CHAPTER 6 REPORT

6.1 Mean Imputation

The mean imputation Method is use to fill the Missing data. We have missing data in Temperature And Humidity.

Dataset:

Year	Name of the Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2001	Balsore	78	63	72	70	72	79	88	83	78	76	76	63
2001	Chandbali	91	80	86	75	75	86	93	89	83	77	90	90
2001	Cuttack	91	83	83	75	71	82	89	86	79	84	85	83
2001	Paradeep	88	86	82	83	79	83	90	87	81	82	89	78
2001	Bhubaneswar	89	81	80	71	71	83	94	91	85	84	85	73
2001	Gopalpur	91	82	80	86	76	85	88	86	84	85	88	78
2001	Puri	85	84	81	84	83	85	92	90	84	82	86	74
2001	Angul	89	50	NA	NA	57	75	90	NA	NA	65	85	55
2001	Baripada	91	80	NA	NA	82	76	92	85	83	89	90	78
2001	Jharsuguda	78	61	37	42	48	80	87	85	81	79	73	69
2001	Keonjhar	77	67	59	43	62	80	87	87	80	82	78	61
2001	Sambalpur	83	68	61	66	50	82	85	87	83	82	82	76
2001	Sundargarh	60	NA	NA	46	41	84	NA	90	NA	NA	NA	NA
2001	Bhawanipatna	40	NA	43	NA	50	NA	NA	NA	NA	NA	80	55
2001	Bolangir	NA	NA	NA	NA	42	NA						
2001	Koraput	NA	NA	NA	NA	65	NA						
2001	Phulbani	88	78	78	67	61	84	90	86	83	85	85	78
2001	Titlagarh	NA	NA	NA	NA	43	NA	NA	NA	NA	65	NA	NA

Fig, 6.1

The above dataset contain Humidity with missing data

As you can see we have many missing data, to cheack does missing data we have used the function as: sapply(dataset, function(dataset) sum(is.na(dataset)))

sapply(dataset, fur	nction(dataset) sum(is.na(dataset)))		
Year 1	Name.of.the.Station	Jan	Feb	
0	0	3	5	
Маг	Арг	May	Jun	
6	6	0	4	
Jul	Aug	Sep	0ct	
5	5	6	4	
Nov	Dec			
4	4			

Fig. 6.2

(It shows how many missing data are there in every month)

But, after applying the mean Imputation Meathod

Year Name.of.the.Station	lan	Feb	Mar	Apr	May	Jun	Jul		Aug	Sep	Oct 1	Nov	Dec
				•	_								
2001 Balsore	78	63	72	70	72	2 7	9	88	83	78	76	76	
2001 Chandbali	91	80	86	75	75	5 8	6	93	89	83	77	90	90
2001 Cuttack	91	83	83	75	71	1 8	2	89	86	79	84	85	83
2001 Paradeep	88	86	82	83	79	9 8	3	90	87	81	82	89	78
2001 Bhubaneswar	89	81	80	71	71	1 8	3	94	91	85	84	85	73
2001 Gopalpur	91	82	80	86	76	6 8	5	88	86	84	85	88	78
2001 Puri	85	84	81	84	83	3 8	5	92	90	84	82	86	74
2001 Angul	89	50	70.1666667	67.33333333333333	57	7	5	90	87.07692308	82	65	85	55
2001 Baripada	91	80	70.1666667	67.33333333333333	82	2 7	6	92	85	83	89	90	78
2001 Jharsuguda	78	61	37	42	48	8	0	87	85	81	79	73	69
2001 Keonjhar	77	67	59	43	62	2 8	0	87	87	80	82	78	61
2001 Sambalpur	83	68	61	66	50	8	2	85	87	83	82	82	76
2001 Sundargarh	60	74.0769230769231	70.1666667	46	41	1 8	4 89.61	153846154	90	82	79.78571428571	33.714285714	72.214285714
2001 Bhawanipatna	40	74.0769230769231	43	67.33333333333333	50	81.714285714	3 89.61	153846154	87.07692308	82	79.78571428571	80	55
2001 Bolangir	81.266666666667	74.0769230769231	70.1666667	67.33333333333333	42	81.714285714	3 89.61	153846154	87.07692308	82	79.78571428571	33.714285714	72.214285714
2001 Koraput	81.266666666667	74.0769230769231	70.1666667	67.33333333333333	65	81.714285714	3 89.61	153846154	87.07692308	82	79.78571428571	33.714285714	72.214285714
2001 Phulbani	88	78	78	67	61	1 8	4	90	86	83	85	85	78
2001 Titlagarh	81.266666666667	74.0769230769231	70.1666667	67.3333333333333	43	81.714285714	3 89.61	153846154	87.07692308	82	65 8	33.714285714	72.214285714

Fig. 6.3

The above dataset contain Humidity with filled missing data

To see the missing value is filled or not we have used the function as:

sapply(dataset, function(dataset) sum(is.na(dataset)))

Fig. 6.4

Its shows all the missing values is successfully filled the coloum with a mean values.

