МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

 Факультет
 Механико-математический факультет

 Кафедра
 Математического моделирования

Направление подготовки Механика и математическое моделирование

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

Мищенко Полина Андреевна

Алгоритм МКО в методе приближенной факторизации для численного решения уравнений Навье-Стокса

«К защите допущена» Заведующий кафедрой, д.фм.н.	Научный руководитель д.фм.н., профессор ИВТ СО РАН
<u> Шарый С.П.</u> /	В.М.Ковеня /
«»20г.	«24» мая2018г.
	Дата защиты: «»20г.

Новосибирск, 2018

Содержание

ВВЕДЕНИЕ	2
1. Постановка задачи	3
1.1. Исходные уравнения	3
2. Численный метод	5
2.1. Численный метод для уравнений Навье-Стокса	5
2.2. Численный метод для уравнения теплопроводности	12
3. Примеры численных расчетов	15
3.1. Задача течения жидкости в каверне с движущейся крышкой	15
Выводы	20
Литература	21

ВВЕДЕНИЕ

Многие физические явления в природе с достаточной точностью описываются уравнениями Навье-Стокса вязкой несжимаемой жидкости [1-3]. Эти уравнения не имеют точных решений, кроме простейших случаев. Поэтому важным является разработка эффективных численных методов их решения. Среди многих численных методов (см., например, [3-8]), применяемых для решения уравнений Навье-Стокса, метод конечных объемов обладает некоторыми важными преимуществами. Он позволяет разрабатывать консервативные алгоритмы для решения уравнений на геометрически сложных областях с использованием неравномерных и криволинейных сеток.

В данной работе предлагается метод численного решения уравнений Навье вязкой несжимаемой жидкости, дополненных уравнением Стокса теплопроводности (приближение Буссинеска), в виде системы интегральных законов сохранения. Он основывается на методе конечных объемов и схеме приближенной факторизации с расщеплением по физическим процессам и пространственным направлениям, что дает возможность свести решение отдельных уравнений к решению скалярными прогонками. Было проведено тестирование метода на задаче о стационарном течении в каверне с движущейся крышкой, получены некоторые данные об основных закономерностях течения.

1. ПОСТАНОВКА ЗАДАЧИ

1.1. Исходные уравнения

Рассмотрим двумерные уравнения Навье-Стокса несжимаемой жидкости, дополненных уравнением теплопроводности (приближение Буссинеска), в виде системы интегральных законов сохранения в декартовых координатах x_1, x_2 при отсутствии внешних сил.

$$\mathbf{M}\frac{\partial}{\partial t} \int_{V} \mathbf{U} dV + \int_{S} (\mathbf{W}\vec{n}) ds = \int_{V} \mathbf{F} dV$$
(1.1)

$$\frac{\partial}{\partial t} \int_{V} T dV + \int_{S} (W_{T} \vec{n}) ds = 0$$
 (1.2)

где

$$\mathbf{U} = \begin{pmatrix} p \\ v_1 \\ v_2 \end{pmatrix}, \quad \mathbf{W} = \begin{pmatrix} v_1 & v_2 \\ v_1^2 + p - \sigma_1^1 & v_1 v_2 - \sigma_1^2 \\ v_1 v_2 - \sigma_2^1 & v_2^2 + p - \sigma_2^2 \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} 0 \\ 0 \\ d \end{pmatrix}, \quad M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad d = Tg.$$

$$\sigma_j^i = \mu(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i}), \quad \mathbf{W}_T = (v_1 T - \kappa \frac{\partial T}{\partial x_1}, v_2 T - \kappa \frac{\partial T}{\partial x_2}).$$

V- объем, $\mathbf{S}-$ граница объема, $\vec{n}-$ внешняя нормаль к площадке $d\mathbf{S}$, $\mathbf{U},T-$ вектор искомых функций и температура, p - давление, v_1 и v_2 - компоненты вектора скорости, \mathbf{W},\mathbf{W}_T- матрицы, составленные из столбцов потоков на границах объема, $\sigma=\{\sigma_j^i\}-$ тензор вязких напряжений, g-коэффициент ускорения. Система уравнений вырожденная. Алгоритм для решения системы уравнений (1.1), (1.2) построим вначале

для уравнений (1.1), полагая известным значение температуры, после чего рассмотрим алгоритм для решения уравнения теплопроводности (1.2).

2. ЧИСЛЕННЫЙ МЕТОД

2.1. Численный метод для уравнений Навье-Стокса

Разобьем расчетную область V на ячейки $\omega = V_{i,j}$, каждая из которых является четырехугольником (рис. 1).

Рис. 1. Расчетная сетка

Решение уравнений (1.1) будем отыскивать в области $\mathbf{V} \times (0,T)$, $\mathbf{V} = \sum_{i=1}^{J} \sum_{j=1}^{J} V_{i,j}$. В интервале (0,T) введем сетку с временным шагом $\tau = T/N$, где N –число временных шагов. Значения сеточных функций будем определять в центрах ячеек $V_{i,j}$, потоки на границах — в узлах $i \pm 1/2, j$ и $i,j \pm 1/2$. Площади граней обозначим через $S_{m\pm 1/2}$. Введем усреднение функций по ячейкам:

$$V_{i,j} = \omega, \quad \mathbf{U}_{i,j} = \frac{1}{\omega} \int_{\omega} \mathbf{U} \, \partial \omega, \quad T_{i,j} = \frac{1}{\omega} \int_{\omega} T \, \partial \omega, \quad \mathbf{F}_{i,j} = \frac{1}{\omega} \int_{\omega} \mathbf{F} \partial \omega.$$

Аппроксимируем уравнения (1.1) схемой с весами для каждой ячейки ω

$$\mathbf{M}\,\omega\frac{\mathbf{U}^{n+1}-\mathbf{U}^n}{\tau}+\alpha\,\mathbf{\Omega}^{n+1}+\beta\,\mathbf{\Omega}^n=\mathbf{\omega}\,(\alpha\mathbf{F}^{n+1}+\beta\mathbf{F}^n). \tag{2.1}$$

