Universidad Nacional Autónoma de México

Facultad de Ciencias

Lógica Computacional — 2025-2

Tarea 03

Docentes:

Noé Hernández Santiago Escamilla Ricardo López

Autores:

Fernanda Ramírez Juárez Ianluck Rojo Peña

Fecha de entrega: Martes 18 de marzo de 2025

Notas sobre la resolución.

Nota general:

Resolución de Ejercicios.

- 1. (1.5 pts.) Realice la especificación formal funcional acerca del tipo abstracto de datos pila, donde todos sus elementos son del tipo A. Utilice el predicado P(x): x es una pila de elementos de A, la constante para pila vacía empty, y las funciones push, pop y top, con su significado usual para pilas.
 - a) Definición del tipo de datos pila:
 - I. empty es una pila vacía de elementos de A.
 - II. El resultado de agregar un elemento de A en el tope de la pila es una pila de elementos de A.
 - III. Son todos.
 - b) Si una pila no es vacía, entonces el elemento en el tope es un elemento de A.
 - c) Si una pila no es vacía, entonces la pila que resulta de eliminar el elemento en el tope es una pila de elementos de A.
- 2. (2 pts.) ¿Qué se sigue lógicamente de lo siguiente? Todos los monquitos son pachones. Pac es un monquito. Todos los chicubus son monquitos. Algunos monquitos son chicubus. Pac no es chicubus.

a) Pac no es pachon.b) Todos los monquitos son chicubus.c) Existen chicubus que no son monquitos.	d) Todos los chicubus son pachones.e) Existen chicubus que no son pachones.
Fraduzca el argumento, con la conclusión que de predicados, y halle una prueba de dicho soredicados $M(x): x$ es monquito, $P(x): x$ es para denotar a Pac	secuente usando deducción natural. Use los

- 3. (2 pts.) Mediante deducción natural muestre la validez de:
 - a) $\exists x \exists y (S(x,y) \lor S(y,x)) \vdash \exists x \exists y S(x,y)$,
 - b) $\forall x (P(x) \lor Q(x)), \exists x \neg Q(x), \forall x (R(x) \to \neg P(x)) \vdash \exists x \neg R(x).$
- 4. (1 pt.) Una fórmula atómica cerrada es una fórmula atómica $P(a_1, \ldots, a_n)$ cuyos argumentos son constantes. Considere un lenguaje con n objetos constantes y una sola relación binaria $R^{(2)}$.
 - I) ¿Cuántas fórmulas atómicas cerradas hay en este lenguaje? d) 2^{n^2} b) n^2 e) 2^{2^n} a) n
 - II) ¿Cuántas asignaciones de verdad son posibles en este lenguaje, i.e., cuántas posibilidades hav de definir $R^{\mathcal{M}}$? d) 2^{n^2} e) 2^{2^n} a) n c) 2^n
- 5. (1.5 pts.) Sea φ el enunciado $\forall x \forall y \exists z (R(x,y) \to R(y,z))$, con $R^{(2)}$.
 - a) Sea $A \stackrel{\text{def}}{=} \{a, b, c, d\}$ y $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(b, c), (b, b), (b, a)\}$. ¿Es cierto que $\mathcal{M} \models \varphi$? Justifique su
 - b) Sea $A' \stackrel{\text{def}}{=} \{a, b, c\}$ y $R^{\mathcal{M}'} \stackrel{\text{def}}{=} \{(b, c), (a, b), (c, a)\}$. ¿Es cierto que $\mathcal{M}' \models \varphi$? Justifique su
- 6. (2 pts.) Determine si el siguiente conjunto es satisfacible:

$$\Gamma = \{P(b), Q(b), R(b), \exists x (P(x) \land \neg (Q(x) \lor R(x))), \forall x (R(x) \to P(x))\}$$