Дискретная математика Введение в булеву алгебру. ДНФ, СДНФ, КНФ, СКНФ

Сергей Михайлович Авдошин <u>savdoshin@hse.ru</u>
Екатерина Николаевна Береснева <u>eberesneva@hse.ru</u>
Мария Константиновна Горденко <u>mgordenko@hse.ru</u>
Семинар 2

Виды формул

$$A(X) = A(x_1, x_2, ..., x_n), x \in M^n, M = \{0, 1\}$$

• Общезначимая формула (тавтология)

$$(\forall I \in M^n)(A(I))$$

• Выполнимая формула

$$(\exists I \in M^n) \big(A(I) \big)$$

• Противоречивая формула

$$(\forall I \in M^n)(\overline{A(I)})$$

• Опровержимая формула

$$(\exists I \in M^n) \left(\overline{A(I)} \right)$$

1. ассоциативности

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$A+(B+C)=(A+B)+C$$

2. коммутативности

$$A \cdot B = B \cdot A$$

$$A+B=B+A$$

3. дистрибутивности

слева

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

справа

$$(A+B)\cdot C = (A\cdot C) + (B\cdot C)$$

$$(A \cdot B) + C = (A + C) \cdot (B + C)$$

4. идемпотентности

$$A \cdot A = A$$

$$A+A=A$$

5. двойного отрицания

$$\overline{A} = A$$

6. поглощения

$$A \cdot (A+B) = A$$

$$A + (A \cdot B) = A$$

7. Порецкого

$$A \cdot (\overline{A} + B) = A \cdot B$$

$$A + (\overline{A} \cdot B) = A + B$$

8. де Моргана

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

9. склеивания

$$(A+B)\cdot (A+\overline{B})=A$$

$$(A \cdot B) + (A \cdot \overline{B}) = A$$

10. Аристотеля

противоречия

$$A \cdot \overline{A} = 0$$

исключения третьего

$$A + \overline{A} = 1$$

11. действия с константами

нейтральный элемент

$$A \cdot 1 = A$$

$$A + 0 = A$$

поглощающий элемент

$$A \cdot 0 = 0$$

$$A+1=1$$

•
$$A \Rightarrow B = \bar{A} + B$$

•
$$A \oplus B = \overline{A}B + A\overline{B} = (A+B)(\overline{A}+\overline{B})$$

•
$$A \equiv B = \overline{A}\overline{B} + AB = (\overline{A} + B)(A + \overline{B})$$

Ассоциативность

- $M = \{0,1\}$, * некая бинарная операция
- $(\forall a \in M)(\forall b \in M)(\forall c \in M)((a * b) * c = a * (b * c))$

11.09.2019 8

Операция умножения ассоциативна

a	b	С	a * b	(a*b)*c	b * c	a*(b*c)
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Импликация НЕ ассоциативна

а	b	С	$a \Rightarrow b$	$(a \Rightarrow b) \Rightarrow c$	$b\Rightarrow c$	$a \Rightarrow (b \Rightarrow c)$
0	0	0	1	0	1	1
0	0	1	1	1	1	1
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Коммутативность

- $M = \{0,1\}$, * —некая бинарная операция
- $(\forall a \in M)(\forall b \in M)(a * b = b * a)$

Пример. Операция импликация не коммутативна

а	b	\Rightarrow	\Rightarrow	0	1
0	0	1			
0	1	1	0	1	1
1	0	0			
1	1	1	1	0	1

Идемпотентность

- $M = \{0,1\}$, * —некая бинарная операция
- $(\forall a \in M)(a * a = a)$

Пример. Операция импликация не идемпотентна

а	b	\Rightarrow	\Rightarrow	0	1
0	0	1			
0	1	1	0	1	1
1	0	0			
1	1	1	1	0	1

Левый нейтральный элемент

- $M = \{0,1\}$, * —некая бинарная операция
- Если $(\exists e_l \in M)(e_l * a = a)$, то e_l левый нейтральный элемент

Пример. Для операции импликация? – левый нейтральный элемент

а	b	\Rightarrow	\Rightarrow	0	1	b
0	0	1				
0	1	1	0	1	1	
1	0	0				
1	1	1	1	0	1	
			а	<u> </u>	<u> </u>	I

