Compte-rendu TP1 Analyse de données

RÉALISATRICE: FATMA LARIBI GL3 GROUPE 2

Enter the following vector X = (a, b, c, d), then use the command sample() to generate a sample of 1000 entries following the distribution p = (15%, 25%, 40%, 20%). Name your variable XX. We use the function c() to define the vectors

Use the command table() to table your statistical variable XX and name your table distribution XXT.

```
> XXT<- table(XX)
> print(XXT)

XX
a b c d
145 244 404 207
>
```

Use the command pie() to represent graphically XX into a pie chart and save your graphic in a PDF format name your graph le "XXP.pdf".

Enter the following vector Y = (1, 2, 3, 4), then use the command sample() to generate a sample of 1000 entries following the distribution given by p = (25%, 15%, 25%, 35%),

name your variable YY.

Table your data and plot the corresponding bar graph in a pdf le that you name "YYP.pdf".

```
> YYT<-table(YY)
> print(YYT)
YY
1 2 3 4
248 138 260 354
> barplot(YYT)
```


We export the bar plot the same way we did before

Save Plot as PDF			
PDF Size:	(Device Size) ▼	5.18 × 4.97	inches
Orientation:	Portrait Landscape		
Options:	Use cairo_pdf device		
Directory File name:	~ YYP View plot after saving		
Preview		Save	Cancel

Use the command rnorm() to generate 1000 entries following the normal distribution with mean μ = 10 and standard deviation σ = 2 and name the obtained statistical series Z.

Use the command seq() to set up a sequence of equidistant points in the range of Z, name the obtained sequence "Z_e". Use the command cut() to construct classes and build up the frequency distribution by using table which you apply on the output of cut().

Here we divided into 9 classes


```
Z num [1:1000] 11.52 12.8 11.33 6.04 8.31...

Z_e num [1:100] 11.5 11.5 11.6 11.6 11.6 ...
```

Use the command hist() to draw the corresponding histogram and save the obtained graph in a pdf format file "Z_hist.pdf".

Thank you for your attention!