Lathyrus - Weather

Temperature and precipitation data

Temperature (daily mean, minimum and maximum) from two stations: Oxelösund and Södertalje

Precipitation from one station: Åda

station	date	year	month	day	mean	quality_mean	min	qualitymin	max	quality_max
Oxelösund	1987-01-01	1987	1	1	-11.6	Y	-14.5	G	-9.0	G
Oxelösund	1987-01-02	1987	1	2	-10.4	Y	-16.5	G	-7.8	G
Oxelösund	1987-01-03	1987	1	3	-9.9	Y	-11.8	G	-8.3	G
Oxelösund	1987-01-04	1987	1	4	-14.1	Y	-17.0	G	-10.4	G
Oxelösund	1987-01-05	1987	1	5	-4.6	Y	-17.0	G	-1.5	G
Oxelösund	1987-01-06	1987	1	6	-10.7	Y	-14.5	G	-3.0	G

station	date	year	month	day	precipitation	quality
Åda	1987-01-01	1987	1	1	0.0	Y
$\mathrm{Åda}$	1987-01-02	1987	1	2	0.0	Y
Åda	1987-01-03	1987	1	3	0.3	Y
Åda	1987-01-04	1987	1	4	1.1	Y
Åda	1987 - 01 - 05	1987	1	5	0.0	Y
Åda	1987-01-06	1987	1	6	2.8	Y

Distributions

Boxplots per month

Temperature: average mean, \min and \max of the two stations for further use + join with precipitation data

date	year	month	day	date_ok	mean	min	max	precipitation
1987-01-01	1987	1	1	01/01/1987	-11.25	-14.15	-8.50	0.0
1987 - 01 - 02	1987	1	2	02/01/1987	-11.50	-15.25	-7.65	0.0
1987 - 01 - 03	1987	1	3	03/01/1987	-10.25	-14.40	-7.90	0.3
1987-01-04	1987	1	4	04/01/1987	-13.35	-16.25	-9.20	1.1
1987 - 01 - 05	1987	1	5	05/01/1987	-5.95	-16.50	-2.50	0.0
1987-01-06	1987	1	6	06/01/1987	-11.85	-15.25	-4.25	2.8

nrow(subset(weather,is.na(precipitation))) #154 dates with missing precipitation

```
## [1] 154
```

unique(subset(weather,is.na(precipitation))[2:3]) #See which years/months

```
## year month
## 397 1988 2
## 1613 1991 6
## 1858 1992 2
## 2101 1992 10
## 7970 2017 10
## 7976 2017 11
```

#February 1988, June 1991, February 1992, October 1992 all missing
#Substitute with mean of all years for each specific date
weather\$precipitation[is.na(weather\$precipitation)&weather\$precipitation]

```
with(subset(aggregate(precipitation ~ year+month+day, data= weather, FUN=sum),month==2),
    aggregate(precipitation~day,FUN=mean)$precipitation)&weather$year==1991&weather$month==6]<-
    with(subset(aggregate(precipitation ~ year+month+day, data= weather, FUN=sum),month==6),
    aggregate(precipitation~day,FUN=mean)$precipitation)
weather$precipitation[is.na(weather$precipitation)&weather$year==1992&weather$month==2]<-
    with(subset(aggregate(precipitation ~ year+month+day, data= weather, FUN=sum),month==2),
    aggregate(precipitation~day,FUN=mean)$precipitation)
weather$precipitation[is.na(weather$precipitation)&weather$year==1992&weather$month==10]<-
    with(subset(aggregate(precipitation ~ year+month+day, data= weather, FUN=sum),month==10),
    aggregate(precipitation~day,FUN=mean)$precipitation)
#October-November 2017 leave as NAs, will be available later</pre>
```

Calculation of GDD and GDH (base =3/5/7/10 °C)

$$GDD = \max\Big(rac{T_{ ext{max}} + T_{ ext{min}}}{2} - T_{ ext{base}}, 0\Big).$$

GDH:

If
$$T_{\text{max, i}} \le 5^{\circ}\text{C} \rightarrow \text{GDH}_{\text{i}} = 0$$

If
$$T_{\text{max i}} > 5^{\circ}\text{C}$$
 and $T_{\text{min i}} > 5^{\circ}\text{C} \rightarrow$
 $\text{GDH}_{\text{i}} = 24 \times (T_{\text{min i}} - 5) + 12 \times (T_{\text{max i}} - T_{\text{min i}})$

If
$$T_{\text{max i}} > 5^{\circ}\text{C}$$
 and $T_{\text{min i}} <= 5^{\circ}\text{C} \rightarrow$
 $\text{GDH}_{\text{i}} = 12 \times (T_{\text{max i}} - 5)^2 / (T_{\text{max i}} - T_{\text{min i}})$

```
weather GDD3 < ifelse (with (weather, ((max+min)/2)-3) < 0, 0, with (weather, ((max+min)/2)-3))
weather GDD5 < ifelse(with(weather,((max+min)/2)-5) < 0,0,with(weather,((max+min)/2)-5))
weather GDD7 < ifelse(with(weather,((max+min)/2)-7)<0,0,with(weather,((max+min)/2)-7))
weather \$GDD10 < -ifelse(with(weather, ((max+min)/2)-10) < 0, 0, with(weather, ((max+min)/2)-10))
weather$GDH3<-ifelse(with(weather, max<=3),0,</pre>
                      ifelse(with(weather,max>3&min>3),with(weather,24*(min-3)+12*(max-min)),
                             with(weather,12*(max-3)^2/(max-min))))
weather $GDH5 <- ifelse (with (weather, max <= 5), 0,
                      ifelse(with(weather,max>5&min>5),with(weather,24*(min-5)+12*(max-min)),
                             with(weather,12*(max-5)^2/(max-min))))
weather$GDH7<-ifelse(with(weather,max<=7),0,</pre>
                      ifelse(with(weather, max>7&min>7), with(weather, 24*(min-7)+12*(max-min)),
                              with(weather,12*(max-7)^2/(max-min))))
weather$GDH10<-ifelse(with(weather, max<=10), 0,</pre>
                      ifelse(with(weather, max>10&min>10), with(weather, 24*(min-10)+12*(max-min)),
                             with(weather,12*(max-10)^2/(max-min))))
pander(head(weather), split.table = 100, style = 'rmarkdown')
```

date	year	month	day	date_ok	mean	min	max	precipitation
1987-01-01	1987	1	1	01/01/1987	-11.25	-14.15	-8.5	0

date	year	month	day	date_ok	mean	min	max	precipitation
1987-01-02	1987	1	2	02/01/1987	-11.5	-15.25	-7.65	0
1987-01-03	1987	1	3	03/01/1987	-10.25	-14.4	-7.9	0.3
1987 - 01 - 04	1987	1	4	04/01/1987	-13.35	-16.25	-9.2	1.1
1987 - 01 - 05	1987	1	5	05/01/1987	-5.95	-16.5	-2.5	0
1987-01-06	1987	1	6	06/01/1987	-11.85	-15.25	-4.25	2.8

GDD3 G	DD5 GI	DD7 GD	D10 GD	H3 GDI	H5 GDE	7 GDH10
0	0	0 () 0	0	0	0
0	0	0 (0	0	0	0
0	0	0 (0	0	0	0
0	0	0 (0	0	0	0
0	0	0 (0	0	0	0
0	0	0 (0	0	0	0

Define 3 periods:

- a) Before vernal equinox (March 20-21 depending on the year)
- b) From vernal equinox to 60 days after
- c) 61+ days after vernal equinox (May 20-21 depending on the year)

