CSC373H1 Summer 2014 Assignment 4

Names: John Armstrong, Henry Ku

 $SNs\CDF$ username: 993114492\g2jarmst, 998551348\g2kuhenr

Question #	Score
1	
2	
3	
4	
Total	

Acknowledgements:

"We declare that we have not used any outside help in completing this assignment."

Name: John Armstrong, Henry Ku

Date: July 28, 2014

Q1. The Mute Prison

Claim: The mute prison problem is NP-complete.

Proof:

- 1. Show the mute prison problem is NP.
- 2. Show the mute prison problem is NP-hard.
- 1. Suppose we are given a certificate S and have access to value k and matrix T. We can verify that the certificate is satisfiable in the following way. Suppose each element in S represents an inmate. Verification would involve iterating on each inmate in the following way:

```
for inmate\ in\ S do |\ j=1; while j\leqslant m do |\ if\ T[inmate,\ j] then |\ for\ (other inmate,\ j] then |\ S is not a subset of inmates who do don't speak the same language; end end |\ end |\ j++; end
```

Clearly, the verification that S is a subset where no two inmates speak the same language can run in polynomial time $O(mn^2)$. Once this verification if complete all that is left to do is to verify that $|S| \ge k$, which is O(1). Therefore the mute prison problem is NP.

<u>2.</u> To show that the mute prison problem is NP-hard we must perform a reduction using an NP-complete problem. We will use a reduction on NP-complete 3-SAT in CNF, in order to show 3-SAT \leq_p Mute Prison Problem.

Properties of Reduction

Suppose that ϕ is an instance of 3-SAT and C_1 , C_2 , ..., C_m are the clauses of ϕ . By construction of 3-SAT in CNF we have $C_i = (z_{i1} \lor z_{i2} \lor z_{i3})$. In the reduction each C_i 's boolean value will represent a boolean value for each language, L_i , spoken by some inmate(s), precisely, $L_i = C_i = (z_{i1} \lor z_{i2} \lor z_{i3})$. Each boolean value for L_i has a specific mean:

$$L_i = \begin{cases} 1 & \text{if } L_i \text{ is spoken by at most 1 inmate} \\ 0 & \text{if } L_i \text{ is spoken by at least 1 inmate} \end{cases}$$

Producing $L_1, L_2, ..., L_m$ will take polynomial time since we iterate through each C_i and perform a boolean or operation on each z_i in C_i which takes O(m).

Finally, the mute prison problem requires a matrix L to produce the subset of inmates S. Let T be an m x m matrix, so that no inmates are left without a language. The rows in T will represent inmates and the columns will represent languages such that column i represents L_i . The algorithm that performs the reduction will

iterate through each L_i . If $L_i = 1$ then set T[i, i] = 1, else if $L_i = 0$ then T[1, i] = T[2, i] = ... = T[m, i] = 1. Assigning all inmates to speak L_i , when $L_i = 0$, will guarantee that |S| = 0. Alternatively, \forall i, $L_i = 1$ then |S| = m. So that if ϕ is satisfies 3-SAT, then T will satisfy the mute prison problem if we set k = m. Again this process is polynomial as it iterates through m L_i 's and assigns at most m inmates the language L_i , so it will run $O(m^2)$.

Q2. The Nonsense Prerequisites

Q3. T-rex Christmas

Q4. Vertex Cover