# ANÁLISE TEÓRICA E EXPERIMENTAL DO PROBLEMA DA MOCHILA 0-1

Autores: Alberto Magno, Leonardo, Josué

Professor: Prof. Walisson Ferreira de Carvalho

eonardo, Josué Ferreira de Carvalho





PUC Minas - Junho/2025

#### ROTEIRO





# INTRODUÇÃO AO PROBLEMA DA MOCHILA 0-1

- EXPLICAÇÃO DO PROBLEMA:
  - ESCOLHA DOS MELHORES ITENS DENTRO DE UMA MOCHILA COM PESO LIMITADO.



#### • DEFINIÇÃO MATEMÁTICA FORMAL:

$$\texttt{MAXIMIZAR:} \quad \sum_{i=1}^n v_i x_i \quad \mathsf{SUJEITO} \; \mathsf{A:} \quad \sum_{i=1}^n w_i x_i \leq W$$

#### Onde:

- n: é o número total de itens disponíveis.
- i: representa o índice de um item específico, de 1 a n.
- v<sub>i</sub>: é o valor do item i.
- w<sub>i</sub>: é o peso do item i.
- W: é a capacidade máxima de peso da mochila.
- $x_i \in \{0,1\}$ : é a variável de decisão.  $x_i=1$  se o item i for escolhido, e  $x_i=0$  caso contrário.







- A ANALOGIA CLÁSSICA: IMAGINE UM VIAJANTE QUE PRECISA ARRUMAR SUA MOCHILA COM UM CONJUNTO DE ITENS.
- O OBJETIVO: O OBJETIVO É ESCOLHER QUAIS ITENS LEVAR PARA MAXIMIZAR O VALOR TOTAL DE SUA BAGAGEM.

- A RESTRIÇÃO PRINCIPAL: CAPACIDADE MÁXIMA DE PESO QUE A MOCHILA PODE SUPORTAR.
- A REGRA "0-1": PARA CADA ITEM, A DECISÃO É BINÁRIA
  - O NÃO É POSSÍVEL LEVAR FRAÇÕES DE UM ITEM!

# PROVA DE QUE É NP-COMPLETO

- VERIFICAÇÃO RÁPIDA (PERTENCE A NP)
  - O DADA UMA POSSÍVEL SOLUÇÃO, SUA VALIDADE É VERIFICÁVEL EM TEMPO POLINOMIAL.
- PROBLEMA CONHECIDO (É NP-DIFÍCIL)
  - REDUÇÃO POLINOMIAL A PARTIR DO PROBLEMA DA SOMA DE SUBCONJUNTOS (SUBSET SUM).
- CONCLUSÃO:
  - UM PROBLEMA EM NP QUE TAMBÉM É NP-DIFÍCIL
     É, POR DEFINIÇÃO, NP-COMPLETO.



# REDUÇÃO SUBSET SUM



- 1. PROBLEMA DE PARTIDA (F): (SUBSET SUM).
  - INPUT: UM CONJUNTO DE INTEIROS S E UM NÚMERO ALVO T.
  - O PERGUNTA: EXISTE UM SUBCONJUNTO DE S CUJA SOMA É EXATAMENTE T?

- 2. A TRANSFORMAÇÃO ( $F \rightarrow F'$ ):
  - O PARA CADA NÚMERO S (I) NO CONJUNTO S, CRIE UM ITEM I.
  - O DEFINA O PESO E O VALOR DO ITEM I COMO O PRÓPRIO NÚMERO: W (I)  $\leftarrow$ S(I) | V(I)  $\leftarrow$ S(I).
- 3. NOVO PROBLEMA (F'): UMA INSTÂNCIA DO PROBLEMA DA MOCHILA 0-1.
  - DEFINA A CAPACIDADE MÁXIMA DA MOCHILA W COMO O ALVO T: W←T.



### IMPORTÂNCIA DO PROBLEMA

- MODELO FUNDAMENTAL PARA OTIMIZAÇÃO
  - SERVE COMO BASE PARA RESOLVER PROBLEMAS DE DECISÃO COM RECURSOS LIMITADOS.
- APLICAÇÕES
  - APLICAÇÕES EM FINANÇAS E NEGÓCIOS
  - APLICAÇÕES EM LOGÍSTICA E ENGENHARIA
  - APLICAÇÕES EM COMPUTAÇÃO





















Ħτ







































# APLICAÇÃO REAL EM LOGÍSTICA

- CENÁRIO: CARREGAMENTO DE VEÍCULOS (CAMINHÕES, CONTÊINERES, AVIÕES) COM CAPACIDADE DE PESO OU VOLUME LIMITADA.
- MAPEAMENTO PARA A MOCHILA:
  - MOCHILA = CAPACIDADE TOTAL DO VEÍCULO (W).
  - TENS = PACOTES, CAIXAS OU CARGAS A SEREM TRANSPORTADAS.
  - O PESO = PESO OU VOLUME DE PACOTE
  - VALOR = FINANCEIRO OU PRIORIDADE DE ENTREGA





#### Aplicações do problema da mochila

Embora possa parecer simples quando pensamos do ponto de vista doméstico, o problema da mochila tem diversas aplicações, como na área da logistica e na cadela de suprimentos:

https://www.mecalux.com.br/blog/problema-da-mochila

# APLICAÇÃO REAL EM COMPUTAÇÃO

- CENÁRIO: GERENCIAR UMA MEMÓRIA CACHE.
- MAPEAMENTO PARA A MOCHILA:
  - O MOCHILA = TAMANHO TOTAL DO CACHE (W).
  - O ITENS = DADOS QUE PODEM SER ARMAZENADOS.
  - O PESO = TAMANHO DO DADO (EM KB OU MB)
  - O VALOR = FREQUÊNCIA DE ACESSO AO DADO (CACHE HIT RATE)





# ABORDAGENS DE SOLUÇÃO

- ALGORITMOS EXATOS:
  - O GARANTEM A SOLUÇÃO ÓTIMA.
  - O CUSTO COMPUTACIONAL É ALTO
    - EXPONENCIAL
    - PSEUDO-POLINOMIAL.
  - EXEMPLOS:
    - FORÇA BRUTA
    - PROGRAMAÇÃO DINÂMICA.
      - TOPDOWN BOTTON UP

- ALGORITMOS HEURÍSTICOS:
  - BUSCAM UMA SOLUÇÃO "BOA" DE FORMA RÁPIDA.
  - SEM GARANTIA DE SOLUÇÃO ÓTIMA.
  - CUSTO COMPUTACIONAL BAIXO
    - GERALMENTE POLINOMIAL.
  - o EXEMPLO:
    - ALGORITMO GULOSO.

# SOLUÇÃO EXATA - FORÇA BRUTA COM DIVISÃO E CONQUISTA

```
ALGORITMO MochilaRecursiva(capacidade, pesos, valores, n)
COMPLEXIDADE:
                     1. SE n = 0 OU capacidade = 0 ENTÃO
                             RETORNE 0
\circ 0(2 \wedge N)
                      3. FIM SE
                     4. SE pesos[n-1] > capacidade ENTÃO
                              RETORNE MochilaRecursiva(capacidade, pesos, valores,
                     n-1)
                      6. FIM SE
                     7. SENÃO
                              opcao_incluir <- valores[n-1] +
                      MochilaRecursiva(capacidade - pesos[n-1], pesos, valores,
                     n-1)
                              opcao_nao_incluir <- MochilaRecursiva(capacidade,
                      pesos, valores, n-1)
                             RETORNE MÁXIMO(opcao_incluir, opcao_nao_incluir)
                      11. FIM SENÃO
```

FIM ALGORITMO

# SOLUÇÃO EXATA - PROGRAMAÇÃO DINÂMICA

- TÉCNICA:
  - TABULAÇÃO(BOTTOM-UP)
- COMPLEXIDADE:
  - $\circ$   $0(N \times W)$

```
ALGORITMO MochilaDinamica(capacidade_total, pesos, valores, n)
         Crie uma tabela DP de (n + 1) x (capacidade_total +
         Inicialize todos os valores da tabela DP com 0.
         PARA i DE 1 ATÉ n FAÇA
              PARA c DE 1 ATÉ capacidade_total FAÇA valor_sem_item <- DP[i-1][c]
     4.
5.
6.
7.
8.
                   valor_com_item <- 0</pre>
                   SE pesos[i-1] <= c ENTÃO
                       valor_com_item <- valores[i-1] + DP[i-1][c</pre>
     - pesos[i-1]]
                   FIM SE
     10.
                   DP[i][c] <- MÁXIMO(valor_com_item,</pre>
     valor_sem_item)
              FIM PARA
     14. FIM PARA
     15. RETORNE DP[n][capacidade_total]
FTM ALGORITMO
```

#### COMPLEXIDADE PSEUDO-POLINOMIAL

• O ALGORITMO COM PROGRAMAÇÃO DINÂMICA CRIA UMA TABELA DE TAMANHO N+1 LINHAS E W+1 COLUNAS, ONDE CADA CÉLULA REPRESENTA A MELHOR SOLUÇÃO PARA UM SUBCONJUNTO DE ITENS COM UMA CAPACIDADE PARCIAL. LOGO, O TEMPO E ESPAÇO SÃO PROPORCIONAIS A N \* W.

| 8 |
|---|
| 0 |
|   |
|   |
|   |
|   |
|   |

W é mais custoso que N!!

- W AFETA DIRETAMENTE O TAMANHO DA TABELA HORIZONTALMENTE:
  - O PARA CADA ITEM I, CALCULAMOS W+1 SUBPROBLEMAS (CAPACIDADES DE O ATÉ W). ISSO SIGNIFICA QUE A CADA AUMENTO DE 1 UNIDADE EM W, A QUANTIDADE DE CÁLCULOS EXTRAS É PROPORCIONAL A N.OU SEJA, W CRESCE HORIZONTALMENTE, MULTIPLICANDO O ESFORÇO FEITO POR CADA ITEM.

# SOLUÇÃO HEURÍSTICA - ALGORITMO GULOSO

FIM ALGORITMO

- TÉCNICA:

   ESCOLHER SEMPRE O

   ITEM QUE OFERECE O
  - MAIOR "BENEFÍCIO".

    COMPLEXIDADE:
- $\sim 0$ (NIOCN
  - $\circ$  0(NLOGN)

```
ALGORITMO MochilaGulosa(capacidade, pesos, valores, n)

1. Para cada item i, calcule o beneficio = valores[i] / pesos[i].

2. Ordene os itens em ordem decrescente de beneficio.

3. Inicialize a mochila como vazia e o valor_total = 0.

4. Para cada item i na lista ordenada:

5. SE pesos[i] <= capacidade_restante ENTÃO

6. Adicione o item i à mochila.

7. valor_total += valores[i]

8. capacidade_restante -= pesos[i]

9. FIM SE

10. RETORNE valor_total
```

### FERRAMENTA DESENVOLVIDA (KPACKO1\_ANALYZER)

#### FUNCIONALIDADES:

- O PERMITE EXECUTAR ALGORITMOS EXTERNOS (.EXE)
  DE FORMA PARAMETRIZADA.
- CRIA CENÁRIOS DE TESTE ALEATÓRIOS COM COMPLEXIDADE E TAMANHO CRESCENTES.
- MEDE AUTOMATICAMENTE O TEMPO DE EXECUÇÃO
   (MS) E O PICO DE USO DE MEMÓRIA (MB).
- PLOTA OS RESULTADOS EM TEMPO REAL



A ANÁLISE DE COMPLEXIDADE É EXPERIMENTAL, BASEADA EM DADOS DE PERFORMANCE, NÃO UMA PROVA FORMAL!

## COMPARAÇÃO ENTRE OS ALGORITMOS





#### COMPORTAMENTO EXPERIMENTAL

- VALIDAÇÃO DA TEORIA:
  - OS RESULTADOS PRÁTICOS SE APROXIMARAM COM A COMPLEXIDADE TEÓRICA DE CADA ALGORITMO.
- FORÇA BRUTA O "MURO EXPONENCIAL":
  - COMPLEXIDADE O(2^N) OBSERVADA NA PRÁTICA.
  - O TORNOU-SE COMPUTACIONALMENTE INVIÁVEL PARA INSTÂNCIAS COM N MAIOR QUE 25-30.

- PROGRAMAÇÃO DINÂMICA A EFICIÊNCIA PSEUDO-POLINOMIAL:
  - COMPLEXIDADE O(N×W) VISÍVEL NOS TESTES.
  - APRESENTOU CRESCIMENTO LINEAR E
     CONTROLADO COM O AUMENTO DE N OU W.
  - HEURÍSTICA GULOSA PERFORMANCE POLINOMIAL:
  - COMPLEXIDADE O(NLOGN) RESULTOU EM
     TEMPOS DE EXECUÇÃO QUASE INSTANTÂNEOS.
  - ORDENS DE MAGNITUDE MAIS RÁPIDO QUE AS SOLUÇÕES EXATAS.

#### DISCUSSÃO

- FORÇA BRUTA: RELEVÂNCIA DIDÁTICA
  - EMBORA GARANTA A OTIMALIDADE, SUA INVIABILIDADE NA PRÁTICA DEMONSTRA POR QUE ALGORITMOS MAIS INTELIGENTES SÃO NECESSÁRIOS.
- PROGRAMAÇÃO DINÂMICA: A SOLUÇÃO PADRÃO-OURO
  - É A ABORDAGEM DE ESCOLHA PARA OBTER A SOLUÇÃO ÓTIMA EM TEMPO VIÁVEL, CONTANTO QUE A CAPACIDADE W NÃO SEJA EXCESSIVAMENTE GRANDE.
- HEURÍSTICA GULOSA: A VELOCIDADE TEM UM CUSTO
  - A RAPIDEZ EXTREMA DO ALGORITMO GULOSO VEM AO CUSTO DA INCERTEZA.

#### OBRIGADO!

#### **Autores:**

Alberto Magno Machado (632800)

Leonardo Henrique Saraiva de Avelar ()

Josué Pereira Nogueira ()

#### **Professor:**

Prof. Walisson Ferreira de Carvalho

PUC Minas – Junho/2025



