ASSIGNMENT (Bending)

Uniform cross-section with different geometries as given:

Q1: If 90 = \$3000 N/m, then draw

(a) Shear force distribution (b) Bending moment distribution

Q2: At $\chi=0$, $\chi=3m$ obtain the bending stress distribution for the cross-sections (a) - (f). Determine location and value of $6\pi \times 1$ max

- Q3: (a) At x = 0, 3m obtain the shear flow in the cross-section.

 Give variation of 9xs(4) for the section.
 - (b) Find shear centre for each case
 - (c) Show that the shear flow indeed gives the shear force as the resultant.
 - (d) Find location and value of maximum

94: For the mult-celled section shown, obtain the bending stress distribution and shear flow.

t = 2mm

* SUBMIT (by 3rd Nov.): Q1; Q2 for sections (b), (f);
Q3 for sections (o), (b), (e), (f);