Organizační úvod

Poznámka

Jako vždycky, jen v implikacích u zkoušky budou i pojmy z předchozích semestrů.

1 Stejnoměrná konvergence posloupností a řad funkcí

1.1 Bodová a stejnoměrná konvergence posloupnosti funkcí

Definice 1.1

Nechť $J \subset \mathbb{R}$ je interval a nechť máme funkce $f: J \to \mathbb{R}$ a $f_n: J \to \mathbb{R}$ pro $n \in \mathbb{N}$. Řekneme, že posloupnost funkcí $\{f_n\}$

• konverguje bodově k f na J, pokud $\forall x \in J : \lim_{n \to \infty} f_n(x) = f(x)$, neboli:

$$\forall x \in J \ \forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 : |f_n(x) - f(x)| < \varepsilon;$$

- konverguje stejnoměrně kf na J (značíme $f_n \rightrightarrows f$ na J), pokud

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ \forall x \in J : |f_n(x) - f(x)| < \varepsilon;$$

• konverguje lokálně stejnoměrně, pokud pro každý omezený uzavřený $[a,b] \subset J$ platí $f_n \rightrightarrows f$ na [a,b] (značíme $f_n \stackrel{\text{Loc}}{\rightrightarrows} f$ na J).

Věta 1.1 (Kritérium stejnoměrné konvergence)

Necht $f, f_n : J \to \mathbb{R}, pak$

$$f_n \rightrightarrows f \text{ na } J \Leftrightarrow \lim_{n \to \infty} \sup_{x \in J} |f_n(x) - f(x)| = 0.$$

Důkaz

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ \forall x \in J : |f_n(x) - f(x)| \le \varepsilon \Leftrightarrow$$

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 : \sup_{x \in J} |f_n(x) - f(x)| \le \varepsilon \Leftrightarrow$$

$$\Leftrightarrow \lim_{n \to \infty} \sup_{x \in J} |f_n(x) - f(x)| = 0.$$

Poznámka (Pro spojité funkce)

$$\Leftrightarrow ||f_n - f||_{\mathcal{C}(J)} \to 0 \Leftrightarrow f_n \stackrel{\mathcal{C}(J)}{\to} f.$$

Věta 1.2 (Bolzano-Cauchyova podmínka pro stejnoměrnou konvergenci)

Necht $f_n: J \to \mathbb{R}$, pak

 $(\exists f: f_n \Rightarrow f \ na \ J) \Leftrightarrow (\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \geq n_0 \ \forall x \in J: |f_n(x) - f_m(x)| < \varepsilon).$

Důkaz

" \Longrightarrow ": Víme $\forall \varepsilon > 0 \ \exists n_0 \ \forall n \geq n_0 \ \forall x \in J : |f_n(x) - f(x)| < \varepsilon$. Tedy

$$\forall m, n \ge n_0 \ \forall x \in J : |f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < 2\varepsilon.$$

" = ": Víme $\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall m,n \geq n_0 \; \forall x \in J : |f_n(x) - f_m(x)| < \varepsilon$. Toto použijeme pro pevné $x \in J$. Pro posloupnost $a_n = f_n(x)$ máme splněnou BC podmínku pro posloupnost reálných čísel, tj. $a_n \to a \in \mathbb{R}$.

Označíme si $f(x) = \lim_{n\to\infty} f_n(x)$. Nyní v BC podmínce provedeme limitu $n\to\infty$. Tím dostaneme přesně definici stejnoměrné konvergence.

Věta 1.3 (Moore-Osgood)

Nechť $x_0 \in \mathbb{R}^*$ je krajní bod intervalu J. Nechť $f_n, f: J \to \mathbb{R}$ splňují

- $f_n \Longrightarrow f \ na \ J$,
- existuje $\lim_{x\to x_0} f_n(x) = a_n \in \mathbb{R} \ \forall n \in \mathbb{N}$.

Pak existují $\lim_{n\to\infty} a_n$ a $\lim_{x\to x_0} f(x)$ a jsou si rovny.

 $D\mathring{u}kaz$

Příště.

Dusledek

Necht $f_n \Rightarrow f$ na I a necht f_n jsou spojité na I. Pak f je spojitá na I.

Poznámka

Obdobně lze definovat stejnoměrnou spojitost i pro libovolnou množinu $A \subset \mathbb{R}^n$ a $f_n : A \to \mathbb{R}$ a platí, že stejnoměrná limita je spojitá (stejnoměrná limita spojitých funkcí je spojitá).

