Review of Probability Theory and Linear Algebra

Mário A. T. Figueiredo

Instituto Superior Técnico & Instituto de Telecomunicações

Lisboa, Portugal

LxMLS: Lisbon Machine Learning School

July 19, 2012

Outline

Probability Theory

• Linear Algebra

What is probability?

• Classical definition: $\mathbb{P}(A) = \frac{N_A}{N}$

...with N mutually exclusive equally likely outcomes, N_A of which result in the occurrence of A.

Laplace, 1814

Example: $\mathbb{P}(\text{randomly drawn card is } \clubsuit) = 13/52.$

Example: $\mathbb{P}(\text{getting 1 in throw a die}) = 1/6.$

What is probability?

• Classical definition: $\mathbb{P}(A) = \frac{N_A}{N}$

...with N mutually exclusive equally likely outcomes, N_A of which result in the occurrence of A.

Laplace, 1814

Example: $\mathbb{P}(\text{randomly drawn card is } \clubsuit) = 13/52.$

Example: $\mathbb{P}(\text{getting 1 in throw a die}) = 1/6.$

• Frequentist definition: $\mathbb{P}(A) = \lim_{N \to \infty} \frac{N_A}{N}$

...relative frequency of occurrence of A in infinite number of trials.

What is probability?

• Classical definition: $\mathbb{P}(A) = \frac{N_A}{N}$

...with N mutually exclusive equally likely outcomes, N_A of which result in the occurrence of A.

Laplace, 1814

Example: $\mathbb{P}(\text{randomly drawn card is } \clubsuit) = 13/52.$

Example: $\mathbb{P}(\text{getting 1 in throw a die}) = 1/6.$

• Frequentist definition: $\mathbb{P}(A) = \lim_{N \to \infty} \frac{N_A}{N}$

...relative frequency of occurrence of A in infinite number of trials.

- Subjective probability: $\mathbb{P}(A)$ is a degree of belief.
 - ...gives meaning to $\mathbb{P}($ "tomorrow will rain").

Key concepts: Sample space and events

ullet Sample space $\mathcal{X}=$ set of possible outcomes of a random experiment.

Examples:

- ▶ Tossing two coins: $\mathcal{X} = \{HH, TH, HT, TT\}$
- Roulette: $\mathcal{X} = \{1, 2, ..., 36\}$
- ▶ Draw a card from a shuffled deck: $\mathcal{X} = \{A\clubsuit, 2\clubsuit, ..., Q\diamondsuit, K\diamondsuit\}$.

Key concepts: Sample space and events

ullet Sample space $\mathcal{X}=$ set of possible outcomes of a random experiment.

Examples:

- ▶ Tossing two coins: $\mathcal{X} = \{HH, TH, HT, TT\}$
- Roulette: $\mathcal{X} = \{1, 2, ..., 36\}$
- ▶ Draw a card from a shuffled deck: $\mathcal{X} = \{A\clubsuit, 2\clubsuit, ..., Q\diamondsuit, K\diamondsuit\}$.
- ullet An event is a subset of ${\mathcal X}$

Examples:

- "exactly one H in 2-coin toss": $A = \{TH, HT\} \subset \{HH, TH, HT, TT\}$.
- "odd number in the roulette": $B = \{1, 3, ..., 35\} \subset \{1, 2, ..., 36\}$.
- "drawn a \heartsuit card": $C = \{A\heartsuit, 2\heartsuit, ..., K\heartsuit\} \subset \{A\clubsuit, ..., K\diamondsuit\}$

 \bullet Probability is a function that maps events A into the interval [0,1].

ullet Probability is a function that maps events A into the interval [0,1].

Kolmogorov's axioms for probability (1933):

▶ For any $A \subseteq \mathcal{X}$, $\mathbb{P}(A) \ge 0$

ullet Probability is a function that maps events A into the interval [0,1].

- ▶ For any $A \subseteq \mathcal{X}$, $\mathbb{P}(A) \ge 0$
- $ightharpoonup \mathbb{P}(\mathcal{X}) = 1$

• Probability is a function that maps events A into the interval [0,1].

- ▶ For any $A \subseteq \mathcal{X}$, $\mathbb{P}(A) \ge 0$
- $ightharpoonup \mathbb{P}(\mathcal{X}) = 1$
- ▶ If $A_1, A_2 ... \subseteq \mathcal{X}$ are disjoint events, then $\mathbb{P}\Bigl(\bigcup_i A_i\Bigr) = \sum_i \mathbb{P}(A_i)$

• Probability is a function that maps events A into the interval [0,1].

- ▶ For any $A \subseteq \mathcal{X}$, $\mathbb{P}(A) \ge 0$
- $ightharpoonup \mathbb{P}(\mathcal{X}) = 1$
- ▶ If $A_1, A_2 ... \subseteq \mathcal{X}$ are disjoint events, then $\mathbb{P}\Big(\bigcup_i A_i\Big) = \sum_i \mathbb{P}(A_i)$
- From these axioms, many results can be derived. Examples:
 - $ightharpoonup \mathbb{P}(\emptyset) = 0$
 - $ightharpoonup C \subset D \Rightarrow \mathbb{P}(C) \leq \mathbb{P}(D)$
 - $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

• If $\mathbb{P}(B) > 0$, $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ (conditional prob. of A given B)

- If $\mathbb{P}(B) > 0$, $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ (conditional prob. of A given B)
- ...satisfies all Kolmogorov's axioms:
- ▶ For any $A \subseteq \mathcal{X}$, $\mathbb{P}(A|B) \ge 0$
- $\blacktriangleright \ \mathbb{P}(\mathcal{X}|B) = 1$
- ▶ If $A_1, A_2... \subseteq \mathcal{X}$ are disjoint, then $\mathbb{P}\left(\bigcup_i A_i \middle| B\right) = \sum_i \mathbb{P}(A_i \middle| B)$

