot{v'}}{2} &= -\frac{\tau}{2} (\ddot{v} - \ddot{v'}) + O(\tau^2 + h^2 + \frac{h^2}{\tau}) \\ \dot{v'} - \frac{v''}{2} &= -\frac{\tau}{2} (\ddot{v'} - \dot{v''}) + O(\tau^2 + h^2 + \frac{h^2}{\tau}) \\ \ddot{v} - \frac{v''}{4} &= -\frac{\tau}{2} (\ddot{v} - \frac{\ddot{v'}}{2} - \frac{\dot{v''}}{2}) + O(\tau^2 + h^2 + \frac{h^2}{\tau}) \\ \ddot{v} &= \frac{v'''}{8} + O(\tau + h^2 + \frac{h^2}{\tau}) \\ \ddot{v'} &= \frac{v'''}{4} + O(\tau + h^2 + \frac{h^2}{\tau}) \\ \ddot{v} &= \frac{v'''}{4} + \frac{\tau v'''}{8} + O(\tau^2 + h^2 + \frac{h^2}{\tau}) \end{split}$$

$$\begin{array}{l} \dot{v'} = \frac{v''}{2} + \frac{\tau v'''}{8} + O(\tau^2 + h^2 + \frac{h^2}{\tau}) \\ \dot{v} - \frac{v'}{2} - \frac{\omega h^2}{\tau} v'' = \frac{\tau v''}{8} + \frac{\tau^2 v'''}{24} - \frac{h^2}{12} v''' O(\tau^3 + h^3 + \frac{h^4}{\tau}) \end{array}$$

2.2.3 Спектральная устойчивость

Заменяя $v_m^n=\lambda^n e^{im\phi}$ получим $\lambda=\frac{(2\omega(cos\phi-1)+1)(1+\frac{\tau}{2h}sin\phi i)}{1+\frac{\tau^2}{4h^2}sin^2\phi}.$

Тогда $|\lambda|=\frac{|(2\omega(\cos\phi-1)+1)|}{\sqrt{1+\frac{\tau^2}{4h^2}\sin^2\phi}}$. Числитель достигает своего максимума при $\phi=$

 π . Тогда при $\omega \in [0, \frac{1}{2}]$ выполнен спектральный признак устойчивости. При других ω и $\phi = \pi$ числитель ≥ 1 , а знаменатель = 1. То есть при $\omega =$ 0.1 выполняется необходимый признак устойчивости, а при $\omega = 1$ - схема неустойчива.

2.2.4 Численное решение

Схему:
$$\frac{v_m^{n+1}-v_m^n}{\tau}-\frac{v_{m+1}^{n+1}-v_{m-1}^{n+1}}{4h}=\frac{\omega h^2}{\tau}\frac{v_{m+1}^n-2v_m^n+v_{m-1}^n}{h^2}$$
 перепишем в виде:
$$v_m^{n+1}-\tau\frac{v_{m+1}^{n+1}-v_{m-1}^{n+1}}{4h}=v_m^n+\omega h^2\frac{v_{m+1}^n-2v_m^n+v_{m-1}^n}{h^2}.$$
 Тогда $\left\{v_m^{n+1}\right\}$ считается по $\left\{v_m^n\right\}$ методом прогонки:

$$J = \begin{pmatrix} 1 & -\frac{\tau}{4h} & 0 & \cdots & 0 & 0\\ \frac{\tau}{4h} & 1 & -\frac{\tau}{4h} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & \frac{\tau}{4h} & 1 \end{pmatrix}$$

Результат работы программы для $\omega = 0.1$:

