

SM-2302 Software for Mathematicians

R4: Plotting with ggplot2

Dr. Haziq Jamil

Mathematical Sciences, Faculty of Science, UBD

https://haziqj.ml

Semester I 2023/24

The Grammar of Graphics

- Visualization concept created by Leland Wilkinson (The Grammar of Graphics, 1999)—an attempt to taxonimize the basic elements of statistical graphics
- Adapted for R by Hadley Wickham (2009)
 - o consistent and compact syntax to describe statistical graphics
 - o highly modular as it breaks up graphs into semantic components
- ggplot2 is not meant as a guide to which graph to use and how to best convey your data (more on that later), but it does have some strong opinions.

Terminology

A statistical graphic is a...

- mapping of data
- which may be statistically transformed (summarized, log-transformed, etc.)
- to aesthetic attributes (color, size, xy-position, etc.)
- using geometric objects (points, lines, bars, etc.)
- and mapped onto a specific facet and coordinate system

http://r.qcbs.ca/workshop03/book-en/grammar-of-graphics-gg-basics.html

Anatomy of a ggplot call

```
ggplot(
     data = [dataframe],
  mapping = aes(x = [var x], y = [var y], color = [var color],
                shape = [var shape], ...)
  geom_[some geom](
    mapping = aes(fill = [var geom color], ...),
    # other geometry options
  ) +
  ... # other geometries
  scale_[some axis]_[some scale]() +
  facet [some facet]([formula]) +
  ... # other plot options
      # usually labels, titles & themes
```


Palmer Penguins

Measurements for penguin species, island in Palmer Archipelago, size (flipper length, body mass, bill dimensions), and sex.


```
library(palmerpenguins)
penguins %>% print(n = 5)
```

```
## # A tibble: 344 x 8
##
     species island
                      bill_length_mm bill_depth_mm
##
    <fct>
            <fct>
                                <dbl>
                                              <dbl>
## 1 Adelie
            Torgersen
                                 39.1
                                               18.7
  2 Adelie Torgersen
                                 39.5
                                               17.4
  3 Adelie
            Torgersen
                                40.3
                                               18
  4 Adelie
                                               NΑ
            Torgersen
                                 NΑ
  5 Adelie
                                 36.7
                                               19.3
            Torgersen
    i 339 more rows
## # i 4 more variables: flipper_length_mm <int>,
## #
       body mass g <int>, sex <fct>, year <int>
```

A basic ggplot

```
ggplot(data
             = penguins,
      mapping = aes(x = bill depth mm,
                     v = bill length mm)) +
 geom_point() +
 labs(
   title = "Bill depth and length",
    subtitle = paste(
      "Dimensions for Adelie, Chinstrap,",
      "and Gentoo Penguins"
   ),
   x = "Bill depth (mm)",
   v = "Bill length (mm)"
```

Bill depth and length

Dimensions for Adelie, Chinstrap, and Gentoo Penguins

The Grammar of Graphic

Breaking down the ggplot call

Aesthetic

Faceting

A brief plot Tour of ggplot2 plots

Themes

Other useful things

Start with the penguins data frame ggplot(data = penguins)

Start with the penguins data frame, map bill depth to the x-axis

```
ggplot(
  data
           = penguins,
  mapping = aes(x = bill_depth_mm)
                                                                                           20.0
                                                                15.0
                                                                             17.5
```

bill_depth_mm

Start with the penguins data frame, map bill depth to the x-axis, and map bill length to the y-axis.

Start with the penguins data frame, map bill depth to the x-axis, and map bill length to the y-axis. **Represent** each observation with a point

Start with the penguins data frame, map bill depth to the x-axis, and map bill length to the y-axis. Represent each observation with a point and map species to the colour of each point.

speciesAdelieChinstrapGentoo

Start with the penguins data frame, map bill depth to the x-axis, and map bill length to the y-axis. Represent each observation with a point and map species to the color of each point. Title the plot "Bill depth and length"

```
ggplot(
 data
          = penguins,
 mapping = aes(x = bill depth mm)
                v = bill length mm
 geom_point(
   mapping = aes(colour = species)
 labs(title = "Bill depth and length")
```


Adelie

Chinstrap Gentoo

Start with the penguins data frame, map bill depth to the x-axis, and map bill length to the y-axis. Represent each observation with a point and map species to the color of each point. Title the plot "Bill depth and length" and add the subtitle "Dimensions for Adelie, Chinstrap, and Gentoo Penguins"

```
Bill depth and length
ggplot(
                                                           Dimensions for Adelie, Chinstrap, and Gentoo Penguins
  data
           = penguins,
  mapping = aes(x = bill depth mm)
                  v = bill length mm)
  geom point(
    mapping = aes(colour = species)
                                                       bill_length_mm
                                                                                                   species
                                                                                                      Adelie
  labs(
    title
              = "Bill depth and length",
                                                                                                      Chinstrap
    subtitle = paste("Dimensions for Adelie,",
                                                                                                      Gentoo
                        "Chinstrap, and Gentoo",
                                                         40
                        "Penguins")
```

15.0

17.5

bill_depth_mm

20.0

Start with the penguins data frame, map bill depth to the x-axis, and map bill length to the y-axis. Represent each observation with a point and map species to the color of each point. Title the plot "Bill depth and length" label the x and y axes as "Bill depth (mm)" and "Bill length (mm)", respectively

```
ggplot(
 data
          = penguins,
 mapping = aes(x = bill depth mm)
                v = bill length mm)
 geom point(
   mapping = aes(colour = species)
  ) +
 labs(
   title = "Bill depth and length",
    subtitle = paste("Dimensions for Adelie,",
                     "Chinstrap, and Gentoo",
                     "Penguins"),
             = "Bill depth (mm)",
             = "Bill length (mm)"
```

Bill depth and length Dimensions for Adelie, Chinstrap, and Gentoo Penguins 60 Bill length (mm) species Adelie Chinstrap 40 15.0 17.5 20.0

Bill depth (mm)

Start with the penguins data frame, map bill depth to the x-axis, and map bill length to the y-axis. Represent each observation with a point and map species to the color of each point. Title the plot "Bill depth and length" label the x and y axes as "Bill depth (mm)" and "Bill length (mm)", respectively. Label the legend "Species"

```
ggplot(
  data
          = penguins,
  mapping = aes(x = bill depth mm)
                v = bill length mm)
  geom_point(
    mapping = aes(colour = species)
  labs(
    title = "Bill depth and length".
    subtitle = paste("Dimensions for Adelie,",
                     "Chinstrap, and Gentoo",
                     "Penguins"),
             = "Bill depth (mm)",
    X
             = "Bill length (mm)",
    colour
             = "Species"
```

Bill depth and length Dimensions for Adelie, Chinstrap, and Gentoo Penguins 60 Bill length (mm) Species Adelie Chinstrap Gentoo 40 15.0 17.5 20.0

Bill depth (mm)

Start with the penguins data frame, map bill depth to the x-axis, and map bill length to the y-axis. Represent each observation with a point and map species to the color of each point. Title the plot "Bill depth and length" label the x and y axes as "Bill depth (mm)" and "Bill length (mm)", respectively. Label the legend "Species" and add caption.

```
ggplot(penguins, aes(x = bill depth mm,
                    v = bill length mm)) +
 geom_point(aes(colour = species)) +
 labs(
   title = "Bill depth and length".
   subtitle = paste("Dimensions for Adelie,",
                     "Chinstrap, and Gentoo",
                     "Penguins").
            = "Bill depth (mm)",
            = "Bill length (mm)",
            = "Species".
   colour
   caption
            = "Source: palmerpenguins package"
```

Bill depth and length

Argument names

Often we omit the names of first two arguments when building plots with ggplot().

Note that ggplot and geom_* swap the order of the data and mapping arguments.

The Grammar of Graphics

Breaking down the ggplot cal

Aesthetics

Faceting

A brief plot Tour of ggplot2 plot

Themes

Other useful things

Aesthetics options

Commonly used characteristics of plotting geometries that can be **mapped to a specific variable** in the data, examples include:

- position (x, y)
- color
- shape
- size
- alpha (transparency)

Different geometries have different aesthetics that can be used - see the ggplot2 geoms help files for listings.

- Aesthetics given in ggplot() apply to all geoms.
- Aesthetics for a specific geom_*() can be overridden via the mapping argument.

Colour

Mapping species to a unique colour.

species

Adelie

Chinstrap

Gentoo

Shape

Mapping an additional variable (island to shape).

species

- Adelie
- ChinstrapGentoo

island

- Biscoe
- Dream
- Torgersen

Shape (cont.)

Mapped to same variable species to **both** shape and colour.

Adelie Chinstrap Gentoo

Size

Control the size of the points. Note that this is a fixed value (outside of the aes call).

Size (cont.)

Mapping the size aesthetic to a variable.

Alpha

Mapping the transparency aesthetic to a variable.

Mapping vs settings

- Mapping: Determine an aesthetic (the size, alpha, etc.) of a geom based on the values of a variable in the data
 - wrapped by aes() and pass as mapping argument to ggplot() or geom_*().
- **Setting:** Determine an aesthetic (the size, alpha, etc.) of a geom **not** based on the values of a variable in the data, usually a constant value.
 - passed directly into geom_*() as an argument.

From the previous slide color, shape, and alpha are all aesthetics while size is a setting.