Левый нейтральный элемент

- $M = \{0,1\}$, * —некая бинарная операция
- Если $(\exists e_l \in M)(e_l * a = a)$, то e_l левый нейтральный элемент

Пример. Для операции импликация 1 – левый нейтральный элемент

а	b	\Rightarrow	\Rightarrow	0	1	b
0	0	1				
0	1	1	0	1	1	
1	0	0				
1	1	1	1 (0	1	
			a			

Правый нейтральный элемент

- $M = \{0,1\}$, * —некая бинарная операция
- Если $(\exists e_r \in M)(a*e_r=a)$, то e_r правый нейтральный элемент

Пример. Для операции импликация нет правого нейтрального элемента

а	b	*	*	0	1	b
0	0	1				1
0	1	1	0	1	1	ام ا
1	0	0				
1	1	1	1	0	1	
				<u> </u>		I

Левый поглощающий элемент

- $M = \{0,1\}$, * —некая бинарная операция
- Если $(\exists \infty_l \in M)(\infty_l * a = \infty_l)$, то ∞_l левый поглощающий элемент

Пример. Для операции импликация нет левого поглощающего элемента

а	b	*	*	0	1	b
0	0	1				1
0	1	1	0	1	1	ام ا
1	0	0				
1	1	1	1	0	1	
			a			I

Правый поглощающий элемент

- $M = \{0,1\}$, * —некая бинарная операция
- Если $(\exists \infty_r \in M)(a*\infty_r = \infty_r)$, то ∞_r правый поглощающий элемент

Пример. Для операции импликация 1 – правый поглощающий элемент

а	b	*	*	0	1	b
0	0	1				
0	1	1	0	1	1	
1	0	0				
1	1	1	1	0	1	
			а	<u> </u>		I

Разрешимость уравнения a * x = b

Α	В	F
0	0	0
0	1	0
0	2	2
1	0	1
1	1	2
1	2	1
2	0	2
2	1	1
2	2	0

0 * x = 1 0 * x = 0 НЕ разрешимо x = ?

Разрешимость уравнения x * a = b

						u 	
Α	В	F				/	
0	0	0		*	0	1	
0	1	0			U		4
0	2	2		0	0	0	
1	0	1					
1	1	2	X	1	1	2	
1	2	1				_	
2	0	2		2	2	1	
2	1	1					
2	2	0			D		
	<u>I</u>				чазр	ешим	0!

Принцип двойственности

Булева функция $f^*(x_1,x_2,...,x_n)$ равная $\overline{f}(x_1,x_2,...,x_n)$ называется двойственной функцией по отношению к функции $f(x_1,x_2,...,x_n)$.

Для получения таблицы истинности двойственной функции достаточно в таблице истинности исходной функции заменить значения всех переменных на противоположные, т.е. все единицы заменить на нули, а нули – на единицы.

Функции двойственные равносильным функциям также равносильны.

Таким образом, производя замену вхождений элементов $\{0, 1, \&, \lor\}$ на $\{1, 0, \lor, \&\}$ в равносильных формулах, получаем равносильные же формулы.

Нахождение двойственной функции

Α	В	F
0	0	1
0	1	1
1	0	0
1	1	1

\overline{A}	$\overline{\pmb{B}}$	$\overline{m{F}}$
1	1	0
1	0	0
0	1	1
0	0	0

\boldsymbol{A}	\boldsymbol{B}	${m F}^*$
0	0	0
0	1	1
1	0	0
1	1	0

Нахождение двойственной функции

Α	В	F
0	0	1
0	1	1
1	0	0
1	1	1

\overline{A}	$\overline{m{B}}$	$\overline{m{F}}$
1	1	0
1	0	0
0	1	1
0	0	0

\boldsymbol{A}	\boldsymbol{B}	$oldsymbol{F}^*$
0	0	0
0	1	1
1	0	0
1	1	0

 $F_{13}(A,B)$ является двойственной функцией к $F_4(A,B)$

Двойственные операции

- & и +
- 0 и 1
- ⇒ и ∉
- ∌ ⋈ ⇐

Есть ли ещё?

