Simple neural networks for text

Quiz, 3 questions

✓ Congratulations! You passed!

Next Item

2/2 points

1.

Let's recall how we treated words as one-hot sparse vectors in BOW and dense embeddings in neural networks:

~100k columns movie good did like very 0 0 1 0 0 ~300 columns x_1 x_2 x_3 0.7 0.4 0.5

Choose correct statements below.

Linear model on top of a **sum** of neural representations can work faster than on top of BOW.

Correct

This is true! We only need to train 300 parameters here. Don't forget to normalize these features row-wise!

For **both** word representations we can take a **sum** of vectors corresponding to tokens of any text to obtain good features for this text for further usage in linear model.

Correc

Yes, this is true. Don't forget to normalize these features row-wise!

For **both** word representations we can take a **weighted sum** of vectors corresponding to tokens of any text to obtain good features for this text for further usage in linear model. The **weight** for any token can be Simple in the two orders. For text

Quiz, 3 questions

Correct

Yes, this is true. For BOW we effectively get bag of TF-IDF values, where TF is a binary variable. Don't forget to normalize these features row-wise!

You can replace **word2vec** embeddings with any **random** vectors to get a good features descriptor as a **sum** of vectors corresponding to all text tokens.

Un-selected is correct

2/2 points

2.

Let's recall 1D convolutions for words:

Word embeddings

cat	0.7	0.4
sitting	0.2	-0.1
there	-0.5	0.4
or	-0.1	0.8
here	-0.5	0.3

What is the result of 1D convolution + maximum pooling over time for the following kernel without padding?

1	0
0	1

0.6

Correct Response

Simple heural networks for text

Quiz, 3 questions

