ggplot2 Graph Gallery

Hierarchies/proportions: part-to-whole relationships

by Martin Frigaard

Written: September 21 2021

Updated: April 07 2022

Resources:

The graphs

- The ggplot2 book by Hadley Wickham, Danielle Navarro, and Thomas Lin Pedersen
- Data Visualization: A Practical Introduction by Kieran Healy (2018)
- R Graphics Cookbook, 2nd edition by Winston Chang (2022)

Graph Categories

- Fundamentals of Data Visualization by Claus O. Wilke (2019)
- Data Visualisation: A Handbook for
 Data Driven Design by Andy Kirk (2019)
- Data Points by Nathan Yau (2013)

Graph Categories: The 'CHRTS' Families of Chart Types

From "Data Visualisation: A Handbook for Data Driven Design", Andy Kirk (2019)

Comparing categories and distributions

Hierarchies/proportions

Correlations and connections

Trends and intervals over time

Maps, overlays, and/or distortions

Graph Categories: Directory of Visualizations

From "Fundamentals of Data Visualization", Claus O. Wilke (2019)

Amounts

Distributions

Proportions

X-Y relationships

Geospatial Data

Uncertainty

Comprehensive Graph Gallery

Comparing categories and values

- Amounts
- Distributions

Hierarchies and proportions

• Part-to-whole relationships

Trends, correlations and connections

X–Y relationships

Maps, overlays, and distortions

Geospatial Data

Statistical measures

Uncertainty

Data

Data come from the following packages:

- -palmerpenguins
- fivethirtyeight
- -ggplot2movies

Or created using tribble()

variable 1	variable 2
<chr></chr>	<dbl></dbl>
a	1
b	2
С	3
3 rows	

Load data packages


```
library(palmerpenguins)
library(fivethirtyeight)
library(ggplot2movies)
```

palmerpenguins

palmerpenguins package website

palmerpenguins::penguins -> penguins

species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex year
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<fct> <int></int></fct>
Adelie	Torgersen	39.1	18.7	181	3750	male 2007
Adelie	Torgersen	39.5	17.4	186	3800	female 2007
Adelie	Torgersen	40.3	18.0	195	3250	female 2007
Adelie	Torgersen	NA	NA	NA	NA	<i>NA</i> 2007
Adelie	Torgersen	36.7	19.3	193	3450	female 2007
Adelie	Torgersen	39.3	20.6	190	3650	male 2007
Adelie	Torgersen	38.9	17.8	181	3625	female 2007
Adelie	Torgersen	39.2	19.6	195	4675	male 2007
Adelie	Torgersen	34.1	18.1	193	3475	<i>NA</i> 2007
Adelie	Torgersen	42.0	20.2	190	4250	<i>NA</i> 2007
1-10 of 34	4 rows			Previous	s 1 2 3 4 5	5 6 35 Next

fivethirtyeight

fivethirtyeight package website

All datasets are listed below with descriptions

datasets("fivethirtyeight")

ggplot2movies

ggplot2movies package website

We're using movies_data (derived version of the ggplot2movies::movies)

movies_data

title	year	length	budget	rating mpaa
<chr></chr>	<int></int>	<int></int>	<int></int>	<dbl> <fct></fct></dbl>
100 Mile Rule	2002	98	1100000	5.6 R
13 Going On 30	2004	98	37000000	6.4 PG-13
15 Minutes	2001	120	42000000	6.1 R
2 Fast 2 Furious	2003	107	76000000	5.1 PG-13
2046	2004	129	12000000	7.6 R
21 Grams	2003	124	20000000	8.0 R
25th Hour	2002	135	15000000	7.8 R
3000 Miles to Graceland	2001	125	62000000	5.4 R
40 Days and 40 Nights	2002	96	17000000	5.4 R
50 First Dates	2004	99	75000000	6.8 PG-13
1-10 of 751 rows 1-6 of 7 columns		Previ	ous 1 2 3	4 5 6 76 Next

Hierarchies/proportions

Part-to-whole relationships:

Part-to-whole relationships: Pie charts

Pie-charts (ggpubr::ggpie) are ideal for comparing the proportions of categorical variable values.

