PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

		(11) International Publication Number: WO 00/10589
A61K 38/00, 38/31, 38/12, C07K 5/00, 7/00	A1	(43) International Publication Date: 2 March 2000 (02.03.00)
 (21) International Application Number: PCT/USS (22) International Filing Date: 23 August 1999 (23) (30) Priority Data: 60/097,562 24 August 1998 (24.08.98) (71)(72) Applicant and Inventor: WHITE, Jeffrey, D. [U Howell Road, Bridgewater, NJ 08807-(US). (74) Agent: McNEES, W., Scott, Gibbons, Del Deo Griffinger & Vecchione, One Riverfront Plaza, Ne 07102-5497 (US). 	23.08.99 U JS/US]; o, Dola	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI paten (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE SN, TD, TG).
(54) Title: SOMATOSTATIN ANALOGS NH ₂ Cys-Tyr	-D-Tr	p-Lys-Thr-Cys-D-Tyr-NH ₂ (1)
cysteine groups in the 1 and 6 position being linked to modifications are made at the free amino group of cysteine can be modified by the addition of isocyanates, isothiocya	gether to of the panates,	o form a disulfide bridge in the monocyclic configuration. Chemica eptide (1). It has been demonstrated that the somatostatin analog peptidicid chlorides, chloroformates and glycidyl ethers (epoxides) at the free
The present invention relates to somatostatin analog cysteine groups in the 1 and 6 position being linked to modifications are made at the free amino group of cysteine can be modified by the addition of isocyanates, isothiocya amino group, at the terminal cysteine resulting in a measurement.	gether to of the panates,	h comprises a chemically substituted heptapeptide sequence having the oform a disulfide bridge in the monocyclic configuration. Chemical eptide (1). It has been demonstrated that the somatostatin analog peptidic chlorides, chloroformates and glycidyl ethers (epoxides) at the freshancement of the ability of the chemically modified compounds to bind

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Алтепіа	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	Tj	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
Cυ	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Licchtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

SOMATOSTATIN ANALOGS

BACKGROUND OF THE INVENTION

5

10

15

20

Somatostatin is a cyclic tetradecapeptide which inhibits release of several pituitary and intestinal factors that regulate cell proliferation, cell motility, and/or secretion including growth hormone, adrenocorticotropin hormone, prolactin, thyroid stimulating hormone, insulin, glucagon, motilin, gastric inhibitory peptide, vasoactive intestinal peptide, secretin, cholecystokinin, bombesin, gastrin releasing peptide, gastrin, thyroid releasing hormone, pancreatic polypeptide, cytokines (e.g., interleukins, interferons), growth factors (e.g., epidermal growth factor, nerve growth factor), and vasoactive amines (e.g., serotonin). Several of these factors are implicated in regulation of normal cell proliferation, as well as in tumor cell proliferation and metastasis.

Native somatostatin has a very short half life in vivo. A large number of novel analogues have been prepared in order to enhance the duration of effect, biological activity and the selectivity of this hormone. A variety of somatostatin peptide analogs have been produced by elimination of amino acids that are not absolutely required for activity and substitution of the native L-amino acids with the corresponding D-amino acid isomers. Thus, some of these analogs are long acting, more potent receptor agonists than native somatostatin, due in part to the resistance of D-amino acids to enzyme degradation. For example, the synthetic somatostatin analog octreotide acetate, which has the amino acid sequence D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr(ol) is more potent

than native somatostatin in inhibition of growth factor release. Bauer et al. U.S. Patent No. 4,395,403.

SUMMARY OF THE INVENTION

The present invention provides novel chemically modified somatostatin analogs, structural derivatives of native somatostatin which bind a somatostatin receptor. Analogs include both antagonists and agonists of somatostatin activity.

More particularly, the present invention provides a somatostatin analog which comprises a chemically substituted heptapeptide sequence having the cysteine groups in the 1 and 6 position being linked together to form an disulfide bridge in the monocyclic configuration. Chemical modifications are made at the free amino group of cysteine of the peptide below

15

20

5

10

It has been demonstrated that the somatostatin analog peptide can be modified by the addition of isocyanates, isothiocyanates, acid chlorides, chloroformates and glycidyl ethers (epoxides) at the free amino group, at the terminal cysteine resulting in a measurable enhancement of the ability of the chemically modified compounds to bind somatostatin receptors.

The following synthetic reaction schemes are used to generate the chemically modified peptides.

5 BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a graph which illustrates that peptide 3502 suppresses secretion of growth hormone.

