Algorytm wymiany strony

Zastępowanie stron, czyli usuwanie z pamięci chwilowo nie potrzebnych stron.

Gdy wystąpi brak strony a nie będzie wolnych ramek, trzeba wybrać jedną z ramek i zastąpić obecną w niej stronę na żądaną stronę. Dzięki zastępowaniu stron pamięć logiczna może być większa niż pamięć fizyczna

Etapy wymiany strony

- Znalezienie położenia żądanej strony na dysku
- Znalezienie strony ofiary czyli takiej która ma zostać usunięta z pamięci
- Zapisanie ofiary na dysku o ile nie ma już tam swojej wiernej kopii
- Oznaczenie w tablicy stron odwołania do strony ofiary jako nieprawidłową
- Wczytanie żądanej strony do wolnej ramki
- Oznaczenie w tablicy stron odwołania do żądanej strony jako poprawnego

Algorytm wymiany stron powinien minimalizować częstość braków stron. Algorytm ocenia się na postawie wykonania go na pewnym ciągu odniesień do pamięci i zsumowaniu braku stron.

Algorytm FIFO

Ofiarą w tym algorytmie staje się strona która najdłużej przebywa w pamięci. Strona która jest sprowadzana do pamięci jest wstawiana na koniec kolejki, a strona ofiara jest usuwana z pamięci jest brana do początku kolejki.

Anomalia Beladyego polega na tym że współczynnik braków stron wzrasta ze wzrostem liczby wolnych ramek.

Algorytm optymalny

W tym algorytmie ofiarą staje się strona która jest nieużywana przez najdłuższy okres czasu. Algorytm optymalny ma najniższy współczynnik braku stron w porównaniu z innymi algorytmami, nie występuje anomalia Beladyego, jest trudny w realizacji ponieważ wymaga wiedzy o przyszłej postaci ciągu odniesień.

Algorytm LRU

- Lepszy od algorytmu FIFO
- Nie występuje anomalia Beladyego
- Trudność z zapamiętywaniem historii użycia stron może wymagać sporego zaplecza sprzętowego

Implementacja

Za pomocą liczników – Każda strona ma wówczas specjalne pole licznika. Gdy jakiś proces odwołuje się do strony, do licznika kopiuje się stan zegara systemowego. Gdy trzeba wybrać ofiara szuka się strony z najmniejszą wartością licznika

Za pomocą stosu – na stosie trzymamy numer strony, do których były odwołania. Odwołanie powoduje przesunięcie jej numeru na wierzchołek tego stosu

Niewiele systemów posiada odpowiedni sprzęt umożliwiający realizacje algorytmu LRU

Często stosowane algorytmy przybliżające metodę LRU:

Algorytm bitów odniesień

- Z każdą pozycją w tablicy stron związany jest bit odniesienia ustawiony początkowo na 0
- Przy odwołaniu do strony jest on ustawiony na 1
- Zastępowana jest ta strona w porządku FIFO, która ma bit odniesienia ustawiony na 0

Algorytm dodatkowych bitów odniesień

- Z każdą stroną związany jest 8bitowy rejestr ustawiony na początek na 0000000
- W regularnych odstępach czasowych (co 100ms) SO wprowadza na najbardziej znaczącą pozycje rejestru bit odniesienia
- Wymieniana jest strona najdawniej używana najmniejsza liczba w rejestrze np. 0111010 < 1100010

Algorytm drugiej szansy

- Strony przeglądane są w porządku FIFO
- Sprawdzanie bitu odniesienia : Jeśli 0 strona zastąpiona, jeśli 1 druga szansa
- Druga szansa zerowanie bitu odniesienia, ustawienie czasu bieżącego
- Przewijanie stron dokonuje się cyklicznie

Algorytm zliczający

Algorytm ten korzysta z związanego z każdą stroną licznika odwoływania, licznik jest realizowany sprzętowo, odwołanie do danej strony powoduje zwiększenie jej licznika o jeden.

Istnieją dwa algorytmu oparte na przeciwstawnych założeniach:

- LFU Ofiarą staje się strona do która była najrzadziej używana, może być obarczony błędami wynikającymi z faktu że strona na początku była intensywnie używana a później wcale nie była potrzebna
- MFU ofiarą staje się strona, do której była najczęściej używana

Implementacja tych algorytmów jest kosztowna i nie przybliżają one dobrze algorytmu optymalnego

Algorytm buforowania stron

Procedury wspomagające:

• Przechowywanie puli wolnych ramek

Zanim strona ofiara zostanie usunieta potrzebna strona czytania do wolnej ramki z puli

- Przechowywanie listy zmienionych stron
- Pula wolnych ramek + informacja o tym jak strona rezydowała w każdej ramce