## latex-math Macros

compiled: 2024-06-24

Latex macros like  $\frac{\#1}{\#2}$  with arguments are displayed as  $\frac{\#1}{\#2}$ .

Note that macro declarations may only span a single line to be displayed correctly in the below tables.

## Contents

| basic-math       | 3  |
|------------------|----|
| basic-ml         | 5  |
| ml-ensembles     | g  |
| ml-eval          | 10 |
| ml-feature-sel   | 12 |
| ml-gp            | 13 |
| ml-hpo           | 14 |
| ml-infotheory    | 15 |
| ml-interpretable | 16 |
| ml-mbo           | 17 |
| ml-multitarget   | 18 |
| ml-nn            | 19 |
| ml-online        | 20 |

| ml-regu     | 21 |
|-------------|----|
| ml-survival | 22 |
| ml-svm      | 23 |
| ml-trees    | 24 |

## basic-math

| Macro        | Notation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comment                          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| \N           | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N, naturals                      |
| \Z           | ${\mathbb Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z, integers                      |
| <b>\</b> Q   | $\mathbb{Q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q, rationals                     |
| \R           | ${\mathbb R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R, reals                         |
| \C           | $\mathbb{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C, complex                       |
| \continuous  | $\mathcal{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C, space of continuous functions |
| \M           | $\mathcal{M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | machine numbers                  |
| \epsm        | $\epsilon_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | maximum error                    |
| \setzo       | $\{0, 1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | set 0, 1                         |
| \setmp       | $\{-1, +1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | set -1, 1                        |
| $\unitint$   | [0, 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | unit interval                    |
| \xt          | $	ilde{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x tilde                          |
| \argmax      | arg max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | argmax                           |
| \argmin      | argmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | argmin                           |
| $\argminlim$ | $rg \min$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | argmax with limits               |
| $\argmaxlim$ | $\operatorname{argmax}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | argmin with limits               |
| \sign        | $\operatorname{sign}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sign, signum                     |
| \I           | $\mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I, indicator                     |
| \order       | $\mathcal{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O, order                         |
| \big0        | $\mathcal{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Big-O Landau                     |
| \littleo     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Little-o Landau                  |
| \pd          | $\frac{\partial \#1}{\partial \#2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | partial derivative               |
| \floorlr     | $\lfloor \#1 \rfloor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | floor                            |
| \ceillr      | [#1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ceiling                          |
| \indep       | il.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | independence symbol              |
| \sumin       | $\sum_{i=1}^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | summation from $i=1$ to n        |
| \sumim       | $\sum_{i=1}^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | summation from $i=1$ to m        |
| \sumjn       | $\sum_{j=1}^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | summation from $j=1$ to p        |
| \sumjp       | $\sum_{j=1}^{p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | summation from $j=1$ to p        |
| \sumik       | $\sum_{i=1}^{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | summation from $i=1$ to $k$      |
| \sumkg       | $\sum_{k=1}^{g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | summation from k=1 to g          |
| \sumjg       | $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{j=1}^{p} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{q} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$ | summation from $j=1$ to g        |
| \meanin      | $\frac{1}{n} \sum_{i=1}^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mean from $i=1$ to n             |

| \meanim    | $\frac{1}{m} \sum_{i=1}^{m}$ | mean from i=1 to n           |
|------------|------------------------------|------------------------------|
| \meankg    | $\frac{1}{g}\sum_{k=1}^{g}$  | mean from k=1 to g           |
| \prodin    | $\prod_{i=1}^{n}$            | product from $i=1$ to n      |
| \prodkg    | $\prod_{k=1}^{g}$            | product from $k=1$ to g      |
| \prodjp    | $\prod_{j=1}^{p}$            | product from $j=1$ to p      |
| \one       | 1                            | 1, unit vector               |
| \zero      | 0                            | 0-vector                     |
| \id        | I                            | I, identity                  |
| \diag      | $\operatorname{diag}$        | diag, diagonal               |
| \trace     | $\operatorname{tr}$          | tr, trace                    |
| \spn       | span                         | span                         |
| \scp       |                              | <.,.>, scalarproduct         |
| \mat       | (#1)                         | short pmatrix command        |
| \Amat      | $\dot{\mathbf{A}}$           | matrix A                     |
| \Deltab    | $oldsymbol{\Delta}$          | error term for vectors       |
| <b>\</b> P | ${\mathbb P}$                | P, probability               |
| \E         | ${ m I}\!{ m E}$             | E, expectation               |
| \var       | Var                          | Var, variance                |
| \cov       | Cov                          | Cov, covariance              |
| \corr      | Corr                         | Corr, correlation            |
| \normal    | $\mathcal{N}$                | N of the normal distribution |
| \iid       | $\overset{i.i.d}{\sim}$      | dist with i.i.d superscript  |
| \distas    | #1<br>~                      | is distributed as            |

