10

15

20

25

30

35

carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Particularly, N-terminal deletions of the polypeptide of the present invention can be described by the general formula m-p, where p is the total number of amino acids in the polypeptide and m is an integer from 2 to (p-1), and where both of these integers (m & p) correspond to the position of the amino acid residue identified in SEQ ID NO:Y.

Moreover, C-terminal deletions of the polypeptide of the present invention can also be described by the general formula 1-n, where n is an integer from 2 to (p-1), and again where these integers (n & p) correspond to the position of the amino acid residue identified in SEQ ID NO:Y.

The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of SEQ ID NO:Y, where m and n are integers as described above.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an

10

15

20

25

30

35

epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the

10

15

20

25

30

35

polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D.

10

20

25

30

35

Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

15 <u>Vectors, Host Cells, and Protein Production</u>

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance

10

15

20

25

30

35

genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein

after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

5

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

10

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

15

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

20

25

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

30

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

35

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are

10

15

20

25

30

35

more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model

10

15

20

25

30

35

systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of

10

15

20

25

30

35

unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

Uses of the Polypeptides

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic

10

15

20

25

30

35

resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

20

25

30

35

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

Immune Activity

system disease or disorder.

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide

of the present invention can be used as a marker or detector of a particular immune

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can

10

15

20

25

30

35

decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic

10

15

20

25

30

shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases

may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes

Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g.,

Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps,

Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention 25 include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter. 30 Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis. 35 and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections

(conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS

10

25

related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria,

Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas.

These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

A polynucleotide or polypeptide of the present invention can be used to

differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See,
Science 276:59-87 (1997).) The regeneration of tissues could be used to repair,
replace, or protect tissue damaged by congenital defects, trauma (wounds, burns,
incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal
disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion
injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal

10

15

20

35

or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

5

10

15

Binding Activity

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2): Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

20

25

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

30

35

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

5

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

10

15

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonīsts/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

Other Activities

20

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

25

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

30

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

35

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

10

15

20

25

Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

10

15

20

25

30

35

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method

10

15

comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95%

25

20

35

30

10

15

20

25

30

35

identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide

comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

5

10

15

20

25

30

35

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEO ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

10

15

20

5

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	Vector Used to Construct Library	Corresponding Deposited Plasmid
	Lambda Zap	pBluescript (pBS)
	Uni-Zap XR	pBluescript (pBS)
	Zap Express	pBK
25	lafmid BA	plafmid BA
	pSport1	pSport1
	pCMVSport 2.0	pCMVSport 2.0
	pCMVSport 3.0	pCMVSport 3.0
	pCR [®] 2.1	pCR [®] 2.1

30 Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are 35 commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1

10

15

20

25

30

35

Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).)

WO 98/54963

5

25

30

35

The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 μl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 μM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular

by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids

weight is excised and purified. The PCR product is verified to be the selected sequence

Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

15

20

25

30

35

10

5

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprimcTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

10

15

20

25

30

35

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG

10

15

20

25

30

35

(Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., *supra*).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA

insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

5

10

15

20

25

30

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the E. coli fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area

10

15

(e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 μg of purified protein is loaded.

The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

10

15

20

25

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg
of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus
DNA", Pharmingen, San Diego, CA), using the lipofection method described by
Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of
BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a
microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies
Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are
added, mixed and incubated for 15 minutes at room temperature. Then the transfection
mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm

10

15

20

25

tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, supra. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 μ l of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

30 Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates

10

15

20

25

30

35

the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No.209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the

WO 98/54963 PCT/US98/11422

235

polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 μM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

5

10

15

20

25

30

10

15

20

25

30

35

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC CAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACC CAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGT GGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGGAGGAGCAGTACAAC

15

20

25

30

35

AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAGCCCTCCCAACCCCC ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT GTACACCCTGCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT 5 GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA GGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGC GACGGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 µg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as

10

15

20

25

30

35

described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a

10

25

working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130 mg/L

CuSO₄-5H₂O; 0.050 mg/L of Fe(NO₃)₃-9H₂O; 0.417 mg/L of FeSO₄-7H₂O; 311.80 mg/L of Kcl; 28.64 mg/L of MgCl₂; 48.84 mg/L of MgSO₄; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO₃; 62.50 mg/L of NaH₂PO₄-H₂O; 71.02 mg/L of Na₂HPO4; .4320 mg/L of ZnSO₄-7H₂O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Palmitric Acid; 100 mg/L of Oleic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of

30

35

Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂0; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H,0; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 5 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H₂0; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H₂0; 99.65 mg/ml of L-10 Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; and 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 15 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; and 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal) with 2mm glutamine and 1x 20 penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

10

25

30

35

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

15 The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

20 The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

	Ligand	tyk2	<u>JAKs</u> <u>Jakl</u>	Jak2	Jak3	<u>STATS</u>	GAS(elements) or ISRE
5	IFN family IFN-a/B IFN-g II-10	+	+ + ?	- + ?	-	1,2,3 1 1,3	ISRE GAS (IRF1>Lys6>IFP)
10	gp130 family IL-6 (Pleiotrohic) Il-11(Pleiotrohic) OnM(Pleiotrohic)	+ ? ?	+ + +	+ ? +	? ? ?	1,3 1,3 1,3	GAS (IRF1>Lys6>IFP)
15	LIF(Pleiotrohic) CNTF(Pleiotrohic) G-CSF(Pleiotrohic) IL-12(Pleiotrohic)	? -/+ ? +	+ + + -	+ + ? +	? ? ? +	1,3 1,3 1,3 1,3	
20	g-C family IL-2 (lymphocytes) IL-4 (lymph/myeloid) IL-7 (lymphocytes) IL-9 (lymphocytes) IL-13 (lymphocyte) IL-15	- - - - - ?	+ + + + +	- - - ?	+ + + + ? +	1,3,5 6 5 5 6 5	GAS GAS (IRF1 = IFP >>Ly6)(IgH) GAS GAS GAS GAS
30	gp140 family IL-3 (myeloid) IL-5 (myeloid) GM-CSF (myeloid)	- - -	- -	+++++	- -	5 5 5 5	GAS (IRF1>IFP>>Ly6) GAS GAS
35	Growth hormone fami GH PRL EPO	? ? ?	- +/- -	+ + +	- - -	5 1,3,5 5	GAS(B-CAS>IRF1=IFP>>Ly6)
40	Receptor Tyrosine Kir EGF PDGF CSF-1	nases ? ? ?	+ + +	+ + +	- - -	1,3 1,3 1,3	GAS (IRF1) GAS (not IRF1)

10

15

20

25

30

35

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTT

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

5':CTCGAGATITCCCCGAAATCTAGATITCCCCGAAATGATTTCCCCGAAATG
ATTTCCCCGAAATATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCC
CTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGC
CCCATGGCTGACTAATTTTTTTTATTTATTTATGCAGAGGCCGAGGCCGCCTCGGC
CTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTT
TGCAAAAAAGCTT:3' (SEQ ID NO:5)

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

15

20

25

30

35

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies)

10

15

20

25

30

with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10⁷ per transfection), and resuspend in OPTI-MEM to a final concentration of 10⁷ cells/ml. Then add 1ml of 1 x 10⁷ cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

15

20

25

30

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e⁷ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

15

20

25

30

35

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

- 5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)
- 5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine

10

15

20

25

30

growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as 5×10^5 cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 1×10^5 cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-kB (Nuclear Factor kB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-kB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-kB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I-κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-kB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating

20

diseases. For example, inhibitors of NF-kB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

To construct a vector containing the NF-kB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF-kB binding site (GGGGACTTTCCC) (SEQ ID NO:8), 18 bp of sequence complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an XhoI site: 5':GCGGCCTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCCAGGACTTTCCAGGGACTTTCCAGGGACTTTCCAGGGACTTTCCAGGGACTTTCCAGGGACTTTCCAGGACTTTCCAGGGACTTTCCAGGGACTTTCCAGGGACTTTCCAGGGACTTTCCAGGGACTTTCCAGGACTTTCCAGGGACTTTCCAGGGACTTTCCAGGGACTTTCCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTTCAGACTTTCAGACTTTCAGACTTTCAGACTTTTCAGACTTTCAGACTTTTCAGACTTTCAGACTTTTCAGACTTTCAGACTTTTCAGACTTTTCAGACTTTTCAGACTTTTCAGACTTTTCAGACTTTTCAGACTTTTCAGACTTTTCAGACTTTTCAGACTTTTCAGAC

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene)

Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

5':CTCGAGGGACTTTCCCGGGGACTTTCCGGGACTTTCC
ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCA
TCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACT
AATTTTTTTATTTATCAGAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC
CAGAAGTAGTGAGGAGGCTTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTT:
3' (SEQ ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2promoter plasmid (Clontech) with this NF-kB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-kB/SV40/SEAP

cassette is removed from the above NF-kB/SEAP vector using restriction enzymes SalI and NotI, and inserted into a vector containing neomycin resistance. Particularly, the NF-kB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

10

15

20

25

Once NF-kB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 μ l of 2.5x dilution buffer into Optiplates containing 35 μ l of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 μ l Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 μ l Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

Reaction	builer Formulation:		
# of plates	Rxn buffer diluent (ml)	CSPD (ml)	
10	60	3	_
11	6 5	3.25	
12	70	3.5	
13	75	3.75	
14	80	4	
15	85	4.25	
16	90	4.5	
17	95	4.75	
18	100	5	
19	105	5.25	
20	110	5.5	
21	115	5.75	
22	120	6	

10

15

23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000-20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO_2 incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37°C in a CO2 incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x106 cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event which has resulted in an increase in the intracellular Ca++ concentration.

20

25

30

35

5

10

15

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and nonreceptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

10

15

35

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. 20 Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim 25 (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, 30 the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a

PCT/US98/11422 WO 98/54963

254

biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

5

10

15

20

25

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg2+ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂. 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of antiphospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine 30 kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, 35 Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other

phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

25

30

20

5

10

15

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

35

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies).

10

15

20

25

30

35

The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10.

10

15

20

25

30

35

The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about $1 \mu g/kg/day$ to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about $1 \mu g/kg/hour$ to about $50 \mu g/kg/hour$, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally,

WO 98/54963

258

intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

5

10

15

20

25

30

35

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

30

5

10

15

20

25

10

15

20

25

30

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

10

15

20

25

30

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

10

15

20

25

30

35

Example 27: Method of Treatment Using Gene Therapy - In Vivo

Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide of the present invention. A polynucleotide of the present invention may be operatively linked to a promoter or any other genetic elements necessary for the expression of the encoded polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata H. et al. (1997) Cardiovasc. Res. 35(3):470-479, Chao J et al. (1997) Pharmacol. Res. 35(6):517-522, Wolff J.A. (1997) Neuromuscul. Disord. 7(5):314-318, Schwartz B. et al. (1996) Gene Ther. 3(5):405-411, Tsurumi Y. et al. (1996) Circulation 94(12):3281-3290 (incorporated herein by reference).

The polynucleotide constructs of the present invention may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). These polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides may also be delivered in liposome formulations (such as those taught in Felgner P.L. et al. (1995) Ann. NY Acad. Sci. 772:126-139 and Abdallah B. et al. (1995) Biol. Cell 85(1):1-7) which can be prepared by methods well known to those skilled in the art.

The polynucleotide vector constructs of the present invention used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

10

15

20

25

30

35

The polynucleotide construct of the present invention can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle *in vivo* is determined as follows. Suitable template DNA for production of mRNA coding for the polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with

10

15

20

25

liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice. The results of the above experimentation in mice can be use to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA of the present invention.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

Sequence Listing

	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Human Genome Sciences, Inc., et al.
	(ii) TITLE OF INVENTION: 207 Human Secreted Proteins
10	(iii) NUMBER OF SEQUENCES: 800
15	(iv) CORRESPONDENCE ADDRESS:
13	(A) ADDRESSEE: Human Genome Sciences, Inc.
	(B) STREET: 9410 Key West Avenue
20	(C) CITY: Rockville
	(D) STATE: Maryland
25	(E) COUNTRY: USA
	(F) ZIP: 20850
30	(v) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
35	(B) COMPUTER: HP Vectra 486/33
	(C) OPERATING SYSTEM: MSDOS version 6.2
	(D) SOFTWARE: ASCII Text
40	
	(vi) CURRENT APPLICATION DATA:
45	(A) APPLICATION NUMBER:
	(B) FILING DATE:
	(C) CLASSIFICATION:
50	
	(vii) PRIOR APPLICATION DATA:
55	(A) APPLICATION NUMBER:
	(B) FILING DATE:

	(Viii) ATTORNEY/AGENT INFORMATION:	
5	(A) NAME: Kenley K. Hoover	
3	(B) REGISTRATION NUMBER: 40,302	
	(C) REFERENCE/DOCKET NUMBER: PZ007PCT	
10		
	(vi) TELECOMMUNICATION INFORMATION:	
15	(A) TELEPHONE: (301) 309-8504	
13	(B) TELEFAX: (301) 309-8439	
20	(2) INFORMATION FOR SEQ ID NO: 1:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 733 base pairs (B) TYPE: nucleic acid	
L J	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	60
	GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG	
25	AATTCGAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA	120
35	TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG	180
	TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG	240
40	AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCT CACCGTCCTG CACCAGGACT	300
	GGCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG	360
	AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC	420
45	CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT	480
	ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA	540
50	CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG	600
	ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC	660
	ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC	720
55	GACTCTAGAG GAT	733

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 5 amino acids	
	(B) TYPE: amino acid	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
10	Trp Ser Xaa Trp Ser 1 5	
	•	
15	(2) INFORMATION FOR SEQ ID NO: 3:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 86 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
25	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	60
	CCCGAAATAT CTGCCATCTC AATTAG	86
30		
	(2) INFORMATION FOR SEQ ID NO: 4:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(D) TOPOLOGI: IIIleal	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
45		
	(2) INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 271 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	CTCGAGATTT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60
	AAATATCTGC CATCTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC	120
60	• • • • • • • • • • • • • • • • • • •	

	GCCCCTAACT CCGCCCAGTT CCGCCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT	180
	TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
5	TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T	271
10	(2) INFORMATION FOR SEQ ID NO: 6:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 32 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
20	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
25	(2) INFORMATION FOR SEQ ID NO: 7:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31
40	(2) INFORMATION FOR SEQ ID NO: 8:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 12 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	12
	GGGGACTTTC CC	
55	(2) INFORMATION FOR SEQ ID NO: 9:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs	
60	(B) TYPE: nucleic acid	

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
5	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
	CCATCTCAAT TAG	73
10		
	(2) INFORMATION FOR SEQ ID NO: 10:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 256 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	CTCGAGGGGA CTTTCCCGGG GACTTTCCGG GGACTTTCCA TCTGCCATCT	60
25	CAATTAGTCA GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC	120
	CAGTTCCGCC CATTCTCCGC CCCATGCCTG ACTAATTTTT TTTATTTATG CAGAGGCCGA	180
30	GGCCGCCTCG GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG	240
50	CTTTTGCAAA AAGCTT	256
35	(2) INFORMATION FOR SEQ ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 2526 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	GACAGGCTAT CCGAGAATCT GAGAGCTGGG CCCGGCAATT CCTCCAGYTA CCCTTGTGAC	60
	CTAAGTCCAG TCACACATTT CCCAAAGTTT CTCTTTGTCA TAACCCTGGT CTGGCTGGTT	120
5 0	TTGRGGRCTT GAGAATGGGT CAGGGACTCC AGGCCAAGTC CAACAGAGAC CCCAAACCCA	180
	CCACACACCA GCAGCCACAA CCTCACCACC AACAAAGAGG ACTTTTGTGG GGCCACAAGT	240
55	AAGAGGTCAT TTCTGGAATG GACTCAGACC TTTAAACAGG AGAGTTGAGC ACTTCCAGKS	300
	AGTTTTTAAG CAAGGCATGG GGAACAGGGA ATAGAACCTT TCAAAGAGGT TGCCCAGAGA	36
	AAAGCTGGGC CTCTTGCATT CGGCTTCCTT GGAGCAGCCT CTTCTGGCAG AAAGCCATCA	42
60	GGTGCTCAAT CATCTTCTCC TGGCCAAGGC TCTGACCATG CTTAGTACTG GAATAGAGGT	48

	GGCCAGGCCC	CCAGCGACTC	TICTIGGCCT	GATGIFIGIC	CICACAGGCA	TGCCACGTGG	540
5	CCTGAGATGA	TTCAGAACAA	ATCATGCTAA	CTTTGAATCC	ATCCAGCCAC	TTGCAAATGA	600
3	TAATCAGAAG	TCAGCTTGTT	CACTGTTAGA	AAGAAACTAA	CAAAAGAGAA	CCCAGAGCAA	660
	TCTAGAATCT	TTGAGTGCTT	GGCTTTCCAA	GGATACTGCG	GAGACTCTGG	CCAAGCTGAT	720
10	GAMCTTCTGA	ARTGTCACTG	GCACCATATG	CAACAAGAAC	CACCATTCAC	TGAGTAGCTA	780
	ATGGGTTTGG	GGCCTGGGAC	ATTCCATCTG	AGGTCCTTCC	TGAACATGTC	ACTCCACAGC	840
15	AGAGGACCGG	TTGCAGCTTA	CCCAGAACCA	CTCCTCCAGG	AGAGCTGGAT	GTTTTGCGTG	900
13	CAACACCTTG	AGCACTGACT	GCTATTGTTC	AAAAAAAGCC	TTTGCTGCAT	TCGGAGGACT	960
	GCCCCGTGCC	CTGAGGTGAC	TTCCTAACTA	TGTGGTTTCA	TTAGCGAATT	TATITTTTGT	1020
20	GCTGGGTGGA	CATTTGTATT	TTGTTAGGTT	GCTGTTTAAG	CTCAAGTTTG	CTGTGCTCTC	1080
	TGCAGCTACA	AAACATCTTG	GCATATTTAA	GAKTGGCTTT	TATAAATAGC	TTTATTCTGA	1140
25	TATTAATCAG	ATTCCCAACT	TTACTGAGAA	TTAAGGACTG	GGGTACTITA	AAGAAATGCA	1200
23	AATAGCAATT	GAAGAACCAC	TGCTGCAGGT	GGTAGCCCTG	GCTAGACTGA	ATTACACTAG	1260
	AAATCAGCCA	GAAGGAAGCG	TCCTTGGGAT	CCCAGATCAC	TCTTTTTTT	TTTTTTTTA	1320
30	AAAGGGGCAG	CCCCTTGATG	GCTCATCTCT	CTGAATAACA	GTTACGTCTT	CATATCGATA	1380
	CCAGATGCCT	TCTTCATCAT	GCCACTGAAG	CCACTCACCA	CCTTCAAGAA	CATGCCAACC	1440
35	TCTGTCAGAT	TCACTTACCC	ACAAACAAGG	AGGCACGTTT	GGCACAAAGT	GTTGTCCTCC	1500
55	AGGTCCAAGT	GGACTCTACA	GAGTGCTTGA	CCTCAACACA	CTGGATTCCA	GGTGGACTGG	1560
	ACCAAGAGCA	GGCAAAGACA	CGGGAACTGA	AAAACTCCAC	AGGGTTTGGA	GAATAGAAAT	1620
40	GAAAAGCCAC	GTCATATAAC	TCAAGAATAA	ATGGTGTTTT	GGAAATTTTA	AAATTATCAT	1680
	CGAAGGTGGT	GAAACTATTT	CAGGCCCAAA	TGAAAGGAAA	TCGCCAGTTG	GGGATGAAAT	1740
45	CACAGAGCCT	GIGTTTTATG	ATATGGTTGG	ATGTCCACTG	ATGAAATTTT	AAAGGAGTTT	1800
73	CATTTTTAAA	AGTGCGCATG	ATTCTACATA	TGAGAATTCT	TTAGGCCAAG	AAACTGTCCT	1860
	TGGCTČAGAG	GTGTTGGGAA	TTAAAGCAGA	GAGAAGCCAT	TCGTGATGCT	TAGAACCAAG	1920
50	GATGGTCATG	TACACAAAGA	CCATCGAGAC	GGCCATTCTT	GTTTACAAAA	CACTTACCAA	1980
	GAAAGCACTT	TGTAGGGGAA	CTTTAGTAAG	TTCTTCTCAT	TTCATTATGT	TTCTTCCAAG	2040
55	GAAACAGGAG	AGACTGAATT	AATAATICIC	TCTTTCCTCT	TAAGCACTTT	ТААААТААТА	2100
JJ	AAGTACATCT	TGAAATTTGG	GGGGCATCT	CTGATTTAAA	ааааааааааа	GGCTGCTTGA	2160
	TGTATGTTAT	GCAGAGACAC	TCTGCCTCTG	GTGGCTGCAG	AGCAATACCC	AAGCCTCATT	2220
60	TGGAAGGCTC	AACATTTGGA	ATTGCACTTT	AATTGATTAA	TCCTCAATTC	ATGTGGCCTT	2280

_		
	ACGGGATGGT GGGTCTGGGA CCCCAATTCA TTCTTATCTG CCAAAGAATT ATCTAGAAGC	2340
5	ACATCAAATA CCAGCACCCC ACCTGCACAA TGGGGGTGGA AAACTTTTGT ATCCCTAAGC	2400
•	ATATTATTT ATAGTGTCTG CCATGCCATG TGGAAATACT TTATTTTTAA CCTCAGGATT	2460
	TAAATAAAGT AAACACTATG ACATTTAAAA AAAAAAAAAA	2520
10	TACCCA	2526
15	(2) INFORMATION FOR SEQ ID NO: 12:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1131 base pairs	
	(D) MVDE, muslain said	

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

25	CACTGCACCA GCTT	IGTTAT CTGTAAAAT	G ATGATAATAC	CAACACCTTC	TTCTTGGGGT	60
	ACTGAAGATG AGAG	AACATG ATATGTGTA	A AGTGCCTTCC	ACAATACCCA	GAACATAGCA	120
30	AACATGTAAT GAAT	STAGTA ATAGTAATT	A TTTTATTTTC	TTTTGATTCA	GTTGGGACTA	180
	TGTTCAGCTG TAAC	AGAATA CCCAAAATA	A CIGTTITAAA	CAAATTAAAG	TTTWGTTGTG	240
	AAGTTTTGTT ACGA	ATTCAG ACAATCCAG	GCTTTTATAG	ATGCACCAGG	ATCAGCAGGT	300
. 35	ACAAAGGCAT CTTY	CCTGAT TTCTGCCAG	T CTCAATGCAT	GGGTTGCAAT	CCAGARTCCA	360
	RGATGGCAGT TCCAC	SCCCTG GTTACGCCC	A TATTAGCACA	CAGAAAGAAA	GAGAAAGGGA	420
40	TGTGCCTCTT CACT	PTAATC ATAGCTCCC	A CTAGATGCAC	CCACTACTTC	TGCTGATACT	480
	CCATTAGCTA ATGC	TTGCTT ACATGGTCAG	ACTTAGTTTC	CAGAGAGACA	TGTCTGGACA	540
	GTCATGTGCT CAAT	PAATAT CCAAGTGTC	AATTACTGAG	AAAAAAAGAA	ACTAGCACCT	600
45	TTGCTTGGTT GCATT	PCCTCT TAGCATAAG	CACATTCTTT	TTATGAAGTT	GTCCTCAGTT	660
	ACTTGGATGC CTCAC	STIGIC CTITCAWITA	GAAAWGCYCC	TKGGACAYCC	TGAAWCTGAC	720
50	TICTITIGIC ATCAC	GCACCA TCACTACCAC	TGCCYTCTTC	AAAGCCACCA	CGTTCTGTCC	7 80
	CCAGGATGGT TGCA	ACAACC ACCATAGGGA	CTITITGCCT	TCTACTTCCA	CACAATAGNC	840
	CAGAGTAAGC TTTTC	GAAAAT GTAGGTCAG	TCATGTCTCT	CTCTTCCTCT	TCAAAACCCT	900
55	CCCGATGGCT TITCA	ATATTA CTCAAAAGAA	AACCTAAAAC	TTTGCTGTGA	GATCTATGTG	960
	ACCCGGCTTA TTCTT	CCTCT TACTTTATCT	CTGTATTGCT	CTTCCTCACT	CTACTCCAGC	1020
60	CATCCCACCT CCTTC	SCTGCT TGTCCTATAC	TCCTAAAAGA	AGTTCAGTCT	TCCCTTATGA	1080

600

660

720

780

941

35

40

45

•	TATTTGCACT TAAAATAGAA AAAAAAAAAA AAAAAAAAACT CGAGGGGGGC C	1131
5	(2) INFORMATION FOR SEQ ID NO: 13:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 941 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
1.5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
15	GGCACGAGTA GCATTTCATT TAATCTGCAG GTATATTCTC CCAACAGTTT ATTGTCATGT	60
	GATGTCCTCA GCCAAGATTG TRAGGCAGAG AGGAGCTGTC CCAACCTACT ATACCACCGA	120
20	GGCTGGAGAG ATCATATTTT TGGTATTAAA CTGGAGTCTC TCCATCCTTC ACATTGTTGA	180
	TGTCCTCTGT AGCAAACCGG AAAAGTCAGT GACAGAAGAT GCCGCTAGCG GTTTGAGCCA	240
	GAGAATGACA GCTCTGGTTT GGAGAAAAGG GCCGGATGGT GGCTCTAGAA AGCCCATCCT	300
25	TCTGCTCTTC TTTTTTCTCC CCCTTATATT GTGCTTTCAT TCATTCATTC ATTCATCAAA	360
	CATTIGITGA GCACCTATTA TGIGTCAAGC TCTGTGCTAG CCTCTGGAAA ACCTGCCCTC	420
30	ATGTAGCTCA CTGTGGAGTA GGAGAAACAA TGACTACACT ATGATAAGCA CGGGTTGTCA	480

ACCAAGGGTG GGAGAGGGCA GAGCACATGG AGGAACTTCA GGTAGTTCTG GATGGCSCTG GGGCAAAGCT AGAGAGGTAA GAAGAATCTA CAAATGTTCC TCGAGTTACA TGAACTTCCA

GGGTCTCACA GAGCAGTGGC CCCTCATCCA GACCGATGAG GTCAAAGAAG GCATCCAGGC

GAGGATGGTG TCAGAGCTAA CTGAAGAATG AGAGGGAGCT GCACCASCAG GGGTTGGAAC

TGAAGGTGGC AGTGCCTGGA GTCTTGATTC CAGCAGAGGG AGAGCAGTCT GTGAAAAGGC

TCCCAATAAA CCCATTGGAA ACGAAAAATT TAAGTCAGAA GTGCATTTAA GGCTGGTCCG 840

AGTAGAATGA TITITACAAC GAATTGATCA CAACCAGTTA CAGATGTCTT TGTTCCTTCT 900

CCACTCCCAC TGCTTCACCT GACTAGCCTT TAAAAAAAAA A

50 (2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 843 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

55

•	CNAGGGATAA CCCCA	AAGNT GGGAAATAAA	CCCTCAATTA	AAGGGGGAAC	CAAAAAGCTG	еò
	GGAAGTTCCC CCCCG	CGGTG GCGGCCNGNT	CTAGGAACTA	GTGGAATCCC	CCGGGGCTGC	120
5	AGGGAATTCG GCACGG	GAGTG GGAATGTTGT	TTGTATGATA	CTATTTCCAC	AAWATGCATT	180
	GAGACTTGGT KTGTG	GCCTA GGACATGGTC	AATTCTTTYT	AAATATTCCG	TGAATTTCTT	240
10	TAGTGCATAT TCTCCC	GATGG GGGCTGTGGG	GACAGAGTTC	TAAATATGCC	CATTAGATTA	- 300
10	AATCTCTTCA TTCTG	FIGCT CACATCTTCT	ATATCCTTAT	TAATCTGTCA	ATCTCTTCAA	360
	GAGAGGTGTT ATTAA	AATCT CTCACTGTAT	GTGTCACTTT	GCCCTTAAAA	TTCTGATGAT	420
15	TTGCTTTATA AATGG	TATA ACCATTITCC	AGGAAGAACA	TTAAAGAACT	TTCCATTGGC	480
	ATTATCCAGT TTCCC	ICAAA ATACTGGTTT	TTTTTATTTT	GGCTNCTAAG	CAGCTATGAA	540
20	TCCAGTTTCT CAGAA	SCCCT TGTCTCAAGG	CATTIGITIC	CAGATTACCT	TGTTAGCATC	500
20	CACACTATGG GCTAT	TTTAG AAAAACAAAA	AAAGTATCAA	AATCATATAG	CTATGATTTT	560
	CCTGTGCTTG AAGGA	SCCTT AAAGCTCATC	TAGTCCAGCC	AGTATTTGTT	CATCCAAATT	720
25	CTGCCAAGAA ATCTC	PATTG TCAAGATATT	CTTTACCATC	TTTGGGACAT	TCTCATTATT	780
	AGAAACAAAT CCTAA	GAAGA AATTCTGCCA	TAKACAACCC	ATCCGTTCTT	тааааааааа	340
30	AAA					343
50						
	(2) INFORMATION 1	FOR SEQ ID NO. 1	5.			
35		NCE CHARACTERIST				
	(A)) LENGTH: 1018 b	ase pairs			
40	(0) STRANDEDNESS:) TOPOLOGY: line	double			
		ENCE DESCRIPTION		. 15.		
	CTGTAATTT TAATT				TGACTTCTCT	60
45	GAAGGTTACA TATAC					
	ACAATGTTGT TTTAG					180
50	GARGCTGGAG CCAGTY		•			
50						240
	GAATAATCGT GTTTT					300
55	AATCTAATTG TTGAA					
	CATCCGTGGA CTGATC					
60	AGCAAGGGCA CCCCC					
AL)	TOTO TOTO ACCUSE	AGAAA AGGGCACAAG	GTAAGGAAGC	CCTTGGGAAT	AGGCTGAATC	540

540

600

660

661

	TGGCTATCTA ATTTGGTGCC AAATACTTAA TGTGCTTGAA TTTAAAAACA GCAAACATGT	600
	AGAAAGGTAA TTATAATTAT GAGGCCAGTT CTTTAAGCTA GCTTTTTTTC CCCTCTCAAA	660
5	CAGCATATTG GCTTGGATGT CAGCAGGAGA AAGTGTTTTT TGCAATACAC ATAATGCATA	720
	TATGGTCCTG TTAGCAATCT ATAGAAAATA GATATTGCTC ATTAAGGTAA ATATTTTTGT	780
10	TGATGAATGA TCTGGAATGG TCTGGACTTG TTGTGTGAAC AGGAAATTGC TCTGTAGGCT	840
	TTGACTTGTG AGGTAAAGAG TGAGGCTGGT AAGATTAATT AAAGTAAATA CTGTGACAAT	900
	AGGATGTCAA AACCAAAAAC GTGTTTCTGA AACTCAAGGA ATTAATGACA CATAGGGAAG	960
15	TTTTTGCCAT ATTAAGCATA GAGTAGGAGA GGCAAGTCAA GAATAAAAAA AAAAAAAA	1018
		٠
20	(2) -INFORMATION FOR SEQ ID NO: 16:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 661 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
30	TTTAAGAAAT TAGTGAATCC CCGGNTGCAG GGAATTCGGC ACGAGGAGGA GGCCGTCAGC	60
	TESCAGGASC SCAGGATESC ASCTGYTCCC CCGGGTTGCA CCCCCCAGY TCTGCTGGAC	120
35	ATAAGYTGGT TAACAGAGAG CCTGGGAGCT GGGCAGCCTG TACCTGTGGA GTGCCGGCAC	180
	CGCCTGGAGG TGGCTGGGCC AAGGAAGGGG CCTCTGAGCC CAGCATGGAT GCCTGCCTAT	240
	GCCTGCCAGC GCCCTACGCC CCTCACACAC CACAACACTG GCCTMTCCGA GCTGCTGGAG	300
40	CATGGAGTGT GTGAGGAGGT GGAGAGAGTT CGGCGCTCAG AGAGGTACCA GACCATGAAG	360
	CTROCCOAGG CAGGGCTCGG ACCTACCCCA GGAATGTCCT GCCCTGGGAA TGACAACACA	420

45 GTCCACACCA TGCACGGGA GGCAAACAGG GGCAGCTGAC CCAGCCCAGG GGTCAGANGA

GGTCTTGCCG AGGAAGTGGC AGCTAAGCTG ATACCTGATA TGCACWAGKC AGCCARGYGG

AGACAGGCAA GGAAGAAGCT TGTTTTGAGG ACAGAATTTT CTAGATCACT CAGCACCATC

TOSCITTING GOCTITITGT TITATITICT TITIGAGACG GGGTCTCGCT CTGTCGCCCA

55

N

50

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 17:

	(A) LENGTH: 553 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	GGCACAGGGC TATTTGCCCC TCTCTCCACA TGACAGAACT GCTCTAAGTT TCTTTGCTGC	60
10	TCTTCTCAGC TGTCAGACGG CTTGCTGCTT GTTTTCCACA CCACCATGTC TATTCTTTGC	120
	TGTCCTTWAC TCTGCCTGTT TTTTTCCTTT TGTATTTCTT CTGGCTCTTG TCCCTTTTCC	180
15	CACGTGTCWC AGCTTTCCTT TATTGCCACT TTCAGTCAGA GCAGTCCTGT GCTTCTGGTG	240
13	CCGGCATACA ATACTTACTT GAGTTTCTTG GCTTTTCTTG ACTGTGCATC TCTTACTTCA	300
	ACATAGGAAT AGCCTGTCAT AGAATTTCTC CAGTTCCAGG GCTCAAGAGG GAGAGTGCCA	360
20	GAAAATTGAG ACTGTTTTCC CTGTCTTGGA TTGAATTCAT AAAGCAAAAC CAGTGTTTGT	420
	GTGAGGGTTT GCTGTGTCAT GCCTATAGGT TGTTTGGGTG CAAACCTATA GAATCCAGCC	480
25	TGCGAAAAGA AAGRAACCAG AGAATANCAG CATCAGAACA ATGCTTGACA TCATTTCTCA	540
23	ATCAAGCAGT CCA	553
30	(2) INFORMATION FOR SEQ ID NO: 18: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 869 base pairs (B) TYPE: nucleic acid	
22	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
	GGCACGAGCT GCCAACACTG AGGTCTTCGT GGCTTCTCAC ATCTAGATGT ATCCCTCTCA	6
	AATCTATCCT CTATCCAGGC ACCAGATTGA GGTATCTAAA ATGTCAACTT TCCAGTTACT	12
45	CCTTCTTATA CTAGCCCAAT CAACTTACAA GATAAAGTCC AAGCCCCTTC ATATGACAAA .	18
	CCACACCCTG CTTAACTCTC CAGGTTTGAA TCCTTCATCT CCTACTTTAA ACTTTAAAAC	24
50	CCAGCAGCAC GAAAGTGTCT CCTATGCATG TTGCCATATG CGTTCTCTCC ATCATGCATT	30
	TGCCTGAGCA AGATGTCTTG AGTTAACATC TTATTCTTTA AGACTCATTG TGGTGGTAGA	36
_	CAGCCTTTAA TAACGGATCC TTGGCCAGGC ACAGTGACTC ACACCTGTAA TCCCAGAACT	42
55	TTGAAAGGCC AAAGAAGGAA GAAAGCTTGA GGCCAGTAGT TTGAGACCAG CCTGGGAAAC	48
	AGAGAGATAT CCCATCTGTA CCAAAAATTT AAAAAAATAT TAGCAGGGAG TAGTGGCATG	54

CACAAGTGGT CCCAGCTCCA TGGGAGASTG AGGTAGGAAC ATCACTTGAG CCCAGGAAGT

60

	CAAGGCTGCA GTGAACCATG ATCAGAACAT TGCANTCCAG CTTGGGTAAC AGAGTGAGAC	660
	CTTAGGTCAG AAAAATGAAT AAATAAGCAT AAAATTTTAA AAACTTAGCC AGGCATGGTG	720
5	GCACACATCT GTGGTCCCTG CTACTTAGGA GGCTGAGGTG AGAGGATCCT TGAGCCCAGG	780
	AGGTCAACAC TACAGTGAGC TATGATTGTG CCACTAAACT CCAACCTGGG TGAAAAAGCA	840
	AAACCCTGCC AAAAAAAAAA AAAAAAACT	869
10		
	(2) INFORMATION FOR SEQ ID NO: 19:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 959 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	GCCGAGCCGA GATCGTGCCA TTGCACTCCA GCCTGGGCAA CAAGAGTGAA ACTCTGTCTC	60
25	AAAAAAAAA AATTATAATA CTATATGCCA TAAAATGACA TTTCATATTT AAAGAGTTTT	120
	TTAAAACTCT TGTATTCACA TGCCATAATT TGAAACCCTA TTTCACTGAA TGAGAATGGT	180
30	ATCTGTTGTC CTCATTTTTT CATTTTTATC CTTAACAATT TCCACCACAG CCAGTGCATA	240
	TAATGGCAAT GACACCCAGG GATGGAATGA TAAGTTCCAT CRCMGCTCAG TCAAGACGCA	300
35	GACTIGATGT GGCCCCAACA ACAGTCAATA ATGGAGTCTC CAAAATAAAG CTCTATAGGA	360
33	AAGGTAAATA CCCGCTGCAC AAGAAACCAC AGCATCTAGG TTCTAACCCC ATCTCTATGA	420
	AGAGCTTGCT GGGAGAGTTT TGACATTWAA CAATCTGTCT GATKGCCAAT TTTYTTCTTC	480
40	TATAAAATGA TAATGTTKGA YTCAAAGATC CAAAGTCAAT TCATGGTCTA AAACTTAATG	540
	ATTITITIAG GTTTGKGAC ATTTCACTGT ACACTGTAGT AATTTATATC TTATTTTCCC	600
45	ACTAATTTAG AAAAATATYT AAATGATCCT TAATTGGCAA TGGGTCCTAA GAATTTTGTT	660
73	TTAAATCCCT GTTACCCAAA AGAGCCCTTT TTTGTATCTC GCAGTAGTTA CAAGGATCTT	720
	TCTAAATCTT AAAAAAAAAA AAAAAAGAAA GAAAGAAAAG AAAAGAAAAA AAGTCAGCCG	780
50		90
	GTCAGGAGAT GGAGACCATC CCGGCCAACA TGGAGAAACC CTGTCTCTAC TAAAAAAAAA	
55	AAAAACTCGA GGGGGGCCCG GTACCCAATN CGCCGGCTAG TGGTCGTAAA ACAATCAAA	95

⁽²⁾ INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1446 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

	CGGGGCAGGG CTGTGTGGCA CCGCCAGGGA GCGGGCCCAC CTGAGTCACT TTATTGGGTT	- 60
10	CAGTCAACAC TTTCTTGCTC CCTGTTTTCT CTTCTGTGGG ATGATCTCAG ATGCAGGGGC	120
	TGGTTTTGGG GTTTTCCTGC TTGTGCCAAG GGCTGGACAC TGCTGGGGGG CTGGAAAGCC	180
15	CCTCCCTTCC TGTCCTTCTG TGGCCTCCAT CCCCTCATGG GTGCTGCCAT CCTTCCTGGA	240
	GAGAGGAGG TGAAAGCTGG TGTGAGCCCA GTGGGTTCCC GCCCACTCAC CCAGGAGCTG	300
20	GCTGGGCCAG GACCGGGAGA GGGAGCACTG CTGCCCTCCT GGCCCTGCTC CTTCCGCAGT	360
20	TAGGGGTGGA CCGAGCCTCG CTTTCCCCAC TGTTCTGGAG GGAAGGGGAA GGAGGGGGTC	420
	TTCAGGCTGG AGCCAGGCTG GGGGTGCTGG GTGGAGAGAT GAGATTTAGG GGGTGCCTCA	480
25	TGGGGTGGGC AGGCCTGGGG TGAAATRAGA AAGGCCCAGA ACGTGCAGGT CTGCGGAGGG	540
	GAAGTGTCCT GAGTGAAGGA GGGGACCCCC ATCCTGGGGG ATGCTGGGAG TGAGTGAGTG	600
30	AGATGGCTGA GTGAGGGTTA TGGGGAGCCT GAGGTTTTAT GGGCCTGTGT ATCCCCTTCT	660
50	CCCGGCCCCA GCCTGCCTCC CTCCTGCCCG CCTGGCCCAC AGGTCTCCCT CTGGTCCCTG	720
	TCCCTCTGGT GGTTGGGGAT GGAGCGGCAG CAAGGGGTGT AATGGGGCTG GGTTCTGTCT	780
35	TCTACAGGCC ACCCCGAGGT CCTCAGTGGT TGCCTGGGGA GCCGGACGGG GCTCCTGAGG	840
	GGTACAGGTT GGGTGGGCCC TCCCTGAGGG TCTGGGGTCA GGCTTTGGCT CTGCTGCCTC	900
40	TCAGTCACCA AGTCACCTCC CTCTGAAAAT CCAGTCCCTT CTTTGGATGT CCTTGTGAGT	960
10	CACTCTGGGC CTGGCTGTCG TCCCTCCTCA GCTTCTTGTT CCTGGGACAA GGGTCAAGCC	1020
	AGGATGGGCC CAGGCCTGGG ATCCCCCACC CCAGGACCCC CAGGCCCCCT CCCCTGCTGC	1080
45	TTTGCGGGGG GCAGGCAGA AATGGACTCC TTTTGGGTCC CCGAGGTGGG GTCCCCTCCC	1140
	AGCCCTGCAT CCTCCGTGCC STAGACCTGC TCCCCAGAGG AGGGGCCTTG ACCCACAGGA	1200
50	CGTGTGGTGG CGCCTGGCAC TCAGGGACCC CCAGCTGCCC CAGCCCTGGT CTCTGGCGCA	1260
50	TCTCTTCCCT CTTGTCCCGA AGATCTGCGC CTCTAGTGCC TTTTGAGGGG TTCCCATCAT	1320
	CCCTCCCTGA TATTGTATTG AAAATATTAT GCACACTGTT CATGCTTCTA CTAATCAATA	1380
55	AACGCTTTAT TTAAAGCCAA AAAAAAAAA AAAAAACTCG AGGGGGGCC CGTACCCAAT	1440
	TCGCCA	1446

(2) INFORMATION FOR SEQ ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1471 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

	(D) TOPOLOGY: Timear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	CAAAAAATAA TAATGATAAT TTAAAATAAA TAAGTAACTA ATAAAAAGAT TTTATATCCC	60
	AGTCTTATGA TGTTGGTTGG CAAGGCTAGA TAAAAAGATG TTAGAATGAA AGAACATATT	120
15	TTTAGTGATA TGTAAATGAA GGATTCTACA ATAGTCATAT ATTTTTATAT GAATGAATGT	180
	TGGGTTGGGC TGGAGAGGTA TGTGTGTGTA AATATAAAGG TCTCACATTC AGAGTATAGC	240
20	TCTGAAATAA TGGAACTCAT GTCTACAATT CAACATGCAT CTGTATAGTT ACATCTCATG	300
	TAAATATACA CAGACATATT TTGCAGCCAG TAATTGACAG TTAATGTCCA AAACAGGTGA	360
- 41	TTGATAGGTA ACAGAAATTA GATAACCACC AATTTTGCCC AAGAGAAAGA CTAGAAGGAC	420
25	TAAAAGCAGT TGAATGTATG GTACTGACAT TGTCATAAGC AGTCTGATAA CCAGTTTATT	480
	GAAACGTGTG CATTAACAGA GAATTTAATT TTAAACCCAT AATTTCTCCT ATCCATTAAA	540
30	ATATTATAAT TGTTAGTAGT ATGAAACCAA CAGGAAATGT TTTTTAATCA TTTAGTGAGG	600
	TGATTCATTT GTTTCATGGG CAAACACTAT CCAGGAAAAG CCTTGCTTGC CTGTTTCCCA	660
	AAGAGCTCTA AGAAATAGAA TCAAGTGTAA AATGGTTCAG ACCATTCAGG ATTTCTTGTC	720
35	ACTOTTOTOA ACCOCGATOT TOOTGTTATT ACTGATGTTT GAAACCOTGT CATTAGCCCC	780
	GGCCTGGTTA AAGCCCCTCA GAGTCACCTC TCATTCATAG CAATAGAATT CAACCCCAAG	840
40	TEGTTGATEG TETCCCCAGC ACAGCCGAGA GACCTGATCT CTGGATTCAG TECTTTTAGC	900
	TCTTCGAGTT TACCCTAAGA TACCTTCGGG CAATATTTTT AACCAACCCA AAAGCTCTTC	960
	AGGTCATTTC TGAAGAGGAC AAGGTGAATC TTGGCTTGGA ACACCATTTT TGGGCTCTTG	1020
45	CTACTGAATG AATCAGAAAG GAATTTTTTC TGAAGAGCAT TAGAAAGTAA AGGAGATGTT	1080
	AAAATAAGTT CTTGAAGTAT GTTTTATATT TATCTAAAAC ACTGATTTTA AAAGTTTACA	1140
50	TTCAAATGTG TATTCAAAAG AAGTACTGAT TTGTAATTAT TATAGTTTGT GTGTATCATC	1200
	CCCTTTTAAC CGTGCCTAAC AACTGTACTT AAATTTTGTT TTCCTAGTGT AACAAATGTT	1260
	TCCCATAAGA TTTTCTAGAG CCAAATAATG GGAGTGAAAA ATTCCTTAAG TGTTATATAA	132
55	GAAAATATAT TAGAAAATCA GCTTTGGATT ATACGATTTC TAAAATATAC TAATACAGAA	138
	TCCTCAGTAA TATGTTTGA ATTGGATTTT TTCTCAGAAC TGTTACATAA TAAATAATAC	144
60	ATCAACCAGA AAAAAAAAA AAAAAAATTN C	147

5 (2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1402 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
15	AGGGACGTCT TGCCTGAGGA GATGCCCATT TCTGTCCTGG RTTACCCTCA CTGCGTGGTG	60
	CATGAGCTGC CAGAGCTGAC GGCGGAGAGT TTGGAAGCAG GTGACAGTAA CCAATTTTGC	120
20	TGGAGGAACC TCTTTTCTTG TATCAATCTG CTTCGGATCT TGAACAAGCT GACAAAGTGG	180
	AAGCATTCAA GGACAATGAT GCTGGTGGTG TTCAAGTCAG CCCCCATCTT GAAGCGGGCC	240
	CTAAAGGTGA AACAAGCCAT GATGCAGCTC TATGTGCTGA AGCTGCTCAA GGTACAGACC	300
25	AAATACTTGG GGCGGCAGTG GCGAAAGAGC AACATGAAGA CCATGTCTGC CATCTACCAG	360
	AAGGTGCGGC ATCGGCTGAA CGACGACTGG GCATACGGCA ATGATCTTGA TGCCCGGCCT	420
30	TGGGACTTCC AGGCAGAGGA GTGTGCCCTT CGTGCCAACA TTGAACGCTT CAACGCCCGG	480
	CGCTATGACC GGGCCCACAG CAACCCTGAC TTCCTGCCAG TGGACAACTG CCTGCAGAGT	540
	GTCCTGGGCC AACGGGTGGA CCTCCCTGAG GACTTTCAGA TGAACTATGA CCTCTGGTTA	600
35	GAAAGGGAGG TCTTCTCCAA GCCCATTTCC TGGGAAGAGC TGCTGCAGTG AGGCTGTTGG	660
	TTAGGGGACT GAAATGGAGA GAAAAGATGA TCTGAAGGTA CCTGTGGGAC TGTCCTAGTT	720
40	CATTGCTGCA GTGCTCCCAT CCCCCACCAG GTGGCAGCAC AGCCCCACTG TGTCTTCCGC	780
	AGTCTGTCCT GGGCTTGGGT GAGCCCAGCT TGACCTCCCC TTGGTTCCCA GGGTCCTGCT	840
	CCGAAGCAGT CATCTCTGCC TGAGATCCAT TCTTCCTTTA MITCCCCCAM CCTCCTCTCT	900
45	TGGATATGGT TGGTTTTGGC TCATTTCACA ATCAGCCCAA GGYTGGGAAA GCTGGAATGG	960
	GATGGGAACC CCTCCGCCGT GCATCTRAAT TTCAGGGGTC ATGCTGATGC CTCTCGAGAC	1020
50	ATACAAATCC TTGCCTTTGT CAGCTTGCAA AGGAGGAGAG TTTAGGATTA GGGCCAGGGC	1080
	CAGAAAGTCG GTATCTTGGT TGTGCTCTGG GGTGGGGGGTG GGGTGTTTCT GATGTTATTC	1140
	CAGCCTCCTG CTACATTATA TCCAGAAGTA ATTGCGGAGG CTCCTTCAGC TGCCTCAGCA	1200
55	CTTTGATTTT GGACAGGGAC AAGGTAGGAA GAGAAGCTTC CCTTAACCAG AGGGGCCATT	1260
	TTTCCTTTTG GCTTTCGAGG GCCTGTAAAT ATCTATATAT AATTCTGTGT GTATTCTGTG	1320
60	TCATGTTGGG GTTTTTAATG TGATTGTGTA TTCTGTTTAC ATTAAAAAGA AGCAAAAATA	1380

АТАЛАЛАЛА АЛАЛАЛАЛА СТ

1402

1	_	
	,	

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1047 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

_	GGCACAGGGG ACTACAGGCA CCCACGACCA TACCCAGCTA ATTTTTGTAT TTTTTTGTAG	60
	AGATGGGGTT TCACGATGTC GCCCAGGCTG GTCTTGAACT CCTGGGCTTG AGCGATCTTC	120
20	CCATCTTTCC ATCTTGGCCT CCTAAAGTGC TGGGACTGCA GGCATGAGCC ACCATGCCCA	180
	GCCAAGATTC TTATTGATTA CCATGTTGCT TCAAGAAGCC AAGCCAGTTT CCAATATTCC	240
. ~	CCATTTGCTG GAGTCTTGGT ACTITGGGTA GAAGCAACTG GTAAATTGTT AATTGGAACA	300
25	NITGGTGGTG TAGATAACCA CGTATGGCCA AACCTAGAGC ATCTAGGCTC ACAATTACTA	360
	TCCTGACTTG ATAACAAGTG TTCTGATATT AACCTGAAAA TGGGAATAAT GCCAAATCTG	420
30	TGTAACTTAA CATCTATATA CACAGTGGGG AGAACTGAAG TTATTAAACC TGGAATCTCT	480
	GTGATCAAGG CTAACAGTAG TTATCTAAGA AGCAAAGGAC CTACAATTCT TAGACTTGGA	540
25	GTCATATTCT TTAAGGACGT GTTCTGAAAC TATATCAAGC ATCTGGTTTC CACGTATTTC	600
35	TCCCTCAGAA ATTATGAAGT ACAAGTAAAA ATGAAGGTAC AGGGTAAGAC ACATGCTGCT	660
	TICTIGCTCT TGAGTGGAGA CAGTITTCCA GCCATCTTAA CCCCTTWACA CAAAACAATT	720
40	TGTGTTTTAT AGCAAATAAG TGACTCAACA TAATTTCAAT ATGATGTTTA TCCACCAGTA	780
	CTTTCCTTTC AGCTTCTAGT CCCATAARTG GTTTGTGAAG TCATCGGTTA CATTAGCCAA	840
45	GATAGGCCTA GACTTGAAGT CTAGAATGTT TTTCCCACTA TATGCCAAAG TAGAATGTGG	900
45	GTATCTCAGG GTCATTTTTG TTGTTCAATT TCCCACCTGT ACAGTTGTTA TGATTCACTT	960
	TCCTTATGTG TCTAATAAAT CTTGTTCCAT GAAATGATCA AAAAAAAAAA	1020
50	CGAGGGGGG CCCGGTACCC AAATCGC	1047

55

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 990 base pairs

(B) TYPE: nucleic acid

60

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi)	SEOUENCE	DESCRIPTION:	SEO	ID NO:	24:

						and the second s	
5	TTGGAAAGGG	TCTAGCTCTT	TCTCATTCAC	CAACTATATT	AGAAGCACTT	GAGGGAAATT	60
	TACCACTCCA	AATCCAAAGC	AATGAACAGT	CTTTTCTGGA	TGATTTTATT	GCCTGTGTCC	120
10	CAGGATCAAG	TGGTGGAAGG	CTTGCAAGGT	GGCTTCAGCC	AGATTCATAT	GCGGATCCTC	- 180
10	AGAAAACATC	TTTGATCCTG	GAATAAGGAT	GATATTCGTT	GTGGTTGGCC	TACCACCATA	240
	ACTGTTCAAA	CAAAAGACCA	GTATGGGGAT	GTGGTACATG	TTCCCAATAT	GAAGGTAATT	300
15	ATAACTGGAT	TAAATTAGCA	GACATCTATA	TACTGGCTGC	AATGACTGAT	AAAATTTTAG	360
	AAATGCCAAG	TGCTGAGRGT	CCATTTGTTC	TACCCTCTTT	ATATAAAGGG	TGATGCTGAA	420
20	AGTTTGTTTA	AATGACTTGT	TTATATTAAT	TAGTCCCCAA	GTGTCCAAGT	TACACCTGTT	480
20	TTTTTTGTGA	GTTTGTTCTT	TACATTTTGC	TACCTGTTAC	GGGGACTCAA	AGGAGGGATA	540
	AGAAAGTATC	CATCTAAAGA	GTGCTAGACA	CATACAGTGA	AGCCCCTCAA	TATGTATTGA	600
25	TTGAATAAAT	GCATGAAAGA	ATACATTITT	AAATTTTGTG	TATAGTTTTG	AAAGACTCAA	660
	GTACGTTCTG	TGTTTGGTAT	TACTGAAACC	ACATTTTAAA	AATAACACTC	ATTAAGTTAG	720
30	AAATATATGA	GTTTAGATTG	TAAAAGAATG	AGGAATTGAA	ATAGTTGTAT	ACCATATTGA	780
	TGAATATAGA	GTTTTTAGGA	TACCTCTTAC	CTGAAATATT	AATAATAATG	TTTNCAGAGC	840
	ATATTATACA	TAATTATTTG	TGATTTAATC	TGTTAATATG	AATATCTCAT	TTAAAACTTT	900
35	TATTTCTGAA	AAAATTATAT	TGAATAAAAT	TTTATATAGG	CAGTCCCCAG	CCCTTTCCTC	960
	CTTCAAAGTT	GTCTTATAGA	GTGATTGGTT				990
				•			

40

45

55

60

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1208 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

60	CCGGGTCGAC	GTCCGGAATT	GCAGGTACCG	GCTGGTCGCT	ТАТАСССААА	таатссстас
00	20001001	01000011111		0010010001	***********	
120	GGCTCCGGGG	GGCCTCCGGC	CCCCCGGCCC	GCGCCTCCGG	GAGCGAAATG	CCACGCGTCC
100	ONCONCERCON	CCCC3 CCm3 C	CCMTCM3C3M	OTTO A R.C.A.R.C.C.	000000000000000000000000000000000000000	100m101001
180	CAGCAGTGCA	CGGCAGCTAC	CCTTCTACAT	GIMAMGAACG	GCIGITCGAC	AGGTAGACGA
240	GGGACGTCTT	GACGTGGAGA	CCCAGAGAGA	AGCTRTCAAG	GCASGGGTGA	TAAACGAGGC
_						_
300	AGATCAAGCC	GTCCTGGATG	GITCGGTGTG	CGCAGAGGAA	GCGTACCTGG	CCTGTATAGA

٠	CTCCTCGGCC CCTGAGCTCC AGGCCGTGCG CATGTTTGCT GACTACCTCG CCCACGAGAG	360
_	TCGGAGGGAC AGCATCGTGG CCGAGCTGGA CCGAGAGATG AGCAGGAGCK TGGACGTGAC	420
5	CAACACCACC TICCIGCICA TGGCCGCCTC CATCTATCTC CACGACCAGA ACCCGGATGC	480
	CGCCCTGCGT GCGCTGCACC AGGGGGACAG CCTGGAGTGC ACAGCCATGA CAGTGCAGAT	540
10	CCTGCTGAAG CTGGACCGCC TGGACCTCGC CCGGAAGGAG CTGAAGAGAA TGCAGGACCT	600
	GGACGAGGAT GCCACCCTCA CCCAGCTCGC CACTGCCTGG GTCAGCCTGG CCACGGGTGG	660
	TGAGAAGCTG CAGGATGCCT ACTACATCTT CCAGGAGATG GCTGACAAGT GCTCGCCCAC	720
15	CCTGCTGCTG CTCAATGGGC AGGCGGCCTG CCACATGGCC CAGGGCCGCT GGGAGGCCGC	780
	TGAGGGCCTG CTGCAGGAGG CGCTAGACAA GGATAGTGGC TACCCRGAGA CGCTGGTCAA	840
20	CCTCATCGTC CTGTCCCAGC ACCTKGGCAA GCCCCCTGAG GTGACAAACC GATACCTGTC	900
	CCAGCTGAAG GATGCCCACA GGTCCCATCC CTTCATCAAG GAGTACCAGG CCAAGGAGAA	960
٥٤	CGACTITGAC AGGCTGGTGC TACAGTACGC TCCCAGCGCT GAGGCTGGCC CAGAGCTGTC	1020
25	AGGACCATGA AGCCAGGACA GAGGCCAGGA GCCAGCCCTG CAGCCCTCCC CACCCGGCAT	1080
	CCACCTGCAT CCCTCTGGGG CAGGAGCCCA CCCCCAGCAC CCCCATCTGT TAATAAATAT	1140
30	CTCAACTCCA RGGTGTTCCA CCTGAAAAAA AAAAAAAAA AAAAAAAAAA	1200
	ааааааа	1208
25		
35	(2) INFORMATION FOR SEQ ID NO: 26:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 1922 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	60
	GTGCTGCGCT ACTGAGCAGC GCCATGGAGG ACTCTGAAGC ACTGGGCTTC GAACACATGG	
50	GCCTCGATCC CCGGCTCCTT CAGGCTGTCA CCGATCTGGG CTGGTCGCGA CCTACGCTGA	120
50	TCCAGGAGAA GGCCATCCCA CTGGCCCTAG AAGGGAAGGA CCTCCTGGCT CGGGCCCGCA	
	CGGGCTCCGG GAAGACGGCC GCTTATGCTA TTCCGATGCT GCAGCTGTTG CTCCATAGGA	240
55	AGGCGACAGG TCCGGTGGTA GAACAGGCAG TGAGAGGCCT TGTTCTTGTT CCTACCAAGG	300
	AGCTGGCACG GCAAGCACAG TCCATGATTC AGCAGCTGGC TACCTACTGT GCTCGGGATG	360