Důkaz (Moore-Osgood)

Z BC podmínky

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 \ \forall x \in J : |f_n(x) - f_m(x)| < \varepsilon.$$

Provedeme $\lim_{x\to x_0}$ a dostaneme

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n > n_0 : |a_n - a_m| < \varepsilon.$$

Tedy a_n splňuje BC podmínku, a tudíž $\exists \lim_{n\to\infty} a_n = a \in \mathbb{R}$.

Necht $\varepsilon \geq 0$. Z definice $f_n \Rightarrow f$

$$\exists n_0 \ \forall x \in J : |f_{n_0}(x) - f(x)| < \varepsilon.$$

Zároveň předpokládejme $|a_{n_0} - a| < \varepsilon$ (zvolíme si n_0 jako maximum). Máme pevnou funkci f_{n_0} a $\lim_{x\to x_0} f_{n_0}(x) = a_{n_0}$. Tedy

$$\exists \delta > 0 \ \forall x \in P(x_0, \delta) \cap J : |f_{n_0}(x) - a_{n_0}| < \varepsilon.$$

Nyní $\forall x \in P(x_0, \delta) \cap J$ platí

$$|f(x) - a| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - a_{n_0}| + |a_{n_0} - a| \le \varepsilon + \varepsilon + \varepsilon = 3\varepsilon.$$

Věta 1.4 (O záměně limity a derivace)

Nechť funkce f_n , $n \in \mathbb{N}$, mají vlastní derivaci na intervalu (a,b) a nechť

- $\exists x_0 \in (a,b) : \{f_n(x_0)\}_{n=1}^{\infty} \text{ konverguje,}$
- pro derivace f'_n platí $f'_n \stackrel{Loc}{\Rightarrow} na \ (a,b)$.

Potom existuje funkce f tak, že $f_n \stackrel{Loc}{\Longrightarrow} f$ na (a,b), f má vlastní derivaci a platí $f'_n \stackrel{Loc}{\Longrightarrow} f'$ na (a,b).

Důkaz

Necht $x_0 \in [c,d] \subset (a,b)$. Víme $f'_n \rightrightarrows$ na [c,d]. Chceme ukázat $f_n \rightrightarrows f$ na [c,d] ($\Longrightarrow f_n \stackrel{\text{Loc}}{\rightrightarrows} f$ na (a,b)). Necht $\varepsilon > 0$. Z BC podmínky pro $f'_n \rightrightarrows$

$$\exists n_0 \ \forall m, n \geq n_0 \ \forall x \in [c, d] : |f'_n(x) - f'_m(x)| < \varepsilon$$

a zároveň $\forall m, n \geq n_0 : |f_n(x_0) - f_m(x_0)| < \varepsilon$. Nyní $\forall x \in [c, d]$:

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)| \le$$

$$\le |h(x) - h(x_0)| + \varepsilon \le |x - x_0| \cdot |h'(\xi)| + \varepsilon \le (d - c) \cdot \varepsilon + \varepsilon,$$

kde $h = f_n - f_m$ a $\xi \in (x_0, x)$ resp. (x, x_0) z Lagrangeovy věty (cvičení: předpoklady jsou splněné).

Zbývá dokázat " $f'_n \rightrightarrows f'$ na [c,d]": Zvolme $z \in [c,d]$ a položme $\varphi_n(x) = \frac{f_n(x) - f_n(z)}{x - z}$ pro $x \in [c,d] \setminus \{z\}$. Nechť $\varepsilon > 0$. Z BC podmínky pro $f'_n \rightrightarrows$

$$\exists n_0 \ \forall n, m \ge n_0 \ \forall x \in [c, d] : |f'_n(x) - f'_m(x)| < \varepsilon.$$

Podobně jako v první části důkazu

$$|f_n(x) - f_m(x) - (f_n(z) - f_m(z))| = |f'_n(\xi) - f'_m(\xi)| \cdot |x - z| < \varepsilon \cdot |x - z|.$$

Nyní $\forall m, n \geq n_0 \ \forall x \in [c, d] \setminus \{z\}$:

$$|\varphi_n(x) - \varphi_m(x)| = \left| \frac{f_n(x) - f_m(z) - (f_m(x) - f_m(z))}{x - z} \right| < \frac{\varepsilon \cdot |x - z|}{|x - z|} = \varepsilon.$$

