深度学习

E	录		3	前馈神经网络 (Feed-Forward Neu-	
_				ral Network, FNN)	4
			4	全连接神经网络 (Full Connect Neu-	
				ral Network, FCNN)	4
1	人工智能学家	4	5	卷积神经网络 (Convolutional Neu-	
2	深度学习"深度": 神经网络的深度			ral Networks, CNN)	4
	(层数)	4	6	损失函数	6

图 片_________表格

要 点

1 人工智能学家

姓名	图灵奖	诺贝尔奖
Geoffrey Hinton	1	1
John Hopfield	0	1

- 2 深度学习"深度":神经网络的深度(层数)
- 3 前馈神经网络 (FEED-FORWARD NEURAL NETWORK, FNN) 特点: 相邻层间特征是单向连接。
- 4 全连接神经网络 (FULL CONNECT NEURAL NETWORK, FCNN)
 - 前向传播: 计算结果并保存特征。
 - 反向传播: 链式规则。
- 5 卷积神经网络 (CONVOLUTIONAL NEURAL NETWORKS, CNN)
 - 结构
 - 卷积层: 提取局部特征。
 - 池化层: 降低特征维度。
 - 全连接层: 分类。
 - 卷积计算过程

原图像大小: $H_0 \times N_0 \times M_0 \times A_0$ 卷积核大小: $B \times F \times F \times A_0$

Padding: P

Stride: S

新图像大小: $N_1 = \frac{N_0 + 2P - F}{S} + 1$, $A_1 = B$

参数量: $F \times F \times A_0 \times B$

• 池化计算过程

最大池化 (Max Pooling): 选择区域的最大值作为代表性的特征值。 平均池化 (Average Pooling): 计算区域的平均值作为代表性的特征值。 池化层参数量为 o。

• 填充 (Padding)

增加感受野,减少信息损失:确保边缘像素能被卷积核充分覆盖,得到有效处理,而不 是丢失。

控制输出尺寸:通过调整填充量可以精确控制每一层的输出尺寸。

• 步幅 (Stride):

控制输出尺寸、下采样程度: 较大步幅可以减小输出的空间尺寸,降低计算复杂度,减 少参数量,提高特征图的缩放比例。

调整感受野: 较大步幅意味着输出单元会覆盖较大输入区域,增加感受野,减少重叠区 域数量。

平衡速度与精度:较大步幅可以加速计算过程,但可能丢失细节信息:较小步幅能更精 细地捕捉特征,但会增加计算成本。

• 1×1 卷积

维度变换(降维/升维):改变特征图的深度(通道数),降维有助于降低模型复杂度和 计算量,同时保持大部分有用信息。

非线性引入: 在卷积后添加激活函数, 可以在不改变空间尺寸的情况下引入非线性, 使 模型能够学习更复杂的模式。

作为瓶颈层: 在一些架构中(如 ResNet、Inception),可以用作瓶颈层(先 1×1 卷积 降维,再进行其他卷积,最后 1×1 卷积恢复维度)。显著减少参数数量和计算成本,同 时维持性能。

特征融合:融合不同尺度或不同来源的特征图,合并成一个新的特征表示。

实例

- LeNet: 没有使用ReLU。

- AlexNet: 最早使用了ReLU、GPU。

- VGGNet: 小卷积核 (感受野上, 3个3×3=1个7×7)。
- GoogleNet: 使用了ReLU, Inception。1×1 卷积
- ResNet: 使用了ReLU, 恒等映射直连边, 残差模块。
- 趋势: 卷积核变小、层数增加, 抛弃池化层、全连接层。

6 损失函数

交叉熵损失函数更适用于分类问题,常用于衡量模型预测的概率分布与真实标记的概率 分布之间的差异。