Отчет о выполнении задания 3

Александр Ващилко

November 28, 2022

Лучшая модель

Лучший AP (0.373) удалось получить на модели CenterNet [1], подготовленной для задания 2, с некоторыми улучшениями:

- Была увеличена стабильность обучения благодаря применению clip к значениям сигмоиды в лоссе.
- Был использован backbone ResNet34 с весами, полученными при обучении на ImageNet.
- На вход модели подавались изображения размером (640, 640), что увеличило разрешение карт признаков.

Полученная кривая Precision-Recall:

Логи обучения представлены в файле course_cvdl/task3/learning_log.txt. Ниже представлены графики обучения:

Воспроизведение

Для воспроизведения результатов необходимо:

- Склонировать репозиторий
- Установить окружение, создать ядро для jupyter:

```
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
python3 -m ipykernel install -name=.env
```

• Выполнить все клетки файла course_cvdl/task3/Validate.ipynb, описание параматеров представлено в ноутбуке на созданном в прошлом пункте ядре.

Эксперименты

В таблице ниэе приведены результаты проведенных экспериментов.

Model	Backbone	Resolution	epochs	lr	AP
CenterNet	ResNet18	256	100	1e-3	0.112
		640			0.340 0.337
	ResNet34	512			0.337
		640			0.373

Ошибки

To be done...