MATH 2132 Problem Workshop 1

1. Evaluate the limit if it converges. If the limit tends to ∞ , $-\infty$ indicate it as such.

(a)
$$\lim_{n \to \infty} \frac{n+2}{3n^2+5}$$

Solution:

$$\lim_{n \to \infty} \frac{n+2}{3n^2+5} = \lim_{n \to \infty} \frac{1/n + 2/n^2}{3+5/n^2} = \frac{0}{3} = 0$$

(b) $\lim_{n \to \infty} (-1)^n \frac{n+2}{3n^2+5}$

Solution:

Let
$$c_n = \frac{n+2}{3n^2+5}$$
. Since $\lim_{n\to\infty} c_n = 0$, $\lim_{n\to\infty} (-1)^n c_n = 0$.

(c) $\lim_{n\to\infty} \frac{n^2+2}{3n^2+5}$

Solution:

$$\lim_{n \to \infty} \frac{n^2 + 2}{3n^2 + 5} = \lim_{n \to \infty} \frac{1 + 2/n^2}{3 + 5/n^2} = \frac{1}{3}$$

(d) $\lim_{n\to\infty} (-1)^n \frac{n^2+2}{3n^2+5}$

Solutions

Let $c_n = \frac{n^2 + 2}{3n^2 + 5}$. Since $\lim_{n \to \infty} c_n \neq 0$, $\lim_{n \to \infty} (-1)^n c_n$ does not exist.

(e) $\lim_{n \to \infty} \frac{n^3 + 2}{3n^2 + 5}$

Solution:

$$\lim_{n \to \infty} \frac{n^3 + 2}{3n^2 + 5} = \lim_{n \to \infty} \frac{n(1 + 2/n^3)}{3 + 5/n^2} = \infty.$$

1

(f)
$$\lim_{n\to\infty} (-1)^n \frac{n^3+2}{3n^2+5}$$

Solution

Let $c_n = \frac{n^3 + 2}{3n^2 + 5}$. Since $\lim_{n \to \infty} c_n \neq 0$, $\lim_{n \to \infty} (-1)^n c_n$ does not exist.

(g)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + 3n - 4} - \sqrt{n^2 + 6n + 5} \right)$$

Solution:

$$\lim_{n \to \infty} \left(\sqrt{n^2 + 3n - 4} - \sqrt{n^2 + 6n + 5} \right)$$

$$= \lim_{n \to \infty} \frac{\left(\sqrt{n^2 + 3n - 4} - \sqrt{n^2 + 6n + 5} \right) \left(\sqrt{n^2 + 3n - 4} + \sqrt{n^2 + 6n + 5} \right)}{\left(\sqrt{n^2 + 3n - 4} + \sqrt{n^2 + 6n + 5} \right)}$$

$$= \lim_{n \to \infty} \frac{\left(n^2 + 3n - 4 \right) - \left(n^2 + 6n + 5 \right)}{\left(\sqrt{n^2 + 3n - 4} + \sqrt{n^2 + 6n + 5} \right)}$$

$$= \lim_{n \to \infty} \frac{-3n - 9}{\left(\sqrt{n^2 + 3n - 4} + \sqrt{n^2 + 6n + 5} \right)}$$

$$= \lim_{n \to \infty} \frac{-3 - 9/n}{\left(\sqrt{1 + 3/n - 4/n^2} + \sqrt{1 + 6/n + 5/n^2} \right)}$$

$$= \frac{-3}{\left(\sqrt{1} + \sqrt{1} \right)}$$

$$= -\frac{3}{2}$$

(h)
$$\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{2n}$$

Solution:

Letting x be a continuous variable

$$\lim_{n \to \infty} \left(1 + \frac{3}{n} \right)^{2n} = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{2x}$$

This is a 1^∞ form so we want to use L'Hoptial's Rule

Let
$$L = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{2x}$$
.

$$\ln L = \lim_{x \to \infty} \ln \left(\left(1 + \frac{3}{x} \right)^{2x} \right)$$

$$= \lim_{x \to \infty} 2x \ln \left(1 + \frac{3}{x} \right)$$

$$= \lim_{x \to \infty} \frac{2 \ln \left(1 + \frac{3}{x} \right)}{x^{-1}} \text{ which is a } \frac{0}{0} \text{ form}$$

$$= \lim_{x \to \infty} \frac{-6x^{-2}/(1+3/x)}{-x^{-2}}$$

$$= \lim_{x \to \infty} \frac{6}{1 + \frac{3}{x}}$$

$$= 6$$

Therefore $L = e^6$.