- If $\mathbb{P}(B) > 0$, $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ (conditional prob. of A given B)
- ...satisfies all Kolmogorov's axioms:
- ▶ For any $A \subseteq \mathcal{X}$, $\mathbb{P}(A|B) \ge 0$
- $ightharpoonup \mathbb{P}(\mathcal{X}|B) = 1$
- ▶ If $A_1, A_2... \subseteq \mathcal{X}$ are disjoint, then $\mathbb{P}\left(\bigcup_i A_i \middle| B\right) = \sum_i \mathbb{P}(A_i \middle| B)$

• Events A, B are independent $(A \perp \!\!\! \perp B) \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

- If $\mathbb{P}(B) > 0$, $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ (conditional prob. of A given B)
- ...satisfies all Kolmogorov's axioms:
- ▶ For any $A \subseteq \mathcal{X}$, $\mathbb{P}(A|B) \ge 0$
- $\blacktriangleright \ \mathbb{P}(\mathcal{X}|B) = 1$
- ▶ If $A_1, A_2... \subseteq \mathcal{X}$ are disjoint, then $\mathbb{P}\left(\bigcup_i A_i \middle| B\right) = \sum_i \mathbb{P}(A_i \middle| B)$

- Events A, B are independent $(A \perp \!\!\! \perp B) \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- Relationship with conditional probabilities:

$$A \perp \!\!\!\perp B \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A)$$

Bayes Theorem

• Law of total probability: if $A_1, ..., A_n$ are a partition of \mathcal{X}

$$\mathbb{P}(B) = \sum_{i} \mathbb{P}(B|A_{i})\mathbb{P}(A_{i})$$

• Bayes' theorem: if $A_1,...,A_n$ are a partition of $\mathcal X$

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B \cap A_i)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A_i) \mathbb{P}(A_i)}{\sum_i \mathbb{P}(B|A_i) \mathbb{P}(A_i)}$$

• A (real) random variable (RV) is a function: $X : \mathcal{X} \to \mathbb{R}$

▶ Discrete RV: range of X is countable (e.g., \mathbb{N} or $\{0,1\}$)

- ▶ Discrete RV: range of X is countable $(e.g., \mathbb{N} \text{ or } \{0,1\})$
- ▶ Continuous RV: range of X is uncountable $(e.g., \mathbb{R} \text{ or } [0, 1])$

- ▶ Discrete RV: range of X is countable $(e.g., \mathbb{N} \text{ or } \{0,1\})$
- ▶ Continuous RV: range of X is uncountable $(e.g., \mathbb{R} \text{ or } [0, 1])$
- Example: number of head in tossing two coins, $\mathcal{X} = \{HH, HT, TH, TT\},\ X(HH) = 2,\ X(HT) = X(TH) = 1,\ X(TT) = 0.$ Range of $X = \{0,1,2\}.$

- ▶ Discrete RV: range of X is countable $(e.g., \mathbb{N} \text{ or } \{0,1\})$
- ▶ Continuous RV: range of X is uncountable $(e.g., \mathbb{R} \text{ or } [0, 1])$
- ► Example: number of head in tossing two coins, $\mathcal{X} = \{HH, HT, TH, TT\},\ X(HH) = 2, X(HT) = X(TH) = 1, X(TT) = 0.$ Range of $X = \{0, 1, 2\}.$
- **Example**: distance traveled by a tossed coin; range of $X = \mathbb{R}_+$.

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \leq x\})$

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \leq x\})$

• Example: number of heads in tossing 2 coins; range(X) = {0, 1, 2}.

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \leq x\})$

• Example: number of heads in tossing 2 coins; range(X) = {0, 1, 2}.

• Probability mass function (discrete RV): $f_X(x) = \mathbb{P}(X = x)$,

$$F_X(x) = \sum_{x_i < x} f_X(x_i).$$

• Uniform: $X \in \{x_1, ..., x_K\}$, pmf $f_X(x_i) = 1/K$.

- Uniform: $X \in \{x_1, ..., x_K\}$, pmf $f_X(x_i) = 1/K$.
- Bernoulli RV: $X \in \{0,1\}$, pmf $f_X(x) = \begin{cases} p & \Leftarrow x = 1 \\ 1-p & \Leftarrow x = 0 \end{cases}$

Can be written compactly as $f_X(x) = p^x(1-p)^{1-x}$.

- Uniform: $X \in \{x_1, ..., x_K\}$, pmf $f_X(x_i) = 1/K$.
- Bernoulli RV: $X \in \{0,1\}$, pmf $f_X(x) = \begin{cases} p & \Leftarrow x = 1 \\ 1-p & \Leftarrow x = 0 \end{cases}$ Can be written compactly as $f_X(x) = p^x(1-p)^{1-x}$.
- Binomial RV: $X \in \{0, 1, ..., n\}$ (sum on n Bernoulli RVs)

$$f_X(x) = \text{Binomial}(x; n, p) = \binom{n}{x} p^x (1-p)^{(n-x)}$$

- Uniform: $X \in \{x_1, ..., x_K\}$, pmf $f_X(x_i) = 1/K$.
- Bernoulli RV: $X \in \{0,1\}$, pmf $f_X(x) = \begin{cases} p & \Leftarrow x = 1\\ 1-p & \Leftarrow x = 0 \end{cases}$ Can be written compactly as $f_X(x) = p^x(1-p)^{1-x}$.
- Binomial RV: $X \in \{0, 1, ..., n\}$ (sum on n Bernoulli RVs)

$$f_X(x) = \text{Binomial}(x; n, p) = \binom{n}{x} p^x (1-p)^{(n-x)}$$

Binomial coefficients:

$$\binom{n}{x} = \frac{n!}{(n-x)! \, x!}$$

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \leq x\})$

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \leq x\})$

• Example: continuous RV with uniform distribution on [a, b].

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \leq x\})$

• Example: continuous RV with uniform distribution on [a, b].

