Hypothesis Testing I

Dr. Md. Israt Rayhan
Professor
Institute of Statistical Research and Training (ISRT)
University of Dhaka

Email: israt@isrt.ac.bd

What is a Hypothesis?

A hypothesis is a claim (assumption) about a population parameter:

population mean

Example: The mean monthly cell phone bill of Dhaka city is $\mu = Tk$. 250

The Null Hypothesis, H₀

 States the assumption (numerical) to be tested

Example: The average number of TV sets in BD homes is equal to one $(H_0: \mu = 1)$

 Is always about a population parameter, not about a sample statistic

$$H_0: \mu = 1$$

The Null Hypothesis, H₀

(continued)

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- May or may not be rejected

The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
 - e.g., The average number of TV sets in BD homes is not equal to 1 (H₁: μ ≠ 1)
- Is generally the hypothesis that the researcher is trying to support

Level of Significance, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α, (level of significance)
 - Typical values are .01, .05, or .10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region

Level of significance = α

 H_0 : $\mu = 3$

 H_1 : µ ≠ 3

Two-tail test

Represents critical value

Rejection region is shaded

$$H_0$$
: µ ≤ 3

$$H_1$$
: $\mu > 3$

Upper-tail test

$$H_0$$
: µ ≥ 3

$$H_1$$
: µ < 3

 α

Lower-tail test

Errors in Making Decisions

Type I Error

- Reject a true null hypothesis
- Considered a serious type of error

The probability of Type I Error is α

- Called level of significance of the test
- Set by researcher in advance

Errors in Making Decisions

(continued)

- Type II Error
 - Fail to reject a false null hypothesis

The probability of Type II Error is β

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

	Actual Situation	
Decision	H _o True	H _o False
Do Not Reject H ₀	No error $(1 - \alpha)$	Type II Error (β)
Reject H ₀	Type I Error (α)	No Error (1-β)

Key:
Outcome
(Probability)

Two-Tail Tests

 In some settings, the alternative hypothesis does not specify a unique direction

$$H_0$$
: $\mu = 3$
 H_1 : $\mu \neq 3$

 There are two critical values, defining the two regions of rejection

Test the claim that the true mean # of TV sets in US homes is equal to 3. (Assume $\sigma = 0.8$)

- State the appropriate null and alternative hypotheses
 - H_0 : $\mu = 3$, H_1 : $\mu \neq 3$ (This is a two tailed test)
- Specify the desired level of significance
 - Suppose that $\alpha = .05$ is chosen for this test
- Choose a sample size
 - Suppose a sample of size n = 100 is selected

(continued)

- Determine the appropriate technique
 - σ is known so this is a z test
- Set up the critical values
 - For $\alpha = .05$ the critical z values are ± 1.96
- Collect the data and compute the test statistic
 - Suppose the sample results are

n = 100,
$$\overline{x}$$
 = 2.84 (σ = 0.8 is assumed known)

So the test statistic is:

$$z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$

(continued)

Is the test statistic in the rejection region?

Reject H_0 if z < -1.96 or z > 1.96; otherwise do not reject H_0

(continued)

Reach a decision and interpret the result

Since z = -2.0 < -1.96, we <u>reject the null hypothesis</u> and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

