

TEORÍA DE CONTROL 1 Lugar Geométrico de Raíces LGR

Luis Vilcahuamán, PhD. Ing. Ivilcah@pucp.edu.pe

Lugar Geométrico de Raíces (LGR).

Introducción:

- A menudo en un problema de diseño es necesario tener un esbozo rápido del comportamiento a lazo cerrado del sistema: Método gráfico.
- □ El Lugar de las Raíces permite examinar la ubicación de las raíces del polinomio característico en función de un parámetro variable (una ganancia, un cero del controlador, etc).

$$P_{1,2} = \frac{1}{2}(-1 \pm \sqrt{(1 - 4K)})$$

$$K = 0$$

$$P_1 = 0$$
 $P_2 = -1$

$$K = 0.25$$

$$K = 0.25$$
 $P_1 = -0.5$ $P_2 = -0.5$

$$K = \infty \qquad P_{1,2} = -\frac{1}{2} \pm j \infty$$

Introducción:

□ Un sistema de lazo cerrado se estructura de la siguiente forma:

- Introducción:
 - □ Consideremos la ecuación característica en lazo cerrado: $1 + G(s) \cdot H(s) = 0$
 - Donde GH se considera la ec. de "lazo abierto":

$$G(s)H(s) = \frac{M(s)}{D(s)} = \frac{k(s-z_1)....(s-z_m)}{(s-p_1)....(s-p_n)}$$

- □ Donde K \geq 0 y M(s),D(s) tienen orden m y n respectivamente.
- □ La solución del problema del LGR requiere encontrar todos los puntos del plano S que son soluciones para todos los valores de K.

Se cumple: G(s).H(s) = -1

Entonces se define:

Ecuación de módulos:

$$|G(s)H(s)| = \frac{k|s - z_1| \dots |s - z_m|}{|s - p_1| \dots |s - p_n|} = 1$$

Ecuación de ángulos:

$$\langle G(s)H(s)\rangle$$

$$= [\langle s - z_1 \rangle + \cdots + \langle s - z_m \rangle]$$

$$- [\langle s - p_1 \rangle + \cdots + \langle s - p_n \rangle] = -\pi.i$$

$$i = 1,3,5,7,....$$

Pasos para construir el LGR:

- Localizar en el plano S los puntos iniciales del LGR, esto es cuando K=0
- 2. El número de curvas es igual al orden de la ec. Característica
- 3. Localizar el final de las curvas, esto es cuando K=∞
- 4. Ubicar el LGR sobre el eje real
- 5. Calcular el ángulo de las asíntotas
- 6. Ubicar la intersección de las asíntotas con el eje real
- 7. Ubicar la intersección del LGR con el eje imaginario
- 8. Ubicar los puntos de ruptura (doble LGR en un punto)
- 9. Encontrar el ángulo de separación del LGR desde un polo

Lugar Geométrico de Raíces: Ejemplo

FT del sistema realimentado en lazo abierto:
$$G(s).H(s) = \frac{K}{(S+1)(S^2+9s+25)}$$

FT del sistema realimentado en lazo cerrado:

$$\frac{C(s)}{R(s)} = \frac{K}{(S+1)(S^2+9s+25)+K}$$

1. Localizar en el plano S los puntos iniciales del LGR, esto es cuando K=0

Para K=0, la Ec característica del sistema (en lazo cerrado) es la misma del lazo abierto

$$(S+1)(S^2+9s+25)=0$$

$$S_1 = -1$$

$$S_{2,3} = -4.5 \pm j2.18$$

3. Localizar el final de las curvas, esto es cuando K=∞

FT del sistema realimentado en lazo abierto: $G(s).H(s) = \frac{K}{(S+1)(S^2+9s+25)}$

Se cumple para el lazo cerrado:

$$G(s).H(s) = -1$$

$$\frac{1}{(S+1)(S^2+9s+25)} = -\frac{1}{K}$$

$$\frac{1}{(S+1)(S^2+9s+25)} = -\frac{1}{K} = 0$$

$$\frac{(s-z_1)....(s-z_m)}{(s-p_1)....(s-p_n)} = -\frac{1}{K} = 0$$

- a. El final de las curvas están en $s-z_i=0$ es decir en los "Zeros"
- b. Si se tiene m Zeros y n polos, (n-m) curvas terminan en infinito

4. Ubicar el LGR sobre el eje real

"Una sección del eje real, es parte del LGR sobre el eje real, si el número de Polos y Zeros del sistema (lazo cerrado) que están sobre el eje real, a la derecha de un punto de prueba es impar"

5. Calcular el ángulo de las asíntotas

La curvas del LGR que termina en infinito tienden a seguir asíntotas, en un ángulo de:

$$\frac{\pi}{(n-m)}, \frac{3\pi}{(n-m)}, \frac{5\pi}{(n-m)}, \dots \dots \frac{\{2(n-m)-1\}\pi}{(n-m)}$$

Si (n-m)=1, una curva termina en infinito y termina en 180°

Si (n-m)=2, dos curvas terminan en infinito y terminan en 90° y 270°

Si (n-m)=3, tres curvas terminan en infinito y terminan en 60°, 180°, 300°

Para el ejemplo:

(n-m)=3, tres curvas termina en infinito y terminan en 60°, 180°, 300°

6. Ubicar la intersección de las asíntotas con el eje real

Tomando Polo Pi y Zeros Zi del sistema en "lazo abierto" G(s).H(s),

Centro de Gravedad
$$CG = \frac{\sum P_i - \sum Z_i}{n - m}$$

Para el ejemplo:

$$CG = \frac{\left[-1 + (-4.5 + j2.18) + (-4.5 - j2.18)\right] - [0]}{3} = -3.33$$

Para K=0, la ec. característica del sistema en lazo cerrado es G(s).H(s)

7. Ubicar la intersección del LGR con el eje imaginario

La intersección con el eje imaginario, es la condición límite de estabilidad, así usando el criterio de Routh – Hurwitz:

Ecuación característica del sistema (lazo cerrado): $(S+1)(S^2+9s+25)+K=0$

Es decir:
$$S^3 + 10S^2 + 34s + 25 + K = 0$$

$$S^3$$
 1 34 Para estabilidad: S^2 10 25 + K b1 > 0 entonces $K < 315$ S^0 c1 y:

c1 > 0 entonces K > -25

La condición límite se dará con K=315

7. Ubicar la intersección del LGR con el eje imaginario

8. Ubicar los puntos de ruptura (doble LGR en un punto)

Este ejemplo no tiene punto de ruptura, se verá en otro ejercicio

9. Encontrar el ángulo de separación del LGR desde un polo

Ecuación de ángulos:

$$\langle G(s)H(s)\rangle$$

$$= [\langle s - z_1 \rangle + \cdots + \langle s - z_m \rangle]$$

$$- [\langle s - p_1 \rangle + \cdots + \langle s - p_n \rangle] = -\pi.i$$

9. Encontrar el ángulo de separación del LGR desde un polo

Ecuación de ángulos para un punto de prueba S_p cercano a P2:

9. Encontrar el ángulo de separación del LGR desde un polo

