남 계획과 응용

제8강 (7장)

요인배치법 2

지난 시간

- 7.1 대비와 직교분해
- 7.2 2 요인배치법
- 7.3 2³ 요인배치법

실험계획과 응용

제8강 (7장)

요인배치법 2

이번 시간

 $7.4 \mid 2^n$ 요인배치법

7.5 3² 요인배치법

7.6 회귀모형

제8강 요인배치법 2

7.4 2ⁿ 요인배치법

<표 7-13> 2^n 요인배치법의 분산분석표

	요인	자유도
<u> 주효과</u>	А В С	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ \vdots \end{array} \right) \left(\begin{array}{c} n \\ 1 \end{array} \right) = n $
2요인 상호작용효과	<i>AB</i> AC AD ::	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \end{pmatrix} \begin{pmatrix} n \\ 2 \end{pmatrix} = \frac{n(n-1)}{2}$
3요인 상호작용효과	ABC ABD :	$ \begin{vmatrix} 1 \\ 1 \\ 1 \\ \vdots \end{vmatrix} \binom{n}{3} = \frac{n(n-1)(n-2)}{6} $
:		:
n요인 상호작용효과	ABCD···	$({n\atop n})=1$
오차	E	2*(r-1)
총	T	$r2^{n}-1$

예 7.4 온도(A), 습도(B), 압력(C), 진동(D) 네 요인의 요인배치 실험을 한 결과 제품의 강도(strength)가 다음 표와 같다. 각 요인의 효과와 변동을 구하고 분산분석표를 작성하라.

<표 7-14> 2⁴요인배치법의 자료

	A_0				A_1			
	B_0		B_1		B_0		B_1	
	C_0	C_1	C_0	C_1	C_0	C_1	C_0	C_1
D_0	-1	5	9	11	0	3	4	8
D_1	-1	-9	1	-5	-9	-13	5	-4

풀이 < 예이츠계산법 >

처리조합	자료	(1)	(2)	(3)	(4)	요인효과	요인변동
(1)	-1	-1	12	39	4	0.25= <i>M</i>	1 = CT
a	0	13	27	-35	-16	-2=A	$16 = SS_A$
Ь	9	8	-4	-9	54	6.75= <i>B</i>	$182.25 = SS_2$
аЬ	4	19	-31	-7	10	1.25= <u>AB</u>	$6.25 = SS_{A \times E}$
c	5	-10	-4	25	-12	-1.5 = C	$9 = SS_C$
ас	3	6	-5	29	0	0= <i>AC</i>	$0 = SS_{A \times C}$
<u>bc</u>	11	-22	-4	-7	-6	-0.75= <i>BC</i>	$2.25 = SS_{B \times C}$
a <u>bc</u>	8	-9	-3	17	-2	-0.25= <i>ABC</i>	$0.25 = SS_{A \times B \times C}$
d	-1	1	14	15	-74	-9.25= <i>D</i>	$342.25 = SS_I$
a d	-9	-5	11	-27	2	0.25= <i>AD</i>	$0.25 = SS_{A \times L}$
<u>bd</u>	1	-2	16	-1	4	0.5= <i>BD</i>	$1 = SS_{\mathcal{B} \times \mathcal{L}}$
a <u>bd</u>	5	-3	13	1	24	3= <i>ABD</i>	$36 = SS_{A \times B \times D}$
<u>cd</u>	-9	-8	-6	-3	-42	-5.25= <i>CD</i>	$110.25 = SS_{\mathcal{O} \times I}$
a <u>cd</u>	-13	4	-1	-3	2	0.25= <i>ACD</i>	$0.25 = SS_{A \times \mathcal{O} \times \mathcal{L}}$
bcd	-5	-4	12	5	0	0= <i>BCD</i>	$0 = SS_{\mathcal{B} \times \mathcal{O} \times \mathcal{D}}$
a bc d	-4	1	5	-7	-12	-1.5= <i>ABCD</i>	$9 = SS_{A \times B \times C \times D}$