Calculate monthly means of temperature and montly sums of precipitation, GDD and GDH

```
mean weather1<-join all(list(</pre>
    aggregate (mean ~ year+month, data=weather, FUN=mean), #Monthly means of mean daily temperature
    aggregate(min ~ year+month, data=weather, FUN=mean), #Monthly means of min daily temperature
    aggregate(max ~ year+month, data=weather, FUN=mean), #Monthly means of max daily temperature
    aggregate(precipitation ~ year+month, data= weather, FUN=sum), #Monthly sums of precipitation
    aggregate(GDD3 ~ year+month,data= weather, FUN=sum),
                                                                   #Monthly sums of GDD3
    aggregate(GDD5 ~ year+month,data= weather, FUN=sum),
                                                                   #Monthly sums of GDD5
    aggregate(GDD7 ~ year+month,data= weather, FUN=sum),
                                                                   #Monthly sums of GDD7
    aggregate(GDD10 ~ year+month,data= weather, FUN=sum),
                                                                   #Monthly sums of GDD10
    aggregate(GDH3 ~ year+month,data= weather, FUN=sum),
                                                                   #Monthly sums of GDH3
                                                                   #Monthly sums of GDH5
    aggregate(GDH5 ~ year+month,data= weather, FUN=sum),
    aggregate(GDH7 ~ year+month,data= weather, FUN=sum),
                                                                   #Monthly sums of GDH7
    aggregate(GDH10 ~ year+month,data= weather, FUN=sum)),
                                                                   #Monthly sums of GDH10
    by = NULL, type = "left", match = "all")
```

```
## Joining by: year, month
```

year	month	mean	min	max	precipitation	GDD3	GDD5	GDD7	GDD10
1987	1	-11.06	-14.89	-7.285	9.3	0	0	0	0
1988	1	0.9823	-0.2194	2.397	78	5.175	0.125	0	0
1989	1	3.556	0.8468	6.076	3.9	36.58	12.25	1.525	0
1990	1	1.848	-0.379	3.89	63.4	11.5	0	0	0
1991	1	0.2839	-2.135	2.829	50	1.025	0	0	0
1992	1	1.502	-1.344	4.556	33	25.68	6.475	1.925	0

GDH3	GDH5	GDH7	GDH10
1.581	0	0	0
155.5	18.19	0	0
1044	391.9	91.17	0.2146
394.8	57.66	0.8285	0
120.8	2.691	0	0
751.9	279.9	66.25	0.9524

Calculate temperature, precipitation and GDD/GDH for different periods considered to be important:

- April-June
- April-May
- January-June
- January-March
- March-April

```
#Precipitation
mean_weather2$prec456<-with(mean_weather2,precipitation_4+precipitation_5+precipitation_6)
mean_weather2\$prec45<-with(mean_weather2, precipitation_4+precipitation_5)
mean_weather2$prec123456<-with(mean_weather2, precipitation_1+precipitation_2+precipitation_3+
                           precipitation_4+precipitation_5+precipitation_6)
mean_weather2$prec123<-with(mean_weather2,precipitation_1+precipitation_2+precipitation_3)
mean_weather2$prec34<-with(mean_weather2,precipitation_3+precipitation_4)
#Mean temperature
mean_weather2$mean456<-with(mean_weather2,mean_4+mean_5+mean_6)
mean_weather2$mean45<-with(mean_weather2,mean_4+mean_5)</pre>
mean_weather2$mean123456<-with(mean_weather2,mean_1+mean_2+mean_3+mean_4+mean_5+mean_6)
mean_weather2$mean123<-with(mean_weather2,mean_1+mean_2+mean_3)</pre>
mean_weather2$mean34<-with(mean_weather2,mean_3+mean_4)</pre>
#Max temperature
mean_weather2$max456<-with(mean_weather2,max_4+max_5+max_6)</pre>
mean_weather2$max45<-with(mean_weather2,max_4+max_5)</pre>
mean_weather2$max123456<-with(mean_weather2,max_1+max_2+max_3+max_4+max_5+max_6)
mean_weather2\$max123<-with(mean_weather2,max_1+max_2+max_3)
mean_weather2$max34<-with(mean_weather2,max_3+max_4)</pre>
#Min temperature
mean_weather2\smin456<-with(mean_weather2,min_4+min_5+min_6)
```

```
mean weather2$min45<-with(mean weather2,min 4+min 5)
mean weather2$min123456<-with(mean weather2,min 1+min 2+min 3+min 4+min 5+min 6)
mean_weather2$min123<-with(mean_weather2,min_1+min_2+min_3)
mean_weather2\smin34<-with(mean_weather2,min_3+min_4)
#GDD3
mean weather2$GDD3 456<-with(mean weather2,GDD3 4+GDD3 5+GDD3 6)
mean_weather2$GDD3_45<-with(mean_weather2,GDD3_4+GDD3_5)</pre>
mean_weather2$GDD3_123456<-with(mean_weather2,GDD3_1+GDD3_2+GDD3_3+GDD3_4+GDD3_5+GDD3_6)
mean_weather2$GDD3_123<-with(mean_weather2,GDD3_1+GDD3_2+GDD3_3)</pre>
mean_weather2$GDD3_34<-with(mean_weather2,GDD3_3+GDD3_4)
#GDD5
mean_weather2$GDD5_456<-with(mean_weather2,GDD5_4+GDD5_5+GDD5_6)
mean_weather2$GDD5_45<-with(mean_weather2,GDD5_4+GDD5_5)
mean_weather2$GDD5_123456<-with(mean_weather2,GDD5_1+GDD5_2+GDD5_3+GDD5_4+GDD5_5+GDD5_6)
mean_weather2$GDD5_123<-with(mean_weather2,GDD5_1+GDD5_2+GDD5_3)
mean weather2$GDD5 34<-with(mean weather2,GDD5 3+GDD5 4)
#GDD7
mean_weather2$GDD7_456<-with(mean_weather2,GDD7_4+GDD7_5+GDD7_6)</pre>
mean_weather2$GDD7_45<-with(mean_weather2,GDD7_4+GDD7_5)
mean_weather2$GDD7_123456<-with(mean_weather2,GDD7_1+GDD7_2+GDD7_3+GDD7_4+GDD7_5+GDD7_6)
mean_weather2$GDD7_123<-with(mean_weather2,GDD7_1+GDD7_2+GDD7_3)
mean_weather2$GDD7_34<-with(mean_weather2,GDD7_3+GDD7_4)
#GDD10
mean_weather2$GDD10_456<-with(mean_weather2,GDD10_4+GDD10_5+GDD10_6)
mean_weather2$GDD10_45<-with(mean_weather2,GDD10_4+GDD10_5)
mean_weather2$GDD10_123456<-with(mean_weather2,GDD10_1+GDD10_2+GDD10_3+GDD10_4+GDD10_5+GDD10_6)
mean_weather2$GDD10_123<-with(mean_weather2,GDD10_1+GDD10_2+GDD10_3)
mean_weather2$GDD10_34<-with(mean_weather2,GDD10_3+GDD10_4)
mean_weather2$GDH3_456<-with(mean_weather2,GDH3_4+GDH3_5+GDH3_6)
mean weather2$GDH3 45<-with(mean weather2,GDH3 4+GDH3 5)
mean weather2$GDH3 123456<-with(mean weather2,GDH3 1+GDH3 2+GDH3 3+GDH3 4+GDH3 5+GDH3 6)
mean_weather2$GDH3_123<-with(mean_weather2,GDH3_1+GDH3_2+GDH3_3)</pre>
mean_weather2$GDH3_34<-with(mean_weather2,GDH3_3+GDH3_4)
#GDH5
mean_weather2$GDH5_456<-with(mean_weather2,GDH5_4+GDH5_5+GDH5_6)
mean_weather2$GDH5_45<-with(mean_weather2,GDH5_4+GDH5_5)
mean_weather2$GDH5_123456<-with(mean_weather2,GDH5_1+GDH5_2+GDH5_3+GDH5_4+GDH5_5+GDH5_6)
mean_weather2$GDH5_123<-with(mean_weather2,GDH5_1+GDH5_2+GDH5_3)
mean_weather2$GDH5_34<-with(mean_weather2,GDH5_3+GDH5_4)</pre>
#GDH7
mean weather2$GDH7 456<-with(mean weather2,GDH7 4+GDH7 5+GDH7 6)
mean_weather2$GDH7_45<-with(mean_weather2,GDH7_4+GDH7_5)</pre>
mean_weather2$GDH7_123456<-with(mean_weather2,GDH7_1+GDH7_2+GDH7_3+GDH7_4+GDH7_5+GDH7_6)
mean_weather2$GDH7_123<-with(mean_weather2,GDH7_1+GDH7_2+GDH7_3)
mean_weather2$GDH7_34<-with(mean_weather2,GDH7_3+GDH7_4)</pre>
mean_weather2$GDH10_456<-with(mean_weather2,GDH10_4+GDH10_5+GDH10_6)
```

```
\label{lem:mean_weather2$GDH10_45<-with(mean_weather2,GDH10_4+GDH10_5)} $$ mean_weather2$GDH10_123456<-with(mean_weather2,GDH10_1+GDH10_2+GDH10_3+GDH10_4+GDH10_5+GDH10_6) $$ mean_weather2$GDH10_123<-with(mean_weather2,GDH10_1+GDH10_2+GDH10_3) $$ mean_weather2$GDH10_34<-with(mean_weather2,GDH10_3+GDH10_4) $$
```

