# High-Frequency ETF Pairs Trading

Jack Simonson
December 23, 2017

#### Abstract

In this paper we examine the effectiveness of modeling a paris-traded ETF portfolio as an Ornstein-Uhlenbeck process. Using ETF pairs that have similar references indexes, we apply maximum likelihood estimation to historical data in order to optimize trading sginals for two strategies. Using this information, we test the optimal trading rules using intraday price observations over a variety of trading periods ranging from 5 days to 42 days. Our results have shown that the sample of ETF pairs-traded portfolios selected exhibit mean-reversion properties that are well modeled as an Ornstein-Uhlenbeck process. We have found that while higher total trading returns were correlated with shorter optimization and trading periods, they also carried considerable risk and as such more stable results were found using longer optimization and trading windows.

### Overview

My strategy project will focus on statistical arbitrage trading via pairs-trading. It is well understood in finance that numerous instruments exhibit mean-reversion properties (see Elliott, Hoek, and Malcolm (2005), Leung and Li (2016), Avellaneda and Lee (2010), Gatev, Goetzmann, and Rouwenhorst (2006), Yadav and Pope (1992), and MacKinlay and Ramaswamy (1988)). Single securities are often too volatile or non-stationary, but by taking positions in two cointegrated securities we can construct a portfolio that displays mean-reversion properties with greater reliability. Rather than testing for cointegration, I will instead assume that two ETFs that are designed to track the same index or commodity are highly cointegrated, and as such a long-short portfolio of them will create a stationary time series, herein modeled as an Ornstein-Uhlenbeck (OU) process (see Leung and Li (2015)). The intuition behind the strategy is that two ETFs tracking the same index or commodity should be priced the same (have the same proportional price movements), and so any mis-pricing of the assets can be exploited for statistical arbitrage (Gatev, Goetzmann, and Rouwenhorst (2006) conclude that the robustness of their results from a pairs trading strategy indicate that pairs trading profits from temporary mispricing of assets). These assumptions also imply that the market direction shouldn't affect the success of the strategy and, theoretically, there is no exposure to the broader market regardless of global market trends. Thus, the strategy is based on relative value pricing between the two assets in each portfolio.

The pairs portfolios will be composed of two assets, with respective positions  $\alpha_{t-1}^i$  and  $\beta_{t-1}^i$ 

$$P_t^i = \alpha_{t-1}^i S_t^1 - \beta_{t-1}^i S_t^2$$

where  $P_t^i$  is the  $i^{th}$  portfolio during trading period t, with optimal weights found via maximum likelihood estimation (MLE) during period t-1. Finding the optimal investment weights in t-1 will also provide the optimal long-run mean for the portfolio during that trading period, and the hypothesis is that the portfolio will continue to revert back to this same mean during out-of-sample testing. Market entry/exit signals are also found during period t-1 based on which buy/sell levels maximize total returns. From these indicators and signals, we either buy the portfolio (buy  $\alpha_{t-1}^i$  shares of  $S^1$  and sell/short  $\beta_{t-1}^i$  shares of  $S^2$ ) or sell/short the portfolio.

Based on the model above, I test two trading strategies for each portfolio: 1) Hold positions over night and trade exclusively on the price movements and the interaction with indicators, signals, and rules process, and 2) trade during the day based on indicators, signals, and rules, but with the additional rule where we liquidate all positions at the end of the trading date regardless of portfolio value. Each strategy will be tested for trading periods of length 5 days, 11 days, 21 days, 31 days, and 42 days (total trading periods = total observations/(trading days x 78), where 78 is the number of observations per day based on 5-minute pricing).

The success of the strategy will be measured based on total returns compounded over the total year's worth of trading data (12 months, with the first month serving as the optimization period for the first actual trading month), where simple returns are given by

$$r_t = \frac{P_t - P_{t-1}}{P_{t-1}}$$

for any observation t, and where total returns over period t to t+i are given by

$$TR_t = \prod_{i=1}^{n} (1 + r_i) - 1$$

I will also use Sharpe Ratio to evaluate each portfolio by using the mean return and average volatility over the 12 month period, but 'success' is ascribed based on total returns.

#### Hypotheses

The central hypothesis of this paper is that the closeout trading strategy – where positions are liquidated at the end of every trading day – outperforms the non-closeout strategy – positions are held overnight and only adjusted based on the spread and portfolio price – as assessed by total returns when both are traded based on their respective optimal market entry/exit points. A secondary but related hypothesis is that it is not necessary to trade optimally (in terms of pure returns per trade) given a high enough

trading frequency. The closeout strategy should trade more frequently during a given trading period, and so consistently higher overall returns with smaller returns per trade would support this hypothesis.

Another underlying assumption is that the optimal parameters found in trading period t-1 will also be optimal during period t, which will be easy to test based on simple comparison. However, the overall validity of this assumption can be tested via the mean-squared error between the optimized parameters in t-1 and the optimized parameters in t.

### **Key Techniques**

While not a hypothesis test, a key technique required for my strategy is to estimate the parameters of the OU model using the maximum likelihood estimation procedure outlined by Leung and Li (2015). Under the OU model, the conditional probability density of the process (portfolio)  $\{X_{t_i}\}_0^n$  at any given time  $t_i$  given  $X_{t_{i-1}} = x_{t_{i-1}}$  is

$$f(x_i|x_{i-1};\theta,\mu,\sigma) = \frac{1}{2\pi\tilde{\sigma}^2} exp\left(-\frac{(x_i - x_{i-1}e^{-\mu\Delta t} - \theta(1 - e^{-\mu\Delta t}))^2}{2\tilde{\sigma}^2}\right)$$

where

$$\tilde{\sigma}^2 = \sigma^2 \frac{1 - e^{-2\mu\Delta t}}{2\mu}$$

After observing n values  $x_t^{\alpha,\beta}$  for the process we maximize the average log-likelihood defined by

$$l(\theta, \mu, \sigma | x_0^{\alpha, \beta}, x_1^{\alpha, \beta}, \dots, x_n^{\alpha, \beta}) = \frac{1}{n} \sum_{i=1}^n \log f(x_i | x_{i-1}; \theta, \mu, \sigma)$$
$$= -\frac{1}{2} \log(2\pi) - \log(\tilde{\sigma}) - \frac{1}{2n\tilde{\sigma}^2} \sum_{i=1}^n (x_i - x_{i-1}e^{-\mu\Delta t} - \theta(1 - e^{-\mu\Delta t}))^2$$

Leung and Li (2015) define the following to express the parameter values that maximize the average log-likelihood given above

$$X_x = \sum_{i=1}^n x_{i-1}^{\alpha,\beta}$$

$$X_y = \sum_{i=1}^n x_i^{\alpha,\beta}$$

$$X_{xx} = \sum_{i=1}^n (x_{i-1}^{\alpha,\beta})^2$$

$$X_{xy} = \sum_{i=1}^n x_{i-1}^{\alpha,\beta} x_i^{\alpha,\beta}$$

$$X_{yy} = \sum_{i=1}^n (x_i^{\alpha,\beta})^2$$

Now, the optimal parameter estimates are given explicitly by

$$\hat{\theta} = \frac{X_y X_{xx} - X_x X_{xy}}{n (X_{xx} - X_{xy}) - (X_x^2 - X_x X_y)}$$

$$\hat{\mu} = -\frac{1}{\Delta t} \log \frac{X_{xy} - \hat{\theta} X_x - \hat{\theta} X_y + n\hat{\theta}^2}{X_{xx} - 2\hat{\theta} X_x + n\hat{\theta}^2}$$

$$\hat{\sigma}^2 = \frac{2\hat{\mu}}{n(1 - e^{-2\hat{\mu}\Delta t})} (X_{yy} - 2e^{-\hat{\mu}\Delta t} X_{xy} + e^{-2\hat{\mu}\Delta t} X_{xx} - 2\hat{\theta}(1 - e^{-\hat{\mu}\Delta t})(X_y - e^{-\hat{\mu}\Delta t} X_x) + n\hat{\theta}^2(1 - e^{-\hat{\mu}\Delta t})^2)$$

So, letting  $\hat{l}(\hat{\theta}, \hat{\mu}, \hat{\sigma})$ , we fix  $\alpha$  to be the amount of initial capital divided by the initial value of the long asset at time t = 0 and then choose  $\beta^*$  where

$$\beta^* = \underset{\beta}{\operatorname{argmax}} \ \hat{l}(\hat{\theta}, \hat{\mu}, \hat{\sigma} | x_0^{\alpha, \beta}, x_1^{\alpha, \beta}, ..., x_n^{\alpha, \beta})$$

so that our portfolios are given by

$$P_t^i = \alpha S_t^1 - \beta^* S_t^2$$

With the long-run mean estimate  $\hat{\theta}$  in hand, we back-test entry/exit spreads based on dollar-difference from the long-run mean and isolate the spread that maximizes returns (i.e., test  $\pm \$1, \pm \$2$ , etc. as the entry/exit spreads so that we are buying the portfolio if it is undervalued and selling the portfolio if it is overvalued). At every price observation, the strategy will either buy, sell, or remain neutral 1-share of the portfolio, where buying one share is buying  $\alpha$  shares of asset one and shorting  $\beta$  shares of asset two, and vice versa for selling (in this paper, one trade refers to either buying or selling the *portfolio* once). So, when a position is closed in the closeout strategy, the number of trades is the absolute value of the number of shares of the portfolio held just prior to the end of the trading day (another way to state this is that the number of trades executed in a trading period is the sum of the absolute number of shares bought or sold of the portfolio itself). This method is a 'brute force' approach rather than solving stopping problems or using statistical moments. Whatever the market entry/exits points are discovered for trading period t-1 are the ones used to trade in period t. This will act as a rolling estimation and trading window where signals (parameters) are 'rebalanced' every x days for  $x \in \{5, 11, 21, 31, 42\}$ .

### Filters – Indicators, Signals, and Rules

#### **Indicators**

The indicators necessary for implementation of both strategies that I will be testing are based on relative value pricing of the two assets in each pairs portfolio, along with OU parameters estimated via maximum likelihood estimation (MLE). Speed of mean reversion ( $\mu > 0$ ) and volatility ( $\sigma > 0$ ) will not be included as indicators in the strategy, although incorporating these could provide material for an extension of this paper. The primary indicator will be the estimate of the long-run mean of the process  $\theta$ , where the process is given by

$$\Delta P_t^i = \mu_{t-1}^i \left( \theta_{t-1}^i - P_t^i \right) \Delta dt - \sigma_{t-1}^i \Delta W_t^i$$

and  $W_t^i$  is a standard Brownian motion.

The indicator  $\theta^i_{t-1}$  for pairs portfolio  $P^i_t$  is derived from MLE applied to market data over trading period t-1. Given an initial dollar value A invested in the long position, we optimize the dollar value B invested in the short position (and by extension, the number of shares invested in each asset) by testing B values for B/A = 0.001, 0.002, ..., 1 based on the maximum log-likelihood value obtained via MLE. Thus, the positions taken in each asset during trading period t (trading based on market data in period t), are given by the optimized dollar amounts A and B from trading period t-1. The portfolio at time t is

$$P_t^i = \alpha_{t-1}^i S_t^{i,1} - \beta_{t-1}^i S_t^{i,2}$$

where  $S_t^{i,1}$  and  $S_t^{i,2}$  are time-series of market data for each asset traded in portfolio i. The primary indicator, however, is  $\theta_{t-1}^i$ , which we will take positions in the asset based on the value of  $P_t^i$  relative to  $\theta_{t-1}^i$ .

The underlying hypothesis about the indicators in the strategy is that the value  $\theta^i_{t-1}$  will be an accurate measure of the long-run mean for trading period t. In theory, the value of the portfolio should fluctuate around the same mean no matter what the broader market conditions are since the portfolio is composed of optimized shares invested in each asset. If  $\theta^i_{t-1}$  is a good indicator, then the absolute total returns calculated in trading period t should be maximal when trading based on the optimal signals derived from  $\theta^i_{t-1}$ , discussed below. The indicator  $\theta^i_{t-1}$  will be evaluated based on MSE between periods.

#### Signals

The signals for trading during period t will be based on the indicator  $\theta_{t-1}^i$ . After optimizing our positions in each asset during t-1 based on MLE, we test each strategy based on a widening buy/sell spread built around the value  $\theta_{t-1}^i$ . Each portfolio will be traded using the buy/sell signals  $\pm 0.5, \pm 1.5, ..., \{-0.5 - min(k, |P_{t-1}^i(0) - min(P_{t-1}^i)|, 0.5 + min(k, |max(P_{t-1}^i) - P_{t-1}^i(0)|)]\}$ , for  $k \in [-(P_{t-1}^i(0) - min(P_{t-1}^i)), max(P_{t-1}^i) - P_{t-1}^i(0)]$ . Put more simply, we expand the market entry/exit signals by \$1 around the spread until we hit the maximum absolute difference between the maximum and minimum value of the portfolio in t-1 and its initial value. Our trading signal in t is the spread that maximizes total returns over period t-1, and so our signals can change from one trading period to another and evolve on a rolling basis. The rules that will be based on the spread are to sell/short the portfolio for each pricing time (every 5 minutes) that the portfolio value  $P_t^i$  is above  $\theta_{t-1}^i + sell_{i-1}$  and to buy when it is at or below  $\theta_{t-1}^i - buy_{i-1}$ . The choice of \$1 is arbitrary, and there is possible room for improvement here by decreasing the amount the spread changes over each iteration or by doing this based on a relationship to the initial portfolio value (additionally, the signals are also not necessarily symmetric about the mean).

