Lecture 4:

Bayesian Signal Detection

Markus Hohle

University California, Berkeley

Bayesian Data Analysis and Machine Learning for Physical Sciences

Berkeley Bayesian Data Analysis and Machine Learning for Physical Sciences

Course Map	Module 1	Maximum Entropy and Information, Bayes Theorem
	Module 2	Naive Bayes, Bayesian Parameter Estimation, MAP
	Module 3	MLE, Lin Regression, Model selection: Comparing Distributions
	Module 4	Model Selection: Bayesian Signal Detection
	Module 5	Variational Bayes, Expectation Maximization
	Module 6	Stochastic Processes
	Module 7	Monte Carlo Methods
	Module 8	Markov Models, Graphs
	Module 9	Machine Learning Overview, Supervised Methods
	Module 10	Unsupervised Methods
	Module 11	ANN: Perceptron, Backpropagation
	Module 12	ANN: Basic Architecture, Regression vs Classification, Backpropagation again
	Module 13	Convolution and Image Classification and Segmentation
	Module 14	TBD (GNNs)
	Module 15	TBD (RNNs and LSTMs)
	Module 16	TBD (Transformer and LLMs)

Outline

Discrete Signals

The Model

The Priors

Occam Factors

A Code Example

Outline

Discrete Signals

The Model

The Priors

Occam Factors

A Code Example

literature:

A NEW METHOD FOR THE DETECTION OF A PERIODIC SIGNAL OF UNKNOWN SHAPE AND PERIOD

P. C. Gregory

Department of Physics, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada V6T 1Z1

AND

THOMAS J. LOREDO

Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853

Received 1992 January 6; accepted 1992 April 20

one application: pulsar timing (X-ray pulsars), Hambaryan et al., 20XX

if we *had* the frequency ω

- \rightarrow calculating the phase $\varphi_i(t_i) = \omega t_i + \varphi_0$
- $\rightarrow \varphi(norm)_i(t_i) = \varphi_i(t_i)/2\pi$
- \rightarrow using $\varphi(norm)_i(t_i) = \varphi(norm)_i(t_i) + 1$
- \rightarrow histogram of all $\varphi(norm)_i(t_i)$
- → phase binned light curve

if we had the frequency ω

- \rightarrow calculating the phase $\varphi_i(t_i) = \omega t_i + \varphi_0$
- $\rightarrow \varphi(norm)_i(t_i) = \varphi_i(t_i)/2\pi$
- \rightarrow using $\varphi(norm)_i(t_i) = \varphi(norm)_i(t_i) + 1$
- \rightarrow histogram of all $\varphi(norm)_i(t_i)$
- → phase binned light curve

no signal:

- constant rate $r(t_i) = const$
- events are evenly distributed over phase bins
- light curve is flat

signal:

- $r(t_i)$ is a function of time
- light curve of any shape

increasing noise level

$$P(M_i|D,I) = \frac{P(D|M_i,I)}{P(D|I)}P(M_i|I)$$

 $egin{array}{lll} D & : \mathsf{data} \ I & : \mathsf{information} \ M_i & : \mathsf{model} \ \mathsf{i} \ M_j & : \mathsf{model} \ \mathsf{j} \ r(t_i) & : \mathsf{rate} \ t_i & : \mathsf{ToA} \ \end{array}$

$$\rho_{i,j} = \frac{P(M_i|D,I)}{P(M_j|D,I)} = \frac{P(D|M_i,I)}{P(D|M_j,I)} \frac{P(M_i|I)}{P(M_j|I)}$$

odds ratio

"Bayes Factor"

We want to compare the constant rate model M_1 with $r(t_i) = const$ to a set of periodic models

$$\sum_{j=1}^{N_{mod}} P(M_j|D,I) = 1 = \sum_{j=1}^{N_{mod}} \frac{P(D|M_j,I)}{P(D|M_i,I)} \frac{P(M_j|I)}{P(M_i|I)} P(M_i|D,I)$$

$$= \frac{P(M_i|D,I)}{P(D|M_i,I) P(M_i|I)} \sum_{j=1}^{N_{mod}} P(D|M_j,I) P(M_j|I)$$

