## COMP540 STATISTICAL MACHINE LEARNING

Chuanwenjie Wei, Yiqing Lu

February 20, 2017

## 1 MAP and MLE parameter estimation

• Since  $x^{(i)} \sim Ber(\theta)$ , we have

$$L(\theta) = \prod_{i=1}^{m} \theta^{x^{(i)}} (1-\theta)^{1-x^{(i)}}$$

By the method of maximum likelihood estimation, we konw that

$$\theta_{MLE} = argmax_{\theta}L(\theta) = argmax_{\theta}LL(\theta)$$

where  $LL(\theta)$  denotes the log likelihood of the data set.

So we can derive  $\theta_{MLE}$  from

$$\frac{\partial LL\left(\theta\right)}{\partial \theta} = \frac{\partial \left[\sum\limits_{i=1}^{m} \left(x^{(i)}log\theta + \left(1 - x^{(i)}\right)log\left(1 - \theta\right)\right)\right]}{\partial \theta} = 0$$

that is,

$$\frac{1}{\theta} \sum_{i=1}^{m} x^{(i)} - \frac{1}{1-\theta} \sum_{i=1}^{m} \left( 1 - x^{(i)} \right) = 0$$

So

$$\theta_{MLE} = \frac{\sum\limits_{i=1}^{m} x^{(i)}}{m}$$

• Assume  $\theta \sim Beta\left(a,b\right)$ , So

$$p(X \mid \theta) = \pi(\theta) L(\theta) = Beta(a, b) \prod_{i=1}^{m} Ber(x^{(i)}, \theta)$$
$$= \theta^{a-1} (1 - \theta)^{b-1} \prod_{i=1}^{m} \theta^{x^{(i)}} (1 - \theta)^{1-x^{(i)}}$$

We know that

$$\theta_{MAP} = argmax_{\theta}P(X \mid \theta) = argmax_{\theta}logP(X \mid \theta)$$

Since

$$log P\left(X \mid \theta\right) \quad = \quad log \theta\left(a - 1 + \sum_{i=1}^{m} x^{(i)}\right) + log\left(1 - \theta\right)\left(b - 1 + \sum_{i=1}^{m} \left(1 - x^{(i)}\right)\right)$$

So

$$\begin{split} \frac{\partial log P\left(X\mid\theta\right)}{\partial\theta} &=& \frac{1}{\theta}\left(a-1+\sum_{i=1}^{m}x^{(i)}\right)-\frac{1}{1-\theta}\left(b-1+\sum_{i=1}^{m}\left(1-x^{(i)}\right)\right)=0\\ \\ \Longrightarrow \theta_{MAP} &=& \frac{a-1+\sum\limits_{i=1}^{m}x^{(i)}}{a+b-2+m} \end{split}$$

When a = b = 1,

$$\theta_{MAP} = \frac{\sum\limits_{i=1}^{m} x^{(i)}}{m} = \theta_{MLE}$$

## 2 Logistic regression and Guassian Naive Bayes

• For Logistic regression, we have

$$p(y = 1 \mid x^{(i)}) = \frac{1}{1 + e^{-\theta^T x^{(i)}}}$$
$$p(y = 0 \mid x) = 1 - \frac{1}{1 + e^{-\theta^T x^{(i)}}}$$

• According to Bayes rule,

$$p\left(y=1\mid x^{(i)}\right) \quad = \quad \frac{p\left(x^{(i)}\mid y=1\right)p\left(y=1\right)}{p\left(x^{(i)}\right)} = \frac{p\left(y=1\right)\prod\limits_{j=1}^{d}p\left(x_{j}^{(i)}\mid y=1\right)}{\prod\limits_{j=1}^{d}p\left(x_{j}^{(i)}\right)}$$

Since

$$y \quad \sim \quad Ber\left(\gamma\right), \; x_j/y = 1 \sim N\left(\mu_j^1, \sigma_j^2\right), \; x_j/y = 0 \sim N\left(\mu_j^0, \sigma_j^2\right)$$

