NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS solutions prepared by Wei Boyan, Tay Jun Jie

$\begin{array}{ccc} \textbf{MA2108} & \textbf{Mathematical Analysis I} \\ & \textbf{AY } 2009/2010 \ \text{Sem 2} \end{array}$

Question 1

- (a) Let $P(n): x_n \leq 2$. When $n = 1, x_1 = 1 \leq 2$, so P(1) is true. Suppose P(k) is true, thus $x_k \leq 2$. Then $x_{n+1} = \frac{1}{5}(x_k^2 + 6) \leq \frac{1}{5}(4+6) = 2$. By Principle of Mathematical Induction, P(n) is true for all $n \in \mathbb{N}$.
- (b) Claim: x_n is increasing. Proof:

$$x_{n+1} - x_n = \frac{1}{5}(x_n^2 - 5x_n + 6)$$
$$= \frac{1}{5}(x_n - 2)(x_n - 3)$$

Since $x_n \leq 2$, we have $x_{n+1} > x_n$. Therefore x_n is increasing. By Monotone Convergence Theorem, x_n is converges. Let x be the limit of x_n .

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{1}{5} (x_n^2 + 6) = \frac{1}{5} (x^2 + 6)$$
$$(x - 2)(x - 3) = 0$$

Thus x = 2 or x = 3. Since $x_n \le 2$, we obtain x = 2. we conclude that x_n is convergent and its limit is 2.

Question 2

(a) (i) Firstly, observe that $\left(\frac{1}{2n+\sqrt{n+1}}\right)$ is a decreasing sequence of strictly positive terms with

$$\lim_{n\to\infty}\frac{1}{2n+\sqrt{n}+1}=0.$$

Therefore the series converges by Alternating Series Test.

(ii)

$$\rho = \lim_{n \to \infty} \left| \frac{n^2}{3^n} \left(1 + \frac{1}{3^n} \right)^{6n^2} \right|^{\frac{1}{n}}$$

$$= \frac{1}{3} \lim_{n \to \infty} n^{\frac{1}{n}} \lim_{n \to \infty} n^{\frac{1}{n}} \lim_{n \to \infty} \left(1 + \frac{1}{3^n} \right)^{3n} \lim_{n \to \infty} \left(1 + \frac{1}{3^n} \right)^{3n}$$

$$= \frac{1}{3} e^2 > 1$$

Therefore the series diverges by Root Test.

(b) Observe that $\frac{1}{(2n-1)(2n+1)} = \frac{1}{2}(\frac{1}{2n-1} - \frac{1}{2n+1})$. Thus

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \lim_{n \to \infty} \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right)$$
$$= \lim_{n \to \infty} \frac{1}{2} \left(1 - \frac{1}{2n+1} \right)$$
$$= \frac{1}{2}$$

(c) Since the $a_n, b_n > 0$ for all $n \in \mathbb{N}$, $a_n b_n > 0$ for all $n \in \mathbb{N}$. In addition, $b_n \to 0$ as $\sum b_n$ converges.

$$\rho = \lim_{n \to \infty} \frac{a_n b_n}{a_n} = \lim_{n \to \infty} b_n = 0.$$

Since $\sum a_n$ converges, $\sum a_n b_n$ converges by Limit Comparison Test.

Question 3

(a) Given $\varepsilon > 0$, choose $\delta = \min\left(\frac{1}{6}, \frac{3}{20}\varepsilon\right)$. Suppose $0 < |x - 0| < \delta$,

$$\left| \frac{(2x+1)(x-2)}{3x+1} + 2 \right| = \left| \frac{2x^2 + 3x}{3x+1} \right|$$
$$= \frac{|x||2x+3|}{|3x+1|}$$
$$< \frac{\delta |2x+3|}{|3x+1|}$$

Since $0 < |x| < \frac{1}{6}$, we have $\frac{|2x+3|}{|3x+1|} \leqslant \frac{20}{3}$. Then,

$$\left| \frac{(2x+1)(x-2)}{3x+1} + 2 \right| < \frac{\delta |2x+3|}{|3x+1|}$$

$$\leq \frac{20}{3} \delta$$

$$= \varepsilon$$

(b) (i) Let $f(x) = (x^2 + x + 1)\sin(\frac{3}{\lambda})$. Let $x_n = \frac{3}{(2n+1)\pi}$, $y_n = \frac{3}{2n\pi}$. Then $x_n \neq 0, x_n \to 0, y_n \neq 0$ and $y_n \to 0$.

$$\lim_{n \to \infty} f(y_n) = 0$$
$$\lim_{n \to \infty} f(x_n) \neq 0$$

Therefore $\lim_{n\to\infty} f(x)$ does not exist by the Divergent Criterion.

