

असाधार्ग EXTRAORDINARY

भाग II—कच्ड 3—जन-कच्ड (i)

PART II—Section 3—Sub-section (i)

प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY

सं० 45] No. 45] नई दिल्ली, सोमबार, फरवरी 5, 1990/माघ 16, 1911

NEW DELHI, MONDAY, FEBRUARY 5, 1990/MAGHA 16, 1911

इ.स. भाग में भिन्न पृष्ठ संख्या दी जाती है जिससे कि यह अलग संकलन के रूप में रखा जा सके

Separate Paging is given to this Part in order that it may be filed as a separate compilation

पर्यावरण ग्रीर वन मंत्रालय (पर्यावरण वन ग्रीर वन्यजीव विभाग) ग्रिधिसुवना

नई दिल्ली, 5 फ़रवरी, 1990

- स . का . नि . 54(अ) :-- केन्द्रीय सरकार, पर्यावरण (संरक्षण) अधिनियम, 1986 (1986 का 29) की धारा 25 द्वार। प्रदत्त शक्तियों का प्रयोग करते हुए, पर्यावरण (संरक्षण) नियम, 1986 का ग्रौर संशोधन करने के लिए निम्नलिखित नियम बनाती है, ग्रर्थात:--
- । इन नियमों का संक्षिप्त नाम पर्यावरण (संरक्षण) दूसरा संशोधन नियम, 1990 है।
- 2. पर्यावरण (मंरक्षण) नियम, 1986 में, श्रनुसूची 3 के पश्चार निम्नलिखित श्रनुसूची रखी जाएगी, श्रयीत :--

भ्र**न्**सूची 4"

(नियम 3 देखें)

मोटर यान से धुम्रा, भाप भ्रादि के उत्सर्जन के लिए मानक

- (1) प्रत्येक मोटर यान को ऐसी दना में निर्निमत किया जाएगा भौर रखा जाएगा तथा इस प्रकार चलाया जाएगा कि उसमें से कोई धुवा, दृक्यभाप, ब्रिट, चिनगारी, राख, सिंडर या तैलीय पदार्थ न निकले।
- (2) 1 मार्च, 1990 में ही प्रयोग में लाया जाने वाला प्रत्येक मोटर यान निम्दलिखित मानकों के अनुरूप होगा:--

- (क) पैट्रोल से चलने वाली सभी च≀र पहिए वाते यानों के लिए जाइडलिंग सीद्रो (कार्बन भोनोक्साइड) उत्सर्जन सीना परिमाप के प्रनृसार 3 प्रतिग्रन से ग्रयिक नहीं होःी ;
- (ख) पैट्रोल से चलने वाली सभी दो ग्रीर तीत पहिए वाले यानीं के लिए ग्राइडॉलिंग सी ग्रो उत्पर्धा सीमा परिमान के ग्रनुसार 4.5 प्रतिसन से ग्रधिक नहीं होती;
- (ग) डीजल से चलते वाली सभी यानों के लिए धूम्प्र घनत्व निम्त प्रकार होगा:--

अधिकतम अपूमा बनत्व परीक्षण पद्धति वाण यूनिट हल्का भ्राप्त-हाटिज शोषगग्णांक एम - 1 (क) विनिर्माता द्वारा घोषित श्रधिकतम इंजन रेट गति 60 प्रतिशन से 70 प्रतिशन को गति 5 2 पर पूर्ण भार 3.1 75 (ख) मुक्त त्वरण 2.3 65

