GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-V

Course Title: Mine Ventilation

(Course Code: 4352202)

Diploma Programme in which this course is offered	Semester in which offered
Mining Engineering	5 th Semester

1.RATIONALE

The diploma holders in mining engineering will be responsible to keep underground mines in comfortable & safe working conditions by ensuring brisk ventilation with proper lighting arrangements. They should be able to select the suitable fans & the proper airways to ventilate whole mine &/or it's various sections. This subject provides them basic knowledge of mine atmosphere with required ventilation & lighting arrangements with its associated problems & remedies.

2. COMPETENCY

The course content should be taught and with the aim to develop required skills in the students so that students are able to acquire following competency:

- Examine quality of mine atmosphere.
- Operate effectively various instruments related to mine ventilation.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

CO1: Examine quality of mine air to keep working environment safe.

CO2: Select a suitable mine fan to procure adequate ventilation in underground mines.

CO3: Adopt suitable technique for controlling the distribution of air in mine network.

CO4: Select suitable places for lighting to maintain safe mining conditions.

4.TEACHING AND EXAMINATION SCHEME

	Teaching Scheme (In Hours)		Total Credits (L+T/2+P/0)	Theory Marks		mination S Practical		Total Marks
L	Т	Р	С	CA* ESE		CA	ESE	
4	0	2	5	30	70	25	25	150

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to

facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5.SUGGESTED LIST OF EXERCISES/PRACTICAL

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Appox. Hrs. Required
1	Determine gas percentage by flame safety lamp in varying condition of Gas Testing Chamber.	I	4*
2	Determine relative humidity of air by whirling Hygrometer.	I	4*
3	Determine cooling power of air by Kata thermometer.	I	4*
4	Determine Velocity, Quantity, and Pressure drop of air in a duct by Pitot Tube and inclined tube manometer.	II	4*
5	Determine the neutral point in Return way for locating Booster Fan.	11	4*
6	Calculate regulator's size in an airway in varying conditions.	111	4*
7	Calculate the quantity of mine air passing through each split in given conditions.	III	4*
	Total		28

Note

- i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course)that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Calculation of quantities	30
2	Followed formula and methods sequentially	20
3	Operating of instruments	10
4	Follow safe practices	10
5	Answer the questions related to exercises	10
6	Neatness in work	10
7	Submission in time	10
	Total	100

6.MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to user in uniformity of practical in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO.No.
1	Flame Safety Lamp (GL 50/GL7):	1
	<u>Upper section</u> : - A bonnet, two steel wire gauzes, handle / hook (of 20 or 28 mesh size)	
	Middle section: - Two sets of rings interconnected by five steel rods, glass (may	
	be one or two set-inner and outer) around the flame, chimney, two asbestos	
	washers.	
	Lower section: - Fuel vessel, burner, wick assembly, a screw locking	
	arrangement, and re-lighting device (if available)	
2	Whirling Hygrometer:	2
	Dimensions: 230 x 80 x 28mm, Range: -5°C to 50°C, Weight: 300g (0.6lb)	
3	Kata thermometer:	3
	Alcohol thermometer, large bulb of 4 cm length and 2cm width, total width 20	
	cm, measuring temperature 38°C and 35°C	
4	Pitot Tube:	4
	Made up of Stainless steel, contains two concentric tubes, size range - 0.30 to	
	2.00 m, 10mm thickness, measuring velocity - 0 to 25m/sec.	
	Inclined tube manometer:	
	Two PVC tubing of 10m length, bottle of manometer fluid with labelled density,	
	swiveled in 4 positions – 1 in 5, 1 in 10, 1 in 20 & vertical (approx.), pressure	
	measurement – 250 mm wg, velocity range – 0 to 28 m/sec.	4 1 7
5	Anemometer:	4 and 7
	Mild steel body, wind speed measurement – 1.016 to 50.8 m/sec, accumulated air reading up to 3048m, fan blades set an angle of 40° to 45°, two dials - smaller dials	
	marked into 10 divisions and larger dial into 100 divisions.	
6	Electronic Velometer:	4 and 7
U	Dimension – 168 * 80 * 35 mm, Display - 18 mm (0.7") LCD, operating temperature	4 allu /
	- 0° C to 50° C, Operating humidity – 90% RH (relative humidity), weight – 325 gm	

7.AFFECTIVE DOMAIN OUTCOMES

The following sample Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfil the development of this competency.

