Технічне завдання на проектування

1. Найменування та галузь використання

Малогабаритний цифровий тіндаліметр модуляційного типу. Пристрій належить до області фотометрії, до технології контролю якості рідини, вимірювання параметрів оптичного випромінювання, насамперед інтенсивності світлового потоку. Використовується у виробництві будь-якого спрямування, де є необхідність контролю оптичного коефіцієнта пропускання рідин у видимій області оптичного спектру.

2. Підстава для розробки

Підставою для проведення курсового проекту ϵ завдання, що видане викладачем згідно учбового плану на 6 семестр.

3. Мета і призначення розробки

Розроблення високоефективного, малогабаритного, цифрового тіндаліметра.

Пристрій призначається для визначення у польових умовах концентрації домішок у рідині

4. Джерело розробки

Враховуючи те, що дана тема проекту розробляється не вперше, в якості джерела розробки береться розроблений раніше проект. В якості допоміжного матеріалу взято статтю "Танділіметер" на сайті www.i.ua.

5. Технічні вимоги

5.1. Склад виробу й вимоги до пристрою, що розробляється.

Пристрій являє собою моноблочну конструкцію, яка містить резервуар для досліджуваної рідини, двонаправлений вихід для зв'язку з комп'ютером.

5.2.Показники призначення.

Пристрій повинен забезпечувати:

- цифрову обробку результатів вимірювання
- цифрове калібрування
- розрахунок кінцевого результату

5.3.Вимоги до надійності.

Середній час напрацювання на відмову повинен бути на менше 30000 год.

5.4. Вимоги до технологічності.

Орієнтовані на передові прийоми виготовлення деталей і складання.

5.5. Вимоги до рівня уніфікації й стандартизації.

Для виготовлення пристрою передбачається максимальне застосування стандартних, уніфікованих деталей та виробів.

5.6. Вимоги безпеки обслуговування.

Керуватися загальними вимогами безпеки до апаратури низької напруги ГОСТ 12.2.007-75.

5.7. Вимоги до складових частин виробу, сировини, вихідних й експлуатаційних матеріалів.

Для виробництва пристрою використовують матеріали імпортного виробництва.

5.8. Умови експлуатації.

Кліматичне виконання УХЛ.3.1 по ГОСТ 15150-69.

5.9. Вимоги до транспортування і зберігання.

Група умов зберігання Л1 по ГОСТ 15150-69. Зберігати в зачинених, опалювальних та вентильованих приміщеннях, в яких забезпечуються наступні умови: температура повітря $+5...+40^{0}$ C, відносна вологість повітря 60% при 20^{0} C (середньорічне значення), атмосферний тиск 84...106кПа.

Транспортувати автомобільним, залізничним або авіаційним видами транспорту в спеціальній транспортній тарі.

5.10. Додаткові технічні вимоги.

Технічні характеристики:

Діапазон значень,	0 -100 %
забрудненість	
Максимальна похибка	±0,3%
Габаритні розміри	не більше 150х150х80
Maca	не більше 200г
Живлення	9B±5%

6. Результати роботи

- **6.1.** Результати даної роботи можуть бути використані як вихідна документація по створенню прототипу пристрою, його програмування, налагодження й подальшого впровадження в серійне виробництво.
- **6.2.** Дана робота (звітна документація) після виконання надається на кафедру КЕОА для подальшого захисту й зберігання як навчальної документації.

7. Робота повинна містити в собі документи

- Пояснювальну записку (формату А4, до 70 аркушів)
- Схему електричну принципову та перелік елементів (формату А1, А4 відповідно)
 - Складальне креслення та специфікацію (формату A1, A4 відповідно)
 - Креслення друкованої плати (формату А1)
 - Додатки (формату А1-А4)

8. Порядок розгляду й приймання роботи

Порядок розгляду й приймання роботи на загальних умовах, прийнятих на кафедрі КЕОА. Рецензування й прийняття роботи комісією на загальних умовах. У процесі виконання роботи проміжні звіти надаються комісії не рідше 1 раз у тиждень на загальних умовах.

9. Економічні показники

В умовах даного проекту не розглядаються.

10. Етапи розробки

No	Назва етапів виконання дипломного	Час виконання етапів проекту
Π/Π	проекту	
1	Розробка технічного завдання	1.02.16-7.02.16
2	Аналіз технічного завдання	8.02.16-21.02.16
3	Схемо-технічне проектування	22.02.16-6.03.16
4	Виконання креслення схеми	7.03.16-13.03.16
	електричної принципової	
5	Вибір елементної бази та друкованої	14.03.16-3.04.16
	плати	
6	Проектування у Altium Designer	4.04.16-10.04.16
7	Конструкторсько-технологічні	11.04.16-17.04.16

	розрахунки. Електричний розрахунок	
	друкованої плати	
8	Розрахунок надійності, віброміцності,	18.04.16-24.04.16
	теплового режиму, смугового фільтру	
9	Виконання креслення друкованої	25.04.16-1.05.16
	плати	
10	Виконання складального креслення	2.05.16-15.05.16
	друкованого вузла	
11	Моделювання у Lab View, Proteus	16.05.16-22.05.16
12	Оформлення пояснювальної записки	23.05.16-5.06.16