No Free Lunch from Deep Learning in Neuroscience: A Case Study through Models of the Entorhinal-Hippocampal Circuit

Rylan Schaeffer^{1,3}, Mikail Khona^{2,3}, Ila Rani Fiete^{3,4}

¹Stanford Computer Science ²MIT Physics ³MIT Brain and Cognitive Sciences ⁴McGovern Institute for Brain Research

2nd AI for Science

An ICML 2022 Workshop

Motivation

- Deep learning is driving renaissances across many scientific disciplines
- Neuroscience is interested in deep learning, not just as a tool, but as a model system of the brain
- The promises of deep learning-based models of brain circuits are twofold:
 - 1. Make novel predictions about neural phenomena, and/or
 - 2. Shed light on the brain's optimization problems and solutions
- We show, through the case-study of Grid Cells (GCs) in medial-entorhinal cortex, that deep learning models of brain circuits often provide neither

What are grid cells (GCs)?

Published: 19 June 2005

Microstructure of a spatial map in the entorhinal cortex

Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser & Edvard I. Moser □

Nature 436, 801-806 (2005) Cite this article

- Type of neuron located in the mammalian medial entorhinal cortex
- Play a fundamental role in spatial navigation through the process of path integration

Figure Source: NYT 2013

What is path integration and how is it done by the brain?

Path integration is the task of estimating one's absolute spatial position in an environment by adding up velocity estimates

Deep Learning: "In general, path integration yields grid cells"

through Generalization i

Published as a conference paper at ICLR Letter | Published: 09 May 201 Vector-based na A unified theory **Explaining heterogeneity in medial entorhinal cortex** EMERGENCE OF GRI representations with task-driven neural networks the le Article The Tolman-Eichenbaur TRAINING RECURREN Unifying Space and Rela PERFORM SPATIAL LOG Andrea Banino $^{\square}$, Caswell Barr

> Ben Sorscher*¹, G
>
> James C.R. Whittington, 1.8.9.* Timothy H. Muller, 1.3
>
> and Timothy E.J. Behrens 1.3.6 Nature 557, 429-433 (2018) 2Neurosciences PhD Program, Stanford Univer

Aran Navebi^{1,*}, Alexander Attinger², Malcolm G. Campbell², Kiah Hardcastle², Isabel I.C. Low^{1,2,7}, Caitlin S. Mallory², Gabriel C. Mel¹, Ben Sorscher⁴, Alex H. Williams^{6,7}, Surya Ganguli^{4,7,8}, Lisa M. Giocomo^{2,7}, and Daniel L.K. Yamins^{3,5,7}

Prior work presents a story that path integration generically drives the formation of grid cells

Christopher J. Cueva, Xue-Xin Wei*

{ccueva, weixxpku}@gmail.com

Columbia University

New York, NY 10027, USA

In this work, we show grid cells only emerge in a small fraction of hyperparameter space, and only when baked in intentionally via specific implementation choices

Result 1: Most hyperparameter configurations solve the task of path integration; however, few learn Grid Cells

Runs with Low Position Error Threshold=6.0 cm, N=415

Runs With Grid Cells Threshold=1.2, N=362

Result 2: Grid Cells only emerge under particular encoding of the (supervised) target i.e. position

Result 3: Small perturbations to ideal hyperparameters prevent the formation of Grid Cells

Result 4: Unlike brains, path-integrating deep networks do not learn multiple grid modules

Result 5: Realistic Place Cell targets prevent the formation of Grid Cells

10² **Number of Units** 10⁰ **DoG Params** $\sigma \sim \text{Unif}(0.06, 0.18)$ $s \sim \text{Unif}(1.5, 2.5)$ $\sigma = 0.12$ 10^{-6} s = 2.0**Grid Score**

Result 6: Unmentioned implementation details are critical for the formation of Grid Cells

$$p_i(x) = e^{-||x-c_i||^2/2\sigma_1^2} - e^{-||x-c_i||^2/2\sigma_2^2}$$

Grid Score

Conclusion: No Free Lunch with Deep Learning Models for Neuroscience

Suppose you want to know what optimization problem the brain is solving, and you have a candidate model that replicates the brain's behavior and neural responses. Because optimization problems can share optima, the brain may solve a different optimization problem than the model.

Even if the brain's optimization problem is correctly identified, a model may learn different optima that yield different behavior or different neural responses.

