

Lecture 21: Introduction to

Generalized Linear Models;

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

5. Predator-Prey Example: Poisson

> Link Function

5. Predator-Prey Example: Poisson Link Function

Video note: In the video below, Prof Rigollet made an error when he wrote $\frac{1}{\mu(x)}$ as a linear function of $\frac{1}{x}$. which he corrected near the end of the video. The correct equation is

$$g\left(\mu\left(x
ight)
ight) \,=\, rac{1}{\mu\left(x
ight)} \,=\, rac{1}{m} + rac{h}{m}rac{1}{x} \,=\, eta_0 + eta_1rac{1}{x}.$$

Predator-Prey Model: the Random Component and the Link Function

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

Link Function Candidates

2/2 points (graded)

Consider random variables $\mathbf{X}=(X_1,X_2)$ and Y. Assume that the regression function $\mu\left(x_1,x_2\right)=\mathbb{E}\left[Y\mid X=(x_1,x_2)\right]$ for a pair (X,Y) happens to be $\mu\left(x\right)=(ax_1+bx_2)^3$. Which of the following is an appropriate choice for a link function g? In other words, for which g is it true that $g\left(\mu\left(x\right)\right)$ can be written as a linear function, $x^T\beta$ for some β ?

- $\bigcirc g(\mu) = \log(\mu)$
- $igcup g\left(\mu
 ight) = e^{\mu}$
- $\bigcirc g(\mu) = \mu^3$
- $leftleftondown g\left(\mu
 ight) = \sqrt[3]{\mu}$

If instead $\mu(x) = 2^{ax_1}$, which of the following are appropriate choices for the link function g? Choose all that apply.

- $igcap g\left(\mu
 ight) = e^{\mu}$
- $oxed{g}\left(\mu
 ight)=\mu^3$
- $oxed{g}\left(\mu
 ight)=\sqrt[3]{\mu}$

Solution:

Observe that we always want to compose functions in this order: $g \circ \mu$. For the first problem, observe that the only choice that yields a linear function is the cube root: $g(\mu(\mathbf{x})) = ax_1 + bx_2$, so that $\beta = (a,b)$. For the second problem, we wish to invert an exponential function, so the

natural choice is the logarithm, of either base 2 or e: $g(\mu(\mathbf{x})) = \log(2^{ax_1}) = (a \log 2) x_1$, so that $\beta = (a \log 2, 0)$. Notice that changing the base, by the change of base formula for logarithms, changes β by a constant factor. This demonstrates an important concept: there can be (infinitely) **many** choices of link functions.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Properties of the link function

4/4 points (graded)

For each one of the proposed link functions below indicate whether they obey the conditions:

- 1. it is strictly increasing,
- 2. it is continuously differentiable and
- 3. its range is all of \mathbb{R} .

Choose "Yes" only if the function does satisfy all of the conditions and choose "No" otherwise.

• $g(x) = x^2$.

•
$$g(x) = x^3 - 3$$
.

Yes

Solution:

- No. Observe that $g(\cdot)$ is not strictly increasing. For instance, even though -10 < -5, we have g(-10) > g(-5).
- Yes. This function is a translation of x^3 , which does satisfy all the properties.
- No. Note that even though this function is strictly increasing, its range is only $(-\infty, 1)$.
- Yes. This function satisfies all of the properties.

Submit You ha

You have used 1 of 1 attempt

1 Answers are displayed within the problem

© All Rights Reserved