Математические основы информационной безопасности

Груздев Дмитрий Николаевич

Современные алгоритмы шифрования

Классификации шифров

По области применения:

ограниченного использования общего использования

По свойствам ключа шифрования:

симметричные

асимметричные

По характеру шифрования символов:

потоковые

блочные

Симметричные шифры

Шифрование и расшифрование данных производится на одном ключе.

Блочные

Потоковые

Блочные шифры

Исходные данные разбиваются на блоки одинакового размера. К полученным блокам применяется одинаковая процедура шифрования.

Являются шифрами простой замены с алфавитом размера 2[∟] (L - длина блока в битах) при фиксированном ключе.

Шифр простой замены

Α	Б	В	Γ	Д	Е	Ж	3	И	Й	К	Л	М	Н	0	П	Р	С	Т	У	Ф	Х	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я
3	И	Ŋ	K	Л	М	Н	0	П	Р	О	Т	У	Ф	X	Ц	Д	Е	Е	Ъ	Ы	Ь	U	Ю	Я	Α	Б	В	Γ	Д	Е	Ж

A - (0,0,0,0,0), F - (0,0,0,0,1), ..., F - (1,1,1,1,1)

Размер блока (буква) – 5 бит

Размер алфавита – 32 символа

Шифр Хилла

Предложен в 1929г. математиком Лестером Хиллом.

Текст шифруется блоками из n символов.

$$c_i = p_i^*A, p_i = c_i^*A^{-1}$$

Размер блока – 5*n бит.

Размер алфавита 25*n символов.

Атака по открытому тексту

Производится, когда в шифротексте присутствуют отрывки, известные аналитику.

Выполняется для восстановления ключа шифрования.

Все рассмотренные шифры замены и гаммирования были подвержены этой атаке.

Требования к шифрам

Шифротекст должен скрывать избыточность данных открытого текста.

Обладая парами отрытый текст — шифротекст аналитик не должен иметь возможности восстановить ключ шифрования.

Статья Клода Шеннона

Первым произвел описание криптографии с математической точки зрения.

Дал описание криптостойких систем на основе простых операций, ввел понятия диффузии и конфузии.

Диффузия

Диффузия — метод, при котором выходные данные скрывают избыточность в статистике входных данных.

Для обеспечения хорошей диффузии необходимо, чтобы каждый бит входных данных влиял на каждый бит выходных данных.

Конфузия

Конфузия – метод, при котором зависимость ключа и выходных данных делается как можно более сложной (в частности, нелинейной).

Достигается применением нелинейных преобразований в процессе шифрования.

Лавинный эффект

Изменение малого количества бит во входном тексте или ключе ведет к "лавинному" изменению бит выходного шифртекста.

Является следствием хорошей диффузии и конфузии.

Лавинный эффект

Сеть Фейстеля

Примеры:

DES, FOCT 28147-89, Blowfish, CAST, FEAL, IDEA, Khufu, Twofish

DES

Опубликован в 1977 г.

Размер блока – 64 бита

Размер ключа – 56 бит

Количество раундов шифрования – 16

<u>Функция Фейстеля</u>

E – расширяет 32бита в 48 бит, дублируя некоторые биты.

S-блоки

Обеспечивают лавинный эффект и нелинейность шифрования.

$$(a_1, a_2, a_3, a_4, a_5, a_6) - (b_1, b_2, b_3, b_4)$$

 $(a_1, a_6) = y, (a_2, a_3, a_4, a_5) = x$
 $(b_1, b_2, b_3, b_4) = S[y, x]$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	10	3	14	10	0	6	13

S-блоки

Пример S-блока, не обеспечивающего нелинейности преобразований $(b_1,b_2,b_3,b_4) = (a_2,a_3,a_4,a_5)$.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

SP-сеть

S – substitution stage

P – permutation stage

Примеры:

AES, Lucifer, SAFER, Rainbow, Threefish, Кузнечик.

AES (Rijndael)

Создан в 1998 г.

Размер блока – 128 бит.

Размер ключа – 128/196/256 бит.

Количество раундов шифрования – 10/12/14

<u>SubBytes</u>

<u>SubBytes</u>

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0B	DB
Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	B5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	BB	16

ShiftRows

No change	a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
Shift 1	a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}
Shift 2	a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
Shift 3	a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,1}	a _{1,2}	a _{1,3}	a _{1,0}
a _{2,2}	a _{2,3}	a _{2,0}	a _{2,1}
a _{3,3}	a _{3,0}	a _{3,1}	a _{3,2}

MixColumns

Умножение многочлена с коэффициентами $(a_{0,i},a_{1,i},a_{2,i},a_{3,i})$ на $c(x)=3x^3+x^2+x+2$ по модулю x^4+1 .

<u>Лавинный эффект в AES</u>

Режимы шифрования

ECB (Electronic Code Book) каждый блок шифруется независимо

CBC (Cipher Block Chaining) перед шифрованием блок "ксорится" с предыдущим зашифрованным блоком

Требования к блочным шифрам

Требования конкурса AES 2000 г.:

использовать операции, легко реализуемые аппаратно (в микрочипах) и программно;

ориентироваться на 32-разрядные процессоры;

простота структуры шифра.

Проверялись в том числе:

оптимизация выполнения кода на различных архитектурах (от ПК до смарткарт и аппаратных реализаций);

оптимизация размера кода;

возможность распараллеливания.

Потоковые шифры

Потоковый (поточный) шифр — симметричный шифр, в котором каждый символ открытого текста шифруется в зависимости от ключа шифрования и расположения в потоке открытого текста.

Потоковые шифры

Генерация гаммы

Синхронные потоковые шифры – гамма генерируется независимо от открытого текста и шифротекста (A5, RC4, SEAL, Phelix).

Асинхронные (самосинхронизирующиеся) потоковые шифры – гамма создается функцией ключа и фиксированного числа знаков шифротекста (WAKE, Sapphire II).

<u>РСЛОС</u>

Регистр сдвига с линейной обратной связью:

- высокое быстродействие
- простота аппаратной реализации
- высокие криптографические свойства
- легкость анализа

<u>Нелинейные комбинации РСЛОС</u>

Например: $f(x_1, x_2, x_3, x_4) = x_1 \oplus x_1 x_2 \oplus x_2 x_3 x_4$

Особенности поточных шифров

- Высокая скорость шифрования (наиболее пригодны для оперативного кодирования аудио- и видеоинформации).
- Простота аппаратной реализации.
- Подвержены большему количеству криптографических атак.

Выбор алгоритма шифрования

Асимметричные шифры

Шифры с открытым ключом

Сообщение шифруется на одном ключе, а расшифровывается на другом ключе.

Открытый – ключ, находящийся в общем доступе, используется для шифрования сообщения.

Закрытый – ключ, хранящийся у получателя сообщения, используется для расшифрования сообщения.

Восстановление закрытого ключа на основе открытого – вычислительно сложная задача.

Односторонние функции

- Разложение числа на множители.
- Вычисление дискретного логарифма в конечном поле (a^x = b(p)).
- Вычисление дискретного логарифма на группах точкек эллиптических кривых.
- Задача об укладке рюкзака.

RSA

Опубликована в 1977 г. (Rivest, Shamir и Adleman)

Формирование ключей

	Операция	Пример
1	Выбираются два простых числа р и q.	p = 7, q = 13
2	Вычисляется n = p * q.	n = 91
3	Вычисляется функция Эйлера $\phi(n) = (p-1) * (q-1)$.	$\varphi(n) = 72$
4	Выбирается произвольное e (0 < e < n) взаимно простое с φ(n).	e = 5
5	Вычисляется d такое, что е * d = 1 mod ϕ (n).	d = 29 (29 * 5 = 1 mod 72)
6	(e, n) – открытый ключ, d – закрытый ключ.	

<u>RSA</u>

Процедура шифрования:

```
b = a^e \mod n

a = b^d \mod n
```

Пример:

```
(n = 91, e = 5), d = 29
a = 3
b = 3<sup>5</sup> mod 91 = 61
a = 61<sup>29</sup> mod 91 = 3
```

https://sesc-infosec.github.io/