Theoretische Physik 2 (Elektrodynamik)

Klausur

Prof. Dr. Norbert Kaiser

22 .	Februar	2021
-------------	---------	------

Arbeitszeit: 90 Minuten	Name:
-------------------------	-------

Diese Klausur enthält 7 Seiten (Einschließlich dieses Deckblatts) und 5 Aufgaben. Die Gesamtpunktzahl beträgt 40.

Punkteverteilung

1 dilkocver och dil			
Aufgabe	Punkte	Erreicht	
1	8		
2	8		
3	8		
4	7		
5	9		
Gesamt:	40		

Musterlösung

- 1. (8 Punkte) Innerhalb einer Kugel vom Radius R_0 fällt die radialsymmetrische Ladungsdichte $\rho(r)$ vom Mittelpunkt bis zum Kugel hin *linear* auf den Wert Null ab. Die Gesamtladung in der Kugel beträgt Q.
 - (a) (2 Punkte) Geben Sie die Ladungsdichte $\rho(r)$ ausgedrückt durch die Parameter Q und R_0 an.
 - (b) (3 Punkte) Berechnen Sie das elektrische $\vec{E}(\vec{r}) = E(r)\vec{e}_r$ im ganzen Raum.
 - (c) (3 Punkte) Welche Arbeit W musste aufgewendet werden, um die Kugel mit der vorgegebenen Ladungsdichte aufzuladen? Benutzen Sie die Substitution $r = sR_0$.

Lösung:

(a) Der Ansatz $\rho(r) = \rho_0(1 - \frac{r}{R_0})\Theta(R_0 - r)$ liefert mit

$$Q = 4\pi\rho_0 \int_{0}^{R_0} dr \left(1 - \frac{r}{R_0}\right) r^2 = 4\pi\rho_0 R_0^3 \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{\pi}{3}\rho_0 R_0^3 \Rightarrow \rho_0 = \frac{3Q}{\pi R_0^3}$$

als Resultat für die Ladungsdichte

$$\rho(r) = \frac{3Q}{\pi R_0^4} (R_0 - r)\Theta(R_0 - r).$$

(b) Mit dem Gaußschen Satz $\iint_{\partial V} d\vec{F}' \cdot \vec{E}(\vec{r}') = \frac{1}{\epsilon_0} \int_V d^3r' \rho(\vec{r}')$ angewandt auf eine Kugel vom Radius r ergibt sich

$$4\pi r^2 E(r) = \frac{4\pi}{\epsilon_0} \int_0^r \mathrm{d}r' r'^2 \rho(r').$$

Damit folgt für das radialsymmetrische elektrische Feld $\vec{E}(\vec{r}) = E(r)\vec{e}_r$:

$$E(r) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r^2}, \quad \text{für} \quad r > R_0,$$

und

$$E(r) = \frac{1}{\epsilon_0 r^2} \frac{3Q}{\pi R_0^4} \int_0^r dr' (R_0 - r') r'^2 = \frac{3Q}{\pi \epsilon_0 R_0^4} \frac{1}{r^2} \left(\frac{R_0 r^3}{3} - \frac{r^4}{4} \right)$$
$$= \frac{Q}{4\pi \epsilon_0} \frac{4R_0 r - 3r^2}{R_0^4}, \quad \text{für} \quad r < R_0.$$

(c) Die elektrostatische Energiedichte ist $w = \epsilon \vec{E}^2/2$.

Man berechnet die Arbeit $W = \int d^3r \ w(\vec{r}) = 2\pi\epsilon_0 \int_0^\infty dr \ r^2 [E(r)]^2$ mit der Substitution $r = sR_0$ als

$$W = \frac{2\pi\epsilon_0 Q^2}{16\pi^2\epsilon_0^2} \frac{1}{R_0} \left(\int_0^1 ds \ s^2 (16s^2 - 24s^3 + 9s^4) + \int_1^\infty ds \ s^{-2} \right).$$

Das erste Integral hat den Wert $\frac{16}{5} - \frac{24}{6} + \frac{9}{7} = \frac{17}{35}$. Man addiert 1 vom zweiten Integral und erhält das Ergebnis

$$W = \frac{13Q^2}{70\pi\epsilon_0 R_0}.$$

- 2. (8 Punkte) Eine ebene Leiterschleife \mathcal{L}_1 (mit Strom I_1) vom Flächeninhalt A liegt in der xyEbene um den Ursprung zentriert. Eine zweite Leiterschleife \mathcal{L}_2 (mit Strom I_2) gleicher Bauart
 befindet sich:
 - (a) (4 Punkte) längs der z-Achse parallel verschoben in einem sehr großen Abstand $z\gg A$ von \mathcal{L}_1
 - (b) (4 Punkte) längs der y-Achse parallel verschoben in einem sehr großen Abstand $y \gg A$ von \mathcal{L}_1 .

