AD-A062 758

GENERAL DYNAMICS CORP FORT WORTH TX FORT WORTH DIV

STUDY OF HELMET MOUNTED SIGHT/DISPLAY INTERFACE CONCEPTS FOR F---ETC(U)

JUN 77

UNCLASSIFIED

I OF 1

A082750

837 23 0 A QA

DOC LIFE COPY

(9) EINAL PRESENTATION.

(G) STUDY OF HELMET MOUNTED

SIGHT/DISPLAY INTERFACE

CONCEPTS FOR F-16 AIRCRAFT.

1 June 1977

CONTRACT F33657-77-M-0219 CONTRACT F38657-77-M-0219 CONTRACT FOR AFSC/ASD/AERK

(12) #Ø P:

82

12

3

IT JUN HI

Fort Worth Division

P. O. Box 748, Fort Worth. Texas 76101

Approved for public release;
Distribution Unlimited

402 709

A Day

HELMET MOUNTED SIGHT

FOR F-16 MULTIROLE FIGHTER

DISTRIBUTION STATEMENT A

GEDRICKEYKA

To teeling

PRINCETTON/AVAILABILITY MODE

Per DDC Form 50

Approved for public release;
Distribution Unlimited

85071

78 12 21 146

F-16 HMS PRESENTATION OUTLINE

F-16 BASELINE CONFIGURATION

AVIONICS

PARTITIONED SYSTEM CONCEPT

ONE MAN CONTROLS AND DISPLAYS

BASELINE SYSTEM CAPABILITIES

CANDIDATE F-16 HMS UTILIZATION ,

HMS A/A UTILIZATION

• HMS A/G UTILIZATION • HMS NAV UTILIZATION SCANDIDATE SUPPLIER HMS CHARACTERISTICS SUMMARY; and

. DEVELOPMENT STATUS

POLHEMUS

HONEYWELL

MAGNAVOX

RAYTHEON

· MARCONI-ELLIOTT

HMS INTERFACE

ELECTRICAL INSTALLATION

SUMMARY

RECOMMENDATIONS

B5072

F-16 BASELINE CONFIGURATION

AVIONICS

• FIRE CONTROL SYSTEM

DOPPLER-SHARPENED GROUND MAP MODE BEACON MODE AIR-TO-GROUND RANGING FREEZE CAPABILITY ANTI-SHIP SEA MODES	AUTONOMOUS INERTIAL NORMAL GYROCOMPASS AND QUICK REACTION MODES HIGH ACCURACY BETTER THAN 1 N. MI/HR AND 3 FPS/AXIS	GENERAL PURPOSE DIGITAL COMPUTER WITH 32,000 WORD MEMORY 274,000 OPERATIONS PER SECOND	HEADUP GUNNERY & MISSILE SOLUTIONS HEAD DOWN TV MONITOR FOR RADAR & E-O	MICROPROCESSOR CONTROL
• FIRE CONTROL RADAR WESTINGHOUSE	● NAVIGATION SET	• FIRE CONTROL COMPUTER DELCO	HEAD UP HEAD DOWN MARCONI-ELLIOTT KAISER	STORES MANAGEMENT SET

MULTIMODE RADAR WITH ADVANCED DIGITAL SIGNAL PROCESSING

-

UNLIMITED GLOBAL INERTIAL NAVIGATION. VISUAL, RADAR AND TACAN UPDATES. BACK UP BUS CONTROLLER

SOFTWARE PROGRAMMABLE. CONTINUOUS SOLUTIONS FOR UNCONSTRAINED ATTACK TARGET IDENTIFICATION & ACQUISITION, WEAPON AIMING, FLIGHT REFERENCE CUES & ENERGY MANAGEMENT

CONTROLS AVIONICS DELIVERY MODE AND WEAPONS

NON-VOLATILE LOAD AND

READ ONLY PROGRAM

GENERAL DYNAMICS

. . . .

PROFILE MEMORY

FULLY REDUNDANT

MEMORY

689436A

FIRMWARE PROGRAMMABLE CENTRAL INTERFACE UNIT A Supplier Does His Total SEPARATE 'FIRMWARE'

PROGRAMMABLE SYMBOL GENERATORS FOR EACH

AIR DATA COMPUTER **GROWTH SYSTEMS**

of Maintenance

BS074

٠, .

BASELINE F-16 AVIONIC SYSTEM CAPABILITIES

• F-16 ALL WEATHER, DUAL ROLE CAPABILITY

- ALL WEATHER SEARCH, ANGLE & RANGE TRACK
- ◆LOOK-DOWN DETECT, ACQUIRE, AND TRACK IN CLUTTER
- · AUTOMATIC RADAR ACQUISITION FOR DOGFIGHT
- AIM-9 J/L Missiles
- SINGLE SWITCH ENTRY INTO AIR-TO-AIR
- INTEGRATED DISPLAY OF ENERGY MANAGEMENT **CUES AND FLIGHT REFERENCE DATA**
- PROVISIONS FOR RADAR MISSILE

0000 Air-To-Surface SINGLE POINT MODE BRDG RSGL & WEAPON CONTROL 18MK82S 100 FT CCRP TAIL D ROY

- EXTENSIVE WEAPON CAPABILITY
- Gun Rockets Conventional Bombs • E/O Weapons • Laser Guided Bombs
- Nuclear Weapons
- VISUAL DELIVERY AUTOMATICALLY COMPUTED FOR UNCONSTRAINED ATTACK CONDITIONS
- Level and Dive CCIP and Dive Toss Solutions
- BLIND WEAPON DELIVERY USING RADAR GROUNDMAP OR RADAR BEACON SIGHTING
 - Level and Toss Solutions
- E/O WEAPON DELIVERY
 - Maverick/H080 (TV)
- TISL PROVISIONS -- IDENTIFICATION OF LASER DESIGNATED TARGET

OPERATIONS & SURVIVABILITY

PENETRATION AIDS

- PASSIVE THREAT RADAR WARNING
 - CHAFF/FLARE DISPENSERS · AAA 4 · SAM

MODULAR ECM PODS FOR VARIOUS TERMINAL THREAT MIXES

• TACAN/ILS Alignment)

INERTIAL PLATFORM (With Rapid

NAVIGATION/COMMUNICATIONS

- VHF RADIO • A/G IFF
 - UHF RADIO
 - INTERCOM

HELMET MOUNTED SIGHT UTILIZATION CONCEPTS

CANDIDATE F-16 HMS UTILIZATIONS

BASELINE F-16

✓ HMS COULD PROVIDE A LOS DESIGNATION TO:

· AIR TO AIR MODES • RADAR · AIM9L

• SURFACE TARGET |

• AIR TO SURFACE MODES

• STEERPOINT | • NAVIGATION MODES

FUTURE F-16

✓ HMS COULD PROVIDE A LOS DESIGNATION TO:

• SLAVEABLE E/O WEAPONS

• LASER DESIGNATOR POD

NEW WEAPONS

BS076

HANDS ON CONTROL

85077

Mode Select

...

. : .

· Test

Normal Boresight

HMS A/A UTILIZATION

OPTIONALLY, THE MISSILE COULD BE SLEWED TO THE HMS LOS DIRECTLY. FURTHER ANALYSIS IS REQUIRED TO DETERMINE IF THIS IS PRACTICAL WITH WING BENDING AND CANOPY DEVIATION ERRORS

ì.

HMS A/G UTILIZATION

12

B5080A

HMS NAV UTILIZATION

- FIX TAKING -

HMS CHARACTERISTICS SUMMARY FOR CANDIDATE SUPPLIERS

DEVELOPMENT STATUS

✓ F4J FLIGHT TESTED WITH AN/AWG-14 RADAR ◆ LATAR POD AND AIM-9 INTEGRATION
ACHIEVED ◆ 500 SYSTEMS DELIVERED (F4B/J) ◆ AGILE MISSILE FLIGHT TESTED ◆ AMRL TESTS PARTICIPATION ◆ PAVE SPIKE FLIGHT TESTED ✓ IN ARMY FLIGHT TEST ◆ A7-E FLIGHT TESTED HONEYWELL **● MAGNAVOX** RAYTHEON • POLHEMUS .

PERFORMANCE

SYSTEM . MFGR	TYPE OF Sensor	*RMS ACCURACY	POTENTIAL ANGULAR COVERAGE	FREEDOM OF MOVEMENT
POLHEMUS	MAGNETIC	0.4 DEG	AZ +179 ⁰ EL + 89 ⁰	2 FT ³ 6 FT ³ DEVELOPMENT
HONEYWELL	æ	0.5 DEG	AZ ±180° EL ± 60°	LAT ±12" VERT ±10"
MAGNAVOX	Œ	0.5 DEG	AZ ±135° EL +85°.75°	LAT ±6" VERT ±2" F/8 +10", -2"
RAYTHEON	IR	1.5 DEG INCREASED ACCURACY SYSTEM UNDER	N/A	LAT +3" VERT ±3" F/B +6", -3"
MARCONI-ELLIOTT		0.5 DEG	AZ ±180 ⁰ EL ± 70 ⁰	LAT <u>+</u> 4" VERT <u>+</u> 6"

*Excludes External Error Sources Such as Canopy

PHYSICAL CHARACTERISTICS

(Advanced Visual Target Acquisition System) POLHEMUS AVTAS

SET CONTROL PANEL FUNCTIONS

FEATURES

- One Radiator Can Be Located Anywhere in the Cockpit
 - Proposed Use of LED Reticle Display
 - Small, Lightweight Magnetic Sensor and Radiator to Determine Head Movement
- Compatible with CRT Generated-Fiber Optic Display

RADIATOR 1 IN.3

• F.16 INSTALLATION CONSIDERATIONS

• A Magnetic Mapping Must Be Made for Every Unique Cockpit Configuration

85084 A

PHYSICAL CHARACTERISTICS

MAGNAVOX HAWC (Helmet Acquisition Weapon Controller)

SET CONTROL PANEL

VECTOR PROCESSING UNIT (VPU) 9.5 LBS 475 IN.3

F-16 INSTALLATION CONSIDERATIONS

 Possibility of Fogging of Infrared Detectors/Transmitters

 Two, Three or Four Ray Vector Sensors May Be Mounted Anywhere in the Cockpit
 Unrestricted Head Movement Can Be Achieved

FEATURES

· Infrared Detection Sensors to Determine

Uses LED Generated Display

Head Movement

B5085A

B3086 A

CANDIDATE HMS SUPPLIERS

PHYSICAL CHARACTERISTICS

HONEYWELL VTAS (Visual Target Acquisition System)

COMPUTER ASSEMBLY

FEATURES

- Uses LED Generated Display
- Infrared Detection Sensors to Determine Head Movement

F-16 INSTALLATION CONSIDERATIONS

- Possibility of Fogging of Infrared Detectors/Transmitters
 - Sensors Require Special Cantilevered Installation
- SSU Angular Coverage May Be Reduced Due to Mounting Location

► RAYTHEON

BASELINE SYSTEM QUOTED TO BE SAME AS TESTED IN AMRL STUDY;
 HOWEVER, NO LITERATURE WAS SENT TO GD

ADVANCED SYSTEM IS IN WORK — LOW KEY EFFORT

 USES TWO SENSORS IN LIEU OF FOUR USED ON BASELINE – SENSORS ARE 3/4 IN. DIA BY 1.1/4 IN. DEEP

◆ SENSORS HAVE 30 DEG COVERAGE, BUT ONLY ONE SENSOR NEED BE LOCKED TO HELMET SENSORS (8 LEDs on Helmet)

VOLUME STIPULATED TO BE ≤ 500 IN.³ FOR ELECTRONIC UNIT

A78081

PHYSICAL CHARACTERISTICS

FEATURES

- LED ARRAY DISPLAY
- LED SOURCE/CCD CAMERA SENSORS TO DETERMINE HEAD POSITION

F-16 INSTALLATION CONSIDERATIONS

- SENSOR PHYSICAL SIZE PRESENTS AN INSTALLATION PROBLEM
- SLIGHTLY REDUCED FOV DUE TO SENSOR CAMERA MOUNTING

B5088

HMS INTERFACE

B5090

ELECTRICAL INTERFACE

B5090

ELECTRICAL INTERFACE

CONTRACTOR OF THE PROPERTY OF

INTEGRATING HMS INTO F-16 AVIONIC SYSTEM

FEATURES:

- → HMS TRANSMITS LOS ANGLES AND BIT/SELF TEST INFORMATION WHEN COMMANDED BY BUS CONTROLLER (FCC PRIMARY CONTROLLER INU IS BACK-UP)
- ✓ HMS RECEIVES MODE COMMANDS FROM SMS, SYMBOLOGY COMMANDS FROM FCC AND BIT COMMANDS FROM FCC VIA MUX

B5091

ELECTRICAL INTERFACE

SIGNAL INTERFACE

HMS REQUIRES THE FOLLOWING INPUT PARAMETERS:

- ANALOG/DISCRETE

- POWER ON-OFF
- RETICLE INTENSITY CONTROL
- MISSILE LOCK-ON

OUTPUT PARAMETERS ARE:

- **→** ANALOG/DISCRETE
- · NONE

► MUX DATA

- MODE SELECTION
- · RADAR LOCK-ON
- SEEKER HEAD COINCIDENT WITH RETICLE LOS
 - · BIT COMMAND

✓ MUX DATA

- · AZIMUTH LOS ANGLE
- · ELEVATION LOS ANGLE • SELF TEST/BIT STATUS
- MISSILE LOCK-ON

POWER REQUIREMENTS

- ◆AC POWER 3 \$\phi\$ 115/200 VAC, 400 Hz PER MIL-STD-704A, CATEGORY B
 ◆ 300 VOLT AMPS
- DC PWR 28 VDC PER MIL-STD-704A
- 50 WATTS MAXIMUM

B5092A

B5093

HMS INSTALLATION

HMS ELECTRONIC UNIT INSTALLATION CONSIDERATIONS

- GROWTH VOLUME FOR AVIONICS IS CURRENTLY BEING EVALUATED **AFT AVIONICS EQUIPMENT BAY** Exact Location Dependent on **UTILIZES GROWTH SPACE IN**
- POTENTIAL NEAR TERM SOLUTION FOR INSTALLATION SHOWN ABOVE IN CANOPY FAIRING AREA OF AFT EQUIPMENT BAY
- ENVIRONMENT DESCRIBED IN GD DOCUMENT NO. 16PS011

 Reference GD Dwg FW7715025 for Current Proposed Installation

Specific Temperature/Vibration

Can be Determined When

Installation is Firm

ENVIRONMENT – DESCRIBED IN

GD DOCUMENT NO. 16PS011

Future Equipment Allocation

PROPOSED HMS ELECTRONIC UNIT INSTALLATION DRAWING — F-16A

88098

.

COCKPIT INSTALLATION CONSIDERATIONS

F-16 COCKPIT

30

F-16 COCKPIT CONFIGURATION PROPOSED SENSOR MOUNTING LOCATIONS

HMS COCKPIT INSTALLATION

ALTERNATE LOCATION

COMPARISON: PROPOSED vs. SUGGESTED LOCATION

34

PROFILE VIEW — HONEYWELL SUGGESTED SENSOR LOCATION

F-16A PILOT'S EXTERNAL VISION PLOT — HONEYWELL SENSOR VISION BLOCKAGE

B\$102

HEAD POSITION SENSOR UNITS INSTALLATION SUMMARY

COMMENTS ON FEASIBILITY	Only Easily Installed Candidate date Further Study of Canopy "Breathing" Required	Two Sensors Accommodated on on Instrument Panel Glareshield Further Study Required for Additional Sensor Locations Possibly Outboard of Seat and Inboard of Canopy Frame	Physical Size is an Installation Problem (Protuberance into Cockpit)	SSU Size Precludes Usable Location Without Significant Vision Blockage — No "Good" Location in a Cockpit Optimized for External Vision
PRINCIPAL CONSIDERATIONS (Based on Supplier Preferences)	• LOCATION ON INSIDE SURFACE OF CANOPY, ABOVE/BEHIND PILOT'S HEADREST OR ON AFT EDGE OF GLARE SHIELD • NO VISUAL BLOCKAGE PENALTY	• FOUR SENSORS PREFERRED FOR BEST CONFIGURATION • Two Integrated into Aft Edge of Glareshield (Redesign Task) • Two Supported from Brackets Cantilevered Off of Seat Bulkhead	• V-SLIT CAMERAS EASILY MOUNTED IN SUPPORTS FROM SEAT BULKHEAD • SLIGHT VISUAL BLOCKAGE AT 138-140 DEG AZ • ALTERNATE LOCATION AT SILL LINE-INTEGRATED INTO LOWER CORNERS OF INSTRUMENT PANEL (Extensive Changes)	 CANOPY FRAME MOUNTING REQUIRED FOR ADEQUATE VIEWING OF LEDs ON HELMET Subject to Canopy "Breathing" Significant Blockage to Down/Aft Vision (At Approx. 135 Deg AZ)
SIGHT SYSTEM CANDIDATES	POLHEMUS	MAGNAVOX	MARCONI-ELLIOTT	HONEYWELL
RELATIVE EASE OF INSTL	-	2	8	4

•PRELIMINARY ASSESSMENT BASED ON COCKPIT INSTALLATION CONSIDERATIONS:

POLHEMUS MAGNETIC SENSOR APPEARS MOST ATTRACTIVE
 HONEYWELL SYSTEM IS MOST DIFFICULT TO ACCOMMODATE

88103A

SUMMARY

▶ ALL CANDIDATE SUPPLIER QUOTED ACCURACIES COMPATIBLE WITH SLEWING FIRE CONTROL RADAR TO HMS LOS (CURRENT APPLICATION)

RADAR CURRENTLY SLEWS AIM-9L TO RADAR LOS

FIRE CONTROL COMPUTER CURSOR CONTROL SLEWS RADAR ANTENNA FOR A/G TARGETS COULD USE SIMILAR TECHNIQUE FOR SLEWING RADAR TO A/A TARGETS

RAYTHEON HMS ACCURACY IS MARGINAL

HMS INSTALLATION IMPACT INCLUDES

• MUX BUS CONTROL CHANGE - FCC AND INU

 A MINIMUM OF TWO ADDITIONAL SWITCH FUNCTIONS REQUIRED — PLUS SWITCH FUNCTIONS DEPICTED ON HMS CONTROL PANEL SOFTWARE CHANGE FOR STORES MANAGEMENT SET AND FIRE CONTROL COMPUTER

A/P POWER, INSTALLATION VOLUME AND COOLING CAPACITY ARE AVAILABLE

AREAS OF CONCERN

• SENSOR INSTALLATION

LARGE SIZE OF HONEYWELL OPTICAL SYSTEM IMPACTS PILOT'S VISION

CANOPY SIL MOVES WITH A/P LOAD FACTOR AND COCKPIT PRESSURE SCHEDULE

BULKHEAD INSTALLATION REQUIRES CANTILEVER INSTALLATION

 MAGNETIC SENSOR REQUIRES COCKPIT MAPPING FOR BIAS CORRECTION – TWO SEAT F-16 MAY REQUIRE UNIQUE MAP

CANOPY LOS ANGULAR DEVIATIONS/EFFECTS (NEED FURTHER ASSESSMENT)

PILOT ACCEPTANCE

ADDITIONAL HELMET WEIGHT IN HIGH "G" ENVIRONMENT

RECOMMENDATIONS

- F-16 INTERFACE SHOULD IMPACT AF HMS SELECTION/SPECIFICATIONS
- Cockpit Installation Constraints
- MIL-STD-1553 MUX-Interface
- Integrated Controls
- FURTHER STUDIES WILL BE REQUIRED TO ASSESS F-16 HMS MODES/UTILIZATION WITH NEW WEAPONS
- High Angle Off Boresight Compatible A/A Missile(s) Contingent Upon Current AF Studies Results (AIM VAL, etc)
- Slewable E ∙ O A/G Weapons
- ✓ Pod Installed Sensors
- PROPOSE ADDITIONAL STUDY TO GENERATE F-16 HMS INTERFACE SPECIFICATION PRELIMINARY S.O.W. AVAILABLE

BSICS