| Редеральное г | осударственное | бюджетное обр<br>образовани       |               | учреждение вы   | сшего                  |
|---------------|----------------|-----------------------------------|---------------|-----------------|------------------------|
| Сибирский г   | осударственный | университет те                    | лекоммуникац  | ций и информаті | <b>1</b> КИ            |
|               |                |                                   |               |                 |                        |
|               |                |                                   |               |                 |                        |
|               |                |                                   |               |                 |                        |
|               |                |                                   |               |                 |                        |
|               |                |                                   |               |                 |                        |
|               |                |                                   |               |                 |                        |
|               |                | етно-графическ<br>е "Сети ЭВМ и Т |               | NI 11414"       |                        |
|               | по дисциплине  | : CETH JBIVI H TO                 | елекомімуника | іции            |                        |
|               |                |                                   |               |                 |                        |
|               |                |                                   |               |                 |                        |
|               |                |                                   |               |                 |                        |
|               |                |                                   |               | _               |                        |
|               |                |                                   |               | е<br>Студентка  | Выполнил:<br>rn ИС-342 |
|               |                |                                   |               |                 | ева Алена              |
|               |                |                                   |               | ·               |                        |
|               |                |                                   |               |                 |                        |
|               |                |                                   |               |                 |                        |

## 1. Собрали конфигурацию сети, представленную на рисунке:



Рисунок 1 — Схема сети для расчетно-графического задания

2. Задаем уникальные сетевые имена виртуальным машинам:

Задаем имена астралинуксам, для этого используем команду:

```
user@AstraLinux-01:~$ hostnamectl
Static hostname: AstraLinux-01
Icon name: computer-vm
Chassis: vm
Machine ID: 35859dfe507144c7a654b4bc7ece9711
Boot ID: ddea39bfa04c48ef8314313a738d7ed1
Virtualization: oracle
Operating System: Astra Linux (Orel 2.12.46)
Kernel: Linux 5.15.0-70-generic
Architecture: x86-64
user@AstraLinux-01:~$
```

Задаем имена микротикам, используя команду:

```
[admin@MikroTik] > /system identity set name=Mikrotik-01
[admin@MikroTik] > system identity set name=Mikrotik-02
[admin@MikroTik] > system identity set name=Mikrotik-02
[admin@MikroTik] > system identity set name=Mikrotik-03
[admin@Mikrotik-03] >

[admin@MikroTik] > system identity set name=Mikrotik-04
[admin@MikroTik] > system identity set name=Mikrotik-04
[admin@Mikrotik-04] > __
```

Настраиваем проброс портов (настраивается в NAT):

Астралинуксы (Для доступа по ssh):

| Rule 1 TCP 127.0.0.1 2223 22 | Имя    | Протокол | Адрес хоста | Порт хоста | Адрес гостя | Порт гостя | 4 |
|------------------------------|--------|----------|-------------|------------|-------------|------------|---|
|                              | Rule 1 | TCP      | 127.0.0.1   | 2223       |             | 22         | 4 |

```
C:\Users\Alena>ssh user@127.0.0.1 -p 2223
The authenticity of host '[127.0.0.1]:2223 ([127.0.0.1]:2223)' can't be established.
ED25519 key fingerprint is SHA256:mnIeBUkIvtZL17nLL3yUaUaQaHCFSTBfMrzPkVx5Jxc.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[127.0.0.1]:2223' (ED25519) to the list of known hosts.
user@127.0.0.1's password:
You have new mail.
Last login: Tue May 13 20:08:42 2025
user@AstraLinux-01:~$
```

## Микротик (Для доступа к веб-интерфейсу):

|                               | Имя         Протокол         Адрес хоста         Порт хоста         Адрес гостя         Порт гостя           Rule 1         TCP         127.0.0.1         8081         80 |  |  |  |  |  |  |  |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                               |                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| ← ⑨ ♂ № 127.0.0.1:8081 WebFig |                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| MIKIOUK-UI Rx:1               |                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |

3. Объединяем все рабочие порты в сетевые мосты (устройство, предназначенное для объединения сегментов (подсети) компьютерной сети в единую сеть) на микротиках:

```
[admin@Mikrotik-02] > interface bridge add name=bridge2 protocol-mode=stp
[admin@Mikrotik-02] > interface bridge port add bridge=bridge2 interface=ether2
[admin@Mikrotik-02] > interface bridge port add bridge=bridge2 interface=ether3
[admin@Mikrotik-02] > interface bridge port add bridge=bridge2 interface=ether4
[admin@Mikrotik-02] >
```

X4 Состояние портов:



Designated port — это порт на коммутаторе, который обеспечивает наиболее оптимальный путь к корневому коммутатору (root bridge) для конкретного сегмента сети. Этот порт находится в активном состоянии (forwarding) и участвует в передаче данных между сегментом сети, к которому он подключен, и остальной частью сети.

Root port — это порт коммутатора, который имеет наиболее оптимальный путь к корневому коммутатору (root bridge). Этот порт находится в активном состоянии (forwarding) и участвует в передаче данных между коммутатором, на котором он находится, и остальной частью сети.

Alternate port — это порт, который имеет альтернативный путь к корневому коммутатору (root bridge) по сравнению с текущим выбранным путем (через designated port). Этот порт находится в

состоянии блокировки (blocking) и не участвует в передаче данных, но он готов к использованию в случае, если основной путь станет недоступным.

Изменяем настройки STP протокола так, чтобы корневым коммутатором стал 2 Микротик.

```
[admin@Mikrotik-02] > interface bridge set 0 priority=0x4000
[admin@Mikrotik-02] > interface bridge port monitor 0,1,2
              interface: ether2
                                          ether3
                                                           ether4
                                                           in-bridge
                 status: in-bridge
                                          in-bridge
            port-number: 1
                                                           3
                                          2
                   role: designated-port designated-port designated-port
              edge-port: no
    edge-port-discovery: yes
                                          yes
                                                           yes
    point-to-point-port: yes
                                          yes
                                                           yes
           external-fdb: no
                                          no
                                                           no
           sending-rstp: no
                                                           no
                                          nα
               learning: yes
                                          ues
                                                           ues
             forwarding: yes
                                          yes
                                                           yes
       actual-path-cost: 20000
                                                           20000
                                          20000
   [Q quit|D dump|C-z pause]
```

Для того, чтобы 4 Микротик стал резервным, то значение его приоритета STP протокола нужно сделать выше, чем, у 2 Микротика:

4. Диапазон IPv4 адресов – 10.10.1.0/24. Разделяем диапазон на максимальное количество подсетей так, чтобы каждая подсеть могла адресовать до 6 узлов (можем разделить на 32 подсети):

Получаем 29 маску подсети:

Адрес сети Диапазон адресов

| 10.10.1.0/29  | 10.10.1.0 - 10.10.1.7   |
|---------------|-------------------------|
| 10.10.1.8/29  | 10.10.1.8 - 10.10.1.15  |
| 10.10.1.16/29 | 10.10.1.16 - 10.10.1.23 |

Выбираем один из полученных диапазон – 10.10.1.0/29 и конфигурируем интерфейсы виртуальных машин и сетевых мостов:

## На астралинуксах назначаем статически адрес интерфейсу:

```
3: eth1: ⟨BROADCAST,MULTICAST,UP,LOWER_UP⟩ mtu 1500 qdisc pfifo_fast state UP group default qlen 100

link/ether 08:00:27:6c:9f:4f brd ff:ff:ff:ff:ff
inet 10.10.1.1/29 brd 10.10.1.7 scope global eth1
    valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fe6c:9f4f/64 scope link
    valid_lft forever preferred_lft forever
user@AstraLinux-01:~$

s: eth1: ⟨BROADCAST,MULTICAST,UP,LOWER_UP⟩ mtu 1500 qdisc pfifo_fast state UP group default qlen 100

link/ether 08:00:27:69:70:8c brd ff:ff:ff:ff:
inet 10.10.1.2/29 brd 10.10.1.7 scope global eth1
    valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fe69:708c/64 scope link
    valid_lft forever preferred_lft forever
user@AstraLinux-02:~$

user@AstraLinux-02:~$

user@AstraLinux-02:~$

user@AstraLinux-02:~$
```