- (3) 1 अप्रैल, 1991 से ही पैट्रोल से चलने वाली सभी यान इस प्रकार विनिर्मित होंगे कि वे उपाबक्ध "1" में त्रिनिर्विष्ट द्रव्यमान उत्मर्बन मानको के अनुरूप हों। परीक्षण के लिए प्रयूक्त प्रचालन माइकिल बैक-डाउन वह होगा जो उपाबक्ध "2" में त्रिनिर्विष्ट है और ऐसे मधी परीक्षणों के लिए निर्देश ईधन वह होगा जो इस प्रनृत्वी के उपाबन्ध "3' में विनिर्दिष्ट है।
- (4) 1 अप्रैल, 1991 से ही डीजल से चलने वाले मशी यान इस प्रकार विनिर्मित होंगे कि वे इस अनुसूची के उपाबन्ध "4" में विनिर्दिष्ट निष्कासक ग्रीस पर आधारित शर्तों के अनुका हों।
- (5) 1 श्रप्रैंल, 1992 से ही डीजल से चलने वाले सभी यान इस प्रकार विनिर्मित होंगे कि वे भारतीय चालन साइकिल के श्रधीन उत्सर्जन के निम्नलिखित स्तरों के श्रनुका हों :---

कार्बन मोनोक्साइड (सीद्यो) हाईड्रोकार्बन (एचसी) नाइट्रोज न ग्रावमाइड का द्रव्यमान श्रधिकतम ग्राम का द्रव्यमान श्रधिकतम (एनप्रो) श्रधिकतम प्रतिके. डब्ल्यू. एच. ग्राम प्रतिके. डब्ल्यू. एच. एच.

14 3.5 18

(8) पैरा (2), (3), (4) ग्रौर (5) में निर्निद्घाट तारीख को भीर उनके पण्चात निर्निम्त प्रत्येक मोटर यान के बारे में निर्निम्ति। ग्रों द्वारा यह प्रमाणित किया जाएगा कि ने उक्त पैराग्रों के भ्रनुरूप हैं तथा निर्मितात्रों द्वारा यह श्रौर प्रमाणित किया जाएगा कि ग्रौसीय प्रदूषकों का उत्सर्जन करने नाले संघटकों का डिजाइन, मिलमाण ग्रौर समंजन इस प्रकार किया गया है कि उनसे यान ऐसे कम्पन के नानजूद, जिसके नह अधीन है, उक्त पैराग्रों के अनुरूग सामान्य उपयोग के निए सनव है।

(7) मोटर यानों के लिए धुम्रा उत्सर्जन स्तर और कार्वत मोनो-क्साइड का परीक्षण (क) पुलिम उपनिरोक्षक से म्रीतम्त पंक्षित का कोई मोटर यान निरोक्षक जिमके पाम यह विश्वास करने का कारण है कि किसी मोटर थान से उत्यं उत्योग धुर या कार्वा मोनोक्साइड जैसे प्रद्पकों से पर्यावरण का प्रदूषण होने की संगावता है जो सड़क का प्रयोग करने वाले ब्यक्तियों या जनता के स्वास्थ्य या सुरक्षा को संकटापन्न करना है, यान के चानक या उसके भार साथक व्यक्ति को काले धुए के मानक या मृत्य किसी प्रदूषकों के मानकों को मान के निराय यान के पेण करने का निर्देश दे सकेता।

and the control of the second control of the contro

- (ख) चालक या यान का भार साधक कोई व्यक्ति उप पैरा (क) में निर्दिष्ट किसी श्रृधिकारी के सांग किए जाने पर यान की धुए के मानक तवा प्रत्य प्रदूषकों के स्तर को मार्गने या दोनों के प्ररीक्षण के लिए प्रस्तुत करेगा।
- (ग) धुए के मानक का माप राज्य सरकार द्वारा अनुमोदिन किसी धुआ मीटर_द्वारा की जाएगी और कार्जन मोनोक्तराइड, जैसे अन्य प्रदूषकों का माप राज्य सरकार द्वारा अनुमोदिन उपकरणों से किया जाएगा।

