6.1三维图形的几何造型技术

南京农业大学 谢忠红

■ 声明:下面所有有关三维形体的内容本课将 均采用下图所示的立方体为例进行讲解,其 他图形原理类似。

拓扑信息: 立体的面、边、点之间的关系

几何信息: 点的坐标、边的大小尺寸等信息

6.1.1传统几何造型技术

1表结构表示立体图形

DEF:使用数据表来记录图形元素的数据结构。

表示形体的基本几何元素:

■ 顶点(Vertex) 边(Edge)

■面(Face) 环(Loop)

■ 体(Body)

Y (6)

顶点表

顶点号	坐标值		
	X	у	Z
1	0	100	100
2	0	0	100
3	100	0	100
4	100	100	100
5	0	100	0
6	0	0	0
7	100	0	0
8	100	100	0

Y \mathbf{X}

棱线表(边表)

棱线号	顶点	
1	1	2
2	2	3
3	3	4
4	1	4
5	1	5
6	2	6
7	3	7
8	4	8
9	5	6
10	6	7
11	7	8
12	5	8

·C语言描述三表结构

```
typedef
struct point
 { int x;
   int y;
   int z;
 }Cpoint;
typedef
struct edge
  {int st_point;
   int end_point;
  } Cedge;
```

```
typedef
struct face
 {int fst_pt;
 int snd_pt;
 int thd_pt;
 int forth_pt;
 }Cface;
•main()
  Cpoint
           tab_point[9];
  Cedge
           tab_edge[13];
            tab_face[7];
  Cface
```

2翼边结构表示立体形体翼边 结构

从体外由下-上或左-右

任意一边都是可以构成一个翼边结构

e6

e3

f2

f4

e2

e4

e4

e1

f3

f3

e3

e5

v3

v4

E5

E6

v4

v1

- 3八叉树表示三维形体
- 八叉树建立步骤:

首先 确定该形体的外接立方体

然后分别沿长、宽、高三个方向将该立方体二等分

判定分割出来的小立方体

若小正方体是空(E)则不再分(形体不在其中)、

若小正方体满(F)(形体完全充满其中),则不分解;

若一个小正方体被形体部分的占有(P),则需将它再一分为八,这个分解是递

4 CSG(Constructive solid geometry)表示方法

- 定义:使用集合运算符和体素表示几何形体的方法称为CSG表示法.
- (1) 什么是体素呢?
- 一般是指比较简单的立体形体:例正方体、 圆柱体、球体、多棱柱等

(2) 常见的集合运算

和运算 U: 两个形体求和

差运算 - : 两个形体求差

交运算○:两个形体求相交部分

如何使用CSG方法表示下列形体呢?

CSG方法

- 优点
 - ■表示简单、直观,无二义性
 - ■数据量比较小,内部数据的管理比较容易
 - ■形体形状容易被修改
- 缺点:
 - ■表示物体的CSG树不唯一
 - 受体素种类和对体素操作种类的限制, CSG方法表示形体的覆盖域有较大的局限 性。

■5表示三维形体的其他方法

——扫描表示

■ 定义: 一个基体(一般为封闭的二维区域) 沿某一路径运动而产生形体。

- 两个元素:
 - (**1**)被运动的基体
 - (2) 基体运动的路径

■ 根据扫描路径和方式的不同,可以分成下列三种扫描的形体:

- (**1**) 平移扫描体
 - (2) 旋转扫描体
 - (3) 广义扫描体

6.1.2非传统造型技术

- 1分形造型
- 分形造型是利用分形几何学的自相似性, 采用各种模拟真实图形的模型,使生成景 象呈现出细节无穷回归性质的方法

