MATH 554 Homework 13

Problem 1

(a) Show that the function

$$f(x) = \frac{x}{1+x^2}$$

is Lipschitz on the closed interval [-b, b] for any b > 0.

(b) Use this to prove that if $\langle x_n \rangle_{n=1}^{\infty}$ is a sequence of real numbers with $\lim_{n \to \infty} x_n = L$, then

$$\lim_{n\to\infty} \frac{x_n}{{x_n}^2+1} = \frac{L}{L^2+1}.$$

(a) Let $x, y \in [-b, b]$. Then

$$|f(x) - f(y)| = \left| \frac{x}{1+x^2} - \frac{y}{1+y^2} \right|$$

$$= \left| \frac{x(1+y^2) - y(1+x^2)}{(1+x^2)(1+y^2)} \right|$$

$$= \left| \frac{x+xy^2 - y + x^2y}{x^2y^2 + x^2 + y^2 + 1} \right|$$

$$= \left| \frac{xy^2 - x^2y + x - y}{x^2y^2 + x^2 + y^2 + 1} \right|$$

$$= \left| \frac{xy(y-x) + x - y}{x^2y^2 + x^2 + y^2 + 1} \right|$$

$$= \left| \frac{(1-xy)(y-x)}{x^2y^2 + x^2 + y^2 + 1} \right|$$

$$\leq \left| \frac{(1-xy)(x-y)}{1} \right|$$

$$\leq \left| \frac{(1-xy)(x-y)}{1} \right|$$

$$= |1-xy||x-y|$$

$$\leq (|1| + |x||y|)|x-y|$$

$$\leq (|1| + |x||y|)|x-y|$$
(triangle inequality)
$$\leq (1+b^2)|x-y|.$$

$$(x, y \le b \implies |x|^2, |y|^2 \le b^2)$$

So for $M := 1 + b^2$, we have $|f(x) - f(y)| \le M|x - y|$. Therefore, f(x) is Lipschitz on [-b, b].

(b) Since $\langle x_n \rangle$ is convergent, it is bounded, so there exists a $b \in \mathbb{R}^+$ such that $L \in [-b, b]$ and $x_n \in [-b, b]$ for all $n \in \mathbb{N}$. From (a), f is Lipschitz on [-b, b]. Let $M := 1 + b^2$, and let $\varepsilon > 0$. Since $\langle x_n \rangle$ converges to L, there exists an N such that for all n > N, $|x_n - L| < \frac{\varepsilon}{M}$. Let n > N. Then, we have

$$\left| \frac{x_n}{x_n^2 + 1} - \frac{L}{L^2 + 1} \right| = \left| f(x_n) - f(L) \right|$$

Homework 13 MATH 554

$$\leq M|x_n - L|$$
 (Lipschitz)
 $< M\left(\frac{\varepsilon}{M}\right) = \varepsilon.$ (by choice of n)

Nathan Bickel

Therefore, by definition

$$\lim_{n\to\infty} \frac{x_n}{{x_n}^2+1} = \frac{L}{L^2+1}.$$

Problem 2 Let (A, d_A) and (B, d_B) be metric spaces, and let $E := A \times B$. Define a metric d on E by

$$d((a_1,b_1),(a_2,b_2)) = d_A(a_1,a_2) + d_B(b_1,b_2).$$

- (a) Prove this is a metric on E.
- (b) Prove that if A and B are complete, then so is E.
- (c) Prove that if A and B are both sequentially compact, then so is E.
- (a) We will prove each part of the definition:
 - Since d_A and d_B are non-negative everywhere, their sum is also non-negative. Therefore,

$$d((a_1,b_1),(a_2,b_2)) \geq 0$$

for all $(a_1, b_1), (a_2, b_2) \in E$.

• If $(a_1,b_1)=(a_2,b_2)$, then $a_1=a_2$ and $b_1=b_2$, so $d_A(a_1,a_2)=d_B(b_1,b_2)=0$, and thus we have $d\left((a_1,b_1),(a_2,b_2)\right)=0+0=0$. Conversely, if we have $d\left((a_1,b_1),(a_2,b_2)\right)=0$ for some $(a_1,b_1),(a_2,b_2)\in E$, then we must have $d_A(a_1,a_2)=d_B(b_1,b_2)=0$ (this is the only way to have their sum be zero and both terms be non-negative). So $a_1=a_2$ and $b_1=b_2$, and thus $(a_1,b_1)=(a_2,b_2)$. Therefore,

$$d((a_1,b_1),(a_2,b_2)) = 0 \iff (a_1,b_1) = (a_2,b_2).$$

• Let $(a_1, b_1), (a_2, b_2) \in E$. Then, we can use the symmetry of d_A and d_B to write

$$d((a_1,b_1),(a_2,b_2)) = d_A(a_1,a_2) + d_B(b_1,b_2) = d_A(a_2,a_1) + d_B(b_2,b_1) = d((a_2,b_2),(a_1,b_1)).$$

