Symmetric Key Ciphers

Part II: Polyalphabetic Substitution Ciphers

Priyank Kalla
Professor
Electrical & Computer Engineering

- MonoAlphabetic Ciphers (MAC): A character in the plaintext is always changed to the same character in the cipher text, regardless of its position in the text.
 - Additive ciphers, multiplicative ciphers and affine ciphers fall into this category
 - MAC don't change the frequency of characters: so they are vulnerable to statistical attacks

Statistical Attacks

Frequency of occurrence of letters in an English text

Letter	Frequency	Letter	Frequency	Letter	Frequency	Letter	Frequency
Е	12.7	Н	6.1	W	2.3	K	0.08
Т	9.1	R	6.0	F	2.2	J	0.02
A	8.2	D	4.3	G	2.0	Q	0.01
О	7.5	L	4.0	Y	2.0	X	0.01
I	7.0	С	2.8	P	1.9	Z	0.01
N	6.7	U	2.8	В	1.5		
S	6.3	M	2.4	V	1.0		

Intercepted Cipher:

XLILSYWIMWRSAJSVWEPIJSVJSYVQMPPMSRHSPPEVWMXMWASVX-LQSVILY-VVCFIJSVIXLIWIPPIVVIGIMZIWQSVISJJIVW

- The letter "I" appears 14 times: maximum occurrence of a character
- Probably: "I" in cipher text = "e" in plaintext
 - Key = 4: $C = P + k \pmod{26} = e + 4 = 4 + 4 = 8 = I$

Decipher:

the house is now for sale for four million dollars it is worth more hurry before the seller receives more offers

Monoalphabetic Substitution Cipher

- Key = Look-up Table
 - Key space = $26! = 4 \times 10^{26}$ (approx)
 - Brute-force attack is difficult, but statistical attacks are successful
- Additive, multiplicative and affine ciphers: Brute-force attacks can work, because the frequency of characters in the cipher text does not change
- Solution: Polyalphabetic Substitution Ciphers

PolyAlphabetic Substitution Ciphers

- Each occurrence of a character may have a different substitute in the cipher text
- Make each ciphertext character dependent on: 1) the corresponding plaintext character; and/or 2) the position of the plaintext character in the message
- Examples: Autokey Cipher, Vigenere Cipher, Hill Cipher
- Autokey Cipher:
 - Key = stream of subkeys, 1 subkey for 1 character
 - Only the first subkey is shared between Alice and Bob
 - Following subkeys = plaintext characters $P_1P_2...$

Autokey Cipher:

```
P = P_1 P_2 P_3 ... 	 C = C_1 C_2 C_3 ... 	 k = (k_1, P_1, P_2, ...)
Encryption: C_i = (P_i + k_i) \mod 26 	 Decryption: P_i = (C_i - k_i) \mod 26
```

```
Plaintext:
                          a c k
                                      i s t o
                                                         d
             a
                 t
                   t
                                                              a
                              02 10
P's Values:
            00
                19 19
                         00
                                                                  24
                                       08
                                           18 19
                                                   14
                                                         03 00
            12 00 19
                                           08 18 19
Key stream:
                         19
                              00 02
                                      10
                                                         14 03
                                                                  00
C's Values:
                              02 12 18
            12 19 12
                        19
                                           00 11 7
                                                        17 03
                                                                  24
                              \mathbf{C}
Ciphertext:
            \mathbf{M}
                         \mathbf{T}
                                  \mathbf{M}
                                           A
                 T
                     \mathbf{M}
                                                    H
                                                         R
                                                                  Y
                                                             D
```

- Autokey: Subkeys automatically created from P
- Hides single-letter frequency
- Easy to break: Brute-force attack on k_1

Vigenère Cipher

$$P = P_1 P_2 P_3 ...$$
 $C = C_1 C_2 C_3 ...$ $K = [(k_1, k_2, ..., k_m), (k_1, k_2, ..., k_m), ...]$
Encryption: $C_i = P_i + k_i$ Decryption: $P_i = C_i - k_i$

- Key is a stream: $(k_1, k_2, ..., k_m)$, $1 \le m \le 26$, which repeats
- Example key stream = "PASCAL" = (15, 00, 18, 2, 0, 11)
- Key depends on the position of the the character in the Ciphertext, not on the plaintext character itself

