Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

aHDI751 . A413 ap 3

IMPACT OF HAIL SUPPRESSION ON NEBRASKA CROP PRODUCTION: A SIMULATION STUDY

Larry M. Boone

Economic Research Service

U.S. Department of Agriculture

September 1977

X30

Additional copies available from—
National Technical Information Service
See inside front cover for details.

BIBLIOGRAPHIC DATA	1. Report No.	2.	3. Recipient's Accession No.
SHEET	AGERS-39		
4. Title and Subtitle			5. Report Date
.1	HAIL SUPPRESSION ON CROP PI	RODUCTION IN	A August 1977
MULTI-AREA PRODUCIN	IG REGION IN NEBRASKA		
7. Author(s)			8. Performing Organization Rept.
Larry M. Boone			No AGERS-39
9. Performing Organization			10. Project/Task/Work Unit No.
Natural Resource E			
1	Service, U.S. Department of	Agriculture	11, Contract/Grant No.
Washington, D.C. 2	.0250		AG 275
12. Sponsoring Organization	Name and Address		13. Type of Report & Period
National Science Fo			Covered
1800 G Street, N.W.			1971 Final
Washington, D.C. 2	:0550		14.
16.6			
15. Supplementary Notes On	e of several reports sponsor	ed by the W	eather Modification Program,
Research Applied to	National Needs, National So	cience Found	ation.
16. Abstracts A linear	programming analysis was us	nd to cimula	te effects of hail suppression
on Nebraska crop pr	oduction. Production costs	and crop na	te effects of half supplession tterns in ten major land
	s) were estimated for 10%, 2		
			bution patterns without hail
			total production costs in the
	creased less than ½%. Corn		
	.7% higher. With hail suppr		
			ld not have caused substantial
shifts of land use	from one crop to another wit	hin an LRA.	If hail suppression tech-
	used it could influence prod	luction of s	ome crops enough to change
price.			
17. Key Words and Document	Analysis. 17a. Descriptors		
Farm crops	Hail		
Corn	Linear programming		
Wheat	Computer		
Hay	Simulation		
Costs	Cost effectiveness		
Production	Suppression		
Benefit cost analys	is Area		
Prices			
Weather modificatio	n.		
17b. Identifiers/Open-Ended	Terms		
Nebraska			
Land resource areas			
Acreage shifts			
			PRICE
			Papercopy \$4.00
17e. COSATI Field Group	4-B, 2-B, 2-D		Microfiche \$3.00
18. Availability Statement		19. Sec	curity Class (This 21. No. of Pages
This publication av	ailable from NTIS-only	Re	port) 48
j .	Information Service, 5285 Po	200 000	curity Class (This 22. Price
Royal Road, Springf	ield, Virginia 22161	Pa	UNCLASSIFIED see above
FORM NTIS-38 (REV. 10-73)	ENDORSED BY ANSI AND UNESCO 11.	THIS FORM MAY	

CONTENTS

	Page
SUMMARY	iv
INTRODUCTION	1
OBJECTIVE	7
ASSUMPTIONS AND METHODS USED IN ANALYSES	2
THE NATURE OF THE IMPACT OF HAIL SUPPRESSION	3
ANALYTICAL REQUIREMENTS	7
Region and Area Definition	7
Analytical Model	8
Solutions and constraints	11
Data Format	11
PRODUCTION COST MODE	11
SOIL RESOURCE GROUP COMBINATIONS	15
HAIL SUPPRESSION FACTORS	15
Suppression Costs	15
Yield Effects	16
ESTIMATED IMPACTS OF HAIL SUPPRESSION	17
Total Production and Cost of Production	17
Distribution of Crops Within and Between LRA's	17
Conclusions	25
TOTAL PRODUCTION AND TOTAL FACTOR DEMAND	25
Conclusions	26
REFERENCES	28
APPENDIX TABLES	29

SUMMARY

A linear programming analysis was used to simulate the effects of different rates of hail suppression on crop production in Nebraska. Production costs and crop patterns in ten major land resource areas (LRAs) in Nebraska were estimated for 10-percent, 25-percent, and 50-percent levels of hail suppression effectiveness, and compared to costs and production distribution patterns without hail suppression. A mathematical model (solved by a classical linear programming technique with a cost-minimization objective) was employed in making the estimates. The study, limited to Nebraska, focused on analyzing shifts in location of crop production that might occur from changes in the comparative advantage of ten different LRAs.

The simulation results indicated that if a successful program of hail suppression had been conducted in Nebraska with hail suppression effectiveness of 50 percent, total corn production would have been 2 percent higher, and wheat production would have been 3.7 percent higher. Total production costs would have increased less than one-half of a percent in the State. Assuming these estimated changes in crop production and costs had occurred, there would have been only small shifts in the pattern of crop production among areas of the State.

With hail suppression, production shifts of the same crop between LRAs were generally minor, ranging from zero to about 20,000 acres. A loss of more than 1 percent of the total cropland in an LRA occurred in only two cases, and none of the LRAs had changes amounting to as much as 2 percent, regardless of the hail suppression level.

More crops were involved in acreage shifts at the higher suppression levels, but the range of acreage shifts was about the same at all levels of hail suppression effectiveness. In most cases, the acreage of a crop lost by an LRA represented a much lower percentage of the total acreage of that crop in the LRA than it did in the area that gained acreage. Most of the shifts represented a deconcentration of acreage of the particular crop.

Likewise, hail suppression would not have caused substantial shifts of land use from one crop to another within an LRA. Most of the changes within LRAs were due to shifting crop production to a different quality of land, rather than to intercrop competition.

Changes in total factor demand, as measured in dollar costs of production, varied considerably in magnitude from one LRA to another and from one hail suppression level to another. These changes resulted from acreage shifts due to hail suppression.

Total crop production would have increased at all hail suppression levels, except for two minor crops: irrigated alfalfa and irrigated sorghum for grain.

Simulating annual changes in production expense by area (average cost per acre) permitted some tentative indications of the changes in factor demand. Constant prices received by farmers were used, reflecting an assumption that the aggregate demand and price situation is not affected by hail suppression technology. However, if hail suppression technology were widely used it could influence production of some crops enough to change price.

	6	4
	4	

THE IMPACT OF HAIL SUPPRESSION ON CROPPING PATTERNS IN A MULTI-AREA PRODUCING REGION

Larry M. Boone 1/

INTRODUCTION

Technology intended to suppress hail is being applied both experimentally and commercially in the United States. While some evidence exists that the technology is effective in suppressing hail, it is not yet "proven" in the sense that either reliable predictions or satisfactory measurements of effect can be made. Continued funding of experiments and commercial projects indicates substantial interest in hail suppression. This interest warrants investigation of how the large scale introduction of effective hail suppression technology into our agriculture might affect crop production and those involved in farming, supplying factor inputs and financing.

New technologies generally affect crop production by changing yields and/or the costs of producing crops. Some innovations such as machinery improvements are of interest to nearly all farmers and are almost universally adopted. The impact of such technologies is in the aggregate quantity of crop produced, or the overall level of production costs in the industry, with little change in the competitive positions of farmers in different regions. Other forms of technology, such as hail suppression, are of greater interest to certain groups of farmers, (e.g., those in areas of high hail risk), and may change the competitive positions of producers adopting the practice relative to those who do not adopt. Aggregate production and cost levels may or may not be affected, depending upon the portion of the total crop produced in areas where the technology is beneficial.

The Economic Research Service, U.S. Department of Agriculture, in cooperation with the National Science Foundation is conducting research on various phases of hail suppression technology. This report deals with the economic impact of hail suppression on cropping patterns. It is one of a series of reports growing out of the larger study.

OBJECTIVE.

The basic objective of this phase of the research was to estimate (or simulate) the annual effects on total crop production and costs if different rates of hail suppression had been practiced in given years. It does not attempt to predict what individual farmers would do and is limited only to the State of Nebraska.

^{1/} Agricultural Economist, Natural Resource Economics Division, Economic Research Service, U.S. Department of Agriculture, on leave-of-absence with an AID assignment in Costa Rica.

Specific objectives were to:

- 1. Analyze shifts in the location of crop production that might occur from changes in the comparative advantage of different regions of Nebraska.
- 2. Estimate the potential impact on total production costs of varying annual hail suppression rates.

The focus of the analysis was on changes in aggregate land allocation, and costs of production, rather than on maximization of profits from production.

Distribution of cropland among individual producing units and how the units might be adjusted due to the changes were not part of the analysis.

ASSUMPTIONS AND METHODS USED IN ANALYSIS

Even with high prices for agricultural commodities, it seems unlikely that hail suppression will have a major impact on overall industry production and costs. In earlier work, [2]* the author estimated crop losses due to hail compared to the total value of crops produced in the United States. Assuming that those estimates were reasonably valid, eliminating one-half the annual hail damage to the nation's crops would save crops worth around \$200 million at 1968 commodity prices. Though it may appear substantial, such an increase is small compared to the impacts of other technological developments during recent decades. In addition, only the more optimistic persons involved in weather modification development research would currently predict a hail suppression technology capable of delivering a 50 percent reduction of crop damage in continued, large scale application.

The distribution of the impact of hail suppression among producing regions is difficult to assess. Hail risk differs markedly from one producing area to another suggesting that the impact of hail suppression on the competitive positions of producing areas within an agricultural region might be more significant than changes in aggregate production. The purpose of this phase of research was to develop some "first generation insights" into the shifts in cropping patterns which might occur among areas within an agricultural region from application of effective hail suppression technology.

In the economic assessment of an existing technology, certain physical effects of the technology can be observed. Impacts of these effects are then hypothesized and analyzed, subject to a set of economic assumptions intended to simulate the reality surrounding the intended use of the technology.

Assessment of the economic impact of a technology not yet developed, or at least not yet proven, is unusually sensitive. In the case of hail suppression, even the physical effects must be assumed. This serves to emphasize the importance of clarity with regard to the impacts which are hypothesized for analysis. Clarity, rather than sophistication, will be sought in the following consideration of impacts which should be analyzed.

A frequent criticism of technology assessment studies is that they overemphasize the estimation of "primary" or direct effects and ignore the

^{*}Underscored numbers in brackets refer to references cited at the end of the text.

important "external" or secondary effects. Distinctions between the two are not clear in all cases. In any event, the direct effects must be estimated before secondary effects can be evaluated. Given the nature of the objectives of this phase of the research, it would be expected that the primary emphasis would be on direct effects, and there is no claim to have estimated all possible effects.

Analysis of the impact of a technology which is not yet developed may not be as unproductive as it first appears. Such analyses are based on assumed levels of performance of the technology and are admittedly only first approximations of results that might be expected. However, they provide some insight into economically feasible performance levels during the process of scientific development when such information should be of maximum value.

THE NATURE OF THE IMPACT OF HAIL SUPPRESSION

If hail suppression is proven effective, its basic effect on crop producers will occur in two parts, though farmers are so experienced in the adoption of new technology that they probably will recognize only one familiar effect. The two parts of this basic effect are illustrated in figures A and B, below. Figure A represents a schedule of the quantities of a crop which can be produced with different levels of productive factors, in other words, a production schedule or function. Figure A is generalized from the standard classroom production function in that the horizontal axis represents larger "bundles" of land, labor, and capital rather than the usual increasing amounts of one factor applied to fixed quantities of the others. This does no violence to the concept of the production function as long as the bundles are viewed as the "best" combination of factors for the production of that crop, given their availability, prices, and relative contributions to production.

