Relazione di Laboratorio del 28/06/2022

Lisa Merlo, Marco Militello, Nicolò Negro Pet28/04/2022

1 Strumenti di laboratorio

- 1. Breadboard
- 2. Generatore di tensione a onde sinusoidale
- 3. Multimetro palmare
- 4. Induttanze
- 5. Resistori
- 6. Capacità
- 7. Oscilloscopio e rispettive sonde

2 Introduzione

L'obiettivo dell'esperienza è lo studio delle funzioni di trasferimento, definite come il rapporto tra la tensione in entrata e la tensione su una componente del circuito. In particolare sono stati analizzati tre circuiti: RC, RL e RLC.

3 Metodo

Dopo aver costruito i circuiti RC (Figura 1) e RL (Figura 2), le sonde sono state poste ai capi della capacità (e successivamente dell'induttanza) affinché l'oscilloscopio leggesse i valori di due tensioni, V_A e V_B . V_A rappresenta la tensione in entrata quindi, per la legge di Kirchhoff, corrisponde alla somma della tensione delle componenti ($V_C + V_R$ per RC, $V_L + V_R$ per RL), mentre V_B è pari a V_R .

Figura 1: Circuito RC

Figura 2: Circuito RL

Per poter ottenere $H(\omega)$, funzione di trasferimento, è necessario studiare le ampiezze delle tensioni relative a ogni componente e la differenza di fase tra esse, entrambe ricavate grazie ai cursori dell'oscilloscopio. In particolare, per studiare la tensione su capacità e induttanza, si sfrutta la funzione MATH dello strumento, che restituisce la differenza tra le tensioni lette. A questo punto si possono ricavare le funzioni su entrambe le componenti. Ricordando che $H(\omega)$ è una funzione complessa, si ottiene che il suo modulo è pari al rapporto fra l'ampiezza della tensione della componente desiderata e quella del generatore, mentre l'argomento è pari alla differenza di fase.

Nel caso di RLC (Figura 3), le sonde vengono poste subito dopo il generatore di tensione e prima dell'ultima componente. In questo modo è possibile calcolare la funzione di trasferimento per la componente desiderata ponendola come ultima (ovvero sostituendola a R nella Figura 3). Infatti, in questo

caso, l'oscilloscopio legge la tensione del generatore e la tensione della componente finale. Il procedimento risulta poi analogo al caso precedente: vengono misurate le ampiezze e le differenze di fase di V_A e V_B e si calcolano le funzioni di trasferimento.

Figura 3: Circuito RLC usato per la funzione di trasferimento tra $V_{\rm R}$ e $V_{\rm G}$

4 Dati

Gli errori delle misure dirette corrispondono alla sensibilità degli strumenti utilizzati, invece quelli relativi alle misure indirette sono stati calcolati attraverso la formula ridotta di propagazione degli errori di seguito riportata:

$$\sigma_z = z(\frac{\sigma_x}{x} + \frac{\sigma_y}{y})$$

dove z corrisponde al valore della misura e σ_z è l'errore associato. Di seguito sono riportate le tabelle dei moduli e della fase di V_R/V_G per i circuiti RC ed RL. Per il circuito RLC sono riportate le tabelle dei moduli e della fase di V_C/V_G . Si noti che ω corrisponde alla frequenza imposta dal generatore moltiplicata per un fattore 2π . Gli altri dati sono riportati in Appendice.

Circuito RC V_R , V_G		Circuito Re	$\subset \Delta \phi_R$
$\omega [\mathrm{rad/s}]$	$ \mathbf{H_R} (\omega) $	$\omega [\mathrm{rad/s}]$	$\Delta \phi_R \text{ [rad]}$
439.60 ± 12.56	0.09 ± 0.12	628.30 ± 12.56	1.37 ± 0.12
628.00 ± 12.56	0.132 ± 0.011	3141.60 ± 12.56	0.800 ± 0.011
942.00 ± 12.56	0.194 ± 0.011	4398.20 ± 12.56	0.800 ± 0.011
1381.60 ± 12.56	0.280 ± 0.012	1256.60 ± 12.56	1.180 ± 0.012
2512.00 ± 12.56	0.460 ± 0.012	1884.90 ± 12.56	1.180 ± 0.012
3140.00 ± 12.56	0.550 ± 0.013	2513.30 ± 12.56	0.980 ± 0.013
3768.00 ± 12.56	0.620 ± 0.015	6283.20 ± 12.56	0.590 ± 0.015
8164.00 ± 12.56	0.860 ± 0.017	12566.40 ± 12.56	0.400 ± 0.017
6280.00 ± 12.56	0.800 ± 0.019	25132.20 ± 12.56	0.180 ± 0.019
12560.00 ± 12.56	0.920 ± 0.018		
31400.00 ± 12.56	0.960 ± 0.019		
62800.00 ± 12.56	0.980 ± 0.020		
43960.00 ± 12.56	0.960 ± 0.020		
18840.00 ± 12.56	0.960 ± 0.020		

