

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Zinc

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$		
	Baes and Mesmer, 1976	Powell and Brown, 2013	Brown and Ekberg, 2016
$Zn^{2+} + H_2O \rightleftharpoons ZnOH^+ + H^+$	-8.96	-8.96 ± 0.05	-8.94 ± 0.06
$Zn^{2+} + 2 H_2O \rightleftharpoons Zn(OH)_2 + 2 H^+$	-16.9	-17.82 ± 0.08	-17.89 ± 0.15
$Zn^{2+} + 3 H_2O \rightleftharpoons Zn(OH)_3^- + 3 H^+$	-28.4	-28.05 ± 0.05	-27.98 ± 0.10
$Zn^{2+} + 4 H_2O \rightleftharpoons Zn(OH)_4^{2-} + 4 H^+$	-41.2	-40.41 ± 0.12	-40.35 ± 0.22
$2 \operatorname{Zn^{2+}} + \operatorname{H_2O} \rightleftharpoons \operatorname{Zn_2OH^{3+}} + \operatorname{H^+}$	-9.0	-7.9 ± 0.2	-7.89 ± 0.31
$2 \text{ Zn}^{2+} + 6\text{H}_2\text{O} \rightleftharpoons \text{Zn}_2(\text{OH})_6^{2-} + 6 \text{ H}^+$	-57.8		
$ZnO(s) + 2 H^+ \rightleftharpoons Zn^{2+} + H_2O$	11.14	11.12 ± 0.05	11.11 ± 0.10
ϵ -Zn(OH) ₂ (s) + 2 H ⁺ \rightleftharpoons Zn ²⁺ + 2 H ₂ O		11.38 ± 0.20	11.38± 0.20
β_1 -Zn(OH) ₂ (s) + 2 H ⁺ \rightleftharpoons Zn ²⁺ + 2 H ₂ O		11.72 ± 0.04	
β_2 -Zn(OH) ₂ (s) + 2 H ⁺ \rightleftharpoons Zn ²⁺ + 2 H ₂ O		11.76 ± 0.04	
γ -Zn(OH) ₂ (s) + 2 H ⁺ \rightleftharpoons Zn ²⁺ + 2 H ₂ O		11.70 ± 0.04	
δ -Zn(OH) ₂ (s) + 2 H ⁺ \rightleftharpoons Zn ²⁺ + 2 H ₂ O		11.81 ± 0.04	

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 293.P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 676–700.
K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, AK. Leuz, S. Sjöberg, and H. Wanner, Pure and Applied Chemistry, 85, 2249–2311 (2013).
Contributors: Clemente Bretti, Elvira Bura Nakić, Montserrat Filella, Josep Galceran, Sofia Gama, Elżbieta Gumienna- Kontecka, Lucija Knežević

Distribution diagrams

These diagrams have been computed at two Zn concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

