Va- 110 Ca

line = 5 + 1833 12 Toplow = 24 + 30,9193 12

Lood = 19 - 29,023 + A

In - 110/24,130,9190A = 1,7233 - 2,22013 = 2.81 /-52.18 AMEN

VAN = 110 - In. Land = 97,5/4.610 Volt

Komplex Power = V. I" = (37, 5/4,61). (2,81/-52,18.) = = 190,07 + 229,28 + VA

ALtof P: 150,07 Walt 2-) Realth P= 229,18 VAR ga f. = 0,5476

Aa1 = 56,7945°

Apparent P = 274,023 VA

gf=1 iain S.1=P you P=150075=150,07

 $\chi_c = \frac{V^2}{Q} = \frac{37.5^2}{229.28} = 41.4648 \Lambda$

Toplan Abdil = 3.150,02 = 450,21 Watt

Topor Realist = 3.223,28 = 687,84 VAR

Toplan Görsm = 3. 274,023 - 822,069 VA

Toplar Kamplene = 3. 1150,07 + 229,283) = 450,21 + 687,84 & VA

) I==2,812-5218° Ampa

Ib = 281 67,82° Ampor

Ir = 2,81 L187,82° Ampor

c-) VAN = 97,5 L4,61- Volt

VBN = 97,5 L126,161° Valt

Ven = 37,5 1244610 Valt

```
9 f = 1 130 3.1 = P 5 = 150,07 Wate
   Oc = 229-0 Xc = 37,52 = 41,46 1
d) x= 41,46 1
C-) Yen Load Empedasi = 68,85 1
   Toplan Empodes = 68,35 + 1,885$
    You Alam In = 1,6 -0,0463 = 1,6 1-1,58 Apr
            Ib = 116 / 118142 A
             Ic = 116 / 238, 42" A
   VAU = 101,9 /-1,580 Valt
   Vou = 1013 L118,42. Valt
   Ven = 101,9/238,42° Valt
   Yen Kemper = VAV. In = 163, 70 -9,036 & VA
       About = 163,7 watt
      Realtil = - 9,036 VAR
      Gárman = 163,99 VA
  Toplan Vamplex = 3.(163,7-90367)=491,85/-3,16 " VA
  Topler Alest = 491,1 Watt
  Today Roalety = 27,108 VAR
        Görman - 691, 85 VA
```

```
Line_Empedans = 5.0000 + 1.8850i
Load_A_Empedans = 19.0000 +29.0290i
Empedans = 24.0000 + 30.9140i
Va = 110
Ia_Complex = 1.7236 - 2.2201i
Ia phase degree = -52.1761
Ia Genlik = 2.8107
VAN Complex = 97.1970 + 7.8517i
VAN_phase_degree = 4.6184
VAN genlik = 97.5136
Iaconj = 1.7236 + 2.2201i
KomplexP_A = 1.5010e+02 + 2.2932e+02i
AktiveP A = 150.0971
ReaktiveP_A = 229.3246
ApperentP A = 274.0783
Compansation Empedans = 0.0000 -41.4648i
```

```
New_Load_A_Empedans = 63.3517 + 0.0000i
New_Empedans = 68.3517 + 1.8850i
New_Ia_Complex = 1.6081 - 0.0443i
New_Ia_phase_degree = -1.5797
New_Ia_genlik = 1.6087
New_VAN_Complex = 1.0188e+02 - 2.8095e+00i
New_VAN_phase_degree = -1.5797
New_VAN_Genlik = 101.9146
newIaconj = 1.6081 + 0.0443i
New_KomplexP_A = 1.6395e+02 + 6.4837e-14i
New_AktiveP_A = 163.9512
New_ReaktiveP_A = 6.4837e-14
New_ApperentP_A = 163.9512
```

Soro 2 a silver landti Toplar Emportus = 34 + 34,6843 hat empedasi = 17 + 1,8853 466 = 23 +32,799 3 In = Un = 110/0° = 1.5854 - 1.6173 = 2,2648 /-1957° Ampar Va -110 VAN = In. Load = 99,0242 + 5,098f - 99,1553 /2.9472 Volt Komplex - VAN. Ia = 148,75 + 168,243 VA ALLIA P = 148,75 wate Realth P= 168,24 UAR Gároner P = 224, 5674 VA x1 = (99,15)2 = 58,64 1 You yol = (P+L)// Xe = 66,0957 52 Ym Topler Empodes = 71.0957 + 1,8853 -12 Yen Alem = 1,5461 - 0,0413 Ampr = 1,54 1-1,51880 Yen Van = 102,228 /-1,9188 Volt = 10219 -2,7093 Vol6 Yen Komplex 600= 158,1178 VA ALLEP " - 158,1129 Wath " = 0 . VAR Dealeth = 198,1128 VA Görörer

Line Empedans = 5.0000 + 1.8850i Load A Empedans = 29.0000 +32.7990i Empedans = 34.0000 + 34.6840iVa = 110 Ia Complex = 1.5854 - 1.6173iIa_phase_degree = -45.5706 Ia Genlik = 2.2648 VAN Complex = 99.0242 + 5.0981i VAN_phase_degree = VAN genlik = 99.1553 Iaconj = 1.5854 + 1.6173i $KomplexP_A = 1.4875e+02 + 1.6824e+02i$ AktiveP A = 148.7507ReaktiveP A = 168.2371ApperentP A = 224.5674Compansation Empedans = 0.0000 -58.4400i

New_Load_A_Empedans = 66.0957 - 0.0000i
New_Empedans = 71.0957 + 1.8850i
New_Ia_Complex = 1.5461 - 0.0410i
New_Ia_phase_degree = -1.5188
New_Ia_genlik = 1.5467
New_VAN_Complex = 1.0219e+02 - 2.7095e+00i
New_VAN_phase_degree = -1.5188
New_VAN_Genlik = 102.2280
newIaconj = 1.5461 + 0.0410i
New_KomplexP_A = 1.5811e+02 - 1.0658e-14i
New_AktiveP_A = 158.1128
New_ReaktiveP_A = -1.0658e-14
New_ApperentP_A = 158.1128

```
11/12 8
2. Sou
  had Emodes - + + 1,889 f. a 464 = 19 +29,029 f.
  Toplan Empedos = 24+ 30,914+ 1
  1P=-21 +22,10062 - 110 FISO, AUF
  Ib = Vo = 110 1120° = 2.8107/67,8239° Amor
   VON = 37, 5136 1-55,3860 Volt
   Komplex Power = V. In = 150,1 + 229,323 VA
    Aletine Pow = 150,1 Walt
    Realtine Power = 229,32 VAR
   Gorune Güc = 274,0783 VA
   Komparaosyan ion gift=1 isc xc = (97,5136)2 = 41,46-12
  You Yok Empedons1 = 63,3517+01 1
      Toplan Emp = 63,3517 + 1,886$ -
      You Alexa In= 116 1-61,580 Ampor - 110 Line
      YNO VBN = I.b. Load = 101,31 1-61,550 Volt
     Hompler goa = Vou. In = 463, 95 VA
     ALLIA 9 = 163 Watt
     Realth g = 0 VAR
     Görün g = 163,97 UA
```

```
Line Empedans = 5.0000 + 1.8850i
Load B Empedans = 19.0000 +29.0290i
Empedans = 24.0000 + 30.9140i
Vb = -55.0000 +95.2628i
Ib Complex = 1.0609 + 2.6028i
Ib phase degree = 67.8239
Ib Genlik = 2.8107
VBN_Complex = -55.3983 +80.2492i
VBN_phase_degree = -55.3816
VBN_genlik = 97.5136
Ibconj = 1.0609 - 2.6028i
KomplexP B = 1.5010e+02 + 2.2932e+02i
AktiveP B = 150.0971
ReaktiveP_B = 229.3246
ApperentP_B = 274.0783
Compansation_Empedans = 0.0000 -41.4648i
```

```
New_Load_B_Empedans = 63.3517 + 0.0000i
New_Empedans = 68.3517 + 1.8850i
New_Ib_Complex = -0.7656 + 1.4148i
New_Ib_phase_degree = -61.5797
New_Ib_genlik = 1.6087
New_VBN_Complex = -48.5048 +89.6319i
New_VBN_phase_degree = -61.5797
New_VBN_Genlik = 101.9146
newIbconj = -0.7656 - 1.4148i
New_KomplexP_B = 1.6395e+02 + 7.1054e-14i
New_AktiveP_B = 163.9512
New_ReaktiveP_B = 7.1054e-14
New_ApperentP_B = 163.9512
```

