Домашнее задание I. Теория случайных процессов

Вероятностные модели и статистика случайных процессов

January 19, 2017

Напомним, что вектор $X=(X_1,\ldots,X_n)$ называется гауссовским, если для любого набора коэффициентов $(\lambda_1,\ldots,\lambda_n)\in\mathbb{R}^n$ случайная величина $Y\stackrel{\mathrm{def}}{=}\sum_{k=1}^n\lambda_kY_k$ имеет нормальное распределение.

Напомним определение Винеровского процесса: процесс W_t называется Винеровским (или броуновским движением), если

- $W_0 = 0$ \mathbb{P} п.н.
- W_t имеет независимые приращения $\forall t$.
- $W_t W_s \sim \mathcal{N}(0, t s) \ \forall t > s > 0.$

1 Гауссовские случайные процессы

Задача 1.1. Существует ли случайный процесс, у которого ковариационная функция равна

$$R_1(t,s) = \min\{t,s\} - ts$$
 $R_2(t,s) = \min\{t,s\} - t(s+1)$ (1)

Задача 1.2. Докажите эквивалентность следующих утверждений:

(i) Характеристическая функция вектора X выглядит таким образом

$$\varphi_X(\mathbf{u}) = \exp\left\{i\mathbf{u}^T \cdot \mu - \frac{1}{2}\mathbf{u}^T \Sigma \mathbf{u}\right\},$$
 (2)

где $\mu \in \mathbb{R}^n$ и Σ симметричная неотрицательно определённая квадратная матрица размера $n \times n.$

(ii) Вектор X представим в виде

$$X = AX^{\circ} + \mu, \tag{3}$$

где $\mu \in \mathbb{R}^n$, $A \in \mathbb{M}_n(\mathbb{R})$, а $X^{\circ} \in \mathbb{R}^n$ — стандартный нормальный вектор, т.е. все компоненты этого вектора независимы в совокупности и распределены по закону $\mathcal{N}(0,1)$.

Задача 1.3. Рассмотрим следующую вариацию определения Винеровского процесса.

Винеровский процесс (броуновское движение) - это гауссовский процесс W_t с математическим ожиданием m(t)=0 и кова- риационной функцией $R(s,t)=min\{s,t\}$.

Докажите эквивалентность этих двух определений.

Задача 1.4. Найдите

(a) Квадратичную вариацию Винеровского процесса на отрезке [0, t]:

$$\lim_{n \to \infty} \sum_{i=1}^{n} (W_{t_i} - W_{t_{i-1}})^2 \tag{4}$$

(b) Вариацию винеровского процесса на отрезке [0, t]:

$$\lim_{n \to \infty} \sum_{i=1}^{n} |W_{t_i} - W_{t_{i-1}}| \tag{5}$$

Задача 1.5. Пусть N_t - неоднородный процесс Пуассона с интенсивностью $\lambda(t)$. Докажите, что

- функция $\Lambda(t) = \int_0^t \lambda(s) \, ds$ имеет обратную.
- процесс $M_t = N_{\Lambda^{-1}(t)}$ является однородным Пуассоновским процессом.

2 Эксперимент

Задача 1.5. Напишите программу, которая генерирует реализации пуассоновского потока событий с заданной пользователем функцией" интенсивности, и продемонстрируйте результаты ее работы.