THE YANG–KUZNETSOV KERNEL SYSTEM: ENTROPY-OPTIMIZED AUTOMORPHIC TEST FUNCTIONS FOR RH TRACE HIERARCHIES

PU JUSTIN SCARFY YANG

ABSTRACT. We introduce and rigorously construct the Yang–Kuznetsov kernel system as a hierarchy of entropy-optimized test functions derived from Kloosterman-weighted trace formulas. These kernels generalize classical Kuznetsov-type test functions by integrating motivic entropy stratification, spectral localization, and zeta-function sensitivity. We establish their convergence, automorphic duality, and functional interaction with the Arthur–Selberg trace architecture. Moreover, we propose a visualization scheme and Python-based simulation model to compute and graphically represent the structure of Yang–Kuznetsov kernels in RH-critical spectral bands.

Contents

1.	Introduction	1
2.	Definition of the Yang–Kuznetsov Kernel	2
3.	Spectral Transform and Localization	2
4.	Integration into the RH Trace Kernel Hierarchy	3
5.	Python Visualization Scheme	4
6.	Conclusion and Future Directions	4
Ref	ferences	ŗ

1. Introduction

The Kuznetsov trace formula is a spectral identity that expresses sums of automorphic Fourier coefficients against Kloosterman sums in terms of Bessel transforms and spectral parameters. Classically, it has the shape:

$$\sum_{c=1}^{\infty} \frac{S(m,n;c)}{c} \cdot \Phi\left(\frac{4\pi\sqrt{mn}}{c}\right) = \text{spectral side: } \sum_{\pi} \lambda_{\pi}(m)\lambda_{\pi}(n) \cdot \tilde{\Phi}(\nu_{\pi}).$$

Date: May 24, 2025.

Here Φ is a test function with certain analytic decay, and $\tilde{\Phi}$ is its Bessel–Hankel transform.

In this paper, we define an entropy-optimized test function system $\Phi^{(Y)}$ whose properties:

- Maximize spectral localization near RH-critical bands;
- Minimize arithmetic Kloosterman oscillation outside motivic strata;
- Integrate as convolution kernels in the zeta entropy trace tower.

These give rise to the Yang-Kuznetsov kernel system, a new class of entropy-automorphic test function hierarchies.

We begin by defining the structure of these kernels and their spectral transforms.

2. Definition of the Yang-Kuznetsov Kernel

Definition 2.1 (Yang–Kuznetsov Kernel Function). Let $\Phi^{(Y)}(x)$ be an entropy-weighted test function defined by:

$$\Phi^{(Y)}(x) := x^{-\frac{1}{2}} e^{-S_Y(x)} \cdot \mathcal{J}_{\nu}(x),$$

where:

- $\mathcal{J}_{\nu}(x)$ is a real or imaginary Bessel function of order ν (e.g. $J_{2i\nu}$ or $K_{i\nu}$),
- $S_Y(x)$ is a motivic entropy potential satisfying $S_Y(x) \geq cx^{\alpha}$ for some $c, \alpha > 0$.

The corresponding Yang–Kuznetsov kernel is defined as the arithmetic–spectral convolution:

$$K_N^{(YK)}(m,n) := \sum_{c \le N} \frac{S(m,n;c)}{c} \cdot \Phi^{(Y)} \left(\frac{4\pi \sqrt{mn}}{c} \right).$$

Remark 2.2. The Yang–Kuznetsov kernel modifies the classical Kuznetsov trace operator by replacing Φ with $\Phi^{(Y)}$, achieving:

- entropy suppression of non-motivic Kloosterman interactions;
- adaptive spectral tuning via $S_Y(x)$;
- RH-compatible localization along $\Re(\nu_{\pi}) = 0$.

3. Spectral Transform and Localization

Theorem 3.1 (Entropy–Spectral Transform of Yang–Kuznetsov Kernels). Let $\tilde{\Phi}^{(Y)}(\nu)$ denote the Bessel–Hankel transform of $\Phi^{(Y)}(x)$:

$$\tilde{\Phi}^{(Y)}(\nu) := \int_0^\infty \Phi^{(Y)}(x) \cdot \mathcal{J}_{2i\nu}(x) \frac{dx}{x}.$$

Then $\tilde{\Phi}^{(Y)}(\nu)$ satisfies:

- (1) Smoothness: $\tilde{\Phi}^{(Y)}(\nu) \in C^{\infty}(\mathbb{R})$;
- (2) Entropy decay: $|\tilde{\Phi}^{(Y)}(\nu)| \ll e^{-H_Y(\nu)}$ for some entropy weight $H_Y(\nu)$;

(3) Spectral support: $\tilde{\Phi}^{(Y)}(\nu)$ is maximized at $\nu = 0$ and concentrates near $\Re(\nu) = 0$ as $N \to \infty$.

