Project: Investigate a Dataset - Analyze TMDb Movie Data

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

Introduction

```
In [1]:
```

```
# Import the neccessary packages
import pandas as pd
import matplotlib as plt
% matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
```

Data Wrangling

General Properties

DataSet chosen for analysis: TMDb Movie Data

The database contains information about movies collected from The Movies Database, including revenue, budget, ratings, and homepage. I displayed 10 rows to get a little more detailed result about the columns, values and structure. I decided to ask questions related financials, popularity and genres.

Questions posed:

- 1. How has the popularity of Western movies changed over the years?
- 2. Does budget correlate with popularity? What about the movies with the biggest budget?
- 3. Which 10 production company profited the most over the years?

```
In [2]:
```

```
# Load the data to check the structure and columns
df = pd.read_csv('tmdb-movies.csv')
df.head(5)
```

```
Out[2]:
```

	id	imdb_id	popularity	budget	revenue	original_title	cast	h
0	135397	tt0369610	32.985763	150000000	1513528810	Jurassic World	Chris PrattlBryce Dallas HowardlIrrfan KhanlVi	http://www.jurassicw
1	76341	tt1392190	28.419936	150000000	378436354	Mad Max: Fury Road	Tom HardylCharlize TheronlHugh Keays- ByrnelNic	http://www.madmaxm

2	id	imdb_id	popularity	budget	revenue	original_title	Shai kast	h
	262500	tt2908446	13.112507	110000000	295238201	Insurgent	WoodleyiTheo JameslKate WinsletlAnsel	http://www.thedivergentseries.movie/#
3	140607	tt2488496	11.173104	200000000	2068178225	Star Wars: The Force Awakens	Harrison FordlMark HamilllCarrie FisherlAdam D	http://www.starwars.com/films/s
4	168259	tt2820852	9.335014	19000000	1506249360	Furious 7	Vin DiesellPaul WalkerlJason StathamlMichelle 	http://www.furic

5 rows × 21 columns

The Data Structure

Before working with the data I checked the databese and looked for missing values, inconsistency or inadequate datatype. After getting more information and find out the questions I wanted to pose, I cleaned the database. There were unecessary columns with missing data, inadequate datatypes and rows with 0 value. The columns 'genres' and 'production_companies' contained multiple value that does no meet the requirements of first normal form.

The Cleaning Process

- I removed the columns cast, homepage, tagline, keywords, overview and imdb id to improve database performance.
- The column 'genres' and 'productions_companies' were not in the first normal form which requires that in the table should not have multiple value in the same row of data. I was unable to create a second joined column, so I decided to remove the values after the first 'l' sign to get better groupping and cleaner visualization in the further analysis.
- I casted release_date from string to date datatype.
- I converted the columns revenue, budget, revenue_adj and budget_adj from float to int.

10862 non-null object

10866 non-null int64

- The 0 values would distort the result of forther calculations so I replaced the 0 in revenue, budget, revenue adj and budget adj with means.
- I also replaced the Na values with 'Unknown' to improve interpretation.

overview

runtime

```
In [3]:
# Get info about the database to check missing values and data types.
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10866 entries, 0 to 10865
Data columns (total 21 columns):
id
                        10866 non-null int64
imdb id
                        10856 non-null object
popularity
                        10866 non-null float64
budget
                        10866 non-null int64
                        10866 non-null int64
revenue
original_title
                        10866 non-null object
                        10790 non-null object
cast
                        2936 non-null object
homepage
                        10822 non-null object
director
tagline
                        8042 non-null object
keywords
                        9373 non-null object
```

```
10843 non-null object
genres
production_companies 9836 non-null object release_date 10866 non-null object vote_count 10866 non-null int64 vote_average 10866 non-null float6
vote average
                                10866 non-null float64
                                10866 non-null int64
release year
                                10866 non-null float64
budget adj
revenue adj
                                10866 non-null float64
dtypes: float64(4), int64(6), object(11)
memory usage: 1.7+ MB
```

I converted the values to the proper data types.

```
In [4]:
```

```
# Convert release date (object datatype) to date.
df['release date'] = pd.to datetime(df['release date'])
# Convert budget adj and revenue adj from float to int.
df['budget adj'] = df['budget adj'].astype(int)
df['revenue adj'] = df['revenue adj'].astype(int)
# convert budget and revenue from float to int.
df['budget'] = df['budget'].astype(int)
df['revenue'] = df['revenue'].astype(int)
```

I removed some columns to improve readability and performance.

```
In [5]:
```

```
# Drop the unnecessary columns
df = df.drop(['cast', 'homepage', 'tagline', 'keywords', 'overview', 'imdb id'], axis=1)
```

