Souřadnice vzhledem k uspořádané bázi a komutativní diagramy

Odpřednesenou látku naleznete v kapitolách 3.1–3.3 a 2.2 skript Abstraktní a konkrétní lineární algebra.

Minulá přednáška

- Báze lineárního (pod)prostoru.
 Intuitivní význam: báze je výběr systému souřadnicových os.
- ② Dimense lineárního (pod)prostroru.
 Intuitivní význam: dimense je počet souřadnicových os.

Dnešní přednáška

- Souřadnice vektoru vzhledem k uspořádané bázi. Intuitivní význam: souřadnice vektoru udávají "úseky" vektoru na jednotlivých souřadnicových osách.
- Ukážeme velmi užitečný pohled na zobrazení (funkce): kalkulus komutativních diagramů.

Věta (existence souřadnic vzhledem k uspořádané bázi)

Ať seznam $B=(\vec{b}_1,\ldots,\vec{b}_n)$ tvoří bázi lineárního prostoru L. Pro každý vektor \vec{x} v L existuje jediný seznam (a_1,\ldots,a_n) prvků $\mathbb F$ tak, že $\vec{x}=a_1\cdot\vec{b}_1+\cdots+a_n\cdot\vec{b}_n$.

Důkaz.

Přednáška.

Definice (souřadnice vzhledem k uspořádané bázi)

Seznamu (a_1, \ldots, a_n) z předchozí věty říkáme souřadnice vektoru \vec{x} vzhledem k uspořádané bázi $B = (\vec{b}_1, \ldots, \vec{b}_n)$. Značení:^a

$$\mathbf{coord}_B(\vec{x}) = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

 $^{{}^}a\mathsf{Tj}$, souřadnice vektoru \vec{x} chápeme jako další vektor: vektor souřadnic v \mathbb{F}^n .

Příklad (souřadnice stejného vektoru k různým bázím)

Seznamy $K_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$), $B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix}$) jsou uspořádané báze prostoru \mathbb{R}^2 . (Seznam K_2 je kanonická báze prostoru \mathbb{R}^2 .)

$$\mathbf{coord}_{K_2} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\mathbf{coord}_{\mathcal{K}_2} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad \mathbf{coord}_{\mathcal{B}} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 3 \end{pmatrix} = -1 \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

Důležitá vlastnost kanonické báze

Připomenutí: prostor \mathbb{F}^n nad \mathbb{F} má kanonickou bázi

$$K_n = (\mathbf{e}_1, \dots, \mathbf{e}_n)$$
, kde

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \quad \mathbf{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Ať
$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 je vektor v \mathbb{F}^n . Potom $\mathbf{coord}_{K_n}(\mathbf{x}) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Příklad (souřadnice stejného vektoru k různým bázím)

Seznamy

$$B_1 = (1, x, x^2)$$
 $B_2 = (x^2, x, 1)$

jsou uspořádané báze lineárního prostoru $\mathbb{R}^{\leq 2}[x]$ reálných polynomů stupně nejvýše 2.

Platí:

$$\operatorname{coord}_{B_1}(3x^2 - 2x + 4) = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} \qquad \operatorname{coord}_{B_2}(3x^2 - 2x + 4) = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$$

$$3x^2-2x+4 = 4\cdot1+(-2)\cdot x+3\cdot x^2$$
, $3x^2-2x+4 = 3\cdot x^2+(-2)\cdot x+4\cdot1$

Tvrzení (linearita výpočtu souřadnic)

Ať B je (jakákoli) konečná uspořádaná báze lineárního prostoru L. Potom pro zobrazení $\vec{x} \mapsto \mathbf{coord}_B(\vec{x})$ platí:

- **1** $\operatorname{coord}_B(\vec{x} + \vec{y}) = \operatorname{coord}_B(\vec{x}) + \operatorname{coord}_B(\vec{y}).$
- **2** $\operatorname{coord}_B(a \cdot \vec{x}) = a \cdot \operatorname{coord}_B(\vec{x}).$

Důkaz.

Přednáška.

^aTyto dvě vlastnosti jsou velmi důležité. Příště je budeme studovat abstraktně (vedou k pojmu lineárního zobrazení).

Důsledek: důležitá vlastnost každé uspořádané báze

Ať $B=(\vec{b}_1,\ldots,\vec{b}_n)$ je jakákoli uspořádaná báze prostoru L. Potom platí:

$$\mathbf{coord}_B(\vec{b}_1) = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ \mathbf{coord}_B(\vec{b}_2) = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \ldots, \ \mathbf{coord}_B(\vec{b}_n) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Obecně platí:

$$\operatorname{\mathbf{coord}}_B(\sum_{i=1}^n a_i \cdot \vec{b_i}) = \sum_{i=1}^n a_i \cdot \operatorname{\mathbf{coord}}_B(\vec{b_i}) = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Několik připomenutí

- Zadat zobrazení (také: funkci) f : X → Y znamená: pro každé x ∈ X zadat právě jedno y ∈ Y. Toto y značíme f(x) (funkční hodnota v x).

 Píšeme³ i x → f(x), f : x → f(x).
- ② Pro zobrazení $f: X \to Y$, $g: Y \to Z$ značíme $g \cdot f: X \to Z$ složené zobrazení $x \mapsto g(f(x))$.

Poznámky

- Slova funkce a zobrazení znamenají totéž.
- Skládání zobrazení značíme stejně jako násobení (tj. tečkou).
 Uvidíme později, že skládání zobrazení skutečně je jistý druh násobení.

^aDůležité je rozlišovat: šipka $f: X \to Y$ versus šipka s patkou $x \mapsto f(x)$.

3 Přesná definice zobrazení $f: A \rightarrow B$ zní:

Zobrazení $f: A \to B$ je podmnožina $A \times B$ taková, že pro všechna $a \in A$ existuje právě jedno $b \in B$ tak, že $(a, b) \in f$.

Potom lze dokázat:

- Pro libovolnou množinu B existuje právě jedno zobrazení f : ∅ → B.
- Pro libovolnou množinu A existuje právě jedno zobrazení f : A → {b}.
- **3** Je-li A neprázdná množina, pak neexistuje zobrazení $f:A\to\emptyset$.

10/15

Momutativní trojúhelník:

znamená $h = g \cdot f$, tj. h(x) = g(f(x)) pro všechna $x \in X$.

Momutativní čtverec:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
g & & \downarrow h \\
X & \xrightarrow{k} & Y
\end{array}$$

znamená $h \cdot f = k \cdot g$, tj. h(f(x)) = k(g(x)) pro všechna $x \in A$.

"Slepování" komutativních diagramů:

^aDůležité: projděte si podrobně Příklady 2.2.1–2.2.3 skript.

"Trhání" komutativních diagramů:^a

komutativní být nemusí.

^aDůležité: projděte si podrobně Příklady 2.2.1–2.2.3 skript.

- 3 Zobrazení $f: X \to Y$ je prosté (také: injektivní nebo injekce), když z rovnosti $f(x_1) = f(x_2)$ plyne $x_1 = x_2$.
- ② Zobrazení $f: X \to Y$ je na (také: surjektivní nebo surjekce), když pro každé $y \in Y$ existuje x tak, že f(x) = y.
- O Zobrazení $f: X \to Y$ je bijekce (také: vzájemně jednoznačné), když f je injekce a surjekce současně.

Známá fakta

- **1** Identita na X, tj. $\mathrm{id}_X: X \to X$, kde $\mathrm{id}_X: x \mapsto x$, je bijekce.
- ② Platí $h \cdot (g \cdot f) = (h \cdot g) \cdot f$ a $id_Y \cdot f = f = f \cdot id_X$, kdykoli je skládání definováno.
- Složení injekcí je injekce, složení surjekcí je surjekce, složení bijekcí je bijekce.
- $f: X \to Y$ je bijekce právě tehdy, když existuje jednoznačně určené $g: Y \to X$ tak, že $g \cdot f = \mathrm{id}_X$ a $f \cdot g = \mathrm{id}_Y$.

^aTomuto jednoznačně určenému zobrazení se říká inverse zobrazení f a značí se také f^{-1} .