TCCGAGTGGC CAATGTCTCA GCTGCTGAAG ACTCAGTCTC TCAGAGAGCT GTGCTGATGG

60

•	AGAAGCCAGA	TGTGGTAGTA	GGGALCCCAI	CICGCAIAIT	AAGCCACTIG	CAGCAAGACA	480
	GCCTGAAACT	TCGTGACTCC	CTGGAGCTTT	TGGTGGTGGA	CGAAGCTGAC	CTTCTTTTTT	540
5	CCTTTGGCTT	TGAAGAAGAG	CTCAAGAGTC	TCCTCTGTCA	CTTGCCCCGG	ATTTACCAGG	600
	CTTTTCTCAT	GTCAGCTACT	TTTAACGAGG	ACGTACAAGC	ACTCAAGGAG	CTGATATTAC	660
10	ATAACCCGGT	TACCCTTAAG	TTACAGGAGT	CCCAGCTGCC	TGGGCCAGAC	CAGTTACAGC	- 720
10	AGTTTCAGGT	GGTCTGTGAG	ACTGAGGAAG	ACAAATTCCT	CCTGCTGTAT	GCCCTGCTCA	780
	AGCTGTCATT	GATTCGGGGC	AAGTCTCTGC	TCTTTGTCAA	CACTCTAGAA	CGGAGTTACC	840
15	GGCTACGCCT	GTTCTTGGAA	CAGTTCAGCA	TCCCCACCTG	TGTGCTCAAT	GGAGAGCTTC	900
	CACTGCGCTC	CAGGTGCCAC	ATCATCTCAC	AGTTCAACCA	AGGCTTCTAC	GACTGTGTCA	960
20	TAGCAACTGA	TGCTGAAGTC	CIGGGGGCCC	CAGTCAAGGG	CAAGCGTCGG	GGCCGAGGGC	1020
20	CNAAAGGGGA	CAAGGCCTCT	GATCCGGAAG	CAGGTGTGGC	CCGGGGCATA	GACTTCCACC	1080
	ATGTGTCTGC	TGTGCTCAAC	TTTGATCTTC	CCCCAACCCC	TGAGGCCTAC	ATCCATCGAG	1140
25	CTGGCAGGAC	AGCACGCGCT	AACAACCCAG	GCATAGTCTT	AACCTTTGTG	CTTCCCACGG	1200
	AGCAGTTCCA	CTTAGGCAAG	ATTGAGGAGC	TTCTCAGTGG	AGAGAACAGG	GGCCCCATTC	1260
30	TGCTCCCCTA	CCAGTTCCGG	ATGGAGGAGA	TCGAGGGCTT	CCGCTATCGC	TGCAGGGATG	1320
	CCATGCGCTC	AGTGACTAAG	CAGGCCATTC	GGGAGGCAAG	ATTGAAGGAG	ATCAAGGAAG	1380
	AGCTTCTGCA	TTCTGAGAAG	CTTAAGACAT	ACTTTGAAGA	CAACCCTAGG	GACCTCCAGC	1440
35	TGCTGCGGCA	TGACCTACCT	TTGCACCCCG	CAGTGGTGAA	GCCCCACCTG	GGCCATGTTC	1500
	CTGACTACCT	GGTTCCTCCT	ectétece te	GCCTGGTRCG	CCCTCACAAG	AAGCGGAAGA	1560
40	AGCTGTCTTC	CTCTTGTAGG	AAGGCCAAGA	GAGCAAAGTC	CCAGAACCCA	CTGCGCAGCT	1620
	TCAAGCACAA	AGGAAAGAAA	TTCAGACCCA	CAGCCAAGCC	CTCCTGAGGT	TGTTGGGCCT	1680
	CTCTGGAGCT	GAGCACATTG	TGGAGCACAG	GCTTACACCC	TTCGTGGACA	GGCGAGGCTC	1740
45	TGGTGCTTAC	TGCACAGCCT	GAACAGACAG	TTCTGGGGCC	GGCAGTGCTG	GGCCCTTTAG	1800
	CTCCTTGGCA	CTTCCAAGCT	GGCATCTTGC	CCCTTGACAA	CAGAATAAAA	ATTTTAGCTG	1860
50	CCCCAAAAAA	AAAAAAAAA	AAAAAAACTC	GAGGGGGGC	CCGTACCCAA	TTCGCCCTAT	1920
	AA						1922

(2) INFORMATION FOR SEQ ID NO: 27:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1951 base pairs

60 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

5	TCGTCCCCAG AGCGGGCTGA GCCCCAGGCG SAGGGTGGCG GGGGAGCCTG GGGGAGCCGC	60
	CGCCACCTCC ACGGGCCTCT CTGAGCTCGG ACACCAGCGC CCTGTCCTAT GACTCTGTCA	120
10	AGTACACGCT GGTGGTAGAT GAGCATGCAC AGCTGGAGCT GGTGAGCCTG CGCCGTGCTT	180
10	CGGAGACTAC AGTGACGAGA GTGACTCTGC CACCGTCTAT GACAACTGTG CCTCCGTCTC	240
	CCGAGACTAC AGTGACGAGA GTGACTCTGC CHOOSTOTAL CONTROL CO	300
15	TGCCTGCCTAT GAGTCGGCCA TCGGAGAAGA ATATCAGCCGA CGTCCATTTC TCCAAGAAAT	360
		420
	TCCTGAACGT YTTCATGAGT GGCCGCTCCC GCTCCTCCAG TGCTGAGTCC TTCGGGCTGT	480
20	TCTCCTGCAT CATCAACGGG GAGGAGCAGG AGCAGACCCA CCGGGCCATA TTCAGGTTTG	
	TGCCTCGACA CGAAGACGAA CTTGAGCTGG AAGTGGATGA CCCTCTGCTA GTGGAGCTCC	540
25	AGGCTGAAGA CTACTGGTAC GAGGCCTACA ACATGCGCAC TGGTGCCCGG GGTGTCTTTC	600
25	CTGCCTATTA CGCCATCGAG GTCACCAAGG AGCCCGAGCA CATGGCAGCC CTGGCCAAAA	660
	ACAGTGACTG GGTGGACCAG TTCCGGGTGA AGTTCCTGGG CTCAGTCCAG GTTCCCTATC	720
30	ACAAGGGCAA TGACGTCCTC TGTGCTGCTA TGCAAAAGAT TGCCACCACC CGCCGGCTCA	780
	CCGTGCACTT TAACCCGCCC TCCAGCTGTG TCCTGGAGAT CAGCGTGCGG GGTGTGAAGA	840
	TAGGCGTCAA GGCCGATGAC TCCCAGGAGG CCAAGGGGAA TAAATGTAGC CACTTTTTCC	900
35	AGTTAAAAAA CATCTCTTC TGCGGATATC ATCCAAAGAA CAACAAGTAC TTTGGGTTCA	960
	TCACCAAGCA CCCCGCCGAC CACCGGTTTG CCTGCCACGT CTTTGTGTCT GAAGACTCCA	1020
40	CCAAAGCCCT GGCAGAGTCC GTGGGGAGAG CATTCCAGCA GTTCTACAAG CAGTTTGTGG	1080
	AGTACACCTG CCCCACAGAA GATATCTACC TGGAGTAGCT GTGCAGCCCC GCCCTCTGCG	1140
	TCCCCCAGCC CTCAGGCCAG TGCCAGGACA GCTGGCTGCT GACAGGATGT GGCACTGCTT	1200
45	GAGGAGGGC ACCTGCCACC GCCAGAGGAC AAGGAAGTGG GGCGCTGGCC CAGGGTAGGG	1260
	GAGGGTGGGG CAATGGGGAG AGGCAAATGC AGTTTATTGT AATATATGGG ATTAGATTCA	1320
50	TCTATGGAGG GCAGAGTGGG CTGCCTGGGG ATTGGGAGGG ACAGGGCTTG GGGAGCAGGT	1380
	CTCTGGCAGA GAAGGATGTC CGTTCCAGGA GCACACGGCC CTGCCCCATC CTGGGCCTTA	1440
	CCTCCCCTGC CAGGGCTCGG GCGCTGTGGC TCCTGCCTTG ATGAAGCCCG TGTCCTGCCT	1500
. 55	TGATGAAGCC TGTGCCACCT GCAAGTGCCC GCCCTGCCCC TGCCCCAACC CCCACCGAAG	1560
	AGCCCTGAGC TCAGGCTGAG CCCAGCCACC TCCCAAGGAC TTTCCAGTGA GGAAATGGCA	1620
60	ACACGTGGAG GTGAAGTCCC TGTTCTCAGC TCCGTCATCT GCGGGGCTTC TGGGTGGCTC	1680

	CTGCCACTGA	CCTCACCGGC	ATGCTGGCCT	GTGGCAGGCC	TAGGACCTCA	GGCGGGGAGG	1740
5	AGGAGCTGCC	GCAAGGCCCT	GTCCCAGCAG	AAGAGGGAGG	CTTCCTGACT	GACACAGGCC	1800
3	AGCCCCATCT	TGGTCCTGTC	ACCCTGGCCC	CAACTATTAA	AGTGCCATTT	CCTGTCAAAA	1860
	аааааааа	AAAATCGGGG	GGGGCCCGGA	ANCCAATITC	CCCCAAAAAG	GGGGGTTATA	1920
10	AAAATTCCCN	GGCNGTGTTT	TTAAAAATTC	G			1951

15 (2) INFORMATION FOR SEQ ID NO: 28:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3989 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

25	GGCACAGGCC	GCAGGGNACC	TATGGGCGCA	TATAGGTTGT	AATGAAACTG	TAGTCTCAGT	60
	TGGAAGCCTA	GACATGAAAT	GGGTCAGTGA	GCAAGGCTCT	ATTCCTAGTC	TCCAGCCATG	120
30	CCTGTGGAAC	CTGARCCCRC	TCTCAGCACA	TTGGACCCAG	GCAGATGYAA	AAAATTCACA	180
30	GAACTATGAT	TTGGACTCAA	GGGTTTGTAG	ATTTCCTCCT	TCATTCTAAT	TTCAGTGTCT	240
	AAAATTCTTG	CATCCRTGAA	CGAGCTGGGC	ATTTGATGAG	ACAGGGCYGA	ATACTGCAGT	300
35	TTTCCTCCTA	GAAATCATCT	GGGGCATTTT	CTTTGAACTG	ATGGGAACAA	TAAGGCATAA	360
	CTGTTTGCAC	AAACTTGGGA	TAARTGATTT	TGGGATAACG	ATCTACCAGA	ATGGGGATAT	420
40	TTCACCCTTG	GTTCTGAGAT	GCAAACCAAA	GAATATCATG	ACCAGCTTTC	AGGCCTCCTG	480
40	AAGTATATCT	CTCACATTGT	CCTGTTCTCA	TGCTGAGGAG	CCTGAGATCC	CTGTGTGGGG	540
	ATTAGACAGT	GGACTGTTAT	GGGTGTAGGT	GAATTGGCTT	ATTTTGTCTG	TCCCTGTCTG	600
45	AATGTATTGC	AGGAAYTAAA	AAGGACCAAG	AAGAGGAAGA	AGACCAAGGC	CCACCATGCC	660
	CCAGGCTCAG	CAGGGAGCTG	CTGGAGGTAG	TAGAGCCTGA	AGTCTTGCAG	GACTCACTGG	720
50	ATAGATGTTA	TTCAACTCCT	TCCAGTTGTC	TTGAACAGCC	TGACTCCTGC	CAGCCCTATG	780
50	GAAGTTCCTT	TTATGCATTG	GAGGAAAAAC	ATGTTGGCTT	TTCTCTTGAC	GTGGGAGAAA	840
	TTGAAAAGAA	GGGGAAGGG	AAGAAAAGAA	GGGGAAGAAG	ATCAAAGAAG	GAAAGAAGAA	900
55	GGGGAAGAAA	AGAAGGGGAA	GAAGATCAAA	ACCCACCATG	CCCCAGGCTC	AGCAGGGAGC	960
	TGCTGGATGA	GAAAGRGCCT	GAAGTCTTGC	AGGACTCACT	GGATAGATGT	TATTCAACTC	1020
60	CTTCAGTTGT	GTTGAACTGT	GTGACTCATG	CCAGCCCTAC	AGAAGTGCCT	TTTATGTATT	1080
UU							

	GGAGCAACAG CATGTTGGCT TGGCTGTTGA CATGGATGAA ATTGAAAAGT ACCAAGAAGT	1140
	GGAAGAAGAC CAAGACCCAT CATGCCCCAG GCTCAGCAGG GAGCTGCTGG ATGAGAAAGA	1200
5	GCCTGAAGTC TTGCAGGACT CACTGGATAG ATGTTATTCG ACTCCTTCAG GTTATCTTGA	1260
	ACTGCCTGAC TTAGGCCAGC CCTACAGCAG TGCKGTTTAC TCATTGGAGG AMCAKTACCT	1320
	TGGCTTKKCT CTTGACGTGG ASAAATTGAA AAGAAGGGGA AGGGGAARAA AAGAAGGGGA .	1380
10	AGAAGATCAA AGAAGGAAAG AAGAAGGGGA AGAAAAAGAAG GGGAAGAA	1440
	CCATGCCCCA GGCTCAGCAG GGAGCTGCTG GATGAGAAAG GGCCTGAAGT CTTGCAGGAC	1500
15	TCACTGGATA GATGITATTC AACTCCTTCA GGTTGTCTTG AACTGACTGA CTCATGCCAG	1560
	CCCTACAGAA GTGCCTTTTA YRTATTGGAG CAACAGYGTG TTGGCTTGGC TGTTGACATG	1620
••	GATGAAATTG AAAAGTACCA AGAAGTGGAA GAAGACCAAG ACCCATCATG CCCCAGGCTC	1680
20	AGCAGGGAGC TGCTGGATGA GAAAGAGCCT GAAGTCTTGC AGGACTCACT GGATAGATGT	1740
	TATTCGACTC CTTCAGGTTA TCTTGAACTG CCTGACTTAG GCCAGCCCTA CAGCAGTGCT	1800
25	GTTTACTCAT TGGAGGAACA GTACCTTGGC TTGGCTCTTG ACGTGGACAG AATTAAAAAG	1860
	GACCAAGAAG AGGAAGAAGA CCAAGGCCCA CCATGCCCCA GGCTCAGCAG GGAGCTGCTG	1920
30	GAGGTAGTAG AGCCTGAAGT CTTGCAGGAC TCACTGGATA GATGTTATTC AACTCCTTCC	1980
30	AGTTGTCTTG AACAGCCTGA CTCCTGCCAG CCCTATGGAA GTTCCTTTTA TGCATTGGAG	2040
	GAAAAACATG TTGGCTTTTC TCTTGACGTG GGAGAAATTG AAAAGAAGGG GAAGGGGAAG	2100
35	AAAAGAAGGG GAAGAAGATC AAMGAAGRAA AGAAGAAGGG GAAGAAAAGA AGGGGAAGAA	2160
	GATCAAAACC CACCATGCCC CAGGCTCAAC GGCGTGCTGA TGGAAGTGGA AGAGCSTGAA	2220
40	GTCTTACAGG ACTCACTGGA TAGATGTTAT TCGACTCCGT CAATGTACTT TGAACTACCT	2280
40	GACTCATTCC AGCACTACAG AAGTGTGTTT TACTCATTTG AGGAACAGCA CATCAGCTTC	2340
	GCCCTTTACG TGGACAATAG GTTTTTTACT TTGACGGTGA CAAGTCTCCA CCTGGTGTTC	2400
45	CAGATGGGAG TCATATTCCC ACAATAAGCA GCCCTTASTA AKCCGAGAGA TGTCATTCCT	2460
	GCAGGCAGGA CCIATAGGCA MGTGAAGATT TGAATGAAAG TACAGTTCCA TTTGGAAGCC	2520
50	CAGACATAGG ATGGGTCAGT GGGCATGGCT CTATTCCTAT TCTCAAACCA TGCCAGTGGC	2580
30	AACCTGTGCT CAGTCTGAAG ACAATGGACC CACGTTAGGT GTGACACGTT CACATAACTG	2640
	TGCAGCACAT GCCGGGAGTG ATCAGTCRGA CATTTTAATT TGAACCACGT ATCTCTGGGT	270
55	AGCTACAAAA TTCCTCAGGG ATTTCATTTT GCAGGCATGT CTCTGAGCTT CTATACCTGC	276
	TCAAGGTCAK TGTCATCTTT GTGTTTAGCT CATCCAAAGG TGTTACCCTG GTTTCAATGA	282
<i>(</i> 0	ACCTAACCTC ATTCTTGTG TCTTCAGTGT TGGCTTGTTT TAGCTGATCC ATCTGTAACA	288
60		

	CAGGAGGGAT	CCTTGGCTGA	GGATTGTATT	TCAGAACCAC	CAACTGCTCT	TGACAATTGT	2940
	TAACCCGCTA	GRCTCCTTTG	GTTAGAGAAG	CCACAGTCCT	TCAGCCTCCA	ATTGGTGTCA	3000
5	GTACTTAGGA	AGACCACAGC	TAGATGGACA	AACAGCATTG	GGAGGCCTTA	GCCCTGCTCC	3060
	TCTCRATTCC	ATCCTGTAGA	GAACAGGAGT	CAGGAGCCGC	TGGCAGGAGA	CAGCATGTCA	3120
10	CCCAGGACTC	TGCCGGTGCA	GAATATGAAC	AAYGCCATGT	TCTTGCAGAA	AACGCTTAGC .	3180
10	CTGAGTTTCA	TAGGAGGTAA	TCACCAGACA	ACTGCAGAAT	GTRGARCACT	GAGCAGGACA	3240
	GCTGACCTGT	CTCCTTCACA	TAGTCCATRT	CACCACAAAT	CACACAACAA	AAAGGAGARG	3300
15	AGATATTTTG	GGTTCAAAAA	AAGTAAAAAG	ATAATGTAGC	TGCATTTCTT	TAGTTATTTT	3360
	GARCCCCAAA	TATTTCCTCA	TCTTTTTGTT	GTTGTCATKG	ATGGTGGTGA	CATGGACTTG	3420
20	TTTATAGAGG	ACAGGTCAGC	TGTCTGGCTC	AGTGATCTAC	ATTCTGAAGT	TGTCTGAAAA	3480
20	TGTCTTCATG	ATTAAATTCA	GCCTAAACGT	TTTGCCGGGA	ACACTGCAGA	GACAATGCTG	3540
	TGAGTTTCCA	ACCTYAGCCC	ATCTGCGGGC	AGAGAAGGTC	TAGTTTGTCC	ATCASCATTA	3600
25	TCATGATATC	AGGACTGGTT	ACTTGGTTAA	GGAGGGGTCT	AGGAGATCTG	TCCCTTTTAG	3660
	AGACACCTTA	CTTATAATGA	AGTATTTGGG	AGGGTGGTTT	TCAAAATTAG	AAATGTCCTG	3720
30	TATTCCRATG	ATCATCCTGT	AAACATTTTA	. TCATTTATTA	ATCATCCCTG	CCTGTGTCTA	3780
30	TTATTATATT	CATATCTCTA	CGCTGGAAAC	TTTCTGCCTC	AATGTTTACT	GTGCCTTTGT	3840
	TTTTGCTAGT	GTGTGTTGTT	GAAAAAAAAA	ACATTCTCTG	CCTGAGTTTT	AATTTTTGTC	3900
35	CAAAGTTATT	TTAATCTATA	CAATTAAAAG	CTTTTGCCTA	тсаааааааа	AAAAAAAA	3960
	AAAAAAAA	AAAAAGCGGA	CCCCTCCC				3989

(2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

45 (A) LENGTH: 3735 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

CTGCTGTTCG CTGGCTGGCC TCCGCAGCAG GCTTGGCCAG CSGCTGACGG GTCGGCGGCC 60

GGGTTTGTGT GAACAGGCAC GCAGCTGCAG ATTTTATTCT GGTAGTGCAN CCCTCTCAAA 120

GGTTGAAGGA ACTGATGTAA CAGGGATTGA AGAAGTAGTA ATTCCAAAAA AGAAAACTTG 180

GGATAAAGTA GCCGTTCTTC AGGCACTTGC ATCCACAGTA AACAGGGATA CCACAGCTGT 240

60 GCCTTATGTG TTTCAAGATG ATCCTTACCT TATGCCAGCA TCATCTTTGG AATCTCGTTC 300

	ATTTTTACTG GCAAAGAAAT CCGGGGAGAA TGTGGCCAAG TTTATTATTA ATTCATACCC	360
_	CAAATATITT CAGAAGGACA TAGCTGAACC TCATATACCG TGTTTAATGC CTGAGTACTT	420
5	TGAACCTCAG ATCAAAGACA TAAGTGAAGC CGCCCTGAAG GAACGAATTG AGCTCAGAAA	480
	AGTCAAAGCC TCTGTGGACA TGTTTGATCA GCTTTTGCAA GCAGGAACCA CTGTGTCTCT	540
10	TGAAACAACA AATAGTCTCT TGGATTTWIT GTGTTACTAT GGTGACCAGG AGCCCTCAAC	600
	TGATTACCAT TTTCAACAAA CTGGACAGTC AGAAGCATTG GAAGAGGAAA ATGATGAGAC	660
	ATCTAGGAGG AAAGCTGGTC ATCAGTTTGG AGTTACATGG CGAGCAAAAA ACAACGCTGA	720
15	GAGAATCTTT TCTCTAATGC CAGAGAAAAA TGAACATTCC TATTGCACAA TGATCCGAGG	780
	AATGGTGAAG CACCGAGCTT ATGAGCAGGC ATTAAACTTG TACACTGAGT TACTAAACAA	840
20	CAGACTCCAT GCTGATGTAT ACACATTTAA TGCATTGATT GAAGCAACAG TATGTGCGAT	900
	AAATGAGAAA TTTGAGGAAA AATGGAGTAA AATACTGGAG CTGCTAAGAC ACATGGTTGC	960
25	ACAGAAGGTG AAACCAAATC TTCAGACTTT TAATACCATT CTGAAATGTC TCCGAAGATT	1020
25	TCATGTGTTT GCAAGATCGC CAGCCTTACA GGTTTTACGT GAAATGAAAG CCATTGGAAT	1080
	AGAACCCTCG CTTGCAACAT ATCACCATAT TATTCGCCTG TTTGATCAAC CTGGAGACCC	1140
30	TTTAAAGAGA TCATCCTTCA TCATTTATGA TATAATGAAT GAATTAATGG GAAAGAGATT	1200
	TTCTCCAAAG GACCCGGATG ATGATAAGTT TTTTCAGTCA GCCATGAGCA TATGCTCATC	1260
35	TCTCAGAGAT CTAGAACTTG CCTACCAAGT ACATGGCCTT TTAAAAACCG GAGACAACTG	1320
33	GAAATTCATT GGACCTGATC AACATCGTAA TTTCTATTAT TCCAAGTTCT TCGATTTGAT	1380
	TTGTCTAATG GAACAAATTG ATGTTACCTT GAAGTGGTAT GAGGACCTGA TACCTTCAGC	1440
40	CTACTITICCC CACTCCCAAA CAATGATACA TCTTCTCCAA GCATTGGATG TGGCCAATCG	1500
	GCTAGAAGTG ATTCCTAAAA TTTGGAAAGA TAGTAAAGAA TATGGTCATA CTTTCCGCAG	1560
45	TGACCTGAGA GAAGAGATCC TGATGCTCAT GGCAAGGGAC AAGCACCCAC CAGAGCTTCA	1620
43	GGTGGCATTT GCTGACTGTG CTGCTGATAT CAAATCTGCG TATGAAAGCC AACCCATCAG	1680
	ACAGACTGCT CAGGATTGGC CAGCCACCTC TCTCAACTGT ATAGCTATCC TCTTTTTAAG	1740
50	GCCTGGGAGA ACTCAGGAAG CCTGGAAAAT GTTGGGGCTT TTCAGGAAGC ATAATAAGAT	1800
	TCCTAGAAGT GAGTTGCTGA ATGAGCTTAT GGACAGTGCA AAAGTGTCTA ACAGCCCTTC	1860
55	CCAGGCCATT GAAGTAGTAG AGCTGGCAAG TGCCTTCAGC TTACCTATTT GTGAGGGCCT	1920
33	CACCCAGAGA GTAATGAGTG ATTTTGCAAT CAACCAGGAA CAAAAGGAAG CCCTAAGTAA	1980
	TCTAACTGCA TTGACCAGTG ACAGTGATAC TGACAGCAGC AGTGACAGCG ACAGTGACAC	2040
60	CACTIGARICAL ARATGARAGT GGAGATTCAG GAGCAGCART GGTCTCACCA TAGCTGCTGG	2100

	AATCACACCT	GAGAACTGAG	ATATACCAAT	ATTTAACATT	GTTACAAAGA	AGAAAAGATA	2160
5	CAGATTTGGT	GAATTIGTTA	CTGTGAGGTA	CAGTCAGTAC	ACAGCTGACT	TATGTAGATT	2220
J	TAAGCTGCTA	ATATGCTACT	TAACCATCTA	TTAATGCACC	ATTAAAGGCT	TAGCATTTAA	2280
	GTAGCAACAT	TGCGGTTTTC	AGACACATGG	TGAGGTCCAT	GGCTCTTGTC	ATCAGGATAA	2340
10	GCCTGCACAC	CTAGAGTGTC	GGTGAGCTGA	CCTCACGATG	CTGTCCTCGT	GCGATTGCCC	2400
	TCTCCTGCTG	CTGGACTTCT	GCCTTTGTTG	GCCTGATGTG	CTGCTGTGAT	GCTGGTCCTT	2460
15	CATCTTAGGT	GTTCATGCAG	TTCTAACACA	GTTGGGGTTG	GGTCAATAGT	TTCCCAATTT	2520
13	CAGGATATTT	CGATGTCAGA	AATAACGCAT	CTTAGGAATG	ACTAAACAAG	ATAATGGCAG	2580
	TTTAGGCTGC	ACAACTGGTA	AAATGACTGT	AGATAAATGT	TGTAATTAGT	GTACACGTTT	2640
20	GTATTTTGT	TAATATAGCC	GCTGCCATAG	TTTTCTAACT	TGAACAGCCA	TGAATGTTTC	2700
	ATGTCTCCCT	TTTTTTTTG	TCTATAGCTG	TTACCTATTT	TACTGGTTGA	AATGAGAGCT	2760
25	AGTGATGACA	GAAGGATGTG	GAATGTCTTC	TTGACATCAT	TGTGTATTGC	TGGTAATCAA	2820
23	GTTGGTAACG	ACTACTTCTA	GCAGCTCTTA	CCACTATGAC	TTAAGTGGTC	CTGGAAGGCA	2880
	GTAAGTGGAG	GTTTGCAGCA	TTCCTGCCTT	CATGAGGGCT	TCTACCACTG	ACCACTITGC	2940
30	ACGTACCTGG	CTCCCAGATT	TACTTAGGTA	CCCCACGAGT	CGTCCACATA	AGCAGCTTCA	3000
	TCTTTACCTT	GCCAGAGTTG	ACAATTATGG	GATACTCTAG	TCTACTTATA	CTTGTGTTCC	3060
35	CATCTGTCTG	CCATCCTCTG	AAGGCCAGGA	CCCAGȚCATA	CATCCTTAGA	AACCAAAGTA	3120
33	TGGTTTTTGT	TTTCTCTTGG	AATGTCAGGT	CTTAAGGCAT	TTAATTGAGG	GACAAAAAA	3180
	AAAAAAAGCC	GATATAGTAG	CTAGCTACTI	AAGCATCCAT	GGGTATTGCT	CCATATCAAA	3240
40	GCAGATTTGC	: AGGACAGAA?	GAGTAAATTA	GCCTTCAGTC	TTGGTTTACA	GCTTCCAAGG	3300
	AGAGCCTTGG	CCACCTGAAZ	A TGTTAACTCO	GTCCCTTCCI	GTCTCTAGTT	CATCAGCACC	3360
45	TGCAGATGCC	TGACTCTTGT	TAGCCTTACT	TATTCAATAC	A GTCCTTAGAT	TCACGGTATG	3420
73	CCTCTTCCTA	TCCAGGCAC	TATTCTGAA	CACCATGIT	G CTCTGCAGCT	AGAGTTGATA	3480
	GGAGAAAATC	CATTTGGGT	A GATGGCCTA	GAATTTGTAC	G TAGACTTTC	A AAATGAGTGA	3540
50	TTTGTTAGCT	TGGTACTTT	r aagttigig	G TACAGATCC	r ccaaaccca	r actctgagca	3600
	ATTAACTGCC	TTGAACATA	G AGAAAATTA	A GGCCTCACAC	G GATGAGTCTY	CATTCTCTGT	3660
E E	AAATGCTTA	TTTATCATA	G TCTTTAGCCI	N CTACTATGA	TAAAATGTT	TOTTONGCOG	3720
55	GCTGTGGTG	A CTCAC					3739

60

(2) INFORMATION FOR SEQ ID NO: 30:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1667 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

10
TAGTAATTCA TITAACTCCT CTTACATGAG TAGCGACAAT GAGTCAGATA TCGAAGATGA

AGACTTAAAG TTAGAGCTGC GACGACTACG AGATAAACAT CTCAAAGAGA TTCAGGACCT 120 GCAGAGTCGC CAGAAGCATG AAATTGAATC TTTGTATACC AAACTGGGCA AGGTGCCCCC 180 15 TGCTGTTATT ATTCCCCCAG CTGCTCCCCT TTCAGGGAGA AGACGACGAC CCACTAAAAG 240 CAAAGGCAGC AAATCTAGTC GAAGCAGTTC CTTGGGGAAT AAAAGCCCCC AGCTTTCAGG 300 20 TAACCTGTCT GGTCAGAGTG CAGCTTCAGT CTTGCACCCC CAGCAGACCC TCCACCCTCC 360 TGGCAACATC CCAGAGTCCG GGCAGAATCA GCTGTTACAG CCCCTTAAGC CATCTCCCTC CAGTGACAAC CTCTATTCAG CCTTCACCAG TGATGGTGCC ATTTCAGTAC CAAGCCTTTC 480 25 TGCTCCAGGT CAAGGAACCA GCAGCACAAA CACTGTTGGG GCAACAGTGA ACAGCCAAGC 540 CGCCCAAGCT CAGCCTCCTG CCATGACGTC CAGCAGGAAG GGCACATTCA CAGATGACTT 600 30 GCACAAGTTG GTAGACAATT GGGCCCGAGA TGCCATGAAT CTCTCAGGCA GGAGAGGAAG 660 CAAAGGCAC ATGAATTATG AGGCCCCTGG AATGGCAAGG AAGTTCTCTG CACCTGGGCA 720 ACTGTGCATC TCCATGACCT CGAACCTGGG TGGCTCTGCC CCCATCTCTG CAGCATCAGC 780 35 TACCTCTCTA GGTCACTTCA CCAAGTCTAT GTGCCCCCCA CAGCAGTATG GCTTTCCAGC 840 TACCCCATTT GGCGCTCAAT GGAGTGGGAC GGGTGGCCCA GCACCACAGC CACTTGGCCA 900 40 GTTCCAACCT GTGGGAACTG CCTCCTTGCA GAATTTCAAC ATCAGCAATT TGCAGAAATC 960 CATCAGCAAC CCCCCAGGCT CCAACCTGCG GACCACTTAG ACCTAGAGAC ATTAACTGAA 1020 TAGATCTGGG GGCAGGAGAT GGAATGCTGA GGGGGTGGGT GGGGGTGGGA AGTAGCCTAT 1080 45 ATACTAACTA CTAGTGCTGC ATTTAACTGG TTATTTCTTG CCAGAGGGGA ATGTTTTTAA 1140 TACTGCATTG AGCCCTCAGA ATGGAGAGTC TCCCCCGCTC CAGTTATTGG AATGGGAGAG 1200 50 GAAGGAAAGA ACAGCTTTTT TGTCAAGGGG CAGCTTCAGA CCATGCTTTC CTGTTTATCT 1260 ATACTCAGTA ATGAGGATGA GGGCTAGGAA AGTCTTGTTC ATAAGGAAGC TGGAGAACTC 1320 AATGTAAAAT CAAACCCATC TGTAATTTCG AGTGGGTGGA GCTCTTGCTT TTGGTACATG 1380 55 CCCTGAATCC CTCACTCCCT CAAGAATCCG AACCACAGGA CAAAAACCAC CTACTGGGCT 1440 CTCTCCTACC CTGCCCTCCT CCCTTTTTT TACCCCTCTC TTTTTTATTT TTTCTTTGCT 1500 60

	CTTTAGAACC	CAGTGAAAAA	TACCAGGGTA	CTGGGGTGCA	ACTCTTTCTT	ATGATAGGTC	1560
	ATTAGTGCTT	TAAGCAAAAG	ATATTAGCAG	CTTTGACTGC	AGCATTAGCA	ATTAGGRAAA	1620
5	AAAAAAAWA	AAAACTCGAG	GGGGGGCCCG	GTTACCCAAT	TCGCCCT		1667

10 (2) INFORMATION FOR SEQ ID NO: 31:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1408 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
20	ATTACACACC TGAGCACTGT GCCTGGCAAG ACCTGTCTTA ATAGATTAGA GAACCACTGA	60
	TAGATGGTCA GCTTTCTGTA GCAGTGAGAA CCCTACATTT CAAATGTGGA TAGCACCTTT	120
25	GCGGGGAAAC ATCACTTGGC ACATCTGCAT TCTTTTTTGA CACAGGGTCT CACTCTGTTG	180
25	CCCAGGCTAG AGTGCATGGC ACGATCTTAG CTCACTGCAA CCTCCACCTC CCAAGTTCAA	240
	GCGATTCTTC TGCCTCAGCC TCCTGAGCAG CTGGGATCAC AGACATGCGC TACCATGCCC	300
30	AGCTAATTTT TIGTATTITT TGTKTGTTTG TTTTTGTTTK TAAGTAGAGA CGGGCTTTCA	360
	CCACGTTGGS CAGGCAGGTC TCGAACTCCT GAMCTCAGGT GATCCACCCA CATCTGCGTT	420
25	CCAATATCTT TCTCAACATA ATGATAGCCG TAATTAATAT TTTCCAGTAC ATTTTTATGC	480
35	CTTTACACAC GAGAGTGGTA GACAGACACA AACCCAGATC TGTCTGACTC CAAAGCCCGT	540
	TTGTCATCAT TCCTTTTACG GTATCCTATA GTGGTATCCT TTACAGAAAG ACAGCTTTTA	600
40	CCCAACAAAG ACTTAACTTC CCAGGATGCC AGAAGGACAA AGCGGGATTG CTTTTAAGRA	660
	GRAAGTTATC AAGAMCTTAT TTTATAAATG AGATTAGATA GGGAAAGGCA ATTTATCTTT	720
45	ATTAAAAACT GAAAAGGCCA GCATAGGGAA GGAGGTCCTT CGGTGGTCTT TTTCAGGGAA	7 80
45	ATACTTCAGT TGCTTTTATT AGAAACAGAT AGTACCTAAG GTTTTGAGGT AGGWACAGCT	840
	TAAGGCATGC TAATGKTCAT GGGTCCTTCC ATAGTCATTT TKGTATTTTG GTTWACATTT	900
50	GAGCAATAGG CAGCCCTTCA CTGCTGCTGG AYTCATTCCT GCCAYTATTA CAGGTGACAG	960
	AGGAGACAGG AGGTATGTCT TTTCTATTTT TAWACATGCT TTATATTTAA CACAAGCTCT	1020
	TGGGTATCTT AGATAAACAG AAGTTGCCTA GCACTCCTTT TAGTGCATTG AACCCTTTAA	1080
55	CATTTAAGCA AAATAATAAA CAGTCTTTTG AGGTTCCTTA ACAATGAAAC GTGTTCGAGT	1140
	GGCAGCAGCG GAATCCATGC YTCTTCTCCT GGAGTGTGCA AKAGTCCGTG GTCCTGAGTA	1200
60	TCTCACACAG ATGTGGCATT TTATGTGTGA TGCTCTAATT AAGGCCATTG GTACAGAACC	1260

AGATTCAGAC	GTCCTCTCAG	AAATAATGCA	TTCTTTTGCA	AAGGTGAATA	TPPITCICIT	1320
AAAAAATATG	TATAAGGTGG	TATGTTCATT	TATTAGTCTT	GCTAAAAAA	AAAAAAA	1380
ACTINGAGGG	GGGGNCCGGT	ACCCAATT				1408

15

5

(2) INFORMATION FOR SEQ ID NO: 32:

(i) SEQUENCE CHAFACTERISTICS:

(A) LENGTH: 2031 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

20 AGGATATGCA TGATTCTTAA CCAGGCTATA TGTTAAAAAA AAATTGGAAA ATGCAATACA 60 ITTTTTACTA TACAAACTAC AGAATGAGTA TGCAAGTTTT ATTTATCAAA ATGTAATGGA 120 TITTTAAAGG CIGAGAAATT TICCITATAC CIACCITITC AGITATIITA ATTATACCAA 180 25 ATTATCAACT AGAATAGCTT CATCCATATG AAATATAAAA TGAAGAGACA CCTAGGCTCT 240 ATCAGGCTTA GGATTCTTTG AACTTATTTC CACTTAATT TCTCAGTGGA AGTTAAGAGG 300 30 GGTGAGAAAA CAAAGAAGGG GAAAAACTGA CAACTAACAA AACCAGCACC ACATCGCTAG 360 GTGGTGCTTA CTAATTACCT TCTCAGGATT TTCCTCAGAT TGAAAAGCTT ATGAGGATTT 420 CTTGGGAGTC TTAATAACCT GCCTGTTAGT ACAGAGCTTT CCTGATGATA TTTACTCTTG 480 35 AGCACATGTG GTTGTAAAAC CTTAACTTTC TTTCTCCAGG AGGGTGGTGA TAGAAACAGA 540 TGGTAGTATT TATGAACTGA TGTTCTCGTG AAATGTTGAG GGTGGGGAGA AAAGACTTTA 600 40 AGGGAGGAGA GCCATCTATT TIGTTCCTAA AGCCACCTCT CAGCAGAATC GTCATGTTTT 660 TOTGATGCAC CGCTCTGCTT CATGCCCAAG ATGACTTGCG AGGCAATCTC AGGAGCTGTG 720 GACTTAACCR TTGCAAAGCA CACTGTCTTT CTCAGCGTTC TCTGCAAGTC AGTAGGTGTT 780 45 AGTATGGTTG CAAAGTTCAC TGTCTCAGCA AAGTTGAACT GGGCTACCTC TCTACAGCTG 840 TITCCTCAGA GGGAAAAATC TIGAGACCAG ATGGTGGAGC TCTGGAGTCA GAGGAAATGG 900 50 GIGICTICAG CACAAAGCTG CIGCTITTAC TICAGCCACT TCTGACATIT TTACATACCG 960 AGCCTGAGAT TRIGTGATTA TCTCAAATCA AATCACTTTG ATGGAGATAA ATAATCAAAA 1020 CTGTTTEATA GTCATTGATT TGGTGAGAAC AGTAATGGAA AATGGTGTTG AAGGACTTCT 1080 55 CATTITIGGA GCTPTCCTTC CAGAGTCCTG GCTGATTGGT GTTCGCTGTT CATCTGAGCC 1140 CCCAAAAGCA TTATTACTGA TACTTGCACA CAGTCAAAAG CGCAGACTGG ATGGATGGTC 1200 60

	TTTTATAAGG CATTTAAG	GG TACACTACTG	TGTTTCACTG	ACCATACATT	TTTCTTAGCC	1260
	CCTCAAGTAA TATAGCAC	ag agttatgaat	GACAATTCCC	CTAACCATTC	CTCTTCATAT	1320
5	CTGCCTCTTC CCCTTACC	AT CGTAATTCTC	CAAACTGGTC	ATAAAGGCAC	TCTGTGAAGA	1380
	TATTGGGGAC TGACATCT	TA AGCTCTCACC	TGGCTGCAGT	AGGAAAGGCC	AAACTGACGA	1440
10	CAAAAAAAA ATTCTTTA	TA AAGATGATAT	GGTAACATGT	ATCTTTGCCC	TGGGTCTGGG	. 1500
10	TGGGTCCAGT CAGTCTCA	GA TTTACAAGCA	TTTAGGAGCC	TAGGTAAAAG	CTGCTAGTAT	1560
	TCTTTTAAAA GTTACATT	TA TGACTTGCAA	TGATAGAAAA	CTCCTTCCAA	TTAAATGGCA	1620
15	TTTTATAATA TTATGTGT	GT ACTTCACAGI	GTTAAAAATA	CCCTCATACG	TTATTGCATT	1680
	TGATCTTCAC AGAAAGTG	CA TTTTAACCAG	TACTCTGGGT	GCAATAAATA	ATATGTAGAA	1740
20	ATTTAAGTCC TCCAATTC	CA GCATATCCAG	G TGAGTTTTGA	CAGTGTGTT	ATGTGGAATG	1800
20	TTTAAGGATA TACAATTO	TA CTTTATATA	ATTGGTTCTT	GTTCTTCTTA	AATGTGACAT	1860
	GAAATAATTG TGCTGCTA	CA TTATACTGG	A AATTAACAGG	GGAAAAGGGA	AGAGCTCTTG	1920
25	GCTCCCTTGA GGTTCTGC	TA GTGGTGTTAC	GAGTGGTTAC	AACTGAGCTT	TTAGTAACCA	1980
	TTTAACCGTA TGTAAACT	TG GTTTCTAAT	TAAAAAAAA 1	TICITIITCC	: A	2033
20						

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 971 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGCGTCGGAA CTCGGCCGCG GGACATCCAC GGGGCGCGAG TGACACGCGG GAGGGAGAGC 60 AGTGTTCTGC TGGAGCCGAT GCCAAAAACC ATGCATTTCT TATTCAGATT CATTGTTTTC 120 TTTTATCTGT GGGGCCTTTT TACTGCTCAG AGACAAAAGA AAGAGGAGAG CACCGAAGAA 180 GTGAAAATAG AAGTTTTGCA TCGTCCAGAA AACTGCTCTA AGACAAGCAA GAAGGGAGAC 240 CTACTAAATG CCCATTATGA CGGCTACCTG GCTAAAGACG GCTCGAAATT CTACTGCAGC 300 CGGACACAAA ATGAAGGCCA CCCCAAATGG TTTGTTCTTG GTGTTGGGCA AGTCATAAAA 360 GGCCTAGACA TTGCTATGAC AGATATGTGC CCTGGAGAAA AGCGAAAAGT AGTTATACCC 420 CCTTCATTTG CATACGGAAA GGAAGGCTAT GCAGAAGGCA AGATTCCACC GGATGCTACA 480 TIGATITITG AGATTGAACT TTATGCTGTG ACCAAAGGAC CACGGAGCAT TGAGACATTT 540 AAACAAATAG ACATGGACAA TGACAGGCAG CTCTCTAAAG CCGAGATAAA CCTCTACTTG 600

WO 98/54963

294

PCT/US98/11422

960

	CAAAGGGAAT TTGAAAAAGA TGAGAAGCCA CGTGACAAGT CATATCAGGA TGCAGTTTTA	660
٠ .	GAAGATATTT TTAAGAAGAA TGACCATGAT GGTGATGGCT TCATTTCTCC CAAGGAATAC	720
5	AATGTATACC AACACGATGA ACTATAGCAT ATTTGTATTT CTACTTTTTT TTTTTAGCTA	780
	TTTACTGTAC TTTATGTATA AAACAAAGTC ACTTTTCTCC AAGTTGTATT TGCTATTTTT	840
10	CCCCTATGAG AAGATATTTT GATCTCCCCA ATACATTGAT TTTGGTATAA TAAATGTGAG	900
	GCTGTTTTGC AAACTTAAAA AAAAAWWAAA AAAACTSGAG GGGGCCCGT ACCCAANTCG	960
15	CCGNATATGA T	971
20	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 1792 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
20	GAACCCCCTT TCTCCTGGTA AAGGGTAAGG GGGGGGATAA TGTTTACCAC AGGTACGAAA	60
30	TAGTCACTTT AACATTGAGA CCTCTGCCTC ATTGAATTCA GGTTTTTTAA GTACTTGAAA	120
	CTCTTCAGAT TCTCCTTATT TTAGTTTCTT TTTACATTTA TGAAGTAGAA AGCATTGTTT	180
35	TGTAAACTGT TTTGAAAATA AATAGCCTAG TCTCTTATCC TCTTTAGCGT GGATTAAAGG	240
	TGAAGTTCTG CAAATGGGAG AGTGTTCACA GTAGATAGCT CAGATTGATT GAACACATTT	300
40	GAGGAAGAGA CTCCTGCATG AGATACCAGC ATTTTTACAA ATACTTTTTA TGTACATTCT	360
70	TTATTTTGTC ATTITGTCAA CCCTCTCCCC AAGCACATCT TCTTTCCTTT TACTATGTCT	420
	ATGTAGGGAA AAACAAAACA AAAAATTGCA CTTACGTTAC ACTCCCAAAA TGTGGGTAAT	480
45	CCGTGTCTTT CAAAAAACAT TTCTGTTTTT TGTTTTGTTT	540
	TGACAAGTTT GGGTGCTTGT GGCACGTATG TATGAAGCGG GAGGGGGATG ASAATTGCCT	600
50	GTCCTTCAGT ARGCTGTAAA AGTAATTTAC ATGTAAGTAA AAAGGGAAAA TAGAATAGAT	660
	GCCAAAGTCA TTTATTCAGT CCTTAGTTTT CTTATGTGGC ATTACTGCAT CTGCTAGTTA	720
	GTGAGAAAGC ACCCTCAGCT TTTACTGCTC CCCTCCCTGC CTGCCAACAC ACTTGATGTG	780
55		840
	TGTCAGTTA GAAATGGACT GGATAAAACT TACTTGGTTG TCATTATTTT ATCTCATTTG	900

TCCTGTTACA TGCCCTATGT TAAGATAATT ATATTGCCAC TAATAATCAA GATGCTAAAT

60

	GAGTATTACA	ACTGGCTAAT	ATCATTTTT	ATATAÇAAGG	GTATGTGTAT	ATTTGGAATT	1020
	GRTATGAGAA	ACTCATTTGT	ACCCATTIGA	GTGATATTGC	ACAACAAACA	CAGATAYCTA	1080
5	CAGACTCCGT	TTTCATTTTC	TCGTGTTCTT	TATGATAATG	ATCTTTGTAG	ATTGGTTATT	1140
	TCTGTACTTT	ATCTGTAATA	AACTTTGTAG	ATCCTGTGAA	CCATTACTTT	GCCTAAATCA	1200
10	CTTGAGACTT	GAGTCTTTAA	TAACAAAGCA	TCAATATTCA	CTAAAGTCAA	TCTCTTTTGA	- 1260
10	GTTTCTGTGA	CTTGGCTAGA	AGCTCTTGAC	ACTAAGGGAT	TAGTGTTAAT	TTTCCCTGGG	1320
	GGTGTTCCAC	TAGGGCATTA	CTGTATAATG	ACTTGATGTT	GCCACATAGA	CTTCAAGATA	1380
15	TATAATATTT	TGAGGATTTT	GTTGATTGGC	CTATGTTTTA	TTGCATAGTG	TGAAACGTGT	1440
	AAAGCTTGGT	TAACCTGTAT	ATAGATAGCT	TATTGTTGAC	TAGTTATAGT	GTATTTAGGG	1500
20	TTGCCTGTAA	TATTTAAGCT	TCTTTACTGA	TGTGTGTGCT	GGTAGGAACA	TATAATTTT	1560
20	GTACATTATA	TTTACTGAGA	TGTTGCCTTT	TTTATTTAC	AAATACTTTG	GAATTCCAAT	1620
	GIGITTTTT	CTTCCGTGAG	GATTAATTTG	GAAAGGTTTT	TAATGACATT	CCACTGATTT	1680
25	CAGATTTTGC	TTGAGATTGA	CTTCAATAAA	TTGTCCTGTA	TGTTCCAAAA	AAAATTAAA	1740
	AAACTCGAGG	GGGCCCGGT	ACCCAANNCC	CCGGATATGA	TCGTAAACAA	TC	1792
20							

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 35:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 896 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

60	CYTGCYTCYT	TAGGTTGCCC	GCAGCACCAG	GAGTCCTTGG	AACAGGACCT	AGTTGNANAC
120	GAGYTYTTCG	TTCGCAGACA	TCGGGATGCC	TYTGCCCCTY	CYTGCCACYT	GCCAGCYTCA
180	CCTTTTTGTC	CCTTGGCCTC	TTYTCTTGCC	TTGCTTTTGG	TGGCCAYTCT	CTGCCTGTGG
240	CAAGCACGCC	CTTTCCAGGA	CCCTCCCTTC	CTGCCCTTTT	CTTGTGTGAC	CCCGGGCAGC
300	CCTAGAGGCC	CCAGGTAAAG	GAAGAGGCCT	GGAGCTGAAG	GGAAAAACAA	GAGGAGGTGC
360	CAGCCTCGMC	ACCTTCCAGG	CAGCAGCTCC	CGGACAGCTC	CCAGGTCAGC	AAAGAACTTT
420	GGGCGTTTCC	GGTGGCCAAG	GGGGAGGG	CTCCCCTTTC	GCTCCCAGCA	CGCCGGCTGC
480	ATTTGTTTCC	AAGCCATCCT	TTGACCAGTG	ATGTTAAGAA	GIGITIGIAC	TCTGCTTTTG
540	GAGATGGAGA	TTGGGAAAGG	AGGAGAGAGT	GARAGGGGAG	GACGGGGTGG	GGGGAACAAT
600	CTCTACCTGG	ATTTTCACAT	CCCAGATCTG	CCCTGCCCGG	GACATTGCAA	AGAACTCAAG

-	ACATTGAGCC TCCCAGGCAC CATGTTGAGG AGAGATGAAA ACCAGGGCGG TAGAACTTCA	660
_	GGGTGAAGGA CAGAGTCCTG GGTGGGGCAG CGGCTGCAGG GCGCACCAGA GAACCCAGCC	720
5	AGAGGGGTG TGAGTACCAG TGGTGTTGCT TCCACCCTGC AGCAGGTGGG ATGAGGTCTG	780
	TGTGTGTGT TGAACCATCA TTTTTTGATC ATCATGACCA ATGAAACATT GAAAAAAAA	840
10	AAAAAAACTG GAGGGGGCC CGTACCCAAN TCGCCGNATA GTGATCGTAA ACAATC	896
15	(2) INFORMATION FOR SEQ ID NO: 36:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 912 base pairs	
20	(A) LENGTH. 312 base parts (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
25	TCGACCCACG CGTCCGGTCA GCCAGTCGCA TCCAGCCATG ACAGCCTTCT GCTCCCTGCT	60
	CCTGCAAGCG CAGAGCCTCC TACCCAGGAC CATGGCAGCC CCCCAGGACA GCCTCAGACC	120
30	AGGGGAGGAA GACGAAGGGA TGCAGCTGCT ACAGACAAAG GACTCCATGG CCAAGGGAGC	180
50	TAGGCCCGGG GCCAKCCGCG GCAGGGCTCG CTGGGGTCTG GCCTACACGC TGCTGCACAA	240
	CCCAACCCTG CAGGTCTTCC GCAAGACGGC CCTGTTGGGT GCCAATGGTG CCCAGCCCTG	300
35	ARGGCAGGGA AKGTCAACCC ACCTGCCCAT CTGTGCTGAG GCATGTTCCT GCCTACCATC	360
	CTCCTCCCTC CCCGGCTCTC CTCCCAGCAT CACACCAGCC ATGCAGCCAG CAGGTCCTCC	420
40	GGATCACYGT GGTTKGGTGG AGGTCTGTCT GCACTGGGAG CCTCARGARG GCTCTGCTCC	480
40	ACCCACTTGG CTATGGGAGA GCCAGCAGGG GTTCTGGAGA AAAAAACTGG TGGGTTAGGG	540
	CCTTGGTCCA GGAGCCAGTT GAGCCAGGGC AGCCACATCC AGGCGTCTCC CTACCCTGGC	600
45	TCTGCCATCA GCCTTGAAGG GCCTCGATGA AGCCTTCTCT GGAACCACTC CAGCCCAGCT	660
	CCACCTCAGC CTTGGCCTTC ACGCTGTGGA AGCAGCCAAG GCACTTCCTC ACCCCYTCAG	720
50	CGCCACGGAC CTYTYTGGGG AGTGGCCGGA AAGCTCCCSG GCCTYTGGCC TGCAGGGCAG	780
50	CCCAAGTCAT GACTCAGACC AGGTCCCACA CTGAGCTGCC CACACTCGAG AGCCAGATAT	840
	TTTTGTAGTT TTTATKCCTT TGGCTATTAT GAAAGAGGTT AGTGTGTTCC CTGCAATAAA	900

55 CTTGTTCCTG AG

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1382 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

10	AATTCGGCAC GAGCGGAGGC GAGGGAAACT RAGGGCGAAA GTTGTGTGTC GTGTTGGCAG	60
	GAGGGCCTAG AAGGGAAAGA CTGTCTAGTG GGACAATGTC ATATTATAAA TTTGGAATGC	120
15	TGAATAGAAA ATTATAGATT TTGATATTGA AGGAAATGAA GCGAAGCYTA AATGAAAATT	180
13	CAGCTCGAAG TACAGCAGGC TGTTTGCCTG TTCCGTTGTT CAATCAGAAA AAGAGGAACA	240
	GACAGCCATT AACTTCTAAT CCACTTAAAG ATGATTCAGG TATCAGTACC CCTTCTGACA	300
20	ATTATGATTT TCCTCCTCTA CCTACAGATT GGGCCTGGGA AGCTGTGAAT CCAGAGTTKG	360
	CTCCTGTAAT GAAAACAGTG GACACCGGGC AAATACCACA TTCAGTTTCT CGTCCTCTGA	420
25	GAAGTCAAGA TYCTGTCTTT AACTCTATTC AATCAAATAC TGGAAGAAGC CAGGGTGGTT	480
23	GGAGCTACAG AGATGGTAAC AAAAATACCA GCTTGAAAAC TTGGRATAAA AATGATTTTA	540
	AGCCTCAATG TAAACGAACA AACTTAGTGG CAAATGATGG AAAAAATTCT TGTCCAATGA	600
30	GTTCGGGAGC TCAACAACAA AAACAATTAA GAACACCTGA ACCTCCTAAC TTATCTCGCA	660
	ACAAAGAAAC CGAGCTACTC AGACAAACAC ATTCATCAAA AATATCTGGC TGCACAATGA	720
35	GAGGGCTAGA CAAAAACAGT GCACTACAGA CACTTAAGCC CAATTTTCAA CAAAATCAAT	780
<i>J J</i>	ATAAGANACA AATGTTGGAT GATATTCCAG AAGACAACAC CCTGAAGGAA ACCTCATTGT	840
	ATCAGTTACA GTTTAAGGAA AAAGCTAGTT CTTTAAGAAT TATTTCTGCA GTTATTGAAA	900
40	GCATGAAGTA TTGGCGTGAA CATGCACAGA AAACTGTACT TCTTTTTGAA GTATTAGCTG	960
	TTCTTGATTC AGCTGTTACA CCTGGCCCAT ATTATTCGAA GACTTTTCTT ATGAGGGATG	1020
45	GGAAAAATAC TCTGCCTTGT GTCTTTTATG AAATCGATCG TGAACTTCCG AGACTGATTA	1080
-	GAGGCCGAGT TCATAGATGT GTTGGCAACT ATGACCAGAA AAAGAACATT TTCCAATGTG	1140
	TITCTGTCAG ACCGGCGTCT GTTTCTGAGC AAAAAACTTT CCAGGCATTT GTCAAAATTG	1200
50	CAGATGTTGA GATGCAGTAT TATATTAATG TGATGAATGA AACTTAAGTA GTGATAAAAG	1260
	GAAGTTTAGC ATAAATTATA GCAGTTTTCT GTTATTGCTT AATTTACCAT CTCCATAGTT	1320
55	TTATAGCTAC TATTGTATTT CACTTGTTGA ATTAAAGTAT TTGAATTCTT TTAAAAAAAA	1380
JJ	AA	1382

(2) INFORMATION	FOR	SEQ	ID	NO:	38:
-----------------	-----	-----	----	-----	-----

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 872 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