풀이 < 분산분석표 >

요 인	게곱합	자유도	평균제곱	F_{θ}
A	16.0	1	16.0	7.48*
В	182.25	1	182.25	85.2**
С	9.0	1	9.0	4.21
D	342.25	1	342.25	160**
$C \times D$	110.25	1	110.25	51.5**
$A \times B \times D$	36	1	36	16.8**
E'	19.25	9	2.14	
T	715	15		

```
strength <- c(-1, 5, 9, 11, 0, 3, 4, 8, -1, -9, 1, -5, -9, -13, 5, -4) # strength(강도)
temp < -rep(c(rep(-1, 4), rep(1, 4)), 2) # temp==temperature(온도)
<u>humid <- rep(c(-1, -1, 1, 1), 4) # humid==humidity(습도)</u>
press <- rep(c(-1, 1), 8) # press==pressure(압력)
vib <- c(rep(-1, 8), rep(1, 8)) # vib==vibration(진동)
strength.data <- data.frame(strength, temp, humid, press, vib)</pre>
temp = as.factor(strength.data[,2]) # temp를 factor 변수로
<u>humid = as.factor(strength.data[,3])</u> # humid를 factor 변수로
press = as.factor(strength.data[,4]) # press를 factor 변수로
vib = as.factor(strength.data[,5]) # vib를 factor 변수로
order=sample(16) # 전체 실험의 랜덤화
```

```
df=data.frame(temp,humid,press,vib,strength,order)
par(bg=rgb(1,1,0.8), mfrow=c(2,2)) # 2 by 2 그림
qqnorm(strength) # 반응변수인 강도를 정규확률지에 plot하여 이상치 있는지 확인
qqline(strength, col = 2) # 점들에 가장 적합한 직선 그음
boxplot(strength, horizontal=TRUE, main="Box Plot", xlab="Strength")
hist(strength, main="Histogram", xlab="Strength") # boxplot과 히스토그램으로 분포 파악
plot(order, strength, xlab="Actual Run Order", ylab="Strength",
main="Run Order Plot") # 실험순서 별 강도에 이상치 있는지 확인
```



```
par(bg=rgb(1,1,0.8),mfrow=c(2,2))
boxplot(strength~temp, data=df, main="Strength by temperature",
xlab="Temperature",ylab="Strength") # temperature의 주효과 화악
boxplot(strength~humid, data=df, main="Strength by humidity", xlab="humidity",ylab="Strength")
# humidity의 주효과 화악
boxplot(strength~press, data=df, main="Strength by pressure",
xlab="pressure",ylab="Strength") # pressure의 주효과 화악
boxplot(strength~vib, data=df, main="Strength by vibration", xlab="vibration",ylab="Strength")
# vibration의 주효과 화악
par(mfrow=c(1,1))
```


R 실습

upto3 = aov(strength~(temp+ humid+ press+ vib)^3,data=df)
summary(upto3)

	Df	Sum Sq	Mean Sq	F value	<i>Pr(>F)</i>	
temp	1	<i>16.0</i>	<i>16.0</i>	1.778	0.410	
humid	1	182.2	182.2	20.250	0.139	
press	1	9.0	9.0	1.000	0.500	
vib	1	342.2	342.2	38.028	0.102	
temp:humid	1	6.2	6.2	0.694	0.558	
temp:press	1	0.0	0.0	0.000	1.000	
temp:vib	1	0.3	0.3	0.028	0.895	
humid:press	1	2.3	2.3	0.250	0.705	
humid:vib			1 1.0	1.0	0.111	0.795
press:vib	1	110.2	110.2	12.250	0.177	
temp:humid:press	1	0.2	0.2	0.028	0.895	
temp:humid:vib	1	36.0	36.0	4.000	0.295	
temp:press:vib	1	0.3	0.3	0.028	0.895	
humid:press:vib	1	0.0	0.0	0.000	1.000	
Residuals	1	9.0	9.0			

