$\begin{tabular}{ll} Econometrics \ II \\ The \ Autodistributed \ Lag \ (ADL) \ Model \\ \end{tabular}$

Morten Nyboe Tabor

• Autoregressive Distributed Lag (ADL) Models

Oynamic Multipliers and Long-Run Solution

• Autoregressive Distributed Lag (ADL) Models

2 Dynamic Multipliers and Long-Run Solution

Autoregressive Distributed Lag (ADL) Models

We want to model the interrelationships between variables.
 We are interested in the conditional mean, and assume linearity, e.g.,

$$E(y_t \mid y_1, \dots, y_{t-1}, x_1, \dots, x_{t-1}, x_t) = \delta + \theta y_{t-1} + \phi_0 x_t + \phi_1 x_{t-1}.$$

This can also be written as linear regression

$$y_t = \delta + \theta y_{t-1} + \phi_0 x_t + \phi_1 x_{t-1} + \epsilon_t$$
, with $E(\epsilon_t \mid y_{t-1}, x_t, x_{t-1}) = 0$, (*) which is called the autoregressive distributed lag (ADL) model.

- y_t is stationary if x_t is and if the autoregressive polynomial is invertible, $|\theta| < 1$. Standard results for estimation and inference apply. $E(\epsilon_t \mid x_t) = 0$ excludes contemporaneous feedback from y_t to x_t .
- We are interested in the dynamic inter-relations:

$$\frac{\partial y_t}{\partial x_t}$$
, $\frac{\partial y_{t+1}}{\partial x_t}$, $\frac{\partial y_{t+2}}{\partial x_t}$, ...

Autoregressive Distributed Lag (ADL) Models

Oynamic Multipliers and Long-Run Solution

Dynamic Multipliers

• From the equations

we can find the dynamic multipliers as the derivatives:

Due to stationarity, $|\theta| < 1$, shocks have transitory effects:

$$rac{\partial y_{t+k}}{\partial x_t} o 0$$
 as $k o \infty$.

Examples of Dynamic Multipliers

Long-Run Solution and Long-Run Multiplier

Now we define the steady state as y_t = y_{t-1}, x_t = x_{t-1}, and ε_t = 0. We obtain

$$y_t = \delta + \theta y_t + \phi_0 x_t + \phi_1 x_t$$

$$y_t = \frac{\delta}{1 - \theta} + \frac{\phi_0 + \phi_1}{1 - \theta} x_t,$$

which is known as the long-run solution.

• Now consider a permanent shift in x_t so that $E(x_t)$ changes. The effect in $E(y_t)$ is

$$\frac{\partial E(y_t)}{\partial E(x_t)} = \frac{\phi_0 + \phi_1}{1 - \theta} = \frac{\phi(1)}{\theta(1)},$$

known as the long-run multiplier.

Note that this is also the accumulated short-run effects:

$$\frac{\partial y_t}{\partial x_t} + \frac{\partial y_{t+1}}{\partial x_t} + \frac{\partial y_{t+2}}{\partial x_t} + \dots = \phi_0 + (\theta \phi_0 + \phi_1) + \theta (\theta \phi_0 + \phi_1) + \theta^2 (\theta \phi_0 + \phi_1) + \dots$$

$$= \phi_0 (1 + \theta + \theta^2 + \dots) + \phi_1 (1 + \theta + \theta^2 + \dots)$$

$$= \frac{\phi_0 + \phi_1}{1 + \theta^2}.$$

General Case

• Consider the general case ADL(p,q):

$$\theta(L)y_t = \delta + \phi(L)x_t + \epsilon_t,$$

where

$$\theta(L) = 1 - \theta_1 L - \theta_2 L^2 - \dots - \theta_p L^p$$

$$\phi(L) = \phi_0 + \phi_1 L + \phi_2 L^2 + \dots + \phi_q L^q.$$

The solution is given by

$$y_t = \theta^{-1}(L)\delta + \theta^{-1}(L)\phi(L)x_t,$$

with long-run solution

$$y_t = \frac{\delta}{\theta(1)} + \frac{\phi(1)}{\theta(1)} x_t.$$

The long-run multiplier is

$$\frac{\phi(1)}{\theta(1)} = \frac{\phi_0 + \phi_1 + \phi_2 + \ldots + \phi_q}{1 - \theta_1 - \theta_2 - \ldots - \theta_n}.$$

Examples of Long-Run Multipliers

Empirical Example: Consumption and Income

Empirical Example: Consumption and Income

We consider growth in consumption and income, $c_t = \Delta \log(\text{CONS}_t)$ and $y_t = \Delta \log(\text{INC}_t)$, for Denmark. An ADL(1,1) model yields the following:

Modelling c by OLS: 1971(3) - 2010(4)

	Coefficient	Std.Error	t-value	t-prob
c_1	-0.225873	0.07793	-2.90	0.0043
Constant	0.00300594	0.001429	2.10	0.0370
у	0.224342	0.05854	3.83	0.0002
y_1	0.171446	0.05969	2.87	0.0047
sigma	0.0167947	RSS	0.0434375234	
R^2	0.123735	F(3,154) =	7.249	[0.000]**
Adj.R^2	0.106665	log-likelih	ood	423.531
no. of observations 158		no. of parameters		4
mean(c)	0.00415263	se(c)		0.0177691

Recall the main assumptions we have made...

Apart from outliers, the model is reasonably well specified:

```
AR 1-5 test: F(5,149) = 1.3762 [0.2364]

ARCH 1-4 test: F(4,150) = 0.66247 [0.6190]

Normality test: Chi^2(2) = 20.706 [0.0000]**

Hetero test: F(6,151) = 4.6249 [0.0002]**

RESET23 test: F(2,152) = 5.0161 [0.0078]**
```

The long-run solution is derived in PcGive:

Solved static long-run equation for c

	Coefficient	Std.Error	t-value	t-prob
Constant	0.00245208	0.001156	2.12	0.0355
У	0.322863	0.07508	4.30	0.0000

where, e.g.,

$$\beta = \frac{\phi_0 + \phi_1}{1 - \theta} = \frac{0.224342 + 0.171446}{1 + 0.225873} = 0.32286.$$

The standard errors are functions of the covariance matrix (δ -method).

• Autoregressive Distributed Lag (ADL) Models

Oynamic Multipliers and Long-Run Solution

The Error Correction Model

 An alternative formulation which incorporates the long-run solution is the ECM:

$$y_{t} = \delta + \theta y_{t-1} + \phi_{0} x_{t} + \phi_{1} x_{t-1} + \epsilon_{t}$$

$$y_{t} - y_{t-1} = \delta + (\theta - 1) y_{t-1} + \phi_{0} x_{t} + \phi_{1} x_{t-1} + \epsilon_{t}$$

$$y_{t} - y_{t-1} = \delta + (\theta - 1) y_{t-1} + \phi_{0} (x_{t} - x_{t-1}) + (\phi_{0} + \phi_{1}) x_{t-1} + \epsilon_{t}$$

$$\Delta y_{t} = \delta + (\theta - 1) y_{t-1} + \phi_{0} \Delta x_{t} + (\phi_{0} + \phi_{1}) x_{t-1} + \epsilon_{t}, \qquad (*)$$

or alternatively

$$\Delta y_{t} = \phi_{0} \Delta x_{t} \underbrace{-(1-\theta)}_{\gamma_{1}} \left(y_{t-1} - \underbrace{\frac{\delta}{1-\theta}}_{\alpha} - \underbrace{\frac{\phi_{0} + \phi_{1}}{1-\theta}}_{\beta} x_{t-1} \right) + \epsilon_{t}. \quad (**)$$

• So Δy_t reacts on deviations from the long-run solution

$$y_t - y_t^* = y_t - \alpha - \beta x_t.$$

It error-corrects or equilibrium-corrects. $y_t^* = \alpha + \beta x_t$ is the attractor.

Empirical Example: ECM for Consumption

We can estimate (*) directly. Defining Δc_t and Δy_t we get:

	Coefficient	Std.Error	t-value	t-prob
Constant	0.00300594	0.001429	2.10	0.0370
dy	0.224342	0.05854	3.83	0.0002
c_1	-1.22587	0.07793	-15.70	0.0000
y_1	0.395788	0.09540	4.15	0.0001

which is the model

$$\widehat{\Delta c_t} = 0.224 \cdot \Delta y_t - 1.226 \cdot c_{t-1} + 0.396 \cdot y_{t-1} + 0.003 \tag{*}$$

$$=0.224 \cdot \Delta y_{t}-1.226 \cdot \left(c_{t-1}-\underbrace{\frac{0.396}{1.226}}_{=0.323} \cdot y_{t-1}-\underbrace{\frac{0.003}{1.226}}_{=0.0025}\right). \quad (**)$$

We could also estimate (**), but that is a non-linear regression.