Lecture 22. Shortest Paths

CpSc 8400: Algorithms and Data Structures
Brian C. Dean

School of Computing
Clemson University
Spring, 2016

Types of Shortest Path Problems

- Single-source single-destination: find the shortest path from s to t in a (directed) graph.
- **Single-source:** find the shortest path from s to every other node in a (directed) graph.
- All-pairs: find the shortest path from every node to every other node.

2 |

Single-Source Shortest Paths

Input:

Directed graph with costs/weights/lengths on its edges.

Output:

- c[j]: cost of shortest
 s → j path
- pred[j]: previous node (before j) on a shortest s → j path.

3

Single-Source Shortest Paths: Algorithms

- Easy cases that we can solve in linear time:
 - Unweighted graphs: use breadth-first search.
 - Directed acyclic graphs (DAGs): use dynamic programming.
- If edge costs are <u>nonnegative</u>, we'll use Dijkstra's algorithm.
- If some edge costs are negative, we use the Bellman-Ford algorithm.

Breadth-First Search

- Depth-first search dives as deeply as possible into a graph until it can go no further, then it backs up and tries to branch.
- In contrast, a breadth-first search (BFS) starting at some source node s will visit s, then all nodes 1 hop away from s, then all nodes 2 hops away from s, etc.
- Like DFS, we can also use BFS to find connected components or answer "find a path from i to j" queries.
 - BFS finds a path from i to j having fewest edges.

5

Breadth-First Search

```
BFS(s):
    For all nodes i:
        pred[i] = null
        dist[i] = Infinity
Q = {s}
    dist[s] = 0
While Q is nonempty:
        i = next node in Q
        For all nodes j such that (i,j) is an edge:
        If dist[j] = Infinity,
            pred[j] = i
            dist[j] = dist[i] + 1
            Append j to the end of Q
```

 If Q is implemented as a stack rather than as a FIFO queue, we get DFS rather than BFS!

Negative-Cost Cycles

- If negative-cost edges exist:
 - We need to use the O(mn) Bellman-Ford algorithm.
 - We can only find shortest paths if there are no negativecost directed cycles (Bellman-Ford can at least detect whether negative cycles exist).
 - If our graph is undirected, we typically assume it has no negative-cost edges to begin with.
- <u>Longest</u> path problems convert to shortest path problems by negating edge lengths, so <u>positive</u>cost cycles are bad for these problems
 - So longest path problems are rarely tractable, since most graphs have positive-cost cycles.
 - Except DAGs, that is...

7

The Triangle Inequality

Shortest path costs satisfy the triangle inequality:
 c[i] + cost(i, j) ≥ c[j] for every edge (i, j).

 Shortest path optimality conditions: If we have a set of valid shortest path cost labels c[j] that satisfy the triangle inequality for every edge, then these costs must be optimal.

Fixing the Triangle Inequality

 If we ever notice an edge (i, j) that violates the triangle inequality:

$$c[i] + cost(i, j) < c[j]$$

then we ought to fix things by reducing c[j]:

```
Tighten(i, j): (also called Relax(i, j))
   If c[i] + cost(i, j) < c[j],
      c[j] = c[i] + cost(i, j)
      pred[j] = i</pre>
```

- Most shortest path algorithms start with c[s] = 0 and c[j ≠ s] = +∞, and repeatedly tighten (relax) edges violating the Δ inequality.
 - This guarantees a set of valid cost labels c[j] that will be optimal when we terminate.

9

Dijkstra's Algorithm

```
Dijkstra:
    c[s] = 0, c[j ≠ s] = +∞
    Build a priority queue Q on the c[j]'s
    While Q is nonempty:
        Remove from Q the node i having minimum label c[i]
            (at this point we know c[i] is correct)
        Tighten all edges emanating from i
```

- Only works if edge costs are nonnegative.
- Running time depends on priority queue:
 - n inserts (during initialization)
 - n remove-mins
 - at most m decrease-keys
- Using a binary heap, all these opeartions run in O(log n) time, so total is O(m log n).

Dijkstra's Algorithm – Example

Examine node 3, which becomes permanently labeled. Tighten all edges leaving node 3.

13

Dijkstra's Algorithm – Example

Examine node 1, which becomes permanently labeled. Tighten all edges leaving node 1.

Dijkstra's Algorithm – Example

Examine node 4, which becomes permanently labeled. Tighten all edges leaving node 4.

15

Dijkstra's Algorithm – Example

Examine node 5, which becomes permanently labeled. Tighten all edges leaving node 5 (there aren't any).

Dijkstra's Algorithm - Example

Examine node 2, which becomes permanently labeled.
Algorithm terminates!

17

Dijkstra's Algorithm – Running Time

	Remove-Min	Decrease Key	Total Runtime
	O(n) times	O(m) times	
Unsorted Array	O(n)	O(1)	O(n ²)
Binary Heap	O(log n)	O(log n)	O(m log n)
Fibonacci Heap	O(log n)	O(1) amortized	O(m + n log n)

- The Fibonacci heap bound is always at least as good as both other bounds in any graph!
- In the RAM model (small integer edge costs), we can improve performance by using special RAM priority queues.

Dijkstra's Algorithm – Correctness

- Just like BFS, Dijkstra visits all nodes in increasing order of distance from the source, and visits each node exactly once.
- Claim: when we visit node i, c[i] will be the correct shortest path cost from s to i.
- Think of Dijkstra as maintaining two sets:
 - S: visited nodes that are "permanently" labeled.
 - T: remaining nodes that are temporarily labeled (whose cost labels are still upper bounds)
- Every iteration takes the node from T with minimum label and adds it to S.