[संख्या क्यू. 15017/8/88 - सी पी ए] जी. मुन्दरम, संयुक्त मचिव

पाद टिपण :- मूल नियम का. था. सं. 844(अ) तारीख 19-11-86 द्वारा प्रकाणित किए गए, संशोधनकारी नियम का. था. 82 (घ्र) तारीख 16 फरवरी, 1987; का. था. 393(अ) तारीख 16 अदौल, 1987; का. था. 443(अ) तारीख 28 अप्रैल, 1987; का. था. 64(अ) तारीख 18 जनवरी, 1988; मा. का. नि. 919(अ) तारीख 12 मितम्बर, 1988; का. था. 8(अ) तारीख 3 जनवरी, 1989; मा. का. नि. 1063(अ) तारीख 26 दिसम्बर, 1989; का. था. 12(अ) तारीख 8 जनवरी, 1990 द्वारा प्रकाणित किए गए।

उपाबन्ध — 1 (पैरा 3 देखिए)

पैट्रोल मे चलने वाले यानों के लिए द्रव्यमान उत्सर्जन स्तर

 टाइप अनुमोदन परीक्षण दो और तीन पहिए वाले यान:

निर्देश द्रव्यमान स्नार (कि. ग्रा.)	मीग्री (ग्रा/किग्रा)	एचसी (ग्रा/किया)
न्नार< 150 150<न्नार< 350	12 18(ब्रार150) 12+	8 4(आर) 150 8+
	200	200
ग्रार> 350	30	12
हल्के कार्ययानः		
निर्देश द्रव्यमान, ग्रार. डब्ल्यू (किग्रा.)	मोदो (ग्रा/कि.	ग्रा) एक्सी (ग्रा/किंग्रा)

निर्देश द्रव्यमान, ग्रार. डब्ल्यू (किग्रा.)	मोग्रो (ग्रा/किग्रा)	एचसी (ग्रा/किया)
म्रार डब्ल्यू ≦1020	14.3	2.0
1020<म्रार डब्ल्यू ≦1250	16.5	2.1
1 2 5 0 < ग्रा२ डब्स्यू ≦ 1 4 7 0	18.8	2,1
1470<म्रार डब्न्यू ≦1700	20.7	2.3
1700<ग्रार डब्ल्यू ≤1930	22,9	2.5
1930<म्रार डब्ल्यू ≤ 2150	24.9	2.7
ग्रार डब्न्यू <u>≤</u> 2150	27.1	2 9

उत्पादन परीक्षणों की अनुसपता : दो और तीन पहिए वाले यानः

निर्देश द्रव्यमान भार (किया)	संध्ये (ग्रा/किया)	एच सी (ग्रा/किग्रा)
श्रार150	15 25(মান150)	10 5(म्रार150)
150	15+	10+
श्रार> 350	200 40	$\frac{200}{15}$
हल्के कार्ययानः		•
	मीद्रो (ग्रा/किग्रा)	एच मी (ग्रा/किग्रा
ग्रार डब्ल्यू ≤ 1020	17.3	2.7
1020≦पार डब्ल्यू ≤ (250	19.7	2.7
1250≦क्षर डब्स् ≤1970	22.5	2.8
1 170 ≤ और डक्रर् ≤ 1700	24.9	3.0
1700 ≦म्रार डब्ल्यू ≤1930	27.6	3.3
1930 ≦प्रार डब्ल्यू ≦2:50	29.9	3.5
म्रार डब्ल्यू ≤ 2150	32.6	3.7

उत्पर निर्दिष्ट िनी प्रद्यक के लिए अभिप्राप्त तीन परिणामों में से केवल एक यान के लिए विनिर्दिष्ट ऐसी सीमा से अधिक हो संकेगा जो 10 प्रतिशत से अधिक नहीं होगी।

(स्पट्टीग्रंग्ण---द्रव्यमान, उत्पर्जन स्तर, यान के प्रति किलोमीटर चलने से उत्मर्जित प्रदूषकों के ग्राम के प्रति निर्देश है जो भारतीय चालन साइकिल का प्रयोग कश्के चेसिम डाइनोमीटर परीक्षण द्वारा ग्रविधारित किया जाए।)