$$P(M_i|D,I) = \frac{P(D|M_i,I)}{P(D|I)}P(M_i|I)$$

odds ratio

 $egin{array}{lll} D & : \mathsf{data} \\ I & : \mathsf{information} \\ M_i & : \mathsf{model} \ \mathsf{i} \\ M_j & : \mathsf{model} \ \mathsf{j} \\ r(t_i) & : \mathsf{rate} \\ t_i & : \mathsf{ToA} \\ \end{array}$

$$\rho_{i,j} = \frac{P(M_i|D,I)}{P(M_j|D,I)} = \frac{P(D|M_i,I)}{P(D|M_j,I)} \frac{P(M_i|I)}{P(M_j|I)}$$

"Bayes Factor"

We want to compare the constant rate model M_1 with $r(t_i) = const$ to a set of periodic models

$$\sum_{j=1}^{N_{mod}} P(M_j | D, I) = 1 = \frac{P(M_i | D, I)}{P(D | M_i, I) P(M_i | I)} \sum_{j=1}^{N_{mod}} P(D | M_j, I) P(M_j | I)$$

$$P(M_i|D,I) = \frac{P(D|M_i,I) P(M_i|I)}{\sum_{j=1}^{N_{mod}} P(D|M_j,I) P(M_j|I)}$$

$$P(M_i|D,I) = \frac{\frac{P(D|M_i,I)}{P(D|M_1,I)} \frac{P(M_i|I)}{P(M_1|I)}}{\sum_{j=1}^{N_{mod}} \frac{P(D|M_j,I)}{P(D|M_1,I)} \frac{P(M_j|I)}{P(M_1|I)}}$$

$$P(M_i|D,I) = \frac{P(D|M_i,I)}{P(D|I)}P(M_i|I)$$

 $egin{array}{lll} D & : \ ext{data} \ I & : \ ext{information} \ M_i & : \ ext{model i} \ M_j & : \ ext{model j} \ r(t_i) & : \ ext{rate} \ t_i & : \ ext{ToA} \ \end{array}$

$$\rho_{i,j} = \frac{P(M_i|D,I)}{P(M_j|D,I)} = \frac{P(D|M_i,I)}{P(D|M_j,I)} \frac{P(M_i|I)}{P(M_j|I)}$$

odds ratio

"Bayes Factor"

We want to compare the constant rate model M_1 with $r(t_i) = const$ to a set of periodic models

$$P(M_i|D,I) = \frac{\frac{P(D|M_i,I)}{P(D|M_1,I)} \frac{P(M_i|I)}{P(M_1|I)}}{\sum_{j=1}^{N_{mod}} \frac{P(D|M_j,I)}{P(D|M_1,I)} \frac{P(M_j|I)}{P(M_1|I)}} = \frac{\rho_{i,1}}{\sum_{j=1}^{N_{mod}} \rho_{j,1}} = \frac{\rho_{i,1}}{\sum_{j=2}^{N_{mod}} \rho_{j,1} + 1}$$

$$P(M_i|D,I) = \frac{P(D|M_i,I)}{P(D|I)}P(M_i|I)$$

 $egin{array}{lll} D & : \ ext{data} \ I & : \ ext{information} \ M_i & : \ ext{model i} \ M_j & : \ ext{model j} \ r(t_i) & : \ ext{rate} \ t_i & : \ ext{ToA} \ \end{array}$

$$\rho_{i,j} = \frac{P(M_i|D,I)}{P(M_j|D,I)} = \frac{P(D|M_i,I)}{P(D|M_j,I)} \frac{P(M_i|I)}{P(M_j|I)}$$

odds ratio

"Bayes Factor"

We want to compare the constant rate model M_1 with $r(t_i) = const$ to a set of periodic models

$$P(M_i|D,I) = \frac{\rho_{i,1}}{\sum_{j=2}^{N_{mod}} \rho_{j,1} + 1}$$

Outline

Discrete Signals

The Model

The Priors

Occam Factors

A Code Example

$$\rho_{i,j} = \frac{P(M_i|D,I)}{P(M_j|D,I)} = \frac{P(D|M_i,I)}{P(D|M_j,I)} \frac{P(M_i|I)}{P(M_j|I)}$$

marginalization

$$P(D|M_i) = \int P(D|\{\alpha\}_i M_i) P(\{\alpha\}_i | M_i) d\Omega_{\{\alpha\}_i}$$

