Solution of Stochastic Differential Equations by Random Time Change

SHINZO WATANABE

Department of Mathematics Kyoto University Kyoto, Japan

1. Introduction

In this paper, we try to solve stochastic differential equations of the form

$$dX_t = \alpha(t, X_s, s \le t)dB_t \tag{1}$$

by means of random time change. Such a problem was studied by Yershov [4] and an interesting example was given by Nisio [2] (Example 3). We will discuss this problem more systematically and give some examples. Once the equation (1) can be solved, then, if α is non-degenerate, the equation of the form

$$dX_t = \alpha(t, X_s, s \le t)dB_t + \beta(t, X_s, s \le t)dt$$

can be solved by the well known transformation of measures.

2. Solution of the equation (1) by a random time change

Let $W = C([0,\infty) \to \mathbb{R})$ be the space of all continuous, real functions defined on $[0,\infty)$, $\mathcal{B}(W)$ be the σ -field generated by Borel cylinder sets and $\mathcal{B}_t(W)$ be the σ -field generated by Borel cylinder sets up to time t.

Let $\alpha(t,w)$ be a mapping

$$\alpha(t,w):(t,w)\in[0,\infty)\times W$$
 $M\to\alpha(t,w)\in\mathbb{R}$

such that it is bounded, $\mathscr{B}[0,\infty) \times \mathscr{B}(W)/\mathscr{B}(\mathbb{R})$ -measurable and for each $t \ge 0$, the mapping $w \mapsto \alpha(t,w)$ is $\mathscr{B}_t(W)/\mathscr{B}(\mathbb{R})$ -measurable. We will consider the following one-dimensional stochastic differential equation

$$dX_t = \alpha(t, X)dB_t. \tag{1}$$

A precise formulation is as follows:

By a solution of (1), we mean a family $\{B = B(t), X = X(t)\}$ of stochastic processes defined on a probability space $(\Omega, \mathcal{F}, P; \mathcal{F}_t)$ with an increasing family $\{\mathcal{F}_t\}$ of sub σ -fields of \mathcal{F} , such that

- (i) B is an \mathcal{F}_t -Brownian motion,
- (ii) X is an \mathcal{F}_t -adapted continuous process,

i.e. X is a W-valued random variable such that for each t, it is $\mathcal{F}_t/\mathcal{B}_t(W)$ -measurable,

(iii) with probability one,

$$X(t) - X(0) = \int_0^t \alpha(s, X) dB_s \tag{1}$$

where the integral is understood in the sense of Itô's stochastic integral.

In the following, we assume that, for some positive constant c,

$$c \leq \alpha(t, w)$$
, for all t, w .

Of course, well-known condition for the existence and uniqueness of solutions is the *Lipschitz condition*: for every T > 0, a constant K(T) > 0 exists such that $\int_0^T |\alpha(t,w) - \alpha(t,w')|^2 dt \le K(T) \int_0^T |w(t) - w'(t)|^2 dt$.

Here, we will try to solve the equation (1) by means of a random time change. For this, we will introduce several notations.

Let φ_t : $t \in [0, \infty) \longrightarrow \varphi_t \in \mathbb{R}$ be a strictly increasing and continuous function such that $\varphi_0 = 0$ and $\lim \varphi_t = \infty$. The set of all such functions is denoted by \mathscr{I} .

Clearly $\mathscr{I} \subseteq W$ and let $\mathscr{B}(\mathscr{I}) = \mathscr{B}(W)|\mathscr{I}, \mathscr{B}_t(\mathscr{I}) = \mathscr{B}_t(W)|\mathscr{I}$. For $\varphi \in \mathscr{I}$, its inverse function is denoted by φ^{-1} . Clearly $\varphi^{-1} \in \mathscr{I}$ and $\varphi_{\varphi_t}^{-1} = \varphi_{\varphi_t - 1} = t$. For $\varphi \in \mathscr{I}$, let $T^{\varphi} \colon W \to W$ be defined by $(T^{\varphi_t} w)(t) = w(\varphi_t^{-1}), w \in W, t \in [0, \infty)$.

