Distributed Information Systems: Spring Semester 2015 Quiz 6: Association Rules + Clustering & Classification

			May 2015 :15AM to 11:30AM
	Total nun	nber of questions: 8 n has a single answer!	
	Each question	ii iias a siligle aliswei:	
Consider the following	g $D(Transaction\ ID,\ Item$	List) database.	
	TID T100 T200 T300 T400 T500 T600 T700 T700 T800 T900	12,14 12,13 11, 12, 14 11, 13, 15 12, 13 11, 13 11, 13 11, 12, 13 11, 12, 13 11, 12, 13, 15	= 4 = 1 = 3 = 4 = 2 = 2 = 0 = 3 =
L_k be the set of freq	uent k -itemsets and the n	ninimum support count for the	ne apriori algorithm be 3.
1. Which of the follow	ving itemsets has a support	t count 3?	
$\square \ a) \ \{\text{I1,I2}\}$	$\Box b)$ {I1,I3}	$\boxtimes c)$ ({I1,I5})	$\Box d$) {I2,I3}
2. What is the size of	set L_2 ?		
$\Box a)$ 3	$\Box b)$ 4	$\boxtimes c)$ (5)	$\Box d)$ 6
	bout Association Rules Mi union of two frequent (k-1		by one item, we will always get
	mset as a result.	. 1 1 1	
<i>'</i>	p of the apriori algorithm i frequent itemset is always	requires heavy database acce	SS.
, <u> </u>	·		generation of frequent item set
, -	bout Association Rules Mi	_	1
		_	idence level defined. only need
, <u> </u>	retization allows transform		o categorical ones, based on the
\Box c) Confidence m	etrics determines for a freq	uent itemset whether a rule	is implied.
$\Box d$) A very low su	pport value for a certain ru	le indicates that the body ar	nd the head rarely occur togeth
in the same tr			

5. Which one is in general of	considered as a main	advantage of the k-means	clustering algorithm?
\Box a) It often terminates \Box b) It detects exclusivel \Box c) It is necessary to sp \boxtimes d) It is efficient.	y convex clusters.		
6. Consider the 4 clusters C	C_1 to C_4 and the foll	owing initial assignment of	f points:
C1 = (3, 10), (4, 11), (5, 1) C2 = (10, 10), (11, 10), (11) C3 = (3, 3), (4.5, 8), (5, 9) C4 = (7, 4), (8, 7), (8, 8), (10)	(2, 10) (5.5, 9)		
To which cluster would to	he k-means algorithr	m assign the point $(7,9)$ ini	tially (i.e., after the first iteration)?
$\Box a) \ C_1$	\Box b) C_2	$\Box c) C_3$	$\boxtimes d)$ C_4
7. While building a decision	n tree using C4.5, we	e cannot split a leaf furthe	er when
$\boxtimes a)$ all samples below $\Box b)$ all attributes have $\Box c)$ every sample below $\Box d)$ all remaining att	ve already been used ongs to a different c	lass.	
8. Which property is comm	on to clustering and	classification?	
\Box b) They need a trainin \Box c) They are unsupervisit	g set with the classe	es assigned.	al and categorical attributes.