"In general, pie charts work well when the goal is to emphasize simple fractions, such as one-half, one-third, or one-quarter." "They also work well when we have very small datasets." - Claus O. Wilke, Fundamentals of Data Visualization (2019)

Part-to-whole relationships: Pie charts

mpaa	avg <dbl></dbl>
<fct></fct>	<ld>></ld>
mpaa <fct> PG</fct>	5.726214
PG-13	5.954682
R	6.040157
3 rows	

Part-to-whole relationships: Pie charts

Map avg to the x axis, mpaa to label and fill, "white" to color, remove the legend and add the labels.

```
labs_pie <- labs(
  x = "Average MPAA rating",
  title = "Average MPAA ratings for IMDB movies")</pre>
```

Note that we do not add a geom inside the ggpie() function.

Part-to-whole relationships: Stacked-density

We previously used density graphs to visualize the distribution of a single variable, but stacked density graphs are great for visualizing how proportions vary across numeric (continuous) variables.

Part-to-whole relationships: Stacked-density

penguins <- palmerpenguins::penguins
penguins_stacked_density <- filter(penguins, !is.na(species))</pre>

species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g sex	year
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int> <fct></fct></int>	<int></int>
Adelie	Torgersen	39.1	18.7	181	3750 male	2007
Adelie	Torgersen	39.5	17.4	186	3800 female	2007
Adelie	Torgersen	40.3	18.0	195	3250 female	2007
Adelie	Torgersen	NA	NA	NA	NA NA	2007
Adelie	Torgersen	36.7	19.3	193	3450 female	2007
Adelie	Torgersen	39.3	20.6	190	3650 male	2007
Adelie	Torgersen	38.9	17.8	181	3625 female	2007
Adelie	Torgersen	39.2	19.6	195	4675 male	2007
Adelie	Torgersen	34.1	18.1	193	3475 <i>NA</i>	2007
Adelie	Torgersen	42.0	20.2	190	4250 NA	2007
1-10 of 34	4 rows			Previous	s 1 2 3 4 5 6 3	5 Next

Part-to-whole relationships: Stacked-density

To create a stacked-density graph, map the continuous variable to the x variable, and the categorical variable to both the group and fill aesthetic. We also map y to ... count ... to see each relative distributions across a scale of 0.00 to 1.00, and add the adjust and position arguments to the geom_density()

```
labs_stacked_density <- labs(
  x = "Penguin body mass (grams)",
  title = "Adult foraging penguins",
  fill = "Penguin species")</pre>
```


Part-to-whole relationships: Waffle chart

Waffle charts use color to display the levels that make up the values in a categorical variable. The counts for each level are divided into separate colors into a square or grid display.

Part-to-whole relationships: Waffle chart

Waffle charts require a special data transformation with $ggwaffle::waffle_iron()$. Set the group argument in $aes \ d()$ as the categorical variable you want to see the relative counts for.

	у	x group
	<int></int>	<int> <chr></chr></int>
1	1	1 Adelie
2	2	1 Adelie
3	3	1 Adelie
4	4	1 Adelie
5	5	1 Adelie
6	6	1 Adelie
7	7	1 Adelie
8	8	1 Adelie
9	1	2 Adelie
10	2	2 Adelie
1-10 of 344 rows	Previous	s 1 2 3 4 5 6 35 Next

Part-to-whole relationships: Waffle chart

Map the x and y to the x and y axes, group to fill, and the labels

We'll also add the ggwaffle::theme_waffle() to our plot to remove some of the axis text and ticks.

```
labs_waffle <- labs(
  title = "Waffle chart of palmer penguin species")</pre>
```


A mosaic plot is similar to a stacked bar-graph, but instead of only relying on height and color to display the relative amount for each value, mosaic plots also use width.