As such, the signals will be difficult to test for since there is not a fixed relationship to the portfolio value or any other parameters. Rather, they are found via brute force search and are based on portfolio value relative to its long run mean and not measured via standard deviation, for example. Other authors have developed different market timing signals, such as Gatev, Goetzmann, and Rouwenhorst (2006) who study entry/exit levels based on  $\pm 1$  standard deviation of the price from the mean, Elliott, Hoek, and Malcolm (2005) who model market timing signals by the first passage of an OU process, and Leung and Li (2015) who generate market timing signals by solving an optimal double stopping problem. These approaches would be easier to test, but the signals derived in this paper are somewhat  $ad\ hoc$ . This is an inherent weakness in the strategy, and so being able to extend the project to develop more rigorous signals would be a valuable addition.

#### Rules

My strategy has only a few, simple rules. We are not automating the strategy (i.e. via quantstrat), and the strategy doesn't incorporate any information about the spread, so the orders are not aggressive but rather made at the value of the pairs portfolio at the time of execution. The only rules for the non-closeout strategy is to buy the portfolio when its value during period t drops below the optimal mean and threshold  $\theta_{t-1} - buy_{t-1}$ , and to sell/short the portfolio when it is priced above  $\theta_{t-1} + sell_{t-1}$ . The strategies do nothing when the value falls in the interval between the buy and sell threshold. The only additional rule is for the closeout strategy, where all positions are liquidated at the end each trading day, regardless of the value of the portfolio.

These rules are based on optimization from the prior trading period, and as such they are certainly overfitted for the trading period in which they are derived. However, given the assumption that the portfolio will continue to revert to the mean found in t-1, then this shouldn't affect profitability, but any change in the portfolio dynamics or asset weights will increase the likelihood that the rules are no longer optimal.

Inherently, the strategy is a walk-forward analysis. It optimizes parameters during in-sample period t-1 and then evaluates the performance of the indicators, signals, and rules based on these parameters using out-of-sample data in period t. As we roll this window forward, the in-sample and out-of-sample data roll forward as well to t and t+1 respectively.

#### Literature Review

In their 2015 paper, Leung and Li develop an analytical approach to finding optimal market timing signals by solving a double stopping problem subject to transaction costs over a finite horizon. Their approach, which models pairs portfolio as an OU process and utilizes maximum likelihood estimation, is the one I've adopted above as my initial assumptions. In Leung and Li (2015) and Guo and Leung (2015), they have applied the methodology to the pairs trading of commodity ETFs.

Gatev, Goetzmann, and Rouwenhorst (2006) examine the risk and returns characteristics of pairs trading using daily data from US equity markets over 1962-2002. They don't model their portfolios by a stochastic process, but rather assume mean reversion for their data based on the theory of the Law of One Price (LOP). They filter by choosing pairs based on the criterion that they have had the same or nearly the same historical state prices and test for cointegration of the residuals of their pairs processes.

They further sort their pairs portfolios by choosing a partner asset for each stock that minimizes the sum of squared deviations between the two normalized price series. They traded multiple strategies based on different levels of standard deviation of the pairs from their historical mean (i.e.  $\pm 1, \pm 2$ ), and close out once they have reverted. In addition, they close all positions at the end of the trading period.

Their approach incorporates low-frequency institutional risk factors, such as bankruptcy, as well as short term factors such as bid-ask bounce, short selling costs, and transaction costs. They found that some short term factors affect the magnitude of excess returns, but that pairs trading remains profitable using reasonable assumption over the long term. They argue that even though their pairs strategy benefits from short-term mispricing of assets, profits are not caused by simple mean-reversion (they found an average annualized return in excess of 11%). Additionally, their risk assessment finds that their profits are uncorrelated to the S&P 500, which supports the hypothesis that the pairs strategy tested here is similarly not, or minimally, exposed to broader market movements.

Hogan et al. (2004) test a dollar-neutral strategy that holds a position  $\alpha$  in an equity and  $\beta$  in a money-market account (risk free asset) such that their initial investment is \$0 (they also argue that the risky asset they invest in can be represented by long-short positions in various assets). While they examine different strategies, such as momentum and value strategies, they also show that long-short portfolios can be used for statistical arbitrage purposes.

Avellaneda and Lee (2010) demonstrated that the residuals of a portfolio composed on long positions in two cointegrated assets can be successfully modeled as a mean-reverting process (i.e. shown to be a stationary process). The residuals in this case are the results of a long-short poortfolio of two assets, and so this lends support to the assumption of a mean-reverting model for a pairs traded portfolio.

There is considerable literature on the subject of pairs trading and mean-reversion of long-short portfolios, and the consensus seems to be that long-short portfolios of significantly cointegrated (or correlated) assets exhibit mean-reversion and can be used for statistical arbitrage using a variety of trading indicators, signals, and rules.

### Data

This paper will trade six pairs portfolios composed of the following asset pairs and their respective reference index

| SPY/VOO   | S&P 500           |
|-----------|-------------------|
| SPY/IVV   | S&P 500           |
| VOO/IVV   | S&P 500           |
| IWM/SLY   | Russell 2000      |
| VIOO/VTWO | S&P Small-Cap 600 |
| USO/OIL   | Crude Oil         |

The instruments were chose to provide a small sample of ETFs that track US equities, with some diversity coming from the different indexes themselves. The crude oil ETFs were chosen as an example of how this strategy might apply to commodity ETFs, and hopefully this could be extended to a broader array of commodity or US equity sector ETFs.

We have collected 5-min intraday observations for all ETFs from December 31, 2015 to January 31, 2016, which is roughly 272 trading days. With 78 observations per day, this makes for approximately 21,200 observations for each instrument. The prices are listed for each observation as the 'Close' price and so the bid/ask spread in not considered.

# Constraints, Benchmarks, and Objectives

The main objective is to 1) show that both strategies are profitable overall, 2) show that the closeout strategy outperforms the non-closeout strategy over the 12-month window, and 3) demonstrate that trading at optimal profit levels are not necessary for maximal overall returns. The last objective really is to show that although the closeout strategy will likely trade at a lower profit-per-trade, the higher number of trades will still lead to higher overall returns than the non-closeout for any given portfolio or trading window.