## basic-ml

| Macro                 | Notation                                                                                                                                                                                             | Comment                                            |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| \Xspace               | X                                                                                                                                                                                                    | X, input space                                     |
| \Yspace               | $\mathcal{Y}$                                                                                                                                                                                        | Y, output space                                    |
| \Zspace               | $\mathcal{Z}$                                                                                                                                                                                        | Z, space of sampled datapoints                     |
| \nset                 | $\{1,\ldots,n\}$                                                                                                                                                                                     | set from 1 to n                                    |
| \pset                 | $\{1,\ldots,p\}$                                                                                                                                                                                     | set from 1 to p                                    |
| \gset                 | $\{1,\ldots,g\}$                                                                                                                                                                                     | set from 1 to g                                    |
| \Pxy                  | $\mathbb{P}_{xy}$                                                                                                                                                                                    | P_xy                                               |
| \Exy                  | $\mathbb{E}_{xy}$                                                                                                                                                                                    | E_xy: Expectation over random variables xy         |
| \xv                   | x                                                                                                                                                                                                    | vector x (bold)                                    |
| \xtil                 | $\tilde{\mathbf{x}}$                                                                                                                                                                                 | vector x-tilde (bold)                              |
| \yv                   | $\mathbf{y}$                                                                                                                                                                                         | vector y (bold)                                    |
| \xy                   | $(\mathbf{x}, y)$                                                                                                                                                                                    | observation $(x, y)$                               |
| \xvec                 | $(x_1,\ldots,x_p)^{\top}$                                                                                                                                                                            | (x1,, xp)                                          |
| \Xmat                 | X                                                                                                                                                                                                    | Design matrix                                      |
| \allDatasets          | $\mathbb{D}$                                                                                                                                                                                         | The set of all datasets                            |
| \allDatasetsn         | $\mathbb{D}_n$                                                                                                                                                                                       | The set of all datasets of size n                  |
| \D                    | $\mathcal{D}$                                                                                                                                                                                        | D, data                                            |
| \Dn                   | $\mathcal{D}_n$                                                                                                                                                                                      | D_n, data of size n                                |
| \Dtrain               | $\mathcal{D}_{	ext{train}}$                                                                                                                                                                          | D_train, training set                              |
| \Dtest                | $\mathcal{D}_{	ext{test}}$                                                                                                                                                                           | D_test, test set                                   |
| \xyi                  | $(\mathbf{x}^{(\#1)}, y^{(\#1)})$                                                                                                                                                                    | $(x^i, y^i)$ , i-th observation                    |
| \Dset                 | $((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)}))$                                                                                                                                  | $\{(x1,y1)\},, (xn,yn)\}, data$                    |
| \defAllDatasetsn      | $(\mathcal{X} \times \mathcal{Y})^n$                                                                                                                                                                 | Def. of the set of all datasets of size n          |
| \defAllDatasets       | $\bigcup_{n\in\mathbb{N}} (\mathcal{X}\times\mathcal{Y})^n$                                                                                                                                          | Def. of the set of all datasets                    |
| \xdat                 | $egin{aligned} igcup_{n \in \mathbb{N}} (\mathcal{X} 	imes \mathcal{Y})^n \ ig\{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)} ig\} \ ig\{ \mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)} ig\} \end{aligned}$ | $\{x1,, xn\}$ , input data                         |
| \ydat                 | $\left\{\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}\right\}_{\top}$                                                                                                                                    | $\{y1,, yn\}$ , input data                         |
| \yvec                 | $\left(y^{(1)},\ldots,y^{(n)} ight)^{	op}$                                                                                                                                                           | (y1,, yn), vector of outcomes                      |
| \greekxi              | $\mathbf{x}^{(i)}$                                                                                                                                                                                   | Greek letter xi                                    |
| \xi                   | $\mathbf{x}^{(\#1)}$                                                                                                                                                                                 | x^i, i-th observed value of x                      |
| \yi                   | $y^{(\#1)}$                                                                                                                                                                                          | y^i, i-th observed value of y                      |
| \xivec                | $\left(x_1^{(i)},\ldots,x_p^{(i)}\right)^{	op}$                                                                                                                                                      | (x1^i,, xp^i), i-th observation vector             |
| \xj                   | $\mathbf{x}_{j}$                                                                                                                                                                                     | x_j, j-th feature                                  |
| \xjvec                | $\left(x_j^{(1)},\ldots,x_j^{(n)}\right)$                                                                                                                                                            | $(x^1_j,, x^n_j)$ , j-th feature vector            |
| \phiv                 | $\phi$                                                                                                                                                                                               | Basis transformation function phi                  |
| \phixi                | $\phi^{(i)}$                                                                                                                                                                                         | Basis transformation of xi: $phi^i := phi(xi)$     |
| \lamv                 | λ                                                                                                                                                                                                    | lambda vector, hyperconfiguration vector           |
| \Lam                  | Λ (1.1                                                                                                                                                                                               | Lambda, space of all hpos                          |
| \preimageInducer      | $\left(igcup_{n\in\mathbb{N}}(\mathcal{X}	imes\mathcal{Y})^n ight)	imesoldsymbol{\Lambda}$                                                                                                           | Set of all datasets times the hyperparameter space |
| \preimageInducerShort | $\mathbb{D} 	imes \mathbf{\Lambda}$                                                                                                                                                                  | Set of all datasets times the hyperparameter space |
| \ind                  | ${\cal I}$                                                                                                                                                                                           | Inducer, inducing algorithm, learning algorithm    |

| \ftrue       | $f_{ m true}$                                                 | True underlying function (if a statistical model is assumed)                                                               |
|--------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| \ftruex      | $f_{ m true}({f x})$                                          | True underlying function (if a statistical model is assumed)  True underlying function (if a statistical model is assumed) |
| \fx          | $f(\mathbf{x})$                                               | f(x), continuous prediction function                                                                                       |
| \fdomains    | $f:\mathcal{X}	o\mathbb{R}^g$                                 | f with domain and co-domain                                                                                                |
| \Hspace      | $\mathcal{H}$                                                 | hypothesis space where f is from                                                                                           |
| \fbayes      | $f^*$                                                         | Bayes-optimal model                                                                                                        |
| \fxbayes     | $f^*(\mathbf{x})$                                             | Bayes-optimal model                                                                                                        |
| \fkx         | $f_{\#1}(\mathbf{x})$                                         | $f_{j}(x)$ , discriminant component function                                                                               |
| \fh          | $\hat{f}^{m1}$                                                | f hat, estimated prediction function                                                                                       |
| \fxh         | $\hat{f}(\mathbf{x})$                                         | fhat(x)                                                                                                                    |
| \fxt         | $f(\mathbf{x} \mid \boldsymbol{\theta})$                      | f(x   theta)                                                                                                               |
| \fxi         | $f(\mathbf{x}^{(i)})$                                         | $f(x^{-}(i))$                                                                                                              |
| \fxih        | $\hat{f}(\mathbf{x}^{(i)})$                                   | $f(x^{(i)})$                                                                                                               |
| \fxit        | $f\left(\mathbf{x}^{(i)}\right) \mid \boldsymbol{\theta}$     | $f(x^{(i)}  \text{ theta})$                                                                                                |
| \fhD         | $\hat{f}_{\mathcal{D}}$                                       | fhat_D, estimate of f based on D                                                                                           |
| \fhDtrain    | $\hat{f}_{\mathcal{D}_{	ext{train}}}$                         | fhat_Dtrain, estimate of f based on D                                                                                      |
| \fhDnlam     | $\hat{f}_{\mathcal{D}_n,oldsymbol{\lambda}}$                  | model learned on Dn with hp lambda                                                                                         |
| \fhDlam      | $\hat{f}_{\mathcal{D}, \lambda}$                              | model learned on D with hp lambda                                                                                          |
| \fhDnlams    | $\hat{f}_{\mathcal{D}_n,oldsymbol{\lambda}^*}$                | model learned on Dn with optimal hp lambda                                                                                 |
| \fhDlams     | $\hat{f}_{\mathcal{D}, oldsymbol{\lambda}^*}$                 | model learned on D with optimal hp lambda                                                                                  |
| \hx          | $h(\mathbf{x})$                                               | h(x), discrete prediction function                                                                                         |
| \hh          | $\hat{h}$                                                     | h hat                                                                                                                      |
| \hxh         | $\hat{h}(\mathbf{x})$                                         | hhat(x)                                                                                                                    |
| \hxt         | $h(\mathbf{x})$<br>$h(\mathbf{x} \boldsymbol{\theta})$        | $h(x \mid theta)$                                                                                                          |
| \hxi         | $h(\mathbf{x} \mathbf{b})$ $h(\mathbf{x}^{(i)})$              | $h(x \cap h(x))$                                                                                                           |
| \hxit        | $h\left(\mathbf{x}^{(i)}\midoldsymbol{	heta} ight)$           | $h(x^{(i)})$<br>$h(x^{(i)} \mid theta)$                                                                                    |
| \hbayes      | $h^*$                                                         | Bayes-optimal classification model                                                                                         |
| \hxbayes     | $h^*(\mathbf{x})$                                             | Bayes-optimal classification model                                                                                         |
| \yh          | $\hat{y}$                                                     | yhat for prediction of target                                                                                              |
| \yih         | $\hat{\hat{y}}^{(i)}$                                         | yhat^(i) for prediction of ith targiet                                                                                     |
| \resi        | $y^{(i)} - \hat{y}^{(i)}$                                     | y nav (1) 101 production of 101 tal gree                                                                                   |
| \thetah      | $\hat{	heta}$                                                 | theta hat                                                                                                                  |
| \thetab      | $\overset{\circ}{m{	heta}}$                                   | theta vector                                                                                                               |
| \thetabh     | $\hat{\hat{m{	heta}}}$                                        | theta vector hat                                                                                                           |
| \thetat      | $oldsymbol{	heta}^{[\#1]}$                                    | theta^[t] in optimization                                                                                                  |
| \thetatn     | $oldsymbol{	heta}^{[\#1+1]}$                                  | theta^[t+1] in optimization                                                                                                |
| \thetahDnlam | $\hat{	heta}_{\mathcal{D}_n,oldsymbol{\lambda}}$              | theta learned on Dn with hp lambda                                                                                         |
| \thetahDlam  | $\hat{	heta}_{D,oldsymbol{\lambda}}^{D_n,oldsymbol{\lambda}}$ | theta learned on D with hp lambda                                                                                          |
| \mint        | $\min_{\boldsymbol{\theta} \in \Theta}$                       | min problem theta                                                                                                          |
| \argmint     | $ \operatorname{argmin}_{\boldsymbol{\theta}\in\Theta} $      | argmin theta                                                                                                               |
| \pdf         | p                                                             | p                                                                                                                          |
| \pdfx        | $p(\mathbf{x})$                                               | p(x)                                                                                                                       |
| \pixt        | $\pi(\mathbf{x} \mid \boldsymbol{\theta})$                    | pi(x theta), pdf of x given theta                                                                                          |
| \pixit       | $\pi\left(\mathbf{x}^{(\#1)}\midoldsymbol{	heta} ight)$       | pi(x^i theta), pdf of x given theta                                                                                        |
| 1            | ( 1 - )                                                       | I (   1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                |

```
\pi (\mathbf{x}^{(\#1)})
                                                                                                     pi(x^i), pdf of i-th x
\pixii
\pdfxy
                                          p(\mathbf{x}, y)
                                                                                                     p(x, y)
                                          p(\mathbf{x}, y \mid \boldsymbol{\theta})
                                                                                                     p(x, y \mid theta)
\pdfxyt
                                          p\left(\mathbf{x}^{(i)}, y^{(i)} \mid \boldsymbol{\theta}\right)
                                                                                                     p(x^(i), y^(i) \mid theta)
\pdfxyit
                                          p(\mathbf{x}|y = #1)
\pdfxvk
                                                                                                     p(x \mid y = k)
                                                                                                     \log\,p(x\mid y=k)
                                          \log p(\mathbf{x}|y = #1)
\lpdfxyk
                                          p\left(\mathbf{x}^{(i)}|y=\#1\right)
\pdfxiyk
                                                                                                     p(x^i \mid y = k)
\pik
                                          \pi_{\#1}
                                                                                                     pi_k, prior
\lpik
                                          \log \pi_{\#1}
                                                                                                     log pi_k, log of the prior
                                          \pi(\boldsymbol{\theta})
                                                                                                     Prior probability of parameter theta
\pit
                                          \mathbb{P}(y=1\mid \mathbf{x})
                                                                                                     P(y = 1 \mid x), post. prob for y=1
\post
                                          \mathbb{P}(y = \#1 \mid \mathbf{x})
                                                                                                     P(y = k \mid y), post. prob for y=k
\postk
\pidomains
                                          \pi: \mathcal{X} \to [0,1]
                                                                                                      pi with domain and co-domain
                                          \pi^*
\pibayes
                                                                                                      Bayes-optimal classification model
\pixbayes
                                          \pi^*(\mathbf{x})
                                                                                                      Bayes-optimal classification model
                                                                                                     pi(x), P(v = 1 \mid x)
\pix
                                          \pi(\mathbf{x})
                                                                                                     pi, bold, as vector
\piv
                                         \pi_{\#1}(\mathbf{x})
                                                                                                     pi k(x), P(y = k \mid x)
\pikx
\pikxt
                                          \pi_{\#1}(\mathbf{x} \mid \boldsymbol{\theta})
                                                                                                     pi_k(x \mid theta), P(y = k \mid x, theta)
\pixh
                                          \hat{\pi}(\mathbf{x})
                                                                                                     pi(x) hat, P(y = 1 \mid x) hat
                                                                                                     pi_k(x) hat, P(y = k \mid x) hat
\pikxh
                                          \hat{\pi}_{\#1}(\mathbf{x})
                                          \hat{\pi}(\mathbf{x}^{(i)})
                                                                                                     pi(x^{(i)}) with hat
\pixih
                                          \hat{\pi}_{\#1}(\mathbf{x}^{(i)})
\pikxih
                                                                                                     pi k(x^{(i)}) with hat
\pdfygxt
                                          p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                                                                                     p(y \mid x, theta)
                                         p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})
                                                                                                     p(y^i |x^i, theta)
\pdfyigxit
                                                                                                     \log p(y \mid x, \text{ theta})
\lpdfygxt
                                          \log p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                         \log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
\lpdfyigxit
                                                                                                     \log p(y^i | x^i, \text{ theta})
                                          \mathbb{P}(\mathbf{x}|y=\#1)\mathbb{P}(y=\#1)
                                                                                                     Bayes rule
\bayesrulek
                                                    \mathbb{P}(\mathbf{x})
                                                                                                     mean vector of class-k Gaussian (discr analysis)
\muk
                                          \mu_{k}
\eps
                                                                                                     residual, stochastic
                                          \epsilon^{(i)}
                                                                                                      epsilon<sup>*</sup>i, residual, stochastic
\epsi
                                                                                                     residual, estimated
\epsh
                                         yf(\mathbf{x})
\yf
                                                                                                     y f(x), margin
                                          y^{(i)}f\left(\mathbf{x}^{(i)}\right)
\yfi
                                                                                                     y^i f(x^i), margin
                                          \hat{\Sigma}
                                                                                                     estimated covariance matrix
\Sigmah
\Sigmahj
                                          \hat{\Sigma}_i
                                                                                                     estimated covariance matrix for the j-th class
\Lyf
                                          L(y,f)
                                                                                                     L(y, f), loss function
\Lypi
                                          L(y,\pi)
                                                                                                     L(y, pi), loss function
\Lxy
                                          L(y, f(\mathbf{x}))
                                                                                                     L(y, f(x)), loss function
                                          L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)
                                                                                                     loss of observation
\Lxyi
\Lxyt
                                          L(y, f(\mathbf{x} \mid \boldsymbol{\theta}))
                                                                                                     loss with f parameterized
                                          L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)
\Lxyit
                                                                                                     loss of observation with f parameterized
                                          L(y^{(i)}, f(\tilde{\boldsymbol{x}}^{(i)} \mid \boldsymbol{\theta}))
\Lxym
                                                                                                     loss of observation with f parameterized
\Lpixy
                                          L(y, \pi(\mathbf{x}))
                                                                                                     loss in classification
                                                                                                     loss in classification
\Lpiv
                                          L(y, \boldsymbol{\pi})
```

