Lidov-Kozai 90° Attractor

Yubo Su

Date

1 Equations

1.1 Bin's Papers

Our major references will be Bin's paper with Diego + Dong in 2015 (LML15) and Bin's later paper with Dong on spin-orbit misalignment (LL18). The target of study is §4.3 of LL18, where a 90° attractor in spin-orbit misalignment seems to appear when the octupole effect is negligible.

The easiest formulation is just to express everything in terms of $\bf L$ and $\bf e$, following LL18. We drop octupole terms and hold the third perturber constant. These equations come out to be (Eqs. 4–5 w/ substitutions)

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \frac{3}{4t_{LK}} \mu \sqrt{Gm_{12}a} \left[(\mathbf{j} \cdot \hat{n}_2)(\mathbf{j} \times \hat{n}_2) - 5(\mathbf{e} \cdot \hat{n}_2)(\mathbf{e} \times \hat{n}_2) \right],\tag{1}$$

$$\frac{\mathrm{d}\mathbf{e}}{\mathrm{d}t} = \frac{3}{4t_{LK}} \left[(\mathbf{j} \cdot \hat{n}_2)(\mathbf{e} \times \hat{n}_2) + 2\mathbf{j} \times \mathbf{e} - 5(\mathbf{e} \cdot \hat{n}_2)(\mathbf{j} \times \hat{n}_2) \right]. \tag{2}$$

Note that $\mathbf{j} \equiv \sqrt{1 - e^2} \hat{\mathbf{L}} = \frac{\mathbf{L}}{\mu \sqrt{G m_{12} a}}$. $m_{12} = m_1 + m_2$ and $\mu = m_1 m_2 / m_{12}$. We've defined

$$t_{LK} = \frac{L_1}{\mu_1 \Phi_0} = \frac{1}{n_1} \left(\frac{m_{12}}{m_3} \right) \left(\frac{a_2}{a} \right)^3 \left(1 - e_2^2 \right)^{3/2}. \tag{3}$$

Here, $n_1 \equiv \sqrt{Gm_{12}/a^3}$. Thus, $1/t_{LK} \propto a^{3/2}$.

GW radiation (Peters 1964) cause decays of ${\bf L}$ and ${\bf e}$ as

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t}\Big|_{GW} = -\frac{32}{5} \frac{G^{7/2}}{c^5} \frac{\mu^2 m_{12}^{5/2}}{a^{7/2}} \frac{1 + 7e^2/8}{\left(1 - e^2\right)^2} \hat{L},$$
(4)

$$\frac{\mathrm{d}\mathbf{e}}{\mathrm{d}t}\Big|_{GW} = -\frac{304}{15} \frac{G^3}{c^5} \frac{\mu m_{12}^2}{a^4 (1 - e^2)^{5/2}} \left(1 + \frac{121}{304} e^2\right) \mathbf{e}.$$
 (5)

Here, $m_{12} \equiv m_1 + m_2$, and a is implicitly defined by **L** and e. The last GR effect is precession of \vec{e} , which acts as

$$\frac{\mathbf{d}\mathbf{e}}{\mathbf{d}t}\bigg|_{GR} = \frac{1}{t_{GR}}\hat{\mathbf{L}} \times \mathbf{e},\tag{6}$$

$$\frac{1}{t_{GR}} \equiv \frac{3Gnm_{12}}{c^2a(1-e^2)}. (7)$$

Note that $t_{GR}^{-1} \propto a^{-5/2}$.

Given this system (from LML15 + LL18), we can then add the spin-orbit coupling term (from de Sitter precession), which is given in LL18 to be

$$\frac{\mathrm{d}\hat{\mathbf{S}}}{\mathrm{d}t} = \frac{1}{t_{SL}}\hat{\mathbf{L}} \times \hat{\mathbf{S}},\tag{8}$$

$$\frac{1}{t_{SL}} \equiv \frac{3Gn(m_2 + \mu/3)}{2c^2a(1 - e^2)}.$$
 (9)

