Mesurer l'influence de Jean-Martin Charcot sur ses contemporains à l'aide de l'extraction des phrases-clés

Ljudmila PETKOVIC^{1,2,3}

prenom.nom@sorbonne-universite.fr

Sorbonne Université, Faculté des Lettres, UFR Littératures françaises et comparée, ED 3
Centre d'étude de la langue et des littératures françaises (CELLF), UMR 8599
3 Observatoire des textes, des idées et des corous (OBTIC)

Journée «IA et Humanités Numériques» BNF, salle 70 Paris, le 3 mai 2024

Plan

- 1. Contexte de recherche
- 2. Problématique et objectif
- 3. Approche supervisée
- 4. Approche non supervisée
- 5. Conclusion et recherches futures

Contexte 000

« Napoléon des névroses » ou « Paganini de l'hystérie » (MARMION, 2015)

JEAN-MARTIN CHARCOT (1825-1893)

- Source: Wikipedia.
- père de la neurologie moderne en France au XIX^e s.
- leçons cliniques du mardi à l'hôpital de la Salpêtrière à Paris «Mecque de la neurologie»
- Contributions majeures:

← lésion dynamique des circuits cérébraux hystérie hypnose analyse et traitement des symptômes hystériques description de la sclérose en plaques disséminée ¹ SEP SLA description de la sclérose latérale amyotrophique ² maladie de Parkinson concepteur du terme (avec Alfred Vulpian)

(CAMARGO et al., 2024)

^{1.} ou sclérose multiple.

maladie de Charcot ou maladie Lou-Gehria.

Impact de Charcot sur sa discipline et au-delà

(Quelques) collaborateurs et élèves

« réseau scientifique »

Sigmund FREUD (1856-1939)
Gilles DE LA TOURETTE (1857-1932)
Joseph BABINSKI (1857-1904)

théorie psychanalytique syndrôme de Tourette pithiatisme, signe de Babinski

(Broussolle et al., 2012)

(Quelques) écrivains naturalistes français et européens

références à Charcot et aux descriptions de crises hystériques

Émile ZOLA (1840–1902) Lourdes Léon TOLSTOÏ (1828–1910) La Sonate à Kreutzer Luigi CAPUANA (1839–1915) La Torture

(KOEHLER, 2013)

- 2. Problématique et objectif

Circulation du discours médical au prisme du numérique

Objectif : aborder computationnellement la question des circulations des phénomènes textuels complexes.

Fig. 1 – Études (numériques) des circulations des savoirs.

Comment mesurer le degré d'intertextualité entre le discours de Charcot et celui de son réseau scientifique au prisme du numérique?

- 3. Approche supervisée

Fonds Charcot en ligne

SorbonNum

Bibliothèque de Sorbonne Université (BSU)

201 documents XML OCRisés (sans post-correction)

Corpus	Nb de docs	Nb de tokens		
Charcot textes rédigés par Charcot	68	12 190 649 (38,12%)		
Autres textes rédigés par les membres de son réseau scientifique	133	19 788 830 (61,88%)		
Total	201	31 979 479 (100%)		

Tab. 1 – Répartition du fonds Charcot selon les auteurs.

Corpus Charcot en ligne

Corpus Charcot accessible sur la plateforme OBVIE (ALRAHABI, 2022)

- fouille avancée des corpus en XML-TEI
- textes similaires : mots fréquents / en commun, noms cités

Fig. 2 – Points similaires entre un ouvrage de Charcot et celui de de la Tourette.

Mesurer le degré d'intertextualité

Mesurer informatiquement l'impact de Charcot sur son réseau

→ intertextualité uni-directionnelle

Fig. 3 – Opérationnalisation de l'impact de Charcot sur ses élèves.

Liste des concepts médicaux

Extraction semi-automatique des termes en lien avec Charcot.

```
Hystérie (V. Éppiérie, Hémianes-
thésie, Hyperestiésie ovarienne,
Ischorie, Segours); — épilepti-
forme, 369; — ovarienne, 303; —
grave, 366, 383; — locale, 320. —
infantile, 451. — locale traumati-
que, 450.
Hystéro-épilepse, 332, 367. — Si-
gnification de ce mot, 368; — à
crises distincts, 371. — Variétés
de l' —, 370. — Nature de l' —,
373. — Température dans l' —,
373. — Température dans l' —,
```

Fig. 4 – Index des termes (CHARCOT, 1892).

```
hystérie(s)?
hystérie(s)? épileptiforme(s)?
hystérie(s)? ovarienne(s)?
hystérie(s)? grave(s)?
hystérie(s)? locale(s)?
hystérie(s)? infantile(s)?
hystérie(s)? locale(s)? traumatique(s)?
hystérie(s)? locale(s)? traumatique(s)?
```

