Experimental Setup, Model Selection, Overfitting, Regularization

Explaining concepts with a polynomial fitting example

Roberto Souza Assistant Professor Electrical and Software Engineering Schulich School of Engineering

Outline

Learning Goals

Experimental setup and model selection

Overfitting and regularization

Metrics

Summary

Learning Goals

Explain how to design your experiment

Introduce how to select your model

• Introduce the concepts of *over-fitting*, *under-fitting*, and *model generalization*.

• Introduce the concept of *regularization* for reducing model *over-fitting*.

Hands-on Tutorial

https://github.com/rmsouza01/deep-learning

• Tutorial: Model selection, overfitting, regularization

 Based on the example presented in chapter 1 of the book: Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Experiment Design: Train, Validation and Test

- Train set: learn parameters of your models
- Validation set: model selection
- **Test set**: verify generalizability to unseen data

Experiment Design: k-fold cross validation

- Performs k iterations on the data
- Stratified k-fold: maintain the proportions of each class into folds (unbalance data)

Under- and Over-fitting

- Under-fitting: too inflexible; captures no pattern
 - fitting a linear model to non-linear data
- Over-fitting: too flexible; fits to noise in the data
 - model is excessively complex (#features>>#samples or #parameters too high)
 - decision boundary does not generalize-> poor results for new samples

Under- and Over-fitting

Techniques to Avoid Over-fitting

- More data
- Reduce model complexity (i.e., number of trainable parameters)
- Regularization
- Dropout
- Data augmentation
- Multi-task learning

Dropout

Learn redundant paths -> gain robustness

(a) Standard Neural Net

(b) After applying dropout.

Supervised Data = Images + labels

JPEG compressed

Reference

Supervised Data = Images + labels

Data augmentation illustration (regression)

2nd epoch

Supervised Data = Images + labels

Data augmentation illustration (regression)

3rd epoch

Supervised Data = Images + labels

Data augmentation illustration (segmentation)

Domain Randomization

Metrics - Classification

Confusion matrix

Receiver operating characteristic (ROC)

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

Sensitivity = TP / P

$$Specificity = TN / N$$

Metrics - Regression

Structural Similarity (SSIM)

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

 Normalized Root Mean Squared Error (NRMSE)

$$\mathit{MSE} = rac{1}{m\,n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2$$

 $RMSD(\hat{\theta}) = \sqrt{MSE(\hat{\theta})} = \sqrt{E((\hat{\theta} - \theta)^2)}.$

$$PSNR = 10 \cdot \log_{10} \left(\frac{M}{N} \right)$$

$$=20\cdot \log_{10}igg(rac{MAX_I}{\sqrt{MSE}}igg)$$

$$=20\cdot \log_{10}(\textit{MAX}_I) - 10\cdot \log_{10}(\textit{MSE})$$

Summary

• For large datasets, a single train/val/test split is often sufficient

The validation set is used for model selection

Overfitting makes your model less generalizable to new datasets

 Model overfitting can be mitigated by employing techniques, such as regularization

Thank you!

