Optical Fibe

INTRODUCTION

Network Layers (OSI model 7 layers; TCP/IP model 5 layers)

- 1. Physical layer
- The transmission of data on the physical medium of communication
- 2. Data link layer (frame)
- Ensures link-level reliability: data gets from one end of the link to the other
- Switches operate on this layer; MAC addresses used to uniquely identify nodes
- 3. Network layer (datagram/packet)
- Routing & forwarding: find a reliable set of links to connect the source and destination
- Fragmentation: to accommodate different mediums
- Routers operate on this layer; IP addresses used
- 4. Transport layer (segment)
- Ensures the end-to-end reliability: data gets from the source to the destination, and destination acknowledges
- Error checking, flow and congestion control
- 5. Application layer (/session, presentation)
- Connection control, translation of data formats, user's application interface, synchronisation, data integrity, error recovery

Encapsulation

- Additional information added as headers or trailers as data moves down the layers Layer protocols
- Provide service interface used by higher level protocols
- Provide peer-to-peer interface used by different hosts at the same level Cross layer design
- Violating the layered architecture: increased performance gains; but increases complexity when designing and at run-time, less reusability

Access Networks

Wired

- DSL Modem
 - Dedicated access from home to CO
 - Uses twisted pair cables, existing telephone lines
 - ~2Mbps upstream, 24Mbps downstream, 5km
- Cable TV network
 - Broadcast network, different homes share the same access
 - Uses FDM for channels
 - Uses coaxial cables
 - ~2Mbps upstream, 24Mbps downstream, 5km

- Fiber network based (PON)
 - Optical Network Units: receives all data, accepts/rejects based on packet headers
 - Large bandwidth, low bit error rate (BER)
 - Uses optical fiber links
 - o Up to 20km

Wireless

- LAN (local area networks)
 - 100ft, 54 Mbps (WiFi)
- WAN (wide area networks)
 - Cellular operators 10km, 1-10Mbps depending on 3G/4G/LTE/etc

Network Links

Broadcast links

- One node transmits, all nodes receive; bandwidth is shared by all hosts
 - o Only one node can transmit at any one time, else collision
- Used in LAN (eg Ethernet)

Point-to-point links

- Each link connects one node to one node
- Used in switched networks

Another classification of links

- Full duplex: data can go both ways simultaneously
- Half duplex: data can go both ways, but not simultaneously
- Simplex: data can only go one way

Multiplexing: Multiple inputs sharing one output

Frequency Division Multiplexing (FDM)

- Every user given a different frequency band, every user transmits all the time Time Division Multiplexing (TDM)
- Uses byte interleaving
- Fixed TDM
 - Data rate of output >= sum of rates of inputs
 - Each input link is given a fixed, dedicated bandwidth
 - Pros: Guaranteed service, no queuing delay, but cons: inefficient bandwidth U
- Statistical TDM
 - Data rate of output = sum of average rates of inputs
 - Pros: efficient bandwidth U, links do not remain idle when there is demand, but cons: no service guarantee, may have queuing delay or link congestion (buffer overflows)

Switching: Forwarding data from an input port to an output port Circuit switching

- Forwards all data bits from input circuit to output circuit (a fixed bandwidth or slot)
- Used in telephone networks, SONET; uses FDM or TDM
- Phases: circuit setup (+overhead time), data transmission, circuit release
- Pros: dedicated resources, guaranteed performance
- Cons: if the data is not being transmitted, wasted bandwidth, low U

Packet switching

- Forwards packets based on header destination address; resources used as needed
- Store and forward
 - o Packet is received in full, stored in buffer, and forwarded when free
 - Local forwarding table decides the output link
- Used in Ethernet switches, IP routers; uses STDM
- Pros: More users due to resource sharing, no call setup
- Cons: No guaranteed service, packet delay, possible buffer overflow (congestion)

Addressing

- IP Addresses
 - Unique within a network, changes each time host changes network (dynamic)
 - o IPv4 (4 bytes, 32 bits) 4 billion
 - o IPv6 (16 bytes, 128 bits) 3 x 10³⁸
 - IPv4 translated to IPv6 via tunnelling: IPv4 datagram carries IPv6 in payload (for backward compatibility)
- MAC Addresses (6 bytes)
 - Unique globally, hardwired at NIC (static)
- Address Resolution Protocol (ARP)
 - o Every host on the same LAN knows IP+MAC addresses of other hosts
 - \circ $\;$ Every host & router keeps an ARP table <IP add, MAC add> for its network
 - When a source transmits to a destination
 - If source and dest have different network IDs, attach router MAC address
 - If source and dest have same network ID, attach dest host MAC address
 - A host copies a packet if it sees its MAC address in the packet header
- Address translation
 - Domain name to IP address: DNS
 - IP address to/from MAC address: ARP
- When a packet is being transferred, destination/source MAC address can change, but source/destination IP address stays the same (except in NAT)

Performance

Delav

- Message transfer time/latency (Ttotal)
 - - Time taken to put all the message bits onto the link
 - \circ Propagation time $(T_p = \frac{link\ length}{propagation\ speed})$
 - Time taken for a single bit to traverse from A to B
 - Queuing time (T_q)
 - Time waiting in queue before start of transmission; varies
- For one way, unacknowledged transfers
 - $\circ \quad T_{total} = T_t + T_p + T_q$
- For two way, acknowledged transfers
 - $T_{total} = T_t + 2T_p + T_q; RTT = 2T_p$
 - Assumes ACK packet size << message size

DB product

• Delay (Tp) x bandwidth = amount of data in the link

$$\label{eq:Throughput} \textit{Throughput} = \frac{\textit{message size}}{\textit{message transfer time}}$$

- Message size: normally in base 2 notation (1KB = 1024 bits)
- Throughput rate = $\frac{throughput}{bandwidth}$

DATA LINK LAYER (#2)

Channel capacity

- Shannon's theorem: gives an upper bound to the capacity of a link (max data rate)
- $C = B \log_2(1 + \frac{S}{N})$
 - o C: capacity (bps), B: bandwidth (Hz), S/N: signal-to noise ratio (NOT in dB)
 - Converting S/N in dB to NOT dB: $\frac{S}{N} = 10^{\circ} (\frac{\frac{S}{N} in dB}{10})$

Framing: breaking sequences of bits into frames

Sentinel-based framing

- Using a flag to delineate a frame (standard: 01111110)
- When flag appears in the payload, use
 - Bit stuffing in HDLC: sender inserts a 0 after 5 consecutive 1s, receiver always sees and removes the 0 unless it's a flag
 - Byte stuffing in PPP: sender changes "7E" → "7D 5E", "7D" → "7D 5D", flag remains "7E"

Counter-based framing

- Header includes the payload length in "count" field
- If count field is corrupted, can catch when the CRC fails, drop packet, wait for next SYN
 - If count field corrupts -> smaller, one frame is dropped, but if count field corrupts
 - -> larger, corrupted frame and following frame is dropped

Clock-based framing

- Each frame is 125 microseconds long, special bit pattern is looked for every 125us
- STS-n carries n*(STS-1) frames, multiplexed using byte interleaving

Error detection using CRC

- Error correction is expensive and not feasible
- Let C(x) be a k-degree polynomial where $k \in \mathbb{Z}$, $k \ll n$
 - o eg if k=3, C(x) has 4 terms $(x^3x^2x^1x^0)$

Selecting C(x)

- If x^k and x⁰ have non-zero coefficients, can detect all single bit errors
- If C(x)%(x+1) = 0, all odd number errors can be detected
- All burst errors of length <= k can be detected

Flow Control: ensures sender does not overwhelm the receiver

- Congestion control is concerned with a link, flow control is node to node
- U: link utilisation, the ratio of time spent transmitting given data frames to the total time link is engaged until transfer is done
- Pf: frame error probability
- a = Tp/Tt = DB/message size = number of frames on a link at any point in time

Automatic Repeat Requests (ARQ)

