Colpier Clément Fornara Thibault Pellegrino Guillaume Renard Charles

Projet de Mathématiques appliquées PR3003 _

Table des matières

1	Détermine	${ m er}$ l'équation différentielle vérifiée par ${ m M}({ m t}){=}({ m x}({ m t}),{ m y}({ m t})).$	4
	1.0.1	Projection du Poids sur la composante tangentielle	5
	1.0.2	Projection de la tension du ressort su la composante tangentielle	5
	1.0.3	Détermination de a_t	6
		Détermination de l'équation différentielle	

1 Déterminer l'équation différentielle vérifiée par M(t)=(x(t),y(t)).

La masselotte M se déplace uniquement selon la composante tangentielle. Pour déterminer l'équation différentielle on va donc particulièrement s'intéresser à l'équation sur la composante tangentielle. Pour cela, on commence à faire la somme des forces s'exerçant sur la composante tangentielle $\vec{u_t}$ et normale $\vec{u_n}$:

$$\left\{ \begin{array}{l} P_t + T_t = ma_t \\ P_n + R_n + T_n = 0 \end{array} \right.$$

On s'intéresse à l'équation :

$$P_t + T_t = ma_t$$

Pour déterminer l'équation différentielle, on doit alors projeter \vec{T} et \vec{mg} sur $\vec{u_t}$. On projette $\vec{mg}=-mg.\vec{u_y}$ sur $\vec{u_t}$

1.0.1 Projection du Poids sur la composante tangentielle

On remarque sur le graphique que $P_t = P.\cos(\alpha)$

On cherche à déterminer α . On calcule la pente a de la tige parabolique. $a = \frac{\partial y}{\partial x} = \frac{\partial x^2/2}{\partial x} = x$ En $M(x_0, y_0)$ la pente a de la tige parabolique vaut donc x_0 . Cette pente a nous permet de calculer l'angle α . En effet, on remarque graphiquement que $\tan(\alpha) = \frac{1}{a}$. On en déduit : $\alpha = \tan^{-1}(\frac{1}{x_0})$

Au final on trouve donc : $P_t = P.\cos(\tan^{-1}(\frac{1}{x_0}))$ Or $\cos(\tan^{-1}(x)) = \frac{1}{1+x^2}$ On en déduit donc : $P_t = P.\frac{1}{1+1/x_0^2}$ D'où :

$$P_t = P \cdot \frac{x_0}{1 + x_0^2}$$

Projection de la tension du ressort su la composante tangentielle

On projette désormais \vec{T} sur $\vec{u_t}$.

$$\cos(\phi) = \frac{x}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{1 + x^2}}$$

$$\cos(\theta) = \frac{x}{\sqrt{(1-u)^2+x^2}} = \frac{x}{\sqrt{1+x^4/4}}$$

 $\cos(\theta) = \frac{x}{\sqrt{(1-y)^2 + x^2}} = \frac{x}{\sqrt{1+x^4/4}}$ Et: $T_t = T \cdot \cos(\alpha 2) = T \cdot \cos(\phi - \theta) = T[\cos(\phi) \cdot \cos(\theta) + \sin(\phi) \cdot \sin(\theta)]$

On en déduit :
$$T_t = T\left[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \sin(\cos^{-1}(\frac{1}{\sqrt{1+x^2}})) \cdot \sin(\cos^{-1}(\frac{x}{\sqrt{1+x^4/4}}))\right]$$
Or : $\sin(\cos^{-1}(u)) = \sqrt{1-u^2}$

On trouve donc:

$$T_t = T \cdot \left[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \sqrt{1 - \frac{1}{1+x^2}} \cdot \sqrt{1 - \frac{x^2}{1+x^4/4}} \right]$$

Détermination de a_t

On a vu dans la première équation que $a_n = 0$. On en déduit : $||\vec{a}|| = a_t$ On peut ainsi écrire : $a_t = ||\vec{a}||$

Or
$$||\vec{a}|| = \frac{\partial v}{\partial t} = \frac{\partial \sqrt{\dot{x}^2 + \dot{y}^2}}{\partial t}$$

On trouve :

$$a_t = \ddot{x}.\sqrt{1+x^2} + \frac{\dot{x}^2.x}{\sqrt{1+x^2}}$$

(Equation de Charles)

1.0.4 Détermination de l'équation différentielle

A l'aide de ce qu'on a calculé précédemment on développe l'équation $mg_t + T_t = ma_t$ pour déterminer l'équation différentielle. On obtient alors :

$$mg.\frac{x}{1+x^2} + k(l-l_0).\left[\frac{1}{\sqrt{1+x^2}}.\frac{x}{\sqrt{1+x^4/4}} + \sqrt{1-\frac{1}{1+x^2}}.\sqrt{1-\frac{x^2}{1+x^4/4}}\right] - \ddot{x}.\sqrt{1+x^2} - \frac{\dot{x}^2.x}{\sqrt{1+x^2}} = 0$$

Equa diff de Charles :

$$\ddot{x}.\sqrt{1+x^2} + \frac{5x^3/8 + x^2/4 + \dot{x}.x}{1+x^2} + \frac{x}{\sqrt{1+x^2}} - \frac{l_0(5x^3/4 + x^2/2)}{2\sqrt{1+x^4/4}\sqrt{1+x^2}} = 0$$