NICO2AI #6 畳み込みニューラルネットワーク(1)

18/02/17 土屋祐一郎

前回:全結合NN

例: 3 layers perceptron

3layers MLPの復習

) 演習

MLPをより高性能にしたい

▶ MLPは万能の関数近似器

(universal function approximator)

- ▶ 十分な数のパラメータ(=ニューロン結合)が あれば、任意の関数を任意の精度で近似できる
- ▶ ⇒層の数を増やそう! (Going deeper!)
 - 浅いネットワークでニューロン数を増やすより 効率が良い

[Larochelle et al., 2007][Bengio, 2009][Delalleau and Bengio, 2011]

▶ (単純なケース以外では証明されていない)

Going deeper, but...

- ▶ 層の数を増やせば性能は上がるはず
 - 「"適切な"パラメータを見つけられれば」…
- ▶ しかし、現実にはうまくいかない...
 - 学習がうまくいかない

全結合NNをDeepにするときの問題

- 4, 5, ..., 10, ... layers MLPを作ると...
- ▶ 過学習
 - パラメータ多すぎ
- ▶ 学習が進まない
 - パラメータ多すぎ
- ▶ 計算が重い
 - パラメータ多すぎ

画像への適用時の問題

- ▶ 水平移動に弱い
- ▶ 回転に弱い
- ▶ affine transformに弱い

Convolutional Neural Networks

- ▶ 全結合NNの問題(の一部)を解決
 - ▶ パラメータ数削減
 - ▶ 平行移動への対応 など
- 画像認識タスクへの適用が最初のブレイクスルー
- ▶ 近年は自然言語処理への適用も

Convolutional Neural Networks 概観

- いきなりですが、最初に、
 - Convolutional Neural Networks (CNN)がどういうものかざっくり説明します
- トその後、
 - ▶ CNNがどうして全結合NNの問題を解決している のか
 - 生物の視神経との関連はどうなっているのか
 - …などについて話します

Convolution = Filtering

例:ラプラシアンフィルタ

1	1	1
1	-8	1
1	1	1

畳み込み(Convolution)!

Filtering = ピクセルごとの乗算→加算 ¹²

	0	0	0
を適用	0.5	0	-0.5
	0	0	0

0	0	0	0	0	0	0	0
0.5	0.5	0	0	0	0	-0.5	-0.5
0.5	0	0	0	0	0	0	-0.5
0.5	0	0	0	0	0	0	-0.5
0.5	0	0	0	0	0	0	-0.5
0.5	0	0	0	0	0	0	-0.5
0.5	0.5	0	0	0	0	-0.5	-0.5
0	0	0	0	0	0	0	0

Filtering = ピクセルごとの乗算→加算 ¹³

例:

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	0	0
-0.5	0	0.5
0	0	0

を適用

0	0	0	0	0	0	0	0
0.5	0.5	0	0	0	0	-0.5	-0.5
0.5	0	0	0	0	0	0	-0.5
0.5	0	0	0	0	0	0	-0.5
0.5	0	0	0	0	0	0	-0.5
0.5	0	0	0	0	0	0	-0.5
0.5	0.5	0	0	0	0	-0.5	-0.5
0	0	0	0	0	0	0	0

Filtering = ピクセルごとの乗算→加算 ¹⁴

例:

を適用 =縦エッジ検出 フィルタ

Convolution = Filtering

例:ラプラシアンフィルタ

1	1	1
1	-8	1
1	1	1

適当に学習されたフィルタ

0.01	-0.12	1.03
-1.11	0.12	-0.56
0.32	-0.34	-0.22

適当に学習されたフィルタ for R,G,B

		2.1	1	-0.22	0.01
	1.32	-0	.52	-0.11	0.62
0.01	-0.12	2 1	1.03	1.08	0.98
-1.11	0.12	<u>.</u>	0.56	-1.00	
0.32	-0.34	4 -	0.22	;	

適当に学習されたフィルタ for R,G,B

<u>=適当に学習された3次元フィルタ</u>

	1	2.11	-0	.22	0 1	
4	1.32	-0.52	-	2.1	0.62	
0.01	-0.12	1.03	3	1.08	0.98	
-1.11	0.12	-0.5	6	1.00	7	

3次元データに3次元フィルタを畳み込んで2次元出力を得る処理

適当に学習された3次元フィルタ×複数個

「3次元データに3次元フィルタを畳み込んで 2次元出力を得る処理」 を複数回行って、3次元出力を得る処理

簡略化して書くと...