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	2.005065e+00	4.699233e-01	2.004479e + 00	3.312646e-01
0.010	0.100	2.070098e+00	6.257683e-01	2.070098e+00	4.493436e-01
0.001	0.100	1.993598e+00	7.659560e-01	1.993598e+00	6.436190e-01
0.100	0.010	2.199165e+00	5.391047e-01	2.199159e+00	3.906928e-01
0.010	0.010	2.087273e+00	5.073378e-01	2.087273e+00	3.676361e-01
0.001	0.010	2.196476e + 00	5.372321e-01	2.196476e+00	3.892991e-01
0.100	0.001	2.220413e+00	5.410673e-01	2.220413e+00	3.933963e-01
0.010	0.001	2.078000e+00	5.046901e-01	2.078000e+00	3.669139e-01
0.001	0.001	2.031860e + 00	5.008474e-01	2.031860e+00	3.641202e-01

Получен график:

Рис. 6

Результат работы программы для $\omega=1$:

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	2.057096e+00	5.716584e-01	2.045065e+00	4.052176e-01
0.010	0.100	2.040410e+00	7.511083e-01	2.040410e+00	5.974772e-01
0.001	0.100	1.921704e+00	7.978895e-01	1.921704e+00	7.361254e-01
0.100	0.010	2.201993e+00	5.407783e-01	2.201440e+00	3.919077e-01
0.010	0.010	2.154766e+00	5.223890e-01	2.154751e+00	3.785427e-01
0.001	0.010	2.320332e+00	6.426793e-01	2.320332e+00	4.672751e-01
0.100	0.001	2.220442e+00	5.410838e-01	2.220438e+00	3.934084e-01
0.010	0.001	2.079231e+00	5.048490e-01	2.079231e+00	3.670294e-01
0.001	0.001	2.053982e+00	5.023927e-01	2.053982e+00	3.652437e-01

Получен график:

Рис. 7

Теперь рассмотрим случай равномерного дробления сетки, при исходных данных $\tau=0.1,h=0.1.$ Причем $\tau_k=\frac{\tau}{2^k}$ и $h_k=\frac{h}{2^k}$ $\Delta(v,v^k)_\alpha=||v-v^k||_\alpha,\delta(v,v^k)_\alpha=\frac{||v-v^k||_\alpha}{||v||_\alpha}.$ Для $\omega=0.1$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.050000	0.050000	9.471386e-02	4.538516e-02	9.468620 e-02	3.199351e-02
v^2	0.025000	0.025000	1.553445e-01	7.326469e-02	1.552992e-01	5.164672e-02
v^3	0.012500	0.012500	1.953264e-01	9.004536e-02	1.952694e-01	6.347598e-02
v^4	0.006250	0.006250	2.194344e-01	1.003608e-01	2.193703e-01	7.074769e-02
u	0.100	0.100	$2.005065\mathrm{e}{+00}$	4.699233e-01	2.004479e+00	3.312646e-01

Для $\tau = 0.001, h = 0.01$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.005000	0.005000	3.119690e-02	8.662405e-03	3.119690e-02	6.277105e-03
v^2	0.002500	0.002500	5.331166e-02	1.313692e-02	5.331166e-02	9.519509e-03
v^3	0.001250	0.001250	6.896876e-02	1.538371e-02	6.896876e-02	1.114762e-02
v^4	0.000625	0.000625	8.004693e-02	1.650793e-02	8.004693e-02	1.196227e-02
u	0.001	0.100	$1.993598e{+00}$	7.659560e-01	$1.993598e{+00}$	6.436190e-01

Для $\omega = 1$: для $\tau = 0.1, h = 0.1$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v_1	0.050000	0.050000	5.065387e-02	2.032866e-02	5.063365e-02	1.473091e-02
v_2	0.025000	0.025000	8.749135e-02	3.196751e-02	8.745641e-02	2.316486e-02
v_3	0.012500	0.012500	1.136137e-01	3.814630e-02	1.135683e-01	2.764224e-02
v_4	0.006250	0.006250	1.320870e-01	4.126920e-02	1.320342e-01	2.990522e-02
u	0.100	0.100	$2.005065\mathrm{e}{+00}$	4.699233e-01	2.004479e+00	3.312646e-01

