CPA Secure Encryption Scheme

CPA Attack:

Let us assume the adversary has access to the encryption scheme. The adversary knows the messages m_0 and m_1 . The adversary also knows that the encrypted message m_b is one of m_0 and m_1 . Using this knowledge, the adversary tries to predict which text was chosen for encryption. Such attac is known as Chosen Plain text Attack.

CPA Secure Encryption:

Let F be a Pseudo Random Function which takes the bit of length n and outputs the bit of length n.

Key Generation: Generate a bit sequence of length n{0,1} uniformly at random and output it as ke.

Message Encryption: On input a message of length $n\{0,1\}$, and a key of length $n\{0,1\}$, choose r of length $n\{0,1\}$ uniformly at random and output the cipher text.

$$c := \langle r, F_k(r) \oplus m \rangle.$$

Message Decryption: On input a key of length n and a cipher text c=<r,s> ,output the plain text message.

$$m := F_k(r) \oplus s$$
.

For a message of variable length, the message is divided into blocks of size n and cipher text is calculated for each block. The final cipher will be the combination of block ciphers. There are several modes of operation for this purpose.

1. Cipher Block Chaining

2. Output Feedback Mode

3. Randomized Counter Mode

