PROTECT THE PINE TREES

You are entrusted with the task of safeguarding a group of pine trees by constructing a protective fence. The protection is provided by connecting wooden cylinders with a rope. Given the coordinates of N pine trees and M wooden cylinders, your goal is to determine the optimal set of K cylinders to create a closed fence with the largest possible area that encompasses as many pine trees as possible.

Input:

The first line contains two integers, N and M, representing the number of pine trees and wooden cylinders, respectively.

The next N lines contain two integers each, x_i and y_i , representing the coordinates of the i^{th} pine tree.

The following M lines contain two integers each, x_j and y_j , representing the coordinates of the j^{th} wooden cylinder.

Output:

Output K lines, each containing two integers, representing the coordinates of the selected wooden cylinders that form the protective fence. The coordinates should be printed in sorted order based on x-coordinates. In case of ties, sort based on y-coordinates.

Constraints:

 $3 \le N, M \le 100$

 $\text{-}10^6 \! \leq \! x_i, \, y_i, \, x_j, \, y_j \! \leq \! 10^6$

No three wooden cylinders lie on a straight line.

All coordinates of pine trees and wooden cylinders are unique.

Examples:

Input	Output
4 4	19
2 7	5 0
5 8	6 10
7 0	
0 9	
1 9	
4 7	
5 0	
6 10	
1 9	
5 0	
6 10	

In the given example, by connecting wooden cylinders at coordinates (1,9), (5,0), and (6,10), a protective fence is created that encloses two pine trees (coordinates (2,7), (5,8)) as illustrated in the figure below.