Podle BC $\varphi_n \implies \text{na } [c,d] \setminus \{z\}$. Tedy φ_n splňuje předpoklady Moore-Osgoodovy věty $(\lim_{x\to z} \varphi_n(x) = \lim_{x\to z} \frac{f_n(x) - f_n(z)}{x-z} = f'(z))$. Tedy

$$\lim_{n \to \infty} \lim_{x \to z} \frac{f_n(x) - f_n(z)}{x - z} = \lim_{x \to z} \lim_{n \to \infty} \frac{f_n(x) - f_n(z)}{x - z} \Leftrightarrow$$

$$\Leftrightarrow \lim_{n \to \infty} f'_n(z) = \lim_{x \to z} \frac{f(x) - f(z)}{x - z} = f'(z).$$

A jelikož víme, že $f_n' \rightrightarrows$, tak $f_n' \to f' \implies f_n' \rightrightarrows f'$.

1.2 Stejnoměrná konvergence řady funkcí

Definice 1.2

Řekněme, že řada funkcí $\sum_{k=1}^{\infty} u_k(x)$ konverguje stejnoměrně (popřípadě lokálně stejnoměrně) na intervalu J, pokud posloupnost částečných součtů $s_n(x) = \sum_{k=1}^n u_k(x)$ konverguje stejnoměrně (popřípadě lokálně stejnoměrně) na J.

Věta 1.5 (Nutná podmínka stejnoměrné konvergence řady)

Necht $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaných na intervalu J. Pokud $\sum_{n=1}^{\infty} u_n(x) \Rightarrow$ na J, pak posloupnost funkcí $u_n(x) \Rightarrow 0$ na J.

Důkaz

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 \ \forall x \in J : |s_n(x) - s_m(x)| < \varepsilon$$

speciálně pro m = n + 1:

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ \forall x \in J : |\sum_{i=1}^{n+1} u_i - \sum_{i=1}^n u_i| = |u_{n+1}(x)| < \varepsilon \implies u_n \rightrightarrows 0.$$

Věta 1.6 (Weierstrassovo kritérium)

Nechť $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaných na intervalu J. Pokud pro

$$\sigma_n = \sup\{|u_n|(x) : x \in J\}$$

platí, že číselná řada $\sum_{n=1}^{\infty} \sigma_n$ konverguje, pak $\sum_{n=1}^{\infty} u_n(x) \Rightarrow na J$.

 $D\mathring{u}kaz$

L

Nechť $\varepsilon>0.$ Z BC podmínky pro konečnou $\sum_{k=1}^\infty \sigma_k$

$$\exists n_0 \ \forall m, n \ge n_0, m > n : |\sum_{k=n+1}^m \sigma_k| < \varepsilon.$$

Chceme ověřit BC podmínku pro $s_n(x) = \sum_{k=1}^n u_k(x)$:

$$\forall m, n \ge n_0, m > n \ \forall x \in J : |s_m(x) - s_n(x)| = \left| \sum_{k=1}^m u_k(x) - \sum_{k=1}^n u_k(x) \right| =$$

$$= \left| \sum_{k=n+1}^{m} u_k(x) \right| \le \sum_{k=n+1}^{m} |u_k(x)| \le \sum_{k=n+1}^{m} \sigma_k < \varepsilon.$$

Tedy podle BC podmínky $\sum u_k \rightrightarrows$.

Věta 1.7 (O spojitosti a derivování řady funkcí)

Necht $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaná na intervalu (a,b).

- Necht u_n jsou spojité na (a,b) a necht $\sum_{n=1}^{\infty} u_n(x) \stackrel{Loc}{\Rightarrow} na(a,b)$. Pak $F(x) = \sum_{n=1}^{\infty} u_n(x)$ je spojitá na (a,b).
- Nechť funkce u_n , $n \in \mathbb{N}$, mají vlastní derivaci na (a,b) a nechť $\exists x_0 \in (a,b)$:

 $\sum_{n=1}^{\infty} u_n(x_0) \text{ konverguje a } \sum_{n=1}^{\infty} u'_n(x) \overset{Loc}{\rightrightarrows} \text{ na } (a,b). \text{ Pak je funkce } F(x) = \sum_{n=1}^{\infty} u_n(x)$ $dob\check{r}e \text{ definovan\'a a diferencovateln\'a na } (a,b) \text{ a nav\'ic } \sum_{n=1}^{\infty} u_n(x) \overset{Loc}{\rightrightarrows} F(x) \text{ a } \sum_{n=1}^{\infty} u'_n(x) \overset{Loc}{\rightrightarrows} F(x) \text{ na } (a,b).$

