

Attorney Docket No.: <u>COOL-01301</u>

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re	App]	lication	of:
-------	------	----------	-----

Thomas W. Kenny et al.

Serial No.: 10/680,584

Filed: October 6, 2003

For: METHOD AND APPARATUS FOR

EFFICIENT VERTICAL FLUID DELIVERY FOR COOLING A HEAT PRODUCING DEVICE Group Art Unit: 3753

Examiner:

TRANSMITTAL LETTER

162 N. Wolfe Road Sunnyvale, CA 94086 (408) 530-9700

Customer No.: 28960

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313

Sir:

Enclosed please find an Information Disclosure Statement and Form PTO-1449, including copies of the references contained thereon, for filing in the U.S. Patent and Trademark Office.

You will also find enclosed the associated Transmittals, Electronic Information Disclosure Statements, and United States Patent and Trademark Office Acknowledgment Receipts for the electronically filed Information Disclosure Statement (EFS ID #59961); (EFS ID #59963) and (EFS ID #59964) filed on April 28, 2004.

The Commissioner is hereby authorized to charge any additional fee or credit overpayment to our Deposit Account No. <u>08-1275</u>. An originally executed duplicate of this transmittal is enclosed for this purpose.

Respectfully submitted,

HAVERSTOCK & OWENS LLP

Dated: 4-29-04

Thomas B. Haverstock

Reg. No.: 32,571

Attorneys for Applicants

CERTIFICATE OF MAILING (37 CFR§ 1.8(a))

I hereby certify that this paper (along with any referred to as being attached or enclosed) is being deposited with the U.S. Postal Service on the date shown below with sufficient postage as first class mail in an envelope addressed to the: Commissioner for Patents, P.O. Box 1450 Alexandria, VA 22313-1450

HAVERSTOCK & OWENS LLP

Date

Attorney Docket No.: <u>COOL-01301</u>

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:) Group Art Unit: 3753
Thomas W. Kenny et al.	Examiner:
Serial No.: 10/680,584)) INFORMATION DISCLOSURE
Filed: October 6, 2003) STATEMENT

For: METHOD AND APPARATUS FOR

EFFICIENT VERTICAL FLUID DELIVERY FOR COOLING A HEAT PRODUCING DEVICE 162 N. Wolfe Road Sunnyvale, CA 94086 (408) 530-9700

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313

Sir:

The citations listed below, copies attached, may be material to the examination of the above-identified application, and are therefore submitted in compliance with the duty of disclosure defined in 37 C.F.R. §§ 1.56 and 1.97. The Examiner is requested to make these citations of official record in this application.

United States Patents or Published Patent Applications have been filed electronically (EFS ID #59961); (EFS ID #59962); (EFS ID #59963) and (EFS ID #59964). Applicants have become aware of the following printed publication which may be material to the examination of this application:

- Chinese Publication No. CN 97212126.9;
- Japanese Patent Abstract JP 2000-277540;
- Stephen C. Jacobson et al., "Fused Quartz Substrates for Microchip Electrophoresis", Analytical Chemistry, Vo. 67, No. 13, July 1, 1995, pages 2059-2063;
- Kendra V. Sharp et al., "Liquid Flows in Microchannels", 2002, Vol. 6, pages 6-1 to 6-38;
- Shuchi Shoji et al., "Microflow devices and systems", J. Microcech. Microeng. 4 (1994), pages 157-171, printed in the U.K;

- Angela Rasmussen et al., "Fabrication Techniques to Realize CMOS-Compatible Microfluidic Microchannels", Journal of Microelectromechanical, Vo. 10, No. 2, June 2001, pages 286-297;
- J. H. Wang et al., "Thermal-Hydraulic Characteristic of Micro Heat Exchangers", 1991, DSC-Vol. 32, Micromechanical Sensors, Actuators, and Systems, pages 331-339;
- Gad Hetsroni et al., "Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels", IEEE Transactions on Components and Packaging Technologies, March 2001, Vol. 24, No. 1, pages 16-23;
- X. F. Peng et al., "Heat Transfer Characteristics of Water Flowing through Microchannels", Experimental Heat Transfer An International Journal, Vol. 7, No. 4, October-December 1994, pages 265-283;
- Linan Jiang et al., "Forced Convection Boiling in a Microchannel Heat Sink", Journal of Microelectromechanical Systems, Vol. 10, No. 1, March 2001, pages 80-87;
- Muhammad M. Rahman et al., "Experimental Measurements of Fluid Flow and Heat Transfer in Microchannel Cooling Passages in a Chip Substrate", 1993, EEP-Vol. 4-2, Advances in Electronic Packages, pages 685-692;
- X. F. Peng et al., "Forced convection and flow boiling heat transfer for liquid flowing through Microchannels", 1993, Int. J. Heat Mass Transfer, Vol. 36, No. 14, pages 3421-3427;
- Lung-Jieh Yang et al., "A Micro Fluidic System of Micro Channels with On-Site Sensors by Silicon Bulk Micromaching", September 1999, Microfluidic Devices and Systems II, Vol. 3877, pages 267-272;
- G. Mohiuddin Mala et al., "Heat transfer and fluid flow in microchannels", 1997, Int. J. Mass transfer, Vol. 40, No. 13, pages 3079-3088, printed in Great Britain;
- J. M. Cuta et al., "Fabrication and Testing of Micro-Channel Heat Exchangers", SPIE Microlithography and Metrology in Micromaching, Vol. 2640, 1995, pages 152-160;

- Linan Jiang et al., "A Micro-Channel Heat Sink with Integrated Temperature Sensors for Phase Transition Study", 1999, 12th IEEE International Conference on Micro Electro Mechanical Systems, pages 159-164;
- Linan Jiang et al., "Fabrication and characterization of a microsystem for a micro-scale heat transfer study", J. Micromech. Microeng. 9 (1999) pages 422-428, printed in the U.K;
- M. B. Bowers et al., "High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks", 1994, Int. J. Heat Mass Transfer, Vol. 37, No. 2, pages 321-332;
- Yongendra Joshi, "Heat out of small packages", December 2001, Mechanical Engineer, pages 56-58;
- A. Rostami et al., "Liquid Flow and Heat Transfer in Microchannels: a Review", 2000, Heat and Technology, Vol. 18, No. 2, pages 59-68;
- Lian Zhang et al., "Measurements and Modeling of Two-Phase Flow in Microchannels with Nearly Constant Heat Flux Boundary Conditions", Journal of Microelectromechanical Systems, Vol. 11, No. 1, February 2002, pages 12-19;
- Muhammad Mustafizur Rahman, "Measurements of Heat Transfer in Microchannel Heat Sinks", Int. Comm. Heat Mass Transfer, Vol. 27, No. 4, May 2000, pages 495-506;
- Issam Mudawar et al., "Enhancement of Critical Heat Flux from High Power Microelectronic Heat Sources in a Flow Channel", Journal of Electronic Packaging, September 1990, Vol. 112, pages 241-248;
- Nelson Kuan, "Experimental Evaluation of Micro Heat Exchangers Fabricated in Silicon", 1996, HTD-Vol. 331, National Heat Transfer Conference, Vol. 9, pages 131-136;
- E. W. Kreutz et al., "Simulation of micro-channel heat sinks for optoelectronic microsystems", Microelectronics Journal 31(2000) pages 787-790;
- J. C. Y. Koh et al., "Heat Transfer of Microstructure for Integrated Circuits",
 1986, Int. Comm. Heat Mass Transfer, Vol. 13, pages 89-98;
- Snezana Konecni et al., "Convection Cooling of Microelectronic Chips",
 1992, InterSociety Conference on Thermal Phenomena, pages 138-144;

- Michael B. Kleiner et al., "High Performance Forced Air Cooling Scheme Employing Microchannel Heat Exchangers", 1995, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, No. 4, pages 795-804;
- Jerry K. Keska Ph. D. et al., "An Experimental Study on an Enhanced Microchannel Heat Sink for Microelectronics Applications", EEP-Vol. 26-2, Advances in Electronic Packaging, 1999, Vol. 2, pages 1235-1259;
- Shung-Wen Kang et al., "The Performance Test and Analysis of Silicon-Based Microchannel Heat Sink", July 1999, Terahertz and Gigahertz Photonics, Vol. 3795, pages 259-270;
- Joseph C. Tramontana, "Semiconductor Laser Body Heat Sink", Xerox
 Disclosure Journal, Vol. 10, No. 6, November/December 1985, pages 379-381;
- Sarah Arulanandam et al., "Liquid transport in rectangular microchannels by electroosmotic pumping", Colloid and Surfaces A: Physicochemical and Engineering Aspects 161 (2000), pages 89-102;
- Jeffery D. Barner et al., "Thermal Ink Jet Print Head Carriage with Integral Liquid Cooling Capabilities", Xerox Disclosure Journal-Vol. 21, No. 1, January/February 1996, pages 33-34;
- "Autonomous displacement of a solution in a microchannel by another solution", Research Disclosure, June 2001, pages 1046-1047;
- John M. Waldvogel, "Aluminum Silicon Carbide Phase Change Heat Spreader", Motorola, June 1999, Technical Developments, pages 226-230;
- James P. Slupe et al., "An idea for maintaining a stable thermal environment for electronic devices", Research Disclosure, August 2001, page 1312;
- John M. Waldvogel, "A Heat Transfer Enhancement Method for Forced Convection Bonded-Fin Heatsinks", Motorola, December 1997, Technical Developments, pages 158-159;
- "Thin Heat Pipe for Cooling Components on Printed Circuit Boards", IBM Technical Disclosure Bulletin, Vol. 34, No. 7B, December 1991, pages 321-322;
- R. C. Chu et al., "Process for Nucleate Boiling Enhancement", IBM Technical Disclosure Bulletin, Vol. 18, No. 7, December 1975, page 2227;

- J. Riseman, "Structure for Cooling by Nucleate Boiling", IBM Technical Disclosure Bulletin, Vol. 18, No. 11, April 1976, page 3700;
- "Integrally Grooved Semiconductor Chip and Heat Sink", October 1971, IBM
 Technical Disclosure Bulletin, Vol. 14, No. 5, page 1425;
- "Enhanced Cooling of Thermal Conduction Module", IBM Technical Disclosure Bulletin, Vol. 30, No. 5, October 1987, page 426;
- "Heat Exchanger Modules for Data Process with Valves Operated by Pressure form Cooling Water Pump", IBM Technical Disclosure Bulletin, Vol. 30, No. 5, October 1987, page 419;
- "Cold Plate for Thermal Conduction Module with Inlet for Cooling Water Near Highest Power Chips", IBM Technical Disclosure Bulletin, Vol. 30, No. 5, October 1987, page 413;
- "Circuit Module Cooling with Coaxial Bellow Providing Inlet, Outlet and Redundant Connections to Water-Cooled Element", IBM Technical Bulletin, Vol. 30, No. 5, October 1987, pages 345-347;
- "Piping System with Valves Controlled by Processor for Heating Circuit Modules in a Selected Temperature Profile for Sealing Integrity Test Under Temperature Stress", IBM Technical Disclosure Bulletin, Vol. 30, No. 5, October 1987, page 336;
- "Cooling System for Chip Carrier on Card", IBM Technical Disclosure
 Bulletin, Vol. 31, No. 4, September 1988, pages 39-40;
- "Chip Cooling Device", IBM Technical Disclosure Bulletin, Vol. 30, No. 9, February 1988, pages 435-436;
- W. E. Ahearn et al., "Silicon Heat Sink Method to Control Integrated Circuit Chip Operating Temperatures", IBM Technical Disclosure Bulletin, Vol. 21, No. 8, January 1979, pages 3378-3380;
- N. P. Bailey et al., "Cooling Device for Controlled Rectifier", IBM Technical Disclosure Bulletin, Vol. 21, No. 11, April 1979, pages 4609-4610;
- W. J. Kleinfelder et al., "Liquid-Filled Bellows Heat Sink", IBM Technical Disclosure Bulletin, Vol. 21, No. 10, March 1979, pages 4125-4126;
- R. P. Chrisfield et al., "Distributed Power/Thermal Control", IBM Technical Disclosure Bulletin, Vol. 22, No. 3, August 1979, pages 1131-1132;

- A. J. Arnold et al., "Heat Sink Design for Cooling Modules in a Forced Air Environment", IBM Technical Disclosure Bulletin, Vol. 22, No. 6, November 1979, pages 2297-2298;
- A. J. Arnold, "Structure for the Removal of Heat from an Integrated Circuit Module", IBM Technical Disclosure Bulletin, Vol. 22, No. 6, November 1979, pages 2294-2296;
- U. P. Hwang et al., "Cold Plate for Thermal Conduction Module with Improved Flow Pattern and Flexible Base", IBM Technical Disclosure Bulletin, Vol. 25, No. 9, February 1983, page 4517;
- K. C. Gallagher et al., "Cooling System for Data Processor with Flow Restricter in Secondary Loop to Limit Bypass-Cooling Water Flow", IBM Technical Disclosure Bulletin, Vol. 26, No. 5, October 1983, page 2658;
- R. C. Chu et al., "Silicon Heat Sink for Semiconductor Chip", IBM Technical Disclosure Bulletin, Vol. 24, No. 11A, April 1982, page 5743;
- J. M. Eldridge et al., "Heat-Pipe Vapor Cooling Etched Silicon Structure",
 IBM Technical Disclosure Bulletin, Vol. 25, No. 8, January 1983, pages 4118-4119;
- J. R. Skobern, "Thermoelectrically Cooled Module", IBM Technical Disclose Bulletin, Vol. 27, No. 1A, June 1984, page 30;
- M. J. Brady et al., "Etched Silicon Integrated Circuit Heat Sink", IBM Technical Disclosure Bulletin, Vol. 27, No. 1B, June 1984, page 627;
- H. D. Edmonds et al., "Heat Exchange Element for Semiconductor Device Cooling", IBM Technical Disclosure Bulletin, Vol. 23, No. 3, August 1980, page 1057;
- R. W. Noth, "Heat Transfer from Silicon Chips and Wafers", IBM Technical Disclosure Bulletin, Vol.17, No. 12, May 1975, page 3544;
- "Forced Boiling Cooling System with Jet Enhancement for Crititical Heat Flux Extension", IBM Technical Disclosure Bulletin, Vol.39, No. 10, October 1996, page 143;
- "Miniature Heat Exchanger for Corrosive Media", IBM Technical Disclosure Bulletin, Vol. 38, No. 01, January 1995, pages 55-56;