उपावन्य - 2 (पैरा 3 देखिए) परीक्षण के लिए प्रश्नुक्त प्रचालन साइकिल का क्रेकडाउन

		· · · · · · · · · · · · · · · · · · ·			
प्रचा	लन की सं.	त्वरण (मि/से ²)	गति (कि.मी./घं.1		ग्राकलिन समय
01.	ग्राइडलिग		And the second s	16	16
02.	ब वरण	0.65	0-14	6	22
03.	त्वरण	0.56	1-22	4	26
04.	मंदन	-0.63	22-13	4	30
0.5	स्थायी गति		13	2	32
0.6	तत्वरण	0.56	13-23	5	37
0.7.	त्वरण	0,44	23-31	5	42
0.8	मंदन ,	-0.56	31-25	3	45
0.9	स्यायी गति		25	4	49
10	मंदन	-0.56	25-21	2	51
11.	त्व रण	0.45	21-34	8	59
1 2.	त्वरण	0.32	34-42	7	66
13.	मंदन	-0.46	42-37	3	69
14.	स्थायी भित		37	7	76
1 5.	मंदन	-0.42	87-34	2	8
1 6.	त्ररण	0,32	34-42	7	8.15
17.	मंदन	0.46	42-27	9	54
18.	मंदन	-0,52	27-14	7	101
19.	मंदन	-0.56	14-00	7	108

उपाबन्ध - 3 (पैरा 3 देखिए)

टाइप और उत्पादन अनुरूपता परीक्षणों के लिए निर्देश ईधन

कम स	तं. विशिष्टयां	87 आक्टेन	अपेक्षाएं 93 आ न्टे न	परीक्षण पद्धति (निर्देशपीः या भा भाः 1448*)
1	2	3	4	5
1.	रंग, दृश्य	नारंगी	लाल	programa
2.	50° सें. पर 3 घटे के लिए ताम्ब पटटी संक्षारण	सं. 1 से खराब ना	ही	पीं: 15 (1968)
3.	15 [°] सें. पर घनत्व	सीमित नहीं किस	तु रिपोर्ट किया जाना है	पीं: 16 (1967)
4.	श्रासवनः (क) प्रारम्भिक वश्रमांक	र्गरिक्ट जनी किट	नु रिपोर्ट किया जाना है।	Fr. 10 (1007)
	(क) प्रारम्भिक वनअपाक (ख) 20° में. तक उपलब्धि परिमाण के अनुसार प्रतिशत न्यूनतम	તામત પશ્ ાયા 10	पुरस्मदान्या जाना हा 10	41. 18 (1967)
	(ग) 125° सें. तक उनलब्धि परिमाण के अनुसार प्रतिशत न्यूनतम	50	50	
	(घ) 130° सें. तक उपलब्धि परिमाण के अनुसार प्रतिशत, न्यूनतम	90	90	
	(ङ) ग्रंतिम क्वथनांक, ग्रधिकतम	215° सें.	215° सें.	
	(च) अवशिष्ट परिमाण के अनुसार प्रतिशत, अधिकतम	2	2	
5.	भाक्टेन संख्या (अनुसंबान पद्धति), अधिकतम	87	9.4	पी: 27 (1960)
6.	उपापचयन स्थिरता, मिनटों में, न्यूनतम	360	360	पी: 28 (1966)
7.	बाप्पन पर अविभाट मिम्रा/100 मिली, अधिकतम	4.0	4.0	पीः 29 (1960) एथर-जेट विलायक (धावन)
8.	गंधक, कुल, भार के अनुसार प्रतिगत द्यधिकतम	0.25	0.20	पी: 34 (1966)
9.	मीसा भ्रस्तर्वस्तु (जैसे पीवी), जी/1 अधिकतम	0.56	0.80	र्पाः 37 (1967) या पीः 38 (1967)
10.	30° से. पर रीड वाप्प दाव, के जीएफ/मी.एम 2 ग्रधिकतम	0.70	0.70	पी: 39 (1967)