I : information

 M_i : model i M_j : model j

r(t) : rate t : ToA

 $\{\alpha\}_i$: set of parameters of model M_i

 Δt : time resolution n: number of events T: obs. time span

actual data (ToA)

$$N$$
 intervals with $n = 1$ Q intervals with $n = 0$

$$(N+Q)\Delta t = T$$

$$\rho_{i,j} = \frac{P(M_i|D,I)}{P(M_j|D,I)} = \frac{P(D|M_i,I)}{P(D|M_j,I)} \frac{P(M_i|I)}{P(M_j|I)}$$

$$P(n|r(t)) = \frac{(r(t) \cdot \Delta t)^n}{n!} e^{-r(t) \cdot \Delta t}$$
 Poisson distribution

$$N$$
 intervals with $n=1$ $(N+Q)\Delta t = T$

D: data

I : informationM_i : model i

 M_j : model j

 $egin{array}{ll} r(t) & : \mathsf{rate} \\ t & : \mathsf{ToA} \end{array}$

 $\{\alpha\}_i$: set of parameters of model M_i

 Δt : time resolution n: number of events T: obs. time span

joint likelihood

$$P(D|r(t),t) = \prod_{i=1}^{N} r(t_i) \cdot \Delta t \ e^{-r(t_i) \cdot \Delta t} \quad \cdot \prod_{i=1}^{Q} e^{-r(t_i) \cdot \Delta t}$$

$$P(D|M_i) = \int P(D|\{\alpha\}_i M_i) \ P(\{\alpha\}_i M_i) \ d\Omega_{\{\alpha\}_i}$$

$$P(D|r(t),t) = (\Delta t)^{N} \cdot \prod_{i=1}^{N} r(t_{i}) \cdot exp \left[-\sum_{i=1}^{Q+N} r(t_{i}) \cdot \Delta t \right]$$

$$P(n|r(t)) = \frac{(r(t) \cdot \Delta t)^n}{n!} e^{-r(t) \cdot \Delta t}$$

Poisson distribution

$$egin{array}{ll} N & & ext{intervals with } n=1 \ Q & & ext{intervals with } n=0 \ \end{array}$$

$$(N+Q)\Delta t = T$$

$$P(D|r(t),t) = (\Delta t)^{N} \cdot \prod_{i=1}^{N} r(t_{i}) \cdot exp \left[-\sum_{i=1}^{Q+N} r(t_{i}) \cdot \Delta t \right]$$
$$= \int_{0}^{T} r(t) dt$$

I : information

M: : model i

 M_i : model i M_j : model j

 $egin{array}{ll} r(t) & : \mathsf{rate} \\ t & : \mathsf{ToA} \end{array}$

 $\{\alpha\}_i$: set of parameters of model M_i

 Δt : time resolution n: number of events T: obs. time span

$$P(D|r(t),t) = (\Delta t)^{N} \cdot \prod_{i=1}^{N} r(t_{i}) \cdot \exp\left(-\int_{0}^{T} r(t) dt\right)$$

any periodic model

any periodic model

$$P(D|r(t),t) = (\Delta t)^{N} \cdot \prod_{i=1}^{N} r(t_{i}) \cdot \exp\left(-\int_{0}^{T} r(t) dt\right)$$

if we had the frequency already:

m phase bins:

 r_j

 $A = \frac{1}{m} \sum_{j=1}^{m} r_j$

 $f_j = \frac{r_j}{\sum_{j=1}^m r_j} = \frac{r_j}{A m}$

rate in each phase bin j

average rate

fraction of total rate in each phase bin *j*

Each light curve of any shape is being fully described by f_i

 r_j : rate in each phase bin j

A : average rate

m: number of phase binsf_i: fraction of total rate in j

any periodic model

$$P(D|r(t),t) = (\Delta t)^{N} \cdot \prod_{i=1}^{N} r(t_{i}) \cdot \exp\left(-\int_{0}^{T} r(t) dt\right)$$

m phase bins:

 r_j

rate in each phase bin j

$$A = \frac{1}{m} \sum_{j=1}^{m} r_j$$

average rate

$$f_j = \frac{r_j}{\sum_{j=1}^m r_j} = \frac{r_j}{A m}$$

fraction of total rate in

each phase bin j

constant model: $r_j = \text{const } \forall j$

$$\rightarrow r_i = A$$

 $P(D|r(t),t) = (\Delta t)^N \cdot A^N \cdot e^{-AT}$ constant model (poiss noise)

r(t) : rate

 Δt : time resolution

n: number of events

T: obs. time span

D : data set
N : number of

intervals with n=1

 r_j : rate in each phase bin j

l : average rate

m : number of phase bins

f : fraction of total rate in j

any periodic model

$$P(D|r(t),t) = (\Delta t)^{N} \cdot \prod_{i=1}^{N} r(t_{i}) \cdot \exp\left(-\int_{0}^{T} r(t) dt\right)$$

$$P(D|r(t),t) = (\Delta t)^N \cdot A^N \cdot e^{-AT}$$
 constant model (poiss noise)

actual signal

- amplitude
- phase
- frequency
- offset

detection - t_i - analysis - phase - frequency - $f_j(A, m)$

note:

- we assume a poissonian process
- sampling rate $\gg r(t)$ troughout the observation
- r(t) does not change within Δt
- T is large enough to capture at least ≈ 10 periods of the signal
- *m* is large: we capture finer details of light curve, but increase fluctuations within the bins and vice verse

rewriting the likelihood function in terms of the **light curve parameter**:

$$P(D | A, M_1) = (\Delta t)^N \cdot A^N \cdot e^{-AT}$$
 constant model (poiss noise)

any periodic model:

$$P(D|r(t),t) = (\Delta t)^{N} \cdot \prod_{i=1}^{N} r(t_{i}) \cdot \exp\left(-\int_{0}^{T} r(t) dt\right)$$

$$P(D|\boldsymbol{\omega}, \boldsymbol{\varphi}, \boldsymbol{A}, \boldsymbol{f}, \boldsymbol{M_m}) = ?$$

$$f_j = \frac{r_j}{\sum_{j=1}^m r_j} = \frac{r_j}{A m}$$

Δt	: time resolution
T	: obs. time span
D	: data set
N	: number of
	intervals with n=1
r_{j}	: rate in each phase bin j
A	: average rate
m	: number of phase bins
f_i	: fraction of total rate in
\vec{f}	: full set of f_i
M_1	: constant model
M_m^-	: periodic model m bins
ω	: frequency
φ	: phase

: rate

r(t)

1	2	3	4	5	6	7	8	9	time t_i
•		•	•	•		•	•	•	
1	2	3	1	2	3	1	2	3	phase bin j
0	0.33	0.66	0	0.33 0.	.66	0	0.33	0.66	phase $arphi$

rewriting the likelihood function in terms of the **light curve parameter**:

$$P(D|r(t),t) = (\Delta t)^N \cdot \prod_{i=1}^N r(t_i) \cdot \exp\left(-\int_0^T r(t) dt\right)$$

$$P(D|\boldsymbol{\omega},\boldsymbol{\varphi},\boldsymbol{A},\boldsymbol{f},\boldsymbol{M_m})=?$$

1	2	3	4	5	6	7	8	9	time t_i
•		•	•	•		•	•	•	
1	2	3	1	2	3	1	2	3	phase bin j
0 (0.33 0.	66	0 ().33	0.66	0	0.33	0.66	phase $arphi$

 $f_1 = 3/7$ for $T \gg 1/\omega$ these will be average values $f_2 = 2/7$

$$f_3 = 2/7$$
 $n_j = n_j(\omega, \varphi)$:

number of events that fall into phase bin j (here $n_1 = 3$, $n_2 = 3$ etc)

$$\prod_{i=1}^{N} r(t_i) = \prod_{i=1}^{N} A \, m \, f_{j(t_i)} = (A \, m)^N \, f_1 f_3 f_1 f_2 f_1 f_2 f_3 = (A \, m)^N \prod_{j=1}^{m} f_j^{n_j}$$

$$r(t)$$
 : rate

 f_j

 M_{m}

(ı)

