Summarizing Distributions of Latent Structures

David B. Dahl: Brigham Young University Peter Müller: University of Texas at Austin

2018 ISBA World Meeting Edinburgh, UK June 29, 2018

Motivation

- In a typical Bayesian analysis, considerable effort is placed on "fitting the model" (e.g., sampling from the posterior) but this is only half of the inference problem.
- Meaningful inference also requires summarizing the posterior distribution of the parameters of interest.
- Posterior summaries are important for subsequent analyses or in communicating the results to a diverse audience.
- If the parameters of interest live in \mathbb{R}^n , common posterior summaries are **means** and **medians**.
- Summarizing posterior distributions of parameters with complicated structure is more challenging, e.g., the "average" network in the network distribution is not easily defined.
- We consider summarizing distributions of latent structures, e.g., clusterings, feature allocations, and networks.

Overview

- We present the sequentially-allocated latent structure optimization (SALSO) method to minimize an objective criterion to obtain a point estimate based on a collection of randomly-sampled clusterings/partitions.
- SALSO is a stochastic search method involving a series of micro optimizations.
- Several objective criterion can be used, including squared error loss, absolute error loss, Binder (1978) loss, or the lower bound of the variation of information loss (Wade & Ghahramani 2018), respectively.

Setting the Stage

Example: First Clustering in MCMC Output

Clustering in *cluster label* notation:

$$c^{(1)} = (1, 2, 1, 2, 2)$$

Clustering in set *partition* notation:

$$\pi^{(1)} = \{\{1,3\}, \{2,4,5\}\}\$$

Clustering as *pairwise allocation matrix* (i.e., adjacency matrix):

$$A(c^{(1)}) = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Example: Second Clustering in MCMC Output

Clustering in *cluster label* notation:

$$c^{(2)} = (1, 1, 1, 2, 3)$$

Clustering in set *partition* notation:

$$\pi^{(2)} = \{\{1, 2, 3\}, \{4\}, \{5\}\}\$$

Clustering as *pairwise allocation matrix* (i.e., adjacency matrix):

$$A(c^{(2)}) = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: Third Clustering in MCMC Output

Clustering in *cluster label* notation:

$$c^{(3)} = (1, 1, 2, 1, 2)$$

Clustering in set *partition* notation:

$$\pi^{(3)} = \{\{1, 2, 4\}, \{3, 5\}\}\$$

Clustering as *pairwise allocation matrix* (i.e., adjacency matrix):

$$A(c^{(3)}) = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Example: Averaging the MCMC Clustering Output

Averaging the vector of cluster labels **does not make sense**.

Averaging the set partitions is **not defined**.

Averaging pairwise allocation matrices does make sense:

$$\bar{A} = \frac{1}{B} \sum_{b=1}^{B} A(c^{(b)}) = \begin{bmatrix} 1 & 2/3 & 2/3 & 1/3 & 0 \\ 2/3 & 1 & 1/3 & 2/3 & 1/3 \\ 2/3 & 1/3 & 1 & 0 & 1/3 \\ 1/3 & 2/3 & 0 & 1 & 1/3 \\ 0 & 1/3 & 1/3 & 1/3 & 1 \end{bmatrix}$$

 \bar{A} is the estimated **expected pairwise allocation matrix (EPAM)** because it's (i,j) element estimates $\mu_{ij} = \Pr(c_i = c_j \mid \text{data})$.

More Realistic Example

iris.clusterings[1,]

Suppose MCMC output contains 1,000 posterior samples for the partition of 150 observations (encoded with cluster labels), e.g.:

What is the Bayes estimate of the partition from these 1,000 samples?

Loss Functions and Bayes Estimators

- A Bayes estimator minimizes the posterior expected value of a loss function.
- The 0-1 loss function:

$$L(c,\hat{c}) = I\{c = \hat{c}\}\$$

yielding the maximum a posteriori (MAP) clustering:

$$\operatorname{argmax}_{\hat{c}} \, p(\hat{c} \mid \operatorname{data})$$

- Equal loss for clusterings that differs by one label and a clustering that differs by many labels.
- Mode may not represent well the "center" of a distribution.

Loss Functions and Bayes Estimators

Dahl (2006) suggested a least-squares criterion:

$$\operatorname{argmin}_{\hat{c}} \sum_{i=1}^{n} \sum_{j=1}^{n} (A(\hat{c})_{ij} - \mu_{ij})^2$$

 Lau & Green (2007) studied the Binder (1978) loss function in a Bayesian nonparametric context:

$$L(c, \hat{c}) = \sum_{i < j} I\{c_i = c_j\} I\{\hat{c}_i \neq \hat{c}_j\} + I\{c_i \neq c_j\} I\{\hat{c}_i = \hat{c}_j\}$$

yielding the clustering:

$$\operatorname{argmin}_{\hat{c}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{I}\{\hat{c}_i = \hat{c}_j\} (0.5 - \mu_{ij})$$

 Dahl & Newton (2007) noted that minimizing the posterior expected loss of Binder (1978) is equivalent to the least-squares criterion in Dahl (2006).

Loss Functions and Bayes Estimators

 Wade & Ghahramani (2018) used the variation of information (VI) of Meilă (2007) as a loss function, yielding the clustering:

$$\begin{aligned} \operatorname{argmin}_{\hat{c}} \sum_{i=1}^n \bigg(\log \bigg(\sum_{j=1}^n \mathrm{I} \{ \hat{c}_j = \hat{c}_i \} \bigg) \\ &- 2 \mathrm{E} \bigg(\log \bigg(\sum_{j=1}^n \mathrm{I} \{ \hat{c}_j = \hat{c}_i, c_j = c_i \} \bigg) \bigg| \operatorname{data} \bigg) \bigg) \end{aligned}$$

which is computationally expensive. Instead, they suggest the clustering that minimizes the **lower bound** of the posterior expected value of the variation of information loss (VI.Ib):

$$\mathrm{argmin}_{\hat{c}} \sum_{i=1}^n \bigg(\log \bigg(\sum_{j=1}^n \mathrm{I}\{\hat{c}_j = \hat{c}_i\} \bigg) - 2 \log \bigg(\sum_{j=1}^n \mathrm{I}\{\hat{c}_j = \hat{c}_i\} \mu_{ij} \bigg) \bigg)$$

 Paulon, Trippa, Müller (2018) propose a scientifically-tailored loss function.

Monte Carlo Estimate the Posterior Expected Loss

- For a given \hat{c} , both the Binder and the lower bound of the VI loss are based on the μ_{ij} 's.
- The (i, j) elements of A are Monte Carlo estimates of the μ_{ij}'s, leading to a Monte Carlo estimate of the posterior expected loss.
- But having a way to estimate the posterior expected loss for a given \hat{c} does *not* give a search algorithm for its minimization.

Methods for Optimization Given a Loss Function

- Exhaustive search. Infeasible for even moderate n, e.g., B(15)=1,382,958,545.
- Round the estimated expected pairwise allocation matrix (EPAM). May not lead to a clustering, e.g.:

$$\bar{A} = \begin{bmatrix} 1 & 2/3 & 2/3 & 1/3 & 0 \\ 2/3 & 1 & 1/3 & 2/3 & 1/3 \\ 2/3 & 1/3 & 1 & 0 & 1/3 \\ 1/3 & 2/3 & 0 & 1 & 1/3 \\ 0 & 1/3 & 1/3 & 1/3 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- Medvedovic and Sivaganesan (2002) selected a clustering using hierarchal clustering using $1-\bar{A}$ as the distance matrix.
- Dahl (2006) selected the clustering in the MCMC output that minimizes the criterion.

Methods for Optimization Given a Loss Function

- More sophisticated search algorithms:
 - Lau & Green (2007) proposed a heuristic item-swapping algorithm based on binary integer programming to minimize the posterior expected Binder loss.
 - Wade & Ghahramani (2018) proposed a greedy search algorithm based on neighborhoods defined by the Hasse diagram, which can be used for Binder or VI.lb loss.
- We propose the sequentially-allocated latent structure optimization (SALSO) method to perform a series of micro optimizations to stochastically search for the minimizer of the posterior expected value of Binder or VI.Ib loss.

Sequentially-Allocated Latent Structure Optimization

Sequentially-Allocated Latent Structure Optimization

- The SALSO method is applicable for many types of latent structure, including clusterings, feature allocations, & networks.
- The steps to SALSO are:
 - 1. Starting for an empty structure, build up a full structure by sequentially optimizing the allocation of items.
 - Improve the full structure by a series of one-at-a-time optimizations.
 - Do the above steps many times for randomly-selected permutations and choose the structure that minimizes the posterior expected loss.
- The random order in which items are allocated is not necessarily their order in the dataset; the permutation $\sigma = (\sigma_1, \dots, \sigma_n)$ of $\{1, \dots, n\}$ gives the sequence in which the n items are allocated.

Illustration of SALSO Method

- To illustrate the SALSO method, consider clustering 5 items.
- For simplicity, suppose $\sigma = (\sigma_1, \dots, \sigma_5) = (1, 2, 3, 4, 5)$.
- Recall the steps to SALSO are:
 - 1. Build up a full structure from an empty structure
 - 2. Improve the full structure
 - 3. Do it for many random permutations (not just $\sigma = (1, 2, 3, 4, 5)$)

Clustering: ~ ~ ~ ~

```
Clustering: ? ~ ~ ~ Candidates for ? are: 1
```

Clustering: 1 ~ ~ ~

```
Clustering: 1 ? ~ ~ ~ Candidates for ? are: 1, 2
```

Clustering: 1 1 ~ ~ ~

Clustering: 1 1 ? ~ ~ Candidates for ? are: 1, 2

Clustering: 1 1 2 \sim \sim

Clustering: 1 1 2 ? \sim Candidates for ? are: 1, 2, 3

Clustering: 1 1 2 3 ~

Clustering: 1 1 2 3 ? Candidates for ? are: 1, 2, 3, 4

Clustering: 1 1 2 3 3

Clustering: 1 1 2 3 3

Clustering: ? 1 2 3 3 Candidates for ? are: 1, 2, 3, 4

Clustering: 2 1 2 3 3

Clustering: 2 ? 2 3 3 Candidates for ? are: 1, 2, 3

Clustering: 2 1 2 3 3

Clustering: 2 2 ? 3 3 Candidates for ? are: 1, 2, 3

Clustering: 2 2 2 3 3

Clustering: 2 2 2 ? 3 Candidates for ? are: 1, 2, 3

Clustering: 2 2 2 1 3

Clustering: 2 2 2 1 ? Candidates for ? are: 1, 2, 3

Clustering: 2 2 2 1 3

Clustering: 2 2 2 1 3 Scan completed

Clustering: 2 2 2 1 3 Put in canonical form

Clustering: 1 1 1 2 3

Clustering: 1 1 1 2 3 Any change from start of scan?

Clustering: 1 1 1 2 3 $\,$ Yes, so perform another scan

Step 3: Do It For Many Permutations

- The permutation many lead to a local minimizer.
- Improve the chances of finding the global minimizer by repeating Step 1 and 2 for many random permutations.
 - This is embarrassingly parallel.
- Select the structure the minimizes the posterior expected loss among all those good structures obtained by using many random permutations.

Review of the Steps of the SALSO Method

- 1. Build up a full structure from an empty structure
- 2. Improve the full structure
- 3. Do it for many random permutations

Software and Empirical Comparison

Software Implementation

1 2 3 ## 50 42 58

SALSO is implemented in the R package "sdols" available on CRAN.

```
library(sdols)
dim(iris.clusterings)
## [1] 1000
            150
epam <- expectedPairwiseAllocationMatrix(iris.clusterings)</pre>
estimate <- salso(epam, nCandidates=100,
                   budgetInSeconds=20, maxSize=3)
table(estimate)
## estimate
```

49

plot(confidence(estimate, epam))

Comparison Methodology

- Various optimization methods:
 - Hierarchal clustering of Medvedovic and Sivaganesan (2002) using average or complete linkage [mcclust]
 - Draws method of Dahl (2006) [sdols, mcclust]
 - Linear programming method of Lau & Green (2007) [mcclust]
 - Greedy search by Wade & Ghahramani (2018) [mcclust.ext]
 - SALSO method [sdols]
- Loss functions
 - Binder loss (Binder 1978)
 - Lower bound of the variation of information loss (Wade & Ghahramani 2018)
- Datasets: Three sets of MCMC output from a variety of models with 1,000 samples each.

Iris

Example 1: Ewens Pitman attraction distribution (Dahl, Day, Tsai 2017) applied to iris data.

Method	Binder	Time
SALSO (12)	3493.16	0.039 seconds
SALSO (100)	3493.16	0.218 seconds
M & S (avg)	3497.01	0.055 seconds
W & G	3500.12	3.8 minutes
M & S (comp)	3512.90	0.055 seconds
L & G	3560.01	2.7 minutes
Draws	3607.48	0.085 seconds

Iris

Example 1: Ewens Pitman attraction distribution (Dahl, Day, Tsai 2017) applied to iris data.

Method	VI.lb	Time
M & S (comp)	1.3246	0.026 seconds
M & S (avg)	1.3246	0.026 seconds
SALSO (12)	1.3246	0.033 seconds
SALSO (100)	1.3246	0.197 seconds
W & G	1.3246	7.9 minutes
Draws	1.3320	0.102 seconds
L & G	-	-

Gaussian_sPPM2

Example 2: Gaussian likelihood with a spatial PPM (Page & Quintana 2016) prior.

Method	Binder	Time
SALSO (12)	7509.7	0.843 seconds
SALSO (100)	7509.7	7.033 seconds
L & G	7509.7	8.2 hours
M & W (comp)	8060.7	1.615 seconds
W & G	8365.6	18.8 hours
M & S (avg)	9409.1	1.604 seconds
Draws	10464.5	0.765 seconds

Gaussian_sPPM2

Example 2: Gaussian likelihood with a spatial PPM (Page & Quintana 2016) prior.

Method	VI.lb	Time
M & S (avg)	2.7543	0.700 seconds
SALSO (12)	2.8241	3.94 seconds
M & W (comp)	2.8526	0.715 seconds
SALSO (100)	2.8633	26.61 seconds
Draws	3.7788	1.176 seconds
W & G	4.6411	36.3 hours
L & G	_	-

$Bivariate Gaussian _sPPM$

Example 3: Bivariate Gaussian likelihood with a spatial PPM (Page & Quintana 2016) prior.

Method	Binder	Time
SALSO (12)	46270.74	0.937 seconds
SALSO (100)	46270.74	7.709 seconds
L & G	46271.21	9.8 hours
M & S (avg)	46724.64	1.609 seconds
M & S (comp)	47844.03	1.641 seconds
Draws	53182.66	1.005 seconds
W & G	57761.10	24.1 hours

$Bivariate Gaussian _sPPM$

Example 3: Bivariate Gaussian likelihood with a spatial PPM (Page & Quintana 2016) prior.

Method	VI.lb	Time
SALSO (100)	1.5620	14.182 seconds
SALSO (12)	1.5649	1.552 seconds
M & S (comp)	1.5829	0.673 seconds
M & S (avg)	1.5858	0.733 seconds
Draws	1.9108	0.555 seconds
W & G	7.2197	41.6 hours
L & G	-	-

Wrapping Up

Constrained Optimization

- We may want to constrain the optimization.
 - e.g.: For the sake of interpretation, it may be helpful to limit the number of clusters or features.
- Solution: Tweak the loss function to give inifinite loss for violate constraint
 - e.g.: Infinite loss for clusterings with more clusters than desired.
- Implementation: During micro optimization, never create a structure that violates the constraint.
 - e.g.: Don't consider allocations that create clusters beyond the desired maxSize.

Suppose we want at most three clusters.

Clustering: ? 1 2 3 3 Candidates for ? are: 1, 2, 3

Way to Improve the Method?

Modified method:

- 1. Build up a full structure from an empty structure
 - Periodically reallocate items (a la Step 2) in the as-of-yet incomplete structure.
- 2. Improve the full structure
- 3. Do it for many random permutations

Conclusion

- We presented the sequentially-allocated latent structure optimization (SALSO) method to minimize an objective criterion to obtain a point estimate based on a collection of randomly-sampled latent features.
- SALSO is a stochastic search method involving a series of micro optimizations.
- Status:
 - Well-developed for clusterings. Implemented in the "sdols" package on CRAN.
 - Initial version for feature allocations in the "sdols" package.
 - Want to apply to other structures, e.g., networks.
- Can we pick a representative observation?
- Summarizes other than point estimates?