

Computational Complexity Theory

Lecture 7: Relativization (contd.);

Space complexity

Indian Institute of Science

Recap: Limits of diagonalization

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using</u> only the two features of diagonalization.

Recap: Oracle Turing Machines

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only the</u> two features of diagonalization.
- Definition: Let $L \subseteq \{0,1\}^*$ be a language. An oracle TM M^{\perp} is a TM with a special query tape and three special states q_{query} , q_{yes} and q_{no} such that whenever the machine enters the q_{query} state, it immediately transits to q_{yes} or q_{no} depending on whether the string in the query tape belongs to L. (M^{\perp} has oracle access to L)

Recap: Oracle Turing Machines

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only the</u> two features of diagonalization.
- Important note: Oracle TMs (deterministic/nondeterministic) have the same two features used in diagonalization: For any fixed $L \subseteq \{0,1\}^*$,
- 1. There's an efficient universal TM with oracle access to L,
 - 2. Every M^L has infinitely many representations.

Recap: Relativizing results

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only</u> the two features of diagonalization.

- Observation: Let $L \subseteq \{0,1\}^*$ be an arbitrarily fixed language. Owing to the 'Important note', the proof of $P \neq EXP$ can be easily adapted to prove $P^{\perp} \neq EXP^{\perp}$ by working with TMs with oracle access to L.
- We say that the $P \neq EXP$ result <u>relativizes</u>.

Recap: Relativizing results

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only</u> the two features of diagonalization.

- Is is true that
- either $P_{\perp} = NP_{\perp}$ for every $L \subseteq \{0,1\}^*$,
- or $P^{\perp} \neq NP^{\perp}$ for every $L \subseteq \{0,1\}^*$?

Theorem (Baker-Gill-Solovay): The answer is No. Any proof of P = NP or $P \neq NP$ must not relativize.

Recap: Baker-Gill-Solovay theorem

- Theorem: There exist languages A and B such that PA = NPA but $PB \neq NPB$.
- Proof: Let $A = \{(M, x, 1^m): M \text{ accepts } x \text{ in } 2^m \text{ steps}\}.$
- A is an EXP-complete language under polytime Karp reduction.

- Then, $P^A = EXP$.
- Also, NPA = EXP. Hence PA = NPA.

Recap: Baker-Gill-Solovay theorem

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: For any language B let $L_B = \{1^n : \text{there's a string of length in B}\}.$
- Observe, $L_B \in NP^B$ for any B. (Guess the string, check if it has length n, and ask oracle B to verify membership.)

Recap: Baker-Gill-Solovay theorem

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: For any language B let $L_B = \{1^n : \text{there's a string of length in B}\}.$
- Observe, $L_B \in NP^B$ for any B.

• We'll construct B (using diagonalization) in such a way that $L_B \notin P_B$, implying $P_B \neq NP_B$.

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide 1ⁿ correctly (for some n) within 2ⁿ/10 steps. Moreover, n will grow monotonically with stages.

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the <u>status</u> of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_iB doesn't decide 1ⁿ correctly (for some n) within 2ⁿ/10 steps. Moreover, n will grow moreover with oracle belongs to B that is represented by i

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_iB doesn't decide 1n correctly (for some n) within 2n/10 steps. Moreover, n will grow monotonically with stages.
- Clearly, a B satisfying the above implies L_B ∉
 PB. Why?

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide 1ⁿ correctly (for some n) within 2ⁿ/10 steps. Moreover, n will grow monotonically with stages.
- Stage i: Choose n larger than the length of any string whose status has already been decided. Simulate M_i^B on input 1ⁿ for 2ⁿ/10 steps.

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_{i^B} doesn't decide 1^n correctly (for some n) within $2^n/10$ steps.
- Stage i: If M_i^B queries oracle B with a string whose status has already been decided, answer consistently.
- If M_i^B queries oracle B with a string whose status has <u>not</u> been decided yet, answer 'No'.

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide 1ⁿ correctly (for some n) within 2ⁿ/10 steps.
- Stage i: If M_i^B outputs 1 within 2ⁿ/10 steps then don't put any string of length n in B.

If M_iB outputs 0 or doesn't halt, put a string of length n in balance is possible as the status of at most 2º/10 many length n strings have been decided during the simulation)

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide 1ⁿ correctly (for some n) within 2ⁿ/10 steps.

Homework: In fact, we can assume that B
 ∈ EXP.

Space Complexity

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: N be a function. A language L is in DSPACE(S(n)) if there's a TM M that decides L using O(S(n)) work space on inputs of length n.

