Claim: For every $n \in \mathbb{N}$, $h(S^n(p)) = n$.

Proof. We will prove the claim by induction on n.

Base Case: n=1

We want to show h(S(p)) = 1. This was done in the booklet which we will restate. Consider the following.

$$h(p) = h(I^*(\mathbf{c}))$$
 Since $p = I^*(\mathbf{c})$
= $I(\mathbf{c})$ Since h is a homomorphism
= 0

Hence,

$$h(S(p)) = h(I^*(\mathbf{f})(p))$$
 Since $I^*(\mathbf{f}) = S$
 $= I(\mathbf{f})(h(p))$ Since h is a homomorphism
 $= I(\mathbf{f})(0)$ Since $h(p) = 0$
 $= successor(0)$ Since $I(\mathbf{f}) = successor$
 $= 1$

This completes the base case.

IH:
$$h(S^n(p)) = n$$

Show: $h(S^{n+1}(p)) = n + 1$

Consider the following.

$$h(S^{n+1}(p)) = h(S(S^n(p)))$$

 $= h(I^*(\mathbf{f})(S^n(p)))$ Since $I^*(\mathbf{f}) = S$
 $= I(\mathbf{f})(h(S^n(p)))$ Since h is a homomorphism
 $= I(\mathbf{f})(n)$ By \mathbf{IH}
 $= successor(n)$ Since $I(\mathbf{f}) = successor$
 $= n+1$

This completes the proof, as required.

Suppose that the language L has no equals sign, one unary predicate symbol F, one unary function symbol f, and no other predicate symbols, function symbols or constant symbols.

Conjecture: For every model M for L, there is a finite model M' such that M' is elementarily equivalent to M.

We will show that the **Conjecture** is false.

Proof. Let $M = \langle D, I \rangle$ be the following model.

 $D=\mathbb{N}.$

$$I(F) = \{ x \in \mathbb{N} : \exists y \in \mathbb{N}, x = 2^y \}.$$

$$I(f)(n) = n + 1$$
 for every $n \in D$.

We want to show that there is no finite model M' such that $M \equiv M'$.

Assume for the sake of contradiction that there is a finite model $M' = \langle D', I' \rangle$ where card(D') = k for some $k \in \mathbb{N}$ such that $M \equiv M'$.

Note that $2 \in I(F)$. Hence, $I(F) \neq \emptyset$. Hence, $M \models \exists xFx$. Since $M \equiv M'$, we have that $M' \models \exists xFx$. Hence, $I'(F) \neq \emptyset$. So we will not have issues involving empty sets.

We know that the gaps between the powers of two within the natural numbers become arbitrarily large.

Hence, for some j > k, there exists a sequence of j-many consecutive natural numbers that are not powers of two.

Hence, for some $s \in \mathbb{N}$, we have that $s \in I(F)$, but $s+1, s+2, ..., s+j \notin I(F)$, and $s+j+1 \in I(F)$. In other words, we have a power of two, followed by j many consecutive natural numbers that are not powers of two, followed by another power of two.

Notation 1: For any term t, let $\mathbf{f}^{0}t$ be t itself. And define $\mathbf{f}^{\mathbf{n}+1}t$ to be $\mathbf{ff}^{\mathbf{n}}t$.

Hence,

$$M \models \exists \mathbf{x} \left(\mathbf{F} \mathbf{x} \left(\bigwedge_{\mathbf{n}=1}^{\mathbf{j}} \sim \mathbf{F} \mathbf{f}^{\mathbf{n}} \mathbf{x} \right) \wedge \mathbf{F}^{\mathbf{j}+1} \mathbf{x} \right)$$

Note, the above sentence is written informally. Since there are only finitely many conjunctions and finite indices, the sentence is well-formed (but written informally).

Since $M \equiv M'$, we have that,

$$M' \models \exists \mathbf{x} \left(\mathbf{F} \mathbf{x} \left(\bigwedge_{\mathbf{n}=1}^{\mathbf{j}} \sim \mathbf{F} \mathbf{f}^{\mathbf{n}} \mathbf{x} \right) \wedge \mathbf{F}^{\mathbf{j}+1} \mathbf{x} \right)$$
 (1)

Notation 2: Let S = I'(f). For any $d \in D'$, let $S^0(d) = d$. And define $S^{n+1}(d) = S(S^n(d))$. Notice that $S^1(d) = S(d)$.

