3.2

Α	40	40	60	60	50 (Mean)	11.54700538 (Standard Deviation)
В	48	48	50	50	49	1.154700538

$$x \to \{3, 8, 4, 6, 14\}$$

 $x - 1 \to \{2, 7, 3, 9, 13\}$
 $x^2 \to \{9, 64, 16, 36, 196\}$
 $n_x = 5$
 $\Sigma x = 3 + 8 + 4 + 6 + 14 = 35$
 $\Sigma (x - 1) = 30, \Sigma (x^2) = 321$
mean $= \bar{x} = \frac{\Sigma x}{n_x} = \frac{35}{5} = 7$

Standard deviation:

$$S_x = \sqrt{\frac{\Sigma[(x-\bar{x})^2]}{n_x - 1}}$$

$$x \to \{3, 8, 4, 6, 14\}$$

$$x - \bar{x} \to \{-4, 1, -3, -1, 7\}$$

$$(x - \bar{x})^2 \to \{16, 1, 9, 1, 49\}$$

$$\Sigma[(x - \bar{x})^2] = 76$$

$$\sqrt{\frac{76}{5-1}} = \sqrt{19} \approx 4.3589$$

Variance

$$S_x^2$$
 (just don't square root the std. dev.) = $\frac{\sum x^2 - \frac{(\sum x)^2}{n_x}}{n_x - 1}$ [$\sum (x^2)$]

Homework:

3.35a

3.41b

Go to some page with a lot of blank space and two problems. Asks for mean and std. dev. and last two things are the answers(?)