19

The Bellman-Ford Algorithm

```
Bellman-Ford:
    c[s] = 0, c[j ≠ s] = +∞
Repeat n-1 times:
        Tighten every edge in the graph
If c[i] + cost(i, j) < c[j] for any edge (i, j)
        Output "negative cycle detected!"</pre>
```

- O(mn) running time.
- · Detects negative cycles.
- Easy to analyze using induction: after k iterations of the main loop, each label c[j] reflects the cost of the shortest k-hop path from s to j.
- Can also interpret as a dynamic programming algorithm, or equivalently as our algorithm for finding shortest paths in a DAG with n "levels".

All-Pairs Shortest Path Algorithms

- Typically we think of this problem as taking an n x n matrix of edge costs as input and producing an n x n matrix of shortest path costs as output.
- Related problem: find the diameter of a graph.
- Can solve the problem using n invocations of a single-source algorithm.
 - Nonnegative edge costs: $n \times Dijkstra = O(mn + n^2log n)$.
 - Negative edge costs: n x Bellman-Ford = O(mn²).
 (this can be improved to O(mn + n²log n) by using Johnson's algorithm: run Bellman-Ford once, then "reweight" the edges of the graph with nonnegative costs, and run Dijkstra n times...).

21

Johnson's Algorithm

- Add a dummy node s to the graph with a zero-cost edge to every other node.
- Use Bellman-Ford to find the shortest path cost c[i] from s to every other node i.
- These costs c[i] satisfy the triangle inequality:
 c[i] + cost(i, j) ≥ c[j] for every edge (i, j).
- Define the reduced cost of (i, j) as:
 cost'(i, j) = cost(i, j) + c[i] c[j] ≥ 0.
- Now find shortest paths from every other source node using Dijkstra's algorithm!
- Total running time: O(mn + n²log n).

Johnson's Algorithm

- Define the reduced cost of (i, j) as:
 cost'(i, j) = cost(i, j) + c[i] c[j] ≥ 0.
- The reduced cost of an i → j path p is:
 cost'(p) = cost(p) + c[i] c[j].
- So when we convert to reduced costs, this
 just offsets the cost of every i → j path by the
 same amount: c[i] c[j]. The shortest i → j
 path remains the shortest, however!
- Reduced costs have many nice uses in shortest path calculations.

23

The Floyd-Warshall Algorithm

- Let c(i, j) denote the cost of an edge from node i to node j.
 If there is no edge, set c(i, j) = ∞.
 - Also, set c(i, i) = 0.
- After running the remarkably simple O(n³) Floyd-Warshall algorithm...

```
Floyd-Warshall: 
 For k = 1 to n 
 For i = 1 to n 
 For j = 1 to n 
 If c[i,k] + c[k,j] < c[i,j], c[i,j] = c[i,k] + c[k,j]
```

... c(i, j) now gives us the cost of a shortest path from i to j!

The Floyd-Warshall Algorithm

```
Floyd-Warshall:
For k = 1 to n
   For i = 1 to n
   For j = 1 to n
        If c[i,k] + c[k,j] < c[i,j], c[i,j] = c[i,k] + c[k,j]</pre>
```

- This works even if there are negative-cost edges.
 We can detect a negative cycle if c(i, i) < 0 for any node i after termination.
- Correctness follows from analysis as a dynamic programming algorithm:
 - Let $c^k[i, j]$ denote the cost of a shortest $i \to j$ path that uses only nodes 1 ... k as potential intermediate nodes along the path.
 - Initially, $c^0[I, j]$ = the cost of edge (i, j).
 - Moreover, $c^n[i, j]$ = the cost of a shortest $i \rightarrow j$ path.
 - DP recursion: $c^{k}[i, j] = min\{c^{k-1}[i, j], c^{k-1}[i, k] + c^{k-1}[k, j]\}$

25

Recall: Centrality

· What nodes are most "central" in a graph?

Centrality & Shortest Paths

- Many notions of centrality are based on shortest paths:
 - Eccentricity(x) = max dist(x,y) over other nodes y; a graph "center" is a node with minimum eccentricity.
 - "Betweenness" centrality of an edge or node: fraction of all point-to-point shortest paths passing through that edge/node.
- Other prominent notions of centrality include:
 - Degree centrality: high degree treated as "more central"
 - Eigenvector centrality (centrality proportional to probability a node is visited by a random walk in steady state); used by Google Pagerank.

27

Formulating Shortest Path Problems: Change the Problem, not the Algorithm..

 In an automobile transportation network, suppose right turns can be made instantly, while left turns take 1 extra unit of time...

Formulating Shortest Path Problems: Change the Problem, not the Algorithm..

- In an automobile transportation network, suppose right turns can be made instantly, while left turns take 1 extra unit of time...
- Suppose we have N jobs to complete. Each job has a duration and possibly a set of prerequisite jobs. Working in parallel, how quickly can we finish all the jobs?

29

Formulating Shortest Path Problems: Change the Problem, not the Algorithm..

- In an automobile transportation network, suppose right turns can be made instantly, while left turns take 1 extra unit of time...
- Suppose we have N jobs to complete. Each job has a duration and possibly a set of prerequisite jobs. Working in parallel, how quickly can we finish all the jobs?
- Suppose some roads charge a \$1 toll. How do we find a shortest path if we can pay at most \$3 worth of tolls?

Formulating Shortest Path Problems: Change the Problem, not the Algorithm..

- In an automobile transportation network, suppose right turns can be made instantly, while left turns take 1 extra unit of time...
- Suppose we have N jobs to complete. Each job has a duration and possibly a set of prerequisite jobs. Working in parallel, how quickly can we finish all the jobs?
- Suppose some roads charge a \$1 toll. How do we find a shortest path if we can pay at most \$3 worth of tolls?
- What is the second-shortest s-t path?