| \Lpixyi       | $L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)}\right)\right)$                          | loss of observation in classification                   |
|---------------|------------------------------------------------------------------------------------|---------------------------------------------------------|
| \Lpixyt       | $L(y, \pi(\mathbf{x} \mid \boldsymbol{\theta}))$                                   | loss with pi parameterized                              |
| \Lpixyit      | $L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$ | loss of observation with pi parameterized               |
| \Lhxy         | $L(y, h(\mathbf{x}))$                                                              | L(y, h(x)), loss function on discrete classes           |
| \Lr           | L(r)                                                                               | L(r), loss defined on residual (reg) / margin (classif) |
| \lone         | $ y-f(\mathbf{x}) $                                                                | L1 loss                                                 |
| \ltwo         | $(y-f(\mathbf{x}))^2$                                                              | L2 loss                                                 |
| \lbernoullimp | $\ln(1 + \exp(-y \cdot f(\mathbf{x})))$                                            | Bernoulli loss for -1, +1 encoding                      |
| \lbernoullizo | $-y \cdot f(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x})))$                           | Bernoulli loss for 0, 1 encoding                        |
| \lcrossent    | $-y \log (\pi(\mathbf{x})) - (1-y) \log (1-\pi(\mathbf{x}))$                       | cross-entropy loss                                      |
| \lbrier       | $(\pi(\mathbf{x}) - y)^2$                                                          | Brier score                                             |
| \risk         | $\mathcal{R}$                                                                      | R, risk                                                 |
| \riskbayes    | $\mathcal{R}^*$                                                                    | 16, TION                                                |
| \riskf        | $\mathcal{R}(f)$                                                                   | R(f), risk                                              |
| \riskdef      | $\mathbb{E}_{y \mathbf{x}}(L(y, f(\mathbf{x})))$                                   | risk def (expected loss)                                |
| \riskt        | $\mathcal{R}(oldsymbol{	heta})$                                                    | R(theta), risk                                          |
| \riske        | $\mathcal{R}_{	ext{emp}}$                                                          | R_emp, empirical risk w/o factor 1 / n                  |
| \riskeb       | $ar{\mathcal{R}}_{	ext{emp}}^{	ext{cmp}}$                                          | R_emp, empirical risk w/ factor 1 / n                   |
| \riskef       | $\mathcal{R}_{	ext{emp}}(f)$                                                       | $R_{emp}(f)$                                            |
| \risket       | $\mathcal{R}_{	ext{emp}}(oldsymbol{	heta})$                                        | R_emp(theta)                                            |
| \riskr        | $\mathcal{R}_{	ext{reg}}$                                                          | R_reg, regularized risk                                 |
| \riskrt       | $\mathcal{R}_{	ext{reg}}(oldsymbol{	heta})$                                        | R_reg(theta)                                            |
| \riskrf       | $\mathcal{R}_{	ext{reg}}(f)$                                                       | $R_{reg}(f)$                                            |
| \riskrth      | $\hat{\mathcal{R}}_{	ext{reg}}(oldsymbol{	heta})$                                  | hat R_reg(theta)                                        |
| \risketh      | $\hat{\mathcal{R}}_{	ext{emp}}(oldsymbol{	heta})$                                  | hat R emp(theta)                                        |
| \LL           | $\mathcal{L}^{\circ}$                                                              | L, likelihood                                           |
| \LLt          | $\mathcal{L}(oldsymbol{	heta})$                                                    | L(theta), likelihood                                    |
| \LLtx         | $\mathcal{L}(oldsymbol{	heta} \mathbf{x})$                                         | L(theta x), likelihood                                  |
| \log1         | $\ell$                                                                             | l, log-likelihood                                       |
| \loglt        | $\ell(oldsymbol{	heta})$                                                           | l(theta), log-likelihood                                |
| \logltx       | $\ell(oldsymbol{	heta} \mathbf{x})$                                                | l(theta x), log-likelihood                              |
| \errtrain     | $\mathrm{err}_{\mathrm{train}}$                                                    | training error                                          |
| \errtest      | $\mathrm{err}_{\mathrm{test}}$                                                     | test error                                              |
| \errexp       | $\overline{\mathrm{err}_{\mathrm{test}}}$                                          | avg training error                                      |
| \thx          | $oldsymbol{	heta}^	op \mathbf{x}$                                                  | linear model                                            |
| \olsest       | $(\mathbf{X}^{	op}\mathbf{X})^{-1}\mathbf{X}^{	op}\mathbf{y}$                      | OLS estimator in LM                                     |

## ml-ensembles

| Macro    | Notation                                                              | Comment                                   |
|----------|-----------------------------------------------------------------------|-------------------------------------------|
| \bl      | $b^{[\#1]}$                                                           | baselearner, default m                    |
| \blh     | $\hat{b}^{[\#1]}$                                                     | estimated base learner, default m         |
| \blx     | $b^{[\#1]}({f x})$                                                    | baselearner, default m                    |
| \fM      | $f^{[M]}(\mathbf{x})$                                                 | ensembled predictor                       |
| \fMh     | $\hat{f}^{[M]}(\mathbf{x})$                                           | estimated ensembled predictor             |
| \ambifM  | $\Delta\left(f^{[M]}(\mathbf{x})\right)$                              | ambiguity/instability of ensemble         |
| \betam   | $\beta^{[\#1]}$                                                       | weight of basemodel m                     |
| \betamh  | $\hat{eta}^{[\#1]}$                                                   | weight of basemodel m with hat            |
| \betaM   | $eta^{[M]}$                                                           | last baselearner                          |
| \fm      | $f^{[\#1]}$                                                           | prediction in iteration m                 |
| \fmh     | $\hat{f}^{[\#1]}$                                                     | prediction in iteration m                 |
| \fmd     | $f^{[\#1-1]}$                                                         | prediction m-1                            |
| \fmdh    | $\hat{f}^{[\#1-1]}$                                                   | prediction m-1                            |
| \errm    | $\mathrm{err}^{[\#1]}$                                                | weighted in-sample misclassification rate |
| \wm      | $w^{[\#1]}$                                                           | weight vector of basemodel m              |
| \wmi     | $w^{[\#1](i)}$                                                        | weight of obs i of basemodel m            |
| \thetam  | $oldsymbol{	heta}^{[\#1]}$                                            | parameters of basemodel m                 |
| \thetamh | $\hat{m{	heta}}^{[\#1]}$                                              | parameters of basemodel m with hat        |
| \blxt    | $b(\mathbf{x}, \boldsymbol{\theta}^{[\#1]})$                          | baselearner, default m                    |
| \ens     | $\sum_{m=1}^{M} \beta^{[m]} b(\mathbf{x}, \boldsymbol{\theta}^{[m]})$ | ensemble                                  |
| \rmm     | $	ilde{r}^{[\#1]}$                                                    | pseudo residuals                          |
| \rmi     | $\tilde{r}^{[\#1](i)}$                                                | pseudo residuals                          |
| \Rtm     | $R_t^{[\#1]}$                                                         | terminal-region                           |
| \Tm      | $T^{[\#1]}$                                                           | terminal-region                           |
| \ctm     | $c_t^{[\#1]}$                                                         | mean, terminal-regions                    |
| \ctmh    | $\hat{c}_t^{[\#1]}$                                                   | mean, terminal-regions with hat           |
| \ctmt    | $	ilde{c}_t^{[\#1]}$                                                  | mean, terminal-regions                    |
| \Lp      | $\overset{\iota}{L'}$                                                 | ,                                         |
| \Ldp     | L''                                                                   |                                           |
| \Lpleft  | $L_{ m left}'$                                                        |                                           |
| \ts      | $oldsymbol{	heta}^{\star}$                                            | theta*                                    |
| \bljt    | $b^{[j]}(\mathbf{x}, oldsymbol{	heta})$                               | BL j with theta                           |
| \bljts   | $b^{[j]}(\mathbf{x}, oldsymbol{	heta}^{\star})$                       | BL j with theta*                          |

