SYSTEMSKISS

Redaktör Oskar Lundin Version 0.2

Status

Granskad	Oskar Lundin	2019-10-04
Godkänd		

PROJEKTIDENTITET

Grupp 5,2019/HT1,Columbus Linköpings tekniska högskola, ISY

Namn Ansvar		Telefon E-post		
Mattias Ljung	Kommunikationsenhetsansvarig (KA)	070-219 03 53	matlj387@student.liu.se	
Felix Lindgren	Felix Lindgren Dokumentansvarig (DA)		felli675@student.liu.se	
Marcus Nolkrantz	Styrenhetsansvarig (SA)	070-553 48 79	marno874@student.liu.se	
Justus Karlsson	Grafiskenhetsansvarig (GA)	072-241 43 77	juska933@student.liu.se	
Edwin Johansson Sensorenhetsansvarig (SEA)		073-673 39 87	edwjo109@student.liu.se	
Oskar Lundin	Projektledare (PL)	070-756 80 58	osklu414@student.liu.se	

E-postlista för hela gruppen: <u>osklu414@student.liu.se</u> Hemsida: <u>https://gitlab.liu.se/osklu414/tsea29-kartrobot</u>

Kund: Kent Palmkvist, 581 00 LINKÖPING, 013-28 13 47, kent.palmkvist@liu.se

Kursansvarig: Anders Nilsson, 3B:512, 013-28 2635, <u>anders.p.nilsson@liu.se</u> **Handledare:** Petter Källström, 013-28-14-92, <u>petter.kjellstrom@liu.se</u>

Innehåll

1 Inledning	6
2 Översikt av systemet	6
3 Moduler	7
3.1 Kommunikationsmodul	7
3.2 Styrmodul	7
3.3 Sensormodul	8

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.2	2019-10-04	Andra versionen	EJ, JK, FL	OL
0.1	2019-09-24	Första versionen	FL, ML, EJ, MN, OL	OL

1 Inledning

Denna systemskiss är till för att övergripligt beskriva kartrobotens olika moduler, hur de är uppbyggda, och gränssnitten mellan dem.

2 Översikt av systemet

Kartroboten består av det givna chassit, två Atmel AVR-processorer, en Raspberry Pi, en Adafruit LSM9DS0, en LCD-display, en RPLIDAR A2 och en strömbrytare. Sammankopplad ska kartroboten se ut som ritningen i figur 1.

Figur 1: Ritning av roboten.

Figur 2: Blockschema.

3 Moduler

Kartroboten består av tre moduler: kommunikationsmodulen, sensormodulen och styrmodulen. Varje modul körs på en egen processor.

3.1 Kommunikationsmodul

Kommunikationsmodulen körs på en Raspberry Pi. I autonomt läge läser modulen in data från sensormodulen, utför beräkningar för att bestämma utdata till styrmodulen (hur hjulen ska röra sig) och till den externa datorn (kartan och robotens status). I manuellt läge läser kommunikationsmodulen in data från den externa datorn (körläge) och skickar ut data till styrmodulen (hur hjulen ska röra sig). Se figur 2 för vilka moduler som är kopplade till kommunikationsmodulen.

3.2 Styrmodul

Styrmodulen ansvarar över hur robotens hjul ska röra sig. Modulen körs på en Atmel AVR-processor. Modulen får indata från kommunikationsmodulen, där indatan beskriver i vilket läge hjulen ska vara i. Utdatan skickas direkt till hjulen, enligt deras gränssnitt.

Figur 3: Blockschema av styrmodulen.

3.3 Sensormodul

Syftet med sensormodulen är att läsa in data från sensorer, manipulera datan till ett specifikt format om nödvändigt, och vidarebefordra den till kommunikationsmodulen. Modulen består av en Atmel AVR-processor som får indata från två sensorer: RPLIDAR A2(avståndssensor) och Adafruit LSM9DS0 (gyroskop och accelerometer). Utdata från sensorerna matas kontinuerligt till sensormodulen.

Figur 4: Blockschema för sensormodulen.

För att styra och läsa data från RPLIDAR A2 används UART-protokollet. LSM9DS0 använder I2C.

3.4 PC programvara

Programvaran på PC:n är ansvarig för att rita upp en grafisk representation av banan. Användaren ska också manuellt kunna styra roboten från PC:n (förutsatt att fjärrstyrningsknappen på roboten är aktiv). Programvaran behöver också implementera gränssnittet för kommunikation mellan robot och PC. Slutligen ska programvaran kunna visa en logg över debug-data.

Figur 5: Programvarans olika delar.