There is no true benchmark to compare the strategy to, aside from perhaps looking at the overall returns for each ETF during the 12-month period. Comparing total returns of a portfolio vs the ETFs that make up that portfolio may give an idea as to the success of the strategy versus a buy-and-hold strategy, but this is not very relevant to a statistical arbitrage strategy. In theory, the pairs portfolios will have no

market exposure and can be profitable whether or not any given instrument being traded systematically increases or decreases in value over the whole investment window. As such, the best benchmark here is the measure of overall total returns.

The strategy is constrained by the fact that, as it is coded right now, it doesn't incorporate any information from the bid/ask spread. This information is important for high-frequency trading, and even though 5 minute intervals is often considered slow by HFT standards, lacking order book information is likely a limiting factor in the realism of the results, as well as the fact that we have ignored transaction costs for the sake of simplicity. Additionally, the strategy assumes that one can take fractional positions in ETFs, and so it is trading non-integer share values/weights, which is not a realistic assumption.

# Results and Analysis









The graphical results above are taken from the first trading period during each trial (i.e. first 5 trading days, first 11 trading days, etc.). It is evident that the portfolios composed of S&P 500 ETFs exhibit strong mean reversion properties, but the portfolios also experience significant jumps in value. The jumps, likely due to a market shock (event) that quickly affects the price of one of the assets, can distort the value of the long-run mean being estimated during that period. By looking at the periods between shocks, the portfolio exhibits strong mean reversion as well, but over the entire sample these shocks can distort the strategy. The other equity ETF portfolios, IWM/SLY and VIOO/VTWO, also exhibit mean reversion properties but don't experience as many jumps in value. The commodities portfolio, USO/OIL, appears the most stable and least affected by market shocks, although the graphical results above are only one sample of numerous trading periods. Significant jumps, however, can lead to immense profit (or immense losses) if the jump forces the portfolio value to cross the mean, as evident in the results displayed for VOO/IVV 5-day. The more a portfolio actually fluctuates around  $\theta_{t-1}^i$  – that is, the more accurate the parameters, indicators, and signals are – leads to more stable trading positions and more realistic returns. On the whole, all portfolios exhbit relatively strong mean-reversion properties, indicating that the initial assumption that they follow an Ornstein-Uhlenbeck process is not a bad one.



The hypothesis that the optimized parameter  $\theta_{t-1}^i$  and asset weights  $\alpha_{t-1}^i$ ,  $\beta_{t-1}^i$  are good estimates for those that will be optimal in period t is not well supported based on the graphical results. As is evident, the parameter  $\theta_{t-1}^i$  can be significantly different from the center of the portfolio value (the actual  $\theta_t^i$ ), and while this can be distorted visually due to the high value of initial investment in asset  $S_{t-1}^i$  (\$100,000), the same proportional difference would hold for any value (this strategy can be applied without loss of generality for any initial investment). As a result, the trading signals are not optimal either, and the rule

evaluation will lead to significant risk exposure due to a strong buildup of long or short positions (i.e., all trades in a given period will be long or short, depending on value relative to signals derived in period t-1).

Table 1: SPY/VOO Results – 21 Day Period

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 1351.3861                  | 1.3348                     | -5.5164                   | -5.5164                   |
| 8375.6873                  | 3.4629                     | 124.7517                  | 175.7842                  |
| 140.9095                   | 1.2540                     | 5.0724                    | 8.0807                    |
| 20.7851                    | 1.2006                     | 17.3391                   | 15.5101                   |
| 1512.7264                  | 1.9718                     | 100.0619                  | 146.4475                  |
| 279.7298                   | 1.4983                     | 38.5646                   | 58.0860                   |
| 49.1597                    | 1.4110                     | -3.4742                   | -3.4742                   |
| 418.3291                   | 2.1980                     | 5.6424                    | 5.6424                    |
| 1123.6501                  | 2.8160                     | 98.3935                   | 98.3935                   |
| 27.5363                    | 0.9847                     | 14.7993                   | 7.7533                    |
| 1062.7822                  | 2.6094                     | 24.1964                   | 24.1964                   |
| 273.4777                   | 1.0817                     | -5.6699                   | -5.6699                   |

Table 2: SPY/IVV Results – 21 Day Period

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 851.7897                   | 0.9325                     | -5.4027                   | -5.4027                   |
| 8602.7797                  | 3.3437                     | 64.6954                   | 139.9642                  |
| 105.2500                   | 0.9847                     | 0.7521                    | 2.4389                    |
| 20.2147                    | 1.3119                     | 5.8759                    | 5.8759                    |
| 1099.2949                  | 1.4797                     | 101.6881                  | 135.7196                  |
| 41.8183                    | 0.5688                     | 144.5117                  | 54.7237                   |
| 35.8406                    | 1.3168                     | -3.5792                   | -3.5792                   |
| 294.0475                   | 1.8448                     | 29.5247                   | 29.5247                   |
| 1058.8664                  | 2.3987                     | 108.2592                  | 108.2592                  |
| 24.2462                    | 0.9987                     | -6.8826                   | -2.0168                   |
| 1877.8309                  | 1.9271                     | 40.2809                   | 40.2809                   |
| 99.2004                    | 0.7618                     | -8.2035                   | -8.2035                   |

Table 3: VOO/IVV Results – 21 Day Period

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 18.4096                    | 1.6471                     | -5.3087                   | -5.3087                   |
| 14199.8832                 | 4.8298                     | 599.9426                  | 296.8292                  |
| 1368.8518                  | 1.9600                     | 23.0455                   | 42.1307                   |

| otal Ret. (%) R | Total Ret. (%) Rolling CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Non-Roll CO |
|-----------------|---------------------------|----------------------------|----------------------------|
|                 | 9.2492                    | 1.0945                     | 21.4188                    |
|                 | 754.3923                  | 2.3303                     | 1435.0349                  |
|                 | 482.2632                  | 1.6029                     | 1230.7869                  |
|                 | -4.1636                   | 1.9203                     | 1166.9499                  |
|                 | 291.0836                  | 2.7407                     | 1233.1007                  |
|                 | 122.2621                  | 2.8643                     | 1336.6803                  |
|                 | -2.7794                   | 0.9770                     | 25.9015                    |
|                 | 2.1150                    | 3.4477                     | 3546.3245                  |
|                 | 136.3007                  | 2.1876                     | 2512.6150                  |
|                 |                           |                            |                            |

