SUBMITTED BY- VIBHANSHU SINGH (M.TECH COMPUTATIONAL BIOLOGY)

Task 1: Data Handling and Statistical Analysis

Objective: Assess candidates' ability to handle complex data and apply statistical methods effectively.

Background: CpG methylation is an epigenetic marker that varies across tissue types. However, the methylation status of a single CpG site is unreliable as a biomarker due to errors introduced by bisulfite sequencing, sampling techniques, and biological variability.

Definition: Phased Methylation Pattern (PMP) is a unique set of coordinates that includes the DNA strand ('f' for forward (+) or 'r' for reverse (-)), the relative positions of three CpG sites on the same strand (e.g., x:y:z), and their methylation status (e.g., '000' for all unmethylated or '111' for all methylated). It represents a combined epigenetic signature across these CpG sites.

Hypothesis: Phased methylation patterns (PMPs) can act as reliable biomarkers to differentiate tissue types, providing higher specificity compared to individual CpG sites.

- Strand: Indicates the DNA strand ('f' or 'r').
- CpG Coordinates: Relative positions of three CpG sites (x:y:z).
- Methylation Status: Eight possible patterns ('000' to '111').
- Sample ID: Unique identifier for each sample.
- Replicate: Indicates technical replicates.
- Tissue: Tissue type (Tissue #1 or Tissue #2).

Sub-tasks:

1. Coverage Analysis

a. Calculate the median and coefficient of variation (CV) for single CpG coverage in each tissue. coverage analysis ensures the integrity and reliability of methylation data by addressing sequencing biases, variability, and depth requirements. It is foundational to validating hypotheses like the use of PMPs as tissue-specific biomarkers.

Code-

```
import pandas as pd
df = pd.read_csv('PupilBioTest.csv')
# Columns for single CpG coverage
cpg_columns = ['`000', '`001', '`010', '`011', '`100', '`101', '`110', '`111']
# dictionary to store metrics for each cpg column
results = []
# loop through each CpG column
for cpg in cpg_columns:
   # grouped by tissue
    grouped = df.groupby('Tissue')[cpg].agg(
       Median='median',
       Mean='mean',
       StdDev='std'
    ).reset index()
    grouped['CV'] = grouped['StdDev'] / grouped['Mean']
    # add a column to indicate which CpG column this analysis belongs to
    grouped['CpG_Column'] = cpg
    # append the result for this CpG column to the results list
    results.append(grouped)
# merge all results
final results = pd.concat(results, ignore index=True)
final_results.to_csv('single_cpg_coverage_statistics.csv', index=False)
print(final_results)
```

<u>Result</u>

Tissue	Median	Mean	StdDev	CV	CpG_Column
Islet	63.0	118.13349410305797	141.62176745066844	1.1988282284033658	.000
cfDNA	405.0	901.1693246807491	1233.919834983006	1.3692430503225774	,000
Islet	0.0	4.402681459592095	12.755096521792158	2.8971200026299213	`001
cfDNA	0.0	17.330327752352744	54.140656430768956	3.1240411147688127	`001
Islet	0.0	3.589680219519274	9.730252986511097	2.7106183257221064	`010
cfDNA	0.0	15.344915994826101	46.0824017094427	3.0031055057571163	`010
Islet	0.0	3.0605838896071345	11.95712251151349	3.9068109036698684	`011
cfDNA	0.0	9.161572279736319	55.53826962485141	6.062089336749725	`011
Islet	0.0	3.6812419197382655	10.099163136752452	2.743411967195706	`100
cfDNA	0.0	17.711453279553336	51.28316726196754	2.89548048104954	`100
Islet	0.0	2.356704572438722	9.66620599857126	4.101577309101859	`101
cfDNA	0.0	5.381630005577446	37.341554225842735	6.938707080780817	`101
Islet	0.0	2.6243500171499434	10.50249161329049	4.001940116469771	`110
cfDNA	0.0	8.538781699803389	53.00663873823008	6.207751948905146	`110
Islet	0.0	9.510754069813462	32.84428030086858	3.4533834078534604	`111
cfDNA	0.0	38.87023304349745	223.4799323434775	5.7493849366273135	`111

b. Generate plots summarizing the coverage statistics.

Code-

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
results = pd.read_csv('single_cpg_coverage_statistics.csv')
sns.set(style="whitegrid")
plt.figure(figsize=(16, 10))
# 1. Median plot
plt.subplot(2, 2, 1)
sns.barplot(data=results, x='CpG_Column', y='Median', hue='Tissue', palette='muted')
plt.title('Median Coverage per CpG Column')
plt.xlabel('CpG Column')
plt.ylabel('Median Coverage')
# 2. Mean plot
plt.subplot(2, 2, 2)
sns.barplot(data=results, x='CpG_Column', y='Mean', hue='Tissue', palette='pastel')
plt.title('Mean Coverage per CpG Column')
plt.xlabel('CpG Column')
plt.ylabel('Mean Coverage')
# 3. Standard Deviation plot
plt.subplot(2, 2, 3)
sns.barplot(data=results, x='CpG_Column', y='StdDev', hue='Tissue', palette='dark')
plt.title('Standard Deviation of Coverage per CpG coverage Column')
plt.xlabel('CpG Column')
plt.ylabel('Standard Deviation')
# 4. CV plot
plt.subplot(2, 2, 4)
pst.title('Coefficient of Variation (CV) per CpG coverage Column')
plt.xlabel('CpG Column')
plt.ylabel('Coefficient of Variation')
plt.tight_layout()
plt.savefig('coverage_statistics_plots.png', dpi=300)
plt.show()
```

<u>Result – </u>

- 2. Biomarker Identification (This analysis is done on the small part I am not able to do on whole provided csv file due to system limitations)
- **a**. Identify PMPs with high specificity for tissue differentiation, minimizing false positives for Tissue #1 while allowing some false negatives. Use statistical or machine learning approaches to assign confidence (e.g., p-values) to each PMP.

Statistical method-

Codes-

