

Final Presentation

User Interface Design for Low Cost 3D Printed Prosthetic Hand

Students: Yahel Solomon, Marina Mearkovich

Supervisor: Shunit Polinsky

Semester: Winter, 2020

Date: 08/09/2020

In collaboration with: Haifa 3D

Outline

- Project goal
- Background
- Existing solutions
- Chosen Solution & Implementation
- Results
- Conclusions
- Future work

Project Goal

- Control of 3D printed electro-mechanical prosthetic hand through signals acquired from the leg.
 - Setting up a sensor system
 - Collecting data
 - Classification of at least three gestures

The prosthetic hand in use

Background

- Aspects impaired by hand loss:
 - Ability to perform daily life activities
 - Work
 - Social activities
- Drawbacks of current commercial solutions
 - Expensive
 - Not intuitive & long training
 - Required the residual limb muscle activation
- Thus a need for a practical, reliable & intuitive hand prosthesis arises.

Needs of Prosthesis users

- Reliability of detection low probability of unintended movements
- Intuitive control:
 - Short training period
 - Controlling grip force
 - Feedback
- Light weight

Existing Prosthetic Arms

Active

Body Powered

- Requires a lot of power
- Open and close gripper

<u>Electro Mechanic:</u> Most common– Surface EMG

- Lots of research
- Noisy signal, unstable control.
- Phantom pain

Chosen Solution

General Block Diagram

Sensor System

• FSR – force sensitive resistors

Consists of two copper electrodes that contact a sheet of conductive polymer that decreases its resistance when pressure is applied.

Sensor System

BNO055 - IMU

Consists of three sensor units- accelerometer, gyroscope and magnetometer.

Measurements used:

- Angular velocity: Three axis (x,y,z) angular velocity data (gyro) in rad/s.
- ESP32 controller board
 - Receives input from IMU using I2C communication.
 - Arduino code written to receive Data at 50[Hz] sample rate.

Adafruit©

Electrical diagram

System for acquiring data from the leg:

System on leg

System layout

Pre-Processing

Block diagram:

- A series of measurements was conducted for 4 movements:
 Swipe Left, Swipe Right, Tap and Side Ankle flexion.
- Raw data was filtered using a median filter and resampled to a constant sample rate.

Movement extraction

- Template matching method was chosen for classification due to the pattern exhibited by the gyro measurements.
- Movements were extracted to create average templates of each movement at each axis.

Creating templates

 Movements were aligned and clipped to create average templates of each axis for each movement:

Movement properties

- We chose 4 foot movements for classification: Swipe Left, Swipe Right, Tap, Foot Inversion (side ankle)
- PCA analysis was preformed to the measured 3 axis gyro data, to find principal vectors for all 4 movements.
- This shows the Movements are distinct by their principal vector direction.

Template matching

 Cross - correlation between the input data and each of the 4 movement templates :

$$R_{xy,normalized}(0) = \frac{1}{\sqrt{R_{xx}(0)R_{yy}(0)}} \sum_{n=0}^{N-1} x_n y_n$$

- y_n − template, $R_{yy}(0)$ = template energy x_n − input data, $x_n(0)$ = data energy x_n − template len
- We repeat the calculation above for N-length windows each time delayed by one sample

Cross correlation results

Cross correlation results

Classification

- The main classification method Template matching
- Block Diagram:

- Thresholds were applied to filter out noise from the cross-correlation results.
- PCA weights were used to combine 3 axis of cross correlation to one axis.

Filtering Cross - Correlation

- Two Filtering methods were used to filter cross correlation results:
 - Filtering peaks lower than selected threshold th1.
 - Filtering peaks that appear above th1 less than a selected time threshold
 th2.
- Use PCA principle vectors as weights to each 3-axis cross correlation result.
 - Combines 3 axis cross correlation to one result
 - Make results more distinguishable between different movement types.

Filtering Cross - Correlation

Filtering Cross - Correlation

Classification Results

- Providing Binary output label to each timestep in the input vector:
 - Applying thresholding to weighted data from previous step
 - Picking the class of each timestep by choosing the maximal result from the previous step.
 - Comparing the current timestep result with results from a predetermined number of previous time steps:
 - If there is a larger result zero the current label
 - If the current result is largest among the previous results zero the previous results.

Classification Results

Classification Results

Performance evaluation

Block Diagram:

Confusion matrix

Problem:

Delay between labels

Solution:

Moving real label to be at same timestep as algorithm label

Grid Search

- Reducing unvoluntary hand movements (FP) was considered the most important performance aspect, followed by sensitivity (TP).
 - Choosing optimal threshold values was based primarily on FPR, and TPR.
- The grid search loop provided the algorithm parameters that met two conditions:
 - FPR was less than 0.15
 - Maximal TPR

Example 1

Xcorr Th = 0.7, Time Th = 100, Th3 = 0.85

Movement classification confusion matrix

no movement	99569	7	6	7	2
side ankle		40			
swipe left	10		50		
swipe right	5			35	
tap	15	1			24

100.0%	0.0%
100.0%	
83.3%	16.7%
87.5%	12.5%
60.0%	40.0%

TPR

100.0%	83.3%	89.3%	83.3%	92.3%
0.0%	16.7%	10.7%	16.7%	7.7%

FPR

no movement side ankle swipe left swipe right tap

Predicted Class

Example 2:

Xcorr Th = 0.5, Time Th = 60, Th3 = 0.9

Movement classification confusion matrix

n	o movement	99466	78	22	23	2
	side ankle		40			
2	swipe left	3		57		
Class	swipe right				40	
anii	tap	2	9			29

99.9%	0.1%
100.0%	
95.0%	5.0%
100.0%	
72.5%	27.5%

TPR

100.0%	31.5%	72.2%	63.5%	93.5%
0.0%	68.5%	27.8%	36.5%	6.5%

FPR

no movement side ankle swipe left swipe right tap

Predicted Class

FPR TPR 100.0% 100.0% **Ex.1** 10.7% 16.7% 7.7% 16.7% 83.3% 95.0% 87.5% 100.0% **Ex.2** 68.5% 27.8% 36.5% 6.5% 60.0% 72.5% **Ex.1 Ex.2**

Test Results

TPR = 0.6785 FPR = 0.0357

99.9%	85.7%	100.0%	100.0%	100.0%
0.1%	14.3%			
no movement	side ankle	swipe left	swipe right	tap
		Predicted Class		

Discussion

- This project demonstrates classification of foot mounted IMU signal, of intuitive 3 movements using template matching method.
- The idea of using IMU & FSR signals from the leg is also underdevelopment at DEKA Arm
 - Their solution at an advanced developments stage and has vast and robust functionality

DEKA Arm©

Conclusion

- Implementing system for acquiring data from the leg.
- Implementing 3 movements classifier
 - Intuitive movements
 - Templates were created
- Success rates of algorithm for chosen thresholds:
 - TPR = 0.881
 - FPR = 0.047

System on leg

Conclusion

- The classification method we used was template matching:
 - Performance may be reduced because the template made are specific for data acquired while sitting.
 - Can be improved by collecting more diverse data.
- Additional data that was already collected, can be used
 - Acceleration
 - FSR

Future Work

- Using FSR or acceleration to determine state of user (i.e walking/sitting/standing) then using designated template for each case.
- Using FSR data for determine intensity or duration of movement.
- Using quaternions to determine orientation of leg

References

- Shunit Polinsky, Yair Herbst, and Dr. Yoav Medan "Interface Design for a Low-Cost 3D Printed Electro-Mechanical Prosthetic Hand"
- 2. Linda Resnik, Shana L Kinger, Katherine Etter "The DEKA Arm: Its features, functionality, and evolution during the Veterans Affairs Study to optimize the DEKA Arm" PubMed, Comparative Study, Prosthet Orthot Int.2014 Dec; 38(6):492-504. doi: 10.1177/0309364613506913