Álgebra Clase 8

Tomás Ricardo Basile Álvarez 316617194

10 de octubre de 2020

Ejercicio 9.10

a) Sea $a \in G$ y G finito. Entonces $a^{|G|} = e$

Digamos que el orden de a es n, entonces, $a^n = e$. Además, entonces la cardinalidad de $\langle a \rangle$ es n. Pero como $\langle a \rangle$ es un subgrupo de G, por el teorema de Lagrange tenemos que $|\langle a \rangle|$ divide a $|G| \Rightarrow n$ divide |G| y entonces existe un entero k tal que |G| = kn Luego:

$$a^{|G|} = a^{nk} = (a^n)^k = e^k = e$$

b) Sea G finito y $H \leq G$ tal que [G:H] = 2. Probar que $x^2 \in H \forall x \in G$

Sea $x \in G$. Si $x \in H$, entonces claramente $x^2 \in H$ porque H es un grupo.

Si $x \notin H$, entonces consideramos el conjunto xH. Como [G:H]=2, entonces la partición inducida por \sim_H separa a G en dos clases de equivalencia.

En particular, como $x \notin H$, y como $x = xe \in xH$ (porque $e \in H$), entonces xH y H son disjuntos y por tanto son los dos conjuntos que forman la partición de G.

Consideramos ahora el conjunto x^2H . Como las clases de equivalencia o son disjuntas o son iguales, el conjunto x^2H tiene que ser igual a H o igual a xH (porque estos dos forman la partición de G)

Suponemos que $x^2H = xH$. Como $x^2 = x^2e \in x^2H$, entonces $x^2 \in xH$, lo que implica que existe una $h \in H$ tal que $x^2 = xh$, de donde se deduce que h = x y por tanto $x \in H$, una contradicción.

Por lo tanto, x^2H tiene que ser igual a H. En este caso, como $x^2 \in x^2H$, entonces $x^2 \in H$ y listo.