Chapter 2 Getting to know your data

- ขนาดของข้อมูลแต่ละมิติ

ตัวอย่าง Data ที่เป็นตารางตัวเลข (เรียกว่า ดาต้าเซ็ท = กลุ่มของข้อมูล)

		Data			
0	Attribute 1	Attribute 2	Attribute 3	Attribute 4	0
Record 1	1	12	2 I	5	
Record 2	2	11	7	2	
Record 3	1	15	9	3	0
Record 4	0	10	1	-3	
Record 5	-1	20	12	-2	
Record 6	1	19	6	-5	

จะอาศัยการใช้ Database มาช่วยในการจัดเก็บข้อมูลให้ซับซ้อนน้อยลง เพื่อประหยัดพื้นที่ในการจัดเก็บข้อมูล

- ในตารางจะบอกรายละเอียด การเชื่อมต่อของข้อมูลแต่ละตาราง

ตัวอย่าง Data ที่เป็นกราฟ (นอกจากตาราง)

ตัวอย่าง Data ที่เป็นรูปภาพ/วิดีโอ (อาจมีการบอกพิกัดด้วย)

ตัวอย่าง Data ที่เป็นรูปภาพในแต่ละวินาที (เรื่องของเวลาเข้ามาเกี่ยว) มาเชื่อมต่อกันเป็นวิดีโอ เช่น ข้อมูลราคาหุ้น, DNA

คุณสมบัติที่เราต้องรู้

Data Objects Data sets are made up of data objects A data object represents an entity Examples: sales database: customers, store items, sales medical database: patients, treatments university database: students, professors, courses Also called samples, examples, instances, data points, objects, tuples Data objects are described by attributes Database rows → data objects; columns → attributes

ชนิดของข้อมูล

Attribute (or dimensions, features, variables) A data field, representing a characteristic or feature of a data object. E.g., customer_ID, name, address Types: Nominal (e.g., red, blue) Binary (e.g., {true, false}) Ordinal (e.g., {freshman, sophomore, junior, senior}) Numeric: quantitative Interval-scaled: 100°C is interval scales Ratio-scaled: 100°K is ratio scaled since it is twice as high as 50 °K Q1: Is student ID a nominal, ordinal, or interval-scaled data? Q2: What about eye color? Or color in the color spectrum of physics?

รายละเอียด คำอธิบายเพิ่มเติม

0 แท้ และ 0 ไม่แท้ คืออะไร?

= 0 ไม่แท้ ยกตัวอย่างได้คือ อุณหภูมิ 0 องศาเซลเซียส ที่ไม่ได้แปลว่าไม่มีอุณหภูมิ แต่แปลว่า หนาวมาก
/ 0 แท้ ยกตัวอย่างคือ เรามีดินสออยู่ 0 แท่ง แปลว่าเราไม่มี

Numeric Attribute Types					
Quant	ty (integer or real-valued)				
☐ Interva	al				
	Measured on a scale of equal-sized units				
	Values have order				
	□ E.g., temperature in <u>C°or</u> F°, calendar dates				
	No true zero-point				
☐ Ratio					
	Inherent zero-point				
	We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).				
	e.g., temperature in Kelvin, length, counts, monetary quantities				

Discrete vs. Continuous Attributes Discrete Attribute Has only a finite or countably infinite set of values E.g., zip codes, profession, or the set of words in a collection of documents Sometimes, represented as integer variables Note: Binary attributes are a special case of discrete attributes Continuous Attribute Has real numbers as attribute values E.g., temperature, height, or weight Practically, real values can only be measured and represented using a finite number of digits Continuous attributes are typically represented as floating-point variables

การใช้สถิติมาอธิบาย Data เบื้องต้น เพื่อให้เข้าในมากขึ้น เช่น คนในห้องนี้อายุ 20 ปี (ใช้ ฐานนิยม)

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data

- Data Visualization
 - Measuring Data Similarity and Dissimilarity
 - Summary

17

------ คาบต่อไป -----

Basic Statistical Descriptions of Data

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - ☐ Median, max, min, quantiles, outliers, variance, ...
- Numerical dimensions correspond to sorted intervals
- Data dispersion:
 - Analyzed with multiple granularities of precision
- Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