Table 4: IWM/SLY Results – 21 Day Period

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 228.8433                   | 9.7223                     | -3.1284                   | -3.1284                   |
| 190.2907                   | 29.2628                    | 30.1758                   | 30.1758                   |
| 31.0168                    | 9.2528                     | 177.0822                  | 28.4727                   |
| 130.0104                   | 18.4011                    | 6.7461                    | 6.7461                    |
| 95.6024                    | 9.1141                     | -20.7147                  | 18.2701                   |
| 39.1939                    | 8.7619                     | 47.8760                   | 47.8760                   |
| 103.8787                   | 18.3538                    | -1.1366                   | -1.1366                   |
| 186.8911                   | 11.3947                    | 41.7931                   | 34.5469                   |
| 48.8327                    | 7.5936                     | 70.1187                   | 51.3109                   |
| 52.4010                    | 14.1326                    | 16.5936                   | 16.1480                   |
| 26.1153                    | 5.9949                     | -9.7537                   | -9.7537                   |
| 71.5612                    | 10.2514                    | -69.3762                  | 36.8122                   |

Table 5: VIOO/VTWO Results – 21 Day Period

| Total Ret. (%) Rolling NC | Total Ret. (%) Rolling CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Non-Roll CO |
|---------------------------|---------------------------|----------------------------|----------------------------|
| -14.8355                  | -14.8355                  | 12.9692                    | 78.5660                    |
| 7.8184                    | 9.2523                    | 32.6433                    | 194.2216                   |
| 17.3322                   | 6.6920                    | 7.9479                     | 102.7762                   |
| 10.7277                   | 15.8111                   | 9.8979                     | 175.0710                   |
| 21.1518                   | -12.3833                  | 7.3756                     | 201.6917                   |
| 41.8481                   | 55.4694                   | 3.3336                     | 12.6378                    |
| -7.1080                   | -7.1080                   | 12.2778                    | 110.2811                   |
| 9.7532                    | 7.3837                    | 7.6322                     | 36.2419                    |

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 49.9270                    | 8.4669                     | 53.4678                   | 49.9596                   |
| 57.0693                    | 11.2076                    | 11.1613                   | 3.6088                    |
| 36.3835                    | 6.3285                     | 22.1028                   | 8.5000                    |
| 74.5576                    | 8.6297                     | 69.4613                   | 25.2950                   |

Table 6: USO/OIL Results – 21 Day Period

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 256.4495                   | 8.9119                     | 9.4906                    | -9.0097                   |
| 100.6074                   | 35.6315                    | 54.6218                   | 15.5704                   |
| 414.3429                   | 21.8632                    | 127.1948                  | 65.0515                   |
| 48.2734                    | 9.1959                     | 88.9755                   | 37.7511                   |
| 316.3661                   | 12.5105                    | -2.8587                   | -2.8587                   |
| 152.2507                   | 10.0727                    | 14.0940                   | 37.3339                   |
| 127.7878                   | 8.0227                     | -10.4672                  | -10.4672                  |
| 66.5327                    | 4.6731                     | 19.5501                   | 23.5112                   |
| 547.4493                   | 8.5441                     | 64.8338                   | 87.3296                   |
| 222.5042                   | 7.3958                     | 3.6085                    | 3.6085                    |
| 71.7631                    | 5.7910                     | -34.0966                  | 20.5026                   |
| 240.4378                   | 7.1162                     | -10.2063                  | -10.2063                  |

Table 7: SPY/VOO Results – 42 Day Period

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 5011.3600                  | 1.8741                     | 165.8112                  | 29.9607                   |
| 74.2074                    | 1.0354                     | -1.5060                   | -1.5060                   |
| 716.8370                   | 2.3794                     | 18.6532                   | 37.1595                   |
| 48.2661                    | 1.6018                     | 6.5427                    | 12.2496                   |
| 38.9164                    | 1.3937                     | -2.8876                   | 0.8325                    |

Table 8: SPY/IVV Results – 42 Day Period

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 1590.8253                  | 1.2190                     | 53.5640                   | 24.0320                   |
| 32.4506                    | 1.0453                     | 35.0266                   | 13.2000                   |

| L |   | ı |
|---|---|---|
| г | Ξ |   |
| 0 | 7 | ٦ |

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 947.5063                   | 1.8786                     | 161.1508                  | 40.0378                   |
| 71.3227<br>24.2234         | 1.2201<br>1.4429           | 16.5171<br>3.7948         | 13.6596 $2.8422$          |

Table 9: VOO/IVV Results – 42 Day Period

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 3601.0849                  | 2.2708                     | 11.4795                   | 13.3879                   |
| 35.0916                    | 1.0976                     | 88.5970                   | 5.4620                    |
| 8968.9280                  | 3.7847                     | 367.2042                  | 109.1223                  |
| 1490.3089                  | 1.9166                     | 41.5809                   | 40.7911                   |
| 24.1494                    | 1.4533                     | 3.1653                    | 2.8613                    |

Table 10: IWM/SLY Results – 42 Day Period

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 453.0948                   | 25.5839                    | 297.6076                  | 24.3897                   |
| 109.5298                   | 15.1713                    | 176.4985                  | 26.5694                   |
| 69.1808                    | 14.3634                    | 33.2011                   | 40.5763                   |
| 207.1944                   | 16.2788                    | 77.2026                   | 44.2579                   |
| 96.0204                    | 25.5232                    | -1.4232                   | -1.4232                   |

Table 11: VIOO/VTWO Results – 42 Day Period

| Total Ret. (%) Rolling NC | Total Ret. (%) Rolling CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Non-Roll CO |
|---------------------------|---------------------------|----------------------------|----------------------------|
| 30.3674                   | 17.0488                   | 23.8881                    | 115.4667                   |
| -7.5889                   | -7.5889                   | 14.4536                    | 131.0821                   |
| 28.0120                   | 15.3820                   | 11.1635                    | 224.8380                   |
| 1.2009                    | 1.2009                    | 12.1856                    | 204.2568                   |
| 16.7396                   | -27.4710                  | 18.0437                    | 97.0636                    |
|                           |                           |                            |                            |

Table 12: USO/OIL Results - 42 Day Period

| Total Ret. (%) Non-Roll CO | Total Ret. (%) Non-Roll NC | Total Ret. (%) Rolling CO | Total Ret. (%) Rolling NC |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 27.7059                    | 16.7665                    | 190.5921                  | 100.2309                  |
| 524.3192                   | 26.1971                    | -33.5078                  | 6.6263                    |
| 71.8502                    | 6.7645                     | 44.0904                   | 44.0904                   |
| 94.6806                    | 9.3719                     | 20.5386                   | 8.0573                    |
| 378.5742                   | 15.1188                    | 70.9296                   | 70.9296                   |

#### ## [1] 0

Based on total returns for each period shown in the tables above, the optimized results ('Non-Roll') are *significantly* different between the two strategies whereas the total returns for the tested periods are significantly closer. The above results show that the total returns per trading period can vary significantly from one period to the next. However, Tables 13-17 below show that the overall sample standard deviation for returns for each portfolio is very low, regardless of the trading period, and so this would indicate that the returns during the entire 12-month sample are more stable than the period-to-period fluctuation in total returns would indicate. This can be seen in the box-plots above as well. There can be significant outliers for certain portfolios in different periods, but generally the returns have a small spread around the median.

