

Who am I?

physical design aids, or more, we've got you covered. Contact us

MUTUM SOFTWARE COMPANY

Services

Quantum Computing – The Big Picture

Quantum Devices

Quantum Computing – The Big Picture

Domain Experts i in the light triple in the light

Quantum Devices

Quantum Computing – The Big Picture

Domain Experts

existing compute & HPC

to enable quantum acceleration?

Quantum Devices

MQSS Munich Quantum Software Stack

MQSS Core:

Front-End

Middle-End

Back-End

System

Interfaces /APIs

Plugins by Modality

The Munich Quantum Toolkit (MQT)

All tools are available as open-source repositories on GitHub under the MIT license

MOT Bench Application A Quantum Circuit Benchmark Suite www.cda.cit.tum.de/matbench aithub.com/ munich-quantum-toolkit/bench

Application

MQT Quantum Auto Optimizer

MQTDASQA	Hardware
A Tool for Designing Alternative Superconducting Quantum Archit	ectures
github.com/cda-tum/mqt-dasq	a

https://mqt.readthedocs.io

MQSS Components Catalog

munich-quantum-valley.de/research/research-areas/mqss

Front-End

QPI: Hybrid Programming from C/C++

LRZ/LS & TUM/MS: Ercüment Kaya

FPQA Compiler for Max3SAT problems

■ TUM/PB: Oğuzcan Kırmemiş

qTPU: Large circuits as tensor networks

TUM/PB: Nathaniel Tornow

ISV Job execution for Spin Hamiltonians

LRZ/LS: Burak Mete and Tobias Bauer

MQT QECC: EC quantum circuit preparation

TUM/RW: Lucas Berent

Parallel circuit extraction from ZX Diagrams

LMU/DK: Karl Führlinger

GA4QCD: Application-specific synthesis

LMU/CLP: Leo Sünkel

qcd-gym: Circuit builder/optimizer using RL

LMU/CLP: Philipp Altmann

Middle-End

MQT Predictor: Predict suitable back-ends

TUM/RW: Nils Quetschlich

MILQ: Assigning circuits backends

TUM/CM: Philipp Seitz and Manuel Geiger

Al-based compiler path selection

LRZ/LS & TUM/MS: Aleksandra Świerkowska

MQT QMAP: Topology mapping of circuits

■ TUM/RW: Lukas Burgholzer

MQT QCEC: Tool for equivalence checking

TUM/RW: Lukas Burgholzer

MQT Qudits: Compilation for multistate Qbits

TUM/RW: Kevin Mato

Quantum constant propagation

TUM/HS: Yanbin Chen

Mid-Circuit measurement reduction

TUM/HS: Innocenzo Fulginiti

Back-End

Hardware backend development with partners

LRZ/LS: Jorge Echavarria

FoMaCs via Sys-Sage tool library

TUM/MS: Stepan Vanecek

Unified Quantum Platform (UQP)

TUM/MS: Amr Elsharkawy

Quantum Control Processor (QCP) and ISA

TUM/MS: Xiaorang Guo

Simulator: MQT DDSIM

TUM/RW: Lukas Burgholzer

Simulator: Tensor networks

TUM/CM: M. Geiher and Q. Huang

Simulator: Parallel Clifford+T

LMU/DK: Florian Kroetz

Simulator: Back-ends for HPC simulators

LRZ/LS: Marco De Pascale

System

Munich Quantum Portal (MQP) and plugins

■ LRZ/LS: Marco De Pascale

Resource prediction and circuit scheduler

LRZ/LS: Minh Chung

IoT Environment / ODA / Digital Twins

LRZ/LS & TUM/MS: H. Ahmed and Y. Gambo

HPC scheduling

LRZ/LS & TUM/MS: Nufail Farooqi

Operations, Configuration, Calibration

LRZ/LS: Matt Tovey and Xiaolang Deng

open-source, openly-developed, multi-modality, HPC-compatible

Session

- User Management
- Access Control
- Resource Management

Query

- **Device Properties**
- Site Properties
- **Operation Properties**

Job

- Job Configuration
- Job Submission
- Result Retrieval

Conclusions

open-source, openly-developed, multi-modality, HPC-compatible

munich-quantum-valley.de/research/research-areas/mass

github.com/Munich-Quantum-Software-Stack/QDMI

JUNE 24-27, 2025 I MESSE MÜNCHEN