Calculate temperature, precipitation and GDD/GDH for period "b" (from vernal equinox to 60 days after) and merge with previous data

```
mean_weather1_b<-join_all(list())</pre>
    aggregate(mean ~ year, data=subset(weather,period=="b"), FUN=mean), #Mean of mean daily temperature
    aggregate(min ~ year, data=subset(weather,period=="b"), FUN=mean), #Mean of min daily temperature
    aggregate(max ~ year, data=subset(weather,period=="b"), FUN=mean), #Mean of max daily temperature
    aggregate(precipitation ~ year, data= subset(weather, period=="b"), FUN=sum), #Sum of precipitation
    aggregate(GDD3 ~ year,data= subset(weather,period=="b"), FUN=sum),
                                                                                  #Sum of GDD3
    aggregate(GDD5 ~ year,data= subset(weather,period=="b"), FUN=sum),
                                                                                  #Sum of GDD5
    aggregate(GDD7 ~ year,data= subset(weather,period=="b"), FUN=sum),
                                                                                 #Sum of GDD7
    aggregate(GDD10 ~ year,data= subset(weather,period=="b"), FUN=sum),
                                                                                 #Sum of GDD10
    aggregate(GDH3 ~ year,data= subset(weather,period=="b"), FUN=sum),
                                                                                  #Sum of GDH3
    aggregate(GDH5 ~ year,data= subset(weather,period=="b"), FUN=sum),
                                                                                  #Sum of GDH5
    aggregate(GDH7 ~ year,data= subset(weather,period=="b"), FUN=sum),
                                                                                  #Sum of GDH7
    aggregate(GDH10 ~ year,data= subset(weather,period=="b"), FUN=sum)),
                                                                                  #Sum of GDH10
    by = NULL, type = "left", match = "all")
## Joining by: year
mean_weather2_b<-gather(mean_weather1_b, variable, value,mean,min,max,precipitation,
               GDD3, GDD5, GDD7, GDD10, GDH3, GDH5, GDH7, GDH10) %>%
               unite(var, variable) %>%
               spread(var, value) #Convert to wide format with variables for period "b"
colnames(mean_weather2_b)[2:13]<-paste(colnames(mean_weather2_b)[2:13],"b", sep = "_")
mean_weather3<-merge(merge(mean_weather2,mean_weather2_b),</pre>
               aggregate(FFD ~ year, data= alldata, FUN=mean)) #Merge with previous data & mean FFD per ye
```

year	GDD10_1	GDD10_10	GDD10_11	GDD10_12	GDD10_2	GDD10_3	GDD10_4	GDD10_5
1987	0	5.15	0	0	0	0	11.48	22.18
1988	0	2.5	0	0	0	0	0	53.9
1989	0	6.3	0	0	0	0	1.45	71
1990	0	7.825	0	0	0.7	5.75	8.75	87.92
1991	0	9.65	0	0	0	0	1.825	20.6
1992	0	0	0	0	0	0	0	100.6

pander(head(mean_weather3), split.table = 100, style = 'rmarkdown')

$GDD10_6$	$GDD10_7$	$GDD10_8$	GDD10_9	$GDD3_1$	$GDD3_10$	GDD3_11	GDD3_12	$GDD3_2$
74.4	183.4	121.1	49.88	0	174.2	35.23	2.925	0

GDD10_6	GDD10_7	GDD10_8	GDD10_9	GDD3_1	GDD3_10	GDD3_11	GDD3_12	GDD3_2
190.7	241.1	183.2	99.97	5.175	144.9	4.025	4.625	0.975
169.8	245	177.4	97.45	36.58	163.4	54.35	2.425	35.95
164	206.1	220.1	47.62	11.5	150.6	23.62	7.975	56.7
69.25	263	242.2	79.82	1.025	149.1	48.98	10.03	6.55
220.2	240.8	197	73.5	25.68	72.6	26.38	19.32	15.82

GDD3_3	GDD3_4	GDD3_5	GDD3_6	GDD3_7	GDD3_8	GDD3_9	GDD5_1	GDD5_10
2.35	71.9	189.9	283.7	400.4	338.1	242.9	0	112.2
0.3	46.15	261.4	400.6	458.1	400.2	309.9	0.125	93.95
41.12	87.9	280.7	379.8	462	394.4	302.8	12.25	102
92.08	135.3	294	373.9	423.1	437.1	245.6	0	97.8
16.38	97.08	177.2	275.3	480	459.1	283.1	0	95.17
28.65	48.6	304.5	430.2	457.8	413.9	280.6	6.475	32.42

GDD5_11	GDD5_12	GDD5_2	GDD5_3	GDD5_4	GDD5_5	GDD5_6	GDD5_7	GDD5_8
8	0	0	0	45.05	128.8	223.7	338.4	276.1
0	0.55	0	0	18.7	199.4	340.6	396.1	338.2
25.43	0	13.32	11.05	44.95	218.7	319.8	400	332.4
5.9	1.175	28.48	55.15	83.55	232	313.9	361.1	375.1
14.93	1.3	1.475	0.2	51.05	115.5	215.3	418	397.1
5.125	6.625	2.65	4.925	20.15	242.5	370.2	395.8	351.9

GDD5_9	GDD7_1	GDD7_10	GDD7_11	GDD7_12	$GDD7_2$	$GDD7_3$	$GDD7_4$	GDD7_5
182.9	0	54.52	0.525	0	0	0	28	72.12
249.8	0	48.55	0	0	0	0	3.45	137.4
242.8	1.525	47.3	5	0	3.225	1.25	18.4	156.7
185.6	0	52.45	0.25	0	12.28	29.77	42.83	170
223.2	0	51.7	1.25	0	0	0	15.25	63.23
220.6	1.925	12.13	0.475	0	0	0	5.8	180.6

GDD7_6	GDD7_7	GDD7_8	GDD7_9	GDH10_1	GDH10_10	GDH10_11	GDH10_12	GDH10_2
163.7	276.4	214.1	123.2	0	272.7	0.1071	0	0
280.6	334.1	276.2	189.8	0	209.2	0	0	0
259.8	338	270.4	182.8	0.2146	271.8	5.733	0	4.731
254	299.1	313.1	126	0	302.4	0	0	73.29
155.3	356	335.1	163.2	0	329.6	0	0	0
310.2	333.8	289.9	160.6	0.9524	82.06	0	0	0.1572

GDH10_3	GDH10_4	$\mathrm{GDH}10_5$	GDH10_6	$\mathrm{GDH}10_7$	GDH10_8	GDH10_9	GDH3_1	GDH3_10
0	396.3	788.1	1912	4418	2957	1365	1.581	4186
0	42.65	1724	4630	5787	4402	2539	155.5	3531
11.85	145.7	2085	4153	5886	4321	2461	1044	3935
283	490	2368	3969	4947	5292	1294	394.8	3695
2.702	153.1	687.4	1782	6313	5812	2139	120.8	3625
1.584	37.61	2601	5288	5785	4727	1868	751.9	1837

GDH3_11	GDH3_12	$\mathrm{GDH3}_2$	$\mathrm{GDH3}_3$	$GDH3_4$	$\mathrm{GDH3}_5$	$GDH3_6$	$\mathrm{GDH3}_{-7}$	GDH3_8
905.9	110.3	12.81	116.9	1981	4572	6809	9609	8114
176.9	166.5	48.84	41	1300	6274	9613	10995	9605
1338	131.8	985.6	1167	2211	6737	9115	11089	9466
675.4	266.1	1441	2380	3358	7055	8975	10155	10491
1233	324.3	171.5	546.1	2431	4276	6607	11521	11020
737.9	535.7	466.2	818.2	1337	7308	10326	10987	9935

GDH3_9	GDH5_1	GDH5_10	GDH5_11	GDH5_12	GDH5_2	GDH5_3	GDH5_4	GDH5_5
5835	0	2761	287.3	19.73	0	40.97	1287	3177
7436	18.19	2314	20.98	50.17	0	0.953	622.2	4794
7268	391.9	2519	674.5	9.541	404.9	476.9	1277	5263
5898	57.66	2441	234.7	56.51	750.1	1483	2195	5580
6796	2.691	2362	435.6	85.53	55.24	156.9	1435	2880
6733	279.9	975.5	217	186.5	144.7	241.8	611.4	5842

