

Relatório 6 Integrais Numéricas Definidas Métodos de aproximação

Cristiano Lopes Moreira

Matrícula: 119103-0

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	orio de entação
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Moreira.doc		1 (13)

Relatório 6

Sumário

1.	Introdução	. 3
2.	Desenvolvimento teórico	. 4
2.1.	Descrição do problema:	. 6
2.2.	Algoritmo de Integração e aproximação:	. 8
3.	Proposta de implementação	. 8
4.	Experimentação e Resultados	11
5.	Conclusão	12
6.	Referências bibliográficas	13

Aluno		RA/Matrícula Professor		Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implemo	
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	2 (13)

1. Introdução

Na física e na matemática, seja para obter a distância percorrida por um automóvel, ou o espaço de um terreno, existem diversas aplicações que necessitam calcular a área sob uma curva no plano cartesiano. Para vários desses casos é possível realizar o cálculo analítico da área através da função f(x), que representa a curva no plano cartesiano. Porém, existem casos que a função f(x) não possibilita realizar um cálculo analítico de sua área, ou ainda, existem casos em que se tem somente os valores numéricos no plano cartesiano, sem a função geradora. Para esses casos é possível utilizar soluções de integração numéricas, que realizam cálculos aproximados da área sob a curva no plano cartesiano, mesmo que não se tenha a função geradora.

A integração numérica, também chamada de quadratura, aproxima o cálculo da área sob a curva pela criação de quadrados aproximados, sob essa curva, que somadas suas áreas, dentro de um intervalo definido, geram uma aproximação da área total sob a curva. Quanto menor a largura de cada quadrado, maior a precisão do cálculo da área.

Esse método torna-se mais factível com a introdução da computação que possibilita realizar diversos cálculos com larguras dos quadrados cada vez menores, consequentemente com precisão cada vez maior.

Este trabalho tem o objetivo de implementar e validar três Métodos de aproximação para cálculo de intergral numérica, e realizar interações nos algoritmos visando aumentar a precisão dos resultados.

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	3 (13)

2. Desenvolvimento teórico

Regras de Newton-Cotes, são um grupo de fórmulas para Integração numérica (também chamadas de Quadratura) baseadas na avaliação do integrante em pontos igualmente espaçados, consiste em aproximar:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} \alpha_{i} f(x_{i})$$

Onde α_i são coeficientes reais e x_i são pontos médios entre a e b

Os métodos para a integração numérica se baseiam em segmentar o intervalo [a, b] em intervalos menores, possíveis de calcular a área, que gerem um erro menor, e na sequência somar todos os subintervalos.

Pela regra de Newton-Cotes, três métodos básicos são utilizados:

 O método da regra dos pontos médios, que consiste em pegar um ponto no meio entre o intervalo [a, b], e realizar o cálculo da área do quadrado formado entre o intervalo e o resultado da função neste ponto médio.

$$\int_{a}^{b} f(x)dx \approx (b-a)f\left(\frac{a+b}{2}\right)$$

Aluno		RA/Matrícula Professor		Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	4 (13)

Esse método, que utiliza o valor da função em todos seus pontos, é nomeado fórmula de newton-cortes fechada, gera um termo de erro igual a $-\frac{(b-a)^3}{24}f''(x_0)$

 O método da regra trapezoidal, com função de interpolação como uma linha reta (um polinómio interpolador do 1º grau) passando pelos pontos (a, f(a)) e (b, f(b)).

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{2} (f(a) + f(b))$$

Esse método, que utiliza o valor da função em todos seus pontos, é nomeado fórmula de newton-cortes fechada, gera um termo de erro igual a $-\frac{(b-a)^3}{12}f''(x_0)$

3. O método da **regra de Simpson**, considera a aproximação em cada subintervalo através de um polinómio interpolador do 2º grau (parábola).

$$\int_{a}^{b} f(x)dx \approx (b-a) \frac{\left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)\right)}{6}$$

Aluno		Aluno RA/Matrícula		Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	orio de entação
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	5 (13)

Esse método, que utiliza o valor da função em todos seus pontos, é nomeado fórmula de newton-cortes fechada, gera um termo de erro igual a $-\frac{(b-a)^5}{2880}f''''(x_0)$

2.1. Descrição do problema:

Deseja-se calcular a integral das funções abaixo utilizando os métodos dos Pontos Médios, Trapezoidal e Simpson, com um método de adaptação do resultado pela variação da taxa de erro.

Primeira função: $\int_0^1 e^x dx$

Aluno		RA/Matrícula Professor		Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	6 (13)

Segunda função: $\int_0^1 \sqrt[2]{1-x^2} dx$

Terceira função: $\int_0^1 e^{-x^2} dx$

Aluno		RA/Matrícula Professor		Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	7 (13)

2.2. Algoritmo de Integração e aproximação:

O algoritmo de integração numérica por aproximação utiliza a metodologia Newton-Cotes, variando as fórmulas de Newton-Cotes em cada caso, para calcular a função integral determinada. Suas operações consistem em calcular o a função f(x), calcular a integral da função f(x), calcular a precisão da integral, calcular e retornar o número de subintervalos são necessários para uma dada precisão.

Seus métodos principais são:

construtor (): inicializa a função.

rg_medio (x0, x1, erro): recebe o intervalo superior, intervalo inferior e taxa de erro aceitável, e realiza os cálculos e divisões dos intervalos para retornar o valor da integral utilizando a regra dos pontos médios.

rg_trapezio (x0, x1, erro): recebe o intervalo superior, intervalo inferior e taxa de erro aceitável, e realiza os cálculos e divisões dos intervalos para retornar o valor da integral utilizando a regra trapezoidal.

rg_simpson (x0, x1, erro): recebe o intervalo superior, intervalo inferior e taxa de erro aceitável, e realiza os cálculos e divisões dos intervalos para retornar o valor da integral utilizando a regra de simpson.

prtAccurate(), retorna a taxa de erro no cálculo da derivada;

qtPassos, retorna o número de intervalos necessários para calcular a integral com a taxa de erro aceitável

3. Proposta de implementação

É proposta a implementação do objeto Funcd, objeto base que recebe a função a qual se deseja encontrar a integral e contém os métodos para o cálculo com cada uma das funções básicas de Newton-Cortes.

Aluno		RA/Matrícula Professor		Tij	00
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	8 (13)

Estrutura do objeto Funcd

O Algoritmo Funcd será implementado via Classe que utiliza o método 'funcao', responsável armazenar a função que se deseja realizar os cálculos, receber o valor de x e retornar o valor da f(x); 'derivada' responsável por calcular a derivada da função, de forma numérica ou analítica, e retornar o valor da derivada para ser utilizado nos cálculos do erro; 'rg_pmedio', responsável por calcular a integral com as fórmulas da regra dos pontos médios; 'rg_trapezio', responsável por calcular a integral com as formulas da regra trapezoidal; 'rg_simpson', responsável por calcular a integral com as formulas da regra de Simpson; 'ptrAcurrate', responsável por retornar o erro da integral calculada e responsável por retornar a quantidade de intervalos necessários para calcular a integral com o erro aceitável.

Será utilizado um objeto base Funcd, que contém a função, a derivada da função e as funções Newton-Cotes para calcular a integral.

Funcd
- txAcurrate: double
- passos: int
< <constructor>> Funcd()</constructor>
< <destructor>> ~Funcd()</destructor>
+ funcao(double x) : double
+ derivada(double x, int ordem, double delta): double
+ rg_pmedio(double a, double b, double erro): double
+ rg_trapezio(double a, double b, double erro): double
+ rg_simpson(double a, double b, double erro): double
+ prtAcurrate(): double
+ qtPassos(): int
- fat(int x): int

Aluno		Aluno RA/Matrícula		Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	9 (13)

Pseudocódigo:

```
Calcula integral (double a, double b, double erro)

delta = (a+b)/2

Integral = calcula integral (a, b);

Erro = calcula erro integral
enquanto (erro > precisao)

delta = delta /2
integral=0
erro=0
passo=a
enquanto (passo < b)
Integral = integral+calcula integral (passo, passo+ delta);
erro = erro +calcula erro integral

Retorna integral
```

Herança da estrutura de função para exp(x), $(1-x^2)^{(1/2)}$ e exp(-x)

Os Algoritmos eX , raiz_1_x2 e eX_neg2 serão implementados via classe com herança da Classe Funcd, com métodos 'funcao' e 'derivada' implementados pela utilização de polimorfismo.