제8강 요인배치법 2

7.5 32 요인배치법

<표 7-15> 3² 요인배치법의 자료 배열

	A_0	A_1	A_2	$T_{.j}$
$\boldsymbol{B_0}$	x_{00}	x_{10}	<i>x</i> ₂₀	$T_{.0}$
B_1	<i>x</i> ₀₁	<i>x</i> ₁₁	<i>x</i> ₂₁	$T_{.1}$
B_2	<i>x</i> ₀₂	<i>x</i> ₁₂	<i>x</i> ₂₂	<i>T</i> _{.2}
$T_{i.}$	$T_{0.}$	$T_{1.}$	$T_{2.}$	T

[그림 7-3] 3²요인배치법

7.5 32 요인배치법

■ 등 간격 계량요인의 경우 1차 효과와 2차 효과

각각은 대비(contrast)이며, 그 변동은 다음과 같음

$$SS_{i} = \frac{1}{6r} (T_{2..} - T_{0..})^{2} \qquad (7.71)$$

$$SS_{q} = \frac{1}{18r} (T_{0..} - 2T_{1..} + T_{2..})^{2} \qquad (7.72)$$

서로 직교(orthogonal)하므로 다음과 같이 전체변동을 쪼갤 수 있음

$$SS_A = SS_I + SS_Q$$

예 7.4 온도(A_0 : 90°C, A_1 : 100°C, A_2 : 110°C)와 촉매량 (B_0 : 1.2%, B_1 : 1.4%, B_2 : 1.6%)이 어떤 화학물질의 합성수율에 미치는 영향

<표 7-16> 합성수율

	A_{0}	A_1	A_2	$T_{.j.}$
$\boldsymbol{B_0}$	1.0 0.2 (1.2)	4.1 3.2 (7.3)	5.2 6.1 (11.3)	19.8
$\boldsymbol{B_1}$	3.3 2.7 (6.0)	6.2 5.4 (11.6)	6.7 7.2 (13.9)	31.5
B_2	1.3 1.9 (3.2)	3.2 4.2 (7.4)	6.0 6.4 (12.4)	23.0
T_{i}	10.4	26.3	37.6	T = 74.3

풀이 < 분산분석표 >

요 인	제곱합	자유도	평균제곱	$F_{ heta}$
A	62.241	2	31.121	111.545**
B	12.188	2	6.094	21.842**
$A \times B$	1.352	4	0.338	1.21
E	2.515	9	0.279	
T	78.296	17		

풀○ < 대비를 포함한 분산분석표 >

요 인	게곱합	자유도	평균제곱	$F_{ heta}$
A	62.241	2	31.121	111.545**
L_I	61.653	1	61.653	220.978**
L_q	0.588	1	0.588	2.108
В	12.188	2	6.094	21.842**
L_I	0.853	1	0.853	3.057
L_q	11.334	1	11.334	40.624**
$A\times B$	1.352	4	0.338	1.211
E	2.515	9	0.279	
T	78.296	17		

제8강 요인배치법 2

7.6 회귀모형

■ 2³ 요인배치의 경우

<표 7-17> 두 종류의 팝콘을 일정 시간 가열했을 때 튀겨진 팝콘의 수

일련번호	<u>랜덤한</u> 순서	$A=시간(x_1)$	B=알맹이종류 (x_2)	터진 수(y)
1	2	-1	-1	52
2	4	+ 1	-1	74
3	1	-1	+ 1	62
4	3	+ 1	+ 1	80

