

เครื่องควบคุมแผงโชล่าเชลล์หมุนตามความเข้มแสงอาทิตย์แบบ 2 แกน คณะผู้จัดทำ นายผดุงศักดิ์ ครองพวก นายสิรภพ อ่วมเจริญ นายธีระนันต์ พันธ์ภักดี และอาจารย์ที่ปรึกษา ผู้ช่วยศาสตราจารย์ ดร.พฤศยน นินทนาวงศา

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

บทคัดย่อ

"เครื่องควบคุมแผงโซล่าเซลล์หมุนตามความเข้มแสงอาทิตย์แบบ 2 แกน" จัดทำขึ้นเนื่องจากเครื่องรับพลังงานแสงอาทิตย์เป็นแบบอยู่กับที่ไม่สามารถรับพลังงานแสงอาทิตย์ได้ ไม่เท่าที่ควร ทางผู้จัดทำจึงคิดว่า"จะทำอย่างไรถึงจะได้รับพลังงานแสงอาทิตย์ให้ได้มากที่สุด ในเวลาที่น้อยกว่าแบบเดิม" จึงได้ออกแบบและสร้างเครื่องรับพลังงานแสงอาทิตย์หแบบ หมุนตามความเข้มของแสงอาทิตย์แบบ 2 แกนขึ้น

Solar Charger Controlle

 \oplus \odot \oplus \odot \odot

35.5 cm

38 cm

วิธีการดำเนินงาน

การพัฒนาแผงรับพลังงานโซล่าเซลล์ให้สามารถหมุนตามความเข้มแสงของดวง อาทิตย์แบบ 2 แกน และแผงรับพลังงานโซล่าเซลล์แบบไม่เคลื่อนที่ เพื่อที่จะ เปรียบเทียบอัตราการเก็บพลังงานไฟฟ้าให้เห็นว่า การพัฒนาแผงรับพลังงานโซล่าเซลล์ แบบหมุนตามความเข้มแสงของดวงอาทิตย์นั้น มีประสิทธิภาพการเก็บพลังงานได้ มากกว่าแผงรับพลังงานโซล่าเซลล์แบบไม่เคลื่อนที่ และเพื่อเพิ่มประสิทธิภาพให้ได้รับ พลังงานไฟฟ้าจากแสงของดวงอาทิตย์มากลั้น

ภาพริวัฒชิอังรัฐษัฐษาตของเครื่อง
ควบคุมแผงโซล่าเซลล์หมุนตาม
ความเข้มแสงอาทิตย์แบบ 2 แกน
ประกอบไปด้วย 2 ส่วนใหญ่ ๆ คือ
ฮาร์ดแวร์ และซอฟต์แวร์ อุปกรณ์
ควบคุมการทำงานทั้งหมด คือ
Arduino Mega 2560

การออกแบบ

โครงสร้างแผงโซล่าเซลล์ กว้าง 76
เซ็นติเมตร ยาว 113 เซ็นติเมตรเมตร
และสูง 140 เซนติเมตร ล้อหลังมีขนาด
การออกแบบซอฟต์แวร์หน้าตาของ
เส้นผ่านศูนย์กลาง 38 เซ็นติเมตร
แอพพลิเคชั้นจะมีโอคอนเป็นรูปภาพที่

สื่อไปถึงสิ่งนั้นเพื่อให้เกิดความเข้าใจได้

Service implementation of the process of the proces

ผลการทดลอง

จากการทดสอบ เครื่องควบคุมแผงโซล่าเซลล์หมุนตามความเข้มแสงอาทิตย์แบบ
2 แกน การทำงานในส่วนของการหมุนตามแสงอาทิตย์สามารถทำงานได้จริงการ
แสดงผลผ่านเว็บบราวเซอร์และเว็บแอปพลิเคชั่นสามารถส่งข้อมูลได้เช่น Volts, Battery
level, Charging Time