(ii)

$$\frac{6}{x} - 1 < \left[\frac{6}{x}\right] \leqslant \frac{6}{x}$$
$$3 - \frac{x}{2} < \frac{x}{2} \left[\frac{6}{x}\right] \leqslant 3 \qquad \because x > 0$$

Since $\lim_{x\to 0^+} 3 - \frac{x}{2} = \lim_{x\to 0^+} 3 = 3$, $\lim_{x\to 0^+} \frac{x}{2} \left[\frac{6}{x}\right] = 3$ by Squeeze Theorem.

Question 4

Let $\varepsilon > 0$ be given. Since $\lim_{x \to a} g(x) = 0$, $\exists \delta > 0$ such that

$$|g(x)| < \frac{\varepsilon}{M}$$
 whenever $0 < |x - a| < \delta$.

Let $\delta_1 = \min(\delta, h) > 0$. If $0 < |x - a| < \delta_1$, then

$$|f(x)g(x)| < M \cdot \frac{\varepsilon}{M} = \varepsilon.$$

Therefore $\lim_{x\to a} f(x)g(x) = 0$.

Question 5

Let $a \in \mathbb{R}$, take a rational sequence (x_n) and an irrational sequence (y_n) such that $x_n \to a$, and $y_n \to a$. Then

$$f(x_n) = -x_n \to -a$$

$$f(y_n) = 3y_n - 8 \to 3a - 8.$$

If f is continuous at x = a, then

$$-a = 3a - 8$$
$$a = 2.$$

It follows that if $a \neq 2$, then f is not continuous at x = a. At x = 2, given $\varepsilon > 0$, we choose $\delta = \frac{\varepsilon}{3}$, then for $|x - 2| < \delta$, we have

$$|-x+2| = |x-2| < \delta < \varepsilon$$
$$|3x-8+2| = 3|x-2| < 3\delta = \varepsilon$$

Therefore, $|f(x) - f(2)| < \varepsilon$, so f is continuous at x = 2.

Question 6

Let $\varepsilon > 0$, since f and g are uniformly continuous on \mathbb{R} , there exists $\delta_1, \delta_2 > 0$ such that

$$x, y \in \mathbb{R}, |x - y| < \delta_1 \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{4}$$

 $x, y \in \mathbb{R}, |x - y| < \delta_2 \Rightarrow |g(x) - g(y)| < \frac{\varepsilon}{4}$

Let $\delta = \min(\delta_1, \delta_2)$, then for $x, y \in \mathbb{R}$, with $|x - y| < \delta$, we have

$$\begin{split} |F(x)-F(y)| &= |f(x)g(x)-f(y)g(y)| \\ &= |f(x)g(x)-f(x)g(y)+f(x)g(y)-f(y)g(y)| \\ &\leqslant |f(x)g(x)-f(x)g(y)|+|f(x)g(y)-f(y)g(y)| \\ &= |f(x)|\,|g(x)-g(y)|+|g(y)|\,|f(x)-f(y)| \\ &< |f(x)|\,\frac{\varepsilon}{4}+|g(y)|\,\frac{\varepsilon}{4} \\ &\leqslant \frac{1}{2}\frac{\varepsilon}{4}+2\frac{\varepsilon}{4} \\ &= \frac{5\varepsilon}{8} < \varepsilon \end{split}$$

Thus, F is also uniformly continuous.

Question 7

(a) Let $m = \liminf (y_n), M = \limsup (x_n)$ and $\varepsilon > 0$ be given. Thus $\exists K \in \mathbb{N}$ such that for $n \geqslant K$,

$$m - \varepsilon < y_n$$
 and $x_n < M + \varepsilon$.

