개인 농업인을 위한 토마토 생육관리용 온디바이스 AI 모델 개발

Developing an On-device AI Model for Tomato Cultivation Management for Small-Scale **Farmers**

1 2 이용우 3 Coauthor 4 Department of Computer Science Affiliation 5 상도로 369 숭실대학교 Address 레지던스홀 929호 6 email 7 6683121@naver.com 8 9 Coauthor Coauthor Coauthor 10 Affiliation Affiliation Affiliation 11

Address Address Address email email email (if needed)

개요(Abstract)

본 연구는 개인 농업인이 네트워크 연결에 제약 없이 현장에서 실시간으로 토마토의 생육 상태를 진단하고 맞춤형 조언을 얻을 수 있는 온디바이스 AI 시스템 개발을 목표로 한다. 기존의 농업 AI 시스템이 중앙 서버에 의존하여 통신 제약 및 비용 문제를 야기하는 한계를 극복하고자, 모든 연산이 모바일 기기 내에서 완결되는 하이브리드 AI 파이프라인을 제안한다. 제안하는 시스템은 세 단계로 구성된다. 첫째, 경량 객체 탐지 모델인 YOLOv11n를 사용하여 이미지 내 11개의 주요 토마토 관련 객체(잎, 과실, 꽃 등)를 인식한다. 둘째, 특정 객체(예: 생장 부위)가 탐지되면, 해당 영역의 이미지를 MobileNetV3-Small 기반의 경량 회귀 모델에 입력하여 식물의 키(cm)와 같은 정량적 생육 지표를 예측한다. 셋째, 이 시각적 분석 결과를 구조화된 텍스트로 변환하고, 사전에 정의된 토마토 재배 지식과 함께 Google의 Gemma-2-2B-IT 언어 모델에 입력하여 현재 상태에 대한 진단과 구체적인 관리 방안을 자연어로 생성한다. 실험 결과, YOLOv11n 모델은 주요 클래스에 대해 높은 탐지 성능을 보였으며(전체 mAP50-95 0.421, 주요 11개 클래스 평균 mAP50-95 약 0.601), 회귀 모델은 식물 키를 평균 약 6.66cm의 오차로 예측했다. 본 연구를 통해, 전문화된 비전 모델과 대규모 언어 모델을 결합한 온디바이스 시스템이 개인 농업인의 의사결정을 효과적으로 지원할 수 있는 실용적인 해결책이 될 수 있음을 확인하였다.

서론(Introduction)

12

13

14 15

16

17

18

19 20

21

22 23

24 25

26 27

28 29

30 31

32

33 34

35

36 37

38

39

40

41

42

최근 농업 분야는 농가 인구의 감소 및 고령화, 기후 변화로 인한 불확실성 증가 등 여러 도전에 직면해 있다. 이러한 문제에 대응하기 위해 데이터를 기반으로 생산성과 효율성을 높이는 스마트팜 기술이 주목받고 있으며, 인공지능(AI) 기술은 그 핵심적인 역할을 담당하고 있다. 그러나 현재 상용화된 많은 농업용 AI 서비스들은 복잡한 데이터 처리를 위해 중앙 서버와의 통신을 필요로 한다. 이는 인터넷 연결이 불안정한 농업 현장에서의 사용을 제약하고, 서버 구축 및 유지보수에 따른 비용 부담을 농가에 지우는 한계점을 가진다.

