

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 September 2001 (27.09.2001)

PCT

(10) International Publication Number WO 01/70995 A1

(51) International Patent Classification7: 15/77, C12P 13/08

C12N 15/53,

(21) International Application Number:

PCT/EP00/06303

(22) International Filing Date:

5 July 2000 (05.07.2000)

(25) Filing Language:

English

(26) Publication Language:

English

Liignsii

(30) Priority Data: 09/531,269

20 March 2000 (20.03.2000) US

(71) Applicants: DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE). FORSCHUNGSZENTRUM JÜLICH GMBH [DE/DE]; 52425 Jülich (DE). NA-TIONAL UNIVERSITY OF IRELAND [IE/IE]; Galway (IE).

(72) Inventors: BURKE, Kevin; 5, Greenfield Road, Newcastle, Galway, County Galway (IE). SAHM, Hermann; Wendelinusstrasse 71, 52428 Jülich (DE). EGGELING, Lothar; Elsenkamp 6, 52428 Jülich (DE). MORITZ, Bernd; Schattbachstrasse 1, 44801 Bochum (DE). DUNICAN, L., K. (deceased). MCCORMACK, Ashling; Moate Road, Athlone, County Westmeath (IE). STAPELTON, Cliona; 27, Railway View, Roscrea, County Tipperary (IE). MÖCKEL, Bettina; Benrodestrasse 35, 40597 Düsseldorf (DE). THIERBACH, Georg; Gunststrasse 21, 33613 Bielefeld (DE).

(81) Designated States (national): AU, BR, CA, CN, HU, ID, JP, KR, MX, PL, RU, SK, UA, ZA.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

95 A

(54) Title: PROCESS FOR THE FERMENTATIVE PREPARATION OF L-AMINO ACIDS WITH AMPLIFICATION OF THE ZWF GENE

(57) Abstract: The invention relates to a process for the preparation of L-amino acids by fermentation of coryneform bacteria, which comprises carrying out the following steps: a) fermentation of the desired L-amino acid-producing bacteria in which at least the zwf gene is amplified, b) concentration of the L-amino acid in the medium or in the cells of the bacteria andc) isolation of the L-amino acid produced.

Process for the fermentative preparation of L-amino acids with amplification of the zwf gene

The invention relates to a process for the fermentative preparation of L-amino acids, in particular L-lysine, L-threonine and L-tryptophan, using coryneform bacteria in which at least the zwf gene is amplified.

Prior art

25

30

L-Amino acids are used in animal nutrition, in human medicine and in the pharmaceuticals industry.

- 10 It is known that amino acids are prepared by fermentation of strains of coryneform bacteria, in particular Corynebacterium glutamicum. Because of its great importance, work is constantly being undertaken to improve the preparation process. Improvements to the process can relate to fermentation measures, such as e. g. stirring and supply of oxygen, or the composition of the nutrient media, such as e. g. the sugar concentration during the fermentation, or the working up to the product form by e. g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.
 - Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms. Strains which are resistant to antimetabolites, such as e. g. the threonine analogue α -amino- β -hydroxyvaleric acid (AHV), or are auxotrophic for metabolites of regulatory importance and produce L-amino acids such as e. g. threonine are obtained in this manner.

Methods of the recombinant DNA technique have also been employed for some years for improving the strain of Corynebacterium glutamicum strains which produce L-amino acids.

2

Object of the invention

The inventors had the object of providing new improved processes for the fermentative preparation of L-amino acids with coryneform bacteria.

5 Description of the invention

10

15

30

these measures.

L-Amino acids are used in human medicine and in the pharmaceuticals industry, in the foodstuffs industry and especially in animal nutrition. There is therefore a general interest in providing new improved processes for the preparation of amino acids.

The invention provides a process for the fermentative preparation of L-amino acids, in particular L-lysine, L-threonine and L-tryptophan, using coryneform bacteria in which the nucleotide sequence which codes for the Zwf protein (zwf gene) is amplified, in particular over-expressed.

The strains employed preferably already produce L-amino acids before amplification of the zwf gene.

Preferred embodiments are to be found in the claims.

The term "amplification" in this connection describes the increase in the intracellular activity of one or more enzymes (proteins) in a microorganism which are coded by the corresponding DNA, for example by increasing the number of copies of the gene or genes, using a potent promoter or using a gene which codes for a corresponding enzyme (protein) having a high activity, and optionally combining

The microorganisms which the present invention provides can prepare L-amino acids from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. They are representatives of

5

20

coryneform bacteria, in particular of the genus Corynebacterium. Of the genus Corynebacterium, there may be mentioned in particular the species Corynebacterium glutamicum, which is known among specialists for its ability to produce L-amino acids.

Suitable strains of the genus Corynebacterium, in particular of the species Corynebacterium glutamicum, are, for example, the known wild-type strains

such as, for example, the L-threonine-producing strains
Corynebacterium glutamicum ATCC21649
Brevibacterium flavum BB69
Brevibacterium flavum DSM5399
Brevibacterium lactofermentum FERM-BP 269
Brevibacterium lactofermentum TBB-10

and such as, for example, the L-isoleucine-producing strains

Corynebacterium glutamicum ATCC 14309
Corynebacterium glutamicum ATCC 14310
Corynebacterium glutamicum ATCC 14311
Corynebacterium glutamicum ATCC 15168
Corynebacterium ammoniagenes ATCC 6871

30 and such as, for example, the L-tryptophan-producing strains

Corynebacterium glutamicum ATCC21850 and Corynebacterium glutamicum KY9218(pKW9901)

4

and such as, for example, the L-lysine-producing strains
Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464
Corynebacterium glutamicum ATCC13032
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DSM12866.

5

20

10 It has been found that coryneform bacteria produce L-amino acids, in particular L-lysine, L-threonine and L-tryptophan, in an improved manner after over-expression of the zwf gene which codes for the Zwf protein.

Alleles of the zwf gene which result from the degeneracy of 15 the genetic code or due to sense mutations of neutral function can furthermore be used.

JP-A-09224661 discloses the nucleotide sequence of the glucose 6-phosphate dehydrogenase gene, called zwf, of Brevibacterium flavum MJ-223 (FERM BP-1497). JP-A-09224661 describes the N-terminal amino acid sequence of the Zwf polypeptide as Met Val Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu.

However, it has not been possible to confirm this. Instead, the following N-terminal amino acid sequence has been

25 found: Val Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp. The valyl radical in the N-position can be split off in the context of post-translational modification, and Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp is then obtained as the N-terminal

30 amino acid sequence.

To achieve an amplification (e. g. over-expression), the number of copies of the corresponding genes is increased, or the promoter and regulation region or the ribosome

Expression cassettes which are incorporated upstream of the structural gene act in the same way. By inducible promoters, it is additionally possible to increase the expression in the course of fermentative L-amino acid formation. The expression is likewise improved by measures to prolong the life of the m-RNA. Furthermore, the enzyme activity is also increased by preventing the degradation of the enzyme protein. The genes or gene constructs are either present here in plasmids with a varying number of copies, or are integrated and amplified in the chromosome. Alternatively, an over-expression of the genes in question can furthermore be achieved by changing the composition of the media and the culture procedure.

10

- Instructions in this context can be found by the expert, 15 inter alia, in Martin et al. (Bio/Technology 5, 137-146 (1987)), in Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya and Morinaga (Bio/Technology 6, 428-430 (1988)), in Eikmanns et al. (Gene 102, 93-98 (1991)), in European Patent Specification EPS 0 472 869, in US Patent 4,601,893, 20 in Schwarzer and Pühler (Bio/Technology 9, 84-87 (1991), in Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), in LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in Patent Application WO 96/15246, in Malumbres et al. (Gene 134, 15-24 (1993)), 25 in Japanese Laid-Open Specification JP-A-10-229891, in Jensen and Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)) and in known textbooks of genetics and molecular biology.
- 30 By way of example, the Zwf protein was over-expressed with the aid of a plasmid. The E. coli C. glutamicum shuttle vector pEC-T18mob2 shown in Figure 1 was used for this. After incorporation of the zwf gene into the KpnI/SalI cleavage site of pEC-T18mob2, the plasmid pEC-T18mob2zwf shown in Figure 2 was formed.

Other plasmid vectors which are capable of replication in C. glutamicum, such as e.g. pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) or pZ8-1 (EP-B- 0 375 889), can be used in the same way.

- In addition, it may be advantageous for the production of L-amino acids to amplify one or more enzymes of the particular biosynthesis pathway, of glycolysis, of anaplerosis, of the pentose phosphate pathway or of amino acid export, in addition to amplification of the zwf gene.
- Thus, for example, in particular for the preparation of L-threonine, one or more genes chosen from the group consisting of:
- the hom gene which codes for homoserine dehydrogenase (Peoples et al., Molecular Microbiology 2, 63-72 (1988))
 or the hom^{dr} allele which codes for a "feed back resistant" homoserine dehydrogenase (Archer et al., Gene 107, 53-59 (1991),
 - the gap gene which codes for glyceraldehyde 3-phosphate dehydrogenase (Eikmanns et al., Journal of Bacteriology 174: 6076-6086 (1992)),
 - the pyc gene which codes for pyruvate carboxylase (Peters-Wendisch et al., Microbiology 144: 915-927 (1998)),

20

- the mgo gene which codes for malate:quinone
 oxidoreductase (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
 - the tkt gene which codes for transketolase (accession number AB023377 of the European Molecular Biologies Laboratories databank (EMBL, Heidelberg, Germany)),

7

- the gnd gene which codes for 6-phosphogluconate dehydrogenase (JP-A-9-224662),
- the thrE gene which codes for threonine export (DE 199 41 478.5; DSM 12840),
- 5 the zwal gene (DE 199 59 328.0; DSM 13115),

(

- the eno gene which codes for enolase (DE: 199 41 478.5) can be amplified, in particular over-expressed, at the same time.
- Thus, for example, in particular for the preparation of Llysine, one or more genes chosen from the group consisting 10 of
 - the dapA gene which codes for dihydrodipicolinate synthase (EP-B 0 197 335),
- the lysC gene which codes for a feed back resistant aspartate kinase (Kalinowski et al. (1990), Molecular and 15 General Genetics 224: 317-324),
 - the gap gene which codes for glyceraldehyde 3-phosphate dehydrogenase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- the pyc gene which codes for pyruvate carboxylase (DE-A-198 31 609),
 - the tkt gene which codes for transketolase (accession number AB023377 of the European Molecular Biologies Laboratories databank (EMBL, Heidelberg, Germany)), \ll
- the gnd gene which codes for 6-phosphogluconate 25 dehydrogenase (JP-A-9-224662),

WO 01/70995

8

- the lysE gene which codes for lysine export (DE-A-195 48 222),
- the zwal gene (DE 199 59 328.0; DSM 13115),
- the eno gene which codes for enolase (DE 199 47 791.4)
- can be amplified, in particular over-expressed, at the same time.

It may furthermore be advantageous for the production of Lamino acids at the same time to attenuate one of the genes chosen from the group consisting of

- the pck gene which codes for phosphoenol pyruvate 10 carboxykinase (DE 199 50 409.1; DSM 13047),
 - the pgi gene which codes for glucose 6-phosphate isomerase (US 09/396,478, DSM 12969),
- the poxB gene which codes for pyruvate oxidase (DE 199 51 975.7; DSM 13114), 15
 - the zwa2 gene (DE: 199 59 327.2; DSM 13113)

20

in addition to the amplification of the zwf gene.

In addition to over-expression of the Zwf protein, it may furthermore be advantageous for the production of L-amino acids to eliminate undesirable side reactions (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

The microorganisms prepared according to the invention can 25 be cultured continuously or discontinuously in the batch process (batch culture) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of L-amino acid production. A summary of known culture methods is described in the textbook by Chmiel

(Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik [Bioprocess Technology 1. Introduction to Bioprocess Technology (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen [Bioreactors and Peripheral Equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).

PCT/EP00/06303

The culture medium to be used must meet the requirements of the particular microorganisms in a suitable manner. Descriptions of culture media for various microorganisms 10 are contained in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981). Sugars and carbohydrates, such as e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and 15 fats, such as e. g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e. q. palmitic acid, stearic acid and linoleic acid, alcohols, such as e. q. glycerol and ethanol, and organic acids, such as e. g. acetic acid, can be used as the source of carbon. These 20 substance can be used individually or as a mixture. Organic nitrogen-containing compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soya bean flour and urea, or inorganic compounds, such as ammonium sulphate, ammonium chloride, ammonium phosphate, 25 ammonium carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can be used individually or as a mixture. Potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the 30 source of phosphorus. The culture medium must furthermore comprise salts of metals, such as e. g. magnesium sulfate or iron sulfate, which are necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, can be employed in addition to the above-35 mentioned substances. Suitable precursors can moreover be

added to the culture medium. The starting substances

10

mentioned can be added to the culture in the form of a single batch, or can be fed in during the culture in a suitable manner.

Basic compounds, such as sodium hydroxide, potassium

hydroxide, ammonia, or acid compounds, such as phosphoric
acid or sulfuric acid, can be employed in a suitable manner
to control the pH. Antifoams, such as e.g. fatty acid
polyglycol esters, can be employed to control the
development of foam. Suitable substances having a selective
action, e.g. antibiotics, can be added to the medium to
maintain the stability of plasmids. To maintain aerobic
conditions, oxygen or oxygen-containing gas mixtures, such
as e.g. air, are introduced into the culture. The
temperature of the culture is usually 20°C to 45°C, and
preferably 25°C to 40°C. Culturing is continued until a
maximum of L-amino acid has formed. This target is usually
reached within 10 hours to 160 hours.

The analysis of L-amino acids can be carried out by anion exchange chromatography with subsequent ninhydrin derivatization, as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190), or it can take place by reversed phase HPLC as described by Lindroth et al. (Analytical Chemistry (1979) 51:. 1167-1174).

The following microorganism has been deposited at the

Deutsche Sammlung für Mikroorganismen und Zellkulturen

(DSMZ = German Collection of Microorganisms and Cell

Cultures, Braunschweig, Germany) in accordance with the

Budapest Treaty:

Escherichia coli K-12 DH5α/pEC-T18mob2 as DSM 13244

20

WO 01/70995

The following figures are attached:

• Figure 1: Map of the plasmid pEC-T18mob2

• Figure 2: Map of the plasmid pEC-T18mob2zwf

• Figure 3: Map of the plasmid pAMC1

5 • Figure 4: Map of the plasmid pMC1

• Figure 5: Map of the plasmid pCR2.1poxBint

The base pair numbers stated are approx. values obtained in the context of reproducibility.

Re Figure 1 and 2:

10 The abbreviations used have the following meaning:

Tet: Resistance gene for tetracycline

oriV: Plasmid-coded replication origin of E. coli

RP4mob: mob region for mobilizing the plasmid

rep: Plasmid-coded replication origin from

15 C. glutamicum plasmid pGA1

per: Gene for controlling the number of copies

from pGA1

lacZ-alpha: lacZα gene fragment (N-terminus) of the

β-galactosidase gene

20 lacZalpha': 5'-Terminus of the lacZα gene fragment

'lacZalpha: 3'-Terminus of the lacZα gene fragment

Re Figure 3 and 4:

The abbreviations used have the following meaning:

Neo r: Neomycin/kanamycin resistance

25 ColEl ori: Replication origin of the plasmid ColEl

CMV: Cytomegalovirus promoter

lacP: Lactose promoter

pgi: Phosphoglucose isomerase gene

lacZ: Part of the β -galactosidase gene

30 SV40 3' splice 3' splice site of Simian virus 40

SV40 polyA: Polyadenylation site of Simian virus

40

fl(-)ori: Replication origin of the filamentous

phage f1

5 SV40 ori: Replication origin of Simian virus

40

kan r: Kanamycin resistance

pgi insert: Internal fragment of the pgi gene

ori: Replication origin of the plasmid pBGS8

10 Re Figure 5:

The abbreviations used have the following meaning:

ColEl ori: Replication origin of the plasmid ColEl

lacZ: Cloning relict of the lacZα gene fragment

fl ori: Replication origin of phage fl

15 KmR: Kanamycin resistance

ApR: Ampicillin resistance

poxBint: Internal fragment of the poxB gene

The meaning of the abbreviations for the various restriction enzymes (e. g. BamHI, EcoRI etc.) are known from

20 the prior art and are summarized, for example, by Kessler and Höltke (Gene 47, 1-153 (1986)) or Roberts et al. (Nucleic Acids Research 27, 312-313 (1999)).

13

Examples

The following examples will further illustrate this invention. The molecular biology techniques, e.g. plasmid DNA isolation, restriction enzyme treatment, ligations, standard transformations of Escherichia coli etc. used are, (unless stated otherwise), described by Sambrook et al., (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratories, USA).

Example 1

- 10 Expression of the Zwf protein
 - 1.1 Preparation of the plasmid pEC-T18mob2

 The E. coli C. glutamicum shuttle vector pEC-T18mob2 was constructed according to the prior art. The vector contains the replication region rep of the plasmid pGA1 including
- the replication effector per (US-A- 5,175,108; Nesvera et al., Journal of Bacteriology 179, 1525-1532 (1997)), the tetracycline resistance-imparting tetA(Z) gene of the plasmid pAG1 (US-A- 5,158,891; gene library entry at the National Center for Biotechnology Information (NCBI,
- 20 Bethesda, MD, USA) with accession number AF121000), the replication region oriV of the plasmid pMBl (Sutcliffe, Cold Spring Harbor Symposium on Quantitative Biology 43, 77-90 (1979)), the lacZα gene fragment including the lac promoter and a multiple cloning site (mcs) (Norrander et
- al. Gene 26, 101-106 (1983)) and the mob region of the plasmid RP4 (Simon et al.,(1983) Bio/Technology 1:784-791). The vector constructed was transformed in the E. coli strain DH5 α (Brown (ed.) Molecular Biology Labfax, BIOS Scientific Publishers, Oxford, UK, 1991). Selection for
- plasmid-carrying cells was made by plating out the transformation batch on LB agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), which had been supplemented with 5 mg/l tetracycline. Plasmid DNA was

PCT/EP00/06303 WO 01/70995

14

isolated from a transformant with the aid of the QIAprep Spin Miniprep Kit from Qiagen and checked by restriction with the restriction enzyme EcoRI and HindIII and subsequent agarose gel electrophoresis (0.8%).

- 5 The plasmid was called pEC-T18mob2 and is shown in Figure 1. It is deposited in the form of the strain Escherichia coli K-12 strain DH5αpEC-T18mob2 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) as DSM 13244. 10
 - 1.2 Preparation of the plasmid pEC-T18mob2zwf The gene from Corynebacterium glutamicum ATCC13032 was first amplified by a polymerase chain reaction (PCR) by means of the following oligonucleotide primer:
- zwf-forward: 15

5'-TCG ACG CGG TTC TGG AGC AG-3'

zwf-reverse:

5'-CTA AAT TAT GGC CTG CGC CAG-3'

The PCR reaction was carried out in 30 cycles in the presence of 200 µM deoxynucleotide triphosphates (dATP, 20 dCTP, dGTP, dTTP), in each case 1 µM of the corresponding oligonucleotide, 100 ng chromosomal DNA from Corynebacterium glutamicum ATCC13032, 1/10 volume 10-fold reaction buffer and 2.6 units of a heat-stable Tag-/Pwo-DNA polymerase mixture (Expand High Fidelity PCR System from Roche Diagnostics, Mannheim, Germany) in a Thermocycler (PTC-100, MJ Research, Inc., Watertown, USA) under the following conditions: 94°C for 30 seconds, 64°C for 1 minute and 68°C for 3 minutes.

The amplified fragment about 1.8 kb in size was 30 subsequently ligated with the aid of the SureClone Ligation Kit (Amersham Pharmacia Biotech, Uppsala, Sweden) into the SmaI cleavage site of the vector pUC18 in accordance with

15

the manufacturer's instructions. The E. coli strain DH5 α mcr (Grant et al., Proceedings of the National Academy of Sciences of the United States of America USA (1990) 87: 4645-4649) was transformed with the entire ligation batch.

Transformants were identified with the aid of their carbenicillin resistance on LB-agar plates containing 50 µg/mL carbenicillin. The plasmids were prepared from 7 of the transformants and checked for the presence of the 1.8 kb PCR fragment as an insert by restriction analysis.

10 The recombinant plasmid formed in this way is called pUC18zwf in the following.

For construction of pEC-T18mob2zwf, pUC18zwf was digested with KpnI and SalI, and the product was isolated with the aid of the NucleoSpin Extraction Kit from Macherey-Nagel (Düren, Germany) in accordance with the manufacturer's 15 instructions and then ligated with the vector pEC-T18mob2, which had also been cleaved with KpnI and SalI and dephosphorylated. The E. coli strain DH5cmcr (Grant et al., Proceedings of the National Academy of Sciences of the 20 United States of America USA (1990) 87: 4645-4649) was transformed with the entire ligation batch. Transformants were identified with the aid of their tetracycline resistance on LB-agar plates containing 5 µg/mL tetracycline. The plasmids were prepared from 12 of the 25 transformants and checked for the presence of the 1.8 kb PCR fragment as an insert by restriction analysis. One of the recombinant plasmids isolated in this manner was called pEC-T18mob2zwf (Figure 2).

Example 2

30 Preparation of amino acid producers with an amplified zwf gene

The L-lysine-producing strain Corynebacterium glutamicum DSM5715 is described in EP-B-0435132 and the L-threonine-producing strain Brevibacterium flavum DSM5399 is described

in EP-B-0385940. Both strains are deposited at the Deutsche Sammlung für Mikroorganismen und Zellkulturen [German Collection of Microorganisms and Cell Cultures] in Braunschweig (Germany) in accordance with the Budapest Treaty.

2.1 Preparation of the strains DSM5715/pEC-T18mob2zwf and DSM5399/pEC-T18mob2zwf

The strains DSM5715 and DSM5399 were transformed with the plasmid pEC-T18mob2zwf using the electroporation method

10 described by Liebl et al., (FEMS Microbiology Letters, 53:299-303 (1989)) Selection of the transformants took place on LBHIS agar comprising 18.5 g/l brain-heart infusion broth, 0.5 M sorbitol, 5 g/l Bacto-tryptone, 2.5 g/l Bacto-yeast extract, 5 g/l NaCl and 18 g/l Bacto-agar, which had been supplemented with 5 mg/l tetracycline. Incubation was carried out for 2 days at 33°C.

Plasmid DNA was isolated in each case from a transformant by conventional methods (Peters-Wendisch et al., 1998, Microbiology 144, 915 -927), cleaved with the restriction endonucleases XbaI and KpnI, and the plasmid was checked by subsequent agarose gel electrophoresis. The strains obtained in this way were called DSM5715/pEC-T18mob2zwf and DSM5399/pEC-T18mob2zwf.

2.2 Preparation of L-threonine

5

20

The C. glutamicum strain DSM5399/pEC-T18mob2zwf obtained in Example 2.1 was cultured in a nutrient medium suitable for the production of threonine and the threonine content in the culture supernatant was determined.

For this, the strain was first incubated on an agar plate with the corresponding antibiotic (brain-heart agar with tetracycline (5 mg/l)) for 24 hours at 33°C. Starting from this agar plate culture, a preculture was seeded (10 ml

medium in a 100 ml conical flask). The complete medium CgIII was used as the medium for the preculture.

Medium Cg III

NaCl 2.5 g/l

Bacto-Peptone 10 g/l

Bacto-Yeast extract 10 g/l

Glucose (autoclaved separately) 2% (w/v)

The pH was brought to pH 7.4

Tetracycline (5 mg/l) was added to this. The preculture was incubated for 16 hours at 33°C at 240 rpm on a shaking machine. A main culture was seeded from this preculture such that the initial OD (660nm) of the main culture was 0.1. Medium MM was used for the main culture.

Medium MM						
CSL (corn steep liquor)	5 g/l					
MOPS (morpholinopropanesulfonic acid)	20 g/l					
Glucose (autoclaved separately)	50 g/l					
	05 (1					
(NH ₄) ₂ SO ₄	25 g/l					
KH ₂ PO ₄	0.1 g/l					
$MgSO_4 * 7 H_2O$	1.0 g/l					
$CaCl_2 * 2 H_2O$	10 mg/l					
$FeSO_4 * 7 H_2O$	10 mg/l					
MnSO ₄ * H ₂ O	5.0 mg/l					
Biotin (sterile-filtered)	0.3 mg/l					
Thiamine * HCl (sterile-filtered)	0.2 mg/l					
L-Leucine (sterile-filtered)	0.1 g/l					
CaCO ₃	25 g/l					

The CSL, MOPS and the salt solution were brought to pH 7 with aqueous ammonia and autoclaved. The sterile substrate and vitamin solutions were then added, as well as the CaCO₃ autoclaved in the dry state.

Culturing is carried out in a 10 ml volume in a 100 ml conical flask with baffles. Tetracycline (5 mg/l) was added. Culturing was carried out at 33°C and 80% atmospheric humidity.

After 72 hours, the OD was determined at a measurement wavelength of 660 nm with a Biomek 1000 (Beckmann Instruments GmbH, Munich). The amount of threonine formed was determined with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column derivatization with ninhydrin detection.

The result of the experiment is shown in Table 1.

 Strain
 OD
 L-Threonin g/l

 DSM5399
 12.3
 0.74

 DSM5399/pEC-T18mob2zwf
 10.2
 1.0

Table 1

10 2.3 Preparation of L-lysine

The C. glutamicum strain DSM5715/pEC-T18mob2zwf obtained in Example 2.1 was cultured in a nutrient medium suitable for the production of lysine and the lysine content in the culture supernatant was determined.

15 For this, the strain was first incubated on an agar plate with the corresponding antibiotic (brain-heart agar with tetracycline (5 mg/l)) for 24 hours at 33°C. Starting from this agar plate culture, a preculture was seeded (10 ml medium in a 100 ml conical flask). The complete medium 20 CgIII was used as the medium for the preculture.

Medium Cg III

NaCl 2.5 g/l

Bacto-Peptone 10 g/l

PCT/EP00/06303 WO 01/70995

20

10 g/1Bacto-Yeast extract

Glucose (autoclaved separately) 2% (w/v)

The pH was brought to pH 7.4

Tetracycline (5 mg/l) was added to this. The preculture was incubated for 16 hours at 33°C at 240 rpm on a shaking machine. A main culture was seeded from this preculture such that the initial OD (660nm) of the main culture was 5 0.1. Medium MM was used for the main culture.

Medium MM

CSL (corn steep liquor)	5 g/l
MOPS (morpholinopropanesulfonic acid)	20 g/l
Glucose (autoclaved separately)	58 g/l
	,
(NH ₄) ₂ SO ₄	25 g/l
KH ₂ PO ₄	0.1 g/l
MgSO ₄ * 7 H ₂ O	1.0 g/l
CaCl ₂ * 2 H ₂ O	10 mg/l
FeSO ₄ * 7 H ₂ O	10 mg/l
MnSO ₄ * H ₂ O	5.0mg/l
Biotin (sterile-filtered)	0.3 mg/l
Thiamine * HCl (sterile-filtered)	0.2 mg/l
L-Leucine (sterile-filtered)	0.1 g/l
CaCO ₃	25 g/l

The CSL, MOPS and the salt solution were brought to pH 7 with aqueous ammonia and autoclaved. The sterile substrate and vitamin solutions were then added, as well as the CaCO3 autoclaved in the dry state.

Culturing is carried out in a 10 ml volume in a 100 ml conical flask with baffles. Tetracycline (5 mg/l) was added. Culturing was carried out at 33°C and 80% atmospheric humidity.

After 72 hours, the OD was determined at a measurement wavelength of 660 nm with a Biomek 1000 (Beckmann 10 Instruments GmbH, Munich). The amount of lysine formed was determined with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column derivatization with ninhydrin detection.

15 The result of the experiment is shown in Table 2.

Strain OD L-Lysine HCl g/l DSM5715 10.8 16.0 DSM5715/pEC-T18mob2zwf 7.2 17.1

Table 2

Example 3

25

Construction of a gene library of Corynebacterium 20 glutamicum strain AS019

A DNA library of Corynebacterium glutamicum strain ASO19 (Yoshihama et al., Journal of Bacteriology 162, 591-597 (1985)) was constructed using λ Zap ExpressTM system, (Short et al., (1988) Nucleic Acids Research, 16: 7583-7600), as described by O'Donohue (O'Donohue, M. (1997). The

Cloning and Molecular Analysis of Four Common Aromatic Amino Acid Biosynthetic Genes from Corynebacterium glutamicum. Ph.D. Thesis, National University of Ireland, Galway). λ Zap ExpressTM kit was purchased from Stratagene (Stratagene, 11011 North Torrey Pines Rd., La Jolla, California 92037) and used according to the manufacturers instructions. AS019-DNA was digested with restriction enzyme Sau3A and ligated to BamHI treated and dephosphorylated λ Zap ExpressTM arms.

10 Example 4

15

Cloning and sequencing of the pgi gene

1. Cloning

Escherichia coli strain DF1311, carrying mutations in the pgi and pgl genes as described by Kupor and Fraenkel, (Journal of Bacteriology 100: 1296-1301 (1969)), was transformed with approx. 500 ng of the AS019 λ Zap ExpressTM plasmid library described in Example 3. Selection for transformants was made on M9 minimal media, (Sambrook

et al., (1989). Molecular Cloning. A Laboratory Manual Cold

20 Spring Harbour Laboratories, USA), containing kanamycin at a concentration of 50 mg/l and incubation at 37°C for 48 hours. Plasmid DNA was isolated from one transformant according to Birnboim and Doly (Nucleic Acids Research 7: 1513-1523 (1979)) and designated pAMC1 (Figure 3).

25 2. Sequencing

For sequence analysis of the cloned insert of pAMC1 the method of Sanger et al. (Proceedings of the National Academy of Sciences USA 74,5463-5467 (1977)) was applied using primers differentially labelled with a coloured

fluorescent tag. It was carried out using the ABI prism 310 genetic analyzer from Perkin Elmer Applied Biosystems, (Perkin Elmer Corporation, Norwalk, Connecticut, U.S.A), and the ABI prism Big DyeTM Terminator Cycle Sequencing Ready Reaction kit also from Perkin Elmer.

23

Initial sequence analysis was carried out using the universal forward and M13 reverse primers obtained from Pharmacia Biotech (St. Albans, Herts, AL1 3AW, UK):

Universal forward primer: GTA ATA CGA CTC ACT ATA GGG C M13 reverse primer: GGA AAC AGC TAT GAC CAT G Internal primers were subsequently designed from the sequence obtained which allowed the entire pgi gene to be deduced. The sequence of the internal primers is as follows:

10 Internal primer 1: GGA AAC AGG GGA GCC GTC Internal primer 2: TGC TGA GAT ACC AGC GGT

Sequence obtained was then analyzed using the DNA Strider programme, (Marck, (1988). Nucleic Acids Research 16: 1829-1836), version 1.0 on an Apple Macintosh computer. This

- program allowed for analyses such as restriction site usage, open reading frame analysis and codon usage determination. Searches between DNA sequence obtained and those in EMBL and Genbank databases were achieved using the BLAST programme, (Altschul et al., (1997). Nucleic Acids
- 20 Research, 25: 3389-3402). DNA and protein sequences were aligned using the Clustal V and Clustal W programs (Higgins and Sharp, 1988 Gene 73: 237-244).

The sequence thus obtained is shown in SEQ ID NO 1. The analysis of the nucleotide sequence obtained revealed an open reading frame of 1650 base pairs which was designated as pgi gene. It codes for a protein of 550 amino acids shown in SEQ ID NO 2.

