2^a Lista de Exercícios de Geometria Analítica (SMA300)

1^o Semestre de 2018

Recomendo que vocês façam os demais exercícios e discutem suas duvidas e soluções nas monitorias online no Tidia-ae.usp.br.

Nos exercícios 1-23, fixamos um sistema de coordenadas ortogonal $\Sigma=(O,E)$ do espaço \mathbb{E}^3 , com B base positiva. As coordenadas de pontos e as equações de retas e planos são dadas em relação ao sistema Σ .

Equações de retas e planos, e suas posições relativas

- 1. (a) Sejam B = (-5, 2, 3) e C = (4, -7, -6). Escreva equações nas formas vetorial, paramétrica e simétrica para reta BC. Verifique se D = (3, 1, 4) pertence a essa reta.
 - (b) Dados A=(1,2,3) e $\vec{u}=(3,2,1)$, escreva equações da reta que contém o ponto A e é paralela a \vec{u} , nas formas vetorial, paramétrica e simétrica. Obtenha dois vetores unitários dessa reta.
- 2. Sejam $A = (3, 6, -7), B = (-5, 2, 3) \in C = (4, -7, -6).$
 - (a) Mostre que A, B e C são vértices de um triângulo.
 - (b) Escreva equações paramétricas da reta que contém a mediana relativa ao vértice C.
- 3. Escreva as equações paramétricas da reta que passa pelo ponto A = (2, 0, -3) e:
 - (a) é paralela à reta que passa pelos pontos B = (1, 0, 4) e C = (2, 1, 3).
 - (b) é paralela a $s: \frac{1-x}{5} = \frac{3y}{4} = \frac{z+3}{6}$.
 - (c) é paralela à reta $s: \left\{ \begin{array}{l} x=1-2\,\lambda\\ y=4+\lambda\\ z=-1-\lambda \end{array} \right.$, para $\lambda\in\mathbb{R}$.
- 4. (a) Faça um esboço dos gráficos dos planos cujas equações gerais são dadas por:

(i)
$$x = 2$$
, (ii) $y + 1 = 0$, (iii) $z + 4 = 0$, (iv) $x - z = 0$.

- (b) Obtenha equações paramétricas dos planos coordenados.
- (c) Obtenha equações gerais dos planos coordenados.
- 5. Encontre uma equação geral, vetorial e paramétricas do plano que contém as retas r e s cujas equações na forma simétrica são dadas por r: $\frac{x-1}{2} = \frac{y}{2} = z$ e s: x 1 = y = z.
- 6. O plano π_1 contém A = (1,0,0), B = (0,1,0) e C = (0,0,1), o plano π_2 contém Q = (-1,-1,0) e é paralelo a $\vec{u} = (0,1,-1)$ e $\vec{v} = (1,0,1)$, e o plano π_3 tem equação $X = (1,1,1) + \lambda(-2,1,0) + \mu(1,0,1)$, $\lambda, \mu \in \mathbb{R}$.
 - (a) Obtenha equações gerais dos três planos.
 - (b) Mostre que a interseção dos três planos se reduz a um único ponto e determine-o.
- 7. Dadas as retas, cujas equações são dadas por:

$$r: \left\{ \begin{array}{ll} x = m \, y - 1 \\ z = y - 1 \end{array} \right. \quad s: x = \frac{y}{m} = z \quad \text{ e } \quad t: -x + z = y = -z - 1,$$

encontrar os valores de $m \in \mathbb{R}$, de modo que:

(a) as retas r e s sejam paralelas e não coincidentes;

- (b) as retas $r \in s \in t$ sejam paralelas a um mesmo plano;
- (c) as retas r e t sejam concorrentes;
- (d) as retas $r \in s$ sejam reversas.
- 8. Obtenha uma equação vetorial da reta s que contém o ponto P=(1,1,0), é paralela ou está contida no plano dado por $\pi:2x+y-z-3=0$ e é concorrente a reta dada por $r:(x,y,z)=(1,0,0)+\lambda(-1,0,1)$, para $\lambda\in\mathbb{R}$.
- 9. Encontre a projeção do ponto P=(1,4,0) sobre o plano dado por $\pi: x+y-2z+1=0$, paralelamente à reta dada por $r: (x,y,z)=(0,0,0)+\lambda(1,4,1)$, para $\lambda\in\mathbb{R}$.
- 10. Obtenha as equações do lugar geométrico dos pontos médios dos segmentos que tem extremidades nos planos dados por $\pi_1: 2x-3y+3z-4=0$ e $\pi_2: x=y-z+2=0$.
- 11. O plano π contém a reta $r: X = (1,1,0) + \lambda(1,2,3)$ e é transversal aos eixo coordenados Oy e Oz, interceptando-os, respetivamente, nos pontos A e B. Obtenha a equação geral de π , sabendo que O, A e B são vértices de um triângulo isósceles.
- 12. Dados os planos $\pi_1: x-y+z+1=0, \ \pi_2: x+y-z-1=0$ e $\pi_3: x+y+2z-2=0,$ encontre uma equação geral do plano que contém $\pi_1 \cap \pi_2$ e é perpendicular ao plano π_3 .
- 13. Obtenha um vetor normal ao plano π em cada caso:
 - (a) π contem $A = (1, 1, 1), B = (1, 0, 1) \in C = (1, 2, 3).$
 - (b) $\pi := X = (1, 2, 0) + \lambda(1, -1, 1) + \mu(0, 1, -2), \lambda, \mu \in \mathbb{R}.$
 - (c) $\pi: x 2y + 4z + 1 = 0$.

Medida angular

- 14. Obtenha equações da reta r que contém o ponto P=(1,1,1) e é concorrente com s: x=2y=2z sabendo que o co-seno da medida angular entre r e s é igual a $\frac{1}{\sqrt{3}}$.
- 15. Obtenha a medida angular em radianos entre a reta $r: X = (1,0,0) + \lambda(1,1,2)$ e o plano $\pi: x+y-z-1=0$.
- 16. Obtenha uma equação geral do plano que contem r: x=z+1=y+2 e forma um ângulo $\theta=\pi/3$ com o plano $\pi: x+2y-3z+2=0$.
- 17. Encontre as coordenadas do ponto simétrico do ponto $P=(1\,,4\,,2)$ em relação ao plano $\pi:x-y+z-2=0$.

Distâncias

- 18. Dados o ponto $A=(0\,,2\,,1)$ e a reta $r:X=(0,2,-2)+\lambda(1,-1\,,2)$, ache os pontos da reta r que distam $\sqrt{3}$ do ponto A. A distância do ponto A à reta r é maior, menor ou igual a $\sqrt{3}$? Porque?
- 19. Determine os pontos da reta $r: X = (0,1,1) + \lambda(1,1,2)$ que equidistam dos planos $\pi_1: x+2y-z-3=0$ e $\pi_2: x-y+2z=1$.
- 20. Mostre que o lugar geométrico dos pontos do espaço que são equidistantes de dois pontos distintos A e B é o plano que contém o ponto médio do segmento AB e é perpendicular a reta AB.
- 21. (a) Prove que o lugar geométrico dos ponto do espaço que são equidistantes de A=(2,1,1), B=(-1,0,1) e C=(0,2,1) é uma reta e obtenha uma equação vetorial para ela.
 - (b) Mostre que a reta no item (a) é perpendicular ao plano ABC.

- 22. Obtenha as equações do lugar geométrico dos pontos do espaço que são equidistantes das retas r, s e t dadas por r: $\begin{cases} x=4 \\ y+z=3 \end{cases}, s: \begin{cases} 3x+y+z=0 \\ x-y-z=0 \end{cases}, t: x-y=x+z=1+z \; .$
- 23. Encontre uma equação geral do plano que contém os pontos A=(1,1,1) e B=(0,2,1) e é equidistante dos pontos C=(2,3,0) e D=(0,1,2).

Mudança de sistema de coordenadas

- 24. Sejam $\Sigma_1=(O,E)=(O\,,\vec{e_1}\,,\vec{e_2}\,,\vec{e_3})$ e $\Sigma_2=(O,F)=\left(O^{\,\prime}\,,\vec{f_1}\,,\vec{f_2}\,,\vec{f_3}\right)$ dois sistemas de coordenadas do espaço, tais que $\vec{f_1}=\vec{e_1},\,\vec{f_2}=-\vec{e_3},\,\vec{f_3}=\vec{e_2}$ e $O^{\,\prime}=(1,0,0)_{\Sigma_1}$. Obtenha as equações paramétricas da reta $r:(x\,,y\,,z)_{\Sigma_1}=(0\,,0\,,0)_{\Sigma_1}+\lambda(0\,,1\,,1)_E$ em relação ao sistema Σ_2 .
- 25. Idem, sendo $\vec{f_1} = \vec{e_1} + \vec{e_2}$, $\vec{f_2} = \vec{e_2}$, $\vec{f_3} = \vec{e_2} + \vec{e_3}$ e $O' = (1, 1, 1)_{\Sigma_1}$ e $r : (x, y, z)_{\Sigma_1} = (0, 0, 0)_{\Sigma_1} + \lambda(0, 1, 1)_E$.
- 26. Seja $\pi: [2x-y+z=0]_{\Sigma_1}$. Obtenha uma equação geral do plano π , em relação aos sistemas de coordenadas dos Exercícios 24 e 25.