Nous avons terminé le premier chapitre de ce rendu par la présentation de diverses familles -ou classes- de polynôme de permutation. Une fois la "forme" d'un polynôme établit, moulte résultats nous permette de dire si le polynôme est ou non de permutations : et ce avec efficacité.

Nous allons ici revenir un tantinet en arrière et présenter un critère qui ne sera pas des plus convenant dans la pratique; mais qui a le mérite de s'appuyer sur une belle théorie, celle des caractères sur un corps fini.

Définition 1. Soit G un groupe abélien fini d'ordre n. On appelle caractère additif de G tout homomorphisme χ de G dans le groupe W_n des racines n-ièmes de l'unité.

Nous admettrons ici la

Proposition 1. L'ensemble \hat{G} des caractères additifs sur un groupe G forme un groupe multiplicatif.

Par conséquent, nous avons aussi la

Proposition 2 (admise). $\forall \chi \in \hat{G}, \ \chi^{-1} = \overline{\chi}, \ où \ \overline{\chi(x)} \ est \ définit comme le conjugué complexe de <math>\chi(x)$ dans W_n .

Notation 1. On notera $\chi_0 := 1_{\hat{G}}$ le caractère trivial, définit comme $\forall g \in G, \chi_0(g) = 1$.

Avant d'exhiber le lien entre polynômes de permutations et caractère additif, nous allons donner un résultat élémentaire.

Théorème 1. Soit G un groupe abélien fini d'ordre n, alors

i) Pour $q \in G$ fixé,

$$\sum_{\gamma \in \hat{G}} \chi(g) = \begin{cases} n & si \ g = 1_G \\ 0 & sinon. \end{cases}$$

et de manière similaire

ii) Pour $\chi \in \hat{G}$ fixé,

$$\sum_{g \in G} \chi(g) = \begin{cases} n & si \ \chi = 1_{\hat{G}} \\ 0 & sinon. \end{cases}$$

Démonstration. Utile?

Ce résultat nous sera utile pour démontrer notre critère, mais avant concentrons nous sur le cas où G est le groupe additif de \mathbb{F}_q , que nous noterons ici de manière abusive \mathbb{F}_q^+ . Nous allons donner aux caractères additifs une forme plus familière.

On rappelle la

Définition 2. On note \mathbb{F}_p le sous-corps premier de \mathbb{F}_q . L'application trace est définit comme

$$Tr: \left| \begin{array}{ccc} \mathbb{F}_q & \longrightarrow & \mathbb{F}_p \\ \alpha & \longmapsto & \sum_{i=0}^{n-1} \alpha^{q^i} \end{array} \right|$$

Proposition 3. Soit la fonction χ_{α} définit par

$$\chi_{\alpha}: \left| \begin{array}{ccc} \mathbb{F}_q & \longrightarrow & W_n \\ c & \longmapsto & e^{\frac{2\pi \cdot i \cdot Tr(\alpha \cdot c)}{p}} \end{array} \right|$$

, alors χ_{α} est un caractère additif de \mathbb{F}_q .

Démonstration. $\chi_{\alpha}(c_1+c_2)=e^{\frac{2\pi.i.Tr(\alpha.(c_1+c_2))}{p}}=e^{\frac{2\pi.i.[Tr(\alpha.(c_1))+Tr(\alpha.(c_2))]}{p}}=\chi_{\alpha}(c_1)\chi_{\alpha}(c_2).$ Les autres propriétés de morphisme sont toutes aussi claires.

Remarque 1. Précisons que $e^{\frac{2\pi .i.Tr(\alpha.c)}{p}}$ a bien un sens, car la trace est par définition à valeur dans \mathbb{F}_p et que $\mathbb{F}_p \simeq \mathbb{Z} \backslash p\mathbb{Z}$.

Définition 3. En particulier, remarquons que $\chi_1(c) = e^{\frac{2\pi . i. Tr(c)}{p}}$. Ce caractère sera appellé caractère additif canonique.

Proposition 4 (Admise). L'application

$$\phi: \left| \begin{array}{ccc} \mathbb{F}_q^+ & \longrightarrow & \hat{\mathbb{F}_q^+} \\ \alpha & \longmapsto & \chi_{\alpha} \end{array} \right|$$

est un isomorphisme de groupes.

Corollaire 1. On en déduit donc qu'il n'existe qu'un nombre fini de caractères additifs de \mathbb{F}_q^+ , et que ces derniers sont exactement les χ_{α} . Ceci étant admis, remarquons que $\chi_{\alpha}(c) = e^{\frac{2\pi.i.Tr(\alpha.c)}{p}} = e^{\frac{2\pi.i.Tr(1.(\alpha.c))}{p}} = \chi_1(\alpha.c)$. Tout caractère additif peut ainsi être exprimé en fonction de χ_1 , d'où l'appellation canonique.