(i)
$$\lim_{n \to \infty} \left(\frac{3n+2}{2-n} \right) \cot^{-1} \left(\frac{3-\sqrt{3}n^3}{2+3n+n^3} \right)$$

Solution:

$$\lim_{n \to \infty} \frac{3n+2}{2-n} = \lim_{n \to \infty} \frac{3+2/n}{2/n-1} = -3.$$

$$\lim_{n \to \infty} \frac{3-\sqrt{3}n^3}{2+3n+n^3} = \lim_{n \to \infty} \frac{3/n^3-\sqrt{3}}{2/n^3+3/n^2+1} = -\sqrt{3}.$$

Therefore since \cot^{-1} is a continuous function on its domain,

$$\lim_{n \to \infty} \left(\frac{3n+2}{2-n} \right) \cot^{-1} \left(\frac{3-\sqrt{3}n^3}{2+3n+n^3} \right)$$

$$= \lim_{n \to \infty} \left(\frac{3n+2}{2-n} \right) \lim_{n \to \infty} \cot^{-1} \left(\frac{3-\sqrt{3}n^3}{2+3n+n^3} \right)$$

$$= \lim_{n \to \infty} \left(\frac{3n+2}{2-n} \right) \cot^{-1} \left(\lim_{n \to \infty} \frac{3-\sqrt{3}n^3}{2+3n+n^3} \right)$$

$$= -3 \cot^{-1} (-\sqrt{3})$$

$$= -3(5\pi/6)$$

$$= -\frac{5\pi}{2}.$$

(j)
$$\lim_{n \to \infty} \left(\frac{3}{n}\right)^{2n}$$

Solution: The base goes to 0 and the exponent goes to ∞ and thus the limit goes to 0.

(k)
$$\lim_{n \to \infty} \frac{\sin n}{n}$$

Solution:

By the squeeze theorem.

Since $-1 < \sin n < 1$ and n > 0 we have $-\frac{1}{n} < \frac{\sin n}{n} < \frac{1}{n}$.

Since both $\lim_{n\to\infty} -\frac{1}{n}$ and $\lim_{n\to\infty} \frac{1}{n}$ are both 0, by the squeeze theorem

$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

(l)
$$\lim_{n\to\infty} \left(\tan^{-1}(1/n) \right)^{1/n}$$

Solution:

This is a 0^0 form so we want to use L'Hoptial's Rule

Letting x be a continuous variable

$$\lim_{n \to \infty} (\tan^{-1}(1/n))^{1/n} = \lim_{x \to \infty} (\tan^{-1}(1/x))^{1/x}$$

While it can be done directly, for simplicity, we can let h = 1/x and thus

$$L = \lim_{x \to \infty} \left(\tan^{-1}(1/x) \right)^{1/x} = \lim_{h \to 0^+} (\tan^{-1}h)^h$$

$$\ln L = \lim_{h \to 0^{+}} \ln(\tan^{-1} h)^{h}$$

$$= \lim_{h \to 0^{+}} h \ln(\tan^{-1} h)$$

$$= \lim_{h \to 0^{+}} \frac{\ln(\tan^{-1} h)}{h^{-1}} \text{ which is a } \frac{-\infty}{\infty} \text{ form}$$

$$= \lim_{h \to 0^{+}} \frac{1}{\frac{(1+h^{2})\tan^{-1} h}{-h^{-2}}}$$

$$= \lim_{h \to 0^{+}} \frac{h^{2}}{(1+h^{2})\tan^{-1} h}$$

Using L'Hopital's Rule again as it is a 0/0 form

$$\ln L = \lim_{h \to 0^+} \frac{2h}{1 + h^2} + 2h \tan^{-1} h$$
$$= \frac{0}{1}$$
$$= 0.$$

Therefore $L = e^0 = 1$.

2. Find the general term of the sequence $8, \frac{11}{7}, \frac{14}{25}, \frac{17}{79}, \dots$

Solution: Thinking of 8 as $\frac{8}{1}$ we can see the pattern of the numerators is adding 3 each time. Hence the pattern is 3n + k for some number k. Since n = 1 makes 3n + k = 8, we get that $8 = 3 + k \Rightarrow k = 5$ thus the numerator is 3n + 5.

The denominator is trickier, however each term is 1, 7, 25, 79 which is 2 less than 3, 9, 27, 81 which are powers of 3. Thus the denominator is $3^n - 2$.

Hence the general term is $c_n = \frac{3n+5}{3^n-2}$.

3. Find the general term of the sequence $1, -\frac{6}{5}, \frac{12}{10}, -\frac{20}{17}, \frac{30}{26}, \dots$

Solution:

The alternating sign means that we need a factor of $(-1)^n$ or $(-1)^{n+1}$. Since n=1 gives a positive, we use $(-1)^{n+1}$.

The denominator is similar to the last example since 5, 10, 17, 26 is one more than 4, 9, 16, 25 and hence the denominator is $n^2 + 1$. However this doesn't seem to match the first term. A quick fix is to think of 1 as $\frac{2}{2}$ and then the patterns match.

Therefore the terms in the numerator are 2, 6, 12, 20, 30 which can be written as $1 \cdot 2$, $2 \cdot 3$, $3 \cdot 4$, $4 \cdot 5$, $5 \cdot 6$ Hence the pattern is n(n+1).

Hence the general term is $c_n = (-1)^{n+1} \frac{n(n+1)}{n^2+1}$.

4. It can be proven that if $\lim_{n\to\infty} c_n = C$ and $\lim_{n\to\infty} d_n = d$, then $\lim_{n\to\infty} c_n d_n = CD$. Use this to prove the following result. Suppose that $\lim_{n\to\infty} c_n = C \neq 0$ and $c_n \neq 0$ for all n. Suppose further that $\lim_{n\to\infty} d_n$ does not exist. Show $\lim_{n\to\infty} c_n d_n$ does not exist.

Solution: Suppose the limit of $\lim_{n\to\infty} c_n d_n$ does exist and equals L. Since $c_n\neq 0$ and has non-zero limit C, from the given result

$$\lim_{n \to \infty} d_n = \lim_{n \to \infty} \frac{c_n d_n}{c_n} = \lim_{n \to \infty} c_n d_n \lim_{n \to \infty} \frac{1}{c_n} = \frac{L}{C}.$$

However $\lim_{n\to\infty} d_n$ did not exist and therefore cannot equal L/C. Hence $\lim_{n\to\infty} c_n d_n$ could not have existed in the first place.

5. Determine to which function, if it exists, the sequence of functions $\{f_n(x)\}$ converges for x in the given interval.

(a)
$$f_n(x) = \frac{n^2x^2 + 3nx}{2n^2x + 5}, (-\infty, \infty)$$

Solution: For any $x \neq 0$

$$\lim_{n \to \infty} \frac{n^2 x^2 + 3nx}{2n^2 x + 5} = \lim_{n \to \infty} \frac{x^2 + 2x/n}{3x + 5/n^2} = \frac{x^2}{3x} = \frac{x}{3}$$

If x = 0,

$$\lim_{n \to \infty} f_n(0) = \lim_{n \to \infty} \frac{0}{0+5} = 0$$

which matches $\frac{x}{3}$.

Thus the sequence converges to $\frac{x}{3}$.

(b)
$$f_n(x) = \frac{\sin nx}{nx}$$
, (0∞)

Solution:

By the squeeze theorem.

Since
$$-1 < \sin nx < 1$$
 and $n, x > 0$ we have $-\frac{1}{nx} < \frac{\sin nx}{nx} < \frac{1}{nx}$.

Since both $\lim_{n\to\infty} -\frac{1}{nx}$ and $\lim_{n\to\infty} \frac{1}{nxx}$ are both 0, by the squeeze theorem

$$\lim_{n \to \infty} \frac{\sin nx}{nx} = 0.$$

(c)
$$f_n(x) = \frac{n \sin(x/n)}{x}$$
, $(0, \infty)$

Solution:

Using the limit rule $\lim_{h\to 0} \frac{\sin h}{h} = 1$,

$$\lim_{n \to \infty} \frac{n \sin(x/n)}{x} = \lim_{n \to \infty} \frac{\sin(x/n)}{x/n} = 1$$

since for any x > 0, $x/n \to 0$ as $n \to \infty$.

(d)
$$f_n(x) = (\ln(x^{n+1}))^{1/n}, (1, \infty)$$

Solution:

There are two way of thinking of this question. Either way uses L'Hopital's Rule.

Solution 1:

For x > 1, $(\ln x^{n+1})^{1/n}$ is an ∞^0 form.

Letting t be a continuous variable

$$L = \lim_{n \to \infty} (\ln x^{n+1})^{1/n} = \lim_{n \to \infty} (\ln x^{t+1})^{1/t}$$

$$\begin{split} \ln L &= \lim_{t \to \infty} \ln(\ln x^{t+1})^{1/t} \\ &= \lim_{t \to \infty} \frac{\ln \ln x^{t+1}}{t} \text{ which is an } \frac{\infty}{\infty} \text{ form} \\ &= \lim_{t \to \infty} \frac{\frac{1}{\ln x^{t+1}} \cdot \frac{x^{t+1} \ln x}{x^{t+1}}}{1} \\ &= \lim_{t \to \infty} \frac{\ln x}{\ln x^{t+1}} \\ &= 0 \end{split}$$

Thus $L = e^0 = 1$.

Solution 2:

The function can be rearranged to be

$$\left(\ln(x^{n+1})\right)^{1/n} = \left((n+1)\ln x\right)^{1/n} = (n+1)^{1/n}(\ln x)^{1/n}.$$

For any x, $(\ln x)^{1/x} \to 1$ as $n \to \infty$.

For $(n+1)^{1/n}$ we have an ∞^0 form. Letting t be a continuous variable

$$M = \lim_{n \to \infty} (n+1)^{1/n} = \lim_{t \to \infty} (t+1)^{1/t}$$

$$\ln M = \lim_{t \to \infty} \ln(t+1)^{1/t}$$

$$= \lim_{t \to \infty} \frac{\ln(t+1)}{t} \text{ which is an } \frac{\infty}{\infty} \text{ form}$$

$$= \lim_{t \to \infty} \frac{\frac{1}{t+1}}{1}$$

$$= 0$$

Thus
$$M = e^0 = 1$$
 and thus $(n+1)^{1/n} (\ln x)^{1/n} \to (1)(1) = 1$ as $n \to \infty$.