Самодвойственная функция

Самодвойственная функция — булева функция, двойственная сама к себе. Функцией, двойственной к функции $f(x_1,\ldots,x_n)$, называется функция $f^*(x_1,\ldots,x_n)=\overline{f}(\overline{x}_1,\ldots,\overline{x}_n)$. Значит, функция $f(x_1,\ldots,x_n)$ является самодвойственной, если $\overline{f}(\overline{x}_1,\ldots,\overline{x}_n)=f(x_1,\ldots,x_n)$. Другими словами самодвойственная функция на противоположных друг другу наборах значений аргументов принимает противоположные значения.

Самодвойственная функция

Α	В	F
0	0	1
0	1	1
1	0	0
1	1	0

\overline{A}	$\overline{m{B}}$	$\overline{m{F}}$
1	1	0
1	0	0
0	1	1
0	0	1

\boldsymbol{A}	\boldsymbol{B}	F
0	0	1
0	1	1
1	0	0
1	1	0

 F_{12} является самодвойственной функцией

Доказательство равносильности формул

Покажем верность закона ДеМоргана

$$((\neg x_1) \lor (\neg x_2)) = (\neg (x_1 \& x_2))$$

построив соотвествующие им таблицы

x ₁	X ₂	x ₁ &x ₂	¬ (x ₁ &x ₂)	$(\neg x_1) \lor (\neg x_2)$
0	0	0	1	1
0	1	0	1	1
1	0	0	1	1
1	1	1	0	0

Несущественная (фиктивная) переменная

- Переменная x_i в функции $f(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n)$ называется несущественной (фиктивной), если $f(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n) = f(x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)$, т. е. изменение значения x_i в любом наборе аргументов не меняет значения функции.
- В результате удаления фиктивной переменной получаем функцию $g(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$ от n-1 переменной.

11.09.2019 27

Разложение Шеннона

- Разложение Шеннона метод представления булевой функции от n переменных в виде суммы двух подфункций от (n-1) остальных переменных.
- $f(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n) = F(x_i)$

•
$$F(x_i) = x_i F(x_i = 1) + \overline{x_i} F(x_i = 0) = (x_i + F(x_i = 0)) (\overline{x_i} + F(x_i = 1))$$

дизъюнктивное конъюнктивное

Совершенное дизъюнктивное разложение Шеннона

•
$$f(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n) = \bigvee_{(a_1, a_2, ..., a_n \in M^n)} x_1^{a_1} x_2^{a_2} ... x_n^{a_n} F(a_1, a_2, ..., a_n)$$

$$x^a = \begin{cases} x, a = 1 \\ \bar{x}, a = 0 \end{cases}, x^a = (x \equiv a)$$

Пример

•
$$F = XYZ + X\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}YZ + \overline{X}\overline{Y}\overline{Z}$$

•
$$F = X \cdot F(X = 1) + \overline{X} \cdot F(X = 0)$$

•
$$F = X(YZ + \overline{Y}Z) + \overline{X}(\overline{Y}Z + YZ + \overline{Y}\overline{Z})$$

•
$$F = Y(XZ + \overline{X}Z) + \overline{Y}(XZ + \overline{X}Z + \overline{X}\overline{Z})$$

•
$$F = Z(XY + X\overline{Y} + \overline{X}\overline{Y} + \overline{X}Y) + \overline{Z}(\overline{X}\overline{Y})$$

Пример

•
$$F = X \cdot F(X = 1) + \overline{X} \cdot F(X = 0)$$

•
$$F = X \begin{pmatrix} Y0011 \\ Z0101 \\ F1101 \end{pmatrix} + \bar{X} \begin{pmatrix} Y0011 \\ Z0101 \\ F1100 \end{pmatrix}$$

•
$$F = X \left(Y \begin{pmatrix} Z01 \\ F01 \end{pmatrix} + \overline{Y} \begin{pmatrix} Z01 \\ F11 \end{pmatrix} \right) + \overline{X} \left(Y \begin{pmatrix} Z01 \\ F00 \end{pmatrix} + \overline{Y} \begin{pmatrix} Z01 \\ F11 \end{pmatrix} \right)$$

•
$$F = X(Y(Z(1) + \bar{Z}(0)) + \bar{Y}(Z(1) + \bar{Z}(1))) + \bar{X}(Y(Z(0) + \bar{Z}(0)) + \bar{Y}(Z(1) + \bar{Z}(1))) = XYZ + X\bar{Y}Z + X\bar{Y}\bar{Z} + \bar{X}\bar{Y}Z + \bar{X}\bar{Y}\bar{Z}$$