```
import pandas as pd
      from scipy.stats import fisher_exact
      from statsmodels.stats.multitest import multipletests
      chunk size = 500
      file_path = "PupilBioTest.csv"
       methylation_cols = ['`000', '`001', '`010', '`011', '`100', '`101', '`111']
8
      # initialize an empty list to store melted chunks
      melted\_chunks = []
10
11
      # process the dataset in chunks
12
      for chunk in pd.read csv(file path, chunksize=chunk size):
13
14
          melted_chunk = chunk.melt(
             id_vars=['strand', 'CpG_Coordinates', 'Sample_ID', 'Replicate', 'Tissue'],
15
             value vars=methvlation cols.
16
17
             var_name='Methylation_Status',
18
             value_name='Count'
19
20
         melted chunks.append(melted chunk)
21
22
       # combine into a single DataFrame
23
       df_melted = pd.concat(melted_chunks, ignore_index=True)
24
25
      # group data by tissue, strand, coordinates, and methylation status
     grouped = df_melted.groupby(['Tissue', 'strand', 'CpG_Coordinates', 'Methylation_Status']).agg(
26
27
         Total_Count=('Count', 'sum')
28
      ).reset_index()
29
      # Normalize counts by total counts per tissue
31
      grouped['Normalized_Count'] = grouped['Total_Count'] / grouped.groupby('Tissue')['Total_Count'].transform('sum')
32
33
      # comparison table
34
     tissue1 = 'cfDNA'
35
      tissue2 = 'islet'
       tissue1_data = grouped[grouped['Tissue'] == tissue1]
37
       tissue2_data = grouped[grouped['Tissue'] == tissue2]
39 ∨ comparison = pd.merge(
         tissue1_data[['strand', 'CpG_Coordinates', 'Methylation_Status', 'Total_Count']],
40
41
          tissue2_data[['strand', 'CpG_Coordinates', 'Methylation_Status', 'Total_Count']],
         on=['strand', 'CpG_Coordinates', 'Methylation_Status'],
44
         suffixes=('_T1', '_T2')
    ).fillna(0)
47
      # Fisher's Exact Test for each PMP
48
      p_values = []
      for _, row in comparison.iterrows():
          contingency_table = [
```

```
[row['Total_Count_T1'], sum(tissue1_data['Total_Count']) - row['Total_Count_T1']],
51
                [row['Total_Count_T2'], sum(tissue2_data['Total_Count']) - row['Total_Count_T2']],
52
53
54
           _, p = fisher_exact(contingency_table)
55
           p_values.append(p)
56
57
       comparison['P_Value'] = p_values
58
59
       # adusted p-values for multiple testing with error handling
60
        \  \  \, \textbf{if not comparison['P\_Value'].isnull().all() and } \  \, \text{len(comparison['P\_Value'])} \, \, > \, 0 : \\
61
           # Remove NaN P-values and apply multiple testing correction
62
            valid_p_values = comparison['P_Value'].dropna()
63
           if len(valid_p_values) > 0:
64
               try:
65
                   comparison['Adjusted_P_Value'] = multipletests(valid_p_values, method='fdr_bh')[1]
66
                except Exception as e:
67
                   print(f"Error \ during \ multiple \ testing \ correction: \ \{e\}")
68
                    comparison['Adjusted_P_Value'] = None
69
70
               print("Error: No valid P-values found for multiple testing correction.")
71
                comparison['Adjusted_P_Value'] = None
72
73
           print("Error: No valid P-values found for multiple testing correction.")
74
           comparison['Adjusted_P_Value'] = None
75
76
       # Filter PMPs
77
       significant_pmps = comparison[comparison['Adjusted_P_Value'] < 0.05]</pre>
78
79
        {\tt significant\_pmps.to\_csv('statistical\_significant\_pmps.csv',\ index=False)}
       print("Significant PMPs based on statistical approach saved to 'statistical_significant_pmps.csv'")
```

Result (sample) -

1	strand	CpG_Coordinates	Methylation_Status	Total_Count_T1	Total_Count_T2	P_Value	Adjusted_P_Value
2	r	10035:10044:10046	,000	1077.0	0.0	1.3382072844487038e-36	1.7676116401349276e-35
3	r	10035:10044:10053	`000	1086.0	0.0	5.917675284589969e-37	8.023259140671622e-36
4	r	10035:10044:10058	`000	1069.0	0.0	1.908798556018049e-36	2.497462623036202e-35
5	r	10035:10044:10071	`000	1072.0	0.0	1.9906808891810815e-36	2.5918875831200024e-35
6	r	10035:10044:10075	`000	1086.0	0.0	5.917675284589969e-37	8.023259140671622e-36
7	r	10035:10044:10081	,000	1086.0	0.0	5.917675284589969e-37	8.023259140671622e-36
8	r	10035:10044:10088	`000	1047.0	0.0	1.452516828653845e-35	1.810716014159768e-34
9	r	10035:10044:10096	`000	1056.0	0.0	6.371907791190341e-36	8.078305354230393e-35
10	r	10035:10044:10102	,000	1054.0	0.0	6.226306510017574e-36	7.951061266139723e-35
11	r	10035:10044:10109	,000	1005.0	0.0	3.281449035350466e-34	3.921801741714632e-33
12	r	10035:10044:10111	`000	1055.0	0.0	6.263405682991248e-36	7.969487437799825e-35
13	r	10035:10044:10118	,000	955.0	0.0	1.7386811904872064e-32	2.019134815267068e-31
14	r	10035:10044:10121	,000	907.0	0.0	5.7755991783838745e-31	6.59517144230489e-30
15	r	10035:10044:10130	,000	797.0	0.0	3.550894010064119e-27	3.7663965430886996e-26
16	r	10035:10044:10133	,000	764.0	0.0	3.604335951332221e-26	3.7630674200417176e-25
17	r	10035:10044:10140	,000	620.0	0.0	2.2639107299259707e-21	2.165189088302304e-20
18	r	10035:10044:10146	,000	450.0	0.0	1.6196031197187778e-15	1.396467889629982e-14

b. Calculate the mean variant read fraction (VRF) for each PMP in both tissues.

Code -

