COMMUNITY DETECTION

PRESENTED BY: ALI BAGHERI

ADVISOR: DR. AMINI

CLASS OF: DR. FARDMANESH

RANDOM GRAPH

$$p = 0.25$$

p = 0.5

COMMUNITY

Linked in

ALGORITHMS

- Random Walk
- Louvain
- Leiden
- Spectral Cluster
- Random Graph
- Growing Network Models

RANDOM WALK

RANDOM GRAPH

GROWING NETWORK MODELS

Power Law Degree Distribution

$$P(d) = cd^{-\gamma}$$

Richer get richer

$$m \frac{d_i(t)}{\sum_{j=1}^t d_j(t)}$$

LOUVAIN AND LEIDEN

$$egin{align} \mathcal{H} &= rac{1}{2m} \sum_c (e_c - \gamma rac{K_c^2}{2m}) \ \mathcal{H} &= \sum_c [e_c - \gamma (rac{n_c}{2})] \ \end{aligned}$$

output

TABLE IV: Summary of CNN-based community detection methods.

Method	Input	Learning	Preprocess	Co-technique	Overlap	Network	
Xin et al. [8]	A	Supervise	Node to image	2	×	TINs	
SparseConv [70]	A	Supervise	Node to image	Sparse matrix	×	Sparse network	
SparseConv2D [76]	A	Semi-supervise	Node to image	Sparse matrix	×	Sparse network	
ComNet-R [77]	\boldsymbol{A}	Supervise	Edge to image	Local modularity	×	Large-scale network	

TABLE V: Summary of GCN-based community detection methods.

Method Input		Learning	Convolution	Clustering	Co-technique	Overlap	
LGNN [78]	A, X	Supervise	First-order + Line graph	<u> </u>	Edge features	V	
MRFasGCN [10]	A, X	Semi-supervise	First-order + Mean Field Approximate	-	eMRF	×	
SGCN [79]	A, X	Unsupervise	First-order	<u></u>	Label sampling	×	
NOCD [80]	A, X	Unsupervise	First-order	<u> 148</u>	Bernoulli-Poisson	✓	
GCLN [81]	A, X	Unsupervise	First-order	k-means	U-Net architecture	×	
IPGDN [82]	A, X	Unsupervise	First-order + Disentangled representation	k-means	HSIC as regularizer	×	
AGC [64]	A, X	Unsupervise	k-order + Laplacian smoothing filter	Spectral Clustering	. -	×	
AGE [84]	A, X	Unsupervise	Laplacian smoothing filter	Spectral Clustering	Adaptive learning	×	
CayleyNet [85]	A, X	Semi-supervise	Laplacian smoothing filter	- 1833 - 18 43	Cayley polynomial	×	
SENet [86]	A, X	Unsupervise	Third-order + Spectral clustering loss	k-means	Kernel matrix learning	×	
CommDGI [87]	A, X	Unsupervise	First-order + Sampling	100 c	Joint optimization	×	
Zhao et al. [88]	A, X	Unsupervise	First-order + Sampling	- -:	Joint optimization	×	

TABLE VII: Summary of GAN-based community detection methods.

Method	Input	Learning	Generator	Discriminator	Generated Samples	Clustering	Overlap
SEAL [94]	A, X	Semi-supervise	iGPN	GINs	Communities	(***	√
DR-GCN [95]	A, X	Semi-supervise	MLP	MLP	Embeddings	k-means	×
JANE [62]	A, X	Unsupervise	Various	MLP	Topology, attributes, embeddings	Time.	×
ProGAN [66]	A, X	Unsupervise	MLP	MLP	Triplets	k-means	×
CommunityGAN [96]	A	Unsupervise	AGM	AGM	Motifs	-	✓
CANE [97]	A	Unsupervise	Softmax	MLP	Node pairs	k-means	×
ACNE [98]	A	Unsupervise	Softmax	MLP	Nodes, Communities	2 -	✓

TABLE VI: Summary of GAT-based community detection methods.

Method	Input	Metapath	Learning	Attention Mechanism	Co-technique	Clustering	Overlap	Network
DMGI [61]	$V, E^{(r)}, \boldsymbol{X}$	×	Unsupervise	[166]	Contrastive learning	k-means	×	Multiplex
HDMI [65]	$V, E^{(r)}, \boldsymbol{X}$	×	Unsupervise	[90]	MI	k-means	×	Multiplex
MAGNN [72]	$\mathcal{V}, \mathcal{E}, \mathcal{X}$	✓	Unsupervise	[167]	=	k-means	×	Heterogeneous
HeCo [91]	\mathcal{V}, \mathcal{E}	✓	Unsupervise	[166]	Contrastive learning	k-means	×	Heterogeneous
CP-GNN [92]	\mathcal{V}, \mathcal{E}	×	Unsupervise	[167]	=	k-means	×	Heterogeneous

TABLE VIII: Summary of AE-based community detection methods.

