PyTorch Fundamentals

Thursday, July 9, 2020 11:44 PM

PyTorch Basics

Autograd: Automatic Differentiation

Neural Networks

Defining a neural network & Processing inputs and calling backward

Loss Function

Backprop

Update the weights

*Review from: https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

PyTorch Basics

What is PyTorch?

- It's a Python-based scientific computing package for audiences:
 - A replacement for NumPy to use the power of GPUs
 - $_{\odot}$ a deep learning research platform that provides maximum flexibility and speed
- **Tensors** are similar to NumPy's ndarrays.
 - They can also be used on a GPU to accelerate computing.
 - Tensor operation=> https://pytorch.org/docs/torch
 - Work like a matrix / multi-dimensional arrays.
 - A tensor is easily converted to Numpy array
 - changing one will change the other because they sahre memory locations (if the Torch Tensor is on CPU)
 - Except a CharTensor
- Any operation that mutates a tensor in-place is post-fixed with an ``_``.
 - o <u>Example</u>: ``x.copy (y)``

.....

Autograd: Automatic Differentiation

The autograd package provides automatic differentiation for all operations on Tensors.

- Generally, torch.autograd is an engine for computing vector-Jacobian product.
- The **vector-Jacobian product** makes it very <u>convenient to feed external gradients into a</u> <u>model that has non-scalar output</u>.
- Document about autograd.Function is at https://pytorch.org/docs/stable/autograd.html#function
- torch.Tensor is the central class of the package.
 - Track all operations on it:
 - Set its attribute .requires grad as True
 - Have all the gradients computed automatically:
 - When you finish your computation you can call .backward()
 - □ Called **backprop**
 - □ Creates the gradient for a tensor by:
 - Combining all equations that were computed to get to tensor and takes the derivative with respect to the initial value as the variable.
 - Gradient for this tensor will be accumulated into this attribute:
 - .grad
 - This is also the derivative equation created by .backward()
 - Can be used as a function on other tensors.
 - Stop a tensor from tracking history / future tracking:
 - You can call .detach()
 - Or wrap the code block in with torch.no_grad():
 - 2nd option is helpful if model may have trainable parameters with no gradients.

- Function another very important class for autograd implementation.
 - Tensor and Function are interconnected and build up an acyclic graph, that encodes a complete history of computation.
 - Each tensor has a .grad_fn attribute that references a Function that has created the Tensor.
 - (except for Tensors created by the user their grad fn is None).
- If you want to compute the derivatives, you can call .backward() on a Tensor.
 - o If Tensor is a scalar (i.e. it holds a one element data),
 - You don't need to specify any arguments to .backward()
 - If Tensor is not a scalar (has more elements):
 - You need to specify a gradient argument that is a tensor of matching shape.
 - Pass a vector (tensor) as argument to .backward to compute the vector-Jacobian product

Neural Networks

Neural networks can be constructed using the torch.nn package.

- nn depends on autograd to define models and differentiate them.
- An nn.Module contains:
 - layers,
 - and a method forward(input)\ that returns the output.
- Full list of **modules and loss functions** that form the building blocks of deep neural networks:
 - https://pytorch.org/docs/stable/nn.html
- Typical training procedure for a neural network:
 - Define the neural network that has some learnable parameters (or weights).
 - Iterate over a dataset of inputs.
 - Process input through the network.
 - **Compute** the **loss** (how far is the output from being correct).

- Propagate gradients back into the network's parameters.
- Update the weights of the network.
 - Typically using a simple <u>update rule</u>:

weight = weight - learning_rate * gradient

----- ----- ----- -----

Defining a neural network & Processing inputs and calling backward

- You just have to define the forward function.
 - The **backward** function (where gradients are computed) is automatically defined for you using autograd.
 - You can use any of the Tensor operations in the forward function.
- Get the *learnable parameters* (weights) of a model by using net.parameters()
- Place the input data to model.
- Zero out the gradients before backpropagating using .zero grad()
- Backpropagate using the .backdraw function
- torch.nn only supports mini-batches.
 - The entire "torch.nn" package *only supports inputs* that are a *mini-batch of samples*, and not a single sample.
 - **If you have a single sample, just use ``input.unsqueeze(0)`` to add a fake batch dimension.
- torch. Tensor A multi-dimensional array with support for autograd operations like backward(). Also holds the gradient w.r.t. the tensor.
- nn. Module Neural network module. Convenient way of encapsulating parameters, with helpers for moving them to GPU, exporting, loading, etc.
- nn.Parameter A kind of Tensor, that is automatically registered as a parameter when assigned as an attribute to a Module.
- autograd.Function Implements forward and backward definitions of an autograd operation. Every Tensor operation
 creates at least a single Function node that connects to functions that created a Tensor and encodes its history.

----- ----- ----- ----- -----

Loss Function

A loss function takes the (output, target) pair as inputs, and computes a value that estimates how far away the output is from the target.

- There are several different loss functions:
 - https://pytorch.org/docs/stable/nn.html#loss-functions
 - Example:
 - nn.MSELoss which computes the mean-squared error between the input and the target.

```
output = net(input)
criterion = nn.MSELoss()
#make target same shape as output
loss = criterion(output, target)
```

- You can follow loss in the backward direction, using its .grad fn attribute.

```
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
    -> view -> linear -> relu -> linear -> relu -> linear
    -> MSELoss
    -> loss
```

Backprop

To **backpropagate** the error all we have to do is to loss.backward().

- You need to clear the existing gradients though, else gradients will be accumulated to existing gradients.
 - model.zero_grad()
- Then call function to backpropate on the loss function:
 - loss.backward()

Update the weights

- The weigths are updated using an optimizer (update rule).
- The simplest **update rule** used in practice is the **Stochastic Gradient Descent** (SGD):

```
weight = weight - learning_rate * gradient
```

• Example: (Implementation in Python.)

```
learning_rate = 0.01
for f in net.parameters():
    f.data.sub_(f.grad.data * learning_rate)
```

- There are various different update rules such as SGD, Nesterov-SGD, Adam, RMSProp, etc.
 - **Enable** these methods with this package: torch.optim
- Incorporate into the training loop.
 - Example:

```
import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
```