- "Self-Contained Active Heat Dissipation Device", IBM Technical Disclosure Bulletin Vol. 39, No. 04, April 1996, pages 115-116;
- C. J. Keller et al., "Jet Cooling Cup for Cooling Semiconductor Devices", IBM Technical Disclosure Bulletin, Vol. 20, No. 9, February 1978, pages 3575-3576;
- B. J. Ronkese, "Centerless Ceramic Package with Directly Connected Heat Sink", IBM Technical Disclosure Bulletin, Vol. 20, No. 9, February 1978, page 3577-3578;
- K. S. Sachar, "Liquid Jet Cooling of Integrated Circuit Chips", Vol. 20, No. 9, February 1978, pages 3727-3728;
- A. H. Johnson, "Device Cooling", IBM Technical Disclosure Bulletin, Vol. 20, No. 10, March 1978, pages 3919-3920;
- A. L. Pacuzzo et al., "Integrated Circuit Module Package Cooling Structure", IBM Technical Disclosure Bulletin, Vol. 20, No. 10, March 1978, pages 3898-3899;
- R. D. Durand et al., "Flexible Thermal Conductor for Electronic Module",
 IBM Technical Disclosure Bulletin, Vol. 20, No. 11A, April 1978, page 4343;
- D. Balderes et al., "Liquid Cooling of a Multichip Module Package", IBM Technical Disclosure Bulletin, Vol. 20, No. 11A, April 1978, pages 4336-4337;
- J. A. Dorler et al., "Temperature Triggerable Fluid Coupling System for cooling Semiconductor Dies", IBM Technical Disclosure Bulletin, Vol. 20, No. 11A, April 1978, pages 4386-4388;
- V. W. Antonetti et al., "Integrated Module Heat Exchanger", IBM Technical Disclosure Bulletin, Vol. 20, No. 11A, April 1978, page 4498;
- P. Hwang et al., "Conduction Cooling Module", IBM Technical Disclosure Bulletin, Vol. 20, No. 11A, April 1978, pages 4334-4335;
- A. J. Arnold, "Electronic Packaging Structure", IBM Technical Disclosure Bulletin, Vol. 20, No. 11B, April 1978, pages 4820-4822;
- V. Y. Doo et al., "High Performance Package for Memory", IBM Technical Disclosure Bulletin, Vol. 21, No. 2, July 1978, pages 585-586;
- "Multi-Chip Package with Cooling by a Spreader Plate in Contact with a Chip having Cylindrical Holes Mating with an Inverse Frame Providing Water

- Flow Within its Pins", IBM Technical Disclosure Bulletin, Vol. 31, No. 5, October 1988, pages 141-142;
- J. Landrock et al., "Cooling System for Semiconductor Chips", IBM

 Technical Disclosure Bulletin, Vol. 23, No. 4, September 1980, page 1483;
- E. P. Damm, Jr., "Convection Cooling Apparatus", IBM Technical Disclosure Bulletin, Vol. 20, No. 7, December 1977, pages 2755-2756;
- "Circuit Package with Circulating Boiling Liquid and Local Heat Exchanger to Limit Vapor in Coolant Outlet", IBM Technical Disclosure Bulletin, Vol. 31, No. 12 May 1989, page 34;
- "Circuit Module Cooling with Multiple Pistons Contacting a Heat Spreader/Electrical Buffer Plate in Contact with Chip", IBM Technical Disclosure Bulletin, Vol. 31, No. 12, May 1989, page 5-7;
- "TCM-LIKE Circuit Module with Local Heat Sink Resting on Chip and Chip Separated From Coolant by Bellows with Pins and Deflector Plate Attached to Local Heat Sink and Extending Above Bellows into Region of Coolant Flow", IBM Technical Disclosure Bulletin, Vol. 31, No. 11, pages 305-306;
- "Water-Cooled Circuit Module with Grooves Forming Water Passages Near Heat-Producing Devices", IBM Technical Disclosure Bulletin, Vol. 31, No. 12, May 1989, pages 49-50;
- "Cold Plate for Thermal conduction Module with Only Peripheral Mounting bolts, Large Surface Area Fin Inserts and Reduced Water Flow and Thermal Resistances", IBM Technical Disclosure Bulletin, Vol. 31, No. 12, May 1989, page 59;
- "Thermal Control Hardware for Accelerated Run-In Testing of Multi-Chip Modules", IBM Technical Disclosure Bulletin, Vol. 32, No. 5A, October 1989, page 129-130;
- "Means of Removing More Heat From a TCM (Or Other Liquid-Cooled Logic Package) By Reducing the Coolant Temperature", IBM Technical Disclosure Bulletin, Vol. 32 No. 5A, Oct 1989, pages 153-154;
- E. G. Loeffel et al., "Liquid Cooled Module with Compliant Membrane", IBM Technical Disclosure Bulletin, Vol. 20, No. 2, July 1977, pages 673-674;

- V. Y. Doo et al., "Method of Effective Cooling of a High Power Silicon Chip", IBM Technical Disclosure Bulletin, Vol. 20, No. 4, September 1977, page 1436-1437;
- V. Y. Doo et al., "Semiconductor Chip Cooling Package, IBM Technical Disclosure Bulletin, Vol. 20, No. 4, September 1977, pages 1440-1441;
- "Heat Sink Fabrication Method", IBM Technical Disclosre Bulletin, Vol. 27,
 No. 10A, March 1985, page 5656-5657;
- "Thermal Conduction Module with Liquid Dielectric and Pistons with Surface Treatment for Enhanced Nucleate Boiling", IBM Technical Disclosure Bulletin, Vol. 27, No. 12, May 1985, page 6904;
- "Pin Fin Array Heat Pipe Apparatus", IBM Technical Disclosure Bulletin, Vol. 37, No. 09, September 1994, page 171;
- Youngcheol Joo et al., "Fabrication of Monolithic Microchannels for IC Chip Cooling", 1995, IEEE Micro Electro Mechanical Systems, pages 362-367;
- Jaisree Moorthy et al., <u>Active control of electroosmotic flow in microchannels using light</u>, January 26, 2001, Sensors and Actuators B 75, pages 223-229;
- Andreas Manz et al., <u>Electroosmotic pumping and electrophoretic separations</u> for miniaturized chemical analysis systems, September 16, 1994, J.Micromech. Microeng. 4 (1994), pages257-265, printed in the U.K;
- E. B. Cummings et al., <u>Irrotationality of uniform electroosmosis</u>, September 1999, Part of the SPIE Conference on Microfluidic Devices and Systems II, SPIE Vol. 3877, pages 180-189;
- Stephen C. Jacobson et al., <u>Fused Quartz Substrates for Microchip</u>
 <u>Electrophoresis</u>, July 1, 1995, Analytical Chemistry, Vol. 67, No. 13, pages 2059-2063;
- Haim H. Bau, Optimization of conduits' shape in micro heat exchangers, December 10, 1997, International Journal of Heat and Mass Transfer 41 (1998), pages 2717-2723;
- V. K. Dwivedi et al., <u>Fabrication of very smooth walls and bottoms of silicon microchannels for heat dissipation of semiconductor devices</u>, January 25, 2000, Microelectronics Journal 31 (2000), pages 405-410;

- M. B. Bowers et al., <u>Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sinks: Part 2-Flow Rate and Pressure Drop Constraints</u>,
 December 1994, Journal of Electronic Packaging 116, pages 298-305;
- Meint J. de Boer et al., <u>Micromachining of Buried Micro Channels in Silicon</u>, March 2000, Journal of Microelectromechanical systems, Vol. 9, No. 1, pages 94-103;
- S.B. Choi et al., <u>FLUID FLOW AND HEAT TRANSFER IN</u>
 <u>MICROTUBES</u>, 1991, DSC-vol. 32, Micromechanical sensors, Actuators, and Systems, ASME 1991, pages 123-134;
- S. F. Choquette, M. Faghri et al., <u>OPTIMUM DESIGN OF</u>
 <u>MICROCHANNEL HEAT SINKS</u>, 1996, DSC-Vol. 59;

 Microelectromechanical Systems (MEMS), ASME 1996, pages 115-126;
- David Copeland et al., <u>MANIFOLD MICROCHANNEL HEAT SINKS:</u>
 <u>THEORY AND EXPERIMENT</u>, 1995, EEP-Vol. 10-2, Advances in
 Electronic Packaging ASME 1995, pages 829-835;
- J. M. Cuta et al., <u>FORCED CONVECTION HEAT TRANSFER IN</u>
 <u>PARALLEL CHANNEL ARRAY MICROCHANNEL HEAT</u>

 <u>EXCHANGER</u>, 1996, PID-Vol. 2 / HTD-Vol. 338, Advances in Energy efficiency, Heat/Mass Transfer Enhancement, ASME 1996, pages 17-23;
- K. Fushinobu et al., <u>HEAT GENERATION AND TRANSPORT IN SUB-MICRON SEMICONDUCTOR DEVICES</u>, 1993, HTD-Vol. 253, Heat Transfer on the Microscale, ASME 1993, pages 21-28;
- Charlotte Gillot et al., <u>Integrated Micro Heat Sink for Power Multichip</u>
 <u>Module</u>, September 3, 1999, IEEE Transactions on Industry Applications,
 Vol. 36. NO. 1. January/February 2000, pages217-221;
- John Gooding, <u>Microchannel heat exchangers a review</u>, SPIE Vol. 1997
 High Heat Flux Engineering II (1993), pages 66-82;
- Koichiro Kawano et al., <u>Micro Channel Heat Exhanger for Cooling Electrical</u>
 <u>Equipment</u>, HTD-Vol. 361-3/PID-Vol. 3, Proceeding of the ASME Heat
 Transfer Division Volume 3, ASME 1998, pages173-188;
- Chad Harris et al., <u>Design and Fabrication of a Cross Flow Micro Heat</u>
 <u>Exchanger</u>, December 2000, Journal of Microelectromechanical Systems,
 Vol. 9, No. 4, pages 502-508;

- George M. Harpole et al., <u>MICRO-CHANNEL HEAT EXCHANGER</u>
 <u>OPTIMIZATION</u>, 1991, Seventh IEEE SEMI-THERM Symposium, pages59-63;
- Pei-Xue Jiang et al., <u>Thermal-hydraulic performance of small scale micro-channel and prous-media heat-exchangers</u>, 2001, International Journal of Heat and Mass Transfer 44 (2001), pages 1039-1051;
- X.N. Jiang et al., <u>Laminar Flow Through Microchannels Used for Microscale Cooling Systems</u>, 1997, IEEE/CPMT Electronic Packaging Technology Conference, pages 119-122, Singapore;
- David Bazeley Tuckerman, <u>Heat-Transfer Microstructures for Integrated</u>
 <u>Circuits</u>, February 1984, pages ii-xix, pages 1-141;
- M Esashi, <u>Silicon micromachining for integrated microsystems</u>, 1996, Vacuum/volume 47/numbers 6-8/pages 469-474;
- T.S. Raviguruajan et al., <u>Effects of Heat Flux on Two-Phase Flow</u>
 <u>characteristics of Refrigerant Flows in a Micro-Channel Heat Exchanger</u>,

 HTD-Vol. 329, National Heat Transfer Conference, Volume 7, ASME 1996,
 pages 167-178;
- T.S. Ravigruruajan et al., <u>Single-Phase Flow Thermal Performance</u>
 <u>Characteristics of a Parallel Micro-Channel Heat Exchanger</u>, 1996, HTD-Vol.