Example 5

25

Preparation of an integration vector for integration 30 mutagenesis of the pgi gene

An internal segment of the pgi gene was amplified by polymerase chain reaction (PCR) using genomic DNA isolated from Corynebacterium glutamicum ASO19, (Heery and Dunican,

24

(1993) Applied and Environmental Microbiology 59: 791-799), as template. The pgi primers used were:

fwd. Primer: ATG GAR WCC AAY GGH AA rev. Primer: YTC CAC GCC CCA YTG RTC with R=A+G; Y=C+T; W=A+T; H=A+T+C.

PCR Parameters were as follows: 35 cycles

> 94°C for 1 min. 47°C for 1 min. 72°C for 30 sec.

10 · 1.5 mM MgCl₂

approx. 150-200 ng DNA template.

The PCR product obtained was cloned into the commercially available pGEM-T vector received from Promega Corp., (Promega UK, Southampton.) using strain E. coli JM109, (Yanisch-Perron et al., 1985. Gene, 33: 103-119), as a

- 15 host. The sequence of the PCR product is shown as SEQ ID NO 3. The cloned insert was then excised as an EcoRI fragment and ligated to plasmid pBGS8 (Spratt et al., Gene 41: 337-342 (1986)) pretreated with EcoRI. The restriction enzymes
- 20 used were obtained from Boehringer Mannheim UK Ltd., (Bell Lane, Lewes East Sussex BN7 1LG, UK.) and used according to manufacturers instructions. E. coli JM109 was then transformed with this ligation mixture and electrotransformants were selected on Luria agar
- 25 supplemented with IPTG (isopropyl-ß-Dthiogalactopyranoside), XGAL (5-bromo-4-chloro-3-indoly1-Dgalactopyranoside) and kanamycin at a concentration of 1 mM, 0.02% and 50 mg/l respectively. Agar plates were incubated for twelve hours at 37°C. Plasmid DNA was
- 30 isolated from one transformant, characterized by restriction enzyme analysis using EcoRI, BamHI and SalI designated pMC1 (Figure 4).

Plasmid pMCl was deposited in the form of Escherichia coli strain DH5a/pMC1 at the Deutsche Sammlung für

Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) as DSM 12969 according to the Budapest treaty.

PCT/EP00/06303

Example 6

DSM5715::pMC1.

Integration mutagenesis of the pgi gene in the lysine producer DSM 5715

The vector pMC1 mentioned in Example 5 was electroporated by the electroporation method of Tauch et al. (FEMS Microbiological Letters, 123:343-347 (1994)) in Corynebacterium glutamicum DSM 5715. Strain DSM 5715 is an AEC-resistant lysine producer. The vector pMC1 cannot 10 replicate independently in DSM5715 and is retained in the cell only if it has integrated into the chromosome of DSM 5715. Selection of clones with pMCl integrated into the chromosome was carried out by plating out the 15 electroporation batch on LB agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), which had been supplemented with 15 mg/l kanamycin. For detection of the integration, the internal pgi fragment (Example 5) was labelled with the Dig hybridization kit from Boehringer 20 Mannheim by the method of "The DIG System Users Guide for Filter Hybridization" of Boehringer Mannheim GmbH (Mannheim, Germany, 1993). Chromosomal DNA of a transformant was isolated by the method of Eikmanns et al. 25 (Microbiology 140: 1817 - 1828 (1994)) and in each case cleaved with the restriction enzymes SalI, SacI and HindIII. The fragments formed were separated by agarose gel electrophoresis and hybridized at 68°C with the Dig hybrization kit from Boehringer. It was found in this way 30 that the plasmid pMCl was inserted within the chromosomal pgi gene of strain DSM5715. The strain was called

WO 01/70995 26

Example 7

Effect of over-expression of the zwf gene with simultaneous elimination of the pgi gene on the preparation of lysine

- 7.1 Preparation of the strain DSM5715::pMC1/pEC-T18mob2zwf
- The vector pEC-T18mob2zwf mentioned in Example 1.2 was electroporated by the electroporation method of Tauch et al. (1994, FEMS Microbiological Letters, 123:343-347) in Corynebacterium glutamicum DSM 5715::pMC1. Selection for plasmid-carrying cells was made by plating out the
- 10 electroporation batch on LB agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), which had been supplemented with 15 mg/l kanamycin and with 5 mg/l tetracycline. Plasmid DNA was isolated from a
- transformant by conventional methods (Peters-Wendisch et 15 al., 1998, Microbiology 144, 915-927) and checked by treatment with the restriction enzymes KpnI and SalI with subsequent agarose gel electrophoresis. The strain was called DSM5715::pMC1/pEC-T18mob2zwf.
- 7.2 Preparation of lysine 20
 - The C. glutamicum strain DSM5715::pMC1/pEC-T18mob2zwf obtained in Example 7.1 was cultured in a nutrient medium suitable for the production of lysine and the lysine content in the culture supernatant was determined.
- 25 For this, the strain was first incubated on an agar plate with the corresponding antibiotic (brain-heart agar with tetracycline (5 mg/l) and kanamycin (25 mg/l)) for 24 hours at 33°C. The cultures of the comparison strains were supplemented according to their resistance to antibiotics.
- 30 Starting from this agar plate culture, a preculture was seeded (10 ml medium in a 100 ml conical flask). The complete medium CqIII was used as the medium for the preculture.

Medium Cg III

2.5 g/1NaCl

10 g/l Bacto-Peptone

 $10 \, g/1$ Bacto-Yeast extract

Glucose (autoclaved separately) 2% (w/v)

The pH was brought to pH 7.4

Tetracycline (5 mg/l) and kanamycin (5 mg/l) was added to this. The preculture was incubated for 16 hours at 33°C at 240 rpm on a shaking machine. A main culture was seeded from this preculture such that the initial OD (660 nm) of the main culture was 0.1. Medium MM was used for the main culture.

PCT/EP00/06303

CSL	(corn	steep	liquor)		5 g/l
MOPS	(morr	pholine	propanesulf	onic	20 g/l

acid)

Medium MM

Glucose (autoclaved separately) 50 g/l

(NH ₄) ₂ SO ₄		25 (g/l
KH ₂ PO ₄		0.1	g/l
MgSO ₄ * 7	H ₂ O	1.0	g/l
CaCl ₂ * 2	H ₂ O	10 m	ng/l
FeSO ₄ * 7	H ₂ O	10 m	ng/l

 $MnSO_4 * H_2O$ 5.0mg/l

Biotin (sterile-filtered) 0.3 mg/l

Thiamine * HCl (sterile-filtered) 0.2 mg/l

L-Leucine (sterile-filtered) 0.1 g/l

 $CaCO_3$ 25 g/l

The CSL, MOPS and the salt solution were brought to pH 7 with aqueous ammonia and autoclaved. The sterile substrate and vitamin solutions were then added, as well as the CaCO₃ autoclaved in the dry state.

Culturing is carried out in a 10 ml volume in a 100 ml conical flask with baffles. Tetracycline (5 mg/l) and kanamycin (25 mg/l) were added. Culturing was carried out at 33° C and 80% atmospheric humidity.

After 72 hours, the OD was determined at a measurement wavelength of 660 nm with a Biomek 1000 (Beckmann Instruments GmbH, Munich). The amount of lysine formed was determined with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column derivatization with ninhydrin detection.

The result of the experiment is shown in Table 3.

Strain OD L-Lysine HCl g/l DSM5715 7.3 14.3 DSM5715/pEC-T18mob2zwf 7.1 14.6 DSM5715::pMC1/ 10.4 15.2 pECTmob2zwf

Table 3

10 Example 8

Preparation of a genomic cosmid gene library from Corynebacterium glutamicum ATCC 13032

Chromosomal DNA from Corynebacterium glutamicum ATCC 13032 was isolated as described by Tauch et al., (1995, Plasmid 15 33:168-179), and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Code no. 27-0913-02). The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product 20 Description SAP, Code no. 1758250). The DNA of the cosmid vector SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), obtained from Stratagene (La Jolla, USA, Product Description SuperCos1 Cosmid Vektor Kit, Code no. 251301) was cleaved

PCT/EP00/06303 WO 01/70995

30

with the restriction enzyme XbaI (Amersham Pharmacia, Freiburg, Germany, Product Description XbaI, Code no. 27-0948-02) and likewise dephosphorylated with shrimp alkaline phosphatase. The cosmid DNA was then cleaved with the 5 restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Code no. 27-0868-04). The cosmid DNA treated in this manner was mixed with the treated ATCC13032 DNA and the batch was treated with T4 DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04). The 10 ligation mixture was then packed in phages with the aid of Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217). For infection of the E. coli strain NM554 15 (Raleigh et al. 1988, Nucleic Acid Res. 16:1563-1575) the cells were taken up in 10 mM MgSO4 and mixed with an aliquot of the phage suspension. The infection and titering of the cosmid library were carried out as described by Sambrook et al. (1989, Molecular Cloning: A laboratory 20 Manual, Cold Spring Harbor), the cells being plated out on LB agar (Lennox, 1955, Virology, 1:190) + 100 μg/ml ampicillin. After incubation overnight at 37°C, recombinant

Example 9

30

35

25 Isolation and sequencing of the poxB gene

individual clones were selected.

The cosmid DNA of an individual colony (Example 7) was isolated with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Product No. 27-0913-02). The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Product No. 1758250). After separation by gel electrophoresis, the

31

cosmid fragments in the size range of 1500 to 2000 bp were isolated with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany). The DNA of the sequencing vector pZero-1, obtained from Invitrogen (Groningen, 5 Holland, Product Description Zero Background Cloning Kit, Product No. K2500-01), was cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Product No. 27-0868-04). The ligation of the cosmid fragments in the sequencing vector 10 pZero-1 was carried out as described by Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor), the DNA mixture being incubated overnight with T4 ligase (Pharmacia Biotech, Freiburg, Germany). This ligation mixture was then electroporated (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) into the E. coli 15 strain DH5 \alphaMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) and plated out on LB agar (Lennox, 1955, Virology, 1:190) with 50 µg/ml zeocin. The plasmid preparation of the recombinant clones 20 was carried out with Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Germany). The sequencing was carried out by the dideoxy chain-stopping method of Sanger et al. (1977, Proceedings of the National Academies of Sciences U.S.A., 74:5463-5467) with modifications according to Zimmermann et 25 al. (1990, Nucleic Acids Research, 18:1067). The "RR dRhodamin Terminator Cycle Sequencing Kit" from PE Applied Biosystems (Product No. 403044, Weiterstadt, Germany) was used. The separation by gel electrophoresis and analysis of the sequencing reaction were carried out in a "Rotiphoresis 30 NF Acrylamide/Bisacrylamide" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) with the "ABI Prism 377" sequencer from PE Applied Biosystems (Weiterstadt, Germany).

