2019 秋季学期泛函分析笔记

颜硕俣

孙忠豪

目录

第一章	拓扑空间与度量空间	1
1.1	基本概念	1

拓扑空间与度量空间

1.1 基本概念

定义 1.1.1 (拓扑空间) 设 E 是一个集合, 称 E 的子集族 τ 是一个拓扑, 若 τ 满足:

- (1) $E, \emptyset \in \tau$;
- (2) τ 中任意多元素的并仍是 τ 中元素 (任意并);
- (3) τ 中有限多元素的交仍是 τ 中的元素 (有限交).

并称 (E,τ) 为一个拓扑空间, τ 中的元素称为开集.

注 1.1.2 对集合 E, 称 $\tau = \{E, \emptyset\}$ 为平凡拓扑, 称 $\tau = 2^E$ 为离散拓扑.

例 1.1.3 $E = \mathbb{R}$, 取 $\tau = \left\{ \bigcup_{j \in \mathbb{Z}} (x_j, x_{j+1}), (x_j)_{j \in \mathbb{Z}} \subset \mathbb{R} \cup \{\pm \infty\} \right\}$ 是一个拓扑, 这一拓扑称为 E的自然拓扑.

定义 1.1.4 (度量空间) 设 E 是非空集合, $d: E \times E \to \mathbb{R}$ 满足 $\forall x, y \in E$

- (1) 非负性: $d(x,y) \ge 0$;
- (2) 正定性: $d(x,y) = 0 \Leftrightarrow x = y$;
- (3) 对称性: d(x,y) = d(y,x);
- (4) 三角不等式: $d(x,z) \leq d(x,y) + d(y,z)$

则称 (E,d) 是一个度量空间, 并称 d 是 E 上的度量

注 1.1.5 度量并不唯一, 例如对 (E,d) 定义度量

$$r(x,y) = \min\{d(x,y), 1\},$$

$$d'(x,y) = rd(x,y), r \in \mathbb{R}_+,$$

就是两个不同的度量.

度量空间也是拓扑空间, 记 $B(x,r) = \{y : d(y,x) < r\}$ 可将 τ 中的元素定义为:

$$U \in E, U \in \tau \Leftrightarrow \forall x \in U \exists r > 0 (B(x, r) \subset U)$$

该拓扑 τ 称为由度量 d **诱导**的拓扑.

例 1.1.6 在实 Euclid 空间 \mathbb{R}^n 上赋以度量

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$
 (Euclid 距离)

以 C[a,b] 以在 [a,b] 上的连续函数全体, 在其上赋以度量

$$d(x,y) = \max_{t \in [a,b]} |x(t) - y(t)| \tag{一致距离}$$

定义 1.1.7 (闭集) 设 (E,d) 是一个拓扑空间, $A \subset E$, 若 A^c 是开集, 则称 A 是 E 上 (关于 τ) 的**闭集**.

例 1.1.8 设 (E,d) 是一个度量空间,则闭球 $\bar{B}(x,r) = \{y : d(y,x) \leq r\}$ 是闭集.

命题 1.1.9 闭集具有以下性质:

- (1) 全空间 E 和空集 \varnothing 是闭集;
- (2) 任意多个闭集的交仍是闭集 (任意交);
- (3) 有限多个闭集的并仍是闭集 (有限并).