By an \mathscr{F}_t -adapted increasing process defined on a quadruplet $(\Omega, \mathscr{F}, P; \mathscr{F}_t)$, we mean a mapping $\Omega \to \mathscr{I}$ such that for each $t \geq 0$, it is $\mathscr{F}_t/\mathscr{B}_t(\mathscr{I})$ -measurable.

We are interested in the solution $X = (X_t)$ of (1) such that $X(0) = x \in \mathbb{R}$ (constant). For $w \in W$ and $x \in \mathbb{R}$, let $x + w \in W$ be defined by (x + w)(t) = x + w(t).

Theorem (i) Let b = (b(t)) be an \mathscr{F}_t -Brownian motion (b(0) = 0) defined on a quadruplet $(\Omega, \mathscr{F}, P; \mathscr{F}_t)$. Let φ_t be an \mathscr{F}_t -adapted increasing process such that, with probability one,

$$\varphi_t = \int_0^t \frac{ds}{\alpha^2 (\varphi_s, x + T^{\varphi}b)} \tag{2}$$

holds. We set $\widetilde{\mathcal{F}}_t = \mathcal{F}_{\varphi_t^{-1}}$ and $X(t) = x + b(\varphi_t^{-1})$. Then, there exists an $\widetilde{\mathcal{F}}_t$ -Brownian motion $\widetilde{B} = (\widetilde{B}_t)$ such that (\widetilde{B},X) is a solution of (1) on $(\Omega,\mathcal{F},P;\widetilde{\mathcal{F}}_t)$ with X(0) = x, a.s.

(ii) Conversely, let (B,X) be a solution of (1) on a quadruplet $(\Omega, \mathcal{F}, P; \mathcal{F}_t)$ such that $X_0 = x$. Then, there exist an increasing family $\tilde{\mathcal{F}}_t$ of sub σ -fields of \mathcal{F} , an $\tilde{\mathcal{F}}_t$ -Brownian motion b = (b(t)) such that b(0) = 0 and an $\tilde{\mathcal{F}}_t$ -adapted increasing process φ_t such that, with probability one,

$$\varphi_t = \int_0^t \frac{ds}{\alpha^2(\varphi_s, x + T^{\varphi}b)}$$

for all $t \ge 0$ and $X(t) = x + b(\varphi_t^{-1})$. Namely, any solution (B, X) of (1) is given as in (i).

Corollary. If, for a given \mathcal{F}_t -Brownian motion b=(b(t)) such that b(0)=0, there exists a unique \mathcal{F}_t -adapted increasing process φ_t such that (2) holds, then a solution (B,X) of (1) such that X(0)=x exists and is unique in the law sense. Thus, to solve the equation (1) is equivalent to solve the equation (2) for φ_t .

Proof (i). Let b=(b(t)) (b(0)=0) be an \mathscr{F}_t -Brownian motion and φ_t be an \mathscr{F}_t -adapted increasing process such that (2) holds a.s. . Then, $M(t)=b(\varphi_t^{-1})$ is a continuous square integrable martingale with respect to $\mathscr{F}_t=\mathscr{F}_{\varphi_t^{-1}}$ such that $\langle M \rangle_t=\varphi_t^{-1}$. Let $X(t)=x+M(t)=x+b(\varphi_t^{-1})$. Then, by (2),

$$t = \int_0^t \alpha^2(\varphi_s, x + T^{\varphi}b)d\varphi_s$$

$$= \int_0^t \alpha^2(\varphi_s, X)d\varphi_s \text{ and hence,}$$

$$\langle M \rangle_t = \varphi_t^{-1} = \int_0^{\varphi_t^{-1}} \alpha^2(\varphi_s, X)d\varphi_s = \int_0^t \alpha^2(\varphi_{\varphi_s^{-1}}, X)ds$$

$$= \int_0^t \alpha^2(s, X)ds.$$

Let $\tilde{B}(t) = \int_0^t \frac{dM_s}{\alpha^2(s, X)}$ by stochastic integral with respect to a martingale M

