

MATERI

- Minor matriks
- Kofaktor
- Matriks adjoin

TUJUAN

Agar mahasiswa mempunyai pengetahuan dasar dan memahami konsep-konsep tentang minor matrik, kofaktor dan matriks adjoin.

Sumber: shorturl.at/byQT9

MATRIKS MINOR

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Matriks Minor M_{ii} dari Matriks A

$$M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$
 $M_{21} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$ $M_{31} = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$

$$M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$
 $M_{22} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}$ $M_{32} = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$

$$M_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
 $M_{23} = \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}$ $M_{33} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$

Sumber: shorturl.at/xDIRY

- Sebelum ke slide selanjutnya tentang determinan dan invers, perlu dipahami terlebih dahulu mengenai matriks minor, kofaktor, dan matriks matriks adjoin.
- Matriks minor adalah matriks yang diperoleh dengan cara menghilangkan baris ke-i dan kolom ke-j dari matriks A.
- Tariks minor baris ke i dan kolom ke j ditulis M_{ij}
- Seperti tampak pada gambar dibawah. Matriks minor M_{11} diperoleh dengan menghilangkan baris ke 1 dan kolom ke 1 dari matriks A. Sedangkan M_{12} diperoleh dengan menghilangkan baris ke 1 dan kolom ke 2 dari matriks A

$$M_{11} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{22} & a_{23} \\ a_{11} & a_{32} & a_{33} \end{bmatrix} \qquad M_{12} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{12} & a_{23} \\ a_{31} & a_{12} & a_{33} \end{bmatrix}$$

MATRIKS MINOR 3 × 3

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ -1 & 2 & 0 \end{bmatrix}$$

M₁₁ Baris 1 dankolom 1 dihilangkan

$$M_{11} = \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 \\ -1 & 2 & 0 \end{bmatrix}$$

 M_{21} Baris 2 dan kolom 1 dihilangkan

$$M_{21} = \begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$$

• Disamping merupakan contoh M_{11} dan M_{21} untuk matriks 3×3

MATRIKS MINOR 4 × 4

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 3 & 1 & 1 & 2 \\ 0 & 3 & 1 & 1 \\ -1 & 2 & 0 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 3 & 1 & 2 & 2 \\ 0 & 3 & 1 & 1 \\ -1 & 2 & 6 \end{bmatrix} \qquad \begin{array}{l} M_{23} \text{ Baris 2 dan} \\ \text{kolom 3 dihilangkan} \\ M_{23} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \\ -1 & 2 & 6 \end{bmatrix}$$

 M_{23} Baris 2 dan

$$M_{23} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \\ -1 & 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 3 & 1 & 2 \\ 0 & 1 & 1 \\ -1 & 0 & 6 \end{bmatrix}$$

$$M_{22} \text{ Baris 2 dan kolom 2 dihilangkan}$$

$$M_{22} = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ -1 & 0 & 6 \end{bmatrix}$$

 M_{22} Baris 2 dan

$$M_{22} = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ -1 & 0 & 6 \end{bmatrix}$$

Disamping merupakan contoh M_{23} dan M_{22} untuk matriks 4×4

MATRIKS MINOR

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ -1 & 2 & 0 \end{pmatrix}$$

Determinan dari masing-masing matriks minor:

$$M_{11} = \begin{vmatrix} 3 & 1 \\ 2 & 0 \end{vmatrix} = -2$$
 $M_{12} = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = 1$ $M_{13} = \begin{vmatrix} 0 & 3 \\ -1 & 2 \end{vmatrix} = 3$

$$M_{21} = \begin{vmatrix} 2 & 1 \\ 2 & 0 \end{vmatrix} = -2$$
 $M_{22} = \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 1$ $M_{23} = \begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix} = 4$

$$M_{31} = \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = -1$$
 $M_{32} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1$ $M_{33} = \begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix} = 3$

Sumber: shorturl.at/xDIRY

- Matriks minor yang sudah didapat akan dihitung determinannya.
- Penggunaan matriks minor sangat membantu dalam menentukan determinan dari matriks 4×4 atau lebih yang akan dijelaskan pada pertemuan selanjutnya.
- determinan tersebut selanjutkan akan digunakan untuk mendapatkan nilai kofaktor.
- Matriks-matriks disamping merupakan keseluruhan matriks minor untuk matriks A.

KOFAKTOR

$$M_{11} = \begin{vmatrix} 3 & 1 \\ 2 & 0 \end{vmatrix} = -2 \qquad M_{12} = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = 1 \qquad M_{13} = \begin{vmatrix} 0 & 3 \\ -1 & 2 \end{vmatrix} = 3$$

$$M_{21} = \begin{vmatrix} 2 & 1 \\ 2 & 0 \end{vmatrix} = -2 \qquad M_{22} = \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 1 \qquad M_{23} = \begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix} = 4$$

$$M_{31} = \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = -1$$
 $M_{32} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1$ $M_{33} = \begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix} = 3$

$$C_{11} = (-1)^{1+1} |M_{11}| = -2$$
 $C_{31} = (-1)^{3+1} |M_{31}| = -1$
 $C_{12} = (-1)^{1+2} |M_{12}| = -1$ $C_{32} = (-1)^{3+2} |M_{32}| = -1$
 $C_{13} = (-1)^{1+3} |M_{13}| = 3$ $C_{33} = (-1)^{3+3} |M_{33}| = 3$

$$C_{21} = (-1)^{2+1} |M_{21}| = 2$$

$$C_{22} = (-1)^{2+2} |M_{22}| = 1$$

$$C_{23} = (-1)^{2+3} |M_{23}| = -4$$

$$C = \begin{bmatrix} -2 & -1 & 3\\ 2 & 1 & -4\\ -1 & -1 & 3 \end{bmatrix}$$

• Kofaktor baris ke-i dan kolom ke-j disimbolkan dengan C_{ij} dapat ditentukan dengan rumus berikut.

$$C_{ij} = (-1)^{i+j} \det(M_{ij})$$

Kofaktor disamping akan digunakan untuk menentukan matriks adjoin.

Sumber: shorturl.at/xDIRY

KOFAKTOR

$$M_{11} = \begin{vmatrix} 3 & 1 \\ 2 & 0 \end{vmatrix} = -2 \qquad M_{12} = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = 1 \qquad M_{13} = \begin{vmatrix} 0 & 3 \\ -1 & 2 \end{vmatrix} = 3$$

$$M_{21} = \begin{vmatrix} 2 & 1 \\ 2 & 0 \end{vmatrix} = -2 \qquad M_{22} = \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 1 \qquad M_{23} = \begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix} = 4$$

$$M_{31} = \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = -1$$
 $M_{32} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1$ $M_{33} = \begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix} = 3$

Sesuaikan tandanya +/- nya pada setiap elemen
$$A = \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

$$C = \begin{bmatrix} -2 & -1 & 3 \\ 2 & 1 & -4 \\ -1 & -1 & 3 \end{bmatrix}$$

 Membentuk matriks kofaktor juga bisa memanfaatkan bantuan matriks plus-minus.

$$A = \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

MATRIKS ADJOIN

Matriks Kofaktor

$$C = \begin{bmatrix} -2 & -1 & 3 \\ 2 & 1 & -4 \\ -1 & -1 & 3 \end{bmatrix}$$

Matriks Adjoin

$$Adj(A) = C^T = \begin{bmatrix} -2 & 2 & -1 \\ -1 & 1 & -1 \\ 3 & -4 & 3 \end{bmatrix}$$

- Setelah menenentukan kofaktor, langkah selanjutnya adalah mencari matriks adjoin.
- Matriks adjoin sama nilainya dengan transpose dari matrik kofaktor.
- Sehingga, matriks adjoin dari matriks A dinyatakan seperti terlihat pada matriks di bawah ini.

$$Adj(A) = C^{T} = \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix}$$

- Jadi untuk membentuk matriks adjoin kita harus:
 - Mencari nilai minor masing-masing elemen baris kolom
 - Membentuk matrik kofaktor C
 - Menuliskan transpose dari matrik C
- Matriks adjoin dimanfaatkan untuk mencari invers suatu matriks yang akan dijelaskan pada pertemuan selanjutnya.

SOAL LATIHAN

1. Tentukan determinan matriks minor dan matriks kofaktor berikut.

$$A = \begin{bmatrix} -2 & 3 & 1 & 4 \\ 3 & 1 & -5 & 2 \\ 4 & 2 & 3 & -2 \\ 5 & -4 & 2 & 1 \end{bmatrix}$$

- a) M_{23}
- b) M_{32}
- c) C₂₁
- d) C_{41}

2. Tentukan matriks adjoin dari matriks berikut.

a)
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$

a)
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$
 b) $B = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 3 & 2 \\ 4 & 2 & 1 & 3 \\ 3 & 1 & 1 & -4 \end{bmatrix}$

TERIMA KASIH