2011/12

Teste 2 05-05-2012

- **1.a)** Determine os valores próprios λ_n e funções próprias $y_n(x)$ do operador d/dx $(y'(x) = \lambda y(x))$ definidas no intervalo $[0, \ell]$, e satisfazendo as condições fronteira $y(\ell) = y(0)$.
- **b)** Calcule o produto interno de duas funções próprias arbitrárias $y_n(x)$, $y_m(x)$. Diga se obteve o resultado esperado quando $n \neq m$.
- c) Demonstre como se determinam os coeficientes c_n da série $u(x) = \sum_n c_n y_n(x)$ a partir da expressão de uma função u(x) definida no intervalo $[0, \ell]$.
- d) Calcule os coeficientes da série de Fourier complexa da função $u(x) = e^x$ definida no intervalo $[0, \ell]$.
- 2. Os polinómios de Hermite $H_n(x)$ são soluções da equação de Hermite,

$$y''(x) - 2x y'(x) + \lambda y(x) = 0, \qquad x \in \mathbf{R},$$

com valores próprios $\lambda_n = 2n, \ n \in \mathbb{N}_0$. São normalizados de forma a que: $\langle H_n | H_n \rangle = 2^n \, n! \, \sqrt{\pi}$.

- a) Coloque na forma de Sturm-Liouville a equação diferencial acima definida.
- **b)** Escreva, justificando, a expressão do produto interno de funções adequado a este problema.
- c) Considere as funções

$$u(x) = u_1 H_1(x) + u_3 H_3(x)$$
, $v(x) = v_1 H_1(x) + v_3 H_3(x) + v_5 H_5(x)$,

onde u_n , v_n são constantes reais. Calcule os seguintes integrais:

$$\int_{-\infty}^{\infty} u(x) v(x) e^{-x^2} dx , \qquad \int_{-\infty}^{\infty} u(x)^2 e^{-x^2} dx .$$

3. Seja y(x) uma solução da equação

$$(2x - x^2)y''(x) + (2 - 2x)y'(x) + \lambda y(x) = 0, \qquad x \in [0, 2].$$

- a) Verifique que o valor da derivada y'(0) fica completamente determinado pelo valor da função y(0).
- b) Admita que a solução y(x) se pode escrever como uma série de potências inteiras de x: $y = \sum_n a_n x^n$. Determine a relação de recorrência entre os coeficientes a_n .
- c) Encontre o conjunto de valores próprios λ_n associados a funções próprias $y_n(x)$ dadas por polinómios de grau bem definido.
- d) Determine as funções próprias $y_n(x)$ associadas aos três valores próprios mais pequenos, sujeitas à condição $y_n(0) = 1$.