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: N N be a function. A language L is in NSPACE(S(n)) if there's a NTM M that decides L using O(S(n)) work space on inputs of length n, regardless of M's nondeterministic choices.

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- We'll simply refer to 'work space' as 'space'. For convenience, assume there's a single work tape.

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: N N be a function. S is space constructible if there's a TM that computes S(|x|) from x using O(S(|x|)) space.

- NSPACE(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. NSPACE(S(n)) ⊆ DTIME(20(S(n))), if
 S is space constructible.
- Proof. Uses the notion of <u>configuration</u> graph of a TM. We'll see this shortly.

- bs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. NSPACE(S(n)) ⊆ DTIME(20(S(n))), if
 S is space constructible.

• Definition. L = DSPACE(log n) NL = NSPACE(log n) PSPACE(log n)PSPACE(log n)

- bs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. NSPACE(S(n)) ⊆ DTIME(20(S(n))), if
 S is space constructible.

• Definition.
L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE0 = U DSPACE(nc) at least log n gives a TM at least the power to remember the index of a cell.

- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. NSPACE(S(n)) ⊆ DTIME(20(S(n))), if
 S is space constructible.
- Theorem. $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$

Run through all certificate choices of the verifier and **reuse** space.

bs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. NSPACE(S(n)) CENTIME(20(S(n))), if S is space constructible.

NP

PSPAC

co-NP

- Definition. A configuration of a TM M on input x, at any particular step of its execution, consists of
- (a) the nonblank symbols of its work tapes,
 - (b) the current state,
 - (c) the current head positions.

It captures a 'snapshot' of M at any particular moment of execution.

- **Definition.** A *configuration* of a TM M on input x, at any particular step of its execution, consists of
- (a) the nonblank symbols of its work tapes,
 - (b) the current state,
 - (c) the current head positions.

It captures a 'snapshot' of M at any

```
carticular movered of execution.

head index

index
```

A Configuration C

Content of work tape

 $b_{S(n)}$

- pefinition. A *configuration* of a TM M on input x, at any particular step of its execution, consists of
- (a) the nonblank symbols of its work tapes,
 - (b) the current state,
 - (c) the current head positions.

It captures a 'snapshot' of M at any

carticular movered of execution.

 $b_{S(n)}$

index

Note: A configuration C can be represented using O(S(n)) bits if M uses $S(n) \ge log n$ space on n bit inputs

Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).

Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).

• Number of nodes in $G_{M,x} = 2^{O(S(n))}$, if M uses S(n) space on n-bit inputs

- Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).
- If M is a DTM then every node C in $G_{M,x}$ has at most one outgoing edge. If M is an NTM then every node C in $G_{M,x}$ has at most <u>two</u> outgoing edges.

Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application C_2 is transition function.

Conf. graph of a DTM

 δ_0 C_3 Conf. graph of an

 C_1

- Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).
- By erasing the contents of the work tape at the end, bringing the head at the beginning, and having a q_{accept} state, we can assume that there's a unique C_{accept} configuration. Configuration C_{start} is well defined.

Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).

• M accepts x if and only if there's a path from C_{start} to C_{accept} in $G_{\text{M.x.}}$

Relation between time and space

- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. NSPACE(S(n)) ⊆ DTIME(20(S(n))), if S is space constructible.
- Proof. Let L ∈ NSPACE(S(n)) and M be an NTM deciding L using S(n) space on length n inputs.
- On input x, compute the configuration graph $G_{M,x}$ of M and check if there's a **path** from C_{start} to C_{accept} . Running time is $2^{O(S(n))}$.

- PATH = $\{(G,s,t) : G \text{ is a directed graph}\}$ having a path from s to t $\}$.
- Obs. PATH is in NL.

- PATH = $\{(G,s,t) : G \text{ is a directed graph}\}$ having a path from s to t $\}$.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each. Initialize a counter, say Count n.

- PATH = $\{(G,s,t) : G \text{ is a directed graph}\}$ having a path from s to t $\}$.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each. Initialize a counter, say Count = n.

Initialize to

S

Guess a vertex V_1 If there's a edge from s to V_1 , decrease count by 1.

Count = n

- PATH = $\{(G,s,t) : G \text{ is a directed graph}\}$ having a path from s to t $\}$.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each. Initialize a counter, say Count = n.

Set to v_1 Guess a vertex v_2 If there's a edge from v_1 to v_2 , decrease count by 1. Else o/p 0

and ctan

Count = n-

- PATH = $\{(G,s,t) : G \text{ is a directed graph}\}$ having a path from s to t $\}$.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each. Initialize a counter, say Count = n.