Note that μ is the reduced mass of the inner binary. We can drop the back-reaction term since $S \ll L$. Thus, $t_{SL}^{-1} \propto a^{-5/2}$ as well. Finally, an adiabaticity parameter can be defined:

$$\mathscr{A} \equiv \left| \frac{\Omega_{SL}}{\Omega_L} \right|. \tag{10}$$

Here, $\Omega_L \simeq \frac{3(1+4e^2)}{8t_{LK}\sqrt{1-e^2}}|\sin 2I|$ is an approximate rate of change of L during an LK cycle It's natural to redimensionalize to the initial LK time such that

$$\frac{1}{t_{LK,0}} \equiv \left(\frac{a}{a_0}\right)^{3/2} \frac{1}{t_{LK}},\tag{11}$$

since nothing else in t_{LK} is changing. The next natural timescale for gravitational waves is

$$\frac{1}{t_{GW}} \equiv \frac{G^3 \mu m_{12}^2}{c^5 a^4} \equiv \frac{1}{t_{GW,0}} \left(\frac{a_0}{a}\right)^4 \equiv \epsilon_{GW} \frac{1}{t_{LK,0}} \left(\frac{a_0}{a}\right)^4. \tag{12}$$

We can repeat the procedure for the GR precession term and the spin-orbit coupling terms:

$$\frac{1}{t_{GR}} = \epsilon_{GR} \frac{1}{t_{LK,0}} \left(\frac{a_0}{a}\right)^{5/2},\tag{13}$$

$$\frac{1}{t_{SL}} = \epsilon_{SL} \frac{1}{t_{LK,0}} \left(\frac{a_0}{a}\right)^{5/2}.$$
 (14)

Thus, finally, if we let $\tau = t/t_{LK,0}$, then we obtain full equations of motion (note that $a_0 = 1$ below)

$$\frac{d\mathbf{L}}{d\tau} = \left(\frac{a}{a_0}\right)^{3/2} \frac{3}{4} \sqrt{a} \left[(\mathbf{j} \cdot \hat{n}_2)(\mathbf{j} \times \hat{n}_2) - 5(\mathbf{e} \cdot \hat{n}_2)(\mathbf{e} \times \hat{n}_2) \right]
- \epsilon_{GW} \left(\frac{a_0}{a}\right)^4 \frac{32}{5} \frac{1 + 7e^2/8}{\left(1 - e^2\right)^{5/2}} \mathbf{L}, \qquad (15)$$

$$\frac{d\mathbf{e}}{d\tau} = \left(\frac{a}{a_0}\right)^{3/2} \frac{3}{4} \left[(\mathbf{j} \cdot \hat{n}_2)(\mathbf{e} \times \hat{n}_2) + 2\mathbf{j} \times \mathbf{e} - 5(\mathbf{e} \cdot \hat{n}_2)(\mathbf{j} \times \hat{n}_2) \right]
- \epsilon_{GW} \left(\frac{a_0}{a}\right)^4 \frac{304}{15} \frac{1}{\left(1 - e^2\right)^{5/2}} \left(1 + \frac{121}{304}e^2\right) \mathbf{e}$$

$$+\epsilon_{GR} \left(\frac{a_0}{a}\right)^{5/2} \frac{1}{1 - e^2} \hat{\mathbf{L}} \times \mathbf{e},\tag{16}$$

$$\frac{\mathrm{d}\hat{\mathbf{S}}}{\mathrm{d}t} = \epsilon_{SL} \left(\frac{a_0}{a}\right)^{5/2} \frac{1}{1 - e^2} \hat{\mathbf{L}} \times \hat{\mathbf{S}}.\tag{17}$$

For reference, we note that $a = |\mathbf{L}|^2/(\mu^2 G m_{12}(1-e^2))$, while $\mathbf{j} = \mathbf{L}/(\mu\sqrt{Gm_{12}a})$. To invert $a(\mathbf{L})$ and $\mathbf{J}(\mathbf{L})$ in this coordinate system where $a_0 = 1$, it is easiest to choose the angular momentum dimensions such that $\mu\sqrt{Gm_{12}} = 1$, such that now

$$|\mathbf{L}(t=0)| \equiv \mu \sqrt{Gm_{12}a_0(1-e_0^2)} = \sqrt{(1-e_0^2)},$$
 (18)

$$a = \frac{|\mathbf{L}|^2}{1 - e^2},\tag{19}$$

$$\mathbf{j} = \frac{\mathbf{L}}{\sqrt{a}} = \hat{\mathbf{L}}\sqrt{1 - e^2}.$$
 (20)