Category	Method	Input	Learning	Encoder	Decoder	Loss	Overlap
	semi-DNR [63]	В	Semi-supervise	MLP	MLP	reconstruction+pairwise	×
	DNE-SBP [67]	A(+,-)	Semi-supervise	MLP	MLP	reconstruction+regularization+pairwise	×
Stacked	UWMNE/WMCNE-LE [102]	B, X	Unsupervise	MLP	MLP	reconstruction+pairwise	×
AE	sE-Autoencoder [73]	$\{A_t\}$	Semi-supervise	MLP	MLP	reconstruction+regularization+pairwise	×
	DANE [103]	A, X	Unsupervise	MLP	MLP	reconstruction+proximity	×
	Transfer-CDDTA [104]	$oldsymbol{S}_s, oldsymbol{S}_t$	Unsupervise	MLP	MLP	reconstruction+regularization+proximity	×
	DIME [105]	$\mathcal{V}, \mathcal{E}, \ \mathcal{X}, \{\mathcal{A}_{ij}\}$	Unsupervise	MLP	MLP	reconstruction+regularization +information fusion	×
C	GraphEncoder [107]	A, D, S	Unsupervise	MLP	MLP	reconstruction+regularization+sparsity	×
Sparse AE	WCD [108]	\boldsymbol{S}	Unsupervise	MLP	MLP	reconstruction+sparsity	×
AE	DFuzzy [109]	A	Unsupervise	MLP	MLP	reconstruction+sparsity	✓
	CDMEC [110]	$oldsymbol{S}_s, oldsymbol{S}_t$	Unsupervise	MLP	MLP	reconstruction+sparsity	×
1	DNGR [112]	A	Unsupervise	MLP	MLP	reconstruction	×
Denoising	DNC [113]	\boldsymbol{A}	Unsupervise	MLP	MLP	reconstruction+clustering	×
AE	GRACE [68]	A, X	Unsupervise	MLP	MLP	reconstruction+clustering	×
	MGAE [111]	A, X	Unsupervise	GCN	GCN	reconstruction+regularization	×
Graph	GUCD [115]	A, X	Unsupervise	MRFasGCN	MLP	reconstruction+pairwise	×
Convolutional	SDCN [114]	A, X	Unsupervise	GCN+DNN	DNN	reconstruction+clustering	×
AE	O2MAC [69]	$\{oldsymbol{A}\},oldsymbol{X}$	Unsupervise	GCN	Inner Product	reconstruction+clustering	×
	DAEGC [116]	A, X	Unsupervise	GAT	Inner Product	reconstruction+clustering	×
	GEC-CSD [117]	A, X	Unsupervise	GAT	Inner Product	reconstruction+regularization	×
Graph	GLC CSD [1117]	22,22			+GAT	+clustering+adversarial	~
Attention AE	MAGCN [118]	$oldsymbol{A},\{oldsymbol{X}\}$	Unsupervise	GAT+MLP	Inner Product +GCN	reconstruction+clustering +consistency	×
ALC.	SGCMC [119]	$oldsymbol{A}, \{oldsymbol{X}\}$	Unsupervise	GAT	GAT	reconstruction+regularization +clustering+consistency	×
	DMGC [120]	$\{A\}$	Unsupervise	MLP	MLP	reconstruction+regularization +proximity+clustering	×
	TGA/TVGA [126]	A,X	Unsupervise	GCN	Triad	reconstruction	×
	VGECLE [124]	\boldsymbol{A}	Semi-supervise	DNN	DNN	reconstruction+pairwise	×
Variational	DGLFRM [123]	$\boldsymbol{A}, \boldsymbol{X}$	Semi-supervise	GCN	DNN	reconstruction+regularization	✓
AE	LGVG [127]	A, X	Semi-supervise	GCN	DNN	reconstruction+regularization	✓
	VGAECD [125]	$\boldsymbol{A}, \boldsymbol{X}$	Unsupervise	GCN	Inner Product	reconstruction+clustering	×
	VGAECD-OPT [136]	A, X	Unsupervise	GCN	Inner Product	reconstruction+clustering	×
	ARGA/ARVGA [128]	$\boldsymbol{A}, \boldsymbol{X}$	Unsupervise	GCN	Inner Product	reconstruction	×

THANKS FOR YOUR ATTENTION