So

$$p(y=1) = \gamma,$$
 
$$\left( x_i^{(i)} - \frac{1}{2} \right)$$

$$\begin{split} p\left(x_{j}^{(i)}\mid y=1\right) &= \frac{1}{\sqrt{2\pi}\sigma_{j}}exp\left\{-\frac{\left(x_{j}^{(i)}-\mu_{j}^{1}\right)^{2}}{2\sigma_{j}^{2}}\right\} \\ p\left(x^{(i)}\right) &= \gamma\prod_{j=1}^{d}N\left(x_{j}^{(i)},\mu_{j}^{1},\sigma_{j}^{2}\right)+(1-\gamma)\prod_{j=1}^{d}N\left(x_{j}^{(i)},\mu_{j}^{0},\sigma_{j}^{2}\right) \end{split}$$

Therefore,

$$p\left(y=1 \mid x^{(i)}\right) \quad = \quad \frac{\gamma \prod\limits_{j=1}^{d} \frac{1}{\sqrt{2\pi}\sigma_{j}} exp\left\{-\frac{\left(x_{j}^{(i)} - \mu_{j}^{1}\right)^{2}}{2\sigma_{j}^{2}}\right\}}{\gamma \prod\limits_{j=1}^{d} \frac{1}{\sqrt{2\pi}\sigma_{j}} exp\left\{-\frac{\left(x_{j}^{(i)} - \mu_{j}^{1}\right)^{2}}{2\sigma_{j}^{2}}\right\} + (1-\gamma) \prod\limits_{j=1}^{d} \frac{1}{\sqrt{2\pi}\sigma_{j}} exp\left\{-\frac{\left(x_{j}^{(i)} - \mu_{j}^{0}\right)^{2}}{2\sigma_{j}^{2}}\right\}}$$

• Assume that class 1 and class 0 are equally likely, that is,  $\gamma = \frac{1}{2}$ 

Then, we have

$$p\left(y=1 \mid x^{(i)}\right) = \frac{1}{1+\prod\limits_{j=1}^{d} exp\left\{-\frac{\left(x_{j}^{(i)}-\mu_{j}^{0}\right)^{2}-\left(x_{j}^{(i)}-\mu_{j}^{1}\right)^{2}}{2\sigma_{j}^{2}}\right\}}$$

When  $\mu_j^0 = -\mu_j^1$ , we can rewrite the posterior probability as:

$$\begin{split} p\left(y = 1 \mid x^{(i)}\right) &= \frac{1}{1 + \prod\limits_{j=1}^{d} exp\left\{-\frac{4x_{j}^{(i)}\mu_{j}^{1}}{2\sigma_{j}^{2}}\right\}} \\ &= \frac{1}{1 + exp\left\{-\sum\limits_{j=1}^{d} \frac{2\mu_{j}^{1}}{\sigma_{j}^{2}}x_{j}^{(i)}\right\}} \\ &= \frac{1}{1 + e^{-\theta^{T}x^{(i)}}} \end{split}$$

where 
$$\theta = \left(\frac{2\mu_1^1}{\sigma_1^2}, \frac{2\mu_2^1}{\sigma_2^2}, \dots, \frac{2\mu_d^1}{\sigma_d^2}\right)^T$$

So with appropriate parameterization as above,  $P(y = 1 \mid x)$  for Gaussian Naive Bayes with uniform priors is equivalent to  $P(y = 1 \mid x)$  for logistic regression.

### 3 Reject option in classifiers

• When j = 1, ..., c, the average loss of choosing class j is:

$$L(\alpha_j \mid x) = \sum_{k=1}^{c} L(\alpha_j \mid y = k) p(y = k \mid x)$$

$$= \sum_{k=1, k \neq j}^{c} \lambda_s p(y = k \mid x) + 0 * p(y = j \mid x)$$

$$= \lambda_s (1 - p(y = j \mid x))$$

When j = c + 1,

$$L\left(\alpha_{j+1} \mid x\right) = \lambda_r$$

Since when the cost for rejects is less than the cost of falsely classifying the object, it might be the optimal action. Then if we decide y=j, we not only need  $p(y=j\mid x)\geqslant p(y=k\mid x)$  for all k, but also  $L(\alpha_j\mid x)\leqslant L(\alpha_{j+1}\mid x)$  which means:

$$\lambda_s (1 - p (y = j \mid x)) \leqslant \lambda_r$$

$$\Rightarrow p(y = j \mid x) \geqslant 1 - \frac{\lambda_r}{\lambda_s}$$

• When  $\lambda_r/\lambda_s$  approaches to 0, the cost of falsely classifying is extremely large, in other words, the cost of rejects is small, so we tend to choose rejects.