GDH5_6	GDH5_7	GDH5_8	GDH5_9	GDH7_1	GDH7_10	GDH7_11	GDH7_12	GDH7_2
5369	8121	6626	4425	0	1473	52.38	0.05882	0
8173	9507	8117	5997	0	1227	0	5.685	0
7675	9601	7978	5830	91.17	1307	211.4	0	149
7535	8667	9003	4471	0.8285	1359	43.62	6.003	363.9
5169	10033	9532	5362	0	1328	61.8	15.42	10.9
8886	9499	8447	5297	66.25	432.1	34.62	24.36	31.32

GDH7_3	$GDH7_4$	GDH7_5	GDH7_6	GDH7_7	GDH7_8	GDH7_9	\max_{-1}	\max_{-10}	max_11
10.77	824.4	1984	3930	6633	5139	3064	-7.285	11.1	5.132
0	269	3388	6733	8019	6629	4566	2.397	9.655	2.557
140.6	640.5	3854	6237	8113	6493	4425	6.076	10.98	5.175
830.1	1293	4173	6095	7179	7515	3079	3.89	10.51	4.687
35.04	700.7	1762	3751	8545	8044	3972	2.829	10.17	5.768
50.12	227.3	4447	7446	8011	6959	3875	4.556	7.882	5.093

\max_{-12}	\max_{2}	\max_{3}	\max_{4}	\max_{5}	\max_{-6}	\max_{-7}	\max_{8}	\max_{9}	mean_1
1.971	0.2143	-0.1855	9.142	13.35	15.88	20.29	17.38	14.63	-11.06
1.639	1.928	1.576	7.467	16.28	21.12	21.66	19.77	17.41	0.9823
1.198	6.259	6.944	9.075	17.31	20	22.62	19.72	16.84	3.556
3.345	6.946	9.221	11.9	17.45	19.73	20.74	21.49	14.12	1.848
4.05	0.3339	4.895	9.76	12.35	15.42	23.01	21.7	16.32	0.2839
3.582	3.747	5.831	7.013	17.88	22	22.17	20	15.4	1.502

mean_10	mean_11	mean_12	mean_2	mean_3	mean_4	mean_5	mean_6	mean_7
8.644	3.035	-0.7887	-3.32	-3.774	4.578	8.615	12.08	15.89
6.266	-0.4783	-1.719	0.2379	-1.165	3.59	11.44	16.03	17.56
8.216	2.73	-1.474	3.539	3.735	5.237	12	15.57	17.7
7.773	2.28	1.327	4.482	5.356	7.195	12.06	15.21	16.23
7.753	3.907	1.384	-1.966	2.552	5.245	8.461	11.96	18.34
4.587	3	1.213	1.06	2.744	3.828	12.75	17.31	17.58

mean 10	mean 11	mean 12	mean 2	mean 3	mean 4	mean 5	mean 6	mean 7

mean_8	mean_9	min_1	min_10	min_11	min_12	\min_{2}	\min_{3}	\min_{-4}	min_5
13.54	10.83	-14.89	6.134	1.145	-3.689	-6.427	-7.032	0.48	4.902
15.58	13.2	-0.2194	4.935	-3.492	-5.461	-1.328	-3.773	0.6933	6.584
15.62	13.06	0.8468	5.565	0.02833	-4.735	1.179	1.079	1.965	6.794
16.95	11.1	-0.379	5.04	0.09167	-1.339	2.211	1.86	2.878	7.521
17.46	12.11	-2.135	5.216	1.635	-1.239	-4.146	0.3242	1.927	5.077
16.08	12.12	-1.344	1.439	0.8933	-1.324	-1.528	0.2306	1.168	7.766

$\overline{\min_6}$	min_7	min_8	min_9	precipitation_1	precipitation_10	precipitation_11
9.033	11.55	10.43	7.568	9.3	55.4	80.6
11.59	13.9	12.05	9.247	78	42	21.1
11.32	13.19	11.73	9.353	3.9	40.3	46.2
11.2	12.55	12.71	8.245	63.4	72.6	42.4
8.928	13.96	13.93	8.553	50	23.6	48.4
12.68	13.37	12.71	9.302	33	57.34	112.3

precipitation_12	precipitation_2	precipitation_3	precipitation_4	precipitation_5
41.2	14.5	25.4	5.7	52.6
46.3	35.96	15.8	26.4	19.5
41.3	38.8	51.3	19	27.9
31.1	74.1	22.6	9.3	16.8
34.6	26.3	28.7	9.3	54.5
12.3	35.96	29.9	79.8	5.2

$precipitation_6$	$precipitation_7$	$precipitation_8$	$precipitation_9$	prec456	prec45
47.9	58.8	93.4	82.6	106.2	58.3
51.4	141.7	39	31.3	97.3	45.9
40.4	62.2	42.8	18.2	87.3	46.9
33.4	71.4	33	154.7	59.5	26.1
54.22	29.4	79.7	60	118	63.8
35.9	63.5	44.3	27.8	120.9	85

prec123456	prec123	prec34	mean456	mean45	mean123456	mean123	mean34	max456
155.4	49.2	31.1	25.27	13.19	7.116	-18.16	0.8041	38.38
227.1	129.8	42.2	31.06	15.03	31.12	0.05567	2.425	44.86
181.3	94	70.3	32.81	17.24	43.64	10.83	8.972	46.39
219.6	160.1	31.9	34.47	19.26	46.16	11.69	12.55	49.08
223	105	38	25.67	13.71	26.54	0.8694	7.797	37.54
219.8	98.87	109.7	33.89	16.58	39.2	5.306	6.572	46.9

$\overline{\max}45$	max123456	max123	max34	min456	min45	min123456	min123	min34
22.49	31.12	-7.257	8.956	14.41	5.382	-13.93	-28.35	-6.552
23.75	50.76	5.9	9.042	18.86	7.277	13.54	-5.32	-3.079

$\overline{\max}45$	max123456	max123	max34	min456	min45	min123456	min123	min34
26.39	65.66	19.28	16.02	20.08	8.759	23.18	3.104	3.044
29.35	69.13	20.06	21.12	21.6	10.4	25.29	3.691	4.738
22.11	45.59	8.058	14.66	15.93	7.004	9.975	-5.958	2.251
24.89	61.03	14.13	12.84	21.61	8.934	18.97	-2.64	1.399

GDD3_456	$GDD3_45$	GDD3_123456	GDD3_123	GDD3_34	$\mathrm{GDD5}_456$	$GDD5_45$	GDD5_123456
545.6	261.9	547.9	2.35	74.25	397.5	173.8	397.5
708.1	307.5	714.5	6.45	46.45	558.7	218.1	558.8
748.3	368.6	862	113.7	129	583.4	263.6	620
803.3	429.3	963.5	160.3	227.4	629.5	315.5	713.1
549.5	274.2	573.5	23.95	113.5	381.8	166.6	383.5
783.3	353.1	853.5	70.15	77.25	632.9	262.6	646.9

GDD5_123	GDD5_34	GDD7_456	GDD7_45	GDD7_123456	GDD7_123	GDD7_34	GDD10_456
0	45.05	263.9	100.1	263.9	0	28	108.1
0.125	18.7	421.4	140.8	421.4	0	3.45	244.6
36.62	56	434.8	175.1	440.8	6	19.65	242.2
83.62	138.7	466.8	212.8	508.8	42.05	72.6	260.6
1.675	51.25	233.8	78.47	233.8	0	15.25	91.67
14.05	25.08	496.6	186.4	498.6	1.925	5.8	320.9

GDD10_45	GDD10_123456	GDD10_123	GDD10_34	GDH3_456	GDH3_45	GDH3_123456
33.65	108.1	0	11.48	13363	6553	13494
53.9	244.6	0	0	17187	7574	17432
72.45	242.2	0	1.45	18063	8948	21259
96.67	267.1	6.45	14.5	19388	10413	23604
22.43	91.67	0	1.825	13313	6706	14151
100.6	320.9	0	0	18971	8645	21007

GDH3_123	GDH3_34	GDH5_456	GDH5_45	GDH5_123456	GDH5_123	GDH5_34	GDH7_456
131.3	2098	9834	4465	9875	40.97	1328	6738
245.3	1341	13589	5416	13608	19.14	623.1	10390
3196	3378	14215	6540	15489	1274	1754	10731
4215	5738	15310	7775	17601	2291	3678	11561
838.3	2977	9483	4314	9698	214.8	1592	6214
2036	2155	15339	6453	16006	666.4	853.2	12120

GDH7_45	GDH7_123456	$\mathrm{GDH7}_123$	$\mathrm{GDH7}_34$	$\mathrm{GDH}10_456$	$\mathrm{GDH}10_45$	GDH10_123456
2808	6749	10.77	835.2	3096	1184	3096
3657	10390	0	269	6397	1767	6397
4494	11112	380.8	781.1	6384	2231	6401
5466	12756	1195	2124	6827	2858	7183
2463	6260	45.94	735.7	2622	840.5	2625
4674	12268	147.7	277.4	7926	2638	7929

GDH10_123	GDH10_34	GDD10_b	GDD3_b	$\mathrm{GDD5}$ b	GDD7_b	GDH10_b	GDH3_b	GDH5_b
0	396.3	20.05	185.5	117.1	64.97	746.9	4780	3129
0	42.65	18.25	192.2	126.5	73.25	818.6	4840	3219
16.79	157.5	29.17	269.5	170	97.05	1077	6616	4386
356.3	773	85.72	387.4	277.6	184.4	2532	9479	6945
2.702	155.8	8.375	203.1	106.7	40.6	425.2	5112	2996
2.694	39.2	31.1	205.8	133.1	80.9	965.9	5136	3361

GDH7_b	max_b	mean_b	min_b	precipitation_b	FFD
1892	9.311	5.066	1.459	60.8	66.26
2023	9.239	5.348	2.011	38.9	59.91
2677	11.07	6.96	3.329	60	53.86
4806	13.95	8.953	4.628	21.3	54.46
1527	9.773	5.672	2.386	67.5	65
2142	9.229	5.594	2.466	93.4	59.85

Models of FFD against temperature, precipitation and GDD/GDH

```
#List of variables to test as predictors of FFD
varlist<-names(mean_weather3)[c(7:9,19:21,31:33,43:45,55:57,67:69,79:81,91:93,
                                 103:105,115:117,127:129,139:141,146:217)]
#Fit univariate linear models of FFD against each predictor
models<-lapply(varlist, function(x) {</pre>
  summary(lm(substitute(FFD ~ scale(i), list(i = as.name(x))), data = mean_weather3, na.action=na.exclude)
})
#Build a table with estimate, p and r square for all fitted models
models<-cbind(varlist,</pre>
              ldply(models, function(x) coef(x)[2]),
              ldply(models, function(x) coef(x)[8]),
              ldply(models, function(x) x$adj.r.squared)
names(models)<-c("variable", "estimate", "p", "adj.rsquare")</pre>
models$sig<-ifelse(models$p<0.05,"*","") # *=p<0.05
#Order models by R square
kable(arrange(models,desc(adj.rsquare)))
```

variable	estimate	p	adj.rsquare	sig
mean45	-5.1849896	0.0000001	0.7630498	*
$GDD3_45$	-5.0441786	0.0000004	0.7194888	*
GDH3_45	-5.0178764	0.0000005	0.7114849	*
$\max 45$	-4.9528736	0.0000010	0.6918838	*
$GDH5_45$	-4.8801515	0.0000019	0.6702579	*
$\min 45$	-4.8686906	0.0000022	0.6668788	*
$GDD5_45$	-4.8126881	0.0000035	0.6504817	*
GDD3_123456	-4.6353692	0.0000141	0.5998155	*
$\max 456$	-4.6246422	0.0000152	0.5968114	*
mean_b	-4.5952544	0.0000187	0.5886171	*
GDH3_123456	-4.5870688	0.0000198	0.5863439	*
mean456	-4.5859233	0.0000200	0.5860261	*
GDH7_45	-4.5828322	0.0000204	0.5851690	*

variable	estimate	р	adj.rsquare	sig
GDD3 b	-4.5799452	0.0000208	0.5843690	*
GDD3_b GDH3 b	-4.5457539	0.0000208 0.0000262	0.5645090 0.5749327	*
max b	-4.5437539 -4.5031575	0.0000202 0.0000347	0.5749327 0.5632756	*
GDH5 b	-4.4117654	0.0000347 0.0000611	0.5032750 0.5386352	*
GDD3 456	-4.4117034 -4.4082191	0.0000611 0.0000624	0.5376892	*
GDD3_450 GDD7 45	-4.3824648	0.0000024 0.0000726	0.5370892	*
		0.0000726		*
	-4.3576458 -4.3475396		0.5242821	*
· · · · · · · · · · · · · · · · · · ·		0.0000888	0.5216214	*
GDD5_b	-4.2894433	0.0001228	0.5064463	*
GDD5_123456	-4.2643975	0.0001406	0.4999672	*
max123456	-4.1957447	0.0002013	0.4824018	*
GDH7_b	-4.1236790	0.0002883	0.4642699	*
GDD5_456	-4.1059995	0.0003140	0.4598697	*
GDH5_456	-4.0999520	0.0003233	0.4583689	*
GDH10_45	-3.9257444	0.0007109	0.4160853	*
GDH7_123456	-3.9069637	0.0007701	0.4116365	*
mean_5	-3.9001012	0.0007927	0.4100162	
min456	-3.8994131	0.0007950	0.4098539	*
\max_{-5}	-3.8567727	0.0009491	0.3998518	*
$GDD3_5$	-3.8507067	0.0009730	0.3984379	*
mean 123456	-3.8273777	0.0010696	0.3930207	*
$GDH3_5$	-3.8260771	0.0010753	0.3927197	*
$GDD5_5$	-3.8162815	0.0011184	0.3904556	*
$GDH5_5$	-3.7598963	0.0013965	0.3775364	*
GDD3_34	-3.7598828	0.0013965	0.3775333	*
$GDD7_b$	-3.7570601	0.0014119	0.3768917	*
$GDH7_456$	-3.7208404	0.0016217	0.3687005	*
$GDD7_{123456}$	-3.6978632	0.0017681	0.3635453	*
$GDH3_34$	-3.6687642	0.0019694	0.3570624	*
$\min_{}$ b	-3.6628696	0.0020125	0.3557554	*
$GDD7_5$	-3.6273016	0.0022895	0.3479135	*
$GDD7_456$	-3.6159711	0.0023842	0.3454315	*
$GDH7_5$	-3.6071686	0.0024601	0.3435086	*
\min_{5}	-3.5628548	0.0028736	0.3338996	*
$\max 34$	-3.5578811	0.0029234	0.3328285	*
GDH5_34	-3.4082101	0.0048028	0.3012967	*
$GDH10_b$	-3.3730280	0.0053669	0.2940815	*
mean34	-3.3727538	0.0053715	0.2940255	*
min 4	-3.3509468	0.0057482	0.2895912	*
mean 4	-3.3460457	0.0058359	0.2885986	*
$\min 123456$	-3.3259438	0.0062070	0.2845424	*
GDD10 45	-3.2817989	0.0070909	0.2757207	*
GDH10_5	-3.2644627	0.0074654	0.2722885	*
$GDD5 \overline{34}$	-3.2608922	0.0075446	0.2715839	*
$GDD3\overline{4}$	-3.1796787	0.0095402	0.2557651	*
GDH10_123456	-3.1776533	0.0095950	0.2553757	*
GDD3 123	-3.1303685	0.0109503	0.2463550	*
GDH3 123	-3.1174784	0.0113458	0.2439194	*
GDH10_456	-3.1036246	0.0117838	0.2413129	*
GDH7_34	-3.1030240	0.0117636 0.0118537	0.2419129 0.2409056	*
GDH3 4	-3.0737322	0.0127761	0.2357284	*
max123	-3.0568329	0.0133665	0.2325952	*
max 3	-2.9802826	0.0163260	0.2323332 0.2186187	*
mean123	-2.9539687	0.0103200 0.0174580	0.2130167 0.2138962	*
GDD10 5	-2.9462525	0.0174980	0.2136902 0.2125193	*
ODD10_0	2.0402020	0.0110011	0.2120190	