 329, National Heat Transfer Conference, Volume 7, ASME 1996, pages 157-166;
- T.S. Ravigururajan et al., <u>Liquid Flow Characteristics in a Diamond-Pattern</u>

 <u>Micro-Heat-Exchanger</u>, DSC-Vol. 59 Microelectromechanical Systems

 (IMEMS), ASME 1996, pages 159-166;
- T.S. Raviguruajan, <u>Impact of Channel Geometry on Two-Phase Flow Heat</u>
 <u>Transfer Characteristics of Refrigerants in Microchannel Heat Exchangers</u>,

 May 1998, Journal of Heat Transfer, Vol. 120, pages 485-491;
- J. Pfahler et al., <u>Liquid Transport in Micron and Submicron Channels</u>, March 1990, Sensors and Actuators, A21-A23 (1990), pages 431-434;
- Kenneth Pettigrew et al., <u>Performance of a MEMS based Micro Capillary</u>
 <u>Pumped Loop for Chip-Level Temperature Control</u>, 2001, The 14th IEEE
 International Conference on Micro Electro Mechanical Systems, pages 427-430;

- C. Perret et al., <u>Microchannel integrated heat sinks in silicon technology</u>, October 12-15, 1998, The 1998 IEEE Industry Applications Conference, pages 1051-1055;
- X.F. Peng et al., <u>Convective heat transfer and flow friction for water flow in microchannel structures</u>, 1996, Int. J. Heat Mass Transfer, Vol. 39, No. 12, pages 2599-2608, printed in Great Britain;
- X.F. Peng et al., <u>Experimental investigation of heat transfer in flat plates with rectangular microchannels</u>, 1994, Int. J. Heat Mass Transfer, Vol. 38, No. 1, pages 127-137, printed in Great Britain;
- X.F. Peng et al., <u>Cooling Characteristics with Microchanneled Structures</u>, 1994, Enhanced Heat Transfer, Vol. 1, No. 4, pages 315-326, printed in the United States of America;
- Yoichi Murakami et al., <u>Parametric Optimization of Multichananneled Heat Sinks for VLSI Chip Cooling</u>, March 2002, IEEE Transaction on Components and Packaging Technologies, Vol. 24, No. 1, pages 2-9;
- D. Mundinger et al., <u>High average power 2-D laser diode arrays or silicon</u> microchannel coolers, CLEO '89/Friday Morning/404;
- L.J. Missaggia et al., <u>Microchannel Heat Sinks for Two-Dimensional High-Power-Density Diode Laser Arrays</u>, 1989, IEEE Journal of Quantum Electronics, Vol. 25, No. 9, September 1989, pages 1989-1992;
- M.J. Marongiu et al., <u>Enhancement of Multichip Modules (MCMs) Cooling</u>
 <u>by Incorporating MicroHeatPipes and Other High Thermal Conductivity</u>
 <u>Materials into Microchannel Heat Sinks</u>, 1998, Electronic Components and
 Technology Conference, pages 45-50;
- C.R. Friedrich et al., <u>Micro heat exchangers fabricated by diamond</u>
 <u>machining</u>, January 1994, Precision Engineering, Vol. 16, No. 1, pages56-59;
- Mali Mahalingam, <u>Thermal Management in Semiconductor Device</u>
 <u>Packaging</u>, 1985, Proceedings of the IEEE, Vol. 73, No. 9, September 1985, pages 1396-1404;
- T.M. Adams et al., <u>An experimental investigation of single-phase forced</u> convection in microchannels, 1997, Int. J. Heat Mass Transfer, Vol. 41, Nos. 6-7, pages 851-857, Printed in Great Britain;

- T.M. Adams et al., <u>Applicability of traditional turbulent single-phase forced</u> convection correlations to non-circular micrhchannels, 1999, Int. J. Heat and Transfer 42 (1999) pages 4411-4415;
- Bassam Badran et al., <u>Experimental Results for Low-Temperature Silicon</u>
 <u>Micromachined Micro Heat Pipe Arrays Using Water and Methanol as</u>

 <u>Working Fluids</u>, May 31, 1997, Experimental Heat Transfer, 10: pages 253-272;
- D. Jed Harrison et al., <u>Electroosmotic Pumping Within A Chemical Sensor</u>
 <u>System Integrated on Silicon</u>, Session C9 Chemical Sensors and Systems for Liquids, June 26, 1991, pages 792-795;
- Kurt Seller et al., Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip, 1994, Analytical Chemistry, Vol. 66, No. 20, October 15, 1994, pages 3485-3491;
- Philip H. Paul et al., <u>Electrokinetic Generation of High Pressures Using</u>
 <u>Porous Microstructures</u>, 1998, Micro-Total Analysis Systems, pages 49-52;
- Gh. Mohiuddin Mala et al., Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects, 1997,
 Int. J. Heat and Fluid Flow, Vol. 18, No. 5, pages489-496;
- W.E. Morf et al., <u>Partial electroosmotic pumping in complex capillary systems</u>

 <u>Part 1: Principles and general theoretical approach</u>, October 16, 2000, Sensors and Actuators B 72 (2001), pages 266-272;
- M. Esashi, <u>Silicon micromachining and micromachines</u>, September 1, 1993,
 Wear, Vol. 168, No. 1-2, (1993), pages 181-187;
- Stephanus Buttgenbach et al., <u>Microflow devices for miniaturized chemical</u> <u>analysis systems</u>, November 4-5, 1998, SPIE-Chemical Microsensors and Applications, Vol. 3539, pages 51-61;
- Sarah Arunlanandam et al., <u>Liquid transport in rectangular microchannels by</u> <u>electroosmotic pumping</u>, 2000, Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 161 (2000), pages 89-102;
- Linan Jiang et al., <u>Closed-Loop Electroosmotic Microchannel Cooling System</u> for VLSI Circuits, Mechanical Engineering Dept. Stanford University, pages 1-27;

- Susan L. R. Barker et al., <u>Fabrication</u>, <u>Derivatization and Applications of</u>
 <u>Plastic Microfluidic Devices</u>, <u>Proceedings of SPIE</u>, Vol. 4205. November 5-8,
 2000, pages 112-118;
- Timothy E. McKnight et al., <u>Electroosmotically Induced Hydraulic Pumping</u> with Integrated Electrodes on Microfluidic Devices, 2001, Anal. Chem., Vol. 73, pages 4045-4049;
- Chris Bourne, <u>Cool Chips plc RECEIVES NANOTECH</u>
 MANUFACTURING PATENT, July 31, 2002, pages 1-2;
- Frank Wagner et al., <u>Electroosmotic Flow Control in Micro Channels</u>
 <u>Produced by Scanning Excimer Laser Ablation</u>, 2000, Proceedings of SPIE
 Vol. 4088, June 14-16, 2000, pages 337-340;
- H. A. Goodman, <u>Data Processor Cooling With Connection To Maintain Flow</u>
 <u>Through Standby Pump</u>, December 1983, IBM Technical Disclosure Bulletin,
 Vol. 26, No. 7A, page 3325;
- <u>Electroerosion Micropump</u>, May 1990, IBM Technical Disclosure Bulletin, Vol. 32, No. 12, pages 342-343;
- Shulin Zeng et al., <u>Fabrication and Characterization of Electrokinetic Micro</u>

 <u>Pumps</u>, 2000 Inter Society Conference on Thermal Phenomena, pages 31-35;
- A. Manz et al., <u>Integrated Electoosmotic Pumps and Flow Manifolds for Total Chemical Analysis System</u>, 1991, Inter. Conf. on Solid-State Sensors and Actuators, pages 939-941;
- O. T. Guenat et al., <u>Partial electroosmotic pumping in complex capillary</u>
 <u>systems Part: 2 Fabrication and application of a micro total analysis system</u>
 <u>suited for continuous volumetric nanotitrations</u>, October 16, 2000, Sensors and Actuators B 72 (2001) pages 273-282;
- J. G. Sunderland, <u>Electrokinetic dewatering and thickening</u>. <u>I. Introduction</u>
 <u>and historical review of electrokinetic applications</u>, September 1987, Journal of Applied Electrochemistry Vol. 17, No. 5, pages 889-898;
- J. C. Rife et al., <u>Acousto- and electroosmotic microfluidic controllers</u>, 1998,
 Microfluidic Devices and Systems, Vol. 3515, pages 125-135;
- Purnendu K Dasgupta et al., <u>Electroosmosis: A Reliable Fluid Propulsion</u> <u>System for Flow Injection Analysis</u>, 1994, Anal. Chem., Vol. 66, No. 11, pages 1792-1798;

- Ray Beach et al., <u>Modular Microchannel Cooled Heatsinks for High Average</u>

 <u>Power Laser Diode Arrays</u>, April 1992, IEEE Journal of Quantum Electronics,

 Vol. 28, No. 4, pages 966-976;
- Roy W. Knight et al., <u>Optimal Thermal Design of Air cooled Forced</u>
 <u>Convection finned Heat Sinks Experimental Verification</u>, October 1992,

 IEEE Transactions on Components, Hybrids, and Manufacturing Technology,
 Vol. 15, No. 5 pages 754-760;
- Y. Zhuang et al., Experimental study on local heat transfer with liquid impingement flow in two-dimensional micro-channels, 1997, Int. J. Heat Mass Transfer, Vol. 40, No. 17, pages 4055-4059;
- D. Yu et al., <u>An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtube</u>, 1995, ASME / JSME Thermal Engineering Conference, Vol. 1, pages 523-530;
- Xiaoqing Yin et al., <u>Micro Heat Exchangers Consisting of Pin Arrays</u>, 1997,
 Journal of Electronic Packaging March 1997, Vol. 119, pages51-57;
- X. Yin et al., <u>Uniform Channel Micro Heat Exchangers</u>, 1997, Journal of Electronic Packaging June 1997, Vol. 119, No. 2, pages 89-94;
- Chun Yang et al., <u>Modeling forced liquid convection in rectangular</u> microchannels with electrokinetic effect, 1998, International Journal of Heat and Mass Transfer 41 (1998), pages 4229-4249;
- Arel Weisberg et al., <u>Analysis of microchannels for integrated cooling</u>, 1992, Int. J. Heat Mass Transfer, Vol. 35, No. 10, pages 2465-2473;
- Roger S. Stanley et al., <u>Two-Phase Flow in Microchannels</u>, 1997, DSE-Vol.
 62/HTD-Vol. 354, MEMS, pages 143-152;
- B. X. Wang et al., <u>Experimental investigation on liquid forced-convection</u>
 <u>heat transfer through microchannels</u>, 1994, Int. J. Heat Mass Transfer, Vol. 37

 Suppl. 1, pages 73-82;
- Kambiz Vafai et al., <u>Analysis of two-layered micro-channel heat sink concept in electronic cooling</u>, 1999, Int. J. Heat Mass Transfer, 42 (1999), pages 2287-2297;
- Gokturk Tune et al., <u>Heat transfer in rectangular microchannels</u>, 2002, Int. J. Heat Mass Transfer, 45 (2002), pages 765-773;

- D. B. Tuckerman et al., <u>High-Performance Heat Sinking for VLSI</u>, 1981, IEEE Electron Device Letters, Vol. EDL-2, No. 5, pages 126-129;
- Bengt Sunden et al., <u>An Overview of Fabrication Methods and Fluid Flow and</u>
 <u>Heat Transfer Characteristics of Micro Channels</u>, pages 3-23;
- David S. Shen et al., <u>Micro Heat Spreader Enhance Heat Transfer in MCMs</u>,
 1995, IEEE Multi-Chip Module Conference, pages 189-194;
- S. Sasaki et al., <u>Optimal Structure for Microgrooved Cooling Fin for High-Power LSI Devices</u>, Electronic Letters, December 4, 1986, Vol 22, No. 25;
- Vijay K. Samalam, <u>Convective Heat Transfer in Microchannels</u>, September 1989, Journal of Electronic Materials, Vol. 18, No. 5, pages 611-617;
- Sanjay K. Roy et al., <u>A Very High Heat Flux Microchannel Heat Exchanger for Cooling of Semiconductor Laser Diode Arrays</u>, 1996, IEEE Transactions on components, packaging, and manufacturing technology-part B, Vol. 19, No. 2, pages 444-451;
- Charlotte Gillot et al., <u>Integrated Single and Two-Phase Micro Heat Sinks</u>
 <u>Under IGBT Chips</u>, IEEE Transactions on Components and Packaging
 Technology, Vol. 22 No. 3, September 1999, pages 384-389;
- X.F. Peng et al., "Enhancing the Critical Heat Flux Using Microchanneled Surfaces", Enhanced Heat Transfer, 1998, Vol. 5 pp. 165-176;
- H. Krumm "Chip Cooling", IBM Technical Disclosure Bulletin, Vol. 20, No.
 7, December 1977, pg. 2728;
- Jae-Mo Koo et al., "Modeling of Two-Phase Microchannel Heat Sinks for VLSI Chips", Mech. Eng. Depart. of Stanford University, pp. 422-426.

Attorney Docket No.: <u>COOL-01301</u>

This Information Disclosure Statement under 37 C.F.R. §§ 1.56 and 1.97 is not to be construed as a representation that a search has been made, that additional information material to the examination of this application does not exist, or that anyone or more of these citations constitutes prior art.

Respectfully submitted,

HAVERSTOCK & OWENS LLP

Dated: 4-29-04

Thomas B. Haverstock Reg. No.: 32,571

Attorneys for Applicants

CERTIFICATE OF MAILING (37 CFR§ 1.8(a))

I hereby certify that this paper (along with any referred to as being attached or enclosed) is being deposited with the U.S. Postal Service on the date shown below with sufficient postage as first class mail in an envelope addressed to the: Commissioner for Patents, P.O. Box 1450 Alexandria, VA 22313-1450

Date: 4/29/04 By:

FORM PTO-1449 (Modified)

EXAMINER:

MAY 0 3 2004

OIFE

U.S. Department of Commerce Patent and Trademark Office

Attorney Docket No.: COOL-01301

Applicants: Thomas W. Kenny et al.

Serial No.: 10/680,584

MAY 0 3 2004
U.S. Department of Corpet Patent and Trademark (U.S. Department of Corpet Patent and U.S. Department of Corpet Patent and U.S.