However, as  $\lambda_r/\lambda_s$  increases, the relative cost of rejection increases and the probability of rejecting decreases. And when  $\lambda_r \geqslant \lambda_s$ , we would never reject.

### 4 One vs all logistic regression and softmax regression

### 4.1A Implementing a one-vs-all classier for the CIFAR-10 dataset

The code of train function of OVA is in Fig.1.

Fig.1 The train function

### 4.1B Predicting with a one-vs-all classier

The code of predict function of OVA is in Fig.2.

Fig.2 The predict function

One\_vs\_all on raw pixels final test set accuracy: 0.361400. The result of the confution matrix is

| [[464 | 58  | 22  | 24  | 19  | 35  | 26  | 60  | 202 | 90]   |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| [ 69  | 464 | 18  | 35  | 23  | 31  | 44  | 51  | 91  | 174]  |
| [121  | 64  | 193 | 77  | 96  | 89  | 151 | 89  | 73  | 47]   |
| [ 66  | 86  | 78  | 161 | 48  | 193 | 171 | 51  | 63  | 83]   |
| [ 65  | 38  | 103 | 64  | 234 | 90  | 194 | 129 | 35  | 48]   |
| [ 49  | 64  | 81  | 127 | 81  | 273 | 114 | 89  | 67  | 55]   |
| [ 31  | 53  | 67  | 102 | 87  | 78  | 456 | 51  | 29  | 46]   |
| [ 53  | 62  | 50  | 46  | 68  | 85  | 66  | 406 | 48  | 116]  |
| [146  | 79  | 8   | 25  | 9   | 34  | 22  | 19  | 543 | 115]  |
| [ 59  | 208 | 14  | 22  | 23  | 29  | 59  | 56  | 110 | 420]] |

### When label=0:

|               | y = 0 | otherwise |                      | specificity = 0.855 |
|---------------|-------|-----------|----------------------|---------------------|
| $\hat{y} = 0$ | 464   | 536       | $  \implies \langle$ | accuracy = 0.752    |
| otherwise     | 659   | 3150      |                      | sensitivity = 0.413 |

#### When label=1:

|               | y=1 | otherwise |                 | specificity = 0.855 |
|---------------|-----|-----------|-----------------|---------------------|
| $\hat{y} = 1$ | 464 | 536       | $\implies \iff$ | accuracy = 0.743    |
| otherwise     | 712 | 3150      |                 | sensitivity = 0.395 |

#### When label=2:

|             | y=2 | otherwise |                 | specificity = 0.809 |
|-------------|-----|-----------|-----------------|---------------------|
| $\hat{y}=2$ | 193 | 807       | $\implies \iff$ | accuracy = 0.743    |
| otherwise   | 441 | 3421      |                 | sensitivity = 0.304 |

### When label=3:

|               | y = 3 | otherwise |                    | $\int specificity = 0.805$ |
|---------------|-------|-----------|--------------------|----------------------------|
| $\hat{y} = 3$ | 161   | 839       | $\implies \langle$ | accuracy = 0.726           |
| otherwise     | 522   | 3453      |                    | sensitivity = 0.236        |

### When label=4:

|               | y=4 | otherwise |                      | specificity = 0.815 |
|---------------|-----|-----------|----------------------|---------------------|
| $\hat{y} = 4$ | 234 | 766       | $  \implies \langle$ | accuracy = 0.724    |
| otherwise     | 454 | 3380      |                      | sensitivity = 0.340 |

