Likelihood ratio tests

Recap: likelihood ratio test

Let X_1, \ldots, X_n be a sample from a distribution with parameter $\theta \in \mathbb{R}^d$. We wish to test $H_0: \theta \in \Theta_0$ vs. $H_A: \theta \in \Theta_1$.

The **likelihood ratio test** (LRT) rejects H_0 when

$$rac{\sup\limits_{ heta\in\Theta_{1}}L(heta|\mathbf{X})}{\sup\limits_{ heta\in\Theta_{0}}L(heta|\mathbf{X})}>k,$$

where k is chosen such that $\sup_{\theta \in \Theta_0} \beta_{LR}(\theta) \leq \alpha.$

Example: linear regression with normal data

Suppose we observe $(X_1,Y_1),\ldots,(X_n,Y_n)$, where $Y_i=\beta^TX_i+arepsilon_i$ and $arepsilon_i\overset{iid}{\sim}N(0,\sigma^2)$. Partition $\beta=(\beta_{(1)},\beta_{(2)})^T$. We wish to test $H_0:\beta_{(2)}=0$ vs. $H_A:\beta_{(2)}\neq 0$.

Example: Poisson sample

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} Poisson(\lambda).$ We wish to test $H_0:\lambda=\lambda_0$ vs. $H_A:\lambda\neq\lambda_0.$

Write down the LRT statistic, and simplify as much as possible.

Asymptotics of the LRT

Generalization to higher dimensions