GRUNDIG Service Anleitung

5/82 RR 120

Inhaltsverzeichnis

Me	echanischer Teil	Seite	Elektrischer Teil	Seite
1.	Allgemeines zum mechanischen Teil	2	1. Allgemeines zum elektrischen Teil	10
2.	Zerlegen des Gerätes	2	2. Leistungsaufnahme	11/12
3.	Kopf wechseln	2	3. HF-Oszillator	11/12
4.	Bandlauf	2	4. Fremdwiedergabe-Bezugsbandabtastung	11/12
5.	Azimuth-Einstellung	2	5. Eigenaufnahme und Wiedergabe	11/12
6.	Schwungscheibe ausbauen	2	6. Aufnahme-Verstärker	13/14
7.	Axialspieleinstellung der Schwungscheibe	2	7. Aufnahme-Automatik	13/14
8.	Schlitten ausbauen	2	8. Wiedergabeverstärker	13/14
9.	Drehmoment	2/3		
10.	Andruckrollenhebel	4		
11.	Bandgeschwindigkeit einstellen	4		
12.	Reinigen der Bandlauf- und Antriebsteile	4		
13.	Ölen und Schmieren	4	Rundfunkteil	Seite
14.	Kontaktfedereinsatz	4	Abgleichanleitung	9

Mechanischer Teil

1. Allgemeines zum mechanischen Teil

Die Zahlen im Text und bei den Abbildungen sind mit den Positionsnummern der Ersatzteilliste identisch. Teile – die in der Ersatzteilliste nicht vorkommen – sind mit Buchstaben gekennzeichnet. Nicht abgebildete Positionen finden Sie in der Ersatzteilliste

lst es erforderlich, lackgesicherte Schrauben zu lösen, müssen diese nach Abschluß der Reparatur wieder verlackt werden.

Saubere Gummilaufflächen tragen wesentlich zur Betriebssicherheit der Mechanik bei. Diese sind mit Reinigungsmittel (Testbenzin) zu reinigen. Müssen Klebestellen erneuert werden, so ist bei Polystyrol auf Polystyrol Methylenchlorid oder Benzol, bei Polystyrol auf Metall Haftkleber (Kontaktkleber Akemix 15, Fa. Schwaab) zu verwenden.

2. Zerlegen des Gerätes

2.1 Rückwand abnehmen (Bild 1)

4 Schrauben a herausdrehen und Rückwand 7 abnehmen.

2.2 Gehäuserahmen aus dem Gehäuse-Vorderteil 1 ausbauen

- Senderwahlknopf 18 mit Schraubendreher anheben und abziehen.
- 1 Schraube **b** (Bild 3) herausdrehen.
- Gehäuserahmen am Batteriefach anheben und herausnehmen.

2.3 Lautsprecher ausbauen

- Kabelverbindung am Lautsprecher 14 lösen.
- 4 Befestigungsklammern 15 entfernen.

2.4 Skala (Bild 2)

Skala 2 aus Halterungen c nehmen.

2.5 Mikrofon

 Mikrofon 115 bei stehendem Gerät nach oben herausschieben.

2.6 Motor wechseln (Bild 3)

- Motoranschlüsse ablöten.
- Vierkantriemen 70 abnehmen.
- 3 Schrauben 66 herausdrehen.
- Motor 65 herausnehmen.

Laufwerk:

3. Kopf wechseln (Bild 4)

 Ab- und Anlöten der Kopfanschlüsse darf nur mit einem Lötkolben von max. 6W erfolgen.

Löschkopf 90

- Kopfanschlüsse ablöten.
- Nase d drücken und Kopf aus der Halterung schieben.
- Neuen Kopf 90 bis auf Anschlag einschlieben und Kopfanschlüsse anlöten.

AW-Kopf 92

- Kopfanschlüsse ablöten.
- Schraube 95a herausdrehen.
- Kopf 92 in Richtung Andruckrolle herausziehen.
- Neuen Kopf 92 mit der Gabel zwischen Druckfeder 93 und Schraubenkopf der Kopfeinstellschraube 95 b einstecken.

4. Bandlauf

- Bandlaufcassette 459 auflegen.
- Gerät in Stellung Start.
- Das Band darf nicht zwischen Tonwelle und Andruckrolle e herauslaufen, bzw. an der oberen oder unteren Kante der Bandführungsgabel des AW-Kopfes 92 umknicken.

