# MA0501 – Tarea 4

Diego Alberto Vega Víquez - C38367 — José Carlos Quintero Cedeño - C26152 — Gabriel Valverde Guzmán - C38060

2025-09-29

# Tabla de contenidos

| Ejercicio 1  | 2  |
|--------------|----|
| Ejercicio 2  | 11 |
| Ejercicio 3  | 24 |
| Ejercicio 4  | 26 |
| Ejercicio 5  | 27 |
| Ejercicio 6  | 29 |
| Ejercicio 7  | 30 |
| Ejercicio 8  | 32 |
| Ejercicio 9  | 34 |
| Ejercicio 10 | 36 |
| Ejercicio 11 | 40 |
| Ejercicio 12 | 40 |
| Ejercicio 13 | 41 |
| Ejercicio 14 | 50 |
| Ejercicio 15 | 51 |
| Ejercicio 16 | 52 |
| Ejercicio 17 | 54 |
| Ejercicio 18 | 58 |
| Ejercicio 19 | 61 |

# Ejercicio 1

## i Instrucción del ejercicio 1

Complete las demostraciones que quedaron pendientes en la clase.

## Solución

# i Teorema 1 [Weierstrass]

Sea f continua en [a,b]; entonces dado  $\varepsilon>0,$  existe  $n\in\mathbb{N}$  y  $P_n(x)\in P_n$  tal que

$$|f(x)-P_n(x)|<\varepsilon, \quad \forall x\in [a,b].$$



Figura 1: Polinomio de Bernstein

### Prueba

Sin pérdida de generalidad, suponga que a=0 y b=1. Sea:

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right),$$

se puede probar que  $B_n(x) \to f(x)$  uniformemente en [0,1]:

Vea que

$$|B_n(x)-f(x)| \leq \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \Big| f\left(\frac{k}{n}\right) - f(x) \Big|$$

Note que se tiene una esperanza con respecto a una distribución binomial  $\mathrm{Bin}(n,x)$ 

$$X_n \sim \mathrm{Bin}(n,x) \implies \mathbb{E}\left[f\left(\frac{X_n}{n}\right)\right] = B_n(x)$$

**Entonces:** 

$$|B_n(x) - f(x)| = \left| \mathbb{E}\left[ f\!\left( \frac{X_n}{n} \right) \right] - f(x) \right|$$

Dado que f es continua en [0,1], por el Teorema de Heine–Cantor, también es uniformemente continua.

Entonces, para todo  $\varepsilon > 0$ , existe  $\delta > 0$  tal que:

$$|x-y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

Considere dividir el dominio del índice k en dos regiones:

- Cuando  $\left|\frac{k}{n} x\right| < \delta$
- Cuando  $\left|\frac{k}{n} x\right| \ge \delta$

**Entonces:** 

$$|B_n(x) - f(x)| \leq \varepsilon \cdot P\Big( \Big| \tfrac{X_n}{n} - x \Big| < \delta \Big) + 2 \|f\|_\infty \cdot P\Big( \Big| \tfrac{X_n}{n} - x \Big| \geq \delta \Big)$$

Usando la desigualdad de Chebyshev aplicada a  $\frac{X_n}{n}$ , cuya varianza es  $\frac{x(1-x)}{n}$ , el segundo término tiende a 0 uniformemente en  $x \in [0, 1]$ .

Como el error puede hacerse arbitrariamente pequeño uniformemente en x, se concluye:

$$\sup_{x \in [0,1]} |B_n(x) - f(x)| \ \longrightarrow \ 0 \qquad \text{cuando} \ n \to \infty.$$

## i Teorema 3

Sea  $f\in C[a,b]$  y  $f\in C^n]a,b[$ , si f se anula en n+1 puntos distintos,  $x_0,x_1,\ldots,x_n$  en [a,b]. Entonces  $\exists\,c\in ]a,b[$  tal que  $f^{(n)}(c)=0.$ 

## Prueba

#### Por inducción sobre n

Caso base: n = 1.

Si  $f(x_0) = f(x_1) = 0$  con  $x_0 < x_1$ , entonces por el Teorema de Rolle clásico, existe  $c \in (x_0, x_1)$  tal que:

$$f'(c) = 0.$$

## Hipótesis de inducción:

Supongamos que el resultado es cierto para n=k, es decir, si  $f \in C^k[a,b[$  y se anula en k+1 puntos distintos en [a,b], entonces existe  $c \in (a,b)$  tal que  $f^{(k)}(c) = 0$ .

#### Paso inductivo:

Sea ahora  $f \in C^{k+1}$ ]a,b[ y supongamos que  $f(x_0)=f(x_1)=\cdots=f(x_{k+1})=0$ , con  $x_0 < x_1 < \cdots < x_{k+1}$ .

Por el Teorema de Rolle, para cada par consecutivo  $(x_i, x_{i+1})$ , existe  $c_i \in (x_i, x_{i+1})$  tal que:

$$f'(c_i) = 0.$$

Eso da una nueva colección de k+1 puntos  $c_0 < c_1 < \cdots < c_k$  donde f' se anula. Entonces, por la hipótesis de inducción aplicada a f', existe un punto  $c \in (a,b)$  tal que:

$$f^{(k+1)}(c) = 0.$$

# i Teorema 6

Si  $P_n(x)$  es el polinomio de Lagrange que coincide con f(x) en  $x_0,x_1,\dots,x_n,$  entonces:

$$\begin{split} P_n(x) &= f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) \\ &+ \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1}) \\ &= f[x_0] + \sum_{k=1}^n f[x_0, \dots, x_k](x - x_0) \dots (x - x_{k-1}). \end{split}$$

Si  $P_n(x)$  se escribe de la forma

$$\begin{split} P_n(x) &= a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + \cdots \\ &+ a_n(x-x_0)(x-x_1) \cdots (x-x_{n-1}), \end{split}$$

entonces  $P_n(x_0)=a_0.$  Como  $P_n(x_0)=f(x_0)$  se sigue que  $a_0=f(x_0)=f[x_0].$ 

Además:

$$\begin{split} P_n(x_1) &= a_0 + a_1(x_1 - x_0), \\ f(x_1) &= f[x_0] + a_1(x_1 - x_0) \quad \Rightarrow \quad a_1 = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = f[x_0, x_1]. \end{split}$$

Luego, por inducción se puede probar fácilmente que  $a_k = f[x_0, x_1, \dots, x_k].$ 

### Paso base:

Para k = 0, se tiene:

$$P_n(x_0) = a_0 = f(x_0),$$

por lo tanto:

$$a_0 = f[x_0].$$

#### Hipótesis de inducción:

Supongamos que para algún  $k \ge 1$  se cumple que:

$$a_j = f[x_0, x_1, \dots, x_j] \quad \text{para todo } j = 0, 1, \dots, k-1.$$

#### Paso inductivo:

Queremos probar que:

$$a_k = f[x_0, x_1, \dots, x_k].$$

Evaluamos el polinomio  $P_n(x)$  en  $x=x_k.$  Por construcción, se cumple:

$$\begin{split} P_n(x_k) &= a_0 + a_1(x_k - x_0) + a_2(x_k - x_0)(x_k - x_1) + \cdots \\ &\quad + a_k(x_k - x_0)(x_k \ \overline{6} \ x_1) \cdots (x_k - x_{k-1}). \end{split}$$

Pero también sabemos que  $P_n(x_k) = f(x_k)$ , y por la hipótesis de inducción:

### Teorema 7

• Sea  $f\in C[a,b]$ . • Sean  $x_0,x_1,\dots,x_n,\ (n+1)$  nodos distintos en [a,b]. Entonces el polinomio de grado menor que coincide con f y f' en  $x_0,x_1,\dots,x_n$ :

- Está dado por

$$H_{2n+1}(x) = \sum_{j=0}^n f(x_j) H_{nj}(x) + \sum_{j=0}^n f'(x_j) \widetilde{H}_{nj}(x),$$

donde

$$H_{nj}(x) = \big[1 - 2(x-x_j)L'_{nj}(x_j)\big]L^2_{nj}(x),$$

$$\widetilde{H}_{nj}(x)=(x-x_j)L_{nj}^2(x).$$

• Además, el error absoluto es:

$$|f(x)-H_{2n+1}(x)| = \left|\frac{(x-x_0)^2\cdots(x-x_n)^2}{(2n+2)!}f^{(2n+2)}(\xi)\right|,\quad \text{con }\xi\in ]a,b[.$$

### Prueba

• Se debe demostrar que  $H_{2n+1}(x_i)=f(x_i)$  para todo  $i=0,1,\ldots,n.$  Para ver esto, recordemos que:

$$L_{nj}(x_i) = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$$

de donde, cuando  $i \neq j$ :

$$H_{nj}(x_i) = 0$$
 y  $\widetilde{H}_{nj}(x_i) = 0$ .

Mientras que:

$$H_{ni}(x_i) = [1 - 2(x_i - x_i)L'_{ni}(x_i)] \cdot 1 = 1,$$

$$\widetilde{H}_{ni}(x_i) = (x_i - x_i) \cdot 1^2$$

Luego:

$$H_{2n+1}(x_i) = \sum_{\substack{j=0\\j\neq i}}^n f(x_j) \cdot 0 + f(x_i) \cdot 1 + \sum_{j=0}^n f'(x_j) \cdot 0 = f(x_i).$$

Por lo tanto:

- $H_{2n+1}(x_i) = f(x_i)$  para  $i = 0, 1, 2, \dots, n$ .
- Se debe demostrar que  $H'_{2n+1}(x_i) = f'(x_i)$  para todo  $i = 0, 1, \dots, n.$

Nótese que  $L_{nj}(x)$  es un factor de  $H'_{nj}(x)$ , lo cual implica que  $H'_{nj}(x_i) = 0$  cuando  $i \neq j$ . Además, si i = j:

$$\begin{split} H'_{ni}(x_i) &= -2L'_{ni}(x_i)L^2_{ni}(x_i) + \left[1 - 2(x_i - x_i)L'_{ni}(x_i)\right] \cdot 2 \cdot L_{ni}(x_i)L'_{ni}(x_i) \\ &= -2L'_{ni}(x_i) + 2L'_{ni}(x_i) \\ &= 0. \end{split}$$

Por lo tanto,  $H'_{nj}(x_i)=0$  para todo  $i=0,1,2,\ldots,n$  y para todo  $j=0,1,2,\ldots,n$ . Además:

$$\widetilde{H}_{nj}(x_i) = L_{nj}^2(x_i) + (x_i - x_j) L'_{nj}(x_j) \cdot 2 \cdot L_{nj}(x_i) L'_{nj}(x_i),$$

de donde:

$$\widetilde{H}'_{nj}(x_i) = \begin{cases} 8_0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$$

#### Lema 1

Si  $f \in C^n[a,b]$  y  $x_0,x_1,\dots,x_n$  son los (n+1) nodos distintos en [a,b], entonces: existe  $\xi \in ]a,b[$  tal que:

$$f[x_0,x_1,\dots,x_n]=\frac{f^{(n)}(\xi)}{n!}.$$

### **♦** Prueba

Consideremos el polinomio interpolador de Newton de grado n, que interpola a f en los nodos  $x_0, \dots, x_n$ :

$$P_n(x) = \sum_{k=0}^n f[x_0, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j).$$

Sea el polinomio del error:

$$R_n(x) = f(x) - P_n(x).$$

Sabemos por teoría del error de interpolación que:

$$R_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x-x_i),$$

para algún  $\xi_x$  entre el menor y el mayor de los puntos  $x_i$  y x.

