Short course

A vademecum of statistical pattern recognition and machine learning

Introductory notes

Massimo Piccardi University of Technology, Sydney, Australia

© Massimo Piccardi, UTS

4

What is statistical pattern recognition and why you should study it

- Recognising "patterns" of interest in data with the use of statistical techniques
- Unnumbered actual and potential applications:
 - image and video analysis
 - speech analysis
 - genomic research
 - biological data analysis
 - data mining and analytics for business, finance, marketing, trade
 - network traffic analysis
 - analysis of Web data
 - **–** ...

© Massimo Piccardi, UTS

Example data

Australian Sign Language signs

Cancer detection from mass-spectrometric data

Chemical data to assess wine origin

examples courtesy of UCI Machine Learning Repository

O-ring data to predict thermal distress

© Massimo Piccardi, UTS

3

Aims of this short course

- Offer a small "vademecum" ("carry with me") of useful statistical pattern recognition techniques that you can later expand based on the need of your studies
- Minimal amount of proofs, informal presentation
- The selection of topics is oriented to *learning and inference over sequential data*. It can also be a
 useful first step towards *structural data*
- Statistical pattern recognition is part of machine learning and is often assimilated to it

© Massimo Piccardi, UTS

Topics at a glance

- · Review of probability and statistics
- · Density estimation
- Dimensionality reduction (with a preamble on linear regression)
- · Bayesian classification
- The hidden Markov model
- Conditional random fields
- The support vector machine (SVM) and structural SVM
- Kalman and particle filters

© Massimo Piccardi, UTS

5

Optimization

- Although during this short course we address maximization/minimization (i.e. optimization) of certain functions, we do not formally introduce optimization. You may like to refer to the videolectures and textbook of Prof. Stephen Boyd at Stanford:
 - http://www.stanford.edu/class/ee364a/videos.html
 - Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge University Press, 2004, http://www.stanford.edu/~boyd/cvxbook/

© Massimo Piccardi, UTS

Main reference textbooks

 Christopher M. Bishop, Pattern Recognition and Machine Learning, 2nd printing edition, Springer, 2007

An excellent textbook, it has rapidly become the book of reference for the field

 David Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press, 2012

A very interesting, recent book which is freely available in its online version

 Ricardo Gutierrez-Osuna, Lecture Notes, http://research.cs.tamu.edu/prism/lectures.htm

Excellent online materials; sets of widely commented, self-explanatory slides

 On Kalman and related topics, Yaakov Bar-Shalom's books; on particle filters, Arnaud Doucet et al.' book

© Massimo Piccardi, UTS