Bestimmen Sie in beiden Fällen die Kraft $\vec{F}_{21} \propto I_1 I_2$, welche die Leiterschleife \mathcal{L}_1 auf \mathcal{L}_2 ausübt. Hinweis: Bei großem Abstand wechselwirken stromdurchflossene Leiterschleifen wie magnetische Dipole.

Lösung:

(a) Die magnetischen Dipolmomente der beiden Leiterschleifen sind $\vec{m}_{1/2} = I_{1/2} A \vec{e}_z$. Die Relativposition ist der Verbindungsvektor $\vec{r} = \vec{r}_2 - \vec{r}_1 = z \vec{e}_z$.

Das Wechselwirkungspotential zweier magnetischer Dipole ist

$$W_{12} = \frac{\mu_0}{4\pi} \left(\frac{\vec{m}_1 \cdot \vec{m}_2}{|\vec{r}|^3} - \frac{3(\vec{m}_1 \cdot \vec{r})(\vec{m}_2 \cdot \vec{r})}{|\vec{r}|^5} \right).$$

Alle vorkommenden Vektoren sind zueinander parallel und es ergibt sich durch Einsetzen

$$W_{12} = \frac{\mu_0}{4\pi} I_1 I_2 A^2 \left(\frac{1}{z^3} - \frac{3z^2}{z^5} \right) = -\frac{\mu_0}{2\pi} I_1 I_2 A^2 \frac{1}{z^3}.$$

Die Kraft der Leiterschleife \mathcal{L}_1 auf die Leiterschleife \mathcal{L}_2 ist dann in der Dipol-Näherung

$$\begin{split} \vec{F}_{12} &= -\vec{\nabla}_2 W_{12} = -\vec{e}_z \frac{\partial}{\partial z} W_{12} \\ &= +\vec{e}_z \frac{\mu_0}{2\pi} I_1 I_2 A^2 \frac{-3}{z^4} \\ &= -\vec{e}_z \frac{3\mu_0}{2\pi} I_1 I_2 A^2 \frac{1}{z^4}. \end{split}$$

Somit ist die Kraft anziehend.

(b) Die magnetischen Dipolmomente der beiden Leiterschleifen bleiben gleich $\vec{m}_{1/2} = I_{1/2} A \vec{e}_z$. Die Relativposition wird zu $\vec{r} = \vec{r}_2 - \vec{r}_1 = x \vec{e}_x$. Nun ist $\vec{m}_{1/2} \perp \vec{r}$, also $\vec{m}_{1/2} \cdot \vec{r} = 0$. Es ergibt sich

$$W_{12} = \frac{\mu_0}{4\pi} I_1 I_2 A^2 \left(\frac{1}{x^3} - \frac{3z^2}{z^5} \right) = \frac{\mu_0}{4\pi} I_1 I_2 A^2 \frac{1}{x^3}.$$

Die Kraft der Leiterschleife \mathcal{L}_1 auf die Leiterschleife \mathcal{L}_2 ist dann in der Dipol-Näherung

$$\vec{F}_{12} = -\vec{\nabla}_2 W_{12} = -\vec{e}_x \frac{\partial}{\partial x} W_{12}$$
$$= -\vec{e}_x \frac{\mu_0}{4\pi} I_1 I_2 A^2 \frac{-3}{x^4}$$
$$= \vec{e}_x \frac{3\mu_0}{4\pi} I_1 I_2 A^2 \frac{1}{x^4}.$$

Somit ist die Kraft abstoßend.

