BLG456E Robotics Intro to Reactive Robot Learning

Lecture Contents:

- Why learning.
- Supervised learning.
- Basic reactive controller learning.
- ROS Example

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

What is learning?

• 1. **Learning**: getting better at doing things from experience.

- 2. **Learning**: When a program C improves its performance in T according to P after incorporating E.
 - Computer program C.
 - Class of tasks T.
 - Performance measure P.
 - Experience E.

(Tom Mİtchell)

Why learning?

- Not fully specified problems.
 - e.g. unknown environments.
 - e.g. incomplete models.
- Vast amounts of data.
- Why calibration?
- Leverage "knowledge" of world itself.
- Adapt.

Successful Examples

- Learning to drive an autonomous vehicle.
- Learning to walk.
- Learning to classify objects.
- Learning to play world-class backgammon.
- Learning to do X better.

Recall the sense-action loop

Let's learn $f: P \rightarrow A$ A percept-action mapping

(simple reactive learning from demonstration)

BLG456E Robotics Intro to Reactive Robot Learning

Lecture Contents:

- Why learning.
- Supervised learning.
- Basic reactive controller learning.
- ROS Example

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Kinds of learning

- "Supervised"
 - Output (Y) provided for input (X). Learn relationship.
- "Unsupervised"
 - Full input/output examples not provided (just X). Learn structure.
- "Reinforcement learning"
 - Only occasional feedback.

Supervised learning

- Given input/output pairs (X,Y).
- Learn a mapping $f:X \rightarrow Y$.
- e.g. Sense-action learning from demonstration.

Supervised learning / classification: Learn a mapping from example pairs

Supervised learning

- Construct hypothesis to agree with training set.
 - Consistent.
- Prefer simplest consistent hypothesis.
 - · Ockham's razor.

(curve fitting example)

Learning is searching

- All possible solutions exist in the solution space.
- Finding a good or optimal solution.

Each hypothesis curve can be a point in the search space

Representing sensoryaction mapping

$$f: p \rightarrow a$$

f is a function from percepts to actions.

Percepts and actions can be sets of numbers - vectors

e.g.
$$p = \begin{bmatrix} 5.0 \\ -1.3 \end{bmatrix} a = \begin{bmatrix} 45 \\ 0.3 \end{bmatrix}$$

2 laser ranges, 2 motors

Representing sensoryaction mapping

e.g.
$$\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \mathbf{f}(p_1, p_2)$$
$$\begin{bmatrix} a_2 \\ a_2 \end{bmatrix}$$

f must be parameterisable.

e.g.

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = f(p_1, p_2) = \begin{bmatrix} w_{11} p_1 + w_{12} p_2 \\ w_{21} p_1 + w_{22} p_2 \end{bmatrix}$$

(linear function – but not very general)

Learning is searching for parameters of function

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = f(p_1, p_2) = \begin{bmatrix} w_{11}p_1 + w_{12}p_2 \\ w_{21}p_1 + w_{22}p_2 \end{bmatrix}$$

Learning by reducing loss/error (improving fit)

For a certain percept:

$$p = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$

Learner's current prediction:

$$\hat{\boldsymbol{a}} = \begin{bmatrix} \widehat{a}_1 \\ \widehat{a}_2 \end{bmatrix} = \boldsymbol{f}(\boldsymbol{p}_1, \boldsymbol{p}_2)$$

Observed action:

$$a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

Error:

$$\begin{aligned}
\mathbf{\epsilon} &= \|\mathbf{a} - \hat{\mathbf{a}}\|^2 = \left\| \begin{bmatrix} a_1 - \hat{a}_1 \\ a_2 - \hat{a}_2 \end{bmatrix} \right\|^2 \\
&= (a_1 - \hat{a}_1)^2 + (a_2 - \hat{a}_2)^2 \\
&= (a_1 - \mathbf{w}_{11} \mathbf{p}_1 - \mathbf{w}_{12} \mathbf{p}_2)^2 + (a_2 - \mathbf{w}_{21} \mathbf{p}_1 - \mathbf{w}_{22} \mathbf{p}_2)^2
\end{aligned}$$

Other possible representations of the function f?

- Overlapping bins (CMAC).
- Neural network.
- Exemplar-based (nearest-neighbour search).
- Kernel function.

• • •

Two NN frameworks

- FANN
 - C
- Keras
 - Python
 - Newer
 - Works with tensorflow/theano (deep learning)
 - Full boot camp lecture: http://files.djduff.net/nn.zip

Keras relevant functions: training

```
model = Sequential()

model.add(Dense(10, input_dim=inputX.shape[1], activation='relu', name='d1'))

model.add(Dense(2, activation='linear', name='f'))

model.compile(loss='mean_squared_error', optimizer='sgd')

model.fit(inputX,outputY, batch size=512,epochs=60,verbose=1)
```

FANN relevant functions: training

```
fann* fann_create_standard(int nlayers,int
ninputs,int nhidden,int noutput);

void fann_train(fann *ann, float
*input,float *output);
```

```
void fann_set_activation_function_hidden(fann* ann, FANN_SIGMOID_SYMMETRIC);
void fann_set_activation_function_output(fann* ann, FANN_SIGMOID_SYMMETRIC);
```

Keras relevant functions: running

```
model.save("learnt_network.h5")
model = load_model('learnt_network.h5')
outputY = model.predict(inputX)
```

FANN relevant functions: running

```
void fann_save(fann *ann, "filename")
float* fann_run(fann *ann, float *input);
fann* fann_create_from_file("filename");
```

Problems with supervised learning

- Demonstrator not always available.
 - e.g. learning to run away from lions.
- Demonstration not always applicable.
 - e.g. human demonstrator with human shape.
- "Labelled data" not always available.
 - e.g. recognising all the objects in the world.

Readings II

Ulrich Nehmzow (2003).

Mobile Robotics: A Practical Introduction.

Available from http://divit.library.itu.edu.tr/record=b1677494*tur

Chapter 4:

Robot Learning: Making Sense of Raw Sensor Data