2. Som chatti yale = 39 + 40,339\$ ~ hat = 5 + 1,855 \$.~ Toplow Empodeurs = UL + 42,2263 12 Fc = Vc = 18038 /= 1618, Am Vev = Ic . You = 101, 2096 L 62, 1469" Valt = -47, 2857 - 89, 685 Kompler Gaa = 126, 89 + 131,25 J VA ALL) - 126,89 Wate Roaltof = 131,25 VA Görönen göc = 182, 5612 VA Xe Komportoryor gf=1 icm cos(0) P=S Xc = (101,2034)2 = 72,0444. -2 You Yile = 80,724 + 03 1 Toplow Empedor = 85,72 +1,88251 Yen Alem Ic = 110/240" V = 1,2829/58,2603° Ampor Ven = Ic Yolk = 103,559 L58,74. Volt You Komplero Gira= Volta = 13485 VA AUT 6 = 132,89WALE Rocklif = 0 WAR Gorsion 90:c = 132, 85 VA

Line_Empedans = 5.0000 + 1.8850i Load C Empedans = 39.0000 +40.3390i Empedans = 44.0000 + 42.2240iVc = -55.0000 -95.2628i Ic Complex = -1.7323 - 0.5026iIc_phase_degree = 16.1800 $Ic_Genlik = 1.8038$ VCN_Complex = -47.2857 -89.4841i VCN_phase_degree = 62.1469 VCN_genlik = 101.2094 Icconj = -1.7323 + 0.5026iKomplexP C = 1.2689e+02 + 1.3125e+02i $AktiveP_C = 126.8935$ ReaktiveP_C = 131.2502ApperentP_C = 182.5612 Compansation Empedans = 0.0000 -78.0444i

New_Load_C_Empedans = 80.7240 + 0.0000i
New_Empedans = 85.7240 + 1.8850i
New_Ic_Complex = -0.6657 - 1.0966i
New_Ic_phase_degree = 58.7403
New_Ic_genlik = 1.2829
New_VCN_Complex = -53.7386 -88.5248i
New_VCN_phase_degree = 58.7403
New_VCN_Genlik = 103.5590
newIcconj = -0.6657 + 1.0966i
New_KomplexP_C = 1.3285e+02 + 3.5527e-14i
New_AktiveP_C = 3.5527e-14
New_ApperentP_C = 132.8536

1. SORU MATLAB KODLARI

```
clear all
diary devre Soru 1 cevaplar.txt
Line Empedans = 5 + 1.885j
Load A Empedans = 19 + j*377*77*10.^{-3}
Empedans = Line Empedans + Load A Empedans
Va = 110 % volt
Ia_Complex = Va / Empedans % amper
Ia_phase_degree = atand( imag(Ia_Complex)/ real(Ia_Complex))
Ia Genlik = abs(Ia Complex)
VAN Complex = Va - (Ia Complex * Line Empedans) %volt
VAN phase degree = atand ( (imag(VAN Complex)) / real(VAN Complex) )
VAN genlik = abs(VAN Complex)
Iaconj = conj(Ia_Complex)
KomplexP_A = VAN_Complex *Iaconj % VA birim
AktiveP_A = real(KomplexP_A) % WATT birim
ReaktiveP A = imag(KomplexP A) % VAR birim
ApperentP A = sqrt((ReaktiveP A.^2) + AktiveP A.^2) % VA
%Power Factor A = AktiveP A/ApperentP A
%phasedifferenceVoltageAndCurrent = acosd(Power_Factor_A) % degree
% 2. kisim
Compansation_Empedans = -1j*(VAN_genlik.^2 / ReaktiveP_A )% Xc
Vkare/reaktif P
New Load A Empedans = (Load A Empedans * Compansation Empedans ) / (
Load_A_Empedans + Compansation_Empedans )
New Empedans = Line Empedans + New Load A Empedans
New Ia Complex = Va / New Empedans
New Ia phase degree = atand(imag(New Ia Complex)/real(New Ia Complex))
New Ia genlik = abs(New Ia Complex)
New_VAN_Complex = New_Ia_Complex*New_Load_A_Empedans
New VAN phase degree =
atand(imag(New_VAN_Complex)/real(New_VAN_Complex))
New VAN Genlik = abs(New VAN Complex)
newIaconj = conj(New Ia Complex)
New_KomplexP_A = New_VAN_Complex*newIaconj
New AktiveP A = real(New KomplexP A) % WATT birim
New_ReaktiveP_A = imag(New_KomplexP_A) % VAR birim
New_ApperentP_A = sqrt((New_ReaktiveP_A.^2) + New_AktiveP_A.^2) % VA
```

diary off

```
clear all
diary devre_Soru_2_a_sikki.txt
Line Empedans = 5 + 1.885j
Load_A_Empedans = (19+10) + j*377*(77+10)*10.^-3
Empedans = Line Empedans + Load A Empedans
Va = 110 % volt
Ia_Complex = Va / Empedans % amper
Ia phase degree = atand( imag(Ia Complex)/
real(Ia_Complex))
Ia Genlik = abs(Ia Complex)
VAN Complex = Va - (Ia Complex * Line Empedans) %volt
VAN phase degree = atand ( (imag(VAN Complex)) /
real(VAN_Complex) )
VAN_genlik = abs(VAN_Complex)
Iaconj = conj(Ia_Complex)
KomplexP_A = VAN_Complex *Iaconj % VA birim
AktiveP_A = real(KomplexP_A) % WATT birim
ReaktiveP A = imag(KomplexP A) % VAR birim
ApperentP_A = sqrt((ReaktiveP_A.^2) + AktiveP_A.^2) %
VA
%Power_Factor_A = AktiveP_A/ApperentP_A
%phasedifferenceVoltageAndCurrent =
acosd(Power_Factor_A) % degree
% 2. kisim
Compansation Empedans = -1j*(VAN genlik.^2 /
ReaktiveP A )% Xc Vkare/reaktif P
New_Load_A_Empedans = (Load_A_Empedans *
Compansation_Empedans ) / ( Load_A_Empedans +
Compansation Empedans )
New_Empedans = Line_Empedans + New_Load_A_Empedans
New Ia Complex = Va / New Empedans
New Ia phase degree =
atand(imag(New Ia Complex)/real(New Ia Complex))
New Ia genlik = abs(New Ia Complex)
New_VAN_Complex = New_Ia_Complex*New_Load_A_Empedans
New VAN phase degree =
atand(imag(New_VAN_Complex)/real(New_VAN_Complex))
New_VAN_Genlik = abs(New_VAN_Complex)
newIaconj = conj(New_Ia_Complex)
New KomplexP A = New VAN Complex*newIaconj
New_AktiveP_A = real(New_KomplexP_A) % WATT birim
New ReaktiveP_A = imag(New_KomplexP_A) % VAR birim
New ApperentP A = sqrt((New ReaktiveP A.^2) +
New_AktiveP_A.^2)
```