^{*}पैट्रोलियम भ्रौर उसके उत्पादों के लिए परीक्षण पद्धति।

उपाबन्ध- 4 (पैरा 4 देखिए)

डीजल से चलने वाले यानों के लिए लागू एक्जास्ट गैस अपाथता के सामग लागू स्थायी गति पर ंजन परीक्षण

सामान्य प्रवाह	अवगोषण गुणांक	सामान्य प्रवाह	अवशोषण गुणांक
जी (1/एम)	के (एम-1)	जी (1/एस)	के (एम-1)
< 43	2.00	120	1.20
45	1.91	125	1.17
50	1.82	130	1.15
55	1.75	135	1.13
60	1.68	140	1.11
6 5	1.61	1 4 5	1.09
70	1.56	150	1.07
75	1.50	155	1.05
80	1.46	160	1.04
85	1.41	165	1.02
90	1.38	170	1.01
د دوي سهاها	1.34	175	1.00
1.2.0	1.31	180	0.99
1,45	1.27	185	0.97
110	1.25	190	0.96-
115	1 . 22	195	U.95
		> 0 0	0.93

MINISTRY OF ENVIRONMENT AND FORESTS

(Department of Environment, Forests and Wildlife)

NOTIFICATION

New Delhi, the 5th February, 1990

G.S.R. 54(E).—In exercise of the powers conferred by section 25 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government hereby makes the following rules further to amend the Environment (Protection) Rules, 1986, namely:—

- 1. These rules may be called the Environment (Protection) Second Amendment Rules, 1990.
- In the Environment (Protection) Rules, 1986, after Schedule III, the following Schedule shall be inserted, namely:—

"SCHEDULE IV"

(See rule 3)

Standards for emission of smoke, vapour, etc. from motor vehicles:---

- (1) Every motor vehicle shall be manufactured and maintained in such condition and shall be so driven that smoke, visible vapour, grit, sparks, ashes, cinders or oily substance do not emit therefrom.
- (2) On and from the 1st day of March 1990, every motor vehicle in use shall comply with the following standards:—
 - (a) Idling CO (Carbon monoxide) emission limit for all four wheeled petrol driven vehicles shall not exceed 3 per cent by volume;
 - (b) Idling CO emission limit for all two and three wheeled petrol driven vehicles shall not exceed 4.5 per cent by volume;
 - (c) Smoke density for all diesel driven vehicles shall be as follows:

Ne. 1 - 1 - em- 1	Maximum smoke density			
Method of Test	Light absorption coefficient m-1	Bosch Units	Hartri- dge units	
(a) Full load at a speed of 60% to 70% of maximum eagine rated speed declared by the manufacturer	3.1	5.2	75	
(b) Frie acceleration	2.3		65	

(3) On and from the 1st day of April, 1991, all petrol driven vehicles shall be so manufactured that they comply with the mass emission standards as specified at Annexure T. The breakdown of the operating cycle used for the test shall be as specified at Annexure II' and the reference fuel for all such tests shall be as specified in Annexure III' to this Schedule.

- (4) On and from the 1st day of April, 1991, all diesel driven vehicles shall be so manufactured that they comply with the mass emission standards based on exhaust gas opacity as specified at Annexure 'IV' to this Schedule.
- (5) On and from the 1st day of April, 1992, all diesel driven vehicles shall be so manufactured that they comply with the following levels of emissions under the Indian driving cycle:—

Mass of Varbon Monoxice)VO! Maxmi Grams per	Mass of Hyd ox cartons (EC) Maxni Grems per	*
KWII 	KHW 3.5	KWH

