In [1]: import pandas as pd
 import numpy as np
 from matplotlib import pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Ridge,Elastifrom sklearn.model_selection import train_test_split

Out[2]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
0	2015-10-01 01:00:00	NaN	0.8	NaN	NaN	90.0	82.0	NaN	NaN	NaN	10.0	NaN	NaN	28079004
1	2015-10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	28079008
2	2015-10-01 01:00:00	3.1	NaN	1.8	NaN	29.0	97.0	NaN	NaN	NaN	NaN	NaN	7.1	28079011
3	2015-10-01 01:00:00	NaN	0.6	NaN	NaN	30.0	103.0	2.0	NaN	NaN	NaN	NaN	NaN	28079016
4	2015-10-01 01:00:00	NaN	NaN	NaN	NaN	95.0	96.0	2.0	NaN	NaN	9.0	NaN	NaN	28079017
***														•••
210091	2015-08-01 00:00:00	NaN	0.2	NaN	NaN	11.0	33.0	53.0	NaN	NaN	NaN	NaN	NaN	28079056
210092	2015-08-01 00:00:00	NaN	0.2	NaN	NaN	1.0	5.0	NaN	26.0	NaN	10.0	NaN	NaN	28079057
210093	2015-08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	74.0	NaN	NaN	NaN	NaN	NaN	28079058
210094	2015-08-01 00:00:00	NaN	NaN	NaN	NaN	3.0	7.0	65.0	NaN	NaN	NaN	NaN	NaN	28079059
210095	2015-08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	9.0	54.0	29.0	NaN	NaN	NaN	NaN	28079060

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 210096 entries, 0 to 210095 Data columns (total 14 columns): Column Non-Null Count Dtype _____ ---------0 date 210096 non-null object 1 BEN 51039 non-null float64 2 CO 86827 non-null float64 3 EBE 50962 non-null float64 4 NMHC 25756 non-null float64 5 208805 non-null float64 NO NO_2 6 208805 non-null float64 7 0 3 121574 non-null float64 8 PM10 102745 non-null float64 9 PM25 48798 non-null float64 10 SO 2 86898 non-null float64 float64 11 TCH 25756 non-null 50626 non-null float64 12 TOL station 210096 non-null int64 dtypes: float64(12), int64(1), object(1) memory usage: 22.4+ MB

In [4]: df1=df.dropna()
df1

Out[4]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
1	2015-10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	28079008
6	2015-10-01 01:00:00	0.5	0.3	0.3	0.12	6.0	83.0	1.0	19.0	12.0	3.0	1.29	4.8	28079024
25	2015-10-01 02:00:00	1.6	0.7	1.3	0.38	81.0	105.0	4.0	36.0	19.0	13.0	1.93	6.9	28079008
30	2015-10-01 02:00:00	0.4	0.3	0.3	0.11	5.0	72.0	2.0	16.0	10.0	2.0	1.27	7.8	28079024
49	2015-10-01 03:00:00	2.2	8.0	1.8	0.41	111.0	104.0	4.0	35.0	20.0	14.0	2.05	13.9	28079008
														•••
210030	2015-07-31 22:00:00	0.1	0.1	0.1	0.06	1.0	10.0	69.0	10.0	3.0	2.0	1.18	0.2	28079024
210049	2015-07-31 23:00:00	0.4	0.3	0.1	0.12	3.0	28.0	56.0	15.0	7.0	12.0	1.45	1.2	28079008
210054	2015-07-31 23:00:00	0.1	0.1	0.1	0.06	1.0	10.0	63.0	5.0	1.0	2.0	1.18	0.2	28079024
210073	2015-08-01 00:00:00	0.1	0.3	0.1	0.11	2.0	23.0	59.0	5.0	2.0	11.0	1.44	0.6	28079008
210078	2015-08-01 00:00:00	0.1	0.1	0.1	0.06	1.0	8.0	65.0	7.0	1.0	2.0	1.18	0.4	28079024

```
In [5]: df1=df1.drop(["date"],axis=1)
```

In [6]: sns.heatmap(df1.corr())

Out[6]: <AxesSubplot:>


```
In [7]: plt.plot(df1["EBE"],df1["PM25"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x23a1638ebb0>]


```
In [8]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [9]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[9]: LinearRegression()

```
madrid_data(2015_16) - Jupyter Notebook
         prediction=li.predict(x_test)
In [10]:
         plt.scatter(y_test,prediction)
Out[10]: <matplotlib.collections.PathCollection at 0x23a16575700>
           8
           6
           4
           2
In [11]: lis=li.score(x_test,y_test)
In [12]: df1["TCH"].value_counts()
Out[12]: 1.20
                  905
         1.19
                  873
         1.21
                  793
         1.22
                  638
         1.18
                  465
         2.79
                    1
         4.46
                    1
         2.48
                    1
         3.43
                    1
         2.63
         Name: TCH, Length: 184, dtype: int64
In [13]: df1.loc[df1["TCH"]<1.40,"TCH"]=1</pre>
         df1.loc[df1["TCH"]>1.40,"TCH"]=2
         df1["TCH"].value_counts()
Out[13]: 2.0
                 8290
```

1.0 7736

Name: TCH, dtype: int64

Lasso

```
In [14]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[14]: Lasso(alpha=5)

```
In [15]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[15]: <matplotlib.collections.PathCollection at 0x23a165d8e50>


```
In [16]: las=la.score(x_test,y_test)
```

Ridge

```
In [17]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[17]: Ridge(alpha=1)

```
In [18]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[18]: <matplotlib.collections.PathCollection at 0x23a163df9a0>


```
In [19]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [20]: en=ElasticNet()
    en.fit(x_train,y_train)

Out[20]: ElasticNet()
```

In [21]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)

Out[21]: <matplotlib.collections.PathCollection at 0x23a16657ee0>


```
In [22]: ens=en.score(x_test,y_test)
```

```
In [23]: print(rr.score(x_test,y_test))
    rr.score(x_train,y_train)
```

0.8030115171965686

Out[23]: 0.7576572353945755

Logistic

Out[26]: LogisticRegression()

```
In [27]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[27]: <matplotlib.collections.PathCollection at 0x23a16414a60>


```
In [28]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [29]:
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
         g1={"TCH":{"Low":1.0,"High":2.0}}
In [30]:
         df1=df1.replace(g1)
In [31]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [32]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[32]: RandomForestClassifier()
In [33]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         }
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid search.fit(x train,y train)
Out[34]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
```

scoring='accuracy')

```
In [35]:
         rfcs=grid_search.best_score_
In [36]: rfc best=grid search.best estimator
In [37]: | from sklearn.tree import plot tree
         plt.figure(figsize=(80,40))
         plot tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],fill
Out[37]: [Text(2200.56338028169, 2019.0857142857144, 'SO_2 <= 5.5\ngini = 0.5\nsamples = 7059
         \nvalue = [5445, 5773]\nclass = No'),
          Text(1257.4647887323945, 1708.457142857143, 'CO <= 0.35\ngini = 0.168\nsamples = 34
         58\nvalue = [4990, 509]\nclass = Yes'),
          Text(723.0422535211268, 1397.8285714285716, 'NO <= 2.5\ngini = 0.109\nsamples = 315
         9\nvalue = [4720, 291]\nclass = Yes'),
          Text(345.80281690140845, 1087.2, 'CO <= 0.25\ngini = 0.065\nsamples = 2303\nvalue =
         [3540, 123]\nclass = Yes'),
          Text(125.74647887323944, 776.5714285714287, 'CO <= 0.15\ngini = 0.048\nsamples = 21
         64\nvalue = [3359, 84]\nclass = Yes'),
          Text(62.87323943661972, 465.9428571428573, 'gini = 0.0\nsamples = 368\nvalue = [58
         8, 0]\nclass = Yes'),
          Text(188.61971830985917, 465.9428571428573, '0_3 <= 50.5\ngini = 0.057\nsamples = 1
         796\nvalue = [2771, 84]\nclass = Yes'),
          Text(125.74647887323944, 155.3142857142857, 'gini = 0.169\nsamples = 366\nvalue =
         [544, 56]\nclass = Yes'),
          Text(251.49295774647888, 155.3142857142857, 'gini = 0.025\nsamples = 1430\nvalue =
         [2227, 28]\nclass = Yes'),
          Text(565.8591549295775, 776.5714285714287, 'BEN <= 0.15\ngini = 0.292\nsamples = 13
                    [101 20]\ == ]===
In [38]: print("Linear:",lis)
         print("Lasso:",las)
         print("Ridge:",rrs)
         print("ElasticNet:",ens)
         print("Logistic:",los)
         print("Random Forest:",rfcs)
         Linear: 0.8029944802406465
```

Linear: 0.8029944802406465 Lasso: 0.4077775855828065 Ridge: 0.8030115171965686 ElasticNet: 0.7001824428916614 Logistic: 0.5187188019966722 Random Forest: 0.9561419147798181

Best Model is Random Forest

In [39]: df2=pd.read_csv("C:/Users/user/Downloads/FP1_air/csvs_per_year/csvs_per_year/madrid_2010
df2

Out[39]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	тсн	TOL	station
0	2016-11- 01 01:00:00	NaN	0.7	NaN	NaN	153.0	77.0	NaN	NaN	NaN	7.0	NaN	NaN	28079004
1	2016-11- 01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4	28079008
2	2016-11- 01 01:00:00	5.9	NaN	7.5	NaN	297.0	139.0	NaN	NaN	NaN	NaN	NaN	26.0	28079011
3	2016-11- 01 01:00:00	NaN	1.0	NaN	NaN	154.0	113.0	2.0	NaN	NaN	NaN	NaN	NaN	28079016
4	2016-11- 01 01:00:00	NaN	NaN	NaN	NaN	275.0	127.0	2.0	NaN	NaN	18.0	NaN	NaN	28079017
209491	2016-07- 01 00:00:00	NaN	0.2	NaN	NaN	2.0	29.0	73.0	NaN	NaN	NaN	NaN	NaN	28079056
209492	2016-07- 01 00:00:00	NaN	0.3	NaN	NaN	1.0	29.0	NaN	36.0	NaN	5.0	NaN	NaN	28079057
209493	2016-07- 01 00:00:00	NaN	NaN	NaN	NaN	1.0	19.0	71.0	NaN	NaN	NaN	NaN	NaN	28079058
209494	2016-07- 01 00:00:00	NaN	NaN	NaN	NaN	6.0	17.0	85.0	NaN	NaN	NaN	NaN	NaN	28079059
209495	2016-07- 01 00:00:00	NaN	NaN	NaN	NaN	2.0	46.0	61.0	34.0	NaN	NaN	NaN	NaN	28079060

In [40]: df2.info()

RangeIndex: 209496 entries, 0 to 209495 Data columns (total 14 columns): Column Non-Null Count Dtype _____ ---------0 date 209496 non-null object 1 BEN 50755 non-null float64 2 CO 85999 non-null float64 3 EBE 50335 non-null float64 4 NMHC 25970 non-null float64 5 208614 non-null float64 NO NO_2 6 208614 non-null float64 7 0 3 121197 non-null float64 8 PM10 102892 non-null float64 9 PM25 52165 non-null float64 10 SO 2 86023 non-null float64 float64 11 TCH 25970 non-null 50662 non-null float64 12 TOL station 209496 non-null int64 dtypes: float64(12), int64(1), object(1)

<class 'pandas.core.frame.DataFrame'>

memory usage: 22.4+ MB

In [41]: df3=df2.dropna() df3

Out[41]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
1	2016-11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4	28079008
6	2016-11-01 01:00:00	0.7	8.0	0.4	0.13	57.0	66.0	3.0	23.0	15.0	4.0	1.35	5.0	28079024
25	2016-11-01 02:00:00	2.7	1.0	2.1	0.40	139.0	114.0	4.0	37.0	21.0	14.0	2.30	15.0	28079008
30	2016-11-01 02:00:00	0.7	0.7	0.4	0.13	48.0	59.0	3.0	23.0	15.0	3.0	1.35	5.0	28079024
49	2016-11-01 03:00:00	1.7	8.0	1.4	0.25	53.0	90.0	4.0	31.0	19.0	10.0	1.95	10.7	28079008
	•••													
209430	2016-06-30 22:00:00	0.1	0.2	0.1	0.02	1.0	5.0	97.0	19.0	12.0	2.0	1.15	0.2	28079024
209449	2016-06-30 23:00:00	0.6	0.4	0.3	0.15	14.0	63.0	54.0	29.0	13.0	16.0	1.48	1.9	28079008
209454	2016-06-30 23:00:00	0.1	0.2	0.1	0.02	1.0	7.0	91.0	16.0	9.0	2.0	1.15	0.3	28079024
209473	2016-07-01 00:00:00	0.6	0.4	0.3	0.16	11.0	68.0	45.0	24.0	14.0	16.0	1.50	1.9	28079008
209478	2016-07-01 00:00:00	0.1	0.2	0.1	0.02	1.0	6.0	89.0	16.0	9.0	2.0	1.15	0.2	28079024

```
In [42]: df3=df3.drop(["date"],axis=1)
```

```
In [43]: | sns.heatmap(df3.corr())
```

Out[43]: <AxesSubplot:>


```
In [44]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [45]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[45]: LinearRegression()

In []:

In [46]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)