variable	estimate	p	adj.rsquare	sig
GDD3 3	-2.9212621	0.0189525	0.2080848	*
GDD3_3 GDH3 3	-2.9152068	0.0109323 0.0192402	0.2000340 0.2070160	*
GDH5_3 GDH5_4	-2.9102003	0.0192402 0.0199413	0.2070100 0.2044732	*
GDD5 4	-2.8767286	0.0199413 0.0211516	0.2044732 0.2002760	*
max 4	-2.8577282	0.0211510 0.0221501	0.1969808	*
GDH5 123	-2.8328665	0.0221301 0.0235133	0.1909000 0.1927021	*
min34	-2.8260397	0.0233133 0.0238991	0.1927021 0.1915338	*
min123	-2.7979266	0.0255331 0.0255416	0.1313333 0.1867522	*
GDD10 123456	-2.7390295	0.0299410 0.0292745	0.1768897	*
GDD10_125450 GDD10_456	-2.7212542	0.0304822	0.1739544	*
prec123	-2.7123125	0.0304022 0.0311045	0.1733344 0.1724851	*
GDH7 4	-2.7039931	0.0316924	0.1724001 0.1711223	*
GDD7_34	-2.6903421	0.0326762	0.1688953	*
mean 3	-2.6574360	0.0351467	0.1635733	*
GDH5 3	-2.6566170	0.0352100	0.1634417	*
GDH10_34	-2.5036997	0.0392100 0.0486963	0.1395771	*
GDD5 123	-2.4826176	0.0508323	0.1363979	
GDD10 b	-2.4817078	0.0509261	0.1362613	
GDD7 4	-2.4802228	0.0503201 0.0510795	0.1360385	
GDD5 3	-2.3732046	0.0631022	0.1203302	
GDH7_123	-2.3394551	0.0673087	0.1155201	
GDH7_3	-2.2865138	0.0743315	0.1081135	
min 3	-2.2461990	0.0800393	0.1025871	
GDH10 4	-2.2180662	0.0842127	0.0987888	
GDD10 34	-1.9764426	0.1269923	0.0681381	
GDD10 4	-1.8171680	0.1625972	0.0498646	
GDH10 3	-1.7154241	0.1886765	0.0389948	
GDD7_3	-1.6907937	0.1953942	0.0364575	
GDD7 123	-1.6630099	0.2031640	0.0336394	
$\frac{-}{\text{GDH}10}_{-}123$	-1.6538966	0.2057571	0.0327253	
prec123456	-1.6395445	0.2098857	0.0312957	
precipitation 5	1.6008654	0.2212863	0.0275052	
prec45	1.4765924	0.2606477	0.0159390	
precipitation 3	-1.3294572	0.3126848	0.0034528	
precipitation_b	1.1138316	0.3994975	-0.0124802	
GDD10_3	-1.0898747	0.4098978	-0.0140768	
GDD10 123	-1.0662355	0.4203040	-0.0156183	
prec34	-0.7285344	0.5835604	-0.0339483	
prec456	0.1933505	0.8847374	-0.0488694	
precipitation_4	0.1802574	0.8924973	-0.0490173	

The model explaining the most variance is still the one with mean daily temperature for April and May, followed by GDD3 and GDH3 for April and May.

April and May seems to be the most important period.

Some plots of the best models

Models of FFD against temperatureGDD/GDH AND precipitation

Precipitation is significant in some cases but R2 does not increase much from the previous best model (with mean 45 = mean temperature April and May, R2=0.76)

```
summary(lm(FFD~mean45*prec123,mean_weather3)) #Interaction NS, precipitation NS
##
```

```
## Call:
## lm(formula = FFD ~ mean45 * prec123, data = mean_weather3)
##
##
  Residuals:
##
       Min
                 1Q
                                  3Q
                    Median
                                         Max
##
   -5.2827 -1.3653 -0.2629
                             2.3127
##
##
  Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
##
  (Intercept)
                   104.024422
                               13.433618
                                            7.744 3.89e-07 ***
  mean45
                                           -3.127
                                                   0.00582 **
##
                    -2.670367
                                0.853957
## prec123
                    -0.047380
                                0.112524
                                           -0.421
                                                   0.67869
```

```
## mean45:prec123  0.001697  0.006939  0.245  0.80953
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.877 on 18 degrees of freedom
## Multiple R-squared: 0.7957, Adjusted R-squared: 0.7616
## F-statistic: 23.37 on 3 and 18 DF, p-value: 1.975e-06
summary(lm(FFD~mean45+prec123,mean_weather3)) #No interaction, precipitation NS
##
## Call:
## lm(formula = FFD ~ mean45 + prec123, data = mean_weather3)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -5.2507 -1.2709 -0.1221 2.2449 4.4405
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 101.00818
                          5.19573 19.441 5.33e-14 ***
## mean45
               -2.47939
                           0.33725 -7.352 5.74e-07 ***
               -0.02010
## prec123
                        0.01452 -1.384
                                           0.182
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.805 on 19 degrees of freedom
## Multiple R-squared: 0.795, Adjusted R-squared: 0.7734
## F-statistic: 36.84 on 2 and 19 DF, p-value: 2.894e-07
summary(lm(FFD~GDD3_45*prec123,mean_weather3)) #Interaction NS, precipitation NS
##
## lm(formula = FFD ~ GDD3_45 * prec123, data = mean_weather3)
##
## Residuals:
               1Q Median
                               3Q
                                      Max
## -6.1774 -1.2511 -0.3619 2.2143 4.7947
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
                  9.330e+01 1.058e+01
## (Intercept)
                                        8.819 5.96e-08 ***
## GDD3 45
                  -9.278e-02 3.222e-02 -2.879 0.00998 **
## prec123
                  -5.107e-02 8.716e-02 -0.586 0.56519
## GDD3_45:prec123 6.366e-05 2.581e-04
                                        0.247 0.80799
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.971 on 18 degrees of freedom
## Multiple R-squared: 0.7821, Adjusted R-squared: 0.7458
## F-statistic: 21.54 on 3 and 18 DF, p-value: 3.494e-06
summary(lm(FFD~GDD3_45+prec123,mean_weather3)) #No interaction, precipitation NS (p=0.054)
##
## Call:
## lm(formula = FFD ~ GDD3_45 + prec123, data = mean_weather3)
##
```

```
## Residuals:
## Min
               1Q Median
                              3Q
                                     Max
## -6.1510 -1.1496 -0.3974 2.0844 5.0295
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 90.90620
                         4.08299 22.265 4.49e-15 ***
## GDD3_45
              -0.08545
                          0.01215 -7.035 1.07e-06 ***
## prec123
              -0.02989
                         0.01455 -2.054
                                            0.054 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.896 on 19 degrees of freedom
## Multiple R-squared: 0.7814, Adjusted R-squared: 0.7584
## F-statistic: 33.96 on 2 and 19 DF, p-value: 5.331e-07
summary(lm(FFD~GDH3_45*prec123,mean_weather3)) #Interaction NS, precipitation NS
##
## Call:
## lm(formula = FFD ~ GDH3_45 * prec123, data = mean_weather3)
## Residuals:
      Min
               1Q Median
                              3Q
## -6.1924 -1.1064 -0.1906 2.0673 4.8168
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                   9.454e+01 1.161e+01
                                       8.140 1.91e-07 ***
## (Intercept)
## GDH3_45
                  -3.904e-03 1.435e-03 -2.721
                                                 0.014 *
## prec123
                  -4.641e-02 9.616e-02 -0.483
                                                 0.635
## GDH3_45:prec123 1.912e-06 1.158e-05
                                        0.165
                                                 0.871
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.005 on 18 degrees of freedom
## Multiple R-squared: 0.7771, Adjusted R-squared: 0.7399
## F-statistic: 20.92 on 3 and 18 DF, p-value: 4.283e-06
summary(lm(FFD~GDH3_45+prec123,mean_weather3)) #No interaction, precipitation *
##
## lm(formula = FFD ~ GDH3_45 + prec123, data = mean_weather3)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
## -6.1729 -1.0301 -0.1711 2.0169 4.9810
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 92.7718222 4.3868514 21.148 1.15e-14 ***
## GDH3 45
              -0.0307299 0.0146758 -2.094
## prec123
                                           0.0499 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.927 on 19 degrees of freedom
```

```
## Multiple R-squared: 0.7767, Adjusted R-squared: 0.7532
## F-statistic: 33.05 on 2 and 19 DF, p-value: 6.511e-07
summary(lm(FFD~max45+prec123,mean_weather3)) #Precipitation*
##
## lm(formula = FFD ~ max45 + prec123, data = mean_weather3)
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -4.5949 -1.7013 -0.4401 1.4154 5.6183
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 111.15538
                         7.21690 15.402 3.45e-12 ***
## max45
               -1.90038
                           0.28661 -6.630 2.42e-06 ***
## prec123
               -0.03186
                           0.01511 -2.108 0.0485 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.021 on 19 degrees of freedom
## Multiple R-squared: 0.7622, Adjusted R-squared: 0.7371
## F-statistic: 30.45 on 2 and 19 DF, p-value: 1.187e-06
summary(lm(FFD~min45+prec123,mean_weather3)) #Precipitation NS
##
## Call:
## lm(formula = FFD ~ min45 + prec123, data = mean_weather3)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -8.2857 -1.9317 -0.2012 2.0414 4.8252
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 83.66159
                          3.96216 21.115 1.19e-14 ***
                          0.54510 -5.517 2.54e-05 ***
## min45
               -3.00722
               -0.01719
                          0.01811 -0.949
                                             0.355
## prec123
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.409 on 19 degrees of freedom
## Multiple R-squared: 0.6971, Adjusted R-squared: 0.6652
## F-statistic: 21.86 on 2 and 19 DF, p-value: 1.181e-05
summary(lm(FFD~GDH5_45+prec123,mean_weather3)) #Precipitation*
##
## Call:
## lm(formula = FFD ~ GDH5_45 + prec123, data = mean_weather3)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                      Max
## -6.3781 -1.2420 -0.3821 2.3479 4.7472
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) 86.5446865 3.7816034 22.886 2.71e-15 ***
## GDH5 45
           -0.0040018  0.0006127  -6.531  2.96e-06 ***
## prec123
              -0.0356953 0.0151261 -2.360
                                             0.0291 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.053 on 19 degrees of freedom
## Multiple R-squared: 0.7571, Adjusted R-squared: 0.7316
## F-statistic: 29.62 on 2 and 19 DF, p-value: 1.448e-06
summary(lm(FFD~GDD5_45+prec123,mean_weather3)) #Precipitation*
##
## Call:
## lm(formula = FFD ~ GDD5_45 + prec123, data = mean_weather3)
##
## Residuals:
##
       \mathtt{Min}
               1Q Median
                               3Q
                                      Max
## -6.8301 -1.5019 -0.0224 2.4347 4.7790
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
0.01442 -6.246 5.35e-06 ***
## GDD5 45
             -0.09004
                        0.01557 -2.346
              -0.03653
                                             0.03 *
## prec123
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.147 on 19 degrees of freedom
## Multiple R-squared: 0.7419, Adjusted R-squared: 0.7147
## F-statistic: 27.3 on 2 and 19 DF, p-value: 2.584e-06
Calculate julian date as day with respect to vernal equinox
weather $\date_julian <-as.numeric(with(weather, as.POSIXct(date)-vernal_time)/60/24)
Calculate cumulated GDD/GDH = sum of GDD/GDH until each date, with 3 different starting dates:
- from the start of the year
- from the vernal equinox
- from April 15 (or 16) - vernal equinox + 26 days
#From the start of the year
weather <- as.data.frame (weather %>%
         group_by(year) %>%
         mutate(cumGDD3=cumsum(x = GDD3), cumGDD5=cumsum(x = GDD5),
                cumGDD7=cumsum(x = GDD7),cumGDD10=cumsum(x = GDD10),
                cumGDH3=cumsum(x = GDH3), cumGDH5=cumsum(x = GDH5),
                cumGDH7=cumsum(x = GDH7),cumGDH10=cumsum(x = GDH10)))
#From vernal equinox
weather_vernal<-as.data.frame(subset(weather,period=="b"|period=="c") %>%
                group_by(year) %>%
                mutate(cumGDD3v=cumsum(x = GDD3),cumGDD5v=cumsum(x = GDD5),
                       cumGDD7v=cumsum(x = GDD7),cumGDD10v=cumsum(x = GDD10),
                       cumGDH3v=cumsum(x = GDH3), cumGDH5v=cumsum(x = GDH5),
                       cumGDH7v=cumsum(x = GDH7), cumGDH10v=cumsum(x = GDH10)))
#From April 15 (or 16) - vernal equinox + 26 days
weather_apr15<-as.data.frame(subset(weather,date>=vernal+26) %>%
```