Figure B represents the marginal cost schedules, that is, the cost of producing each additional unit of output represented by a movement up the production functions in figure A. The market price, represented by a horizontal line in figure B, establishes the upper limit of economical production at prevailing prices of productive factors and the product in question.

The situation before hail suppression may be determined from cost curve MC_1 in figure B and production function TP_1 in figure A. Market price, P, puts the most desirable production level at Q_1 (fig. B). To produce more means that some costs are not covered by the market price, and to produce less is to sacrifice profit on all units of product which can be produced at a cost less than the market price. Quantity Q_1 , in figure A, can be produced with a bundle of productive factors F_1 .

The first part of the basic effect of hail suppression is to reduce the physical destruction of crops by hail. The same bundle of productive factors, F_1 , or any other bundle can now produce more physical output. This result is represented by shifting to a new, and higher, production function TP_2 , and production of a larger quantity Q_3 . At the same time, greater production from the same productive factors indicates a lower production cost per unit represented by shifting to a lower cost curve MC_2 (fig. B).

Use of Productive Factors

Figure A: Total product curve (TP) for a set of variable inputs or production factors combined according to the scale line.

Figure B: Marginal cost curve (MC) and market price (P) showing optimum level of production (Q).

With the price unchanged, an assumption indicated in the previous section and discussed at more length below, all units of quantity \mathbb{Q}_2 can be produced for less than market price (indicated by \mathbb{MC}_2 being below the price line at quantity \mathbb{Q}_2). At this point the second part of the basic impact of hail suppression enters. With production function \mathbb{TP}_2 and cost schedule \mathbb{MC}_2 , the market price indicates an optimum production level of \mathbb{Q}_3 . This provides incentive for the producer to expand output, which requires a larger bundle of productive factors \mathbb{F}_2 .

Expanded production and increased demand for productive factors are two aspects of the impact of hail suppression which should be considered in an assessment of the technology. However, a one crop—one producer or one crop—one area impact, such as the above, cannot be expected to raise all the pertinent questions. The application of hail suppression over several areas and crops with different levels of effectiveness will create interesting questions with regard to both net and interaction effects. Two of the more important potential effects are: (a) production shifts of the same crop between two areas affected differently by hail suppression; and (b) production shifts between two crops affected differently by hail suppression within the same area.

The way in which hail suppression may cause a shift from one crop to another in the same area is illustrated in figure C. The lower curve represents the production possibilities for two major crop alternatives with no hail suppression. If all available resources were devoted to crop A, the quantity of crop A represented by Oa can be produced. If they were devoted to crop B, Ob can be produced. The curve represents the mixes of the two crops which can be produced. The mix actually produced is determined by the ratio of the prices of the two crops.

In figure C, the tangential line representing the ratio of crop A and B prices fixes the optimum production mix at quantities indicated by \mathbb{Q}_1 for each crop. Hail suppression is assumed to benefit crop B more than crop A. Thus, the new production possibilities curve (the upper curve) shows a small increase on the crop A axis and a larger increase on the crop B axis. At the same price ratio (indicated by the same slope to the price ratio line) there will be a shift to crop B, indicated by quantities \mathbb{Q}_2 for each crop. This may bring about either a reduction or an increase in specialization of production, depending upon the original degree of specialization and which crop receives the greater benefit of the technology.

Figure D illustrates the general mechanism through which competitive positions in the production of a crop may be shifted from one area to another where the areas receive unequal benefit from hail suppression. The cost curves and price level interact to determine the quantity of production in each area exactly as they did in figure B above. The greater benefit of hail suppression is assumed to accrue in area B, indicated by the greater shift in its marginal cost curve. In other words, area B gains competitive position with regard to this crop. The net result of hail suppression in these two areas, however, depends upon what happens to their competitive positions regarding other crops and other areas, and how the effects illustrated in figure C change the relationship among crops within each area.

The foregoing has identified the mechanisms through which impacts relevant to crop production patterns and competitive production positions

Figure C: Iso-cost cost curves with superimposed iso-revenue curves.

Figure D: Marginal cost curves and market price showing effect of cost changes on output in two areas.

might result from the application of effective hail suppression technology. Data for the analysis which follows were based much too heavily on assumption to seek precision in estimated marginal cost and acreage changes. Rather, a general estimate of overall production change was sought, along with the relative importance of crop shifts between and within areas. A rough measure of changed production expense by area (average cost per acre) permits some tentative indications of the change in factor demand.

To prevent possible misinterpretation throughout this report, it should be made clear at this point that the use of constant prices (1971) in the above illustrations does not indicate an assumption of infinite final demand for agricultural products. Demand is assumed to be constant, or at least is not assumed to be affected by the existence and use of hail suppression technology. The assumption of constant prices was tentative, and was based upon supply considerations, including the following: (a) the analysis is to be a one region consideration. If the use of hail suppression technology improves the competitive position of one region relative to others any expansion of production in that region will tend to be offset by declines in production in the other regions; and (b) the crops sustaining the largest volume of losses due to hail are major crops grown in many parts of the country. The loss as a percent of total volume produced is not large, although the dollar value can be substantial for the producers affected. It was felt that the physical reduction in loss alone in one region would not increase national production enough to affect prices.

It is recognized that if hail suppression is proven effective, it will probably be in demand in many producing regions. If the technology were widely used, even with some production tradeoffs among regions, it could alter production of some crops enough to change prices.

ANALYTICAL REQUIREMENTS

Much technical data were needed for use in the model used in this study. These requirements are discussed below.

Region and Area Definition

An analysis of the type outlined above requires subarea data on costs of production, acreage, yields, and hail loss. The producing region chosen for analysis needed to be small enough to permit management of these data, and large enough to avoid too much homogeneity of factors. The State of Nebraska was chosen as a producing "region" with desirable attributes for such analysis: a transitional agriculture including a variety of crops, and wide variations in hail loss from area to area within the State, as indicated by insurance records from the Crop-Hail Insurance Actuarial Association of Chicago, Illinois.

A framework of subareas within the region was also needed, with enough identity in common data sources to minimize data interpolations and extrapolations. The county is the basic data unit for many types of information, but was judged unacceptable as an analytical unit for this analysis for two reasons. One was that Nebraska has 93 counties which would lead to numerous duplications of data formations. More importantly, much of that duplication would be uninformative, and possibly confusing, because of the homogeneity

of various groups of counties in different parts of the State. At the same time, it was desirable to retain the use of the "identifiability" of the county in data sources, which suggested the use of multicounty producing areas for which county data could be aggregated readily.

In the mid-1960's, the Soil Conservation Service of the U.S. Department of Agriculture defined a series of 156 major Land Resource Areas (LRAs) encompassing the entire continental United States (1). These LRAs are geographic areas of land characterized by overall similarities in patterns of soils, climate, water resources, land use, and type of farming. Ten of these LRAs extend into Nebraska's borders and include all the land in the State.

The original LRA boundaries were entirely physiographic. Within Nebraska and other Missouri River Basin States, however, those boundaries have been generalized slightly to conform to the nearest county line. This convention allows use of aggregated county data to obtain LRA totals without interpolating partial county estimates. Figure E indicates the boundaries of the ten LRAs in Nebraska, and their identifying numbers.

Another set of subarea delineations has been made by the Soil Conservation Service. A series of Soil Resource Groups (SRGs) have been defined, with each group sharing similarities in productive capability of soil, soil loss, cropping patterns, response to fertilizer and management. The activity of SRG definition was completely separate from the delineation of LRAs, but the SRGs were defined within the framework of LRAs. Table 1 shows some examples of the characteristics considered in defining SRGs. The SRGs provide subunits of productive capability within LRAs. The acres of land in each SRG in each county is known, as are the average yields of major crops produced on the soils of each SRG. A workable set of yield differentials was thus established for the various identifiable soil groups within an LRA, and within each county.

Analytical Model

A model was needed for the analysis which would simulate changes in crop acres, production costs, and yields across several subareas and for several crops. Simulated cropping patterns and cost levels were desired for situations representing the "with" and "without" hail suppression cases, and for different assumptions of hail suppression effectiveness.

The McDonnell Automation Company and the Economic Research Service have developed the Generalized Agricultural Production Analytical System (GAPAS) which includes the necessary capabilities. GAPAS is a system of programs built around a mathematical model solved by a classical linear programming technique and includes a matrix generator and report generation capabilities. While the system was developed to analyze the effects of long-term water and land resource development programs, it was easily adapted for the purposes of this research.

Linear programming codes are used to solve many types of problems, and inputs for any given type of problem must be within a rigidly defined format. The matrix generator of GAPAS is essentially a program to reform a variety of input data to the required formats, and to prepare a matrix to be solved by a linear programming code.

The mathematical model, the set of equations prepared by the matrix generator, is solved by the linear programming code MPS/360 developed by IBM.

Figure E.--Land Resource Areas (LRAs), Nebraska.

Table 1.--Examples of soil characteristics considered in the definition of soil resource groups (SRGS) in Nebraska

		Major Soils	Soils	Clond	Texture	Dischlone
SRG Code	Description	Class/Subclass	Names	alobe	class.	rroblems
720	Deep, gentle slopes,	2E28 2E38 ·	Moody, Hastings, Keith, Holdrege, Holder	% %	Fine-silty	Erosion
. 724	Deep, moderately to well drained, uplands	2W20 2W30 2W40 2W60	Colo, Carusó, Gibbon, Hobbs, Las Animas, Leshara, McCook, Wann	24	Fine-silty and coarse-loamy	Wetness and occasional flooding
740	Deep, sloping, well drained, upland	4E10 4E20 4E80 4E90	coly, Uly, Colby	5%+	Fine-silty	Erosion
543	Shallow, poorly drained, bottomland	4W4X	Platte	38	Clay-sand	High water table, drought
. 510	Deep, level, well drained, silty, bottomland	жг 21 3х	Kemebec.	1%	Fine-silty	Occasional flooding in some areas
•						

The code will solve problems of up to 8,191 equations and an unlimited number of variables. The user's manual for MPS/360 is IBM Manual H20-0291-1.

The basic intent of the analysis was to estimate (or simulate) land use changes which might have occurred in a given year had hail suppression been practiced, rather than predict future effects. Both maximization and minimization objective functions could serve this purpose, with certain differences in required constraints. Since the focus of the analysis is on land allocation rather than on profit or production maximization, and since prices are fixed in a static time sense, the cost minimization approach was chosen.

Solutions and Constraint

As in any cost minimization linear program, the objective was to produce an indicated output level at minimum cost by the optimum allocation of resources available, subject to whatever constraints limit resource mobility and use. In this case, the indicated output levels were the actual 1971 production levels of the crops included. In the interest of consistent cost comparisons between "current" crop patterns and those estimated to result from hail suppression, it was necessary to "calculate" costs of current production levels with the current land use pattern, in accordance with the budget data in the model. Estimates of the minimum cost of producing current output levels without hail suppression if crop patterns were allowed to vary as they would with hail suppression was also required. Minimum levels of production and land use had to be specified to prevent the ultimate in cost minimization, i.e., zero production.

Data Format

The GAPAS system requires some unique ways of handling the data input. Interpretation of the results of the analysis will be easier if these unique characteristics are understood.

PRODUCTION COST MODE

In 1967 the Economic Research Service developed a series of variable production cost budgets for crops grown in Nebraska LRAs. The budget data were obtained from University of Nebraska budget studies, farm records, and consultation with Cooperative Extension Service personnel. The budget format, illustrated in figure F, was developed to match the data input mode of the GAPAS system.

The budget data were updated to the 1971/72 crop year for this analysis by consultation with staff members of the University of Nebraska's Department of Agronomy and with Cooperative Extension Service personnel. The data format, already suited to the GAPAS system, was retained.

Input production costs for each crop and LRA are developed in three parts, as indicated by the example in figure F. Part A includes costs of field operations and purchased inputs except for fertilizer. These are basic variable production costs which are considered constant for each crop across all SRGs in the LRA. Labor and nonlabor components are separately maintained. Part A costs are assumed to be adequate to cover harvesting of a base LRA yield.

In addition to the basic variable LRA costs, there are additional costs incurred in cultivating, irrigating, and maintaining heavy soils and steep

LRA		nonir	rig	Χ					
FIXED LRA COSTS (A)									
	Size	Size	No.	Hrs.		Rate/hour	•	Cost	/acre
Operation	of equip.	of tract.	of op.	per acre	Tract.		Labor	1	Non- labor
							2.50		
Plow	5-14	5P	1	. 40	2.10	1.94			1.62
Disk-Tandem	16'T	5P	1	. 18	2.10	1.70	<u> </u>		.68
Harrow, spike	25'	5P	1	.10	2.10	. 47	-	<u> </u>	.26
Plant	4R	4P	1	.20	1.85	2.00			.77
Dottomy has	14'	4P	 	15	1 05	1 27			10
Rotary hoe Cultivation	4R	4P 4P	1 2	.15	1.85	1.37			1.25
Cutcivacion	40	45		. 43	1.03	. 32		 	1.23
Pick	2R	4P		.50	1.85	3.00			2.42
Haul & Store		4P		.50	1.85	.60			1.23
			 					<u> </u>	
									-
		ļ	-				-		
Labor total		 	 	2.48		 	 	6.20	
Total - operational cost	.s	!					<u> </u>	6.20	8.71
	1								-
Materials (No fertilizer			/Unit	Units/	acre	Cost		l	
Seed	11	0.	. 47	12		5.64	_	1	
Herbicide						1.96	_	ĺ	
Insecticide						3.20	_	j	1
									ĺ
Total - material cost						·····	-		10.80
	, '			1				6.20	
TOTAL FIXED LRA COSTS (A)								
COO DIFFERENTIAL COCTE /	٥١	Slope/t	exture	Mainte	nance	Othe	r	Tota	T (B)
SRG DIFFERENTIAL COSTS (8)	L	NL	LI	NL	L	NL	L	I NL
SRG:									
Category B		.11	.16	.50	. 75			. 61	.91
Category C		.28	.41	.60	.90			.88	1.31
Category D		.46	. 66	.70	1.05			1.12	1.71
		1 - 1		11		<u> </u>			ــــــــــــــــــــــــــــــــــــــ
		Notes	Corn	icide 56% rootworm borer	60% of	reated @ s acres @ s acres @ s	54.00 =	\$2.40	acre.
JU DU. 1 .U4	.00								

Figure F.--Production cost budget, LRA-72 example: Crop--corn, grain.

slopes. The Soil Conservation Service has divided Nebraska SRGs into four groups on the basis of soil texture and degree of slope. One group requires no texture—slope cost differential, while the other three include increas—ingly heavy or steep soils requiring increasing cost differentials. Part B of the budget form consists of cost increasing factors for those SRGs requiring them.

Table 2 lists SRGs in each slope-texture group. Increased tillage and maintenance costs may result from a variety of causes. Thus we find SRG 740, characterized by slopes of 5 percent or more with silty soils, in the "C" category along with SRG 746, which has 0-2 percent slopes, but soils tending to clay. Most of the "B" soils are fairly level, but are slightly heavy or in some cases, such as SRG's 522 or 525, they have a slight drainage or flooding problem. Most of the "D" soils are steeply sloping and may be rocky. An exception is SRG 745, which has slopes of only around 2 percent but includes shallow soils over bedrock or gravel.

Table 2.—Categories of soil resource groups within Nebraska

		Catego		
A		В	С	D
536	510	722	734	745
710	521	723 ⁻	739	760
720	522	724	740	764
721	523	725	743	765
726	525	730	746	771
731	531	732	770	772
733	534	735	773	
736	535	737	761	
738	541	741		
	543	742		
763	544	744		
	550	750		
	561	762		
	562			
	570	780		
	580	791		

For some crops, such as sugar beets and hay crops, harvesting costs are probably more accurately reflected if considered entirely a function of yield. Where this was considered true, harvesting costs were eliminated from part A, and the base yield in part D set at zero. The system calculates costs based on total yield. For other crops, part A costs were considered adequate to cover the harvesting part of the normal yield. In these cases, the system calculates the cost of harvesting yields higher than the base, and adds that amount to the total cost.

Fertilizer costs were excluded from the basic budgeting process because they are internally calculated in the GAPAS system. To allow for variable

fertilizer input and cost, the GAPAS system calls for specification of fertilizer consumption in pounds of N, P, and K per bushel or ton of yield. Fertilizer cost is calculated by multiplying yield by the quantity of nutrient per yield unit and by the price of the nutrient, plus a standard cost of application. This implies a linear relationship between fertilizer cost and yield. In figure G, this implied relationship is represented by line A.

The true nature of the relationship between fertilizer cost and yield is probably better represented by curve B. Starting at zero cost and a positive yield (some production can be obtained without fertilizer), the cost of fertilizer increases at a greater rate than the increase in yield. It was not feasible to measure the precise relationships for all crops in all LRAs. The linear approximation of the relationship was thought to be more accurate than another alternative represented by line C, the assumption of a single level fixed fertilizer rate for each crop and LRA.

To summarize, the total cost of production of a given crop in a given LRA and SRG is determined in stages. First, the basic cost of that crop in that LRA is determined from the budgets. Depending on the SRG, a differential cost may be added to cover slope, texture, and maintenance costs. If the yield is above the base yield, a variable harvest cost is added. Finally, the fertilizer consumed by that crop in that LRA is determined, and the costs of nutrients and their application are added to the total.

Figure G: Relationship of the cost of fertilizer and crop yield.

SOIL RESOURCE GROUP COMBINATIONS

As indicated above, the production cost budgets include differential cost factors for slope and texture. SRGs are grouped into four categories for that purpose. To reduce the number of soil categories in the analysis, SRGs in each differential cost category were further grouped on the basis of similar productivity indices. The result was a reduction in the number of SRGs with relatively homogeneous cost and productivity characteristics in each LRA. Rather than 30 or more, this analysis treated from 9 to 12 SRGs in each LRA. Individual SRGs are not identified in the results discussed later in this report, but their cost and productivity influences are included in weighted averages for each LRA. Appendix Table 1 shows how the SRGs were grouped by productivity indices within cost categories and LRAs.

HAIL SUPPRESSION FACTORS

Estimates of the costs of hail suppression and its effect on crop yields were needed to set up the analysis of crop pattern changes resulting from it.

Suppression Costs

General estimates of suppression costs vary from 3½ cents to about 6½ cents per acre covered. These estimates vary especially with the kind and quality of equipment used and the training and experience of the personnel. Unfortunately, the inability to measure the effectiveness of hail suppression in terms of crop damage also makes it impossible to determine if the higher cost operation is more effective. The relative range in cost per acre can be fairly large, although cost per acre is not very high. For example, one western Nebraska LRA includes 3,608,000 acres of total area and 1,107,000 acres of cropland. Total suppression costs for this LRA at $3\frac{1}{2}$, 5, and $6\frac{1}{2}$ cents per acre covered would be \$126,000, \$180,000, and \$235,000, respectively. In costs per crop acre, these values represent \$.11, \$.16, and \$.21, respectively. In comparison with other production costs, differences among the above figures seem rather insignificant, so the suppression costs used in the analysis were based on a cost of 5 cents per acre of total area in the LRA. Table 3 shows how this cost translates into costs per crop acre for the ten LRAs in Nebraska. 2/[3]

^{2/} Unfortunately, until a proven hail suppression technology has been developed, the relevant cost is difficult to specify. Based on experience gained in the National Hail Research Experiment in Colorado over the past 4 years, scientists and economists familiar with suppression techniques currently used now feel that more sophisticated equipment and techniques may be necessary. Such equipment and techniques could increase costs to as much as 40 cents or more per acre of protected area.

Yield Effects

The difficulty and expense of measuring hail suppression results in terms of a definite ground-level effect means that there are no solid data to express the yield increases expected to result from use of the technology. In order to estimate such yield increases, it was necessary to use assumed levels of effectiveness of hail suppression. There are two points of considerable importance regarding those assumptions.

Table 3. Hail suppression cost per crop acre in Nebraska LRAs, assuming a cost of \$.05 per acre of total land area

	:		:	Cost	:		:	Cost
LRA	:	Total acres	:	for	:	Crop acres	:	per
	:		:	total area	:		:	crop acre
		Acres		Dollars		Acres		Dollars
64		1,447,548		\$ 72 , 377		456,840		\$.16
65		13,303,186		665,159		1,239,209		.54
66		825,908		41,295		219,723		.19
67		3,608,442		180,422		1,107,374		.16
71		4,544,702		227,235		1,961,259		.12
72		4,950,394		247,520		2,262,237		.11
73		3,721,009		186,050		1,859,508		.10
75		4,751,417		237,571		3,690,540		.06
102		6,616,235		330,812		4,531,828		.07
106		3,407,216		170,361		2,492,361		.07

First, weather modification scientists are reluctant to speculate about the effectiveness of hail suppression technology, either in its current state, or in the more advanced forms they are trying to develop. Therefore, although the assumptions used in this analysis are felt to be in the general range of expectation of many of those scientists, they are attributable only to the author.

Second, the frame of reference used in this report for the level of effectiveness of hail suppression is a reduction in the loss of crops. Such a ground-based measure is somewhat removed from the cloud-based phenomena being studied by meteorologists and cloud physicists in relation to hail suppression. When their references to suppression effectiveness appear, they will relate to updrafts, hailstone concentrations, hailstone sizes, velocity of impact, etc.

There are no precise, predictable relationships which can be drawn at this time between the two frames of reference. Work now underway at the National Center for Atmospheric Research in Boulder, Colorado, will attempt to estimate such relationships.

Three levels of hail suppression effectiveness were assumed in order to test the impact on production costs and crop patterns of a range of possible suppression results. Effectiveness levels of 10 percent, 25 percent, and 50 percent were applied to existing loss rates to estimate yield increases resulting from suppression. The procedure for estimating the yield increase was as follows. If the current rate of loss due to hail of a given crop in a given LRA is 8 percent, the increase in yield is equal to the reduced loss. Thus, at 10 percent effectiveness (10 percent loss reduction) the yield increase is .8 percent of current yield; at 25 percent effectiveness it is 2.0 percent and at 50 percent effectiveness, 4.0 percent. Yield increases were estimated for each crop in each LRA for use in those parts of the analvsis treating the "with hail suppression" situation. Minimum cost linear programming solutions were obtained under assumptions of: (1) no hail suppression (2) 10 percent effective, (3) 25 percent effective, and (4) 50 percent effective hail suppression to determine what changes in costs and distribution of crop production would occur.

There are a number of ways in which a technology such as hail suppression can affect a region. The several solutions of the model are viewed from various viewpoints to highlight some of the more interesting potential impacts of hail suppression on crop production and costs for a region.

All solutions discussed, unless otherwise indicated, are minimum cost solutions for the State. Crop patterns vary, sometimes substantially, from the "current" crop distribution among LRAs. ("Current" refers to the most recent reliable data at the time of the study, on crop distribution by LRA and SRG, or about 1971.) This variation from the current crop pattern was a necessity in testing the impact of hail suppression on the location of production. The "without hail suppression" case was also a minimum cost solution to avoid attributing to hail suppression large location shifts due to the minimum cost combination of production locations.

ESTIMATED IMPACTS OF HAIL SUPPRESSION

Effects of hail suppression on crop acres and production and production costs were estimated for land resource areas. The results of these analysis are reported below.

Total Production and Cost of Production

As a general overview, table 4 indicates State production levels under each of the hail suppression level assumptions indicated above, and the total cost of producing each crop mix. Changes in production include the effect of both physical reductions in hail loss and changes in acreage. Cost changes include both the cost of hail suppression and any changes in the use of productive factors. These components will be viewed in greater detail below.

Distribution of Crops Within and Between LRA's

Tables 5, 6, and 7 indicate the estimated acreage changes resulting from suppression levels of 10 percent, 25 percent and 50 percent devoted to each crop in each LRA. Reading down the columns gives an idea of the shifts among crops within an LRA. Across each line, the shifts of a given crop from one

Table 4.--Crop production and total production costs: Without hail suppression and at three levels of hail suppression effectiveness, Nebraska

Crop	Units	Without hail suppression	With hail su	suppression effe : 25% :	effectiveness : 50%
Production	••••				
Wheat, dryland	: Bu.	94,291,268	94,977,866	96,076,948	97,777,188
Wheat, irrigated	: Bu.	77,032		78,852	80,612
Corn for grain, dryland	: Bu.	144,392,994	4,808,	145,382,848	146,678,017
Corn for grain, irrigated	: Bu.	234,736,606	235,838,106	237,448,452	240,178,083
Sorghum for grain, dryland	: Bu.	: 96,399,551	96,579,541	96,759,691	97,003,136
Sorghum for grain, irrigated	: Bu.	15,077,249	15,104,059	15,143,709	15,446,664
Soybeans, dryland	: Bu.	19,387,066	19,467,585	19,482,314	19,822,306
Soybeans, irrigated	: Bu.	1,783,134	1,798,215	1,816,586	1,858,194
Sugar beets, irrigated	: Tons	1,403,400	1,408,000	1,414,900	1,433,600
Other small grains, dryland	: Bu.	22,469,300	22,611,800	22,803,900	23,161,700
Corn for silage, dryland	: Tons	2,917,820	2,917,945	2,919,090	2,926,761
Corn for silage, irrigated	: Tons	2,344,679	2,346,354	349,	2,361,839
Sorghum for silage, dryland	: Tons	1,199,875	1,199,972	1,200,132	1,208,648
Sorghum for silage, irrigated	: Tons	193,025	193,328	193,667	190,252
Alfalfa, dryland	: Tons	3,301,338	3,013,338	3,008,021	3,017,785
Alfalfa, irrigated	: Tons	875,162	875,162	886,279	883,015
Other tame hay, dryland	: Tons	1,065,065	1,065,065	1,065,065	1,066,365
Other tame hay, irrigated	: Tons	98,635	98,635	98,635	98,635
TOTAL PRODUCTION COSTS	: Dollars	547,134,000	547,618,000	548,351,000	549,695,000
	••••				

Table 5.--Acreage changes at the 10 percent suppression level, by crop and LRA, Nebraska

Crop	64	:	: 59	99		29	••	71	72	73	: 75	••	102		106
NI Wheat	- 31		1	ı		ı		1	ı		ı		ı	'	122
I Other small grain	ı		1	1		1		1	1	ı	ı	•	- 100		ı
NI Corn for grain	ı			ı		1			1		ı		ı		•
	ı		ı	1		ı			1	ı	1		•		1
NI Sorghum for grain	ı			ı		1		1	ı	1	•		•	+	=
NI Sorghum for silage :	ı			1		1			ı		1		1		1
NI Alfalfa	ı		1	1		ı			ı	í	1		1		1
	+ 63	ı	29	ı		1		ı	ı	ı	1		1		•
NI Soybeans	ı			ı		ı		ı	ı		ı		ı	1	_
	- 32		1	ı		1			ı	ı	1		ı		1
NI Net change	ı		29	ı		1		1	ı	ı	1	'	100	1	26
						,									
R Wheat	1		1	ı		ı		1	ı		1		1		ı
IR Corn for grain	1		1	ı		ı			+18,630	1	-19,322	122	1		1
R Corn for silage	ı		1	ı		ı		1	ı	1	+	46	ı		ı
R Sorghum for grain	ı			ı		ı		ı	ı	1	1		ı		١
R Sorghum for silage	ı		1	1		ı	+	14	ı	ı	1		ı		1
R Alfalfa	ı		1	•		ı		1	•	1	1		ı		1
R Other tame hay	ı			•		1		1	ı	1	1		•		1
R Soybeans	ı		ı	•		1		1	1	1	•		1		ı
R Sugar beets	ı		1		+	56		1	ı	ı	1		1		ı
R Net change	ı		1	ı	+	56	+	14	+18,630	ı	-19,276	92	ı		1
TOTAL NET CHANGE	1	ı	29	1	+	26	+	14	+18,630	1	-19,276		- 100	L	26

NI = nonirrigated IR = irrigated

Table 6.--Acreage changes at the 25 percent suppression level, by crop and LRA, Nebraska

aoa J									RA					
dolo	: 64	••	65	 99		67		71	72 :	: 73 :	. 75 :	: 102 :	106	100
	••					-								
NI Wheat		ı	207	ı		ı		ı	ı	1	ı	ı	,	122
NI Other small grain			t	ı		1		ı	ı	+13,820	ı	-12,774	'	
NI Corn for grain	i		۱,	ı		1		1	ı		ı	ı	•	
NI Corn for silage			ı	ı		ı		ı	1		ı	t	ı	
NI Sorghum for grain			t	ı		ı			ı		ı	t	-	909
NI Sorghum for silage			ı	ı		ı		ı	ı		ı	ı	•	
NI Alfalfa			ı			1		ı	- 2,532		t	ı	ı	
NI Other tame hay			ı	ı		ı		ı	ı		ŧ	ı	•	
NI Soybeans			ı	ı		ı		ı	ı		ı	ı	ı	7
NI Fallow		1	207	ı		ı		ı	ı		1	ı	ı	
NI Net change	`	ı	414	ı		ı		1	- 2,532	+14,744	ı	-12,774	-	735
	••													
IR Wheat			ı	ı		ı		ı	ı		ı	•	•	
IR Corn for grain			ı	ı		ı		ı	+18,630		-18,930	ı	١	
IR Corn for silage	: - 4,335	čī.	ı	ı		1		1	t		- 1,682	+ 5,389	'	
IR Sorghum for grain			ı	ı		,		ı	ı		ı	ı	•	
		+	80	1		ı	ı	99	ı		•	t	•	
	•		ı	ı		ı		ı	+ 1,394		ı	t	•	
IR Other tame hay			ı	1		ı		t	ı		ı	t	•	
IR Soybeans			t	1		ı			ı		ı	ı	•	
IR Sugar beets			,	1	+	65		ı	ı	ı	1	ı	'	
IR Neť change	: - 4,335	55 +	80	ı	+	92	1	99	+20,024	I	-20,612	+ 5,389	•	
TOTAL NET CHANGE	: - 4,335	ري	334		+	65	ı	26	+17,492	+14,744	-20,612	- 7,385	_ 1	735

NI = nonirrigated IR = irrigated

Table 7.--Acreage changes at the 50 percent suppression level, by crop and LRA, Nebraska

Crop				00	*	-	-		01	CF	7.5	000	200
•	. 64		: 69	90		0/		7	7.7	/3	(2)	: 102	100
	••												
NI Wheat	1	ı	370	i		ı		ı	ı		ı	1	- 122
NI Other small grain	1		ı	ı		1		1	+ 3,910	+13,820	1	-16,797	
NI Corn for grain	1		1	1				ŧ	1		ı	1	
	1			8		1		ı	i	1	ı	1	- 882
	1		ì	, i		ı			1	+ 924	ı	1	- 3,874
NI Sorghum for silage		+	456	ı		ı		ı	ı	ı	i	ı	1
	!		1	i		ı		ı		8	ı	ı	ı
NI Other tame hay	1	ı	238	ı		ı		•	ı	ı	ı	ı	1
	1		ı	ı		•		8	ı	ı	ı	1	- 6
	1	ı	370	ı		ı		ı	ı	ı	ı	ı	ı
NI Net change	1	ı	522	ı		1		ı	+ 3,910	+14,744	I	-16,797	- 4,939
	••												
IR Wheat	,		1	ı		ı		ŧ	ı	ı	ı	ı	1
IR Corn for grain	1		1	1		1	-	ı	+20,268	ı	-20,409	1	1
IR Corn for silage	: - 5,017		1	ı		1		1	1	ı	+ 4,961	1	1
IR Sorghum for grain			1	ı		ı		1	ŧ	989 +	ı	1	+ 1,672
IR Sorghum for silage	1	+	194	ı		ı	ı	197	961 -	ı	1	ı	1
IR Alfalfa	1		ı	ı		1		ı	+ 173	í	ı	1	1
IR Other tame hay	1		i	•		ı		4	1	1	ı	1	1
IR Soybeans	1		ı	ı		ı		1	í	ı	ı	1	ı
IR Sugar beets	1	+	99	ı	+	58		1	ı	ı	ı	1	i
IR Net change	: - 5,017	+	250	ı	+	58	ı	197	+20,245	989 +	-15,448	1	+ 1,672
TOTAL NET CHANGE	: - 5,017	1	272	•	+-	58	1,	197	+24,155	+15,430	-15,448	-16,797	- 3,267

NI = nonirrigated IR = irrigated

LRA to another are indicated. The net change lines summarize total shifts among LRAs. Table 8 provides a quick and partial check on the logic or reason for a shift in cropped acreage by presenting the loss-cost values (approximate loss rates) for each crop-LRA combination for which a loss history is available.

At the 10 percent suppression level, for example, only one shift of major significance occurred between LRAs. Substantial acreage of irrigated corn for grain shifted from LRA-75 to LRA-72. Table 8 shows that LRA-72 has a loss-cost (approximate loss rate) more than twice that of LRA-75, indicating a larger potential benefit from hail suppression. In this case, that difference in benefit was apparently sufficient to improve the comparative cost position of LRA-72 relative to LRA-75.

It must be kept in mind that table 8 includes only part of the logic for a shift. As an illustration, it may be noted that LRA-72 has a soybean loss-cost nearly 8 times that of LRA-73, but no shifts in soybean acreage are indicated between these two LRAs at any suppression level. A differential loss-cost rate itself does not indicate a change in cost-advantage sufficient to cause acreage to shift.

Shifts from one crop to another within LRAs were minor at the 10 percent level. Table 8 is a less reliable indicator of logic in shifts within LRAs than production lost per unit. For example, in LRA-106 there is an apparent shift from dryland wheat to dryland grain sorghum (table 5), in spite of a lower loss-cost (lower potential suppression benefit) in grain sorghum. That change is probably best explained by the fact that LRA-106 had the lowest production cost per unit of grain sorghum of all LRAs both with and without hail suppression as shown in appendix table 2. This change represents a shift of some grain sorghum to lower quality land, requiring a few more acres to maintain about the same share of State production. (The shares of State production by LRAs are shown in appendix table 3.) 3/

With 25 percent suppression, the major shifts between LRAs were in dryland small grain other than wheat, irrigated corn for grain, and irrigated corn for silage. All those shifts were compatible with the loss-cost differentials of table 8, except the loss of irrigated corn for silage acreage in LRA-64 where insured loss history was not available. Most of the changes within LRAs were due to shifting crop production to a different quality of land, rather than intercrop competition.

The same comments apply to changes at the 50 percent suppression level. There are more shifts involving more acres, but all the major shifts between LRAs are consistent with the potential benefits indicated in table 8. The shift of dryland small grains from LRA-102 to LRAs-72 and 73 illustrates one small aspect of the internal working of the GAPAS system. Both LRAs-72 and 73 have higher loss-cost rates than LRA-102, and their gains in acreage are consistent in that sense. It may be noted, however, that LRA-67 has an identical loss-cost rate to that of LRA-72. Appendix table 2 further indicates that production costs per bushel are 2 cents lower in LRA-67 than in LRA-72. Production was allocated to LRA-72 rather than LRA-67 because the cost per acre is lower in 72. The system's logic is keyed to cost per acre, with the objective of finding the least cost land allocation to

^{3/} Because of the large bulk, cropping patterns by SRG are not included in this report.

					4	,
				i.		

Table 8.--Loss-cost rates (approximate loss rates) without hail suppression, by crop and LRA, Nebraska

1 40%							LRA	1			
CI 0p 17	: 64	: 65	••	99	: 67	: 71 : 72		: 73 :	: 75 :	102	106
	••										
Wheat	9.98		64	5.40	12.41	5.93	9.87	6.93	4.56	3.74	2.63
Other small grain	: 16.91		91	4.77	11.93	5.98	11.93	12.14	3.88	3.76	2.95
Corn for grain	6.99		80	5.05	6.72	5.12	7.98	5.72	3.47	3.14	2.15
Corn for Silage				1	i		•	4.84	. 58	1.14	. 65
Sorghum for grain		-	42	1.79	ı	2.54	6.72	3.21	1.45	1.94	1.00
Sorghum for silage		6	20	ı	1	.10	01.	90.	.95	69.	1.44
Alfalfa		6.05	05	.35	Ē	•	5.93	1	.49	1.30	1.13
Other tame hay		1		6.00	93	ı	ı	ı	2.70	98.	•
Soybeans	: 20.80	,	89	4.21	9.50	11.34	23.74	3.02	5.07	4.62	3.32
Sugar beets	: 21.70		44	ı	.73	11.36	1	20.42	6.30	. 85	ı

1/ Rates are the same for irrigated and nonirrigated.

produce a given output level. Theoretically, the ultimate outcome would be the same if the logic were keyed to cost per unit, but a few interesting anomalies occur.

Changes in acreage balance among crops within LRAs were generally minor except for the gains and losses related to shifts between LRAs. The percentage gains and losses for the major acreage shifts already pointed out will help provide perspective on the importance of those changes. The major acreage gains and losses, and the percentage change they represent from each LRAs acreage without suppression are as follows:

Crop	<u>Gains</u>	Losses
	10 Percent Suppression	
IR Corn for grain		: LRA-75 19,322 acres : (2.1 percent)
	25 Percent Suppression	•
NI Other small grain	LRA-73 13,820 acres (143.9 percent)	·
IR Corn for grain :	LRA-72 18,630 acres	: LRA-75 18,930 acres
IR Corn for silage	(16.5 percent) LRA-102 5,389 acres (34.8 percent)	: LRA-64 4,335 acres : (53.7 percent)
	(: (53.7 percent) : LRA-75 1,682 acres : (6.5 percent)
	50 Percent Suppression	· (ore persons)
NI Other small grain		: LRA-102 16,797 acres : (5.3 percent)
	(143.9 percent)	
	: LRA-73 924 acres	: LRA-106 3,874 acres
grain IR Corn for grain	(0.4 percent) : LRA-72 20,268 acres	: LRA-75 20,409 acres
IR Corn for silage	: LRA-75 4,961 acres	: (2.2 percent) : LRA-64 5,017 acres : (62.2 percent)

The primary concern with the impacts of hail suppression is on the negative or loss side. To the extent that the acreage losses of specific crops might be concentrated within a particular LRA, it is obvious that the incomes of some groups of producers might be affected more than others. The actual income effect on those producers depends upon the availability of substitute crops and their ability to produce those crops at a profit.

A more comprehensive summary of the gains and losses of each LRA across all crops will provide a better perspective on the total impact of hail suppression. The net gain or loss of crop acreage and the percent of total cropland in the LRA represented by the change are summarized below:

Net change

		ercent ession		ercent ession		ercent ession
LRA	Acres of crops shifted		Acres of crops shifted		Acres of crops shifted	Percent of total cropland
64	0	0	-4,335	•95	- 5,017	1.10
65	- 67	.01	- 334	.03	-272	.02
66	0	0	0	0	0	0
67	+26	.00*	+65	.01	+58	.01
71	+14	.00*	- 56	•00*	- 197	.01
72	+18,630	.82	+17,492	.77	+24,155	1.07
73	0	0	+14,744	•79	+15,430	.83
75	-19,276	•52	-20,612	.56	-15,448	.42
102	-100	.00*	-7, 385	.16	-16,797	.37
106	- 26	.00*	-7 35	.03	-3,267	.13

^{*}Positive but less than one one-hundreth of one percent.

Conclusions

In only two cases did any LRA gain or lose more than 1 percent of its total cropland, and none changed as much as 2 percent. Hail suppression apparently would have caused neither massive shifts in the location of production in the State nor substantial shifts of land use from one crop to another within an LRA.

TOTAL PRODUCTION AND TOTAL FACTOR DEMAND

Total State production of most crops increased with hail suppression effective at all three levels (table 4). The distribution of the increased production and the implications of that increase for the demand for productive factors may be more significant to producing areas than the acreage changes already discussed.

A reduction in production costs is generally considered a force for good, at least by farmers and those who work with them. One can hardly argue with that position in terms of cost per unit of product. When the discussion treats the total volume of factor demand, however, a reduction in total production costs (factor demand) may have a negative social cost.

As pointed out earlier, costs per unit generally declined or remained unchanged with hail suppression. The discussion at this point is concerned with the impact on rural area social and economic conditions brought about by changes in agricultural land use, total production levels, and the total demand for productive factors supplied by nonfarmer elements of rural communities.

The level of production of each crop in each LRA with each level of hail suppression effectiveness is shown in appendix table 4. Total factor demand (cost of production) related to those levels of production, including the cost of hail suppression are listed in appendix table 5.

At the 10 percent level, total factor demand increased in all LRAs except LRA-75, where it declined slightly. Even in that LRA, production of all crops increased or remained level, with the exception of irrigated corn for grain. Since corn is a very important crop in LRA-75, however, that decline was sufficient to reduce factor demand.

With 25 percent suppression, LRA-64 joined LRA-75 in the reduced factor demand column while all others increased. The reduction in LRA-64 was due to the loss of over half its irrigated corn for silage. LRA-75 regained only a part of the irrigated corn for grain lost at the 10 percent level, and in addition lost production of irrigated corn for silage.

At the 50 percent level, LRAs-64, 75, and 102 all show reductions in factor demand, while the rest show increases. LRA-64 lost more production of irrigated corn for silage; LRA-75 regained its production of irrigated corn for silage; and LRA-102, which actually lost some production of dryland small grains at the 25 percent level, lost enough of that crop at the 50 percent level to reduce total factor demand.

The magnitude of changes in total factor demand varied considerably from one LRA and suppression level to another. Changes by LRA and suppression level are summarized in table 9. The number in parentheses accompanying each dollar amount is the percentage of the total factor demand without hail suppression represented by the change.

Conclusions

Changes of less than 1 percent in the total demand for productive factors in most LRAs would not be likely to cause extremes of either prosperity or hardship. However, losses of 3-4 percent (as in LRA-64) or gains of 3-5 percent (as in LRA-72) could be significant—especially if the crop acreage were large and involved crops with a high per acre cost of production. The multiplier effect could be expected to amplify either increases or decreases of total factor demand in rural communities. However, the data used in this study were not precise enough to evaluate the influence of the multiplier.

Table 9.--Changes in the value of total factor demand, by LRA, for each suppression level

LRA	:	10 perce	ent-level	:	25 per	cent-level	:	50 perc	ent-level
	:	\$1,000	Percent		\$1,000	Percent		\$1,000	Percent
64 65	:	36 17	$\frac{1}{(.46)}$		-313 64	(4.02) (.27)		-283 195	(3.63) (.83)
66	:	2	(.15)		4	(.10)		20	(.49)
67	:	36	(.14)		92	(.35)		180	(.69)
71	:	54	(.09)		120	(.19)		237	(.38)
72	:	1,434	3.86		1,600	(4.31)		2,016	(5.43)
73	:	66	.17		535	(1.39)		714	(1.85)
75 102	:	-1,248 60	.96 .04		-1,287 384	(.99) (.26)		-447 -112	(.35) (.08)
106	:_	27	.04		18	(.03)		40	(.06)
State	:	484	.09		1,217	(.22)		2,561	(.47)

 $[\]frac{1}{2}$ Percent figures are the share of total factor decreased without hail suppression represented by the change.

REFERENCES

- 1. Austin, Morris E., "Land Resource Regions and Major Land Resource Areas of the United States," Agriculture Handbook 296, Soil Conservation Service, U.S. Department of Agriculture, 1965.
- 2. Boone, Larry M., "Estimating Crop Losses Due to Hail," Agricultural Economic Report No. 267, Economic Research Service, U.S. Department of Agriculture, 1974.
- 3. Borland, S.W., "Hail Suppression: Progress In Assessing Its Benefits and Costs," in <u>Preprint Volume 1</u>, NHRE Symposium on Hail, National Center for Atmospheric Research, Boulder, 1975.

Appendix table 1: SRG productivity subgroups within cost categories

LRA 65	SRG (prod. index)	710(70), 720(60) 733(50), 726(45), 536(40), 731(40),	763(15)		510(75) 521(55), 522(55), 724(55), 722(50),	523(45), 531(45), 544(40), 550(40),	741(25), 541(20), 562(15), 762(15)		734(30), 740(30), 743(25), 761(25)		745(25), 760(20), 765(10)
	Cost category A	Subgroup 1: Subgroup 2:	Subgroup 3:	Cost category B	Subgroup 1: Subgroup 2:	Subgroup 3:	Subgroup 4:	Cost category C	Subgroup 1:	Cost category D	Subgroup 1:
LRA 64	SRG (prod. index)	710(60), 720(55) 726(35), 736(25)	763(15), 733(10)		521(50), 522(50) 722(40), 730(40), 791(40), 732(35)	744(30), 550(25), 735(20)	741(15), 561(10), 562(10), 762(10)		746(25), 740(20), 743(20) 734(10), 761(10), 773(10)		760(10), 765(10), 771(5)
	Cost category A	Subgroup 1: Subgroup 2:	Subgroup 3:	Cost category B	Subgroup 1: Subgroup 2:	Subgroup 3:	Subgroup 4:	Cost category C	Subgroup 1: Subgroup 2:	Cost category D	Subgroup 1:

-Continued

gories (Continued)	LRA 67	A SRG (prod. index)	710(65), 720(60) 733(45) 763(15)	©	510(70) 521(50), 522(50), 724(50), 722(45),	544(35), 32(35), 744(35), 750(35) 646(35), 732(35), 744(35), 750(35)	735(20), 741(20), 561(15), 562(15)	J.	734(25), 740(25) 761(15)	ā	745(20), 760(15) 771(5)
Appendix table 1: SRG productivity subgroups within cost categories (Continued)		Cost category A	Subgroup 1: Subgroup 2: Subgroup 3:	Cost category B	Subgroup 1: 25(50), Subgroup 2:	Subgroup 3:	Subgroup 4:	Cost category C	Subgroup 1: Subgroup 2:	Cost category D	Subgroup 1: Subgroup 2:
SRG prod					722(50), 7				740(30)		765(15)
Appendix table 1:	LRA 66	SRG (prod. index)	710(75), 720(65) 726(50) 763(15)		510(80) 522(55), 523(50), 722(50), 725(50),	732(45), 791(40)	550(35), 741(25)		734(40), 739(40) 743(30), 761(20), 740(30)		745(25), 760(20), 765(15)
		Cost category A	Subgroup 1: Subgroup 2: Subgroup 3:	Cost category B	Subgroup 1: Subgroup 2:	Subgroup 3:	Subgroup 4:	Cost category C	Subgroup 1: Subgroup 2:	Cost category D	Subgroup 1:

-Continued

	Appendix table 1: SRG productivity subg	SRG productivity subgroups within cost categories (Continued)	ries (Continued)
	LRA 71		LRA 72
Cost category A	SRG (prod. index)	Cost category A	SRG (prod. index)
Subgroup 1: Subgroup 2: Subgroup 3:	710(80), 721(75), 720(70) 726(55), 536(50), 731(45), 738(45) 763(20)	Subgroup 1: Subgroup 2: Subgroup 3:	710(65), 720(60) 733(45), 736(30) 726(20), 763(15)
Cost category B		Cost category B	
Subgroup 1: Subgroup 2:	510(85) 521(60), 522(60), 525(60), 535(60), 724(60), 523(55), 722(55), 730(55),	Subgroup 1: Subgroup 2:	510(70) 521(50), 522(50), 525(45), 722(45), 730(45)
Subgroup 3:	531(50), /32(30) 735(45), 723(40), 791(40)	Subgroup 3:	523(40), 531(35), 535(35), 544(35), 732(35), 744(35), 791(35), 550(30
Subgroup 4:	741(30), 541(25), 561(25), 562(20), 742(20), 762(15)	Subgroup 4:	534(25), 541(20), 735(20), 741(20), 561(15),
Cost category C		Cost category C	
Subgroup 1:	734(40), 740(35)	Subgroup 1:	740(25), 761(15)
Subgroup 2:	761(25)		
Cost category D		Cost category D	
Subgroup 1:	760(25)	Subgroup 1:	760(15), 771(5)

-Continued

Appendix table 1: SRG productivity subgroups within cost categories (Continued)

LRA 75	SRG (prod. index)	710(85), 721(80), 720(75) 731(55) 763(20)		510(90) 521(70), 522(70), 724(70), 523(65),	535(55), 722(55), 732(55), 737(50), 531(55), 732(56), 723(50), 731(75)	541(35), 550(30), 742(30), 543(25), 562(25)		740(50), 734(45) 761(25), 770(15)		760(30)
	Cost category A	Subgroup 1: Subgroup 2: Subgroup 3:	Cost category B	Subgroup 1: Subgroup 2:	Subgroup 3:	Subgroup 4:	Cost category C	Subgroup 1: Subgroup 2:	Cost category D	Subgroup 1:
LRA 73	SRG (prod. index)	710(80), 721(75), 720(70) 763(20)		510(85) 521(60), 522(60), 724(60), 523(55),	531(55), 735(55), 534(45), 735(45), 731(45),	550(30), 741(30), 541(25), 562(20), 742(20), 561(25)		734(40), 740(35) 761(25), 770(10)		760(25) 771(5)
	Cost category A	Subgroup 1: Subgroup 2:	Cost category B	Subgroup 1: Subgroup 2:	Subgroup 3:	Subgroup 4:	Cost category C	Subgroup 1: Subgroup 2:	Cost category D	Subgroup 1: Subgroup 2:

Appendix table 1: SRG productivity subgroups within cost categories (Continued)

LRA 106	. index) Cost category A SRG (prod. index)	\$21(85), 720(80) Subgroup 1: 710(95), 720(85) \$36(60) \$36(60) \$100 3: 763(30)	Cost category B	510(95) 522(80), 525(80), 724(80), 521(75), Subgroup 2: 522(85), 724(85), 521(80), 523(75), 523(75), 523(75), 722(70), 725(70),	Subgroup 3:	Subgroup 4:	sou(so), sou(s), sou(s), Supprone 5: 561(40), 550(35), 562(30)	Cost category C	334(55), 740(55) Subgroup 1: 734(60), 740(60) Subgroup 2: 761(35), 770(25)	Cost category D	
LRA 102	SRG (prod. index)	710(90), 721(85), 720(80) 726(70), 536(60) 738(55) 763(25)		522(80), 525(80), 523(75), 535(70),	732(65), 737(65),	741(50), 541(45),	780(5)		739(60), 734(55), 740(55) 743(30), 761(30), 770(20)		
	Cost category A	Subgroup 1: Subgroup 2: Subgroup 3: Subgroup 4:	Cost category B	Subgroup 1: Subgroup 2:	Subgroup 3:	Subgroup 4:		Cost category C	Subgroup 1: Subgroup 2:	Cost category D	

Appendix table 2: Cost per unit by LRA to produce the minimum cost crop pattern under four hail suppression assumptions, by crop, Nebraska

Crop	Suppression level *	Unit	64	65	99	<i>L</i> 9	17	72	73	75	102	901	: State : Ave.	1 1
							Dollars/units	/units						
NI Wheat	0 10 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		.68 .67 .67	.65 .65 .64	.86 .85 .85	.75 .74 .73	.74 .73 .73	.65 .64 .63	.68 .67 .63	.70 .70 .69 .69	.70 .70 .70 .69	.68 .68 .68 .67	. 69 . 68 . 67	
NI Other small grains	10 : 10 : 10 : 25 : 50 : 50 : 50 : 50 : 50 : 50 : 5	 Dr	.56 .55 .55	.58 .58 .58	.58 .58 .58	. 55 . 55 . 54	69. 89. 89.	.57 .57 .56 .56	.67 .67 .63 .63		89. 88. 88. 88.	.63 .63 .63	. 65 . 64 . 64	
NI Corn for grain	0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	ğ	1.19	1.00 1.00 .99 .98	.80 .80 .80	1.44 1.43 1.41 1.39	.83 .83 .82	1.36 1.35 1.33	1.04	.74 .73 .73	.66 .66 .66 .65	.62 .62 .62 .63	.67 .67 .63	
NI Corn for silage	0 10: 25: 50:	ton	7.49 7.49 7.49 7.49	7.17 7.17 7.17 7.17	7.27 7.27 7.27 7.27	6.56 6.56 6.56 6.56	6.33 6.33 6.33 6.33	7.90 7.90 7.90 7.90	6.22 6.22 6.18 6.15	5.95 5.95 5.95 5.95	6.00 6.00 6.00 5.97	5.71 5.71 5.71 5.70	6.03 6.03 6.03 6.01	
NI Sorghum for grain	0 10: 25: 50:	ğ	900.0	8.85 8.85 8.85	.72	1.26 1.26 1.26 1.26	.63 .63 .63	.90 .89 .88 .87	.6. .60 .60	.50 .49	. 52 . 52 . 52 . 51	.49 .49 .48	इंड्रेड्ड	
NI Sorghum for silage	10 : 25 : 50 : 50 : 50 : 50 : 50 : 50 : 5	tou	4.77 4.77 4.77 4.77	5.21 5.19 5.15 5.11	5.82 5.82 5.82 5.82	6.67 6.67 6.67 6.67	4.88 4.88 4.88	5.20 5.20 5.20 5.20	5.95 5.95 5.95 5.95	4.84 4.84 4.84 4.82	4.68 4.68 4.68 4.68	4.56 4.56 4.56 4.55	4.87 4.87 4.87 4.86	
NI Alfalfa	0 10 : 25 : 50 :	ton " "	20.00 20.00 20.00 20.00	17.99 17.99 17.99 17.71	19.14 19.14 19.14 19.14	21.30 21.30 21.30 21.30	15.99 15.99 15.99 15.99	18.21 18.21 18.62 17.89	14.73 14.73 14.73 14.73	14.88 14.88 14.88	14.83 14.83 14.83	14.96 14.96 14.96 14.96	15.32 15.32 15.31 15.30	
NI Other tame hay	0	ton:::	17.93 17.91 17.93 17.93	18.48 18.48 18.48	16.61 16.61 16.61 16.44	20.45 20.45 20.45 20.45	17.81 17.81 17.81 17.81	17.82 17.82 17.82 17.82	17.10 17.10 17.10 17.10	16.77 16.77 16.77 16.77	21.60 21.60 21.60 21.60	17.81 17.81 17.81 17.81	18.39 18.39 18.39	

Appendix table 2: Cost per unit by LRA to produce the minimum cost crop pattern under four hail suppression assumptions, by crop, Nebraska (Continued)

Crop	Suppression level *	. Unit:	64	. 65	99 :	. 67	17	72	73	75	102	106	: State : Ave.
	ક્ર						Dollars/unit	/unit					
NI Soybeans	0 10 25 50		1111	1111	1111	1111	1.37 1.35 1.33 1.29	1111	1.46 1.46 1.45 1.44	1.04 1.04 1.03	1.23 1.22 1.22 1.22	1.06	1.15
IR Wheat	0 10 25 50		.99 .98 .97	.97 .95 .96	1111	1.09 1.08 1.07 1.04	.92 .92 .91	.98 .97 .96	.86 .86 .86	.93 .93 .92	1.07 1.07 1.06 1.06	1111	.96 .95 .93
IR Corn for grain	0 10 25 50		.82 .81 .81	.78 .78 .77	.78 .77 .77 .76	.82 .82 .81 .81	.65 .64 .63	.70 .69 .68 .68	.67 .66 .66 .65	.62 .62 .62 .61	.66 .66 .65	69 69 69 89	.65 .64 .64
IR Corn for silage	0 10 25 50	to	6.33 6.33 6.38	6.87 6.87 6.87 6.87	6.73 6.73 6.73 6.73	6.27 6.27 6.27 6.27	5.96 5.96 5.96 5.96	6.29 6.29 6.29 6.29	6.42 6.40 6.38 6.34	6.42 6.42 6.43 6.39	6.20 6.20 6.21 6.21	6.57 6.57 6.57 6.56	6.26 6.26 6.26 6.25
IR Sorghum for grain	0 10 25 50		.6. .6. .6.	.67 .67 .67 .66	.59 .59 .58		25.55	.60 .60 .59	.50 .50 .50	. 53 53 53	.49 .49 .49	.48 .48 .49	.52 .52 .53
IR Sorghum for silage	e 0 10 25 50	to" : :	5.23 5.23 5.23 5.23	5.30 5.27 5.22 5.15	1111	4.76 4.76 4.76 4.76	5.21 5.21 5.21 5.22	5.10 5.10 5.10 5.09	5.24 5.24 5.24 5.23	5.26 5.26 5.26 5.25	5.08 5.08 5.08 5.06	1111	5.16 5.16 5.16 5.15
IR Alfalfa	0 10 25 50		17.60 17.60 17.60 17.60	16.93 16.93 16.78 16.66	17.05 17.05 17.05 17.05	16.32 16.32 16.32 16.32	16.95 16.95 16.95 16.95	16.08 16.08 15.89 15.87	15.35 15.35 15.35 15.35	16.62 16.62 16.62 16.62	16.29 16.29 16.29 16.29	17.81 17.81 17.81	16.37 16.37 16.32 16.30
IR Other tame hay	0 10 25 50	ton	18.14 18.14 18.14 18.14	20.81 20.81 20.81 20.81	1111	1111	1111	1111	1111	17.23 17.23 17.23 17.23	1111	1111	17.58 17.58 17.58 17.58

(3 of 3)

Appendix table 2: Cost per unit by LRA to produce the minimum cost crop pattern under four hail suppression assumptions, by crop, Nebraska (Continued)

	Suppression	: Unit:	7 5	• • • •	65		99	. 67	••••	11	•• •• •	72	. 73		75	102		901		State
	ે									0011	Dollars/units	nits								
IR Soybeans	0		1		;	1		1		==		1	1.25	_	.21	1.2	_	1.10	_	.17
•	10	<u>=</u>	1	,	1	1		i		1.10		1	1.24	_	.20	1.2	_	1.10	_	91.
	52	=	1		1	•	;	!		1.08		1	1.24	_	. 19	1.2	_	1.10	_	.15
	20	=	1		1	1		1		1.05		3	1.23	_	1.18	1.19	6	1.09	_	1.13
IR Sugar beets	0	. Ton	12.26	12	. 69	1	,	10.3		12.44	12	12.27	12.18	_	.87	12.3	2	;	10	10.99
ì	10	=	12.06	12	12.64	1	;	10.37		12.34	15	.27	11.99	_	11.82	12.35	5	!	2	.97
	25	=	11.77	12	.53	•		10.3		12.20	12	.27	11.72	_	.74	12.3	5	;	2	.94
	20	=	11.31	2	.10	1		10.3		11.97	15	.27	11.30	_	.63	12.3	0	1	2	98.

*0 = Without hail suppression

Appendix table 3: Percent of total State acreage located in each LRA, by crop, for four hail suppression assumptions, minimum cost crop patterns, Nebraska

Crop Sul	Suppression level *		State Total Acres	64		99	 99		67	7.1		72	73	75	102	106
		•• •• •							Pe	Percent						
NI Wheat (Production & fallow)	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	पर्वच	4,460,351 4,459,863 4,459,816	ف ف ف ف	ਹਿਵਾਦਵ	0.000 0.400 0.000 0.000	<u> </u>		0.35 0.36 0.36	ក ក ក ក ក ភ ភ ភ ភ ភ		28.46 28.46 28.46 28.46	444 444 200.44 200.00	22.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2.21	6.15 6.15 6.15 6.15
NI Other small grains	10 25 50	•• •• •• •• ••	549,039 548,939 550,085 549,972	4444	0 0 mm	8.50 8.50 8.49	4444 4468	មាយ មោយ	5.29 5.28 5.28	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ஓார்க ஜகழ் மூர்க் <i>ம</i> ாக்	6.84 6.83 7.54	1.75 1.75 4.26	3.67	57.57 57.56 55.14 54.52	3.37 3.37 3.37
NI Corn for grain	0 10 25 50		2,434,046 2,434,046 2,434,046 2,434,046	,	02 02 02 02	O O O O	90.1.0		<u> </u>	0.0.0.0 0.0.0	godyn gard yn acodo scola	inco hore hore form		4.46 4.46 4.46	62.05 62.05 62.05 62.05	22.73 22.73 22.73 22.73
NI Corn for stlage	10 25 50	• • • • • • •	274,333 274,333 274,333 273,451	• • • •	90 90 90 90	2.95 2.95 2.95			ជុំជុំជុំ លើលើលើលើ	8.20 8.20 8.20 8.20 8.20		9999	4.46 4.46 4.46 4.88	6.07 6.07 6.07 6.09	63.57 63.57 63.57 63.78	11.82 11.82 11.53
NI Sorghum for grain	10 25 50	ic es es es es es e	1,582,559 1,582,672 1,582,872 1,579,609	<u>oʻoʻoʻo</u>	form been born from	ten ten ten ten	2222		20.02	4.20 4.20 4.20	000-	2222	13,48 13,547 13,53	38.71 38.70 38.70 38.78	10.43 10.43 10.43	29.85 29.85 29.80 29.66
NI Sorghum for silage	0 10 25 50		107,054 107,054 107,054 107,510	• • • •	ಶಕ್ಷಣ	00004	ဆို အို အို လို လို အို အို အို		47. 44.	8.47 8.47 8.47		4 .88 4 .88 4 .88 4 .85	16.59 16.59 16.59 16.52	22.71 22.71 22.71 22.61	23.61 23.61 23.61 23.51	20.70 20.70 20.70 20.61
NI Alfalfa	0 10 25 50	ton text text tree	1,286,167 1,286,167 1,283,635 1,286,167	8.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	စ္စစ္အစ	8.73 8.74 8.74	2.36 2.36 2.37		<u> </u>	16.51 16.55 16.55	IO -	2 2 2 2 2 3 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 4 5	4.90 4.90 4.91 4.91	12.40 12.40 12.42 12.40	36.87 36.87 36.94 36.87	14.40 14.40 14.43 14.40

Appendix table 3: Percent of total State acreage located in each LRA, by crop, for four hail suppression assumptions, minimum cost crop pattersn, Nebraska (Continued)

Crop	Suppression :	State : Total : Acres :	64	65	99	29	17	72	73	75	102	106
						٩	Percent					
NI Other tame hay	0 10 25 50	783,444 783,439 783,444 783,206	1.12	33.46 33.45 33.46 33.57	7.38 7.38 7.38 7.38	3.73 3.73 3.73	8.32 8.32 8.32 8.32	19.56 19.56 19.56 19.56	4.48 4.48 4.48 4.48	4.67 4.67 4.67 4.67	11.79	5.50 5.50 5.50 5.50
NI Soybeans	0 10 25 50 50	733,678 733,661 733,671 733,671	1111	.02	1111	: : : :	.03	1111	.03	9.92 9.92 9.92 9.92	57.28 57.28 57.28 57.28	32.73 32.73 32.73 32.73
IR Wheat	10 10 25 50	2,107 2,107 2,107 2,107	14.05 14.05 14.05	20.60 20.60 20.60 20.60	1111	6.79 6.79 6.79 6.79	11.44 11.44 11.44	27.62 27.62 27.62 27.62	14.52 14.52 14.52 14.52	3.56 3.56 3.56	1.42	::::
IR Corn for grain	0 10 25 50	2,169,809 2,169,117 2,169,509 2,169,668	22. 24. 24. 24.	4.18 4.18 4.13	<u> </u>	2.42 2.42 2.42 2.42	22.32 22.33 22.32 22.32	5.22 6.08 6.08 6.15	8.67 8.67 8.67 8.67	42.65 41.77 41.78 41.71	12.84 12.84 12.84 12.84	1.46 1.46 1.46 1.46
IR Corn for silage	0 10 25 50	136,930 136,976 136,302 136,774	5.89 5.89 2.74 2.23	6.69 6.69 6.72 6.70	.03	16.78 16.78 16.86 16.73	23.18 23.17 23.29 23.21	10.61 10.61 10.66 10.63	6.44 6.44 6.47 6.45	18.97 18.99 17.82 22.62	11.31 11.30 15.31 11.32	60° 60° 60°
IR Sorghum for grain	0 10 25 50	166,108 166,108 166,108 168,466	.03 .03 .03	.23 .23 .23	.05	90. 90. 90.	10.19 10.19 10.05	1.20 1.20 1.20 1.18	19.88 19.88 19.88 20.01	54.86 54.86 54.86 54.10	5.57 5.57 5.57 5.49	7.93 7.93 7.93 8.81
IR Sorghum for silage	0 10 25 50	10,410 10,424 10,434 10,211	1.83 1.82 1.82 1.86	2.85 2.85 3.61 4.81	. 1111	1.87 1.87 1.91	19.39 19.49 18.80 17.83	12.49 12.47 12.45 10.81	5.44 5.43 5.42 5.54	26.20 26.16 26.14 26.71	29.24 29.90 29.87 30.53	1111
IR Alfalfa		244,966 244,966 246,360 245,139	2.02 2.02 2.01 2.01	11.62 11.62 11.56 11.51	0.0.0.0	30.02 30.02 29.85 30.00	16.04 16.04 15.95 16.03	17.41 17.41 17.88 17.47	10.82 10.82 10.76 10.82	8.81 8.81 8.76 8.81	3.18 3.18 3.16 3.18	90. 90. 90.

Appendix table 3: Percent of total State acreage located in each LRA, by crop, for four hail suppression assumptions, minimum cost crop patterns, Nebraska (Continued)

901		;	;	;	:		2.90	2.90	2.90	2.90		:	;	:	;	
102		;	;	;	;		25.66	25.66	25.66	25.66	ę	90.	.63	.68	.68	
75		60.46	60.46	60.46	60.46				38.30	38.30	5	71.	.12	.12	.12	
73		;	;	;	;		.31	.31	.31	.31	۲,	?	.70	.70	.70	
72		ŧ ŧ	;	1	!		;	8	;	!				21.46	21.44	
17	ادير	;	;	;	;				39.50						1.43	
29	Percent	;	;	;	1		;	;	!	;	7.	04.10	64.17	64.19	64.14	
. 99		;	;	;	:		;	;	f	:		!		;	;	
65		==	 				;	;	;	!	7	٤.	.31	.31	.38	
64		38.43	8.43	8.43	18.43		ţ	1	1	!		51.3	1.12	1.12	I.I	
State: Total: Acres:					36,969 3		49,943	943	,943	943		-	_	_	81,716	
		. 36	: 36	: 36	36,	••	: 49	: 49,	: 49	: 49,		ē	: 81	: 81	: 81	••
Suppression level		0	10	25	20		0	9	25	20	•	0	10	25	20	
Cost		IR Other tame hay	•				IR Soybeans	•				ik Sugarbeets	,			

^{*} O=Without Hail Suppression

Appendix table 4: Crop production by LRA with minimum cost crop patterns under four hail suppression assumptions, by crop, Nebraska

106	10,116 10,139 10,182 10,245	860 863 863 873	38,310 38,384 38,384 38,725	386 386 386 378	33,888 33,941 33,897 33,823	314 314 314 316	522 522 522 522 522	69 69 69
102	3,244 3,254 3,276 3,305	13,045 13,096 12,577 12,520	90,406 90,674 91,126 91,892	1,925 1,925 1,925 1,940	9,871 9,888 9,888 9,972	302 302 302 302	1,244 1,244 1,244 1,244	135 135 135 135
75	26,196 26,319 26,514 26,826	869 872 877 886	5,844 5,863 5,900 5,948	187 187 187	39,397 39,457 39,554 39,684	290 290 290 292	425 425 425 425	09
73	15,072 15,195 15,365 15,628	355 361 944 976	872 877 886 898	1112	8,812 8,847 8,941 9,015	123 123 123 123	146 146 146 146	5 5 5 7
72	20,680 20,897 21,257 21,798	1,686 1,708 1,744 1,962	916 924 937 955	18 18 18	870 876 886 901	48 48 48	37 37 32 39	219 219 219 219
17	4,486 4,515 4,560 4,625	786 791 799 811	5,474 5,503 5,547 5,622	202 202 202 202	2,827 2,834 2,844 2,865	66 66 66	431 431 431	97 97 97
29	6,141 6,220 6,360 6,577	1,163 1,179 1,202 1,242	9999	====	் வெவவ	4444	∞ ∞ ∞ ∞	3333
99	====	969 974 981 994	1,004 1,009 1,017 1,030	24 24 24 24	653 655 656 660	9999	34 34 34 34	81 81 82
65	3,985 4,024 4,070 4,161	1,716 1,728 1,747 1,780	1,549 1,558 1,569 1,588	52 52 52 52	76 76 76 76	9 10 10	147 147 147 150	31 31 118 118
64	4,360 4,404 4,481 4,601	1,020 1,040 1,070 1,119	12 12 12		2222	4444	91 91 91	====
Units	Thou. 000 bu.	.nq 000	.nq 000	000 tons	.nq 000	. 000 tons 	000 tons	000 tons
Suppression level *	0 10 25 50	0 10 25 50	0 10 25 50	0 10 25 50	0 10 25 50	0 10 25 50	0 10 25 50	0 10 25 50
Crop Supp	NI Wheat	NI Other small grains	NI Corn for grain	NI Corn for silage	I Sorghum for grain	l Sorghum for silage	NI Alfalfa	NI Other tame hay
ပြ	Z	Z	Z	Z	Z	Z	Ž	Z

Appendix table 4: Crop production by LRA with minimum cost crop patterns under four hail suppression assumptions, by crop, Nebraska (Continued)

Crop Suppres	Suppression level *	Units :	64	65	99	19.	7.1	72	73	75	102	106
NI Soybeans	00	Thou.	1 1	44	11	; ;	4 4	11	44	1,995	10,611	6,769
	25 50	= =	1 1	44	11	11	44	1 1	44	2,021		6,793 6,883
IR Wheat	0 10 25 50	•nq 000	9 01 01	16 16 16 17	1111	4400	10 10 10 10	21 21 22 22	<u> </u>	ოოოო		::::
IR Corn for grain	0 10 25 50	. nq 000	400 403 408 416	8,770 8,811 8,882 8,992	14 15 15	4,344 4,376 4,422 4,503	53,304 53,590 54,009 54,752	11,257 13,492 13,667 14,152	19,701 19,828 19,997 20,293	102,963 101,229 101,805 102,541	30,650 30,756 30,904 31,146	3,333 3,339 3,339 3,369
IR Corn for silage	0 10 25 50	. 000 tons 	117 117 53 43	139 139 139 139		390 390 388	598 598 598 598	251 251 251 251 251	141 142 143 145	429 430 400 517	277 277 373 279	0000
IR Sorghum for grain	0 10 25 50	. 000 bu.	ოოოო	28 28 28 28	0000	~~~~	1,472 1,475 1,481 1,491	154 155 157 160	2,886 2,896 2,909 2,998	8,341 8,350 8,368 8,403	878 880 880 887	1,302 1,304 1,304 1,463
IR Sorghum for silage	0 10 25 50	. 000 tons 	ოოოო	22 6		বববব	35 35 31	25 25 25 25 21	0000	51 51 52	60 60 60 61	::::
IR Alfalfa	0 10 25 50	: 000 tons : "	144	93 94 96	リリリリ	238 238 238 238	144 144 144	163 163 173 168	109 109 109	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	30 30 30	1441
IR Other tame hay	0 10 25 50	. 000 tons 	34 34 34		1111	1111	1111	1111	1111	64 64 64	1111	::::

(45)

Appendix table 4: Crop production by LRA with minimum cost crop patterns under four hail suppression assumptions, by crop, Nebraska (Continued)

Cost	Suppression level *	: Units	5 : 64	4	65	 99	·	29		-	72		73		75	102	<i>.</i>)0l
		: Thou.																
IR Soybeans	0	: 000 pn		;	;	1		ł		30	i		េច		929	336		26
	0			:	;	Ē		1	_	40	ì	1	2	_	99	338		26
	52	= 		:	1	;		ļ	-	53	í		2	_	999	338		26
	20	=		!	i	t 1		ł		7.8	i		5	_	674	345		23
IR Sugarbeets	0	: : 000 tons		36	4	i		950		19	276	5	6		2	6		;
	10	= 		40	4	ł		950		19	27(ς.	6		2	6		;
	52	= 	_	45	4	:		951		19	27(2	2		2	6		ł
	20	= 		55	7	ţ		955		20	27(5	2		2	6		1
		•																

1/ Less than 500 units.

* O = Without Hail Suppression

Appendix table 5: Total factor demand (cost of production) by LRA in producing minimum cost crop patterns under four hail suppression assumptions, by crop, Nebraska

Crop	Suppression level *	64	99	99		71	72	73	75	102	901
					自	Thousand Dollars	lars				
NI Wheat	0 10 25 50	2,970 2,982 3,004 3,038	2,609 2,619 2,629 2,653	0000	4,605 4,627 4,664 4,722	3,305 3,313 3,326 3,346	13,455 13,515 13,617 13,768	10,190 10,229 10,278 10,358	18,332 18,368 18,422 18,512	2,269 2,272 2,278 2,286	6,860 6,865 6,878 6,897
NI Other small grains	0 10 25 50	575 581 589 604	1,001 1,005 1,010 1,020	562 564 566 569	644 649 656 669	541 543 . 545 549	968 975 985 1,101	239 240 599 609	551 552 553 556	8,910 8,923 8,580 8,502	539 539 539 542
NI Corn for grain	0 10 25 50	1144	1,556 1,556 1,556 1,556	810 810 810 810	666	4,581 4,583 4,586 4,591	1,245 1,245 1,245 1,245	905 905 905 905	4,305 4,306 4,310 4,315	59,945 59,975 60,018 60,096	23,615 23,624 23,624 23,666
NI Corn for stlage	0 10 25 50		374 374 374 374	176 176 176 176	74 74 74	1,282 1,282 1,282 1,282	145 145 145	688 689 692 695	1,110	11,543 11,543 11,543	2,204 2,204 2,204 2,152
NI Sorghum for grain	0 10 25 50	~~~~	65 65 65 65	472 472 472 472	9999	1,791 1,792 1,793 1,796	780 781 781 782	5,361 5,365 5,397 5,406	19,546 19,557 19,571 19,950	5,107 5,109 5,109 5,122	16,475 16,485 16,462 16,379
NI Sorghum for silage	0 10 25 50	8 8 8 8	49 50 50 72	36 36 36 36	08 08 08	485 485 485 485	249 249 249 249	729 729 729 729	1,404 1,404 1,404 1,409	1,413 1,413 1,413	1,431 1,431 1,431
NI Alfalfa	0 10 25 50	375 375 375 375	2,642 2,642 2,642 2,668	653 653 653 653	176 176 176 176	6,888 6,888 6,888 6,888	681 681 597 691	2,148 2,148 2,148 2,148	6,328 6,328 6,328 6,328	18,456 18,456 18,456 18,456	7,803 7,803 7,803 7,803
NI Other tame hay	0 10 25 50	190 192 190 190	5,755 5,753 5,755 5,749	1,339 1,339 1,339 1,352	629 629 629 629	1,734 1,734 1,734 1,734	3,909 3,909 3,909 3,909	875 875 875 875	1,004 1,004 1,004	2,926 2,926 2,926 2,926	1,220 1,220 1,220 1,220

Appendix table 5: Total factor demand (cost of production) by LRA in producing minimum cost crop patterns under four hail suppression assumptions, by crop, Nebraska (Continued)

102 : 106	,037 7,174 ,039 7,175 ,039 7,175 ,042 7,180		20,287 2,291 20,298 2,291 20,317 2,291 20,345 2,295	,719 13 ,719 13 ,318 13	430 631 430 631 430 631 430 710	306 306 306	489 8 489 8 489 8	111
75 : 10	2,077 13, 2,079 13, 2,080 13, 2,084 13,	ოოოო	63,968 20, 62,662 20, 62,735 20, 62,713 20,	2,755 1, 2,760 1, 2,572 2, 3,302 1,	4,435 4,436 4,441	270 270 270 271	1,375 1,275 1,375 1,375	1,094
73	6 6 6	====	13,136 13,152 13,173 13,208	909 911 914 919	1,456 1,457 1,458 1,492	23 23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	1,674 1,674 1,674 1,674	: : :
72	sand Dollar	20 20 20 20	7,887 9,254 9,270 9,418	1,579 1,579 1,579 1,579	99999 933	126 126 126 106	2,629 2,629 2,750 2,764	111
17	Thousand 6 6 6 6 6 6 6 6 6	6666	34,454 34,491 34,538 34,629	3,565 3,565 3,565 3,565	757 758 758 759	182 184 177 164	2,444 2,444 2,444 2,444	111
29	1111	വവവ	3,564 3,568 3,572 3,581	2,443 2,443 2,443 2,433	4444	91 91 91	3,884 3,884 3,884 3,884	111
99	1111	: : : :		ਹਿ ਹਿ ਹ	m m m m	1111		111
. 65	1111	16 16 16 16	6,858 6,863 6,871 6,884	953 953 953 953	19 19 19	26 26 34 45	1,571 1,571 1,584 1,594	17 17 71
64		9 9 9 10	328 328 329 329	744 744 340 277	2222		253 253 253 253	623 623 623
Suppression level *	0 10 25 50	0 10 25 50	0 10 25 50	0 10 25 50	0 10 25 50	3e 0 10 25 50	0 10 25 50	0 10 25
Crop	NI Soybeans	IR Wheat	IR Corn for grain	IR Corn for silage	IR Sorghum for grain	IRS Sorghum for silage	IR Alfalfa	IR Other tame hay

Appendix table 5: Total factor demand (cost of production) by LRA in producing minimum cost crop patterns under four hail suppression assumptions, by crop, Nebraska (Continued)

Crop	Suppression level *	64	 65	 99		29	וג		72	 73	75		102	 106
							Thous	and D	housand Dollars					
IR Soybeans	0	:	!	:		;	8	_	1	9	79%	0.1	408	19
	2	:	ť	I I		:	8	က	:	9	79.	~	408	61
	. 52	!	ŀ	:		:	8	2	!	9	762	_	408	19
	20	:	•	Į Į		:	85	0	1	9	79		409	62
IR Sugarbeets	0	. 1,668	49	i.	9,8	53	231		3,385	109	19	_	106	;
,	10	: 1,685	49	;	6	58	23	2	3,385	01	=	_	901	;
	52	1,709	49	I.	6	998	23	4	3,385	112	Ξ.	_	901	:
	20	: 1,754	70	:	6	82	23	9	3,385	115	5	_	107	;
		••												

* 0 = Without Hail Suppression