Hence $M-m>x_n-y_n$ for $n\geq K$. Let $x\in C(x_n-y_n)$, so there exist subsequence $(x_{n_k}-y_{n_k})$ such that $x_{n_k}-y_{n_k}\to x$. Thus $\exists K_1\in\mathbb{N}$ such that $|x_{n_k}-y_{n_k}-x|<\varepsilon$ whenever $k\geq K_1$.

$$x_{n_k} - y_{n_k} - \varepsilon < x < x_{n_k} - y_{n_k} + \varepsilon$$
 $\forall k \ge K_1$

Now, $\exists K_2 \in \mathbb{N}$ such that $K_2 \geq K_1$ and $n_k \geq K$ whenever $k \geq K_2$. Hence,

$$x < x_{n_k} - y_{n_k} + \varepsilon < M - m + \varepsilon$$
 $k > K_2$

Therefore $x < M - m + \varepsilon$ for all $\varepsilon > 0$, that is, $x \le M - m$. In conclusion, M - m is an upper bound of $C(x_n - y_n)$ and $\limsup (x_n - y_n) = \sup C(x_n - y_n) \le M - m$.

(b) (i) Since $b_n > 0 \ \forall n \in \mathbb{N}, \ S_n > S_{n-1}$. Then $S_n^2 > S_n S_{n-1}$. Therefore,

$$\frac{b_n}{S_n^2} < \frac{b_n}{S_n S_{n-1}} \\ = \frac{S_n - S_{n-1}}{S_n S_{n-1}} \\ = \frac{1}{S_{n-1}} - \frac{1}{S_n}$$

(ii) Let $T_n = \sum_{k=1}^n \frac{b_k}{S_k^2}$, then

$$T_n < \frac{b_1}{S_1^2} + \frac{1}{S_1} - \frac{1}{S_2} + \frac{1}{S_2} - \frac{1}{S_3} + \dots + \frac{1}{S_{n-1}} - \frac{1}{S_n}$$

$$= \frac{2}{S_1} - \frac{1}{S_n}$$

$$< \frac{2}{S_2}$$

So (T_n) is bounded, since $\frac{b_n}{S_n^2} > 0$, (T_n) is increasing. Therefore, $\sum_{n=1}^{\infty} \frac{b_n}{S_n^2}$ is convergent.

Question 8

(a) Let $\varepsilon > 0$ be given, $\exists \mu > 0$ such that $x > \mu$ implies

$$|f(x) - L| < \varepsilon$$

Since $\lim_{n\to\infty} x_n = \infty$, $\exists K \in \mathbb{N}$ such that $n \geq K$ implies $x_n > \mu$. Therefore, $n \geq K$ implies

$$|f(x_n) - L| < \varepsilon$$

Therefore, $\lim_{n\to\infty} f(x_n) = L$.

(b) Let $\varepsilon > 0$ be given. By assumption, $\exists M \in \mathbb{R}$ such that

$$|g(x) - g(x')| < \frac{\varepsilon}{3}$$
 whenever $x, x' > M$.

Let (x_n) be a sequence in \mathbb{R} such that $x_n \to \infty$. Now, $\exists N \in \mathbb{N}$ such that $x_n > M$ whenever $n \geq N$. Hence

$$|g(x_n) - g(x_m)| < \frac{\varepsilon}{3}$$
 whenever $n, m \ge N$.

That is, $(g(x_n))$ is Cauchy and whence it converges to some $L \in \mathbb{R}$. Let (y_n) be another sequence in \mathbb{R} such that $y_n \to \infty$. By the above argument, $g(y_n) \to L'$ for some $L' \in \mathbb{R}$. Now, $\exists K_1 \in \mathbb{N}$ such that

$$|g(x_n) - L| < \frac{\varepsilon}{3}$$
 whenever $n \ge K_1$.

Similarly, $\exists K_2 \in \mathbb{N}$ such that

$$|g(y_m) - L'| < \frac{\varepsilon}{3}$$
 whenever $m \ge K_2$.

Lastly, $\exists K_3 \in \mathbb{N}$ such that $x_n, y_m > M$ whenever $n, m \geq K_3$. Hence

$$|g(x_n) - g(y_m)| < \frac{\varepsilon}{3}$$
 whenever $n, m \ge K_3$.

Let $K = \max\{K_1, K_2, K_3\}$. If $n, m \ge K$,

$$|L - L'| \le |L - g(x_n)| + |g(x_n) - g(y_m)| + |g(y_m) - L'|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon$$

Thus $|L - L'| < \varepsilon$ for all $\varepsilon > 0$, that is, L = L'. In conclusion, for every sequence (z_n) in \mathbb{R} such that $z_n \to \infty$, the sequence $(g(z_n))$ converges to L. Therefore $\lim_{x\to\infty} g(x) = L$.

Question 9

(a) Let $a = \min\{x_1, \dots, x_n\}$ and $b = \max\{x_1, \dots, x_n\}$. If a = b, then $\frac{1}{n} \sum_{k=1}^n f(x_k) = f(x_1)$ and we are done. Suppose a < b, hence $[a, b] \subset (0, 1)$ and f is continuous on [a, b]. By Extreme Value Theorem, $\exists c, d \in [a, b]$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in [a, b]$.

$$f(c) \le f(x_k) \le f(d)$$
 $\forall k = 1, \dots, n$
 $f(c) \le \frac{1}{n} \sum_{k=1}^{n} f(x_k) \le f(d)$

If $f(c) = \frac{1}{n} \sum_{k=1}^{n} f(x_k)$ or $f(d) = \frac{1}{n} \sum_{k=1}^{n} f(x_k)$ then we are done. Suppose $f(c) < \frac{1}{n} \sum_{k=1}^{n} f(x_k) < f(d)$, applying Intermediate Value Theorem to f on [c,d] or [d,c], $\exists e \in (c,d)$ or (d,c) such that $f(e) = \frac{1}{n} \sum_{k=1}^{n} f(x_k)$.

(b) Firstly, $\exists \delta > 0$ such that for all $x, y \in [0, \infty)$,

$$|g(x) - g(y)| < 1$$
 whenever $|x - y| < \delta$.

Now, since $\left|\frac{k\delta}{2} - \frac{(k-1)\delta}{2}\right| < \delta$ for all $k \in \mathbb{N}$, we have

$$\left| g\left(\frac{k\delta}{2}\right) - g\left(\frac{(k-1)\delta}{2}\right) \right| < 1 \qquad \forall k \in \mathbb{N}$$

$$\left| g\left(\frac{k\delta}{2}\right) \right| < 1 + \left| g\left(\frac{(k-1)\delta}{2}\right) \right| \qquad \forall k \in \mathbb{N}$$

$$\left| g\left(\frac{k\delta}{2}\right) \right| < k \qquad \forall k \in \mathbb{N}$$

Let $C=\frac{2}{\delta}>0$. Now, $\bigcup_{k\in\mathbb{N}}\left[\frac{(k-1)\delta}{2},\frac{k\delta}{2}\right)$ forms a partition for $[0,\infty)$. Let $x\in(0,\infty)$, then $x \in \left[\frac{(m-1)\delta}{2}, \frac{m\delta}{2}\right)$ for some $m \in \mathbb{N}$. Furthermore, $\left|x - \frac{(m-1)\delta}{2}\right| < \delta$. If m = 1, then

$$|g(x) - g(0)| < 1$$

 $|g(x)| < 1 < 1 + Cx$

If m > 1, since $\frac{(m-1)\delta}{2} \le x$, we have $\frac{1}{x} \le \frac{2}{(m-1)\delta}$. Therefore,

$$\left| g(x) - g\left(\frac{(m-1)\delta}{2}\right) \right| < 1$$

$$|g(x)| < 1 + \left| g\left(\frac{(m-1)\delta}{2}\right) \right|$$

$$|g(x)| < 1 + (m-1) = 1 + \frac{1}{x}(m-1)x$$

$$|g(x)| < 1 + \frac{2}{(m-1)\delta}(m-1)x$$

$$|g(x)| < 1 + \frac{2}{\delta}x = 1 + Cx$$

Page: 6 of 6

In conclusion, |g(x)| < 1 + Cx for all $x \in (0, \infty)$.