Filing Date: October 6, 2003

Group Art Unit: 3753

(37 CFR § 1.98(b))	PADEMAR	Filing Date: October 6, 2003
		FOREIGN PATENTS OR PUBLISHED FOREIGN PATENT APPLICATIONS

				OR PUBLISHED FOREIGN PATENT APPLICA			Trans	lation
		Document Number	Publication Date	Country / Patent Office	Class	Subclass	Yes	No
	AA	97212126.9	03/04/97	CN	BOID	61/42		х
	AB	2000-277540	10/06/00	JP	H01L	21/50	<u></u>	<u> x</u>
		OTHER	DOCUMENTS (Inclu	uding Author, Title, Date, Relevant Pages, Place of	of Publication)	·		
	AC	Stephen C. Jacobson 2059-2063.	n et al., " Fused Quartz	z Substrates for Microchip Electrophoresis", Anal	ytical Chemistry	y, Vo. 67, No. 13	, July 1, 199)5, pag
	AD	Kendra V. Sharp et	al., "Liquid Flows in M	Microchannels", 2002, Vol. 6, pages 6-1 to 6-38.				
	AE	Shuchi Shoji et al.,	" Microflow devices a	nd systems", J. Microcech. Microeng. 4 (1994), p	ages 157-171, p	rinted in the U.K		-
*	AF	Angela Rasmussen Microelectromechan	et al., "Fabrication Tec nical, Vo. 10, No. 2, Ju	chniques to Realize CMOS-Compatible Microflui une 2001, pages 286-297.	dic Microchanne	els", Journal of		
	AG	J. H. Wang et al., "I Systems, pages 331	Thermal-Hydraulic Ch -339.	aracteristic of Micro Heat Exchangers", 1991, DS	SC-Vol. 32, Micr	omechanical Ser	sors, Actua	tors, a
	АН	Gad Hetsroni et al., Transactions on Co	"Nonuniform Temper mponents and Packagi	ature Distribution in Electronic Devices Cooled b	y Flow in Paralle ges 16-23.	el Microchannels	", IEEE ————	
	AI	X. F. Peng et al., "F. Journal, Vol. 7, No.	leat Transfer Character 4, October-December	ristics of Water Flowing through Microchannels" 1994, pages 265-283.	, Experimental H	leat Transfer An	Internationa	ıl
	AJ	Linan Jiang et al., " March 2001, pages	Forced Convection Bo 80-87.	oiling in a Microchannel Heat Sink", Journal of M	icroelectromech	anical Systems,	Vol. 10, No.	1,
	AK	Muhammad M. Rah Substrate", 1993, E	nman et al., "Experime EP-Vol. 4-2, Advance	ental Measurements of Fluid Flow and Heat Trans s in Electronic Packages, pages 685-692.	fer in Microchar	nel Cooling Pas	sages in a C	hip
	AL	X. F. Peng et al., "F Vol. 36, NO. 14, pag	forced convection and ges 3421-3427.	flow boiling heat transfer for liquid flowing throu	gh Microchanne	ls", 1993, Int. J.	Heat Mass	Trans:
	AM	Lung-Jieh Yang et a Microfluidic Device	al., "A Micro Fluidic S es and Systems II, Vol.	system of Micro Channels with On-Site Sensors b. 3877, pages 267-272.	y Silicon Bulk M	ficromaching", S	September 1	999,
	AN	G. Mohiuddin Mala printed in Great Bri	et al., "Heat transfer a	and fluid flow in microchannels", 1997, Int. J. Ma	ass transfer, Vol.	40, No. 13, page	es 3079-308	8,
	AO	J. M. Cuta et al., "F 2640, 1995, pages 1	abrication and Testing	g of Micro-Channel Heat Exchangers", SPIE Micro	olithography and	Metrology in M	licromachin	ıg, Vo
	AP	Linan Jiang et al., " Conference on Micro	A Micro-Channel Hea ro Electro Mechanical	t Sink with Integrated Temperature Sensors for Pl Systems, pages 159-164.	hase Transition S	Study", 1999, 12	h IEEE Inter	matio
	AQ	Linan Jiang et al., " pages 422-428, prin	Fabrication and characted in the U.K.	cterization of a microsystem for a micro-scale hea	t transfer study"	, J. Micromech.	Microeng. 9	(199
	AR	M. B. Bowers et al. Transfer, Vol. 37, N	, "High flux boiling in lo. 2, pages 321-332.	low flow rate, low pressure drop mini-channel ar	d micro-channel	heat sinks", 199	94, Int. J. He	eat Ma
	AS	Yongendra Joshi, "	Heat out of small pack	ages", December 2001, Mechanical Engineer, pa	ges 56-58.			
	AT	A. Rostami et al., "	Liquid Flow and Heat	Transfer in Microchannels: a Review", 2000, Hea	at and Technolog	y, Vol. 18, No. 2	2, pages 59-	68.
	AU	Lian Zhang et al., " Journal of Microele	Measurements and Mo etromechanical Syster	odeling of Two-Phase Flow in Microchannels with ns, Vol.11, No. 1, February 2002, pages 12-19.	n Nearly Constar	nt Heat Flux Bou	ndary Cond	itions
	AV	Muhammad Mustai 4, May 2000, pages	fizur Rahman, "Measu 495-506.	rements of Heat Transfer in Microchannel Heat S	inks", Int. Comr	n. Heat Mass Tra	ansfer, Vol.	27, N
	AW	Issam Mudawar et a Electronic Packagir	al., "Enhancement of C ng, September 1990, V	Critical Heat Flux from High Power Microelectror ol. 112, pages 241-248.	nic Heat Sources	in a Flow Chanr	el", Journal	of
-	AX	Nelson Kuan, "Exp Conference, Vol. 9,	erimental Evaluation of pages 131-136.	of Micro Heat Exchangers Fabricated in Silicon",	1996, HTD-Vol	. 331, National F	leat Transfe	r
	AY	E. W. Kreutz et al., 790.	"Simulation of micro-	-channel heat sinks for optoelectronic microsyster	ns", Microelectro	onics Journal 31	(2000) page:	s 787·
	AZ	J. C. Y. Koh et al.,	"Heat Transfer of Mic	rostructure for Integrated Circuits", 1986, Int. Co	mm. Heat Mass	Transfer, Vol. 13	, pages 89-	98.
	BA	Snezana Konecni e	t al., "Convection Coo	ling of Microelectronic Chips", 1992, InterSociet	y Conference on	Thermal Phenor	nena, pages	138-1

Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Sheet 2 of 7

Serial No.: 10/680,584 FORM PTO-1449 U.S. Department of Commerce Attorney Docket No.: COOL-01301 Patent and Trademark Office (Modified) INFORMATION DISCLOSURE STATEMENT BY APPLICANT Applicants: Thomas W. Kenny et al. (Use Several Sheets If Necessary) Group Art Unit: 3753 Filing Date: October 6, 2003 (37 CFR § 1.98(b)) OTHER DOCUMENTS (Including Author, Title, Date, Relevant Pages, Place of Publication) Michael B. Kleiner et al., "High Performance Forced Air Cooling Scheme Employing Microchannel Heat Exchangers", 1995, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, No. 4, pages 795-804. BB Jerry K. Keska Ph. D. et al., "An Experimental Study on an Enhanced Microchannel Heat Sink for Microelectronics Applications", EEP-Vol. 26-2, Advances in Electronic Packaging, 1999, Vol. 2, pages 1235-1259. BC Shung-Wen Kang et al., "The Performance Test and Analysis of Silicon-Based Microchannel Heat Sink", July 1999, Terahertz and Gigahertz Photonics, Vol. 3795, pages 259-270. BD Joseph C. Tramontana, "Semiconductor Laser Body Heat Sink", Xerox Disclosure Journal, Vol. 10, No. 6, November/December 1985, pages 379-381. BE Sarah Arulanandam et al., "Liquid transport in rectangular microchannels by electroosmotic pumping", Colloid and Surfaces A: Physicochemical and Engineering Aspects 161 (2000), pages 89-102. BF Jeffery D. Barner et al., "Thermal Ink Jet Print Head Carriage with Integral Liquid Cooling Capabilities", Xerox Disclosure Journal-Vol. 21, No. 1, January/February 1996, pages 33-34. BG "Autonomous displacement of a solution in a microchannel by another solution", Research Disclosure, June 2001, pages 1046-1047. BH John M. Waldvogel, "Aluminum Silicon Carbide Phase Change Heat Spreader", Motorola, June 1999, Technical Developments, pages 226-230. ΒI James P. Slupe et al., "An idea for maintaining a stable thermal environment for electronic devices", Research Disclosure, August 2001, page BJJohn M. Waldvogel, "A Heat Transfer Enhancement Method for Forced Convection Bonded-Fin Heatsinks", Motorola, December 1997, Technical Developments, pages 158-159. BK "Thin Heat Pipe for Cooling Components on Printed Circuit Boards", IBM Technical Disclosure Bulletin, Vol. 34, No. 7B, December 1991, BLpages 321-32 R. C. Chu et al., "Process for Nucleate Boiling Enhancement", IBM Technical Disclosure Bulletin, Vol. 18, No. 7, December 1975, page 2227. BMJ. Riseman, "Structure for Cooling by Nucleate Boiling", IBM Technical Disclosure Bulletin, Vol. 18, No. 11, April 1976, page 3700. BN "Integrally Grooved Semiconductor Chip and Heat Sink", October 1971, IBM Technical Disclosure Bulletin, Vol. 14, No. 5, page 1425. BO "Enhanced Cooling of Thermal Conduction Module", IBM Technical Disclosure Bulletin, Vol. 30, No. 5, October 1987, page 426. BP "Heat Exchanger Modules for Data Process with Valves Operated by Pressure form Cooling Water Pump", IBM Technical Disclosure Bulletin, Vol. 30, No. 5, October 1987, page 419. BQ Cold Plate for Thermal Conduction Module with Inlet for Cooling Water Near Highest Power Chips", IBM Technical Disclosure Bulletin, Vol. BR 30, No. 5, October 1987, page 413. "Circuit Module Cooling with Coaxial Bellow Providing Inlet, Outlet and Redundant Connections to Water-Cooled Element", IBM Technical Bulletin, Vol. 30, No. 5, October 1987, pages 345-347. BS "Piping System with Valves Controlled by Processor for Heating Circuit Modules in a Selected Temperature Profile for Sealing Integrity Test Under Temperature Stress", IBM Technical Disclosure Bulletin, Vol. 30, No. 5, October 1987, page 336. BT "Cooling System for Chip Carrier on Card", IBM Technical Disclosure Bulletin, Vol. 31, No. 4, September 1988, pages 39-40. BU "Chip Cooling Device", IBM Technical Disclosure Bulletin, Vol. 30, No. 9, February 1988, pages 435-436. BV W. E. Ahearn et al., "Silicon Heat Sink Method to Control Integrated Circuit Chip Operating Temperatures", IBM Technical Disclosure Bulletin, Vol. 21, No. 8, January 1979, pages 3378-3380. BW N. P. Bailey et al., "Cooling Device for Controlled Rectifier", IBM Technical Disclosure Bulletin, Vol. 21, No. 11, April 1979, pages 4609-BX W. J. Kleinfelder et al., "Liquid-Filled Bellows Heat Sink", IBM Technical Disclosure Bulletin, Vol. 21, No. 10, March 1979, pages 4125-4126. BY P. Chrisfield et al., "Distributed Power/Thermal Control", IBM Technical Disclosure Bulletin, Vol. 22, No. 3, August 1979, pages 1131-**B**Z. A. J. Arnold et al., "Heat Sink Design for Cooling Modules in a Forced Air Environment", IBM Technical Disclosure Bulletin, Vol. 22, No. 6, November 1979, pages 2297-2298. CA A. J. Arnold, "Structure for the Removal of Heat from an Integrated Circuit Module", IBM Technical Disclosure Bulletin, Vol. 22, No. 6, November 1979, pages 2294-2296. CB U. P. Hwang et al., "Cold Plate for Thermal Conduction Module with Improved Flow Pattern and Flexible Base", IBM Technical Disclosure Bulletin, Vol. 25, No. 9, February 1983, page 4517. CC K. C. Gallagher et al., "Cooling System for Data Processor with Flow Restricter in Secondary Loop to Limit Bypass-Cooling Water Flow", IBM Technical Disclosure Bulletin, Vol. 26, No. 5, October 1983, page 2658. CD Date Considered: Examiner: Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form **EXAMINER:**

with next communication to applicant.