### ml-eval

| Macro           | Notation                                                                                                                                                                                                                                                             | Comment                                        |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| \ntest          | $n_{ m test}$                                                                                                                                                                                                                                                        | size of the test set                           |
| \ntrain         | $n_{ m train}$                                                                                                                                                                                                                                                       | size of the train set                          |
| \ntesti         | $n_{ m test,\#1}$                                                                                                                                                                                                                                                    | size of the i-th test set                      |
| \ntraini        | $n_{ m train,\#1}$                                                                                                                                                                                                                                                   | size of the i-th train set                     |
| $\$ Jtrain      | $J_{ m train}$                                                                                                                                                                                                                                                       | index vector train data                        |
| \Jtest          | $J_{ m test}$                                                                                                                                                                                                                                                        | index vector test data                         |
| \Jtraini        | $J_{ m train,\#1}$                                                                                                                                                                                                                                                   | index vector i-th train dataset                |
| \Jtesti         | $J_{\mathrm{test},\#1}$                                                                                                                                                                                                                                              | index vector i-th test dataset                 |
| \Dtraini        | $\mathcal{D}_{	ext{train},\#1}$                                                                                                                                                                                                                                      | D_train,i, i-th training set                   |
| \Dtesti         | $\mathcal{D}_{	ext{test},\#1}$                                                                                                                                                                                                                                       | D_test,i, i-th test set                        |
| \JSpace         | $\{1,\ldots,n\}^{\#1}$                                                                                                                                                                                                                                               | space of train indices of size n_train         |
| \JtrainSpace    | $\{1,\ldots,n\}^{n_{\mathrm{train}}}$                                                                                                                                                                                                                                | space of train indices of size n_train         |
| \JtestSpace     | $\{1,\dots,n\}^{n_{\mathrm{test}}}$                                                                                                                                                                                                                                  | space of train indices of size n_test          |
| \yJ             | $\mathbf{y}_{\#1}$                                                                                                                                                                                                                                                   | output vector associated to index J            |
| \yJDef          | $ y_{\#1} \left( y^{(J^{(1)})}, \dots, y^{(J^{(m)})} \right) $ $ \mathcal{J} $                                                                                                                                                                                       | def of the output vector associated to index J |
| <b>\</b> JJ     | Ì                                                                                                                                                                                                                                                                    | cali-J, set of all splits                      |
| \JJset          | $((J_{\mathrm{train},1},J_{\mathrm{test},1}),\ldots,(J_{\mathrm{train},B},J_{\mathrm{test},B}))$                                                                                                                                                                     | $(Jtrain_1,Jtest_1) \dots (Jtrain_B,Jtest_B)$  |
| $\Itrainlam$    | $\mathcal{I}(\mathcal{D}_{	ext{train}},oldsymbol{\lambda})$                                                                                                                                                                                                          |                                                |
| \GE             | GE                                                                                                                                                                                                                                                                   | GE                                             |
| \GEh            | $\widehat{	ext{GE}}$                                                                                                                                                                                                                                                 | GE-hat                                         |
| \GEfull         | $\mathrm{GE}(\mathcal{I}, \boldsymbol{\lambda}, \#1,  ho)$                                                                                                                                                                                                           | GE full                                        |
| \GEhholdout     | $\widehat{\operatorname{GE}}_{J_{\operatorname{train}},J_{\operatorname{test}}}(\mathcal{I},oldsymbol{\lambda}, J_{\operatorname{train}} , ho)$                                                                                                                      | GE hat holdout                                 |
| \GEhholdouti    | $\widehat{\operatorname{GE}}_{J_{	ext{train},\#1},J_{	ext{test},\#1}}(\mathcal{I},oldsymbol{\lambda}, J_{	ext{train},\#1} , ho)$                                                                                                                                     | GE hat holdout i-th set                        |
| \GEhlam         | $\widehat{\mathrm{GE}}(oldsymbol{\lambda})$                                                                                                                                                                                                                          | GE-hat(lam)                                    |
| \GEhlamsubIJrho | $\widehat{\operatorname{GE}}_{\mathcal{I},\mathcal{J}, ho}(oldsymbol{\lambda})$                                                                                                                                                                                      | GE-hat_I,J,rho(lam)                            |
| \GEhresa        | $\widehat{\mathrm{GE}}(\mathcal{I},\mathcal{J}, ho,oldsymbol{\lambda})$                                                                                                                                                                                              | GE-hat_I,J,rho(lam)                            |
| \GErhoDef       | $\lim_{n_{	ext{test}} 	o \infty} \mathbb{E}_{\mathcal{D}_{	ext{train}}, \mathcal{D}_{	ext{test}} \sim \mathbb{P}_{xy}} \left[  ho \left( \mathbf{y}_{J_{	ext{test}}}, F_{J_{	ext{test}}, \mathcal{I}(\mathcal{D}_{	ext{train}}, oldsymbol{\lambda})}  ight) \right]$ | GE formal def                                  |
| \agr            | $\inf_{h_{\text{test}} \to \infty} \mathcal{L}_{\text{train}} \mathcal{L}_{\text{test}} \sim_{\mathbb{F}_{xy}} [P(J_{\text{Jtest}}, \mathcal{L}_{\text{Jtest}}, \mathcal{L}(\mathcal{L}_{\text{train}}, \mathcal{A}))]$                                              | aggregate function                             |
| \GEf            | $\operatorname{GE}\left(\hat{f}\right)$                                                                                                                                                                                                                              | GE of a fitted model                           |
| \GEfh           | $\widehat{\mathrm{GE}}\left(\widehat{f}\right)$                                                                                                                                                                                                                      | GEh of a fitted model                          |
| \GEfL           | $\operatorname{GE}\left(\widehat{f},L\right)$                                                                                                                                                                                                                        | GE of a fitted model wrt loss L                |
| \Lyfhx          | $L\left(y,\hat{f}(\mathbf{x})\right)$                                                                                                                                                                                                                                | pointwise loss of fitted model                 |
| \GEnf           | $GE_n\left(\hat{f}_{\#1}\right)$                                                                                                                                                                                                                                     | GE of a fitted model                           |
| \GEind          | $GE_n\left(\mathcal{I}_{L,O} ight)$                                                                                                                                                                                                                                  | GE of inducer                                  |
| \GED            | $\operatorname{GE}_{\mathcal{D}}$                                                                                                                                                                                                                                    | GE indexed with data                           |
| \EGEn           | $EGE_n$                                                                                                                                                                                                                                                              | expected GE                                    |
| \EDn            | $\mathbb{E}_{ D =n}$                                                                                                                                                                                                                                                 | expectation wrt data of size n                 |
| \rhoL           | $ ho_L$                                                                                                                                                                                                                                                              | perf. measure derived from pointwise loss      |
| \F              | $\overline{F}$                                                                                                                                                                                                                                                       | matrix of prediction scores                    |

