□ (+49) 1778995432 | stonmoy@roboim.com | www.roboim.com | tonmoy-saikia | tonmoy@roboim.com | tonmoy-saikia | tonmoy@roboim.com | tonmoy=saikia | tonmoy@roboim.com | tonmoy=saikia | tonmoy@roboim.com | tonmoy=saikia | tonmoy=saikia | tonmoy@roboim.com | tonmoy=saikia | tonmoy=saikia

"Helping machines understand the world better."

Summary_

A computer vision researcher with diverse experience including stereo-depth estimation, object detection, and AutoML techniques. Interested in building scalable and robust vision models and always open to exploring new challenging problems. Enjoys writing (and reading) clean code.

Experience_

Torc Robotics Remote, Germany

SENIOR MACHINE LEARNING ENGINEER

June 2023 - Present

- Designed and developed a real-time monocular 3D object detector, with long-range detection capabilities and robustness across camera views. Demonstrated significant improvement in runtime-accuracy trade-offs. Handled model conversion to TensorRT for deployment on embedded hardware. Regularly helped team members in performance debugging, model design, and improving team processes.
- Developed performance metrics based on system requirements and created pipelines for consistent performance reporting of trained and deployment models. Created model analysis notebooks to understand performance gaps better.
- · Collaborated in a research project for using stable video diffusion with ControlNet to generate training data for object detection.

Algolux Remote, Germany

COMPUTER VISION RESEARCHER

Oct 2022 - May 2023

Developed a prototype for a class-agnostic object detector with detection capability over 300m range (even with small objects).

- Designed custom training objectives that reduced false positive rates by 20 %.
- · Leveraged data augmentation techniques and developed training schedules with synthetic data to improve performance on rare objects.

Vision Lab, University of Freiburg

Freiburg, Germany

COMPUTER VISION RESEARCHER

Sept 2017 - Sept 2022

- · Developed a multi-task model to predict optical flow, depth, occlusion, motion boundaries, and scene flow. The model was a runner-up entry in the robust vision challenge, CVPR, 2018.
- · Developed a method to perform neural architecture search on UNet-based stereo depth models. Resultant models were more efficient compared to manual baselines.
- · Developed model regularization techniques that improve the robustness of recognition models under the influence of different image corruptions. Also, studied the influence of model compression techniques on robustness.
- Supervised student research projects that lead to conference papers.

Google Grenoble, France

RESEARCH INTERN

July 2019 - Nov 2019

- · Studied the impact of hyperparameter optimization of few-shot object classification. The study showed large improvements in few-shot performance (up to 9 % in some cases).
- Integrated BOHB (a hyperparameter optimization method) into Google's compute cluster.

Evvnt Pune, India

• Wrote web-service integrations for automated event publishing.

• Resolved around 35 bugs in four weeks to improve the application's efficiency.

PromptCloud Bangalore, India

SOFTWARE ENGINEER

SOFTWARE ENGINEER

October 2012 - Sept 2013

October 2013 - Sept 2014

- Developed custom web-crawler plugins for various vertical search applications.
- Helped set up an ElasticSearch cluster and a keyword search API.

Skills_

Computer Vision Object detection, Stereo Depth estimation, Optical flow estimation

Machine Learning Few-shot learning, Neural Architecture Search, Model pruning, Hyperparameter Optimization

Libraries & Frameworks PyTorch, TensorFlow, mmdetection, detectron2, Numpy

Programming Python, C++, cuda, HTML, ruby, LaTeX Tools AWS, Sagemaker, Docker, Slurm, Git

Towards understanding adversarial robustness of optical flow networks	CVPR 2022
S. Schrodi, T. Saikia , and T. Brox	
mproving robustness against common corruptions with frequency biased models	ICCV 2023
T. SAIKIA, C. SCHMID, AND T. BROX	
Towards improving robustness of compressed CNNs	ICMLW 2023
J. Hoffmann, S. Agnihotri, T. Saikia , and T. Brox	
Multi-headed neural ensemble search	ICMLW 202
A. Narayanan, A. Zela, T. Saikia , T. Brox, and F. Hutter	
Optimized generic feature learning for few-shot classification across domains	arXiv 2020
T. SAIKIA, T. Brox, and C. Schmid	
Autodispnet: Improving disparity estimation with AutoML	ICCV 2019
T. Saikia, Y. Marrakchi, A. Zela, F. Hutter, and T. Brox	
Occlusions, motion and depth boundaries with a generic network for disparity, optical	
	FCCV 2018
Flow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION)	ECCV 2018
flow or scene flow estimation	
Flow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks	
Flow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks	
Flow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks E. ILG, N. MAYER, T. SAIKIA, M. KEUPER, A. DOSOVITSKIY, AND T. BROX Education University of Freiburg	CVPR 2017 Freibug, Germany
Flow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks E. ILG, N. MAYER, T. SAIKIA, M. KEUPER, A. DOSOVITSKIY, AND T. BROX Education	CVPR 2017 Freibug, Germany
Flow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks E. ILG, N. MAYER, T. SAIKIA, M. KEUPER, A. DOSOVITSKIY, AND T. BROX Education University of Freiburg	CVPR 2017 Freibug, Germany Oct 2017 - Oct 2022
Flow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks E. ILG, N. MAYER, T. SAIKIA, M. KEUPER, A. DOSOVITSKIY, AND T. BROX Education University of Freiburg PhD IN COMPUTER VISION, GRADE: magna cum laude	CVPR 2017 Freibug, Germany Oct 2017 - Oct 2022 Freibug, Germany
Flow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks E. ILG, N. MAYER, T. SAIKIA, M. KEUPER, A. DOSOVITSKIY, AND T. BROX Education University of Freiburg PHD IN COMPUTER VISION, GRADE: magna cum laude University of Freiburg	Freibug, Germany Oct 2017 - Oct 2022 Freibug, Germany Oct 2014 - Aug 2017
Flow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks E. ILG, N. MAYER, T. SAIKIA, M. KEUPER, A. DOSOVITSKIY, AND T. BROX Education University of Freiburg PHD IN COMPUTER VISION, GRADE: magna cum laude University of Freiburg MASTER'S IN COMPUTER SCIENCE, GRADE: 1.4, sehr gut (very good)	Freibug, Germany Oct 2017 - Oct 2022 Freibug, Germany Oct 2014 - Aug 2017 Silchar, India Aug 2007 - June 2011
Rlow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks E. ILG, N. MAYER, T. SAIKIA, M. KEUPER, A. DOSOVITSKIY, AND T. BROX Education University of Freiburg PhD IN COMPUTER VISION, GRADE: magna cum laude University of Freiburg MASTER'S IN COMPUTER SCIENCE, GRADE: 1.4, sehr gut (very good) National Institute of Technology, Silchar BACHELOR'S IN COMPUTER SCIENCE, GRADE: 7.36/10	Freibug, Germany Oct 2017 - Oct 2022 Freibug, Germany Oct 2014 - Aug 2017 Silchar, Indic
Flow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks E. ILG, N. MAYER, T. SAIKIA, M. KEUPER, A. DOSOVITSKIY, AND T. BROX Education University of Freiburg PhD IN COMPUTER VISION, GRADE: magna cum laude University of Freiburg MASTER'S IN COMPUTER SCIENCE, GRADE: 1.4, sehr gut (very good) National Institute of Technology, Silchar	Freibug, Germany Oct 2017 - Oct 2022 Freibug, Germany Oct 2014 - Aug 2017 Silchar, Indic
Rlow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks E. ILG, N. MAYER, T. SAIKIA, M. KEUPER, A. DOSOVITSKIY, AND T. BROX Education University of Freiburg PhD IN COMPUTER VISION, GRADE: magna cum laude University of Freiburg MASTER'S IN COMPUTER SCIENCE, GRADE: 1.4, sehr gut (very good) National Institute of Technology, Silchar BACHELOR'S IN COMPUTER SCIENCE, GRADE: 7.36/10 Mentoring experience 2022 Simon Schrodi, Student project	Freibug, Germany Oct 2017 - Oct 2022 Freibug, Germany Oct 2014 - Aug 2013 Silchar, Indic Aug 2007 - June 2013
Rlow or scene flow estimation E. ILG*, T. SAIKIA*, M. KEUPER, AND T. BROX (* DENOTES EQUAL CONTRIBUTION) Flownet 2.0: Evolution of optical flow estimation with deep networks E. ILG, N. MAYER, T. SAIKIA, M. KEUPER, A. DOSOVITSKIY, AND T. BROX Education University of Freiburg PhD IN COMPUTER VISION, GRADE: magna cum laude University of Freiburg MASTER'S IN COMPUTER SCIENCE, GRADE: 1.4, sehr gut (very good) National Institute of Technology, Silchar BACHELOR'S IN COMPUTER SCIENCE, GRADE: 7.36/10 Mentoring experience	Freibug, Germany Oct 2017 - Oct 2022 Freibug, Germany Oct 2014 - Aug 2017 Silchar, Indic

GCP Credit Award, Google

GCP Credit Award, Google

2018 **Runner-up,** Robust Vision Challenge (Stereo), CVPR

2021

2020

Germany

Germany

Salt Lake City, Utah