CS161 Homework 8

1. Prove:

```
Generalized product rule: Pr(A,B|K) = Pr(A|B,K)Pr(B|K).

Pr(A,B|K) = Pr(A|B,K)Pr(B|K)

Pr(A,B,K) / Pr(K) = Pr(A,B,K) / Pr(B,K) * Pr(B,K) / Pr(K)

Pr(A,B,K) / Pr(K) = Pr(A,B,K) / Pr(K)
```

Therefore, the generalized product rule is shown to be true.

Therefore, the generalized Bayes' rule is shown to be true.

```
2. Given the information below:
```

```
Pr(oil)=0.5
Pr(natural gas only)=0.2
Pr(neither)=0.3
Pr(positive | oil)=0.9
Pr(positive | natural gas only)=0.3
Pr(positive | neither)=0.1
Suppose the test comes back positive. What's the probability that oil is present? That is, find Pr(oil | positive).

Pr(oil | positive) = Pr(positive | oil) * Pr(oil) / Pr(positive)

where Pr(positive) =
Pr(positive | oil)*Pr(oil) + Pr(positive | natural gas only)*Pr(natural gas only) + Pr(positive | neither)*Pr(neither)
= 0.9(0.5) + 0.3(0.2) + 0.1(0.3)
= 0.54

Pr(oil | positive) = 0.9(0.5)/0.54
Pr(oil | positive) = 0.8333
```

Therefore, knowing that the test shows positive, the probability that oil is present is 0.83.

3. Compute the probabilities of the following events:

 α_1 : the object is black;

 α_2 : the object is square;

 α_3 : if the object is one or black, then it is also square

Since there are 9 black objects out of 13 total objects, we get:

$$Pr(\alpha_1) = 9/13$$

Since there are 8 square objects out of 13 total objects, we get:

$$Pr(\alpha_2) = 8/13$$

 $Pr(\alpha_3) = Pr(square \mid one \ v \ black)$

- = Pr(square ^ (one v black)) / Pr(one v black)
- = 7/13 *13/11
- **= 7/11**

Therefore (as shown above), since out of the 11 objects that are one or black, 7 of them are squares, we find that $Pr(\alpha_3) = 7/11$

World	Black?	Square?	One?	Pr()
1	True	True	True	2/13
2	True	True	False	4/13
3	True	False	True	1/13
4	True	False	False	2/13
5	False	True	True	1/13
6	False	True	False	1/13
7	False	False	True	1/13
8	False	False	False	1/13

Since the question asks us to compute α_1 , α_2 , and α_3 using the probability of the worlds above, we recalculate them below:

$$Pr(\alpha_1) = Pr(\omega_1) + Pr(\omega_2) + Pr(\omega_3) + Pr(\omega_4) = 9/13$$

$$Pr(\alpha_2) = Pr(\omega_1) + Pr(\omega_2) + Pr(\omega_5) + Pr(\omega_6) = 8/13$$

$$Pr(\alpha_3) = (Pr(\omega_1) + Pr(\omega_2) + Pr(\omega_5)) / (Pr(\omega_1) + Pr(\omega_2) + Pr(\omega_3) + Pr(\omega_4) + Pr(\omega_5) + Pr(\omega_7)) = (7/13) / (11/13) = 7/11$$

The following two sentences show α independent from β given that γ is true:

- Given that γ =not black, α =square and β =one are independent.
- Given that γ =not black, α =not one and β =square are independent.

4. Construct the joint probability distribution of this problem and use it to compute probabilities. Identify two sets of sentences α , β , γ such that α is independent of β given γ with respect to the constructed distribution.

For example, C is independent of G given F. Similarly, B is independent of G given D.

a. List the Markovian assumptions asserted by the DAG.

```
I (A, Ø, {B, E})
I (B, Ø, {A, C})
I (C, A, {B, D, E})
I (D, {A, B}, {C, E})
I (E, B, {A, C, D, F, G})
I (F, {C, D}, {A, B, E})
I (G, F, {A, B, C, D, E, H})
I (H, {E, F}, {A, B, C, D, G})
```

- b. True of false? Why?
 - i. $d_separated(A, BH, E)$

→ False; H is known, but F (which stems from A) and E converge on H, so A and E are not independent.

- ii. $d_separated(G, D, E)$
 - →True; G and E are separated and blocked by D from a common divergent path through B.
- iii. $d_separated(AB, F, GH)$ \rightarrow False; knowing F blocks G from A, but B can still connect to H $(B\rightarrow E\rightarrow H)$ and so they are dependent and connected.
- c. Express Pr(a,b,c,d,e,f,g,h) in factored form using the chain rule of Bayesian networks.

```
\begin{array}{l} \Pr(a,b,c,d,e,f,g,h) = \Pr(a \mid b,c,d,e,f,g,h) * \Pr(b,c,d,e,f,g,h) \\ = \Pr(a \mid b,c,d,e,f,g,h) * \Pr(b \mid c,d,e,f,g,h) * \Pr(c,d,e,f,g,h) \\ = \dots \\ = \Pr(a \mid b,c,d,e,f,g,h) * \Pr(b \mid c,d,e,f,g,h) * \Pr(c \mid d,e,f,g,h) * \Pr(d \mid e,f,g,h) * \\ \Pr(e \mid f,g,h) * \Pr(f \mid g,h) * \Pr(g \mid h) * \Pr(h) \end{array}
```

d. Compute Pr(A=0, B=0) and $Pr(E=1 \mid A=1)$. Justify your answers.

Pr(A=0, B=0) is calculated to be 0.24, since A and B are independent.

```
\begin{split} & Pr(E=1 \mid A=1) = Pr(E=1, \, A=1) \, / \, Pr(A=1) \\ & = \left[ Pr(A=1) * \, Pr(E=1) \right] \, / \, Pr(A=1) \\ & = Pr(E=1) \\ & = Pr(E=1, \, B=0) + Pr(E=1, \, B=1) \\ & = Pr(E=1 \mid B=0) * \, Pr(B=0) + Pr(E=1 \mid B=1) * \, Pr(B=1) \\ & = 0.9 * 0.3 + 0.1 * 0.7 \\ & = \textbf{0.34} \end{split}
```

Therefore, $Pr(E=1 \mid A=1)$ is calculated to be 0.34. Since A and E are independent, this is the same as Pr(E).