Spurious isospin symmetry breaking in the IMSRG

Alexander Farren (supervised by Prof. Stroberg)

University of Notre Dame

June 2023

onclusion

Beta Decay

Three types of β -decay[1]:

•
$$\beta^+$$
: $p^+ \to n^0 + e^+ + \nu_e$

•
$$\beta^-$$
: $n^0 \to p^+ + e^- + \bar{\nu}_e$

$$_{Z}^{A}X + e^{-} \rightarrow_{Z-1}^{A}Y + \nu_{e}$$

Feynman Diagrams:

nclusion

Nuclear Shell Model

Can approximate nucleon energies as levels or shells

$$E_{n\ell}=\hbar\omega(2n+\ell+\frac{3}{2})-V_0'+{\sf Spin-Orbit}$$
 [2]

Isospin

Heisenberg introduced isospin t in 1932 because the proton and neutron are interchangeable with respect to

- mass: proton (938.28 MeV/c^2) and neutron (939.57 MeV/c^2)
- interaction with the nuclear force

Both nucleons have isospin t = 1/2.

 ${\sf n}^0 \uparrow (t_z=+\frac{1}{2})$ isospin up ${\sf p}^+ \downarrow (t_z=-\frac{1}{2})$ isospin down Isospin has familiar angular momentum properties:

$$S^{2}|s\rangle = \hbar^{2}s(s+1)|s\rangle \implies T^{2}|t\rangle = t(t+1)|t\rangle$$

Background

CONCIDSION

Isospin Symmetry Breaking

- Isospin is "rotated" (T_{\pm}) via β decay.
- Some properties of the nucleus are unchanged under this rotation, hence isospin symmetry.
- Symmetry is not exact (Coulomb interaction and pion exchange).
- Computational methods encounter spurious ISB, i.e. there are sources of ISB not predicted by theory, due to approximations.

Conclusion

Why is this important?

Physicists want to know more about the universe. We are probing the limits of the SM, which predicts unitarity of CKM matrix

$$\begin{pmatrix} |d_{\mathsf{w}}\rangle \\ |s_{\mathsf{w}}\rangle \\ |b_{\mathsf{w}}\rangle \end{pmatrix} = \begin{pmatrix} V_{\mathsf{ud}} & V_{\mathsf{us}} & V_{\mathsf{ub}} \\ V_{\mathsf{cd}} & V_{\mathsf{cs}} & V_{\mathsf{cb}} \\ V_{\mathsf{td}} & V_{\mathsf{ts}} & V_{\mathsf{tb}} \end{pmatrix} \begin{pmatrix} |d_{\mathsf{s}}\rangle \\ |s_{\mathsf{s}}\rangle \\ |b_{\mathsf{s}}\rangle \end{pmatrix}$$

$$\implies |V_{\mathsf{ud}}|^2 + |V_{\mathsf{us}}|^2 + |V_{\mathsf{ub}}|^2 = 0.9985(05) \stackrel{!}{=} 1$$

$$|V_{\mathsf{ud}}|^2 \approx 0.97373(31)[3]$$

Why is this important?

We can measure $V_{\rm ud}!$

$$\begin{split} ft(1+\delta_{\mathsf{R}}')(1+\delta_{\mathsf{NS}}-\delta_{\mathsf{C}}) &= \frac{K}{2G_{\mathsf{V}}^2|V_{\mathsf{ud}}|^2(1+\Delta_{\mathsf{R}}^{\mathsf{V}})} \\ |M_{\mathsf{fi}}|^2 &= \left| \left. \left\langle \psi_{\mathsf{f}} \right| T_{\pm} |\psi_{\mathsf{i}} \right\rangle \right|^2 \equiv (1-\delta_{\mathsf{C}}) \left| \left. \left\langle \psi_{\mathsf{f}}^{\mathsf{iso}} \right| T_{\pm} |\psi_{\mathsf{i}}^{\mathsf{iso}} \right\rangle \right|^2 \underset{t=1}{=} 2(1-\delta_{\mathsf{C}}) \end{split}$$

$$T_+ \implies \delta_{\mathsf{C}} \implies V_{\mathsf{ud}} \implies \mathsf{BSM}$$

Introduction "The Project"

What was the issue?