Plaintext:	S	h	e	i	S	1	i	S	t	e	n	i	n	g
P's values:	18	07	04	08	18	11	08	18	19	04	13	08	13	06
Key stream:	15	00	18	<i>02</i>	00	11	15	00	18	<i>02</i>	00	11	15	00
C's values:	07	07	22	10	18	22	23	18	11	6	13	19	02	06
Ciphertext:	Н	Н	W	K	S	W	X	S	L	G	N	T	C	G

Vigenère Cipher with m = 1 = additive cipher

Hill Cipher

- Divide plaintext into equal-size blocks (block cipher)
 - Sometimes need to add bogus characters
- Blocks are encrypted 1 at a time
- Each Character in the block contributes to the encryption of other characters in the block
- Key = square $m \times m$ matrix

$$\mathbf{K} = \begin{bmatrix} k_{11} & k_{12} & \dots & k_{1m} \\ k_{21} & k_{22} & \dots & k_{2m} \\ \vdots & \vdots & & \vdots \\ k_{m1} & k_{m2} & \dots & k_{mm} \end{bmatrix}$$

Hill Cipher

$$C_{1} = P_{1} k_{11} + P_{2} k_{21} + \dots + P_{m} k_{m1}$$

$$C_{2} = P_{1} k_{12} + P_{2} k_{22} + \dots + P_{m} k_{m2}$$

$$\dots$$

$$C_{m} = P_{1} k_{1m} + P_{2} k_{2m} + \dots + P_{m} k_{mm}$$

- Represent C, P, K as matrices: $C = P \cdot K$ and $P = C \cdot K^{-1}$
- P = "code is ready" (11 chars) = "code is readyz"

$$\begin{bmatrix} 14 & 07 & 10 & 13 \\ 08 & 07 & 06 & 11 \\ 11 & 08 & 18 & 18 \end{bmatrix} = \begin{bmatrix} 02 & 14 & 03 & 04 \\ 08 & 18 & 17 & 04 \\ 00 & 03 & 24 & 25 \end{bmatrix} \begin{bmatrix} 09 & 07 & 11 & 13 \\ 04 & 07 & 05 & 06 \\ 02 & 21 & 14 & 09 \\ 03 & 23 & 21 & 08 \end{bmatrix}$$

a. Encryption

(mod 26)

$$\begin{bmatrix} 02 & 14 & 03 & 04 \\ 08 & 18 & 17 & 04 \\ 00 & 03 & 24 & 25 \end{bmatrix} = \begin{bmatrix} 14 & 07 & 10 & 13 \\ 08 & 07 & 06 & 11 \\ 11 & 08 & 18 & 18 \end{bmatrix} \begin{bmatrix} 02 & 15 & 22 & 03 \\ 15 & 00 & 19 & 03 \\ 09 & 09 & 03 & 11 \\ 17 & 00 & 04 & 07 \end{bmatrix}$$

b. Decryption

Hill Cipher: Cryptanalysis

$$C_{1} = P_{1} k_{11} + P_{2} k_{21} + \dots + P_{m} k_{m1}$$

$$C_{2} = P_{1} k_{12} + P_{2} k_{22} + \dots + P_{m} k_{m2}$$

$$\dots$$

$$C_{m} = P_{1} k_{1m} + P_{2} k_{2m} + \dots + P_{m} k_{mm}$$

- Cryptanalysis is hard: Key space $26^{m \times m}$, also need to know m
- Frequency analysis of characters also not helpful as this is a polyalphabetic cipher
- Try "known-plaintext" attack if you know m and generate (P,C)
 pairs for m blocks
- $C = P \cdot K \implies K = C \cdot P^{-1}$
- If P is non-invertible, generate more (P,C) pairs

Attack on Hill Cipher

- Assume Eve knows m=3
- Intercept 3 (P,C) pairs, to create $m \times m$ matrices for C and P

$$\begin{bmatrix} 02 & 03 & 07 \\ 05 & 07 & 09 \\ 01 & 02 & 11 \end{bmatrix} = \begin{bmatrix} 21 & 14 & 01 \\ 00 & 08 & 25 \\ 13 & 03 & 08 \end{bmatrix} \begin{bmatrix} 03 & 06 & 00 \\ 14 & 16 & 09 \\ 03 & 17 & 11 \end{bmatrix}$$

$$\mathbf{K} \qquad \mathbf{P}^{-1} \qquad \mathbf{C}$$

Next class: Transposition ciphers and modern block ciphers