

UNIVERSITÀ DEGLI STUDI DI PADOVA

WHEELED LOCOMOTION

Emanuele Menegatti Intelligent Robotics Course

MOBILE ROBOTS WITH LEGS

- The fewer legs the more complicated becomes locomotion
 - stability, at least three legs are required for static stability
- During walking some legs are lifted
 - thus loosing stability?
- For static walking at least 6 legs are required
 - babies have to learn for quite a while until they are able to stand or even walk on there two legs

Adapted from R.Sigward

Adapted from R.Sigward

- Holonomic robots do exist, but need many motors or unusual designs and are often impractical
- Ground-based holonomic robots can be made using omnidirectional wheels (VIDEO)

WHEELED LOCOMOTION

IAS-LAB

A robot can be fitted with wheels to control three issues:

Stability

WHEEL ARRANGEMENTS

IAS-LAB

Maneuverability

Controllability

2 wheels arrangements:

a)

(Combining actuation and steering on one wheel increases complexity and adds positioning errors)

b)

3 wheels arrangements:

- c) Differential drive with third point of contact
- d) Two connected traction wheels plus one steered
- e) Two free wheels plus one steered traction wheel

3 wheels arrangements:

f)

g

WHEEL ARRANGEMENTS - 4

12