Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #2

2023/03/02

Student Number:	
1.	Let W be a subspace of a vector space V over \mathbf{F} , $\dim V = n < \infty$, $0 < \dim W < \dim V$. Show that there exist infinite subspaces U such that $V = U \oplus W$.
人人	Proof Let dim $W = r$, $\xi_1, \xi_2,, \xi_r$ be a basis of W , expand it to a basis of V : $\xi_1,, \xi_r, \xi_{r+1},, \xi_n$. Let $U_k = \text{span } \{k\xi_1 + \xi_{r+1}, \xi_{r+2},, \xi_n\}$, $k = 1, 2,$ Obviously, U_k is a subspace of V , $U_k \cap W = \{0\}$, dim $U_k = n - r$. \Rightarrow dim $U_k \oplus W = n$. $\Rightarrow V = U_k \oplus W$.
	Next we will prove if $k \neq s$, then $U_k \neq U_s$ by contradiction. Assume $k \neq s$, but $U_k = U_s$. $\Rightarrow k\xi_1 + \xi_{r+1} \in \text{span } \{s\xi_1 + \xi_{r+1}, \xi_{r+2},, \xi_n\}$.
	$\Rightarrow \exists l_{r+1}, l_{r+2},, l_n, \text{ s.t. } k\xi_1 + \xi_{r+1} = l_{r+1}(s\xi_1 + \xi_{r+1}) + l_{r+2}\xi_{r+2} + + l_n\xi_n.$
	$\Rightarrow (sl_{r+1} - k)\xi_1 + (l_{r+1} - 1)\xi_{r+1} + l_{r+2}\xi_{r+2} + \dots + l_n\xi_n = 0.$
	Since $\xi_1, \xi_2,, \xi_n$ are linearly independent, we have $sl_{r+1} - k = 0, l_{r+1} - 1 = 0. \Rightarrow l_{r+1} = 1, s = k$, which is contradict with $s \neq k$.

All in all, $U_1, U_2, ...$ are infinite subspaces such that $V = U_k \oplus W$.

2. Prove the following set is a subspace of \mathbb{R}^3 and compute the dimension of W:

$$W = \{(x, y, z) \in \mathbf{R}^3 : x + 2y + 3z = 0, 4x + 5y + 6z = 0, x + y + z = 0\}$$

Solution It's easy to find that $\mathbf{0} = (0,0,0) \in W$. $\forall (x_1,y_1,z_1), (x_2,y_2,z_2) \in W$, we can check $(x_1,y_1,z_1)+(x_2,y_2,z_2) \in W$ and $a(x_1,y_1,z_1) \in W$ holds for any $a \in \mathbf{R}$. So W is a subspace of \mathbf{R}^3 .

Ones can discover that

$$\begin{cases} x + 2y + 3z = 0 \\ 4x + 5y + 6z = 0 \\ x + y + z = 0 \end{cases} \iff \begin{cases} x + y + z = 0 \\ y + 2z = 0 \end{cases}. \tag{1}$$

Therefore, we have $(x,y,z) \in W \iff x=z,y=-2z,z \in \mathbf{R}$. In other words, $\forall (x,y,z) \in W, (x,y,z)=z(1,-2,1)$, i.e., $W=\mathrm{span}\{(1,-2,1)\}$. (1,-2,1) is certainly linearly independent, so (1,-2,1) is a basis of W, which shows that dim W=1.