Probability Review

Probability terms

Term	Definition	Some Notation
Event	Result of observation / experiment	A, B
Intersection	The event that both A and B occur	A∩B
Union	At least one of A or B occurs	AUB
Complement	The complement of A is the event that A does not occur	A ^c
Mutually Exclusive	A and B are mutually exclusive if they cannot happen together	P(A ∩ B) = 0
Independent	A and B are independent if A contains no information about the probability that B will occur (or vice versa).	P(A B)=P(A) P(B A)=P(B)
Exhaustive	A and B are exhaustive events when at least one of A or B always occurs.	P(A U B) = 1

Probability Rules

• Additive rule of probability

$$P(A \text{ and/or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• Conditional Probability

$$P(B|A) = P(A \cap B)/P(A)$$

• Multiplicative rule of probability

$$P(A \text{ and } B) = P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

For independent events: $P(A \text{ and } B) = P(A \cap B) = P(A)P(B)$

Bayes' Theorem

• Calculates the conditional probability of an event based on other known probabilities

$$P(A \mid B) = P(A \cap B)/P(B)$$
where
$$P(B) = P(A)P(B|A) + P(A^{C})P(B|A^{C})$$

Diagnostic Testing/Screening

Notation:

 D^+ = disease positive D^- = disease-free T^+ = test positive T^+ = test negative

Term	Definition	Notation
Sensitivity	Probability of testing positive given that the	$P(T^{+} D^{+})$
-	individual has the disease	
Specificity	Probability of testing negative given that the	P(T ⁻ D ⁻)
	individual does not have the disease	
False positive probability	Probability of testing positive given that the	$P(T^{+} D^{-})$
	individual does not have the disease	
False negative probability	Probability of testing negative given that the	$P(T^{-} D^{+})$
	individual does have the disease	
Positive predictive value	Probability of disease given a positive test result	$P(D^+ T^+)$
Negative predictive value	Probability of not having disease given a negative	P(D ⁻ T ⁻)
	test result	