Anpassungs-Instrumentationsverstärker TTA 20

Der Hybridschaltkreis TTA 20 findet als Anpassungsschaltkreis für Widerstandsgeber Verwendung. Er wandelt Widerstandsänderungen von Widerstandsgebern in einen für die Verarbeitung in Meßwerterfassungssystemen geeigneten Spannungspegel um.

Der Schaltkreis enthält eine spannungsgesteuerte Konstantstromquelle, einen Instrumentationsverstärker (IV) und einen Anpassungsverstärker (AV). Durch die Konstantstromeinspeisung in den Widerstandsgeber erhält man ein widerstandsproportionales Spannungssignal, welches, vom IV fehlerfrei verstärkt und anschließend mit dem AV auf den benötigten Pegel eingestellt wird.

Berechnungsformeln:

Stromquelle

$$I_{
m L}=rac{{
m U_{
m Ref}}}{1~{
m k}\Omega}$$

Instrumentationsverstärker

$$G = 2 + \frac{20 \text{ k}\Omega}{R_G}$$

Die Verstärkung des AV kann mit Hilfe der internen Widerstände eingestellt werden.

Durch das 25polige Metall-Glas-Hermetikgehäuse ist die Schaltung auch beim Einsatz in prozeßnaher Umgebung geschützt.

Bauform: D 24/22.5-9

Hermetisches Metall-Glas-Gehäuse:

Maße in mm

Erzeugnisnummer:

4584.8-1279.31

Typkurzzeichen:

84 12

Bestellbezeichnung:

HSK 8412/4584.12 TB

D 24/22.5-9

Elektrische Kennwerte

Kenngröße	Symbol	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC1} -U _{CC2}		15 15		V V
Stromaufnahme	l _{CC1}			10 10	mA mA
Betriebstemperatur- bereich Ausgangsspannung Ausgangsstrom	θ _α ±U _ο ±Ι _ο	0	23	70 10 5	°C V mA
Stromquelle			- 8		
Laststrom Laststromtoleranz Lastwiderstand	l _L Δ l _L	0,5	0,15	3 2	mA % kΩ
Instrumentationsverstärk	er		:		
Verstärkungsbereich Berechnungsfehler,	G	2		100	
G = 10 Nichtlinearität	K_{G}		0,05		%
G = 10	K_N		0,02		⁰/₀ FSR
Temperaturkoeffizient $G = 10$, ϑ_a $(0 \cdots 70)$ °C Gleichtakteingangs-	TK_G		20		μV/K
spannung	$ U_{CM} $			5	٧
Differenzeingangs- spannung	U _{ID}			5	V
Gleichtaktunter- drückung G = 2, U _{CM} = ±1 V	CMR		80		dB
G = 2, U _{CM} = 2 V _{eff} , 50 Hz Offsetspannung	U _{IO}		65 0,5		dB mV
TK der Eingangs- offsetspannung Bias-Strom Offsetstrom	TK _{UIO} I _{IB} I _{IO}		2 60	100	μV/K nA nA
Betriebsspannungs- unterdrückung	UCVR		20		μ۷/۷
Anpassungsverstärker					
Differenzeingangs- spannung	U _{iD}			±30	V
Gleichtakteingangs- spannung	U _{CM}			±15	V
Gleichtakt- unterdrückung, U _{CM} = ±10 V Eingangsoffset-	CMR		76		dB
spannung	U_{10}		5	15	mV
TK der Eingangs- offsetspannung	TK _{UIO}		16	· AND CONTROL CONT.	μν/κ

Prinzipschaltbild TTA 20

Pinbelegung TTA 20

Pin	Funktion
1, 24	Verstärkungseinstellung des IV 2···100
2	Referenzanschluß des IV
3	nichtinvertierender Eingang des IV
4	invertierender Eingang des IV
5	$R=2M\Omega$ nach U_{CC2}
6	positive Betriebsspannung (U _{CC1})
7	negative Betriebsspannung (U _{CC2})
8	Steuereingang der Stromquelle
9	Brücke zu Pin 10
10	Ausgang der Stromquelle
11	nicht belegt
12	Masse
13, 15	Kompensationswiderstände des AV
16	Summierpunkt des AV
21	Ausgang des Differenzverstärkers
22	Ausgang des IV
23	Rückführung IV
17, 18, 19, 20	Verstärkungswiderstände des Ausgangsverstärkers
14	Referenz-Punkt

Gehäuse nicht mit der Schaltkreismasse verbunden