<그림 7-4> 2차원상에 나타낸 팝콘데이터

$$y = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_{12} x_{1i} x_{2i} + \epsilon_i \qquad = ---- (7.73)$$

$$\hat{y} = 67 + 10x_{1i} + 4x_{2i} - x_{1i}x_{2i} - - - - - - - - - - (7.75)$$

가열시간(A)의 효과 β_1

노란 팝콘의 경우 80-62=18 하얀 팝콘의 경우 74-52=22

10(=20/2) (0에서 +1까지의 효과)
$$\rightarrow \hat{\beta_1} = 10$$

알맹이종류(B)의 효과 β_2

긴(200초) 시간의 경우 80-74=6

짧은(160초) 시간의 경우 62-52=10

$$4(=8/2) (0에서 +1까지의 효과) $\rightarrow \hat{\beta_2} = 4$$$

가열시간(A)과 알맹이종류(B)의 상호작용효과(AB) β_{12}

노란알맹이(B의 +1수준)의 경우 시간의 효과 80-62=18 <u>흰알맹이(B의 -1수준)의</u> 경우 시간의 효과 74-52=22

차이=
$$\frac{18-22}{2}$$
=-2 **(-1에서 +1까지의 효과)**

$$-1(=-2/2)$$
 (0에서 +1까지의 효과) $\rightarrow \hat{\beta}_{12} = -1$

$$\hat{y} = 67 + 10x_{1i} + 4x_{2i} - x_{1i}x_{2i} = ------ (7.75)$$

R 실습

 $A \leftarrow B \leftarrow c(-1, 1)$

design<-expand.grid(A=A, B=B)</pre>

A<-design\$A

B<-design\$B

y < -c(52, 74, 62, 80)

popped_cornM1 < lm(y \sim A+B+A:B)

summary(popped_cornM1)

Call:

 $lm(formula = y \sim A + B + A:B)$

Residuals:

ALL 4 residuals are 0: no residual degrees of freedom!

 $y = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_{12} x_{1i} x_{2i} + \epsilon_i$

Coefficients:

	Estimate /		t value	<i>Pr(>/t/)</i>
(Intercept)	67	NA	NA	NA
A	10	NA	NA	NA
В	4	NA	NA	NA
A: B	-1	NA	NA	NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 3 and 0 DF, p-value: NA

R 실습

 $\underline{popped_cornM2} \leftarrow \underline{lm(y \sim A + B)}$

summary(popped_cornM2)

Call:

$$lm(formula = y \sim A + B)$$

Residuals:

1234

-1 1 1 -1

Coefficients:

 Estimate
 Std. Error
 t value
 Pr(>|t|)

 (Intercept)
 67
 1
 67
 0.0095 **

 A
 10
 1
 10
 0.0635.

 B
 4
 1
 4
 0.1560

 $y = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$

(7.76)

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 2 on 1 degrees of freedom

Multiple R-squared: 0.9915, Adjusted R-squared: 0.9744

F-statistic: 58 on 2 and 1 DF, p-value: 0.09245

예 7.4 온도(A), 습도(B), 압력(C), 진동(D) 네 요인의 요인배치 실험을 한 결과 제품의 강도(strength)가 다음 표와 같다. 각 요인의 효과와 변동을 구하고 분산분석표를 작성하라.

<표 7-14> 24요인배치법의 자료

	A_0				A_1			
	B_0		B_1		B_0		B_1	
	C_0	C_1	C_0	C_1	C_0	C_1	C_0	C_1
D_0	-1	5	9	11	0	3	4	8
D_1	-1	-9	1	-5	-9	-13	5	-4

R 실습

strength <- c(-1, 5, 9, 11, 0, 3, 4, 8, -1, -9, 1, -5, -9, -13, 5, -4)

temp $\langle -rep(c(rep(-1, 4), rep(1, 4)), 2) \rangle$

<u>humid < rep(c(-1, -1, 1, 1), 4)</u>

press < rep(c(-1, 1), 8)

vib < -c(rep(-1, 8), rep(1, 8))

linear.model1 <- lm(strength~(temp+humid+press+vib)^4)</pre>

summary(linear.model1)