Ahora consideremos la función:

$$F(x) = f(x) - Q(x),$$

donde Q(x) es el polinomio de grado n-1 tal que  $Q(x_i)=f(x_i)$  para  $i=0,\ldots,n-1$ . Entonces F(x) es una función que coincide con f en los primeros n nodos, pero no necesariamente en el último.

Aplicamos el Teorema de Rolle generalizado a la función:

$$g(x) = f(x) - P_n(x),$$

la cual se anula en los puntos  $x_0, \dots, x_n$ , ya que  $P_n(x_j) = f(x_j)$ . Como  $f \in C^n[a, b]$ , entonces  $g \in C^n[a, b]$  y se anula en n + 1 puntos.

Por el teorema, existe  $\xi \in (a, b)$  tal que:

$$g^{(n)}(\xi) = 0.$$

Pero como  $P_n(x)$  es de grado n, su derivada de orden n es constante:

$$P_n^{(n)}(x) = n! \cdot f[x_0, x_1, \dots, x_n],$$

y:

$$g^{(n)}(x) = f^{(n)}(x) - P_n^{(n)}(x) = f^{(n)}(x) - n! \cdot f[x_0, \dots, x_n].$$

Entonces, si  $g^{(n)}(\xi) = 0$ :

$$f^{(n)}(\xi) = n! \cdot f[x_0, \dots, x_n] \quad \Rightarrow \quad f[x_0, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}.$$

## Ejercicio 2

## i Instrucción del ejercicio 2

Implemente en R los algoritmos de interpolación polinómica vistos en clase.

Los métodos que se deben implementar son:

- a) Interpolar f(x) usando el polinomio de Lagrange con el algoritmo de Neville.
- b) Interpolar f(x) usando el polinomio de Lagrange con el algoritmo de diferencias divididas de Newton.
- c) Interpolar f(x) usando el polinomio de Hermite con el algoritmo de diferencias divididas de Newton.
- d) Interpolar f(x) usando el "Splines" cúbicos naturales y sujetos.

Luego en general programe una función que permita graficar el polinomio de interpolación y la función correspondiente (si la hay).

#### Solución Neville

```
# Neville: interpolacion en un punto x a partir de un vector de nodos (xi) y otro de valores (
# Retorna una lista con el valor interpolado y la matriz completa Q (la que posee todos los po
neville <- function(nodos, valores, x) {</pre>
  stopifnot(is.numeric(nodos),
            is.numeric(valores),
            length(nodos) == length(valores))
  n <- length(nodos)</pre>
  Q <- matrix(NA_real_, nrow = n, ncol = n)
  # Columna inicial con valores de Y
  Q[, 1] <- valores
  # Construccion de la tabla de Neville
  for (i in 2:n) {
    for (j in 2:i) {
      numerador \leftarrow ((x - nodos[i - j + 1]) * Q[i, j - 1] - (x - nodos[i]) * Q[i - 1]
                                                                                    1, j - 1])
      denominador <- nodos[i] - nodos[i - j + 1]</pre>
      Q[i, j] <- numerador / denominador
```

```
}
return(list(valor = Q[n, n], tabla = Q))
}
```

## Lagrange por diferencias divididas de Newton

```
# Lagrange.Newton: interpolacion en un punto x function# Lagrange.Newton: interpolacion en un p
# Retorna una lista con el valor interpolado, la matriz para la construccion de los coeficiente
lagrange.newton <- function(nodos, valores, x) {</pre>
  stopifnot(is.numeric(nodos),
              is.numeric(valores),
              length(nodos) == length(valores))
  n <- length(nodos)</pre>
  Q <- matrix(NA_real_, nrow = n, ncol = n)
  Q[, 1] <- valores
  # Construccion de la tabla de diferencias de Newton
  for (i in 2:n) {
    for (j in 2:i) {
       \texttt{numerador} \leftarrow \mathbb{Q}[\texttt{i}, \texttt{j} - \texttt{1}] - \mathbb{Q}[\texttt{i} - \texttt{1}, \texttt{j} - \texttt{1}]
       denominador <- nodos[i] - nodos[i - j + 1]</pre>
       Q[i, j] <- numerador / denominador
    }
  }
  coeficientes <- diag(Q)</pre>
  valor = Q[1, 1]
  producto = 1
  for (i in 2:n) {
    producto <- producto * (x - nodos[i - 1])</pre>
    valor <- valor + coeficientes[i] * producto</pre>
  }
  return(list(
```

```
valor = valor,
tabla = Q,
coeficientes = coeficientes
))
}
```

### Hermite por diferencias divididas de Newton

```
# Hermite.newton: interpolacion en un punto x a partir de un vector de nodos, otro de valores y
# Retorna una lista con el valor interpolado, la matriz para la construccion de los y un vecto
hermite.newton <- function(nodos, valores, derivadas, x) {
  stopifnot(
    is.numeric(nodos),
    is.numeric(valores),
    is.numeric(derivadas),
    length(nodos) == length(valores),
    length(nodos) == length(derivadas)
  n <- length(nodos)</pre>
  Z \leftarrow numeric(2 * n)
  Q \leftarrow matrix(0, nrow = 2 * n, ncol = 2 * n)
  # Set-up inicial de la matriz
  for (i in 1:n) {
    z0 < -2 * i - 1
    z1 < -2 * i
    Z[z0] <- nodos[i]</pre>
    Z[z1] \leftarrow nodos[i]
    Q[z0, 1] <- valores[i]
    Q[z1, 1] <- valores[i]
    Q[z1, 2] <- derivadas[i]
    if (i != 1) {
      Q[z0, 2] \leftarrow (Q[z0, 1] - Q[z0 - 1, 1]) / (Z[z0] - Z[z0 - 1])
```

```
# Rellenar el resto de la matriz a partir de estos valores
  for (i in 3:(2 * n)) {
    for (j in 3:i) {
      Q[i, j] \leftarrow (Q[i, j - 1] - Q[i - 1, j - 1]) / (Z[i] - Z[i - j + 1])
    }
  }
  coeficientes <- diag(Q)
  valor <- Q[1, 1]</pre>
  producto <- 1
  for (i in 2:(2 * n)) {
    producto <- producto * (x - Z[i - 1])</pre>
    valor <- valor + coeficientes[i] * producto</pre>
  }
  return(list(
    valor = valor,
    tabla = Q,
    coeficientes = coeficientes
  ))
}
```

#### Splines cubicos naturales

```
# spline.natural: funcion que calcula la interpolacion por splines a partir de unos nodos y sus
# Retorna los valores de los coeficientes a, b, c, d de cada una de las n-1 ecuaciones generada
spline.natural <- function(nodos, valores, x) {
    # Note que los valores de a corresponden a los valores de los nodos en la funcion, por lo que
    n <- length(nodos)
    h <- numeric(n - 1)
    alfa <- numeric(n - 1)
    alfa[1] <- 0

# Paso 1 y 2: definir los h's y alfas</pre>
```

```
for (i in 1:(n - 1)) {
  h[i] \leftarrow nodos[i + 1] - nodos[i]
  if (i != 1) {
    alfa[i] <- (3 / h[i]) * (valores[i + 1] - valores[i]) - (3 / h[i - 1]) *
       (valores[i] - valores[i - 1])
 }
}
#Paso 3: definir valores iniciales de 1, m, y z
1 <- numeric(n) # creo que el tamano de esto puede ser n-1</pre>
1[1] <- 1
m \leftarrow numeric(n - 1)
m[1] <- 0
z <- numeric(n) # creo que el tamano de esto puede ser n-1
z[1] < 0
# Paso 4: rellenar vectores 1, m, z
for (i in 2:(n - 1)) {
  l[i] \leftarrow 2 * (nodos[i + 1] - nodos[i - 1]) - h[i - 1] * m[i - 1]
 m[i] <- h[i] / l[i]
 z[i] \leftarrow (alfa[i] - h[i - 1] * z[i - 1]) / l[i]
}
# Paso 5: definir valores finales
l[n] <- 1 #creo que esto no hace falta</pre>
z[n] \leftarrow 0 #esto tampoco
c <- numeric(n)</pre>
c[n] \leftarrow 0
b <- numeric(n)
d <- numeric(n)</pre>
# Paso 6: sustitucion hacia atras
for (j in (n - 1):1) {
  c[j] \leftarrow z[j] - m[j] * c[j + 1]
  b[j] \leftarrow (valores[j + 1] - valores[j]) / h[j] - (h[j] / 3) * (c[j + 1] + 1)
                                                                        2 * c[i])
```

```
d[j] \leftarrow (c[j + 1] - c[j]) / (3 * h[j])
}
# Paso extra: evaluar la interpolacion en el punto x especificado
## Encontramos los dos nodos que estan prensando al intervalo
indice <- NULL
for (i in 1:(n - 1)) {
  if (x \ge nodos[i] && x < nodos[i + 1]) {
    indice <- i
  }
}
if(x == nodos[n]){
  indice <- n
}
if (is.null(indice)) {
  return("El valor de interpolacion debe estar entre dos nodos")
}
## evaluamos en la funcion asociada
valor <- valores[indice] + b[indice] * (x - nodos[indice]) + c[indice] * (x - nodos[indice])</pre>
return(list(
 a = valores,
 b = b,
  c = c
  d = d,
  valor = valor
))
```