- 43 본 연구는 이러한 한계를 극복하기 위해, 외부 통신 없이 모바일 기기 자체에서 모든
- 44 연산이 이루어지는 **온디바이스(on-device) AI 시스템**을 제안한다. 본 연구는 특정 작물인
- 45 토마토를 대상으로 한 연구이다. 토마토는 2024년 농촌 진흥청이 발표한 자료에 따르면
- 46 국내 5400ha면적에서 33만톤 규모로 생산되고 있으며, 전량이 시설에서 재배되고 있다는
- 47 것이 특징이다. 토마토는 타 과채류에 비교하여 단가는 약간 낮지만, 연중 가격이
- 48 안정되어 농가에서 선호하는 작물이다. 토마토는 통제된 환경에서 재배되기 때문에 학습
- 49 데이터를 얻기 수월하며, 변인이 잘 통제되어 학습 데이터와 실제 데이터가 유사하여
- 50 AI를 통한 예측 및 솔루션이 잘 적용될 확률이 높다. 개인 소규모 농장주나 귀농한 청년
- 51 농업인들이 전문가의 도움 없이도 현장에서 실시간으로 작물의 생육 상태를 쉽고
- 52 정확하게 진단하고, 이에 대한 맞춤형 조언을 얻을 수 있도록 돕는 것을 목표로 한다.
- 53 이를 위해 본 시스템은 세 가지 AI 모델을 결합한 하이브리드 파이프라인을 구축한다.
- 54 첫째, 경량 객체 탐지 모델인 YOLOv11n를 사용하여 이미지 내에서 잎, 과실, 꽃 등
- 55 토마토의 주요 상태를 나타내는 객체들을 신속하게 탐지한다. 둘째, MobileNetV3-Small
- 56 기반의 회귀 모델을 통해 탐지된 특정 객체의 이미지를 분석하여 식물의 키(cm)와 같은
- 57 정량적 생육 지표를 예측한다. 마지막으로, 이렇게 분석된 시각적, 정량적 정보를
- 58 구조화된 텍스트로 변환하고, 방대한 재배 지식을 담은 프롬프트와 함께 대규모 언어
- 59 모델(LLM)인 Gemma에 전달하여 현재 상태에 대한 종합적인 진단과 실용적인 관리
- 60 방안을 자연어로 생성한다. 이 연구를 통해, 전문화된 경량 비전 모델과 LLM의 추론
- 61 능력을 결합한 온디바이스 시스템의 구현 가능성과 실용성을 검증하고자 한다.

2 데이터셋 (Dataset)

- 64 본 연구는 AI Hub에 공개된 "지능형 스마트팜 통합 데이터(토마토)" 데이터셋을 기반으로
- 65 진행되었다. 이 데이터셋은 실제 스마트팜 환경에서 수집된 고품질 데이터로, 토마토의
- 66 생육 단계 및 환경에 대한 종합적인 정보를 포함하고 있다
- 67 데이터 출처: AI Hub
- 68 (https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&dataSetSn=534)

69 70

2.1 데이터 구성

- 71 데이터셋은 크게 원천 데이터(이미지)와 라벨링 데이터(JSON)로 구성된다.
- 72 원천 데이터: 토마토의 생육 단계, 부위, 병해충 등에 따라 카테고리별로 분류된 73 PNG 이미지 파일이다.
 - 라벨링 데이터: 각 이미지에 대한 메타데이터와 어노테이션 정보를 담고 있는 JSON 파일이다. 여기에는 이미지 촬영 정보(농장 ID, 주차, 날짜 등)와 생육지표(growth_indicators), 그리고 이미지 내 객체에 대한 바운딩 박스(Bounding Box) 및 폴리곤(Polygon) 좌표와 클래스 라벨(shapes) 정보가 포함되어 있다

77 78 79

80

81

82

83

84

85

86

8788

74

75

76

2.2 데이터 전처리

- 1. **클래스 선정**: 전체 16개의 라벨 클래스 중, tom_stem_dimeter_bb 와 같이 최종학습 결과에서 mAP가 현저히 낮아 유의미한 학습이 어렵다고 판단된 5개 클래스를 제외하고, 주요 11개 클래스를 최종 학습 대상으로 선정했다.
- 2. 포맷 변환: 원본 라벨인 JSON 파일을 YOLO 학습에 적합한 .txt 포맷으로 변환했다. 이 과정에서 각 클래스에 정수 ID를 부여하고, 바운딩 박스 및 폴리곤 좌표를 이미지 크기에 맞춰 0과 1 사이의 값으로 정규화(Normalization)했다. 특히, 좌표값이 이미지 경계를 벗어나는 오류(out of bounds coordinates)를 방지하기 위해 경계값을 조정하는 로직을 추가했다.
- 3. **데이터셋 분할**: 전체 데이터셋은 학습(train), 검증(validation), 테스트(test) 세트로 분할하여 사용했다.

92 3 제안하는 시스템 (Proposed System)

- 93 본 연구에서는 토마토 이미지를 분석하여 생육 상태에 대한 진단 및 조언을 제공하는
- 94 3단계 파이프라인 시스템을 제안한다. 각 단계는 전문화된 AI 모델을 활용하여 정확성과
- 95 효율성을 높이고, 최종적으로 모바일 기기에서의 실행을 목표로 한다.

96

- 97 3.1 1단계: YOLOv11s를 이용한 객체 탐지
- 98 1. 모델: 객체 탐지에는 Ultralytics의 YOLOv11n 모델을 사용했다. YOLOv11s 모델의
- 99 성능이 더 우월했으나, 엣지 디바이스에서의 사용을 전제로 하는 본 프로젝트에서 경량
- 100 모델을 보다 우선시했다. (주요 지표 성능차이 5% 미만)
- 101 2. 학습: 사전 학습된(pre-trained) yolo11s.pt 가중치를 기반으로, 준비된 토마토 데이터셋에
- 102 대해 전이 학습(transfer learning)을 수행했다. 주요 학습 파라미터는 다음과 같다.
- 103 **Epochs**: 100
- 104 **Batch Size**: 32
- 105 Image Size: 640x640
- **Optimizer**: AdamW (1r0=0.001)
- 107 3. **역할**: 이 모델은 입력된 이미지에서 11개의 주요 클래스(잎, 과실, 꽃, 생장 부위
- 108 등)를 인식하고, 각 객체의 위치를 바운딩 박스로 제공하는 역할을 한다.

109

- 110 3.2 2단계: MobileNetV3-Small을 이용한 생육 지표 예측
- 111 1. **모델**: 특정 객체의 물리적 크기를 예측하기 위해, MobileNetV3-Small을 특징
- 112 추출기(feature extractor)로 사용하는 회귀 모델(GrowthRegressor)을 설계했다. 이는 모바일
- 113 환경에서의 효율성을 고려한 선택이다.
- 114 2. 학습:
- JSON 파일에 기록된 실제 측정값(예: plantHeight)을 정답(ground truth)으로 116 사용했다.
- 117 JSON의 바운딩 박스 정보(tom_growth_bb 등)를 이용해 원본 이미지에서 해당 118 객체 영역만 잘라낸 이미지 패치를 생성했다.
- 119 이 (이미지 패치, 실제 측정값) 쌍을 사용하여 모델을 학습시켰으며, 주요 120 파라미터는 다음과 같다.
- 121 o **Epochs**: 50
- 122 o Batch Size: 32
- 123 **Optimizer**: Adam (lr=0.0005)
- 124 Loss Function: MSELoss
- 125 3. 역할: YOLO가 탐지한 특정 객체(예: tom growth bb)의 이미지 패치를 입력받아, 해당
- 126 객체의 실제 크기(cm)를 예측한다.

- 128 3.3 3단계: Gemma를 이용한 종합 진단 및 조언 생성
- 129 1. 모델: 최종적으로 사용자에게 제공될 조언을 생성하기 위해 Google의 경량 언어
- 130 모델인 google/gemma-2-2b-it를 사용했다.
- 131 2. 프롬프트 엔지니어링:
- 시스템 프롬프트: 모델이 "토마토 재배 전문가 AI 어시스턴트" 역할을
- 133 수행하도록 지시하고, 라벨의 의미, 최적 환경 조건, 월별 관리 팁 등 방대한
- 134 양의 전문 지식을 미리 제공했다.

- 사용자 프롬프트: 1, 2단계에서 분석된 결과(탐지된 객체 목록, 예측된 식물 높이 136 등)와 이미지 촬영 날짜를 구조화된 텍스트로 만들어 함께 입력했다.
- 137 3. **역할**: 이미지의 시각적 분석 결과와 사전 제공된 전문 지식을 종합적으로 고려하여, 138 현재 토마토의 상태를 진단하고 사용자를 위한 맞춤형 관리 방안을 자연어로 생성한다.

4 실험 결과 및 분석 (Experiments & Results)

141 모델의 학습 과정과 성능을 더 다각적으로 분석하기 위해 주요 성능 지표 변화 및 혼동 142 행렬을 시각화 하였다.