Circuito RL V_R , V_G		Circuito R	L $\Delta \phi_R$
$\omega \; [{ m rad/s}]$	$ \mathbf{H_R} (\omega) $	$\omega [\mathrm{rad/s}]$	$\Delta \phi_R \text{ [rad]}$
6280.00 ± 6.28	$0.96 \text{ c} \pm 0.02$	31416.00 ± 6.28	-0.19 ± 0.12
31400.00 ± 6.28	0.94 ± 0.02	62831.90 ± 6.28	-0.40 ± 0.04
37680.00 ± 6.28	0.94 ± 0.02	94247.80 ± 6.28	-0.590 ± 0.06
43960.00 ± 6.28	0.920 ± 0.022	125663.70 ± 6.28	-0.780 ± 0.078
62800.00 ± 6.28	0.880 ± 0.019	157079.60 ± 6.28	-0.790 ± 0.079
94200.00 ± 6.28	0.800 ± 0.018	188495.60 ± 6.28	-1.0 ± 0.1
125600.00 ± 6.28	0.710 ± 0.017	314159.30 ± 6.28	-1.19 ± 0.12
157000.00 ± 6.28	0.630 ± 0.016	439823.00 ± 6.28	-1.36 ± 0.14
188400.00 ± 6.28	0.550 ± 0.015	565486.70 ± 6.28	-1.41 ± 0.14
219800.00 ± 6.28	0.510 ± 0.015		
251200.00 ± 6.28	0.450 ± 0.014		
282600.00 ± 6.28	0.420 ± 0.014		
314000.00 ± 6.28	0.390 ± 0.014		
345400.00 ± 6.28	0.350 ± 0.013		
376800.00 ± 6.28	0.310 ± 0.013		
408200.00 ± 6.28	0.290 ± 0.013		
439600.00 ± 6.28	0.270 ± 0.012		
471000.00 ± 6.28	0.250 ± 0.012		
502400.00 ± 6.28	0.230 ± 0.012		
533800.00 ± 6.28	0.220 ± 0.012		
565200.00 ± 6.28	0.20 ± 0.012		
596600.00 ± 6.28	0.20 ± 0.012		
628000.00 ± 6.28	0.180 ± 0.012		
659400.00 ± 6.28	0.170 ± 0.011		
690800.00 ± 6.28	0.170 ± 0.011		
722200.00 ± 6.28	0.15 ± 0.01		
753600.00 ± 6.28	0.140 ± 0.011		
785000.00 ± 6.28	0.140 ± 0.011		

Circuito RLC	Circuito RLC V_C , V_G		$LC \Delta \phi_C$
$\omega [\mathrm{rad/s}]$	$ \mathbf{H_C} (\omega) $	$\omega [\mathrm{rad/s}]$	$\Delta \phi_C \text{ [rad]}$
314.16 ± 0.00628	0.98 ± 0.02	31416 ± 6.28	-0.19 ± 0.12
628.32 ± 0.00628	0.96 ± 0.02	$62831,9 \pm 6.28$	-0.4 ± 0.04
1884.96 ± 0.00628	0.90 ± 0.02	94247.8 ± 6.28	-0.59 ± 0.06
2513.30 ± 0.00628	0.880 ± 0.019	$125663,7 \pm 6.28$	-0.78 ± 0.078
3141.60 ± 0.00628	0.820 ± 0.019	$157079,6 \pm 6.28$	-0.79 ± 0.079
4398.30 ± 0.00628	0.740 ± 0.019	$188495,6 \pm 6.28$	-1.03 ± 0.1
5654.87 ± 0.00628	0.640 ± 0.018	$314159,3 \pm 6.28$	-1.19 ± 0.12
6283.18 ± 6.28	0.600 ± 0.017	439823 ± 6.28	-1.36 ± 0.14
8168.14 ± 6.28	0.520 ± 0.016	$565486,7 \pm 6.28$	-1.41 ± 0.14
9424.78 ± 6.28	0.460 ± 0.016		
11309.73 ± 6.28	0.400 ± 0.016		
12566.37 ± 6.28	0.360 ± 0.015		
14451.33 ± 6.28	0.320 ± 0.015		
15707.96 ± 6.28	0.280 ± 0.013		
18849.55 ± 6.28	0.240 ± 0.014		
21991.15 ± 6.28	0.200 ± 0.012		
28274.34 ± 6.28	0.160 ± 0.012		
34557.52 ± 6.28	0.120 ± 0.011		
43982.30 ± 6.28	0.100 ± 0.011		
62831.85 ± 6.28	0.080 ± 0.011		

