TEORIA DOS GRAFOS

Grafo

Um grafo G(X,A) é definido pelo par de conjuntos X e A, onde:

$$X = \{v_1, v_2, ..., v_n\}$$
 é o conjunto de vértices (nós)

$$A = \{a_1, a_2, ..., a_n\}$$
 é o conjunto de linhas que conecta os nós de X.

Grafo orientado (ou dirigido ou dígrafo)

Se a todas as linhas do grafo estiver associada uma direção de fluxo definida.

Grafo não orientado (não dirigido)

As arestas(links) não possuem direção de fluxo.

Grafo Misto

Com ou sem direção de fluxo

Nós Adjacentes

São ligados por um arco ou aresta.

Arcos Adjacentes

Dois arcos são adjacentes (ou vizinhos) se há ao menos um nó entre eles.

Sucessores e Antecessores

Sucessor de um nó

Sucessor de um nó x_i é todo x_i que seja extremidade final de um arco que parte de x_i :

$$x_i$$
 sucessor de $x_i \Leftrightarrow \exists (x_i, x_j)$

Antecessor(Predecessor) de um nó

Antecessor de um nó x_i é todo x_j que seja extremidade inicial de um arco que termina em x_i :

$$x_i$$
 antecessor de $x_i \Leftrightarrow \exists (x_i, x_i)$

Sucessores de um conjunto de nós

Seja
$$X_n = \{x_1, x_2, ..., x_z\}$$
, então $\Gamma(X_z) = \bigcup_{x_i \in X_n} \Gamma(x_i)$

Antecessores de um conjunto de nós

Seja
$$X_n = \{x_1, x_2, ..., x_z\}$$
, então $\Gamma^{-1}(X_z) = \bigcup_{x_i \in X_n} \Gamma^{-1}(x_i)$

Grau de saída de um nó

É o número de sucessores de um nó $d_s(x_i) = |\Gamma(x_i)|$

Grau de entrada de um nó

É o número de antecessores de um nó $d_e(x_i) = |\Gamma^1(x_i)|$

Ordem

A ordem de um grafo é dada pela cardinalidade do conjunto de vértices

Grafo Completo

Um grafo G(X,A) é completo se $\forall x_i, x_j \in X : (x_i, x_j) \notin A \Rightarrow (x_j, x_i) \in A$.

Cliques, são grafos completos não orientados.

Subgrafo

Um grafo $G_s(X_s, A_s)$ é dito subgrafo de um grafo G(X,A) quando $X_s \subset X$ e $A_s \subset A$.

Grafo Parcial

Um grafo $G_p(X,A_p)$ é dito parcial de um grafo G(X,A) quando $A_p \subset A$

Grafo bipartido (bipartite)

G(X, A) é bipartite quando X pode ser particionado em dois subconjuntos X_1 e X_2 , tal que toda aresta de G une um nó de X_1 a outro de X_2 .

Denota-se um grafo bipartite por $G(X_1 \cup X_2, A)$.

Grafo bipartido (bipartite) Completo

Ele é dito completo quando todos os nós de uma partição estão ligados a todos os nós da outra partição.

Grafo Valorado

São grafos orientados ou não com valores associados aos arcos(ou arestas) ou aos nós.

Grafo Planar

Um grafo G(X,A) é dito planar quando existe alguma forma de se dispor seus vértices em um plano, de tal modo que nenhum par de arestas (ou arcos) se cruze.

Cadeias e Caminhos

Cadeia

É uma sequência de arcos (ou arestas) de um grafo, tal que cada arco (ou aresta) tenha:

- a) uma extremidade em comum com um arco (ou aresta) antecedente (à exceção do primeiro);
- b) a outra extremidade em comum com o arco (ou aresta) subsequente (à exceção do último).

Caminho

É uma cadeia na qual todos os arcos possuem a mesma orientação

Cadeia (ou Caminho) elementar

Um nó não figura mais que uma vez

Cadeia (ou Caminho) simples

Um arco (ou aresta) não figura mais que uma vez.

