Data Link Layer

Data Link Layer

- Two physically connected devices:
 - Host-Router, Router-Router, Router-Host
- Unit of data: frame

Data Link Control Protocols

- need layer of logic above Physical
- to manage exchange of data over a link
 - frame synchronization
 - flow control
 - error control
 - addressing
 - control and data
 - link management

DLC Service Layer

Framing

- Encapsulated packets into frames
- Establishes frame synchronization

Error Detection and Control

- Errors caused by signal attenuation and noise
- Receiver detects presence of errors
 - Receiver drops frame
 - Receiver requests retransmission (ARQ)
 - Receiver corrects error

Flow Control

 Ensuring that the sender does not overwhelm the receiver

Typical Frame Structure

Frame Synchronization

- A special pattern, called a Flag (01111110) appears at the beginning and the end of the frame
- Receiver hunts for flag sequence to synchronize
- Bit stuffing used to avoid confusion with data containing 01111110
 - 0 inserted after every sequence of five 1s
 - If receiver detects five 1s it checks next bit
 - If 0, it is deleted
 - If 1 and seventh bit is 0, accept as flag
 - If sixth and seventh bits 1, sender is indicating abort

Error Detection

- Additional bits added by transmitter for error detection code
- Parity
 - Value of parity bit is such that character has even (even parity) or odd (odd parity) number of ones
 - Even number of bit errors goes undetected

Single Parity Error Checking

Cyclic Redundancy Check (CRC)

- For every block of *k* bits, transmitter generates *n* bit sequence
- Transmit k+n bits which is exactly divisible by some number
- Receive divides frame by that number
 - If no remainder, assume no error
 - If reminder, an error is detected

CRC continued...

Example..

Binary Division

Flow Control

- ensure sending entity does not overwhelm receiving entity
 - by preventing buffer overflow
- influenced by:
 - transmission time
 - time taken to emit all bits into medium
 - propagation time
 - time for a bit to traverse the link
- assume here no errors but varying delays

Model of Frame Transmission

Stop and Wait

- source transmits frame
- destination receives frame and replies with acknowledgement (ACK)
- source waits for ACK before sending next
- destination can stop flow by not send ACK
- works well for a few large frames
- Stop and wait becomes inadequate if large block of data is split into small frames

Stop and Wait Link Utilization

Sliding Windows Flow Control

- allows multiple numbered frames to be in transit
- receiver has buffer W long
- transmitter sends up to W frames without ACK
- ACK includes number of next frame expected
- sequence number is bounded by size of field (k)
 - frames are numbered modulo 2k
 - giving max window size of up to 2k-1
- receiver can ack frames without permitting further transmission (Receive Not Ready)
- must send a normal acknowledge to resume
- if have full-duplex link, can piggyback ACks

Sliding Window Diagram

Sliding Window Example

Error Control

- detection and correction of errors such as:
 - lost frames
 - damaged frames
- common techniques used:
 - error detection
 - positive acknowledgment
 - retransmission after timeout
 - negative acknowledgement & retransmission
 - Collectively these techniques are referred to as

<u>Automatic Repeat Request (ARQ)</u>

Automatic Repeat Request (ARQ)

- collective name for such error control mechanisms, including:
- stop and wait
- go back N
- selective reject (selective retransmission)

Automatic Repeat Request

Stop and Wait

- source transmits single frame
- wait for ACK
- if received frame damaged, discard it
 - transmitter has timeout
 - if no ACK within timeout, retransmit
- if ACK damaged, transmitter will not recognize it
 - transmitter will retransmit
 - receive gets two copies of frame
 - use alternate numbering and ACK0 / ACK1

Stop and Wait

- see example with both types of errors
- pros and cons
 - simple
 - inefficient

Go Back N

- based on sliding window
- if no error, ACK as usual
- use window to control number of outstanding frames
- if error, reply with rejection
 - discard that frame and all future frames until error frame received correctly
 - transmitter must go back and retransmit that frame and all subsequent frames

Go Back N - Handling Damaged Frame

- - error in frame *i* so receiver rejects frame *i*
 - transmitter retransmits frames from i
- Lost Frame
 - frame *i* lost and either
 - transmitter sends i+1 and receiver gets frame i+1out of seq and rejects frame i
 - or transmitter times out and send ACK with P bit set which receiver responds to with ACK i
 - ullet transmitter then retransmits frames from i

Go Back N - Handling

- Damaged Acknowledgement
 - receiver gets frame i, sends ack (i+1) which is lost
 - acks are cumulative, so next ack (i+n) may arrive before transmitter times out on frame i
 - if transmitter times out, it sends ack with P bit set
 - can be repeated a number of times before a reset procedure is initiated
- Damaged Rejection
 - reject for damaged frame is lost
 - handled as for lost frame when transmitter times out

Selective Reject

- also called selective retransmission
- only rejected frames are retransmitted
- subsequent frames are accepted by the receiver and buffered
- minimizes retransmission
- receiver must maintain large enough buffer
- more complex logic in transmitter
- hence less widely used
- useful for satellite links with long propagation delays

Go Back N
vs
Selective
Reject

Summary

- introduced need for data link protocols
- flow control
- error control