10 GGGCTACTTC AAAGCCCTGG GCCTTATTTC TTCAGGTAAA AAAATATAAA GTCAGATCTC 60 ATCCCGGCTG GCCATGCTGT TAGACCCTTT CATCCTTCTC TTCTGCCTCT TCTCAACAGC 120 TGCCCAGTCC TGTTTGGAAT TCATATACAT ACAGTTCTAA TACTGATGTA TTTACCCTCA 15 180 TAAGCCACTC AACCCAGAAT CTTATTTGAA TTATAATCCA GAAACATCAG GTGACGTGTG 240 AGACTACTGT ATGAGAAAGA GACAGTTTAA GGGTCAGTCC AATGGAAAAA AGAGTTCTCA 300 20 GAGCTITCTT TAGCTTATTC TCATCAAAGA GCTTTCTCTG CAGAAGGAAC CTACTGGTTC CTCCTTTCCA GTCCTAGAAA TCCTGACCTA GAGTGGCTTA ATCCTGCTAG CACCTCTCTC TCGCACTCTG GTGCCAAATG ACTCCAGGAA CTGGGCCATG ATGTGGTGGG AATGACCTTA 25 CCCTGAGCAT GTCACTCATG CATTGAACAA CAGCTAAGAG CAGAGCTTAG AGCTTAGAGC 540 TGGGCCCTGT AAGGTGAGAG GAATCACATC CTGCAGAAGT CTGTCCTGAG AAGCAGGTAC 600 30 TCCTGTCACA GCAGAGACAC AGTGGATACC TGAGTAACAA TAATACAAGA CAGGACGTGG 660 GMACAGCAAA AGATTTGGGT GTCAGAAGAR GCCGAGAACA CTTYCAGGCA GGAACATTCA 720 RARTTGTTCT TGGAGGAART AGGCMCSAAG GCTGGGCAGG ATTTCMCGGG GCAGAGATGG 35 780 AGCAAGCAAT TGAAATGAAA GCCATGGCAT GGGAAAAGGA GCACTGGCCA CAGGGAGTGC 840 AACGTTGTGA TGCAAGGCCA CTGTGGAGCC AT 872 40

(2) INFORMATION FOR SEQ ID NO: 39:

45

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 812 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

GGCAGAGGCT CACCCCAGCA GAGATTGAGG GGGAACCGTG ATGAAATTTT TAAGTATTCT 60

GCTTGATGAT AATAATTTTY CTCTTATGTT AATGITGGCT CCGTTTGGGT GTTTAGCTTT 120

TGAAAGGAGT ATGAAAATGC GGAATGGGGC TTTGGGGCTT GAGGAGGTGT GATCTCTAGT 180

60 GTTTAAAAAA TTTAATTGCA CAAATAGAAA TAATTCACCC ACATTATTGA ACCCCACTAA 240

	AGCATATCCT	TTTTGTCCAT	ATTCCTTTCC	TGCTGCCCTC	GTGTGTACCA	TTATTACTCA	300
5	GTTGTGATTT	GAGCTCGTTC	CACTTAAAGT	CATTCATAGA	TACTTTTGCG	TCGTGTTKGA	360
	ATATTTATTG	AATTTCTATT	CTGTGTTTTA	CTTAATTACT	TTATTATGGA	ACCTTTACAC	420
	AGGTCTGGTG	TACTTGTTCT	TTGAAAAGTC	TTATGTTGAC	CACCATCACT	GAGCATATAG	480
10	CTTTTTCCTT	ATTTCCTTGG	GATAATTACC	CGAAGTGGAA	ATACCGAATC	AAACTTCTGT	540
	TTTCTTTCTT	TGGCACTATT	ATATAAATTG	TTTTCCAAAC	AAGGCATGTT	TACAATAGAC	600
1.5	ATTTTTCAAA	ATCTGGGTAT	TTGTCCTATT	TTGCTCTCTG	TATGCAGAAT	TCAGCGGGGT	660
15	GCCAAGTCGT	TTTCTGTGTG	GGTTGAGAGA	CAGGCTGTGC	AGCCCACTGT	TGCATAGGAC	720
	TAACTACTAC	AAATCATGCT	GAGACCGAGC	TATTTTTGCT	GCTTAGARGC	TTTGCAGCCT	780
20	TGAGTAAGTT	TCGNCATCTG	GAAACNTTGN	AA I			812

25 (2) INFORMATION FOR SEQ ID NO: 40:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1515 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

35	AATTCGGCAC GAGGGAAATT CAAGCACTTT TCCTAAAAGA AGGGGGAATG GATGCTGAAA	60
	CAACACGINI CCCACAAAGG GAGCAGACAC TGGGCITGIG AAGCIGCCCC ATACCITCCC	120
40	CACAGAACTG GGGTCCGGCC TCCCTGACAT GCAGATTTCC ACCCAGAAGA CAGAGAAGGA	180
40	GCCAGTGGTC ATGGAATGGG CTGGGGTCAA AGACTGGGTG CCTGGGAGCT GAGGCAGCCA	240
	CCGTTTCAGC CTGGCCAGCC CTCTGGACCC CGAGGTTGGA CCCTACTGTG ACACACCTAC	300
45	CATGCGGACA CTCTTCAACC TCCTCTGGCT TGCCCTGGCC TGCAGCCCTG TTCACACTAC	360
	CCTGTCAAAG TCAGATGCCA AAAAAGCCGC CTCAAAGACG CTGCTGGAGA AGAGTCAGTT	420
	TTCAGATAAG CCGGTGCAAG ACCGGGGTTT GGTGGTGACG GACCTCAAAG CTGAGAGTGT	480
50	GGTTCTTGAG CATCGCAGCT ACTGCTCGGC AAAGGCCCCGG GACAGACACT TTGCTGGGGA	540
	TGTACTGGGC TATGTCACTC CATGGAACAG CCATGGCTAC GATGTCACCA AGGTCTTTGG	600
55	GAGCAAGITC ACACAGATCT CACCCGTCTG GCTGCAGCTG AAGAGACGTG GCCGTGAGAT	660
	GTTTGAGGTC ACGGGCCTCC ACGACGTGGA CCAAGGGTGG ATGCGAGCTG TCAGGAAGCA	720
60	TGCCAAGGGC CTGCACATAG TGCCTCGGCT CCTGTTTGAG GACTGGACTT ACGATGATTT	780

•	CCGGAACGTC	TTAGACAGTG	AGGATGAGAT	AGAGGAGCTG	AGCAAGACCG	TGGTCCAGGT	840
	GGCAAAGAAC	CAGCATTTCG	ATGGCTTCGT	GGTGGAGGTC	TGGAACCAGC	TGCTAAGCCA	900
5	GAAGCGCGTG	ACCGACCAGC	TGGGCATGTT	CACGCACAAG	GAGTTTGAGC	AGCTGGCCCC	960
	CGTGCTGGAT	GGTTTCAGCC	TCATGACCTA	CGACTACTCT	ACAGCGCATC	AGCCTGGCCC	1020
10	TAATGCACCC	CTGTCCTGGG	TTCGAGCCTG	CGTCCAGGTC	CTGGACCCGA	AGTCCAAGTG	1080
10	GCGAAGCAAA	ATCCTCCTGG	GGCTCAACTT	CTATGGTATG	GACTACGCGA	CCTCCAAGGA	1140
	TGCCCGTGAG	CCTGTTGTCG	GGGCCAGGTA	CATCCAGACA	CTGAAGGACC	ACAGGCCCCG	1200
15	GATGGTGTGG	GACAGCCAGG	YCTCAGAGCA	CTTCTTCGAG	TACAAGAAGA	GCCGCAGTGG	1260
	GAGGCACGTC	GTCTTCTACC	CAACCCTGAA	GTCCCTGCAG	GTGCGGCTGG	AGCTGGCCCG	1320
20	GGAGCTGGGC	GTTGGGGTCT	CTATCTGGGA	GCTGGGCCAG	GGCCTGGACT	ACTTCTACGA	1380
20	CCTGCTCTAG	GTGGGCATTG	CGCCTCCGC	GGTGGACGTG	TTCTTTTCTA	AGCCATGGAG	1440
	TGAGTGAGCA	GGTGTGAAAT	ACAGGCCTTC	ACTCCGTTAA	ааааааааа	AAAAAAAA	1500
25	ааааааааа	AAAAA					1515

30 (2) INFORMATION FOR SEQ ID NO: 41:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 704 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

40	AAGATGGTGG	CGCCCAGAGC	TTCGCTCTAT	GCTGCTCCCC	TGAGAGAGGC	GTTTCCATCA	60
	ACCAGTTTTG	CAAGGAGTTC	AATGAGAGGA	CAAAGGACAT	CAAGGAAGGC	ATTCCTCTGC	120
15	CTACCAAGAT	TTTAGTGAAG	CCTGACAGGA	CATTTGAAAT	TAAGATTGGA	CAGCCCACTG	180
45	TTTCCTACTT	CCTGAAGGCA	GCAGCTGGGA	TTGAAAAGGG	GCCCGGCAA	ACAGGGAAAG	240
	AGGTGGCAGG	CCTGGTGACC	TTGAAGCATG	TGTATGAGAT	TGCCCGCATC	AAAGCTCAGG	300
50	ATGAGGCATT	TGCCCTGCAG	GATGTACCCC	TGTCGTCTGT	TGTCCGCTCC	ATCATCGGGT	360
	CTGCCCGTTC	TCTGGGCATT	CGCGTGGTGA	AGGACCICAG	TTCAGAAGAG	CTTGCAGCTT	420
e e	TCCAGAAGGA	ACGAGCCATC	TTCCTGGCTG	CTCAGAAGGA	GGCAGATTTG	GCTGCCCAAG	480
55	AAGAAGCTGC	CAAGAAGTGA	CCCTTGCCCC	ACCAACTCCC	AGATTTCAAA	GGAGGTAGTT	540
	GCAAAAGCTG	TGCCCAAGGG	GAGGAAGGAG	GTCACACCAA	TATGATGATG	GTTTTCATGA	600
60	CTTTGAATGA	TATATTTTTG	TACATCTAGC	TGTATCGAGG	CATCAGGCCT	GAATAAACAT	660

704

5

10

(2) INFORMATION FOR SEQ ID NO: 42:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1094 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

	GGCAGCTTTC	TTACAAACCC	ATCCTTCTGA	AATGTTGCTT	CAAATTCATC	CTCTGCTCCC	60
20	CAGTCCCACT	ATTCCACACA	TACTGTTACT	GTTTCTTTAT	CCTACTTTCT	CAATTTTGGA	120
20	ACATAGTTGC	AGTTACTGCA	TTGAATACCT	GIGGGIIIGC	CIGITGITCI	GTCTGTCTCT	180
	GTGGTTCTTG	TAATANIGGA	TCCCAGAGAT	AAAATGGACA	GTTGTNATGC	ACAGTTAATT	240
25	CAGAAACTAG	ACCTTACTTG	CTGTGTGAAA	TACCAACTAA	ATTCTCAGTG	AACTCAGCTG	300
	ANCTITATCT	CCTTTTGTTT	CCCCAATTTA	TAATTTCAGT	TCAGGCCCAG	AAAGATGGAA	360
30	TCCCAGCTAA	GAAATACAAG	TTACACCCTG	TACTAGCAGC	CCATGTGTGC	ATGTTCTTTA	420
30	AGTGCTCTTG	CAGCTATGTC	ATTTATATTG	ATTTCCCTGT	ATTATTATAA	GCAAAGCAAA	480
	TTTGAGGAAA	AAAACCCATA	ATACCACACC	TCATTTTTT	CAAGTAATAG	GGTCATAAGT	540
35	CTCATYCTYC	ATATAATATG	TTGAGTATGC	AGTATATTAT	GTGTTAGGCT	CTGGANAGGC	600
	AGAGGTTAGA	TCATGTWACA	GATÇATATCK	GATTAGGCAG	ATAAACAGTA	TTTTAACCTT	660
40	TTCCTTATTA	TATGTAACTT	GCTTTCAGGT	TTTTTAATGT	TACTATTATG	TCTTTAATAT	720
40	ATTATCTTTA	TTTGTACTTT	TGTATACAGA	GTGATTTTCC	TTTTTTAAAA	AAAATTGTGT	780
	CTTTAGGATG	GATTCCAAAG	ATGTGGAATC	AGTAGGTTTA	AGGAATATGG	ATATTTTGGC	840
45	TGGCAAGGTG	GCTCACACCT	GTAATCCCAG	CACTTTGGGA	GGCTGAGGTG	GGTGGATCAC	900
	CTGAAGTCAG	GAGTTCGAGA	CCAGCCTGAC	CAACATGGCG	AAACCCTGTT	TNTACTAAAG	960
	ACACACWWAA	AATTRGCCAG	TGGTGGTGGC	ATGTGCTTGT	AGTCCCACTT	AGCTACTCGA	1020
50	GAGGCTGAGG	CAGGAGAATC	GCTTGAACCC	GGGAGGCAGA	GGTTGCAGTG	AGGCAAGATG	1080
	GCACCTCTAC	ACTC					1094

55

(2) INFORMATION FOR SEQ ID NO: 43:

60 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1321 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

5

/xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

	· X.2.7	المناهمين المناهمين	المامة والمعاولية.	. DLQ ID NO	, 43.		
	TGGCTTAGGC	CATCACCCTT	CCCTTGGCTG	GAACTACTGG	ACAGACCCTT	TTGAGATGTG	. 60
10	CCIGIGGGGG	TGTGGAGATG	TGTGTAGTGG	TCTTAGCTCT	TTGTTGAGCT	TGTGTGTGTG	120
	TTGTGTAGTC	TEASCTGTAT	GCTGAAATTG	GCCTGTGTT	GGAGGGCTTC	TTAGCTCTTT	180
15	GGTGAGATTG	TATITCTATG	TGTTTGTATC	ASCTGAATGT	TGCTGGAAAT	AAAACCTTGG	240
15	TTTGTMAAGG	CICKTITITG	TGGGAAGTAA	GTAGGGGAAA	AGGTCTTTGA	GGGTTCCTAG	300
	GCTCCTTTGT	ACAACAGGAA	AATGCCTCAA	AGCCTTGCTT	CCCAGCAACC	TGGGGCTGGT	360
20	TCCCAGTGCC	TGGTCCTGCC	CCTTCCTGGT	TCTTATCTCA	AGGCAGAGCT	TCTGAATTTC	420
	AGGCCTTCAT	TCCAGAGCCC	TCTTGTGGCC	AGGCCTTCCT	TTGCTGGAGG	AAGGTACACA	480
25	GGGTGAAGCT	GATGCTGTAC	TTGGGGGATC	TCCTTGGCCT	GTTCCACCAA	GTGAGAGAAG	540
25	GTACTTACTC	TTGTACCTCC	TGTTCAGCCA	GGTGCATTAA	CAGACCTCCC	TACAGCTGTA	600
	GGAACTACTG	TCCCAGASCT	GYCCCYYCCC	GATTTCTCAG	GTCATTTGGA	GAACAAGTGC	660
30	TTTAGTAGTA	GTTTAAAGTA	GTAACTGCTA	CTGTATTTAG	TGGGGTGGAA	TTCAGAAGAA	720
	ATTTGAAGAC	CAGATCATGG	GTGGTCTGCA	TGTGAATGAA	CAGGAATGAG	CCGGACAGCC	780
35	TGGCTGTCAT	TGCTTTCTTC	CTCCCCATTT	GGACCCTTCT	CTGCCCTTAC	ATTTTTGTTT	840
22	CTCCATCTAC	CACCATCCAC	CAGTCTATTT	ATTAACTTAG	CAAGAGGACA	AGTAAAGGGC	900
	CCTCTTGGCT	TCATTTTGCT	TOTTTCTTTC	TGTGGAGGAT	ATACTAAGTG	CGACTTTGCC	960
40	CTATCCTATT	TGGAAATCCC	TAACAGAATT	GAGTTTTCTA	TTAAGGATCC	AAAAAGAAAA	1020
	ACAAAATGCT	AATGAAGCCA	TCAGTCAAGG	GTCACATGCC	AATAAACAAT	AAATTTTCCA	1080
15	GAAGAAATGA	AATCCAACTA	GACAAATAAA	GTAGAGCTTA	TGAAATGGTT	CAGTAAGGAT	1140
45	GAGITTGTTG	TTTTTTGTTT	TGITTIGTIT	TGKTTTTTTA	AAGACGGAGT	CTCGCTCTGT	1200
-	CACTCAGGCT	GGAGTGCAGT	GGTATGATCT	TGGCTCACTG	TAACCTCCGC	CTCCCGGGTT	1260
50	CAAGCCATTC	TCCTGCCTCA	GTCTCCTGAG	TAGCTGGGAT	TACAGGTGCG	TGCCACCATG	1320
	CCTGGCTAAT	TTTIGTGTTT	TTAGTAGAGA	CAGGGTTTCA	CCATGTTGGT	CGGGCTGGTC	1380
<i></i>	TCAAACTCCT	GACCTCTTGA	TCCGCCTGCC	TTGGCCTCCC	AAAGTGATGG	GATTACAGAT	1440
55	GIGAGCCACC	CGTSÇCCTAG	CCAAGGATGA	GATTTTTAAA	GTATGTTTCA	GTTCTGTGTC	1500
	ATGGTTGGAA	GACAGAGTAG	GAAGGATATG	GAAAAGGTCA	TGGGGAAGCA	GAGGTGATTC	1560
60	ATGGCTCTGT	GAATTTGAGG	TGAATGGTTC	CTTATTGTCT	AGGCCACTTG	TGAAGAATAT	1620

GAGTCAGTTA TTGCCAGCC	TGGAATTTAC	TTCTCTAGCT	TACAATGGAC	CTTTTGAACT	1680
GGAAAACACC TTGTCTGCA	r tcactttaaa	ATGTCAAAAC	TAATTTTTAT	AATAAATGTT	1740
TATTTCACA TTGAAAAAA	TTTAAAAAA A	AAAAACYCGG	GGGGGGCCCS	GWACCCCATT	1800
NGCCCCTAAG GGGGGGGT	тт				1821

10

5

(2) INFORMATION FOR SEQ ID NO: 44:

(i) SEQUENCE CHARACTERISTICS: 15

(A) LENGTH: 1024 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

	GGGGCACAGT TGAAGAAGCG ACCGAGGGAC TGGGAGTCGT TAGTGAGGAT GACGCGGCAT	60
25	GGCAAGAACT GCACCGCAGG GCCGTCTACA CCTACCACGA GAAGAAGAAG GACACAGCGG	120
	CCTCGGGCTA TGGGACCCAG AACATTCGAC TGAGCCGGGA TGCCGTGAAG GACTTCGACT	180
30	GCTGTTGTCT CTCCCTGCAG CCTTGCCACG ATCCTGTTGT CACCCCAGAT GGCTACCTGT	240
30	ATGAGCGTGA GGCCATCCTG GAGTACATTC TGCACCAGAA GAAGGAGATT GCCCGGCAGA	300
	TGAAGGCCTA CGAGAAGCAG CGGGGCACCC GGCGCGAGGA GCAGAAGGAG CTTCAGCGGG	360
35	CGGCCTCGCA GGACCATGTG CGGGGCTTCC TGGAGAAGGA GTCGGCTATC GTGAGCCGGC	420
	CCCTCAACCC TTTCACAGCC AAGGCCCTCT CGGGCACCAG CCCAGATGAT GTCCAACCTG	480
40	GGCCCAGTGT GGGTCCTCCA AGTAAGGACA AGGACAAAGT GCTGCCCAGC TTCTGGATCC	540
40	CGTCGCTGAC GCCCGAAGCC AAGGCCACCA AGCTGGAGAA GCCGTCCCGC ACGGTGACCT	600
	GCCCCATGTC AGGGAAGCCC CTGCGCATGT CGGACCTGAC GCCCGTGCAC TTCACACCGC	660
45	TAGACAGCTC CGTGGACCGC GTGGGGCTCA TCACCCGCAG CGAGCGCTAC GTGTGTGCCG	720
	TGACCCGCGA CAGCCTGAGC AACGCCACCC CCTGCGCTGT GCTGCGGCCC TCTGGGGCTG	780
	TGGTCACCCT CGAATGCGTG GAGAAGCTGA TTCGGAAGGA CATGGTGGAC CCTGTGACTG	840
50	GAGACAAACT CACAGACCGC GACATCATCG TGCTGCAGCG GGGCGGTACC GSTTCGCGGG	900
	CTCCGGAGTG AAGCTGCAAG CGGAGAAATC ACGGCCGGTG ATGCAGGCCT GAGTGTGTGC	960
55	GGGAGACCAA ATAAACCGGC TTGGGTGCGC AAAAAAAAAA	1020
	AAAA	1024

NO: 45:

(2)	INFORMATION	FOR	SEQ	ID	NO:	45:
-----	-------------	-----	-----	----	-----	-----

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 983 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
10	(xi) SEQUENCE DESCRIPTION: SEQ ID

CGACACGGCT GCGAGAAGAC GACAGAAGGG CCCGACCGCG AGCCGTCCAG GTCTCAGTGC 60 TGTGCCCCCC CCAGAGCCTA GAGGATGTTT CATGGGATCC CAGCCACGCC GGGCATAGGA 120 15 180 AGGGAGAAGT ACGACAACAT GGCAGAGCTG TTTGCCGTGG TGAAGACAAT GCAAGCCCTG 240 GAGAAGGCCT ACATCAAGGA CTGTGTCTCC CCCAGCGAGT ACACTGCAGC CTGCTCCCGG 300 20 CTCCTGGTCC AATACAAAGC TGCCTTCAGG CAGGTCCAGG GCTCAGAAAT CAGCTCTATT 360 GACGAATTCT GCCGCAAGTT CCGCCTGGAC TGCCCGCTGG CCATGGAGCG GATCAAGGAG 420 25 GACCGGCCCA TCACCATCAA GGACGACAAG GGCAACCTCA ACCGCTGCAT CGCAGACGTG 480 GTCTCGCTCT TCATCACGGT CATGGACAAG CTGCGCCTGG AGATCCGCGC CATGGATGAG 540 ATCCAGCCCG ACCTGCGAGA GCTGATGGAG ACCATGCACC GCATGAGCCA CCTCCCACCC 600 30 GACTITGAGG GCCGCCAGAC GGTCAGCCAG TGGCTGCAGA CCCTGAGCGG CATGTCGGCG 660 720 TCAGATGAGC TGGACGACTC ACAGGTGCGT CAGATGCTGT TCGACCTGGA GTCAGCCTAC 35 AACGCCTTCA ACCGCTTCCT GCATGCCTGA GCCCGGGGCA CTAGCCCTTG CACAGAAGGG 780 CAGAGTOTGA GGCGATGGOT COTGGTCCCC TGTCCGCCAC ACAGGCCGTG GTCATCCACA 840 CAACTCACTG TCTGCAGCTG CCTGTCTGGT GTCTGTCTTT GGTGTCAGAA CTTTTGGGCC 900 40 960 983 KGSGGCCGGT CCCCANTCCC CCC

(2) INFORMATION FOR SEQ ID NO: 46:

50

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2421 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

CCGGCTGATC GCTGCCGCTC CGCCAATACA ATAGAGCCAK CCACTACCAG CAGCCTGGCC

	CTCTTCCTCC TTCTCCAGAG AGACCAATCC AGCCGAACTC GGGGTTTGCC TGAGGAGAAG	120
	GAGGAAGTGA CCATGGACAC AAGTGAAAAC AGACCTGAAA ATGATGTTCC AGAACCTCCC	180
5	ATGCCTATTG CAGACCAAGT CAGCAATGAT GACCGCCCGG AGGGCAGTGT TGAAGATGAG	240
	GAGAAGAAAG AGAGCTCGCT GCCCAAATCA TTCAAGAGGA AGATCTCCGT TGTCTCAGCT	300
10	ACCAAGGGG TGCCAGCTGG AAACAGTGAC ACAGAGGGGG GCCAGCCTGG TCGGAAACGA	- 360
10	CGCTGGGGAG CCAGCACAGC CACCACACAG AAGAAACCTT CCATCAGTAT CACCACTGAA	420
	TCACTAAAGA GCCTCATCCC CGACATCAAA CCCCTGGCGG GGCAGGAGGC TGTTGTGGAT	480
15	CTTCATGCTG ATGACTCTCG CATCTCTGAG GATGAGACAG AGCGTAATGG CGATGATGGG	540
	ACCCATGACA AGGGGCTGAA AATATGCCGG ACAGTCACTC AGGTAGTACC TGCAGAGGGC	600
20	CAGGAGAATG GGCAGAGGGA AGAAGAGGAA GAAGAGAAGG AACCTGAAGC AGAACCTCCT	660
20	GTACCTCCCC AGGTGTCAGT AGAGGTGGCC TTGCCCCCAC CTGCAGAGCA TGAAGTAAAG	720
	AAAGTGACTT TAGGAGATAC CTTAACTCGA CGTTCCATTA GCCAGCAGAA GTCCGGAGTT	780
25	TCCATTACCA TTGATGACCC AGTCCGAACT GCCCAGGTGC CCTCCCCACC CCGGGGCAAG	840
	ATTAGCAACA TIGTCCATAT CICCAATTIG GTCCGTCCTT TCACTTTAGG CCAGCTAAAG	900
30	GAGTTGTTGG GGCGCACAGG AACCTTGGTG GAAGAGGCCT TCTGGATTGA CAAGATCAAA	960
30	TCTCATTGCT TTGTAACGTA CTCAACAGTA GAGGAAGCTG TTGCCACCCG CACAGCTCTG	1020
	CACGGGGTCA AATGGCCCCA GTCCAATCCC AAATTCCTTT GTGCTGACTA TGCCGAGCAA	1080
35	GATGAGCTGG ATTATCACCG AGGCCTCTTG GTGGACCGTC CCTCTGAAAC TAAGACAGAG	1140
	GAGCAGGGAA TACCACGGCC CCTGCACCCC CCACCCCCAC CCCCGGTCCA GCCACCACAG	1200
40	CACCCCGGG CAGAGCAGCG GGAGCAGGAA CGGGCAGTGC GGGAACAGTG GGCAGAACGG	1260
70	GAACGGGAAA TGGAGCGGCG GGAGCGGACT CGATCAGAGC GTGAATGGGA TCGGGACAAA	1320
	GTTCGAGAAG GGCCCCGTTC CCGATCAAGG TCCCGTRACC GCCGCCGCAA GGAACGTGCG	1380
45	AAGTCTAAAG AAAAGAAGAG TGAGAAGAAA GAGAAAGCCC AGGAGGAACC ACCTGCCAAG	1440
	CTGCTGGATG ACCTTTTCCG AAAGACCAAG GCAGCTCCCT GCATCTATTG GCTCCCACTG	1500
50	ACTGACAGCC AGATCGTTCA GAAAGAGGCA GAGCGGGCCG AACGGGCCAA GGAGCGGGAG	1560
30	AAGCGGCGAA AGGAGCAAGA AGAAGAAGAG CAAAAGGAGC GGGAGAAGGA AGCCGAGCGG	1620
	GAACGGAACC GACAGCTGGA GCGAGAGAAA CGTCGGGAGC ACAGTCGGGA GAGGGACAGG	1680
55	GAGAGAGAGA GAGAAAGGGA GCGGGACAGG GGGGACCGAG ATCGGGATAG GGAAAGGGAC	1740
	CGAGAACGAG GCAGGGAAAG GGATCGCAGG GACACCAAGC GCCACAGCAG AAGCCGGAGT	1800
60	CGGAGCACAC CTGTGCGGGA CCGGGGTGGG CGCCGCTAGC TGGGAAAACA CTAGAGCTGC	1860

	AGGTACCAGC CACTCGGCCC CAGGGGGTTA TGGCCACAGA GGGATAGGCA CAGTCTCCAC	1920
	CACCCTGGAG CCAAGGGTCT TTCACATCAC CTATCCCTAC ATACATACCA AATGGAAAAG	1930
5	TGGCCATCCT TTTCCCCCCA AACACACCCC CTTAACCTAT CTCTTGGGAC TTAGCCCGAC	2340
5		2100
	CCTCCCTCTC ATTTCCCATT AAGTCTGAGA GGCAAGAGCT AGGTTAGGCA AGGAGGTGGT	
10	TGGCCAGAGA TGGGGAACAG CCAGGTGCCC CAGTCCTCTG ATTTTTCCTC CATCCTGCTT	2160
	ACCACCTCCC TGGGTACTTA CAGCCTTCTC TTGGGAACAG CCGGGGCCAG GACTGGGTCA	2220
	CCTATGAGCT GAATCAGCAT CTCCTCCTGA GTCCCAGGGC CCCTGCAGTT CCCAGTCTCT	2280
15	TCTGTCCTGC AGCCCTTGCC TCTTTCCCAC AGGTTCCACT TTATATCCAC CTTTTCCTTT	2340
	TGTTCAATTT TTATTTTTAT TTTTTTTATT ATTAAATGAT GTGGTCTATG GAAAAAAAA	2400
20	TAAAAATCTG ACTTAGTTTT A	2421
20		
25	(2) INFORMATION FOR SEQ ID NO: 47:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 840 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
25	CTCAAACTCC TGAGCTGAAG CGATCTACCT GCCTCAGCTA GGATTACAGG TGTGAGCCAC	50
35	CGCACCCAAC CTCAATAAGC KTATTTGATA AAAKATATGC AAGCTCCCTT TATKCACTTT	120
	TCATTCAGAA TGTTTAGTAA TTTGTATTGT TTTTCAGATT TTCAGCCCAA TATATCTCCY	180
40	TGCCCACTGT GTCACTGTAT TCTACCTAWA CATCATCACG TGTTTCTGCT ATTGGCTGTA	240
	TGATGGAACA CTGCGGCTCA TTTTCCTGAA AACTGCCGAT AGTGCATAGA RTGCTGGGAT	300
	GGAAACCAGA ARCTITGAAT TCAAGCCTTG GTTCTGCCTT GTTTTTGCTT GGGTGGCCTT	360
45	GAGTCAGCCA CATACCTTTT AAAATCTCAA TTTATTAGAA ATTATTCCAA ATCAAAATCA	420
	AATGAGAAGG TATATACAAA AGTGCTTTAT CCCACAATAA ACTATTCAAG AGAGAGCAAA	1 80
50	GGAGAGGACA TITACTCAAC ACCTCCTAAA AGGCAGCCAG TGAAATTAGG CATTTTATTT	540
	AATCCTCCTG GCAACTCTGA GAGTAAAGCA TTATTAATCC CATTTTGGCT GTTTAAAGAA	500
	ATTATTTGCA CTAGATTCCA GCTGTAGTTT AGYTTCAGAA AAAAAAATCC TGAGATGTGA	560
55	ATTCACAGCT TTCTGGGTTT AAAGCCCAAG CTCTATCACA TCATGCTATT ATTGTTACAT	720
	TACTECTAGT TCTATGAAAA GAAATACTAA TTTATGAAAT ACATCTTATC CAAAAAAAAA	780

AAAAAAAAAC TGGGAGGGG GGCCCGTACC CAAATCGCCG GATAGTGATC GTAAACAATC

(2) INFORMATION FOR SEQ ID NO: 48: 5

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2432 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

GGCACGAGGC CCGGAACGCT GAGGAAGGGC CCGTCCCGCC TTCCCCGGCG CGCCATGGAG 60 15 CCCCGGGCGG TTGCAGAAGC CGTCGAGACG GGTGAGGAGG ATGTGATTAT GGAAGCTCTG CGGTCATACA ACCAGGAGCA CTCCCAGAGC TTCACGTTTG ATGATGCCCA ACAGGAGGAC 20 CGGAAGAGAC TGGCGGASTG CTGGTCTCCG TCCTGGAACA GGGCTTGCCA CCCTCCCACC GTGTCATCTG GCTGCAGAGT GTCCGAATCC TGTCCCGGGA CCGCAACTGC CTGGACCCGT 300 TCACCAGCCG CCAGAGCCTG CAGGCAYTAG CCTGYTATGY TGACATCTCT GTCTCTGAGG 25 GGTCCGTCCC AGAGTCCGCA GACATGGATG TTGTACTGGA GTCCCTCAAG TGCCTGTGCA ACCTCGTGCT CAGCAGCCCT GTGGCACAGA TGCTGGCAGC AGAGGCCCGC CTAGTGGTGA 480 30 AGCTCACAGA GCGTGTGGGG CTGTACCGTG AGAGGAGCTT CCCCCACGAT GTCCAGTTCT 540 TTGACTTGCG GCTCCTCTTC CTGCTAACGG CACTCCGCAC CGATGTGCGC CANAGCTGTT 600 TCAGGAGCTG AAAGGAGTGC GCCTGCTAAC TGACACACTG GAGCTGACGC TGGGGGTGAC 660 35 TCCTGAAGGG AACCCCCCAC CCACGCTCCT TCCTTCCCAA GAGACTGAGC GGGCCATGGA 720 GATCCTCAAA GTGCTCTTCA ACATCACCCT GGACTCCATC AAGGGGGAGG TGGACGAGGA 780 40 AGACGCTGCC CTTTACCGAC ACCTGGGGAC CCTTCTCCGG CACTGTGTGA TGATCGCTAC 840 900 TGCTGGAGAC CGCACAGAGG AGTTCCACGG CCACGCAGTA ASCCTCCTGG GGAACTTGCC CCTCAAGTGT CTGGATGTTC TCCTCACCCT GGAGCCACAT GGAGACTCCA CGGAGTTCAT 960 45 GGGAGTGAAT ATGGATGTGA TTCGTGCCCT CCTCATCTTC CTAGAGAAGC GTTTGCACAA 1020 GACACACAGG CTGAAGGAGA GTGTAGCTCC CGTGCTGAGC GTGCTGACTG AATGTGCCCG 1080 50 GATGCACCGC CCAGCCAGGA AGTTCCTGAA GGCCCAGGTG CTGCCCCCTC TGCGGGATGT 1140 GAGGACACGG CCTGAGGTTG GGGAGATGCT GCGGAACAAG CTTGTCCGCC TCATGACACA 1200 CCTGGACACA GATGTGAAGA GGGTGGCTGC CGAGTTCTTG TTTGTCCTGT GCTCTGAGAG 1260 55 TGTGCCCCGA TTCATCAAGT ACACAGGCTA TGGGAATGCT GCTGGCCTTC TGGCTGCCAG 1320 GGGCCTCATG GCAGGAGGCG GCCCGAGGGC AGTACTCAGA GGATGAGGAC ACAGACACAG 1380 60

	ATGAGTACAA	GGAAGCCAAA	GCCAGCATAA	ACCCTGTGAC	CGGGAGGGTG	GAGGAGAAGC	1440
	CGCCTAACCC	TATGGAGGGC	ATGACAGAGG	AGCAGAAGGA	GCACGAGGCC	ATGAAGCTGG	1500
5	TGACCATGTT	TGACAAGCTC	TCCAGGAACA	GAGTCATCCA	GCCAATGGGG	ATGAGTCCCC	1560
	GGGTCATCT	TACGTCCCTG	CAGGATGCCA	TGTGCGAGAC	TATGGAGCAG	CAGCTCTCCT	1620
10	CGGACCCTGA	CTCGGACCCT	GACTGAGGAT	GGCAGCTCTT	CTGCTCCCCC	ATCAGGACTG	1680
10	GTGCTGCTTC	CAGAGACTTC	CTTGGGGTTG	CAACCTGGGG	AAGCCACATC	CCACTGGATC	1740
	CACACCCGCC	CCCACTTCTC	CATCTTAGAA	ACCCCTTCTC	TTGACTCCCG	TTCTGTTCAT	1800
15	GATTTGCCTC	TGGTCCAGTT	TCTCATCTCT	GGACTGCAAC	GCTCTTCTTG	TGCTAGAACT	1860
	CAGGCTCAGC	CTCGAATTCC	ACAGACGAAG	TACTTTCTTT	TGTCTGCGCC	AAGAGGAATG	1920
20	TGTTCAGAAG	CTGCTGCCTG	AGGGCAGGGC	CTACCTGGGC	ACACAGAAGA	GCATATGGGA	1980
20	GGGCAGGGGT	TTGGGTGTGG	GTGCACACAA	AGCAAGCACC	ATCTGGGATT	GGCACACTGG	2040
	CAGAGCMANT	GTKTTGGGGT	ATGTGCTGCA	CTTCCCAGGG	AGAAAACCTG	TCAGAACTTT	2100
25	CCATACGAGT	ATATCAGAAC	ACACCCTTCC	AAGGTATGTA	TGCTCTGTTG	TTCCTGTCCT	2160
	GTCTTCACTG	AGCGCAGGGC	TGGAGGCCTC	TTAGACATTC	TCCTTGGTCC	TCGTTCAGCT	2220
30	GCCCACTGTA	GTATCCACAG	TGCCCGAGTT	CTCGCTGGTT	TTGGCAATTA	AACCTCCTTC	2280
30	CTACTGGTTT	AGACTACACT	TACAACAAGG	AAAATGCCCC	TCGTGTGACC	ATAGATTGAG	2340
	ATTTATACCA	CATACCACAC	ATAGCCACAG	AAACATCATC	TTGAAATAAA	GAAGAGTTTT	2400
35	GGACAAAAAA	AAAAAAAA	АААААААА	. AA			2432

40 (2) INFORMATION FOR SEQ ID NO: 49:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1742 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

50	GTCCTGCAGG	AGCTGCACGC	GCCGAGGTG	CGCANGAACA	AGGAGCAGCG	AGAAGAGATG	60
	TCGGGCTAAG	GGCCCGGSAC	GRGSGGCGCC	CATCCTGCGA	CGGAACACGT	TCGGGTTTTG	120
<i></i>	GTTTTGTTTC	GTTCACCTCT	GTCTAGATGC	AACTTTTGTT	CCTCCTCCCC	CACCCCAGCC	180
55	CCCAGCTTCA	TGCTTCTCTT	CCGCACTCAG	CCGCCCTGCC	CTGTCCTCGT	GGTGAGTCGC	240
	TGACCACGGC	TTCCCCTGCA	GGAGCCGCCG	GGCGTGRAGA	CGCGGTCCCT	CGGTGCAGAC	300
60	ACCAGGCCGG	GCGCGGCTGG	GTCCCCCGGG	GGCCCTGTGA	GAGAGGTGGY	GGTGACCGTG	360

	GTAAACCCAG GGCGGTGGCG TGGGATCRCG GGTCCTTACG CTGGGCTGTC TGGTCAGCAC	420
5	GTGCAGGTCA GGGCAGGTCC TCTGAGCCGG CGCCCCTGGC CAGCAGGCGA GGCTACAGTA	480
3	CCTGCTGTCT TTCCAGGGGG AAGGGGCTCC CCATGAGGRA GGGGCGACGG GGGAGGGGGG	540
	TGATGGTGCC TGGGAAGCCT GCKTGTGCAN CCGGTGCTTG TTGAACTGGC AGGCGGGTGG	. 600
10	GTGGGGGCTG CAGCTTTCCT TAATGTGGTT GCACAGGGGT CCTCTRAGAC CACCTGGCGT	660
	GAGGTGGACA CCCTGGGCCT TCCTGGAAGC CTGCAGTTGG GGGCCTGCCC TGAGTCTGCT	720
15	GGGGAGTGGG CATTCTCTGC CAGGGACCCA TGAGCAGGCT GCATGGTCTA GAGGTTGTGG	780
	GCAGCATGGA CAGTCCCCCA CTCAGAAGTG CAAGAGTTCC AAAGAGCCTC TGGCCCAGGC	840
	CCCTCCGTGG GACAGCCCCG CCGCCCCTCC CCACCAGGGC TTTGCAGATG TCCTTGAAAG	900
20	ACCCACCCTA GAGCCCTTTG GAGTGCTGGC CCCTCCTGTG CCCTCTGCCC TGGTGGAAGC	960
	GGCASCACAA GTCCTCCTCA GGGAGCCCCA AGGGGGATTT TKTGGGACCG CTGCCCACAG	1020
25	ATCCAGGTGT TGGAAGGGCA GCGGGTAAGG TTCCCAAGCC AGCCCCAACA CCCTTCCCAC	1080
	TTGGCACCCA GAGGGGGCTG TGGGTGGAGG CCTGACTCCA GGCCTCTCCT GCCCACACCC	1140
	TCTGGGCTGA GTTCCTTCTT TCCCTTGGAC GCCCAGTGCT GGCCTTGGAG GACGGTCAGC	1200
30	TGGAGGATGG CGGTGGGGGA GGCTGTCTTT GTACCACTGC AGCATCCCCC ACTTCTCCAC	1260
	GGAAGCCCCA TCCCAAAGCT GCTGCCTGGC CCCTTGCTGT AAAGTGTGAA GGGGGCGGCT	1320
35	GAGTTCTCTT AGGACCCAGA GCCAGGGCCC TCAACTTCCA TCCTGCGGGA GGCCTTGGCC	1380
20	GGGCACTGCC AGTGTCTTCC AGAGCCACAC CCAGGGACCA CGGGAGGATC CTGACCCCTG	1440
	CAGGGCTCAG GGGTCAGCAG GGACCCACTG CCCCATCTCC CTCTCCCCAC CAAGACAGCC	1500
40	CCAGAAGGAG CAGCCAGCTG GGATGGGAAC CCAAGGCTGT CCACATCTGG CTTTTGTGGG	1560
	ACTCAGAAAG GGAAGCAGAA CTGAGGGCTG GGATATTCCT CATGGTGGCA GCGCTCATAG	1620
45	CGAAAGCCTA CTGTAATATG CACCCATCTC ATCCACGTAG TAAAGTGAAC TTAAAAATTC	1680
. •	AATCAAATGA ACAATTAAAT AAACACCTGT GTGTTTAAGA AAAAAAAAAA	1740
	CG	1742

(2) INFORMATION FOR SEQ ID NO: 50:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1487 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

20

30

40

45

50

55

	GGCACGAGCC	TCCGCGAACT	GTGGAGTCGG	CGGAGGGCTG	GAATCAGCGT	GGGCTCCAGG	60
5	TCGCTGGCAG	CCGGGTGGCA	GAACTCTTCC	GAGGCTCCTT	GGGAAGAAGC	TACACCCGAG	120
	GGAGCCGGAT	GGGCCTCGAA	AACCTGGCCC	GCTCTGGTTC	TGTACCATTG	CAAGGGGAAC	180

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

CGTAAACTGA GCTTTTCTAA CGTGGGTTTC TGCCAAGTAC TTTTCCAGCT GCCCCCTTCC 240

CCCCAGCACA CAGGAGAGCC TCTGTGTAGC CAGCGCTTGA CAGTCGTTAG GTAGGTTGTA 300

CTGTGTAGGG AGGAGCTCAA GATCATGAAT GGTTGTCACA GGAGAAAGCG GTTGCATCTT 360

AGTTCACACT GGCACATTCT CAGGGCTGTG CAGATTATTT GCACTTTATT TCATAGGTGR 480
ATAAGTGCTT TTTAGCTTTC TTTGTATATT GAGTTGCTTT TGAATTGCTT CCCATATTTT 540

TATTTCATAC AAACTGAACA ATTGTGGCCC CTCTATTTTA TTTATAAAGG TTCAGTGTAT 600
CTTTGCCTGC CTACATCAAT CTGCAAGGGA GTTGCAGAAA GCCTCATGTT CATCGAGCCG 660

25 TGAGTCACAA CCAATTTCTA AGCTGTTATA ACAAAAAAGT GTTTGCTTTT TTTCACAAGT 720
AACTTTAAAA GTGTAGTTTA GAAAGAAAAC ATTTTCAATA AAAAGACACT ACATTAATCC 780

TGGATGCTTG CAAATCCTAA AATMTATTCC TCCTCTAGCG TTGCACAGCT CTGTGTTGTA 840
TACACAGACT AGCTTTAAAA TTTGTCACAT ACCACTTTAC CTTTACTTTT ATGTATCATT 900

CCCCCGACTT CCTTACTGCA GGTGTGGGCA AGAAAACTTT TCCTTTAACA CTTTTCAACA 960
GCGGGCATAA AATTCTGCAG CTGAGGTCTT GAAGAATGCA GATGGGTACA GTATGTGTTG 1020

35 GCGGGCATAA AATTCTGCAG CTGAGGTCTT GAAGAATGCA GATGGGTACA GTATGTGTTG 1020
GAGCTCACAG TGTGTATTGA CTAACCTAGT TCCTTTTTTG CTTTTTTTGG TATTGTCTTG 1080

TTAAAAGTGA CTCCCAGGTA GCAACTCTCT TTTTTAAGGG TGGGAACGAA AGGGACGTAG 1140
GAAGAATAGA TCTAGATTAT TTAACAGTCT TCGATAGAGT TTGAAAGCTT TCTTCTTCAT 1200

TCAATTTTGG GCAAAATACT GCCTCTGCAT TTGTTCATAA CAAAAAGATT AGATTAATAA 1260

GTAGCTTTTG TTGGTGGAAA TTACCAGCTC TATAAGTCAC CCTTGGTGGT TCATGGACCT 1320

CTGATTAGCT TGGGTTTTGC AGTCTCATTG CCACATGTAT ATGTGGAGCC AATGGCCTTT 1380
TGGTGCTCAG CTGTTTACGT CTGACTCCTT GACTTCTTTG GTACAGTGAT GGAGTCAGAT 1440

CTCATTAAGT GTGATTCTCC ATGGATATAA CCAGCCCCAA AAAAANG 1487

(2) INFORMATION FOR SEQ ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1328 base pairs

60 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

5	GGCACGAGCT CGTGCCGAAT TCGGCACGAG AGAAGATTTG AAGAAGCCAG ATCCAGCTTC	60
	CCTGCGGGCT GCTTCTTGTG GGGAAGGGAA AAAGAGGAAG GCCTGTAAGA ACTGCACCTG	120
10	TGGCCTTGCC GAAGAACTGG AAAAAGAGAA GTCAAGGGAA CAGATGAGCT CCCAACCCAA	180
	GTCAGCTTGT GGAAACTGCT ACCTGGGCGA TGCCTTCCGC TGTGCCAGCT GCCCCTACCT	240
	TGGGATGCCA GCCTTCAAAC CTGGGGAAAA GGTGCTTCTG AGTGATAGCA ATCTTCATGA	300
15	TGCCTAGGAG GTTCCTGACA TGGGACCCAT CTGCTCCTCC AGCCAACTCC TGTCCCTCAC	360
	ATCCCACCAT GGTGGCTCCT CCCACCTCCT CTGGATTTGT TCACTCTGAG ATCTGTTTGC	420
20	AGACTGGGTG CTTAGCAGAC AGAGTGAAGC TGGCTGGGGG GCACAGTGGT GTGTAGTGCT	480
	GCTGTGTATC AAAAGACCAA GGTATTATGG GACCTGGTTT CAGAATGGGA TGGGTTTCTT	540
25	CACCTCATGT TAAGAGAAGG GAGTGTGTCC TGAAGAAGCC CTTCTTCTGA TGTTAAAATG	600
23	CTGACCAGAA CGCTCTTGAG CCCAGGCATC GTTGAGCATT AACACTCTGT GACAGAGCTG	660
	CAGACCCCTG CCTTGAGTCT CATCTCAGCA ATGCTGCCAC CCTCTTGTCT TTCAGAGTTG	720
30	TTAGTTTACT CCATTCTTTG TGACACGAGT CAAGTGGCTC ACAACCTCCT CAGGGCACCA	780
	GAGGACTCAC TCACTGGTTG CTGTGATGAT ATCCAGTGTC CCTCTGCCCC CTTCCATCCC	840
35	CAACCACATT TGACTGTAGC ATTGCATCTG TGTCCTGTTG TCATTTATGT TAACCTTCAG	900
رد	GTATTAAACT TGCTGCATAT CTTGACATAT CTTGAGATTC TGCATGTCTT GTAAAGAGAG	960
	GGGATGTGCA TTTGTGTGTG ATGTTGGATA GTCATCCACG CTCAGTTTGG ACCATTGGAG	1020
40	GAACTTAGTG TCACGCACAA ATGGGGCTAT TCCTACGCTT AGAATAGGGC TTGTCTGCCC	1080
	ACTITAGAAG AGTCCCAGGT TGGTGAGCAT TTAGAGGGAA GCAGGGCAGA ACTCTGAACG	1140
45	ACAATACGTC TCTCTGAGCA GAGACCCCTT TGTTCTTGTT ATCCACCCAT ATGGACTTGG	1200
47	AATCAATCTT GCCAAATATT TGGAGAGATT GTGTGGATTT AAGAGACCTG GATTTTTATA	1260
	TTTTACCAGT AAATAAAAGT TTTCATTGAT ATCTGTCCTT GAAAAAAAAA AAAAAAAAAA	1320
50	AAACTCGA	1328

55 (2) INFORMATION FOR SEQ ID NO: 52:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1856 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ D NO: 52:

5	GAATTCGGCA CGAGCTCTGC AACATTGCAA ATGAACTTGC AGCCGAGGGT TCCGCTGCCC	60
	CCTAGATTAA ATTCCCCGGG CTGAAACTGA GTTGCAGATT TACAATATCA TATTTTAAAT	120
10	TOCTOTOTTC AATTAAACCA TTTATGACCA TAACTAATTI TCAGGATGTC GATGCATGCT	180
10	THTCCAGGCC TTCCTTCTTT GTACAARAGT ARATGTCCAT ARAGCGTTTC ACTTATATTC	240
	TTCAAACATG ATGCTAATTT AAATTAALTA CTICCTATGA TAIGTTATTA TTCCTATGAT	300
15	TTTGCCACTG TTATTAGTTC TCTCAAAAAT ACATCTAGGG AAGAGGATTA TTTTAAGTRA	360
	THIGATTATC THICTATCIC THITATTIAL THOUGASTIA CHIRAGAAAT TOGTTOCATT	420
20	GGTTGGCATT GATACAGTAA ATTTGTAAAT GAGGAGACAA TATAAAAAAT CTAAATTACT	480
20	TGTGCTTAAT GACTGTAGCA GAATSCOTTT TCTGTAAATO AGATTGTCTT TCTTGCAGTT	540
	TAGTTTGATA GATTTGCAAG CTATGCTGCT TCCATGAAGT TAGCTGCGCT GGTAGGAACG	600
25	CAGGCTTCTT TGTCTCTGGT TGTAGCTTGC ATGATCGCCC CATTAGGCAG ACAACGTAGC	660
	COGAGATCAC AAATCAGGCC CTTGGTGTAG TTGCTAGTGT GTGGAGGTGC AGAGAGGTTG	720
30	GCAGAAACTG ACCTCACTGG GCAAGGGTGG CCATGGACCT GALTICTTTAA TGCACTCTAT	780
30	GTGTTCAGGA AGCCACAGGC CATATTTGAC TCTGAGAAAA AAAACAAGAG GAAAAACCCC	840
	ACAAAGTATA ACAACCCCTT AAGATACATC TATTTTAAAG TGAAAGTAAT TTTTCAGTFT	900
35	ATACCATTGG CCAATTACAA GATAAAAATG TICAATITGT TIAAGAATCC TITGTTGACT	960
	TGTCTTTTCA TCTCTTGCTA TTTATATTTG TCACTGTTAG TCAACAAAGT CTTATTTGCT	1020
40	GAGGAAGGAC TTTGCTGCAC TTACTGTACO ACATCAAACA CTGGGGAGGG TGGTGTTTAA	1080
70	CTTTTTAAAA AATGTTATTC TGATTALAAL AATAATATTS GCTTTTTCA TGAAAAGAGC	1140
	GCCACCTTGC AAGGTTTAGT GAGATTTATG GAAGTTGAAT ACCTAAGCAG GAATTGCTGC	1200
45	TAGCTCCAAA AATTTGCGAA GCAAAASCTA GCCCCAATTG STTTGGAAACTGA	1260
	TTAACAGATT TOCATTIGAA GIGACTICAG ACATTAGGIC CAGACATTAG TTAAAAATAG	1320
50	AAAGAGGAAT AAAGACATCT YTTCTCTCTA GAAAAGATAA CACCACAATT AATAATCCTT	1380
50	CCCACTITCA TIGAGATCAG CITGICTGAI AACCTGATAI GASTGIGAIA ATGATAAACA	1440
	TGATAATAGT GGTACTTTTG TAATTTTGCT GGTGCATTTA AGAAGATAGT AAAKGATGAG	1500
5 5	TTCAYCTTTT CTYCGAACAT YCCTATYCCT AGATGIAGTT TACCTCAAAT TGGGAATTAT	1560
	AACTGTCCTA ATTTTTGTTG TGTACCCTGA TGCCCCTTTT GCTTTAATAC CCACAGTGTA	1620
60	ACAATTAAAT ATCACACTAT GACATAIGAI TIAAGTAGGA TAITITAAAG ATAAATTITA	1680

	GGGGTAAATG	TITACTICAA	AATGACTCCA	TATTICAAAT	AICIGIIIAG	ACTGTGAAGG	1740
	CCAAATAATT	TTTAAGAAAA	CATTTGAAGA	GTAGTGTGTT	TGCATTTGTG	AATAATCTTA	1800
5	CTCACAGCAA	GTAAACGTAA	TAAAAGCCAA	CATTTAAGCC	ааааааааа	ААААА	1856

10 (2) INFORMATION FOR SEQ ID NO: 53:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1558 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

	(XI) SEQUENCE DESCRIPTION. SEQ ID NO. 35.	
20	TGGGTATCCA TTCCTGNAAT TACTTTACTT AGGATAATGG CCTCCAGCTC CGTCCAAGTT	60
	GCTGCAAAAG GTATTATTTC GTTCCTTTTT GTGGCTGAGT AGTATTCCAT GGTGTATATA	120
25	TACCACATTT TCTTTATCCA CTCATTGCTT GATGGGCAGT TAGGTTGGTT CCACATCTTT	180
23	GCAATTGTGA GTTGTGCTGC TCCAGATATC ATCTTTAACT CCTTTGCCTŢ CTCCACATAC	240
	ATTTCCAAGT CCTGTTCATT CTACCTCCAA AATGTATCTT GTATCCATTC ATCTCTCTCC	300
30	ATCTTCAATC TATTTCAATG CCCCATCATC TCTTGCATGG AGGAGTGTAA TAATTGGCTA	360
	ACTGGCCTGT TCTTACATTT TAAAATCAAA AGATGTGACA GGTGAAATGC CTATTTCAGT	420
35	GTCCATTGAT GGTTCTGCTT ACACACCACC TGGCTGCCTG GTGTCGCAGT GGCAGAGTTG	480
33	AGCAGTGTGA AAAAGACTGC TTGGCCCTTT ACAGGGAAAG CAGGTCCACT GTGGCCTGTG	540
	AGGACGAGAG CTCTGGGCAG GCTCGGACAC TGGCCAGACCC TGGTCCTGGC TGGCCAAGGC	600
40	AGCAGGGTAT GTGTTTCGGG TCACTCACAG GGCTCAGCAC CACTCCTCAT GGCTTCCTTA	660
	CTGTTTCGGC AGAGGCTGAC CCGCGGCTGA TTGAGTCCCT CTCCCAGATG CTGTCCATGG	720
45	GCTTCTCTGA TGAAGGCGGC TGGCTCACCA GGCTCCTGCA GACCAAGAAC TATGACATCG	780
40	GAGCGGCTCT GGACACCATC CAGTATTCAA AGCATCCCCC GCCGTTGTGA CCACTTTTGC	840
	CCACCTCTTC TGCGTGCCCC TCTTCTGTCT CATAGTTGTG TTAAGCTTGC GTAGAATTGC	900
50	AGGTCTCTGT ACGGGCCAGT TTCTCTGCCT TCTTCCAGGA TCAGGGGTTA GGGTGCAAGA	960
	AGCCATTTAG GGCAGCAAAA CAAGTGACAT GAAGGGAGGG TCCCTGTGTG TGTGTGTGCT	1020
55	GATGTTTCCT GGGTGCCCTG GCTCCTTGCA GCAGGGCTGG GCCTGCGAGA CCCAAGGCTC	1080
33	ACTGCAGCGC GCTCCTGACC CCTCCCTGCA GGGGCTACGT TAGCAGCCCA GCACATAGCT	1140
	TGCCTAATGG CTTTCACTTT CTCTTTTGTT TTAAATGACT CATAGGTCCC TGACATTTAG	1200
60	TTGATTATTT TCTGCTACAG ACCTGGTACA CTCTGATTTT AGATAAAGTA AGCCTAGGTG	1260

	TIGTCAGCAG	GCAGGCTGGG	GAGGCCAGTG	TTGTGGGCTT	CCTGCTGGGA	CTGAGAAGGC	1320
5	TCACGAAGGG	CATCCGCAAT	GTTGGTTTCA	CTGAGAGCTG	CCTCCTGGTC	TCTTCACCAC	1380
J	TGTAGTTCTC	TCATTTCCAA	ACCATCAGCT	GCTTTTAAAA	TAAGATCTCT	TTGTAGCCAT	1440
	CCTGTTAAAT	TTGTAAACAA	TCTAATTAAA	TGGCATCAGC	ACTITAACCA	АААААААА	1500
10	ААААААААА	AAAAAAAA	AAAAGGGGGC	CGCTCTAGAG	GTCCAAGTTA	NGACGNGG	1558

15 (2) INFORMATION FOR SEQ ID NO: 54:

20

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 948 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

