Reinforcement Learning for Navigation Goal

Francesco Fantechi

Relatori: Andrew D. Bagdanov

UNIVERSITA' DEGLI STUDI DI FIRENZE Facolta di Ingegneria Corso di Laurea Magistrale in Ingegneria Informatica

A.A. 2022-2023

Obbiettivo

 Far navigare il robot fino a un punto Goal

Obbiettivo

- Far navigare il robot fino a un punto Goal
- Evitando le collisioni con gli ostacoli

Obbiettivo

- Far navigare il robot fino a un punto Goal
- Evitando le collisioni con gli ostacoli
- Imparando e migliorando dai propri tentativi attraverso un algoritmo di Reinforcement e Curriculum Learning

 Il lavoro è stato implementato in linguaggio Python

- Il lavoro è stato implementato in linguaggio Python
- Libreria Gymnasium per implementare il ciclo osservazione, stato, azione, reward dell'agente

- Il lavoro è stato implementato in linguaggio Python
- Libreria Gymnasium per implementare il ciclo osservazione, stato, azione, reward dell'agente
- Libreria Pygame per la renderizzazione a video

• L'Osservazione dell'agente è un vettore costituito da 18 elementi:

- L'Osservazione dell'agente è un vettore costituito da 18 elementi:
 - Le 16 minor distanze dagli ostacoli circostanti in direzione radiale all'agente

- L'Osservazione dell'agente è un vettore costituito da 18 elementi:
 - Le 16 minor distanze dagli ostacoli circostanti in direzione radiale all'agente
 - La distanza che intercorre fra l'agente e il punto Goal

- L'Osservazione dell'agente è un vettore costituito da 18 elementi:
 - Le 16 minor distanze dagli ostacoli circostanti in direzione radiale all'agente
 - La distanza che intercorre fra l'agente e il punto Goal
 - La distanza angolare fra l'orientazione dell'agente e la direzione che dovrebbe assumere per frontaggiare il punto Goal

- L'Osservazione dell'agente è un vettore costituito da 18 elementi:
 - Le 16 minor distanze dagli ostacoli circostanti in direzione radiale all'agente
 - La distanza che intercorre fra l'agente e il punto Goal
 - La distanza angolare fra l'orientazione dell'agente e la direzione che dovrebbe assumere per frontaggiare il punto Goal
- L'agente puó compiere 3 Azioni: ↑, [™], [™]

- L'Osservazione dell'agente è un vettore costituito da 18 elementi:
 - Le 16 minor distanze dagli ostacoli circostanti in direzione radiale all'agente
 - La distanza che intercorre fra l'agente e il punto Goal
 - La distanza angolare fra l'orientazione dell'agente e la direzione che dovrebbe assumere per frontaggiare il punto Goal
- L'agente puó compiere 3 Azioni: ↑, [↑]
- Reward dell'agente:

- L'Osservazione dell'agente è un vettore costituito da 18 elementi:
 - Le 16 minor distanze dagli ostacoli circostanti in direzione radiale all'agente
 - La distanza che intercorre fra l'agente e il punto Goal
 - La distanza angolare fra l'orientazione dell'agente e la direzione che dovrebbe assumere per frontaggiare il punto Goal
- L'agente puó compiere 3 Azioni: ↑, [↑]
- Reward dell'agente:
 - $+100 \cdot n$ se raggiunge il Goal $(n \in \mathbb{R}, n \ge 1)$

- L'Osservazione dell'agente è un vettore costituito da 18 elementi:
 - Le 16 minor distanze dagli ostacoli circostanti in direzione radiale all'agente
 - La distanza che intercorre fra l'agente e il punto Goal
 - La distanza angolare fra l'orientazione dell'agente e la direzione che dovrebbe assumere per frontaggiare il punto Goal
- L'agente puó compiere 3 Azioni: ↑, ヾ, ,
- Reward dell'agente:
 - $+100 \cdot n$ se raggiunge il Goal $(n \in \mathbb{R}, n \ge 1)$
 - $\bullet \ +2\cdot \Delta$ se avanza verso il Goal ($\Delta \in [0,1] \ \propto \ \mathrm{avanzamento})$

