Banker's Algorithm

(은행원 알고리즘)

1. 은행원 알고리즘

- 교착 상태(DeadLock) 회피 기법

- "안정 상태"검사

2. 계산 방식

- Available : 사용 가능한 자원의 수(1차원)

- Max: 각 프로세스 자원의 최대요청량(N x M, 2차원)

- Allocation: 현재 각 프로세스에 할당된 자원 수(N x M, 2차원)

- Need: 각 프로세스의 추가 요청량(N x M, 2차원)

2. **동작 방식** (i번째프로세스(P_i) 가 자원 필요할 때)

- 1) Request(i) <= Need(i)</pre>
- 2) [1번 성립할 때]Request(i) <= Available
- 3) [2번 성립할 때] P_i 에게 자원 할당을 "가정"

Available = Available - Request(i)

Allocation(i) = Allocation(i) + Request(i)

Need(i) = Need(i) - Request(i)

4) 안정상태 검사

3. 안전 상태 검사

- 1) Work <- Available 선언 Finish <- [False] * N (1차원) 선언
- 2) 다음 조건을 만족하는 i값을 찾는다. Finish[i] == False && (Need(i) <= Work)
- 3) 다음을 수행하고 2단계로 이동 Work = Work + Allocation(i) Finish[i] = True
- 4) 모든 i에 대해 Finish[i] == True이면 안정상태

Process	А	llocate	ed	٨	Aaximur	n	1	Availabl	е	The second second	(Maxir locate	
	Α	В	С	Α	В	C	Α	В	С	A	В	C
P1	0	0	0	7	5	3	3	3	2	7	5	3
P2	2	0	0	3	2	2	·	-		1	2	2
P3	4	0	1	9	0	4				5	0	3
P4	2	1	1	2	2	2				0	1	1

Α	В	С
0	1	0
0	1	0

- ① Request(i) <= Need(i)
- ② [1번 성립할 때]Request(i) <= Available
- ③ [2번 성립할 때] P_i 에게 자원 할당 "가정"

Available = Available - Request(i)

Allocation(i) = Allocation(i) + Request(i)

Need(i) = Need(i) - Request(i)

④ 안정상태 검사하여 안정상태가 맞다면 실제로 할당

Pass!

4. 예시 (안정상태 검사 진행 중!)

Process	А	llocate	d	٨	Maximur	n	1	Availabl	e
	Α	В	С	Α	В	C	Α	В	С
P1	0	1	0	7	5	3	3	3	2
P2	2	0	0	3	2	2			
P3	4	0	1	9	0	4			
P4	2	1	1	2	2	2			

0) Need 계산: Maximum - Allocated

	(Maxir locate	
Α	В	C
7	4	3
1	2	2
5	0	3
0	1	1

0) Need 계산

- 1) Work <- Available선언 Finish <- [False] * N (1차원) 선언
- 2) 다음 조건을 만족하는 i값을 찾는다. Finish[i] == False && (Need(i) <= Work)
- 3) 다음을 수행하고 2단계로 이동 Work = Work + Allocation(i) Finish[i] = True
- 4) 모든 i에 대해 Finish[i] == True이면 안정상태

Process	А	llocate	ed	Maximum		Available			Need(Maxim allocated			
	Α	В	С	Α	В	C	Α	В	С	A	В	C
P1	0	1	0	7	5	3	3	3	2	7	4	3
P2	2	0	0	3	2	2	-			1	2	2
P3	4	0	1	9	0	4				5	0	3
P4	2	1	1	2	2	2				0	1	1

1) Work, Finish 선언

Work	Finish
(3, 3, 2)	False
	False
	False
	False

- 0) Need 계산
- 1) Work <- Available 선언 Finish <- [False] * N (1차원) 선언
- 2) 다음 조건을 만족하는 i값을 찾는다. Finish[i] == False && (Need(i) <= Work)
- 3) 다음을 수행하고 2단계로 이동 Work = Work + Allocation(i) Finish[i] = True
- 4) 모든 i에 대해 Finish[i] == True이면 안정상태

Process	А	llocate	ed	Maximum		Available			Need(Maximum allocated)			
	Α	В	С	Α	В	C	Α	В	С	Α	В	C
P1	0	1	0	7	5	3	3	3	2	7	4	3
P2	2	0	0	3	2	2	-			1	2	2
P3	4	0	1	9	0	4				5	0	3
P4	2	1	1	2	2	2				0	1	1

1) Finish[i] == False && (Need(i) <=Work)

Work	Finish
(3, 3, 2)	False
	False
	False
	False

- 0) Need 계산
- 1) Work <- Available 선언 Finish <- [False] * N (1차원) 선언
- 2) 다음 조건을 만족하는 i값을 찾는다. Finish[i] == False && (Need(i) <= Work
- 3) 다음을 수행하고 2단계로 이동 Work = Work + Allocation(i) Finish[i] = True
- 4) 모든 i에 대해 Finish[i] == True이면 안정상태

Fail

Process	А	llocate	ed	٨	Maximun	n	,	Availabl	e	The second secon	(Maxir locate	
	Α	В	C	Α	В	C	Α	В	С	Α	В	C
P1	0	1	0	7	5	3	3	3	2	7	4	3
P2	2	0	0	3	2	2	-			1	2	2
P3	4	0	1	9	0	4				5	0	3
P4	2	1	1	2	2	2				0	1	1