25	TAAAAATCAT	GCTCTGTACC	ATCCTCACCG	TAGTCATCAT	CATCGCCGCG	CAGACCACGA	60
	GAACTACTGG	GATCCCTAAA	AACGCCCCTG	GTCCGGCCCC	ACTCTGCGCC	CCTCGATCTC	120
30	CCAGGCTCTT	TCTGCAGWCA	TACCGCGGAC	CCAATGGGCG	CCCTGCACAC	CCGTTTCTGG	180
50	GGCCGTCAGA	CTTGGATACA	TCGTAAACTC	CGCCTCCACG	GAACGTCTCG	CCTKGCGAGC	240
	AAGMTCGGAA	TCCAGTTCCT	CAGGAACCCC	TCCAAAACCC	ACACCCCCAG	GGACGCCGCT	300
35	TTCCGGGATC	CCGGSCAAAC	GCCGGACCCT	CAGTCGCTCC	AGGCCCCCTC	ACCCTCAAAG	360
	TGTAGCGCCC	CCAACCGAGC	AACCTCGGTT	TGGTCCCTAA	AACCCCGCCT	CCTCTATAAG	420
40	CACCGCCCCA	GCTCTGACAA	AACCCCGCCT	CCAGGTCGGC	AGGCTCCGCT	TCTTTTCTTC	480
10	TCCGCGGGGT	GATTCAGTCC	AGTGATTGGG	TTTGTGGCTC	CAGGCCTCGC	CCACAGACGG	540
	ACAGACCCCT	CCCTTTCTTC	CGGCAAAAGG	ACCGAGCCCT	GGGGTAGTAA	GGSCCCCACA	600
45	CICCIGITII	TTGCAAGTAC	ATTITIGTCC	YTCCTCCACC	CAGGTATCTG	CCTATTTTCT	660
	TGCTAATCCC	AGAACCTTTC	CTTTTGCTTT	TTTTAAGGAC	ATTTGGGAAG	TTCCTGGTGT	720
50	AGGACCCTTC	TCCCTGGGAT	AAGAAACCTG	CCTGTAAACG	CTCTGTAAAT	ACTCCCTTCC	780
50	ACCCATCCCA	GCCCCTGGGC	AGCCGGGCAG	AAGGGAATCC	AGGCTATGGA	CCTCCCAAGT	840
	CCCCCTCCC	CGCTCCCCTC	GCCGCCCCG	CCTTGTTCTG	ATCTGTGTGT	GAGTGTGTGT	900
55	GAACTTCTGA	AAGACAATAT	TAAAGAGACT	TAGTTGAAAA	ААААААА		948

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 990 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
10	GGGGAACTGC AGTGACAGCA GGAGTAAGAG TGGGAGGCAG GACAGAGCTG GGACACAGGT	60
	ATGGAGAGGG GGTTCAGCGA GCCTAGAGAG GGCAGACTAT CAGGGTGCCG GCGGTGAGAA	120
15	TCCAGGGAGA GGAGCGGAAA CAGAAGAGGG GCAGAAGACC GGGGCACTTG TGGGTTGCAG	180
15	AGCCCCTCAG CCATGTTGGG AGCCAAGCCA CACTGGCTAC CAGGTCCCCT ACACAGTCCC	240
	GGGCTGCCCT TGGTTCTGGT GCTTCTGGCC CTGGGGGCCCG GGTGGGCCCA GGAGGGGTCA	300
20	GAGCCCGTCC TGCTGGAGGG GGAGTGCCTG GTGGTCTGTG AGCCTGGCCG AGCTGCTGCA	360
	GGGGGGCCCG GGGGAGCAGC CCTGGGAGAG GCACCCCCTG GGCGAGTGGC ATTTGYTGCG	420
25	GTCCGAAGCC ACCACCATGA GCCAGCAGGG GAAACCGGCA ATGGCACCAG TGGGGCCATC	480
23	TACTICGACC AGGICCIGGI GAACGAGGGC GGIGGCITTG ACCGGGCCIC IGGCICCITC	540
	GTAGCCCCTG TCCGGGGTGT CTACAGCTTC CGGTTCCATG TGGTGAAGGT GTACAACCGC	600
30	CAAACTGTCC AGGTGAGCCT GATGCTGAAC ACGTGGCCTG TCATCTCAGC CTTTGCCAAT	660
	GATCCTGACG TGACCCGGGA GGCAGCCACC AGCTCTGTGC TACTGCCCTT GGACCCTGGG	720
35	GACCGAGTGT CTCTGCGCCT GCGTCGGGGG NAATCTACTG GGTGGTTGGA AATACTCAAG	780
23	TTTCTCTGGC TTCCTCATCT TCCCTCTCTG AAGGACCCAA GTCTTTCAAG CACAAGAATC	840
	CAGCCCCTGA CAACTTTCTT CTGCCCTCTC TTGCCCCANA AACAGCANAA GCAGGANANA	900
40	NACTOCCTOT GGCTCCTATC CCACCTCTTT GCATGGGAAC CTGTGCCAAA CACCCAAGTT	960
	TAAGAAAAA ATAAAACTGT GGCATCTCCA	990
45		
	(2) INFORMATION FOR SEQ ID NO: 56:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1603 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
	GGTCGACCCA CGCGTCCGGC CCGCCGGCTC CGGAGCGGCT CTGCCTTCCC GAGCGCGGGA	60
	,	120

•	CCGCCGTCCT	AGCCGCTGCT	GTCTTCGTGG	GAGGCGCCGT	GAGTTCGCCG	CIGGIGGCIC	180
	CGGACAATGG	GAGCAGCCGC	ACATTGCACT	CCAGAACAGA	GACGACCCCG	TCGCCCAGCA	240
5	ACGATACTGG	GAATGGACAC	CCAGAATATA	TTGCATACGC	GCTTGTCCCT	GTGTTCTTTA	300
	TCATGGGTCT	CTTTGGCGTC	CTCATTINGC	CAMCTNGCTT	NAAGAAGAAA	GGCTATCGTT	360
10	GTACAACAGA	AGCAGAGCAA	GATATCGAAG	AAGAAAAAGG	TTGAAAAGWT	AGRATTGAAT	420
10	GACAGTGTGA	ATGAAAACAG	TGACACTGTT	GGGCAAATCG	TCCACTACAT	CATGAAAAAT	480
	GAAGCGAATG	CTGATGTYTT	AAAGGCGATG	GTAGCAGATA	ACAGCCTGTA	TGATCCTGAA	540
15	AGCCCCGTGA	CCCCCAGCAC	ACCAGGGAGC	CCGCCAGTGA	GTCCTGGGCT	TTGTCACCAG	600
	GGGGACGCC	AGGGAAGCAC	GTCTGTGGCC	ATCATCTGCA	TACGGTGGGC	GGTGTWGTCG	660
20	AGAGGGATGT	GTGTCATCGG	TGTAGGCACA	AGCGGTGGCA	CTTTATAAAG	CCCACTAACA	720
20	AGTCCAGAGA	GAGCAGACCA	CGGCGCCAAG	GCGAGGTCAC	GGTCCTTTCT	GTTGGCAGAT	780
	TTAGAGTNAC	AAAAGTGGAG	CACAAGTCAA	ACCAGAAGGA	ACGGAGAAGC	CTGATGTCTG	840
25	TTAGTGGGGC	TGAAACCGTC	AATGGGGAGG	TGCCGGCAAC	ACCTGTGAAG	AGAGAACGCA	900
	GTGGCACAGA	GTAGCAGGTG	AGCCGTGGTT	TTGGTGACAT	TGGGGGCAGA	GTGGTGCAGG	960
30	GTGAGGAGAA	GGTACTTGGA	GCCTCCCAGG	TGCTGTGGCA	GCATAGGAAT	GGTATTTGAC	1020
	AGGGAAGTGG	GAGAGCTTTC	CTTGACCCAG	GAAGACTGAG	GGGGACTGAA	CATGATTACT	1080
	TGTCTGCCTA	GAGCTTCTTG	TAAAGAAGTC	ACAAACTTAG	TGCCTCCAGG	GGCTTGGCTG	1140
35	TGTGATAATG	AGGATAGAGG	ATTACTTGTG	AGGCAATGTG	GCATGGTGGG	GATTGTGGCA	1200
	AACTAGAATT	CACATCACCC	ACCATATAGG	GCTTGCATTA	CCACGAGGCA	GAAAGCACCT	1260
40	AGTGTTGCTG	CATCTTCTTA	CGCAAAAAAG	ACAAAATCCA	GACTTCTAAA	ATGTAAAATC	1320
	ACTGATTTTC	GATATTGGCA	GCTTACTTTT	TTTTTTTAAA	CAACCATGCA	GGCCAAATGA	1380
	CTTGTAATCT	TGTCACCATT	TTTAGGTAAA	CTGTGACTTG	AAAAAGTCTG	GAGCAAACAA	1440
45	ACCAATGCTT	TTTCCTTTTA	TTCTGTTGGR	AACCAGTTTT	CTTTGTGTCA	CAGTTYTGAA	1500
	ACCTCAATAC	GAATATTTCT	CTTCCCACCA	AATATTTTGA	GGCAATTGAA	AAGCCACAGT	1560
50	GATTTATTTC	TTGATTTGGC	AATTTTAATT	TTGCAAGACA	ATT		1603

(2) INFORMATION FOR SEQ ID NO: 57:

55
(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1052 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
_	TACAGCTCAG GATGCCTGTA ACATTGTCAT CTCTGGGCTT CTGGGTCCTG CTTAGCCTGC	60
5	TTTTTCCCTG GAGGACTGAC CAGGGATGCG GCCCAGCAAC ATGTTACTAA ATCATACTCT	120
	CCTCCCTACC TTTCCCAGAC CTCTCACTCC TGCCTGGTGT TCCAACCCGT TCTGTGGCCA	180
10	GAGTATACAT TTTGGAACCT CTTCGAGGCC ATCCTGCAGT TCCAGATGAA CCATAGCGTG	240
	CTTCAGCAGN AAGGCCCGAG ACATGTATGC AGAGGAGCGG AAGAGGCAGC AGCTGGAGAG	300
1.5	GCACCAGGCT ACAGTGACAG AGCAGCTGCT GCGAGAGGGG CTCCAAGCCA GTGGGGACGC	360
15	CCAGCTCCGA AGGACACGCT TGCACAAACT CTCGGCCAGA CGGGAAGAGC GAGTCCAAGG	420
	CTTCCTGCAG GCCTTGGAAC TCAAGCGAGC TGACTGGCTG GCCCGTCTGG GCACTGCATC	480
20	AGCCTGAATG AGGCTGGCCA CCTGCCACTT TGCCCTGCCC	540
	MYCCTTCCTT TTCTTGGTGA AAGGCACCTC CTTTCCTGAT AATGAATGGT GTTCCCTTTG	600
25	CTTGCCTGGG GAGCCCCCCA GGCCAGGTTT GCTGGCCATA GATACCTTTG GGCTGCCTGR	660
25	GACAGGCTCC TGAGGAGGAT TGAGGGTGAA AGTCTCCCAC GAGTACACTA AACCTAGGTC	720
	TGGTCACCAA TAGGGTTTGG AGAGCAAAGG GCCACAACTC ATCAGCTGCC TGTCTCTTAG	780
30	ATGCACTITC TITTTCCACC AGCACATCCT TCAACACACA GAATTTCAGG GAAGAGTTCT	840
	CCCCAAAACC CTAGCTCTTT ACCCTTCCAT TTTAGCCTTC CACCCAGCTT CCACAAAAGA	900
35	TTTGGCTCTA CCTTGGATCT GCTAGTAAAT AACTAATAGG CAGGCAGTTA TTTGGGTAAG	960
33	GAAAAAAGGG GTGGGAGAGA CAGAAAATTT GCCCACTGCT GCTCCTCCCC TTGGSTYTCC	1020
	ACCTOGGATT TGCTATTGAA TCTCTACCCT NN	1052
40		
	(2) INFORMATION FOR SEQ ID NO: 58:	
	(2) INFORMATION FOR SEQ ID NO. 38.	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 814 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
	ACNOGNIGGO GGCCGCICTA GAACTAGGGG ANCCCCCGGG CIGCAGGAAI TCGGCACGAG	60
55	CATAGACTIT TAAACTGGTA CGGTTCTTAG AGATGGTCCT TGGCCTTCTG TTGTTGTTGT	120
	KGTTTTTTC TPTTTCTTCT TCTCCTTCTC CTTCTTCTTC TCTTCTCCTT CTTTCTTC	180
	TERRETARIA CACTOTOCOT CTCTCACCAA GACTCGAGTG AAGTGATGTG ATCTCGGCTT	24

840

	ACTGCAACCT GGGAGGCAGA GGTTGCAGTG AGTCGAGATG GTGCCATTGC TCTCGTTTGG	300
	GCAACAAGAG TGAAACTCTT GTCTCAAAAA AAAAAAAAAA	360
5	GTCATTACTG GTGGGATCTG GTCACACAAG ATAGCATTAA ACGTGACATG GCACATAAAA	420
	TTGGTTAAAA AATTTTGTTT TTTAATTACG TAATGTAAAA GCCCAACAAA CACTTTATGC	480
10	AAGATTGGAA TGTATCTTCA AATTCAGATT TAATAAACAT GTAAAGATCC TCTGTATATA	540
10	AAAGTTGTAT TTAATCCCTT GTGCCCCAAG AATGCTATAA AAGATCCCAA GAATGTTATC	600
	TATGAAAAGA TAGCAATAGG GAATGGTGAA CAAATAATTT AATTTGCCAA TTCTAAAAAA	660
15	CATGGACTTA AACCCCATGA AAACTTGGTT CCATAGTTTT AACTGTTTTA TGGTTCCAAT	720
	ACAAAACCAG AGTGGTTTAC ATTCCACAAT NACCAAATTT GCATCCAATN TTGGGGTAAT	780
20	TTTNGGTATT TGCCATGGGA TACTATTCAT TTTT	814
25	(2) INFORMATION FOR SEQ ID NO: 59:	
23	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1215 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
- •		60
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	60 120
- •	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59: AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA	
- •	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59: AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG	120
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59: AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG	120 180
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59: AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA	120 180 240
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59: AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC	120 180 240 300
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59: AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG	120 180 240 300 360
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59: AGAGGAAGTC TITTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG GCTAGTTTTC ACATTCTTAC TAGTGTTTGG YTCACCTTTG GGCAAAGGCC CCCTCTAGGC	120 180 240 300 360 420
35 40 45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59: AGAGGAAGTC TITTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TITGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG GCTAGTTTTC ACATTCTTAC TAGTGTTTGG YTCACCTTTG GGCAAAGGCC CCCTCTAGGC CTTGCCCCAC CTCCATCAAA CGCAGACACT GTAGTCAGAC CTCAGYAATA TAGGAGGCAA	120 180 240 300 360 420
35 40 45	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 59: AGAGGAAGTC TITTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TITGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG GCTAGTTTTC ACATTCTTAC TAGTGTTTGG YTCACCTTTG GGCAAAGGCC CCCTCTAGGC CTTGCCCCAC CTCCATCAAA CGCAGACACT GTAGTCAGAC CTCAGYAATA TAGGAGGCAA TAATCTTTTA ACAGTGTTTT GCAAACAAAC AAAAAGAGAA AAATCCCAGC CAGGGGAACT	120 180 240 300 360 420 480 540
35 40 45	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 59: AGAGGAAGTC TITTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG GCTAGTTTTC ACATTCTTAC TAGTGTTTGG YTCACCTTTG GGCAAAGGCC CCCTCTAGGC CTTGCCCCAC CTCCATCAAA CGCAGACACT GTAGTCAGAC CTCAGYAATA TAGGAGGCAA TAATCTTTTA ACAGTGTTTT GCAAACAAAC AAAAAGAGAA AAATCCCAGC CAGGGGAACT CGCCACCTGC CCACGCTAGT TCCATCCACG CTCAAGACCC GCCCTTAGAC CAGGCAGGCA	120 180 240 300 360 420 480 540

GTTATTGTAG GAATAAAGAC TAGTTTACAA AGGARAAAGA GSCCCTGGAC TTCCCMAGGA

	AAGGTCAGGT TAGGGCTCCT GTACCCATTC TGTTCCACCA CTGTTTGATC TCTCTGGCCT	900
5	CCCACCAGGA ATGCCGTTTC CTTTTTATGG ATCTGTTGGG AACCAGAGAG AATCAACAGA	960
	TCAATGACAT AGGATCCGAA GTGCAATGAT AGTCACTTCT AGTTTGGCAT TTCACAAACT	1020
	CTGNACAGCA AGGTATTGGT AGGTTACTCA ATTTCAAAAG GGCCCCATGG CCAAATATGT	1080
10	TTAGGAACCG CTGTTTGNAT TTCTTTTTTT GGAGACGCAT TGTATATAAT ATATGTCAAA	1140
	GGCTTTCGGA ATTCCTGCAG GAAAGAAATC AGCTTTGTTA AATCCNAAAA AAAAAAAAAA	1200
15	AAAAAATAG ACTCG	1215
20	(2) INFORMATION FOR SEQ ID NO: 60:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 478 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
20	ATTTCTTATG ACATGGGGGT TIGAATTGGT TGGCAAATGT TTAATTTTAA TATCCATAAT	60
30	CAGTGAGGTC CTGCTGGCTG TAATCATTAA TTGTGAAATC TAAGGAGCTT AGTTCATGGC	120
	TCTAGAATTT CACAGAAAAR TGYGMTATGA TACGAGCATT AAGTTTATTT CTTCTGATCT	180
35	TTGATGCAGC TTTGTTCAGT TTATCTGTTT TTGTATTTAT TGGTCATCTA CTTCCCATGC	240
	CAAAAGGGAC TGGTCTACAT AGCTGCGCTA AACACCTGAT CAAATCACTA AAAGAAAATG	300
40	TGTTACCTCT AATGAATTAT CCTGATTGTA AGTTAAAAAT CAATATTTCC CCGTAGTGAG	360
	GTTTGCTTTT TAAAAAGAAK KCTTAAAAAA AAAAAAAAA AAACGAGTTN AAGAAAAGGA	420
	AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGANGC	478
45		
	(2) INFORMATION FOR SEQ ID NO: 61:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
	TATGACCTTG ATAACCCCAA GTTNGAAATT AACCTTCANT AAAGGGAACA AAAGCTGGAG	60
60	TTCGCGCGCT TGCAGTTCGA CACTAGTGGA TCCCAAAGAA TTCGGCACGA GTCATAATGA	120

•	GCTACTAGGT AAGCCTTCTG GGACTTTCAG ATATTTTGGG GAAGATTGAT TTTTGTTCTT	180
5	ACATGCTGTG GACCCTTGGC CATCAAATGG TATGGGGAAG CTCATCCGTC TGTCTGTGAT	240
J	GGTCATGTCA GTCAGGCGTC TTTTTAGTAT TTACTGGGTG CTCAGTACTG TGCCAGATGC	300
	TGTCGGGAGC CGTGGTGGTA TGGAGGAGGA GTGCTCCAGA GGACTCTGCT GTGTGGCAGG	360
10	CCAGCATAAA CAAGCCAAGG GGAAAAGGCA GGCATGGAAT AAAGGGGGGAG AATACCAGTG	420
	TGTGACTTAC TGCTGACTGT GTGGATTAGC CTATCAGCAG TAATCAAGCA GGGCGGAGGG	480
15	CATTATCTTT GAGCCAGAAG AGTGAGCACT GGSCCGAGGG TGGAGCATCA AGAGGGGGTG	540
	TAGGACCNCA AGGCTTCTTN CNGGGGAGAC AACGTCAATA AGCNGTCAGT AGTCACCGAC	600
	AGTTTTGGGA AGCAAGGG	618
20		
	(2) INFORMATION FOR SEQ ID NO: 62:	
25		
23	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 751 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
	TCGACCCACG CGTCCGAGGA GCTGGACTTC TGAGACAGCC ATTCTCCTTG CATAGCACTG	60
35 _,	TCTGCTGCTA CAGCTCATAG AAGTCAACAA TTTTCTTCAA CACTGGTAGG CAGCCTCTAA	120
	ATGGCCCTGA TCACCCTCAC CTCCTGCCAT TCACACCNNT GTAAAATTCC ACCCCTGGAC	180
40	CTAGTGACTC ACTTCTAACA ANGAGAATAC AGCAAAAGTA ACATCGCTTC TGAGGTGAGG	240
	CTACAAGGAG ACTACGATGC CTGCCTTCGT CACCCTTCTC CTGCTCTTTC CATTGCTCCC	300
	TCTGATGGAA GCCAGTTGCC ATGTGATGAG GTGCCCTATG GAGAGGCCCA CGTGACAAGG	360
45	TATTGTAAAA AGCCTCTGAC CAATAGCCAT CTAGAAACGG AGGCCCAGTC CAGCAGCCTC	420
	TGAGATGAAT CCTGCCAACC TGAGCTTGGA GACAGATTCT CTCCCTATCC TGCCTTGGGA	480
50	TGATCACAGC CACCACCAAC ACCTTCACTG CCTGGTGAGA GGCCAAGCCA GTGAACCCAA	540
	GGTAAACTGG ACAGAATCCT GACCCACAGA AACTGAGATA ATGTTTGTTA TTTTAAGCTG	600
	CTCAGTTTGT TACAGAGCAA TAGATAACTA ACTCAAACAC CATAAAATTC TAATATTTTA	660
55	TTCTATCACA CAAACCAGGT AATACCAAGT AAATGCCATT ACTATACACA TATTTTTGTA	720
	ACACAATTAC ATGTGATTTT TTAAGAAGGC T	751

60

	(2) DIFCEMATION FOR SEQ ID NO: 63:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 780 base pairs	
5	(3) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPCLOGY: linear	
	(b) Topcicof: Timear	•
10	(X1) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
	CNGNCAGTCA CINGTCCCCGA TTCCCCGGGTC GACCCACGCG TCCGGGGTTGG CAACTCCTGA	60
15	GGCCTGCATG GGTGACTTCA CATTITCCTA CCTCTCCTTC TAATCTCTTC TAGAGCACCT	
10	GCTATCCCCA ACTICTAGAC CIGCICCAAA CTAGTGACTA GGATAGAATT TGATCCCCTA	180
	ACTICACTOTIC TOCOGTOCTIC ATTOCTOCTA ACAGCATTOC CTGTGCTCTC CTCTCAGGGG	240
20	CAGCATGCTA ACGGGGGGAC GTCCTAATCC AACTGGGAGA AGCCTCAGTG GTGGAATTCC	300
	AGGCACTGTG ACTGTCAAGC TGGCAAGGGC CAGGATTGGG GGAATGGAGC TGGGGCTTAG	
25	CTGGGLGGTG GTCTGAAGCA GACAGGGAAT GGGAGAGGAG GATGGGAAGT AGACAGTGGC	420
	TEGTATESCT CTGAGGCTCC CTGGGGCCTG CTCAAGCTCC TCCTGCTCCT TGCTGTTTTC	480
	TGATGATTIG GGGGCTTGGG AGTCCCTTTG TCCTCATCTG AGACTGAAAT GTGGGGATCC	540
30	AGGATGGCCT TOCTTCCTCT TACCCTTCCT CCCTCAGCCT GCAACCTCTA TCCTGGAACC	600
	TGICCTCCCT TTCTCCCCAA CTATGCATCT GTTGTCTGCT CCTCTGCAAA GGCCAGCCAG	660
35	CTTGGGAGCA GCAGAGAAAT AAACAGCATT TCTGATGCCA AAAAAAAAAA	
55	GCGGCCGAAA GCTTATTNCC CTITAAGTAA GGGGTTAATT TTTAGCTTGG GCACTNGGCC	780
40	(2) DIFOFMATION FOR SEQ ID NO: 64:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 588 base pairs	
45	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
50	TTCCGAATTA ATCCACTCAC TATAGGAAWT GCCGTCGCCA TGACCCGCGG TAACCAGCGT	60
	GAGCTCGCCC GCCAGAAGAA TATGAAAAAG CAGAGCGACT CGGTTAAGGG AAAGCGCCGA	120
55	GATGALGGGC TITTCTGCTGC CGCCCGCAAG CAGAGGGACT CGGAGATCAT GCAGCAGAAG	180
	CAGALAAAGG CAAACGAGAA GAAGGAGGAA CCCAAGTAGC TITGTGGCTT CGTGTCCAAC	240

CCTCTTGCCC TTCGCCTGTG TGCCTGGAGC CAGTCCCACC ACGCTCGCGT TTCCTCCTGT

•	AGTGCTCACA GGTCCCAGCA CCGATGGCAT TCCCTTTGCC CTGAGTCTGC AGCGGGTCCC	360
	TTTTGTGCTT CCTTCCCCTC AGGTAGCCTC TCTCCCCCTG GGCCACTCCC GGGGGTGAGG	420
5	GGGTTACCCC TTCCCAGTGT TTTTTATTCC TGTGGGGCTC ACCCCAAAGT ATTAAAAGTA	480
	ССТТТСТААТ ТССААААААА АААААААААА АААААААА	540
10	AAAAAAAAA AAAAAAAAA AAAANNCGGG GGGGGCCCC CCCCCCCC	588
10		
.15	(2) INFORMATION FOR SEQ ID NO: 65:	
.13	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 774 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
25	TTTAAAGATG AAGAAATGAC AAGGGAGGGA GATGAGATGG AAAGGTGTTT GGAAGAGATA	60
23	AGGGGTCTRA GAAAGAAATT TAGGGCTCTG CATTCTAACC ATAGGCATTC TCGGGACCGT	120
	CCTTATCCCA TTTAATTAAT TTCTCTGACA ATTCAATTAT TTTCTGTTAT TAATGTTGCC	180
30	ACTGCTTTCT GTTTGTCTGC ACTTTCTTGA TAAATATTTG CTATCGTTTT ACTCCAGTCA	240
	TTCGATGTTG CTGAGATTTA CATATGACTC TTGTCAACAT CTCATCTTTT GACCCAATCT	300
35	TATTCATTTA ATAAGAGGTC TCATTCATTT GCATGGAAAA ATGCTCATTG TATATTGCAA	360
55	AGTGAAAATA ACGAGTTGCA AAACAGTGTA TACATATATG TGTGTATATA TGTACACTTT	420
	ATTTGTACAT TTCTATGTGA CATAATGCAA AGGAAAGTGT CTGATTTTAT TATACACCAA	480
40	AGGTTAACAG TGAATCTCTG TGTGATCTCT TTTTTTTTCT TTTTGCCTAT CTGCATCTTC	540
	TCACTTGCCA AAAAATGAAT ATATGTTTAT GTGTGTATAT TACTTGTGTC ACAAAAAACC	600
45	CTAAAGTAGA CAGTAAAAGA ACTTGTCAAT CGCCTTTGGA AGGCAATGAA ACACTTAATA	660
.5	AACTCTCAAT AACAGAAGCG TAAAAATGAA ATGTAAACCT CCAATTACCT CTGGATCTCT	720
	TAGCCAGAGT AATAAACTGG TAATTATTAC AGATAAAAAA AAAAAAAAAA	774
50		
	(2) INFORMATION FOR SEQ ID NO: 66:	
55		
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1866 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

•	(XI) DEQUESTED DESCRIPTION OF THE STATE OF T	
	ACCCACGCGT CCGGTCCTCT TCTTCAGCAC ATGCCAAAGC TGTTCCTCAC GGCCTGTGAG	60
5	ACAAGAGCAT CTTGGATGTA GGACAATGGA AGAGTTAGAT GCCTTATTGG AGGAACTGGA	120
	ACGCTCCACC CTTCAGGACA GTGATGAATA TTCCAACCCA GCTCCTCTTC CCCTGGATCA	180
10	GCATTCCAGA AAGGAGACTA ACCTTGATGA GACTTCGGAG ATCCTTTCTA TTCAGGATAA	. 240
10	CACAAGTCCC TTGCCGGCGC ANTCGTGTAT ACTACCAATA TCCAGGAGCT CAATGTCTAC	300
	AGTGAAGCCC AAGAGCCAAA GGAATCACCA CCACCTTCTA AAACGTCAGC AGCTGCTCAG	360
15	TTGGATGAGC TCATGGCTCA CCTGACTGAG ATGCAGGCCA AGGTTGCAGT GAGAGCAGAT	420
	GCTGGCAAGA AGCACTTACC AGACAAGCAG GATCACAAGG CCTCCCTGGA CTCAATGCTT	480
20	GGGGGTCTSG AGCAGGAATT GCAGGACCTT GGCATTGCCA CAGTGCCCAA GGGCCATTGT	540
20	GCATCCTGCC AGAAACCGAT TGCTGGGAAG GTGATCCATG CTCTAGGGCA ATCATGGCAT	600
	CCTGAGCATT TTGTCTGTAC TCATTGCAAA GAAGAGATTG GCTCCAGTCC CTTCTTTGAG	660
25	CGGAGTGGCT TGGNCTACTG CCCCAACGAC TACCACCAAC TTTTTTCTCC ACGCTGTGCT	720
	TACTGCGCTG CTCCCATCCT GGATAAAGTG CTGACAGCAA TGAACCAGAC CTGGCACCCA	780
30	GAGCACTICT TCTGCTCTCA CTGCGGAGAG GTGTTTGGTG CAGAAGGCTT TCATGAGAAG	840
50	GACAAGAAGC CATATTGCCG AAAGGATTTC TTAGCCATGT TCTCACCCAA GTGTGGTGGC	900
	TGCAATCGCC CAGTGTTGGA AAACTACCTT TCAGCCATGG ACACTGTCTG GCACCCAGAG	960
35	TECTTTETTT GTGGGGACTG CTTCACCAGT TTTTCTACTG GCTCCTTCTT TGAACTGGAT	1020
	GGACGTCCAT TCTGTGAGCT CCATTACCAT CACCGCCGGG GAACGCTCTG CCATGGGTGT	1080
40	GGGCAGCCCA TCACTGGCCG TTGTATCAGT GCCATGGGGT ACAAGTTCCA TCCTGAGCAC	1140
40	TITIGTGTGTG CTTTCTGCCT GACACAGTTG TCGAAGGGCA TTTTCAGGGA GCAGAATGAC	1200
	AAGACCTATT GTCAACCTTG CTTCAATAAG CTCTTCCCAC TGTAATGCCA ACTGATCCAT	1260
45	AGCCTCTTCA GATTCCTTAT AAAATTTAAA CCAAGAGAGG AGAGGAAAGG GTAAATTTTC	1320
	TGTTACTGAC CTTCTGCTTA ATAGTCTTAT AGAAAAAGGA AAGGTGATGA GCAAATAAAG	1380
50	GAACTICIAG ACTITACATG ACTAGGCIGA TAATCITATI TITTAGGCIT CTATACAGTI	1440
50	AATTCTATAA ATTCTCTTIC TCCCTCTCTT CTCCAATCAA GCACTTGGAG TTAGATCTAG	1500
	GTCCTTCTAT CTCGTCCCTC TACAGATGTA TTTTCCACTT GCATAATTCA TGCCAACACT	1560
55	GGTTTTCTTA GGTTTCTCCA TTTTCACCTC TAGTGATGGC CCTACTCATA TCTTCTCTAA	1620
	THIGGICCTG ATACTIGHT CHTHICACGI THICCCATHI CCCHGTGGCT CACTGTCTTA	1680
60	CAATCACTGC TGTGGAATCA TGATACCACT TTTAGCTCTT TGCATCTTCC TTCAGTGTAT	1740
	·	

5	ААААА						1866
	ТАААТАААСТ	GCTTGTGGT	TTCAATAAAA	алалалала	ааааааааа	АААААААА	1860
	TTTTGTTTTT	CAAGAGGAAG	TAGATTTTAA	CTGGACAACT	TTGAGTACTG	ACATCATTGA	1800

10 (2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1152 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

	(222)						
20	CTCAAGGATG	TAAAGGCTCT	GCAGATTTCG	GGAGGCCTGT	CTCCCAGCAC	CTGATGGGAC	60
	ACTITITICCC	CCACTGTAAA	TTCTGGGTGT	ATCCTCCACT	GTATGCTGTC	ACCCCAAGGG	120
25	CAAGCACTGC	ATCTGCTTAG	TGAAGGATTT	ATTGTTCGGA	AGATACATTT	TCCCCTTKAG	180
2. 3	CAGAGAGTGG	CGTATCCTGG	CAGTCTTCGG	TGAGCCAGTT	GTACCAGGAT	TATGAAATGC	240
	AGATGTTTAC	TGTGTCATTG	TTGCTGTCAT	TGCTACTGAG	GAGTACTGAC	CAGAATCATC	300
30	TGCAACTYTT	AGTTGGCAGA	GAGGACCACT	ATGGCGGGTA	GCTCTTTTCT	TTCCTGCCAT	360
	TGTGGGGATG	ATTCCAGGCC	AAAGATGATG	GARAAGTATG	GAAATCATCT	GAAAGGTTGA	420
35	AGCTTGGCAC	GTGAAGCCAT	TCATGACTTT	GTAAGGCAGT	TTTGCTGAAG	GCCAGTTCTG	480
55	CCCTGGGAGG	GACGGAGGTG	AATCCTCCTG	AGTACCTGTG	GTTTTCTTAC	TTCCTGCTGA	540
	ATTTACCTAA	GTGCCTGTTG	TTTGCTTGCT	GTGGAGGCTT	TCTGGTATTT	CATTTCAGGT	600
40	GCAGATGCCT	TCACTTTCCC	ACCRAAAAA	CCCCMACCAA	ACCTAAGACC	TTACTGCAAC	660
	TAAGTYTNCC	AAGTACTTTT	TAACCCAATG	GGATGAACAG	CCTGTGGTCT	GCTCAGATCA	720
45	CCCTGAGTGC	GTGTGAGAAG	GCMTNGGCTT	TGCCAGGAAA	TCCAGGAAGG	CAGGGCCGGG	780
43	CTGTGTTGGA	AGCTGGCTTA	GCTGGTGGGG	CAGCCTTATT	TCAATTAAAA	GGGCATTGAC	840
	TGGGAGCAGC	AGTCCTGGAG	TTTGTTGCAT	TTCCTATTGC	CCTCAAAATG	AGAAACCAGG	900
50	AAAATAGCAG	ATTGGAGCCT	TCGAGAAGGC	AGTAAATGGC	TGTTTTTATT	GACAAAAGGA	960
	AAACATTTTA	CTGCCATCTC	ACTGATGGCA	TCTCACTGAC	TTAAAATGAA	GGCANGTTGT	1020
55	AGTAAAAAA	AAAGTCTACA	TTTTTCCACC	GCCACGTTCT	TATATCCTGT	TTGTCAGCCA	10 80
55	CTGCTCANAA	GGGCATGTTG	TCTTGCGGAN	TANAGGCGCT	CTCCTTCCCT	CGTTTTCCCT	1140
	ATAGGTTGGG	TG					1152

(2) INFORMATION FOR SEQ ID NO: 68:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2483 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68: AGCAGGCGGT GCGCTGGGGG CGGGAGCAGC GCGKAGCCCG GCTCGGCCAC ACCGATCGCC 60 CGCCGCCATG GGCTCCTCGC AAAGCGTCGA GATCCCGGGC GGGGGCACCG AGGGCTACCA 120 15 CGTTCTGCGG GTACAAGAAA ATTCCCCAGG ACACAGAGCT GGTTTGGAGC CTTTCTTTGA 180 TITTATIGIT TCTATTAATG GTTCAAGATT AAATAAAGAC AATGACACTC TTAAGGATCT 240 20 GCTGAAASCA AACGTTGAAA AGCCTGTAAA GATGCTTATC TATAGCAGCA AAACATTGGA 300 ACTGCGAGAG ACCTCAGTCA CACCAAGTAA CCTGTGGGGC GGCCAGGGCT TATTGGGAGT 360 GAGCATTCGT TTCTGCAGCT TTGATGGGGC AAATGAAAAT GTTTGGCATG TGCTGGAGGT 420 25 GGAATCAAAT TCTCCTGCAG CACTGGCAGG TCTTAGACCA CACAGTGATT ATATAATTGG 480 AGCAGATACA GTCATGAATG AGTCTGAAGA TCTATTCAGC CTTATCGAAA CACATGAAGC 540 30 AAAACCATTG AAACTGTATG TGTACAACAC AGACACTGAT AACTGTCGAG AAGTGATTAT 600 TACACCAAAT TCTGCATGGG GTGGAGAAGG CAGCCTAGGA TGTGGCATTG GATATGGTTA 660 TTTGCATCGA ATACCTACAC GCCCATTTGA GGAAGGAAAG AAAATTTCTC TTCCAGGACA 720 35 AATGGCTGGT ACACCTATTA CACGTCTTAA AGATGGGTTT ACAGAGGTCC AGCTGTCCTC 780 AGTTAATCCC CCGTCTTTGT CACCACCAGG AACTACAGGA ATTGAACAGA GTCTGACTGG 840 40 ACTITICIATI AGCICAACIC CACCAGCIGI CAGIAGIGII CICAGIACAG GIGIACCAAC 900 AGTACCGTTA TTGCCACCAC AAGTAAACCA GTCCCTCACT TCTGTGCCAC CAATGAATCC 960 AGCTACTACA TTACCAGGTC TGATGCCTTT ACCAGCAGGA CTGCCCAACC TCCCCAACCT 1020 45 CAACCTCAAC CTCCCAGCAC CACACATCAT GCCAGGGGTT GGCTTACCAG AACTTGTAAA 1080 CCCAGGTCTG CCACCTCTTC CTTCCATGCC TCCCCGAAAC TTACCTGGCA TTGCACCTCT 1140 50 CCCCCTGCCA TCCGAGTTCC TCCCGTCATT CCCCTTGGTT CCAGAGAGCT CTTCTGCAGC 1200 AAGCTCAGGA GAGCTGCTGT CTTCCCTCCC GCCCACCAGC AACGCACCCT CTGACCCTGC 1260 CACAACTACT GCAAAGGCAG ACGCTGCCTC CTCACTCACT GTGGATGTGA CGCCCCCCAC 1320 55 TGCCAAGGCC CCCACCACCG TTGAGGACAG AGTCGGCGAC TCCACCCCAG TCAGCGAGAA 1380 GCCTGTTTCT GCGGCTGTGG ATGCCAATGC TTCTGAGTCA CCTTAACTTT GAACCATTCT 1440

	TTGGAATTGG	CGTGGTATAT	TTAACCACGG	GAGCGTGTCT	GGAAACGCAA	ACTATCATTA	1500
	ATTTCATACT	AGTTTGTACC	GTATCTGTAG	GCATCCTGTA	AATAATTCCA	AGGGGAAAAC	1560
5	TAAACGAGGA	CCTCCCTTCT	ATCCTGCCAG	GTTGAGTGGG	GCTCACACGC	TAGGGTGAGA	1620
	TGTCAGAAAG	CCCTTCTATT	TTAAACAACC	AAAAAGAATT	GTAAGGGTGG	CTTGCTGCCA	1680
10	GGCTTGCACT	GCCGTTCCTG	GGGTGTGCA	TCTTCGGGAA	AGGTGGTGGC	GGGGCGTCCA	1740
••	CTAGGTTTCC	TGTCCCCTGC	TGCTCCTTCC	GTAAGAAAAT	GAAATATTCT	ATGCCTAATA	1800
	CTCACACGCA	ACATTTCTTG	TACTTTGTAA	GTCGTTTGCG	AGAATGCAGA	CCACCTCACT	1860
15	AAACTGTAAA	CGGTAAAGAG	ATTTTTACTT	TTGGTCTCCG	TGAGTCGCAT	CTCTACTAAG	1920
	GTTTACACAG	GAATTCCACC	TGAAGACTTG	TGTTAAAGTT	CTACAGCGCG	CACTGTTAAC	1980
20	TGAACGTCTT	TTTCTTCAGC	CTATACGCGG	ATCCTTGTTT	TGAGCTCTCA	GAATCACTCA	2040
	GACAACATTT	TGTAACTGCT	GCTGTTGCTT	TCTACATACA	CCTTATAAAG	TGACATTTCA	2100
	AAAGAAATAA	GGTGCCACAG	TTTTAAACCA	GAAGGTGGCA	CTCTGTGGCT	CCTTGTAGTA	2160
25	TTATAGCTAT	ACTGGGAAAG	CATAGATACA	GCAATAAAGT	ACAGTAATTT	TACTTTTTT	2220
	CTTGTGTTAC	ATCTAAATTA	CAACCCTTAA	TTGCCACGTG	TGCACTTACT	ACTCTCCAGT	2280
30	ATGTCTTATT	ACTCTCCAGT	ATGTCACGCA	TCTTTAACTT	TTCACGTCCT	ATGTTTGCTT	2340
	TCTCCCATTT	TTAAGAGATG	GTAAGTTAAC	TGGAATTGAT	TTACTGAATG	AAATTAAATG	2400
	CAGATATCCC	TGTTTTTGAA	AAAAAAAA	АААААААА	АААААААА	AAAAAAAA	2460
35	ААААААААА	ААААААААА	AAA				2483

40 (2) INFORMATION FOR SEQ ID NO: 69:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 536 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

50	GAGAAATGGA	GCTTTGTTAG	ATAAAAATTT	TTTCAACGCA	AACAGTCATT	TTCCAGTGAA	60
	AGGAGAGCGT	ATCCGCCGTA	GGATGGACTT	AGATCGTGTA	AAAGCTGAGG	CCACCGAGGA	120
55	TATAACCTCC	GGGTCCTTT	GCCTCCTTTT	CCTTAGACTC	CCTCCAAACT	CGTGTATCTT	180
33	TCCTTCAGCA	GTACTGGGCT	CCACGCGAAC	CTAGTCCTTT	GTCTTTACCC	TATTACCTTT	240
	CATAACATCC	TAGTTGAAAA	GTARTTATTC	AACCGCGTTT	GAAAATGAGA	ACAGGTTCAC	300
60	AGARGCTAGG	TTACTTGCGA	AGGTCGTTCA	ATTAGTAACC	AGTAACGCCA	GGACTGCCAG	360

-		
	TTTCTTGCTT CCGAATTCTC ATGGTAGCTT TCACCARGCT CCCCGTCMAA TGCTAACGTC	420
5	AACTACTGAA CTAGATTAGC AAAAAGGTCT TTTAACAGAA TTCCTGGTTT TCAGAGAGAG	480
3	TTTCTTTCAT GAAGCGCCCC ATTTCTACAG AGGAAAATAA ACTCCAAGCA GCCAGT	536
10	(2) INFORMATION FOR SEQ ID NO: 70:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 865 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
20	CCACGCGTCC GGCCTTTCTT GGCCAGAGGC GCCGGTTGGA CTCACGGGCG GGGCATGATG	60
	GGTAACAGGA CCGGTGGGGT CCCCAGGAAG TCCTAGAGGG GGTCGGGGTT TGGGTGGACA	120
25	AGCTTTCCTC GTCCTCTCCC GACAGAGCTG ACGTGTCCTG GGTTCCACCG GGAGCGGGCA	180
	TTTCCACCGG ACGGGAGGGT TCGGGGTGTC CGGGGCTGGG GAATACGTAG GGGTTGCCGC	240
20	GCGGTGTGGG GAGTTGGGGC GTGTGGCTGC AGTCCCGGGA GTTCTTGGAG GGGGTCGGCC	300
30	CACCGAGCTT CCGGACCGGC TGATCTGCCC GTAGCTTGCC GGANGGARGG CGGAGCTGAC	360
	TCTCCGTCCC TTCTCCCATC CCCTCCAGTG GTGGGTACGG GCACCTCGCT GGCGCTCTCC	420
35	TOCCTOCTGT COCTGCTGCT CTTTGCTGGG ATGCAGATGT ACAGCCGTCA GCTGGCCTCC	480
	ACCGAGTGGC TCACCATCCA GGGGGCCTG CTTGGTTCGG GTCTCTTCGT GTTCTCGCTC	540
10	ACTGCCTTCA ATAATCTGGA GAATCTTGTC TTTGGCAAAG GATTCCAAGC AAAGATCTTC	600
40	CCTGAGATTC TCCTGTGCCT CCTGTTGGCT CTCTTTGCAT CTGGCCTCAT CCACCGAGTC	660
	TGTGTCACCA CCTGCTTCAT CTTCTCCATG GTTGGTCTGT ACTACATCAA CAAGATCTCC	720
45	TCCACCCTGT ACCAGGCAGC AGCTCCAGTC CTCACACCAG CCAAGGTCAC AGGCAAGAGC	780
	AAGAAGAGAA ACTGACCCTG AATGTTCAAT AAAGTTGATT CTTTGTAAAA AAAAAAAAAA	840
50	AAAAAAAAA AAAAAAAAA AAAAA	865
55	(2) INFORMATION FOR SEQ ID NO: 71: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 932 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
60	(C) STRANDEDNESS: GOUDIE	

360

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:					
	TCATCATATA CAAAGTTTT CGTCACACTG CAGGGTTGAA ACCAGAAGTT AGTTGCTTTG	60				
5	AGAACATAAG GTCTTGTGCA AGAGGAGCCC TCGCTCTTCT GTTCCTTCTC GGCACCACCT	120				
	GGATCTTTGG GGTTCTCCAT GTTGTGCACG CATCAGTGGT TACAGCTTAC CTCTTCACAG	180				
10	TCAGCAATGC TTTCCAGGGG ATGTTCATTT TTTTATTCCT GTGTGTTTTA TCTAGAAAGA	240				
	TTCAAGAAGA ATATTACAGA TTGTTCAAAA ATGTCCCCTG TTGTTTTGGA TGTTTAAGGT	300				
15	AAACATAGAG AATGGTGGAT AATTACAACT GCACAAAAAT AAAAATTCCA AGCTGTGGAT	360				
13	GACCAATGTA TAAAAATGAC TCATCAAATT ATCCAATTAT TAACTACTAG ACAAAAAGTA	420				
	TTTTAAATCA GTTTTTCTGT TTATGCTATA GGAACTGTAG ATAATAAGGT AAAATTATGT	480				
20	ATCATATAGA TATACTATGT TTTTCTATGT GAAATAGTTC TGTCAAAAAT AGTATTGCAG	540				
	ATATTTGGAA AGTAATTGGT TTCTCAGGAG TGATATCACT GCACCCAAGG AAAGATTTTC	600				
25	TTTCTAACAC GAGAAGTATA TGAATGTCCT GAAGGAAACC ACTGGCTTGA TATTTCTGTG	660				
23	ACTCGTGTTG CCTTTGAAAC TAGTCCCCTA CCACCTCGGT AATGAGCTCC ATTACAGAAA	720				
	GTGGAACATA AGAGAATGAA GGGGCAGAAT ATCAAACAGT GAAAAGGGAA TGATAAGATG	780				
30	TATTTTGAAT GAACTGTTTT TTCTGTAGAC TAGCTGAGAA ATTGTTGACA TAAAATAAAG	840				
	AATTGAAGAA ACACATTTTA CCATTTAAAA AAAAAAAAA ACTNGAGGG GGCCCGGTAC	900				
35	CCAAATCGCC GCATAGTGAT CGTAAACAAT CT	932				
40	(2) INFORMATION FOR SEQ ID NO: 72:					
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 996 base pairs					
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:					
50	CGCCTGGCAC CATGAGGACG CCTGGGCCTC TGCCTGTGCT GCTGCTGCTC CTGGCGGGAG	60				
<i>5</i> 0	CCCCCGCCGC GCGGCCCACT CCCCCGACCT GCTACTCCCG CATGCGGGCC CTGAGCCAGG	120				
	AGATCACCCG CGACTTCAAC CTCCTGCAGG TCTCGGAGCC CTCGGAGCCA TGTGTGAGAT	180				
55	ACCTGCCCAG GCTGTACCTG GACATACACA ATTACTGTGT GCTGGACAAG CTGCGGGACT	240				

TTGTGGCCTC GCCCCCGTGT TGGAAAGTGG CCCAGGTAGA TTCCTTGAAG GACAAAGCAC

GGAAGCTGTA CACCATCATG AACTCGTTCT GCAGGAGAGA TTTGGTATTC CTGTTGGATG

	ACTGCAATGC CTTGGAATAC CCAATCCCAG TGACTACGGT CCTGCCAGAT CGTCAGCGCT	420
	AAGGGAACTG AGACCAGAGA AAGAACCCAA GAGAACTAAA GTTATGTCAG CTACCCAGAC	480
5	TTAATGGGCC AGAGCCATGA CCCTCACAGG TCTTGTGTTA GTTGTATCTG AAACTGTTAT	540
	GTATCTCTCT ACCTTCTGGA AAACAGGGCT GGTATTCCTA CCCNGGAACC TCCTTTGAGC	600
10	ATAGAGTTAG CAACCATGCT TCTCATTCCC TTGACTCATG TCTTGCCAGG ATGGTTAGAT	660
10	ACACAGCATG TTGATTTGGT CACCTAAAAA GAAGAAAAGG ACTAACAAGC TTCACTTTTA	720
	TGAACAACTA TTTTGAGAAC ATGCACAATA GTATGTTTTT ATTACTGGTT TAATGGAGTA	780
15	ATGGTACTTT TATTCTTTCT TGATAGAAAC CTGCTTACAT TTAACCAAGC TTCTATTATG	840
	CCTTTTCTA ACACAGACTT TCTTCACTGT CTTTCATTTA AAAAGAAATT AATGCTCTTA	900
20	AGATATATAT TTTAYGTAGT GCTGACAGGA CCCACTCTTT CATTGAAAGG TGATGAAAAT	960
20	CAAATAAAGA ATCTCTTCAC ATGARAAAAA AAAAAA	996
25	10. THE THE TRUE TO	
	(2) INFORMATION FOR SEQ ID NO: 73:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 785 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
٥٥	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
35	GGCACGAGGG GCTTTGCGTA CACAATAGCT GCTAGGAGTA CCCAAAGCCT GARTACARCC	60
	TGCTGGTGTC ATGGCCACGT GTGAGCAGGC CAGCGTCAMA CGGCTCGCTG TGACCCGTCC	120
40	CGRAGACTGA AATGGGCCTG GGTCTTCTCC TKGTCCTGTG ATWAAAGTCC TCTCTTGAAA	180
	GTGGAGAGCA AAGGCACACA GAGGTGCGCG CTCACAAGAA TTCCTCCCGG TGACTGGGTA	240
45	ATCAATGITA CIGCIGITIC CTITGCAGGA AAGACCACAG CAAGATICIT TCATTCGTCT	300
40	CCTCCTAGCC TGGGGGACCA GGCTCGAACT GACCCTGGAC ATCAAAGGAG GGATTATGTG	360
	GCTGCTAAAG CCATCGGCCC ACAGCCCTGT TCACRTCTTG GTGCTTCTCT TTCCCAGAGG	420
50	CTGGTCCCAG CCAGGCACAC ACAAAAGGCA GATTCTCGTA AACSCAGCCT CCCTCCCTGG	480
-	AGGCTGCCTC CTGCCCTGGA TCTGGAGTGG AGCTGCTCTG AGATTTTGAG TTCTTCTGCA	540
55	GAGATGATTA AATATATCCA AGAGACATTG GAAAACCTGC TGAACATTTT ACATTGGTCT	600
رر	GCTCAGCACA TGGCTGGATG CGGATATTTC TATAATTCCA GAAAGTCACA CAGCTCCTCT	660
	GTATGAGACC AGTGGGCGCC ATTTAAAAGA ACAGGATGAG AATCTAAGAT ATATTATTAA	720
60	ТАААТСТААТ ССАТТТТТТ ТТТСТАДАДА ДАДАДАДА ДАДАДАДАД АДАДАДАДА	780

	AAAA	785
5		
	(2) INFORMATION FOR SEQ ID NO: 74:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1069 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:	
	TCCTCACCAT TCCCCTAGGN CAGGTCCCTG CAGGTCCCAC ACTTCTCCCA GGTCCCTAAA	60
20	CTTGGGTCGG TCCTTTCCCT GGAGTAGCTG GNTCCTCCAG TCGAGGTCCC TGTTCAGTCG	120
20	GTTCTTAGGC TCCTGCACAT GAAGGTGTGT GCCTGTGGTG TGTGGGCTGC TCTAGGAGCA	180
	GATACAGGCT GGTATAGAGG ATGCAGAAAG GTAGGGCAGT ATGTTTAAGT CCAGACTTGG	240
25	CACATGGCTA GGGATACTGC TCACTAGCTG TGGAGGTCCT CAGGAGTGGA GAGAATGAGT	300
	AGGAGGGCAG AAGCTTCCAT TTTTGTCCTT CCTAAGACCC TGTTATTTGT GTTATTTCCT	360
30	GCCTTTCCGA GTCCTGCAGT GGGCTGCCCT GTACCCTGAA CCTCATGAGC CTCTAAGGGA	420
30	AAGGAGGAAC AATTAGGACG TGGCAATGAG ACCTGGCAGG GCAGARTACA AGCCCAGCAC	480
	CAGTGTCCCA GCCTTACTGG GTCCTTACCC TGGGCCAAAC AGGGAGGGCT GATACCTCCT	540
35	TECTCTTCCT AGATECCCAC CTCCTACAAT CTCAGCCCAC AAGTCCTCTC CACCCTAGGG	600
	GGCTTGCTGC ATGGCAATAA CTCATAATCT GATTTGGAGG TTTGCCCTTT ACAGGGGCAG	660
40	ATTITICTGCT CAGTTCAACA ATGAAATGAA GAGGAACTCC CTCTTTCTAC AGCTCACTTC	720
40	TATCAGAGGC CCAGGTGCCT CAGAGCCACA TTGAGTTGCT TTTTCTGGGA TGAGGAAGTA	780
	GGGTTAAACT CCCCAGTTTC CTGAGGGAGG CTCCTGACAG GTGCCCTTTG TCAGACCCTA	840
45	CCACAGCCTG GATAGGCAGC CACATTGGTC CTCGCCCTTG CTCGGNACTC CGTGGTGGTC	900
	CTGCCCTTCT CCCTGCATGC CTGTGGGTCT GCTCTGGTGT GTGAAGGTCG GTGGGTTAAC	960
50	TGTGTGCCTA CTGAACCTGG CAAATAAACA TCACCCTGCA AAGCCAAAAA AAAAAAAAAA	1020
50		1069

(2) INFORMATION FOR SEQ ID NO: 75:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 831 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75: 5 GGACATTAGA TCACTGTGGA CCTAAAACAA ACAAACAACT ATAAGGAAAA TGGCATTAGA 60 AATGGTCTGG GGATCAGTTT ATCACTGCAG TTGTTACATC ACCCCATGGT CTAAAATACA 120 GAGCTTTAGT CTGTCTCTGT TTCAGTTCAT TTTACAGGAG GTGAACATCA CACTTCCAGA 10 180 AAACTCTGTC TGGTATGAAA GGTATAAATT TGATATTCCT GTCTTTCACT TGAATGGCCA GTTTCTGATG ATGCATCGAG TAAACACCTC AAAACTTGAA AAACAGCTCC TGAAACTTGA 300 15 GCAGCAAAGT ACTGGARGCT GACTGATGCC CTCATGATTT TCCACCCTCT CTTCCCATAA AGCATCTTCC TAAGGAAATG AMCATGGCCT GATACTCATT TTGTCACTTG TACAGAGCCC 420 TAAGGATGTT CTGAATTCAG TGGTGCCAAA TAAATGTTGA CATTCCCCTT TTGGTTGATG 20 480 GAAGTATCAG TGTGGGAACT GTTTGCTTAA TGGCATTTTA TAAAATAAKA AKAKCATATT AGCAGGGAGG GAGATGATGG AGGGAGGGAG AAGTCCATTT GTCTTATTTA TCCTTTTTGT 600 25 ATTAATAGAG AAGCACTTCA CAGTCACTGG CAATGCCATT TATAGGAAGA AGGTTCTGCA 660 TTCCTGCTGC TCCCGGAGGG CTTAACTTTT TAATGAAAGA ATAAATGCTC TTCCACTCAG TAGATAAAGT GAAATGTGAA TTGTTAATAA CTGTGCACGG TCAATAAAGC GATGTTTTAA 30

35

40

50

55

60

(2) INFORMATION FOR SEQ ID NO: 76:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 590 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76: 45

TATATATAGA CNGT	TAATAG TCGTGANTGN	TGTGNACGAA	CATTAACGGA	AGTAGCATGT	60
AGCCAGTCGA ATAAC	CNTATA AGGACAAAGI	GGAGTCCACG	CCTCCGCCC	TCTAGACTAG	120
TGGATCCCCC GGCT	GCAGGA TTCGGCACGA	GCTGCCAGGT	GAGGAGCAGA	GAGACTGTTC	180
CCTTGGGTGG AGAG	GTGTGG GCATGAGAGC	CACCCATTGC	CAAGCAGCAA	GAATGTTCGT	240
GCTTTTTTCC CTTCC	CAAAAT ATGCAGGGCT	CAGGCTCCCA	ATTCCGGGCC	TGTCTGCTTT	300
GCTTGTGTTT CTCC	TGTCCC TGTTCTCCCC	GAGGGCCCAG	GTGGAACTCA	CGACAGGGAG	360
GGAGACGCTT CCCA	AAAACC TGCAGGGCTA	TTTCCCAGAA	TITEGTITIC	AAGTACAAAA	420

WO 98/54963 PCT/US98/11422

332

	CTTTTTGTCC	TGTAAGATAT	ATGCAGCCTC	ACAGAAGCAG	CCTCTGCCTC	CACTTTACCA	480
	GCTACGTTTT	TATCTTAAGC	ACATGGGGCT	CCCTTAGAAC	TTACTCCACT	GATTTAAAAA	540
5	АААААААА	AAACTCGAGG	GGGGCCCGG	TACCCATTCG	CCCTAAAAGT		590

