

Baron Schwartz @ @xaprb · 15. Nov.

When you're fundraising, it's Al When you're hiring, it's ML When you're implementing, it's linear regression When you're debugging, it's printf()

Original (Englisch) übersetzen

1 4,4 Tsd.

10 Tsd.

Discussion print("C")

Today we will learn:

Today we will learn:

Regression

But what is Linear ReGURAssion?

In simplified words:

It is a way to capture the trend line of dataset

In longer explanation:

In statistics, linear regression is a linear approach to modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables) [wiki]

Let's look inside the math behind linear rEVANGELION

Remember this?

This is him now

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$$

Credit: Andrew Ng

Feels old yet?

But how do you get from this

$h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 600 Price \$ (in 1000s) 000 000 000 000 000 000 100 Training data -Current hypothesis 1000 2000 4000 -500 500 1000 1500 Size (feet²)

Andrew Ng

To this

Credit: Andrew Ng

Introducing: Gradient Descent

Issue: what if we cannot get the lowest cost function

A Complicated Loss Landscape Image Credits: https://www.cs.umd.edu/~tomg/projects/landscapes/

- Adjust learning rate (difficult to find the right learning rate)
- Repeat the trial while changing starting point every time (Stochastic Gradient Descent)

Linear REYgression with multiple features

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

If we have this....

We can also have this!

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + \dots + b_n x_1^n$$

Same cost(loss) function and gradient descent

repeat until convergence: { $heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$ $heta_1 := heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)}$ $heta_2 := heta_2 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)}$

The good, the bad, and the ugly

Terminology and Tips

We use the term "bias" and "variance" as another way to explain how well the trend line (or plane if 3D) captures data

Bias: Inability to capture the <u>true</u> relationship **Variance**: The difference in cost function between train dataset and test dataset

Bias: Inability to capture the <u>true</u> relationship

Variance: The difference in cost function between train dataset and test dataset

Ideally: low bias and low variance

Bias: Inability to capture the <u>true</u> relationship

Variance: The difference in cost function between train dataset and test dataset

Ideally: low bias and low variance

R-squared

- R-squared is a goodness-of-fit measure for linear regression models
- It tells how much two variables are correlated. $R^2=1$ means two variables are perfectly correlated. $R^2=0$ means that two variables are not correlated

R-squared

BUT! Be careful! High R-squared can also mean the model overfits

```
[16]: correlation = airbnb housing.corr()
      correlation["price"].sort_values(ascending=False)
[16]: price
                                        1.000000
      availability 365
                                        0.081829
      calculated_host_listings_count    0.057472
      minimum_nights
                                        0.042799
      latitude
                                        0.033939
                                        0.015309
      host id
      id
                                        0.010619
      reviews_per_month
                                       -0.030608
      number_of_reviews
                                       -0.047954
                                       -0.150019
      longitude
      Name: price, dtype: float64
```

Correlation between housing price and other features. Note: this is correlation (R), not \mathbb{R}^2 .

Basically: when working with dataset, consider features correlation. It's up to you to drop a certain feature if you believe it does not contribute to the prediction model

// R-squared is for the predicting line correlation to all feature, while R is for correlation between 2 features

But you know, I learned something today

- Linear regression can find the trend line so we can make a prediction
- The model should not be too overfitted or underfitted
- R-square scored is a way to find model's accuracy

https://colab.research.google.com/drive/1YxHMiHZn EiwnHRFJh2SL83Bj-6eHJzQR?usp=sharing