Sheet 3 of 7

FORM PTO-1449 (Modified)		U.S. Department of Commerce Patent and Trademark Office	Attorney Docket No.: COOL-01301	Serial No.: 10/680,584		
•	RMATIO	N DISCLOSURE STATEMENT BY APPLICANT (Use Several Sheets If Necessary)	Applicants: Thomas W. Kenny et al.			
(37 CFR § 1.98	(b))	(333 333 333 333 333 333 333 333 333 33	Filing Date: October 6, 2003	Group Art Unit: 3753		
		OTHER DOCUMENTS (Including Author, Title, Da	ate, Relevant Pages, Place of Publication)			
	CE	R. C. Chu et al., "Silicon Heat Sink for Semiconductor Chip", IE	3M Technical Disclosure Bulletin, Vol. 24,	No. 11A, April 1982, page 5743.		
	CF	J. M. Eldridge et al., "Heat-Pipe Vapor Cooling Etched Silicon Spages 4118-4119.	Structure", IBM Technical Disclosure Bullet	in, Vol. 25, No. 8, January 1983,		
	CG	J. R. Skobern, "Thermoelectrically Cooled Module", IBM Techn	nical Disclose Bulletin, Vol. 27, No. 1A, Jun	e 1984, page 30.		
	СН	M. J. Brady et al., "Etched Silicon Integrated Circuit Heat Sink"	it Heat Sink", IBM Technical Disclosure Bulletin, Vol. 27, No. 1B, June 1984, page 627.			
	CI	H. D. Edmonds et al., "Heat Exchange Element for Semiconduct 1980, page 1057.	tor Device Cooling", IBM Technical Disclos	sure Bulletin, Vol. 23, No. 3, August		
	Cl	R. W. Noth, "Heat Transfer from Silicon Chips and Wafers", IB	M Technical Disclosure Bulletin, Vol.17, N	o. 12, May 1975, page 3544.		
	СК	"Forced Boiling Cooling System with Jet Enhancement for Critic October 1996, page 143.	tical Heat Flux Extension", IBM Technical	Disclosure Bulletin, Vol.39, No. 10,		
	CL	"Miniature Heat Exchanger for Corrosive Media", IBM Technic	al Disclosure Bulletin, Vol. 38, No. 01, Janu	uary 1995, pages 55-56.		
	СМ	"Self-Contained Active Heat Dissipation Device", IBM Technic	al Disclosure Bulletin Vol. 39, No. 04, Apri	1 1996, pages 115-116.		
	CN	C. J. Keller et al., "Jet Cooling Cup for Cooling Semiconductor pages 3575-3576.	Devices", IBM Technical Disclosure Bulleti	n, Vol. 20, No. 9, February 1978,		
	СО	B. J. Ronkese, "Centerless Ceramic Package with Directly Conn 1978, page 3577-3578.	ected Heat Sink", IBM Technical Disclosur	e Bulletin, Vol. 20, No. 9, February		
	СР	K. S. Sachar, "Liquid Jet Cooling of Integrated Circuit Chips",	Vol. 20, No. 9, February 1978, pages 3727-3	728.		
	CQ	A. H. Johnson, "Device Cooling", IBM Technical Disclosure Bu	ulletin, Vol. 20, No. 10, March 1978, pages	3919-3920.		
	CR	A. L. Pacuzzo et al., "Integrated Circuit Module Package Coolin pages 3898-3899.	g Structure", IBM Technical Disclosure Bu	lletin, Vol. 20, No. 10, March 1978,		
	CS	R. D. Durand et al., "Flexible Thermal Conductor for Electronic page 4343.	Module", IBM Technical Disclosure Bullet	in, Vol. 20, No. 11A, April 1978,		
	СТ	D. Balderes et al., "Liquid Cooling of a Multichip Module Pack 4336-4337.	kage", IBM Technical Disclosure Bulletin, V	/ol. 20, No. 11A, April 1978, pages		
	CU	J. A. Dorler et al., "Temperature Triggerable Fluid Coupling Sys 20, No. 11A, April 1978, pages 4386-4388.	ing System for cooling Semiconductor Dies", IBM Technical Disclosure Bulletin, Vol.			
	CV	V. W. Antonetti et al., "Integrated Module Heat Exchanger", IB	M Technical Disclosure Bulletin, Vol. 20, N	lo. 11A, April 1978, page 4498.		
	CW	P. Hwang et al., "Conduction Cooling Module", IBM Technical	Cooling Module", IBM Technical Disclosure Bulletin, Vol. 20, No. 11A, April 1978, pages 4334-4335.			
	СХ	A. J. Arnold, "Electronic Packaging Structure", IBM Technical	Disclosure Bulletin, Vol. 20, No. 11B, Apri	1 1978, pages 4820-4822.		
	CY	V. Y. Doo et al., "High Performance Package for Memory", IBN	M Technical Disclosure Bulletin, Vol. 21, No.	o. 2, July 1978, pages 585-586.		
	CZ	"Multi-Chip Package with Cooling by a Spreader Plate in Conta Providing Water Flow Within its Pins", IBM Technical Disclosu	act with a Chip having Cylindrical Holes Ma ure Bulletin, Vol. 31, No. 5, October 1988, p	ating with an Inverse Frame bages 141-142.		
	DA	J. Landrock et al., "Cooling System for Semiconductor Chips",	IBM Technical Disclosure Bulletin, Vol. 23	, No. 4, September 1980, page 1483.		
	DB	E. P. Damm, Jr., "Convection Cooling Apparatus", IBM Techni	cal Disclosure Bulletin, Vol. 20, No. 7, Dec	ember 1977, pages 2755-2756.		
	DC	"Circuit Package with Circulating Boiling Liquid and Local Hea Bulletin, Vol. 31, No. 12 May 1989, page 34.	at Exchanger to Limit Vapor in Coolant Out	let", IBM Technical Disclosure		
	DD	"Circuit Module Cooling with Multiple Pistons Contacting a He Disclosure Bulletin, Vol. 31, No. 12, May 1989, page 5-7.	eat Spreader/Electrical Buffer Plate in Conta	ct with Chip", IBM Technical		
	DE	"TCM-LIKE Circuit Module with Local Heat Sink Resting on C Attached to Local Heat Sink and Extending Above Bellows into pages 305-306.	Chip and Chip Separated From Coolant by Eo Region of Coolant Flow", IBM Technical I	Bellows with Pins and Deflector Plate Disclosure Bulletin, Vol. 31, No. 11,		
	DF	"Water-Cooled Circuit Module with Grooves Forming Water Pa 31, No. 12, May 1989, pages 49-50.	assages Near Heat-Producing Devices", IBM	I Technical Disclosure Bulletin, Vol.		
	DG	"Cold Plate for Thermal conduction Module with Only Peripher Thermal Resistances", IBM Technical Disclosure Bulletin, Vol.	ral Mounting bolts, Large Surface Area Fin 31, No. 12, May 1989, page 59.	Inserts and Reduced Water Flow and		
Examiner:			Date Considered:			
EXAMINER:	lni wi	itial citation considered. Draw line through citation if not in confe	ormance and not considered. Include copy of	f this form		

Sheet 4 of 7

U.S. Department of Commerce Patent and Trademark Office Serial No.: 10/680,584 FORM PTO-1449 Attorney Docket No.: COOL-01301 (Modified) Applicants: Thomas W. Kenny et al. INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use Several Sheets If Necessary) Group Art Unit: 3753 Filing Date: October 6, 2003 (37 CFR § 1.98(b)) OTHER DOCUMENTS (Including Author, Title, Date, Relevant Pages, Place of Publication) "Thermal Control Hardware for Accelerated Run-In Testing of Multi-Chip Modules", IBM Technical Disclosure Bulletin, Vol. 32, No. 5A, DH October 1989, page 129-130. "Means of Removing More Heat From a TCM (Or Other Liquid-Cooled Logic Package) By Reducing the Coolant Temperature", IBM Technical Disclosure Bulletin, Vol. 32 No. 5A, Oct 1989, pages 153-154. DI E. G. Loeffel et al., "Liquid Cooled Module with Compliant Membrane", IBM Technical Disclosure Bulletin, Vol. 20, No. 2, July 1977, pages DJ V. Y. Doo et al., "Method of Effective Cooling of a High Power Silicon Chip", IBM Technical Disclosure Bulletin, Vol. 20, No. 4, September 1977, page 1436-1437. DK V. Y. Doo et al., "Semiconductor Chip Cooling Package, IBM Technical Disclosure Bulletin, Vol. 20, No. 4, September 1977, pages 1440-DL "Heat Sink Fabrication Method", IBM Technical Disclosre Bulletin, Vol. 27, No. 10A, March 1985, page 5656-5657. DM "Thermal Conduction Module with Liquid Dielectric and Pistons with Surface Treatment for Enhanced Nucleate Boiling", IBM Technical Disclosure Bulletin, Vol. 27, No. 12, May 1985, page 6904. DN "Pin Fin Array Heat Pipe Apparatus", IBM Technical Disclosure Bulletin, Vol. 37, No. 09, September 1994, page 171. DO Youngcheol Joo et al., "Fabrication of Monolithic Microchannels for IC Chip Cooling", 1995, IEEE Micro Electro Mechanical Systems, pages 362-367. DP Jaisree Moorthy et al., Active control of electroosmotic flow in microchannels using light, January 26, 2001, Sensors and Actuators B 75, pages 223-229. DO Andreas Manz et al., Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems, September 16, 1994, J.Micromech. Microeng. 4 (1994), pages 257-265, printed in the U.K. DR E. B. Cummings et al., Irrotationality of uniform electroosmosis, September 1999, Part of the SPIE Conference on Microfluidic Devices and Systems II, SPIE Vol. 3877, pages 180-189 DS Stephen C. Jacobson et al., <u>Fused Quartz Substrates for Microchip Electrophoresis</u>, July 1, 1995, Analytical Chemistry, Vol. 67, No. 13, pages 2059-2063. DT Haim H. Bau, Optimization of conduits' shape in micro heat exchangers, December 10, 1997, International Journal of Heat and Mass Transfer 41 (1998), pages 2717-2723. DU V. K. Dwivedi et al., Fabrication of very smooth walls and bottoms of silicon microchannels for heat dissipation of semiconductor devices, January 25, 2000, Microelectronics Journal 31 (2000), pages 405-410. DV M. B. Bowers et al., Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sinks: Part 2-Flow Rate and Pressure Drop Constraints, December 1994, Journal of Electronic Packaging 116, pages 298-305. DWMeint J. de Boer et al., Micromachining of Buried Micro Channels in Silicon, March 2000, Journal of Microelectromechanical systems, Vol. 9, No. 1, pages 94-103. DXS.B. Choi et al., FLUID FLOW AND HEAT TRANSFER IN MICROTUBES, 1991, DSC-vol. 32, Micromechanical sensors, Actuators, and Systems, ASME 1991, pages 123-134. DY S. F. Choquette, M. Faghri et al., OPTIMUM DESIGN OF MICROCHANNEL HEAT SINKS, 1996, DSC-Vol. 59, Microelectromechanical Systems (MEMS), ASME 1996, pages 115-126. DZ David Copeland et al., MANIFOLD MICROCHANNEL HEAT SINKS: THEORY AND EXPERIMENT, 1995, EEP-Vol. 10-2, Advances in Electronic Packaging ASME 1995, pages 829-835. EA J. M. Cuta et al., FORCED CONVECTION HEAT TRANSFER IN PARALLEL CHANNEL ARRAY MICROCHANNEL HEAT EXCHANGER, 1996, PID-Vol. 27 HTD-Vol. 338, Advances in Energy efficiency, Heat/Mass Transfer Enhancement, ASME 1996, pages 17-23 EB K. Fushinobu et al., HEAT GENERATION AND TRANSPORT IN SUB-MICRON SEMICONDUCTOR DEVICES, 1993, HTD-Vol. 253, Heat Transfer on the Microscale, ASME 1993, pages 21-28. EC Charlotte Gillot et al., Integrated Micro Heat Sink for Power Multichip Module, September 3, 1999, IEEE Transactions on Industry Applications, Vol. 36. NO. 1. January/February 2000, pages 217-221 ED John Gooding, Microchannel heat exchangers - a review, SPIE Vol. 1997 High Heat Flux Engineering II (1993), pages 66-82. EE Koichiro Kawano et al., Micro Channel Heat Exhanger for Cooling Electrical Equipment, HTD-Vol. 361-3/PID-Vol. 3, Proceeding of the ASME Heat Transfer Division - Volume 3, ASME 1998, pages 173-188. EF Chad Harris et al., <u>Design and Fabrication of a Cross Flow Micro Heat Exchanger</u>, December 2000, Journal of Microelectromechanical Systems, Vol. 9, No. 4, pages 502-508. EG Date Considered: Examiner: Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form **EXAMINER:** with next communication to applicant.

Sheet 5 of 7

FORM PTO-1449 (Modified) U.S. Department of Commerce Patent and Trademark Office		Attorney Docket No.: COOL-01301	Serial No.: 10/680,584
,	TION DISCLOSURE STATEMENT BY APPLICANT (Use Several Sheets If Necessary)	Applicants: Thomas W. Kenny et al.	
(37 CFR § 1.98(b))	(Osc several offices if Necessary)	Filing Date: October 6, 2003	Group Art Unit: 3753
	OTHER DOCUMENTS (Including Author, Title, D	ate, Relevant Pages, Place of Publication)	
ЕН	George M. Harpole et al., MICRO-CHANNEL HEAT EXCHAN pages 59-63.	NGER OPTIMIZATION, 1991, Seventh IEE	E SEMI-THERM Symposium,
El	Pei-Xue Jiang et al., Thermal-hydraulic performance of small sc of Heat and Mass Transfer 44 (2001), pages 1039-1051.	ale micro-channel and prous-media heat-exc	hangers, 2001, International Journal
EJ	X.N. Jiang et al., <u>Laminar Flow Through Microchannels Used for</u> Technology Conference, pages 119-122, Singapore.	or Microscale Cooling Systems, 1997, IEEE	CPMT Electronic Packaging
EK	David Bazeley Tuckerman, Heat-Transfer Microstructures for In	ntegrated Circuits, February 1984, pages ii-x	ix, pages 1-141.
EL	M Esashi, Silicon micromachining for integrated microsystems,		
ЕМ	T.S. Raviguruajan et al., Effects of Heat Flux on Two-Phase Flo HTD-Vol. 329, National Heat Transfer Conference, Volume 7, 7	ow characteristics of Refrigerant Flows in a NASME 1996, pages 167-178.	Micro-Channel Heat Exchanger,
- EN	T.S. Ravigruruajan et al., Single-Phase Flow Thermal Performar Vol. 329, National Heat Transfer Conference, Volume 7, ASME	nce Characteristics of a Parallel Micro-Chan E 1996, pages 157-166	nel Heat Exchanger, 1996, HTD-
ЕО	T.S. Ravigururajan et al., Liquid Flow Characteristics in a Diam Systems (IMEMS), ASME 1996, pages 159-166	nond-Pattern Micro-Heat-Exchanger, DSC-V	ol. 59 Microelectromechanical
ЕР	T.S. Raviguruajan, Impact of Channel Geometry on Two-Phase Exchangers, May 1998, Journal of Heat Transfer, Vol. 120, page	Flow Heat Transfer Characteristics of Refriges 485-491	gerants in Microchannel Heat
EQ	J. Pfahler et al., Liquid Transport in Micron and Submicron Cha	annels, March 1990, Sensors and Actuators,	A21-A23 (1990), pages 431-434.
ER	Kenneth Pettigrew et al., Performance of a MEMS based Micro IEEE International Conference on Micro Electro Mechanical Sy	Capillary Pumped Loop for Chip-Level Ter stems, pages 427-430.	nperature Control, 2001, The 14 th
ES	C. Perret et al., Microchannel integrated heat sinks in silicon tec Conference, pages 1051-1055.	chnology, October 12-15, 1998, The 1998 IE	EE Industry Applications
ЕТ	X.F. Peng et al., Convective heat transfer and flow friction for w. No. 12, pages 2599-2608, printed in Great Britain.	vater flow in microchannel structures, 1996,	Int. J. Heat Mass Transfer, Vol. 39,
EU	X.F. Peng et al., Experimental investigation of heat transfer in fl 38, No. 1, pages 127-137, printed in Great Britain.	lat plates with rectangular microchannels, 19	994, Int. J. Heat Mass Transfer, Vol.
EV	X.F. Peng et al., Cooling Characteristics with Microchanneled Sin the United States of America.	Structures, 1994, Enhanced Heat Transfer, V	ol. 1, No. 4, pages 315-326, printed
EW	Yoichi Murakami et al., Parametric Optimization of Multichana Components and Packaging Technologies, Vol. 24, No. 1, page	anneled Heat Sinks for VLSI Chip Cooling, ls 2-9.	March 2002, IEEE Transaction on
EX	D. Mundinger et al., High average power 2-D laser diode arrays	or silicon microchannel coolers, CLEO '89/	Friday Morning/404.
EY	L.J. Missaggia et al., Microchannel Heat Sinks for Two-Dimens Electronics, Vol. 25, No. 9, September 1989, pages 1989-1992.	sional High-Power-Density Diode Laser Arra	ys, 1989, IEEE Journal of Quantum
EZ	M.J. Marongiu et al., Enhancement of Multichip Modules (MC) Conductivity Materials into Microchannel Heat Sinks, 1998, El	Ms) Cooling by Incorporating MicroHeatPip ectronic Components and Technology Confe	es and Other High Thermal erence, pages 45-50
FA	C.R. Friedrich et al., Micro heat exchangers fabricated by diame	ond machining, January 1994, Precision Eng	gineering, Vol. 16, No. 1, pages56-59
FB	Mali Mahalingam, Thermal Management in Semiconductor Depages 1396-1404.	vice Packaging, 1985, Proceedings of the IE	EE, Vol. 73, No. 9, September 1985,
FC	T.M. Adams et al., An experimental investigation of single-phase Nos. 6-7, pages 851-857, Printed in Great Britain.	se forced convection in microchannels, 1997	, Int. J. Heat Mass Transfer, Vol. 41,
FD	T.M. Adams et al., Applicability of traditional turbulent single- Heat and Transfer 42 (1999) pages 4411-4415.	phase forced convection correlations to non-	circular micrhchannels, 1999, Int. J.
FE	Bassam Badran et al., Experimental Results for Low-Temperaturas Working Fluids, May 31, 1997, Experimental Heat Transfer,	ure Silicon Micromachined Micro Heat Pipe 10: pages 253-272.	Arrays Using Water and Methanol
FF	D. Jed Harrison et al., Electroosmotic Pumping Within A Chem Systems for Liquids, June 26, 1991, pages 792-795.	nical Sensor System Integrated on Silicon, Se	ession C9 Chemical Sensors and
FG	Kurt Seller et al., Electroosmotic Pumping and Valveless Contro Analytical Chemistry, Vol. 66, No. 20, October 15, 1994, pages	ol of Fluid Flow within a Manifold of Capill 3485-3491.	aries on a Glass Chip, 1994,
FH	Philip H. Paul et al., Electrokinetic Generation of High Pressure 52.	es Using Porous Microstructures, 1998, Microstructures	ro-Total Analysis Systems, pages 49-
FI	Gh. Mohiuddin Mala et al., Flow characteristics of water through Int. J. Heat and Fluid Flow, Vol. 18, No. 5, pages 489-496	gh a microchannel between two parallel plate	es with electrokinetic effects, 1997,
Examiner:		Date Considered:	
EXAMINER:	Initial citation considered. Draw line through citation if not in confewith next communication to applicant.	ormance and not considered. Include copy o	f this form

Sheet 6 of 7

U.S. Department of Commerce Serial No.: 10/680,584 FORM PTO-1449 Attorney Docket No.: COOL-01301 (Modified) Patent and Trademark Office INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use Several Sheets If Necessary) Applicants: Thomas W. Kenny et al. Group Art Unit: 3753 Filing Date: October 6, 2003 (37 CFR § 1.98(b)) OTHER DOCUMENTS (Including Author, Title, Date, Relevant Pages, Place of Publication) W.E. Morf et al., Partial electroosmotic pumping in complex capillary systems Part 1: Principles and general theoretical approach, October 16, 2000, Sensors and Actuators B 72 (2001), pages 266-272. FJ M. Esashi, Silicon micromachining and micromachines, September 1, 1993, Wear, Vol. 168, No. 1-2, (1993), pages 181-187. FK Stephanus Buttgenbach et al., Microflow devices for miniaturized chemical analysis systems, November 4-5, 1998, SPIE-Chemical Microsensors and Applications, Vol. 3539, pages 51-61. FL. Sarah Arunlanandam et al., <u>Liquid transport in rectangular microchannels by electroosmotic pumping</u>, 2000, Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 161 (2000), pages 89-102. FM Linan Jiang et al., Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits, Mechanical Engineering Dept. Stanford University, pages 1-27. FN Susan L. R. Barker et al., <u>Fabrication, Derivatization and Applications of Plastic Microfluidic Devices</u>, Proceedings of SPIE, Vol. 4205. November 5-8, 2000, pages 112-118. FO Timothy E. McKnight et al., <u>Electroosmotically Induced Hydraulic Pumping with Integrated Electrodes on Microfluidic Devices</u>, 2001, Anal. Chem., Vol. 73, pages 4045-4049. FP Chris Bourne, Cool Chips plc RECEIVES NANOTECH MANUFACTURING PATENT, July 31, 2002, pages 1-2. FQ Frank Wagner et al., Electroosmotic Flow Control in Micro Channels Produced by Scanning Excimer Laser Ablation, 2000, Proceedings of SPIE Vol. 4088, June 14-16, 2000, pages 337-340. FR H. A. Goodman, <u>Data Processor Cooling With Connection To Maintain Flow Through Standby Pump</u>, December 1983, IBM Technical Disclosure Bulletin, Vol. 26, No. 7A, page 3325. FS Electroerosion Micropump, May 1990, IBM Technical Disclosure Bulletin, Vol. 32, No. 12, pages 342-343. FT Shulin Zeng et al., <u>Fabrication and Characterization of Electrokinetic Micro Pumps</u>, 2000 Inter Society Conference on Thermal Phenomena, pages 31-35. FU A. Manz et al., Integrated Electoosmotic Pumps and Flow Manifolds for Total Chemical Analysis System, 1991, Inter. Conf. on Solid-State Sensors and Actuators, pages 939-941. FV O. T. Guenat et al., Partial electroosmotic pumping in complex capillary systems Part: 2 Fabrication and application of a micro total analysis system suited for continuous volumetric nanotitrations, October 16, 2000, Sensors and Actuators B 72 (2001) pages 273-282. FW J. G. Sunderland, Electrokinetic dewatering and thickening. I. Introduction and historical review of electrokinetic applications, September 1987, Journal of Applied Electrochemistry Vol. 17, No. 5, pages 889-898. FX J. C. Rife et al., Acousto- and electroosmotic microfluidic controllers, 1998, Microfluidic Devices and Systems, Vol. 3515, pages 125-135. FY Purnendu K Dasgupta et al., Electroosmosis: A Reliable Fluid Propulsion System for Flow Injection Analysis, 1994, Anal. Chem., Vol. 66, No. 11, pages 1792-1798. FZ Ray Beach et al., Modular Microchannel Cooled Heatsinks for High Average Power Laser Diode Arrays, April 1992, IEEE Journal of Quantum Electronics, Vol. 28, No. 4, pages 966-976. GA Roy W. Knight et al., Optimal Thermal Design of Air cooled Forced Convection finned Heat Sinks - Experimental Verification, October 1992, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 5 pages 754-760. GB Y. Zhuang et al., Experimental study on local heat transfer with liquid impingement flow in two-dimensional micro-channels, 1997, Int. J. Heat Mass Transfer, Vol. 40, No. 17, pages 4055-4059. GC D. Yu et al., An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtube, 1995, ASME / JSME Thermal Engineering Conference, Vol. 1, pages 523-530. GD Xiaoqing Yin et al., Micro Heat Exchangers Consisting of Pin Arrays, 1997, Journal of Electronic Packaging March 1997, Vol. 119, pages 51-57. GE X. Yin et al., Uniform Channel Micro Heat Exchangers, 1997, Journal of Electronic Packaging June 1997, Vol. 119, No. 2, pages 89-94. GF Chun Yang et al., Modeling forced liquid convection in rectangular microchannels with electrokinetic effect, 1998, International Journal of Heat and Mass Transfer 41 (1998), pages 4229-4249. GG Arel Weisberg et al., Analysis of microchannels for integrated cooling, 1992, Int. J. Heat Mass Transfer, Vol. 35, No. 10, pages 2465-2473. GH Roger S. Stanley et al., Two-Phase Flow in Microchannels, 1997, DSE-Vol. 62/HTD-Vol. 354, MEMS, pages 143-152. GI B. X. Wang et al., Experimental investigation on liquid forced-convection heat transfer through microchannels, 1994, Int. J. Heat Mass Transfer, GJ Kambiz Vafai et al., Analysis of two-layered micro-channel heat sink concept in electronic cooling, 1999, Int. J. Heat Mass Transfer, 42 (1999), pages 2287-2297. GK Date Considered: Examiner: Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form **EXAMINER:** with next communication to applicant.

FORM PTO-14 (Modified)	449	U.S. Department of Commerce Patent and Trademark Office	Attorney Docket No.: COOL-01301	Serial No.: 10/680,584		
· ·	ORMATIC	ON DISCLOSURE STATEMENT BY APPLICANT (Use Several Sheets If Necessary)	Applicants: Thomas W. Kenny et al.			
(37 CFR § 1.9		(Ose obverar offices in Necessary)	Filing Date: October 6, 2003	Group Art Unit: 3753		
		OTHER DOCUMENTS (Including Author, Title, D	Date, Relevant Pages, Place of Publication)			
	GL	Gokturk Tune et al., Heat transfer in rectangular microchannels,	2002, Int. J. Heat Mass Transfer, 45 (2002)	, pages 765-773.		
	GM	D. B. Tuckerman et al., High-Performance Heat Sinking for VL	SI, 1981, IEEE Electron Device Letters, Vol	. EDL-2, No. 5, pages 126-129.		
	GN	Bengt Sunden et al., An Overview of Fabrication Methods and F	nd Fluid Flow and Heat Transfer Characteristics of Micro Channels, pages 3-23.			
	GO	David S. Shen et al., Micro Heat Spreader Enhance Heat Transfe	er in MCMs, 1995, IEEE Multi-Chip Modu	le Conference, pages 189-194.		
	GP	No. 25.	Fin for High-Power LSI Devices, Electronic Letters, December 4, 1986, Vol 22,			
	GQ	Vijay K. Samalam, Convective Heat Transfer in Microchannels, 617.	els, September 1989, Journal of Electronic Materials, Vol. 18, No. 5, pages 611-			
	GR	Sanjay K. Roy et al., A Very High Heat Flux Microchannel Heat Transactions on components, packaging, and manufacturing tec	t Exchanger for Cooling of Semiconductor I hnology-part B, Vol. 19, No. 2, pages 444-4	aser Diode Arrays, 1996, IEEE 51.		
	GS	Charlotte Gillot et al., Integrated Single and Two-Phase Micro F Packaging Technology, Vol. 22 No. 3, September 1999, pages 3	leat Sinks Under IGBT Chips, IEEE Transac 84-389.	ctions on Components and		
	GT	X.F. Peng et al., "Enhancing the Critical Heat Flux Using Micro	channeled Surfaces", Enhanced Heat Trans	fer, 1998, Vol. 5 pp. 165-176.		
	GU	H. Krumm "Chip Cooling", IBM Technical Disclosure Bulletin,	Vol. 20, No. 7, December 1977, pg. 2728.			
	GV	Jae-Mo Koo et al., "Modeling of Two-Phase Microchannel Heat 426.	Sinks for VLSI Chips", Mech. Eng. Depart	. of Stanford University, pp. 422-		
	GW		- 			
	GX		<u> </u>			
	GY		<u> </u>	And the second s		
	GZ			A		
	НА					
	НВ					
	НС					
	HD					
	не					
	HF					
	HG					
	НН					
	ні					
	HJ		·			
	нк					
	HL					
	НМ					
	HN					
	но					
	НР					
	НQ	<u> </u>				
	HR					
	HS					
	нт	<u> </u>	<u></u>			
Examiner:			Date Considered:			
EXAMINER:	Ini wi	itial citation considered. Draw line through citation if not in confo th next communication to applicant.	ormance and not considered. Include copy o	f this form		

UNITED STATES PATENT AND TRADEMARK OFFICE **ACKNOWLEDGEMENT RECEIPT**

Electronic Version 1.1 Stylesheet Version v1.1.1

Title of Invention

METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID DELIVERY FOR COOLING A **HEAT PRODUCING DEVICE**

Submission Type:

Information Disclosure Statement

Application Number:

10/680584

10/680584

EFS ID:

59961

Server Response:

Confirmation Code	Message		
IIICV/D1	Submission was successfully submitted - Even if Informational or Warning Messages appear below, please do not resubmit this application		
ICON1	5276		
ISYSS	Filename= N/A BusinessRule= Validation System/Function Call Information. #Supporting Msg:Server unable to validate the Confirmaton/Application numbers at this time. They will be checked by PTO personnel later.		