Table 13: 12-month Results for 5 trading day window

|           | t Stat | MSE       | TR CO           | TR NC            | SR CO  | SR NC  | Avg Ret CO | Avg Ret NC | Ret Std Dev CO | Ret Std Dev NC |
|-----------|--------|-----------|-----------------|------------------|--------|--------|------------|------------|----------------|----------------|
| SPY/VOO   | 0.905  | 19229625  | 3.387745e + 12  | 6.422102e+11     | 5.720  | 5.225  | 0.0014754  | 0.0013721  | 0.0122650      | 0.0097637      |
| SPY/IVV   | 1.167  | 21575680  | 3.543178e + 11  | $1.439271e{+11}$ | 6.306  | 6.209  | 0.0013810  | 0.0012965  | 0.0142309      | 0.0096580      |
| VOO/IVV   | 0.964  | 26139141  | 2.322039e+16    | 2.771348e + 15   | 12.338 | 11.168 | 0.0019698  | 0.0017834  | 0.0174643      | 0.0107610      |
| IWM/SLY   | 0.179  | 79957895  | -2.777375e+01   | 5.921352e+01     | 0.075  | 0.052  | 0.0002992  | 0.0002124  | 0.0146373      | 0.0053038      |
| VIOO/VTWO | 0.147  | 30042125  | -3.648767e + 00 | 1.248275e + 02   | 0.052  | 0.071  | 0.0001895  | 0.0002473  | 0.0105563      | 0.0050014      |
| USO/OIL   | 0.241  | 155082962 | 3.243471e + 03  | 9.714998e + 02   | 0.108  | 0.080  | 0.0005032  | 0.0003686  | 0.0160827      | 0.0082458      |

Table 14: 12-month Results for 11 trading day window

|           | t Stat | MSE       | TR CO            | TR NC            | SR CO  | SR NC  | Avg Ret CO | Avg Ret NC | Ret Std Dev CO | Ret Std Dev NC |
|-----------|--------|-----------|------------------|------------------|--------|--------|------------|------------|----------------|----------------|
| SPY/VOO   | 1.143  | 52911251  | 3.378970e + 05   | 5.082253e+05     | 7.440  | 7.402  | 0.0006540  | 0.0006660  | 0.0083585      | 0.0075084      |
| SPY/IVV   | 2.269  | 69425977  | 4.843308e+05     | 5.314546e + 04   | 8.890  | 6.504  | 0.0007034  | 0.0005563  | 0.0131245      | 0.0074378      |
| VOO/IVV   | 1.131  | 45192473  | 2.100703e+07     | 5.030370e + 06   | 17.130 | 14.658 | 0.0008732  | 0.0007842  | 0.0113505      | 0.0081303      |
| IWM/SLY   | 0.147  | 71063617  | -1.503781e+01    | 1.391029e+01     | 0.136  | 0.075  | 0.0002678  | 0.0001430  | 0.0210902      | 0.0049431      |
| VIOO/VTWO | 0.133  | 32489837  | $1.698316e{+01}$ | 1.492000e+01     | 0.101  | 0.090  | 0.0001560  | 0.0001432  | 0.0053647      | 0.0040837      |
| USO/OIL   | 0.262  | 185408918 | $6.004772e{+01}$ | $1.295912e{+01}$ | 0.117  | 0.070  | 0.0002658  | 0.0001567  | 0.0122149      | 0.0075723      |

Table 15: 12-month Results for 21 trading day window

|           | t Stat | MSE       | TR CO       | TR NC       | SR CO  | SR NC | Avg Ret CO | Avg Ret NC | Ret Std Dev CO | Ret Std Dev NC |
|-----------|--------|-----------|-------------|-------------|--------|-------|------------|------------|----------------|----------------|
| SPY/VOO   | 1.421  | 64000147  | 19.747638   | 32.367618   | 2.019  | 2.620 | 0.0001722  | 0.0001915  | 0.0063462      | 0.0054485      |
| SPY/IVV   | 2.029  | 78844984  | 25.560796   | 29.467518   | 2.582  | 2.810 | 0.0001861  | 0.0001867  | 0.0065606      | 0.0054818      |
| VOO/IVV   | 1.584  | 62999674  | 8661.867394 | 1007.531504 | 11.915 | 6.281 | 0.0005387  | 0.0003978  | 0.0130549      | 0.0092801      |
| IWM/SLY   | 0.134  | 54666266  | 3.360343    | 8.729868    | 0.148  | 0.132 | 0.0001068  | 0.0001211  | 0.0092498      | 0.0037138      |
| VIOO/VTWO | 0.173  | 66407009  | 5.514254    | 4.414772    | 0.127  | 0.101 | 0.0001036  | 0.0000851  | 0.0047657      | 0.0038107      |
| USO/OIL   | 0.357  | 641697219 | 8.714563    | 7.407480    | 0.125  | 0.100 | 0.0001612  | 0.0001272  | 0.0101105      | 0.0072192      |

Table 16: 12-month Results for 31 trading day window

|           | t Stat | MSE      | TR CO      | TR NC     | SR CO  | SR NC | Avg Ret CO | Avg Ret NC | Ret Std Dev CO | Ret Std Dev NC |
|-----------|--------|----------|------------|-----------|--------|-------|------------|------------|----------------|----------------|
| SPY/VOO   | 1.266  | 74746604 | 7.8380188  | 6.103136  | 2.408  | 2.093 | 0.0001243  | 0.0001019  | 0.0062649      | 0.0043479      |
| SPY/IVV   | 1.812  | 91866348 | 6.1321119  | 2.929071  | 2.062  | 1.328 | 0.0001090  | 0.0000642  | 0.0060782      | 0.0045569      |
| VOO/IVV   | 2.064  | 79259205 | 15.1731497 | 12.231819 | 3.247  | 2.902 | 0.0001843  | 0.0001709  | 0.0075577      | 0.0072189      |
| IWM/SLY   | 0.097  | 29451205 | 23.3879826 | 6.229902  | 0.438  | 0.175 | 0.0002122  | 0.0001033  | 0.0136175      | 0.0030235      |
| VIOO/VTWO | 0.214  | 96755956 | 4.3764567  | 3.235458  | 0.161  | 0.118 | 0.0001040  | 0.0000716  | 0.0054186      | 0.0033501      |
| USO/OIL   | 0.140  | 35364444 | 0.6082134  | 2.135444  | -0.012 | 0.058 | 0.0000260  | 0.0000613  | 0.0095413      | 0.0067165      |

