

Departamento de Ciência da Computação - DCC

Prof. Ricardo Martins

Site: https://ricardofm.com

Email: <u>ricardo.martins@udesc.br</u>

Ramal: 348<u>1-7823</u>

Sala: Bloco $F - 2^{\circ}$ piso (sala 8)

LINGUAGENS FORMAIS E AUTÔMATOS

<u>LFA0001</u>: Ciência da Computação 4ª fase

Aula: 06 Versão: 232

- Gramática
- √ formalismo
 - axiomático ou
 - gerador
- ✓ permite definir linguagens
 - regulares
 - não-regulares
 - importante: é fácil definir gramáticas que geram linguagens não-regulares
- ✓ Linguagens Regulares
 - •restrições nas regras de produção → definem exatamente a classe das LR

- Definição. Gramáticas Lineares
 - ✓ Seja G = (V, T, P, S) uma gramática e
 - sejam A, $B \in V$ (variáveis)
 - w ∈ T* (palavra de símbolos terminais)
- Então G é
- ✓ Gramática Linear à Direita (GLD)
 - $\bullet A \rightarrow wB$ ou
 - $\bullet A \rightarrow w$
- √ Gramática Linear à Esquerda (GLE)
 - $\bullet A \rightarrow Bw ou$
 - $\bullet A \rightarrow w$

- Definição. Gramáticas Lineares Unitárias à Direita
 - * como na linear à direita
 - * adicionalmente, w ≤ 1
- Definição. Gramáticas Lineares Unitárias à Esquerda
 - * como na linear à esquerda
 - * adicionalmente, w ≤ 1
 - ✓ Note-se que:
 - uma variável deriva, no máximo, uma variável.

- > Teorema. Seja L uma linguagem
 - ☐ L é gerada por uma GLD sse
 - ☐ L é gerada por uma GLE sse
 - ☐ L é gerada por uma GLUD sse
 - □ L é gerada por uma GLUE
- > Ou seja...
 - as diversas formas das gramáticas lineares são formalismos equivalentes
- > Definição. Gramática Regular (GR)
 - qualquer gramática linear (qualquer uma das representações)
- >Linguagem Gerada
 - □ por uma gramática regular, G, é representada por L(G) ou

GERA(G)

> Exemplo. a(ba)*

* $A \rightarrow Sb$

 \geq Outro exemplo. (a + b)*(aa + bb)

- \square GLD. G = ({S, A}, {a, b}, P, S) onde P é tq
 - * $S \rightarrow aS \mid bS \mid A$
 - * $A \rightarrow aa \mid bb$
- \square GLE. G = ({S, A}, {a, b}, P, S) onde P é tq
 - * $S \rightarrow Aaa \mid Abb$
 - * A \rightarrow Aa | Ab | ε
- ☐ Gramáticas Regulares
 - □ denotam exatamente as LR!

> Teorema.

- ☐ Se L é gerada por uma GR,
- □ então L é uma LR

> Prova

- □ mostrar que
 - * dado uma GR G qq,
 - * é possível construir um AF M tq
 - * ACEITA(M) = GERA(G)
- ☐ M simula as derivações de G
- ☐ demonstração de que ACEITA(M) = GERA(r)
 - * indução no número de derivações

> Prova. Construção:

- \square suponha G = (V, T, P, S) uma GLUD
- Seja AFε M = (Σ, Q, δ, q0, F) tq

$$* \Sigma = T$$

$$*Q = V \cup \{qf\}$$

$$*F = \{q_f\}$$

$$*q_0 = S$$

* δ é como segue

\triangleright Prova. ACEITA(M) = GERA(G)?

	Transição Gerada
$A \rightarrow \epsilon$	$\delta(A, \varepsilon) = Q_f$
$A \rightarrow a$	$\delta(A, a) = q_f$
$A \rightarrow B$	$\delta(A, \varepsilon) = B$
$A \rightarrow aB$	$\delta(A, a) = B$

Exemplo

 $□ G = ({S, A, B}, {a, b}, P, S)$ * S → αA
* A → bB | ε
* B → αA

 \square AF ϵ M = ({a, b}, {S, A, B, qf}, δ , S, {qf}), onde δ é tal que:

Produção	Transição
S o aA	$\delta(S, a) = A$
$A \rightarrow bB$	$\delta(A, b) = B$
$A \rightarrow \epsilon$	$\delta(A, \varepsilon) = q_f$
$B \rightarrow aA$	$\delta(B, a) = A$

- ◆ Teorema: Se L é uma LR, então existe G, GR que gera L
 - □ dado um AFD M qq,
 - * construção GR G
 - * tq GERA(G) = ACEITA(M)
 - □ construção de uma GLUD
 - * derivação simula função programa estendida
 - □ demonstração de que AGERA(G) = ACEITA(M)
 - * indução no tamanho da palavra

♦ Prova. Construção

```
\square suponha AFD M = (\Sigma, Q, \delta, q<sub>0</sub>, F) tq ACEITA(M) = L.
```

$$\square$$
 seja $G = (V, T, P, S)$ uma $GLUD$ tq

$$* V = Q \cup \{S\}$$

$$* T = \Sigma$$

*P é tq (suponha qi, $qk \in Q$, $a \in \Sigma$ e $qf \in F$)

Transição	Produção
-	$S \rightarrow q_0$
-	$q_f \rightarrow \epsilon$
$\delta(q_i, \mathbf{a}) = q_k$	$q_i \rightarrow aq_k$

♦ Prova. Construção

```
\square suponha AFD M = (\Sigma, Q, \delta, q<sub>0</sub>, F) tq ACEITA(M) = L.
```

$$\square$$
 seja $G = (V, T, P, S)$ uma $GLUD$ tq

$$* V = Q \cup \{S\}$$

$$* T = \Sigma$$

*P é tq (suponha qi, $qk \in Q$, $a \in \Sigma$ e $qf \in F$)

Transição	Produção
-	$S \rightarrow q_0$
-	$q_f \rightarrow \epsilon$
$\delta(q_i, \mathbf{a}) = q_k$	$q_i \rightarrow aq_k$

♦ Exemplo

 \Box AFD M = ({a, b, c}, {q0, q1, q2}, δ , q0, {q0, q1, q2})

	a		b		c
		(
./		b //		c /	
_	(qo)	7(q1)		q2))
			\bigcirc		

 $\Box G = (\{q_0, q_1, q_2, S\}, \{a, b, c\}, S, P) \text{ onde } P \text{ \'e } tq$

Transição	Produção
-	$S \rightarrow q_0$
-	$q_0 \rightarrow \epsilon$
-	$q_1 \rightarrow \epsilon$
-	$q_2 \rightarrow \epsilon$
$\delta(q_0, a) = q_0$	$q_0 \rightarrow aq_0$
$\delta(q_0, b) = q_1$	$q_0 \rightarrow bq_1$
$\delta(\mathbf{q}_1,\mathbf{b})=\mathbf{q}_1$	$q_1 \rightarrow bq_1$
$\delta(q_1, c) = q_2$	$q_1 \rightarrow cq_2$
$\delta(q_2, c) = q_2$	$q_2 \rightarrow cq_2$