

# 作業四:ALU

2022/05/09



### 設計規格描述

- ·請用Case語法設計出一個算數邏輯單元-ALU
  - ▶ 輸入/輸出腳位

| 訊號名稱 | I/O | Bit數 | 描述       |
|------|-----|------|----------|
| а    | I   | 4    | 四位元無符號資料 |
| b    | I   | 4    | 四位元無符號資料 |
| ор   | I   | 3    | 三位元指令碼   |
| С    | 0   | 8    | 八位元無符號結果 |

#### · 提供檔案

| 檔案名稱        | 描述                                         |  |  |  |  |  |
|-------------|--------------------------------------------|--|--|--|--|--|
| alu.v       | Verilog檔案(自行設計),用於RTL模擬。注意:I/O 腳位已定義,請勿更改! |  |  |  |  |  |
| tb.v        | Testbench(測試檔),用於RTL模擬、Gate-Level模擬        |  |  |  |  |  |
| pattern.dat | 作為電路模擬時,輸入訊號測試資料  一同放入ModelSim專案內          |  |  |  |  |  |
| golden.dat  | 作為電路模擬時,比對輸出結果的資料 一同放入ModelSim專案內          |  |  |  |  |  |

## 功能描述

| OP Code | 功能                |  |  |  |  |
|---------|-------------------|--|--|--|--|
| 000     | a 跟 b 相加          |  |  |  |  |
| 001     | a 跟 b 相減          |  |  |  |  |
| 010     | a 跟 b 做 xor       |  |  |  |  |
| 011     | a 跟 b 做 nand      |  |  |  |  |
| 100     | a 做 2 的補數         |  |  |  |  |
| 101     | b 做 2 的補數         |  |  |  |  |
| 110     | a >= b時,輸出a,否則輸出b |  |  |  |  |
| 111     | 直接輸出b             |  |  |  |  |

# 電路波形範例

| а  | 7       | 4        | 9        | (3)      | (15)     | 0        | 8        | ( 6      | 13       | X//// |
|----|---------|----------|----------|----------|----------|----------|----------|----------|----------|-------|
| b  | 5       | 3        | 1        | 13       | 8        | 6        | 10       | 6        | 4        | X//// |
| ор | 001     | 101      | 000      | 100      | 011      | 001      | 000      | 111      | 110      | X//// |
| С  | 0000010 | 11111101 | 00001010 | 11111101 | 11110111 | 11111010 | 00010010 | 00000110 | 00001101 | X//// |

#### 電路模擬範例

- RTL、Gate-Level模擬 -> PASS
  - ▶ Modelsim模擬步驟、Quartus合成步驟請參考tools教學

```
1111
                     0001
                             00001000 ==
                                           00001000 -
  - 111
            1111
                     0010
  |- 111
                             00000001 ==
                                           00000001 -
  - 111
            1111
                     0011
                             00001001 ==
                                           00001001 -
   - 111
            1111
                     0100
                             00000010 ==
                                           00000010 -
            1111
                     0101
   - 111
                             00001010 ==
                                           00001010 -
   - 111
            1111
                     0110
                             00000011 ==
                                           00000011 -
   - 111
            1111
                     0111
                             00001011 ==
                                           00001011 -
            1111
                     1000
                             00000100 ==
   - 111
                                           00000100 -
   - 111
            1111
                     1001
                             00001100 ==
                                           00001100 -
   - 111
            1111
                     1010
                             00000101 ==
                                           00000101 -
            1111
                     1011
                             00001101 ==
                                           00001101 -
   - 111
   - 111
            1111
                     1100
                             00000110 ==
                                           00000110 -
            1111
                     1101
                             00001110 ==
                                           00001110 -
    111
            1111
                     1110
                             00000111 ==
                                           00000111 -
    111
    111
            1111
                     1111
                              00001111
                                           00001111
     0P
                                 ALU
                                               ALU
             Α
                      В
                             EXPECTED
           INPUTS
                                              YOUR
                        ALL PASS
    Note: Sfinish
                    Iteration: 0 Instance: /tb alu
     Time: 4097 ns
# 1
```

助教只檢查Gate-Level模擬 是否通過

#### 上傳檔案

- RTL
  - 1. \*.v (你所有的Verilog RTL Code)
- Gate-Level
  - 1. \*.vo (Quartus 生成的Gate-Level Netlist)
  - 2. \*.sdo (Quartus 生成的 SDF 時序資訊)
- Document
  - 1. \*.pdf (你的設計報告文件 請轉成PDF格式)

