CS388: Natural Language Processing

Lecture 17:

Syntax II: Dependency

Parsing

Greg Durrett

Administrivia

Project 3 graded soon

Recall: Constituency

- Tree-structured syntactic analyses of sentences
- Nonterminals (NP, VP, etc.) as well as POS tags (bottom layer)
- Structured is defined by a CFG

Recall: PCFGs

Grammar (CFG)		Lexicon		
ROOT → S	$1.0 \text{ NP} \rightarrow \text{NP PP}$	0.3	NN → interest	1.0
$S \rightarrow NP VP$	$1.0 \text{ VP} \rightarrow \text{VBP NP}$	0.7	NNS → raises	1.0
$NP \rightarrow DT NN$	$0.2 \ \ VP \to VBP \ NP \ PP$	0.3	$VBP \to interest$	1.0
$NP \rightarrow NN NNS$	$0.5 \text{ PP} \rightarrow \text{IN NP}$	1.0	VBZ → raises	1.0

- ► Context-free grammar: symbols which rewrite as one or more symbols
- Lexicon consists of "preterminals" (POS tags) rewriting as terminals (words)
- CFG is a tuple (N, T, S, R): N = nonterminals, T = terminals, S = start symbol (generally a special ROOT symbol), R = rules
- ▶ PCFG: probabilities associated with rewrites, normalize by source symbol

Recall: CKY

- Dynamic programming: chart maintains the best way of building symbol X over span (i, j)
- Loop over all split points k, apply rules X -> Y Z to build X in every possible way

Cocke-Kasami-Younger

Outline

- Dependency representation, contrast with constituency
- Graph-based dependency parsers
- Transition-based (shift-reduce) dependency parsers
- State-of-the-art parsers

Dependency Representation

Dependency Parsing

- Dependency syntax: syntactic structure is defined by these arcs
- ► Head (parent, governor) connected to dependent (child, modifier)
- Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph

POS tags same as before, usually run a tagger first as preprocessing

Dependency Parsing

► Still a notion of hierarchy! Subtrees often align with constituents

Dependency vs. Constituency: PP Attachment

Dependency: one word (with) assigned a different parent

- ► More predicate-argument focused view of syntax
- "What's the main verb of the sentence? What is its subject and object?"— easier to answer under dependency parsing

Dependency vs. Constituency: Coordination

► Constituency: ternary rule NP -> NP CC NP

Dependency vs. Constituency: Coordination

Dependency: first item is the head

dogs in houses and cats

[dogs in houses] and cats

dogs in [houses and cats]

- Coordination is decomposed across a few arcs as opposed to being a single rule production as in constituency
- Can also choose and to be the head
- In both cases, headword doesn't really represent the phrase constituency representation makes more sense

Collapsed

Dependency vs. Constituency

- Dependency is often more useful in practice (models predicate argument structure)
- Slightly different representational choices:
 - PP attachment is better modeled under dependency
 - Coordination is better modeled under constituency
- Dependency parsers are easier to build: no "grammar engineering", no unaries, easier to get structured discriminative models working well
- Dependency parsers are usually faster
- Dependencies are more universal cross-lingually: Czech was one of the first languages for dep parsing in NLP due to its free word order

Standard

Universal Dependencies

► Annotate dependencies with the same representation in many languages

Kansas

Graph-Based Parsing

Defining Dependency Graphs

- Words in sentence x, tree T is a collection of directed edges (parent(i), i)
 for each word i
 - Parsing = identify parent(i) for each word
 - ► Each word has exactly one parent. Edges must form a projective tree
- Log-linear CRF (discriminative): $P(T|\mathbf{x}) = \exp\left(\sum_i w^\top f(i, \mathrm{parent}(i), \mathbf{x})\right)$
- Example of a feature = I[head=to & modifier=house]

ROOT the dog ran to the house

Generalizing CKY

- ▶ DP chart with three dimensions: start, end, and head, start <= head < end
- new score = chart(2, 5, 4) + chart(5, 7, 5) + edge score(4 -> 5)

► score(2, 7, 4) = max(score(2, 7, 4), new score)

4 = report 5 = on

- Many spurious derivations:
 can build the same tree in many
 ways...need a better algorithm
- Eisner's algorithm is cubic time

wrote a long report on Mars

Evaluating Dependency Parsing

- UAS: unlabeled attachment score. Accuracy of choosing each word's parent (n decisions per sentence)
- LAS: additionally consider label for each edge
- Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
- ► Higher-order features from Koo parser: 93 UAS
- ▶ Best English results with neural CRFs (Dozat and Manning): 95-96 UAS

Shift-Reduce Parsing

Shift-Reduce Parsing

- ► Similar to deterministic parsers for compilers
 - Also called transition-based parsing
- A tree is built from a sequence of incremental decisions moving left to right through the sentence
- Stack containing partially-built tree, buffer containing rest of sentence
- ► Shifts consume the buffer, reduces build a tree on the stack

Shift-Reduce Parsing

ROOT

I ate some spaghetti bolognese

- ► Initial state: Stack: [ROOT] Buffer: [I ate some spaghetti bolognese]
- Shift: top of buffer -> top of stack
 - ► Shift 1: Stack: [ROOT I] Buffer: [ate some spaghetti bolognese]
 - ► Shift 2: Stack: [ROOT I ate] Buffer: [some spaghetti bolognese]