Для $\tau = 0.001, h = 0.01$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v_1	0.005000	0.005000	8.546227e-02	7.555303e-02	8.470321e-02	5.356490e-02
v_2	0.002500	0.002500	1.565218e-01	1.297304e-01	1.551316e-01	9.197506e-02
v_3	0.001250	0.001250	2.149870e-01	1.666995e-01	2.130776e-01	1.181851e-01
v_4	0.000625	0.000625	2.658106e-01	1.903680e-01	2.634498e-01	1.349654e-01
u	0.001	0.100	2.220413e+00	5.410673e-01	2.220413e+00	3.933963e-01

3 Нелинейная задача

Решаем $v_t - vv_x = 0$ в области $Q_T = (t,x)|0 < t \le 1, -1 \le x \le 1$ Начальные условия

$$v_0(x) = \begin{cases} 0 \text{ if } x \le 0\\ 4x \text{ if } 0 < x \le 0.25\\ 1 \text{ if } x > 0.25, \end{cases}$$

Из теоретического решения следует, что граничные условия имеют вид: v(t,1)=1, v(t,-1)=0.

3.1 Явная схема

$$\frac{v_m^{n+1} - v_m^n}{\tau} - \frac{v_{m+1}^{2n} - v_m^{2n}}{2h} = 0$$

3.1.1 Аппроксимация

$$\begin{split} v_m^{n+1} &= v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} + \frac{\tau^3}{6} \, \dddot{v} + O(\tau^4) \\ v_{m+1}^n &= v + h v' + \frac{h^2}{2} v'' + \frac{h^3}{6} v''' + O(h^4) \\ \dot{v} + \frac{\tau}{2} \ddot{v} + \frac{\tau^2}{6} \, \dddot{v} - v v' - \frac{h v'^2}{2} - \frac{h}{2} v'' v + O(\tau^2 + h^2) = 0 \\ \text{остаточный член аппроксимации: } O(\tau + h). \end{split}$$

3.1.2 Численное решение

Преобразуем нашу схему к виду $v_m^{n+1}=v_m^n- au\frac{v_{m+1}^{2n}-v_m^{2n}}{2h}$ Тогда $\left\{v_m^{n+1}\right\}$ считается по $\left\{v_m^n\right\}$ согласно системе. Результаты расчетов:

au	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	1.104622e+00	3.057901e-01	1.000000e+00	3.040298e-01
0.010	0.100	1.105116e+00	3.061949e-01	1.000000e+00	3.043097e-01
0.001	0.100	1.105165e+00	3.062356e-01	1.000000e+00	3.043379e-01
0.100	0.010	1.000000e+00	2.500000e-01	1.000000e+00	2.840909e-01
0.010	0.010	2.704814e+00	1.733188e+00	1.000000e+00	7.334110e-01
0.001	0.010	2.716924e+00	1.743724e+00	1.000000e+00	7.345942e-01
0.100	0.001	1.000000e+00	2.505000e-01	1.000000e+00	2.861222e-01
0.010	0.001	1.000000e+00	2.505000e-01	1.000000e+00	2.861222e-01
0.001	0.001	1.020100e+00	2.680775e-01	1.000000e+00	3.001727e-01

Рис. 8

Теперь рассмотрим случай равномерного дробления сетки, при исходных данных $\tau=0.1, h=0.1.$ Причем $\tau_k=\frac{\tau}{2^k}$ и $h_k=\frac{h}{2^k}$ $\Delta(v,v^k)_{\alpha}=||v-v^k||_{\alpha}, \delta(v,v^k)_{\alpha}=\frac{||v-v^k||_{\alpha}}{||v||_{\alpha}}$:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v, \cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v_1	0.050000	0.050000	1.221117e-01	1.792714e-02	1.221117e-01	1.262475e-02
v_2	0.025000	0.025000	2.470711e-01	3.042715e-02	2.470711e-01	2.142757e-02
v_3	0.012500	0.012500	2.560863e-01	3.132867e-02	2.560863e-01	2.206244e-02
v_4	0.006250	0.006250	2.560863e-01	3.132867e-02	2.560863e-01	2.206244e-02
u	0.100	0.100	1.0000000e+00	7.200000e-01	1.000000e+00	5.070423e-01

