Harmonize Your Code

An Introduction to Audio Programming

Lloyd Seo

Check-in Code

for —

Harmonize Your Code: Intro to Audio ...

audi0

ACM at UCSD

members.acmucsd.com

Agenda

- What is Audio Programming?
 What it is and its applications
- 2 Basics of Digital Audio Fundamental concepts and techniques
- Tools & Knowledge
 Programming languages, frameworks, etc.
- 4 Live Demo
 Create sound with code!
- 5 The Future
 Challenges and future developments

Icebreaker

Introduce yourself to the people around you!

Q1. Is pineapple on pizza valid?

Q2. Is it ok to fold pizza??

Agenda

- What is Audio Programming?
 What it is and its applications
- 2 Basics of Digital Audio Fundamental concepts and techniques
- Tools & Knowledge
 Programming languages, frameworks, etc.
- 4 Live Demo
 Create sound with code!
- 5 The Future
 Challenges and future developments

What is Audio Programming?

Writing programs to create and manipulate digital audio

Other Applications Include...

- Speech/music recognition algorithms (i.e. automatic subtitles on YouTube, Shazam, voice assistants)
- Hearing-aids
- Telecommunications
- Microphones and speakers

Agenda

- What is Audio Programming?
 What it is and its applications
- 2 Basics of Digital Audio Fundamental concepts and techniques
- Tools & Knowledge
 Programming languages, frameworks, etc.
- 4 Live Demo
 Create sound with code!
- 5 The Future
 Challenges and future developments

Analog Signal

Digital Signal

Better Digital Signal?

Characteristics of Digital Audio

Sample Rate: Number of waveform samples taken per second

Version 2 (of 3)
Sample Rate = 22.05 kHz
Nyquist = 11.025 kHz
Not bad overall

Characteristics of Digital Audio

Bit Depth: Number of possible amplitude values that can be stored as bits

1 0 0 1

Audio Frequency Spectrum

Average human hearing range is20Hz-20kHz

Harmonics

The pitch of an instrument is its fundamental frequency and it has higher harmonic frequencies

Equalization

Check-in Code: audiO

() ()

Mode Stereo ▼

Edit

Adapt. Q

Scale 100 % Gain 0.00 dB

Equalization: Low-Pass Filter

Low-pass filter: Underwater effect

Equalization: High-Pass Filter

High-pass filter: "Storm while indoors" effect

Audio Quiz

Possible Modifications:

- Low Sample Rate
- Low Bit Depth
- Low-Pass Filter
- High-Pass Filter

Answer Choices

- A. Low Sample Rate
- B. Low Bit Depth
- C. Low-Pass Filter
- D. High-Pass Filter

Answer Choices

A. Low Sample Rate

B. Low Bit Depth

C. Low-Pass Filter

D. High Pass Filter

Answer Choices

- A. Low Sample Rate
- B. Low Bit Depth
- C. Low-Pass Filter
- D. High-Pass Filter

Answer Choices

A. Low Sample Rate

B. Low Bit Depth

C. Low-Pass Filter

D. High Pass Filter

Answer Choices

- A. Low Sample Rate
- B. Low Bit Depth
- C. Low-Pass Filter
- D. High-Pass Filter

Answer Choices

A. Low Sample Rate

B. Low Bit Depth

C. Low-Pass Filter

D. High Pass Filter

Answer Choices

- A. Low Sample Rate
- B. Low Bit Depth
- C. Low-Pass Filter
- D. High-Pass Filter

Answer Choices

A. Low Sample Rate

B. Low Bit Depth

C. Low Pass Filter

D. High-Pass Filter

Agenda

- What is Audio Programming?
 What it is and its applications
- 2 Basics of Digital Audio Fundamental concepts and techniques
- Tools & Knowledge
 Programming languages, frameworks, etc.
- 4 Live Demo
 Create sound with code!
- 5 The Future
 Challenges and future developments

Languages & Frameworks

- Languages: C++
 - Prototyping Languages: Max/MSP, Pure Data,
 Python, MATLAB
- Frameworks: JUCE, PortAudio, AudioKit, FMOD

JUCE Tutorials: https://juce.com/learn/tutorials/

Other Useful Skills

- Digital signal processing (DSP)
- Instrument design
- Familiarity with a digital audio workstation (DAW)
- UI design

Agenda

- What is Audio Programming?
 What it is and its applications
- 2 Basics of Digital Audio Fundamental concepts and techniques
- Tools & Knowledge
 Programming languages, frameworks, etc.
- 4 Live Demo
 Create sound with code!
- 5 The Future
 Challenges and future developments

White Noise Synthesizer

		*	25 Kg 1 1 14	10 C. S. A.					-	100	43
				14	30		4		and and		4.7
3.5/T		a All Man		i fu			TO ALL		44.7.		1
		-		(1960) T				() 实现有(e e	
	2.56			700					7.1		(p) (3)
を表	FREE	100		1.50		4. 1					
		and the	2 10						AT	1	Kajar
			10								3
9		grade de des	57						人		
2 h			6 14 7			144		100		A LUST	
			1							0.1	1
	700	7. 10 1	18 M			A Bearing					
1	1		100		We supply		7.00	""	3. at 1		1

White Noise

The combination of all audible sound frequencies played at equal levels

White Noise

The combination of all audible sound frequencies played at equal levels

Synthesizer

Electronic musical instrument that create and shape digital waveforms to generate sound

Getting Started With JUCE

- 1. Go to juce.com/download/
- 2. Scroll to "Download from this website" and download the correct version for your laptop's operating system
- 3. Unzip the file and move the JUCE folder to your home directory
- 4. Go to tinyurl.com/JUCEDemos and download all three files
- 5. Open Projucer and click "Open Existing Project"
- 6. Make sure you have the correct exporter at the top of the window
- 7. Open "SimpleNoiseTutorial.h"

Demo Projects: Sine & MIDI Synth

- 1. Click on "Files" -> "New Project"
- Go to "Open Existing Project" again and load up whichever .h file you want to! (SineSynthTutorial.h & SynthUsingMidiInputTutorial.h)

Agenda

- What is Audio Programming?
 What it is and its applications
- 2 Basics of Digital Audio
 Fundamental concepts and techniques
- Tools & Knowledge
 Programming languages, frameworks, etc.
- 4 Live Demo
 Create sound with code!
- 5 The Future
 Challenges and future developments

Spatial Audio

Machine Learning

Thank You

Do you have any questions?

- contact@acmucsd.org
- acmurl.com/discord
- acmurl.com/instagram
- acmurl.com/youtube