Table 17: 12-month Results for 42 trading day window

|           | t Stat | MSE       | TR CO      | TR NC    | SR CO  | SR NC | Avg Ret CO | Avg Ret NC | Ret Std Dev CO | Ret Std Dev NC |
|-----------|--------|-----------|------------|----------|--------|-------|------------|------------|----------------|----------------|
| SPY/VOO   | 0.887  | 25360720  | 3.2141112  | 1.987161 | 1.987  | 0.846 | 0.0000951  | 0.0000446  | 0.0085706      | 0.0023018      |
| SPY/IVV   | 1.430  | 43114206  | 6.5488550  | 2.298280 | 3.122  | 1.087 | 0.0001264  | 0.0000529  | 0.0052174      | 0.0020626      |
| VOO/IVV   | 2.506  | 65593265  | 14.3474541 | 3.621515 | 5.571  | 1.873 | 0.0001799  | 0.0000841  | 0.0062820      | 0.0033287      |
| IWM/SLY   | 0.077  | 16992790  | 25.5799725 | 3.147310 | 0.691  | 0.163 | 0.0002894  | 0.0000755  | 0.0185576      | 0.0033124      |
| VIOO/VTWO | 0.252  | 105669153 | 0.9160628  | 1.821992 | -0.002 | 0.100 | 0.0000103  | 0.0000417  | 0.0052187      | 0.0031739      |
| USO/OIL   | 0.222  | 44947423  | 5.7363147  | 5.682008 | 0.291  | 0.232 | 0.0001465  | 0.0001352  | 0.0089144      | 0.0076350      |

Considering how much initial investment was made in the first asset, \$100,000, the MSE is misleading since even small weight adjustments in each asset can lead to substantially different initial values. Thus, the MSE of all estimated long-run means  $\hat{\theta}$  is considerably exaggerated by the actual portfolio value. The t-statistic, however, is a better measure of the fit of the optimal  $\theta^i_{t-1}$  as a predictor for  $\theta^i_t$ . The three portfolios composed of ETFs tracking the S&P 500 have (relatively) very high t-statistics, indicating that the hypothesis that the optimized  $\theta^i_{t-1}$  is a good predictor of the actual  $\theta^i_t$  is not well supported. However, the t-statistic is considerably lower for the other three portfolios, two of which also track equity indexes.

Additionally, there seems to be a slight correlation between smaller t-statistic and lower returns/Sharpe Ratios. Higher t-statistics tends to correlate with higher overall returns and Sharpe Ratio. Table 18 below shows that, generally, shorter testing periods have a higher positive correlation between t-statistic and total returns, for both strategies, with the exception of the 31 day testing period. The correlation for the 42-day period is close to 0, and slightly negative for the non-closeout strategy. This seems to indicate that the more accurate the long-run mean is as a predictor of the future mean, the lower the correlation is with overall returns. This is a somewhat paradoxical result in that the more inaccurate the parameter  $\theta$  is as a predictor of future long-run mean, then the more positively correlated it is with total returns. However, the graphical and results tables appear to support this as well, where we see significantly higher returns, generally, for portfolios who t-statistic is high. So, the more 'stable' the parameter  $\theta$  is, the higher overall returns we can predict albeit with significantly higher risk-exposure due to the buildup of long or short positions.

Table 18: Pearson Correlation between t-statistic and total returns for each strategy and trading period test

|         | Total Ret CO | Total Ret NC |
|---------|--------------|--------------|
| 5 Days  | 0.3871328    | 0.3871922    |
| 11 Days | 0.1885304    | 0.1948037    |
| 21 Days | 0.3785784    | 0.4016496    |
| 31 Days | 0.0545757    | 0.5546301    |
| 42 Days | 0.0274624    | -0.0786470   |

The final conjecture, that the closeout strategy trades less optimally per trade but that higher number of total trades leads to higher overall returns, is not supported by the results. Tables 19-23 show that, almost always, the closeout strategy trades more frequently but less optimally (lower RPT). However, the total returns for the closeout strategy don't consistently dominate those of the non-closeout, and there is no correlation between the periods/portfolios where the non-closeout has higher total returns but also trades more optimally. (I'm not certain why the 5-day period returns infinite RPT for the VOO/IVV portfolio, but we assume that the RPT are similar to those of IWM/SLY based on observation of their similar results elsewhere.)

Table 19: Returns Per Trade and total number of returns for 5-day sample

|           | Ret Per Trade (%) CO | No. Trades CO | Ret Per Trade (%) NC | No. Trades NC |
|-----------|----------------------|---------------|----------------------|---------------|
| SPY/VOO   | 0.3820075            | 600.7547      | 0.4181849            | 568.5283      |
| SPY/IVV   | 0.4047642            | 588.4906      | 0.4492698            | 561.2830      |
| VOO/IVV   | 0.6637415            | 577.4717      | 0.7233151            | 537.2830      |
| IWM/SLY   | 0.1862887            | 639.0943      | 0.2053472            | 589.3585      |
| VIOO/VTWO | $\operatorname{Inf}$ | 544.2642      | $\operatorname{Inf}$ | 513.8491      |
| USO/OIL   | 0.2444528            | 601.8113      | 0.2630264            | 551.6226      |
|           |                      |               |                      |               |

Table 20: Returns Per Trade and total number of returns for 11-day sample

|         | Ret Per Trade (%) CO | No. Trades CO | Ret Per Trade (%) NC | No. Trades NC |
|---------|----------------------|---------------|----------------------|---------------|
| SPY/VOO | 0.2010875            | 1361.500      | 0.2427667            | 1239.667      |

|           | Ret Per Trade (%) CO | No. Trades CO | Ret Per Trade (%) NC | No. Trades NC |
|-----------|----------------------|---------------|----------------------|---------------|
| SPY/IVV   | 0.1994542            | 1368.750      | 0.2143500            | 1227.167      |
| VOO/IVV   | 0.3600042            | 1368.250      | 0.4169792            | 1211.667      |
| IWM/SLY   | 0.1039792            | 1348.917      | 0.1139500            | 1212.500      |
| VIOO/VTWO | 0.1090417            | 1232.875      | 0.1231708            | 1133.708      |
| USO/OIL   | 0.0955292            | 1432.458      | 0.1045167            | 1273.625      |