10 (2) INFORMATION FOR SEQ ID NO: 77:

15

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1274 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:

GAGCCACCAC ACCTGGCCTG GAAGGAACCT CTTAAAATCA GTTTACGTCT TGTATTTTGT

	TCTGTGATGG	AGGACAC1GG	AGAGAGTIGC	TATTCCAGIC	AATCATGTCG	MGTCACTGGA	120
25	CTCTGAAAAT	CCTATTGGTT	CCTTTATTTT	ATTTGAGTTT	AGAGTTCCCT	TCTGGGTTTG	180
	TATTATGTCT	GGCAAATGAC	CTGGGTTATC	ACTITICCTC	CAGGGTTAGA	TCATAGATCT	240
	TGGAAACTCC	TTAGAGAGCA	TTTTGCTCCT	ACCAAGGATC	AGATACTGGA	GCCCCACATA	300
30	ATAGATTTCA	TTTCACTCTA	GCCTACATAG	AGCTTTCTGT	TECTETCTCT	TGCCATGCAC	360
	TTGTGCGGTG	ATTACACACT	TGACAGTACC	AGGAGACAAA	TGACTTACAG	ATCCCCGAC	420
35	ATGCCTCTTC	CCCTTGGCAA	GCTCAGTTGC	CCTGATAGTA	GCATGTTTCT	GTTTCTGATG	480
	TACCTTTTTT	CTCTTCTTCT	TTGCATCAGC	CAATTCCCAG	AATTTCCCCA	GGCAATTTGT	540
	AGAGGACCTT	TTTGGGGTCC	TATATGAGCC	ATGTCCTCAA	AGCTTTTAAA	CCTCCTTGCT	600
40	CTCCTACAAT	ATTCAGTACA	TGACCACTGT	CATCCTAGAA	GGCTTCTGAA	AAGAGGGCA	660
	AGAGCCACTC	TGCGCCACAA	AGGTTGGGGT	CCATCTTCTC	TCCGAGGTTG	TGAAAGTTTT	720
45	CAAATTGTAC	TAATAGGSTG	GGGCCCTGAC	TTGGCTGTGG	GCTTTGGGAG	GGGTAAGCTG	780
45	CTTTCTAGAT	CTCTCCCAGT	GAGGCATGGA	GGTGTTTCTG	AATTTTGTCT	ACCTCACAGG	840
	GATGTTGTGA	GGCTTGAAAA	GGTCAAAAAA	TGATGGCCCC	TTGAGCTCTT	TGTAAGAAAG	900
50	GTAGATGAAA	TATCGGATGT	AATCTGAAAA	AAAGATAAAA	TGTGACTTCC	CCTGCTCTGT	. 960
	GCAGCAGTCG	GGCTGGATGC	TCTGTGGCCT	TTCTTGGGTC	CTCATGCCAC	CCCACAGCTC	1020
55	CCAGGAACCT	TGAAGCCAAT	CTGGGGGACT	TTCAGATGTT	TGACAAAGAG	GTACCAGGCA	1080
JJ	AACTTCCTGC	TACACATGCC	CTGAATGAAT	TGCTAAATTT	CAAAGGAAAT	GGACCCTGCT	1140
	TTTAAGGATG	TACAAAAGTA	TGTCTGCATC	GATGTCTGTA	CTGTAAATTT	СТААТТТАТС	1200
60	ACTGTACAAA	GAAAACCCCT	TGCTATTTAA	TTTTGTATTA	AAGGAAAATA	AAGTTTTGTT	1260

TGTTAAAAAA AAAA 1274

- 5

10

(2) INFORMATION FOR SEQ ID NO: 78:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1133 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

	AGGATTTTTC	CTTGTTCAAC	CAAAATCTGA	GCATTCTTTC	TATGTTGAAA	ACACTGAAAA	60
20	ACTAATITWA	GTTAATGAAC	TAGAAAGAAT	ATTGATTTTW	AAGAAACAGA	AAAATACTAC	120
20	TTATTTTCCT	TCTCAAATAA	CGTTTCTTTC	AAAAACTTCT	GGCTGAAGTA	TAACATGCTG	180
	GTAGTTAACA	TAAATCTTGT	CTTTCTCTTG	TTCTTTATCT	TTCTTTGTTA	TTTAGATGCT	240
25	TGTATAAATG	TCTTTTGTTT	TTATTAAGTG	CCTAATTGAC	AGAGCTTAAT	TTGAAGAAGT	300
	GCCCTAATTT	ATTGACCACT	TAAGAATTGC	CTTTATTGGG	GTATTTTATT	TCTTCCTGCG	360
30	TCTTTTTGAT	GTTGTTCAGT	CTACTCATCC	CTGTGAGTAT	GTGTGGGGGA	CAGCTGATAG	420
20	AAGGGAGGAG	AGTGTGTCTA	TGCTCAGGAT	TGCCCTTTAG	CCACTCAGCC	AGAGATCCAC	480
	AGGGAGCAAC	AAGGACAGTT	TCACATGCTT	AGACTTTCTT	GGAAGAAACA	GTGAGGAGGA	540
35	GTAAGTCGTG	AGTAGTGTCA	AGCTGGATGT	AGAATTGTCC	TAAGGCAGTT	GACCCCACCT	600
	TCCAACATGT	TTTCACTTTA	TTTGCCCCTC	CCTACATTTG	GGTTAGGTTC	CATTTGGATT	660
40	TGCAGCAATA	ATGACTTTAT	TICTCTCTTG	GTCAGGATTT	GGCACATAAA	ATCCTTTTAT	720
40	TATAGAACTA	GCTATTTTAG	TTACATAGTA	ATGTAACTAA	TGGAGAGATT	TATAGAGAAT	780
	TTTGKTTTTG	CTGTCATATA	TGTCCATTTT	GGAGACAGAT	ATGATAGAAC	TAGAAATTAA	840
45	GTTGCATTTC	TGCAAGTGCC	ATTTGAATGA	ACTTCAAGTA	TCTTCTTAAT	TATTAAATTT	900
	TCTGATGAAG	GCATTGTAAC	AAATATATAG	ТАТТАТТААА	TCTAATTAAT	ATTTGGAAAT	960
50	ATTAATAAAT	AGGTATTTTA	TTTACTGTAA	AAAGTCAAAC	TTCATTATGT	AGATAAATCT	1020
JU	TATTCTTTTC	ATTCTTTCCC	CTGTTTACAT	CCTTTTTACA	AAGCTTAGTC	ACCAATTAAA	1080
	GCTTTCCTAT	СААААААА	ааааааааа	ACTCGAGACT	AGTTCTCTCT	CCT	1133

55

(2) INFORMATION FOR SEQ ID NO: 79:

60 (i) SEQUENCE CHARACTERISTICS:

. 5	(A) LENGTH: 661 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:	
	GAATTCGGCA CGAGGGGAAA AGGATGCTGA ACGAGAGCAG AAAGCCTCTT TCCTTTGCTT	60
10	CACGCCTTTC CAGTCTTTAT TTTAAACTCG GGTTCCCTTT CTGTGGTCGC AGCAACCTTT	120
10	ACTICIACITY CACTGOTGCT COTGGGGGCT CCCCAGGCCT CCCTCTGCCT TTCTACCCAG	180
		240
15	TGGCTGACGG GATGCCTGTC TTGCCTGGAC GCACCACTGC TCTCCTGTCC CTCACCTTGG	
	CTTTTGCTGT GCCCTGCTCT GGGGTTGAAG CTGGCCCATG TGTCCCCCGG AGTCATGGCT	300
••	GCTCCTCCTG GGAGGCCTCT GTGTGCGTCA CGTCTTCCAC ACCTGGGGGC AGCTGGCGAG	360
20	CCCGTGCTCT GTTCCCCTCG GCTGCTTGGC ACAGAGYTGC AGCCTGGGAY TCTCCGTGGA	420
	CCCAGACTGG GGATTTTGCC AGGGGGGGCGA TGGGAGGAGC AGGTGCTTTG CCTGGCGGCT	480
25	GTGTCTGCAT TTCTGGACGC CCCAGAGCAC AGAAGTTGCC GGCACTTTGA GGTCTTCCTC	540
23	GGCATGTGCC AGATTACATG AGTGACGGCT GGGAATATGT TTTCTTTTTT GTAATGGAGG	600
	CGTGTTTCAC ATATAGTAAA GCTCACCAAA AAGTAAAAAA AAAAAAAAAA	660
30	A .	661
25	40	
35	(2) INFORMATION FOR SEQ ID NO: 80:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1378 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	
45	ATTGGGTACC GGGCCCCCC TCGAAGTTTT TTTTTTTTT TTTTAATGAA AGCTCTCAAA	60
	TAAGCGATTT TATTCCTATC CATGATTGCA GACATTTACA AAACCATAAC ATCTGAGTTC	120
50	ACCTTAAAAA ATAACTTATA TAAAGCAGTG ATATACACAG CACAAAATAG TTCAGGGAGG	180
50	GGGCAGGAGC AACTTGTAAT AATTAAAATG TAAACGTGAA AAAAAGGATG GAATAAAAGT	240
	CCCTACTTAT TTCTACTTAA GATGTCATGT GATAATATTT TACAATGTCC TGTGGGTCAA	300
55	TYPETETET TETETETET TETETETE TETETEACET ACACATETE AGTACATTCT CTTTCCCACA	360

CATATACATA CACACATAAT TATTTGCAGT TCAGTTTAGG GCAATTCTAA TATGCCACTC

CGTACAGTTG TTTGAATCAC ATTTGGACCC GCTTTCTTCA CAAAAGAGGG GAGAGAGCAG

	GAAATAAAAA	GGTTGGTTTG	GTGTGACTGA	GATTCCTTTG	TTTAACTGTA	CACTGTGATG	540
	AATAATTTTC	TTCCGTAGTA	GTTCTGTGAA	GGGCTGACTC	ACTGTGGTTT	TCATGAGGAG	600
5	ACTTGGTAAT	GGATCACACG	CTCATTGTCA	TGCTAGGGGA	GTAACTCTCA	CTCTGAAAAG	660
	GATTTAAGAA	ATTTCCCCCC	ATTTCGCCAT	CATCCCTTGG	AGTGCCCGGT	TGATTACTCA	720
10	GGCTCATATT	ATTGGGAGAA	TTCTTGGAAA	TACTGTCCAT	ATCTCCTGAG	CCTAAAGAGC	. 780
10	CATTCATGTG	ATGTGACTCC	ATTCCTCCTA	ATCCACCCAT	GGGACCATCT	GACCCAGGRC	840
	CCATTGGAAA	ATTAGGTCTG	TTAGGTCCAG	GAGGTACTGC	ATTCATTAAA	GTATACATGT	900
15	TATCACCAGA	GTTGGTTGAA	TCTGCTGGAC	TAGGCATGAT	GGGTGTTCCT	GGTGGCCCTC	960
	CACCTCCTGG	AGGACCTACA	TAATTCCCAG	GAGATGCTGA	GGAGTATGGT	ATTGAATTGG	1020
20	CATTTGTTGG	GTTTGGCCAA	GGTCTACCAC	CACCTGGACC	CATGTTCATT	CCAGGCATTC	1080
	CAGGGCCACC	TAAAGCATTC	AGTGGGGGTC	TCATTGCACC	TCCATAGTTC	TGTGGTCCTA	1140
	AGGGCACCAT	TCCTCTTGGA	GGAGTCATTC	TCTGCATTGG	CCCACCCATA	TTTGGATGTC	1200
25	CTTGTTGTCG	AGTTGGATCC	ATTCCACTGG	GGAGTAATGG	CTGACTTCCT	GGGACACCTC	1260
	CAAGTGCCTG	ATTAGGTATC	CTCAATGGGG	GCCTTGGACC	TCCAGGGTAC	CGAGGTGACA	1320
30	TAAAAGGGTA	ATCATGGAAG	GCTTTTGCTT	CACTTGAGTG	TTCACATGTT	TCACGTCT	1378

(2) INFORMATION FOR SEQ ID NO: 81:

35

40

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1440 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

ACTITIGICCA AATGIGICIG TCACATGIAG TCAGCIGNAG NAATITAAAA IGAATIGCCA 60 AGTGAAGAGT CTGTGGATTA ATTGGCCGTT AATTAACAGG CTTTATCAAT GTGTCCTCAA 120 GGGAGAGGCC CAACCCTAAT TAAGGAGCTA AACTTCCTGA GTGAGGGCCT GTGAGGATGG 180 AGGTGGAGGA GGCATCTGGG GCGGGTGGTG GCCGGGCCAG CAGATGGCGC CTCCCTGGCT 50. 240 GAGCTGCCCG CACCGCCAGT TCCCTCATTT CCACTCAGGA AGGCAGAGAA GGCAGAGTGA 300 TCTCCTCAAG GAAGAGCTTC CCCAGCCTTC GGGAGCAGCT GGCAGGGCGT CCGGGAATAA 360 55 GCCCTACACG CCGCCGCCTG CCTCCAACTC ACTAACCCTG CGCCTCTTGT CTTTCAGATT 420 480 CAACGCGTTC AACAGAAGCC ATCCCCAGCC CAGCTTAAAT TATAAAGATA GACAATAACT 540 60 CTGTTCCAAT CTGCGTGGTG CTTCTTTAGT AAATACTGTA CAGATTTTAC CATGGAGAAC

	TTTTTTTTTA	GTTTTTACCT	TTTCTTAATT	ACCCTTATTC	CGAATGGACG	AACACTTTCT	600
5	ACCACTGCTG	ACCATTGTAA	AATACCGTGT	ATATAAATCC	CATTGAAATA	ATGCCCTGGA	660
,	ATAGAACATC	TCAAATGCTG	CTTAATTACA	GACTCAGGTC	GATTACTTGT	ATTTCATGTA	720
	ATGTTCCTCC	AAGTTAGACA	TCTGGTGCAA	GACCAACCGG	GAGACCATGG	AATTGTCAAA	780
10	AGTACAAACT	GACAGTGTGT	ATATTTAATT	TAAAGACTTA	TTTAAAAACT	CACAAGCTCT	840
	CACCTAGACT	TTGGAGAGCA	GTCTGTTTTC	TGTAATGTCT	GATACTAGAA	ACTAATTTGC	900
15	TTATTTTAGT	TGTATTCAAG	ATTTGAAGAT	GTATTTTATA	GACAAGTTCT	GTTTTTGAAC	960
13	TTTGTGGAAC	TGTTCCAATC	AATCAATTTC	CCAGTTATGA	TGAGTATTTA	CATTATGAAT	1020
	GTATAACCCA	GACATGATTT	GTAAAGCCGA	CAGTATGTTT	CTATTACACA	ACACTTTTTG	1080
20	ATACAGCGTC	TCTTGTCTTC	ACTGATACTG	GAGTCTCCGT	TGTCTGCNNG	GTCCCTTCGA	1140
	GTTTCTAGTT	ACAGACACAA	TCATACTGTG	ATTTTATTTT	TAATATGGAT	ATGCTATCAA	1200
25	ACTGTGATAC	ACTTATAATT	CACTGGTCCT	GCATCAGGAG	ATGGAGTGGG	GAAAACTGTA	1260
43	TTTAATACAG	TTTGTATCTG	AATAATCTGT	ATGGTTTATA	CAGTTTGTGT	TGTTCAGAGA	1320
	TGTTTAAAGT	TTGATCTTTG	TTTTTCTAAA	GATTAAAAAA	GCACTTGCCC	CACTGTAAAT	1380
30	ATACAGCATG	TAAAATTTCT	RTAGTATATA	AATGGCAGCA	AATCACAAAA	NAAAAAAA	1440

35 (2) INFORMATION FOR SEQ ID NO: 82:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1381 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:

	(XI) SEQUENCE DESCRIPTION. SEQ 15 No. 01.						
45	CCCGGGCTGC	AGGAATTCGK	YACGAGGCCA	GCAGTTGCTC	CCAGTTCAGG	AGGTGCTCCT	60
	GTACCCTGGC	CACAGCCCAA	TCCTGCCACT	GCTGACATCT	GGGGAGACTT	TACCAAATCT	120
50	ACAGGATCAA	CTTCCAGCCA	GACCCAGCCA	GGCACAGGCT	GGGTCCAGTT	CTGACCTGAG	180
50	CACGGTTTTT	CCTCATGTGA	CTTCTGGGAA	GGCGCTCCCT	CATCTGGGCC	AAAGGAAGGA	240
	GGACGAAGCC	CTCCTCAGCT	GGCCTGTGTT	TGGGGCATGA	ATCTCTCCTC	TCCTCCTTGT	300
55	CTGGCTCTGT	TGACAAACCG	GGCATGTTTG	GCAGTAAATT	GGCACCGTGT	CACACTGTTT	360
	CCTGGGATTC	AAGTATGCAA	CCAGAACACA	GGAGAAGAAA	AGCTCCAGGA	TCCCTGTCCC	420
60	CATCTGTCCT	CTTGATGTGA	GAGAGACTCT	GAGACTTCTT	CCATCGCAAT	GACCTGTATT	480

	AAACACAAGC	CCCCCAAGCA	AAAGAAGAGG	TTGAGTTTGC	TGCCAGGATT	CAGATCAGCC	540
	CTTCCCAGGG	TCTGCAGGTG	TCACATGATC	ACAGTTCAGC	GGGAGGCTTT	CCGTACCCAC	600
5	ACTGGCTGTA	GCACTTCAGT	CCATCTGCCC	TCCAGAGGAG	GGTTTCTTCC	TGATTTTTAG	660
	CAGGTTTAGA	GGCTGCAGCT	TGAGCTACAA	TCAGGAGGGA	AATTGGAAGG	ATTAGCAGCT	720
10	TTTAAAAATG	TTTAAATATT	TTGCTTTGCT	AATGTGCTGA	TCCGCACTAA	CTCATCTTTG	- 780
10	CAAAAGGAAC	TGCTCCCTCG	GCGTGCCCCA	GCTGGGGCCT	CTGAAGGGAT	TCCTCACTGT	840
	GGGCAGCTGC	CCTGAGCTTC	AGGCAGCAGT	GTTCATCTCT	GGCCAGTTGT	CTGGTTTCCA	900
15	TGTATTCTAG	GCCAGGTAGG	CAACACAGAG	CCAAGGCGGG	TGCTGGAAGC	CAGACGGAAC	960
	AGTGTTGGGG	CAGGAAGGTG	GATGCTGTTG	TCATGGAGCT	GTGGGAGTTG	GCACTCTGTC	1020
20	TGCTGGTGGC	CCTCTCGGCT	CACATGTTCA	CAGTGCAGCT	CCTGGCAGAC	TTGGGTTTTC	1080
20	TCTTTGGTGG	TTTCTAAAGT	GCCTTATCTG	CAAACAACTT	CTTTTCTCCT	TCAGGAACTG	1140
	TGAATGGCTA	GAAGAAGGAG	CTCAGTAAAC	TAGAAGTCCA	GGGTTGCTTG	GTTTACTGGT	1200
25	TTATAAGAAA	TCTGAAAGCA	CCTCTGACAT	TCCTTTTATT	AACTCACCTC	TCAGTTGAAA	1260
	GATTTCTTCT	TTGAAAGGTC	AAGACCGTGA	ACTGAAAAA	GTGTTGGCCT	TTTTGCGGGA	1320
30	CCAGATTTT	AAGATAAAAT	AAATATTTT	ACTTCTGTCA	AAAAAAAA	AAAAAAATNT	1380
30	С						1381

40

(2) INFORMATION FOR SEQ ID NO: 83:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1706 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

45 ACTGCACCAC TGCCCAGGTC TCCCGGCTGG ATGAAGACGT GGTCCATGAG GAAGCTGGCT 60 AGCTCAGACT GGAGAGTAGC TTCAGGAAAA AAGACAAGTG GCCTAAGGAA ATCACGGCCC 120 CCAACTATCA TCTGAGGGCT AAAGATGAGA AGTAGATCAC TTAATAAGAC AAAAGCCTGT 50 180 AGGGGGAAAA GAAAGGATGT TTAAAAGGAC AGAATGTTTC CCAAGGTAGA AATGACACTG 240 TCAATTTCTC CTTGGAATGG GGGCAGGGAT ACTCGCCTTG TTGCTCCCAC TTGAGTCAGT 300 55 ACTCACCTGC TCCTGGATCT CAGTATCCAC ATCTGAGAGG CAACTCTGGC AGAGTTCACA 360 GAAGGCCACC ATTCTGTCCC TCAAACTCGA CAGCTGCTTC TGTGGGCACA GTGGCTTGAA 420 GGGGAAGAAT GAAGACACAG ACTCCTCTGT TCCCATTATC CCATCTAAGA CCCACACTCA 480 60

	CCTGGGGAAG	CATCTGATTT	AGAAATGTGG	GTTAGTGTCC	AGAGAATGGA	AAAATAGACA	540
5	AGAGTCAAGG	CTGGCAGGAT	AACCTGTAAC	AACAAAGGGT	TTGAAAAATG	AGGTTTGGGT	600
3	TAGGAGAGGG	AGAGACAGAT	AGCCAGAAAC	ACACCAGTGA	AGAGGAGAGA	AAATGAGTAA	660
	AGGGAGAGCT	AATTCCTTTT	CCAGTGGAAA	ATGAGTGATA	TTCTGGACAT	TCTTCAGAGG	720
10	CATCTACACG	AAGTAGAAAT	GTCACCGCTC	CCTAATTTAC	TCTACGTCTT	CTAGAATCCC	780
	TCAATATTAT	CCTTGGCTTC	CAGGAAATCC	AAGAAGACCC	TGGAAGTAGA	GTCCACCTTC	840
15	TAAGAGAGGA	ATGTAAGAGG	TGACCCCCAC	CCACCTGATC	TTCCTCGCTT	TGTCCACTCC	900
13	ACGCACTGAG	ACTTGACACA	CCTAGTGGCC	ACCTAGAACG	TAGGTCCTTA	AAATYTAGCC	960
	CCCCAGCCCC	CAACCCATCT	CTAGCCTGTC	CACTCACCTG	GTGAGGAACY	TYTCCTGTGT	1020
20	CCACAGCYTT	CTGCAGGAGT	TGGCAACATG	GCTCATAGAG	CTCCCAGCGA	GTCAGGTCAT	1080
	GAGTGCTTTG	GGGGAGAAAG	GGGAATGTTA	TACTGGAAAA	GAACAGAGGG	AACCAACTCC	1140
25	ACAGACACCA	GTAAAAACGG	GATGGGGAAG	AGGAGGAAAG	CCACTCACTT	GTAGAAGGCA	1200
-	GAGAGGCGTT	TCAGAGTGGC	TGCCAGATTA	TATACCTCAT	CCTCATCTAG	GAAGGACGAC	1260
	TGAGAAGGAA	AGAAGATCCA	CAATAGCATT	TCCCCCAGAA	CTCATCAGTC	CACATCCCCC	1320
30	GTCTTGCAGC	CCCTCCCACC	CTTGTTTGGG	GTGTCCCATT	GTCCAGCCCC	AGCTCCTACC	1380
	TGTAACAGCT	CTTCAAGCTC	CTGCTGGAAR	CGGTCAGTCA	GCAAATCTAC	TAGCTGGCTG	1440
35	CGGGCAAAGT	CCGCCCGGCT	GAAGAAAGTG	AATTCGGGAT	TACAGAGCAG	GTAAGAGCAT	1500
	GCGCCCCAGC	CTCAAGCACC	GCTGGCTCTG	CATGCTTCAC	CACCACCTCC	TGGAGTTGCT	1560
	GCAGGAACAG	CTCCAGGTGC	TGAGAAGAAA	AGGCAGAAGA	TGGTGTGCTG	TGGGGATGGG	1620
40	AGGAGGACAC	TCTTCTGGCG	GGAAGTGGAA	CGGGGTTAAA	AGCATTAAAC	TTCAAGGATA	1680
	AGATGCCTAA	RAAAAAAAA	AAAAA				1706

50

(2) INFORMATION FOR SEQ ID NO: 84:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 573 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

GAATTCGGCA CGAGCTTGGT AGCCTTAGAA CTGCATGAGC TGCTTTACCA CTGGGAAACA 60
CGAGCACAGC CTAGCTTGAT TTTGTATGTG GTATCAGATC TAAGGTGGAT GGAATTCAGG 120

	ACTTCCTGTC	TACTCTTTGA	TTTTGTTTTA	TTTTTAGAAA	TGTTTTATTT	TGTTTTATTC	180
	ATTTATTCAT	CTTCAGAGAC	ATGGTCTGGC	TCTGTTGCCC	AGGATGGAGT	GCATGGTGTG	240
5	ATCATAGGCC	ACTGCAGTGT	TGAGCTCCCG	GGCTCAGGCG	ATCCTCCTGC	CTCAGCTYCC	300
	TTAGTAGCTG	GGACTATAGG	CACATGCCCT	ACCATGCCTG	GCTTTGTCTA	CTTTTTGAAT	360
10	GATGTCYCAA	ACTAGAAGGT	CTATTAATTT	AAAAAATTAA	GGATAGCATG	CCATAATTAA -	420
ıo	AAATAATAAC	AGTGGGAAAA	GGCACCTICC	AATGATTCAG	ACATCAACTT	GTGATTTAAA	480
	AAAACGAAAA	АТАААТААТА	GGAAAAAAAG	GGGAAAAGT	TAAATAAAA	TAAAATTAAA	540
15	АААААААА	AAAAACTCGA	GGGGGGCCCG	GTA			57:

20 (2) INFORMATION FOR SEQ ID NO: 85:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 684 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

30	CTCTTTGGCT	GTGTCTACCT	CCTTCATCTG	CTGCGCCGAC	ATAAGCACCG	CCCTGCCCCT	60
	AGGCTCCAGC	CGTCCCGCAC	CAGCCCCCAG	GCACCGAGAG	CACGAGCATG	GGCACCAAGC	120
35	CAGGCCTCCC	AGGCTGCTCT	YCACGTCCCT	TATGCCACTA	TCAACACCAG	CTGCYGCCCA	180
<i>33</i>	GCTACTTTGG	ACACAGCTCA	CCCCCATGGG	GGCCGTCCT	GGTGGGCGTC	ACTCCCCACC	240
	CACGCTGCAC	ACCGGCCCCA	CCCCCTCCC	GCCTGGGCCT	CCACACCCAT	CCCTGCACGT	300
40	GGCAGCTTTG	TCTCTGTTGA	GAATGGACTC	TACGCTCAGG	CAGGGGAGAR	GCCTCCTCAC	360
	ACTGGTCCCG	GCCTCACTCT	TTTCCCTGAC	CCTCGGGGGC	CCAGGGCCAT	GGAAGGACCC	420
45	TTAGGAGTTC	GATGAGAGAG	ACCATGAGGC	CACTGGGCTT	TCCCCCTCCC	AGGCCTCCTG	480
43	GGTGTCATCC	CCTTACTTTA	ATTCTTGGGC	CTCCAATAAG	TGTCCCATAG	GTGTCTGGCC	540
	AGGCCCACCT	GCTGCGGATG	TGGTCTGTGT	CCCTCTCTCC	GCACAGGTGT	GAGTGTGTGA	600
50	GTGACAGTTA	CCCCATTTCA	GTCATTTCCT	GCTGCAACTA	AGTCAGCAAC	ACAGTTTCTC	660
	TGAAAAAAA	AAAAAAAAA	AAAC				684

55

25

(2) INFORMATION FOR SEQ ID NO: 86:

(i) SEQUENCE CHARACTERISTICS:

60

(A) LENGTH: 1036 base pairs

NO: 86:

	(C)	TYPE: nucleic acid STRANDEDNESS: double TOPOLOGY: linear	
(xi)	SEQUE	NCE DESCRIPTION: SEQ II	כ

TGGAGGCAGA TGCACAGGAG AAAGGTTCCC GTCCGCACCC TCTCAGACCT GAGGCTGAGC 60 TTGCAGTGAG GGCTTCTCCT CGGCCCCTCG CCCGCCCCCA GAGCTGCCAT CCCTGCTGTT 10 ACAAGCCAGA GGAGCCCGGA TGTGAGGCCC CAGATCACCT CCAGGGACTT GGGGTTCCCA 180 TCTGAAATCC TTTATTTTTG TACCATGGGG TGGGCCCCGG GCTGAGAAGG AAGAAGCACC 240 CTCTCCCCGG CCTCCTCTGT CTGCACCCGT GGGGCTGTGA CTTACTCCTG CCTCCAGGGG 15 300 CGGGCCGGG CCCCCTGGGA CCTCTTAAGG CCCAAGGTGG GCCCCAGGAC CTYTGGGCAG 360 AGTGGAYTGC TCATGGCAGA TGTGTGGCAA TGTCTGGCTG WGTCTTTCCG GCAMCTGCGT 420 20 YCCCTYTCCC GGGYTCCCCT GCTGCATGGT GGATGTGCTC CTTCCTGGCC CGGTCACATT 480 GCCTCCTTGA GCCTTAGTCC AGGGGGTCAC TYCTCCCACC CCACCTACCT CACAGGGTTG 540 TTGTGAGGGT GCACAGAGGA GCAAAGTCCC TGAAGGCCCT CAGGCAGTAT ATAGGGGCCG 25 600 CCCACCTTCA GCTGCCCTGG GATGGGAAGG ACCCAGCCCG ACCCCTGGGC ATAACACTGT 660 GTTTGCAAAT GGAGATTCAG GTATTGGGGA TGCAGGTTGT GGGGAGCTGG CCTGGCAGAG 720 30 TAGGGGTAGT TGGCTTGGCC TTCTCTTTGG TGATCCCACC CCCAGCCATT TGCATTGCTG 780 GCCCAGCGCC TGGCCTGGGG GGCGGGGAGA GGCAGCAGAA GGGGCTGGGC AGGGGCGGTG 840 GAGGACTCAG GAACTGCCCG GGGAGAGTGG GTATGGCGGC TGAGCCAGGG GCCCTCCTGT 35 900 GTTTGACTTC CCGGGATGGG TCCTTGCTTC TCAGCTGTGT CCGACCCCAC CATGTAATAA 960 1020 40 1036 CCCNGGGGGG GNCCCG

45

50

(2) INFORMATION FOR SEQ ID NO: 87:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 908 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

TTAAACAAAT GGAATCATGC AATATGTGAC CTTTTGCGTC TGGCTTATTT TATTTAGCAT 60

AATGTTTTTG AGGTTCATCC AAGCTGTAGC ATGTATCAGC ACCTCATTTC TTTTTCTGGC 120

TGAATATTAT TCCATTATAT GGATTTACCA CAATTCATTT ACCTATTCAT CTTTTGTTTC 180

60

480

540

600

	TGCTGTCTGG CTATTGTGAA TAATGCTTCG ATAAACATTC ATATACAAGT TTCTATGTGG	240						
5	CTTTATGTTT TCATTTCTCT TGGCTATCTA CATGGGAGTA GAATTCTAGG TCATAATATA	300						
5	ATTITATGTT TAACTICICA AAGAATIGCC AAAAGGTTTT TCATAGTGGC TGCATCATTT	360						
	ACATTCCCAC CGGCAATGTA CAAGGATTTC TATTTTTCCA TATCCTTGCA CTTACCAACA	420						
10	CTTCTTTTTK GIWATWATTT TGTTTTTCA TTATTGCCAC CCTAGTGGAT GTGAAATGGC	480						
	ATCTTATTGT TTTGATTTGC ATTTCTCTAA TGACAAATGA TATCATACTT TTTTTATGTG	540						
15	CTTACGGATC AAAGGTATTT CCTTGGAGAA ATGTCCCTTC AAGTCCTTTG CCATTTCAAA	600						
13	ATTTGGTTAT TTGTCTTTTA TTATTCAGTT TTAAGAAATT CTGGCCAGGC GCAGTGGCTC	660						
	ACCTGTAATC MTAGCACTTT GGGAGGCCAA GGCGGGCAGA TCACTTGAGK TCAGGACTTC	720						
20	GAGACCAGCC TGGCCAACAT GGTGAAACCC CATCTTACTA AAAATACAAA AATTAGCTGG	780						
	GCGTGGTGGC AGGTGCATGT AATCNTATCT ACTCAGGAGG CTGAGGCAGG AGAATCGCTT	840						
25	GAACCCAGGA GGCGGAGGCT GCAGTGAGCC AAGATCACGC CATTGCACTC TAGCCTGGGT	900						
23	GACACAGA	908						
30	(2) INFORMATION FOR SEQ ID NO: 88:							
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 655 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 							
40	(xi) SEQUENCE DESCRIPTION; SEQ ID NO: 88:							
70	TGCACTGGTT CCTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA TGTGGCAGGT	60						
	GACTACAAAA TCCGCCTTGG TATTCTTCAA ATGCATATAT ATTCCTTTCT TGTCAGCTCC	120						
45	CTCTCTTCCT AGATTAGAAA ACTGCCTCAT TTTCTGCTCA CTGGATGTGC AGTCCCAGCT	180						
	TGTCTTCCTC TCCTCCCCCC CTGTTGCAGG TGTTCTTTTT TTTTTTCTTC TCTCCCCACT	240						
50	GGGCAGCAAA AGTTGTTCCA CAGTGGAAAW TTAGGCATCC TCAAGTTTCY TCCCAGCTTC	300						
50	TGCTGTGTT TCTTAGAGTA AATTGCCAAT TTCTGTTTTT ACAGGAAATC CTTTTTAAA	360						
	AATGGAATCA GTGTGGTCCC CATCTACTCT GCAAAAATTG CATTTTTCTC TATTTTCAAA	420						

CTTGGGCATT GCTWGATATG TGAAATGGGT TTATGAAAAA TAATAAAATC ATAACGCTAT

TTGTTTGACT TTCAATTTCA TGGGAATTTT TCTCAGCTAA ACTCTAAATG GTGATTARGC

AAAAAAAAA AAAAAAACY GRAGGGGGC CCGGTACCAA TTCGCCCTAT AATGA

655

5

10

(2) INFORMATION FOR SEQ ID NO: 89:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1102 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

15	/**	1 SEQUENCE	DESCRIPTION	: SEQ ID NO	: 69:		
13	TTTTTTTTT	ACCATTTAAA	ATAAAATGAA	AGTGACCTTC	TGTTTATAAA	AATCTTTGTC	60
	TGCATCTCTG	CTTATTTCCT	TAGAAGAGAT	TCCAAGAAGC	GGTGAGTGAT	TTCACGGCAG	120
20	CAGAGGGTTG	GGACATATTA	CGGCGCGGA	TCCCTCTTGG	AGTGAGATGA	CTCTCCGGAG	180
	AGATTTAGTC	GTCACCCTCG	CGTGTGAGGC	TGCGTCACAC	CCCAGGGATG	TGTCTATCAA	240
25	GATGGAAGAT	CTTTTACACG	CTCTTGATTT	TGTTTGSCTY	TTTTTCTATT	ACTAGTGAGA	300
23	AKGAAACTTT	TTATATGATT	ATTATCCATC	ATAATCCAAC	ACAAATTACT	GCTTCATGTT	360
	CTTTTACTTT	CCTGTGAAGG	TTTTAGTGCC	TTTTAAAAAT	TGCTATATAT	TAAGCTTGTT	420
30	AATACTTCCA	TGCTGTATTT	GTGGSCATCA	RTTTCCCCGG	GNACAGGCNT	GCACATTTTG	480
	CCTTCACACG	CTGGGTGGTT	TTTCATTTTC	AMITCTATTT	CTCGTTCTTC	TATCGTTTTA	540
35	TGTTCAGACG	GGTTTCTCCG	TGTAGAAAGC	AGTTTATGAA	GATTTACTTT	CGACAGTCTT	600
55	CTCTCTACTT	TCTACAGTGA	ATTCTCTGAT	GTGTCTGGGA	GTTTGGGGGT	CTGGGTAAGA	660
	RTCCTCCTCT	CACCCTATTC	TCTATTACGA	TCCACAGCCT	CATGCTTTAT	GARATTGGTG	720
40	GCCGGGARCG	GGGGAGATTT	GCGGATCCCC	CAAGCCAGAC	TTTATCCCCC	TATCCCTGCC	780
	TCTGGATCCC	ACGTACAGGC	CTGGGAACTC	CCTGTGGGTA	GGGGCCAATG	GTCTCGCACT	840
45	CTCACCTGTA	CCCCAGGGCT	GGCACAGGAT	GGTCAAGGAG	AGAGGCTGCC	CAAGCGCATC	900
42	CYTCTGGTGT	CCCCTGACA	CGCCTCCAAA	GTGAGCAGGT	AGGTTTCAAC	AGCCCCACGT	960
	TGCAGGTGGG	AGATGAAGCT	CAGGGTGGAG	ACCAGTATCT	CACAGTTCTC	TTTGCATGGC	1020
50	CGGGTACTTG	TTAGTCAACT	GATCAAGTGA	AAATTCTAGC	CCCAGAGGCA	GGAGAATCCG	1080
	GAACAAAATT	AAACCAGCCA	GG				1102

55

(2) INFORMATION FOR SEQ ID NO: 90:

(i) SEQUENCE CHARACTERISTICS:

60

(A) LENGTH: 1533 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90: 5 GGCACGAGCC GNCACGGGCA GCGCCCCATA GCGCCAGGGA CCCCCTGGCA GCGGGAGCCG 60 CGGGTCGAGG TTATGGATCC AGCGGGGGGC CCCCGGGGGG TGCTCCCGCG GCCCTGCCGG 120 10 TENCTGGTGC TGCTGAACCC GCGCGGCGGC AAGGGCAAGG CCTTGCAGCT CTTCCGGAGT 180 CACGTGCAGC CCCTTTTGGC TGAGGCTGAA ATCTCCTTCA CGCTGATGCT CACTGAGCGG 240 CGGAACCACG CGCGGGARCT GGTGCGGTCG GAGGAGCTGG GCCGCTGGRA CGCTCTGGTG 15 GTCATGTYTG GAGACGGGCT GATGCACGAG GTGGTGAACG GGCTTCATGG AGCGGCCTGA CTGGGAGACC GCCATCCAGA AGCCCCTGTG TAGCCTCCCA GCAGGCTCTG GCAACGCSCT 20 480 GGCAGCTTCC TTRAACCATT ATGCTGGCTA TRAGCAGGTC ACCAATGAAG ACCTCCTGAC CAACTGCACG CTATTGCTGT GCCGCCGGCT GCTGTCACCC ATGAACCTGC TGTCTCTGCA 540 CACGGCTTCG GGGCTGCGCC TCTTCTCTGT GCTCAGCCTG GCCTGGGGCT TCATTGCTGA 600 25 660 TGTGGACCTA GAGAGTGAGA AGTATCGGCG TCTGGGGGAG ATGCGCTTCA CTCTGGGCAC CTTCCTGCGT CTGGCAGCCC TGCGCACCTA CCGCGGCCGA CTGGCCTACC TCCCTGTAGG 720 30 AAGAGTGGGT TCCAAGACAC CTGCCTCCCC CGTTGTGGTC CAGCAGGGCC CGGTAGATGC ACACCTTGTG CCACTGGAGG AGCCAGTGCC CTCTCACTGG ACAGTGGTGC CCGACGAGGA 840 CTTTGTGCTA GTCCTGGCAC TGCTGCACTC GCACCTGGGC AGTGAGATGT TTGCTGCACC 900 35 CATGGGCCGC TGTGCAGCTG GCGTCATGCA TCTGTTCTAC GTGCGGCCGG GAGTGTCTCG 960 TGCCATGCTG CTGCGCCTCT TCCTGGCCAT GGAGAAGGGC AGGCATATGG AGTATGAATG 40 CCCCTACTTG GTATATGTGC CCGTGGTCGC CTTCCGCTTG GAGCCCAAGG ATGGGAAAGG 1080 1140 TGTGTTTGCA GTGGATGGGG AATTGATGGT TAGCGAGGCC GTGCAGGGCC AGGTGCACCC 1200 AAACTACTTC TGGATGGTCA GCGGTTGCGT GGAGCCCCCG CCCAGCTGGA AGCCCCAGCA 45 GATGCCACCG CCAGAAGAGC CCTTATGACC CCTGGGCCGC GCTGTGCCTT AGTGTCTACT 1260 TGCAGGACCC TTCCTCCTTC CCTAGGGCTG CAGGGCCTGT CCACAGCTCC TGTGGGGGTG 1320 50 GAGGAGACTC CTCTGGAGAA GGGTGAGAAG GTGGAGGCTA TGCTTTGGGG GGACAGGCCA 1380 GAATGAAGTC CTGGGTCAGG AGCCCAGCTG GCTGGGCCCA GCTGCCTATG TAAGGCCTTC 1440 TAGTTTGTTC TGAGACCCCC ACCCCACGAA CCAAATCCAA ATAAAGTGAC ATTCCCAAAA 1500 55 1533 AAAAAAAAA AAAAAAAAAA ANCCCGNGGG GGG

	(2) INFORMATION FOR SEQ ID NO: 91:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 575 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	•
	ATCCTCTGGA ATCTAGGTGG AAGCCACCAA GCCTTCTTCA CACTTGCGTT CTGAGCATCT	60
15	GCAGACTTAA CCCCATGTGG CAATCACCAA GGCTTATGGC TTGTGTCCTC CAGAACTGTG	120
	GCCAGAGCTG TACCTGGGCC CCTTTGAGCT GAGGCTGAAG CCAGAGTCTG AAGCTCAGCA	180
	GGGCAGTARG GCCCTGGGCC TGGCCCCTGA AACCATTCTT TTCTCCTAAG CCTCTGGGCC	240
20	TTTGATGGGA RGGGCTGTCC TCAAGATTTT TGAAATGCCT TTGGAGGGTT TTTGCCTTGT	300
	CTTGGATATT GGCTTCCTTT TAGTTATGCT CATCTCTCTA GCAAGTGAAT GTTTCACAAC	360
25	CTGCTTGGAT TCTTTCTCTA CCACAGARCC AGGCTGCAAA TTTTACAAAC TTTTACACTC	420
	TGTTTCCCTT TTAAATATAA ATTTCAATGT TAAGTCACTT CTTTGCTCCC ATATCTGATT	480
	TAGGTTGCTG GAAGTAGCCA AGTCACCTCT TGAATGCTTT GCTGCTTAGA AATTTCCTCT	540
30	ACTAGGTAGC CTGGGTCATC ACACTTAAGT TCAAA	575
35	(2) INFORMATION FOR SEQ ID NO: 92:	
40	 (i) SEQUENCE CHARAÇTERISTICS: (A) LENGTH: 639 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
45	TCCTTTCATC TTAAGCACCA CCCGACAGGG CAGGTACTAT TACCATCTCC GTTTGACAGA	60
	TNAGGAACCT GGCACAGGAA GCATTTAAGT GGATTCCCCA GGATCGCCCC ACTGTCAGGA	120
50	GCAGANTCAG AATGGGCCTC AGCATCAGGC TCCCAATCCT GGCTTCTAAC TGCTGCGCTC	180
50	TECCCTTCYC TOWCCCCACC TCCCCACTCC AGTGCCTTTG GTCATGCCAC TGCAGCTTTC	240
	AGGCCAATAC TGGATTAGCC TCTTAGTGTT CTTGTCCCTG CAGCCATTTC CCCAGGCAGC	300
55	AATTCCATGT GCCCTCACTG ATGTAGGTGG CTCTTGTGTC ATTTGTCACA TCCTATTGAA	360
	TIGITTATGC ATCTTGTTCA CACTCACAGC ACCCTCCCTC TCACACCTCC TCCTTATALA	420

AATGTCCCTC AGTGTCTGCT ATGAGCCAGG TGCAGACTTA AGTGACAGGG CTGCTACGGG

60 .

	AAATAAAAA TTAACAAGGA GCACCTGCCT CTTAATGCAC AGTAACAAAC TATGTTAAGT	540
	GTCAGGAAGG AAAGGTTAAG GATGCCAGGA AGGCTTTTAA TAAATAACCT GACTTAGATG	600
5	GGCAGGTGGT GCTGARGATT AAGAACGTGT TCTTCTCGA	639
10	(2) INFORMATION FOR SEQ ID NO: 93:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 744 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
20	GAATTCGGCA CGAGAGTGGC TGGAGTCTGG CTGCAGAGGG AAGACATCAG CAGGGAGGGA	60
	GCCAGGGCCT GTCACATCTT TCCTCTGGCC ATTGTCCTGG TCTTTGTAAG CCCAGAATCT	120
25	CCCCTTCCCT GAAGGGAGGC CAGCACCCCA GGAGGGCAGC AGGTGTGCTG TGAGGGTTGG	180
23	AGTAGTGTGA GAGGTCAGGG TACACTAGAA TGGCCATGGA CACCATGTGG GGGTGCTCTG	240
	GGCTGGGCCA CAGAACAGTG TCCTTCCTGC TGCTCCTCCC CTGCAGCTTC CCCCGACCTT	300
30	GTNGTTTATT TGGTTTGATA CCAATCAGCA GACCCTGCAA GGTGGAAGCT CCCAGGCTCT	360
	CAGTCCCACS ACTCTCATGT GCCAGTCACC CNTACTGTAA CTGCCCAATG AGTACTTCTT	420
35	GCCCACTGCC AAGATAGAGC CAGTTTACCA AGACAGGGGA ATTGCAGTAG AGAAAGAGTT	480
55	GAATATACAT AGAGCCAGCT AAATGGGAGA GTGGAGTITT CTTATTACTT AAATCAGCCT	540
	CCCYTAAAAT TCAGAGGTGA GAATTTTTCA AGGACAGTTT GGTGGSCAGG CCTAGGGAAT	600
40	GGATGCTGCT GATTGGCTAG GGATGCAATC ATAGGGGTGT AGAAAAGTWC CTTGTGCACT	660
	GAGTCCACTT TTGGTGAGAG CTACCAAGGA GCTGCTGGTC TGCTGGTCCC GGTAGAGCCA	720
45	TCTGGTGTCA GGAATGCAAA AGTG	744
	(2) INFORMATION FOR SEQ ID NO: 94:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 526 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
	GCAGGGGAAT TCGGCCACGG AGGGGTTTCA ACAGGGCCCG TGGGGTGAGG TGCARACACA	60

•	AAGCCCATAA GTGCTGGCCT GTTGGGACAA ATGAGAGAAA TCCCATAGGG TGGTGATGAC	120
	AGCGCAYTCA GCCATCYTAY TCCTGGGGAA AATGAAACTT GTGCTCCTAT CAAATGCTCA	180
5	GTTGTAAAAC TGGAAAAAAA TTTTAGAAGA CATCTTGTCC AGCATCTGTG TTTATGTCTA	240
	TAAAATGTAG AAAACTAAAG CACAGAGATG TTAAATGTTT TGTCCAAGGT CCAACAGCTG	300
10	GTTAGCARGC TTGGTCTGGT GACCTTTCTA CTGAACCACA GTGCCGCTGG GGGAAGTCCT	360
	CAGCACAGAT GGCTGCTGCT ATAGCTGGGG TATGGGCAGT ATTAGTAGTT AACCAGTCAA	420
	CCCAAGTTCC CATAGTCTAG GTTCTGCTTC AGCTGGAGGT TAGGGAAAAA CACAAGAAAA	480
15	TCCCTTACCA CTCTACCAGT GCTGGGGGAT GTACTAAGAG ATCCCC	526
20	(2) INFORMATION FOR SEQ ID NO: 95:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 426 base pairs (B) TYPE: nucleic acid	•
25	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:	
30	GGCACAGGGC AGGAGAGACT TGGTCCATGG GGAGAAGCCT GCAGTATAGA TGGGACCTCC	60
	AGGAGCCCAA GTAGCATAGA CCCTGCTGAT CCGGGGCCAT TGAGCCAGAG GATTTGGGCT	120
35	GAATGTCCCC AGAGACAAAA GGGAAAGGTA GATCCTTTCC CTTAAAGATG AAAGCCATCG	180
	CCCGGGCTTG CTTATTGCTC TCTCTCCTGG TCCTTCCACA TGTTGTTTCT GAACATTTGT	240
40	TCTGGCATCA CAATCCCCGT CATCCTGTCA TCTGGCCCTT CCCACCTTTC CACCTTATCT	300
40	CTTGCAGTGT CTCCGCGTCG ACCTGGCACC TGGGTGAARG CTTGCTCTTG CTGGTGCCCA	360
	TAGCCCCCAG TGTATGGTCT TGAMCTCCCC AGCCATATGG ARACCCACCT CAGGAGGGCC	420
45	CCTCGA	426
	(2) INFORMATION FOR SEQ ID NO: 96:	
50		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 844 base pairs (B) TYPE: nucleic acid	
56	(C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:	
60	GGCACAGCGG CACGAGATAG GAAGCTTGGC AGGGGCAGCT CCCCCAGTGC GCATTGCCCT	60

120

180

240

300

360

420

480

540

600

45

50

55

60

	GTAACTCGAG CGCCTGGGAG TGGGGAGAGG CTTGGAAATG GAGCAGGGTG GTGGACCTCG	120
	TCTTCTCCTG CTCATCCCAG GCCTCCTCCA TAACACCTAC CTAGCACGGC CTGGGGACTT	180
5	CCCAGCCCAA GGAACAACTG AGAATACTGA GTGCCAGGGT AGCCCTAGCC CCATTTCACA	240
	CCTGGGCAAA GTGAGGTCAC TGGATTCAAA CACTCAGATT TAAACCTCCT CTGTGTCTGC	300
10	AGCACCTGTA TATAACTGCC AGCCTCTGCT GCCCCTCTCC AAAAAGTCTC TGCCCTTGTC	360
10	TTTGGCACCT GTCTCTGTCC TCCCCATTCT CTGCTCCTCC TTTCTCCAAC TCAGANTCAC	420
	CCTGTTAGTT CAGCAAATGT TCATCGAGCT CCATAATGTA GCAGGACAGG NCTGTCTAAC	480
15	AGATTCTGGN CTTGCAAGGG TGAGACAAGT ACTCTCCATC TTTCTCTCAT CTTCACAGAT	540
	GGTCTGCTCA ACAACTTTGC ACTGAATTGT AAATAATTGA TACTGCATAA AACATTGATG	600
20	TTCTTTAAGG GTAGTCCAGC AAGGTGGCAA GTCTTATAAT GATAACTGCT CAAGGATCTC	660
20	TCAGTGAAGC ATTTGGGGST GCTAGCTCTG CCTATGGGTG AGGTCAGCTA TCTCACGCCA	720
	TCTACTTCCA CNTGCCCCCC CATGCCAGGC TCACCCTGAG CTGAGATGCC TGAGCAGGTG	780
25	GCAGAAAGGA GCCACCTGGT TTATGCTTCG GGACCACAAA CTCCTCTATC CAGANGACAG	84
	TTTT	84
30		
	(2) INFORMATION FOR SEQ ID NO: 97:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1985 base pairs (B) TYPE: nucleic acid (C) STRANDEENESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	

AGCCCTGCTG AAGTACAGGT TCTTCTATCA GTTTCTGTTG GGCAATGAAC GAGCAACAGC

AAAGGAGATC ACCGATGAAT ATGTGGAGAC CCTGAGCAAG ATTTACCTGT CTTACTACCG

CTCTTACCTG GGGCGGCTCA TGAAGGTGCA GTATGAGGAA GTCGCTGAGA AAGATGATCT

AATGGGTGTG GAAGATACAG CAAAGAAAGG ATTCTYCTCA AAGCCATCGC TCCGCAGCAG

GAACACCATT TICACCCTAG GAACCCGCGG CTCTGTCATC TCCCCCACTG AACTTGAGGC

CCCCATCCTG GTGCCTCACA CAGCGCAGCG GNAGAGCAGA GGTATCCATT TGAGGCCCTC

TICCGCAGCC AGCACTACGS CCTCCTAGAC AATTCCTGCC GCGAATACCT TITCATCTGT

GAATTTTTTG TTGTGTCTGG CCCAGYTGCA CACGACCTGT TCCATGCTGT CATGGGCCGT

ACACTCAGCA TGACCCTGAA ACACCTGGAT TCTTATCTAG CTGACTGCTA CGATGCCATT

GCTGTTTTC TCTGTATCCA CATTGTTCTC CGGTTCCGTA ACATTGCAGC AAAGAGGGAT

	GTTCCTGCCC TGGACAGGTA CTGGGGAACA GGTGCTTGCC TTGCTATGGC CACGGTTTGA	660
5	ACTGATCCTG GAGATGAATG TTCAGAGCGT CCGAAGCACT GACCCCCAGC GCCTAGGGGG	720
	GTTGGATACT CGGCCCCACT ATATCACACG CCGCTATGCA GAGTTCTCCT CCGCTCTTGT	780
	CAGTATCAAC CAGACAATTC CTAATGAACG GACCATGCAA TTGCTGGGAC AGCTGCAGGT	. 840
10	GGAGGTGGAG AATTTTGTCC TCCGAGTGGC AGCTGAGTTC TCCTCAAGGA AGGAGCAGCT	900
	TGTGTTTCTG ATCAACAACT ATGACATGAT GCTGGGTGTG CTGATGGAGC GGGCTGCAGA	960
15	TGACAGCAAA GAGGTTGAGA GCTTCCAGCA GCTGCTCAAT GCTCGGACAC AGGAATTCAT	1020
	TGAAGAGTTG CTGTCTCCCC CTTTTGGGGG TTTAGTGGCA TTTGTGAAGG AGGCTGAGGC	1080
	TTTGATTGAG CGTGGACAGG CTGAGCGACT TCGAGGGGAA GAAGCCCGGG TAACTCAGCT	1140
20	GATCCGTGGC TITGGTAGTT CCTGGAAATC ATCAGTGGAA TCTCTGAGTC AGGATGTAAT	1200
	GCGGAGTTTC ACCAACTTCA GAAATGGCAC CAGTATCATT CAGGGAGCGC TGACCCAGCT	1260
25	GATCCAGCTC TATCATCGCT TCCACCGGGT GCTGTCCCAG CCGCAGCTCC GAGCCCTCCC	1320
	TGCCCGGGCT GAGCTCATCA ACATTCACCA CCTTATGGTG GAGCTCAAGA AGCATAAGCC	1380
	CAACTTCTGA TGTGCCAGAA ACCGCCCTGA GATCTGCCGG TCATCTCCAT GGACTTCTGC	1440
30	ACCCCATTCC ATACCCTTCT TCACCTGGGG TACCCCTTCC AGTTTTCCCC TTGCTTCCCA	1500
	GGCCCTTGAC ATGGCTTACC TGCCTTCACT CCCAGCACCT TGCCCAACAG GATAAGCTGG	1560
35	ATCCCCTTGG CCTTCTGAAT ATCCCAGTGT CTTCAGGTTT CCCAAGACCA CTTCCCTGTG	1620
	GGCTTCCAAA ATGGCCTTTA TCATTTCTCC AGTCTGTCAC CCTCCTTTCC TGCTCCCATA	1680
	CACCCAAGGC TTGTTTCTTC CCCTGTAAAA ACCACTGCCT CAATCTCTGG TTCACTCAAC	1740
Ю	TAGTCACCAT GTCCTGAGGC ATGAAGCCTC CTCAGCTCTT GGAATTGCTG GCAAGGGGTG	1800
	ACTGCCTCTG AGTCATTGTG TTTTTCAAAG TGATTTCTTT TCTGTAGCTT TTTGACCTAA	1860
15	GATCTCAGCA ATTTGAACAC TAACCTCTCC CCTCCTGGCT CAAGAATTAC TCCGAAGTCA	1920
	GTCTGCAGAA AATAAATATT TAGTATGACA TGAAAAAAAA AAAAAAAAAA	1980
	AAAAA	1985

(2) INFORMATION FOR SEQ ID NO: 98:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1416 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

	ATATGAAGGG AAAGAATTTG ATTATGTTTT CTCAATTGAT GTCAATGAAG GTGGACCATC	60
5	ATATAAATTG CCATATAATA CCAGTGATGA CCCTTGGTTA ACTGCATACA ACTTCTTACA	120
	GAAGAATGAT TTGAATCCTA TGTTTCTGGA TCAAGTAGCT AAATTTATTA TTGATAACAC	180
	AAAAGGTCAA ATGTTGGGAC TTGGGAATCC CAGCTTTTCA GATCCATTTA CAGGTGGTGG	240
10	TOGGTATGTT COGGGCTCTT CGGGATCTTC TAACACACTA CCCACAGCAG ATCCTTTTAC	300
	AGGTGCTGGT CGTTATGTAC CAGGTTCTGC AAGTATGGGA ACTACCATGG CCGGAGTTGA	360
15	TCCATTTACA GGGAATAGTG CCTACCGATC AGCTGCATCT AAAACAATGA ATATTTATTT	420
	CCCTAAAAAA GAGGCTGTCA CATTIGACCA AGCAAACCCT ACACAAATAT TAGGTAAACT	480
	GAAGGAACTT AATGGAACTG CACCTGAAGA GAAGAAGTTA ACTGAGGATG ACTTGATACT	540
20	TCTTGAGAAG ATACTGTCTC TAATATGTAA TAGTTCTTCA GAAAAACCCA CAGTCCAGCA	600
	ACTICAGATI TIGIGGAAAG CTATTAACIG TCCIGAAGAT ATIGICTITC CIGCACIIGA	660
25	CATTCTTCGG TTGTCAATTA AACACCCCAG TGTGAATGAG AACTTCTGCA ATGAAAAGGA	720
	AGGGGCTCAG TTCAGCAGTC ATCTTATCAA TCTTCTGAAC CCTAAAGGAA AGCCAGCAAA	780
20	CCAGCTGCTT GCTCTCAGGA CTTTTTGCAA TIGTTTTGTT GGCCAGGCAG GACAAAAACT	840
30	CATGATGTCC CAGAGGGAAT CACTGATGTC CCATGCAATA GAACTGAAAT CAGGGAGCAA	900
	TAAGAACATT CACATTGCTC TGGCTACATT GGCCCTGAAC TATTCTGTTT GTTTTCATAA	960
35	AGACCATAAC ATTGAAGGGA AAGCCCAATG TTTGTCACTA ATTAGCACAA TCTTGGAAGT	1020
	AGTACAAGAC CTAGAAGCCA CTTTTAGACT TCTTGTGGCT CTTGGAACAC TTATCAGTGA	1080
40	TGATTCAAAT GCTGTACAAT TAGCCAAGTC TTTAGGTGTT GATTCTCAAA TAAAAAAGTA	1140
40	TTCCTCAGTA TCAGAACCAG CTAAAGTAAG TGAATGCTGT AGATTTATCC TAAATTTGCT	1200
	GTAGCAGTGG GGAAGAGGGA CGGATATTTT TAATTGATTA GTGTTTTTTT CCTCACATTT	1260
45	GACATGACTG ATAACAGATA ATTAAAAAAA GAGAATACGG TGGATTAAGT AAAATTTTAC	1320
	ATCTTGTAAA GTGGTGGGGA GGGGAAACAG AAATAAAATT TTTGCACTGC TGAAAAAAAA	1380
	AAAAAAAAA AAAAGGAAAC TCGAGGGGGG GCCCGG	1416

(2) INFORMATION FOR SEQ ID NO: 99:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1935 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

5	NTCTACCCTA ATCAAGATGG GGACATACTT CGCGACCAGG TTCTTCATGA ACATATCCAG	60
	AGATTGTCTA AAGTAGTGAC TGCAAATCAC AGAGCTCTTC AGATACCAGA GGTTTATCTT	120
	CGAGAAGCAC CATGGCCATC TGCACAATCA GAAATCAGGA CAATAAGTGC TTATAAAACC	180
10	CCCCGGGACA AAGTGCAGTG CATCCTGAGA ATGTGCTCTA CGATTATGAA CCTCCTGAGC	240
	CTGGCCAATG AGGACTCTGT CCCTGGAGCG GATGACTTTG TTCCTGTGTT GGTGTTTGTG	300
15	TTGATAAAGG CAAATCCACC CTGTTTGCTG TCTACTGTGC AGTATATCAG TAGCTTTTAT	360
	GCTAGCTGTC TGTCTGGAGA GGAGTCCTAT TGGTGGATGC AGTTCACAGC AGCAGTAGAA	420
	TTCATTAAAA CCATCGATGA CCGAAAGTGA CCAAGACCAA GGCCCACCAA GGCAGCAGAC	480
20	TGTTAATCAG ACAAACAGAT CTCTGAGAAG GTGCATCAGC TGCTTTGAAG GCTGAAGATT	540
	GTTTGTATG ATACTGCACA GCATCAGGCA TTTTAAAGCA GATCTTTACT AAACAGGTTA	600
25	ATGAGCTAAC AAGCAGGTTC TCTCGTCTTT GGGCTCTTTC CTTTCTGAGT TGCATATTCT	660
	ATTITCTTGT CCCCAAGTAG AGACTAGTAC TACAAAAAGG GACCACATTT TTCAAGTATT	720
	TCTAAGTATA AAAAACAAAA CAAAAATCTC TTAGGAAATG TCTAGACCTC CATTCTTGGA	780
30	TTCCCTTTCT TTCCTTTTAT TTTAAAAAAG AACAGTACCC CTCTTTTAAG ATGCTGTCTT	840
	ACATTAATGA GCATCTAATG GAAAGAAGGT ATGAGTTGCA CTGAGGATTA GAATAGTGGT	900
35	GCGTTAGTGG CATTATCTAT AAATACACTC ACCTAAATTG AAAGCTAAGA AGGAAATGTA	960
	AATATAATAT ATATTTATAT TTGATGTAAT ATGGACATCT GCAGATTCTA ATAAACAAGG	1020
	ACTATTGCTG ATAGTAGGCT GTGACATACT GTCTTGTGAA ATGGTTTCCT TGACAAAATT	1080
40	TAAGCTGAGC TTAAAAGCAA AAAAACAAAA AGTACACAGA AATATTTATT AAAATGTAAT	1140
	ACAGTITATT GAACTITCTA GGTATGGAGT TIGATGGACA GGGCTGCCTY TAATGAGTGT	1200
45	GAAGGTCACT AAGTCACTTA GACATCTCAC CGTGGAAGTT TGTGAGCCTG CATTAGGAGA	1260
	TAGACTGATT ACCATACATG ACATAAAAAG GAACAGTGGA TAGCTCATAC TTTATGGTGG	1320
	TTCTTCTCCT CCGAAATAAT ATACTGCAGA AATCCCAGAC AGAGCTCCTT ACAAACCTTT	1380
50	AATTGTAATA TATTTTGAT GATTATTCAC ATTGAATGCA CAGACCAAGA ATTCAGTGAA	1440
	TGTCATTTTT TAAAAAACTA ATTTGTATTG TCTGCTCTAG TGATACAAGT TTTACTAGTG	1500
55	ATAAACTATT TTAATCAACC ATACTATTCT TATGGAAAAA AATATCTATT TTGGCAGGTT	1560
	TCTGTGCCTT TATTTCCCTC TTCTGAAAAA AAGTCTGTGT TTTCATAGTT TGGTTTGCAT	1620
	TGTATATCAA TAATTAATCA GGAATGGGTT TTGGTGCCTG AAAAATTGGC CATGGAGGCA	1680
60	CACCAAAGCT TCAAGCACAA GTCTTGTACA TGGGCCATCA CTGTCTGGTT TCACTTCGTG	1740

	TGTTTCCTAA ACACATTTAG CTGCTTTTTT AACAAACTCA GCCCCATACT TGAGTCCCTT	1800
5	GTTGTTGGGA GCATTTCCAG GCATCTTTTA AGGGAACTGT GACAAACAGC CTCGGGCAGA	1860
3	TGAACACGGA GCCTCTCTGT TGTCTGTCTC TGAGATCTTT GTGTCTGGGA ATGCCTAAAG	1920
	NTTTGNITI TITTI	1935
10		
	(2) INFORMATION FOR SEQ ID NO: 100:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 599 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:	
	-	60
	GAATTCGGCA CGAGCGTCCA CGCAGCCGCC GGCCGGCCAG CACCCAGGGC CCTGCATGCC	
25	AGGTCGTTGG AGGTGGCAGC GAGACATGCA CCCGGCCCGG	120
	CCTCATCCTG ATGGGCACTG AACTCACTCA AGACTCCGCT GCCCCCGACT CCCTGCTGAG	180
30	AAGTTCAAAG GGCAGCACGA GGGGGTCTTT GGCTGCTATT GTCATCTGGA GGGGAAGAG	240
	TGAGAGCCGG ATAGCCAAGA CCCCAGGCAT TTTCAGAGGT GGCGGGACCT TAGTCCTACC	300
	CCCAACACAC ACCCCTGAGT GGCTCATCCT CCCTTTGGGC ATAACGCTGC CCTTGGGGGC	360
35	TCCAGAAACA GGCGGTGGGG ATTGTGCCGC TGAGACCTGG AAGGGCAGCC AGCGTGCCGG	420
	CCAGCTGTGT GCATTGCTGG CTTAATATGC AGGCCTTGGG GGGCTGTGGC CACATGCCCG	480
40	GCAGGAGGTG AGTGAGGAGC CCTGTGGCGT GCTGGTGTGG GGATCGTGGG CATTTCAAAC	540
40	GGGCTTGTCG TACCCTGAAC AATGTATCAA TAGAGAAAAA AAAAAAAAA AAAACTCGA	599
45		
	(2) INFORMATION FOR SEQ ID NO: 101:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 784 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
33	GAATTCGGCA CAGAAAAAAA AGAGAGACTG GGTCTTACTG TGTTGCCCAG ACTTGTCTTG	60
	AACTCCTGCC TCAGCCTCTC AAGTACTTGG GATTATAGGC CAAGAAGCCA CCATGCCTAG	120
۲۸	The second secon	180

	CACTITGCAC ATCCACTTGT CACCAAATCK RGTTCATTCT GCATCCTAAG TAAGTCCTTT	240
5	GATTCCTCCA GTTGTTCATT AGTAATGTCT CAARTGTAAT TTTTTCTAGT AGTTTTCAGC	300
	CTGTCTTTCC KGCCTTCAGT CTTAACTTCT CCAGTACATA KGCCACATTG TTGTCAGCAK	360
	GATCAWATTT TATTTAAAAA TACTTTACAW AKGTTTATKG CCAAATATTA GRAAATACAG	420
10	ATTCATGGAA AGAAAAATCA CTGTCCCAAG GAGGTCACTG GCATGGTGAG GTTAAGGGGT	480
	GATTTTAATT TITAAAAATG TATATTTTTT CCTGTGTAGA GTAGTAACAC CCTTGAAAAC	540
15	ACAMICCCTT GTAAAGTCTC TAATTCTGTA CTCCGCATCT AGSTGRTCTC TTCTTTCTCA	600
	GATATTTTAC AATTTCATTT ATCACCACCT TTCTCTAGCC TTTACCCGTC TCTTCAATAT	660
	TWACATATGC AGAAGTTTCT CCTAACAAAC ACCTGCCTCT GCCTCAGTTC TGCTACCACC	720
20	CTGTTGCTTT CTTTCCCTTC ACAATCAAAT TTAAGAGTGT CAAAAAAAAA AAAAAAAAAC	780
	TCGA	784
25		
	(2) INFORMATION FOR SEQ ID NO: 102:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1035 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:	
	AGAGGCCTGG CTGCGTTGCC CTATCTCCGT CTCCGCCACC CACTTAGCGT TTTAGGCATC	60
40	AATTACCAGC AGTITCTCCG CCACTATCTG GAAAATTACC CGATTGCTCC CGGCAGAATA	120
	CAAGAGCTTG AAGAACGCCG CAGTTGCGTG GAAGCCTGCA GAGCAAGGGA AGCAGCGTTT	180
	GATGCCGAAT ATCAGCGAAA TCCTCACAGG GTGGACCTCG ATATTTTAAC CTTTACGATA	240
15	GCTCTGACTG CCTCTGAAGT TATCAACCCT CTGATAGAAG AACTTGGTTG CGATAAGTTT	300
	ATCAATAGAG AATAGTTAGG TGGTGACACT ACTTCAAGAG AACCTCTGCA TTCCAGTCAT	360
50	ACCAATCCTG CAACTTGATT TTCAGAAGTC AAGAGTATAT CGCGATAAGA CAGTGCACAG	420
, 0	GTGGAGGGGA AAAAAAGGGG GAGGGGGAAG CTTATCTTGA AAAAGCATCA CAGAAGTAGA	480
	AAAAAATGTC GAAAGCATTA TAACTGTAAC GTTCTTTGAG TTTGTGATTG ATCCACATTT	540
5	TTCCCCCTGC ATTATGGAAA ATGTCTCTCA GCATTGCTTT ATTACAAAGT AAAGGATGGT	600
	TTTATAAAAT TGAGACTGAT GAAACATCAA TACTAGAGCC CATGAGGATG AAAGAAATTA	660
^	TCAAATAGTG CTGAACAGAA TAAGATGTTA ACGCTGAGTT ATTAGGACTG GAAGGCTATG	720
n	2100CIAIG	140

	AAAAGAACTT	GAAATTGTCG	GAATATGTGC	TCTCTTCATG	TCATATTCAA	TAGAAGTTTC	780
	TAGTTTAAGA	TTGATTTTGT	GTTTTCTTAG	GCATTTCAAG	TGACAAGCAA	AGTAAATGTA	840
5	TATATTATGT	GATAAATCAT	GTTTTCAAGA	ACGTCAAATT	TCTGGACTTT	TTTCTTTCAA	900
	TTTTAATTT	TTAAAGTTTT	TTTGGTATTA	AAAAATCYAT	TCACAAGCCA	TWIWIAAAAA	960
10	WAAATWIWCM	GCGAAAAGCC	ааааааааа	AAAAMMAGGG	GGGGCCGGGC	CCCATCCCCC	1020
10	CAAGGGGGTC	CNGNT					1035

20

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 103:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2218 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

60 SGGAGGGGGA GGGCTGAATT GTTTTGCAGA GGAAGATGGC ATCTGTGCTT TAAATTTCTC 120 ATTACTGGGT TAGAAAACAA AGAGGGAKTG CCCTGCACAT TTTCTTTTGT GCTTTTAAAT 180 GTTTCTTAAG TTGGAACAGG TTTCCTCGGG CCTGTTTTGA CTGATTGCTG GAGTGCATTT 240 GATAGTTAAA AATTACTAAT TGGTTTTATT TCCCTTCACA CTCTGCCTCC CCACTTCTCC 300 360 TGTATCCTTT AAATTAAAAA CCACAAGTGT TTATTGTAGT GGTTAAACTG TAGCATCTCA 420 GCATCTGGGT GGAAGCTGCC TATATTTCTT CCCAGTTTAA CTGGGGACCA TCTGTGAAAT 480 TAATTTTCCA TCCAGACAGC TGCTGTGAGC AAATGAACAT AAATGCTCGC TGGAAATTTA 540 CTAACCAGTT TTTATATTGA CCTGCAGTGT AAAAAGCACA TTTAATTATA AACAATATAT 600 TCAAAATGGG CAAATTTTAT TTTCAAATGC AGTGTAGAGC TAGATTAAAA GCAACTCTTT 660 GCCACCTACT CTGCCCTTTT GGCAAAGTTA CCTTGAACAA AGAATCTTAA GGGTTTATTA 720 AGAACTCTTT ATTITCTTCA TACCCTGTTC TCTGCAGTGC TTTCTAACAG CTTCTGGGTG 780 CAGATTTICT TCGGCATCCT TTTGCACTCA GCTTATTACA GGTAGGTAGT GCTTAAGAAA 840 AGTCATGGAG GACTAAAGCC TAAGTCCTTT TCACTTTTCC TCCATCTGAA GGTAGGTGAG 900 TTCATCCTCT TCATAGTAAT GCTGTTTTAC CAAGACTTTA TAGCAGATGG ACCCAGAAAG 960 AATTTTCTGC TATTGTGTTC ACTACAACAG GATAGGGACA TCAGACAGCC CCAGAAACCC 1020 CTTCCAGATC TGATATGGGA CTATTAATTT TTATGCTGTT AATTGGTATT CATTCACAAT 1080

	GCAGTTGAAG GGGGAAGGCT CCACTGCATT CTTTGGCTAA GGCCTGAATG CTTGCTCATC	
5		1140
	TGTAAGATCT ATACTCGAGG TTTTGTTTTC CTTTTAAAAT TCTTTAGGGA GAGAGGGATG	1200
	GTTTCTGAGG GGTTCTGAAA GTATGATTCA ATGTGCAACA TACAGGTAGG TCTTCAGCAT	1260
	AAGCTGAAAT ATATGCATGT AAAAACTTTG ACATCTTTTT TTTTAATTTT CCACTTTCTT	1320
10	CTTAACTTTA CTTCTCTTTT TGTCCCCCCC CCATCTTACA GAAGTTGAGG CCAAGGGAGA	1380
	ATGGTAGGCA CAGAAGAAAC ATGGCAAACT GCTCTGTGCT TTCAAACCAA AGTGTTCCCC	1440
15	CCAACCCCAA ATTTGTCTAA GCACTGGCCA GTCTGTTGTG GGCATTGTTT TCTACAACCA	1500
	AATTCTGGGT TTTTTTCTTC TTTCTTTAAA CATAGAGGTA CCACCACAAG GGATGCCCTA	1560
	CTCTCTCGCA GCTCTTGAAA GCATCTGTTT GAGGGAAAGG TCTCTGGGCA AGCAAGTGGT	1620
20	TATTIGGATT GCTTGCTTCC CTTTTTCCAC CTGGGACATT GYAATCATAA AATAACAGTA	1680
	AATTCCAAAC CTCAAAAACT ATTATGGCCT GAGCACAGCT GAAATCTAGC AGAGTTTAAC	1740
25	TCTTCTGCCT CCATGTCTGT CACTTATAAT TCAGGTTCTG CTGTTGGCTT CAGAACATGA	1800
23	GCAGAAGAAT CGITTTATGC TAGTTATTGC ATTCATGGTT GAAACTCAAC TTAGGGAAAG	1860
	GGTTCCAATG TATTAAGCAA TGGGCTGCTT CTCCCCAATC CTCCCTAACA ATTCGTTGTG	1920
30	TGGACTTCTC ATCTAAAAGG TTAGTGGCTT TTGCTTGGGA TCAGTGCTCT CTATTGATGT	1980
	TCTTGCTGGT CTCCAGACAC ATTCCTGTTG CATTAAGACT TGAAAGACTT GTAGATGTGT	2040
25	GATGTTCAGG CACAGGATGC TGAAAGCTAT GTTACTATTC TTAGTTTGTA AATTGTCCTT	2100
35	TIGATACCAT CATCITGITT TCTTTTGTA GGTATAAATA AAAACACTGT TGACAATAAA	2160
	AAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAAA	2218
40	·	2218
	(2) INFORMATION FOR SEQ ID NO: 104:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1351 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:	
	CITCACAGAC TGACAGAATG GITTTGTTTT GITTTGTTTT GITTTGTTTT GTTTTTGAGA	60
5 5	TOGACTOTAG CTCTGTCACC CAGGCTGGAG TGCAGTGGTG CGATCTCGGC TCACTGCAAG	120
	CTCCGCCTCC CGGGTTCTCA CCATTCTCCT GCCTCAGCCT CCCGAGTAGC TGGGACTACA	180
40	GGCGCCCACC ACCACGCCCG GCTAATTTTT TGTATTTTTT AGTAGAGACG GGGTTTCACC	240
60		_ 20

	ATGTTAGCCA GGATGGTCTC GATCTCCTGA CCTCGTGATC CGCCCGCYTC GGCCTCCCAA	300
	AGTGCTGGGA TTACAGGCGT GAGCCACCGT GCCTGCCCCA GAATGGTTTT TAAAGCCACA	360
5	GTTGAGARGC CACCCATTGC CCGGCGCCTG GACAGTGATC ATCTTGTTCA TCTTGTTCAG	420
	TCCTTTCTTG TGTGATTGGA ATTATTCATC CCCTTTGAAA GATGAGAAGG TTGAGATGCA	480
10	AAGAGTCTAC CTTTCCAAGT TCTCACTGCT GGAAAGARCT AGAAGCACAG TTCAAAGTTC	540
	TEGNITETES ACTETISCAST CCASSTYTES CTTYTECCAC TEGESTACES TEAATISCEAC	600
	ACTGTTTTTG AAGTGGCCCA TAACTTGAAG GRAAAGTTTA AAGACAGTTC AATTTAATCA	660
15	TCAGRATGCA TICTITITT TITCGGARAC GGAKTITCAC TCTTGCTGCC CASGCTGGAG	720
	TGCAATGGTG CAATGATCTC GGCTCACTGC AACCTATGCC TCCTGGGTTC AAGNGATTAT	780
20	CCAGCCTCAG CCTCCCGAGT AGCTGGGATT ATGGGCGCCC ACCACCATGC CCAGCTAATT	840
	TTTGTATTTT TTTTTTAGT AGAGATGGGG TTTCGCCAGG TTGGCCAGGC TGKTCTTGTG	900
	AAYTCCTGGC YTCAGGTGAT YTGCCCACYT CATCYTCCAA AAGTGCTGGG ATTACAGGCA	960
25	TGAGCCACTG CGCCTGGCYT CAGAATGCAT TCTTACACAT CTATCCTAGA CATTTATAAG	1020
	CACTCTAATG GATAACAATC CAAGAATAAA TGATTGTAAA AGATGATGCC GAAGAGTTGA	1080
30	TGTCAATCTT TTTTTCCTAA GAAAAAAAGT CCGCGAGTAT TAAATATTTA GATCAATGTT	1140
	TATAAAATGA TTACTTTGTA TATCTCATTA TTCCTATTTT GGAATAAAAA CTGACCTTCT	1200
	TTAATCATAT ACTTGTCTTT TGTAAATAGC AGCTTTTGTG TCATTCTCCC CACTTTATTA	1260
35	GTTAATTTAA ATTGGAAAAA ACCCTCAAAC TAATATTCTT GTCTGTTCCA GTCTTATAAA	1320
	TAAAACTTAT AATGCATGTA AAAAAAAAA A	1351
40		
	(2) INFORMATION FOR SEQ ID NO: 105:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2066 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
	GGCACGAGGC GGCGGAGGGC CACAATCACA GCTCCGGGCA TTGGGGGGAAC CCGAGCCGGC	60
55	TGCGCCGGGG GAATCCGTGC GGGCGCCTTC CGTCCCGGTC CCATCCTCGC CGCGCTCCAG	120
رر	CACCTCTGAA GTTTTGCAGC GCCCAGAAAG GAGGCGAGGA AGGAGGGAGT GTGTGAGAGG	180
	AGGGAGCAAA AAGCTCACCC TAAAACATTT ATTTCAAGGA GAAAAGAAAA	240
60	CAAAAATGGC TGGGGCAATT ATAGAAAACA TGAGCACCAA GAAGCTGTGC ATTGTTGGTG	300

	GGATTCTGCT	CGTGTTCCAA	ATCATCGCCT	TTCTGGTGGG	AGGCTTGATT	GCTCCAGGGC	360
5	CCACAACGGC	AGTGTCCTAC	ATGTCGGTGA	AATGTGTGGA	TGCCCGTAAG	AACCATCACA	420
	AGACAAAATG	GTTCGTGCCT	TGGGGACCCA	ATCATTGTGA	CAAGATCCGA	GACATTGAAG	480
	AGGCAATTCC	AAGGGAAATT	GAAGCCAATG	ACATCGTGTT	TICIGTICAC	ATTCCCCTCC	540
10	CCCACATGGA	GATGAGTCCT	TGGTTCCAAT	TCATGCTGTT	TATCCTGCAG	CTGGACATTG	600
	CCTTCAAGCT	AAACAACCAA	ATCAGAGAAA	ATGCAGAAGT	CTCCATGGAC	GTTTCCCTGG	660
15	CTTACCGTGA	TGACGCATTT	GCTGAGTGGA	CTGAAATGGC	CCATGAAAGA	GTACCACGGA	720
	AACTCAAATG	CACCTTCACA	TCTCCCAAGA	CTCCAGAGCA	TGAGGGCCGT	TACTATGAAT	780
	GTGATGTCCT	TCCTTTCATG	GAAATTGGGT	CTGTGGCCCA	TAAGTTTTAC	CTTTTAAACA	840
20	TCCGGCTGCC	TGTGAATGAG	AAGAAGAAAA	TCAATGTGGG	AATTGGGGAG	ATAAAGGATA	900
	TCCGGTTGGT	GGGGATCCAC	CAAAATGGAG	GCTTCACCAA	GGTGTGGTTT	GCCATGAAGA	960
25	CCTTCCTTAC	GCCCAGCATC	TTCATCATTA	TGGTGTGGTA	TTGGAGGAGG	ATCACCATGA	1020
	TGTCCCGACC	CCCAGTGCTT	CTGGAAAAAG	TCATCTTTGC	CCTTGGGATT	TCCATGACCT	1080
	TTATCAATAT	CCCAGTGGAA	TGGTTTTCCA	TCGGGTTTGA	CTGGACCTGG	ATGCTGCTGT	1140
30	TTGGTGACAT	CCGACAGGGC	ATCTTCTATG	CGATGCTTCT	GTCCTTCTGG	ATCATCTTCT	1200
	GTGGCGAGCA	CATGATGGAT	CAGCACGAGC	GGAACCACAT	TGCAGGGTAT	TGGAAGCAAG	1260
35	TCGGACCCAT	TGCCGTTGGC	TCCTTCTGCC	TCTTCATATT	TGACATGTGT	GAGAGAGGGG	1320
	TACAACTCAC	GAATCCCTTC	TACAGTATCT	GGACTACAGA	CATTGGAACA	GAGCTGGCCA	1380
	TGGCCTTCAT	CATCGTGGCT	GGAATCTGCC	TCTGCCTCTA	CTTCCTGTTT	CTATGCTTCA	1440
10	TGGTATTTCA	GGTGTTTCGG	AACATCAGTG	GGAAGCAGTC	CAGCCTGCCA	GCTATGAGCA	1500
	AAGTCCGGCG	GCTACACTAT	GAGGGGCTAA	TTTTTAGGTT	CAAGTTCCTC	ATGCTTATCA	1560
1 5	CCTTGGCCTG	CGCTGCCATG	ACTGTCATCT	TCTTCATCGT	TAGTCAGGTA	ACGGAAGGCC	1620
	ATTGGAAATG	GGGCGGCGTC	ACAGTCCAAG	TGAACAGTGC	CTTTTTCACA	GGCATCTATG	1680
	GGATGTGGAA	TCTGTATGTC	TTTGCTCTGA	TGTTCTTGTA	TGCACCATCC	САТАААААСТ	1740
50	ATGGAGAAGA	CCAGTCCAAT	GGAATGCAAC	TCCCATGTAA	ATCGAGGGAA	GATTGTGCTT	1800
	TGTTTGTTTC	GGAACTTTAT	CAAGAATTGT	TCAGCGCTTC	GAAATATTCC	TTCATCAATG	1860
55	ACAACGCAGC	TICIGGIATT	TGAGTCAACA	AGGCAACACA	TGTTTATCAG	CTTTGCATTT	1920
-	GCAGTTGTCA	CAGTCACATT	GATTGTACTT	GTATACGCAC	ACAAATACAC	TCATTTAGCC	1980
	TTTATCTCAA	AATGTTAAAT	ATAAGGAAAA	AAGCGTCAAC	AATAAATATT	CTTGAGTATA	2040
50	ААААААААА	ААААААААА	Алала				2066

5 (2) INFORMATION FOR SEQ ID NO: 106:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1705 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:	
15	AATTCGGCAK AGGGCAGCTG TCGGCTGGAA GGAACTGGTC TGCTCACACT TGCTGGCTTG	60
	CGCATCAGGA CTGGCTTTAT CTCCTGACTC ACGGTGCAAA GGTGCACTCT GCGAACGTTA	120
20	AGTCCGTCCC CAGCGCTTGG AATCCTACGG CCCCCACAGC CGGATCCCCT CAGCCTTCCA	180
20	GGTCCTCAAC TCCCGYGGAC GCTGAACAAT GGCCTCCATG GGGCTACAGG TAATGGGCAT	240
	CGCGCTGGCC GTCCTGGGCT GGCTGGCCGT CATGCTGTGC TGCGCGCTGC CCATGTGGCG	300
25	CGTGACGGCC TTCATCGGCA GCAACATTGT CACCTCGCAG ACCATCTGGG AGGGCCTATG	360
	GATGAACTGC GTGGTGCAGA GCACCGGCCA GATGCAGTGC AAGGTGTACG ACTCGCTGCT	420
30	GGCACTGCCG CAGGACCTGC AGGCGGCCCG CGCCCTCGTC ATCATCAGCA TCATCGTGGC	480
30	TGCTCTGGGC GTGCTGCTGT CCGTGGTGGG GGGCAAGTGT ACCAACTGCC TGGAGGATGA	540
	AAGCGCCAAG GCCAAGACCA TGATCGTGGC GGGCGTGGTG TTCCTGTTGG CCGGCCTTAT	600
35	GGTGATAGTG CCGGTGTCCT GGACGGCCCA CAACATCATC CAAGACTTCT ACAATCCGCT	660
	GGTGGCCTCC GGGCAGAAGC GGGAGATGGG TGCCTCGCTC TACGTCGGCT GGGCCGCCTC	720
40	CGGNCTGCTG CTCCTTGGCG GGGGGCTGCT TTGCTGCAAC TGTCCACCCC GCACAGACAA	780
40	GCCTTACTCC GCCAAGTATT CTGCTGCCCG CTCTGCTGCT GCCAGCAACT ACGTGTAAGG	840
	TGCCACGGCT CCACTCTGTT CCTCTCTGCT TTGTTCTTCC CTGGACTGAG CTCAGCGCAG	900
45	GCTGTGACCC CAGGAGGGCC CTGCCACGGG CCACTGGCTG CTGGGGACTG GGGACTGGGC	960
	AGAGACTGAG CCAGGCAGGA AGGCAGCAGC CTTCAGCCTC TCTGGCCCAC TCGGACAACT	1020
50	TCCCAAGGCC GCCTCCTGCT AGCAAGAACA GAGTCCACCC TCCTCTGGAT ATTGGGGAGG	1080
50	GACGGAAGTG ACAGGGTGTG GTGGTGGAGT GGGGAGCTGG CTTCTGCTGG CCAGGATGGC	1140
	TTAACCCTGA CTTTGGGATC TGCCTGCATC GGTGTTGGCC ACTGTCCCCA TTTACATTTT	1200
55	CCCCACTCTG TCTGCCTGCA TCTCCTCTGT TGCGGGTAGG CCTTGATATC ACCTCTGGGA	1260
	CTGTGCCTTG CTCACCGAAA CCCGCGCCCA GGAGTATGGC TGAGGCCTTG CCCACCCACC	1320
	TGCCTGGGAA GTGCAGAGTG GATGGACGGG TTTAGAGGGG AGGGGCGAAG GTGCTGTAAA	1380
60		

	CAGGTTTGGG	CAGTGGTGGG	GGAGGGGGCC	AGAGAGGCGG	CTCAGGTTGC	CCAGCTCTGT	1440
	GGCCTCAGGA	CTCTCTGCCT	CACCCGCTTC	AGCCCAGGGC	CCCTGGAGAC	TGATCCCCTC	1500
5	TGAGTCCTCT	GCCCCTTCCA	AGGACACTAA	TGAGCCTGGG	AGGGTGGCAG	GGAGGAGGGG	1560
	ACAGCTTCAC	CCTTGGAAGT	CCTGGGGTTT	TTCCTCTTCC	TTCTTTGTGG	TTTCTGTTTT	1620
10	GTAATTTAAG	AAGAGCTATT	CATCACTGTA	ATTATTATTA	TTTTCTACAA	TAAATGGGAC	1680
	CTGTGCACAG	GRAAAAAAAA	AAAAG				1705

20

(2) INFORMATION FOR SEQ ID NO: 107:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1167 base pairs

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25

30

35

40

45

50

55

60

TGCAGGAATT CGGCAGAGGT TTTCCGCTAG ACTCTGGCAG TTGGTGAGCA TCATGGCAAC 60 CGTTACAGCC ACAACCAAAG TCCCGGAGAT CCGTGATGTA ACAAGGATTG AGCGAATCGG 120 TGCCCACTCC CACATCCGGG GACTGGGGCT GGACGATGCC TTGGAGCCTC GGCAGGCTTC 180 GCAAGGCATG GTGGGTCAGC TGGGGGCACG GCGGGGGGCT GGCGTGGTGC TGGAGATGAT 240 CCGGGAAGGG AAGATTGCCG GTCGGGCAGT CCTTATTGCT GGCCAGCCGG GCACGGGGAA 300 GACGGCCATC GCCATGGGCA TGGCGCAGGC CCTGGGCCCT GACACGCCAT TCACAGCCAT 360 CGCCGGCAGT GAAATCTTCT CCCTGGAGAT GAGCAAGACC GAGGCGCTGA CGCAGGCCTT 420 CCGGCGGTCC ATCGGCGTTC GCATCAAGGA GGAGACGGAG ATCATCGAAG GGGAGGTGGT 480 GGAGATCCAG ATTGATCGAC CAGCAACAGG GACGGGCTCC AAGGTGGGCA AACTGACCCT 540 CAAGACCACA GAGATGGAGA CCATCTACGA CCTGGGCACC AAGATGATTG AKTCCCTGAC 600 CAAGGACAAG GTCCAGGCCG GGGACGTGAT CACCATCGAC AAGGCGACGG GCAAGATCTC 660 CAAGCTGGGC CGCTCCTTCA CACGCGCCCG CGAACTACGA CGCTATGGGC TCCCAGACCA 720 AGTTCGTGCA GTGCCCAGAT GGGGAGCTCC AGAAACGCAA GGAGGTGGTG CACACCGTGT 780 CCCTGCACGA GATCGACGTC ATCAACTCTC GCACCCAGGG CTTCCTGGCG CTCTTCTCAG 840 GTGACACAGG GGAGATCAAG TCAGAAGTCC GTGAGCAGAT CAATGCCAAG GTGGCTGAGT 900 GGCGCGAGGA GGGCAAGGCG GAGATCATCC CTGGAGTGCT GTTCATCGAC GAGGTCCACA 960 TGCTGGACAT CGAGAGCTTC TCCTTCCTCA ACCGGGCCCT GGAGAGTGAC ATGGCGCCTG 1020 TCCAGCAGGT CTATGGGGAT GCCGTGAGGG CTCTGGTAGC TGGTGCCCCG GATTCGCGTG 1080

ATGCCACGGT TGGTGGCCTC GTGCCGAATT CCTGCAGCCC GGGGGATCCA CTAGTTCTAG 1140

AGCGGCCGCC ACCGCGGTGG ANCTCCN 1167

(2) INFORMATION FOR SEQ ID NO: 108:

10

20

25

30

35

40

45

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1907 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

15

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:

GGCACAGGGG AATCATCGTG TGATGTGTGT GCTGCCTTTG TGAGTGTGTG GAGTCCTGCT 60 CAGGTGTTAG GTACAGTGTG TTTGATCGTG GTGGCTTGAG GGGAACCCTT GTTCAGAGCT 120 GTGACTGCGG CTGCACTCAG AGAAGCTGCC CTTGGCTGCT CGTAGCGCCG GGCCTTCTCT 180 CCTCGTCATC ATCCAGAGCA GCCAGTGTCC GGGAGGCAGA AGGTACCGGG GCAGCTACTG 240 GAGGACTGTG CGGGCCTGCC TGGGCTGCCC CCTCCGCCGT GGGGCCCTGT TGCTGCTGTC CATCTATTTC TACTACTCCC TCCCAAATGC GGTCGGCCCG CCCTTCACTT GGATGCTTGC CCTCCTGGGC CTCTCGCAGG CACTGAACAT CCTCCTGGGC CTCAAGGGCC TGGCCCCAGC TGAGATCTCT GCAGTGTGTG AAAAAGGGAA TTTCAACGTG GCCCATGGGC TGGCATGGTC ATATTACATC GGATATCTGC GGCTGATCCT GCCAGAGCTC CAGGCCCGGA TTCGAACTTA 540 CAATCAGCAT TACAACAACC TGCTACGGGG TGCAGTGAGC CAGCGGCTGT ATATTCTCCT CCCATTGGAC TGTGGGGTGC CTGATAACCT GAGTATGGCT GACCCCAACA TTCGCTTCCT 660 GGATAAACTG CCCCAGCAGA CCGGTGACCG TGCTGGCATC AAGGATCGGG TTTACAGCAA 720 CAGCATCTAT GAGCTTCTGG AGAACGGGCA GCGGGCGGGC ACCTGTGTCC TGGAGTACGC 780 CACCCCCTTG CAGACTTTGT TTGCCATGTC ACAATACAGT CAAGCTGGCT TTAGCGGGGA 840 900 GGATAGGCTT GAGCAGGCCA AACTCTTCTG CCGGACACTT GAGGACATCC TGGCAGATGC CCCTGAGTCT CAGAACAACT GCCGCCTCAT TGCCTACCAG GAACCTGCAG ATGACAGCAG 960 CTTCTCGCTG TCCCAGGAGG TTCTCCGGCA CCTGCGGCAG GAGGAAAAGG AAGAGGTTAC 1020 TGTGGGCAGC TTGAAGACCT CAGCGGTGCC CAGTACCTCC ACGATGTCCC AAGAGCCTGA 1080 GCTCCTCATC AGTGGAATGG AAAAGCCCCT CCCTCTCCGC ACGGATTTCT CTTGAGACCC 1140 AGGGTCACCA GGCCAGAGCC TCCAGTGGTC TCCAAGCCTC TGGACTGGGG GCTCTCTTCA 1200 GTGGCTGAAT GTCCAGCAGA GCTATTTCCT TCCACAGGGG GCCTTGCAGG GAAGGGTCCA 1260

	GGACTTGACA	TCTTAAGATG	CGTCTTGTCC	CCTTGGGCCA	GTCATTTCCC	CTCTCTGAGC	1320
	CTCGGTGTCT	TCAACCTGTG	AAATGGGATC	ATAATCACTG	CCTTACCTCC	CTCACGGTTG	1380
5	TTGTGAGGAC	TGAGTGTGTG	GAAGTTTTTC	ATAAACTTTG	GATGCTAGTG	TACTTAGGGG	1440
	GTGTGCCAGG	TGTCTTTCAT	GGGGCCTTCC	AGACCCACTC	CCCACCCTTC	TCCCCTTCCT	1500
10	TTGCCCGGGG	ACGCCGAACT	CTCTCAATGG	TATCAACAGG	CTCCTTCGCC	CTCTGGCTCC	1560
	TGGTCATGTT	CCATTATIGG	GGAGCCCCAG	CAGAAGAATG	GAGAGGAGGA	GGAGGCTGAG	1620
	TTTGGGGTAT	TGAATCCCCC	GGCTCCCACC	CTGCAGCATC	AAGGTTGCTA	TGGACTCTCC	1680
15	TGCCGGGCAA	CTCTTGCGTA	ATCATGACTA	TCTCTAGGAT	TCTGGCACCA	CTTCCTTCCC	1740
	TGGCCCCTTA	AGCCTAGCTG	TGTATCGGCA	CCCCACCC	ACTAGAGTAC	TCCCTCTCAC	1800
20	TTGCGGTTTC	CTTATACTCC	ACCCCTTTCT	CAACGGTCCT	TTTTTAAAGC	ACATCTCAGA	1860
	ТТААААААА	АААААААА	AAAAAAAA	AAAAAAAG GG	ceeccec		1907

25

(2) INFORMATION FOR SEQ ID NO: 109:

(i) SEQUENCE CHARACTERISTICS:

30

(A) LENGTH: 611 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

ATGAATTAAC GCCAAGCTNT NAATAGGGAC TCACTATGGG GGAAAGNIGG GTAACGCCTG 60 CAGGTACCGT TCCGGAATTC CCGGGTCGAC CCACGCGTCC GATGGGGCTT TAGTAAATCA 120 40 GGCTTGCAGG CTCAAAGCTG CAATCTGCCC ACTCTCAGGT ACTGAGACTT TGTGGGCCTC 180 AGACACCAGG AAGAAAGTTG GGATACAGTC ATTTGAGTTA AAAAGGGAAT GACCCCTCAG 240 AAACCCGCAT TAGCAGTGTT ACTCTTGGAA GTGCCTTTAC TTTTAACGCT CTCTGTTCTG 300 45 AAAAAGAGGT GTTTGGTTAC GTGTGAGCCA ACATCACGTT TTGTTAGCTG TGATTTACCT 360 TTGTCCGTTT AAAAGACTTC ACGGAGCCAT TCTGTATACA AGGTGTGCTC TTTCCAATGT 420 50 AGAAGGGGTT ATGGAAAAGG GTGCGATCCT TTGCTGTAAA CTGGAGAGAC CAGTCCCAAA 480 CAGAGGGGAA TITTAAGCCC TICTCATCAC CCAATIGGAT GITTITGCTI ATAGCAAATI 540 600 55 GGGGGGNCCN C 611

(2) INFORMATION FOR SEQ ID NO: 110:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2632 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:	
10	TCCCAGCTCT CAGGACAAGG GCCCTGGGCG ATCTTTTAAA AAAGCCGATT GGGTGTCTTT	60
	CTAAAANTAC AACCAGTACT TCATCGTCAA GTTTCTGGGA AGGGAGTCCC CTCCAGATTC	120
15	TCATGGAGTG ACAAATCITG ACTCTTGCTC CTGGAATTTT TCAGGCCCAA ACTAGCGTTT	180
	CTACAATGAT TTATTTGGCA AATTTGTCTT GATTATGGGT GGCTGATGAG GAACGTGCTT	240
20	TTGTTAGGAA CCGAAACTGG GCGGCGTGA GGGCGTGTAC GCAATGAGTC CGGAAGAGGG	300
20	TGAAATGCTT TCGGTAGGCA CTCCACGGCT GTGAAGATGG CGGCGGCTGC GTGGCTTCAG	360
	GTGTTGCCTG TCATTCTTCT GCTTCTGGGA GCTCACCCGT CACCACTGTC GTTTTTCAGT	420
25	GCGGGACCGG CAACCGTAGC TGCTGCCGAC CGGTCCAAAT GGCACATTCC GATACCGTCG	480
	GGGAAAAATT ATTTTAGTTT TGGAAAGATC CTCTTCAGAA ATACCACTAT CTTCCTGAAG	540
20	TTTGATGGAG AACCTTGTGA CCTGTCTTTG AATATAACCT GGTATCTGAA AAGCGCTGAT	600
30	TGTTACAATG AAATCTATAA CTTCAAGGCA GAAGAAGTAG AGITGTATTT GGAAAAACTT	660
	AAGGAAAAAA GAGGCTTGTC TGGGAAATAT CAAACATCAT CAAAATTGTT CCAGAACTGC	720
35	AGTGAACTCT TTAAAACACA GACCTTTTCT GGAGATTTTA TGCATCGACT GCCTCTTTTA	780
	GGAGAAAAAC AGGAGGCTAA GGAGAATGGA ACAAACCTTA CCTTTATTCG AGACAAAACC	840
40	GCAATGCATG AACCATTGCA AACTTGGCAA GATGCACCAT ACATTTTTAT TGTACATATT	900
40	GGCATTTCAT CCTCAAAGGA ATCATCAAAA GAAAATTCAC TGAGTAATCT TTTTACCATG	960
	ACTGTTGAAG TGAAGGGTCC CTATGAATAC CTCACACTTG AAGACTATCC CTTGATGATT	1020
45	TYPTTCATGG TGATGTGTAT TGTATATGTC CTGTTTGGTG TTCTGTGGCT GGCATGGTCT	1080
	GCCTGCTACT GGAGAGATCT CCTGAGAATT CAGTTTTGGA TTGGTGCTGT CATCTTCCTG	1140
50	GGAATGCTTG AGAAAGCTGT CTTCTATGCG GAATTTCAGA ATATCCGATA CAAAGGARAA	1200
50	TOTGTCCAGG GTGCTTTGAT COTTGCAGAR CTGCTTTCAG CAGTGAAACG CTCACTGGCT	1260
	CGAACCCTGG TCATCATAGT CAGTCTGGGA TATGGCATCG TCAAGCCACG CCTGGAGTCA	1320
55	CTCTTCATAA GGTTGTAGTA GCAGRAGCCC TCTATCTTTT GTTCTCTGGC ATGGAAGGGG	1380
	TCCTCAGAGT TACTGGGGCC CAGACTGATC TTGCTTCCTT GGCCTTTATC CCCTTGGCTT	1440
	TCCTAGACAC TGCCTTGTGC TGGTGGATAT TTATTAGCCT GACTCAAACA ATGAAGCTAT	1500
60		

•	TAAAACTTCG GAGGAACATT GTAAAACTCT CTTTGTATCG GCATTTCACC AACACGCTTA	1560
	TTTTGGCAGT GGCAGCATCC ATTGTGTTTA TCATCTGGAC AACCATGAAG TTCAGAATAG	1620
5	TGACATGTCA GTCGGACTGG CGGGAGCTGT GGGTAGACGA TGCCATCTGG CGCTTGCTGT	1680
	TCTCCATGAT CCTCTTTGTC ATCATGGTTC TCTGGCGACC ATCTGCAAAC AACCAGAGGT	1740
10	TTGCCTTTTC ACCATTGTCT GAGGAAGAGG AGGAGGATGA ACAAAAGGAG CCTATGCTGA	1800
10	AAGAAAGCTT TGAAGGAATG AAAATGAGAA GTACCAAACA AGAACCCAAT GGAAATAGTA	1860
	AAGTTAACAA AGCACAGGAA GATGATITGA AGTGGGTAGA AGAGAATGTT CCTTCTTCTG	1920
15	TGACAGATGT AGCACTTCCA GCCCTTCTGG ATTCAGATGA GGAACGAATG ATCACACACT	1980
	TTGAAAGGTC CAAAATGGAG TAAGGAATGG GAAGATTTGC AGTTAAAGAT GGCTACCATC	2040
20	AGGGAAGAGA TCAGCATCTG TGTCAGTCTT CTGTACGGCT CCATGGGATT AAAGGAAGCA	2100
	ATGACATCCT GATCTGTCC TTGATCTTTG GGCATTGGAG TTGGCGAGAG GTGTCAGAAC	2160
	AAAGAGAACA TCTTACTGAA AACAAGTTCA TAAGATGAGA AAAATCTACG AGCTTCTTAT	2220
25	TTACAACACT GCTGCCCCCT TTCCTCCCAG ACTCTGACAT GGATGTTCAT GCAACTTAAG	2280
	TGTGTTGTTC CTGAACTTTC TGTAATGTTT CATTTTTTAA ATCTGACAAA CTAAAAAGTT	2340
30	TAACGTCTTC TAAAAGATTG TCATCAACAC CATAATATGT AATCTCCAGG AGCAACTGCC	2400
	TGTAATTTT ATTTATTTAG GGAGTTACAT AGGTGATGGG GGAAATTGTT AACTACCTTT	2460
	CATTITCCTG GGAAGTCAAG GTTACATCTT GCAGAGGTTG TTTTGAGAAA AAAGGGCCCT	2520
35	TCTGAGTTAA GGAGCCATAG TTCTATCAAT GATCAAAAGA AAAAAAAAAA	2580
	GCACGAGGG GGGCCCGGTA CCCAATTCGC CCTATGGGAN TCGAATGAGA CC	2632
40		
	(2) INFORMATION FOR SEQ ID NO: 111:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2249 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:	
	GAATTCGGCA CGAGCTCACC GTGCTGCGTG ACACAAGGCC AGCCTGCGCC TACGAGCCCA	60
55	TGGACTTTKT RATGGCCCTC ATCTACGACA TGGTACTGSW TGTGGTCACC CTGGGGCTGG	120
<i></i>	CCCTCTTCAC TCTGTGCGGC AAGTTCAAGA GGTGGAAGCT GAACGGGGCC TTCCTCCTCA	180
	TCACAGCCTT CCTCTCTGTG CTCATCTGGG TGGCCTGGAT GACCATGTAC CTCTTCGGCA	240
60	ATGTCAAGCT GCAGCAGGGG GATGCCTGGA ACGACCCCAC CTTGGCCATC ACGCTGGCGG	300

	CCAGCGCTGG	GTCTTCGTCA	TCTTCCACGC	CATCCCTGAG	ATCCACTGCA	CCCTTCTGCC	360
5	AGCCCTGCAG	GAGAACACGC	CCAACTACTT	CGACACGTCG	CAGCCCAGGA	TGCGGGAGAC	420
J	GGCCTTCGAG	GAGGACGTGC	AGCTGCCGCG	GGCCTATATG	GAGAACAAGG	CCTTCTCCAT	480
	GGATGAACAC	AATGCAGCTC	TCCGAACAGC	AGGATTTCCC	AACGGCAGCT	TGGGAAAAAG	. 540
10	ACCCAGTGGC	AGCTTGGGGA	AAAGACCCAG	CGCTCCGTTT	AGAAGCAACG	TGTATCAGCC	600
	AACTGAGATG	GCCGTCGTGC	TCAACGGTGG	GACCATCCCA	ACTGCTCCGC	CAAGTCACAC	660
15	AGGAAGAMAC	CTTTGGTGAA	AGACTTTAAG	TTCCAGAGAA	TCAGAATTTC	TCTTACCGAT	720
15	TTGCCTCCCT	GGCTGTGTCT	TTCTTGAGGG	AGAAATCGGT	AACAGTTGCC	GAACCAGGCC	780
	GCCTCACAGC	CAGGAAATTT	GGAAATCCTA	GCCAAGGGGA	TTTCGTGTAA	ATGTGAACAC	840
20	TGACGAACTG	AAAAGCTAAC	ACCGACTGCC	CGCCCCTCCC	CTGCCACACA	CACAGACACG	900
	TAATACCAGA	CCAACCTCAA	TCCCCGCAAA	CTAAAGCAAA	GCTAATTGCA	AATAGTATTA	960
25	GGCTCACTGG	AAAATGTGGC	TGGGAAGACT	GTTTCATCCT	CTGGGGGTAG	AACAGAACCA	1020
23	AATTCACAGO	TGGTGGGCCA	GACTGGTGTT	GGTTGGAGGT	GGGGGGCTCC	CACTCTTATC	1080
	ACCTCTCCCC	AGCAAGTGCT	GGACCCCAGG	TAGCCTCTTG	GAGATGACCG	TTGCGTTGAG	1140
30	GACAAATGGG	GACTTIGCCA	CCGCCTTTGC	CTGGTGGTTT	GCACATTTCA	GGGGGTCAG	1200
	GAGAGTTAAC	GAGGTTGTGG	GTGGGATTCC	AAGGTGAGGC	CCAACTGAAT	CCTGGGGTGA	1260
35	GCTTTATAGC	CAGTAGAGGT	GGAGGGACCC	TGGCATGTGC	CAAAGAAGAG	GCCCTCTGGG	1320
33	TGATGAAGT	ACCATCACAT	TTGGAAAGTG	ATCAACCACT	GTTCCTTCTA	TGGGGCTCTT	1380
	GCTCTAGTGT	CTATGGTGAG	AACACAGGCC	CCGCCCCTTC	CCTTGTAGAG	CCATAGAAAT	1440
40	ATTCTGGCTT	r GGGGCAGCAG	TCCCTTCTTC	CCTTGATCAT	CTCGCCCTGT	TCCTACACTT	1500
	ACCCCTCTA!	CTCCAAATCC	TCTCCCAAT	TTATTCCCTI	ATTCATTTCA	AGAGCTCCAA	1560
45	TEECTCTC	C AGCTGAAANS	CCCTCCGGG!	GCAGGTTGG	AAGGCAGGCA	CCACGGCAGG	1620
-4 3	TTTTCCGCG	A TGATGTCACO	TAGCAGGGC	TCAGGGGTTC	CCACTAGGAT	GCAGAGATGA	1680
	CCTCTCGCT	G CCTCACAAGO	AGTGACACC	CGGGTCCTT	CCGTTGCTAT	GGTGAAAATT	1740
50	CCTGGATGG	A ATGGATCACA	TGAGGGTTT(TIGITGCTT	TGGAGGGTGT	GGGGGATATT	1800
	TTGTTTTGG	T TTTTCTGCAC	GTTCCATGA	A AACAGCCCTT	TTCCAAGCCC	ATTGTTTCTG	1860
EE	TCATGGTTT	C CATCTGTCC	GAGCAAGTC	A TICCITIGI	r atttagcati	TCGAACATCT	1920
55	CGGCCATTC	A AAGCCCCCA	GITCTCTGC	A CTGTTTGGC	AGCATAACCI	CTAGCATCGA	1980
	TTCAAAGCA	G AGTTTTAAC	TGACGGCAT	g gaatgtatai	A ATGAGGGTGG	GICCTICIGC	204
60				T 30033330003	- CCMBACCC	איווייויארייטיט איניייייט א	210

	AAGAAAATG AAAAAGGITA GIGITTGGGG GCCGGGGGAG GACTGACCGC TTCATAAGCC	2160
5	AGTACGTCTG AGCTGAGTAT GTTTCAATAA ACCTTTTGAT ATTTCTCAAA AAAAAAAAAA	2220
J	AAAAANCCCG GGGGGGGCC CGGAJCTGG	2249
10	(2) INFORMATION FOR SEQ II NO: 112:	
15	(i) SEQUENCE CHAPACTERISTICS: (A) LENGTH: 2193 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: double (D) TOPCLOST: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:	
_0	GATACTATAA GGCAAGTGAC TCACGGGTGC GCCGTTAGAC TAGTGGATCC CGGGTGCAGG	60
	AATTOGGCAG AGCGCCGCG GAGCCGAAGT GCTGGCGCCCC CCGCGGCCCC TGCCTCCGCG	120
25	GANCCCAAAA TCATGAAAST CACCGTGAAG ACCCCGAAGA AAAGGAGGAA TTCGCCGTGC	180
	CCGAGAATAG CTCCGTCCAG CAGTTTAAGG AAGAAATCTC TAAACGTTTT AAATCACATA	240
30	CTGACCAACT TGTGTTGATA TTTTGCTGGAA AAATTTTGAA AGATCAAGAT ACCTTGAGTC	300
50	AGCATGGAAT TCATGATGGA CITACTGTTC ACCTTGTCAT TAAAACACAA AACAGGCCTC	360
	AGGATCATTC AGCTCAGCAA ACAAATACAG CTGGAAGCAA TGTTACTACA TCATCAACTC	420
35	CTAATAGTAA CECTACATOT GGTTGCTA CTAGCAACCC TTTTGGTTTA GGTGGCCTTG	480
	GGGGACTTGC AGGTCTGAGT AGCTTGGGTT TGAATACTAC CAACTTCTCT GAACTACAGA	540
40	GTCAGATGCA GCGACAACTT TTGTCTAACC CTGAAATGAT GGTCCAGATC ATGGAAAAWC	600
70	CCYTTGTTCA GAGCATGCTC :ITCAAATCCT GACCTGATGN AGACAGTTAA TTATGGCCAA	660
	TCCACAAATG CAGCAGTTGA TACAGAGAAA TCCCAGAAAT TAGTCATATG TTGAATAATC	720
45	CAGATATAAT GAGACAAACG TTGGAACTTG CCCAGGAATC CAGCAATGAT GCAGGAGATG	780
	ATGAGGAACC AGGACCGAGC TTTGAGCAAC CTAGAAAGCA TCCCAGGGGG ATATAATGCT	840
50	TTAAGGCGCA TGTACACAGA TATTCAGGAA CCAATGCTGA GTGCTGCACA AGAGCAGTTT	900
50	GGTGGTAATC CATTTGCTTC CTTGGTGAGC AATACATCCT CTGGTGAAGG TAGTCAACCT	960
	TCCCGTACAG AAAATAGAGA TCCACTACCC AATCCATGGG CTCCACAGAC TTCCCAGAGT	1020
55	TCATCAGCTT CCAGCGGCAC TGCCAGCACT GTGGGTGGCA CTACTGGTAG TACTGCCAGT	1080
	GGCACTTCTG GGCAGAGTAC TACTGCGCCA AATTTGGTGC CTGGAGTAGG AGCTAGTATG	1140

TTCAACACAC CAGGAATECA GAGCTTGTTG CAACAAATAA CTGAAAAACCC ACAACTTATG

•	CAAAACATGT TGTCTGCCCC CTACATGAGA AGCATGATGC AGTCACTAAG CCAGAATCCT	1260
	GACCTTGCTG CACAGATGAT GCTGAATAAT CCCCTATTTG CTGGAAATCC TCAGCTTCAA	1320
5	GAACAAATGA GACAACAGCT CCCAACTTTC CTCCAACAAA TGCAGAATCC TGATACACTA	1380
	TCAGCAATGT CAAACCCTAG AGCAATGCAG GCCTTGTTAC AGATTCAGCA GGGTTTACAG	1440
10	ACATTAGCAA CGGAAGCCCC GGGCCTCATC CCAGGGTTTA CTCCTGGCTT GGGGGCATTA	1500
10	GGAAGCACTG GAGGCTCTTC GGGAACTAAT GGATCTAACG CCACACCTAG TGAAAACACA	1560
	AGTCCCACAG CAGGAACCAC TGAACCTGGA CATCAGCAGT TTATTCAGCA GATGCTGCAG	1620
15	GCTCTTGCTG GAGTAAATCC TCAGCTACAG AATCCAGAAG TCAGATTTCA GCAACAACTG	1680
	GAACAACTCA GTGCAATGGG ATTTTTGAAC CGTGAAGCAA ACTTGCAAGC TCTAATAGCA	1740
20	ACAGGAGGTG ATATCAATGC AGCTATTGAA AGGTTACTGG GCTCCCAGCC ATCATAGCAG	1800
20	CATTTCTGTA TCTKGAAAAA ATGTAATTTA TTTTTGATAA CGGCTCTTAA ACTTTAAAAT	1860
	ACCTGCTTTA TTTCATTTTG ACTCTTGGAA TTCTGTGCTG TTATAAACAA ACCCAATATG	1920
25	ATGCATTITA AGGTGGAGTA CAGTAAGATG TGTGGGTTTT TCTGTATTIT TCTTTTCTGG	1980
	AACAGTGGGA ATTAAGGCTA CTGCATGCAT CACTTCTGCA TTTATTGTAA TTTTTTAAAA	2040
30	ACATCACCTT TTATAGTTGG GTGACCAGAT TTTGTCCTGC ATCTGTCCAG TTTATTTGCT	2100
20	TTTTAAACAT TAGCCTATGG TAGTAATTTA TGTAGAATAA AAGCATTAAA AAGAAGCAAA	2160
	AAAAAAAA AAAAATTCCT GCGCCCGCGA ATTCTTCT	2198
35		
	(2) INFORMATION FOR SEQ ID NO: 113:	
40	(i) SEQUENCE CHARACTERISTICS:	
70	(A) LENGTH: 1043 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:	
	CTGAAGTGTA TGTGGTGAGG AAGAAGAGGC TCCTACTGTA GACAGCCTTG TTCTACAGAT	60
50	CCTCCCAGAA ATCTCTGGGC CAGGTGGAAC CCAGGGTCAG AGAGGGATGG GAGAGAGGTT	120
	TAATTTTCCA TGATAAATAA AAATCTATAA AATAATAAAC AAGAGAAAAG AGATTGGAAA	180
55	CAGCCAGGTT GGAGCAGTGA GTGAGTAAGG AAACCTGGCT GCCCTCTCCA GATTCCCCAG	240
	GCTCTCAGAG AAGATCAGCA GAAAGTCTGC AAGACCCTAA GAACCATCAG CCCTCAGCTG	300
	CACCTCCTCC CCTCCAAGGA TGACAAAGGC GCTACTCATC TATTTGGTCA GCAGCTTTCT	360
60	TGCCCTAAAT CAGGCCAGCC TCATCAGTCG CTGTGACTTG GCCCAGGTGC TGCAGCTGGA	420

