Lab 7 (a) - PCC177/BCC406

REDES NEURAIS E APRENDIZAGEM EM PROFUNDIDADE

Modelos Generativos

Prof Eduardo e Prof Pedro

Objetivos:

Predição de série temporal com redes recorrentes (RNN)

Data da entrega : XX/YY

- Complete o código (marcado com ToDo) e quando requisitado, escreva textos diretamente nos notebooks. Onde tiver *None*, substitua pelo seu código.
- Execute todo notebook e salve tudo em um PDF nomeado como "NomeSobrenome-Lab6.pdf"
- Envie o PDF via google <u>FORM</u>

Este notebook é baseado em tensorflow e Keras.

Predição de preço de criptomoedas com redes recorrentes

Informação sobre o Bitcoin : https://www.kaggle.com/ibadia/bitcoin-101-bitcoins-and-detailed-insights

O valor de uma criptomoeda, assim como um ativo funanceiro do mercado de ações, pode ser configurado com uma série temporal. Aqui, consideraremos o valor ponderado do preço diário do Bitcoin para constuir nossa série. O objetivo deste estudo é predizer o próximo valor, baseado nos últimos valores da criptomoeda. Para tal, usaremos de redes recorrentes, pois as mesmas tem memória, o que é importante quando se trata de dados sequenciais.

Carregando os pacotes

Importa as bibliotecas necessárias
from math import sqrt
from numpy import concatenate
from matplotlib import pyplot
import pandas as pd
from datetime import datetime
from sklearn.preprocessing import MinMaxScaler

```
from sklearn.preprocessing import LabelEncoder from sklearn.metrics import mean_squared_error import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.layers import LSTM import plotly.offline as py import plotly.graph_objs as go import numpy as np import seaborn as sns py.init_notebook_mode(connected=True) %matplotlib inline
```

Vamos usar o pacote *quandl* para baixar diretamente dados fornecidos por uma corretora de criptomoedas (Kraken).

```
!pip install quandl
```

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/</a>
Collecting quandl
 Downloading Quandl-3.7.0-py2.py3-none-any.whl (26 kB)
Requirement already satisfied: pandas>=0.14 in /usr/local/lib/python3.7/dist-package
Collecting inflection>=0.3.1
  Downloading inflection-0.5.1-py2.py3-none-any.whl (9.5 kB)
Requirement already satisfied: numpy>=1.8 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: more-itertools in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from q
Requirement already satisfied: requests>=2.7.0 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: python-dateutil in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-p
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-pa
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-package
Installing collected packages: inflection, quandl
Successfully installed inflection-0.5.1 quandl-3.7.0
```

Carregando os dados

```
# baixa os dados da exchange Kraken, até o período atual.
import quandl
data = quandl.get('BCHARTS/KRAKENUSD', returns='pandas')
```

▼ Entendendo os dados

#exibe as primeiras linahs
data.head()

	0pen	High	Low	Close	Volume (BTC)	Volume (Currency)	Weighted Price
Date							
2014- 01-07	874.67040	892.06753	810.00000	810.00000	15.622378	13151.472844	841.835522
2014- 01-08	810.00000	899.84281	788.00000	824.98287	19.182756	16097.329584	839.156269
2014- 01-09	825.56345	870.00000	807.42084	841.86934	8.158335	6784.249982	831.572913

data.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 2713 entries, 2014-01-07 to 2021-06-20

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype		
0	0pen	2713 non-null	float64		
1	High	2713 non-null	float64		
2	Low	2713 non-null	float64		
3	Close	2713 non-null	float64		
4	Volume (BTC)	2713 non-null	float64		
5	Volume (Currency)	2713 non-null	float64		
6	Weighted Price	2713 non-null	float64		
dtypos: float64(7)					

dtypes: float64(7)
memory usage: 169.6 KB

verifica os últimos dados. Repare na data. Deve ter dados atuais (Jun / 2021).
data.tail()

	Open	High	Low	Close	Volume (BTC)	Volume (Currency)	Weighted Price
Date							
2021-06- 16	40167.3	40493.0	38120.0	38337.1	6487.206888	2.539206e+08	39141.737747
2021-06- 17	38337.1	39561.4	37405.0	38078.2	6003.220618	2.307246e+08	38433.468618
2021-06- 18	38078.2	38193.1	35126.0	35824.0	6558.468890	2.409217e+08	36734.445103

Repare que temos dados de abertura do pregão, fechamento, valor mais alto, valor mais baixo, volume diário do bitcoin e de todas as criptomoedas combinadas. E também, temos os preço ponderado pelos valores de compra/venda de um período, que em nosso caso é diário. Para facilitar, vamos usar o valor ponderado.

→ Plotando os dados