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \leq x\})$

• Example: continuous RV with uniform distribution on [a, b].

$$F_X(x) = \int_{-\infty}^x f_X(u) \, du,$$

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \leq x\})$

• Example: continuous RV with uniform distribution on [a, b].

$$F_X(x) = \int_{-\infty}^x f_X(u) du, \quad \mathbb{P}(X \in [c, d]) = \int_c^d f_X(x) dx,$$

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \leq x\})$

• Example: continuous RV with uniform distribution on [a, b].

$$F_X(x) = \int_{-\infty}^x f_X(u) du$$
, $\mathbb{P}(X \in [c, d]) = \int_c^d f_X(x) dx$, $\mathbb{P}(X = x) = 0$

Important Continuous Random Variables

• Uniform: $f_X(x) = \text{Uniform}(x; a, b) = \begin{cases} \frac{1}{b-a} & \Leftarrow & x \in [a, b] \\ 0 & \Leftarrow & x \notin [a, b] \end{cases}$ (see previous slide).

Important Continuous Random Variables

• Uniform: $f_X(x) = \text{Uniform}(x; a, b) = \begin{cases} \frac{1}{b-a} & \Leftarrow & x \in [a, b] \\ 0 & \Leftarrow & x \notin [a, b] \end{cases}$ (see previous slide).

• Gaussian:
$$f_X(x) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Important Continuous Random Variables

• Uniform: $f_X(x) = \text{Uniform}(x; a, b) = \begin{cases} \frac{1}{b-a} & \Leftarrow & x \in [a, b] \\ 0 & \Leftarrow & x \notin [a, b] \end{cases}$ (see previous slide).

• Gaussian:
$$f_X(x) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2 \pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2 \sigma^2}}$$

• Exponential:
$$f_X(x) = \operatorname{Exp}(x; \lambda) = \begin{cases} \lambda e^{-\lambda x} & \Leftarrow x \ge 0 \\ 0 & \Leftarrow x < 0 \end{cases}$$

• Expectation:
$$\mathbb{E}(X) = \begin{cases} \sum_{i} x_i f_X(x_i) & X \text{ discrete on } \{x_1, ... x_K\} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ continuous} \end{cases}$$

• Expectation:
$$\mathbb{E}(X) = \begin{cases} \sum_{i} x_{i} f_{X}(x_{i}) & X \text{ discrete on } \{x_{1}, ... x_{K}\} \\ \int_{-\infty}^{\infty} x f_{X}(x) dx & X \text{ continuous} \end{cases}$$

• Example: Bernoulli, $f_X(x) = p^x (1-p)^{1-x}$, for $x \in \{0, 1\}$. $\mathbb{E}(X) = 0 (1-p) + 1 p = p$.

• Expectation:
$$\mathbb{E}(X) = \begin{cases} \sum_{i} x_{i} f_{X}(x_{i}) & X \text{ discrete on } \{x_{1}, ... x_{K}\} \\ \int_{-\infty}^{\infty} x f_{X}(x) dx & X \text{ continuous} \end{cases}$$

- Example: Bernoulli, $f_X(x) = p^x (1-p)^{1-x}$, for $x \in \{0, 1\}$. $\mathbb{E}(X) = 0 (1-p) + 1 p = p$.
- Example: Binomial, $f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$, for $x \in \{0,...,n\}$. $\mathbb{E}(X) = n p$.

• Expectation:
$$\mathbb{E}(X) = \begin{cases} \sum_{i} x_{i} f_{X}(x_{i}) & X \text{ discrete on } \{x_{1}, ... x_{K}\} \\ \int_{-\infty}^{\infty} x f_{X}(x) dx & X \text{ continuous} \end{cases}$$

- Example: Bernoulli, $f_X(x) = p^x (1-p)^{1-x}$, for $x \in \{0, 1\}$. $\mathbb{E}(X) = 0 (1-p) + 1 p = p$.
- Example: Binomial, $f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$, for $x \in \{0,...,n\}$. $\mathbb{E}(X) = n p$.
- Example: Gaussian, $f_X(x) = \mathcal{N}(x; \mu, \sigma^2)$; $\mathbb{E}(X) = \mu$.

• Expectation:
$$\mathbb{E}(X) = \begin{cases} \sum_{i} x_i f_X(x_i) & X \text{ discrete on } \{x_1, ... x_K\} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ continuous} \end{cases}$$

- Example: Bernoulli, $f_X(x) = p^x (1-p)^{1-x}$, for $x \in \{0, 1\}$. $\mathbb{E}(X) = 0 (1-p) + 1 p = p$.
- Example: Binomial, $f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$, for $x \in \{0,...,n\}$. $\mathbb{E}(X) = n p$.
- Example: Gaussian, $f_X(x) = \mathcal{N}(x; \mu, \sigma^2)$; $\mathbb{E}(X) = \mu$.
- Linearity of expectation: $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete on } \{x_1, ... x_K\} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete on } \{x_1, ... x_K\} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

• Example: variance, $var(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete on } \{x_1, ... x_K\} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

- Example: variance, $var(X) = \mathbb{E}((X \mathbb{E}(X))^2) = \mathbb{E}(X^2) \mathbb{E}(X)^2$
- Example: Bernoulli variance, $\mathbb{E}(X^2) = \mathbb{E}(X) = p$

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete on } \{x_1, ... x_K\} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

- Example: variance, $var(X) = \mathbb{E}((X \mathbb{E}(X))^2) = \mathbb{E}(X^2) \mathbb{E}(X)^2$
- Example: Bernoulli variance, $\mathbb{E}(X^2) = \mathbb{E}(X) = p$, thus var(X) = p(1-p).

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete on } \{x_1, ... x_K\} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

- Example: variance, $var(X) = \mathbb{E}((X \mathbb{E}(X))^2) = \mathbb{E}(X^2) \mathbb{E}(X)^2$
- Example: Bernoulli variance, $\mathbb{E}(X^2) = \mathbb{E}(X) = p$, thus var(X) = p(1-p).
- Example: Gaussian variance, $\mathbb{E}((X \mu)^2) = \sigma^2$.