Здесь $\mathbf{\Omega} = \int\limits_{\mathbf{S}} \left(\mathbf{WSn}\right) dS \approx \sum_{m=1}^2 \Delta_m(S\mathbf{Wn})$ — аппроксимация интегралов по границе ячейки ω ,

$$\Delta_m(\mathbf{W}S)_m = (\mathbf{W}S)_{m+1/2} - (\mathbf{W}S)_{m-1/2} = \left[S_{m+1/2}(\mathbf{W}_{m+1} + \mathbf{W}_m) - S_{m-1/2}(\mathbf{W}_{m-1} + \mathbf{W}_m)\right]/2 - \frac{1}{2} \left[S_{m+1/2}(\mathbf{W}S)_{m+1/2} - S_{m-1/2}(\mathbf{W}S)_{m+1/2} + S_{m-1/2}(\mathbf{W}S)_{m+1$$

потоки через противоположные грани ячейки, где m=1(i),2(j). Порядок аппроксимации схемы (2.1) $O(\tau^m+h^2)$, где m=2 при $\alpha=1/2$ и m=1 при $\alpha\neq 1/2$, $h=\omega^{1/2}$. Конечно – объемная схема (2.1) вырождена и ее реализация в явном виде невозможна. Представим потоки на границах в виде разности газодинамических и вязких потоков

$$S\mathbf{W}\mathbf{n} = \mathbf{W}_{egg} - \mathbf{W}_{egg} = \begin{pmatrix} v_{1} & v_{2} \\ v_{1}^{2} + p & v_{1}v_{2} \\ v_{1}v_{2} & v_{2}^{2} + p \end{pmatrix} S \cdot \mathbf{n} - \begin{pmatrix} 0 & 0 \\ \sigma_{1}^{1} & \sigma_{1}^{2} \\ \sigma_{2}^{1} & \sigma_{2}^{2} \end{pmatrix} S \cdot \mathbf{n} = \begin{pmatrix} v_{1}S_{1} + v_{2}S_{2} \\ (v_{1}^{2} + p)S_{1} + v_{1}v_{2}S_{2} \\ v_{1}v_{2}S_{1} + (v_{2}^{2} + p)S_{2} \end{pmatrix} - \begin{pmatrix} 0 \\ \sigma_{1}^{1}S_{1} + \sigma_{1}^{2}S_{2} \\ \sigma_{2}^{1}S_{1} + \sigma_{2}^{2}S_{2} \end{pmatrix} = \begin{pmatrix} V \\ v_{1}V + pS_{1} \\ v_{2}V + pS_{2} \end{pmatrix} - \begin{pmatrix} 0 \\ \sigma_{1}^{1}S_{1} + \sigma_{1}^{2}S_{2} \\ \sigma_{2}^{1}S_{1} + \sigma_{2}^{2}S_{2} \end{pmatrix}.$$

$$(2.2)$$

Здесь $V=\mathbf{v}S\vec{n}=v_1S_1+v_2S_2$ — проекция вектора скорости \mathbf{v} , умноженная на нормаль к грани $m\pm 1/2$ и на ее площадь $S_{m\pm 1/2}$. Аппроксимируем вектор $\mathbf{W}_{\rm вяз}$ в (2.2). Для того чтобы вычислить вектор вязких потоков на границах ячейки, нужно аппроксимировать производные скоростей по направлениям x_1,x_2 , которые могут не совпадать с направлением граней ячейки. Введем параметризацию исходной ячейки ω , переводящую ее в единичный квадрат, по формулам $x_i=x_i(q_j), q_j=q_j(x_i)$, где $0\leq q_j\leq 1$.

$$\frac{\partial}{\partial x_{1}} = z_{1}^{1} \frac{\partial}{\partial q_{1}} + z_{1}^{2} \frac{\partial}{\partial q_{2}}, \quad \frac{\partial}{\partial x_{2}} = z_{2}^{1} \frac{\partial}{\partial q_{1}} + z_{2}^{2} \frac{\partial}{\partial q_{2}}, \quad z_{m}^{l} = \frac{\partial q_{l}}{\partial x_{m}},$$

$$\sigma_{l}^{l} = 2\mu z_{l}^{l} \frac{\partial v_{l}}{\partial q_{l}} (l = 1, 2), \quad \sigma_{1}^{2} = \sigma_{2}^{1} = \mu (z_{2}^{1} \frac{\partial v_{1}}{\partial q_{1}} + z_{2}^{2} \frac{\partial v_{1}}{\partial q_{2}} + z_{1}^{1} \frac{\partial v_{2}}{\partial q_{1}} + z_{1}^{2} \frac{\partial v_{2}}{\partial q_{2}}).$$
(2.3)

Аппроксимируем σ_k^l симметричными операторами

$$\sigma_{1}^{1} = \mu_{ij} [z_{1ij}^{1} (v_{1i+1j} - v_{1i-1j}) + z_{1ij}^{2} (v_{1ij+1} - v_{1ij-1})], \sigma_{2}^{2} = \mu_{ij} [z_{2ij}^{1} (v_{2i+1j} - v_{2i-1j}) + z_{2ij}^{2} (v_{2ij+1} - v_{2ij-1})],
\sigma_{1}^{2} = \sigma_{2}^{1} = \mu_{ij} [z_{2ij}^{1} (v_{1i+1j} - v_{1i-1j}) + z_{2ij}^{2} (v_{1ij+1} - v_{1ij-1}) + z_{1ij}^{1} (v_{2i+1j} - v_{2i-1j}) + z_{1ij}^{2} (v_{2ij+1} - v_{2jj-1})]/2.$$
(2.4)

Используя расщепление по физическим процессам, представим вектор газовых потоков в суммы двух векторов

$$\mathbf{W}_{zas} = \mathbf{W}_{1} + \mathbf{W}_{2} = \begin{pmatrix} v_{1}S_{1} + v_{2}S_{2} \\ v_{1}V + pS_{1} \\ v_{2}V + pS_{2} \end{pmatrix} = \begin{pmatrix} v_{1}S_{1} + v_{2}S_{2} \\ pS_{1} \\ pS_{2} \end{pmatrix} + \begin{pmatrix} 0 \\ v_{1}V \\ v_{2}V \end{pmatrix}, V = v_{1}S_{1} + v_{2}S_{2}$$