| \Fi              | $oldsymbol{F}^{(\#1)}$                                                                                                                                | i-th row vector of the predscore mat        |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| \FJ              | $F_{\#1}$                                                                                                                                             | predscore mat idxvec $\hat{J}$              |
| \FJf             | $F_{J,f}^{''}$                                                                                                                                        | predscore mat idxvec J and model f          |
| \FJtestfh        | $F_{J_{	ext{test}},\hat{f}}$                                                                                                                          | predscore mat idxvec Jtest and model f hat  |
| $\FJ$ testftrain | $F_{J_{	ext{tesi}},\mathcal{I}(\mathcal{D}_{	ext{train}},oldsymbol{\lambda})}$                                                                        | predscore mat idxvec Jtest and model f      |
| \FJtestftraini   | $F_{I_1},\dots,\sigma_{I_p}$                                                                                                                          | predscore mat i-th idxvec Jtest and model f |
| \FJfDef          | $\left(f(\mathbf{x}^{(J^{(1)})}),\ldots,f(\mathbf{x}^{(J^{(m)})})\right) \ igcup_{m\in\mathbb{N}}\left(\mathcal{Y}^m	imes\mathbb{R}^{m	imes g} ight)$ | def of predscore mat idxvec J and model f   |
| \preimageRho     | $\bigcup_{m\in\mathbb{N}} \left(\mathcal{Y}^m 	imes \mathbb{R}^{m	imes g} ight)$                                                                      | Set of all datasets times HP space          |
| \np              | $n_{+}$                                                                                                                                               | no. of positive instances                   |
| \nn              | $n_{-}$                                                                                                                                               | no. of negative instances                   |
| \rn              | $\pi_{-}$                                                                                                                                             | proportion negative instances               |
| \rp              | $\pi_+$                                                                                                                                               | proportion negative instances               |
| \tp              | #TP                                                                                                                                                   | true pos                                    |
| \fap             | #FP                                                                                                                                                   | false pos (fp taken for partial derivs)     |
| \tn              | $\#\mathrm{TN}$                                                                                                                                       | true neg                                    |
| \fan             | #FN                                                                                                                                                   | false neg                                   |

## ml-feature-sel

| Macro     | Notation       | Comment |
|-----------|----------------|---------|
| \xjNull   | $x_{j_0}$      |         |
| $\xjEins$ | $x_{j_1}$      |         |
| \xl       | $\mathbf{x}_l$ |         |
| \pushcode |                |         |

## ml-gp

| Macro              | Notation                                                                                                                      | Comment                                 |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| \fvec              | $\left[f\left(\mathbf{x}^{(1)}\right),\ldots,f\left(\mathbf{x}^{(n)}\right)\right]$                                           | function vector                         |
| \fv                | f                                                                                                                             | function vector                         |
| \kv                | k                                                                                                                             | cov matrix partition                    |
| \kxxp              | $k\left(\mathbf{x},\mathbf{x}'\right)$                                                                                        | cov of x, x'                            |
| \kxij              | $k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$                                                                            | $cov of x_i, x_j$                       |
| \mv                | m                                                                                                                             | GP mean vector                          |
| \Kmat              | K                                                                                                                             | GP cov matrix                           |
| \gaussmk           | $\mathcal{N}(\mathbf{m}, \mathbf{K})$                                                                                         | Gaussian w/ mean vec, cov mat           |
| \gp                | $\mathcal{GP}\left(m(\mathbf{x}), k\left(\mathbf{x}, \mathbf{x}'\right)\right)$                                               | Gaussian Process Definition             |
| \ls                | $\ell$                                                                                                                        | length-scale                            |
| \sqexpkernel       | $\exp\left(-\frac{\ \mathbf{x}-\mathbf{x}'\ ^2}{2\ell^2}\right)$                                                              | squared exponential kernel              |
| \fstarvec          | $\left[f\left(\mathbf{x}_{*}^{(1)}\right),\ldots,f\left(\mathbf{x}_{*}^{(m)}\right)\right]$                                   | pred function vector                    |
| \kstar             | $\mathbf{k}_*$                                                                                                                | cov of new obs with x                   |
| \kstarstar         | $\mathbf{k}_{**}$                                                                                                             | cov of new obs                          |
| \Kstar             | $\mathbf{K}_*$                                                                                                                | cov mat of new obs with x               |
| \Kstarstar         | $\mathbf{K}_{**}$                                                                                                             | cov mat of new obs                      |
| \preddistsingle    | $f_* \mid \mathbf{x}_*, \mathbf{X}, \mathbf{f}$                                                                               | predictive distribution for single pred |
| \preddistdefsingle | $\mathcal{N}(\mathbf{k}_*^{	op}\mathbf{K}^{-1}\mathbf{f},\mathbf{k}_{**}-\mathbf{k}_*^{	op}\mathbf{K}^{-1}\mathbf{k}_*)$      | Gaussian distribution for single pred   |
| \preddist          | $f_* \mid \mathbf{X}_*, \mathbf{X}, \mathbf{f}$                                                                               | predictive distribution                 |
| \preddistdef       | $\mathcal{N}(\mathbf{K}_*^{\top}\mathbf{K}^{-1}\mathbf{f}, \mathbf{K}_{**} - \mathbf{K}_*^{\top}\mathbf{K}^{-1}\mathbf{K}_*)$ | Gaussian predictive distribution        |

# ml-hpo

| Macro                                    | Notation                                                                                                                                                      | Comment                                                             |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| \Ilam                                    | $rac{\mathcal{I}_{oldsymbol{\lambda}}}{	ilde{oldsymbol{\Lambda}}}$                                                                                           | inducer with HP                                                     |
| \LamS                                    | $	ilde{m{\Lambda}}$                                                                                                                                           | search space                                                        |
| \lami                                    | $oldsymbol{\lambda}^{(\#1)}$                                                                                                                                  | lambda i                                                            |
| \clam                                    | $c(oldsymbol{\lambda})$                                                                                                                                       | c(lambda)                                                           |
| \clamh                                   | $c(\hat{oldsymbol{\lambda}})$                                                                                                                                 | c(lambda-hat)                                                       |
| \lams                                    | $\lambda^*$                                                                                                                                                   | theoretical min of c                                                |
| \lamh                                    | $egin{array}{c} c(\hat{oldsymbol{\lambda}}) \ oldsymbol{\lambda}^* \ \hat{oldsymbol{\lambda}} \end{array}$                                                    | returned lambda of HPO                                              |
| $\label{lamp}$                           | $\lambda^+$                                                                                                                                                   | proposed lambda                                                     |
| $\clamb$                                 | $c(\boldsymbol{\lambda}^+)$                                                                                                                                   | c of proposed lambda                                                |
| \archive                                 | $\mathcal A$                                                                                                                                                  | archive                                                             |
| \archivet                                | $\mathcal{A}^{[\#1]}$                                                                                                                                         | archive at time step t                                              |
| \tuner                                   | $\mathcal T$                                                                                                                                                  | tuner                                                               |
| \tunerfull                               | $\mathcal{T}_{\mathcal{I},	ilde{oldsymbol{\Lambda}}, ho,\mathcal{J}} \ \hat{c}(oldsymbol{\lambda})$                                                           | tuner with inducer, search space, perf measure, resampling strategy |
| \chlam                                   | $\hat{c}(oldsymbol{\lambda})$                                                                                                                                 | post mean of SM                                                     |
| \shlam                                   | $\hat{\sigma}(oldsymbol{\lambda})$                                                                                                                            | post sd of SM                                                       |
| \vhlam                                   | $\hat{\sigma}^2(oldsymbol{\lambda})$                                                                                                                          | post var of SM                                                      |
| \ulam                                    | $u(\boldsymbol{\lambda})$                                                                                                                                     | acquisition function                                                |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\lambda^*$                                                                                                                                                   | minimum of the black box function Psi                               |
| \metadata                                | $egin{aligned} \left\{ \left(oldsymbol{\lambda}^{(i)}, \Psi^{[i]} ight)  ight\} \ \left(\lambda^{[1]}, \dots, \lambda^{[m_{	ext{init}}]} ight) \end{aligned}$ | metadata for the Gaussian process                                   |
| \lamvec                                  | $\left(\lambda^{[1]},\ldots,\lambda^{[m_{\mathrm{init}}]} ight)$                                                                                              | vector of different inputs                                          |
| \minit                                   | $m_{ m init}$                                                                                                                                                 | size of the initial design                                          |
| \lambu                                   | $\lambda_{ m budget}$                                                                                                                                         | single lambda_budget component HP                                   |
| $\label{lamfid}$                         | $\lambda_{ m fid}$                                                                                                                                            | single lambda fidelity                                              |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\lambda_{ m fid}^{ m low}$                                                                                                                                   | single lambda fidelity lower                                        |
| \lamfidu                                 | $\lambda_{ m fid}^{ m upp}$                                                                                                                                   | single lambda fidelity upper                                        |
| \etahb                                   | $\eta_{ m HB}$                                                                                                                                                | HB multiplier eta                                                   |

