(1,3,5) as a Nim position

Nm Som of 1,3,5

1: 0001

3: 00112

5: 01012

Nm Som ! 0 1 1 1 2

As it is not o' this is an N-position, so we have to find a move to P-position, i.e to a position with even number of is in noch column.

if or do xor 12 nim sum:- 00012

os we connot remove 6 piles from 1

if we do kok 3 2 nimsom: 0001 $0100 \rightarrow$

we can not remove 4 from 3

if we do xor 52 nimsum! $\frac{0101}{0010} \rightarrow 2$

we can remove, 2 from 5 so

the winning move would be no-moving 3 piles born 5 50 1-0001 3-0011 2 - 0 0 1 0 0 0 0 0 50 the winning mour would be (1,3,5) -> (1,3,2) By assuming y= {2,3}, y= {2,3} the payoff matrix is given by let or be proposition of time player I calls -21. Then pI should select 2 => -4p+6(-p) =6p-9(1-p) the optimal strategy is -10p+6 = 15p-9 P= 3/5 if I call is with probability 3/5 and is with 2/5 on an averge player I coins -4x3/5+6x2/5=0

Scanned with CamScanner

the and average 1055 15 6 (3/5) -9(3/5)=0

50 the game is Pais

value of gome is o

		C D	
Н	A	(G,-10)	(01,0)
Player	В	(4,1)	(1,0)

player I plays (A,B) coll probability (P,1-P)
player I plays (C,D) with probability (9,1-2)

$$\{U_C = \{U_C\} = \{U_C = \{U_C\}\} = \{U_C = \{U_C\}\}$$

For player I Expected payoffs 10p is 10/21

$$EP_A = 9(6) + (1-2)(0) = 69$$

$$EP_B = (4) 2 + (1-2)(1) = 1+32$$

 $EP_A = EP_B$

Expected payolis for player I is 69 - 6x1/3 = 2 unque mired stockegy most aguilibrium is p= 1/2, & 9=1/2 coiln poyoffs 2 for player I 10/21 for player I =) If we assume P = 3/21 = 1/3 Slightly greater than 1/21a) payoffs for player I would be $69 = 6 \times \frac{1}{3} = \frac{2}{3}$ where she mointains her poyoff as expected payoff for Player I would be 1+39-P+3P2

1+3×/3-X,+3×/3×1/8 b) apacted payoff for player II 10P+2-21P2 =10x1/7 + /3 - 21x1/3x1/7 = 10/4 + 1/3 - 1 $= \frac{30+7}{21} - 1 = \frac{37-21}{21} = \frac{16}{21}$ cohich is greater than 10/21

=> player I con commit to playing strategy c with probability > 1/3

by assuming 2=2/3

Expected payoffs for player I 10P+ 9-21P2

10×1/21 + 3/3 - 21×1/21×2/2

maintains his payoffs

Experted payoffs for player I 1+39-P+3P2

 $1+3\times\frac{2}{3} - \frac{1}{2} + \frac{3}{2} \times \frac{1}{2} \times \frac{1}{2}$ $= 3 + \frac{2}{2} - \frac{1}{2} = 3 + \frac{1}{2}$ $\approx 3.05 > 2$

Player I benefits by obtaining a greater pay than she did in nosh equilibrium.

nº =40

			the med	Chro
A	1 Price	B	Onits	
0	80 40	Ь	400 of O	
1	13.3	b .	go of 3	A I
0000	No.		260	
3	10	Съ	800 of b	. 3
2	7.5	d	100 0f 3	
(10 J)	Julian XI	L'y mod o	300 of 2	<u> </u>
1	pn. vo.	Vine K		

