TAUTOLOGY INNOVATION SCHOOL

C O D E P I P E L I N E

BY TAUTOLOGY

Supervised Learning Workflow

Supervised Learning Workflow

Workshop Overview

Code Pipeline

Import Libraries

Read Data

Clean Data

Train

Data

Preparation

Create Model

Prediction

Model Evaluation Test

Data

Preparation

Prediction

Model Evaluation

Model Deployment

Import Libraries

3 learn

4 matpletlib

Regression

Classification

Regression

```
1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 5 from sklearn.model_selection import train_test_split
 6 from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder
 7 from sklearn.linear_model import LinearRegression
 8 from sklearn.neural_network import MLPRegressor
 9 from sklearn.tree import DecisionTreeRegressor
10 from sklearn.svm import SVR
11 | from sklearn.gaussian_process import GaussianProcessRegressor
12 from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error
13
14 import warnings
15 warnings.filterwarnings('ignore')
16
17 np.random.seed(12345)
```


Classification

```
1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 5 from sklearn.model_selection import train_test_split
 6 from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, StandardScaler, MinMaxScaler
 7 from sklearn.linear_model import LogisticRegression
 8 from sklearn.neural network import MLPClassifier
 9 from sklearn.tree import DecisionTreeClassifier
10 from sklearn.neighbors import KNeighborsClassifier
11 from sklearn.svm import SVC
12 from sklearn.discriminant_analysis import LinearDiscriminant Analysis
13 from sklearn.naive_bayes import GaussianNB
14 from sklearn.metrics import plot_confusion_matrix, classification_report
15
16 import warnings
17 warnings.filterwarnings('ignore')
18
19 np.random.seed(12345)
```


Read Data

Regression

	age	experience	gpa	degree	position	salary
0	30.0	7.0	3.94	bachelor	engineer	32500.0
1	26.0	2.0	2.86	bachelor	NaN	22500.0
2	27.0	0.0	3.13	doctorate	secretary	37000.0
3	32.0	NaN	3.10	bachelor	engineer	24500.0
4	24.0	1.0	3.81	bachelor	accountant	23500.0
5	35.0	7.0	3.93	doctorate	secretary	43500.0
6	23.0	1.0	3.78	master	accountant	30500.0
7	32.0	8.0	3.04	bachelor	accountant	31500.0
8	27.0	2.0	3.52	bachelor	secretary	18500.0
	•		:			

Read Data

Classification

	age	experience	gpa	degree	position	expected_salary	result
0	29.0	7	2.71	bachelor	secretary	19500	accept
1	29.0	4	NaN	bachelor	secretary	20500	accept
2	27.0	2	3.40	doctorate	accountant	43000	reject
3	33.0	11	3.25	bachelor	NaN	39000	reject
4	34.0	9	3.22	master	engineer	46500	reject
5	26.0	0	3.99	bachelor	accountant	29500	reject
6	23.0	1	3.60	bachelor	accountant	22000	accept
7	27.0	3	2.64	doctorate	accountant	33000	accept
8	23.0	0	2.69	bachelor	secretary	21500	reject
9	25.0	0	2.88	bachelor	engineer	29500	reject
	:		:				34:Dx

Regression

1 data = pd.read_csv('salary_dataset.csv')

Classification

1 data = pd.read_csv('job_acceptance_dataset.csv')