# На Микротиках добавляем адреса на сетевые мосты:



Теперь появилась связь между всеми машинами, так как они находятся в 1 подсети:

```
user@AstraLinux–01:~$ ping –c 2 10.10.1.2
PING 10.10.1.2 (10.10.1.2) 56(84) bytes of data.
64 bytes from 10.10.1.2: icmp_seq=1 ttl=64 time=0.481 ms
64 bytes from 10.10.1.2: icmp_seq=2 ttl=64 time=0.485 ms
--- 10.10.1.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1019ms
rtt min/avg/max/mdev = 0.481/0.483/0.485/0.002 ms
user@AstraLinux–01:~$ ping –c 2 10.10.1.3
PING 10.10.1.3 (10.10.1.3) 56(84) bytes of data.
64 bytes from 10.10.1.3: icmp_seq=1 ttl=64 time=0.914 ms
64 bytes from 10.10.1.3: icmp_seq=2 ttl=64 time=0.768 ms
--- 10.10.1.3 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.768/0.841/0.914/0.073 ms
user@AstraLinux-01:~$ ping -c 2 10.10.1.4
PING 10.10.1.4 (10.10.1.4) 56(84) bytes of data.
64 bytes from 10.10.1.4: icmp_seq=1 ttl=64 time=0.853 ms
64 bytes from 10.10.1.4: icmp_seq=2 ttl=64 time=0.574 ms
--- 10.10.1.4 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.574/0.713/0.853/0.142 ms
user@AstraLinux-01:~$ ping -c 2 10.10.1.5
PING 10.10.1.5 (10.10.1.5) 56(84) bytes of data.
64 bytes from 10.10.1.5: icmp_seq=1 ttl=64 time=1.66 ms
64 bytes from 10.10.1.5: icmp_seq=2 ttl=64 time=1.09 ms
--- 10.10.1.5 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
 tt min/avg/max/mdev = 1.094/1.379/1.664/0.285 ms
```

Смотрим в вайршарке, что приходят запросы и ответы на пинг (ICMP echo request && reply):

Capturing from 5 interfaces



5. Создаем сеть NAT при помощи команд терминала, чтобы функционировал DHCP, и она раздавала адреса из другого диапазона:

```
C:\Program Files\Oracle\VirtualBox>VboxManage natnetwork add --netname natnat --network "10.10.1.8/29" --enable --dhcp on C:\Program Files\Oracle\VirtualBox>VBoxManage dhcpserver add --netname natnat -ip 10.10.1.9 --netmask 255.255.255.248 -lowerip 10.10.1.10 --upperip 10.10.1.14 --enable
```

Включаем VLAN Filtering (Функция, которая позволяет управлять доступом к VLAN на коммутаторах и контролировать какие данные могут передаваться между различными VLAN) у сетевых мостов на 1-3 микротике:

| ▼ VLAN            |                 |
|-------------------|-----------------|
| VLAN Filtering    | ✓               |
| EtherType         | 0x8100 <b>v</b> |
| PVID              | 1               |
| Frame Types       | admit all       |
| Ingress Filtering |                 |

Настраиваем VLAN 2 на 1-3 микротике так, чтобы связь была только между ними (В тегированный трафик ставим те порты, которые служат для соединения этих микротиков):



Для того, чтобы получить адрес из сети NAT, создаем виртуальный интерфейс VLAN с номером 2:

ether3, ether4

ether2, ether3

bridge3, ether2

- D

D

-

bridge3

added by pvid bridge3

| ▼ General       |           |
|-----------------|-----------|
| Name            | vlan2     |
| Туре            | VLAN      |
| мти             | 1500      |
| Actual MTU      |           |
| L2 MTU          |           |
| MAC Address     |           |
| ARP             | enabled   |
| ARP Timeout     | ▼         |
| VLAN ID         | 2         |
| Interface       | bridge1 ∨ |
| Use Service Tag | 0         |

И далее настраиваем DHCP-клиента с созданным интерфейсом для получения адреса:



Теперь каждый микротик получил собственный адрес из диапазона сети NAT:

| 2 | it | er | m | c |
|---|----|----|---|---|
| _ | IL |    |   | 3 |

|     | کا Comment | ▲ Interface | Use<br>Peer<br>DNS | Add<br>Defa<br>Route | IP Address    | Expires<br>After |  |
|-----|------------|-------------|--------------------|----------------------|---------------|------------------|--|
| - D |            | ether1      | yes                | yes                  | 10.0.2.15/24  | 23:49:30         |  |
| - D |            | vlan1       | yes                | yes                  | 10.10.1.10/29 | 00:08:16         |  |

# 2 items

|     | کِّا Comment | ▲ Interface | Use<br>Peer<br>DNS | Add<br>Defa<br>Route | IP Address    | Expires<br>After |  |
|-----|--------------|-------------|--------------------|----------------------|---------------|------------------|--|
| - D |              | ether1      | yes                | yes                  | 10.0.2.15/24  | 21:02:57         |  |
| - D |              | vlan1       | yes                | yes                  | 10.10.1.11/29 | 00:07:11         |  |

[admin@Mikrotik-03] > ip dhcp-client print

Columns: INTERFACE, USE-PEER-DNS, ADD-DEFAULT-ROUTE, STATUS, ADDRESS # INTERFACE USE-PEER-DNS ADD-DEFAULT-ROUTE STATUS ADDRESS 0 ether1 yes yes bound 10.0.2.15/24 1 vlan1 yes yes bound 10.10.1.12/29

Проверяем доступ в интернет:

```
[admin@Mikrotik-01] > ping 8.8.8.8
 SEQ HOST
                                                  SIZE TTL TIME
                                                                        STATUS
   0 8.8.8.8
                                                    56 255 95ms432us
    1 8.8.8.8
                                                    56 255 95ms139us
   2 8.8.8.8
                                                    56 255 93ms591us
                                                    56 255 93ms962us
   3 8.8.8.8
   sent=4 received=4 packet-loss=0% min-rtt=93ms591us avg-rtt=94ms531us
  max-rtt=95ms432us
[admin@Mikrotik-02] > ping 8.8.8.8
  SEQ HOST
                                                SIZE TTL TIME
                                                                    STATUS
    0 8.8.8.8
                                                  56 255 116ms330us
    1 8.8.8.8
                                                  56 255 104ms904us
    2 8.8.8.8
                                                  56 255
                                                         198ms645us
    3 8.8.8.8
                                                  56 255 187ms908us
    sent=4 received=4 packet-loss=0% min-rtt=104ms904us avg-rtt=151ms946us
   max-rtt=198ms645us
[admin@Mikrotik-03] > ping 8.8.8.8
 SEQ HOST
                                                SIZE TTL TIME
                                                                    STATUS
   0 8.8.8.8
                                                  56 255
                                                         93ms815us
    1 8.8.8.8
                                                  56 255
                                                         93ms626us
   2 8.8.8.8
                                                  56 255
                                                         97ms537us
    3
     8.8.8.8
                                                  56
                                                     255
                                                         93ms831us
    4 8.8.8.8
                                                         93ms623us
                                                  56
                                                     255
```

Создаем VLAN с номером 3 для доступа в сеть vboxnet-4 по тегированному VLAN:
 У 1 и 2 Микротика в тегированный трафик добавляем порты, идущие до астралинуксов, у 3 микротика хост-машину ставим в нетегируемый трафик:



Создаем виртуальные интерфейсы для VLAN 3. Назначаем адреса машинам (Микротикам на только что созданный VLAN 3):

#### Астры:

#### Микротики:

7. На 1 Микротике настраиваем правило трансляции адресов так, чтобы предоставить 1 астре доступ в интернет из нетегируемой сети:

Добавляем адрес 1 астры и VLAN 2 для доступа в интернет и используем маскарад:

```
[admin@Mikrotik-01] > ip firewall nat add chain=srcnat src-address=10.10.1.1/29
out-interface=vlan1 action=masquerade
```

При использовании masquerade, NAT-устройство заменяет исходный IP-адрес каждого внутреннего устройства на свой собственный внешний IP-адрес. Это позволяет скрыть реальные внутренние IP-адреса от внешних хостов и экономит IP-адрес.