### When label=5:

|               | y=5 | otherwise |                       | $\int specificity = 0.821$ |
|---------------|-----|-----------|-----------------------|----------------------------|
| $\hat{y} = 5$ | 273 | 727       | $\Rightarrow \langle$ | accuracy = 0.722           |
| otherwise     | 664 | 3341      |                       | sensitivity = 0.291        |

### When label=6:

|               | y = 6 | otherwise | ]                  | specificity = 0.853 |
|---------------|-------|-----------|--------------------|---------------------|
| $\hat{y} = 6$ | 456   | 544       | $\implies \langle$ | accuracy = 0.722    |
| otherwise     | 847   | 3158      |                    | sensitivity = 0.350 |

### When label=7:

|               | y=7 | otherwise | ]             | $\int specificity = 0.844$ |
|---------------|-----|-----------|---------------|----------------------------|
| $\hat{y} = 7$ | 406 | 594       | $\rightarrow$ | accuracy = 0.752           |
| otherwise     | 595 | 3208      |               | sensitivity = 0.406        |

### When label=8:

|               | y = 8 | otherwise |                    | specificity = 0.870 |
|---------------|-------|-----------|--------------------|---------------------|
| $\hat{y} = 8$ | 543   | 457       | $\implies \langle$ | accuracy = 0.755    |
| otherwise     | 718   | 3071      | ]                  | sensitivity = 0.431 |

### When label=9:

|               | y = 9 | otherwise | ]                     | specificity = 0.846 |
|---------------|-------|-----------|-----------------------|---------------------|
| $\hat{y} = 9$ | 420   | 580       | $\Rightarrow \langle$ | accuracy = 0.727    |
| otherwise     | 774   | 3194      |                       | sensitivity = 0.352 |

So the table comparing the per genre classication performance of each classier is in Table.1.

|             | y=0   | y=1   | y=2   | y=3   | y=4   | y=5   | y=6   | y=7   | y=8   | y=9   |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| specificity | 0.855 | 0.855 | 0.809 | 0.805 | 0.815 | 0.821 | 0.853 | 0.844 | 0.870 | 0.846 |
| accuracy    | 0.752 | 0.743 | 0.743 | 0.726 | 0.724 | 0.722 | 0.722 | 0.752 | 0.755 | 0.727 |
| sensitivity | 0.413 | 0.395 | 0.304 | 0.236 | 0.340 | 0.291 | 0.350 | 0.406 | 0.431 | 0.352 |

Table.1 Per genre classication performance of each classier

The results are similar because for the whole data set, the amount of every label is almost the same, and the model of every model is the same, so the results of specificity, accuracy and sensitivity are similar.

• Visualizing the learned parameter matrix The result of the learned one-vs-all classifier is in Fig.3.



Fig.3 Visualizing the learned one-vs-all classifier

## 4.2 Implementing the loss function for softmax regression (naive version)

The code of the loss function(naive version) for softmax regression is in Fig.4.

```
K=grad.shape[1]
for i in xrange(m):
    X_i = X[i,:]
    score_i = np.dot(X_i,theta)
    s_max = -score_i.max()
    exp_score = np.exp(score_i+s_max)
    total_score = np.sum(exp_score , axis = 0)
    numerator = np.exp(score_i[y[i]]+s_max)
    denom = np.sum(np.exp(score_i+s_max),axis = 0)
    J = J -np.log(numerator / float(denom))

J = J / float(m) + 0.5 * reg * np.sum(theta**2) / float(m)
```

Fig. 4 The loss function(naive version)

The result of loss is: 2.3696905683. The result should be close to  $2.38 = -log_e(0.1)$ , because for a large amount of data, the possibility  $p(y^{(i)} = k)$  is equal, and because  $\theta$  is a matrix of random numbers, so  $\frac{exp(\theta^{(k)^T}x^{(i)})}{\sum_{j=1}^k exp(\theta^{(j)^T}x^{(i)})} \approx 0.1$ . And because  $\lambda = 0$  in this case:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} I(y^{(i)} = k) log \frac{exp(\theta^{(k)^{T}} x^{(i)})}{\sum_{j=1}^{k} exp(\theta^{(j)^{T}} x^{(i)})} + \frac{\lambda}{m} \sum_{j=0}^{d} \sum_{k=1}^{K} \theta_{j}^{(k)^{2}}$$

$$\approx -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} I(y^{(i)} = k) log 0.1$$

$$= -\frac{1}{m} * m \sum_{k=1}^{K} I(y^{(i)} = k) log 0.1$$

$$= -log 0.1$$

## 4.3 Implementing the gradient of loss function for softmax regression (naive version)

The code of the gradient of loss function(naive version) for softmax regression is in Fig.5.