Bei etwaigen Störungen überprüfen:

- Andruckrolle e beschädigt oder verschmutzt.
- Andruckkraft der Andruckrolle e.
- Tonwelle verschmutzt.
- Axialspiel der Schwungscheibe 62.
- Aufwickelmoment der Vorlaufkupplung 80.
- Grundbremsung des Wickeltellers 71 für Rücklauf.

5. Azimuth-Einstellung

- Testbandcassette 466B einlegen.
- 8 kHz-Pegel abspielen.
- Durch Verdrehen der Kopf-Einstellschraube 95b ist der maximale Ausgangspegel nach MS 8 einzustellen.

6. Schwungscheibe ausbauen (Bild 3)

- Massezuleitung f lösen.
- Riemen 70 herausnehmen.
- 2 Schrauben g1 und g2 herausdrehen.
- Lagerplatte 63 herausnehmen.
- Einbau in umgekehrter Reihenfolge und Punkt 7. (Axialspieleinstellung der Schwungscheibe 62) berücksichtigen.

7. Axialspieleinstellung der Schwungscheibe (Bild 3)

- Vor der Einstellung muß die Schwungscheibe 62 fühlbares Axialspiel haben.
- Lagerplatte 63 im Tonwellenbetrieb von Hand kurzzeitig durchdrücken bis die Motordrehzahl merklich abfällt.
- Druckscheibe g1 so festschrauben, bis das Axialspiel ≤ 0,2 mm beträgt.

Bei der Einstellung des Spiels ist darauf zu achten, daß die Einstellung immer durch Rechtsdrehung der Schraube beendet wird. Ist das Spiel zu gering eingestellt, so muß die Schraube gelockert und die Lagerplatte mit den Fingern zurückgezogen werden, anschließend die Einstellung erneut durchführen.

8. Schlitten ausbauen (Bild 2)

- 2 Zugfedern 88 aushängen.
- Schlitten 87 an den 2 Rastnasen h lösen und unter Berücksichtigung der Führungsnase i aufklappen.
- Bei Wiedereinbau auf 2 Lagernadeln 86 (Bild 5) achten und daß die Nase der Start-Taste in den Schlitten 87 greift.

9. Drehmoment

9.1 bei Rücklauf

Einlegen der Drehmomentcassette 456 (Fa. GRUNDIG) zur Messung der Grundbremsung und des Drehmoments.

- Rücklauftaste drücken.
- Bandendabschaltung löst Rücklauftaste aus (Band befindet sich auf rechtem Wickelteller).
- Rücklauftaste nochmals drücken.

 Vor Bandendahschaltung des

Vor Bandendabschaltung das Drehmoment au rechter Kraftskala der Bandwickelspule ablesen. $(50\pm10)\ 10^{-4}\ Nm\approx(50\pm10)\ pcm.$

Bild 2

Grundbremsung auf Kraftskala des linken Bandwickeltellers ablesen.

 $(1-4) 10^{-4} \text{ Nm} \approx (1-4) \text{ pcm}.$

Wird dieser Wert nicht erreicht, ist die Grundbremsfeder **75b** (Bild 5) zu wechseln. Dazu den Kopfschlitten **87** ausbauen.

9.2 bei Vorlauf

Einlegen der Drehmomentcassette 456.

- Vorlauftaste drücken.
- Bandendabschaltung löst Vorlauftaste aus (Band befindet sich auf linkem Wickelteller).
- Vorlauftaste nochmals drücken.

Vor Bandendabschaltung das Drehmoment auf linker Kraftskala der Bandwickelspule ablesen.

 $(50\pm 10)\ 10^{-4}\ \text{Nm} \approx (50\pm 10)\ \text{pcm}.$

Grundbremsung auf Kraftskala des rechten Bandwickeltellers ablesen.

 $(1-4) 10^{-4} \text{ Nm} \approx (1-4) \text{ pcm}.$

Wird dieser Wert nicht erreicht, ist die Grundbremsfeder **75a** (Bild 5) zu wechseln. Dazu den Kopfschlitten **87** ausbauen.

9.3 bei Start

Einlegen der Drehmomentcassette 456.

- Starttaste drücken.
- Aufwickelmoment auf Kraftskala der linken Band wickelspule ablesen.

