# **Physics**

### **Kinematics**

$$\overline{v} = \frac{\Delta x}{\Delta t} \text{ (SI: } \frac{\text{m}}{\text{s}} \text{)}$$

$$a = \frac{\Delta v}{\Delta t} \text{ (SI: } \frac{\text{m}}{\text{s}^2} \text{)}$$

#### Linear Motion

$$v = v_0 + at$$

$$x = v_0t + \frac{1}{2}at^2$$

$$v^2 = v_0^2 + 2ax$$

$$\overline{v} = \frac{(v_0 + v)}{2}$$

$$x = \overline{v}t$$

### Slopes



### Newton's Laws

$$F = ma$$
 (SI: N)

Gravity

$$F = \frac{Gm_1m_2}{r^2}$$
$$g = G\frac{M}{-2}$$

Circular Motion

$$a_c = \frac{v^2}{r} \text{ (SI: } \frac{\text{m}}{\text{s}^2}\text{)}$$
 $F_c = \frac{mv^2}{r} \text{ (SI: N)}$ 

Torque

Center of Mass: 
$$x_{\rm cm} = \frac{\sum m_i x_i}{M}$$
  
Torque:  $\tau = rF \sin \theta$  (SI: N·m)

### Mechanical Advantage

$$F_1 \cdot d_1 = F_2 \cdot d_2$$

Mechanical Advantage: 
$$MA = \frac{F_{in}}{F_{out}}$$

# Work Energy Power

Work: W = Fd (SI: J) P:  $P = \frac{W}{\Delta t}$  (SI: W) KE:  $K = \frac{1}{2}mv^2$ PE: U = mgh $W = \Delta K = -\Delta U$ E = K + U

#### Springs

Hooke's Law: F = -kxPotential Energy:  $U = \frac{1}{2}kx^2$ 

# Thermodynamics

Thermal Expansion

Linear:  $\Delta L = \alpha L \Delta T$ Volume:  $\Delta V = \beta V \Delta T$ 

### Specific Heat

 $Q = mc\Delta T$ U = Q - W

Water s.h.c. : 1 cal g<sup>-1</sup> K<sup>-1</sup> = 4.2 J g<sup>-1</sup> K<sup>-1</sup>

# Fluid Dynamics

 $\rho = \frac{m}{V} \text{ (SI: } \frac{\text{kg}}{\text{m}^3} \text{)}$ Weight =  $\rho gV$  (SI: N) Specific Gravity =  $\frac{\rho_{\text{substance}}}{\rho_{\text{water}}}$ ;  $\rho_{\text{water}} = 1000 \text{ kg m}^{-3}$ )

#### Pressure

 $P = \frac{F}{4}$  (SI: Pa)

Hydrostatic:  $P_h = \rho g h$ 

Gauge:  $P_g = P - P_{atm}$ 

Absolute:  $\sum P$ 

 $1 \text{ atm} = 760 \text{ torr} = 760 \text{ mmHg} = 10^5 \text{ Pa}$ 

#### Flow

Continuity Equation:  $A_1v_1 = A_2v_2$ 

Bernoulli's Equation:  $P + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}$ 

Poiseuille:  $Q = \frac{\pi P r^4}{8\eta l}$ ;  $\eta \rightarrow \text{viscosity}$ Reynold's Number:  $v_{\text{critical}} = \frac{R\eta}{2\sigma r}$ 

### **Principles**

Archimedes:  $F_{\text{buoy}} = g \cdot \rho_{\text{fluid}} \cdot V_{\text{submerged}}$ 

#### Pascal:

$$P = \frac{F_1}{A_1} = \frac{F_2}{A_2}$$

$$A_1 d1 = A_2 d_2$$

$$W = F_1 d_1 = F_2 d_2$$

#### **Electrostatics**

Coulomb's Law:  $F = \frac{kq_1q_2}{-2}$ ;  $k = 9 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$  (SI:N)

#### Electric Fields

Electric Field Equation:  $E = \frac{F_e}{q} = \frac{kQ}{r^2}$  (SI:  $\frac{N}{C}$  or  $\frac{V}{M}$ )

Electric field lines go from + to -

+ charge moves in the same direction of the electric field - charge moves in the opposite direction

#### Electric Dipoles

Dipole Moment:  $p = q \cdot d$  (SI: C·m)

 $F_e = qE$ 

$$\sum F_e = 0$$

Dipole will realign to be parallel with an electric field

#### Electrical Potential

Voltage:  $V = \frac{U}{q}$  (SI: V or  $\frac{J}{C}$ ) Voltage Difference:  $\Delta V = \frac{W}{q} = \frac{kQ}{r} = Ed$  (SI: V or  $\frac{\mathrm{J}}{\mathrm{C}}$ )

Voltage is the amount of work to move a postitive test charge from infinity to some location

# Magnetism

 $F_{\rm m} = Q \cdot v \cdot \beta \cdot \sin \theta$ ; (SI:  $\beta \rightarrow T$ ) Lorentz Force:  $F = F_{\rm m} + F_{\rm e}$ 

### Right Hand Rule

Force

Magnetic Field

## Electromagnetism

 $F_{\rm m} = I \cdot L \cdot \beta \cdot sin\theta$ 

Biot-Savart Law:  $\beta = \frac{\mu_0 I}{2\pi R}$ 

## Circuits

Current:  $I = \frac{Q}{\Delta t}$  (SI: A)

Resistance:  $R = \frac{\rho L}{A}; \ \rho \rightarrow \text{resistivity, A} \rightarrow \text{area (SI: }\Omega)$ 

Voltage: V = IR (SI: V) Power: P = IV (SI: W) Capacitance:  $C = \frac{Q}{V}$  (SI: F)

#### Resistors

Series:  $R_{eq} = R_1 + R_2 + R_3 + ...$ 

Parallel:  $\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$ 

### Capacitors

Series:  $\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$ 

Parallel:  $C_{eq} = C_1 + C_2 + C_3 + ...$ 

Energy Stored:  $U = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$ 

Dielectric:  $C_{\text{dielectric}} = kC; k \rightarrow \text{dielectric constant}$ 

## Waves

 $f = \frac{1}{T}$  (SI: Hz)

 $v = f \cdot \lambda \text{ (SI: } \frac{\text{m}}{\text{s}} \text{)}$ 

 $Standing\ Waves$ 

Open Pipe:  $\lambda = \frac{2L}{n}$ ;  $n \to 1, 2, 3 \dots$ 

Closed Pipe:  $\lambda \frac{4L}{n}$ ;  $n \to 1, 3, 5 \dots$ 

Sound

Intensity:  $I = \frac{P}{A}$ 

Sound Level:  $\beta = 10 \log(\frac{I}{I_0}); I_0 = 10^{-12}$  (SI: dB)

Doppler Effect:  $f' = f \frac{v \pm v_d}{v \mp v_s}$ ;  $v = 343 \frac{\text{m}}{\text{s}}$ 

# Optics

### Reflection and Refraction

 $\theta_{\text{incidence}} = \theta_{\text{reflection}}$ 

Snell's Law:  $n_i \sin \theta_i = n_r \sin \theta_r$ 

Index of Refraction:  $n = \frac{c}{v}$ ;  $c = 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$ 

#### Diffraction

Mirrors and Lenses

Focal Point:  $f = \frac{1}{2}$  radius of curvature

Thin Lens Equation:  $\frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$ 

Magnification Equation:  $M = -\frac{d_i}{d_o} = \frac{h_i}{h_o}$