- 0) Need 계산
- 1) Work <- Available 선언 Finish <- [False] * N (1차원) 선언
- 2) 다음 조건을 만족하는 i값을 찾는다. Finish[i] == False && (Need(i) <= Work)
- 3) 다음을 수행하고 2단계로 이동 Work = Work + Allocation(i) Finishfil = True
- 4) 모든 i에 대해 Finish[i] == True이면 안정상태

Pass

1) Finish[i] == False && (Need(i) <=Work)

Work	Finish		Work	Finish
(3, 3, 2)	False		(5, 3, 2)	False
	False	2		True
	False			False
	False			False

Process	А	llocate	ed	٨	Aaximur	n	,	Availabl	e		(Maxir locate	
1	Α	В	C	Α	В	C.	Α	В	С	A	В	C
P1	0	1	0	7	5	3	3	3	2	7	4	3
D2	2	0	0	3	2	2	-			- 1	2	2
P3	4	0	1	9	0	4			_	5	0	3
P4	2	1	1	2	2	2				0	1	1

- 0) Need 계산
- 1) Work <- Available 선언 Finish <- [False] * N (1차원) 선언
- 2) 다음 조건을 만족하는 i값을 찾는다. Finish[i] == False && (Need(i) <= Work
- 3) 다음을 수행하고 2단계로 이동 Work = Work + Allocation(i) Finish[i] = True
- 4) 모든 i에 대해 Finish[i] == True이면 안정상태

Pass

1) Finish[i] == False && (Need(i) <=Work)

Work	Finish	
(5, 3, 2)	False	
	True	2
	False	
	False	

Work	Finish
(7, 4, 3)	False
	True
	False
	True

Process	Allocated		٨	<i>l</i> aximur	n	1	Availabl	e	The second second	(Maxir locate		
	Α	В	C	Α	В	C	Α	В	С	A	В	C
P1	0	1	0	7	5	3	3	3	2	7	4	3
D2	2	0	0	3	2	2	-			1	2	2
P3	4	0	1	9	0	4				5	0	3
P4	2	1	1	2	2	2				0	1	1

- 0) Need 계산
- 1) Work <- Available 선언 Finish <- [False] * N (1차원) 선언
- 2) 다음 조건을 만족하는 i값을 찾는다. Finish[i] == False && (Need(i) <= Work)
- 3) 다음을 수행하고 2단계로 이동 Work = Work + Allocation(i) Finish[i] = True
- <u>4) 모든 i에</u> 대해 Finish[i] == True이면 안정상태

Pass

Work	Finish
(5, 3, 2)	False
	True
	False
	False

Process	А	llocate	ed	٨	<i>l</i> aximur	n	,	Availabl	е	The state of the s	l(Maxir locate	
	Α	В	С	Α	В	C	Α	В	С	A	В	C
P1	0	1	0	7	5	3	3	3	2	7	4	3
D2	2	0	0	3	2	2				1	2	2
P3	4	0	1	9	0	4				5	0	3
P4	2	-	-	2	2	2				0	4	4

- 0) Need 계산
- 1) Work <- Available 선언 Finish <- [False] * N (1차원) 선언
- 3) 다음을 수행하고 2단계로 이동 Work = Work + Allocation(i) Finishfil = True
- 4) 모든 i에 대해 Finish[i] == True이면 안정상태

Pass

(7, 4, 3) False True 2 False	Work	Finish	
	(7, 4, 3)	False	
False		True	2
		False	
True		True	

Work	Finish
(7, 5, 3)	True
	True
	False
	True

Process	Allocated		٨	Maximur	n	1	Availabl	e		(Maxir locate		
	Α	В	С	Α	В	C	Α	В	С	A	В	C
D4	0	4	0	7	6	2	2	2	2	7	A	2
				_ ^			-	,	*		-	-
D2	2	0	0	3	2	2	-		8	1	2	2
P3	4	0	1	9	0	4				5	0	3
D.4	2	4	4	2	2	2				0	4	4
1.4	- 4			4	4	4						

- 0) Need 계산
- 1) Work <- Available 선언 Finish <- [False] * N (1차원) 선언
- 2) 다음 조건을 만족하는 i값을 찾는다. Finish[i] == False && (Need(i) <= Work)
- 3) 다음을 수행하고 2단계로 이동 Work = Work + Allocation(i) Finish[i] = True
- 4) 모든 i에 대해 Finish[i] == True이면 안정상태

Pass

Work	Finish		Work	Finish
(7, 5, 3)	False		(11, 5, 4)	True
	True	(2)		True
	False			True
	True			True

Work	Finish
(11, 5, 4)	True
	True
	True
	True

안정 상태!

- 0) Need 계산
- 1) Work <- Available 선언 Finish <- [False] * N (1차원) 선언
- 2) 다음 조건을 만족하는 i값을 찾는다. Finish[i] == False && (Need(i) <= Work)
- 3) 다음을 수행하고 2단계로 이동 Work = Work + Allocation(i) Finish[i] = True
 - l) 모든 i에 대해 Finish[i] == True이면 안정상태

5. 단점

1) 현재 자원 수 파악 해야함

2) 사용하는 최대 자원 수 알고 있어야함.

3) 은행원 알고리즘 계산하는데 자원이 소모됨.

4) 불안정 상태라고 꼭 데드락이 발생하는 것이 아님.

6. 참고 사이트

- https://dlsdn73.tistory.com/17
- https://hoyeonkim795.github.io/posts/bankers/
- https://www.youtube.com/watch?v=pyOJDBphHkI&t=87s