φ

 Δt : time resolution T: obs. time span

D : data set

N : number of

intervals with n=1

 r_j : rate in each phase bin j

: average rate

: number of phase bins : fraction of total rate in *i*

: full set of f_j : constant model

: periodic model m bins

: frequency : phase

$$f_j = \frac{r_j}{\sum_{j=1}^m r_j} = \frac{r_j}{A m}$$

rewriting the likelihood function in terms of the **light curve parameter**:

$$P(D|r(t),t) = (\Delta t)^N \cdot (A m)^N \left(\prod_{j=1}^m f_j^{n_j} \right) \exp\left(-\int_0^T r(t) dt\right)$$

$$P(D|\boldsymbol{\omega},\boldsymbol{\varphi},\boldsymbol{A},\boldsymbol{f},\boldsymbol{M_m})=?$$

$$n_j = n_j(\omega, \varphi)$$
: number of events that fall into phase bin j

$$r_j = \text{events/time} = n_j / \tau_j$$

$$\tau_j$$
: total time integrated per phase bin j $\tau_j \approx \frac{T}{m}$

$$\int_{0}^{T} r(t) dt = \sum_{i=1}^{Q+N} r(t_{i}) \cdot \Delta t = \sum_{i=1}^{Q+N} A m f_{j(t_{i})} \Delta t$$

$$= A m \sum_{i=1}^{Q+N} (f_1 + f_3 + f_1 + f_2 + f_1 + f_2 + f_3) \Delta t = A m \sum_{j=1}^{m} f_j n_j \Delta t = A m \sum_{j=1}^{m} f_j \tau_j$$

$$r(t)$$
 : rate

$$\Delta t$$
: time resolution T : obs. time span

$$r_j$$
: rate in each phase bin j

$$f_j$$
: fraction of total rate in j

$$f$$
: full set of f_j
 M_1 : constant model

$$M_m$$
 : periodic model m bins

$$\omega$$
 : frequency φ : phase

$$f_j = \frac{r_j}{\sum_{j=1}^m r_j} = \frac{r_j}{A m}$$

rewriting the likelihood function in terms of the **light curve parameter**:

any periodic model:

$$P(D|\omega,\varphi,A,f,M_m) = (\Delta t)^N \cdot (Am)^N \left(\prod_{j=1}^m f_j^{n_j(\omega,\varphi)} \right) \exp\left(-Am \sum_{j=1}^m f_j \tau_j(\omega,\varphi) \right)$$

constant model (poiss noise)

$$P(D|A, M_1) = (\Delta t)^N \cdot A^N \cdot e^{-AT}$$

r(t) : rate

 Δt : time resolution T: obs. time span

D : data set
N : number of

intervals with n=1

 r_j : rate in each phase bin j

: average rate

n : number of phase bins f; : fraction of total rate in j

f: full set of f_i

M₁ : constant model

 M_m : periodic model m bins

 $oldsymbol{\omega}$: frequency $oldsymbol{arphi}$: phase

note: - for $T\gg 1/\omega$ and $\tau_j\approx \frac{T}{m}$ on can show that

$$P(D|\omega,\varphi,A,f,M_m) \approx (\Delta t)^N \cdot (A m)^N \left(\prod_{j=1}^m f_j^{n_j(\omega,\varphi)}\right) \exp(-A T)$$

see paper page 152/153

Outline

Discrete Signals

The Model

The Priors

Occam Factors

A Code Example

Bayesian Signal Detection:

any periodic model:

$$P(D|\omega,\varphi,A,f,M_m) = (\Delta t)^N \cdot (A m)^N \left(\prod_{j=1}^m f_j^{n_j(\omega,\varphi)} \right) \exp\left(-A m \sum_{j=1}^m f_j \tau_j(\omega,\varphi) \right)$$

constant model (poiss noise)

$$P(D|M_i) = \int P(D|\{\alpha\}_i M_i) P(\{\alpha\}_i | M_i) d\Omega_{\{\alpha\}_i}$$

$$P(\omega, \varphi, A, f|M_i) = P(\omega|M_i)P(\varphi|M_i)P(A|M_i)P(f|M_i)$$

max entropy:
$$P(\omega|M_i) = \frac{1}{\omega \ln(\omega_{max}/\omega_{min})}$$
 $\omega_{max} = \frac{2\pi N}{T}$ $\omega_{min} = \frac{2\pi}{T}$

$$\omega_{max} = \frac{2\pi N}{T} \qquad \omega_{min} = \frac{2\pi}{T}$$

 $P(D|A, M_1) = (\Delta t)^N \cdot A^N \cdot e^{-AT}$

$$\Delta t$$
 : time

: time resolution : obs. time span

: rate

: data set : number of

intervals with n=1

 r_{i} : rate in each phase bin j

: average rate

: number of phase bins m

: fraction of total rate in i

: full set of f_i : constant model

 M_m : periodic model m bins

: frequency : phase

in practice: $\omega_{min} = 10 \frac{2\pi}{T}$

$$P(\varphi|M_i) = \frac{1}{2\pi}$$

$$P(A|M_i) = \frac{1}{A_{max}}$$

$$P(f|M_i) = (m-1)! \ \delta\left(1 - \sum_{j=1}^m f_j\right)$$
 delta function δ , see also page 155

a few notes on pulsar timing:

- rotating dipole → spin down

$$\dot{\omega} \approx - const \, \omega^n$$

observation 1

observation 2

observation 2

▶ time t

$$\varphi(t) = \omega (t - t_0) + \frac{1}{2}\dot{\omega}(t - t_0)^2$$

fitting $\dot{\omega}$ such that phases are consistent: phase coherent timing

Outline

Discrete Signals

The Model

The Priors

Occam Factors

A Code Example

$$P(D|M_i) = \int P(D|\{\alpha\}_i M_i) P(\{\alpha\}_i | M_i) d\Omega_{\{\alpha\}_i}$$

for $T\gg 1/\omega$ and $\tau_j\approx \frac{T}{m}$:

$$P(D|M_m) \approx \frac{1}{A_{max}} \frac{1}{2\pi} \frac{(m-1)!}{\ln\left(\frac{\omega_{max}}{\omega_{min}}\right)} \int \frac{1}{\omega} (\Delta t)^N \cdot (A m)^N \left(\prod_{j=1}^m f_j^{n_j(\omega,\varphi)} \delta\left(1 - \sum_{j=1}^m f_j\right) \right) e^{-AT} \ d\omega \ df \ dA \ d\varphi$$

we need (estimation of frequency):

$$P(\omega|D, M_m) = P(\omega|M_m) \frac{P(D|\omega, M_m)}{P(D|M_m)} = \frac{1}{\omega \ln(\omega_{max}/\omega_{min})} \frac{P(D|\omega, M_m)}{P(D|M_m)}$$

$$P(D|\omega, M_m) = \frac{\Delta t^N(m-1)!}{2\pi A_{max}} \int (A m)^N \left(\prod_{j=1}^m f_j^{n_j(\omega, \varphi)} \delta \left(1 - \sum_{j=1}^m f_j \right) \right) e^{-AT} df dA d\varphi$$

note: we can also marginalize over m, if we are not interested in the shape of the light curve

$$P(D|\omega, M_m) = \frac{\Delta t^N(m-1)!}{2\pi A_{max}} \int (A m)^N \left(\prod_{j=1}^m f_j^{n_j(\omega, \varphi)} \delta \left(1 - \sum_{j=1}^m f_j \right) \right) e^{-AT} df dA d\varphi$$

$$P(D|\omega, M_m) = \frac{\Delta t^N(m-1)!}{2\pi A_{max}} \int (A m)^N e^{-AT} dA \int \prod_{j=1}^m f_j^{n_j(\omega, \varphi)} \delta\left(1 - \sum_{j=1}^m f_j\right) df d\varphi$$

$$\Gamma(a, b) = \int_0^b y^{a-1} e^{-y} dy$$

$$\int (A \, m)^N e^{-AT} \, dA = \Gamma(N+1, A_{max} \, T) \frac{1}{T^{N+1}}$$

$$\int \prod_{j=1}^m f_j^{n_j(\omega,\varphi)} \delta\left(1 - \sum_{j=1}^m f_j\right) df d\varphi \quad \text{generalized } \beta \text{ integral with constrain } \sum_{j=1}^m f_j = 1$$