Hence, by (1), there exists $d \in D'$ such that $d \in I'(F)$, but $S^1(d), S^2(d), ..., S^j(d) \notin I'(F)$ and $S^{j+1}(d) \in I'(F)$.

We want to show that $S^{j+1}(d) \notin I'(F)$ which will contradict $S^{j+1}(d) \in I'(F)$.

Let $A = \{S^1(d), S^2(d), ..., S^j(d)\}$. Notice that for all $x \in A$, we have that $x \notin I'(F)$.

Recall that j > k where k = card(D'). Hence, j > card(D').

Hence, we know that at least two of $S^1(d), S^2(d), ..., S^j(d) \in A$ are equal.

Hence, for some $p, q \in \mathbb{N}$ such that $1 \leq p < q \leq j$, we have that $S^p(d) = S^q(d)$.

Consider the set $B = \{S^p(d), S^{p+1}(d), ..., S^{q-1}(d)\} \subseteq A$. We will prove the following Lemma.

Lemma 1: B is a closed set under applications of S. i.e. For every $x \in B$, we have $S(x) \in B$.

Let $x \in B$. Hence, $x = S^r(d)$ for some $r \in \{p, p + 1, ..., q - 1\}$.

Case 1: If $r \in \{p, p+1, ..., q-2\}$, then clearly $S(x) = S(S^r(d)) = S^{r+1}(d) \in B$ since $r+1 \in \{p+1, p+2, ..., q-1\}$.

Case 2: If r = q - 1, then $S(x) = S(S^r(d)) = S^{r+1}(d) = S^{(q-1)+1} = S^q(d) = S^p(d) \in B$.

In either case, $S(x) \in B$, proving **Lemma 1**.

Lemma 2: For every $x \in B$ and every $n \ge 1$, we have $S^n(x) \in B$.

Let $x \in B$. We will use induction on n.

Base Case: n = 1. Clearly $S^1(x) = S(x) \in B$ by Lemma 1.

IH: $S^n(x) \in B$ Show: $S^{n+1}(x) \in B$

We know $S^n(x) \in B$ by **IH**. Hence, by **Lemma 1**, we have that $S(S^n(x)) = S^{n+1}(x) \in B$, proving **Lemma 2**.

Lemma 3: For every $m, n \ge 1$, we have that $S^n(S^m(d)) = S^{m+n}(d)$.

Let $m \in \mathbb{N}$ such that $m \geq 1$ be arbitrary. We will use induction on n.

Base Case: n = 1. Clearly $S(S^m(d)) = S^{m+1}(d)$ by Notation 2.

IH: $S^n(S^m(d)) = S^{m+n}(d)$.

Show: $S^{n+1}(S^m(d)) = S^{m+(n+1)}(d)$

Consider the following.

$$S^{n+1}(S^m(d)) = S(S^n(S^m(d))$$
 By Notation 2
= $S(S^{m+n}(d))$ By IH
= $S^{(m+n)+1}(d)$ By Notation 2
= $S^{m+(n+1)}(d)$

This completes the proof of Lemma 3.

Since $S^{q-1}(d) \in B$, we have that $S(S^{q-1}(d)) = S^q \in B$ by **Lemma 1**.

We know that $q \leq j$. Hence, q < j + 1. Hence, j + 1 - q > 0. Hence, $j + 1 - q \geq 1$.

Since $S^q(d) \in B$, by **Lemma 2** we have that $S^{(j+1-q)}(S^q(d)) \in B$.

By **Lemma 3**, $S^{(j+1-q)}(S^q(d)) = S^{q+(j+1-q)}(d)$. Hence, $S^{q+(j+1-q)}(d) \in B$,

And clearly q + (j + 1 - q) = j + 1. Hence, $S^{j+1}(d) \in B$.