И теперь 1 Астра получила доступ в интернет из нетегируемой сети (Отключаем интерфейс NAT для проверки интернета):

```
user@AstraLinux—01:~$ ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=255 time=96.1 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=255 time=95.7 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=255 time=94.3 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=255 time=95.1 ms
64 bytes from 8.8.8.8: icmp_seq=5 ttl=255 time=97.8 ms
64 bytes from 8.8.8.8: icmp_seq=6 ttl=255 time=95.5 ms
64 bytes from 8.8.8.8: icmp_seq=7 ttl=255 time=99.0 ms
^C
--- 8.8.8.8 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6009ms
rtt min/avg/max/mdev = 94.377/96.260/99.075/1.558 ms
Для вас есть почта в /var/mail/user
user@Astralinux-01:~$
```

Во 2 Микротике добавляем vboxnet-2 в VLAN с номером 2, чтобы обеспечить доступ из тегируемой сети для 2 астры:

| - D | bridge1 | 2 | bridge1, ether2, ether3, ether4 |  |
|-----|---------|---|---------------------------------|--|

На 2 астре создаем интерфейс для автоматического конфигурирования адреса из сети NAT:

```
auto eth1.2
iface eth1.2 inet dhcp
```

Поднимаем интерфейс, получаем адрес из диапазона сети NAT и доступ в интернет из тегируемой сети:

```
4: eth1.2@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen
1000
1ink/ether 08:00:27:69:70:8c brd ff:ff:ff:ff:
inet 10.10.1.11/29 brd 10.10.1.15 scope global eth1.2
valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fe69:708c/64 scope link
valid_lft forever preferred_lft forever
```

8. Настраиваем на всех микротиках протокол динамической маршрутизации RIP

| rip |             |            |             |          |        |          |
|-----|-------------|------------|-------------|----------|--------|----------|
| No. | Time        | Source     | Destination | Protocol | Length | Info     |
|     | 4 1.435693  | 10.10.1.21 | 224.0.0.9   | RIPv2    | 110    | Response |
|     | 6 1.381141  | 10.10.1.3  | 224.0.0.9   | RIPv2    | 110    | Response |
|     | 7 1.381008  | 10.10.1.3  | 224.0.0.9   | RIPv2    | 110    | Response |
|     | 8 1.381418  | 10.10.1.21 | 224.0.0.9   | RIPv2    | 110    | Response |
|     | 9 1.380863  | 10.10.1.3  | 224.0.0.9   | RIPv2    | 110    | Response |
| :   | 121 15.9249 | 10.10.1.6  | 224.0.0.9   | RIPv2    | 90     | Response |
| 1   | 122 15.9253 | 10.10.1.22 | 224.0.0.9   | RIPv2    | 90     | Response |
| :   | 185 25.8620 | 10.10.1.2  | 224.0.0.9   | RIPv2    | 110    | Response |
| :   | 186 25.8616 | 10.10.1.2  | 224.0.0.9   | RIPv2    | 110    | Response |
| :   | 187 25.9642 | 10.10.1.20 | 224.0.0.9   | RIPv2    | 110    | Response |
| :   | 188 25.8622 | 10.10.1.10 | 224.0.0.9   | RIPv2    | 110    | Response |
| :   | 189 25.8619 | 10.10.1.10 | 224.0.0.9   | RIPv2    | 110    | Response |
| :   | 190 25.8621 | 10.10.1.20 | 224.0.0.9   | RIPv2    | 110    | Response |
|     | 221 34.7641 | 10.10.1.21 | 224.0.0.9   | RIPv2    | 110    | Response |
|     | 222 34.6699 | 10.10.1.3  | 224.0.0.9   | RIPv2    | 110    | Response |
|     | 223 34.6700 | 10.10.1.3  | 224.0.0.9   | RIPv2    | 110    | Response |
| :   | 224 34.6704 | 10.10.1.21 | 224.0.0.9   | RIPv2    | 110    | Response |
|     | 225 34.6697 | 10.10.1.3  | 224.0.0.9   | RIPv2    | 110    | Response |

9. Диапазон IPv6-адресов: fd00:2004:12::/48.

