Mercredi 08 février 2017 (Durée 02h00)

Exercice N° 1: LES GLUCIDES (4 pts)

R1: Structures du Glu1-P (à gauche) et du Glu6-P (à droite).

Glucose-1-phosphate

Glucose-6-Phosphate (G6P)

0.25 pts

R2:

0.25 pts- Le Glu1-P n'est pas réducteur, le OH du carbone hémi-acétalique est engagé dans une liaison avec le phosphate.
 0.25 pts

0.25 pts - Le Glu6-P est réducteur, car OH du carbone hémi-acétalique est libre.

R3: voir les flèches sur les structures:

- Pour le Glu1-P : 2 molécules HIO4. 0.25 pts

- Pour le Glu6-P : 3 molécules HIO4. 0.25 pts

R4: Les produits de perméthylation suivie d'une hydrolyse acide de Glu1-P et de Glu6-P

- Pour le Glu1-P : 2,3,4,6 tétra-O-méthyl-α-D-glucopyranose (ou 2,3,4,6 tétraméthylglucopyranose) 0.25 pts

- Pour le Glu6-P : 2,3,4 tri-O-méthyl-α-D-glucopyranose (ou 2,3,4 triméthylglucopyranose)

0.25 pts

Exercice 2: LES LIPDES (6 pts)

Partie A

TG + 3KOH → Glycérol + savons (ou sels d'AG)

$IS = 3 PM (KOH) \times 1000/535$

Donc PM du triglycéride= 56000/535=314,02.

Le TG est homogène est saturé, donc son PM = PM_{glycérol} + 3X PM_{acide gras} – 3 PM_{H2O}

On sait que la formule générale d'un AG saturé est C_nH2nO₂

Donc le PM d'un AG saturé = n x12 +2n + 32

PM glycérol = 92

Donc le PM de l'AG = $(PM_{TG} - PM_{glyc\acute{e}rol} + 3 PM_{H2O})/3 = 92$

 $92 = 14n + 32 \Rightarrow n = (92 - 32)/14 = 4.$

L'acide gras est l'acide butyrique et le triglycéride est la tributyrine 2 pts

(2^{ème} année LMD)

EXAMEN DE REMPLACEMENT DE BIOCHIMIE

Mercredi 08 février 2017 (Durée 02h00)

Partie B

R1: - AG 1: C20, $\Delta^{5,8,11,14}$: CH3-(CH2)₄-CH=CH-CH2-CH=CH-CH2-CH=CH-CH2-CH=CH-(CH2)₄-COOH

Acide Arachidonique, 25 pt

- AG 2: C18:0: CH3-(CH2)₁₆-COOH: 0.5 pt

Acide Stéarique 0. 25 pt

R2 : Stucture et nom de phosphatidylcholine qui en résulte

Le nom: 1-arachidonyl-2-stéaryl-phosphatidylcholine 0, 25 pts

R3: La phospholipase C libère la phosphocholine. 0. 5 pts

R4: Deux (2) Molécule de KOH 0. 5 pts

Exercice 3: ACIDES AMINES, PEPTIDES ET PROTEINES (4 pts)

Q1) Donner le mode d'action de chaque traitement

Hydrolyse acide : Hydrolyse les liaisons peptidiques, détruit le tryptophane. **0. 25 pts**

DNFB: Se lie à l'acide aminé N-terminal. **0. 25 pts**

Trypsine : Coupe après Lysine et Arg. Dans ce cas coupe après la lysine **0. 25 pts**

Chymotrypsine: Coupe après les acides aminés aromatiques. Dans ce cas le Trp 0. 25 pts

CNBr: Coupe après la Met. **0. 25 pts**

Aminopeptidase: détache l'acide aminé N-terminal. 0. 25 pts

(2^{ème} année LMD)

EXAMEN DE REMPLACEMENT DE BIOCHIMIE

Mercredi 08 février 2017 (Durée 02h00)

Q2) Déduire la séquence du peptide P :

- on déduit des traitements que le peptide P est cyclique (inexistence de DNP-AA) 0. 5 pts
- On déduit également que le tryptophane existe vu l'action de la chymotrypsine. 0. 25 pts
- On déduit les séquences suivantes :
- * grâce à l'action de la trypsine : Gly-Met-aa-aa-Lys Donc Lys-Gly-Met (1) 0. 25 pts
- * grâce à l'action de la chymotrypsine : Ala-aa-aa-aa-Trp Donc Trp-Ala (2) 0. 25 pts
- * grâce à l'action de CNBr: Leu-aa-aa-aa-Met Donc Met-Leu (3) 0. 25 pts
- Après synthèse des 3 séquences on reconstitue le cycle suivant : 1-3-2 ou 2-1-3 ou 3-2-1

Exercice N°4: ENZYMOLOGIE (3 pts)

- 1. Quatre (4) différences entre un catalyseur chimique et un catalyseur enzymatique (1pt)
- Les vitesses de réaction,
- Les conditions de réaction
- La spécificité de réaction
- La possibilité de régulation
- 2. L'équation de Michaelis-Menten $Vi = \frac{Vmax[S]}{Km+[S]}$ (0.5 pts)

(2^{ème} année LMD)

EXAMEN DE REMPLACEMENT DE BIOCHIMIE

Mercredi 08 février 2017 (Durée 02h00)

La déduction l'équation de Lineweaver-Burk : Inversion de l'équation de Michaelis-Ment

$$\frac{1}{Vi} = \frac{Km + [S]}{Vmax} \text{ Donc } \frac{1}{Vi} = \frac{Km}{Vmax} x \frac{1}{[S]} + \frac{1}{Vmax} (0.5 \text{ pts})$$

2. La vitesse maximale d'une enzyme michaelienne vis-à-vis de son substrat est de 100 μmole.L⁻¹.min⁻¹. En présence d'un inhibiteur compétitif la vitesse maximale d'une enzyme michaelienne n'est pas afféctée et reste inchangée. Donc Vmax'=100 μmole.L⁻¹.min⁻¹ (1 pt)

Université A. Mira de Bejaia Faculté des sciences de la nature et de la vie Département de TCSN

(2^{ème} année LMD)

d) Cette réaction produit un ATP

EXAMEN DE REMPLACEMENT DE BIOCHIMIE Mercredi 08 février 2017 (Durée 02h00)

Exercice N° 5: MÉTABOLISME (3pts)	
Encercler la (les) proposition(s) exacte(s)?	NOM : PRENOM : Groupe :
1 : Concernant la glycolyse : (1 pt) 0.25 pts par réponse	juste
 a- La dégradation d'une molécule de glucose par la glycolys molécule de pyruvate. 	se aboutit à la formation d'une
X b- Durant une glycolyse, il y a deux ATP consommés et qua	tre ATP formés.
X c- La phosphofructokinase catalyse une réaction irréversible	2.
d- La glycolyse englobe 12 réactions dont 3 sont irréversible	es
 2: La réaction : Glucose 6 phosphate => Fructose 6 ph juste a) Cette réaction est irréversible 	osphate : (1 pt) 0.25 pts par réponse
b) Cette réaction consomme un ATP	
c) Cette réaction produit un ATP	
d) Catalysée par la phosphofructokinase	
3 : La réaction : Fructose 6 phosphate → Fructose réponse juste	1,6 bi-phosphate ((1 pt) 0.25 pts par
a) Cette réaction est réversible	
X b) Cette réaction est catalysée par la phosphofructokinase	
Xc) Cette réaction consomme un ATP	