ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA STAVEBNÍ, OBOR GEODÉZIE, KARTOGRAFIE A GEOINFORMATIKA KATEDRA GEOMATIKY

KATEDRA GEOMATIKY							
název předmětu							
GEOINFORMATIKA							
název úlohy							
JPEG komprese a dekomprese rastru							
Akademický rok	Semestr	Studijní skupina	Vypracovali	Datum	klasifikace		
2024/2025	zimní	C102	Markéta Grossová Marek Hádlík	10.11.2024			

Zadání:

Implementujte algoritmus pro JPEG kompresi/dekompresi rastru v prostředí MATLAB (popř. v programovacím jazyce dle vlastního výběru), zahrnující tyto fáze:

- transformaci do YC_BC_R modelu,
- diskrétní kosinovou transformaci,
- kvantizaci koeficientů,

a to bez využití vestavěných funkcí.

Kompresní algoritmus otestujte na různých typech rastru: rastr v odstínech šedi, barevný rastr (viz tabulka) vhodného rozlišení a velikosti (max 128x128 pixelů) s různými hodnotami faktoru komprese q=10,50,70.

Pro každou variantu spočtěte střední kvadratickou odchylkou m jednotlivých RGB složek.

$$m = \sqrt{\frac{\sum_{i=0}^{m \cdot n} (z - z')^2}{m \cdot n}}.$$

Výsledky umístěte do přehledných tabulek pro jednotlivá q. Na základě výše vypočtených údajů zhodnot'te, ke kterým typům dat je JPEG komprese nejvíce a naopak nejméně vhodná.

Postup práce a základy provedených kroků:

Komprese a dekomprese rastru je rozdělena do několika kroků:

Komprese:

- 1) Separace obrazu na RGB složky
- 2) Transformace RGB do YCbCR

$$Y = 0,2990 * R + 0,5870 * G + 0,1140 * B$$

$$C_B = -0,1687 * R - 0,3313 * G + 0,5000 * B + 128$$

$$Y = 0,5000 * R - 0,4187 * G - 0,0813 * B + 128$$

- 3) Rozdělení na submatice 8x8
- 4) Diskrétní kosinová transformace (DCT)

$$F(u,v) = \frac{1}{4}C(u) * C(v) \left[\sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) * \cos \frac{(2x+1)u\pi}{16} * \cos \frac{(2y+1)v\pi}{16} \right]$$

5) Kvantizace DCT koeficientů

Použity předem připravené kvantizační matice

Dekomprese:

- 1) Převod na submatice 8x8
- 2) Dekvantizace koeficientů
- 3) Inverzní diskrétní kosinová transformace (IDCT)

$$F(x,y) = \frac{1}{4} \left[\sum_{u=0}^{7} \sum_{v=0}^{7} C(u) * C(v) F(u,v) * \cos \frac{(2x+1)u\pi}{16} * \cos \frac{(2y+1)v\pi}{16} \right]$$

4) Transformace zpět z YCbCR do RGB

Výsledky:

Střední kvadratické odchylky:

$$m = \sqrt{\frac{\sum_{i=0}^{m*n} (z - z')^2}{m*n}}$$

Pro RGB obrázek:

Q	σ_{R}	σ_{G}	σ_{B}
10	0.002946	0.001816	0.003564
50	0.014472	0.009048	0.017585
70	0.020027	0.012929	0.024681

Pro BW obrázek:

Q	σ_{R}	σ_{G}	σ_{B}
10	0.002838	0.001844	0.003530
50	0.014460	0.008982	0.018006
70	0.019927	0.012592	0.024557

Obrázek před kompresí:

Obrázek 1 - RGB, originál

Obrázek 2 - BW, originál

Obrázky po kompresi:

Obrázek 4 - RGB, q = 10

Obrázek 6 - RGB, q = 50

Obrázek 8 - RGB, q = 70

Obrázek 3 - BW, q = 10

Obrázek 5 - BW, q = 50

Obrázek 7 - BW, q = 70

Závěr:

Vypracovaný skript provádí kompresi a dekompresi rastru pomocí diskrétní kosinové transformace. Bonusové úlohy zpracovány nebyly.

Komprese a dekomprese byla provedena pro 3 faktory komprese q, kde můžeme pozorovat lepší výsledky dekomprese u vyšších faktorů. U nízkého faktoru q (u nás testovaného q = 10) je již velice zřetelná zrnitost obrazu, hlavně u černobílého rastru.

Je používána zkratka BW jako Black&White raster = černobílý rastr.

V Praze 7.11. 2024 Markéta Grossová Marek Hádlík