Examen d'Analyse Numérique -1ère année ISIMA

V. Barra, J. Koko et Ph. Mahey

27 novembre 2008

Exercice 1 Soit A une matrice à m lignes et n colonnes, m > n, et b un vecteur de \mathbb{R}^m . On veut construire une matrice M carrée de taille m telle que

- -MA = S, S triangulaire supérieure
- $-MM^{T}=D, D$ à diagonale strictement positive.

et appliquer cette factorisation de A dans la résolution de systèmes linéaires, au sens des moindres carrés.

- 1. On pose $D = \Delta^2$. Montrer que $\Delta^{-1}M$ est orthogonale. En déduire la factorisation QR de A en fonction de M, D et S
- 2. On considère le cas m=2. Soient $x=(x_1x_2)^T$ et $D=diag(d_1,d_2), d_i>0$ donnés.
 - (a) On définit $M_1 = \begin{pmatrix} \beta_1 & 1 \\ 1 & \alpha_1 \end{pmatrix}$. On suppose $x_2 \neq 0$. Calculer $M_1 x$ et $M_1 D M_1^T$. Comment choisir M_1 pour que $M_1 x$ soit parallèle à e_1 et que $M_1 D M_1^T$ soit diagonale?
 - (b) On définit $M_2 = \begin{pmatrix} 1 & \alpha_2 \\ \beta_2 & 1 \end{pmatrix}$. On suppose $x_1 \neq 0$. Trouver M_2 telle que $M_2x = \begin{pmatrix} x_1(1+\gamma_2) \\ 0 \end{pmatrix}$ et $M_2DM_2^T = \begin{pmatrix} d_1(1+\gamma_2) & 0 \\ 0 & d_2(1+\gamma_2) \end{pmatrix}$ et donner γ_2
- 3. Pour m quelconque, définir les matrices $M_1(p,q)$ et $M_2(p,q)$ telles que :
 - $-\begin{pmatrix} m_{pp} & m_{pq} \\ m_{qp} & m_{qq} \end{pmatrix} = \begin{pmatrix} \beta_1 & 1 \\ 1 & \alpha_1 \end{pmatrix} \quad \text{ou} \quad \begin{pmatrix} m_{pp} & m_{pq} \\ m_{qp} & m_{qq} \end{pmatrix} = \begin{pmatrix} 1 & \alpha_2 \\ \beta_2 & 1 \end{pmatrix}$ $-e^T M_1(p,q) r = 0$
 - $M_i D M_i^T$ soit diagonale, D à diagonale strictement positive.
- 4. On peut alors décrire un algorithme qui utilise les matrices M_i pour réduire A à la forme triangulaire supérieure MA = R, $MM^T = diag(d_1 \cdots d_m)$. Montrer que $D^{-\frac{1}{2}}M$ est orthogonale, et en déduire une utilisation de cet algorithme pour résoudre $\min_{x \in \mathbb{R}^n} ||Ax b||_2^2$?