Ab initio calculations for the nucleus are hard:

$$\hat{H}|\psi\rangle = E|\psi\rangle$$

$$\hat{H} = \sum_{i=1}^{N} \frac{1}{2m_i} \hat{P}_i^2 + \hat{V}(\hat{X}_1, ..., \hat{X}_N)$$

Simplify with in-medium similarity renormalisation group [4]:

$$\hat{H}(s) = \hat{U}(s)\hat{H}(0)\hat{U}^{\dagger}(s)$$
$$= \hat{H}^{\mathsf{d}}(s) + \hat{H}^{\mathsf{od}}(s)$$

$$\hat{H}(s) \stackrel{s \to \infty}{=} \hat{H}^{\mathsf{d}}(s) \implies \mathsf{Useful!}$$

Background

IMSRG

$$\langle \Phi_0 | H(s) | \Phi_0 \rangle = \langle \Phi_0 | U(s) H(0) U^{\dagger}(s) | \Phi_0 \rangle = \langle \psi | H(0) | \psi \rangle = E$$

Named and aring

Normal-ordering

In second-quantised form,

$$\hat{H} = \sum_{\mu\lambda} \left<\mu\right| \hat{H}_{1\mathrm{B}} |\lambda\rangle a_\mu^\dagger a_\lambda + \frac{1}{2} \sum_{\alpha\beta\gamma\delta} \left<\alpha\beta\right| \hat{H}_{2\mathrm{B}} |\gamma\delta\rangle a_\alpha^\dagger a_\beta^\dagger a_\delta a_\gamma + \dots$$

To make things simpler, adopt following notation.

$$\begin{aligned} \{a_{\mu}^{\dagger}a_{\lambda}\} &= a_{\mu}^{\dagger}a_{\lambda} - \langle \Phi_{0}| \, a_{\mu}^{\dagger}a_{\lambda}|\Phi_{0}\rangle \\ \implies \langle \Phi_{0}| \, \{a_{\mu}^{\dagger}a_{\lambda}\}|\Phi_{0}\rangle &= 0 \end{aligned}$$

Background

Normal-ordering

$$\hat{H} = \underbrace{E_{\rm ref} + \sum_{pq} f_{pq} \{a_p^\dagger a_q\} + \frac{1}{4} \sum_{pqrs} \Gamma_{pqrs} \{a_p^\dagger a_q^\dagger a_s a_r\} + \dots}_{\rm IMSRG~(3)+}$$

Conclusion

Magnus formulation

$$\begin{split} U(s) &\equiv e^{\Omega(s)} & \frac{d}{ds} U(s) \equiv \eta(s) U(s) \\ &\Longrightarrow \hat{\mathcal{O}}(s) \approx \hat{\mathcal{O}}(0) + \left[\eta(s), \hat{\mathcal{O}}(0) \right] + \left[\eta(s), \left[\eta(s), \hat{\mathcal{O}}(0) \right] \right] + \dots \end{split}$$

Conclusion

Locating spurious ISB

To identify sources of spurious ISB, needed to create scenario where no authentic ISB exists:

- Choose ¹⁴₈O Hartree-Fock (asymmetric) reference state.
- Swap realistic nuclear force for Minnesota potential

$$\hat{H} \sim \ \mathsf{Kinetic} \ \mathsf{Energy} + \ \mathsf{Minnesota} + \ \mathsf{Spin-Orbit}$$

- Treat only occupied states in reference as 'diagonal'
- ullet Choose White generator $\hat{\eta}(s) = \hat{H}^{\mathrm{od}}/\Delta$ [4]
- \implies See where error in $\langle T^2(s) \rangle$ comes from...

Locating spurious ISB

IMSRG truncation?

(Left) IMSRG truncation is relaxed yet the error does not decrease (Right) Different orbital spaces display different convergence behaviours.

Treat as perturbative scenario, with λH^{od}

(Left) Indicates error scales as λ^2 . (Right) Shows problematic term $\langle \left[\eta(s), \left[\eta(s), T^2(0) \right] \right] \rangle$ indeed has two factors of H^{od} .

Conclusion

$$\begin{split} \langle \left[\eta(s), \left[\eta(s), T^2(0) \right] \right] \rangle = & - 2 \left\langle \Phi_0 | \, \eta_{\mathsf{2B}}(s) T_{\mathsf{1B}}^2(0) \eta_{\mathsf{2B}}(s) | \Phi_0 \right\rangle \\ & - 2 \left\langle \Phi_0 | \, \eta_{\mathsf{2B}}(s) T_{\mathsf{2B}}^2(0) \eta_{\mathsf{2B}}(s) | \Phi_0 \right\rangle \end{split}$$

Background

"The Project"

$$\begin{split} \langle \left[\eta(s), \left[\eta(s), T^2(0) \right] \right] \rangle &= -2 \left\langle \Phi_0 \right| \eta_{2\mathsf{B}}(s) T_{1\mathsf{B}}^2(0) \eta_{2\mathsf{B}}(s) |\Phi_0\rangle \\ &- 2 \left\langle \Phi_0 \right| \eta_{2\mathsf{B}}(s) T_{2\mathsf{B}}^2(0) \eta_{2\mathsf{B}}(s) |\Phi_0\rangle \end{split}$$
 (trust me)