respondent_id	gender	age	height	children_under_18	household_income \
<dbl></dbl>	<chr></chr>	<ord></ord>	<ord></ord>	< g >	<ord></ord>
3434278696	Male	30-44	6'3"	TRUE	NA
3434275578	Male	30-44	5'8"	FALSE	\$100,000 - \$149,999
3434268208	Male	30-44	5'11"	FALSE	\$0 - \$24,999
3434250245	Male	30-44	5'7"	FALSE	\$50,000 - \$99,999
3434245875	Male	30-44	5'9"	TRUE	\$25,000 - \$49,999
3434235351	Male	30-44	6'2"	TRUE	NA
3434218031	Male	30-44	6'0"	TRUE	\$0 - \$24,999
3434172894	Male	30-44	5'6"	FALSE	\$0 - \$24,999
3434165659	Male	30-44	6'0"	FALSE	\$50,000 - \$99,999
3434131535	Male	18-29	6'0"	FALSE	NA
1-10 of 849 rows 1-	6 of 27 colu	imns		Previous	1 2 3 4 5 6 85 Next

Map the product() of unruly_child and baby to the x axis, unruly_child to fill, and add the labels.

```
mosaic_labs <- labs(
  title = "In general...",
  x = "...is it rude to bring a baby on a plane?",
  y = "..is it rude to knowingly bring unruly children on a plane?",
  fill = "Responses")</pre>
```

Move the legend to the top of the graph with theme(legend.position = "top")

As we can see, the widths of each rectangle are proportional to the responses to the x axis survey item

and the heights are proportional to the responses to the y axis survey item.

Treemaps display how numerical hierarchical values make up a whole in a rectangular layout, often referred to as 'squarified', which represents of the 100% total values. We can guild treemaps in ggplot2 with the treemapify package

species	island	sex	n	
<chr></chr>	<fct></fct>	<fct></fct>	<int></int>	
Adelie	Biscoe	female	22	
Adelie	Biscoe	male	22	
Adelie	Dream	female	27	
Adelie	Dream	male	28	
Adelie	Torgersen	female	24	
Adelie	Torgersen	male	23	
Chinstrap	Dream	female	34	
Chinstrap	Dream	male	34	
Gentoo	Biscoe	female	58	
Gentoo	Biscoe	male	61	

1-10 of 10 rows

Map the n to area, sex to fill, species to label, island to subgroup and add the labels

```
labs_treemap <- labs(
   title = "Species, island, and sex of adult penguins")</pre>
```

```
ggplot(treemap_penguins_counts,
    aes(area = n,
        fill = sex,
        label = species,
        subgroup = island)) +
    geom_treemap() +
    labs_treemap
```


Add the borders with geom_treemap_subgroup_border()

```
ggplot(treemap_penguins_counts,
    aes(area = n,
        fill = sex,
        label = species,
        subgroup = island)) +
    geom_treemap() +
    geom_treemap_subgroup_border() +
    labs_treemap
```


Include labels for subgroup with geom_treemap_subgroup_text() (see full list of arguments here)

```
ggplot(treemap_penguins_counts,
       aes(area = n.
         fill = sex,
         label = species,
         subgroup = island)) +
       geom treemap() +
       geom treemap subgroup border() +
       geom treemap subgroup text(
         place = "center",
         grow = TRUE,
         alpha = 0.9.
         color = "white",
         fontface = "bold",
         family = "sans",
         min.size = 0) +
       labs treemap
```


Include labels for additional subgroup with geom_treemap_text() (see full list of arguments here)

```
ggplot(treemap_penguins_counts,
       aes(area = n.
         fill = sex,
         label = species,
         subgroup = island)) +
       geom treemap() +
       geom treemap subgroup border() +
       geom treemap subgroup text(
         place = "center",
         grow = TRUE,
         alpha = 0.9.
         color = "white",
         fontface = "bold",
         family = "sans",
         min.size = 0) +
       geom treemap text(
         colour = "gray90",
         place = "center",
         alpha = 0.85
         family = "mono",
         fontface = "italic",
         reflow = TRUE) +
       labs treemap
```