и линеаризуем векторы $oldsymbol{W}_l^{n+1}$ $(l=1,\!2)$ относительно вектора ${f U}$ по формулам

$$\mathbf{W}_{l}^{n+1} = \mathbf{W}_{l}^{n} + \tau \frac{\partial \mathbf{W}_{l}^{n}}{\partial \mathbf{U}} \frac{\partial \mathbf{U}^{n}}{\partial t} + O(\tau^{2}) = \mathbf{W}_{l}^{n} + \tau \mathbf{B}_{l}^{n} \frac{\mathbf{U}^{n+1} - \mathbf{U}^{n}}{\tau} + ... = \mathbf{B}_{l}^{n} \mathbf{U}^{n+1},$$

где
$$\mathbf{B}_1 = \begin{pmatrix} 0 & S_1 & S_2 \\ S_1 & 0 & 0 \\ S_2 & 0 & 0 \end{pmatrix}, \ \mathbf{B}_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & V & 0 \\ 0 & 0 & V \end{pmatrix}$$
. При заданных значениях коэффициента вязкости

 μ вектор $\mathbf{W}_{_{\!\mathit{e}\!\mathit{f}\!\mathit{3}}}$ линейный относительно вектора \mathbf{U} . Суммируя векторы $\mathbf{W}_{_{\!\mathit{e}\!\mathit{f}\!\mathit{3}}}, \mathbf{W}_{_{\!\mathit{e}\!\mathit{f}\!\mathit{3}}}$ по ячейке, получим

$$\mathbf{W}_{l} = \sum_{m=1}^{2} \Delta_{m} \mathbf{B}_{l}^{n} \mathbf{U}^{n+1}, \ \mathbf{W}_{693} = \sum_{m=1}^{2} \Delta_{m} \begin{pmatrix} 0 \\ \sigma_{1}^{1} S_{1} + \sigma_{1}^{2} S_{2} \\ \sigma_{2}^{1} S_{1} + \sigma_{2}^{2} S_{2} \end{pmatrix} = (\Delta_{1} + \Delta_{2}) \sum_{l=1}^{2} \begin{pmatrix} 0 \\ \sigma_{1}^{l} S_{l} \\ \sigma_{2}^{l} S_{l} \end{pmatrix} = \begin{pmatrix} 0 \\ T^{1} \\ T^{2} \end{pmatrix},$$
(2.5)

$$T^1 = \Delta_1 S_1 \sigma_1^1 + \Delta_2 S_2 \sigma_2^1 = 2 \mu z_1^1 S_1 \Delta_{11} v_1 + \mu z_2^2 S_2 [\Delta_{22} v_1 + \Delta_{12} v_2],$$
 где
$$T^2 = \Delta_1 S_1 \sigma_2^1 + \Delta_2 S_2 \sigma_2^2 = 2 \mu z_1^1 [\Delta_{22} v_2 + \Delta_{12} v_1] + 2 \mu z_2^2 S_2 \Delta_{22} v_2,$$

$$\Delta_{mm} v = v_{m+1} - 2 v_m + v_{m-1}, \quad \Delta_{12} v = (v_{i+1} - v_{i-1} - v_{i+1} - v_{i+1} - v_{i-1} - v_{i-1})/4.$$

Выделим в $\widetilde{\pmb{W}}_{ ext{вяз}}$ члены $\widetilde{\pmb{W}}$, содержащие лишь повторные производные. Тогда

$$\widetilde{\pmb{W}} = \begin{pmatrix} 0 \\ T_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} 0 \\ (T_{11} + T_{12})v_1 \\ (T_{21} + T_{22})v_2 \end{pmatrix} = \sum_{m=1}^2 B_{2m} \mathbf{U}, \quad B_{2m} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & T_{1m} & 0 \\ 0 & 0 & T_{2m} \end{pmatrix}, \quad \text{где}$$

$$\begin{split} t_{lm}g &= \Delta_{m}\mu z_{l}^{m}\Delta_{m}S_{l}g = \Delta_{m}r_{lm}[(S_{l}g)_{m+1/2} - (S_{l}g)_{m-1/2}] = a_{lm}g_{m-1} - b_{lm}g_{m} + c_{lm}g_{m+1}, \\ r_{lm\pm1/2} &= \mu(z_{lm\pm1}^{m} + z_{lm}^{m})/4, a_{lm} = r_{lm-1/2}(S_{lm-1/2} + S_{lm-3/2}), c_{lm} = r_{lm+1/2}(S_{lm+1/2} + S_{lm+3/2}), \\ b_{lm} &= (r_{lm+1/2} + r_{lm-1/2})(S_{lm+1/2} + S_{lm-1/2}), \quad T_{1m}v_{1} = \Delta_{m}\mu(2z_{1}^{m}\Delta_{m}S_{1} + z_{2}^{m}\Delta_{m}S_{2})v_{1} = (2t_{1m} + t_{2m})v_{1}, \\ T_{2m}v_{2} &= \Delta_{m}\mu(z_{1}^{m}\Delta_{m}S_{1} + 2z_{2}^{m}\Delta_{m}S_{2})v_{2} = (t_{1m} + 2t_{2m})v_{2}, m = 1(i), 2(j). \end{split}$$

С учетом линеаризации вместо (2.1) можно рассмотреть конечно-объемную схему

$$\left[\mathbf{M} + d_0 \sum_{m=1}^{2} \left\{ \Delta_m (\mathbf{B}_1^n + \mathbf{B}_2^n) - \mathbf{B}_{2m} \right\} \right] \frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\tau} = -\frac{1}{\omega} (\mathbf{W}_{ca3}^n - \mathbf{W}_{693}^n) + \mathbf{F}^n$$

Используя схему приближенной факторизации получим схему

$$(M + d_0 \sum_{m=1}^{2} \Delta_m \mathbf{B}_1^n) \prod_{m=1}^{2} (I + d_0 \Delta_m \mathbf{B}_2^n) \frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\tau} = -\frac{1}{\omega} (\mathbf{W}_{2a3}^n - \mathbf{W}_{693}^n) + \mathbf{F}^n$$
 (2.6)

Рассмотрим эту схему в виде схемы в дробных шагах

$$\xi^{n} = -(\mathbf{W}_{2a3}^{n} - \mathbf{W}_{893}^{n})/\omega + \mathbf{F}^{n},$$

$$[I + d_{0}(\Delta_{i}\mathbf{B}_{2}^{n} - \mathbf{B}_{21}^{n})]\xi^{n+1/4} = \xi^{n}, [I + d_{0}(\Delta_{j}\mathbf{B}_{2}^{n} - \mathbf{B}_{22}^{n})]\xi^{n+1/2} = \xi^{n+1/4},$$

$$(M + d_{0}\sum_{i=1}^{2}\Delta_{m})\xi^{n+1} = \xi^{n+1/2}, \quad \mathbf{U}^{n+1} = \mathbf{U}^{n} + \tau\xi^{n+1}.$$
(2.7)

Здесь $\widetilde{\boldsymbol{B}}_{2m}^n = \Delta_m \boldsymbol{B}_2^n - \boldsymbol{B}_{2m}$, $d_0 = \alpha \tau/\omega$, $\xi = (\xi_0, \xi_1, \xi_2)^T$ — невязки решения на дробных шагах. Схема (2.7) аппроксимирует уравнения Навье—Стокса с тем же порядком $O(\tau^m + \epsilon)$

 h^2), что и схема (2.1), где $h=\omega^{1/2}$. Остановимся на реализации схемы (2.7).

Компоненты ξ_l^n нулевого шага вычисляются явно по формулам:

$$\xi_0^n = -\sum_{m=1}^2 \Delta_m V/\omega = -\sum_{m=1}^2 \Delta_m \sum_{l=1}^2 (v_l S_l)/\omega = -[S_{1i+1/2j} v_{1i+1j}^n - S_{1i-1/2j} v_{1i-1j}^n + S_{2ij+1/2} v_{2ij+1}^n - S_{2ij-1/2} v_{2ij-1}^n]/2\omega.$$

$$\xi_1^n = -\left[\sum_{m=1}^2 \left(\Delta_m \left((v_1^2 + p)S_1 + v_1 v_2 S_2 \right) - T^1 \right] / \omega =$$

$$T^{1}/\omega - \{S_{1i+1/2}(v_{1}^{2} + p)_{i+1} + S_{2i+1/2}(v_{1}v_{2})_{i+1} - S_{1i-1/2}(v_{1}^{2} + p)_{i-1} - S_{2i-1/2}(v_{1}v_{2})_{i-1}\}/2\omega,$$

$$\xi_{2}^{n} = gT - \{\sum_{m=1}^{2} [\Delta_{m}(v_{1}v_{2}S_{1} + (v_{2}^{2} + p)S_{2})] - T^{2}\} / \omega = gT + T^{2} / \omega - [S_{1i+1/2}(v_{1}v_{2})_{i+1} - S_{1i-1/2}(v_{1}v_{2})_{i-1} + S_{2j+1/2}(v_{2j+1}^{2} + p_{j+1}) - S_{2j-1/2}(v_{2j-1}^{2} + p_{j-1})] / 2\omega.$$

Компоненты $\xi_l^{n+1/4}$ и $\xi_l^{n+1/2}$ первого и второго дробных шагов схемы (2.7) находятся из следующей системы уравнений

$$\left[I + d_0(\Delta_i \mathbf{B}_2^n - B_{21})\right] \xi^{n+1/4} = \xi^n, \quad \left[I + d_0(\Delta_j \mathbf{B}_2^n - B_{22})\right] \xi^{n+1/2} = \xi^{n+1/4}, \quad (2.8)$$

где

$$\Delta_{1}\mathbf{B}_{2}^{n}-B_{21}=\begin{pmatrix}0&0&0\\0&\Delta_{1}V-2t_{11}&0\\0&0&\Delta_{m}V-t_{11}\end{pmatrix},\quad\Delta_{2}\mathbf{B}_{2}^{n}-B_{22}=\begin{pmatrix}0&0&0\\0&\Delta_{2}V-t_{22}&0\\0&0&\Delta_{m}V-2t_{22}\end{pmatrix},$$

$$\begin{split} &\Delta_{\Gamma}(Vq) = (Vq)_{i+1/2} - (Vq)_{i-1/2} = [(S_1)_{i+1/2}[(v_1q)_{i+1} + (v_1q)_i] - (S_1)_{i-1/2}[(v_1q)_i + (v_1q)_{i-1}]/2 = \\ &c_iq_{i+1} + b_iq_i + a_iq_{i-1}, \qquad \Delta_{2^*}(Vq) = (Vq)_{j+1/2} - (Vq)_{j-1/2} = \\ &(S_2)_{j+1/2}[(v_2q)_{j+1} + (v_2q)_j] - (S_2)_{j-1/2}[(v_2q)_j + (v_2q)_{j-1}] = c_jq_{j+1} + b_jq_j + a_jq_{j-1}, \\ &c_m = S_{mm+1/2}(v_{mm+1}^n + v_{mm}^n)/2, \ a_m = -S_{lm-1/2}(v_{lm-1}^n + v_{lm}^n)/2, b_m = c_m + a_m, (m=i,j). \end{split}$$