Fig. 6 – Liste finale des concepts médicaux.

```
<s>Hystérie (V. Epidémie, Hémianes-thésie, Hyperesthésie ovarienne, <s>Hystéro-épillepsie, 332, 367. — Si-gniffication de ce mot, 368 ; —
```

Fig. 5 - Concepts médicaux, document XML.

```
4 entre <s> et ,-( (regex)
```

- sans termes génériques (os, peau)
- 6 prise en compte des sg. / pl. (regex)

Calcul de pertinence des concepts

Trois mesures de pondération : TF-IDF, BM25 et BERT.

Terme	Corpus «Autres»			
	Fréquence	TF-IDF	BM25	BERT
Arthrite déformante	24	0,02	0,50	0,40
Ataxie locomotrice	169	0,08	0,25	0,39
Atrophie musculaire	1465	0,43	0,15	0,42
Atrophie progressive	22	0,02	0,53	0,39
Catalepsie	975	0,28	0,15	0,39
Épilepsie	577	0,12	0,10	0,41
Hystérie	4934	0,45	0,05	0,41
Langue	3591	0,11	0,02	0,41
Maladie de Parkinson	130	0,09	0,35	0,37
Paralysie bulbaire	93	0,09	0,52	0,40
Paralysie rhumatismale	14	0,02	0,68	0,44
Sclérose latérale	127	0,09	0,37	0,41
Sclérose en plaque disséminées	12	0,02	0,83	0,40
Somnambulisme	3410	1	0,15	0,43

Tab. 2 – Pertinence des concepts sous forme des scores TF-IDF, BM25 et BERT, corpus «Autres».

ontexte Objectif Approche supervisée Approche non supervisée Conclusion Références

Intensification du discours de Charcot dans le corpus Autres

Le terme le plus impactant pour le réseau de Charcot selon BM25 : sclérose en plaque disséminées? (pertinence : 83%)

Fig. 7 – Pertinence des concepts dans les deux corpus (BM25).

Vaswani et al., 2017

- plongements lexicaux et des mécanismes d'attention
- modèle bert-base-multilingual-cased

Corpus «Charcot»		Corpus «Autres»		
diplopie	0,92	préambule	0,47	
myélite partielle	0,91	délire	0,47	
état de mal épileptique	0,91	miracle	0,47	
paralysie labio-glosso-laryngée	0,91	cicatrices vicieuses	0,46	
PATHOLOGIES		NOTIONS ABSTRAITES		

- 1. Contexte de recherche
- 2. Problématique et objectif
- 3. Approche supervisée
- 4. Approche non supervisée
- 5. Conclusion et recherches future

Extraction des phrases-clés: méthode keybert

- 1 entrée : un document
- 2 tokénisation du document en phrases-clés candidates (PCC)
- 3 génération des plongements du doc. et des PCC par un modèle de langage
- 4 calcul de la similarité cosinus entre le document et les PC

Fig. 8 – Pipeline de la librairie keybert (GROOTENDORST, 2020).

Contexte Objectif Approche supervisée **Approche non supervisée** Conclusion Référence

Limitations de keybert

Fig. 9 – Répartition des 15 termes les plus pertinents dans le corpus «Autres» selon keybert.

Phrases-clés hapax partagés dans les deux corpus selon keybert

Les seuls termes partagés avec le corpus Charcot :

Fig. 10 – Répartition des termes les plus pertinents dans les deux corpus selon keybert.

Extraction des phrases-clés: méthode PatternRank Librairie keyphrase-vectorizers

- 1 entrée : un seul document texte tokenisé
- 2 étiquetage des tokens avec les balises du partie du discours (POS)
- 3 sélection des tokens selon le motif POS → phrases-clés candidates (PCC)
- 4 génération des plongements du doc. et des PCC par un modèle de langue
- 5 calcul des similarités cosinus entre ces deux types de plongements + classement des PCC par ordre décroissant
- 6 extraction des N PC les plus représentatives

Fig. 11 - Workflow de la méthode PatternRank (SCHOPF et al., 2022).

Les termes partagés les plus fréquents | keyphrase-vectorizers

Fig. 12 — Les 15 termes les plus fréquents dans les deux corpus selon keyphrase-vectorizers.

- 5. Conclusion et recherches futures.

Conclusion et recherches futures

Contributions:

- étendue de l'impact de Charcot sur la neurologie
- étude numérique de son héritage scientifique

Prochaines étapes :

- 1 diversification des phrases-clés extraites par keybert
- 2 définir les notions des circulations numériques et du concept du point de vue du TAL / linguistique
- 3 évaluation des phrases-clés extraites (semi-)automatique + retour d'un spécialiste de Charcot
- 4 contexte des réemplois textuels (affirmation, contestation ...)

