CS/B.Tech(CSE/IT)(N)/SEM-3/CS-301/2011-12 2011

ANALOG & DIGITAL ELECTRONICS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

14			
ι.	Cho	ose the correct alternation	ves for any ten of the following:
	45		$10 \times 1 = 10$
	i)	Maximum efficiency of	of transformer coupled class A
		power amplifier is	
		a) 78.5%	b) 50%
<u> </u>		c) 25%	d) 100%.
	ii)	A 2-transistor class E	B power amplifier is commonly
		called	
		a) push-pull	b) dual
		c) differential	d) none of these.
	iii)	Class C amplifiers are	used as
		a) AF amplifiers	b) detectors
		c) RF amplifiers	d) none of these.

CS/B.Tec	h(CS	E/IT)(N)/SEM-3/CS-30)1/20	11-12			
iv)	A bis	stable multivibrator circ	uit h	as			
	a)	two unstable states	b)	two stable states			
	c)	quasi-stable states	d)	none of these.			
v)	A W	A Wien-bridge oscillator has a frequency					
H. Witt	a)	$1/2\pi\sqrt{RC}$	b)	1/√RC			
200	c)	1/2π RC	d)	none of these.			
vi)	Whi	ch of the following o	scilla	itors is used at audio			
	freq	uency?		booklyen sin artiphbrou			
	a)	Crystal Oscillators					
	b)	Wien-bridge Oscillator	NO.				
	c)	RC Phase-shift Oscilla	tor				
	d)	Colpitt's Oscillator.		is the man order ascense			
vii)	The	minimum no. of NAND	gate	s required to design one			
	full	adder circuit is		d Madiaus effici			
	a)	6	b)	5			
	c)	10	d)	9.			
viii)	The	race-around condition	does	not occur in flip-flop			
	a)	J-K	b)	Master Slave			
	c)	T	d)	None of these.			
ix)	The	decimal equivalent of	(111	1100100) ₂ is			
	a)	998	b)	568			
	c)	996		None of these.			
x)	The	J-K flip-flop has					
	2)	no stable state	b)	two stable states			

d) none of these.

c) one stable state

xi)	The	decimal	equivalent	of (AOF9.0EB)	16	is
-----	-----	---------	------------	------	----------	---	----	----

- a) 44297.0967
- b) 67902.8796
- c) 41209.0572
- d) none of these.
- xii) How many full adders are required to construct *m* bit parallel adder?
 - a) m/2

b) m-1

c) m

d) m + 1.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Simplify the following Boolean function into
 - i) Sum of product form
 - ii) Product of sum form:

$$F(A, B, C, D) = \Sigma (0, 1, 2, 5, 8, 9, 10).$$

 $2\frac{1}{2} + 2\frac{1}{2}$

3. Implement the following using

8: 1 MUX,
$$F(A, B, C, D) = \Sigma(0, 2, 4, 6)$$
.

- 4. Explain the operation of successive approximation ADC with diagram.
- 5. Draw and explain the operation of astable multivibrator using 555 Timer.
- 6. Define upper threshold, lower threshold, hysteresis voltage and centre voltage related to a Schmitt trigger circuit.

GROUP - C

(Long Answer Type Ques	tions	9
------------------------	-------	---

Answer any three of the following. $3 \times 15 = 45$ 7. Design an asynchronous 3-bit up-down counter using a) J-K flip-flop which counts up when external signal M =1 and counts down when M = 0. With a neat circuit diagram, explain the operation of a b) 4-bit Johnson counter implemented using *D* flip-flop. 7 + 88. a) Design full subtractor uisng 4:1 multiplexers. Describe the operation of a bidirectional universal shift b) register (with parallel load) with a neat diagram. 6 + 9Draw the circuit diagram of a transformer coupled 9. a) Class A power amplifiers and explain its operation. Calculate the total efficiency of this amplifier. b) c) What is cross-over distortion found in Class B power amplifiers? How it can be eliminated? 10. a) What are the conditions necessary for the generation of oscillation? Explain the operation of a Wien Bridge oscillator using b) Opamp with a circuit diagram. Derive an expression for its frequency of oscillation. c) 4 + 6 + 511. Write short notes on any three of the following: 3×5 a) Ring Counter Odd Parity Generator and Checker b) c) BCD adder R-2R ladder DAC. d) CMOS Logic family

152-(N)

e)

f)

Data lock-out in a counter.