First order instrument

$\tau \frac{dq_O}{dt} + q_O = K q_i$	$\frac{\rho CpV}{h A_S} \frac{dx}{dt} + x = \frac{\beta V}{A_C} T_f - \text{Thermometer}$
Step response	Ramp response
$\frac{q_o(t)}{q_{is}} = K \left(1 - e^{-\frac{t}{\tau}}\right)$	$q_o(t) = Kq_{is}\left(-\tau + t + \tau e^{-\frac{t}{\tau}}\right)$
Frequency response	Impulse function
$ \left \frac{q_o}{Kq_i} \right = \frac{1}{\sqrt{1 + \tau^2 \omega^2}} $	$q_o(t) = \frac{KA}{T} \left(1 - e^{-\frac{t}{\tau}} \right) $ for $t < T$
$\phi = Tan^{-1}(-\tau\omega)$	$q_o = \frac{KA\left(1 - e^{-\frac{T}{\tau}}\right)}{Te^{-\frac{T}{\tau}}} e^{-\frac{t}{\tau}} \text{ for } t > T$
	$Te^{\frac{-\tau}{\tau}}$

Fourier Coefficients for Functions Having Arbitrary Period $T = 2\pi/\omega$

$$y(t) = A_0 + \sum_{n=1}^{\infty} (A_n \cos n\omega t + B_n \sin n\omega t); \ A_0 = \frac{1}{T} \int_{-T/2}^{T/2} y(t) dt; \ A_n = \frac{2}{T} \int_{-T/2}^{T/2} y(t) \cos n\omega t dt;$$
$$B_n = \frac{2}{T} \int_{-T/2}^{T/2} y(t) \sin n\omega t dt$$

If function is even,
$$y(t) = \sum_{n=1}^{\infty} A_n \cos n\omega t = \sum_{n=1}^{\infty} A_n \cos \frac{2\pi nt}{T}$$

If function is odd,
$$y(t) = \sum_{n=1}^{\infty} B_n \sin n\omega t = \sum_{n=1}^{\infty} B_n \sin \frac{2\pi nt}{T}$$

	f(t)	$\mathscr{L}(f)$		f(t)	$\mathcal{L}(f)$
1	1	1/\$	7	cos ωt	$\frac{s}{s^2+\omega^2}$
2	t	1/s²	8	sin ωt	$\frac{\omega}{s^2+\omega^2}$
3	t ²	2!/s³	9	cosh <i>at</i>	$\frac{s}{s^2-a^2}$
4	$(n=0,1,\cdots)$	$\frac{n!}{s^{n+1}}$	10	sinh <i>at</i>	$\frac{a}{s^2-a^2}$
5	t ^a (a positive)	$\frac{\Gamma(a+1)}{s^{a+1}}$	11	$e^{at}\cos \omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
6	e ^{at}	$\frac{1}{s-a}$	12	e ^{at} sin ωt	$\frac{\omega}{(s-a)^2+\omega^2}$

Second order instrument

$$\frac{1}{\omega_n^2} \frac{d^2 x}{dt^2} + \frac{2\xi}{\omega_n} \frac{dx}{dt} + x = KF(t)$$

$$\frac{1}{\omega_n^2} \frac{d^2 V_o}{dt} + \frac{2\xi}{\omega_n} \frac{dV_o}{dt} + V_o = KV(t)$$

$$\xi = \frac{C}{2\sqrt{mK_s}}; \omega_n = \sqrt{\frac{K_s}{m}}; K = \frac{1}{K_s} - \frac{1}{2\sqrt{mK_s}}; \omega_n = \sqrt{\frac{K_s}{m}}; K = \frac{1}{2\sqrt{mK_s}}; \omega_n = \frac{1}{2\sqrt{mK_s$$

Step response

$$\frac{q_o(t)}{Kq_{is}} = 1 - \frac{e^{-\xi\omega_n t}}{\sqrt{1-\xi^2}} Sin\left(\omega_d t + Tan^{-1}\left(\frac{\sqrt{1-\xi^2}}{\xi}\right)\right)$$
for underdamped system

$$\frac{q_o(t)}{Kq_{is}} = 1 - e^{-\omega_n t} (1 + \omega_n t)$$
 for critically damped system

$$\frac{q_o(s)}{Kq_{is}} = 1 + \frac{1}{2\sqrt{\left(\xi^2 - 1\right)}\left(\xi + \sqrt{\left(\xi^2 - 1\right)}\right)}e^{-\left(\xi + \sqrt{\left(\xi^2 - 1\right)}\right)\omega_n t} - \frac{1}{2\sqrt{\left(\xi^2 - 1\right)}\left(\xi - \sqrt{\left(\xi^2 - 1\right)}\right)}e^{-\left(\xi - \sqrt{\left(\xi^2 - 1\right)}\right)\omega_n t} \text{ for overdamped system}$$

$$\left|\frac{q_{o}}{Kq_{i}}\right| = \sqrt{\frac{\left(1 - \frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2} + \left(\frac{2\xi\omega}{\omega_{n}}\right)^{2}}{\left[\left(1 - \frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2} + \left(\frac{2\xi\omega}{\omega_{n}}\right)^{2}\right]^{2}}} = \frac{1}{\sqrt{\left(1 - \frac{\omega^{2}}{\omega_{n}^{2}}\right) + \left(\frac{2\xi\omega}{\omega_{n}}\right)^{2}}} \theta = Tan^{-1} \left[\frac{-2\xi\frac{\omega}{\omega_{n}}}{1 - \frac{\omega^{2}}{\omega_{n}^{2}}}\right] = Tan^{-1} \left[\frac{-2\xi\frac{\omega}{\omega_{n}}}{\omega - \frac{\omega}{\omega_{n}}}\right]$$

$$\theta = Tan^{-1} \left[\frac{-2\xi \frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}} \right] = Tan^{-1} \left[\frac{-2\xi}{\frac{\omega_n}{\omega} - \frac{\omega}{\omega_n}} \right]$$

	f(t)	e(t)	
	v	i	
$M\frac{dv}{dt}$	М	L	$L\frac{di}{dt}$
Bv	В	R	iR
$K \int v dt$	K	$\frac{1}{C}$	$\frac{1}{C}\int idt$

	f(t)	i(t)	
	υ	е	
$M\frac{dv}{dt}$	М	С	$C\frac{de}{dt}$
Bv	В	$\frac{1}{R}$	e R
$K \int v dt$	K	$\frac{1}{L}$	$\frac{1}{L}\int edt$