MTL 411: Functional Analysis

Lecture A: Adjoint operators

Recall, Riesz representation theorem: Suppose f is a continuous linear functional on a Hilbert space H. Then there exists a unique z in H such that $f(x) = \langle x, z \rangle$ for all $x \in H$.

As a consequence, for a given bounded linear operator, we can construct an associated bounded linear operator, which is called Hilbert-adjoint operator or simply adjoint operator.

1 Adjoint operator

Let H_1 and H_2 be (Real/complex) Hilbert spaces and $T: H_1 \to H_2$ be a bounded linear operator. Then an adjoint operator T^* of T is an operator $T^*: H_2 \to H_1$ satisfies

$$\langle Tx, y \rangle = \langle x, T^*y \rangle, \forall x \in H_1, \forall y \in H_2.$$

Remark. In the above equation, the left hand side inner product is between elements in H_2 , that is, the inner product is from H_2 and in the right hand side the inner product is from H_1 .

Questions. Given $T \in \mathcal{B}(H_1, H_2)$, does an adjoint operator T^* exist? If it exists, will it be unique and bounded operator? The answers are affirmative.

Theorem 1.1. Given $T \in \mathcal{B}(H_1, H_2)$, there exists a unique operator $T^* \in \mathcal{B}(H_2, H_1)$ such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle, \forall x \in H_1, \forall y \in H_2$$

and $||T|| = ||T^*||$.

Proof. Fix $y \in H_2$. Define $f_y(x) = \langle Tx, y \rangle$, $x \in H_1$.

Since T is bounded linear operator and using Cauchy-Schwarz inequality (CSI), we can show that f_y is a continuous linear functional on H_1 , that is, f_y is linear and

$$|f_y(x)| \le ||T|| ||y|| ||x||, \forall x \in H_1.$$

Then by Riesz representation theorem, there exists a unique $z \in H_1$ such that $f_y(x) = \langle x, z \rangle$. Therefore for each $y \in H_2$, there exists a unique $z \in H_1$ such that $f_y(x) = \langle x, z \rangle = \langle Tx, y \rangle$. Now, we define $T^*y = z$, for each $y \in H_2$. Thus

$$\langle x, T^* y \rangle = \langle Tx, y \rangle, \forall x \in H_1, \forall y \in H_2. \tag{1.1}$$

The uniqueness of T^* follows from the Riesz representation theorem or from a simple relation that $\langle (T_1 - T_2)y, x \rangle = 0$ for all $y \in H_2$, $x \in H_1$ implies $T_1 - T_2 = 0$.

Claim: T^* is linear.

Consider $y, z \in H_2$ and $\alpha \in \mathbb{K}(\mathbb{R} \text{ or } \mathbb{C})$, we get

$$\langle x, T^*(\alpha y + z) \rangle = \langle Tx, \alpha y + z \rangle$$

$$= \overline{\alpha} \langle Tx, y \rangle + \langle Tx, z \rangle$$

$$= \overline{\alpha} \langle x, T^*y \rangle + \langle x, T^*z \rangle$$

$$= \langle x, \alpha T^*y + T^*z \rangle, \forall x \in H_1.$$

Hence $T^*(\alpha y + z) = \alpha T^* y + T^* z, \forall y, z \in H_2, \forall \alpha \in \mathbb{K}$.

Claim: T^* is bounded and $||T|| = ||T^*||$.

Since the equation (1.1) is satisfied for all elements in H_1 and H_2 , choose $x = T^*y$ and using CSI, we get

$$||T^*y||^2 \le ||T|| ||T^*y|| ||y||, \forall y \in H_2.$$

 $\implies ||T^*y|| \le ||T|| ||y||, \forall y \in H_2.$

Therefore, T^* is bounded and $||T^*|| \le ||T||$. By a similar argument using (1.1), we can show that $||T|| \le ||T^*||$.

Remark. If we have an operator S such that $\langle x, Sy \rangle = \langle Tx, y \rangle$, $\forall x \in H_1, \forall y \in H_2$, then by uniqueness $T^* = S$.

Examples.

- $A: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto Ax$. Then $\langle Ax, y \rangle = (Ax)^T y = (x^T A^T) y = x^T (A^T y) = \langle x, A^T y \rangle$. Therefore, the adjoint A^* is the transpose A^T of A.
- $B: \mathbb{C}^n \to \mathbb{C}^n$, $x \mapsto Bx$. Then $\langle Bx, y \rangle = (Bx)^T \overline{y} = (x^T B^T) \overline{y} = x^T (B^T \overline{y}) = \langle x, \overline{B^T} y \rangle$. Therefore, the adjoint B^* is the conjugate-transpose $\overline{B^T}$ of B.
- The integral operator $T: L^2[a,b] \to L^2[a,b]$ defined by

$$Tf(x) = \int_{a}^{b} k(x,t)f(t)dt, \ x \in [a,b]$$

where k(x,t) is a real-valued continuous function on $[a,b] \times [a,b]$. Then it is easy to show that T is a bounded linear operator. Indeed,

$$|Tf(x)|^2 \leq \int_a^b |k(x,t)|^2 dt \int_a^b |f(t)|^2 dt \quad \text{(using CSI in continuous variable)}$$

$$\left(\int_a^b |Tf(x)|^2 dx\right)^{\frac{1}{2}} \leq \left(\int_a^b \int_a^b |k(x,t)|^2 dt dx\right)^{\frac{1}{2}} \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}.$$

Now we calculate T^* :

$$\langle Tf, g \rangle = \int_{a}^{b} Tf(x)\overline{g(x)}dx$$

$$= \int_{a}^{b} \left(\int_{a}^{b} k(x, t)f(t)dt\right) \overline{g(x)}dx$$

$$= \int_{a}^{b} \left(\int_{a}^{b} k(x, t)\overline{g(x)}dx\right) f(t)dt$$

$$= \int_{a}^{b} f(t) \overline{\left(\int_{a}^{b} \overline{k(x, t)}g(x)dx\right)}dt.$$

Therefore,
$$T^*g(y) = \int_a^b \overline{k(s,y)}g(s)ds, \ y \in [a,b].$$

Exercises

1. Find the adjoint of right shift operator:

$$T(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots), \quad x = (x_1, x_2, \ldots) \in \ell^2.$$

2. Find the adjoint of multiplication operator:

$$Mf(x) = g(x)f(x), f \in L^2[a,b]$$

where g(x) is a bounded function on [a, b].

Next we will discuss a simple lemma which will be useful in several occasions.

Lemma 1.2. (Zero operator) Let X and Y be inner product spaces and $T: X \to Y$ be a bounded linear operator. Then

- (a) $T = 0 \iff \langle Tx, y \rangle = 0$ for all $x \in X$ and $y \in Y$.
- (b) If $T: X \to X$, where X is complex, and $\langle Tx, x \rangle = 0$ for all $x \in X$, then T = 0.

Proof. (a) The proof is trivial.

(b) Consider

$$\langle T(\alpha x + y), \alpha x + y \rangle = 0 \tag{1.2}$$

$$\overline{\alpha} \langle Ty, x \rangle + \alpha \langle Tx, y \rangle = 0, \ \forall \alpha \in \mathbb{C} \forall x, y \in X.$$
 (1.3)

Choose $\alpha = 1$ and $\alpha = i$, we get $\langle Tx, y \rangle = 0$, $\forall x, y \in X$. Then T = 0.

Remark. In the above lemma, if X is real inner product space then the statment (b) is not true. (Hint. Use rotation operator in \mathbb{R}^2 .)

Properties of the adjoint operator

Theorem 1.3. Let $T: H_1 \to H_2$ be a bounded linear operator. Then

- 1. $(T^*)^* = T$
- 2. $||TT^*|| = ||T^*T|| = ||T||^2$
- 3. $\mathcal{N}(T) = \mathcal{R}(T^*)^{\perp}$
- 4. $\mathcal{N}(T)^{\perp} = \overline{\mathcal{R}(T^*)}$
- 5. $\mathcal{N}(T^*) = \mathcal{R}(T)^{\perp}$
- 6. $\mathcal{N}(T^*)^{\perp} = \overline{\mathcal{R}(T)}$

Here $\mathcal{N}(T)$ and $\mathcal{R}(T)$ denote the null space and range space of T.