First Named Applicant:

Thomas Kenny

Attorney Docket Number:

Timestamp:

2004-04-28 13:27:30 EDT

From:

us

File Listing:

Doc. Name	File Name	Size (Bytes)
us-ids	COOL01301A-usidst.xml	9191
us-ids	us-ids.dtd	7763

 $file://G: \verb|\|IDS-E-Filed| XXFILES| COOL| COOL_jr_1| COOL01301 \% 20e-Filed \% 2004-28-04| COOL01301A| COOL01301A-... 4/28/2004 \% 2004-28-04| COOL01301A| COOL01301A-... 4/28/2004| COOL01301A| COOL01301A-... 4/28/2004| COOL01301A| COOL01301A-... 4/28/2004| COOL01301A| COOL01301A-... 4/28/2004| COOL01301A| COOL01301A| COOL01301A-... 4/28/2004| COOL01301A| COOL01301A$

Acknowledgement Receipt

Page 2 of 2

us – ids	us-ids.xsl	12026
package-data	COOL01301A-pkda.xml	1803
package-data	package-data.dtd	27025
package-data	us-package-data.xsl	19263
	Total files size	77071

Message Digest:

31f5a42bee45d96a08aa3a096c3f2df0f28334d9

Digital Certificate Holder cn=Thomas B. Haverstock,ou=Registered Attorneys,ou=Patent

Name:

and Trademark Office,ou=Department of Commerce,o=U.S.

Government,c=US

Transmital Page 1 of 2

Page 2 of 2

COOL01301A-usidst.xml

Documents being submitted

us-ids

Transmittal

TRANSMITTAL

Electronic Version v1.1

Stylesheet Version v1.1.0

Title of METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID Invention DELIVERY FOR COOLING A HEAT PRODUCING DEVICE

Application Number: 10/680584 *10/680584*

ate: 2003-10-06

First Named Applicant: Thomas W. Kenny

Confirmation Number: 5276

Attorney Docket Number:

I hereby certify that the use of this system is for OFFICIAL correspondence between patent applicants or their representatives and the USPTO. Fraudulent or other use besides the filing of official correspondence by authorized parties is strictly prohibited, and subject to a fine and/or imprisonment under applicable law.

I, the undersigned, certify that I have viewed a display of document(s) being electronically submitted to the United States Patent and Trademark Office, using either the USPTO provided style sheet or software, and that this is the document(s) I intend for initiation or further prosecution of a patent application noted in the submission. This document(s) will become part of the official electronic record at the USPTO.

Submitted by:	Elec. Sign.	Sign. Capacity
Thomas B. Haverstock	/tph/	
Registered Number: 32571		Attorney

file://G:\!IDS-E-Filed\XXFILES\COOL\COOL_jr_1\COOL01301%20e-Filed%2004-... 4/28/2004

Comments
Comments

file://G:\!IDS-E-Filed\XXFILES\COOL\COOL_jr_1\COOL01301%20e-Filed%2004-... 4/28/2004

10/680584

Electronic Version v18 Stylesheet Version v18.0

Invention

METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID DELIVERY FOR COOLING A HEAT PRODUCING

Application Number:

10/680584

Confirmation Number: 5276 First Named Applicant: Thomas Kenny

Attorney Docket Number:

Search string:

(3654988 or 3817321 or 3823572 or 3923426 or 3929154 or 4109707 or 4138996 or 4194559 or 4248295 or 4312012 or 4450472 or 4485429 or 4516632 or 4540115 or 4561040 or 4567505 or 4573067 or 4664181 or 4758926 or 4866570 or 4868712 or 4894709 or 4896719 or 4908112 or 4938280

or 5009760 or 5016138 or 5057908 or 5058627 or 5070040 or 5083194 or 5088005 or 5096388 or 5099311 or 5099910 or 5125451 or 5131233 or 5203401 or 5218515 or 5219278 or \$232047 or 5239200 or 5263251 or 5274920 or 5308429 or 5309319 or 5317805 or \$325265 or 5336062 or 5380956).pn.

US Patent Documents

Note: Applicant is not required to submit a paper copy of cited US Patent Documents

Ti.	nit Cite.No.	Patent No.	Date	Patentee	Kind
ſ	1	3654988	1972-04-11	Clayton, III	
ľ	2	3817321	1974-06-18	von Cube et al.	
١Ē	3	3823572	1974-07-16	Cochran, Jr.	
	4	3923426	1975-12-02	Theeuwes]
	5	3929154	1975-12-30	Goodwin]
	6	4109707	1978-08-29	Wilson et al.]
IJĦ		1		•	7

file://G:\!IDS-E-Filed\XXFILES\COOL\COOL_jr_1\COOL01301%20e-Filed%2004-... 4/28/2004

Information Disclosure Statement

Page 3 of 3

Class Subclass

ī	42	5239200	1993-08-24	Messina et al.
	43	5263251	1993-11-23	Matthews
	44	5274920	1994-01-04	Mathews
司	45	5308429	1994-05-03	Bradley
ī	46	5309319	1994-05-03	Messina
٦	47	5317805	1994-06-07	Hoopman et al
Ħ	48	5325265	1994-06-28	Turlik et al.
	49	5336062	1994-08-09	Richter
ヿ	50	5380956	1995-01-10	Loo et al.

Sia	na	tu	re

Examiner Name	Date

	7	4138996	1979-02-13	Cartland
Ť	8	4194559	1980-03-25	Eastman
î	9	4248295	1981-02-03	Ernst et al.
T	10	4312012	1982-01-19	Frieser et al.
T	11	4450472	1984-05-22	Tuckerman et al.
T	12	4485429	1984-11-27	Mittal
T	13	4516632	1985-05-14	Swift et al.
T	14	4540115	1985-09-10	Hawrylo
٦Ì	15	4561040	1985-12-24	Eastman et al.
Ť	16	4567505	1986-01-28	Pease et al.
T	17	4573067	1986-02-25	Tuckerman et al.
T	18	4664181	1987-05-12	Sumberg
T	19	4758926	1988-07-19	Herrell et al.
T	20	4866570	1989-09-12	Porter
T	21	4868712	1989-09-19	Woodman
٦Ì	22	4894709	1990-01-16	Phillips et al.
٦Ì	23	4896719	1990-01-30	O'Neill et al.
٦Ì	24	4908112	1990-03-13	Pace
T	25	4938280	1990-07-03	Clark
T	26	5009760	1991-04-23	Zare et al.
٦Ì	27	5016138	1994-05-14	Woodman
	28	5057908	1991-10-15	Weber
TÌ	29	5058627	1991-10-22	Brannen
T	30	5070040	1991-12-03	Pankove
T	31	5083194	1992-01-21	Bartilson
T	32	5088005	1992-02-11	Ciaccio
٦į	33	5096388	2002-03-17	Weinberg
T	34	5099311	1992-03-24	Bonde et al.
T	35	5099910	1992-03-31	Walpole et al.
T	36	5125451	1992-01-30	Matthews
٦İ	37	5131233	1992-07-21	Cray et al.
ij	38	5203401	1993-04-20	Hamburgen et al.
٦Ì	39	5218515	1993-06-08	Bernhardt
٦İ	40	5219278	1993-06-15	Van Lintel
7	41	5232047	1993-08-03	Matthews

Information Disclosure Statement

file://G:\IIDS-E-Filed\XXFILES\COOL\COOL_jr_1\COOL01301%20e-Filed%2004-... 4/28/2004

UNITED STATES PATENT AND TRADEMARK OFFICE ACKNOWLEDGEMENT RECEIPT

Electronic Version 1.1
Stylesheet Version v1.1.1

Title of Invention

METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID DELIVERY FOR COOLING A HEAT PRODUCING DEVICE

Submission Type:

Information Disclosure Statement

Application Number:

10/680584

10/680584

EFS ID:

59962

Server Response:

Confirmation Code	Message
IICVD I	Submission was successfully submitted – Even if Informational or Warning Messages appear below, please do not resubmit this application
ICON1	5276
ISYS5	Filename= N/A BusinessRule= Validation System/Function Call Information. #Supporting Msg:Server unable to validate the Confirmaton/Application numbers at this time. They will be checked by PTO personnel later.

First Named Applicant:

Thomas Kenny

Attorney Docket Number:

Timestamp:

2004-04-28 13:29:02 EDT

From:

U5

File Listing:

Doc. Name File Name		Size (Bytes)
us-ids	COOL01301B-usidst.xml	9283
us-ids	us-ids.dtd	7763
		i i i i i i i i i i i i i i i i i i i

 $file: //G: \label{file: file:

Acknowledgement Receipt

Page 2 of 2

us-ids	us-ids.xsl	12026
package-data	COOL01301B-pkda.xml	1773
package-data	package-data.dtd	27025
package-data	us-package-data.xsl	19263
	Total files size	77133

Message Digest:

c7 ad 315 cd c5 a 6ff 80006 bd 9587d 555 a 9e52d fd 8d

Digital Certificate Holder cn=Thomas B. Haverstock,ou=Registered Attorneys,ou=Patent

and Trademark Office, ou = Department of Commerce, o = U.S.

Name:

Government,c=US

Transmittal Page 1 of 2

TRANSMITTAL

Electronic Version v1.1

Stylesheet Version v1.1.0

Title of METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID Invention DELIVERY FOR COOLING A HEAT PRODUCING DEVICE

Application Number: 10/680584 *10/680584*

Date: 2003-10-06

First Named Applicant: Thomas W. Kenny

Confirmation Number: 5276

Attorney Docket Number:

I hereby certify that the use of this system is for OFFICIAL correspondence between patent applicants or their representatives and the USPTO. Fraudulent or other use besides the filing of official correspondence by authorized parties is strictly prohibited, and subject to a fine and/or imprisonment under applicable law.

I, the undersigned, certify that I have viewed a display of document(s) being electronically submitted to the United States Patent and Trademark Office, using either the USPTO provided style sheet or software, and that this is the document(s) I intend for initiation or further prosecution of a patent application noted in the submission. This document(s) will become part of the official electronic record at the USPTO.

Thomas B. Haverstock Registered Number: 32571 Attorney	Submitted by:	Elec. Sign.	Sign. Capacity
<u> </u>	Thomas 8. Haverstock	/tbh/	20140
	Registered National, 3237 i		(a) (a)

file://G:\!IDS-E-Filed\XXFILES\COOL\COOL_jr_1\COOL01301%20e-Filed%2004-... 4/28/2004

file://G:\!IDS-E-Filed\XXFILES\COOL\COOL\jr_I\COOL01301%20e-Filed%2004-... 4/28/2004

Transmittal Page 2 of 2

Documents being submitted Files
us-ids COOL01301B-usidst.xml
us-ids.dtd
us-ids.xsl

Comments

ELECTRONIC INFORMATION DISCLOSURE STATEMENT

Electronic Version v18
Stylesheet Version v18.0

Title of Invention

METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID DELIVERY FOR COOLING A HEAT PRODUCING

Application Number: 10/680584

10/680584

Confirmation Number: 5276
First Named Applicant: Thomas Kenny

Attorney Docket Number:

Search string:

(\$383340 or \$421943 or \$427174 or \$436793 or \$459099 or \$508234 or \$514832 or \$514906 or \$544696 or \$548605 or \$575929 or \$579828 or \$585069 or \$641400 or \$692558 or \$696405 or \$703536 or \$704416 or \$727618 or \$759014 or \$763951 or \$774779 or \$800690 or \$801442 or \$835345 or \$836750 or \$858188 or \$5863708 or \$869004 or \$870823 or \$874795 or \$876655 or \$880017 or \$880524 or \$901037 or \$936192 or \$940270 or \$942093 or \$964092

or \$965001 or \$965813 or \$978220 or \$997713 or \$998240 or 6007309 or 6010316 or 6013164 or 6019882 or 6054034 or

6068752).pn.

US Patent Documents

Note: Applicant is not required to submit a paper copy of cited US Patent Documents

	init	Cite.No.	Patent No.	Date	Patentee	Kind	Class	Subclass
lÌ		1	5383340	1995-01-24	Larson et al.			
Ì	T	2	5421943	1995-06-06	Tam et al.]		
Ì	\neg	3	5427174	1995-06-27	Lomolino et al.	j		
li	可	4	5436793	1995-07-25	Sanwo et al.	Ì		
l		5	5459099	1995-10-17	Hsu			
li	\neg	6	5508234	1996-04-16	Dusabion, Sr. et al.]		
li	\dashv					ī		

file://G:\!IDS-E-Filed\XXFILES\COOL\COOL_jr_1\COOL01301%20e-Filed%2004-... 4/28/2004

Information Disclosure Statement

Page 3 of 3

42	5978220	1999-11-02	Frey et al.
43	5997713	1999-12-07	Beetz, Jr. et al.
44	5998240	1999-12-07	Hamilton et al.
45	6007309	1999-12-28	Hartley
46	6010316	2000-01-04	Haller et al.
47	6013164	2000-01-11	Paul et al.
48	6019882	2000-02-01	Paul et al.
49	6054034	2000-04-25	Soane et al.
50	6068752	2000-05-30	Dubrow et al.