- (6) Each motor vehicle manufactured on and after the dates specified in paragraphs (2), (3), (4) and (5) shall be certified by the manufacturers to be conforming to the standards specified in the said paragraphs and the manufacutrers shall further certify that the components liable to effect the emission of gaseous pollutants are so designed, constructed and assembled as to enable the vehicle, in normal use, despite the vibration to which it may be subjected, to comply with the provisions of the said paragraphs.
- (7) Test for smoke emission level and carbon monoxide level for motor vehicles—(a) Any officer not below the rank of a sub-inspector of police or an inspector of motor vehicles, who has reason to believe that a motor vehicle is by virtue of smoke emitted from it or other pollutants like carbon monoxide emitted from it, is likely to cause environmental pollution, endangering the health or safety of any other user of the road or the public, may direct the driver or any person incharge of the vehicle to submit the vehicle for undergoing a test to measure the standard of black smoke or the standard of any of the other pollutants.
- (b) The driver or any person incharge of the vehicle shall upon demand by any officer referred to in sub-paragraph (a), submit the vehicle for testing for the purpose of measuring the standard of smoke or the levels of other pollutants or both.
- (c) The measurment of standard of smoke shall be done with a smoke meter of a type approved by the State Government and the measurement of other pollutants like carbon monoxide shall be done with instruments of a type approved by the State Government.

[No. Q-15017/8/88-CPA] G. SUNDARAM, Jt. Secy.

Foot No'e.—Principal Rules published vide S.O. No. 844(E) dated the 19-11-86, Amending rules published vide S.O. 82(E) dated 16th February, 1987; S.O. 393(E) dated the 16th April, 1987, S.O. 443(E) dated 28th April, 1987; S.O. 64(E) dated the 18th January, 1988; G.S.R. 919(E) dated the 12th September, 1988; S.O. 8(E) dated the 3rd January, 1989; G.S.R. 1063(E) dated 26th December, 1989, and S.O. 12(E) dated 8th January, 1990.

ANNEXURE—1

(See paragraph 3)

MASS EMISSION STANDARDS FOR PETROL DRIVEN VEHICLES

1. Type Approval Tests:

Two and Three Wheeler Vehicles

Reference Mass, R(Kg)	CO (g/km)	HC (g/km)
1	2	3
R≤150	12	8
150 R≤350	18(R —150)	4(R-150)
	12+	8 1
	200	200
R > 350	30	12

Light Duty Vehicles:

Reference Mass, rw (Kg)	CO (g/km)	HC(g/km)
1	2	3
rw ≤ 1020	14.3	2.0
$1020 < \text{rw} \le 1250$	16.5	2.1
$1250 < rw \le 1470$	18.8	2.1
$1470 < \text{rw} \le 1700$	20.7	2.3
$1700 < \text{rw} \le 1930$	22.9	2.5
$1930 < \text{rw} \le 2150$	24.9	2.7
rw ≤ 2150	27.1	2.9

2. Conformity of Production Tests:

Two and Three Wheeler Vehicles:

Reference Mass, R (kg)	CO(g/km)	HC(g/km)
1	2	3
R - 150	15	10
	25(R —150)	5(R150)
150< ≤ <350	15-	10-
	200	200
R > 350	40	15
		and the second of the second s

Light Duty vehicles:

Reference Mass, rw (kg)	CO(g/km)	HC(g/km)
1	2	3
rw ≤ 1020	17.3	2.7
1020 ≤rw ≤ 1250	19.7	2.7
1250 ≤rw ≤ 1470	22.5	2.8
1470≤rw ≤ 1700	24.9	3.0
1700≤rw ≤ 1930	27.6	3.3
1930≤rw ≤2150	29.9	3.5
rw ≤2150	32.6	3.7

For any of the polluants referred to above of the three results obtained may exceed the limit specified for the vehicle by not more than 10 per cent.

Explanation: Mass emission standards refers to the gm. of pollutants emitted per km. run of the vehicle, as determined by a chessis dynamometer test using the Indian Driving Cycle.

