Diabetic Retinopathy Screening BIS568 FINAL PROJECT

• • •

Jiaye Chen, Luning Yang, Mengmeng Du, Yawen Wei Dec 14, 2023

Problem Specification - Background

Problem Specification - Goal & Population

- Goal of the Predictive Model
 - Predict diabetic retinopathy(DR) in patients with diabetes

- Diabetic patients
 - with more than one record in MIMIC database

- Diabetic patients with diabetic retinopathy(DR): 133
- Control Cohort
 - Diabetic patients without any complications: 1160

Data Preparation

Demography	gender	Patient gender
	race	Patient race
	age	Patient age
Conditions	duration days	Diabetes/Diabetic retinopathy duration
	neuropathy	Neuropathy
	stroke	Stroke
	Insulin dependence	Insulin dependent diabetes mellitus
	nephropathy	Nephropathy
Clinical measurement	triglyceride	Triglycerides
	hemo	Hemoglobin
	hemo_a1c	Hemoglobin A1C
	bun	Blood urea nitrogen
	sbp	Systolic blood pressure
	dpb	Diastolic blood pressure
Predictor	predictor	Diabetes/Diabetic retinopathy

Data Preparation and Preprocessing

Bias Assessment

- The data only reflects part of the patient in this area.
 - Our Prevalence based on MIMC dataset = 1.47%
 - 2021 Suffolk County Adjusted Prevalence of Any Diabetic Retinopathy (DR) or Vision Threatening
 DR from CDC = 4.04%
- Oversampling
 - Original cohort: 133 DR vs 1160 Non-DR
 - New cohort: 852 DR vs 1160 Non-DR

```
from imblearn.over_sampling import SMOTE
# Apply SMOTE to oversample the minority class (positive samples)
smote = SMOTE(sampling_strategy='auto') # 'auto' adjusts to balance classes
X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)
```

• After implementing our model, we will continuously monitor of our ML model's performance.

Correlation Matrix

- Predictor is strongly correlated with "neuropathy" (0.70) and "insulin_dependence" (0.68), suggesting that it is closely related to whether or not a person is having a insulin-dependent diabetes.
- Neuropathy is NOT a results from DR.

Model Development

- Logistic Regression
 - **ROC-AUC: 0.92**
 - o **PR-AUC: 0.74**
- Random Forest
 - o ROC-AUC: 0.98
 - o PR-AUC: 0.88
- XGBoost
 - o ROC-AUC: 0.98
 - o PR-AUC: 0.87

- Training and Cross-Validation
 - O Best Model: Random Forest
 - Best Cross-Validation Accuracy: 0.961
 - Test Accuracy: 0.954

- Logistic Regression
 - o ROC-AUC: 0.92
 - o PR-AUC: 0.74
- Random Forest
 - o ROC-AUC: 0.98
 - o PR-AUC: 0.88
- XGBoost
 - o ROC-AUC: 0.98
 - o PR-AUC: 0.87

- Training and Cross-Validation
 - O Best Model: Random Forest
 - Best Cross-Validation Accuracy: 0.961
 - Test Accuracy: 0.954

- Logistic Regression
 - o ROC-AUC: 0.92
 - o PR-AUC: 0.74
- Random Forest
 - o ROC-AUC: 0.98
 - o PR-AUC: 0.88
- XGBoost
 - o ROC-AUC: 0.98
 - o PR-AUC: 0.87

- Training and Cross-Validation
 - O Best Model: Random Forest
 - Best Cross-Validation Accuracy: 0.961
 - O Test Accuracy: 0.954

- Logistic Regression outperforms in tolerating False Positive (FP)
- XGBoost outperforms Random Forest in minimizing False Negative (FN)

Interpretability

 Insulin_dependenc show the most predictive power, followed by race_WHITE, and so on

Interpretability

 It is observed a downward trend in the SHAP dependence plot for the feature 'age,' indicating that smaller values of age contribute to higher SHAP values

Interpretability

insulin_dependence not only has a significant impact on predictions (as indicated by the spread of dots along the x-axis) but also that higher values of insulin_dependence (red dots) are generally associated with an increase in the model's prediction value.

Looking Forward

- Implementation Plan & Dissemination Strategy
 - User Interface
 - User-friendly Interface
 - Integration with Healthcare Systems
 - Electronic Health Records
 - Clinical Decision Support
 - Yale Health System

References

Ogunyemi, Omolola I, et al. "Detecting diabetic retinopathy through machine learning on electronic health record data from an urban, safety net healthcare system." JAMIA Open, vol. 4, no. 3, 2021, https://doi.org/10.1093/jamiaopen/ooab066.

"Diabetes Quick Facts." Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, 4 Apr. 2023,

www.cdc.gov/diabetes/basics/quick-facts.html#:~:text=About%2038%20million%20people%20in,(and%20may%20be%20underreported).

"Diabetic Retinopathy Rule of Thirds Guides - Centers for Disease ..." Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, www.cdc.gov/visionhealth/pdf/factsheet.pdf. Accessed 14 Dec. 2023.

Acknowledgement

- Jiaye Chen: Data preparation, Problem specification
- Luning Yang: Data preparation, Model development and performance evaluation
- Mengmeng Du: Data preparation, Data preprocessing
- Yawen Wei: Data preparation, Bias Assessment and Interpretability