Branch: main 2024-01-28 14:34:31+01:00

μ-Random thoughts

M.R.T. Polymath

Let $\mathcal U$ be a monster model. We confuse formulas $\varphi(x) \in L(\mathcal U)$ with the subset of $\mathcal U^{|x|}$ that they define. If $\mathcal D = \varphi(\mathcal U)$, we may write $x \in \mathcal D$ for $\varphi(x)$. Unless otherwise stated, calligraphic capital letters denote definable sets (with parameters). If $p \subseteq L_x(\mathcal U)$ we write $p \subseteq \mathcal D$ for $p(x) \to x \in \mathcal D$. If $p \in S_x(\mathcal U)$ we may also write $p \in \mathcal D$. In other words, when convenient we identify $\mathcal D$ with a subset of $S_x(\mathcal U)$ and incomplete types with the set of their completions.

When $\mu(x) \subseteq L(\mathcal{U})$ we denote by 1_{μ} the filter generated by $\{\varphi(\mathcal{U}) : \varphi(x) \in \mu\}$. We write 0_{μ} for the corresponding ideal, the ideal generated by $\{\neg \varphi(\mathcal{U}) : \varphi(x) \in \mu\}$. Note that the expressions $\mathcal{D} \in 1_{\mu}$ and $\mu \subseteq \mathcal{D}$ are synonymous.

Let $p \subseteq L_x(\mathcal{U})$. We say that p is μ -wide if $\mu(x) \cup p(x)$ is finitely consistent. If $p \in S_x(\mathcal{U})$ we may also say that p is μ -random, in other words, p is μ -random if $p \in \mathcal{D}$ for every $\mathcal{D} \in 1_{\mu}$ or, equivalently, if $p \notin \mathcal{D}$ for every $\mathcal{D} \in 0_{\mu}$. That is, when convenient we identify μ with the sets of μ -random (global) types.

Fact 1. Every μ -wide type $p \subseteq L_x(\mathcal{U})$ extends to a μ -random type.

Proof. Let $q \subseteq L_x(\mathcal{U})$ be a maximal μ -wide type containing p. It suffices to verify that q is complete. Suppose for a contradiction that $\varphi(x), \neg \varphi(x) \notin q$. Then $\mu(x) \cup q(x)$ is finitely inconsistent with both $\varphi(x)$ and $\neg \varphi(x)$. Then $\mu(x) \cup q(x)$ is finitely inconsistent: a contradiction.

Let $\kappa = \kappa^{<\kappa}$ be the cardinality of \mathcal{U} . We say that μ is κ -prime if for every sequence $\langle \mathcal{D}_i : i < \kappa \rangle$ of definable sets such that $\mathcal{D}_i \cup \mathcal{D}_j \in 1_{\mu}$ for every $i < j < \kappa$, there is an $i < \kappa$ such that $\mathcal{D}_i \in 1_{\mu}$. Sometimes we use the dual version of this property which sounds: for every sequence $\langle \mathcal{D}_i : i < \kappa \rangle$ of definable sets such that $\mathcal{D}_i \cap \mathcal{D}_j \in 0_{\mu}$ for every $i < j < \kappa$, there is an $i < \kappa$ such that $\mathcal{D}_i \in 0_{\mu}$.

Example 2. Assume there is a finitely additive probability measure on the definable subsets of $\mathcal{U}^{|x|}$. Let 1_{μ} be the set of subsets of measure 1. Then μ is κ -prime. Clearly, a global type $p \in S_x(\mathcal{U})$ is μ -random, if and only if it is contained in all definable sets of measure 1.

Proof. Assume for a contradiction that the sets $\langle \mathcal{D}_i : i < \kappa \rangle$ have positive measure but that $\mathcal{D}_i \cap \mathcal{D}_j$ has measure 0 for every $i < j < \kappa$. As κ is regular and uncountable, we can assume that for some n all sets \mathcal{D}_i have measure $\geq 1/n$. Then, up to a set measure 0,

Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123 Torino.

1

the sets $\mathcal{D}_1, ..., \mathcal{D}_n$ are pairwise disjoint and contained in $\neg \mathcal{D}_0$. This is a contradiction because $\neg \mathcal{D}_0$ has measure < 1.

We say that μ is S1 over A if for every A-indiscernible sequence $\langle \mathcal{D}_i : i < \omega \rangle$

$$\mathcal{D}_0 \cup \mathcal{D}_1 \in 1_{\mu} \quad \Rightarrow \quad \mathcal{D}_0 \in 1_{\mu}.$$

The terminology originated in some obscure corner of Hrushovski's mind.

Fact 3. For any A-invariant filter μ the following are equivalent

- 1. μ is κ -prime;
- 2. μ is S1 over A.

