Лекция ПМИ-20 02.02.21

Определенный интеграл

Определение. Криволинейной трапецией называется плоская фигура, ограниченная кривой y = f(x) и прямыми y = 0, x = a и x = b.

Определение. Если существует *предел I интегральных сумм* $I_n(x_i, \xi_i)$ при $\Delta \to 0$, не зависящий от способа разбиения и выбора промежуточной точки, то он называется *определенным интегралом* от функции f на отрезке [a;b] и обозначается

$$I = \int_{a}^{b} f(x) dx.$$

Определение. Функция f называется интегрируемой (по Риману) на отрезке [a;b], если существует конечный предел интегральных сумм.

Функция f называется *интегрируемой* (по Риману) на отрезке [a;b]

$$\Leftrightarrow \lim_{\Delta \to 0} I_n(x_i, \xi_i) = I$$

Пример 1. Вычислить $\int_{0}^{1} x^{2} dx$ с помощью интегральных сумм.

 $Teopema\ 1$ (необходимое условие интегрируемости). Если функция f интегрируема на отрезке [a;b], то она ограничена на нем.

Суммы Дарбу

Пусть функция f определена и ограничена на отрезке [a;b]. Для произвольного разбиения T отрезка [a;b] введем обозначения

$$m_i = \inf_{x_{i-1} \le x \le x_i} f(x), \quad M_i = \sup_{x_{i-1} \le x \le x_i} f(x) \quad (i = 1, 2, 3, ..., n)$$

и составим суммы

$$\underline{S_n} = \sum_{i=1}^n m_i \Delta x_i , \quad \overline{S_n} = \sum_{i=1}^n M_i \Delta x_i .$$

Свойства сумм Дарбу

- 1. Для данного разбиения T отрезка $\lfloor a;b \rfloor$ и любого выбора промежуточных точек на этом разбиении $\underline{S_n} \leq I_n \leq \overline{S_n}$.
 - 2. Для любого фиксированного разбиения $\underline{S_n} = \inf \{I_n(x_i, \xi_i)\}, \ \overline{S_n} = \sup \{I_n(x_i, \xi_i)\}.$

3. При измельчении разбиения T нижняя сумма может лишь увеличиться, а верхняя — лишь уменьшиться.

- 4. Нижняя сумма произвольного разбиения не превосходит верхней суммы любого другого разбиения.
- 5. Для любых разбиений отрезка [a;b] множество всевозможных нижних сумм ограничено сверху, а множество всевозможных верхних сумм ограничено снизу.
- 6. $m(b-a) \le \underline{S_n} \le \overline{S_n} \le M(b-a)$, где m наименьшее значение функции f на [a;b], M наибольшее значение функции f на [a;b].

Теорема 2 (необходимое и достаточное условие интегрируемости). Для того чтобы ограниченная на отрезке [a;b] функция была интегрируемой на этом отрезке, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ нашлось такое разбиение T отрезка [a;b], для которого $\overline{S_n} - \underline{S_n} < \varepsilon$.

Некоторые классы интегрируемых функций

Теорема 3. Непрерывная на отрезке [a;b] функция f интегрируема на нем.

Следствие. Всякая элементарная функция интегрируема на любом отрезке, целиком лежащем в области определения этой функции.

Теорема 4. Монотонная на отрезке [a;b] функция f интегрируема на нем.

Теорема 5. Кусочно-непрерывная на отрезке [a;b] функция f (т.е. имеющая на нем конечное число точек разрыва 1 рода) интегрируема на нем.

Замечание 1. Если выполнены условия теоремы 5, то значение интеграла $\int_{a}^{b} f(x)dx$ не зависит от значений функции f в точках разрыва.

Свойства определенного интеграла

1.
$$\int_{a}^{b} 0 dx = 0$$
.

$$2. \int_{a}^{a} f(x)dx = 0.$$

3.
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$$
, т.е. переменную интегрирования

можно обозначать любой буквой.

4. Линейность интеграла. Если функции f и g интегрируемы на отрезке [a;b], α и β – любые действительные числа, то функция $\alpha f + \beta g$ также интегрируема на [a;b], причем

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

5. Направленность интеграла.

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

7. Монотонность интеграла. Если функции f и g интегрируемы на отрезке [a;b] и $f(x) \ge g(x)$ для любого $x \in [a;b]$, то

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx.$$

8. Абсолютная интегрируемость функции. Если функция f интегрируема на отрезке [a;b], то функция |f| также интегрируема на [a;b], причем

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{b}^{a} |f(x)| dx.$$

9. Tеорема об оценке интегралов. Если m и M – наименьшее и наибольшее значения непрерывной на отрезке

$$[a;b]$$
 функции f , то $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$.

10. Первая теорема о среднем. Если функции f и g интегрируемы на отрезке $[a;b];\ g(x) \ge 0$ и $m \le f(x) \le M$ для любого $x \in [a;b]$, то найдется $\mu \in [m;M]$ такое, что

$$\int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx.$$

Если в теореме положить $g(x) \equiv 1$, то

$$\int_{a}^{b} f(x)dx = \mu(b-a), \text{ где } \mu \in [m; M].$$

Если функция f непрерывна на отрезке [a;b], то найдется

$$\xi \in [a;b]$$
 такое, что $\int_a^b f(x)dx = f(\xi)(b-a)$.

11. Вторая теорема о среднем. Если функции f интегрируема на отрезке [a;b]; функция g монотонна на отрезке [a;b], то существует $\xi \in [a;b]$, при котором

$$\int_{a}^{b} f(x)g(x)dx = g(a)\int_{a}^{\xi} f(x)dx + g(b)\int_{\xi}^{b} f(x)dx.$$