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete on } \{x_1, ... x_K\} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

- Example: variance, $var(X) = \mathbb{E}((X \mathbb{E}(X))^2) = \mathbb{E}(X^2) \mathbb{E}(X)^2$
- Example: Bernoulli variance, $\mathbb{E}(X^2) = \mathbb{E}(X) = p$, thus var(X) = p(1-p).
- Example: Gaussian variance, $\mathbb{E}((X \mu)^2) = \sigma^2$.
- Probability as expectation of indicator, $\mathbf{1}_A(x) = \left\{ \begin{array}{ll} 1 & \Leftarrow & x \in A \\ 0 & \Leftarrow & x \not\in A \end{array} \right.$

$$\mathbb{P}(X \in A) = \int_A f_X(x) \, dx = \int \mathbf{1}_A(x) \, f_X(x) \, dx = \mathbb{E}(\mathbf{1}_A(X))$$

• Joint pmf of two discrete RVs: $f_{X,Y}(x,y) = \mathbb{P}(X = x \land Y = y)$.

Extends trivially to more than two RVs.

- Joint pmf of two discrete RVs: $f_{X,Y}(x,y) = \mathbb{P}(X = x \land Y = y)$. Extends trivially to more than two RVs.
- Joint pdf of two continuous RVs: $f_{X,Y}(x,y)$, such that

$$\mathbb{P}(X \in A) = \iint_A f_{X,Y}(x,y) \, dx \, dy, \qquad A \subset \mathbb{R}^2$$

Extends trivially to more than two RVs.

- Joint pmf of two discrete RVs: $f_{X,Y}(x,y) = \mathbb{P}(X = x \land Y = y)$. Extends trivially to more than two RVs.
- Joint pdf of two continuous RVs: $f_{X,Y}(x,y)$, such that

$$\mathbb{P}(X \in A) = \iint_A f_{X,Y}(x,y) \, dx \, dy, \qquad A \subset \mathbb{R}^2$$

Extends trivially to more than two RVs.

• Marginalization: $f_Y(y) = \begin{cases} \sum_{x} f_{X,Y}(x,y), & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{x} f_{X,Y}(x,y) \, dx, & \text{if } X \text{ continuous} \end{cases}$

- Joint pmf of two discrete RVs: $f_{X,Y}(x,y) = \mathbb{P}(X = x \land Y = y)$. Extends trivially to more than two RVs.
- Joint pdf of two continuous RVs: $f_{X,Y}(x,y)$, such that

$$\mathbb{P}(X \in A) = \iint_A f_{X,Y}(x,y) \, dx \, dy, \qquad A \subset \mathbb{R}^2$$

Extends trivially to more than two RVs.

- Marginalization: $f_Y(y) = \begin{cases} \sum_{x} f_{X,Y}(x,y), & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx, & \text{if } X \text{ continuous} \end{cases}$
- Independence: $X \perp \!\!\! \perp Y \Leftrightarrow f_{X,Y}(x,y) = f_X(x) f_Y(y)$.

• Conditional pmf (discrete RVs):
$$f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x \land Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}.$$

• Conditional pmf (discrete RVs):
$$f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x \land Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}.$$

• Conditional pdf (continuous RVs): $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{V}(y)}$...the meaning is technically delicate.

• Conditional pmf (discrete RVs): $f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x \land Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}.$

- Conditional pdf (continuous RVs): $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$...the meaning is technically delicate.
- Bayes' theorem: $f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)}$ (pdf or pmf).

• Conditional pmf (discrete RVs): $f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x \land Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}.$

- Conditional pdf (continuous RVs): $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$...the meaning is technically delicate.
- Bayes' theorem: $f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)}$ (pdf or pmf).
- Also valid in the mixed case (e.g., X continuous, Y discrete).

Joint, Marginal, and Conditional Probabilities: An Example

• A pair of binary variables $X, Y \in \{0, 1\}$, with joint pmf:

$f_{X,Y}(x,y)$	Y = 0	Y = I
X = 0	1/5	2/5
X = 1	1/10	3/10

Joint, Marginal, and Conditional Probabilities: An Example

• A pair of binary variables $X, Y \in \{0, 1\}$, with joint pmf:

$f_{X,Y}(x,y)$	Y = 0	Y = I
X = 0	1/5	2/5
X = 1	1/10	3/10

• Marginals:
$$f_X(0) = \frac{1}{5} + \frac{2}{5} = \frac{3}{5}$$
, $f_X(1) = \frac{1}{10} + \frac{3}{10} = \frac{4}{10}$, $f_Y(0) = \frac{1}{5} + \frac{1}{10} = \frac{3}{10}$, $f_Y(1) = \frac{2}{5} + \frac{3}{10} = \frac{7}{10}$.

Joint, Marginal, and Conditional Probabilities: An Example

• A pair of binary variables $X, Y \in \{0, 1\}$, with joint pmf:

$f_{X,Y}(x,y)$	Y = 0	Y = I
X = 0	1/5	2/5
X = 1	1/10	3/10

• Marginals:
$$f_X(0) = \frac{1}{5} + \frac{2}{5} = \frac{3}{5}$$
, $f_X(1) = \frac{1}{10} + \frac{3}{10} = \frac{4}{10}$, $f_Y(0) = \frac{1}{5} + \frac{1}{10} = \frac{3}{10}$, $f_Y(1) = \frac{2}{5} + \frac{3}{10} = \frac{7}{10}$.

Conditional probabilities:

$f_{X Y}(x y)$	Y = 0	Y = I
X = 0	2/3	4/7
X = I	1/3	3/7

$f_{Y X}(y x)$	Y = 0	Y = 1
X = 0	1/3	2/3
X = 1	1/4	3/4

An Important Multivariate RV: Multinomial

• Multinomial: $X = (X_1, ..., X_K)$, $X_i \in \{0, ..., n\}$, such that $\sum_i X_i = n$,

$$f_X(x_1,...,x_K) = \begin{cases} \binom{n}{x_1 x_2 \cdots x_K} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_K} & \Leftarrow & \sum_i x_i = n \\ 0 & \Leftarrow & \sum_i x_i \neq n \end{cases}$$
$$\binom{n}{x_1 x_2 \cdots x_K} = \frac{n!}{x_1! x_2! \cdots x_K!}$$

Parameters: $p_1, ..., p_K \ge 0$, such that $\sum_i p_i = 1$.