Figure 2 is a graph which shows that orally administered peptide 3502 prevents normal pulsatile secretion of growth hormone.

DETAILED DESCRIPTION OF THE INVENTION

The compounds of this invention are cyclic heptapeptide analogs of somatostatin having the general structure of Formula I

wherein A is

10

and R1 is C1-C4 alkyl, adamantyl,

$$X_1$$
, or X_1

Y is a bond, C1-C4 alkenyl, C=O, or SO₂; and

 X_1 and X_2 are independently, flourine, chlorine, bromine, iodine, C1-C4 alkyl, NO₂ or

The chemical modifications of Formula I are generated at the free amino group of
the terminal cysteine moiety of the heptapeptide sequence.

Preferred compounds of this invention include compounds of Formula I:

wherein A is

R1 is C1-C4 alkyl, adamantyl,

$$X_1$$
, X_1 , or X_2

10

Y is a bond, C1-C4 alkenyl, C=O, or SO₂; and

 $\rm X_1$ and $\rm X_2$ are independently, flourine, chlorine, bromine, iodine, C1-C4 alkyl, NO $_2$ or

Another preferred compound of this invention of Formula I was the following structure wherein A is

R₁ is

Y is CH₂ and

X₁ is hydrogen.

5 Other preferred somatostatin analogs are compounds of Formula I

R1 is C1-C4 alkyl, adamantyl,

$$X_1$$
, or X_2

10 Y is a bond, C1-C4 alkenyl, C=O, or SO₂; and

 $\rm X_1$ and $\rm X_2$ are independently, flourine, chlorine, bromine, iodine, C1-C4 alkyl, NO₂ or

Another preferred somatostatin analog of this invention is a compound of Formula I

5 R_1 is

10

15

X, is hydrogen, and

Y is a bond.

The invention features compounds, compositions and methods for the treatment of diseases in mammals associated with increased production or secretion of any factor or factors which can be regulated by somatostatin, including but not limited to growth hormone, insulin, glucagon and pancreatic exocrine secretion.

The compounds can be administered in the dosages used for somatostatin or, because of their greater potency, in smaller dosages. The compounds of the invention can be used for the treatment of cancer, particularly growth hormone- or growth factor-dependent cancer (e.g., bone, cartilage, pancreas, prostate, or breast), acromegaly and related hypersecretroy endocrine states, or of bleeding ulcers and in those suffering from

pancreatitis or diarrhea. The compounds can also be used in the management of diabetes and to protect the liver of patients suffering from cirrhosis or hepatitis. The compounds can also be used to treat Alzheimer's disease and as gastric cytoprotective compounds for ulcer therapy. The compounds will also be useful in treating diabetes-related retinopathy, nephropathy and vascular disease. The anti-cancer activity of the compounds may be related to their ability to antagonize the actions of cancer-related growth factors such as epidermal growth factor, insulin-like growth factor (IGF-1), or vasoactive endothelial growth factor (VEGF).

5

10

15

20

The analogs can be made available in the form of pharmaceutically acceptable salts or complexes. Examples of therapeutically acceptable acids for the formulation of salts of the somatostatin analogs are inorganic acids, such as hydrochloric acid, sulfuric acid, phosphoric acid, and the organic lactic, maleic, citric, succinic, benzoic, salicylic, toluensulfonic acids. Complexes are compounds of Formula I formed by the addition of organic salts or hydroxides such as Ca and Zn salts or the addition polymeric organic materials, such as tannic acid or carboxymethyl cellulose.

In other preferred embodiments, a therapeutically effective amount of the somatostatin analog or pharmaceutically acceptable salt or complex thereof are combined with a pharmaceutically acceptable carrier substance (e.g., magnesium carbonate, lactose, a phospholipid or mannitol) to form a pharmaceutical composition. Examples of methods of administration of the therapeutic reagent of the pharmaceutical composition thereof include a pill, tablet, capsule or liquid for oral administration. The pharmaceutical composition can also be administered as an ointment, gel, cream or lotion

for application to the skin, or as a solution capable of being administered intravenously, parenterally, subcutaneously, transmucosally, intranasally or intraperitoneally in an appropriate buffer if necessary. The solid forms of this therapeutic composition can be coated with a substance capable of protecting the modified peptide from digestion by gastric acid in the stomach for a period of time sufficient to allow the composition to pass undisintegrated into the small intestine. The therapeutic composition can be administered via a sustained release formulation or a dermal patch. The descriptions are provided as examples and are not meant to limit the possibilities of therapeutic compositions or methods of administration of the somatostatin analogs.