Fig. 5 The gradient of loss function(naive version)

#### • Checking your gradient implementation with numerical gradients

By using the method of finite differences, we can check the implementation of the gradient of loss function(naive version) against the numerically approximated gradient. The result is in Fig.6.

```
numerical: 2.769691 analytic: 2.769691, relative error: 9.789110e-09 numerical: 1.820697 analytic: 1.820697, relative error: 1.515677e-09 numerical: -3.901717 analytic: -3.901717, relative error: 1.366744e-08 numerical: 0.809232 analytic: 0.809232, relative error: 1.184073e-08 numerical: -5.195859 analytic: -5.195859, relative error: 3.478235e-09 numerical: -2.738136 analytic: -2.738136, relative error: 3.250883e-08 numerical: -0.485431 analytic: -0.485431, relative error: 4.272427e-09 numerical: -0.282233 analytic: -0.282233, relative error: 6.545069e-08 numerical: -1.154074 analytic: -1.154074, relative error: 2.234206e-08 numerical: -1.892849 analytic: -1.892849, relative error: 3.094552e-09 naive loss: 2.369691e+00 computed in 36.544000s
```

Fig.6 The dfference between two gradients

From the Fig.6, we can see that the relative error between the two gradients of the order of  $10^{-7}$  or less. So the gradient of loss function(naive version) we get is correct.

## 4.4 Implementing the loss function for softmax regression (vectorized version)

The code of the loss function (vectorized version) for softmax regression is in Fig.7.

```
score_i = np.dot(theta.T,X.T)
s_max = -np.max(score_i,axis=0)
exp_score = np.exp(score_i+s_max)

theta_new=theta[:,y]
J=np.sum(np.multiply(theta_new,X.T)/float(m))
J=J-np.sum((np.log(np.sum(exp_score,axis=0))-s_max)/float(m))
# J=J-np.sum(np.log(np.sum(np.exp(score_i),axis=0))/float(m))
J=-1.0*J+0.5*reg*np.sum(theta**2)/float(m)
```

Fig. 7 The loss function (vectorized version)

## 4.5 Implementing the gradient of loss for softmax regression (vectorized version)

The code of the gradient of loss function (vectorized version) for softmax regression is in Fig.8.

```
K=grad.shape[1]
temp_1=exp_score
temp_2=np.sum(exp_score,axis=0)
temp=np.divide(temp_1,temp_2)
Grad=temp.T
Grad[np.arange(m),y] += -1.0
grad = np.dot(X.T,Grad) / float(m) + reg*theta/float(m)
```

Fig. 8 The gradient of loss function (vectorized version)

• Checking the implement of vectorized version The difference between the result of the naive implement and the vectorized implement is in Fig. 9.

vectorized loss: 2.369691e+00 computed in 5.537000s

Loss difference: 0.000000 Gradient difference: 0.000000

Fig.9 The dfference between two implements

From Fig.9, we can see that the relative error of the loss is 0, and the relative error of the gradient is 0 as well. So the implement of vectorized version is correct.

### 4.6 Implementing mini-batch gradient descent

The code of getting the batch is in Fig.10.

Fig.10 Getting the batch

The code of updating the parameter  $\theta$  is in Fig.11.