An Important Multivariate RV: Multinomial

• Multinomial: $X = (X_1, ..., X_K)$, $X_i \in \{0, ..., n\}$, such that $\sum_i X_i = n$,

$$f_X(x_1,...,x_K) = \begin{cases} \binom{n}{x_1 x_2 ... x_K} p_1^{x_1} p_2^{x_2} ... p_k^{x_K} & \Leftarrow \sum_i x_i = n \\ 0 & \Leftarrow \sum_i x_i \neq n \end{cases}$$
$$\binom{n}{x_1 x_2 ... x_K} = \frac{n!}{x_1! x_2! ... x_K!}$$

Parameters: $p_1, ..., p_K \ge 0$, such that $\sum_i p_i = 1$.

• Generalizes the binomial from binary to *K*-classes.

An Important Multivariate RV: Multinomial

• Multinomial: $X = (X_1, ..., X_K)$, $X_i \in \{0, ..., n\}$, such that $\sum_i X_i = n$,

$$f_{X}(x_{1},...,x_{K}) = \begin{cases} \binom{n}{x_{1} x_{2} \cdots x_{K}} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{K}} & \Leftarrow \sum_{i} x_{i} = n \\ 0 & \Leftarrow \sum_{i} x_{i} \neq n \end{cases}$$
$$\binom{n}{x_{1} x_{2} \cdots x_{K}} = \frac{n!}{x_{1}! x_{2}! \cdots x_{K}!}$$

Parameters: $p_1, ..., p_K \ge 0$, such that $\sum_i p_i = 1$.

- Generalizes the binomial from binary to *K*-classes.
- Example: tossing n independent fair dice, $p_1 = \cdots = p_6 = 1/6$. $x_i = \text{number of outcomes with } i \text{ dots. Of course, } \sum_i x_i = n$.

An Important Multivariate RV: Gaussian

• Multivariate Gaussian: $X \in \mathbb{R}^n$,

$$f_X(x) = \mathcal{N}(x; \mu, C) = \frac{1}{\sqrt{\det(2 \pi C)}} \exp\left(-\frac{1}{2}(x - \mu)^T C^{-1}(x - \mu)\right)$$

An Important Multivariate RV: Gaussian

• Multivariate Gaussian: $X \in \mathbb{R}^n$,

$$f_X(x) = \mathcal{N}(x; \mu, C) = \frac{1}{\sqrt{\det(2\pi C)}} \exp\left(-\frac{1}{2}(x - \mu)^T C^{-1}(x - \mu)\right)$$

• Parameters: mean $\mu \in \mathbb{R}^n$ and covariance matrix $C \in \mathbb{R}^{n \times n}$.

An Important Multivariate RV: Gaussian

• Multivariate Gaussian: $X \in \mathbb{R}^n$,

$$f_X(x) = \mathcal{N}(x; \mu, C) = \frac{1}{\sqrt{\det(2\pi C)}} \exp\left(-\frac{1}{2}(x - \mu)^T C^{-1}(x - \mu)\right)$$

• Parameters: mean $\mu \in \mathbb{R}^n$ and covariance matrix $C \in \mathbb{R}^{n \times n}$.

• Two RVs, with joint pdf or pmf $f_{X,Y}(x,y) = f_{Y|X}(y|x) f_X(x)$.

 $f_{Y|X}(y|x)$ is often called likelihood function; $f_X(x)$ is called prior.

- Two RVs, with joint pdf or pmf $f_{X,Y}(x,y) = f_{Y|X}(y|x) f_X(x)$. $f_{Y|X}(y|x)$ is often called likelihood function; $f_X(x)$ is called prior.
- One RV is observed, say Y = y; goal is to infer the other RV X.

- Two RVs, with joint pdf or pmf $f_{X,Y}(x,y) = f_{Y|X}(y|x) f_X(x)$. $f_{Y|X}(y|x)$ is often called likelihood function; $f_X(x)$ is called prior.
- One RV is observed, say Y = y; goal is to infer the other RV X.
- Maximum likelihood (ML) criterion: $\hat{x}_{ML} = \arg \max_{x} f_{Y|X}(y|x)$

- Two RVs, with joint pdf or pmf $f_{X,Y}(x,y) = f_{Y|X}(y|x) f_X(x)$. $f_{Y|X}(y|x)$ is often called likelihood function; $f_X(x)$ is called prior.
- One RV is observed, say Y = y; goal is to infer the other RV X.
- Maximum likelihood (ML) criterion: $\hat{x}_{ML} = \arg \max_{x} f_{Y|X}(y|x)$
- Maximum a posteriori (MAP) criterion:

$$\widehat{x}_{\mathsf{MAP}} = \arg\max_{x} f_{X|Y}(x|y) = \arg\max_{x} \frac{f_{Y|X}(y|x) f_{X}(x)}{f_{Y}(y)} = \arg\max_{x} f_{Y|X}(y|x) f_{X}(x)$$

- Two RVs, with joint pdf or pmf $f_{X,Y}(x,y) = f_{Y|X}(y|x) f_X(x)$. $f_{Y|X}(y|x)$ is often called likelihood function; $f_X(x)$ is called prior.
- One RV is observed, say Y = y; goal is to infer the other RV X.
- Maximum likelihood (ML) criterion: $\hat{x}_{ML} = \arg \max_{x} f_{Y|X}(y|x)$
- Maximum a posteriori (MAP) criterion:

$$\widehat{x}_{\mathsf{MAP}} = \arg\max_{x} f_{X|Y}(x|y) = \arg\max_{x} \frac{f_{Y|X}(y|x) f_{X}(x)}{f_{Y}(y)} = \arg\max_{x} f_{Y|X}(y|x) f_{X}(x)$$

• Posterior mean (PM) criterion (for continuous RVs):

$$\widehat{x}_{PM} = \mathbb{E}(X|Y=y) = \int x f_{X|Y}(x|y) dx$$

Statistical Inference: Example

• Observed n i.i.d. (independent identically distributed) Bernoulli RVs: $Y = (Y_1, ..., Y_n)$, with $Y_i \in \{0, 1\}$. Common pmf $f_{Y_i|X}(y|x) = x^y(1-x)^{1-y}$, where $x \in [0, 1]$.

