Classificazione di Dispositivi Quantistici A

18 Settembre 2024

Relatore:

Prof. Andrea Giachero

Correlatore:

Dr. Roberto Moretti

Quantum Machine Learning

- Apprendimento automatico
- Reti neurali
- Modelli classici

- Algoritmi quantistici
- Qubit e circuiti quantistici
- Sovrapposizione ed Entanglement

Differenze tra Bit classico...

- Stato Binario
- Comportamento Deterministico
- Porte logiche

A	X
0	1
1	0

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

... e Quantum Bit (Qubit)

- Sovrapposizione degli stati
- Comportamento probabilistico
- Porte quantistiche (Quantum Gates)

Hadamard gate

$$|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

C-NOT gate

$$|00\rangle \rightarrow |00\rangle \qquad |10\rangle \rightarrow |11\rangle$$

$$|01\rangle \rightarrow |01\rangle \quad |11\rangle \rightarrow |10\rangle$$

Dispositivi Quantistici

- Architettura di qubit connessi
- Manipolazione degli stati tramite i quantum gates
- Sensibilità al rumore

Rotazione (asse x,y,z)

Hadamard gate

Controlled-Not (CNOT)

Ruota lo stato di un qubit sulla sfera di Bloch di un angolo θ intorno ad uno degli assi x,y,z

Crea sovrapposizione tra gli stati di un qubit

Introduce entanglement tra due qubit

Obiettivi della Tesi

Studio del rumore in due diversi dispositivi quantistici con la stessa topografia

Generazione di un
Dataset tramite
l'esecuzione di un
circuito quantistico su
due diversi dispositivi

Generazione del Dataset

Machine learning e Rete Neurale Classica

Le feature di un elemento del dataset vengono elaborate dai neuroni del layer di input

Hidden Layers

I valori di output del layer di input vengono successivamente passati ad uno o più layer nascosti.

Maggior numero di layer e neuroni

=

Maggior capacità di apprendimento

Output Layer

Il layer finale della rete è composto da un singolo neurone.

L'output della rete è un numero reale compreso nell'intervallo [0,1]

Il valore di output viene interpretato come la probabilità che l'elemento del dataset appartenga alla classe 0 o 1

Algoritmo di Addestramento

I parametri della rete vengono **aggiornati** Tramite l'algoritmo di **backpropagation**

Elemento del dataset della rete

Binary Cross Entropy

Calcola l'errore tra le predizioni (z) del modello e i valori target (y).

 $-y\log z - (1-y)\log(1-z)$

Rete Neurale Ibrida

Layer Quantistico RX 2 qubit $|\Psi\rangle$ |Ψ) RX 3 qubit $|\Psi\rangle$ |Ψ⟩ RX

> Senza Entanglement

Con Entanglement

Risultati

Rete neurale							
	Classica	Ibrida					
		2 qubit	2 qubit entangled	3 qubit	3 qubit entangled		
Accuratezza	94.00%	95.00%	95.00%	95.75%	95.75%		

Miglioramenti e prospettive future

AUMENTARE LA DIMENSIONE DEL DATASET

AUMENTARE IL NUMERO DI QUBIT NEL LAYER QUANTISTICO

TESTARE LE RETI SU DATASET PIÙ COMPLESSI

TESTARE DISPOSITIVI QUANTISTICI REALI

Grazie per l'attenzione