CS m51A: Logic Design of Digital Systems UCLA Computer Science Department Fall 2009 Final

Time: 3 hours

Note: Closed book, closed notes, no electronic computing or communications devices.

Name:	 	
ıdent ID:		

Question	Points	Grades
1	10	
2	15	
3	20	
4	15	
5	20	
6	20	
Total	100	

Question 1: Combinational System

Design a 4-bit priority encoder, where a priority encoder converts a 4-bit input into a binary representation of the signal with the highest priority. The table below summarizes the functionality.

Input	Output
x3,x2,x1,x0	y1,y0
1	11
01	10
001-	01
000-	00

For full credit use an encoder and the minimum number of gates.

Question 2: Counters A *superstitious counter* is a 4-bit counter that skips the value 13. Build a superstitious counter using one 4-bit loadable binary counter and two 2-input gates.

Question 3: Network of Counters
Using only modulo-16 counters, T-flip-flops, multiplexers, and gates, design a counter with the following counting sequence: 0, 1, 2,, 14, 15, 15, 14,, 2, 1, 0 0, 1, 2,, 13, 14, 14, 13,, 2, 1, 0 0, 1, 2,, 12, 13, 13, 12,, 2, 1, 0
For full credit, use the minimal amount of components and the minimal number of counters.

Question 4: ROM

Give the state table for the following sequential system.

Question 5: Sequential Systems with Flip-Flops

Implement a pattern recognizer using JK flip-flops and multiplexers only. The pattern recognizers has a one bit input $x = \{0,1\}$ and an output $\underline{z} = \{0,1,2\}$. The output is 1, when the last input symbols are 01 or 011. The output is 2, whenever the last three input signals are identical. It is 0, otherwise. Give a state diagram of your system. For full credit use the smallest number of components. You can use the constants 0 and 1.

a) Provide the state diagram			
b) Show your design process (e.g. excitation tables, k-maps,	etc)		

c) Give your final design here.			

Question 6: Sequential System with Modules

Design a sequential system given by the state diagram below. The available components are parallel-in/parallel-out shift registers, decoders, and NOR gates. For full credit use, the minimal amount of components.

Present State	State Inputs		
	x=0	x=1	
A	D, 1	C, 0	
В	C, 1	D, 1	
С	A, 0	A, 0	
D	H, 1	F, 0	
Е	F, 1	G, 0	
F	A, 0	G, 1	
G	H, 1	E, 0	
Н	E, 1	B, 1	
	Next State, Output		