```
import pandas as pd
    file_path = "PupilBioTest.csv" # Replace with your actual file name
     methylation_cols = ['`000', '`001', '`010', '`011', '`100', '`101', '`110', '`111']
    df = pd.read_csv(file_path)
     df.columns = df.columns.str.strip()
     required_columns = ['strand', 'CpG_Coordinates', 'Sample_ID', 'Replicate', 'Tissue'] + methylation_cols
     for col in required_columns:
8
        if col not in df.columns:
             raise ValueError(f"Column '{col}' not found in the dataset. Please check your input file.")
# melt the dataset to create a 'Methylation_Status' column
11
    df_melted = df.melt(
12
       id_vars=['strand', 'CpG_Coordinates', 'Sample_ID', 'Replicate', 'Tissue'],
13
        value_vars=methylation_cols,
         var_name='Methylation_Status',
15
         value_name='Count'
16
17
     # Create PMP
     df_melted['PMP'] = (
19
         df_melted['strand'] + ':' + df_melted['CpG_Coordinates'] + ':' + df_melted['Methylation_Status']
20
     # group data by Tissue and PMP to calculate total counts
21
22
     grouped = df_melted.groupby(['Tissue', 'PMP']).agg(
23
         Total_Count=('Count', 'sum')
    ).reset_index()
24
    # Calculate the total counts for each tissue
    grouped['Total_Tissue_Count'] = grouped.groupby('Tissue')['Total_Count'].transform('sum')
27
     # Calculate VRF
28
     grouped['VRF'] = grouped['Total_Count'] / grouped['Total_Tissue_Count']
     output_file = "vrf_results.csv"
30
      grouped.to_csv(output_file, index=False)
    print(f"VRF results saved to {output_file}")
```

Result –

	Α	В	C	D	E	F
1	Tissue	PMP	Total_Count	Total_Tissue_Coun	VRF	
2	Islet	f:10035:10044:10046:`000	15229	558507204	2.72673295723505E-05	
3	Islet	f:10035:10044:10046:`001	145	558507204	2.59620644033806E-07	
4	Islet	f:10035:10044:10046:`010	280	558507204	5.0133641606528E-07	
5	Islet	f:10035:10044:10046:`011	30	558507204	5.37146160069943E-08	
6	Islet	f:10035:10044:10046:`100	101	558507204	1.80839207223547E-07	
7	Islet	f:10035:10044:10046:`101	30	558507204	5.37146160069943E-08	
8	Islet	f:10035:10044:10046:`110	23	558507204	4.11812056053623E-08	
9	Islet	f:10035:10044:10046:`111	36		6.44575392083931E-08	
10	Islet	f:10035:10044:10053:`000	14555		2.60605411993934E-05	
11	Islet	f:10035:10044:10053:`001	318			
12	Islet	f:10035:10044:10053:`010	268	558507204	4.79850569662482E-07	
13	Islet	f:10035:10044:10053:`011	34		6.08765648079268E-08	
14	Islet	f:10035:10044:10053:`100	116		2.07696515227044E-07	
15	Islet	f:10035:10044:10053:`101	9	558507204	1.61143848020983E-08	
16	Islet	f:10035:10044:10053:`110	25		4.47621800058285E-08	
17	Islet	f:10035:10044:10053:`111	33	558507204	5.90860776076937E-08	
18	Islet	f:10035:10044:10058:`000	13995	558507204	2.50578683672628E-05	
19	Islet	f:10035:10044:10058:`001	481	558507204	8.61224343312141E-07	
20	Islet	f:10035:10044:10058:`010	217	558507204		
21	Islet	f:10035:10044:10058:`011	74	558507204	1.32496052817252E-07	
22	Islet	f:10035:10044:10058:`100	88		1.57562873620516E-07	
23	Islet	f:10035:10044:10058:`101	26	558507204	4.65526672060617E-08	
24	Islet	f:10035:10044:10058:`110	30	558507204	5.37146160069943E-08	
25	Islet	f:10035:10044:10058:`111	28	558507204	5.0133641606528E-08	
26	Islet	f:10035:10044:10071:`000	13268	558507204	2.37561841726933E-05	
27	Islet	f:10035:10044:10071:`001	463	558507204	8.28995573707945E-07	
28	Islet	f:10035:10044:10071:`010	221	558507204	3.95697671251524E-07	
29	Islet	f:10035:10044:10071:`011	63		1.12800693614688E-07	
30	Islet	f:10035:10044:10071:`100	81	558507204	1.45029463218884E-07	
31	Islet	f:10035:10044:10071:`101	24	558507204	4.29716928055954E-08	
32	Islet	f:10035:10044:10071:`110	34		6.08765648079268E-08	
33	Islet	f:10035:10044:10071:`111	24		4.29716928055954E-08	
34	Islet	f:10035:10044:10075:`000	12425		2.22468034628968E-05	
35	Islet	f:10035:10044:10075:`001	1024	558507204	1.83345889303874E-06	
36	Islet	f:10035:10044:10075:`010	209		3.74211824848727E-07	
37	Islet	f:10035:10044:10075:`011	69		1.23543616816087E-07	
38	Islet	f:10035:10044:10075:`100	62	558507204	1.11010206414455E-07	
39	Islet	f:10035:10044:10075:`101	41		7.34099752095588E-08	
40	Islet	f:10035:10044:10075:`110	15	558507204	2.68573080034971E-08	

3. Address the following questions

a. How does sequencing depth affect specificity confidence?

b. For the top 10 PMPs, estimate the threshold of reads required to confidently call Tissue #2 at a sequencing depth of 1 million reads.

Code-

