

Pour quel type de modèle obtient-on une loi a posteriori facilement ?

$$\frac{f_{\mathbf{X}|\boldsymbol{\theta}} f_{\boldsymbol{\theta}}}{\int f_{\mathbf{X}|\boldsymbol{\theta}} f_{\boldsymbol{\theta}} d\boldsymbol{\theta}} \propto f_{\mathbf{X}|\boldsymbol{\theta}} f_{\boldsymbol{\theta}} d\boldsymbol{\theta}$$

 $f_{\boldsymbol{\theta}}|\mathbf{X}$

1) Prendre une loi a priori uniforme:

1. Une loi a priori uniforme sur Θ : f_{θ} constante.

Exemple:

On considère X_1, \ldots, X_n i.i.d $\sim \mathcal{N}(\mu, \sigma^2)$ avec σ^2 connue.

Trouver la loi de $\mu|X_1,\ldots,X_n$ en prenant une loi a priori impropre $\pi(\mu) \propto 1$ sur \mathbb{R} .

2. La loi a posteriori est alors donnée par le modèle $f_{\mathbf{X}|\boldsymbol{\theta}}$ mais en fonction de $\boldsymbol{\theta}$.

3. Comment faire si le domaine de θ n'est pas borné, \mathbb{R} par exemple?

5. ... à condition que la loi a posteriori obtenue soit propre : $\int_{\Omega} f_{\mathbf{X}|\boldsymbol{\theta}} f_{\boldsymbol{\theta}} d\boldsymbol{\theta} < +\infty$.

4. On peut considérer une loi a priori impropre c-à-d à "densité" non-intégrable $\int_{\Omega} f_{\theta} = +\infty$ mais..

Choix de l'a-priori

Choix de l'a-priori

1. Pour quel type de modèle obtient-on une loi a posteriori facilement?

$$f_{\boldsymbol{\theta}|\mathbf{X}} = \frac{f_{\mathbf{X}|\boldsymbol{\theta}} f_{\boldsymbol{\theta}}}{\int f_{\mathbf{X}|\boldsymbol{\theta}} f_{\boldsymbol{\theta}} d\boldsymbol{\theta}} \propto f_{\mathbf{X}|\boldsymbol{\theta}} f_{\boldsymbol{\theta}}$$

1) Prendre une loi a priori uniforme:

- 1. Une loi a priori uniforme sur Θ : f_{θ} constante.
- 2. La loi a posteriori est alors donnée par le modèle $f_{\mathbf{X}|\boldsymbol{\theta}}$ mais en fonction de $\boldsymbol{\theta}$.
- 3. Comment faire si le domaine de θ n'est pas borné, \mathbb{R} par exemple ?
- 4. On peut considérer une loi a priori impropre c-à-d à "densité" non-intégrable $\int_{\Omega} f_{\theta} = +\infty$ mais...
- 5. ... à condition que la loi a posteriori obtenue soit propre : $\int_{\Omega} f_{\mathbf{X}|\boldsymbol{\theta}} f_{\boldsymbol{\theta}} d\boldsymbol{\theta} < +\infty$.

Exemple:

On considère X_1,\ldots,X_n i.i.d $\sim \mathcal{N}(\mu,\sigma^2)$ avec σ^2 connue. Trouver la loi de $\mu|X_1,\ldots,X_n$ en prenant une loi a priori impropre $\pi(\mu) \propto 1$ sur \mathbb{R} .

- 1. Introduction
- 2. Les Bayésiens vs Les fréquentistes
- 3. Rappels de probabilités (exemples)
- 4. Loi a posteriori et modèles conjugués
- 5. Estimateur de Bayes

a priori conjuguées

1. Pour quel type de modèle obtient-on une loi a posteriori facilement ?

