Short-term forecasting with dynamic factor models

Rytis Bagdžiūnas, Aspirant FNRS

CORE, Université catholique de Louvain, Belgium

Initial problem

Predict economic growth (**GDP**), **inflation** and other summary variables in the short-term. Construct an index representing current state of the economy. Some challenges to take into account:

- integrate large number of time series
- asynchronous data arrival
- deal with NAs
- mixed-frequency nature of data
- possible regime changes, e.g. boom and bust cycles
- identification and economic constraints

Getting data with rsdmx

Statistical data and metadata exchange (SDMX) standard has been sponsored by ECB, Eurostat, IMF, OECD, etc.

rsdmx package aims to fully implement SDMX-ML standard in R:

- readSDMX downloads and parses XML data and metadata
- as.data.frame converts SDMXData object to a data.frame

rsdmx is still under development but already very useful. In the future, it seeks to implement writeSDMX, automate timestamp treatment and assist in query construction.

Example: 767 monthly business and consumer surveys for OECD and partner countries are downloaded in seconds.

Sample plot

library(rsdmx)

url <- "http://stats.oecd.org/restsdmx/sdmx.ashx/GetData/"
key <- "MEI_BTS_COS/..BLSA.M/all?startTime=2014-Q4"
xml_data <- readSDMX(pasteO(url,key))
data <- as.data.frame(xml_data)</pre>

Our objectives

⇒ Package for R that facilitates the estimation part: **dynfactoR**Why? Current "libraries" for dynamic factor model estimation are scattered and mostly Matlab-only. State-space modelling is already available for R but exploiting dynamic factor model structure will lead to gains in efficiency.

The following snippet estimates a dynamic factor model with a single regime where 2-dimensional factor \mathbf{X}_t is assumed to follow VAR(2). This model is statistically identified since $\mathbf{Q} = \mathrm{Id}$ and \mathbf{F} is partially upper triangular. See Bai & Wang (2012).

```
library(dynfactoR)
DFMfit <- dfm(data, f=2, p=2, rF='upper', rQ='identity')
summary(DFMfit, plot=TRUE)</pre>
```

Result

- ullet Restrictions on ${f F}$ can be specified to deal with mixed-frequency, identification and other constraints.
- Kalman filtering supports missing data and asynchronous updates

References

- ① Stock & Watson (2002). Forecasting using principal components from a large number of predictors.
- 2 Doz, Gianone & Reichlin (2006). A quasi-maximum likelihood approach for large approximate dynamic factor models.
- 3 Bai & Wang (2012). *Identification and estimation of dynamic factor models.*
- Banbura & Modugno (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data.

Figure: **Top**: monthly manufacturing survey data in Belgium, **Germany**, France and the **Netherlands**. **Bottom**: quarterly GDP growth. It looks as if there was a common underlying pattern.

Source: OECD

Modelling solution: dynamic factor models

Let \mathbf{Y}_t be a high-dimensional dataset and \mathbf{X}_t an unobservable latent low-dimensional process such that

$$\mathbf{Y}_t = \mathbf{F}_{s_t} \mathbf{X}_t + \boldsymbol{\varepsilon}_t$$
 $\mathbf{X}_t = \mathbf{A}_{1.s_t} \mathbf{X}_{t-1} + \cdots + \mathbf{A}_{p.s_t} \mathbf{X}_{t-p} + \mathbf{u}_t$

with $\varepsilon_t \sim \mathcal{N}(0, \mathbf{R})$ and $\mathbf{u}_t \sim \mathcal{N}(0, \mathbf{Q})$. $(\mathbf{F}_{s_t}, \mathbf{A}_{1:p,s_t})$ may also switch regime $s_t \in \{0, 1\}$ with s_t following a Markov-switching process.

This model is **flexible** enough to deal with most issues stated initially.

Useful to know beforehand

Pre-processing

Normalize and deseasonalize \mathbf{Y}_t , e.g. x12 package in R can do batch processing with X13-ARIMA-SEATS methodology

Identification

If statistical identification is an issue, impose constraints on $(\mathbf{F}, \mathbf{R}, \mathbf{Q})$.

• Estimation methods

Based on Kalman filter and Kim filter (still experimental!) for Markov-switching case

- Maximizing likelihood with non-linear optimization procedures
- EM-algorithm

First dynamic factor and trend for 2 months-ahead

Figure: Quarterly GDP growth in Belgium, France, Germany and the Netherlands. First factor often precedes trend variations in GDP data.

- Source for this poster and other projects: rbagd@github
- Tutorial on using SDMX from R: rbagd.eu
- rsdmx is available on CRAN: its developer Emmanuel Blondel would appreciate any programming and financial assistance!