diary off

```
clear all
diary devre Soru 2 b sikki.txt
Line_Empedans = 5 + 1.885j
Load B Empedans = (19) + j*377*(77)*10.^{-3}
Empedans = Line Empedans + Load_B_Empedans
Vb = -55 + 55*sqrt(3)*j % volt
Ib_Complex = Vb / Empedans % amper
Ib_phase_degree = atand( imag(Ib_Complex)/
real(Ib Complex))
Ib Genlik = abs(Ib Complex)
VBN_Complex = Vb - (Ib_Complex * Line_Empedans) %volt
VBN_phase_degree = atand ( (imag(VBN_Complex)) /
real(VBN Complex) )
VBN genlik = abs(VBN Complex)
Ibconj = conj(Ib_Complex)
KomplexP_B = VBN_Complex *Ibconj % VA birim
AktiveP B = real(KomplexP B) % WATT birim
ReaktiveP B = imag(KomplexP B) % VAR birim
ApperentP B = sqrt((ReaktiveP B.^2) + AktiveP B.^2) %
VA
%Power_Factor_A = AktiveP_A/ApperentP A
%phasedifferenceVoltageAndCurrent =
acosd(Power_Factor_A) % degree
% 2. kisim
Compansation Empedans = -1j*(VBN genlik.^2 /
ReaktiveP B )% Xc Vkare/reaktif P
New_Load_B_Empedans = (Load_B_Empedans *
Compansation_Empedans ) / ( Load_B_Empedans +
Compansation Empedans )
New Empedans = Line Empedans + New Load B Empedans
New Ib Complex = Vb / New Empedans
New Ib phase degree =
atand(imag(New Ib Complex)/real(New Ib Complex))
New Ib genlik = abs(New Ib Complex)
New VBN Complex = New Ib Complex*New Load B Empedans
New_VBN_phase_degree =
atand(imag(New_VBN_Complex)/real(New_VBN_Complex))
New VBN Genlik = abs(New VBN Complex)
newIbconj = conj(New Ib Complex)
New KomplexP B = New VBN Complex*newIbconj
New_AktiveP_B = real(New_KomplexP_B) % WATT birim
New ReaktiveP B = imag(New KomplexP B) % VAR birim
New_ApperentP_B = sqrt((New_ReaktiveP_B.^2) +
New AktiveP B.^2)
diary off
```

```
clear all
diary devre_Soru_2_c_sikki.txt
Line Empedans = 5 + 1.885j
Load_C_Empedans = (19+20) + j*377*(77+30)*10.^{-3}
Empedans = Line Empedans + Load C Empedans
Vc = -55 - 55*sqrt(3)*j % volt
Ic_Complex = Vc / Empedans % amper
Ic phase degree = atand( imag(Ic Complex)/
real(Ic_Complex))
Ic Genlik = abs(Ic Complex)
VCN Complex = Vc - (Ic Complex * Line Empedans) %volt
VCN phase degree = atand ( (imag(VCN Complex)) /
real(VCN_Complex) )
VCN_genlik = abs(VCN_Complex)
Icconj = conj(Ic_Complex)
KomplexP C = VCN_Complex *Icconj % VA birim
AktiveP_C = real(KomplexP_C) % WATT birim
ReaktiveP C = imag(KomplexP C) % VAR birim
ApperentP_C = sqrt((ReaktiveP_C.^2) + AktiveP_C.^2) %
VA
%Power_Factor_A = AktiveP_A/ApperentP_A
%phasedifferenceVoltageAndCurrent =
acosd(Power_Factor_A) % degree
% 2. kisim
Compansation Empedans = -1j*(VCN genlik.^2 /
ReaktiveP C )% Xc Vkare/reaktif P
New Load_C_Empedans = (Load_C_Empedans *
Compansation_Empedans ) / ( Load_C_Empedans +
Compansation Empedans )
New Empedans = Line Empedans + New Load C Empedans
New Ic Complex = Vc / New Empedans
New Ic phase degree =
atand(imag(New Ic Complex)/real(New Ic Complex))
New Ic genlik = abs(New Ic Complex)
New_VCN_Complex = New_Ic_Complex*New_Load_C_Empedans
New VCN phase degree =
atand(imag(New_VCN_Complex)/real(New_VCN_Complex))
New_VCN_Genlik = abs(New_VCN_Complex)
newIcconj = conj(New_Ic_Complex)
New KomplexP C = New VCN Complex*newIcconj
New AktiveP C = real(New KomplexP C) % WATT birim
New_ReaktiveP_C = imag(New_KomplexP_C) % VAR birim
New ApperentP C = sqrt((New ReaktiveP C.^2) +
New_AktiveP_C.^2)
```

Soru 1 devre simülasyon görüntüleri aşağıdadır

Figure 1kompanzasyon öncesi aktif güç Van ve akım

Figure 2 kompanzasyon sonrası aktif güç, akım ve Van

Hata oranları %1'den aşağıdadır.

	А	hat	önce			kompanzasyon ile		
			VAN	AKIM	aktif güç	VAN	AKIM	aktif güç
		hesap	97.5	2.81	150.07	101.9	1.6	163.7
		simülasyor	97.53	2.805	149.5	102.26	1.617	164.32

Figure 3Spice güç ve akım ölçümü

Spice çıktısında da görülmektedir ki bobin ve capasitör güçleri hesaplanan değerlerdedir.

Devre 2. Simülasyon görüntüleri aşağıdadır

Figure 4 2. devre kompanzasyon öncesi ölçümler

Figure 5 Devre 2 kompanzasyon sonrası ölçümler

Figure 6 2. devre spice güç ölçümleri

hat		önce			kompanzasyon ile		
liat		VAN	AKIM	aktif güç	VAN	AKIM	aktif güç
Α	hesap	99.16	2.26	148.75	99.18	2.261	148.31
_ A	simülasyon	102.19	1.54	158.11	101.94	1.549	156.67
В	hesap	97.53	2.81	150.1	101.9	1.6	163
_ B	simülasyon	97.554	2.8	149.55	101.985	1.603	163.44
С	hesap	101.2	1.8	126.89	103.85	1.2829	132.85
	simülasyon	101.238	1.801	126.548	103.6	1.279	132.532

Açıkca görülmektedir a hattı VAN ve aktif güç sonucu dışında %2' yi geçen hata yoktur.

Hesaplamalar ve simülasyonlar birbirlerini sağlamaktadır.