Sic	ınatıı	FΦ

Date

	7	5514832	1996-05-07	Ousablon, Sr. et al.
	8	5514906	1996-05-07	Love et al.
\Box	9	5544696	1996-08-13	Leland
	10	5548605	1996-08-20	Benett et al.
	- 11	5575929	1996-11-19	Yu et al.
	12	5579828	1996-12-03	Reed et al.
	13	5585069	1996-12-17	Zanzucchi et al.
	14	5641400	1997-06-24	Kaltenbach et al.
	15	5692558	1997-12-02	Hamilton et al.
	16	5696405	1997-12-09	Weld
	17	5703536	1997-12-30	Davis et al.
	18	5704416	1998-01-06	Larson et al.
	19	\$727618	1998-03-17	Mundinger et al.
	20	\$759014	1998-06-02	Van Untel
	21	5763951	1998-06-09	Hamilton et al.
	22	5774779	1998-06-30	Tuchinskiy
	23	\$800690	1998-09-01	Chow et al.
	24	5801442	1998-09-01	Hamilton et al.
	25	5835345	1998-11-10	Staskus et al.
	26	5836750	1998-11-17	Cabuz
	27	5858188	1999-01-12	Soane et al.
	28	5863708	1999-01-26	Zanzucchi et al.
	29	5869004	1999-02-09	Parce et al.
	30	5870823	1999-02-16	Bezama et al.
	31	5874795	1999-02-23	Sakamoto
	32	5876655	1999-03-02	Fisher
	33	\$880017	1999-03-09	Schwiebert et al.
	34	5880524	1999-03-09	XIe
	35	5901037	1999-05-04	Hamilton et al.
	36	5936192	1999-08-10	Tauchi
	37	5940270	1999-08-17	Puckett
	38	5942093	1999-08-24	Rakestraw et al.
	39	5964092	1999-10-12	Tozuka et al.
	40	5965001	1999-10-12	Chow et al.
	41	5965813	1999-10-12	Wan et al.

file://G:\IIDS-E-Filed\XXFILES\COOL\COOL_jr_1\COOL01301%20e-Filed%2004-... 4/28/2004

UNITED STATES PATENT AND TRADEMARK OFFICE **ACKNOWLEDGEMENT RECEIPT**

Electronic Version 1.1 Stylesheet Version v1.1.1

Title of Invention

METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID DELIVERY FOR COOLING A **HEAT PRODUCING DEVICE**

Submission Type:

Information Disclosure Statement

Application Number:

10/680584

10/680584

EFS ID:

59964

Server Response:

Confirmation Code	Message
ISVR1	Submission was successfully submitted – Even if Informational or Warning Messages appear below, please do not resubmit this application
ICON1	5276
ISYS5	Filename= N/A BusinessRule= Validation System/Function Call Information. #Supporting Msg:Server unable to validate the Confirmaton/Application numbers at this time. They will be checked by PTO personnel later.

First Named Applicant:

Thomas Kenny

Attorney Docket Number:

Timestamp:

2004-04-28 13:31:53 EDT

From:

us

File Listing:

Doc. Name	File Name	Size (Bytes)
us-ids	COOL01301D-usidst.xml	2488
us-ids	us-ids.dtd	7763
		i i

 $file: //G: \label{file: file: filed with the file of the filed with the filed w$

Acknowledgement Receipt

Page 2 of 2

us-ids	us-ids.xsl	12026
package-data	COOL01301D-pkda.xml	1773
package-data	package-data.dtd	27025
package-data	us-package-data.xsl	19263
	Total files size	70338

Message Digest:

e11925862dea3d91c6b73869094d085a219df54f

Name:

Digital Certificate Holder cn=Thomas B. Haverstock,ou=Registered Attorneys,ou=Patent and Trademark Office, ou = Department of Commerce, o = U.S.

Government,c=US

Transmittal Page 1 of 2

Page 2 of 2

COOL01301D-usidst.xml

Documents being submitted

us-ids

Transmittal

TRANSMITTAL

Electronic Version v1.1

Stylesheet Version v1.1.0

Title of METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID Invention DELIVERY FOR COOLING A HEAT PRODUCING DEVICE

Application Number: 10/680584 *10/680584*

Date: 2003-10-06

First Named Applicant: Thomas W. Kenny

Confirmation Number: 5276

Attorney Docket Number:

I hereby certify that the use of this system is for OFFICIAL correspondence between patent applicants or their representatives and the USPTO. Fraudulent or other use besides the filing of official correspondence by authorized parties is strictly prohibited, and subject to a fine and/or imprisonment under applicable law.

I, the undersigned, certify that I have viewed a display of document(s) being electronically submitted to the United States Patent and Trademark Office, using either the USPTO provided style sheet or software, and that this is the document(s) I intend for initiation or further prosecution of a patent application noted in the submission. This document(s) will become part of the official electronic record at the USPTO.

Submitted by:	Elec. Sign.	Sign. Capacity
Thomas B. Haverstock	/tbh/	
Registered Number: 32571		Attorney

file://G:\!IDS-E-Filed\XXFILES\COOL\COOL_jr_1\COOL01301%20e-Filed%2004-... 4/28/2004

Us-ids.xsl

Comments

file://G:\!IDS-E-Filed\XXFILES\COOL\COOL\jr_I\COOL01301%20e-Filed%2004-... 4/28/2004

Information Disclosure Statement

Signature

Examiner Name	Date

Page 2 of 2

ELECTRONIC INFORMATION DISCLOSURE STATEMENT

Electronic Version v18
Stylesheet Version v18.0

Title of Invention

METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID DELIVERY FOR COOLING A HEAT PRODUCING DEVICE

Application Number:

10/680584

10/680584

Confirmation Number: 5276

First Named Applicant: Thomas Kenny

Attorney Docket Number:

Search string:

(6632655 or 20010016985 or 20010024820 or

20010044155 or 20010045270 or 20010046703 or 20010055714 or 20020011330 or 20020134543).pn.

US Patent Documents

Note: Applicant is not required to submit a paper copy of cited US Patent Documents

Init	Cite.No.	Patent No.	Date	Patentee	Kind	Class	Subclass
	1	6632655	2003-10-14	Mehta et al.	81		

US Published Applications

Note: Applicant is not required to submit a paper copy of cited US Published Applications

init	Cite.No.	Pub. No.	Date	Applicant	Kind	Class	Subclass
	1	20010016985	2001-08-30	Insley et al.	Al		
	2	20010024820	2001-09-27	Mastromatteo et al.	Al		
	3	20010044155	2001-11-22	Paul et al.	Al		
	4	20010045270	2001-11-29	8hatti et al.	Al		
	5	20010046703	2001-11-29	Burns et al.	Al		
	6	20010055714	2001-12-27	Cettour-Rose et al.	Al		
	7	20020011330	2002-01-31	Insley et al.	Al		
	8	20020134543	2002-09-26	Estes et al.	Αl		

 $file: //G: //IDS-E-Filed \ XXFILES \ COOL \ COOL \ jr_1 \ COOL 01301\% 20e-Filed \% 2004-... \ 4/28/2004$

 $file: //G: \label{file: filed lambda} file: //G: \label{filed lambda} file: //G:$

UNITED STATES PATENT AND TRADEMARK OFFICE **ACKNOWLEDGEMENT RECEIPT**

Electronic Version 1.1 Stylesheet Version v1.1.1

Title of Invention

METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID DELIVERY FOR COOLING A **HEAT PRODUCING DEVICE**

Submission Type:

Information Disclosure Statement

Application Number:

10/680584

10/680584

EFS ID:

59963

Server Response:

Confirmation Code	Message
ISVR1	Submission was successfully submitted – Even if Informational or Warning Messages appear below, please do not resubmit this application
ICON1	5276
ISYS5	Filename= N/A BusinessRule= Validation System/Function Call Information. #Supporting Msg:Server unable to validate the Confirmaton/Application numbers at this time. They will be checked by PTO personnel later.

First Named Applicant:

Thomas Kenny

Attorney Docket Number:

Timestamp:

2004-04-28 13:30:32 EDT

From:

File Listing:

Doc. Name	File Name	Size (Bytes)
us-ids	COOL01301C-usidst.xml	9561
us-ids	us-ids.dtd	7763

 $file: //G: \label{file: file:

Acknowledgement Receipt

Page 2 of 2

us-ids	us-ids.xsl	12026
package-data	COOL01301C-pkda.xml	1773
package-data	package-data.dtd	27025
package-data	us-package-data.xsl	19263
	Total files size	77411

Message Digest:

2dc1ad2654ff8bd32417a66647d6d04e3713b514

Name:

Digital Certificate Holder cn=Thomas B. Haverstock,ou=Registered Attorneys,ou=Patent and Trademark Office,ou=Department of Commerce,o=U.S.

Government,c=US

Transmittal Page 1 of 2

Page 2 of 2

COOL01301C-usidst.xml

Documents being submitted

us-ids

Transmittal

TRANSMITTAL

Electronic Version v1.1

Stylesheet Version v1.1.0

Title of METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID Invention DELIVERY FOR COOLING A HEAT PRODUCING DEVICE

Application Number: 10/680584 *10/680584*

Date: 2003-10-06

First Named Applicant: Thomas W. Kenny

Confirmation Number: 5276

Attorney Docket Number:

I hereby certify that the use of this system is for OFFICIAL correspondence between patent applicants or their representatives and the USPTO. Fraudulent or other use besides the filing of official correspondence by authorized parties is strictly prohibited, and subject to a fine and/or imprisonment under applicable law.

I, the undersigned, certify that I have viewed a display of document(s) being electronically submitted to the United States Patent and Trademark Office, using either the USPTO provided style sheet or software, and that this is the document(s) I intend for initiation or further prosecution of a patent application noted in the submission. This document(s) will become part of the official electronic record at the USPTO.

Submitted by:	Elec. Sign.	Sign. Capacity
Thomas B. Haverstock Registered Number: 32571	/tbh/	Attorney

file://G:\!IDS-E-Filed\XXFILES\COOL\COOL\jr_1\COOL01301%20e-Filed%2004-... 4/28/2004

file://G:\!IDS-E-Filed\XXFILES\COOL\COOL_jr_I\COOL01301%20e-Filed%2004-... 4/28/2004

Lomments

Comments

Electronic Version v18
Stylesheet Version v18.0

Title of

METHOD AND APPARATUS FOR EFFICIENT VERTICAL FLUID DELIVERY FOR COOLING A HEAT PRODUCING

Application Number: 10/680584

10/680584

Confirmation Number: 5276
First Named Applicant: Thomas Kenny

Attorney Docket Number:

Search string:

(6090251 or 6096656 or 6100541 or 6101715 or 6119729 or 6126723 or 6129145 or 6129260 or 6131650 or 6146103 or 6154363 or 6159353 or 6171067 or 6174675 or 6176962 or 6186660 or 6210986 or 6216343 or 6221226 or 6227809 or 6234240 or 6238538 or 6277257 or 6287440 or 6301109 or 6313992 or 6317326 or 6321791 or 6322753 or 6324058 or 6337794 or 6351384 or 6388317 or 6396706 or 6400012 or 6406605 or 6415860 or 6416642 or 6417060 or 6424531 or 6443222 or 6444461 or 6457515 or 6495015 or 6537437 or 6543521

or 6553253 or 6572749 or 6588498 or 6591625).pn.

US Patent Documents

Note: Applicant is not required to submit a paper copy of cited US Patent Documents

init	Clte.No.	Patent No.	Date	Patentee	Kind	Class	Subclass
$\overline{}$	1	6090251	2000-07-18	Sundberg et al.]		
乛	2	6096656	2000-08-01	Matzke et al.	j		
乛	3	6100541	2000-08-08	Nagle et al.	Ī		
T	4	6101715	2000-08-15	Fuesser et al.	Ī		
	5	6119729	2000-09-19	Oberholzer et al.	1		
	6	6126723	2000-10-03	Drost et al.	1		

 $file: //G: //IDS-E-Filed \ XXFILES \ COOL \ COOL \ jr_1 \ COOL 01301\% 20e-Filed \% 2004-... \ 4/28/2004$

Information Disclosure Statement

Page 3 of 3

	42	6444461	2002-09-03	Knapp et al.	BI
	43	6457515	2002-10-01	Vafai et al.	BI
П	44	6495015	2002-12-17	Schoeniger et al.	81
П	45	6537437	2003-03-25	Galambos et al.	Bl
П	46	6543521	2003-04-08	Sato et al.	BI
П	47	6553253	2003-04-22	Chang	B1
	48	6572749	2003-06-03	Paul et al.	B1
	49	6588498	2003-07-08	Reysin et al.	B1
П	50	6591625	2003-07-15	Simon	BI

Signature

Examiner Name	Date

Information Disclosure Statement

7 7	6129145	2000-10-10	Yamamoto et al.	
8	6129260	2000-10-10	Andrus et al.	
9	6131650	2000-10-17	North et al.	
10	6146103	2000-11-14	Lee et al.	
11	6154363	2000-11-28	Chang	
12	6159353	2000-12-12	West et al.	
13	6171067	2001-01-09	Parce	81
14	6174675	2001-01-16	Chow et al.	B1
15	6176962	2001-01-23	Soane et al.	В١
16	6186660	2001-02-13	Kopf-Sili et al.	B1
17	6210986	2001-04-03	Arnold et al.	В1
18	6216343	2001-04-17	Leland et al.	B1
19	6221226	2001-04-24	Kopf-Sill	B1
20	6227809	2001-05-08	Forster et al.	B1
21	6234240	2001-05-22	Cheon	BI
22	6238538	2001-05-29	Parce et al.	BI
23	6277257	2001-08-21	Paul et al.	B1
24	6287440	2001-09-11	Arnold et al.	В1
25	6301109	2001-10-09	Chu et al.	B1
26	6313992	2001-11-06	Hildebrandt	81
27	6317326	2001-11-13	Vogel et al.	B1
28	6321791	2001-11-27	Chaw	B1
29	6322753	2001-11-27	Lindberg et al.	B1
30	6324058	2001-11-27	Hsiao	B1
31	6337794	2002-01-08	Agonafer et al.	B1
32	6351384	2002-02-26	Darkoku et al.	BI
33	6388317	2002-05-14	Reese	B1
34	6396706	2002-05-28	Wohlfarth	B1
35	6400012	2002-06-04	Miller et al.	B1
36	6406605	2002-06-18	Moles	B1
37	6415860	2002-07-09	Kelly et al.	B1
38	6416642	2002-07-09	Alajoki et al.	B1
39	6417060	2002-07-09	Tavkhelidze et al.	B1
40	6424531	2002-07-23	Bhatti et al.	B1
41	6443222	2002-09-03	Yun et al.	B1

file://G:\\IDS-E-Filed\XXFILES\COOL\COOL_jr_1\COOL01301%20e-Filed%2004-... 4/28/2004