```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import normalize
```

In [3]: # Import Dataset
airline = pd.read_csv('EastWestAirlines.csv')
airline

Out[3]:

		ID#	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Fliç
	0	1	28143	0	1	1	1	174	1	
	1	2	19244	0	1	1	1	215	2	
	2	3	41354	0	1	1	1	4123	4	
	3	4	14776	0	1	1	1	500	1	
	4	5	97752	0	4	1	1	43300	26	
39	94	4017	18476	0	1	1	1	8525	4	
39	95	4018	64385	0	1	1	1	981	5	
39	996	4019	73597	0	3	1	1	25447	8	
39	997	4020	54899	0	1	1	1	500	1	
39	998	4021	3016	0	1	1	1	0	0	

3999 rows × 12 columns

4

```
In [4]: airline2 = airline.drop(['ID#'],axis=1)
airline2
```

Out[4]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mil
0	28143	0	1	1	1	174	1	
1	19244	0	1	1	1	215	2	
2	41354	0	1	1	1	4123	4	
3	14776	0	1	1	1	500	1	
4	97752	0	4	1	1	43300	26	
3994	18476	0	1	1	1	8525	4	
3995	64385	0	1	1	1	981	5	
3996	73597	0	3	1	1	25447	8	
3997	54899	0	1	1	1	500	1	
3998	3016	0	1	1	1	0	0	

3999 rows × 11 columns

In [5]: airline2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3999 entries, 0 to 3998
Data columns (total 11 columns):

Data	cordinis (cocar ii	COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	Balance	3999 non-null	int64
1	Qual_miles	3999 non-null	int64
2	cc1_miles	3999 non-null	int64
3	cc2_miles	3999 non-null	int64
4	cc3_miles	3999 non-null	int64
5	Bonus_miles	3999 non-null	int64
6	Bonus_trans	3999 non-null	int64
7	Flight_miles_12mo	3999 non-null	int64
8	Flight_trans_12	3999 non-null	int64
9	Days_since_enroll	3999 non-null	int64
10	Award?	3999 non-null	int64

dtypes: int64(11)
memory usage: 343.8 KB

In [6]: # Normalize heterogenous numerical data
airline2_norm = pd.DataFrame(normalize(airline2),columns=airline2.columns)
airline2_norm

Out[6]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mi
0	0.970414	0.0	0.000034	0.000034	0.000034	0.006000	0.000034	
1	0.940209	0.0	0.000049	0.000049	0.000049	0.010504	0.000098	
2	0.981113	0.0	0.000024	0.000024	0.000024	0.097817	0.000095	
3	0.904428	0.0	0.000061	0.000061	0.000061	0.030605	0.000061	
4	0.912226	0.0	0.000037	0.000009	0.000009	0.404078	0.000243	
3994	0.905810	0.0	0.000049	0.000049	0.000049	0.417949	0.000196	
3995	0.999649	0.0	0.000016	0.000016	0.000016	0.015231	0.000078	
3996	0.944948	0.0	0.000039	0.000013	0.000013	0.326726	0.000103	
3997	0.999592	0.0	0.000018	0.000018	0.000018	0.009104	0.000018	
3998	0.907271	0.0	0.000301	0.000301	0.000301	0.000000	0.000000	

3999 rows × 11 columns

In [7]: # Use Elbow Graph to find optimum number of clusters (K value) from K values rar # The K-means algorithm aims to choose centroids that minimise the inertia, or wi # random state can be anything from 0 to 42, but the same number to be used every

```
In [8]: # within-cluster sum-of-squares criterion
wcss=[]
for i in range (1,11):
    kmeans=KMeans(n_clusters=i,random_state=2)
    kmeans.fit(airline2_norm)
    wcss.append(kmeans.inertia_)
```

```
In [9]: # Plot K values range vs WCSS to get Elbow graph for choosing K (no. of clusters)
plt.plot(range(1,11),wcss)
plt.title('Elbow Graph')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```


Build Cluster algorithm using K=4

```
In [11]: # Cluster algorithm using K=4
    clusters4=KMeans(4,random_state=30).fit(airline2_norm)
    clusters4

Out[11]: KMeans(n_clusters=4, random_state=30)

In [12]: clusters4.labels_
Out[12]: array([0, 0, 0, ..., 3, 0, 0])
```

Out[13]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mil
0	28143	0	1	1	1	174	1	
1	19244	0	1	1	1	215	2	
2	41354	0	1	1	1	4123	4	
3	14776	0	1	1	1	500	1	
4	97752	0	4	1	1	43300	26	
3994	18476	0	1	1	1	8525	4	
3995	64385	0	1	1	1	981	5	
3996	73597	0	3	1	1	25447	8	
3997	54899	0	1	1	1	500	1	
3998	3016	0	1	1	1	0	0	

3999 rows × 12 columns

```
In [14]: # Compute the centroids for K=4 clusters with 11 variables
    clusters4.cluster_centers_
```

