CARLETON UNIVERSITY

FINAL EXAMINATION Fall 2010

DURATION: 3 HOURS

Department Name and Course Number: School of Mathematics and Statistics, MATH1104. Course Instructors: J. Abdulrahman, A. Sakzad, L. Bourbonnais, and M. Lemire.

AUTHORIZED MEMORANDA

NON-PROGRAMMABLE CALCULATOR PERMITTED

This examination paper **MAY NOT** be taken from the examination room. Scratch paper is not permitted, you can write on the backs of the pages if needed.

First (Given) Name:

Student No:

Last Name:

PLEASE READ THE FOLLOWING INSTRUCTIONS BEFORE PROCEEDING

- 1. Please count your pages now. **This examination has 10 pages**, including this page. If you feel there is a page missing, please report this to your Proctor.
- 2. The examination is out of a total of 100 marks and consists of 17 questions. There are 12 multiple choice questions worth 4 points each and 5 long answer questions. Place your answers to the multiple choice questions in the boxes on the second page. For the long answer questions you must show all your work.

Questions	MC 1–12	1	2	3	4	5	Total
Maximum Marks	48	10	10	10	12	10	100
Your mark							

Answers for Multiple Choice Questions:

# 1	# 2	# 3	# 4	# 5	# 6	#7	#8	#9	# 10	# 11	# 12

Part 1. Multiple Choice Questions:

- 1. Let $u = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ and $v = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. What is the angle between the vectors u and v?

- (a) $\pi/3$ (b) $-\pi/3$ (c) $2\pi/3$ (d) $-2\pi/3$ (e) $\pi/2$
- 2. Let A be a 2×2 matrix and det A = -3. What is $\det(2A^2A^TA^{-1})$?
 - (a) 36
- **(b)** -18 **(c)** 18 **(d)** -36 **(e)** 9

- 3. Suppose that a system of equations has the augmented matrix $\begin{bmatrix} 1 & h & 3 \\ 0 & -5h 10 & k 15 \end{bmatrix}$. If the system is inconsistent, then the values of h and k must be:
 - (a) h = -2, k = 15 (b) h = 2, k = 15 (c) $h \neq -2$, k = 15 (d) h = -2, $k \neq 15$ (e) $h \neq -2$, $k \neq 15$

- 4. Given $A^{-1} = \begin{bmatrix} -1 & 3 \\ 4 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, what is the solution of the equation $A\mathbf{x} = \mathbf{b}$?

- (a) $\begin{bmatrix} 5 \\ 9 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 9 \end{bmatrix}$ (c) $\begin{bmatrix} 5 \\ -7 \end{bmatrix}$ (d) $\begin{bmatrix} 5 \\ 7 \end{bmatrix}$ (e) $\begin{bmatrix} -5 \\ 7 \end{bmatrix}$
- 5. Let $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ be a diagonal matrix and $P = \begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix}$ be an invertible matrix.

- (a) $\begin{bmatrix} 5 & 4 \\ -6 & -5 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & -4 \\ 6 & 5 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- 6. Let $A = \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix}$. Which of the following sets consists of two linearly independent
 - (a) $\left\{ \begin{bmatrix} 1+i \\ 1 \end{bmatrix}, \begin{bmatrix} 1-i \\ 1 \end{bmatrix} \right\}$ (b) $\left\{ \begin{bmatrix} 4+i \\ 1 \end{bmatrix}, \begin{bmatrix} 17 \\ 4-i \end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} 4+i \\ 1 \end{bmatrix}, \begin{bmatrix} 4-i \\ 1 \end{bmatrix} \right\}$ (d) $\left\{ \begin{bmatrix} 1+i \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1-i \end{bmatrix} \right\}$ (e) $\left\{ \begin{bmatrix} 3+i \\ 1 \end{bmatrix}, \begin{bmatrix} 1+i \\ 1 \end{bmatrix} \right\}$

- 7. What is the standard form of the complex number $\frac{2+4i}{1+i}$?
 - (a) 1 3i
- **(b)** 3 + i
- (c) 1+2i (d) 1-i (e) 3-i

- 8. Let $A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 4 & 4 \\ 5 & 5 & 5 & 5 & 6 \end{bmatrix}$. What is det A?
- **(a)** 0 **(b)** 6 **(c)** 12
- (d) 24
- **(e)** 48
- 9. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that
 - $T\left(\begin{bmatrix} 1\\0\\-1 \end{bmatrix}\right) = \begin{bmatrix} 5\\-2 \end{bmatrix} \text{ and } T\left(\begin{bmatrix} 0\\1\\-1 \end{bmatrix}\right) = \begin{bmatrix} 1\\2 \end{bmatrix}. \text{ Find } T\left(\begin{bmatrix} 1\\1\\-2 \end{bmatrix}\right).$

- (a) $\begin{bmatrix} -9 \\ 6 \end{bmatrix}$ (b) $\begin{bmatrix} 6 \\ 0 \end{bmatrix}$ (c) $\begin{bmatrix} 11 \\ -2 \end{bmatrix}$ (d) $\begin{bmatrix} -11 \\ 2 \end{bmatrix}$ (e) $\begin{bmatrix} 9 \\ -6 \end{bmatrix}$

- 10. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 2 \end{bmatrix}$. What are the eigenvalues of A?
 - (a) 1, -2, 2 (b) 1, 2, -4 (c) 2, 2, 4 (d) 0, 1, 2 (e) -2, 1, 6

- 11. Find all values of h such that the vectors $\begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 5 \\ -1 \\ h \end{bmatrix}$ are linearly dependent.

- (a) h = 2 (b) $h \neq 2$ (c) h = -2 (d) $h \neq -2$ (e) $h \neq \pm 2$

- 12. Which of the following sets are subspaces of \mathbb{R}^3 ?
 - $U = \left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} \middle| a+b=1 \right\}, \qquad V = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \middle| a-b=c \right\},$
 - $W = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}, \qquad H = \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$
 - (a) U and W (b) V and W (c) V and H (d) U and V (e) V only

Part 2: Long Answer Questions. You must show your work!

1. (10 points) Find the general solution of the following linear system:

$$\begin{cases}
2x_1 + x_2 - x_3 - x_4 &= -1 \\
3x_1 + x_2 + x_3 - 2x_4 &= -2 \\
-x_1 - x_2 + 2x_3 + x_4 &= 2 \\
-2x_1 - x_2 + 2x_4 &= 3
\end{cases}$$

2. (10 points) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.

3. (10 points) Use Cramer's rule to find the value of x_3 from the solution to the following linear system:

$$x_1 - 2x_2 - 2x_3 = 7$$

 $x_2 + 2x_3 = 4$
 $x_1 + x_3 = 0$.

No other method will be accepted.

4. (12 points) Let the matrix A and its reduced row echelon form R be given by the following.

$$A = \begin{bmatrix} 1 & -2 & 2 & 1 & -3 \\ -3 & 1 & -2 & -4 & 0 \\ 4 & -1 & 4 & 7 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & -1 \end{bmatrix} = R.$$

- (a) Find a basis for the column space of A.
- (b) Find a basis for the row space of A.
- (c) Find a basis for the null space of A.
- (d) Verify that the dimension of the column space of A plus the dimension of the null space of A is equal to the number of columns of A.

- 5. (10 points) Let $A=\begin{bmatrix}4&-1&6\\2&1&6\\2&-1&8\end{bmatrix}$. You are given that the eigenvalues of A are $\lambda_1=2$, $\lambda_2=2$, and $\lambda_3=9$.
 - (a) Find a basis of the eigenspace corresponding to each eigenvalue.
 - (b) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$; if not, explain why not.