ON THE USE OF GEODESIC TRIANGLES BETWEEN GAUSSIAN DISTRIBUTIONS FOR CLASSIFICATION PROBLEMS

IEEE ICASSP 2022 - Singapore

A. Collas¹, F. Bouchard², G. Ginolhac³, A. Breloy⁴, C. Ren¹, J.-P. Ovarlez^{1,5}

E-mail: antoine.collas@centralesupelec.fr

¹SONDRA, CentraleSupélec, Univ. Paris-Saclay

²CNRS, L2S, CentraleSupélec, Univ. Paris-Saclay

³LISTIC, Univ. Savoie Mont Blanc

⁴LEME, Univ. Paris Nanterre

⁵DEMR, ONERA, Univ. Paris-Saclay

Time series in remote sensing

and classification

Time series in remote sensing

In recent years, many image time series have been taken from the **earth** with different technologies: **SAR**, **multi/hyper spectral imaging**, ...

Objective

Segment semantically these data using **spatial** information, **temporal** information and **sensor diversity** (spectral bands, polarization...).

Figure 1: Multivariate image time series.

Applications

Disaster assessment, activity monitoring, land cover mapping, crop type mapping, ...

Example of multi-spectral time series

Breizhcrops dataset¹ [1]:

- more than 600 000 crop time series across the whole Brittany,
- 13 spectral bands, 9 classes.

Figure 2: Reflectances ρ of a time series of **meadows**.

Figure 3: Reflectances ρ of a time series of **corn**.

¹https://breizhcrops.org/

Clustering/classification pipeline and Riemannian geometry

Figure 4: Clustering/classification pipeline.

Examples of θ :

 $\theta=\Sigma$ a covariance matrix, $\theta=(\mu,\Sigma)$ a vector and a covariance matrix, ...

Riemannian geometry and optimization

What is a Riemannian manifold?

Figure 5: A Riemannian manifold.

Curvature induced by:

- ullet constraints, *e.g.* the sphere: $\| {m x} \| = 1$,
- $\label{eq:definition} \begin{array}{l} \bullet \ \ \text{the Riemannian metric, \it e.g.} \ \ \text{on} \ \mathcal{S}_{p}^{++} \colon \\ \langle \xi_{\Sigma}, \eta_{\Sigma} \rangle_{\Sigma}^{\mathsf{FIM}} = \mathsf{Tr} \left(\Sigma^{-1} \xi_{\Sigma} \Sigma^{-1} \eta_{\Sigma} \right). \end{array}$

Examples of Riemannian manifolds \mathcal{M} :

- linear space (no constraints): $\mathbb{R}^{p \times p}$
- orthogonality constraints: $\operatorname{St}_{p,k} = \{ \boldsymbol{U} \in \mathbb{R}^{p \times k} : \boldsymbol{U}^{\mathsf{T}} \boldsymbol{U} = \boldsymbol{I}_k \}$
- positivity constraints: $\mathcal{S}_{\rho}^{++} = \{ \Sigma \in \mathcal{S}_{\rho} : \forall \mathbf{x} \neq \mathbf{0} \in \mathbb{R}^{\rho}, \ \mathbf{x}^{T} \Sigma \mathbf{x} > 0 \}$
- ullet norm constraints: $S^{p^2-1}=\{oldsymbol{X}\in\mathbb{R}^{p imes p}:\|oldsymbol{X}\|_F=1\}$

For a detailed introduction on optimization on Riemannian manifolds: see [2].

Existing work (1/2)

 $x_1, \dots, x_n \in \mathbb{R}^p$ realizations of $x \sim \mathcal{N}(\mathbf{0}, \Sigma)$, $\Sigma \in \mathcal{S}_p^{++}$ (set of $p \times p$ symmetric positive definite matrices).