Table 21: Returns Per Trade and total number of returns for 21-day sample  $\,$ 

|           | Ret Per Trade (%) CO | No. Trades CO | Ret Per Trade (%) NC | No. Trades NC |
|-----------|----------------------|---------------|----------------------|---------------|
| SPY/VOO   | 0.0517750            | 2766.750      | 0.0672833            | 2534.250      |
| SPY/IVV   | 0.0483000            | 2954.833      | 0.0627833            | 2570.500      |
| VOO/IVV   | 0.1146167            | 2836.417      | 0.0988833            | 2482.750      |
| IWM/SLY   | 0.0477167            | 2677.167      | 0.0628917            | 2362.833      |
| VIOO/VTWO | 0.0495417            | 2557.667      | 0.0595083            | 2207.667      |
| USO/OIL   | 0.0548833            | 2543.583      | 0.0658167            | 2275.083      |

Table 22: Returns Per Trade and total number of returns for 31-day sample  $\,$ 

|           | Ret Per Trade (%) CO | No. Trades CO | Ret Per Trade (%) NC | No. Trades NC |
|-----------|----------------------|---------------|----------------------|---------------|
| SPY/VOO   | 0.0373250            | 3950.500      | 0.0406500            | 3562.250      |
| SPY/IVV   | 0.0570875            | 3631.375      | 0.0583750            | 3114.375      |
| VOO/IVV   | 0.0432250            | 3711.625      | 0.0520250            | 3220.125      |
| IWM/SLY   | 0.0659750            | 3447.375      | 0.0535875            | 2878.875      |
| VIOO/VTWO | 0.0358500            | 3710.125      | 0.0378500            | 3415.375      |
| USO/OIL   | 0.0281875            | 3830.750      | 0.0384250            | 3520.000      |

Table 23: Returns Per Trade and total number of returns for 42-day sample  $\,$ 

|           | Ret Per Trade (%) CO | No. Trades CO | Ret Per Trade (%) NC | No. Trades NC |
|-----------|----------------------|---------------|----------------------|---------------|
| SPY/VOO   | 0.07000              | 3495.0        | 0.08274              | 3214.6        |
| SPY/IVV   | 0.05402              | 4445.0        | 0.06422              | 3955.0        |
| VOO/IVV   | 0.04018              | 5176.4        | 0.03468              | 4589.6        |
| IWM/SLY   | 0.04588              | 5125.2        | 0.03106              | 4402.0        |
| VIOO/VTWO | 0.01956              | 5508.6        | 0.03126              | 4619.8        |
| USO/OIL   | 0.69190              | 4824.8        | 0.92764              | 3880.4        |
|           |                      |               |                      |               |

# Overfitting

The strategy is a not quite a 'rolling' strategy, but rather a step-shift where each shift is however many days is being tested in the strategy (i.e. 5, 11, etc). Considering that there are 78 observations per day, then the number of observation associated with the strategy is either n=390,858,1638,2418, or 3276 per trading period. So rather than continuously removing and then adding 78 degrees of freedom, the whole window is adding and removing n observations simultaneously. When optimizing parameters and deriving indicators and signals, we rely on n observations during t-1 to trade using n observations during t. However, each observation in t is independent of t-1, so it can be argued that there are n degrees of freedom in my strategy. The success of short term strategies is likely an anomaly and not a reliable result (i.e. too good to be true, so the methodology should be reevaluated). However, with increasing degrees of

freedom for the longer trading/testing periods, the results stabilize and tend to become more realistic in terms of total returns and Sharpe Ratio.

One way to increase degrees of freedom would be to use one of the longer optimization periods, such as 31 or 42 days, and then trade based on the parameters, indicators, and signals derived for a longer period of time – that is, extend the market data used for out-of-sample testing. The results from this will be more robust since any short term anomolies will likely be smoothed out/diluted.

## Conclusion

From the results above, we can conclude that pairs traded portfolios consisting of ETFs tracking the same index or commodity can be modelled well as an Ornstein-Uhlenbeck process. The portfolios exhibit strong mean-reversion properties, and this allows for the possibility of statistical arbitrage. The technique of optimizing parameters, indicators, and signals during period t-1 and using these to trade during period t have produced mixed results. High total returns tend to be associated with the shorter testing/trading windows, but these are likely the result on an anomoly and also expose the trader to high risk due to significant buildup of long or short positions. Longer periods have more stable returns and lower risk, but are lower in absolute value.

The conjecture that the closeout strategy would consistently trade less optimally but with higher frequency, leading to higher total returns, appears to be incorrect, at least in this instance. The closeout strategy does have consistently more trades and lower returns per trade in any given period, but this does no correlate to higher total returns. Additionally, it seems that the parameter estimate  $\theta_{t-1}$  and the optimal asset weights derived based on maximum likelihood estimation generally do not serve as good parameters to use during period t. By association, the indicators and signals derived in t-1 are not optimal in period t.

# **Appendix**

Below are additional graphical results from the testing conducted not discussed above, both portfolio and returns results along with boxplots of returns.





































### References

Avellaneda, Marco, and Jeong-Hyun Lee. 2010. "Statistical Arbitrage in the Us Equities Market." Quantitative Finance 10 (7): 761–82.

Elliott, Robert, John van der Hoek, and William Malcolm. 2005. "Pairs Trading."  $Quantitative\ Finance\ 5\ (3):\ 271-76.$ 

Gatev, Evan, William N. Goetzmann, and K. Geert Rouwenhorst. 2006. "Pairs Tradingn: Performance of a Relative-Value Arbitrage Rule." *The Review of Financial Studies* 19 (3).

Guo, Kevin, and Tim Leung. 2015. "Understanding the Tracking Errors of Commodity Leveraged Etfs." In *Commodities, Energy and Environmental Finance, Fields Institute Communications*, edited by R. Aid, M. Ludkovski, and R. Sircar, 39–63. Springer.

Hogan, Steve, Robert Jarrow, Melvyn Teo, and Mitch Warachka. 2004. "Testing Market Efficiency Using Statistical Arbitrage with Applications to Momentum and Value Strategies." *Journal of Financial Economics* 73 (June): 525–65.

Leung, Tim, and Xin Li. 2015. "Optimal Mean Reversion Trading with Transaction Costs and Stop-Loss Exit." International Journal of Theoretical and Applied Finance 18 (3).

——. 2016. Optimal Mean Reversion Trading: Mathematical Analysis and Practical Applications. Modern Trends in Financial Engineering. World Scientific, Singapore.

MacKinlay, A. Craig, and Krishna Ramaswamy. 1988. "Index-Futures Arbitrage and the Behavior of Stock Index Futures Prices." *The Review of Financial Studies* 1 (2): 137–58.

Yadav, Pradeep, and Peter Pope. 1992. "Intraweek and Intraday Seasonalities in Stock Market Risk Premia: Cash and Futures." *Journal of Banking and Finance* 16 (1): 233–70.