Organizing and Visualizing Data in R Workshop

By Gabriel Kamener FCE Information Manager, Florida International University

Today's workshop

- Workshop will focus on:
 - RStudio projects
 - Organizing and visualizing data in R¹
 - Organizing and documenting code²
- After this workshop, you will be able to:
 - Organize data projects
 - Manipulate and visualize data in R
 - Organize, document, and review code
 - 1. With content adapted from Seok et al. 2023
 - 2. With content adapted from Ivimey-Cook et al. 2023

Today's workshop

Workshop files:

https://github.com/gkamener/2024_spring_workshop_organizing_and_visualizing_data_in_r

Schedule

Time	Topic	Content
4:00 – 4:10	Introduction and setup	Why organize data? Why organize and document code?
4:10 – 4:15	Best practices in using RStudio projects	What are RStudio projects, and how can we utilize them?
4:15 – 4:35	Manipulating imported data	Manipulate, analyze, and export data with tidyverse.
4:35 – 4:50	Visualizing data	Plot and customize visualizations with ggplot.
4:50 – 5:20	Code organization and commenting	The 4Rs of code review, organizing code, reviewing code
5:20 - 6:00	Personal project and code development	Work on improving project and code

Introduction

- Why organize data projects?
- Why organize and document code?

My initial R experience

After some organization

Artwork by @allison_horst (CC BY 4.0)

RStudio

RStudio Projects

Advantages of RStudio Projects:

- Automatically set working directory
- Portable
- Share friendly
- Can integrate with Git/GitHub
- Can aid reproducibility with renv package

Setup an RStudio Project

- 1. Start RStudio.
- 2. Under the File menu, click on New Project. Choose New Directory, then New Project.
- 3. Enter a name for this new folder (or "directory"), and choose a convenient location for it. This will be your working directory for the rest of the day (e.g., ~/fce_data_workshop).
- 4. Click on Create Project.
- 5. Create folders for data (with "raw", "intermediate", and "final" subfolders), r scripts, and figures in your working directory.
- 6. Download code handout + data files and place into folders.
- 7. (Optional) Set Preferences to 'Never' save workspace in RStudio.

Organizing your working directory

Organizing your working directory

Organizing your working directory

The data we are using today

Home / Data / Core / Metadata

Metadata

Periphyton and Associated Environmental Data Relative from Samples Collected from the Greater Everglades, Florida, USA from September 2005 to November 2014

At a Glance

Download data

Authors: Evelyn Gaiser

Time period: 2005-09-14 to 2014-11-14 Package id: knb-lter-fce.1210.5 Dataset id: FCE1210_CERP_PeriphytonEnv

How to cite:

Gaiser, E.. 2022. Periphyton and Associated Environmental Data Relative from Samples Collected from the Greater Everglades, Florida, USA from September 2005 to November 2014. Environmental Data Initiative. https://doi.org/10.6073/pasta/eadd93a36c2d935c069f3b0a4c98775b. Dataset accessed 2024-03-13.

Geographic Coverage

View detailed metadata as: HTML Text XML

https://fce-lter.fiu.edu/data/core/metadata/?packageid=knb-lter-fce.1210.5

Starting with data

- Open code handout file
- library(tidyverse)

```
diatoms_df <- read_csv("data/raw/diatom_counts.csv", 
na = "NA")
```

```
bad_dates_df <- read_csv("data/raw/bad_dates.csv", na = "-9999")
```

Indexing and subsetting data frames

- Indexed by row, column
- Can subset as data_frame[row_index, column_index]
- Subset data frame
 - peri_df[1, 1]
 - peri_df[1,]
 - peri_df[, 1]

Indexing and subsetting data frames

- Subset multiple rows/columns
 - peri_df[c(1, 2, 3), c(5, 6)]
 - peri_df[1:3, 5:6]
- Return vector instead with "[[]]"
 - peri_df[[1, 1]]

Indexing and subsetting data frames

- Subset by column name
 - peri_df[1, "WATER_DEPTH_CM"]
- Heads and tails
 - first_ten_rows <- head(peri_df, 10)
 - first_ten_rows
 - last_ten_rows <- tail(peri_df, 10)
 - view(last_ten_rows)

Factors

- Useful for categorical variables
 - peri_df\$FLOATING_SP1 <- factor(peri_df\$FLOATING_SP1)
 - nlevels(peri_df\$FLOATING_SP1)
 - levels(peri_df\$FLOATING_SP1)

Formatting dates

- my_date <- ymd("2015-01-01")
- str(my_date)
- my_date <- ymd(paste("2015", "1", "1", sep = "-"))
- str(my_date)

Formatting dates

- paste(bad_dates_df\$YEAR, bad_dates_df\$MONTH, bad_dates_df\$DAY, sep = "-")
- ymd(paste(bad_dates_df\$YEAR, bad_dates_df\$MONTH, bad_dates_df\$DAY, sep = "-"))

Formatting dates

- bad_dates_df\$DATE <- ymd(paste(bad_dates_df\$YEAR, bad_dates_df\$MONTH, bad_dates_df\$DAY, sep = "-"))
- str(bad_dates_df)
- summary(bad_dates_df\$DATE)
- missing_dates <- bad_dates_df[is.na(bad_dates_df\$DATE), c("YEAR", "MONTH", "DAY")]
- head(missing_dates)

Manipulating data

- Select
- Filter
- Mutate
- Pivot wider and longer
- Group and summarize
- Count
- Exporting data

Select

```
selected_peri <- peri_df %>%
dplyr::select(TAG_ID,
           OBS DATE,
           PRIMARY_SAMPLING_UNIT,
           FIELD_REPLICATE,
           EPISODE,
           WETLAND_BASIN,
           WATER_DEPTH_CM,
           FLOATING SP1,
           PERI_AFDM_G_PER_M2,
           PERI_TP_UG_PER_G_DRY_MASS,
           PERI PROP ORGANIC
```

Filter

```
filtered_peri <- selected_peri %>%

filter(month(OBS_DATE) > 8)
```

```
filter_missing_peri_tp <- selected_peri %>%

filter(!is.na(PERI_TP_UG_PER_G_DRY_MASS))
```

Mutate

```
mutated_peri <- filtered_peri %>% mutate(peri_percent_organic
= PERI_PROP_ORGANIC*100)
```

Pivot wider and longer

```
diatoms_counts_long <- diatoms_df %>%
     pivot_longer(-c(TAG_ID:LSU_NAME),
                 values_to = "SPECIMENS_COUNTED",
                 names_to = "TAXON_CODE")
diatom_counts_wide <- diatoms_counts_long %>%
     pivot_wider(names_from = "TAXON_CODE",
                values from = "SPECIMENS COUNTED",
                names_sort = TRUE,
                values_fill = 0
```

Group and summarize

```
summarized_water_depths <- filtered_peri %>%
      group_by(WETLAND_BASIN,
                YEAR = year(OBS_DATE)) %>%
      summarize(mean_water_depth_cm = mean(WATER_DEPTH_CM))
summarized_water_depths
summarized_water_depths_wide <- summarized_water_depths %>%
      pivot_wider(names_from = WETLAND_BASIN,
                 values_from = mean_water_depth_cm)
```

summarized_water_depths_wide

Group and summarize

```
diatoms_counts_filtered <- diatoms_counts_long %>% filter(!is.na(SPECIMENS_COUNTED)  
& SPECIMENS_COUNTED != 0)
```

```
total_diatoms <- diatoms_counts_long %>%

group_by(TAG_ID) %>%

summarize(TOTAL_COUNT = sum(SPECIMENS_COUNTED))
```

total_diatoms

Group and summarize

```
rel_abund <- diatoms_counts_filtered %>%
      # Using dplyr's left_join function to join with the total_diatoms data frame
       left_join(., total_diatoms, by = "TAG_ID") %>%
       mutate(RELATIVE_PCT_ABUND = SPECIMENS_COUNTED/TOTAL_COUNT*100) %>%
       select(TAG_ID,
            OBS DATE,
            PRIMARY_SAMPLING_UNIT,
           WETLAND_BASIN,
           TAXON_CODE,
           RELATIVE_PCT_ABUND
```

rel_abund

Count

```
filtered_peri %>%
count(FLOATING_SP1, sort = TRUE)
```

```
diatoms_counts_filtered %>%
    count(TAXON_CODE, sort = TRUE)
```

Exporting data

```
write_csv(filtered_peri, "data/intermediate/filtered_peri.csv")
```

```
write_csv(summarized_water_depths_wide, "data/final/summarized_water_depths_wide.csv")
```

Activity: make your own variable

- Organize your data
- Mutate a new variable
- Share that variable (including how you made it) with your neighbor

Visualizing data with ggplot

```
#ggplot(data = <DATA>, mapping = aes(<MAPPINGS>)) + <GEOM_FUNCTION>()

ggplot(data = filtered_peri)

ggplot(data = filtered_peri, mapping = aes(x = WATER_DEPTH_CM, y = PERI_AFDM_G_PER_M2))
```

Scatter plots

```
ggplot(data = filtered_peri, mapping = aes(x = WATER_DEPTH_CM, y =
PERI_AFDM_G_PER_M2)) +
    geom_point()
```

Boxplots

```
ggplot(data = filtered_peri, mapping = aes(x = WETLAND_BASIN, y =
WATER_DEPTH_CM)) +
    geom_boxplot()
```

Trend lines

Stacked bar

```
rel_abund_2014_W3B <- rel_abund %>%
     filter(year(OBS_DATE) == 2014
          & WETLAND_BASIN == "W3B")
ggplot(rel_abund_2014_W3B,
     aes(fill = TAXON_CODE,
         y = RELATIVE_PCT_ABUND,
         x = PRIMARY_SAMPLING_UNIT)) +
     geom_bar(position="stack", stat="identity")
```

```
ggplot(rel_abund_2014_W3B,
        aes(fill = TAXON_CODE,
        y = RELATIVE_PCT_ABUND,
        x = PRIMARY_SAMPLING_UNIT)) +
        geom_bar(position="stack", stat="identity") +
        labs(title = "Relative % abundance at W3B sites in 2014",
             x = "Primary Sampling Unit",
             y = "Relative Percent Abundance",
             fill = "Diatom taxon code") +
       theme(axis.title.x = element_text(size = 11),
             axis.title.y = element_text(size = 15))
```

```
rel abund 2014 w3b cut <- rel abund %>%
     filter(year(OBS_DATE) == 2014
     & WETLAND_BASIN == "W3B") %>%
     mutate(TAXON_CODE = if_else(RELATIVE_PCT_ABUND < 2,
                                "OTHER",
                                TAXON_CODE)) %>%
     group_by(PRIMARY_SAMPLING_UNIT,
              TAXON_CODE) %>%
     summarize(RELATIVE_PCT_ABUND = sum(RELATIVE_PCT_ABUND))
```

```
plot_2014_w3b_cut <- ggplot(rel_abund_2014_w3b_cut,
                            aes(fill = TAXON_CODE,
                                y = RELATIVE_PCT_ABUND,
                                x = PRIMARY_SAMPLING_UNIT)) +
      geom_bar(position="stack", stat="identity") +
      labs(title = "Relative % abundance at W3B sites in 2014",
           x = "Primary Sampling Unit",
           y = "Relative Percent Abundance",
           fill = "Diatom taxon code") +
      theme(plot.title = element_text(size = 15),
             axis.title.x = element_text(size = 12),
             axis.title.y = element_text(size = 12))
```

plot_2014_w3b_cut

Saving plots

```
ggsave("fig/W3B_2014_relative_abundance.png",
       plot = plot_2014_w3b_cut)
ggsave("fig/W3B_2014_relative_abundance_custom_size.png",
       plot = plot_2014_w3b_cut,
       width = 46,
       height = 26,
       units = "cm",
       limitsize = FALSE)
```

Make your own plot

- Make your own plot
- Share it with your neighbor (including how you made it)

Code organization and review

JOURNAL OF Evolutionary Biology Leseb

FORUM 🔂 Open Access (c) 🛊

Implementing code review in the scientific workflow: Insights from ecology and evolutionary biology

Edward R. Ivimey-Cook . Joel L. Pick, Kevin R. Bairos-Novak, Antica Culina, Elliot Gould, Matthew Grainger, Benjamin M. Marshall, David Moreau, Matthieu Paquet ... See all authors ~

First published: 09 October 2023 | https://doi.org/10.1111/jeb.14230 | Citations: 1

https://doi.org/10.1111/jeb.14230

Potential code issues

- Reading in data files with paths outside project
- Order of workflow is unclear
- Comments say "go right" but code goes left
- Code fails to run on another computer
- Code fails or outputs change after updating R or packages
- Results not reproducible for manuscript reviewer

The four 'Rs' of code review

J of Evolutionary Biology, Volume: 36, Issue: 10, Pages: 1347-1356, First published: 09 October 2023, DOI: (10.1111/jeb.14230)

Is the code as Reported?

- Are analyses as described in manuscript?
- Are relevant packages (with version numbers) documented in manuscript?

Does the code Run?

- library(tidyverse)
 Error in library(tidyverse): there is no package called 'tidyverse'.
- install.packages("tRophicPosition")
 Warning in install.packages:
 package 'tRophicPosition' is not available for this version of R
- Misspelled code

Is the code Reliable?

- #remove MC28 duplicate empty stomach stomachs.raw <- stomachs.raw[-c(4),]
 - May run but removes different row than described

Are the results Reproducible?

- Do reproduced results match those reported?
- If they differ, by how much?
- Is an observed difference reasonable to expect?

Where code fits into the workflow

Project Is my folder structure logical? Are raw data, code and intermediate organisation outputs separated? Does file and folder naming complement the workflow? **Project and** Can someone understand (and access) the workflow and content of the data? input metadata Is a README provided to explain data contents, licensing, and curation? Is my code understandable? Code Does my code have a consistent style? readability Is external package use clearly documented? Output Can the results be reproduced? Are all components required to recreate reproducibility analysis and figures accessible? Is there a clear link between code and output?

Project organization: data

Project and input metadata: README

Date: 2024-03-14
Author: Gabriel Kamener

This is an RStudio project for the FCE LTER "Organizing and Visualizing Data in R" spring 2024 workshop.

Steps to run code in this project:

1: Open included .ppt or .pdf presentation file
2: Open .Rproj file to start an RStudio session
3: Load the "code_handout" R script from the /r_scripts folder
4: Follow the presentation, copy the code chunks into the R script, and run them

Resources for the code review portion of the workshop can be found in the presentation file and in the /code_review folder.

Project and input metadata: README

Can scale in complexity

Christensen, E. 2023. https://github.com/emchristensen/JRN grass climate correlation

Code readability

- Explicitly calling package namespace (e.g. dplyr::select())
- 2. Using relative file paths
- 3. Removing redundant packages
- 4. Writing code with
 - a) Clear subheadings
 - b) Intuitive comments
 - c) Easy-to-understand object names

Code readability: code sections

- Break code down by region
- Comment line with at least
 4 trailing "-", "=", or "#"
- Code -> Insert Section
- Crtl+Shift+R

```
full script.R ×

⟨□□⟩ | Ø□ | □ | Source on Save | Q  
Ø▼ ▼ □ □
  19 + # Load packages -----
      library(tidyverse)
  22
       peri_df <- read_csv("data/raw/FCE1210_CERP_Periphyton.csv".
  25
                             na = "-9999")
  26
       diatoms_df <- read_csv("data/raw/diatom_counts.csv",</pre>
   28
                                na = "NA")
  29
       bad_dates_df <- read_csv("data/raw/bad_dates.csv",</pre>
  31
                                  na = "-9999"
   32
  34 - # Indexing and subsetting data frames --
  35
```

Code readability: navigating sections

Output reproducibility

- Link between code sections and published outputs should be clear
- Use set.seed() before running simulations
- Increase reproducibility of environment with renv package

Generating citations

- R version citation: citation()
- Package version: citation("dplyr")
- RStudio.Version()

Other suggestions

- Keep primary R scripts for yourself
 - Include all analyses and comments
- Distill down code for manuscript submission
 - Only relevant analyses and comments
- Use version control (e.g. Git/GitHub) to track changes
- Code sections to cover each dependent variable
- Form code review group in your lab or with other students

Project code checklist

Activity: Project and Code Development

- Use the checklist to review your own project and code
- Work with your neighbor to review each other's code or the provided example code

Constructive feedback

- How much of this did you know?
- How much did you not know?
- What would you like us to include or exclude in the future?

References and resources

- Christensen, E. 2023. "Emchristensen/JRN_Grass_Climate_Correlation: ARIMA Models." Zenodo. https://doi.org/10.5281/zenodo.7787243.
- Ivimey-Cook, E. R., Pick, J. L., Bairos-Novak, K. R., Culina, A., Gould, E., Grainger, M., ...
 Windecker, S. M. (2023). Implementing code review in the scientific workflow: Insights from ecology and evolutionary biology. *Journal of evolutionary biology*, *36*(10), 1347-1356. https://doi.org/10.1111/jeb.14230
- Brian Seok, François Michonneau, Tobias Busch, Katrin Leinweber, Maneesha Sane, njlyon0, Ed Bennett, Hugo Tavares, Mike Mahoney, Paula Nieto, Susan Washko, Terry Loecke, Wasila Dahdul, xli677, Abhijna Parigi, Aleksander Jankowski, Allison Shay Theobold, Analytics Enlightened LLC, Anna K. Moeller, ... vmzhang. (2023). datacarpentry/R-ecology-lesson: Data Carpentry: Data Analysis and Visualization in R for Ecologists 2023-05 (2023.05). Zenodo. https://doi.org/10.5281/zenodo.7892261

References and resources

- Data Analysis and Visualization in R for Ecologists workshop website
 - https://datacarpentry.org/R-ecology-lesson/
- R cheatsheets (also findable as PDFs from Rstudio "help" tab)
 - https://rstudio.github.io/cheatsheets/
- Code Folding and Sections in the RStudio IDE
 - https://support.posit.co/hc/en-us/articles/200484568-Code-Folding-and-Sections-inthe-RStudio-IDE
- How to Cite R and R Packages
 - https://ropensci.org/blog/2021/11/16/how-to-cite-r-and-r-packages/
- Introduction to renv to help create reproducible environments for R projects
 - https://rstudio.github.io/renv/articles/renv.html