

INN Hotels

Supervised Learning Classification

Mona Desai

Date: 12/10/2022

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
- Appendix

Executive Summary

• Conclusions, actionable insights:

- \circ This facility seems to be primarily family based hotel with \sim 85% of total bookings
- Cancellations rates are very high ~33% (Though dont have data on Industry/Local baseline)
- Market_segment_type, no_of_special_requests, no_of_family_members, total_days, repeated_guests, arrival_month, columns have big impact on cancellation.
- Most of the data did not give any significant impact to show the reason for cancellation
- All logistic regression models gave the generalized performance on the training and testing sets
- The best regression Model seems to be providing us prediction with 0.70 F1 score
- I chose Pre-pruned tree as the best model since it is giving the most comparable value for F1
 on both training and testing sets

Recommendations:

- Hedge bookings with Lead time over 40d.
- Increase Aviation & Corporate bookings to reduce cancellations
- Collect data on reasons for cancellations
- Incentivize repeat customers as they tend to cancel less
- Lead_time, market_segment_type_online, number_of_special_requests, avg_price_per_room are the most important features to predict the cancellation. Keep a keen eye on these features

Great Learning

Business Problem Overview and Solution Approach

Problem

- High rate of booking cancellations
- Finding out the best Logistic Regression Model which could predict cancellation with high accuracy and repeatability

Solution approach / methodology

- Exploratory Data Analysis
- Model Building Logistic Regression, Removing Multicollinearity, Optimal Threshold
 - Analyzing Odds and coefficients
 - Applying confusion matrix, AUC-ROC curve, Recall-Precision Curve
 - Best F1 value for Train and Test sets
- Model Building Decision Tree
 - Pre and Cost complexity Pruning
 - Applying Confusion Matrix
 - F1 score Vs. Alpha
 - Compare Accuracy, Precision, Recall, F1 values for Train and Test sets

EDA Results

Key results from EDA

- The Dataset contains different attributes of customer's booking details
- The Data in the dataset
 - Collected in year 2017-2018
 - 36275 Rows
 - 19 Columns
- 14 Numerical, 5 Categorical columns with no missing or duplicate values
- Statistical Summary suggests a lot of variations in Data for each Numerical columns
- lead_time ranges 0-443 days, shows a huge variation.
- o avg_price_per_room ranges 0 540 euros.
- Booking_ID contains the unique value

Observation from Univariate Analysis

- lead_time is heavily right skewed.Average lead_time is 85 days
- avg_price_per_room has lots of outliers and is right skewed
- Some customers paids very high price for the booking. They could be traveling in the prime season or staying for a longer periods of time

Observation from Univariate Analysis continued..

- 545 (~2%) reservations were made "0" avg_price_per_room. 354 "complementary and 191
 "Online" market_segment_type
- 72% had 2 adults and 93% bookings had no childrens
- 97% bookings did not required car parking
- 77% bookings had type_of_meal_plan 1
- 64%: online, 29%: offline, ~6%: Corporate, 1% Complementary, 0.3%: Aviation bookings under market_segment_type
- 11885/36275 (~33%) bookings were cancelled. That is really a lot.

Insights and Observation from Bivariate Analysis

- Average price through through 5 segments lies between 75 and 110 Euros.
- Aviation segments have no outliers.
- Bookings from online, offline and corporate type has higher price than the average price.
- Cancellations from those segments could cost a lot to the hotel

• Insights and Observation from Bivariate Analysis continued..

- Highest cancellations were from online bookings
- Online Booking

Average cost: 110 Euros

75% of the online booking cost: ~200 Euros

Highest cost: ~375.

Second highest cancellations were from offline bookings costs the second most loss.

Insights and Observation from Bivariate Analysis continued...

- The most cancellations has happened from the bookings where there were no special requests were made.
- 75% of the bookings costs for online range 75-375 euros
- No Cancellations from the bookings where 4-5 special requests were made

• Insights and Observation from Bivariate Analysis continued..

- ~115 euros avg_price_per_room is for those rooms whose booking is cancelled
- ~90 euros avg_price_per_room is for those rooms whose booking is not cancellation
- Average lead_time is ~125 days for the cancelation Vs ~40 days for non cancelation
- Repeated Guests are hardly cancelling the booking Vs. New guests.
- Reservations made for more than 8 days are not cancelled
- Majority cancelled reservations are made for 3 and 4 days
- Families having 4-5 members tend to cancel less.
- ~40% bookings were only for one night.
- Length of stay for 3-4 nights cancel the most.
- August, September, October are the busiest months. Probably because Portugal has a beautiful weather during those months
- Room costs more than double in the months of May-September. October and April has similar price range December-February months has the least costs and so are the cancellations.

Data Preprocessing

Duplicate value check

The dataset has duplicate values after dropping the column with the unique "Booking_ID".
 However we do not need to take any actions for that

Missing value treatment

There is no missing values

Outlier check (treatment if needed)

- There are quite a few outliers in the data.
- However, we will not treat them as they are proper values

Feature engineering

 We drop the column with the unique "booking_id" because it will not have impact on the dependent variable

Data Preprocessing continued..

Data preparation for modeling

- "booking_status" is the dependent categorical variable.
- We encoded canceled booking to "1" and not_canceled to "0" under the column "booking_status"
- o encode "categorical" data
- Create dummies for the categorical data
- To build the model on the train set, split the data into train and test sets in 70:30 part
- Build the logistic regression model using the data from the train set

Model Performance Summary

• Overview of the final ML model and its parameters

- Built three different models using "Default Threshold (0.5)", "0.37 Threshold", "0.42 Threshold"
- Almost all the three models are performing well on both training and test data without the problem of overfitting
- The model with the 0.37 threshold gives the best F1 scores, that's why it can be selected as the final model
- Used Accuracy, Recall, Precision and F1 score to measure the accuracy of the model

Summary of most important features used by the ML model for prediction

- Logistic Regression and odds ratio
- VIF and P value
- Confusion matrix
- AUC-ROC curve and Precision-Recall Curve
- Optimal Threshold

Model Performance Summary continued...

