Introduction

Arthur J. Redfern axr180074@utdallas.edu Aug 20, 2018

0 Outline

Previous

1. None

Current

- 1. Welcome
- 2. Class
- 3. Logistics
- 4. Expectations

Next

1. Linear algebra

1 Welcome

1.1 Hello

Welcome to the special topics in computer science convolutional neural networks course

Brief introduction

 The goal of this lecture is to create a framework for understanding the design of the whole class and how the semester will progress

So this introduction lecture will be a little different than the normal lectures

- More words
- More stories
- Less math
- Then on Wed we'll start the more traditional lecture format

1.2 Me

Grew up a little south of Richmond, Virginia

BS in EE from University of Virginia

PhD in ECE from Georgia Tech

Moved to Dallas to work at Texas Instruments

- Physical layer communication system design
- Signal processing for analog systems
- Machine learning

Currently I manage a machine learning lab in the TI Embedded Processors organization

- Work on algorithms, software and hardware for different applications
- This class will cover much of the same (that's not an accident)

Live in Plano, Texas

2 Class

Official objectives (from the syllabus)

- Ability to understand, design and train convolutional neural networks
- Ability to create software for mapping convolutional neural network designs to hardware
- Ability to specify hardware for convolutional neural network optimized data movement and compute
- Ability to evaluate convolutional neural network performance
- Ability to apply convolutional neural networks to applications including vision, speech, language and games

2.1 Theory And Application

Figure: Information extraction and data generation

2.1.1 Information Extraction

Information extraction

- Mapping of data to information
- Typical focus of a machine learning class (this class is no exception)
- Examples: images to labels, sounds to words, ...

Generic framework for information extraction

- Flow: pre processing, feature extraction, prediction, post processing
 - Transformation from un refined data space to data space to feature space to information space to refined information space
- Pre processing
 - Make feature extraction easier
 - Data cleaning, dimensionality reduction, ...
 - Frequently uses application specific side information
- Feature extraction
 - Make prediction easier
 - o Hand engineered or learned
- Prediction
 - Classification (discrete)

- o Regression (continuous)
- Post processing
 - Clean up predictions
 - o Frequently uses application specific side information

Definitions (not Webster quality)

- Intelligence is the ability to acquire and apply knowledge
 - o Artificial intelligence is intelligence exhibited by algorithms
- Learning is the acquisition of knowledge from experience
 - Machine learning is learning from data (experience) applied to an algorithm such that it exhibits artificial intelligence
 - o Deep learning is machine learning applied to a deep structure

How CNNs fit in

- CNNs are deep structures trained using deep learning to exhibit artificial intelligence
- Perform both feature extraction and prediction
- This semester we'll look at design and training CNNs
 - Tail body head approach to design
 - Supervised learning using back propagation and a variant of stochastic gradient descent for training
- Neural networks are universal approximators
 - o Can work on all sorts of problems

Why now

- Data
- Compute
- Better network designs
- Better training algorithms
- Snowball of success

Why this is important in practice

- Instrumentation of everything (objects, people, spaces)
- Analysis of data, decision optimization and heuristic replacement
- Successful applications
 - Vision, speech, language, games, ...

Figure: Generic neural network; layers take input vectors and produce output vectors of size channel x 1 x 1

Figure: Generic convolutional neural network; layers take input feature maps and produce output feature maps of size channel x rows x cols

2.1.2 Data Generation

There's another problem that's the mirror of information extraction: data generation

Data generation

- Mapping of information to data
- Not the typical focus of a machine learning class (this class is no exception)
 - o But we'll talk about it a little
- Examples: labels to images, words to sounds, ...

Data generation problems are the complement of information extraction problems

- Can be used as an alternative input to information extraction
 - Synthetic vs natural options
 - Synthetic is helpful when natural is difficult
- Can also use CNNs as a component of data generation

2.2 Background And Implementation

So far

- What we've talked about will be discussed in the (2) theory and (4) application parts of the course
- 2 other key parts of the course are (1) background and (3) implementation

How background maps onto the information extraction and data generation figure

- Linear algebra
 - CNN style 2D convolution
 - Fully connected layers
 - o Computation strategies later used in hardware
 - o ...
- Calculus
 - Back propagation for training
 - o Limits and strategy for universal approximation
 - 0 ...
- Probability
 - Training extracts knowledge (information) from the training set, testing extracts information from the input given past knowledge (information) extracted from training
 - o Initializing coefficients, batch norm, comparing output pdf to target pdf
 - o Pdf of the output of a FFT or matrix multiplication
 - Compression
 - o ...

How implementation maps onto the information extraction and data generation figures

- Software
 - High level application specification
 - Low level software runtime
 - o Bridge between network specification and hardware implementation
- Hardware
 - Memory, data movement and compute to run the software that runs the network
- We'll consider the co design of software and hardware using a low level graph framework to unite them both

2.3 This Class In Context

Not comprehensive of all convolutional neural network information

• What is presented in lecture is less than what is in the references

- What is in the references is less than all information on the topic
- A role of a professor is a guide through information and I'll attempt to provide that in this class
- But realize that there's a lot more useful information out there that could later be critical to you depending on the specifics of your interests
- So an unofficial goal of this class (perhaps more important than any of the official goals) is to help you learn how to learn in this field

3 Logistics

3.1 Grades

4 parts of the semester

- Background
- Theory
- Implementation
- Application

4 components of the grade

- 25% background and theory test
- 25% implementation tool
- 25% project
- 25% homework

Note

No final

3.2 Background And Theory Test

Covers

• Background: linear algebra, calculus and probability

• Theory: machine learning and convolutional neural networks

Format

- In class closed book
- Pencil and paper only

Goals

Make sure that key concepts are well understood from each chapter

3.3 Implementation Tool

Tools are critical to making practical progress in CNNs

Examples of tools

- High level network design
 - Creating networks from building blocks
 - Visualization
- High level network training
 - Monitoring and optimization
 - Transformation
 - Quantization
- Low level graph software runtime
 - High level to low level mapping
 - Low level compilation
 - Performance prediction

Format

- Designed to complement the implementation part
- Basic idea is to create a tool and also give a quick ~ 1 min demo in class
- Details closer to time

3.4 Project

Can be on anything related to the class

- Requirements
 - I approve
 - o Can be in theory, implementation or application
- Sources
 - Ideas I provide (I'll give many)
 - o Ideas related to your thesis work
 - Ideas related to your hobbies
 - Ideas out of nowhere you find interesting

Format

- Work in groups of 1 − 3 (average size 2 for ~ 30 projects)
- 4 min presentation / demonstration ((4 + 1) x 30 = 150 min so we'll use \sim 2.5 classes at the end)

Expectations

- Make it meaningful
- I want to be impressed

3.5 Homework

Basic strategy is to assign on Wed, due the following Wed

Most weeks

Goal is to make it useful for understanding but not tedious

- Some overlap of key ideas in class that need quiet time and thought
- Some new ideas not covered in class
- Some fun (reading, videos / movies)

3.6 Practice And Review Lectures

I want people to get setup as early as possible with a high level framework

• Pick 1 (I don't care): PyTorch, TensorFlow, Caffe, ...

More uses of these lectures

- Review previous material
- Brainstorm ideas for projects etc.

3.7 Class Web Site

Follow this page, it will be updated on a regular basis

GitHub	https://g	<u>github.com/</u>	<u>arthurredf</u>	ern/UT-Dallas-CS-6301-CNNs
a 11 1	_			

Syllabus Course syllabus, will update plan as necessary

Lectures Post after class

• References Book (early draft form, also see references), links to others

Homework (Usually) post on Wed due next Wed
Tests Will eventually contain theory test

• Tools Will eventually contain implementation tool information

Projects Will eventually contain project information

• Code Update as necessary

4 Expectations

4.1 Of Me

My best every class

My opinions

It's a special topics class

I speak to adults like adults

- It's a grad class
- I want to be precise
- But I don't want to make things unnecessarily complicated

A logically laid out plan for both the whole course and individual lectures

A willingness to modify the plan as needed

• It's a new class

I don't have a perfect picture with respect to how long different topics will take

- If I go short in a lecture we'll figure out a way to make use of the extra time
 - I'll answer questions
 - We'll do some practical items
 - We'll discuss project and paper ideas
- If I run out of time in a lecture we'll make it up in the next lecture or have reading for homework
- Structured the implementation and application sections to give a buffer we can shrink or expand

I don't have a perfect knowledge of what you do and don't know

- The course covers a lot
- It's unlikely that you have a perfect background in everything
- That's ok
- Part of the purpose of the course will be to fill in those gaps
- I'll help via the structuring of the material

4.2 Of Students

Honesty

- In your work
- In your interactions with other students
- In your interactions with me

Hard work

- Nothing meaningful in life is easy
- This won't be an exception

Correct me if I'm wrong

Politely

Friendly environment

- Great to shine as an individual through individual accomplishments
- Great to shine by helping others shine
 - o Characteristic of a leader

Be engaged

• Ask questions freely

I would like to learn everyone's name

• Help me out and say it when you ask a question