Finally, the timescales are

$$t_{LK,0} = \frac{1}{n} \frac{m_{12}}{m_3} \left(\frac{a_2}{a(t=0)} \right)^3 \left(1 - e_2^2 \right)^{3/2},\tag{21}$$

$$\epsilon_{GW} \equiv \frac{t_{LK,0}}{t_{GW,0}} = \frac{1}{n} \frac{m_{12}}{m_3} \frac{a_2^3}{(a(t=0))^7} (1 - e_2^2)^{3/2} \frac{G^3 \mu m_{12}^2}{c^5}, \tag{22}$$

$$\epsilon_{GR} \equiv \frac{t_{LK,0}}{t_{GR,0}} = \frac{m_{12}}{m_3} \frac{a_2^3}{(a(t=0))^4} (1 - e_2^2)^{3/2} \frac{3Gm_{12}}{c^2},\tag{23}$$

$$\epsilon_{SL} = \frac{t_{SL,0}}{t_{GR,0}} = \frac{m_{12}}{m_3} \frac{a_2^3}{(a(t=0))^4} (1 - e_2^2)^{3/2} \frac{3G(m_2 + \mu/3)}{2c^2}.$$
 (24)

The adiabacitity parameter

$$\mathcal{A} \equiv \left| \frac{\Omega_{SL}}{\Omega_L} \right| = \frac{\epsilon_{SL}}{t_{LK,0}} \left(\frac{a_0}{a} \right)^{5/2} \frac{1}{1 - e^2} \left[\frac{3(1 + 4e^2)}{8t_{LK,0}\sqrt{1 - e^2}} \left(\frac{a}{a_0} \right)^{3/2} |\sin 2I| \right]^{-1}, \tag{25}$$

(note that Ω_L is a somewhat averaged sense, see LL18) can be evaluated in these units as

$$\mathscr{A} = \epsilon_{SL} \left(\frac{a_0}{a}\right)^4 \frac{1}{\sqrt{1 - e^2}} \frac{8}{3(1 + 4e^2)|\sin 2I|}.$$
 (26)

Note also that the Hamiltonian is just

$$H = \Omega_{SL} \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}, = \epsilon_{SL} \left(\frac{a_0}{a} \right)^{5/2} \frac{1}{1 - e^2} \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}. \tag{27}$$

1.2 Maximum Eccentricity and Merger Time

Note that, since we are only evolving **L** and **e**, and not **L**₂ and **e**₂, we are in the test mass approximation, under which we set $\eta = 0$ in Bin's equations. As such, the maximum eccentricity satisfies (Eq 42 of LL18 with $\eta \to 0$)

$$\frac{3}{8} \frac{j_{\min}^2 - 1}{j_{\min}^2} \left[5\cos I_0^2 - 3j_{\min}^2 \right] + \epsilon_{GR} \left(1 - \frac{1}{j_{\min}} \right) = 0.$$
 (28)

Note that ϵ_{GR} is exactly as we defined above, incidentally, and that when GR is negligible, this reduces to the classic $j_{\min} \equiv \sqrt{1-e_{\max}^2} = \sqrt{\frac{5}{3}\cos^2 I_0}$. Since ϵ_{GR} is generally very small for most of the evolution, this generally reduces to the well known

$$e_{\max} = \sqrt{1 - \frac{5}{3}\cos^2 I_0}.$$
 (29)

This only fails to saturate for extremely high eccentricies, so $I_0 \rightarrow 90^{\circ}$.

1.3 Attractor Behavior

Proposal: The reason the 90° attractor appears is that the initial θ_{sb} is roughly stationary for $\mathcal{A} \ll 1$ (only small kicks during each LK cycle, as long as the maximum eccentricity isn't too large), then as we enter the transadiabatic regime, the L-K cycles die down and we simply have conservation of adiabatic invariant.

The latter half of this follows the LL18 claim, where the requirement that $\epsilon_{GR} \lesssim 9/4$ (GR precession of pericenter is slow enough that L-K survives) equates to $\mathscr{A} \lesssim 3$. The former half of this is somewhat tricky, but we can understand what is happening if we consider what is happening in the frame corotating with $\Omega_{SL,e=0}$ about \hat{z} : every time that a LK cycle appears, Ω_{SL} becomes much larger, and the axis of precession changes from \hat{z} to the location of \hat{L} very briefly. We can imagine this as a kick in this corotating frame (which is the right frame to consider for $\mathscr{A} \ll 1$). In the limit that I does not change very much between L-K cycles, and the azimuthal angle of \hat{L} is roughly symmetric, the impulses roughly cancel out in the θ_{sb} direction. In other words, after two LK cycles, θ_{sb} does not change much in the corotating frame. This is indeed the picture that we obtain when we observe the plot.

