Prediction study design

Jeffrey Leek, Assistant Professor of Biostatistics
Johns Hopkins Bloomberg School of Public Health

Key ideas

- Motivation
- · Steps in predictive studies
- · Choosing the right data
- · Error measures
- Study design

Why predict? Glory!

http://www.zimbio.com/photos/Chris+Volinsky

Why predict? Riches!

Improve Healthcare, Win \$3,000,000.

COMPETITION GOAL

Identify patients who will be admitted to a hospital within the next year, using historical claims data.

http://www.heritagehealthprize.com/c/hhp

Why predict? For sport!

Kaggle* Sign Up About Hosting Center All Competitions Users Forums Wiki Blog Data Science Jobs

What's in your data?

Participate in competitions

Kaggle is an arena where you can match your data science skills against a global cadre of experts in statistics, mathematics, and machine learning. Whether you're a world-class algorithm wizard competing for prize money or a novice looking to learn from the best, here's your chance to jump in and geek out, for fame, fortune, or fun.

Join as a participant

(Need convincing?)

Create a competition

Kaggle is a platform for data prediction competitions that allows organizations to post their data and have it scrutinized by the world's best data scientists. In exchange for a prize, winning competitors provide the algorithms that beat all other methods of solving a data crunching problem. Most data problems can be framed as a competition.

Learn more about hosting

http://www.kaggle.com/

Why predict? To save lives!

http://www.oncotypedx.com/en-US/Home

Steps in building a prediction

- 1. Find the right data
- 2. Define your error rate
- 3. Split data into:
 - Training
 - Testing
 - Validation (optional)
- 4. On the training set pick features
- 5. On the training set pick prediction function
- 6. On the training set cross-validate
- 7. If no validation apply 1x to test set
- 8. If validation apply to test set and refine
- 9. If validation apply 1x to validation

Find the right data

- 1. In some cases it is easy (movie ratings -> new movie ratings)
- 2. It may be harder (gene expression data -> disease)
- 3. Depends strongly on the definition of "good prediction".
- 4. Often more data > better models
- 5. Know the bench mark
- 6. You need to start with raw data for predictions processing is often cross-sample.

Know the benchmarks

Probability of perfect classification is approximately $\left(\frac{1}{2}\right)^{test\ set\ sample\ size}$

http://www.heritagehealthprize.com/c/hhp/leaderboard

Defining true/false positives

In general, **Positive** = identified and **negative** = rejected. Therefore:

True positive = correctly identified

False positive = incorrectly identified

True negative = correctly rejected

False negative = incorrectly rejected

Medical testing example:

True positive = Sick people correctly diagnosed as sick

False positive= Healthy people incorrectly identified as sick

True negative = Healthy people correctly identified as healthy

False negative = Sick people incorrectly identified as healthy.

http://en.wikipedia.org/wiki/Sensitivity_and_specificity

10/15

Define your error rate

		Condition (as determined by "Gold standard")		
		Condition Positive	Condition Negative	
Test Outcome	Test Outcome Positive	True Positive	False Positive (Type I error)	Positive predictive value = Σ True Positive Σ Test Outcome Positive
	Test Outcome Negative	False Negative (Type II error)	True Negative	Negative predictive value = Σ True Negative Σ Test Outcome Negative
		Sensitivity = Σ True Positive Σ Condition Positive	Specificity = Σ True Negative Σ Condition Negative	

http://en.wikipedia.org/wiki/Sensitivity_and_specificity

Why your choice matters

		Patients with bowel cancer (as confirmed on endoscopy)		
		Condition Positive	Condition Negative	
Fecal Occult Blood Screen Test Outcome	Test Outcome Positive	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10 %
	Test Outcome Negative	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
		Sensitivity = TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

http://en.wikipedia.org/wiki/Sensitivity_and_specificity

Common error measures

- 1. Mean squared error (or root mean squared error)
 - · Continuous data, sensitive to outliers
- 2. Median absolute deviation
 - · Continuous data, often more robust
- 3. Sensitivity (recall)
 - · If you want few missed positives
- 4. Specificity
 - If you want few negatives called positives
- 5. Accuracy
 - Weights false positives/negatives equally
- 6. Concordance
 - · One example is kappa

Study design

http://www2.research.att.com/~volinsky/papers/ASAStatComp.pdf

Key issues and further resources

Issues:

- 1. Accuracy
- 2. Overfitting
- 3. Interpretability
- 4. Computational speed

Resources:

- 1. Practical machine learning
- 2. Elements of statistical learning
- 3. Coursera machine learning
- 4. Machine learning for hackers