Inverse Problems in Geophysics Part 6: Regularization

2. MGPY+MGIN

Thomas Günther thomas.guenther@geophysik.tu-freiberg.de

Recap

- singular value decomposition (SVD) as fundamental tool
- general solution: the pseudo-inverse (LS & MN special cases)
- small singular values amplify noise in the model
- for ill-conditioned (wide SV range) matrices: TSVD
 - truncate singular values at some point
- regularization: adding equations to make solution unique

Truncated singular value (TSVD) method

- Look at the singular value spectrum
- Choose a maximum number p or rtol and compute (e.g. by pinv)

$$\mathbf{G}_p^\dagger = \mathbf{V}_p \mathbf{\Sigma}_p^{-1} \mathbf{U}_p^T$$

• How to choose p? Trade-off between resolution and artifacts.

Discrepancy principle (free after Occam)

Look at data fit and choose p such that the data can be fitted within the error.

Geophysical example

Seismic crosshole tomography (NEW)

- grid with 1m spacing (119x10 cells)
- two boreholes: shots left, geophones right, fully connected (10x10 data)
- straight ray paths (x-ray, small contrasts)

Way matrix and coverage

Coverage: data-sum of Jacobian

Singular value spectrum

Resolution matrices

Data importance matrix

Model resolution matrix

Data importance and model resolution

Model resolution

Data importance

A synthetic model

Synthetic model

Traveltimes

Apparent velocity

Inversion with TSVD

Inversion with TSVD

Choosing p: Data and model norm

Regularization

- making under-determined and ill-posed problems unique (regular)
- make the model less sensible to small changes in the data
- adding our assumptions or knowledge (valid ranges, prior data, geostatistical behaviour)

(i) Occams razor

Of all possible models, choose the simplest! How to define simple?

Minimum norm

All model parameters are expected to be (similarly) small

$$ilde{\mathbf{Gm}} = egin{pmatrix} 1 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \mathbf{m} = egin{pmatrix} d_1 \ d_2 \ d_3 \ d_4 \ d_5 \end{pmatrix}$$

or close to some prior knowledge (d_3 , d_4 , d_5)

Smoothness constraints

Gradient (roughness) between neighboring model parameters

$$ilde{\mathbf{Gm}} = egin{pmatrix} 1 & 1 & 0 \ 0 & 0 & 1 \ -1 & 1 & 0 \ 0 & -1 & 1 \end{pmatrix} = egin{pmatrix} d_1 \ d_2 \ 0 \ 0 \end{pmatrix}$$

Regularization scheme

Splitting into original matrix & data and constraints

$$ilde{\mathbf{G}} = egin{bmatrix} \mathbf{G} \ \mathbf{C} \end{bmatrix} \quad ext{and} \quad ilde{\mathbf{d}} = egin{bmatrix} \mathbf{d} \ \mathbf{c} \end{bmatrix}$$

Damping (minimum norm)

$$\mathbf{C} = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Smoothness constraints

$$\mathbf{C} = egin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

Solving the regularized problem

Splitting into original matrix & data and constraints

$$ilde{\mathbf{G}} = egin{bmatrix} \mathbf{G} \ \mathbf{C} \end{bmatrix} \quad ext{and} \quad ilde{\mathbf{d}} = egin{bmatrix} \mathbf{d} \ \mathbf{c} \end{bmatrix}$$

now over-determined ⇒ (constrained) least-squares solution

$$\tilde{\mathbf{G}}^T \tilde{\mathbf{G}} = \mathbf{G}^T \mathbf{G} + \mathbf{C}^T \mathbf{C}$$
 & $\tilde{\mathbf{G}}^T \tilde{\mathbf{d}} = \mathbf{G}^T \mathbf{d} + \mathbf{C}^T \mathbf{c}$
 $\Rightarrow \mathbf{m} = (\mathbf{G}^T \mathbf{G} + \mathbf{C}^T \mathbf{C})^{-1} (\mathbf{G}^T \mathbf{d} + \mathbf{C}^T \mathbf{c})$

Weighting data vs. constraints

$$\Phi = \|\mathbf{\tilde{G}m} - \mathbf{\tilde{d}}\|_2^2 = \|\mathbf{Gm} - \mathbf{d}\|^2 + \|\mathbf{Cm} - \mathbf{c}\|^2 \Longrightarrow \min$$

 ${f d}$ and ${f c}$ have different magnitudes & units, data maybe too weak or too strong \Rightarrow weighting by regularization parameter λ :

$$|\Phi = \|\mathbf{Gm} - \mathbf{d}\|^2 + \lambda \|\mathbf{Cm} - \mathbf{c}\|^2 = \Phi_d + \lambda \Phi_m o \min_{\mathbf{c}} \mathbf{c}$$

 λ ..regularization strength, Φ_d/Φ_m ..data/model objective function

$$\Rightarrow \mathbf{m} = (\mathbf{G}^T \mathbf{G} + \lambda \mathbf{C}^T \mathbf{C})^{-1} (\mathbf{G}^T \mathbf{d} + \lambda \mathbf{C}^T \mathbf{c})^{-1}$$

Model and data norms

The L-curve

Data vs. model norm for wide range of λ

- low data residual achieved by high norm (oscillating model)
- low model norm cannot fit the data (large misfit)
- optimum somewhere "at the corner" (not always a corner)

Choice of regularization strength

Always have a look at your data fit and model plausibility.

- use different values and look at models (and misfit)
- try to determine the corner of the L-curve (maximum curvature)
- start large λ , decrease & stop when data misfit show no systematics

Discrepancy principle

Choose the highest λ value that is able to fit the data (χ^2 =1)!

Damped normal equations and SVD

$$\mathbf{m} = (\mathbf{G}^T \mathbf{G} + \lambda \mathbf{I})^{-1} \mathbf{G}^T \mathbf{d}$$

$$\mathbf{m} = (\mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T + \lambda \mathbf{I})^{-1} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{d}$$

$$\mathbf{m} = (\mathbf{V} \mathrm{diag}(s_i^2 + \lambda) \mathbf{V}^T + \lambda \mathbf{I})^{-1} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{d}$$

$$\mathbf{m} = \sum_{i}^{r} rac{s_i}{s_i^2 + \lambda} \mathbf{u}_i^T \mathbf{d} \cdot v_i^T = \sum_{i}^{r} rac{s_i^2}{s_i^2 + \lambda} rac{\mathbf{u}_i^T \mathbf{d}}{s_i} v_i^T$$

Small singular values are damped in inversion, large unchanged

Resolution of regularized inverse problems

For
$$c=0$$
 we have $\mathbf{G}^\dagger=(\mathbf{G}^T\mathbf{G}+\lambda\mathbf{C}^T\mathbf{C})^{-1}\mathbf{G}^T$

$$\mathbf{R}^{M}=\mathbf{G}^{\dagger}\mathbf{G}=(\mathbf{G}^{T}\mathbf{G}+\lambda\mathbf{C}^{T}\mathbf{C})^{-1}\mathbf{G}^{T}\mathbf{G}$$

approaches ${f I}$ for $\lambda o 0$ and deviates if λ grows

Inversion with damping

Choosing λ : Data and model norm

Wrap up

- SVD provides a general tool, BUT:
 - can amplify noise for ill-conditioned problems (SV spectrum)
 - truncated SVD (limiting p) can suppress this
- explicit regularization to make solution unique
 - different strategies: smoothness, minimum norm
- choice of regularization strength (λ, p) is vital