#### Splines cubicos sujetos

```
# spline.sujeto: funcion que calcula la interpolacion por splines a partir de unos nodos y sus
# Retorna los valores de los coeficientes a, b, c, d de cada una de las n-1 ecuaciones generada
spline.sujeto <- function(nodos, valores, derivadas, x) {
    # Note que los valores de a corresponden a los valores de los nodos en la funcion, por lo que</pre>
```

```
stopifnot(length(derivadas) == 2)
n <- length(nodos)</pre>
h \leftarrow numeric(n - 1)
alfa <- numeric(n)</pre>
# Paso 1 y 2: definir los h's y alfas
for (i in 1:(n - 1)) {
 h[i] \leftarrow nodos[i + 1] - nodos[i]
 if (i != 1) {
    alfa[i] <- (3 / h[i]) * (valores[i + 1] - valores[i]) - (3 / h[i - 1]) *
      (valores[i] - valores[i - 1])
 }
}
alfa[1] <- 3 * ((valores[2] - valores[1]) / h[1] - derivadas[1])
alfa[n] \leftarrow 3 * (derivadas[2] - (valores[n] - valores[n - 1]) / h[n - 1])
#Paso 3: definir valores iniciales de 1, m, y z
1 <- numeric(n) # creo que el tamano de esto puede ser n-1</pre>
1[1] \leftarrow 2 * h[1]
m \leftarrow numeric(n - 1)
m[1] < -1 / 2
z <- numeric(n) # creo que el tamano de esto puede ser n-1
z[1] \leftarrow alfa[1] / l[1]
# Paso 4: rellenar vectores 1, m, z
for (i in 2:(n - 1)) {
  l[i] \leftarrow 2 * (nodos[i + 1] - nodos[i - 1]) - h[i - 1] * m[i - 1]
 m[i] <- h[i] / l[i]
 z[i] \leftarrow (alfa[i] - h[i - 1] * z[i - 1]) / l[i]
}
# Paso 5: definir valores finales
l[n] \leftarrow h[n-1] * (2 - m[n-1])
z[n] \leftarrow (alfa[n] - h[n - 1] * z[n - 1]) / l[n]
```

```
c <- numeric(n)</pre>
c[n] \leftarrow z[n]
b <- numeric(n)
d <- numeric(n)</pre>
# Paso 6: sustitucion hacia atras
for (j in (n - 1):1) {
  c[j] \leftarrow z[j] - m[j] * c[j + 1]
 b[j] \leftarrow (valores[j + 1] - valores[j]) / h[j] - (h[j] / 3) * (c[j + 1] + 2 * c[j])
 d[j] \leftarrow (c[j + 1] - c[j]) / (3 * h[j])
}
# Paso extra: evaluar la interpolacion en el punto x especificado
## Encontramos los dos nodos que estan prensando al intervalo
indice <- NULL</pre>
for (i in 1:(n-1)) {
 if (x \ge nodos[i] && x < nodos[i + 1]) {
    indice <- i
  }
}
if (x == nodos[n]) {
 indice <- n
}
if (is.null(indice)) {
 return("El valor de interpolacion debe estar entre dos nodos")
}
## evaluamos en la funcion asociada
valor <- valores[indice] + b[indice] * (x - nodos[indice]) + c[indice] * (x - nodos[indice])^</pre>
return(list(
 a = valores,
 b = b,
  c = c,
  d = d,
```

```
valor = valor
))
}
```

### Funcion de graficacion

```
library(tidyverse)
graficar.polinomio <- function(nodos,</pre>
                                b,
                                metodo,
                                f = NULL,
                                valores = NULL,
                                df = NULL,
                                derivadas = NULL,
                                derivadas.clamped = NULL) {
  stopifnot(is.numeric(nodos), length(nodos) >= 2)
  # Validación: exactamente uno de f o valores
  if (is.null(f) == is.null(valores)) {
    stop("Debe proveer exactamente uno: 'f' (función) o 'valores' (numérico).")
  }
  # Valores en nodos
  if (!is.null(f)) {
    stopifnot(is.function(f))
    valores_nodos <- f(nodos)</pre>
  } else {
    stopifnot(is.numeric(valores), length(valores) == length(nodos))
    valores_nodos <- valores</pre>
  }
  # ---- Derivadas en nodos (si aplica) ----
  derivadas_nodos <- NULL</pre>
  # Si llegan ambos, priorizamos 'derivadas' y avisamos
```

```
if (!is.null(df) && !is.null(derivadas)) {
  warning("Se pasaron 'df' y 'derivadas'; se usará 'derivadas'.")
}
if (!is.null(derivadas)) {
  stopifnot(is.numeric(derivadas), length(derivadas) == length(nodos))
  derivadas nodos <- derivadas
} else if (!is.null(df)) {
  if (is.function(df)) {
    derivadas_nodos <- df(nodos)</pre>
  } else if (is.numeric(df)) {
    stopifnot(length(df) == length(nodos))
   derivadas_nodos <- df</pre>
  } else {
    stop("`df` debe ser función o vector numérico de derivadas en los nodos.")
 }
}
# Wrapper vectorizado para el método (con o sin derivadas)
if (!is.null(derivadas_nodos)) {
  H <- function(x)</pre>
    vapply(x, function(xx)
      metodo(nodos, valores_nodos, derivadas_nodos, xx)$valor, numeric(1))
} else {
  if (is.null(derivadas.clamped)) {
    H <- function(x)</pre>
      vapply(x, function(xx)
        metodo(nodos, valores_nodos, xx)$valor, numeric(1))
  } else {
    H <- function(x)</pre>
      vapply(x, function(xx)
        spline.sujeto(nodos, valores_nodos, derivadas.clamped, xx)$valor, numeric(1))
 }
}
# Malla y data frames
```

```
xi \leftarrow seq(a, b, length.out = 400)
  df_plot <- data.frame(</pre>
   x = xi,
   Hx = H(xi),
    fx = if (!is.null(f)) f(xi) else NA_real_
  )
  df_nodos <- data.frame(x = nodos, y = valores_nodos)</pre>
  # Gráfico
  p \leftarrow ggplot(df_plot, aes(x = x))
  if (!is.null(f)) {
   p <- p +
      geom_line(aes(y = fx, color = "Original"), linewidth = 1) +
      geom_line(aes(y = Hx, color = "Interpolación"),
                linewidth = 1, linetype = "dashed") +
      scale_color manual(values = c("Original" = "blue", "Interpolación" = "red"))
  } else {
    p <- p +
      geom_line(aes(y = Hx, color = "Interpolación"), linewidth = 1) +
      scale_color_manual(values = c("Interpolación" = "red"))
  }
  p +
    geom_point(data = df_nodos, aes(x = x, y = y),
                shape = 21, size = 3, fill = "white") +
    labs(title = paste0("Interpolación por ", deparse(substitute(metodo))),
         y = "Valor", color = "Serie") +
    theme_minimal(base_size = 14)
}
```

#### **Pruebas**

```
f <- function(x) log(x)
df <- function(x) 1/x
nodos <- c(0.1, 0.5, 1, 1.5, 2)
graficar.polinomio(nodos, nodos[1], nodos[length(nodos)], neville, f)</pre>
```

# Interpolación por neville



graficar.polinomio(nodos, nodos[1], nodos[length(nodos)], lagrange.newton, f)

# Interpolación por lagrange.newton



 $\verb|graficar.polinomio(nodos, nodos[1], nodos[length(nodos)], hermite.newton, f = f, df = df)|$ 

# Interpolación por hermite.newton



graficar.polinomio(nodos, nodos[1], nodos[length(nodos)], spline.natural, f)

# Interpolación por spline.natural



graficar.polinomio(nodos, nodos[1], nodos[length(nodos)], spline.sujeto, f = f, derivadas.clamp

# Interpolación por spline.sujeto



# Ejercicio 3

## i Instrucción del ejercicio 3

Para el polinomio de Bernstein  ${\cal B}_n(x)$  hacer lo siguiente:

a) Demostrar que para  $k \leq n$  se tiene

$$\binom{n-1}{k-1} = \frac{k}{n} \binom{n}{k}.$$

b) Pruebe que, para todo  $n \in \mathbb{N}$ 

$$1 = \sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k}.$$

c) Use (b) y (c) para probar que para  $f(x) = x^2$ 

$$B_n(x) = \binom{n-1}{n} x^2 + \frac{1}{n} x.$$

### Solución

**a**)

Por definición de coeficiente binomial

$$\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k)!}, \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Multiplicando  $\binom{n}{k}$  por  $\frac{k}{n}$ :

$$\frac{k}{n} \binom{n}{k} = \frac{k}{n} \cdot \frac{n!}{k!(n-k)!}$$

Simplificando:

$$= \frac{(n-1)!}{(k-1)!(n-k)!} = \binom{n-1}{k-1}$$

#### b)

Este resultado es inmediato de aplicar la fórmula del binomio sobre  $[x + (1 - x)]^n = 1^n = 1$ :

$$1 = 1^n = [x + (1 - x)]^n = \sum_{k=0}^n \binom{n}{k} x^k (1 - x)^{n-k}$$

#### c)

Para  $f(x) = x^2$  tenemos:

$$B_n(x) = \sum_{k=0}^n \left(\frac{k}{n}\right)^2 \binom{n}{k} x^k (1-x)^{n-k} = \frac{1}{n^2} \sum_{k=0}^n k^2 \binom{n}{k} x^k (1-x)^{n-k}$$

Note que  $k^2 = k(k-1) + k$ , entonces:

$$\sum_{k=0}^n k^2 \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^n k(k-1) \binom{n}{k} x^k (1-x)^{n-k} + \sum_{k=0}^n k \binom{n}{k} x^k (1-x)^{n-k}$$

De (a) se puede deducir que:

$$k(k-1)\binom{n}{k} = n(n-1)\binom{n-2}{k-2}$$

Entonces, sobre la primera suma:

$$\star = \sum_{k=0}^{n} k(k-1) \binom{n}{k} x^k (1-x)^{n-k} = n(n-1) x^2 \sum_{j=0}^{n-2} \binom{n-2}{j} x^j (1-x)^{n-2-j}$$

Por el (b) sabemos que la la suma es 1, así que:

$$\star = n(n-1)x^2$$

Para la segunda suma, utilizando (a) de igual forma:

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

Entonces,

$$\bullet = \sum_{k=0}^{n} k \binom{n}{k} x^k (1-x)^{n-k} = nx \sum_{j=0}^{n-1} \binom{n-1}{j} x^j (1-x)^{n-1-j}$$

Por (b) la suma es 1, así que:

 $\bullet = nx$ 

Por lo tanto,

$$B_n(x) = \frac{1}{n^2} \big( n(n-1)x^2 + nx \big)$$
 
$$B_n(x) = \frac{n-1}{n} x^2 + \frac{1}{n} x$$

# Ejercicio 4

## i Instrucción del ejercicio 4

Dada la siguiente tabla de datos para f(x):

| $\underline{x}$ | f(x)      |
|-----------------|-----------|
| 0.2             | 0.9798652 |
| 0.4             | 0.9177710 |
| 0.6             | 0.8080348 |
| 0.8             | 0.6386093 |
| 1.0             | 0.3843735 |

Aproxime f(0.5) usando el procedimiento **Neville**.