Merge with previous data

```
weather$FFD<-weather$date_julian
weather_vernal$FFD<-weather_vernal$date_julian
weather_apr15$FFD<-weather_apr15$date_julian

alldata_weather<-merge(alldata, weather[c(1,6:17,22:30)], all.x=T,all.y=F)
alldata_weather<-merge(alldata_weather,weather_vernal[c(1,30:38)], all.x=T,all.y=F)
alldata_weather<-merge(alldata_weather,weather_apr15[c(1,30:38)], all.x=T,all.y=F)</pre>
```

Load new data with some missing values for weather manually substituted in OpenOffice Calc (merging by date of FFD did not work in cases where FFD was imputed, because that FFD did not correspond exactly to a "real" date - I merged it manually with the closest value)

alldata_weather_subs<-read.table("C:/Users/User/Dropbox/SU/Projects/lathyrus/data/clean/alldata_weather_subset(alldata_weather_subs,is.na(mean)&!is.na(FFD)) #No rows with missing weather data

```
##
    [1] year
                        FFD
                                                       id
                                        period
   [5] ruta
                        genet
                                        data
                                                       status
## [9] vernal
                        FFD_corr
                                       FFD_imputed
                                                       n_fl
## [13] n_fl_imputed
                        shoot_vol
                                        grazing
                                                       n fr
## [17] n ovules
                        n seeds
                                       n_intact_seeds mean
                                                       GDD3
## [21] min
                        max
                                        precipitation
## [25] GDD5
                        GDD7
                                                       GDH3
                                        GDD10
## [29] GDH5
                        GDH7
                                                       cumGDD3
                                        GDH10
## [33] cumGDD5
                        cumGDD7
                                        cumGDD10
                                                       cumGDH3
## [37] cumGDH5
                        cumGDH7
                                        cumGDH10
                                                       cumGDD3v
## [41] cumGDD5v
                                                       cumGDH3v
                        cumGDD7v
                                        cumGDD10v
## [45] cumGDH5v
                        cumGDH7v
                                        cumGDH10v
                                                       cumGDD3a
## [49] cumGDD5a
                        cumGDD7a
                                        cumGDD10a
                                                       cumGDH3a
## [53] cumGDH5a
                        cumGDH7a
                                        cumGDH10a
                                                       FFD_r
## <0 rows> (or 0-length row.names)
```

Calculate proportion of plants that have started flowering at each FFD

```
alldata_agg<-merge(alldata_agg,max_nflowering)
alldata_agg*prop_fl<-alldata_agg*n_cum_FFD/alldata_agg*max_nflowering
```

Models of proportion of plants that have started flowering against cumulated GDD/GDH

variable	estimate	p	rsquare	sig
cumGDH3v	2.082269	0	0.8247790	*
cumGDD3v	2.057905	0	0.8164516	*
cumGDH5v	2.056648	0	0.8040185	*
cumGDD5v	2.001531	0	0.7844822	*
cumGDH7v	2.008885	0	0.7681064	*
cumGDH3a	1.838762	0	0.7538278	*
cumGDH5a	1.851639	0	0.7502433	*
cumGDD3a	1.812851	0	0.7439834	*
cumGDH7	1.997160	0	0.7368036	*
cumGDD5a	1.818132	0	0.7362666	*
cumGDD7v	1.929839	0	0.7316111	*
cumGDH5	1.936327	0	0.7303357	*
cumGDD5	1.936957	0	0.7296362	*
cumGDH7a	1.839629	0	0.7284625	*
cumGDD7a	1.820732	0	0.7108344	*
cumGDD7	1.912560	0	0.7024659	*
cumGDD3	1.767286	0	0.6746137	*
cumGDH10v	1.822322	0	0.6631881	*
cumGDH10	1.843080	0	0.6521309	*
cumGDH3	1.700881	0	0.6504500	*
cumGDH10a	1.697304	0	0.6366075	*
cumGDD10v	1.573997	0	0.5572632	*
cumGDD10a	1.549451	0	0.5511551	*
cumGDD10	1.578339	0	0.5489817	*

The cumulated number of GDH3 and GDD3 (computed from the vernal equinox) are the variables explaining more variation in the proportion of plants that have started flowering

Some plots of the best models of proportion of plants that have started flowering against cumulated $\operatorname{GDD}/\operatorname{GDH}$

Year 1990 shows high values of GDD/GDH Some plots to look at these high values

Mean temperatures for all years

1990 temperatures

Cumulated GDD3 against julian date

GDD3 against julian date

GDD are very high in February and March 1990 - many days above the base temperature in these months.