Aluno		Aluno RA/Matrícula		Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	orio de entação
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	10 (13)

4. Experimentação e Resultados

Foram gerados ensaios utilizando as 3 três fórmulas de Newton-Cotes (Pontos Médios, Trapezoidal e Simpson) para calcular a integral das funções e seus erros. Na sequência foi definido um de erro entre 10⁻¹ a 10⁻¹⁰ e realizado novas interações para verificar os novos resultados e quantidade de subintervalos que cada método necessitou para alcançar o erro aceitável .

Resultado do cálculo das integrais definidas no intervalo [0,1]

	Pontos Médios		Trapezoidal		Simpson	
	Integral	erro	Integral	erro	Integral	erro
e^x	1.6487	0.123	1.8591	-0.246	1.7189	-0.003
(1 - x^2)^1/2	0.866	-0.0417	0.5	0.0833	0.744	0.001
e^-x^2	0.7788	0.0118	0.6839	-0.0235	0.7472	0.0001

Resultado do cálculo das integrais no intervalo [0,1] - erro entre 10⁻¹ e 10⁻⁶

	e^x					
	Ponto	s Médios	Trapezoidal		Simpson	
Erro	Integral	intervalos	Integral	intervalos	Integral	intervalos
10^-1	1.7005	3	1.7539	3	1.7189	1
10^-2	1.7138	7	1.7272	7	1.7189	1
10^-3	1.7172	15	1.7188	31	1.7183	3
10^-4	1.7182	63	1.7184	63	1.7183	3
10^-5	1.7183	255	1.7183	255	1.7183	7
10^-6	1.7183	511	1.7183	1023	1.7183	15
10^-7	1.7183	2047	1.7183	2047	1.7183	31
10^-8	1.7183	4095	1.7183	8191	1.7183	31
10^-9	1.7183	16383	1.7183	32767	1.7183	63
10^-10	1.7183	65535	1.7183	65535	1.7183	127

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementaçã	
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	11 (13)

	(1 - x^2)^1/2 e^x					
	Ponto	s Médios	Trapezoidal		Simpson	
Erro	Integral	intervalos	Integral	intervalos	Integral	intervalos
10^-1	0.86603	1	0.5	1	0.74402	1
10^-2	0.79598	7	0.74893	7	0.74402	1
10^-3	0.78917	15	0.78081	31	0.7709	3
10^-4	0.78587	63	0.78378	63	0.7709	3
10^-5	0.78546	255	0.7852	255	0.7803	7
10^-6	0.78542	511	0.78537	1023	0.7836	15
10^-7	0.7854	2047	0.78539	2047	0.78476	31
10^-8	0.7854	4095	0.7854	8191	0.78517	63
10^-9	0.7854	16383	0.7854	32767	0.78517	63
10^-10	0.7854	65535	0.7854	65535	0.78532	127

	e^-x^2					
	Ponto	s Médios	Trapezoidal		Simpson	
Erro	Integral intervalos		Integral	intervalos	Integral	intervalos
10^-1	0.7788	1	0.68394	1	0.74718	1
10^-2	0.7546	3	0.74298	7	0.74718	1
10^-3	0.74694	31	0.74658	31	0.74718	1
10^-4	0.74685	63	0.74681	127	0.74683	7
10^-5	0.74683	255	0.74682	511	0.74683	7
10^-6	0.74682	1023	0.74682	1023	0.74682	15
10^-7	0.74682	2047	0.74682	4095	0.74682	31
10^-8	0.74682	8191	0.74682	8191	0.74682	63
10^-9	0.74682	32767	0.74682	32767	0.74682	127
10^-10	0.74682	65535	0.74682	131071	0.74682	255

5. Conclusão

Observa-se que, na integral numérica o erro depende do tamanho do intervalo de integração. Uma estratégia para reduzir o erro consiste em reduzir o intervalo de integração em diversos subintervalos até que seja alçada a precisão desejada. Em todos os casos observados neste trabalho, o método de Simpson necessita de uma quantidade menor de intervalos para alcançar a mesma taxa de erro.

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementaçã	
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	12 (13)

Relatório 6

6. Referências bibliográficas

W. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING, B. P. FLANNERY, **Numerical Recipes – The Art of Scientific Computing**, 3nd ed. Cambridge University Press, 2007.

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementaçã	
Data	Versão	Turma	Nome do arquivo		Página
20/08/2019	1	2º. Semestre de 2019	PEL_216_Relatório_6_Cristiano_Mo	reira.doc	13 (13)