### Solución

neville(c(0.2, 0.4, 0.6, 0.8, 1.0), c(0.9798652, 0.9177710, 0.8080348, 0.6386093, 0.3843735),

#### \$valor

[1] 0.8693047

#### \$tabla

|      | [,1]      | [,2]      | [,3]      | [,4] | [,5] |
|------|-----------|-----------|-----------|------|------|
| [1,] | 0.9798652 | NA        | NA        | NA   | NA   |
| [2,] | 0.9177710 | 0.8867239 | NA        | NA   | NA   |
| [3,] | 0.8080348 | 0.8629029 | 0.8688582 | NA   | NA   |

```
[4,] 0.6386093 0.8927476 0.8703641 0.8696111 NA
[5,] 0.3843735 1.0199630 0.8609437 0.8687940 0.8693047
```

# Ejercicio 5

## i Instrucción del ejercicio 5

a) Use el algoritmo de Neville para aproximar f(1.03) con  $P_{0,1,2}$  para la función

$$f(x) = 3xe^x - e^{2x}$$

usando  $x_0 = 1$ ,  $x_1 = 1.05$  y  $x_2 = 1.07$ .

- b) Suponga que la aproximación en (a) no es suficientemente exacta. Calcule  $P_{0,1,2,3}$  donde  $x_3=1.04.$
- c) Compare el error real en (a) y (b) con la cota del error teórica según los teoremas vistos en clase.

#### Solución

a)

```
f <- function(x) 3*x*exp(x) - exp(2*x)
nodos <- c(1, 1.05, 1.07)
valores <- f(nodos)

valor.a <- neville(nodos, valores, 1.03)$valor
valor.a</pre>
```

[1] 0.8094418

b)

```
nodos <- c(nodos, 1.04)
valores <- f(nodos)

valor.b <- neville(nodos, valores, 1.03)$valor
valor.b</pre>
```

[1] 0.8093228

c)

```
error.real.a <- abs(valor.a-f(1.03))</pre>
error.real.a
[1] 0.0001181866
error.real.b <- abs(valor.b-f(1.03))
error.real.b
[1] 8.490499e-07
library(Deriv)
f3 <- Deriv(f, x = "x", nderiv = 3)
f4 \leftarrow Deriv(f, x = "x", nderiv = 4)
intervalo <- seq(1, 1.07, length.out = 1000)
max_f3 <- max(abs(sapply(intervalo, f3)))</pre>
max_f4 <- max(abs(sapply(intervalo, f4)))</pre>
producto.a \leftarrow prod(abs(1.03 - c(1, 1.05, 1.07)))
producto.b <- prod(abs(1.03 - c(1, 1.05, 1.07, 1.04)))
# Cotas teóricas del error
error.teorico.a <- max_f3 / factorial(3) * producto.a
error.teorico.b <- max_f4 / factorial(4) * producto.b</pre>
error.teorico.a
[1] 0.0001295949
```

error.teorico.b

[1] 9.164808e-07

## Ejercicio 6

## i Instrucción del ejercicio 6

Repita el ejercicio anterior usando el polinomio de interpolación de Hermite, compare resultados.

### Solución

```
a)
f \leftarrow function(x) 3*x*exp(x) - exp(2*x)
df <- function(x) 3*x*exp(x) + 3*exp(x) -2*exp(2*x)
nodos <- c(1, 1.05, 1.07)
valores <- f(nodos)</pre>
derivadas <- df(nodos)
valor.a <- hermite.newton(nodos, valores, derivadas, 1.03)$valor</pre>
valor.a
[1] 0.8093236
  b)
nodos \leftarrow c(nodos, 1.04)
valores <- f(nodos)</pre>
derivadas <- df(nodos)
valor.b <- hermite.newton(nodos, valores, derivadas, 1.03)$valor</pre>
valor.b
[1] 0.8093236
  c)
error.real.a <- abs(valor.a-f(1.03))
error.real.a
[1] 3.61008e-10
error.real.b <- abs(valor.b-f(1.03))
error.real.b
[1] 1.776357e-15
```

```
grid <- seq(1.00, 1.07, length.out = 2000)

# Caso (a): 3 nodos

m_a <- 2*length(c(1, 1.05, 1.07)) # orden 6

f6 <- Deriv(f, x="x", nderiv = m_a)

max_f6 <- max(abs(sapply(grid, f6)))

prod_a <- prod((1.03 - c(1, 1.05, 1.07))^2)

error.teorico.a <- max_f6 / factorial(m_a) * prod_a

error.teorico.a</pre>
```

#### [1] 3.85703e-10

```
# Caso (b): 4 nodos
m_b <- 2*length(c(1, 1.05, 1.07, 1.04)) # orden 8
f8 <- Deriv(f, x="x", nderiv = m_b)
max_f8 <- max(abs(sapply(grid, f8)))
prod_b <- prod((1.03 - c(1, 1.05, 1.07, 1.04))^2)
error.teorico.b <- max_f8 / factorial(m_b) * prod_b
error.teorico.b</pre>
```

[1] 2.995041e-15

# Ejercicio 7

### i Instrucción del ejercicio 7

Use el algoritmo de Diferencias Divididas para construir el polinomio interpolante de grado 4 según la siguiente tabla:

| x   | f(x)     |
|-----|----------|
| 0.0 | -7.00000 |
| 0.1 | -5.89483 |
| 0.3 | -5.65014 |
| 0.6 | -5.17788 |
| 1.0 | -4.28172 |
|     |          |

Grafique este polinomio.

#### Solución

```
nodos <- c(0, 0.1, 0.3, 0.6, 1)
valores <- c(-7, -5.89483, -5.65014, -5.17788, -4.28172)
lagrange.newton(nodos, valores, 1)
```

#### \$valor

[1] -4.28172

#### \$tabla

|      | [,1]     | [,2]     | [,3]        | [,4]       | [,5]      |
|------|----------|----------|-------------|------------|-----------|
| [1,] | -7.00000 | NA       | NA          | NA         | NA        |
| [2,] | -5.89483 | 11.05170 | NA          | NA         | NA        |
| [3,] | -5.65014 | 1.22345  | -32.7608333 | NA         | NA        |
| [4,] | -5.17788 | 1.57420  | 0.7015000   | 55.7705556 | NA        |
| [5,] | -4.28172 | 2.24040  | 0.9517143   | 0.2780159  | -55.49254 |

#### \$coeficientes

A partir de lo obtenido por el algoritmo de diferencias divididas de Newton, se obtiene que el polinomio de grado 4 que interpola a f(x) es:

$$P_4(x) = -7 + 11.05170x - 32.76083x(x - 0.1) + 55.77056x(x - 0.1)(x - 0.3) - 55.49254x(x - 0.1)(x - 0.3)(x - 0.6)$$

graficar.polinomio(nodos, 0, 1, lagrange.newton, valores = valores)

# Interpolación por lagrange.newton



# Ejercicio 8

## i Instrucción del ejercicio 8

Use el algoritmo de Hermite para construir el polinomio interpolante de Hermite dada la siguiente tabla:

| x   | f(x)      | f'(x)   |
|-----|-----------|---------|
| 0.2 | 0.9798652 | 0.20271 |
| 0.4 | 0.9177710 | 0.42279 |
| 0.6 | 0.8080348 | 0.68414 |
| 0.8 | 0.6386093 | 1.02964 |
| 1.0 | 0.3843735 | 1.55741 |

Grafique este polinomio.

#### Solución

```
nodos <- c(0.2, 0.4, 0.6, 0.8, 1.0)

valores <- c(0.9798652, 0.9177710, 0.8080348, 0.6386093, 0.3843735)

derivadas <- c(0.20271, 0.42279, 0.68414, 1.02964, 1.55741)

hermite.newton(nodos, valores, derivadas, 0.2)
```

#### \$valor

### [1] 0.9798652

### \$tabla

|       | [,1]      | [,2]       | [,3]       | [,4]      | [,5]      | [,6]       | [,7]      |
|-------|-----------|------------|------------|-----------|-----------|------------|-----------|
| [1,]  | 0.9798652 | 0.0000000  | 0.000000   | 0.00000   | 0.0000    | 0.0000     | 0.000     |
| [2,]  | 0.9798652 | 0.2027100  | 0.000000   | 0.00000   | 0.0000    | 0.0000     | 0.000     |
| [3,]  | 0.9177710 | -0.3104710 | -2.565905  | 0.00000   | 0.0000    | 0.0000     | 0.000     |
| [4,]  | 0.9177710 | 0.4227900  | 3.666305   | 31.16105  | 0.0000    | 0.0000     | 0.000     |
| [5,]  | 0.8080348 | -0.5486810 | -4.857355  | -21.30915 | -131.1755 | 0.0000     | 0.000     |
| [6,]  | 0.8080348 | 0.6841400  | 6.164105   | 55.10730  | 191.0411  | 805.5416   | 0.000     |
| [7,]  | 0.6386093 | -0.8471275 | -7.656337  | -34.55111 | -224.1460 | -691.9786  | -2495.867 |
| [8,]  | 0.6386093 | 1.0296400  | 9.383837   | 85.20087  | 299.3800  | 1308.8149  | 3334.656  |
| [9,]  | 0.3843735 | -1.2711790 | -11.504095 | -52.21983 | -343.5518 | -1071.5529 | -3967.280 |
| [10,] | 0.3843735 | 1.5574100  | 14.142945  | 128.23520 | 451.1376  | 1986.7234  | 5097.127  |
|       | [,8]      | [,9]       | [,10]      |           |           |            |           |
| [1,]  | 0.000     | 0.00       | 0.00       |           |           |            |           |
| [2,]  | 0.000     | 0.00       | 0.00       |           |           |            |           |
| [3,]  | 0.000     | 0.00       | 0.00       |           |           |            |           |
| [4,]  | 0.000     | 0.00       | 0.00       |           |           |            |           |
| [5,]  | 0.000     | 0.00       | 0.00       |           |           |            |           |
| [6,]  | 0.000     | 0.00       | 0.00       |           |           |            |           |
| [7,]  | 0.000     | 0.00       | 0.00       |           |           |            |           |
| [8,]  | 9717.538  | 0.00       | 0.00       |           |           |            |           |
| [9,]  | -9127.419 | -23556.20  | 0.00       |           |           |            |           |
| [10,] | 15107.344 | 30293.45   | 67312.06   |           |           |            |           |

