New 900MHz Reader Control Protocol User Manual

Version Control							
Date Version Content							
2012/05/ 21 V1.1 Remove unused functions, command update							

Table of Contents

lable of Contents	
3 1. Introduction	4
2. Data's type and the basic format of protocols	5
2.1. Data's Type	5
2.2. Basic format of protocol	5
2.3. Data Format	6
3. Code Table	7 4.
Communication Protocol	
ISO18000-6B Identify	
ISO18000-6B Write Memory bank	9 4.3.
ISO18000-6B Read Memory Bank	
(GEN 2) Identify Single Tag	
2) Identify Multiple Tag	11 4.6. EPC (GEN 2)
Write Memory Bank	
Memory Bank	
Reader	
Reader	
Reader	
Information of Reader	
Reset	
Tag	
Parameters of Reader	
Parameters of Reader	
Output	24

1. Introduction

Communications protocol definition

Support RS232/ RS485/TCPIP;

The mode of information transmission is asynchronous,

Start bit: 1, date bits: 8, stop bits: 1, no checksum.

Rate of data transmission: 9.6kb/s;

Supervision Unit (SU): like PC or control device;

Supervisory Module (SM): Reader;

The monitoring unit (SU) and the monitor module (SM) communication mode adopts master-slave mode, SU as host computer, SM as lower machine.

SU call SM and issue the command, SM receives the command returns response information, and SU in 1s is not receiving a SM response or receiving response information error, think of the communication process failed.

Note: Communication data is HEX;

2. Data's type and the basic format of protocols

2.1. Data's Type

Two types:

• Command: SU to SM;

• Response: SM to SU;

2.2. Basic format of protocol

Table 2.2-1 basic format of protocols

No.	1	2	3	4	5	6	7
byte	1	2	1	1	1	LENGTH	1
format	SOI	ADR	CID1	CID2	LENGT H	INFO	CHKSUM

Table 2.2-2 basic format of notes

No.	Symbol	significance	Remarks
1	SOI	START OF INFORMATION	Command(7 CH) Response(C CH)
2	ADR	Equip address(1~65534),(65535 public address,0 reserve address)	FFFFH
3	CID1	Command: Control identification code (data type description)	
4	CID2	Command: control identification code (action type description) Response: RTN(Return code Table 2-3)	
5	LENGTH	INFO Data Length	
6	INFO	Command: Command information Response: Response data information	
7	CHKSUM	The checksum code	

Table 2-3 Return code (RTN)

No.	RTN Value (HEX)	significance	Remarks
1	00H	Succeed	
2	01H	Fail	
3	32H	Auto send to SU	

2.3. Data Format

CHKSUM data format:

• CHKSUM Introduction

The calculation of CHKSUM is in addition to CHKSUM, other characters in 16 hex code values of cumulative sum, the result modulo 256 remainder taking anti - plus 1.

For example: Receive or send data is: "CC 02 01 B1 22 04 BB 12 02 03 88". The last byte "88" is CHKSUM.

```
Calculate as follows:
```

```
'CC'+'02'+'01'+...+'22'+'04'+'BB'+'12'+'02'+'03'
= CCH + 02H + 01H + ... + 22H + 04H + BBH + 12H + 02H + 03H
= 0278H
```

0278H mode 256 and the remainder is 78H, 78H anti plus 1 is 88H.

• CHKSUM Calculate refers:

```
unsigned char Checksum ( unsigned char *uBuff, unsigned char uBuffLen)
{
    unsigned char i, uSum =0;
    for(i=0; i<uBuffLen; i++)
    {
        uSum = uSum + uBuff[i];
    }
    uSum = (~uSum) + 1;
    return uSum;
}</pre>
```

3.Code Table

CID1, CID2 Code Distribution and Classification as follows:

Table 3-1 Command code Classification (SENIOR CID1)

