МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯСІКОРСЬКОГО»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Практикум №5

з курсу «Аналіз даних в інформаційнних системах» на тему:

«Регресивні моделі»

Викладач: Ліхоузова Т.А. Виконав: студент 2 курсу групи ІП-15 ФІОТ Мєшков Андрій Ігорович

Практикум №5

Регресивні моделі

Мета роботи: ознайомитись з різновидами регресійних моделей.

Завдання:

Скачати потрібні дані.

Основне завдання

Завантажити дані про якість червоного вина

- 1. Дослідити дані, підготувати їх для побудови регресійної моделі
- 2. Розділити дані на навчальну та тестову вибірки
- 3. Побудувати декілька регресійних моделей для прогнозу якості вина (12 quality). Використати лінійну одномірну та багатомірну регресію та поліноміальну регресію обраного вами виду (3-5 моделей)
- 4. Використовуючи тестову вибірку, з'ясувати яка з моделей краща

Додаткове завдання

Завантажити дані файлу Data4.csv

- 1. Дослідити дані, сказати чи є мультиколінеарність, побудувати діаграми розсіювання
- 2. Побудувати декілька регресійних моделей (використати лінійну регресію та поліноміальну регресію обраного вами виду)
- 3. Використовуючи тестову вибірку з файлу Data4t.csv, з'ясувати яка з моделей краща

Хід роботи:

Основне завдання:

```
Імпортуємо потрібні бібліотеки.
```

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import PolynomialFeatures
import matplotlib.pyplot as plt
import seaborn as sns
% matplotlib inline

3чита ϵ мо файл.

df = pd.read_csv('winequality-red.csv', sep=',', encoding='cp1252')

Проаналізуємо структуру.

df.info()

df.head()

<cla< th=""><th>iss 'pandas.core.</th><th>frame.Data</th><th>Frame'></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></cla<>	iss 'pandas.core.	frame.Data	Frame'>									
	eIndex: 1599 ent											
Data	columns (total											
#	Column	Non	-Null Count	Dtype								
0	fixed acidity	159	 9 non-null	float64								
1	volatile acidit		9 non-null	float64								
2	citric acid	159	9 non-null	float64								
	residual sugar	159	9 non-null	float64								
4	chlorides	159	9 non-null	float64								
	free sulfur did	xide 159	9 non-null	float64								
	total sulfur di	loxide 159	9 non-null	float64								
	density	159	9 non-null	float64								
8	pН	159	9 non-null	float64								
	sulphates	159	9 non-null	float64								
10	alcohol	159	9 non-null	float64								
11	quality	159	9 non-null	int64								
dtypes: float64(11), int64(1)												
memo	ory usage: 150.0	КВ										
	fixed acidity vola	atile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	
	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	
	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	
	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	
	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	

Розділіть дані на навчальну та тестову вибірки.

X = df.drop(['quality'], axis=1)

Y = df['quality']

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)

```
Побудуємо моделі
# Linear univariate regression
model = LinearRegression()
# Навчання моделі
model.fit(X_train.iloc[:, -1:], Y_train)
# Прогнозування для тестової вибірки
y_pred = model.predict(X_test.iloc[:, -1:])
```

```
mse = mean_squared_error(Y_test, y_pred)
accuracy = model.score(X_test.iloc[:, -1:], Y_test)
print("Linear univariate regression:")
print("MSE = {:.4f}".format(mse), "\nAccuracy = {:.4f}".format(accuracy))

plt.xlabel('Alcohol')
plt.ylabel('Quality')
plt.title('Linear univariate regression')

plt.scatter(X_test.iloc[:, -1:], Y_test, alpha=0.7, color='blue')
plt.show()
```



```
#Прогнозування для тестової вибірки
y_pred = model.predict(X_test)

mse = mean_squared_error(Y_test, y_pred)
accuracy = model.score(X_test, Y_test)
print("Linear multivariate regression:")
print("MSE = {:.4f}".format(mse), "\nAccuracy = {:.4f}".format(accuracy))

plt.scatter(Y_test, y_pred, color='blue')
plt.xlabel('Valid values')
plt.ylabel('Predicted values')
plt.title('Linear multivariate regression')
plt.show()
```


Polynomial regression with degree 2 poly = PolynomialFeatures(degree=2)

X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.transform(X_test)

```
model_poly = LinearRegression()
model_poly.fit(X_train_poly, Y_train)

y_pred = model_poly.predict(X_test_poly)

mse = mean_squared_error(Y_test, y_pred)
accuracy = model_poly.score(X_test_poly, Y_test)
print("Polynomial regression with degree 2:")
print("MSE = {:.4f}".format(mse), "\nAccuracy = {:.4f}".format(accuracy))

plt.scatter(Y_test, y_pred, color='blue')
plt.xlabel('Valid values')
plt.ylabel('Predicted values')
plt.title('Polynomial regression with degree 2')
plt.show()
```


Додаткове завдання:

Імпортуємо потрібні бібліотеки.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

Завантажемо файл.

df = pd.read_csv('Data4.csv', sep=';', decimal=',', encoding='windows-1251').rename(columns={'Unnamed: 0': 'Country'})

Дослідимо дані df.info() print(df.head())

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 132 entries, 0 to 131
Data columns (total 7 columns):
     Column
              Non-Null Count
                               Dtype
     Country 132 non-null
                               object
 1
     IS0
              132 non-null
                               object
 2
     UA
              132 non-null
                               object
 3
     Cal
              132 non-null
                               float64
 4
                               float64
     Ιe
              132 non-null
 5
     Iec
              132 non-null
                               float64
 6
              132 non-null
                               float64
     Is
dtypes: float64(4), object(3)
memory usage: 7.3+ KB
     Country ISO
                           UA
                                    Cql
                                                Ie
                                                         Iec
                                                                    Is
0
     Albania
             ALB
                     Албанія
                               0.973924
                                         0.605348
                                                    0.538673
                                                              0.510113
1
     Algeria
              DZA
                                                    0.348159
                               0.782134
                                         0.587219
                                                              0.497986
                        Алжир
2
      Angola
              AG0
                       Ангола
                               0.372344
                                         0.274394
                                                    0.332117
                                                              0.346907
3
   Argentina
              ARG
                   Аргентина
                               0.883830
                                         0.699685
                                                    0.281995
                                                              0.518820
4
                                         0.718327
                                                              0.486498
     Armenia
              ARM
                    Вірменія
                                                    0.535648
                               1.016499
```

Перевіремо мультиколінеарність df.corr()

	Cql	le	lec	Is
Cql	1.000000	0.883664	0.875545	0.939172
le	0.883664	1.000000	0.619247	0.746320
lec	0.875545	0.619247	1.000000	0.799211
Is	0.939172	0.746320	0.799211	1.000000

Побудуємо діаграми розсіювання.

pd.plotting.scatter_matrix(df, figsize=(10, 10)) plt.show()

Побудуємо лінійні моделі залежно від Cql. Y = df['Cql']

l_model1 = LinearRegression().fit(df[['Ie', 'Iec', 'Is']], Y)
l_model2 = LinearRegression().fit(df[['Iec', 'Is']], Y)

 $l_model3 = LinearRegression().fit(df[['Ie', 'Is']], Y)$

 $l_model4 = LinearRegression().fit(df[['Ie', 'Iec']], \, Y)$

 $1_model5 = LinearRegression().fit(df['Ie'].to_numpy().reshape(-1, 1), Y)$

l_model6 = LinearRegression().fit(df['Iec'].to_numpy().reshape(-1, 1), Y)

1_model7 = LinearRegression().fit(df['Is'].to_numpy().reshape(-1, 1), Y)

```
Побудуємо поліноміальні моделі
p_model1 = make_pipeline(PolynomialFeatures(degree=2), LinearRegression())
p_model1.fit(df[['Ie', 'Iec', 'Is']], Y)
p_model2 = make_pipeline(PolynomialFeatures(degree=2), LinearRegression())
p_model2.fit(df[['Iec', 'Is']], Y)
p model3 = make pipeline(PolynomialFeatures(degree=2), LinearRegression())
p_model3.fit(df[['Ie', 'Iec']], Y)
p model4 = make pipeline(PolynomialFeatures(degree=2), LinearRegression())
p_model4.fit(df['Iec'].to_numpy().reshape(-1, 1), Y)
Візуалізуємо однопредикторні лінійні моделі
linear_models = [l_model5, l_model6, l_model7]
params = ['Ie', 'Iec', 'Is']
params_values = []
y_pred = []
for i in range(len(params)):
  values = np.linspace(df[params[i]].min(), df[params[i]].max()).reshape(-1, 1)
  params_values.append(values)
  y_pred.append(linear_models[i].predict(values))
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
for i in range(len(axes)):
  axes[i].set_title(f'Лінійна регресія Cql ~ {params[i]}')
  axes[i].set_xlabel(params[i])
  axes[i].set_ylabel('Cql')
  axes[i].grid(linestyle='--')
  axes[i].scatter(df[params[i]], Y)
  axes[i].plot(params_values[i], y_pred[i], color='red')
           Лінійна регресія Cql ~ le
                                                Лінійна регресія Cql ~ lec
                                                                                     Лінійна регресія Cql ~ Is
  1.4
                                                                             1.4
                                       1.4
  1.2
                                                                             1.2
                                       1.2
                                                                             1.0
 8
                                      8
                                                                            0.8
  0.8
                                                                             0.6
                                       0.6
                                                                             0.4
                                                                             0.2
                         0.6
                            0.7
Візуалізуємо поліноміальну модель з одною змінною
X_{pol\_test} = np.linspace(df['Iec'].min(), df['Iec'].max()).reshape(-1, 1)
Y_pol_pred = p_model4.predict(X_pol_test)
```

plt.figure(figsize=(5, 5))

plt.title('Поліноміальна регресія Cql ~ Iec')