~									
แผงโซล่าเซลล์แบบอยู่กับที่				แผงโซล่าเซลล์แบบหมุนตามความเข้ม					
					แสงอาทิตย์				
เวลา	กำลังไฟฟ้า	อัตราการ	แบตเตอรี่	เวลา	กำลังไฟฟ้า	อัตราการ	แบตเตอรี่		
	(วัตต์)	ประจุ (ชม.)	(%)		(วัตต์)	ประจุ (ชม.)	(%)		
8.00	10.48	0.79	70	8.00	7.48	9.00	40		
8.30	25.62	1.88	90	8.30	26.20	1.03	70		
9.00	24.75	1.82	90	9.00	26.20	1.31	70		
9.30	23.84	1.75	90	9.30	20.98	1.57	70		
10.00	45.22	0.00	100	10.00	50.92	0.13	90		
10.30	66.17	0.00	100	10.30	70.81	0.00	100		
11.00	74.46	0.00	100	11.00	66.95	0.00	100		
11.30	20.04	0.00	100	11.30	15.44	1.45	80		
12.00	21.91	0.00	100	12.00	17.63	0.41	90		
12.30	20.02	0.00	100	12.30	16.30	1.40	80		
13.00	56.65	0.00	100	13.00	55.12	0.00	100		
13.30	57.49	0.00	100	13.30	63.19	0.00	100		
14.00	45.22	0.00	100	14.00	68.48	0.00	100		
14.30	42.07	0.00	100	14.30	70.21	0.00	100		
15.00	31.05	0.00	100	15.00	53.90	0.00	100		
15.30	23.81	0.00	100	15.30	35.11	0.00	100		
16.00	13.77	0.00	100	16.00	12.15	0.00	100		
16.30	5.04	0.00	100	16.30	11.26	0.00	100		
17.00	1.61	0.00	100	17.00	0.53	11.34	90		
17.30	1.44	0.00	100	17.30	0.00	1.40	80		
18.00	0.18	0.00	100	18.00	0.00	1.40	80		

ทดลองการเก็บพลังงานโดยที่ตั้งแผงโซล่าเซลล์หันหน้าไปด้านทิศใต้

อภิปรายผลการทดลอง

เมื่อทำการทดลองตามขอบเขตผลที่ได้สามารถทำงานได้ตามที่ระบุไว้ในขอบเขต เช่น การหมุนตามความเข้มแสงอาทิตย์ การทดลองการส่งค่าข้อมูลและการปรับเวลาในการส่ง ข้อมูล เป็นต้น สามารถนำไปใช้ได้จริง

สรุปผลการทดลอง

- 1) การทดลองในการเปรียบเทียบ ของแผงโซล่าเซลล์ของทั้ง 2 แบบ โซล่าเซลล์แบบหมุนตามความเข้มแสงอาทิตย์แบบ 2 แกน สามารถเก็บพลังงานได้ดีกว่าแบบอยู่กับที่
- 2) การทดลองการแสดงผลข้อมูลเป็นกราฟสามารถทำงานได้
- 3) การทดลองการปรับเปลี่ยนเวลาในการส่งข้อมูลสามารถทำงานได้

สรุปผลโครงงาน

เครื่องควบคุมแผงโซล่าเซลล์หมุนตามความเข้มแสงอาทิตย์แบบ 2 แกนสามารถทำงานได้ครบตามขอบเขตที่กำหนดจากการทดสอบการทำงานในส่วนของการหมุนตาม แสงอาทิตย์ ระบบการส่งข้อมูลการเก็บพลังงานได้ และส่วนของการปรับเวลาในการส่งข้อมูลของเครื่องควบคุมแผงโซล่าเซลล์หมุนตามความเข้มแสงอาทิตย์แบบ 2 แกนสามารถ ทำงานได้ เป็นต้น

