TD n°6 : Groupe symétrique 5 et 8/11/2024

Nous traiterons dans l'ordre les exercices 1, 2 et 4. Les exercices les plus délicats de la feuille sont marqués d'un .

Je reste disponible pour toute question concernant le TD, des maths, ou toute autre chose au bureau T13 (j'y suis à coups sûrs les mardis juste avant le TD). Vous pouvez également m'envoyer un mail à nataniel.marquis@dma.ens.fr.

Exercice 1. Échauffement?

Petit pot pourri de questions pour commencer.

- 1. Quel est le groupe engendré par (12345) et (12) dans \mathfrak{S}_5 ? Par (12345) et (123) dans \mathfrak{S}_5 ?
- 2. Démontrer que pour $n \geq 5$, les 3-cycles sont conjugués dans \mathfrak{A}_n .
- 3. Pour p=2,3,5, donner un p-Sylow, l'identifier à un p-groupe classique, puis donner le nombre de p-Sylow du groupe \mathfrak{S}_5 .

Exercice 2. Autour de la signature

Soit n > 2 un entier.

- 1. Montrer qu'il existe un unique morphisme non trivial $\mathfrak{S}_n \to \{\pm 1\}$. En déduire que \mathfrak{A}_n est le seul sous-groupe d'indice 2 de \mathfrak{S}_n .
- 2. Montrer que tout morphisme $\mathfrak{A}_n \to \{\pm 1\}$ est trivial. En déduire que \mathfrak{A}_4 ne possède pas de sous-groupe d'ordre 6.

\blacksquare Exercice 3. Classes de conjugaison dans \mathfrak{A}_n

Tout est dans le titre. Décrire les classes de conjugaison dans \mathfrak{A}_n .

Exercice 4. Action exceptionnelle

Nous cherchons à retrouver l'action "poisson et chauve-souris" de \mathfrak{S}_5 .

- 1. Démontrer que les 5-Sylows de \mathfrak{A}_5 sont au nombre de 6.
- 2. En déduire une action de \mathfrak{S}_5 transitive sur 6 éléments.
- 3. Démontrer qu'une telle action est fidèle.
- 4. Essayer de la retrouver explicitement avec des dessins de pentacles, et sa restriction à \mathfrak{A}_5 avec un icosaèdre (l'énoncé de cette question est très floue, je suis d'accord).

Exercice 5. Groupes simples d'ordre 60

Soit G un groupe simple d'ordre 60.

- 1. Démontrer que toute action de G sur 3 ou 4 éléments est triviale.
- 2. Démontrer que les 5-Sylows de G sont au nombre de 6.
- 3. Démontrer que les 2-Sylows de G sont au nombre de 5 ou 15.
- 4. Supposons que H_1 et H_2 sont deux 2-Sylows et que $g \in H_1 \cap H_2$ est non trivial. En regardant le centralisateur de g, démontrer qu'il existe un sous-groupe d'ordre 12 dans G.
- 5. Dans le cas où toutes les intersections sont triviales, compter les éléments pour démontrer que les 2-Sylows sont au nombre de 5. En déduire qu'il existe un sous-groupe d'ordre 12 dans G.
- 6. Conclure.

FIGURE 1 – Puissance 827^e appliquée aux racines 929-ièmes de l'unité.