

Cross-reactivity of Microviridin-like RiPPs and Generation of Multi-cyclic Peptides

Mingyu Choi, Hyunbin Lee, Seokhee Kim*

Department of Chemistry, Seoul National University, Gwanak-Gu, Seoul 151-747, Korea

Introduction

Microviridin, a subfamily in RiPP, can be a good model system to study due to its simple PTM

Connectivity of Mv-like RiPPs can be determined **Recent Studies** by combining MS² and hydrolysis / methanolysis. TTXXXXEE... **Group 5** Core Sequence

Connectivity of microviridin-like RiPPs can be determined by MS² and hydrolysis / methanolysis

Phylogenetic analysis

Various sequences, but distinct consensus **Groups in Mv-like RiPPs** are found on Microviridin-like RiPPs.

<Biosynthesis of RiPP>

<Phylogenetic tree >

...PFFARFL ..bPYIhNYSE... TxxTxxxExxDxD... ...PLLxYb.... TxxTxTxExxDxxE ..bPLILxFxE... $. T \times T \times T \times X \times X \times E \times X \times D \times D$...PLLhxYxxxR. TKTXXXXEXDD...LFIEaL....TTXXXXEE.

There are 6 orthogonal biosynthetic

enzymes in Mv-like RiPPs

<Core Sequence> <Leader Sequence>

Homology of enzyme and similarity of leader and core sequence in precursor are well correlated

Connectivity analysis

Cross-reactivity

Cross-reactivity?

modified core a **Cross-reactivity of core** Peptide Ab leader A

(1) core = 3b / enzyme = 3a

TKTXXXXEXDD.

Result Summary

Dehydration level * : ATP-grasp enzyme was not even co-expressed

†: final product was not observed

f: faster than native m: comparable to native s: slower than native

* : Product has non-native connectivity †: Product with 1 more crosslinking was slightly observed

This is the first case that macrocyclases can be cross-unreactive in same class of RiPP (e.g., lanthipeptide – highly cross-reactive)

Hybrid Mv-like RiPP

Cloning Strategy **Hybrid RiPP?**

Peptide ABb Peptide Bb Ligation

Overlap extension PCR

Preliminary Result > Sequential hybridization of Mv-like RiPPs is not always successful

Construct	1	5	Combined
1_5	0	-2	-2
5_1	-2	-2	-4
5_1x	0 ~ -2	-2	-2 ~ -4

Linker between leaders = GS Linker between leader and core = LVPR GS (Thrombin site) Linker between cores = DPGS (DP for HCOOH digest) $A_B = (N') A leader - B leader - A core - B core$ x = VTGGKG LVPRGS as linker between leader and core

- (1) Crosslinking reactions by each enzyme is completely orthogonal
- (2) Linker between leader and core of native precursor is important for efficient crosslinking reaction by enzyme
- (3) Sequential hybridization of multiple macrocycles from various RiPPs also might be difficult due to low efficiency

---- Connectivities of core peptides crosslinked by noncognate enzyme

Kinetic Analysis of Reactions by Enzyme & Noncognate Core

Future work

Overlap hybrid RiPP

Multiple Protease-targeting inhibitor development

Can sequential hybridized Mv-like RiPPs be used as universal serine-protease inhibitor?

Reference

Angew. Chem. Int. Ed., 2008, 47, 7756-7759 Cell Chem. Biol., 2011, 18, 1413-1421 Nat. Prod. Rep., **2013**, *30*, 108-160

Nat. Chem. Biol., 2016, 12, 973-979 Biochemistry, **2017**, *56*, 4927-4930 Proc. Natl. Acad. Sci., 2012, 109, 18361-18366