เครื่องควบคุมแผงโซล่าเซลล์หมุนตามความเข้มแสงอาทิตย์แบบ 2 แกน คณะผู้จัดทำ นายผดงศักดิ์ ครองพวกนายสิรภพ อ่วมเจริญ นายธีระนันต์ พันธ์ภักดี และอาจารย์ที่ปรึกษา

ผู้ช่วยศาสตราจารย์ ดร.พฤศยน นินทนาวงศา

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

บทคัดย่อ

"เครื่องควบคุมแผงโซล่าเซลล์หมุนตามความเข้มแสงอาทิตย์แบบ 2 แกน" จัดทำ<mark>ขึ้นเนื่</mark>องจากเครื่องรับพลังงานแสงอาทิตย์เป็นแบบอยู่กับที่ไม่สามารถรับพลังงานแสงอาทิตย์ได้ ไม่เท่าที่ควร ทางผู้จัดทำจึงคิดว่า"จะทำอย่างไรถึงจะได้รับพลังงานแสงอาทิตย์ให้ได้มา<mark>กที่สุด</mark> ในเวลาที่น้อยกว่าแบบเดิม" จึงได้ออกแบบและสร้างเครื่องรับพลังงานแสงอาทิตย์หแบบ หมุนตามความเข้มของแสงอาทิตย์แบบ 2 แกนขึ้น

วิธีการดำเนินงาน

การพัฒนาแผงรับพลังงานโซล่าเซลล์ให้สามารถหมุนตามความเข้มแสงของดวง อาทิตย์แบบ 2 แกน และแผงรับพลังงานโซล่าเซลล์แบบไม่เคลื่อนที่ เพื่อที่จะ เปรียบเทียบอัตราการเก็บพลังงานไฟฟ้าให้เห็นว่า การพัฒนาแผงรับพลังงานโซล่าเซลล์ แบบหมุนตามความเข้มแสงของดวงอาทิตย์นั้น มีประสิทธิภาพการเก็บพลังงานได้ มากกว่าแผงรับพลังงานโซล่าเซลล์แบบไม่เคลื่อนที่ และเพื่อเพิ่มประสิทธิภาพให้ได้รับ พลังงานไฟฟ้าจากแสงของดวงอาทิตย์มาก 🧗 📉 📉

ภาพิรามเของหรับหนดของเครื่อง ควบคุมแผงโซล่าเซลล์หมุนตาม ความเข้มแสงอาทิตย์แบบ 2 แกน ประกอบไปด้วย 2 ส่วนใหญ่ ๆ คือ ฮาร์ดแวร์ และซอฟต์แวร์ อุปกรณ์ ควบคุมการทำงานทั้งหมด คือ

\oplus \oplus \oplus \oplus \oplus Arduino Mega 2560 35.5 cm

การออกแบบ

ର୍ଚ୍ଚ

โครงสร้างแผงโซล่าเ<mark>ซ</mark>ลล์ <mark>กว้าง 76</mark> เซ็นติเมตร ยาว 113 เซ็นติเมตรเมตร

และสูง 140 เซนติเมตร ล้อหลังมีขนาด การออกแบบซอฟต์แวร์หน้าตาของ เส้นผ่านศูนย์กลาง 38 เซ็นติเมตร แอพพลิเทชั้นจะมีใอคอนเป็นรูปภาพที่ สื่อไปถึงสิ่งนั้นเพื่อให้เกิดความเข้าใจได้

ผลการทดลอง

จากการทดสอบ เครื่องควบคุมแผงโซล่าเซลล์หมุนตามความเข้มแสงอาทิตย์แบบ 2 แกน การทำงานในส่วนของการหมุนตามแสงอาทิตย์สามารถทำงานได้จริงการ แสดงผลผ่านเว็บบราวเซอร์และเว็บแอปพลิเคชั่นสามารถส่งข้อมูลได้เช่น Volts, Battery level, Charging Time

