Digital Signal Processing

Discrete Time Signal in Time Domain

Wenhui Xiong
NCL
UESTC

群名称: 格拉斯哥DSP 4005

群 号: 596673294

Outline

- > Time Domain Representation
- Typical Sequence & Sequence Representation
- > Operation on Sequences
- Operation on Finite Length Sequences
- Sampling Process
- Correlation of Signals

Outline

- Time Domain Representation
- Typical Sequence & Sequence Representation
- Operation on Sequences
- Operation on Finite Length Sequences
- Sampling Process
- Correlation of Signals

Discrete Time Signal: a sequences of numbers

$$x = \{x[n]\}, -\infty < n < \infty$$

Discrete Time Signal: a sequences of numbers

$$x = \{x[n]\}, -\infty < n < \infty$$

- Ways to present:
 - Vector: $\mathbf{x} = [x[0], x[1] \cdots x[N-1]]^T$

Discrete Time Signal: a <u>sequences</u> of numbers

$$x = \{x[n]\}, -\infty < n < \infty$$

Ways to present:

- Vector: $\mathbf{x} = [x[0], x[1] \cdots x[N-1]]^T$
- sequence of num.: $\{x[n]\} = \{\cdots x[-1], x[0], x[1] \cdots \}$

Discrete Time Signal: a sequences of numbers

$$x = \{x[n]\}, -\infty < n < \infty$$

- Ways to present:
 - ullet Vector: $\mathbf{x} = [x[0], x[1] \cdots x[N-1]]^T$
 - Sequence of num.: $\{x[n]\} = \{\cdots x[-1], x[0], x[1] \cdots \}$
 - Graph

Length of a discrete time signal

- Finite-length (finite-duration)
 - sequence defined only for interval: $N_1 \le n$ $\le N_2$
 - Length: $N = N_2 N_1 + 1$

$$\mathbf{x} = [x[0], x[1] \cdots x[N-1]]^T$$

Zero-padding: append zero valued samples

Types of a discrete time signal

Infinite-length (infinite-duration)

Types of a discrete time signal

- Infinite-length (infinite-duration)
 - Right-sided sequence :x[n] is zero for $n < N_1$
 - Causal: if $N_1 \ge 0$

Length of a discrete time signal

- Infinite-length (infinite-duration)
 - Right-sided sequence :x[n] is zero for $n < N_1$
 - Causal: if $N_1 \ge 0$
 - Left-sided sequence: x[n] is zero for $n > N_2$
 - Anti-causal: if N₂<0

Length of a discrete time signal

- Infinite-length (infinite-duration)
 - Right-sided sequence :x[n] is zero for $n < N_1$
 - Causal: if $N_1 \ge 0$
 - Left-sided sequence: x[n] is zero for $n > N_2$
 - Anti-causal: if N₂<0
 - Two-sided sequence: n for positive & negative

Outline

- > Time Domain Representation
- Typical Sequence & Sequence Representation
- Operation on Sequences
- Operation on Finite Length Sequences
- Sampling Process
- Correlation of Signals

Unit Sample Sequence(impulse)

$$\delta[n] = \begin{cases} 0 & n \neq 0 \\ 1 & n = 0 \end{cases}$$

Unit Sample Sequence(impulse)

$$\delta[n] = \begin{cases} 0 & n \neq 0 \\ 1 & n = 0 \end{cases}$$

Any sequence can be represented by impulse

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

Unit Sample Sequence(impulse)

$$\delta[n] = \begin{cases} 0 & n \neq 0 \\ 1 & n = 0 \end{cases}$$

Any sequence can be represented by impulse

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

Unit Step

$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Unit Sample Sequence(impulse)

$$\delta[n] = \begin{cases} 0 & n \neq 0 \\ 1 & n = 0 \end{cases}$$

Any sequence can be represented by impulse

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

Unit Step

$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$

Exponential sequence

$$x[n] = A\alpha^n$$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$A\cos((\omega_0+2k\pi)n+\phi)$$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$A\cos((\omega_0 + 2k\pi)n + \phi)$$

= $A\cos(\omega_0 n + \phi)$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$A\cos((\omega_0+2k\pi)n+\phi)$$

$$=A\cos(\omega_0 n + \phi)$$

$$-\pi < \omega_0 < \pi ext{ or } 0 < \omega_0 < 2\pi$$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$A\cos((\omega_0+2k\pi)n+\phi)$$

$$=A\cos(\omega_0 n + \phi)$$

$$-\pi < \omega_0 < \pi \text{ or } 0 < \omega_0 < 2\pi$$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$A\cos((\omega_0+2k\pi)n+\phi)$$

$$=A\cos(\omega_0 n + \phi)$$

$$-\pi < \omega_0 < \pi \text{ or } 0 < \omega_0 < 2\pi$$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$A\cos((\omega_0+2k\pi)n+\phi)$$

$$=A\cos(\omega_0 n + \phi)$$

$$-\pi < \omega_0 < \pi \text{ or } 0 < \omega_0 < 2\pi$$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$x_1(t) = A\cos(0.1\pi t)$$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$x_1(t) = A\cos(0.1\pi t)$$
 $x_2[n] = A\cos(0.1\pi n)$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$x_1(t) = A\cos(0.1\pi t)$$

$$x_2[n] = A\cos(0.1\pi n)$$

$$x_3(t) = A\cos(0.1t)$$

$$x_4[n] = A\cos(0.1n)$$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$x_1(t) = A\cos(0.1\pi t)$$
 $x_2[n] = A\cos(0.1\pi n)$ $x_3(t) = A\cos(0.1t)$ $x_4[n] = A\cos(0.1n)$ $x_5[n] = A\cos(0.1\pi n) + B\cos(0.5\pi n)$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$x_1(t) = A\cos(0.1\pi t)$$
 $x_2[n] = A\cos(0.1\pi n)$ $x_3(t) = A\cos(0.1t)$ $x_4[n] = A\cos(0.1n)$ $x_5[n] = A\cos(0.1\pi n) + B\cos(0.5\pi n)$ $x[n+N] = x[n]$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$x_1(t) = A\cos(0.1\pi t)$$
 $x_2[n] = A\cos(0.1\pi n)$ $x_3(t) = A\cos(0.1t)$ $x_4[n] = A\cos(0.1n)$ $x_5[n] = A\cos(0.1\pi n) + B\cos(0.5\pi n)$ $x[n+N] = x[n] \longrightarrow x[n+N] = A\cos(\omega_0(n+N) + \phi)$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

Are these signal periodic?

$$x_1(t) = A\cos(0.1\pi t)$$
 $x_2[n] = A\cos(0.1\pi n)$ $x_3(t) = A\cos(0.1t)$ $x_4[n] = A\cos(0.1n)$ $x_5[n] = A\cos(0.1\pi n) + B\cos(0.5\pi n)$ $x[n+N] = x[n]$ $x[n+N] = A\cos(\omega_0(n+N) + \phi)$

Periodic if $\omega_0 N = 2r\pi$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

$$x_1(t) = A\cos(0.1\pi t)$$
 $x_2[n] = A\cos(0.1\pi n)$

$$x_3(t) = A\cos(0.1t)$$
 $x_4[n] = A\cos(0.1n)$

$$x_5[n] = A\cos(0.1\pi n) + B\cos(0.5\pi n)$$

$$x[n+N] = x[n] \longrightarrow x[n+N] = A\cos(\omega_0(n+N) + \phi)$$

Periodic if
$$\omega_0 N = 2r\pi$$
 \longrightarrow $N = 2r\pi/\omega_0 \in \mathbb{Z}$

Sinusoidal

$$x[n] = A\cos(\omega_0 n + \phi)$$
 for all n

Are these signal periodic?

$$egin{align} x_1(t) &= A\cos(0.1\pi t) & x_2[n] &= A\cos(0.1\pi n) \ & x_3(t) &= A\cos(0.1t) & x_4[n] &= A\cos(0.1n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.1\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.5\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.5\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.5\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.5\pi n) &+ B\cos(0.5\pi n) &+ B\cos(0.5\pi n) \ & x_5[n] &= A\cos(0.5\pi n) &+ B\cos(0.5\pi n) &+ B$$

$$x[n+N] = x[n] \longrightarrow x[n+N] = A\cos(\omega_0(n+N) + \phi)$$

Periodic if
$$\omega_0 N = 2r\pi$$
 \longrightarrow $N = 2r\pi/\omega_0 \in \mathbb{Z}$