$$\begin{split} t_{11} &\xi = \Delta_1 \mu z_1^1 \Delta_1 S_1 \xi, \quad t_{22} \xi = \Delta_2 \mu z 2 \Delta_2 S_2 \xi, \quad \xi = (\xi_1, \xi_2). \\ &t_{11} \xi = [\mu_{i+1/2} z_{1i+1/2}^1 S_{1i+1/2} (\xi_{i+1} - \xi_i) - \mu_{i-1/2} z_{1i-1/2}^1 S_{1i-1/2} (\xi_i - \xi_{i-1})] = c c_i \xi_{i+1} + b b_i \xi_i + a a_i \xi_{i-1} \ , \\ &t_{22} \xi = (\mu z_2^2)_{j+1/2} S_{2j+1/2} (\xi_{j+1} - \xi_j) - (\mu z_2^2)_{j-1/2} S_{2j-1/2} (\xi_j - \xi_{j-1}) = c c_j \xi_{j+1} + b b_j \ \xi_{j+1} + a a_j \xi_{j-1} \ , \end{split}$$

$$c_{li} = (3-l)cc_{i}, a_{li} = (3-l)aa_{i}, \quad cc_{i} = \mu_{i+1/2}z_{1i+1/2}^{1}S_{1i+1/2}, aa_{i} = \mu_{i-1/2}z_{1i-1/2}^{1}S_{1i-1/2}, b_{ji} = c_{li} + a_{li},$$

$$c_{lj} = lcc_{j}, a_{lj} = laa_{j}, \quad b_{ji} = c_{lj} + a_{lj}, \quad cc_{j} = \mu_{i+1/2}z_{1i+1/2}^{1}S_{1i+1/2}, aa_{j} = \mu_{i-1/2}z_{1i-1/2}^{1}S_{1i-1/2}.$$

$$(2.9)$$

Из вида схемы (2.8) следует $\xi_0^{n+1/2}=\xi_0^{n+2/4}=\xi_0^n$.

Для нахождения компонент невязок для скоростей $\xi = (\xi_1, \xi_2)$ решаются уравнения.

$$(1+B_i^l)\xi_i^{n+1/4}+C_i^l\xi_{i+1}^{n+1/4}+A_i^l\xi_{i-1}^{n+1/4}=\xi_l^n,\quad (1+B_i^l)\xi_i^{n+2/4}+C_i^l\xi_{i+1}^{n+2/4}+A_i^l\xi_{i-1}^{n+2/4}=\xi_l^{n+1/4},$$

где
$$A_i^l=d_0(a_i-a_{li}), C_i^l=d_0(c_i-c_{li}), B_i^l=d_0(b_i+b_{li}), a_m$$
, b_m , c_m , a_{mm} , b_{mm} , c_{mm}

коэффициенты, определенные ранее. Уравнения реализуются скалярными прогонками последовательно для каждого шага.

На третьем дробном шаге n+1 решается система уравнений

$$\frac{1}{\omega} \left[\Delta_1 S_1 \xi_1^{n+1} + \Delta_2 S_2 \xi_2^{n+1} \right] = 0, \ \xi_1^{n+1} = \xi_1^{n+2/4} - \frac{\tau \alpha}{\omega} \Delta_1 S_1 \xi^{n+1}, \ \xi_2^{n+1} = \xi_2^{n+2/4} - \frac{\tau \alpha}{\omega} \Delta_2 S_2 \xi^{n+1},$$
 (2.10)

где для простоты обозначим $\xi^{n+1}=\xi_0^{n+1}$. Заменяя компоненты ξ_l^{n+1} в уравнении неразрывности, получаем

$$\begin{split} &\frac{1}{\omega}[\Delta_{1}S_{1}(\xi_{1}^{n+2/4}-\frac{\tau\alpha}{\omega}\Delta_{1}S_{1}\xi^{n+1})+\Delta_{2}S_{2}(\xi_{2}^{n+2/4}-\frac{\tau\alpha}{\omega}\Delta_{2}S_{2}\xi^{n+1})]=0,\quad unu\\ &\frac{\alpha\tau}{\omega^{2}}[\Delta_{1}S_{1}\Delta_{1}S_{1}\xi^{n+1/2}+\Delta_{2}S_{2}\Delta_{2}S_{2}\xi^{n+1}]=f,\quad f=\frac{1}{\omega}(\Delta_{1}S_{1}\xi_{1}^{n+2/4}+\Delta_{2}S_{2}\xi_{2}^{n+2/4}). \end{split}$$

Или
$$\frac{1}{\omega^2}[\Delta_{_1}S_{_1}\Delta_{_1}S_{_2}\xi^{_{n+1/2}}+\Delta_{_2}S_{_2}\Delta_{_2}S_{_2}\xi^{_{n+1}}]=\frac{1}{\tau\alpha}f, \quad f=\frac{1}{\tau\alpha}f=\frac{1}{\tau\alpha}(\Delta_{_1}S_{_1}\xi_{_1}^{_{n+2/4}}+\Delta_{_2}S_{_2}\xi_{_2}^{_{n+2/4}}),$$

Так как
$$\Delta_k S_k \Delta_k S_k \xi = S_{k+1/2} [(S_k \xi)_{k+1} - (S_k \xi)_k] - S_{k-1/2} [(S_k \xi)_k - (S_k \xi)_{k-1}]$$
, то

$$\begin{split} &\Delta \xi^{n+1} = \frac{1}{\omega^2} \{ S_{1i+1/2} [(S_1 \xi^{n+1})_{i+1} - (S_1 \xi^{n+1})_i] - S_{1i-1/2} [(S_1 \xi^{n+1})_i - (S_i \xi^{n+1})_{i-1}] + S_{2j+1/2} [(S_2 \xi^{n+1})_{j+1} - (S_2 \xi^{n+1})_j] - S_{2j-1/2} [(S_2 \xi^{n+1})_j - S_2 \xi^{n+1})_{j-1}] \} = b_{21} \xi_{i+1j}^{n+1} + b_{01} \xi_{i-1j}^{n+1} - (b_{11}^i + b_{11}^j) \xi_{ij}^{n+1} + b_{12} \xi_{ij+1}^{n+1} + b_{10} \xi_{ij-1}^{n+1} = f \,, \end{split}$$

