Equivalent characterizations of the adjoint

Akira

 $\mathrm{July}\ 25,\ 2025$

Abstract

We explore equivalent definitions for categorical adjunctions. A baseline understanding of category theory is assumed.

Contents

1	Introduction
	Definitions2.12.1 Universal morphisms2.22.2 Comma categories3.3
	Adjunctions
4	Proof of equivalence

1 Introduction

Adjunctions are important. I should probably write more words here about the fabled history of the adjunction or the usefulness thereof, but I can't be bothered—further, this is just a silly bit that I can send to my friends; hi!! :D

Note that some of this PDF may be incorrect, and a couple properties are not verified in section 3. Throughout, let \mathcal{C}, \mathcal{D} be categories and let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be functors.

2 Definitions

We begin by defining some terminology.¹

2.1 Universal morphisms

Let $X \in \mathcal{D}$ be an object. A **universal morphism** from X to F is an object $A \in \mathcal{C}$ and a morphism $u: X \to F(A)$ such that for all $A' \in \mathcal{C}$, letting K = F(A') there is a unique morphism $\varphi: K \to L$ such that following triangle commutes:

$$X \xrightarrow{k} K \\ \downarrow_{\varphi} \\ \downarrow_{\varphi} \\ L.$$

¹For all prerequisites, see Dummit and Foote, Abstract Algebra, 3rd ed., Appendix II.

2.2 Comma categories

Consider the diagram $\mathcal{A} \xrightarrow{S} \mathcal{C} \xleftarrow{T} \mathcal{B}$ of categories. The **comma category** $(S \downarrow T)$ has objects triples (A, B, f) where $A \in \mathcal{A}$, $B \in \mathcal{B}$, and $f : S(A) \to T(B)$ and morphisms pairs $(a : A \to A', b : B \to B')$ which make the following diagram commute:

$$S(A) \xrightarrow{f} T(B)$$

$$\downarrow^{S(a)} \qquad \downarrow^{T(b)}$$

$$S(A') \xrightarrow{f'} T(B')$$

If $\mathcal{A} = A$ is a single-object category, we write $(S \downarrow T)$ as $(S(A) \downarrow T)$. We do the same thing if B has one object.

We may now rephrase the definition of a universal morphism. A **universal morphism** from Y to F is an initial object of the category $(Y \downarrow F)$. We may also now easily dualize this concept: a **universal morphism** from F to Y is a terminal object in the category $(F \downarrow Y)$.

3 Adjunctions

We now present equivalent formulations of adjunctions.

3.1 Universal morphisms and comma categories

Say F is a **left adjoint** if, for each $Y \in \mathcal{D}$, there is a universal morphism from F to Y. If the universal morphism is $u : F(X_Y) \to Y$ and $G(Y) = X_Y$, we say that F is **left adjoint to** G and write $F \dashv G$.

An immediate corollary to our above definition is the following equivalent one: a functor $F: \mathcal{C} \to \mathcal{D}$ is a **left adjoint** if the comma category $(F \downarrow Y)$ has an initial object for all objects $Y \in \mathcal{D}$

3.2 Unit-counit

Given a natural transformation η , one may easily check (as any good girl will) that the $(F\eta)_X = F(\eta_X)$ form a natural transformation $F\eta$. Then, we say F is **left adjoint to** G if there are natural transformations $\eta: id_{\mathcal{C}} \to GF$ and $\varepsilon: FG \to id_{\mathcal{D}}$ such that the following triangles commute:

$$F \xrightarrow{F\eta} FGF \qquad G \xrightarrow{\eta G} GFG$$

$$\downarrow_{\mathfrak{G}\varepsilon}$$

$$\downarrow_{\mathfrak{F}}$$

$$\downarrow_{\mathfrak{G}}$$

$$\downarrow_{\mathfrak{G}}$$

3.3 Hom-set bijection

We say F is left adjoint to G if, for all $X \in \mathcal{C}$ and $Y \in \mathcal{D}$, there exists a bijection $\varphi : \text{Hom}(F(X), Y) \to \text{Hom}(X, F(Y))$ natural in X and Y. The naturality condition just means that, given any $f : X' \to X$ and $g : Y \to Y'$, the following diagrams commute:

4 Proof of equivalence

We summarize the above definitions in a theorem.