- L'Osservazione dell'agente è un vettore costituito da 18 elementi:
 - Le 16 minor distanze dagli ostacoli circostanti in direzione radiale all'agente
 - La distanza che intercorre fra l'agente e il punto Goal
 - La distanza angolare fra l'orientazione dell'agente e la direzione che dovrebbe assumere per frontaggiare il punto Goal
- L'agente puó compiere 3 Azioni: ↑, [↑]
- Reward dell'agente:
 - $+100 \cdot n$ se raggiunge il Goal $(n \in \mathbb{R}, n \ge 1)$
 - ullet $+2\cdot\Delta$ se avanza verso il Goal ($\Delta\in[0,1]$ \propto avanzamento)
 - $\bullet~-1\cdot\Delta$ se si allontana dal Goal ($\Delta\in[0,1]~\propto~{\rm allontanamento})$

- L'Osservazione dell'agente è un vettore costituito da 18 elementi:
 - Le 16 minor distanze dagli ostacoli circostanti in direzione radiale all'agente
 - La distanza che intercorre fra l'agente e il punto Goal
 - La distanza angolare fra l'orientazione dell'agente e la direzione che dovrebbe assumere per frontaggiare il punto Goal
- L'agente puó compiere 3 Azioni: ↑, [↑]
- Reward dell'agente:
 - $+100 \cdot n$ se raggiunge il Goal $(n \in \mathbb{R}, n \ge 1)$
 - ullet $+2\cdot\Delta$ se avanza verso il Goal ($\Delta\in[0,1]$ \propto avanzamento)
 - ullet $-1\cdot\Delta$ se si allontana dal Goal $(\Delta\in[0,1]\ \propto\ {
 m allontanamento})$
 - $\bullet~-100$ se collide con un ostacolo o se non termina in ${\rm MaxSteps}$

Deep Q-Learning Algorithm

Equazione di Ottimalità di Bellman per l'action-value function Q:

$$Q^{o}(x, u) = r(x, u) + \alpha \cdot \sum_{x' \in X} \varphi(x' \mid x, u) \cdot \max_{u'} (Q^{o}(x', u'))$$

 $x \in X$ stato, $u \in U$ azione, φ valore atteso transizione, r funzione di reward, α fattore di sconto

Deep Q-Learning Algorithm

Equazione di Ottimalità di Bellman per l'action-value function Q:

$$Q^{o}(x,u) = r(x,u) + \alpha \cdot \sum_{x' \in X} \varphi(x' \mid x,u) \cdot \max_{u'} (Q^{o}(x',u'))$$

 $x \in X$ stato, $u \in U$ azione, φ valore atteso transizione, r funzione di reward, α fattore di sconto

 Approssimando in modo parametrico l'action-value function e rendendo l'equazione model-free e tempo reale si ottiene:

$$Q_t(x, u) = Q(x, u, w(t))$$

w(t) pesi delle rete neurale al tempo t

$$\widehat{Q}_t = r(t) + \alpha \cdot \max_{u'}(Q(x(t+1), u', w(t)))$$

Deep Q-Learning Algorithm

Equazione di Ottimalità di Bellman per l'action-value function Q:

$$Q^{o}(x,u) = r(x,u) + \alpha \cdot \sum_{x' \in X} \varphi(x' \mid x,u) \cdot \max_{u'} (Q^{o}(x',u'))$$

 $x \in X$ stato, $u \in U$ azione, φ valore atteso transizione, r funzione di reward, α fattore di sconto

 Approssimando in modo parametrico l'action-value function e rendendo l'equazione model-free e tempo reale si ottiene:

$$Q_t(x, u) = Q(x, u, w(t))$$

w(t) pesi delle rete neurale al tempo t

$$\widehat{Q}_t = r(t) + \alpha \cdot \max_{u'}(Q(x(t+1), u', w(t)))$$

 Quindi il nostro agente imparerá andando a minimizzare il proprio erroe quadratico di predizione:

$$[Q(x(t), u(t), w) - \widehat{Q}_t]^2$$

Libreria PyTorch

- Libreria PyTorch
- Multi layer perceptron (MLP):

- Libreria PyTorch
- Multi layer perceptron (MLP):
 - 18 nodi nell'input layer corrispondenti all'osservazione dell'agente

- Libreria PyTorch
- Multi layer perceptron (MLP):
 - 18 nodi nell'input layer corrispondenti all'osservazione dell'agente
 - 2 hidden layers di 128 e 64 nodi rispettivamente

con g
 funzione di attivazione e α_k output del nodo k-esimo

- Libreria PyTorch
- Multi layer perceptron (MLP):
 - 18 nodi nell'input layer corrispondenti all'osservazione dell'agente
 - 2 hidden layers di 128 e 64 nodi rispettivamente
 - 3 nodi nell'output layer per restituire un punteggio associato ad ogni azione

- Libreria PyTorch
- Multi layer perceptron (MLP):
 - 18 nodi nell'input layer corrispondenti all'osservazione dell'agente
 - 2 hidden layers di 128 e 64 nodi rispettivamente
 - 3 nodi nell'output layer per restituire un punteggio associato ad ogni azione
 - Ottimizzatore Adam

Retropropagazione errore e aggiornamento dei pesi

• L'agente è stato addestrato su migliaia di episodi variando nel corso dell'addestramento i vari parametri del modello e il numero di ostacoli presenti nell'ambiente

- L'agente è stato addestrato su migliaia di episodi variando nel corso dell'addestramento i vari parametri del modello e il numero di ostacoli presenti nell'ambiente
- Per favorire la convergenza:

- L'agente è stato addestrato su migliaia di episodi variando nel corso dell'addestramento i vari parametri del modello e il numero di ostacoli presenti nell'ambiente
- Per favorire la convergenza:
 - Exploration VS Exploitation:

- L'agente è stato addestrato su migliaia di episodi variando nel corso dell'addestramento i vari parametri del modello e il numero di ostacoli presenti nell'ambiente
- Per favorire la convergenza:
 - Exploration VS Exploitation:
 - ullet Metodo arepsilon Greedy

- L'agente è stato addestrato su migliaia di episodi variando nel corso dell'addestramento i vari parametri del modello e il numero di ostacoli presenti nell'ambiente
- Per favorire la convergenza:
 - Exploration VS Exploitation:
 - Metodo ε *Greedy*
 - ε si riduce esponenzialmente con il passare degli episodi facendo si che l'agente consolidi ció che ha imparato

- L'agente è stato addestrato su migliaia di episodi variando nel corso dell'addestramento i vari parametri del modello e il numero di ostacoli presenti nell'ambiente
- Per favorire la convergenza:
 - Exploration VS Exploitation:
 - Metodo ε *Greedy*
 - $m{arepsilon}$ si riduce esponenzialmente con il passare degli episodi facendo si che l'agente consolidi ció che ha imparato
 - Replay Buffer per contenere gli esempi dai quali apprendere di modo da renderli indipendenti

- L'agente è stato addestrato su migliaia di episodi variando nel corso dell'addestramento i vari parametri del modello e il numero di ostacoli presenti nell'ambiente
- Per favorire la convergenza:
 - Exploration VS Exploitation:
 - Metodo ε *Greedy*
 - ε si riduce esponenzialmente con il passare degli episodi facendo si che l'agente consolidi ció che ha imparato
 - Replay Buffer per contenere gli esempi dai quali apprendere di modo da renderli indipendenti
 - Utilizzo di due reti (Policy e Target) di modo da aggiornare tutti i pesi contemporaneamente e non solo per la coppia stato/azione corrente

- L'agente è stato addestrato su migliaia di episodi variando nel corso dell'addestramento i vari parametri del modello e il numero di ostacoli presenti nell'ambiente
- Per favorire la convergenza:
 - Exploration VS Exploitation:
 - Metodo ε *Greedy*
 - ε si riduce esponenzialmente con il passare degli episodi facendo si che l'agente consolidi ció che ha imparato
 - Replay Buffer per contenere gli esempi dai quali apprendere di modo da renderli indipendenti
 - Utilizzo di due reti (Policy e Target) di modo da aggiornare tutti i pesi contemporaneamente e non solo per la coppia stato/azione corrente
- Utilizzo della libreria Tensorboard per validare l'addestramento ogni 50 episodi

ullet "Terra Sicura", Reward Goal: +100, Collision Reward: -100

- ullet "Terra Sicura", Reward Goal: +100, Collision Reward: -100
- Curriculum Learning, Reward Goal: +500, Numero Ostacoli: 0

- ullet "Terra Sicura", Reward Goal: +100, Collision Reward: -100
- Curriculum Learning, Reward Goal: +500, Numero Ostacoli: 0
- Coraggio VS Avventatezza

- ullet "Terra Sicura", Reward Goal: +100, Collision Reward: -100
- Curriculum Learning, Reward Goal: +500, Numero Ostacoli: 0
- Coraggio VS Avventatezza
 - Reward Goal ridotto e Numero Ostacoli via via aumentati

• Migliori Risultati:

