

#### Mühazirə 10: Klasterləşdirmə metodları

tex.f.d.,dos. Yadigar İmamverdiyev 2021, payız semestri 01.12.2021



#### Mühazirənin planı

- Giriş
- Klasterləşdirmə metodlarının təsnifatı
- K-means metodu
- İyerarxik klasterləşdirmə
- Klasterləşdirmənin keyfiyyətinin qiymətləndirilməsi
- Bu mühazirə təqdimatı hazırlanarkan İnternetda alyetar çox sayda taqdimatdan istifada edilmişdir. Taassüf ki, onların har birinin müallifini qeyd etmak mümkün olmadı.
- Bu müəlliflərin hər birinə dərindən təşəkkür edirəm.



#### Klasterləşdirmənin ümumi tərifi

Klasterləşdirmə alqoritmləri öz xarakteristikalarına görə **yaxın obyektləri** bir klasterdə, **uzaq obyektləri** isə müxtəlif klasterlərdə yerləşdirməklə obyektlərin verilmiş çoxluğunu **qruplara** (klasterlərə) bölür.



#### Klasterləşdirmənin məqsədləri

- Verilənlərin sonrakı emalını asanlaşdırmaq, obyektlər çoxluğunu oxşar obyektlər qruplarına ayırmaq və hər bir qrup ilə ayrılıqda işləmək (klassifikasiya, reqresiya, proqnozlaşdırma məsələləri);
- Hər bir klasterdən bir nümayəndə saxlamaqla verilənlərin həcmini azaltmaq (verilənlərin sıxılmasl məsələsi);
- Klasterlərin heç birinə yaxın düşməyən qeyri-tipik obyektləri ayırmaq (birsinifli klassifikasiya məsələsi)
- Obyektlər çoxluğunun iyerarxiyasını qurmaq (taksonomiya məsələsi).



#### Klaster strukturlarının tipləri



Klasterlərarası məsafələr, bir qayda olaraq, klasterdaxili məsafələrdən böyükdür.



Lentşəkilli klasterlər



Mərkəzi olan klasterlər



#### Klaster strukturlarının tipləri



Klasterlər körpülərlə birləşə bilərlər.

Klasterlər çox seyrək yerləşmiş obyektlərin seyrək fonu üzərində yerləşə bilərlər.

Klasterlər kəsişə bilərlər.



#### Klaster strukturlarının tipləri



Klasterlər oxşarlığa görə deyil, müntəzəmliyin digər növünə görə yarana bilər.

Klasterlər, ümumiyyətləyə, olmaya bilərlər.

- Hər bir klasterləşdirmə metodunun öz məhdudiyyətləri var və klasterlərin yalnız müəyyən tiplərini ayırırlar.
- "Klaster strukturunun tipi" anlayışı da metoddan asılıdır və formal tərifi yoxdur.



#### Məsələnin formal qoyuluşu

- Test nümunələrinin  $X = \{x_1, x_2, ..., x_n\}$  toplusu və nümunələr arasında *məsafə funksiyası* var.
- X-i kəsişməyən altçoxluqlara (klasterlərə) elə bölmək tələb edilir ki, hər bir altçoxluq oxşar obyektlərdən ibarət olsun, müxtəlif altçoxluqların obyektləri isə əhəmiyyətli dərəcədə fərqlənsinlər.



#### Klasterləşdirmə metodlarının təsnifatı

- Bölünmə (Partitioning) əsasında klasterləşdirmə
- İyerarxik klasterləşdirmə
- Sıxlığa əsaslanan klasterləşdirmə (EM, DBSCAN)



#### k-ortalar (k means) metodu



#### k-ortalar metodu (k-means)

Fərz edək ki, obyektlər çoxluğu artıq müəyyən qaydada K qrupa (klasterə) bölünüb,  $C_k$  ilə k-ci klasteri işarə edək. Tutaq ki, C(k) - k-cı obyektin aid olduğu qrupun nömrəsinə bərabərdir.

k- $c_l$  klasterə aid olan nöqtələr sisteminin ağırlıq mərkəzini  $m_k$  ilə işarə edək:

$$m_k = \frac{1}{N_k} \sum_{x_i \in C_k} x_i, k = 1, ..., K$$

Məqsəd:  $\min_{C,m_k} \sum_{i=1}^n \rho(x_i,m_k)$ 



#### k-ortalar (k means) metodu

- (1) Klasterlərin sayını (*K*) qərarlaşdırıb onların başlanğıc ağırlıq mərkəzlərini təsadüfi seçirik və obyektləri yaxın olduqları mərkəzə uyğun klasterlərə yerləşdiririk.
- ② Klasterlərin  $m_k$  ağırlıq mərkəzlərini yenidən hesablayırıq.
- ③  $x_i$  nöqtəsindən bütün  $m_k$ -lara  $\rho(x_i, m_k)$  məsafələrini hesablayırıq.

- 4 Addım 3-ü bütün  $x_i$ , i=1,...,n obyektləri üçün təkrarlayırıq.
- $\bigcirc$  Əgər heç olmasa, bir  $C_k$  klasteri dəyişirsə, onda  $Addım\ 2$ -yə keçirilir, əks halda klasterləşdirmə prosesi sona çatır.



#### k-ortalar alqoritminə misal (1)

Neçə klasterin olmasını qərarlaşdırırıq. Tutaq ki, *k*=3.



X



#### k-ortalar alqoritminə misal (2)

3 klasterin ağırlıq mərkəzini təsadüfi seçirik.



X



#### k-ortalar alqoritminə misal(3)

Seçilmiş məsafə metrikası ilə məsafələri hesablayırıq. Hər bir nöqtəni yaxın olduğu mərkəzə uyğun klasterə aid edirik.





#### k-ortalar alqoritminə misal (4)

Y

Hər bir klasterin mərkəzini yenidən hesablayırıq və mərkəzin yerini dəyişirik.



X



#### k-ortalar alqoritminə misal (5)

Nöqtələrdən mərkəzlərə məsafələr yenidən hesablanır və mərkəzlərə ən yaxın nöqtələr yenidən paylanır

Sual: Hansı nöqtələr yenidən paylandı?







#### k-ortalar alqoritminə misal (6)



X



#### k-ortalar alqoritminə misal (7)

Y

Klasterlərin ağırlıq mərkəzləri yenidən hesablanır



X



#### k-ortalar alqoritminə misal (8)



klasterlərin ağırlıq mərkəzlərinə köçürülür



#### k-ortalar alqoritminin üstünlükləri

- Sadədir, başa düşüləndir
- Mürəkkəbliyi aşağıdır
  - $M\ddot{u}r \ni kk \ni blik O(nkt)$ , burada t iterasiyaların sayıdır



#### k-ortalar alqoritminin nöqsanları

- Kvadratik meyllərin cəminin qlobal minimumunun tapılmasına zəmanət vermir, lokal minimumlardan biri tapılır
- Nəticə klasterlərin başlanğıc mərkəzlərinin seçilməsindən asılıdır, onların optimal seçimi hələ də məlum deyil.
- Klasterlərin sayını əvvəlcədən bilmək lazımdır.



## Universiteti K-ortalar alqoritminin nöqsanlarının aradan qaldırılması

- (1) Bir neçə təsadüfi klasterləşdirmə edilir: keyfiyyət funksionalına görə ən yaxşısı seçilir.
- $\bigcirc$ Klasterlərin k sayı tədricən artırılır.



#### Medoidlər metodu (k-medoids)

- K-medoids ədədi ortanın əvəzinə hər bir klasterin medianı istifadə edilir.
  - 1, 3, 5, 7, 9-un ədədi ortası: 5
  - 1, 3, 5, 7, 1009 -un ədədi ortası: **205**
  - 1, 3, 5, 7, 1009 -un medianı: **5**
  - Medianın üstünlüyü: ekstremal qiymətlərin təsiri yoxdur



#### Medoidlər metodu (k-medoids)

- Hər bir klasterdə ağırlıq mərkəzlərinin əvəzinə medoid hesablanır.
- Medoid verilənlər çoxluğunun və ya klasterin elə obyektidir ki, digər obyektlərdən ona qədər olan orta məsafə minimaldır.
- Obyektlərin klasterdən klasterə yerdəyişməsi alqoritmi *k*-ortalar alqoritminə analojidir.
- Medoid obyektdir, buna görə bütün obyektlər arasındakı məsafələr matrisini bilmək kifayətdir (üstünlük!)



