Problem 1. Let us define the Sobolev space $H^s(\mathbb{R}^n)$, $s \geq 0$, to be the set of all functions $u \in L^2(\mathbb{R}^n)$ such that

$$||u||_{H^s}^2 = \frac{1}{(2\pi)^n} \int |\widehat{u}(\xi)|^2 (1+|\xi|^2)^s \, d\xi < \infty. \tag{0.1}$$

• Show that $H^s(\mathbb{R}^n)$ is a Hilbert space when equipped with the scalar product

$$(u,v)_{H^s} = \frac{1}{(2\pi)^n} \int \widehat{u}(\xi) \overline{\widehat{v}(\xi)} (1+|\xi|^2)^s d\xi.$$

• When $K \subset \mathbb{R}^n$ is compact, we put

$$H^s(K) = \{ u \in H^s(\mathbb{R}^n); \text{ supp } (u) \subset K \}.$$

This is a closed linear subspace of $H^s(\mathbb{R}^n)$ and hence also a Hilbert space. Show that the inclusion map $H^s(K) \to H^t(\mathbb{R}^n)$ is compact, if $s > t \ge 0$. Hint. Let $u_j \in H^s(K)$ be a bounded sequence. Show first that the sequence of smooth functions $\widehat{u}_j \in C^\infty(\mathbb{R}^n)$ is uniformly bounded and equicontinuous on each compact subset of \mathbb{R}^n .

Problem 2. Let B_1 and B_2 be Banach spaces and let $T \in \mathcal{L}(B_1, B_2)$. Prove that if T is compact, then $||Tu_n||_{B_2} \to 0$ for every sequence $u_n \in B_1$ such that $u_n \to 0$ in the weak topology $\sigma(B_1, B_1^*)$. Prove the converse when B_1 is reflexive and B_1^* is separable.

Problem 3. Let H be a complex separable Hilbert space. An operator $T \in \mathcal{L}(H,H)$ is called a *Hilbert-Schmidt* operator if for some orthonormal basis $\{e_j\}$ of H, we have

$$\sum ||Te_j||^2 < \infty. \tag{0.2}$$

- Show that if T satisfies (0.2) for one orthonormal basis, then it satisfies (0.2) for every orthonormal basis, and the sum in (0.2) is independent of the choice of the basis. The square root $||T||_{HS}$ of this sum is called the Hilbert-Schmidt norm of T.
- ullet Show that the operator norm of T does not exceed the Hilbert-Schmidt
- Show that if T is of Hilbert-Schmidt class, then so is T^* and $||T||_{HS} = ||T^*||_{HS}$.
- Show that every Hilbert-Schmidt operator is compact.
- Show that if T is a Hilbert-Schmidt operator, and $S \in \mathcal{L}(H, H)$ then ST is Hilbert-Schmidt and

$$||ST||_{HS} \le ||S|| \, ||T||_{HS}.$$

• Let $K \in L^2(\mathbb{R}^n \times \mathbb{R}^n)$. Prove that if $f \in L^2(\mathbb{R}^n)$, then

$$\mathcal{K}f(x) = \int K(x, y)f(y) \, dy$$

exists for almost every x, and that \mathcal{K} is a Hilbert-Schmidt operator from $L^2(\mathbb{R}^n)$ to itself, with the Hilbert-Schmidt norm equal to the norm of K in $L^2(\mathbb{R}^n \times \mathbb{R}^n)$. Prove that every Hilbert-Schmidt operator on $L^2(\mathbb{R}^n)$ is of this form.

Problem 4. Let K be a compact self-adjoint operator on a Hilbert space H, and assume that $K \geq 0$. Let $\lambda_1 \geq \lambda_2 \geq \ldots$ be the sequence of non-zero eigenvalues of K, repeated according to their multiplicity and arranged in a decreasing order. Prove the Courant-Fischer minimax formula,

$$\lambda_k = \min_{\operatorname{codim} V = k-1} \max_{u \in V, \|u\| \le 1} (Ku, u),$$

where V varies over the set of linear subspaces of H of codimension k-1.

Problem 5. Let $f \in C(\mathbb{R}/2\pi\mathbb{Z})$ be such that $f(\theta_0) = 0$ for some $\theta_0 \in \mathbb{R}/2\pi\mathbb{Z}$. Show that the associated Toeplitz operator, Top(f), is not Fredholm on the Hardy space $H^2 \subset L^2(\mathbb{R}/2\pi\mathbb{Z})$.

Hint. Assume first that f vanishes on a non-empty open set.