

Carlos Cancino-Chacón (<u>carlos_eduardo.cancino_chacon@jku.at</u>) Silvan Peter (<u>silvan.peter@jku.at</u>) Emmanouil Karystinaios (<u>emmanouil.karystinaios@jku.at</u>)

Outline

- What is Key Estimation?
- Probe Tone Experiments
- Markov Models of Melodic Expectation
- Key Estimation Methods
 - Krumhansl
 - Temperley (Hidden Markov Models)

- Identify the tonality of a piece of music (key signature)
 - In practice: Identify the tonality from MIDI-like note information (MIDI pitch, onset, duration)
- This is a useful first step for automatic harmonic analysis, automatic pitch spelling, etc.

- Identify the tonality of a piece of music (key signature)
 - In practice: Identify the tonality from MIDI-like note information (MIDI pitch, onset, duration)
- This is a useful first step for automatic harmonic analysis, automatic pitch spelling, etc.

- Identify the tonality of a piece of music (key signature)
 - In practice: Identify the tonality from MIDI-like note information (MIDI pitch, onset, duration)
- This is a useful first step for automatic harmonic analysis, automatic pitch spelling, etc.

- Identify the tonality of a piece of music (key signature)
 - In practice: Identify the tonality from MIDI-like note information (MIDI pitch, onset, duration)
- This is a useful first step for automatic harmonic analysis, automatic pitch spelling, etc.

Common Key Identification Methods

- Krumhansl and Schmuckler (Krumhansl, 1990)
 - Compare pitch distribution to expected probe-tone profiles
- Chew's Spiral Array (Chuan and Chew, 2005)
 - Compare geometry of the notes in the spiral array (a 3D extension of the circle of fifths)
- Temperley's Probabilistic Approach (Temperley, 2007)
 - With hidden Markov models!

Quick Recap: Probability

- Probability: measure of the likelihood of an event
 - $0 \le p(x) \le 1$, where 0 indicates that the event is very unlikely to occur and 1 indicates that the event will most likely occur
- Random variables: X can take values x
 - For discrete variables (X can take values $x_1, ..., x_N$): $\sum_{x_i}^N p(x_i) = 1$
 - For continuous variables $\int_{-\infty}^{\infty} p(x)dx = 1$
- Probability density and mass functions
 - For continues variables, the probability that x will lie in an interval (a,b) is

$$p(x \in (a,b)) = \int_a^b p(x)dx$$

- Fundamental rules
 - Sum rule: $p(X) = \sum_{Y} p(X, Y)$
 - product rule: $p(X, Y) = P(Y \mid X)P(X)$
 - If X and Y are independent: P(X, Y) = P(X)P(Y)
 - symmetry: P(X, Y) = p(Y, X)
- Bayes' Theorem

$$p(Y \mid X) = \frac{p(X \mid Y)p(Y)}{p(X)}$$