5 Analisi Dati

5.1 Circuito RC

Come accennato nella sezione Metodo, il nostro obiettivo consiste nello studio della funzione di trasferimento su ogni componente del circuito, in questo caso R e C. Quindi, per quanto riguarda lo studio del modulo, sono state eseguite due interpolazioni tramite ROOT, secondo le formule:

$$|H(\omega)_R| = \frac{RC\omega}{\sqrt{1 + \omega^2(RC)^2}}$$
$$|H(\omega)_C| = \frac{1}{\sqrt{1 + \omega^2(RC)^2}}$$

Essendo R conosciuta e pari a 4.69 ± 0.1 K Ω , l'unico parametro libero corrisponde alla capacità C. I fit sono riportati nella Figura 4 e Figura 5, che restituiscono rispettivamente dei chi quadro di 90% e 5.3%.

Figura 4: $|H(\omega)_R|$

Figura 5: $|H(\omega)_C|$

Essendo entrambi maggiori della soglia del 5%, possiamo affermare che i dati sono compatibili con il modello atteso. Inoltre, dall'interpolazione si ricavano i valori della capacità pari a 44.5 \pm 1.8 nF ed a 148 \pm 8 nF. Ricordando che la capacità ha un valore conosciuto di 47 \pm 1 nF, si può notare come il secondo valore ottenuto non sia in accordo con quanto atteso. Questo può essere giustificato dalle numerose fonti di errore dell'esperimento: innanzitutto un'ampiezza d'onda nell'ordine dei 200 mV, che non ha permesso all'oscilloscopio di valutare con precisione adeguata le ampiezze dei segnali. Inoltre, nel caso dell'ampiezza del segnale di $V_{\rm C}$, si ha un'incertezza maggiore rispetto al caso di $V_{\rm R}$ poiché per poterla misurare è necessario fare la differenza dei segnali in entrata, ovvero $V_{\rm G}$ e $V_{\rm R}$ stesso. Per quanto riguarda la fase, l'interpolazione viene eseguita secondo le formule:

$$arg[H(\omega)_R] = \Delta \phi_R = atan\left(\frac{1}{RC\omega}\right)$$

$$arg[H(\omega)_C] = \Delta \phi_C = atan(RC\omega)$$

Resistenza e capacità corrispondono ai parametri liberi, di seguito i valori ottenuti.

Valori ottenuti				
	Valori attesi	Figura 6	Figura 7	
Resistenza	$4.7 \pm 0.1 \text{ K}\Omega$	$4.8 \pm 0.3 \text{ K}\Omega$	$4.69 \pm 0.26 \; \mathrm{K}\Omega$	
Capacità	$47 \pm 1 \text{ nF}$	$48.9 \pm 0.7 \text{ nF}$	$41.4\pm0.6~\mathrm{nF}$	

I dati ottenuti sono compatibili con quelli attesi; inoltre si ottiene un chi quadro rispettivamente di 37.8% e di 78.3%, ovvero i dati si adattano al modello ipotizzato.

Figura 6: Differenza di fase tra V_G e V_R

Figura 7: Differenza di fase tra $\rm V_G$ e $\rm V_C$

5.2 Circuito RL

In questo caso, la funzione di trasferimento viene studiata su R e L. I dati del modulo sono stati interpolati tramite le leggi:

$$|H(\omega)_R| = \frac{R}{\sqrt{R^2 + \omega^2 L^2}}$$

$$|H(\omega)_L| = \frac{L\omega}{\sqrt{R^2 + \omega^2 L^2}}$$

I parametri liberi corrispondono alla resistenza R e l'induttanza L, i cui valori sono riportati di seguito.

Valori ottenuti				
	Valori attesi	Figura 8	Figura 9	
Resistenza	$4.7\pm0.1~\mathrm{K}\Omega$	$6.0\pm0.9~\mathrm{K}\Omega$	$4.30 \pm 0.25 \; \mathrm{K}\Omega$	
Induttanza	$30 \pm 1 \text{ mH}$	$49.0\pm0.7~\mathrm{mH}$	$64.9 \pm 1.8 \text{ mH}$	

All'apparenza la resistenza ottenuta dalla Figura 8 sembra essere discordante con quella attesa. Abbiamo perciò condotto un test di compatibilità e ottenuto che dista da quella attesa 1.44σ , che corrisponde al 14.99% di probabilità che la discrepanza sia di origine statistica, ovvero i due valori sono compatibili. Nel caso invece dei valori delle induttanze, i valori non sono compatibili con quanto atteso.

Per quanto riguarda invece la compatibilità dei grafici con il modello, sono stati ottenuti chi quadri di 14.3% e di 71.4%, relativi rispettivamente alla Figura 8 e alla Figura 9, ci permettono di affermare che i dati sono in accordo con l'andamento atteso.

Figura 8: $|H(\omega)_R|$

Figura 9: $|H(\omega)_L|$

Nel caso della fase, invece, le leggi usate sono:

$$arg[H(\omega)_R] = \Delta \phi_R = atan\left(-\frac{L\omega}{R}\right)$$

$$arg[H(\omega)_L] = \Delta \phi_L = atan\left(\frac{R}{L\omega}\right)$$

Avendo posto resistenza e induttanza come parametri liberi, i dati ottenuti sono riportati di seguito.

Valori ottenuti				
	Valori attesi	Figura 10	Figura 11	
Resistenza	$4.7\pm0.1~\mathrm{K}\Omega$	$4.55\pm0.27~\mathrm{K}\Omega$	$4.3 \pm 0.4 \text{ K}\Omega$	
Induttanza	$30 \pm 1 \text{ mH}$	$31 \pm 5 \text{ mH}$	$39 \pm 3 \text{ mH}$	

I dati sono compatibili con quelli attesi e i grafici riportano un chi quadro del 68% e 7% rispettivamente, ovvero sono in accordo con la legge studiata.

Figura 10: Differenza di fase tra $V_{\rm G}$ e $V_{\rm R}$

Figura 11: Differenza di fase tra $V_{\rm G}$ e $V_{\rm L}$

5.3 Circuito RLC

Nel terzo e ultimo caso vengono analizzate tre diverse funzioni di trasferimento: su resistenza, induttanza e capacità. I dati sono stati interpolati con le seguenti funzioni:

$$|H(\omega)_R| = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

$$|H(\omega)_C| = \frac{1}{\omega C} \frac{1}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

$$|H(\omega)_L| = \frac{\omega L}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

In tutti i casi, la capacità C, l'induttanza L e la resistenza R rappresentano i parametri liberi dell'interpolazione. Di seguito riportiamo i valori ottenuti tramite la funzione fit di ROOT.

Valori ottenuti				
	Valori attesi	Figura 12	Figura 13	Figura 14
Resistenza	$4.7 \pm 0.1 \text{ K}\Omega$	$4.6 \pm 0.4 \text{ K}\Omega$	$4.5 \pm 0.2 \text{ K}\Omega$	$4.4 \pm 0.4 \text{ K}\Omega$
Induttanza	$30 \pm 1 \text{ mH}$	$36 \pm 10 \text{ mH}$	$34 \pm 6 \text{ mH}$	$45 \pm 1 \text{ mH}$
Capacità	$47 \pm 1 \text{ nF}$	$47 \pm 3 \text{ nF}$	$45 \pm 3 \text{ nF}$	$45 \pm 5 \text{ nF}$

I dati sono compatibili con quelli attesi, i valori dei test del chi quadro effettuati sono rispettivamente $71\%,\,99\%$ e 68%.

Figura 12: $|H(\omega)_C|$

Figura 13: $|H(\omega)_L|$

Figura 14: $|H(\omega)_R|$

Per quanto riguarda il calcolo della fase, sono state usate le seguenti formule:

$$arg[H(\omega)_R] = \Delta \phi_R = -atan\left(\left(\omega L - \frac{1}{L\omega}\right)\frac{1}{R}\right)$$

$$arg[H(\omega)_L] = \Delta \phi_L = \frac{\pi}{2} - atan\left(\left(\omega L - \frac{1}{L\omega}\right)\frac{1}{R}\right)$$

$$arg[H(\omega)_C] = \Delta \phi_C = -\frac{\pi}{2} - atan\left(\left(\omega L - \frac{1}{L\omega}\right)\frac{1}{R}\right)$$

I valori ottenuti con l'interpolazione sono riportati di seguito:

Valori ottenuti					
	Valori attesi	Figura 15	Figura 16	Figura 17	
Resistenza	$4.7 \pm 0.1 \text{ K}\Omega$	$3.7 \pm 2.8 \text{ K}\Omega$	$1.307 \pm 0.9 \text{ K}\Omega$	$7.2 \pm 2.2 \text{ K}\Omega$	
Induttanza	$30 \pm 1 \text{ mH}$	$1\pm1~\mathrm{mH}$	$27\pm10~\mathrm{mH}$	$31 \pm 12 \text{ mH}$	
Capacità	$47 \pm 1 \text{ nF}$	$1.8\pm1.4~\mathrm{nF}$	$220 \pm 180 \; \mathrm{nF}$	$67 \pm 24 \text{ nF}$	

I valori ottenuti non sono in accordo con quelli attesi, come è possibile vedere dalla tabella. I valori del chi quadro ottenuti sono 84%, 3% e 7%. Il secondo valore è minore del 5%, il che ci porta a rigettare i dati e il modello ottenuto dal fit.

Figura 15: Differenza di fase tra $\rm V_G$ e $\rm V_C$

Figura 16: Differenza di fase tra $\rm V_G$ e $\rm V_L$

Figura 17: Differenza di fase tra $\rm V_G$ e $\rm V_R$

6 Conclusione

Nel caso dei circuiti RC ed RL, siamo stati in grado di calcolare la funzione di trasferimento tramite i valori di V_A e V_B e a ricavarne la differenza di fase. I risultati ottenuti dai test effettuati, in particolare quelli del chi quadro, dimostrano un buon accordo con i modelli e ci portano ad affermare che l'esperimento sia stato svolto in maniera corretta. Per quanto riguarda invece il circuito RLC, sono state riscontrate delle difficoltà nel calcolo della fase, e i risultati ottenuti non sono compatibili con quelli attesi.

7 Appendice

Circuito RC V_C , V_G		Circuito R	$\mathcal{C} \Delta \phi_{\mathcal{C}}$
$\omega [\mathrm{rad/s}]$	$ \mathbf{H_C} (\omega) $	$\omega [\mathrm{rad/s}]$	$\Delta \phi_C$
439.6 ± 0.00628	0.908 ± 0.03	6283.19 ± 6.28	-0.77 ± 0.07
628 ± 0.00628	0.868 ± 0.03	62831.80 ± 6.28	-1.34 ± 0.13
942 ± 0.00628	0.806 ± 0.03	125663.70 ± 6.28	-1.57 ± 0.16
1381.6 ± 0.00628	0.720 ± 0.027	188495.60 ± 6.28	-1.57 ± 0.16
2512 ± 0.00628	0.540 ± 0.026	31415.93 ± 6.28	-1.37 ± 0.14
3140 ± 0.00628	0.451 ± 0.025	18849.56 ± 6.28	-1.37 ± 0.14
3768 ± 0.00628	0.380 ± 0.024	12566.37 ± 6.28	-1.18 ± 0.12
8164.00 ± 6.28	0.140 ± 0.024	9424.78 ± 6.28	-0.94 ± 0.094
6280.00 ± 6.28	0.200 ± 0.021	7539.82 ± 6.28	-0.90 ± 0.091
12560.00 ± 6.28	0.080 ± 0.022	314159.30 ± 6.28	-1.57 ± 0.16
31400.00 ± 6.28	0.040 ± 0.021	4398.23 ± 6.28	-0.79 ± 0.08
62800.00 ± 6.28	0.020 ± 0.020	628.32 ± 6.28	-0.130 ± 0.014
43960.00 ± 6.28	0.040 ± 0.020	3141.60 ± 6.28	-0.58 ± 0.06
18840.00 ± 6.28	0.040 ± 0.020	6283.20 ± 6.28	-0.98 ± 0.10