Proof. $(1\Rightarrow 2)$ Let $\langle \mathcal{D}_i : i < \omega \rangle$ be a sequence of A-indiscernibles. By compactness we can find an indiscernible sequence of length κ such that $\mathcal{D}_0 \cup \mathcal{D}_1 \in 1_\mu$. By indiscernibility $\mathcal{D}_i \cup \mathcal{D}_j \in 1_\mu$ for every $i < j < \kappa$. Then $\mathcal{D}_i \in 1_\mu$ for some $i < \kappa$ and, by indiscernibility, $\mathcal{D}_0 \in 1_\mu$.

Example 4. Let $1_{\mu} = \{ \mathfrak{X} \subseteq \mathfrak{U}^{|x|} : A^{|x|} \subseteq \mathfrak{X} \}$. Then μ is S1 over A. Clearly, a type $p(x) \subseteq L(\mathfrak{U})$ is μ -wide if and only if it is finitely satisfied in A.

Proof. Assume $\mathcal{D}_0 \cup \mathcal{D}_1 \in 1_{\mu}$, where $\mathcal{D}_0, \mathcal{D}_1$ start a sequence of A-indiscernibles. Then $a \in \mathcal{D}_0 \cup \mathcal{D}_1$ for every $a \in A^{|x|}$. By indiscernibility, $a \in \mathcal{D}_0$ holds for every $a \in A^{|x|}$. Hence $\mathcal{D}_0 \in 1_{\mu}$.

Exercise 5. In Example 4 the elements of $A^{|x|}$ are, trivially, μ -random. Then μ has the following property: there is a small set $R \subseteq S_x(\mathcal{U})$ of μ -random types such that

$$\mathcal{D} \in 1_{\mu} \Leftrightarrow R \subseteq \mathcal{D}$$

Does this hold for every A-invariant μ ?

Example 6. Let $\mu = \{ \varphi(x) \in L(\mathcal{U}) : \varphi(x) \in p \text{ for every } A\text{-invariant } p \in S_x(\mathcal{U}) \}$. Then μ is S1 over A. Clearly, a type $p \subseteq L_x(\mathcal{U})$ is μ -wide if and only if it has an extension to an A-invariant global type.

Proof. Assume $\mathcal{D}_0 \cup \mathcal{D}_1 \in 1_{\mu}$, where $\mathcal{D}_0, \mathcal{D}_1$ are conjugate over A. Then $p \in \mathcal{D}_0$ if and only if $p \in \mathcal{D}_1$ for every A-invariant global type p. Therefore $\mathcal{D}_0 \in 1_{\mu}$.

Example 7. We say that \mathcal{D} is A-generic if finitely many A-translates of \mathcal{D} cover $\mathcal{U}^{|x|}$. Let μ be as in Example 6. Then 1_{μ} is the filter generated by the A-generic sets.

Proof. It is easy to see that if \mathcal{D} is A-generic then $\mathcal{D} \in 1_{\mu}$. Vice versa, assume that there are no A-generic sets \mathcal{B}_i such that

$$\bigcap_{i=1}^{n} \mathcal{B}_{i} \subseteq \mathcal{D}$$

Note that a set \mathcal{B} is not A-generic if and only if the orbit over A of $\neg \mathcal{B}$ has the finite intersection property (fip). Hence, by taking complements, for any \mathcal{C}_i such that

$$\neg \mathcal{D} \subseteq \bigcup_{i=1}^n \mathcal{C}_i,$$

there is at least one i such that the A-orbit of \mathcal{C}_i has the fip. By a standard (easy) argument we obtain that there is an A-invariant type $p \notin \mathcal{D}$. Therefore $\mathcal{D} \notin 1_{\mu}$.

Definition 8. Let 1_A be the filter generated by the sets $\mathcal{D} \subseteq \mathcal{U}^{|x|}$ such that there is an A-indiscerible sequence $\langle \mathcal{D}_i : i < \omega \rangle$ such that $\mathcal{D} = \mathcal{D}_0$ and $\mathcal{D}_0, \ldots, \mathcal{D}_n$ cover $\mathcal{U}^{|x|}$ for some n. We call 1_A the nonforking filter over A.

Fact 9. Let μ be S1 and invariant over A. Then 1_{μ} contains 1_{A} .

Proof. Let $\mathcal{D} \in 1_A$. Let $\langle \mathcal{D}_i : i < \omega \rangle$ be as in Definition 8. Then $\mathcal{D}_0 \cup \cdots \cup \mathcal{D}_n \in 1_\mu$ for some n. Assume n is minimal, we prove that n = 0. Otherwise, let $\mathcal{C}_i = \mathcal{D}_i \cup \cdots \cup \mathcal{D}_{i+n-1}$. Then $\langle \mathcal{C}_i : i < \omega \rangle$ is an A-indiscernible sequence and $\mathcal{C}_0 \cup \mathcal{C}_1 \in 1_\mu$. From S1 we obtain $\mathcal{C}_0 \in 1_\mu$ which contradicts the minimality of n.

