COMP251: Dynamic programming (3)

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Kleinberg & Tardos, 2005)

PAIRWISE SEQUENCE ALIGNMENT

Pairwise Sequence Alignment

Match: letters are identical

Substitution: letters are different

Insertion: a letter of b is mapped to the empty character

Deletion: a letter of *a* is mapped to the empty character

Each operation has a cost \Rightarrow find alignment with optimal score.

Needleman-Wunch Algorithm

```
for i=0 to m do
  d(i,0)=i*\delta(-,-)
for j=0 to n do
  d(0,j)=j*\delta(-,-)
for i=1 to m do
      for j=1 to n do
         d(i,j) = \min(d(i-1,j)+\delta(a_i,-),
                        d(i-1,j-1)+\delta(a_i,b_i),
                        d(i,j-1)+\delta(-,b_i))
return d(m,n)
```

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

		O	_	_	9	7
	d	-	Α	Т	Т	G
0	-	0	1	2	3	4
1	С	1				
2	Т	2				

 $d[i,j] = optimal alignment score of <math>a_1 \dots a_i$ with $b_1 \dots b_j$

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

(-	-/	(A)
(-	-)	C

d	-	Α	Т	Т	G
-	0	1	2	3	4
С	1	j			
Т	2				

• match/substitution: $d(0,0) + \delta(A,C) = 0 + (+1) = +1$

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

(A)	(-\
(_/	(c)

d	-	Α	Т	Т	G
-	0	1	2	3	4
С	1	. ♦			
Т	2				

- match/substitution: $d(0,0) + \delta(A,C) = 0 + (+1) = +1$
- insertion: $d(1,0)+\delta(-,C) = 1+(+1)=+2$

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

(-)	(A)
(C)	(_/

d	-	Α	Т	Т	G
-	0	1	2	3	4
С	1 _	?			
Т	2				

- match/substitution: $d(0,0) + \delta(A,C) = 0 + (+1) = +1$
- insertion: $d(1,0)+\delta(-,C) = +1+(+1)=+2$
- deletion: $d(0,1)+\delta(A,-) = +1+(+1)=+2$

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

d	-	Α	Т	Т	G
_	0	1	2	3	4
С	1 _	1			
Т	2				

- match/substitution: $d(0,0) + \delta(A,C) = 0 + (+1) = +1$
- insertion: $d(1,0)+\delta(-,C) = +1+(+1)=+2$
- deletion: $d(0,1)+\delta(A,-) = +1+(+1)=+2$

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	-	Α	Т	Т	G
-	0	1	2	3	4
С	1	1	2		
Т	2				

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	-	Α	Т	Т	G
-	0	1	2	3	4
С	1	1	2	3	
Т	2				

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	1	Α	Т	Т	G
-	0	1	2	3	4
С	1	1	2	3	4
Т	2				

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	-	Α	Т	Т	G
-	0	1	2	3	4
С	1	1	2	3	4
Т	2	2			

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	1	Α	Т	Т	G
-	0	1	2	3	4
С	1	1	2	3	4
Т	2	2	1		

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	1	Α	Т	Т	G
-	0	1	2	3	4
С	1	1	2	3	4
Т	2	2	1	2	

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	1	Α	Т	Т	G
-	0	1	2	3	4
С	1	1	2	3	4
Т	2	2	1	2	3

Backtracking

How to retrieve the optimal alignment?

- Each move is associated to one edit operation
 - Vertical = insertion
 - Diagonal = match/substitution
 - Horizontal = deletion
- We use one of these 3 move to fill a cell of the array
- From the bottom-right corner (i.e. d(m,n)), find the move that has been used to determine the value of this cell.
- Apply this principle recursively.

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

		U	Τ	2	3	4
	d	-	Α	Т	Т	G
0	1	0	1	2	3	4
1	С	1	1	2	3	4
2	T	2	2	1	2	3

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

		U	Т	_	5	4
	d	-	Α	Т	Т	G
0	1	0	1	2	3	4
1	C	1	1	2	3	4
2	Т	2	2	1	2	3

$$\binom{ATT}{C}\binom{G}{T}$$

$$d[3,1] + \delta(G,T) = 3 + 1 = 4$$
 X

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

		U	Т	2	3	4
	d	-	Α	Т	Т	G
0	1	0	1	2	3	4
1	C	1	1	2	3	4
2	Т	2	2	1	2	3

$$\binom{ATT}{C}\binom{G}{T} \qquad \binom{ATTG}{C}\binom{-}{T}$$

$$d[4,1] + \delta(-,T) = 4 + 1 = 5$$
 X

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

		U	Т	2	3	4
	d	1	Α	Т	Т	G
0	1	0	1	2	3	4
1	C	1	1	2	3	4
2	Т	2	2	1	2 🗲	- 3

$$\binom{ATT}{C}\binom{G}{T}$$

$$\begin{pmatrix} ATT \\ C \end{pmatrix} \begin{pmatrix} G \\ T \end{pmatrix} \qquad \begin{pmatrix} ATTG \\ C \end{pmatrix} \begin{pmatrix} - \\ T \end{pmatrix} \qquad \begin{pmatrix} ATT \\ CT \end{pmatrix} \begin{pmatrix} G \\ - \end{pmatrix}$$

$$\binom{ATT}{CT}\binom{G}{-}$$

$$d[3,2] + \delta(G,-) = 2 + 1 = 3$$

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	-	Α	Т	Т	G
-	0	1	2	3	4
С	1	1	2	3	4
Т	2	2	1	2 🗲	- 3

G

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	-	Α	Т	Т	G
-	0	1	2	3	4
С	1	1	2	3	4
Т	2	2	1	2 🗲	- 3

TG

T-

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	1	А	Т	Т	G
-	0	1	2	3	4
С	1	1 🔸	- 2	3	4
Т	2	2	1	2 🗲	- 3

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	1	Α	Т	Т	G
-	0	1	2	3	4
С	1	1 🔸	- 2	3	4
Т	2	2	1	2 🗲	- 3

ATTG C-T-

$$\delta(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & otherwise \end{cases}$$

	-	Α	Т	Т	G
-	0 🗲	1 🕟	2	3	4
С	1	1	- 2	3	4
T	2	2	1 🗲	3 🔸	- 3

Analysis

Theorem: The dynamic programming algorithm computes the edit distance (and optimal alignment) of two strings of length m and n in $\Theta(mn)$ time and $\Theta(mn)$ space.

Proof:

- Algorithm computes edits distance.
- Can trace back to extract an optimal alignment.
- **Q.** Can we avoid using quadratic space?
- **A.** Easy to compute optimal value in $\Theta(mn)$ time and $\Theta(m+n)$ space.
- Compute $OPT(i, \bullet)$ from $OPT(i-1, \bullet)$.
- But, no longer easy to recover optimal alignment itself.

Bioinformatics

Different cost functions, For instance:

$$\delta(x,y) = \begin{cases} 1 & if \ x = y \\ -1 & otherwise \end{cases}$$

Cost of alignment is being maximized.

- Variants of optimal pairwise alignment algorithm:
 - Ignore trailing gaps (Smith & Waterman, 1981)
- Optimal alignment not practical for multiple sequences.

SINGLE SOURCE SHORTEST PATHS

Modeling as graphs

Input:

- Directed graph G = (V, E)
- Weight function w : E → R

Weight of path $p = \langle v_0, v_1, ..., v_k \rangle$

$$= \sum_{k=1}^{n} w(v_{k-1}, v_k)$$

= sum of edge weights on path p.

Shortest-path weight *u* to *v*:

$$\delta(u,v) = \begin{cases} \min \left\{ w(p) : u \mapsto^p v \right\} & \text{If there exists a path } u \rightsquigarrow v. \\ \infty & \text{Otherwise.} \end{cases}$$

Shortest path u to v is any path p such that $w(p) = \delta(u, v)$. Generalization of breadth-first search to weighted graphs.

Dijkstra's algorithm

- No negative-weight edges.
- Weighted version of BFS:
 - Instead of a FIFO queue, uses a priority queue.
 - Keys are shortest-path weights (d[v]).
- Greedy choice: At each step we choose the light edge.

How to deal with negative weight edges?

- Allow re-insertion in queue? ⇒ Exponential running time...
- Add constant to each edge?

Bellman-Ford Algorithm

- Allows negative-weight edges.
- Computes d[v] and $\pi[v]$ for all $v \in V$.
- Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.

If Bellman-Ford has not converged after V(G) - 1 iterations, then there cannot be a shortest path tree, so there must be a negative weight cycle.

Bellman-Ford Algorithm

- Can have negative-weight edges.
- Will "detect" reachable negative-weight cycles.

```
Initialize(G, s);

for i := 1 to |V[G]| -1 do

for each (u, v) in E[G] do

Relax(u, v, w)

for each (u, v) in E[G] do

if d[v] > d[u] + w(u, v) then

return false

return true
```

Time Complexity is O(VE).

Iteration 1

Iteration 1

Another Look at Bellman-Ford

Note: This is essentially **dynamic programming**.

Let d(i, j) = cost of the shortest path from s to i that is at most j hops.

$$d(i,j) = \begin{cases} 0 & \text{if } i = s \land j = 0 \\ \infty & \text{if } i \neq s \land j = 0 \\ \min(\{d(k,j-1) + w(k,i) \colon i \in Adj(k)\} \cup \{d(i,j-1)\}) & \text{if } j > 0 \end{cases}$$

KNAPSACK PROBLEM

Knapsack problem

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ and has value $v_i > 0$.
- Knapsack has capacity of W.
- · Goal: fill knapsack so as to maximize total value.

```
Ex. { 1,2,5 } has value 35.

Ex. { 3,4 } has value 40.

Ex. { 3,5 } has value 46 (but exceeds weight limit).
```

i	v_i	w_i
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

knapsack instance (weight limit W = 11)

Greedy by value. Repeatedly add item with maximum v_i . Greedy by weight. Repeatedly add item with minimum w_i . Greedy by ratio. Repeatedly add item with maximum ratio v_i / w_i .

Observation. None of greedy algorithms is optimal.

False start...

Def. $OPT(i) = \max \text{ profit subset of items } 1, ..., i$.

Case 1. OPT does not select item i.

OPT selects best of { 1, 2, ..., i − 1 }.

optimal substructure property (proof via exchange argument)

Case 2. OPT selects item i.

- Selecting item i does not immediately imply that we will have to reject other items.
- Without knowing what other items were selected before i, we don't even know if we have enough room for i.

Conclusion. Need more subproblems!

New variable

Def. $OPT(i, w) = \max \text{ profit subset of items } 1, ..., i \text{ with weight limit } w$.

Case 1. OPT does not select item i.

• *OPT* selects best of $\{1, 2, ..., i-1\}$ using weight limit w.

Case 2. *OPT* selects item *i*.

optimal substructure property
(proof via exchange argument)

- New weight limit = w w_i.
- *OPT* selects best of $\{1, 2, ..., i-1\}$ using this new weight limit.

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$$

Dynamic programming algorithm

```
KNAPSACK (n, W, w_1, ..., w_n, v_1, ..., v_n)

FOR w = 0 TO W

M[0, w] \leftarrow 0.

FOR i = 1 TO n

FOR w = 1 TO W

IF (w_i > w) M[i, w] \leftarrow M[i-1, w].
```

 $M[i, w] \leftarrow \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}.$

RETURN M[n, W].

ELSE

i	v_i	w_i
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

subset of items 1, ..., i

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), \ v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$$

weight limit w

		0	1	2	3	4	5	6	7	8	9	10	11
5	{}	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{1,2}	0 •		6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
	{ 1, 2, 3, 4, 5 }	0	1	6	7	7	18	22	28	29	34	34	40

OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

Analysis

Theorem. There exists an algorithm to solve the knapsack problem with n items and maximum weight W in $\Theta(n|W)$ time and $\Theta(n|W)$ space.

Pf.

weights are integers between 1 and W

- Takes O(1) time per table entry.
- There are $\Theta(n|W)$ table entries.
- After computing optimal values, can trace back to find solution: take item i in OPT(i, w) iff M[i, w] < M[i-1, w].

Remarks.

- Not polynomial in input size! — "pseudo-polynomial"
- Decision version of knapsack problem is NP-Complete. [Chapter 8]
- There exists a poly-time algorithm that produces a feasible solution that has value within 1% of optimum. [Section 11.8]