02 – Predictive Modeling (with Class Imbalance Handling & Visualizations)

S Objective

Build machine learning models to predict customer churn using:

- Logistic Regression (baseline)
- XGBoost (advanced, with class imbalance handling)

🖢 Dataset Overview

- Source: Synthetic telecom churn dataset (50,000 rows)
- Target: Churn (Yes/No \rightarrow 1/0)
- · Features: Demographics, services, billing, and tenure info

Preprocessing

- · Encoded categorical variables using Label Encoding
- · Removed customer ID
- · Converted Churn to binary
- Stratified train-test split (80/20)

Load Cleaned Data

```
In [16]: import pandas as pd
from sklearn.model_selection import train_test_split

# Load cleaned dataset
df = pd.read_csv('../data/processed/churn_clean.csv')
df.head()
```

Out[16]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 Devicel
0	CUST_00000	Male	0	Yes	No	63	Yes	No phone service	No	No internet service	
1	CUST_00001	Female	0	No	No	36	Yes	Yes	Fiber optic	No internet service	 1
2	CUST_00002	Male	0	No	No	32	Yes	Yes	DSL	Yes	
3	CUST_00003	Male	1	No	Yes	24	Yes	No phone service	Fiber optic	No	 1
4	CUST_00004	Male	0	No	Yes	2	Yes	No	No	No	 1
5 rows × 21 columns											

Data Preprocessing & Encoding

```
In [17]: from sklearn.preprocessing import LabelEncoder
    import numpy as np

# Drop ID column if exists
    df = df.drop(columns=['customerID'], errors='ignore')
    df['Churn'] = df['Churn'].map({'Yes': 1, 'No': 0})

cat_cols = df.select_dtypes(include='object').columns
for col in cat_cols:
    le = LabelEncoder()
    df[col] = le.fit_transform(df[col])
```

Train-Test Split

```
In [18]: X = df.drop('Churn', axis=1)
         y = df['Churn']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
```

📊 Baseline: Logistic Regression

```
In [19]: from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import classification_report, roc_auc_score
          log_model = LogisticRegression(max_iter=1000)
          log_model.fit(X_train, y_train)
y_pred_log = log_model.predict(X_test)
          y_prob_log = log_model.predict_proba(X_test)[:, 1]
          print(classification_report(y_test, y_pred_log))
          print('ROC AUC:', roc_auc_score(y_test, y_prob_log))
```

port
6890
3110
.0000
.0000
.0000
1

ROC AUC: 0.7378817336276537

Advanced Model: XGBoost (with Class Imbalance Handling)

```
In [20]: # Compute class weights
         from sklearn.utils import class_weight
         weights = class\_weight.compute\_class\_weight('balanced', classes=np.unique(y\_train), y=y\_train)
         scale_pos_weight = weights[0] / weights[1]
         from xgboost import XGBClassifier
         xgb_model = XGBClassifier(scale_pos_weight=scale_pos_weight, eval_metric='logloss')
         xgb_model.fit(X_train, y_train)
         y_pred_xgb = xgb_model.predict(X_test)
         y_prob_xgb = xgb_model.predict_proba(X_test)[:, 1]
         print(classification_report(y_test, y_pred_xgb))
         print('ROC AUC:', roc_auc_score(y_test, y_prob_xgb))
```

	precision	recall	f1-score	support
0	0.75	0.96	0.84	6890
1	0.78	0.29	0.42	3110
accuracy			0.75	10000
macro avg	0.77	0.63	0.63	10000
weighted avg	0.76	0.75	0.71	10000

ROC AUC: 0.7977944408924813

Feature Importance

```
In [21]: import matplotlib.pyplot as plt
import seaborn as sns

importances = xgb_model.feature_importances_
feat_names = X.columns

plt.figure(figsize=(10, 6))
sns.barplot(x=importances, y=feat_names)
plt.title('XGBoost Feature Importances')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.tight_layout()
plt.show()
```


ROC Curve Visualization

```
In [22]: from sklearn.metrics import roc_curve, auc

fpr, tpr, _ = roc_curve(y_test, y_prob_xgb)
    roc_auc = auc(fpr, tpr)

plt.figure(figsize=(8, 5))
    plt.plot(fpr, tpr, label=f'XGBoost (AUC = {roc_auc:.2f})')
    plt.plot([0, 1], [0, 1], linestyle='--', color='gray')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC Curve')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```



```
In [23]: import joblib
    joblib.dump(xgb_model, '../models/final_model.pkl')
    print('Model saved successfully.')
```

Model saved successfully.

📊 Model 1 – Logistic Regression

- · Accuracy: 72%
- Churn Recall (Class 1): 38%
- Churn Precision (Class 1): 59%
- ROC AUC: 0.738

Conclusion: Good baseline with moderate ability to detect churners. Balanced performance, but limited in capturing complex feature interactions.

Model 2 - XGBoost (with scale_pos_weight)

- Accuracy: 75%
- Churn Recall (Class 1): 29%
- Churn Precision (Class 1): 78%
- ROC AUC: 0.798

Conclusion:

- Stronger model overall in separating churners from non-churners.
- High precision but lower recall indicates it's more conservative in predicting churn.

Visual Insights

- Feature Importance: Key drivers of churn include Contract, MonthlyCharges, Tenure
- ROC Curve: XGBoost demonstrates stronger discrimination ability across all thresholds.

@ Business Implications

- XGBoost is better suited if the goal is to reduce unnecessary retention outreach (high precision).
- Logistic Regression or threshold-tuned models are better if the goal is to catch more churners (high recall).

In []: