Language Technology

http://cs.lth.se/edan20/

Chapter 13: Complements to Sequence-to-Sequence Programming

Pierre Nugues

Pierre.Nugues@cs.lth.se http://cs.lth.se/pierre_nugues/

October 6, 2022

Corpora for Machine Translation

Initial ideas in machine translation: use bilingual dictionaries and formalize grammatical rules to transfer them from a source language to a target language.

Statistical machine translation:

- Use very large bilingual corpora;
- Align the sentences or phrases, and
- Given a sentence in the source language, find the matching sentence in the target language.

Pioneered at IBM on French and English with Bayesian statistics.

Neural nets are now dominant

Parallel Corpora (Swiss Federal Law)

German	French	Italian
Art. 35 Milchtransport	Art. 35 Transport du	Art. 35 Trasporto del
	lait	latte
1 Die Milch ist schonend	1 Le lait doit être trans-	1 II latte va trasportato
und hygienisch in den	porté jusqu'à l'entreprise	verso l'azienda di trasfor-
Verarbeitungsbetrieb	de transformation avec	mazione in modo accu-
zu transportieren. Das	ménagement et con-	rato e igienico. Il veicolo
Transportfahrzeug ist	formément aux normes	adibito al trasporto va
stets sauber zu hal-	d'hygiène. Le véhicule	mantenuto pulito. Con
ten. Zusammen mit	de transport doit être	il latte non possono es-
der Milch dürfen keine	toujours propre. Il ne	sere trasportati animali
Tiere und milchfremde	doit transporter avec	e oggetti estranei, che
Gegenstände trans-	le lait aucun animal ou	potrebbero pregiudicarne
portiert werden, welche	objet susceptible d'en	la qualità.
die Qualität der Milch	altérer la qualité.	# # A
beeinträchtigen können.		

Sequence-to-Sequence Translation

We follow and reuse: https://blog.keras.io/ a-ten-minute-introduction-to-sequence-to-sequence-learning-in html and https://keras.io/examples/nlp/lstm_seq2seq/ from Chollet.

- We start with input sequences from a language (e.g. English sentences) and corresponding target sequences from another language (e.g. French sentences).
- An encoder LSTM turns input sequences to 2 state vectors (we keep the last LSTM state and discard the outputs).
- A decoder LSTM is trained to turn the target sequences into the same sequence but offset by one timestep in the future. This training process is called "teacher forcing" in this context.
- It uses the state vectors from the encoder as initial state. Effectively, the decoder learns to generate targets [t+1. targets [...t], conditioned on the input sequence.

Sequence-to-Sequence Translation

From https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-inhtml

Reinject prediction until

Sequence-to-Sequence Translation

"The weather is nice"

LSTM

"[START]Il fait be"

LSTM

html

The LSTM Architecture

An LSTM unit showing the data flow, where \mathbf{g}_t is the unit input, \mathbf{i}_t , the input gate, \mathbf{f}_t , the forget gate, and \mathbf{o}_t , the output gate. The approximations have been omitted

Improving the Architecture: Encoder-Decoder

Figure 1: A simplified diagram of NMT.

From: Compression of Neural Machine Translation Models via Pruning by Abigail See, Minh-Thang Luong, and

D. Manning

The LSTM Architecture

An LSTM unit showing the data flow, where \mathbf{g}_t is the unit input, \mathbf{i}_t , the input gate, \mathbf{f}_t , the forget gate, and \mathbf{o}_t , the output gate. The approximations have been omitted

The Functional API

The functional API is a second, more flexible API:

Sequential:

```
seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu',
   input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))
```

• Functional:

```
input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)
model = Model(input_tensor, output_tensor)
See Chollet, page 175-177
```

LSTM API

```
encoder_inputs = keras.Input(
          shape=(None, num_encoder_tokens),
          name='encoder_input')
encoder = keras.layers.LSTM(latent_dim,
          return_state=True,
          name='encoder_lstm')
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
Then the decoder uses:
```


encoder_states = [state_h, state_c]

Code Example

Return values of a LSTM

Jupyter Notebooks: https://github.com/pnugues/ilppp/blob/
master/programs/ch10/python/lstm_output.ipynb

Further Readings

- For the latest developments, see: http://www.statmt.org/wmt22/
- For a description of systems with attention, see https: //www.tensorflow.org/tutorials/text/nmt_with_attention and
 - https://www.tensorflow.org/tutorials/text/transformer
- For an example attention program in Python, see, https://machinelearningmastery.com/ encoder-decoder-attention-sequence-to-sequence-prediction
- For another tutorial using pytorch: https://pytorch.org/tutorials/intermediate/seq2seq_ translation_tutorial.html