4 SEM BE (R) DM

2018

(May-June)

DISCRETE MATHEMATICS

Full Marks: 100

Pass Marks: 35

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer question no. 1 and any four from the rest.

 $10 \times 2 = 20$

the set $\{(x,y): (x,y) \in P \times Q \text{ and } x \ge y\}$.

(iii) The relation R defined on set of integers Z as

 $R = \{(a,b): a,b \in \mathbb{Z}, ab > 0\}$. Show that R is an equivalence relation.

9

LANK,

(iii) Show that $f: R \to R$ defined by f(x) = 2x + 3 is a bijection.

Show that the operation * defined by $a*b = \frac{a+b}{5}$ is not a binary relation on the set of negative integers.

(v) Write all the subgroups of the multiplicative group $\{1, -1, i, -i\}$.

(vi) If x is an element of, a group G and O(x)=5 then what is the order of x^{15} ?

(1) Find the inverse of the permutation

(viii) Prove that ring of integers (Z,+,) is not a field.

(ix) Which of the following is not a lattice?

Translate the following statement into symbolic form:

"The crop will be destroyed if there is flood."

(a) Prove that:

3×2=6

AN(BUC) = (ANB)U(ANC)

(ii) $A \times (B \cup C) = (A \times B) \cup (A \times C)$

Wet $R = \{(x,y): x, y \in Z \text{ and } x-y \text{ is divisible by 5}\}$, Z is the set of integers. Show that R is an equivalence relation. Also find all the distinct equivalence classes of R. 4+2=6

Let $X = \{2, 3, 6, 12, 24, 36\}$ and $x \le y$ if x divides y for all $x \in X$. Show that (X, \le) is a partial ordered set. Find least upper bound and greatest lower bound of the set $A = \{2, 3, 6\}$. Also draw Hasse diagram for (X, \le) .

2 4 3+2+1=6

4 SEM BE (R) DM/D

3 6

Contd.

- (d) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined \mathcal{L}^y $f(x) = x^2 + 3$, g(x) = x + 6. Find the composite function $f \circ g$. 2
- 3. (a) Show that the set of all non-zero real numbers namely $R = \{0\}$ forms an abelian group with respect to operation $abelian by a * b = \frac{ab}{2} \forall a, b \in R = \{0\}$.
 - Show that identity element of a group is unique.
 - Let (G, *) be a group and $a, b \in G$. Show that
 - (i) $(a^{-1})^{-1} = a$
 - (ii) $(a*b)^{-1} = b^{-1}*a^{-1}$
 - Give an example of a finite non cyclic abelian group.

3+3=6

4 SEM BE (R) DM/D

4 SEM BE (R

- 4. (a) Prove that the order of each subgroup of a finite group is a divisor of the order of the group.
 - (b) Show that intersection of two subgroups is again a subgroup. Give a counter example to show that union of two subgroups may not be a group.
 - Prove that every subgroup of an abelian group is normal subgroup.
 - (d) If ϕ is a homomorphism of a group G into a group G', then show that

(i)
$$\phi(e) = e'$$
(ii) $\phi(a^{-1}) = [\phi(a)]^{-1}$

where e and e' are identities of G and G' respectively. 3+3=6

5. (a) Show that the set $R = \{0, 1, 2, 3, 4, 5\}$ is a commutative ring with respect to $+_6$ and $+_6$ as the ring operations. Verify that R is a ring with zero divisor. 6+1=7

Define an integral domain. Show that every field is an integral domain. $(R, +, \cdot)$ $a^2 = a \forall a \in R$, prove that (i) $a+a=0 \ \forall a \in R$ (ii) $a+b=0 \Rightarrow a=b$ R is a commutative ring. (d) Write all the axioms of a Boolean algebra. Construct truth table for (pAq)Ar. Define tautology and contradiction. that $(p \wedge q) \wedge \sim (p \vee q)$ contradiction. 1+4=5 (c) Show that 5 $\neg (p \land q) \rightarrow (\neg p \lor (\neg p \lor q)) \rightleftharpoons (\neg p \lor q)$

4 SEM B

- $(p \lor q) \land (\neg p \land (\neg p \land q)) \Leftrightarrow (\neg p \land q)$ (ii)
- 4 SEM BE (R) DM/D

Find the principal conjuctive and principal disjunctive normal form of $(-p \rightarrow r) \lor (q \leftrightarrow p)$.