X	Υ	Z	F(X, Y, Z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

https://ru.wikipedia.org/wiki/Дизъюнктивная нормальная форма

Дизъюнктивная нормальная форма

- Дизъюнктивная нормальная форма (ДНФ) нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов.
- Формулы в ДНФ:
 - \bullet A+B
 - $AB + \bar{A}$
 - $AB\bar{C} + \bar{D}EF + CD + B$
- Формулы **не в ДНФ**:
 - $\overline{A+B}$
 - A + B(C + D)
- Но последние две формулы эквивалентны следующим формулам в ДНФ:
 - \(\bar{A}\bar{B}\)
 - A + BC + BD

Алгоритм построения ДНФ

- 1. Избавиться от всех логических операций, содержащихся в формуле, заменив их основными: конъюнкцией, дизъюнкцией, отрицанием. Это можно сделать, используя равносильные формулы.
- 2. Заменить знак отрицания, относящийся ко всему выражению, знаками отрицания, относящимися к отдельным переменным высказываниям на основании законов де Моргана.
- 3. Избавиться от знаков двойного отрицания.
- 4. Применить, если нужно, к операциям конъюнкции и дизъюнкции свойства дистрибутивности и формулы поглощения.

https://ru.wikipedia.org/wiki/Дизъюнктивная нормальная форма

Пример

- Приведем к ДНФ формулу $F = \overline{((X o Y) + \overline{(Y o Z))}}$
- Выразим логическую операцию → через +,*,¯
 - $F = \overline{((\overline{X} + Y) + (\overline{\overline{Y} + Z}))}$
- В полученной формуле перенесем отрицание к переменным и сократим двойные отрицания:
 - $F = (\overline{\overline{X}}\overline{Y})(\overline{Y} + Z) = (X\overline{Y})(\overline{Y} + Z)$
- Используя закон дистрибутивности, получаем:
 - $F = (X\overline{Y}\overline{Y}) + (X\overline{Y}Z)$
- Используя идемпотентность конъюнкции, получаем ДНФ:
 - $F = X\overline{Y} + X\overline{Y}Z = X\overline{Y}$

Совершенная дизъюнктивная нормальная форма

- Совершенной дизъюнктивной нормальной формой (СДНФ) называется такая дизъюнктивная нормальная форма, у которой в каждую конъюнкцию входят все переменные.
- Любая булева формула, не являющаяся тождественно ложной, может быть приведена к СДНФ, причем единственным образом, то есть для любой выполнимой функции алгебры логики существует своя СДНФ, причём единственная.
- Например, $F(X,Y,Z) = XYZ + \bar{X}\bar{Y}Z + \bar{X}Y\bar{Z}$.

https://ru.wikipedia.org/wiki/Дизъюнктивная нормальная форма

Переход от ДНФ к СДНФ

- Если в какой-то простой конъюнкции недостаёт переменной, например, Z, вставляем в неё выражение $Z+\bar{Z}=1$
- После чего раскрываем скобки (при этом повторяющиеся дизъюнктные слагаемые не пишем, в силу закона идемпотентности)

https://ru.wikipedia.org/wiki/Дизъюнктивная нормальная форма

Переход от ДНФ к СДНФ

$$X + \bar{Y}\bar{Z} = X(Y + \bar{Y})(Z + \bar{Z}) + (X + \bar{X})\bar{Y}\bar{Z} = XYZ + XY\bar{Z} + X\bar{Y}Z + X\bar{Y}\bar{Z} + X\bar{Y}\bar{Z}$$

Правила построения СДНФ по таблице истинности

- Составить таблицу истинности логической функции
- Отметим те комбинации, которые приводят логическую функцию в состояние единицы.

Α	В	С	F(A, B, C)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Правила построения СДНФ по таблице истинности

- Составить таблицу истинности логической функции
- Отметим те комбинации, которые приводят логическую функцию в состояние единицы.
- Далее рассматриваются только те значения переменных, при которых функция равна 1. Если значение переменной равно 0, то она записывается с инверсией. Если значение переменной равно 1, то без инверсии.