где
$$f=rac{1}{2 au\omega}[S_{1i+1/2}\xi_{1i+1}^{n+2/4}-S_{1i-1/2}\xi_{1i-1}^{n+2/4}+S_{2j+1/2}\xi_{2j+1}^{n+2/4}-S_{2j-1/2}\xi_{2j-1}^{n+2/4}].$$

$$b_{21} = S_{1i+1/2j}(S_{1i+3/2j} + S_{1i+1/2j})/2, \ b_{01} = S_{1i-1/2j}(S_{1i-3/2j} + S_{1i-1/2j})/2, b_{11}^{i} = (S_{1i+1/2j} + S_{1i-1/2j})^{2}/2, b_{12} = S_{2ij+1/2}(S_{2ij+3/2} + S_{2ij+1/2})/2, \ b_{10} = S_{2ij-1/2}(S_{2ij-3/2} + S_{2ij-1/2})/2, \ b_{11}^{j} = (S_{2ij+1/2} + S_{2ij-1/2})^{2}/2,$$
(2.11)

Таким образом, решение уравнений (2.10) свелось к решению уравнения Пуассона $\Delta \xi^{n+1} = f$. Его решение может быть получено различными итерационными алгоритмами. Рассмотрим итерационный алгоритм

$$\partial \zeta / \partial \tau_0 = \Delta \xi - f = F$$
,

и реализуем его по схеме приближенной факторизации

$$(I - \tau_0 \Delta_{ii})(I - \tau_0 \Delta_{ii})(\zeta^{v+1} - \zeta^{v})/\tau_0 = \Delta \zeta^{v} - f$$
 (2.12)

или эквивалентной ей схеме в дробных шагах

$$(I - \tau_0 \Delta_{ii}) B = (\Delta \zeta^{\nu} - f),$$

$$(I - \tau_0 \Delta_{ii}) A = B, \zeta^{\nu+1} = \zeta^{\nu} + \tau_0 A$$
(2.13)

Здесь введено $\zeta^{\nu}=\xi_0^{\,n+1\,\nu}$. Схема (2.13) реализуется на дробных шагах скалярными прогонками по формулам

$$(1+\tau_0b_{11}^i)B_{i,j}-\tau_0b_{21}B_{i+1,j}-\tau_0b_{01}B_{i-1,j}=\Delta\zeta^{\nu}-f,$$

$$(1+\tau_0b_{11}^j)A_{i,j}-\tau_0b_{12}A_{i,j+1}-\tau_0b_{10}A_{i,j-1}=B_{i,j}^{\nu},$$

Уравнение (2.12) решается до сходимости итераций, т.е. до выполнения условия

$$\Delta \zeta^{\nu} - f = O(\tau_0 h^2)$$

во всех внутренних ячейках. Для решения уравнения Пуассона также можно использовать и простейший итерационный алгоритм в виде

$$b_{21}\xi_{i+1j}^{\nu+1} + b_{01}\xi_{i-1j}^{\nu+1} - (b_{11}^{i} + b_{11}^{j})\xi_{ij}^{\nu+1} + b_{12}\xi_{ij+1}^{\nu} + b_{10}\xi_{ij-1}^{\nu+1} = f,$$

где коэффициенты определены в (2.11). Это уравнение реализуется скалярными прогонками в направлении x_1

$$b_{21}\xi_{i+1j}^{\nu+1} + b_{01}\xi_{i-1j}^{\nu+1} - (b_{11}^i + b_{11}^j)\xi_{ij}^{\nu+1} = f - b_{12}\xi_{ij+1}^{\nu} - b_{10}\xi_{ij-1}^{\nu+1} \quad .$$

Затем явно находятся новые значения невязок скоростей

$$\begin{split} &\xi_1^{n+1} = \xi_1^{n+2/4} - d_0 \Delta_1 S_1 \xi^{n+1} = \xi_1^{n+2/4} - d_0 S_{1i+1/2} (\xi_{i+1}^{n+1} - \xi_{i-1}^{n+1})/2\,, \\ &\xi_2^{n+1} = \xi_2^{n+2/4} - d_0 \Delta_2 S_2 \xi^{n+1} = \xi_2^{n+2/4} - d_0 S_{2\,j+1/2} (\xi_{j+1}^{n+1} - \xi_{j-1}^{n+1})/2\,. \end{split}$$

Новые значения функций определяются явно из последнего уравнения схемы (2.7). На этом цикл вычислений на одном шаге заканчивается.

2.2. Численный метод для уравнения теплопроводности

Введем преобразование координат (2.3) и аппроксимируем производные в σ_l^3 операторами

$$\sigma_1^3 = \kappa((z_1^1(T_{i+1} - T_{i-1}) + z_1^2(T_{j+1} - T_{j-1}))/2, \ \sigma_2^3 = \kappa((z_2^1(T_{i+1} - T_{i-1}) + z_2^2(T_{j+1} - T_{j-1}))/2,$$

$$\mathbf{W}_T = (v_1 T - \sigma_1^3), v_2 T - \sigma_2^3), \ \mathbf{W}_T = \mathbf{W}_T S n = V T - (\sigma_1^3 S_1 + \sigma_2^3 S_2).$$

Суммируя $\mathbf{W}_T = \mathbf{W}_T S n = (\Delta_i + \Delta_j) [VT - (\sigma_1^3 S_1 + \sigma_2^3 S_2)]$ по ячейке, получим

$$\sum_{m=1}^{2} \mathbf{W}_{Tm} = \sum_{m=1}^{2} (R_{m}^{k} T - R_{m}^{b}), \quad R_{m}^{k} T = \Delta_{m}(VT) = c_{m} T_{m+1} + b_{m} T_{m} + a_{m} T_{m-1},$$

$$R_{m}^{b} = \Delta_{m}(\sigma_{m}^{3} S_{1} + \sigma_{2}^{3} S_{2}) = \sum_{l=1}^{2} [S_{lm+1/2}(\sigma_{lm+1}^{3} + \sigma_{lm}^{3}) - S_{lm-1/2}(\sigma_{lm-1}^{3} + \sigma_{lm}^{3})]/2,$$