	RGACTTGGAT GGGTTTGAGG GTTACTCCCT GAGTGACTGG CTGTGCCTGG CTTTTGTGGA	480
5	AAGCAAGTTC AACATATCAA AGATWAATGA AAATGCAGAT GGAAGCTTTG ACTATGGSCT	540
_	CTTCCAGATC AACAGCCACT ACTGGTGCAA CRATTATAAG AGTTACTCGG AAAACCTTTG	600
	CCACGTAGAC TGTCAAGATC TGCTGAATCC CAACCTTCTT GCAGGCATCC ACTGCGCAAA	. 660
10	AAGGATTGTG TCCGGAGCAC GGGGGATGAA CAACTGGGTT AGAATGGAAG KTTGCACTGT	720
	TCAGGCCGGC CACTCTTCTA CTGGCTGACA GGATGCCGCC TGAGATKAAA CARGGTGCGG	780
15	GTGCACCGTG GARTCATTCC AAGACTCCTG TCCTCACTCA RGGATTCTTC ATTTCTTCTT	840
	CCTACTGCCT CCACTTCATG TTATTTTCTT CCCTTCCCAT TTACAACTAA AACTGACCAG	900
	AGCCCCAGGA ATAAATGGTT TTCTTGGCTT CCTCCTTACT CCCATCTGGA CCCAGTCCCC	960
20	TGGTTCCTGT CTGTTATTTG TAAACTGAGG ACCACAATAA AGAAATCTTT ATATTTATCG	1020
	AAAAAAAAA AAAAAAAACT CGA	1043
25		
	(2) INFORMATION FOR SEQ ID NO: 114:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 703 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
33	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:	
	GAATTCGGCA CGAGTGCGCG GGCACCACGG CGGTTTTTTCG ACGCTGGCGG TGGACGCAGG	60
40	CAGCATGGAC CACGGTTGCT GGGCGGATGG GGAGCGTCTA TGGTCAGTTG CCTTAGAAGT	120
	GGTGAGATGG GAAGCTGCAG TTGGAAGACC CTGGAGGATG CCTGACAAGG GGATGTCTGA	180
	CACATGATTG GAGCTCTTTT TGAAATGTTT CTTGCCCTTC CTGGAGCAGA GGAGCCATTA	240
45	TTTATGCAGG TACATCGAAG TCTTTTGACC TCCATACAGT GATTATGCTT GTCATCGCTG	300
	GTGGTATCCT GGCGGCCTTG CTCCTGCTGA TAGTTGTCGT GCTCTGTCTT TACTTCAAAA	360
50	TACACAACGC GCTAAAAGCT GCAAAGGAAC CTGAAGCTGT GGCTGTAAAA AATCACAACC	420
,,	CAGACAAGGT GTGGTGGGCC AAGAACAGCC AGGCCAAAAC CATTGCCACG GAGTCTTGTC	480
	CTGCCCTGCA GTGCTGTGAA GGATATAGAA TGTGTGCCAG TTTTGATTCC CTGCCACCTT	540
55	GCTGTTGCGA CATAAATGAG GGCCTCTGAG TTAGGAAAGG TGGGCACAAA AATCTTCATG	600
	AGCAATACTT CTTAGTAGAT TGTTTTGTTA TTCAAATCAA GTTCTAGTGT TTTTATGTGA	660
	GATTATATAA TITACAGTGT TGTTTTATAT ACTTTTGAAT AAA	703

(2) INFORMATION FOR SEQ ID NO: 115:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3684 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115: 60 GGCAGAGGGG GCATGAGCAG GAGGAGGATT ACCGCTACGA GGTGCTCACG GCCGAGCAGA 15 TTCTACAACA CATGGTGGNA ATGTATCCGG GAGGTCAACG AGGTCATCCA GAATCCAGCA 120 ACTATCACAA GAATACTCCT TAGCCACTTC AATTGGGATA AAGAGAAGCT AATGGAAAGG 180 TACTITGATG GAAACCIGGA GAAGCTCTIT GCTGAGTGTC ATGTAATTAA TCCAAGTAAA 240 20 AAGTCTCGAA CACGCCAGAT GAATACAAGG TCATCAGCAC AGGATATGCC TTGTCAGATC 300 TGCTACTTGA ACTACCCTAA CTCGTATTTC ACTGGCCTTG AATGTGGACA TAAGTTTTGT 360 25 ATGCAGTGCT GGAGTGAATA TTTAACTACC AAAATAATGG AAGAAGGCAT GGGTCAGACT 420 ATTTCGTGTC CTGCTCATGG TTGTGATATC TTAGTGGATG ACAACACAGT TATGCGCCTG 480 ATCACAGATT CAAAAGTTAA ATTAAAGTAT CAGCATTTAA TAACAAATAG CTTTGTAGAG 540 30 TGCAATCGAC TGTTAAAGTG GTGTCCTGCC CCAGATTGCC ACCATGTTGT TAAAGTCCAA 600 TATCCTGATG CTAAACCTGT TCGCTGCAAA TGTGGGCGCC AATTTTGCTT TAACTGTGGA 660 35 GAAAATTGGC ATGATCCTGT TAAATGTAAG TGGTTAAAGA AATGGATTAA AAAGTGTGAT 720 GATGACAGTG AAACCTCCAA TTGGATTGCA GCCAACACAA AGGAATGTCC CAAATGCCAT 780 GTCACAATTG AGAAGGATGG TGGTTGTAAT CACATGGTCT GTCGTAACCA GAATTGTAAA 840 40 GCAGAGTTTT GCTGGGTGTG TCTTGGCCCA TGGGAACCAC ATGGATCTGC CTGGTACAAC 900 TGTAACCGCT ATAATGAGGA TGATGCAAAG GCAGCAAGAG ATGCACAGGA GCGATCTAGG 960 45 GCAGCCCTGC AGAGGTACCT GTTCTACTGT AATCGCTATA TGAACCACAT GCAGAGCCTG 1020 CGCTTTGAGC ACAAACTATA TGCTCAGGTG AAACAGAAAA TGGAGGAGAT GCAGCAGCAC 1080 AACATGTCCT GGATTGAGGT GCAGTTCCTG AAGAAGGCAG TTGATGTCCT CTGCCAGTGT 1140 50 CGTGCCACAC TCATGTACAC TTATGTCTTC GCTTTCTACC TCAAAAAGAA TAACCAGTCC 1200 ATTATCTTTG AGAATAACCA AGCAGATCTA GAGAATGCCA CAGAGGTGCT CTCGGGCTAC 1260 55 1320 TACAGATACT GTGAGAGTCG ACGAAGGGTT TTGTTACAGC ATGTGCATGA AGGCTATGAA 1380 AAAGATCTGT GGGAGTACAT TGAGGACTGA GAATGGCCCT GCATAAAATG AACTCTGAAA 1440 60

	ACTITIACCAT CTAGAGTGCT CATGCAATTA AAACAAAACA AACACAAACA AGGAGGCACT	1500
5	AAGCCTATTC TGACACCACT GGTCTGTAGT ACCAGAATTG TTTTGTTAAT GGAAAGTTTA	1560
	AGTAAATTAT ATTGTAATAA AAAGGTAGAT AAACCATTGT ACAACAGTAT TCTAGGCCGC	1620
	CAACAAAAGT GTGACAGACA CACTAAAAGC CCTCCAACTT TAACTTGTAA CGTAGCTTCA	1680
10	TTCTCAAAGC TGACTCCTTT TTTTTCTTTT TCCTTTTCCT GAGTGTAGTA CAGTTAAAAT	1740
	TTCAAACAGC TCCTTGACAC TGCTTTTCAT GTTCAAACCA GCCATTTTGT TGTACTTTGG	1800
15	TAAAGGACCT CTTCCCCTTC CTCCCCTACA CATACAGATA CACCCACACA CAGACTGACT	1860
	CTCTTTCTCT CATACCCCAA GGTCATGAGT GAATGATGCT TAGTTCCTTG TAAAGAAAAT	1920
	CTTGGGATGG GGAAAGGGGT AGGCAGCAAG AGGATTCAAC AAACGAAAAA CATAAAAACT	1980
20	TTGTATATGA CTTTTAAAAC AAGAGGACAA CACAGTATTT TTCAAAATTG TATATAGCGC	2040
	ATATGCATGG ACAAAGCAAG CGTGGCACGT GTTTGCATAA TGTTTAATTA CAAAAAAATA	2100
25	TTTATTCTTT AAAAATCTTC AAGATTATGT CTATTTGCTG TGCATTTTCT TTCAGTTTGC	2160
	TTATCTTTCC CGGGTTGGGG TTGGGATAAA GGTGTGTCGG TTTAGCACCT CTGGAAGACC	2220
	TATCTAGAGC TCTTTCACTT TCCTGAGGTT ATTTTGCCCY TTCTGGTGTT GGTATGTCTG	2280
30	TTGCCGGCCA TGGGCTNCAY GCCTTGAATT CCTGCTCTTG ATCAGGGACA AGGGAGGTCA	2340
	AGCTCTGACT AATGCCATGA CCTGATTAAG GGGTACAGCA GGGAGTTTTG TTGCTACAGC	2400
35	TCATGAATTA ACCTGTCCCA ACCTAATCCC CCTCCATGGC ATCATGCCTC TACCCAAGCC	2460
	TTTGTGTGCC CATGTTATGC ACACAGCTGT AGGCATTCTT AAGTCCCCTG TCGCATCCAG	2520
	TGGAAGCATT TTAAAATTTC TTTTACTTTT TGGTTTTCCC TTAATTGCTG CTTTTCAGAT	2580
40	TTTAGTTATG GCTCGTCTGC TCACCCCTTC TCTACATTAG GGTGTCAAAG AGAATGTTTT	2640
	GCTTTAAATA TAAATAGCCA TTCATTTAGT CTCAGATTGT GAATTTAAAA TGGTGGATAC	2700
45	CGAAATTGCT TGTGTGTGTT GCTGTGGGTT TGGTTTGAAG GCAAACACCC CTAGAACATG	2760
	ATATTCCCAT CTAGTGCATT TAAATAGAAA TCACTGAGTT TGCTGCTTTT TTATTGTCAG	2820
	CAGATAGGAG AATTAATAAT GCATTTTAGC TGTGATGTCC ATTTTTATGA AATTCCTACT	2880
50	AAGAGCTATG TTAAAAGTAA AGGATGGTGG TGGTTGTATT AACTATATAC CTGTTTAGGC	2940
	CATTCTGGCT GTGGTATTTT TCAATAGGTC AGCATCTGTA AATCTGTCAG TTTTATACAG	3000
55	GAGTGCAGAG TGAACTAGGC AACTAGATTA AGAGGTCTAA ATATGAAATA CCAGTTGAGG	3060
55	CTGAGGACCT CTTCGTCTTC CTTTAAATGT CTTTTGCCTA GGGAGTGTTT ACCATTTGTG	3120
	AGGCAGCTTT GTCTGCTCTT ACACTGTACA TCCTATTACT CCATTGGGAA GTAGGTTCAC	3180
60	TTTCCTCTGG CCTTTTGCCT AAGTTAGGCT TTGCTGAATC AACCCTACTT TTCCTTTTAG	3240

	AAAAGGTTGT	TACAGGAGAT	TTACTGGCAA	CIGITCITIT	CCCATCAAAA	ATCAGTGAAT	3300
5	GTTTGCTGAG	TATAAATGCT	GCTTCCTTAA	ACCACTTGTC	GCTTTAGGAT	CAACTTTACC	3360
3	TGTACCTTTT	CTCCTTTCCT	CCCTTGCCAC	CTCAGGTGCA	AATCTGAACT	CAGTGTCTGC	3420
	TTCTTCCATT	TTCTCGTCTC	TCTCCCCTCT	TCCCCCATTA	TCCATATGAC	ATTATTTTAC	3480
10	TTCAAATGAC	AGCATCAATC	TTAAAAAGAT	ATACATTAAA	ACTAAGGAGT	TTTTTTAAAG	3540
	AAAGCCTGAA	TAAGTTCCTT	TCCCTGGTAA	CTTTGAAAAG	CAGTCAGAGT	TGCTATATAG	3600
15	ATATATGTGG	CTCCTTTAAA	ATGCTTTGTG	TATGTGTGGT	GTTTAAAAAA	AAAAAAAA	3660
13	TTCGGGGGGG	GGCCCGGTNC	CCAT				368

25

30

60

(2) INFORMATION FOR SEQ ID NO: 116:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1965 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:

AAGAAAGGGT ATTAAAATTC TAGATCACAT ATGGACCCGG GAAGGTTTTT NACCCTCTGT 60 TAGTGACATC GAGTCTCCCA CTAGACAAAA TAGGTGGAAA AATCTCTCGA GGGCTCACAT 120 TGTTTGTCA TCTTCAGGAA AAACACCACC AGGCCATACC ACAGCCTGCC CAGTGAGGCG 180 35 GTCTTTGCCA ACAGCACCGG GATGCTGGTG GTGGCCTTTG GGCTGCTGGT GCTCTACATC 240 CTTCTGGCTT CATCTTGGAA GCGCCCAGAG CCGGGGATCC TGACCGACAG ACAGCCCCTG 300 40 CTGCATGATG GGGAGTGAAG CAGCAGGAAG GGGCTCCCAA GAGCTCCTGG TGGTGCAGCC 360 TGTGCTCCCC TCAGAAGCTC TGCTCTTCCC AGGGCTCCCG GCTGGTTTCA GCAGGCGACT 420 TTCTTCCAAT GCTGGGCCCA GACTTCTTGC CTGGGTGCTG GCCTGCCCTC TCCGGNCCGC 45 TIGCIGCTG TCTGCTTTCC TIGGIGGYTT TGCTGGGTGC TGGGCCTGCC CTCTCCGGCC CCTTCCTCCC TCTCTCCTTT CCTTCGTCCC TTTCCTCGCT CCTCCCCTC CCTTCTCTCG 600 50 CTGCTTGCTG CCTGTCTGCT TTCCTTGGTG GCTTTGGCTT CTGCACTCCT TGGCGTCASC 660 TCTCAGGTCC TCCATTCACA CGAGGTCCTC CTCGCTCTGG CCGCTCTTGC TGCTCCTGTC . 720 TGAAGAWATC AGACTGATTT CCTCTTAAGA CTCCTAGGGA TGTGGTGAAG AGCTGGGACT 780 55 CAAGTGCAGT CCACGGTGTG AAACATGAGG GARGTGAGGT GTCCGTCCAC TTCCCCCATA 840 AAGGTGTGCA TITCAGTTAG GCTGCCCCGC CACAGAGCAG GCTTCATCTG CTCTGCCATC 900

300

360

	CAGCCCCATC TGGATGTGAG GTGGGGTGGA GACATCATGG GGTGATTGCA GAAAGGGGGA	960
	GTGGCGGCCC ACGCAGCTTC TGCTGAGGAG CTGACCGCTC TGAGCTGTTC TGTTTCGTAT	1020
5	TECTECTETE TETCTECATE TATTETGACC GTECGECTCC ACCTCTTCCA GCTGCTGCTA	1080
	CAGCTGAGGC CTGGATCCCG GCCTTTCCCT GTGACTTACG TGTCTGTCAC CGGCANGCAG	1140
10	CCCTACAAAT CCTGGTGACC TGCTCTCCCA AGAACAGAGC CTGTCCCCAG ATGTCCCAGT	1200
	AGCGATGAGT AACAGAGGTG GCTGTGGACT TCCTCTACTT CTCCTTGCTG GATCAGGGCC	1260
	TTCCTGCCTC CCGCTGGGCA GGTCTGGCCT TGCTCTCTTG GCAGGGCCCC AGCCCCTCTG	1320
15	ACCACTCTGC AGCTCACCAT GCAGCTGATG CCAAAGTTGT GGTGTCCAGT GTGCAGCAGC	1380
	CCTGGGAGCC ACTGCCACCT TCAGAGGGGT TCCTTGCTGA GACCCACATT GCTTCACCTG	1440
20	GCCCCACCAT GGCTGCTTGC CTGGCCCAAC CTAGCGTTCT GTGCCATGCT AGAGCTTGAG	1500
	CTGTTGCTCT TCTTCAGGGG AGGAAATAGG GTGGAGAGCG GGAAGGGTCT TGCTCCTAAG	1560
	TGTTGCTGCT GTGGCTTTTT TGCCTTCTCC AAAGACGCAC TGCCAGGTCC CAAGCTTCAG	1620
25	ACTGCTGTGC TTAGTAAGCA AGTGAGAAGC CTGGGGTTTG GAGCCCACCT ACTCTCTGGC	1680
	AGCATCAGCA TCCTACTCCT GGCAACATCA GGCCAACGTC CACCCCAGCC TCACATTGCC	1740
30	AGATGTTGGC AGAAGGGCTA ATATTGACCG TCTTGACTGG CTGGAGCCTT CAAAGCCACT	1800
	GGGATGTCCT CCAGGCACCT GGGTCCCATG ACCAGCTCCC CGTCTCCATA GGGGTAGGCA	1860
	TTTCACTGGT TTATGAAGCT CGAGTTTCAT TAAATATGTT AAGAATCAAA GCTGTCTTTG	1920
35	TTCAGGCTGC TATAACAAAA ATATAATAGC CTGGGTGGCT TAAAC	1965
40	(2) INFORMATION FOR SEQ ID NO: 117:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 503 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:	
50	AGTGATCCCC TTGCCTCGGC CTCCCAAAAT GCTGGAATTG TAAGCGTGGG CCTCTGCACC	60
	CGGCCTGGTC CGCAATTTAA AAACGCACAG CCACCATTCC CTYTCCAGAA AGCACCCAGA	120
55	TGCCTTTGGG AGAACCAGCC TCCTCCATGG AGGAAAGCTT GGGATCTGCC TTCCCACCTG	180
-	GGGAGGAGAG GGATCTGTGG AAAATCCTTC TGACGGACTT CCCCTCAGTG CCTGATCCAT	240
	ACTCAATAGT AGAAAAAGTA AGAAATATAC AAAGATAGCA GATACACGGA GACAGTTCCC	300

CAAATAGCTG AGCGAWTAGC GCAGAAGCAA TATTGAAGAC CTAATAGCTG AGACATTTCC

	AGAACTGATA	AAGTGCATCC	AGCCACAGAT	CAAGCAGCCC	AGAAAATTCC	AGGCAGCATC	420
_	AACAAATAAA	TAGCCCCACA	TGCACCCGTG	AAAATGCAGA	AGACCAAACA	AAAAAGTCCG	480
5	GTCAACAGCC	AGAGTTAAAG	AGG				503

15

(2) INFORMATION FOR SEQ ID NO: 118:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1133 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118: 20 GGCACAGCTT GGAATGAACC CCTGTGGATA AGGGGGACTA TTAGATAGAA TAAACATCAA 60 TAAATGCTTG ATGAATAAAC GCTAATCCTA CCTTCCCAGC CTGACACCTC CCAGTGGACA 120 CCACACTTCA CTTGAAGCCT TAGAAACCTT TCCCACCCAT GCTTCCAGCC CTGGCTTCAT 180 25 GTTGCCATTT CTCACCCCCA GAACAGGCCG CCCGCCTGAA GAAACTACAA GAGCAAGAGA 240 AACAACAGAA AGTGGAGTTT CGTAAAAGGA TGGAGAAGGA GGTGTCAGAT TTCATTCAAG 300 30 ACAGTGGGCA GATCAAGAAA AAGTTTCAGC CAATGAACAA GATCGAGAGG AGCATACTAC 360 ATGATGTGGT GGAAGTGGCT GGCCTGACAT CCTTCTCCTT TGGGGAAGAT GATGACTGTC 420 GCTATGTCAT GATCTTCAAA AAGGAGTTTG CACCCTCAGA TGAAGAGCTA GACTCTTACC 480 35 GTCGTGGAGA GGAATGGGAC CCCCAGAAGG CTGAGGAGAA GCGGAACNTG AAGGAGCTGG 540 CCCAGAGGCA ANGAGGAGGA GGCAGCCCAG CAGGGGCCTG TGGTGGTGAG CCCTGCCAGC 600 40 GACTACAAGG ACAAGTACAG CCACCTCATC GGCAAGGGAG CAGCCAAAGA CGCAGCCCAC 660 ATGCTACAGG CCAATAAGAC CTACGGCTGT KTGCCCGTGG CCAATAAGAG GGACACACGC 720 TCCATTGAAG AGGCTATGAA TGAGATCAGA GCCAAGAAGC GTCTGCGGCA GAGTGGGGAA 780 45 840 GGGGGCAGGG AGAGACAAGG CTGCTGCTAT TAGAGCCCAT CCTGGAGCCC CACCTCTGAA 900 50 CCACCTCCTA CCACCTGTCC CTCAGGCTGG GGGAAAACAG GTGTTTGATT TGTCACCGTT 960 GGAGCTTGGA TATGTGCGTG GCATGTGTGT GTGTGTGTGA GAGTGTGAAT GCACAGGTGG 1020 GTATTTAATC TGTATTATTC CCCGTTCTTG GAATTTTCTT CCCATGGGGC TGGGGTACTT 1080 55 1133

(2)	INFORMATION	FOR	SEQ	ID	NO:	119:
-----	-------------	-----	-----	----	-----	------

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1101 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

	(MI) DESCRIPTION: SEQ ID NO: 119:	
	GGGCACAGCT GAAGCTGCAG ACCTCCCCAG GGGATGGCTC CTCTCCCCCA GGAGCCCCGA	60
15	GGCAGGGGAG GCAGAAAGCC TGGGCTCTGG GGGGTGGCCT GCGGACAGCT GTGCTGTGGG	120
	CCGGGGGCTG GGCCTGTCCC ACAGGGNCGT GGAGCTCGTG GTTCTGAGCA GCCAGCTGGG	180
	TGGTGTCTGG GGATAGCTGG GAGGCACAGC GGCTGCCATG TGGGACTGGG ACTGGAGTGC	240
20	TCCCTGGTCT TGGCCTCTGT GGCTCAGCCT TGCTCTGGTC TGCCTGAGTG CAGGGGCCAA	300
	GGGGCACAGG GCCAGTGAGG CCGGCCACGC TCGGGCCCTC ACCTGTGAGA TGGGGTCGGA	360
25	ATTTKACACA GCCTANGGCT TGGTTCTTGG TKGTNGAMCG TGGACTYCTK AGAACGGGAG	420
	TGCTGGTCCT .GAAAGGCGTG GTTGGAGACC AGCTGCTTTT CTCGCTGTTT TTCTCTTAGG	480
	AGATTAAACA AAAACAGAAA GCACAAGACG AACTCAGTAG CAGACCCCAG ACTCTCCCCT	540
30	TGCCAGACGT GGTTCCAGAC GGGGAGACGC ACCTCGTCCA GAACGGGATT CAGCTGCTCA	600
	ACGGGCATGC GCCGGGGGCC GTCCCAAACC TCGCAGGGCT CCAGCAGGCC AACCGGCACC	660
35	ACGGACTCCT GGGTGGCGCC CTGGCGAACT TGTTTGTGAT AGTTGGGTTT GCAGCCTTTG	720
	CTTACACGGT CAAGTACGTG CTGAGGAGCA TCGCGCAGGA GTGAGGCCCA GGCGCCGAGA	780
	CCCAAGGCGC CACTGAGGGC ACCGCGCACC AGAGCGTGAC CTCGGCAGGC TGGACACACT	840
40	GCCCAGCACA GGCAGACCCA CCAGGCTCCT AGGTTTAGCT TTTAAAAACC TGAAAGGGGA	900
	AGCAAAAACC AAAATGTGTG ACTGGGCTTT GGAGGAGACT GGAGCCTCAG CCCTGTCCTG	960
45	GCCACGGGCC GCTGGGGCTG GTGTGGGTGG GCCTTGTGTG CTGGATTTGT AGCTTATCTT	1020
	CCGTGTTGTC TTTGGACCTG TTTTAGTAAA CCCGTTTTTC ATTTTAAAAA AAAAAAAAAA	1080
	AAACTTTGGG GGGGGCCCC N	1101

50

(2) INFORMATION FOR SEQ ID NO: 120:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 282 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:	
	AGCTTCTCTG TCCAGTCTTG AACTCTGGGS TCTCTTGGAA CTTTCCTCAC CCCTCTCAGC	60
5	CTGAATATTC CTTCCATGGA TTCCACTCAA CCAGACTTTG GATCTGTGCC TACTTAATCA	120
	ACCITATCIT IGCAATAIGI ICGGGCCCAC CITCCACTCC IIGGITCIIG ITCCICCIIG	180
10	GCCTAACTTG TCCCTTCTCC ACTTCACATC CCCGGTGGGA CAGCATTCCT CCTTCCTCCC	. 240
10	AACCTCCCTC CGTCTCARAA AAAAAAAAA AAAAAAAAAA TT	282
15	(2) INFORMATION FOR SEQ ID NO: 121:	
	<u>-</u>	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2635 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:	
	TAAGGGGTG TGTGCTCACC TCCTCCTGAC CCTTAACACT CCTGTCCTGC CCAGACCAAC	60
	AGAGAGACT GTCCCTGAGA CCCCGGAGAG AAGCAGCTGC CGAAAGCTGC AGCCTTTCCG	120
30	CACTCTGAGA CCATGATCTT CCTCCTGCCA GGGGAGAGCC ACCCACAGGC CATGTCCAGC	180
	CCCACTTCCC TCAGCCCCCA GGGYTTCCTT CTGGCCCCTC TGAGGATTCC CTAGGGCTGC	240
35	CCCGCAGAGG GGYTTCCCCA AGCTCTGTTT TGAAGCCTGC AATGTGGAAA AGTGAGAAGT	300
	CAGAGGGAAC AGGACAGGTG CAGCCGGGCT CTGAGGCCAC ACCTCACACC TCGCTGTTCC	360
	CCAACATCCC CTGAGCAGTG TGAGCTCATC TCACCAGATG AGAAGAGGCC CTGTGCATTT	420
40	YTTTTGTTG TTTGTTGCTG TTTTCCCCCA CCCATCCAGT TCTCCTCAGC AAAGCAAATT	480
	CCTTAACACC TITGGTGGAG AATTTCTTAC CCAGACTTGG GGCTGTGATG CCCTTCAGTG	540
45	CGTGGTGAGT GCAGCGTGTG TGCGTGTGCC TGTGTGTGAA CCTGGGGGCC ATCCTGGTGG	600
75	CCTGGGAGCG TGAGGAGAGG CCCCCTGTGT GCTGGGTGAG TGGTGGGTGT GGGGTCAATG	660
	CAGTGAGGCT CTCTGGGTGA GGCTCCCAAC CTGGCAGTCC CCAGCCTCCC AGCATCTGTG	720
50	AGCGTCTGTT GGACTTTACA GAAGAGCCTC ATCCYGTCTG CCCCTCACTC TGCCCTGGAA	780
	TCAACATCTT CCGAGTCCTT CTTGGGGGAA ATAGCAGAGC CCCACTTAAC TCCATAAACT	840
55	GCTTCCCATT CCGCAGCCCA GTTCTGATTG TTGAGGTGTC GCGTCGTTCC AGGTCCCCCA	900
JJ	GTCCCCTCTT TCTCCTGTCC TCTCTCTGTC CTTCACCTCC CCACTCCAGC CCCGGCTCAG	960
	TTCAGGGAAA TGCTGTTCCA YATCAGCCCT CTGCTCTCTG AGGCAGCCGC GCCTCTGACT	1020

CGGAGCTACT TGAAACTTCT GCTCTTGCTA GGATTGGAGT CTACCTATCT CTTCCATTTG

	TCCCAGCTGG AGTTCTGGAA CTTTCCTCCT CGGGGTGGGG GTGGGGGGTTG TTAAGGATGC	1140
5	TGGGGGGCCT GGGGAAGGAA GGAGTTCAGA GGAAGGGTGT CCCCTGTCCT CTTGATGTCA	1200
	CCCTCCGCTC CTGGGACACG TGCTCTCTCT GTCTCTGGGT CTTCTGGGTG TGCACGTTTG	1260
	TOTOTCCTTG TAAATATGTT TTAGGAAGAA AGCAAAAGGG ACTGAACTAG CCTTTGGTAG	1320
10	GATTGCAGGG GTCCAGCCTT GCCTGTTTCC GAAGCCCCCCA CACTGCTTTT CGCTCCACTG	1380
	AGACTGGTCC CCTCAAAAGG TAGACAAAAC AGCAGCTCCC TGTGGAGCTG AAGGGCGGCC	1440
15	TCAAAGTGGC TTTTTGTTAG ACAAGGTTAA GGTTTCCTCA TGAGCAAGGT TGLAGATCGG	1500
	TCCTTCCTCA GCTCCTTGAT TTGTGACCTT GACCAAGGG CCTGCCAGCC AGCCCCTCCA	1560
	GTGCCCTCTC CTCGATGCCT CGCTCCTTCC TGCCCCCACT CCCCTGGCTT AGGCAGGTAG	1620
20	GGGAATTAGG GCCATGCTGG AAGAAGCTTA ACCATGTGTT CAAAGAACGG TTTCTTGCTT	1680
	GCTTGGTCCT GGAACTCCCC TTGGCTGCCC CAGGCCTCCT TGGCCCATGG GTGTTGGGGG	1740
25	AGGTGGATGT CAGATCTGGT AGGTTGCAGC AGAGAAAATA AATGTGCTTT GAGAGACCAC	1800
	TCAGAGAGGG TCCAAGGGTG ATGGAGAAGG AAGCATGGCC TGGGAGCTTG GAALGGARGG	1860
	GTGGTGGGTG GCGGCATCTT GACTGCCCCC TGTTGTCCCA CACGTGGSGG GTGGTCACCC	1920
30	CYCTTCACTC CAGCCCGCCT GCCTTCAGCC TTCCATGAGC TTCACCTGCT TCCAACTTCA	1980
	CTTTGGAGGG GGTGGGGTCC GTTGGCATCA ACACGGGGAC CCTCTGCTTC ACCAAAGCCC	2040
35	GAGCCCTCAG CCCCTGGGGA GAACAAATGG CTGAGCTTTG ATACCTGGGG TCGTCGAGAG	2100
	GCTGCGGGCT GGCGGCAGTC CCAGGGGAGA GACACCACAG AAGGAGALICC AGALIACCCCG	2160
	AGGAAGTTCC CAGCAGAGCA AACTGCTTTC CAGCCTGAAG CCTGCTTAAA CTGTGTGATG	2220
40	TGCAATAACT GAGCTTAGAG TTAGGAATTG TGTTCAAGTG CTTGGATTTC CGTCTGTAGA	2280
	TITAACTGCT GAAATTGTAT CTCTCAGTAA TITTAGATGT CTTTTAAAAA ATTGAAAAAC	2340
45	AAAGTGTTAG ACTGTGTGCG TGTGCGTTGA TGGGCACTCA AGAGTCCTGT GASTCATCCA	2400
	GCCCTGCCTT TCCCCTGCGC CCCCATCCTC TCACGTCCCG CCC/GCCTCC ACTTGGGGAC	2460
	CCTGCCTCGT GTCGTCTTTA TCTGCCTATT ACTCAGCCTA AGGAAACAAG TACACTCCAC	2520
50	ACATGCATAA AGGAAATCAA ATGTTATTTT TAAGAAAATG GAAAATAAAA ACTTTATAAA	2580
	CACCAAAAAA AAAAAAAAAA ACCCNGGGGG GGGGCCGGTA ACCCATTTCG CCTAA	2635

⁽²⁾ INFORMATION FOR SEQ ID NO: 122:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 994 base pairs

	(C) STRANDEDNESS: double					
	(D) TOPOLOGY: linear					
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:					
	GAATTCGGCA GAGGTTCGGC GAAGATAGGG AATAAGGAAG CACAGGAGTA GGGGAGAAGG	60				
10	AAGCACAGGA GTAGGGGAGA TATACAGCGG TCAGGATAAG GGGGAAAGGG CGGTGGTTGC	120				
10	SCAAGAGGTG AAACAAGATG TGAGAGACAA GGGGTAGGGA AGAAATGGGG CAGCGGTTAG	180				
	GTTCAGAAGC GCATAGACCG TGGCGGACGG GCAATGCGAG GGGCACAGAA AGGAACTGAG	240				
15	GGGTGGGCTA TTTTAARGGA GATGGTCCTT CAGCCCTCTT YTTTTCTGCG TAGTTCTCCT	300				
	CCTCCAGGCC GCGCGCGGAT ATGTCGTCCG GAAACCAGCC CAGTCTAGGC TGGATGATGA	360				
20	CCCACCTCCT TCTACGCTGC TCAAAGACTA CCAGAATGTC CCTGGAATTG AGAAGGTTGA	420				
20	TGATGTCGTG AAAAGACTCT TGTCTTTGGA AATGGCCAAC AAGAAGGAGA TGCTAAAAAT	480				
	CAAGCAAGAA CAGTTTATGA AGAAGATTGT TGCAAACCCA GAGGACACCA GATCCCTGGA	540				
25	GGCTCGAATT ATTGCCTTGT CTGTCAAGAT CCGCAGTTAT GAAGAACACT TGGAGAAACA	600				
	TCGAAAGGAC AAAGCCCACA AACGCTATCT GCTAATGAGC ATTGACCAGA GGAAAAAGAT	660				
30	GCTCAAAAAC CTCCGTAACA CCAACTATGA TGTCTTTGAG AAGATATGCT GGGGGCTGGG	720				
50	AATTGAGTAC ACCTTCCCCC CTCTGTATTA CCGAAGAGCC CACCGCCGAT TCGTGACCAA	780				
	GAAGGCTCTG TGCATTCGGG TTTTCCAGGA GACTCAAAAG CTGAAGAAGC GAAGAAGAC	840				
35	CTTAAAGGCT GCAGCAGCAG CCCAAAAACA AGCAAAGCGG AGGAACCCAG ACAGCCCTGC	900				
	CAAAGCCATA CCAAAGACAC TCAAAGACAG CCAATAAATT CTGTTCAATC ATTTAAAAAA	960				
40	AAAAAAAAA AAAAAAAAAA AAAAAGGGGA GGGG	994				
40						
	(2) INFORMATION FOR SEQ ID NO: 123:					
45						
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1542 base pairs					
	(B) TYPE: nucleic acid					
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:					
55	GGCASAGCCA CCTCGGCCCC GGGCTCCGAA GCGGCTCGGG GGCGCCCTTT CGGTCAACAT	60				
	CGTAGTCCAC CCCCTCCCCA TCCCCAGCCC CCGGGGATTC AGGCTCGCCA GCGCCCAGCC	120				
	AGGGAGCCGG CCGGGAAGCG CGATGGGGGC CCCAGCCGCC TCGCTCCTGC TCCTGCTCCT	180				

60 GCTGTTCGCC TGCTGCTGGG CGCCCGGCGG GGCCAACCTC TCCCAGGACG ACAGCCAGCC

	CTGGACATCT GATGAAACAG TGGTGGCTGG TGGCACCGTG GTGCTCAAGT GCCAAGTGAA	300
5	AGATCACGAG GACTCATCCC TGCAATGGTC TTAACCCTGC TCAGCAGACT CTCTACTTTG	360
	GGGAGAAGAG AGCCCTTCGA GATAATCGAA TTCAGCTGGT TAMCTCTACG CCCCACGAGC	420
	TCAGCATCAG CATCAGCAAT GTGGCCCTGG CAGACGAGGG CGAGTACACC TGCTCAATCT	480
10	TCACTATGCC TGTGCGAACT GCCAAGTCCC TCGTCACTGT GCTAGGAATT CCACAGAAGC	540
	CCATCATCAC TGGTTATAAA TCTTCATTAC GGGAAAAAGA CACAGCCACC CTAAACTGTC	600
15	AGTOTTOTGG GAGCAAGCOT GCAGCCCGGC TCACCTGGAG AAAGGGTGAC CAAGAACTCC	660
15	ACGGAGAACC AACCCGCATA CAGGAAGATC CCAATGGTAA AACCTTCACT GTCAGCAGCT	720
	CGGTGACATT CCAGGTTACC CGGGAGGATG ATGGGGCGAG CATCGTGTGC TCTGTGAACC	780
20	ATGAATCTCT AAAGGGAGCT GACAGATCCA CCTCTCAACG CATTGAAGTT TTATACACAC	840
	CAACTGCGAT GATTAGGCCA GACCCTCCCC ATCCTCGTGA GGGCCAGAAG CTGTTGCTAC	900
25	ACTGTGAGGG TCGCGGCAAT CCAGTCCCCC AGCAGTACCT ATGGGAGAAG GAGGGCAGTG	960
	TGCCACCCCT GAAGATGACC CAGGAGAGTG CCCTGATCTT CCCTTTCCTC AACAAGAGTG	1020
	ACAGTGGCAC CTACGGCTGC ACAGCCACCA GCAACATGGG CAGCTACAAG GCCTACTACA	1080
30	CCCTCAATGT TAATGACCCC AGTCCGGTGC CCTCCTCCTC CAGCACCTAC CACGCCATCA	1140
	TCGGTGGGAT CGTGGCTTTC ATTGTCTTCC TGCTGCTCAT CATGCTCATC TTCCTTGGCC	1200
35	ACTACTTGAT CCGGCACAAA GGAACCTACC TGACACATGA GGCAAAAGGC TCCGACGATG	1260
	CTCCAGACGC GGACACGCC ATCATCAATG CAGAAGGCGG GCAGTCAGGA GGGGACGACA	1320
	AGAAGGAATA TITCATCTAG AGGCGCCTGC CCACTTCCTG CGCCCCCAG GGCCCTGTGG	1380
40	GGACTTGCTG GGGCCGTCAC CAACCCGGAC TTGTACAGAG CAACCGCAGG GGCCGSCCCT	1440
	CCCGNTTGTT CCCCAGCCCA CCCACCCCCT TGTTACAGAA TGTYTKGTTT GGGGTGCGGT	1500
45	TTTGTWATTG GTTTNGGATN GGGGAAGGGA GGGANGGCGG GG	1542

(2) INFORMATION FOR SEQ ID NO: 124:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1390 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

CAAGCTCTAA TACGACTCAC TATAGGGAAA GCTGGTACGC CTGCAGGTAC CGGTCCGGAA

50

	TTCCCGGGTC	GACCCACGCG	TCCGGGCCTC	AGGGTGGACG	CATGGTTCTG	CACTGAGGCC	120
	CTCGTCATGG	TGGCGCCTGT	GTGGTACTTG	GTAGCGGCGG	CTCTGCTAGT	CGGCTTTATC	180
5	CTCTTCCTGA	CTCGCAGCCG	cccccccc	GCATCAGCCG	GCCAAGAGCC	ACTGCACAAT	240
	GAGGAGCTGG	CAGGAGCAGG	CCGGGTGGCC	CAGCCTGGGC	CCCTGGAGCC	TGAGGAGCCG	300
10	AGAGCTGGAG	GCAGGCCTCG	GCGCCGGAGG	GACCTGGGCA	GCCGCCTACA	GGCCCAGCGT	360
10	CGAGCCCAGC	GGCTGGCCTG	GGCAGAAGCA	GATGAGAACG	AGGAGGAAGC	TGTCATCCTA	420
	GCCCAGGAGG	AGGAAGGTGT	CGAGAAGCCA	GCGGAAAYTC	ACCTGTCGGG	GAAAATTGGA	480
15	GCTAAGAAAC	TGCGGAANNT	GGAGGAGAAA	CAAGCGCGAA	AGGCCCAGCK	TGAGGCAGAG	540
	GAGGCTGAAC	GTGARGWGCG	GAAACGACTC	GAGTCCCAGC	GCGAATGAGT	GGAAGAAGGA	e ó0
20	GGAGGAGCGG	CTTCGCCTGG	AGGAGGAGCA	GAAGGAGGAG	GAGGAGAGGA	AGGCCCGCGA	660
20	GGAGCAGGCC	CAGCGGGAGC	ATGAGGAGTA	CCTGAAACTG	AAGGAGGCCT	TTGTGGTGGA	720
	GGAGGAAGGC	GTAGGAGAGA	CCATGACTGA	GGAACAGTCC	CAGAGCTTCC	TGACAGAGTT	780
25	CATCAACTAC	ATCAAGCAGT	CCAAGGTTGT	GCTCTTGGAA	GACCTGGCTT	CCCAGGTGGG	840
	CCTACGCACT	CAGGACACCA	TAAATCGCAT	CCAGGACCTG	CTGGCTGAGG	GGACTATAAC	900
30	AGGTGTGATT	GACGACCGGG	GCAAGTTCAT	CTACATAACC	CCAGAGGAAC	TGGCCGCCGT	960
	GGCCAACTTC	ATCCGACAGC	GGGCCGGGT	GTCCATCGCC	GAGCTTGCCC	AAGCCAGCAA	1020
	CTCCCTCATC	GCCTGGGGCC	GGGAGTCCCC	TGCCCAAGCC	CCAGCCTGAC	CCCAGTCCTT	1080
35	CCCTCTTGGA	CTCAGAGTTG	GTGTGGCCTA	CCTGGCTATA	CATCTTCATC	CCTCCCCACC	1140
	ATCCTGGGGA	AGTGATGGTG	TGGÇCAGGCA	GTTATAGATT	AAAGGCCTGT	GAGTACTGCT	1200
40	GAGCTTGGTG	TESCTTESTS	TGGCAGAAGG	CCTGGCCTAG	GATCCTAGAT	AAGCAGGTGA	1260
	AATTTAGGCT	TCAGAATATA	TCCGAGAGGT	GGGGAGGGTC	CCTTGGAAGC	TGGTGAAGTC	1320
	CTGTTCTTAT	TATGAATCCA	TTCATTCAAG	AAAATAGCCT	GTTGCAAAAA	AAAAAAAA	1380
45	AAAAACTCGA						1390

50 (2) INFORMATION FOR SEQ ID NO: 125:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1288 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

60 GGCGCGGG TGAAAGGCGC ATTGATGCAG CCTGCGGCGG CCTCGGAGCG CGGCGGASCA

	GACGCTGACC	ACGTTCCTCT	CCTCGGTCTC	CTCCGCCTCC	AGCTCCGCGC	TGCCCGGCAG	120
5	CCGGGAGCCA	TGCGACCCCA	GGGCCCCGCC	GCCTCCCCGC	AGCGGCTCCG	CGCCTCCTG	180
5	CTGCTCCTGC	TGCTGCAGCT	eccecece	TCGAGCGCCT	CTGAGATCCC	CAAGGGGAAG	240
	CAAAAGGCGC	ATCCGGCAGA	GGGAGGTGGT	GGACCTGTAT	AATGGAATGT	GCTTACAAGG	300
10	GCCAGCAGGA	GTGCCTGGTC	GAGACGGGAG	CCCTGGGGCC	AATGGCATTC	CGGGTACACC	360
	TGGGATCCCA	GGTCGGGATG	GATTCAAAGG	AGAAAAGGGG	GAATGTCTGA	GGGAAAGCTT	420
15	TGAGGAGTCC	TGGACACCCA	ACTACAAGCA	GTGTTCATGG	AGTTCATTGA	ATTATGGCAT	480
	AGATCTTGGG	AAAATTGCGG	AGTGTACATT	TACAAAGATG	CGTTCAAATA	GTGCTCTAAG	540
	AGTTTTGTTC	AGTGGCTCAC	TTCGGCTAAA	ATGCAGAAAT	GCATGCTGTC	AGCGTTGGTA	600
20	TTTCACATTC	AATGGAGCTG	AATGTTCAGG	ACCTCTTCCC	ATTGAAGCTA	TAATTTATTT	660
	GGACCAAGGA	AGCCCTGAAA	TGAATTCAAC	AATTAATATT	CATCGCACTT	CTTCTGTGGA	720
25	AGGACTTTGT	GAAGGAATTG	GTGCTGGATT	AGTGGATGTT	GCTATCTGGG	TTGGCACTTG	780
	TTCAGATTAC	CCAAAAGGAG	ATGCTTCTAC	TGGATGGAAT	TCAGTTTCTC	GCATCATTAT	840
	TGAAGAACTA	CCAAAATAAA	TGCTTTAATT	TTCATTTGCT	ACCTCTTTTT	TTATTATGCC	900
30	TTGGAATGGT	TCACTTAAAT	GACATTTTAA	ATAAGTTTAT	GTATACATCT	GAATGAAAAG	960
	CAAAGCTAAA	TATGTTTACA	GACCAAAGTG	TGATTTCACA	TGTTTTTAAA	TCTAGCATTA	1020
35	TTCATTTTGC	TTCAATCAAA	AGTGGTTTCA	ATATTTTTTT	TAGTTGGTTA	GAATACTTTC	1080
	TTCATAGTCA	CATTCTCTCA	ACCTATAATT	TGGGAATATT	GTTGTGGTCT	TTTGTTTTTT	1140
	CTCTTAGTAT	AGCATTTTTA	AAAAAATATA	AAAGCTACCA	ATCTTTGTAC	AATTTGTAAA	1200
40	TGTTAAGAAT	TTTTTTTATA	TCTGTTAAAT	AAAAATTATT	TCCMACAACC	TTAAAAAAAA	1260
	AAAAAAAA	АААААААА	AAAAANAA				1288
45							
	(2) INFORM	ATION FOR S	EQ ID NO: 1	26:			
			HARACTERIST				
50		(A) LEN	GTH: 1517 b E: nucleic	ase pairs			
		(C) STR	ANDEDNESS:	double			
			OLOGY: line				
55	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 126:		
	AGTGGCTTAA	AGGCATCGTT	TTAGGGATTA	CTGGGAAGTA	TCTTCAAAGT	AATACATGAG	60

AAACATTCCT TCCTAAATCC TTTATTATAT TGAATATCGT ATTAATTGGT TTTCAGAGGT

	TAAATTAACC ATGTATICCT GCAATAAATG TCACTTGTNT CTTGTATATA ATCTTTTTTA	180
	TATATTACCG GATTGATTCA TTAGTATTTT GTTGAGGATT TTTGTGTCTA TATTCATAAG	240
5	AGATGCTGGT CTGCAGTTTT CTTTTTTTGT GATAATCTGG TTTTTGTATC AGTAATACAG	300
	GCCCCATGAA ACGAGTTGGG AAGTGTTCAC CTCTCTTGTA TTTTTTCAAG AGTTTGTGAA	360
10	GAATTGCTAT TAATTCTTTA AATGTTTGGT AGAATCTACC ATTGAAATCA TGTGTCCTGG	420
10	GCTTTTTTT GAGGGAAGTG TICTGATAAC TAATTCAGTA TCTACTTTTT ATAGCTCTGT	480
	TCAGATTTTG CTTCTTCCTG AGTTAGTTTT GGTAATTTGT GTATCTCTAG GARTTTGTCC	540
15	ATTTCATTTA TCTCATTTGT TGGCATAAAT TAAACTAAAT TTGGCCTGAG CCTACCTGTA	600
	TATCTTGAGT CCCTCTGTAA GGAACTGTAG CCTAACTTGT ACATAAACAA ACTGAAATCC	660
20	TAAATTAGGA ATGTAGTTTT TGTAACAGCT CCTGAGTCTC AGGCAGTCAC AGCAGYCAAG	720
20	TCTGTCAATT GCAGGCTGCT AACTAAGCAG CCCATGSTCA AATGAGGCAA AAACCTTTGC	780
	TTTTAACACA TAGTATAGCT TTGTAATCCT TTTCTTGCAC ACTCGGGTAA TTTCTTCCTT	840
25	TITCATTCCC KGWATTTTCC AKGAATATGA RTCTYCCTTT TTTCCCCTCC TGTCAGTCTA	900
	GCTAATGGTT TGTCAATTTT GTTGATCTTT TGAARAACAA ACCTTTGGTT CCACTTTCTT	960
30	GTTGCATATG CTGARTATTC TCATAATTGG AGTGGAAAGC TGATCTTTGA TTACTTATTT	1020
50	TACTTAGGGC TGAGGAGTTC ATGGACTTCG CAAAACCTCC TTGAATCTAA ATTGCATCTT	1080
	CTTTCCTGGT TTCTGGGCTG AAACATGTTT TTTCCCATCT WANAWACCCT TGGTCTTTTC	1140
35	ATKGGCGATT AAGACTAGAG AAAGTTCTAG ATMCCTTGTC CTTTTATGCT GTCATTTTGT	1200
	TTAAAGGCTT TCTATGTAGT AAAACTATCT ATATAGACAA AATAGAGCCT TGAGTTGTGG	1260
40	TCTTGAATTT GATCAACATG ATTTACCACA TTCTGTACTG GATATTTCTT CACCTGCTGC	132
40	TACTGTAAAC CATTTTATTC TTGGATCTTC TGTAGAGTAT ATTATCACAG GTACTTTTTA	138
	CAGGGGTGTC TAATCTTTTG GCTTCCCTGG GCACATTGAA AGAAGAAGAA TTGTCTTGGG	144
45	CCACACATCA AATACGCTAA CACTAATAAT AGTTGATGAG CTAAAAAAAAA AAAAAAAAAG	150
	GCAAAAAGN CCCAAAA	151

60

(2) INFORMATION FOR SEQ ID NO: 127:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1073 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

	TGAATCTATT CTTTGAACAT TCTACAACAA GAATTACATT ATACTGTTAT ACCA	GAGTAC 60
5	TTCTGCAGTG TGAAATAGAT TGGTTTGGAA AATGAACCTG GCTTTGCTAT AAAT	TACATT 120
J	CACAGGCCTT TTTGCAAATG TGTAACTTGC CTATCAAAGT AGTTTGTAGG GCAA	ATGCAG 180
	AATATATGTC TCCATCTGGT AAAGTACCTT WTAYTCATGT GGGAAATCAA GTAG	TATCAG 240
10	AACTTGGTCC AATAGTCCAA TTTGTTAAAG CCAAGGGCCA TTCTCTTAGT GATG	GCTGG 300
	AGGAAGTCCA AAAAGCAGAA ATGAAAGCTT ACATGGAATT AGTCAACAAT ATGC	IGTTGA 360
15	CTGCAGAGCT GTATCTTCAG TGGTGTGATG AAGCTACAGT AGGGRMGATC ACTC	ATGMTA 420
13	GGTATGGWTC TCCTTACCCT TGGCCTCTGW WTCATATTTT GGCCTATCAA AAAC	AGTGGG 480
	AAGTCAAACG TAAGNTGAAA GCTATTGGAT GGGGAAAGAA GACTCTGGAC CAGG	rcttag 540
20	AGGATGTAGA CCAGTGCTGT CAAGCTCTCT CTCAAAGACT GGGAACACAA CCGT	ATTTCT 600
	TCAATAAGCA GCCTACTGAA CTTGACGCAC TGGTATTTGG CCATCTATAC ACCA	ITCTTA 660
25	CCACACAATT GACAAATGAT GAACTTTCTG AGAAGGTGAA AAACTATAGC AACC	ICCTTG 720
ريد	CTTTCTGTAG GAGAATTGAA CAGCACTATT TTGAAGATCG TGGTAAAGGC AGGC	IGTCAT 780
	AGAGTTATGT GTTAGTCTCA GGAGTCTTAA CTTTTGAAAT ATGTTTTACT TGAA	IGTTAC 840
30	ATTAGATATT GGTGTCAGAA TTTTAAAACC AAATTACTGC TTTTTGAAAC CTCAA	AATTAT 900
	ATAATGTATC TTATGTATGT GCTTTATATT GTTATTTGTG TATACATTAA AATAA	ATTCTG 960
35	AATTATTTAA TCTGATATGT TGTATTCTGT ATCTTGAAAT TTTTGTTTCC TTGAA	AACATG 1020
<i>JJ</i>	CATGCATTTA AAAATAAAGC TTAAACAACT GTAAAAAAAA AAAAAAAAAA	1073
40	(2) INFORMATION FOR SEQ ID NO: 128:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 300 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:	
50	CAACCCCTGC CTTTTTTTG TTTTCCATTT GCTTGGTAGA TCTTCCTCCA TCCCT	TTTATT 60
	TTGAGCCTAT GTGTGTCTCT GCCCGTGAGA TGAGTCTCCT GAATACAGCA CACTY	PACTGG 120
55	TOTTGACTOT GTATOCAATT TGCCAGTOTG TGTCTTTCAT TTGGAGCATT TAGCC	CCATTT 180
	ACATTTAAGG TKAATATTGT TATGTGTGAA TTTRATCYTR TCATTATGWT GTTAC	SCTGGT 240
60	TATTTTGCTT GTTAGTTGAT GCAGTTTCTT CCNGGCATCA ATGGTCTTTA CAANI	MTGGCA 300
60		

(2) INFORMATION FOR SEQ ID NO: 129:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1275 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

1.5	GGCAGAGCCT GTCCCTGCTG CCCCTGCAAA AAAAACCCCC TCTGGTGTGA GCAGGATGGT	60
15	TGGAGGTTAT GTGAGCTCCT TCTCCTTTCC TCCAGTTTCC TCTTCCCTTC TCCTCCCTGC	120
	CTCTTTTGCT TTTCCCTTTC TTCCTGGTAC CCCCTGCCCA TTCCTGTATT TTCTCCCATC	180
20	GCCATTCTCC CCTCTCCCAC TGTCCCTAAC CCGTTCAAAC TCTTTCCTCT TAAATGGTTG	240
	AGATTITICTC TCACCAAGCA CACCCCAGTA TTAATTAAAC TAGCTGCAAA CAGGCAGCAA	300
25	GTGGTCTACC ATGACAGATG GGTTTTGTGT GTGTGTGTGT GTGTGTAATT GTAATAAAAC	360
25	ATATTGARTC ACTCAATAAA CACAGAGTGT CTACTACATG TATCARGCAC TATCATAGAT	420
	GCTAATTAAC GAAACTGAAA TGGCCAGGCC CTCACAGTGG CTCATGCCTA TAATCCCAGC	480
30	ACTITIGGAG GATGAGGCAG GAGGATCACT TGAGGCCGGG AGTTCAAGAC CAGCCTGGGC	540
	AACATAGTAA GACTCCATCT CTACAAAAAA AAAATTTTTT TTATTATACT TTAAGTTTTG	600
	GGTTACATGT GCAGAACGTG TAGTTTTGTT ACATAGGTAT ATACGTGCCC TGGTAGTTTG	660
35	CTGCACCCAT CAACCCATCA CCTACATTAG GTATTTCTCC TAATGTTACC CCTCTCCTAG	720
	CCCCCCACCC CGTGACAGGC CCTGGTGTGT GATGTTCCCC TCCCTGTGTC CATGTGTTCT	780
40	CATTGGTCAA CTCTCACCTA TGGAGTGAGA ACATGTGGTA TTTGGTTTTC TGATCTTGTG	840
	ATAGCTTGCT GAGAATGTKG GTTTCCAGCT TTATCCACGT CCCTGCAAAG GGCATAAACT	900
	CATCCCTTTT TATGGCTGCA TAGTGTTCCA TGGTGTATAC GTGCCACATT TTCTTAATCT	960
45	ATCATTGATG GACAAGTTTT GCTATTGTGA ATAGTGCCAC AATAAACATA CGTGTGCGTG	1020
	TGTCTTTATA GCAGCATGAT TTATAATCCT TTGGGTATAT ACCCAGTAAT GGGATCACTG	1080
50	AGTCAAATGG TATTTCTCGT TCTAGATCCG TAAGGAATTG CCACACTGTC TTCCACAATG	1140
	TTTGAACTAA TMTACACTCC CACCAACAGT GTAAAAGTGT TTCTATTTTT CCACAACCTC	1200
	TCCAACATCT GTTATTTCCT GACTTTTTAA TGAACGTCAT TCTAACTGGC GTGAGATGGT	1260
55	ATCTCATTGT GGTTT	1275

10

15

20

25

35

60

120

180

240

300

360

472

(2) INFORMATION FOR SEQ ID NO: 130:							
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 472 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 							
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:							
CNGAAACCCC GTGAACCCTC CCCGGGTTAA AAAGCCCCCC CTAAATGGGG GGAACGCYTC							
ACACGTTATA AAAAAGCACT AGAATGTTTT GAAAGCGAGA AACAACAGCT GTGTAGGGTA							
GCTAGCAGTT AGTGTTGTAC AGAAGACAGA TATTTGTGCA TTTYTGCATT TTCTAAGTTT							
GCTGCAATGA GCATGTATTA CTTTCATAGT TATAAAACAC ATGCAAAATG CCCTTTTAAA							
ATGAAAAAA ATCCATGAGT GTAAGTGATA TATATGCTTT GGAAAGCCTG GGACGGTCAT							