Since $S^{j+1}(d) \in B$ and $B \subseteq A$, we have that $S^{j+1}(d) \in A$.

But we know that for all $x \in A$, we have that $x \notin I'(F)$.

Hence, $S^{j+1}(d) \notin I'(F)$. But this contradicts our earlier result that $S^{j+1}(d) \in I'(F)$.

Therefore, our assumption was wrong and there is no finite model M' for L such that $M \equiv M'$.

Therefore, the conjecture is false, completing the proof, as required.

Suppose that the language L has the equals sign, one binary predicate P, and no other predicate symbols, function symbols, or constant symbols. Let $M = \langle \mathbb{Q}, I \rangle$, where $I(P) = \langle \mathbb{Q} \rangle$ and $M' = \langle \mathbb{R}, I' \rangle$, where $I'(P) = \langle \mathbb{R} \rangle$. Sometimes we write these as $M = (\mathbb{Q}, \langle \rangle)$ and $M' = (\mathbb{R}, \langle \rangle)$. Note that M and M' are not isomorphic.

Required: Show that M and M' are elementarily equivalent.

Let Γ be the set of sentences of DLOWE on page 70 of the booklet. Note that the sentences in the booklet have a binary predicate R instead of P. So let Γ be the set of sentences of DLOWE that replaces every instance of R with P.

And we know that $M \models \Gamma$ and $M' \models \Gamma$.

First we will prove the following Lemma.

Lemma: Γ is complete. i.e. For every $\phi \in Sent_L$, either $\Gamma \models \phi$ or $\Gamma \models \sim \phi$.

Proof. Assume for the sake of contradiction that there exists a $\phi \in Sent_L$ such that $\Gamma \not\models \phi$ and $\Gamma \not\models \sim \phi$.

Hence, there exists a model M_0 for L such that $M_0 \models \Gamma$ and $M_0 \not\models \phi$.

And, there exists a model M_1 for L such that $M_1 \models \Gamma$ and $M_1 \not\models \sim \phi$.

Equivalently, we have that $M_0 \models \Gamma$ and $M_0 \models \sim \phi$ and we have that $M_1 \models \Gamma$ and $M_1 \models \phi$.

Now, by the Downward Lowhenheim Skolem Theorem, there exists a countable model M'_0 such that $M'_0 \models \Gamma$ and $M'_0 \models \sim \phi$.

And, by the Downward Lowhenheim Skolem Theorem, there exists a countable model M'_1 such that $M'_1 \models \Gamma$ and $M'_1 \models \phi$.

Notice that we have $M_0' \models \sim \phi$ and $M_1' \models \phi$.

Equivalently, $M_0' \not\models \phi$ and $M_1' \models \phi$.

By Theorem 7.4.2 we know that any two countable models of DLOWE are isomorphic. Since M'_0 and M'_1 are countable models, and $M'_0 \models \Gamma$ and $M'_1 \models \Gamma$, we have that $M'_0 \approx M'_1$.

By the Isomorphism Theorem (6.2.6), since $M_0' \approx M_1'$, we have that $M_0' \equiv M_1'$.

This means that for any $\sigma \in Sent_L$, we have $M_0' \models \sigma$ iff $M_1' \models \sigma$.

But we have that $M'_0 \not\models \phi$ and $M'_1 \models \phi$ which is a contradiction. Therefore, our initial assumption was wrong.

This completes the proof of the Lemma.

Proof that $M \equiv M'$

Proof. We know that $M \models \Gamma$ and $M' \models \Gamma$.

We want to show that for all $\phi \in Sent_L$, we have $M \models \phi \Leftrightarrow M' \models \phi$.

Note: We're just using the symbol \Leftrightarrow as a shorthand for 'iff' in the metalanguage. And \Rightarrow is just 'if' etc.

Let $\phi \in Sent_L$.

Show: $M \models \phi \Leftrightarrow M' \models \phi$.

By our **Lemma**, we know that either $\Gamma \models \phi$ or $\Gamma \models \sim \phi$. We will consider both cases.