где
$$c_{\scriptscriptstyle m} = \sum_{\scriptscriptstyle l=1}^2 S_{\scriptscriptstyle lm+1/2} (v_{\scriptscriptstyle lm+1}^{\scriptscriptstyle n} + v_{\scriptscriptstyle lm}^{\scriptscriptstyle n})/4 \,, \, a_{\scriptscriptstyle m} = \sum_{\scriptscriptstyle l=1}^2 S_{\scriptscriptstyle lm-1/2} (v_{\scriptscriptstyle lm-1}^{\scriptscriptstyle n} + v_{\scriptscriptstyle lm}^{\scriptscriptstyle n})/4 \,, b_{\scriptscriptstyle l} = c_{\scriptscriptstyle l} - a_{\scriptscriptstyle l}.$$

Сохраняя лишь повторные производные в операторе $(\Delta_i + \Delta_j)(\sigma_1^3 S_1 + \sigma_2^3 S_2)$, получим

$$R = \sum_{m=1}^{2} [\Delta_{m}(VT) - \Delta_{m}\kappa^{m}\Delta_{m}T] = \sum_{m=1}^{2} R_{m} = \sum_{m=1}^{2} [\Delta_{m}(VT) - R_{m}^{t}], \quad \partial e$$

$$R_{m}^{t} = \Delta_{m}\kappa^{m}\Delta_{m}T = \sum_{l=1}^{2} \{S_{lm+1/2}(\kappa_{m+1} + \kappa_{m})(z_{lm+1}^{m} + z_{lm}^{m})(T_{m+1} - T_{m}) - S_{lm-1/2}(\kappa_{m-1} + \kappa_{m})(z_{lm-1}^{m} + z_{lm}^{m})(T_{m} - T_{m-1})\}/4 = a_{1m}T_{m-1} - b_{1m}T_{m} + c_{1m}T_{m+1},$$

$$a_{1m} = \sum_{l=1}^{2} S_{lm-1/2} (z_{lm-1}^{m} + z_{lm}^{m}) (\kappa_{m-1} + \kappa_{m}) / 4, c_{1m} = \sum_{l=1}^{2} S_{lm+1/2} (z_{lm+1}^{m} + z_{lm}^{m}) (\kappa_{m+1} + \kappa_{m}) / 4, b_{1m} = a_{1m} + c_{1m}.$$

Для численного решения уравнения теплопроводности (1.2) рассмотрим схему

$$\prod_{m=1}^{2} (I + d_0 R_m) \frac{T^{n+1} - T^n}{\tau} = -\frac{1}{\omega} \sum_{m=1}^{2} (R_m^k - R_m^b), \tag{2.14}$$

или эквивалентную ей схему в дробных шагах

$$\xi_{T}^{n} = -\sum_{m=1}^{2} (R_{m}^{k} - R_{m}^{t}) / \omega,$$

$$(I + d_{0}R_{1})\xi_{T}^{n+1/2} = \xi_{T}^{n}, (I + d_{0}R_{2})\xi_{T}^{n+1} = \xi_{T}^{n+1/2},$$

$$T^{n+1} = T^{n} + \tau \xi_{T}^{n+1}$$
(2.15)

$$(I+d_0R_1)\xi_T^{n+1/2}=\xi_T^n,\quad (I+d_0R_1)\xi_T^{n+1}=\xi_T^{n+1/2},$$
 или система

$$(1+B_i)\xi_{Ti}^{n+3/4} + C_i\xi_{Ti+1}^{n+3/4} + A_i\xi_{Ti-1}^{n+3/4} = \xi_{Ti}^{n+1/2}, (1+B_i^m)\xi_{Ti}^{n+1} + C_i^m\xi_{Ti+1}^{n+1} + A_i^m\xi_{Ti-1}^{n+1} = \xi_{Ti}^{n+3/4},$$

решается скалярными прогонками, где коэффициенты равны

$$\begin{split} A_m &= d(a_m - a_{1m}), \quad C_m = d(c_m - c_{1m}), \quad B_m = d(b_{1m} + b_m) \quad (m = i, j), \\ c_m &= \sum_{l=1}^2 S_{lm+1/2} (v_{lm+1}^n + v_{lm}^n)/4, \, c_{1m} = \sum_{l=1}^2 S_{lm+1/2} (z_{lm+1}^m + z_{lm}^m) (\kappa_{m+1} + \kappa_m)/4, \, b_m = c_m - a_m, \\ a_m &= \sum_{l=1}^2 S_{lm-1/2} (v_{lm-1}^n + v_{lm}^n)/4, \, a_{1m} = \sum_{l=1}^2 S_{lm-1/2} (z_{lm-1}^m + z_{lm}^m) (\kappa_{m-1} + \kappa_m)/4, \, b_{1m} = a_{1m} + c_{1m}. \end{split}$$

После нахождения невязок для температуры, новые значения температуры вычисляются явно из последнего уравнения (2.15). На этом один шаг вычислений заканчивается и процесс повторяется в новый момент времени.

3. ПРИМЕРЫ ЧИСЛЕННЫХ РАСЧЕТОВ

3.1. Задача течения жидкости в каверне с движущейся крышкой

Для тестирования рассматриваемого метода была предложена задача течения жидкости в каверне с движущейся крышкой. Так как в этой задаче сила тяжести не учитывается (F=0), то рассматривается модель Навье — Стокса (1.1) без уравнения теплопроводности (1.2). Исследуется плоское стационарное течение жидкости в каверне, верхняя крышка которой движется со скоростью $v_1=1$ (рис.1.а). Расчетная область - квадратная полость $(0 \le x_1 \le L, 0 \le x_2 \le L)$. В области вводится равномерная квадратная сетка, тогда коэффициенты преобразования координат равны $z_2^1=z_1^2=0$. В начальный момент t=0 в расчетной области полагается, что жидкость неподвижна $v_1^0=v_2^0=0$, а давление одинаково на всей области $p^0=1$ (может задаваться с точностью до константы). При t>0 крышка начинает двигаться. На твердых стенках выполняются условия прилипания $v_1|_{\Gamma}=v_2|_{\Gamma}=0$. На крышке: $v_1|_{\Gamma_1}=1, v_2|_{\Gamma_1}=0$ (рис. 1.а).

