CRPL-F148 PART A

1557

FOR OFFICIAL USE

PART A IONOSPHERIC DATA

ISSUED
DECEMBER 1956

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

CRPL-F 148 PART A

NATIONAL BUREAU OF STANDARDS NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY 1ssued 26'Dec. 1956 BOULDER, COLORADO

Issued

IONOSPHERIC DATA

CONTENTS

		<u>Page</u>
Symbols, Terminology, Conventions		2
Predicted and Observed Sunspot Numbers		5
World-Wide Sources of Ionospheric Data		5
Hourly Ionospheric Data at Washington, D. C		·7, 12, 21, 32
Examples of Ionospheric Vertical Soundings College, Alaska; October 15, 1956		8
Index of Ionospheric Data Published in 1956 (CRPL-F137(A) through F148(A))		10
Tables of Ionospheric Data	• •	12
Graphs of Ionospheric Data		32
Index of Tables and Graphs of Ionospheric Data in CRPL-F148 (Part A)		58

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above, plus an additional symbol, R: "Scaling of characteristic is influenced or prevented by absorption in the neighborhood of the critical frequency," (May 1955). Also, beginning with January 1956, additional meanings are assigned to T: A smoothed value which better fits the observations, replacing a doubtful or clearly inconsistent observed value; and to U: foF2 minus foF1 is 0.5 Mc or less (used with (M3000)F2).

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, R, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic; the symbol D, only when it replaces a frequency characteristic.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or \mathbb{W} are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

At night B for fEs is counted on the low side when there is a numerical value of foF2; otherwise it is omitted from the median count.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- l. If the count is four or less, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer or sporadic E, if the count is from five to nine, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as the count is at least five, the median is not considered doubtful.
- 3. For all layers, if more than half of the data used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice

in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

PREDICTED AND OBSERVED SUNSPOT NUMBERS

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month				Pred	dicte	Suns	sp ot l	Numbe:	r		
	1957	1956	1955	1954	1953	1952	1951	1950	1949	1948	1947
December		150	42	11	15	33	53	86	108	114	126
November		147	35	10	16	38	52	87	112	115	124
October.		135	31	10	17	43	52	90	114	116	119
September		119	30	8	18	46	54	91	115	117	121
August		105	27	8	18	49	57	96	111	123	122
July		95	22	8	20	51	60	101	108	125	116
June		89	18	9	21	52	63	103	108	129	112
May	150*	77	16	10	22	52	68	102	108	130	109
April	150*	68	13	10	24	52	74	101	109	133	107
March	150*	60	14	11	27	52	7 8	103	111	133	105
February	150*	53	14	12	29	51	82	103	113	133	90
January	150*	48	12	14	30	53	85	105	112	130	88

^{*}This number is believed representative of solar activity at a maximum portion of the current sunspot cycle.

The latest available information follows concerning the corresponding observed Zürich numbers (some of which may be subject to minor change) beginning with the minimum of April 1954.

Observed Sunspot Number

Month	Jan,	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1954 1955 1956	14 88	16 97	19 108	23	29	4 35	5 40	7 46	8 55	8 64	•	12 80

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 51 and figures 1 to 102 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

University of Graz: Graz, Austria

Meteorological Service of the Belgian Congo and Ruanda-Urundi: Elisabethville, Belgian Congo Leopoldville, Belgian Congo

Escola Politecnica, University of Sao Paulo: Sao Paulo, Brazil

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.
Inverness, Scotland
Singapore, British Malaya
Slough, England

Defence Research Board, Canada:
Baker Lake, Canada
Churchill, Canada
Resolute Bay, Canada
Winnipeg, Canada

Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China: Formosa, China

Danish National Committee of URSI: Godhavn, Greenland

French National Center for Telecommunications Studies:
Djibouti, French Somaliland
Tananarive, Madagascar

National Laboratory of Radio-Electricity (French Ionospheric Bureau): Casablanca, Morocco Poitiers, France

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:
Lindau/Harz, Germany

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

Norwegian Defence Research Establishment, Kjeller per Lillestrom, Norway: Oslo, Norway

Research Institute of National Defence, Stockholm, Sweden: Kiruna, Sweden Upsala, Sweden United States Army Signal Corps:
Ft. Monmouth, New Jersey
Okinawa I.
Thule, Greenland
White Sands, New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):

Anchorage, Alaska
Fairbanks, Alaska (Geophysical Institute of the University of Alaska)
Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Panama Canal Zone
Point Barrow, Alaska
Puerto Rico, W. I.
Talara, Peru (Instituto Geofisico de Huancayo)
Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 52 through 62 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

The interpretation of a cell is as follows: U F 32

The U is a weight meaning doubtful. Other weights are I, interpolated, D, greater than, and E, less than. Absence of a letter in the upper left position means full weight is given to the observation.

Symbols such as F above are given in the upper right position.

There should be no difficulty in the placing of the decimal point. For the time being, a final zero will be found in each value of foFl and foE. Thus at a later date it will be possible to register more closely scaled values of these characteristics, whenever such are reported.

EXAMPLES OF IONOSPHERIC VERTICAL SOUNDINGS . COLLEGE, ALASKA; OCT. 15, 1956

The following ionograms were obtained at the Univ. of Alaska, College, Alaska vertical sounding station. They are typical of day and night conditions for October at this geomagnetic latitude. Ionospheric data are scaled directly from these records onto the daily f-plot, a graph of frequency characteristics vs. time. The f-plot for the day represented by these soundings is found on the following page.

Fig. A. College, Alaska, Oct. 15, 1956, 0100 hours, 150°W time.

Fig. B. College, Alaska, Oct. 15, 1956, 1200 hours, 150°W time.

INDEX OF IONOSPHERIC DATA PUBLISHED IN 1956 (CRPL-F137(A) THROUGH F148(A))

The following index of tables and graphs of ionospheric data published in the CRPL-F(A) series in 1956 is divided into two parts. Part I is an index of data observed in 1955 and 1956. Part II is an index of data observed prior to 1955.

In general, both table and graphs for a given station for a given month appear in the same issue.

Indexes of ionospheric data published prior to 1956 are in IRPL-F17, CRPL-F28, -F40, -F52, -F64, -F76, -F88, -F100, -F112, -F124, and -F136(A).

The following errata published in 1956 refer to publications prior to 1956:

CRPL-F144(A), p. 8, erratum 1, Washington, D. C., March 1946.

CRPL-F144(A), p. 8, erratum 2, Maui, Hawaii, May 30, 1954, to September 16, 1955.

PART 1

Index of Tables and Graphs of Ionospheric Data Ubserved in 1955 and 1956

and Published in 1956 (CRPL-F137(A) through F148(A))

Santing			-							** -1			T							Marie V			
Station	J	F	M	A	M	J	955 Jy	A	S	υ	N	•D	J	F	M	A	M	J	956 Jy	A	S	υ	N
Adak, Alaska Ahmedabad, India Akita, Japan Anchorage, Alaska Baguio, P. 1.					137	138	141	141	137 137	137	139 138	139 141 139 139	141 139	143 141	144 141	142 146 143 144	146 145	148		147 148	147		
Baker Lake, Canada Bombay, India Brisbane, Australia Budapest, Hungary Buenos Aires, Argentina			137	140	137 139			141 140	142 140	142		140 141	145	145	145	146 145							
Calcutta, India Canberra, Australia Capetown, Union of S. Afric Casablanca, Morocco Christchurch, New Zealand		144	137 145		137 139 148	138	139		140 138	139 148			141 142	143		146 147	146						
Churchill, Canada De Bilt, Holland Decepcion 1. Delhi, India Elisabethville, Belgian Con	go				137	138	141	137 141	137 142	138 137	140 139 139	141	140	142 143	145 144	146 ⁶ 145 145	146	145					
Fairbanks, Alaska Falkland Is. Formosa, China Ft. Monmouth, New Jersey Godhavn, Greenland					138	138 138			138 142 139	142	137 137	144 138 138	144 139 139	144 140 140	148 141 141	143 147 142 142 147	143 143	145 144	146	146	148 147 147	148	
Graz, Austria Guam I. Hobart, Tasmania Huancayo, Peru Ibadan, Nigeria			137		139 139				140 142	138	137 142 140		139	140	141	142 143 143			145 146			148 148	
Inverness, Scotland Johannesburg, Union of S. A Kiruna, Sweden Kodaikanal, India Leopoldville, Belgian Congo	fric	a				138			139 138 138 ^b 142	139		141	141	143 141	141	148 146 142 146	148	148					
Lindau/Harz, Germany Lulea, Sweden Madras, India Maui, Hawaii Nairobi, Kenya					147 137			141				138	142	142 140		146 143 146		145	145	147	147	148	
Narsarssuak, Greenland Okinawa 1. Oslo, Norway Ottawa, Canada Panama Canal Zone										137	137 138 137 140 137	138 138 140	139 140	140 140 141	141 141 144	143 142 142 146 146	143 144 145	144 144	145	146 146	147 147 148	148	

PART I (CUNTINUED)

Station						19	955								_			19	956				
	J	F	М	Α	M	J	Jy	Α	S	υ	N	D	J	F	_M	А	М	J	Jy	Α	S.,	υ	N
Point Barrow, Alaska Poitiers, France Port Lockroy	146	144	145	146		146 138	146		139 142	148				142	142	144	146	147			148		
Puerto Rico, W. I. Rarotonga I.						137			139		137	138		140	141	143	144	145	145	146	147	148	
Resolute Bay, Canada Reykjavik, Iceland San Francisco, California				137	137	137	145	145	137	137	140 138 140	140	140	143	145	146 145 144	145			148 147	148		
Sao Paulo, Brazil Schwarzenburg, Switzerland				131	137						138			141			140		146				
Singapore, British Malaya Slough, England Talara, Peru Thule, Greenland				146	146	138 138			139 139	142		143	144		147 143				146 148	147	148	148	
Tiruchy, India					137	138	141	141	142														
Tokyo, Japan Townsville, Australia			137	141	139	138	139	140	137 140			141 1 ₁₃₈	1			146		144					
Tromso, Norway Upsala, Sweden Wakkanai, Japan									137	139		138	139	140	141	143 142 146	143		145	147	147	148	
Washington, D. C. Watheroo, W. Australia White Sands, New Mexico									137	137	138	137 139 140	142	142	143	141 146 142	146	146	j	145		147	
Winnipeg, Canada Yamagawa, Japan									137		140 139	140	140	141	145	144 146	148	144	143	140	147	140	

^aSee erratum in F147(A), p. 7.

PART II

Index of Tables and Graphs of Ionospheric Data Observed Prior to 1955 and
Published in 1956 (CRPL-F137(A) through F148(A))

Station						19	954						L							1953						
	J	F	M	Α	M	J	Jy	Α	S	Ų	N	D		J	F	М	Α	М	J	Jy	А		S	O	N	D
Djibouti, French Somalilan Fribourg, Germany Macquarie I. Tananarive, Madagascar	144	144	144			144 143			144 147			143								14	5 14	14 1	47	148	144	144
						1	952													1951						
Campbell I. Leopoldville, Belgian Cong	0			148					147]	141 1	41	143	143	143	138	13	9 13	19 1	39	139		
						1	950																			
Campbell I.				143	143	141	141	141	141	139	141	141														

bSee erratum 1 in F139(A), p. 8.

^cSee erratum 1 in F138(A), p. 8.

d_{See} erratum 2 in F138(A), p. 8.

eSee erratum in F146(A), p. 8.