Proof. 1. Consider $\langle (T^*)^*x, y \rangle = \langle x, T^*y \rangle = \langle Tx, y \rangle$, for all $x \in H_1, y \in H_2$. Then $\langle ((T^*)^* - T)x, y \rangle = 0$, for all $x \in H_1, y \in H_2$. 2. Recall that the norm of composition operators $||SH|| \le ||S|| ||H||$. Henceforth, we get $||T^*T|| \le ||T^*|| ||T|| = ||T||^2$.

For the other inequality, consider

$$||T||^{2} = \left(\sup_{0 \neq x \in H_{1}} \frac{||Tx||}{||x||}\right) \left(\sup_{0 \neq x \in H_{1}} \frac{||Tx||}{||x||}\right)$$

$$= \sup_{0 \neq x \in H_{1}} \frac{||Tx||^{2}}{||x||^{2}} = \sup_{0 \neq x \in H_{1}} \frac{\langle Tx, Tx \rangle}{||x||^{2}}$$

$$= \sup_{0 \neq x \in H_{1}} \frac{\langle T^{*}Tx, x \rangle}{||x||^{2}}$$

$$\leq \sup_{0 \neq x \in H_{1}} \frac{||T^{*}T||||x||||x||}{||x||^{2}} = ||T^{*}T||.$$

- 3. Suppose $x \in \mathcal{N}(T)$, then Tx = 0. Thus $\langle T^*y, x \rangle = \langle y, Tx \rangle = 0$, for all $y \in H_2$. Therefore, $x \in \mathcal{R}(T^*)^{\perp}$. Similarly, it is easy to show that $\mathcal{R}(T^*)^{\perp} \subset \mathcal{N}(T)$.
- 4. For $z \in \mathcal{R}(T^*)$, there exists a $y \in H_2$ such that $T^*y = z$. Then $\langle z, x \rangle = \langle T^*y, x \rangle = \langle y, Tx \rangle = 0$ for all $x \in \mathcal{N}(T)$. Therefore, $z \perp \mathcal{N}(T)$. This implies that $\mathcal{R}(T^*) \subset \mathcal{N}(T)^{\perp}$, and hence $\overline{\mathcal{R}(T^*)} \subset \mathcal{N}(T)^{\perp}$ (why?).

Claim. $\overline{\mathcal{R}(T^*)} = \mathcal{N}(T)^{\perp}$.

Suppose this is not true, that is, $\overline{\mathcal{R}(T^*)}$ is a proper closed subspace of $\mathcal{N}(T)^{\perp}$. Then by projection theorem, there exists a $0 \neq x_0 \in \mathcal{N}(T)^{\perp}$ and $x_0 \perp \overline{\mathcal{R}(T^*)}$. In particular,

$$\langle x_0, T^*y \rangle = 0, \forall y \in H_2$$

$$\Longrightarrow \langle Tx_0, y \rangle = 0, \forall y \in H_2$$

$$\Longrightarrow Tx_0 = 0,$$

$$\Longrightarrow x_0 \in \mathcal{N}(T) \cap \mathcal{N}(T)^{\perp}$$

Therefore, $x_0 = 0$ which is contradiction to $x_0 \neq 0$, hence the claim is proved.

The other parts are exercise.

Exercises Let H_1, H_2 and H_3 be Hilbert spaces. Then show that

- 1. $(TS)^* = S^*T^*$ for $S \in \mathcal{B}(H_1, H_2), T \in \mathcal{B}(H_2, H_3)$
- 2. $(\alpha T + \beta S)^* = \overline{\alpha} T^* + \overline{\beta} S^*$ for $S, T \in \mathcal{B}(H_1, H_2)$, and $\alpha, \beta \in \mathbb{K}$.
- 3. $T^*T = 0 \iff T = 0$.
- 4. Construct a bounded linear operator on ℓ^2 whose range is not closed. Hint: $T(x_1, x_2, \ldots) = (x_1, \frac{x_2}{\sqrt{2}}, \frac{x_3}{\sqrt{3}}, \ldots), (x_n) \in \ell^2$.
- 5. Let H be a Hilbert space and $T: H \to H$ be a bijective bounded linear operator whose inverse is bounded. Show that $(T^*)^{-1}$ exists and $(T^*)^{-1} = [T^{-1}]^*$.
- 6. Let T_1 and T_2 be bounded linear operators on a complex Hilbert space H into itself. If $\langle T_1 x, x \rangle = \langle T_2 x, x \rangle$ for all $x \in H$, show that $T_1 = T_2$.
- 7. Let $S = I + T^*T : H \to H$, where T is linear and bounded. Show that $S^{-1} : S(H) \to H$ exists.