$$\int \prod_{j=1}^{m} f_j^{n_j(\omega,\varphi)} \delta\left(1 - \sum_{j=1}^{m} f_j\right) df d\varphi = \frac{m^N}{(N+m-1)!} \int_0^{2\pi} \prod_{j=1}^{m} n_j(\omega,\varphi)! \ d\varphi$$

$$P(D|\omega, M_m) = \frac{\Delta t^N(m-1)!}{2\pi A_{max}} \Gamma(N+1, A_{max} T) \frac{1}{T^{N+1}} \frac{m^N}{(N+m-1)!} \int_0^{2\pi} \prod_{j=1}^m n_j(\omega, \varphi)! \ d\varphi$$

$$P(D|\omega, M_m) = \frac{\Delta t^N(m-1)!}{2\pi A_{max}} \Gamma(N+1, A_{max} T) \frac{1}{T^{N+1}} \frac{m^N}{(N+m-1)!} N! \int_0^{2\pi} \frac{1}{N!} \prod_{j=1}^m n_j(\omega, \varphi)! \ d\varphi$$

multiplicity:
$$\Omega_m(\omega,\varphi) = \frac{N!}{\prod_{j=1}^m n_j(\omega,\varphi)!}$$

$$P(D|\omega, M_m) = \frac{\Delta t^N(m-1)!}{2\pi A_{max}} \Gamma(N+1, A_{max} T) \frac{1}{T^{N+1}} \frac{m^N}{(N+m-1)!} \frac{1}{N!} \int_0^{2\pi} \frac{1}{\Omega_m(\omega, \varphi)} d\varphi$$

"Occam Factors" penalize complex models (large values for number of bins m)

$$P(D|\omega, M_m) = \frac{\Delta t^N(m-1)!}{2\pi A_{max}} \Gamma(N+1, A_{max} T) \frac{1}{T^{N+1}} \frac{m^N}{(N+m-1)!} \int_0^{2\pi} \prod_{j=1}^m n_j(\omega, \varphi)! \ d\varphi$$

we still need $P(D|M_m)$, but it is the same steps as for $P(D|\omega,M_m)$ just with a $\int \frac{d\omega}{\omega}$ term

finally:

using:
$$\Omega_m(\omega, \varphi) = \frac{N!}{\prod_{j=1}^m n_j(\omega, \varphi)!}$$

$$P(\omega|D, M_m) = \frac{1}{\omega} \frac{1}{\int \frac{d\omega}{\omega} \frac{d\varphi}{\Omega_m(\omega, \varphi)}} \int \frac{d\varphi}{\Omega_m(\omega, \varphi)}$$

note: - the multiplicity Ω_m of the binned ToA contains all the information about ω (and φ)

- neither A_{max} nor $\ln\left(\frac{\omega_{max}}{\omega_{min}}\right)$ appear in the above equation \rightarrow rel. insensitive to these priors
- more complex models (large m) are penalized (more detail: paper, Sect. 5.2)

Outline

Discrete Signals

The Model

The Priors

Occam Factors

A Code Example

python package BayesianSignalDetect.py

from BayesianSignalDetect import *

python package BayesianSignalDetect.py

from BayesianSignalDetect import *

N + QBayesianSignalDetect.py T = CreateSignal(5000) 0.25, 0.1) my_timer CreateSignal original signal $\omega = 0.25$ 1.0 FFT PlotPvsW 0.8 CalculateProbs 0.6 SignalDetect 0.4 __init__ RunAnalysis 0.2 phase binned from TOA FindFrequency actual signal 0.00 0.25 0.50 0.75 1.00 1.25 1.50 phase/2π

python package BayesianSignalDetect.py

from BayesianSignalDetect import *

T = CreateSignal(5000, 0.25, 0.1)

FFT(T)

python package BayesianSignalDetect.py

from BayesianSignalDetect import *

T = CreateSignal(5000, 0.25, 0.1)

S = SignalDetect(T, w_end = 0.5, w_start = 0.01)
[Omega, P] = S.FindFrequency()

T = CreateSignal(5000, 0.25, 0.1)

T = CreateSignal(5000, 0.25, 0.5)

T = CreateSignal(5000, 0.25, 1)

Berkeley Bayesian Model Selection/Testing

Thank you very much for your attention!

