Аналитические хранилища Пространственная модель ETL и ELT

Пространственная модель

Если реляционная модель акцентируется на целостности и эффективности ввода данных, то размерная модель (Dimensional) ориентирована в первую очередь на выполнение сложных запросов к БД.

В размерном моделировании для ХД принят стандарт модели, называемый **схемой звезда** (star schema), которая обеспечивает высокую скорость выполнения запроса посредством денормализации и разделения данных.

OLAP-куб

Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса.

Например, для продаж это могут быть товар, регион, тип покупателя. На пересечениях осей измерений (Dimensions) находятся данные, количественно характеризующие процесс — меры (Measures).

Аналитические хранилища данных

Kimball vs. Inmon

Отличия двух подходов:

- 1. Архитектура хранилища
 - 1. у Кимболла пространственная организации
 - 2. у Инмона нормализованная.
- 2. Физическая организации хранилища.
 - 1. у Инмона это физически целостный реально существующий объект
 - 2. у Кимболла скорее
 "виртуальный" объект.
 Коллекция витрин данных,
 которые могут быть
 пространственно разобщенными.

ETL – аббревиатура от Extract, Transform, Load

Какие задачи решает:

- Привести все данные к единой системе значений и детализации, попутно обеспечив их качество и надежность;
- Обеспечить аудиторский след при преобразовании (Transform) данных, чтобы после преобразования можно было понять, из каких именно исходных данных и сумм собралась каждая строчка преобразованных данных.

Виды ошибок данных:

- Как случайные ошибки, возникшие на уровне ввода, переноса данных, или из-за багов;
- Как различия в справочниках и детализации данных между смежными ИТ- системами.

Как работает ETL система

Процесс загрузки данных

Задача этого этапа - затянуть в ETL данные произвольного качества для дальнейшей обработки. При проектировании процесса загрузки данных необходимо помнить о том что:

- Надо учитывать требования бизнеса по длительности всего процесса;
- Данные могут загружаться набегающей волной;
- Данные могут перегружаться много раз;
- Данные всегда содержат ошибки;
- Надо учитывать возможность обогащения данных.

Процесс валидации

Данный процесс отвечает за выявление ошибок и пробелов в данных, переданных в ETL.

Главный вопрос – как вычислить возможные виды ошибок в данных, и по каким признакам их идентифицировать?

Типы данных	Внутри поля	По отношению к другим полям	Совместимость форматов при передачи между системами
Перечисление и текст	 Не из исписка разрешенных значений Отсутствие обязательных значений Не соответствие формату (например, все договора должны нумероваться «ДГВччччч») 	 Не из списка разрешенных значений для связанного элемента Отсутствие обязательных элементов для связанного элемента Не соответствие формату для заданного элемента (например, для продукта «АИС» все договора должны нумероваться «АИСхххххх») 	 Символы допустимые в одном формате, недопустимы в другом Кодировка Обратная совместимость Новые значения (нет в мэппингах) Устаревшие значения (не из списка разрешенных в целевой системе)
Числа и порядки	 Не число Не в границах разрешенного интервала значений Пропущено порядковое 	 Не выполняется отношение Присвоен неправильный порядковый номер Разницы за счет разных правил округления значений 	 Переполнение Потеря точности и знаков Несовместимость форматов при конвертации не в число
Даты и периоды		 День недели не соответствует дате Сумма единиц времени не соответствует из-за разницы рабочие/не рабочие/праздничные/сокращенные дни 	 Несовместимость форматов даты при передаче текстом Ошибка точности отсчета и точности при передаче числом

Процесс мэппинга данных

Таблица замэпленных данных должна включать одновременно два набора полей – старых и новых аналитик, чтобы можно был сделать select по исходным аналитикам и посмотреть, какие целевые аналитики им присвоены, и наоборот:

AggregatedData		
PK PK PK	targetProduct targetAccount targetCompany targetPartner	
	Value	

Процесс агрегации данных

Этот процесс нужен из-за разности детализации данных в OLTP и OLAP системах.

OLTР система может содержать несколько сумм для одного и того же набора элементов справочников.

High volume of transactions

· Fast processing

Normalized data

"Who bought X?"

Many tables

OLAP-системы — это, по сути, полностью денормализованная таблица фактов и окружающие ее таблицы справочников.

OLTP vs OLAP

- High volume of data Slow queries
- Denormalized data
- Fewer tables
- "How many people bought X?"

ETLUELT

ETL (Extract, Transform, Load) сначала извлекают данные из пула источников данных. Данные хранятся во временной промежуточной базе данных. Затем выполняются операции преобразования, чтобы структурировать и преобразовать данные в подходящую форму для целевой системы хранилища данных. Затем структурированные данные загружаются в хранилище и готовы к анализу.

В случае **ELT (Extract, Load, Transform)** данные сразу же загружаются после извлечения из исходных пулов данных. Промежуточная база данных отсутствует, что означает, что данные немедленно загружаются в единый централизованный репозиторий.

Данные преобразуются в системе хранилища данных для использования с инструментами бизнес-аналитики и аналитики.

Data Lake

Data Lake — это хранилище данных, которое может хранить большое количество структурированных, полуструктурированных и неструктурированных данных. Это место для хранения всех типов данных в собственном формате без фиксированных ограничений на размер учетной записи или файл. Он предлагает большое количество данных для повышения аналитической производительности и встроенной интеграции.

Data Lake похожа на настоящее озеро и реки. Точно так же, как в озере есть несколько притоков, озеро данных содержит структурированные данные, неструктурированные данные, от машины к машине, журналы, проходящие в режиме реального времени.