Theorem. Let \mathcal{C}, \mathcal{D} be categories and let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ be functors. The following are equivalent:

- 1. For each object $Y \in \mathcal{D}$, there is a universal morphism $u: F(X_Y) \to Y$ where $X_Y = G(Y)$.
- 2. For all objects $Y \in \mathcal{D}$, there exists an initial object (G(Y), Y, u) in $(F \downarrow Y)$.
- 3. There are natural transformations $\eta: id_{\mathcal{C}} \to GF$ and $\varepsilon: FG \to id_{\mathcal{D}}$ such that $\varepsilon F \circ F\eta = id_F$ and $G\varepsilon \circ \eta G = id_G$
- 4. For all $X \in \mathcal{C}$ and $Y \in \mathcal{D}$, there exists a bijection $\varphi : \text{Hom}(F(X), Y) \to \text{Hom}(X, G(Y))$ natural in X and Y.

Proof. We have already seen why $(1) \Leftrightarrow (2)$.

(1) \Rightarrow (3): First, we construct G. If $F(X) \to Y$ is a universal morphism, then put G(Y) = X. Let $FG(Y_i) \xrightarrow{u_i} Y_i$ be universal morphisms (for i = 1, 2) and let $f : Y_1 \to Y_2$. Since u_2 is a universal morphism, there is exactly one map φ such that the following commutative diagram commutes:

$$FG(Y_1) \xrightarrow{u_1} Y_1$$

$$\downarrow^{F(\varphi)} \qquad \downarrow^f$$

$$FG(Y_2) \xrightarrow{u_2} Y_2$$

Then, put $G(f) = \varphi$. It is easy to show that G is a functor. Letting $\varepsilon_{Y_i} = u_i$, the above square shows that ε is a natural transformation. Let η_X be the unique map factoring $id_{F(X)}$ through the universal morphism associated with X. Pictorially, set η_X so that the diagram

$$F(X)$$

$$F(\eta_X) \downarrow id_{F(X)}$$

$$FGF(X) \xrightarrow{\varepsilon F_X} F(X)$$

commutes. We put $\eta_X = \varphi$. To see that η is natural, let $f: X_1 \to X_2$ and consider the diagram

The left and right triangles commute by definition, and the bottom trapezoid commutes by naturality of ε . Hence, if $P = FGF(f) \circ F\eta_{X_1}$ is the composition of the blue arrows and $Q = F\eta_{X_2} \circ F(f)$ is the composition of the red arrows, then $\varepsilon F_{X_2} \circ P = \varepsilon F_{X_2} \circ Q$. Let φ be this map. By the universality, there is exactly one arrow in \mathcal{C} which (after applying F) factors φ through εF_{X_2} . Since both P and Q give such a factoring, we conclude that they are equal. This shows naturality of $F\eta$. Naturality of η is also easily seen as there is only one map in \mathcal{C} (namely, the preimage of P = Q) which factors φ after applying F.

We also see that $\varepsilon F_X \circ F \eta_X = id_{F(X)}$ by the above diagram. By definition, we have the commutative diagram:

$$FG(Y) \xrightarrow{F(\eta_{G(Y)})} FGFG(Y)$$

$$\downarrow^{\varepsilon F_Y}$$

$$FG(Y).$$

Our aim is to show that

$$G(Y) \xrightarrow{\eta_{G(Y)}} GFG(Y)$$

$$\downarrow^{G\varepsilon_Y}$$

$$G(Y)$$

commutes, and by universality of εF_Y , it suffices to show that $\varepsilon F_Y = G\varepsilon_Y$.