Создаем пул адресов для создания DHCP-сервера, который служит для распределения префиксов, и cam DHCP-server:

```
[admin@Mikrotik-03] > ipv6 dhcp-server print
```

```
Columns: NAME, INTERFACE, ADDRESS-POOL, PREFERENCE, LEASE-TIME
# NAME INTERFACE ADDRESS-POOL PREFERENCE LEASE-TIME
0 ipv6-server bridge3 PD-POOL 255 1h
[admin@Mikrotik-03] > ipv6 pool print
Columns: NAME, PREFIX, PREFIX-LENGTH
# NAME PREFIX PREFIX-LENGTH
0 PD-POOL fd00:2004:12::/48 64
[admin@Mikrotik-03] >
```

10. Настраиваем IPv6 адрес на интерфейс VLAN 3 с трансляцией префиксов, чтобы хост-машина сконфигурировала себе адрес из этого диапазона.

Проверяем, чтобы хост-машина сконфигурировала себе префикс с розданным префиксом:

```
Адаптер Ethernet Ethernet 6:
  DNS-суффикс подключения . . . . :
  Описание. . . . . . . . . . . . . . . . . VirtualBox Host-Only Ethernet Adapter #5
  Физический адрес. . . . . . . . : 0A-00-27-00-00-1B
  Автонастройка включена. . . . . : Да
  IPv6-адрес. . . . . . . . . . . : fd00:2004:12:0:4fc4:f4d6:3cfc:f90a (Основной)
  Временный IPv6-адрес. . . . . : fd00:2004:12:0:c410:b174:ba25:a07e(Основной)
  Локальный IPv6-адрес канала . . . : fe80::ecb0:c96b:f3df:603b%27(Основной)

      ІРv4-адрес.
      : 10.10.1.33 (Основной)

      Маска подсети
      : 255.255.255.248

  Основной шлюз. . . . . . . : fe80::a00:27ff:fe94:8cef%27
  IAID DHCPv6 . . . . . . . . : 789184551
  DNS-серверы. . . . . . . . . : fec0:0:0:fffff::1%1
                                    fec0:0:0:ffff::2%1
                                    fec0:0:0:fffff::3%1
  NetBios через TCP/IP. . . . . . : Включен
```

11. Настраиваем DHCP-клиента на 1 микротике, чтобы он получил префикс для распределения:

Для начала, чтобы смогли получить префикс для распределения, настраиваем VLAN3 на всех микротиках добавляя в тегированный трафик все пути до машин:



Теперь создаем DHCP-клиента (Если бы не настроили маршруты то не получили бы и префикс):

| Enabled                           | <b>✓</b> |           |                          |                    |                      |                     |                            |              |
|-----------------------------------|----------|-----------|--------------------------|--------------------|----------------------|---------------------|----------------------------|--------------|
| Comment                           |          |           |                          |                    |                      |                     | 1.                         |              |
| ▼ DHCP                            |          |           |                          |                    |                      |                     |                            |              |
| Interface                         | vlan3 🗸  | ]         |                          |                    |                      |                     |                            |              |
| Request                           | ☐ info ( | address   |                          |                    |                      |                     |                            |              |
| Pool Name                         | prefix   |           |                          |                    |                      |                     |                            |              |
| Pool Prefix Length                | 64       |           |                          |                    |                      |                     |                            |              |
| Prefix Hint 🔺                     | ::/0     |           |                          |                    |                      |                     |                            |              |
| Use Peer DNS                      | <b>~</b> |           |                          |                    |                      |                     |                            |              |
| Use Interface DUID                |          |           |                          |                    |                      |                     |                            |              |
| Rapid Commit                      | ✓        |           |                          |                    |                      |                     |                            |              |
| Add Default Route                 |          |           |                          |                    |                      |                     |                            |              |
| ► Advanced                        |          |           |                          |                    |                      |                     |                            |              |
| ▶ Status                          |          |           |                          |                    |                      |                     |                            |              |
| Cancel                            |          |           |                          |                    |                      | Apply               | ОК                         |              |
|                                   | Mikr     | otik-01   |                          |                    |                      | Tx<br>Rx            | :440 bps<br>:0 bps         | <b>→</b> Saf |
| DHCP Client Client Options        |          |           |                          |                    |                      |                     |                            |              |
| Add New                           |          |           |                          |                    |                      |                     |                            |              |
| 1 item                            |          |           |                          |                    |                      |                     |                            |              |
| <sup>₹1</sup> Comment ▲ Interface | Request  | Pool Name | Pool<br>Prefix<br>Length | Use<br>Peer<br>DNS | Add<br>Defa<br>Route | Prefix              | Prefix<br>Expires<br>After | Address      |
| - D vlan3                         | prefix   | prefix    | 64                       | yes                | no                   | fd00:2004:12:2::/64 | 2d 23:59:59                |              |