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 (00 | 5) 7 = 78

 $(28\pm5)~10^{-4}~\text{Nm}\approx(28\pm5)~\text{pcm}.$

Grundbremsung auf Kraftskala des rechten Bandwickeltellers ablesen.

 $(6-10)\ 10^{-4}\ Nm \approx (6-10)\ pcm.$

Wird dieser Wert nicht erreicht, ist die Grundbremsfeder 89 (Bild 4) zu wechseln. Dazu den Kopfschlitten 87 ausbauen.

10. Andruckrollenhebel (Bild 4)

- Der Andruckrollenhebel 100 ist selbsteinstellend.
- Bei Beschädigung der Andruckrolle e, Andruckrollenhebel 100 komplett wechseln.

Andruckrollenhebel wechseln

- Schraube 95 a herausdrehen.
- AW-Kopf 92 in Richtung Wickelteller 80 schwenken.
- Feder 102 aushängen.
- Andruckrollenhebel 100 herausnehmen.

Andruckkraft

– In Stellung Start beträgt die Andruckkraft 3,5 N \pm 0,5 N (\approx 350 p \pm 50 p); an die Tonwelle herangehend gemessen.

Bild 4

11. Bandgeschwindigkeit einstellen

- Testbandcassette 466B (Teil 1, 50 Hz-Aufzeichnung) verwenden.
- NF-Ausgang siehe MS 8.
- Wiedergabe Start.
- X-Ablenkung auf Extern 50 Hz-Triggerung schalten, bei verwendetem GRUNDIG Millivoltmeter MV1000 oder vergleichbarem Meßnerät
- Die Soll-Bandgeschwindigkeit ist bei Stillstand des Kreises erreicht (Lissajou'sche Figur).
- Nachzustellen mit Regler A (Bild 5) im Motorbaustein.

Die 3150 Hz-Aufzeichnung dient zum Einstellen der Geschwindigkeit mit einem Tonhöhenschwankungsmesser (GRUNDIG Gleichlaufanalysator GA 1000) oder einem GRUNDIG Frequenzzähler.

12. Reinigen der Bandlauf- und Antriebsteile

Nach jeder Reparatur am Laufwerk sind die Köpfe **90**, **92**, die Tonwelle, die Andruckrolle, sowie der Antriebsriemen mit Spiritus oder Reinigungsbenzin zu reinigen.

13. Ölen und Schmieren

Alle Lager und Gleitstellen sind vom Werk her ausreichend geölt bzw. geschmiert. Im Bedarfsfall sind die Achsen und die an
Sinterlager oder Kunststoff anliegenden Gleitscheiben mit
WIK 700 leicht nachzufetten. Diese Schmiermittel sind im
GRUNDIG Schmiermittelsatz enthalten (WIK 700 = 0 Beac 2 =

...

14. Kontaktfedersatz

Bild 5

Rundfunkteil

Abgleich-Anleitung

Allgemeines zur Abgleichanleitung

Die nachfolgende Abgleichanleitung ist der Abgleichanweisung für die Fertigung entnommen.

Die Reihenfolge des beschriebenen Abgleichs muß nur bei einem kompletten Neuabgleich eingehalten werden.

Ein Nachgleichen bestimmter Stufen ist nur nach Austausch frequenzbestimmender Bauteile notwendig.

 $U_{B} = 9.0 \text{ V}$

Abgleichpunkte: siehe Abgleichlageplan

FM-ZF-Abgleich ca. 10,7 MHz

Die verwendeten Keramikfilter bestimmen die genaue Abgleichfrequenz.

Taste UKW gedrückt.

Abgleichreihenfolge	Ankopplung des Wobblerausganges	Sichtgeräteanschluß	Abgleich
F5/F6	MP 4	ND TE	F 5/F 6: S-Kurve wechselseitig auf Maximum und Symmetrie.
F3	MP ③	MP 5	F 3: S-Kurve auf Maximum und Symmetrie.

FM-Oszillator und Zwischenkreis

Taste UKW gedrückt, (1 kHz Mod, 15 kHz Hub).

Zeigerstellung Meßsender-Frequenz	Oszillator	Zwischenkreis	Sichtgeräteanschluß	Bemerkung	
87,5 MHz	A Max.			Signaleinspeisung: Meßsender (Ri= 60 Ω), ohne Abschluß-	
108,0 MHz	Max.		W. 53	widerstand über abgeschirmte 60 Ω -Leitu an C 301, Teleskopantenne abgetrennt.	
88,0 MHz		© Max.	MP 5		
106,0 MHz		① Max.			

