```
Homework Chapter 01
Question
```

Find_root,刘玖阳,应用物理1301,U201310209

Use Newton downhill iteration, post acceleration and Aitken iteration method to find the roots of the equation

 $f(x) = \frac{x^3}{3} - x = 0$

 $x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$

 $\lambda = [0, 1]$

and compare their performances (speed and error) **Used function and algorithm**

1. Newton downhill iteration

Newton

x1 = guess_root x2 = x1 - f(x1) / diff(x1)

abs(f(x2)) > f_error

Yes q = 1END $abs(f(x1)) \le abs(f(x2))$ x1 = temp q == 2**-10 $k > k_max$ qOverflow kOverflow $x_{k+1} = \frac{1}{1 - L} (g(x_k) - Lx_k)$ $L = g'(x_k)$

root = x1 f error = f(x1)

 $_{error} = abs(x2 - x1)$

2. Post acceleration Post_acceleration k = 1x1 = guess_root x2 = f(x1)root = x2 $f_{error} = f(x2) - x2$ abs(x2 - x1) > f_error $x_{error} = x2 - x1$ k = kYes L = diff(x2)x1 = x2END x2 = (f(x2) - L * x2)/(1- L) $k > k_max$

> $a_{k+1} = g(x_k)$ $b_{k+1} = g(a_{k+1})$

 $x_{k+1} = b_{k+1} - \frac{(b_{k+1} - a_{k+1})^2}{b_{k+1} - 2a_{k+1} + x_k}$

Post_acceleration k = 1 x1 = guess_root temp1 = f(x1)temp2 = f(temp1) x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 - 2 * temp1 + x1) f error = f(x2) - x2abs(x2 - x1) > f_error $x_error = x2 - x1$ k = kL = diff(x2)temp1 = f(x1)END temp2 = f(temp1) x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 -2 * temp1 + x1) $k > k_max$ kOverflow **Source Code**

Yes

kOverflow

3. Aitken iteration

subroutine bolzano(left_number,right_number,root,f_error,x_error,k) double precision,intent(in) :: left_number, right_number double precision,intent(out) :: root double precision,intent(inout) :: f_error,x_error integer,intent(out) :: k double precision temp,x1,x2 integer k_max k = 0 $k_max = 100$

endif

module find_root

author:

Sequencer

计算物理非线型方程寻根模块(HUST PHY 2013 第一次作业)

newton(guess_root,root,f_error,x_error,k)

bolzano(left_number,right_number,root,f_error,x_error,k)

newton_downhill(guess_root,root,f_error,x_error,k) 牛顿下山法

post_acceleration(guess_root,root,f_error,x_error,k) post加速法 aitken_acceleration(guess_root,root,f_error,x_error,k) aitken加速法

picard(guess_root,root,f_error,x_error,k) 不动点法

二分法

description:

contains:

exception:

contains

k0verflow fDivergence

double precision function f(x)

! define function

double precision :: x

double precision function diff(x)

double precision :: delta,x

diff = (f(x+delta)-f(x-delta))/(2d0*delta)

if (f(left_number)*f(right_number).gt.0d0) then

write(*,*) "fDivergence"

call abort()

 $x1 = left_number$ $x2 = right_number$

implicit none

implicit none

end function diff

delta = x/100d0

f = x**3/3end function f

MIT协议

do while(abs(f(x1)*f(x2)).gt.f_error**2) temp = (x1+x2)/2if (f(x1)*f(temp).gt.0d0) then x1 = tempelse x2 = tempendif k=k+1if (k.gt.k_max) then write(*,*) "k0verflow" call abort() endif if (abs(f(x1)).lt.f_error) then if (abs(f(x2)).lt.f_error) then root = (x1+x2)/2else root = x1endif

else root = x2endif ! write(*.*) root f_error = f(root) $x_{error} = abs(x1-x2)$ end subroutine bolzano subroutine picard(guess_root,root,f_error,x_error,k) double precision, intent(in) :: guess_root double precision, intent(out) :: root double precision, intent(inout) :: f_error,x_error integer,intent(out) :: k double precision :: x1,x2 integer k_max $k_max = 100$ k = 1x1 = guess_root x2 = f(x1)do while(abs(x2-x1).gt.f_error) x1 = x2x2 = f(x2)k=k+1