```
import pandas as pd
       file_path = "statistical_significant_pmps.csv" # Use the provided data file
       data = pd.read_csv(file_path)
       # sort by Adjusted P-Value (column 'Adjusted_P_Value') to get the top 10 PMPs
 6
       top_pmps = data.sort_values(by='Adjusted_P_Value').head(10)
9
       # assuming a sequencing depth of 1 million reads for Tissue #2
10
       sequencing_depth_t2 = 1_000_000
11
12
       # estimate the threshold of reads required for each PMP
13
      top_pmps['Threshold_Reads_T2'] = top_pmps['Total_Count_T2'] / top_pmps['Total_Count_T2'].sum() * sequencing_depth_t2
       print(top\_pmps[['CpG\_Coordinates', 'Methylation\_Status', 'Total\_Count\_T2', 'Threshold\_Reads\_T2']])
15
```

Result -

```
lcation$ python top10.py
th12@mth12:-
      CpG_Coordinates Methylation_Status
                                              Total_Count_T2
                                                               Threshold_Reads_T2
     10053:10071:10130
                                        000
                                                      1023.0
                                                                    130784.965482
     10046:10146:10159
                                                       495.0
                                                                     63283.047814
                                        000
     10046:10146:10150
                                        000
                                                        581.0
                                                                      74277.678343
     10046:10140:10162
                                                                      59064.177960
                                        000
                                                                      63155.203273
     10046:10140:10159
                                        000
                                                                     74149.833802
74149.833802
     10046:10140:10150
                                        000
                                                        580.0
     10046:10140:10146
                                        000
                                                       580.0
     10046:10075:10102
                                                                     153541.293787
                                        000
                                                      1201.0
     10046:10075:10096
                                                      1203.0
                                                                     153796.982869
                                        000
     10046:10075:10088
                                        000
                                                       1203.0
                                                                     153796.982869
```

c. Validate the hypothesis by comparing the specificity of the top 10 PMPs against individual CpG sites.

Code-

```
import pandas as pd
       from scipy.stats import fisher_exact
       from statsmodels.stats.multitest import multipletests
       import matplotlib.pyplot as plt
       file_path = "PupilBioTest.csv"
       methylation_cols = ['`000', '`001', '`010', '`011', '`100', '`101', '`111']
 8
10
       # Initialize result storage
11
       pmp_results = []
12
       cpg_results = []
13
14
       # Process data in chunks
15
       chunk_size = 200
16
       for chunk in pd.read_csv(file_path, chunksize=chunk_size):
17
           melted_chunk = chunk.melt(
               id_vars=['strand', 'CpG_Coordinates', 'Sample_ID', 'Replicate', 'Tissue'],
18
               value_vars=methylation_cols,
20
               var_name='Methylation_Status',
21
               value_name='Count'
22
23
           grouped = melted_chunk.groupby(['Tissue', 'strand', 'CpG_Coordinates', 'Methylation_Status']).agg(
24
25
              Total_Count=('Count', 'sum')
26
           ).reset index()
27
28
           tissue1 = 'cfDNA'
29
           tissue2 = 'Islet'
```

```
tissue1_data = grouped[grouped['Tissue'] == tissue1]
31
32
           tissue2_data = grouped[grouped['Tissue'] == tissue2]
33
           # PMPs Analysis
34
35
           comparison = pd.merge(
36
               tissue1_data[['strand', 'CpG_Coordinates', 'Methylation_Status', 'Total_Count']],
37
               tissue2_data[['strand', 'CpG_Coordinates', 'Methylation_Status', 'Total_Count']],
38
              on=['strand', 'CpG_Coordinates', 'Methylation_Status'],
39
              how='outer',
40
               suffixes=('_T1', '_T2')
41
          ).fillna(0)
42
43
           for _, row in comparison.iterrows():
44
45
                   [int(row['Total_Count_T1']), int(sum(tissue1_data['Total_Count']) - row['Total_Count_T1'])],
46
                   [int(row['Total_Count_T2']), int(sum(tissue2_data['Total_Count']) - row['Total_Count_T2'])],
48
              if any (x < 0 for contingency_row in contingency_table for x in contingency_row) or sum(sum(contingency_table, [])) == 0:
49
                   continue
50
51
               , p value = fisher exact(contingency table)
52
53
               true negatives = contingency table[1][1]
54
               \verb|total_negatives = contingency_table[1][0] + contingency_table[1][1]|
55
               specificity = true_negatives / total_negatives if total_negatives > 0 else 0
56
57
               pmp_results.append((row['CpG_Coordinates'], row['Methylation_Status'], p_value, specificity))
58
59
           # CpG Site Analysis
60
           individual_cpg = melted_chunk.groupby(['CpG_Coordinates', 'Tissue']).agg(
61
               Total Count=('Count', 'sum')
62
           ).reset_index()
63
           for cpg, group in individual_cpg.groupby('CpG_Coordinates'):
65
               tissue counts = group.set index('Tissue')['Total Count'].to dict()
```

```
66
               count_t1 = tissue_counts.get(tissue1, 0)
67
              count_t2 = tissue_counts.get(tissue2, 0)
68
               contingency_table = [
69
                   [count_t1, sum(group['Total_Count']) - count_t1],
70
                   [count_t2, sum(group['Total_Count']) - count_t2],
71
72
               \begin{tabular}{ll} \textbf{if} any (x < 0 for contingency\_row in contingency\_table for x in contingency\_row) or sum(sum(contingency\_table, [])) == 0: \\ \end{tabular} 
73
74
               _, p_value = fisher_exact(contingency_table)
75
77
               true_negatives = contingency_table[1][1]
               {\tt total\_negatives = contingency\_table[1][0] + contingency\_table[1][1]}
78
79
               specificity = true_negatives / total_negatives if total_negatives > 0 else 0
80
               cpg_results.append((cpg, p_value, specificity))
81
     # Convert results to DataFrame
       pmp\_df = pd.DataFrame(pmp\_results, columns=['CpG\_Coordinates', 'Methylation\_Status', 'P\_Value', 'Specificity'])
82
83
       cpg_df = pd.DataFrame(cpg_results, columns=['CpG_Coordinates', 'P_Value', 'Specificity'])
84
       # Adjust p-values
       pmp_df['Adjusted_P_Value'] = multipletests(pmp_df['P_Value'], method='fdr_bh')[1]
85
86
       cpg\_df['Adjusted\_P\_Value'] = multipletests(cpg\_df['P\_Value'], method='fdr\_bh')[1]
87
       # Filter top 10 PMPs and CpG sites
88
       top_pmps = pmp_df.sort_values(by='Specificity', ascending=False).head(10)
      top_cpgs = cpg_df.sort_values(by='Specificity', ascending=False).head(10)
89
       # Compare Specificity Distributions
       plt.boxplot([top_pmps['Specificity'], top_cpgs['Specificity']], labels=['PMPs', 'CpG Sites'])
91
92
      plt.ylabel('Specificity')
93
       plt.title('Specificity Comparison: PMPs vs CpG Sites')
94
     plt.show()
95
    top_pmps.to_csv("top_10_pmps.csv", index=False)
96
      top_cpgs.to_csv("top_10_cpg_sites.csv", index=False)
      print("Top 10 PMPs and CpG sites saved. Specificity comparison completed.")
```

Result –

Top 10 cpg sites

1	CpG_Coordinates	P_Value	Specificity	Adjusted_P_Value
2	10035:10044:10046	0.0	1.0	0.0
3	13627:13636:13707	0.0	1.0	0.0
4	13627:13724:13742	0.0	1.0	0.0
5	13627:13724:13760	0.0	1.0	0.0
6	13627:13724:13771	1.852955281220998e-131	1.0	2.3630557400645897e-131
7	13627:13742:13760	0.0	1.0	0.0
8	13627:13742:13771	1.1633432636587346e-132	1.0	1.4860647338099116e-132
9	13627:13760:13771	4.642892484692069e-132	1.0	5.923491199880882e-132
10	13634:13636:13647	0.0	1.0	0.0
11	13634:13636:13661	0.0	1.0	0.0

Top 10 PMP'S

1	CpG_Coordinates	Methylation_Status	P_Value	Specificity	Adjusted_P_Value
2	10035:10044:10046	.000	1.0	0	1.0
3	13636:13647:13678	`110	1.0	0	1.0
4	13636:13647:13678	`100	1.0	0	1.0
5	13636:13647:13678	`011	1.0	0	1.0
6	13636:13647:13678	`010	1.0	0	1.0
7	13636:13647:13678	`001	1.0	0	1.0
8	13636:13647:13678	`000	1.0	0	1.0
9	13636:13647:13669	`111	1.0	0	1.0
10	13636:13647:13669	`110	1.0	0	1.0
11	13636:13647:13669	`101	1.0	0	1.0

The analysis shows that individual CpG sites have perfect specificity (1.0), while PMPs have very low specificity (0.0). Although CpG sites demonstrate high reliability in this study, their use as biomarkers is limited by errors from bisulfite sequencing, sampling techniques, and biological variability. PMPs aim to overcome these issues but currently fail to achieve sufficient specificity. Future work should focus on improving PMP design or integrating CpG site reliability with PMP robustness for better epigenetic biomarkers.

Task 2: NGS Data Analysis

Objective: Evaluate candidates' ability to process and analyze raw sequencing data.

Executive Summary

The NGS data analysis encompasses a series of steps to evaluate and interpret sequencing data . Initially, raw sequencing data undergo quality control (QC) with FastQC and MultiQC to assess data quality and identify issues such as adapter contamination. Adapter trimming and additional QC are performed as necessary to refine read quality. Next, the GRCh38 reference genome is indexed using BWA, followed by alignment of reads to the genome to map sequences accurately.

Sub-tasks:

1. Quality Control:

a.

- i. Perform quality control using FastQC to evaluate the quality of the data.
- **ii.** Provide a summary report using MultiQC with key quality metrics such as sequence count per sample, per base sequence quality, read length distribution, sequence duplication level and any adapter contamination.

Quality control - The quality control process for sequencing data involves using FastQC to assess key metrics such as sequence quality, read length distribution, and adapter contamination. MultiQC consolidates these results, providing an overview of quality metrics across samples. This ensures the data's reliability for subsequent analysis.

Tool: FastQC (<u>https://github.com/s-andrews/FastQC</u>)