- Stop and wait
 - TIMEOUT mechanism, alternates between ACKO and ACK1
 - Simple implementation, but poor link utilisation, slow
 - Fragmentation can help: errors detected sooner, faster retransmission of error frames, host occupies medium for less time, but stop and wait for more frames
 - Performance
 - No errors: $U = \frac{T_t}{T_{total}} = \frac{1}{1+2a}$
 - With errors: $T_{total} = \frac{T_t + 2T_p}{1 P_f}$, $U = \frac{1 P_f}{1 + 2a}$
- Sliding window
 - ACKn/RRn → receiver has received up to n-1 numbered frames
 - Receiver and sender have length W buffers, W frames can be sent without ACK
 - Frames are numbered 0 to 2k
 - Sender: when frame is sent, W shrinks; when ACK is received, W expands; unacknowledged frames are kept in buffer
 - Receiver: when frame is received, W shrinks; when ACK is sent, W increases
 - Typical W for LAN: 7, for WAN: 127
 - Performance without errors

 - If (W >= 1+2a) U=1, num of frames sent/s = $\frac{1}{T_t}$ If (W < 1+2a) $U=\frac{W}{1+2a}$, num of frames sent/s = $\frac{W}{T_t+2T_n}$
- Go back N
 - \circ Max W = $2^{k} 1$
 - Receiver sending REJ-i discards all frames from i onward
 - Performance with errors
 - If (W >= 1+2a) $U = \frac{1-P_f}{1+2aP_f}$
 - If (W < 1+2a) $U = \frac{W(1-P_f)}{(1+2a)(1-P_f+WP_f)}$
- Selective reject
 - \bigcirc Max W = 2^{k-1}
 - Receiver sending REJ-i discards frame i only, subsequent frames buffered
 - Implementation is more complex, buffer must be large enough
 - Performance with errors
 - If (W >= 1+2a) $U = 1 P_f$
 - If (W < 1+2a) $U = \frac{W(1-P_f)}{1+2a}$

Ethernet

- Maximum length 2500m using 5 segments
- Frame format
 - o Minimum frame size is 64 bytes, required for collisions to be detectable
 - For 2500m Ethernet link, RTT = 51.2us; in a 10Mbps link, 51.2us = 512 bits;
 512 bits = 64 bytes
 - If collision occurs on the opposite end of the cable, sender needs to be transmitting still when other sender transmits to detect the collision
 - Uses MAC addresses, CRC-32

Carrier sense multiple access - collision detection (CSMA-CD)

- Carrier sense: a host can sense whether the link is in use
 - If a host detects a link is idle, will send with a probability of 1 (1-persistent CSMA)
- Collision detection
- o A host listens while it is transmitting, can detect if there are any collisions Exponential back-off algorithm when collision occurs
- Send a noise burst + preamble to inform other hosts of collision
- Wait for n slots, n ε [0, 2ⁱ-1], randomly chosen, in the i-th consecutive collision
 - Interval increases to maximum of 2¹⁰-1
 - Host gives up after 16 tries

LAN connections

- Bus (traditional)
 - Single collision domain, 10 Mbps shared by all hosts, only one can transmit at any time, a cable cut disconnects the entire network
- Hub/star configuration
 - Single collision domain, 10 Mbps shared by all hosts, jam signal generated by the hub, a cable cut does not disconnect the entire network
 - All frames are copied to all ports
- Switching hub/switch
 - Store and forward packet switching at the hub, collision domain is each port, more than one host can transmit simultaneously
 - o Frames are forwarded to the correct port

LAN extensions

- Using bridges to connect multiple LANs
- Spanning tree/transparent bridges
 - o Hosts do not need to know about the bridges
 - Backward learning: switches learn the port that a host can be reached by, maintains a forwarding table <host, port>; if unknown destination, will broadcast to all ports (but could lead to infinite loop if multiple bridges between 2 LANs)

- Spanning tree algorithm
 - To avoid loops within the tree: choose the shortest path of every node to a root node (bridge with smallest ID)
 - Message format: <Y, d, X>
 - Y: what bridge thinks is the root bridge
 - d: distance from root to itself
 - X: bridge's own ID
 - o Initially, every bridge sets itself as root and broadcasts its message. Compares its own Y to other messages, updates and resends to neighbouring bridge.
 - Once the algorithm stabilises, only root will send messages periodically and other bridges will repeat it. If no messages are received for a period of time, algorithm resets to reselect the root bridge.