No.	Content	CID1	Remark
1	ISO18000-6B Identify	01H	
2	ISO18000-6B memory bank action	02H	
3	EPC(GEN 2) Identify Single tag	10H	
4	EPC(GEN 2) Identify Multiple tag	11H	
5	EPC(GEN 2) memory bank action	12H	
6	Basic parameters of reader	81H	
7	Basic Information of reader	82H	
8	Software reset reader	8FH	
9	Encrypted tag	30H	
10	TCPIP Parameters of reader	В9Н	
11	Remote IO Output	ВВН	
12			

Table 3-2 Command action Classification (CID2)

No. Content CID2 Remarks 1 Set command 31H

- 2 Get command 32H
- 3 Set senior command 21H
- 4 Get senior command 22H

4.Communication Protocol

For the use of this protocol in the protocol code as follows.

Table 4-1 protocol code

No.	Content	CID1	CID2	Remarks
1	ISO18000-6B Identify	01H	32H	
2	ISO18000-6B Write Memory Bank	02H	31H	
3	ISO18000-6B Read Memory Bank	02H	32H	
4	EPC(GEN 2) Identify Single Tag	10H	32H	
5	EPC(GEN 2) Identify Multiple Tag	11H	32H	
6	EPC(GEN 2) Write Memory Bank	12H	31H	
7	EPC(GEN 2) Read Memory Bank	12H	32H	
8	Set Basic Parameters Of Reader	81H	31H	
9	Get Basic Parameters Of Reader	81H	32H	
10	Set Address Of Reader	82H	31H	
11	Get Basic information Of Reader	82H	32H	
12	Software Reset	8FH	31H	
13	Encrypted Tag	30H	31H	
14	Set TCPIP Parameters Of Reader	В9Н	21H	
15	Get TCPIP Parameters Of Reader	В9Н	22H	
16	Remote IO Output	BBH	21H	
17				

Note: with * command representation is optional command; the reader does not have this feature, if have this feature, should be in accordance with the execution of this agreement. (Hereinafter appearing * place, meaning as described above, not detailed below.)

4.1. ISO18000-6B Identify

Fast acquisition of 6B tag UID data;

4.1.1. **Command**

CID1: 01H CID2: 32H INFO: - None

Example:

HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	01	32	00	0xNN

4.1.2. Response

CID1: 01H RTN: 00H INFO:

- AN (8-bit): Antenna Number (Default 0x01)- UID (variable): Target tag's unique identifier

Example: AN = 1;

UID = 0xE2003411B802011383258566;

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	RTN	LENGTH	AN	UID(MSB)
CC	FF	FF	01	00	0D	01	E2
00	34	11	B8	02	01	13	83
		UID(LSB)	CHKSUM				
25	85	66	0xNN				

4.2. ISO18000-6B Write Memory bank

Write data to memory bank of 6B tag.

4.2.1. **Command**

CID1: 02H CID2: 31H INFO:

- SA (8-bit): Starting Address word pointer

DL (8-bit): Data Length to write
 DT (variable): Data to write.
 Example: Start Address = 0x12,
 Data Length = 0x08,

Data to write = 0x1234567800000000

HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	SA	DL
7C	FF	FF	02	31	0A	12	08
DT(MSB)							DT(LSB)
12	34	56	78	00	00	00	00
снкѕим							
0xNN							

4.2.2. Response

CID1: 02H RTN: 00H INFO: - None

Example: Success;

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	RTN	LENGTH	CHKSUM
СС	FF	FF	02	00	00	0xNN

4.3. ISO18000-6B Read Memory Bank

Read memory back data of 6B tag

4.3.1. **Command**

CID1: 02H CID2: 32H INFO:

- SA (8-bit): Starting Address word pointer

- DL (8-bit): Data Length to read Example: Start Address = 0x12,

Data Length = 0x08.

HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	SA	DL
7C	FF	FF	02	32	02	12	08
снкѕим							
0xNN							

4.3.2. Response

CID1: 02H RTN: 00H INFO:

- AN (8-bit): Antenna Number (Default 0x01)

- DT (variable): Data of read.

Example: Success;

HEAD	ADDR(LSB	ADDR(MSB)	CID1	RTN	LENGTH	AN	DT(MSB)
CC	FF	FF	02	00	09	01	12
						DT(LSB)	CHKSUM
34	56	78	00	00	00	00	0xNN

4.4. EPC (GEN 2) Identify Single Tag

Fast Identify EPC of single tag;

4.4.1. **Command**

CID1: 10H CID2: 32H INFO: - None

Example:

HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	10	32	00	0xNN

4.4.2. Response

CID1: 10H

RTN: 00H INFO:

- AN (8-bit): Antenna Number (Default 0x01)

- EPC (variable): Target tag's EPC

Example: AN = 1;

EPC = 0xE2003411B802011383258566;

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	RTN	LENGTH	AN	EPC(MSB)
CC	FF	FF	10	00	0D	01	E2
00	34	11	B8	02	01	13	83
		EPC(LSB)	CHKSUM				
25	85	66	0xNN				

4.5. EPC (GEN 2) Identify Multiple Tag

Fast Identify EPC of multiple tags;

4.5.1. **Command**

CID1: 11H CID2: 32H INFO: - None

Example:

HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	11	32	00	0xNN

4.5.2. Response

CID1: 10H RTN: 00H INFO:

- TC (8-bit): Tag Count (Default 0x01)

- DL (8-bit): Single tag data length (Fixed length 0x0E, and with single check)

- S_AN (8-bit): Antenna Number (Default 0x01)

- S_EPC (variable): Target tag's EPC

- S_CHK (8-bit): checksum

Example 1: TC = 0x01,

DL = 0x0E,

 $S_AN = 0x01;$

S_EPC = 0xE2003411B802011383258566;

S_CHK = 0xNN;

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	RTN	тс	DL	S_AN
СС	FF	FF	11	00	01	0E	01
S_EPC(MSB)							

E2	00	34	11	B8	02	01	13
			S_EPC(LSB)	s_снк			
83	25	85	66	0xNN			

Example: TC = 0x02, DL = 0x0E, S_AN = 0x01; **S_EPC = 0xE2003411B802011383258566**;

S_CHK = 0xNN;

S_AN = 0x01;

S_EPC = 0xE2003411B802011383258567;

S_CHK = 0xNN;

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	RTN	тс	DL	S_AN
CC	FF	FF	11	00	02	0E	01
S_EPC(MSB)							
E2	00	34	11	B8	02	01	13
			S_EPC(LSB)	s_снк	S_AN	S_EPC(MSB)	
83	25	85	66	0xNN	01	E2	00
34	11	B8	02	01	13	83	25
	S_EPC(LSB)	ѕ_снк					
85	67	0xNN					

4.6. EPC (GEN 2) Write Memory Bank

Write data to memory bank of EPC tag;

4.6.1. **Command**

CID1: 12H CID2: 31H INFO:

- MB (8-bit): Target memory bank; 0x00 Reserved, 0x01 EPC, 0x02 TID, 0x03 User

- SA (8-bit): Starting Address byte pointer

- DL (8-bit): Data Length to write (Word Count)

- DT (variable): Data to write.

Example: Target memory bank = User,

Start Address = 0x06, Data Length = 4 word,

Data to write = 0x1234567800000000

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	CID2	LENGTH	МВ	SA
7C	FF	FF	12	31	0B	03	06
DL	DT(MSB)						
04	12	34	56	78	00	00	00

DT(LSB)	CHKSUM
00	0xNN

4.6.2. Response

CID1: 12H RTN: 00H INFO: - None

Example: Success;

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	RTN	LENGTH	CHKSUM
СС	FF	FF	12	00	00	0xNN

4.7. EPC (GEN 2) Read Memory Bank

Read memory bank data of EPC tag.

4.7.1. **Command**

CID1: 12H CID2: 32H INFO:

- MB (8-bit): Target memory bank; 0x00 Reserved, 0x01 EPC, 0x02 TID, 0x03 User

- SA (8-bit): Starting Address word pointer

- DL (8-bit): Data Length of read (Word Count)

Example: Target memory bank = User,

Start Address = 0x06,

Data Length = 4 word.

