LAPORAN

VIGENERE CIPHER

Mata Kuliah Kriptografi

Dosen Pengampu:

Kodrat Mahatma S.T., M.Kom

Anggota Kelompok:

Desi Ramadani (20123042)

Mita Anggraeni (20123051)

KELAS C1.23 PROGRAM STUDI S1 INFORMATIKA UNIVERSITAS TEKNOLOGI DIGITAL BANDUNG 2025

A. Tujuan

- 1. Mengimplementasikan algoritma Vigenère Cipher dalam program Python.
- 2. Melakukan analisis frekuensi terhadap hasil ciphertext.
- 3. Melakukan validasi hasil enkripsi dan dekripsi menggunakan aplikasi CrypTool 2.

B. Alat dan Bahan

- 1. VSCode untuk menulis kode program Python
- 2. Python 3.13
- 3. Aplikasi CrypTool 2.1
- 4. Laptop/PC
- 5. Teks uji: ATTACKATDAWN
- 6. Kunci (key): LEMON

C. Langkah-langkah Implementasi

- a. Di VSCode (Implementasi Program)
 - 1. Membuat file bernama vigenere_analysis.py
 - 2. Menulis kode program berikut:

```
from collections import Counter
def vigenere encrypt(plaintext, key):
    plaintext = plaintext.upper().replace(" ", "")
    key = key.upper()
    ciphertext = ""
    for i in range(len(plaintext)):
        p = ord(plaintext[i]) - 65
        k = ord(key[i \% len(key)]) - 65
        c = (p + k) \% 26
        ciphertext += chr(c + 65)
    return ciphertext
def vigenere_decrypt(ciphertext, key):
    ciphertext = ciphertext.upper().replace(" ", "")
    key = key.upper()
    plaintext = ""
    for i in range(len(ciphertext)):
        c = ord(ciphertext[i]) - 65
        k = ord(key[i \% len(key)]) - 65
        p = (c - k) \% 26
        plaintext += chr(p + 65)
    return plaintext
def frequency_analysis(text):
    text = text.upper().replace(" ", "")
    freq = Counter(text)
    total = sum(freq.values())
    for letter in sorted(freq):
        print(f"{letter}: {freq[letter]} ({freq[letter]/total:.2%})")
```

```
return freq

if __name__ == "__main__":
    plaintext = "ATTACKATDAWN"
    key = "LEMON"

    ciphertext = vigenere_encrypt(plaintext, key)
    print("Plaintext :", plaintext)
    print("Key :", key)
    print("Ciphertext:", ciphertext)

print("\n=== Frequency Analysis ===")
    frequency_analysis(ciphertext)

decrypted = vigenere_decrypt(ciphertext, key)
    print("\nDecrypted :", decrypted)
```

3. Menjalankan program menggunakan perintah: python vigenere_analysis.py

b. Hasil di terminal

```
vigenere_analysis.py
Plaintext : ATTACKATDAWN
Key : LEMON
Ciphertext: LXFOPVEFRNHR

=== Frequency Analysis ===
E: 1 (8.33%)
F: 2 (16.67%)
H: 1 (8.33%)
L: 1 (8.33%)
N: 1 (8.33%)
O: 1 (8.33%)
P: 1 (8.33%)
R: 2 (16.67%)
V: 1 (8.33%)
X: 1 (8.33%)
```

Decrypted: ATTACKATDAWN

D. Analisis Frekuensi

Berdasarkan hasil di atas, huruf F dan R muncul paling sering dengan persentase 16.67%. Distribusi huruf tidak seragam dan tidak mengikuti pola huruf umum dalam bahasa Inggris, menandakan bahwa Vigenère Cipher termasuk cipher polialfabetik yang lebih aman dibanding Caesar Cipher.

E. Validasi dengan Cryptool

Langkah-langkah validasi:

- 1. Membuka aplikasi CrypTool 2
- 2. Menambahkan komponen Text Input → Vigenere Cipher → Text Output
- 3. Memasukkan plaintext ATTACKATDAWN dan key LEMON
- 4. Menjalankan proses enkripsi menghasilkan ciphertext LXFOPVEFRNHR
- 5. Melakukan proses dekripsi dan hasilnya kembali ke ATTACKATDAWN

F. Kesimpulan

- Program Python berhasil mengenkripsi dan mendekripsi pesan menggunakan Vigenere Cipher.
- 2. Analisis frekuensi menunjukkan bahwa huruf dalam ciphertext tersebar acak, membuktikan sifat polialfabetik cipher ini.
- 3. Validasi hasil di CrypTool membuktikan bahwa hasil enkripsi dan dekripsi dari program sudah benar.
- 4. Vigenere Cipher memiliki keamanan lebih baik dibanding cipher monoalfabetik, meskipun tetap bisa dianalisis dengan metode Kasiski atau Friedman jika kuncinya pendek.

G. Lampiran

Enkripsi

Deskripsi

Link Github:

https://github.com/desiramadani-2004/vigenere-cipher

https://github.com/mtaaagniii-arch/vigener_chiper_AnalisisFrequensi