Clean Data

- 1. Handle Missing Values
- 2. Handle Outliers

Clean Data

1. Handle Missing Values

2. Handle Outliers

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 90 entries, 0 to 89
Data columns (total 6 columns):
     Column
                 Non-Null Count
                                  Dtype
                 89 hon-null
                                  float64
 0
     age
     experience
                89 non-null
                                  float64
                 90 non-null
                                  float64
     gpa
                                  object
     degree
                 90 non-null
     position
                 89 hon-null
                                  object
     salary
                 89 hon-null
                                  float64
dtypes: float64(4), object(2)
memory usage: 4.3+ KB
```


Check Missing Values

1 data.info()

Remove Missing Values

1 data.dropna(axis=0, inplace=True)

Clean Data

1. Handle Missing Values

2. Handle Outliers

	age	experience	gpa	salary
count	86.000000	86.000000	86.000000	86.000000
mean	28.023256	3.848837	3.278605	31348.837209
std	4.408486	3.702201	0.528937	9255.227384
min	21.000000	0.000000	2.540000	13000.000000
25%	24.000000	1.000000	2.820000	24500.000000
50%	28.000000	3.000000	3.260000	30500.000000
75%	32.000000	7.000000	3.640000	37375.000000
max	35.000000	13.000000	5.880000	54000.000000

Check Outliers

```
1 data.describe()
```

Remove Outliers

```
1 _filter = data['gpa'] <= 4.00
2 data = data[_filter]</pre>
```


Train/Test

แบ่งข้อมูลออกเป็น 2 ชุด คือ training set และ test set ด้วยอัตราส่วน 80:20 ตามลำดับ


```
1 target_name = 'salary'
2 feature_name = list(data.columns.drop(target_name))
```

```
1  X = data[feature_name]
2  y = data[target_name]
```

```
1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, shuffle=True)
```


Type of Features

พิจารณาและจำแนก feature ที่มีลักษณะข้อมูลแบบ numerical data และ categorical data ออกจากกัน

> Numerical Data

Categorical Data


```
1 numerical_feature = ['age', 'experience', 'gpa']
```

2 categorical_feature = ['degree', 'position']

Type of Categorical Features

พิจารณาและจำแนก feature ที่มีลักษณะข้อมูลแบบ ordinal data และ nominal data ออกจากกัน

```
degree : ['bachelor' 'doctorate' 'master']
```

position : ['accountant' 'engineer' 'secretary']

Consider each Feature of Categorical Features

```
for feature in categorical_feature:
    print(feature, ':', np.unique(X_train[feature]))
```

Classify into Ordinal Feature and Nominal Feature

```
1 ordinal_feature = ['degree']
2 nominal_feature = ['position']
```


Ordinal Encoding

การทำ ordinal encoding จะต้องทำแบบเดียวกัน ทั้งใน training set และ test set

	degree
0	0.0
1	1.0
2	0.0
3	0.0
4	0.0

Ordinal Data

```
1 ordinal_feature = ['degree']
```

Ordinal Encoding

```
1 categories = [
2     np.array(['bachelor', 'master', 'doctorate'], dtype=object)
3 ]
```


Ordinal Encoding for training set

```
ordinal_encoder = OrdinalEncoder(categories=categories)
X_train[ordinal_feature] = ordinal_encoder.fit_transform(X_train[ordinal_feature])
```

Ordinal Encoding for test set

```
1 X_test[ordinal_feature] = ordinal_encoder.transform(X_test[ordinal_feature])
```


One Hot Encoding

การทำ one hot encoding จะต้องทำแบบเดียวกัน ทั้งใน training set และ test set

	position
0	secretary
1	secretary
2	engineer
3	engineer
4	secretary

	position_accountant	position_engineer	position_secretary
0	0.0	0.0	1.0
1	0.0	0.0	1.0
2	0.0	1.0	0.0
3	0.0	1.0	0.0
4	0.0	0.0	1.0

Nominal Data

```
1 nominal_feature = ['position']
```

One Hot Encoding

```
one_hot_encoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
one_hot_encoder.fit(X_train[nominal_feature])
```

```
one_hot_feature = []
for i, feature in enumerate(nominal_feature):
    for cate in one_hot_encoder.categories_[i]:
        one_hot_feature_name = str(feature) + '_' + str(cate)
        one_hot_feature.append(one_hot_feature_name)
```


One Hot Encoding for training set

```
1 X_train[one_hot_feature] = one_hot_encoder.transform(X_train[nominal_feature])
2 X_train.drop(nominal_feature, axis=1, inplace=True)
```

One Hot Encoding for test set

```
1  X_test[one_hot_feature] = one_hot_encoder.transform(X_test[nominal_feature])
2  X_test.drop(nominal_feature, axis=1, inplace=True)
```


Feature Scaling

Feature Scaling for training set

```
1 scaler = StandardScaler()
2 X_train_scaled = scaler.fit_transform(X_train)
```

Feature Scaling for test set

```
1 scaler = StandardScaler()
2 X_test_scaled = scaler.transform(X_test)
```


Create Model

Regression

Classification

Code – Setting Parameter

Regression

```
reg = LinearRegression()
```

reg = MLPRegressor()

reg = DecisionTreeRegressor()

reg = SVR()

reg = GaussianProcessRegressor()

Code – Setting Parameter

```
clf = LogisticRegression()
clf = MLPClassifier()
clf = DecisionTreeClassifier()
clf = KNeighborsClassifier()
clf = SVC()
clf = LinearDiscriminantAnalysis()
clf = GaussianNB()
```


Create Model

Regression

Code - Train Model

Regression

1 reg.fit(X_train, y_train)

Code - Train Model

Classification

1 clf.fit(X_train_scaled, y_train)

Create Model

Regression

Code - Model

Regression

- Bias (*w*₀)
 - 1 reg.intercept_
- Weight ($w_1, ..., w_p$)
 - 1 reg.coef_

Code - Model

- Bias (*w*₀)
 - 1 clf.intercept_
- Weight ($w_1, ..., w_p$)
 - 1 clf.coef_

Create Model

Import Libraries Read Data Clean Data Train Test Data Data Preparation Preparation Create Model -> Prediction Prediction

Prediction

Regression

Regression

Prediction for training set

```
1 y_pred_train = reg.predict(X_train)
```

Prediction for test set

```
1 y_pred_test = reg.predict(X_test)
```


Model Evaluation

Regression

- 1. Scoring $(R^2, MSE, MAE, MAPE)$
- 2. Scatter Plot between Predicted & Actual Values

Regression

Scoring for training set

```
print('r2_score =\t\t\t', r2_score(y_train, y_pred_train))
print('mean_squared_error =\t\t', mean_squared_error(y_train, y_pred_train))
print('mean_absolute_error =\t\t', mean_absolute_error(y_train, y_pred_train))
print('mean_absolute_percentage_error =', mean_absolute_percentage_error(y_train, y_pred_train))
```

Scoring for test set

```
print('r2_score =\t\t\t', r2_score(y_test, y_pred_test))
print('mean_squared_error =\t\t', mean_squared_error(y_test, y_pred_test))
print('mean_absolute_error =\t\t', mean_absolute_error(y_test, y_pred_test))
print('mean_absolute_percentage_error =', mean_absolute_percentage_error(y_test, y_pred_test))
```


Regression

Scatter Plot for training set

```
plt.scatter(y_pred_train, y_train)

plt.plot(y_pred_train, y_pred_train, color='red')

plt.title('Scatter Plot between Predicted & Actual Values')

plt.xlabel('Predicted')

plt.ylabel('Actual')
```

Scatter Plot for test set

```
plt.scatter(y_pred_test, y_test)

plt.plot(y_pred_test, y_pred_test, color='red')

plt.title('Scatter Plot between Predicted & Actual Values')

plt.xlabel('Predicted')

plt.ylabel('Actual')
```


Model Evaluation

- 1. Confusion Matrix
- 2. Scoring (accuracy, precision, recall, F1)

Classification

Confusion Matrix for training set

```
1 plot_confusion_matrix(clf, X_train_scaled, y_train)
```

Confusion Matrix for test set

1 plot_confusion_matrix(clf, X_train_scaled, y_train)

Classification

Scoring for training set

```
1 report = classification_report(y_train, y_pred_train, output_dict=True)
```

```
1 print('accuracy =', report['accuracy'])
```

- 1 report['accept']
- 1 report['reject']

- Scoring for test set
 - 1 report = classification_report(y_test, y_pred_test, output_dict=True)
 - 1 print('accuracy =', report['accuracy'])
 - 1 report['accept']
 - 1 report['reject']

Model Deployment

Regression

Regression

