Contents

1	Линейное пространство и подпространство		1
	1.1 линейное пространство	 	1
	1.2 линейное подпространство	 	2
2	линейная зависимость. базис. размерность		3

1 Линейное пространство и подпространство

 ${\bf k}$ — основное поле элементы поле ${\bf k}$ - скаляры.

1.1 линейное пространство

Определение 1.1 Линейное (векторное) пространство над полем k. Множество c двумя операциями "+" u "*".

$$+: V \times V \to V(u, v) \to u + v$$

 $*: V \times V \to V(u, v) \to u * v$

аксиомы, которые должны выполняться:

- 1. $\forall u, v \in V (u + v = v + u)$
- 2. $\forall u, v, w \in V ((u+v) + w = u + (v+w))$
- 3. $\exists 0 \in V \, \forall v \in V \, (v+0=v)$
- 4. $\forall v \in V \exists (-v) \in V (v + (-v) = 0)$
- 5. $\forall \lambda \in k \, \forall u, v \in V \, (\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v)$
- 6. $\forall \lambda, \mu \in k \, \forall v \in V \, ((\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v)$
- 7. $\forall \lambda, \mu \in k \, \forall v \in V \, (\lambda \cdot (\mu \cdot v) = (\lambda \mu) \cdot v)$
- 8. $\forall v \in V (1 \cdot v = v)$

Утверждение 1.2 $\forall v, \lambda \in V (0 * v = 0 * = 0)$

Утверждение 1.3 $\forall v \in V ((-1) \cdot v = -v)$

Утверждение 1.4
$$\forall \lambda \in k \, \forall v \in V \, ((\lambda \cdot v = \mathbf{0}) \implies (\lambda = 0 \lor v = \mathbf{0}))$$

∖ доказывать не буду

- 1. Множество {0}, состоящее из одного элемента 0, является линейным пространством над любым
- 2. Множества векторов на прямой, на плоскости, в пространстве, являются линейными пространствами над полем \mathbb{R} .
- 3. Поле к является векторным пространством над самим собой.
- 4. $\mathbb C$ векторное пространство над $\mathbb R$, а $\mathbb R$ на $\mathbb Q$ $k_1\subset k_2$ подполе, то k_2 векторное пространство над k_1

- 5. n-мерное координатное(или арифметическое) пространство над k. $n=1 \implies k^n = k \ 1.6$
- 6. $k^{\mathbb{X}} = \{f : \mathbb{X} \to k\} \mathbb{X}$ множество, k поле. $(f+g)(x) = f(x) + g(x) \ (\lambda * f)(x) = \lambda f(x) \mathbb{X} = \{1, 2..., n\}$ $k^{\mathbb{X}} = k^n$
- 7. $C(\mathbb{R}) \subset \mathbb{R}^{\mathbb{R}}$ где C непрерывная функция.
- 8. Множество решений однородной системы линейных уравнений
- 9. \mathbb{R}^{∞} 1.5, пространство \mathbb{R}^{∞} 1.7
- 10. Множество k[x] многочленов от одной переменной с коэффициентами в k являются линейными пространством. И множество $k_n[x]$ степени не выше чем n.
- 11. Множество всех матриц размера $m \times n$ с элементами из k образует линейное пространство $\mathrm{Mat}_k(m,n)$ относительно операций сложения матриц и поэлементарного умножения матриц на числа. При m=1 мы получаем пространство строк k^n

Определение 1.5 финитная последовательность. (с конечным куском и после бесконечными нулями)

 \mathbb{R}^∞ - бесконечная последовательность $(x_1,x_2,...x_n)$ $x_i=0$ при i>N для некотого N $\mathbb{R}^\infty\equiv\bigcup_{n\geq 0}\mathbb{R}^n$

Определение 1.6 n-мерное координатное (или арифметическое) пространство над k. $k^n := \{(x_1, ..., x_n) : x_i \in K\}$ — множество последовательностей (строк) фиксированной длина n из элементов поля k.

 κ примеру \mathbb{R}^n и \mathbb{C}^n

Определение 1.7 $\overset{\wedge}{\mathbb{R}}^{\infty}$ - множество всех последовательностей.

1.2 линейное подпространство

Определение 1.8 Множесство $W \subset V$ линейного пространства V называется подпространством, если для любых векторов $u, v \in W$ и скаляра $\lambda \in k$ оно само является пространством. соответственно выполняются эти аксиомы:

- 1. $u + v \in W$
- 2. $\lambda u \in W$

Вот некоторые примеры подпространств.

- 1. {0} является подпространством в любом пространстве V.
- 2. Множество векторов, коллинеарных заданному вектору, является подпространством в пространстве всех векторов на плоскости или в пространстве.
- 3. Пространство $C(\mathbb{R})$ непрерывных функций является подпространством в пространстве $\mathbb{R}^{\mathbb{R}}$ всех функций на \mathbb{R} .
- 4. Пространство \mathbb{R}^{∞} финитных последовательностей является подпространством в пространстве \mathbb{R}^{∞} всех последовательностей.
- 5. $k_n[x]$ является подпространством $k_m[x]$ при $m \ge n$, а также в k[x].

2 линейная зависимость, базис, размерность

Пусть V — линейное пространство над полем k.

Определение 2.1 Линейной комбинацией конечной системы векторов $v_1..., v_k$ пространства называется формальная сумма вида сумма вида $\lambda_1 v_1 + ... + \lambda_k v_k$ где $\lambda_i \in k$.

Представляет вектор $v = \lambda_1 v_1 + ... + \lambda_k v_k$

 \mathbb{R}^3

$$z(1,0,0)+(-z)(0,1,0)+z(-1,1,0)\\0(1,0,0)+0(0,1,0)+0(-1,1,0)\\ \Pi редставляет вектор \vec{0}=(0,0,0)$$

Определение 2.2 Линейная комбинация бесконечной системы векторов. $\{v_i: i \in \mathbb{I}\}$ - сумма вида $\sum_{i \in I} \lambda_i v_i$ с конечным числом скаляров λ_i отличных от нуля. Линейная комбинация — это функция $\mathbb{I} \to K$ $i \to \lambda_i$

C конечным носителем(принимает ненулевые значения только на конечном подмножестве индекса)

Определение 2.3 Система векторов $\{v_i: i\in \mathbb{I}\}$ линейно зависимая, если есть λ_i где

$$(\lambda_i \neq 0) \land (\sum_{i \in I} \lambda_i v_i = \vec{0})$$

и линейно независимая в обратном.

Определение 2.4 Линейная оболочка $\{v_i:i\in I\}$ — подмножество векторов $\mathbb V$ представляемых линейными комбинациями $\sum\limits_{i\in \mathbb I} \lambda_i v_I$.

Обозначается $\langle v_i : i \in \mathbb{I} \rangle$ или $\langle v_1,...,v_k \rangle$ (для конечных систем)

Утверждение 2.5 Линейная оболочка $\langle v_i : i \in \mathbb{I} \rangle$ является подпостранством в V, притом, это наименьшее линейное подпространство включающее все векторы системы.

- Сумма векторов и умножение вектора системы на скаляр это линейные комбинации, принадлежащие линейной оболочке, соответственно $\langle v_i : i \in I \rangle$ подпространство.
- Допустим, существует некое подпространство включающее векторы из $\{v_i : i \in I\}$, выходит оно содержит все их линейные комбинации и $\langle v_i : i \in I \rangle \rangle$.