Not All Sequences are Periodic

Discrete Time Signals—Basic Sequence

Example: Combining Basic Sequence

$$egin{aligned} u[n] &= \delta[n] + \delta[n-1] + \cdots \ &= \sum_{k=0}^{\infty} \delta[n-k] \end{aligned}$$

Discrete Time Signals—Basic Sequence

Example: Combining Basic Sequence

$$u[n] = \delta[n] + \delta[n-1] + \cdots$$

$$=\sum_{k=0}^{\infty}\delta[n-k]$$

$$u[n] = \sum_{k=-\infty}^n \delta[k]$$

Discrete Time Signals—Basic Sequence

Example: Combining Basic Sequence

$$u[n] = \delta[n] + \delta[n-1] + \cdots$$

$$= \sum_{k=0}^{\infty} \delta[n-k]$$

$$u[n] = \sum_{k=-\infty}^n \delta[k]$$

$$x[n] = egin{cases} Alpha^n & n \geq 0 \ 0 & n < 0 \end{cases}$$
 $= Alpha^n u[n]$

Discrete Time Signals—Basic Sequence

Example: Combining Basic Sequence

$$egin{align} u[n] &= \delta[n] + \delta[n-1] + \cdots \ &= \sum_{k=0}^{\infty} \delta[n-k] \ \end{array}$$

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

$$x[n] = egin{cases} Alpha^n & n \geq 0 \ 0 & n < 0 \end{cases}$$
 $= Alpha^n u[n]$

Any sequence can be represented by impulse

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

Outline

- > Time Domain Representation
- Typical Sequence & Sequence Representation
- Operation on Sequences
- Operation on Finite Length Sequences
- > Sampling Process
- Correlation of Signals

Elementary Operation

Product

$$w[n] = x[n] \cdot y[n]$$

Elementary Operation

Product

$$w[n] = x[n] \cdot y[n]$$

Add

$$w[n] = x[n] + y[n]$$

Elementary Operation

Product

$$w[n] = x[n] \cdot y[n]$$

Multiplication

$$w[n] = Ax[n]$$

Add

$$w[n] = x[n] + y[n]$$

Elementary Operation

Product

$$w\lceil n \rceil = x\lceil n \rceil \cdot y\lceil n \rceil$$

Multiplication

$$w[n] = Ax[n]$$

Add

$$w[n] = x[n] + y[n]$$

Delay/Advance

$$w[n] = x[n-n_d]$$

Elementary Operation

Product

$$w\lceil n \rceil = x\lceil n \rceil \cdot y\lceil n \rceil$$

Multiplication

$$w \lceil n \rceil = Ax \lceil n \rceil$$

Time Reversal

$$w[n] = x[-n]$$

Add

$$w[n] = x[n] + y[n]$$

Delay/Advance

$$w[n] = x[n-n_d]$$

Convolution Sum

$$y[n] = x[n] \circledast h[n]$$

$$y(t) = x(t) \circledast h(t)$$

= $\int x(\tau)y(t-\tau)d\tau$

Convolution Sum

$$y[n] = x[n] \circledast h[n]$$

$$y(t) = x(t) \circledast h(t)$$
 $y[n] = x[n] \circledast h[n]$ $= \int x(\tau)y(t-\tau)d\tau$ $= \sum_{k=-\infty}^{\infty} x[k]h[n-k]$

Convolution Sum

$$y[n] = x[n] \circledast h[n]$$

$$y(t) = x(t) \circledast h(t)$$
 $y[n] = x[n] \circledast h[n]$ $= \int x(\tau)h(t-\tau)d\tau$ $= \sum_{k=-\infty}^{\infty} x[k]h[n-k]$

- The computation is simply the sum of products
- Only delays, additions, and multiplications

Computation of Convolutional Sum

Eg.1
$$x[n] = h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$$

$$\begin{split} y[n] &= \sum_{k=-\infty} x[k]h[n-k] \\ &= \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 2\delta[n-3] + \delta[n-4] \end{split}$$

A sequence of length M convolved with a sequence of length N, then resultant sequence is of length M+N-1

