Introduction to Formal Semantics

Tutorial Lecture 1: Meaning and Form

Nicolaie Dominik Dascalu, Dr. Volha Petukhova Spoken Language System Group Saarland University

04.05.22

Tutorial Overview

Meaning Representation

Exercise 2

Reasoning, Entailments

Exercises 3,4

Models and Truth Conditions

Exercise 5

(Direct) Compositionality

Exercise 6

Reading:

- Winter, Y. (2016). Elements of formal semantics: An introduction to the mathematical theory of meaning in natural language. Edinburgh University Press. (Ch. 1)
- Coppock, E., and Champollion, L. (2021). Invitation to formal semantics. Manuscript, Boston University and New York University (Ch.1)

. . .

Discussion

Discussion

- Did you have any difficulties understanding the main concepts?
- Were the **exercises** difficult?
- Is there something in particular you would like to review?

. . .

Exercises

Translating NL sentences into Predicate Logic sentences

(1) Brian runs.

(2) Brian runs home.

(3) Peter and Louis bought donuts.

$$B(p,d) \wedge B(l,d)$$

(4) Mark gave Sandy the tickets.

(5) Saarbrücken welcomes every student.

$$\forall x(Sx \rightarrow W(s,x))$$

Translating NL sentences into Predicate Logic sentences

(6) Someone stabbed Caeser.

$$\exists x(S(x,c))$$

(7) Prince Harry and Meghan love each other.

$$L(h,m) \wedge L(m,h)$$

(8) London is the capital of England.

$$I = c(e)$$

(9) There's no King without a crown.

$$\neg \exists x \exists y (Kx \land Cy \land \neg H(x,y))$$
$$\forall x (Kx \rightarrow \exists y (Cy \land H(x,y)))$$

(10) Every sailor loves a mermaid.

$$\forall x(Sx \to \exists y(My \land L(x,y)))$$
 (wide scope)
 $\exists x(Mx \land \forall y(Sy \to L(y,x)))$ (narrow scope)

Entailments

```
(1a) Susan's watch is navy blue \not\models (1b) Susan's watch is blue. \not\nearrow
```

$$(1a) \vDash (1b) \checkmark$$

- (2a) Tom Hardy is an actor and a father \models (2b) Tom hardy is a good actor. \nearrow
- (2a) $\not\models$ (2b) Tom hardy is a **good** actor.
- $(2a) \vDash (2b)$ Tom Hardy is an actor. \checkmark
- (2a) ⊨ (2c) Tom Hardy is a father. \checkmark
- (3a) Sue wears lipstick and kissed John. \models (3b) The lipstick on John is Sue's. \nearrow
- $(3a) \not\models (3b)$ The lipstick on John was Sue's.
 - e.g. Sue might have worn the lipstick after kissing John!
- (3a) ⊨ (3b) Sue kissed John. \checkmark
- (3a) ⊨ (3c) Sue wears lipstick. \checkmark

Entailments and Reasoning

- (4) [1] Some linguists are well educated.
 - [2] Bart is a linguist.
 - [3] Bart is well educated.

$$(4) = [1] \land [2] \Rightarrow [3] \quad X$$

- (5) [1] All donkeys eat carrots.
 - [2] Some donkeys are white.
 - [3] All white donkeys eat carrots.

$$(5) = [1] \land [2] \Rightarrow [3] \quad \checkmark$$

Models and truth-conditions

- (1) Tom plays soccer.
- (2) Ann plays volleyball.
- (3) Susan and Mark play soccer.
- (4) Susan is healthy.
- (5) Ann and Tom are friends.

 $(1)M_1$:

 $(2)M_2$:

Table 1

Expression	Cat.	Туре	Abstract denotation	Denotation for all Model $E = \{a, b\}$	
				M_1	M_2
Tom	PN	entity	tom	а	
Susan	PN	entity	susan	-	b
hungry	А	set of entities	hungry	{a}	-
angry	А	set of entities	angry	{a}	-
hungry and angry	AP	set of entities	AND(hungry , angry)	{a}	-
tired	А	set of entities	tired	-	{}
Tom is hungry and angry	S	truth-value	IS(tom, AND(hungry,angry))	1	0
Susan is not tired	S	truth-value	IS(susan, NOT(tired))	0	1

Conclusion

If you need further help or have additional questions, please contact us.

