Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 5, zadanie nr 3

Sobolewski Konrad, Różański Antoni, Giełdowski Daniel

0.1.	DMC	
	0.1.1.	Pierwszy współczynnik psi
	0.1.2.	Drugi współczynnik psi
	0.1.3.	Trzeci współczynnik psi
	0.1.4.	Pierwszy współczynnik lambda
	0.1.5.	Drugi współczynnik lambda
	0.1.6.	Trzeci współczynnik lambda
	0.1.7.	Czwarty współczynnik lambda
	0.1.8.	Wnioski

0.1. DMC

Podczas dobierania DMC dobieramy takie parametry jak:

- D horyzont dynamiki
- N horyzont predykcji
- N_u horyzont sterowania
- współczynniki wagowe macierzy Ψ w ilości n_y =3
- współczynniki wagowe macierzy Λ w ilości $n_u{=}4$

W tym przypadku wszystkie horyzonty przyjmiemy jako stałe przy czym przyjmujemy D=N= N_u =200, przy czym to liczba zebranych kroków odpowiedzi skokowych. Zmniejszanie horyzontów żadko poprawia jakość regulacji, celem takich działań najczęściej jest zmniejszenie złożoności obliczeniowej i tym samym czasu obliczeń. Dobieranie nastaw zaczęliśmy od dobrania kolejnych współczynników wagowych ψ , a następnie współczynników λ . Poniżej zamieściliśmy wykresy sterowań i wyjść dla nastaw początkowych (wszystkie współczynniki równe 1) oraz tabelkę w wartościami błędów dla wszystkich wyjść.

$oldsymbol{E}$	E1	E2	E3
118,9959	30,7112	31,6862	56,5985

Tab. 1. Wartości błędów dla nastaw początkowych

Rys. 1. Wartości wejść przy nastawach początkowych DMC

Rys. 2. Wartości wyjść przy nastawach początkowych DMC

0.1.1. Pierwszy współczynnik psi

Po kilku testach doszliśmy do wniosku, że najlepsza wartość ψ_1 to 2,7. Zmniejszając lub zwiekszając tę wartość zwiększają się błędy. Wartości błędów dla różnych wartości ψ_1 znajdują się w tabeli 2. Przebiegi sygnałów sterujących i wyjść są się na wykresach 3 oraz 4. Większość wykresów nie różni się tak bardzo. Najbardziej poprawił się przebieg y1, co ma sens biorąc pod uwagę, że kolejne współczynniki psi mają największy wpływ na kolejne wyjścia.

0.1.2. Drugi współczynnik psi

Najlepsza znaleziona przez nas podczas testowania wartość ψ_2 (taka dla której błąd E jest najniższy) to 40. Błędy dla różnych wartości znajdują się w tabeli 3. Przebiegi znajdują się na wykresach 5 i 6. Wartości wejścia trzeciego nieco się pogorszyły, ale za to widać znaczną poprawę w regulacji sygnału y2.

0.1.3. Trzeci współczynnik psi

Najlepsza znaleziona przez nas podczas testowania wartość ψ_3 (taka dla której błąd E jest najniższy) to 7. Błędy dla różnych wartości znajdują się w tabeli 4. Przebiegi znajdują się na wykresach 7 i 8. Dobranie tego parametru najbardziej wyrównało wartości błędów wszystkich torów. Przebiegi sterowań widocznie się pogorszyły. Mimo wszystko osiągane przez nie wartości nie są nieakceptowalne. Nieco gorzej wygląda również regulacja wartości y1, za to polepszył się przebieg wyjścia y3.

$\boldsymbol{\psi_1}$	$oldsymbol{E}$	E1	E2	E3
1	118,9959	30,7112	31,6862	56,5985
2,7	116,2096	20,3765	$32,\!4374$	63,3958
5	116,5936	17,5255	32,7217	66,3464

Tab. 2. Wartości błędów dla różnych wartości ψ_1

ψ_{2}	$oldsymbol{E}$	E1	E2	E3
1	116,2096	20,4374	32,4374	63,3958
40	$110,\!5704$	20,6878	14,9057	74,9769
100	110,6651	20,7139	14,2842	75,6670

Tab. 3. Wartości błędów dla różnych wartości ψ_2

ψ_{3}	$oldsymbol{E}$	$m{E}1$	E2	E3
1	110,5704	20,6878	14,9057	74,9769
7	85,3216	35,4493	15,0596	34,8127
15	90,5030	49,4658	15,2455	25,7917

Tab. 4. Wartości błędów dla różnych wartości ψ_3

Rys. 3. Wartości wejść przy różnych wartościach ψ_1

Rys. 4. Wartości wyjść przy różnych wartościach ψ_1

Rys. 5. Wartości wejść przy różnych wartościach ψ_2

Rys. 6. Wartości wyjść przy różnych wartościach ψ_2

Rys. 7. Wartości wejść przy różnych wartościach ψ_3

Rys. 8. Wartości wyjść przy różnych wartościach ψ_3

0.1.4. Pierwszy współczynnik lambda

Najlepsza znaleziona przez nas podczas testowania wartość λ_1 (taka dla której błąd E jest najniższy) to 0.05. Błędy dla różnych wartości znajdują się w tabeli 5. Przebiegi znajdują się na wykresach 9 i 10. Obniżenie λ_1 do 0.05 spowodowałoby zminimalizowanie błędu. Z drugiej strony zwiększenie parametru do 10, a nawet 20 nie daje pogorszenia w przebiegu wyjść, ale za to znacznie poprawia wykresy sterowań u1, u3 i u4. Mimo, że pogorsza się sterowanie drugie to całkowity zysk jest tego wart. Dlatego właśnie zdecydowaliśmy się ostatecznie na podniesienie parametru λ_1 do 20.

0.1.5. Drugi współczynnik lambda

Teoretycznie najlepsza znaleziona przez nas podczas testowania wartość λ_2 (taka dla której błąd E jest najniższy) to 0.01. Błędy dla różnych wartości znajdują się w tabeli 6. Przebiegi znajdują się na wykresach 11 i 12. Obniżenie λ_2 do 0.01 spowodowałoby zminimalizowanie błędu, ale pogorszyłoby przebiegi zarówno sterowań jak i wyjść. Jego powiększenie powoduje zwiększenie błędu i nie poprawia znacznie ani stanu wyjść ani sterowań (niektóre fragmenty wyglądają nawet gorzej). Dlatego właśnie zdecydowaliśmy się ostatecznie na zostawienie parametru $\lambda_2=1$.

0.1.6. Trzeci współczynnik lambda

Najlepszą możliwością jest według nas ustawienie parametru λ_3 na wartość 0. Mimo że powoduje to duże pogorszenie przebiegów sterowań, umożliwia także zmniejszenie wszystkich błędów oraz poprawę wszystkich wyjść. Wartości błędów dla róźnych wartości λ_3 znajdują się w tabeli 7, a wykresy mają numery 13 i 14.

λ_1	$oldsymbol{E}$	E1	E2	E3
1	85,3216	35,4493	15,0596	34,8127
0.05	84,5415	35,5348	14,1362	34,8705
10	89,7500	35,7278	18,3551	35,6671
20	91,5219	35,9948	19,3204	36,2067

Tab. 5. Wartości błędów dla różnych wartości λ_1

λ_2	$oldsymbol{E}$	E1	E2	E3
1	91,5219	35,9948	19,3204	36,2067
0.01	89,9007	36,0121	14,3511	39,5375
10	94,0455	36,3659	22,3931	35,2866

Tab. 6. Wartości błędów dla różnych wartości λ_2

λ_3	$oldsymbol{E}$	E1	E2	E3
1	91,5219	35,9948	19,3204	36,2067
0	60,9477	16,5775	19,0707	$25,\!2996$
5	120,3487	57,0457	19,3272	43,9759

Tab. 7. Wartości błędów dla różnych wartości λ_3

Rys. 9. Wartości wejść przy różnych wartościach λ_1

Rys. 10. Wartości wyjść przy różnych wartościach λ_1

Rys. 11. Wartości wejść przy różnych wartościach λ_2

Rys. 12. Wartości wyjść przy różnych wartościach λ_2

Rys. 13. Wartości wejść przy różnych wartościach λ_3

Rys. 14. Wartości wyjść przy różnych wartościach λ_3

0.1.7. Czwarty współczynnik lambda

Czwarty współczynnik lambda był ostatnim dobieranym przez nas parametrem regulatora DMC. Najlepszą możliwością jest według nas ustawienie parametru λ_4 na wartość 0, tak jak λ_3 . Mimo że powoduje to duże pogorszenie przebiegów sterowań (zwłaszcza u3 i u4), umożliwia także duże zmniejszenie błędów oraz poprawę przebiegów wyjść (widoczne zwłaszcza dla y3). Wartości błędów dla róźnych wartości λ_3 znajdują się w tabeli 7, a wykresy mają numery 13 i 14.

0.1.8. Wnioski

Ostateczne parametry naszego regulatora DMC znajdują się w tabeli 9. Dobierając je osiągnęliśmy niższą wartość błędu niż dla którejkolwiek konfiguracji PID, choć przebiegi sterowań nie wyglądają idealnie (zwłaszcza u3 oraz u4, których przebiegi wpadają w widoczne oscylacje i zawierają duże skoki wartości). Choć taki wygląd sterowań mógłby być nieodpowiedni dla niektórych obiektów rzeczywistych, jest całkowicie akceptowalny przy programowej regulacji sygnału.

λ_3	$oldsymbol{E}$	E1	E2	E3
1	60,9477	16,5775	19,0707	25,2996
0	49,5733	16,8105	18,6579	14,1050
5	72,3782	16.5540	19,2844	36.5397

Tab. 8. Wartości błędów dla różnych wartości λ_3

ψ_1	ψ_{2}	ψ_3	λ_1	λ_2	λ_3	λ_4
2,7	40	7	20	1	0	0

Tab. 9. Ostateczne nastawy DMC

Rys. 15. Wartości wejść przy różnych wartościach λ_4

Rys. 16. Wartości wyjść przy różnych wartościach λ_4