Computation of Convolutional Sum

Eg.2

$$x[n] = (1/2)^{n-1}u[n-2]$$
 $h[n] = u[n+2]$

$$egin{align} y[n] &= \sum_{k=-\infty}^{\infty} x[k]h[n-k] \ &= \sum_{k=-\infty}^{\infty} \left(rac{1}{2}
ight)^{k-2} u[k-2]u[(n-k)+2] \ &= \sum_{k=2}^{n+2} \left(rac{1}{2}
ight)^{k-2} = \left[2-\left(rac{1}{2}
ight)^{n}
ight]u[n] \end{split}$$

Outline

- > Time Domain Representation
- Typical Sequence & Sequence Representation
- Operation on Sequences
- Operation on Finite Length Sequences
- Sampling Process
- Correlation of Signals

Operation on Finite Length Sequence

Circular Shift

$$egin{aligned} x_c \left[n - n_0
ight] &= x \left[\left< n - n_0
ight>_N
ight] \ &= egin{cases} x \left[n - n_0
ight] & ext{for } n_0 < n \leq N-1 \ x \left[N + n - n_0
ight] & ext{for } 0 < n \leq n_0 \end{cases} \end{aligned}$$

Outline

- > Time Domain Representation
- Typical Sequence & Sequence Representation
- > Operation on Sequences
- Operation on Finite Length Sequences
- Sampling Process
- Correlation of Signals

$$x[n] = x_a(nT)$$

$$x[n] = x_a(nT)$$

Example: $x_a(t) = A\cos(2\pi f_0 t)$

$$x[n] = A\cos(2\pi f_0 nT) = A\cos\left(rac{2\pi\Omega_0}{\Omega_T}n
ight) \qquad nT = rac{1}{F_T}n = rac{2\pi}{\Omega_T}n$$
 $\Omega_0 = 2\pi f_0$

$$x[n] = x_a(nT)$$

Example: $x_a(t) = A\cos(2\pi f_0 t)$

$$x[n] = A\cos(2\pi f_0 nT) = A\cos\left(rac{2\pi\Omega_0}{\Omega_T}n
ight) \qquad nT = rac{1}{F_T}n = rac{2\pi}{\Omega_T}n$$

$$nT=rac{1}{F_T}n=rac{2\pi}{\Omega_T}n$$

$$F_T = 1/T$$
 Sampling Frequency (samples/sec)

$$\Omega_0 = 2\pi f_0$$

$$x[n] = x_a(nT)$$

Example: $x_a(t) = A\cos(2\pi f_0 t)$

$$x[n] = A\cos(2\pi f_0 nT) = A\cos\left(rac{2\pi\Omega_0}{\Omega_T}n
ight) \qquad nT = rac{1}{F_T}n = rac{2\pi}{\Omega_T}n$$

$$F_T = 1/T$$
 Sampling Frequency (samples/sec)

$$\Omega_0 = 2\pi f_0$$

 $\Omega_T = 2\pi F_t$ Sampling angular Frequency(radians/sample)

$$x[n] = x_a(nT)$$

Example: $x_a(t) = A\cos(2\pi f_0 t)$

$$x[n] = A\cos(2\pi f_0 nT) = A\cos\left(rac{2\pi\Omega_0}{\Omega_T}n
ight) \qquad nT = rac{1}{F_T}n = rac{2\pi}{\Omega_T}n$$

$$F_T = 1/T$$
 Sampling Frequency (samples/sec)

$$\Omega_0 = 2\pi f_0$$

$$\Omega_T = 2\pi F_t$$
 Sampling angular Frequency(radians/sample)

$$\omega_0 = rac{2\pi f_0}{\Omega_T}$$
 normalized angular Frequency(radians/sample)

$$x[n] = x_a(nT)$$

Example: $x_a(t) = A\cos(2\pi f_0 t)$

$$x[n] = A\cos(2\pi f_0 nT) = A\cos\left(\frac{2\pi\Omega_0}{\Omega_T}n\right) \qquad nT = \frac{1}{F_T}n = \frac{2\pi}{\Omega_T}n$$

