

Formation initiale aux métiers d'ingénieurs Filière : SCAN

THERMODYNAMICS 1 – IE n°2 – marking sheet

Exercice1: Otto Cycle Thermal Machine (14 points)						
Study of the cycle					9.5 points	
1) The studied sysem lies within the combustion chamber.					0.5 🗸 0	
2) Transformations are adiabatic because they are too fast for heat transfer to occur.					0.5	
3) $n = P_A V_A / RT_A = 0.0283 \text{ mol} = 28.3 \text{ mmol}$						
$P_B = P_A (V_A/V_B)^{\gamma}$ et $P_D = P_C (V_C/V_D)^{\gamma}$						
$T_B = P_B V_B/nR$ et $T_D = P_D V_D/nR$					$ \bigcirc \bigcirc $	
P _C =nRT _C /Vc						
P (en Pa) V (en cm ³) T (en K)					2.5 =	
A 10 ⁵ 800 340					5 × 0.5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					05	
$C = 63, 5 \times 10^5$ 90 $\sqrt{2430}$					1/2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					4,5	
4) Transformation AB adiabatique réversible :						
$Q_{AB} = 0$ car transformation adiabatique $\sqrt{\theta_1 \xi}$						
$W_{AB} = \Delta U_{AB} = n \frac{C_V}{C_V} (T_B - T_A) = 279,3 \text{ J} \times$						
Transformation BC isochore brutale:						
W _{BC} = 0 car transformation isochore $\sqrt{0.5}$						
$Q_{BC} = \Delta U = n \overline{C_V} (T_C - T_B) = 949.5 \text{ J} \times$					4 =	
					8×0.5	
Transformation CD adiabatique réversible : $Q_{CD} = 0$ car transformation adiabatique \checkmark 6,5						
$W_{\rm CD} = \Delta U_{\rm CD} = n \overline{C_V} (T_{\rm D} - T_{\rm C}) = -831,9 {\rm J} \times$					(2.5)4	
$W_{CD} = \Delta U_{CD} = n C_V (1D - 1C) - 831,93$ Transformation DA isochore brutale:						
$W_{DA} = 0$ car transformation isochore $\sqrt{0.5}$						
$Q_{DA} = \Delta U = n \overline{C_V} (T_A - T_D) = -396,9 J \times A \rightarrow B \qquad B \rightarrow C \qquad C \rightarrow D \qquad D \rightarrow A$						
		0	-831,9	$0 \rightarrow A$		
W (J)	279,3	949,5	0	-396,9		
Q(J)	0	949,3	U	-390,9	0.5	
$W_T = -552,6$ J c'est un moteur					1.5=	
5) adiab : no Sexchanged, rev : no Screated so $\Delta S_{AB} = 0$ and $\Delta S_{CD} = 0$					3×0.5	
$\Delta S_{BC} = \int \delta Q_{rev}/T = \int n\overline{C_V} dT/T = n\overline{C_V} ln(T_C/T_B) = 0.643 \text{ J/K};$					3^0.3	
$\Delta S_{DA} = n\overline{C_V} \ln(T_A/T_D) = -0.644 \text{ J/K};$					0.5	
ΔS_{cycle} = 0 car transformation cyclique et S fct d'état						
Performance study (T. T.)					2 points	
6) $CoP = \frac{W_T}{Q_{BC}} = \frac{Q_{BC} + Q_{DA}}{Q_{BC}} = \frac{(T_A - T_B + T_C - T_D)}{(T_C - T_B)} = 1 + \frac{(T_A - T_D)}{(T_C - T_B)} = 58,3\%$					0.5	
7) $4500 \text{ tr/min} = 2250/60 = 37.5 \text{ cycles/s}$					0.5	
En 1 seconde – $W_T = 37.5 \times 553 = 20737.5 \text{ J soit } P = 20737.5 / 736 = 28.2 \text{ CV}$					V	
8) The real Cop will be lower since the real cycle is less reversible then the modeled one					1	
(pressure not homogeneous, not really adiabatic) and the intake-exhaust cycle is consuming					0	
some of the power of the engine $W > 0$.						
Influence of combustion (BC stage of the ABCDA cycle)					2.5 points	
9) $C_8H_{18(g)} + 25/2 O_{2(g)} \rightarrow 8CO_{2(g)} + 9H_2O_{(g)}$					0.5 (0,5)	
10) 1 mole d'octane pour 12,5 moles d'O ₂ et donc $12,5/0,2 = 62,5$ moles d'air.						
A chaque injection de n moles de gaz, $n_{\text{octane}} = n/63, 5 = 0,45 \text{ mmol}$					(\land)	
$x_{\text{octane}} = \frac{0.45}{28.3} = 0.016.$					1 0 0	
		M £1 37	/a - 71I		0,45	
D'où masse injectée $m_{\text{octane}} = n_{\text{octane}} \times M_{\text{octane}} = 51 \text{ mg}$; $V=m/\rho = 71\mu\text{L}$						
11) On brule à chaqu	11) On brule à chaque explosion 51 mg, ce qui génère une chaleur					

$$Q_{BC}$$
= 2278 J = $\frac{nR}{\gamma - 1}$ ($T_C - T_B$) (on approxime la quantité de gaz constante)
 $T_C = T_B + Q_{BC} \frac{\gamma - 1}{nR} = 4729 \text{ K}$

$$T_C = T_B + Q_{BC} \frac{\gamma - 1}{n^2} = 4729 \text{ K}$$

Valeurs anormalement élevées dues au caractère idéal de ce qui a été considéré ici, combustion totale, octane pur, pas de pertes de chaleur, valeur calculées pour des molécules diatomiques, alors que beaucoup sont plus complexes.

0

Exercice 2 (2 points)

1) 1st law :
$$\Delta U = W + Q = W$$
 car adiabatique

$$GP : \Delta U = n \overline{C_V} (T-T_0)$$

$$W = -P_e (V-V_0)$$
 car $P_{ext} = P_e = cte$

Donc
$$n \overline{C_V}$$
 (T-T₀) = -P_eV + P_eV₀ = -nRT + (P_e/P₀) nRT₀

Soit
$$(\overline{C_V} + R) T = [\overline{C_V} + R(P_e/P_0)] T_0$$

D'où
$$T = T_0 [\overline{C_V} + R(P_e/P_0)] / (\overline{C_V} + R) = 274 K$$