10 Examples

5

15

20

The cyclic heptapeptide NH₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH₂ was purchased from Polypeptide Laboratories. The reagents used to modify the heptapeptide are widely available from commercial sources.

In accordance with the present invention, numerous modified peptides have been synthesized according to the synthetic schemes outlined below.

1) Reactions of isocyanate with the heptapeptide of Formula I:

$$\begin{array}{c|cccc}
R_1 & O & & R_1 & O \\
 & & & & & & \\
N & & & & & & \\
N & & & & & \\
N & & & & & \\
N & & & & & \\
\end{array}$$
+ H₂N-peptide $\xrightarrow{\qquad \qquad \qquad \qquad }$ HN — C — HN – peptide

The heptapeptide (as a trifluoroacetic acid salt) containing Boc-Lys was suspended in anhydrous acetonitrile to yield a 1 mM concentration. Fifty to $100~\mu l$ of

this mixture was placed in a microcentrifuge tube. One equivalent of triethylamine (100 mM in acetonitrile) was added with mixing, followed by the addition of 1 equivalent of the isocyanate (100 mM in acetonitrile). The reactions with the isocyanates were incubated at room temperature for 60 to 120 min. Ten μ l of water was added. The solvent was removed by evaporation under vacuum. The chemically modified peptides were than purified by reverse phase HPLC.

2) Reactions with isothiocyanates:

5

10

15

20

$$R_1$$
 S R_1 S R_1 S R_1 R_2 R_3 R_4 R_4 R_5 R_4 R_5 R_4 R_5 R_4 R_5 R_5

The heptapeptide (as a trifluoroacetic acid salt) containing Boc-Lys was suspended in anhydrous acetonitrite to yield a 1 mM concentration. Fifty to 100 µl of this mixture was placed in a microcentrifuge tube. One equivalent of triethylamine (100 mM in a acetonitrile) was added with mixing, followed by the addition of one equivalent of isocyanate (100 mM in acetonitrile). The reactions with the isothiocyanates were incubated at room temperature for 18 hrs. The solvent was removed by evaporation under vacuum. The chemically modified peptides were then purified by reverse phase HPLC.

3) Reactions with acid chlorides:

The heptapeptide (as a trifluoroacetic acid salt) containing Boc-Lys was suspended in anhydrous acetonitrile to yield a 1 mM concentration. Fifty to 100 µl of this mixture was placed in a microcentrifuge tube. Two equivalents of triethylamine (100 mM in acetonitrile) was added with mixing, followed by the addition of 1 equivalent of an acid chloride (100 mM in acetonitrile). The reactions with the acid chlorides were incubated at room temperature for 60-120 min. The solvent was removed by evaporation under vacuum. The chemically modified peptides were then purified by reverse phase HPLC.

4) Reactions with chloroformates:

5

10

15

The heptapeptide (as a trifluoroacetic acid salt) containing Boc-Lys was suspended in anhydrous acetonitrile to yield a 1 mM concentration. Fifty to 100 µl of this mixture was placed in a microcentrifuge tube. Two equivalents of triethylamine (100 mM in acetonitrile) was added with mixing, followed by the addition of 1 equivalent of a chloroformate (100 mM in acetonitrile). The reactions with the

chloroformates were incubated at room temperature for 60-120 min. The solvent was removed by evaporation under vacuum. The chemically modified peptides were then purified by reverse phase HPLC.

5) Reactions with glycidyl ethers (epoxides):

5

10

The heptapeptide (as a trifluoroacetic acid salt) containing Boc-Lys was suspended in anhydrous methanol to yield a 1 mM concentration. Fifty to 100 µl of this mixture was placed in a microcentrifuge tube. One equivalent of triethylamine (100 mM in acetonitrile), followed by the addition of 1 equivalent of a glycidyl ether (100 mM in methanol). The reaction was incubated at 65° C for 6-8 hrs. The solvent was removed by evaporation under vacuum. The chemically modified desired peptides were purified by reverse phase HPLC.