Case 1: $\Gamma \models \phi$

 (\Rightarrow) : Assume $M \models \phi$. Since $\Gamma \models \phi$ and $M' \models \Gamma$, we have that $M' \models \phi$.

 (\Leftarrow) : Assume $M' \models \phi$. Since $\Gamma \models \phi$ and $M \models \Gamma$, we have that $M \models \phi$.

Case 2: $\Gamma \models \sim \phi$

 (\Rightarrow) : We will show this by the contrapositive. Assume $M' \not\models \phi$. Since $\Gamma \models \sim \phi$ and $M \models \Gamma$, we have that $M \models \sim \phi$. Hence, $M \not\models \phi$.

(\Leftarrow): We will show this by the contrapositive. Assume $M \not\models \phi$. Since $\Gamma \models \sim \phi$ and $M' \models \Gamma$, we have that $M' \models \sim \phi$. Hence, $M' \not\models \phi$.

Hence, in either case we have demonstrated the **Show** line.

Therefore, we have proven that for all $\phi \in Sent_L$, we have $M \models \phi \Leftrightarrow M' \models \phi$.

Hence, $M \equiv M'$. i.e. M and M' are elementarily equivalent, as required.

Suppose that the language L has the equals sign and one binary predicate \mathbf{P} , and no other predicate symbols, function symbols, or constants. Let $M = \langle \mathbb{N}, I \rangle$, where $I(P) = <_{\mathbb{N}}$. Sometimes we write this as $M = \langle \mathbb{N}, < \rangle$.

ϕ_0 representing $\{0\}$

Required: Write down a formula ϕ_0 that represents $\{0\}$ with one free variable $\mathbf{v_1}$.

Note: We will be using infix notation.

Let ϕ_0 be the following formula with free variable $\mathbf{v_1}$.

$$\forall v_3(v_1 \neq v_3 \rightarrow v_1 P v_3)$$

ϕ_1 representing $\{1\}$

Required: Write down a formula ϕ_1 that represents $\{1\}$ with one free variable $\mathbf{v_1}$.

Note: We will use free variable $\mathbf{v_2}$ as opposed to free variable $\mathbf{v_1}$ so that we could use our formula ϕ_0 and not have issues with scope. Our formula will still represent $\{1\}$. We will also be using infix notation.

Let ϕ_1 be the following formula with free variable $\mathbf{v_2}$.

$$\exists \mathbf{v_1}(\phi_0 \land \mathbf{v_1} \neq \mathbf{v_2} \land \forall \mathbf{v_4}(\mathbf{v_1} \neq \mathbf{v_4} \land \mathbf{v_2} \neq \mathbf{v_4} \rightarrow \mathbf{v_2} \mathbf{P} \mathbf{v_4}))$$

Note: In our formula ϕ_1 above we used free variable $\mathbf{v_2}$ instead of $\mathbf{v_1}$ so that we could use our formula ϕ_0 which also contains free variable $\mathbf{v_1}$. This seemed like the intention of the exercise where we use previous formulas to define new formulas. This also seems necessary for Assignment 6 that was mentioned at the end of the handout for Assignment 5.

If we insist on using free variable $\mathbf{v_1}$ in ϕ_1 , then we cannot use our original ϕ_0 and instead have to relabel the variables in ϕ_0 .

i.e. If we **insist** on using free variable $\mathbf{v_1}$ in ϕ_1 , then we define ϕ_1 and ϕ_0 as follows.

Let ϕ_0 be the formula $\forall \mathbf{v_3}(\mathbf{v_2} \neq \mathbf{v_3} \rightarrow \mathbf{v_2} \mathbf{P} \mathbf{v_3})$ with free variable $\mathbf{v_2}$.

Then, let ϕ_1 be the following formula with free variable $\mathbf{v_1}$.

$$\exists \mathbf{v_2} (\phi_0 \land \mathbf{v_2} \neq \mathbf{v_1} \land \forall \mathbf{v_4} (\mathbf{v_2} \neq \mathbf{v_4} \land \mathbf{v_1} \neq \mathbf{v_4} \rightarrow \mathbf{v_1} \mathbf{P} \mathbf{v_4}))$$