```
plt.xlabel('Cql')
plt.ylabel('Iec')
plt.grid(linestyle='--')
plt.scatter(df['Iec'], Y)
plt.plot(X_pol_test, Y_pol_pred, color='red')
```

plt.show()

Візуалізуємо поліноміальну модель з двома змінними % matplotlib inline

```
fig = plt.figure(figsize=(8, 8))
ax = fig.add subplot(111, projection='3d')
X_3d = params_values[0]
Y_3d = params_values[1]
XX, YY = np.meshgrid(X_3d, Y_3d)
Z = []
for i in range(len(Y_3d)):
  temp = []
  for j in range(len(X_3d)):
     temp.append(p_model3.predict(np.array([X_3d[i], Y_3d[i]]).T)[0])
  Z.append(temp)
Z = np.array(Z)
ax.set_title('Поліноміальна регресія Cql ~ Ie, Iec')
ax.set_xlabel('Ie')
ax.set_ylabel('Iec')
ax.set_zlabel('Cql')
ax.plot_surface(
  XX, YY,
  np.array(Z),
  color='green',
```

```
alpha=0.5
)
ax.scatter(df['Ie'], df['Iec'], Y)
plt.show()
Поліноміальна регресія Cql ~ le, lec
```


Зчитаємо тестові дані df_test = pd.read_csv('Data4t.csv', encoding='windows-1251', sep=';', decimal=',').rename(columns={'Unnamed: 0': 'Country'})

df test

<u></u>							
	Country	ISO	UA	Cql	le	lec	Is
0	Togo	TGO	Того	0.453498	0.216806	0.368235	0.433951
1	Tunisia	TUN	Туніс	0.899462	0.659124	0.418256	0.514746
2	Turkey	TUR	Туреччина	0.859284	0.498840	0.509228	0.499453
3	Uganda	UGA	Уґанда	0.571284	0.362946	0.448732	0.375726
4	Ukraine	UKR	Україна	0.802204	0.689164	0.303555	0.462744

 $Pозраховуємо виходи кожної з моделей для тестового набору <math>test_predictions = []$

names = ['l_model1' ,'l_model2' ,'l_model3' ,'l_model4' ,'l_model5' ,'l_model6' ,'l_model7' , 'p_model1', 'p_mode2', 'p_model3', 'p_model4']

test_predictions.append(l_model1.predict(df_test[['Ie', 'Iec', 'Is']])) test_predictions.append(l_model2.predict(df_test[['Iec', 'Is']])) test_predictions.append(l_model3.predict(df_test[['Ie', 'Is']]))

```
test_predictions.append(l_model4.predict(df_test[['Ie', 'Iec']]))
test_predictions.append(l_model5.predict(df_test['Ie'].to_numpy().reshape(-1, 1)))
test_predictions.append(l_model6.predict(df_test['Iec'].to_numpy().reshape(-1, 1)))
test_predictions.append(l_model7.predict(df_test['Is'].to_numpy().reshape(-1, 1)))
test_predictions.append(p_model1.predict(df_test[['Ie', 'Iec', 'Is']]))
test_predictions.append(p_model2.predict(df_test[['Iec', 'Is']]))
test_predictions.append(p_model3.predict(df_test[['Iec', 'Iec']]))
test_predictions.append(p_model4.predict(df_test['Iec'].to_numpy().reshape(-1, 1)))
test_predictions = np.array(test_predictions)
```

3'ясуємо, яка модель має найменше відхилення від справжніх значень виходів для тестової вибірки best = np.sum((test_predictions - df_test['Cql'].to_numpy()) ** 2, axis=1).argmin()

print(f'The best solusion is {names[best]}')

The best solusion is p_model1

Висновок

За отриманими даними можна зробити висновок, що

- В основному завданні найкращою моделлю виявилась лінійна багатовимірна регресія з найменшим MSE.
- В додатковому завданні найкращою моделлю виявилась поліноміальна з трьома змінними з найменшим відхиленням від справжніх значень виходу для тестової вибірки.