• Let $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in E$. Then, we can write

$$d((a_1, b_1), (a_2, b_2)) = d_A(a_1, a_2) + d_B(b_1, b_2)$$

$$\leq d_A(a_1, a_3) + d_A(a_3, a_2) + d_B(b_1, b_3) + d_B(b_3, b_2) \qquad \text{(triangle inequality)}$$

$$= d_A(a_1, a_3) + d_B(b_1, b_3) + d_A(a_3, a_2) + d_B(b_3, b_2)$$

$$= d((a_1, b_1), (a_3, b_3)) + d((a_3, b_3), (a_2, b_2)),$$

and therefore the triangle inequality holds.

Therefore, E is a metric space.

(b) Let $\langle p_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in E. Let $\langle a_n \rangle_{n=1}^{\infty}$ and $\langle b_n \rangle_{n=1}^{\infty}$ be sequences in A and B, respectively, such that for all $n \in \mathbb{N}$, we have $p_n = (a_n, b_n)$. Let $\varepsilon_1 > 0$. Since $\langle p_n \rangle$ is Cauchy, there exists an N_1 such that for all m, n > N, we have $d(p_m, p_n) < \varepsilon_1$. Let $m, n > N_1$. Then, since distance metrics are non-negative, we have

$$d_A(a_m, a_n), d_B(b_m, b_n) \le d_A(a_m, a_n) + d_B(b_m, b_n) = d((a_m, b_m), (a_n, b_n)) = d(p_m, p_n) < \varepsilon_1.$$

Therefore, $\langle a_n \rangle$ and $\langle b_n \rangle$ are both Cauchy. Since A and B are complete, both sequences are convergent, so we have $a \in A$, $b \in B$ such that

$$\lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} b_n = b.$$

We claim that $\langle p_n \rangle$ converges to p := (a, b) (which is in $E = A \times B$). To see this, let $\varepsilon_2 > 0$. Then, there exists an N_2 such that for all $n > N_2$, we have

$$d_A(a_n-a), d_B(b_n-b) < \frac{\varepsilon_2}{2}.$$

Let $n > N_2$. Then, we have

$$d(p_n, p) = d\left((a_n, b_n), (a, b)\right) = d_A(a_n, a) + d_B(b_n, b) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus, by definition $\langle p_n \rangle$ converges to a point in E, and therefore E is complete.

(c) Let $\langle p_n \rangle_{n=1}^{\infty}$ be a sequence in E. Let $\langle a_n \rangle_{n=1}^{\infty}$ and $\langle b_n \rangle_{n=1}^{\infty}$ be sequences in A and B, respectively, such that for all $n \in \mathbb{N}$, we have $p_n = (a_n, b_n)$. Since A is sequentially compact, there exists a subsequence $\langle a_{n_k} \rangle_{k=1}^{\infty}$ of $\langle a_n \rangle$ that converges to some point $a \in A$. Since B is sequentially compact, there exists a subsequence $\langle b_{n_{k_i}} \rangle_{j=1}^{\infty}$ of $\langle b_{n_k} \rangle$ that converges to some point $b \in B$. Then $\langle a_{n_{k_i}} \rangle$ converges since it is a subsequence of a convergent sequence.

Consider $\langle p_{n_{k_i}} \rangle_{i=1}^{\infty}$. Using the same argument from part (b), we can conclude that since we have

$$\lim_{j \to \infty} a_{n_{k_j}} = a, \quad \lim_{j \to \infty} b_{n_{k_j}} = b,$$

we also have

$$\lim_{j \to \infty} p_{n_{k_j}} = \lim_{j \to \infty} \left(a_{n_{k_j}}, b_{n_{k_j}} \right) = (a, b).$$

Since $(a,b) \in E$, we have that any sequence has a convergent subsequence, and therefore E is sequentially compact.

Problem 3 Let (E,d) and (E',d') be metric spaces and let $f:E\to E'$ satisfy

$$d'(f(p), f(q)) \leq Md(p, q)$$

for some constant M > 0. Prove that if $V \subset E'$ is an open set than

$$U := f^{-1}[V] = \{ p \in E : f(p) \in V \}$$

is also open.

Let $p \in U$. Then, $f(p) \in V$, and since V is open, there exists an r > 0 such that $B(f(p), r) \subseteq V$. Consider $\delta := \frac{r}{M}$. We claim $B(p,\delta) \subseteq U$. To see this, let $x \in B(p,\delta)$. Since f is Lipschitz, we have that

$$d'(f(p), f(x)) \le Md(p, x) < M\delta = M\left(\frac{r}{M}\right) = r.$$

Therefore, we have $f(x) \in B(f(p), r)$. Since $B(f(p), r) \subseteq V$, we have $f(x) \in V$, and thus $x \in U$. So $B(p, \delta) \subseteq U$, and since $\delta > 0$ and p was an arbitrary point in U, we have that U is open.

Problem 4 Let \mathbb{R}^2 have its usual metric

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

In different notation if $\mathbf{x_1} = (x_1, y_1)$ and $\mathbf{x_2} = (x_2, y_2)$ then

$$d(\mathbf{x_1}, \mathbf{x_2}) = ||x_1 - x_2||.$$

(a) Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$. Prove that the map $f : \mathbb{R} \to \mathbb{R}^2$ defined by

$$f(t) = (1 - t)\mathbf{a} + t\mathbf{b}$$

is Lipschitz.

(b) For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$ define the segment with endpoints \mathbf{a} and \mathbf{b} as

$$[\mathbf{a}, \mathbf{b}] = \{(1 - t)\mathbf{a} + t\mathbf{b} : 0 \le t \le 1\}.$$

Prove that $[\mathbf{a}, \mathbf{b}]$ is connected.

(a) Let $x, y \in \mathbb{R}$. Then, we can write

$$||f(x) - f(y)|| = ||[(1-x)\mathbf{a} + x\mathbf{b}] - [(1-y)\mathbf{a} + y\mathbf{b}]||$$

$$= ||(1-x)\mathbf{a} - (1-y)\mathbf{a} + x\mathbf{b} - y\mathbf{b}||$$

$$= ||(y-x)\mathbf{a} + (x-y)\mathbf{b}||$$

$$\leq ||(y-x)\mathbf{a}|| + ||(x-y)\mathbf{b}|| \qquad \text{(triangle inequality)}$$

$$= ||\mathbf{a}||y-x| + ||\mathbf{b}|||x-y||$$

$$= (||\mathbf{a}|| + ||\mathbf{b}||) |x-y|. \qquad \text{(factoring/using } |y-x| = |x-y|)$$

Thus, for $M := \|\mathbf{a}\| + \|\mathbf{b}\|$, we have $\|f(x) - f(y)\| \le M|x - y|$, and therefore f is Lipschitz. \square

(b) Suppose (toward contradiction) that $[\mathbf{a}, \mathbf{b}]$ is disconnected. Then there exists a disconnection $[\mathbf{a}, \mathbf{b}] = A \cup B$. Using this disconnection, we can define

$$A_0 = \{t \in [0, 1] : (1 - t)\mathbf{a} + t\mathbf{b} \in A\}, \quad B_0 = \{t \in [0, 1] : (1 - t)\mathbf{a} + t\mathbf{b} \in B\}.$$

We claim that $A_0 \cup B_0$ is a disconnection of the interval [0,1]. To see this, we observe that using the f from above, we can express the definition as

$$[\mathbf{a}, \mathbf{b}] = \{ f(t) : t \in [0, 1] \}.$$

Then, we have

$$A_0 = \{t \in [0,1] : f(t) \in A\} = f^{-1}[A], \quad B_0 = \{t \in [0,1] : f(t) \in B\} = f^{-1}[B].$$

Since A, B are open by definition of disconnection, from problem 3 we have that $A_0 = f^{-1}[A]$ and $B_0 = f^{-1}[B]$ are also open.

Since $A \cap B = \emptyset$, we also have $A_0 \cap B_0 = \emptyset$: if there were some element $t \in A_0 \cap B_0$, then $f(t) \in A$ and $f(t) \in B$, contradicting $A \cap B = \emptyset$. Since $A \cup B = [\mathbf{a}, \mathbf{b}]$, we have $A_0 \cup B_0 = [0, 1]$: if there were some element $t \in [0,1] \setminus A_0 \cup B_0$, then $f(t) \notin A$ and $f(t) \notin B$, contradicting $A \cup B = [\mathbf{a}, \mathbf{b}]$. Finally, we have $A_0 \neq \emptyset$ because there is some $a \in A$ and thus there exists t so $a = f(t) \in A_0$, and similarly $B_0 \neq \emptyset$. Therefore, $A_0 \cup B_0$ is a disconnection of [0,1], a contradiction because intervals are connected.