As such, the hypothesis is that if $\mathscr{A}\gtrsim 1$ is satisfied while the kicks are still small, then deviations about 90° cannot be very large, and adiabatic invariance tilts us right over. On the other hand, if the kicks have become large, then θ_{sb} after any particular LK cycle is far from 90°, and this is frozen in during the adiabatic invariance phase. This explains a few key observations:

- If the initial $\theta_{sb} \approx 90^\circ$, e.g. if it is 70° , then the frozen in θ_{SL} at the end is also $\sim 70^\circ$. Thus, it cannot be a dynamical attraction towards $\theta_{SL} = 90^\circ$, it's just conservation. This is a sensible condition to require though, since one might naively expect $\theta_{SL} \approx 0$ initially, and we know $I_0 \approx 90^\circ$ in order for this mechanism to be active at all.
- Two ways we can test this: if we intentionally weaken Ω_{SL} , we should expect the width near $I_{0,\max}$ where the attractor breaks down to narrow, i.e. e should be able to get closer to $I_{0,\max}$ while still seeing the attractor. The converse obviously holds. Secondly, we can do integrations farther away from $I_{0,\max}$ (so we can actually get some substantial \hat{S} evolution) and plot the trajectory of \hat{S} in the corotating frame. Some number tweaking may be necessary...

A j Equations

We define vectors

$$\mathbf{j} = \sqrt{1 - e^2} \hat{n},\tag{30}$$

$$\mathbf{e} = e\hat{u}.\tag{31}$$

Here, **j** is the dimensionless angular momentum vector and **e** is the eccentricity vector; see LML15 for precise definitions. Note that $\mathbf{j} \cdot \mathbf{e} = 0$, $j^2 + e^2 = 1$. Then, the EOM for the inner and outer vectors satisfy to quadrupolar order

$$\frac{\mathrm{d}\mathbf{j}}{\mathrm{d}t} = \frac{3}{4t_{LK}} \left[(\mathbf{j} \cdot \hat{n}_2)(\mathbf{j} \times \hat{n}_2) - 5(\mathbf{e} \cdot \hat{n}_2)(\mathbf{e} \times \hat{n}_2) \right],\tag{32}$$

$$\frac{\mathrm{d}\mathbf{e}}{\mathrm{d}t} = \frac{3}{4t_{LK}} \left[(\mathbf{j} \cdot \hat{n}_2)(\mathbf{e} \times \hat{n}_2) + 2\mathbf{j} \times \mathbf{e} - 5(\mathbf{e} \cdot \hat{n}_2)(\mathbf{j} \times \hat{n}_2) \right]. \tag{33}$$

Let's assume for the time being that $L_1 \ll L_2$, so the system is sufficiently hierarchical that \mathbf{j}_2 , \mathbf{e}_2 are constants. Note for reference that

$$t_{LK} = \frac{L_1}{\mu_1 \Phi_0} = \frac{1}{n_1} \left(\frac{m_1 + m_2}{m_3} \right) \left(\frac{a_2}{a} \right)^3 \left(1 - e_2^2 \right)^{3/2}. \tag{34}$$

Here, $n_1 = \sqrt{G(m_1 + m_2)/a^3}$. Thus, $1/t_{LK} \propto a^{3/2}$.

GW radiation (Peters 1964) cause decays of ${\bf L}$ and ${\bf e}$ as

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t}\Big|_{GW} = -\frac{32}{5} \frac{G^{7/2}}{c^5} \frac{\mu^2 m_{12}^{5/2}}{a^{7/2}} \frac{1 + 7e^2/8}{\left(1 - e^2\right)^2} \hat{L},$$
(35)

$$\frac{\mathrm{d}\mathbf{e}}{\mathrm{d}t}\Big|_{GW} = -\frac{304}{15} \frac{G^3}{c^5} \frac{\mu m_{12}^2}{a^4 (1 - e^2)^{5/2}} \left(1 + \frac{121}{304} e^2\right) \mathbf{e},\tag{36}$$

$$\frac{\dot{a}}{a}\Big|_{GW} = -\frac{64}{5} \frac{G^3 \mu m_{12}^2}{c^5 a^4} \frac{1}{(1 - e^2)^{7/2}} \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4\right). \tag{37}$$