- 3. (8 Punkte) In einem rechteckigen Plattenkondensator (Plattenabstand d und Fläche $a \cdot b$) um eine Strecke x (mit 0 < x < a) ein Dielektrikum der relativen Dielektrizitätskonstante $\epsilon > 1$ eingeschoben (siehe Abbildung). Der restliche Raum zwischen den Platten ist leer. Die Ladungen auf der unteren und oberen Platte sind Q und -Q. Alle Felder zwischen den Platten können als (stückweise) homogen angenommen werden.
 - (a) (1 Punkt) Welche Beziehung gilt zwischen den elektrischen Feldern E_1 und E_2 ? Welche Beziehung gilt zwischen den dielektrischen Verschiebungen D_1 und D_2 ?
 - (b) (1 Punkt) Welcher Zusammenhang besteht zwischen D_1 , D_2 und den freien Flächenladungsdichten σ_1 , σ_2 ?
 - (c) (3 Punkte) Berechnen Sie in Abhängigkeit von Q und x die elektrischen Felder E_1 , E_2 und die dielektrischen Verschiebungen D_1 , D_2 im Raum zwischen den Platten. Zum Vergleich: $D_2 = Q/[b(a + (\epsilon - 1)x)]$
 - (d) (2 Punkte) Berechnen Sie in Abhängigkeit von Q und x die elektrostatische Feldenergie W(x).
 - (e) (1 Punkt) Mit welcher Kraft $\vec{F} \propto \vec{e}_x$ wird das Dielektrikum in den Kondensator hineingezogen?

Lösung:

- (a) Die Tangentialkomponente von \vec{E} ist stetig an der Grenzfläche zwischen Dielektrikum und Vakuum. Somit gilt $E_1=E_2$.
- (b) Die Normalkomponenten von \vec{D} springt um die freie Flächenladungsdichte, daher gilt $\sigma_1 = D_1$ und $\sigma_2 = D_2$.
- (c) Die Gesamtladung Q auf der unteren Platte setzt sich aus zwei Flächenladungen zusammen: $Q = xb\sigma_1 + (a-x)b\sigma_2 = b(x\epsilon + a x)\epsilon E_1$. Die gesuchten Abhängigkeiten sind:

$$E_1 = E_2 = \frac{Q}{\epsilon_0 b[a + (\epsilon - 1)x]}, \quad D_1 = \frac{Q\epsilon}{b[a + (\epsilon - 1)x]}, \quad D_2 = \frac{Q}{b[a + (\epsilon - 1)x]}.$$

(d) Die Feldenergie $W(x) = \frac{1}{2} \int dV \vec{D} \cdot \vec{E}$ setzt sich aus den einzelnen Beiträgen der beiden Bereiche zusammen:

$$W(x) = \frac{Q^2 db}{2b^2 \epsilon_0 [a + (\epsilon - 1)x]^2} (\epsilon x + a - x) = \frac{Q^2 d}{2b \epsilon_0 [a + (\epsilon - 1)x]}.$$

(e) Die Kraft, mit der das Dielektrikum in den Kondensator gezogen wird, ist

$$F = -\frac{\partial}{\partial x}W(x) = \frac{Q^2d(\epsilon - 1)}{2b\epsilon_0[a + \epsilon - 1)x]}.$$

- 4. (7 Punkte) Ein (sehr langes) gerades Koaxialkabel besteht aus einem inneren, leitenden Hohl-zylinder vom Radius a und konzentrisch dazu einem leitenden Zylindermantel mit Radius b > a, welche als Rückleitung dient.
 - (a) (1 Punkt) Geben Sie die Stromdichte $\vec{j}(\vec{r}) = j(\rho)\vec{e}_x$.
 - (b) (4 Punkte) Berechnen Sie das Magnetfeld $\vec{B}(\vec{r}) = B(\rho)\vec{e}_{\varphi}$ und ein zugehöriges (stetiges) Vektorpotential $\vec{A}(\vec{r}) = A(\rho)\vec{e}_z$ im ganzen Raum.
 - (c) (2 Punkte) Berechnen Sie die Selbstinduktivität pro Längeneeinheit L/l des Koaxialkabels.

