Case Study: Electric Water Heater

Timeline

- Before July 19
- July 24 full day
 July 26 Oct 26

Specifications – Temperature Setting

- 1. The "Up" or "Down" buttons are used to change the required water temperature (set temperature)
- The first "Up" or "Down" button press, enters the temperature setting mode
- After entering temperature setting mode, a single "Up" button press increase the set temperature by 5 degrees
- 4. After entering temperature setting mode, a single "Down" button press decrease the set temperature by 5 degrees
- 5. The minimum possible set temperature is 35 degrees
- 6. The maximum possible set temperature is 75 degrees
- 7. The "External E2PROM" should save the set temperature once set
- 8. If the electric water heater is turned OFF then ON, the stored set temperature should be retrieved from the "External E2PROM"
- 9. The initial set temperature is 60 degrees

Specifications – ON/OFF Behavior

- If power is connected to the heater, the electric water heater is in OFF state
- 2. If the "ON/OFF" button is released and the electric water heater is in OFF state, the electric water heater goes to ON state
- If the "ON/OFF" button is released and the electric water heater is in ON state, the electric water heater goes to OFF state
- 4. In the OFF state, all display should be turned OFF

Specifications – Temperature Sensing

- 1. The temperature sensor measures the water temperature
- 2. The water temperature should increase, if the "Heating Element" is ON
- 3. The water temperature should decrease, if the "Cooling Element" is ON
- 4. Temperature should be sensed once every 100 ms
- 5. The decision to turn ON or OFF either the "Heating Element" or the "Cooling Element" based on the average of the last 10 temperature readings

Specifications – Heating/Cooling Elements

- 1. The "Heating Element" should be turned ON, if the current water temperature is less than the set temperature by 5 degrees
- 2. The "Cooling Element" should be turned OFF, if the current water temperature is less than the set temperature by 5 degrees
- 3. The "Heating Element" should be turned OFF, if the current water temperature is greater than the set temperature by 5 degrees
- 4. The "Cooling Element" should be turned ON, if the current water temperature is less than the set temperature by 5 degrees

Specifications – Seven Segments

- 1. 2 seven segment by default show the current water temperature or the set temperature
- By default, the 2 seven segment display are show the current water temperature
- 3. If the electric water heater is in the temperature setting mode, the 2 seven segment displays should blink every 1 second and show the set temperature
- 4. In the temperature setting mode, every change in the set temperature should be reflected on the 2 seven segment displays
- 5. The 2 seven segment display should exit the temperature setting mode, if the "UP" and "Down" buttons are not pressed for 5 seconds

Specifications – Heating Element Led

- 1. If the "Heating Element" is ON, the "Heating Element Led" should blink every 1 second
- If the "Cooling Element" is OB, the "Heating Element Led" should be ON

Hardware

- Use PICSimLab v0.8
- Board: PIC Genios with pic16f877a
- Use peripherals from the board
 - ☐ Heating Element → Heater
 - □ Cooling Element → Fan
 - External E2PROM → I2C E2PROM
 - Map other elements as you wish
- Use any compiler you want

Deliverables

- Your CV
- Project folder that has source code and executables
- Project Documentation (power point explaining design)
 - Check the slides with "Example in the title" for a minimal example
- Delivery is through Internship form only (https://forms.gle/yoUg7bgdZy82QjSNA)

Suggested Readings

Example Sebha: Static Architecture

Exmple Sebha: Detailed Design

- SW
 - SW_Init
 - SW_Update
 - SW GetState
- OS
 - OS Init
 - OS_update
 - OS_Sleep
- ☐ CTR
 - CTR Init
 - CTR_Update
 - CTR_GetCount

- DISP
 - DISP_Init
 - DISP_Update
- ☐ SSD
 - ☐ SSD_Init
 - SSD_Update
 - SSD_SetSymbol
 - SSD_GetSymbol
 - SSD SetState
 - SSD_GetState

Example Sebha: Timing Analysis

Task	Actions	BCET (ms)	WCET(ms)	Period of Action (ms)	Period of task (ms)
SW	Update samples Update SW state	~0 ~0	~0 ~0	20 20	20
CTR	Update CTR	~0	~0	20	20
DISP	Update display	~0	~0	20	20
SSD	Update SSD	~0	~0	5	5
Tick (ms)					5
Major Cycle (ms)					20

Example Sebha: Schedulability Check

- To contact us:
 - www.swift-act.com/courses/
 - info@swift-act.com

