- Unconstrained optimization problem(制約なし最適化問題)
 - Find x that maximizes (or minimizes) function f(x).

Taylor expansion of
$$f(m{x})$$
 around $m{x}_0$, $m{x}=m{x}_0+\Delta m{x},\ \Delta m{x}=\begin{vmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{vmatrix}$

$$f(\mathbf{x}) = f(\mathbf{x}_0 + \Delta \mathbf{x}) = f(\mathbf{x}_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Big|_{\mathbf{x} = \mathbf{x}_0} \cdot \Delta x_i$$
$$+ \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} \Big|_{\mathbf{x} = \mathbf{x}_0} \cdot \Delta x_i \cdot \Delta x_j + \dots$$

$$= f(\boldsymbol{x}_0) + \nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x} + \frac{1}{2} \Delta \boldsymbol{x}^T H(\boldsymbol{x}_0) \Delta \boldsymbol{x} + \dots$$

The condition under which f(x) attains its maximal value(極大値) at x_0 :

 $f(x_0) \geq f(x_0 + \Delta x)$ for $\forall \Delta x$ where $\|\Delta x\|$ is sufficiently small.

$$f(\boldsymbol{x}_0) \ge f(\boldsymbol{x}_0) + \nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x} + \frac{1}{2} \Delta \boldsymbol{x}^T H(\boldsymbol{x}_0) \Delta \boldsymbol{x} + \dots$$
$$0 \ge \nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x} + \frac{1}{2} \Delta \boldsymbol{x}^T H(\boldsymbol{x}_0) \Delta \boldsymbol{x} + \dots$$

The following are the sufficient conditions for f(x) to attain its maximal at x_0 :

$$\begin{cases} \nabla f(\boldsymbol{x}_0) = \boldsymbol{0}, \\ \Delta \boldsymbol{x}^T H(\boldsymbol{x}_0) \Delta \boldsymbol{x} < 0 \text{ for } \forall \Delta \boldsymbol{x}, \text{ i.e., } H(\boldsymbol{x}_0) \text{ is negative definite.} \end{cases}$$

$$\frac{d}{dx}f(x_0) = 0, \ \frac{d^2}{dx^2}f(x_0) < 0.$$

The conditions described on the previous slide are necessary conditions as well.

When Δx is so small that we can ignore the second and higher order terms of Δx , it is necessary that the following holds,

$$f(\boldsymbol{x}_0) \geq f(\boldsymbol{x}_0) + \nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x}$$

for any small Δx . This requires that $\nabla f(x_0) = \mathbf{0}$.

Then for any Δx such that we can ignore its third and higher order terms,

$$f(\mathbf{x}_0) \ge f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T H(\mathbf{x}_0) \Delta \mathbf{x}$$

$$= f(\mathbf{x}_0) + \frac{1}{2} \Delta \mathbf{x}^T H(\mathbf{x}_0) \Delta \mathbf{x}$$

$$0 \ge \Delta \mathbf{x}^T H(\mathbf{x}_0) \Delta \mathbf{x}$$

- Optimization with equality constraints (等式制約つき最適化)
 - Find x that maximizes (or minimizes) function f(x) under the condition that,

$$m{h}(m{x}) = egin{bmatrix} h_1(m{x}) \ dots \ h_m(m{x}) \end{bmatrix} = m{0},$$

where
$$oldsymbol{x} = egin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $m < n$.

- Let us suppose that x_0 is the solution, and let us find the conditions that x_0 must satisfy

 $oldsymbol{x}_0$ must, of course, satisfy

$$\boldsymbol{h}(\boldsymbol{x}_0) = \boldsymbol{0},$$

and, for sufficiently small Δx that satisfies $h(x) = h(x_0 + \Delta x) = 0$, $f(x_0) \ge f(x) = f(x_0 + \Delta x)$.