TGTTTACTCT CAATAGTATG TGTTTGCCTT TGTCTTTTTG AGACATTTTG TTTTAATCTG

TTGATGACAA TAACCTGTTG ATAATATAAC TTGATAACAA ATAAAATGAC TTATGATTGA

30 (2) INFORMATION FOR SEQ ID NO: 131:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1950 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:

40	ACCTCTCAGA	ATCTTCTCTC	AGCAACCTGA	GTCTTCGCCG	TTCCTCAGAG	CGCCTCAGTG	60
	ACACCCCTGG	ATCCTTCCAG	TCACCTTCCC	TGGAAATTCT	GCTGTCCAGC	TGCTCCCTGT	120
45	GCCGTGCCTG	TNATTCGCTG	GTGTATGATG	AGGAAATCAT	GGCTGGCTGG	GCACCTGATG	180
75	ACTCTAACCT	CAACACAACC	TGCCCCTTCT	GCGCCTGCCC	CTTTNTGCCC	CTGCTCAGTG	240
	TCCAGACCNT	TGATTCCCGG	CCCAGTGTCC	CCAGCCCCAA	ATCTGCTGGT	GCCAGTGGCA	300
50	GCAAAGATGC	TCCTGTCCCT	GGTGGTCCTG	CCCTGTGCT	CAGTGACCGA	AGCTCTGCCT	360
	TGCTCTGGAT	GAGCCCCAGC	TCTGCAACGG	GCACATGGGG	GGAGCCTCCC	GGCGGGTTGA	420
55	GAGTGGGGCA	TGGGCATACC	TGAGCCCCCT	GGTGCTGCGT	AAGGAGCTGG	AGTCGCTGGT	480
JJ	AGAGAACGAG	GGCAGTGAGG	TGCTGGCGTT	GCCTGAACTG	CCCTCTGCCC	ACCCCATCAT	540
	CTTCTGGAAC	CTTTTGTGGT	ATTTCCAACG	GCTACGNCTG	CCCAGTATTC	TACCAGGCCT	600
60	GCTGCTGGCC	TCCTGTGATG	GGCCTTCGMA	CTCCCAGGCC	CCATCTCCTT	GGCTAACCCC	660

	TGATCCAGCC TCTGTTCAGG TACGGCTGCT GTGGGATGTA CTGACCCCTG ACCCCAATAG	720
_	CTGCCCACCT CTCTATGTGC TCTGGAGGGT CCACAGCCAG ATCCCCCAGC GGGTGGTATG	780
5	GCCAGGCCCT GTACCTGCAT CCCTTAGTTT GGCACTGTTG GAGTCAGTGC TGCGCCATGT	840
	TGGACTCAAT GAAGTGCACA AGGCTGTGGG GCTCCTGCTG GAAACTCTAG GGCCCCCACC	900
10	CACTGGCCTG CACCTGCAGA GGGGAATCTA CCGTGAGATA TTATTCCTGA CAATGGCTGC	960
	TCTGGGCAAG GACCACGTGG ACATAGTGGC CTTCGATAAG AAGTACAAGT CTGCCTTTAA	1020
15	CAAGCTGGCC AGCAGCATGG GCAAGGAGGA GCTGAGGCAC CGGCGGGCGC AGATGCCCAC	1080
15	TCCCAAGGCC ATTGACTGCC GAAAATGTTT TGGAGCACCT CCAGAATGCT AGAGACCTTA	1140
	AGCTTCCCTC TCCAGCCTAG GGTGGGGAAG TGAGGAAGAA GGGATTCTAG AGTTAAACTG	1200
20	CTTCCCTGTT GCCTTCATGG AGTTGGGAAC AGGCTGGGAA GGATGCCCAG TCAAAGGCTC	1260
	CAAGCGAGGA CAACAGGAAG AGGGATCCAC TGTTACCAAA AGTCCTGATT CCCCCATCAC	1320
25	CAACCTACCC AGTTTGTTCG TGCTGATGTT GGGGGGAGATC TGGGGGGAGT TGGTACAGCT	1380
23	CTGTTCTTCC CTTGTCCTAT ACCGGGAACT CCCCTCCAGG GTACCCACAG ATCTGCATTG	1440
	CCCTGGTCAT TTTAGAAGTT TTTGTTTTAA AAAACAACTG GAAAGATGCA GAGCTACTGA	1500
30	GCCTTTGCCC TGAATGGGAG GTAGGGATGT CATTCTCCAC CAATAATGGT CCCTCTTCCC	1560
	TGACGTTGCT GAAGGAGCCC AAGGCTCTCC ATGCCTTTCT ACCTAAGTGT TTGTATTTTA	1620
35	TTTTAAATTA TTTATTCTGG AGCCACAGCC CCCTTGCTTA TGAGGTTCTT ATGGAGAGTG	1680
رر	AGAAAGGGAA GGGAAATAGG GCACCATGGT CCGGTGGTTT GTAGTTCCTT CAAAGTCAGG	1740
	CACTGGGAGC TAGAGGAGTC TCAAGCTCCC CTTAGGAAGA ACTGGTGCCC CCTCCAGTCC	180
40	TAATTTTTCT TGCCTGCCCC GCCTTGGGGA ATGCCTCACC CACCCAGGTC CTGACCTGTG	186
	CAATAAGGAT TGTTCCCTGC GAAGTTTTGT TGGATGTAAA TATAGTAAAA GCTGCTTCTG	192
45	TCTTTTTCAA AANAAAAAA AAAAAAAACT	195
47		

(2) INFORMATION FOR SEQ ID NO: 132:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 990 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

TGGAAGATTT AAAATAGGTT TCATATTTCT CTTGAATATG AATATATAAG CTTGAATAAG

	·	
	CTTGAGTCCT TATTATTATG ARATTITCCT TATTATTTCT ACCAATGCTT CTTATATTAA	120
	AGCCTGATGT TTTTCATATT AGTATATGTA CATTAGCTGC CTGTGGATTA ACATTTCCAT	180
5	GAAATGIAIT ITIGCAITGI TIGATCITAA ACTITITIGIG TCTITATATA AGGTATGCTY	240
	CTTCTAARCA TGATATCTTT AACCACAATA GTTGAAAGAC AATCTYCACC TTTTACTTGT	300
10	ATAITTACAI GTAAIGTAAT TIITGAIGCA TAITACGICI TAITATITAA CCAACCIATI	360
10	TTATTTTATC TAGGGCATTT TTCAGAAAGC CTTATTTTCT TGTATTAATC AAATATTTTT	420
	AYCAITGTAT TYTCCYCTAT TAGTTAGKAA TACGKTACYC YAAATATATA TYGTGGSTAT	480
15	TTTCAGAATT GCAATATGCC TCCTTAATTT ATTAGAGGCT AACCTAAATT ATTACTTTTA	540
	CCACTTACTT GAARATTCTG GARCTTTAGA ACATTTATTG TTTTATGCAT TTTAATTCTA	600
20	CTTGTATTTT TACTACTCCT ALACATTATT ATTGTTTTAG ACAAGCCAAA ATATATNTTG	660
20	TTATTATCIT ATYCICCATT TCTTTCTGTA TTTTTATGCC ACTATGTATG CTCAATTTCC	720
	TTCTATGTGA TGAACCTAAT TCAGTACTTT TGTTTTTTAA TCTGTGCAGG TAGCCTGGCC	780
25	ATTAAATTTT TATTTTIGGT TIGCTGAAAA AATTGTGTTT ATTTCTATAT GCATACTTAT	840
	GCATATAGAA TNCTAGGTNG ACATATTITT AGTATTTATA AATGTAAAGT CATTWATTKG	900
30	GCTTCTATCA TYTCKGIKGA GAAATCAATT GTCAGCCCAA TAGTTTTTCA TTTTAAATTA	960
50	CNGAATUTTT TCATGTCTCT GGTTTTAGGA	990
35		
	(2) INFORMATION FOR SEQ ID NO: 133:	
40	(i) SEQUENCE CHAFACTERISTICS: (A) LENGTH: 1720 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLCGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:	
40	GTCTGATAAG CGACTGTGGT TATTCCCCTA AAGTTTACTT CAGCACTAAC ACTAGTGCTT	60
	CCGCTGGAGT TTGCAGTTTT CCAGCTTTAT ACAGGATTTT CCTTTGACTG GAAGAGTCAA	120
50	GGATATAGAG ACTCAALAGT GACATTTATT GTACAACATC AAGGGGAATA GGATACTCAT	180
	CAAACTGGGA TTATTCTTAT CAAAACATGG TCTTCTTTGA ATAAGAAAAA TACATAGTTG	240
55	GTTATTATGG ACTTALLACT GTGTTAAATG GATATTCTGA TAAAATATTT GCTGCTCTGT	300
JJ	AGASTGTGGA AAATCTGAGA ATATTAGCTT TACTCATCTT GAGCTTTGAG GATGTTCTCT	360
	CTICCCCET COMMUNICATION TRACTARARA ACCTGGGTAT TGTARARTCT CATTATARA	420

AACTCAGATG AGAAGAAAAT TITCTTTGAT GGTGAGACTG TTGTCTTAGT TCAGGAAATT

	ATTTAATAAT CCTTTGTTAC CTGTGAATGA AGGAACTTTG TAATTCTGAT TTATCGTAAA	540
		600
5		660
		720
	·	780
10		
		840
15		900
••	TTTGAATTAC TAGTTATAAC TGGAGAAATT TTGTTACCTC TATCCTGGCT TGCCTGACTG	960
ACATGAGGCT TTCCAGAGTC AGCTTAGACA CTGTTGTCGC AAATAGCCAT GCTTTGCCTT ATGCCAAGGA GGCCCAGAGG GAGGGCCTAG TCTTCCTCTG TTGCTGTACA TATATTGAAA TGCTTTTTTT TTTTATTTTG CATTTGTTAT CTATAATGAG CTTTCTGAGC CCTGATATTA TGTGAGACAA ACAGGAGTTA TTGATGTTAT ACACTCCCTT CCATTCAGGA TTTTCTGCTT GGAGGGAAAT ATGTTGACCT TAGAGAATTG TGAATATTGT TGCAATTCTT GAATATATTA CCATGTGAAT AATAGAGACT GTGTTGCTCT CTAGATATAG CTATATTTAT TTTTGATTCA GCTGTATAATA AGCAGCAGCC TCTTTTAGAG CATCTTAATG AAAACATGGA TGCCTGACTG GCTGTATAAT AGCAGCAGCC TCTTTTAGAG CATCTTAATG AAAACATGGA TGAAAGGAAT TTCTCAAATCA CATTTCAATG TTGGGAGAAATT TTGTTACCTC TATCCTGGCT TACACTTTC TTCTCAATCA CATTTCAATG TTTGTGGAGA ATGGCTTTTG TTCCCAGCGT TAACATTTC TACTCCTCCC ATTCACCTCA GCCCAGCCCC AGACAGGGGT TAGCATTCTA TCTCACCTGG TACTCCTCCC ATTCACCTCA GCCCAGCCCC AGACAGGGGT TAGCATTCAG TGGGGCCCT CAGGCAGCCC TGAAACCTCG CTGGGTCATC AGATGGGGG ACACCTGTGAC GGCACCAGC 30 GCCCTGATTC CAGGGAAGAG TTCCTGGAGG GTGTTGGCTG TTTTTGTTAG CTCACTTGT TTCTCGGCCC CACCATTCCT AACTCCAGGT AGACAAGATA GATGTCACAC ACAACAATT TAAAAGTATTT TCCTTAGTGC ATTTTGTTTA TGATTGCAGT GTTTTTTTTTATATAG TAAAAGTATTT TCCTTAGTGC ATTTTTTTAT TGTTTAGAAGA GGCGGGTACT GTCACTTGT AAAATATGTA ATATTTTATA TGTTATACCA TGTCATATAT ACTTGCAATA TCAGACCTTG AGATTGTCTG GCACTCCAAA AAAAAAAAAAAAAAAAAA	1020	
20	TAATGATGAT ATCTGCAGAC TGCGTAGAAA ATGGCTTTTG TTCCCAGCGT TAACATTTTC	1080
	TTCTCAATCA CATTTCAATG TTTGTGGAGA GTGGCAGATT CACACCAGAA ACACTAGGTG	1140
	TTCATATCCA TAGCATGGAT GCAGAATAAG CAGTTGGGAG AGAAGCTTCT TCCTACCTGG	1200
25	TACTCCTCCC ATTCACCTCA GCCCAGCCCC AGACAGGCGT TAGCATTCAG TGTGGGCCCT	1260
	CAGGCAGCCC TGAAGCCTGG CTGGGTCATC AGATGGGGGC AGCCTGTGAC GGGCACCAGC	1320
30	GGCCTGATTC CAGGGAAGAG TTCCTGGAGG GTGTTGGCTG TTTTTGTTAG CTCAGTTTTT	1380
	TTCTGGGCTC CACCATTCCT AACTCCAGGT AGACAAGATA GATGTCACAC ACAACAATTT	1440
		1500
35		1560
TTCATATCCA TAGCATGAT GCAGAATAAG CAGTTGGGAG AGAAGCTTCT TCCTACCTGG TACTCCTCCC ATTCACCTCA GCCCAGCCCC AGACAGGCGT TAGCATTCAG TGTGGGCCCT CAGGCAGCCC TGAAGCCTGG CTGGGTCATC AGATGGGGGC AGCCTGTGAC GGGCACCAGC 30 GGCCTGATTC CAGGGAAGAG TTCCTGGAGG GTGTTGGCTG TTTTTGTTAG CTCAGTTTTT TTCTGGGCTC CACCATTCCT AACTCCAGGT AGACAAGATA GATGTCACAC ACAACAATTT TAAAGTATTT TGCTTAGTGC ATTTTGTTTA TGATTGCAGT GTTTGTTTCT TATTTAATAG GCTTTTTACT TCATTCTATT AAATTTTAGT GTTTAGAAGA GGCGGGTACT GTCACTGTGT AAAATATGTA ATATTTTATA TGTTATACCA TGTCATATAT ACTTGCAATA TCAGACCTTG 40 CATTCAATAT ACAATGCAAT TGACTCTTTG CAGACCTGCA TTTTTCAGTG AACAATAAAA	1620	
40		1680
40		1720
	AGAIIGICIG GCACICCAAA AMMADA	
45		
	(2) INFORMATION FOR SEQ ID NO: 134:	
50	(A) LENGTH: 705 base pairs(B) TYPE: nucleic acid	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:	
	GGCACGAGGC CATCTGGGCT CATTCAGCAG GAAATAATGG AAAAAGCTGC AATATCCAGG	6
		12

	GTGGAATCAC AGACACTCCT AGAGGAGAAT GCTGTTCAAG GAACAGAACG TACTCTTGGA	180
	TTAAATATAG CACCTTTTAT TAACCAGTTT CAGGTACCTA TACGTGTATT TTTGGACCTA	240
5	TCCTCATTGC CCTGTATACC TTTAAGCAAG CCAGTGGAAC TCTTAAGACT AGATTTAATG	300
	ACTCCGTATT TGAACACCTC TAACAGAGAA GTAAAGGTAT ACGTTTGTNA AATCTGGGAA	360
10	GACTTGACTG CTATTCCATT TTGGGTATCA TATGTACCTT GATGAAGANG ATTAGGTTGG	420
10	GATACTTCAA GTGAAGCCTC CCACTGGAAA CAAGCTGCAG TTGTTTTAGA TAATCCCATC	480
	CAGGTTGAAA TGGGAGAGGA ACTTGTACTC AGCATTCAGC ATCACAAAAG CAATGTCAGC	540
15	ATCACAGTAA AGCAATGAAG AGCAGTTTTC CAATGAAAAC TGTGTAAATA GAGCATCAAC	600
	AAGTACAAAA TTCTTGTCTT AATTAGTGGG GGTATATAAA AATTCCTTGT AATGGTCAAA	660
20	TATTTTTAA AATTGACATT AATAAAGCAT ATTTTAAAAG TTTCT	705
20		
25	(2) INFORMATION FOR SEQ ID NO: 135: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 323 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:	
	AGCACACAC TCCTTTAGTT GCTCCTAAGG TCATGTTCAA CATTCGTGGA GTGCATTTTC	60
35	TGCTCAGGGA GCTTTCCCAG ACCCGGAATG TTTGGTGCTC ACAGACYCTG GCAAGGATCG	120
	GTATTGCTGT TCCTCAGTTT TGCCTGGGGA AATGGAGGST CAGTGACGTT CAGTGACGTG	180
40	CCCAGAGTCA TGCCATTGGC GGGTGGCCCA GKGMTCCAGG TCTCCAGCAC CCCTCGGCCC	240
70	CCTCCTCACC AGGTCACATC ATCTCCTGGA TTAGAATCTG CTCACATAGT CTGTCCTGAA	300
	AGGAAAAAA AAAAAAAAAA AAC	323
45		
50	(2) INFORMATION FOR SEQ ID NO: 136: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 582 base pairs (B) TYPE: nucleic acid	
55	(B) TYPE: nucleic actu (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:	
		60
60	GGACGGAATG GTGCAACCCT CCTWAMTTT CTKGKGCTGT TGACAACAGA GGGAGGGAGG	00

	GAAAACATTT TTYGTGGGAG AATCCTACYT CTGCAGSGGA GCCCTTAAGC GATKGATTTT	120
	GAATCIKGAC CCTTTACCAA CTAATTITGA AGGAAGATAC CTTGGAAATA TTTGGCATTC	180
5	AGTGGGTTAC TGAAACAGCA TTAGTGAATT CATCTAGAGA ACTCTTTCAT TTATTCAGGC	240
	AACAACTGTA CAACTTGGAA ACCTTGTTAC AGTCCAGTTG TGATTTTGGG AARGTATCAA	300
10	CTCTACACTG CAAAGCAGAC AATATTAGGC AGCAGTGTGT ACTATTTCTC CATTATGTTA	360
10	AAGTTTTCAT CTTCAGGTAT CTGAAAGTAC AGAATGCTGA GAGTCATGTT CCTGTCCATC	420
	CTTATGAGGC TTTGGAGGCT CAGCTTCCCT CAGTGTTGAT TGATGAGCTT CATGGATTAC	480
15	TCTTGTATAT TGGACACCTA TCTGAACTTC CCAGTGTTAA TATAGGAGCA TTTGTAAATC	540
	AAAACCAGAT TAAGGTTTGA CTGGTTTCAT TTGATTTTTA AG	582
20		
20	(2) INFORMATION FOR SEQ ID NO: 137:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1021 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:	
	TTCGGCAGAG CCCTTGCGCG CTCTTGAATA CCTGCKTTCT GTAGCGCTAG TTCTCTTCAA	60
25	GATTIGCTTA GIGICATITC ATTICGGITT CITTICTCGC CATGITTTIC IGICGGAATT	120
35	ACGGITCGIT TIGGITCTAT GIACICICIA AAAIGITATC GIITTICATI TGICTACIAA	180
	TUTTUCTICA TUTTOTTACTA CTGAGTTTCT TAATATCTGA CTGGCCTCCG CCCACGGGCT	240

CTGCAGANCA TAAAATACTC AGGCTGATGG TAGTGCAGAG ACTCTCCCTC CTTGATCAGC 300 40 GCAAACGTTG GTCTGAGGCT TGAGGGATGG AGCAACATTT TCTTGGCTGT GTGAAGCGGG 360 CTIGGGATTC CGCAGAGGTG GCGCCAGAGC CCCAGCCTCC ACCTATTGTG AGTTCAGAAG 420 45 ATCGTGGGCC GTGGCCTCTT CCTTTGTATC CAGTACTAGG AGAGTACTCA CTGGACAGCT 480 GTGATTTGGG ACTGCTTTCC AGCCCTTGCT GGCGGCTGCC CGGAGTCTAC TGGCAAAACG 540 GACTOTOTOC TGGAGTOCAG AGCACCTTGG AACCAAGTAC AGCGAAGCCC ACTGAGTTCA 600 50 GTTGGCCGGG GACACAGAAG CAGCAAGARG CACCCGTAGA AKARGTGGGG CAGGCAGARG 660 AACCCGACAG ACTCAGGCTC CRGCAGCTTC CCTGGAGCAG TCCTCTCCAT CCYTGGGACA 720 55 GACAGCAGGA CACCGAGGTC TGTGACAGCG GGTGCCTTTT GGAACGCCGC CATCCTCCTG 780 CCCTCCAGCC GTGGCGCCAC CTCCCGGGTT TCTCAGACTG CCTGGAGTGG ATTCTTCGCG TIGGTTTIGC CGCGTTCTCT GTACTCTGGG CGTGCTGTTC ACGGATCTGT GGAGCTAAGC 900 60

	AGCCTTAGAT	AGCAGCAGAA	GGCTTTTTGG	ATTCTCCTCC	TTGAAAAGAT	TCTCAGTTAC	960
-	CAAACGTCTC	CACCTAGAAA	ATAAAAATAC	ATTAAGATGT	TGANAAAAA	AAAAAAAA	1020
,	A						1021

10

15

20

(2) INFORMATION FOR SEQ ID NO: 138:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1777 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

CGGAAGATGA TGGCTTCAAC AGATCCATTC ATGAAGTGAT ACTAAAAAAT ATTACTTGGT 60 ATTCAGAACG AGTTTTAACT GAAATCTCCT TGGGGAGTCT CCTGATCCTG GTGGTAATAA 120 GAACCATTCA ATACAACATG ACTAGGACAC GAGACAAGTA CCTTCACACA AATTGTTTGG 180 25 CAGCTTTAGC AAATATGTCG GCACAGTTTC GTTCTCTCCA TCAGTATGCT GCCCAGAGGA 240 TCATCAGTTT ATTITCTTTG CTGTCTAAAA AACACAACAA AGTTCTGGAA CAAGCCACAC 300 30 AGTCCTTGAG AGGTTCGCTG AGTTCTAATG ATGTTCCTCT ACCAGATTAT GCACAAGACC 360 TAAATGTCAT TGAAGAAGTG ATTCGAATGA TGTTAGAGAT CATCAACTCC TGCCTGACAA 420 ATTCCCTTCA CCACAACCCA AACTTGGTAT ACGCCCTGCT TTACAAACGC GATCTCTTTG 35 480 AACAATTTCG AACTCATCCT TCATTTCAGG ATATAATGCA AAATATTGAT CTGGTGATCT 540 CCTTCTTTAG CTCAAGGTTG CTGCAAGCTG GGAGCTGAGC TGTCAGTGGA ACGGGTCCTG 600 40 GAAATCATTA AGCAAGGCGT CGTTGCGCTG CCCAAAGACA GACTGAAGAA ATTTCCAGAA 660 TTGAAATTCA AATATGTGGA AGAGGAGCAG CCCGAGGAGT TTTTTATCCC CTATGTCTGG 720 TCTCTTGTCT ACAACTCAGC AGTCGGCCTG TACTGGAATC CACAGGACAT CCAGCTGTTC 780 45 ACCATGGATT CCGACTGAGG GCAGGATGCT CTCCCACCCG GACCCCTCCA GCCAAGCAGC 840 CCTTCAAGTT CTTTTATTTC TGGGTAACAG AAGTAGACAG ACAGGTTACT TGGTGTATCT 900 50 TCTGTTAAAG AGGATTGCAC GAGTGTGTTT TCCTCACACA CTTTGATTTG GAGAATTGGT 960 GCTAGTTGGC AATAGATAAC TCAGCGTAGA TAGTATTGCA AAAAGGGGAG GAAATACACA 1020 ACAATAATAA ATGTAAAAAC CTGCTATTCA ACATGCAGTT TTATTTCGAR GCCAAAAATC 1080 55 TAGAGCTTTC CCAAGATCCT GTTGCCTTAG GCACATNCAC ACTTCAACAG TGCACACTAT 1140 CCAACAGTGC ACACTATTCA ACAGTGCACA CTATTCAAAA GCGTAGACTA TTTTTTTGCA 1200 60

	TGTTCAAGAT	ATTTGTTTTG	GTCTTATGTG	TGTGTGAGAG	AGAGAGATTC	CTTTGACATT	1260
	AAGGAGCATC	AATGAGAAAA	GATGATGAGG	CAGGAATTAA	TAAAGAAATG	AAGTCGTGTG	1320
5	TGTTTGGTTG	CCTGTCAGAG	GGCACACAAT	TTCATAAACA	CCATGCCTGG	ACAATTTGAT	1380
	ATTAATATTT	AACACCTCTG	CATCTTTTC	TTAAAAAAGA	ATATGGGCCA	GATACAGTGG	1440
10	CTCACATTTG	TAATCCCAGC	ACTTTGGGGA	GCCAAGTTAG	CAGAATCCCT	TGAGCACAGG	1500
lU	AATCTGAAAC	CAGCTTGGGC	AACATAGTGA	GATCCCATCT	NTACAAAAA	CTTAAAAATT	1560
	AGCCAGGCAT	GATGGCACAT	TCCTGTAGTC	CTAGCTACTC	AGGAGGCTAA	GGTAGGAGGA	1620
15	TTGCCTGAGC	CCAGGAGTTC	AAGGCTGCAG	TGAGCTAAGN	ACGTGCCAGT	ACACTCCAGC	1680
	CTGAGCCACA	AAGTGAGACC	CTGTCTCGCA	MAAAAAAA M	TTAAAAAGTC	GGGGGGGC	1740
20	CCGGTACCCA	AATCGCCGGA	TATGATCGTA	AACAATC			1777
20							

(2) INFORMATION FOR SEQ ID NO: 139:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 643 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

30

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

TEFFFFFFF TYPTTTTTT TTTTTTTTTTTTTTTTTTTTTT	60
TTCATTGTGG GGAGCGGGCC GATGTCCAGC CTCAGAACTT CTGGAACTGC TTCTTGGTGC	120
CGGCAGCCTT GGTGACCTTG AGCACGTTGA AGCGCACTGT CTTGCTCAGA GGCCGGCACT	180
CGCCCACTGT GACGATGTCA CCGATCTGGA CGTCCCTGAA GCAGGGGGAC AGGTGTACAG	240
ACATGTTCTT GTGGCGCTTC TCGAAGCGGT TGTACTTGCG GATGTAGTGC AGATAGTCTC	300
GGCGGATGAC AATGGTCCTC TGCATCTTCA TCTTGGGTCA CCACGCCAGA GAGGATCCGC	360
CCTCGAATGG ACACATTACC AGTGAAGGGG CATTTCTTGT CAATGTAGGT GCCCCTCAAT	420
AGCCTCCTTG GGGTGTCTTT GAAGCCCAGA CCGATGTTCT TGTTAGTAAC CCGCGGGAGC	480
TTCTCCTTGC CAGTTTCTCC CAGCAGGACC CTCTTCTTGT TTTGAAAGAT GGTCGGCTGC	540
TTTTGGTAGG CACGCTCAGT CTGAATGTCC GCCATCTTCT CGTGCCGMAY TCCTGCAGCC	600
CGGGGGATCC ACTAGTTCTA GAGCGGCCGC ACCGCGGTGG AGC	643
	TTCATTGTGG GGAGCGGCC GATGTCCAGC CTCAGAACTT CTGGAACTGC TTCTTGGTGC CGGCAGCCTT GGTGACCTTG AGCACGTTGA AGCGCACTGT CTTGCTCAGA GGCCGGCACT CGCCCACTGT GACGATGTCA CCGATCTGGA CGTCCCTGAA GCAGGGGGAC AGGTGTACAG ACATGTTCTT GTGGCGCTTC TCGAAGCGGT TGTACTTGCG GATGTAGTGC AGATAGTCTC GGCGGATGAC AATGGTCCTC TGCATCTTCA TCTTGGGTCA CCACGCCAGA GAGGATCCGC CCTCGAATGG ACACATTACC AGTGAAGGGG CATTTCTTGT CAATGTAGGT GCCCCTCAAT AGCCTCCTTG GGGTGTCTTT GAAGCCCAGA CCGATGTTCT TGTTAGTAAC CCGCGGGAGC TTCTCCTTGC CAGTTTCTCC CAGCAGGACC CTCTTCTTGT TTTGAAAGAT GGTCGGCTGC TTTTTGGTAGG CACGCTCAGT CTGAATGTCC GCCATCTTCT CGTGCCGMAY TCCTGCAGCC

⁽²⁾ INFORMATION FOR SEQ ID NO: 140:

	1 ;) SECURNCE	CHARACTERISTICS:
į	ıı) SECUENCE	CUMMACIENTALICA:

(A) LENGTH: 1220 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

10	GGCACGAGGA	TGATAGACCT	ACTGGAGGAA	TACATGGTTT	ACAGGAAGCA	TACCTACATR	. 60
10	AGGCTTGATG	GCTCATCCAA	GATCTCGGAG	AGGCGAGACA	TGGTTGCTGA	TTTTCAGAAC	120
	AGGAATGACA	TCTTTGTGTT	CCTGTTAAGC	ACACGAGCTG	GAGGACTGGG	TATCAATCTC	180
15	ACTGCTGMAG	ACACAGTGCA	TTTTCTATGA	TAGCGACTGG	AACCCCACTG	TGGACCAGCA	240
	GGCCATGGAC	AGGGCCCACC	GCTTAGGGCA	GACAAAGCAG	GTTACTGTGT	ACCGGCTCAT	300
20	CTGTAAAGGC	ACCATTGAAG	AACGCATTCT	GCAAAGAGCC	AAGGAGAAGA	GTGAGATTCA	360
20	GCGGATGGTG	ATTTCAGGTG	GGAACTTCAA	ACCAGATACC	TTGAAACCCA	AAGAGGTGGT	420
	TAGTCTTCTT	CTAGACGACG	AAGAGTTGGA	GAAGAAACGT	ATGTACTCTA	AACCTCTATA	480
25	CACTCCCCTC	ACGTATCTGA	GAATGGAAGA	GGTACTTGGS	TGTGTGCCAA	GGGTTAGGCA	540
	AAGCCAGAGG	CTGTATTTAG	GGAAAGTATT	TTTGTGCTCA	TATTTTÄTAT	AAAAACCCAA	600
30	ACAAGAATGT	GTTTGTAGGC	CAGGCGTGGT	GGCTCGCGCC	TCTAGTCTCA	GCATTTCGGG	660
50	ARGCCAAAGT	GGGCAGATCA	CCTGARGTCA	GGARTTTGAG	TTTGARACCA	GCCTGGCCMA	720
	CGTTGTGAAA	CCCCACCTCT	ACTARGARTA	CSGAAAATTG	GTTGGGCATG	GTGGCGGGCA	780
35	CCTGTAATTC	CAGCACTITG	GGAGGCTGGG	GCAGAANAAT	TGCTTGAGCC	CAGGAGGTGG	840
	AGATTGCGGT	GAGCCGAGAT	YGTÇCCATTG	CAMTCCAGCC	SGGGCAATAA	GAGTGAAAYT	900
40	CCATCTTTTA	AAAACAAACA	аааасааааа	ACACAAGACG	GCTCACACCT	GTAATCCCAG	960
40	CACTTTGGGA	RGCCGARGCA	GGTGGATCAC	GARGTCAGGA	GTTCCAAGAC	TAGCCTGGCC	1020
	AACCTGGTGA	AGCCCCGTCT	СТАСТАААА	TACMAATATT	AGTCGGGCGT	GGTGGTGGGC	1080
45	ACGTGTAATC	CCAGCTACTC	GGGAGGCTGA	GGCAGGAGAA	TCCCTTGAAG	CTAGGAGGCA	1140
	GAGGTTGCAG	TGAGCCAGGA	TCGTGCCATT	GCACTCCAGC	CTGGACAACA	AGAGCAAGAT	1200
50	TCCATCTCAA	AAAAAAAAA.					1220

(2) INFORMATION FOR SEQ ID NO: 141:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 721 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:	
	AATTCGGCAC GAGCCAGGTT AGCCGGAAGG GCAGCTCTCC AGGCCCTGCC CACCCCACAG	60
5	GGGGCTCCTT ATGCACAGCG GGGCGTCTCC TTGTGGCCAT AGAAACGGAA CTGGCTCTTT	120
	TCAACAGTGC TGCAAGAGGA TGGTTATTTA ACGCTGGCCC CCAAGGAGGA AAGGCACAGA	180
10	CYTTCCTCCC TCCTGGAACA TCCAAGGGCA CTGGATCCTC TGTGTCCCTC TGAGATGGGG	240
	TGCCACTCCA GCAAGAGCAC CACGGTGGCA GCTGAGTCCC AGAAGCTTGA AGAAGAGYGC	300
	GAGGGAAGAG AGCCAGGTCT GGAGACCGGC ACCCAGGCAG CAGACTGCAA GGATGCCCCG	360
15	CTGAAGGATG GAACCCCTGA GCCAAAGAGC TGAAATGCCT CTCTCCAGAG TCGGACCCTC	420
	ACCTCYTTCC TGGAACTGCC TTTGGCCCCA GAACCATGAG ACAATCCCCA CCCTGAGAAG	480
20	CTCCGATCAC TGGGAGGAGA GAGAAAGCCT CCAGCTTTGG GATTCAGGCT TCAGAAGTTT	540
	TTAGCAGCCT TTGCTCATTG GAGAGGTGGG GAAAGGATAA AGTTCTTATA AGGAAATCCC	600
	TAATTITCCCC CAGCTCCTCC CCNCCNGAAG AAGGAACNAA AGAAAGTTCC TTCCACACGT	660
25	TTTGTTGGAA ACTTTCCCT TGCCAACTTT CCTTGGATTG CCAGAACAAA GCCCTCCAGA	720
	A	721
30		
	(2) INFORMATION FOR SEQ ID NO: 142:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1468 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:	
	ATGAATTAAT GTTTATAAAT GACTGTACTG AATTTAAAAC CGTACAGTTT CATTTGCATT	6
45	TTGACATTAC TITATTATAC ATTTTGCATT TAAAAGGCTG CACCAGTTGG CTTTTCTTCT	12
	GTTTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC CCTGTTTATG GATTAAAAAG	18
	AAAATTCTAA TATAAAGCAT TTCAATAGGA TGCATAGGTA TATTACGTTT TTTAAATGCT	24
50	TTAGATCTGT GATTCTTGAC TTACTATTTA TTTTATCCCC TTTAAGTCAG GGATGCTTTA	30
	TTCTATTTTA AAGCACTTAT GAGTTACATG TTGTAATCAA GTTTGCACAA TATATTTATC	36
55	TATATGAGGA ACCCATAAAT GAATAGCTAA TTTTTAAAAT GCCATTAAAA TGCATGAAAT	42
	VCTTDATTA A ACCTUACTE ACTENTITY CAAGGCAAGT AAATTGACCA TGRGRAAAGR	48

ACACAGTTAT TAAACACTGT TGACAGGAAA ATTCTCCTTG ATAACATAGG ACAATTAATG

300

GAAAAAAAA TTCTCATTAT TTGCAAAGAA TGAACAAGTT AATGAACAAA CAAACTAGAT

	TIGGTATGIT TICAGCTITI GTATCATGIT TAATTGITTA ATTIGGTIGA AAAACTGCAG	660
5	TTGAGAAATC AGATAGCAAT ATAGACATTC ACAGCAGCTC TGTGGATACC ATGTAATTGT	720
	CAGGTAATTT CAGAATGTTG AAAATTATTC AGTGCAGCCC TCATAGTATC ATACTTGAAG	780
10	AAATTGATTA CAGTTCCACT AAATTGTTGA AGATAAATTA TTTTTAAAGG TTATGAAAAC	840
10	TAAGTTATAT TAATTCATAT GTTTGATTTT TAAATCCCAC CTCCTCAAGC TATCCAATTT	900
	NCTGACTTTG AAAATAACCA TGAGAGATGC CACATTTCTC TCTGGGAAAC TACCACTCAA	960
15	AGAATAATTG TTAAAAATTA AGCTTTTAGG TATTAGAAGC TGTTATAAAG TATAAAATTA	1020
	AGATATAAGC AGATCACATG TAAATCATTC CTAAAGCACA AGAAAAGAAT GTGCCTTGAT	1080
20	GTACATATAT TACTAAGTTG CCTCTCCCAG TTTACTTTAA AAATGGCTTT AAGGATAAAG	1140
20	AATAAATGTG ATAGCTGTGC ATGCATTATA TATTTGCATT TGCAAATTTC CCATTGTTTT	1200
	AACAGCTGTG TGGCTGACTT TCAATTTTAA GACGTGAATT GACATACAGC CCATAACTTT	1260
25	ATAATGGCTG CTCATTTATC TTATCTTTCA GITAGTGGAA AAACATTTCA ACCTGACTAA	1320
	AATTTGGAAT TGTGTCTTTT ATGTTCCATC CTCTGTTGTT ACTAGATTTA GTTTAAAAAT	1380
30	TGTGTATGAC CATTAATGTA TGTCATAAAC ATGTAAATAA AAGATGTTGA ATCTTGTTGA	1440
	AAAGCAWRAA AAAAAAAAA AAACTCGA	1468
35	(2) INFORMATION FOR SEQ ID NO: 143:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 300 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
. 45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:	
45	TGAATTTTTT GCCAAACTTA GTAACTCTGT TAAATATTTG GAGGATTTAA AGAACATCCC	60
	AGTTTGAATT CATTTCAAAC TTTTTAAATT TTTTTGTACT ATGTTTGGTT TTATTTTCCT	120
50	TCTGTTAATC TTTTGTATTC RCTTATGCTC TCGTACATTG AGTACTTTTA TTCCAAAACT	180
	A COMPANIENT COMPANIENT AND A SAMPHER AND AND A COMPANIENT COMPANIENT AND A COMPANIENT AND	240

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2243 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

10	TGCCTCCCTT CCTGCAGATT GTGGACAGTA GTTCCTCAGC CTGCACCCTG GATTCCTTCT	60
10	TCCCCTTCCT AGCTCCATGG GACTCGCCCC AAGACTGTGG CTTCAAGGAC CACCAGCCCC	120
	TTACTCTTCA AGCCCTGACT GTGGAGTTGG TAGATGCCTC TGATCCTCAG TATTCTCTCT	180
15	GGCAATGTTC CACGGCTTCT CCTTCCTGGG AGCTGGCTCC ATAACTTGAT TTTCCCCAAA	240
	CGTGTTGCAA TCCCTGCTGC CCCTTAGCCA CCCAGGGTCT TGTGTGGGTA TGAGTGTAGA	300
20	GGATGGGGGT ATGCCAGGCC TGGGCCGTCC CAGGCAGGCC CGCTGGACCC TGATGCTACT	360
20	CCTATCCACT GCCATGTACG GTGCCCATGC CCCATTGCTG GCACTGTGCC ATGTGGACGG	420
	CCGAGTGCCC TTYCGGCCCT CCTCAGCCGT GCTGCTGACT GAGCTGACCA AGCTACTGTT	480
25	ATGCGCCTTC TCCCTTCTGG TAGGCTGGCA AGCATGGCCC CAGGGGCCCC CACCCTGGCG	540
	CCAGGCTGCT CCCTTCGCAC TATCAGCCCT GCTCTATGGC GCTAACAACA ACCTGGTGAT	600
30	CTATCTTCAG CGTTACATGG ACCCCAGCAC CTACCAGGTG CTGAGTAATC TCAAGATTGG	660
50	AAGCACAGCT GTGCTCTACT GCCTCTGCCT CCGGCACCGC CTCTCTGTGC GTCAGGGGTT	720
	AGCGCTGCTG CTGCTGATGG CTGCGGGAGC CTGCTATGCA GCAGGGGGCC TTCAAGTTCC	780
35	CGGGAACACC CTTCCCAGTC CCCCTCCAGC AGCTGCTGCC AGCCCCATGC CCCTGCATAT	840
	CACTCCGCTA GGCCTGCTGC TCCTCATTCT GTACTGCCTC ATCTCAGGCT TGTCGTCAGT	900
40	GTACACAGAG CTGCTCATGA AGCGACAGNG GCTGCCCCTG GCACTTCAGA ACCTCTTCCT	960
70	CTACACTTTT GGTGTGCTTC TGAATCTAGG TCTGCATGCT GGCGGGGGCT CTGGCCCAGG	1020
	SCTCCTGGAA GGTTTCTCAG GATGGGCAGC ACTCGTGGTG CTGAGCCAGG CACTAAATGG	1080
45	ACTGCTCATG TCTGCTGTCA TGAAGCATGG CAGCAGCATC ACACGCCTCT TTGTGGTGTC	1140
	CTGCTCGCTG GTGGTCAACG CCGTGCTCTC AGCAGTCCTG CTACGGCTGC AGCTCACAGC	1200
50	CGCCTTCTTC CTGGCCACAT TGCTCATTGG CCTGGCCATG CGCCTGTACT ATGGCAGCCG	1260
50	CTAGTCCCTG ACAACTTCCA CCCTGATTCC GGACCCTGTA GATTGGGCGC CACCACCAGA	1320
	TCCCCCTCCC AGGCCTTCCT CCCTCTCCCA TCAGCAGCCC TGTAACAAGT GCCTTGTGAG	1380
55	AAAAGCTGGA GAAGTGAGGG CAGCCAGGTT ATTCTCTGGA GGTTGGTGGA TGAAGGGGTA	1440
•	CCCCTAGGAG ATGTGAAGTG TGGGTTTGGT TAAGGAAATG CTTACCATCC CCCACCCCCA	1500
60	ACCAAGTTCT TCCAGACTAA AGAATTAAGG TAACATCAAT ACCTAGGCCT GAGAAATAAC	1560

	CCCATCCTTG	TTGGGCAGCT	CCCTGCTTTG	TCCTGCATGA	ACAGAGTTGA	TGAAAGTGGG	1620
	GTGTGGGCAA	CAAGTGGCTT	TCCTTGCCTA	CTTTAGTCAC	CCAGCAGAGC	CACTGGAGCT	1680
5	GGCTAGTCCA	GCCCAGCCAT	GGTGCATGAC	TCTTCCATAA	GGGATCCTCA	CCCTTCCACT	1740
	TTCATGCAAG	AAGGCCCAGT	TGCCACAGAT	TATACAACCA	TTACCCAAAC	CACTCTGACA	1800
10	GTCTCCTCCA	GTTCCAGCAA	TGCCTAGAGA	CATGCTCCCT	GCCCTCTCCA	CAGTGCTGCT	1860
10	CCCCACACCT	AGCCTTTGTT	CTGGAAACCC	CAGAGAGGGC	TGGGCTTGAC	TCATCTCAGG	1920
	GAATGTAGCC	CCTGGGCCCT	GGCTTAAGCC	GACACTCCTG	ACCTCTCTGT	TCACCCTGAG	1980
15	GCTGTCTTG	AAGCCCGCTA	CCCACTCTGA	GGCTCCTAGG	AGGTACCATG	CTTCCCACTC	2040
	TGGGGCCTGC	CCCTGCCTAG	CAGTCTCCCA	GCTCCCAACA	GCCTGGGGAA	GCTCTGCACA	2100
20	GAGTGACCTG	AGACCAGGTA	CAGGAAACCT	GTAGCTCAAT	CAGTGTCTCT	WTAACTGCAT	2160
20	AAGCAATAAG	ATCTTAATAA	AGTCTTCTAG	GCTGTAGGGT	GGTTCCTACA	ACCACAGCCA	2220
	ааааааааа	AAAAAAACTC	GAG				2243

(2) INFORMATION FOR SEQ ID NO: 145:

30 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1082 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:

GCCAAGCTCT AATACGACTC ACTATAGGGA AAGCTGGTAC GCCTGCAGKT ACCGGTTCCG 60 120 GGAATTCCCG GGTCGACCCA CGCGTCCGCT TCCGTGTGTC AAAATCCTCA CCTCCTTCAT AACCATCTCC CACAATTAAT TCTTGACTAT ATAAATTTAT GGTTTGATAA TATTATCAAT 180 240 TTGTAATCAA TTGAGATTTC TTTAGTGCTT GCTTTTCTGT GACTCAACTG CCCAGACACC TCATTGTACT TGAAAACTGG AACANCTTGG GAATGCCATG GGGTTTGATA ATCTGCCAGG 300 GACATGAAGA GGCTCAGCTT CCTGGGACCA TGACTTTGGC TCAGCTGATC CTGNACATGG 360 GAGAACAACC ACATTTTCT TTGTGTGTGC TTCTAGCAGC TGTTCGGGAG GACCKTGACC 50 420 CAAYAGTGTT CCCATGCTGT TTCTTGTGAA ATGCTCTCGG CTATGTAGCA GCTTTTGATT CCCTGCATAC CCTAGGCTGC TGCCCCTATC CTGTCCCTTG TTTATAACAT TGAGAGGTTT 540 55 TCTAGGGCAC ATACTGAGTG AGAGCAGTGT TGAGAAGTCG GGGAAAATGG TGACTACTTT 600 660 TAGAGCAAGG CTGGGCATCA GCACCTGTCC AGCTCTACTT GTGTGATGTT TCAGGAACTC AGCCCCTTTT TCTGCCTAGG ATAAGGAGCT GAAAGATTAA CTTGGATCTY CTAATGGTCC 720 60

PCT/US98/11422

395

	AAATCTTTTG	GTCACAATAA	AGAGTCTCCA	AATTAGAGAC	TGCATGTTAG	TTCTGGATGG	780
_	ATTTGGTGGC	CTGACATGAT	ACCCTGCCAG	CTGTGAGGGG	ACCCCGTTTT	TAAGATGCAT	840
3	GGCCAAGCTC	TCTGCAAATG	GAAATGCTTA	CACTGGGTGT	TGGGGATGTT	TGCTACCTCC	900
	TGCTATTTTT	GTGGTTTTGG	TTCTCCCACT	ATGGTAGGAC	CCCTGGCCAG	CATTGTGGCT	. 960
10	TGTCATGTCA	GCCCCATTGA	CTACCTTCTC	ATGCTCTGAG	GTACTACTGC	CTCTGCAGCA	1020
	САААТТТСТА	TTTCTGTCAA	TAAAAGGAGA	TGAAAATAAA	AAANAAAAA	AAAAAACTCG	1080
1.5	NG						1082
15							

(2) INFORMATION FOR SEQ ID NO: 146:

20

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4313 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:

CAAGCTGGTT TGAA	ACTAGG GGTCGGGCTC	GGCCGTCGTC	GTTGTTTGTC	GCCGCATCCC	60
CGCTTCCGGG TTAG	GCCGTT CCTGCCCGCC	CCCTCCTCTC	CTCCCTTCGG	ACCCATAGAT	120
CTCAGGCTCG GCTC	CCCCCC CGCCGCAGC	CACTGTTGAC	CCGGCCCGTA	CIGCGGCCCC	180
GTGGCCACCA TGTC	CCTGCA CGGCAAACG	G AAGGAGATCT	ACAAGTATGA	AGCGCCCTGG	240
ACAGTCTACG CGAT	GAACTG GAGTGTGCG	G CCCGATAAGC	GCTTTCGCTT	GGCGCTGGGC	300
AGCTTCGTGG AGGA	AGTACAA CAACAAGGT	r cagcttgttg	GTTTAGATGA	GGAGAGTTCA	360
GAGTTTATTT GCAG	GAAACAC CTTTGACCA	C CCATACCCCA	CCACAAAGCT	CATGTGGATC	420
CCTGACACAA AAGC	GCGTCTA TCCAGACCT	A CTGGCAACAA	GCGGTGACTA	TCTCCGTGTG	480
TGGAGGGTTG GTG	AAACAGA GACCAGGCT	G GACTGTTTGC	TAAACAATAA	TAAGAACTCT	540
GATTTCTGTG CTC	CCCTGAC CTCCTTTGA	C TGGAATGAGG	TGGATCCTTA	TCTTTTAGGT	600
ACCTCAAGCA TTG	ATACGAC ATGCACCAT	C TGGGGGCTGG	AGACAGGGCA	GGTGTTAGGG	660
CGAGTGAATC TCG	TGTCTGG CCACGTGAA	G ACCCAGCTGA	TCGCCCATGA	. CAAAGAGGTC	720
TATGATATTG CAT	TTAGCCG GGCCGGGGG	T GGCAGGGACA	TGTTTGCCTC	TGTGGGTGCT	780
GATGGCTCGG TGC	GGATGTT TGACCTCCG	C CATCTAGAAC	ACAGCACCAT	CATTTACGAA	840
GACCCACAGC ATC	ACCCACT GCTTCGCCT	TGCTGGAACA	A AGCAGGACCO	TAACTACCTG	900
GCCACCATGG CCA	TGGATGG AATGGAGGT	G GIGATICTAC	ATGTCCGGGT	TCCTGCACAC	960

	CTGTSGCCAG	GTTAAACAAC	CATCGAGCAT	GTGTCAATGG	CATTGCTTGG	GCCCCACATT	1020
	CATCCTGCCA	CATCTGCACT	GCAGCGGATG	ACCACCAGGC	TCTCATCTGG	GACATCCAGC	1080
5	AAATGCCCCG	AGCCATTGAG	GACCCTATCC	TGGCCTACAC	AGCTGNAAGG	WGAGATCAAC	1140
	AATGTGCAGT	GGGCATCAAC	TCAGCCCGAA	YTGTCGCCAT	CTGCTACAAC	AACTGCCTGG	1200
10	AGATACTCAG	AGTGTAGTGT	TGGTGGCGCT	GTGCCCACGA	GGCAGGGGCT	TTTGTATTTC	1260
10	CTGCCTCTGC	CCCACCCCCA	AAGTAAGAAG	AAACATGTTT	CCAGTGGCCA	GTATGTCTTT	1320
	CATTGCTTTG	CACCCACTGT	TACCAGAAGC	TGCTCTAGGA	CTTCCTGGCC	AGTCACCCCA	1380
15	TCGCCCTCTG	TGGCAGACTC	AGTGCTGTGT	GGCGCCTCCT	CAGCCCAGGG	CTGAGTTTTA	1440
	AGATTTTCTC	TCCTTTCCTC	TTCTCCTTTG	GTTCCTCAAT	TAAAAAATGT	GTGTATATTT	1500
20	GTTTGTCAGG	CGTTGTGTTG	AGGAGCAGTT	CACGCACTGG	CTGTGTCTAT	TCCTCTGCCC	1560
20	AGGTGTCTCT	GTTTGCTGCC	CAAKGYWKKT	TTTCATGTCT	CGTCCATGTC	CATGTTCGTG	1620
	TTAGCACTWA	CGTGGGAACA	AATACCAATT	TGTCTTTTCT	CCTAGTATCA	GTGTGTTTAA	1680
25	CAAATTTTAA	CTTTGTATAT	TIGITATCTA	TCAGGCTAAT	TTTTTTATGA	AAAGAATTTT	1740
	ACTCTCCTGC	TTCATTTCTT	TGTCTTATAG	TCCTCCCTCT	TTGCACCTTC	TTCTCTTCCC	1800
30	TCAGTGCCTG	GAGCTGGTAC	TGGGCCCCTG	GCCCCATGAG	CAGTTTGCCT	TCTTGAGTCA	1860
20	CTGCCTGTGT	AGTACATACC	TGACCGGGAG	TCCAAACCAC	CTTGGTGCTC	TGAAGTCCAC	1920
	TGACTCATCA	CACCTTTCTT	AGCCTGGCTC	CTCTCAAGGG	CATTCTGGGC	TTGTAAACAG	1980
35	ACATAGGAAG	CCTCTGTTTA	CCCTGAAGCA	CCACTGTCCA	GCCCATTGGT	TCCCACTGGC	2040
	AGCATGGTAG	AGCTGAGAGA	AACAGGCTCT	CAGGGTACCT	GACTTGAGGG	GAATCGTTTC	2100
40	ATGAAGCTGA	ACTTCAAGCA	TATTTCCAGT	ACATTCTTTC	AGAGTCTGTT	TTTCCATCCA	2160
	AATATAAGCC	CCAGGCCATT	CCACTTAGTG	TCTTTTCAAT	GATAGGCAAG	AATGATATCT	2220
	GAGTTGAACT	TCGCTGCTTC	TGTTGTTTGA	GTTTACTGTG	CCTGGTGGTA	TATTGGGCAT	2280
45	TCTTTGGATT	GAGTGTTCTG	ACCTGAGAGA	GTCTTCCCGA	GCATCCTGT	CTGTGCTTCC	2340
	AACCCTGAAC	AAGACCTTAC	ATGAGAGATO	GACTGATGGA	. CTGCGGCAAT	CCTGGGCTGT	2400
50	CAAGTGGATA	A GATAGTTAAA	AAGCATTATA	CTGTGGGTAA	TGAAAAGGGA	GGAAAAAAA	2460
50	AGAAGGAAAA	GGAATTATAG	ACCCCAGGG	TCAGCCAGTT	AAGAGCTCTA	CCCACACCTG	2520
	TCAACCCCTC	TCTCCCCCAG	TTTAGGTTCT	GAGCAGTATT	GGACTTGTAG	CCTGCAGTTG	2580
55	TCTTTTGACT	TGCAGGCCGC	AGTGTCTTTC	TGTTATGTGA	ATGAGTTCCA	TGGAGGGCA	2640
	TATGTGTGAT	TCCACCGTTA	GATGAGCCCT	TGGGGCAGGC	AGTTTGGGAT	GTGCTCTTGG	2700
60	GGGAAAGTT	GCTGTTTCCT	TGCGCTCTGC	TCCTACCCGA	AGTTTTTAAG	TCCCTCTGAA	2760
60							

	TIGCTCATCT GAGATTAGTA GAGTAGCAGG CCTGAAGGAT GATGGTTTIG TCCTCTTTGG	2820
	TTCTCACCTG CTTGAGAAGT AAAACAGTAA CTTTGTTCTT CTGGGCCCTT AAGCTTTTTT	2880
5	GGTTAAGTCT TCCTTTTCAG AAGTAGATGT CATTATATGC CAAAAGTCTA GCTCTTTGCT	2940
	TTACCATACA GGGACCTGTC CCAAAGAAAA AGGCTCTTTT TTTAGCCAGC ATATTTCCCC	3000
10	TTCTACCCTT TTACTTTGTT GTTCTGATTT TAGGACTCTG GCTGGCCATG TGCTTGTGGT	3060
10	TGCCTCTCCT GCATTTGCCA CTGGATTTGC ACTGCATCGT TTGGAGATAC AAAGCGAGCA	3120
	GTTCTTGGTC AGAACCCTCC TCTGCTTTTC ATTGTGTTTG ATAATGGTTA CTGGGTCCTT	3180
15	CTCTCAAGGG TAGCAAGGCC AAGCTGATGG CTGCTTGTTT AGGAGGCCAT CAGTTCCTTC	3240
	CTGTGGAGAA GGGTCTGAAA TGGAAGTCAG TGGTAGAAGG GGCTGGTCTG CTGGGCAGGG	3300
20	CTTACATCCA CTGAGTTCTA AGATTCCTTT CCTGATCTGC ACCTACGCCT GGTCTGTATG	3360
20	GTGGAATTTG TCAGCTGGAA CTCAGAAACA ACAACTTGAA AAAAAAATAA TAATTAGAAC	3420
	ATATTTGCAT AAGATAGCTA TTTACTCTGG AAACCAACAA CTTTTGAGAT TTCCCTTGCC	3480
25	CTGTGGACGC CCAGCTCCTG TCATCCTTCC TTAGGTCCTG CAGTACAGTC TTCCCCTGAA	3540
	TGCCACCGGG GACCCAGGGG GACTCCACCC CCCTAAGCAA GCACACACAT ACTCACAGTT	3600
30	GATGAGTTGC TGGTCTTTGA GTCCCAGCTC TCTTACCCTC CCTTTACTCC ACCAGCCCGA	3660
50	CGACCCATGA CTGAGGAGGG GATTTCTACA GTCTCAGGAT TTAGAAAGTC TGTAAGCCAT	3720
	CCATGCTCCA GAAAGCACCG ATCTGTTGTA GTTGCAAAAA CAACTCTGTA ATTTGTTGAG	3780
35	GTTCTCAAAC TGACAGCCAG CGAGACTGGG TGGGAGGCCC TGGATCTGTT CTCCCTGACT	3840
	GCGGGAGGAG CAGCCACTAG GACTTTAGCA GGAAGCCCAC ATGGAGGCTC CGCCAGGCTG	3900
40	TGGCCCAGCT GGTGATGGCC CTTTTGCTCC TGGCAGCCTG AGGCACAGCT GCCTGTATTG	3960
10	TCCTCATCTG TTCTGACTGA AGGATGGAGG TGCTGAATAA ATTAGGCCTC AGGCNTCTAC	4020
	CACCAGAGAG CTGGAGAATG GGTCCACGTC ATTCAAGGAC CTGAATTTTT TATGCTCAGG	4080
45	AGCATTGGAA TCCTCTTCTT CCAGGGAGGA ATTAGCCTGC AAGGTTAGGA CTTGAAGAGG	4140
	GAAGGTATTT AATAACTGGG CGAGGATGGG TGTGGTGGCT CACACCTGTA ATCCCAGCAT	4200
50	TTTGGGAGGC TGAGGTGGCC AGATCCCAAG GTCAGAAGAT CGAGACCATC CTGGCTAACA	4260
50	TGGTGAAACC CCATCTCTAC TAAAAATACA AAATTAAATT	4313

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1183 base pairs
(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 147: