プロジェクト実習 III

パターン認識

- 第 | 週 | -

担当:崔恩瀞

パターン認識テーマ 4週間の計画

週	提出物	実験内容	テキスト
ı		特徴抽出	章
2		特徴の評価	2章
3	レポート(1,2週分)	数字識別	3章
4		識別性能の評価	4章
	レポート(3,4週分)		

- 提出期限:締切日の12:50
- コーディングはすべて Google Colaboratory で行う

パターン認識概論

- パターン
 - ◆ 人間や動物が知覚できる実世界の画像・音声・匂いなどの情報
- パターン認識
 - ◆ 観測されたパターンをあらかじめ定められた複数の概念(クラス)の うちの一つに対応させる処理
- パターン認識の例
 - ◆ 文字認識 画像 → 文字
 - ◆ 音声認識 音声波形 → 文字 or 単語
 - ◆ 心電図の分析 波形 → 病気の兆候

本実験で用いる数字画像データ

0 1 2 3 4

5 6 7 8

- · Oから9までの数字画像
 - ◆ ノイズの付加や大きさ・位置の変動あり
 - ◆ 各数字で10パターンの異なる画像
 - ◆ ファイル名: number正解数字_通し番号.pgm

パターン認識システムの構成

実験の流れ

前処理部

- 前処理部の入出力
 - ◆ 入力:アナログ信号
 - ◆ 出力:デジタル信号

- ただし、単純なAD変換ではない
 - ◆ 識別に必要な情報が落ちていない精度で
 - ◆ かつ、後の処理が容易な容量で
- 信号処理レベルで可能なノイズ除去も行う

特徵抽出部

- 特徴抽出部の入出力
 - ◆ 入力:デジタル信号
 - + 出力:パターンの特徴を表すd次元ベクトル $x = (x_1, x_2, \dots, x_d)^T$
- 特徵抽出処理
 - ◆ パターンの変動に影響されにくい特徴を選ぶ
 - ◆ 例)文字認識
 - 識別に役立つ特徴:線の本数・傾き・曲率 etc.
 - パターンの変動: 文字の大きさ・位置・色 etc.
 - ◆ 抽出すべき特徴は認識対象によって異なる
 - 例) 音声認識と話者認識

T: 転置記号

第1週の実験

- ・ 数字画像に対する特徴抽出
 - ◆ 各画像に対して白黒反転、正規化を行う
 - ◆ 画素の縦方向・横方向の広がり方を捉えるために、8次元の特徴 量抽出を行う
 - ◆特徴量の各次元のスケールを合わせるために標準化を行う
 - ◆ 正解数字と上記8次元の特徴をカンマ区切りで並べた100行9列 のcsvファイルを出力とする
 - ◆ (発展課題)上記処理の前処理としてノイズフィルタをかける