Shift-Reduce Parsing

ROOT I ate some spaghetti bolognese

- ► State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]
- Left-arc (reduce): Let σ denote the stack, $\sigma|w_{-1}$ = stack ending in w₋₁
 - "Pop two elements, add an arc, put them back on the stack" $\sigma|w_{-2},w_{-1}| \to \sigma|w_{-1}| \quad w_{-2}$ is now a child of w_{-1}

Arc-Standard Parsing

ROOT I ate some spaghetti bolognese

- ► Start: stack contains [ROOT], buffer contains [I ate some spaghetti bolognese]
- Arc-standard system: three operations
 - ► Shift: top of buffer -> top of stack
 - Left-Arc: $\sigma|w_{-2},w_{-1}$ $ightarrow \sigma|w_{-1}$, w_{-2} is now a child of w_{-1}
 - Right-Arc $\sigma|w_{-2},w_{-1}|$ \to $\sigma|w_{-2}|$, w_{-1} is now a child of w_{-2}
- End: stack contains [ROOT], buffer is empty []
- ► How many transitions do we need if we have n words in a sentence?

Building Shift-Reduce Parsers

[ROOT]

[I ate some spaghetti bolognese]

- How do we make the right decision in this case?
- Only one legal move (shift)

- How do we make the right decision in this case? (all three actions legal)
- Multi-way classification problem: shift, left-arc, or right-arc?

$$\operatorname{argmax}_{a \in \{S, LA, RA\}} w^{\top} f(\operatorname{stack}, \operatorname{buffer}, a)$$

Features for Shift-Reduce Parsing

[ROOT ate some spaghetti] [bolognese]

↓

I

- Features to know this should left-arc?
- One of the harder feature design tasks!
- In this case: the stack tag sequence VBD DT NN is pretty informative
 ─ looks like a verb taking a direct object which has a determiner in it
- Things to look at: top words/POS of buffer, top words/POS of stack, leftmost and rightmost children of top items on the stack

Training a Greedy Model

- ► Can turn a tree into a decision sequence **a** by building an *oracle*
- ► Train a classifier to predict the right decision using these as training data
- Training data assumes you made correct decisions up to this point and teaches you to make the correct decision, but what if you screwed up...

Speed Tradeoffs

	Parser	Dev		Test		Speed
	raisei	UAS	LAS	UAS	LAS	(sent/s)
Unoptimized S-R	standard	89.9	88.7	89.7	88.3	51
Olloptillized 3-K	eager	90.3	89.2	89.9	88.6	63
Optimized S-R	Malt:sp	90.0	88.8	89.9	88.5	560
Optimized 3-K	Malt:eager	90.1	88.9	90.1	88.7	535
Graph-based $\{$	MSTParser	92.1	90.8	92.0	90.5	12
Neural S-R {	Our parser	92.2	91.0	92.0	90.7	1013

- ► Many early-2000s constituency parsers were ~5 sentences/sec
- Using S-R used to mean taking a performance hit compared to graph-based, that's no longer (quite as) true
 Chen and Manning (2014)

Shift-Reduce Constituency

combine with no label for ternary rules

 Can do shift-reduce for constituency as well, reduce operation builds constituents

Cross and Huang (2016)

Shift-Reduce Constituency

"Tetra tagging": four possible tags to get unlabeled binary trees

- "≯": This terminal node is a left-child.
- "K": This terminal node is a right-child.
- ""." The shortest span crossing this fence-post is a left-child.
- "尽": The shortest span crossing this fencepost is a right-child.

	Sents/s	Hardware	F1
Vilares et al. (2019)	942	1x GPU	91.13
Kitaev et al. (2019)*	39	1x GPU	95.59
Zhou and Zhao (2019)*	_	_	95.84
This work*	1200	1x TPU v3-8	95.44

Kitaev and Klein (2020)

State-of-the-art Dependency Parsers

Dependency Parsers

- ► 2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)
- ► 2010: Koo's 3rd-order parser was SOTA for graph-based (~93 UAS)
- ▶ 2012: Maltparser was SOTA was for transition-based (~90 UAS)
- 2014: Chen and Manning got 92 UAS with transition-based neural model
- 2016: Improvements to Chen and Manning

Parsey McParseFace (a.k.a. SyntaxNet)

- ▶ 94.61 UAS on the Penn Treebank using a global transition-based system with early updating (compared to 95.8 for Dozat, 93.7 for Koo in 2009)
 - ► Additional data harvested via "tri-training", form of self-training
- Feedforward neural nets looking at words and POS associated with words in the stack / those words' children / words in the buffer
- ► Feature set pioneered by Chen and Manning (2014), Google fine-tuned it

Andor et al. (2016)

Challenges in other languages

- Swiss German example: note that the arcs cross, unlike in our English examples, which were almost entirely projective
- (Swiss German also has famous non-context-free constructions)
- As a result: some different transition-based algorithms are needed

credit: Pitler et al. (2013)

Multilingual Parsing

- Interest in multilingual dependency parsing as far back as CoNLL 2006 shared task
- Now: can parse many languages with one pretrained model

Reflections on Structure

- What is the role of it now?
- Systems still make these kinds of judgments, just not explicitly
- ► To improve systems, do we need to understand what they do?

Recap

- ► Shift-reduce parsing can work nearly as well as graph-based
- Arc-standard system for transition-based parsing
- Strong learning-based parsers, including multilingual parsers