Tutorial 12 Solutions

Draw parse trees for the LTL formulas:

- (a) $F p \wedge G q \rightarrow p W r$
- (b) $F(p \rightarrow Gr) \lor \neg q U p$

• Solution

Question

List all subformulas of the LTL formula $\neg p$ U (F $r \lor G \neg q \to q$ W $\neg r$).

Solution

The subformulas are

- p
- ¬p
- r
- Fr
- q
- ¬q
- G¬q
- ¬r
- $qW \neg r$
- FrVG¬q
- $FrVG \neg q \rightarrow qW \neg r$
- $\neg pU(FrVG\neg q \rightarrow qW\neg r)$

Question

Figure 3.39. A model \mathcal{M} .

Consider the system of Figure 3.39. For each of the formulas ϕ :

- (a) G a
- (b) a U b
- (c) $a \cup X (a \wedge \neg b)$
- (d) $X \neg b \wedge G (\neg a \vee \neg b)$
- (e) $X(a \wedge b) \wedge F(\neg a \wedge \neg b)$
 - (i) Find a path from the initial state q_3 which satisfies ϕ .
 - (ii) Determine whether $\mathcal{M}, q_3 \vDash \phi$.

Solution

a)

- i) $\pi : q3 q4 q3 q4 \dots$
- ii)No since $\pi: q3->q2->q2->\dots$ does not satisfy

b)

- i) $\pi : q3 q4 q3 q2 q2 \dots$
- ii) No since $\pi: q3->q1->q2->-q2->\dots$ does not satisfy

c)

- i) $\pi : q3 q4 q3 q4 \dots$
- ii) No since π : q3->q2->=..... does not satisfy

d)

- i) $\pi : q3 q1 q2 q2 \dots$
- ii) No since $\pi: q3->q4->q3->\dots$ does not satisfy

e)

- i) π : q3->q4->q3->q1-> q2->q2->....
- ii) No since π : q3->q1->q2->..... does not satisfy

Question

Figure 3.41. Another model with four states.

Consider the model \mathcal{M} in Figure 3.41. Check whether $\mathcal{M}, s_0 \models \phi$ and $\mathcal{M}, s_2 \models \phi$ hold for the CTL formulas ϕ :

- (a) AF q
- (b) AG (EF $(p \lor r)$)
- (c) $\mathrm{EX}\left(\mathrm{EX}\,r\right)$
- (d) AG (AF q).

Solution

- a)
- i)Yes since s0 itself has q
- ii)Yes since every path will pass through s2 or s0 which has q
- b)
- i) Yes, since all the states have either p or r, thus for all paths there will always be a state reachable which satisfies p Vr
- ii) Yes, since all the states have either p or r, thus for all paths there will always be a state reachable which satisfies p Vr
- c)
- i)Yes, consider the path s0->s1->s1->....
- ii) Yes, consider s2->s0->s1->
- d)
- i) No, consider s0->s1->s1...
- ii) No, consider s2->s0->s1->s1...