

10 BUNDESREPUBLIK
DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 199 03 909 A 1

(a) Int. CL⁷: **G 08 G 1/01** G 01 C 21/12

DEUTSCHES
PATENT- UND
MARKENAMT

② Aktenzeichen:

199 03 909.7

2 Anmeldetag:

1. 2. 1999

(a) Offenlegungstag:

3. 8. 2000

Anmeider:

Delphi 2 Creative Technologies GmbH, 80331 München, DE

(1) Vertreter:

WINTER, BRANDL, FÜRNISS, HÜBNER, RÖSS, KAISER, POLTE, Pertnerschaft, 85354 Freising @ Erfinder:

Klendl, Robert, 81541 München, DE; Schmidt, Günter, Dr., 82008 Unterhaching, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlegen entnommen

- Verfahren und Vorrichtung zur Gewinnung von relevanter Verkehrsinformation und zur dynamischen Routenoptimierung
- Ein Verfahren zur dynamischen Gewinnung von relevanter Verkehrsinformation und/oder zur dynamischen Optimierung einer Route eines ersten Fahrzeugs, welches einem selbstorganisierenden Verkehrsinformations- und/ oder -leitsystem angehört, dem weitere Fahrzeuge angehören, beinhaltet die Schritte: Erstellen von Daten auf der Basis von fahrzeugeigenen Sensoren und/oder anderen Informationsquallen im ersten Fahrzaug; Aussanden von für das erste Fahrzeug oder andare Fahrzeuge relevanten Daten; Empfangen der gesendeten Daten anderer Fahrzeuge; Speichern von Daten, die aus empfangenen und/ oder eigenen Deten gewonnen wurden; Erstellen und Senden von Anfragen bezüglich Daten, die möglicherweise andere Fahrzeuge bereitstellen könnten; potentielles Weiterleiten von empfangenen Daten durch Wiederaussenden dieser Daten in verarbeiteter oder nicht verarbeiteter Form.

Beschreibung

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Gewinnung von relevanter Verkehrsinformation und zur dynamischen Optimitring der Route von Fahrzeugen, welche einem selbstorganisierenden Verkehrsleitsystem angehören, und insbesondere auf ein Verfahren für ein selbstorganisierendes System zur Verkehrsleitung. Signalisierung von Verkehrsstörungen und Extraktion von Statistikkaten sowie auf ein Verfahren für eine effiziente, zielgerichtete Verbreitung von Drittdaten in einem sich bildenden Informationsnetzwerk.

Bisherige Verfahren order Verrichtungen zur Verkehrsleitung stützen sich in großem Umfang auf eine externe, fostinstallierte Verkehrserfussung bzw. auf eine zentrale Informationsverarbeitung.

Zur Erhöhung der Rate von Fahrzeugen, welche einen bestimmten Verkehranschnitt passieren, und damit zur Erhöhung der mittleren Geschwindigkeit der Fahrzeuge insbesondere hei verstärktem Verkehrsaufkommen wurden bereits herkömmliche Verkehrsleitsysteme entlang besonders stark belasteter Verkehrsubschnitte, wie beispielsweise stark befährenen Autobahnen usw., fest installiert. Derartige herkommliche lest installierte Verkehrsleitsysteme besitzen eine Vielzahl von liefassungsvorrichtungen, die beispielsweise die Verkehrsdichte, die Geschwindigkeit des Fahrzeugstromes, der Umgebungsbedingungen (Temperatur, Nebel) usw. erfassen und anhand der jeweiligen Erfassungssignale den Fahrzeugverkehr entlang des vorbestimmten Abschnitts über Anzeigetafeln derart steuern, dass ein 30 gleichmäßiger Verkehrsfluss bei größtmöglicher Geschwindigkeit entsteht.

Nachteilig bei derartigen berkönnnlichen Verkehrsleitsystemen ist die feste Installation entlang eines vorbestimmten Streckenabschnitts, wodurch sich außerordentlich hohe Anschaftungskosten ergeben. Darüber hinaus besitzt ein derartiges fest installiertes Verkehrsleitsystem nur eine geringe Pexibilität, da es ausschließlich den Verkehr in relativ kurzen Abschnitten regelt bzw. leitet.

Zur Erhöhung der Flexibilität schlägt die US-4,706.086 40 ein Kommunikationssystem zwischen einer Vielzahl von Fahrzeugen vor, bei dem Signale und Informationen antsprechend den jeweiligen Fahrzeuständen des Fahrzeugs übereine Sende-Æmpfangseinheit mittels elektromagnetischer Funkwellen übertragen wird.

Temer ist aus der Druckschrift US-A-5.428,544 eine Vorrichtung und ein Verfahren zum Signalisieren von lokalen Verkehrsstörungen bekannt, bei dem die Fahrzeugdaten hzw. -zustände des Fahrzeugs wie beispielsweise die Geschwindigkeit, die Route und Richtung über Kommunikationseinrichtungen gegenseitig übertragen wenten. Die Übertragung der jeweiligen Daten auf ein weiteres Fahrzeug erfolgt hierbei auf indirekte Art und Weise über ein entgegenkommendes Kraftfahrzeug.

Bei den bisherigen Verkehrsleitsystemen werden die 53 Fahrzeugdaten entweder in einem örtlich hegrenzten Bereich durch eine festinstallierte Einnichtung erfasst und sind lediglich lokal verfügbar oder sie werden in einem großen Bereich von einer Mehrzahl von mobilen Einrichtungen erfasst, jedoch derart ineffizient weitergeleitet, dass sie ebenfalls lediglich lokal verfügbar sind, wodurch die Planung bzw. Optimierung einer Route von Fahrzeugen über einen lokalen Bereich hinaus unter Berücksichtigung verkehrsrelevanter Größen der gesamten Wegstrecke nicht unterstützt wird. Nicht bekunnt hingegen ist eine dynamische Gewinden von relevanter Verkehrsinformation, bei welcher auf eine an einem ersten Ort gestellte Anfrage an einem zweiten Ort, der vom ersten Ort beliebig entferm sein kunn, eine re-

levante Verkehrsinformation erstellt und effizient an den ersten Ort weitergeleitet wird.

Der Brfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Gewinnung von relevanter Verkehrsinformation zu schaffen.

Erfindungsgemäß wird diese Aufgabe durch die Maßnahnun und Merkmale der unabhängigen nebongeordneten Patentansprüche gelöst.

Das erfindungsgemäße Verfahren zur dynamischen Ge-10 winnung von relevanter Verkehrsinformation und/oder zur dynamischen Optimierung einer Route eines ersten Fahrzeugs, welches einem selbstorganisierenden Verkehrsinformations- und/oder -leitsystem angehört, dem weitere Fahrzeuge angehören, beinhaltet die Schritten: [a] Erstellen von Daten auf der Basis von fahrzeugeigenen Sensoren und/oder anderen Informationsquellen im ersten Fahrzeug; [b] Aussenden von für das erste Fahrzeug oder undere Fahrzeuge relevanien Daien (Broadcast); [c] Einpfangen der gesendeten Daten anderer Fahrzeuge; [d] Speichern von Daten, die aus emplangenen und/oder eigenen Daten gewonnen wurden: [c] Erstellen und Senden von Anfragen bezüglich Daten, die möglicherweise andere Fahrzeuge bereitstellen könnten (Request); und III potentielles Weiterleiten von empfangonen Daten durch Wiederaussenden dieser Daten in verarbeiteter oder nicht verarbeiteter Form (Replikation).

Damit ermöglicht das orfindungsgemiße Verfahren vom Prinzip her ein autarkes selbsterganisierendes Verkehrsinformationsnetzwerk, in welchem die teilnehmenden Fahrzeuge gleichzeitig die benötigte Information generieren, verteilen, bündeln und nutzen.

Das Verfahren arbeitet auf eine besondere Weise skuleninvariant (fraktalhierarchisch), so dass es bezüglich der Verarbeitungsart und bezüglich des Kommunikationsvolumens zumindest im Hinblick auf dynamische Routenoptimierung und Signalisierung von Verkehrsstörungen (— Sicherheitsaspekt) - keine Rolle spielt, auf welche Distanzgrößenordnung abgezielt wird.

Das Verfahren funktioniert auf Autohahnnetzen ebenso wie im Straßennetz einer Großstadt.

Insbesondere skaliert das Kommunikationsvolumen gutartig ("< n*log n") mit der Gesamtzahl der teilnehmenden Fahrzeuge und der Fläche des Areals.

Trotz der prinzipiellen Automomie des Systems können jedoch auch zentral generierte Informationen nahtlos in das System hineingeroutet werden und auch Informationen aus dem System z. B. zu Statfattkieresten extrahiert und zentral gesammelt werden.

Bin enormer Kostenvorteil, optimale liffizienz hohe Ausfallsicherheit und gleichzeitig ein gebündelter Mehrwert sowie eine einheitliche Benutzerschnittstelle sind deshalb im Vergleich zu bestehenden Verführen zu erwarten. Zudem ist dieses System bei hohem Ausstaltungsgrad als Sieherheitssystem nutzhar.

Daneben bietet das durch dieses Verfahren entstehende Netzwerk auch eine Sußerst effiziente Platform für die Übertragung von Driudaten bis hin zu Mobiltelefonie. Auch eine Ellfektivitätssteigerung des entstehenden Kommunikationsnetzwerks durch die Ausnutzung bzw. nahtlose Einbindung eines Backbone-Festnetzes ist problemlos möglich.

Inshesondere beinhaltet das Verfahren und die Vorrichtung der vorliegenden Erfindung folgende Merkmale.

Im Schritt [a] und [d] des Verführens werden darüber hinaus Fahrhistoriendaten durch die Fahrzeuge erstellt, wodurch die Aussagekraft der Daten erhöht wird.

Anfrugen können von empfungenden Fahrzeugen beantworter, teilweise beantworter, weitergeleitet und/oder teilweise weitergeleitet werden (Response und Replikation).

Das Beantworten von Antragen und/oder Weiterleiten

von Anfragen und anderen Daten erfolgt durch Pahrzeuge mit geeignetem/optimalem Informationsstand bzw. mit glinstiger/optimaler aktueller Position für eine Weiterleitung. wodurch eine Optimierung von Beantwortung von Weiterleitung erzielt wird.

Durch das crate l'ahrzeug werden Anfragen pach Informationen bezüglich der Befahrbarkeit und sonstiger verkehrsrelevanter Größen auf den in Frage kommenden zukünfülg zu befahrenden Wegstreckensegmenten gesendet.

Antworten auf Anfragen des ersten Fahrzeugs an das erste l'ahrzeug werden direkt oder per Weiterleitung zurückgeleitet, wohei die Informationen in den Antworten zur opportunen Weiterverwendung auch von übermittelnden Fahrzeugen sowie von l'ahrzeugen, die ebenfalls die Antworttelegramme empfangen, abgespeichert, akkumuliert und auf- 15 bereitet werden können (Caching und Verwertung).

In den Schritten [h] und [e] des Verfahrens wird eine zu dem ersten Fahrzeug dazugehörige Quellengruppe von l'ahrzeugen auf den limplang der l'ahrzeugdatensignale von den jeweiligen l'ahrzeugen l'estgelegt, wobei in den emplan- 20 genden Fahrzeugen zum Zwecke der Generierung von Quellendaten für die nachfolgenden Schritte die Daten gespeichert, akkumuliert und vorverarbeitet werden können (Quellenbildung I). Dadurch wird das Kommunikationsvolumen reduzien.

Bei der Vorverarbeitung der Quellendaten können mittlere Geschwindigkeiten, maximale Geschwindigkeiten, Verkehrsdichtemaße. Stau-Sensitivitäten, gebündelte Aktualitäisniaße und/oder gebündelte Relevanz-Maße berechnet werden (Quellenbildung II).

lis können l'ährhistoriendaten, Quellendaten, Zwischenspeicherdaten, insbesondere Daten, die wie oben beschriebenen beim Caching und der Verwertung aufallen, und Antwordaten in den Fahrzeugen jeweils in einer individuellen Karre gespeichert werden, welche eine statische globale 35 Karte überlagen oder parallel dazu besteht, wodurch eine individuelle Karte geschaften wird.

Die Kartenstruktur wird für Zwecke der internen Verarbeitung und Referenzierung in Übertrugungssignalen in Wegstreckensegmente unterteilt, die eine maximale Länge 40 nicht überschreiten (Kartenrepräsentation I).

Wegstreckensegmente der Kartenreprüsentation werden für Zwecke der internen Verarbeitung und Referenzierung in Ubertragungssignalen zu Gruppen und Übergruppen mit jeweils eigener Identifizierung zusammengefasst (Kartenre- 45 präsentation II - Kompression durch Flierarchisierung).

Im Schritt [f] wird ein günstiges Fahrzeug aus der Gruppe von l'ahrzeugen, welches die Anfrage beantworten und/oderweiterleiten kann, durch ein Bewertungsverfahren ermittelt, wohei in Abhängigkeit von der Aktualität bzw. Relevanz 50 von hereits dem jeweiligen Fahrzeng verfligharen Dalen über die betrossenen Wegstreckensegmente, der Anzahl von Anfragen, die aufgrund bereits verfügbarer Daten beantwortet werden können, und/oder der Entfernung des jeweiligen l'ahrzeugs zum nächsten Wegstreckensegment, dessen An- 55 frage nicht beantwortet werden kann, ein Bewenungsmaß emittelt wird (Delay-Routing I).

In Abhängigkeit von dem Bewertungsmaß wird eine Verzögerungszeit für die Ahsendung der Beantwortung und/ das Bewertungsmaß ist, so dass Fahrzeuge je eher mit dem Senden zum Zuge kommen, je besser das Bewertungsmaßist (Delay-Routing II).

Bin Pahrzeug A mit einer Sendeabsicht betreffend eine ner bestimmten, durch einen Aktions-Code gekennzeichneten Anfrage stoppt die geplante Absendung, wenn es ein Si- gen), gnal bezüglich derselben Anfrage mit demselben Aktions- lis erfolgt eine Beuneilung, ob für ein bestimmtes Weg-

Code von einem anderen Fahrzeug B empfängt, welches mit kürzerer Verzögerüngszeit dem Fahrzeug A zuvorgekommen ist (Delay-Routing III).

In Schritt [c] des Verfahrens wird bei der Erstellung von Anfragen eine gewünschte Aktualität in die Anfrage ein-codiert (Aktualitätsanforderung).

Es kann das Beantworten einer Anfrage je nach gewünschler Aktualität aus Quellendaten von Fahrzeugen nahe am Zielgebiet der Anfrage oder aus zwischengespeicherten Daten, insbesondere aus Daten, die wie oben beschriebenen beim Caching und der Verwertung anfallen, von Fahrzeugen weitab vom Zielgebiet und näher am anfragenden Fahrzeug erfolgen, so dass die Zahl von Anfragenweiterleitungen gering gehalten werden kann (Cache-Nutzung).

Ein erstes Berechnen einer Route des ersten Pahrzeugs von dessen momentaner Position zu einem gewählten Ziel kann anhand statisch gespeichener oder bereits verfügbarer dynamischer Wegstreckendaten erfolgen (statisches oder dynamisches Routing).

Eine Neuberechnung der Route erfolgt aufgrund geänderter Daten in der individuellen Karte zum Zwecke der iterativen Optimierung der Route (ilerative Optimierung).

Die übertragenen Signale beinhalten Informationen bezüglich des Signaltyps, der Fahrzeugidentifizierung, der verwendelen Sendeseldstärke, des Ausenthaltsorts der Fahrzeuge, eines eindeutigen Aktions-Codes, sowie einer Liste von Identifizierungen bisher verwendeter Übermittlungsfahrzeuge als History-Liste (Informationsinhalte I).

Darüber hinaus beinhalten die übertragenen Signale Insormationen bezüglich der Wegstreckensegmentidentisizierungen, der Bewegungsrichtung, des Anteils des zurückgelegten Wegstreckensegments, der mittleren Geschwindigkeit, der maximalen Geschwindigkeit, der Fahrzeugdichte und/oder der Aktualität/Zeitmarkierung der Informationen Informationinhalte II).

Das Festlegen der Gruppe von Fahrzeugen auf den Enipfang der l'ahrzougdatensignale von den jeweiligen l'ahrzeugen erfolgt durch Festlegen der Sendefeldstärke oder Sendereichweite des ersten Fahrzeugs (Sendereichweite I).

Eine einstellbare Sendefeldstärke der Sendeeinheit kann so geregelt werden, dass im Mittel eine parametrisierbare Maximalanzahl von erreichbaren Fahrzeugen nicht überschritten wird (Sendercichweite II).

In die Sendefeldstärkenregelung können die in den entpfangenen Signalen ein-codierten Positionen und verwendeten Sendeseldstärken der benachbarten Fahrzeuge eingehen (Sendereichweite III).

Das Zurückleiten der Beantwortung einer Anfrage kann durch die im Schritt [f] festgelegten Übermittlungsfahrzeuge erfolgen, wobei die oben beschriebene History-Liste verwendet werden kann (Rückleiten I: Ausnutzen der History-Liste).

Das Zurückleiten der Beantwortung einer Anfrage kann durch ein Weiterleitungsverfahren analog der Hinleitung der Anfrage im Schritt [f] erfolgen (Rückleiten II: emeutes Routing). 🗀

Das erste l'ahrzeug erstellt und sendet eine Mehrzahl von Anfragen bezüglich einzelner Wegstreckensegmente, die jeweils einzeln beantwortet und/oder weitergeleitet sowie beoder Weiterleitung sestgesetzt, die umso kürzer ist. je höher 60 antwortet zurückgeleitet werden, oder eine Anfrage bezüglich der Gesamtheit von Wegstreckensegmenten, wobei die Anfrage bezüglich der Gesamtheit von Wegstreckensegmenten eine Mehrzahl von Teilanfragen bezüglich einzelner Wegstreckensegmente beinhaltet, die nacheinander von den Anfragebeuntwortung und/oder -weiterleitung bezüglich ei- 65 Pahrzeugen der Kette von Übermittlungsfahrzeugen beantwortet hzw. weitergeleitet werden (Kombination von Anfra-

steckensegment eine Anfrage erstellt werden soll (Bewertung der Anfragenotwendigkeit I). Dadurch wird das Kommunikationsvolumen reduziert.

Die Beurtellung, oh für ein bestimmtes Wegstreckensegment eine Anfrage erstellt werden soll, erfolgt in Abhängigkeit der Entfernung des Wegstrockensegments vom momentanen Aufenthaltsort des ersten Fahrzeugs, der geschätzten Zeit bis zum Erreichen des Wegstreckensegments, einem Wichtungsfaktor des Wegstreckensegnients, der aus der Vergangenheit bekannten Stauhäufigkeit und/oder der Ak- 10 externer Daten an Pahrzeuge oder Gruppon). tualität bereits verfügbarer Daten über das Wegstreckenzegment (Bewertung der Anfragenotwendigkeit II).

Die Zurückleitung nicht beantwortster Anfragen erfolgt in Form von speziell markierten Pseudo-Antworten

(Pscudo-Antwort I).

Eine Nichtbeantwortung einer weitergeleiteten Anfrage wird dudurch detektiert, dass bei einer Welterleitung einer Anfrage durch Fahrzeug A gleichzeitig die Absendung einer Pseudo-Antwort mit hoher Delay-Zeit sestgelegt wird (Pseudo-Antwort II).

Die Absendung der Pseudo-Antwort vom Fahrzeug A kann dadurch gestoppt werden, dass ein anderes Fahrzeug B, welches sich in Reichweite des Pahrzeugs A befindet, seinerseits die weitergeleitete Anfrage beantwortet oder weiterleitet, was Fährzeug A aufgrund des Aktions-Codes der 25 Anfrage crkennen kann (Pseudo-Antwort III).

Es werden eine oder mehrere Gruppen von Fahrznugen gebildet, die jewells über Daten bestimmter benachbarter Wegstreckensegmente verfügen, wohei für die jeweiligen Fahrzeuge gemeinsame gruppenrelevante Daten derurt ver- 30 fügbar sind, dass eine Anfrage über Daten solcher Gruppen von jedem Fahrzeug der Gruppe beantwortet werden kann oder durch wenige Weiterleitungen eine Beuntwortung er-

folgen kann (Quellenhierarchisierung I).

Aus den Gruppen werden eine oder mehrere übergeord- 35 ition). nete Gruppen gehildet, die jeweils über Daten bestimmter benachbarter Wegstreckensegmente verfügen, wobei für die jeweiligen l'ahrzeuge gemeinsame übergruppenrelevante Daten deran verfügbar sind, dass eine Anfrage über Daten solcher Übergruppen von jedem Fahrzeug der Übergruppe 40 beantwortet werden kann oder durch wenige Weiterleitungen eine Beantwortung erfolgen kann (Quallenhierarchisierung II). l'ahrzeuge der Gruppe erstellen und senden Datensignale, die Informationen bezüglich der Lage, Ausdehnung und minimalen Lebenstlauer der Gruppe beinhalten (Quellenhierarchisierung III - Gruppenprotokoll). Gruppendaten können dahei mittlere Geschwindigkeiten, maximale Geschwindigkeiten, Fahrzeugdichtemaße, Aktualitäten/Zeitmarkicrungen und/oder Informationsrelevanzmaße bezüglich der Gesamtheit der Fahrzeuge der Gruppe beinhalten 50 (Quellenhierarchisierung IV - Gruppendaten). Des weiteren kann eine Gruppenbildung dadurch erfolgen, dass Gruppenbildungswünsche eines oder nichterer Fahrzeuge oder Untergruppen akkumuliert werden und dass die tatsächliche Gruppenhildung erst bei einer Schwellwertüherschreitung 55 festgelegt wird (Quellenhierarchisierung V - Gruppenhil-

Information werden beim Rücklauf von Antworten auf Anfragen oder bei der Zwischenspeicherung in Übermittlungssahrzeugen inhaltlich insbesondere aus die bezüglich 60 der Kartenreprüsentation II und Kompression durch Hierarchisierung dargestellte Weise zusammengefasst, so dass Daten aus größerer Entfernung vom Anfrager starker komprimier/gröber aufgelöst werden können (Integration).

Ausgesendete Datensignale werden analog der Verurheit 63 tung von Antragen im Schritt [f] sowohl entlang eines eindimensionalen Kunals hin zu einem Zielort als auch flächenhast in ein in das Datensignal ein-codiertes weiträumigeres

Zielschiet weitergeleitet (Integration).

Die Datensignale beinhalten Informationen, die aufgrund eines besonderen Ereignisses von einem Fahrzeug erstellt und gerichtet oder ungerichtet gezendet werden (Rvent-5 Broadcast).

Einem Fahrzeug oder einer Gruppe von Fahrzeugen werden externe Daten zur gerichteten oder ungerichteten Weitergabe zugoführt, wobei auch eine Gruppenbildung durch diese extornen Daten veranlasst werden kann (Zuführung

Es werden Informationen bezüglich einer Stauprognose oder sonstiger verkehrerelevanter Größen aus dem System extrahiert und extern gespeichert, wobei zur Gewinnung der relevanten Größen auch eine Gruppenbildung von innerhalb 15 oder außerhalb des Systems veranlasst werden kann (Extraktion von Verkehrsdaten).

Die übertragenen Daten beinhalten Informationen bezüglich Verkehrsanbindung an andere Verkehrsverbunde wie Bahn-, U-Bahn-, S-Bahnverkehr, Flugverkehr und/oder Schifffahrt (Intermodaler Verkehr).

Die externen Daten beinhalten Informationen bezüglich

einer Stauprognose (External Prediction).

He werden Informationen bezilglich einer Stauprognose aufgrund in der Vergangenheit erlasster und zyklisch auftretender Ereignisse aus den Fahrzeugdatensignalen generient und gesendet, wobei zum Zwecke der zyklischen Stauprognose auch eine Gruppenbildung imitiiert werden kann (Periodical Prediction).

Des weiteren werden Informationen bezüglich einer Stauprognose aufgrund von in jüngerer Vergangenheit erfasster Breignisse aus den Datensignalen durch Extrapolation der Verkehrsflüsse oder Simulation generiert und gesendet, wobei zum Zwecke der simulativen Stauprognose auch eine Gruppenbildung initiiert werden kann (Simulative Predic-

Es werden die Informationen bezüglich einer Stauprognose und/oder sonstiger verkehrsrelevanter Größen innerhalb einer fentzulegenden Gruppe von Fahrzeugen abgelegt und bestehen dort weiter (Persistenz von Stauprognosen).

Die Fahrzeuge sind Landfahrzeuge für den Straßen- oder Schienenverkehr, Wasserfahrzeuge, Luftsahrzeuge oder sonetige mobile bemannte oder unbemannte Rinheiten, die sich in einem gemeinschaftlich genutztem Verkehrsraum fortbewegen und die mit einer begrenzt reichweitigen Kommunikationseinrichtung ausgestattet werden können (allgemeine Fahrzeuge).

Darüber hinaus können "Fahrzeuge" auch besondere "Pseudo-Fahrzeuge" sein, die speziell kommunikativen Zweck haben, Datensignale aus dem System heraus- oder in das System bineinsenden, Drittdaten einspeisen, nicht unbedingt mobil sein mitseen, zumindest aber mit einer kompatiblen Kommunikationseinrichtung ausgestattet sind (Pseudo-Fahrzeuge).

Über ein Pseudo-Fahrzeug oder eine Station wird eine Verbindung zu einem anderen Telekommunikationsnetzwerk hergenallt (Verbindung zu einem anderen Telekom-

munikationsnelzwerk).

Es werden miteinander durch ein externes Kommunikationsnetzwerk verknüpfte Pseudo-Fahrzeuge oder Stationen geschaffen, welche eine günstigere Verbindung zwischen den Fahrzeugen untereinander oder zwischen den Fahrzeugen und einem außerhalb des Verkehrsleitsystems besindlichen Sender/Empfänger herstellen (Backbone-Netz).

Durch die Übertragungseinrichtungen der Fahrzeuge und/ oder der Pseudo-l'ahrzeuge/Stationen und die oben beschriebene Art und Weise der Signalübertragung wird ein allgemeines Telekommunikationsnetzwerk geschaffen (Bildung eines allgemeinen Telekommunikationsnetzwerks).

Des weiteren werden durch das erfindungsgemäße Verfahren Daten bezüglich einer gefährlicher Annäherung des ersten Fahrzeugs an ein anderes dem Verkehrsleitsystem angehörigen Fahrzeugs oder an eine dem Verkehrsleitsystem angehörige Gruppe erzeugt und/oder übertragen (Sicher-

heitssystem).

Entsprechend dem Verfahren der vorliegenden Erfindung wird eine Vorrichtung zum Ermitteln und Optimieren einer Route cines ersten Pahrzeugs, welches einem Verkehrsleitsystem angehört, dem weitere Fahrzeuge zugeordnet sind, 10geschallen mit: einer Erfassungsvorrichtung zum Erfassen von zu sendenden lokalen Fahrzeugdaten; einer Sende-/Emplangsvorrichtung zum Senden/Empfangen von Punksignalen, die jeweilige zu sendende/empfangende Fahrzeugdaten enthalten; einer Feldstärke-Einstellvorrichtung zur 15 freien Finstellung einer bestimmten Sendefeldstärke bis hin zu einer maximalen Sendefeldstärke; einer Feldstärke-Ersassungsvorrichtung zum Ersussen der Feldstärke der Jeweils emplangenen Funksignale; einer Speichervorrichtung zum Speichern von Daten; einer Gruppensestlegungsvor- 20 richtung, welche auf den Empfang der l'ahrzeugdaten der jeweiligen Pahrzeuge eine dem ersten Fahrzeug zugehörige Gruppe sestlegt; einer Routensestlegungs- und -segmentierungsvorrichtung, welche anhand von gespeicherten Wegstreckendaten eine Route des ersten Fahrzeugs von dessen 25 momentaner Position bis zu einem gewählten Ziel festlegt und in Wegstreckensegmente unterteilt: und einer Routenoptimierungseinrichtung, welche eine Anfrage über Fahrzeugdaten, welche Informationen bezüglich der Befahrbarkeit der jeweiligen Wegstreckensegmente beinhalten, an die 30 Gruppe von Fahrzeugen stellt und anhand von auf die Anfrage empfangenen Fahrzeugdaten eine optimierte Route bestimmt (Aufbau der intelligenten Kommunikationsvorrichtung).

läne Verzögerungszeitsignalerzeugungsvorrichtung der 35 erfindungsgemäßen Vorrichtung ist derart ausgebildet, daß in Abhängigkeit von einem frei sestlegbaren Zeitverzögerungswert ein Datensignal erst nach Ablauf der sestgelegten Verzögerungszeit abgesendet wird (Delay-Erzeugung I).

Des weiteren enthält die erfindungsgemäße Vorrichtung eine Steuervorrichtung, die derart ausgebildet ist, daß die Absendung des verzögerten Datensignals vor Ablauf der Verzögerungszeit nachträglich gestoppt werden kann (Delay-Erzeugung II).

Die Erfindung wird nachstehend anhand von Ausfüh- 45 rungsbeispielen unter Bezugnahme auf die Zeichnung näher

beschrieben.

Die einzige Figur zeigt eine schematische Darstellung der Durchführung der Kommunikation zwischen Fahrzeugen eines Verkehrsleitsystems.

Zur Durchführung des Verlahrens der vorliegenden Erfindung ist ein Fahrzeug ausgestattet mit einer:

- Kommunikationseinheit (Sende/Empfangsvorrichtung) zur Kommunikation auf Fahrzeug-Fahrzeug- 55 Ebene

Vorzugsweise wird eine digitale gemultiplexte Übertragungsnorm ähnlich wie bei digitalen Mobilfunknetzen verwendet. Die Norm sollte idealerweise ein asynchrones Protokoll fahren. Auf unterer Ebene sollte 60 zweckmäßigerweise ein "Collision Detection"-Verfahren mit Fehlerkorrektur verwenden werden (ähnlich Ethernet). Im Prinzip könnte jedoch auch eine analoge Norm mit entsprechenden Korrekturverfahren ausreichen. Die Kommunikationseinheit sollte idealerweise mit von einer Rechnereinheit geforderten Sendeleistung von 0 bis zu einer maximalen Sendeleistung von beispielsweise 5 Watt betrieben werden können.

- Rechnereinheit

An die Rechnereinheit werden mittlere Anforderungen an Rechengeschwindigkeit und Speicherplatz gestellt. Die Rechnereinheit sollte über ein Kartenmodul (z. B. auf CD-ROM) verfügen.

- Bewegungssensorik (Vorrichtung zur Erfassung von

Fahrzeugdaten)

Die Bewegungssensorik weist einen Geschwindigkeits- und Richtungssensor, idealerweise ein GPS-Modul auf. Weitere Sensoren können eingebunden werden.

Die Verfahrensschritte werden insbesondere unter Steuerung der Recheneinheit durchgeführt bzw. veranlasst.

Grundeinheit der internen Karte bzw. des Kartenmoduls der Rechnereinheit ist ein Streckenabschnitt. Alle Sträßenzüge sind in der internen Karte als Zusammensetzungen von Streckenabschnitten dargestellt. Die Verbindungspunkte zwischen Streckenabschnitten werden als Knoten bezeichnet. Abbiegovorschriften, Einbahnstraßen u. ä. sind als Einschränkungen auf den Streckenabschnitten/Knoten definiert

Bei dem Verfahren der vorliegenden Erfindung wirken gleichzeitig verschiedene Prozesse zusammen, die im folgenden nacheinander beschrieben werden. Dabei ist eine Anzahl von Parametern sinnvoll zu wählen, was jedoch erst bei einer konkreten Installation des Verfahrens, bzw. mit Hilfe einer detaillierten Simulation geschehen kann. Angegebene Parameter sind daher Vorabschätzungen.

Ungerichteter Broadcast/Defaultaktion

Alle teilnehmenden Fahrzeuge führen "unaufgeforden" eine Defaultaktion durch, sie senden z.B. in einem bestimmten zeitlichen Abstand (z.B. 2 min) ihre Bewegungsdalen als ungerichteten Broadcast (Sendung) "unterster Hierarchiestufe". Die gesendeten Daten umfassen Informationen über die jüngere Fahrgeschichte, also z.B. die nüttlere Fahrgeschwindigkeit auf den Streckenabschnitten, die in den letzten 5 min befahren wurden. Alle Fahrzeuge im Untkreis von ca. der beabsichtigten Sendereichweite empfangen das Broadcastsignal.

Ein offener Parameter ist hierbei noch die zu verwendende Sendefeldstärke, welche die Sendereichweite bestimmt. Diese ergibt sich aus einem Regelvorgung. Zu Anfang wird eine geeignete Defaultsendestärke benutzt. Die benutzte Sendestärke wird jeweils auch mit in den Broad-

cast codien.

Jedes l'ahrzeug erfährt nun im Lause der Zeit die Daten von den umgebenden Fahrzeugen. Es weiß dann ungefähr die Fahrzengdichte hzw. die Dichteverteilung in der Umgebung. Daraushin kann es seine Sendestärke so abstimmen, dass ca. eine vorgegebene Maximalanzahl von Fahrzeugen mit einem Broadcast erreicht werden kann (z. B. 100 Fahrzeuge). Da die verwendete Sendestärke immer mit-codien ist, kann auch ständig der Zusammenhang zwischen Sendestärke und zu erwartender Sendereichweite (abhängig von Umgebungsbedingungen) nachjustiert werden, und das evil. sogar richtungsabhängig. Letztenendes soll durch die Sendeseldstärkenregelung erreicht werden, dass bezüglich der Kanalauslastung und des konkret verwendeten "Collision Detection"-Verfahrens entsprechend der Anforderungen der Kommunikationsschicht eine für die Gesamtheit der Fahrzeuge optimule Übertragungsbandbreite zur Verfügung steht. Auch im Sinne eines gutartigen Skalierens des Konemunikationsvolumens, wohei ein Systemzusammenbruch auch bei erhöhter Teilnehmerzahl nicht austritt, ist es wichtig, dass (z. B. im Zentrum einer Großstadt) nicht zuviele l'ahrzeuge von einem einzelnen Broadcast erreicht werden. Das vorliegende erfindungsgemäße Verfahren muß also noch keine zu speziellen Anlarderungen an die unterste Therregungsschicht stellen, sondern kann in weiten Bereichen durch Einstellung von wenigen Parametern an ein konkretes Kommunikations-Setup angepasat werden.

Durch den ungerichteten Broadcast entstehen insormationsmillig (verschmierte) Gruppen bezüglich der Streckenabschnitte. Z. B. "wissen" ca. 30 Fabrzeuge über die Bewegungschien auf einem bestimmten Autobahnabschmitt oder einem diehthefahrenden Innenstadt-Streckenabschnitt Bescheid. Alle Informationseinheiten, die übertragen werden, tragen eine Zeitmarke, welche die jeweilige Aktualität kennzeichnet, sowie eine Relevanzmaß, dass kennzeichnet, wie satz des bereits befahrenen Streckenabschnitts). Aus dieser Bewertung und Akkumulation der Daten von verschiedenen l'ahrzeugen ergibt sich somit ein "Bild" von dem gesamten Verkehr, und dieses "Bild" ist verteilt in den Gruppen abgelegt. Ils können verschiedene Bewegungsvariahlen/-para- 20 nieter akkumulient werden, z. B. mittlere Fahrgeschwindigkeit/l'ahrzeit; maximale l'ahrgeschwindigkeit, Verkehrsdichte, Stausensitivität (aus Langzeitintegration), usw.

Der Request 🔅

Der Request arbeitet dabei eng mit der eigentlichen dynamischen Routenplanung zusammen: Ausgangspunkt der dynamischen Routenplanung ist eine statische Routenplanung. Die Rechnereinheit eines Fahrzeugs berechnet sozusagen 30 zunächst konventionell entsprechend der eingehauten Karte, welche vorläulige Duten über maximale Reisegeschwindigkeiten auf den Streckenabschnitten enthält, ein vorläufige optimale Route.

Für diese aktuell ins Auge gefaßte Route wird nun ver- 35 sucht, herauszufinden, oh die zugrundeliegenden maximalen Reisegeschwindigkeiten (evtl. auch andere abgeleitete Basisparameter wie Benzinverbrauch, Umweltbelastung, .) korrekt sind.

Dazu werden über die Sende-/Empfangsvorrichtung des 40 l'ahrzeugs für die Streckenabschnitte Anfragen (Requests) über die Bewegungsdaten abgesetzt. Alle Streckenabschnitte der Route werden durchgegangen, wobei entschieden wird ob ein Request für den jeweiligen Streckenabschnitt überhaupt derzeit erforderlich ist. Denn ein Request ist teuer in dem Sinne, dass er einen Kommunikationsvolumen bzw. -aufwand verursacht. Ils wird gewissermaßen die Wichtigkeit für einen Request den jeweiligen Streckenahschnitts abgeschützt. Nur wenn die Bewertung einen gewissen Level überschreitet (z. B. in einem normalisierten Be- 50 ein Stapel von "Sendeabsichten". wertungssystem den Wert 1), wird der Streckenahschnitt für den Request vorgemerkt. Die Kriterien für die Abschätzung der Wichtigkeit sind z.B. Entfernung des Streckenabschnitts in der geplanten Route vont jetzigen Standort aus. geschätzte Fahrzeitentsernung des Streckenabschnitts, 55 Wichtigkeit der Straße auf der sich der Streckenabschnitt befindet ("Roadelass") und/oder Aktualität der bereits vorhandenen Daten über den Streckenabschnitt. Wenn bereits Daten mit einer Aktualität von -3 min vorliegen, braucht ein Request bezüglich des getreffenden Streckenabschnitts 60 nicht abgesetzt zu werden.

Durch die Cherprüfung der Streckenabschnitte nach diesen Kriterien ergibt sich dann eine Liste von Streckenabschnitten, für die eine Request abzuschicken ist. Im Request wird auch eine gewünschte Mindestaktualität eingetragen. 65: Zusammenhängende Streckenahschnitte in dieser Liste können dann mit einer üblichen Segmentierungsmethode zusammengefassi werden, so dass ein gehündelter Request ge- igehalten werden und so recht hald vernichtet werden.

bildet werden kann. Im Prinzip kann auch ein einziger gebündelter Request für alle Streckenabschnitte in der Liste gebildet werden, der dann während der anschließenden unlen herchrichenen Request-Repetition stückweise aufgehmchen bzw. abgearbeitet wird. Darüber hinaus wird der Request mit einem eindeutigen Aktions-Code (s. u.), der u. a. Informationen darüber emhält, wer welche Anfrage beantwortet bzw. weitergeleitet hat, als auch mit einem auf 0 geseizien Repetitionszähler versehen, der die Anzahl von Wei-10 terleitungen wiedergibt.

Requestyerarbeilung/Repetition

Der Request wird nun entsprechend der Figur ausgesenzuverlüssig/vollständig die Information ist (z. B. Prozent- 15 det. Als Sendeseldstärke wird jener Wert genommen, der sich aus dem oben beschriebenen Regelmechanismus beim Broadcast ergibt. Der Request wird von allen l'ahrzeugen innerhalb des Sendebereichs "gehört". Diese Fahrzouge nehmen nun eine Bewertung vor. Sie schätzen aus den Ihnen vorliegenden Daten (aus dem Broadcast- oder dem unten beschriebenen Cachesignal) ein Antwortpotential bzw. -vermögen und ein Repetitionspotential bzw. -vermögen (--Weiterübermittlung des Request) ab. Dubei Kriterien berücksichtigt wie z. B.: wie gut können die Requests beamwortet werden (Aktualität, Relevanz (s. o.)); wie viele Requests (Anzahl bzw. Prozentsatz der Streckenabschnitte) können beantwortet werden - nur wenn eine gewisser Schwellenwen erreicht wird, ist das Gesamtantwortpotential größer als O, damit kein zu kleinen Außplittungen des Requests forciert werden; wie gut sicht das Fahrzeug in der Richtung hin auf den niichsten Streckenabschnitt, dessen Request nicht beantwortet werden kann.

Aus dieser Bewertung nun ergibt sich ein Ranking-Wert (z. B. U . . . 1), welcher Antwort- bzw. Repetitionspotential entspricht. Aus dem Ranking-Wert wird eine Delay-Zeit errechnet. Dabei ergibt eine hoher Ranking-Wert eine kurze Delay-Zeit, und Bewertungen, die nicht nur ein Repetitionspotential, sondern auch ein Antwortpotential größer 0 hahen, ergeben grundsätzlich eine kürzere Delay-Zeit, als Bewertungen nur mit Repetitionspotential. Die Parameter sind so zu wählen, dass möglichst nur Fahrzeuge in einem Kegel in Richtung auf des nächste Routensagment ein Potential größer O bekommen wie in der Figur dargestellt. Anschlie-Bende Repetitionen können dann untereinander gehört wer-

Sowohl die geplante Repetition (mit Requests bzgl. der restlichen Streckenabschnitte) als auch die geplante Antwort werden zusammen mit der berechneten Delay-Zeit in ein Senderegister gestellt bzw. abgespeichert. Dadurch entsteht

Dieser Stapel wird dann im Laufe der Zeit durchgearbeitet. Wenn die jeweilige Delay-Zeit abgelaufen ist, wird das entsprechende Paket versendet. Wenn jedoch in der Zwischenzeit eine Antwort oder eine Repetition mit demselben Aktions-Code und mindestens genauso großem Repetitionszähler eingetroffen ist, so ist ein anderes Fahrzeug der beabsichtigten Sendezktion zuvorgekommen. Offensichtlich halte dieses l'ahrzeug ein höheres oder vergleichbares Antwort-/Repetitionspotential. Die entsprechenden Hinträge aus dem Stapel werden dann gelöscht (Solcktion des Max. Fittest). Wenn ein Paket mit demselben Aktions-Code und niedrigerem Repetitionszähler eintrifft, so wird das Paket ignorien. Das führt dazu, dass unessiziente sich verselbstständigende Requesixyklen vernichtet werden. Jedes Fahrzeug kann auch eine Liste mit jüngeren Request-Aktions-Codes führen, anhand derer nichtoptimal herumirrende Request-Ketten von der Repetition bzw. Beantwortung ab-

I's ergibi sich nun sukzessive eine Weiterleitung und Teilbeantwortung von Requests. Im unglinstigsten Falle müßte ein Request so die gesamte Route in Sprüngen von ca. dem mittleren Senderadins ablanten.

Rücklaul der Information (Answer)

Auf einen Request telef irgendwann eine Beantwortung (Answer), meist in Form einer leilbeantwortung. Its wird nun versucht, die Antwort auf demselben Weg zum Empfänger zurückzunvuten, auf der der Request eingetroffen ist. Während der Request-Phase wird bei jeder Repetition ein History-Stapel von übermittelnden Pahrzeugen im Request-Protokoll erweitert. Dabei wird jeweils die Fahrzeug-ID (Fahrzeug-klentifizierung) in den Stapel eingelragen. Anhand dieses ID-Stapels kann während des Answer-Zyklus immer genau dassenige l'abrieug, das am linde dieser Liste sicht, eineindeutig die Answer-Repetition übernehmen und dahei die eigene ID vom History-Stupel nehmen. Man geht hierhei davon aux, dass die lahrzeughewegungen wesent- 20 lich langsamer sind, als die Gesamtlaufzeiten der Kommunikation, so dass sien das Muster der Sendebereiche beim Answer gegenüber dem Request kaum geündert hat. Es wurde also nur sehr selten der Fall auttreten, dass beim Zurücklaufen der Antwert ein Lahrzeug im History-Stapel 25 nicht mehr erreichbar ist. In einem solchen Fall kann die Antwort jedoch ohne bewindere Gegenniaßnahmen schadlos verlorengehen. Beim nachsten Request-Generierungs-Zyklus des anfragenden Lahrzeugs wird dies wegen der nicht aktuellen Daten für die betroffenen Streckenabschnitte 30 auffallen und bevorzugt schneil ein neuer Request gestartet

Im Prinzip könnte die Antwort aber auch nach demselben aufwendigen Verfahren wie beim Request geroutet werden. also rein durch Repetition hin auf den Quellort des Request, 35 Dynamische Gruppenbildung auf höheren Hierarchiestufen mit jeweiliger Bewertung durch ein Repetitionspotential. Delay-Routing usw, wie oben geschildert.

Beim Answer-Routing können wieder dieselben, schon für den Broadcast und den Request verwendeten Sendefeldstärken verwendet werden. Nottalls kann die Sendefeld- 40 stärke zweeks größerer Sicherheit bzgl. der Erreichbarkeit auch leicht erhöht sein.

Bei alleiniger Verwendung des beschriebenen Request-/Answer-Mechanismus wurde das Vertuhren im Prinzip schon wirksam werden. Jedoch würde das Kommunikati- 45 onsvolumen unnitig hoch sein und vor allem nicht gutartig nut den l'ahrstreckenlängen, der Größe des Straßennetzes und der Anzahl der Fahrzeuge skulieren. Für die Übermittlung nichtkohäsiver Drittdaten (z. B. Telefonie oder Car-Internet) würde das beschrichene Routing allerdings schon die 50 Haunthasis sein.

Das erfindungsgemäße Verfahren zeichnet sich nun noch besonders durch die im folgenden beschrichenen hierarchisierend wirksamen Mechanismen aus.

Caching

Beim Zurücklaufen der ungefragten Information über die Streckenahschnitte wird die Information auch von den übermittelnden Fahrzeugen sowie allen Fahrzeugen, die auch da- 60 von hören, in einen speziellen als Cache ausgezeichneten Bereich der individuellen Karte abgelegt. Wenn nun weitere Requests (von anderen Fahrzeugen) eintreffen und die Aktualität der Daten im Cache ausreicht, um den Request zubeuntworten, so braucht der Request nicht mehr repetien zu werden, sondern kann direkt aus dem Cache beuntwortet werden. Dieser Mechanismus wirkt wiederum selbststabilisierend, da gerade bei hohem Staupotential, hohen Verseit-

kehrsdichten und damit großem Kommunikationsaufwand eine große Zahl gleichartiger Requests anfallen, die dann nur noch sehr selten bis zum Zielgebiet laufen müssen.

Bei Speicherknappheit (obwohl dies hei den vergleichweige geringen Informationsmengen und den großen zur Aufligung stehenden Speichern heutzutage kein Problem darstellt), kann ein Fahrzoug jeweils veraltete Daten aus dem Cache entiernen, und es kann, wenn bekannt ist, dass auch benachbarte Fahrzeuge die Information speichern, die Aufnahme der Daten in den Cache mit einer Wahrscheinlichkeit kleiner als 100% vorgenommen werden.

Integration

Überschüssige Rechenkapazität der Rechnereinheit kann dazu verwendet werden, die Informationen im Cache zu Sinnelnheiten zusammenzusassen. Beispielsweise könnten Informationen über Städte oder Stadtteile, Umgehungsstra-Ben, lange Autobahnstrecken. Ansammlungen von Grenzübergängen zu gebündelten Informationen zusammengefasst werden (Beispiel: Zähfließender Verkehr auf dem gesamten "Mittleren Ring" in München). Zum einen können durch die zusätzliche Beantwortung von entsprechenden Requests mit solchen gebündelten Informationen unessiziente Request-Iteration verhindert werden. Andererseits können solche durch Integration generierten Informutionseinheiten aber nicht nur in die Routenplanung einfließen, sondern beispielsweise auch dem Fahrer auf einem Display oder per Sprachausgabe u. ä. als sinnvolle zusammengefaßte Hintergrundinformation präsentiert werden. Das Integrationsversahren kann z. B. zusätzliche vordesinierte Bereichsmarkierungen in der eingebauten Karte (Städteabgrenzungen, Autobahnstreckenzüge, usw.) verwenden.

Der oben beschriebene ungerichtete Broadcast erreicht nur Fahrzeuge im Bereich einer mittleren Sendereichweite. Wenn nun jedoch eine Information über bestimmte Strekkenabschnitte oder Streckenzüge oder andere Integrationseinheiten (s. o.) häufig durch Requests angefordert wird, können die übermittelnden Fahrzeuge veranlassen, dass die Fahrzeuge, die sich auf diesen Strecken befinden, von sich aus Daten in einer weiteren Umgebung verbreiten - bevorzugt in Richtung, aus der die meisten Requests kommen. l'ahrzeuge, welche sich auf deran häufig angefragten Integrationseinheiten bewegen, werden also zu Gruppen (zunachst auf Hierarchiestufe 1) zusammengefasst. Wie alle anderen Informationen sind auch solche Gruppenbilde zunächst von temporärer Natur. Sie zerfallen von sich aus mit einer hestimmten Zeitkonstante, wenn der Auslöser für die Gruppenbildung (starkes Requestvolumen) wegfällt. Die Gruppen sind an den On gebinklich (Streckenzuge, Stadteile, Autobahnsegmente, ...) und nicht an bestimmte Fahrzeuge. 55 D. h., wenn Fahrzeuge neu in Streckenabschnittsagglomeration einfahren, über die eine Gruppenbildung stattfand, so werden sie Teil der Gruppe. Durch vorhergehende Gruppenbroadcasts, die auch jenseits der Gruppengrenzen zu empsangen sind, ersahren solche Fahrzeuge in der Regel schon vor Betreten eines derartigen Streckenabschnitts von der Existenz der Gruppe. Bei Verlassen des Gruppengebiets geben die Fahrzeuge auch Ihre Gruppenzugehörigkeit auf und Versenden/Replizieren keine Gruppenbroadcasts mehr.

Das Inhlalisieren einer Gruppe erfolgt durch Fahrzeuge, die Requests aufsplitten bzw. bei den Requests zusammenlaufen. Solche Fahrzeuge sind in der Regel nicht Teil der Gruppe, da sie meist die Gruppen "von außen" sehen (→ eine Art von Gruppensprecher). Zur Generierung einer Gruppe wird eine Generierungsrequest an die betroffenen Streckenahschnitte geschickt (Routing wie oben beschrioben). Die Generierung einer Gruppe erfolgt aus Stabilitätsgründen nun auch nicht direkt heim ersten Initialisierungsversuch durch ein Gruppensprocherfahrzeug. Vielmehr wird bei dem betroffenen Fahrzeug ein "Zähler" für einen besummten Gruppenwursch hochgezühlt. Dieser Zähler würde ohne weitere Aktionen mit einer bestimmten Zeitkonstante wieder verfallen. Erst wenn mehrere Anforderungen (- Schwellwert) zur Gruppenbildung eintreffen (auch 10: von verschiedenen Fahrzeugen und aus verschiedenen Richtungen) und die "Gruppenwünsche" sich hinreichend überlappen, wird eine Gruppe das erstemal etabliert. Eine solche Initialisierung einer Gruppe kann von einem späteren Gruppenteilnehmer aus erfolgen, bei dem als erstes der Zähler 15 den Schwellwert überschreitet. Ein erster Gruppenbroadcast kann dazu auf Protokollebene verwendet werden.

Gruppendaten sind das Gebiet der Gruppenquellfahrzeuge, sowie des Zielgebiet zur Verbreitung der Gruppeninformation (z. B. Keulenform in eine Richtung, aus der viele 20 Requests einfreffen).

Technik des Gruppenbroadcast/Area-Broadcast

Jedes Fahrzeug der Gruppe sendet mit einer bestimmten zeitlichen Wahrscheinlichkeit statistisch ein Broadcastsignal aus. Jeder Broadcast trägt einen bestimmten Actions-Code, anhand dessen die Broadcast-Replikation koordinien wird. Fahrzeuge, die sich im Randbereich des Empfangsbereichs aufhalten, führen nach demselben Verfahren wie oben bei der Request-Repetition beschrieben eine Replikation des Protokolls durch, nur hal der Area-Broadcast keine lokalespunktfürniges Zielgebiet, sondern breitet sich flächig bis an die Grenzen des Gruppenzielgebiets aus.

In der Weiterführung des Verfahrens können nun Hierar- 35 chien von Gruppen entstehen. Dies kann einerseits in der An und Weise geschehen, dass l'ahrzeuge, die Quellendaten liefern, gleichzeitig an mehreren immer großräumigeren Gruppen teilnehmen, wobei Gruppen gleicher Hierarchiestufe sich auch überlappen können (-- "induzierte durchmischte Illerarchien"). Dieser Prozess kann andererseits in der Form geschehen, dass gebiindelte Gruppendsten selbst wieder als Informationsbausteine für Übergruppen dienen (- "echte Hierarchien"). Das Zusammenfassen von Gruppen zu Übergruppen erfolgt wiederum wie oben heschrieben 43 durch (i.d.R externe) Informationsübermittlerfahrzeuge. welche (meist von außen) aufgrund der Routing-Tätigkeit die Nützlichkeit einer Zusammenfassung der Gruppen "erkennen". Wichtig ist, dass die Gruppen immer dynamisch erzeugt werden und gegebenenfalls mit der Zeit auch von 50 selbsi wieder zerfallen, wenn der Beweggrund für die Gruppenbildung wegfällt.

Wide-Area-Broadcast

Gemäß dem eben beschriebenen Gruppen-Broadcast-Verfahren können auch beliebige andere Informationen flächennäßig in einem (beliebigen) Zielgebiet verbreitet werden. Solche eventarligen Informationen können sein: besondere lireignisse wie Unfälle (Auslösen eines Airbüg, ...) und Hilferufe; Suchprotokolle, mittels derer der Aufenthaltson eines Kommunikationsteilnehnters ermittelt werden kann, um anschließend einen Kommunikationskanal zu errichten: in das Netz eingespielte Drittdalen, wie z. B. (mehr oder weiniger) lokale Verkehrsnachrichten und Stauvorhersugen; 665 destile benslauer/Verfasetzt (z. B. 5-mal die jedoch sein, dass ein ausreicht, um zum odischen Störung zu die nächste verkehrschen in das Netz eingespielte Drittdalen, wie z. B. (mehr oder weinigter) lokale Verkehrsnachrichten und Stauvorhersugen; 665

External Prediction/Intrinsic Prediction

Das bisher beschriebene Versahren liefert sehr effizient aktuelle Verkehrsdaten. Bei der Planung von längeren Reiserouten ist jedoch oft interessant, ob z. B. der Verkehr in 200 km Entfernung in 2 Stunden immer noch so aussieht, wie er sich zum aktuellen Zeitpunkt darstellt. Solche Verkehrsvorherangen sind insbesondere für staugetährdete Autobahnabschritte interessant. Wie oben bereits angedeutet, kann eine Lösung des Problems sein, dass Verkehrsnachrichtendienste von außen Drittdaten wie z. B. Stauprognosen per Wido-Aras-Bringfeast in das Netz einspielen. Ein andere Lösung ist dass die Prognosegenerierung im Netz zum Zeil automatisch geschicht.

Ausgangspunkt ist in beiden Fällen, dass für derartige gefährdete "prognosewürdige" Verkehrsbereiche Gruppen nach dem oben beschriebenen Muster eingerichtet werden. Denn nur Gruppen können dauerhaft orisgebundene Daten von Ort halten (durch iterative Übergabe zwischen Fahrzeugen).

Im Falle einer externen Prediction kann von der Prediction-Versendestelle aus die Bildung einer Gruppe in dem Gebiet veranlasst werden, für den eine Stau- oder sonstige Prediction gemacht werden soll, und anschließend die Prediction an die Gruppe übergeben werden. Das örtliche Laufmuster eines solchen Gruppenbildungs- oder Predictiontelegramms bzw.-datenpakets sieht dann so ähnlich aus wie ein Atompilz. Zunächst läust es wie bei einem Request entlang einem Korridor zum Zielgebiet und breitet sieh dort dann flächenmäßig aus. Die Gruppe bleibt dann mindestens solange bestehen, wie die Laufzelt der Prediction es verlangt (die Prediction-Sendestelle ist dann sozusagen der Hauptgruppensprecher). Bei einem Request in den Gruppenbereich hinein kann dann in der Antwort (Answer (s. o.)) auch die Prediction mitgesendet werden.

Automatische Prognose

Bei Staubildung kommt es zunächst zur Bildung geeigneter Gruppen, da bei Staus die Kriterien, welche oben zur Generierung von Gruppen genannt wurden, automatisch erfüllt sind. Wenn pun in einem Gebiet wiederholt Staus auftreten (z. B. im Tagesrhythmus) und dies während der Lebensdauer der Gruppe auffällt, so kann zunächst die weitere Mindestlebensdauer der Gruppe hochgesetzt werden, am sozusagen dieser Sache noch länger nachzugehen. Wenn sich nun der Verdacht einer periodischen Störung erhärtet (die erforderliche einfache Mustererkennung zur Detektierung von peridischen Störungen kann in allen Fahrzeugen ahlausen; grundsätzlich gilt das oben genannte Muster der "Wunschakkumulierung": erst wenn mehrfach der Wunsch zur "Benennung" einer periodischen Störung komnit, bekommt dieses Wissen in der Gruppe faktische Gültigkeit). wird das Wissen darüber als "Periodical Prediction" in den Gruppenspeicher aufgenommen und gleichzeitig die Mindestlebenslauer/Verfallszeitkonstante der Gruppe hochgesetzi (z. B. 5-mal die Periodendauer der Störung). Es kann jedoch sein, dass eine normale Gruppenlebensdauer nicht ausreicht, um zum erstenmal den Verdacht einer penodischen Störung zu erhärten (2.18, weil) die Gruppen nicht die nächste verkehrsarme Nacht überleben würde). Abgesehen davon, dass so etwas dann von einer externen Providerstelle initialisiert werden könnte (und im Gegensatz zu oben nicht weiter gepflegt werden müßte), gibt es auch automati-

 Simple Möglichkeit: Gruppenmindestlebensdauern werden bei Gruppenbildung mit einer gewissen Wahrscheinlichkeit manchmal höher angesetzt als normal, also z. B. länger als einen Tag. Dies würde dann irgendwann zur Ingangsetzung der Priodical Prediction

2. Effektive und wohl bessere Möglichkeit: Jedes 5 l'ahrzeug behält in einem (nicht aktiv wirksamen) Langzeitgedächunis Wissen über vergangene Gruppenmitgliedschallen. Einige solche Fahrzeuge (Pendler u. il.) kommen dann sicherlich bei der nächsten (oder übernächsten, ...) Periode wieder im selben Gebiet in einen periodischen Stau. Solche Fahrzeuge erkennen dann die zeitliche Koinzidenz von Verkehrsstörungen und können dann zumindest mal auf Verdacht die Verlängerung der Gruppenlebensdauer bewirken. Oder aber sie können bei entsprechender "Wunschakkumu- 15 lierung" ziemlich direkt gegebenenfalls die Einrichlung einer Periodical Prediction durchsühren. Dieses Verfahren des Langzeitgedüchtnisses löst auch das Problem, wenn schon existente Periodical Predictions oder sonstige ortsgehundene Gruppendaten z. B. eine Nacht. 20 mit so geringem Verkehrsaufkommen überleben müssen, dass die iterative Übergahe der Gruppendaten abreißt. In weiterem Sinne kunn also durch das Langzeitgedächntis das Überleben einer Gruppe gesiehert werden, die für einen kurzen Zeitraum keine Mitglieder 25 mehr hat.

3. Ausnutzung einer erreichbaren durchgehend laufenden unten beschriebenen Festnetz-Backbone-Station, sofern eine solche zur Verfügung steht.

Zusammenspiel der Kommunikation mit der Routenplanung

Wenn sich aus einem Request-Zyklus ergibt, dass die der Routenplanung zugrundeliegenden Bewegungsparameter der Streckenahschnitte von den bisherigen Kartendaten abweichen (z. B. mittlere/maximale l'ahrgeschwindigkeit niedriger), dann werden diese durch den Request (oder auch Broadcast) erhaltenen Bewegungsparameter in die individuelle Karte eingetragen, die sozusagen die eingebaute Karte (z. B. auf CDROM) überlagert. Daraufhin errechnet ein "Schnellster-Weg-Algorithmus" erneut eine Route. Diese Route kann sich von der alten Route unterscheiden. Wenn sich die Route von der alten Route unterscheidet, wird der Request-Zyklus für die neuen noch unbekannten/nicht mehr ausreichend aktuellen Streckenabschnitte wiederholen. Andernfalls ist die momentan geplante Route vorläufig OK.

Ein Verbesserung des Verfahrens wird dadurch erreicht, dass gleich von Anfang an für ein Set von alternativen Routen der Request-Zyklus gestartet wird.

Streng nuthematisch ist diese Vorgehensweise nur richtig, wenn die Request-/Broadcastdaten niedrigere Geschwindigkeiten als die der eingebauten Karte ergeben. Jedoch ist dies der Normalfall. Umgekehrt gelagerte Fälle, z. B. wenn eine Geschwindigkeitsbeschränkung aufgehoben wird, können jedoch auch int Laufe der Zeit durch folgendes Verführen verarbeitet werden: Wenn ein solcher Fall wiederholt aufrütz, wird er im Netz durch eine Wide-Area-Broadcast (s. u.) verbreitet und in einem Karten-Update-Speicherbereich abgelegt, der die CDROM-Karte überlagen. Im weitesten Sinn kann ein solcher Vorgang zum "Kantenlernen", d. h. zur Aufnahme von relevanten Daten in die Karte, verwendet werden.

Der gesamte Routenplanungs- und Request-Zyklus läuft ständig während der gesamten Fahrt ah. Daraus ergibt sich 65 eine zusätzliche Dynamik. Zu jedem Zeitpunkt kann also der Fahrer aufgrund aktuell bestmöglichen Wissens mit einer optimulen Routenplanung versorgt werden.

Wenn keine Daten über Streckenabschnitte erhalten werden, kann man davon ausgehen, dass so wenige Fahrzeuge in dem betroffenen Gebiet unterwogs sind, dass offensichtlich die Strecken frei sind. Folgende Annahme ist also eine Grundrogel des Verfahrens: Wenn keine Daten über einen Streckenabschnitt zur Verfügung stehen, ist anzunehmen, dass der Streckenabschnitt frei ist. Oder aus dem entgegengesetzten Blickwinkel ausgedrückt, es wird folgender selbststabilisierender Effekt ausgeübt: dort wo aufgrund erhöhter Verkehrsdichte mit zähfließendem Verkehr zu rechnen ist, verbessert sich automatisch auch die Kommunkationssituation.

Drittdaten

Sende und Empfangseinrichtungen, über welche Drittdaten in das System eingespeist bzw. daraus extrahiert werden, werden als Pseudo-Fahrzeug aufgefasst (und besitzen in der Regel die Bigengeschwindigkeit 0). Die Art und Weise, wie solche Pseudo-Fahrzeuge in den Kommunikationsablauf eingebunden werden, unterscheidet sich nicht prinzipielt von gewöhnlichen Fahrzeugen. Ein Beispiel für eine Drittdatenühermittlung wäre zum Beispiel eine Nachfrage eines Fahrers, den von Nürnberg nach München auf der A9 unterwegs ist, nach einer geeigeneten S-Bahn-Anschlußverbindung in München von einem Park+Ride-Bahnhof zum Marienplatz. Die Datenühermittlung würde analog zu einem Request von dem anfragenden Fahrzeug zu einem bekannten Ort laufen, an dem ein entsprechender Informationsprovider eine Netzstation hat.

Backbone-Festnetz

Als besondere "Pseudo-Fahrzeuge" sind Backbone-Stationen denkbar, welche unter sich ein schnelle Festnetzverbindung haben. Dadurch ergibt sich ein Backbone-Festnetz, das eine langreichweitige Kommunikation abkürzen kann. insbesondere dann, wenn die Informationsart von eher nichtkohäsiver Art ist (- Information, bei der es sich nicht so sehr lohnt, diese entsprechend der oben beschriebenen Philosopic ohnehin auf vielen Zwischenstationen abzulegen (cachen), wie z. B. die unten genannte Telefonie. Zu betonen ist noch einmal, dass ein solches Backbone-Netz kein wesentlicher Bestandteil des Verfahrens ist. Die Backbone-Stationen haben z. B. auch nicht wie bei einem Mobilsunknetz für eine möglichst lückenfreie Netzabdeckung zu sorgen, sondern sind wirklich nur eine Option zur Beschleunigkeit von Kommunikation. Nutzbringend ist ein Backbone-Netz wohl besonders dann, wenn ein hohes Volumen an Driudaten-Übertragung anfällt. Backbone-Stationen können dann ganz gezielt und sparsant nach und nach da eingefügt werden, wo das Kommunikationsvolumen an ein Limit lausen würde.

Zur Technik des Backbone-Routings

Die Position von Backbone-Stationen wird per Wide-Area-Broadcast regelmäßig (aber vergleichsweise sehr selten) bekanntgegeben. Neu in den Verkehr eintretende Fahrzeuge können die Informationen über solche Backbone-Positionen jederzeit per Request von Nachbarfahrzeugen aus relativ kurzer Einfernung besorgen. Wenn eine Information an einer Backbone-Station vorbeiläuft und diese Station erkennt, dass das weitere Routing der Information über das Backbone-Netz günstiger ist, so sender es zunüchst mit der geringstmöglichen Delayzeit (s. o.) ein besonderes Annihilation-Telegramm als Ersatz für das oben beschriebene Repetition-Telegramm aus, wobei unter Telegramm ein Paket

weitergereichter Daten zu verstehen ist. Dieses Annihilation-Telegramm bewirkt wie ein Repetitions-Telegramm, dass undere Fahrzeuge ihre eventuelte Absieht stoppen, das Informationspaket im narmalen Pahrzeug-Fahrzeug-Netz weiterzummten (gegebenenfalls kann das Annihilation-Telegramm nuch als Area-Breacheust über einen Bereich etwas grüßer als der Sendersdius ausgeführt werden, um eine sichere Ethinmierung des Koutingvorgungs im narmalen Netz zu erreichen). Das Informationspringsbirdt dann an den geeignetsten Undknoten im Backhone-Netz übermittelt und dart wieder in das Fahrzeug-Fahrzeug-Netz nach der gewöhnlichen Methade eingespeist.

1-zu-1 Datenverbindung/lelefonie

Fine beworkere Art von Drittdatenühermittlung erfolgt über eine almerhatte genetuete Verbindung zwischen 2 benannten (— ID. Telefonnummer, o. ä.) Telinchmern. Hierzu ist es zunächst erfonkerlich, dass der Telinchmer, der die Verbindung autnennen will, den Kommunkationspartner im 20 Netz auflindet. Hierzu gibt es eine Reihe von Möglichkeiten, die auch kombinien werden kommen.

1. Bei Verhandensein eines Backhone-Netzwerks: Bin Zentralrechner ister mehrere verteilte Rechner im 25 Buckhone-Netz konnen aus allen Broadeasts, Requests, Answers und sonstigen Telegrammen, die über Backhone-Stationen hinweglaufen, die Sender- und Empfänger-ID's sowie deren Position entnehmen und ein "Fuzzy-Telefonbuch" (— Telefonbuch mit unscharfen bzw. nichtgesieherten Eintrügen) führen, in dem die ungefähren Aufenhaltsorte der Fahrzeuge/Teilnehmer verzeichner sind. Diese Telefonbücher müssen nicht 100% richtig sein. Daraus können nun anfragende Kommunikationspartner eine Schätzung für die Posi- 35 nion des anderen Partners entnehmen.

2. Its wird hier vorausgesetzt, dass ein ungeführer Aufenthaltson des Partners vorhanden ist. Entweder durch Nachschauen in einem Fuzzy-Telefonbuch, durch Schätzungen aufgrund des gewöhnlichen Aufenthaltsgehietes des Zielfahrzeugs (Heimatregion) oder durch nanuelle längabe. Dann wird an ein Zielgebist im Bereich dieses Ortes ein Such-Broadcast geschickt ("Atompilz"-Broadcast (s. o.)). Wenn der Gesuchte sich nieldet, ist die Verbindung hergestellt. Wenn sich 45 der Gesuchte nicht meldet, können zunächst andere in Frage kommende (kleine) Suchbereiche angefragt werden oder die Suchbereich immer weiter ausgedehnt werden. Im ungünstigsten Falle millie dann das gesamte Netzgehiet mit einem Witte-Area-Broadcast abgesteht werden.

 Alle Fahrzeuge führen in einem nichtbenötigten Speicherbereich ein weiteres Langzeitgedlichtnis über Fahrzeug-ID's von verbeilaufenden Telegrammen.
 Such-Broadcusts können dann oh wesentlich früher einen Hinweis in die richtige Richtung geben.

4. Alle Fahrzeuge gehören zu einer besonderen Heimatgruppe in dem Sinne; dass die Fahrzeuge größere Onswechsel jeweils durch einen gerichteten (Punkt-)Broadeast dieser Heimatgruppe mitteilen. Die Heimatgruppen können entweder tatsächlich in einer gewöhnlichen Gruppe in der Nähe des Heimatorts des Fahrzeugs etabliert sein, oder aber von einer Backhone-Station oder sonst wo verwaltet werden. Heimatgruppen sind suzusagen verläßliche Orte; an denen der 65 (nüherungsweise) momentane Aufenthaltsort eines Fahrzeugs nachgefragt werden kann:

Wenn die Ausenthaltsone der Verbindungspartner untercinander nun bekannt sind, muß ein dauerhafter Verbindungskanal aufgebaut werden. Ähnlich wie beim oben beschrichen Answer-Verfahren wird als erster Verhindungskanal nun die History-Liste von Übermittlungsfahrzeugen genommen, die bei der Kontaktenfonhnie entstanden ist. Diese History-Liste wird als erste Verbindungs-Liste genommen. Durch das zielgerichtete direkte Abspringen der in der Verbindungs-Liste enthaltenen Pahrzeuge in beiden Richtungen kann eine effiziente Übermittlung großer Datenmengen ohne den aufwendigen oben beschriebenen, beim Request oder Area-Broadcast verwendeten Delay-Mechanismus ersolgen. Probleme gibt es bei drohendem Verbindungsabriß durch die Bewegung der übermittelnden Fahrzeuge und der kommunizierenden Fahrzeuge. Dieses Problem wird durch folgende Technik gelöst:

1. Beim Springen der Daten von Fahrzeug zu Fahrzeug, wird immer auch die Positionen der sendenden Pahrzeug mit übermittelt, dadurch erkennen die übermittelnden Fahrzeuge, während der Verbindungskanal sieht und ständig benutzt wird, wann der Abstand zwischen 2 Verbindungsfahrzeugen so groß zu werden droht, dass die Verbindung abreißt. Wenn diese Gefahr droht, leiten die beiden betroffenen Verbingungsfahrzeuge rechtzeitig ein lokales Neuverknüpfungsverfuhren ein. Sie auchen unter sich eine sichere Verbindung über ein Zwischenfahrzeug. Das kann durch ein ganz normale Request-Methode wie oben beschrieben geschehen, evit, unter Vorgabe einer künstlich emiedrigten Sendefeldstärke (z. B. -20%), um einen besonders sicheren Kanal zu finden. Dieses Zwischensahrzeug wird dann beim nächsten Routing auf den Verbindungsstrecken in die Verbindungsliste eingefügt.

2. Ständig wird auch während des Verbindungs-Routings anhand der Positionen der Verbindungspositionen überprüft, ob der Abstand von Fahrzeug-Trippeln sich soweit verringen hat, dass ein Verbindungsfahrzeug aus der Verbindungsliste herausgenommen werden kann. Dadurch wird verhindert, dass bei länger stehenden Verbindungen zu uneffiziente Verbindungskorridare entstehen.

 In größeren Zeitabständen wird völlig unabhängig vom bestehenden Verbindungskanal/-korridor per Request von den beiden Kommunikationspartnern ein neuer optimaler Verbindungskanal gesucht. Die dann erhaltene neue Verbindungsliste kann dann ab sofort verwendet werden.

Patentansprüche

 Verfahren zur dynamischen Gewinnung von relevanter Verkehrsinformation und/oder zur dynamischen Optimierung einer Route eines ersten Fahrzeugs, welches einem selbstorganisierenden Verkehrsinformations- und/oder -leitsystem angehört, dem weitere Fahrzeuge angehören, mit den Schritten:

(a) Erstellen von Daten auf der Basis von fahrzeugeigenen. Sensoren und/oder anderen Informati-

onsquellen im ersten Fahrzeug,

|b| Aussenden von für das erste Fahrzeug oder andere Fahrzeuge relevanten Daten (Broadcast),

[c] limpfungen der gesendeten Daten anderer Fahrzeuge.

 [d] Speichern von Daten, die aus empfangenen und/oder eigenen Daten gewonnen wurden,
 [e] Erstellen und Senden von Anfragen bezüglich Daten, die möglicherweise andere Pahrzeuge bereitstellen könnten (Request), und

II potentielles Weiterleiten von emplangenen Daten durch Wiederaussenden dieser Daten in verarbeiteter oder nicht verarbeiteter Form (Replikation).

2. Verfuhren nach Anspruch 1. dadurch gekennzeichnet, dass im Schritt al und [d] auch l'ahrhistoriendaten

durch die Fahrzeuge erstellt werden.

3. Verfahren nach einem der vorausgehenden Ansprüehe, dadurch gekennzeichnet, dass Anfragen von empfungenden Fahrzeugen beantwortet, teilweise beantwortet, weitergeleitet und/oder teilweise weitergeleitet
werden können. (Response und Replikation).

4. Vertahren nach einem der vorausgehenden Ansprücht, dadurch gekennzeichnet, dass das Beantworten
von Anfragen und/oder Weiterleiten von Anfragen und
antkrein Daten durch Fahrzeuge mit geeignetem/optimalem Informationsstand bzw. mit günstiger/optimaler
aktueller Position für eine Weiterleitung erfolgt. (Optimierung von Beantwortung und Weiterleitung).

5. Verfahren nach einem der vorausgehenden Ansprüchte, dadurch gekennzeichnet, dass durch das erste Fahrzeug Anfragen nach Informationen bezüglich der Befahrbarkeit und sonstiger verkehrsrelevanter Größen 25 auf den in Frage kommenden zukünftig zu befahrenden Wegstreckensegmenten gesendet werden (Anfragen

verkehrsrelevanter Größen)

6. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass Antworten auf Anfragen des ersten Fahrzeugs an das erste Fahrzeug direkt oder per Weiterleitung zurückgeleitet werden, wobei die Informationen in den Antworten zur opportunen Weiterverwendung auch von übermittelnden Fahrzeugen sowie von Fahrzeugen, die ebenfalls die Antworttelegramme empfangen, abgespeichert, akkumuliert unter das betreitet werden können. (Caching und Verwertung)

7. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass in den Schritten [b] und [c] eine zu dem ersten Fahrzeug dazugchörige Quellengruppe von Fahrzeugen auf den Empfang der Fahrzeugdatensignale von den jeweiligen Fahrzeugen testgeken wird, wohei in den empfangenden Fahrzeugen zum Zwecke der Generierung von Quellendaten für die nachfolgenden Schritte die Daten gespeichert, akkunuliert und vorverarbeitet werden können. (Quel-

8. Verfahren nuch Anspruch 2. dadurch gekennzeichnet, dass bei der Vorverarbeitung der Quellendaten 50 mittlere Geschwindigkeiten, maximale Geschwindigkeiten, Verkehrsdichtemaße, Stau-Sensitiviläten, gehündelte Aktualitätsmaße und/oder gebündelte Relevanz-Muße berechnet werden können. (Quellenbildung 55

9. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass Fahrhistoriendaten, Quellendaten, Zwischenspeicherdaten, insbesondere die in Attistuch 6 abgespeicherte, akkumuliene und authereitste Information, und Antwortdaten in den 60 l'ahrzeugen jeweils in einer individuellen Karte gespeichent werden können, welche eine statische globale Karte überlagert oder parallel dazu besteht, (Individuelle Karte)

10. Verlahren nach einem der vorausgehenden An- 65 sprüche, dadurch gekennzeichnet, dass ein Unterteilen der Kartenstruktur für Zwecke der internen Verarbeitung und Referenzierung in Übertragungssignalen in

Wegstreckensegmente erfolgen kann, die eine maximale Länge nicht überschreiten. (Kartenrepräsentation

11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass ein Zusammenfassen von Wegstreckensegmenten der Kartenrepräsentation für Zwecke der intemen Verarbeitung und Referenzierung in Übertragungssignalen zu Gruppen und Übergruppen mit jeweils eigener Identifizierung erfolgen kann. (Kartenrepriisentation II - Kompression durch Hierarchisierung) 12. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass im Schritt [f] ein günstiges Fahrzeug aus der Gruppe von Fahrzeugen, welches die Anfrage beantworten und/oder weiterleiten kann, durch ein Bewertungsverfahren ermittell wird, wobei in Abhängigkeit von der Aktualität bzw. Relevanz von bereits dem jeweiligen Fahrzeug verfügbaren Daten über die betroffenen Wegstreckensegmente, der Anzahl von Anfragen, die aufgrund bereits verfügbarer Daten beantwortet werden können. und/oder der Entsernung des jeweiligen Pahrzeugs zum nüchsten Wegstreckensegment, dessen Anfrage nicht beantwortet werden kann, ein Bewertungsmaß ermittell wird. (Delay-Routing I)

13. Verfahren nach Anspruch 12. dadurch gekennzeichnet, dass in Abhängigkeit von dem Bewertungsmaß eine Verzögerungszeit für die Absendung der Beantwortung und/oder Weiterleitung festgesetzt wird, die umso kürzer ist, je höher das Bewertungsmaß ist, so dass Fahrzeuge je eher mit dem Senden zum Zuge kommen, je besser das Bewertungsmaß ist. (Delay-

Routing II)

14. Verfahren nach Anspruch 13. dadurch gekennzeichnet, duss ein Fahrzeug A mit einer Sendeabsicht betreffend einer Anfragebeantwortung und/oder -weiterleitung bezüglich einer bestimmten, durch einen Aktions-Code gekennzeichneten Anfrage die geplante Absendung stoppt, wenn es ein Signal bezüglich derselben Anfrage mit demselben Aktions-Code von einem anderen Fahrzeug B empfängt, welches mit kürzerer Verzögerungszeit dem Fahrzeug A zuvorgekommen ist. (Delay-Routing III)

15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Schritt [e] bei der Erstellung von Anfragen eine gewünschte Aktualität in die Anfrage einkodiert wird. (Aktualitätsan-

forderung)

16. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass das Beantworten einer Anfrage je nach gewünschter Aktualität aus Quellendaten von Fahrzeugen nahe am Zielgebiet der Anfrage oder aus zwischengespeicherten Daten, inshesondere aus der in Anspruch 6 abgespeicherten, akkunutierten und aufbereiteten Information, von Fahrzeugen weitab vom Zielgebiet und näher am anfragenden Fahrzeug erfolgen kann. (Cache-Nutzung)

17. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass ein erstes Berechnen einer Route des ersten l'ahrzeugs von dessen momentaner Position zu einem gewählten Ziel anhand statisch gespeicherter oder bereits verfügharer dynamischer Wegstreckendaten erfolgen kann. (Statisches

oder dynamisches Routing)

18. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Neuherechnung der Route aufgrund geänderter Daten in der individuellen Kane zum Zwecke der iterativen Optimierung der Route erfolgt. (Iterative Optimierung)

19. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass die übertragenen Signale Informationen bezüglich des Signaltyps. der l'ahrzeugidentifizierung, der verwendeten Sendeseldstärke, des Ausenthaltsons der Pahrzeuge, eines cindentigen Aktions-Codes, sowie einer Liste von Identifizierungen bisher verwendeter Übermittlungsl'ahrzeuge als l'listory-Liste beinhalten. (Informations-

20). Verlähren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass die übertragenen Signale Informationen bezüglich der Wegstreckensegmentidentifizierungen, der Bewegungsrichtung, des Anteils des zurückgelegten Wegstreckensegments, der mittleren Geschwindigkeit, der maximalen Geschwindigkeit, der Fahrzeugdichte und/oder der Aktualität/ Zeitmarkierung der Informationen beinhalten. (Informationinhalte II)

21. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, duss das Festlegen der Gruppe von Fahrzeugen auf die in Anspruch 7 dargestellte Weise durch l'estlegen der Sondefoldstärke oder Sendereichweite des ersten l'ahrzeugs erfolgt. (Sendereichweite I)

22. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass eine einstellbare Sendefeldstärke der Sendeeinheit so geregelt werden kann, dass im Mittel eine parametrisierbare Maximalanzahl von erreichbaren l'ahrzeugen nicht überschritten wird, (Sendereichweite II)

23. Verlähren nach Anspruch 22. dadurch gekennzeichnet, dass in die Sendefeldstärkenregelung die in den empfangenen Signalen einkodierten Positionen und verwendeten Sendefeldstürken der benachbarten Fahrzeuge eingehen können. (Sendereichweite III).

24. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass das Zurückleiten der Beantwortung einer Anfrage durch die im Schritt [f] festgelegten Übermittlungsfahrzeuge erfolgen kann, wobei die Illistory-Liste verwendet werden 40 kann (Rückleiten I: Ausnutzen der History-Liste).

25. Verfehren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass das Zurückleiten der Beantwortung einer Anfrage durch ein Weiterleitungsverführen analog der Hinleitung der Anfrage im Schritt [f] erfolgen kunn. (Rückleiten II: Erneutes

26. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass das erste l'ahrzeug eine Mehrzahl von Anfragen bezüglich einzelner 50 Wegstreckensegmente, die jeweils einzeln beantwortet und/oder weitergeleitet sowie beantwortet zurückgeleitet werden, oder eine Anfrage bezüglich der Gesamtheit von Wegstreckensegmenten erstellt und sendet. wohei die Anfrage bezüglich der Gesannheit von Weg- 55 streckensegnienten eine Mehrzahl von Teilanfragen bezüglich einzelner Wegstreckensegmente beinhaltet, die nacheinander von den lahrzeugen der Kette von Dhermittlungsfahrzeugen beantwortet bzw. weitergeleitet werden. (Kombination von Anfragen)

27. Verführen nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass eine Beuneilung erfolgt, oh für ein bestimmtes Wegsteckensegment eine Anfrage erstellt werden soll. (Bewertung der Antrogenotwendigkeit I)

28. Verlahren nach Anspruch 27. dadurch gekennzeichnet, dass die Beurteilung, oh für ein bestimmtes Wegsteckensegment eine Anfrage erstellt werden soll; in Ahhängigkeit der Entfernung des Wegstreckensegments von momentanen Aufenthalisort des ersten Fahrzuugs, der goschätzten Zeit bis zum Erreichen des Wegstreckensegments, einem Wichtungsfaktor des Wegstreckensogments, der aus der Vergangenheit bekannten Stauhäufigkeit und/oder der Aktualität bereits verfügbarer Daten über das Wegstreckensegment erfolgt. (Bewertung der Anfragenotwendigkeit II)

29. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass die Zurückleitung nicht beantworteten Anfragen in Form von speziell markierten Pseudo-Antworten erfolgt. (Pseudo-Antwort D -

30. Verfahren nach Anspruch 29 und 14, dedurch gekennzeichnet, dass eine Nichtbeantwortung einer weitergeleiteten Anfrage dedurch detektiert wird, dass bei einer Weiterleitung einer Anfrage durch Fahrzeug A gleichzeitig die Absendung einer Pseudo-Antwort mit höber Delay-Zeit insurelegt wird. (Pseudo-Antwort II) 31. Verfahren nach Anspruch 30. dadurch gekennzeichnet, dass die Absendung der Pseudo-Antwort vom Fahrzeug A dadurch gestoppt werden kann, dass ein anderes Fahrzeug B, welches sich in Reichweite des Fahrzeugs A befindet, seinerseits die weitergeleitete Anfrage beantworter other weiterleitet, was Fahrzeug A aufgrund des Aktions-Codes der Anfrage erkennen kann. (Pseudo-Antwort III)

32. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass eine oder mehrere Gruppen von Fahrzeugen gebildet werden, die jeweils über Daten bestimmter benachbarter Wegstrekkensegmente verfügen, wobei für die jeweiligen Fahrzeuge gemeinsame gruppenrelevante Daten derart verfügbar sind, dass eine Anfrage über Daten solcher Gruppen von jedern Fahrzeug der Gruppe beantwortet werden kann oder durch wenige Weiterleitungen eine Beantwortung erfolgen kann. (Quellenhierarchisierung

33. Verfahren nach Anspruch 32, dadurch gekennzeichnet, dass aus den Gruppen eine oder mehrere übergeordnete Gruppen gebildet werden, die jeweils über Daten bestimmter benachbarter Wegstreckensegmente verfügen, wobei für die jeweiligen Fahrzeuge gemeinsame übergruppenrelevante Daten derart verflighar sind, dass eine Antrage über Daten solcher Übergruppen von jedem Fahrzeug der Übergruppe beantwortet werden kann oder durch wenige Weiterleitungen eine Beantwortung erfolgen kann. (Quellenhierarchisierung II) .

34. Verfahren nach einem der vorausgehenden Ansprüche 32 und 33, dadurch gekennzeichnet, dass Fahrzeuge der Gruppe Datensignale erstellen und senden. die Informationen bezilglich der Lage, Ausdehnung und minimalen Lebensdauer der Gruppe beinhalten. (Quellenhierarchisierung III - Gruppenprotokoll)

35. Verfahren nach einem der Ansprüche 32 bis 34. wohei Gruppendaten mittlere Geschwindigkeiten. maximale Geschwindigkeiten, l'ahrzeugdichtemaße, Aktualitäten/Zeitmarkierungen und/oder Informationsrelevanzmaße bezüglich der Gesamtheit der Fahrzeuge der Gruppe heinhalten können. (Quellenhierarchisierung IV Gruppendaten)

36. Verlähren nach einem der Ansprüche 32 bis 35. dadurch gekennzeichnet, dass eine Gruppenhildung dadurch erfolgen kann, dass Gruppenbildungswünsche eines oder mehrerer l'abrzeuge oder Untergruppen akkumulien werden und dass die tatsächliche Gruppenbildung erst bei einer Schwellwerüberschreitung festgelegt wird. (Quellenhierarchisierung V – Gruppenbil-

dung)
37. Verfahren nach einem der veräusgehenden Ansprüche, dadurch gekennzeichnet, dass Informationen beim Rücklauf von Antworten auf Anfragen oder bei der Zwischenspeicherung in Übermittlungsfahrzeugen inhaltlich insbesondere auf die in Ansprüch 11 dargestellte Weise zusammengefasst werden, so dass Daten aus größerer Entermung vom Anfrager stärker komprimiert/gröber aufgelöst werden können. (Integration)
38. (Area-Broadcast) Verfahren nach einem der vorausgehenden Ansprüche, dass ausgesendete Datensignale analog der Verarbeitung von Anfragen im Schritt III sowohl entläng eines eindimensionalen Kanals hin zu einem Zielort als auch flächenhaft in ein in das Datensignal einkodiertes weiträumigeres Zielgebiet weitergeleitet werden. (Integration)

39. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass die Datensignale Informationen beinhalten, die aufgrund eines besonderen Ereignisses von einem Fahrzeug erstellt und geriehtet oder ungerichtet gesendet werden. (Event-

Broadcast)

40. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass einem Fahrzeug oder einer Gruppe von Fahrzeugen externe Daten zur gerichteten oder ungerichteten Weitergabe zugeführt werden, wobei auch eine Gruppenbildung durch diese externen Daten veranlasst werden kann. (Zuführung externer Daten an Fahrzeuge oder Gruppen)

41. Verlahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass Informationen bezüglich einer Stauprognose oder sonstiger verkehrsrelevanter Größen aus dem System extrahiert und extern gespeichen werden, wobei zur Gewinnung der relevanten Größen auch eine Gruppenbildung von innerhalb oder außerhalb des Systems veranlasst werden kann. (Extraktion von Verkehrsdaten)

42. Verfahren nach Anspruch 40 und 41, dadurch gekennzeichnet, dass die übertragenen Daten Informationen bezüglich Verkehrsanbindung an andere Verkehrsverbunde wie Bahn-, U-Bahn-, S-Bahnverkehr, Flugverkehr und/oder Schifffahrt beinhalten. (Intermodaler

43. Verfahren nach Anspruch 40, dadurch gekennzeichnet, dass die externen Daten Informationen bezüglich einer Stauprognose beinhalten. (External Pre-

44. Verlahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass Informationen bezitglich einer Stauprognose aufgrund in der Vergangenheit ertasster und zyklisch auftretender Ereignisse aus den Fahrzeugdatensignalen generiert und gesendet werden, wohei zum Zwecke der zyklischen Stauprognose auch eine Gruppenbildung initiiert werden kann. 55 (Periodical Prediction)

45. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass Informationen bezüglich einer Stauprognose aufgrund von in jüngerer Vergangenheit erfasster Ereignisse aus den Datensignalen durch Extrapolation der Verkehrsflüsse oder Simulation generiert und gesendet werden, wobei zum Zwecke der simulativen Stauprognose auch eine Gruppenhildung initiiert werden kann. (Simulative Prediction)

46. Vertahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass die Informationen hezüglich einer Stauprognose und/oder sonstiger. verkehrsrelevanter Größen innerhalb einer festzulegenden Gruppe von Fahrzeugen abgelegt werden und dort weiterbestehen. (Persistenz von Stauprognoson)

47. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass die Fahrzeuge Landfahrzeuge für den Straßen- oder Schienenverkehr, Wasserfahrzeuge, Luftfahrzeuge oder sonstige mobile bemannte oder unbemannte Einheiten sind, die sich in einem gemeinschaftlich genutztem Verkehrsraum fortbewegen und die mit einer begrenzt reichweitigen Kommisikationsährichtung ausgestattet werden können. (Allgemeine Fahrzeuge)

48. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass "Fahrzeuge" auch besondere "Pseudo-Fahrzeuge" sein können, die speziell kommunikativen Zweck haben, Datensignale aus dem System heraus- oder in das System hineinsenden, Drittdaten einspeisen, nicht unbedingt mobil sein müssen, zumindest aber mit einer kompatiblen Kommunikationseinrichtung ausgestattet sind. (Pseudo-

Fahrzeuge)

49. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass über ein Pseudo-Fahrzeug oder eine Station eine Verbindung zu einem anderen Telekommunikationsnetzwerk hergestellt wird. (Verbindung zu einem anderen Telekommunikationsnetzwerk)

50. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass miteinander durch ein externes Kommunikationsnetzwerk verknüpfte Pseudo-Fahrzeuge oder Stationen geschaffen werden, welche eine günstigere Verbindung zwischen den Fahrzeugen untereinander oder zwischen den Fahrzeugen unt einem außerhalb des Verkehrsleitsystems befindlichen Sender/Empfünger herstellen. (Backbone-Netz)

51. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass durch die Übertragungseinrichtungen der Fahrzeuge und/oder der Pseudo-Fahrzeuge/Stationen und die Art und Weise der in den vorausgehenden Ansprüchen dargestellten Signalübertragung ein allgemeines Telekommunikationsnetzwerk geschaffen wird. (Bildung eines allgemeinen Telekommunikationsnetzwerks)

52. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass Daten bezüglich einer gefährlicher Annäherung des ersten Fahrzeugs an ein anderes dem Verkehrsleitsystem angehörigen Fahrzeugs oder an eine dem Verkehrsleitsystem angehörige Gruppe erzeugt und/oder übertragen werden. (Sicherheitssystem)

53. Vorrichtung zum Ermitteln und Optimieren einer Route eines ersten Fahrzeugs, welches einem Verkehrsleitsystem angehön, dem weitere Fahrzeuge zugeordnet sind, mit

einer Erfassungsvorrichtung zum Erfassen von zu sendenden lokalen Fahrzeugdaten.

einer Sende-/limpfangsvorrichtung zum Senden/limpfangen von Funksignalen, die jeweilige zu sendende/ empfangende Fahrzeugdaten enthalten.

einer Feldstärke-Einstellvorrichtung zur freien Einstellung einer bestimmten Sendefeldstärke bis hin zu einer maximalen Sendefeldstärke.

einer Feldstärke-Erfassungsvorrichtung zum Erfassen der Feldstärke der jeweils emplangenen Funksignale, einer Speichervorrichtung zum Speichern von Daten; einer Gruppenfestlegungsvorrichtung, welche auf den Empfang der Fahrzeugdaten der jeweiligen Fahrzeuge

4

cine dem ersten l'ahrzeug zugehörige Gruppe festlegt, ciner Routenfestlegungs- und -segmentierungsvorrichtung, welche anhand von gespeicherten Wegstreckenduten eine Route des ersten l'ahrzeugs von dessen momentaner Position bis zu einem gewählten Ziel festlegt und in Wegstreckensegmente unterteilt, und einer Routenoptimierungseinrichtung, welche eine Anfrage über Fahrzeugdaten, welche Informationen bezüglich der Befahrbarkeit der jeweiligen Wegstreckensegmente heinhalten, an die Gruppe von Fahrzeugen 10 stellt und anhand von auf die Anfrage empfangenen l'ahrzeugdaten eine optimierte Route bestimmt. (Aufhau der intelligenten Kommunikationsvorrichtung) 54. Varrichtung nach Anspruch 53, gekennzeichnet durch eine Verzögerungszeitsignalerzeugungsvor- 15 richtung, welche in Abhängigkeit von einem frei festlegbaren Zeitverzögerungswert ein Detensignal erst nuch Ablauf der sestgelegten Verzögerungszeit absender. (Delay-lirzengung I) 55. Vorrichtung nuch Anspruch 53 oder 54, gekenn- 20 zeichnet durch eine Steuervorrichtung, welche die Absendung des verzögerten Datensignals vor Ablauf der Verzögerungszeit nuchtrüglich stoppen kann. (Delay-

Hierzu I Seite(n) Zeichnungen

Erzeugung II)

30

25

35

45

50

- 55

SO

Nummer: Int. Cl./: Offenlegungstag:

DE 199 03 909 A1 G 08 G 1/91 3. August 2000

- Leerseite

19 FEDERAL REPUBLIC OF GERMANY

Offenlegungsschrift DE 199 03 909 A 1

Int. Cl.⁷: G 08 G 1/01 G 01 C 21/12

[crest]

GERMAN PATENT AND TRADEMARK OFFICE

74

21 File reference

199 03 909.7

22 Date of filing

1. 2. 1999

43 Date laid open

3. 8. 2000

71 Applicant:
Delphi 2 Creative Technologies GmbH, 80331
Munich, De

72 Inventor:

Kiendl, Robert, 81541 Munich, DE; Schmidt, Günter, Dr., 82008 Unterhaching, DE

Agent: WINTER, BRANDL, FÜRNISS, HÜBNER, RÖSS, KAISER, POLTE, Partnerschaft, 85354 Freising

The following details have been taken from the documents submitted by the Applicant

- 54 Method and apparatus for obtaining relevant traffic information and for dynamic route optimization
- 57 A method for dynamically obtaining relevant information and/or for dynamic optimization of a route of a first vehicle, which is part of a self-organizing traffic information and/or management system to which further vehicles belong, contains the following steps: production of data on the basis of the vehicles' own sensors and/or other information sources in the first vehicle; transmission of data which is relevant for the first vehicle or for other vehicles; reception of the transmitted data of other vehicles; storage of data which has been obtained from received and/or the vehicle's own data; production and transmission of questions relating to data which other vehicles could possibly provide; potential relaying of received data by retransmission of this data in processed or unprocessed form.

Description

The invention relates to a method and an apparatus for obtaining relevant traffic information and for dynamic optimization of the route of vehicles, which are part of a self-organizing traffic managing system, and in particular to a method for a self-organizing system for traffic management, signaling of traffic disturbances and extraction of statistical data, and to a method for efficient, objective dissemination of third-party data in an information network that is formed.

Previous methods or apparatuses for traffic management have been based largely on external, fixed-installation 15 traffic recording and/or on central information processing.

In order to increase the rate of vehicles passing over a specific traffic section, and hence in order to 20 increase the mean speed of the vehicles in particular when the amount of traffic is heavy, conventional traffic management systems have already permanently installed along traffic sections where the load is particularly heavy, for example freeways etc. 25 where the traffic is heavy. Such conventional permanently installed traffic management systems have a large number of detection apparatuses example, record the traffic density, the speed of the vehicle flow, the environmental 30 (temperature, fog) and, on the basis etc. of the respective recorded signals, control the vehicle traffic along the predetermined section by means of indicator panels so as to achieve a uniform traffic flow at the best possible speed.

35

5

10

Such conventional traffic management systems have the disadvantage of the fixed installation along a predetermined route section, which results in extraordinary high procurement costs. Furthermore, such

- 2 -

a permanently installed traffic management system has only a small amount of flexibility since it controls or manages the traffic only in relatively short sections.

5 In order to increase the flexibility, US-4,706,086 proposes a communications system between a large number of vehicles, in which signals and information are transmitted by means of electromagnetic radio waves via a transmitting/receiving unit, on the basis of the respective vehicle driving states.

Furthermore, the document US-A-5,428,544 discloses an apparatus and a method for signaling local traffic disturbances, in which the vehicle data and/or states of the vehicle, such as the speed, the route and the direction, are transmitted in both directions via communication devices. In this case, the respective data is transmitted to a further vehicle indirectly via an approaching motor vehicle.

20

25

30

35

15

In previous traffic management systems, the vehicle data is either recorded in a physically limited area by a permanently installed device means of available only locally, or it is recorded in a large area by a number of mobile devices, but is passed on inefficiently in such a way that it is available only locally, so that this approach does not support the planning and/or optimization of a route for vehicles beyond a local area, taking account traffic-relevant variables for the entire route. contrast, the process of dynamically obtaining relevant traffic information, in which, in response to a request produced at a first location, relevant information is produced, and is passed efficiently to the first location, at a second location which may be at any distance from the first location, is not known.

The invention is thus based on the object of providing

- 3 -

a method and an apparatus for obtaining relevant traffic information.

According to the invention, this object is achieved by the measures and features in the independent patent claims.

The method according to the invention for dynamically obtaining relevant traffic information and/or dynamic optimization of a route for a first vehicle, which is part of a self-organizing traffic information and/or management system to which further vehicles belong, has the following steps: [a] production of data on the basis of the vehicles' own sensors and/or other in the first vehicle; information sources [b] transmission of data which is relevant for the first vehicle or other vehicles (broadcast); [c] reception of the transmitted data of other vehicles; [d] storage of data which has been obtained from received data and/or the vehicle's own data; [e] production and transmission of requests relating to data which other vehicles could possibly provide (request); and [f] potential relay of received data by retransmission of this processed or unprocessed form (replication).

25

30

35

10

15

20

Thus, in principle, the method according to the invention allows an autonomous self-organizing traffic information network, in which the subscribing vehicles generate, distribute, bundle and use the required information at the same time.

The method operates in a particular scale-invariant manner (fractal hierarchically), so that, with regard to the type of processing and with regard to the communication volume, the magnitude of the distance as the aim is irrelevant, at least with regard to dynamic route optimization and signaling of traffic disturbances (\rightarrow safety aspect).

The method operates just as well on freeway networks as in the road system of a city.

5 In particular, the communication volume can be scaled without any problems ("<n*log n") with the total number of vehicles taking part and with the area involved.

Despite the fundamental autonomy of the system, 10 however, centrally generated information can also be seamlessly routed into the system, and information can also be extracted from the system and collated centrally, for example for statistical purposes.

15 An enormous cost advantage, optimum efficiency, high reliability and overall added value as well as a standard user interface at the same time can therefore be expected, in comparison to existing methods. Furthermore, if its utilization level is high, this system can be used as a safety system.

In addition, the network that is created by this method also offers an extremely efficient platform for the transmission of third-party data, extending to mobile telephony. The effectiveness of the existing communications network can also be increased without any problems by utilization or seamless inclusion of a backbone landline network.

25

35

30 In particular, the method and the apparatus of the present invention include the following features.

Furthermore, in steps [a] and [d] of the method, journey history data is produced by the vehicles, thus improving the validity of the data.

Receiving vehicles may answer requests, partially answer them, relay them and/or partially relay them

- 5 -

(response and replication).

The responses to requests and/or the relaying of requests and other data are carried out by vehicles with a suitable/optimum information state and whose current position is good/optimum for relaying, thus optimizing the response to relay.

The first vehicle sends requests for information relating to the feasibility of driving on, and other traffic-relevant variables relating to, the route segments which may possibly be driven on in the future.

Responses to requests from the first vehicle, to the first vehicle, are returned directly or by relay, in which case the information in the responses can also be stored, accumulated and preprocessed, for opportune reuse, by the transmitting vehicles as well as by vehicles which likewise receive the response messages (caching and assessment).

In steps [b] and [c] of the method, a source group of vehicles which is associated with the first vehicle is defined for reception of the vehicle data signals from the respective vehicles, in which case the data can be stored, accumulated and preprocessed in the receiving vehicles in order to generate source data for the subsequent steps (source formation I). This reduces the communication volume.

30

35

25

During the preprocessing of the source data, it is possible to calculate mean speeds, maximum speeds, traffic density measures, jam sensitivities, bundled up-to-dateness measures and/or bundled relevance measures (source formation II).

Journey history data, source data, buffer-stored data, in particular data which has been obtained as described

- 6 -

above during caching and during assessment, and response data are in each case stored in an individual map in the vehicles, which map is superimposed on a statistical global map or existing parallel with it, thus creating an individual map.

5

10

15

For the purpose of internal processing and referencing in transmission signals, the map structure is subdivided into route segments which do not exceed a maximum length (map representation I).

Route segments in the map presentation are combined for the purpose of internal processing and referencing in transmission signals to form groups and supergroups each having their own identification (map representation II, compression by hierarchy formation).

An advantageous vehicle from the group of vehicles which can respond to and/or relay the request is determined by an assessment method in step [f], in which an assessment measure is determined as a function of how up-to-date and/or relevant data which is already available in the respective vehicle is relating to the relevant route segments, the number of requests which can be answered on the basis of already available data and/or the distance of the respective vehicle from the next route segment whose request cannot be answered (delay routing I).

30 A delay time for the transmission of the response and/or relay is defined as a function of the assessment measure, and the delay time becomes shorter as the assessment measure becomes higher, so that the vehicles transmit earlier, the better the assessment measure is (delay routing II).

A vehicle A which attempts to transmit with respect to a request response and/or relaying with regard to a

- 7 -

specific request which is identified by an action code, stops the planned transmission if it receives a signal relating to the same request with the same action code from another vehicle B, which takes precedence over the vehicle A with a shorter delay time (delay routing III).

5

25

30

35

When producing requests, the desired level of up-todateness is coded in the request in step [e] of the 10 method (up-to-dateness required).

The response to a request can be produced, depending on the desired up-to-dateness, from source data from vehicles close to the destination area of the request or from buffer-stored data, in particular from data which, as described above, is obtained during caching and assessment, from vehicles well away from the destination area and closer to the requesting vehicle, so that the number of requests relayed can be kept low (cache use).

A first calculation of a route for the first vehicle can be made from its instantaneous position to a chosen destination on the basis of statistically stored or already available dynamic route data (static or dynamic routing).

The route is recalculated on the basis of changed data in the individual map, for the purpose of iterative optimization of the route (iterative optimization).

The transmitted signals contain information relating to the signal type, the vehicle identification, the transmission field strength used, the location of the vehicle, a unique action code, as well as a list of identifications of previously used transmission vehicles as a history list (information contents I).

- 8 -

the transmitted signals contain Furthermore, the route information relating to segment identifications, the movement direction, the portion of the route segment already traveled, the mean speed, the maximum speed, the vehicle density and/or the up-todateness/time marking of the information (information contents II).

The group of vehicles for reception of the vehicle data

10 signals from the respective vehicles is defined by
defining the transmission field strength or
transmission range of the first vehicle (transmission
range I).

- 15 An adjustable transmission field strength of the transmission unit can be controlled such that, on average, a configurable maximum number of accessible vehicles is not exceeded (transmission range II).
- 20 The positions coded in the received signals and the transmission field strengths used by the adjacent vehicles can be included in the transmission field strength control (transmission range III).
- The response to a request can be returned by the transmission vehicles defined in step [f], and the history list described above can be used for this purpose (return I: use of the history list).
- The response to a request can be returned by means of a relaying method analogous to the sending of the request in step [f] (return II: renewed routing).

The first vehicle produces and sends a number of requests relating to a single route segment, which are each answered individually and/or are relayed and returned with a response, or produces and sends a request relating to all the route segments, with the

- 9 -

request relating to all the route segments containing a number of request elements relating to individual route segments, which are answered or relayed successively by the vehicles in the chain of transmission vehicles (combination of requests).

An assessment is made as to whether a request should be produced for a specific route segment (assessment of the need for a request I). This reduces the communication volume.

The assessment as to whether a request should be produced for a specific route segment is carried out as a function of the distance of the route segment from location of the first vehicle, the the current estimated time to reach the route segment, a weighting factor for the route segment, the jam probability which is known from the past, and/or the up-to-dateness of already available data relating to that route segment (assessment of the need for a request II).

Requests which have not been answered are returned in the form of specially marked pseudo responses (pseudo response I).

25

30

35

5

10

15

20

The lack of response to a request which has been passed on is detected in that, when a request is relayed by vehicle A, the transmission of a pseudo response with a long delay time is defined at the same time (pseudo response II).

The transmission of the pseudo response by the vehicle A can be stopped by another vehicle B, which is within range of the vehicle A, itself responding to or relaying the request which has been passed on, and the vehicle A can identify this on the basis of the action code of the request (pseudo response III).

- 10 -

One or more groups of vehicles is or are formed, which each have data relating to specific adjacent route segments, with common group-relative data being available for the respective vehicles in such a way that a request relating to data of such groups can be answered by any vehicle in the group, or a response can be produced by a small number of relaying processes (source hierarchy formation I).

5

35

One or more higher-level groups are formed from the 10 groups and each have data for specific adjacent route segments, with common supergroup-relevant data being available for the respective vehicles in such a way that a request relating to data for such supergroups 15 can be answered by any vehicle in the supergroup, or a response can be produced by a small number of relaying processes (source hierarchy formation II). The vehicles the group produce and send data signals which contain information relating to the position, extent group (source hierarchy 20 and minimum life of the formation III - group protocol). Group data may contain mean speeds, maximum speeds, vehicle density measures, up-to-dateness/time markings and/or information relevance measures relating to all the vehicles in the 25 ' group (source hierarchy formation IV - group data). Furthermore, groups may be formed by accumulating group formation requests from one or more vehicles subgroups, and wherein the actual group formation is defined only when a threshold value is exceeded (source hierarchy formation V - group formation). 30

Information when responses to requests are returned or buffer stored in transmission are contents vehicles are combined in particular in the manner representation relating to map described compression by hierarchy formation, so that data from a greater distance from the request originator can be resolved in a more greatly compressed/coarser form

- 11 -

(integration).

5

30

Transmitted data signals are passed on analogously to the processing of requests in step [f] both along a one-dimensional channel toward a destination location and over an area into a relatively large destination area, which is coded in the data signal (integration).

The data signals contain information which is produced,

and is transmitted in a directed or undirected manner,

by a vehicle on the basis of a specific event (event

broadcast).

External data is supplied to a vehicle or to a group of vehicles for relaying in a directed or undirected manner, in which case this external data may also result in group formation (supply of external data to vehicles or groups).

Information relating to a jam prediction or other traffic-relevant variables is extracted from the system and is stored externally, in which case group formation may also be initiated from inside or outside the system in order to obtain the relevant variables (extraction of traffic data).

The transmitted data contains information relating to traffic connections to other traffic systems such as rail, subway, metropolitan rail, air transport and/or ship movements (intermodal traffic).

The external data contains information relating to jam prediction (external prediction).

35 Information relating to a jam prediction is generated from the vehicle data signals and is sent on the basis of events which have been recorded in the past and occur cyclically, in which case group formation can

- 12 -

also be initiated for the purpose of cyclic jam prediction (periodical prediction).

Furthermore, information relating to a jam prediction can be generated from the data signals by extrapolation of traffic flows or simulation and can be sent on the basis of events which have been recorded in the more recent past, in which case group formation can also be initiated for the purpose of simulated jam prediction (simulated prediction).

5

10

15

20

25

The information relating to a jam prediction and/or to some other traffic-relevant variables is stored within a group of vehicles which can be defined, and remains in existence there (persistence of jam predictions).

The vehicles are land vehicles for road or rail traffic, water craft, aircraft or other mobile manned or unmanned units which continue to move in a jointly used traffic area and which can be equipped with a limited range communication device (general vehicles).

Furthermore, "vehicles" may also be special "pseudo vehicles" which have a specific communication purpose, feed data signals from the system or into the system, feed in third-party data, need not necessarily be mobile, but are at least equipped with a compatible communication device (pseudo vehicles).

30 A connection to another telecommunications network is set up via a pseudo vehicle or a station (connection to another telecommunications network).

Pseudo vehicles or stations which are linked to one 35 another by means of an external communications network are created, which produce a better connection between the vehicles or between the vehicles and a transmitter/receiver which is located outside the

- 13 -

traffic management system (backbone network).

A general telecommunications network is created by the transmission devices of the vehicles and/or of the pseudo vehicles/stations and by the nature of the signal transmission as described above (formation of a general telecommunications network).

Furthermore, data relating to the first vehicle being within dangerous proximity of another vehicle which is part of the traffic management system or with a group which is part of the traffic management system is produced and/or transmitted by means of the method according to the invention (safety system).

15

20

25

30

35

10

5

In accordance with the method of the present invention, an apparatus for determining and optimizing a route for a first vehicle which is part of a traffic management system with which further vehicles are associated, for detecting local having a detection apparatus vehicle data be transmitted; to apparatus for transmitttransmitting/receiving ing/receiving radio signals which contain respective transmitted/received; vehicle data to be apparatus for free setting of strength setting specific transmission field strength up to a maximum transmission field strength; a field strength detection apparatus for detecting the field strength of the respectively received radio signals; a memory apparatus for storing data; a group definition apparatus which, receiving the vehicle data of the respective vehicles, defines a group which is associated with the first vehicle; a route definition and segmentation apparatus, which uses the stored route data to define a route for the first vehicle from its current position to a chosen destination, and subdivides this into route segments; route optimization device, which and a requests vehicle data which provides information

- 14 -

relating to the feasibility of driving on the respective route segments, from the group of vehicles, and uses vehicle data received in response to the request to determine an optimized route (configuration of the intelligent communication apparatus).

5

10

25

35

A delay time signal production apparatus for the apparatus according to the invention is designed such that a data signal is transmitted only after the defined delay time has elapsed, as a function of a time delay value which can be defined freely (delay production I).

Furthermore the apparatus according to the invention contains a control apparatus which can subsequently stop the transmission of the delayed data signal before the delay time has elapsed (delay production II).

The invention will be described in more detail in the 20 following text using exemplary embodiments and with reference to the drawing.

The single figure shows a schematic illustration of how communication is carried out between vehicles in a traffic management system.

In order to carry out the method of the present invention, a vehicle is equipped with a:

- communication unit (transmitting/receiving apparatus) for communication at the vehicle-vehicle level

A digital multiplexed transmission standard similar to that used for digital mobile radio networks is preferably used. The standard should ideally be based on an asynchronous protocol. A collision detection method with error correction (similar to the Ethernet) should expediently be

- 15 -

used at a lower level. However, in principle, an with appropriate standard correction sufficient. could also be procedures communication unit should ideally be capable of being operated with the computer unit requiring a power from 0 up а maximum transmission to transmission power of, for example, 5 watts.

- computer unit

5

10

25

The computer unit is subject to requirements of medium stringency with regard to the computation rate and memory space. The computer unit should have a map module (for example on CD-ROM).

- movement sensor system (apparatus for detecting vehicle data)
- The movement sensor system has a speed and direction sensor, ideally a GPS module. Further sensors may be included.

The method steps are carried out and initiated, in 20 particular, under the control of the computation unit.

The basic unit of the internal map or map module of the computer unit is a route section. All roadways are represented on the internal map as combinations of route sections. The junction points between route sections are referred to as nodes. Turn regulations, one-way roads etc. are defined as restrictions to the route sections/nodes.

30 Various processes, which will be described successively in the following text, interact at the same time in the method of the present invention. In this case, it is worthwhile selecting parameters, although this can only be done for a specific installation of the method, for example with the aid of a detailed simulation. Stated parameters are therefore initial estimates.

- 16 -

Undirected broadcast/default action

All the subscribing vehicles carry out a default action "unrequested" by transmitting, for example at a specific time interval (for instance 2 minutes) their movement data as an undirected broadcast (transmission) "at the lowest hierarchy level". The transmitted data includes information about the recent journey history, that is to say for example the mean speed of travel on the route sections which have been driven over in the last 5 minutes. All vehicles within the circular area corresponding approximately to the intended transmitter range receive the broadcast signal.

5

10

25

30

35

15 One other open parameter in this case is the transmission field strength to be used, which governs the transmission range. This results from a control process. Initially, a suitable default transmission strength is used. The transmission strength which is used is in each case also coded in the broadcast.

Over the course of time, each vehicle now receives the data from the surrounding vehicles. It then knows, approximately, the vehicle density and the density distribution in that vicinity. Its transmission strength can then be adapted such that a predetermined approximate maximum number of vehicles can be reached by a broadcast (for example 100 vehicles). Since the transmission strength, that is used is also always the coded, the relationship between transmission strength and the transmission range to be expected (depending on the environmental conditions) can also be continually readjusted, and this may even be done in a directionally dependent manner. The final transmission field strength control is to provide a transmission bandwidth which is optimum for vehicles, in accordance with the requirements of the communication layer, with regard to the channel load

- 17 -

level and the specifically used collision detection method. It is also important with regard to advantageous scaling of the communication volume, with the system not collapsing even when the number of subscribers is increased, that (for example in the center of a city) the number of vehicles which are reached by a single broadcast is not excessively great.

The present method according to the invention need therefore not be subjected to any specific requirements for the lowermost transmission layer, but can be matched to a specific communication set-up within wide limits by setting a small number of parameters.

15 An undirected broadcast results in (smeared) groups in information with respect to the sections. For example, approximately 30 vehicles "know" the movement data on a specific freeway section or on an inner city route section where the traffic is heavy. All information units which are transmitted have a time 20 marker which identifies the respective up-to-dateness, as well as a relevance measure which indicates how reliable/complete the information is (for example the percentage of the route section that has already been 25 driven over). This assessment and accumulation of the from different vehicles thus results "picture" of the overall traffic, and this "picture" is stored distributed in the groups. Various movement variables/parameters may be accumulated, for example mean speed of travel/travel time, maximum speed of 30 travel, traffic density, jam sensitivity (from longterm

The request

35

integration), etc.

5

The request in this case interacts closely with the actual dynamic route planning: the dynamic route planning is based on a statistical route plan. The

5

10

15

20

25

30

35

- 18 -

computer unit in a vehicle first of all calculates conventionally, so to speak, in accordance with the built-in map, which contains provisional data relating to the maximum speed of travel on the route sections, a provisional optimum route.

Starting from this current route under consideration, the system now attempts to find out whether the basic maximum speeds of travel (and possibly also other derived basic parameters such as fuel consumption, environmental damage...) are correct.

For this purpose, requests relating to movement data the route sections are sent via the vehicle's transmitting/receiving apparatus. All the sections of the route are passed through, with the critical being whether there is any need whatsoever at that time for a request for the respective route section. because a request is expensive, in the sense that it causes a communication volume and communication effort. The importance for a request for a respective route section is, to a certain extent, estimated. The route section is annotated for the request only if assessment exceeds a certain level (for example the value 1 in a normalized assessment system). criteria for estimating the importance are, example, the distance of that route section from the current location on the planned route, the estimated distance the route section, driving time to importance of the road on which the route section is located ("road class") and/or the up-to-dateness of the data already available on that route section. If data which is up-to-date to within 3 minutes is already available, no request need be sent relating to the relevant route section.

Checking the route sections on the basis of these criteria then results in a list of route sections for

- 19 -

which a request is to be sent. A desired minimum up-todateness is also entered in the request. Adjacent route sections in this list can then be joined together using a conventional segmentation method, so that a bundled request can be formed. In principle, a single bundled request can also be formed for all the route sections in the list, which is then broken up or processed during the subsequent request repetition piecemeal process described below. Furthermore, the request is also provided with a unique action code (see below) which, inter alia, contains information relating to who has answered or passed on what request, and is provided with a repetition counter, which is set to 0 and indicates the number of relaying processes.

15

10

5

Request processing/repetition

The request is now transmitted as shown in the figure. The assumed transmission field strength is that value which is obtained from the broadcast control mechanism 20 described above. The request is "heard" by all the vehicles within the transmission area. These vehicles an assessment. They use the carry out available to them (from the broadcast signal or from described below) to 25 the cache signal capability and a response potential repetition or potential or capability (\rightarrow onward transmission of the request). The criteria taken into account in this case for example: how well can the requests be include, answered (up-to-dateness, relevance (see above)); how 30 many requests (number or percentage of the route can be answered - only when a certain sections) threshold value is reached, is the overall response potential greater than 0 in order to avoid forcing the request to be split up into excessively small elements; 35 how well the vehicle is pointing in the direction of next route section whose request cannot the answered.

This assessment now results in a ranking value (for example 0...1), which corresponds to the response or repetition potential. The ranking value is used to calculate a delay time. In this case, a high ranking value results in a short delay time, and assessments which have not only a repetition potential but also a response potential of greater than 0 result principle in a shorter delay time than assessments only with a repetition potential. The parameters can be chosen such that, as far as possible, only vehicles in a conical shape in the direction of the next route segment are given a potential of more than 0, illustrated in the figure. Subsequent repetitions can then be heard between one another.

5

10

15

20

25

30

35

Both the planned repetition (with requests relating to the remaining route sections) and the planned response are placed in a transmission register, and are stored, together with the calculated delay time. This results in a stack of "intended transmissions".

This stack is then processed sequentially over the course of time. When the respective delay time has elapsed, the corresponding packet is sent. If, however, a response or a repetition with the same action code and with a repetition counter which is at least of the same magnitude arrives in the meantime, then another vehicle has carried out the intended transmission This vehicle obviously had a higher action. potential. response/repetition comparable corresponding entries are then deleted from the stack $(\rightarrow$ selection of the max. fittest). If a packet arrives with the same action code and a lower repetition counter, then that packet is ignored. This results in inefficient self-evident request cycles destroyed. Each vehicle can also maintain a list with relatively recent request action codes, on the basis of

- 21 -

which non-optimally wandering request chains are prevented from being repeated or responded to, and are thus destroyed quite quickly.

5 Requests are now passed on and partially answered successively. In the worst case, one request would therefore have to pass through the entire route in steps corresponding approximately to the mean transmission radius.

10

Return of the information (answer)

A request is followed at some time by a response (answer), generally in the form of a partial response. 15 An attempt is now made to route the response back on the same route to the receiver on which the request arrived. For each repetition during the request phase, a history stack of transmitted vehicles is enlarged in the request protocol. In this case, the vehicle ID (vehicle identification) is in each case entered in the 20 stack. This ID stack can then be used during the answer cycle to always transfer the answer repetition, and in the process to take that specific ID from the history stack, uniquely for that vehicle which is at the end of this list, and only for that vehicle. In the process, 25 assumed that the vehicle movements it. is considerably slower than the overall delay times of the communication, so that the pattern of the transmission areas at the time of the answer has scarcely changed from that at the time of the request. In consequence, 30 only very rarely does a situation occur in which a vehicle in the history stack can no longer be reached when the response is sent back. However, in a situation such as this, the response can be safely lost, without any particular counter measures. In the next request 35 generation cycle of the requesting vehicle, this will become evident since the data for the relevant route sections are not up-to-date, and a new request will

preferably be started quickly.

However, in principle, the response could also be routed in accordance with the same complex method as for the request, that is to say purely by repetition to the source location of the request, with respective assessment by means of a repetition potential, delay routing etc., as described above.

The same transmission field strengths which have already been used for the broadcast and the request can be used once again for answer routing. If necessary, the transmission field strength can also be increased slightly for greater reliability with regard to accessibility.

If the described request/answer mechanism were used just on its own, the method would in principle intrinsically be effective. However, the communication volume would be unnecessarily high and, in particular, would not be scaleable well with the route lengths, the size of the route network and the number of vehicles. Nonetheless, the described routing would itself be the main basis for the transmission of non-cohesive third-party data (for example telephony or car Internet).

The method according to the invention is now also distinguished in particular by the hierarchically based mechanisms described in the following text.

30

35

25

20

5

Caching

When the requested information relating to the route sections is returned, the information is also stored by the transmitting vehicles as well as all vehicles which also hear it, in a special area of the individual map, which is referred to as a cache. If further requests now arrive (from other vehicles) and the up-to-dateness

- 23 -

of the data in the cache is sufficient to answer that request, then the request does not need to be repeated any more, but can be answered directly from the cache. This mechanism once again acts in a self-stabilizing manner since a large number of identical requests will occur when there is actually a high jam potential, there are high traffic densities and there is therefore a large amount of communication traffic, and these requests need then only very rarely continue as far as the destination area.

If memory space is short (even though this does not present a problem nowadays with the comparatively small amounts of information and the large available in each memories), vehicle may case remove obsolescent data from the cache and, if it is known vehicles are also storing adiacent information, data can be transferred to the cache with a probability of less than 100%.

20

25

30

35

10

15

Integration

Excess computation capacity in the computer unit can be used to combine the information in the cache to form sense units. For example, information relating to towns or town sections, bypass routes, long freeway sections, can build-ups and boundary crossings traffic combined to form bundled information (for example: heavy traffic on the entire "Mittlere Ring" in Munich). the additional answering of corresponding Firstly, requests with such bundled information can prevent inefficient request iteration. Secondly, such information units generated by integration may, however, not only be included in route planning but, for example, can also be presented to the driver on a display or by means of a voice output and the like, as sensible compiled background information. The integration method may, for example, use additional

- 24 -

predefined area markings in the built-in map (city boundaries, freeway section runs, etc.).

Dynamic group formation at higher hierarchy levels

5

The undirected broadcast described above reaches only vehicles in the area of immediate transmission range. If, however, information relating to specific route sections or routes or other integration units frequently asked for by means above) is now 10 the transmitting vehicles can cause the requests, vehicles which are on these routes to be informed of this data over a wider environment - preferably in the direction from which most requests are coming. Vehicles which are moving on integration units about which 15 requests frequently arise are thus combined to form groups (initially at hierarchy level 1). Like all other information, such group formations are also initially of a temporary nature. They decay on their own with a specific time constant when the reason for initiating 20 the group formation (heavy request volume) disappears. The groups are associated with the location (route sections, town parts, freeway segments,...) and not with specific vehicles. This means that when vehicles for the first time enter a route section agglomeration 25 for which a group has been formed, then they become part of that group. Previous group broadcasts, which can also be received beyond the group boundaries, are generally used to inform such vehicles of the existence of the group even before they enter such a route 30 section. On leaving the group area, the vehicles also group association and no longer their surrender send/replicate any group broadcasts.

35 A group is initialized by vehicles which split up the requests and are associated by requests. Such vehicles are generally not part of the group, since they are generally looking at the groups "from the outside"

- 25 -

 $(\rightarrow$ a type of group spokesman). In order to generate a group, a generation request is sent to the relevant route sections (routing as described above). stability reasons, a group is now also not generated directly on the first initialization attempt by a group spokesman vehicle. In fact, a "counter" for a specific group request is incremented in the relevant vehicle. Without any further actions, this counter would decay again with a specific time constant. Only when a number of requests (-> threshold value) for group formation arrive (in addition from different vehicles and from different directions) and the "group requests" overlap sufficiently is a group established for the first time. Such initialization of a group may take place from a relatively new member of the group, if this is the first in which the counter exceeds the threshold value. A first group broadcast at the protocol level can be used for this purpose.

20 Group data includes the area of the group source vehicles as well as the destination area for dissemination of the group information (for example the lobe shape in a direction from which the large number of requests arrive).

25

30

35

5

10

15

Technique for group broadcast/area broadcast

Each vehicle in the group transmits a broadcast signal statistically with a specific time probability. Each broadcast has a specific action code, on the basis of which the broadcast replication is coordinated. Vehicles which are located in the boundary area of the reception area carry out a replication of the protocol using the same method as that described above for request repetition but the area broadcast has no local point destination area but extends over an area as far as the boundaries of the group destination area.

- 26 -

In a development of the method, hierarchies of groups may now occur. This may be done firstly in such a way that vehicles which supply source data take part at the same time in a number of groups which always cover a area, with groups relatively large in the hierarchy level also being able to overlap (→ induced mixed hierarchies). This process may on the other hand be carried out in such a way that bundled group data is itself once again used as information building blocks hierarchies"). $(\rightarrow$ "real The for supergroups combination of groups to form supergroups is once again carried out as described above by (generally external) information transmitter vehicles which (generally from the outside) "identify" the usefulness of a combination of the groups on the basis of the routing activity. The important feature is that the groups are produced dynamically and are broken up automatically possibly with time, once again, when the movement reason for the group formation has disappeared.

20

25

30

5

10

15

Wide area broadcast

Any other desired information can also be disseminated over an area in (any given) destination area using the group broadcast method that has just been described. Such event-like information may be: special events such as accidents (triggering of an airbag, ...) and calls for assistance; search protocols by means of which the location of а communication subscriber can determined, in order subsequently set to communication channel; third party data entered in the network, such as (more or less) local traffic messages and jam predictions; and much more.

35 External prediction/intrinsic prediction

The previously described method provides up-to-date traffic data very efficiently. However, when planning

- 27 -

relatively long journey routes, it is often of interest to know whether, for example, the traffic 200 km away will still appear in two hours as it is represented at that time. Such traffic predictions may be particularly interesting for freeway sections where there is a risk of jams. As already indicated above, one solution to the problem may be for traffic news services to enter external third-party data in the network, such as jam predictions by means of a wide area broadcast. Another solution is for the prediction generation to be carried out automatically for the destination in the network.

The starting point in both situations is to set up groups based on the pattern described above for such risky traffic areas, where "prediction is worthwhile". This is because only groups can permanently store local data in situ (by iterative transfer between vehicles).

In the case of external prediction, the formation of a group can be initiated by the point sending the prediction, in the area for which a jam prediction or other prediction is intended to be made, prediction is then transferred to the group. The local pattern of such a group formation or prediction message or data packet then has a similar appearance to a mushroom cloud. First of all, as in the case of a request, it passes along a corridor to the destination area, where it then propagates over an area. The group then remains in existence for at least as long as the propagation time of the prediction demands (the point of transmission of the prediction is then, so to speak, the main group spokesman). When a request is made into that group area, the response (answer (see above)) can then also include the prediction.

35

5

10

15

20

25

30

Automatic prediction

When jams occur, suitable groups are first of all

- 28 -

formed since, in the case of jams, the criteria which has been mentioned above for generation of groups are automatically satisfied. If jams now occur repeatedly in one area (for example on a daily cycle) and this occurs during the life of the group, then the further minimum life of the group can first of all be increased in order, so to speak, to pursue the situation for an time. If the suspicion of cyclic longer a solidifies (the necessary disturbance now simple identification for detection periodic of pattern disturbances can be carried out in all vehicles; in principle, the pattern of "wish accumulation" mentioned above applies: only when the wish to "name" a periodic number of times disturbance occurs а knowledge become a valid fact in the group), knowledge relating to this is recorded as a periodic prediction in the group memory and, at the same time, the minimum life/delay time constant for that group is incremented (for example 5 times the period duration of the disturbance). However, a situation may arise in which a normal group life is not sufficient in order for the first time to solidify the supposition of a periodic disturbance (for example because the groups would not survive the next night during which there is little traffic). Apart from the fact that, for example, this could then be initialized by an external provider location (and, in contrast to what has been stated above, would not require any further maintenance), there are also automatic options:

30

35

10

15

20

- 1. Simple option: group minimum lives are sometimes said to be longer than normal with a certain probability on group formation, that is to say, for example, to be longer than one day. This would then at some time be sufficient to set in motion the periodic prediction.
- 2. Effective and much better option: each vehicle stores knowledge about previous group memberships

- 29 -

5

10

15

20

30

35

in a long-term memory (which is not actively effective). A number of such vehicles (commuters and the like) will then undoubtedly enter a cyclic jam in the same area once again in the next (or next but one...) period. Vehicles such as these then identify the time coincidence of traffic disturbances and can then at least lengthen the group life on suspicion. Alternatively, with an appropriate "wish accumulation" they if can necessary set up a periodical prediction fairly directly. This long-term memory method also solves the problem which occurs when already existing periodical predictions or other location-specific group data has to survive, for example, a night when the volume of traffic is so low that the iterative transfer of group data would break down. Thus, in the wider sense, the long-term memory can ensure the survival of a group which no longer has any members for a short time period.

3. Use of an accessible landline network backbone station, which runs all the time and is described below, where such a landline network backbone station is available.

25 Interaction of communication with route planning

When the result of a route cycle is that the movement parameters on which the route planning for the route sections is based differ from the previous map data (for example the mean/maximum speed of travel lower), then these movement parameters, which are obtained by the request (or else broadcast) are entered the individual map and, so to speak, are superimposed on the built-in map (for example CDROM). A "fastest route algorithm" then once again calculates a route. This route may differ from the old route. If the route does differ from the old route, the request cycle is repeated for the new route sections

- 30 -

which are still unknown and/or are no longer sufficiently up to date. If not, the currently planned route is provisionally satisfactory.

5 An improvement to the method is achieved by starting the request cycle for a set of alternative routes right from the start.

Strictly mathematically speaking, this procedure correct only when the request/broadcast data result in 10 lower speeds than those for the built-in map. However, this is the normal situation. Opposite situations, for example when a speed restriction is cancelled, may, however, be processed over the course of time by the following method: when a situation such as this occurs 15 repeatedly, it is disseminated in the network by means of a wide area broadcast (see below), and is stored in a map update memory area, which is superimposed on CDROM map. In the widest sense, a process such as this can be used for "map learning", that is to say for 20 recording relevant data in the map.

The entire route planning and request cycle takes place continuously throughout the entire journey. This results in an additional dynamic. The driver can thus be supplied with an optimum route plan, based on the best-possible update knowledge, at any time.

25

If no data is received relating to route sections, then
it can be assumed that so few vehicles are traveling in
the relevant area that the routes are obviously free.
The following assumption is therefore a fundamental
rule of the method: if no data is available for a route
section, it can be assumed that the route section is
free. Alternatively, expressed from a different point
of view, the following self-stabilizing effect occurs:
where slow-moving traffic can be expected owing to an
increased traffic density, the communication situation

- 31 -

also automatically improves.

Third-party data

Transmitting and receiving devices via which third-5 party data is fed into and/or extracted from the system are regarded as a pseudo vehicle (and generally have the intrinsic speed 0). The way in which such pseudo vehicles are included in the communication process does not in principle differ from conventional vehicles. One 10 example of third-party data transmission would be, for example, a request from a driver who is traveling from Munich on the **A**9 for а suitable Nuremberg to metropolitan rail connection from a park and ride station to Marienplatz in Munich. The data transmission 15 would take place in an analogous manner to a request from the requesting vehicle relating to location at which a corresponding information provider has a network station.

20

25

30

35

Backbone landline network

Backbone stations can be regarded as special "pseudo vehicles" intrinsically having a high-speed landline network connection. This results in a backbone landline network which can shorten long-range communication, especially when the type of information is of non-cohesive nature (\rightarrow information for which it is not the basis of the philosophy very worthwhile, on described above, storing this information (caching it) in any case in a large number of intermediate stations, for example telephony as mentioned below. It should be stressed once again that such a backbone network is not an essential component of the method. For example, in contrast to the situation with a mobile radio network, the backbone stations also do not have to ensure network coverage that is as free of gaps as possible, since they are actually only an option for speeding up

- 32 -

communications. A backbone network is actually particularly useful when there is a large volume of third-party data transmission. Backbone stations may then be inserted quite deliberately and economically on a gradual basis where the communication volume would reach a limit.

On the technique of backbone routing

The position of backbone stations is regularly notified 10 by means of a wide area broadcast (but comparatively very rarely). Vehicles entering the traffic for the first time can obtain the information about such backbone positions at any time on request from adjacent vehicles at relatively short range. 15 If a piece of information bypasses a backbone station and this station identifies that the further routing of the information via the backbone network would be better, then, first of all, it sends with the minimum possible delay time (see above) a special annihilation message 20 as a substitute for the repetition message described above, with a message in this case being a packet of relayed data. This annihilation message acts like a repetition message in that other vehicles stop any 25 intent they may have to pass on that information packet the normal vehicle-to-vehicle network in annihilation message may possibly also be in the form of an area broadcast over an area that is somewhat larger than the transmission radius, in order reliably eliminate the routing process in the normal 30 network). The information packet is then transmitted to the most suitable end node in the backbone network, where it is once again fed into the vehicle-to-vehicle network using the normal method.

35

1-to-1 data link/telephony

One particular type of third-party data transmission is

- 33 - 1

carried out via a permanent directed link between two named (\rightarrow ID, telephone number, or the like) subscribers. To do this, it is first of all necessary for the subscriber who wishes to set up the link to find the communication partner in the network. There are a number of possible ways to do this, which may also be combined:

10

15

20

25

30

- 1. If a backbone network is available: a central computer or a number of distributed computers in the backbone network can take the transmitter and receiver IDs as well as their position from all answers and broadcasts, requests, messages which pass via backbone stations and can run a "fuzzy telephone directory" $(\rightarrow$ telephone directory with fuzzy or unprotected entries), in approximate locations which the vehicles/subscribers are recorded. These telephone directories need not be 100% correct. Furthermore, requesting communication partners can now provided with an estimate of the position of the other partner.
 - 2. In this case, it is assumed that an approximate location of a partner is known. Either by checking in a fuzzy telephone directory, by estimations on the basis of the normal location area of the intended vehicle (home region) or by manual input. A search broadcast ("mushroom cloud" broadcast (see above)) is then sent to a target area in the region of this location. If the sought partner the link is set up. responds, Ιf the sought partner does not respond, other possible (small) search areas may first of all be checked, or the search area may be expanded to an ever greater the worst case, it would then extent. In necessary to search the entire network area using a wide area broadcast.
 - 3. All vehicles maintain a further long-term

- 34 -

memory, in an unrequired memory area, relating to vehicle IDs of messages as they occur. then often provide broadcasts can information about the correct direction considerably earlier. 4. All vehicles belonging to a special home group in the sense that the vehicles with a greater number of location changes each respond to this home group by means of a directed broadcast. The home groups may either actually be established in a normal group in the vicinity of the home location of the vehicle, or else may be a backbone administered by station, or somewhere else. Home groups are, so to speak, reliable locations, at which the (approximate) of vehicle instantaneous location а can checked.

5

10

15

the connection partners now know each other's locations, a permanent connecting channel must be set 20 up. In a similar way to the answer procedure described above, the history list, which is produced when contact is set up, is now taken as the first connecting channel by transmitting vehicles. This history list is taken as first connection list. Objective direct 25 of the vehicles contained in transmitting the connection list in both directions allows efficient transmission of large amounts of data without the complex delay mechanism as described above and used for a request or area broadcast. Problems occur if there is 30 of the connection breaking down by a threat movement of the transmitting vehicles and the communicating vehicles. This problem is solved by the following technique:

1. When sending the data from vehicle to vehicle, the positions of the transmitting vehicle are also always transmitted, so that the transmitting vehicles always know, while the connecting channel

- 35 -

5

10

15

20

is in existence and is continuously being used, when the distance between two connection vehicles threatens to become so great that the connection will break down. When there is a threat of this danger, the two connection vehicles involved initiate local relinking procedure at а appropriate time, with both of them looking for a reliable connection via an intermediate vehicle. This may be done by an entirely normal request method as described above, possibly presetting an artificially reduced transmission field strength (for example -20%) in order to find a particularly This intermediate vehicle is reliable channel. then inserted into the connection list during the next routing on the connecting paths.

- 2. During the connection routing process, the positions of the connection positions are also continuously checked to determine whether separations of sets of three vehicles have been such an extent that a connection reduced to vehicle can be removed from the connection list. inefficient connection corridors This prevents being formed when connections are in existence for a relatively long time.
- 3. At longer time intervals, a new optimum connecting channel is looked for by the two communication partners, completely independently of the existing connecting channel/corridor, on request. The new connection list which is then produced can then be used immediately.

- 36 -

Patent Claims

- 1. Method for dynamically obtaining relevant traffic information and/or for dynamic optimization of a route for a first vehicle, which is part of a self-organizing traffic information and/or management system to which further vehicles belong, having the following steps:
 - [a] production of data on the basis of the vehicles' own sensors and/or other information sources in the first vehicle,
 - [b] transmission of data which is relevant for the first vehicle or other vehicles (broadcast),
 - [c] reception of the transmitted data of other vehicles,
- [d] storage of data which has been obtained from received data and/or the vehicle's own data,

- [e] production and transmission of requests relating to data which other vehicles could possibly provide (request), and
- 20 [f] potential relay of received data by retransmission of this data in processed or unprocessed form (replication).
- The method as claimed in claim 1, wherein the
 journey history data is also produced by the vehicles in steps [a] and [d].
- The method as claimed in one of the preceding claims, wherein the requests can be answered, partially answered, relayed and/or partially relayed by receiving vehicles (response and replication).
- 4. The method as claimed in one of the preceding claims, wherein the response to requests and/or the relaying of requests and other data by vehicles with their own/optimum information standard or with an advantageous/optimum current position for relaying (optimization of response and relaying).

5. The method as claimed in one of the preceding claims, wherein the first vehicle transmits requests for information relating to driveability and other traffic-relevant variables to the route segments which may possibly be driven on in the future (requests for traffic-relevant variables).

- 6. The method as claimed in one of the preceding claims, wherein responses to requests from the first vehicle are passed back directly or by relaying to the first vehicle, in which process the information in the responses can be stored, accumulated and preprocessed for opportune further use in addition by transmitting vehicles as well as vehicles which likewise receive the response messages (caching and assessment).
- The method as claimed in one of the preceding claims, wherein a source group of vehicles, which is 20 associated with the first vehicle, is defined on reception of the vehicle data signals from the respective vehicles in the steps [b] and [c], in which accumulated the data can be stored. preprocessed in the receiving vehicles, for the purpose 25 of generating source data for the subsequent steps (source formation I).
- 8. The method as claimed in claim 2, wherein, during the preprocessing of the source data, mean speeds, 30 maximum speeds, traffic density measures, jam sensitivities, bundled up-to-dateness measures and/or bundled relevance measures can be calculated (source formation II).
- 9. The method as claimed in one of the preceding claims, wherein journey history data, source data, buffer-stored data, in particular the information stored, accumulated and preprocessed in claim 6, and

- 38 -

response data can in each case be stored in an individual map in the vehicles, which is superimposed on a statistical global map, or exists in parallel with it (individual map).

5

10

15

- 10. The method as claimed in one of the preceding claims, wherein the map structure may be subdivided for the purpose of internal processing and referencing in transmission signals into route segments which do not exceed a maximum length (map representation I).
- 11. The method as claimed in claim 10, wherein route segments of the map presentation can be combined for the purpose of internal processing and referencing in transmission signals to form groups and supergroups each having their own identification (map representation II, compression by hierarchy formation).
- 12. The method as claimed in one of the preceding 20 claims, wherein an advantageous vehicle from the group of vehicles which can respond to and/or relay the request is determined by an assessment method in step [f], in which an assessment measure is determined as a function of how up-to-date and/or relevant data which 25 is already available in the respective vehicle is relating to the relevant route segments, the number of requests which can be answered on the basis of already available data and/or the distance of the respective vehicle from the next route segment whose request 30 cannot be answered (delay routing I).
 - 13. The method as claimed in claim 12, wherein a delay time for the transmission of the response and/or relay is defined as a function of the assessment measure, and the delay time becomes shorter as the assessment measure becomes higher, so that the vehicles transmit earlier, the better the assessment measure is (delay routing II).

- 39 -

14. The method as claimed in claim 13, wherein a vehicle A which attempts to transmit with respect to a request response and/or relaying with regard to a specific request which is identified by an action code, stops the planned transmission if it receives a signal relating to the same request with the same action code from another vehicle B, which takes precedence over the vehicle A with a shorter delay time (delay routing III).

5

10

- 15. The method as claimed in one of the preceding claims, wherein, when producing requests, the desired level of up-to-dateness is coded in the request in step [e] (up-to-dateness required).
- 16. The method as claimed in one of the preceding claims, wherein the response to a request can be produced, depending on the desired up-to-dateness, from source data from vehicles close to the destination area of the requestor from buffer-stored data, in particular from the information which is stored, accumulated and preprocessed in claim 6, from vehicles well away from the destination area and closer to the requesting vehicle (cache use).
 - 17. The method as claimed in one of the preceding claims, wherein a first calculation of a route for the first vehicle can be made from its instantaneous position to a chosen destination on the basis of statistically stored or already available dynamic route data (static or dynamic routing).
- 18. The method as claimed in claim 1, wherein the 35 route is recalculated on the basis of changed data in the individual map, for the purpose of iterative optimization of the route (iterative optimization).

- 40 -

- 19. The method as claimed in one of the preceding claims, wherein the transmitted signals contain information relating to the signal type, the vehicle identification, the transmission field strength used, the location of the vehicle, a unique action code, as well as a list of identifications of previously used transmission vehicles as a history list (information contents I).
- 10 The method as claimed in one of the preceding 20. claims, wherein the transmitted signals contain information relating to the route identifications, the movement direction, the portion of the route segments already traveled, the mean speed, 15 the maximum speed, the vehicle density and/or the up-to-dateness/time marking of the information (information contents II).
- 21. The method as claimed in one of the preceding claims, wherein the group of vehicles is defined in the manner described in claim 7 by defining the transmission field strength or transmission range of the first vehicle (transmission range I).
 - 25 22. The method as claimed in one of the preceding claims, wherein an adjustable transmission field strength of the transmission unit can be controlled such that, on average, a configurable maximum number of accessible vehicles is not exceeded (transmission range 30 II).
 - 23. The method as claimed in claim 22, wherein the positions coded in the received signals and the transmission field strengths used by the adjacent vehicles can be included in the transmission field strength control (transmission range III).
 - 24. The method as claimed in one of the preceding

- 41 -

claims, wherein the response to a request can be returned by the transmission vehicles defined in step [f], and the history list can be used for this purpose (return I: use of the history list).

5

10

- 25. The method as claimed in one of the preceding claims, wherein the response to a request can be returned by means of a relaying method analogous to the sending of the request in step [f] (return II: renewed routing).
- 26. The method as claimed in one of the preceding claims, wherein the first vehicle produces and sends a number of requests relating to a single route segment,
- which are each answered individually and/or are relayed and returned with a response, or produces and sends a request relating to all the route segments, with the request relating to all the route segments containing a number of request elements relating to individual route segments, which are answered or relayed successively by
 - segments, which are answered or relayed successively by the vehicles in the chain of transmission vehicles (combination of requests).
- 27. The method as claimed in one of the preceding claims, wherein an assessment is made as to whether a request should be produced for a specific route segment (assessment of the need for a request I).
- The method as claimed in claim 27, wherein the 30 assessment as to whether a request should be produced for a specific route segment is carried out as a function of the distance of the route segment from the current location of the first vehicle, the estimated time to reach the route segment, a weighting factor for 35 the route segment, the jam probability which is known from the past, and/or the up-to-dateness of already available data relating to that route segment

(assessment of the need for a request II).

- 42 -

29. The method as claimed in one of the preceding claims, wherein requests which have not been answered are returned in the form of specially marked pseudo responses (pseudo response I).

5

25

- 30. The method as claimed in claims 29 and 14, wherein the lack of response to a request which has been passed on is detected in that, when a request is relayed by vehicle A, the transmission of a pseudo response with a long delay time is defined at the same time (pseudo response II).
- 31. The method as claimed in claim 30, wherein the transmission of the pseudo response by the vehicle A can be stopped by another vehicle B, which is within range of the vehicle A, itself responding to or relaying the request which has been passed on, and the vehicle A can identify this on the basis of the action code of the request (pseudo response III).
 - 32. The method as claimed in one of the preceding claims, wherein one or more groups of vehicles is or are formed, which each have data relating to specific adjacent route segments, with common group-relative data being available for the respective vehicles in such a way that a request relating to data of such groups can be answered by any vehicle in the group, or a response can be produced by a small number of relaying processes (source hierarchy formation I).
- 33. The method as claimed in claim 32, wherein one or more higher-level groups are formed from the groups and each have data for specific adjacent route segments, with common supergroup-relevant data being available for the respective vehicles in such a way that a request relating to data for such supergroups can be answered by any vehicle in the supergroup, or a

- 43 -

response can be produced by a small number of relaying processes (source hierarchy formation II).

34. The method as claimed in one of the preceding claims 32 and 33, wherein the vehicles in the group produce and send data signals which contain information relating to the position, extent and minimum life of the group (source hierarchy formation III - group protocol).

10

- 35. The method as claimed in one of claims 32 to 34, in which case group data may contain mean speeds, maximum speeds, vehicle density measures, up-to-dateness/time markings and/or information relevance measures relating to all the vehicles in the group (source hierarchy formation IV group data).
- 36. The method as claimed in one of claims 32 to 35, wherein groups may be formed by accumulating group formation requests from one or more vehicles or subgroups, and wherein the actual group formation is defined only when a threshold value is exceeded (source hierarchy formation V group formation).
- 25 37. The method as claimed in one of the preceding claims, wherein information when responses to requests are returned or when contents are buffer stored in transmission vehicles are combined in particular in the manner described in claim 11, so that data from a greater distance from the request originator can be resolved in a more greatly compressed/coarser form (integration).
- 38. (Area broadcast) Method as claimed in one of the preceding claims, wherein transmitted data signals are passed on analogously to the processing of requests in step [f] both along a one-dimensional channel toward a destination location and over an area into a relatively

- 44 -

large destination area, which is coded in the data signal (integration).

- 39. The method as claimed in one of the preceding claims, wherein the data signals contain information which is produced, and is transmitted in a directed or undirected manner, by a vehicle on the basis of a specific event (event broadcast).
- 10 40. The method as claimed in one of the preceding claims, wherein external data is supplied to a vehicle or to a group of vehicles for relaying in a directed or undirected manner, in which case this external data may also result in group formation (supply of external data to vehicles or groups).
 - 41. The method as claimed in one of the preceding claims, wherein information relating to a jam prediction or other traffic-relevant variables is extracted from the system and is stored externally, in which case group formation may also be initiated from inside or outside the system in order to obtain the relevant variables (extraction of traffic data).
- 42. The method as claimed in claims 40 and 41, wherein the transmitted data contains information relating to traffic connections to other traffic systems such as rail, subway, metropolitan rail, air transport and/or ship movements (intermodal traffic).
 - 43. The method as claimed in claim 40, wherein the external data contains information relating to a jam prediction (external prediction).
- 35 44. The method as claimed in one of the preceding claims, wherein information relating to a jam prediction is generated from the vehicle data signals and is sent on the basis of events which have been

30

- 45 -

recorded in the past and occur cyclically, in which case group formation can also be initiated for the purpose of cyclic jam prediction (periodical prediction).

5

10

- The method as claimed in one of the preceding 45. information relating to claims, wherein prediction is generated from the data signals extrapolation of traffic flows or simulation and is sent on the basis of events which have been recorded in the more recent past, in which case group formation can also be initiated for the purpose of simulated jam prediction (simulated prediction).
- 15 46. The method as claimed in one of the preceding claims, wherein the information relating to a jam prediction and/or to some other traffic-relevant variables is stored within a group of vehicles which can be defined, and remains in existence there 20 (persistence of jam predictions).
 - 47. The method as claimed in one of the preceding claims, wherein the vehicles are land vehicles for road or rail traffic, water craft, aircraft or other mobile manned or unmanned units which continue to move in a jointly used traffic area and which can be equipped with a limited range communication device (general vehicles).
- 30 48. The method as claimed in one of the preceding claims, wherein "vehicles" may also be special "pseudo vehicles" which have a specific communication purpose, feed data signals from the system or into the system, feed in third-party data, need not necessarily be 35 mobile, but are at least equipped with a compatible communication device (pseudo vehicles).
 - 49. The method as claimed in one of the preceding

- 46 -

claims, wherein a connection to another telecommunications network is set up via a pseudo vehicle or a station (connection to another telecommunications network).

- The method as claimed in one of the preceding 50. claims, wherein pseudo vehicles or stations which are one another by means of an external communications network are created, which produce a better connection between the vehicles or between the 10 vehicles and a transmitter/receiver which is located the traffic management system (backbone outside network).
- 15 51. The method as claimed in one of the preceding claims, wherein a general telecommunications network is created by the transmission devices of the vehicles and/or of the pseudo vehicles/stations and by the nature of the signal transmission as described in the 20 preceding claims (formation of a general telecommunications network).
- 52. The method as claimed in one of the preceding claims, wherein data relating to the first vehicle being within dangerous proximity of another vehicle which is part of the traffic management system or with a group which is part of the traffic management system is produced and/or transmitted (safety system).
- 30 53. An apparatus for determining and optimizing a route for a first vehicle which is part of a traffic management system with which further vehicles are associated, having
- a detection apparatus for detecting local vehicle data to be transmitted,
 - a transmitting/receiving apparatus for transmitting/receiving radio signals which contain respective vehicle data to be transmitted/received,

- 47 -

a field strength setting apparatus for free setting of a specific transmission field strength up to a maximum transmission field strength,

a field strength detection apparatus for detecting the field strength of the respectively received radio signals,

a memory apparatus for storing data;

a group definition apparatus which, on receiving the vehicle data of the respective vehicles, defines a group which is associated with the first vehicle,

10 group which is associated with the first vehicle, a route definition and segmentation apparatus, which uses the stored route data to define a route for the first vehicle from its current position to a chosen destination, and subdivides this into route segments,

15 and

a route optimization device, which requests vehicle data which provides information relating to the feasibility of driving on the respective route segments, from the group of vehicles, and uses vehicle

- 20 data received in response to the request to determine an optimized route (configuration of the intelligent communication apparatus).
- The claimed in claim 53, 54. apparatus as time signal producing 25 distinguished by a delay apparatus, which transmits a data signal only after the defined delay time has elapsed, as a function of a time which can be defined freely (delay delay value production I).

30

- 55. The apparatus as claimed in claim 53 or 54, distinguished by a control apparatus which can subsequently stop the transmission of the delayed data signal before the delay time has elapsed (delay production II).
- 1 page of drawings attached

DRAWINGS PAGE 1

Number:

De 199 03 909 A1

Int. Cl. 7:

G 08 G 1/01

Date of publication: August 3, 2000