143144

4.1 YOLO 객체 탐지 모델 성능

145146

1) YOLO v11-n Precision 그래프

147148

149150151

152153

154

155156

157

2) YOLO v11-n Recall 그래프

161162

160

이 두 그래프는 에폭(epoch)이 진행됨에 따라 정밀도(Precision), 재현율(Recall)이 어떻게 변화하는 지 보여준다.

164 165 166

167

163

두 그래프 모두 학습이 진행되면서 꾸준히 confidence가 상승하는 상향 형태를 보이는 것을 알 수 있다. 이는 모델이 학습을 통해 점점 더 정확해지고, 놓치는 객체도 줄어들고 있음을 의미한다.

3) YOLO v11-n PR 그래프

4) YOLO v11-n F-Confidence 그래프

의미로 해석할 수 있다.

이 그래프는 모델의 신뢰도(confidence) 임계값을 변경함에 따라

이상적인 모델은 그래프가 오른쪽 상단(정밀도=1, 재현율=1)에

가깝게 그려진다. 현재 그래프를 보면, 대부분의 클래스(특히 tom_leaf_bb, tom_fruit_count_bb 등)가 오른쪽 상단에 근접한 좋은

형태를 보이고 있다. 이는 정밀도와 재현율의 균형이 잘 잡혔다는

정밀도와 재현율이 어떻게 변하는지를 보여준다.

F1 점수(F1-score)는 정밀도(Precision)와 재현율(Recall)의 조화 평균으로, 모델의 전반적인 정확도를 나타내는 중요한 지표다. [그림 1]에서 볼 수 있듯이, 학습 에폭이 진행됨에 따라 대부분의 주요 클래스에 대한 F1 점수가 꾸준히 상승하여 최종적으로 0.8~0.9 이상의 높은 값에 수렴하는 것을 확인하였다. 이는 모델이과적합(overfitting) 없이 안정적으로 학습되었음을 보여준다.

 클래스별 혼동 행렬 분석 : 상단의 그림은 정규화된 혼동 행렬(Normalized Confusion Matrix)로, 모델이 각 클래스를 얼마나 정확하게 분류하고 다른 클래스와 혼동하는지를 보여준다.

대각선상의 값이 1에 가까울수록 해당 클래스를 정확하게 예측했다는 의미이다. tom_leaf_bb (ID 11), tom_fruit_count_bb (ID 7) 등 시각적 특징이 명확한 클래스들은 0.9 이상의 높은 값으로 거의 혼동이 없었음을 알 수 있다. 반면, tom_post_flowering_poly (ID 12)와 같이 데이터 수가 적고 특징이 모호한 클래스는 배경(background)으로 잘못 예측하는 비율이 상대적으로 높게나타났다. 이러한 분석은 mAP 수치만으로는 알 수 없는 클래스간의 관계 및 모델의 구체적인 강점과 약점을 파악하는 데 도움을준다.

6) YOLO v11-n Class별 지표

Class	Images	Instances	Box(P)	Box(R)	mAP50	mAP50-95
all	29274	77812	0.645	0.577	0.558	0.421
tom flower center bb (만개 꽃잎 중앙)	85	85	0.253	0.118	0.0977	0.0271
tom_flower_count_bb (개화군)	3308	8916	0.659	0.787	0.774	0.475
tom_flower_half_poly (개화)	1362	2128	0.493	0.733	0.649	0.424

tom_flower_poly	1514	2314	0.622	0.861	0.819	0.546
(만개)						
tom_flower_stem_bb	2219	2835	0.692	0.908	0.861	0.668
(화방 높이)						
tom_flower_tip_bb	86	410	0.375	0.0756	0.0983	0.0293
(만개 꽃잎 끝)						
tom_fruit_breaker_poly	5463	14391	0.764	0.905	0.915	0.796
(과실색-초록)						
tom_fruit_count_bb	12886	33649	0.883	0.95	0.964	0.77
(착과군)						
tom_fruit_pink_poly	255	315	0.571	0.743	0.671	0.601
(과실색-핑크)						
tom fruit red poly	81	96	0.442	0.719	0.559	0.472
· (완숙)						
tom growth bb	4074	8365	0.822	0.937	0.941	0.724
 (생장길이)						
tom leaf bb	1059	1059	0.998	0.999	0.995	0.879
 (옆장옆폭)						
tom post flowering poly	65	74	0.2	0.0508	0.126	0.0677
(과실 없이 시든 꽃)						
tom pre flowering poly	853	1784	0.548	0.444	0.442	0.26
(미개화)						
tom stem dimeter bb	753	753	1	0	0.00734	0.00229
(줄기 두께)	733	733	1		0.00731	0.00229
tom stem dimeter tilt bb	638	638	1	0	0.00379	0.000983
(기울어진 줄기 두께)	030	030	1		0.00577	0.000703
형광색 부분을 제외한	mAP50	mAP50-95				
영경색 구군글 세외안 통계	IIIAI 30	IIIAI 30-33				
평균	0.7809	0.601				

- 214 평가 지표:
- 215 P(Precision, 정밀도) Box(P): 모델이 탐지했다고 감지한 박스 중 실제로 정답인 것의 비율
- 216 R(Recall, 재현율) Box(R): 실제 이미지에 존재하는 모든 정답 객체 중에서, 모델이 얼마나
- 217 검출해냈는 지의 비율.
- 218 mAP50 (mean Average Precision at IoU=0.5): 모델의 전반적인 정확도를 나타내는 지표.
- 219 IoU(Intersection over Union)라는 기준을 0.5로 설정했을 때의 평균 AP(Average Precision).
- 220 mAP50-95 (mean Average Precision at IoU=0.5:0.95): 모델의 전반적인 정확도를 나타내는
- 221 지표. IoU(Intersection over Union)라는 기준을 0.5부터 0.95까지 0.05씩 높여가며 각
- 222 기준으로 mAP를 계산한 후, 그 평균을 낸 값.
- 223 IoU(Intersection over Union): 모델이 예측한 바운딩 박스와 실제 바운딩 박스가 n%

- 225 mAP가 낮게 측정된 5개의 class(tom_flower_center_bb,
- 226 tom_flower_tip_bb, tom_post_flowering_poly, tom_stem_dimeter_bb, tom_stem_dimeter_tilt_bb)를
- 227 drop하였으며,
- 228 유효하다고 판정한 11개의 class의 평균은 mAP50: 0.7809, mAP50-95: 0.601로 YOLO v11
- 229 nano 모델의 COCO 데이터셋의 학습값인 mAP50: 0.542, mAP50-95: 0.409보다 우수하므로
- 230 실제 task에 유의미하게 활용할 수 있는 수치이다.
- 231 (COCO 데이터셋 map값 출처 : YOLO11 Small vs YOLO11 Nano)

233 4.2 생육 지표 예측 모델 성능

- 234 plantHeight를 예측하는 GrowthRegressor 모델을 50 에폭 동안 학습한 결과, 가장 우수했던
- 235 검증 손실(Best val Loss)은 44.32를 기록했다.
- 236 이는 평균 제곱근 오차(RMSE) 기준으로 약 6.66 cm의 평균 예측 오차를 의미한다.
- 237 토마토는 2m 이상 자랄 수 있기 때문에 이는 전반적인 성장 추세를 파악하는 데
- 238 유의미한 수준의 정확도이다.

239

240 4. Gemma 조언 생성 예시

- 241 **입력 (분석 결과)**: 촬영 시점: 2021.11.10, 탐지된 객체: tom_fruit_breaker_poly,
- $242 \qquad tom_fruit_red_poly, tom_fruit_pink_poly$

247 출력 (Gemma 조언):

249 Gemma-2-2B-it 모델은 프롬프트에 사전 입력된 지식과 이미지에서 검출된 지식을 통해 250 농업 지식을 제공한다.

251252

248

5 결론 및 고찰 (Conclusion & Discussion)

253 본 연구는 개인 농업인이 네트워크 제약 없이 현장에서 토마토의 생육 상태를 진단하고 254 맞춤형 조언을 얻을 수 있는 온디바이스 AI 시스템 개발을 목표로 하였다. 이를 위해 255 YOLO, MobileNet, 그리고 Gemma LLM을 결합한 3단계 하이브리드 파이프라인을 성공적으로 구축하며 가시적인 성과를 달성하였다.

257258

5.1 연구 결론

- 259 본 연구의 핵심 성과는 하나의 거대한 멀티모달 모델에 모든 분석을 의존하는 대신, 각 260 작업에 특화된 경량 엣지 모델들을 분산적으로 활용하는 접근 방식의 유효성을 입증한 261 것이다.
- 262 첫째, 객체 탐지 단계에서는 모바일 환경을 고려하여 YOLOv11n 모델을 최종 선택하였다.
- 263 더 큰 YOLOv11s 모델이 전체 mAP50-95 기준 0.46으로, YOLOv11n 모델(0.421)보다 소폭
- 264 우수한 성능을 보였으나, 엣지 디바이스에서의 경량성과 속도를 우선 고려하여
- 265 YOLOv11n을 채택하였다. 이 모델은 tom_leaf_bb(mAP50-95: 0.879),
- 266 tom_fruit_breaker_poly(0.796) 등 주요 11개 클래스에 대해 충분히 유의미한 탐지 성능을 267 보여주었다.
- 268 둘째, 식물 키 예측을 위한 회귀 모델 선정 과정에서는 MobileNetV3-Small,
- 269 MobileNetV4-small, MobileNetV4-hybrid-medium 세 가지 모델에 대한 비교 실험을
- 270 수행하였다. 놀랍게도 가장 최신 아키텍처인 MobileNetV4 계열 모델들(최저 val Loss:
- 271 45.67)보다 **MobileNetV3-Small 모델이 가장 낮은 검증 손실(Best val Loss: 44.32)**을
- 272 기록하며 가장 우수한 성능을 보였다. 이는 최신 아키텍처가 모든 특정 작업에서 항상
- 273 최고의 성능을 보장하는 것은 아니며, 데이터셋의 특성과 문제 정의에 따라 더 단순한
- 274 모델이 더 효과적일 수 있다는 중요한 시사점을 제공한다.

- 275 셋째, 최종 조언 생성 단계에서는 Gemma 2B-IT(google/gemma-2-2b-it) 모델을 활용하였다.
- 276 초기에는 Gemma 3n과 같은 최신 멀티모달 모델을 고려했으나, 자료 부족 및 커널 충돌과
- 277 같은 환경 설정의 어려움으로 인해 안정적으로 사용 가능하며, 양자화를 통한 경량화가
- 278 용이하고, 정교한 프롬프트 엔지니어링이 가능한 Gemma 2B-IT를 최종 선택하였다. 시스템
- 279 프롬프트를 통해 토마토 재배에 대한 방대한 전문 지식을 미리 주입하고, YOLO와 회귀
- 280 모델의 분석 결과를 동적으로 결합하여 사용자에게 전달함으로써, 상황에 맞는
- 281 구체적이고 실용적인 조언을 생성할 수 있었다.
- 282 이러한 결과들을 통해, 본 연구에서 제안한 특화된 경량 비전 모델들과 LLM을 결합한
- 283 하이브리드 파이프라인이 범용 온디바이스 멀티모달 모델보다 특정 도메인(토마토
- 284 생육)에 대해 더 정밀하고 신뢰도 높은 분석을 제공할 수 있는 유의미한 접근 방식임을
- 285 확인하였다.

287 5.2 고찰 및 향후 과제 (Discussion & Future Work)

- 288 본 프로젝트를 진행하며 몇 가지 한계점과 향후 개선 방향을 도출할 수 있었다.
- 289 첫째, LLM 선택 및 프롬프트 엔지니어링의 한계가 있었다. 시간 제약으로 인해 Gemma
- 290 2B-IT 외에 더 최적화된 소형 언어 모델(sLLM)을 충분히 탐색하지 못했다. 또한, 현재는
- 291 YOLO가 탐지한 객체 목록과 예측된 키 정보를 일괄적으로 텍스트화하여 LLM에
- 292 전달하고 있으나, 탐지된 객체의 종류(예: 꽃, 열매, 잎)에 따라 동적으로 다른 종류의
- 293 지식을 필터링하여 프롬프트를 구성하는 고도화된 엔지니어링 기법을 적용한다면 더
- 294 정확한 맞춤형 조언 생성이 가능할 것이다.
- 295 둘째, 생육 지표 예측 모델의 확장성이다. 현재는 식물의 키(plantHeight) 예측 모델만
- 296 구현하였으나, 데이터셋에는 엽장/엽폭, 화방 크기, 줄기 두께 등 다양한 생육 지표가
- 297 포함되어 있다. 이러한 지표들을 예측하는 추가적인 회귀 모델들을 학습하고
- 298 파이프라인에 통합한다면, 훨씬 더 다각적이고 정밀한 생육 상태 진단이 가능해질
- 299 것이다.
- 300 마지막으로, 실제 온디바이스 환경에서의 최적화 및 검증이 필요하다. 현재 개발된
- 301 모델들을 TensorFlow Lite로 변환하고 양자화를 적용하여, 실제 모바일 기기에서의 추론
- 302 속도, 메모리 사용량, 배터리 소모량 등을 측정하고 검증하는 과정이 후속 연구로
- 303 이루어져야 한다. 이를 통해 진정한 의미의 "온디바이스 AI 시스템"으로서의 실용성을
- 304 확보할 수 있을 것이다.

305 306

6 도전 목표 평가 (Challenge Goals Evaluation)

307 본 연구는 개인 농업인이 네트워크 제약 없이 현장에서 토마토의 생육 상태를 진단하고 308 맞춤형 조언을 얻을 수 있는 온디바이스 AI 시스템 개발을 목표로 하였다.

309310

6.1 목표 평가

- 311 본 연구는 초기 제안서에서 설정한 "실생활 문제 해결을 위한 온디바이스 AI 시스템
- 312 개발"이라는 도전 목표를 성공적으로 달성하였다고 평가한다. 초기 계획대로 YOLO, 경량
- 313 회귀 모델, LLM을 결합한 하이브리드 파이프라인을 구축하여 네트워크 없이 작동하는
- 314 시스템의 프로토타입을 완성했다.
- 315 다만, 구현 과정에서 초기 계획이 일부 수정 및 구체화되었다. 초기에는 MobileNetV4나
- 316 최신 Gemma 3n 모델 사용을 고려했으나, 실제 실험 결과 MobileNetV3-Small이 더
- 317 안정적이고 우수한 성능을 보였고, Gemma 3n 모델을 윈도우 환경에서 사용하는 것이
- 318 어렵다는 문제가 발견되어 Gemma-2-2B-IT가 환경 안정성면에서 더 적합하다고 판단하여
- 319 최종 모델을 변경하였다. 이는 이론적인 최신 기술을 맹목적으로 따르기 보다, 실제
- 320 데이터와 문제에 가장 적합한 모델을 실험적으로 검증하는 과정이 더 중요함을 보여준다

작업 계획 평가 (Work Plan Evaluation) 324

본 연구가 part1에서의 계획을 잘 수행했는지 평가한다. 325

326 327

7.1 계획 평가

- 328 초기 제안서에서 각 단계별 예상 소요 시간을 계획했으나, 실제 프로젝트 진행
- 329 과정에서는 많은 차이가 있었다. "데이터셋 확보, 분석 및 전처리" 단계는
- 예상(10시간)보다 훨씬 더 많은 시간이 소요되었다. 특히, 라벨 데이터의 좌표 오류(out of 330
- bounds coordinates)나 중복 문제를 해결하고, 각 모델에 맞는 데이터셋 구조를 구축하는 데 331
- 예상치 못한 디버깅 시간이 필요했다. 332
- 반면, "소형 LLM 연구 및 통합" 단계는 Hugging Face transformers 라이브러리의 높은 편의성 덕분에 예상(15시간)보다 빠르게 프로토타입을 완성할 수 있었다. 전반적으로, 333
- 334
- 실제 모델 학습 시간보다는 데이터의 품질을 확보하고 전처리하는 과정에 더 많은 335
- 노력이 필요하다는 것을 알 수 있었다. 336

337 338

테스팅 (Testing)

339 본 프로젝트의 결과 신뢰성을 확보하기 위해 다음과 같은 테스트를 수행했다.

340

8.1 단위 기능 테스트 341

- 342 각 Python 스크립트의 주요 함수(예: JSON-to-YOLO 변환, 데이터 로딩, 모델 추론 등)에
- 대해, 소수의 샘플 데이터 파일(예: 5~10개의 이미지 및 JSON)을 입력으로 사용하여 343
- 344 의도한 대로 출력물이 생성되는지 확인했다.

345

8.2 파이프라인 통합 테스트 346

- 최종적으로 test_pipeline.py 스크립트를 작성하여 전체 파이프라인(YOLO 탐지 → 회귀 347
- 모델 예측 → LLM 조언 생성)이 끊김 없이 작동하는지 검증했다. 이 과정에서 각 모델 348
- 349 간의 데이터 전달 형식이 올바른 지 확인했다.

350

8.3 시각적 검증 351

- 352 테스트 과정에서 YOLO가 탐지한 바운딩 박스를 실제 이미지에 그려서 저장하는 기능을
- 추가하여, 모델이 엉뚱한 곳을 탐지하지는 않는지 시각적으로 직접 확인하며 디버깅을 353
- 진행했다. 이를 통해 mAP 수치만으로는 알 수 없는 질적인 성능을 검증할 수 있었다. 354

355

협업 (Collaboration) 356

- 357 본 프로젝트는 기본적으로 단독으로 진행되었으나, 개발 과정에서 다음과 같은 외부
- 358 리소스의 도움을 받았다.

359 360

9.1 Hugging Face

- 361 Gemma 2B-IT 모델 및 transformers 라이브러리를 사용했으며, 모델 카드와 공식 문서를
- 362 참고하여 모델을 로드하고 파이프라인을 구축했다.

363

9.2 Ultralytics YOLO 364

- YOLOv11 모델의 학습 및 추론을 위해 Ultralytics의 공식 문서와 GitHub 저장소를 365
- 참고하여 하이퍼파라미터 설정 및 API 사용법을 익혔다. 366

368	9.3 PyTorch 및 timm 라이브러리
369 370	MobileNetV3/V4 기반의 회귀 모델을 구현하고 학습시키기 위해 PyTorch 공식 문서와 timm 라이브러리의 문서를 참조했다
371	
372 373	9.4 YOLO v11 기반 농산물 객체 검출 오토레이블링 딥러닝 모델 개발 (https://doi.org/10.33778/kcsa.2024.24.5.097)
374 375 376 377	유사한 주제의 선행연구로, 해당 논문은 사과(열매)에 대하여 생리장해, 흠집, 기형 병충해 4가지의 class를 YOLO v11n, YOLO v11s로 mAP50, mAP50-95를 측정하여 농산물 객체를 검출, 분류하였다. 해당 논문의 P-curve, R-curve, mAP 지수를 참고하여 본 연구의 유효성을 검증하는데 사용하였다.
378	
379	10 참고 문헌 (References)
380	[1] kais99.org/jkais/journal/Vol16No12/p65/9s.html
381 382	$ \begin{tabular}{l} \textbf{[2]} \le& 37302020B1E8BBEFB1D92DBDBAB8B6C6AE20B3F3BEF7C0BB20C0A7C7D120594F4C4F20B1E2B9DD20C0DBB9B020C7D8C3E620C5BDC1F620B8F0B9D9C0CF2E687770} \end{tabular} $
383 384	$ \begin{tabular}{ll} \hline [3] $\underline{https://www.nongsaro.go.kr/portal/ps/psz/psza/contentSub.ps?menuId=PS03172\&sSeCode=335001 \\ \underline{\&cntntsNo=101611\&totalSearchYn=Y} \\ \hline \end{tabular}$
385	[4] google/gemma-2-2b-it · Hugging Face
386	[5] https://roboflow.com/compare-model-sizes/yolo11s-vs-yolo11n
387	[6] https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&dataSetSn=534
388	[7] mobilenet_v3_small — Torchvision main documentation
389	[8] https://docs.ultralytics.com/ko/models/yolo11/
390	[9] https://koreascience.kr/article/JAKO202412757605231.pdf
391 392	[10]https://kosis.kr/statHtml/statHtml.do?sso=ok&returnurl=https%3A%2F%2Fkosis.kr%3A443 %2FstatHtml%2FstatHtml.do%3FtblId%3DDT_1ET0027%26orgId%3D101%26