ANNEXURE—11 (See paragraph 3)

BREAK DOWN OF THE OPERATING CYCLE USED FOR THE TESTS:

No. of Operation		Acceleration (n1/acc²)	Speed (Km/h))	Duration of each operation(s)	Cumulative time(S)
	1	2	3	4	5
01.	Idling			16	16
02.	Acceleration	0.65	0_14	6	22
03.	Acceleration	0.56	14—22	4	26
04.	Deccleration	-0.63	22—13	4	30
05.	Steady speed		13	2	32
0 6.	Acceleration	0.56	13—23	5	37
07.	Acceleration	0.44	23—31	5	42
08.	Deceleration	-0.56	31—25	3	45
09.	Steady speed		25	4	49
10.	Deceleration	_0.56	25—21	2	51
11.	Acceleration	0.45	21—34	8	59
12.	Acceleration	0.32	34-42	7	66
13.	Deceleratino	-0.46	42—37	3	69
14.	Steady sped		37	7	76
15.	Deceleration	-0.42	3434	2	78
16.	Acceleration	0.32	34-42	7	85
17.	Deceleration	-0.46	4247	9	94
18.	Deceleration	—0. 52	27—14	7	101
19.	Deceleration	-0.56	1400	7	108

ANNEXURE—III (See paragraph 3) REFERENCE FUEL FOR TYPE AND PRODUCTION CONFORMITY TESTS

S.No. Characteristic		Requirements 87 octane 93 octane		Method of test (ref of P or IS: 1448*)	
1.	Colour, visual	Orange	Red		
. (Copper-strip corr osion for 3hours at 50°C.	Not worse than No. 1		P: 15 (1968)	
3.	Density at 15°C	Not limited but to be reported		P:16(1967)	
f. :	Distillation:			P: 18 (1967)	
	(a) Initial boiling point	Not limited	but to be reported		
	*Methods of test for petroleum and its products.	•			
	(b) Recovery up to 20°C percent by vloume, min.	10	10		
	(c) Recovery upt o125°C 50 percent by volume,	50	50		
	(d) Recovery upto 130°C per cent by volume min.	90	90		
	(e) Final boiling point, Max	215°C	215°C		
	(f) Residue per cent by volume, Max.	2	2		
. (Octane number (Research method) Max.	87	94	P: 27 (1960)	
ó. ·	Oxidation stability in minutes, Min.	360	360	P:28 (2966)	
7.	Residue on evaporation mg/100 ml, max.	4.0	4.0	P: 29 (1960) (Air-jat solvent washed)	
3.	Sulphur, total, percent by weight Max.	0.25	0.20	P: 34 (1966)	
) .	Lead content (as Pb), g/1 Max.	0.56	0.80	P: 37/(1967) or P: 38 (1967)	
10.	Reid vapour pressure at 38 degree C, kgf/cm3. Max.	0.70	0.70	P:39 (1967)	

ANNEXURE-IV

(See paragraph 4)

LIMIT VALUES OF EXHAUST GAS OPACITY APPLICABLE

FOR DIESEL DRIVEN VEHICLES

THE ENGINE TESTS AT STEADY SPEED

Nominal Flow G(1/s)	Absorption Coefficient K(m-1)	Nominal Flow G(1/s)	Absorption Coefficient(K9-1)
42	2.00	120	1.20
45	1.91	125	1.17
50	1.82	130	1. 15
55	1.75	135	1.31
60	1.68	140	1.11
65	1.61	145	1.09
70	1.56	150	1.07
75	1.50	155	1.05
80	1.46	160	1.04
85	1.41	165	1.02
90	1.38	170	1.01
95	1.34	175	1.00
100	1.31	180	0.99
105	1.27-	185	0.97
110	1.25	190	0.96
115	1.22	195	0.95
		< 200	0,93