NETWORK LAYER (#3)

Routing, forwarding and fragmentation Virtual Circuits, Datagram Networks Virtual circuits

Header includes: IP version, header length, length, frag identifier, flags, frag offset, TTL (changes at each hop), checksum, source IP, dest IP

- Connection oriented: buffers, CPU, bandwidth etc reserved for a data transfer session
 - o Path for first data packet is followed by all other packets
 - More reliable, but more costly
- Common packet header for all packets
- Dumb end systems, complexity inside network
- Used in ATM for telephones

Datagram networks

- Connectionless service: no resources reserved, dynamic paths, each packet has its own header, less reliable, but cheaper, no set-up cost
- Smart end systems, complexity at network edges
- Used by IP networks (no strict timing requirements)

Internet Protocol

Fragmentation

- Large datagrams divided if datagram exceeds maximum transfer unit size, reassembled at destination's Network Laver
- Fragmented datagrams have the same "ID", "fragflag" = 1, "offset" determining order IP addresses
- IPv4 (4 bytes, 32 bits), IPv6 (16 bytes, 128 bits)
- IP address can be hard-coded by router, or Dynamic Host Configuration Protocol (DHCP) dynamically assigns addresses

Subnets

- Each interface from a router forms an isolated network = subnet
- Classless Interdomain Routing (CIDR) notation: /24
 - o eg 192.168.45.0/21
 - From 21, subnet mask: 255.255.248.0 (248 = 11111000)
 - From 192.168.45.0, network ID: 192.168.40.0 (45 = 00101101)
 - Broadcast network: 192.168.47.255 (192.168.00101111.11111111)
 - # of valid hosts: $2^{32-21} 2 = 2^{11} 2 = 2046$
 - If more subnets were created, for example using 5 bits, then # of subnets = $2^5 = 32$, # of valid hosts in each: $2^{11-5} 2 = 62$
 - o # of valid hosts removes 2: broadcast ID (all 1s), unassigned network ID (all 0s)
 - o Better than class-based: allows for finer add resolution, more efficient allocation
- Addresses managed by ISP → managed by ICANN

Network address translation (NAT)

- Router uses its IP address for all datagrams leaving its local network (router IP, port2)
 - O Within the local network, can have its own addressing scheme
 - Remote hosts respond to <router IP, port2>
 - NAT translation table to track <source IP, port1> map to <router IP, port2>
- Allows multiple devices to use the same IP address
 - Increase in number of Internet accessing devices
 - Separation of local and global network
 - Security: cannot access local devices outside of local network
- However, accesses layer 4, violates e2e
 - Address shortage should be solved with IPv6 instead

NAT traversal problem

- When remote clients want to connect to local client (how to specify who?)
- Solution 1: static NAT configuration
- Solution 2: universal plug and play (UPnP) internet gateway device protocol
 - Local host allowed to configure its own static NAT port
- Solution 3: relaying (eg Skype)
 - External client acts as relay (eg signing in to an application so that they get your
 IP address); connection initiated by clients, relay bridges packets

Routing

Router architecture

- Input port → switching fabric → output port (slowest one introduces queuing delay)
- Input port
 - o Given a destination, use forwarding table to lookup output port

- Switching fabric
 - o Memory, bus or crossbar (in increasing order of switching speed)
- Output port
 - Scheduling: choosing which to transmit among queued datagrams

Routing algorithms

- Link state/centralised (Dijkstra)
 - All routers should have complete topology & cost info
 - Start off with source node in "visited" set, find least cost edge from any node in "visited" set, add that node (x) to "visited"; set that as shortest path to x.
 - Will always terminate after n-1 iterations
 - Might be incorrect answer for negative weights, cannot work for negative cycles
- Distance vector/decentralised (Bellman-Ford)
 - o Routers only need to know physically connected neighbours
 - Each node maintains a table of its cost to every other node, sends its table to its neighbours, every node compares and updates its tables based on its neighbours'
 - At any change, the node that changed recomputes and broadcasts
 - Count to infinity
 - If node X travels through Y to get to Z, edge Y to Z updates, Y will try to get to Z through X, which is currently getting to Z through Y (will take many iterations to settle)
 - Count to infinity if the link Y to Z breaks: unreachable
 - Poisoned reverse
 - If Y tries to get to Z through X, X tells Y its distance is infinity

Routing protocols

- Intra-AS (aka Interior Gateway Protocols): within an autonomous system
 - o Routing Information Protocol (RIP): distance vector
 - Open Shortest Path First (OSPF): link state
 - Interior Gateway Routing Protocol (Cisco proprietary)
- Inter-AS: between different autonomous systems
 - o Border Gateway Protocol (BGP): standard protocol for the Internet

Broadcast routing

- Uses in-network duplication to avoid source duplication
- Uses spanning tree to ensure no flooding

Multicast routing

- Find a tree connecting routers having the multicast group members
 - Using Dijkstra from a specific source to all the receivers
 - Using Steiner Tree to find minimum cost tree (no specific source)
 - This is not used: an NP-complete problem

Additive

to pace

Timeouts may

TRANSPORT LAYER (#4)

Ensuring end-to-end reliability, error checking, flow and congestion control

Protocols

UDP: User Datagram Protocol

Header includes: source port, dest port, seq number, ack, header len, flags, window, checksum

- o Minimal, no setup required: no overhead and unnecessary delays
- o But not reliable delivery, optional error check, no retransmissions, not in-order
- Used for applications like multimedia streaming, DNS queries
- TCP: Transmission Control Protocol
 - Connection set-up, discard/retransmits corrupt packets, packet acknowledgement, in-order delivery, flow control, congestion control
 - Multiplexing based on port numbers

TCP Connection

Checksum

Sequence numbers

- Initial sequence number (ISN) do not start from 0, to prevent mixing up with old packets or new connections
- ISN set from a 32-bit clock that ticks every 4us, hosts exchange ISNs

Handshake

- Three-way handshake: A sends SYN to B, B returns SYN ACK, A sends ACK before starting to send data
- ISN included in the handshake
- Initial TIMEOUT value estimated: 3-6 seconds

Closing a connection

• A sends FIN to close & get remaining bytes/RST to not get remaining, B sends FIN ACK

TCP Reliable Delivery

Retransmissions: when packet is lost, ACK is lost, or early timeout

- Determining timeout
 - o Timeout set as a function of RTT plus fudge factor to account for queuing
 - Estimated RTT = a*Estimated + (1-a)*Running Avg; Timeout = 2*Estimated
 - Only add the RTTs of segments sent a single time
 - May be duplicate packets for lost ACKs or early timeouts, RTTs unreliable
- Triple duplicate ACKs (4th ACK) for fast retransmissions
 - Timeout-based retransmissions are slow
 - With sliding window, triple duplicate ACK-n indicates receiver is still awaiting nth packet - hint that packet is lost
 - Works best for long data transfers, large W, low burstiness of packet loss

Sliding window

- Flow control window size (FW)
 - Receiver initially advertises this window to sender; receiver needs to be able to store this amount of data without overflow

Congestion

- Congestion control window size (CW)
 - Amount that the network is able to handle without loss; set by sender
 - Additive Increase/Multiplicative Decrease (AIMD): congestion control & avoidance
 - Probes the network congestion limits
 - CW increases by 1 for every CW's worth of packets acknowledged
 - CW cuts to 1 for timeouts, cuts to half for triple duplicate ACKs (TCP Reno), or cuts to 1 for triple duplicate ACKs (TCP Tahoe)
 - Slow start
 - CW = 1 initially; increase CW by 1 (CW x2 each time) for each ACK returned
 - Until reaching the value of ssthresh (ssthresh = the previous timeout CW/2)
 - After that, additively increase CW
- Actual window size W
 - W = min(CW, FW)
- TCP fairness using AIMD
 - TCP allocates on average the same resources to different flows (equal distribution)
 - Other notions of fairness: proportional fairness (proportional to requested amount), max-min fairness (maximise the minimum resources first)

TCP throughput: proportional to window size

Throughput = W/RTT (packets per second)

End-to-end principle

- Network functions are implemented at the end hosts of the communication session (keeping in the in-betweens of the network as dumb as possible)
- Rethinking e2e: flow recognition (handling different flows differently, no longer just looking at packets)
 - o Shared bandwidth queuing (no hogging), explicit loss notification, flow security