### Fig.11 Updating the $\theta$

## 4.7 Using a validation set to select regularization lambda and learning rate for gradient descent

The code of selecting regularization lambda and learning rate for gradient descent is in Fig.12.

```
best lamda=learning_rates[0]
best_reg=regularization_strengths[0]
from linear classifier import LinearClassifier
for i in range(len(learning rates)):
    for j in range(len(regularization strengths)):
        lin=LinearClassifier()
        lin.train(X train,y train,learning rates[i],regularization strengths[j],4000,400,verbose=False)
        y train pred = lin.predict(X train)
        accuracy_train = np.mean(y_train == y_train_pred)
        y val pred = lin.predict(X val)
        accuracy_val = np.mean(y_val == y_val_pred)
        results[(learning rates[i], regularization strengths[j])] = (accuracy train, accuracy val)
        if (accuracy_val>best_val):
            best val=accuracy val
            best softmax=lin
            best lamda=learning rates[i]
            best reg=regularization strengths[i]
```

Fig. 12 Select regularization lambda and learning rate

We compute the gradient over batches of the training data, and use the validation set to compute the accuracy to choose the best values of the regularization lambda and the learning rate. The result is shown in Fig.13.

```
1r 1.000000e-07 reg 5.000000e+04 train accuracy: 0.294020 val accuracy: 0.292000
1r 1.000000e-07 reg 1.000000e+05 train accuracy: 0.293816 val accuracy: 0.289000
lr 1.000000e-07 reg 5.000000e+05 train accuracy: 0.324408 val accuracy: 0.333000
lr 1.000000e-07 reg 1.000000e+08 train accuracy: 0.277653 val accuracy: 0.282000
1r 5.000000e-07 reg 5.000000e+04 train accuracy: 0.379041 val accuracy: 0.381000
lr 5.000000e-07 reg 1.000000e+05 train accuracy: 0.390388 val accuracy: 0.369000
lr 5.000000e-07 reg 5.000000e+05 train accuracy: 0.414000 val accuracy: 0.413000
1r 5.000000e-07 reg 1.000000e+08 train accuracy: 0.280796 val accuracy: 0.290000
lr 1.000000e-06 reg 5.000000e+04 train accuracy: 0.415306 val accuracy: 0.390000
lr 1.000000e-06 reg 1.000000e+05 train accuracy: 0.425959 val accuracy: 0.403000
lr 1.000000e-06 reg 5.000000e+05 train accuracy: 0.412878 val accuracy: 0.405000
lr 1.000000e-06 reg 1.000000e+08 train accuracy: 0.278673 val accuracy: 0.280000
1r 5.000000e-06 reg 5.000000e+04 train accuracy: 0.409612 val accuracy: 0.375000
1r 5.000000e-06 reg 1.000000e+05 train accuracy: 0.368449 val accuracy: 0.347000
1r 5.000000e-06 reg 5.000000e+05 train accuracy: 0.358510 val accuracy: 0.365000
lr 5.000000e-06 reg 1.000000e+08 train accuracy: 0.078714 val accuracy: 0.077000
best validation accuracy achieved during cross-validation: 0.413000
```

Fig.13 Select regularization lambda and learning rate

Here we choose a batch size of 400 and 4000 iterations for our experiment. And from Fig.13, we can get the best values of regularization lambda and learning rate with the bast validation accuracy. The best validation accuracy is 0.413, with the train accuracy 0.414, the regularization lambda 5e+05, and the learning rate 5e-07.

### 4.8 Training a softmax classier with the best hyperparameters

With the best values of regularization lambda and learning rate, We evaluate the test set accuracy.

Softmax on raw pixels final test set accuracy: 0.403400. The result of the confution matrix is

|     |                                        |                                                                        | -                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|----------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 167 | 48                                     | 54                                                                     | 26                                                                                                                                                                                   | 13                                                                                                                                                                                                                                             | 34                                                                                                                                                                                                                                                                                                      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 54  | 483                                    | 17                                                                     | 30                                                                                                                                                                                   | 18                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                      | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 176]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 95  | 57                                     | 236                                                                    | 67                                                                                                                                                                                   | 124                                                                                                                                                                                                                                            | 92                                                                                                                                                                                                                                                                                                      | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 36  | 85                                     | 87                                                                     | 207                                                                                                                                                                                  | 48                                                                                                                                                                                                                                             | 206                                                                                                                                                                                                                                                                                                     | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 59  | 37                                     | 108                                                                    | 51                                                                                                                                                                                   | 299                                                                                                                                                                                                                                            | 81                                                                                                                                                                                                                                                                                                      | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 33  | 46                                     | 99                                                                     | 116                                                                                                                                                                                  | 64                                                                                                                                                                                                                                             | 354                                                                                                                                                                                                                                                                                                     | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15  | 54                                     | 72                                                                     | 77                                                                                                                                                                                   | 80                                                                                                                                                                                                                                             | 75                                                                                                                                                                                                                                                                                                      | 534                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 50  | 57                                     | 61                                                                     | 38                                                                                                                                                                                   | 95                                                                                                                                                                                                                                             | 78                                                                                                                                                                                                                                                                                                      | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 102]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L53 | 68                                     | 8                                                                      | 16                                                                                                                                                                                   | 7                                                                                                                                                                                                                                              | 54                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 133]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 68  | 169                                    | 13                                                                     | 23                                                                                                                                                                                   | 12                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                      | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 520]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 54<br>95<br>36<br>59<br>33<br>15<br>50 | 54 483<br>95 57<br>36 85<br>59 37<br>33 46<br>15 54<br>50 57<br>L53 68 | 54     483     17       95     57     236       36     85     87       59     37     108       33     46     99       15     54     72       50     57     61       L53     68     8 | 54     483     17     30       95     57     236     67       36     85     87     207       59     37     108     51       33     46     99     116       15     54     72     77       50     57     61     38       153     68     8     16 | 54     483     17     30     18       95     57     236     67     124       36     85     87     207     48       59     37     108     51     299       33     46     99     116     64       15     54     72     77     80       50     57     61     38     95       153     68     8     16     7 | 54       483       17       30       18       36         95       57       236       67       124       92         36       85       87       207       48       206         59       37       108       51       299       81         33       46       99       116       64       354         15       54       72       77       80       75         50       57       61       38       95       78         153       68       8       16       7       54 | 54       483       17       30       18       36       49         95       57       236       67       124       92       177         36       85       87       207       48       206       138         59       37       108       51       299       81       197         33       46       99       116       64       354       114         15       54       72       77       80       75       534         50       57       61       38       95       78       67         153       68       8       16       7       54       10 | 54       483       17       30       18       36       49       38         95       57       236       67       124       92       177       61         36       85       87       207       48       206       138       63         59       37       108       51       299       81       197       98         33       46       99       116       64       354       114       70         15       54       72       77       80       75       534       26         50       57       61       38       95       78       67       399         153       68       8       16       7       54       10       16 | 467       48       54       26       13       34       23       42       197         54       483       17       30       18       36       49       38       99         95       57       236       67       124       92       177       61       63         36       85       87       207       48       206       138       63       60         59       37       108       51       299       81       197       98       35         33       46       99       116       64       354       114       70       72         15       54       72       77       80       75       534       26       23         50       57       61       38       95       78       67       399       53         153       68       8       16       7       54       10       16       535         68       169       13       23       12       17       49       45       84 |

• Visualizing the learned parameter matrix The result of the learned parameter matrix of softmax is in Fig.13.



Fig.13 Visualizing the learned parameter matrix with a batch size of 400 and 4000 iterations

If we choose a batch size of 200 and 2000 iterations for our experiment, we can see that the picture is smoother. The result is in Fig.14. The test accuracy, however, is only 0.390800.





Fig.14 Visualizing the learned parameter matrix with a batch size of 200 and 2000 iterations

So, the more precise the visualizing result is, the more accuracy we'll get. That's the reason why a better test accuracy may accompany with a higher sharpness.

# 4.10 Comparing OVA binary logistic regression with softmax regression

For softmax, the performance is as follows.