The raw sequence data obtained were then processed using 35 the Staden program package (1986, Nucleic Acids Research, 14:217-231) version 97-0. The individual sequences of the

32

pZerol derivatives were assembled to a continuous contig. The computer-assisted coding region analysis were prepared with the XNIP program (Staden, 1986, Nucleic Acids Research, 14:217-231). Further analyses were carried out with the "BLAST search program" (Altschul et al., 1997, Nucleic Acids Research, 25:3389-3402), against the non-redundant databank of the "National Center for Biotechnology Information" (NCBI, Bethesda, MD, USA).

The resulting nucleotide sequence is shown in SEQ ID No. 4.

10 Analysis of the nucleotide sequence showed an open reading frame of 1737 base pairs, which was called the poxB gene. The poxB gene codes for a polypeptide of 579 amino acids (SEQ ID NO. 5).

Example 10

15 Preparation of an integration vector for integration mutagenesis of the poxB gene

From the strain ATCC 13032, chromosomal DNA was isolated by the method of Eikmanns et al. (Microbiology 140: 1817 - 1828 (1994)). On the basis of the sequence of the poxB gene known for C. glutamicum from Example 8, the following oligonucleotides were chosen for the polymerase chain reaction:

poxBint1:

- 5' TGC GAG ATG GTG AAT GGT GG 3'
- 25 poxBint2:

20

30

5' GCA TGA GGC AAC GCA TTA GC 3'

The primers shown were synthesized by MWG Biotech (Ebersberg, Germany) and the PCR reaction was carried out by the standard PCR method of Innis et al. (PCR protocols. A guide to methods and applications, 1990, Academic Press) with Pwo-Polymerase from Boehringer. With the aid of the polymerase chain reaction, a DNA fragment approx. 0.9 kb in

size was isolated, this carrying an internal fragment of the poxB gene and being shown in SEQ ID No. 6.

The amplified DNA fragment was ligated with the TOPO TA Cloning Kit from Invitrogen Corporation (Carlsbad, CA, USA; 5 Catalogue Number K4500-01) in the vector pCR2.1-TOPO (Mead at al. (1991) Bio/Technology 9:657-663). The E. coli strain DH5 α was then electroporated with the ligation batch (Hanahan, In: DNA cloning. A practical approach. Vol.I. IRL-Press, Oxford, Washington DC, USA, 1985). Selection for 10 plasmid-carrying cells was made by plating out the transformation batch on LB agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), which had been supplemented with 25 mg/l kanamycin. Plasmid DNA was isolated from a transformant with the aid of the 15 QIAprep Spin Miniprep Kit from Qiagen and checked by restriction with the restriction enzyme EcoRI and subsequent agarose gel electrophoresis (0.8%). The plasmid was called pCR2.1poxBint (Figure 5).

Plasmid pCR2.1poxBint has been deposited in the form of the strain Escherichia coli DH5α/pCR2.1poxBint as DSM 13114 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty.

Example 11

Integration mutagenesis of the poxB gene in the lysine producer DSM 5715

The vector pCR2.1poxBint mentioned in Example 10 was electroporated by the electroporation method of Tauch et al.(FEMS Microbiological Letters, 123:343-347 (1994)) in Corynebacterium glutamicum DSM 5715. Strain DSM 5715 is an AEC-resistant lysine producer. The vector pCR2.1poxBint

cannot replicate independently in DSM5715 and is retained in the cell only if it has integrated into the chromosome of DSM 5715. Selection of clones with pCR2.1poxBint integrated into the chromosome was carried out by plating 5 out the electroporation batch on LB agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), which had been supplemented with 15 mg/l kanamycin. For detection of the integration, the poxBint fragment was labelled with the Dig hybridization kit from Boehringer by the method of 10 "The DIG System Users Guide for Filter Hybridization" of Boehringer Mannheim GmbH (Mannheim, Germany, 1993). Chromosomal DNA of a potential integrant was isolated by the method of Eikmanns et al. (Microbiology 140: 1817 -1828 (1994)) and in each case cleaved with the restriction 15 enzymes SalI, SacI and HindIII. The fragments formed were separated by agarose gel electrophoresis and hybridized at 68°C with the Dig hybrization kit from Boehringer. The plasmid pCR2.1poxBint mentioned in Example 9 had been 20 inserted into the chromosome of DSM5715 within the chromosomal poxB gene. The strain was called DSM5715::pCR2.1poxBint.

Example 12

30

Effect of over-expression of the zwf gene with simultaneous elimination of the poxB gene on the preparation of lysine

12.1 Preparation of the strain DSM5715::pCR2.1poxBint/pEC-T18mob2zwf

The strain DSM5715::pCR2.1poxBint was transformed with the plasmid pEC-T18mob2zwf using the electroporation method described by Liebl et al., (FEMS Microbiology Letters, 53:299-303 (1989)). Selection of the transformants took place on LBHIS agar comprising 18.5 g/l brain-heart infusion broth, 0.5 M sorbitol, 5 g/l Bacto-tryptone, 2.5 g/l Bacto-yeast extract, 5 g/l NaCl and 18 g/l Bacto-

agar, which had been supplemented with 5 mg/l tetracycline and 25 mg/l kanamycin. Incubation was carried out for 2 days at 33°C.

Plasmid DNA was isolated in each case from a transformant 5 by conventional methods (Peters-Wendisch et al., 1998, Microbiology 144, 915-927), cleaved with the restriction endonucleases XbaI and KpnI, and the plasmid was checked by subsequent agarose gel electrophoresis. The strain obtained in this way was called DSM5715:pCR2.1poxBint/pEC-T18mob2zwf.

12.2 Preparation of L-lysine

10

15

20

The C. glutamicum strain DSM5715::pCR2.1poxBint/pEC-T18mob2zwf obtained in Example 12.1 was cultured in a nutrient medium suitable for the production of lysine and the lysine content in the culture supernatant was determined.

For this, the strain was first incubated on an agar plate with the corresponding antibiotic (brain-heart agar with tetracycline (5 mg/l) and kanamycin (25 mg/l)) for 24 hours at 33°C. The comparison strains were supplemented according to their resistance to antibiotics. Starting from this agar plate culture, a preculture was seeded (10 ml medium in a 100 ml conical flask). The complete medium CgIII was used as the medium for the preculture.

Medium Cg III

NaCl 2.5 g/lBacto-Peptone $10 \, g/l$ Bacto-Yeast extract $10 \, g/l$

Glucose (autoclaved separately) 2% (w/v)

The pH was brought to pH 7.4

Tetracycline (5 mg/l) and kanamycin (25 mg/l) were added to this. The preculture was incubated for 16 hours at 33°C at 240 rpm on a shaking machine. A main culture was seeded from this preculture such that the initial OD (660nm) of the main culture was 0.1. Medium MM was used for the main culture.

Medium MM

CSL (corn steep liquor)	5 g/l
MOPS (morpholinopropanesulfonic acid)	20 g/l
Glucose (autoclaved separately)	58 g/l
(NH ₄) ₂ SO ₄	25 g/l
KH ₂ PO ₄	0.1 g/l
$MgSO_4$ * 7 H_2O	1.0 g/l
CaCl ₂ * 2 H ₂ O	10 mg/l
FeSO ₄ * 7 H ₂ O	10 mg/l
MnSO ₄ * H ₂ O	5.0mg/l
Biotin (sterile-filtered)	0.3 mg/l
Thiamine * HCl (sterile-filtered)	0.2 mg/l
L-Leucine (sterile-filtered)	0.1 g/l
CaCO ₃	25 g/l

37

The CSL, MOPS and the salt solution were brought to pH 7 with aqueous ammonia and autoclaved. The sterile substrate and vitamin solutions were then added, as well as the CaCO $_3$ autoclaved in the dry state.

5 Culturing is carried out in a 10 ml volume in a 100 ml conical flask with baffles. Tetracycline (5 mg/l) and kanamycin (25 mg/l) were added. Culturing was carried out at 33°C and 80% atmospheric humidity.

After 72 hours, the OD was determined at a measurement
wavelength of 660 nm with a Biomek 1000 (Beckmann
Instruments GmbH, Munich). The amount of lysine formed was
determined with an amino acid analyzer from EppendorfBioTronik (Hamburg, Germany) by ion exchange chromatography
and post-column derivatization with ninhydrin detection.

15 The result of the experiment is shown in Table 4.

Table 4

Strain	OD	L-Lysine HCl g/l
DSM5715	10.8	16.0
DSM5715/pEC-T18mob2zwf	8.3	17.1
DSM5715::pCR2.lpoxBint	7.1	16.7
DSM5715::pCR2.lpoxBint/ pEC-Tmob2zwf	7.8	17.7

Authorized officer

0-5-1

990239 BT **PCT** Original (for SUBMISSION) - printed on 03.07.2000 02:54:24 PM Form - PCT/RO/134 (EASY) 0-1 Indications Relating to Deposited Microorganism(s) or Other Biological Material (PCT Rule 13bis) 0-1-1 Prepared using PCT-EASY Version 2.90 (updated 08.03.2000) International Application No. 0-2 PCT/EP 0 0 / 0 6 3 0 3 0-3 Applicant's or agent's file reference 990239 BT The Indications made below relate to the deposited microorganism(s) or other biological material referred to in the description on: 1-1 page 10 1-2 line 24-29 1-3 Identification of Deposit Name of depositary institution DSMZ-Deutsche Sammlung von 1-3-1 Mikroorganismen und Zellkulturen GmbH Address of depositary institution Mascheroder Weg 1b, D-38124 1-3-2 Braunschweig, Germany 20 January 2000 (20.01.2000) 1-3-3 Date of deposit 1-3-4 Accession Number DSMZ 13244 **Additional Indications** 1-4 NONE **Designated States for Which** all designated States 1-5 Indications are Made Separate Furnishing of Indications 1-6 NONE These indications will be submitted to the International Bureau later FOR RECEIVING OFFICE USE ONLY This form was received with the 0.4 yes international application: (yes or no) 0-4-1 Authorized officer FOR INTERNATIONAL BUREAU USE ONLY This form was received by the 0-5 international Bureau on:

Patent claims

- A process for the preparation of L-amino acids by fermentation of coryneform bacteria
- 5 which comprises carrying out the following steps:
 - a) fermentation of the desired L-amino acidproducing bacteria in which at least the zwf gene is amplified,
- 10 b) concentration of the L-amino acid in the medium or in the cells of the bacteria and
 - c) isolation of the L-amino acid produced.
 - The process as claimed in claim 1,
 w h e r e i n
- bacteria in which further genes of the biosynthesis pathway of the desired L-amino acid are additionally amplified, in particular over-expressed, are employed.
 - 3. The process as claimed in claim 1,
 w h e r e i n

, î.