Self-adjoint, Normal and Unitary operators

Definition 1.4. A bounded linear operator $T: H \to H$ on a Hilbert space H is said to be

$$\begin{array}{ll} \textbf{self-adjoint} & if & T = T^*, \\ \textbf{unitary} & if \ T \ is \ bijective \ and & T^* = T^{-1}, \\ \textbf{normal} & if & T^*T = TT^*. \end{array}$$

Remarks.

- T is unitary iff $T^*T = TT^* = I$.
- Unitary, Self-adjoint \implies Normal. The converse is not true. (Hint. T=2iI, where I is the identity operator on a complex Hilbert space).

Let us discuss a simple criterion for self-adjointness.

Theorem 1.5. (Self-adjointness) Let $T: H \to H$ be a bounded linear operator on a Hilbert space H. Then:

- (a) If T is self-adjoint, then $\langle Tx, x \rangle$ is real for all $x \in H$.
- (b) If H is complex Hilber space and $\langle Tx, x \rangle$ is real for all $x \in H$, then T is self-adjoint.

Proof. (a) Given $T = T^*$, we get $\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$, for all $x \in H$. Hence the imaginary part of $\langle Tx, x \rangle = 0$ for all $x \in H$.

(b) Consider $\langle Tx, x \rangle = \overline{\langle Tx, x \rangle} = \overline{\langle x, T^*x \rangle} = \langle T^*x, x \rangle$ for all $x \in H$. Thus $\langle (T - T^*)x, x \rangle = 0$, for all $x \in H$. Hence by zero operator lemma, we get $T = T^*$. \square

Remarks.

- 1. Suppose S and T are self-adjoint operators. Then $(ST)^* = T^*S^* = ST$. Therefore, ST is self-adjoint iff S and T commutes.
- 2. The set of self-adjoint operators in $\mathcal{B}(H)$ is a closed set with respect to operator norm.

Now we discuss some basic properties of unitary operators.

Theorem 1.6. (Unitary operator) Let H be a Hilbert space and the operators $U: H \to H$ and $V: H \to H$ be unitary. Then:

- (a) U is isometric, i.e., ||Ux|| = ||x||, for all $x \in H$.
- (b) ||U|| = 1, provided $H \neq \{0\}$.
- (c) U^{-1} , UV are unitary.
- (d) A bounded linear operator T on a complex Hilbert space H is unitary if and only if T is isometric and surjective.

Proof. (a) Since $UU^* = U^*U = I$, we get $\langle U^*Ux, x \rangle = \langle Ix, x \rangle = ||x||^2$. Thus ||Ux|| = ||x||.

- (b) If $H \neq \{0\}$, choose $0 \neq x \in H$, then $||U(\frac{x}{||x||})|| = 1$.
- (c) Since $U^{-1} = U^*$, we have $(U^{-1})^{-1} = (U^*)^{-1} = (U^{-1})^*$. Next, $(UV)^*UV = V^*U^*UV = I$. Then the result follows.

(d) Suppose T is a unitary operator on a complex Hilbert space H, then it is clear that T is isometric and surjective. Conversely, suppose T is isometric and surjective on a complex Hilbert space H. Then, consider

$$\langle (U^*U - I)x, x \rangle = 0$$
 for all $x \in H$,

then by zero operator lemma, we get $U^*U=I$. Since U is injective and surjective, U is invertible. Therefore, $U^{-1}=U^*$.

Exercises Problems 4, 5, 6, 14, 15 from E. Kreyzig (Pages 207-208).

Reference

E. Kreyzig, Introductory Functional Analysis with Applications, John Wiley & Sons. Inc, 1978