

### Lesson 1

## **Neural Network Parameters: Weights and Biases**

#### **Quick Reviewer**

- Weights
  - Adjust Strength: Modify the influence of one neuron on another.
  - **Initialization**: Random or planned.
  - Learning: Optimized during training using gradient descent.
- Biases

Lesson 1

- Shift Activation: Allows for better fitting of the model by adjusting the function.
- Initialization: Random.
- Learning: Refined during training to improve accuracy.

#### Non-Linear Functions

- Purpose: Add complexity to the model.
- Impact: Enable the network to learn and represent intricate patterns.
- Examples: ReLU (Rectified Linear Unit), Sigmoid, Tanh.

# Neural Network Training: Forward Propagation vs. Backward Propagation

Lesson 1 2

── Quantifies error between predictions and actual values
└── Guides optimization to reduce error

#### **Quick Reviewer**

#### • Forward Propagation

- What: Computes network output.
- How: Data → Layers → Weights/Biases → Activation Functions.
- When: For making predictions.

#### Backward Propagation

- What: Updates weights and biases.
- How: Calculate gradients → Backward propagation → Update parameters.
- When: During training to minimize error.

#### Gradient Descent

- What: Optimization algorithm.
- How: Compute gradient → Adjust parameters → Minimize loss.
- Goal: Improve model accuracy.

#### Loss Function

- What: Measures prediction accuracy.
- How: Quantifies difference between predicted and actual values.
- Role: Guides training to reduce errors.

Lesson 1 3