- coryneform bacteria which prepare L-threonine, L-lysine or L-tryptophan are used.
 - 4. The process as claimed in claim 3, w h e r e i n coryneform bacteria which prepare L-lysine are used.

the same of the same

25 5. A process for the fermentative preparation of L-lysine as claimed in claim 2, where in the coryneform microorganisms which in particular already produce L-lysine, one or more genes chosen from the group consisting of

- 5.1 the dapA gene which codes for dihydrodipicolinate synthase,
- 5.2 the lysC gene which codes for a feed back resistant aspartate kinase,
- 5 5.3 the gap gene which codes for glycerolaldehyde 3-phosphate dehydrogenase,
 - 5.4 the pyc gene which codes for pyruvate carboxylase,
 - 5.5 the tkt gene which codes for transketolase,
- 10 5.6 the gnd gene which codes for glucose 6-phosphate dehydrogenase,
 - 5.7 the lysE gene which codes for lysine export,
 - 5.8 the zwal gene,

- 5.9 the eno gene which codes for enolase
- is or are amplified or over-expressed at the same time.
 - A process for the fermentative preparation of Lthreonine as claimed in claim 2,
 w h e r e i n
- in the coryneform microorganisms which in particular already produce L-threonine, one or more genes chosen from the group consisting of
 - 6.1 the hom gene which codes for homoserine dehydrogenase or the hom^{dr} allele which codes for a "feed back resistant" homoserine dehydrogenase,
 - 6.2 the gap gene which codes for glycerolaldehyde 3phosphate dehydrogenase,

- 6.3 the pyc gene which codes for pyruvate carboxylase,
- 6.4 the mgo gene which codes for malate:quinone oxidoreductase,
- 5 6.5 the tkt gene which codes for transketolase,
 - 6.6 the zwf gene which codes for glucose 6-phosphate dehydrogenase,
 - 6.7 the thrE gene which codes for threonine export,
 - 6.8 the zwal gene,

- 10 6.9 the eno gene which codes for enolase is or are amplified, in particular over-expressed, at the same time.
 - 7. The process as claimed in claim 2, where in
- for the preparation of L-amino acids, in particular Llysine or L-threonine, bacteria in which one or more genes chosen from the group consisting of,
 - 7.1 the pck gene which codes for phosphoenol pyruvate carboxykinase,
- 7.2 the pgi gene which codes for glucose 6-phosphate isomerase
 - 7.3 the poxB gene which codes for pyruvate oxidase or
 - 7.4 the zwa2 gene

1 Letter

e de la companya de l

is or are attenuated at the same time, are fermented.

and the graph of page of the control of the control

25 8. The process as claimed in claims 2 to 6, w h e r e i n to achieve the amplification, the number of copies of the genes or nucleotide sequences is increased by transformation of the microorganisms with plasmid vectors which carry these genes or nucleotide sequences.

- 5 9. The plasmid vector pEC-T18mob2 deposited under the designation DSM13244 in E.coli K-12 DH5 α , shown in Figure 2.
- 10. A coryneform microorganism, in particular of the genus Corynebacterium, transformed by the introduction of the plasmid vector as claimed in claim 9, which additionally contains the zwf gene.

Plants dent of the end of the following

Figure 1: Map of the plasmid pEC-T18mob2

Figure 2: Map of the plasmid pEC-T18mob2zwf

Figure 3

4/5

Figure 4:

Figure 5:

1

	SEQUENCE PROTOCOL
c	<110> Degussa-Hüls AG National University of Ireland, Galway Forschungszentrum Jülich GmbH
5	<120> Process for the fermentative preparation of L-amino acids using the zwf gene.
10	<130> 990239BT
	<140> <141>
15	<160> 6
13	<170> PatentIn Ver. 2.1
	<210> 1
20	<212> DNA <213> Corynebacterium glutamicum
	<220>
25	<221> CDS <222> (373)(2022)
	<223> pgi
30	<400> 1 aaaacccgag gggcgaaaat tccaccctaa cttttttggg atcccctttt tccggggaat 60
30	taattggttt gggtttcaat gggaaaacgg gaaacaatgg gccaaaggtt caaaaacccc 120
	aaaagggggc cgggttcaaa ttcccaaaaa aaatggcaaa aaaggggggg ccaaaaccaa 180
35	gttggccccc aaaccaccgg ggcaacggcc cacccacaaa ggggttgggt taaaggaagg 240
	acgcccaaag taagcccgga atggcccacg ttcgaaaaag caggccccaa ttaaacgcac 300
40	cttaaatttg tcgtgtttcc cactttgaac actcttcgat gcgcttggcc acaaaagcaa 360
	gctaacctga ag atg tta ttt aac gac aat aaa gga gtt ttc atg gcg gac 411 Met Leu Phe Asn Asp Asn Lys Gly Val Phe Met Ala Asp 1 5 10
45	att tcg acc acc cag gtt tgg caa gac ctg acc gat cat tac tca aac 459 Ile Ser Thr Thr Gln Val Trp Gln Asp Leu Thr Asp His Tyr Ser Asn 15 20 25
	ttc cag gca acc act ctg cgt gaa ctt ttc aag gaa gaa aac cgc gcc 507
50	Phe Gln Ala Thr Thr Leu Arg Glu Leu Phe Lys Glu Glu Asn Arg Ala 30 45
	gag aag tac acc ttc tcc gcg gct ggc ctc cac gtc gac ctg tcg aag 555 Glu Lys Tyr Thr Phe Ser Ala Ala Gly Leu His Val Asp Leu Ser Lys
55	50 55 60

aat ctg ctt gac gac gcc acc ctc acc aag ctc ctt gca ctg acc gaa

	Asn	Leu	Leu	Asp 65	_	Ala	Thr	Leu	Thr 70	Lys	Leu	Leu	Ala	Leu 75	Thr	Glu	
5	_			ctt Leu	_	_	_		-		_		_		_		651
10				acc Thr													699
15		-		gct Ala	_	-		-	_			_	-	-	_	_	747
13	_		_	gtt Val	_		-	_	-	_		_			_	-	795
20				tgg Trp 145	-						_		_	_		-	843
25				atc Ile													891
30				gca Ala													939
2.5				cca Pro													987
35				ttg Leu													1035
40	_	_		aac Asn 225	-	-	-	-	-	-		-	-		-		1083
45				gct Ala													1131
50	-	_	_	gca Ala					-	-	-		_				1179
				gtc Val			-				-		-	_			1227
55				gca Ala													1275

					-	gat Asp	-			-			-		-		1323
5						atg Met											1371
10			_	_		cac His	_	-						_		_	1419
15	-		-	-		ctc Leu 355	_	-	_		_					-	1467
20						ggc Gly											1515
						ggc Gly											1563
25			_			cgc Arg		-		_	-					_	1611
30	-		_	_	-	ctt Leu		_			•		-		-		1659
35						ttc Phe 435											1707
40		-	-			gct Ala		_		-	-			-	-		1755
		_	-			ggt Gly		-						_			1803
45	gaa Glu	ctt Leu	acc Thr 480	cct Pro	tct Ser	att Ile	ctc Leu	ggt Gly 485	gcg Ala	tţg Leu	atc Ile	gct Ala	ttg Leu 490	tac Tyr	gaa Glu	cac His	1851
50						ggc Gly											1899
55			-	-	_	ggc Gly 515		-	_	-		-		-	_	_	1947
						gat Asp											1995

5	ctg att a Leu Ile I		Tyr A				tag	tcgc	ttg	ctta	tagg	gt		2042
J	caggggcgt	tg aaga	atccto	c gcctc	atago	e act	tggc	cgct	atc	atcc	tga	cctc	gttcaa	2102
	tctgcgaad	ca gcta	ttacto	g cttta	gctco	c gct	tggti	ttct	gag	attc	ggg	atga	tttagg	2162
10	ggttagtg	ct tctc	ttatto	g gtgtg	ttggg	g cat	tgat	cccg	act	gcta	tgt	tcgc	ggttgc	2222
	tgcgtttgd	cg cttc	cgtcgt	tgaag	aggaa	gtt	cac	tact	tcc	caac	tgt	tgat	gtttgc	2282
15	catgctgtt	tg actg	ctgccg	g gtcag	attat	tc	gtgto	cgct	gga	cctg	ctt	cgct	gttgat	2342
	ggtcggtad	ct gtgt	tegega	a tgttt	gcgat	. cg	gagti	tacc	aat	gtgt	tgc	ttcc	gattgc	2402
	tgttaggga	ag tatt	ttccgc	gtcac	gtcgg	, tg	gaato	gtcg	aca	actt	atc	tggt	gtcgtt	2462
20	ccagattgt	t cagg	cactto	g ctccg	acgct	tgo	cgt	gccg	att	tctc	agt	gggc	tacaca	2522
•	tgtggggtt	g accg	gttgga	a gggtg	tcgct	cgg	gttc	gtgg	gcg	ctgc	tgg	ggtt	ggttgc	2582
25	ggcgatttc	eg tgga	ttccgc	tgttg	agttt	gca	agggt	gcc	agg	gttg	ttg	cggc	geegte	2642
	gaaggttto	t cttc	ctgtgt	ggaag	tcttc	ggt	tggt	gtg	ggg	ctcg	ggt	tgat	gtttgg	2702
•	gtttacttc	g tttg	cgacgt	atato	ctcat	ggg	tttt	atg	ccg	cagat	-gg	taggi	gatcc	2762
30	aaagaatto	a aaaa	gcttct	cgaga	gtact	tct	agaç	gegg	ccg	cgggd	cc			2811
35	<210> 2 <211> 550 <212> PRT <213> Cor	•	cerium	ı glutan	micum	ı								
	<400> 2 Met Leu P	he Asn	Asn A	en Lve	Glv	Va l	Pho	Met	Δla	Δen	Tle	Sor	Thr	
40	1	ne Asn	5	ы пуз	GLy	Vai	10	nec	NI.	nap	116	15	*****	
	Thr Gln V	al Trp 20	Gln A	sp Leu	Thr	Asp 25	His	Tyr	Ser	Asn	Phe 30	Gln	Ala	
45	Thr Thr L	eu Arg 35	Glu L	eu Phe	Lys 40	Glu	Glu	Asn	Arg	Ala 45	Glu	Lys	Tyr	
50	Thr Phe S	er Ala	Ala G	ly Leu 55	His	Val	Asp	Leu	Ser 60	Lys	Asn	Leu	Leu	
	Asp Asp A 65	la Thr		hr Lys 70	Leu	Leu	Ala	Leu 75	Thr	Glu	Glu	Ser	Gly 80	
55	Leu Arg G	lu Arg	Ile A 85	sp Ala	Met	Phe	Ala 90	Gly	Glu	His	Leu	Asn 95	Asn	
	Thr Glu A	sp Arg	Ala V	al Leu		Thr 105	Ala	Leu	Arg	Leu	Pro 110	Ala	Glu	

