Álgebra II

María Inés Parnisari

3 de enero de 2012

Índice

1.	Revision de Matrices	2
2.	Espacios Vectoriales	3
3.	Producto Interno	5
4.	Proyecciones y Matrices de Proyección	6
5.	Transformaciones Lineales	10
6.	Autovalores y Autovectores	11
7.	Diagonalización de Matrices Hermíticas, Formas Cuadráticas, DVS	13
8.	Ecuaciones Diferenciales	17
9.	Sistemas de Ecuaciones Diferenciales Lineales	19

1 Revisión de Matrices

$$z^{n} = a \Longrightarrow z = \sqrt[n]{|a|} \cdot e^{i\left(\frac{2k\pi + arg(a)}{n}\right)} \text{ con } k = 0, 1, \dots, n-1$$
$$e^{(a+ib)t} = e^{a}(\cos(bt) + i \cdot \sin(bt))$$

1.1 Propiedades de las matrices

- $(AB)^{-1} = B^{-1}A^{-1}$
- $\qquad \left(A^T\right)^{-1} = \left(A^{-1}\right)^T$
- $(A+B)^T = A^T + B^T$
- $(AB)^T = B^T A^T$
- $A^{-1} = \frac{1}{\det(A)} adj(A)$

1.2 Propiedades de los determinantes

Sean $A, B \in \mathbb{R}^{n \times n}$:

- 1. $\det(A^T) = \det(A)$,
- 2. det(AB) = det(A) det(B),
- 3. Si una fila de A se suma a $k \cdot (\text{otra fila})$ para producir una matriz $B, \det(B) = \det(A),$
- 4. Si dos filas de A se intercambian de lugar para producir B, $\det(B) = -\det(A)$,
- 5. Si una fila de A se multiplica por k para producir B, $\det(B) = k \cdot \det(A)$,
- 6. Si toda la matriz A se multiplica por k para producir B, $\det(B) = k^n \cdot \det(A)$,
- 7. Si A es una matriz triangular, $\det(A) = \prod_{i=1}^{n} a_{ii}$.

1.3 Espacios fila, nulo y columna de matrices

Sea $A \in \mathbb{R}^{n \times m}$.

Espacio nulo: $Nul(A) = \{x \in R^m : Ax = 0\}$

Espacio columna: $Col(A) = \{b \in R^n : Ax = b \text{ para alguna } x\}$

Espacio fila: $Fil(A) = \{x \in R^m : x \text{ es combinación lineal de las filas de } A\}$

Propiedades:

- $\quad \quad nul(A) = nul(A^TA) = (fil(A))^{\perp}$
- $\blacksquare nul(A^T) = nul(AA^T) = (col(A))^{\perp}$
- $rg(A) = rg(A^TA)$, con lo cual A^TA es inversible $\Leftrightarrow A$ es inversible
- $\bullet \dim (col(A)) = \dim (fil(A))$
- \bullet $col(A) \oplus col(A)^{\perp} = R^n$
- $fil(A) \oplus fil(A)^{\perp} = R^m$
- $rg(A) + \dim(nul(A)) = m$

Sean $A \in \mathbb{K}^{n \times m}$ y $B \in \mathbb{K}^{r \times n}$, entonces:

- $Col(BA) \subseteq Col(B)$ (son iguales si rg(A) = n)
- $Nul(A) \subseteq Nul(BA)$ (son iguales si rg(B) = n)
- Si $rg(A) = n \Rightarrow rg(BA) = rg(B)$
- Si $rg(B) = n \Rightarrow rg(BA) = rg(A)$
- $Col(A) \perp Col(B) \iff A^T B = 0$

1.4 Matrices equivalentes y semejantes

Matrices equivalentes: dos matrices A y B son equivalentes si existen otras dos matrices E y F regulares tal que A = EBF. Dos matrices equivalentes pueden pensarse como dos descripciones de una misma TL, pero con respecto a bases distintas.

Matrices semejantes: dos matrices cuadradas A y B son semejantes (notamos $A \sim B$) si y solo si existe una matriz P inversible tal que $B = P^{-1}AP$ ó $A = PBP^{-1}$. Dos matrices semejantes pueden pensarse como dos descripciones de un mismo operador lineal, pero con respecto a bases distintas. Estas dos matrices cumplen que:

- 1. det(A) = det(B)
- 2. tr(A) = tr(B)
- 3. rg(A) = rg(B)
- 4. $p_A(\lambda) = p_B(\lambda) \Longrightarrow \sigma(A) = \sigma(B)$

2 Espacios Vectoriales

Espacio	Dimensión	
\mathbb{R}^n	n	
C_C^n	n	
C_R^n	2n	
$K^{n \times m}$	$n \times m$	
P_n	n+1	
C[a,b]	∞	

2.1 Propiedades de los subespacios

 $\mathbb{S} \text{ es un subespacio vectorial del espacio } \mathbb{V}_{\mathbb{K}} \Longleftrightarrow \left\{ \begin{array}{c} 0_{\mathbb{V}} \in \mathbb{S} \\ (\alpha x + y) \in \mathbb{S} \, \forall x, y \in \mathbb{V} \, \, \mathbf{y} \, \, \forall \alpha \in \mathbb{K} \end{array} \right.$

2.2 Independencia lineal

Combinación lineal: El vector x es una combinación lineal de v_1, v_2, \ldots, v_q si $x = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_q v_q$ y a_1, a_2, \ldots, a_q no son todos nulos.

Independencia lineal: x es LI si $0 = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_q v_q$ y $a_1 = a_2 = \ldots = a_q = 0$. Dos vectores son LD si son proporcionales. Un subconjunto de un conjunto LI sigue siendo LI.

2.3 Operaciones con subespacios

Sean S_1, S_2, \ldots, S_q subespacios de \mathbb{V} .

- 1. Intersección: $S = \bigcap_{i=1}^q S_i = \{x \in \mathbb{V} : x \in S_i \ \forall i = 1, \dots, q\}.$
- 2. Suma: $S = \sum_{i=1}^{n} S_i = gen\{\bigcup_{i=1}^{m} B_i\}$, donde B_i es base de S_i .
- 3. Unión: $S = S_1 \cup S_2$ es un subespacio cuando $S_1 \subseteq S_2$ ó $S_2 \subseteq S_1$.
- 4. Suma directa: S_1, S_2, \dots, S_q están en suma directa \iff la unión de sus bases es base de $\mathbb V$.

Dos subespacios son suplementarios cuando están en suma directa y su suma es todo el espacio.

2.4 Bases

Si dim
$$(\mathbb{V}) = n$$
, $\{v_1, \dots, v_n\} \subset \mathbb{V}$ es base de $\mathbb{V} \iff \begin{cases} \{v_1, \dots, v_n\} \text{ genera } \mathbb{V} \\ \{v_1, \dots, v_n\} \text{ es LI} \end{cases}$

2.5 Coordenadas de un vector en una base

Si $\{v_1, v_2, \ldots, v_n\}$ es base de un espacio vectorial B y $x = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$, entonces $C_B(x) = (\alpha_1, \alpha_2, \ldots, \alpha_n)$.

Dado un vector y una base, las coordenadas de ese vector en esa base son únicas.

$$\forall v, w \in \mathbb{V} \text{ y } \forall k \in \mathbb{K} : \left\{ \begin{array}{c} C_{B}\left(v+w\right) = C_{B}\left(v\right) + C_{B}(w) \\ C_{B}\left(k \cdot v\right) = k \cdot C_{B}(v) \end{array} \right.$$

 $\{v_1, v_2, \dots, v_r\}$ es LI \iff $\{C_B(v_1), C_B(v_2), \dots, C_B(v_r)\}$ es LI para cualquier base B.

2.6 Matriz de pasaje

Sean $B = \{v_1, v_2, \dots, v_n\}$ y $C = \{w_1, w_2, \dots, w_n\}$ bases del espacio \mathbb{V} . Las matrices de cambio se base son:

$$C_{BC} = \left[\begin{array}{cccc} & & & & \\ C_C(v_1) & C_C(v_2) & \cdots & C_C(v_n) \\ & & & & \end{array} \right]$$

$$C_{CB} = \left[\begin{array}{ccc} | & | & | \\ C_B(w_1) & C_B(w_2) & \cdots & C_B(w_n) \end{array} \right] = C_{BC}^{-1}$$

Además: si B y C son bases ortonormales, entonces C_{BC} es una matriz ortogonal.

2.7 Teorema de la dimensión

$$\dim(S+H) = \dim(S) + \dim(H) - \dim(S \cap H)$$

$$\dim(S+H+T) = \dim(S) + \dim(H) + \dim(T) - \dim(S \cap (H+T)) - \dim(H \cap T)$$

3 Producto Interno

3.1 Axiomas

Sea $< \bullet, \bullet >: \mathbb{V}_{\mathbb{K}} \times \mathbb{V}_{\mathbb{K}} \to \mathbb{R}$ un producto interno.

- 1. $\langle x, y \rangle \in \mathbb{K} \ y \ \forall x, y \in \mathbb{V}$
- $2. < x, y > = < \overline{y, x} > \forall x, y \in \mathbb{V}$
- 3. $\langle \lambda x, y \rangle = \overline{\lambda} \langle x, y \rangle \forall x, y \in \mathbb{V} \ y \ \forall \lambda \in \mathbb{K}$
- $4. < x, \lambda y > = \lambda < x, y > \forall x, y \in \mathbb{V} \ \forall \lambda \in \mathbb{K}$
- 5. $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle \ \forall x, y, z \in \mathbb{V}$
- 6. $\langle x, x \rangle = 0 \ \forall x \in \mathbb{V} \ (\text{si } \langle x, x \rangle = 0 \text{ entonces } x = 0)$

3.2 Productos internos canónicos (PIC)

En $R^n : \langle x, y \rangle = x^T y$

En $C^n : \langle x, y \rangle = x^H y$

En $R^{n \times m} : \langle A, B \rangle = tr(A^T B)$

En $C^{n \times m} : \langle A, B \rangle = tr(A^H B)$

En $P_R[a,b] : \langle p,q \rangle = \int_a^b p(t)g(t) dt$

En $P_C[a, b] : \langle p, q \rangle = \int_a^b \overline{p(t)} g(t) dt$

En $C_R[a, b] : \langle f, g \rangle = \int_a^b f(t)g(t) dt$

En $C_C[a, b] : \langle f, g \rangle = \int_a^b \overline{f(t)} g(t) dt$

3.3 Definiciones

Ortogonalidad: $\langle x, y \rangle = 0 \iff x \perp y$.

Norma de un vector : $|x|^2 = \langle x, x \rangle$. La norma depende del producto interno.

Propiedades de la norma:

- 1. $|x| \in \mathbb{R} \, \forall x \in \mathbb{V}$
- $2. |x| \ge 0 (|x| = 0 \Longleftrightarrow x = 0)$
- $3. |k \cdot x| = |k| \cdot |x|$
- 4. Desigualdad de Cauchy-Schwarz: $|< x,y>| \leq |x|\cdot |y|, \, x,y \in \mathbb{V}_{\mathbb{K}}$. Son iguales si x es paralelo a y.
- 5. Desigualdad triangular: $|x + y| \le |x| + |y|$.
- 6. Teorema de Pitágoras: si $x \perp y$ entonces $|x+y|^2 = |x|^2 + |y|^2$. La recíproca sólo vale para \mathbb{R} .
- 7. Identidad del paralelogramo: $|x+y|^2+|x-y|^2=2\left(|x|^2+|y|^2\right), \forall x,y\in\mathbb{V}.$

Ángulo entre dos vectores: $\cos(\theta) = \frac{\langle x,y \rangle}{|x| \cdot |y|} \cos \theta \in [0,\pi], \forall x,y \neq 0, \forall \text{ EPI real.}$

Complemento ortogonal de un conjunto en un EPI: Sea $A \subset \mathbb{V}_{\mathbb{K}}$. $A^{\perp} = \{x \in \mathbb{V}_{\mathbb{K}} : \langle x, y \rangle = 0 \ \forall y \in A\}$. Para el cálculo del complemento ortogonal a un subespacio de dimensión finita, alcanza con exigir la ortogonalidad a un sistema de generadores.

5

Función distancia: $d: \mathbb{V}_{\mathbb{R}} \times \mathbb{V}_{\mathbb{R}} \to \mathbb{R}^+: d\left(x,y\right) = |x-y| = |y-x|$

3.4 Matriz asociada a un PI

Sea $B = \{v_1, v_2, \dots, v_q\}$ base de $(\mathbb{V}_{\mathbb{K}}, \bullet)$. Entonces $G \in \mathbb{K}^{q \times q}, g_{ij} = \langle v_i, v_j \rangle$ es la matriz del producto interno:

$$G = \begin{bmatrix} |v_1|^2 & (v_1, v_2) & \cdots & (v_1, v_q) \\ (v_2, v_1) & |v_2|^2 & \cdots & (v_2, v_q) \\ \vdots & \vdots & \ddots & \vdots \\ (v_q, v_1) & (v_q, v_2) & \cdots & |v_q|^2 \end{bmatrix}$$

Propiedades:

- $g_{ii} > 0 \ \forall i = 1, 2, \dots, q.$
- $G^H = G$
- \blacksquare Ges definida positiva.
- $\exists G^{-1}$.

3.5 Expresión matricial de un PI

Si B es base de $\mathbb{V}_{\mathbb{K}}$ y G es la matriz del PI en esa base, entonces $\forall x,y\in\mathbb{V}$:

$$\langle x, y \rangle = C_B^H(x) \cdot G \cdot C_B(y)$$

$Propied \underline{ades}$:

- La matriz de un PI en una BOG es una matriz diagonal.
- La matriz de un PI en una BON es la matriz identidad.

3.6 La mejor aproximación en EPIs

Sea \mathbb{V} un espacio vectorial de funciones, y \mathbb{W} un subespacio de \mathbb{V} . Si se quiere aproximar $f \in \mathbb{V}$ con una función $g \in \mathbb{W}$, la mejor aproximación será la proyección ortogonal de f sobre el subespacio \mathbb{W} .

4 Proyecciones y Matrices de Proyección

Sea $S \subset \mathbb{V}$ y S^{\perp} su complemento ortogonal, entonces $\forall x \in \mathbb{V}$:

$$x \doteq \underbrace{u}_{\in S} + \underbrace{v}_{\in S^{\perp}} \doteq P_S(x) + P_{S^{\perp}}(x)$$

4.1 Propiedades de la proyección

- $P_S(x)$ es el vector de S más próximo a x.
- $P_S(v) = v \iff v \in S$ y además $P_S(w) = 0 \iff w \in S^{\perp}$.
- Por Pitágoras: $\left|x\right|^2 = \left|P_S\left(x\right)\right|^2 + \left|P_S^{\perp}\left(x\right)\right|^2 \forall x \in \mathbb{V}.$
- $|P_S(x)| \le |x|$ (si $|P_S(x)| = |x|$ entonces $x \in S$)
- $d(x,S) = |P_{S^{\perp}}(x)|$

4.2 Expresión de la proyección y la reflexión

Sea S un subespacio de \mathbb{V} , y $B=\{v_1,v_2,\ldots,v_q\}$ una BOG de S. Entonces $\forall x\in\mathbb{V}$:

$$P_S(x) \doteq \sum_{i=1}^q \frac{\langle v_i, x \rangle}{\langle v_i, v_i \rangle} \cdot v_i$$

$$R_S(x) = 2P_S(x) - x = P_S(x) - P_{S^{\perp}}(x) = x - 2P_{S^{\perp}}(x)$$

4.3 Proyecciones y TLs

 $\operatorname{Sea} T: \mathbb{V}_{\mathbb{K}} \to \mathbb{V}_{\mathbb{K}} \text{ una transformación lineal tal que} \left\{ \begin{array}{l} \operatorname{Im} \left(P_{S}\right) = S \\ \operatorname{Nu} \left(P_{S}\right) = S^{\perp} \end{array} \right. \text{ y sea } B = \underbrace{\left\{\underbrace{v_{1}, v_{2}, \ldots, v_{q}}_{\in S}, \underbrace{v_{q+1}, v_{q+2}, \ldots, v_{n}}_{\in S^{\perp}}\right\}}_{\in S^{\perp}}$ una base de \mathbb{V} , entonces la matriz de la TL es:

$$[P_S]_B = \begin{bmatrix} 1 & & & \cdots & 0 \\ & \ddots & & & & \vdots \\ & & 1 & & & \\ & & & 0 & & \\ \vdots & & & \ddots & & \\ 0 & \cdots & & & 0 \end{bmatrix}$$

(tantos 1 como la dimensión del espacio sobre el cual proyecto, y tantos 0 como la dimensión del complemento ortogonal)

 $\underline{\text{Nota:}}$ la matriz de un operador proyección en una BON es una matriz de proyección. En cualquier otra base, no lo es.

4.4 Reflexiones y TLs

Sea $T: \mathbb{V}_{\mathbb{K}} \to \mathbb{V}_{\mathbb{K}}$ una TL tal que $\left\{ \begin{array}{l} T(v) = v, \forall v \in S \\ T(v) = -v, \forall v \in S^{\perp} \end{array} \right.$ y sea $B = \{\underbrace{v_1, v_2, \ldots, v_q}_{\in S}, \underbrace{v_{q+1}, v_{q+2}, \ldots, v_n}_{\in S^{\perp}} \}$ una base de \mathbb{V} , entonces la matriz de la TL es:

$$[T]_B = \begin{bmatrix} 1 & & & \cdots & 0 \\ & \ddots & & & & \vdots \\ & & 1 & & & \\ & & & -1 & & \\ \vdots & & & \ddots & \\ 0 & \cdots & & & -1 \end{bmatrix}$$

Figura 1: Proyección y re-

(tantos 1 como la dimensión del espacio sobre el cual reflejo, y tantos -1 como la dimensión del complemento ortogonal)

4.5 Matriz de Householder

La matriz de reflexión sobre un subespacio de dimensión n-1 que es ortogonal a un vector w en un espacio de dimensión n se puede obtener mediante la expresión:

$$H = I_d - 2\frac{ww^T}{w^Tw}$$

Propiedades de la matriz de Householder:

• Es involutiva: $H \circ H = I_d$.

• Es simétrica: $H^T = H$.

• Es inversible: $\exists H^{-1} \ y \ H^{-1} = H$

• Es ortogonal: $H^TH = HH^T = Id$.

4.6 Rotaciones en \mathbb{R}^3

Sea $B = \{v_1, v_2, v_3\}$ una BON de \mathbb{R}^3 y sea T la rotación de θ grados alrededor del eje v_1 .

$$[T]_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

4.7 Proceso Gram-Schmidt

Dada una base $\{x_1, x_2, \dots, x_p\}$ para un subespacio \mathbb{W} de \mathbb{R}^n , defina:

 $v_1 = x_1$

 $v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} \cdot v_1$

 $v_p = x_p - \frac{x_p \cdot v_1}{v_1 \cdot v_1} \cdot v_1 - \frac{x_p \cdot v_2}{v_2 \cdot v_2} \cdot v_2 - \ldots - \frac{x_p \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} \cdot v_{p-1}$

Entonces $\{v_1, v_2, \dots, v_p\}$ es una BOG para W.

4.8 Matrices de Proyección

Trabajamos con el producto interno canónico y sobre \mathbb{K}^n , $\mathbb{K} = \mathbb{R}$ o \mathbb{C} .

 $P \in \mathbb{K}^{n \times n}$ es una matriz de proyección $\iff \left\{ \begin{array}{l} P^2 = P \\ P^H = P \end{array} \right.$

Propiedades:

 $col(P) = nul(P)^{\perp}$

 $P \cdot y = y \Longleftrightarrow y \in col(P)$

• Si P_S es matriz de proyección sobre S y $P_{S^{\perp}}$ es matriz de proyección sobre S^{\perp} entonces $P_S + P_{S^{\perp}} = Id$

ullet Las columnas de P son una base del espacio sobre el cual proyectan.

rg(P) = tr(P)

• $\det(P) \neq 0$ si $P \neq Id$

■ Si P_1 y P_2 son matrices de proyección, y $P_1 \cdot P_2 = P_2 \cdot P_1 = 0$, entonces $P_1 + P_2$ es matriz de proyección y $rg(P_1 + P_2) = rg(P_1) + rg(P_2)$

Obtención de la matriz de proyección:

■ Sea Q una matriz cuyas columnas son una BON de $S \subset \mathbb{V}$. Entonces la única matriz de proyección sobre S es $[P_S] = QQ^T$. La matriz de proyección sobre S^{\perp} es $[P_S^{\perp}] = I_d - [P_S]$

• Sea $B = \{v_1, v_2, \dots, v_q\}$ una base de S, y A la matriz que tiene por columnas a v_1, v_2, \dots, v_q . Entonces la única matriz de proyección sobre S se obtiene mediante $[P_s] = A \left(A^H A\right)^{-1} A^H = AA^\#$

4.9 Inversas y pseudoinversas

Pseudoinversa: Sea $A \in \mathbb{K}^{n \times q}$ tal que rg(A) = q. La matriz pseudoinversa de A es $A^{\#} = (A^H A)^{-1} A^H$ Propiedades:

- Si A es cuadrada e inversible, $A^{-1} = A^{\#}$
- $A^\# \in \mathbb{R}^{q \times n}$
- $A^\#A = Id_{(q)}$
- $AA^{\#} = [P]_{Col(A)}$
- $Nul (AA^{\#}) = [Col (A)]^{\perp}$

4.10 Cuadrados mínimos

Sea $A \in \mathbb{K}^{n \times q}$, $x \in \mathbb{K}^q$, $b \in \mathbb{R}^n$. Si Ax = b tiene una solución exacta, entonces $b \in Col(A)$. Si $b \notin Col(A)$, intentamos hallar una solución $\hat{x} \in \mathbb{K}^q$ (la solución por cuadrados mínimos) tal que:

- $|A\hat{x} b| < |Au b| \ \forall u \in \mathbb{K}^q,$
- $d(A\hat{x}, b) \le d(Au, b) \,\forall u \in \mathbb{K}^q,$
- $|A\hat{x}| \leq |b|$ (son iguales si $b \in Col(A)$),
- Ecuaciones normales de cuadrados mínimos: $A^T A \hat{x} = A^T b$
- $A\hat{x} = \hat{b} = P_{ColA}(b) \Longleftrightarrow \begin{cases} A\hat{x} \in Col(A) \\ b A\hat{x} \in Col(A)^{\perp} \end{cases}$

Figura 2: Cuadrados mínimos.

Observaciones:

- 1. Si $\hat{x}=0$ entonces $b\in\left[Col\left(A\right)\right]^{\perp}$. La recíproca solo es cierta si A es inversible.
- 2. Si las columnas de A son LI, la solución por cuadrados mínimos es única y se obtiene mediante $\hat{x} = (A^TA)^{-1}A^Tb = A^\#b$. Si las columnas de A son LD, el sistema $A^TA\hat{x} = A^Tb$ tiene infinitas soluciones, y éstas son de la forma $\hat{x} = \hat{x}_p + \underbrace{\hat{x}_n}_{\in Nul(A)}$.
- 3. Si $b \in Col(A)$, entonces toda solución de Ax = b es una solución exacta y por cuadrados mínimos.
- 4. El error de aproximación ${\mathcal E}$ es igual a $\left|b-\hat{b}\right|$.

4.11 Regresión lineal

Sean los puntos $P_i = (x_i, y_i)$ con i = 1, 2, ..., n. La recta que mejor aproxima a los puntos es $y = \alpha + \beta x$, y los

coeficientes α, β se obtienen resolviendo el sistema $\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ por cuadrados mínimos.

4.12 Solución por cuadrados mínimos de norma mínima

La solución por cuadrados mínimos de norma mínima pertenece al espacio Fil(A) y se obtiene como $\tilde{x}=A^+b$, siendo A^+ la pseudoinversa de Moore-Penrose de A.

5 Transformaciones Lineales

Sea $T \in \mathcal{L}(\mathbb{V}_{\mathbb{K}}, \mathbb{W}_{\mathbb{K}})$ y $A = [T]_{BC}$ con B base de \mathbb{V} y C base de \mathbb{W} la matriz de T.

5.1 Condiciones de TLs

- 1. $T(u+v) = T(u) + T(v) \text{ con } u, v \in \mathbb{V}$.
- 2. $T(\alpha \cdot u) = \alpha \cdot T(u) \text{ con } u \in V_{\mathbb{K}} \text{ y } \alpha \in \mathbb{K}$.
- 3. $T(0_{\mathbb{V}_{\mathbb{K}}}) = 0_{\mathbb{W}_{\mathbb{K}}}$.

5.2 Núcleo e imagen

Núcleo: $Nu\left(T\right) = \left\{v \in \mathbb{V}_{\mathbb{K}} : T\left(v\right) = 0_{\mathbb{W}}\right\} = C_{B}^{-1}(Nul\left(A\right))$. Es un subespacio.

Imagen: $Im(T) = \{w \in \mathbb{W}_{\mathbb{K}} : T(v) = w \text{ con } v \in \mathbb{V}_{\mathbb{K}}\} = C_C^{-1}(Col(A))$. Es un subespacio.

La imagen de una TL puede obtenerse como lo que generan los transformados de una base del espacio de partida.

Teorema de la dimensión: Sea $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ y sea dim $(\mathbb{V}) = n$ (finita). Entonces:

$$\dim(\mathbb{V}) = \dim(Nu(T)) + \dim(Im(T))$$

5.3 Clasificación de TLs

5.3.1 Inyectividad (monomorfismo)

Una TL es inyectiva si verifica: $v_1 \neq v_2 \Longrightarrow T(v_1) \neq T(v_2) \forall v_1, v_2 \in \mathbb{V}$.

Una TL es inyectiva $\iff Nu(T) = \{0_{\mathbb{V}}\} \iff \dim(Im(T)) = \dim(\mathbb{V})$

Una TL inyectiva transforma conjuntos LI a conjuntos LI. La recíproca también es cierta: si A es un conjunto LI y es transformado en otro conjunto LI, la TL es inyectiva. Es decir: si T es inyectiva y A es LI, T(A) es LI.

Las matrices asociadas a TLs inyectivas tienen sus columnas LI.

Si $\dim(V) > \dim(\mathbb{W})$, T no puede ser inyectiva.

5.3.2 Sobreyectividad (epimorfismo)

Una TL es sobreyectiva $\iff Im(T) = \mathbb{W}$.

Las matrices asociadas a TLs sobreyectivas tienen sus filas LI.

Si $\dim(\mathbb{W}) > \dim(\mathbb{V})$, T no puede ser sobrevectiva.

5.3.3 Biyectividad (isomorfismo)

Si $\dim(\mathbb{W}) = \dim(\mathbb{V})$, y $Nu(T) = \{0\}$, T es biyectiva.

Tes biyectiva \iff si $\{v_1, \ldots, v_n\}$ es base de \mathbb{V} , entonces $\{T(v_1), \ldots, T(v_n)\}$ es base de \mathbb{W} .

La matriz asociada a una TL biyectiva tiene sus filas y columnas LI, o sea que es una matriz inversible, o sea que existe la TL inversa: $T^{-1} = [T]^{-1}$

Si $\dim(\mathbb{V}) = \dim(\mathbb{W})$, entonces o bien T es inyectiva y sobreyectiva, o bien no es ninguna.

5.4 Matriz asociada a una TL

Sea $T \in \mathcal{L}(\mathbb{V}_{\mathbb{K}}, \mathbb{W}_{\mathbb{K}})$, sea $B = \{v_1, v_2, \dots, v_q\}$ base de \mathbb{V} y $C = \{w_1, w_2, \dots, w_m\}$ base de \mathbb{W} . Entonces T se puede escribir como T(x) = Ax, con $A \in \mathbb{K}^{m \times q}$ tal que:

$$A = [T]_{BC} = \begin{bmatrix} & & & & & & & & & & & & & \\ & C_C(T(v_1)) & C_C(T(v_2)) & \cdots & C_C(T(v_q)) & & & & & & \\ & & & & & & & & & \end{bmatrix}$$

Propiedades:

- $v \in Nu(T) \iff C_B(v) \in Nul(A)$
- $w \in Im(T) \iff C_C(w) \in Col(A)$
- \bullet dim(Im(T)) = rq(A)

Teorema: sean \mathbb{V} y \mathbb{W} \mathbb{K} -espacios vectoriales ($\mathbb{K} = \mathbb{R}$ ó \mathbb{C}). Sea $T : \mathbb{V} \to \mathbb{W}$. Si B_1 y B_2 son bases ordenadas de \mathbb{V} , y C_1 y C_2 son bases ordenadas de \mathbb{W} , entonces $rg([T]_{B_1C_1}) = rg([T]_{B_2C_2})$.

5.5 Teorema Fundamental de las TLs

Sea $B = \{v_1, v_2, \dots, v_n\}$ base de \mathbb{V} y w_1, w_2, \dots, w_n vectores de \mathbb{W} . Entonces existe y es única la TL que verifica que $T(v_1) = w_1, T(v_2) = w_2, \dots, T(v_n) = w_n$. Además, dada una TL y un par de bases, existe una única matriz asociada. La recíproca también es verdadera: dada una matriz y un par de bases, existe una única TL asociada.

5.6 Composición de TLs

 $f \in \mathcal{L}(\mathbb{V}, \mathbb{W}) \text{ y } g \in \mathcal{L}(\mathbb{W}, \mathbb{H}) \Longrightarrow g \circ f \in \mathcal{L}(\mathbb{V}, \mathbb{H})$

Propiedades:

- $Nu(f) \subseteq Nu(g \circ f)$
- $Im(g \circ f) \subseteq Im(g)$

5.7 Operadores lineales

Un operador lineal es una TL que va de un espacio en sí mismo. Se escribe como TFigula (N): Composición. Propiedades:

- 1. Si $T_1 \in \mathcal{L}(\mathbb{V})$ y $T_2 \in \mathcal{L}(\mathbb{V})$, entonces $T_1 \circ T_2 \in \mathcal{L}(\mathbb{V})$.
- 2. Si $T \in \mathcal{L}(\mathbb{V})$, $T^n = \underbrace{T \circ T \circ \ldots \circ T}_{n \ veces}$

6 Autovalores y Autovectores

6.1 Autovalores y autovectores de una matriz cuadrada

Autovector: Un vector $v \neq \overline{0}$ es autovector de $A \in \mathbb{K}^{n \times n} \iff \exists \lambda \in \mathbb{K} : Av = \lambda v$.

Autoespacio: El autoespacio de A asociado a un autovalor λ es $S_{\lambda}(A) = nul(A - \lambda I)$.

Polinomio característico: El polinomio característico de una matriz $A \in \mathbb{K}^{n \times n}$ es $p_A(\lambda) = \det(A - \lambda I)$, y tiene grado n. Si $\mathbb{K} = \mathbb{R}$ el polinomio tiene a lo sumo n raíces. Si $\mathbb{K} = \mathbb{C}$ tiene exactamente n raíces.

Autovalor: Los autovalores de una matriz son las raíces de su polinomio característico.

Espectro de una matriz: $\sigma(A) = \{\lambda \in \mathbb{K} : \lambda \text{es autovalor de } A\}$

6.2 Multiplicidad geométrica y algebraica de un autovalor

$$m_g(\lambda) = \dim (S_{\lambda}(A))$$

 $m_a(\lambda) =$ número de veces que aparece λ como raíz del polinomio característico.

Siempre se verifica que: $1 \leq m_q(\lambda) \leq m_a(\lambda)$.

6.3 Propiedades

Sea $A \in \mathbb{K}^{n \times n}$.

- A es singular \iff 0 es un autovalor de $A \iff m_q(0) = n k \iff rg(A) = k < n$.
- Dos autovectores asociados a autovalores distintos son LI.
- Si $A \in \mathbb{K}^{2\times 2}$, entonces $p_A(\lambda) = \lambda^2 tr(A)\lambda + \det(A)$.
- Si todas las filas o columnas de A suman s entonces $s \in \sigma(A)$.
- Sea $p(t) = a_k t^k + \ldots + a_1 t + a_0$ ($a_k \neq 0$). Si λ es autovalor de A, entonces se cumple que $p(\lambda)$ es autovalor de p(A), y para cada autovalor μ de p(A) existe un autovalor λ de A tal que $p(\lambda) = \mu$.
- \blacksquare Si λ es autovalor de A...
 - 1. λ es autovalor de A^T ,
 - 2. λ^{-1} es autovalor de A^{-1} y $S_{\lambda^{-1}}(A^{-1}) = S_{\lambda}(A)$,
 - 3. $r \cdot \lambda$ es autovalor de $r \cdot A$,
 - 4. λ^k es autovalor de A^k , $k \in \mathbb{N}$
 - 5. $\lambda + r$ es autovalor de $A + r \cdot I$.

6.4 Autovalores y autovectores de operadores lineales

 $T:\mathbb{V}_{\mathbb{K}}\rightarrow\mathbb{V}_{\mathbb{K}}.\text{ Un vector }v\neq\overline{0}\text{ es autovector de }T\Longleftrightarrow T\left(v\right)=\lambda v\text{, con }\lambda\text{ autovalor de }T.$

 $S_{\lambda}\left(T\right)=\left\{x\in\mathbb{V}:\,T\left(x\right)=\lambda x\,\,\mathrm{y}\,\,\lambda\,\,\mathrm{autovalor}\,\,\mathrm{de}\,T\right\}=Nuc(T-\lambda I).$ Si B es base de \mathbb{V} y A es la matriz de T en esa base, entonces:

- 1. $\sigma(A) = \sigma(T) \ \forall B \text{ base de } \mathbb{V}$
- 2. x es autovector de $T \iff C_B(x)$ es autovector de $[T]_B = A$

Propiedades:

- $T(x) = \lambda \cdot x \Longrightarrow T^n(x) = \lambda^n \cdot x \ (n \in \mathbb{N}).$
- Si λ es autovalor de T, λ^{-1} es autovalor de T^{-1} .
- Si h es un polinomio en \mathbb{K} y T(x) = Ax, entonces $\left\{ \begin{array}{l} \sigma\left[h\left(A\right)\right] = h[\sigma\left(A\right)] \\ S_{h(\lambda)}h\left(A\right) = S_{\lambda}(A) \end{array} \right.$
- $T: \mathbb{V}_{\mathbb{K}} \to \mathbb{V}_{\mathbb{K}}$ es regular $\iff 0 \notin \sigma(T)$

6.5 Diagonalización

 $A \in \mathbb{K}^{n \times n}$ es diagonalizable $\iff A \sim D \iff$ existe una base de \mathbb{K}^n compuesta por autovectores de $A \iff A$ tiene n autovectores LI $\iff m_g(\lambda) = m_a(\lambda) \ \forall \lambda \in \sigma(A) \iff \exists P \text{ inversible y } D \text{ diagonal tal que: } A = PDP^{-1},$ siendo P la matriz de autovectores y D la matriz de autovalores.

6.5.1 Matrices trivialmente diagonalizables

- Nula: autovalor 0, autovectores: cualquier vector no nulo.
- Identidad: autovalor: 1, autovectores: cualquier vector no nulo.
- Diagonal $(A = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \alpha_n \end{pmatrix})$: autovalores: $\alpha_1, \dots, \alpha_n$, autovectores: los que tienen sus componentes nulas excepto la n-ésima.
- Escalar $(A = \begin{pmatrix} k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & k \end{pmatrix}, k \in \mathbb{R})$: autovalor: k, autovectores: cualquier vector no nulo.
- De proyección $(A \in \mathbb{K}^{n \times n}, \dim S = q)$: autovalor 1 con $m_a(1) = m_g(1) = q$, autovalor 0 con $m_a(0) = m_g(0) = n q$
- De reflexión: autovalor 1 con $m_a(1) = q$, autovalor -1 con $m_a(0) = n q$

6.5.2 Propiedades

- Si A es diagonalizable entonces A^n es diagonalizable $(D_A^n = D_{A^n} \text{ y } \sigma(A^n) = \sigma^n(A))$. La recíproca es falsa.
- Si $A \in \mathbb{C}^{n \times n}$ tiene n autovalores distintos entonces A es diagonalizable. La recíproca es falsa.
- $\bullet \det(A) = \prod_{i=1}^{n} \lambda_i = p_A(0)$
- $\bullet (A) = \sum_{i=1}^{n} \lambda_i$

6.6 Autovalores complejos de una matriz real

Supongamos que $\lambda = a + bi$ con $a, b \in \mathbb{R}$, $b \neq 0$ es un autovalor de $A \in \mathbb{R}^{n \times n}$. Entonces $\overline{\lambda} = a - bi$ también es autovalor de A y $v \in \mathbb{C}^n$ es autovector de A asociado a λ si y sólo si \overline{v} es autovector de A asociado a $\overline{\lambda}$. En particular, si $\{v_1, \ldots, v_r\}$ es base de $S_{\overline{\lambda}}$ entonces $\{\overline{v}_1, \ldots, \overline{v}_r\}$ es base de $S_{\overline{\lambda}}$.

6.7 Diagonalización de TLs

 $T \in \mathcal{L}(\mathbb{V}_{\mathbb{K}})$ con $\dim(\mathbb{V}_{\mathbb{K}}) = n$, es diagonalizable $\iff \exists B$ base $\det \mathbb{V}_{\mathbb{K}}$ tal que $[T]_B$ es diagonal $\iff \exists B$ base $\det \mathbb{V}_{\mathbb{K}}$ formada por autovectores de $T \iff T$ tiene n autovectores LI. Esa base es B y $[T]_B = diag(\sigma(T))$. Si $A = [T]_H$, H cualquier base, entonces T es diagonalizable si y sólo si A es diagonalizable.

7 Diagonalización de Matrices Hermíticas, Formas Cuadráticas, DVS

7.1 Diagonalización de matrices simétricas y hermíticas

Matriz antisimétrica: Si $A \in \mathbb{R}^{n \times n}$ es antisimétrica $(A^T = -A)$ entonces:

- Los autovalores de A son imaginarios puros o nulos,
- Los autovectores asociados a autovalores distintos son ortogonales,
- \bullet A es diagonalizable unitariamente.

Matriz simétrica (hermítica): $A \in \mathbb{R}^{n \times n}$ es simétrica ($B = \mathbb{C}^{n \times n}$ es hermítica) si y solo si:

1. A es diagonalizable ortogonalmente: $A = PDP^T$ (B es diagonalizable unitariamente con D real: $B = PDP^H$)

Propiedades:

- \blacksquare A(B) tiene n autovalores reales
- Los elementos de la diagonal de A(B) son reales
- $\bullet \det(A) \in \mathbb{R}$
- Los autovectores asociados a autovalores distintos son ortogonales

Matriz ortogonal: $A \in \mathbb{R}^{n \times n}$ es ortogonal $(B \in \mathbb{C}^{n \times n}$ es unitaria) si y solo si:

- 1. $AA^T = A^TA = Id \ (BB^H = B^HB = Id)$
- 2. $A^T = A^{-1} (B^H = B^{-1})$
- 3. Las columnas de A (B) son BON de \mathbb{R}^n (\mathbb{C}^n)

Propiedades:

- $\det(A) = \pm 1$. Si $\det(A) = 1$, A es la matriz de una rotación
- Los autovalores tienen módulo 1, y pueden ser reales o complejos
- Son matrices unitariamente diagonalizables
- Los autovectores asociados a autovalores distintos son ortogonales
- Preservan los productos internos $(\langle Ax, Ay \rangle = \langle x, y \rangle)$ y las normas (|Ax| = |x|)
- ullet Si C es unitaria, BC y CB son unitarias

7.2 Descomposición espectral de matrices simétricas

Si $A = PDP^{-1} = PDP^{T}$, las columnas de P son autovectores ortonormales u_1, \ldots, u_n de A y los autovalores correspondientes $\lambda_1, \ldots, \lambda_n$ están en la matriz diagonal D. Entonces:

$$A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \ldots + \lambda_n u_n u_n^T$$

7.3 Subespacios invariantes por una matriz o por una TL

 $S \in \mathbb{K}^n$ es invariante por $A \in \mathbb{K}^{n \times n} \iff \forall x \in S : Ax \in S$.

 $S \subset \mathbb{V}$ es invariante por $T \in \mathcal{L}(\mathbb{V}) \iff \forall x \in S : T(x) \in S$.

Propiedades:

- Si λ es autovalor de T, entonces $S_{\lambda}(T)$ es un subespacio invariante por T, puesto que $\forall x \in S_{\lambda}(T) \Rightarrow T(x) = \lambda x \in S_{\lambda}(T)$.
- No todo subespacio invariante es un autoespacio de T, pero sí los subespacios invariantes de dimensión 1.

7.4 Formas cuadráticas

Una forma cuadrática en \mathbb{R}^n es una función $Q: \mathbb{R}^n \to \mathbb{R}$ tal que $Q(x) = x^T A x$, donde A es una matriz simétrica de $n \times n$.

Teorema de los ejes principales: sea A una matriz simétrica de $n \times n$. Entonces existe un cambio ortogonal de variable, x = Py, donde P es una matriz ortogonal tal que det (P) = +1 e y es un nuevo vector, que transforma la forma cuadrática x^TAx a una forma cuadrática y^TDy sin términos de producto cruzado: $Q(x) = x^TAx = (Py)^TA(Py) = y^T(P^TAP)y = y^TD_Ay = g(y)$

Perspectiva geométrica de los ejes principales: sea la forma cuadrática $Q(x) = x^T A x$, con $A = PDP^T$. El conjunto de todas las $x \in \mathbb{R}^n$: $x^T A x = c$ es una elipse, una hipérbola, dos rectas, un punto o ningún punto. Si A es diagonal, la gráfica está en posición estándar. Si A no es diagonal, la gráfica está girada hasta salirse de la posición estándar. Los "ejes principales" son los autovectores de A y son el nuevo sistema de coordenadas para los cuales la gráfica está en posición estándar.

7.5 Clasificación de formas cuadráticas

Una forma cuadrática $Q(x) = x^T A x$ es:

	Definición	Criterio I	Criterio II
$egin{aligned} Definida \ positiva \end{aligned}$	$Q\left(x\right) > 0, \forall x \neq 0$	$a_{11} > 0 \text{ y } det(A) > 0$	los autovalores de A son positivos
$Semi\text{-}definida \ positiva$	$Q\left(x\right) \geq 0, \forall x$	$\det(A_k) \ge 0, k = 1, 2, \dots, n$	los autovalores de A son positivos o cero
$egin{aligned} Definida \ negativa \end{aligned}$	$Q\left(x\right) < 0, \forall x \neq 0$	$a_{11} < 0 \text{ y } det(A) > 0$	los autovalores de A son negativos
$Semi\text{-}definida \ negativa$	$Q\left(x\right) \leq 0, \forall x$	$\det\left(A_{k}\right) \leq 0, k = 1, 2, \dots, n.$	los autovalores de A son negativos o cero
Indefinida	$Q\left(x\right) \geqslant 0$		los autovalores de A son tanto positivos como negativos

7.6 Optimización restringida

Teorema de Rayleigh: sea la forma cuadrática $Q(x) = x^T A x$, con A simétrica. Se verifica:

$$\lambda_{min}(A) \le \frac{Q(x)}{\|x\|^2} \le \lambda_{max}(A)$$

Sea extremar una forma cuadrática $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = x^T A x$ (A simétrica), sujeto a la restricción $|x| = \alpha$. El máximo de f es $\lambda_{max}(A).\alpha^2$ y se alcanza en $M = \{x \in S_{\lambda_{max}}(A): |x| = \alpha\}$. El mínimo de f es $\lambda_{min}(A).\alpha^2$ y se alcanza en $m = \{x \in S_{\lambda_{min}}(A): |x| = \alpha\}$.

Sea extremar una forma cuadrática $f: \mathbb{R}^n \to \mathbb{R}, f(x) = x^T A x$ (A simétrica), sujeto a la restricción $x^T B x = \alpha^2$, y sea B definida positiva tal que $B = P_B D_B P_B^T$. Mediante un cambio de variable $y = \sqrt{D_B} P_B^T x$ ($x = \sqrt{D_B^{-1}} P_B y$), esto es equivalente a extremar $g(y) = y^T \left(\sqrt{D_B^{-1}} P_B^T A P_B \sqrt{D_B^{-1}}\right) y$ sujeto a la restricción $|y| = \alpha$. Entonces: máx $g(y) = \max f(x)$, y mín $g(y) = \min f(x)$. Los x en donde se alcanza ese extremo se hallan realizando la cuenta $x = P_B y$.

7.7 DVS

Valores singulares: $VS(A) = \sqrt{\lambda_i} \, \forall \lambda_i \in \sigma(A^T A)$.

Sea A una matriz de $m \times n$ con rango r. Entonces existe una matriz Σ , y existen una matriz Σ ortogonal de $m \times m$ y una matriz Σ ortogonal de Σ o

- $\Sigma \in \mathbb{R}^{m \times n}$ es tal que $\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$, y las entradas diagonales de D son los primeros r valores singulares de A, ordenados en forma descendente: $\sigma_i \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$.
- $V \in \mathbb{R}^{n \times n}$ es una matriz cuyas columnas son una BON de autovectores $\{v_1, v_2, \dots, v_n\}$ asociados a los autovalores de $A^T A$.
- $U \in \mathbb{R}^{m \times m}$ es una matriz cuyas primeras r columnas son los vectores $\frac{Av_1}{\sigma_1}, \dots, \frac{Av_r}{\sigma_r}$. Las otras columnas se obtienen completando una BON para \mathbb{R}^m . Las columnas de U son autovectores de AA^T .

7.8 Aplicaciones de las DVS

Sea
$$A \in \mathbb{K}^{m \times n}$$
, $A = \begin{bmatrix} & & & & | \\ u_1 & \cdots & u_m \\ & & & | \end{bmatrix} \begin{bmatrix} D & 0 \\ \vdots & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} & & & | \\ v_1 & \cdots & v_n \\ & & & | \end{bmatrix}^T$. Si $rg(A) = r$ entonces:

- $\{u_1, u_2, \dots, u_r\}$ es BON de Col(A)
- $\{u_{r+1},\ldots,u_m\}$ es BON de $[Col(A)]^{\perp}$
- $\{v_1, v_2, \dots, v_r\}$ es BON de Fil(A)
- $\{v_{r+1},\ldots,v_n\}$ es BON de $[Fil(A)]^{\perp}$

7.9 Propiedades de las DVS

- $\qquad \qquad rg\left(A\right) =rg\left(\Sigma \right) =rg\left(\Sigma ^{T}\right) =\#VS\left(A\right) _{positivos}$
- $A \in \mathbb{R}^{n \times n}$ es inversible \iff A tiene n VS positivos
- $\quad \blacksquare \ VS\left(A\right)_{positivos} = VS\left(A^T\right)_{positivos}$
- Si $A \in \mathbb{R}^{n \times n}$, $|det(A)| = \prod_{i=1}^{n} VS_i(A)$
- Si A es cuadrada y definida positiva, $\sigma(A) \equiv VS(A)$
- Si $A \sim B$, entonces $VS(A) \equiv VS(B)$
- Si B es ortogonal, A, AB y BA tienen los mismos valores singulares
- Si A es cuadrada y simétrica, entonces $VS_i(A) = |\lambda_i(A)|$
- \blacksquare Si A tiene filas BON, los valores singulares no nulos de A son 1. Si A tiene columnas BON, los valores singulares de A son 1
- La matriz A^TA (matriz de Gram de A) es siempre simétrica y semi definida positiva, con lo cual nunca tendrá valores singulares negativos. Será definida positiva cuando A tenga columnas LI
- Sea $T: \mathbb{R}^m \to \mathbb{R}^n$ una transformación lineal tal que T(x) = Ax. Sea la forma cuadrática $f(x) = |T(x)|^2 = x^T (A^T A) x$. Entonces:
 - 1. El máximo de f(x) sujeto a |x|=1 es $\lambda_{max}\left(A^TA\right)$. Entonces el máximo de |T(x)| es $VS_{max}(A)$ y se alcanza en $M=\{x\in\mathbb{R}^m:x\in S_{\lambda_{max}}\left(A^TA\right),|x|=1\}$.
 - 2. El mínimo de f(x) sujeto a |x|=1 es $\lambda_{min}\left(A^TA\right)$. Entonces el mínimo de |T(x)| es $VS_{min}(A)$ y se alcanza en $m=\{x\in\mathbb{R}^m:x\in S_{\lambda_{min}}\left(A^TA\right),|x|=1\}$.

7.10 DVS reducida con matrices de proyección y pseudoinversa

DVS reducida: Sea $A \in \mathbb{R}^{n \times m}$. Si $A = U\Sigma V^T$, y $rg\left(A\right) = r$, entonces una DVS reducida de A es $A = U_r\Sigma_rV_r^T$ siendo $U_r \in \mathbb{K}^{n \times r}$, $\Sigma_r \in \mathbb{K}^{r \times r}$, $V_r^T \in \mathbb{K}^{r \times m}$.

Pseudoinversa de Moore-Penrose de A: $A^+ = V_r \Sigma_r^{-1} U_r^T$

Propiedades:

Sea $A \in \mathbb{R}^{n \times m}$:

- 1. $A^{+} = A^{\#}$ cuando rg(A) = m
- 2. $A^{+}A = V_r V_r^T = P_{Fil(A)}$
- 3. $AA^{+} = U_{r}U_{r}^{T} = P_{Col(A)}$

8 Ecuaciones Diferenciales

8.1 Independencia lineal y Wronskiano

Matriz de Wronski: Sea $A = \{f_1, f_2, \dots, f_q\}$ funciones definidas en un intervalo $I \subset \mathbb{R}$, a valores en \mathbb{C} , con derivada hasta el orden (q-1) continua en I. La matriz de wronski de A es, para cada $x \in I$:

$$Mw_{A}(x) = \begin{bmatrix} f_{1}(x) & \cdots & f_{q}(x) \\ f'_{1}(x) & \cdots & f'_{q}(x) \\ f_{1}^{(q-1)}(x) & \cdots & f_{q}^{(q-1)}(x) \end{bmatrix}$$

Wronskiano: $w_A(t) = det(Mw_A)$

Propiedades:

- Si existe un $x_0 \in I$ tal que $w_A(x_0) \neq 0$, entonces las funciones f_1, f_2, \dots, f_q son LI.
- Si un conjunto es LD en un *I*, su wronskiano es la función nula. La recíproca es falsa; es verdadera solo si las funciones que componen el wronskiano son soluciones de una ED lineal de orden superior.
- lacktriangle La derivada del wronskiano es el determinante obtenido derivando la última fila. La derivada del wronskiano es la suma de q determinantes.

8.2 Identidad de Abel

Sea la ecuación diferencial $y(x)^{(n)} + a_{n-1} \cdot y(x)^{(n-1)} + \ldots + a_1 \cdot y'(x) + a_0 \cdot y(x) = 0$ en un intervalo $I \subset \mathbb{R}$, sea $S = \{y_1, y_2, \ldots, y_n\}$ el conjunto de las soluciones de ED, y sea W_S el wronskiano de este conjunto. Entonces se verifica que:

$$W_S'(t) = -a_{n-1} \cdot W_S(t)$$

8.3 Ecuaciones diferenciales lineales

8.3.1 Condición de existencia y unicidad de un PVI

Sea el problema
$$\begin{cases} a_n y\left(x\right)^{(n)} + \ldots + a_1 y'\left(x\right) + a_0 y(x) = f(x) \\ y\left(x_0\right) = y_0 \end{cases}$$

La condición de existencia y unicidad de la solución del PVI es:

- ED normal en $I: a_n \neq 0 \ \forall x \in I$.
- $x_0 \in I$.

8.3.2 Variables separables: $y' = \frac{f(x)}{g(x)}$ con y = y(x)

Separamos la ecuación en $g(x) \cdot dy = f(x) \cdot dx$ e integrando ambos miembros se tiene G(y) = F(x) + c.

8.3.3 Homogéneas: y' = f(x, y) con f(tx, ty) = f(x, y)

Hacemos un cambio de variable y = zx (donde z = z(x)). Entonces y' = z + xz'.

8.3.4 Lineales de 1^{er} orden

Obtenemos primero la solución general de la homogénea (y_h) y luego una particular de la no homogénea (y_p) . La solución buscada es $y_G = y_H + y_P$.

- 1. Solución de la ecuación homogénea asociada (y' + p(x)y = 0): es de variables separables. Una solución es $y_H(x) = e^{-\int p(x)dx}$.
- 2. Solución de la no homogénea: una solución se obtiene multiplicando toda la ecuación por el factor integrante de Lagrange: $u\left(v\right)=e^{\int p(x)dx}$. Entonces, la ecuación a resolver será $\left[u\left(v\right).y\right]'=u\left(v\right).q(x)$

8.3.5 Differencial exacta: P(x,y)dx + Q(x,y)dy = 0

Es diferencial exacta si existe f(x,y) tal que $df=P\left(x,y\right)dx+Q\left(x,y\right)dy$, es decir si $\frac{\partial f}{\partial x}=P(x,y)$ y $\frac{\partial f}{\partial y}=Q(x,y)$. En ese caso, la solución general es $f\left(x,y\right)=C$. Se cumple que la ecuación anterior es diferencial exacta si y solo si $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$.

Se dice además que $\mu(x,y)$ es un factor integrante de la ecuación P(x,y) dx + Q(x,y) dy = 0 si al multiplicar la ecuación por $\mu(x,y)$ la ecuación resultante es diferencial exacta.

8.3.6 Lineales homogéneas de orden superior con coeficientes constantes: $a_n(t)y^{(n)} + ... + a_1y' + a_0y = 0 \ \forall t \in I \ (\mathbf{I})$

Polinomio característico de (I): $p(\lambda) = \sum_{i=0}^{n} a_i \lambda_i^n$

Espectro de (I): $\sigma(p) = \{\lambda \in \mathbb{C} : p(\lambda) = 0\}$

 $y_H(t) = t^k e^{\lambda t}$ es una solución de la ED si $\lambda \in \sigma(p)$, multiplicidad "m", $k = 0, 1, \dots, m-1$.

Si la ED es de coeficientes constantes reales, las raíces del polinomio característico aparecerán conjugadas. Esto es, $\lambda_{1,2} = \alpha \pm \beta i$. Luego, $y_1 = e^{\alpha t} (\cos{(\beta t)} + i.sen{(\beta t)})$ e $y_2 = e^{\alpha t} (\cos{(\beta t)} - i.sen{(\beta t)})$. Entonces, $gen\{y_1, y_2\} = gen\{e^{\alpha t} \cos{(\beta t)}, e^{\alpha t} sen{(\beta t)}\}$.

8.3.7 Lineales no homogéneas de orden superior con coeficientes constantes: $a_n y^{(n)} + ... + a_1 y' + a_0 y = f(x)$

La solución general es de la forma $y_G = y_P + y_H$, donde y_H se obtiene como antes, e y_P se obtiene mediante alguno de estos métodos:

Método de variación de parámetros: aplicable en cualquier caso.

 $y_P(t) = \sum_{i=1}^n u_i(x) \cdot y_i(x)$, siendo $y_i(x)$ las soluciones de y_H , y $u_i(x)$ las funciones que satisfacen

$$\begin{bmatrix} y_1 & y_2 & \dots & y_n \\ y_1' & y_2' & \dots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n)} & y_2^{(n)} & \dots & y_n^{(n)} \end{bmatrix} \cdot \begin{bmatrix} u_1' \\ u_2' \\ \vdots \\ u_n' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \frac{f(x)}{a_n} \end{bmatrix}$$

Método de coeficientes indeterminados: aplicable cuando f(x) es exponencial, polinomio, seno y coseno, siendo $a_2y'' + a_1y' + a_0y = f(x)$ con $f(x) = p_1(x) \cdot e^{m_1x} + \dots + p_k(x) \cdot e^{m_kx}$. $y_P(t) = q_1(x) . e^{m_1 x} + ... + q_k(x) . e^{m_k x}.$

- Si $e^{m_k x}$ no es solución de la EDO homogénea asociada (i.e. m_k no es raíz de $a_2 \lambda^2 + a_1 \lambda + a_0 = 0$), q_k es un polinomio del grado de p_k con coeficientes a determinar.
- Si $e^{m_k x}$ si es solución de la EDO homogénea asociada (i.e. m_k sí es raíz de a_2 " $\lambda^2 + a_1$ " $\lambda + a_0 = 0$), q_k es un polinomio de un grado mayor que p_k con coeficientes a determinar.
- \blacksquare Una vez armada la y_P se reemplaza en la ED original, e igualando los términos semejantes se hallan los coeficientes indeterminados.

Sistemas de Ecuaciones Diferenciales Lineales 9

$$\begin{cases} x'_t = a_{11}x + a_{12}y + b_1 \\ y'_t = a_{21}x + a_{22}y + b_2 \end{cases} \implies \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Longrightarrow X' = AX + B$$

Sistemas homogéneos con A diagonalizable 9.1

La solución de X' = AX $(A \in \mathbb{K}^{n \times n})$, con λ_i autovalor de A y v_i autovector de A asociado a λ_i , es:

$$X = \sum_{i=1}^{n} c_i v_i e^{\lambda_i t} = \underbrace{\left[\begin{array}{ccc} | & | & | \\ v_1 e^{\lambda_1 t} & \cdots & v_n e^{\lambda_n t} \\ | & | & | \end{array}\right]}_{\varphi(t) \in \mathbb{K}^{n \times n}} \underbrace{\left[\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array}\right]}_{C}$$

9.2 Sistemas no homogéneos con A diagonalizable

Sea el sistema X' = AX + B. La solución es $X_G = X_H + X_P$ con:

1.
$$X_H = \sum_{i=1}^{n} c_i v_i e^{\lambda_i t} = \varphi(t) \cdot C$$

2.
$$X_{P} = \varphi(t) \cdot u(t)$$
 siendo $u(t)$ tal que $\varphi(t) \cdot u'(t) = B$

Sistemas homogéneos con A no diagonalizable 9.3

Sea el sistema X' = AX con A no diagonalizable, proponemos una factorización de la forma A

Sea el sistema
$$X' = AX$$
 con A no diagonalizable, proponemos una factorización de la forma $A = PJP^{-1}$, donde $J \in \mathbb{C}^{n \times n}$ es la M es la M que tiene la siguiente estructura en bloques: $J = \begin{bmatrix} J_1 & 0 & 0 & 0 \\ 0 & J_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & J_l \end{bmatrix}$

donde cada bloque
$$J_i$$
 es una matriz $k_i \times k_i$ de la forma $J_i = \begin{bmatrix} \lambda_i & 1 & 0 & 0 \\ 0 & \lambda_i & 1 & 0 \\ \vdots & \vdots & \ddots & 1 \\ 0 & 0 & \cdots & \lambda_i \end{bmatrix}$ para algún autovalor λ_i de A . (Dado un autovalor λ_i su multiplicidad geométrica es el número de bloques de Jordan correspondientes a

A. (Dado un autovalor λ_i , su multiplicidad geométrica es el número de bloques de Jordan correspondientes a λ_i , y su multiplicidad algebraica es la suma de los tamaños de los bloques correspondientes a ese autovalor.)

Luego: $X' = AX \stackrel{X=PY}{\longmapsto} PY' = PJP^{-1}PY \longmapsto Y' = JY$. Resolvemos este sistema y la solución general del problema se expresará como X(t) = PY(t).

9.3.1 Caso $A \in \mathbb{R}^{2 \times 2}$

A necesariamente posee un autovalor doble $\lambda \in \mathbb{R}$ de multiplicidad geométrica 1, con lo cual la matriz J posee un solo bloque correspondiente a λ :

$$J = \left[\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array} \right]$$

Respecto de la matriz $P = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$ deber ser inversible y AP = PJ. La matriz P se obtiene hallando un par de vectores v_1 y v_2 LI que satisfagan las condiciones $(A - \lambda I)v_1 = 0$ y $(A - \lambda I)v_2 = v_1$. Observamos que v_1 es autovector de A asociado a λ .

9.3.2 Caso $\mathbf{A} \in \mathbb{R}^{3 \times 3}$

1. A tiene un autovalor triple $\lambda \in \mathbb{R}$ de multiplicidad geométrica 1. En este caso:

$$J = \left[\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{array} \right]$$

Respecto de $P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$, $\{v_1, v_2, v_3\}$ deben ser LI y satisfacer las condiciones $(A - \lambda I) v_1 = 0$, $(A - \lambda I) v_2 = v_1$, $(A - \lambda I) v_3 = v_2$. Observamos que v_1 es autovector de A asociado a λ .

2. A tiene un autovalor triple $\lambda \in \mathbb{R}$ de multiplicidad geométrica 2. En este caso:

$$J = \left[\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{array} \right]$$

Respecto de $P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$, $\{v_1, v_2, v_3\}$ deben ser LI y satisfacer las condiciones $(A - \lambda I) v_1 = 0$, $(A - \lambda I) v_2 = v_1$, $(A - \lambda I) v_3 = 0$. Observamos que v_1 y v_3 son autovectores de A asociados a λ .

3. A tiene un autovalor doble $\lambda \in \mathbb{R}$ de multiplicidad geométrica 1 y un autovalor $\mu \in \mathbb{R}$ simple. En este caso J debe tener dos bloques de Jordan:

$$J = \left[\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{array} \right]$$

Respecto de $P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$, $\{v_1, v_2, v_3\}$ deben ser LI y satisfacer las condiciones $(A - \lambda I) v_1 = 0$, $(A - \lambda I) v_2 = v_1$, $(A - \mu I) v_3 = 0$. Observamos que v_1 y v_3 son autovectores de A asociados a λ y μ respectivamente.