Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 3: lista M 14 31 stycznia 2019 r.

M14.1. 1 punkt Macierz B_{ω} , związana z metodą nadrelaksacji (SOR), określona jest wzorem

$$B_{\omega} := (D + \omega L)^{-1} [(1 - \omega)D - \omega U],$$

gdzie ω jest parametrem. Wykazać, że promień spektralny macierzy B_ω spełnia nierówność

$$\rho(B_{\omega}) \geqslant |\omega - 1|.$$

M14.2. I punkt Niech $q_j \in \mathbb{R}^m$ oznaczają wektory uzyskiwane w metodzie ortogonalizacji Gramma-Schmidta, dla danego układu liniowo niezależnych wektorów $a_j \in \mathbb{R}^m$ $(j=1,2,\ldots,n)$. Udowodnić, że zachodzi równość

$$I - P_k = (I - \boldsymbol{q}_k \boldsymbol{q}_k^T) \cdots (I - \boldsymbol{q}_2 \boldsymbol{q}_2^T) (I - \boldsymbol{q}_1 \boldsymbol{q}_1^T),$$

gdzie P_k jest macierzą rzutu prostopadłego:

$$P_k \coloneqq \sum_{j=1}^k \boldsymbol{q}_j \boldsymbol{q}_j^T.$$

M14.3. 1 punkt Niech $B = [b_{ij}] \in \mathbb{R}^{n \times n}$ będzie macierzą o elementach

$$b_{ii} = 1$$
 $(i = 1, 2, ..., n),$
 $b_{ij} = -1$ $(i < j),$
 $b_{ij} = 0$ $(i > j).$

Sprawdzić, że $\det B \ll \operatorname{cond}_{\infty}(B)$, gdzie $\operatorname{cond}_{\infty}(B) := \|B\|_{\infty} \|B^{-1}\|_{\infty}$. Jaki stąd wniosek?

M14.4. $\boxed{1 \text{ punkt}}$ Jak ocenimy uwarunkowanie układu $A \boldsymbol{x} = \boldsymbol{b},$ o macierzy

$$A = \left[\begin{array}{cc} 1 & 1 + \varepsilon \\ 1 - \varepsilon & 1 \end{array} \right],$$

dla $0 < \varepsilon \le 0.01$?

M14.5. 1 punkt Niech \tilde{x} będzie przybliżonym rozwiązaniem układu Ax = b, gdzie det $A \neq 0$, $b \neq \theta$. Niech $r := b - A\tilde{x}$ oznacza *resztę*. Wykazać, że wówczas zachodzą nierówności

$$\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\| \leqslant \operatorname{cond}(A) \frac{\|\boldsymbol{r}\|}{\|A\|}, \qquad \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \leqslant \operatorname{cond}(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|},$$

gdzie $\boldsymbol{x} := A^{-1}\boldsymbol{b}$ jest dokładnym rozwiązaniem.

M14.6. 1 punkt Wykazać, że jeśli A jest macierzą ze ściśle dominującą przekątną, to $||B_S||_{\infty} < 1$, a więc metoda Gaussa-Seidela jest zbieżna.

M14.7. $\boxed{1 \text{ punkt}}$ Niech $T \in \mathbbm{R}^{n \times n}$ będzie macierzą trójprzekątniową

$$T = \begin{bmatrix} a_1 & c_1 \\ b_2 & a_2 & c_2 \\ & b_3 & a_3 & c_3 \\ & \ddots & \ddots & \ddots \\ & & b_{n-1} & a_{n-1} & c_{n-1} \\ & & & b_n & a_n \end{bmatrix}.$$

Wyznaczyć rokład trójkątny macierzy T – przy założeniu, że istnieje.