Математические основы искусственного интеллекта

Проверка статистических гипотез. Ошибки первого и второго рода. Статистический критерий. Уровень значимости. Критические области. Мощность критерия

Солодушкин Святослав Игоревич

Кафедра вычислительной математики и компьютерных наук, УрФУ имени первого Президента России Б.Н. Ельцина

Октябрь 2021

Что такое проверка статистической гипотезы?

Рассмотрим забавный пример, который иллюстрирует практическую сторону вопроса. Однажды в Неаполе преподобный Галиани увидел человека, который, встряхивая 3 игральные кости в чашке, держал пари, что выбросит три шестерки; и действительно, он немедленно получил три шестерки.

Конечно, такая удача возможна. Однако человеку это удалось во второй раз, и пари повторилось. Он клал кости назад в чашку 3, 4, 5 раз и каждый раз выбрасывал 3 шестерки. «Черт возьми, – закричал преподобный, – кости налиты свинцом». И так оно и было.

Объясние, как Галиани, сам того не ведая, применил метод проверки гипотезы.

В данном случае гипотезой было то, что кости симметричные. И если это так, то вероятность выкинуть 3 шестерки 5 раз подряд равна $(1/6^3)^5$ или $2.13\cdot 10^{-12}$, т. е. настолько маловероятно, что практически невозможно.

Следовательно, предположение о симметричности костей, скорее всего, неверно.

Как выборки отражают генеральную совокупность

В большинстве случаев аналитик имеет дело с выборкой, распределение которой отличается от распределения генеральной совокупности. Например, выборочное среднее как правило не в точности равно среднему в генеральной совокупности.

По выборке можно получить только оценку, т. е. приближенное значение параметра. Как правило, при большом объеме (репрезентативной!) выборки такие оценки достаточны для практического использования.

Как выборки отражают генеральную совокупность

Представим, что мы много раз извлекаем выборки из некоторой генеральной совокупности и в каждой из них рассчитываем среднее арифметическое. Если выборки достаточны большие (хотя бы более 30 наблюдений), то в силу действия центральной предельной теоремы выборочные средние будут распределены по нормальному закону с истинным средним в центре.

Проведите следующий эксперимент. Пусть X — генеральная совокупность, т. е. случайная величина с равномерным распределением от 0 до 1000. Извлеките из нее 1000 выборок по 30 наблюдений и отобразите распределение средних на гистограмме.

В 95% выборочное среднее окажется в пределах $m\pm 1.96\sigma$, где m — среднее (матожидание), σ — среднее квадратичное отклонение. В остальных 5% средние отклонятся дальше.

При однократном эксперименте вероятность получить выборку со средней, выходящей за пределы $m\pm1.96\sigma$, довольно малы. И гораздо меньше шансов получить выборку со средней, выходящей за пределы $m\pm3\sigma$ (всего 3 случая из 1000).

Это известные свойства нормального распределения.

Метод проверки гипотез

В реальности истинная средняя по генеральной совокупности неизвестна и ее значение можно только предполагать. Такое предположение называется статистической гипотезой, обозначается H_0 .

Если предположение противоречит наблюдаемым данным, то гипотезу отклоняют, как ложную; если не противоречит, то не отклоняют.

Степень противоречия определяется вероятностью, которая в свою очередь зависит от того, как далеко фактическая выборочная средняя отклоняется от гипотетической. Если эта вероятность достаточно маленькая, то противоречие считается доказанным (не забывая о возможной ошибке). Для расчета вероятности выбирают вероятностно-статистическую модель, которая описывает поведение оценки при многократном повторении эксперимента.

Задачи № 3

- Мы сказали «Если эта вероятность достаточно маленькая».
 Определите формально, что это означает.
- ② Изобразите графически область принятия гипотезы H_0 и критическую лбласть для рассматриваемого примера о проверке равенстве маожидания m заданной величине a. Изобразите графически критическую область H_1 .

Нужно определить, какова вероятность извлечь из такой генеральной совокупности имеющуюся выборочную среднюю. Если она окажется в зоне близкой к центру, то это не противоречит гипотезе, ведь такое вполне может произойти в силу случайности. Но если она окажется далеко, например, выйдет за пределы ± 1.96 стандартные ошибки, то это будет означать что, либо произошло маловероятное событие, либо выдвинутая гипотеза ложна и ее следует отклонить.