The Above Example is only for 2001 like this we did this for all other year 2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012

6.2 K-mean

K-means clustering is a type of unsupervised learning, which is used when you have unlabeled data (i.e., data without defined categories or groups). The goal of this algorithm is to find groups

in the data, with the number of groups represented by the variable K. The algorithm works iteratively to assign each data point to one of K groups based on the features that are provided.

K-mean clustering algorithm is applied on the dataset to cluster the different districts of Karnataka which are having similar rain fall, temperature and soil type.

Before Appling Kmeam algorithm elbow method is used to determined the optimal number of cluster.

The **Elbow method** is a method of interpretation and validation of consistency within cluster analysis designed to help finding the appropriate number of clusters in a dataset.

• We got the optimal number of cluster is 5

Fig.6.6

Output of k-means clustering

The District of Odisha are cluster into 5 group based on there agriculture Condition.

This is the result of K-means

 $(between_SS / total_SS = 66.7 \%)$

K-means clustering with 5 clusters of sizes 7, 4, 9, 7, 3

```
Cluster means:
                           Humidity
   Rain_Fall
                   Temp
1 -0.1526810 0.5564808 -0.2266155
  0.1042226 -1.7807240
                         0.5299351
3 -0.6553708 -0.3877486 -0.9208858
  0.2540161 1.1170087
                         1.2591843
  1.5907003 -0.3672644 -0.3532498
Clustering vector:
                                                                                 Boudh
        Angul
                    Balangir
                                  Balasore
                                                 Bargard
                                                                Bhadrak
      Cuttack
                    Deogarh
                                 Dhenkana1
                                                Gajapati
                                                                 Ganjam Jagatsinghpur
                                                Kandhamal
      Jajapur
                  Jharsuguda
                                 Kalahandi
                                                             Kendrapada
                                                                             Kendujhar
                                Malkangiri
      Khordha
                     Koraput
                                              Mayurbhamj
                                                             Nabar anpur
                                                                               Nayagrh
            3
                                                                      5
                           1
                                         3
                        Puri
      Nuapada
                                  Rayagada
                                                Sambalpur
                                                                 Sonpur
                                                                            Sundargarh
                                                                      3
Within cluster sum of squares by cluster:
[1] 4.064010 5.701012 8.033891 8.834821 2.319774
```

Fig.6.7

To apply the PAM calculation on the dataset, at first client need to give k (Number of bunches), where k is given as 3 in current examination. Harvest yield is Categorized into LOW, MODERATE and HIGH generation. Add up to areas are bunched into 3 groups utilizing PAM grouping strategy.. Total districts are clustered into 3 clusters using PAM clustering method. The pam algoritheam is to Grouped into 3 groud bested on there Production.

Rice crop production

Study and analysis of wheat crop production in different districts of odisha as shown in (fig. 9)

Fig 6.8

The result of Pam:

Low-moderate production	High production	Moderate-high production
Anugul,Boudh,Deogard, Gajapati,Jharsuguda,Kan dhamal,Rayagada	Balangir,Baleshwer,D argard,Ganjam,Kalah andi,Mayurbhanj,Sun dargard	Cuttack, Dhenkanal, Jagatsing hapur, Jajpur, Kendrapara, Khe ndujhar, Khordha, Koraput, Mal kangiri, Nabarangpur, Nayagar h, Nuapada, Sambalpur

Table 1

Wheat crop production

Study and analysis of wheat crop production in different districts of Odisha..

Wheat production in Diffent district of Odisha

Fig. 6.10

Pie chart of wheat production of different state

Fig. 6.11
Output of PAM

Low-moderate production	High production	Moderate-high production
Anugul,boudh,Cuttack,De ogrh,Dhenkanal,Jagatsing hapur,Jajpur,Kalahandi,Ka ndhamal,Kendrapara,Khor dha,Koraput,Nabaranpur, Nayagard,Nuapada,PuriR ayagada,sonepur	Sundargard	Balangir,Baleshwar,Barga rd,Jharsuguda,Kendujhar, Mayurbhahanj,Sambalpur

Table 2

Result of PAM

Groundnut crop production

Study and analysis of Groundnut crop production in different districts of Odisha.

Fig. 6.12

Pie chart of groundnut production of different district

Fig. 6.13

Output of PAM

Result of Pam:

Low-moderate production	High production	Moderate-high production
Boudh, Deogard, Jagatsi nghapur, Jharsuguda, Ka ndhamal, Gajapati, Kend ujhar, Khordha, Koraput, Nabarangpur, Nayagarh, Nuapada, Rayagada, Sa mbalpur, Sonepur, Sunda rgard	Jajpur,Bargard	Anugul,Balangir,Balesh war,Cuttak,Dhenkanal,K alahandi,Ganjam,Kendr apada,Malkangiri,Mayur bhanj,Puri

Table 3

Ragi crop production

Study and analysis of Ragi crop production in different districts of Odisha.