In the resulting modified peptides, R₁ is C1-C4 alkyl, adamantyl,

$$X_1$$
, X_1 , or X_2

Y is a bond, C1-C4 alkenyl, C=O, or SO₂; and

5 X₁ and X₂ are independently, fluorine, chlorine, bromine, iodine, C1-C4 alkyl, NO₂ or

10

15

HPLC purification of chemically modified amino acids. The dried reaction product was resuspended in 15µl of 100% of trifluoroacetic acid or 30 µl of 50% trifluoroacetic acid over a period of 5-10 minutes. The volume was brought to 100µl with 50% acetonitrile and the mixture was injected onto a C18 reverse phase HPLC column. The desired product was eluted from the column in a linear gradient of 0.1% trifluoroacetic acid in water and 0.1% trifluoroacetic acid in acetonitrile (B) progressing from 5% B at initial conditions to 60% B over 40 minutes. The elution position of the desired product was monitored by UV absorbance and the desired peak was collected by

hand in polypropylene tubes as it eluted from the UV detector. The eluent was dried under vacuum then used for binding and bioassays.

A variety of tissues and cancers express somatostatin receptors. Five human somatostatin receptors (hsst1, hsst2, hsst3, hsst4, hsst5) have been identified and cloned. (Patel, Y.C., Life Sciences, Vol. 57, No. 13, pp. 1249-1265, 1995). Expression of these five receptor subtypes varies with tissue types. Somatostatin receptor subtype 2 is

Receptor Binding Assays

expressed on a wide variety of tumor types.

5

- 10 Cell culture. CHO-K1 cells were grown as monolayers in Dulbecco's Modified Eagle's medium (DMEM, Mediatech, Washington DC) supplemented with 10% fetal calf serum, non-essential amino acids, 2mM glutamine, 1mM pyruvate and 500 mg/mL gentamycin in 5% CO2 at 37°C.
- Expression of hsst in CHO-K1 cells. For binding studies, CHO-K1 cell lines stably expressing hsst were created and propagated. The predicted coding region of each hsst was generated by PCR from human genomic DNA and oligonucleotides corresponding to the coding region 5' and 3' ends as primers. The DNA fragment generated by PCR contained a Hind III restriction site at the 5' end and a Not 1 restriction site at the 3' end. The fragment was digested with these two restriction enzymes and directionally subcloned into the Hind III/Not 1 sites of the mammalian expression vector pCDNA1. The identity of each insert was verified by DNA sequencing. The construct was co-transfected with pSV2neo into a CHO-K1 cell line using the calcium phosphate protocol. Stable transfectants were selected using 400 mg/mL G418 and maintained in supplemented DMEM. After an initial ligand binding screen, one stable clone for each sst was chosen for all subsequent experiments.

Preparation of Plasma Membranes. CHO/sst cells grown on 100mm tissue culture dishes were washed with ice cold PBS then scraped into 5ml of 50mM HEPES, pH 7.4-5mM MgCl₂ - 200 KIU/mL aprotinin - 2mg/mL PMSF and 2 mg/mL bacitracin (homogenization buffer). After a 15 min. incubation at 4°C, the cells were homogenized on ice using a Brinkman Polytron (setting 5, 15 sec) then re-homogenized with a hand held homogenizer (6 strokes). After centrifugation at 500 x g for 5 min. at 4°C, the supernatant was centrifuged again at 12,000 x g for 25 minutes at 4°C. The final pellet was resuspended in homogenization buffer. Protein content was measured using the bicinchoninic acid protein assay using BSA as a standard.

10

15

20

25

5

Preparation of 96-well plates. Costar 96-well strip plates (cat. no. 9102) were coated with poly-l-lysine by incubating each well in 50μL 100mg/mL poly-l-lysine for 1hr at 22°C. Excess liquid was removed and the wells were air dried. Membranes (10mg/well) were added in 20mM Hepes pH 7.6 followed by incubation overnight at 4°C to evaporate all liquid. Non-specific binding sites were blocked by incubating each well in 50μL homogenization buffer supplemented with 1% BSA (incubation buffer) for 30 min at RT. Binding assays were performed after removal of excess liquid.

[125]-Tyr¹¹] SS14 binding. For receptor binding studies, membranes were incubated at 22°C with 0.03nM [125]-Tyr¹¹] SS14 (obtained from Amersham) with or without test compounds each at concentrations ranging from 10⁻¹⁰M to 10⁻⁶M in 50μL incubation buffer. After a 1 hour incubation at 22°C, excess liquid was removed by gently tapping plates onto absorbent filter paper. Membranes were washed twice with 100μL ice cold incubation buffer and radioactivity in each well was determined. Specific binding was defined as the difference between the amount of [125]-Tyr¹¹] SS14 bound in the absence and presence of 1μM unlabeled SS14. Ki was determined using software programs Ligand or Prism.

The purified peptides were tested for binding to one or more of the five human somatostatin receptor subtypes. Table 1 lists the results of receptor binding studies for a number of peptides assayed against the five human somatostatin receptor subtypes. The data of Table 1 indicates the chemical modifications change the binding affinity of the parent heptapeptide to the various receptor subtypes.

5

TABLE 1

				Ki's Hun	ıan Recepto	rs (nM)	
#	Core Peptide Seq.	Reacting Compound	sstl	sst2	sst3	sst4	sst5
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	none		48.00			
	NH ₂						
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	1-Adamentyl Isocyanate		2.65			
	NH ₂						
3502	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	Benzyl Isocyanate		0.65	31.4	1566	3.5
	NH ₂						
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	4-Chlorophenyl Isocyanate	2000	0.90	31.5	1411	6.32
	NH ₂						
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	4-Methoxyphenyi Isocyanate	188	0.59	8.87	203	2.26
	NH ₃						
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	(R)-(+)-alpha-Methylbenzyl isocyanate	1940	0.41	21.5	1104	7.22
	NH ₂	•					
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	(S)-(-)-alpha-Methylbenzyl isocyanate	522	0.81	21	361	4.25
	NH ₂	•					
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	(R)-(-)-1-(1-Naphthyl)ethyl isocyanate					
	NH ₂	•					
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	(S)-(+)-1-(1-Naphthyl)ethyl isocyanate		147.00			
	NH ₂	·				0.50	4.10
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	4-Nitrophenyl isocyanate	604	0.84	23.4	959	4.19
	NH,						2.00
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	Phenyl isocyanate	778	0.44	12.1	769	3.88
	NH ₂						
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	glycidyl 2-methylphenyl ether					
	NH ₂					1000	
	Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	none	1000	0.33	2	1000	8
	NH,						

Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	1,2 ероху-3-раепохургорепе		148			
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	[2,3 Epoxypropyl] benzene		36			
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	4-Chlorophenyl glycidyl ether		7.7			
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	4-tert-Butyl phenyl glycidyl		12			
NH ₂	ether					
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr- NH ₂	glycidyl 4-methoxyphenyl ether					
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	Benzenesulfonyl isocyanate		1.9			
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	Benzoyl isocyanate		3.4			
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	Benzoyl isothiocyanate		2.9			
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH ₂	Benzyl isothiocyanate		216			
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	4-Chlorobenzenesulfonyl isocyanate		3.7			
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	p-Toluenesulfonyl isocyanate		2.1			
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH ₂	4-Fluorophenyl isocyanate	1093	1.34	38.6	1664	10.1
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH ₂	Phenethyl Isothiocyanate		103			
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	p-Tolyl isocyanate	823	0.62	20.4	1120	6.36
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	Trifluoro-p-tolyl isocyanate		3.3			
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	4-Bromophenyl isocyanate	1206	1.05	31.5	1204	8.64
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	2-Phenylphenyl isocyanate	454	0.92	50	799	10.4
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	Phenethyl isocyanate					
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	2,6-Dimethylphenyl isocyanate					
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	4-Phenoxyphenyl isocyanate		1.9			
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	4-Acetylphenyl isocyanate	1522	0.21	29.9	1147	5.65
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr- NH ₂	4-n-Butylphenyl isocyanate		2.6			

110 00110003						
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH ₂	4-Chloro-2-methylphenyl isocyanate		1			
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	2,4-Dichlorobenzyl isocyanate		1.2	14.4	591	1
NH ₂						
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr- NH,	2,3-Dimethylphenyl isocyanate		0.69	8.4	353	3.9
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-NH,	2,4-Dimethylphenyl isocyanate		0.7	6.9	251	2.8
Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	2,5-Dimethylphenyl isocyanate		0.62	8.1	284	2
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	3,4-Dimethylphenyl isocyanate		0.77	11.7	105	3.9
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	3,5-Dimethylphenyl isocyanate	1334	0.43	10.7	5 61	3.03
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	4-Ethylphenyl isocyanate		0.81	12.1	274	3 .1
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	p-Toluoyl chloride		1.35	17.6	340	1.7
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	Cinnamoyl chloride		1.01	19.3	432	4.5
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	Phenyl chloroformate		2.58			
NH ₂ Cys-Tyr-D-Trp-Lys-Thr-Cys-D-Tyr-	Benzyl chloroformate					
NH ₂ Cys-Tyt-D-Trp-Lys-Val-Cys-D-Tyt-	none		18			
NH ₂ Cys-Tyr-D-Trp-Lys-Val-Cys-D-Tyr-	benzyl isocyanate		1.8			
NH₂ Cys-Tyr-D-Trp-Lys-Val-Cys-D-Tyr-	Phenyl isocyanate		4.1			
NH ₂ Cys-Tyr-D-Trp-Lys-Val-Cys-D-Tyr-	4-Acetylphenyl isocyanate		1.9			
NH ₂						

PCT/US99/19090

Bioactivity Assays

WO 00/10589

The in vivo biological activity of modified peptides was determined by

evaluating their inhibitory potency on pituitary growth hormone (GH) release in sodium pentobarbital-anesthetized rats. The pentobarbital treated rat is a well characterized and frequently used model for studying GH secretory dynamics (see K. Chihara, A. Armura and AV Schally 1979 Endocrinology 104 1434).

Dose-Response Studies: Adult male Sprague-Dawley rats weighing 250-300g with jugular vein cannulas were obtained from Zivic-Miller Labs, Zelienople, PA. On the day of assay, the rats were anesthetized with sodium pentobarbital (60mg/kg of body weight, administered i.p.). Thirty minutes later, the animals were injected iv. with saline or test compound at doses ranging from 0.1 to 30 μg/kg. Blood samples (250 μL) were drawn from the jugular vein cannula 10 min prior to test compound injection (baseline) and 5, 15, 30, 45 and 60 minutes after injection. The plasma was separated and assayed for GH by RIA using material supplied by the National Hormone and Pituitary Program, and for glucagon and glucose using commercially available reagents. To prevent hemodynamic disturbances, the red blood cells were resuspended in normal saline and returned to the animal. Figure 1 illustrates the dose response of peptide 3502 at three dosage levels $5\mu g/kg$, $2.5 \mu g/kg$, and $1 \mu g/kg$. At each dosage, the peptide was shown to be effective in suppressing production of growth hormone.

<u>Time-Course Assay:</u> Groups of cannulated rats were treated with sodium pentobarbital as in the dose-response assay. Thirty minutes later animals were injected via the jugular cannula with saline or test compound at the minimum dose giving maximal GH inhibition. Sodium pentobarbital at half the initial dose was given at 60- to 90-minute intervals to maintain anesthesia. Blood (250 μ L) was collected from the jugular vein at approximately 15, 30, 60, 120, 180, and 240 min. after the injection of test compound and treated as described above. Data from the time-course assay are shown in Table 2. The results of this experiment demonstrates that compounds 3502 and 3533 block the ability of arginine to stimulate glucagon secretion, mimicking a normal function of somatostatin. The alpha cells which secrete glucagon are known to express the SST₂ receptor; thus this activity of the peptides is consistent with their selectivity for the SST₂ receptor.

The data also show that the peptides do not cause hypoglycemia, either alone or in combination with arginine.

(lp/	_			8.1		8.8		10.9	14.4	13.8	11.9	5.1	3.0	2.6					1.9 6.		3.2		4.0	8.3	
Glucose (mg/dl)	mean sem			153.1		140.4		160.3	162.0	136.7	103.1	91.9	103.9	107.2					152.5		143.7		162.4	150.3	
				175.4		32.3		18.4	10.9	10.8	14.4	13.8	4.2	8.2					208.8		31.2		8.1	3.5	
GH (m/pu)	mean sem			255.4		64.5		43.9	28.4	26.5	46.0	57.4	59.1	54.3					283.7		72.1		24.3	12.7	
	sem			8.6		4.5		7.2	7.7	6.0	6.1	3.6	4.4	10.8					2.0		8.3		8.8	12.6	
(lm/gd)	mean se			47.1		40.6		102.1	82.8	63.7	49.7	45.1	41.2	42.7					50.2		43.1		76.2	62.8	
Assay: Glucagon (pg/ml)	Treatment		pentobarbital 70mg/kg		saline		L-arg. ,400mg/kg									Treatment:		pentobarbital 70mg/kg		MS3502, 5ug/kg		L-arg. ,400mg/kg			
		Time	-35 min	-15 min	-10 min	-5 min	0 min	5min	10 min	15 min	30min	45 min	60 min	75 min			Time	-35 mln	-15 min	-10 min	-5 min	0 min	5min	10 min	

ol min		000	ά τ	8	α -	80 0	a r
45 min		34.	10.5	13.4	5.9	75.9	0.8
60 min		34.6	10.0	22.5	11.3	88.0	7.0
75 min		37.5	4.6	27.0	10.7	98.7	3.2
	Treatment:						
Time							
-35 min	pentobarbital 70mg/kg						
-15 min		50.1	8.4	284.3	230.8	157.7	7.1
-10 min	MS3533, 5ug/kg						
-5 min		40.4	7.5	79.0	46.9	150.0	2.3
0 min	L-arg. ,400mg/kg						
5min		73.2	11.6	34.8	23.5	162.2	8.7
10 min		65.2	10.2	28.1	18.0	156.5	1.2
15 min		46.1	4.0	20.3	10.5	138.6	6.0
30min		38.0	2.4	12.2	3.6	100.9	4.5
45 min		37.5	6.1	12.5	3.8	88.9	1.7
60 min		39.2	8.2	14.5	7.5	88.8	8.4
75 min		46.3	7.9	15.1	8.9	103.4	14.6
	Treatment:						
Time							
-35 min	pentobarbital 70mg/kg						
-15 min		40.8	2.7	89.9	45.7	153.4	7.7
-10 min	MS3502, 1ug/kg						
-5 min		35.1	3.2	41.9	16.4	145.7	6.0
0 min	L-arg. ,400mg/kg						

Smin		95.6	11.6	26.1	9.6	161.6	5.9
10 min		72.2	4.2	21.2	5.7	162.4	14.0
15 min		50.9	3.7	18.8	5.7	126.8	8.8
30min		43.9	6.3	39.5	18.4	91.9	5.4
45 min		43.5	0.9	43.4	5.9	7.77	3.0
60 min		36.2	4.2	65.5	14.9	90.1	4.8
75 min		36.6	7.8	60.4	17.7	102.3	0.1
	Treatment:						
Time							
-35 min	pentobarbital 70mg/kg						
-15 min		49.5	6.4	137.0	73.1	157.2	1.5
-10 min	MS3533, 1ug/kg						
-5 min		41.7	6.1	61.8	21.0	144.6	6.8
0 min	L-arg. ,400mg/kg						
Smin		111.0	17.5	32.2	6.4	159.2	1.4
10 min		77.3	10.2	23.5	5.1	151.5	3.1
15 min		59.8	3.2	19.3	1.0	128.3	4.1
30min		48.8	4.4	40.6	13.7	93.5	6.9
45 min		47.9	5.7	53.1	21.8	89.6	1.6
60 min		39.6	8.4	45.3	14.3	99.2	9.0
75 min		33.8	17.0	24.7	12.4	76.0	38.2
	Treatment						
i. F							
-35 min -15 min	pentobarbital / umg/kg	57.0	3.76				
-10 min	MS3502, 5ug/kg			46.9	10.2	170.1	12.3

		8.1	5.1	17.8	32.9	50.2	·			
		144.0	128.5	128.7	159.3	184.0				
		3.2	1.6	1.3	11.9	64.4				
		22.9	12.0	8.7	19.2	71.0				
2.40		4.43	3.52	2.72	10.23	3.82	5.48	16.21	10.77	10.74
53.3		20.0	49.5	50.5	64.8	64.3	62.5	80.3	87.5	69.3
	saline									
-5 min	0 min	5min	15 min	30min	45 min	60 min	75 min	90 min	105 min	120 min

(nb: this last series of animals has different animals for the glucagon vs. GH & glucose)

Oral activity: Adult male Sprague-Dawley rats weighing 250-300g with jugular vein and gastric cannulas were obtained from Zivic-Miller Labs, Zelienople, PA. On the evening prior to assay, rats were given 5 gram of food to eat with free access to water. On the day of assay, the rats were anesthetized with sodium pentobarbital (60mg/kg of body weight, administered i.p.). Thirty minutes later, the animals were injected through the gastric cannula with saline or test compound at doses ranging from 0.1 to 30 μg/kg in a total volume of 200 μL. Sodium pentobarbital at half the initial dose was given at 60- to 90-minute intervals to maintain anesthesia. Blood (250 μL) was collected from the jugular vein at approximately 15, 30, 60, 120, 180, and 240 min. after the injection of test compound and treated as described above. In Figure 2 the graph representing oral saline illustrates the cyclic increase and decrease of growth hormone levels during normal secretion. The graph representing peptide 3502 shows that the peptide, orally administered, prevents the normal secretion of growth hormone.