Proposition 5. Soient α , c et $d \in \mathbb{F}_q$, alors

$$\sum_{\alpha \in \mathbb{F}_q} \chi_{\alpha}(c).\overline{\chi_{\alpha}(d)} = \begin{cases} 0 & \text{si } c \neq d \\ q & \text{sinon.} \end{cases}$$

Démonstration. De simples calculs suffisent, de par(t?) le corollaire 1 :

$$\sum_{\alpha \in \mathbb{F}_q} \chi_{\alpha}(c).\overline{\chi_{\alpha}(d)}$$

$$= \sum_{\alpha \in \mathbb{F}_q} e^{2i\pi Tr(\alpha.c)/p} \cdot \overline{e^{2i\pi Tr(\alpha.d)/p}}$$

$$= \sum_{\alpha \in \mathbb{F}_q} e^{2i\pi Tr(\alpha.c)/p} \cdot e^{-2i\pi Tr(\alpha.d)/p}$$

$$= \sum_{\alpha \in \mathbb{F}_q} e^{2i\pi Tr(\alpha.(c-d))/p}$$

Ceci est immédiatement égal à q si c=d, \mathbb{F}_q étant le corps à q éléments. Si $c\neq d$, remarquons que

$$\phi: \left| \begin{array}{ccc} \mathbb{F}_q & \longrightarrow & \mathbb{F}_q \\ \alpha & \longmapsto & \alpha(c-d) \end{array} \right|$$

constitue un isomorphisme (car $c \neq d$), de sorte que pour α parcourant \mathbb{F}_q , on a que $\alpha(c-d)$ parcours également \mathbb{F}_q . On obtient dès lors que

$$\sum_{\alpha \in \mathbb{F}_q} \chi_{\alpha}(c) \cdot \overline{\chi_{\alpha}(d)}$$

$$= \sum_{\alpha \in \mathbb{F}_q} e^{2i\pi Tr(\alpha)/p}$$

$$= \sum_{\alpha \in \mathbb{F}_q} \chi_1(\alpha)$$

$$\operatorname{car} \chi_1(\alpha) \neq 1_{\hat{\mathbb{F}}_a^+}$$

Remarque 2. Il est également possible de conclure directement via le théorème 1, en notant que si c = d, $\chi_{\alpha}(c).\overline{\chi_{\alpha}(d)} = \chi_{\alpha}(c).\chi_{\alpha}^{-1}(c) = 1_{\hat{\mathbb{F}}_{a}^{+}}...$

Une dernière proposition est requise avant d'énoncer notre critère. Elle sera considérée comme admise, sa démonstration dépassant le cadre de ce projet et nécessitant surement un projet à elle seule.

Proposition 6. Soient $P \in \mathbb{F}_q[X]$ et $\alpha \in \mathbb{F}_q$, alors le nombre N de solution de $P(x) = \alpha$ est

$$N = \frac{1}{q} \sum_{c \in \mathbb{F}_q} \sum_{\chi \in \hat{F}_q^+} \chi(P(c)).\overline{\chi(\alpha)}$$

Donnons nous quelques exemples simples, mettons pour q = 3 et q = 4:

Exemple 1. i) Soit $P(X) := X^3$; on a bien une unique solution à l'équation $x^3 = 2$, qui est x = 2. Vérifions cela à l'aide de la proposition précédente : $N = \frac{1}{3} \sum_{c \in F3} \sum_{\chi \in (\hat{F}3)^+} \chi(c^3) \overline{\chi(2)}$ $= \frac{1}{3} \sum_{\chi \in (\hat{F}3)^+} \overline{\chi(2)}(\chi(0) + \chi(1) + \chi(2))$ $= \frac{1}{3} \left[\overline{\chi_1(2)}(\chi_1(0) + \chi_1(1) + \chi_1(2)) + \overline{\chi_2(2)}(\chi_2(0) + \chi_2(1) + \chi_2(2)) + \overline{\chi_3(2)}(\chi_3(0) + \chi_3(1) + \chi_2(2)) + \overline{\chi_3(2)}(\chi_3(0) + \chi_3(1) + \chi_3(2)) + \overline{\chi_3(2)}(\chi_3(0) + \chi_3(2) + \chi_3(2)) + \overline{\chi_3(2)}(\chi_3(0) + \chi_3(2) + \chi_$

Or, $\chi_1(0) = e^{2\pi \cdot i \cdot Tr(0)/3} = 1$, $\chi_1(1) = e^{2\pi \cdot i \cdot Tr(1)/3} = e^{2\pi \cdot i /3}$ et $\chi_2(1) = e^{2\pi \cdot i \cdot Tr(2)/3} = e^{2\pi \cdot i /3}$ $e^{2\pi i \cdot 2/3}$ donc $\chi_1(0) + \chi_1(1) + \chi_1(2) = 0$.