Lösung:

(a) Da die Ströme $\pm I$ nur durch die Kreislinien vom Radius b und a fließen, schreibt sich die Stromdichte als

$$\vec{j}(\vec{r}) = I\vec{e}_z \left[\frac{\delta(\rho - a)}{2\pi a} - \frac{\delta(\rho - b)}{2\pi b} \right].$$

(b) Das Ampere'sche Durchflutungsgesetz für eine konzentrische Kreislinie vom Radius ρ liefert

$$2\pi \rho B(\rho) = \mu_0 I \begin{cases} 0, & \rho < a, \\ 1, & a < \rho < b, \\ 0, & \rho > b. \end{cases}$$

Das Magnetfeld hat die Stärke

$$B(\varrho) = \frac{\mu_0 I}{2\pi\rho} \Theta(\rho - a)\Theta(b - \rho).$$

Aus $\operatorname{rot}[A(\rho)\vec{e}_z] = -A'(\rho)\vec{e}_{\varphi}$ folgt $A'(\rho) = -B(\rho)$ und Integration liefert

$$A(\rho) = -\frac{\mu_0 I}{2\pi} \ln(\rho) + \text{const.}$$

Bei der Wahl $A(\rho) = 0$ für $\rho > a$ lautet die stetige Fortsetzung ins Innere des Koaxialkabels

$$A(\rho) = \frac{\mu_0 I}{2\pi} \begin{cases} \ln\left(\frac{b}{a}\right), & \rho < a, \\ \ln\left(\frac{b}{\rho}\right), & a < \rho < b, \\ 0, & \rho > b. \end{cases}$$

(c) Die Selbstinduktivität pro Längeneinheit ist definiert durch $L/l=(1/I^2)\int \mathrm{d}A\ \vec{A}\cdot\vec{j}$ und berechnet sich in ebenen Polarkoordinaten zu

$$\frac{L}{l} = \frac{\mu_0}{4\pi^2} 2\pi \int_0^b dp \ln\left(\frac{b}{\rho}\right) \left[\frac{\delta(\rho - a)}{a} - \frac{\delta(\rho - b)}{b}\right]$$

$$= \frac{\mu_0}{2\pi} \left[\frac{a}{a} \ln\left(\frac{b}{a}\right) - \frac{b}{b} \ln\left(\frac{b}{b}\right)\right]$$

$$= \frac{\mu_0}{2\pi} \ln\left(\frac{b}{a}\right).$$

- 5. (9 Punkte) Ein magnetischer Dipol $\vec{m} = (0,0,m)$ befindet sich am Punkt $\vec{a} = (0,0,a)$ (mit a > 0) über einer supraleitenden Platte (mit Permeabilitätskonstante = 0), welche die ganze xy-Ebene abdeckt.
 - (a) (1 Punkt) Geben Sie in expliziter Form das Magnetfeld $\vec{B}_{\rm dip}(\vec{r})$ des Dipols \vec{m} in Abwesenheit der supraleitenden Platte an.
 - (b) (4 Punkte) Um die Randbedingung auf der Platte zu erfüllen, wird für das Magnetfeld im Bereich $z \ge 0$ der Ansatz mit einem zusätzlichen Spiegeldipol $\vec{m}' = (0, 0, m')$ am Punkt $\vec{a}' = (0, 0, -a)$ benutzt. Bestimmen Sie den Wert von m'.
 - (c) (3 Punkte) Berechnen Sie die Flächendichte des Magnetisierungsstroms $\vec{J}_{\text{mag}}(x,y)$ auf der Platte.
 - (d) (3 Punkte) Bestimmen Sie die vom Supraleiter auf den Dipol wirkende Kraft \vec{F} durch Berechnung der entsprechenden Gegenkraft.

Benutzen Sie das Integral
$$\int_{0}^{\infty} \mathrm{d}p \frac{\rho^{3}}{(a^{2} + \varrho^{2})^{5}} = \frac{1}{24a^{6}}.$$

Lösung:

(a) Mit den Vorgaben $\vec{m} = (0, 0, m)$ und $\vec{a} = (0, 0, a)$ schreibt sich das magnetische Dipolfeld $\vec{B}_{\rm dip}(\vec{r}) = \frac{\mu_0}{4\pi} |\vec{r} - \vec{a}|^{-5} \left[3\vec{m} \cdot (\vec{r} - \vec{a})\vec{r} - \vec{a} \right) - \vec{m}(\vec{r} - \vec{a})^2 \right]$ in der Form

$$\vec{B}_{\text{dip}}(\vec{r}) = \frac{\mu_0 m}{4\pi [x^2 + y^2 + (z - a)^2]^{5/2}} \begin{bmatrix} 3 \begin{pmatrix} x \\ y \\ z - a \end{pmatrix} (z - a) - \begin{pmatrix} 0 \\ 0 \\ x^2 + y^2 + (z - a)^2 \end{bmatrix} \end{bmatrix}$$
$$= \frac{\mu_0 m}{4\pi [x^2 + y^2 + (z - a)^2]^{5/2}} \begin{bmatrix} 3x(z - a) \\ 3y(z - a) \\ 2(z - a)^2 - x^2 - y^2 \end{bmatrix}.$$