```
Out[14]: array([[9.82878899e-01, 3.71612347e-03, 4.15057209e-05, 3.77179195e-05, 3.76205578e-05, 8.06914054e-02, 1.57453088e-04, 6.65079627e-03, 2.12921781e-05, 1.03324885e-01, 4.81770304e-06], [5.23653977e-01, 2.37603195e-03, 9.13653056e-05, 4.56081254e-05, 4.45095230e-05, 7.97866700e-01, 5.07019477e-04, 1.75075997e-02, 5.89123100e-05, 1.31443994e-01, 3.00837174e-05], [6.28081328e-01, 9.30359261e-04, 2.06331617e-04, 2.06128767e-04, 2.05879951e-04, 1.23980626e-01, 4.76413717e-04, 6.66146530e-03, 2.24385615e-05, 6.89106611e-01, 2.58980762e-05], [8.99048678e-01, 2.03403471e-03, 5.68074076e-05, 3.01913199e-05, 2.95156437e-05, 4.03089039e-01, 4.02398112e-04, 7.62262675e-03, 2.24052643e-05, 8.50654942e-02, 9.73901648e-06]])
```

```
In [15]: # Group data by Clusters (K=4)
airline4.groupby('clusters4id').agg(['mean']).reset_index()
```

Out[15]:

	clusters4id	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_tra
		mean	mean	mean	mean	mean	mean	mean
0	0	88484.857577	175.062961	1.495441	1.008250	1.001737	8110.131568	8.770
1	1	28617.579670	112.000000	3.280220	1.030220	1.068681	42166.565934	17.634
2	2	5129.247934	8.285124	1.004132	1.004132	1.000000	891.388430	3.012
3	3	72378.903670	119.606422	3.077982	1.024771	1.018349	31486.477982	17.476

Out[16]: <matplotlib.collections.PathCollection at 0x274f0bcb220>

Build Cluster algorithm using K=5

```
In [17]: # Cluster algorithm using K=5
         clusters5=KMeans(5,random_state=30).fit(airline2_norm)
         clusters5
Out[17]: KMeans(n_clusters=5, random_state=30)
In [18]: clusters5.labels_
Out[18]: array([0, 3, 0, ..., 4, 0, 3])
In [19]: # Assign clusters to the data set
         airline5=airline2.copy()
         airline5['clusters5id']=clusters5.labels_
         airline5
Out[19]:
```

_		Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mil
	0	28143	0	1	1	1	174	1	
	1	19244	0	1	1	1	215	2	
	2	41354	0	1	1	1	4123	4	
	3	14776	0	1	1	1	500	1	
	4	97752	0	4	1	1	43300	26	
	3994	18476	0	1	1	1	8525	4	
	3995	64385	0	1	1	1	981	5	
	3996	73597	0	3	1	1	25447	8	
	3997	54899	0	1	1	1	500	1	
	3998	3016	0	1	1	1	0	0	

3999 rows × 12 columns

```
In [20]: # Compute the centroids for K=5 clusters with 11 variables
         clusters5.cluster_centers_
Out[20]: array([[9.87581993e-01, 3.39051837e-03, 3.51053916e-05, 3.03791237e-05,
                 3.02652033e-05, 9.01709733e-02, 1.53701634e-04, 6.66013521e-03,
                 2.09767345e-05, 7.53291184e-02, 3.94536689e-06],
                [5.14758999e-01, 2.45703304e-03, 9.55752981e-05, 5.00781670e-05,
                 4.87710513e-05, 8.02358706e-01, 5.20472068e-04, 1.80244812e-02,
                 6.06430623e-05, 1.36539353e-01, 3.06234744e-05],
                [4.14644791e-01, 1.30104261e-18, 2.28611980e-04, 2.27627266e-04,
                 2.27627266e-04, 1.50766683e-01, 5.97513433e-04, 7.35401490e-03,
                 2.84888383e-05, 8.48268382e-01, 3.91049405e-05],
                [8.93103634e-01, 4.45303855e-03, 1.23796982e-04, 1.23612826e-04,
                 1.23612826e-04, 7.60122618e-02, 2.95169039e-04, 6.30476783e-03,
                 2.07480658e-05, 4.07515394e-01, 1.35161631e-05],
                [8.91833807e-01, 2.00098101e-03, 5.80553278e-05, 3.01489923e-05,
                 2.94377607e-05, 4.20637046e-01, 4.04859493e-04, 7.68892416e-03,
                 2.27011475e-05, 8.30834166e-02, 1.00407121e-05]])
In [21]: # Group data by Clusters (K=5)
         airline5.groupby('clusters5id').agg(['mean']).reset_index()
Out[21]:
```

	clusters5id	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_tra
		mean	mean	mean	mean	mean	mean	mean
0	0	97404.121382	185.499533	1.604575	1.009337	1.001867	9636.360411	9.704
1	1	27526.798295	115.818182	3.247159	1.034091	1.071023	41812.809659	17.599
2	2	2415.576577	0.000000	1.009009	1.000000	1.000000	850.189189	3.036
3	3	11768.858247	55.121134	1.005155	1.000000	1.000000	984.778351	3.469
4	4	70743.739563	116.122266	3.135189	1.025845	1.019881	32531.393638	17.626
4								

```
In [22]: # Plot Clusters
    plt.figure(figsize=(10, 7))
    plt.scatter(airline5['clusters5id'],airline5['Balance'], c=clusters5.labels_)
```

Out[22]: <matplotlib.collections.PathCollection at 0x274f09d2850>

