Lecture 27, Oct. 31

Note. There exist arbitrary large gaps between prime numbers.

- **27.1 Theorem** (Bertrand's postulate). For every $n \in \mathbb{Z}^+$ there is a prime p with n
- **27.2 Theorem** (Dirichlet's Theorem on Primes in Arithmetic Progression). Let $a, b \in \mathbb{Z}^+$ with gcd(a, b) = 1. Then there exists infinitely many primes p of the form p = a + tb for some $t \in \mathbb{Z}$. In other words, there exist infinitely many primes in the sequence

$$a, a + b, a + 2b, a + 3b, \cdots$$

27.3 Theorem (The Prime Number Theorem). For $x \in \mathbb{R}$ let $\pi(x)$ denote the number of primes p with $p \le x$. Then

$$\pi(x) \frac{x}{\ln x}$$

which means that

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1$$

- **27.4 Conjecture** (n^2 Conjecture). For all $n \in \mathbb{Z}^+$ there exists a prime p with n^2
- **27.5 Conjecture** ($n^2 + 1$ Conjecture). There are infinitely many primes of the form $p = n^2 + 1$ for some $n \in \mathbb{Z}$
- **27.6 Conjecture** (Mersenne Primes Conjecture). There exist infinitely many primes of the form $p = 2^n 1$ for some $n \in \mathbb{Z}^+$ (such primes are called Mersenne Primes).
- **27.7 Exercise.** If $2^n 1$ is prime, then n is prime.
- **27.8 Conjecture** (Fermat Primes Conjecture). There are only finitely many primes of the form $p = 2^n + 1$ with $n \in \mathbb{Z}^+$ (such primes are called Fermat primes).
- **27.9 Exercise.** If $2^n + 1$ is prime then $n = 2^k$ for some $k \in \mathbb{N}$
- **27.10 Conjecture** (Twin Primes Conjecture). There exist infinitely many primes p such that p+2 is also prime. Such primes p and p+2 are called twin primes.
- **27.11 Conjecture** (Goldbach's Conjecture). Every even number $n \ge 2$ is a sum of two primes.
- **27.12 Theorem** (Unique Prime Factorization). Every integer $n \ge 2$ can be expressed uniquely in the form

$$n=\prod_{i=1}^l p_i=p_1p_2\cdots p_l$$

for some $l \in \mathbb{Z}^+$ and some primes p_1, p_2, \dots, p_l with $p_1 \leq p_2 \leq \dots \leq p_l$.

Proof. First we show existence. Let $n \ge 2$. Suppose, inductively, that every integer k with $2 \le k < n$ can be written (uniquely) in the required form. If n is prime then $n = p_1$ with $p_1 = n$.

Suppose n is composite, say n = ab with 1 < a < n and 1 < b < n. Since $2 \le a < n$ and $2 \le n < n$ we can write

$$a = \prod_{i=1}^{l} p_i$$

and

$$b = \prod_{j=1}^{m} q_j$$

with $I, m \in \mathbb{Z}$ and the q_i, p_i are primes.

Thus

$$n = ab$$

$$= p_1 p_2 \cdots p_l q_1 q_2 \cdots q_m$$

$$= r_1 r_2 \cdots r_{l+m}$$

where the (l+m)-tuple $(r_1, r_2, \dots, r_{l+m})$ is obtained by rearranging the entries of the

$$(l+m)$$
-tuple $(p_1, p_2, \dots, p_l, q_1, q_2, \dots, q_m)$

into non-decreasing order.

Next we prove uniqueness. We need to show that if $n=p_1p_2\cdots p_l$ and $n=q_1q_2\cdots q_m$ where $l,m\in\mathbb{Z}^+$ and the p_i and q_i are primes with $p_1\leq p_2\leq\cdots\leq p_l$ and $q_1\leq q_2\leq\cdots q_m$, then l=m and $p_i=q_i$ for all i.

Suppose $n=p_1p_2\cdots p_l=q_1q_2\cdots q_m$ as above. Since $n=p_1p_2\cdots p_l$ we have $p_1\mid n$. Since $n=q_1q_2\cdots q_m$ we have $p_1\mid q_1q_2\cdots q_m$. It follows that $p_1\mid q_k$ for some k with $1\leq k\leq m$. Say $p_1\mid q_k$. Since q_k is prime, its only positive divisors are 1 and q_k . Since $p_1\neq 1$, so $p_1=q_k$. Similarly, $q_1=p_j$ for some j with $1\leq j\leq l$. Since $p_1=q_k\geq q_1=p_j\geq p_1$, so we must have $p_1=p_j=q_1$.