Command: fastqc <filename.fastq> -o <output_directory>

Fig 1: General Statistics of Quality Control

General Statistics

Copy table	Ⅲ Configure columns	. Scatter plot	■ Violin plot	Showing $^{0}I_{4}$ rows and $^{3}I_{6}$ columns.			Export as CS\
Sample Name					Dups	GC	Seqs
PA220KH-lib0	9-P19-Tumor_S2_L00	1_R1_001			98.6%	48.0%	2.4 M
PA220KH-lib0	9-P19-Tumor_S2_L00	1_R2_001			97.4%	48.0%	2.4 M
PA221MH-lib0	9-P19-Norm_S1_L001	L_R1_001			98.5%	49.0%	2.6 M
PA221MH-lib0	9-P19-Norm_S1_L001	L_R2_001			97.3%	49.0%	2.6 M

Fig 2: Fastqc sequence counts plot

Fig 3: Mean Sequence Quality

Fig 4: Top Overrepresented Sequences

Copy table	III Configure columns	. Scatter plot	■ Violin plot	Showing 0/20 rows and 3/3 columns.				Export as CS\		
Overrepreser	nted sequence				Reports	Occurrences	% of all re	ads		
СТСТАТТСТТ	CTCTATTGTTGGATCATATTCGTCCACAAAATGATTCTGAATTAGCTGTA				4	271874	2.7412%			
GGATGAATA	TGTGCATGACTTTGA	GGGACAGCCAT	TCGTTGTCC#	ACTGAAG	4	304 039	3.0655%			
ATCATCTTGT	TGAAACAACAGTGCC	ACTGGTCTATA	ATCCAGATG	ATTCTT	4	272 227	2.7447%			
CCACAAAAT	GTTTAATTTAACTGAC	CCTTAAAATTTG	GAGAAAAG	TATCGG	4	271779	2.7402%	2.7402%		
CTCAGTCTAAAGGTTGTGGGTCTGCAATCGGCATGGTATGAAGTACTTCG				4	276 565	2.7885%				
CTTGGTAGA	CGGGACTCGAGTGA	TGATTGGGAGA	TTCCTGATG	GGCAGAT	4	239 495	2.4147%			
CTCAGGATG	GAGTTTTGTGAAAGGC	CTGGGGACCGG	SATTACCCAA	GACAGAG	4	276 905	2.7919%			
GAGGACATT	TTCTGAGAGACTGGC	CAGCATTTCAG	TAGGACCTT	CTAGTTC	4	275 585	2.7786%			
GAGAGGAG	TTCAAACACTGACTG	төөөтстөсс	CTTTTGTTTG	AACCATT	4	270 199	2.7243%			
TAGCATTTG	CAGTATAGAGCGTGC	AGATAATGACA	AGGAATATC	TAGTAC	4	260 838	2.6299%			
GGTAGCATT	AGACTCAGATGGGG	CTAACAGAGCT	GGGGTGCT	STATGTCT	4	303 053	3.0555%			
GAACATTTT	TTTTCAATTTGGCTTC	тсттттттст	GTCCACCAG	GGGAG	4	254 624	2.5672%			
CACCACATT	ACATACTTACCATGC	CACTTTCCCTTC	STAGACTGTT	CCAAA	4	235 861	2.3781%			
AGCTCCATT	TGTAGTTATAGCTGTT	ATTAAAGAATC	CAATTCATC	пттт	4	127 566	1.2862 %			
TATTATTGAT	GGCAAATACACAGAG	GGAAGCCTTCG	сствтсстс	ATGTAT	4	119 609	1.2060%			

Fig 5: Per Sequence Quality Scores

Fig 6: Sequence Duplication Levels

Fig 7: Adapter Content

Adapter Trimming:

i. If the data shows signs of adapter contamination or poor quality, perform trimming using Cutadapt, fastp or other suitable preprocessing and quality control software.

ii. Provide a summary report detailing the percentage of reads trimmed and any improvement in quality metrics after trimming.

Adapter Trimming: We will perform adapter trimming to eliminate the illumina universal adapters sequences and low-quality bases Using **Trim Galore default Parameters**, we aim to enhance the overall quality of the reads.

Tool - Trim galore (https://github.com/FelixKrueger/TrimGalore)

Command - trim_galore --paired read2.fastq

Fig 8:Lengths of trimmed sequences(3'end)

Fig 9: General statistics

Table1: General Statistics

Sample	Trimmed bases	Dups	GC	Seqs
PA220KH-lib09-P19- Tumor_S2_L001_R1_001	7.2982011618924			
PA220KH-lib09-P19- Tumor_S2_L001_R1_001_val_1		98.6081746452989	48	2.383345
PA220KH-lib09-P19- Tumor_S2_L001_R2_001	7.35042994911862			
PA220KH-lib09-P19- Tumor_S2_L001_R2_001_val_2		97.405746964875	48	2.383345
PA221MH-lib09-P19- Norm_S1_L001_R1_001	8.15580031895109			
PA221MH-lib09-P19- Norm_S1_L001_R1_001_val_1		98.4689852171313	48	2.571693
PA221MH-lib09-P19- Norm_S1_L001_R2_001	8.15324845100047			
PA221MH-lib09-P19- Norm_S1_L001_R2_001_val_2		97.3352184728115	48	2.571693

2. Alignment and Mutation Calling

a. Align the samples to the human genome using tools like Bowtie2 or BWA

Genome Preparation

i. Prepare a genome index using BWA or other suitable alignment software for the provided genome reference.

Genome Preparation: GRCh38 Reference genome index was prepared using BWA. Indexing the reference genome allows the alignment tool to quickly locate matching sequences during analysis, enhancing processing speed and accuracy. BWA generates a series of indexed files based on the reference genome, which are then used in downstream alignment steps to map sequencing reads with high precision.

Tool - BWA (https://github.com/lh3/bwa) **Command** – bwa index reference genome.fasta

Alignment and Mapping:

ii.Perform read alignment using BWA.

iii.Provide alignment statistics and its visualization report, including the percentage of aligned reads, mapped reads, and potential issues with multi-mapping.

Mapping: Using BWA, we aligned sequencing reads to the GRCh38 reference genome. This alignment allows for validation of sequencing reads.

Tool - BWA

Command - bwa mem reference_genome.fasta sample_1.fastq sample_2.fastq > aligned_reads.sam

Table 2: General Statistics

Sample	Reads	Reads mapped	% Reads mapped
PA220KH-lib09-P19- Tumor_S2_L001	4.829947	4.820164	99.8
PA221MH-lib09-P19- Norm_S1_L001	5.228701	5.217264	99.78

Fig 10: Samtools Flagstat

Fig 11: Samtools Flagstat: Read Count

Samtools: flagstat: read count

Created with MultiQ

Script-