Here, $m_{12} \equiv m_1 + m_2$. The last GR effect is precession of \vec{e} , which acts as

$$\frac{\mathrm{d}\mathbf{e}}{\mathrm{d}t}\bigg|_{GR} = \frac{3Gnm_{12}}{c^2a(1-e^2)}.$$
(38)

Given this system (from LML15 + LL18), we can then add the spin-orbit coupling term (from de Sitter precession), which is given in LL18 to be

$$\frac{\mathrm{d}\hat{S}}{\mathrm{d}t} = \Omega_{SL}\hat{L} \times \hat{S},\tag{39}$$

$$\Omega_{SL} \equiv \frac{3Gn(m_2 + \mu/3)}{2c^2a(1 - e^2)}.$$
(40)

Note that μ is the reduced mass of the inner binary. We can drop the back-reaction term since $S \ll L$. Thus, $\Omega_{SL} \propto a^{-5/2}$.

What is observed is that, as this system is evolved forward in time and GR coalesces the inner binary, $\theta_{sl} \equiv \arccos(\hat{S} \cdot \hat{L})$ goes to 90° consistently. The relevant figure is Fig. 19 of LL18, which shows that for a close-in, low-eccentricity perturber $(\bar{a}_{\text{out,eff}} \propto a_{out})$, the focusing is significantly stronger. Note that initially, $I \equiv \arccos(\hat{L} \cdot \hat{L}_2) \approx 90^\circ$ while $\theta_{sl} \approx 0$.

In LL18, an adiabaticity parameter is defined:

$$\mathcal{A} \equiv \left| \frac{\Omega_{SL}}{\Omega_L} \right|,\tag{41}$$

where $\Omega_L \simeq \left\langle \frac{\mathrm{d}\hat{L}}{\mathrm{d}t} \right\rangle_{LK}$ to quadrupolar order. As the inner binary coalesces, \mathscr{A} transitions from $\ll 1$ to $\gg 1$ (as Ω_{SL} is a GR effect so ramps up very quickly as orbital separation decreases).

The adiabaticity parameter $\mathscr A$ can be plotted upon rescaling in our coordinates. Note that $\Omega_{\rm SL}=\frac{\delta a_0}{at_{LK,0}}$, while $\Omega_L\simeq \frac{3(1+4e^2)}{8t_{LK}\sqrt{1-e^2}}|\sin 2I|$ can also be expressed in units of $t_{LK,0}$. This gives us

$$\mathscr{A} = \frac{8\delta\sqrt{1 - e^2}}{3(1 + 4e^2)} \left(\frac{a_0}{a}\right)^4. \tag{42}$$

A.1 Simulations

First, we run GR-less simulations, so let's take $t_{LK} = 1$ (no semimajor axis evolution), and we reproduce LK oscillations.

Next, when accounting for GR, we should let a evolve as above. Note that since \mathbf{j} and \vec{e} are our dynamical variables, we should use $\mathbf{j} \equiv \sqrt{1 - e^2} \hat{L} = \sqrt{1 - e^2} \frac{\mathbf{L}}{\mu \sqrt{Gm_{12}a(1 - e^2)}}$ and rewrite

$$\frac{\mathrm{d}\mathbf{j}}{\mathrm{d}t}\bigg|_{GW} = \frac{1}{\mu\sqrt{GMa}} \frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t}\bigg|_{GW} - \frac{\mathbf{j}}{2a} \frac{\mathrm{d}a}{\mathrm{d}t}\bigg|_{GW}. \tag{43}$$