Statistical Inference: Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs: $Y = (Y_1, ..., Y_n)$, with $Y_i \in \{0, 1\}$. Common pmf $f_{Y_i|X}(y|x) = x^y(1-x)^{1-y}$, where $x \in [0, 1]$.
- Likelihood function: $f_{Y|X}((y_1,...,y_n)|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i}$ Log-likelihood function:

$$\log f_{Y|X}((y_1,...,y_n)|x) = n\log(1-x) + \log\frac{x}{1-x}\sum_{i=1}^n y_i$$

Statistical Inference: Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs: $Y = (Y_1, ..., Y_n)$, with $Y_i \in \{0, 1\}$. Common pmf $f_{Y_i|X}(y|x) = x^y(1-x)^{1-y}$, where $x \in [0, 1]$.
- Likelihood function: $f_{Y|X}((y_1,...,y_n)|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i}$ Log-likelihood function:

$$\log f_{Y|X}((y_1,...,y_n)|x) = n\log(1-x) + \log\frac{x}{1-x}\sum_{i=1}^n y_i$$

• Maximum likelihood: $\widehat{x}_{ML} = \arg \max_{x} f_{Y|X}(y|x) = \frac{1}{n} \sum_{i=1}^{n} y_{i}$

Statistical Inference: Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs: $Y = (Y_1, ..., Y_n)$, with $Y_i \in \{0, 1\}$. Common pmf $f_{Y_i|X}(y|x) = x^y(1-x)^{1-y}$, where $x \in [0, 1]$.
- Likelihood function: $f_{Y|X}((y_1,...,y_n)|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i}$ Log-likelihood function:

$$\log f_{Y|X}((y_1,...,y_n)|x) = n\log(1-x) + \log\frac{x}{1-x}\sum_{i=1}^n y_i$$

- Maximum likelihood: $\widehat{x}_{ML} = \arg \max_{x} f_{Y|X}(y|x) = \frac{1}{n} \sum_{i=1}^{n} y_{i}$
- Example: n = 10, observed y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1), $\hat{x}_{ML} = 7/10$.

• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Likelihood:
$$f_{Y|X}((y_1,...,y_n)|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Likelihood:
$$f_{Y|X}((y_1,...,y_n)|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

• Beta (conjugate) prior: $f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}$, $\alpha, \beta > 0$

• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Likelihood:
$$f_{Y|X}((y_1,...,y_n)|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

- Beta (conjugate) prior: $f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}$, $\alpha, \beta > 0$
- ▶ MAP estimate: $\hat{x}_{MAP} = \frac{\alpha + \sum_{i} y_{i} 1}{\alpha + \beta + n 2}$

• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Likelihood:
$$f_{Y|X}((y_1,...,y_n)|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

- ullet Beta (conjugate) prior: $f_X(x) \propto x^{lpha-1} (1-x)^{eta-1}$, lpha, eta > 0
- ► MAP estimate: $\widehat{x}_{MAP} = \frac{\alpha + \sum_{i} y_{i} 1}{\alpha + \beta + n 2}$
- Example: $\alpha = 2$, $\beta = 5$, n = 10, y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1),
 - $\widehat{x}_{MAP} = \frac{8}{15} \text{ (recall } \widehat{x}_{ML} = 7/10 \text{)}$

Agenda

Probability Theory √

• Linear Algebra

Linear Algebra

• Linear algebra provides (among many other things) a compact way of representing, studying, and solving linear systems of equations

Linear Algebra

- Linear algebra provides (among many other things) a compact way of representing, studying, and solving linear systems of equations
- Example: the system

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

can be written compactly as Ax = b, where

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Linear Algebra

- Linear algebra provides (among many other things) a compact way of representing, studying, and solving linear systems of equations
- Example: the system

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

can be written compactly as Ax = b, where

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

• It can be solved as $x = A^{-1}b$ (if A^{-1} exists).

• $A \in \mathbb{R}^{m \times n}$ is a matrix with m rows and n columns.

$$A = \left[\begin{array}{ccc} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{array} \right].$$

• $A \in \mathbb{R}^{m \times n}$ is a matrix with m rows and n columns.

$$A = \left[\begin{array}{ccc} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{array} \right].$$

• $x \in \mathbb{R}^n$ is a vector with n components,

$$x = \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right].$$

• $A \in \mathbb{R}^{m \times n}$ is a matrix with m rows and n columns.

$$A = \left[\begin{array}{ccc} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{array} \right].$$

• $x \in \mathbb{R}^n$ is a vector with n components,

$$x = \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right].$$

• A (column) vector is a matrix with n rows and 1 column.

• $A \in \mathbb{R}^{m \times n}$ is a matrix with m rows and n columns.

$$A = \left[\begin{array}{ccc} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{array} \right].$$

• $x \in \mathbb{R}^n$ is a vector with n components,

$$x = \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right].$$

- A (column) vector is a matrix with *n* rows and 1 column.
- A matrix with 1 row and *n* columns is called a row vector.

• Given matrix $A \in \mathbb{R}^{m \times n}$, its transpose A^T is such that $(A^T)_{i,j} = A_{j,i}$.

- Given matrix $A \in \mathbb{R}^{m \times n}$, its transpose A^T is such that $(A^T)_{i,j} = A_{j,i}$.
- A matrix A is symmetric if $A^T = A$.

- Given matrix $A \in \mathbb{R}^{m \times n}$, its transpose A^T is such that $(A^T)_{i,j} = A_{j,i}$.
- A matrix A is symmetric if $A^T = A$.
- Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$C = AB \in \mathbb{R}^{m \times p}$$
 where $C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$

- Given matrix $A \in \mathbb{R}^{m \times n}$, its transpose A^T is such that $(A^T)_{i,j} = A_{j,i}$.
- A matrix A is symmetric if $A^T = A$.
- Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$C = AB \in \mathbb{R}^{m \times p}$$
 where $C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$

• Inner product between vectors $x, y \in \mathbb{R}^n$:

$$\langle x, y \rangle = x^T y = y^T x = \sum_{i=1}^n x_i y_i \in \mathbb{R}.$$

- Given matrix $A \in \mathbb{R}^{m \times n}$, its transpose A^T is such that $(A^T)_{i,j} = A_{j,i}$.
- A matrix A is symmetric if $A^T = A$.
- Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$C = AB \in \mathbb{R}^{m \times p}$$
 where $C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$

