Modèles Multi-Facteurs

P. Hénaff

Version: 07 Feb 2025

Droite de Marché des Capitaux

Figure 1: Droite de Marché des Capitaux

MEDAF: Droite de Marché des Titres

Figure 2: Droite de Marché des Titres

APT(0)

Hypothèses de l'APT

Le rendement des actifs risqués est une fonction linéaire d'un nombre limité de facteurs

$$R_{it} = E_i + \sum_{k=1}^{K} \beta_{ik} F_{kt} + \epsilon_{it}$$
 (1)

- ▶ Il y a assez de titres sur le marché pour créer des portefeuilles où le risque spécifique a été diversifié
- Il n'y a pas d'opportunités d'arbitrage

APT: Droite de marché des titres pour un facteur

Figure 3: Portefeuilles diversifiés

Figure 4: Actions Simples

APT: Opportunité d'arbitrage sur un facteur

APT(3) Exemple

Portefeuille	E(R)	β_1	β_2
S&P500	7%	3.45	0.033
NASDAQ	9%	4.74	0.098

70% S&P +			
30% NASDAQ	7.6%	3.837	0.0525
Portefeuille			
d'arbitrage	8%	3.837	0.0525

APT (3)

Conséquence de ces hypothèses:

L'espérance de rendement est une fonction linéaire d'un nombre limité de facteurs:

$$E(R_i) - R_f = \beta_{i,1}(\bar{R}_1 - R_f) + \beta_{i,2}(\bar{R}_2 - R_f) + \dots$$

Trois types de modèles factoriels

- Facteurs implicites statistiques
- Facteurs explicites macroéconomiques (Roll & Ross)
- Facteurs explicites microéconomiques (BARRA, Fama-French)

Modèle Fama-French

$$R_{i,t} = \alpha_i + \beta_{i,M} R_{M,t} + \beta_{i,SMB} SMB_t + \beta_{i,HML} HML_t + e_{i,t}$$

R_i Excédent de rendement, titre i

R_M Excédent de rendement, marché

SMB "Small Minus Big": Facteur Capitalisation

HML "High Minus Low": Facteur Valorisation

Modèle Fama-French

Figure 6: Facteurs Fama-French

Stabilité des Betas Fama-French

Portefeuille:

- ► SPY (S&P500) 25%
- ► EFA (Actions ex-US) 25%
- ► IJS (Small Cap Value) 20%
- ► EEM (EM) weighted 20%
- ► AGG (Obligations) 10%

source:

https://rviews.rstudio.com/2018/05/10/rolling-fama-french

On calcule l'exposition du portefeuille au facteurs sur une période de 3 ans...

Stabilité des Betas Fama-French

Influence du modèle Fama-French

Autres Facteurs: Momentum (Carhart)

$$R_{i,t} = \alpha_i + \beta_{i,M} R_{M,t} + \beta_{i,SMB} SMB_t + \beta_{i,HML} HML_t + \beta_{i,UMD} R_{UMD,t} + \dots + e_i$$

UMD: Up Minus Down

 $\it n$ meilleurs rendements - $\it n$ plus bas rendements de la periode précédente.

Momentum et Liquidité (1)

CARNET D'ORDRES 🐧

ORDRES	QTE	ACHAT	VENTE	QTE	ORDRES
3	1 217	10.720	10.760	223	2
4	2 006	10.710	10.770	1 079	2
5	1 621	10.700	10.780	3 482	5
3	4 046	10.690	10.790	1237	4
3	1 172	10.680	10.800	1 611	4
2	1328	10.670	10.810	4 933	2
6	14 129	10.660	10.830	10 410	5
3	2 135	10.650	10.840	90	1
2	445	10.640	10.850	2 787	5
2	1844	10.630	10.870	125	1

DERNIÈRES TRANSACTIONS 💍

HEURES	COURS	QUANTITÉ
13:26:17	10.760	1 218
13:24:24	10.750	257
13:20:53	10.740	163
13:20:53	10.740	538
13:19:55	10.740	93
Consulter les dernières transactions de la journée		

DERNIÈRES ACTUALITÉS

18 févr.	Malsons du Monde : Telelos
	CP se renforce au
	capital • CERCLE FINANCE

Eigura O. Maisans du Manda

Momentum et Liquidité (2)

ORDRES	QTÉ	VENTE	ACHAT	QTÉ	ORDRES
1	100	40.0550	40.0450	821	3
3	917	40.0600	40.0400	836	4
3	954	40.0650	40.0350	1205	4
5	2 032	40.0700	40.0300	2 064	7
5	1944	40.0750	40.0250	1 577	4
4	877	40.0800	40.0200	1975	6
4	1 589	40.0850	40.0150	1 504	4
4	1038	40.0900	40.0100	1646	6
3	4 376	40.0950	40.0050	1 048	3
2	397	40.1000	40.0000	1329	4
34	14 224	TOTAL	TOTAL	14 005	45

HEURES	COURS	QUANTITÉ	
13:35:28	40.1850	30	
13:35:28	40.1850	250	
13:35:28	40.1850	130	
13:35:28	40.1850	450	
13:35:28	40.1850	200	
Consulter les dernières transactions de la journée			

DERNIÈRES ACTUALITÉS

ven. Grande Bretagne: Total
candidat à la reprise
d'éollennes en
mer • REUTERS

Figure 10: Total

Facteurs et Fouille de Données (Harvey et al.)

Plus de 300 facteurs "découverts" depuis le publication de Sharpe (1967) jusqu'en 2015 (article de Harvey).

$$R_i(t) - R_f(t) = \alpha_i + \beta_i (R_M(t) - R_f(t)) + \gamma_i F(t) + \epsilon_i(t)$$

Illustration: Regression sur des séries N(0,1)

