

Complexidade de Algoritmos

Prof. Diego Buchinger diego.buchinger@outlook.com diego.buchinger@udesc.br

Prof. Cristiano Damiani Vasconcellos cristiano.vasconcellos@udesc.br

Análise de Algoritmos

Analisar um algoritmo significa prever os recursos que algoritmo necessita. Por exemplo, memória, largura de banda e mais frequentemente o tempo de computação.

Para analisar um algoritmo é necessário definir um modelo de computação. O modelo de computação do computador tradicional é o RAM (*Random Access Machine*) onde as instruções são executadas em sequência, sem concorrência, e os dados são armazenados em células de memória com acesso aleatório.

Análise de Algoritmos

- Fazer uma média do tempo de execução?
- Contar o número de todas as instruções que são executadas:

Por exemplo: m load, n store, o add, p sub, q div, r mul, s call, t ret, u cmp, v jump, etc.

O tempo de execução depende do processador, compilador, velocidade de acesso à memória, tamanho de memória (cache e ram) etc.


```
int pesquisa(Estrutura *v, int n, int chave){
    int i;
    for (i = 0; i < n; i++)
        if (v[i].chave == chave)
            return i;
    return -1;
}</pre>
```


Comparação de desempenho na resolução de sistemas lineares considerando tempos de operações de um computador real:

n	Método de Cramer	Método de Gauss	
2	22 µs	50 µs	
3	100 µs	159 µs	
4	463 µs	353 µs	
5	2,15 ms	666 µs	
10	4,62 s	4,95 ms	
20	247 dias	38,63 ms	
40	1,45 * 10 ¹³ anos	0,315 s	

• Ok, mas e o avanço tecnológico, produzindo máquinas cada vez mais rápidas não faz o estudo de complexidade perder importância?

100x mais rápido

Computador 2016

Computador quântico

Computador 19xx

• Análise de impacto do aumento de velocidade dos computadores para o Método de Cramer:

n	Computador 19xx	Computador 2016
3	100 µs	1 µs
5	2,15 ms	21,5 µs
7	46,274 ms	463 µs
10	4,62 s	46,2 ms
12	1,66 min	1 s
15	2,76 horas	1,656 min
20	247 dias	2,47 dias
40	1,45 * 10 ¹³ anos	1,45 * 10 ¹¹ anos

Análise de Algoritmos

A área de Complexidade de Algoritmos tenta prever os recursos de que o algoritmo necessitará

A complexidade vem ganhando destaque a ponto de que alguns autores dizem que este tema é o coração da Computação [Toscani e Veloso, 2001].

- Complexidade na fase de projeto do algoritmo
- Intratabilidade de problemas:
 - Problemas NP-Completos e NP-Difícil
 - Soluções alternativas (aproximações),
 ou uso de programação dinâmica.

Programa e Plano de Ensino

- Plano de Ensino
 - Objetivos e ementa
 - Conteúdo programático
 - Avaliação
 - Bibliografia
- Plano de Aulas

Disponível na página!

Atividade 1

- Elabore o melhor algoritmo para receber uma sequencia de 'n' números inteiros. Depois o algoritmo deve receber um número 'm' e deve trazer como saída o número de vezes que o valor 'm' apareceu nesta sequência.
- Considere n < 1.000.000
- NOTA: existe alguma consideração diferente caso 'm' seja um inteiro entre 0 e 10.000, ou um inteiro entre 0 e 1.000.000.000.000?
- OBS: e se o valor de 'm' fosse informado antes da sequência de 'n' números?

Use arquivos de entrada Atividade-1-entrada.zip

Conceitos Básicos de Complexidade

Medidas de Complexidade

• Como calcular a quantidade de trabalho requerido por um algoritmo, ou seja, sua complexidade?

Medidas de Complexidade

- Como calcular a quantidade de trabalho requerido por um algoritmo, ou seja, sua complexidade?
 - Depende do tamanho da entrada;
 - Depende dos valores da entrada;

Ex: ordenação de uma lista de 'n' elementos:

lista com elementos já ordenados

VS

lista com elementos totalmente desordenados

Medidas de Complexidade

CONSIDERAÇÃO I: trabalhar com valores grandes para 'n' (entrada). Assim, ordens de crescimento são destacadas.

Funções de Complexidade

Considere que cada operação leva 1ns em média em um determinado processador. Determine o tempo das funções abaixo para os seguintes valores de operações:

f(n)/n	n=10	n=100	n=1.000	n=10.000	n=100.000	n=1.000.000
$log_2 n$						
n						
3n						
$n \log_2 n$						
n^2						
2^n						
n!						