Theorem 10. Let p(x;z), $q(x;z) \subseteq L(A)$. Let μ be S1 and A-invariant. Then

$$R(a,b) \Leftrightarrow p(x;a) \cup q(x;b)$$
 is wide

is a stable relation.

Proof. Let $\langle a_i, b_i : i < \omega \rangle$ be a sequence of *A*-indiscernibles such that $p(x; a_0) \cup q(x; b_1)$ is μ -wide. By S1, also $[p(x; a_0) \cup q(x; b_1)] \cup [p(x; a_2) \cup q(x; b_3)]$ is μ -wide. A fortiori $p(x; a_2) \cup q(x; b_1)$ is μ -wide and, by indiscernibility, so is $p(x; a_1) \cup q(x; b_0)$.

We say that μ is definable if for every $\varphi(x;z) \in L$ the set $\{b \in \mathcal{U}^{|z|} : \mu(x) \to \varphi(x;b)\}$ is definable (type-definable). The definition of μ type-definable is similar. For instance, in general μ in Example 4 is type definable, but it is definable if the ambient theory is stable.

4

1. Independence (tentative)

Let $\mu \subseteq L_{\nu}(\mathcal{U})$, where $|\nu| = 1$, be *A*-invariant. When *x* is the tuple $\langle x_i : i < |x| \rangle$, we say that $p(x) \subseteq L(\mathcal{U})$ is μ -wide if it is finitely consistent with $\bigcup_i \mu(x_i)$.

Let $a \in \mathcal{U}^{|x|}$. We write $a \downarrow_{\mu} b$ if the type $\operatorname{tp}(a/A, b)$ is μ -wide. Clearly, this is equivalent to saying that, $\varphi(x; b)$ is μ -wide for every $\varphi(x; z) \in L(A)$ such that $\varphi(a; b)$.

We write $b \equiv_{\mu} b'$ if $\mu(x)$ implies $\varphi(x;b) \leftrightarrow \varphi(x;b')$ for every $\varphi(x;z) \in L(A)$.

Lemma 11. The following properties hold for all *a*, *b*, *c*

1. $a \downarrow_{\mu} b \Rightarrow f a \downarrow_{\mu} f b$ for every $f \in Aut(\mathcal{U}/A)$ invariance

2. $a \downarrow_{\mu} b \Leftarrow a_0 \downarrow_{\mu} b_0$ for all finite $a_0 \subseteq a$ and $b_0 \subseteq b$ finite character

3. $a \downarrow_u c, b$ and $c \downarrow_u b \Rightarrow a, c \downarrow_u b$ transitivity

4. $a \downarrow_{\mu} b \Rightarrow \text{ there exists } a' \equiv_{A,b} a \text{ such that } a' \downarrow_{\mu} b, c$ extension

5. $a \downarrow_{\mu} b_1, b_2$ and $b_1 \equiv_{\mu} b_2 \Rightarrow b_1 \equiv_{\mu, a} b_2$ non-splitting

Proof. Properties 1,2,3 are immediate. We prove 4. As tp(a/A, b) is μ -wide, it extends to a μ -random type p(x). Then we can take any $a' \models p_{\uparrow A,b,c}(x)$.

Definition 12. We say that \beth_{μ} is stationary if $a \equiv_M x \beth_{\mu} b$ is a complete type over M, b for all finite tuples b and a.

We say *n*-stationary if this is restricted to |a| = n.

Stationarity is often ensured by the following property.

Proposition 13. If for every $\varphi(x) \in L(\mathcal{U})$ there is a formula $\psi(x) \in L(M)$ such that $\varphi(\mathcal{U}) =_{\mu} \psi(\mathcal{U})$ then \mathcal{L}_{μ} is stationary.

Proof. Let $b \in \mathcal{U}^{|z|}$ and $a_1, a_2 \in \mathcal{U}^{|x|}$ be such that $a_i \downarrow_{\mu} b$ and $a_1 \equiv_M a_2$. We claim that $a_1 \equiv_{M,b} a_2$. We need to prove that $\varphi(b;a_1) \leftrightarrow \varphi(b;a_2)$ for every $\varphi(z;x) \in L(M)$. Let $\psi(x) \in L(M)$ be such that $\varphi(b;\mathcal{U}) =_M \psi(\mathcal{U})$. From $a_i \downarrow_{\mu} b$ we obtain that $\varphi(b;a_i) \leftrightarrow \psi(a_i)$. Finally, the claim follows because $a_1 \equiv_{\mu} a_2$.