Группы и алгебры Ли II

Системы корней

- 1. (2) Пусть $\phi: R_1 \xrightarrow{\sim} R_2$ изоморфизм неприводимых систем корней. Докажите, что ϕ это композиция изометрии и гомотетии с центром в 0.
- 2. (a) (1) Найдите и опишите группу Вейля систем корней: A_2 , D_2 , B_2 , G_2 ;
 - (b) (1) Найдите самый длинный элемент группы Вейля w_0 в каждом из случаев.
 - (с) (1) Какие у этих систем корней полные группы симметрий (группы автоморфизмов)?
- 3. (3) Постройте системы корней A_3 , D_3 , B_3 , C_3 ;
- 4. (3) Пусть $w = s_{i_1} \dots s_{i_l} \in W$. Пусть $\beta_k = s_{i_1} \dots s_{i_{k-1}}(\alpha_{i_k})$. Докажите, что если $\beta_k = \pm \beta_j$ для некоторого j < k, то $w = s_{i_1} \dots \hat{s}_{i_j} \dots \hat{s}_{i_k} \dots s_{i_l}$, а значит исходное разложение w не было приведенным.
- 5. (2) Пусть $w_0 \in W$ самый длинный элемент группы Вейля W. Покажите, что в этом случае $\forall w \in W \ l(ww_0) = l(w_0w) = l(w_0) l(w)$.
- 6. (3) Докажите, что в группе Вейля W(R) выполнены соотношения Кокстера:

$$s_i^2 = 1, \quad (s_i s_j)^{m_{ij}} = 1,$$

где $\varphi=\pi-\frac{\pi}{m_{ij}}$ - угол между корнями α_i и α_j .

- 7. (3) Пусть R неприводимая система корней в евклидовом пространстве E. Докажите, что E неприводимое представление группы W(R).
- 8. Рассмотрим произвольную решетку L в евклидовом пространстве E, то есть свободную абелеву группу в E с числом порождающих, равным $\dim E$. Тогда двойственная решетка L^* это свободная абелева группа в E, порожденная элементами $\lambda \in E$ такими, что для всякого $\alpha \in L$ $(\alpha, \lambda) \in \mathbb{Z}$. Пусть G матрица Грама порождающих L, G^* матрица Грама порождающих L^* . Пусть дополнительно G целочисленная.
 - (a) (2) Докажите, что $\det G^* = \frac{1}{\det G}$
 - (b) (2) Докажите, что $L=L^*$ тогда и только тогда, когда $\det G=\pm 1$. Это свойство решетки называется самодуальность.
 - (c) (1) Докажите, что решетка корней E_8 самодуальна. (Более того, эта решетка единственная среди решеток корней, обладающая таким свойством). Как тогда связаны фундаментальное и присоединенное представления алгебры Ли E_8 ?