Doublecheck my results.

```
In [6]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10866 entries, 0 to 10865
Data columns (total 15 columns):
id
                          10866 non-null int64
                          10866 non-null float64
popularity
budget
                         10866 non-null int64
                         10866 non-null int64
revenue
                        10866 non-null object
original title
director
                         10822 non-null object
runtime
                         10866 non-null int64
                         10843 non-null object
production_companies 9836 non-null object
release_date 10866 non-null datetime64[ns]
vote count 10866 non-null int64
                         10866 non-null float64
vote_average
                         10866 non-null int64
release year
                         10866 non-null int64
budget adj
                          10866 non-null int64
revenue adj
dtypes: datetime64[ns](1), float64(2), int64(8), object(4)
memory usage: 1.2+ MB
In [7]:
```

```
# Replace the null values in the columns with 'unknown'
df['director'] = df['director'].fillna('Unknown')
```

```
df['production_companies'] = df['production_companies'].fillna('Unknown')
df['genres'] = df['genres'].fillna('Unknown')
```

In [8]:

```
# Check the results

df.query('director == "Unknown"').head(20)

df.query('production_companies == "Unknown"').head(20)

df.query('genres == "Unknown"').head(20)
```

Out[8]:

	id	popularity	budget	revenue	original_title	director	runtime	genres	production_companies	release_
424	363869	0.244648	0	0	Belli di papÃ	Guido Chiesa	100	Unknown	Unknown	2015-1
620	361043	0.129696	0	0	All Hallows' Eve 2	Antonio Padovan Bryan Norton Marc Roussel Ryan	90	Unknown	Ruthless Pictures Hollywood Shorts	2015-1
997	287663	0.330431	0	0	Star Wars Rebels: Spark of Rebellion	Steward LeelSteven G. Lee	44	Unknown	Unknown	2014-1
1712	21634	0.302095	0	0	Prayers for Bobby	Russell Mulcahy	88	Unknown	Daniel Sladek Entertainment	2009-0
1897	40534	0.020701	0	0	Jonas Brothers: The Concert Experience	Bruce Hendricks	76	Unknown	Unknown	2009-0
2370	127717	0.081892	0	0	Freshman Father	Michael Scott	0	Unknown	Unknown	2010-0
2376	315620	0.068411	0	0	Doctor Who: A Christmas Carol	Unknown	62	Unknown	Unknown	2010-1
2853	57892	0.130018	0	0	Vizontele	Yılmaz ErdoÄŸan	110	Unknown	Unknown	2001-0
3279	54330	0.145331	0	0	아기와 ë,~	Kim Jin-Yeong	96	Unknown	Unknown	2008-0
4547	123024	0.520520	o	0	London 2012 Olympic Opening Ceremony: Isles of	Danny Boyle	220	Unknown	ввс	2012-0
4732	139463	0.235911	0	0	The Scapegoat	Charles Sturridge	100	Unknown	Island Pictures	2012-0
4797	369145	0.167501	0	0	Doctor Who: The Snowmen	Unknown	60	Unknown	BBC Television UK	2012-1
4890	126909	0.083202	0	0	Cousin Ben Troop Screening	Wes Anderson	2	Unknown	Unknown	2012-0
5830	282848	0.248944	0	0	Doctor Who: The Time of the Doctor	James Payne	60	Unknown	Unknown	2013-1
5934	200204	0.067433	0	0	Prada: Candy	Wes AndersonlRoman Coppola	3	Unknown	Unknown	2013-0
6043	190940	0.039080	0	0	Bombay Talkies	Anurag KashyaplDibakar BanerjeelZoya	127	Unknown	Viacom 18 Motion Pictures	2013-0

	id	popularity	budget	revenue	original_title	AkhtariKa	runtime	genres	production_companies	release_
6530	168891	0.092724	0	0	Saw Rebirth	Jeff ShuterlDaniel Viney	6	Unknown	Unknown	2005-1
8234	56804	0.028874	0	0	Viaggi di nozze	Carlo Verdone	103	Unknown	Unknown	1995-1
8614	65595	0.273934	0	0	T2 3-D: Battle Across Time	James Cameron	12	Unknown	Unknown	1996-0
8878	92208	0.038045	0	0	Mom's Got a Date With a Vampire	Steve Boyum	85	Unknown	Walt Disney Pictures	2000-1
4										<u> </u>