 $m{h}(m{x}) = m{h}(m{x}_0 + \Delta m{x})$ can be approximated as

$$\boldsymbol{h}(\boldsymbol{x}_0 + \Delta \boldsymbol{x}) \simeq \boldsymbol{h}(\boldsymbol{x}_0) + \boldsymbol{\nabla} \boldsymbol{h}(\boldsymbol{x}_0)^T \Delta \boldsymbol{x},$$

where $\nabla h(x_0) = \begin{bmatrix} \nabla h_1(x_0) & \dots & \nabla h_m(x_0) \end{bmatrix}$ is an $n \times m$ matrix.

Since $m{h}(m{x}_0) = m{0}$, $m{h}(m{x}) = m{0}$, we have $m{\nabla} m{h}(m{x}_0)^T \Delta m{x} = m{0}$ or $\Delta m{x} \in \mathscr{N}(m{\nabla} m{h}(m{x}_0)^T)$.

Also we can approximate $f(\boldsymbol{x}_0 + \Delta \boldsymbol{x})$ as

$$f(\boldsymbol{x}_0 + \Delta \boldsymbol{x}) \simeq f(\boldsymbol{x}_0) + \nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x},$$

which leads to

$$f(\boldsymbol{x}_0) \geq f(\boldsymbol{x}_0 + \Delta \boldsymbol{x}) \simeq f(\boldsymbol{x}_0) + \nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x},$$

and therefore

$$0 \ge \nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x} \text{ for } \forall \Delta \boldsymbol{x} \in \mathscr{N}(\boldsymbol{\nabla} \boldsymbol{h}(\boldsymbol{x}_0)^T).$$

In the above condition, the case that $0 > \nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x}$ must be excluded because if $0 > \nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x}$ holds for some $\Delta \boldsymbol{x} \in \mathscr{N}(\boldsymbol{\nabla} \boldsymbol{h}(\boldsymbol{x}_0)^T)$, then $-\Delta \boldsymbol{x}$ is also in $\mathscr{N}(\boldsymbol{\nabla} \boldsymbol{h}(\boldsymbol{x}_0)^T)$, but $0 < \nabla f(\boldsymbol{x}_0)^T(-\Delta \boldsymbol{x})$.

So the condition that must be satisfied is

$$\nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x} = 0 \text{ for } \forall \Delta \boldsymbol{x} \in \mathscr{N}(\boldsymbol{\nabla} \boldsymbol{h}(\boldsymbol{x}_0)^T).$$

Note that the above condition is also obtained by starting with $f(x_0) \le f(x_0 + \Delta x)$. So the condition is a necessary condition.

The condition $\nabla f(\boldsymbol{x}_0)^T \Delta \boldsymbol{x} = 0$ for $\forall \Delta \boldsymbol{x} \in \mathscr{N}(\nabla \boldsymbol{h}(\boldsymbol{x}_0)^T)$ implies that the vector $\nabla f(\boldsymbol{x}_0)$ is orthogonal to any vector in $\mathscr{N}(\nabla \boldsymbol{h}(\boldsymbol{x}_0)^T)$, namely $\nabla f(\boldsymbol{x}_0)$ is orthogonal to $\mathscr{N}(\nabla \boldsymbol{h}(\boldsymbol{x}_0)^T)$.

In general,

a vector \boldsymbol{y} is orthogonal to $\mathscr{N}(A^T)$ \iff $\boldsymbol{y} \in \mathscr{R}(A)$

 $A \in \mathbb{R}^{m \times n}$

First, we have $\mathcal{N}(A^T) \perp \mathcal{R}(A)$.

For,
$$\forall oldsymbol{x} \in \mathscr{N}(A^T)$$
, $A^T oldsymbol{x} = oldsymbol{0}, \ \begin{bmatrix} oldsymbol{a}_1^T \\ \vdots \\ oldsymbol{a}_n^T \end{bmatrix} oldsymbol{x} = oldsymbol{0}, \ oldsymbol{a}_i^T oldsymbol{x} = 0, i = 1, \dots, n.$

