

федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Институт информационных и вычислительных технологий Кафедра управления и интеллектуальных технологий

Отчёт по лабораторной работе №1 По дисциплине «Методы и алгоритмы обработки данных и изображений»

Выполнили студенты: Михайловский М. Ю., Озеров С. Д.

Группа: А-02м-25

Бригада: 2

Проверил: Бородкин А. А.

Содержание

1	Предобработка и анализ стационарности временного ряда		
	1.1	Моделирование временного ряда	3
	1.2	Обработка аномальных наблюдений	3
	1.3	Оценка стационарности	5
2	Корреляционный и спектральный анализ ВР		
	2.1	Построение корреляционной функции	7
	2.2	Построение спектральной плотности мощности	10
${f A}$	Лис	СТИНГИ	15

1 ПРЕДОБРАБОТКА И АНАЛИЗ СТАЦИОНАРНОСТИ ВРЕМЕННОГО РЯДА

1.1 Моделирование временного ряда

Для анализа было смоделировано два временных ряда (BP) с числом отсчётов N=500 и длительностью $T=1\mathrm{c}.$

$$y_1=a_0\sin{(a_1\cdot 2\pi\cdot t)}+a_2\cdot e$$
 $y_3=e^{0,1\cdot t}+2\cdot e,$ где $e\sim N(0,1),\;a_0=0,4,\;a_1=0,015,\;a_2=0,63$

Генерация данных BP приведена в листинге 2. Полученные временные ряды представлены на рис. 1.1.

В структуре генерирующей формулы обоих временных рядов заложена неслучайная составляющая. Для $y_1(t)$ заложена периодическая составляющая, а для $y_3(t)$ заложен тренд, представляющий собой экспоненту. Визуально на графиках временных рядов сложно предположить о наличии этих составляющих.

Рис. 1.1. Графики: a) $y_1(t)$, б) $y_3(t)$

1.2 Обработка аномальных наблюдений

Для обнаружения аномалий построим эллипс рассеяния набора данных $(x\ y)=(\Delta y\ \nabla y).$ Для этого рассмотрим ковариационную матрицу нормированных данных C.

$$\Sigma = \begin{bmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{bmatrix} \Rightarrow C = \Sigma|_{\sigma_x = \sigma_y = 1} = \begin{bmatrix} \sigma_x^2 & \rho_{xy}\sigma_x\sigma_y \\ \rho_{xy}\sigma_x\sigma_y & \sigma_y^2 \end{bmatrix}|_{\sigma = \sigma_x = 1} = \begin{bmatrix} 1 & \rho_{xy} \\ \rho_{xy} & 1 \end{bmatrix}$$

Собственные значения такой матрицы будут равны:

$$\lambda_{1,2} = 1 \pm \rho_{xy} \tag{1}$$

Рис. 1.2. Масштабирование эллипса рассеяния для заданной доверительной вероятности

Система собственных векторов в данном случае будут расположены под углом 45° относительно осей Oxy. Для облака рассеяния нормированных данных длины полуосей эллипса будут равны:

$$l_{1,2} = \sqrt{\lambda_{1,2}} \tag{2}$$

Для перехода от нормированных данных $(x_0 \ y_0)$ к исходным $(x \ y)$ эллипс масштабируется с учётом стандартных отклонений при помощи растягивания S:

Вспомним, что рассматривается набор данных $(\Delta y \ \nabla y)$. При сравнивании значений по модулю, все значения кроме Δy_N и ∇y_1 встречаются в обоих выборках Δy , ∇y . Это значит, что дисперсии практически равны: $\sigma_x^2 = \sigma_y^2$, и оператор растягивания S сохранит угол 45° между базисом собственных векторов и исходной системы координат Oxy.

В написанной функции построения эллипса рассеяния (листинг 3) можно задавать значение доверительной вероятности, по умолчанию p = 0.99. На вход функции подаётся вектор (x y), и предполагается, что этот вектор имеет двумерное нормальное распределение.

Для учёта доверительной вероятности эллипс рассеяния масштабируется в соответствии с множителем стандартного отклонения (рис. 1.2), показывающим сколько стандартных отклонений должно быть охвачено:

$$n_{\sigma} = q_{\frac{1+p}{2}},$$

где $q_{\frac{1+p}{2}}$ – квантиль для стандартного нормального распределения. Такое масштабирование

сделает сам эллипс кривой, охватывающей p вероятности двумерного нормального распределения.

В качестве входных данных при построении эллипса рассеяния используются передние и задние конечные разности. По оси X имеем $\Delta y = y[k+1] - y[k]$, по оси Y: $\nabla y = y[k] - y[k-1]$. Все значения, которые оказываются вне эллипса рассеяния во II и IV квадрантах – считаются аномальными. Аномальные значения заменяются средним значением между соседними отсчётами во временном ряду.

Полученные эллипсы рассеяния для $y_1(t)$, $y_3(t)$ представлены на рис. 1.3. Они были получены в результате программы, представленной в листинге 4. На графике оранжевым представлены наблюдения, которые были приняты аномальными и заменены средним значением.

Рис. 1.3. Эллипс рассеяния: а) $y_1(t)$, б) $y_3(t)$

1.3 Оценка стационарности

Для оценки стационарности временных рядов они были разбиты на 10 блоков по 50 значений. В каждом блоке была рассчитана оценка математического ожидания и дисперсии (листинг 5):

$$\hat{m}_x = \frac{1}{N} \sum_{i=1}^N x_i \tag{4}$$

$$\hat{\sigma}_x^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \hat{m}_x)^2 \tag{5}$$

Полученные графики оценок представлены на рис. 1.4. Визуально по ним сложно утверждать о том, что параметры как либо изменяются. Лишь для $y_3(t)$ можно предположить о слабом изменении математического ожидания.

Критерий серий говорит о стационарности математического ожидания и дисперсии по результату анализа этих же графиков (листинг 1).

Для обоих сигналов критерий Колмогорова-Смирнова для нормального распределения не выполняется. Это говорит о том, что сами сигналы нельзя считать просто нормально распределёнными.

Проанализируем автокорреляционные функции и спектральные плотности мощности для этих сигналов. Автокорреляционные функции представлены на рис. 1.5, а спектральные плотности мощности на рис. 1.6.

Листинг 1. Вывод критерия серий

```
По результату критерий серий "Тренд в m(y_1) отсутствует - True"
По результату критерий серий "Тренд в var(y_1) отсутствует - True"
По результату критерий серий "Тренд в m(y_3) отсутствует - True"
По результату критерий серий "Тренд в var(y_3) отсутствует - True"
Характеристики у1
Математическое ожидание - 0.024
Дисперсия - 0.383
Асимметрия - 0.179
Эксцесс - 0.254
Тест на нормальность Колмогорова-Смирнова - pvalue=9.5e-08
Характеристики у3
Математическое ожидание - 1.121
Дисперсия - 3.844
Асимметрия - 0.049
Эксцесс - -0.132
Тест на нормальность Колмогорова-Смирнова - pvalue=7.4e-64
```


Рис. 1.4. Изменение параметров реализации: a) $y_1(t)$, б) $y_3(t)$

По автокорреляционным функциям можно сказать о наличии тренда в сигнале $y_3(t)$, т.к. эта функция явно не затухает до нуля, что говорит о наличии коррелированности между отсчётами временного ряда. Для $y_1(t)$ нельзя сказать о наличии тренда.

По графикам спектральной плотности мощности рассматриваемых сигналов нельзя сказать о наличии тренда или конкретной частоты. Мощность частот распределена довольно равномерно, что говорит о близости сигналов с белому шуму. В данном случае видно явное преобладание аддитивного шума, который был заложен в модель.

Рис. 1.5. Автокорреляционные функции: а) $y_1(t)$, б) $y_3(t)$

Рис. 1.6. Спектральная плотность мощности: a) $y_1(t)$, б) $y_3(t)$

2 КОРРЕЛЯЦИОННЫЙ И СПЕКТРАЛЬНЫЙ АНАЛИЗ ВР

2.1 Построение корреляционной функции

Была написана функция $correlation_function$, которая строит корреляционную функцию (КФ) для двух данных сигналов. Реализация функции представлена в листинге 6. Используется формула (6):

$$\hat{R}_{xy}(k\Delta) = \frac{1}{N} \sum_{i=1}^{N-k} (x_i - \hat{m}_x)(y_{i+k} - \hat{m}_y)$$
(6)

Полученные сигналы и корреляционные функции представлены на рис. 2.1-2.7. Как видим, получили графики соответствующие теоретическим. Для белого шума автокорреляционная функция (АКФ) $R_{xx}(\tau) = \delta(\tau)$, для нескольких гармоник АКФ представляет собой сигнал тоже из нескольких гармоник, для сигнала с линейно-коррелированными отсчётами АКФ представляет собой затухающую экспоненту.

Таблица полученных интервалов максимальной корреляции $au_{\scriptscriptstyle{\mathrm{M.K.}}}$ представлена на рис. 1.

Рис. 2.1. Корреляционная функция, пример 1

Рис. 2.2. Корреляционная функция, пример 2

Рис. 2.3. Корреляционная функция, пример 3

Рис. 2.4. Корреляционная функция, пример 4

Рис. 2.5. Корреляционная функция, пример 5

Рис. 2.6. Корреляционная функция, пример 6

Рис. 2.7. Корреляционная функция, пример 7

Таблица 1. Значение максимальных интервалов корреляции $au_{\text{м.к.}}$

Тип сигнала	$\tau_{\mathrm{m.k.}}$
Постоянный	0
Белый шум	1
Несколько гармоник	_
Коррелированные отсчёты	51
Белый шум – несколько гармоник	0
Несколько гармоник – коррелированные отсчёты	0
Коррелированные отсчёты – коррелированные отсчёты	0

2.2 Построение спектральной плотности мощности

Были написаны функции periodogram и $estimate_spe$, для построения периодограммы и применения к ней окон. Их реализация приведена в листинге 7. Получили графики спектральных плотностей мощности, представленные на рис. 2.8-2.11. Для всех окон параметр M=100.

Рис. 2.8. Спектральная плотность мощности, пример 1

Рис. 2.9. Спектральная плотность мощности, пример 2

несколько гармоник

Рис. 2.10. Спектральная плотность мощности, пример 3

Рис. 2.11. Спектральная плотность мощности, пример 4

Рассмотрим следующие сигналы:

$$x = 2\sin(102t \cdot 2\pi) + 1.7\sin(102.08t \cdot 2\pi) + 2.3\sin(110t \cdot 2\pi) + 0.2e$$
$$y = 1.6\sin(102.8t \cdot 2\pi) + 2.1\sin(110t \cdot 2\pi) + 2.0\sin(210t \cdot 2\pi) + 0.2e$$

где
$$e \sim N(0,1)$$

Построим для этих сигналов графики оценок спектральной плотности мощности (СПМ) $(\hat{S}_{xx}(f), \ \hat{S}_{yy}(f))$ и взаимной СПМ $(\hat{S}_{xy}(f))$. Полученные графики представлены на рис. 2.12-2.15.

Как и ожидалось, мы видим пики на частотах, которые были заложены в исходные сигналы. На графике взаимной СПМ пики присутствуют для частот, которые встречаются в обоих сигналах.

Рис. 2.12. График сигналов x, y.

Рис. 2.13. Спектральная плотность мощности

Рис. 2.14. Спектральная плотность мощности

Рис. 2.15. Спектральная плотность мощности

Приложение А. Листинги

Листинг 2. Генерация временных рядов $y_1(t), y_3(t)$

```
import numpy as np
1
   import matplotlib.pyplot as plt
   from matplotlib.patches import Ellipse
   import matplotlib.transforms as transforms
   import scipy.stats as stats
   from scipy import signal
   from collections import namedtuple
   N = 500
   T = 1 \# seconds
10
   delta = T / N
11
   a0 = 0.4
12
   a1 = 0.015
13
   a2 = 0.63
   np.random.seed(42)
16
   e1 = np.random.standard_normal(N + 1)
17
   e2 = np.random.standard normal(N + 1)
18
19
   k = np.array(range(N + 1))
20
   t = k * delta
21
   y1 = a0 * np.sin(a1 * 2 * np.pi * t) + a2 * e1
22
23
   y3 = np.exp(0.1 * t) + 2 * e2
```

Листинг 3. Функция построения эллипса рассеяния

```
def confidence_ellipse(x, y, ax, p=0.99, facecolor='none', **kwargs):
            if x.size != y.size:
2
                    raise ValueError("x and y must be the same size")
            cov = np.cov(x, y)
            pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1])
            # Используется частный случай получения собственных значений
            ell_radius_x = np.sqrt(1 + pearson)
            ell_radius_y = np.sqrt(1 - pearson)
            ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2,
10
            facecolor=facecolor, **kwargs)
11
12
            # Масштабирование в соответствии с данным pvalue в предположении (x,\ y) ~ 	extbf{N}
13
            n_std_for_quantile = stats.norm.ppf((1 + p) / 2)
14
15
            scale_x = np.sqrt(cov[0, 0]) * n_std_for_quantile
16
17
            mean_x = np.mean(x)
            scale_y = np.sqrt(cov[1, 1]) * n_std_for_quantile
19
            mean_y = np.mean(y)
20
21
            # A, такой что xAx^T = 1 описывает эллипс рассеяния до масштабирования и поворота
22
            A = np.array([ [1/((ell_radius_x) ** 2), 0], [0, 1/((ell_radius_y) ** 2)]])
```

```
scale = np.array([[1/(scale_x ** 2), 0], [0, 1/ (scale_y ** 2)]])
24
25
            angle = np.pi / 4
26
            rotation = np.array([ [np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)] ])
27
            A = rotation @ scale @ A @ rotation.T
            mu = np.array([mean_x, mean_y])
30
31
            transf = transforms.Affine2D() \
32
                    .rotate_deg(45) \
33
                    .scale(scale_x, scale_y) \
                    .translate(mean_x, mean_y)
35
36
            ellipse.set_transform(transf + ax.transData)
37
            return ax.add_patch(ellipse), A, mu
```

Листинг 4. Построение эллипса рассеяния

```
def replace_with_mean(arr: np.array, indices):
            result = np.copy(arr)
            for i in indices:
                    if i == 0 or (i == result.shape[0] - 1):
                            continue
                    result[i] = 0.5 * (result[i - 1] + result[i + 1])
            return result
   def ellipse(y, title: str):
10
            differences = y[1:] - y[:-1]
11
12
            forward_diff = differences[1:]
            backward_diff = differences[:-1]
14
            fig, ax = plt.subplots()
15
16
            _, A, mu = confidence_ellipse(forward_diff, backward_diff, ax, edgecolor='firebrick')
17
            ell_x = np.c_[forward_diff, backward_diff]
19
            diagonal_values = np.diag((ell_x - mu) @ A @ (ell_x - mu).T) # вектор длины n
20
            signes = np.sign(forward_diff * backward_diff)
21
            anomalies = ell_x[(diagonal_values > 1) & (signes < 1)]</pre>
22
            anomalies_indices = np.where((diagonal_values > 1) & (signes < 1))[0]
            ell_x_clean = replace_with_mean(ell_x, anomalies_indices)
24
25
            # Добавление на график ell_x_clean, anomalies
26
27
   ellipse(y1, '$y_1$')
28
   ellipse(y3, '$y_3$')
29
```

Листинг 5. Оценка стационарности рядов

```
def estimate_m_var(arr: np.array):
5
            N = arr.shape[0]
6
            m = estimate_m(arr)
            return m, ((arr - m).T @ (arr - m)) / (N - 1)
10
   def series_test(arr: np.array):
            N = arr.shape[0]
11
            arr = arr[1:] - arr[:-1]
12
13
            v, t_list = 1, []
14
            counter, elem_sign = 1, np.sign(arr[0])
15
            for x in np.nditer(arr[1:]):
16
                    if elem_sign * x >= 0:
17
                             counter += 1
18
19
                    else:
                            v += 1
20
                            t_list.append(counter)
21
                             counter, elem_sign = 1, np.sign(x)
22
            t_list.append(counter)
23
            t = np.max(t_list)
24
            if N <= 6:
25
                    tmax = 5
26
            elif N \leq 154 and N > 6:
27
                    tmax = 6
28
            else:
29
                    tmax = 7
31
            no\_trend = (v > ((2 * (N - 1)) / 3 - 1.96 * np.sqrt((16 * N - 29) / 90))) and t < tmax
32
           return no_trend, v, t
33
34
   def trend_test(y, title):
35
36
            mus = []
            vars = []
37
            for i in range(10):
38
            arr = y[50 * i: 50 * (i + 1)]
39
            mu, var = estimate_m_var(arr)
40
            mus.append(mu)
            vars.append(var)
42
43
44
            no_trend, _, _ = series_test(np.array(mus))
45
            print(f'По результату критерий серий "Тренд в m({title.replace("$", "")}) отсутствует -
            no_trend, _, _ = series_test(np.array(vars))
47
            print(f'По результату критерий серий "Тренд в var({title.replace("$", "")}) отсутствует -
48
            plt.plot(mus, label="$\mu_{"} + title + "}$")
49
            plt.plot(vars, label="$\sigma_{" + title + "}^2$")
50
            plt.legend()
51
            plt.title(f'Изменение параметров реализации {title} со временем')
52
            plt.xlabel('Номер блока')
53
            plt.show()
54
55
   def corr_spectrum(y, title):
56
            plt.acorr(y, maxlags=30, normed=True)
57
```

```
plt.title(f'Автокорреляционная функция {title}')
58
            plt.xlabel('$\\tau$')
59
            plt.show()
60
61
            f, Pxx = signal.periodogram(y.flatten(), scaling='density', fs=1/delta)
62
            plt.plot(f, Pxx)
63
            plt.xlabel('Hz')
64
            plt.ylabel('$V^2/Hz$')
65
            plt.title(f'Спектральная мощность {title}')
66
            plt.show()
67
   trend_test(y1, 'y_1')
69
   corr_spectrum(y1, '$y_1$')
70
71
72
   trend_test(y3, 'y_3')
   corr_spectrum(y3, '$y_3$')
73
74
   def print_characteristics(arr: np.array):
75
            mu, var = estimate_m_var(arr)
76
            skew = stats.skew(arr)
77
            kurtosis = stats.kurtosis(arr)
            kstest = stats.kstest(arr, 'norm', alternative='two-sided')
79
80
   print(f'Maтематическое ожидание - {mu:.3f}')
81
   print(f'Дисперсия - {var:.3f}')
82
   print(f'Aсимметрия - {skew:.3f}')
   print(f'θκcцесс - {kurtosis:.3f}')
   print(f'Tect на нормальность Колмогорова-Смирнова - pvalue={kstest.pvalue:.1e}')
85
86
   print('Xapaктеристики y1')
87
   print_characteristics(y1)
88
   print('\nХарактеристики у3')
90
   print_characteristics(y3)
91
```

Листинг 6. Построение корреляционных функций для разных сигналов

```
def correlation_function(x: np.array, y: np.array, lags_count: int):
            if x.shape[0] != y.shape[0]:
                    raise ValueError('x and y must be the same size')
            N = x.shape[0]
            if lags_count > N:
                    raise ValueError('lags_count should be less than x, y size')
            mx = estimate_m(x)
            my = estimate_m(y)
10
            Rxy = []
11
            for k in range(lags_count):
12
                    Rxy.append((x[:N-k] - mx).T @ (y[k:] - my) / N)
13
            return Rxy
15
16
   def plot_corr_function(x: np.array, y: np.array, lags_count: int, title: str):
17
            is_autocorr = np.all(x == y)
18
```

```
19
            if is_autocorr:
20
                    Rxy = correlation_function(x, x, lags_count)
21
            else:
22
                    Rxy = correlation_function(x, y, lags_count)
            fig, axs = plt.subplots(1, 2, figsize=(12, 5))
25
            axs[0].set_title('Сигналы')
26
            axs[0].plot(x[:100], label='x')
27
            if not is_autocorr:
                    axs[0].plot(y[:100], label='y')
            axs[0].legend()
30
31
            axs[1].plot(Rxy)
32
33
            axs[1].set_title(f'{"Автокорреляционная" if is_autocorr else "Корреляционная"} функция
            axs[1].set xlabel('$k\\Delta$')
34
            axs[1].hlines(0.05, 0, lags_count, color='k', linestyles='dashed')
35
            plt.show()
36
37
   def signal_with_garmonics(N, delta = 1e-3):
38
            k = np.array(range(N))
39
            return 1 * np.ones(N) + 1.3 * np.sin(200 * 2 * np.pi * k * delta + 0.4) + 0.3 * np.sin(50
40
            \rightarrow * 2 * np.pi * k * delta + 0.93)
41
   def signal_linear_correlated(N, alpha=0.95):
42
            w = np.random.standard_normal(N)
43
            x = np.zeros(N)
45
            x[0] = w[0] / np.sqrt(1 - alpha**2)
46
            for n in range(1, N):
47
                    x[n] = alpha * x[n-1] + np.sqrt(1 - alpha**2) * w[n]
48
            return x
49
50
   Realization = namedtuple('Realization', 'generate_x generate_y lags_to_plot')
51
   realizations = {
52
            'постоянная': Realization(np.ones, None, 10),
53
            'белый шум': Realization(np.random.standard_normal, None, 10),
            'несколько гармоник': Realization(signal_with_garmonics, None, 100),
55
            'линейно \пкоррелированные отсчёты': Realization(signal_linear_correlated, None, 100),
56
            'белый шум \пи несколько гармоник': Realization(np.random.standard_normal,
57

→ signal with garmonics, 100),

            'несколько гармоник \nu коррелированные отсчёты': Realization(signal_with_garmonics,
                signal_linear_correlated, 100),
            'два сигнала\nc коррелированными отсчётами': Realization(signal_linear_correlated,
59
               signal_linear_correlated, 100)
   }
60
61
62
   N = 100_{00}
   for title, realization in realizations.items():
64
            x = realization.generate_x(N)
65
            if realization.generate_y is None:
66
67
                    plot_corr_function(x, x, realization.lags_to_plot, title)
            else:
```

```
y = realization.generate_y(N)
plot_corr_function(x, y, realization.lags_to_plot, title)
```

Листинг 7. Построение спектральных плотностей мощности для разных сигналов

```
def periodogram(x: np.array, delta):
            N = x.shape[0]
            I = []
            i = np.array(range(N))
5
            for k in range(int(N)):
6
            alpha = x.T @ np.cos((2 * np.pi * k * i) / N)
            beta = x.T @ np.sin((2 * np.pi * k * i) / N)
            I.append(delta / N * (alpha ** 2 + beta ** 2))
9
10
            return I
11
12
    # spectral density
13
   def esimate_spe(x: np.array, delta, window):
14
            N = x.shape[0]
15
            Sxx = []
16
            I = np.array(periodogram(x, delta))
17
18
            j = np.arange(-N / 2, N / 2, 1)
19
            for k in range(int(N / 2)):
20
            indices = np.abs( np.astype((k - j), np.int16) )
21
            Sxx.append( I[indices].T @ window(j) )
22
23
            return Sxx
24
25
   def rect_window(j, M = 100):
26
            w = np.where(np.abs(j) \le M, 1/(2*M + 1), 0)
27
            return w
28
29
   def bartlett_window(j, M = 100):
30
            w = np.where(np.abs(j) \le M, (1 - np.abs(j) / M) / M, 0)
31
            return w
32
33
   def hamming_window(j, M = 100):
34
            w = np.where(np.abs(j) \le M, (0.54 + 0.46 * np.cos(np.pi * j / M)) / (1.08 * M + 0.08),
35
                0)
            return w
36
37
   def han_window(j, M = 100):
38
            w = np.where(np.abs(j) \le M, (1 + np.cos(np.pi * j / M)) / (2 * M), 0)
39
            return w
40
41
   realizations = {
42
            'постоянная': Realization(np.ones, None, 10),
43
            'белый шум': Realization(np.random.standard_normal, None, 10),
            'несколько гармоник': Realization(signal_with_garmonics, None, 100),
            'линейно \пкоррелированные отсчёты': Realization(signal_linear_correlated, None, 100),
46
   }
47
48
   windows = {
49
```

```
'Прямоугольное окно': rect_window,
50
            'Окно Бартлетта': bartlett_window,
51
            'Окно Хэмминга': hamming_window,
52
            'Окно Xaнa': han_window,
53
   }
54
55
   N = 10000
56
   delta = 1e-3
57
   for title, realization in realizations.items():
58
            x = realization.generate_x(N)
59
            fig, axs = plt.subplots(2, 2, figsize=(12, 8))
61
            for i, window_name in enumerate(windows):
62
                     Sxx = esimate_spe(x, delta, windows[window_name])
63
                     f = np.arange(len(Sxx)) / (delta * N)
64
                    plot_index = int(i / 2), i % 2
66
                     axs[plot_index].set_title(window_name)
67
                     axs[plot_index].plot(f, Sxx)
68
69
            plt.suptitle(title)
70
            plt.show()
71
```

Листинг 8. Построение спектральных плотностей мощности для разных сигналов

```
N = 1500
   T = 3 \# seconds
   delta = T / N
   fs = 1 / delta
   k = np.array(range(N + 1))
6
   t = k * delta
   e = np.random.standard_normal(N + 1)
   x = 2 * np.sin(102 * t * 2 * np.pi) + 1.7 * np.sin(102.08 * t * 2 * np.pi) + 2.3 * np.sin(110 * t)
10
    \rightarrow * 2 * np.pi) + 0.2 * e
   y = 1.6 * np.sin(102.8 * t * 2 * np.pi) + 2.1 * np.sin(110 * t * 2 * np.pi) + 2 * np.sin(210 * t)
11
    \rightarrow * 2 * np.pi) + 0.2 * e
   plt.plot(t[:200], x[:200], label='$x$')
12
   plt.plot(t[:200], y[:200], label='$y$')
   plt.legend()
14
   plt.show()
15
16
   # Compute and plot the magnitude of the cross spectral density:
17
   nperseg, noverlap, win = 500, 30, 'hann'
18
19
20
   def plot_CSD(csd, csd_name: str):
21
            fig0, ax0 = plt.subplots(tight_layout=True)
22
            ax0.set_title(f"{csd_name} ({win.title()}-window, {nperseg=}, {noverlap=})")
23
            ax0.set(xlabel="Frequency $f$ in Hz", ylabel="CSD Magnitude in V2/Hz")
            ax0.plot(f, np.abs(csd))
25
            ax0.grid()
26
            plt.show()
27
28
```

```
f, Pxx = signal.csd(x, x, fs, win, nperseg, noverlap)
plot_CSD(Pxx, 'Pxx')
f, Pyy = signal.csd(y, y, fs, win, nperseg, noverlap)
plot_CSD(Pyy, 'Pyy')
f, Pxy = signal.csd(x, y, fs, win, nperseg, noverlap)
plot_CSD(Pxy, 'Pxy')
```