Introduction

"The Project"

$$\langle \Phi_0 | \eta_{\mathsf{2B}}(s) T_{\mathsf{2B}}^2(0) \eta_{\mathsf{2B}}(s) | \Phi_0 \rangle$$

Introduction

"The Project"

$$\left\langle \Phi_0 \right| \eta_{\mathsf{2B}}(s) T^2_{\mathsf{1B}}(0) \eta_{\mathsf{2B}}(s) |\Phi_0\rangle$$

Background Introduction

$$\begin{split} & \langle \left[\eta(s), \left[\eta(s), T^2(0) \right] \right] \rangle = \dots \\ & = \sum_{abij} \left[\eta_{ijab} \Big(\overbrace{\frac{1}{2} \eta_{abij} (n_{\overline{j}} - n_{\overline{b}})}^{T_{1B}^2} + \overbrace{\frac{1}{4} \eta_{\overline{a}\overline{b}ij}}^{T_{2B}^2 \text{ p ladder}} \underbrace{ \begin{array}{c} T_{2B}^2 \text{ h ladder} \\ \hline T_{2B}^2 \text{ ning} \end{array} \right]}^{T_{2B}^2 \text{ ring}} \\ & \overbrace{-\eta_{a\overline{b}i\overline{j}} \overline{n}_{\overline{b}} n_{\overline{j}} \Big) + \eta_{ija\overline{j}} \eta_{abi\overline{b}} \overline{n}_{\overline{j}} n_{\overline{b}}}^{T_{2B}^2 \overline{n}_{\overline{b}}} \Big] \end{split}$$

onclusion

$$\begin{split} & \langle \left[\eta(s), \left[\eta(s), T^2(0) \right] \right] \rangle = \dots \\ & = \sum_{abij} \left[\eta_{ijab} \Big(\overbrace{\frac{1}{2} \eta_{abij} (n_{\overline{j}} - n_{\overline{b}})}^{T_{2B}^2 \text{ p ladder}} + \overbrace{\frac{T_{2B}^2 \text{ h ladder}}{4} \eta_{ab\overline{i}\overline{j}} n_{\overline{i}} n_{\overline{j}}}^{T_{2B}^2 \text{ ring}} - \overbrace{-\eta_{a\overline{b}i\overline{j}} \overline{n}_{\overline{b}} n_{\overline{j}}) + \eta_{ija\overline{j}} \eta_{abi\overline{b}} \overline{n}_{\overline{j}} n_{\overline{b}}}^{T_{2B}^2 \overline{n}_{\overline{b}}} \Big] \end{split}$$

Assessing spurious ISB

Having evaluated the problematic term, it was found that Møller-Plesset and Epstein-Nesbet partitionings of Δ for $\hat{\eta}(s)=\hat{H}^{\rm od}/\Delta$ both lead to spurious ISB. When η was switched to the imaginary time generator [4], the error vanished for a symmetric reference and $\hat{H}^{\rm od}$ (and thus η).

Sources of spurious ISB

- ullet Δ of White generator
- Reference asymmetry
- ullet H^{od} asymmetry

Remedies for spurious ISB

- ullet Δ of White generator Choose imaginary time instead
- Reference asymmetry Could be fixed with IMSRG(3)?
- Hod asymmetry Symmetrise core, diagonalise VS?

Background Introduction

Acknowledgements

- Prof. Ragnar Stroberg
- Jonathan Riess
- The Physics and Astronomy Department
- The Naughton Foundation
- A fantastic REU cohort

References

- K. S, Introductory Nuclear Physics. Wiley India, 2008. [Online]. Available: https://books.google.com/books?id=CxtOCgAAQBAJ.
- [2] P. Cappellaro, Introduction to applied nuclear physics, Massachusetts Institute of Technology: MIT OpenCouseWare, https://ocw.mit.edu/, Spring 2012.
- [3] J. C. Hardy and I. S. Towner, "Superallowed $0^+ \rightarrow 0^+$ nuclear β decays: 2020 critical survey, with implications for $V_{\rm ud}$ and ckm unitarity," *Phys. Rev. C*, vol. 102, p. 045501, 4 Oct. 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevC.102.045501.
- [4] H. Hergert, "A guided tour of ab initio nuclear many-body theory," Frontiers in Physics, vol. 8, Oct. 2020. [Online]. Available: https://doi.org/10.3389%2Ffphy.2020.00379.

Background Introduction

"The Project"

Conclusion

Thank you