For,
$$orall oldsymbol{y} \in \mathscr{R}(A)$$
, $\exists oldsymbol{z}, oldsymbol{y} = Aoldsymbol{z}$ $= egin{bmatrix} oldsymbol{a}_1 & \dots & oldsymbol{a}_n \end{bmatrix} egin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$ $= \sum_{i=1}^n z_i oldsymbol{a}_i$

$$egin{aligned} oldsymbol{y}^T oldsymbol{x} = \left(\sum_{i=1}^n z_i oldsymbol{a}_i\right)^T oldsymbol{x} = \sum_{i=1}^n z_i oldsymbol{a}_i^T oldsymbol{x} = 0 \ dots oldsymbol{x} \perp oldsymbol{y} \perp oldsymbol{y} \perp oldsymbol{y} \perp oldsymbol{y} \perp oldsymbol{y} \end{pmatrix}$$

Next, we examine $\dim \{ \boldsymbol{y} \mid \boldsymbol{y} \perp \mathscr{N}(A^T) \}$.

$$\dim \{ \boldsymbol{y} \, \big| \, \boldsymbol{y} \perp \mathcal{N}(A^T) \, \} = m - \dim \mathcal{N}(A^T)$$

$$= m - \left(m - \dim \mathcal{R}(A^T) \right)$$

$$= \dim \mathcal{R}(A^T)$$

$$= \operatorname{rank} A^T = \operatorname{rank} A$$

 $\{ \boldsymbol{y} \mid \boldsymbol{y} \perp \mathcal{N}(A^T) \}$

So, $\mathscr{N}(A^T) \perp \mathscr{R}(A)$ and the dimension of linear space that consists of all the vectors orthogonal to $\mathscr{N}(A^T)$ is equal to the dimension of $\mathscr{R}(A)$. Therefore $\{\boldsymbol{y} \mid \boldsymbol{y} \perp \mathscr{N}(A^T)\} = \mathscr{R}(A)$.

 $=\dim \mathscr{R}(A)$

Therefore $\nabla f(\boldsymbol{x}_0) \in \mathscr{R}(\boldsymbol{\nabla} \boldsymbol{h}(\boldsymbol{x}_0))$.

The condition $\nabla f(x_0) \in \mathscr{R}(\nabla h(x_0))$ tells that there is a vector -v such that $\nabla f(x_0) = \nabla h(x_0)(-v)$ holds.

Therefore we have

$$\nabla f(\boldsymbol{x}_0) + \boldsymbol{\nabla} \boldsymbol{h}(\boldsymbol{x}_0) \boldsymbol{v} = \boldsymbol{0},$$

$$abla f(oldsymbol{x}_0) + egin{bmatrix}
abla h_1(oldsymbol{x}_0) & \dots &
abla h_m(oldsymbol{x}_0) \end{bmatrix} egin{bmatrix} v_1 \ dots \ v_m \end{bmatrix} = oldsymbol{0},$$

$$abla f(\boldsymbol{x}_0) + \sum_{i=1}^m v_i \nabla h_i(\boldsymbol{x}_0) = \mathbf{0}.$$

This is the necessary condition, together with the condition $h(x_0) = 0$, for x_0 to be the solution to the optimization problem with equality constraints.

 v_i is called a Lagrange multiplier (ラグランジュ乗数).

Example

Maximize

$$f(\boldsymbol{x}) = x_1 + x_2$$

subject to

$$h(\mathbf{x}) = x_1^2 + x_2^2 - 1 = 0.$$

The necessary conditions are

$$\nabla f(\boldsymbol{x}) + v \nabla h(\boldsymbol{x}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + v \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} = \begin{bmatrix} 2vx_1 + 1 \\ 2vx_2 + 1 \end{bmatrix} = \boldsymbol{0},$$
$$h(\boldsymbol{x}) = x_1^2 + x_2^2 - 1 = 0.$$

We derive

$$x_1=x_2=-rac{1}{2v} ext{ and } x_1{}^2+x_2{}^2-1=2\left(rac{1}{2v}
ight)^2-1=0,$$
 and therefore $v=\pmrac{\sqrt{2}}{2}$ and $x_1=x_2=\pmrac{\sqrt{2}}{2}.$

We have two solutions:

