LECTURE 4 DETECTORS

- Hadronic Calorimetry
- Systems and Tracking

Very good reference – Particle Data Group

http://pdg.lbl.gov/2009/reviews/rpp2009-rev-particle-detectors-accel.pdf

http://pdg.lbl.gov/2009/reviews/rpp2009-rev-passage-particles-matter.pdf

Development of Hadronic Showers

Hadronic shower

→ At energies > 1 GeV, cross-section depends little on energy:

$$\sigma_{abs} \approx \sigma_0 A^{0.7}$$
, $\sigma_0 \approx 35 \, mb$ \Rightarrow

$$\lambda_I \propto A^{1/3}$$

$$\rightarrow$$
 For $Z > 6 \rightarrow \lambda_I > X_0$

Material	Z	A	$\rho [g/cm^3]$	$X_0[g/cm^2]$	$\lambda_{\rm I} [{\rm g/cm}^2]$
Hydrogen (gas)	1	1.01	0.0899 (g/l)	63	50.8
Helium (gas)	2	4.00	0.1786 (g/l)	94	65.1
Beryllium	4	9.01	1.848	65.19	75.2
Carbon	6	12.01	2.265	43	86.3
Nitrogen (gas)	7	14.01	1.25 (g/l)	38	87.8
Oxygen (gas)	8	16.00	1.428 (g/l)	34	91.0
Aluminium	13	26.98	2.7	24	106.4
Silicon	14	28.09	2.33	22	106.0
Iron	26	55.85	7.87	13.9	131.9
Copper	29	63.55	8.96	12.9	134.9
Tungsten	74	183.85	19.3	6.8	185.0
Lead	82	207.19	11.35	6.4	194.0
Uranium	92	238.03	18.95	6.0	199.0

Comparing X_0 and λ_I , we understand why Hadronic calorimeters are in general larger than EM calorimeters

Mauricio Barbi Univ. of Regina, TRIUMF Summer School 2007

Hadronic Calorimeter

Hadronic Calorimeter (HCAL)

- → CMS hadron calorimeter
 - → 16 scintillator 4 mm thick plates (active material)
 Interleaved with 50 mm thick plates of brass
 - → Energy resolution:

$$\frac{\sigma(E)}{E} \propto \frac{(120\%)}{\sqrt{E}} \oplus 5\%$$

Hadronic energy resolution compromised in favor of a much higher EM energy resolution # interacting in HCAL only

interacting in ECAL or HCAL

no weighting

o passive weighting

CMS TB '04

CMS TB '04 $\frac{\sigma(E)}{E} = \frac{120\%}{\sqrt{E}} \oplus 5\%$ pion beam momentum (GeV)

http://www.flickr.com/photos/naezmi/365114338/

Mauricio Barbi Univ. of Regina, TRIUMF Summer School 2007

Particle Data Group

 ${\bf Table~28.8:}\quad {\bf Resolution~of~typical~electromagnetic~calorimeters.}~E~{\bf is~in~GeV}.$

Technology (Experiment)	${\rm Depth}$	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_{0}$	$2.7\%/\mathrm{E}^{1/4}$	1983
$\mathrm{Bi_4Ge_3O_{12}}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E} \oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16 – 18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5$ GeV	1998
$PbWO_4$ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus\ 0.42\% \oplus 0.09/E$	1998
Scintillator/depleted U (ZEUS)	20-30X ₀	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_{0}$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_{0}$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 – 30X_0$	$12\%/\sqrt{E}\oplus 1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_{0}$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996

SYSTEMS - Around 1990. SLAC Linear Collider

Centre of Mass Energy around 91 GeV electron-positron Incident particles are "point-like". Carry all the energy.

4-94 7282A2col

Charged Particle in a Magnetic Field

Radius of curvature

$$r = \frac{p_T}{0.3B}$$

If r>>L then
$$\sin \frac{\theta}{2} = \frac{L}{2r} \implies \frac{\theta}{2} \approx \frac{L}{2r} \implies \theta \approx \frac{0.3BL}{p_T}$$

$$s = r - r\cos(\theta/2)$$

$$\approx r \left[1 - \left(1 - \frac{1}{2} \frac{\theta^2}{4} \right) \right]$$

$$= \frac{r\theta^2}{8} \approx \frac{0.3BL^2}{8p_T}$$

e.g. s
$$\approx$$
 3.75 cm for p_T =1 GeV/c, L=1m and B=1T

Relative Momentum Resolution

$$\frac{dp_T}{p_T} = \frac{\sigma_s}{s} = \frac{\sqrt{(3/2)} \sigma_x}{s}$$

$$\frac{dp_T}{p_T} = \frac{\sqrt{3}}{2} \sigma_x \frac{8p_T}{0.3BL^2}$$
(2)

Momentum resolution degrades linearly with increasing momentum, improves for higher field and the larger radial size of tracking cavity (quadratic in L)

Arrangement of measuring points

Uniform spacing

$$\frac{dp_T}{p_T} = \frac{\sigma_x p_T}{0.3BL^2} \sqrt{\frac{720}{N+4}}$$

e.g. dp_/p_ \approx 0.5% for p_=1 GeV/c, L=1m, B=1T, σ_x = 200 μm and N=10

BUT in a real tracker errors due to multiple scattering has to be included .

Multiple Scattering

- Electric field close to atomic nucleus may give large acceleration to a charged particle.