Для
$$\tau = 0.001, h = 0.01$$
:

	$ au_k$	h_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v_1	0.005000	0.005000	1.249594e-01	2.500000e-03	1.249594e-01	1.811594e-03
v_2	0.002500	0.002500	1.339746e-01	2.680305e-03	1.339746e-01	1.942250e-03
v_3	0.001250	0.001250	1.339746e-01	2.680305e-03	1.339746e-01	1.942250e-03
v_4	0.000625	0.000625	1.339746e-01	2.680305e-03	1.339746e-01	1.942250e-03
u	0.001	0.100	1.000000e+00	7.200000e-01	1.000000e+00	5.070423e-01

3.2 Неявная схема

$$\frac{v_m^{n+1} - v_m^n}{\tau} - \frac{v_{m+1}^{2n+1} - v_{m-1}^{2n+1}}{4h} = \frac{\omega h^2}{\tau} \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2}$$

3.2.1 Неявная схема. Аппроксимация

$$\begin{split} v_m^{n+1} &= v + \tau \dot{v} + \frac{\tau^2}{2} \ddot{v} \, \dddot{v} + O(\tau^3) \\ v_{m+1}^n &= v + h v' + \frac{h^2}{2} v'' + \frac{h^3}{6} v''' + O(h^4) \\ \dot{v} + \frac{\tau}{2} \ddot{v} + \frac{\tau^2}{6} \, \dddot{v} - v v' - \frac{h v'^2}{2} - \frac{h}{2} v'' v + O(\tau^2 + h^2) = 0 \end{split}$$

$$\begin{array}{l} v_{m\pm 1}^n = v \pm hv' + \frac{h^2}{2}v'' + O(h^3) \\ v_{m\pm 1}^{n+1} = v + \dot{v} \pm hv' + \frac{\tau^2}{2}\ddot{v} \pm \dot{v'}\tau h + \frac{h^2}{2}v'' + O(h^3 + \tau^3) \\ \dot{v} + \frac{\tau}{2}\ddot{v} - 2vv' - 2\tau\dot{v}v' - \tau^2v'\ddot{v} - h^2v'v'' - 2\tau\dot{v'}v - 2\tau^2\dot{v'}\dot{v} - \frac{\omega h^2}{\tau}v'' + O(\tau^2 + h^3 + \frac{h^4}{\tau}) \\ \text{остаточный член аппроксимации: } O(\tau + h^2 + \frac{h^2}{\tau}). \end{array}$$

3.2.2 Численное решение

В случае неявной нелинейной схемы использую метод Ньютона для нахождения решения.

Результаты расчетов для $\omega = 0.1$:

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.001	2.170404e+00	5.282275e-01	2.041132e+00	3.839156e-01
0.100	0.000	2.170533e+00	5.022218e-01	2.169146e+00	3.652379e-01
0.200	0.001	2.086568e+00	5.139387e-01	2.086566e+00	3.736378e-01
0.100	0.000	2.170529e+00	5.030079e-01	2.164996e+00	3.657932e-01
0.200	0.000	$2.086576\mathrm{e}{+00}$	5.140231e-01	2.086576e+00	3.738214e-01
0.200	0.002	2.086551e+00	5.138546e-01	2.086538e+00	3.734410e-01

Получены следующий график:

Рис. 9

Результаты расчетов для $\omega = 1$:

au	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.001	1.996000e+00	6.990386e-01	1.995237e+00	7.553091e-01
0.100	0.000	1.999600e+00	6.999004e-01	1.999592e+00	7.566082e-01
0.200	0.001	1.996000e+00	6.490148e-01	1.995849e+00	6.653148e-01
0.100	0.000	1.999200e+00	6.998015e-01	1.999169e+00	7.564604e-01
0.200	0.000	1.999600e+00	6.499001e-01	1.999598e+00	6.665301e-01
0.200	0.002	1.992000e+00	6.480892e - 01	1.991100e+00	6.640273e-01