When label=0:

|               | y = 0 | otherwise | ]                     | $\int specificity = 0.869$ |
|---------------|-------|-----------|-----------------------|----------------------------|
| $\hat{y} = 0$ | 467   | 536       | $\Rightarrow \langle$ | accuracy = 0.786           |
| otherwise     | 563   | 3567      |                       | sensitivity = 0.453        |

When label=1:

|               | y=1 | otherwise |                       | specificity = 0.873 |
|---------------|-----|-----------|-----------------------|---------------------|
| $\hat{y} = 1$ | 483 | 517       | $\Rightarrow \langle$ | accuracy = 0.780    |
| otherwise     | 621 | 3551      |                       | sensitivity = 0.438 |

When label=2:

|             | y=2 | otherwise | ]                    | $\int specificity = 0.833$ |
|-------------|-----|-----------|----------------------|----------------------------|
| $\hat{y}=2$ | 236 | 764       | $] \implies \langle$ | accuracy = 0.759           |
| otherwise   | 519 | 3798      |                      | sensitivity = 0.313        |

## When label=3:

|               | y=3 | otherwise | ]                     | $\int specificity = 0.828$ |
|---------------|-----|-----------|-----------------------|----------------------------|
| $\hat{y} = 3$ | 207 | 793       | $\Rightarrow \langle$ | accuracy = 0.765           |
| otherwise     | 444 | 3827      |                       | sensitivity = 0.318        |

## When label=4:

|               | y=4 | otherwise | ]                  | specificity = 0.842 |
|---------------|-----|-----------|--------------------|---------------------|
| $\hat{y} = 4$ | 299 | 701       | $\implies \langle$ | accuracy = 0.776    |
| otherwise     | 461 | 3735      |                    | sensitivity = 0.393 |

## When label=5:

|               | y=5 | otherwise |                    | specificity = 0.851 |
|---------------|-----|-----------|--------------------|---------------------|
| $\hat{y} = 5$ | 354 | 646       | $\implies \langle$ | accuracy = 0.753    |
| otherwise     | 674 | 3680      |                    | sensitivity = 0.344 |

## When label=6:

|               | y = 6 | otherwise |                    | specificity = 0.882 |
|---------------|-------|-----------|--------------------|---------------------|
| $\hat{y} = 6$ | 534   | 467       | $\implies \langle$ | accuracy = 0.758    |
| otherwise     | 824   | 3500      |                    | sensitivity = 0.393 |

## When label=7:

|               | y = 7 | otherwise |                    | $\int specificity = 0.858$ |
|---------------|-------|-----------|--------------------|----------------------------|
| $\hat{y} = 7$ | 399   | 601       | $\implies \langle$ | accuracy = 0.792           |
| otherwise     | 459   | 3635      |                    | sensitivity = 0.465        |

## When label=8:

|               | y = 8 | otherwise |                       | $\int specificity = 0.882$ |
|---------------|-------|-----------|-----------------------|----------------------------|
| $\hat{y} = 8$ | 535   | 465       | $\Rightarrow \langle$ | accuracy = 0.778           |
| otherwise     | 686   | 3499      |                       | sensitivity = 0.438        |

## When label=9:

|               | y=9 | otherwise |                    | specificity = 0.880 |
|---------------|-----|-----------|--------------------|---------------------|
| $\hat{y} = 9$ | 520 | 480       | $\implies \langle$ | accuracy = 0.771    |
| otherwise     | 719 | 3514      | ]                  | sensitivity = 0.420 |

So the table comparing the per genre classication performance of each classier is in Table.2.

|             | y=0   | y=1   | y=2   | y=3   | y=4   | y=5   | y=6   | y=7   | y=8   | y=9   |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| specificity | 0.869 | 0.873 | 0.833 | 0.828 | 0.842 | 0.851 | 0.882 | 0.858 | 0.882 | 0.880 |
| accuracy    | 0.786 | 0.780 | 0.759 | 0.765 | 0.775 | 0.753 | 0.758 | 0.792 | 0.778 | 0.771 |
| sensitivity | 0.453 | 0.438 | 0.313 | 0.318 | 0.393 | 0.344 | 0.393 | 0.465 | 0.438 | 0.420 |

Table.2 Per genre classication performance of each classier

The accuracy of both OVA and softmax are not very high. Their accuracy are all <0.5. So they are all not suitable to solve the problem.

From the difference between Table.1 and Table.2, we can see that the performance of softmax is better than OVA since specificity, accuracy and sensitivity of softmax are all higher than OVA.

So we recommend softmax for the CIFAR-10 classication problem.