- Summary of key performance metrics for training and test data of all the models in tabular format for comparison
 - The model with the 0.37 threshold gives the best F1 scores, that's why it can be selected as the final model
 - Training set performance comparison

Testing performance comparison:					
	Logistic Regression-default Threshold (0.5) Logistic Regression-0.37 Threshold	Logistic Regression-0.42 Threshold		
Accuracy	0.8034	5 0.79555	0.80345		
Recall	0.7035	0.73964	0.70358		
Precision	0.6935	3 0.66573	0.69353		
F1	0.6985	2 0.70074	0.69852		

Test set performance comparison

Training performance comparison:						
	Logistic Regression-default Threshold	Logistic Regression-0.37 Threshold	Logistic Regression-0.42 Threshold			
Accuracy	0.80545	0.79265	0.80132			
Recall	0.63267	0.73622	0.69939			
Precision	0.73907	0.66808	0.69797			
F1	0.68174	0.70049	0.69868			

Model Building - Logistic Regression

- Please mention regarding the tests conducted to check the assumptions of Logistic Regression
 - P-value analysis Removed below columns as they had high values (> .5)
 - arrival_date, num_of_previous_booking_not_cancelled, meal_plan_3, room_type_3, market_segment_type_complimentory, market_segment_type_online.
 - VIF after removing high P-value, VIF values of all remaining columns were ~1
- Interpret the results based on coefficients and odds
 - <u>Coefficients</u>
 - Increase in positive coefficient of Lead_time, no_of_children, no_of_adults will increase the chance of the booking being cancelled
 - Increase in negative coefficient no_of_special_requests, repeated_guetsts, required_car_parking_space will decrease the chance of cancellation

Great Learning

Model Building - Logistic Regression continued...

- Interpret the results based on coefficients and odds
 - o Odds
 - Holding all other features constant a 1 unit change in no_of_special_request will decrease the odds of a booking beling cancelled ~0.22 times or a ~77%
 - Holding all other features constant a 1 unit change in required_car_parking_space will decrease the odds of a booking beling ~0.20 times or ~80%
- Comment on the model performance
 - Almost all the three models are performing well on both training and test data without the problem of overfitting
 - The model with the 0.37 threshold gives the best F1 scores, that's why it can be selected as the final model
- Comment on the improvement in the model performance by changing the classification threshold
 - The model with a threshold 0.37 is giving the best F1 score changing from the default threshold 0.5 and then tried one more threshold at 0.42

Model Building - Decision Tree

- Please mention the model building steps of Decision Tree
 - Encode the Categorical Features and determine the Decision column
 - Divide Dataset into Train and Test sets
 - Build the Baseline Model
 - Model evaluation setting prediction
 - FN-Predicting a customer will not cancel their booking but in reality, the customer will cancel their booking.
 - FP-Predicting a customer will cancel their booking but in reality, the customer will not cancel their booking.
 - Checking the Confusion Matrix and Model performance on Train and Test set
 - Checking the important features of the dataset which could impact the dependent variable

Model Building - Decision Tree continued...

- Please mention the model building steps of Decision Tree continued..
 - Pre-Pruning
 - Checking the Confusion Matrix and Model performance on Train and Test set
 - Visualizing the Decision Tree
 - Checking the rules and important features
 - Cost Complexity Pruning
 - F1 Score Vs. Alpha for train and test sets

Comment on the model performance

- Among all three baseline, pre-pruning and post-pruning trees, the pre-pruning model has the best comparable F1 score for both Test and Train sets
- Accuracy, Recall and precision value matches the best too for Pre-pruning model.

- Comment on the model performance continued..
 - Training performance Comparison

Training performance comparison:						
	Decision Tree sklearn	Decision Tree (Pre-Pruning)	Decision Tree (Post-Pruning)			
Accuracy	0.87118	0.83497	0.86879			
Recall	0.81175	0.78336	0.85576			
Precision	0.79461	0.72758	0.76614			
F1	0.80309	0.75444	0.80848			

Testing performance Comparison

Testing performance comparison:						
	Decision Tree	sklearn	Decision Tree	(Pre-Pruning)	Decision Tree	(Post-Pruning)
Accuracy		0.87118		0.83497		0.86879
Recall		0.81175		0.78336		0.85576
Precision		0.79461		0.72758		0.76614
F1		0.80309		0.75444		0.80848

- Decision tree models with pre-pruning and post-pruning both are giving equally high recall scores on both training and test sets.
- However, we will choose the pre pruned tree as the best model since it is giving the most comparable value for f1

Model Performance Evaluation and Improvement - Decision Tree Continued MER AHEAD

Features Importance

Lead_time, market_segment_type_online, number_of_special_requests, avg_price_per_room are the most important features to predict the cancellation

Model Performance Evaluation and Improvement - Decision Tree Continued WER AHEAD

Decision rules

- From the Decision Tree (Pre-pruned) Lead_time>151.50,avg_price_per_room>100.4,arrival_month
 =11.50,number_of_special_requests< =2.50, then the reservation is most likely going to be cancelled
- The Hotel should keep a keen eye for these values in order to know if the booking is going to be cancelled