ângulo Entre Duas Retas:

Considere que as equações reduzidas das retas r e s são:

$$r: y = m1.x + n1$$

 $s: y = m2.x + n2$

Sendo m1 e m2 os coeficientes angulares das retas r e s, respectivamente, podemos calcular o ângulo θ através da fórmula abaixo:

$$tg\Theta = \left| \frac{m_2 - m_1}{1 + m_2 \cdot m_1} \right|$$

Ângulo	0°	30°	45°	60°	90°
Seno	0	1/2	$\sqrt{2}/_{2}$	$\sqrt{3}/_{2}$	1
Cosseno	1	√3/2	$\sqrt{2}/_{2}$	1/2	0
Tangente	0	√3/ ₃	1	√3	-

Distância entre Ponto e Reta:

$$d = \frac{|a \cdot x_p + b \cdot y_p + c|}{\sqrt{a^2 + b^2}}$$

Equação reduzida da circunferência:

$$(x - a)^2 + (y - b)^2 = r^2$$

Equação geral da circunferência

$$(x - a)^2 = x^2 - 2ax + a^2$$

 $(y - b)^2 = y^2 - 2by + b^2$

$$x^2 - 2ax + a^2 + y^2 - 2bx + b^2 = r^2$$

posição relativa entre ponto e circunferência.

você visualiza a equação reduzida $(x - a)^2 + (y - b)^2 = r^2$

e aplica os pontos do centro juntos dos pontos na equação de distância.

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

exemplo: $(X - 1)^2 + (Y + 2)^2 = 16$ Raio de 4 Pontos(1 -6)

Centro (1, -2)

raiz de: $(1 - 1)^2 + (-2 - (-6)^2) = 16$ que é igual a 4 pois se trata do raio. Dessa forma, o ponto pertence à circunferência;

Posição relativa entre reta e circunferência

$$d = \frac{|ax + by + c|}{\sqrt{a^2 + b^2}}$$

Posição relativa entre circunferências

$$\lambda 1$$
: $(x + 3)^2 + y^2 = 1$
 $\lambda 2$: $(x + 1)^2 + y^2 = 1$

Você soma o raio das duas, no caso de cima R = 2 após isso você pega os centros, sendo c1 (-3,0) e c2 (0 e -1) e aplica a fórmula de distancia.

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

Ficando assim: Raiz de (-3 - (-1)) ² que resulta em raiz de 4 que é igual a 2. ou seja, as circunferências são **tangentes externas**.

Circunferências externas: Se $d>r_1+r_2$

Circunferências internas: Se $d < |r_1 - r_2|$

Circunferências tangentes externas: Se $d=r_1+r_2$

Circunferências tangentes internas: Se $d=|r_1-r_2|$

Circunferências secantes: Se $ert r_1 - r_2 ert < d < r_1 + r_2$