NMR PROBE CIRCUIT FOR GENERATING CLOSE FREQUENCY RESONANCES

FIELD OF THE INVENTION

[01] This invention relates generally to the field of nuclear magnetic resonance (NMR) spectroscopy and, more particularly, to an NMR probe circuit having multiple simultaneous resonances.

5

10

15

20

25

30

BACKGROUND OF THE INVENTION

- [02] In the field of NMR spectroscopy, a sample is surrounded by an NMR probe that consists of a radio frequency (RF) coil tuned to generate a field at a desired excitation frequency and receive a return NMR signal. More complex probes will generate multiple frequencies so as to excite the nuclei of more than one different element in the sample (e.g., hydrogen nuclei ¹H (proton) and fluorine nuclei ¹⁹F). These "double resonance" probes (in the case of a probe generating two separate frequencies) and "triple resonance" probes (in the case of a probe generating three separate frequencies) have been used for many years, with varying degrees of success. One of the problems faced by multiple resonance probes arises when two of the "resonances" are closely spaced in frequency. For two resonances that have a relatively wide frequency separation (such as ¹H and ¹³C), it is fairly easy to isolate the two frequencies in the generation circuit. However, for elements having resonant frequencies closer together (such as ¹H and ¹⁹F), it becomes more difficult to get good frequency discrimination between them.
- [03] In systems having a single sample coil, it is necessary to generate each desired resonant frequencies and apply them to the coil, so the frequency isolation must come from the circuits themselves. Different approaches have been used to try to better isolate resonances that are close in frequency. In U.S. Patent No. 6,307,371, a design is used for close, high frequency resonances that has come to be known as "overcoupling." In this design, a sample coil is provided that has electrically coupled to one side circuitry associated with lower frequency channels. The circuit for two high frequency channels is connected to the other side of the sample coil, and consists of a single section of transmission line with an inductor at a position along its length that

results in the formation of two inductively coupled quarter-wavelength (λ /4) resonators, each of which is tuned to a different one of the high frequencies. The inductor is typically made adjustable, along with a trimmer at one end of the transmission line, so that the two resonant halves may be precisely tuned. Although this design successfully applies both high resonant frequencies to the sample coil, it is inherently unbalanced, in that the peak of the magnetic field distribution is not in the center of the sample coil for both the high frequency and the low frequency resonances. In addition, the circuit necessary to support this design, if made small enough to fit within the standard-sized bore of a NMR magnet, would be relatively inefficient.

5

10

15

20

- **[04]** Another "overcoupled" circuit is shown in U.S. Patent No. 4,742,304. In this arrangement, the resonance of a sample coil tank circuit (consisting of the sample coil and a first capacitance) is split into two closely-spaced frequencies by coupling it to a second, "dummy" tank circuit. While this circuit can be effective for lower frequencies, it does not achieve the necessary separation between resonances at higher frequencies (*i.e.*, above 400 Mhz).
- [05] In U.S. Patent No. 5,861,748, a double resonance circuit uses a highly branched assembly of coaxial transmission lines of different lengths and different branch points having each distinct matching elements for the various measuring frequencies. However, in this design, all of the channels are on the same side of the sample coil, making the circuit inherently unbalanced. In addition, the circuit is physically very large, making it difficult to fit in a standard bore.
- [06] In Methods for the Analysis and Design of a Solid State Magnetic Resonance Probe, Review of Scientific Instruments 69(9) 1998, the authors describe a probe for use with multiple resonances, including the closely spaced resonant frequencies for ¹H and ¹⁹F. The probe circuit makes use of transmission lines and capacitors to form the desired nodes, and to provide a probe circuit with higher efficiencies than previously achieved. However, the probe requires a high number of transmission lines very strategically placed around the sample coil.

SUMMARY OF THE INVENTION

5

10

15

20

25

- In accordance with the present invention, a probe circuit for an NMR probe [07] is provided that enables the probe to handle simultaneous resonant frequencies while maintaining good balance and isolation. The probe circuit is especially suited for simultaneous high frequency resonances (e.g., over 400 MHz) that are spaced within 20% of each other in frequency, and particularly for very closely spaced resonances, e.g., within 10% of each other in frequency. The probe circuit uses a plurality of resonators to give rise to intermediate resonances at the desired resonant frequencies. In particular, three resonators may be used to create two intermediate resonances. A first resonator may be resonant at frequency f₁, a second resonator resonant at frequency f₂, higher than f₁, and a third resonator resonant at frequency f₃, higher than f₂. The second resonator may have a magnetic field generating component that generates the desired magnetic fields for the probe, and detects the return NMR signal. The frequency relationship of f_1 , f_2 and f_3 are such that intermediate resonances f_{12} , between f₁ and f₂, and f₂₃, between f₂ and f₃ are established. As such, when signals at the desired resonant frequencies, f₁₂ and f₂₃ are coupled into the circuit, the circuit resonates at f₁₂ and f₂₃ such that magnetic fields are generated by the magnetic field generating element at f₁₂ and f₂₃.
- [08] In the invention, the multiple resonators may be arranged electrically in a parallel combination, or in a combination that is the electrical equivalent of a parallel combination. For example, with three resonators, the second resonator may be separated from the first resonator and third resonator by admittance inverters, one to either electrical side of the second resonator. In this way, the first input port, which is electrically connected to the first resonator, may have a degree of electrical isolation from the second input port, which is electrically connected to the third resonator. In such a configuration, a first signal at f_{12} would be input at the first input port, and a second signal at f_{23} would be input at the second input port.
- [09] In one embodiment of the invention, transmission lines are used for the first and third resonators. The transmission lines may be configured as quarter wavelength resonators that are resonant at the respective frequencies f_1 and f_3 . The second resonator may be configured as a parallel capacitor/inductor combination, with a

sample coil serving as the inductor. Transmission lines may also be used for the admittance inverters, and may be configured as quarter wavelength resonators that are resonant at a frequency f_k that is preferably intermediate to f_1 and f_3 , for example $f_k \approx f_2$. The transmission line used as the first resonator has null points for frequencies f_{12} and f_{23} that are in very close proximity to each other. A third input port may be connected to the first resonator transmission line in the vicinity of the null points, allowing a third frequency f_x to be input at that point. Similarly, a third (or possibly fourth) input port may be connected to the second admittance inverter transmission line at the null points for f_{12} and f_{23} . Either or both of these additional ports may be used to introduce additional frequencies for which magnetic fields are generated by the magnetic field generating component.

BRIEF DESCRIPTION OF THE DRAWINGS

- [10] The above and further advantages of the invention may be better understood by referring to the following description in conjunction with the accompanying drawings in which:
 - [11] Figure 1 is a schematic view of a circuit configuration on which the present invention is based;
- [12] Figure 2 is a graphical depiction of the relative resonant frequencies of the circuit of Figure 1;
 - [13] Figure 3 is a graphical depiction of how intermediate frequencies f_{12} and f_{23} change with changes to resonant frequency f_2 ;
 - [14] Figure 4 is a schematic depiction of a probe circuit according to the present invention;
 - [15] Figure 5 is a graphical depiction of a circuit similar to that of Figure 4 in which transmission lines are used for resonator and admittance inverter components; and
 - [16] Figure 6 is a graphical depiction of an example circuit following the design of the circuit of Figure 4 with physical connections and tuning elements shown.

25

5

10

DETAILED DESCRIPTION

[17] Figure 1 shows a schematic depiction of a circuit having three parallel resonators L_1C_1 , L_2C_2 and L_3C_3 , which together may be represented as a total shunt impedance Z_2 . Mathematically, Z_2 can be represented by the expression:

5

20

25

$$Z_{2} = \frac{j(\omega^{2}L_{1}C_{1} - 1)(\omega^{2}L_{2}C_{2} - 1)(\omega^{2}L_{3}C_{3} - 1)}{\omega(a\omega^{4} + b\omega^{2} + c)}$$

where;

$$a = C_1 C_2 C_3 (L_1 L_2 + L_2 L_3 + L_3 L_1)$$

$$b = -(L_1 C_1 C_2 + L_1 C_1 C_3 + L_2 C_2 C_1 + L_2 C_2 C_3 + L_3 C_3 C_1 + L_3 C_3 C_2)$$

$$c = C_1 + C_2 + C_3$$

From this, it may be seen that there are three transmission zeroes that occur, respectively, at:

$$f_1 = \frac{1}{2\pi\sqrt{L_1C_1}}$$
, $f_2 = \frac{1}{2\pi\sqrt{L_2C_2}}$, $f_3 = \frac{1}{2\pi\sqrt{L_3C_3}}$ (5)

Meanwhile, three transmission poles occur, one at DC and the others at:

$$f_{12}, f_{23} = \sqrt{\frac{-b \pm \sqrt{b^2 - 4ac}}{8\pi^2 a}} \tag{6}$$

Thus, the simulated resonances for this circuit may be plotted as shown in Figure 2. In this figure, a first plot shows the frequency response as would be detected at Port 1 of the circuit in Figure 1 when a signal is injected at Port 2 (S_{12}), or as would be detected at Port 2 when a signal is injected at Port 1 (S_{21}). The second plot shows the frequency response that would be detected at Port 1 of the circuit in Figure 1 if when a signal is injected in Port 1 (S_{11}), or what would be detected at Port 2 when a signal is injected into Port 2 (S_{22}). As shown, the transmission poles f_{12} and f_{23} are intermediate in frequency, respectively, to the transmission zeroes f_1 and f_2 , and f_2 and f_3 . In this configuration, there is a certain variance in the transmission poles as changes are made

in the zeroes. As an example, Figure 3 shows the changes in f_{12} and f_{23} , respectively, as f_2 is changed, and f_1 and f_3 are kept constant. As shown, there are certain dependencies of the transmission poles on the change in f_2 . These dependencies may be best viewed relative to three different frequency ranges, namely, when $f_2 < f_1$, when $f_1 < f_2 < f_3$ and when $f_2 > f_3$. These ranges are shown as separate sections in the diagram of Figure 3.

- [18] In the first section of Figure 3, where $f_2 < f_1$, f_{12} has a high degree of dependency on f_2 , while f_{23} remains fairly constant. As f_2 increases into the range in which $f_1 < f_2 < f_3$, the change in f_2 has a noticeable, and approximately equal, effect on both f_{12} and f_{23} . Finally, as f_2 is increased through the range in which $f_2 > f_3$, the effect of its frequency change on f_{12} becomes very small, while the effect on f_{23} increases significantly.
- [19] The responses described above lend themselves to several design factors. Firstly, by operating in the region in which $f_1 < f_2 < f_3$, both f_{12} and f_{23} are influenced by the inductor L_2 of the circuit shown in Figure 1 and, thus, L_2 may be chosen to be the sample coil in a probe circuit having this basic configuration. Secondly, there is an inherent tradeoff between the influences of f_2 on f_{12} and f_{23} . Increasing the shift on f_{12} would decrease it for f_{23} , and vice versa. Therefore, a ratio of the shifts can be controlled by adjusting f_2 . Finally, the resonant frequencies of the poles are largely dominated by adjacent zeroes, and are fairly independent of the remaining opposite zero. This implies that the poles can be independently tuned by varying f_1 and f_3 when operating in the region of Figure 3 in which $f_1 < f_2 < f_3$.
- [20] Although the circuit of Figure 1 is promising for the reasons provided above, the resonator L_2C_2 is not preferred as an NMR sample coil in the arrangement shown because the magnetic field distribution within L_2 would be unbalanced. This circuit is therefore modified to that shown in Figure 4, in which admittance inverters K_1 and K_3 are used. By using this configuration, the input impedance is different as seen from Port 1 and Port 2. The influences of resonator L_3C_3 on pole f_{12} and the influences of resonator L_1C_1 on pole f_{23} are also reduced. Capacitors C_{01} and C_{02} are used, respectively, to match Port 1 at frequency f_{12} only and to match Port 2 at frequency f_{23} only.

Shown in Figure 5 is a more practical embodiment of an NMR probe circuit having the characteristics of the circuit shown in Figure 4. Sample coil 10 operates together with capacitor 12 as a resonator corresponding to the resonator L₂C₂ of Figure 4. Resonator L₁C₁ is represented in Figure 5 by transmission line 14. This transmission line segment is sized to be a quarter wavelength resonator at frequency f₁ with open termination. Similarly, resonator L₃C₃ is represented in Figure 5 by transmission line 16, which is sized to be a quarter wavelength resonator at frequency f₃ with open termination. Admittance inverters 18 and 20 are also quarter wavelength resonators, and are at approximately the same length, preferably tuned to a frequency f_K in the range $f_1 < f_K < f_3$, for example $f_k \approx f_2$. With these quarter wavelength resonators positioned as indicated, the connection points 22 and 24 appear, respectively, to be short-circuit points to signals input at f_1 and f_3 . Correspondingly, the presence of admittance inverters 18 and 20 transforms the open circuit (at frequency f₂) formed by the parallel connection of L₂ and C₂ into short circuit points at nodes 22 and 24. A matching capacitor 26 is used to match the impedance of Port 1 to external circuitry connected to it, while matching capacitor 28 is used to match the impedance of Port 2 to external circuitry connected to it.

5

10

15

20

25

30

[22] In the arrangement shown in Figure 5, two close resonant frequencies may be input to Port 1 and Port 2, respectively. Frequency f_{12} may be input to Port 1, while frequency f_{23} is input to Port 2. An example of two desirable resonances to be input at these points are the resonant frequency for ¹⁹F (470.5 MHz), which could be input at Port 1, and the resonant frequency for ¹H (500.1 MHz), which could be input at Port 2. This arrangement of transmission line segments also lends itself to the input of a third resonant frequency. Because f_{12} and f_{23} are so close in frequency, "cold" or "null" points for these two frequencies exist in close physical proximity to each other on each of transmission line 14 and transmission line 20. These null points are indicated in Figure 5 by the labels X_1 and X_2 , where X_1 represents a null point for f_{12} (e.g., ¹⁹F) and X_2 indicates a null point for f_{23} (e.g., ¹H). Because the null points X_1 and X_2 are so close to each other, a third resonant frequency may be input at this point, while still maintaining a high degree of relative isolation between the resonances. The relative location of these null points is not shown to scale in the figure and, in fact, the

separation between them (for each of transmission line 14 and transmission line 20) is functionally negligible, since it is comparable to the width of the electrical conductor that might be connected at that point.

5

10

15

20

25

- [23] Since an additional resonant frequency could be connected at either of the null point pair locations, this probe circuit design allows for the addition of either one or two resonances in addition to frequencies f_{12} and f_{23} . Thus, the probe may operate as an "HFXY" probe which, in conventional terms, refers to a probe that resonates at frequencies for each of ¹H, ¹⁹F and two additional elements ("X" and "Y"). These additional resonances are not close in frequency to f_{12} and f_{23} , and may be, for example, ¹³C and ¹⁵N. Thus, the probe of the present invention allows for good resonance performance with two close frequency resonances, including those at relatively high frequencies, and allows the input of one or two additional resonances with relative ease. It is also possible to connect additional ports close to, but not directly at, the null points, provided sufficient stop circuits are used to block the leakage of signal energy at other frequencies back into the added ports. Moreover, the transmission lines 18 and 16 could be made longer to the point that similar null points could be introduced to them, thereby creating additional potential input points. In the case of the resonator transmission line 16, the length of the transmission line would, of course, also have to satisfy the necessary dimensions for resonance at the frequency f₃. Those skilled in the art will also recognize that additional transmission lines could be added, all being interconnected to the existing transmission lines. This array of transmission lines could provide addition input points for additional resonant signals, but adds significantly to the size and complexity of the probe circuit.
- [24] The probe design described herein provides a number of advantages. Firstly, the channels for f₁₂ and f₂₃ are input from two different ports, so that a diplexer or splitter is not required. Secondly, these two channels use separate tuning and matching elements, allowing the channels to be matched to the required frequencies independently. Thirdly, the total efficiency is split between these two channels, and the efficiency split ratio can be easily controlled with capacitor C₂. Finally, the components necessary for this design can be mounted into a very small area, and fits easily into the

space available in a standard magnet bore. In general, the probe circuit exhibits excellent balance and isolation properties in a small package.

- [25] An example probe circuit is shown in Figure 6. This probe has two high frequency resonances corresponding to ¹H and ¹⁹F, and an additional resonance corresponding to ¹³C. The ¹H resonance is input via port 30, the ¹⁹F resonance is input via port 32, and the ¹³C resonance is input via port 34. Each of ports 30 and 32 has a ¹³C stop circuit 36 to prevent leakage of the ¹³C resonant signal energy back through those ports, and port 34 has an optional ¹H/¹⁹F stop circuit 38 that prevents any potential leakage of the ¹H and ¹⁹F resonant signal energy back to that port. Also shown are matching capacitors 40, 42 and 44 which are located in the input paths for ports 32, 30 and 34, respectively. In addition, capacitor 46 is connected on one side to a point between stop circuit 38 and matching capacitor 44, and has its other terminal connected to ground. This capacitor is used to tune the resonant frequency of port 34 to that of ¹³C.
- [26] The example circuit shown in Figure 6 is a 500 MHz HFC probe circuit for a 4 mm stator. The sample coil 10 has 8.5 turns and a 0.15 pF parallel capacitor 12. Transmission line 50 is a first quarter wavelength resonator used for tuning to the ¹H input at port 30. Similarly, transmission line 48 is a quarter wavelength resonator used for tuning the ¹⁹F input at port 32. Fine tuning of each of these resonators is accomplished by adjusting the depth of penetration of inserts 54 and 52, respectively, which change the resonant characteristics. These inserts may be made out of a material such as TEFLON[®] (a registered trademark of E. I. du Pont de Nemours and company). Alternatively, it may be desirable to use a material other than TEFLON, which contains fluorine, and may result in a background signal. Thus, a material that contains no ¹H, ¹⁹F or ¹³C would be appropriate.
- [27] The admittance inverters 56 and 58 are also transmission lines, as described above. The ¹³C resonance signal is input to a point along the admittance inverter 58 which is in close proximity to the nulls for ¹H and ¹⁹F, as shown in Figure 5. This signal input could also be connected to the transmission line 48 at a similar point relative to the nulls of the other signals. When using the appropriate stop circuit 38, it is also possible to input the signal somewhere in the vicinity of the null points of either

transmission line 58 or transmission line 48, without actually being connected right to them, although being right at the null points is preferable. Moreover, it is also possible to make transmission lines 50 and 56 longer than necessary to introduce null points on those transmission lines as well, thereby creating additional potential input points. In the example circuit, the total efficiency of the probe is split between ¹H and ¹⁹F signals. If desired, the ratio of the split can be controlled by varying the resonant frequency of the sample coil, which can be done by varying the inductance of the sample coil, or the capacitance of its parallel capacitor.

[28] While the invention has been shown and described with reference to certain embodiments thereof, it will be recognized by those skilled in the art that various changes in form and detail may be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

What is claimed is:

5