				Table 1								Table 2				
Washing	ton, D. C	. (38.70	N, 77.1°	W)			No	vember 1956	Fairban	ks, Alaska (64.9	N, 147.8	oM)			υ	ctober 1956
Time	h°F2	foF2	h*Fl	foFl	h' E	foE	f Es	(M3000)F2	Time	h'F2 foF2	h'Fl	foF1	h'E	foE	f Es	(M3000)F2
00	260	6.3						2.80	00	(4.8)					5.8	(2,75)
01	260	6.0						2.80	01	(5,3)					6.0	(2,75)
02	260	5.8						2.80	02	(4.5)					5.8	(2.70)
03	270	5.6						2.80	03	(5,6)					6.4	(2.70)
04	270	5.4						2.80	04	(5.8)					5.5	(2.70)
05	270	5.0						2,80	05	(4.9)					6.3	(2.75)
06	260	4.8					3.1	2,90	06	(4.7)					5.3	(2,80)
07	240	7.0	230		109	(1.9)		3,10	07	(5.6)			119		4.5	(3,00)
08	240	10.5	230		111	2.5		3.20	08	(6,8)			115	2.2	4.4	(3.10)
09	240	12.2	220		109	3.0		3.10	09	7.3			107	2.5	3.4	3.10
10	240	13.0	220		107	3.3		3,00	10	7.9			110	2.7	4.4	3.05
11	240	13.5	220		109	3.5		2.95	11	8.8			111	2.7		3.00
12	(240)	13.6	220		109	3.5	3.5	2.85	12	9.2			109	2.8	3.8	2,90
13	(240)	13.4	225		109	3.5		2.80	13	9.8			109	2.8		2.90
14	(240)	13.2	230		109	3.3		2.85	14	10,5			109	2.5	3.2	2.95
15	250	13.2	230		110	2.9	3.0	2.80	15	10.8			109	2.2		3.00
16	230	12.8	230		113	2.4	2.5	2,85	16	10.4			113	1.9	2.4	3,00
17	240	12.0	220					2.90	17	9.4						3.00
18	230	10.8					2.4	2,90	18	8,4					4.0	3,00
19	230	9.4						2,90	19	6.8					3.8	3.05
20	240	8.6						2.90	20	(6.0)					4.5	(3.05)
21	240	7.6						2,95	21	(4.6)					4.4	(3.05)
22	250	7.2						2,90	22	(4.4)					4.6	(3,00)
23	250	6.8						2.80	23	(4.5)					5.2	(2.95)

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Uslo, N	orway (60	0.0°N, 11	.1°E)	Table :	3		(October 1956	Upsala	Sweden	(59.8°N,	17.6°E)	Table 4			ú	ctober 1956
Time	h'F2	foF2	h*F1	foFl	h'E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h*Fl	foFl	h¹E	foE	f Es	(M3000)F2
00 01	295 300	5.55 5.20					<1.4 <1.2	2.60 2.50	00 01	315 320	4.9					2.5 2.6	2.7 2.7
02 03	290 290	4.50					1.3	2.50 2.50	02 03	325 315	4.4 3.7					2.3 2.5	2.7
04 05	290 280	4.40 4.10					1.5	2.60 2.55	04 05	305 290	3.9 3.8				Е	2.4 2.5	2.8
06 07	270 250	4.30 5.90			130	1.75	<1.4	2.65 2.90	06 07	260 245	4.9			140	E 1.80	2.7	2.9 3.0
08 09	240 250	7.90 9.50	250 240		120 100	2,30	2.7	3.00 3.00	08 09	240 245	8.8 9.8	245	(4.0)	115 110	2.30 2.65	3.0 3.7	3.1 3.1
10 11	(240)	10.75 11.90	240 235		100 110	2.80	3.1	3.00 3.00	10 11	245 240	12.0 12.5	240 235	4.3	110 110	2.85 2.95	4.0	3.0 3.0
12 13	(240)	12.40 12.20	235 240		110 100	2.90 3.00	3.1	2.85 2.90	12 13	240 240	13.1 13.5	240 240	(5.0) (5.0)	110 110	3.00	3.3	2.9
14 15	(235) 240	12.30 12.10	240 245		100 100	2.90 2.65		2.95 2.95	14 15	230 235	13.3 13.0	245		110 115	2.80 2.45		3.0 3.0
16 17	240 230	11.35 10.75	245		110 105	2.30 1.90		3.00 3.05	16 17	230 225	12.2 11.0			130	2.00 E	2.5 2.3	3.0 3.1
18 19	230 235	9,20 8,25				-•	<1.6 <1.6	2.90 2.90	18 19	235 240	9.3 8.2				Е	2.4	3.1 3.0
20 21	240 245	7.90 6.60					<1.6 <1.6	2.80 2.70	20 21	240 250	7.0 5.8					1.8	2.95
22 23	290 285	6.00 6.05					<1.6 <1.6	2.55 2.65	22 23	290 300	5.2 5.1					2.2	2.8 2.8

Time: 15.0°E . Sweep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

Time: 15.0°E. Sweep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

Graz, A	ustria (4	7.1°N, 1	5.5°E)	Table :	<u>i</u>			October 1956	Ft. Mon	mouth, Ne	w Jersey	(40.3°N	Table (U	ctober 1956
Time	h¹F2	foF2	h*Fl	foF1	h*E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h'Fl	foFl	h * E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	310 305 320 310 300 285 270 230 220 230 220 230 220 230 230 230 23	6.3 6.0 6.0 6.0 5.6 5.9 8.1 9.3 0 0 0 D D D D D 9.1 8.5 7.4 6.8 6.7 6.8	210 215 210 220 220 220			(3.6) (3.6) (3.7) (3.3)	3.8 3.8		00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 22	280 270 260 260 260 270 260 230 240 240 240 250 240 240 240 240 240 240 240 240 240 24	7.0 6.5 6.4 6.0 5.5 5.2 5.9 8.8 11.0 12.5 12.7 13.0 12.8 12.6 12.6 12.7 12.8 12.6 7.1 4.7 12.5 11.8 10.6 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	230 230 220 210 215 220 225 230 230 240		117 111 109 109 105 111 113 115 118	2.4 2.8 3.2 3.4 3.6 3.5 3.4 3.2 2.6	(2.5) (3.1) (2.3) (4.0) (1.7) (3.0) (2.9) (3.2) (2.8)	2, 75 2, 70 2, 75 2, 80 2, 80 2, 80 2, 75 2, 90 3, 15 3, 05 3, 00 2, 90 2, 80 2, 80 2, 80 2, 90

Time: 15.0°E. Sweep: 2.5 Mc to 11.0 Mc in 2 minutes.

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

October 1956

(M3000)F2

3.10

3.05 3.00

3.00 2.80 2.70

2.60 3.10 3.15 3.00 2.90 2.80 2.75 2.75 2.80 2.85 2.95 3.00 3.00 3.10

3.10

f Es

3.6 4.2 4.5 4.0 4.3 4.1 4.3 4.5 4.3 4.2 3.5 2.4 2.4

foE

2.3 3.0 3.4 3.7 3.8 4.0 3.9 3.8 3.5 3.2 2.6

_			_
Ta	hl	ρ	7

Time: 105.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time

00 01

Time: 135.0°E. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

foF2

9.7

8.8 7.1 5.7 4.7 4.2 4.6 8.8 11.6 12.7

13.4

14.0 14.6 15.4 15.5 15.4 14.9 14.0 13.0 13.0 13.0 12.5 11.0

h'Fl

240

240 240 250

Maui, Hawaii (20.8°N, 156.5°W)

h'F2

230 230

240

(300)

350 350

Table 10

foFl

7.2

h'E

Formosa	, China (25.0°N.	121.5°E)	Table 9	2		C	ctober 1956
Time	h*F2	foF2	h*F1	foFl	h*E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	240 240 220 240 240 240 220 (230) (280) (240) 250 260 260 270 240	>\sistem \text{\begin{align*} \left(13.5) \\ \text{\left(13.5)} \\ \text{\left(13.5)} \\ \text{\left(19.5)} \\ \text{\left(9.5)} \\ \text{\left(9.4)} \\ \text{\left(9.2)} \\ \text{\left(9.6)} \\ \text{\left(12.4)} \\ \text{\left(14.0)} \\ \text{\left(15.1)} \\ \text{\left(16.0)} \\ \text{\left(17.2)} \\ \text{\left(17.5)} \\ \text{\left(17.7)} \\ \text{\left(18.5)} \\ \text{\left(17.7)} \\ \text{\left(19.5)} \\ \text{\left(19.5)} \\ \text{\left(19.5)} \\ \text{\left(19.5)} \\ \text{\left(19.5)} \\ \text{\left(19.5)} \\ \text{\left(13.5)} \\ \text{\left(13.5)} \\ \text{\left(13.5)} \\ \text{\left(13.5)} \\ \text{\left(19.5)} \\ \text{\left(19.5)} \\ \text{\left(19.5)} \\ \text{\left(13.5)} \\ \te	 220 220 220 220 220 240 240 240 240		110 100 100 120	3.2 3.5 3.8 3.2	2.4 2.4 2.4 2.5 2.5 2.7 4.0 4.8 4.2 3.9 4.0 4.0 3.8 7 3.1 3.1 3.0 (2.7)	(2,9) (2,85) 2,8 (3,0) (3,0) (3,05) 3,05 2,9 2,8 2,7 2,6 2,65 2,7 2,7 2,8 (2,7) (2,7) (2,9) (2,8)
23	240	17.0					2.5	(2,9)

Time: 120.0°E. Sweep: 1.1 Mc to 19.5 Mc in 15 minutes, manual operation. Time: 150.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table	<u>11</u>			
Puerto	Rico, W.	U	ctober 1956					
Time	h'F2	foF2	b'Fl	foFl	h*E	foE	f Es	(M3000)F2
Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	h*F2 260 250 250 240 230 240 290 280 240 240 (260) (270) (250) 240 240	foF2 8.3 7.8 7.0 5.8 4.8 4.4 5.0 11.1 12.7 13.3 13.0 12.7 12.1 11.7 11.1			(127) 116 113 111 111 111 111 111 111 (119)	(2.2) 3.0 3.5 3.8 3.9 4.1 3.9 3.6 3.2 2.6 <2.0	f Es (2.4) (3.0) 5.2 4.9 4.5 4.1	(M3000)F2 2.90 3.00 3.10 2.90 2.70 2.60 2.80 3.15 3.05 3.00 2.90 2.80 2.75 2.75 2.70 2.70 2.75 2.80
19 20 21 22	240 250 270 270	10.3 9.5 9.3 9.0					3.2 3.1 2.9	2.80 2.80 2.70 2.80
23	250	8.6						2.85

Timos	60.0°W.				
TIME:	0U. U~W.				
C	1 0 Me	 		_	

<u>T</u>	able 12
----------	---------

Panama (Canal Zone	9.4°N	, 79.9°W)				0	ctober 1956
Time	h*F2	foF2	b'F1	foFl	h*E	foE	f Es	(M3000)F2
00	230	9.2						3,20
01	230	8.0						3, 25
02	220	6.1						3.15
03	240	4.8					(2,2)	2.90
04	250	4.0					(2.2)	2.80
05	280	3.8					3.4	2.70
06	310	5.6					3.5	2.70
07	240	9.8			117	2.6	3.2	3.15
08	240	12.3	235		111	3.2	J, 2	3.10
09	240	13.8	230			3.7	3.7	
10	l .				109			3.00
11		14.0	220		109	4.0	4.8	2.85
12	(240)	14.1	220		109	4.1	4.9	2.75
13	(340)	14.4	220		109	4.2	5.0	2.70
	370	14.4	225		107	4.1	5.1	2.65
14	370	14.2	230		107	4.0	5.4	2.60
15	370	14.2	235		107	3.7	5.4	2.60
16	350	14.3	245		109	3.2	5.2	2.60
17		13.8	<250		113	2.6	4.7	2, 70
18	260	13.4					4.2	2.85
19	260	12.4					3.7	2.90
20	240	12.1					3.0	2.90
21	230	11.7					2.8	2.90
22	240	10.9					2.6	2,90
23	240	10.6						3.05
	•							

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table 13 Talara, Peru (4.6°5, 81.3°W) Uctober 1956						ctober 1956	Huancayo, Peru (12.0°S, 75.3°W)					0	ctober 1956				
Time	h°F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	220 220 230 230 240 270 260 240 240 260 290 350 400 320 260 220 260 260 260 260 260 260 260 2	11.6 10.4 9.2 8.0 6.9 5.5 6.0 10.5 13.3 14.5 14.4 14.8 (13.5) (12.8) (12.8) (12.8) (12.6) (12.6) (12.6) (12.5) (12.5)	240 230 220 215 215 210 210		123 119 114 115 115 113 113 113 111	2.6 3.3 3.7 4.0 4.1 4.2 4.0 (3.8) 3.3 2.8	4.5 4.2 3.2 3.0 3.1 2.2 3.3 3.6 5.0 4.5 4.6 4.4 4.6 3.1 3.4 3.1 3.4 3.9	2,90 3,00 3,00 3,20 3,10 2,90 3,05 2,75 2,50 2,35 2,20 (2,15) (2,15) (2,15) (2,15) (2,20) (2,25) (2,25) (2,25) (2,40) (2,75) (2,85)	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	230 230 230 230 230 260 240 (230) 240 260 300 420 430 370 280	10.3 8.9 8.2 7.5 6.9 5.8 8.6 11.9 13.6 14.5 14.8 12.5 12.4 12.0 11.8 11.6 11.4 10.2 9.2 10.5	225 215 210 205 200 200 200 215 230		125 111 109 	2.0 3.0 3.5	3.6 6.0 9.4 13.2 13.5 14.0 14.0 13.7 13.0 18.8 3.5	2,80 2,90 3,00 3,00 3,15 3,15 3,15 3,10 2,85 2,60 2,30 2,10 2,10 2,05 2,10 2,05 2,10 2,05 2,20 2,20 2,20 2,20 2,20 2,20 2,2