"První bod": Funkce $s_n(x) = \sum_{n=1}^k u_n(x)$ jsou spojité a $s_k \stackrel{\text{Loc}}{\rightrightarrows}$ na (a,b). Tedy podle důsledku věty z dřívějška (stejnoměrná limita spojitých funkcí je spojitá) je jejich limita lokálně spojitá, tedy spojitá.

"Druhý bod": Na s_k použijeme větu z dřívějška (pokud mají derivace stejnoměrnou limitu, pak i funkce ji mají a shoduje se až na derivaci). Ověříme podmínky, tedy že $s_k(x) = \sum_{n=1}^k u_n(x)$ konverguje a $s_k' = \sum_{n=1}^k u_k' \stackrel{\text{Loc}}{\Rightarrow}$ na (a,b). Podle tamté věty tedy $\exists F(x) = \lim_{k \to \infty} s_k(x) = \sum_{n=1}^\infty u_n(x)$ a tato funkce je diferencovatelná a

$$\sum_{n=1}^{\infty} u_n(x) \stackrel{\text{Loc}}{\rightrightarrows} F(x) \quad \wedge \quad \sum_{n=1}^{\infty} u'_n(x) \stackrel{\text{Loc}}{\rightrightarrows} F'(x) \qquad \text{na } (a,b)$$

Věta 1.8 (Abel-Dirichletovo kritérium pro stejnoměrnou konvergenci)

Nechť $\{a_n(x)\}_{n=1}^{\infty}$ je posloupnost funkcí definovaných na intervalu J a nechť $\{f_n(x)\}_{n=1}^{\infty}$ je posloupnost funkcí na J taková, že $f_1(x) \geq f_2(x) \geq \ldots \geq 0$. Jestliže je splněna některá z následujících podmínek, pak $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x) \rightrightarrows na J$.

- $(A) \sum_{n=1}^{\infty} a_n(x) \Rightarrow na \ J \ a \ b_1 \ je \ omezen\'a.$
- (D) $b_n \rightrightarrows 0$ na J a $\sum_{n=1}^{\infty} a_n(x)$ má omezené částečné součty, tedy

$$\exists K > 0 \ \forall m \in \mathbb{N} \ \forall x \in J : |s_n(x)| = \left| \sum_{i=1}^m a_i(x) \right| < K.$$

 $D\mathring{u}kaz$

"Dirichlet": Nechť $\varepsilon > 0$. Nalezneme $n_0 \ \forall n \geq n_0 \ \forall x \in J : |f_n(x)| < \varepsilon$. Nechť $m, n \geq n_0$. Označme $\sigma_i(x) := \sum_{j=m}^i a_j(x)$. Pak

$$|\sigma_i(x)| \le \left| \sum_{j=1}^i a_j(x) - \sum_{j=1}^{n_0 - 1} a_j(x) \right| \le K + K.$$

$$\forall m, n \geq n_0 \ \forall x \in J : \left| \sum_{j=n}^m a_j(x) \cdot b_j(x) \right| = \left| a_n \cdot b_n + (\sigma_{n+1} - \sigma_n)b_{n+1} + \ldots + (\sigma_m - \sigma_{m-1})b_m \right| \leq \sup_{j=n,\ldots,m} \left| \sigma_{m-1} \right| = \sup_{j=n,\ldots,m} \left$$

A z BC podmínky už $\sum a_i(x)b_i(x) \Rightarrow \text{na } J$.

"Abel": Nechť $\varepsilon > 0$. Z BC podmínky pro \Rightarrow

$$\exists n_0 \ \forall m, n \geq n_0 : \left| \sum_{j=n}^m a_j(x) \right| < \varepsilon.$$

Tedy pro $\sigma_1(x) = \sum_{j=n}^m a_j(x)$ platí $|\sigma_i(x)| < \varepsilon$. Analogicky odhadu výše

$$\left| \sum_{j=n}^{m} a_j(x) \cdot b_j(x) \right| \le \sup_{j=n,\dots,m} |\sigma_j(x)| \cdot |b_n(x)| \le \varepsilon \sup_{x \in J} (b_1(x)) \le \varepsilon \cdot K.$$

Tedy $\sum a_i(x) \cdot b_i(x)$ splňuje BX podmínku.