```
# imprima os dados
pyplot.plot(data['Weighted Price'])
```


▼ Pré-processamento dos dados

#existem alguns pontos com valor zero (outliers), vamos trocar por NaN e depois chamar um
data['Weighted Price'].replace(0, np.nan, inplace=True)
data['Weighted Price'].fillna(method='ffill', inplace=True)

imprima novamente e observe que não existe mais estes outliers.
pyplot.plot(data['Weighted Price'])

- # vamos usar o preço ponderado como entrada para nossa rede recorrente
- # como já vimos, eh sempre bom normalizar os dados para ajudar na convergência do treiname
- # Normaliza na faixa entre [0 e 1]
- from sklearn.preprocessing import MinMaxScaler

```
values = data['Weighted Price'].values.reshape(-1,1)
values = values.astype('float32')
scaler = MinMaxScaler(feature_range=(0, 1))
scaled = scaler.fit_transform(values)

# vamos deixar 70% para treino e 30% para teste. Observe que temos mais de 6 anos de dados train_size = int(len(scaled) * 0.7)
test_size = len(scaled) - train_size
train, test = scaled[0:train_size,:], scaled[train_size:len(scaled),:]
print(len(train), len(test))

1899 814
```

Vamos considerar uma janela de um único dia para efetuar a predição. Para isso, use a função create_dataset(..) e deixe o parâmetro look_back=1. O parâmetro look_back controla a quantidade de dados que vai fazer parte da janela de entrada para a rede. Estude e entenda o que a função faz.

```
#função para criar os conjuntos de dados de treino
def create_dataset(dataset, look_back=1):
   dataX, dataY = [], []
   for i in range(len(dataset) - look_back):
        a = dataset[i:(i + look_back), 0]
        dataX.append(a)
        dataY.append(dataset[i + look_back, 0])
    print(len(dataY))
    return np.array(dataX), np.array(dataY)
# entra com janela de 1 único valor
look back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
     1898
     813
trainX.shape
     (1898, 1)
# reshape para formato de entrada da rede neural (instancias, 1, 1)
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
trainX.shape
     (1898, 1, 1)
```

→ Projeto de uma rede recorrente

Projete uma rede recorrente, usando alguma das camadas abaixo:

- 1. Item da lista
- 2. Item da lista

```
tf.keras.layers.LSTM
tf.keras.layers.GRU
tf.keras.layers.RNN
```

As camadas recorrentes (LSTM, GRU, RNN) podem ser bidirecionais ou simpels, por exemplo, uma camada LSTM com 32 unidades e bidirecional:

```
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32))
```

Você também pode usar dropout e camadas densas em seu modelo.

Experimente três arquiteturas (rasas e profundas) e pelo menos dois algoritmos de otimização. Documente os resultados em uma tabela e anexe.

Por exemplo, você pode usar um modelo raso como o abaixo:

```
np.random.seed(42)

tf.random.set_seed(42)

model_1 = Sequential([
   LSTM(128,input_shape=[None,1]),
   Dense(1)
])
```

Com uma função de custo **Mean Square Error** e o algoritmo de otimização **ADAM**:

```
model_1.compile(loss='mse',optimizer = 'adam')
```

Ou pode usar um modelo profundo, mais complexo como o abaixo:

```
model = Sequential()
model.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)))
model.add(Dense(units = 64, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(units = 1))
```

O erro médio quadrático deste último modelo, com o otimizador ADAM e erro médio quadrático como função de custo deve resultar em:

```
Test Root Mean Square Error (RMSE): 380.139
```

Observações

- 1. Seu RMSE pode ser diferente devido aos dados usados.
- 2. Use modelos diferentes dos de exemplo!
- ▼ ToDo: Projetando os seus modelos (30pt)

```
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
```

▼ Modelo 1:

```
tf.keras.layers.LSTM
tf.keras.layers.GRU
tf.keras.layers.RNN
    keras.layers.Pidirectional(tf.keras.layers.LSTM(32))
    <keras.layers.wrappers.Bidirectional at 0x7f7c09244e50>

np.random.seed(42)
tf.random.set_seed(42)

model_1 = Sequential()
model_1.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)))
model_1.add(Dense(units = 64, activation='relu'))
#model_1.add(Dropout(dropout_rate))
model_1.add(Dense(units = 1))
#model_1.summary()
```

▼ Modelo 2:

```
tf.keras.layers.Bidirectional(tf.keras.layers.GRU(32))
     <keras.layers.wrappers.Bidirectional at 0x7f7c09866550>
tf.keras.layers.GRU
model_2 = keras.Sequential()
#model_2.add(layers.Embedding(input_dim=1000, output_dim=64))
# The output of GRU will be a 3D tensor of shape (batch_size, timesteps, 256)
model_2.add(layers.GRU(64, return_sequences=True))
#model_2.add(Dense(units = 64, activation='relu'))
# The output of SimpleRNN will be a 2D tensor of shape (batch_size, 128)
model_2.add(layers.SimpleRNN(64))
model_2.add(Dense(units = 1))
#model_2.summary()
model_2.compile(loss='mse',optimizer = 'adam')
Modelo 3:
model_3 = keras.Sequential()
model_3.add(Dense(units = 64, activation='relu'))
model 3.add(layers.SimpleRNN(128))
#model 3.add(layers.Dense(10))
model_3.add(Dense(units = 1))
#model 3.summary()
model_3.compile(loss='mse',optimizer = 'adam')
```

▼ ToDo: Função de custo (10pt)

Como é um problema de regressão, usaremos funções de custo apropriadas. Você pode usar, por exemplo, *Mean Absolute Error* (mae) ou *Mean Squared Error* (mse).

ToDo: Estude as funções de custo MAE e MSE. Qual das duas funções você usaria. Justifique sua escolha. Repare que vamos avaliar os modelos pela métrica *Root Mean Square Error* (RMSE).

▼ ToDo: Função para treinar o seu modelo (15pt)

```
# Função para treinar o modelo
def train_model(model, loss, optimizer, trainX, trainY):
    # Compile o modelo : atenção para a função de CUSTO. Abaixo um exemplo de uso da 'mae'
    model.compile(loss=loss, optimizer=optimizer)

#treine o modelo
history = model.fit(trainX,trainY,epochs=20)

# plote a curva de custo
pyplot.plot(history.history['loss'], label='train')
#pyplot.plot(history.history['val_loss'], label='test')
pyplot.legend()

pyplot.show()
```

▼ Função para avaliar o seu modelo

```
# Avaliando o modelo treinado
def evaluate_model(model, testX, testY):

# plote as curvas, valor real e valor predito no mesmo gráfico
yhat = model.predict(testX)
pyplot.title('Curva do valor real e valor predito na escala usado no treino')
pyplot.plot(yhat, label='predict')
pyplot.plot(testY, label='true')
pyplot.legend()
pyplot.show()

# os valores foream normalizados para o treinamento.
# Veja que para fazer sentido, eles devem voltar para a escala original.
# Volta para escala em US dollar :
yhat_inverse = scaler.inverse_transform(yhat.reshape(-1, 1))
testY_inverse = scaler.inverse_transform(testY.reshape(-1, 1))
# calcula o RMSE
```

```
rmse = sqrt(mean_squared_error(testY_inverse, yhat_inverse))
print('Test RMSE: %.3f' % rmse)

# valor em US dollar
pyplot.title('Curva do valor real e valor predito em US dollar')
pyplot.plot(yhat_inverse, label='predict')
pyplot.plot(testY_inverse, label='actual', alpha=0.5)
pyplot.legend()
pyplot.show()
```

- ▼ ToDo: Treinando e avaliando o seu modelo (15pt)
- ▼ Modelo 1

