Space and Time Trade-Offs

Dr. Prapong Prechaprapranwong

Space and time trade-offs

algorithm trades increased space usage with decreased time

- **space** refers to the data storage in memory
- **time** refers to the time consumed in operation

Input enhancement approach

- counting method for sorting
 - Comparison-counting sort
 - Distribution-counting sort
- Input enhancement in string matching
 - Horspool's algorithm
 - Boyer-Moore algorithm

preprocessing, preconditioning

Store additional info by input preprocessing to accelerate solving the problem afterward

Prestructuring approach Create access structure for faster/flexible data access.

- refer to CPE111 Hashing
- B-tree

Sorting by Counting

for each element of a list to be sorted, the total number of elements smaller that element and recorded the results in a table. These numbers will indicate the positions of the elements in the sorted list \rightarrow comparison counting sort

ALGORITHM ComparisonCountingSort(A[0..n-1])

```
//Sorts an array by comparison counting
//Input: An array A[0..n-1] of orderable elements
//Output: Array S[0..n-1] of A's elements sorted in nondecreasing order
for i \leftarrow 0 to n-1 do Count[i] \leftarrow 0
for i \leftarrow 0 to n-2 do
    for j \leftarrow i + 1 to n - 1 do
         if A[i] < A[j]
              Count[j] \leftarrow Count[j] + 1
         else Count[i] \leftarrow Count[i] + 1
for i \leftarrow 0 to n-1 do S[Count[i]] \leftarrow A[i]
return S
```

$$C(n) = \sum_{i=0}^{n-2} \sum_{i=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i) = \frac{n(n-1)}{2}.$$

 $O(n^2)$

Practice I) use comparison-counting sort to sort this sequence of numbers (20 minutes)

A[07]	16	27	15	23	64	93	25	11
	Count []							
initial	0	0	0	0	0	0	0	0
i = 0								
i = 1								
i = 2								
i = 3								
i = 4								
i = 5								
i = 6								
Final								
S[07]								

Sorting by Counting

Sorting a list which limited positive integer eq. 1-5. Sorting can be done by taking advantage of this feature with accumulate the sum of frequencies of these numbers \rightarrow distribution counting sort

13	11	12	13	12	12

Array values	11	12	13	
Frequencies	1	3	2	
Distribution values	1	4	6	

A[5] = 12

A[4] = 12

A[3] = 13

A[2] = 12

A[1] = 11

A[0] = 13

1	4	6
1	3	6
1	2	6
1	2	5
1	1	5
0	1	5

- ✓ 1.create the unique set of numbers
 - 2. count the frequencies of all numbers
 - 3. accumulate the frequencies
 - 4. sort the numbers

C	\cap		L 1
0	U	٠.	5]

			12		
		12			
					13
	12				
11					
				13	

ALGORITHM DistributionCountingSort(A[0..n-1], l, u)

```
//Sorts an array of integers from a limited range by distribution counting
//Input: An array A[0..n-1] of integers between l and u (l \le u)
//Output: Array S[0..n-1] of A's elements sorted in nondecreasing order
for j \leftarrow 0 to u - l do D[j] \leftarrow 0
                                                          //initialize frequencies
for i \leftarrow 0 to n-1 do D[A[i]-l] \leftarrow D[A[i]-l]+1//compute frequencies
for j \leftarrow 1 to u - l do D[j] \leftarrow D[j - 1] + D[j] //reuse for distribution
for i \leftarrow n-1 downto 0 do
    j \leftarrow A[i] - l
                                             O(n+k)
    S[D[j]-1] \leftarrow A[i]
                                             n = \text{no. of elements}
    D[j] \leftarrow D[j] - 1
return S
                                             k = \text{no. of unique elements}
```

Practice II) use distribution-counting sort to sort this sequence of numbers (20 minutes)

Input Enhancement in String Matching

String Matching Problem

Determine if a given pattern string (m characters) is in a text (n characters, n ≥ m)

10: $\mathbf{return} - 1$

Worst-case efficiency O(nm) by brute force

Algorithm BruteForceStringMatching

```
1: Input: Pattern P=p_1p_2p_3\cdots p_m and Text T=t_1t_2t_3\cdots t_n,\, n\geq m

2: Output: Index of the 1st character in the text that starts a matching substring, and -1 for the unsuccessful search 4: 

5: for i:=1 to n-m+1 do 

6: j\leftarrow 1 

7: while j\leq m and p_j==t_{i+j} do 

8: j\leftarrow j+1 

9: if j==m+1 return i
```