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Thule	Greenland	(77.0°N	69.0°W	Table 1	<u>5</u>		5er	otember 1956
Time	h¹F2	foF2	h°F1	foFl	h'E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	h*F2	(5.2) (5.5) (4.9) (5.0) 5.0 5.4 5.9 6.1 6.6 6.9 6.6 6.6 6.6 6.6	h°F1	 3.8 4.1 4.1 (4.4) 4.5 4.3 4.2 (4.0)	121 130 121 119 117 115 114 118 121 129	(2,0) (2,2) (2,6) (2,6) (2,6) 2,8 2,6 2,6 2,5 2,5	fEs	(2,65) (2,70) (2,60) (2,75) 2,85 (2,80) (2,90) 2,80 2,70 2,70 2,70 2,70 2,70 2,70 2,70 2,7
17 18 19 20 21 22 23		6.8 6.3 6.6 6.5 6.2 6.0			129	2.2		2.70 2.70 2.70 (2.70) (2.65) 2.70 (2.70)

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Point B	arrow, Al	aska (71.	3°N, 15	6.8°W)			Sep	tember 1956
Time	h'F2	foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2
00		(4,2)					5.0	(2.85)
01		(4.0)					4.8	
02		(4.8)					5.0	(2,70)
03		(4.8)					3.8	(2,60)
04		(4.1)					3.4	
05		(4.9)					3.0	(2,50)
06		(4.8)					2.5	2.60
07		4.9			115	2.2	2.7	2.75
08		5,5		(3.6)	109	2.6	3.1	2.80
09		6.1		(4.1)	109	2.9		2.80
10		6.3		4.2	108	2.8		2.70
11		6.5		4.4	111	3.0		2.75
12		6.7		(4.4)	107	3.0		2.80
13		6.9		4.7	103	3.1		2,75
14		7.2		(4.5)	105	3.0		2.80
15		7.6		(4.4)	105	2.9		2,80
16		7.6			111	2.6		2.85
17		7.6			111	2.4		2.90
18		6.7			117	2,2		2.90
19		6.0					2.5	2.95
20		5.4					2.5	2,95
21		4.8					3.7	2,90
22		(4.2)					4.1	2.75
23		(4.0)					5.0	(2,70)

Table 16

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Fad-bas	ks, Alask	. (64 00)	N 147 D	Table 1	1		5en	tember 1956
Time	h'F2	foF2	f Es	(M3000)F2				
00		(5,0)					4.5	(2,85)
01	1	(4.7)					4.8	(2.75)
02		(4.5)					5.0	(2.80)
03	1	(5.2)					5.0	(2,70)
04	ŀ	(5.0)					5.2	(2.75)
05		(5,2)					5.4	(2,80)
06		(5.4)			107	2.2	4.5	(3,00)
07		5.8			112	2.5	3.9	2,90
08		6.2		4.0	111	2.7	4.0	2.85
09		6.4		4.4	107	3.0	3.7	2.80
10	1	6.8		4.6	105	3,2		2,75
11		6.8		4.6	103	3.2		2.70
12		7.3		4.8	104	3.2		2.80
13		7.2		4.7	105	3.2	3.4	2.80
14		7.6		4.8	109	3.1		2.80
15	1	7.8			111	2.9		2.80
16		8.0			111	2.7		2,90
17	1	7.6			121	(2,2)		3.00
18		7.6			121	2.1	2.5	3.00
19	l	7.1					3.0	3.00
20		(6.2)					3.7	(3.00)
21	l .	(5.6)					4.5	(3,00)
22		(4.9)					4.5	(3,00)
23		(4.2)					4.5	(2,90)

Time: 150.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table	18			
Reykjav	ik, Icela	nd (64.1	°N, 21.8	ow)			<u>5</u> 6	ptember 1956
Time	h¹F2	foF2	h°F1	foFl	b°E	foE	f Es_	(M3000)F2
00							4.2	
01	l						4.3	
02	i						3.9	
03							4.0	
04		(3.6)					4.0	(2,60)
05		(4.7)					2.6	(2.80)
06		5.2						2,90
07		6.0			116			3.00
08		6.4			111	(2.7)		3.00
09		7.0			111	(3.0)		2,90
10		7.2			111	(3,1)		2.85
11		7.8		4.8	111	(3.2)		2.85
12	İ	8.0		4.8	109	(3, 2)		2.80
13	1	8.0			108	3.2		2.75
14	1	8.0			109	3.2		2.75
15	ł	8.3			111	3.0		2.80
16	Į.	7.7			111	(3.0)		2.90
17		7.2			112	2.9		2.85
18		(7.6)			111	2.8		(2,90)
19		(6.8)					2.5	(2.90)
20		(6.2)					3.4	(2.70)
21		(4.5)					3.7	(2.50)
22		(4.2)					3.8	(2,50)
23		(4.9)					4.1	(2.50)

Time: 15.0°W. 5weep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

August 1956

(M3000)F2

(2.90) (2.70) (2.80) (2.75) (2.75) (2.75) (2.65) 2.65 2.70 2.70 2.70 2.55 2.50

2.65 2.60 2.70 2.75 2.80 2.90 (3.00) (2.95) (3.00) (3.00) (2.90)

f Es

4.8 5.8 4.6

5.4 5.4 5.3 6.3 5.8 5.0

6.0 4.8 4.7 4.1 4.4 3.6 3.5 4.1 3.7 3.8 3.9 4.3 4.4

foE

2.1 2.7 (2.8) 3.1 3.3 3.4 3.4 3.4 3.4

3.4 3.4 3.3 (3.1) (2.8) 2.6 2.4

Time h*F2 foF2 h*F1 foF1 h*E foE fEs (M3000)F2 Time h*F2 foF2 h*F1 foF2 m*F1 foF2 m*F1 foF3 m*F1	e 20
01	l h
02 300 4.40	
03	
03	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	') -
08	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2) 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
13	1
14 9.05 240 105 3.30 2.80 14 6.2 4 15 8.65 240 105 3.10 <3.5	1
15 8.65 240 105 3.10 <3.5 2.80 15 6.2 (4 16 8.90 245 100 2.90 3.2 2.80 16 6.2 (4 17 (240) 8.20 250 110 2.50 2.75 17 6.4	1
16 8.90 245 100 2.90 3.2 2.80 16 6.2 (4 17 (240) 8.20 250 110 2.50 2.75 17 6.4) 1
17 (240) 8.20 250 110 2.50 2.75 17 6.4) 1
	. 1
18 250 8.00 250 125 2.15 2.6 2.85 18 6.2	1
19 250 8.10 1.6 2.85 19 (6.4)	1
20 245 7.55 <1.6 2.75 20 (6.2)	-
21 250 6.60 <1.6 2.75 21 (5.4)	
22 260 6.10 <1.6 2.65 22 (5.4)	
23 300 5.60 <1.6 (2.55) 23 (4.9)	

Time: 15.0°E. 5weep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

Time: 150.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Pout inu	Reykjavik, Iceland (64.1°N, 21.8°W) August 1956											
Time	h'F2	foF2	h'F1	foF1	h°E	foE	f Es	(M3000)F2				
00		(4.8)					4.4	(2,55)				
01		(4.7)					4.9	(2,60)				
02		(5.0)					5.0	(2.70)				
03		4.5					4.4	(2,65)				
04		(4.9)					3.9	(2,80)				
05		5.3					3.7	2,90				
106		5.4			111	2.5	2.8	2.95				
- 07		6.0		4.3	111	2.8		2.90				
08		6.2		4.4	109	(3, 1)		2.90				
09	-	6.5		4.8	107	3.2		2.90				
10	İ	6.6		4.9	101	3.4		2.85				
11		6.9		5.0	101	3.5		2.80				
12		6.9		5.0	101	3.5		2.75				
13		7.0		(5.0)	101	3.5		2.75				
14	1	7.0		5.0	101	3.5		2.70				
15		7.0		5.0	103	3.5		2.75				
16		7.0		4.8	105	3.3		2.80				
17		6.8			109	(3, 1)		2.85				
18		6.7			108	3.0	3.2	2.90				
19	1	(6.3)			120		3.6	(2,90)				
20		(5.8)					3.7	(2.90)				
21		(5.4)					3.7	(2.75)				
22		(5.0)					4.0	(2.75)				
23		(3.7)					4.1	(2.50)				

Time: 15.0°W. 5weep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

Table 22

h¹E

103 109 109

Anchora	ge, Alaska (61.2°		August 1956				
Time	h'F2 foF2	h Fl	foFl	h¹E	foE	f Es	(M3000)F2
00	(4,2)					3.5	(2,60)
01	(4,1)					3.7	(2,55)
02	4.0					3.4	2.55
03	4.2					3.8	2.55
04	4.4					2.4	2.60
05	5.0		(3.5)	120	2.0	2.0	2.55
06	5,6		3,8	117	(2,5)		2.60
07	5.8		4, 2	115	(2.7)		2.50
08	6.0		4.4	111	3.0	3.2	2.50
09	6.2		4.6	111	(3,1)	3,2	2.50
10	6.4		4.8	111	(3, 3)	3.4	2,50
11	6,2		4.8	111	(3,5)		2.50
12	6.3		5.0	111	3.5	3.5	2.50
13	6.4		5.0	111	(3,4)		2,50
14	6.3		5.0	111	3.4	3.4	2.50
15	6.4		4.8	111	(3,3)		2.60
16	6.3		4.7	115	3.1		2.70
17	6.4		(4, 4)	117	2.8		2.80
18	6.3			121	2.4	2.7	2.85
19	6,1				(2,0)	2.6	2.85
20	5.8					2.0	2.85
21	5.6					1.1	2.80
22	4.9					2.5	2,70
23	4.5					1.8	2.70

Time: 150.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Huancay	o, Peru (12.005,	75.3°W)	Table 2	3			August 1956
Time	h¹F2	foF2	h*F1	foFl	h*E	foE	f Es	(M3000)F2
00	220	8.2						3.05
01	220	7.4						3.10
02	220	6.7						3,20
03	230	6.0						3.15
04	230	5.1						3,20
05	240	4.1						3,20
06	280	4.6						2.90
07	250	8.0			117	2.5	7.6	3,00
08	(230)	10.0	225		113	3, 2	9.2	2,75
09		10.8	215				10.6	2,60
10		10.3	205				10.9	2.45
11		10.4	200				11.0	2.35
12		10.4	200				11.1	2.25
13		10.4	200				11.0	2.25
14		10.1	200				11.0	2.20
15		10.1	210				10.6	2,20
16	(230)	10.2	220				10.4	2.25
17	250	10.1					8.6	2.30
18	300	9.7						2, 30
19	390	8.4						2.20
20	370	9.3						2.35
21	290	8.9						2,60
22	240	8.8						2.85
23	220	8.4						3.00

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 2	4			
Thule,	Greenland	(77.0°N	, 69.0°W)				July 1956
Time	h¹F2	foF2	h'F1	foFl	h¹E	foE	f Es	(M3000)F2
00		5.0			119	2.2		2.80
01		5.1			117	2.2		(2.90)
02	l	5.1		(3.6)	115	(2.3)		(2.75)
03	1	5.1		(3.8)	109	2.5		2,80
04		5.1		3.9	109	2.6		2, 90
05		5.0		4.0	109	2.8		2.80
06		5.1		4.2	109	2.9		2.70
07		5.3		4.2	107	(3.0)		2,65
08	İ	5.4		4.5	101	3.2		2,60
09		5.4		4.4	103	3.1		2.55
10	1	5.4		4.4	103	3,2	3.2	G
11		5.4		4.5	101	(3, 2)	-	2,40
12	l	5.2		4.6	101	3.2		2.55
13	1	5.4		4.5	101	(3,2)		2.40
14	1	5.6		4.5	101	(3,2)		2.70
15		5.5		4.4	105	3.1	3.4	2,60
16		5.6		4.4	104	(3.0)		2.75
17		5.5		4.2	105	(3.0)		2,70
18		5.7		4.1	109	2.9	3.4	(2.70)
19		5.6		4.0	112	(2.7)		(2,80)
20	1	5.4		3.8	113	2.5		2.75
21		5.4			119	(2.4)		2.80
22		5.6		3.6	119	2.3		2.80
23		5.4			119	2,2		2.80