Set to v_2 Guess a vertex v_3 If there's a edge from v_2 to v_3 , decrease

count by 1. Else o/p 0

Count = n
2

...and so

on.

and ctan

- PATH = $\{(G,s,t) : G \text{ is a directed graph}\}$ having a path from s to t $\}$.
- Obs. PATH is in NL.

Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each. Initialize a counter, say Count = n.

Set to V_{n-1}

Set to t

Count = 1

If there's a edge from v_{n-1} to t, o/p 1 and stop. Else o/p 0

- $PATH = \{(G,s,t) : G \text{ is a directed graph}\}$ having a path from s to t}.
- Obs. PATH is in NL.
- Proof. Count the no. of vertices in G, let it be n. Set aside two memory locations of log n bits each. Initialize a counter, say Count = n.

Set to V_{n-1}

Set to t

Count = 1

If there's a edge from V_{n-1} to t, o/p 1 and stop. Else o/p 0 and ctan

Space complexity = $O(\log n)$

UPATH: A problem in L

- **PATH** = $\{(G,s,t) : G \text{ is an undirected graph having a path from s to t}.$
- Theorem (Reingold). UPATH is in L.

UPATH: A problem in L

- PATH = $\{(G,s,t) : G \text{ is an undirected graph} \}$ having a path from s to t $\}$.
- Theorem (Reingold). UPATH is in L.

Is PATH in L? ...more on this later.

PSPACE = NPSPACE

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof. Let $L \in NSPACE(S(n))$, and M be an NTM requiring S(n) space to decide L. We'll now show that there's a TM N requiring $O(S(n)^2)$ space to decide L.

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof. Let L ∈ NSPACE(S(n)), and M be an NTM requiring S(n) space to decide L. We'll now show that there's a TM N requiring O(S(n)²) space to decide L.

• On input x, N checks if there's a path from C_{start} to C_{accept} in $G_{\text{M,x}}$ as follows: Let |x| = n.

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof. ...N computes 2.S(n) + c, the no. of bits required to represent a configuration of M. It also finds out C_{start} and C_{accept} . Then N checks if there's a path from C_{start} to C_{accept} of length at most $2^{2.S(n)+c}$ in $G_{\text{M,x}}$ recursively using the following procedure.
- REACH(C_1 , C_2 , i): returns 1 if there's a path from C_1 to C_2 of length at most 2 in $G_{M,x}$; 0 otherwise.

Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

Space constructibility of S(n) used here

- Proof. ...N computes 2.S(n) + c, the no. of bits required to represent a configuration of M. It also finds out C_{start} and C_{accept} . Then N checks if there's a path from C_{start} to C_{accept} of length at most $2^{2.S(n)+c}$ in $G_{\text{M,x}}$ recursively using the following procedure.
- REACH(C_1 , C_2 , i): returns 1 if there's a path from C_1 to C_2 of length at most 2 in $G_{M,x}$; 0 otherwise.

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof.

```
    REACH(C<sub>1</sub>, C<sub>2</sub>, i) {
        If i = 0 check if C<sub>1</sub> and C<sub>2</sub> are adjacent.
        Else, for every configurations C,
        a<sub>1</sub> = REACH(C<sub>1</sub>, C, i-1)
        a<sub>2</sub> = REACH(C, C<sub>2</sub>, i-1)
        if a<sub>1</sub>=1 & a<sub>2</sub>=1, return 1. Else return 0.
```

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof.

```
• REACH(C_1, C_2, i) {

If i = 0 check if C_1 and C_2 are adjacent.

Else, for every configurations C,

a_1 = \text{REACH}(C_1, C, i-1))

a_2 = \text{REACH}(C, C_2, i-1)

if a_1=1 & a_2=1, return 1. Else return 0.
```

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof.
- REACH(C_1 , C_2 , i) {

 If i = 0 check if C_1 and C_2 are adjacent.

 Else, for every configurations C, $a_1 = \text{REACH}(C_1, C, i-1)$ $a_2 = \text{REACH}(C, C_2, i-1)$ if $a_1=1$ & $a_2=1$, return 1. Else return 0.

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof.

```
Space(i) = Space(i-1) + O(S(n))
```

Space complexity: O(S(n)²)

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof.

$$Space(i) = Space(i-1) + O(S(n))$$

Space complexity: O(S(n)²)

$$Time(i) = 2^{2.S(n)+c}.2.Time(i-1) +$$

O(S(n))

Time complexity: 20(S(n))

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof.

$$Space(i) = Space(i-1) + O(S(n))$$

Space complexity: O(S(n)²)

```
Time(i) = 2^{2.S(n)+c}. 2^{1.5(n)+c}. 2^
```