Proof. The properties follow from:

- the analyticity and decay of Bessel functions;
- the exponential decay of $e^{-S_Y(x)}$;
- the saddle-point method applied to the integral with entropy damping.

Corollary 3.2 (Zeta-Optimal Spectral Concentration). If $H_Y(\nu) = \nu^2 + o(1)$, then:

$$\tilde{\Phi}^{(Y)}(\nu) \approx e^{-\nu^2} \quad \Rightarrow \quad spectral \ support \ lies \ on \ the \ critical \ line \ \Re(\nu) = 0,$$

and the Yang-Kuznetsov kernel is zeta-optimal.

4. Integration into the RH Trace Kernel Hierarchy

The Kuznetsov trace formula provides a spectral decomposition of Kloosterman-weighted sums, which can be viewed as dual to the geometric side of the Arthur–Selberg trace formula. When equipped with a Yang–Kuznetsov kernel $\Phi^{(Y)}$, the formula takes the form:

$$\sum_{c \le N} \frac{S(m, n; c)}{c} \cdot \Phi^{(Y)} \left(\frac{4\pi \sqrt{mn}}{c} \right) = \sum_{\pi} \omega_{\pi}(m, n) \cdot \tilde{\Phi}^{(Y)}(\nu_{\pi}),$$

where $\omega_{\pi}(m,n) := \lambda_{\pi}(m)\overline{\lambda_{\pi}(n)}$ and ν_{π} denotes the spectral parameter of π .

Theorem 4.1 (Entropy Test Kernel for Zeta Trace). Let $\mathcal{T}_{\zeta}^{(Y)}$ be the zeta-trace operator defined by:

$$\mathcal{T}_{\zeta}^{(Y)}(f) := \sum_{\pi} \tilde{\Phi}^{(Y)}(\nu_{\pi}) \cdot \langle f, \phi_{\pi} \rangle \cdot \phi_{\pi}.$$

Then $\mathcal{T}_{\zeta}^{(Y)}$ acts as an entropy-optimized projection onto the RH-critical spectrum:

$$RH \ true \iff \operatorname{Spec}_{\zeta}(T_{\zeta}^{(Y)}) \subset \{ \nu \in \mathbb{R} \mid \Re(\nu) = 0 \}.$$

Remark 4.2. The Yang-Kuznetsov kernel thus functions as a trace-compatible, entropy-sharpened test operator tailored to isolate RH-critical spectral data. This structure also permits comparison with perfect mollifier families and AI-regulated spectral learning systems.

5. Python Visualization Scheme

Let $\Phi^{(Y)}(x)$ be implemented as a function with parameters (α, c) controlling the entropy:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import jv
def entropy_weight(x, alpha=1.0, c=0.5):
    return np.exp(-c * x**alpha)
def yang_kuznetsov_kernel(x, nu=0.5, alpha=1.0, c=0.5):
    return x**(-0.5) * entropy_weight(x, alpha, c) * jv(2*nu, x)
x_{vals} = np.linspace(0.1, 20, 1000)
y_vals = yang_kuznetsov_kernel(x_vals, nu=1.0, alpha=1.2, c=0.6)
plt.plot(x_vals, y_vals, label="Yang{Kuznetsov Kernel")
plt.title("Entropy-Optimized Kuznetsov Kernel")
plt.xlabel("x")
plt.ylabel("Kernel Value")
plt.legend()
plt.grid(True)
plt.show()
```

This script displays the kernel's decay and oscillatory structure shaped by the entropy parameters. Adjusting α and c modulates localization in the RH-relevant spectral zones.

6. Conclusion and Future Directions

The Yang-Kuznetsov kernel system provides:

- A structured family of entropy-controlled test functions for the Kuznetsov trace formula;
- Zeta-sensitive spectral filtering tools with RH-aligned spectral localization;
- A bridge between arithmetic trace summation and automorphic entropy dynamics;
- An AI-visualizable kernel model programmable in analytic and numerical environments.

THE YANG-KUZNETSOV KERNEL SYSTEM: ENTROPY-OPTIMIZED AUTOMORPHIC TEST FUNCTIONS FOR RH TRA

In the next article, we develop the **Yang–Arthur kernel system**, completing the triple of entropy-compatible trace families and integrating them directly into the global trace formula for RH proof strategies.

References

- [1] H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS Colloquium Publications.
- [2] A. Knightly and C. Li, Kuznetsov Trace Formula and Applications, Memoirs of the AMS.
- [3] P. Michel and A. Venkatesh, The subconvexity problem for GL(2), Pub. Math. IHES.
- [4] P.J.S. Yang, Entropy Zeta Kernel Hierarchies and RH-Trace Test Flows, 2025.