On obtient finalement que

 $N = 1/3(\chi_1(0)(\chi_1(0) + \chi_1(0) + \chi_1(0))) = 3/3 = 1$ On retrouve bien notre nombre de solution

ii) On peut faire de même pour le cas F4 et $P := X^2$ Je l'ai fais sur papier, flemme pour le moment

Nous pouvons enfin énoncer notre critère :

Théorème 2 (Critère). Soit P un polynôme à coefficients dans \mathbb{F}_q , alors P est de permutation si et seulement si $\sum_{\alpha \in \mathbb{F}_a} \chi(P(\alpha)) = 0$ pour tout caractère additif nontrivial.

i) De gauche à droite : Supposons que P soit de permutation; Démonstration. il réalise donc une bijection et il s'ensuit que l'équation $P(x) = \alpha$ admet une unique solution. Soit $\chi \neq \chi_0$, donc $\exists \alpha \in \mathbb{F}_q$ tel que $\chi(\alpha) \neq 1$. On peut même supposer α non nul. Comme P est une bijection; si c parcourt \mathbb{F}_q , alors P(c)aussi, de sorte que l'on a $\sum_{c\in\mathbb{F}_q}\chi(P(c))=\sum_{c\in\mathbb{F}_q}\chi(c).$ Remarquons de plus que

$$\chi(\alpha) \sum_{c \in \mathbb{F}_q} \chi(c) = \sum_{c \in \mathbb{F}_q} \chi(c) \chi(\alpha) \sum_{c \in \mathbb{F}_q} \chi(c.\alpha) = \sum_{c \in \mathbb{F}_q} \chi(c)$$

car χ est un morphisme et que $\phi: c \longmapsto \alpha.c$ est une bijection pour α non nul. On obtient dès lors que

$$\chi(\alpha) \sum_{c \in \mathbb{F}_q} \chi(c) - \sum_{c \in \mathbb{F}_q} \chi(c) = 0$$

i.e.

$$\sum_{c \in \mathbb{F}_q} \chi(c)(\chi(\alpha) - 1) = 0$$

Or, comme χ est supposé non trivial, $\chi(\alpha) \neq 1$ et donc $\sum_{c \in \mathbb{F}_a} \chi(c) = 0$ pour tout caractère χ non trivial.

ii) De droite à gauche : Supposons que $\sum_{\alpha \in \mathbb{F}_a} \chi(P(\alpha)) = 0$ pour tout caractère additif non-trivial, i.e.

$$\sum_{\chi \in \hat{F}q^+/\chi_0} \sum_{c \in \mathbb{F}_q} \chi(P(c)).\overline{\chi(\alpha)} = 0$$

De la proposition précédente, nous avons que

$$N = \frac{1}{q} \sum_{c \in \mathbb{F}_q} \sum_{\chi \in \hat{F}_q^+} \chi(P(c)).\overline{\chi(\alpha)}$$

$$= \frac{1}{q} \sum_{\chi \in \hat{F}q^{+}} \sum_{c \in \mathbb{F}_{q}} \chi(P(c)) \cdot \overline{\chi(\alpha)}$$

$$= \frac{1}{q} \left[\sum_{c \in \mathbb{F}_{q}} \chi_{0}(P(c)) \cdot \overline{\chi_{0}(\alpha)} + \sum_{\chi \in \hat{F}q^{+}/\chi_{0}} \sum_{c \in \mathbb{F}_{q}} \chi(P(c)) \cdot \overline{\chi(\alpha)} \right]$$

$$= \frac{1}{q} \left[\sum_{c \in \mathbb{F}_{q}} \chi_{1}(0) \cdot \overline{\chi_{1}(0)} + \sum_{\chi \in \hat{F}q^{+}/\chi_{0}} \sum_{c \in \mathbb{F}_{q}} \chi(P(c)) \cdot \overline{\chi(\alpha)} \right]$$

$$= \frac{1}{q} \left[q + \sum_{\chi \in \hat{F}q^{+}/\chi_{0}} \sum_{c \in \mathbb{F}_{q}} \chi(P(c)) \cdot \overline{\chi(\alpha)} \right] \text{ (par la proposition 5)}$$

$$= \frac{1}{q} \left[q + \sum_{\chi \in \hat{F}q^{+}/\chi_{0}} \overline{\chi(\alpha)} \sum_{c \in \mathbb{F}_{q}} \chi(P(c)) \right]$$

$$= 1 + 0 \text{ (par hypothèse)}$$

Il n'existe alors qu'une seule solution à l'équation pour tout $\alpha \in \mathbb{F}_q$. Il s'ensuit que P réalise une bijection et est donc de permutation.

1 Références

http://www.numdam.org/article/CIF_1971__4__A5_0.pdf

https://theses.univ-oran1.dz/document/TH4747.pdf