Chilling temperatures in winter

Calculate number of days with temperatures below 0 / -5 during winter (winter = 1st of December – day before vernal equinox), as well as mean temperatures and precipitation

```
weather$winter<-as.factor(with(weather,ifelse(month==12|period=="a",1,0)))</pre>
#Define winter (=December or January-March till day before vernal equinox)
weather$mean_below_0<-with(weather,ifelse(mean<0,1,0))</pre>
weather$min_below_0<-with(weather,ifelse(min<0,1,0))</pre>
weather$max_below_0<-with(weather,ifelse(max<0,1,0))</pre>
weather$mean_below_minus5<-with(weather,ifelse(mean<(-5),1,0))</pre>
weather$min below minus5<-with(weather,ifelse(min<(-5),1,0))</pre>
weather$max_below_minus5<-with(weather,ifelse(max<(-5),1,0))</pre>
mean_weather3_w<-join_all(list())</pre>
    aggregate(mean ~ year, data=subset(weather,winter==1), FUN=mean),
                                                                          #Mean of mean daily temperature
    aggregate(min ~ year, data=subset(weather,winter==1), FUN=mean),
                                                                          #Mean of min daily temperature
    aggregate(max ~ year, data=subset(weather,winter==1), FUN=mean),
                                                                          #Mean of max daily temperature
    aggregate(precipitation ~ year, data= subset(weather, winter==1), FUN=sum), #Sum of precipitation
    aggregate(mean_below_0 ~ year,data= subset(weather,winter==1), FUN=sum), #N days with mean<0</pre>
    aggregate(min_below_0 ~ year,data= subset(weather,winter==1), FUN=sum), #N days with min<0
    aggregate(max_below_0 ~ year,data= subset(weather,winter==1), FUN=sum), #N days with max<0
    aggregate(mean_below_minus5 ~ year,data= subset(weather,winter==1), FUN=sum), #N days with mean<-5
    aggregate(min_below_minus5 ~ year,data= subset(weather,winter==1), FUN=sum), #N days with min<-5
    aggregate(max_below_minus5 ~ year,data= subset(weather,winter==1), FUN=sum)), #N days with max<-5
    by = NULL, type = "left", match = "all")
## Joining by: year
colnames(mean_weather3_w)[2:11]<-paste(colnames(mean_weather3_w)[2:11],"w", sep = "_")
mean_weather4<-merge(mean_weather3,mean_weather3_w) #Merge with previous data
Models FFD against winter variables
#Fit univariate linear models of FFD against each predictor
models2<-lapply(names(mean_weather4)[c(219:228)], function(x) {</pre>
  summary(lm(substitute(FFD ~ scale(i), list(i = as.name(x))), data = mean_weather4, na.action=na.exclude)
})
#Build a table with estimate, p and r square for all fitted models
models2<-cbind(names(mean_weather4)[c(219:228)],
              ldply(models2, function(x) coef(x)[2]),
              ldply(models2, function(x) coef(x)[8]),
              ldply(models2, function(x) x$adj.r.square)
names(models2)<-c("variable", "estimate", "p", "adj.rsquare")</pre>
models2$sig<-ifelse(models2$p<0.05,"*","") # *=p<0.05
#Order models by R square
kable(arrange(models2,desc(adj.rsquare)))
```

variable	estimate	p	adj.rsquare	sig
precipitation_w	-3.665808	0.0019909	0.3564066	*
mean_w	-3.324004	0.0062438	0.2841524	*
max_w	-3.287951	0.0069619	0.2769429	*
min_w	-3.286051	0.0070015	0.2765653	*
$\min_below_0_w$	3.234009	0.0081628	0.2663034	*
mean below 0 w	3.100545	0.0118830	0.2407351	*
min below minus5 w	2.970477	0.0167406	0.2168540	*
max below minus5 w	2.865391	0.0217429	0.1983071	*
max below 0 w	2.676526	0.0336962	0.1666529	*
mean_below_minus5_w	2.625453	0.0376865	0.1584634	*

More precipitation and higher temperatures in winter are correlated with earlier flowering. More cold days in winter is correlated with later flowering.

Does winter temperature/precipitation influence the response of plants to spring temperature?

Do fewer days with freezing temperatures/warmer temperatures in winter mean lower sensitivity to increasing spring temperatures?

Sensitivity to increasing spring temperatures for each year: calculated as the coefficients from yearly models of proportion of plants having started flowering against cumulated number of GDH3 (computed from the vernal equinox) (This was the variable explaining the most variance in the proportion of plants having started flowering)

```
#Proportion of plants having started flowering
models3<-with(alldata agg,
            by(alldata_agg, year,
               function(x) glm(prop_fl ~ cumGDH3v, data = x,family=binomial)))
coefs_models3<-as.data.frame(sapply(models3, coef)[2,])</pre>
coefs_models3$year<-row.names(coefs_models3)</pre>
names(coefs models3)<-c("resp cumGDH3v","year")</pre>
mean weather5<-merge(mean weather4, coefs models3)
#Fit univariate linear models of resp_cumGDH3v against each winter predictor
models4<-lapply(names(mean_weather5)[c(219:228)], function(x) {</pre>
  summary(lm(substitute(resp_cumGDH3v ~ scale(i), list(i = as.name(x))), data = mean_weather5, na.action=n
})
#Build a table with estimate, p and r square for all fitted models
models4<-cbind(names(mean_weather5)[c(219:228)],
              ldply(models4, function(x) coef(x)[2]),
              ldply(models4, function(x) coef(x)[8]),
              ldply(models4, function(x) x$adj.r.square)
names(models4)<-c("variable", "estimate", "p", "adj.rsquare")</pre>
models4\$sig<-ifelse(models4\$p<0.05,"*","") # *=p<0.05
#Order models by R square
kable(arrange(models4,desc(adj.rsquare)))
```

variable	estimate	p	adj.rsquare	sig
precipitation_w	-0.0001855	0.0166639	0.2171773	*
$mean_below_0_w$	0.0000915	0.2641913	0.0149978	
$\min_{\mathbf{w}}$	-0.0000882	0.2820526	0.0104699	
$\min_below_minus5_w$	0.0000872	0.2878224	0.0090796	

variable	estimate	p	adj.rsquare	sig
mean_w	-0.0000790	0.3366843	-0.0014774	
$\min_below_0_w$	0.0000698	0.3972606	-0.0121292	
max_w	-0.0000632	0.4442198	-0.0189611	
$mean_below_minus5_w$	0.0000572	0.4895856	-0.0246136	
$max_below_minus5_w$	0.0000498	0.5475656	-0.0307106	
$max_below_0_w$	0.0000471	0.5700600	-0.0327793	

It seems that only winter precipitation influences the response of plants to increasing spring temperatures (with higher winter precipitation, plants are less responsive to increasing spring temperatures), and the effect is not very strong.

Another ways of testing this relation among winter conditions and response to spring temperature: Models with effects of mean temperature April and May, measures of chilling and their interaction on mean FFD.

variable	estimate	p	adj.rsquare	sig
precipitation_w	0.8633909	0.2332496	0.7836344	
$\min_below_0_w$	-0.3015655	0.6826601	0.7593436	
max_w	0.5797146	0.4343327	0.7565030	
$max_below_minus5_w$	-0.6100128	0.4447081	0.7540362	
mean_w	0.4149907	0.5612885	0.7532095	
$mean_below_0_w$	-0.3261530	0.6774032	0.7505538	
$\min_{\mathbf{w}}$	0.2376274	0.7398845	0.7505072	
$\max_below_0_w$	-0.6363942	0.4837476	0.7479327	
$\min_below_minus5_w$	-0.2585940	0.7348488	0.7472340	
mean_below_minus5_w	-0.4067785	0.6321929	0.7450429	

Test this within years instead of among years?