Spintronics

Special Topic Seminar

Ву

Jitendra S. pingale Under the Guidance of Prof. M. D. Patil.

Department of Electronics Engineering Ramrao Adik Institute of Technology, Nerul, Navi Mumbai

What is spintronics?

- The automatic synthesis of a SISO and MIMO QFT controllers is still an open problem.
- The most successful method for such a design takes into consideration the non-linear/non-convex QFT bounds without any approximation.
- It thereby ensures closed loop stability of the system, and becomes largely independent of the initial controller solution.
- Magnetic Levitation system is subjected to many external disturbances.
- It is highly nonlinear system.

2 / 7

SysCon Spintronics November 12, 2015

Outline

- Introduction
- ② Brief of Magnetic Levitation setup
- Mathematical Modelling og Magnetic Levitation System
- Preliminaries- QFT and Constraint Solver
- QFT Controller Synthesis Problem
- Proposed QFT Controller Synthesis Method and Prefilter Design for SISO case
- Proposed QFT Controller Synthesis Method and Prefilter Design for MIMO case
- Oiscussion
- Onclusions and Future Work

Introduction to Magnetic Levitation Setup

Schematic of Magnetic Levitation Experimental Setup

RAIT

Sensor Linearization for Lower Magnet and Coil

Table: Raw Sensor Data for Lower SISO case

Magnet position (cm)	Raw Sensor Output y_{1raw} (counts)
0	27900
0.5	22700
1	18300
2	12000
3	8200
4	5800
5	4100
6	2800

Sensor Nonlinearity

$$y_{ical} = \frac{e_i}{y_{iraw}} + \frac{f_i}{\sqrt{y_{iraw}}} + g_i + h_i y_{iraw}$$
 $e_1 = -11347, f_1 = 713.5441, g_1 = -2.9904, h_1 = -2.5283 * 10^{-5}$
 $e_2 = 7109.4, f_2 = -581.75, g_2 = 1.8355, h_2 = 4.1371 * 10^{-5}$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

 SysCon
 Spintronics
 November 12, 2015
 6 / 7

Thank You...