

MSE6701H Multiscale Materials Modeling and Simulation

Lecture 04

Molecular Statics & Temperature/Pressure Control

Lingti Kong (孔令体)
Shanghai Jiao Tong University

Case study: Surface Energy

Surface energy:

excess energy associated with the presence of a surface.

$$\gamma = \frac{G_{\rm slab} - G_{\rm bulk}}{A_{\rm surface}} \approx \frac{E_{\rm slab} - E_{\rm bulk}}{A_{\rm surface}}$$

 $E_{\rm slab}$: total energy of system with surfaces

 $E_{\rm bulk}$: total energy of bulk system with same size as the slab

 A_{surface} : surface area

Case study: Surface Energy

General steps:

- 1 Calculate the total energy of bulk system.
- 2 Calculate the total energy of the slab system
 - a) Cleave a slab
 - b) Relax the slab
 - c) Get the total energy of the relaxed slab
- **3** Work out the surface energy

Total energy of bulk system

Slab cleavage

```
# Relaxation of Cu(001) surface
units
             metal
boundary
             ррр
atom style
             atomic
lattice
             fcc 3.615
region
             box block 0 10 0 10 0 20
             fill block 0 10 0 10 6 14
region
create box
             1 box
create_atoms 1 region fill
# Potential
pair style
             eam
             * * Cu_u6.eam
pair_coeff
            0.2 bin
neighbor
neigh_modify delay 5
# Variables to output
            area equal "2.* lx * ly"
variable
variable
             delE equal "pe + atoms * 3.54"
# Thermal and trajectory
thermo style custom step pe pxx pyy pzz
thermo
             10
dump
            1 all atom 1000 dump.lammpstrj
```


Other tools to create models

- ase
- pymatgen
- atomsk
- latgen
-

min_style cg minimize le-

1e-12 1e-12 1000 10000

Minimization/optimization

E(x)

- Local minimum
- Global minimum
- Saddle point (transition state)

Minimization/optimization (Local)

$$E(x + \delta x) = E(x) + G(x)\delta x + \frac{1}{2}H(x)\delta x^{2} + \dots$$

$$\uparrow \qquad \uparrow$$
Gradient Hessian
Force Modulus

Minimum:

$$\frac{\mathrm{d}\Delta E(x)}{\mathrm{d}\delta x} = 0$$

$$\frac{\mathrm{d}\left[E(x+\delta x)-E(x)\right]}{\mathrm{d}\delta x} \approx G(x) + H(x)\delta x = 0$$

$$\delta x = -\alpha H^{-1}(x) \cdot G(x)$$

Local minimization algorithms

- Energy and first derivatives based (forces)
 - steepest descents (robust but slow)
 - **conjugate gradients** (robust and faster than sd)
 - **♦** Hessian-free truncated Newton algorithm
 - ◆ **Damped MD** (fast when far from equilibrium)

- min_style sd
- min_style cg
- min_style htfn
- min_style quickmin
- min_style fire
- > Energy, first and second derivatives based (fast but not necessarily stable)
 - **□** Newton-Raphson
 - **□** BFGS updating of Hessian (reduces inversions)

Global minimization

- Simulated annealing (SA)
- **Genetic algorithms (GA)**
- **Particle swarm optimization (PSO)**

Transition State Search

Transition State Theory

$$k = k_0 e^{-\frac{\Delta E}{k_B T}}$$

Methods:

- Nudged Elastic Band (NEB)
- Dimer
- Activation-Relaxation-Technique (ARTn)
- •

Case Study: Melting temperature

 T_m of a solid is the temperature at which a substance changes state from solid to liquid at atmospheric pressure.