	Ala	Asp	Leu 115	Ser	Val	Asp	Gly	Gln 120	Asp	Val	Ala	Ala	Asp 125	Val	His	Glu
5	Val	Leu 130	Gly	Arg	Met	Arg	Asp 135	Phe	Ala	Thr	Ala	Leu 140	Arg	Ser	Gly	Asn
	Trp 145	Leu	Gly	His	Thr	Gly 150	His	Thr	Ile	Lys	Lys 155	Ile	Val	Asn	Ile	Gly 160
10	Ile	Gly	Gly	Ser	Asp 165	Leu	Gly	Pro	Ala	Met 170	Ala	Thr	Lys	Ala	Leu 175	Arg
15	Ala	Tyr	Ala	Thr 180	Ala	Gly	Ile	Ser	Ala 185	Glu	Phe	Val	Ser	Asn 190	Val	Asp
	Pro	Ala	Asp 195	Leu	Val	Ser	Val	Leu 200	Glu	Asp	Leu	Asp	Ala 205	Glu	Ser	Thr
20	Leu	Phe 210	Val	Ile	Ala	Ser	Lys 215	Thr	Phe	Thr	Thr	Gln 220	Glu	Thr	Leu	Ser
	Asn 225	Ala	Arg	Ala	Ala	Arg 230	Ala	Trp	Leu	Val	Glu 235	Lys	Leu	Gly	Glu	Glu 240
25	Ala	Val	Ala	Lys	His 245	Phe	Val	Ala	Val	Ser 250	Thr	Asn	Ala	Glu	Lys 255	Val
30	Ala	Glu	Phe	Gly 260	Ile	Asp	Thr	Asp	Asn 265	Met	Phe	Gly	Phe	Trp 270	Asp	Trp
	Val	Gly	Gly 275	Arg	Tyr	Ser	Val	Asp 280	Ser	Ala	Val	Gly	Leu 285	Ser	Leu	Met
35	Ala	Val 290	Ile	Gly	Pro	Arg	Asp 295	Phe	Met	Arg	Phe	Leu 300	Gly	Gly	Phe	His
	Ala 305	Met	Asp	Glu	His	Phe 310	Arg	Thr	Thr	Lys	Phe 315	Glu	Glu	Asn	Val	Pro 320
10	Ile	Leu	Met	Ala	Leu 325	Leu	Gly	Val	Trp	Tyr 330	Ser	Asp	Phe	Tyr	Gly 335	Ala
15	Glu	Thr	His	Ala 340	Val	Leu	Pro	Tyr	Ser 345	Glu	Asp	Leu	Ser	Arg 350	Phe	Ala
	Ala	Tyr	Leu 355	Gln	Gln	Leu	Thr	Met 360	Glu	Thr	Asn	Gly	Lys 365	Ser	Val	His
50	Arg	Asp 370	Gly	Ser	Pro	Val	Ser 375	Thr	Gly	Thr	Gly	Glu 380	Ile	Tyr	Trp	Gly
	Glu 385	Pro	Gly	Thr	Asn	Gly 390	Gln	His	Ala	Phe	Phe 395	Gln	Leu	Ile	His	Gln 400
55	Gly	Thr	Arg	Leu	Val 405	Pro	Ala	Asp	Phe	Ile 410	Gly	Phe	Ala	Arg	Pro 415	Lys
	Gln	Asp	Leu	Pro 420	Ala	Gly	Glu	Arg	Thr 425	Met	His	Asp	Leu	Leu 430	Met	Ser

	Asn	Phe	Phe 435	Ala	Gln	Thr	Lys	Val 440	Leu	Ala	Phe	Gly	Lys 445	Asn	Ala	Glu	
5	Glu	Ile 450	Ala	Ala	Glu	Gly	Val 455	Ala	Pro	Glu	Leu	Val 460	Asn	His	Lys	Val	
10	Val 465	Pro	Gly	Asn	Arg	Pro 470	Thr	Thr	Thr	Ile	Leu 475	Ala	Glu	Glu	Leu	Thr 480	
10	Pro	Ser	Ile	Leu	Gly 485	Ala	Leu	Ile	Ala	Leu 490	Tyr	Glu	His	Thr	Val 495	Met	
15	Val	Gln	Gly	Val 500	Ile	Trp	Asp	Ile	Asn 505	Ser	Phe	Asp	Gln	Trp 510	Gly	Val	
	Glu	Leu	Gly 515	Lys	Gln	Gln	Ala	Asn 520	Asp	Leų	Ala	Pro	Ala 525	Val	Ser	Gly	
20		Glu 530	Asp	Val	Asp	Ser	Gly 535	Asp	Ser	Ser	Thr	Asp 540	Ser	Leu	Ile	Lys	
25	Trp 545	Tyr	Arg	Ala	Asn	Arg 550											
30	<210 <211 <212 <213	> 46 > DN	IA	bact	eriu	m gl	utam	uicum	ı								
35	gaaa cagg	agac ttta gcac	ct g	gggt cctt	gage gttc	c tg	gcac ctga	aaat	ggc att	cago ggtt	acg tcg	cttt	ctto	ca ç	jctga jcagg	etgge tccac atctt	120 180
40	gtca	acca cttc	ca a	ggto	gtgc ggtg	c ag c gt	gtaa tgat	tcgc cgct	cca ttg	acca	cca	ccat	tttg	igc g	ggagg	agetg aaett aggge	360
45	<210: <211: <212: <213:	> 21 > DN	Α	bact	eriu	m gl	utam	icum	ı								
50	<220: <221: <222: <223:	> CD > (3	27).	. (20	63)												
55	<400 ttag		ga t	tctg	tgag	g tc	actt	tttg	tgg	ggtc	ggg	gtct	aaat	tt g	gcca	gtttt	60
	cgag	gcga	сс а	gaca	ggcg	t gc	ccac	gatg	ttt	aaat	agg	cgat	cggt	gg g	gcato	tgtgt	120
	ttgg	tttc	ga c	gggc	tgaa.	a cc	aaac	caga	ctg	ccca	gca	acga	.cgga	aa t	ccca	aaagt	180

	ggg	cato	cct	gttt	ggta	cc ç	gagta	ccca	ic co	gggc	ctga	aac	tccc	tgg	cagg	cgggcg	240
5	aag	cgt	ggca	acaa	ctgg	aa t	ttaa	igago	a ca	attg	aagt	cgc	acca	agt	tagg	caacac	300
3	aat	agco	ata	acgt	tgag	ga g	ittca									a tta n Leu	353
10		Asp			gaa Glu		Gln					Ile					401
15		-	-		aat Asn 30	Pro			_	_	Val	-			-		449
20					gtt Val	_			-					-	_		497
25	gcg Ala	gaa Glu	tcg Ser 60	Leu	atc Ile	act Thr	ggg Gly	gag Glu 65	Leu	gca Ala	gta Val	tgt Cys	gct Ala 70	gct Ala	tct Ser	tgt Cys	545
					aca Thr												593
30				-	gtg Val	_	_		_	_			_	_	-	_	641
35	att				ttc Phe 110												689
40					tac Tyr												73 7 .
45					cac His												785
	tcg Ser	gtg Val 155	gta Val	gtg Val	att Ile	cct Pro	ggt Gly 160	gat Asp	atc Ile	gct Ala	aag Lys	gaa Glu 165	gac Asp	gca Ala	ggt Gly	gac Asp	833
50	ggt Gly 170	act Thr	tat Tyr	tcc Ser	aat Asn	tcc Ser 175	act Thr	att Ile	tct Ser	tct Ser	ggc Gly 180	act Thr	cct Pro	gtg Val	gtg Val	ttc Phe 185	881
55					gag Glu 190												929
					ttg Leu												977

				205	5				210)				215	•		
5	cag Gln	gtg Val	Leu 220	Glu	ttg Leu	g gcg Ala	gag Glu	aag Lys 225	Ile	aaa Lys	tca Ser	Pro	ato Ile 230	Gly	cat His	gcg Ala	1025
10			Gly					Gln					Phe			ggc Gly	1073
		Ser					Tyr					Asp				gag Glu 265	1121
15	gcg Ala	gat Asp	ctg Leu	ctg Leu	att Ile 270	Leu	ttg Leu	ggt Gly	acg Thr	gat Asp 275	Phe	cct Pro	tat Tyr	tct Ser	gat Asp 280	ttc Phe	1169
20	ctt Leu	cct Pro	aaa Lys	gac Asp 285	aac Asn	gtt Val	gcc Ala	cag Gln	gtg Val 290	gat Asp	atc Ile	aac Asn	ggt Gly	gcg Ala 295	cac	att Ile	1217
25	ggt Gly	cga Arg	cgt Arg 300	acc Thr	acg Thr	gtg Val	aag Lys	tat Tyr 305	ccg	gtg Val	acc Thr	ggt Gly	gat Asp 310	gtt Val	gct Ala	gca Ala	1265
30	aca Thr	atc Ile 315	gaa Glu	aat Asn	att Ile	ttg Leu	cct Pro 320	cat His	gtg Val	aag Lys	gaa Glu	aaa Lys 325	aca Thr	gat Asp	cgt Arg	tcc Ser	1313
	ttc Phe 330	ctt Leu	gat Asp	cgg Arg	atg Met	ctc Leu 335	aag Lys	gca Ala	cac His	gag Glu	cgt Arg 340	aag Lys	ttg Leu	agc Ser	tcg Ser	gtg Val 345	1361
35	gta Val	gag Glu	acg Thr	tac Tyr	aca Thr 350	cat His	aac Asn	gtc Val	gag Glu	aag Lys 355	cat His	gtg Val	cct Pro	att Ile	cac His 360	cct Pro	1409
40	gaa Glu	tac Tyr	gtt Val	gcc Ala 365	tct Ser	att Ile	ttg Leu	aac Asn	gag Glu 370	ctg Leu	gcg Ala	gat Asp	aag Lys	gat Asp 375	gcg Ala	gtg Val	1457
45	ttt Phe	act Thr	gtg Val 380	gat Asp	acc Thr	ggc Gly	atg Met	tgc Cys 385	aat Asn	gtg Val	tgg Trp	cat His	gcg Ala 390	agg Arg	tac Tyr	atc Ile	1505
50	gag Glu	aat Asn 395	ccg Pro	gag Glu	gga Gly	acg Thr	cgc Arg 400	gac Asp	ttt Phe	gtg Val	ggt Gly	tca Ser 405	ttc Phe	cgc Arg	cac His	ggc Gly	1553
						ttg Leu 415											1601
55	_		_	-		atc Ile		_	-		_			_		-	1649
	ctg	ctg	ggt	gag	ctt	ctg	acc	gtt	aag	ctg	cac	caa	ctt	ccg	ctg	aag	1697