```
# reference genome
      REF="GCA_000001405.29_GRCh38.p14_genomic.fna"
 4
      SAMPLES=("PA220KH-lib09-P19-Tumor_S2_L001" "PA221MH-lib09-P19-Norm_S1_L001")
 6
     for SAMPLE in "${SAMPLES[@]}"; do
        READ1="${SAMPLE}_R1_001.fastq.gz"
 9
       READ2="${SAMPLE}_R2_001.fastq.gz"
       SAM_OUTPUT="${SAMPLE}.sam"
10
11
       BAM_OUTPUT="${SAMPLE}.bam"
        SORTED_BAM_OUTPUT="${SAMPLE}_sorted.bam"
12
13
      if [[ -f "$READ1" && -f "$READ2" ]]; then
15
             echo "Processing $SAMPLE..."
16
            # Align paired-end reads using BWA MEM
17
             bwa mem "$REF" "$READ1" "$READ2" > "$SAM_OUTPUT"
18
19
            # Convert SAM to BAM
            samtools view -Sb "$SAM_OUTPUT" > "$BAM_OUTPUT"
21
22
23
            # Sort the BAM file
            samtools sort "$BAM_OUTPUT" -o "$SORTED_BAM_OUTPUT"
24
25
            samtools index "$SORTED_BAM_OUTPUT"
27
             echo "Finished processing $SAMPLE."
28
        else
            echo "Warning: Input files for $SAMPLE not found."
29
30
31 done
```

<u>Result – </u>

Alignment score is more then 99% for each sample

- b. Identify somatic mutations present in the cancer sample but absent in the normal tissue.
- **i. Benchmark Software:** Use established tools such as Mutect2, Strelka2, or VarScan2 for somatic mutation identification and background mutation estimation.

Mutect2

Codes-