	IA																	VIIIA
1	H –259.2	IIA				Ma	Cum	hol					IIIA	IVA	VA	VIA	VIIA	He -269.7
2	Li 180.5	Be 1283				Mg 650	+ Sym - Melt	B 2027	C 4100	N -210.1	o –218.8	F –219.6	Ne -248.6					
3	Na 98	Mg 650	IIIB	IVB	VB	2000-3 VIB	000°C	>	3000 °C	; 	IB	IIB	AI 660	Si 1423	P 44.2	S 119	CI -101	Ar -189.4
4	K 63.2	Ca 850	Sc 1423	Ti 1677	V 1917	Cr 1900	Mn 1244	Fe 1539	Co 1495	Ni 1455	Cu 1083	Zn 419.5	Ga 29.78	Ge 960	As 817	Se 217.4	Br -7.2	Kr -157.2
5	Rb 38.8	Sr 770	Y 1500	Zr 1852	Nb 2487	Mo 2610	Tc 2127	Ru 2427	Rh 1966	Pd 1550	Ag 960.8	Cd 320.9	In 156.2	Sn 231.9	Sb 630.5	Te 450	I 113.6	Xe -111.9
6	Cs 28.6	Ba 710	La 920	Hf 2222	Ta 2997	W 3380	Re 3180	Os 2727	Ir 2454	Pt 1769.3	Au 1063	Hg -38.9	TI 303.6	Pb 327.4	Bi 271.3	Po 254	At	Rn -71

Approach 1: Heating-cooling

$$\bar{T}_{\mathrm{m}} = \frac{T_{\mathrm{m}}^+ + T_{\mathrm{m}}^-}{2}$$

Approach 2: solid-melt coexistence

General steps:

- ① Generate solid-melt interface
- 2 Equilibrate at specified *T*, observe motion of interface

Alternatives:

- Switch to NVE during late stage of 2
- > Switch to NPH during late stage of 2
- Use two thermostats

Thermodynamics Ensembles

• NVE: isolated system, microcanonical ensemble

- Very rare cases
- > Newton's law

• NVT: equilibrated with a thermal bath, canonical ensemble

$$E_{K} = \frac{3}{2}Nk_{B}T \quad \langle A \rangle = \frac{\int Ae^{-\beta E} \mathrm{d}^{3}r \mathrm{d}^{3}p}{\int e^{-\beta E} \mathrm{d}^{3}r \mathrm{d}^{3}p} = \frac{1}{t} \int_{0}^{t} A(\tau) \mathrm{d}\tau$$
$$\sigma_{E}^{2} = \langle H^{2} \rangle_{\text{NVT}} - \langle H \rangle_{\text{NVT}}^{2} = k_{B}T^{2}c_{v}.$$

$$\sigma_T^2 = \langle T^2 \rangle_{\text{NVT}} - \langle T \rangle_{\text{NVT}}^2 = \frac{2T^2}{N_{df}}.$$

Thermodynamics Ensembles

• NPT: isothermal-isobaric

NPH: constant-pressure, constant-enthalpy

Solid phase transformation

• μVT: grand canonical

Phase transformation, (surface) adsorption...

Temperature control: thermostat

- **♦** Velocity scaling
 - > isokinetics
 - **Berendsen**
- **♦** Stochastic thermostat
 - > Andersen
 - > Langevin
- **Extended Lagrangian**
 - > Nose-Hoover
 - > Nose-Hoover chain

$$E_{\mathbf{K}} = \frac{3}{2}Nk_BT = \frac{1}{2}\sum_i m_i v_i^2$$

Thermostat: isokinetic velocity scaling

Instantaneous temperature T(t):

$$T(t) = \frac{1}{k_B N_{df}} \sum_{i,\alpha} m_i v_{i\alpha}^2$$

Isokinetics scaling:

$$\lambda = \sqrt{\frac{T_{\mathrm{target}}}{T(t)}}, \qquad v'_{i\alpha} = \lambda v_{i\alpha}$$

Problem: cannot reproduce the variance in temperature for canonical system.

Thermostat: Berendsen

$$\lambda = \sqrt{1 + \frac{\Delta t}{\tau} \left[\frac{T_{\text{target}}}{T(t)} - 1 \right]}$$

$$v'_{i\alpha} = \lambda v_{i\alpha}$$

- No thermal noise.
- ➤ No clear proof that it reproduces canonical distribution.
- For weak coupling ($\tau > 0.01$ ps) it does lead to correct canonical averages.

Thermostat: Andersen

◆ Reset velocity of randomly selected atoms following a distribution.