# ml-infotheory

| Macro      | Notation                                                                                | Comment                                      |
|------------|-----------------------------------------------------------------------------------------|----------------------------------------------|
| \entx      | $-\sum_{x\in\mathcal{X}}p(x)\cdot\log p(x)$                                             | entropy of x                                 |
| \dentx     | $-\int_{\mathcal{X}} \tilde{f}(x) \cdot \log f(x) dx$                                   | diff entropy of x                            |
| $\$ jentxy | $-\sum_{x\in\mathcal{X}}p(x,y)\cdot\log p(x,y)$                                         | joint entropy of x, y                        |
| \jdentxy   | $-\int_{\mathcal{X},\mathcal{Y}} f(x,y) \cdot \log f(x,y) dx dy$                        | joint diff entropy of x, y                   |
| $\c$ entyx | $-\sum_{x\in\mathcal{X}}^{\infty} p(x) \sum_{y\in\mathcal{Y}} p(y x) \cdot \log p(y x)$ | cond entropy $y x$                           |
| $\c$       | $-\int_{\mathcal{X},\mathcal{Y}} f(x,y) \cdot \log f(y x) dx dy$                        | cond diff entropy $y x$                      |
| \xentpq    | $-\sum_{x\in\mathcal{X}}^{\infty}p(x)\cdot\log q(x)$                                    | cross-entropy of p, q                        |
| \kldpq     | $D_{KL}(p  q)$                                                                          | KLD between p and q                          |
| \kldpqt    | $D_{KL}(p\ q_{m{	heta}})$                                                               | KLD divergence between p and parameterized q |
| \explogpq  | $\mathbb{E}_p\left[\log rac{p(X)}{q(X)} ight]$                                         | expected LLR of p, q (def KLD)               |
| \sumlogpq  | $\sum_{x \in \mathcal{X}} p(x) \cdot \log \frac{p(x)}{q(x)}$                            | expected LLR of p, q (def KLD)               |

# ml-interpretable

| Macro      | Notation                                                                            | Comment                                                                    |
|------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| \pert      | $\tilde{\#1}^{\#2 \#3}$                                                             | command to express that for #1 the subset #2 was perturbed given subset #3 |
| \fj        | $\ddot{f}_{j}$                                                                      | marginal function f_j, depending on feature j                              |
| \fnj       | $f_{-j}$                                                                            | marginal function $f_{-}\{-j\}$ , depending on all features but j          |
| \fS        | $f_S$                                                                               | marginal function f_S depending on feature set S                           |
| \fC        |                                                                                     | marginal function f_C depending on feature set C                           |
| \fhj       | $\hat{f}_j$                                                                         | marginal function fh_j, depending on feature j                             |
| \fhnj      | $egin{array}{l} f_C \ \hat{f}_j \ \hat{f}_{-j} \ \hat{f}_S \ \hat{f}_C \end{array}$ | marginal function $fh_{-j}$ , depending on all features but j              |
| \fhS       | $\hat{f}_S$                                                                         | marginal function fh_S depending on feature set S                          |
| \fhC       | $\hat{f}_C$                                                                         | marginal function fh_C depending on feature set C                          |
| \XSmat     | $\mathbf{X}_S$                                                                      | Design matrix subset                                                       |
| \XCmat     | $\mathbf{X}_C$                                                                      | Design matrix subset                                                       |
| \Xnj       | $\mathbf{X}_{-j}$                                                                   | Design matrix subset $-j = \{1,, j-1, j+1,, p\}$                           |
| \fhice     | $\hat{f}_{\#1,ICE}$                                                                 | ICE function                                                               |
| \Scupj     | $S \cup \{j\}$                                                                      | coalition S but without player j                                           |
| \Scupk     | $S \cup \{k\}$                                                                      | coalition S but without player k                                           |
| \SsubP     | $S \subseteq P$                                                                     | coalition S subset of P                                                    |
| \SsubPnoj  | $S \subseteq P \setminus \{j\}$                                                     | coalition S subset of P without player j                                   |
| \SsubPnojk | $S \subseteq P \setminus \{j, k\}$                                                  | coalition S subset of P without player k                                   |
| \phiij     | $S \subseteq P \setminus \{j, k\}$ $\hat{\phi}_{j}^{(i)}$ $\mathcal{G}$             | Shapley value for feature j and observation i                              |
| \Gspace    | $\mathcal{G}^{"}$                                                                   | Hypothesis space for surrogate model                                       |
| \neigh     | $\phi_{\mathbf{x}}$                                                                 | Proximity measure                                                          |
| \zv        | ${f z}$                                                                             | Sampled datapoints for surrogate                                           |
| \Gower     | $d_G$                                                                               | Gower distance                                                             |

#### ml-mbo

| Macro | Notation                                                              | Comment                      |
|-------|-----------------------------------------------------------------------|------------------------------|
| \xvsi | $\mathbf{x}^{[\#1]}$                                                  | x at iteration i             |
| \ysi  | $y^{[#1]}$                                                            | y at iteration i             |
| \Dt   | $\mathcal{D}^{[\#1]}$                                                 | archive at iteration t       |
| \Dts  | $\mathcal{D}^{[t]} = \{ (\mathbf{x}^{[i]}, y^{[i]}) \}_{i=1,\dots,t}$ | archive at iteration t fully |
| \fh   | $\hat{s}$                                                             | surrogate mean               |
| \sh   | $\hat{s}$                                                             | surrogate se                 |
| \fmin | $f_{ m min}$                                                          | current best                 |

# ml-multitarget

| Macro   | Notation             | Comment |
|---------|----------------------|---------|
| \Tspace | $\mathcal{T}$        |         |
| \tv     | $\mathbf{t}$         |         |
| \tim    | $\mathbf{t}_m^{(i)}$ |         |
| \yim    | $y_m^{(i)}$          |         |