```
train_model(model_1, 'mae', 'adam', trainX, trainY)
```

```
Epoch 1/20
60/60 [========== ] - 8s 7ms/step - loss: 0.0198
Epoch 2/20
60/60 [============ ] - 0s 8ms/step - loss: 0.0043
Epoch 3/20
60/60 [========= ] - 1s 9ms/step - loss: 0.0020
Epoch 4/20
60/60 [========== ] - 0s 7ms/step - loss: 0.0020
Epoch 5/20
60/60 [========== ] - 0s 7ms/step - loss: 0.0018
Epoch 6/20
60/60 [======== ] - 0s 8ms/step - loss: 0.0020
Epoch 7/20
60/60 [=========== ] - 0s 8ms/step - loss: 0.0024
Epoch 8/20
60/60 [========= ] - 0s 6ms/step - loss: 0.0017
Epoch 9/20
CO/CO F
```

evaluate_model(model_1,testX,testY)

Test RMSE: 2571.262

Modelo 2

train_model(model_2, 'mae', 'adam', trainX, trainY)

evaluate_model(model_2,testX,testY)

Test RMSE: 1032.817

▼ Modelo 3

train_model(model_3,'mae','adam',trainX,trainY)

Epoch 1/20

```
60/60 [============ - - 1s 3ms/step - loss: 0.0061
Epoch 2/20
60/60 [============ ] - 0s 3ms/step - loss: 0.0021
Epoch 3/20
60/60 [======== ] - 0s 3ms/step - loss: 0.0019
Epoch 4/20
60/60 [========= ] - 0s 3ms/step - loss: 0.0020
Epoch 5/20
60/60 [========== ] - 0s 3ms/step - loss: 0.0019
Epoch 6/20
60/60 [========= ] - 0s 3ms/step - loss: 0.0023
Epoch 7/20
60/60 [============ ] - 0s 3ms/step - loss: 0.0019
Epoch 8/20
60/60 [========= ] - 0s 3ms/step - loss: 0.0022
Epoch 9/20
60/60 [========== ] - 0s 3ms/step - loss: 0.0020
Epoch 10/20
60/60 [============ ] - 0s 3ms/step - loss: 0.0021
Epoch 11/20
60/60 [======== ] - 0s 3ms/step - loss: 0.0019
Epoch 12/20
60/60 [========== ] - 0s 3ms/step - loss: 0.0017
Epoch 13/20
60/60 [========== ] - 0s 2ms/step - loss: 0.0021
Epoch 14/20
60/60 [========= ] - 0s 3ms/step - loss: 0.0022
Epoch 15/20
60/60 [============ ] - 0s 3ms/step - loss: 0.0022
Epoch 16/20
60/60 [========== ] - 0s 3ms/step - loss: 0.0019
Epoch 17/20
60/60 [========== ] - 0s 3ms/step - loss: 0.0020
```

evaluate_model(model_3,testX,testY)

→ Prevendo o próximo dia

```
~~
# https://www.tensorflow.org/tutorials/structured_data/time_series
def create_time_steps(length):
 time_steps = []
 for i in range(-length, 0, 1):
   time_steps.append(i)
  return time_steps
def baseline(history):
  return np.mean(history)
def show_plot(plot_data, delta, title):
  labels = ['History', 'True Future', 'Model Prediction']
 marker = ['.-', 'rx', 'go']
 time_steps = create_time_steps(plot_data[0].shape[0])
  if delta:
   future = delta
  else:
    future = 0
  pyplot.title(title)
 for i, x in enumerate(plot_data):
    if i:
      pyplot.plot(future, plot_data[i], marker[i], markersize=10,
               label=labels[i])
    else:
      pyplot.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i])
  pyplot.legend()
  pyplot.xlim([time_steps[0], (future+5)*2])
  pyplot.xlabel('Time-Step')
  return pyplot
```

▼ ToDo: Função para predizer o próximo dia (15pt)

```
def predict_next_day(model, testX, testY):
    # os valores foream normalizados para o treinamento.
    # Veja que para fazer sentido, eles devem voltar para a escala original.
    # Volta para escala em US dollar :
    yhat_inverse = scaler.inverse_transform(model_1.predict(testX).reshape(-1, 1))
    testY_inverse = scaler.inverse_transform(testY.reshape(-1, 1))
```

▼ Modelo 1:

```
predict_next_day(model_1,testX,testY)
```

valor predito do dia 201: [8380.734]
Valor real do dia 201: [8431.232]

Modelo 2:

predict_next_day(model_2,testX,testY)

valor predito do dia 201: [8380.734]
Valor real do dia 201: [8431.232]

▼ Modelo 3:

▼ ToDo: Resultados (15pt)

Coloque os valores dos modelos em uma tabela. Em cada coluna, informe qual a função de custo utilizada, qual otimizador e o erro na partição de teste em RMSE.

✓ 0s conclusão: 13:10

×