Α	В	С	F(A, B, C)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Правила построения СДНФ по таблице истинности

- Составить таблицу истинности логической функции
- Отметим те комбинации, которые приводят логическую функцию в состояние единицы.
- Далее рассматриваются только те значения переменных, при которых функция равна 1. Если значение переменной равно 0, то она записывается с инверсией. Если значение переменной равно 1, то без инверсии.
- $F = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + A\bar{B}\bar{C} + A\bar{B}C + ABC$

Α	В	С	F(A, B, C)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Конъюнктивная нормальная форма

- Конъюнктивная нормальная форма (КНФ) нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов.
- Формулы **в КНФ**:
 - $\bar{A}(B+C)$
 - $(A+B)(\bar{B}+C+D)(D+\bar{E})$
 - AB
- Формулы **не в КНФ**:
 - $\overline{B+C}$
 - AB + C
 - A(B + DE)
- Но эти 3 формулы не в КНФ эквивалентны следующим формулам в КНФ:
 - $\bar{B}\bar{C}$
 - (A + C)(B + C)
 - A(B+D)(B+E)

Алгоритм построения КНФ

- Избавиться от всех логических операций, содержащихся в формуле, заменив их основными: конъюнкцией, дизъюнкцией, отрицанием.
- Заменить знак отрицания, относящийся ко всему выражению, знаками отрицания, относящимися к отдельным переменным высказываниям.
- Избавиться от знаков двойного отрицания.
- Применить, если нужно, к операциям конъюнкции и дизъюнкции свойства дистрибутивности и формулы поглощения.

11.09.2019 41

Пример

- Приведем к КНФ формулу $F = (X o Y)((\overline{Y} o Z) o \overline{X})$
- Преобразуем формулу F к формуле, не содержащей \rightarrow :

•
$$F = (\overline{X} + Y)(\overline{(\overline{Y} \to Z)} + \overline{X}) = (\overline{X} + Y)(\overline{(\overline{Y} + Z)} + \overline{X})$$

• В полученной формуле перенесем отрицание к переменным и сократим двойные отрицания:

•
$$F = (\overline{X} + Y)(\overline{Y}\overline{Z} + \overline{X})$$

• По закону дистрибутивности получим КНФ:

•
$$F = (\overline{X} + Y)(\overline{X} + \overline{Y})(\overline{X} + \overline{Z})$$

Совершенная конъюнктивная нормальная форма

- Совершенно конъюнктивная нормальная форма конъюнкция дизъюнкций, причём в каждой дизъюнкции (в каждой скобке) присутствуют все переменные, входящие в формулу, либо их отрицание, нет одинаковых дизъюнкций, в каждой дизъюнкции нет одинаковых слагаемых.
- Любая булева формула, не являющаяся тождественно истинной, может быть приведена к СКНФ.

Переход от КНФ к СКНФ

• Если в простой дизъюнкции не хватает какой-то переменной (например, Z), то добавляем в неё выражение $Z\bar{Z}=0$

•
$$F = (X + Y)(X + \bar{Y} + \bar{Z}) = (X + Y + (Z\bar{Z}))(X + \bar{Y} + \bar{Z}) = (X + Y + Z)(X + Y + \bar{Z})(X + \bar{Y} + \bar{Z})$$

Правила построения СКНФ по таблице истинности

- Составить таблицу истинности логической функции
- Отметим те комбинации, которые приводят логическую функцию в состояние 0.

Α	В	С	F(A, B, C)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

11.09.2019 45

Правила построения СКНФ по таблице истинности

- Составить таблицу истинности логической функции
- Отметим те комбинации, которые приводят логическую функцию в состояние 0.
- Далее рассматриваются только те значения переменных, при которых функция равна 0. Если значение переменной равно 1, то она записывается с инверсией. Если значение переменной равно 0, то без инверсии.

Α	В	С	F(A, B, C)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

11.09.2019 46

Правила построения СКНФ по таблице истинности

- Составить таблицу истинности логической функции
- Отметим те комбинации, которые приводят логическую функцию в состояние 0.
- Далее рассматриваются только те значения переменных, при которых функция равна 0. Если значение переменной равно 1, то она записывается с инверсией. Если значение переменной равно 0, то без инверсии.
- $F = (A + \bar{B} + C)(A + \bar{B} + \bar{C})(\bar{A} + \bar{B} + C)$

Α	В	С	F(A, B, C)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1