Autonomous and Mobile Robotics

Prof. Giuseppe Oriolo

Wheeled Mobile Robots 5 Motion Control of WMRs: Regulation

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

regulation

- ullet drive the unicycle to a desired configuration $oldsymbol{q}_d$
- the obvious approach (choose a path/trajectory that stops in q_d , then track it via feedback) does not work:
 - linear/nonlinear controllers based on the error dynamics require persistent trajectories
 - i/o linearization leads point \boldsymbol{B} to the destination rather than the representative point of the unicycle
- being nonholonomic, WMRs (unlike manipulators) do not admit universal controllers, i.e., controllers that can stabilize arbitrary trajectories, persistent or not

Cartesian regulation

- drive the unicycle to a given Cartesian position (w.l.o.g., the origin $(0\ 0)^T$), regardless of orientation
- geometry:

Cartesian regulation

consider the feedback control law

$$v = -k_1(x\cos\theta + y\sin\theta)$$

$$\omega = k_2(\operatorname{Atan2}(y, x) - \theta + \pi)$$

- geometrical interpretation:
 - $m{v}$ is proportional to the orthogonal projection of the Cartesian error $m{e}_p$ on the sagittal axis
 - ω is proportional to the pointing error (i.e., the difference between the orientation of e_p and that of the unicycle)

Lyapunov-like function

$$V=rac{1}{2}(x^2+y^2)$$
 positive semidefinite $\dot{V}=-k_1(x\cos\theta+y\sin\theta)^2$ negative semidefinite

• cannot use LaSalle theorem, but Barbalat lemma implies that \dot{V} tends to zero, i.e.

$$\lim_{t \to \infty} (x \cos \theta + y \sin \theta) = 0$$

 under the proposed controller, this implies that the Cartesian error goes to zero

simulation

- final orientation is not controlled
- at most one backup maneuver

posture regulation

- drive the unicycle to a given configuration (w.l.o.g., the origin $(0\ 0\ 0)^T$)
- convert to polar coordinates

kinematic model in polar coordinates

$$\dot{\rho} = -v\cos\gamma$$

$$\dot{\gamma} = \frac{\sin\gamma}{\rho}v - \omega$$

$$\dot{\delta} = \frac{\sin\gamma}{\rho}v$$

note the singularity at the origin

consider the control law (compare with previous)

$$v=k_1 \rho \cos \gamma$$
 new term $\omega=k_2 \gamma+k_1 \frac{\sin \gamma \cos \gamma}{\gamma} \left(\gamma+k_3 \delta\right)$

Lyapunov candidate

$$V=rac{1}{2}\left(
ho^2+\gamma^2+k_3\,\delta^2
ight)$$
 positive definite $\dot{V}=-k_1\cos^2\!\gamma\,
ho^2-k_2\,\gamma^2$ negative semidefinite

- Barbalat lemma implies that ho,γ and δ go to zero
- the above control law, once mapped back to the original coordinates, is discontinuous at the origin
- it can be shown that, due to the nonholonomy, all posture stabilizers must be discontinuous w.r.t. the state or time-varying (Brockett theorem)

simulation

- final orientation is zeroed as well
- at most one backup maneuver