# Enhanced Kinematic Synthesis for Concept Generation with Generative and Sequential Models

Shrinath Deshpande

## Mechanism Synthesis Pipeline

Motion /Path /Function Generation Problem (Subjective)

Problem Setup (Requires problem understanding)

Mathematically Precise Representation (Objective)

Problem Solving (Algorithmic, Nonlinear Mapping)

Employ Numerical Solvers/ Optimizers

## **Problem Setup**



#### Why?

Required by Solvers

#### Cons

- Loss of Designer's Intent (Information Loss)
- Defective Solutions

## **Problem Setup Goals**

- Keep the designer's intent intact
  - Understand what aspects are important and Relax the less important constraints
- Keep it simple for solvers to operate
  - Numerical format

#### **Design Specs**

Grashof Criteria
Shape of the Curve
Desired Pivot Regions
Max Accelerations, Jerk
etc..



Numerical Input (e.g. Precision Points)

## Difficulties in Setting Up the Problem

- Highly Nonlinear Mapping Between Numerical Input and Solver Results
  - Small Changes in precision poses can lead to very different coupler curves



## **Conditioned Input**

- Exploit the nonlinear relationship between input and output
- Intelligently modify the Input to maximize the probability of usefulness of output
  - Condition the input to have some 'learned' properties
  - Augment the input with missing information/ free Choices



## **Conditional Precision Position Input**

• X be the set of precision poses which results in useful output (e.g. set of 100 poses with dimension [100, 3])

#### Goal is to :

1. approximate the model which generates the observed distribution of *x*.

$$X = G(z)$$

2. Analytical approximation to the posterior probability of the unobserved variables z

$$p(z|X) = \frac{p(X|z)p(z)}{p(X)} = F(X)$$

#### Variational Auto-Encoder



$$L = (X - \hat{X})^2 + \sum_{j} KL(q_j(z \mid X) \mid \mid p(z))$$
 Reconstruction Loss KL Divergence Loss

## Latent Space For Coupler Path



Latent Embeddings of coupler motions sampled four random Fourbar,
 Sixbar and Slider Crank linkages

## Latent Space For Coupler Motion



Latent Embeddings of coupler motions sampled four random Fourbar,
 Sixbar and Slider Crank linkages

















$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

#### **Encoder's Approximation**

$$F(x) \approx p(z \mid x)$$

$$\hat{x}_{samples} = G(z)$$



 Given a path points, predict the orientation of the path points, with condition that path points are from unknown fourbar/sixbar/sixbar linkage.

$$\{\theta_i\}_{i}^{N} = Q(\{x_i, y_i\}_{i}^{N})$$

 LSTM (Long Short Term Memory) Recurrent Neural Networks are used to approximate Q







## Input Augmentation: Orientation Prediction



### Input Augmentation: Orientation Prediction



#### Intelligent Assistant

- Assist Human Designer to generate viable concepts by
  - Conditioning the input
  - Augmenting the input
  - Leveraging and managing uncertainty
  - Making Free Choices (e.g. in Synthesis of Sixbars)
  - Exploring Solutions and presenting it the right way to designer

#### Input Augmentation and Conditioning

- Manual Input of m points (m > 3)
- Cubic Spline is fitted to input
- Assistant-VAE is trained to convert previous input into closed coupler path
- Assistant-RNN is trained to predict the orientations for closed coupler path received
- Assisted Input is fed to N-Pose Algebraic Fitting Algorithm

$$X_{manual}$$
.  $dim = [m,2] \dots (m \ge 4)$ 

$$X = Bspline(X_{manual}) \dots X \cdot dim = [100,2]$$

$$p(z|X) = F_{encoder}(x)$$

$$\hat{X} = G(z) \dots z \sim p(z \mid X)$$

$$\theta = Q_{RNN}(\hat{X})$$

$$P = [\hat{X}, \theta] \dots P \cdot dim = [100,3]$$

$$Solutions = Algebraic Fitting(P)$$

#### number of samples = 30





Similar Concepts, but very different link ratios













number of samples = 30



























#### Conclusion

- Enhances Concept Generation efficacy of previously developed kinematic framework
- Greatly improves user's experience with input augmentation and conditioning
- Path synthesis problem was attempted for the approach validation, but the goal is to fill the gaps in problem setup
- Once a good problem is set, solvers can churn out meaningful solutions.

#### Conclusion

- Computations Aspects:
  - Solutions are computed in real-time
  - Entire Computation can be parallelize, and accelerated with GPU