#### İyerarxik klasterləşdirmə



# İyerarxik klasterləşdirmə (taksonomiya)

- Əsas ideya: aşağı səviyyələrdəki klasterlər yuxarıdakı klasterləri bölməklə alınır.
- Klassifikasiyanın təpəsində bütün obyektləri əhatə edən bir klaster durur.
- Ən aşağı səviyyədə hər birində bir obyekt olan n klaster olur.
- Belə iyerarxik sturukturları kök ağacları (dendroqramlar) şəklində göstərmək əlverişlidir.



#### İyerarxik Klasterləşdirmə





# İyerarxik klasterləşdirmə alqoritmlərinin üstünlüyü

- İyerarxik klasterləşdirmə alqoritmlərinin girişinə klasterlərin sayını vermək lazım deyil.
- Dendroqramın əsasında istifadəçi özü müəyyən səviyyədə onu kəsərək müəyyən sayda klasterlər ala bilər.



### İyerarxik klasterləşdirmə alqoritmlərinin iki sinfi

- İyerarxik klasterləşdirmə alqoritmlərinin iki növü vardır:
  - Aqqlomerativ ("aşağıdan yuxarıya"):
    - Bir elementdən ibarət çoxluqlardan başlayırlar
    - Onlar bütün obyektlər bir klasterdə olana kimi birləşdirilir.
    - Çox geniş yayılmış metoddur.
  - Diviziv ("yuxarıdan aşağıya"):
    - Obyektlər çoxluğu tək elementlərdən ibarət klasterlər alınana kimi rekursiv bölünür.



#### Aqlomerativ metodlar

- Başlanğıc elementlərin ardıcıl birləşdirilməsi və müvafiq olaraq klasterlərin sayının azalması
- Başlanğıcda bütün obyektlər ayrıca klasterlər olur.
- Birinci addımda ən oxşar obyektlər klasterdə birləşdirilir.
- Sonrakı addımlarda birləşdirmə o vaxta kimi davam etdirilir ki, bütün obyektlər bir klaster təşkil etsin.



#### Aqlomerativ metodlar





#### Klasterlər arasındakı məsafə (1)

- Aqlomerativ metodlarda klasterləri birləşdirmək üçün klasterlər arasında məsafə funksiyası müəyyən edilməlidir.
- Üç yanaşma geniş istifadə edilir.





#### Klasterlər arasındakı məsafə (2)

- ① Ən yaxın qonşu məsafəsi:  $D(C_i, C_j) = \min \{ \rho(x, z) | x \in C_i, z \in C_j \}$
- 2 Uzaq qonşu məsafəsi:

$$D(C_i, C_j) = \max \{ \rho(x, z) | x \in C_i, z \in C_j \}$$

3 Ortalama qrup məsafəsi:

$$D(C_{i}, C_{j}) = \frac{1}{|C_{i}||C_{j}|} \sum_{x \in C_{i}} \sum_{z \in C_{j}} \rho(x, z)$$









#### Aqlomerativ metodlar

- *n* verilənlər obyekti verilib.
- İyerarxik aqlomerativ klasterləşdirmə alqoritmi aşağıdakı addımlarla həyata keçirilir:
- **Addım 1.** n verilənlər obyekti üçün məsafələr matrisi hesablanır
- Addım 2. Hər bir obyekt klaster kimi götürülür
- Addım 3. Klasterlərin sayı 1 olana kimi təkrarlanır
  - Addım 3.1. İki ən yaxın klaster birləşdirilir
  - Addım 3.2. Məsafə matrisi yenilənir



### İyerarxik aqlomerativ klasterləşdirmə - Misal

Misal. 5 obyekt verilib:



#### Məsafə Matrisi

|                  | $\boldsymbol{A}$ | B      | C    | D    | $\boldsymbol{\mathit{E}}$ |
|------------------|------------------|--------|------|------|---------------------------|
| A                | 0                | (0.71) | 2.69 | 3.20 | 6.4                       |
| В                | 0.71             | 0      | 2.06 | 2.6  | 5.7                       |
| C                | 2.69             | 3.2    | 0    | 1    | 3.9                       |
| D                | 3.20             | 2.6    | 1    | 0    | 3.2                       |
| $\boldsymbol{E}$ | 6.4              | 5.7    | 3.9  | 3.2  | 0                         |





# **Iyerarxik** aqlomerativ klasterləşdirmə — Misal Single Link(age) funksiyasından istifadə edərək, məsafə matrisini yeniləyirik.



# **İyerarxik Aqlomerativ** Klasterləşdirmə — Misal Single Linkage funksiyasından istifadə edərək, məsafə matrisini yeniləyirik.





### İyerarxik aqlomerativ klasterləşdirmə – Misal

Dendrogram



- 1. Başlanğıcda 5 klaster var.
- 2. A və B klasterlərini 0.71 məsafəsində (A, B) klasterində birləşdiririk.
- 3. C və D klasterlərini 1 məsafəsində (C, D) klasterində birləşdiririk.
- 4. (A,B) və (C, D) klasterlərini 2.06 məsafəsində ((A, B), (C, D)) klasterində birləşdiririk.
- 5. ((A, B), (C, D)) və E klasterlərini 3.2 məsafəsində birləşdiririk.
- 6. Axırıncı klasterə bütün obyektlər daxildir, bununla da hesablamalar dayanır.



### İyerarxik aqlomerativ klasterləşdirmə – Misal

• Klasterlərin sayını necə qərarlaşdırırıq? Ağacı haradasa kəsirik.





### Diviziv ("yuxarıdan aşağıya") metodlar

Ağac kökdən yarpaqlara doğru qurulur.

#### Yanaşmalardan biri:

- ①Birinci addımda obyektlər çoxluğuna hər hansı alqoritm( ağırlıq mərkəzləri, medoidləri) tətbiq edərək bu çoxluğu iki klasterə bölürlər
- 2 Sonra alınmış klasterlərdən hər birini bölürlər və s.



# Klasterləşdirmənin keyfiyyətinin qiymətləndirilməsi



# Klasterləşdirmənin keyfiyyətinin qiymətləndirilməsi

- Vahid (hamılıqla qəbul edilən, bütün hallarda tətbiq edilə bilən) qiymətləndirmə metodu yoxdur.
- Qiymətləndirmə nəzərdə tutur ki, toplu (və ya toplunun bir hissəsi) insan tərəfindən işarələnib.
  - Klasterlər klasterləşdirmənin nəticəsidir.
  - Siniflər insan tərəfindən işarələnmənin nəticəsidir.



#### Səhvlər matrisi (Confusion matrix)

- n = obyektlarin say
- $m_i$  = i klasterində obyektlərin sayı
- $c_i = j sinfində obyektlərin sayı$
- $n_{ij}$ = i klasterində j sinfindən olan obyektlərin sayı
- $p_{ij} = n_{ij}/m_i$ = i klasterində olan obyektin j sinfinə mənsub edilməsi ehtimalı

|           | Class 1  | Class 2  | Class 3  |       |
|-----------|----------|----------|----------|-------|
| Cluster 1 | $n_{11}$ | $n_{12}$ | $n_{13}$ | $m_1$ |
| Cluster 2 | $n_{21}$ | $n_{22}$ | $n_{23}$ | $m_2$ |
| Cluster 3 | $n_{31}$ | $n_{32}$ | $n_{33}$ | $m_3$ |
|           | $c_1$    | $c_2$    | $c_3$    | n     |

|           | Class 1  | Class 2  | Class 3  |       |
|-----------|----------|----------|----------|-------|
| Cluster 1 | $p_{11}$ | $p_{12}$ | $p_{13}$ | $m_1$ |
| Cluster 2 | $p_{21}$ | $p_{22}$ | $p_{23}$ | $m_2$ |
| Cluster 3 | $p_{31}$ | $p_{32}$ | $p_{33}$ | $m_3$ |
|           | $c_1$    | $c_2$    | $c_3$    | n     |



#### Metrikalar

|           | Class 1  | Class 2  | Class 3  |       |
|-----------|----------|----------|----------|-------|
| Cluster 1 | $p_{11}$ | $p_{12}$ | $p_{13}$ | $m_1$ |
| Cluster 2 | $p_{21}$ | $p_{22}$ | $p_{23}$ | $m_2$ |
| Cluster 3 | $p_{31}$ | $p_{32}$ | $p_{33}$ | $m_3$ |
|           | $c_1$    | $c_2$    | $c_3$    | n     |

#### Entropiya:

- i klasterinin entropiyası:  $e_i = -\sum_{j=1}^L p_{ij} \log p_{ij}$ 
  - Müntəzəm paylandıqda ən yüksəkdir, bir sinif olduqda sıfra bərabərdir
- Bütün klasterlərin entropiyası:  $e = \sum_{i=1}^{K} \frac{m_i}{n} e_i$
- Saflıq (ing. Purity):
  - i klasterinin saflığı:  $p_i = \max_j p_{ij}$
  - Bütün klasterlərin saflığı:  $p(C) = \sum_{i=1}^K \frac{m_i}{n} p_i$



#### Metrikalar

|           | Class 1  | Class 2  | Class 3  |       |
|-----------|----------|----------|----------|-------|
| Cluster 1 | $p_{11}$ | $p_{12}$ | $p_{13}$ | $m_1$ |
| Cluster 2 | $p_{21}$ | $p_{22}$ | $p_{23}$ | $m_2$ |
| Cluster 3 | $p_{31}$ | $p_{32}$ | $p_{33}$ | $m_3$ |
|           | $c_1$    | $c_2$    | $c_3$    | n     |

- Precision:
  - i klasterinin j sinfinə nəzərən:  $Prec(i,j) = p_{ij}$
- Recall:
  - i klasterinin j sinfinə nəzərən:  $Rec(i,j) = \frac{n_{ij}}{c_j}$
- F-measure:
  - Precision və Recall-un Harmonik ortasıdır:

$$F(i,j) = \frac{2 * Prec(i,j) * Rec(i,j)}{Prec(i,j) + Rec(i,j)}$$



#### Metrikalar

|           | Class 1  | Class 2         | Class 3  |       |
|-----------|----------|-----------------|----------|-------|
| Cluster 1 | $n_{11}$ | $n_{12}$        | $n_{13}$ | $m_1$ |
| Cluster 2 | $n_{21}$ | $n_{22}$        | $n_{23}$ | $m_2$ |
| Cluster 3 | $n_{31}$ | n <sub>32</sub> | $n_{33}$ | $m_3$ |
|           | $c_1$    | $c_2$           | $c_3$    | n     |

#### Klasterlər və klasterləşdirmə üçün Precision/Recall

- i klasterinə elə  $k_i$  sinfi təyin olunur ki,  $k_i = \arg\max_i n_{ij}$
- **Precision:** 
  - i klasteri:  $Prec(i) = \frac{n_{ik_i}}{m_i}$
  - Bütün klasterlər üçün:  $Prec(C) = \sum_{i} \frac{m_i}{n} Prec(i)$
- Recall:
  - i klasteri:  $Rec(i) = \frac{n_{ik_i}}{c_{k_i}}$
  - Bütün klasterlər üçün:  $Rec(C) = \sum_{i} \frac{m_i}{n} Rec(i)$
- F-measure:
  - Precision va Recall-un Harmonik ortası



#### Metrikalar barəsində bəzi qeydlər

Entropiya – sinfin klasterlər üzrə «yayılmasıdır». Nə qədər kiçikdirsə, bir o qədər yaxşıdır, ideal halda *Entropy*=0.

**Saflığın** qiyməti nə qədər böyükdürsə, bir o qədər yaxşıdır. İdeal halda, *Purity*=1.

F-ölçü klasterləşdirmənin ümumi keyfiyyətini göstərir, lakin klasterlərin özlərinin quruluşunu göstərmir.



#### Yaxşı və pis klasterləşdirmə: Misal

|           | Class 1 | Class 2 | Class 3 |     |
|-----------|---------|---------|---------|-----|
| Cluster 1 | 2       | 3       | 85      | 90  |
| Cluster 2 | 90      | 12      | 8       | 110 |
| Cluster 3 | 8       | 85      | 7       | 100 |
|           | 100     | 100     | 100     | 300 |

|           | Class 1 | Class 2 | Class 3 |     |
|-----------|---------|---------|---------|-----|
| Cluster 1 | 20      | 35      | 35      | 90  |
| Cluster 2 | 30      | 42      | 38      | 110 |
| Cluster 3 | 38      | 35      | 27      | 100 |
|           | 100     | 100     | 100     | 300 |

Purity: (0.94, 0.81, 0.85)

– Bütün klasterlər üçün: 0.86

Precision: (0.94, 0.81, 0.85)

Bütün klasterlər üçün: 0.86

Recall: (0.85, 0.9, 0.85)

- Bütün klasterlər üçün: 0.87

Purity: (0.38, 0.38, 0.38)

Bütün klasterlər üçün: 0.38

Precision: (0.38, 0.38, 0.38)

Bütün klasterlər üçün: 0.38

Recall: (0.35, 0.42, 0.38)

Bütün klasterlər üçün: 0.39