#### ml-nn

| Macro           | Notation                                                                    | Comment                                             |
|-----------------|-----------------------------------------------------------------------------|-----------------------------------------------------|
| \neurons        | $z_1,\ldots,z_M$                                                            | vector of neurons                                   |
| \hidz           | ${f z}$                                                                     | vector of hidden activations                        |
| \biasb          | b                                                                           | bias vector                                         |
| \biasc          | c                                                                           | bias in output                                      |
| \wtw            | $\mathbf{w}$                                                                | weight vector (general)                             |
| \Wmat           | $\mathbf{W}$                                                                | weight vector (general)                             |
| \wtu            | $\mathbf{u}$                                                                | weight vector of output neuron                      |
| \Oreg           | $R_{reg}(\theta X,y)$                                                       | regularized objective function                      |
| \Ounreg         | $R_{emp}(\theta X,y)$                                                       | unconstrained objective function                    |
| \Pen            | $\Omega(	heta)$                                                             | penalty                                             |
| \Oregweight     | $R_{reg}(w X,y)$                                                            | regularized objective function with weight          |
| \Oweight        | $R_{emp}(w X,y)$                                                            | unconstrained objective function with weight        |
| \Oweighti       | $R_{emp}(w_i X,y)$                                                          | unconstrained objective function with weight $w_i$  |
| \Oweightopt     | $J(w^* X,y)$                                                                | unconstrained objective function withoptimal weight |
| \Oopt           | $\hat{J}(\theta X,y)$                                                       | optimal objective function                          |
| \Odropout       | $J(\theta, \mu X, y)$                                                       | dropout objective function                          |
| \Loss           | $L(y, f(\mathbf{x}, \boldsymbol{\theta}))$                                  |                                                     |
| \Lmomentumnest  | $L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta} + \varphi \boldsymbol{\nu}))$    | momentum risk                                       |
| \Lmomentumtilde | $L(y^{(i)}, f(x^{(i)}, \tilde{\boldsymbol{\theta}}))$                       | Nesterov momentum risk                              |
| \Lmomentum      | $L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta}))$                               |                                                     |
| \Hess           | H                                                                           |                                                     |
| \nub            | u                                                                           |                                                     |
| \uauto          | L(x, g(f(x)))                                                               | undercomplete autoencoder objective function        |
| \dauto          | $L(x, g(f(\tilde{x})))$                                                     | denoising autoencoder objective function            |
| \deltab         | $\delta$                                                                    |                                                     |
| \Lossdeltai     | $L(y^{(i)}, f(\mathbf{x}^{(i)} + \boldsymbol{\delta} \boldsymbol{\theta}))$ |                                                     |
| \Lossdelta      | $L(y, f(\mathbf{x} + \boldsymbol{\delta}   \boldsymbol{\theta}))$           |                                                     |

### ml-online

| Macro         | Notation                   | Comment |
|---------------|----------------------------|---------|
| \Aspace       | $\mathcal{A}$              |         |
| \norm         | $  #1  _2$                 |         |
| $\label{lin}$ | $L^{	exttt{lin}}$          |         |
| \lzeroone     | $L^{0-1}$                  |         |
| \lhinge       | $L^{\mathtt{hinge}}$       |         |
| \lexphinge    | $\widetilde{L^{	t hinge}}$ |         |
| \lconv        | $L^{\mathtt{conv}}$        |         |
| \FTL          | FTL                        |         |
| \FTRL         | FTRL                       |         |
| \OGD          | OGD                        |         |
| \EWA          | EWA                        |         |
| \REWA         | REWA                       |         |
| \EXPthree     | EXP3                       |         |
| \EXPthreep    | EXP3P                      |         |
| \reg          | $\psi$                     |         |
| \Algo         | Algo                       |         |

## ml-regu

| Macro       | Notation           | Comment       |
|-------------|--------------------|---------------|
| \thetas     | $\theta^*$         | theta star    |
| \thetaridge | $	heta_{ m ridge}$ | theta (RIDGE) |
| \thetalasso | $	heta_{ m LASSO}$ | theta (LASSO) |
| \thetaols   | $\theta_{ m OLS}$  | theta (RIDGE) |

### ml-survival

| Macro   | Notation                                           | Comment |
|---------|----------------------------------------------------|---------|
| \Ti     | $T^{(\#1)}$                                        | ??      |
| \Ci     | $C^{(\#1)}$                                        | ??      |
| \oi     | $o^{(\#1)}$                                        | ??      |
| \ti     | $t^{(\#1)}$                                        | ??      |
| \deltai | $\delta^{(\#1)}$                                   |         |
| \Lxdi   | $L\left(\boldsymbol{\delta}, f(\mathbf{x})\right)$ |         |

#### ml-svm

| Macro           | Notation                                                                                                                                                              | Comment                                      |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| \sv             | SV                                                                                                                                                                    | supportvectors                               |
| \sl             | $\zeta$                                                                                                                                                               | slack variable                               |
| \slvec          | $\begin{pmatrix} \zeta^{(1)}, \zeta^{(n)} \end{pmatrix}$ $\zeta^{(\#1)}$                                                                                              | slack variable vector                        |
| \sli            | •                                                                                                                                                                     | i-th slack variable                          |
| \scptxi         | $raket{m{	heta},\mathbf{x}^{(i)}}$                                                                                                                                    | scalar prodct of theta and xi                |
| $\sl_svmhplane$ | $\hat{y}^{(i)}\left(\left\langle \hat{oldsymbol{	heta}},\mathbf{x}^{(i)} ight angle +	heta_{0} ight)$                                                                 | SVM hyperplane (normalized)                  |
| \alphah         | $\hat{lpha}$                                                                                                                                                          | alpha-hat (basis fun coefficients)           |
| \alphav         | lpha                                                                                                                                                                  | vector alpha (bold) (basis fun coefficients) |
| \alphavh        | $\hat{m{lpha}}$                                                                                                                                                       | vector alpha-hat (basis fun coefficients)    |
| \dualobj        | $\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$ | min objective in lin svm dual                |
| \HS             | $\Phi$                                                                                                                                                                | H, hilbertspace                              |
| \phix           | $\phi(\mathbf{x})$                                                                                                                                                    | feature map x                                |
| $\phixt$        | $\phi(\tilde{\mathbf{x}})$                                                                                                                                            | feature map $x$ tilde                        |
| \kxxt           | $k(\mathbf{x}, 	ilde{\mathbf{x}})$                                                                                                                                    | kernel fun x, x tilde                        |
| \scptxifm       | $\left\langle oldsymbol{	heta}, \phi(\mathbf{x}^{(i)})  ight angle$                                                                                                   | scalar prodct of theta and xi                |

#### ml-trees

| Macro   | Notation                                  | Comment                                |
|---------|-------------------------------------------|----------------------------------------|
| \Np     | $\mathcal{N}$                             | (Parent) node N                        |
| \Npk    | $\mathcal{N}_k$                           | node N_k                               |
| \Nl     | $\mathcal{N}_1$                           | Left node N_1                          |
| \Nr     | $\mathcal{N}_2$                           | Right node N_2                         |
| \pikN   | $\pi_{\#1}^{(\mathcal{N})}$               | class probability node N               |
| \pikNh  | $\hat{\pi}_{\#1}^{(\mathcal{N})}$         | estimated class probability node N     |
| \pikNlh | $\hat{\pi}_{\#1}^{(\mathcal{N}_1)}$       | estimated class probability left node  |
| \pikNrh | $\hat{\pi}_{\#1}^{(\bar{\mathcal{N}}_2)}$ | estimated class probability right node |