- 1. Valuing: Recognize the importance of examining mine air quality to ensure a safe working environment.
- 2. Appreciation: Understand the significance of adequate ventilation in underground mines for the overall safety and health of workers.
- 3. Concern: Develop genuine concern for controlling the distribution of air in mine networks to maintain a safe and healthy environment.
- 4. Responsibility: Take responsibility for selecting suitable places for lighting to uphold safe mining conditions.

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8.UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of Revised Bloom's Taxonomy in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics				
Unit – I	1a: Compare mine air with	1.1 Composition of Atmospheric air and				
Mine Air	atmospheric air.	its suitability for human respiratory system.				
	1b: Identify the cause of impurity in mines air.	1.2 Composition of Mine air, sources of impurities due to other gases in it like Carbon dioxide, nitrous fumes, SO ₂ , etc				
	1c: Identify the main cause of discomfort conditions	physiological effects of oxygen deficiency in mines air.				
	by observation of physiological effects.	1.3 Damps in mines: their types with its composition, mode of occurrence, method of detection, noxious &				
	1d: Check quality of mine air by suitable technique	poisonous physiological effects and precautionary measures.				
	and instrument.	1.4 Sources affecting quality of Mine Air: Effects of Temperature and humidity on human body.				
		1.4.1 Sources of heat and humidity in mine air				
		1.4.2 Instruments and process used for measuring Mine Air (temperature,				

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – II	2a. Measure the pressure	2.1 Natural ventilation- Causes & its
Fan	difference available for	establishment. Calculation based on
Ventilation	Natural Ventilation.	Natural Ventilation Pressure (N.V.P)
		and motive column.
	2b. Explain objectives &	2.2 Need and Objectives of Mine
	standards of ventilation.	Ventilation, standards of mine
		ventilation as per regulation.
	2c. Describe suitability and	2.3 Mechanical/Fan Ventilation-
	installation of mine fans for	(a) Fan types- on the basis of
	various purpose in	location (main fan, auxiliary
	underground mines.	fan and booster fan), air flow
		direction (forcing & exhaust), &
	2d. Calculate pressure	working principle (centrifugal
	requirement of mine air to	Fan and Axial Flow Fan);
	overcome airway	Comparison among these fan
	resistance.	types.
		(i) Centrifugal fan: Working
	2e. Measure the air	principle & its installation as
	pressure produced by Mine	main fan.
	fans.	(ii) Axial flow fan: Working
		principle; its installation as
	2f. Solve problems related	main fan, auxiliary fan, &
	with mine air velocity and	booster fan with its purpose.
	quantity.	(b) Air quantity control technics and
		air reversal system by both fans.
		2.4 Laws of mine air friction and its
		calculation of pressure requirement to
		overcome the airway resistance.
		2.5 Measurement of Fan Pressure by using
		pitot tube with inclined tube
		manometer
		2.6 Determination of mine air velocity &
		quantity by using fan pressure.

wille ventuation		Course Coue. 4552202
Unit – III	3a. Describe the suitability	3.1 Devices used for distribution &
Mine Air	of devices used for	control of mine air:
Distribution and	controlling the	 Ventilation stopping,
its Control	distribution of mine air.	 Air crossing,
	3b. Explain patterns of ventilation.3c. Calculate quantity of air passing through splits.3d. Explain various ventilation survey procedures.	 Doors, Brattice partition, & Regulator with calculation of opening size. 3.2 Ventilation Pattern: Ascensional & descensional ventilation; Homotropal & Antitropal ventilation. 3.3 Splitting: purpose, its advantages, calculation of air passing through each split. 3.4 Ventilation surveys in mines: (i) Quantity survey.
Unit – IV	3a. Define terminologies of	(ii) Pressure survey 4.1 Terminology: Intensity of light, Mean
Mine Lighting	Mine lighting.	Spherical Candle Power, and Lumen.
		4.2 General lighting places in mines
	3b. Enlist the places required to be lighted in mines.	4.3 Standards of lighting as per CMR. 4.4 Salient features of Cap lamp.
	3c. Explain standards of mine lighting.	
	3d. Explain function of	

9.SUGGESTED SPECIFICATIONTABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks				
		Teaching	R	U	Α	Total	
		Hours	Level	Level	Level	Marks	
1	Mine Air	18	13	6	4	23	
П	Fan Ventilation	20	10	5	10	25	
III	Mine Air Distribution &	12	6	3	6	15	
	its Control						
IV	Mine Lighting	06	7	0	0	7	
	Total	56	36	14	20	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised Taxonomy)

Note: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED LIST OF STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Organize visits to operational mines or ventilation facilities to observe real-world ventilation systems in action.
- b) Arrange workshops and seminars where industry experts and professionals can share their experiences and insights on mine ventilation. Undertake micro-project.
- Encourage students to join professional societies or associations related to mining engineering or ventilation.
- d) Organize design competitions where students can develop ventilation system designs for hypothetical mining scenarios.

11. SPECIAL INSTRUCTIOAL STRATERGIES (If any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) 'L' in section No. 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-learning, but to be assessed using different assessment methods.
- e) With respect to section No.10, teachers need to ensure to create opportunities and provisions for co-curricular activities.
- f) Video lectures showing operational principles of various mine fans.
- g) Guide students on how to address issues on mine hazards.
- h) Animated documentaries on various mine ventilation system.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- 1. Design a poster that highlights the importance of examining mine air quality and its impact on the working environment.
- 2. Prepare a chart that visually presents the criteria and considerations for selecting a suitable mine fan for adequate ventilation in underground mines.
- 3. Prepare a presentation showcasing various techniques for controlling the distribution of air in a mine network.
- 4. Prepare a poster that provides guidelines for selecting suitable places for lighting in mines to maintain safe working conditions.
- 5. Design a series of posters that provide essential safety guidelines for miners, focusing on topics such as air quality testing, fan operation and maintenance and air distribution control.

13.SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Elements of Mining Technology – II Part A & B	D. J. Deshmukh	Denett & Co. ISBN 978-81-89904-34-0
2	The Universal Mining School (UMS) Vol.1	Cardiff (GT. Britain)	Cardiff Priory Press Limited
3	Mine Environment and Ventilation	G. B. Mishra	Oxford University Press ISBN: 0-19-562232-4
4	Mine Ventilation	S. P. Banerjee	Lovely Prakashan Dhanbad ISBN: 978-8179560174
5	Numerical problems on Mine Ventilation	L. C. Kaku	Lovely Prakashan Dhanbad ISBN: 978-8179561393

14.SOFTWARE/LEARNING WEBSITES

- 1) A web course on National Programme on Technology Enhanced Learning (NPTEL) by Dr. Harsha Vardhan named "An Introduction to Underground Mine Environment and Ventilation": https://archive.nptel.ac.in/courses/123/106/123106002
- 2) Topic: Mine Hazards and Environment Source: www.mineportal.in https://drive.google.com/file/d/14f5fXh4M 6EyzOS1-L5vHkCTLY9i-QTl/view
- 3) Various pdf documents related to mine ventilation topics, link: https://miningquiz.com/pdf/ventilation.htm
- 4) Ventsim 3D Mine Ventilation Simulation software for understanding ventilation system, weblink:- https://ventsim.com/download/currentdownloads/
- Tutorial video you tube links for ventsim 3D Mine Ventilation Simulation software https://www.youtube.com/@HowdenVentsim, https://www.youtube.com/watch?v=xljx4CG6Qz0&list=PL0ZXhuwzmNB5ifTHBySj4ZczMMit7 E-Bw

15.PO-COMPETENCY-CO MAPPING

Semester V		Mine Ventilation (Course Code:4352202)								
Semester v			POs and PSOs							
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experiment ation &Testing	Engineering practices for	nt		Student will be able to operate flame safety	PSO 2 Student will be able to test percentage of inflammable gas.	
Competency	•		quality of mine	•	ts related to r	mine ventilati	on.			
Course Outcomes CO1 Examine quality of mine air to keep working environment safe.	3	-	2	2	2	-	2	3	3	
CO2 Select a suitable mine fan to procure adequate ventilation in underground mines.	2	3	3	2	2	2	2	-	-	
CO3 Adopt suitable technique for controlling the distribution of air in mine network.	2	3	3	-	3	-	2	-	-	
CO4 Select suitable places for lighting to maintain safe mining conditions.	-	-	-	-	2	-	2	-	-	

16.COURSE CURRICULUM DEVELOPMENT COMMITTEE

SR. No.	Name and Designation	Institute	Contact No.	Email
1	Mr. S. G. Srivastav I/c Head of Dept. Mining Engineering.	Government Polytechnic, Bhuj	9428546433	shivkumarsrivastav11@gma il.com
2	Mr. P. Y. Trivedi Lecturer In Mining Engineering.	Government Polytechnic, Bhuj	9909219747	pranavytrivedi@gmail.com
3	Mr. S. C. Dabhekar Lecturer In Mining Engineering.	Government Polytechnic, Bhuj	8732983906	shrijaldabhekar@gmail.com