회귀계수의 절대치가 1보다 큰 것을 중요 요인의 기준으로 삼는다면….

 x_1 , x_2 , x_4 , x_3x_4 , $x_1x_2x_4$

lm(formula = strength ~ (temp + humid + press + vib)^4)
Residuals:

ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Sto	d. Error	t value	<i>Pr(>/t/)</i>
2.500e-01	NA	NA	NA
-1.000e+00	NA	NA	NA
3.375e+00	NA	NA	NA
-7.500e-01	NA	NA	NA
-4.625e+00	NA	NA	NA
6.250e-01	NA	NA	NA
2.938e-16	NA	NA	NA
1.250e-01	NA	NA	NA
-3.750e-01	NA	NA	NA
2.500e-01	NA	NA	NA
-2.625e+00	NA	NA	NA NA
-1.250e-01	NA	Nz	4 NA
	2.500e-01 -1.000e+00 3.375e+00 -7.500e-01 -4.625e+00 6.250e-01 2.938e-16 1.250e-01 -3.750e-01 2.500e-01 -2.625e+00	2.500e-01 NA -1.000e+00 NA 3.375e+00 NA -7.500e-01 NA -4.625e+00 NA 6.250e-01 NA 2.938e-16 NA 1.250e-01 NA -3.750e-01 NA 2.500e-01 NA -2.625e+00 NA	-1.000e+00 NA NA 3.375e+00 NA NA -7.500e-01 NA NA -4.625e+00 NA NA 6.250e-01 NA NA 2.938e-16 NA NA 1.250e-01 NA NA -3.750e-01 NA NA 2.500e-01 NA NA NA -2.625e+00 NA NA

$$\hat{y} = 0.25 - x_1 + 3.375x_2 - 0.75x_3 - 4.625x_4 + 0.625x_1x_2 + 10^{-16} \times 2.938x_1x_3 + 0.125x_1x_4 - 0.375x_2x_3 + 0.25x_2x_4 - 2.625x_3x_4 - 0.125x_1x_2x_3 + 1.5x_1x_2x_4 + 0.125x_1x_3x_4 - 10^{-17} \times 9.922x_2x_3x_4 - 0.75x_1x_2x_3x_4 - --- (7.80)$$

$$temp:humid:press:vib -7.500e-01 NA NA NA$$

7.6 회귀모형 R 실습

linear.model2 <- lm(strength~(temp+ humid+ press+ vib)^3)</pre>

summary(linear.model2)

Coefficients:			
	Estimate Std. Error t value	<i>Pr(> t)</i>	
(Intercept)	2.500e-01 7.500e-01 0.333	0.795	
temp	-1.000e+007.500e-01 -1.333	0.410	
humid	3.375e+00 7.500e-01 4.500	0.139	
press	-7.500e-01 7.500e-01 -1.000	0.500	
vib	-4.625e+007.500e-01-6.167	0.102	
temp:humid	6.250e-01 7.500e-01 0.833	0.558	
temp:press	2.834e-16 7.500e-01 0.000	1.000	
temp:vib	1.250e-01 7.500e-01 0.167	0.895	
humid:press	-3.750e-01 7.500e-01 -0.500	0.705	
humid:vib	2.500e-01 7.500e-01 0.333	0.795	
press:vib	-2.625e+00 7.500e-01 -3.500	0.177	
temp:humid:press	-1.250e-01 7.500e-01 -0.167	0.895	
temp:humid:vib	1.500e+00 7.500e-01 2.000	0.295	
temp:press:vib	1.250e-01 7.500e-01 0.167	0.895	
humid:press:vib	-6.901e-17 7.500e-01 0.000	1.000	
Residual standard error: 3 on 1 degrees of freedom			
Multiple R-squared: 0.9874, Adjusted R-squared: 0.8112			
F-statistic: 5.603 on 14 and 1 DF, p-value: 0.3209			

다음 시간 안내

제9강 (8장)

교락법과 일부실시법