2 Mocninné řady

Definice 2.1 (Mocninná řada)

Nechť $x_0 \in \mathbb{R}$ a $a_n \in \mathbb{R}$ pro $n \in \mathbb{N}_0$. Řadu funkcí $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ nazýváme mocninnou řadou s koeficienty a_n a středem x_0 .

Definice 2.2 (Poloměr konvergence)

Poloměrem konvergence mocninné řady $\sum_{n=0}^{\infty}a_n\cdot(x-x_0)^n$ nazveme

$$R = \sup \left\{ r \in [0, \infty) | \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ konverguje } \forall x \in [x_0 - r, x_0 + r] \right\}.$$

Věta 2.1 (O poloměru konvergence mocninné řady)

Nechť $\sum_{n=0}^{\infty} a_n \cdot (x-x_0)^n$ je mocninná řada a $R \in [0,\infty]$ je její poloměr konvergence. Pak řada konverguje absolutně $\forall x \in (x_0-R,x_0+R)$ a diverguje $\forall x \in (-\infty,x_0-R) \cup (x_0+r,+\infty)$. Navíc platí $R = \frac{1}{\limsup \sqrt[n]{|a_n|}}$. Pokud existuje $Q = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$, potom R = Q.

Důkaz

Položme $R = \frac{1}{\limsup \sqrt[n]{|a_n|}}$. Pak pro $x : |x - x_0| < R$ platí

 $\limsup_{n\to\infty} \sqrt[n]{|a_n\cdot(x-x_0)^n|} = |x-x_0|\limsup_{n\to\infty} \sqrt[n]{|a_n|} = \frac{|x-x_0|}{R} < 1 \implies \text{ řada konverguje absolutně}.$

Pro $|x - x_0| > R$ dostaneme úplně stejně > 1, tedy řada diverguje.

Nechť existuje $Q = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$, pak

$$\lim_{n \to \infty} \frac{|a_{n+1} \cdot (x - x_0)^{n+1}|}{|a_n \cdot (x - x_0)^n|} = |x - x_0| \cdot \lim_{n \to \infty} \frac{|a_{n+1}|}{a_n} = |x - x_0| \cdot \frac{1}{Q}.$$

Pro $|x-x_0|<\frac{1}{Q}$ řada konverguje, pro $|x-x_0|>\frac{1}{Q}$ řada diverguje, tedy $\frac{1}{Q}$ je poloměr konvergence.

Věta 2.2 (O steejnoměrné konvergenci mocninné řady)

Nechť $\sum_{n=0}^{\infty} a_n \cdot (x - x_0)^n$ je mocninná řada a $R \in (0, \infty]$ je její poloměr konvergence. Pak řada konverguje lokálně stejnoměrně na $(x_0 - R, x_0 + R)$.

Důkaz

Nechť 0 < r < R. Podle předchozí věty $\sum_{a_n} \cdot r^n$ konverguje absolutně. Nyní

$$\forall x \in [x_0 - r, x_0 + r] : |a_n(x - x_0)^n| \le |a_n| \cdot r^n.$$

Víme, že $\sum |a_n|r^n$ konverguje, tedy podle Weierstrassova kritéria $\sum a_n(x-x_0)^n \implies$ na $[x_0-r,x_0+r]$. Tedy konverguje lokálně stejnoměrně na (x_0-R,x_0+R) .

Věta 2.3 (O derivaci mocninné řady)

Nechť $\sum_{n=0}^{\infty} a_n \cdot (x-x_0)^n$ je mocninná řada s poloměrem konvergence R>0. Pak $\sum_{n=1}^{\infty} a_n \cdot (x-x_0)^{n-1}$ je také mocninná řada se stejným středem a s poloměrem konvergence R.

Navíc pro $x \in (x_0 - R, x_0 + R)$ platí $(\sum_{n=0}^{\infty} a_n \cdot (x - x_0)^n)' = \sum_{n=1}^{\infty} a_n \cdot n \cdot (x - x_0)^{n-1}$.