To double check, we should verify that $\frac{\mathrm{d}(j^2+e^2)}{\mathrm{d}t}\Big|_{GW}=0$, which can be verified as (Let's set $G=M=\mu=a=c=1$ for convenience)

$$\frac{1}{2} \frac{\mathrm{d}(j^{2} + e^{2})}{\mathrm{d}t} = \mathbf{j} \cdot \frac{\mathrm{d}\mathbf{j}}{\mathrm{d}t} + \mathbf{e} \cdot \frac{\mathrm{d}\mathbf{e}}{\mathrm{d}t}, \tag{44}$$

$$= \mathbf{j} \cdot \left[\left(-\frac{32}{5} \frac{1 + 7e^{2}/8}{(1 - e^{2})^{2}} \right) \hat{L} - \frac{\mathbf{j}}{2} \left(-\frac{64}{5} \frac{1 + 73e^{2}/24 + 37e^{4}/96}{(1 - e^{2})^{7/2}} \right) \right] + \mathbf{e} \cdot \left(-\frac{304}{15} \frac{1 + 121e^{2}/304}{(1 - e^{2})^{5/2}} \right) \mathbf{e}, \tag{45}$$

$$= \left(-\frac{32}{5} \frac{1 + 7e^{2}/8}{(1 - e^{2})^{3/2}} \right) + \left(\frac{32}{5} \frac{1 + 73e^{2}/24 + 37e^{4}/96}{(1 - e^{2})^{5/2}} \right) + e^{2} \left(-\frac{304}{15} \frac{1 + 121e^{2}/304}{(1 - e^{2})^{5/2}} \right), \tag{46}$$

$$= \frac{1}{15(1 - e^{2})^{5/2}} \left[-96(1 - e^{2}) \left(1 + \frac{7e^{2}}{8} \right) + 96 \left(1 + \frac{73e^{2}}{24} + \frac{37e^{4}}{96} \right) - 304e^{2} \left(1 + \frac{121e^{2}}{304} \right) \right]. \tag{47}$$

This can be verified to vanish upon term-by-term examination indeed.

For convenience, let's just define $t_{LK}=t_{LK,0}\frac{a_0^3}{a^3}$ and set $t_{LK,0}=1$. Furthermore, the timescale of relevance for the GW terms is $t_{GW}^{-1}\sim\frac{G^3\mu m_{12}^2}{c^5a^4}$. Let's express this as some ratio $t_{GW}=\epsilon t_{LK,0}\frac{a_0^4}{a^4}$. Thus, everything should be nondimensionalized this way.

We lastly add de-Sitter precession of the spin of one of the inner binary components, call this \hat{S} . Similarly, let's just define a proportionality constant $t_{SL} = \delta t_{LK,0} \frac{a_0}{a}$, then

$$\frac{\mathrm{d}\hat{S}}{\mathrm{d}(t/t_{LK,0})} = \delta \frac{a_0}{a}\hat{L} \times \hat{S}. \tag{48}$$

Our final simulation equations are thus $(\tau = t/t_{LK,0})$

$$\frac{d\mathbf{j}}{d\tau} = \frac{3}{4} \left(\frac{a_0^3}{a^3} \right) \left[(\mathbf{j} \cdot \hat{n}_2)(\mathbf{j} \times \hat{n}_2) - 5(\mathbf{e} \cdot \hat{n}_2)(\mathbf{e} \times \hat{n}_2) \right]
- \left(\varepsilon \frac{a_0^4}{a^4} \right) \left(\frac{32}{5} \frac{1 + 7e^2/8}{(1 - e^2)^{5/2}} - \frac{32}{5} \frac{1}{(1 - e^2)^{7/2}} \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \right) \mathbf{j}, \tag{49}$$

$$\frac{d\mathbf{e}}{d\tau} = \frac{3}{4} \left(\frac{\alpha_0^3}{a^3} \right) \left[(\mathbf{j} \cdot \hat{n}_2)(\mathbf{e} \times \hat{n}_2) + 2\mathbf{j} \times \mathbf{e} - 5(\mathbf{e} \cdot \hat{n}_2)(\mathbf{j} \times \hat{n}_2) \right] - \left(\epsilon \frac{\alpha_0^4}{a^4} \right) \frac{304}{15} \frac{1}{\left(1 - e^2 \right)^{5/2}} \left(1 + \frac{121}{304} e^2 \right) \mathbf{e}, \tag{50}$$

$$\frac{\mathrm{d}\hat{S}}{\mathrm{d}\tau} = \delta \frac{a_0}{a} \frac{\mathbf{j}}{\sqrt{1 - e^2}} \times \hat{S},\tag{51}$$

$$\frac{\mathrm{d}a}{\mathrm{d}\tau} = -a \left(\epsilon \frac{a_0^4}{a^4} \right) \frac{64}{5} \frac{1}{\left(1 - e^2\right)^{7/2}} \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right). \tag{52}$$