# STATISTICAL PATTERN RECOGNITION ASSIGNMENT 3

#### Ali Gholami

Department of Computer Engineering & Information Technology Amirkabir University of Technology

> https://aligholamee.github.io aligholami7596@gmail.com

#### Abstract

In this paper, we'll review the parametric techniques to estimate the unknown parameters of data distributions. We'll use, MLE and Bayesian estimation for parameter estimation. Also, we'll delve into the non-parametric techniques to estimate the unknown density of data distribution. We'll use Kernel Density Estimation methods such as Parzen Windows and other techniques such as Histogram and k-NN density estimation.

**Keywords.** Parameter Estimation, Density Estimation, Non-parametric Methods, Parametric Methods, Kernel Density Estimation, Maximum Likelihood Estimation, Bayesian Estimation, Histogram Density Estimation, K-NN Density Estimation.

## 1 Parameter Estimation 1

Let  $x_k$ , k = 1, 2, ..., N denote independent training samples from one of the following densities. Obtain the Maximum Likelihood estimate of  $\theta$  in each case.

(a) 
$$f(x_k; \theta) = \frac{x_k}{\theta^2} \exp(\frac{-x_k^2}{2\theta^2})$$
 where  $x_k \ge 0$  and  $\theta \ge 0$ 

(b) 
$$f(x_k; \theta) = \sqrt{\theta} x_k^{\sqrt{\theta}-1}$$
 where  $0 \le x_k \le 1$  and  $\theta \ge 0$ 

#### Solution

(a) Substituting the given density inside the *MLE* equation yields the following results.

$$\hat{\theta} = \arg \max_{\theta} \{P(D|\theta)\} = \arg \max_{\theta} \{\sum_{k=1}^{n} \ln P(x_k|\theta)\}$$

$$\hat{\theta} = \arg \max_{\theta} \{\sum_{k=1}^{n} \ln \frac{x_k}{\theta^2} \exp(\frac{-x_k^2}{2\theta^2})\}$$

$$\nabla_{\theta} l(\theta) = 0$$

$$(1.1)$$

where  $l(\theta)$  is  $\sum_{k=1}^{n} \ln \frac{x_k}{\theta^2} \exp(\frac{-x_k^2}{2\theta^2})$  in this case. Performing the gradient on the given equation yields the following results.

$$\sum_{k=1}^{n} \left( \frac{-2}{\theta} + \frac{x_k^2}{\theta^3} \right) = 0$$

The simplified estimate of unknown  $\theta$  is given below.

$$\hat{\theta} = \sqrt{\frac{\sum_{k=1}^{n} x_k^2}{2N}}$$

(b) Substituting the given density in the Maximum Likelihood method yields the following result.

$$\hat{\theta} = \arg\max_{\theta} \left\{ \sum_{k=1}^{n} \ln \sqrt{\theta} x_k^{\sqrt{\theta} - 1} \right\}$$
 (1.2)

we can obtain the estimate for the unknown  $\theta$ :

$$\nabla_{\theta} l(\theta) = 0$$

where  $l(\theta)$  is  $\sum_{k=1}^{n} \ln \sqrt{\theta} x_k^{\sqrt{\theta}-1}$  in this case. Performing the gradient on the given equation yields the following results.

$$\frac{n}{2\theta} + \frac{1}{2\sqrt{\theta} \sum_{k=1}^{n} \ln x_k} = 0$$

multiplying the whole equation by  $\theta$  results in the following equation:

$$\hat{\theta} = \frac{n^2}{(\sum_{k=1}^n \ln x_k)^2}$$

## 2 Parameter Estimation 2

Let x have a uniform density

$$f_x(x|\theta) \sim U(0,\theta) = \begin{cases} \frac{1}{\theta} & 0 \le x \le 0\\ 0 & otherwise \end{cases}$$

- (a) Suppose that n samples  $D=x_1,x_2,...,x_n$  are drawn independently according to  $f_x(x|\theta)$ . Show that the maximum likelihood estimate for  $\theta$  is max[D].
- (b) Suppose that n = 5 points are drawn from the distribution and the maximum value of which happens to be  $maxx_k = 0.6$ . Plot the likelihood  $f_x(D|\theta)$  in the range  $0 \le \theta \le 1$ . Explain in words why you do not need to know the values of the other four points.

### Solution

(a) Substituting the uniform density function in the Maximum Likelihood method yields the following results.

$$\hat{\theta} = \arg\max_{\theta} \left\{ \sum_{k=1}^{n} \ln \frac{1}{\theta} \right\} \tag{2.1}$$

This equation can be written as

$$\hat{\theta} = \arg\max_{\theta} \left\{ l(\theta) \right\}$$

where  $l(\theta) = \sum_{k=1}^{n} \ln \frac{1}{\theta}$ . Performing a gradient on  $l(\theta)$  would give us the Maximum Likelihood Estimate of  $\theta$ .

$$\sum_{k=1}^{n} \frac{-1}{\theta} = 0 \to \frac{n}{\theta} = 0$$

thus

$$\hat{\theta} \to \inf$$

Since  $\hat{\theta} \to \inf$  and  $\hat{\theta} \in \{x_1, x_2, ..., x_n\}$  we'll have:

$$\hat{\theta} = max[D]$$

(b) Since  $\hat{\theta} = \max[D]$  we can simply plot the diagram as following.



Figure 2.1: Maximum Likelihood Estimation of  $\theta$ .

The other four points wouldn't have maximized the likelihood  $P(D|\theta)$ .