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

	Table 25								Table 26								
Godhavn	, Greenla	nd (69.2°	N, 53.5	ow)				July 1956	Reykjav	ik, Icela	nd (64.1	°N, 21.8	ow)				July 1956
Time	h¹F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2	Time	h¹F2	foF2	h*Fl	foFl	h'E	foE	f Es	(M3000)F2
00		(5.2)			131	1.9		(2,80)	00		(4.9)					3.8	(2.65)
01		(5.3)			136	(1.8)		(2.80)	01		(3.8)					3,9	(2,55)
02		(4.9)			131	(1.8)		(2.80)	02		(4.4)					4.0	(2,60)
03		(4.8)			121	2.0		(2.80)	03		(4.6)					4.4	(2.65)
04		(4.8)		(3,3)	115	(2,2)		(2,80)	04		4.6					3.5	2.70
05		(4.7)		(3.6)	109	(2.4)			05		4.8			108		2.4	2.85
06		(5.0)		3.8	107	2.6	2.7		06		5.2		3.8	111	2.7		2,80
07		(5.0)		4.1	104	2.9			07		5.5		4.3	109	(3.0)		2.75
08		(5.4)		(4.3)	101	(3.1)			08		5.7		4.7	107	3.2		2,80
09		(5.6)		(4.5)	101	(3, 2)	3.2	(2.55)	09		5.9		4.8	101	3.3		2,80
10		(5.7)		(4.6)	101	3.3		(2,70)	10		6.0		4.9	101	3.5		2,80
11		(6.0)		(4.8)	101	3.3		(2,70)	11		6.2		5.0	101	3.6		2.75
12		(6.2)		(4.8)	101	3.3		(2.60)	12		6.0		5.0	101	3.6		2.70
13		(6.1)		4.8	101	3.3	3.6	(2.65)	13	i	6.2		5.0	101	3.6		2.70
14		(6.1)		4.8	101	3.3	4.5	2,60	14	1	6.3		5.0	101	3.6		2.70
15		(5.6)		4.7	101	3.2	5.1	(2,50)	15		6.3		4.9	103	(3.5)		2.70
16		(5.7)		4.6	101	3.1	4.7	(2,70)	16		6.3		4.8	103	3.4		2.80
17		(5.6)		4.5	101	3.0	4.0	(2,65)	17	i	6.3		4.6	107	(3.3)	3.6	2.80
18		(5.6)		4.3	104	2.8	4.2	(2.65)	18	!	6.2		(4.4)	108	3.1	3.6	2.80
19		(5.6)		4.2	(107)	2.7	3.6	(2,80)	19		5.9			111	3.2		2.80
20		(5.5)		3.7	(111)	2.4	4.0	(2.70)	20	l	5.5				3.1	3.9	2.85
21		(5.4)			(113)	2.2	3.9	(2.80)	21		5.4					5.3	2.85
22		(5.4)			119	2.0		(2.75)	22		5.0					4.2	2.75
23		(5.2)			(128)			(2.80)	23		(4.8)					4.0	(2.70)

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

Time: 15.0°W. Sweep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

Anchora	ge, Alaska	(61.2°	N, 149.9	Table 2	27			July 1956	Thule,	Greenland	(77.0°N	, 69.0°W	Table 2	8			June 1956
Time	h°F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h'Fl	foFl	h*E	foE	f Es	(M3000)F2
Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	h*F2	4.8 4.4 4.4 4.5 5.4 5.7 6.0 6.2 6.1 6.0 5.9 5.8 5.8 5.8 5.8	h'F1_	3.3 3.8 4.1 4.4 4.5 4.6 4.7 4.8 4.9 4.8 4.6 4.5 (4.4)	132 117 109 109 109 109 109 109 111 109 109 111 117	1.9 2.4 2.6 3.0 3.1 3.2 3.3 (3.4) (3.4) (3.4) 3.2 (3.2) 3.0 2.7 2.4	2.3 3.7 3.7 2.8 3.7 3.5 3.4 3.5 3.7 3.8 3.5 3.6 3.6 3.0	2.70 2.60 2.65 2.60 2.60 2.50 2.55 2.50 2.55 2.50 2.45 2.50 2.45 2.50 2.50 2.50 2.50 2.50 2.50 2.50	7 ime 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	h*F2	5.2 5.4 5.10 5.00 4.80 5.00 5.2 5.1 5.3 5.3 5.4 5.2 5.4 5.2	h'Fl	foF1 (3.5) (3.4) (3.7) 3.8 3.9 4.0 4.2 4.3 4.4 4.6 4.5 4.5 4.5 4.4 4.2 4.1 4.0	119 117 112 111 109 109 105 105 105 105 101 107 109 111 111	foE 2,2 2,3 2,4 2,5 (2,6) 2,9 3,0 (3,1) (3,2) (3,3) 3,2 (3,3) 3,3 (3,2) (3,1) (3,0) (2,9) 2,8	fEs	(M3000)F2 2.75 (2.70) 2.60 2.65 2.60 (2.60) 2.40 (2.35) 2.40 2.50 (2.50) 2.40 2.55 (2.70) 2.70 (2.65)
20 21 22 23		5.8 5.8 4.9 4.6			129	(2.0)	2.6 2.0 2.0 2.5	2.90 2.90 2.80 2.70	20 21 22 23		5.0 5.2 5.2 5.0		(3,8) (3,7) (3,5) (3,6)	111 114 119 119	2.6 2.5 2.3 (2.2)		2.70 2.70 2.80 2.80

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 2	9								Table :	30			
Godhavn	, Greenla	nd (69.2	°N, 53.5	(Wo				June 1956	Kiruna,	Sweden	(67.8°N,	20.3°E)					June 1956
Time	h°F2	foF2	h °F1	foFl	h°E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h°F1	foFl	h*E	foE	f Es	(M3000)F2
00		(4.9)						(2,80)	00	355	5.1					5.0	(2,6)
01		(4.9)				1.8		(2.70)	01	350	5.4					4.0	(2.4)
02		(4.7)		(3.0)	119	1.8		(2.75)	02	400	5.2	260	3,1			4.0	2.4
03		(4.8)		(3.3)	119	1.9		(2,75)	03	395	5.2	260	3.5	105	1.8	<3.8	2,6
04		(4.8)		(3.5)	111	2.2		(2.70)	04	415	5.4	250	3.9	100	2.0	2.8	2.5
05		(4,7)		(3.7)	107	2.5		(2.70)	05	420	5.6	240	4.0	100	2.6		2.5
06		(4.6)		(3.8)	103	2.7		(2,60)	06	425	5.9	230	4.2	100	2.8		2.6
07		(4,9)		(4.2)	101	2.9			07	425	6.0	225	4.5	100	3.0		2.6
08		(5.0)		(4.3)	101	3.1			68	405	6.1	220	4.7	100	3.0		2.6
09		(5.6)		(4.4)	101	3.2		(2,70)	09	410	6.3	215	4.9	100	3.2		2.6
10		(6.0)		(4.6)	101	3.3		(2,70)	10	405	6.3	215	5.0	100	3.2		2.6
11		(6.1)		(4.7)	101	3.3		(2.65)	11	410	6.3	210	5.0	100	3.2	<3.5	2.6
12		(6.0)		(4.7)	101	3.3		(2,60)	12	420	6.2	210	5.0	100	3.3		2.6
13		(6.0)		(4.7)	101	3.3	4.0	(2,60)	13	425	6.0	210	5.0	100	3, 2	<3.5	2.7
14		(6.0)		(4.7)	101	3.3	3.8	(2.70)	14	440	6.0	210	4.9	105	3.1	<3.3	2.65
15	ļ	(5.6)		4.7	101	3.2	4.7	(2,60)	15	435	6.0	210	4.8	100	3.0	<3.3	2.7
16	İ	(5.4)		4.6	101	3.1	3.9	(2,50)	16	405	6.0	220	4.6	100	3.0	<3.2	2.7
17	l	(5.5)		4.6	101	3.0	3.0	(2.60)	17	345	6.0	230	4.5	105	2.9		2.7
18		(5.5)		4.3	103	2.8	3.9	(2.60)	18	345	6.0	240	4.2	105	2.7	<2.8	2.8
19		(5.5)		4.1	105	2.5	2.8	(2.75)	19	(340)	6.0	250	4.0	105	2.3	<3.1	2.8
20		(5.4)		(3,9)	107	2.3	3.0	(2,80)	20	(370)	5.8	265	3.8	110	2.1	4.0	2.7
21		(5.5)		3.6	109	2.2		(2.75)	21	340	5.5	275				4.0	2.65
22	i	(5, 2)			112	2.1		(2,80)	22	340	5.2					4.2	2.7
23		(5,0)			121	2.0		(2.80)	23	345	5,2					4.0	2.6

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

Time: 15.0°E. Sweep: 0.8 Mc to 14.0 Mc in 30 seconds.

May 1956

(M3000)F2

3.0 2.9

hay 1956

(M3000)F2

2.8 2.8

Anchora	ige, Alask	a (61.2°	N 149.9	Table :	<u>31</u>			June 1956
Time	h'F2	foF2	h*F1	foFl	h E	foE	f Es	(M3000)F2
00		4.4					1.6	(2.65)
01		(4.5)					1.6	(2,60)
02		4.4					1.8	2.60
03		4.5		(3,0)	123	(1.6)	1.9	2.55
04		4.8		3.4	121	2.0	2.5	2,60
05		5.4		3.8	113	2, 4	2.6	(2,60)
06		5.5		4.0	111	2.7	3.1	2.50
07		5.6		4.2	109	3.0	3.4	2.50
08		5.7		4.4	107	3.1		2.45
09		5.8		4.5	107	3.3		2,50
10		5.8		4.6	107	(3,3)	3.6	2.45
11	i	5.9		4.8	107	3.4	3.6	2.50
12	i	5.6		4.8	107	3, 4	3.5	2.50
13		5.8		4.8	105	(3,4)		2.55
14		5.8		4.8	109	3.4		2,55
15	ľ	5.8		4.7	109	3.3		2.55
16		5.8		4.6	111	3.1		2.60
17		5.9		4.5	113	2.9		2.70
18		5.8		4.2	117	2.6	3.2	2,80
19		5.9			119	2.4	3.5	2.80
20		6.0			<131	2.0	3. 1	2.85
21		5.8				(1.7)	3.4	2,90
22	ŀ	5.6					2.2	2.85
23		4.8					2.4	2.75
	l							

Time: 150.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

5.8 5.4 5.7 2.0 2.1 2.2 2.3 2.5 2.7 2.9 (2.85) (2.9) (2.7) (2.6) (2.65) 02 110 5.4 5.3 5.8 105 04 105 105 100 100 05 06 07 08 09 10 11 12 13 14 15 5.6 5.3 5.8 5.6 5.5 5.7 5.6 (2.8) (2.8) (2.6) G ---G G (2.65) (2.7) 100 100 100 3.0 3.0 3.1 3.2 3.2 3.1 3.1 3.0 2.9 2.8 2.7 2.5 2.3 2.2 100 100 100 5.8 5.7 5.4 5.6 5.7 100 100 100 16 17 18 100 100 100 105 2.7 2.7 2.7 2.8 2.8 2.8 5.6 5.8 5.6 19 20 21 22

3.3

Table 34

foF1

Table 32

h*E

110

110

105

110 110

h*E

foE

1.1 1.2 1.3

f Es

1.2

foE

2.0

f Es

Time:

23

Time

00 01 02

Time

nn

01

90.0°W. 1.0 Mc to 25.0 Mc in 13.5 seconds.

Baker Lake, Canada (64.3°N, 96.0°W)

foF2

5.4 5.3 5.0 h'F1

h'F2

5.8 5.7

Resolute Bay, Canada (74.7°N, 94.9°W)

foF2

h'F1

h'F2

Kiruna, Time	Sweden (67.8°N,	20,3°E) h'F1	Table 3	3 <u>3</u>	foE	f Es	May 1956 (M3000)F2
1 11116	11 12	1012		10.1				
00	335	5.5					4.0	2.6
01	330	5.7					4.0	2.7
02	340	5.8				Ε	4.0	2.6
03	345	5.9	275	3.1	110	1.8	3.2	2.6
04	380	5.9	255	3.8	110	2.0	4.0	2.6
05	410	6.0	250	4.0	105	2.3	3.0	2.7
06	395	6.4	240	4.2	105	2.6	3.0	2.7
07	395	6.4	235	4.4	105	2.9	<3.6	2.7
08	390	6.7	225	4.6	105	3.0	3.0	2.6
09	405	7.0	220	4.8	100	3.2	<3.4	2.7
10	405	7.2	215	5.0	105	3.2	<3.6	2.7
11	395	7.2	215	5.0	105	3.2	4.0	2.7
12	400	7.0	220	5.0	105	3.3	<3.5	2.7
13	390	6.9	215	5.0	100	3.2	<4.0	2.7
14	380	7.0	220	4.8	105	3, 1	3.4	2.7
15	380	6.7	220	4.6	105	3.0	3.8	2.7
16	(425)	6.2	230	4.5	105	3.0	4.0	2.8
17	(310)	6.2	240	4.3	105	2.7	3.7	2.9
18	(300)	6.2	250		105	2.4	4.0	2.9
19	310	6.0	250		105	2.0	4.0	2.9
20	300	6.0	260		110	1.8	4.0	2.8
21	305	5.3				E	4.0	2.8
22	330	5.4				E	4.0	2.75
23	320	6.0					4.3	(2,7)

Time: 15.0° E.