write(*,*) k if (k.gt.k_max) then endif enddo root = x2f_error = f(root) $x_{error} = abs(x2-x1)$ end subroutine picard subroutine newton(guess_root, root, f_error, x_error, k) double precision,intent(in) :: guess_root double precision,intent(out) :: root double precision,intent(inout) :: f_error,x_error integer,intent(out) :: k double precision :: x1,x2,delta integer k_max $k_max = 100$ x1 =guess_root k = 1do while(abs(f(x1)).gt.f_error) x2 = x1delta = x1/1000x1 = x1 - f(x1) / diff(x1)k = k + 1if(k.gt.k_max) then endif enddo root = x1 $f_{error} = f(x1)$

write(*,*) "k0verflow"

write(*,*) "k0verflow"

subroutine newton_downhill(guess_root,root,f_error,x_error,k)

double precision,intent(inout) :: f_error,x_error

double precision,intent(in) :: guess_root

double precision,intent(out) :: root

double precision :: x1,x2,delta,temp,q

do while (abs(f(x2)) .gt. f_error)

do while (abs(f(x1)) .le. abs(f(x2)))x2 = x1 - q * f(x1)/diff(x1)

write(*,*) "q0verflow"

subroutine post_acceleration(guess_root, root, f_error, x_error, k)

double precision, intent(inout) :: f_error,x_error

double precision, intent(in) :: guess_root

double precision, intent(out) :: root

do while $(abs(f(x2) - x2) \cdot gt. f_error)$

write(*,*) x2,f(x2)-x2

if (k .gt. k_max) then

call abort()

end subroutine aitken_acceleration

guess_root1 = ht_number1

write(*,*) "k0verflow"

double precision :: guess_root1,root1,f_error1,x_error1,left_number1,rig

! call bolzano(left_number1, right_number1, root1, f_error1, x_error1, k1)

! call newton_downhill(guess_root1, root1, f_error1, x_error1, k1) call aitken_acceleration(guess_root1, root1, f_error1, x_error1, k1) ! call post_acceleration(guess_root1, root1, f_error1, x_error1, k1)

! write(*,*) "root = ",root1, "f_error =", f_error1, "k=",k1

k = k+1

endif

 $f_{error} = f(x2)-x2$ $x_{error} = abs(x2 - x1)$

enddo root = x2

end module

program main

use find_root implicit none

integer :: k1 left_number1 = 0 $right_number1 = 1$ $f_{error1} = 1e-8$ $x_{error1} = 1e-8$

end program main

1. Newton downhill iteration

Screenshot

if (q . lt. 2**(-10)) **then**

call abort()

 $x_{error} = abs(x2-x1)$

integer,intent(out) :: k

x2 = x1 - f(x1)/diff(x1)

q = q/2

endif

write(*,*) x2,f(x2)

if (k .gt. k_max) then

call abort()

write(*,*) "k0verflow"

end subroutine newton

integer k_max $k_max = 100$

x1 = guess_root

q = 1temp = x2

enddo

endif

 $f_{error} = f(x2)$

integer k_max $k_max = 100$

 $x1 = guess_root$

x2 = f(x1)

k = 1

 $x_{error} = abs(x2-x1)$

end subroutine newton_downhill

integer,intent(out) :: k double precision :: x1,x2,L

write(*,*) x2,f(x2)-x2

L = diff(x2)x1 = x2

enddo root = x2

k = k

x1 = tempk = k + 1

write(*,*) x2,f(x2)

k = 1

call abort()

x2 = (f(x2)-L*x2)/(1-L)write(*,*) x2,f(x2)-x2 k = k+1**if** $(k > k_max)$ **then** write(*,*) k,"k0verflow" call abort() endif enddo root = x2 $f_{error} = f(x2) - x2$ $x_{error} = abs(x2-x1)$ k = kend subroutine post_acceleration subroutine aitken_acceleration(guess_root,root,f_error,x_error,k) double precision, intent(in) :: guess_root double precision, intent(out) :: root double precision, intent(inout) :: f_error,x_error integer,intent(out) :: k double precision :: x1,x2,temp1,temp2 integer k_max $k_max = 100$ k = 1x1 = guess_root temp1 = f(x1)temp2 = f(temp1)x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 - 2 * temp1 + x1)write(*,*) x2,f(x2)-x2 do while (abs(x2 - x1) .gt. f_error) x1 = x2temp1 = f(x1)temp2 = f(temp1)x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 - 2 * temp1 + x1)

2. Post acceleration

3. Aitken iteration

The screenshot of 0 and $-\sqrt{3}$ are ignored. while set guess_number = 1 can get the answer x = 0, and guess_number = -2 can get the answer $x = -\sqrt{3}$ **Error analytics**

I use guess root = 2 , f_error = 1e-8 to to find the root $x = \sqrt{3}$

The origin data has upload to Github

Form this image, we can hardly find the newton downhill algorithm. It shows newton downhill is really fast