Ragi production in Diffent district of Odisha

Fig. 6.14

Pie chart of ragi production of different district

Fig. 6.15
Output of PAM

Result of PAM

Low-moderate production	High production	Moderate-high production
Anugul,Balangir,Barga rh,Boudh,Cuttack,Deo garh,Denkanal,Jagatsi ngapur,Jharsuguda,K alahandi,Kamdamal,K hordha,Nabarangpur, Nayagarh,Nuapara,Pu ri,Sambalpur,sonepur, Sundargard	Koraput	Rayagada

Table 4

Urad crop production

Study and analysis of Urad crop production in different districts of Odisha.

Fig. 6.16

Pie chart of Urad Production of different district

(Fig. 6.17)

Output of PAM

Low-moderate production	High production	Moderate-high production
Anugul,Baleshwar,Bo udh,Deogarh,Dhenka nal,Gajapati,Jagatsing hapur,Jharsuguda,Ka ndhamal,Mayurbhanj, Rayagard,Sambalpur, Sundargard	Sonepur	Nayagard, Nabangapu r, Puri, Baragarh, Jajpur, Kendrapada, Kalahand i, Balangir, Baleshwar, Ganjam,

Table 5

Result of PAM

Sugarcane crop production

Study and analysis of Sugarcane crop production in different districts of Odisha.

Fig. 6.18

Pie Chart of sugarcane production of different district

Fig.6.19
Output of PAM

Result of Pam:

Low-moderate production	High production	Moderate-high production
Anugul,Baleshwar,Bo udh,Deogard,Jagatsin ghapur,Kandhamal,G anjam,Kendrapara,Ke ndujhar,Mayurrbhanj, Nuapada,Puri,Rayaga da,Sambalpur,Sonepu r,Sundargarh	Cuttack,Jajpur,Korapu t,Nayagarh,Nabarang pur	Balangir,Bargarh,Dhe nkanal,Jharsuguda,Ka lahandi,Gajapati,Khor dha,

Table 6

6.4 CLARA

Districts in the dataset are clustered into 3 clusters using CLARA algorithm. It represents the districts which are having similar factors like area, production, rainfall and temperature.

Rice

Study and analysis of temperature and Rice crop production in different districts of Odisha

Dept. of M.Sc.(IT)

Output of CLARA

Result of Clara:

Large area, production and moderate rainfall, temperature (24–26)	Moderate area, production and high rainfall, temperature (27–29)	Low area, production moderate rainfall, temperature (29–30)
Deogard, Dhenkanal, Boudh, Kendujhar, Gajapati, Anugul, Kandhamal	Khordha, Nabarangapur, Sonepur, Balangir, Balesh war, Nayagard, Malgangiri Cuttack, Nuapada, Rayag ada, Sundargarh, Sambal pur, Puri, Jagatsingpur, Jh arsuguda, Koraput, Jajpur	Gangam,Kalandi,Bargah ,Mayurbhanj

Table 7

Plot of temperature vs. Rice production

Fig.6.21

Plot Rainfall vs.Rice Production

Fig. 6.22

Plot Humidity vs.Rice Production

Fig. 6.23

Plot Soil vs.Rice Production

Fig.6.24

Optimal parameters to achieve higher Rice production

Optimal temp	28-29
Worst temp	31
Rainfall	1200-1500
Humidity	68-76
Soil	Literite, red, red and black, Alluvial, Brown forest, Saline Soil

Table 8

Wheat

Study and analysis of temperature and Wheat crop production in different districts of Odisha

Output of CLARA

Result of Clara

Large area, production and moderate rainfall, temperature (24–26)	Moderate area, production and high rainfall, temperature (27–29)	Low area, production moderate rainfall, temperature (29–30)
Deogard, Dhenkanal, Bou dh, Kendrapara, Kalahand i, Jharsunguda	Kendujhar,Bargarh,Anug ul,BaleshwarKoraput,Na yagard,Nabarangpur,Son epur,Nuapada,Rayagada ,puri,jajpur,Kandhamal,J agatsinggpur	sundargard

Table 9

Plot temperature vs. Wheat production

Fig.6.26

Plot Rainfall vs. Wheat Production

Fig. 6.27

Plot Humidity vs. Wheat production

Fig.6.28

Plot Soil vs.Wheat Production

Optimal parameters to achieve higher Wheat production

Optimal temp	25-27
Worst temp	29
Rainfall	1400-1500
Humidity	65-70
Soil	Red , Literite ,Red And yellow Soil

Table 10

Groundnut

Study and analysis of temperature and Groundnut crop production in different districts of Odisha

Result of Clara

Dept. of M.Sc.(IT)

Output of CLARA

Large area, production and moderate rainfall, temperature (24–26)	Moderate area, production and high rainfall, temperature (27–29)	Low area, production moderate rainfall, temperature (29–30)
Anugul, Nuapada, malkan giri, Sonepur, Nabarangpu r, Kalahandi, Koraput, May urbhanj, Puri, Cuttack, Bal eshwar, Sundargarh	Deogard,Ganjam,dhenka nal,Kendujhar,Boudh,Jag atsingapur,Gajapati,Nay agarhBalangir	Bargarh,jajpur

Table 11

Plot temperature vs. Groundnut production

Fig.6.31

Plot Rainfall vs. Groundnut production

Fig.6.32

Plot Humidity vs. Groundnut production

Fig.6.33

Plot Soil vs. Groundnut production

Fig.6.34

Optimal parameters to achieve higher Groundnut production

Optimal temp	25-27
Worst temp	28
Rainfall	1300-1600
Humidity	75-90
Soil	Aluuvial , Literite soil

Table 12

Ragi

Study and analysis of temperature and Ragi crop production in different districts of Odisha

Fig.6.35
Output of CLARA

Large area, production and moderate rainfall, temperature (24–26)	Moderate area, production and high rainfall, temperature (27–29)	Low area, production moderate rainfall, temperature (29–30)
ANUGUL,BALANGIR,RAYAGADA, NUAPADA,NAYAGARH,PURI, CUTTACK,JAGATSINGHPUR, SUNDARGARH,SONEPUR, NABARANGPUR,JHARSUGUDA, SAMBHALPUR	DEOGARH,DHENKANAL,BOUDH, KALAHANDI,KANDHAMAL, KHORDHA,BARGHA	KORAPUT

Table 13

Plot temperature vs. Ragi production

Fig.6.36

Plot Rainfall vs.Ragi Production

Fig.6.37

Plot of Humidity vs Ragi. Production

Fig.6.38

Plot of Soil vs Ragi Production

Dept. of M.Sc.(IT) Page 110

Optimal parameters to achieve higher Ragi production

Optimal temp	22-25
Worst temp	28
Rainfall	1400-1500
Humidity	70-73
Soil	Red Soil

Table 14

Urad:

Study and analysis of temperature and Urad crop production in different districts of Odisha.

Fig.6.40

Output of CLARA

Result of Clara

Large area, production and moderate rainfall, temperature (24–26)	Moderate area, production and high rainfall, temperature (27–29)	Low area, production moderate rainfall, temperature (29–30)
GANJAM,PURI,ANUGUL,	DHENKANAL,BOUDH,	SONEPUR
BARGARH,CUTTACK,MALKANGRI	KALHANDI,KENDUJHAR,	
,BALANGIR,JADATSINGHPUR,	GAJAPATI,DEOGARH,	
NABARANGPUR,JHARSUGUDA,	KHORDHA,KANDHAMAL	
NUAPADA,JAJAPUR,KORAPUT,		
KENDRAPARA,NAYAGARH,		
RAYAGADA,SUNDARGARH		

Table 15

Plot temperature vs. Urad production

Fig 6.41

Plot Rainfall vs. Urad production

Fig.6.42

Plot Humidity vs. Urad production

Fig. 6.43

Plot Soil vs. Urad production

Fig.6.44

Optimal parameters to achieve higher Urad production

Optimal temp	26-27
Worst temp	29
Rainfall	1400-1500
Humidity	75-95
Soil	ALLUVIAL SOIL &LITERITE SOIL &BLACK

Table 16

SUGERCANE:

Study and analysis of temperature and Sugercane crop production in different districts of Odisha.

Result of Clara

Large area, production and moderate rainfall, temperature (24–26)	Moderate area, production and high rainfall, temperature (27–29)	Low area, production moderate rainfall, temperature (29–30)
PURI,JHARSUGUDA,ANUGUL, SUBDARGARH,KALAHANDI, BALESHWAR,KENDRAPARA, MAYURBHANJ,SONEPUR, RAYAGADA,SHAMBHALPUR	BARGARH,BALABGIR,KHORDHA, BOUDH,DHENKANAL,GANJAM, GAJAPATI,JAGATSINGHPUR, KENDUJHAR,DEOGARH	CUTTACK,KORAPUT,JAJAPUR, NABARANGPUR,NAYAGARH

(Table 17)

Result of CLARA

Plot temperature vs. Sugarcane production

Fig.6.46

Plot Rainfall vs. sugarcane production

Fig.6.47

Plot Humidity vs. Sugarcane production

Fig.6.48

Plot Soil vs. Sugarcane production

Fig.6.49

Optimal parameters to achieve higher sugarcane production

Optimal temp	27.5-28
Worst temp	30
Rainfall	1200-1500
Humidity	68-76
Soil	Red Soil

Table 18

6.5 Multiple Linear Regression:

Before applying the multiple linear regression, the "p value test" is performed on the dataset to determine the significant attributes. Table 3 depicts the significant values. An independent variable which has a "p value" of less than 0.05, specifies that the "null-hypothesis" can be rejected means it will have effect on regression analysis. So these independent values can be added to the model. Whereas if the p value is more than common alpha level i.e. 0.05, the variable will said to be not significant to the model.

*Our dataset contend character data as soil type First we have to convert the character data to number

Soil type	Nunber
RED AND YELLOW SOIL&RED SOIL	1
BLACK SOIL &RED SOIL	2
ALLUVIAL SOIL & LITERITE SOIL & SALINE SOIL	3
LITERITE SOIL & RED SOIL & RED AND BLACK	4
SOIL	
ALLUVIAL SOIL & LITERITE SOIL &SALINE SOIL	5
SALINE SOIL & LITERITE SOIL & ALLUVIAL SOIL	6
ALLUVIAL SOIL & LITERITE SOIL & BLACK	7
RED SOIL & RED AND YELLOW SOIL	8
RED SOIL & LITERITE SOIL	9
LITERITE SOIL & BROWN FOREST	10
ALLUVIAL SOIL & BLACK & BROWN FOREST &	11
SALINE SOIL	

ALLUVIAL SOIL & LITERITE SOIL	12
ALLUVIAL SOIL & SALINE SOIL	13
ALLUVIAL SOIL & LITERITE SOIL & RED SOIL	14
RED SOIL	15
RED SOIL & LITERITE SOIL & ALLUVIAL SOIL	16
ALLUVIAL SOIL & BLACK& RED SOIL	17
BLACK SOIL & RED SOIL	18
RED AND BLACK SOIL & RED AND YELLOW SOIL	19
RED SOIL & BLACK SOIL & BROWN FOREST	20
RED SOIL & LITERITE SOIL & RED AND YELLOW	21
SOIL	

Table 19

P value test: significant attributes

Rice:

```
Coefficients:
              0.5116
(Intercept)
            -1.123e+05
             5.972e-01
                         5.337e-02
                                    11.190
                                              <2e-16
                                                     ***
             4.457e+01
                         5.671e+03
                                     0.008
                                              0.9937
Avg_temp
                                     1.332
                         2.102e+01
                                              0.1838
Rainfall
             2.799e+01
Humidity
             1.180e+03
                         9.711e+02
                                     1.215
                                              0.2251
soil2
             2.907e+04
                         2.875e+04
                                     1.011
                                              0.3125
soil3
             4.610e+04
                         3.093e+04
                                     1.490
                                              0.1370
soil4
                                              0.0255
             7.137e+04
                         3.182e+04
                                     2.243
                                     1.736
soil5
             7.082e+04
                                              0.0834
                        4.080e+04
soil6
             9.119e+03
                         3.697e+04
                                     0.247
                                              0.8053
soil7
             1.994e+04
                         3.764e+04
                                     0.530
                                              0.5966
Soil8
            -4.474e+03
                         3.973e+04
                                    -0.113
                                              0.9104
                         3.031e+04
             9.478e+03
                                              0.7547
50il9
                                     0.313
Soil10
             5.590e+03
                         4.185e+04
                                     0.134
                                              0.8938
50il11
             1.184e+05
                         3.824e+04
                                     3.096
                                              0.0021
             1.354e+04
50il12
                         3.726e+04
                                     0.363
                                              0.7166
                                              0.7040
Soi 113
             1.391e+04
                         3.658e+04
                                     0.380
Soil14
             3.879e+04
                         4.105e+04
                                     0.945
                                              0.3453
soil15
             2.431e+04
                         3.620e+04
                                     0.671
                                              0.5024
soil16
             5.971e+04
                         3.667e+04
                                     1.628
                                              0.1043
Soi 117
             1.534e+04
                         3.959e+04
                                              0.6985
                                     0.388
                                              0.7948
Soi 118
             9.470e+03
                         3.638e+04
                                     0.260
50il19
             3.535e+04
                         3.675e+04
                                     0.962
                                              0.3368
50i120
             6.133e + 04
                         3.643e + 04
                                     1.683
                                              0.0931
                         3.722e+04
Soi 121
             2.684e+04
                                     0.721
                                              0.4713
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
```

Fig.6.50

Wheat

```
Estimate Std. Error t value Pr(>|t|)
46.45932 197.83296 1.751 0.083060
                                        1.751 0.083060
              346.45932
(Intercept)
                1.37073
                             0.04534
                                       30.231
                                                < 2e-16
                                                         ***
                                       -0.742 0.460079
               -5.09696
                             6.87228
Avg_temp
Rainfall
                0.01046
                             0.02367
                                        0.442
                                               0.659616
Humidity
                             1.19805
                                       -2.470 0.015257
               -2.95921
Soil2
               -5.35819
                            30.75746
                                       -0.174 0.862065
                           34.75260
              -40.84025
                                       -1.175 0.242803
Soil3
Soil4
               15.15774
                            33.53237
                                        0.452
                                               0.652254
Soil5
             -159.41174
                           40.23395
                                       -3.962 0.000142
soil6
               -6.66899
                           38.61440
                                       -0.173 0.863241
                                        0.283 0.777809
Soil7
               11.39256
                           40.26178
Soil8
               19.41335
                            39.04194
                                        0.497
                                               0.620143
Soil9
               15.12834
                                        0.463 0.644637
                            32.69785
Soil12
              -11.12140
                            39.87988
                                       -0.279 0.780936
                                       -0.077
Soi 113
               -3.01006
                           38.88510
                                               0.938458
Soil14
              -22.32050
                            44.84823
                                       -0.498 0.619829
               -1.86366
soil15
                           38.37956
                                       -0.049 0.961371
soil16
              -26.62574
                           43.94131
                                       -0.606 0.545971
              -14.48694
                           40.96483
Soil17
                                       -0.354 0.724374
              -17.73805
45.28650
                            50.97662
                                       -0.348
Soil18
                                               0.728621
Soil19
                            39.61640
                                        1.143 0.255800
                 7.50412
Soi 120
                            38.65292
                                        0.194 0.846471
Soil21
              370.52019
                            54.64022
                                        6.781 9.38e-10
```

Fig.6.51

Ragi

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.265e+03
                         1.312e+03
                                     -1.726
                                               0.0861
             7.019e-01
                         1.142e-02
                                     61.485
                                               <2e-16
                                                      ***
Area
                         4.374e+01
                                      1.723
                                               0.0867
             7.535e+01
Avg_temp
Rainfall
             2.233e-01
                         1.552e-01
                                      1.439
                                               0.1520
Humidity
                         7.047e+00
                                     -0.111
                                               0.9114
            -7.856e-01
soil2
            -2.704e+02
                         2.307e+02
                                     -1.172
                                               0.2427
Soil3
             1.620e+01
                         2.713e+02
                                      0.060
                                               0.9524
50il4
            -4.901e+01
                         2.716e+02
                                     -0.180
                                               0.8570
soil6
             1.369e+01
                         2.829e+02
                                      0.048
                                               0.9615
            -1.237e+02
Soil7
                         3.145e+02
                                     -0.393
                                               0.6947
Soil8
            -2.234e+01
                         5.400e+02
                                     -0.041
                                               0.9670
Soil9
             2.670e+01
                         2.547e+02
                                      0.105
                                               0.9166
Soil10
            -1.957e+01
                         2.518e+02
                                     -0.078
                                               0.9381
50il11
             3.455e+02
                         2.546e+02
                                      1.357
                                               0.1766
Soil14
             4.888e+01
                         2.677e+02
                                      0.183
                                               0.8553
50il15
             6.318e+00
                         2.768e+02
                                      0.023
                                               0.9818
Soil17
            -2.374e+01
                         2.713e+02
                                     -0.087
                                               0.9304
50il18
                                     -1.454
            -3.711e+02
                         2.552e+02
                                               0.1477
50il19
            -1.852e+01
                         2.729e+02
                                     -0.068
                                               0.9460
Soi120
            -5.155e+01
                         5.300e+02
                                     -0.097
                                               0.9226
                         2.661e+02
Soi 121
             3.042e+01
                                      0.114
                                               0.9091
Signif. codes:
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Fig.6.52

Udar

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.686e+02
                         4.535e+02
                                      -1.695
                                               0.0911
Area
              3.156e-01
                         5.085e-03
                                      62.050
                                              < 2e-16
                                       1.345
Avg_temp
              2.058e+01
                         1.530e+01
                                               0.1794
                          5.888e-02
Rainfall
              1.576e-01
                                       2.677
                                               0.0078
Humidity
             -1.894e+00
                          2.532e+00
                                      -0.748
                                               0.4550
Soil2
             -3.308e+01
                          7.331e+01
                                      -0.451
                                               0.6521
Soil3
              1.921e+02
                          7.714e+01
                                       2.491
                                               0.0132
Soil4
              8.862e+01
                          8.184e+01
                                       1.083
                                               0.2796
Soil5
              1.527e+02
                          9.311e+01
                                       1.640
                                               0.1020
soil6
              1.174e+02
                          9.301e+01
                                       1.262
                                               0.2078
                                             3.83e-07
Soil7
              4.969e+02
                          9.591e+01
                                       5.181
                                                       ***
Soil8
              1.441e+02
                          9.077e+01
                                       1.587
                                               0.1134
Soil9
             1.353e+02
                          7.521e+01
                                       1.799
                                               0.0730
Soil10
             -5.484e+01
                          1.005e+02
                                      -0.546
                                               0.5858
Soil11
             -1.002e+02
                          9.374e+01
                                      -1.069
                                               0.2860
Soil12
             1.391e+02
                          9.402e+01
                                       1.479
                                               0.1400
              5.461e+02
Soil13
                          1.028e+02
                                       5.312 1.99e-07
              2.882e+01
                          1.016e+02
Soi 114
                                       0.284
                                               0.7768
Soil15
              1.021e+02
                          9.248e+01
                                       1.104
                                               0.2706
Soil16
              1.197e+02
                          8.964e+01
                                       1.335
                                               0.1827
Soil17
             -7.125e+01
                          1.005e+02
                                      -0.709
                                               0.4788
Soil18
              8.416e+01
                          8.957e+01
                                       0.940
                                               0.3481
Soil19
              1.117e+02
                          9.286e+01
                                       1.203
                                               0.2298
Soi 120
              1.578e+02
                          1.037e+02
                                       1.523
                                               0.1288
Soi 121
              5.006e+01
                          1.002e+02
                                       0.500
                                               0.6176
                 O '***'
                         0.001 '**' 0.01 '*' 0.05 '.'
Signif. codes:
                                                         0.1
```

Fig.6.53

Sugarcane

```
coefficients:
                                                  Pr(>|t|)
0.50797
< 2e-16
                                 Error
                 Estimate
                           std.
                                         t value
(Intercept) -16842.294
                             25363.359
                                          -0.664
                   57.889
Area
                                 1.863
                                          31.076
                  928.170
                                           1.070
                               867.645
                                                    0.28693
Avg_temp
                  -1.588
-89.278
Rainfall
                                  3.216
                                          -0.494
                                                    0.62231
                              145.617
4384.246
Humidity
                                          -0.613
                                                    0.54100
soil2
                -2460.328
                                                    0.57575
soil3
                              4451.721
                                           0.356
                                                    0.72269
                 1583.561
                 5118.506
                                                    0.27222
soil4
                              4639.827
                                           1.103
Soil5
Soil6
                              5369.532
5353.291
                                           0.095
                                                    0.92411
                  512.618
                  465.722
                                           0.087
                                                    0.93082
soil7
                -1476.616
                              6281.392
                                           0.235
                                                    0.81456
soil8
                 171.357
                              5408.388
                                          -0.032
                                                    0.97478
                1968.623
                                                    0.66124
50il9
50il10
                              4481.042
                                           0.439
                 -192.073
                              5381.759
                                          -0.036
                                                    0.97159
                                           3.275
soil11
               19443.452
                              5936.853
                                                    0.00139
50il12
                -2988.323
                              5543.895
                                          -0.539
                                                    0.59089
Soil13
Soil14
                 -810.099
                              5385.861
                                          -0.150
                                                    0.88070
                              5455.816
               377.099
45702.586
                                           0.069
7.147
                                                   0.94501
8.21e-11
Soi 115
                              6394.854
soil16
                  684.368
                              5354.519
                                           0.128
                                                    0.89852
Soil17
Soil18
                                                    0.03623
               13328.725
                              6290.828
                                           2.119
                  611.420
                              5354.468
                                           0.114
                                                    0.90928
Soi 119
                 1123.173
                              5420.763
                                                    0.83622
Soi 120
                 1224.495
                              5358.930
                                           0.228
50il21
                  995.145
                              5363.221
                                           0.186
                                                    0.85312
Sianif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
                                                                0.1
```

Fig.6.54

Groundnut:

```
ESTIMATE STO. Error t Value Pr(>|t|)
(Intercept) 1352.3531 1412.3219
                                     0.958
                                               0.339
                                            < 2e-16 ***
Area
                1.1457
                           0.0186
                                    61.594
              -77.1117
                          46.8808
                                    -1.645
                                               0.101
Avg_temp
                                     1.221
                                               0.223
Rainfall
               0.2065
                           0.1691
               4.3046
                           7.6013
                                     0.566
                                               0.572
Humidity
                                               0.412
Soil2
             170.0260
                         206.9050
                                     0.822
Soil3
               57.2742
                                     0.217
                                               0.828
                         264.1762
                                               0.200
Soil4
                         247.9800
                                    -1.283
            -318.1476
                                     0.397
             138.5260
                                               0.692
Soil5
                         349.1975
                         263.3080
                                     0.474
Soil6
             124.6981
                                               0.636
                                     0.300
                                               0.765
Soil7
              83.6738
                         279.1648
Soil8
             185.3340
                         288.7881
                                     0.642
                                               0.521
Soil9
             183.5617
                         220.1503
                                     0.834
                                               0.405
Soil10
             203.0975
                         264.6932
                                     0.767
                                               0.443
                         265.3468
                                              0.190
Soil11
             348.4226
                                     1.313
Soil12
            1618.4513
                         315.2728
                                     5.133 4.88e-07
Soil13
            -149.6681
                         372.3013
                                    -0.402
                                              0.688
             163.3745
                         320.2033
                                     0.510
                                              0.610
Soil14
Soil15
             101.0348
                         261.6306
                                     0.386
                                              0.700
Soil16
             235.9675
                         262.4783
                                     0.899
                                              0.369
              87.0629
                                              0.742
                         264.6499
                                     0.329
Soil17
                         263.2429
Soil18
              71.2239
                                     0.271
                                              0.787
Soil19
              70.2229
                         281.4394
                                     0.250
                                              0.803
Soi 120
              211.1136
                         273.4305
                                     0.772
                                               0.441
Soil21
               58.6343
                         273.8180
                                     0.214
                                               0.831
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Fig.6.55

Multiple linear regression equation for different crop yield.

Crop	Yield forecast equation
Rice	(6.993e+04)+(7.267e01)Area+(2.672e+01)Rainfall+(7.258e+04)Soil4+(3.395e+04)Soil14
Wheat	(3.522e+02)+(1.526e+00)Area+(-7.197e-01)Humidity+(- 1.134e+02)Soil5+(2.557e+02)Soil21
Udar	(-650.6966)+(0.3210)Area+(0.1647)Rainfall+(223.2627)Soil3+(510.5025)Soil7+(55 7.6675)Soil13
Sugarca ne	(-16842.294)+(57.889)Area+(-1.588)Rainfall+(-192.073)Soil10+(-810.099)Soil13+(13328.725)Soil17
Ground nut	(1352.3531)+(1.1457)Area+(0.2065)Rainfall+(170.0260)Soil12
Ragi	(-2264.7111)+(0.7019)Area+(75.3498)Avg_temp+(0.2233)Rainfall

Table 20

Rice Production in odisha in Different Season

Fig.6.56

Rice Production Vs Season

Rice production in Diffent Season

Fig.6.57

As you can se we are getting 78.2% in Winter Season ,so That means the agriculture Condition in Winter Season is More Suitable for Rice Production Then Other.

Wheat Production in odisha In Different Season

Fig.6.58

Wheat Production Vs Season

Fig.6.59

As you can se we are getting 100% in Summe Season ,so That means the agriculture Condistion in Summer Season is More Suiteble for Wheat Production Then Other

Groundgnut Production In Odisha In Different Season

Fig.6.60

Groundnut Production vs. Season

Fig.6.61

As you can se we are getting 63.9% in Summer Season ,so That means the agriculture Condistion in Summer Season is More Suiteble for Groundnut Production Then Other.

Ragi Production In odisha in Different Season

Ragi Production Vs Season

Winter Autumn Summer

Fig.6.63

Ragi production in Diffent Season

As you can se we are getting 61.7% in Winter Season ,so That means the agriculture Condistion in Winter Season is More Suiteble for Ragi Production Then Other.

Urad Production in odisha in Different Season

0.439%

Fig.6.64

UradProduction Vs. Season

Fig.6.65

As you can se we are getting 73.3% in Winter Season ,so That means the agriculture Condistion in Winter Season is More Suiteble for Urad Production Then Other.

Sugercane Production in Odisha in Different Season

Fig.6.66

SugarcaneProduction Vs. Production

Fig.6.67

As you can se we are getting 100% in Winter Season ,so That means the agriculture Condistion in Winter Season is More Suiteble for Sugarcane Production Then Other.

Crop Production in Different Season Of Odisha

Autumn Season

Fig.6.68

Crop production in Autumn Season

Summer Season

Fig.6.69

Crop Production in Summer Season

Rabi Season

Fig.6.70

Crop Production in Rabi Season

Winter Season

Fig.6.71

Crop Production in Winter Season

Kharif Season

Fig.6.72

Crop Production in Kharif Season

Whole Year Season

Fig.6.73

Crop Production in Whole yearSeason

There are so many crops are planting in different Season But Some Crops Are Producing more In one Season over the Year

And Those are represent in bellow table

Season	Crops
Autumn	Maiza, Ragi, Sesamun, Urad, Moong, Rice
Summer	Sesamum, Urad, Moong, Ragi, Rice, Horse-gram
Rabi	Castor Seed, Rapeseed & Mustard, Safflowe
Winter	Rice, Maizw, Ragi, Moong
Kharif	Rice,Ragi,CastarSeed
WholeYear	Sugarcane

Table 21

*Year Wise Crops Production Of Different State of India

(**Table 22**)

State Name	Crop
Andaman and nicobar	Coconut
Andra Pradesh	Coconut
arunachal Pradesh	Turmeric
Assam	Coconut
Bihar	Sugar cane
Chandigarh	Arhar and Tur
Chatisgarh	Suger cane
Dadra and Nager Haveli	Sugar Cane
Goa	Coconut
Gujrat	Sugarcane
Haryana	Sugarcane
himachal Pradesh	Arhar Tur, horse gram
Jammu and Kashmir	Moong
Jharkhand	Rice
Karnataka	Sugarcane
Kerala	Coconut
Madhya Pradesh	Coconut and Banana
Maharashtra	Sugar cane

Manipur	Peas and Beans
Meghalaya	Potato
Mizoram	Peas and Beans and Sugarcane
Nagaland	Rice and Moong
Odisha	Rice
Pondicherry	Coconut
Punjab	Wheat
Rajasthan	Wheat
Sikkim	Maize
Tamil Nadu	Coconut
Telengana	Coconut
Tripura	Rice
Utterpradesh	Sugar cane
Utrakhand	Sugarcane
West bengal	Coconut

 $Fig\ 6.74$ State Wise Higher Crop Production