Circuito RL V_L , V_G		Circuito RI	$\perp \Delta \phi_L $
$\omega [\mathrm{rad/s}]$	$ \mathbf{H_L} (\omega) $	$\omega [\mathrm{rad/s}]$	$\Delta \phi_L$
6280.00 ± 6.28	0.04 ± 0.02	6283.20 ± 6.28	1.57 ± 0.16
31400.00 ± 6.28	0.060 ± 0.021	12566.40 ± 6.28	1.57 ± 0.16
37680.00 ± 6.28	0.060 ± 0.021	18849.60 ± 6.28	1.37 ± 0.14
43960.00 ± 6.28	0.080 ± 0.022	25132.74 ± 6.28	1.38 ± 0.14
62800.00 ± 6.28	0.120 ± 0.022	31415.93 ± 6.28	1.38 ± 0.14
94200.00 ± 6.28	0.200 ± 0.024	37699.11 ± 6.28	1.18 ± 0.12
125600.00 ± 6.28	0.300 ± 0.025	43982.30 ± 6.28	1.18 ± 0.12
157000.00 ± 6.28	0.370 ± 0.027	62831.85 ± 6.28	1.18 ± 0.12
188400.00 ± 6.28	0.450 ± 0.028	94247.80 ± 6.28	0.78 ± 0.08
251200.00 ± 6.28	0.550 ± 0.030	75398.22 ± 6.28	0.98 ± 0.1
314000.00 ± 6.28	0.610 ± 0.032	157079.60 ± 6.28	0.79 ± 0.08
376800.00 ± 6.28	0.690 ± 0.033	251327.40 ± 6.28	0.58 ± 0.06
439600.00 ± 6.28	0.730 ± 0.033	$ 439823.00 \pm 6.28 $	0.22 ± 0.022
659400.00 ± 6.28	0.830 ± 0.035	565486.70 ± 6.28	0.17 ± 0.017
690800.00 ± 6.28	0.850 ± 0.035		
722200.00 ± 6.28	0.860 ± 0.036		
753600.00 ± 6.28	0.870 ± 0.037		
785000.00 ± 6.28	0.870 ± 0.037		

Circuito RLO	Circuito RLC V_L , V_G		$\subset \Delta \phi_L$
$\omega [\mathrm{rad/s}]$	$ \mathbf{H_L} (\omega) $	$\omega [\mathrm{rad/s}]$	$\Delta \phi_L \text{ [rad]}$
6283.10 ± 6.28	0.04 ± 0.01	31416.30 ± 6.28	-0.20 ± 0.02
31415.00 ± 6.28	0.250 ± 0.013	157079.60 ± 6.28	-0.25 ± 0.03
125663.70 ± 6.28	0.710 ± 0.01	62831.90 ± 6.28	-0.60 ± 0.06
12566.40 ± 6.28	0.090 ± 0.02	31415.90 ± 6.28	-1.18 ± 0.12
18849.60 ± 6.28	0.130 ± 0.013	15707.90 ± 6.28	-1.37 ± 0.14
25132.70 ± 6.28	0.210 ± 0.013	12566.40 ± 6.28	-1.57 ± 0.16
37699.10 ± 6.28	0.300 ± 0.013	21991.20 ± 6.28	-1.37 ± 0.14
62831.90 ± 6.28	0.440 ± 0.013	47123.90 ± 6.28	-0.98 ± 0.1
50265.50 ± 6.28	0.380 ± 0.015	94247.80 ± 6.28	-0.79 ± 0.07
81681.41 ± 6.28	0.540 ± 0.015	251327.40 ± 6.28	-0.20 ± 0.02
106814.20 ± 6.28	0.650 ± 0.016		
144513.30 ± 6.28	0.750 ± 0.017		
157079.60 ± 6.28	0.780 ± 0.017		
188495.50 ± 6.28	0.830 ± 0.017		
219911.50 ± 6.28	0.870 ± 0.018		
251327.40 ± 6.28	0.890 ± 0.018		
314159.30 ± 6.28	0.930 ± 0.019		
471238.90 ± 6.28	0.950 ± 0.019		
502654.80 ± 6.28	0.960 ± 0.019		

Circuito RLC Δ ϕ_R			
$\omega [{ m rad/s}]$	$\Delta \phi_R \text{ [rad]}$		
6283.20 ± 6.28	0.39 ± 0.04		
1570.80 ± 6.28	0.98 ± 0.10		
628.30 ± 6.28	1.37 ± 0.15		
314.20 ± 6.28	1.37 ± 0.16		
157.10 ± 6.28	1.38 ± 0.19		
2513.30 ± 6.28	0.78 ± 0.08		
4712.40 ± 6.28	0.39 ± 0.04		
7854.90 ± 6.28	0.20 ± 0.02		
9424.80 ± 6.28	0.20 ± 0.02		
3141.60 ± 6.28	0.60 ± 0.06		
4084.10 ± 6.28	0.40 ± 0.04		