 $F_T = 1/T$ Sampling Frequency (samples/sec)

$$\Omega_0 = 2\pi f_0$$

 $\Omega_T = 2\pi F_t$ Sampling angular Frequency(radians/sample)

$$\omega_0 = rac{2\pi f_0}{\Omega_T}$$
 normalized angular Frequency(radians/sample)

$$-\pi < \omega_0 < \pi ext{ or } 0 < \omega_0 < 2\pi$$

Example: $x_a(t) = A\cos(2\pi f_i t)$

$$f_0 = 3 \, \mathrm{Hz}$$
 $f_1 = 7 \, \mathrm{Hz}$ $f_2 = 13 \, \mathrm{Hz}$ $F_T = 10 \, \mathrm{samples/sec}$ $x_0[n] = \cos(0.6\pi n)$ $x_1[n] = \cos(1.4\pi n) = \cos((-2\pi + 1.4\pi)n) = \cos(-0.6\pi n)$ $x_2[n] = \cos(2.6\pi n) = \cos((2\pi + 0.6\pi)n) = \cos(0.6\pi n)$

Example: $x_a(t) = A\cos(2\pi f_i t)$

$$f_0 = 3 \, \mathrm{Hz}$$
 $f_1 = 7 \, \mathrm{Hz}$

$$f_2 = 13 \, \mathrm{Hz}$$

$$F_T = 10 \text{ samples/sec}$$

$$x_0[n] = \cos(0.6\pi n)$$

$$x_1[n] = \cos(1.4\pi n) = \cos((-2\pi + 1.4\pi)n) = \cos(-0.6\pi n)$$

$$x_2[n] = \cos(2.6\pi n) = \cos((2\pi + 0.6\pi)n) = \cos(0.6\pi n)$$

Example: $x_a(t) = A\cos(2\pi f_i t)$

$$f_0 = 3 \, \mathrm{Hz}$$
 $f_1 = 7 \, \mathrm{Hz}$

$$f_2 = 13 \, {\rm Hz}$$

$$F_T = 10 \text{ samples/sec}$$

$$x_0[n] = \cos(0.6\pi n)$$

$$x_1[n] = \cos(1.4\pi n) = \cos((-2\pi + 1.4\pi)n) = \cos(-0.6\pi n)$$

$$x_2[n] = \cos(2.6\pi n) = \cos((2\pi + 0.6\pi)n) = \cos(0.6\pi n)$$

Alias

Outline

- > Time Domain Representation
- Typical Sequence & Sequence Representation
- Operation on Sequences
- Operation on Finite Length Sequences
- > Sampling Process
- Correlation of Signals

Correlation

$$r_{xy}[l] = \sum_{n=-\infty}^{\infty} x[n]y[n-l]$$

Correlation

$$r_{xy}[l] = \sum_{n=-\infty}^{\infty} x[n]y[n-l]$$

Auto Correlation

$$r_{xx}[l] = \sum_{n=-\infty}^{\infty} x[n]x[n-l]$$

Correlation

$$r_{xy}[l] = \sum_{n=-\infty}^{\infty} x[n]y[n-l]$$

Auto Correlation

$$r_{xx}[l] = \sum_{n=-\infty}^{\infty} x[n]x[n-l]$$

Cross Correlation

$$egin{align} r_{xy}[l] &= \sum_{n=-\infty}^\infty x[n]y[n-l] \ &= r_{xy}[-l] \ \end{gathered}$$

Correlation

$$r_{xy}[l] = \sum_{n=-\infty}^{\infty} x[n]y[n-l]$$

Auto Correlation

$$r_{xx}[l] = \sum_{n=-\infty}^{\infty} x[n]x[n-l]$$

Cross Correlation

$$egin{align} r_{xy}[l] &= \sum_{n=-\infty}^\infty x[n]y[n-l] \ &= r_{xy}[-l] \ \end{gathered}$$

$$r_{xy}[l] = \sum_{n=-\infty}^{\infty} x[n]y[n-l] = \sum_{n=-\infty}^{\infty} x[n]y[-(l-n)]$$

Correlation

$$r_{xy}[l] = \sum_{n=-\infty}^{\infty} x[n]y[n-l]$$

Auto Correlation

$$r_{xx}[l] = \sum_{n=-\infty}^{\infty} x[n]x[n-l]$$

Cross Correlation

$$egin{align} r_{xy}[l] &= \sum_{n=-\infty}^\infty x[n]y[n-l] \ &= r_{xy}[-l] \ \end{gathered}$$

$$egin{align} r_{xy}[l] &= \sum_{n=-\infty}^\infty x[n]y[n-l] = \sum_{n=-\infty}^\infty x[n]y[-(l-n)] \ &= x[l] \circledast y[-l] \end{aligned}$$