```
input_dir="input"
       output_dir="output_mutect"
       reference="GCA_000001405.29_GRCh38.p14_genomic.fna"
 4
      mkdir -p "$output_dir"
 6
      for bam_file in "$input_dir"/*.bam; do
8
          if [ -f "$bam_file" ]; then
9
10
              # Get the base name of the BAM file
11
              base_name=$(basename "$bam_file" .bam)
              output_vcf="$output_dir/${base_name}.vcf"
13
              echo "Processing $bam_file..."
15
16
               # Main Mutect2 command
17
               gatk Mutect2 \
                  -R "$reference" \
18
                  -I "$bam_file" \
19
                  -0 "$output_vcf" \
20
21
22
               # Check for error
               if [ $? -eq 0 ]; then
23
24
                  echo "Completed $bam_file -> $output_vcf"
25
26
                  echo "Error processing $bam_file" >&2
27
               fi
28
29
              echo "No BAM files found in $input_dir."
30
           fi
31
32
33
       echo "All samples processed."
```

ii. Custom Code Development: Write your own scripts, leveraging tools like Samtools, beftools, or Python/R libraries, to perform mutation detection and calculate the required metrics

code-

```
1
       import vcfpy
      import pandas as pd
      vcf_file = "fixed_1.vcf"
      variant_data = []
8
      vcf_reader = vcfpy.Reader(open(vcf_file, 'r'))
      for record in vcf_reader:
10
          chrom = record.CHROM
11
         pos = record.POS
12
          ref = record.REF
13
          alt = ','.join([str(a) for a in record.ALT])
14
          qual = record.QUAL
15
          dp = record.INFO.get('DP', 0) # Read Depth
16
          af = record.INFO.get('AF', [0])[0] # Variant Allele Frequency (if available)
17
18
          # Calculate metrics (VAF, transitions/transversions)
19
          ti_tv = 'Transition' if {ref, alt}.issubset({'A', 'G', 'C', 'T'}) and \
20
              (ref + alt in ['AG', 'GA', 'CT', 'TC']) else 'Transversion'
21
22
          variant_data.append([chrom, pos, ref, alt, qual, dp, af, ti_tv])
23
      df = pd.DataFrame(variant_data, columns=['CHROM', 'POS', 'REF', 'ALT', 'QUAL', 'DP', 'AF', 'Ti/Tv'])
24
25
      df.to_csv('variant_metrics.csv', index=False)
26
       print("Metrics saved to 'variant_metrics.csv'")
```

Result(sample)-

1	CHROM	POS	REF	ALT	QUAL	DP	AF	Ti/Tv
2	CM000663.2	634003	С	Substitution(type_='SNV', value='G')		4	0	Transversion
3	CM000663.2	3126893	Т	Substitution(type_='SNV', value='C')		7	0	Transversion
4	CM000663.2	3126897	Т	Substitution(type_='SNV', value='C')		7	0	Transversion
5	CM000663.2	3477213	А	Substitution(type_='SNV', value='G')		12	0	Transversion
6	CM000663.2	3477225	TG	Substitution(type_='DEL', value='T')		6	0	Transversion
7	CM000663.2	6078079	Т	Substitution(type_='SNV', value='G')		2	0	Transversion
8	CM000663.2	6078132	С	Substitution(type_='SNV', value='T')		2	0	Transversion
9	CM000663.2	6078146	G	Substitution(type_='INS', value='GGAGGC')		2	0	Transversion
10	CM000663.2	6273362	G	Substitution(type_='INS', value='GATGAGGGA')		4	0	Transversion
11	CM000663.2	6350743	А	Substitution(type_='SNV', value='C')		14	0	Transversion
12	CM000663.2	20138348	GCCC	Substitution(type_='DEL', value='G')		4	0	Transversion
13	CM000663.2	20138355	С	Substitution(type_='SNV', value='T')		2	0	Transversion

Visualisation-

Code-

```
# load package
       library(ggplot2)
 4
       variant_data <- read.csv("variant_metrics.csv")</pre>
       # Calculate overall Ti/Tv ratio
       ti_count <- sum(variant_data$Ti.Tv == "Transition")</pre>
       tv_count <- sum(variant_data$Ti.Tv == "Transversion")</pre>
 8
       ti_tv_ratio <- ti_count / tv_count
 9
       cat("Transition/Transversion \ Ratio:", \ ti\_tv\_ratio, \ "\n")
10
       # Plot VAF distribution
11
12
       ggplot(variant_data, aes(x = AF)) +
13
         geom_histogram(binwidth = 0.01, fill = "blue", color = "black") +
14
         labs(title = "Variant Allele Frequency Distribution", x = "VAF", y = "Count")
```

Result-

c. Use the normal tissue to calculate the median background mutation level. The background mutation level accounts for sequencing errors or biases that can mimic true mutations. Determine how many reads per million are required to confidently call a given mutation.

Code-

```
import numpy as np
      import pysam
      def calculate_background_mutation_rate(vcf_file, bam_file):
          Calculate the median background mutation rate and required reads for confident mutation calls.
6
         Parameters:
          - vcf_file (str): fixed_1.vcf
          - bam_file (str): fixed_1.bam
          - dict: Median mutation rate, total mutations, total reads, mutations per million reads.
10
11
12
13
         with open(vcf_file, 'r') as vcf:
14
             variants = [line for line in vcf if not line.startswith("#")]
15
         total mutations = len(variants)
          # Calculate total reads from the BAM file
17
          bam = pysam.AlignmentFile(bam_file, "rb")
         total reads = sum([stats.mapped for stats in bam.get index statistics()])
18
19
         bam.close()
20
          # Calculate mutations per million reads
21
         mutations_per_million_reads = (total_mutations / total_reads) * 1e6
22
         # Calculate confidence threshold (optional scaling for higher confidence)
23
          confidence\_threshold = \verb|mutations|| per\_million\_reads + 1.5 * (pp.median(np.abs(total\_mutations - mutations\_per\_million\_reads))) \\
24
25
              "Total Mutations": total_mutations,
              "Total Reads": total_reads,
26
27
              "Mutations Per Million Reads": mutations_per_million_reads,
28
              "Confidence Threshold": confidence_threshold,
29
      vcf file = "fixed 1.vcf"
30
      bam_file = "fixed_1.bam"
31
      results = calculate_background_mutation_rate(vcf_file, bam_file)
33
      print("=== Background Mutation Analysis ===")
      print(f"Total Mutations: {results['Total Mutations']}")
35
      print(f"Total Reads: {results['Total Reads']}")
      print(f"Mutations Per Million Reads: {results['Mutations Per Million Reads']:.2f}")
      print(f"Confidence Threshold: {results['Confidence Threshold']:.2f}")
```

Result-

```
mth12@mth12:/media/mth12/8412FCDD12FCD560/ngs/mutationlevel$ python mutationlevel_1.py
=== Background Mutation Analysis ===
Total Mutations: 1821
Total Reads: 5217264
Mutations Per Million Reads: 349.03
Confidence Threshold: 2556.98
mth12@mth12:/media/mth12/8412FCDD12FCD560/ngs/mutationlevel$ python mutationlevel_2.py
=== Background Mutation Analysis ===
Total Mutations: 1306
Total Reads: 4820164
Mutations Per Million Reads: 270.95
Confidence Threshold: 1823.53
```