MAT454 Academic Offense Sheet

Jad Elkhaleq Ghalayini

April 21, 2020

A quick collection of useful facts, theorems, and definitions for complex analysis. May be incorrect, and is certainly incomplete. Use at your own risk!

Contents

1	Basic Definitions and Theorems	2
2	Useful Tools	3
3	Residues and Integrals	3
4	Elliptic Curves	3

1 Basic Definitions and Theorems

For f = u + iv holomorphic, we have

$$2\frac{\partial f}{\partial \bar{z}} = \frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y} = 0 \iff \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \wedge \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 (1)

Definition 1. The differential of f is given by

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \bar{z}}d\bar{z}$$
 (2)

$$dz = dx + idy,$$
 $d\bar{z} = dx - idy \iff dx = \frac{1}{2}(dz + d\bar{z}),$ $dy = \frac{1}{2i}(dz - d\bar{z})$ (3)

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \qquad \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \implies df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z} \tag{4}$$

Definition 2 (Harmonic). We say a real or complex valued function f(x,y) is harmonic if f is C^2 and

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \iff \frac{\partial^2 f}{\partial z \partial \bar{z}} = 0 \tag{5}$$

Proposition 1. Every real-valued harmonic function is, not necessarily everywhere but at least locally, the real part of a holomorphic function.

Theorem 1. ω has a primitive in Ω if and only if, for any piecewise differentiable closed curve $\gamma:[a,b]\to\Omega$ (i.e. with $\gamma(a)=\gamma(b)$), or equivalently any piecewise differentiable $\gamma:S^1\to\Omega$, we have

$$\int_{\gamma} \omega = 0 \tag{6}$$

Definition 3. We say a differential form ω on a domain Ω is **closed** if every point in Ω has a neighborhood in which ω has a primitive.

Theorem 2. Any closed differential form ω in a simply-connected open set Ω has a primitive.

Theorem 3 (Cauchy's Theorem). Let Ω be a domain and let f(z) be continuous in Ω and holomorphic except on a set of discrete lines and points. Then the differentiable form f(z)dz is closed.

Corollary 1. A holomorphic function f(z) locally has a primitive, which is holomorphic (i.e. a function F such that dF = f(z)dz)

Corollary 2 (Morera's Theorem). If f(z) is continuous in Ω and df = f(z)dz is closed, then f(z) is holomorphic.

Definition 4. Let $\gamma: S^1 \to \Omega$ be a closed curve and $a \notin \gamma(S^1)$ be a point not in the image of γ . Then the winding number of γ with respect to a is given by the integral

$$w(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a} \tag{7}$$

This integral is an integer as it is the difference between two branches of log.

Theorem 4 (Cauchy's Integral Formula). If f(z) is holomorphic in Ω , $a \in \Omega$ and $\gamma : S^1 \to \Omega$ is a closed curve with $a \notin \gamma$, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{z-a} = w(\gamma, a)f(a) \tag{8}$$

Theorem 5 (Liouville's Theorem). A bounded holomorphic function on all of \mathbb{C} is a constant.

2 Useful Tools

• Projection from the Riemann Sphere:

$$\pi: S^2 \setminus \{N\} \to \mathbb{C}, \pi(x, y, t) = \frac{x + iy}{1 - t}$$

$$\tag{9}$$

• Green's Formula:

Theorem 6 (Green's formula).

$$\int_{\gamma} P dx + Q dy = \iint_{A} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy \tag{10}$$

• Schwarz Reflection Principle:

Theorem 7 (Schwarz Reflection Principle). If $f: H \to \mathbb{C}$ is continuous on the closed upper half-plane H, holomorphic on the open upper half-plane and takes real values on the real axis (i.e. $f(\mathbb{R}) \subseteq \mathbb{R}$) then it can be extended to an entire function by $f(\overline{z}) = \overline{f(z)}$. More generally, this can be applied to reflecting any half-domain over any line.

• Fourier coefficients and Cauchy inequalities:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)d\zeta}{\zeta - z} \implies f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)d\zeta}{(\zeta - z)^{n+1}}$$
(11)

$$f(re^{i\theta}) = \sum_{n=0}^{\infty} a_n r^n e^{i\pi\theta}, \qquad a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\theta} f(re^{i\theta}) d\theta$$
 (12)

$$M(r) = \sup_{\theta} |f(re^{i\theta})| \implies |a_n| \leqslant \frac{M(r)}{r^n}$$
 (13)

• The Mean Value Property (MVP): harmonic functions satisfy

$$f(\text{center of disk}) = \text{mean value on boundary}$$
 (14)

- The Maximum Modulus Principle (MMP): if f is a continuous complex-valued function on an open $\Omega \subseteq \mathbb{C}$ with the MVP, then it satisfies the MMP, that is, if |f| has a local maximum at a point a of Ω , then f is constant in a neighborhood of a.
- Schwarz's Lemma:

Theorem 8 (Schwarz's Lemma). Suppose f(z) is holomorphic in |z| < 1, f(0) = 0 and |f(z)| < 1. Then

- 1. $|f(z)| \le |z|$ if |z| < 1
- 2. If $|f(z_0)| = |z_0|$ at some $z_0 \neq 0$, then $f(z) = \lambda z$ for some $|\lambda| = 1$.

3 Residues and Integrals

4 Elliptic Curves