Step 2: maximum likelihood estimator

$$\theta = \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T. \tag{1}$$

Step 3: Riemannian geometry of centered Gaussian distributions

 S_p^{++} with the Fisher information metric:

 $orall oldsymbol{\xi}_{\Sigma}, oldsymbol{\eta}_{\Sigma}$ in the tangent space at $\Sigma \in \mathcal{S}_{p}^{++}$

$$\langle \boldsymbol{\xi}_{\Sigma}, \boldsymbol{\eta}_{\Sigma} \rangle_{\Sigma}^{\mathsf{FIM}} = \mathsf{Tr} \left(\Sigma^{-1} \boldsymbol{\xi}_{\Sigma} \Sigma^{-1} \boldsymbol{\eta}_{\Sigma} \right).$$
 (2)

NB: invariance property by affine transformations:

$$\langle \mathsf{D}\,\phi(\Sigma)[\boldsymbol{\xi}_{\Sigma}], \mathsf{D}\,\phi(\Sigma)[\boldsymbol{\eta}_{\Sigma}]\rangle_{\phi(\Sigma)}^{\mathsf{FIM}} = \langle \boldsymbol{\xi}_{\Sigma}, \boldsymbol{\eta}_{\Sigma}\rangle_{\Sigma}^{\mathsf{FIM}}.\tag{3}$$

where $\phi(\Sigma) = \mathbf{A} \Sigma \mathbf{A}^T$, $\forall \mathbf{A} \in \mathbb{R}^{p \times p}$ invertible.

Existing work (2/2)

Step 3

Riemannian distance between Σ_1 and Σ_2 in \mathcal{S}_p^{++} :

$$d_{\mathcal{S}_{p}^{++}}(\Sigma_{1}, \Sigma_{2}) = \left\| \log \left(\Sigma_{1}^{-\frac{1}{2}} \Sigma_{2} \Sigma_{1}^{-\frac{1}{2}} \right) \right\|_{2}. \tag{4}$$

NB: invariance property by affine transformations:

$$d_{\mathcal{S}_{p}^{++}}(\phi(\Sigma_{1}),\phi(\Sigma_{2})) = d_{\mathcal{S}_{p}^{++}}(\Sigma_{1},\Sigma_{2})$$

$$\tag{5}$$

Riemannian mean of a set $\{\Sigma_i\}$:

$$\Sigma_{\text{mean}} = \arg\min_{\Sigma \in \mathcal{S}_p^{++}} \sum_{i} d_{\mathcal{S}_p^{++}}^2(\Sigma, \Sigma_i). \tag{6}$$

Enough to apply a K-means or a Nearest centroid classifier.

For a full description of the manifold S_p^{++} and its associated center of mass: see [3], [4].

Geodesic triangles for

classification problems

Geodesic triangles for machine learning

Figure 6: Clustering/classification pipeline.

Statistical model

Let $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^p$ distributed as $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu} \in \mathbb{R}^p$, $\boldsymbol{\Sigma} \in \mathcal{S}_p^{++}$. Goal: classify $\boldsymbol{\theta} = (\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Riemannian geometry of Gaussian distributions

Riemannian geometry of non-centered Gaussian distributions

 $\mathbb{R}^{
ho} imes \mathcal{S}_{
ho}^{++}$ with the Fisher information metric: $\forall \xi = \left(\boldsymbol{\xi}_{\mu}, \boldsymbol{\xi}_{\Sigma} \right), \eta = \left(\boldsymbol{\eta}_{\mu}, \boldsymbol{\eta}_{\Sigma} \right)$ in the tangent space

$$\langle \xi, \eta \rangle_{(\mu, \Sigma)}^{\mathsf{FIM}} = \xi_{\mu}^{\mathsf{T}} \Sigma^{-1} \eta_{\mu} + \frac{1}{2} \operatorname{Tr} \left(\Sigma^{-1} \xi_{\Sigma} \Sigma^{-1} \eta_{\Sigma} \right). \tag{7}$$

NB: invariance property by affine transformations:

$$\langle \mathsf{D}\,\phi(\boldsymbol{\mu},\boldsymbol{\Sigma})[\xi],\mathsf{D}\,\phi(\boldsymbol{\mu},\boldsymbol{\Sigma})[\eta]\rangle_{(\boldsymbol{\mu},\boldsymbol{\Sigma})}^{\mathsf{FIM}} = \langle \xi,\eta\rangle_{(\boldsymbol{\mu},\boldsymbol{\Sigma})}^{\mathsf{FIM}} \tag{8}$$

with $\phi(\mu, \Sigma) = (\mathbf{A}\mu + \mu_0, \mathbf{A}\Sigma\mathbf{A}^T)$, $\forall \mathbf{A} \in \mathbb{R}^{p \times p}$ invertible, $\forall \mu_0 \in \mathbb{R}^p$.

Problem

Problem: this Riemannian geometry is not fully known... (see [5], [6])

Geodesic triangles for machine learning

Solution: use of geodesic triangles

Divergence δ : arc length of the path between (μ_1, Σ_1) and (μ_2, Σ_2) .

$$\begin{split} \delta_c: & \quad (\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \rightarrow (\boldsymbol{\mu}_1, c\boldsymbol{\Sigma}_1) \rightarrow (\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2), & \forall c > 0 \\ \delta_{\perp}: & \quad (\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \rightarrow (\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1 + \Delta \boldsymbol{\mu} \Delta \boldsymbol{\mu}^T) \rightarrow (\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2), & \Delta \boldsymbol{\mu} = \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1 \end{split}$$

NB: both divergences are invariant by affine transformations.

Riemannian center of mass
$$(\mu_{\text{mean}}, \Sigma_{\text{mean}})$$
 of $\{(\mu_i, \Sigma_i)\}$

$$(\mu_{\text{mean}}, \Sigma_{\text{mean}}) = \underset{(\mu, \Sigma) \in \mathbb{R}^p \times \mathcal{S}_p^{++}}{\arg \min} \sum_i \delta^2 ((\mu, \Sigma), (\mu_i, \Sigma_i)) \tag{9}$$

Riemannian optimization

Minimize $f:(\mu,\Sigma)\to\mathbb{R}$.

Proposition (Riemannian gradient)

The Riemannian gradient of f at (μ, Σ) is

$$\operatorname{grad} f\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right) = \left(\boldsymbol{\Sigma} \boldsymbol{G}_{\boldsymbol{\mu}}, \boldsymbol{\Sigma} \left(\boldsymbol{G}_{\boldsymbol{\Sigma}} + \boldsymbol{G}_{\boldsymbol{\Sigma}}^{T}\right) \boldsymbol{\Sigma}\right)$$

where $\operatorname{grad}_{\epsilon} f(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (\boldsymbol{G}_{\boldsymbol{\mu}}, \boldsymbol{G}_{\boldsymbol{\Sigma}}) \in \mathbb{R}^{p} \times \mathbb{R}^{p \times p}$ is the Euclidean gradient of f.

Proposition (Second order retraction)

A second order retraction at (μ, Σ) of ξ in the tangent space is

$$R_{(\mu,\Sigma)}\left(\boldsymbol{\xi}_{\mu},\boldsymbol{\xi}_{\Sigma}\right) = \left(\mu + \boldsymbol{\xi}_{\mu} + \frac{1}{2}\boldsymbol{\xi}_{\Sigma}\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\mu},\boldsymbol{\Sigma} + \boldsymbol{\xi}_{\Sigma} + \frac{1}{2}\left[\boldsymbol{\xi}_{\Sigma}\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\Sigma} - \boldsymbol{\xi}_{\mu}\boldsymbol{\xi}_{\mu}^{T}\right]\right).$$

Riemannian optimization

```
Riemannian gradient descent
```

```
Input : Initial iterate (\mu_1, \Sigma_1).

Output: Sequence of iterates \{(\mu_k, \Sigma_k)\}.

k := 1;

while no convergence do

Compute a step size \alpha and set

(\mu_{k+1}, \Sigma_{k+1}) := R_{(\mu_k, \Sigma_k)}(-\alpha \operatorname{grad} f(\mu_k, \Sigma_k));

k := k+1;
end
```

Algorithm 1: Riemannian gradient descent

Geodesic triangles for machine learning

Breizhcrops dataset [1]:

- more than 600 000 crop time series across the whole Brittany,
- 9 classes,
- 13 spectral bands.

Figure 7: Reflectances of a Sentinel-2 time series.

Estimator	Geometry	OA (%)	AA (%)
X	$\mathbb{R}^{p \times n}$	10.1	18.5
Mean $\hat{m{\mu}}$	\mathbb{R}^p	13.2	14.8
Covariance matrix $\hat{\Sigma}$	\mathcal{S}_p^{++}	43.9	28.1
Centered covariance matrix $\hat{\Sigma}$	\mathcal{S}_p^{++}	46.7	30.1
Proposed - $(\hat{m{\mu}},\hat{m{\Sigma}})$	δ_c	54.3	37.0
Proposed - $(\hat{oldsymbol{\mu}},\hat{oldsymbol{\Sigma}})$	δ_{\perp}	53.3	35.7

 $\begin{tabular}{ll} \textbf{Table 1:} & Accuracies of \textit{Nearest centroid classifiers} on the \textit{Breizhcrops} dataset. \\ OA = Overall Accuracy, AA = Average Accuracy \\ \end{tabular}$

Conclusion

Conclusion

Figure 8: Clustering/classification pipeline.

Theoretical contributions:

- new divergences: δ_c , δ_{\perp}
- new algorithm to compute Riemannian centers of mass.

Application on a real dataset of multispectral time-series classification: *Breizhcrops*.

ON THE USE OF GEODESIC TRIANGLES BETWEEN GAUSSIAN DISTRIBUTIONS FOR CLASSIFICATION PROBLEMS

IEEE ICASSP 2022 - Singapore

A. Collas¹, F. Bouchard², G. Ginolhac³, A. Breloy⁴, C. Ren¹, J.-P. Ovarlez^{1,5}

E-mail: antoine.collas@centralesupelec.fr

¹SONDRA, CentraleSupélec, Univ. Paris-Saclay

²CNRS, L2S, CentraleSupélec, Univ. Paris-Saclay

³LISTIC, Univ. Savoie Mont Blanc

⁴LEME, Univ. Paris Nanterre

⁵DEMR, ONERA, Univ. Paris-Saclay

References i

- M. Rußwurm, C. Pelletier, M. Zollner, S. Lefèvre, and M. Körner, "Breizhcrops: A time series dataset for crop type mapping," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ISPRS (2020), 2020.
- P.-A. Absil, R. Mahony, and R. Sepulchre, *Optimization Algorithms on Matrix Manifolds*. Princeton, NJ, USA: Princeton University Press, 2008.
- L. T. Skovgaard, "A Riemannian geometry of the multivariate Normal model," *Scandinavian Journal of Statistics*, vol. 11, no. 4, pp. 211–223, 1984, ISSN: 03036898, 14679469. [Online]. Available: http://www.jstor.org/stable/4615960.

References ii

M. Calvo and J. M. Oller, "An explicit solution of information geodesic equations for the multivariate normal model," *Statistics & Risk Modeling*, vol. 9, no. 1-2, pp. 119–138, 1991. DOI: doi:10.1524/strm.1991.9.12.119. [Online]. Available: https://doi.org/10.1524/strm.1991.9.12.119.

References iii

M. Tang, Y. Rong, J. Zhou, and X. Li, "Information geometric approach to multisensor estimation fusion," *IEEE Transactions on Signal Processing*, vol. 67, no. 2, pp. 279–292, 2019. DOI: 10.1109/TSP.2018.2879035.