• Inner product between vectors $x, y \in \mathbb{R}^n$:

$$\langle x, y \rangle = x^T y = y^T x = \sum_{i=1}^n x_i y_i \in \mathbb{R}.$$

• Outer product between vectors $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$: $xy^T \in \mathbb{R}^{n \times m}$, where $(xy^T)_{i,j} = x_i y_i$.

$$C = AB \in \mathbb{R}^{m \times p}$$
 where $C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$

• Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, their product is

$$C = AB \in \mathbb{R}^{m \times p}$$
 where $C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$

• Matrix product is associative: (AB)C = A(BC).

$$C = AB \in \mathbb{R}^{m \times p}$$
 where $C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$

- Matrix product is associative: (AB)C = A(BC).
- In general, matrix product is not commutative: $AB \neq BA$.

$$C = AB \in \mathbb{R}^{m \times p}$$
 where $C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$

- Matrix product is associative: (AB)C = A(BC).
- In general, matrix product is not commutative: $AB \neq BA$.
- Transpose of product: $(AB)^T = B^T A^T$.

$$C = AB \in \mathbb{R}^{m \times p}$$
 where $C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$

- Matrix product is associative: (AB)C = A(BC).
- In general, matrix product is not commutative: $AB \neq BA$.
- Transpose of product: $(AB)^T = B^T A^T$.
- Transpose of sum: $(A+B)^T = A^T + B^T$.

• The norm of a vector is (informally) its "length". Euclidean norm:

$$||x||_2 = \sqrt{\langle x, x \rangle} = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}.$$

The norm of a vector is (informally) its "length". Euclidean norm:

$$\|x\|_2 = \sqrt{\langle x, x \rangle} = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}.$$

• More generally, the ℓ_p norm of a vector $x \in \mathbb{R}^n$, where $p \geq 1$,

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

The norm of a vector is (informally) its "length". Euclidean norm:

$$\|x\|_2 = \sqrt{\langle x, x \rangle} = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}.$$

• More generally, the ℓ_p norm of a vector $x \in \mathbb{R}^n$, where $p \ge 1$,

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

• Notable case: the ℓ_1 norm, $\|x\|_1 = \sum_i |x_i|$.

The norm of a vector is (informally) its "length". Euclidean norm:

$$||x||_2 = \sqrt{\langle x, x \rangle} = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}.$$

• More generally, the ℓ_p norm of a vector $x \in \mathbb{R}^n$, where $p \ge 1$,

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

- Notable case: the ℓ_1 norm, $||x||_1 = \sum_i |x_i|$.
- Notable case: the ℓ_{∞} norm, $||x||_{\infty} = \max\{|x_1|,...,|x_n|\}$.

The norm of a vector is (informally) its "length". Euclidean norm:

$$\|x\|_2 = \sqrt{\langle x, x \rangle} = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}.$$

• More generally, the ℓ_p norm of a vector $x \in \mathbb{R}^n$, where $p \ge 1$,

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

- Notable case: the ℓ_1 norm, $||x||_1 = \sum_i |x_i|$.
- Notable case: the ℓ_{∞} norm, $||x||_{\infty} = \max\{|x_1|,...,|x_n|\}$.
- Notable case: the ℓ_0 "norm" (not): $||x||_0 = |\{i : x_i \neq 0\}|$.

$$I_{ij} = \left\{ egin{array}{ll} 1 & i = j \\ 0 & i
eq j \end{array} \right. \quad I = \left[egin{array}{ll} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

• The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix such that

$$I_{ij} = \left\{ egin{array}{ll} 1 & i = j \\ 0 & i
eq j \end{array} \right. \quad I = \left[egin{array}{ll} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

• Neutral element of matrix product: AI = IA = A.

$$I_{ij} = \left\{ egin{array}{ll} 1 & i = j \\ 0 & i
eq j \end{array} \right. \quad I = \left[egin{array}{ll} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

- Neutral element of matrix product: AI = IA = A.
- Diagonal matrix: $A \in \mathbb{R}^{n \times n}$ is diagonal if $(i \neq j) \Rightarrow A_{i,j} = 0$.

$$I_{ij} = \left\{ \begin{array}{ccc} 1 & i = j \\ 0 & i \neq j \end{array} \right. \quad I = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

- Neutral element of matrix product: AI = IA = A.
- Diagonal matrix: $A \in \mathbb{R}^{n \times n}$ is diagonal if $(i \neq j) \Rightarrow A_{i,j} = 0$.
- Upper triangular matrix: $(j < i) \Rightarrow A_{i,j} = 0$.

$$I_{ij} = \left\{ egin{array}{ll} 1 & i = j \\ 0 & i
eq j \end{array} \right. \quad I = \left[egin{array}{ll} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

- Neutral element of matrix product: AI = IA = A.
- Diagonal matrix: $A \in \mathbb{R}^{n \times n}$ is diagonal if $(i \neq j) \Rightarrow A_{i,j} = 0$.
- Upper triangular matrix: $(j < i) \Rightarrow A_{i,j} = 0$.
- Lower triangular matrix: $(j > i) \Rightarrow A_{i,j} = 0$.

• A vector $x \in \mathbb{R}^n$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$Ax = \lambda x$$
,

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

• A vector $x \in \mathbb{R}^n$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$Ax = \lambda x$$
,

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

• Eigenvalues of diagonal matrix are the elements in the diagonal.

