IN THE CLAIMS

Kindly amend claim 1 as follows:

1. (currently amended) A hybrid semiconductor device, comprising:

a first portion being relatively resistant to breakdown voltage, the first portion comprising a MOS transistor having a first field plate; and

a second portion being less resistant to breakdown voltage and able to survive breakdown without device failure, the second portion residing adjacent the first portion and comprising a diode having a second field plate, wherein the diode has an a substantially identical structure as the MOS transistor, except for a source region;

where breakdown occurs at a higher voltage in the first portion, and at a lower voltage in the second position;

and where the breakdown voltage <u>differential difference</u> is due to a difference in field plate length between said first field plate and said second field plate.

Claims 2-7 (canceled)

8. (previously presented) The device of claim 1, where the transistor is an SOI-LDMOS device.

9. (previously presented) The device of claim 1, where the transistor is any of an NMOS or PMOS device.

Claims 10-14 (canceled)

- 15. (original) A hybrid lateral thin-film Silicon-on-Insulator device comprising:
 - a first region comprising:

a semiconductor substrate, a buried insulating layer on said substrate, and a lateral MOS device in an SOI layer on said buried insulating layer and having a source region of a first conductivity type formed in a body region of a second conductivity type opposite to that of the first, a lateral drift region of said first conductivity type adjacent to said body region, a drain region of said first conductivity type and laterally spaced apart from said body region by said lateral drift region, a gate electrode over a part of said body region and over a first part of said lateral drift region adjacent to said body region, said gate electrode being insulated from said body region and drift region by a first insulation region, with a field plate comprised of conducting material extending laterally over said lateral drift region and being electrically connected to said gate electrode; and

one or more second regions integrated with the first region, said second regions being identical to the first region, except not

comprising said source region, and having a field plate of shorter length than that of the first region.

16. (original) The device of claim 15, where the width of each of the second regions is at least as long as the lateral drift region.

Claims 17-21 (canceled)