SUR

VUT-FIT SUR projekt

xgalba03, xpomyk04

Klasifikátor obličeje

Pro vytvoření modelu klasifikátoru obličeje jsme se rozhodli využít konvoluční neuronovu síť, která má následující strukturu.

- 1. konvoluční vrstava 16 filtrů (3x3)
- 2. max pooling (2x2) a dropout (0.3)
- 3. konvoluční vrstava 32 filtrů (3x3)
- 4. max pooling (2x2) a dropout (0.2)
- 5. plně propojená vrstva (Relu) 256 neuronů
- 6. plně propojená vrstva (Relu) 64 neuronů
- 7. plně propojená vrstva (softmax) 2 neurony

Model: "sequential_1"		
Layer (type)	Output Shape	 Param #
conv2d (Conv2D)	(None, 78, 78, 16)	
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 39, 39, 16)	0
dropout (Dropout)	(None, 39, 39, 16)	0
conv2d_1 (Conv2D)	(None, 37, 37, 32)	4640
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 18, 18, 32)	0
dropout_1 (Dropout)	(None, 18, 18, 32)	0
flatten (Flatten)	(None, 10368)	0
dense (Dense)	(None, 256)	2654464
dense_1 (Dense)	(None, 64)	16448
dense_2 (Dense)	(None, 2)	130
Total params: 2,676,130 Trainable params: 2,676,130		

Tento model je implementován a natrénován pomocí rozhraní keras, který pracuje nad frameworkem tensorflow (framework pro práci s n. sítěmi). Implementace modelu je ve zdrojovém souboru img_class_nn.py

Předzpracování trénovacích dat

Data která dostupná pro trénování se skládají z:

- 1. 160 obrázků pro trénování (20 non-target a 140 non-target)
- 2. 30 obrázků pro validaci (20 non-target a 10 target)

Tyto data jsou postupně načteny pomocí knihovny cv2, převedeny a převedeny do RGB formátu. Při načítání datasetu je z každého obrázku syntetizováno pomocí transformací několik dalších (knihovna albumentations). Tímto dojde k rozšíření datasetu. až na 13140 trénovacích dat a 2670 validačních dat. Obrázky jsou uloženy jako pole (80x80x3) matic s hodnotami normalizovanými do rozsahu (0-1) pro rychlejší zpracování neuronovou sítí.

Trénování

Neuronová síť je trénována pomocí batchů o velikosti 20 na 11 epoch. Dosažené kvality neuronové sítě na validačních datech je možno vidět na následujícím obrázku.

```
Epoch 2/11
  Epoch 4/11
  ============================ ] - 55s 84ms/step - loss: 0.0283 - accuracy: 0.9938 - val_loss: 0.5359 - val_accuracy: 0.9109
Epoch 6/11
Epoch 8/11
Epoch 10/11
  657/657 [===
Epoch 11/11
Training dataset size: 13140
```

Klasifikace

Při testování na jednotlivých obrázích jsem zjistil že klasifikátor funguje celkem pěkně, ale někdy se "sekne" a označí jako target osobu non-target data s velkou pravděpodobností (>0.9). Bohužel se mi toto nepodařilo nijak vyřešit. Hard decision práh pro klasifikaci jsem experimentélně určil na 0.9 (pro target) tak že > 0.9 -> hard decision = 1

Klasifikátor reči

Klasifikátor rečových dát vo formáte .wav bol implementovaný pomocou Gaussian Mixture Modelu (GMM) vyuýívajúceho EM algoritmus na jednotlivé ktorý výpočtu

Štruktúra zdrojového kódu: -načítanie vstpuných dát na trénovanie a klasifikáciu -vytvorenie MFCC koeficientov z dát a ich transponovanie a uloženie do dátovej štruktúry -určenie vstupných koeficientov GMM modelu (prebieha náhodne) -iterácia EM algoritmu pokiaľ dáta neskonvergujú -využitie natrénovaných koeficientov na odhadnutie/určenie klasifikácie testovacích dát -uloženie výsledkov do súboru .txt

Klasifikace

Pri prehodnotení hodnôt vyplívajúcih z GMM boli hodnoty prevedené do intervalu 0-100. Kvôli veľkému rozsahu pôvodných hodnôt bol testovaním učený prah pozitívnej klasifikácie na hodnotu 0.98. (hard decision)

Použití

Řešení produkuje celkem 3 result soubory, jeden pouze ze zpracování png, druhý ze zpracování wav a třetí z kombinace zpracování png a wav souboru.

1. image_CNN.txt - soubor s výsledky ze zpracování png souborů (spuštění skriptu img_class_nn.py). Skript očekává složku s trénovacímí daty ve stejném adresáři. Pro spuštění skriptu je třeba nejprve doinstalovat všechny moduly, které potřebuje pomocí 'pip -install'

- 2. audio_GMM.txt súbor s výsledkami hodnotenia audio nahrávok, vytvára sa pomocou spustenia skriptu audio_GMM.py a očakáva zložku testovacích dát s názvom 'eval' v rovnakom adresári ako zdrojový kód. Trénovacie dáta sa nachádzajú v zložke train_data/
- 3. results.txt súbor obsahujúci výsledky z kombinovanej klasifikácie audio + obrázok. Pre vyhodnotenie úspešnej klasifikácie musí násobok pravdepodobností dielčich skriptov dosahovať hodnotu 89% 0.89