Remerciements

Un grand merci à :

- Valentina Fedchenko ingénieure de recherche, équipe-projet OBTIC
- Motasem Alrahabi ingénieur de recherche, équipe-projet OBTIC
- Glenn Roe professeur des univerités, équipe-projet OBTIC
- Simon Gabay
 maître-assistant, Chaire des humanités numériques, univ. de Genève
- unité de service SACADO
 hébergeur de la plateforme MESU de Sorbonne Université, sur laquelle les expériences ont été realisées

Dépôts GitHub

Les données et les scripts utilisés dans le cadre de cette étude sont disponibles dans les dépôts GitHub suivants :

- Mesurer l'influence de Charcot sur ses contemporains à l'aide de l'extraction de phrases-clés
- Tracking the circulation of Jean-Martin Charcot's medical discourse: first observations.

Références I

ALRAHABI, M. (2022). Obvie: interface web pour la fouille et la comparaison de textes. In: Atelier DigitAl Humanities and cuLtural herltAge: data and knowledge management and analysis durant la conférence francophone sur l'Extraction et la Gestion des Connaissances (egc2022) (voir p. 11).

BOGOUSSLAVSKY, J. (2020). The mysteries of hysteria: a historical perspective. In: International Review of Psychiatry 32.5-6, p. 437-450 (voir p. 7).

BROUSSOLLE, E., J. POIRIER, F. CLARAC et J.-G. BARBARA (2012). Figures and institutions of the neurological sciences in Paris from 1800 to 1950. Part III: Neurology. In: Revue Neurologique 168.4. p. 301-320 (voir p. 5).

CAMARGO, C. H. F., L. COUTINHO, Y. CORREA NETO, E. ENGELHARDT, P. MARANHÃO FILHO, O. WALUSINSKI et H. A. G. TEIVE (2024). Jean-Martin Charcot: the polymath. In: Arquivos de Neuro-psiquiatria 81, p. 1098-1111 (voir p. 4).

CHARCOT, J.-M. (1892). Œuvres complètes de J.-M. Charcot: Leçons sur les maladies du système nerveux. T. 1. Paris: Bureaux du Progrès médical (voir p. 13).

GABAY, S., L. PETKOVIC, A. BARTZ, M. G. LEVENSON et L. R. DU NOYER (2021). Katabase: À la recherche des manuscrits vendus. In: Humanistica 2021 (voir p. 7).

GROOTENDORST, M. (2020). KeyBERT: Minimal keyword extraction with BERT. Version v0.3.0 (voir p. 18).

Références II

JOYEUX-PRUNEL, B. (2019). Visual Contagions, the Art Historian, and the Digital Strategies to Work on Them. In: Artl@s Bulletin 8.3, p. 8 (voir p. 7).

KOEHLER, P. J. (2013). Charcot, La Salpêtrière, and Hysteria as Represented in European Literature. In: *Progress in Brain Research* 206, p. 93-122 (voir p. 5).

MANJAVACAS, E., B. LONG et M. KESTEMONT (2019). On the Feasibility of Automated Detection of Allusive Text Reuse. In: Proceedings of the 3rd Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature. Minneapolis, USA: Association for Computational Linguistics, p. 104-114 (voir p. 7).

MARMION, J.-F. (2015). Freud et la psychanalyse. Sciences Humaines (voir p. 4).

SCHOPF, T., S. KLIMEK et F. MATTHES (2022). PatternRank: Leveraging Pretrained Language Models and Part of Speech for Unsupervised Keyphrase Extraction. In: Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2022) – KDIR. INSTICC. SciTePress, p. 243-248 (voir p. 21).

TASCA, C., M. RAPETTI, M. G. CARTA et B. FADDA (2012). Women and hysteria in the history of mental health. In: Clinical practice and epidemiology in mental health: CP & EMH 8, p. 110 (voir p. 7).

TEIVE, H. A. G., L. COUTINHO, C. H. F. CAMARGO, R. P. MUNHOZ et O. WALUSINSKI (2022). Thomas Willis' legacy on the 400th anniversary of his birth. In: *Arquivos de Neuro-Psiquiatria* 80, p. 759-762 (*voir p. 7*).

Références III

VASWANI, A., N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N. GOMEZ, L. KAISER et I. POLOSUKHIN (2017). Attention Is All You Need. In: CoRR abs/1706.03762. arXiv: 1706.03762 (voir p. 16).