Small impact parameter

single large angle scatter can occur (Rutherford Scattering)

$$\frac{d\sigma}{d\Omega} \propto \frac{1}{\sin^4 \theta/2}$$

Large impact parameter

· more probable

nuclear charge partly screened by atomic electrons, scattering angle is small

ullet thick material ullet large no. of random and small deflections - multiple Coulomb

scattering

rms of scattering angle

$$\theta_0 \approx \frac{13.6 \ MeV}{\beta pc} \ Z_{inc} \ \sqrt{\frac{L}{X_0}}$$

Multiple Scattering

Figure 23.5: Quantities used to describe multiple Coulomb scattering. The particle is incident in the plane of the figure.

If extrapolation error from one plane to next is larger than the point resolution then momentum resolution is degraded i.e. if

Apparent sagitta due to multiple scattering

$$s_p = \frac{L\theta_0}{4\sqrt{3}}$$

Relative momentum resolution due to multiple scattering is

$$\therefore \frac{s_p}{s} = \frac{dp}{p}\bigg|_{ms} \approx 0.05 \frac{1}{B\sqrt{LX_0}} \quad \text{since } s = \frac{0.3BL^2}{8p}$$

B in T, L and X₀ in m

i.e. Resolution is independent of p and α 1/B

Momentum Resolution

e.g. argon gas, L = 1 m, B = 1 T

$$\frac{dp}{p}\Big|_{ms} \approx 0.5\%$$

Material	X ₀ (cm)
Argon	11000
Al	8.9
Si	9.4
Pb	0.56

Use low Z, low mass material for tracking

Estimated Momentum Resolution v/s p₊ in CMS

COMMENT: CMS USE SILICON DETECTORS.

The CMS Silicon Strip Tracker

Schematic cross section of one quarter of the tracker:

Tracker Material Budget

- Conversion probability for photons almost 50%
- Material budget dominated by services

Performance of the CMS Tracker

of hits per track in the strip tracker:

- total number of hits
- total number of double-sided hits
- double-sided hits in thin detectors
- double-sided hits in thick detectors
- ⇒ At least 10 measurement points, except for region between barrel and end cap

Transverse momentum resolution for muons with $p_T = 1$ GeV, 10 GeV, 100 GeV:

- ⇒ Resolution dominated by tracker lever arm
- \Rightarrow Barrel: resolution of 1.5% for p_T=100 GeV

The ATLAS Detector

Diameter
Barrel toroid length
End-cap end-wall chamber span
Overall weight
7

26 m 46 m 7000 tons

ATLAS Collaboration

> 35 Countries> 164 Institutions2500 Scientific Authors

Hard to keep up to date on these numbers!

Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku, IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, HU Berlin, Bern, Birmingham, Bologna, Bonn, Boston, Brandeis, Bratislava/SAS Kosice, Brookhayen NL, Buenos Aires, Bucharest, Cambridge, Carleton, Casablanca/Rabat, CERN, Chinese Cluster, Chicago, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, AGH UST Cracow, IFJ PAN Cracow, DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, LPSC Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima, Hiroshima IT, Indiana, Innsbruck, Iowa SU, Irvine UC, Istanbul <u>Bogazici</u>, KEK, Kobe, Kyoto, Kyoto UE, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QMW London, RHBNC London, UC London, Lund, UA Madrid, Mainz, Manchester, Mannheim, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, FIAN Moscow, ITEP Moscow, MEPh I Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Naples, New Mexico, New York, Nijmegen, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Praque, CU Praque, TU Praque, IHEP Protying, Ritsumeikan, UFRJ Rio de Janeiro, Rochester, Rome I, Rome II, Rome III, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinghu, Siegen, Simon Fraser Burnaby, SLAC, Southern Methodist Dallas, NPI Petersburg, Stockholm, KTH Stockholm, Stony Brook, Sydney, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Toronto, TRIUMF, Tsukuba, Tufts, Udine, Uppsala, Urbana UI, Valencia, UBC Vancouver, Victoria, Washington, Weizmann HP Beck - LHEP Uni Bern - 10/11/2006 Rehovot, Wisconsin, Wuppertal, Yale, Yerevan 22

Oxford, Cambridge, UCL, Glasgow, Liverpool, Lancaster, Manchester, Queen Mary, Royal Holloway, RAL, Birmingham

Higgs Production in Proton-Proton Collisions

Thanks to H P Beck, University of BERN

•	
	Lecture 4
	Hadron Calmineters
	Mo equivalent to prienes in e.n. share.
0.	So shave profile vers différent.
	Controlled by nuclear interaction.
	Length Scale Set by $J_{\rm I}$ - nuclear interaction length
	There To A 0.7 To ~35mb
	$\lambda_{I} = \frac{A}{N_{A} \sigma_{inel}}$ Property of referred
-	[see plot in sliles]
	I=Ioe So deple of show is relied to
	Neal severel to the stop halo
	TE & (SO-100)% Workeller En. coloniales.
\$1 1	D Use Sampling colonials.

and the second second second

Delector Sychens

No single détector con set el te information.

Low missi defedins Verlex Retector to identify particle containing chara, beauty, top quaks
Silven detectors are vitel.

Tracking to necessure nonantem - To field

e.g. cms AT field. See sliles

Silvan now weed. Drill charles de

TPC's weed in the past.

Me une ble energy (destructive) electromyretic colorinde. es, 85, Tio > 88 hadrie Colorinde p, n, kt, Tit