Self-adaptation Can Help Evolutionary Algorithms Track Dynamic Optima

Per Kristian Lehre * & Xiaoyu Qin †

School of Computer Science University of Birmingham United Kingdom

July 2023

^{*}p.k.lehre@cs.bham.ac.uk †xxg896@cs.bham.ac.uk

Outline

Background

- Self-adaptive parameter control mechanism
 - Previous results:

```
ONEMAX (Doerr et al., 2021)
Unknown-structure (Case and Lehre, 2020)
Multi-modal (Lehre and Qin, 2022; Dang and Lehre, 2016)
Noisy optimisaiton (Qin and Lehre, 2022)
```

- (μ, λ) self-adaptive EA (Case and Lehre, 2020)
- Dynamic Optimisation Problems:
 - The objective function changes over time (Jin and Branke, 2005).
 - Dynamic Substring Matching (DSM) problem
- Our results
 - Static mutation-based EAs unlikely solve DSM problems.
 - (μ, λ) self-adaptive EA **tracks** dynamic optima in DSM w.h.p.

• Conclusion 2/16

- EAs are parameterised algorithms.
- Parameter setting can dramatically impact the performance of EAs (Doerr and Doerr, 2020).
- Parameter setting is instance- and state-dependent (Doerr and Doerr, 2020).

 \Longrightarrow IMPORTANCE

⇒ DIFFICULTY

Potentially harder in dynamic environments

 Classification scheme of parameter setting (Eiben et al., 1999):

- EAs are parameterised algorithms.
- Parameter setting can dramatically impact the performance of EAs (Doerr and Doerr, 2020).
- Parameter setting is instance- and state-dependent (Doerr and Doerr, 2020).

 \Longrightarrow IMPORTANCE

⇒ DIFFICULTY

Potentially harder in dynamic environments

• Classification scheme of parameter setting (Eiben et al. 1999):

- EAs are parameterised algorithms.
- Parameter setting can dramatically impact the performance of EAs (Doerr and Doerr, 2020).
- Parameter setting is instance- and state-dependent (Doerr and Doerr, 2020).

 \Longrightarrow IMPORTANCE

⇒ DIFFICULTY

Potentially harder in dynamic environments

• Classification scheme of parameter setting (Eiben et al. 1999):

- EAs are parameterised algorithms.
- Parameter setting can dramatically impact the performance of EAs (Doerr and Doerr, 2020).
- Parameter setting is instance- and state-dependent (Doerr and Doerr, 2020).

⇒ IMPORTANCE

⇒ DIFFICULTY

Potentially harder in dynamic environments

 Classification scheme of parameter setting (Eiben et al., 1999):

The individual with "right" parameter setting is promising to improve.

Self-adaptation is a more **natural** way to control parameters

- ⇒ **Encode** parameters into genome and
- \Rightarrow **Evolve together** parameters with solutions

The individual with "right" parameter setting is promising to improve.

Self-adaptation is a more **natural** way to control parameters

- ⇒ **Encode** parameters into genome and
- ⇒ **Evolve together** parameters with solutions

The individual with "right" parameter setting is promising to improve.

Self-adaptation is a more **natural** way to control parameters

- ⇒ **Encode** parameters into genome and
- ⇒ Evolve together parameters with solutions

Figure: Static Population

The individual with "right" parameter setting is promising to improve.

Self-adaptation is a more **natural** way to control parameters

- ⇒ **Encode** parameters into genome and
- ⇒ Evolve together parameters with solutions

4/16

- Comparison (sorting) rule: Prefer to higher fitness than higher mutation rate.
- Selection Mechanism: k-tournament, (μ, λ) , Power-law, etc.
- Mutation Rate Adaptation Strategy: $m'(\chi) : \mathbb{R} \to \mathbb{R}$ \Rightarrow Increase by $\times A > 1$ with prob. p_{inc} , otherwise decrease by $\times 0 < b < 1$.
- Bitwise Mutation Operator: Mutate the solution z with adapted (new) mutation rate

- Comparison (sorting) rule: Prefer to higher fitness than higher mutation rate.
- Selection Mechanism: k-tournament, (μ, λ) , Power-law, etc.
- Mutation Rate Adaptation Strategy: $m'(\chi): \mathbb{R} \to \mathbb{R}$ \Rightarrow Increase by $\times A > 1$ with prob. ρ_{inc} , otherwise decrease by $\times 0 < b < 1$.
- Bitwise Mutation Operator: Mutate the solution z with adapted (new) mutation rate

- Comparison (sorting) rule: Prefer to higher fitness than higher mutation rate.
- Selection Mechanism: k-tournament, (μ, λ) , Power-law, etc.
- Mutation Rate Adaptation Strategy: $m'(\chi) : \mathbb{R} \to \mathbb{R}$ \Rightarrow Increase by $\times A > 1$ with prob. p_{inc} , otherwise decrease by $\times 0 < b < 1$.
- Bitwise Mutation Operator: Mutate the solution z with adapted (new) mutation rate.

- Comparison (sorting) rule: Prefer to higher fitness than higher mutation rate.
- Selection Mechanism: k-tournament, (μ, λ) , Power-law, etc.
- Mutation Rate Adaptation Strategy: $m'(\chi) : \mathbb{R} \to \mathbb{R}$ \Rightarrow Increase by $\times A > 1$ with prob. p_{inc} , otherwise decrease by $\times 0 < b < 1$.
- Bitwise Mutation Operator: Mutate the solution z with adapted (new) mutation rate.

Studied Self-adaptive EA

Algorithm 1 (μ, λ) self-adaptive EA (Case and Lehre, 2020)

Require: Fitness function $f: \mathcal{X} \to \mathbb{R}$.

Require: Population sizes $\mu, \lambda \in \mathbb{N}$, where $1 \leq \mu \leq \lambda$.

Require: Adaptation parameters A > 1, and $b, p_{inc}, \epsilon \in (0, 1)$.

Require: Initial population $P_0 \in \mathcal{Y}^{\lambda}$.

1: **for** $\tau = 0, 1, 2, \cdots$ until termination condition met **do**

2: Sort
$$P_{\tau}$$
 based on $P_{\tau}(1) \succeq \cdots \succeq P_{\tau}(\lambda)^{\dagger}$.

3: **for**
$$i = 1, \ldots, \lambda$$
 do

4: Set
$$(x, \chi/n) := P_t(I_t(i)), I_t(i) \sim \text{Unif}([\mu]).$$

5: Set
$$\chi' := \begin{cases} \min\{A\chi, n/2\} \text{ with probability } p_{\text{inc}} \\ \max\{b\chi, \epsilon n\} \text{ otherwise.} \end{cases}$$

6: Create x' by independently flipping each bit of x with probability χ'/n .

7: Set
$$P_{\tau+1}(i) := (x', \chi'/n)$$
.

 $^{^{\}dagger}(x,\chi)\succeq(x',\chi')\Leftrightarrow f(x)>f(x')\vee(f(x)=f(x')\wedge\chi\geq\chi'),$

Dynamic Substring Matching $(\mathrm{DSM}^{\varkappa,m,arepsilon,k})$ problem ‡

- To match a sequence of bit-flipping and length-varying target substrings $(\varkappa^i)_{i \in [4m]}$ in a sequence of corresponding evaluation budgets $(\mathcal{T}_i)_{i \in [4m]}$.
- The **length** of target substrings **varies** between ℓ_1 and ℓ_2 where $\ell_2 = \ell_1 + m$.
- Evaluation budgets $(\mathcal{T}_i)_{i \in [4m]}$ depends on the lengths of the target substrings, i.e., $kn^{\varepsilon}|\varkappa^i|$.
- The target substrings are changed after evaluation budgets run out.

A sequence of target substrings an **example** of $\mathrm{DSM}^{\varkappa,m,\varepsilon,k}$ $(\varkappa=1^{10},\ n=20,\ m=4),\ \mathrm{s.t.}$ $\ell_1=10$ and $\ell_2=14.$

 $^{^{\}ddagger} \varepsilon \in (0,1), k > 0, \varkappa \in \{0,1\}^{\ell_1}$ where $\ell_1 \in [n-1]$, and $m \in [n-\ell_1]$ are the parameters of the DSM problem

Dynamic Substring Matching $(\mathrm{DSM}^{\varkappa,m,arepsilon,k})$ problem ‡

- To match a sequence of **bit-flipping** and **length-varying** target substrings $(\varkappa^i)_{i \in [4m]}$ in a sequence of corresponding **evaluation budgets** $(\mathcal{T}_i)_{i \in [4m]}$.
- The length of target substrings varies between ℓ_1 and ℓ_2 where $\ell_2 = \ell_1 + m$.
- Evaluation budgets $(\mathcal{T}_i)_{i \in [4m]}$ depends on the lengths of the target substrings, i.e., $kn^{\varepsilon}|\varkappa^i|$.
- The target substrings are changed after evaluation budgets run out.

A sequence of target substrings in **example** of $\mathrm{DSM}^{\varkappa,m,\varepsilon,k}$ ($\varkappa=1^{10},\ n=20,\ m=4$), s.t. $\ell_1=10$ and $\ell_2=14$.

 $^{^{\}ddagger} \varepsilon \in (0,1), \ k>0, \ \varkappa \in \{0,1\}^{\ell_1}$ where $\ell_1 \in [n-1]$, and $m \in [n-\ell_1]$ are the parameters of the DSM problem

Dynamic Substring Matching (DSM $^{\varkappa,m,\varepsilon,k}$) problem ‡

- To match a sequence of **bit-flipping** and **length-varying** target substrings $(\varkappa^i)_{i\in[4m]}$ in a sequence of corresponding **evaluation budgets** $(\mathcal{T}_i)_{i\in[4m]}$.
- The length of target substrings varies between ℓ_1 and ℓ_2 where $\ell_2 = \ell_1 + m$.
- Evaluation budgets $(\mathcal{T}_i)_{i \in [4m]}$ depends on the lengths of the target substrings, i.e., $kn^{\varepsilon}|_{\mathcal{X}^i}|_{\cdot}$
- The target substrings are changed after evaluation budgets run out.

A sequence of target substrings an **example** of $\mathrm{DSM}^{\varkappa,m,\varepsilon,k}$ ($\varkappa=1^{10}$, n=20, m=4), s.t. $\ell_1=10$ and $\ell_2=14$.

 $^{^{\}ddagger} \varepsilon \in (0,1), k > 0, \varkappa \in \{0,1\}^{\ell_1}$ where $\ell_1 \in [n-1]$, and $m \in [n-\ell_1]$ are the parameters of the DSM problem

Dynamic Substring Matching (DSM $^{\varkappa,m,\varepsilon,k}$) problem ‡

- To match a sequence of **bit-flipping** and **length-varying** target substrings $(\varkappa^i)_{i \in [4m]}$ in a sequence of corresponding **evaluation budgets** $(\mathcal{T}_i)_{i \in [4m]}$.
- The length of target substrings varies between ℓ_1 and ℓ_2 where $\ell_2 = \ell_1 + m$.
- Evaluation budgets $(\mathcal{T}_i)_{i \in [4m]}$ depends on the lengths of the target substrings, i.e., $kn^{\varepsilon}|_{\mathcal{X}^i}|_{\cdot}$
- The target substrings are changed after evaluation budgets run out.

A sequence of target substrings an **example** of $\mathrm{DSM}^{\varkappa,m,\varepsilon,k}$ ($\varkappa=1^{10},\ n=20,\ m=4$), s.t. $\ell_1=10$ and $\ell_2=14$.

 $^{^{\}ddagger} \varepsilon \in (0,1), k > 0, \varkappa \in \{0,1\}^{\ell_1}$ where $\ell_1 \in [n-1]$, and $m \in [n-\ell_1]$ are the parameters of the DSM problem

Dynamic Substring Matching $(\mathrm{DSM}^{\varkappa,m,arepsilon,k})$ problem ‡

- To match a sequence of **bit-flipping** and **length-varying** target substrings $(\varkappa^i)_{i\in[4m]}$ in a sequence of corresponding **evaluation budgets** $(\mathcal{T}_i)_{i\in[4m]}$.
- The length of target substrings varies between ℓ_1 and ℓ_2 where $\ell_2 = \ell_1 + m$.
- Evaluation budgets $(\mathcal{T}_i)_{i \in [4m]}$ depends on the lengths of the target substrings, i.e., $kn^{\varepsilon}|\varkappa^i|$.
- The target substrings are **changed** after evaluation budgets **run out**.

£ = 14

A sequence of target substrings in an **example** of $\mathrm{DSM}^{\varkappa,m,\varepsilon,k}$ ($\varkappa=1^{10},\ n=20,\ m=4$), s.t. $\ell_1=10$ and $\ell_2=14$.

Dynamic Substring Matching $(\mathrm{DSM}^{\varkappa,m,arepsilon,k})$ problem

Four Stages:

- \Leftarrow Starting target substring $arkappa \in \{0,1\}^{\ell_1}$
- $\Leftarrow (1)$ $i \in [m]$, \varkappa^{i-1} and \varkappa^{i} are the same length but one bidifferent
 - \Leftarrow (2) $i \in [m+1..2m]$, the target substrings are becoming longer
 - \Leftarrow (3) $i \in [2m+1..3m]$, similar to stage (1): \varkappa^{i-1} and \varkappa^{i} are the same length but one bit different
 - = (4) $i \in [3m+1..4m]$, the target substrings are becoming shorter

Dynamic Substring Matching $(\mathrm{DSM}^{\varkappa,m,arepsilon,k})$ problem

- \Leftarrow Starting target substring $arkappa \in \{0,1\}^{\ell_1}$
- $\Leftarrow (1) \ \ i \in [m], \ \varkappa^{i-1} \ \text{and} \ \varkappa^i \ \text{are the same length but one bit} \\ \text{different}$
 - \Leftarrow (2) $i \in [m+1..2m]$, the target substrings are becoming longer
 - \Leftarrow (3) $i \in [2m+1..3m]$, similar to stage (1): \varkappa^{i-1} and \varkappa^{i} are the same length but one bit different
 - = (4) $i \in [3m+1..4m]$, the target substrings are becoming shorter

Dynamic Substring Matching $(\mathrm{DSM}^{\varkappa,m,arepsilon,k})$ problem

€₂=14

Four Stages:

- \Leftarrow Starting target substring $arkappa \in \{0,1\}^{\ell_1}$
- $\Leftarrow (1) \;\; i \in [m], \; \varkappa^{i-1} \; \text{and} \; \varkappa^{i} \; \text{are the same length but one bit} \\ \qquad \qquad \text{different}$
- $\Leftarrow (2) \;\; i \in [m+1..2m],$ the target substrings are becoming longer
- \Leftarrow (3) $i \in [2m+1..3m]$, similar to stage (1): \varkappa^{i-1} and \varkappa^{i} are the same length but one bit different
- $i \in [3m+1..4m]$, the target substrings are becoming shorter

Dynamic Substring Matching $(\mathrm{DSM}^{arkappa,m,arepsilon,k})$ problem

- \Leftarrow Starting target substring $oldsymbol{arkappa} \in \{0,1\}^{\ell_1}$
- $\Leftarrow (1) \ \ i \in [m], \ \varkappa^{i-1} \ \text{and} \ \varkappa^i \ \text{are the same length but one bit} \\ \frac{\text{different}}{}$
- \Leftarrow (2) $i \in [m+1..2m]$, the target substrings are becoming longer
- \Leftarrow (3) $i \in [2m+1..3m]$, similar to stage (1): \varkappa^{i-1} and \varkappa^i are the same length but one bit different
 - $otin (4) i \in [3m + 1..4m],$ the target substrings are becoming shorter

Dynamic Substring Matching $(\mathrm{DSM}^{\varkappa,m,\varepsilon,k})$ problem

- \Leftarrow Starting target substring $arkappa \in \{0,1\}^{\ell_1}$
- $\Leftarrow (1) \ \ i \in [m], \ \varkappa^{i-1} \ \text{and} \ \varkappa^{i} \ \text{are the same length but one bit}$ $\frac{\text{different}}{\text{different}}$
- \Leftarrow (2) $i \in [m+1..2m]$, the target substrings are becoming longer
- \Leftarrow (3) $i \in [2m+1..3m]$, similar to stage (1): \varkappa^{i-1} and \varkappa^i are the same length but one bit different
- \Leftarrow (4) $i \in [3m+1..4m]$, the target substrings are becoming shorter

Dynamic Substring Matching $(\mathrm{DSM}^{\varkappa,\overline{m},\varepsilon,k})$ problem

- $\Leftarrow \mathsf{Starting} \; \mathsf{target} \; \mathsf{substring} \; \varkappa \in \{0,1\}^{\ell_1}$
- $\Leftarrow (1) \;\; i \in [m], \; \varkappa^{i-1} \; \text{and} \; \varkappa^{i} \; \text{are the same length but one bit} \\ \qquad \qquad \text{different}$
- \Leftarrow (2) $i \in [m+1..2m]$, the target substrings are becoming longer
- $\Leftarrow (3) \ \ i \in [2m+1..3m], \ \text{similar to stage (1):} \ \varkappa^{i-1} \ \text{and} \ \varkappa^{i} \ \text{are}$ the same length but one bit different
- \Leftarrow (4) $i \in [3m+1..4m]$, the target substrings are becoming shorter

Theoretical Analysis on $\mathrm{DSM}^{\varkappa,m,\varepsilon,k}$

Static mutation-based EAs (Theorem 5.1)

 (μ, λ) self-adaptive EA* (Theorem 4.1[†])

Constants ε , a, β , $\xi \in (0,1)$ and k > 0

Starting target substring $|arkappa|=\ell_1\in\Theta(n^a)$ and $m\in\Theta(n^eta)$

$$\Downarrow$$

$$\ell_1 \in \Theta(\mathit{n}^a)$$
 and $\ell_2 \in \Theta(\mathit{n}^\beta)$

$$1/2 + \varepsilon < \mathbf{a} + 2\varepsilon < \mathbf{\beta} \le 1 - \varepsilon$$

$$1/34 \le \mathbf{a} \le \beta \le 1$$

Solves with prob. $e^{-\Omega(n^{\xi})}$

Solves with prob. $1 - e^{-\Omega(n^{\xi})}$

^{*}Using parameters satisfying $\lambda, \mu = \Theta(n^{\xi}), \ \lambda/\mu = \alpha_0 \ge 4, \ A > 1, \ 0 < b < 1/(1 + \sqrt{1/\alpha_0(1-p_{\text{inc}})}),$

 $^{(1+\}delta)/\alpha_0 < p_{\rm inc} < 2/5$, and $\epsilon := b'/n$ for any constant b' > 0, where A and b are constants.

[†]We provide a level-based theorem with tail bounds, which bounds the chance of the algorithm finding the current optima within a given evaluation budget.

Theoretical Analysis on $\mathrm{DSM}^{\varkappa,m,arepsilon,k}$

Theoretical Analysis on $\mathrm{DSM}^{\varkappa,m,\varepsilon,k}$

Static mutation-based EAs (Theorem 5.1)

 (μ, λ) self-adaptive EA* (Theorem 4.1[†])

Constants ε , a, β , $\xi \in (0,1)$ and k > 0

Starting target substring $|arkappa|=\ell_1\in\Theta(n^a)$ and $m\in\Theta(n^\beta)$

$$\Downarrow$$

$$\ell_1 \in \Theta(\mathit{n}^a)$$
 and $\ell_2 \in \Theta(\mathit{n}^\beta)$

$$1/2 + \varepsilon < \mathbf{a} + 2\varepsilon < \mathbf{\beta} \le 1 - \varepsilon$$

$$1/34 \le \mathbf{a} \le \beta \le 1$$

Solves with prob. $e^{-\Omega(n^{\xi})}$

Solves with prob. $1 - e^{-\Omega(n^{\xi})}$

^{*}Using parameters satisfying $\lambda, \mu = \Theta(n^{\xi}), \ \lambda/\mu = \alpha_0 \ge 4, \ A > 1, \ 0 < b < 1/(1 + \sqrt{1/\alpha_0(1-p_{\text{inc}})}),$

 $^{(1+\}delta)/\alpha_0 < p_{\rm inc} < 2/5$, and $\epsilon := b'/n$ for any constant b'>0, where A and b are constants.

[†]We provide a level-based theorem with tail bounds, which bounds the chance of the algorithm finding the current optima within a given evaluation budget.

Conclusion

- Mutation-based EAs with a fixed mutation rate are **unlikely to track** dynamic optima in DSM problems.
- probability.

The self-adaptive EA tracks them with an overwhelmingly high

- Furthermore, we provide a **level-based theorem with tail bounds**.
- Future work:
 - To analyse self-adaptive EAs on other existing dynamic problems.
 - To explore other parameter control mechanisms under dynamics.
 - ...

Thank You

Per Kristian Lehre & Xiaoyu QIN

Theory of Evolutionary Computation Group

School of Computer Science

University of Birmingham

United Kingdom

Reference I

- Case, B. and Lehre, P. K. (2020). Self-adaptation in non-Elitist Evolutionary Algorithms on Discrete Problems with Unknown Structure. IEEE Transactions on Evolutionary Computation, 24(4):650–663.
- Dang, D.-C. and Lehre, P. K. (2016). Self-adaptation of Mutation Rates in Non-elitist Populations. In Parallel Problem Solving from Nature PPSN XIV, volume 9921, pages 803–813. Springer International Publishing.
- Doerr, B. and Doerr, C. (2020). Theory of Parameter Control for Discrete Black-Box Optimization: Provable Performance Gains Through Dynamic Parameter Choices. In Doerr, B. and Neumann, F., editors, *Theory of Evolutionary Computation: Recent Developments in Discrete Optimization*, pages 271–321. Springer International Publishing.
- Doerr, B., Witt, C., and Yang, J. (2021). Runtime Analysis for Self-adaptive Mutation Rates. Algorithmica, 83(4):1012-1053.
- Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. *IEEE Transactions on Evolutionary Computation*, 3(2):124–141.
- Jin, Y. and Branke, J. (2005). Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation, 9(3):303–317.
- Lehre, P. K. and Qin, X. (2022). Self-Adaptation via Multi-Objectivisation: A Theoretical Study. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '22, pages 1417–1425. Association for Computing Machinery.
- Qin, X. and Lehre, P. K. (2022). Self-adaptation via Multi-objectivisation: An Empirical Study. In *Parallel Problem Solving from Nature PPSN XVII*, pages 308–323. Springer International Publishing.

Definition of the DSM Problem

Definition

Let \varkappa be some starting target substring where $|\varkappa|=:\ell_1\in[n-1]$, and m be a positive integers where $\ell_1+m=:\ell_2\le n$. Let $(\varkappa^i)_{i\ge 0}$ be a sequence of target substrings generated by

$$\varkappa^i := \begin{cases} \varkappa & \text{if } i = 0, \\ z, \text{ where } z \sim \mathsf{Unif}(\mathsf{N}(\varkappa^{i-1})) & \text{if } 1 \leq i \leq m, \\ \varkappa^{i-1} \diamond \mathsf{a}, \text{ where } a \sim \mathsf{Unif}\{\{0,1\}\}) & \text{if } m+1 \leq i \leq 2m, \\ z, \text{ where } z \sim \mathsf{Unif}(\mathsf{N}(\varkappa^{i-1})) & \text{if } 2m+1 \leq i \leq 3m, \\ z, \text{ where } z \sim \mathsf{Unif}\left(\mathsf{N}\left(\varkappa^{i-1}_{1:(|\varkappa^{i-1}|-1)}\right)\right) & \text{if } 3m+1 \leq i \leq 4m. \end{cases}$$

Let $(\mathcal{T}_i)_{i\in\mathbb{N}}$ be a sequence of the numbers of evaluation moving from \varkappa^{i-1} to \varkappa^i (evaluation budget for \varkappa^i) generated by $\mathcal{T}_i:=kn^\varepsilon|\varkappa_{i+1}|$, where $\varepsilon\in(0,1)$ and k>0 are some constants. For $t\in\mathbb{N}$, the dynamic substring matching (DSM) problem with the starting target substring \varkappa is defined as:

$$\mathrm{DSM}_{t}^{\varkappa,m,\varepsilon,k}(x) := \begin{cases} 2 & \text{if } \mathsf{M}(\varkappa(t),x) = 1, \\ 1 & \text{else if } \mathsf{M}(\varkappa'(t),x) = 1, \\ 0 & \text{otherwise,} \end{cases}$$
 (1)

$$\begin{split} \text{where } \varkappa(t) &:= \varkappa^i \text{, and } \varkappa'(t) := \varkappa^{j-1} \text{,} \\ \text{for } i &= \begin{cases} 1 & \text{if } t \leq \mathcal{T}_1, \\ 1 + \max\left\{j \mid \sum_{i=1}^j \mathcal{T}_i \leq t\right\} & \text{otherwise.} \end{cases} \end{split}$$

Level-based Theorem with Tail Bounds

Theorem

Let $(B, A_0, A_1, \cdots, A_m)$ be a partition of \mathcal{X} . Suppose there exist z_1, \cdots, z_{m-1} , $\delta \in (0,1)$, and $\gamma_0, \psi_0 \in (0,1)$, such that the following conditions hold for any population $P \in \mathcal{X}^{\lambda}$ in Algorithm 2 of this paper,

(C0) for all
$$\psi \in [\psi_0, 1]$$
, if $|P \cap B| \le \psi \lambda$, then $\Pr_{y \sim D(P)} (y \in B) \le (1 - \delta) \psi$,

(C1) for all
$$j \in [m-1]$$
, if $|P \cap B| \le \psi_0 \lambda$ and $|P \cap A_{\ge j}| \ge \gamma_0 \lambda$, then $\Pr_{y \sim D(P)} (y \in A_{\ge j+1}) \ge z_j$,

(C2) for all
$$j \in [0..m-1]$$
, and $\gamma \in [1/\lambda, \gamma_0]$ if $|P \cap B| \leq \psi_0 \lambda$ and $|P \cap A_{\geq j}| \geq \gamma_0 \lambda$ and $|P \cap A_{\geq j+1}| \geq \gamma_0 \lambda$, then $\Pr_{y \sim D(P)} (y \in A_{\geq j+1}) \geq (1+\delta)\gamma$.

Let $T:=\min\{t\lambda \mid |P_t\cap A_m|\geq \gamma_0\lambda$ and $|P_t\cap B|\leq \psi_0\lambda\}$, and assume the algorithm with population size $\lambda\in\mathbb{N}$ and an initial population P_0 satisfying $|P_0\cap A_1|\geq \gamma_0\lambda$ and $|P_0\cap B|\leq \psi_0\lambda$, then

$$\Pr\left(T \leq \eta \tau\right) > \left(1 - 2\eta \tau e^{-\delta^2 \min\{\psi_0, \gamma_0\}\lambda/4}\right) \left(1 - \textit{m}e^{-\eta \rho^{-\frac{\ln(\gamma_0)}{\ln(1+\delta/2)}-2}}\right)$$

$$\begin{array}{l} \text{for any } \eta \in \left(0, \mathrm{e}^{\delta^2 \min\{\psi_0, \gamma_0\}\lambda/4}/\tau\right) \text{, where } \rho = \frac{\mathrm{e}^{\delta^2/8}}{\mathrm{e}^{\delta^2/8}-1} \text{ and } \\ \tau := \lambda^{17/\delta^3} \left(\sum_{j=1}^{m-1} \frac{1}{z_j} + m\lambda \left(\frac{\ln(\gamma_0\lambda)}{\ln(1+\delta/2)} + 1\right)\right). \end{array}$$