5weep: 0.8 Mc to 14.0 Mc in 30 seconds.

00	3.4			1.1	1.6	2.0
01	5.3			1.2	1.4	2.8
02	5,0			1.3	1.4	(2,75)
03	4.8		110	1.6	1.7	2.8
04	4.9		110	2.0	2.0	2.85
05	4.7	3.6	110	2.2		2.9
06	5.0	3.9	110	2.5		2.7
07	5.3	4.2	105	3,0		G
08	5.0	4.3	105	3.2		G
09	5.0	4.4	100	3, 4		G
10	5.7	4.6	100	3.5		2.3
11	5.8	4.8	100	3.6		2.3
12	6.1	4.8	100	3.7		2.5
13	6.6	4.8	100	3.6		2.5
14	6.7	4.8	100	3.5		2.6
15	6.3	4.8	105	3.4		2.6
16	6.5	4.7	105	3.3		2.7
17	6.1	4.3	105	3.0		2.7
18	6.0	4.0	105	2.8		2.7
19	6.0	3.8	110	2.5		2.8
20	5.9		110	2.3	4.0	2.8
21	5.7		110	2.0	3.0	2.9
22	5.9		110	1.5	6.0	2.8
23	5.5		135	1.3	1.4	2.8
20						

Time: 90.0°W.

5weep: 1.0 Mc to 16.0 Mc in 16 seconds.

	Churchi	May 1956							
	Time	h°F2	foF2	h'F1	foFl	h*E	foE	f Es	(M3000)F2
П	00		5.6					7.0	(2.7)
	01		4.9					6.0	
	02		4.8					5.2	
	03		4.5			120	1.9	5.0	
	04	1	4.7			110	2.0	5.0	
	05		5.0		3.4	110	2.8	4.3	(2,75)
	06		5.0		4.0	110	2.9	4.4	2.65
	07		5.6		4.4	105	3.0	5.0	2.8
	08		5.7		4.7	100	3, 2	5.0	2.8
	09		6.0		4.8	100	3.5	5.0	2.7
	10		6.0		4.9	100	3.6	4.2	2.6
	11		6.4		5.0	100	3.7		2.7
	12		6.8		5.0	100	3.7		2.7
	13		7.0		5.0	100	3.7		2.7
,	14		7.0		4.9	100	3.5		2.7
	15		7.2		4.9	100	3.5		2.7
	16		7.0		4.8	100	3,3		2.7
	17		6.8		4.5	105	3.1		2.7
1	18	1	6.8		4.2	110	3.0		2.8
	19		6.5		3.9	110	2.8	3.8	2.8
1	20		6.0			120	2.7	4.5	2.8
1	21	1	5.8			120	2.6	6.0	(2.7)
	22		5.4					6.0	2.8
	23		5.7					6.3	

Time: 90.0°W. Sweep: 1.0 Mc to 16.0 Mc in 16 seconds.

Lindau/Harz, Germany (51.6°N, 10.1°E) May											
Time	h'F2	foF2	h'Fl	foF1	h*E	foE	f Es	(M3000)F2			
00	290	6.75					2.3	2,60			
01	290	6.50					2.3	2,55			
02	290	6,20					2.0	2.55			
03	280	5.60				Ε	2.2	2,60			
04	290	5.50				E E	2.7	2.65			
05	270	5.80	260		130	1.70	3.5	2.80			
06	280	6.30	240		110	2.45	4.5	2.80			
07	330	6.60	230	4.30	100	2,80	4.8	2.70			
08	350	6,95	225	4.80	100	3.15	4.5	2.75			
09	340	7.70	215	4.95	100	3,40	5.3	2.80			
10	360	7.85	215	5, 20	100	3,55	6.0	2,70			
11	340	8.10	215	5.25	100	3,60	6.5	2.70			
12	365	8.50	215	5,25	100	3.70	6.1	2,65			
13	360	8.45	220	5.30	100	3.70	6.5	2.70			
14	345	8.50	215	5.30	100	3,60	6.7	2.75			
15	340	8.40	230	5.20	100	3,50	5.6	2.75			
16	310	8.30	225	5.00	100	3.35	4.9	2.75			
17	300	8.30	230	4.60	100	3,00	4.6	2.80			
18	290	8.55	250		105	2,65	4.6	2,80			
19	270	8,30			115	2.05	4.3	2.80			
20	260	8.60				E	3.5	2.85			
21	250	8.10					2.9	2.75			
22	255	7.50					2.3	2.70			
23	275	7.05					2.3	2.60			
Time:	15 09 F		-								

Time: 15.0°E, 5weep: 1.0 Mc to 16.0 Mc in 4 minutes.

	Table 37												Table	38			
Winnipe	eg, Canada	(49,9°N	, 97.4°W	1)				May 1956	Leopolo	iville, Be	elgian Co	ngo (4.4	°5, 15.2	°E)			May 1956
Time	h°F2	foF2	h*Fl	foFl	h°E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08		4.6 4.4 4.0 3.9 3.9 4.3 4.8 5.2 5.7 6.0	7.12	3.6 4.1 4.4 4.8	120 110 110 110	1.9 2.4 2.9 3.0 3.4	<1.7 <1.7 <1.6 3.0 <2.0 <2.0	(2.60) (2.60) (2.70) 2.70 2.70 2.70 2.70	00 01 02 03 04 05 06 07 08	215 210 220 230 240 255 260 270 270 280	12.B 9.0 6.5 4.8 3.3 5.6 9.5 11.9 12.6 13.0	240 230 220 210	5.0	115 110 110 110	2.6 3.2 3.5 3.7	2.0 2.0 2.4 2.7 3.9 4.0	<3.0 2.9 2.8 2.7 2.8 2.9 2.9 2.9 2.9
10 11 12 13 14 15 16 17 18 19 20 21 22 23		6.3 6.4 6.3 6.4 6.8 7.1 7.0 7.2 7.0 7.0 6.4 5.6		4.8 4.9 5.0 5.0 5.0 4.B 4.5	110 110 110 110 110 110 110 110 120 125	3.5 3.8 3.8 3.8 3.6 3.3 3.1 2.9 2.3 1.8	2.5 <2.4 <1.8 <1.6 2.0	2.60 2.50 2.50 2.50 2.60 2.50 2.60 2.70 2.75 2.80 2.80 2.75 2.80 2.75	10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 330 335 335 350 320 260 250 240 215 215 220 215	13.1 >13.6 >14.0 >14.0 >14.0 >13.9 >13.9 >13.6 >13.5 >14.0 >14.0 >13.5	205 210 220 220 240 240 255	5.1	110 110 110 110 110 115 120	3.9 4.0 3.7 3.7 3.5 3.1 2.4	4.0 3.8 4.0 4.0 3.4 3.0 2.B 2.2 2.2	2.6 2.5 2.5 2.4 <2.5 <2.5 <2.6 <2.7 (2.8) (2.8) (2.7) 2.9

Time: 90.0°W. 5weep: 1.0 Mc to 25.0 Mc in 15 seconds.

Time

00

Time: 0.0°. Sweep: 1.0 Mc to 16.0 Mc in 7 seconds.

5ao Paulo, Brazil (23.5°5, 46.5°W)

foF2

8.9 9.0 7.2

6.1 4.7 4.0 4.0 7.8

10.6 12.4 13.4

14.0

>14.0 >14.0 >14.0 >14.0

>14.0

14.0 12.4 12.6

11.6

11.0 9.3

h'Fl

240

230 220

240

h°F2

240 240

250 250

260

260 (270)

270 (2BO)

Table 40

h°E

120

foE

(2.3) 2.7 3.1 3.4 (3.5) (3.6) (3.6) 3.5 3.2 2.7 (2.2)

fEs

<2.5 <2.5 <2.5 <2.5

<2.5

2.8 <2.B 3.1 <2.5 <2.5 <2.5 <2.5

foF1

May 1956

(M3000)F2

3.2 3.2 3.2 3.3 3.0

3.0 2.65 3.2 3.1 3.0 2.9 2.B 2.B 2.75 2.9 3.0 (2.8)

3.1 3.0 2.9 3.0 3.1 3.1

	Table 39												
Elisabe	thville,	Belgian	Congo (1	1.605, 2	7.5°E)			May 1956					
Time	h°F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2					
00	250	4.0						2.7					
01	255	3.5						2.7					
02	255	2.8						2.7					
03	250	2.8						2.B					
04	260	3.9						2.6					
05	240	B.5	240		120	2.2	2.6	3.0					
06	245	10.4	230		110	3.0		3.0					
07	255	11.6	230		110	3.5		2.9					
08	265	12.0	220		110	3.6		2.8					
09	280	12.0	235		110	3.8		2.7					
10	285	12.5	240		110	3.8		2.6					
11	300	12.8	250		110	3.6	4.0	2.6					
12	300	12.6	245		110	3.6	3.9	2.6					
13	305	12.0	240		110	3.4	3.9	2.5					
14	280	11.6	240		110	3.1	3.6	2.5					
15	255	11.8	245		120	2,4	3.4	2.6					
16	240	11.8					3.1	2.B					
17	230	11.3					3.0	2.9					
18	215	10.0					2.7	2.8					
19	230	8.2					2.6	2.7					
20	235	B.0					2.4	2.B					
21	225	6.7						2.B					
22	235	5.2						2.7					
23	250	4.6						2.7					

Time: 0.0°.

1.0 Mc to 16.0 Mc in 7 seconds. Sweep:

Time: Local.
Sweep: 1.75 Mc to 20.0 Mc in 7 minutes 1B seconds.

				Table 4	1*			
Inverne	ss, Scotl	and (57.	4°N, 4.2	ow)				April 1956
Time	h*F2	foF2	h°F1	foF1	h * E	foE	f Es	(M3000)F2
00	335	5.1						2.4
01	340	4.7						(2, 4)
02	330	4.3					1.2	(2.4)
03	340	4.0					2.3	(2.4)
04	330	3.7						(2,4)
05	300	4.4			130	1.5		2.6
06	265	5.3			125	2.0		2.B
07	290	5.9	245	(4.2)	115	2.5		2,B
08	345	6.6	235	(4.5)	110	2.9		2.7
09	335	7.0	230	4.8	110	3.1		2.7
10	360	7.3	225	5.0	110	3, 3		2.7
11	355	7.5	220	5.2	105	3.4		2.7
12	370	7.4	225	5.3	105	3.5		2.6
13	375	7.6	225	5.2	110	3.5		2.6
14	350	7.B	235	5.2	105	3.4		2.7
15	345	7.B	235	5.1	110	3.3		2.7
16	315	7.8	245	4.9	110	3.1		2.7
17	280	8.2	250	(4.2)	110	2.B		2.B
18	265	B.0	255		120	2.3		2.8
19	260	7.9			140	1.9		2,B
20	265	7.3						2.7
21	270	6.B						2.6
22	295	5.9						2.5
23	315	5.5						2.4

Time: 0.0°.
Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.

*Average values except foF2 and fEs, which are median values.