(3) \Rightarrow (1): Our goal is to find a functor G and for each $Y \in \mathcal{D}$ a morphism $u : FG(Y) \to Y$ so that, for all $f : F(X) \to Y$, there exists a unique $\varphi : X \to G(Y)$ such that $u \circ F(\varphi) = f$. Visually, we want to find a commutative diagram

$$F(X)$$

$$\downarrow^{F(\varphi)} f$$

$$FG(Y) \xrightarrow{u} Y.$$

Let $u = \varepsilon_Y$. We then have the commutative diagram

$$FG(Y') \xrightarrow{\varepsilon_{Y'}} Y'$$

$$\downarrow^{FG(\alpha)} \qquad \downarrow^{\alpha}$$

$$FG(Y) \xrightarrow{u} Y.$$

Relabeling Y' with F(X) and α with f and appending the morphism $F(X) \xrightarrow{(F\eta)_X} FGF(X)$ and $f: F(X) \to Y$, our diagram then becomes

$$F(X) \xrightarrow{F(\eta_X)} FGF(X) \xrightarrow{\varepsilon_{F(X)}} F(X)$$

$$\downarrow^{FG(f)} \qquad \downarrow^{f}$$

$$FG(Y) \xrightarrow{u} Y.$$

The diagram commutes because $\varepsilon F \circ F \eta = id_F$. By commutativity of the above diagram, letting $\varphi = G(f) \circ \eta_X$ we see $f = u \circ F(\varphi)$.

We now show that φ is unique. Suppose $\psi: X \to G(Y)$ is a morphism such that $f = u \circ F(\psi)$. Applying G to and composing with η_X afterwards, we have the diagram

$$X \xrightarrow{\eta_X} GF(X) \xrightarrow{GF\eta_X} GFGF(X)$$

$$GF(\psi) \downarrow GFG(f)$$

$$GFG(Y) \downarrow G\varepsilon_Y$$

$$G(Y).$$

Hence, $G(f) \circ \eta_X = G\varepsilon_Y \circ GF(\psi) \circ \eta_X$. By the naturality square

$$X \xrightarrow{\eta_X} GF(X)$$

$$\downarrow^{\psi} \qquad \qquad \downarrow_{GF(\psi)}$$

$$G(Y) \xrightarrow{\eta_{G(Y)}} GFG(Y),$$

we deduce that $\varphi = G(f) \circ \eta_X = G\varepsilon_Y \circ \eta G_Y \circ \psi = \psi$ and φ is unique.

(4) \Rightarrow (3): Let φ be the natural bijection hom $(FX,Y) \to \text{hom}(X,GY)$ for $X \in \mathcal{C}$ and $Y \in \mathcal{D}$. Put $\eta_X = \varphi(id_{F(X)})$. We will show that the naturality square

$$X \xrightarrow{\varphi(id_{F(X)})} GF(X)$$

$$f \downarrow \qquad \qquad \downarrow_{GF(f)}$$

$$X' \xrightarrow{\varphi(id_{F(X')})} GF(X')$$

commutes. Since φ is natural in both components, the diagram

$$\hom(F(X), F(X)) \xrightarrow{\varphi} \operatorname{Hom}(X, GF(X))$$

$$\downarrow^{Ff_*} \qquad \qquad \downarrow^{GF(f)_*}$$

$$\operatorname{Hom}(F(X), F(X')) \xrightarrow{\varphi} \operatorname{Hom}(X, GF(X'))$$

commutes. Following where $id_{F(X)} \in \text{Hom}(FX, FX)$ is sent, commutativity yields the equality $GF(f) \circ \varphi(id_{F(X)}) = \varphi(F(f))$. Similarly, we also have the commutative square

$$\hom(F(X'), F(X')) \xrightarrow{\varphi} \operatorname{Hom}(X', GF(X'))$$

$$\downarrow^{Ff^*} \qquad \qquad \downarrow^{GF(f)^*}$$

$$\operatorname{Hom}(F(X), F(X')) \xrightarrow{\varphi} \operatorname{Hom}(X, GF(X')),$$

and following $id_{F(X')}$, we see that $\varphi(id_{F(X')}) \circ GF(f) = \varphi(F(f))$. Combining this with our earlier equality, we conclude that $GF(f) \circ \varphi(id_{F(X)}) = \varphi(id_{F(X')}) \circ GF(f)$ and so $\eta_{-} = \varphi(id_{F(-)})$ is a natural transformation. That $\varepsilon_{-} = \varphi^{-1}(id_{G(Y)})$ is natural and that the triangle inequalities hold are left as an exercise.

$$(1) \Rightarrow (4)$$
: Exercise.