Exercises 9

These used to be called "Fundamental Questions". Do not hand the solutions to these exercises in; they are just to make sure you can have some practice with the current material.

1. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ -2 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 4 \\ 0 \\ 4 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$, and $\mathbf{u}_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.

Which pairs are orthogonal among the vectors \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , and \mathbf{u}_4 ?

- 2. Let $\mathbf{x} = \begin{bmatrix} \sqrt{3} & 1 & 3 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}$.
 - (a) What is the (Euclidean) length of \mathbf{x} , and the (Euclidean) length of \mathbf{y} ?
 - (b) What is the (Euclidean) distance between \mathbf{x} and \mathbf{y} ?
 - (c) What is the angle between \mathbf{x} and \mathbf{y} ?
 - (d) What is the scalar projection of \mathbf{x} onto \mathbf{y} ?
 - (e) What is the vector projection of \mathbf{x} onto \mathbf{y} ?
- 3. Let A be an $n \times n$ matrix, and \mathbf{x} and \mathbf{y} be vectors so that $A\mathbf{x} = \mathbf{0}$ and $A^T\mathbf{y} = 5\mathbf{y}$. Show that \mathbf{x} and \mathbf{y} are orthogonal.

4. Suppose
$$S = \text{Span} \left\{ \begin{bmatrix} 1\\3\\1\\-1 \end{bmatrix}, \begin{bmatrix} -1\\2\\2\\-5 \end{bmatrix} \right\}$$
.

- (a) Find two vectors that span S^{\perp} .
- (b) This is the same as solving $A\mathbf{x} = \mathbf{0}$ for which matrix A?
- 5. Find the orthogonal projection of $\mathbf{x} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$ on Span $\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \right\}$.
- 6. Find the least squares solution to

$$\begin{bmatrix} -1 & 2\\ 2 & -3\\ -1 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 4\\ 1\\ 2 \end{bmatrix}.$$

7. Let $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$. Give all vectors \mathbf{y} for which the Cauchy-Schwarz inequality for \mathbf{x} and \mathbf{y} holds with equality.

1

8. Prove the Pythagorean Theorem. (Don't forget it is an "if and only if"!)

- 9. Explain why the following statement is false: If a subspace V is orthogonal to subspace W then V^{\perp} is orthogonal to W^{\perp} .
- 10. Let S be a subspace of \mathbb{R}^n . Prove that S^{\perp} is a subspace.
- 11. Suppose $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$, and $\mathcal{V} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, and $\mathbf{u}_i \cdot \mathbf{v}_j = 0$ for all $i = 1, 2, \dots, p$ and $j = 1, 2, \dots, k$.

Show that $\operatorname{Span} \mathcal{U}$ and $\operatorname{Span} \mathcal{V}$ are orthogonal subspaces.