### \$coeficientes

- [1] 9.798652e-01 2.027100e-01 -2.565905e+00 3.116105e+01 -1.311755e+02
- [6] 8.055416e+02 -2.495867e+03 9.717538e+03 -2.355620e+04 6.731206e+04

graficar.polinomio(nodos, 0.2, 1, hermite.newton, valores = valores, derivadas = derivadas)

# Interpolación por hermite.newton



# Ejercicio 9

## i Instrucción del ejercicio 9

Use el algoritmo de Diferencias Divididas para calcular el polinomio de interpolación de Lagrange p(x) de cuarto grado para:

$$f(x) = x^3 \sin(x)$$

con nodos  $x_0 = 1$ ,  $x_1 = 2$ ,  $x_2 = 3$ ,  $x_3 = 4$  y  $x_4 = 5$ .

Grafique en un mismo plano f(x) y p(x) y luego imprima.

### Solución

```
f <- function(x) {
    x^3 * sin(x)
}

x_nodos <- c(1, 2, 3, 4, 5)

y_nodos <- f(x_nodos)

# Coeficientes de Newton (diferencias divididas)
diferencias_divididas <- function(x, y) {
    n <- length(x)</pre>
```

```
coef <- y
  for (j in 2:n) {
    coef[j:n] \leftarrow (coef[j:n] - coef[(j-1):(n-1)]) / (x[j:n] - x[1:(n-j+1)])
  }
  return(coef)
}
# Evaluación
newton_eval <- function(coef, x_nodos, x) {</pre>
 n <- length(coef)</pre>
 p <- coef[n]
 for (k in (n-1):1) {
   p \leftarrow coef[k] + (x - x_nodos[k]) * p
  }
 return(p)
coef <- diferencias_divididas(x_nodos, y_nodos)</pre>
eje_x \leftarrow seq(1, 5, length.out = 400)
eje_y_real <- f(eje_x)</pre>
eje_y_pol <- sapply(eje_x, function(z) newton_eval(coef, x_nodos, z))</pre>
# Gráfico
plot(eje_x, eje_y_real, type = "1", col = "blue", lwd = 2,
     ylab = "y", xlab = "x",
     main = "Interpolación de Lagrange vía diferencias divididas")
lines(eje_x, eje_y_pol, col = "red", lwd = 2, lty = 2)
points(x_nodos, y_nodos, pch = 19, col = "black")
legend("topleft", legend = c("f(x) = x^3 \sin(x)", "Interpolante p(x)"),
       col = c("blue", "red"), lty = c(1,2), lwd = 2, pch = c(NA, NA))
```

# Interpolación de Lagrange vía diferencias divididas



## Ejercicio 10

i Instrucción del ejercicio 10

Probar que los polinomios  $L_k(x)$  vistos en clase se pueden expresar de la forma:

$$L_k(x) = \frac{\psi(x)}{(x - x_k)\psi'(x_k)}$$

donde:

$$\psi(x) = \prod_{j=0}^{n} (x - x_j)$$

y que por lo tanto el polinomio interpolante de Lagrange se puede expresar como:

$$p(x) = \psi(x) \sum_{k=0}^{n} \frac{f(x_k)}{(x - x_k)\psi'(x_k)}.$$

#### Solución

Partimos de la definición vista en clase del polinomio de Lagrange:

$$L_k(x) = \prod_{\substack{j=0\\j\neq k}}^n \frac{x-x_j}{x_k-x_j}$$

Ahora definimos el polinomio:

$$\psi(x) = \prod_{j=0}^{n} (x - x_j)$$

Este se puede factorizar como:

$$\psi(x) = (x-x_k) \prod_{\substack{j=0\\j\neq k}}^n (x-x_j) \quad \Rightarrow \quad \prod_{\substack{j=0\\j\neq k}}^n (x-x_j) = \frac{\psi(x)}{x-x_k}$$

También observamos que la derivada de  $\psi(x)$  evaluada en  $x_k$  es:

$$\psi'(x_k) = \prod_{\substack{j=0\\j\neq k}}^n (x_k - x_j)$$

ya que al derivar el producto total y evaluar en  $x_k$ , solo sobrevive el término en el que se deriva  $(x-x_k)$ .

## **b** Demostración de $\psi'(x)$ por inducción

Queremos probar que si definimos el polinomio:

$$\psi(x) = \prod_{j=0}^{n} (x - x_j)$$

entonces, para cualquier  $k \in \{0,1,\dots,n\}$ , se cumple:

$$\psi'(x_k) = \prod_{\substack{j=0\\j\neq k}}^n (x_k - x_j)$$

Esta es la derivada del producto evaluada en uno de los nodos  $x_k$ . Usaremos **inducción** matemática sobre n.

Paso base: n = 1

$$\psi(x)=(x-x_0)(x-x_1)$$

Entonces su derivada es:

$$\psi'(x) = (x - x_0)'(x - x_1) + (x - x_0)(x - x_1)' = (x - x_1) + (x - x_0)(x - x_1)' = (x - x_1) + (x - x_0)(x - x_1)' = (x - x_0)(x - x_1) + (x - x_0)(x - x_1)' = (x - x_0)(x - x_1) + (x - x_0)(x - x_1)' = (x - x_0)(x - x_1) + (x - x_0)(x - x_1)' = (x - x_0)(x - x_1) + (x - x_0)(x - x_1)' = (x - x_0)(x - x_1) + (x - x_0)(x - x_1)' = (x - x_0)(x - x_1) + (x - x_0)(x - x_1)' = (x - x_0)(x - x_1) + (x - x_0)(x - x_1)' = (x - x_0)(x - x_0)(x - x_0)' = (x - x_0)(x - x_0)(x - x_0)(x - x_0)' = (x - x_0)(x -$$

Evaluamos en  $x = x_0$ :

$$\psi'(x_0) = (x_0 - x_1) + 0 = x_0 - x_1 = \prod_{\substack{j=0 \\ j \neq 0}}^1 (x_0 - x_j)$$

Y en  $x = x_1$ :

$$\psi'(x_1) = 0 + (x_1 - x_0) = x_1 - x_0 = \prod_{\substack{j=0\\j \neq 1}}^1 (x_1 - x_j)$$

Por tanto, el paso base se cumple.

Paso inductivo: suponer cierto para n, probar para n+1

Supongamos que para:

$$\psi_n(x) = \prod_{j=0}^n (x - x_j)$$

se cumple:

$$\psi_n'(x_k) = \prod_{\substack{j=0\\j\neq k}}^n (x_k - x_j)$$

Queremos probar que para:

$$\psi_{n+1}(x)=\psi_n(x)(x-x_{n+1})$$

se cumple:

$$\psi'_{n+1}(x_k) = \prod_{\substack{j=0\\ j \neq k}}^{n+1} (x_k - x_j)$$

Aplicamos la derivada del producto:

$$\psi_{n+1}'(x) = \psi_n'(x)(x - x_{n+1}) + \psi_n(x)$$

Evaluamos en  $x=x_k$  con  $k\leq n$ . Como  $\psi_n(x_k)=0$  (por definición de raíz), el segundo término desaparece:

$$\psi_{n+1}'(x_k) = \psi_n'(x_k)(x_k - x_{n+1})$$

Por hipótesis inductiva:

$$\psi_n'(x_k) = \prod_{\substack{j=0\\j\neq k}}^n (x_k - x_j)$$

**Entonces:** 

$$\psi_{n+1}'(x_k) = \left(\prod_{\substack{j=0\\j\neq k}}^n (x_k - x_j)\right)(x_k - x_{n+1}) = \prod_{\substack{j=0\\j\neq k}}^{n+1} (x_k - x_j)$$

Lo cual demuestra que la fórmula también es válida para n+1.

#### Conclusión:

Por el principio de inducción matemática, se cumple que:

$$\boxed{\psi'(x_k) = \prod_{\substack{j=0\\j\neq k}}^n (x_k - x_j)}$$

para todo  $k \in \{0, 1, \dots, n\}.$ 

Sustituyendo todo en la fórmula original de  $L_k(x)$ :

$$L_k(x) = \frac{\prod\limits_{\substack{j=0\\j\neq k}}^n (x-x_j)}{\prod\limits_{\substack{j=0\\j\neq k}}^n (x_k-x_j)} = \frac{\psi(x)}{(x-x_k)\psi'(x_k)}$$

Esto completa la prueba de la fórmula para  $L_k(x)$ .

Finalmente, como el polinomio interpolante de Lagrange se define como:

$$p(x) = \sum_{k=0}^n f(x_k) L_k(x)$$

entonces sustituyendo la expresión obtenida para  $L_k(x)$ :

$$p(x) = \sum_{k=0}^n f(x_k) \frac{\psi(x)}{(x-x_k)\psi'(x_k)} = \psi(x) \sum_{k=0}^n \frac{f(x_k)}{(x-x_k)\psi'(x_k)}$$

## Ejercicio 11

i Instrucción del ejercicio 11

Demostrar que si f(x) es un polinomio de grado menor o igual a n, entonces el polinomio de grado menor o igual a n que interpola f(x) en  $x_0, x_1, \dots, x_n$  es el mismo f(x).

#### Solución

Sea f(x) un polinomio de grado menor o igual a n y  $P_n(x)$  el polinomio que lo interpola en  $x_0, x_1, ..., x_n$ .

Note que  $f^{(n+1)}(x) = 0$ , pues es un polinomio de grado menor o igual a n.