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	CID2	LENGTH	МВ	SA
7C	FF	FF	12	32	03	03	06
DL	СНКЅИМ						
04	0xNN						

4.7.2. Response

CID1: 12H RTN: 00H INFO:

- AN (8-bit): Antenna Number (Default 0x01)

- DT (variable): Data of read.

Example: Success;

HEAD	ADDR(LSB	ADDR(MSB)	CID1	RTN	LENGTH	AN	DT(MSB)
CC	FF	FF	12	00	09	01	12
						DT(LSB)	СНКЅИМ
34	56	78	00	00	00	00	0xNN

4.8. Set Basic Parameter of Reader

```
4.8.1. Command
    CID1: 81H
    CID2: 31H
    INFO:
    - PW (8-bit): Power Size (0~30)
    - FHE (8-bit): Frequency hopping enabled (Disenabled 0x00, Enabled 0x01)
    - FFV (8-bit): Fixed frequency value
    - FHV (48-bit): Frequency hopping value
                   Range 0~200(0x00~0xC8), corresponding 860MHz ~960MHz, Step 0.5MHz
                   FHV1 (8-bit): Frequency hopping value1
                   FHV2 (8-bit): Frequency hopping value2
                   FHV3 (8-bit): Frequency hopping value3
                   FHV4 (8-bit): Frequency hopping value4
                   FHV5 (8-bit): Frequency hopping value5
                   FHV6 (8-bit): Frequency hopping value6
    - WM (8-bit): Work Mode
                   Command (0x01), Active (0x02), Passive (0x03)
    - RI (8-bit): read interval time
    - TGR (8-bit): enable the trigger (Disenabled 0x00, Enabled 0x01)
    - OM (8-bit): Output Mode
                   RS232 (0x01), RS485 (0x02), TCPIP (0x03), CAMBUS (0x04),
                   SYRIS (0x05), WG26 (0x06), WG34 (0x07)
        - WG (32-bit): (AUTO READ MODE Effective) Include (offset, interval, width,
                          period) Offset (8-bit): (0~14) Byte, Default (0x02)
                   Interval (8-bit): (0~255) *10us, Default (0x1E)
                   Width (8-bit): (0~255) *10ms, Default (0x0A)
                   Period (8-bit): (0~255) *100us, Default (0x0F)
    - AN (8-bit): Choice Antenna Low 4 BIT,
    - RT (8-bit): Read Type
                   ISO18000-6B single tag (0x01)
                   EPC (GEN 2) single tag (0x10)
                   EPC (GEN 2) + ISO18000-6B (0x11)
                   EPC (GEN 2) mult tag (0x20)
                   EPC (GEN 2) + memory bank data (0x40)
    - SI (8-bit): The same card ID send to Host in define time
    - BZ (8-bit): enable the buzzer (Disenabled 0x00, Enabled 0x01)
      - UD (24-bit): (AUTO READ MODE Effective) send the card other data to host; Include (MB, SA,
              DL) MB (8-bit): Target memory bank; 0x00 RFU, 0x01 EPC, 0x02 TID, 0x03 User
                   SA (8-bit): Starting Address byte pointer
                   DL (8-bit): Data Length (byte Count).
    - PE (8-bit): Encryption enabled
    - PW (16-bit): Encryption password
```

- MR (8-bit): Max tag count of read (0x0A~0x40)

name	byte	Reference and define					
Power size	1	Adjustable distance of reader Default :30 Reference :(Decimal)0-30					
Frequency hopping enabled	1	Default :1 Reference :(Decimal)0- Fixed 1- Hopping					
Fixed Frequency	1	Default :110(915MHz) Reference :(Decimal)0-200(860MHz~960MHz)					
Frequency hopping 1	1	Default :84(902MHz) Reference :(Decimal)0-200(860MHz~960MHz)					
Frequency hopping 2	1	Default :93(906.5MHz) Reference :(Decimal)0-200(860MHz~960MHz)					
Frequency hopping 3	1	Default :102(911MHz) Reference :(Decimal)0-200(860MHz~960MHz)					
Frequency hopping 4	1	Default :110(915MHz) Reference :(Decimal)0-200(860MHz~960MHz)					
Frequency hopping 5	1	Default :119(919.5MHz) Reference :(Decimal)0-200(860MHz~960MHz)					
Frequency hopping 6	1	Default :130(925MHz) Reference :(Decimal)0-200(860MHz~960MHz)					
Work Mode	1	Command: Reader do not work, when SU send command to Reader then it work once, and response SU; Active: Reader work, and if read the tag then auto send data to SU; Passive: Reader work, do not auto send data to SU, when SU send command to reader then it send last data to SU; Default: Reference: (Decimal) 1- Command 2- Active 3- Passive					
Read Interval	1	Default :10(x1ms) Reference :(Decimal)5-255(x1ms)					
Trigger	1	Default :0 Reference :(Decimal) 0- Close 2- Low level Effective					

Output Mode	1	Default :1
		Reference :(Decimal)
		1- RS232(PC)
		2- RS485(PC)
		3- TCPIP (PC)
		4- CANBUS(SU)
		5- Syris(SU)

		<u> </u>	15	
		6- Wiegand26(SU) 7- Wiegand34(SU)		
Wiegand Offset	1	Default :0 Reference :(Decimal)0-20		
Wiegand Interval	1	Default :30 (x10ms) Reference :(Decimal)0-255 (x10ms)		
Wiegand Width	d Width 1 Default :10 (x10us) Reference :(Decimal)0-255 (x10us)			
Wiegand Period	1	Default :15 (x100us) Reference :(Decimal)0-255 (x100us)		
Choice Antenna	1	Low 4 BIT, Example: Antenna 1:01H(binary 0000 0001) Antenna 3:04H(binary 0000 0100) Antenna 1 + Antenna 3:05H(binary 0000 0101)		
Read Type	1	Default :16 Reference :(Decimal) 1- ISO18000-6B single tag 16- EPC(GEN 2) single tag 17- EPC(GEN 2) + ISO18000-6B 32- EPC(GEN 2) multiple tag 64- EPC(GEN 2) + memory bank data		
Same id Interval	1	Default :1 (x1s) Reference :(Decimal)0-255 (x1s)		
Buzzer	1	Default :1 Reference :(Decimal) 0- Disenabled; 1- Enabled;		
Memory bank	1	Read Type = 64 Default :1 Reference :(Decimal) 1- TID (Unique Tag ID Unalterable)		

		3- User (User)
Starting Address byte pointer	1	Read Type = 64 Default :0 Reference :(Decimal)0~32
Data Length	1	Read Type = 64 Default :2 Reference :(Decimal)1~8
Encryption enabled	1	Default :0 Reference :(Decimal) 0- Disenabled; 1- Enabled;
Encryption password	2	Default :0000 Reference :(Decimal)0000~9999 Example: password =0123 (Decimal)=007BH(Hex)

		10
Max tag count of read	1	Default :32
		Reference :(Decimal)10~64

Example:

PW = 30dBi (0x1E)

FHE = Enabled (0x01)

FFV = 915MHz (0x6E)

FHV = 0x545D666F7882 [FHV1 = 902MHz (0x54), FHV2 = 906.5MHz (0x5D), FHV3 = 911MHz (0x66), FHV4 = 915.5MHz (0x6F), FHV5 = 920MHz (0x78), FHV6=925MHz (0x82)]

WM = Command (0x01)

RI = 10ms (0x0A)

TGR = Disenabled (0x00)

OM = RS232 (0x01)

WG = 0x001E0A0F [Offset 0x00, Interval 0x1E, Width 0x0A, Period 0x0F]

AN = 1 (0x01)

RT = EPC (GEN 2) single tag (0x10)

SI = 1s (0x01)