WHAT IS CLAIMED IS:

1. A modified heptapeptide of Formula I

5 wherein A is

and R₁ is C1-C4 alkyl, adamantyl,

$$X_1$$
, X_1 , or X_2 , X_2

Y is a bond, C1-C4 alkenyl, C=O, or SO₂; and

10 X₁ and X₂ are independently hydrogen, fluorine, chlorine, bromine, iodine, C1-C4 alkyl, NO₂ or

2. The modified heptapeptide of Claim 1 wherein A is HN—C—

and R₁ is C1-C4 alkyl, adamantyl,

5 Y is a bond, C1-C4 alkenyl, C=O, or SO₂; and

 R_1 is

 X_1 and X_2 are independently, fluorine, chlorine, bromine, iodine, C1-C4 alkyl, NO₂ or

3. The modified heptapeptide of Claim 2, wherein

10

Y is CH2 and

X₁ is hydrogen.

15

4. The modified heptapeptide of Claim 1, wherein A is

R1 is C1-C4 alkyl, adamantyl,

$$X_1$$
, X_1 , or X_2

5 Y is a bond, C1-C4 alkenyl, C=O, SO₂; and

 X_1 and X_2 are independently, fluorine, chlorine, bromine, iodine, C1-C4 alkyl,

NO₂ or

10

5. The modified heptapeptide of Claim 4 wherein

R₁ is

Y is a bond and X, is hydrogen.

6. A pharmaceutical composition comprising a compound of Formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

- A pharmaceutical composition comprising a modified heptapeptide of
 Claim 3, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 8. A pharmaceutical composition comprising a modified heptapeptide of

 Claim 5, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable

 carrier.
 - 9. A method for inhibiting the release of growth hormone, insulin, and glucagon in a mammal comprising administering to the mammal a modified heptapeptide of Formula I.

Acute GH Suppression by Somatostatin Agonists

GH Pulsatility & Oral Somatostatin Agonist Treatment

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/19090

A. CLAS	SIFICATION OF SUBJECT MATTER								
IPC(7) :	A61K 38/00, 38/31, 38/12; C07K 5/00, 7/00								
US CL :	514/9, 11, 16; 530/300, 311, 317, 329 International Patent Classification (IPC) or to both na	ional classification and IPC							
	DS SEARCHED	ve dessification symbols)							
	ocumentation searched (classification system followed b	y classification symbols)							
U.S. : 5	514/9, 11, 16; 530/300, 311, 317, 329								
		and the man designate are included in the fields searched							
Documentati	ion searched other than minimum documentation to the e	ktent that such documents are included in the fields searched							
		of the base and where practicable search terms used)							
		e of data base and, where practicable, search terms used)							
CAS ONL	INE, USPATFULL, BIOSIS, MEDLINE.								
C. DOC	UMENTS CONSIDERED TO BE RELEVANT								
	Citation of document, with indication, where appr	oppiate of the relevant passages Relevant to claim No.							
Category*	Citation of document, with indication, where appr	optime, or all following							
Α	US 4,145,337 A (DAIRMAN et al)	20 March 1979, see entire 1-9							
^	document.								
	document.								
	US 5,770,687 A (HORNIK et al)	23 June 1998, see entire 1-9							
A	document.	,							
İ '									
A,P US 5,846,934 A (BASS et al) 08 December 1998, see entire 1-9									
A,P									
	document.								
ł									
	Ì								
	· ·								
Furt	her documents are listed in the continuation of Box C.	See patent family annex.							
- s	pecial categories of cited documents:	To later document published after the international filing date or priority date and not in conflict with the application but cited to understand							
.v. q	ocument defining the general state of the art which is not considered	the principle or theory underlying the invention							
4	o be of perticular relevance	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step							
	ertier document published on or after the international filing date ocument which may throw doubts on priority claim(s) or which is	when the document is taken alone							
	ited to establish the publication date of another citation or other	"Y" document of particular relevance; the claimed invention cannot be							
1	pecial reason (as specified)	considered to involve an inventive step when the document is							
	ocument referring to an oral disclosure, use, exhibition or other nesns	being obvious to a person skilled in the art							
1 1	locument published prior to the international filing date but later than he priority date claimed	"&" document member of the same patent family							
Date of the	e actual completion of the international search	Date of mailing of the international search report							
20 DEC	EMBER 1999	11 JAN 2000							
Name and	mailing address of the ISA/US	Authorized officer							
Commiss	ioner of Patents and Trademarks								
Box PCT		AVIS M. DAVENPORT							
_	No. (703) 305-3230	Telephone No. (703) 308-0196							

THIS PAGE BLANK (USPTO)