Custo (distância, tempo, etc.) de um caminho

Se a cada arco (x_i, x_j) de um grafo for associado a um custo C_{ij} , um caminho μ representado pela sequência de arcos $(a_1, a_2, ..., a_z)$ terá o custo calculado por $L(\mu) = \sum_{(x_i, x_j) \in \mu} C_{ij}$

Cardinalidade de um caminho

A cardinalidade de um caminho **m**é o número de arcos que formam este caminho.

Conexidade (estado de ligação ou conectividade)

Grafo Conexo

 $\forall x_i, x_i \in X$, existe pelo menos uma cadeia ligando cada par de nós.

Grafo desconexo (não conexo)

Se pelo menos para um par $x_i, x_j \in X$, não existir uma cadeia conectando x_i e x_j

Grafo fortemente conexo (f-conexo)

Se para cada par $x_i, x_j \in X$, existe um caminho ligando x_i a x_j e um caminho ligando x_j e x_i

Ciclos

É uma cadeia simples fechada, isto é, o nó inicial da cadeia é o mesmo que o nó final da cadeia.

Circuito

É um caminho simples fechado, isto é, o nó inicial do circuito é o mesmo que o nó final deste mesmo caminho.

Circuito elementar

É o circuito no qual um nó só aparece uma vez (exceto o inicial e o final)

Circuito Hamiltoniano

É um circuito elementar que contém todos os nós do grafo

Redes

Grafo orientado sem circuito e sem laços que apresenta dois nós especiais: fonte e sumidouro

Árvores

Uma árvore é um grafo conexo sem ciclos. Este conceito é não orientado.

Teorema 1: Seja G(X,A) um grafo com n>2, as propriedades seguintes são equivalentes para caracterizar G como uma árvore:

Teorema 2: Um grafo G(X,A) admite um grafo parcial que seja uma árvore, se e somente se G é conexo.

Arborescência (ou árvore orientada)

É um dígrafo sem ciclos, onde o grau de entrada de cada vértice é 1, exceto o da raiz, que possui grau de entrada *zero*.

Nó terminal ou folha

Um nó é dito folha(terminal) se seu grau de saída for nulo.

Raíz

Qualquer nó pode ser alcançado partindo-se da raiz.

Nível

É a distância de um nó até a raiz.

Árvores Binárias

O grau de cada nó é menor ou igual a dois.

Representação de Árvores

Representação Matricial de um grafo

Matriz de Adjacência

Dado um grafo G(X,A) a matriz de adjacência $B=[b_{ij}]$ é uma matriz nxn tal que:

$$b_{ij} = \begin{cases} 1, & \exists \ arco \ (x_i, x_j) \in A \\ 0, & caso \ contrário \end{cases}$$

Matriz de custo

Um grafo simples valorado pode ser representado por sua matriz de custo $W=w_{ij}$, onde:

$$w_{ij} = \begin{cases} custo da \ aresta, & \exists \ arco \ (x_i, x_j) \in A \\ 0 \ ou \ \infty, & caso \ contrário \end{cases}$$

Matriz de Incidência

Dado um grafo G(X,A) de n nós e m arestas, a matriz de incidência de G é denotada por $C=[c_{ij}]$ e é uma matriz nxm definida por:

$$c_{ij} = \begin{cases} 1, & \text{se } x_i \text{ for o n\'o inicial de } a_j \\ 0, & \text{caso contr\'ario ou se } a_j \text{ for um laço} \end{cases}$$

Caso orientado:

$$c_{ij} = \begin{cases} 1, & \text{se } x_i \text{ for o n\'o inicial de } a_j \\ -1 & \text{se } x_i \text{ for o n\'o final de } a_j \\ 0, & \text{caso contr\'ario ou se } a_j \text{ for um laço} \end{cases}$$