Назначаем из полученного пула IPv6 адресов адрес сетевому мосту:



Настраиваем на астрах автоматическую конфигурацию IPv6 адресов:

# iface eth1 inet6 auto

Поднимаем интерфейсы и проверяем:

```
interpolation in the polarity of the process of the
```

```
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 100
0
link/ether 08:00:27:69:70:8c brd ff:ff:ff:ff:ff
inet 10.10.1.2/29 brd 10.10.1.7 scope global eth1
valid_lft forever preferred_lft forever
inet6 fd00:2004:12:1:a00:27ff:fe69:708c/64 scope global mngtmpaddr dynamic
valid_lft 2591767sec preferred_lft 604567sec
inet6 fe80::a00:27ff:fe69:708c/64 scope link
valid_lft forever preferred_lft forever
```

12. Так как в предыдущем пункте правильно настроили маршрутизацию для VLAN 3, то мы сразу имеем доступ пинговать с астралинуксов хост-машину и наоборот:

```
| icmpv6
No.
                     Source
                                                 Destination
                                                                  Protocol Length Info
      11 2.710577 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        12 2.703549 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                 90 Neighbor
                                                                                             Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        13 2.982779 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        14 2.751184 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        15 2.751123 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        16 3.720460 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        17 3.977580 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        18 3.851753 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        19 3.851824 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        20 3.810102 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        26 4.981962 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
        27 4.744655 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        28 4.841353 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        29 4.841294 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        30 4.800595 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
        31 5.831247 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        32 5.831188 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        34 5.956895 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        35 5.790530 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
        41 5.768774 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
      140 6.792882 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6 141 6.890764 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
       142 6.931346 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
      146 6.980616 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
       147 6.931405 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
      188 7.880685 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
       192 7.921643 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
       194 7.921692 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
       195 7.816413 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
      199 8.022409 fd00:2004:12:0:a00:27ff:... ff02::1:fffc:f... ICMPv6
                                                                                90 Neighbor Solicitation for fd00:2004:12:0:4fc4:f4d6:3cfc:f90a from 08:00:27:6c:9f:4f
```

13. Проверяем настройки DNS-клиента по пути nano /etc/resolv.conf. И меняем значение адреса на 8.8.8.8, чтобы через этот адрес шли запросы по умолчанию:

```
GNU nano 2.7.4 Файл: resolv.conf
nameserver 8.8.8.8
```

14. Устанавливаем пакет dnsutils для использования утилиты nslookup для просмотра информации о DNS зонах и IPv4:

### Информация о DNS-зоне csc.sibsutis.ru:

```
user@AstraLinux-01:/$ nslookup -q=SOA csc.sibsutis.ru
Server: 8.8.8.8
Address: 8.8.8#53

Non-authoritative answer:
csc.sibsutis.ru
    origin = ns.csc.sibsutis.ru
    mail addr = root.csc.sibsutis.ru
    serial = 1743162533
    refresh = 10800
    retry = 900
    expire = 604800
    minimum = 86400

Authoritative answers can be found from:
```

Информация о IPv4 имени ans.csc.sibsutis.ru

user@AstraLinux-01:/\$ nslookup ans.csc.sibsutis.ru

Server: 8.8.8.8 Address: 8.8.8.8#53

Non–authoritative answer: Name: ans.csc.sibsutis.ru

Address: 1.1.1.1

## IPv4 адреса для домена mail.ru

user@AstraLinux–01:/\$ nslookup mail.ru

Server: 8.8.8.8 Address: 8.8.8.8#53

Non–authoritative answer:

Name: mail.ru

Address: 94.100.180.200

Name: mail.ru

Address: 217.69.139.202

Name: mail.ru

Address: 94.100.180.201

Name: mail.ru

Address: 217.69.139.200

Name: mail.ru

Address: 2a00:1148:1000:101:5:4:0:200