Horspool's Algorithm

Searching for the pattern BARBER in some text from right to left:

 $s_0 \dots s_{n-1}$ BARBER

In general, there are 4 possibilities can occur:

Case 1: There are no character c in the pattern. e.g., c is letter S

 s_0 ... s_{n-1} BARBER can shift the pattern by its entire length (m)BARBER

Case 2: There are character *c* in the pattern but not the last one. e.g., *c* is letter B

Case 3: Character *c* matches the last position of the pattern and shows up only once in the pattern. e.g., *c* is letter R

Case 4: Character c matches the last position and shows up many times in the pattern. e.g., c is letter R

It will be inefficient to check the character c with the pattern every time. The idea of input enhancement is performed by **precompute** shift size and **store** them in a table. e.g., If c ='S', shift by 6 positions (Case 1), If c ='B', shift by 2 positions (Case 2)

character c	Α	В	С	D	Е	F		R		Z	1
shift $t(c)$	4	2	6	6	1	6	6	3	6	6	6

```
t(c) = \begin{cases} \text{the pattern's length } m, \\ \text{if } c \text{ is not among the first } m-1 \text{ characters of the pattern;} \\ \text{the distance from the rightmost } c \text{ among the first } m-1 \text{ characters of the pattern to its last character, otherwise.} \end{cases}
```

ALGORITHM ShiftTable(P[0..m-1])

```
//Fills the shift table used by Horspool's and Boyer-Moore algorithms //Input: Pattern P[0..m-1] and an alphabet of possible characters //Output: Table[0..size-1] indexed by the alphabet's characters and // filled with shift sizes computed by formula (7.1) for i \leftarrow 0 to size-1 do Table[i] \leftarrow m for j \leftarrow 0 to m-2 do Table[P[j]] \leftarrow m-1-j return Table
```

Example: Search the pattern "BARBER" with Horspool's algorithm

```
BARBER, m = 6
Table['B'] = 6-1-0=5
                                                  В
                               character c
                                                                                 R
Table['A'] = 6-1-1=4
                                              4
                                                                           6
                                                                                 3
                                  shift t(c)
                                                       6
                                                            6
Table['R'] = 6-1-2=3
                                                                                        6
Table['B'] = 6-1-3=2 (update)
Table['E'] = 6-1-4=1
Table['R'] = 6-1-5=0 (don't use)
```

Otherwise = 6

```
JIM_SAW_ME_IN_A_BARBERSHOP
BARBER BARBER
BARBER BARBER
BARBER BARBER
```

```
ALGORITHM HorspoolMatching(P[0..m-1], T[0..n-1])
    //Implements Horspool's algorithm for string matching
    //Input: Pattern P[0..m-1] and text T[0..n-1]
    //Output: The index of the left end of the first matching substring
              or -1 if there are no matches
    ShiftTable(P[0..m-1])
                                 //generate Table of shifts
    i \leftarrow m-1
                                 //position of the pattern's right end
    while i \le n-1 do
                                 //number of matched characters
        k \leftarrow 0
        while k \le m-1 and P[m-1-k]=T[i-k] do
            k \leftarrow k + 1
        if k = m
            return i-m+1
        else i \leftarrow i + Table[T[i]]
    return -1
```

Boyer-Moore's Algorithm

like Horspool's: right to left

additional: bad-symbol shift and good-suffix shift

k = No. of matched characters

Bad-Symbol shift: guide by the character c caused a mismatch with the pattern. if c is not in the pattern, shift the pattern to just pass this c in the text

the bad symbol shift-size $d_1 = \max \{t_1(c) - k, 1\}$

- t₁(c) is the same shift-size as Horspool's
 k is the no. of matched characters

text
$$\Rightarrow$$
 s_0 ... c s_{i-k+1} ... s_i ... s_{n-1} pattern \Rightarrow p_0 ... p_{m-k-1} p_{m-k} ... p_{m-1} ... p_{m-1}

Example: Search the pattern BARBER in text using Bad-symbol shift

match the last two characters before failing on letter S (k = 2)

shift by
$$t_1(S) - k = 6 - 2 = 4$$

shift by
$$t_1(R) = 3$$

character c	Α	В	С	D	Е	F		R		Z	_
shift $t(c)$	4	2	6	6	1	6	6	3	6	6	6

Example II: Search the pattern BARBER in text using Bad-symbol shift

match the last two characters before failing on letter A (k = 2)

$$s_0$$
 ... $A E R$... s_{n-1} $H II II$ $B A R B E R$

B A R B E R shift by
$$t_1(A) - k = 4 - 2 = 2$$

BARBER shift by
$$t_1(R) = 3$$

character c	Α	В	С	D	Е	F		R		Z	_
shift $t(c)$	4	2	6	6	1	6	6	3	6	6	6

The good-suffix shift: guide by a successful match of the last k > 0 characters of the pattern

the good-suffix shift-size d_2 varied by k (no. of matched characters)

note that for k = 3,4,5, d_2 is not 6 because there is the rightmost pattern "AB"

Example: Search the pattern ABCBAB in text using Good-Suffix shift

for example:

k	pattern	d ₂
1	A B C <u>B</u> A <u>B</u>	2
2	<u>A B </u> C B <u>A B</u>	4
3	<u>A B C B A B</u>	4
4	<u>A B C B A B</u>	4
5	A B C B A B	4

match the last three characters before failing on letter c (k = 3)

 S_0 ...

c B A B C B A B

• • •

 $\mathsf{S}_{\mathsf{n-1}}$

ABCBAB

ABCBAB

k = 3 shift by 4

shift-size of Boyer –Moore's algorithm

$$d = \begin{cases} d_1 & \text{if } k = 0 \\ \max(d_1, d_2) & \text{if } k > 0 \end{cases} \text{ where } d_1 = \max\{t_1(c) - k, 1\}$$

Example: Boyer-Moore's algorithm, search the pattern BAOBAB in text

The bad-symbol table

С	Α	В	С	D	•••	0	•••	Z	_
t ₁ (c)	1	2	6	6	6	3	6	6	6

BESS_KNEW_ABOUT_BAOBABS

$$d_1 = t_1(K) - 0 = 6$$

$$d_1 = t_1(_) - 2 = 4$$

$$d_2 = 5$$

$$d = \max\{4,5\} = 5$$

$$d_1 = t_1(_) - 1 = 5$$

$$d_2 = 2$$

$$d = \max\{5,2\} = 5$$

The good-suffix table

k	pattern	d_2
1	B A O <u>B</u> A <u>B</u>	2
2	<u>B</u> AOB <u>AB</u>	5
3	<u>B</u> AO <u>BAB</u>	5
4	<u>B</u> A <u>O B A B</u>	5
5	<u>B A O B A B</u>	5

B-Trees and B+-Tree

B-Trees extend the idea of the 2-3 trees by permitting more than one key in the same node of a search tree and all data records (or record keys) are stored at the leaves,

each parent node contains n-1 ordered keys($K_1 < ... < K_{n-1}$) interposed with n pointers ($P_0 ... P_{n-1}$) to the node's children ($T_0 ... T_{n-1}$)

- keys in subtree $T_0 < K_1$
- all the keys in subtree $T_1 \ge K_1$ and K_2 with K_1 = the smallest key in K_1
- the last subtree $T_{n-1} \ge K_{n-1}$ with $K_{n-1} =$ the smallest key in T_{n-1}

B-Tree of order $\underline{m} \ge 2$

- the root is either a leaf or has between 2 and m children
- Each node, except for the root and the leaves, has between $\lfloor m/2 \rfloor$ and m children (and hence between $\lfloor m/2 \rfloor 1$ and $\lfloor m-1 \rfloor$ keys)
- the tree is perfectly balanced. i.e., all its leaves are at the same level

- order of 4 means each node has between 2 and 4 children
- the height h of the B-Tree of order m with n nodes $\Rightarrow h \le \left\lfloor log_{\left[\frac{m}{2}\right]} \frac{n+1}{4} \right\rfloor + 1$
- searching in a B-Tree is a O(log n)

order <i>m</i>	50	100	250
<i>h</i> 's upper bound	6	5	4