List of Symbols

Version: November 30, 2022

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	$\operatorname{Scalars}$
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A},\mathcal{B},\mathcal{C},\dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Common symbols

∇f , \mathbf{g} $\nabla_x f$, \mathbf{g}_x \mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	Gradient vector Gradient vector with respect x Stochastic approximation of the gradient vector
$J(\cdot)$	Cost-function or objective function
$\Lambda(\cdot)$	Likelihood function
$\Lambda_l(\cdot)$	Log-likelihood function
μ_{x}, \mathbf{m}_{x}	Mean vector
$\hat{m{\mu}}_{_{X}},\hat{m{m}}_{_{X}}$	Sample mean vector
$r_X(\tau), R_X(\tau)$	Autocorrelation function of the signal $x(t)$ or $x[n]$
$\hat{r}_{x}(au),\hat{R}_{x}(au)$	Estimated autocorrelation function of the signal $x(t)$ or $x[n]$
$\mathbf{R}_{\mathbf{x}}$	(Auto)correlation matrix of \mathbf{x}
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and $d[n]$ or $x(t)$ and $d(t)$
$\hat{r}_{x,d}(au), \hat{R}_{x,d}(au)$	Estimated cross-correlation between
D	x[n] and $d[n]$ or $x(t)$ and $d(t)$
$\mathbf{R}_{\mathbf{x}\mathbf{y}}$	Cross-correlation matrix of x and y
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
	$\mathbf{R}_{\mathbf{x}\mathbf{y}}$

$\mathbf{p}_{\mathbf{x}d}$	Cross-correlation vector
$\rho_{x,y}$	Pearson correlation coefficient be-
•	tween x and y
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coeffi- cient between x and y
$c_X(\tau), C_X(\tau)$	Autocovariance function of the signal
$c_X(t), c_X(t)$	x(t) or $x[n]$
$\hat{c}_x(au), \hat{C}_x(au)$	Estimated autocovariance function of
-1 (1), -1 (1)	the signal $x(t)$ or $x[n]$
C_x, K_x, Σ_x	(Auto)covariance matrix of \mathbf{x}
$\hat{\mathbf{C}}_{\mathbf{x}},\hat{\mathbf{K}}_{\mathbf{x}},\hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n]$
$\hat{c}_{xy}(au), \hat{C}_{xy}(au)$	Estimated cross-covariance function
	of the signal $x(t)$ or $x[n]$
$\mathbf{C}_{\mathbf{xy}}, \mathbf{K}_{\mathbf{xy}}, \mathbf{\Sigma}_{\mathbf{xy}}$	Cross-covariance matrix of x
$\hat{\mathbf{C}}_{\mathbf{xy}}, \hat{\mathbf{K}}_{\mathbf{xy}}, \hat{\mathbf{\Sigma}}_{\mathbf{xy}}$	Sample cross-covariance matrix
$\delta(t)$	Delta function Vegetar function
$\delta[n]$ $h(t), h[n]$	Kronecker function
n(t), n[n]	Impulse response (continuous and discrete time)
C	Cofactor matrix
W, D	Diagonal matrix
$\mathbf{w}, \mathbf{\theta}$	Parameters, coefficients, or weights
	vector
$\mathbf{w}_{o}, \mathbf{w}^{\star}, \mathbf{\theta}_{o}, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
	coefficients, or weights vector
W	Matrix of the weights
P	Projection matrix; Permutation ma-
Λ	trix Eigenvalue matrix
Σ	Singular value matrix
U	Upper matrix; Left singular vectors
${f L}$	Lower matrix
\mathbf{V}	Right singular vectors
J	Jordan matrix; Jacobian matrix
S	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix $M \times N$ -dimensional null matrix
$egin{aligned} 0_{M imes N} \ 0_{N} \end{aligned}$	N-dimensional null vector
$oldsymbol{0}_N$	Null matrix, vector, or tensor (di-
	mensionality understood by context)
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector

1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)
j	$\sqrt{-1}$

3 Linear Algebra operations

\mathbf{A}^{-1}	Inverse matrix
$\mathbf{A}^+,\mathbf{A}^\dagger$	Moore-Penrose pseudoinverse
\mathbf{A}^{\top}	Transpose
\mathbf{A}^*	Conjugate
\mathbf{A}^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ ^2$	Matrix norm
a	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}^{r}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
$ \mathbf{A} , \det(\mathbf{A})$	Determinant
$\operatorname{diag}\left(\mathbf{a}\right),\operatorname{diag}\left(\mathbf{A}\right)$	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor a or the elements in the diagonal
	of \mathbf{A}
$\text{vec}\left(\mathbf{A}\right)$	Vectorization: stacks the columns of
	the matrix A into a long column vec-
	tor
$\operatorname{vec_d}\left(\mathbf{A}\right)$	Extracts the diagonal elements of a
	square matrix and returns them in a
	column vector
$\operatorname{vec}_{\operatorname{l}}\left(\mathbf{A}\right)$	Extracts the elements strictly below
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\operatorname{vec}_{\mathrm{u}}\left(\mathbf{A}\right)$	Extracts the elements strictly above
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\operatorname{vec_b}\left(\mathbf{A}\right)$	Block vectorization operator: stacks
	square block matrices of the input
(4)	into a long block column matrix
$\operatorname{unvec}\left(\mathbf{A}\right)$	Reshapes a column vector into a ma-
	trix

$[\mathbf{A},\mathbf{B},\mathbf{C},\dots]$ $[\lambda;\mathbf{A},\mathbf{B},\mathbf{C},\dots]$	CANDECOMP/PARAFAC(CP) decomposition of the tensor \mathcal{X} from the outer product of column vectors of \mathbf{A} , \mathbf{B} , \mathbf{C} , (TODO: change the square brackets to the double one by using the commented commands) Normalized CANDECOMP/PARAFAC(CP) decomposition of the tensor \mathcal{X} from the outer product of column vectors of \mathbf{A} , \mathbf{B} , \mathbf{C} , (TODO: change the square brackets to the double one by using the commented commands)
$N\left(\mathbf{A}\right)$	Nullspace (or kernel), i.e.,
$C\left(\mathbf{A}\right)$	dim (C (A)) Columnspace (or range), i.e., the space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is the ith column vector of the matrix \mathbf{A}
$\mathrm{span}\left(\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right)$	Space spanned by the argument vectors
$\mathrm{span}\left(\mathbf{A}\right)$	Space spanned by the column vectors of \mathbf{A}
$\operatorname{rank}\left(\mathbf{A} ight)$	Rank, that is, dim (span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$) = dim $(\mathbf{C}(\mathbf{A}))$, where \mathbf{a}_i is the ith column vector of the matrix \mathbf{A}
$\mathrm{tr}\left(\mathbf{A} ight)$	trace
$\mathbf{a} \perp \mathbf{b}$	a is orthogonal to b
a ⊥ b	a is not orthogonal to b
⊗ (1)	Kronecker product
$\langle \mathbf{a}, \mathbf{b} \rangle$	Inner product, i.e., $\mathbf{a}^{T}\mathbf{b}$
$\mathbf{a} \circ \mathbf{b}$	Outer product, i.e., \mathbf{ab}^{\top}
◇	Hadamard (elementwise) product Khatri-Rao product
⊗	Kronecker Product
\times_n	n-mode product
$\mathbf{X}_{(n)}$	n -mode matricization of the tensor ${\cal X}$
$\mathcal{X} \leq 0$	Nonnegative tensor
$\mathbf{a} \leq_K \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
	the space \mathbb{R}^n
$\mathbf{a} \prec_K \mathbf{b}$	Strict generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	the conic subset K in the space \mathbb{R}^n

$\mathbf{a} \leq \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space
	\mathbb{R}^n
a < b	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	thant conic subset, \mathbb{R}^n_{++} , in the space
	\mathbb{R}^n
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
	${f B}-{f A}$ belongs to the conic subset K
	in the space S^n
$\mathbf{A} \prec_K \mathbf{B}$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space \mathcal{S}^n
$A \leq B$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the positive semidef-
	inite conic subset, \mathcal{S}^n_+ , in the space \mathcal{S}^n
A < B	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	thant conic subset, \mathcal{S}_{++}^n , in the space
	\mathcal{S}^n

3.1 Indexing

x_{i_1,i_2,\ldots,i_N}	Element in the position
	(i_1,i_2,\ldots,i_N) of the tensor $\boldsymbol{\mathcal{X}}$
$\mathcal{X}^{(n)}$	nth tensor in a nontemporal sequence
$[\mathcal{X}]_{i_1,i_2,,i_N}$	Element $x_{i_1,i_2,,i_N}$
$\mathbf{x}_{i}, \mathbf{x}_{:i}$	jth column of the matrix X
\mathbf{x}_{i} :	jth row of the matrix X
$\mathbf{X}_{i_1,,i_{j-1},:,i_{j+1},,i_N}$	Mode- j fiber of the tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
7.27.0	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor \mathcal{X}
$\mathbf{x}_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{i_1,:,:}$	Horizontal slice of the thrid-order
	tensor \mathcal{X}
$\mathbf{X}_{:,i_2,:}$	Lateral slices slice of the thrid-order
, 2,	tensor \mathcal{X}
$\mathbf{X}_{i_3}, \mathbf{X}_{:,:,i_3}$	Frontal slices slice of the thrid-order
	tensor \mathcal{X}

4 Sets

$A\setminus B$	Set subtraction, i.e., the set containing the elements of A that are not in
A + + D	B Set of union
$A \cup B$ $A \cap B$	Set of union Set of intersection
$A \times B$	Cartesian product
$A \oplus B$	Direct sum, e.g., $C(A^{T}) \oplus C(A^{T})^{\perp} =$
$A \oplus B$	\mathbb{R}^n
A^{\perp}	Orthogonal complement
A^c	Complement
#A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
$\mathbb R$	Set of real numbers
\mathbb{C}	Set of complex numbers
\mathbb{Z}	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
N	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$???
$\mathbb{K}^{I_1 imes I_2 imes \cdots imes I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or complex) space
\mathbb{K}_{+}	Nonnegative real (or complex) space
\mathbb{K}_{++}	Positive real (or complex) space, i.e.,
	$\mathbb{K}_{++} = \mathbb{K}_+ \setminus \{0\}$
$\mathcal{S}^n, \mathbb{S}^n$	Conic set of the symmetric $n \times n$ -
	dimensional matrices
$\mathcal{S}^n_+, \mathbb{S}^n_+$	Conic set of the symmetric positive
	semidefinite $n \times n$ -dimensional matri-
	ces
$\mathcal{S}^n_{++}, \mathbb{S}^n_{++}$	Conic set of the symmetric positive
	definite $n \times n$ -dimensional matrices,
	i.e., $S_{++}^n = S_{+}^n \setminus \{0\}$
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
5 1	to b
[a,b),(a,b]	Half-opened intervals of a real set
	from a to b

5 Signals and functions operations and indexing

$f: A \to B$ $f^{(n)}$ $f \circ g$ $\inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	A function f whose domain is A and codomain is B nth derivative of the function f Composition of the functions f and g Infimum
$\sup_{\mathbf{y}\in\mathcal{A}}g(\mathbf{x},\mathbf{y})$	Supremum
$x(t)$ $x[n], x[k], x[m], x[i], \dots$ $x(n), x(k), x(m), x(i), \dots$	Convolution Continuous-time t Discrete-time $n, k, m, i,$ Discrete-time $n, k, m, i,$ (it should be used only if there are no
	continuous-time signals in the context to avoid ambiguity)
$\tilde{x}(t) \text{ or } \tilde{x}[n]$	Estimate of $x(t)$ or $x[n]$; the Hilbert transform of $x(t)$ or $x[n]$
$x_I(t)$ or $x_I[n]$	Real or in-phase part of $x(t)$ or $x[n]$
$x_Q(t)$ or $x_Q[n]$	Imaginary or quadrature part of $x(t)$ or $x[n]$
X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (in linear frequency, Hz) of $x(t)$
$S_x(f)$	Power spectral density of $x(t)$ in linear frequency
$S_x(j\omega)$	Power spectral density of $x(t)$ in angular frequency
$X(j\omega)$	Fourier transform (in angular frequency, rad/sec) of $x(t)$
X(z)	Z-transform of $x[n]$

6 Probability and stochastic processes

$E\left[\cdot\right]$	Statistical expectation
$E_u\left[\cdot\right]$	Statistical expectation with respect
	to u
var(x)	Variance of the random variable x
$\operatorname{erfc}(\cdot)$	Complementary error function
P(A)	Probability of the event or set A
$p(\cdot)$	Probability density function

$p(x \mid A)$	Conditional probability density function
$a \sim P$	Random variable a with distribution P
$\mathcal{N}(\mu,\sigma^2)$	Gaussian distribution of a random variable with mean μ and variance σ^2
$\mathcal{CN}(\mu,\sigma^2)$	Complex Gaussian distribution of a random variable with mean μ and variance σ^2
$\mathcal{N}(\pmb{\mu},\pmb{\Sigma})$	Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{CN}(\pmb{\mu},\pmb{\Sigma})$	Complex Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{U}(a,b)$	Uniform distribution from a to b

7 General notations

$a \wedge b$	Logical AND of a and b
$a \lor b$	Logical OR of a and b
$\neg a$	Logical negation of a
3	There exists
∌	There does not exist
∃!	There exist an unique
A	For all
	Such that
	Therefore
\iff	Logical equivalence
≜	Equal by definition
≠	Not equal
∞	Infinity
a	Absolute value of a
log	Base-10 logarithm or decimal loga-
	rithm
ln	Natual logarithm
$\operatorname{Re}\left\{ x\right\}$	Real part of x
$\operatorname{Im}\left\{ x\right\}$	Imaginary part of x
$\mathcal{O}(\cdot)$	big-O notation
[·]	Ceiling operation
[.]	Floor operation
∠.	phase (complex argument)
$x \mod y$	Remainder, i.e., $x - y \lfloor x/y \rfloor$
$\operatorname{frac}(x)$	Fractional part, i.e., $x \mod 1$

8 Abbreviations

wrt. With respect to st. Subject to iff. If and only if

EVD Eigenvalue decomposition, or eigen-

 ${\it decomposition}$

SVD Singular value decomposition CP CANDECOMP/PARAFAC