(cf. [1]). Then, $\langle \tilde{B} \rangle_t = \int_0^t \frac{d\langle M \rangle_s}{\alpha^2(s, X)} = t$ and hence, \tilde{B} is $\tilde{\mathcal{F}}_t$ -Brownian motion. Also,

$$M(t) = X(t) - x = \int_0^t \alpha^2(s, X) d\tilde{B}_s.$$

(ii) Conversely, let (B, X) be a solution of (1) on $(\Omega, \mathcal{F}, P; \mathcal{F}_t)$ such that X(0) = x. Let M(t) = X(t) - x. Then, M is a square integrable martingale with respect to \mathcal{F}_t such that

$$\langle M \rangle_t = \int_0^t \alpha^2(s, X) ds, \quad a.s.$$

Let $\psi_t = \langle M \rangle_t = \int_0^t \alpha^2(s, X) ds$, $\varphi_t = \psi_t^{-1}$, and $\widetilde{\mathscr{F}}_t = \mathscr{F}_{\varphi_t}$. Then $b(t) = M(\varphi_t)$ is $\widetilde{\mathscr{F}}_t$ -Brownian motion and also, φ_t is $\widetilde{\mathscr{F}}_t$ -adapted increasing process. Since $t = \int_0^t \frac{d\psi_s}{\alpha^2(s, X)}$ and $X(t) = x + b(\psi_t) = x + (T^{\varphi}b)(t)$, we have

$$\varphi_t = \int_0^{\varphi_t} \frac{d\psi_s}{\alpha^2(s, X)} = \int_0^t \frac{du}{\alpha^2(\varphi_u, X)} = \int_0^t \frac{du}{\alpha^2(\varphi_u, x + T^{\varphi}b)}$$

This completes the proof.

3. Examples

Example 1. $\alpha(t,w) = a(w(t))$, where $\alpha(x)$ is a bounded, Borel measurable function on \mathbb{R} such that $c \le a(x)$ where, here and in the following, c is a positive

constant. Then, the equation (2) is given as,

$$\varphi_t = \int_0^t \frac{ds}{a^2 [(x + T^{\varphi}b)(\varphi_s)]} = \int_0^t \frac{ds}{a^2 (x + b(s))}$$
 (3)

Thus, the equation

$$\begin{cases} dX(t) = a(X(t))dB(t) \\ X(0) = x \end{cases}$$
 (4)

is solved as $X(t) = x + b(\varphi_t^{-1})$ by a Brownian motion b(t) where φ_t is given by (3). This is a well known construction in the diffusion theory.

Example 2. $\alpha(t, w) = a(t, w(t))$, where a(t, x) is a bounded, Borel measurable function on $[0, \infty) \times \mathbb{R}$ such that $c \le a(t, x)$. Then, the equation (2) is given as,

$$\varphi_{t} = \int_{0}^{t} \frac{ds}{a^{2} [\varphi_{s}, x + (T^{\varphi}b)(\varphi_{s})]} = \int_{0}^{t} \frac{ds}{a^{2} (\varphi_{s}, x + b(s))}$$
 (5)

This is equivalent to the following differential equation

$$\begin{cases} \dot{\varphi}_t = \frac{1}{a^2(\varphi_t, x + b(t))} \\ \varphi_0 = 0. \end{cases}$$
 (5')