 \Box $D\mathring{u}kaz$

Položme $R = \frac{1}{\limsup \sqrt[n]{|a_n|}}$. Nyní poloměr konvergence $\sum_{n=1}^{\infty} a_i \cdot n \cdot (x - x_0)^{n-1} \stackrel{x \neq x_0}{=} \frac{\sum_{n=1}^{\infty} a_i \cdot n \cdot (x - x_0)^n}{x - x_0}$ je podle věty výše

$$\frac{1}{\limsup \sqrt[n]{|a_n| \cdot n}} = R \cdot \frac{1}{\limsup \sqrt[n]{n}} = R.$$

Následně použijeme větu o derivaci a stejnoměrné konvergenci (v bodě $x=x_0$ řada jistě konverguje a z předchozí věty řada derivací konverguje lokálně stejnoměrně)

Důsledek (O integrování mocninné řady)

Nechť $\sum_{n=0}^{\infty} a_n \cdot (x-x_0)^n$ je mocninná řada s poloměrem konvergence R>0. Pak

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} \cdot (x-x_0)^{n+1}$$

je mocninná řada se stejným poloměrem konvergence. Navíc platí

$$\int \sum_{n=0}^{\infty} a_n (x - x_0)^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} \cdot (x - x_0)^{n+1} + C \text{ na } (x_0 - R, x_0 + R).$$

Důkaz (Hint k důkazu)

Mocninou řadu vpravo zderivujeme.

Věta 2.4 (Abelova)

Nechť $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ je mocninná řada s poloměrem konvergence R>0. Nechť navíc $\sum_{n=0}^{\infty} a_n \cdot R^n$ konverguje. Pak řada $\sum_{n=0}^{\infty} a_n \cdot (x-x_0)^n$ konverguje stejnoměrně na $[x_0, x_0+R]$ a platí $\sum_{n=0}^{\infty} a_n \cdot R^n = \lim_{r \to R_-} \sum_{n=0}^{\infty} a_n \cdot r^n$.

 $D\mathring{u}kaz$

$$\sum_{n=0}^{\infty} a_n \cdot (x - x_0)^n = \sum_{n=0}^{\infty} \underbrace{a_n \cdot R^n}_{a_n(x)} \cdot \underbrace{\frac{(x - x_0)^n}{R^n}}_{b_n(x)}.$$

Víme, že $b_n \ge b_{n+1} \ge 0$, jelikož $\frac{(x-x_0)^n}{R^n} \ge \frac{(x-x_0)^{n+1}}{R^{n+1}} \Leftrightarrow 1 \ge \frac{x-x_0}{R}$. Navíc $b_0 = 1$. Víme, že $\sum a_n \cdot R^n$ konverguje, tedy podle BC podmínky pro konvergenci reálné řady:

$$\exists \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 : |\sum_{k=n}^m a_k \cdot R^k| < \varepsilon.$$

Z toho ale jednoduše (jelikož $a_n(x)$ na x nezávisí)

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 \ \forall x \in [x_0, x_0 + R] : |\sum_{k=n}^m a_k(x)| = |\sum_{k=n}^m a_k \cdot R^k| < \varepsilon.$$

Tedy podle Abel-Dirichletova kritéria (části Abel) $\sum a_n(x-x_0)^n \rightleftharpoons \text{na } [x_0,x_0+R].$

Funkce $a_n(x-x_0)^n$ jsou spojité a $\sum \rightleftharpoons F(x) = \sum_{n=0}^{\infty} a_n \cdot (x-x_0)^n$ je spojitá na $[x_0, x_0 + R]$. Tedy

$$\lim_{x \to x_0 + R} F(x) = F(x_0 + R).$$

3 Absolutně spojité funkce a funkce s konečnou variací

Poznámka

Všechny integrály v této kapitole jsou Lebesgueovy.

3.1 Derivace monotónní funkce

Definice 3.1 (Limes superior a limes inferior pro funkce)

Necht $x \in (a,b)$ a $f:(a,b) \to \mathbb{R}$. Definujeme limes superior a limes inferior jako $\limsup_{h\to 0} f(x+h) := \lim_{h\to 0} \sup_{y\in(x-h,x)\cup(x,x+h)} f(y)$ a $\lim\inf_{h\to 0} f(x+h) := \lim_{h\to 0} \sup_{y\in(x-h,x)\cup(x,x+h)} f(y)$.

Poznámka

Analogicky jako u posloupnosti platí věta:

$$\exists \lim_{h \to 0} f(x+h) \in \mathbb{R} \Leftrightarrow \limsup_{h \to 0} f(x+h) = \liminf_{h \to 0} f(x+h).$$

Definice 3.2

Nechť I je interval, x je vnitřní bod I a $f:I\to\mathbb{R}$ je funkce. Definujeme horní a dolní derivaci funkce f v bodě x jako

$$\overline{D}f(x) = \limsup_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

$$\underline{D}f(x) = \liminf_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Věta 3.1 (Míra vzoru a obrazu)

Nechť $I \subset \mathbb{R}$ je interval. Nechť $f: I \to \mathbb{R}$ je neklesající funkce, $M \subset I$ je měřitelná a c > 0.

- Je-li $\overline{D}f(x) > c$ na M, potom $\mathcal{L}^*(f(M)) \supseteq c \cdot \mathcal{L}(M)$.
- Je-li $\underline{D}f(x) < c$ na M, potom $\mathcal{L}^*(f(M)) \subseteq c \cdot \mathcal{L}(M)$.

 $D\mathring{u}kaz$

Bez důkazu.

Věta 3.2 (Derivace monotónní funkce)

Nechť $I \subset \mathbb{R}$ je interval a $f: I \to \mathbb{R}$ je monotónní funkce. Potom ve skoro každém bodě $x \in I$ existuje f'(x).

 $D\mathring{u}kaz$

Necht $M_{p,q} = \{x \in I | \underline{D}f(x) . Podle předchozí věty <math>q \cdot \mathcal{L}(M_{p,q}) \subseteq \mathcal{L}^*(f(M_{p,q})) \subseteq p \cdot \mathcal{L}(M_{p,q})$. Tedy, protože p < q, tak $\mathcal{L}(M_{p,q}) = 0$.

Tvrdíme, že pro množinu M bodů nediferencovatelnosti platí $M = \bigcup_{p,q \in Q, p < q} M_{p,q}$ \Longrightarrow , tedy spočetné sjednocení nulových množin, tudíž M je nulová: " \supseteq ": $x \in M_{p,q}, p < q \Longrightarrow \underline{D}f(x) < \overline{D}f(x) \Longrightarrow \nexists Df(x)$. " \subseteq ": Nechť $x \in M \Longrightarrow \nexists Df(x) \Longrightarrow \underline{D}f(x) < \overline{D}f(x)$.

Věta 3.3 (Integrál derivace monotónní funkce)

Nechť $a,b \in \mathbb{R}$, a < b, $a f : [a,b] \to \mathbb{R}$ je neklesající funkce. Potom f' je lebesgueovsky integrovatelná na [a,b] a platí

$$\int_{a}^{b} f'(x)dx \le f(b) - f(a).$$

Důkaz

f je neklesající, tedy je měřitelná. Dodefinujeme f(x) = f(b) pro x > b. Z předchozí věty víme, že pro skoro všechna $x \exists \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} = f'(x)$. Definujeme funkce $g_n(x) = \frac{f\left(x+\frac{1}{n}\right)-f(x)}{\frac{1}{n}}$. Tyto funkce jsou měřitelné a pro skoro všechna x platí $\exists \lim_{n \to 0} g_n(x) = f'(x)$. Dále f je neklesající, tedy $g_n(x) \ge 0$ a $f'(x) \ge 0$.

Podle Fatouova lemmatu

$$\int_{a}^{b} f'(x)dx = \int_{a}^{b} \liminf_{n \to \infty} g_{n}(x)dx \le \liminf_{n \to \infty} \int_{a}^{b} g_{n}(x)dx =$$

$$= \liminf_{n \to \infty} \int_{a}^{b} n \cdot \left(f\left(x + \frac{1}{n}\right) - f(x)\right)dx = \liminf_{n \to \infty} \left(n \cdot \int_{a + \frac{1}{n}}^{b + \frac{1}{n}} f(t)dt - n \cdot \int_{a}^{b} f(x)dx\right) =$$

$$= \liminf_{n \to \infty} \left(n \cdot \int_{b}^{b + \frac{1}{n}} f(t)dt - n \cdot \int_{a}^{a + \frac{1}{n}} f(x)dx\right) \le \liminf_{n \to \infty} \left(f(b) - n \cdot \int_{a}^{a + \frac{1}{n}} f(a)dx\right) = f(b) - f(a).$$

Tedy f' je integrovatelná.