Practical algorithm: at each MD step for each atom

- ① Draw a uniformly random number p in [0, 1];
- ② If $p < \frac{\Delta t}{\tau}$, draw another random number p_r that follows:

$$P(\mathbf{p_r}) = \left(\frac{\beta}{2\pi m}\right)^{3/2} \exp\left(-\frac{\beta \mathbf{p_r}^2}{2m}\right)$$

- 3 Reset the momentum of current atom as p_r .
- Does reproduce the canonical ensemble
- ☐ It however breaks the continuity of MD trajectories
- Does not preserve energy and momentum.

Thermostat: Langevin

$$\mathbf{f}_i = -\nabla_{r_i} E - \frac{m}{\tau} \mathbf{v}_i + \mathbf{w}_i$$

Where \mathbf{w}_i satisfies:

- Gaussian distribution $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Practically approximated by

$$w_i = \omega \sqrt{\frac{24mk_B T_{\text{target}}}{\tau \cdot \Delta t}}$$

$$\omega \in [-0.5, 0.5]$$

Thermostat: Nose-Hoover

$$\mathbf{f}_i = -\nabla_{r_i} E - m \gamma \mathbf{v}_i$$

$$\dot{\gamma} = -N_{df} \frac{k_B T(t)}{Q} \left[\frac{T_{\text{target}}}{T(t)} - 1 \right]$$

Practical implementation:

$$\dot{\gamma} = -\frac{1}{\tau_{NH}} \left[\frac{T_{\text{target}}}{T(t)} - 1 \right]$$

Barostat: Berendsen

Virial theorem

$$P_{\alpha,\beta} = \frac{1}{V} \left(\sum_{i}^{N} m_i v_{i\alpha} v_{i\beta} + \sum_{i>j} r_{ij,\alpha} \cdot f_{ij,\beta} \right)$$

$$P = \langle P_{\alpha,\alpha} \rangle = \frac{1}{d} \sum_{\alpha}^{d} P_{\alpha,\alpha} = \frac{N}{V} k_B T - \frac{1}{d} \sum_{i>j} \vec{r}_{ij} \cdot \frac{\partial \Phi_{ij}}{\partial \vec{r}_{ij}}$$

System coupled to external bath

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{P_{\mathrm{target}} - P(t)}{\tau_{P}}$$

Coordinate and volume variations

$$\dot{\mathbf{r}} = \mathbf{v} + \boldsymbol{\alpha}\mathbf{r}$$
 $\dot{V} = 3\boldsymbol{\alpha}V$

$$\dot{V} = 3 \alpha V$$

Barostat: Berendsen

$$\frac{\mathrm{d}P}{\mathrm{d}t} = -\frac{1}{\beta V} \frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{3\alpha}{\beta} \qquad \qquad \alpha = -\frac{\beta \left[P_{\text{target}} - P(t) \right]}{3\tau_P}$$

For cubic system where $V = L^3$

$$\mu = 1 + \alpha = 1 - \frac{\beta \Delta t}{3\tau_P} \left[P_{\text{target}} - P(t) \right] \qquad \frac{\vec{r}_i \to \mu \vec{r}_i}{L \to \mu L}$$

Equivalent expression

$$\mu = \left[1 - \frac{\Delta t}{\tau_P} \left(P_{\text{target}} - P\right)\right]^{1/3}$$

https://docs.lammps.org/fix_nh.html

https://docs.lammps.org/fix_press_berendsen.html

Melting temperature: Solid-melt Coexistence

Next Lecture:

Data Analysis and Property Calculations

Homework

Based on the examples in this course, generate Au(100), Au(110), Au(111) slab models, run minimization at 0K:

- a) Calculate their surface energies at 0K;
- b) Measure the change in interlayer separation of the surface, and compare to data in Table 1 of Solid State Communications **149**(37–38): 1561-1564, 2009.
- c) Write a report on your experiments.
- Due: Nov. 3, 2022

Note:

- Append your lammps script but not the lengthy outputs.
- The possible potentials for Au could be found here:

<u>https://www.ctcms.nist.gov/potentials/system/Au/</u> You can adopt any potential you prefer, but please specify explicitly.