AM-ZF-Abgleich ca. 460 kHz

Taste MW gedrückt.

Die verwendeten Keramikfilter bestimmen die genaue Abgleichfrequenz.

Abgleichreihenfolge	Ankopplung des Wobblerausganges	Sichtgeräteanschluß	Abgleich
F 7	MP 2		F 7 auf Maximum und Symmetrie
F1	MP 1	MP \5/	F 1 auf Maximum und Symmetrie

AM-Oszillator und Vorkreisabgleich (Reihenfolge beachten)

(400 Hz Mod./30 %)

Bereich, Meßsender-Frequenz		Oszillator	Vorkreis	Bemerkungen
MW	560 kHz	① Max.		Bei MW und LW wird das Signal über eine Rahmenantenne auf die Ferritantenne
	1450 kHz	② Max.		eingestrahlt.
LW	150 kHz	③ Max.		
LW	150 kHz		⑥ Max.	
	240 kHz		⑦ Max.	
MW	560 kHz		4 Max.	
	1450 kHz		⑤ Max.	

Elektrischer Teil

1. Allgemeines zum elektrischen Teil

Nach Ersatz frequenzbeeinflussender Bauteile müssen die elektrischen Eigenschaften des Gerätes anhand der vorgegebenen Meßwerte überprüft werden.

Alle erforderlichen Meßgeräte sind im GRUNDIG-Meßgeräteprogramm enthalten. Angaben über die einzelnen Messungen und Meß-Schaltungen finden Sie bei den elektrischen Messungen.

Vor Service-Arbeiten überprüfen Sie bitte, ob die Tonwelle, die Gummiandruckrolle, sowie die Magnetköpfe frei von Bandabriebrückständen sind. Zum Reinigen dieser Teile eignet sich ein spiritus- oder reinigungsbenzingetränktes Wattestäbchen

Die Messungen am Tonbandteil werden, wenn nicht anders angegeben, bei Netzbetrieb und ausgeschaltetem Rundfunkteil durchgeführt.