Out[46]: <matplotlib.collections.PathCollection at 0x23a1724cd60>


```
lis=li.score(x_test,y_test)
In [47]:
         df3["TCH"].value_counts()
In [48]:
Out[48]: 1.16
                  757
          1.18
                  701
          1.17
                  683
          1.19
                  618
          1.15
                  577
          4.82
                    1
          2.78
                    1
          3.59
                    1
          3.10
                    1
          4.07
          Name: TCH, Length: 217, dtype: int64
In [49]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
          df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[49]: 1.0
                 10002
          2.0
                  6930
          Name: TCH, dtype: int64
 In [ ]:
```

Lasso

In [50]: la=Lasso(alpha=5)

```
la.fit(x_train,y_train)

Out[50]: Lasso(alpha=5)

In [51]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)

Out[51]: <matplotlib.collections.PathCollection at 0x23a16fa9e80>
```



```
In [52]: las=la.score(x_test,y_test)
```

Ridge

```
In [53]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

Out[53]: Ridge(alpha=1)

```
In [54]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[54]: <matplotlib.collections.PathCollection at 0x23a16ffef40>


```
In [55]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [56]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[56]: ElasticNet()

```
In [57]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[57]: <matplotlib.collections.PathCollection at 0x23a17022f40>


```
In [58]: ens=en.score(x_test,y_test)
```

```
In [59]: print(rr.score(x_test,y_test))
    rr.score(x_train,y_train)
```

0.7500531919104193

Out[59]: 0.7540860619941899

Logistic

```
In [61]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [62]: lo=LogisticRegression()
lo.fit(x_train,y_train)
```

Out[62]: LogisticRegression()

```
In [63]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[63]: <matplotlib.collections.PathCollection at 0x23a170c0ca0>


```
In [64]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [65]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
         g1={"TCH":{"Low":1.0,"High":2.0}}
In [66]:
         df3=df3.replace(g1)
In [67]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [68]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[68]: RandomForestClassifier()
In [69]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n estimators':[10,20,30,40,50]
         }
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid search.fit(x train,y train)
Out[70]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
```

scoring='accuracy')

```
In [71]:
                              rfcs=grid_search.best_score_
In [72]: rfc best=grid search.best estimator
In [73]: from sklearn.tree import plot tree
                               plt.figure(figsize=(80,40))
                               plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],fill
Out[73]: [Text(2187.8019801980195, 2019.0857142857144, 'NO_2 <= 37.5\ngini = 0.484\nsamples =
                               7481\nvalue = [6970, 4882]\nclass = Yes'),
                                  Text(999.980198019802, 1708.457142857143, 'TOL <= 0.55 / ngini = 0.283 / nsamples = 407
                               9\nvalue = [5368, 1102]\nclass = Yes'),
                                  Text(453.02970297029697, 1397.8285714285716, 'SO 2 <= 3.5 \neq 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.075 = 0.07
                               1882\nvalue = [2887, 117]\nclass = Yes'),
                                  Text(220.9900990097, 1087.2, 'TOL <= 0.35\ngini = 0.01\nsamples = 1702\nvalue =
                                [2710, 13]\nclass = Yes'),
                                  Text(88.39603960396039, 776.5714285714287, 'NO 2 <= 11.5 \setminus gini = 0.003 \setminus gini = 1
                               243\nvalue = [2015, 3]\nclass = Yes'),
                                  Text(44.198019801980195, 465.9428571428573, 'gini = 0.0\nsamples = 1100\nvalue = [1
                               803, 0]\nclass = Yes'),
                                  Text(132.59405940594058, 465.9428571428573, 'TOL <= 0.25 | ngini = 0.028 | nsamples = 1
                               43\nvalue = [212, 3]\nclass = Yes'),
                                  Text(88.39603960396039, 155.3142857142857, 'gini = 0.0\nsamples = 67\nvalue = [105,
                               0]\nclass = Yes'),
                                  Text(176.79207920792078, 155.3142857142857, 'gini = 0.053\nsamples = 76\nvalue = [1
                               07, 3]\nclass = Yes'),
                                  Text(353.58415841584156, 776.5714285714287, 'NO_2 <= 29.5 \neq 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 
                                                                          [COF 101\ malaca
In [74]: print("Linear:",lis)
                               print("Lasso:",las)
                               print("Ridge:",rrs)
                               print("ElasticNet:",ens)
                               print("Logistic:",los)
                               print("Random Forest:",rfcs)
                               Linear: 0.7499272637946903
                               Lasso: 0.19751618918213187
                               Ridge: 0.7500531919104193
                               ElasticNet: 0.5703555451049473
                               Logistic: 0.5938976377952756
                               Random Forest: 0.9190010124873439
```

Best model is Random Forest

In []: