Time Value Of Money Operations

- The value of a given sum of money depends on when that money is received
- Interest rental amount charged for the use of money

$$F_n = P + I_n$$

where

P = present value of a single sum of money

 F_n = future value of P after n time periods

 I_n = accumulated interest (\$)

- i annual interest rate (%)
 - change in value of a dollar over a one-year period

$$i = \frac{1}{(1-t)}(i_{PC} + i_R + i_I)$$

- Why do lenders charge interest?
 - Compensation for postponing consumption
 - Compensation for risk
 - Compensation for inflation
 - Only after-tax compensation is of value to investor
 - t is the tax rate on interest income

Compensation For Lending`

"Risk-Free" Gov't Bond Yield

$$5\% = \frac{1}{1 - 0.5}(0.5\% + 0\% + 2.0\%)$$

Low-Risk Interest Rate

$$6\% = \frac{1}{1 - 0.5}(0.5\% + 0.5\% + 2.0\%)$$

Risky Corporate Bond Yield

$$15\% = \frac{1}{1 - 0.5}(0.5\% + 5.0\% + 2.0\%)$$

Interest Rate Calculation Approaches

$$F_n = P + I_n$$

Two approaches used to determine the value of I_n:

Simple interest approach

$$I_n = P i n \longrightarrow F_n = P(1 + i n)$$

Compound interest approach

$$I_n = i F_{n-1} \longrightarrow F_n = F_{n-1} (1 + i)$$

\$1 000 loan over 2 years - interest rate 7% per annum

Simple Interest Compound Interest $F_2 = \$1\ 000\ [1+0.07(2)] \qquad F_1 = 1\ 000\ (1+0.07)$ $= \$1\ 140.00 \qquad = 1\ 070$ $F_2 = 1\ 070\ (1+0.07)$ $= \$1\ 144.90$ $OR \qquad F_2 = 1\ 000\ (1.07)(1.07)$ $= 1\ 000\ (1.07)^2$ $= \$1\ 144.90$

For Compound Interest at Year n

$$F_n = P(1+i)^n$$

assume compound interest unless otherwise stated

Single Sums of Money

$$F = P (1 + i)^{n}$$

$$0 \quad 1 \quad 2 \quad 3 \quad \dots \quad (n-3) \quad (n-2) \quad (n-1)$$

$$P = \frac{F}{(1+i)^{n}}$$

P – present value

- equivalent value of an amount of money at time 0
- F future value
 - equivalent value of an amount of money at time n

Example 1: \$1 000 loan at 6% compounded annually. If the loan is to be repaid after 5 years, how much will be owed?

$$F = P (1+i)^n$$
= \$1 000 (1 + 0.06)⁵
= \$1 000 (1.3382)
= \$1 338.20

Example 2: How much must be deposited today in order to accumulate \$2 000 in two years in a savings account?

$$P = F (1+i)^{-n}$$

$$= \frac{\$2 \ 000}{(1+0.06)^2}$$

$$= \$1 \ 780$$

Future Value Factor

$$(F|P i,n) = (1+i)^n$$

Find the future value given the present value.

Future Value Factor Table

(F|P i,n)

Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	10 %	12%	14%	15%	16%	18%	20 %	24%	28%	32%	36 %
1	1.0100	1.0200	1.0300	1.0400	1.0500	1.0600	1.0700	1.0800	1.0900	1.1000	1.1200	1.1400	1.1500	1.1600	1.1800	1.2000	1.2400	1,2800	1.3200	1.3600
2	1.0201	1.0404	1.0609	1.0816	1.1025	1.1236	1.1449	1.1664	1.1881	1.2100	1.2544	1.2996	1.3225	1.3456	1.3924	1.4400	1.5376	1.6384	1.7424	1.8496
3	1.0303	1.0612	1.0927	1.1249	1.1576	1.1910	1.2250	1.2597	1.2950	1.3310	1.4049	1.4815	1.5209	1.5609	1.6430	1.7280	1.9066	2.0972	2.3000	2.515
4	1.0406	1.0824	1.1255	1.1699	1.2155	1.2625	1.3108	1.3605	1.4116	1.4641	1.5735	1.6890	1.7490	1.8106	1.9388	2.0736	2.3642	2.6844	3.0360	3.4210
5	1.0510	1.1041	1.1593	1.2167	1.2763	1.3382	1.4026	1.4693	1.5386	1.6105	1.7623	1.9254	2.0114	2.1003	2.2878	2.4883	2.9316	3.4360	4.0075	4.6526
6	1.0615	1.1262	1.1941	1.2653	1.3401	1.4185	1.5007	1.5869	1.6771	1.7716	1.9738	2.1950	2.3131	2.4364	2.6996	2.9860	3.6352	4.3980	5.2899	6.3275
7	1.0721	1.1487	1.2299	1.3159	1.4071	1.5036	1.6058	1.7138	1.8280	1.9487	2.2107	2.5023	2.6600	2.8262	3.1855	3.5832	4.5077	5.6295	6.9826	8.6054
8	1.0829	1.1717	1.2668	1.3686	1.4775	1.5938	1.7182	1.8509	1.9926	2.1436	2.4760	2.8526	3.0590	3.2784	3.7589	4.2998	5.5895	7.2058	9.2170	11.70
9	1.0937	1.1951	1.3048	1.4233	1.5513	1.6895	1.8385	1.9990	2.1719	2.3579	2.7731	3.2519	3.5179	3.8030	4.4355	5.1598	6.9310	9.2234	12.166	15.916
10	1.1046	1.2190	1.3439	1.4802	1.6289	1.7908	1.9672	2.1589	2.3674	2.5937	3.1058	3.7072	4.0456	4.4114	5.2338	6.1917	8.5944	11.805	16.059	21.64
11	1.1157	1.2434	1.3842	1.5395	1.7103	1.8983	2.1049	2.3316	2.5804	2.8531	3.4785	4.2262	4.6524	5.1173	6.1759	7.4301	10.657	15,111	21.198	29.43
12	1.1268	1.2682	1.4258	1.6010	1.7959	2.0122	2.2522	2.5182	2.8127	3.1384	3.8960	4.8179	5.3502	5.9360	7.2876	8.9161	13.214	19.342	27.982	40.03
13	1.1381	1.2936	1.4685	1.6651	1.8856	2.1329	2.4098	2.7196	3.0658	3.4523	4.3635	5.4924	6.1528	6.8858	8.5994	10.699	16.386	24.758	36.937	54.45
14	1.1495	1.3195	1.5126	1.7317	1.9799	2.2609	2.5785	2.9372	3.3417	3.7975	4.8871	6.2613	7.0757	7.9875	10.147	12.839	20.319	31.691	48.756	74.05
15	1.1610	1.3459	1.5580	1.8009	2.0789	2.3966	2.7590	3.1722	3.6425	4.1772	5.4736	7.1379	8.1371	9.2655	11.973	15.407	25.195	40.564	64.358	100.7
16	1.1726	1.3728	1.6047	1.8730	2.1829	2.5404	2.9522	3.4259	3.9703	4.5950	6.1304	8.1372	9.3576	10.748	14,129	18.488	31.242	51.923	84.953	136.96
17	1.1843	1.4002	1.6528	1.9479	2.2920	2.6928	3.1588	3.7000	4.3276	5.0545	6.8660	9.2765	10.761	12.467	16.672	22.186	38.740	66.461	112.13	186.27
18	1.1961	1.4282	1.7024	2.0258	2.4066	2.8543	3.3799	3.9960	4.7171	5.5599	7.6900	10.575	12.375	14.462	19.673	26.623	48.038	85.070	148.02	253.33
19	1.2081	1.4568	1.7535	2.1068	2.5270	3.0256	3.6165	4.3157	5.1417	6.1159	8.6128	12.055	14.231	16,776	23.214	31.948	59.567	108.89	195.39	344.53
20	1.2202	1.4859	1.8061	2.1911	2.6533	3.2071	3.8697	4.6610	5.6044	6.7275	9.6463	13.743	16.366	19.460	27.393	38.337	73.864	139.37	257.91	468.57
21	1.2324	1.5157	1.8603	2.2788	2.7860	3.3996	4.1406	5.0338	6.1088	7.4002	10.803	15.667	18.821	22.574	32.323	46.005	91.591	178.40	340.44	637.26
22	1.2447	1.5460	1.9161	2.3699	2.9253	3.6035	4.4304	5.4365	6.6586	8.1403	12.100	17.861	21.644	26.186	38.142	55.206	113.57	228.35	449.39	866.67
23	1.2572	1.5769	1.9736	2.4647	3.0715	3.8197	4.7405	5.8715	7.2579	8.9543	13.552	20.361	24.891	30.376	45.007	66.247	140.83	292.30	593.19	1178.6
24	1.2697	1.6084	2.0328	2.5633	3.2251	4.0489	5.0724	6.3412	7.9111	9.8497	15.178	23.212	28.625	35.236	53.108	79.496	174.63	374.14	783.02	1602.9
25	1.2824	1.6406	2.0938	2.6658	3.3864	4.2919	5.4274	6.8485	8.6231	10.834	17.000	26.461	32.918	40.874	62.668	95.396	216.54	478.90	1033.5	2180.0

Present Value Factor

$$(P|F i,n) = (1+i)^{-n}$$

Find the present value given the future value.

$$P = F (P|F i,n)$$

$$= F (P|F 6,2)$$

$$= $2 000 (0.8900)$$

$$= $1 780$$

Present Value Factor Table

(P|F i,n)

Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	12%	14%	15%	16%	18%	20%	24%	28%	32%	36%
1	9901	9804	9709	9615	9524	9434	9346	9259	9174	9091	8929	8772	.8696	.8621	.8475	8333	8065	.7813	.7576	7353
2	9803	9612	9426	9246	9070	8900	8734	.8573	8417	8264	7972	.7695	.7561	.7432	.7182	.6944	6504	.6104	.5739	5407
3	.9706	9423	9151	8890	8638	8396	8163	7938	7722	.7513	.7118	6750	.6575	6407	.6086	.5787	.5245	.4768	.4348	.3975
4	9610	9238	8885	8548	8227	.7921	.7629	.7350	7084	6830	.6355	.5921	.5718	.5523	.5158	.4823	.4230	.3725	.3294	2923
5	.9515	.9057	8626	.8219	7835	.7473	7130	.6806	6499	6209	.5674	.5194	.4972	.4761	.4371	.4019	.3411	.2910	.2495	.2149
6	9420	8880	.8375	.7903	.7462	7050	.6663	.6302	5963	5645	5066	.4556	.4323	.4104	3704	3349	.2751	.2274	.1890	.1580
7	.9327	.8706	.8131	.7599	.7107	.6651	.6227	.5835	5470	5132	4523	.3996	.3759	.3538	.3139	.2791	.2218	.1776	.1432	.1162
8	.9235	.8535	.7894	7307	.6768	.6274	.5820	.5403	5019	.4665	4039	.3506	.3269	.3050	.2660	.2326	1789	.1388	.1085	.0854
9	.9143	.8368	.7664	7026	.6446	.5919	.5439	.5002	4604	4241	3606	.3075	.2843	.2630	.2255	.1938	.1443	.1084	.0822	.0628
10	.9053	.8203	.7441	.6756	.6139	.5584	.5083	.4632	.4224	.3855	.3220	.2697	.2472	.2267	.1911	.1615	.1164	.0847	.0623	.0462
11	.8963	.8043	.7224	.6496	5847	.5268	.4751	.4289	.3875	3505	.2875	.2366	.2149	.1954	.1619	.1346	.0938	.0662	.0472	.0340
12	.8874	.7885	.7014	.6246	.5568	.4970	.4440	.3971	3555	.3186	.2567	.2076	.1869	.1685	.1372	.1122	.0757	.0517	.0357	.0250
13	.8787	.7730	.6810	.6006	.5303	.4688	.4150	.3677	3262	.2897	.2292	.1821	.1625	.1452	.1163	.0935	.0610	.0404	.0271	.0184
14	.8700	.7579	.6611	.5775	.5051	.4423	.3878	.3405	.2992	.2633	.2046	.1597	.1413	.1252	.0985	.0779	.0492	.0316	.0205	.0135
15	.8613	.7430	.6419	.5553	.4810	.4173	.3624	.3152	.2745	2394	.1827	.1401	.1229	.1079	.0835	.0649	.0397	0247	.0155	0099
16	.8528	.7284	.6232	.5339	.4581	3936	.3387	.2919	.2519	2176	1631	.1229	.1069	.0930	.0708	.0541	.0320	.0193	.0118	0073
17	.8444	7142	.6050	5134	.4363	.3714	3166	.2703	.2311	.1978	.1456	.1078	.0929	.0802	.0600	.0451	.0258	.0150	.0089	.0054
18	.8360	.7002	.5874	4936	.4155	.3503	.2959	.2502	2120	1799	.1300	.0946	.0808	.0691	.0508	.0376	.0208	.0118	.0068	.0039
19	.8277	.6864	.5703	.4746	.3957	.3305	.2765	.2317	.1945	.1635	.1161	.0829	.0703	.0596	.0431	.0313	.0168	.0092	.0051	.0029
20	.8195	.6730	.5537	.4564	.3769	.3118	.2584	.2145	.1784	1486	.1037	.0728	.0611	.0514	.0365	.0261	.0135	.0072	.0039	.002
25	.7798	.6095	.4776	.3751	2953	.2330	.1842	.1460	.1160	.0923	.0588	.0378	.0304	.0245	.0160	.0105	.0046	.0021	.0010	.000
30	.7419	.5521	.4120	.3083	.2314	.1741	.1314	.0994	.0754	.0573	.0334	.0196	.0151	.0116	.0070	.0042	.0016	.0006	.0002	.000
40	.6717	.4529	.3066	.2083	.1420	.0972	.0668	.0460	.0318	.0221	.0107	.0053	.0037	.0026	.0013	.0007	.0002	.0001		
50	.6080	.3715	.2281	.1407	.0872	.0543	.0339	.0213	.0134	.0085	.0035	.0014	.0009	.0006	.0003	.0001		•		
60	.5504	.3048	.1697	.0951	.0535	.0303	.0173	.0099	.0057	0033	.0011	.0004	.0002	.0001				•	•	

N.B. Discrete versus continuous compounding factors.

Present Value of a series of cash flows:

$$P = A_0 + \frac{A_1}{(1+i)} + \frac{A_2}{(1+i)^2} + \dots + \frac{A_{n-1}}{(1+i)^{n-1}} + \frac{A_n}{(1+i)^n}$$

$$P = A_0 + \frac{A_1}{(1+i)} + \frac{A_2}{(1+i)^2} + \frac{A_3}{(1+i)^3} + \frac{A_4}{(1+i)^4}$$

$$= -5000 + \frac{1000}{1.1} + \frac{3000}{(1.1)^2} + \frac{2000}{(1.1)^3} + \frac{3000}{(1.1)^4}$$

$$= \$1939.90$$

Present Value of a series of n cash flows:

$$P = A_0 + A_1 (1+i)^{-1} + A_2 (1+i)^{-2} + \dots + A_k (1+i)^{-k} + \dots + A_{n-1} (1+i)^{-(n-1)} + A_n (1+i)^{-n}$$

$$= A_0 + \sum_{k=1}^n A_k (1+i)^{-k}$$

$$= A_0 + \sum_{k=1}^n A_k (P|Fi,k)$$

where

(P|F i,k) = Present Value Factor for Period k

Future value of a series of cash flows

$$F = A_0(1+i)^n + A_1(1+i)^{n\text{-}1} + ... + A_{n\text{-}1}(1+i) + A_n$$

$$F = A_0(1+i)^4 + A_1(1+i)^3 + A_2(1+i)^2 + A_3(1+i) + A_4$$

= -5 000(1.1)⁴ + 1 000(1.1)³ + 3 000(1.1)² + 2 000(1.1) + 3 000
= \$2 840.50

What is the Future Value of the Opportunity Cost investment? What if the Future Value equals 0? Reject the investment?

Future Value

$$F = A_0 (1+i)^n + A_1 (1+i)^{n-1} + A_2 (1+i)^{n-2} + \dots + A_k (1+i)^{n-k} + \dots + A_{n-1} (1+i) + A_n$$

$$= \sum_{k=0}^n A_k (1+i)^{n-k}$$

$$= \sum_{k=0}^n A_k (F \mid Pi, n-k)$$

where

(F|P i,n-k) = Future Value Factor

Present Value Versus Future Value

As calculated from the individual cash flows:

Future Value - Bank Account Example

Future value of a series of cash flows

$$F = A_0(1+i)^n + A_1(1+n)^{n\text{-}1} + ... + A_{n\text{-}1}(1+i) + A_n$$

- 10% interest compounded annually (positive or negative account balance)
- bank account (with overdraft privileges)

	Amount		Amount	
	"Rented"	Interest	Deposited/	Account
EOY	During Year	10%	<u>Withdrawn</u>	Balance
0			- 5 000	-5000
1	-5 000	-500	1 000	-4500
2	<i>−</i> 4 500	-450	3 000	- 1 950
3	- 1 950	- 195	2 000	- 145
4	- 145	-14.50	3 000	\$2 840.50

Optimal Tuition Payment Strategy

- 1. Fees invoice sent in July.
- 2. U of T recommends early payment.
 - at least first installment by August 15
- 3. Payment by installments allowed.

_	Total Fee	\$13 620
_	Minimum First Installment	\$8 853
_	Balance	\$4 767

- 4. First installment <u>due</u> before the first day of class.
- 5. Remainder of tuition fees due January 15.
- 6. Service charge (i.e. interest) charged on the balance outstanding from October 15.
 - Rate charged 1.5% per month compounded=> 19.56% per annum!

What is the optimal payment strategy that is consistent with money having a "time value?"

2015-2016 Fee Schedule

Tuition Payment Strategy

- 1 Interest on bank savings account: 0.25% per month
 - \Rightarrow 3.04% per annum
- 2 U of T "service charge": 1.5% per month
 - ⇒ 19.56% per annum

1
$$PV|_{July 1} = [\$13 620]$$

Payment (January)

$$|PV|_{July 1} = 8 853(P|F 0.25\%,2) + (4 767 + S/C)(P|F 0.25\%,6)$$

$$Payment(January) = 4 767 (F|P 1.5\%,3) = $4 985$$

$$|PV|_{July 1} = 8 853 (P|F 0.25\%,2) + 4 767 (F|P 1.5\%,3)(P|F 0.25\%,6)
 = 8 853 (0.9950) + 4 767 (1.0457)(0.9851) = $13 720$$

3
$$PV|_{July 1} = 8853 (P|F 0.25\%,2) + 4767 (P|F 0.25\%,3)$$

= $8853 (0.9950) + 4767 (0.9925)$
= $$13540$

Optimal Tuition Payment Strategy

Alternative 3 is the optimal payment strategy and has a Present Value (July 1) savings of:

$$PV_1|_{July\ 1} - PV_3|_{July\ 1} = 13\ 620\ -13\ 540 = \$80$$

These savings are created by the time value of money at 0.25% per month.

Only \$13 540 need be deposited into a bank account on July 1 to meet the required September & October payments.

<u>0</u>	Beginning f Month Balance	Interest (0.25%)	Payment to U of T	End of Month Balance
July 1	\$13 540	\$34		\$13 574
Aug 1	13 574	34		13 608
Sept 1	13 608	12	\$8 853	4 767
Oct 1	4 767	0	4 767	0
	Total Interest	\$ 80		

Uniform Series of Cash Flows

 A uniform series of cash flows exists when all cash flows are equal

• Also called an annuity

$$\begin{array}{rcl} P & = & A(1+i)^{-1} + A(1+i)^{-2} + ... + A(1+i)^{-(n-1)} + A(1+i)^{-n} \\ & = & \sum_{k=1}^{n} A(1+i)^{-k} \\ P & = & A \left[\frac{(1+i)^{n} - 1}{i(1+i)^{n}} \right] \end{array}$$

Uniform series, Present Value Factor P = A(P|A i,n)

Uniform Series of Cash Flows- Annuity Funding

• Annuity funding

An individual wishes to deposit a single sum of money into a savings account so that five annual withdrawals of \$2 000 can be made. The first withdrawal is to occur a year after the deposit and the rate of interest is 7%.

$$P = A \left[\frac{(1+i)^{n} - 1}{i(1+i)^{n}} \right] = A(P|A i,n)$$

$$= 2000 \left[\frac{(1.07)^{5} - 1}{0.07(1.07)^{5}} \right] = 2000 (P|A 7,5)$$

$$= 2000 [4.1002] = $8 200.40$$

Therefore, if \$8 200.40 is deposited into the fund, then five annual withdrawals can be made.

Deferred Annuity Funding

Suppose that the first withdrawal will not occur until three years after the deposit. How much must be deposited to receive the five annual \$2 000 payments?

But we know that at Year 2 \$8 200.40 will be sufficient to generate 5 payments of \$2 000.

Therefore, we must discount the single sum of \$8 200.40 back to Year 0.

$$P = \frac{\$8\ 200.40}{(1.07)^2} = \$8\ 200.40 \ (P|F\ 7\%,2)$$
$$= \$7\ 162.55$$

Only \$7 162.55 must be deposited. Deferring the withdrawal for two years reduces the deposit required by \$1 037.85.

Applications of the Uniform Series of Cash Flows

Present Value Factor, Annuity	P = A (P A i,n)
Capital Recovery Factor	A = P (A P i,n)
Future Value Factor, Annuity	F = A (F A i,n)
Sinking Fund Factor	A = F(A Fi,n)

 $P|A-valuation \ occurs \ one \ time \ period \ before \ first \ cash \ flow$

F|A – valuation occurs just after last cash flow

Sinking Fund - College Education Planning

- Funding a college education over 20 years with an equal annual contribution
- Need to estimate the following in September 2014:
 - Four-year cost of education (\$100 000)
 - average interest rate over 20 years (7%)

College Education Planning- Four Annual Installments


```
90 608

A = [25 000 + 25 000 (P|A 7,3)] (A|F 7,20)

= [25 000(1 + 2.6243)](0.0244)
```

= \$2 211 per year