3.2 Funkce s konečnou variací

Definice 3.3 (Kladná, záporná a totální variace)

Necht $[a,b] \subset \mathbb{R}$ je uzavřený interval, $f:[a,b] \to \mathbb{R}$ a D dělení [a,b]. Definujeme kladnou variaci, zápornou variaci a (totální) variaci jako:

$$V^{+}(f, a, b) = \sup_{D} \left\{ \sum_{i=1}^{n} (f(x_{i}) - f(x_{i-1}))^{+} \right\},$$

$$V^{-}(f, a, b) = \sup_{D} \left\{ \sum_{i=1}^{n} (f(x_{i}) - f(x_{i-1}))^{-} \right\},$$

$$V(f, a, b) = \sup_{D} \left\{ \sum_{i=1}^{n} |f(x_{i}) - f(x_{i-1})| \right\}.$$

Dále zavedeme značení $V_f^+(x) = V^+(f, a, x)$, atd.

Definice 3.4 (Konečná variace)

Řekneme, že funkce f ma na intervalu $[a,b] \subset \mathbb{R}$ konečnou variaci, jestliže $V(f,a,b) < \infty$. Množinu všech funkcí s konečnou variací značíme BV([a,b]).

Poznámka

Nechť $[a, b] \in \mathbb{R}$ a $f : [a, b] \to \mathbb{R}$. Pak

- je-li fneklesající na [a,b], pak $V(f,a,b)=V^+(f,a,b)=f(b)-f(a);$
- $|V(f, a, b)| \ge |f(a) f(b)|$.

Věta 3.4 (Vztah omezené variace a monotonie)

Necht $[a,b] \subset \mathbb{R}$ a necht $f:[a,b] \to \mathbb{R}$.

- Má-li f konečnou variaci na [a,b], pak $V_f(x) = V_k^+ + V_f^-(x)$ a $f(x) f(a) = V_f^+(x) V_f^-(x)$.
- $f \subset BV(a,b)$ právě tehdy, když existují neklesající funkce $u,v:[a,b] \to \mathbb{R}$ tak, že f=v-u.

Důkaz

"První bod": Necht $D = \{a = x_0 < x_1 < \ldots < x_n = b\}$. Búno stačí pro x = b.

$$V(f, a, b) \ge \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^+ + \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^- \le V^+(f, a, b) + V^-(f, a, b)$$

Z těchto nerovností vezmeme supremum přes všechna dělení D a dostaneme $V(f,a,b)=V^+(f,a,b)+V^-(f,a,b)$ (\geq z nerovnosti mezi prvním a třetím výrazem, \leq z nerovnosti mezi druhým a čtvrtým).

$$f(b) - f(a) = \sum_{i=1}^{n} f(x_i) - f(x_{i-1}) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{+} - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f, a, b) - \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \le V^{+}(f(x_i) - f(x_i))^{-} \le V^{+}(f(x_i$$

Infimum přes dělení D dá $f(b) - f(a) \leq V^+(f, a, b) - \sup \sum_{i=1}^n (f(x_i) - f(x_{i-1}))^- = V^+(f, a, b) - V^-(f, a, b).$

$$f(b) - f(a) = \sum_{i=1}^{n} f(x_i) - f(x_{i-1}) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{+} - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{-} \ge \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{+} - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^{-} \ge \sum_{i=1}^{n} (f(x_i) - f(x_i))^{-} \ge \sum_{i=1}^{n} (f(x_i)$$

Supremum přes dělení D dá $f(b) - f(a) \ge \sup \sum_{i=1}^n (f(x_i) - f(x_{i-1}))^+ - V^-(f, a, b) = V^+(f, a, b) - V^-(f, a, b).$

"Druhý bod": " \Longrightarrow ": Z prvního bodu víme, že $f(x)=(f(a)+V^+(f,a,x))-V^-(f,a,x)=v(x)-u(x).$

" \Leftarrow ": Mějme tedy f(x) = v(x) - u(x)

$$\sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \le \sum_{i=1}^{n} |v(x_i) - v(x_{i-1})| + \sum_{i=1}^{n} |u(x_i) - u(x_{i-1})| = v(b) - v(a) + u(b) - u(a),$$

$$\cot d\acute{a} f \in BV(a,b).$$

Dusledek

 $f \in BV \implies f$ má derivaci skoro všude.

 $D\mathring{u}kaz$

Z předchozí věty f = v - u a věty před ní mají u, v derivace skoro všude.