				Table	42*			
51ough,	England	(51.5°N,	0.6°W)					April 1956
Time	h*F2	foF2	h*Fl	foF l	h*E	foE	f Es	(M3000)F2
00	330	6.0						2,4
01	325	5.B					2.6	2.4
02	320	5.4					2.5	2,4
03	320	4.B					2.6	2, 4
04	320	4.4					3.0	2, 45
05	315	4.7	(290)	(3, 4)	135	1.7	3,2	2,6
06	300	6.0	275	3.7	135	2, 2	3.4	2.75
07	320	6.7	250	4.2	120	2.7	4.2	2.75
08	345	7.3	245	4.6	120	3.1	4.0	2.7
09	345	7.7	240	4.9	115	3.4	4.2	2.6
10	360	B. 1	235	5.3	115	3,5	4.1	2.6
11	345	8.7	230	5.5	115	3.6	4.4	2,6
12	345	B.7	235	5.5	115	3.7	4.2	2.6
13	340	9.0	230	5.5	115	3.6	4.3	2,6
14	320	9.2	230	5.1	115	3.6	3.8	2.65
15	305	9.0	240	5.0	115	3.4	3.6	2.65
16	305	9.1	245	4.6	120	3,1	3.B	2.65
17	2B0	9.0	250	4.1	120	2.B	3.4	2.75
18	2 65	9.0	(265)	(3.8)	125	2.2	3.3	2,75
19	260	8.B			(140)	(1.7)	2.6	2,75
20	260	B. 1					2.1	2,65
21	275	7.4					2.0	2.55
22	305	6.9						2,45
23	320	6.4					2,2	2.4

Time: 0.0°. 5weep: 0.55 Mc to 16.5 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

Singapo	re, Briti	sh Malaya	(1.3°N	, 103.8°	E)			April 1956	
Time	h'F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2	
00	235	(13.1)					2.2	3.0	
01	230	10,6						3.0	
02	235	9.1						3.0	
03	230	8.6						3.0	
04	230	7.2						3.1	
05	230	5.5					2.1	3.1	
06	270	6.0				1.6	2.6	2.8	
07	250	10.0			125	2.6	3.4	2.9	
08		12.7	245		115	3.2	3.9	2.7	
09	1	13.6	230		110	3.6	4.5	2.5	
10		13.8	215		110	3.8	4.5	2.3	
11		13.5	210		110	4.0	4.7	2.1	
12		13.2	205		110	4.0	4.6	2.2	
13	1	13.2	210		110	4.0	4.2	2.2	
14	1	13.4	220		110	3.9		2.2	
15	(240)	13.9	215		110	3.7	4.2	2.2	
16	245	14.2	235		110	3.3	3.9	2.2	
17	255	14.4	_		115	2.7	3.8	2.2	
18	285	14.5					2.6		
19	340	>14.2					3.0		
20	330	>13.9							
21	260	13.9					2.6		
22	230	(14,0)					2.9		
23	230	13.2					2.9	(2.8)	

Time: $105.0^{\circ}E$. 5weep: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

Table 44° Falkland Is. (51.7°S, 57.8°W) March 1956 h°F2 (M3000)F2 ime foF2 h*F1 foFl h*E foE f Es 00 315 **32**5 2.8 2.4 2.4 2.5 2.5 2.7 3.1 3.1 2.9 2.9 3.0 3.0 3.1 3.1 2.8 2.6 2.5 2.7 6.6 2.6 2.6 2.6 2.6 2.0 01 6.4 6.4 6.4 6.0 02 315 03 310 04 310 5.6 6.7 8.4 05 06 07 08 09 10 320 2.0 3.2 285 245 155 125 115 1.6 2.3 (255) 295 305 325 280 245 240 230 2.8 3.1 3.3 9.3 (4.2) 4.0 10.6 10.8 11.5 12.3 5.0 5.2 5.2 5.6 110 (4.8) (4.8) 105 105 230 220 230 230 230 3.4 11 12 13 14 15 16 17 18 19 20 21 22 23 105 105 105 260 260 255 12.4 12.5 11.4 5.2 5.2 5.2 3.4 245 245 245 245 240 240 260 3.1 2.8 2.3 235 110 10.6 9.2 8.9 4.8 4.4 3.7 (245) 110 120 8.4 7.2 6.7 4.0 3.1 3.1 2.5 2.4 270 300 310 6.7

Time: 60.0°W.
5weep: 0.67 Mc to 25.0 Mc in 5 minutes.
*Average values except foF2 and fEs, which are median values.

				Table 4	<u> </u>			
Poitier	s, France	(46.6°N,	0.3°E)					ctober 1955
Time	h*F2	foF2	h*Fl	foFl	h*E	foE	fEs	(M3000)F2
Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	h*F2 <285 285 280 255 280 255 <230 240 225 230 250 250 250 250 250 250 250 250 250 25	foF2 4.0 3.9 4.0 3.8 3.9 3.3 7 5.5 6.5 7.2 7.7 (8.0) 8.5 8.4 (9.0) (8.5) (7.0) 6.5 5.7		2.2 3.6 4.0 4.3 4.4 4.1 3.9 3.1 (2.2)	110 105 105 100 105 101 100 105 105	E 1.9 2.5 2.8 2.9 3.0 3.0 2.9 2.6 2.2 E	2.1 2.7 3.1 3.4 3.3 3.2 2.5 2.9 2.6 2.4	2.90 2.85 2.85 2.90 3.10 3.25 3.20 3.50 (3.35) (3.30) (3.30) (3.30)
20 21 22	230 250 <260	4.8 4.4 4.0					2.4 2.2 2.0	3.20 3.05 2.90
23	270	4.0					2.0	2.85

Time: 0.0°. Sweep: 1.6 Mc to 16.8 Mc in 1 minute.

Casabla	nca, More	occo (33.	6°N, 7.6	9°W)			C	ctober 1955
Time	h*F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00		4.40					2.1	3.00
01		4.30						2,90
02		4.10						3,00
03		4.05						3.05
04		4.10						3, 20
05		3,40						3, 20
06		3, 20						3,10
07	225	5.80	240			E		3.50
08	235	7.30	225	3.30	105	2,40	3.0	3.55
09	240	8.20	220	4.30	105	2.70	3.5	3,50
10	250	8.25	220	4.75	100	3.05	3.8	3.40
11	250	8.80	200	4.70	105	3,20	3.6	3.40
12	260	9.05	205	4.70	100	3,25	3.6	3.30
13	270	9.20	215	4.90	105	3.25	3.6	3.20
14	275	9.20	240	(5.00)	105	3,20	3.6	3,20
15	265	9.70	240	(4.50)	105	3.00	3.3	3,25
16	255	10.20	235	(4.30)	110	2.60	3.6	3,30
17	245	10.30	240	(4.00)	120	2.00	3.5	3.40
18	220	9.00					3.2	3,50
19	<215	6.70					3.0	3.40
20		5.00					2.6	3.05
21		4.80					2, 2	3,00
22		4.60					2.4	3,00
23		4.50					2.1	2.90

Table 46

Time: 0.0°. Sweep: 1.6 Mc to 16.0 Mc in 1 minute 15 seconds.

Poitier	s, France	(46.6°N	, 0.3°E)	Table 4	47.			May 1955
Time	h'F2	foF2	h*Fl	foFl	h'E	foE	f Es	(M3000)F2
00	260	4.5					2,2	
01	260	4.2					1.9	(2, 95)
02	275	3.9					2.0	(2.95)
03	265	3.7					2.0	(3,00)
04	255	3.4				E	1.9	3, 05
05	250	3.9	240	2.7		Ε	2.0	3.20
06	270	4.5	225	3.5	110	2,2	2.8	3,25
07	300	5.0	225	4.0	100	2.6	3.3	(3.30)
08	300	5.4	210	4.2	100	2.8	3.6	3.35
09	320	5.6	205	4.3	100	3.0	3.6	3,30
10	310	5.7	210	4.4	100	3.2	4.8	(3.25)
11	315	5.7	210	4.5	100	3.3	4.4	3.30
12	350	5.7	195	4.5	100	3.2	3.8	3, 10
13	350	5,6	210	4.5	100	3.2	3.9	3.05
14	330	5.8	210	4.4	100	3.2	4.4	(3, 20)
15	325	5.8	210	4.3	100	3.0	4.2	3, 10
16	310	5.9	220	4.2	100	2.8	3.6	(3, 10)
17	300	6.0	230	3.9	105	2.5	4.3	(3,10)
18	265	5.9	230	3.3	110	2.1	4.0	
19	255	(5.8)	260	2.7		E	3.2	
20	240	(6.3)					2.7	
21	240	5.4					3.4	
22	245	4.9					2.6	
23	250	4.6					2.4	

Time: 0.0°. Sweep: 1.6 Mc to 16.8 Mc in 1 minute.

				Table 4	<u> </u>			
Casabla	nca, Moro	cco (33.	6°N, 7.6	ow)				May 1955
Time	h*F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00		4.30					3.4	3,00
01		4.30					3.1	3,00
02		4.30					3.1	3.10
03		3.95					2.7	(3.10)
04		4.00					2.5	3,10
05		3,65					2.5	3.20
06	235	4.50	240				2.8	3.40
07	250	5.40	235	3.60	110	2.20	3.5	3,55
08	250	5.90	225	4.00	105	2,70	4.0	3,60
09	285	5.80	205	4.30	105	3.00	4.5	3.40
10	(300)	5.90	210	4.40	105	3.10	4.3	3,30
11	320	6.00	205	4.40	105	3,20	4.1	3,20
12	340	6.20			105	3.20	3.5	3.10
13	330	6.70			105	3,20	3.2	3.00
14	335	7.00		(4.50)	110	3.20	4.0	3.00
15	330	7.45	220	4.40	110	3.10	4.5	3.00
16	305	8.00		4.30	110	3.00	5.1	3.10
17	295	8.10	225	4.00	110	2.70	5.0	3,15
18	280	8.55	240	3.60	115	2,20	4.4	3.20
19	250	8.65	245	2.90			4.2	3.30
20	235	7.80					3.6	(3,30)
21		6.70					3.9	3,25
22		4.70					3.5	3,15
23		5.00					3.5	3.00

Time: 0.0°. Sweep: 1.6 Mc to 16.0 Mc in 1 minute 15 seconds.

Table 49 October 1954 Tananarive, Madagascar (18.8°5, 47.8°E) (M3000)F2 Time h*F2 foF2 h*Fl foFl h * E foE f Es 4.2 3.8 1.8 00 <250 01 220 1.8 3.34 2.0 3.2 3.0 02 <220 03 2.88 <260 04 <260 2.4 3.00 2.98 <260 240 270 05 06 2.6 1.80 2.40 2.85 3.15 1.9 3.33 4.5 <131 07 5.5 3,90 109 3.23 3.0 6.6 7.7 7.9 220 215 08 295 290 4.15 4.40 4.50 4.55 4.55 4.45 4.40 4.25 107 09 105 3.17 215 210 210 3.05 2.94 2.98 3.06 10 295 105 106 3.30 315 300 11 12 8.0 8.6 105 3.40 8.5 7.8 7.3 7.6 7.3 13 290 290 200 220 107 106 3.35 3.25 3.04 3.00 3.05 14 15 105 105 115 3.05 290 220 280 260 230 4.00 16 240 2.20 2.8 3.14 17 18 2.4 2.3 1.9 1.7 240 7.8 1.40 3,22 225 230 6.5 5.4 19 3.06

19 20 21 22 23 **27**0 270

Time

00

01

11 12

13

3.00 2.97

2.93

1.6

h*F2

270

245

230

230

240

250

240

270

305 320

330

340 335

320

305

300

280 245 260

260 260

260

Time: 35.6°E. 5weep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Table 50

4.50 4.60 4.60 4.75 4.70 4.55 4.40

foFl h*E

125

113

foE

2.10 2.70 3.00 3.25 3.40 3.45

3.30

2.90

1.70

f Es

2.7

2.6 2.2 2.0

3.8 3.8

4.0 6.2 6.7

6.4

6.8 4.8

6.6 4.3 4.1 4.0 3.3 2.6 2.9 3.1

3.3

3.6

October 1953

(M3000)F2

(2.92)

(3.23) 3.22 3.39

3.43 3.33

3.40 3.20 2.96 2.74 2.68 2.68 2.78 2.90 2.92 2.98 <2.92 (2.79) (2.82)

(2.76)

<3.00 (3.05) (2.94)

(2.95)

Djibouti, French 5omaliland (11.5°N, 43.1°E)

h*Fl

230

220 210

205

205 215

210

215 220

240

foF2

6.0 6.2 >5.7

4.1 3.6 2.8

6.2 7.6 8.4

8.8

8.8

8.8

>10.0

11.0 11.2

10.8 (9.8) 9.2

8.8

(6.5)

>6.0

>8.4 7.8

Time: Local.

<250 250

260

20

21

22

5weep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Table 51

4.6 4.2 4.1

Leopore	ville, b	elgian Co	ngo (4,4	0, 10, 2				April 1952
Time	h°F2	foF2	h*Fl	foFl	h°E	foE	f Es	(M2000)F2
00	230	5.7						2.4
01	230	4.1						2.4
02	260	3.2					1.9	2.4
03	240	2.8					2.0	2.5
04	235	2.6					3.0	2.8
05	240	4.0					2.9	2.6
06	235	6.6	230		120	2.3	3.4	2.8
07	260	7.6	220		110	2.8	3.8	2.5
08	290	8.6	215		110	3.2	4.0	2.4
09	290	9.6	210	4.6	110	3.4	4.1	2.3
10	330	9.8	200	4.6	110	3.5	3.5	2.1
11	330	11.0	210	4.7	110	3.6		2,2
12	310	12.7	220	4.6	110	3.5		2.2
13	300	12.8	220	4.4	110	3.4	3.6	2.2
14	290	12.8	225		110	3.2	4.0	2.2
15	295	12.7	230		110	2.7	3.7	2.2
16	270	12.7	240		120	2.2	3.7	2.3
17	240	>13.1					3.4	2.4
18	230	12.8					3.1	<2.5
19	215	12.0					2.5	2.6
20	210	9.8						2.6
21	215	9.0						2.4
22	230	7.0						2.4
23	230	6.8						2.4

Time: 0.0°. 5weep: 1.0 Mc to 16.0 Mc in 7 seconds.

TABLE 52
IONOSPHERIC DATA

foF2, O.1 Mc, Nov. 1956

75° W Mean Time

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

TABLE 53
IONOSPHERIC DATA

foF2, O.I Mc, Nov. 1956

30 30 30 30 29 29 29

75° W Meon Time

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

30 30

30 30 30 30

29 29

29 | 29 | 29 |

TABLE **54**IONOSPHERIC DATA

foFI, O.I Mc, Nov. 1956

tat	ian \	Nashi	ngtor	1, D.C.	Lat.	38.7	N I	_ang.	7.7.1	- W	Swe	ер І	.O N	ic ta	25.	O M	C IN	13.5	sec	;. 	Mai	nual L	J Aut	omatic	: [
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	ĺ8	19	20	21	22	23	L
								Q	L	L	L	L	L	L	L	L	Q	Q							L
								Q	L	L	L	L	L	L	L	L	L	Q							L
								L	٦	L	L	L	L	L	L	L	L	L							
								L	L	L	L	٦	L	L	L	L	L	L							
								L	L	L	L	L	L	L	630	L	L	L							T
								L	L	L	L	L	L	L	L	L	L	L							T
5-								Q	L	L	L	L	L	L	L	L	L	Q							t
7				-			-	Q	L	L	L	L	L	L	L	L	L	Q							t
3_					ļ		-	Q	Q	L	L	L	L	L	Q	Q	Q	Q							t
2								Q	Q	Q	Q	Q	Q	L	L	Q	Q	Q							H
_			-	-				Q	Q	Q	L	L	L	L	L	L	L	Q						-	ł
Ч					-			Q	L	L	L	L	L	L	L	L	L	Q							H
2								Q	A	A	L	L	L	L		L	L	Q				-		ļ	╀
3.			-					Q	L	L	L	L		L	L	L	Q	Ġ.			-				1
<u>.</u>																									ļ
5			ļ					Q	L	L	L	L	L	L	L	Q	Q	Q							L
<u>5</u> _								Q	Q		L	L	L	L	L	L	L	L							L
7 -								Q	L	L	L	٦	٦	L	L	L	L	Q							L
3								Q	Q	L	L	L	L	L	L	L	L	Q							Γ
9								Q	L	L	Ļ	L	L	L	L	L	L	Q							T
								L	L	L	L	L	L	L	L	L	L	Q							T
								Q	Q	L	L	L	L	L	L	L	Q	Q							T
1-			 					Q	L	В	L	L	L	L	L	L	L	Q							t
2		-						Q	Q	L	L	L	L	L	L	L	L	L							t
3			<u> </u>	-				Q		С	С	C	C	C	С	С	C	С			-	<u> </u>			t
4		-	-			-		Q	L	L	L	L	L	Ļ	L	L	L	L			-		-		H
5_		-	-		-	-	-	Q		L				 L	L	L		Q							H
5_		_		-				Q	Q	ļ	Q	Q		L	L	0	Q	Q					-		1
7_									L								L				-				ļ
8			ļ	ļ				Q	Q		L	L	L	L	L	L		L							L
9								Q	Q		L	L	L	L	L	L	Q								1
٥_								Q	Q	Q	L	L	L	L	L	L	L	L							L
_																									Ī
ED																									L
١0				<u> </u>				J							. 1									OULDER	

TABLE 55 IONOSPHERIC DATA

foE, O.I Mc, Nov. 1956

75° W Mean Time

_	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								В	В	320	340	360	350	360	330	310	240	В						
								В	R	UA		I A	H 360	Н				S						
								U R	А	A	Н	Н					A	5						
+								190 B	А		I R		360		Н		F	А						
\vdash								В	U R	310	340 A	360 A	370		1	1	260 A	Α						
\dashv					-			В	260 H	310	Н		370	370	350	330	A	Α						
<u>-</u>								В	270 U A		350	370 U A	360	370	350	310 U P		A			_			
7					_				250	330	360	380	380	370	350		250							
3								В	В	U R 310		A	U A 360	370	360	A	Α.	В						
,								В	260	310	U A 340	350	370	370	340	Ą	Α	А						
								В	U H 250	Н	Н	U R	350		Н		U A	\$						
	-							U R	R	В		UΡ	Н	Н		F		5						
\dashv			-					190 5	R	Н			360 H		Н			5						
2	-					 		Α	A	310 A	340 A		360 U A	F			н	5						
3								U P	Н			370 H	360	350	330	300	240				_			
-								190 A		290 H	320	350	340	350	340	280	210 H	5			-			
5										300			330	330	310	290								
			<u> </u>					Н 200	H 260	H 310	H 340	H 350	Н 350	350	330	290	230	5						
7.								U A 190	H 250	300	330	350	350	340	320	280	240	S						
3								S	В	i	H	H	I A 340		I A	H	H	5						
9								В	H 260				350		F			S						
								Α						Н			Н	5						
4			-					В	270	Н	Н	Н	350 H	Н		290		5						
1			-					5	240	280 I B	320 H	350	350	340 I A		290 U A	230 H	5						
2					_			5	240 A			350 I A	360	340 U A	320	280	240 U A	S						
3								S	c				340 C		320 C	290 C		С			_			
Щ			_										_							1				
5								5	250	290	320	330	340	330	320	290	Α	S						
5								Α	H 250	H 300	340	A		330	Α	Α	Α	5						
7								5			F	340	I A 350	U R	U H	270	U F	5						
								5				A					A	5						
3			-					S	Н	290	IU A	-	360				A							-
₹							-	В.				H	350	H	H	290 A	A	Α						
)		-							250	310	340	350	340	340	320									
								Ų																
ED								190	250	300	330	350	350	350	330	290	240							

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

TABLE 56 IONOSPHERIC DATA

fEs, O.1 Mc, Nov. 1956

75° W Mean Time

Station: Woshington, D.C. Lat. 38.7°N Long. 77.1°W Sweep 1.0 Mc to 25.0 Mc in 13.5 sec. Monual □ Automatic 🖾 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 G В В В В В 98 37 01 В В В В В В G В S S В В В G G G G S 40 G S 5 В 5 S S S G G G S S S В 03 30 3,0 s S S В В G S В 04 В В G В В s В S S G 32 33 38 25 05 43 34 В В В В В G В В В В S S G 29 28 27 32 38 30 06 В В \$ В В В В Н В S 07 19 37 39 17 28 48 43 26 В B В В В В В S S В В G 37 28 23 34 S S В В S 5 В G S 28 37 39 09 S В G S S S S S S 10 G В G G G S S S S S S S S S S G G 11 S S S Ε S G G S S S S S S S 45 45 12 38 G G S 44 70 40 75 S S G G G S S 30 14 S В В s В G G G G G \$ E S S S 30 G G G G S S S S S 47 29 19 16 31 44 20 G S S S Н G G S S S S 17 48 26 22 24 S S S S S S S 35 20 30 33 33 35 32 27 45 18 72 S S S S S S S S 19 18 38 39 G G В S S S S S 20 30 40 29 31 74 38 G S S S S В G G S S S S S S S S S S S G В G G S 22 49 E S S S Ε S G S S S S S 39 37 50 23 5 Ε S C c C C C S S S S S S S S C \subset 24 10 s S S S S G G В S S S S 54 37 30 36 35 78 49 39 36 68 S S E E. E G S Ε 26 70 78 35 34 C Y 47 S S G 28 27 S S S G G G S S 28 34 25 21 В 29 33 23 \$ É Ē В В G G 35 56 35 30 37 40 48 28 5.8 39 39 35 30 25 24 31 MED NO 10 10 29 29 29 29 29 29 29 29 27 10

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO

NO

TABLE 57 IONOSPHERIC DATA

f min. O.1 Mc, Nov. 1956

75° W Mean Time

Station: Washington, D.C. Lat. 38.7°N Long. 77.1°W Sweep 1.0 Mc to 25.0 Mc in 13.5 sec. Manual □ Automatic ☑ 01 02 03 04 05 06 07 08 09 10 12 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 01 20 E S E S E S E S 26 21 21 20 24 24 22 E S E S E S E S E S E S E S E S E S Ε E S 20 21 20 22 16 16 E S E S E S E S E S E S E S E S E S E S E S 24 24 04 19 24 19 E S E S E S E S E S E S E S 0.5 E S E S E S E S E S E S 06 20 E S E S 24 07 19 E S E S ESES E S E S S E S E S E S E S E S E S Ε S 20 21 19 18 16 19 20 16 S 17 E S E ESES E S E E S E S ESESES İΕ S E S S E S E S E S E S E S 16 15 17 16 Ε S E S 12 E S E S E S E S E S E S E S E S 17 31 30 28 24 25 18 ESESESES Ε E S Ε E S E S S le s E S Ε S E S S E S 17 20 20 19 16 14 SESES E S Ε E S SE Ε S S E S E S S Ε S E S F S 22 19 20 19 18 ESESES E S Ε S E S E \$ E S S Ε S E S E Ε S S 19 19 19 13 SESESES E S Ε E \$ E \$ E S E S E E S E S E S E \$ 27 17 20 ESES E S S 5 14 14 18 16 16 ESESES SESE S 19 20 22 24 20 17 22 SESES E S S E S 18 20 20 ESESES EESES E S ESES E S E S E S S 19 20 E S ESES E E S 5 E S E 5 E S E S E S E S E, S S 18 20 11 16 16 16 E S E S E S 20 21 21 21 21 21 12 18 16 17 12 S ESES S S E S S E S Š 44 24 11 20 17 24 24 S S S E S E S E S E S E S ESES S 17 E S S E S S C. S E S S \$ E \$ E S E S S 25 13 17 16 E S E S E Ε Ε S E S E S E S ESE E S S 26 16 16 16 18 23 22 22 19 19 16 E S E S E S E S E S s E S 27 19 16 16 21 21 19 17 16 22 16 S -5 E S E S S E S 28 12 13 13 13 22 25 27 29 29 23 23 22 20 24 18 17 \$ S E S E S S 29 20 18 17 19 12 27 28 15 14 14 17 24 24 28 27 27 20 5 E S E E E S E S S E S E S E S Ε E S E S 18 30 13 13 16 15 21 28 28 26 36 23 23 23 24 16 15 MED

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANOARDS, BOULDER, COLO.

TABLE 58
IONOSPHERIC DATA

h'F2, Km, Nov. 1956

75° W Mean Time

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

TABLE 59
IONOSPHERIC DATA

h'FI, Km, Nov. 1956

75° W Mean Time

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

TABLE 60
IONOSPHERIC DATA

h'E, Km, Nov. 1956

	00	01	02	03	04	05	06	07	08	09	10	-11	12	13	14	15	16	17	18	19	20	21	22	23	
1								В	В	121	99		99	111	99	101	109	В							1
								В	100			101	Н	Н				S							1
1								U B		101	Н	Н	ΙA					S							1
\exists								121 B	115 A		101					109		A							ł
\vdash				-				В	U B	101 U B	101 A	105 A	109 A	105 A	109	111 U A	111 A	Α							1
					<u> </u>	<u> </u>	<u> </u>	B		109		UÂ			101 I A	117	Α	A							ł
4								В	113 U B	101	101		111 A			119		A							1
									115	105	108	111			109	111	119								1
3								В	В	U B 109	109	I A	10.9					В							
,								В	123	E A 121	I A	101		U A 121	U A	Α	A	Α							
)								В	H 107	H 109		U A	A 105	E B			117	S							I
								E B	121	I B	U B 125	119	Н	Н		109		S							Ì
_								5	U B	Н	Н		Н		Н			S							1
2							-	A	119 A	109 A	109 A		105 U A				Н	5							1
3			-						Н		!	Н	109	109	107	109	119				-				1
+_			-	_	-		ļ	109	109 B	109 H	109	109	105 U A	109	111	111	111 H	S							1
5			<u> </u>		<u> </u>	-	_	109 H	Н		119 H	109 H	101 H	101	109	111		S			_		ļ		4
5_	_		ļ						101	101			101	111	111	109	119								4
7_										111			109	111	109		121	S							
3								S	В	109	U A 103	U A 115	U A 109	109	111	111	111	5							
9								В	121				101	U A			U A	S							
)								А	l				109	Н			H	S							1
								В	F	Н	H	Н	H 109	Н				S							1
<u></u>				-				S		I B	Н				Н	Н	Н	S					<u> </u>		1
2		-			-			\$		113 H		I A	111 U A					S					<u> </u>		1
3				-			-	5	109 C	101	101 C	101 C	101 C	109 C		109 C	111 C	Č			-				1
4			ł					5				-			_			S							+
5			-			_					105	105	101		105			S					ļ		4
6					ļ			A	111	105	105	109	109	U A 109	109	U A 109	А				ļ		ļ		
7					L			5	107	107	105	105	I A 109	109	107	109	113	\$							
8								5	129	115	113	111	111	111	111	111	111	S							
9								5	Н	Н			I A 109				Α								1
								В					111				А	A							1
0			·						121	121	113	113	111	107	+++	109									1
		-	-			+-	+	-	-	-	-				-	-	-				-	-	-		Ŧ
ED								109	111	109	107	109	109	109	109	110	113								
10 ED				<u> </u>				5	23	27	27	_	26	26	\vdash	28	23				-				+

TABLE 61
IONOSPHERIC DATA

(M3000) F2, Nov. 1956

Stat	ion: \	Vashi	ngtor	n, D.C.	Lat.	38.7	°N I	Long.	77.1	°W	Swe	ер І	.O M	1c to	25.	0 M	c in	13.5	sec	:.	Man	val 🗆	Auto	omatic	Ø
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
01	280	280	265	275	285	285	300	310	315	320	315	280	285	280	280	280	290	285	290	295	U R 310	R 295	310	315	
02	310	290	300	275	275	275	280	320	325	340	300	290	285	280	285	290	285	285	285	300	275	280	300	285	
03	280	270	250	260	270	270	260	300	310	300	300	295	285	285	280	285	280	280	295	290	285	290	295	275	
04_	290	290	295	280	275	280_	280	270	330	310	305	300	290	280	280	280	280	280	290	280	290	U S 300	285	285	
05	295	295	285	290	300	300	300	320	330	330	305	290	290	280	275	270	280	275	285	295	295	285	300	290	
06	285	275	270	290	300	290	280	310	320	300	300	295	275	275	275	280	275	275	280	290	280	280	300	290	
07	270	260	275	285	295	295	295	310	310	305	300	280	285	280	275	270	285	280	280	290	290	300	295	280	_
08	295	280	270	265	280	295	290	320	325	320	315 H	300 U S	300	280	285	280	28 0	290	290	295	290	285 U S	275	280 U 5	
09	280	295	290 U S	300	295 U F	290 F	290	315	320	315	310		285	280	270	280	270		2 7 5	-	270	275 U F	260 U F	250 U F	
10	240 U F	240 U F	250	250	230	225	230 U.F	2 7 0	290	305	295	280	270	270	265	265		285	270		230	240	260	250	_
11	260	250	240	230	240	240 F	260 F	285	325	305	295	285	290	280	275	2 7 5	270	280	265	270 U F	250	245	280 U F	250 U F	
12	280 U F	280	275 U F	285 U F	2 70 U F	260 U F	290 F	300 F	320	310	295	280	275	275	265	285	285	285	285		295	270	260 F	240 F	<u> </u>
13	270	290	280	290 U F	270	290 U F	290 U F	320	320 F	315	310	305	300	280	280	280	295	290	295	290 U F	290	295 U F	280 U F	260 U F	
14	250 U F	250	245 U F	260 U F	245	250	260 U F	280 F	290	300	290	285	28 0	275	275	270	270	290	245	245 U F	260 U F	290 U F	280 F	220 U F	
15	230 U F	250 U.F.	270 U F	250 U F	300 U F	220 U F	230 U F	240	305	295	300	275	280	290	280	295	300	300	300	290	290	270	240	250	_
16	260	245	280		260 F	270	280	300	325	310	300	290	285	290	285	285	290	295	295 U S	300	285	295	295	290	
17	290	300 F	295	285 F	280 F	270	280 F	300 F	340	315	305	300	285 U \$	280	290	285	280 H	300	285	290	290	285	280 F	260	
18	270	250	240 F	260 F	2 70 F	250 F	280	320	330	310	310	305	295	295	295	295	290	300	2 9 5	295	290	320	300	305	<u> </u>
19	310 F	30 0	300 F	290 U F	290 U F	280 F	290 F	305	330	320	310	310	300	290	295	300	295	300	300	305	300	305	300 U F	300	
20	300	305 F		310	300 F	280 U F	290 U F	310 F	320	320	305	300	285	295	290	295	290	290	295	300	285	295	290	280	
21	270	280 U F	260 F	255 F	2 70 U F	265 F	270 F	310 F	310	310	295 H	300	300	290	290	280	285	290	295	315	290	300 F	290	295	
22	295	300		280	2 70 F	265 U F	270 F	310 F	330 F	305	300	300	290	290	285	280	285	280	280	275	280 F	250	280	285 U F	
23	270	270 U F		275 U F	290 U F	280 U F	320 U F	290 U F	315 C	315 C	295 C	295 C	290 C	290 C	295 C	285 C	290 C		290 U F	295	290	295 U F	295 U F	310 U F	_
24	305 U F	290	295 U F	295 F	305 F	300 F	310 F	310									_		300	300	310	295	295 F	310 F	
25	310 U F	300	290 U F		290 F	290 F	290 F	315 U F	320	320	300	260	295 U S	300	285	280	285	290	285	295	300	310	290 F	275 U F	
26	290 U F	290	295 U F	320 U F	300 F	290 F	295 U F	310 F	315 U S	320	310	295 U S	280	295	290 U S	290	300	300	300 U S	300	310	320 U S	310	300 U S	
27		300 F	280			290				320	315		300	305		300	300	290		290	260		260	285	
28	280 F	270	265	260	265	260	290		320	320	305	300	290	295	285	290	290	290	285	290	290	295	290	280	
29	290	275	265	265	280	285	290	300	320	310	310	310	300	300	285	285	290	285	290	275	295	295 F	290 F	270	
30	265	265	275	290	290	275	270	290	320	305	295	300	280	280	280	275	280	275	285	295	305	2 9 5	295	300	
																									=
	280	280	280	280	280	280	290	310	320	310	300	205	285	280	285	280	285	290	290	290	290	295	290	280	
MED	30	30	30	30	30	30	30	30	29	29	29	293	29	29	29	29	29		30	30		-	30	30	
	<u> </u>		, ,,,	,			,	, 20																OULDER,	COLO.

TABLE 62
IONOSPHERIC DATA

(M3000) FI, Nov. 1956

								_ang.					.O N											omatic	_
-	00	01	02	03	04	05	06	07 Q	08 L	09 L	10 L	II L	12 L	13 L	14 L	15 L	16 Q	17 Q	18	19	20	21	22	23	┝
)1			-					Q	L	L	Ĺ	L	L	L	L	L	L	Q					-		├
12							_	L	L	L	L	L	L	L	L	L	L	L							\vdash
)3		ļ						L	L	L	L	L	L	L	L	L	L	L							-
04			-					L	L	L	L	L	L	L		L	L	L					-		-
) 5								L	L	L	L	L	L	L	365 L	L	L	L							-
)6								Q		L	L		L	L			L	Q							╀
7_			-					Q	L	L		L	L	L	L	L	L	0							_
8			-				-	Q	0	L	Ĺ		L		Q	Q	0	Q							L
9			ļ				<u> </u>																		_
0								Q	Q	Q	Q	0	Q	L	L	Q	0	0							_
.1								0	0	G	L	L	L .		L		٠.	Q							
2								0	L	L	L	L	L	L	L	L	L	Q							L
3								Q	A	Α	L	L	L	L	L	L	L	Q							
4								Q	L	L	L	L	L	L	L	L	Q						į		
5								Q	L	L	L	L	L	L	٦	0	O	Q							
6								Q	0	L	L	L	L	L	L	L	L	L							
7								Q	L	L	L	L	L	L	L	L	L	Q							
8								Q	0	L	L	L	L	L	L	L	L	Q							Γ
.9								Q	L	L	L	L	L	L	L	L	L	Q							
0								L	L	L	L	L	L	L		L	L	Q							Г
1								Q	0	L	L	L	L	L	L	L	Q	Q							Γ
2								0		В	L	L	L	Ĺ	L	L	L	Q							T
3								0	0	L	L	L	L	L	L	L	L	L							T
4			1					0	c	C	c	C	С	C	C	C		С							T
5								0	L	L	L	L	L	L	L	L	L	L							
6								0	L	L	L	L			E	L		o							
7								0	0	- [.	Q	G	L	L	L	Q	Q	Q							-
8		-				-	-	Q	0	L	Е				L	L	-	Г			-				-
							-	Q	Q	L	L	L	L	L	L	L	Q								-
9		-					-	0	0	0	L	L	L	L	L		L	L							-
30		-						-					-								-		-		-
_	_	-	-	-			-	-	-							-	_		_						+
uer.																									
MED NO		1	-	-	-			-	-			-			1							-	1		-

NBS 490

JULY 1956

77.0°N, 69.0°W

JUNE 1956

o3 NBS 490

Index of Tables and Graphs of Ionospheric Data

in CRPL-F148 (Part A)

	Table page	Figure page
Anchorage, Alaska		
August 1956	. 15	42
July 1956	. 16	45
June 1956	. 17	47
Baker Lake, Canada		
May 1956	. 17	48
Casablanca, Morocco		
Octobér 1955	. 19	54
May 1955		55
Churchill, Canada		
May 1956	. 17	49
Djibouti, French Somaliland		
Octóber 1953	. 20	56
Elisabethville, Belgian Congo		
May 1956	. 18	51
Fairbanks, Alaska		
October 1956	. 12	32
September 1956	. 14	40
August 1956	. 15	41
Falkland Is.		
March 1956	. 19	53
Formosa, China		
October 1956	. 13	36
Ft. Monmouth, New Jersey		
October 1956	. 12	34
Godhavn, Greenland		
July 1956	. 16	44
June 1956		46
Graz, Austria		
October 1956	. 12	34
Huancayo, Peru		
October 1956	. 14	38
August 1956	. 15	43
Inverness, Scotland		
April 1956	. 18	52
Kiruna, Sweden		
June 1956	. 16	46
May 1956	. 17	48
Leopoldville, Belgian Congo		
May 1956	. 18	50
April 1952	. 20	57
Lindau/Harz, Germany		
May 1956	. 17	49

Index (CRPL-F148 (Part A), concluded)

	Table page	Figure page
Maui, Hawaii		
Uctober 1956	13	36
Okinawa I.	4.0	00
October 1956	13	35
Oslo, Norway	10	00
October 1056	12	33
October 1956	15	41
Panama Canal Zone	10	47
October 1956	13	37
Point Parrow Alacka	10	31
Point Barrow, Alaska	14	39
September 1956	14	J7
Poitiers, France	19	54
October 1955	17	
May 1955	19	55
Puerto Rico, W. I.	10	0.7
October 1956	13	37
Resolute Bay, Canada	.=	4=
May 1956	17	47
Reykjavik, Iceland		40
September 1956		40
August 1956	15	42
July 1956	16	44
Sao Paulo, Brazil		
May 1956	18	51
Singapore, British Malaya		
April 1956	19	53
Slough, England		
April 1956	18	52
Talara, Peru		
October 1956	14	38
Tananarive, Madagascar		
Octobér 1954	20	56
Thule, Greenland		
September 1956	14	39
July 1956	15	43
June 1956		45
Upsala, Sweden	•	
October 1956	12	33
Washington, D. C.	1-	00
November 1956	12	32
White Sands, New Mexico	1 4	05
October 1956	13	35
Winnipeg, Canada	10	JJ
	18	50
May 1956	10	JU

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request] Daily:

Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau

of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

CRPL-J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following month).

CRPL-Jp. North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL—D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Air Force, TO 31-3-28 series). On sale by Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address cognizant military office.

(Part A). (Part B). CRPL-F. Ionospheric Data.

Solar-Geophysical Data.

Limited distribution. These publications are in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics, and geophysics for the CRPL library.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission:

NBS Circular 462. NBS Circular 465. Ionospheric Radio Propagation.

Instructions for the Use of Basic Radio Propagation Predictions.

Worldwide Radio Noise Levels Expected in the Frequency Band 10 Kilocycles to 100 Mega-NBS Circular 557. cycles.

> These circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

The publications listed above may be obtained without charge from the Central Radio Propagation Laboratory, unless otherwise indicated.

