Прикладные математические пакеты. MatLab Лабораторная работа № 4

Создать программу Matlab с графическим интерфейсом, которая по заданным значениям:

- параметр ($\alpha \in [0,4]$)
- начальная точка (x₀ ∈ [0,1])
- количество итераций (Т)
- нужно ли строить переходный процесс (переход посчитать T итераций, но не строить, затем с последней точки посчитать и построить T итераций)

строит динамику логистического отображения:

- на лестнице Ламерея
- на временном ряде.

Справочная информация.

Логистическое отображение: $x_{n+1} = f(x_n) = \alpha x_n (1 - x_n)$.

Лестница Ламерея:

Изобразим отображение на плоскости, отложив по осям x_{n+1} и x_n . При этом точки пересечения с диагональю определяют положения равновесия.

В результате получается «лестница Ламерея», ведущая к устойчивому положению равновесия.

Алгоритм построения лестницы Ламерея, для конкретных значения параметра α и начальной точки x_0

- 1. построить графики функций $y = \alpha x (1 x)$ и y = x на отрезке [0,1]
- 2. цикл по i от 1 до T

$$x_1 = f(x_0)$$

построить отрезок, соединяющий точку (x_0, x_0) с точкой (x_0, x_1) построить отрезок, соединяющий точку (x_0, x_1) с точкой (x_1, x_1)

 $x_0 = x_1$

Временной ряд: Найденные итерационно значения x.