EXAMEN FINAL TEORICO DE ANALISIS MATEMATICO I 11-09-19

Alumna/o:	Legajo:
-----------	---------

Carrera: LM - PM - LF - PF - LCC

- 1. Defina una función par con dominio en $\mathbb R$ tal que verifique simultáneamente las siguientes condiciones:
 - i) f continua en [0, 5).
 - ii) f(5) = 0, f(0) = 5.
 - iii) f es no creciente en $[0, +\infty)$.
 - iv) f es constante en [-1, 0].
 - v) *f* presenta una discontinuidad inevitable en 5.
 - vi) $\lim_{x \to -\infty} f(x) = -4$.
- 2. Defina con precisión las siguientes expresiones, y de un ejemplo de cada una.
 - i) $\lim_{x \to a^{-}} f(x) = L$
 - ii) $\lim_{x \to -\infty} f(x) = L$
 - iii) $\lim_{x \to x^+} f(x) = +\infty$
 - iv) $\,f\,$ presenta un discontinuidad evitable en a
- 3. Determine si las siguientes afirmaciones son verdaderas o falsas, justificando adecuadamente:
 - i) Si existen los límites $\lim_{x\to a} f(x)$ y $\lim_{x\to a} (g(x)-f(x))$ entonces existe $\lim_{x\to a} g(x)$.
 - ii) Existen $a \in \mathbb{R}$ y un par de funciones f y g continuas en a, tales que no existe $\lim_{x \to a} \frac{f(x)}{g(x)}$.
 - iii) Toda sucesión $\{a_n\}_{n\in\mathbb{N}}$ estrictamente creciente es divergente.
 - iv) Existe una sucesión $\{a_n\}_{n\in\mathbb{N}}$ de números negativos y creciente que es convergente.
 - v) Si la sucesión $\{a_n\}_{n\in\mathbb{N}}$ es convergente entonces las sucesiones $\{\frac{2a_n}{n}\}_{n\in\mathbb{N}}$ converge a 0.
 - vi) La ecuación de la recta normal a la gráfica de $f(x) = x^2 4x + 3$ en (0,3) es y = -3 + 4x.
- 4. i) Enuncie y demuestre la regla de derivación para la resta dos funciones.
 - ii) Enuncie y demuestre el Teorema de Rolle.
 - iii) Enuncie y demuestre el Teorema de Fermat.
 - iv) Demostrar que la ecuación $x^2 = \cos x$ tiene exactamente una solución real en \mathbb{R}^+ .