- 1. Use the pumping theorem to show that the following languages are not context-free
 - a). $\{www: w \in \{a, b\}^*\}$
 - (c) Assume $L = \{www : w \in \Sigma^*\}$ were context-free. Then there is a number k > 0 such that for any $w \in L$ such that $|w| \ge k$ there exist $u, v, x, y, z \in \Sigma^*$ such that $w = uvxyz, |vxy| \le k, vy \ne e$, and $uv^nxy^nz \in L$ for all $n \ge 0$. Consider the string $w = a^kba^kba^kb$. This string is in L and satisfies $|w| \ge k$. By our assumption, u, v, x, y, and z exist as above. Neither v nor y can contain more than one b. This follows from the fact that $|vxy| \le k$, so in particular $|v|, |y| \le k$ so each cannot contain more than one b. In fact, neither v nor y can contain any instance of b at all. Suppose, without loss of generality, that v contained a b. Then uv^2xy^2z contains four occurrences of b and hence certainly cannot be in L (as four is not divisible by three). Similarly, if v and v each contained a v, the string v and v expression of v is in the same reasoning could not be in v. So the only case remaining is v, v and v is in the first set of v and v is in the second set of v. Then v and v is in the second set of v. Then v and v is in the second set of v. Then v and v is in the second set of v. Then v and v is in the second set of v. Then v and v is in the second set of v. Then v and v is in the second set of v. Then v and v is in the second set of v. Then v and v is in the second set of v. Then v is v in the second set of v. Then v is v in the second set of v in the seco
 - b). $\{w \in \{a, b, c\}^* : w \text{ has equal number of } a's, b's \text{ and } c's\}$

The intersection of context-free language and regular language is context-free. So if it is context-free, we intersect L with $a^*b^*c^*$ and get $\{a^nb^nc^n:n\geq 0\}$ which should be context-free, but $\{a^nb^nc^n:n\geq 0\}$ not context-free, a contradiction.

- 2. Decide whether the following language is context-free or not, and state your reason:
 - a). $\{a^m b^n c^p : m = n \text{ or } n = p \text{ or } m = p\}$

Context-free. Hint: This is the union of $\{a^mb^mc^p\colon m\geq 0, p\geq 0\}$, $\{a^mb^pc^p\colon m\geq 0, p\geq 0\}$, $\{a^mb^pc^m\colon m\geq 0, p\geq 0\}$, each of which is essentially like $\{a^nb^n\colon n\geq 0\}$, which can be generated by similar context-free grammar, e.g., $\{a^mb^mc^p\colon m\geq 0, p\geq 0\}$ is the concatenation of $\{a^nb^n\colon n\geq 0\}$ and c^* , where one can use $S\to S_1S_2$, while $S_1\to aS_1b|e$ is the one for $\{a^nb^n\colon n\geq 0\}$, and $S_2\to cS_2|e$ for c^* . Or you can modify the PDA in our slide for it.

b). $\{a^mb^nc^p: m \neq n \text{ or } n \neq p \text{ or } m \neq p\}$

Context-free. Hint: This is the union of $\{a^mb^nc^p: m \neq n\}$, $\{a^mb^nc^p: n \neq p\}$, $\{a^mb^nc^p: m \neq p\}$. Each of them, say, $\{a^mb^nc^p: m \neq p\}$, is essentially the same as $\{a^mc^p: m \neq p\}$, which you can use the material in slides for showing the **complement** of $\{a^nb^n: n \geq 0\}$ is context-free.

c). $\{a^mb^nc^p: m=n \text{ and } n=p \text{ and } m=p\}$ Not context-free. This is $\{a^nb^nc^n: n \geq 0\}$