	แผงโซส	iาเซลล์แบบอยุ	ยู่กับที่		แผงโซล่าเซลล์แบบหมุนตามความเข้ม			
					แสงอาทิตย์			
	เวลา	กำลังไฟฟ้า	อัตราการ	แบตเตอรี่	เวลา	กำลังไฟฟ้า	อัตราการ	แบตเตอรี่
		(วัตต์)	ประจุ (ชม.)	(%)		(วัตต์)	ประจุ (ชม.)	(%)
C,	8.00	10.48	0.79	70	8.00	7.48	9.00	40
	8.30	25.62	1.88	90	8.30	26.20	1.03	70
	9.00	24.75	1.82	90	9.00	26.20	1.31	70
	9.30	23.84	1.75	90	9.30	20.98	1.57	70
	10.00	45.22	0.00	100	10.00	50.92	0.13	90
	10.30	66.17	0.00	100	10.30	70.81	0.00	100
	11.00	74.46	0.00	100	11.00	66.95	0.00	100
	11.30	20.04	0.00	100	11.30	15.44	1.45	80
	12.00	21.91	0.00	100	12.00	17.63	0.41	90
	12.30	20.02	0.00	100	12.30	16.30	1.40	80
	13.00	56.65	0.00	100	13.00	55.12	0.00	100
I	13.30	57.49	0.00	100	13.30	63.19	0.00	100
	14.00	45.22	0.00	100	14.00	68.48	0.00	100
A	14.30	42.07	0.00	100	14.30	70.21	0.00	100
	15.00	31.05	0.00	100	15.00	53.90	0.00	100
P	15.30	23.81	0.00	100	15.30	35.11	0.00	100
	16.00	13.77	0.00	100	16.00	12.15	0.00	100
	16.30	5.04	0.00	100	16.30	11.26	0.00	100
	17.00	1.61	0.00	100	17.00	0.53	11.34	90
	17.30	1.44	0.00	100	17.30	0.00	1.40	80
	18.00	0.18	0.00	100	18.00	0.00	1.40	80

<mark>ทดลองการเก็บพลังงานโดยที่ตั้งแผงโซล่าเ</mark>ซลล์หันหน้าไปด้าน<mark>ทิ</mark>ศใต้

<u>อภิปรายผลการทดลอง</u>

เมื่อทำการทดลองตามขอบเขตผลที่ได้สามารถทำงานได้ตามที่ระบุไว้ในขอบเขต เช่น การหม<mark>ุนตามความเข้มแสงอาทิตย์ การทด</mark>ลองการส่งค่าข้อมูลแล<mark>ะ</mark>การปรับเวลาในการส่ง ข้อมูล เป็นต้น สามารถน<mark>ำไ</mark>ปใช้ได้จริง

สรุปผลการทดลอง

- 1) การทดลองในการเปรียบเทียบ ของแผงโซล่าเซลล์ของทั้ง 2 แบบ โซ<mark>ล่าเซลล์แบบหมุนตามความเข้มแสงอาทิตย์</mark>แบบ 2 แกน สามารถเก็บพลังงานได้ดีกว่าแบบอยู่กับที่
- 2) การทดลองการแสดงผลข้อมูลเป็นกราฟสามารถทำงานได้
- 3) การทดลองการปรับเปลี่ยนเวลาในการส่งข้อมูลสามารถทำงานได้

สรุปผลโครงงาน

เครื่องควบคุมแผงโซล่าเซลล์หมุนตามความเข้มแสงอาทิตย์แบบ 2 แกนสามารถทำงานได้ครบตามขอบเขตที่กำหนดจากการทดสอบการทำงานในส่วนของการหมุนตาม แสงอาทิตย์ ระบบการส่งข้อมูลการเก็บพลังงานได้ และส่วนของการปรับเวลาในการส่งข้อมูลของเครื่องควบคุมแผงโซล่าเซลล์หมุนตามความเข้มแสงอาทิตย์แบบ 2 แกนสามารถ