BZ = Enabled (0x01)

UD = 0x030006 [MB=User, SA=0, DL=6 word]

PE = Disenabled (0x00)

PW = 0x0000

MR = 32 (0×20)

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	CID2	LENGTH	PW	FHE
7C	FF	FF	81	31	1C	1E	01

FFV	FHV(MSB)					FHV(LSB)	WM
6E	54	5D	66	6F	78	82	01
RI	TGR	ОМ	WG(MSB)			WG(LSB)	AN
0A	00	01	00	1E	0A	0F	01
RT	SI	BZ	UD(MSB)		UD(LSB)	PE	PW(MSB)
10	01	01	03	00	06	00	00
PW(LSB)	MR	снкѕим					
00	20	0xNN					

4.8.2. Response

CID1: 81H RTN: 00H INFO: - None

Example: Success;

HEAD	ADDR(LSB	ADDR(MSB)	CID1	RTN	LENGTH	CHKSUM
СС	FF	FF	81	00	00	0xNN

4.9. Get Basic Parameters of Reader

4.9.1. **Command**

CID1: 81H CID2: 32H INFO: - None Example:

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	81	32	00	0xNN

4.9.2. Response

CID1: 81H RTN: 00H INFO:

- PW (8-bit): Power Size (0~30)

- FHE (8-bit): Frequency hopping enabled (Disenabled 0x00, Enabled

```
0x01) - FFV (8-bit): Fixed frequency value
- FHV (48-bit): Frequency hopping value
              Range 0~200(0x00~0xC8), corresponding 860MHz ~960MHz, Step
              0.5MHz FHV1 (8-bit): Frequency hopping value1
              FHV2 (8-bit): Frequency hopping value2
              FHV3 (8-bit): Frequency hopping value3
              FHV4 (8-bit): Frequency hopping value4
              FHV5 (8-bit): Frequency hopping value5
              FHV6 (8-bit): Frequency hopping value6
- WM (8-bit): Work Mode
              Command (0x01), Active (0x02), Passive (0x03)
- RI (8-bit): read interval time
- TGR (8-bit): enable the trigger (Disenabled 0x00, Enabled 0x01)
- OM (8-bit): Output Mode
              RS232 (0x01), RS485 (0x02), TCPIP (0x03), CAMBUS (0x04),
              SYRIS (0x05), WG26 (0x06), WG34 (0x07)
   - WG (32-bit): (AUTO READ MODE Effective) Include (offset, interval, width,
                     period) Offset (8-bit): (0~14) Byte, Default (0x02)
              Interval (8-bit): (0~255) *10us, Default (0x1E)
              Width (8-bit): (0~255) *10ms, Default (0x0A)
              Period (8-bit): (0~255) *100us, Default (0x0F)
- AN (8-bit): Choice Antenna Low 4 BIT,
- RT (8-bit): Read Type
              ISO18000-6B single tag (0x01)
              EPC (GEN 2) single tag (0x10)
              EPC (GEN 2) + ISO18000-6B (0x11)
              EPC (GEN 2) multiple tag (0x20)
                                                                                                          18
              EPC (GEN 2) + memory bank data (0x40)
- SI (8-bit): The same card ID send to Host in define time
- BZ (8-bit): enable the buzzer (Disenabled 0x00, Enabled 0x01)
 - UD (24-bit): (AUTO READ MODE Effective) send the card other data to host; Include (MB, SA,
         DL) MB (8-bit): Target memory bank; 0x00 RFU, 0x01 EPC, 0x02 TID, 0x03 User
              SA (8-bit): Starting Address byte pointer
              DL (8-bit): Data Length (byte Count).
- PE (8-bit): Encryption enabled
- PW (16-bit): Encryption password
- MR (8-bit): Max tag count of read (0x0A~0x40)
Example:
    PW = 30dBi (0x1E)
    FHE = Enabled (0x01)
      FFV = 915MHz (0x6E)
     FHV = 0x545D666F7882
              [FHV1 = 902MHz (0x54),
               FHV2 = 906.5MHz (0x5D),
```

FHV3 = 911MHz (0x66),

FHV4 = 915.5MHz (0x6F),

FHV5 = 920MHz (0x78),

FHV6=925MHz (0x82)]

WM = Command (0x01)

RI = 10ms (0x0A)

TGR = Disenabled (0x00)

OM = RS232 (0x01)

WG = 0x001E0A0F [Offset 0x00, Interval 0x1E, Width 0x0A, Period 0x0F]

AN = 1 (0x01)

RT = EPC (GEN 2) Single tag (0x10)

SI = 1s (0x01)

BZ = Enabled (0x01)

UD = 0x030006 [MB=User, SA=0, DL=6 word]

PE = Disenabled (0x00)

 $PW = 0 \times 00000$

MR = 32 (0x20)

HEAD	ADDR(LSB	ADDR(MSB)	CID1	RTN	LENGTH	PW	FHE
СС	FF	FF	81	00	1C	1E	01
FFV	FHV(MSB)					FHV(LSB)	WM
6E	54	5D	66	6F	78	82	01
RI	TGR	ОМ	WG(MSB)			WG(LSB)	AN
0A	00	01	00	1E	0A	0F	01
RT	SI	BZ	UD(MSB)		UD(LSB)	PE	PW(MSB)
10	01	01	03	00	06	00	00
PW(LSB)	MR	снкѕим					
00	20	0xNN					

4.10. Set Address of Reader

4.10.1. **Command**

CID1: 82H CID2: 31H INFO:

- ADDRESS (16-bit): Current address

Example: ADDRESS = 65534(0xFFFE)

	HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	ADDR (LSB)	ADDR (MSB)	
١)							

7C	FF	FF	82	31	02	FE	FH
CHKSUM							
0xNN							

4.10.2. Response

CID1: 82H RTN: 00H INFO: - None

Example: Success:

HEAD	ADDR(LSB	ADDR(MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	82	00	00	0xNN

4.11. Get Basic Information of Reader

4.11.1. Command

CID1: 82H CID2: 32H INFO: - None

Example:

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	82	32	00	0xNN

4.11.2. Response

CID1: 82H RTN: 00H

INFO: (ASCII code)

- Rev (128-bit): Reserved field (16 Byte)

- TP (24-bit): Type of reader (3 Byte) (P)

VER (40-bit): Version of reader (5 Byte) (V3.63)ADDR (80-bit): Address of reader (ADDR: 65534)

Example: TP = P VER = V3.63

ADDR = ADDR: 65534

HEAD	ADDR(LSB	ADDR(MSB)	CID1	RTN	LENGTH	REV(MSB)	
CC	FF	FF	82	00	22	0A	20
77	77	77	2E	41	6F	73	69
					REV(LSB)	TP(MSB)	
64	2E	63	6F	6D	20	0A	20
TP(LSB)	VER(MSB)				VER(LSB)	ADDR(MSB)	
50	56	33	2E	36	33	4E	6F
							ADDR(LSB
2E	3A	00	36	35	35	33	34
снкѕим							
0xNN							

4.12. Software Reset

4.12.1. Command

CID1: 8FH CID2: 31H INFO: - None

Example:

HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	8F	31	00	0xNN

4.12.2. Response

CID1: 8FH RTN: 00H INFO: - None

Example: Success;

HEAD	ADDR(LSB	ADDR(MSB)	CID1	RTN	LENGTH	СНКЅИМ
СС	FF	FF	8F	00	00	0xNN

4.13. Encrypted Tag

When the reader is encrypted then you can use this command to encrypted tag. 4.13.1. Command

CID1: 30H CID2: 31H INFO: - None

Example:

HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	30	31	00	0xNN

4.13.2. Response

CID1: 30H RTN: 00H INFO: - None

Example: Success:

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	30	00	00	0xNN

4.14. Set TCPIP Parameters of Reader

4.14.1. Command

CID1: B9H CID2: 21H INFO:

- IP (32-bit) :Local IP

- MSK (32-bit) : Subnet Mask

- GW (32-bit) : Gateway

- PT (16-bit): Local Port

- MAC (48-bit): Mac Address

- RIP (32-bit): Remote IP

- RPT (16-bit): Remote Port

- ST (8-bit): Net mode (Server 0x00 ,Client 0x01)

- PCL (8-bit): Protocol (TCP 0x00,UDP 0x01,HTTP 0x02) Just TCP Effective;

Example:

IP = 192.168.1.115 MSK = 255.255.255.0 GW = 192.168.1.1

PT = 49152

MAC = 5E-45-A2-6C-30-1E

RIP = 192.168.1.100

RPT = 49153

ST = Server(0x00)

PCL = TCP

HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	IP(MSB)	
7C	FF	FF	B9	21	1C	C0	A8
	IP(LSB)	MSK(MSB)			MSK(LSB)	GW(MSB)	
01	73	FF	FF	FF	00	C0	A8
	GW(LSB)	PT(LSB)	PT(MSB)	MAC(MSB)			
01	01	00	C0	5E	45	A2	6C
	MAC(LSB)	RIP(MSB)			RIP(LSB)	RPT(LSB)	RPT(MSB)
30	1E	C0	A8	01	64	01	C0
ST	PCL	CHKSUM					
00	00	0xNN					

4.14.2. Response

CID1: B9H RTN: 00H INFO: - None

Example: Success;

HEAD	ADDR(LSB	ADDR(MSB)	CID1	RTN	LENGTH	CHKSUM
СС	FF	FF	В9	00	00	0xNN

4.15. Get TCPIP Parameters of Reader

4.15.1. **Command**

CID1: B9H

CID2: 22H

INFO:

- None

Example:

HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	В9	22	00	0xNN

4.15.2. Response

CID1: B9H RTN: 00H INFO:

- IP (32-bit) :Local IP

MSK (32-bit): Subnet Mask
GW (32-bit): Gateway
PT (16-bit): Local Port
MAC (48-bit): Mac Address
RIP (32-bit): Remote IP
RPT (16-bit): Remote Port

- ST (8-bit): Net mode (Server 0x00 ,Client 0x01)

- PCL (8-bit): Protocol (TCP 0x00,UDP 0x01,HTTP 0x02) Just TCP Effective;

Example:

IP = 192.168.1.115

MSK = 255.255.255.0

GW = 192.168.1.1

PT = 49152

MAC = 5E-45-A2-6C-30-1E

RIP = 192.168.1.100

RPT = 49153

ST = Server(0x00)

PCL = TCP

HEAD	ADDR(LSB	ADDR(MSB)	CID1	RTN	LENGTH	IP(MSB)	
СС	FF	FF	B9	00	1C	C0	A8
	IP(LSB)	MSK(MSB)			MSK(LSB)	GW(MSB)	
01	73	FF	FF	FF	00	C0	A8
	GW(LSB)	PT(LSB)	PT(MSB)	MAC(MSB)			
01	01	00	C0	5E	45	A2	6C
	MAC(LSB)	RIP(MSB)			RIP(LSB)	RPT(LSB)	RPT(MSB)
30	1E	C0	A8	01	64	01	C0
ST	PCL	CHKSUM					
00	00	0xNN					

4.16. Remote IO Output

4.16.1. **Command**

CID1: BBH CID2: 21H INFO:

- POINT (8-bit): IO point (Relay 1 0x01, Relay 2 0x02)- ACTION (8-bit): IO action (Open 0x01, Close 0x00)

Example:

POINT = Relay 1 ACTION = Open

HEAD	ADDR(LSB	ADDR(MSB)	CID1	CID2	LENGTH	POINT	ACTION
7C	FF	FF	ВВ	21	02	01	01
снкѕим							
0xNN							

4.16.2. Response

CID1: BBH RTN: 00H INFO: - None

Example: Success;

HEAD	ADDR(LSB)	ADDR(MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	BB	00	00	0xNN