I deleted some data from the rows with multiple values.

```
In [9]:
# df['genres'] = df['genres'].apply(lambda x: x.split('|')[0])
df['production_companies'] = df['production_companies'].apply(lambda x: x.split('|')[0])
```

In [11]:

```
# Check changes
df['production_companies'].head(15)
```

Out[11]:

```
0
                            Universal Studios
1
                    Village Roadshow Pictures
2
                         Summit Entertainment
                                    Lucasfilm
3
4
                           Universal Pictures
5
                          Regency Enterprises
6
                           Paramount Pictures
7
      Twentieth Century Fox Film Corporation
8
                           Universal Pictures
9
                         Walt Disney Pictures
10
                            Columbia Pictures
11
                   Village Roadshow Pictures
12
                                    DNA Films
13
                            Columbia Pictures
                               Marvel Studios
Name: production companies, dtype: object
```

I replace 0 values with means in columns budget_adj and revenue_ad, budget and revenue.

10866 non-null float64

10866 non-null float64

```
In [12]:
```

```
df['budget']=df['budget'].replace(0,df['budget'].mean())

df['revenue']=df['revenue'].replace(0,df['revenue'].mean())

df['budget_adj']=df['budget_adj'].replace(0,df['budget_adj'].mean())

df['revenue_adj']=df['revenue_adj'].replace(0,df['revenue_adj'].mean())
```

In [13]:

budget

rattaniia

```
TOOOO HOH HULL TTOACOT
TCACTIOC
original_title
                        10866 non-null object
director
                        10866 non-null object
                        10866 non-null int64
runtime
genres
                        10866 non-null object
production_companies 10866 non-null object
release_date 10866 non-null datetime64[ns] vote_count 10866 non-null int64
vote average
                       10866 non-null float64
                       10866 non-null int64
release year
budget adj
                       10866 non-null float64
                        10866 non-null float64
revenue adj
dtypes: datetime64[ns](1), float64(6), int64(4), object(4)
memory usage: 1.2+ MB
```

Exploratory Data Analysis

I recently read an article about the evolution of Western movies. It mentioned that the most prolific era was in the 1930s to the 1960s and the genre almost vanished in the 1980s. There were little sign of resurgence after the 1990s but Western has not got back its popularity yet. As I am a big fan of the genre, I decided to analyze its populatiry over the decades and test the assumptions on the data. However, I use the article only as an interesting starting point - I do not intend to draw far-reaching conclusions.

1. Have changed the popularity of Western movies over the decades?

At first, I created a smaller dataframe which contained movies where in the column 'genre' appeared the word 'Western'. I decided to get every Western influenced or Western styled movie, I did not want to define the conditions too strict to get a bigger dataframe. I also planned to analyze the popularity by decades, not by release_year.

```
In [14]:
# Create dataframe to every movie with the genre 'Western'
df western = df[df['genres'].str.contains("Western")]
```

To check the results I simply counted the records in the dataframe, the records with genre 'Western', and compared the numbers. I got True, so the two values are the same.

```
In [16]:
# Check the results by comparing the calculations.

df_western.genres.str.contains(r'Western').sum() == df_western['id'].count()
Out[16]:
True
```

Mapping the release years to decades.

```
In [17]:
# Create bin edges to decades
decades = [1960, 1970, 1980, 1990, 2000, 2010, 2020]
# Create labels
decade_names = ['1960', '1970', '1980', '1990', '2000', '2010']
# Create new column and cut into bins
df_western['release_decade'] = pd.cut(df['release_year'], decades, labels=decade_names)
df_western.head()
/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:8: SettingWithCopyWarning:
```

A value is trying to be set on a copy of a slice from a DataFrame.

```
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

Out[17]:

	id	popularity	budget	revenue	original_title	director	runtime	genres	prod
5	281957	9.110700	1.350000e+08	5.329505e+08	The Revenant	Alejandro González Iñárritu	156	Western Drama Adventure Thriller	Re
15	273248	5.898400	4.400000e+07	1.557601e+08	The Hateful Eight	Quentin Tarantino	167	Crime Drama Mystery Western	Doı
125	223485	1.329702	1.462570e+07	2.290940e+05	Slow West	John Maclean	84	RomancelThrillerlWestern	The
145	294963	1.073349	1.800000e+06	3.982332e+07	Bone Tomahawk	S. Craig Zahler	132	Horror Western Adventure Drama	
165	347969	0.913085	6.000000e+07	3.982332e+07	The Ridiculous 6	Frank Coraci	119	ComedylWestern	
4									· •

In [18]:

```
# Check if western movies are available in every decade and count their number

df_western.groupby(['release_decade'], as_index = False)['id'].count()
```

Out[18]:

	release_decade	id
0	1960	38
1	1970	33
2	1980	12
3	1990	24
4	2000	30
5	2010	22

In [19]:

```
# Get the average popularity by decades

df_western.groupby(['release_decade'], as_index = False)['popularity'].mean()
```

Out[19]:

	release_decade	popularity
0	1960	0.301672
1	1970	0.315369
2	1980	0.429861
3	1990	0.544739
4	2000	0.612382
5	2010	1.616852

In [20]:

```
# Get the mean of vote_average in every decade

df_1960 = df_western.query('release_decade == "1960"')
```

```
df_1960_mean = df_1960['popularity'].mean()

df_1970 = df_western.query('release_decade == "1970"')

df_1970_mean = df_1970['popularity'].mean()

df_1980 = df_western.query('release_decade == "1980"')

df_1980_mean = df_1980['popularity'].mean()

df_1990 = df_western.query('release_decade == "1990"')

df_1990_mean = df_1990['popularity'].mean()

df_2000 = df_western.query('release_decade == "2000"')

df_2000_mean = df_2000['popularity'].mean()

df_2010 = df_western.query('release_decade == "2010"')

df_2010_mean = df_2010['popularity'].mean()
```

In [21]:

```
# labels_decades = ("60's", "70's", "80's", "90's", "2000's", "2010's")
# df_western_avg_votes.plot(tick_label = labels_decades, kind = 'bar', title ='Average Votes by Decade')
# createa bar chart with labels
locations = [1, 2, 3, 4, 5, 6]
heights = [df_1960_mean, df_1970_mean, df_1980_mean, df_1990_mean, df_2000_mean, df_2010_mean]
labels = ['1960s', '1970s', '1980s', '1990s', '2000s', '2010s']
plt.bar(locations, heights, tick_label=labels, color = 'b', )
plt.title('Average Popularity by Decade for Western Movies')
plt.ylabel('Popularity');
```


As we can see, the popularity has steadly grew over the years which does not meet our expectations. But during the calculations I found something else that can confirm the assumptions, so I created another chart to visualize the popularity of the genre. In this case, I simply display the number of released Western movies.

In [22]:

```
df_west_sum = df_western.groupby(['release_decade'], as_index = False)['id'].count()

years = ('1960', '1970', '1980', '1990', '2000', '2010')

pos = np.arange(0, 6, 1)

plt.xticks(pos, years)

bar_heights = df_west_sum['id']

print('Sum of Released Movies: ')

print(df_west_sum)

dc_bars = plt.bar(x = years, color='b', alpha=.5, height = bar_heights)
```

```
plt.ylabel('Number of Movies')
plt.title('Number of Released Western Movies from 1960')

plt.legend()
plt.show()
```


According to the chart, the number of Western movies slide started to slide steeply after the '70s and reached the bottom in the '80s. If we measured the evolution and popularity of Western by the number of released movies, the results would meet our assumptions but I would not like to imply causation based on my results.

2. Ratings for the Cheapest and Most Expensive Movies

I was curious about if there are any measurable difference between votes of the most and the least expensive movies. I decided to get information about the most and least expensive films and viualize the distribution of their votes in one histogram.

Part 1: Get the most expensive movies

At first, I sorted the movies by budget to get the 200 most expensive movies from the database.

```
In [25]:
```

```
# Sort movies by budget in descending order
sorted_budget_biggest = df.sort_values(by=['budget_adj'], ascending = False).head(200)
```

I got the most expensive movies and their ratings.

```
In [29]:
```

```
# Get the most expensive movies with ratings
sorted_budget_biggest.groupby('original_title')['vote_average'].mean()
```

```
Out[29]:
```

```
original_title
2012 5.6
47 Ronin 5.8
A Bug's Life 6.6
```

```
A CIIIISCIIIAS CAIUI
                                       υ.υ
                                       5.6
Alexander
                                       6.3
Alice in Wonderland
Angels & Demons
                                       6.3
Armageddon
                                      6.4
                                      6.5
Atlantis: The Lost Empire
                                      7.1
Avengers: Age of Ultron
                                      7.4
                                      6.3
Bad Boys II
Batman & Robin
                                      4.4
Batman Begins
                                      7.3
                                       5.2
Batman Forever
                                       5.5
Battleship
Bee Movie
                                       5.6
Big Hero 6
                                       7.8
Bolt
                                       6.3
Brave
                                       6.6
Captain America: The Winter Soldier
                                       7.6
Cars 2
                                       5.8
                                       7.1
Casino Royale
Charlie and the Chocolate Factory
                                      6.5
Charlie's Angels: Full Throttle
                                      5.6
Chicken Little
                                      6.3
Cleopatra
                                      5.4
Cowboys & Aliens
Cutthroat Island
                                      6.1
Dante's Peak
                                      5.5
                                      6.5
Thor
Thor: The Dark World
                                       6.8
Titanic
                                       7.3
                                      5.9
Tomorrow Never Dies
Tomorrowland
                                      6.2
Tora! Tora! Tora!
                                      6.6
Toy Story 3
                                      7.5
Transformers
Transformers: Age of Extinction
                                     5.9
Transformers: Dark of the Moon
                                      6.1
Transformers: Revenge of the Fallen
                                     6.0
Treasure Planet
                                       7.0
                                       6.8
Troy
                                       6.6
True Lies
Up
                                       7.6
Van Helsing
                                       5.9
WALLÂ · E
                                       7.6
War of the Worlds
                                       5.9
Waterloo
                                       6.2
                                       5.8
Waterworld
                                      6.4
White House Down
                                      5.2
Wild Wild West
Windtalkers
                                      5.9
World War Z
                                      6.7
Wrath of the Titans
                                       5.5
Wreck-It Ralph
                                       7.0
X-Men Origins: Wolverine
                                       6.2
X-Men: Days of Future Past
                                       7.6
X-Men: First Class
                                       7.0
X-Men: The Last Stand
Name: vote average, Length: 199, dtype: float64
```

In [44]:

```
# Save the results to a variable.
exp_budget_vote = sorted_budget_biggest.groupby(['original_title'])['vote_average'].mean
()
```

I created a hitogram to get a picture about the distribution.

```
In [33]:
```

```
plt.xlabel('Votes')
plt.ylabel('Number of Movies')
plt.title('Distribution of Votes')

exp_budget_vote.hist(histtype = 'stepfilled', label = 'Rates of the Most Expensive Movies')
```

Out[33]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd4aeb655f8>

Part 2: get the cheapest movies

I queried the 200 cheapest movies from the database.

```
In [38]:
```

```
# Get the cheapest movies with ratings
sorted_budget_cheapest = df.sort_values(by=['budget_adj'], ascending = True).head(200)
```

I queried the cheapest movies and their rating.

```
In [46]:
```

```
cheap_budget_vote = sorted_budget_cheapest.groupby('original_title')['vote_average'].mea
n()
```

I created a histogram to visualize the distribuion.

In [48]:

```
plt.xlabel('Votes')
plt.ylabel('Number of Cheapest Movies')
plt.title('Distribution of Votes')

cheap_budget_vote.hist(label = 'Rates of the Cheapest Movies')
```

Out[48]:

 ${\tt <matplotlib.axes._subplots.AxesSubplot}$ at ${\tt 0x7fd4ae74a0b8}{\tt >}$

Part 3: Compare the results in one diagram

I created a diagram to display the differences between the ratings.

```
In [50]:
```

```
plt.hist(cheap_budget_vote, alpha=0.8, label='Votes of Cheap Movies')
plt.hist(exp_budget_vote, alpha=0.8, label='Votes of Expensive Movies')
plt.ylabel('Number of Movies')
plt.title('Distribution of Votes')
plt.legend(loc='upper right')
plt.show()
```


Part 4: Conclusion

As a conclusion, I can say that the most expensive movies generally got better rating that the cheaper ones. We can see on the diagram that the worst rating is 4.5 while the cheapest movies worst rating were lower than 2.

Conclusions

In the first section I examined the popularity of Western movies over the decades. I made my analyzation based on the values of 'released_year' and 'popularity'. I could not find any correlations between the numbers and the assumptions but I found it by taking into account the numbers of released movies.

After that I analyzed the ratings of the most and least expensive movies and I found out that the more expensive movies got higher votes than the cheaper ones.

Limitations

In the first section - although the literature details the phenomenon - I could not find any correlation between 'popularty' and 'release year'. It would be good to know more about what is behind the value 'popularity' and what popularity means here. Just to name a few... How was it calculated? Which criterias and values were measured exactly to get these numbers? It could be caculated based on ticket sales? Or based on audience appraisal? However, I found correlation between my assumptions and the number of released western movies but I would not name it causation without a much more detailed further analysis.

In the second section, I made my calculations based on the values of budget adjustment to take the fluctuations into account, I found this really useful. But there were more missing values in the 'budget_adj' column. During

the cleaning process I replaced the missing values with the average, but it still can distort the result (for instance, there would be other movies among the most expensive 200 movies).