	Leu	Leu	Gly	Glu 445	Leu	Leu	Thr	Val	Lys 450	Leu	His	Gln	Leu	Pro 455	Leu	Lys	
5	gct Ala	gtg Val	gtg Val 460	ttt Phe	aac Asn	aac Asn	agt Ser	tct Ser 465	ttg Leu	ggc Gly	atg Met	gtg Val	aag Lys 470	ttg Leu	gag Glu	atg Met	1745
10	ctc Leu	gtg Val 475	gag Glu	gga Gly	cag Gln	cca Pro	gaa Glu 480	ttt Phe	ggt Gly	act Thr	gac Asp	cat His 485	gag Glu	gaa Glu	gtg Val	aat Asn	1793
15	ttc Phe 490	gca Ala	gag Glu	att Ile	gcg Ala	gcg Ala 495	gct Ala	gcg Ala	ggt Gly	atc Ile	aaa Lys 500	tcg Ser	gta Val	cgc Arg	atc Ile	acc Thr 505	1841
			aag Lys														1889
20			gta Val														1937
25			acc Thr 540														1985
30			acc Thr														2033
35	-	-	aac Asn								tgat	gatt	ga t	acad	ectgo	et	2083
,,	gtto	ctcat	tg a	ccgc	gago	g ct	taad	etge	c aac	cattt	cca	ggat	ggca	agc t	cac	gccggt	2143
	gcc	catga	iga t	tgcc	ct												2160
10	<212	l> 57 2> PF	-	bact	eriu	ım gl	utan	nicur	n								
15	<400	1> 5	•			•											
			His	Ser	Tyr 5	Ala	Glu	Gln	Leu	Ile 10	Asp	Thr	Leu	Glu	Ala 15	Gln	
50	_		Lys	20					25					30			
55			Ala 35					40					45				
		50	Ala				55					60					
	Glu	Leu	Ala	Val	Cys	Ala	Ala	Ser	Cys	Gly	Pro	Gly	Asn	Thr	His	Leu	

	6 5					70					75					80
E	Ile	Gln	Gly	Leu	Tyr 85	Asp	Ser	His	Arg	Asn 90	Gly	Ala	Lys	Val	Leu 95	Ala
5	Ile	Ala	Ser	His 100	Ile	Pro	Ser	Ala	Gln 105	Ile	Gly	Ser	Thr	Phe 110	Phe	Gln
10	Glu	Thr	His 115	Pro	Glu	Ile	Leu	Phe 120	Lys	Glu	Cys	Ser	Gly 125	Tyr	Cys	Glu
	Met	Val 130	Asn	Gly	Gly	Glu	Gln 135	Gly	Glu	Arg	Ile	Leu 140	His	His	Ala	Ile
15	Gln 145	Ser	Thr	Met	Ala	Gly 150	Lys	Gly	Val	Ser	Val 155	Val	Val	Ile	Pro	Gly 160
20	Asp	Ile	Ala	Lys	Glu 165	Asp	Ala	Gly	Asp	Gly 170	Thr	Tyr	Ser	Asn	Ser 175	Thr
20	Ile	Ser	Ser	Gly 180	Thr	Pro	Val	Val	Phe 185	Pro	Asp	Pro	Thr	Glu 190	Ala	Ala
25	Ala	Leu	Val 195	Glu	Ala	Ile	Asn	Asn 200	Ala	Lys	Ser	Val	Thr 205	Leu	Phe	Cys
	Gly	Ala 210	Gly	Val	Lys	Asn	Ala 215	Arg	Ala	Gln	Val	Leu 220	Glu	Leu	Ala	Glu
30	Lys 225	Ile	Lys	Ser	Pro	Ile 230	Gly	His	Ala	Leu	Gly 235	Gly	Lys	Gln	Tyr	Ile 240
35	Gln	His	Glu [.]	Asn	Pro 245	Phe	Glu	Val	Gly	Met 250	Ser	Gly	Leu	Leu	Gly 255	Tyr
,,	Gly	Ala	Cys	Val 260	Asp	Ala	Ser	Asn	Glu 265	Ala	Asp	Leu	Leu	Ile 270	Leu	Leu
40	Gly	Thr	Asp 275	Phe	Pro	Tyr	Ser	Asp 280	Phe	Leu	Pro	Lys	Asp 285	Asn	Val	Ala
	Gln	Val 290		Ile	Asn	Gly	Ala 295	His	Ile	Gly	Arg	Arg 300	Thr	Thr	Val	Lys
15	Tyr 305	Pro	Val	Thr	Gly	Asp 310	Val	Ala	Ala	Thr	Ile 315	Glu	Asn	Ile	Leu	Pro 320
50	His	Val	Lys	Glu	Lys 325	Thr	Asp	Arg	Ser	Phe 330	Leu	Asp	Arg	Met	Leu 335	Lys
	Ala	His	Glu	Arg 340	Lys	Leu	Ser	Ser	Val 345	Val	Glu	Thr	Tyr	Thr 350	His	Asn
55	Val	Glu	Lys 355	His	Val	Pro	Ile	His 360	Pro	Glu	Tyr	Val	Ala 365	Ser	Ile	Leu
	Asn	Glu 370	Leu	Ala	Asp	Lys	Asp 375	Ala	Val	Phe	Thr	Val 380	Asp	Thr	Gly	Met

	Cys 385	Asn	Val	Trp	His	Ala 390	Arg	Tyr	Ile	Glu	Asn 395	Pro	Glu	Gly	Thr	Arg 400	
5	Asp	Phe	Val	Gly	Ser 405	Phe	Arg	His	Gly	Thr 410	Met	Ala	Asn	Ala	Leu 415	Pro	
	His	Ala	Ile	Gly 420	Ala	Gln	Ser	Val	Asp 425	Arg	Asn	Arg	Gln	Val 430	Ile	Ala	
10	Met	Cys	Gly 435	Asp	Gly	Gly	Leu	Gly 440	Met	Leu	Leu	Gly	Glu 445	Leu	Leu	Thr	
15	Val	Lys 450	Leu	His	Gln	Leu	Pro 455	Leu	Lys	Ala	Val	Val 460	Phe	Asn	Asn	Ser	
13	Ser 465	Leu	Gly	Met	Val	Lys 470	Leu	Glu	Met	Leu	Val 475	Glu	Gly	Gln	Pro	Glu 480	
20	Phe	Gly	Thr	Asp	His 485	Glu	Glu	Val	Asn	Phe 490	Ala	Glu	Ile	Ala	Ala 495	Ala	
	Ala	Gly	Ile	Lys 500	Ser	Val	Arg	Ile	Thr 505	Asp	Pro	Lys	Lys	Val 510	Arg	Glu	
25	Gln	Leu	Ala 515	Glu	Ala	Leu	Ala	Tyr 520	Pro	Gly	Pro	Val	Leu 525	Ile	Asp	Ile	
30	Val	Thr 530	Asp	Pro	Asn	Ala	Leu 535	Ser	Ile	Pro	Pro	Thr 540	Ile	Thr	Trp	Glu	
30	Gln 545	Val	Met	Gly	Phe	Ser 550	Lys	Ala	Ala	Thr	Arg 555	Thr	Val	Phe	Gly	Gly 560	
35	Gly	Val	Gly	Ala	Met 565	Ile	Asp	Leu	Ala	Arg 570	Ser	Asn	Ile	Arg	Asn 575	Ile	
	Pro	Thr	Pro														
40	-21 0																
45	<212	.> 87 !> DN	IA	bact	eriu	m gl	utam	icum	L								
50	acca gcag gato	agat tggc gtga ctac	gg g cg g tg a	taaa tact ggct	ggtg tatt gcag	t gt c ca c gc	cggt attc tggt	ggta cact ggag	gtg att	atto tctt atta	ctg ctg aca	gtga gcac acgc	tato tcct taag	gc t gt g tc t	aagg gtgt gtca	agtcc gaagac tcccg ctttg	120 180 240
55	aaat gagg gatc gttg gtga gatc	cacc tegg tget ccca ccgg	ga toga toga toga toga toga toga toga to	cggg gtct tcta ggat tgtt cctt	catg ggcc ttgg atca gctg gatc	c go t go g ta a cg c aa g ga	tggg ttgg cgga gtgc caat tgct	tggt ttac tttc gcac cgaa caag	aag ggc cct att aat	cagt gcct tatt ggtc attt cacg	aca gcg ctg gac tgc	tcca tgga attt gtac ctca gtaa	gcat tgcg cctt cacg tgtg	ga g tc c cc t gt g aa g	jaato aatg aaag jaagt igaaa togg	egttt jaggcg jacaac atccg laaaca itggta	360 420 480 540 600 660

attttgaacg	agctggcgga	taaggatgcg	gtgtttactg	tggataccgg	catgtgcaat	780
gtgtggcatg	cgaggtacat	cgagaatccg	gagggaacgc	gcgactttgt	gggttcattc	840
cgccacggca	cgatggctaa	tgcgttgcct	catgc			875

INTERNATIONAL SEARCH REPORT

Inti ional Application No PCT/EP 00/06303

A. CLASSI IPC 7	IFICATION OF SUBJECT MATTER C12N15/53 C12N15/77 C12P13/	['] 08			
According to	o International Patent Classification (IPC) or to both national classif	ication and IPC			
	SEARCHED				
Minimum do	ocumentation searched (classification system followed by classifica C12P C12N				
	tion searched other than minimum documentation to the extent that				
i	tata base consulted during the international search (name of data b iternal, WPI Data, BIOSIS, MEDLINE,		,		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.		
X		on, GB; use " M CORP), -/	9,10		
X Furth	her documents are listed in the continuation of box C.	Y Patent family members are listed	in annex.		
"A" docume consid "E" earlier of filing d "L" docume which in citation "O" docume other n "P" docume later th	ant which may throw doubts on priority claim(s) or is clied to establish the publication date of another nor other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention IX* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken atone Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person sidiled in the ert. 8* document member of the same patent family Date of mailing of the international search report			
	3 February 2001	21/02/2001			
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentian 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Env. (-31-70) 340-2040, Tx. 31 651 epo nl. Montero Lopez, B					

INTERNATIONAL SEARCH REPORT

ional Application No PCT/EP 00/06303

ategory *	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
alegory -	окакон от опошнеть, яки каколон, янеге аррюркае, от не генуал развадез	THERETAIN IN CLAIM NO.
A	L. EGGELING ET AL.: "L-Glutamate and L-Lysine: traditional products with impetuous developments" APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 52, August 1999 (1999-08), pages 146-153, XP000979507	1-10
.	the whole document	
ĺ		
Ì		
ŀ		
l		
ŀ	1	
	,	
}		
- 1		1

INTERNATIONAL SEARCH REPORT Information on patent family members

Inti :ional Application No PCT/EP 00/06303

P cite	atent document d in search repor	rt	Publication date	Patent family member(s)	Publication date		
JP	9224661	Α	02-09-1997	NONE			
				·			
				·			
					·		
				•			