The Grammar of Graphic

Breaking down the ggplot cal

Aesthetic

Faceting

A brief plot Tour of ggplot2 plot

Themes

Other useful things

Faceting

- Smaller plots that display different subsets of the data
- Useful for exploring conditional relationships and large data

facet_grid() columns

facet_grid() rows

facet_grid() both rows and columns

Faceting and color

facet_wrap()

Instead of a matrix, facet_wrap() wraps a sequence of panels into 2 dimensions.

by nrow = xxx and ncol = yyy

Free scales

It's not really recommended, but it is possible to free the scales of the x and y axis.

The Grammar of Graphics

Breaking down the ggplot cal

Aesthetic

Faceting

A brief plot Tour of ggplot2 plots

Themes

Other useful things

Histograms

more on themes later!

Density plots

Ridge plots

```
ggplot(
 penguins,
  aes(
    x = body_mass_g,
    y = paste0(species, " (", sex, ")"),
    fill = species
  ggridges::geom_density_ridges(alpha = 0.5) +
  labs(x = "Body mass (g)",
       y = "Species (sex)") +
  guides(fill = "none")
```


Box plots

Bar plots

```
ggplot(penguins, aes(x = species)) +
   geom_bar()
```


Bar plots (cont.)

Scatter plot with geom smooth()

```
ggplot(penguins, aes(x = bill_depth_mm,
                     v = bill length mm)) +
 geom point() +
 geom smooth()
```

```
ggplot(penguins, aes(x = bill_depth_mm,
                     v = bill length mm,
                     col = species)) +
 geom_point() +
 geom_smooth()
```


Scatter plot with geom_smooth() (cont.)

Line plots

```
penguins %>%
 count(species, year) %>%
 ggplot(
    aes(
      x = year,
     y = n,
      color = species,
      group = species
 geom_line()
```


Chinstrap

The Grammar of Graphics

Breaking down the ggplot call

Aesthetics

Faceting

A brief plot Tour of ggplot2 plots

Themes
GIS data

Other useful thing:

ggplot2 themes

g <- ggplot(penguins, aes(species, body_mass_g, fill = species)) + geom_boxplot()</pre> g + theme_classic()

g + theme_minimal()

ggthemes

library(ggthemes)

Color scales

ggplot2's default colour scheme is simply an equally spaced hue around the colour wheel.

```
ngroup <- 5
                                                      10.0
tibble(
  group = factor(1:ngroup),
  count = sample(10, size = ngroup,
                                                       7.5
                  replace = TRUE)
                                                                                                  group
) %>%
  ggplot(aes(group, count, fill = group)) +
                                                    count
  geom_bar(stat = "identity") +
                                                       5.0
  theme_classic() -> p
                                                       2.5
                                                       0.0
                                                                          group
```

Manually changing colours

Viridis colour scale

```
# Here the _d stands for discrete.

# Other scales include

# scale_fill_viridis_c() &

# scale_fill_viridis_b()
```


Viridis colour scale (cont.)

```
tibble(
    x = rnorm(10000),
    y = rnorm(10000)
) %>%
    ggplot(aes(x, y)) +
    geom_hex() +
    coord_fixed() + # ensures fixed x/y scales
    scale_fill_viridis_c(option = "plasma") +
    theme_bw()
```


GIS data

R handles GIS data via sf (simple features) objects.

```
library(sf)
library(bruneimap)
# remotes::install.packages(
    "propertypricebn/bruneimap"
ggplot(kpg_sf) +
  geom_sf(aes(fill = mukim)) +
  geom_sf(data = mkm_sf, col = "black",
         lwd = 0.5, fill = NA) +
  theme(legend.position = "none") +
  scale fill viridis d(option = "turbo")
```


The Grammar of Graphics

Breaking down the ggplot cal

Aesthetics

Faceting

A brief plot Tour of ggplot2 plots

Themes

Other useful things

GGAlly's ggpairs()

Label points

```
rownames_to_column(mtcars) %>%
  ggplot(aes(wt, mpg, label = rowname)) +
  geom_point(col = "red3") +
  geom_text()
```


Label points with ggrepel

```
rownames_to_column(mtcars) %>%
  ggplot(aes(wt, mpg, label = rowname)) +
  geom_point(col = "red3") +
  ggrepel::geom_text_repel()
```


Adjusting axis scales

```
tibble(
  x = rnorm(1000),
 y = rnorm(1000)
) %>%
  ggplot(aes(x, y)) +
 geom_point() +
  scale_x_continuous(
   limits = c(-5, 5),
    breaks = seq(-5, 5, by = 0.5)
  scale_y_continuous(
   limits = c(-10, 10).
    name = "Hello"
```


Plot composition

```
library(patchwork)
```

```
(p1 <- ggplot(penguins) +
  geom_boxplot(aes(island, body_mass_g)))</pre>
```


Plot composition (cont.)

$$p1 + p2 + p3 + p4 + plot_layout(nrow = 2)$$

Plot composition (cont.)

p1 / (p2 + p3 + p4)