Meßschaltungen

9

1	1	Einspeisung			Anforderung		Hinweise
Messung	Betriebsart	Eingang	Frequenz	U.	Ausgang		пінжеізе
2. Leistungsaufnahme							
	Stop, Rundfunkteil ausgeschaltet					Netz: p ≤ 1,1 W	Netzbetrieb: 220 V \sim \pm 2%, 50 Hz Batteriebetrieb: 9 V \pm 2%
	Wiedergabe, Bandmitte, Lautstärkeregler zu					Netz: p ≤ 2,2 W Batterie: I ≤ 100 mA	
	Aufnahme, Bandmitte, Lautstärkeregler zu					Netz: p ≤ 3 W Batterie: I ≤ 180 mA	
	Rundfunkteil eingeschaltet, UKW, Lautstärkeregler zu					Netz: p ≤ 1,5 W Batterie: I ≤ 25 mA	
3. HF-Oszillator							
a) Löschfrequenz	Aufnahme-Start; Oszillatorschalter offen				MS 1	fo = 70,5 kHz ± 2,5 kHz	Einstellung: Anlöten bzw. ablöten von C 153 und C 154.
	geschlossen					fu = fo -9 kHz +1,5 kHz - 1 kHz	
b) Vormagnetisierungsspannung	Aufnahme-Start; Oszillatorschalter offen				MS 1a	U _{HF} = 9 V 15 V	Einstellung: R 150 Einstellung bei Frequenzgang- Linearisierung Pkt. 5b).
4. Fremdwiedergabe-Bezugsbandabtastung	g						
a) Vollpegel	Testbandcassette 466 B, Teil 2; Wiedergabe-Start; Rundfunkteil ausgeschaltet		315 Hz		MS 2 U _a an MP	$U_{\alpha}=330~\text{mV}\dots830~\text{mV}$	
b) Frequenzgang	Testbandcassette 466 B, Teil 2 und 3; Wiedergabe-Start; Rundfunkteil ausgeschaltet		315 Hz 125 Hz 1 kHz 8 kHz 10 kHz	-	MS 8	$\begin{array}{rcl} U_a \ 315 \ Hz &=& 0 \ dB \\ 125 \ Hz &=& -0.85 \ dB \ \pm \ 2 \ dB \\ 1 \ kHz &=& -0.5 \ dB \ \pm \ 2 \ dB \\ 8 \ kHz &=& -4.2 \ dB \ \pm \ 3 \ dB \\ 10 \ kHz &=& -6.3 \ dB \ \pm \ 4 \ dB \end{array}$	Meßwert (dB) U 315 Hz/U 10 kHz notieren; Mechanischer Teil Punkt 5 Azimuth-Einstellung muß erfüllt sein;
	Aufnahme Ext.: Radio Ein-, UKW- und LW-Taste ged Wiedergabe: Radio Aus, Start	drückt;	1				
a) llpegel-Klirrfaktor	Aufnahme ExtStart; Fe-Band	MS 3	333 Hz	500 mV	MS 8	$K_3 \leq 4\%; U_\alpha = 350\; \text{mV} \dots 900\; \text{mV}$	
b) Frequenzgang-Linearisierung	Leerbandteil Testbandcassette 466 B; Aufnahme ExtStart; Aufnahme-Automatik außer Betrieb, dabei zwischen den Punkten und 6,8 kΩ anschließen; Wiedergabe: 6,8 kΩ entfernen		333 Hz 10 kHz	20 mV		Zu dem unter Punkt 4b) ermittelten Wert U _a 315 Hz/10 kHz werden 5,3 dB addiert. Der Frequenzgang U _a 333 Hz/10 kHz wird mit R 150 auf diesen Wert eingestellt bei einem max. Toleranzbereich von +0,5 dB bis -5,5 dB. Die HF-Vormagnetisierung entspricht dabei 9 V 15 V.	Aufnahme-Automatik außer Betrieb: By und Control kurzschließen; Als Bezugspunkt für die Fremd- wiedergabe-Frequenzgangmessung mit Testbandcassette 466 B dient 1/10 der Wiedergabespannung des 315 Hz-Pegels.
c) Frequenzgang nach DIN	Frequenzgangmessung mit Fe-Band		80 Hz 10 kHz			$\begin{array}{rcl} U_{a} \ 333 \ Hz &=& 0 \ dB \\ 125 \ Hz &=& -2 \ dB \ \pm & 2 \ dB \\ 1 \ kHz &=& 1 \ dB \ \pm & 2 \ dB \\ 8 \ kHz &=& 0 \ dB \ \pm & 2,5 \ dB \\ 10 \ kHz &=& -2,5 \ dB \ \pm & 3 \ dB \end{array}$	Betriebsart wie Pkt. 5b) Frequenzgang-Linearisierung
d) Störspannung über Band	Vollpegel-Aufnahme durchführen	1	333 Hz	500 mV			
Fremdspannungsabstand, eff. nach DIN	Aufnahme ExtStart; Aufnahme-Automatik außer Betrieb, dabei	MS 9			MS 8	≥ 47 dB	Aufnahme-Automatik außer Betrieb: B und kurzschließen;
Geräuschspannungsabstand, eff. Kurve A	zwischen den Punkten 😽 und 🤯 6,8 kΩ anschließen; Vollpegelaufnahme löschen; Wiedergabe: 6,8 kΩ entfernen			<u></u>		≥ 60 dB	

