Теория вероятностей. Лекции и Семинары

Булинский Андрей Вадимович 25 марта 2018 г.

Содержание

1	Лекция 1		
	1.1	Предмет изучения	2
	1.2	Частотная интерпретация вероятностей	2
	1.3	Вероятностное пространство	2
	1.4	Операции над множествами	3
	1.5	Требования к классу событий:	4
	1.6	Свойства функции P	5
	1.7	Счетная аддитивность	5
2	2 Семинар 1		5

1 Лекция 1

1.1 Предмет изучения

Теория вероятностей изучает закономерности, присущие случайным явлениям. Неслучайные явления будем называть детерминированными. В курсе будем изучать модели случайных экспериментов.

Модель случайных экспериментов подразумевает:

- 1. Воспроизводимость (контроль основных факторов).
- 2. Непредсказуемость исходов.

1.2 Частотная интерпретация вероятностей

Основные понятия:

Имеется серия из N повторений эксперимента.

A – явление (событие), которое может произойти.

N(A) – число экспериментов, когда произошло.

 $u_N(A) = \frac{N(A)}{N}$ – частота события в серии из повторений.

Свойство стабилизации: Пусть $N_1\gg 1$ и $N_2\gg 1$, то $\nu_{N_1}(A)\approx \nu_{N_2}(A)$. P(A) – вероятность.

1.3 Вероятностное пространство

Математической моделью случайного эксперимента является вероятностное пространство. Для упрощения задачи используем математический аппарат теории множеств (и теории мер).

Вероятностное пространство состоит из трех множеств (Ω, F, P) .

1. Непустое множество Ω (оме́та большое) — всевозможные элементарные исходы эксперимента. Пояснение: Элементарные исходы — простейшие, взаимоисключающие исходы.

Пример 1.1. однократное подбрасывание монеты. Комментарий: пример с монеткой крайне популярен как в русскоязычных, так и в англоязычных пособиях, поэтому будем использовать числовые значения для обозначения исходов эксперимента: $\Omega = \{\Gamma, P\}$,

$$\Omega = \{H, T\}, \Omega = \{0, 1\}.$$

Здесь введем понятия мощности множества – числа элементов конечного множества. Обозначение: $|\Omega|=\#\Omega=2$

Пример 1.2. Эксперимент: n - кратное подбрасывание монеты, $(n \in \mathbb{N})$. Введем понятие элементарных исходов (оме́га малое). $\omega \in \Omega$, $\omega = (k_1, \cdots, k_n)$, где $k_j \in \{0, 1\}$; $j = \overline{1, N}$. ω - двоичное N-разрядное слово. Добавим, что мощность Ω в данном случае $|\Omega| = 2^N$. В теории вероятностей Ω - пространство элементарных исходов.

Пример 1.3. n-кратное подбрасывание игральной кости: $\omega = (k_1, \dots, k_n)$, где $k_i = \{1, 2, 3, 4, 5, 6\}$, тогда $|\Omega| = 6^N$.

Часто на практике нас интересует не конечный результат эксперимента, а ответ на вопрос, удовлетворяет ли этот результат определенным критериям (Простейший пример – попадание стрелка в мишень. Нас интересует не в какую точку попадает снаряд, а в какую область мишени он попадет). Применяем теоретико-множественный аппарат.

1.4 Операции над множествами

- (a) Теоретико-множественное вычитание: $\Omega \setminus A$.
- (b) Дополнение к A в Ω : $\overline{A}:=\Omega\backslash A\equiv A^c$. Будем пользоваться теоретико-множественным аппаратом, но поменяем названия: Множество на Событие, Дополнение на Противоположное событие.

(a) $\omega \in A$ — произошло событие A.

(b) $\varnothing \subset A$, $\varnothing \subset B$, $A \cap B =$

 \subset – знак нестрогого вложения. $A \subset B$ если $\omega \in A \Rightarrow \omega \in B$,

$$A = B$$
 если $\begin{cases} A \subset B \\ B \subset A \end{cases}$

- (c) Пересечение: $A \cap B = \{ \omega \in \Omega : \omega \in A, \omega \in B \}.$
- (d) Объединение: $\omega \in A \cup B \Leftrightarrow \{\omega \text{ содержится хотя бы в одном из множеств } A$ или $B\}$.
- 2. Выделяется класс F подмножеств Ω , именуемый событиями если:

(a)
$$A \in F \Rightarrow \overline{A} \in F$$

(b)
$$A, B \in F \Rightarrow \begin{cases} A \cup B \in F \\ A \cap B \in F \end{cases}$$

 $\Omega \in F$ — достоверные события

 $\overline{\Omega} = \varnothing$ — недостоверные события

1.5 Требования к классу событий:

- (a) $\Omega \in F$
- (b) $A \in F \Rightarrow \overline{A} \in F$
- (c) $A_1, A_2 \in F \Rightarrow A_1 \cup A_2 \in F$
- (d) $A_1, A_2 \in F \Rightarrow A_1 \cap A_2 \in F$

Замечание: из первых трех свойств следует четвертое, а из первых двух и четвертого следует третье. Такие свойства подмножеств Ω называются алгеброй.

3. На событиях $A \in F$ задается функция P со свойствами, имитирующими свойства частот.

$$F\ni A\longrightarrow P\left(A\right)\in\mathbb{R}$$

$$\nu_N(A)=\frac{N(A)}{N},\ \nu_N(\Omega)=\frac{N(\Omega)}{N}=\frac{N}{N}=1$$

$$A_1\cap A_2=\varnothing$$

Соглашение: иногда пишем вместо $A_1 \cup A_2 \equiv A_1 + A_2$ только при условии, что $A_1 \cap A_2 = \emptyset$.

$$N(A_1 + A_2) = N(A_1) + N(A_2)$$

$$\nu_N(A_1 + A_2) = \nu_N(A_1) + \nu_N(A_2)$$

1.6 Свойства функции *P*

- (a) $P(A) \ge 0$
- (b) $P(\Omega) = 1$
- (c) $P(A_1 \cup A_2) = P(A_1) + P(A_2)$, если $A_1 \cap A_2 = \emptyset$.

1.7 Счетная аддитивность

Если $\{A_n\}_{n=1}^{\infty}\subset F$ и $A_i\cap A_j=\varnothing, i\neq j$, то

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P\left(A_n\right) \tag{1}$$

2 Семинар 1

Задача о выборках (вспомогательная)

Есть совокупность N различных объектов $(N \in \mathbb{N})$, причем занумерованных.

$$\begin{cases} a_1, & a_2, & a_3, & \cdots &, & a_n \\ \updownarrow & \updownarrow & \updownarrow & & \downarrow \\ \{1, & 2, & 3, & \cdots &, & N \} \end{cases}$$

Сколько выборок n из этой совокупности можно привести?