28	-
45	Improper Integrals.
87.8	
	Consider the Anaded region that extends to
ti ila	A infinity in one direction.
	Consider the thoused region that extends to infinity in one direction.
	Q. Is the area of the
	Shaded region infinite?
	A NO!
1	Here's why:
-762	Here o read
	Consider a sub-region :
	It's area is:
	Alt) = Styles
	$A(t) = \int \frac{1}{x^2} dx$
	F17t 11
	$= \begin{bmatrix} -1 \end{bmatrix}^{t} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	By Sending + 12 the sub-region becomes the original region, whose area & therefore:
	mainst region whose area &
	Hamples ?
	emi AUD = emi (to - t)
	6700 t700
	= ta-lin t
	t-a
	$=\frac{1}{\alpha}$ < ∞
5	

Det of (x)dx:= din of (x)dx. · LHS is called an improper integral.
· If RHS exists, then improper integral is called convergent; otherwise it is divergent. EX Is S = dx convergent or divergent? SUP line Star = line [nt] = line ent = 0. = Sidx is divergent. Comparing the first and second examples we see that $1/2^2$ goes to zero fast enough as $\times 10^{\circ}$ that the growth of the sub-region's area arrosts. EX Evaluate S xe dx Sol Sxe x dx := lin Sxe dx. Evaluate the second integral by parts. u= x ; dv = exdx du=dx; v= ex

Thus: lin Sxedx = Evaluate Sxe-x2. SJ' $\int_{-\infty}^{\infty} -x^2 dx = \int_{-\infty}^{\infty} -x^2 dx + \int_{-\infty}^{\infty} -x^2 dx$ $\int xe^{-x^2} dx = \int e^{-x^2} xdx = \int e^{-x^2} dx$ $\int xe^{-x^2} dx = \left[-\frac{1}{2}e^{-x^2}\right]_{t}^{2} = \left[-\frac{1}{2}-\frac{1}{2}e^{-t^2}\right]_{t}^{2}$ $= \frac{1}{2}e^{-t^2} = \frac{1}{2}$ $\Rightarrow \lim_{x \to \infty} \int_{-\infty}^{0} e^{-x} dx = -\frac{1}{2} = \int_{-\infty}^{0} x e^{-x} dx$ $\int xe^{-x}dx = \left[\frac{1}{2}e^{-x}\right]_0^{\frac{1}{2}} = \left[-\frac{1}{2}e^{-\frac{1}{2}}\right]_0^{\frac{1}{2}}$ lim Sxe dx = \frac{1}{2} = Sxe dx

Thus: $\int_{xe}^{b} dx = (-\frac{1}{2}) +$ In hundsight, me would have gotten the answer by observing that the integrand 18 asymmetric. I hx dx convergent $\int u du = \frac{1}{2}u^2$ =) $\int \frac{\ln x}{x} dx = \frac{1}{2} \left[(\ln x)^2 \right]_1^{\frac{1}{2}} = \frac{1}{2} (\ln t)$ -y=lnx.
=) lini (lnt)² is divergent.

EX Comporte , S - lnx dx. SI Evaluate Stenzdx by parts. u= enx dv = \frac{1}{x^2} dx $\int \frac{\ln x}{x^2} dx = \left[-\frac{1}{2} \ln x \right] - \int \left(-\frac{1}{2} \right) \cdot \frac{1}{2} dx$ $= \left[-\frac{\ln x}{x} + \frac{x^{-1}}{x} \right]^{\frac{1}{2}}$ $= \left[-\frac{1}{x}\left(\ln x + 1\right)\right]^{\frac{1}{x}}$ $= \left[- + \left(\ln t + 1\right)\right] - \left[-1\right]$ = - lont - - + + 1. Now: Int and thoth diverge as to so so he try l'Hopitals Rule: $\lim_{t\to\infty}\frac{\ln t}{t}=\lim_{t\to\infty}\frac{1}{1}=0.$ Selnx dx = lin Stemx dx =

You might be tempted to unite: Sax = [en/x-1]] = en1-en1=0 BUT THIS IS WRONG! To see why examine the integrand: We see that the shaded areas extend to a along the vertical asymptote. The vertical asymptote opens up the possibility that the staded areas are each infinity. To find out, we must use $= \lim_{t \to 1^-} \int \frac{dx}{x^{-1}} + \lim_{t \to 1^+} \int \frac{dx}{x^{-1}}$ [ln|x-1]] = ln|t-1|

But t=1 => 16-11 >0 => en[t-1] -> -0 This already Implies that of 1s $\int \frac{dx}{x^2 - x^2}$ convergent A(x-2) + B(x+1 1= B(2) => B= 1/2 A(-3) = A = -1/3 vertical asymptote at x = 2Mus:

Consider. [en/x-2]] = en/t-2/-en2 Thus of dx is divergent. 1+e- dx convergent or divergent? Site dx > Sitedx But Stdx direrges (p2). Thus
must direrge too!