· Regular limpussions are resed for representing Rutain sets of strings in an algebraic fashion.

(Rules) (a, b, c . . . , 4) 1. Any terminal symbol i e symbols E, E, including Λ and ϕ are regular expressions. $\{\xi, \xi, \Lambda, \Phi\}$

28

),a

2. The therion of two regular expressions is also a elegalar expression R_2R_2 ; $R_1 \cup R_2 \Rightarrow (R_1 + R_2)$

3. loncatation is also RE. $: R_1, R_2 \Rightarrow (R_1, R_2)$

Clasure of RE is RE: R -> R* a* = { 8/1, 9, 9, 9, 99, 999.}

 $a^{+} = \{a, aa, aaa\}$

 $a^{\dagger} \cdot a = a^{*}$

MONCH'S THEOREM (FA -> NE) (rev E) lenamples allocaibe the following sets as Regular Expussions: 1) {0,1,2} : 0 or 1 or 2 R= 0+1+2 à) [N, ab] $R = \Lambda$ ab this is facosent. 3) {abb, a, b, bba}: abb or a or b or bba R = abb + a + b + bba : R= 0* all strings that including empy symbol.

4) {n, 0,00,000}... 5) & 1, 11, 111, 1111, ...} & R = L+

T. DEM (FA) NE)

Par Identies of Regular luquession

rol fre

4) $\phi + R = R$. \$= empty set : our = R

noc

2) $\phi.R. + R.\phi = \phi$

{ (N=E)}

3) ER = RE = R

4) E*= E and 0*= E 5) R + R = R

6) $R^*.R^* = R^*$

7) RR* = R* R

8) $(R^*)^* = R^*$

9) Q+RR* = Q+R*R = R*

10) (PQ*) P = P(QP)* 11) $(P+Q)^* = (P^*Q^*)^* = (P^*+Q^*)^*$

12) R(P+Q) = RP + RQ and (P+Q)R = PR + QR

HEOREM (Th

verign RE for following language over

dangrigge accepting steing of length enoutey2

$$R_1 = aa + ab + ba + bb$$

$$a(a+b) + b(a+b) \Rightarrow (a+b)(a+b)$$

2) Language accepting of lengen atlast 2.

de = {aa, ab, ba, bb, aaa, bbb, abab. }

$$R_2 = \frac{(a+b)(a+b)(a+b)^*}{at east 2}$$
 anyting more at east 2 anyting ength 2. e^*)

3) dangrage occopting steing of length.

23 = 22, a, b, aa, bb, ab, ba}

R3 = E+a+b+aa+ab+bb+ba.

1+RPJ

ab 12 7 7 20,1,2 (atbtc), a (atbtc) b (atbtc) + catbtc) b ((011) \$ 1 6 0 0 1 (0+1) 2 (0+1) (0+1) 2-(ot1)9 101 (<u>0</u>*1*00)*0*1* <u>£,0,000</u> £,0. 0100 1 110 1 {anbam+1); n>0 e m>0.} (p*100)* E, 0100, 01000100, 0 · a, (aa)* (bb)*b. O₁aa,aaaa bbbb bbbbbb b.

ARDENS ab ba (atb) * a, a, b, aa, bbb, ab