Contents

1	Ger	General Introduction 10						
	1.1	Introd	uction	10				
	1.2	Object	tive	10				
	1.3	1.3 Thesis Structure						
2	Basic Concepts							
	2.1							
	2.2	Edge Computing Fundamentals						
		2.2.1	Definition and Characteristics					
		2.2.2	Edge Computing Architecture					
		2.2.3	Edge vs Cloud Computing Trade-offs					
		2.2.4	Resource Constraints in Edge Environments	15				
	2.3	Functi		15				
		2.3.1	Serverless Computing Model					
		2.3.2	FaaS Architecture and Characteristics	15				
		2.3.3		15				
		2.3.4	Cold Start and Warm Start Mechanisms	15				
	2.4	Faas-s		15				
		2.4.1		15				
		2.4.2		15				
		2.4.3	Heterogeneous Device Management					
		2.4.4		15				
	2.5	Intern	· · · · · · · · · · · · · · · · · · ·	15				
		2.5.1	IoT Architecture and Communication Models	15				
		2.5.2						
		2.5.3	IoT Workload Characteristics					
		2.5.4	Real-time Processing Requirements	15				
	2.6	Simula	ation and Modeling Principles					
		2.6.1	Discrete Event Simulation					
		2.6.2	Trace-driven vs Model-driven Approaches					
		2.6.3	Performance Metrics and Validation					
	2.7	Conclu	ısion					
3	State of the Art							
J	3.1 Introduction							
	3.2		Simulation Frameworks	35 35				
	9.2	3.2.1	Cloud-Centric FaaS Simulators					
			Edge-Oriented FaaS Simulators	35				

	3.3	Compara	tive Analysis Framework	35		
		3.3.1 E	valuation Criteria Definition	35		
		3.3.2 Si	imulator Assessment Methodology	35		
	3.4	Simulator	r Evaluation Results	35		
		3.4.1 C	Cloud-Centric Simulator Analysis	35		
		3.4.2 E	dge-Oriented Simulator Analysis	35		
	3.5	Smart Ci	ity IoT Applications in FaaS-Sim	35		
		3.5.1 To	raffic Management and Monitoring	35		
		3.5.2 E	nvironmental Sensing and Analytics	35		
			ublic Safety and Emergency Response			
			ccident Prevention Systems			
	3.6		n Research Landscape	35		
			Distributed Scheduling Challenges	35		
			Container Orchestration at the Edge	35		
			oS and SLA Management			
			leterogeneous Resource Management			
	3.7		s and Research Gaps	35		
	J.,	•	imulator Capability Matrix			
			dentified Research Gaps			
			mart City Simulation Requirements	35		
	3.8	Discussio	•	35		
	0.0		imulator Selection Rationale	35		
			as-sim as Primary Choice			
			imitations and Future Needs	35		
	3.9					
	0.0	Colletable	512	33		
4	Con	clusion		66		
4.1		Research Summary				
	4.2		lings	66		
			imulator Comparison Results	66		
		4.2.2 Fa	aaS-Sim Simulation Challenges	66		
			mart City Application Requirements	66		
	4.3		Contributions	66		
		4.3.1 C	Comprehensive Simulator Evaluation	66		
			aaS-Sim Modeling Framework	66		
		4.3.3 Sı	mart City Use Case Analysis	66		
	4.4	Limitatio	v	66		
	4.5	Future R	desearch Directions	66		
			dvanced FaaS-Sim Simulation Models	66		
			eal-world Validation Studies	66		
			extended Smart City Scenarios	66		
	4.6		Remarks	66		
		O .				
Pa	age I	Distributi	on	67		