• A vector $x \in \mathbb{R}^n$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$Ax = \lambda x$$
,

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- Eigenvalues of diagonal matrix are the elements in the diagonal.
- Matrix trace:

$$trace(A) = \sum_{i} A_{i,i} = \sum_{i} \lambda_{i}$$

• A vector $x \in \mathbb{R}^n$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$Ax = \lambda x$$

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- Eigenvalues of diagonal matrix are the elements in the diagonal.
- Matrix trace:

$$trace(A) = \sum_{i} A_{i,i} = \sum_{i} \lambda_{i}$$

Matrix determinant:

$$|A| = \det(A) = \prod_i \lambda_i$$

• A vector $x \in \mathbb{R}^n$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$Ax = \lambda x$$
,

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- Eigenvalues of diagonal matrix are the elements in the diagonal.
- Matrix trace:

$$trace(A) = \sum_{i} A_{i,i} = \sum_{i} \lambda_{i}$$

• Matrix determinant:

$$|A| = \det(A) = \prod_i \lambda_i$$

• Properties: |AB| = |A||B|,

• A vector $x \in \mathbb{R}^n$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$Ax = \lambda x$$

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- Eigenvalues of diagonal matrix are the elements in the diagonal.
- Matrix trace:

$$trace(A) = \sum_{i} A_{i,i} = \sum_{i} \lambda_{i}$$

Matrix determinant:

$$|A| = \det(A) = \prod_i \lambda_i$$

• Properties: |AB| = |A||B|, $|A^T| = |A|$,

• A vector $x \in \mathbb{R}^n$ is an eigenvector of matrix $A \in \mathbb{R}^{n \times n}$ if

$$Ax = \lambda x$$
,

where $\lambda \in \mathbb{R}$ is the corresponding eigenvalue.

- Eigenvalues of diagonal matrix are the elements in the diagonal.
- Matrix trace:

$$trace(A) = \sum_{i} A_{i,i} = \sum_{i} \lambda_{i}$$

Matrix determinant:

$$|A| = \det(A) = \prod_i \lambda_i$$

• Properties: |AB| = |A||B|, $|A^T| = |A|$, $|\alpha A| = \alpha^n |A|$

• Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. AB = BA = I.

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. AB = BA = I.
- ...matrix B such that AB = BA = I denoted $B = A^{-1}$ (inverse of A).

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. AB = BA = I.
- ...matrix B such that AB = BA = I denoted $B = A^{-1}$ (inverse of A).
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \det(A) \neq 0$.

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. AB = BA = I.
- ...matrix B such that AB = BA = I denoted $B = A^{-1}$ (inverse of A).
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \det(A) \neq 0$.
- Determinant of inverse: $det(A^{-1}) = \frac{1}{det(A)}$.

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. AB = BA = I.
- ...matrix B such that AB = BA = I denoted $B = A^{-1}$ (inverse of A).
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \det(A) \neq 0$.
- Determinant of inverse: $det(A^{-1}) = \frac{1}{det(A)}$.
- Solving system Ax = b, if A is invertible: $x = A^{-1}b$.

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. AB = BA = I.
- ...matrix B such that AB = BA = I denoted $B = A^{-1}$ (inverse of A).
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \det(A) \neq 0$.
- Determinant of inverse: $det(A^{-1}) = \frac{1}{det(A)}$.
- Solving system Ax = b, if A is invertible: $x = A^{-1}b$.
- Properties: $(A^{-1})^{-1} = A$,

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. AB = BA = I.
- ...matrix B such that AB = BA = I denoted $B = A^{-1}$ (inverse of A).
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \det(A) \neq 0$.
- Determinant of inverse: $det(A^{-1}) = \frac{1}{det(A)}$.
- Solving system Ax = b, if A is invertible: $x = A^{-1}b$.
- Properties: $(A^{-1})^{-1} = A$, $(A^{-1})^T = (A^T)^{-1}$,

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. AB = BA = I.
- ...matrix B such that AB = BA = I denoted $B = A^{-1}$ (inverse of A).
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \det(A) \neq 0$.
- Determinant of inverse: $det(A^{-1}) = \frac{1}{det(A)}$.
- Solving system Ax = b, if A is invertible: $x = A^{-1}b$.
- Properties: $(A^{-1})^{-1} = A$, $(A^{-1})^T = (A^T)^{-1}$, $(AB)^{-1} = B^{-1}A^{-1}$

- Matrix $A \in \mathbb{R}^{n \times n}$ in invertible if there is $B \in \mathbb{R}^{n \times n}$ s.t. AB = BA = I.
- ...matrix B such that AB = BA = I denoted $B = A^{-1}$ (inverse of A).
- Matrix $A \in \mathbb{R}^{n \times n}$ is invertible $\Leftrightarrow \det(A) \neq 0$.
- Determinant of inverse: $det(A^{-1}) = \frac{1}{det(A)}$.
- Solving system Ax = b, if A is invertible: $x = A^{-1}b$.
- Properties: $(A^{-1})^{-1} = A$, $(A^{-1})^T = (A^T)^{-1}$, $(AB)^{-1} = B^{-1}A^{-1}$
- There are many algorithms to compute A^{-1} ; general case, computational cost $O(n^3)$.

• Given matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^n$,

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} x_{i} x_{j} \in \mathbb{R}$$

• Given matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^n$,

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} x_{i} x_{j} \in \mathbb{R}$$

is called a quadratic form.

• A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) if, for any $x \in \mathbb{R}^n$, $x^T A x \ge 0$.

• Given matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^n$,

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} x_{i} x_{j} \in \mathbb{R}$$

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) if, for any $x \in \mathbb{R}^n$, $x^T A x \ge 0$.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite (PD) if, for any $x \in \mathbb{R}^n$, $(x \neq 0) \Rightarrow x^T A x > 0$.

• Given matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^n$,

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} x_{i} x_{j} \in \mathbb{R}$$

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) if, for any $x \in \mathbb{R}^n$, $x^T A x \ge 0$.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite (PD) if, for any $x \in \mathbb{R}^n$, $(x \neq 0) \Rightarrow x^T A x > 0$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is PSD \Leftrightarrow all $\lambda_i(A) \geq 0$.

• Given matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^n$,

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} x_{i} x_{j} \in \mathbb{R}$$

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) if, for any $x \in \mathbb{R}^n$, $x^T A x \ge 0$.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite (PD) if, for any $x \in \mathbb{R}^n$, $(x \neq 0) \Rightarrow x^T A x > 0$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is PSD \Leftrightarrow all $\lambda_i(A) \geq 0$.
- Matrix $A \in \mathbb{R}^{n \times n}$ is PD \Leftrightarrow all $\lambda_i(A) > 0$.

Agenda

Probability Theory √

Linear Algebra √

Enjoy LxMLS!