ahme ExtStart; ahme-Automatik außer Betrieb; ahme ExtStart; ahme-Automatik außer Betrieb, dabei	MS 3	Frequenz 333 Hz	U,	Ausgang		Hinweise
ahme-Automatik außer Betrieb; ahme ExtStart; ahme-Automatik außer Betrieb, dabei	MS 3	333 Hz			•	
ahme-Automatik außer Betrieb; ahme ExtStart; ahme-Automatik außer Betrieb, dabei	MS 3	333 Hz	,			<u> </u>
ahme-Automatik außer Betrieb, dabei			100 mV ± 1 dB	MS 2 an Mp 🛺	$U_{\sigma}=850~\text{mV}$	Aufnahme-Automatik außer Betrieb: yund ykurzschließen; HF-Oszillator außer Betrieb:
chen den Punkten Āγ und ⓒ 6,8 kΩ hließen;		·	U _e für U _a = 100 mV einstellen		$\begin{array}{rcl} U_a \ 333 \ Hz &=& 100 \ mV \triangleq & 0 \ dB \\ 125 \ Hz &=& -0.5 \ dB \ \pm & 1 \ dB \\ 1 \ kHz &=& 0.5 \ dB \ \pm & 1 \ dB \\ 8 \ kHz &=& 11.5 \ dB \ \pm & 1 \ dB \\ 10 \ kHz &=& 13 \ dB \ \pm & 1.5 \ dB \end{array}$	R 153 auslöten
		* - :	U _e für U _a = 1 mV* einstellen	MS 4	Aufsprechstrom gemessen an 100 Ω ; U_{α} 333 Hz = 1 mV \triangleq 0 dB 125 Hz = -1 dB \pm 1 dB 1 kHz = 0,5 dB \pm 1 dB 8 kHz = 9,5 dB \pm 2 dB 10 kHz = 11 dB \pm 2,5 dB	Aufnahme-Automatik außer Betrieb: Eund of kurzschließen; HF-Oszillator außer Betrieb: R 153 auslöten; * \(\triangleq U = ca. 100 \) mV an Mp
ahme ExtStart; ahme-Automatik außer Betrieb; Ilatorschalter offen;		i		MS 2 an Mp 😽	$U_{\alpha} \leq 15 \text{ mV}$	Aufnahme-Automatik außer Betrieb: 🔻 und 🤝 kurzschließen; HF-Oszillator außer Betrieb: R 153 auslöten
ahme ExtStart; Oszillator außer Betrieb:	MS 3	1 kHz	U _{e1} 150 mV	MS 2 an Mp A27	$U_{\alpha 1} \ge U_{\alpha 2} - 2 \; dB \; (U_{\alpha 2} \; siehe \; b) \; Regelsteilheit)$	
3 auslöten			U _{e2} 1500 mV		U _{a2} = 750 mV 1050 mV	Eingangsspannung U _{e1} um 20 dB erhöhen
					$K_{tot} \le 2\%$	
			1500 mV; 30 sec. anlegen, dann auf 150 mV (-20 dB) schalten		U₀-Änderung ≦ 2 dB/sec.	Verstärkungsanstieg unmittelbar nach dem Zurückschalten messen
		To the second se				
	MS 5	333 Hz	16 mV ± 1,5 dB	MS 8	$U_{\sigma}=100~\text{mV}$	
starkeregier zu; dfunkteil ausgeschaltet;		333 Hz 125 Hz 1 kHz 8 kHz 10 kHz	U _e für U _a = 100 mV einstellen U _e konstant		U_{o} 333 Hz = 100 mV \triangleq 0 dB 125 Hz = 6,5 dB \pm 1,5 dB 1 kHz = - 8 dB \pm 1,5 dB 8 kHz = -14,5 dB \pm 1,5 dB 10 kHz = -15,5 dB \pm 1,5 dB	
		:			$U_{\sigma} \leq 0,3 \; mV$	Messung mit Leercassette
		:			$U_{\alpha} \leqq 1,5 \; mV$	
dergabe-Start; stärkeregler auf; dfunkteil ausgeschaltet; iebsspannung von 9 V ± 2%	MS 7	1 kHz	110 mV ± 3 dB	MS 6	$U_{Last} = 2,6 \text{ V}$ $K_{tot} \leq 10\%$	Einspeisung mit Tongenerator $R_i \leqq 200~\Omega;$ Der Lautsprecher ist durch einen
sta dfu	ärkeregler zu; unkteil ausgeschaltet; rgabe-Start; ärkeregler auf;	ärkeregler zu; unkteil ausgeschaltet; rgabe-Start; ärkeregler auf;	arkeregler zu; unkteil ausgeschaltet; 333 Hz 125 Hz 1 kHz 8 kHz 10 kHz rgabe-Start; arkeregler auf; MS 7 1 kHz	30 sec. anlegen, dann auf 150 mV (-20 dB) schalten	30 sec. anlegen, dann auf 150 mV (-20 dB) schalten 16 mV ± 1,5 dB MS 8	MS 5 333 Hz 16 mV ± 1,5 dB MS 8 U _o = 100 mV U _o 20 dB Schalten U _o = 100 mV U _o 20 dB U _o = 100 mV U _o 333 Hz U _o = 100 mV U _o 333 Hz U _o = 100 mV U _o 333 Hz U _o = 100 mV U _o 333 Hz U _o = 100 mV U _o 333 Hz U _o = 100 mV U _o 333 Hz U _o