Además, se sabe que el error absoluto entre f(x) y su interpolacion viene dado por:

 $|f(x)-P_n(x)|=|\frac{f^{(n+1)}(\psi_x)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)|, \text{ con } \psi_x\in[a,b], \text{ donde } [a,b] \text{ es el intervalo donde estamos interpolando.}$ 

Juntando estas dos cosas, se concluye que  $|f(x) - P_n(x)| = 0 \Rightarrow f(x) = P_n(x)$ 

Ejercicio 12

i Instrucción del ejercicio 12

Usar el ejercicio anterior para probar que:

$$\sum_{i=0}^{n} L_i(x) = 1$$

Solución

Esto es una aplicación directa del ejercicio anterior sobre la función f(x) = 1. Claramente para cualquier polinomio de grado n > 0, f(x) = 1 tiene menor grado que n. Entonces:

$$1 = f(x) = P_n(x) = \sum_{i=0}^n f(x_i) L_i(x) = \sum_{i=0}^n L_i(x)$$

#### i Instrucción del ejercicio 13

Para las siguientes funciones:

- $f(x) = 3x^2 \ln(x) + 2x$  con nodos  $x_0 = 1$ ,  $x_1 = 1.5$ ,  $x_2 = 2$ ,  $x_3 = 2.5$  y  $x_4 = 3$ .
- $f(x) = x^2 \sin(x) 3\cos(x)$  con nodos  $x_0 = 1, x_1 = 2, x_2 = 3, x_3 = 4$  y  $x_4 = 5$ .
- $f(x) = x\cos(x) 2x^2 + 3x 1$  con nodos  $x_0 = 1$ ,  $x_1 = 2$ ,  $x_2 = 3$ ,  $x_3 = 4$  y  $x_4 = 5$ .
- a) Encuentre el polinomio de interpolación de Lagrange  $P^*(x)$  en los nodos indicados, grafique f(x) y  $P^*(x)$  en el mismo plano.
- b) Encuentre el polinomio de interpolación usando Splines cúbicos  $P^{\star\star}(x)$  en los nodos indicados, grafique f(x) y  $P^{\star\star}(x)$  en el mismo plano, luego imprima.
- c) Encuentre el polinomio de interpolación de Hermite  $P^{\star\star\star}(x)$  en los nodos indicados, grafique f(x) y  $P^{\star\star\star}(x)$  en el mismo plano.
- d) Grafique  $f(x), P^{\star}(x), P^{\star\star}(x)$  y  $P^{\star\star\star}(x)$  en el mismo plano. ¿Qué se puede concluir?

#### Solución

## Ejercicio 13

### i Instrucción del ejercicio 13

Para las siguientes funciones:

- $f(x) = 3x^2 \ln(x) + 2x$  con nodos  $x_0 = 1$ ,  $x_1 = 1.5$ ,  $x_2 = 2$ ,  $x_3 = 2.5$  y  $x_4 = 3$ .
- $f(x) = x^2 \sin(x) 3\cos(x)$  con nodos  $x_0 = 1$ ,  $x_1 = 2$ ,  $x_2 = 3$ ,  $x_3 = 4$  y  $x_4 = 5$ .
- $f(x) = x\cos(x) 2x^2 + 3x 1$  con nodos  $x_0 = 1, x_1 = 2, x_2 = 3, x_3 = 4$  y  $x_4 = 5$ .
- a) Encuentre el polinomio de interpolación de Lagrange  $P^*(x)$  en los nodos indicados, grafique f(x) y  $P^*(x)$  en el mismo plano.
- b) Encuentre el polinomio de interpolación usando Splines cúbicos  $P^{\star\star}(x)$  en los nodos indicados, grafique f(x) y  $P^{\star\star}(x)$  en el mismo plano; luego imprima.
- c) Encuentre el polinomio de interpolación de Hermite  $P^{\star\star\star}(x)$  en los nodos indicados, grafique f(x) y  $P^{\star\star\star}(x)$  en el mismo plano.
- d) Grafique f(x),  $P^{\star}(x)$ ,  $P^{\star\star}(x)$  y  $P^{\star\star\star}(x)$  en el mismo plano. ¿Qué se puede concluir?

#### Solución

Preparación

```
# Funciones

f1 \leftarrow function(x) \ 3 * x^2 * log(x) + 2 * x

f2 \leftarrow function(x) \ x^2 * sin(x) - 3 * cos(x)
```

```
f3 <- function(x) x * cos(x) - 2 * x^2 + 3 * x - 1

# Derivadas

df1 <- function(x) 6 * x * log(x) + 3 * x + 2

df2 <- function(x) 2 * x * sin(x) + x^2 * cos(x) + 3 * sin(x)

df3 <- function(x) cos(x) - x * sin(x) - 4 * x + 3
```

graficar.polinomio(c(1, 1.5, 2, 2.5, 3), 1, 3, lagrange.newton, f = f1)

# Interpolación por lagrange.newton



Figura 2: Interpolación de Lagrange - Función 1

```
graficar.polinomio(c(1, 2, 3, 4, 5), 1, 5, lagrange.newton, f = f2)
```

# Interpolación por lagrange.newton



Figura 3: Interpolación de Lagrange - Función  $2\,$ 

graficar.polinomio(c(1, 2, 3, 4, 5), 1, 5, lagrange.newton, f = f3)

# Interpolación por lagrange.newton



Figura 4: Interpolación de Lagrange - Función  $3\,$ 

b)

# Interpolación por spline.natural



Figura 5: Interpolación por Splines naturales - Función 1

graficar.polinomio(c(1, 2, 3, 4, 5), 1, 5, spline.natural, f = f2)



Figura 6: Interpolación por Splines naturales - Función 2



# 

Figura 7: Interpolación por Splines naturales - Función 3

graficar.polinomio(c(1, 1.5, 2, 2.5, 3), 1, 3, hermite.newton, f = f1, df = df1)

c)



Figura 8: Interpolación de Hermite - Función 1

# Interpolación por hermite.newton



Figura 9: Interpolación de Hermite - Función 2

graficar.polinomio(c(1, 2, 3, 4, 5), 1, 5, hermite.newton, f = f3, df = df3)



Figura 10: Interpolación de Hermite - Función  $3\,$ 

d)

```
nodos1 \leftarrow c(1, 1.5, 2, 2.5, 3)
valores1 <- f1(nodos1)</pre>
derivadas1 <- df1(nodos1)</pre>
xi \leftarrow seq(1, 3, length.out = 400)
df_comp1 <- tibble(</pre>
  x = xi,
  f(x) = f1(xi),
  Lagrange = vapply(xi, function(x) lagrange.newton(nodos1, valores1, x)$valor, numeric(1)),
  Hermite = vapply(xi, function(x) hermite.newton(nodos1, valores1, derivadas1, x)$valor, numer
  Splines = vapply(xi, function(x) spline.natural(nodos1, valores1, x)$valor, numeric(1))
) |> pivot_longer(-x, names_to = "Método", values_to = "y")
ggplot(df_comp1, aes(x = x, y = y, color = Método)) +
  geom_line(linewidth = 1) +
  geom_point(data = tibble(x = nodos1, y = valores1),
             aes(x = x, y = y, color = "Nodos"),
             shape = 21, fill = "white", size = 2) +
  labs(title = "Comparación de métodos de interpolación - Función 1") +
  theme_minimal(base_size = 14)
```

# Comparación de métodos de interpolación - Fu



Figura 11: Comparación de métodos - Función 1

```
nodos2 < -c(1, 2, 3, 4, 5)
valores2 <- f2(nodos2)</pre>
derivadas2 <- df2(nodos2)</pre>
xi2 \leftarrow seq(1, 5, length.out = 400)
df_comp2 <- tibble(</pre>
  x = xi2,
  f(x) = f2(xi2),
  Lagrange = vapply(xi2, function(x) lagrange.newton(nodos2, valores2, x)$valor, numeric(1)),
  Hermite = vapply(xi2, function(x) hermite.newton(nodos2, valores2, derivadas2, x)$valor, nume
  Splines = vapply(xi2, function(x) spline.natural(nodos2, valores2, x)$valor, numeric(1))
) |> pivot_longer(-x, names_to = "Método", values_to = "y")
ggplot(df_comp2, aes(x = x, y = y, color = Método)) +
  geom_line(linewidth = 1) +
  geom_point(data = tibble(x = nodos2, y = valores2),
             aes(x = x, y = y, color = "Nodos"),
             shape = 21, fill = "white", size = 2) +
  labs(title = "Comparación de métodos de interpolación - Función 2") +
  theme_minimal(base_size = 14)
```

# Comparación de métodos de interpolación – F



Figura 12: Comparación de métodos de interpolación - Función 2

```
nodos3 \leftarrow c(1, 2, 3, 4, 5)
valores3 <- f3(nodos3)
derivadas3 <- df3(nodos3)
xi3 \leftarrow seq(1, 5, length.out = 400)
df_comp3 <- tibble(</pre>
  x = xi3,
  f(x) = f3(xi3),
  Lagrange = vapply(xi3, function(x) lagrange.newton(nodos3, valores3, x)$valor, numeric(1)),
  Hermite = vapply(xi3, function(x) hermite.newton(nodos3, valores3, derivadas3, x)$valor, nume
  Splines = vapply(xi3, function(x) spline.natural(nodos3, valores3, x)$valor, numeric(1))
) |> pivot_longer(-x, names_to = "Método", values_to = "y")
ggplot(df_comp3, aes(x = x, y = y, color = Método)) +
  geom_line(linewidth = 1) +
  geom_point(data = tibble(x = nodos3, y = valores3),
             aes(x = x, y = y, color = "Nodos"),
             shape = 21, fill = "white", size = 2) +
  labs(title = "Comparación de métodos de interpolación - Función 3") +
  theme_minimal(base_size = 14)
```

# Comparación de métodos de interpolación – F



Figura 13: Comparación de métodos de interpolación - Función 3

#### ¿Conclusion?

Función 1:  $f(x) = 3x^2 \ln(x) + 2x$ 

- Los tres métodos coinciden visualmente con la función original.
- La función es suave y bien comportada en [1, 3], y los nodos están bien distribuidos.
- Todos los métodos son adecuados; no hay oscilaciones ni errores notables.

Función 2:  $f(x) = x^2 \sin(x) - 3\cos(x)$ 

- Se observan diferencias leves entre Lagrange y los otros métodos, especialmente en los extremos
- Hermite y Splines ofrecen mejor ajuste, aprovechando la información de derivadas o la suavidad estructural.
- Lagrange tiende a oscilar más en funciones con más curvatura.

Función 3:  $f(x) = x \cos(x) - 2x^2 + 3x - 1$ 

- Los tres métodos coinciden perfectamente con la función en el intervalo.
- La función es suave y casi polinómica, lo que facilita la interpolación.
- Todos los métodos funcionan bien en este caso.

## Ejercicio 14

#### Instrucción del ejercicio 14

¿Existen a,b,c,d tal que la función:

$$S(x) = \begin{cases} ax^3 + x^2 + cx, & -1 \le x \le 0, \\ bx^3 + x^2 + dx, & 0 \le x \le 1 \end{cases}$$

sea el spline cúbico natural que coincide con la función f(x) = |x| en los nodos -1, 0, 1?

#### Solución

Una de las primeras condiciones que deben ocurrir es que  $S_{-1}(-1)=1$  y  $S_0(1)=1$ 

$$\begin{cases} S_{-1}(-1) = -a+1-c = 1 \\ S_0(1) = b+1+d = 1 \end{cases} \implies \begin{cases} a = -c \\ b = -d \end{cases}$$

Por otra parte, debe suceder que  $S_{-1}'(0) = S_0'(0)$ 

$$3ax^{2} + 2x + c = 3bx^{2} + 2x + d$$
 en  $x = 0 \Rightarrow c = d \Rightarrow a = -c = -d = b \Rightarrow a = b$ 

Finalmente, se debe cumplir la condicion natural:  $S_{-1}''(-1) = 0$  y  $S_0''(1) = 0$ 

$$\begin{cases} 6a(-1) + 2 = 0 \\ 6b(1) + 2 = 0 \end{cases} \implies \begin{cases} a = 1/3 \\ b = -1/3 \end{cases} \implies a = -b \Rightarrow \Leftarrow$$

Por lo tanto, no existen a, b, c, d tal que S(x) sea el spline cubico natural de |x| en los nodos -1, 0, 1

### Ejercicio 15

#### i Instrucción del ejercicio 15

Encuentre los valores de a,b,c,d y e tal que la función S(x) es un spline cúbico natural:

$$S(x) = \begin{cases} a + b(x-1) + c(x-1)^2 + d(x-1)^3, & 0 \le x \le 1, \\ (x-1)^3 + ex^2 - 1, & 1 \le x \le 2. \end{cases}$$

#### Solución

En el nodo interno x=1 se requiere continuidad de S(x):

$$S_0(1) = a,$$
  $S_1(1) = (0)^3 + e(1)^2 - 1 = e - 1$ 

De aquí se obtiene la primera ecuación:

$$a = e - 1$$

Respecto a la igualdad en las primeras derivadas se obtiene que:

$$S_0'(x) = b + 2c(x-1) + 3d(x-1)^2,$$
  $S_0'(1) = b,$  
$$S_1'(x) = 3(x-1)^2 + 2ex,$$
  $S_1'(1) = 2e$ 

Llegando a la condición de continuidad:

$$b=2e$$
.

Ahora con las segundas derivadas:

$$S_0''(x) = 2c + 6d(x - 1),$$
  $S_0''(1) = 2c,$ 

$$S_1''(x) = 6(x-1) + 2e,$$
  $S_1''(1) = 2e$ 

Condición de continuidad:

$$2c = 2e \implies c = e$$

Y por último, las condiciones de frontera:

En x = 0:

$$S_0''(0) = 2c - 6d = 0 \quad \Rightarrow \quad c = 3d$$

En x = 2:

$$S_1''(2) = 6(1) + 2e = 0 \implies e = -3$$

Solucionando el sistema, utilizando las condiciones anteriores se tiene:

$$e = -3$$
,  $c = e = -3$ ,  $c = 3d \implies d = -1$ ,

$$b = 2e = -6$$
,  $a = e - 1 = -4$ 

Teniendo así que  $a=-4,\quad b=-6,\quad c=-3,\quad d=-1,\quad e=-3.$ 

## Ejercicio 16

#### i Instrucción del ejercicio 16

Encuentre los valores de a,b,c y d tal que la función S(x) es un spline cúbico y cumple que  $\int_0^2 \left[S''(x)\right]^2 dx$  es mínimo (esta condición sustituye a la condición para ser spline natural o sujeto):

$$S(x) = \begin{cases} 3 + x - 9x^3, & 0 \le x \le 1, \\ a + b(x - 1) + c(x - 1)^2 + d(x - 1)^3, & 1 \le x \le 2. \end{cases}$$

#### Solución

1) Condiciones de continuidad en x=1 (de S y S') y de empalme de S'':

• Para  $x \le 1$ :  $S_0(x) = 3 + x - 9x^3$ ,  $S_0'(x) = 1 - 27x^2$ ,  $S_0''(x) = -54x$ .

• Para 
$$x \ge 1$$
: 
$$S_1(x) = a + b(x-1) + c(x-1)^2 + d(x-1)^3$$
: 
$$S_1'(x) = b + 2c(x-1) + 3d(x-1)^2$$
, 
$$S_1''(x) = 2c + 6d(x-1)$$
.

En x = 1:

$$\begin{split} S_0(1) &= 3+1-9 = -5 \Rightarrow a = -5, \\ S_0'(1) &= 1-27 = -26 \Rightarrow b = -26, \\ S_0''(1) &= -54 = 2c \Rightarrow c = -27. \end{split}$$

2) Minimización de la energía de curvatura:

$$J(d) = \int_0^1 \left[ S_0''(x) \right]^2 dx + \int_1^2 \left[ S_1''(x) \right]^2 dx.$$

El primer término no depende de d:

$$\int_0^1 \left(-54x\right)^2 dx = \frac{54^2}{3}.$$

Para el segundo, ponga $y=x-1\in[0,1],$  con A=-54 y B=6d:

$$\int_{1}^{2} (-54 + 6d(x - 1))^{2} dx = \int_{0}^{1} (A + By)^{2} dy$$
$$= A^{2} + AB + \frac{B^{2}}{3} = 2916 - 324d + 12d^{2}.$$

Luego

$$J(d) = \text{cte} + 12d^2 - 324d, \qquad J'(d) = 24d - 324 = 0 \Rightarrow d = \frac{324}{24} = 13.5.$$

Resultado final:

$$a = -5, b = -26, c = -27, d = 13.5$$

## Ejercicio 17

### i Instrucción del ejercicio 17

El objetivo de este ejercicio es estudiar e implementar un algoritmo para **Aproximación** discreta por mínimos cuadrados. Para esto:

a) El problema en general es aproximar una tabla de datos  $\{(x_i,y_i)\mid i=1,2,\ldots,m\}$  por un polinomio de grado n< m-1 denotado por

$$P_n(x) = \sum_{k=0}^n a_k x^k.$$

La idea es encontrar constantes  $\{a_k\}_{k=0}^n$  tal que se minimice el error:

$$E = \sum_{i=1}^m \big(y_i - P_n(x_i)\big)^2.$$

Pruebe que este mínimo se alcanza en la solución del sistema de **ecuaciones normales**  $(n+1)\times(n+1)$  para las incógnitas  $\{a_k\}_{k=0}^n$  dado por:

$$\sum_{k=0}^n a_k \sum_{i=1}^m x_i^{j+k} \; = \; \sum_{i=1}^m y_i x_i^j, \qquad j=0,1,2,\dots,n.$$

- b) Dada una tabla de datos para f, escriba una función en  $\mathbf{R}$  que permita generar el sistema de ecuaciones normales del inciso (a).
- c) Luego escriba una función en **R** que encuentre los coeficientes del polinomio de mínimos cuadrados y luego lo grafique.
- d) Construir la aproximación de mínimos cuadrados de grado 3 para la siguiente tabla y construir el gráfico.

#### Solución a)

Para encontrar el minimo de E, hay que derivarlo con respecto a cada uno de los  $a_j$ , con j=0,1,...,n

$$\frac{\partial E}{\partial a_j} = 2\sum_{i=1}^m \left(y_i - \sum_{k=0}^n a_k x_i^k\right) \cdot \frac{-\partial}{\partial a_k} (\sum_{k=0}^n a_k x_i^k) = 0$$

Note que 
$$\frac{\partial}{\partial a_i}(\sum_{k=0}^n a_k x_i^k) = x_i^j$$

$$\Rightarrow \frac{\partial E}{\partial a_j} = -2 \cdot \sum_{i=1}^m \left( y_i - \sum_{k=0}^n a_k x_i^k \right) \cdot x_i^j = 0 \Rightarrow -\sum_{i=1}^m y_i x_i^j + \sum_{i=1}^m \sum_{k=0}^n a_k x_i^{k+j} = 0 \Rightarrow \sum_{k=0}^n a_k \sum_{i=1}^m x_i^{j+k} = \sum_{i=1}^m y_i x_i^j$$
 b)

```
A[j + 1, k + 1] < sum(nodos^(j + k))
    }
   B[j + 1] \leftarrow sum(nodos^{(j)} * valores)
 }
 return(list(A = A, B = B))
  c)
# Funcion para encontrar coeficientes del polinomio que surge del ajuste de minimos cuadrados y
ajuste.minimos.cuadrados <- function(nodos, valores, n, a, b){</pre>
  stopifnot(is.numeric(nodos), is.numeric(valores),
            length(nodos) == length(valores),
            is.numeric(a), is.numeric(b), a < b,</pre>
            is.numeric(n), n \ge 0)
  sistema <- sistema.minimos(nodos, valores, n)</pre>
  coef <- as.numeric(solve(sistema$A, sistema$B))</pre>
  # Polinomio ajustado
 f_hat <- function(z) vapply(z, function(zz) sum(coef * zz^(0:n)), numeric(1))</pre>
 # Datos para el gráfico
 xi \leftarrow seq(a, b, length.out = 400)
  df_plot <- data.frame(x = xi, Hx = f_hat(xi))</pre>
  df_pts <- data.frame(x = nodos, y = valores)</pre>
 # Gráfico
  p \leftarrow ggplot(df_plot, aes(x = x)) +
    geom_line(aes(y = Hx, color = "Ajuste (MC)"),
              linewidth = 1, linetype = "dashed") +
    scale_color_manual(values = c("Ajuste (MC)" = "red")) +
    geom_point(data = df_pts, aes(x = x, y = y),
                shape = 21, size = 3, fill = "white") +
    labs(title = paste0("Interpolación por ajuste de\nminimos cuadrados (grado ", n, ")"),
         y = "Valor", color = "Serie") +
    theme_minimal(base_size = 14)
```

```
return(list(coeficientes = coef, f.ajuste = f_hat, grafico = p))
}
  d)
       \leftarrow c(4.0, 4.2, 4.5, 4.7, 5.1, 5.5, 5.9, 6.3, 6.8, 7.1)
valores <- c(102.56, 113.18, 130.11, 142.05, 167.53, 195.14, 224.87, 256.73, 299.50, 326.72)
n < -3
a <- min(nodos)
b <- max(nodos)
x <- ajuste.minimos.cuadrados(nodos, valores, n, a, b)
$coeficientes
[1] 3.42909439 -2.37922111 6.84557777 -0.01367456
$f.ajuste
function(z) vapply(z, function(zz) sum(coef * zz^(0:n)), numeric(1))
<bytecode: 0x10e169d60>
<environment: 0x11fd4e200>
$grafico
       Interpolación por ajuste de
       mínimos cuadrados (grado 3)
                                      0
   300
                               0
       250
Valor
                                                 Serie
  200
                                                     Ajuste (MC)
   150
   100
                                          7
                   5
                               6
```

Χ

## Ejercicio 18

#### i Instrucción del ejercicio 18

El objetivo de este ejercicio es generalizar la aproximación discreta por mínimos cuadrados.

Dada una función  $f \in C[a,b]$ , se requiere un polinomio  $\tilde{P}_n(x) = \sum_{k=0}^n a_k x^k$  de manera tal que las constantes  $\{a_k\}_{k=0}^n$  minimicen el error:

$$E = \int_a^b \left( f(x) - \tilde{P}_n(x) \right)^2 dx.$$

Pruebe que este mínimo se alcanza en la solución del sistema de (n+1) ecuaciones normales y (n+1) incógnitas  $\{a_k\}_{k=0}^n$  dado por:

$$\sum_{k=0}^{n} a_k \int_a^b x^{j+k} dx = \int_a^b x^j f(x) dx, \qquad j = 0, 1, 2, \dots, n.$$
 (2)

- a) Dada una función f escriba una función en  $\mathbf{R}$  que permita **generar el sistema de** ecuaciones (2).
- b) Luego escriba una función en  ${\bf R}$  que encuentre los coeficientes del polinomio  $\tilde{P}_n(x)$  y luego lo grafique.
- c) Encuentre la aproximación polinómica  $\tilde{P}_n(x)$  de grado 2, 4 y 6 para  $f(x) = \cos(\pi x)$  en el intervalo [-1,1]. Además, construya los gráficos.

#### Solución

a)

```
sistema.minimos.integrados <- function(a, b, f, n){
    A <- matrix(NA_real_, nrow = n + 1, ncol = n + 1)
    B <- numeric(n + 1)

for (j in 0:n) {
    for (k in 0:n) {
        A[j + 1, k + 1] <- integrate(function(x) x^(j + k), a, b)$value
    }
    B[j + 1] <- integrate(function(x) f(x) * x^j, a, b)$value
}
return(list(A = A, B = B))
}</pre>
```

b) ajuste.minimos.cuadrados.integrados <- function(a, b, f, n){ sistema <- sistema.minimos.integrados(a, b, f, n) coef <- as.numeric(solve(sistema\$A, sistema\$B))</pre> # Polinomio ajustado f\_hat <- function(z) vapply(z, function(zz) sum(coef \* zz^(0:n)), numeric(1))</pre> # Datos para el gráfico  $xi \leftarrow seq(a, b, length.out = 400)$  $df_plot \leftarrow data.frame(x = xi, Hx = f_hat(xi), fx = f(xi))$ # Gráfico  $p \leftarrow ggplot(df_plot, aes(x = x)) +$ geom\_line(aes(y = fx, color = "Original"), linewidth = 1) + geom\_line(aes(y = Hx, color = "Ajuste (MC)"), linewidth = 1, linetype = "dashed") + scale\_color\_manual(values = c("Ajuste (MC)" = "red", "Original" = "blue")) + labs(title = paste0("Interpolación por ajuste de\nmínimos cuadrados (grado ", n, ")"), y = "Valor", color = "Serie") + theme\_minimal(base\_size = 14) invisible(list(coeficientes = coef, f\_ajuste = f\_hat, grafico = p)) } c)

```
grado.2 <- ajuste.minimos.cuadrados.integrados(-1,1, function(x) cos(pi * x),2)
grado.4 <- ajuste.minimos.cuadrados.integrados(-1,1, function(x) cos(pi * x),4)
grado.6 <- ajuste.minimos.cuadrados.integrados(-1,1, function(x) cos(pi * x),6)
# Coeficientes de P2
print(grado.2$coeficientes)</pre>
```

#### [1] 0.7599089 0.0000000 -2.2797266

print(grado.2\$grafico)

# Interpolación por ajuste de mínimos cuadrados (grado 2)



# Coeficientes de P4
print(grado.4\$coeficientes)

[1] 0.9783264 0.0000000 -4.4639018 0.0000000 2.5482043

print(grado.4\$grafico)

# Interpolación por ajuste de mínimos cuadrados (grado 4)



# Coeficientes de P6
print(grado.6\$coeficientes)

[1] 0.9989872 0.0000000 -4.8977782 0.0000000 3.8498335 0.0000000 -0.9545280

print(grado.6\$grafico)

# Interpolación por ajuste de mínimos cuadrados (grado 6)



## Ejercicio 19

- i Instrucción del ejercicio 19
  - a) Demuestre que el **Polinomio de Hermite** visto en clase  $H_{2n+1}(x)$  es **único**. Sugerencia: Suponga que existe otro polinomio P(x) que cumple las condiciones de interpolación de Hermite y considere  $D=H_{2n+1}(x)-P(x)$  y D' en  $x_0,x_1,\ldots,x_n$ .
  - b) Demuestre que el error absoluto en este caso está dado por:

$$\left| f(x) - H_{2n+1}(x) \right| \; = \; \left| \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} \, f^{(2n+2)}(\xi) \right|, \quad \text{con } \xi \in (a,b).$$

Sugerencia: Use el mismo método que usamos para demostrar la fórmula del error absoluto en el caso de Lagrange, pero con:

$$g(t) = f(t) - H_{2n+1}(t) \ - \ \frac{(t-x_0)^2 \cdots (t-x_n)^2}{(x-x_0)^2 \cdots (x-x_n)^2} \Big[ f(x) - H_{2n+1}(x) \Big].$$

#### Solución

a) Suponga que existe otro polinomio P(x) que también satisface las 2(n+1) condiciones de interpolación de Hermite en  $x_0,\dots,x_n.$ 

Considere

$$D(x) = H_{2n+1}(x) - P(x).$$

1. Como  ${\cal H}_{2n+1}$  y P coinciden en valores y derivadas en cada nodo,

$$D(x_i) = 0$$
 y  $D'(x_i) = 0$ ,  $i = 0, ..., n$ .

Por lo tanto, cada  $x_i$  es una raíz de D con multiplicidad al menos 2.

2. Luego D tiene al menos 2(n+1) ceros **contando multiplicidades**. Pero

$$\deg D \leq \max\{\deg H_{2n+1}, \deg P\} \leq 2n+1$$

3. El Teorema Fundamental del Álgebra (contando multiplicidades) implica que un polinomio no nulo de grado  $\leq 2n+1$  no puede tener 2(n+1) raíces. La única posibilidad es  $D\equiv 0$ .

Así,  $H_{2n+1}(x) \equiv P(x)$  y el polinomio de Hermite es único.

# Comentario

La hipótesis de que los nodos  $x_0, \dots, x_n$  son **distintos** es esencial: garantiza que las 2(n+1) condiciones (valores y derivadas) son independientes. Si algunas coincidieran, la formulación correcta requiere multiplicidades adecuadas (nodos repetidos) y el argumento se adapta contando esas multiplicidades.

b) Defina el polinomio nodal

$$\omega(t) = \prod_{i=0}^{n} (t - x_i)^2, \qquad \omega(x) = \prod_{i=0}^{n} (x - x_i)^2 \neq 0 \quad (x \neq x_i).$$

Considere, para  $t \in [a, b]$ ,

$$g(t) = f(t) - H_{2n+1}(t) - \frac{\omega(t)}{\omega(x)} [f(x) - H_{2n+1}(x)]. \tag{1}$$

1) Zeros de g y g' en los nodos

Para cada i, como  $H_{2n+1}$  interpola valores y derivadas,

$$f(x_i) - H_{2n+1}(x_i) = 0, \qquad f'(x_i) - H'_{2n+1}(x_i) = 0.$$

Además,  $\omega(x_i)=0$  y  $\omega'(x_i)=0$  (raíz doble). Sustituyendo en (1) se obtiene

$$g(x_i) = 0,$$
  $g'(x_i) = 0,$   $i = 0, ..., n.$ 

- 2) Cero adicional en t = x. De Ecuación 1 se ve directamente que g(x) = 0.
- 3) Aplicación de Rolle generalizado (con multiplicidades). La función g es  $C^{2n+2}$  y tiene 2(n+1) ceros en  $x_0,\ldots,x_n$  (por multiplicidad doble) más un cero en x. Por el Teorema Generalizado de Rolle, existe  $\xi\in(a,b)$  tal que

$$g^{(2n+2)}(\xi) = 0. (2)$$

4) Cálculo de la derivada (2n+2)-ésima. Derivando Ecuación 1 2n+2 veces, el término  $H_{2n+1}$  desaparece (su grado  $\leq 2n+1$ ), y como  $\omega$  es un polinomio mónico de grado 2n+2,

$$\frac{d^{2n+2}}{dt^{2n+2}}\omega(t) = (2n+2)!.$$

Así,

$$g^{(2n+2)}(t) = f^{(2n+2)}(t) - \frac{(2n+2)!}{\omega(x)} \, [\, f(x) - H_{2n+1}(x) \, ].$$

Evaluando en  $\xi$  y usando Ecuación 2,

$$0 = f^{(2n+2)}(\xi) - \frac{(2n+2)!}{\omega(x)} \, [\, f(x) - H_{2n+1}(x) \, ],$$

de donde

$$f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!}\,\omega(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!}\,\prod_{i=0}^n (x-x_i)^2.$$