Problem 5 Let \mathcal{F} be a collection of subsets of the set E. Then \mathcal{F} has the finite intersection property if and only if every finite subset $\mathcal{F}_0 = \{F_1, F_2, \dots, F_n\}$ of \mathcal{F} has nonempty intersection. That is

$$\bigcap \mathcal{F}_0 = F_1 \cap F_2 \cap \cdots \cap F_n \neq \varnothing.$$

Let E be a metric space.

(a) Prove that if E is compact, then any collection, \mathcal{F} , of closed subsets of E with the finite intersection property has nonempty intersection. That is if \mathcal{F} has the finite intersection property, then

$$\bigcap \mathcal{F} \neq \varnothing.$$

- (b) Prove that if every collection of closed sets, \mathcal{F} , of E with the finite intersection property has nonempty intersection, then E is compact.
- (a) Suppose (toward contradiction) that E is compact, but there exists a collection \mathcal{F} of closed subsets of E with the finite intersection property and

$$\bigcap \mathcal{F} = \emptyset$$
.

Consider $\mathcal{U} = \{\mathcal{C}(F) : F \in \mathcal{F}\}$. Since every $F \in \mathcal{F}$ is closed, every $U \in \mathcal{U}$ is open. Additionally, from De Morgan we have

$$\bigcup_{U\in\mathcal{U}}U=\bigcup_{F\in\mathcal{F}}\mathcal{C}(F)=\mathcal{C}\left(\bigcap_{F\in\mathcal{F}}F\right)=\mathcal{C}\left(\bigcap\mathcal{F}\right)=\mathcal{C}(\varnothing)=E,$$

so \mathcal{U} is an open cover for E. Since E is compact, there exists a finite subcover

$$\mathcal{U}_0 = \{U_1, U_2, \dots, U_n\} \subseteq \mathcal{U}$$

of E. By definition of \mathcal{U} , there are F_1, F_2, \ldots, F_n such that $U_i = \mathcal{C}(F_i)$ for all $i \in \{1, 2, \ldots, n\}$. Consider $\mathcal{F}_0 = \{F_1, F_2, \dots, F_n\}$. We can use De Morgan again to write

$$\bigcap \mathcal{F}_0 = \bigcap_{i=1}^n F_i = \bigcap_{i=1}^n \mathcal{C}(U_i) = \mathcal{C}\left(\bigcup_{i=1}^n U_i\right) = \mathcal{C}\left(\bigcup \mathcal{U}_0\right) = \mathcal{C}(E) = \varnothing,$$

a contradiction of the finite intersection property.

(b) We will prove the contrapositive. Suppose that E is not compact. Then there exists an open cover \mathcal{U} with no finite subcover. Let $\mathcal{F} = \{\mathcal{C}(U) : U \in \mathcal{U}\}$. Since every set in \mathcal{U} is open, \mathcal{F} is a collection of closed sets. Additionally, since \mathcal{U} is a cover, we have

$$\bigcap_{F\in\mathcal{F}}F=\bigcap_{U\in\mathcal{U}}\mathcal{C}(U)=\mathcal{C}\left(\bigcup_{U\in\mathcal{U}}U\right)=\mathcal{C}(E)=\varnothing.$$

Let $\mathcal{F}_0 = \{F_1, F_2, \dots, F_n\}$ be a finite subset of \mathcal{F} . By our definition of \mathcal{F} , there exist $U_1, U_2, \dots, U_n \in \mathcal{U}$ such that $F_i = \mathcal{C}(U_i)$ for all $i \in \{1, 2, \dots, n\}$. Consider $\mathcal{U}_0 = \{U_1, U_2, \dots, U_n\}$. Since \mathcal{U}_0 is a finite subset of \mathcal{U} , it is not a cover by our assumption. So there exists some $p \in E$ with p not covered by \mathcal{U}_0 , and thus

$$p \in \mathcal{C}\left(\bigcup_{i=1}^{n} Ui\right) = \bigcap_{i=1}^{n} \mathcal{C}(U_i) = \bigcap_{i=1}^{n} F_i = \bigcap \mathcal{F}_0.$$

So we have

$$\bigcap \mathcal{F}_0 \neq \varnothing,$$

and since \mathcal{F}_0 was an arbitrary finite set, \mathcal{F} is a collection of closed sets of E with both the finite intersection property and empty intersection. Therefore, not every collection of closed sets with the finite intersection property has nonempty intersection.