「3次元データに4次元フィルタを畳み込んで 3次元出力を得る」のがCNNの基本処理

Convolutional Neural Networks

をたくさん繋げて...

Deep convolutional neural networks 22

AlexNet

Krizhevsky et.al., 2012

大規模画像認識コンペティションILSVRC2012で優勝 Deep Learningブームの火付け役

DCNN各層のハイパーパラメータ

NICO2AISCHOOL

ここまでのまとめ

- ▶ Convolutional Neural Networks =Convolutional Layer (畳み込み層)を繋げたタイプ のニューラルネットワーク
- ▶ Convolution=畳み込みは、フィルタ演算!
 - ただし、2次元画像へのフィルタ適用と違って、 深さ方向も考える

Convolutional Neural Networks の細かい話

Stride = フィルタを何ピクセルずつずらしていくか

Padding = 入力の上下左右をゼロで埋めて広げる

→画像のエッジ部分の情報を適切に扱えるようになる

例:padding=2

0	0	0	0	0	0	0	O	0
0	0	O	0	O	0	0	0	0
0	O	101	148	156	129	179	168	201
0	O	130	149	176	198	139	189	112
0	0	146	176	129	182	194	127	182

(再掲) DCNN各層のハイパーパラメータ

活性化関数

- Sigmoid
- tanh
- ReLU

Convolutional layer以外のlayer

Max pooling

前の層にmax()フィルタをかける

=適用範囲のうち、最大値のみをとり、残りを切り捨てる

ハイパーパラメータ:

- カーネルサイズk
- Stride s

Pooling layer

- ▶ Max poolingの他にもいろいろ提案されている
 - Average pooling
- ▶ まとめてPooling layerと言ったりする

Convolutional layer以外のlayer

全結合層

- ▶ 普通の全結合NNをConvolutional Layerの後に くっつけることがよくある
- ▶ Dense connected layerと言ったりする
- ▶ Convolutional Layerの出力は(W, H, D)の3次元配列
 - →(W×H×D)の1次元配列にflattenして入力にする

(chainerだと気にしなくても良しなにやってくれる)

CNNの学習

誤差逆伝播 Back propagation

- ▶ CNNの学習もBPによって行う
- Convolutional Layer
 - 前の層の影響するピクセルに 誤差を蓄積させていく
 - ▶ 逆畳み込みのような感じ
- Pooling Layer
 - 前の層の影響するピクセルを覚えておいて、 誤差を逆伝播させる
 - ▶ (chainerが良しなにやってくれます)

CNNの性能を上げるための 様々なテクニック

Data augmentation

- CNNはPoolingによって平行移動には強くなった (平行移動不変性を獲得した)
- ▶ But, 回転不変性・鏡像不変性・affine変換不変性 などの特性は持っていない
- ▶ →学習データを回転・反転・変形などして使うことで、これらの変換に対応する
- ▶ データ量が増え、過学習抑止効果も

Dropout [N. Srivastava et al., 2014]

- ▶ 学習時:ニューロンを一定の確率pで無視する
- ▶ 推論時:全ニューロンを使い、結合重みをp倍する

- 同時に複数のネットワークを学習し、 平均を取ったのと似た効果が得られる (アンサンブル学習)
 - →正則化と同様の効果=過学習耐性

Mean normalization

- ▶ データセット全体のRGB毎のピクセル値の平均を 計算しておき、入力画像から引く
 - 各(x,y)座標毎に平均をとったり、x,yは無視して画像全体で平均をとったり