Thus, if, for given Brownian motion b(t), (5') has the unique solution, we can solve the equation

$$\begin{cases} dX(t) = a(t, X(t))dB(t) \\ X(0) = x \end{cases}$$
 (6)

uniquely. One simple sufficient condition is that a(t, x) is Lipschitz continuous in t as was already remarked by Yershov [4]. Assume now that a(t, x) is continuous in (t, x). Then, by Stroock-Varadhan [3], (6) has the unique solution in law sense. Given a Brownian motion b(t), the ordinary differential equation (5') has the maximal and minimal solutions $\bar{\varphi}_t$ and $\underline{\varphi}_t$. Since $\overline{X}_t = x + b(\bar{\varphi}_t^{-1})$ and $\underline{X}_t = x + b(\bar{\varphi}_t^{-1})$ are solutions of (6), it is easy to see that $\bar{\varphi}_t = \underline{\varphi}_t$. Thus, if a(t, x) is continuous, the equation (5') has the unique solution almost surely, for a given Brownian motion b(t).

Example 3. (Nisio [2], Ex. 3).

$$\alpha(t, w) = a(\xi + \int_0^t f(w(s))ds)$$

where a(x) is a bounded, Borel measurable function on \mathbb{R} such that $c \leq a(x)$, f(x) is a locally bounded Borel measurable function on \mathbb{R} and $\xi \in \mathbb{R}$. The corresponding stochastic differential equations is now

$$\begin{cases} dX(t) = a(\xi + \int_0^t f(X(s))ds)dB_t \\ X(0) = x \end{cases}$$
 (7)

which, in a special case of f(x) = x, is essentially an equation for motion with random acceleration:

$$\begin{cases}
dX(t) = \dot{X}(t)dt \\
d\dot{X}(t) = a(X(t))dB(t) \\
X(0) = \xi \\
\dot{X}(0) = x
\end{cases}$$
(8)

Now, the equation (2) is given, in this case, as

$$\varphi_{t} = \int_{0}^{t} \frac{ds}{a^{2}(\xi + \int_{0}^{\varphi_{s}} f[x + (T^{\varphi}b)(u)]du)}$$
(9)

and

$$\int_0^{\varphi_s} f[x + (T^{\varphi}b)(u)] du = \int_0^{\varphi_s} f[x + b(\varphi_u^{-1})] du$$
$$= \int_0^s f[x + b(u)] d\varphi_u$$
$$= \int_0^s f[x + b(u)] \varphi_u du$$

Thus, (9) is equivalent to

$$\begin{cases} \dot{\varphi}_t = \frac{1}{a^2(\xi + \int_0^t f[x + b(u)]\dot{\varphi}_u du)} \\ \varphi_0 = 0 \end{cases}$$
 (10)

(10) is solved, for a given Brownian motion b(t), uniquely in the following way: set

$$Z(t) = \int_0^t f[x+b(u)]\phi_u du. \text{ Then}$$

$$\dot{Z}(t) = f(x+b(t)) \cdot \dot{\varphi}_t = \frac{f(x+b(t))}{a^2(\xi+Z(t))}$$

and hence,

$$a^2(\xi + Z(t))\dot{Z}(t) = f(x+b(t)).$$

Therefore,

$$\int_{0}^{t} a^{2}(\xi + Z(s))\dot{Z}(s)ds = \int_{0}^{t} f[x + b(s)]ds$$

and hence,

$$A(Z(t)) = \int_0^t f[x+b(s)]ds$$

where $A(x) = \int_0^x a^2(\xi + y)dy$. Let $A^{-1}(x)$ be the inverse function of $x \mapsto A(x)$. Then

$$Z(t) = A^{-1} \left(\int_0^t f[x + b(s)] ds \right)$$

and thus, φ_t is solved as

$$\varphi_t = \int_0^t \frac{ds}{a^2(\xi + Z(s))} = \int_0^t \frac{ds}{a^2(\xi + A^{-1}(\int_0^s f[x + b(u)]du))}.$$
 (11)

Solution X(t) of (7) is given as $X(t) = x + b(\varphi_t^{-1})$.