Искомые функции определены в центрах ячеек, а краевые условия - в узлах на границе области, поэтому, для того чтобы решить задачу, необходимо задать значения искомых функций в фиктивных точках (рис. 1.б). В заданных ранее обозначениях (i=0,..I+1, j=0..J+1) 0,j —левая и I+1,j — правая границы квадрата, i,0— нижняя и i, J+1— верхняя граница квадрата (двигающаяся крышка со скоростью $v_{1i,J+1/2}=1$). Исходя из краевых условий для скоростей, можем записать

$$\begin{split} &(v_1)_{0,j} + (v_1)_{1,j} = 0, \ (v_1)_{I+1,j} + (v_1)_{I,j} = 0, \ (v_2)_{0,j} + (v_2)_{1,j} = 0, \ (v_2)_{I+1,j} + (v_2)_{I,j} = 0, \\ &(v_1)_{i,0} + (v_1)_{i,1} = 0, (v_2)_{i,0} + (v_2)_{i,1} = 0, \quad [(v_1)_{i,J+1} + (v_1)_{i,J}]/2 = (v_1)_{i,J+1/2} = 1, (v_2)_{i,J+1} + (v_2)_{i,J} = 0, \end{split}$$

тогда значения v_1 и v_2 в фиктивных точках задаются следующим образом:

$$\begin{split} (v_1)_{0,j} &= -(v_1)_{1,j}, \ \, (v_1)_{I+1,j} = -(v_1)_{I,j}, \\ (v_2)_{0,j} &= -(v_2)_{1,j}, \ \, (v_2)_{I+1,j} = -(v_2)_{I,j} \\ (v_2)_{i,0} &= -(v_2)_{i,1}, (v_2)_{i,J+1} = -(v_2)_{i,J}, (v_2)_{i,0} = -(v_2)_{i,1}, (v_2)_{i,J+1} \\ &= -(v_2)_{i,J} \quad (v_1)_{i,0} = -(v_1)_{i,I}, \ \, (v_1)_{i,J+1} = 2 - (v_1)_{i,J} \end{split}$$

Значения в угловых фиктивных точках (рис 1.б) скоростей и давления определяются через соседние фиктивные точки по формулам

$$(v)_{0,J+1} = 2(v)_{1,J+1} - (v)_{2,J+1}, \quad (v)_{I+1,J+1} = 2(v)_{I,J+1} - (v)_{I-1,J+1}$$

$$(v)_{I+1,0} = 2(v)_{I,0} - (v)_{I-1,0}, \quad (v)_{I+1,0} = 2(v)_{I,0} - (v)_{I-1,0},$$

$$p_{0,j} = p_{1,j}, \quad p_{I+1,j} = p_{I,j}, \quad p_{i,0} = p_{i,1}, \quad p_{i,J+1} = p_{i,J}$$

Рис. 1.б

Полагаем вязкость постоянной и $\eta=1/Re$. Расчеты проводились при Re=100 на сетках с числом узлов 20х20 и 40х40. Временной шаг задавался $\tau=1/100$. Решение уравнений отыскивалось до установления, т. е. до выполнения следующего условия:

$$\max \left| \frac{U^{n+1} - U^n}{\tau} \right| \le O(h^2)$$

во всех внутренних ячейках. На рис. 2.а, 2.б изображены векторное поле скоростей и изолинии функций тока.

Можно наблюдать, что под крышкой в области образуется вихрь, центр которого смещен в сторону движения крышки. С уменьшением сетки картина векторного поля скоростей не меняется, как мы видим на рис. 3.

Рис. 3. Сетка 40х40.

Распределение давления, продольных и поперечных скоростей в средних сечениях каверны на сетках 20x20 и 40x40 представлено на рис. 4.a- 4.в.

Рис. 4.а. Давление в продольном сечении.

Рис. 4.б. Скорость v_{1} в поперечном сечении.

Рис. 4.в. Скорость v_2 в продольном сечении.

Можно отметить близость решений для двух сеток 20x20 и 40x40, что говорит о точности предложенного численного алгоритма.

выводы

В работе был предложен метод численного решения уравнений Навье-Стокса и уравнения теплопроводности, основанный на схеме приближенной факторизации с расщеплением по пространственным направлениям и физическим процессам. Метод реализовывался в виде программы на языке Matlab. Верификация метода проводилась на задаче течения в каверне с движущейся крышкой. Были получены некоторые данные об основных закономерностях течения. В дальнейшем планируется провести расчеты на более мелких, в том числе криволинейных сетках, решать задачи в геометрически более сложных областях, учитывать и другие факторы, такие как силу тяжести и температуру, а также варьировать параметры алгоритма для ускорения скорости сходимости при нахождении стационарных решений методом установления.

ЛИТЕРАТУРА

- 1. Ландау Л.Д., Лившиц Е.М. Гидродинамика. М: Наука, 1986, 734 с.
- 2. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1978, 824 с.
- 3. В.М. Ковеня. Алгоритмы расщепления при решении многомерных задач аэрогидродинамики. Новосибирск: Изд-во СО РАН, 2014, 280 с.
- 4. Роуч П. Вычислительная гидродинамика. М: Мир, 1980, 618 с.
- 5. В.М. Ковеня, Д.В. Чирков. Методы конечных разностей и конечных объемов для решения задач математической физики. Новосибирск: Новосиб. гос. ун-т., 2013, 87 с.
- 6. R. Eymard, T. Gallouët and R. Herbin. Finite Volume Methods (update of the article published in Handbook of Numerical Analysis), 2003, 253 c.
- 7. *Е.М. Смирнов, Д.К. Зайцев*. Метод конечных объемов в приложении к задачам гидрогазодинамики и теплообмена в областях сложной геометрии / Научно-технические ведомости, 2',2004. Проблемы турбулентности и вычислительная гидродинамика (к 70-летию кафедры «Гидроаэродинамика» СПБГУ).
- G. Strang. Computational Science and Engineering. Wellesley-Cambridge Press,
 2007, 750 c.