CNNの定性的な特徴

CNNの定性的な特徴

- パラメータ数が少ない
 - Weight sharing
 - ▶ 同じ重み(フィルタ)を複数領域で共有
 - 対象ドメイン(画像)のlocalityが前提
 - ▶ 過学習しづらい
 - 計算が楽
- ▶ 平行移動不変性
 - pooling

フィルタの自動獲得

(初期値は乱数で与えているのに)

CNNを学習させると、

識別に有効なフィルタが自動的に獲得される

Krizhevsky et.al., 2012

End-to-Endの画像識別器

後半を識別器と見ることもできる

→SVMに置き換えたりもできる

従来(Deep NN以前)、研究者が手作業で頑張っていた 特徴フィルタの設計が自動化される

NICO2AISCHOOL

特徴抽出器としてのCNN

フィルタ=特徴抽出

たとえば、 エッジに強く 反応するフィルタ

エッジが強調された 画像

各層の出力=特徴マップ

より高次の特徴へ

低次の特徴 エッジ・形状・色など 高次の特徴

「顔のパーツっぽさ」など

参考) VGG16の可視化

https://blog.keras.io/how-convolutional-neuralnetworks-see-the-world.html

CNNと生物の視覚野の類似性

Hubel and Wieselの実験

傾き選択性のある細胞

サルの第一次視覚野から記録した傾きに選択性を持つ細胞

Hubel and Wiesel, 1968

CNNとの類似性

AlexNetの1層目の可視化

→単純なパターンに反応するフィルタが獲得されている

Krizhevsky et.al., 2012

→1次視覚野と類似!(?)

(再掲) より高次の特徴へ

低次の特徴

エッジ・形状・色など

高次の特徴

「顔のパーツっぽさ」など

簡単なパターン抽出の組み合わせで高次の特徴を表現できる

单純型細胞·複雜型細胞

Text-fig. 2. Common arrangements of lateral geniculate and cortical receptive fields. A. 'On'-centre geniculate receptive field. B. 'Off'-centre geniculate receptive field. C-G. Various arrangements of simple cortical receptive fields. \times , areas giving excitatory responses ('on' responses); \triangle , areas giving inhibitory responses ('off' responses). Receptive-field axes are shown by continuous lines through field centres; in the figure these are all oblique, but each arrangement occurs in all orientations.

単純細胞の組み合わせで複雑細胞が構成される

視覚神経モデル化の歴史

- ネオコグニトロン [Fukushima, 1980]
 - S細胞と C細胞との繰り返し。
 最初の多層(深層)化された物体認識モデルととらえられる
 - S 細胞:生理学の単純細胞 simple cells に対応。 受容野 receptive fileds の概念を実現。 特徴抽出、特徴検出を行う。
 - ▶ C細胞:複雑細胞 complex cells に対応。 広い受容野。位置、回転、拡大縮小の差異を吸収

CNNの進化

LeNet [LeCun et al., 1998]

AlexNet [Krizhevsky et.al., 2012]

GoogLeNet [Szegedy et al., 2014]

ResNet [He et al., 2015]

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

CNNの進化やばい

- ▶ 2012年のAlexNet以降、
 - 数え切れない数のモデルが提案されている (紹介しきれません)
 - VGG
 - GoogLeNet
 - ResNet
- ▶ 基本的に、よりDeepに、Deepに…
- ▶ 生物の視覚神経との類似性はどこへやら
- ▶ CNNの独自進化の結果、逆に生物を理解する成果が出る かも…?

局所結合ネットワーク Locally Connected Layers

- ▶ 結合の重みが位置によって違う
 - =Weight sharingしない
- 画像のアラインメントが仮定されるタスクではCNN より高精度なものも
 - Deep Face [Taigman et al., 2014]

Chainerでやってみる

紹介した道具は全てchainerに用意されています

- Convolutional layer
 - Hyper parameters: k, s, p, (w, h)
- Pooling layer
 - Type: max, average, ...
 - Hyper parameters: k, s
- Dropout
 - Hyper parameters: p
- Data augmentation
- Normalizations
- etc...

注意

▶ 先にMNISTのダウンロードを実行しておく