Example 4.

$$\alpha(t, w) = a(w(t), \xi + \int_0^t f(w(s))ds)$$

where a(x, y) is a bounded continuous function on $\mathbb{R} \times \mathbb{R}$ such that $c \leq a(x, y)$. f(x) is a bounded continuous function such that $c' \leq f(x)$ for some positive constant c' and $\xi \in \mathbb{R}$. Then, the equation (2) is given, in this case, as

$$\varphi_t = \int_0^t \frac{ds}{a^2 [x + (T^{\varphi}b)(\varphi_s), \xi + \int_0^{\varphi_t} f[x + (T^{\varphi}b)(u)] du]}$$
(12)

for a given Brownian motion b = (b(t)).

Let

$$Z(t) = \int_0^{\varphi_t} f[x + (T^{\varphi}b)(u)] du = \int_0^t f[x + b(u)] \dot{\varphi}_u du.$$

Then, (12) is equivalent to

$$\dot{Z}(t) = f(x+b(t))\dot{\varphi}_t$$

$$= \frac{f(x+b(t))}{a^2(x+b(t), \xi+Z(t))}$$

$$= \Phi(b(t), Z(t))$$

$$Z(0) = 0$$
(13)

where

$$\Phi(\eta, \zeta) = \frac{f(x+\eta)}{a^2(x+\eta, \xi+\zeta)}$$

As we remarked in Example 2 the equation (13) has the unique solution Z(t) almost surely for a given Brownian motion b(t). Then, $\varphi(t)$ is solved uniquely as

$$\varphi_t = \int_0^t \frac{ds}{a^2(x + b(s), \xi + Z(s))}$$
 (14)

and solution X(t) of

$$\begin{cases} dX(t) = a(X(t), \xi + \int_0^t f[X(s)]ds)dB(t) \\ X(0) = x \end{cases}$$
 (15)

is given by $X(t) = x + b(\varphi_t^{-1})$.

Example 5.

$$\alpha(t,w) = a(w(t), \xi + \int_0^t f_1[w(t_1)]dt_1 \int_0^{t_1} f_2[w(t_2)] \int_0^{t_2} \dots$$
$$\dots \int_0^{t_{n-1}} f_n[w(t_n)]dt_n$$

where a(x, y) is a bounded Borel measurable function on $\mathbb{R} \times \mathbb{R}$ such that $c \leq a(x, y), f_1, f_2, \ldots, f_n$ are bounded Borel measurable functions on \mathbb{R} and $\xi \in \mathbb{R}$. Then, the equation (2) is equivalent to

$$\varphi_{t} = \int_{0}^{t} \frac{1}{a^{2}(x+b(s), \xi+\int_{0}^{s} f_{1}(x+b(s_{1}))\dot{\varphi}_{s_{1}}ds_{1} \int_{0}^{s_{2}} f_{2}(x+b(s_{2}))\dot{\varphi}_{s_{2}}ds_{2} \dots (16)} \dots \overline{\int_{0}^{s_{n-1}} f_{n}(x+b(s_{n}))\dot{\varphi}_{s_{n}}ds_{n}}.$$

From this, we see, for example, that if a(x, y) satisfies $|a(z, y_1) - a(z, y_2)| \le K|y_1 - y_2|$ for all $z, y_1, y_2 \in \mathbb{R}$ (K is a constant) then φ_t is solved uniquely and hence, the corresponding stochastic differential equation is solved uniquely. This condition of the function a is much weaker than the Lipschitz condition on $\alpha(t, w)$ since we do not need any regularity condition on $f_1, f_2, \ldots f_n$.

References

- H. Kunite and S. Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209-245.
- [2] M. Nisio, On the existence of solutions of stochastic differential equations, Osaka J. Math. 10 (1973), 185-208.
- [3] D. W. Stroock and S. S. R. Varadhan, Diffusion processes with continuous coefficients, I, II, Comm. Pure Appl. Math. 12 (1969), 345-400 and 479-530.
- [4] M. P. Yershov, On stochastic equations, Proc. 2nd Japan-USSR Symp. on Probability Th. Vol. 330 of Lecture notes in Math. Springer 1973, 527-530.