(b) Die Überlagerung von \vec{m} bei \vec{a} und $\vec{m}' = (0, 0, m')$ bei $\vec{a}' = (0, 0, -a)$ ergibt ein Magnetfeld

$$\vec{B}(\vec{r}) = \frac{\mu_0 m}{4\pi [x^2 + y^2 + (z - a)^2]^{5/2}} \begin{pmatrix} 3x(z - a) \\ 3y(z - a) \\ 2(z - a)^2 - x^2 - y^2 \end{pmatrix} + \frac{\mu_0 m'}{4\pi [x^2 + y^2 + (z + a)^2]^{5/2}} \begin{pmatrix} 3x(z + a) \\ 3y(z + a) \\ 2(z + a)^2 - x^2 - y^2 \end{pmatrix}.$$

Aus der Stetigkeit der Normalkomponente von \vec{B} folgt aufgrund von $\vec{B} = 0$ im Supraleiter die Bedingung $B_z(x, y, 0) = 0$. Diese ist genau dann erfüllt, wenn m' = -m gilt.

(c) Die Magnetisierungsstromstärke ist $\vec{j}_{\text{mag}} = \text{rot}(\vec{M}) = \text{rot}(\vec{B}/\mu_0 - \vec{H}) = \text{rot}\vec{B}/\mu_0 + \vec{j}_{\text{frei}}$. Da kein freier Flächenstrom vorliegt, ist die Flächendichte des Magnetisierungsstroms durch den Sprung der Tangentialkomponenten von \vec{B}/μ_0 bestimmt:

$$\begin{split} \vec{J}_{\text{mag}}(x,y) &= \vec{e}_z \times \frac{\vec{B}}{\mu_0} \big|_{z=0} \\ &= \frac{m}{4\pi (x^2 + y^2 + a^2)^{5/2}} \vec{e}_z \times \left(\begin{array}{c} -3xa - 3xa \\ -3ya - 3ya \\ & \dots \end{array} \right) = \frac{3ma}{2\pi (x^2 + y^2 + a^2)^{5/2}} \left(\begin{array}{c} y \\ -x \\ 0 \end{array} \right). \end{split}$$

(d) Die Gegenkraft zu \vec{F} ist diejenige Kraft, welche die Magnetisierungsflächenstromdichte im Dipolfeld von \vec{m} erfährt: $-\vec{F} = \int \mathrm{d}F \left(\vec{J}_{\rm mag} \times \vec{B}_{\rm dip}|_{z=0} \right)$. Man berechnet:

$$\vec{F} = -\frac{3ma}{2\pi} \frac{\mu_0 m}{4\pi} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy [x^2 + y^2 + a^2]^{-5} \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix} \times \begin{pmatrix} -3xa \\ -3ya \\ 2a^2 - x^2 - y^2 \end{pmatrix}.$$

Wobei das Kreuzprodukt die Komponenten

$$\begin{pmatrix} x(x^2 + y^2 - 2a^2) \\ y(x^2 + y^2 - 2a^2) \\ -3a(x^2 + y^2) \end{pmatrix}$$

hat. Da die Integranden ungerade in x bzw. y sind, integrieren sich F_x und F_y zu Null. Für F_z erhält man bei Auswertung des Integrals in Polarkoordinaten

$$F_z = \frac{9\mu_0 m^2 a^2}{8\pi^2} 2\pi \int_0^\infty \mathrm{d}p \frac{\rho^3}{(a^2 + \rho^2)^5} = \frac{3\mu_0 m^2}{32\pi a^4} > 0.$$

Der Supraleiter stößt den magnetischen Dipol ab.

Alternativ ist eine Berechnung über das Dipol-Dipol-Potential (für $\vec{m}_1 = -\vec{m}_2 = (0, 0, m)$ und Abstandsvektor (0, 0, 2a)) möglich:

$$W_{12} = \frac{\mu_0}{4\pi(2a)^3}(-m^2)(1-3) = \frac{\mu_0 m^2}{16\pi a^3},$$
$$F_z = -\frac{\partial}{\partial(2a)}W_{12} = \frac{3\mu_0 m^2}{32\pi a^4}.$$