Statistica - 14ª lezione

13 maggio 2021

Programma

- Statistica descrittiva (riassumere molti dati attraverso poche caratteristiche essenziali)
- Probabilità
 (costruire un modello che preveda il risultato di un esperimento)
- Inferenza statistica (tarare i parametri del modello in base ai risultati dell'esperimento)
- Regressione lineare (riconoscere relazioni tra dati di tipo diverso)

Per n punti passa sempre un polinomio di grado n-1:

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Come si capisce se la retta di parametri (a, b) approssima bene gli n punti?

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Come si capisce se la retta di parametri (a, b) approssima bene gli n punti?

Dobbiamo introdurre gli errori (o residui)

$$e_i := y_i - (a + bx_i)$$

$$L(a,b) := \sum_{i=1}^{n} (y_i - a - bx_i)^2 = \sum_{i=1}^{n} e_i^2$$

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Come si capisce se la retta di parametri (a, b) approssima bene gli n punti?

Dobbiamo introdurre gli errori (o residui)

$$e_i := y_i - (a + bx_i)$$

$$L(a,b) := \sum_{i=1}^{n} (y_i - a - bx_i)^2 = \sum_{i=1}^{n} e_i^2$$

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Come si capisce se la retta di parametri (a, b) approssima bene gli n punti?

Dobbiamo introdurre gli errori (o residui)

$$e_i := y_i - (a + bx_i)$$

$$L(a,b) := \sum_{i=1}^{n} (y_i - a - bx_i)^2 = \sum_{i=1}^{n} e_i^2$$

Per n punti passa sempre un polinomio di grado n-1:

Ma noi vogliamo la funzione più semplice possibile: la retta

$$y = a + bx$$

parametrizzata solo da (a, b).

Come si capisce se la retta di parametri (a, b) approssima bene gli n punti?

Dobbiamo introdurre gli errori (o residui)

$$e_i := y_i - (a + bx_i)$$

Perché si mette il quadrato?

$$L(a,b) := \sum_{i=1}^{n} (y_i - a - bx_i)^2 = \sum_{i=1}^{n} e_i^2$$

Col quadrato:

- $L(a,b) \geq 0 \ \forall (a,b)$
- $L(\infty) = +\infty$
- \exists ! punto di minimo (\hat{a}, \hat{b})

Senza quadrato:

- i residui si compensano
- ∄ minimo

Col quadrato:

- $L(a, b) \ge 0 \ \forall (a, b)$
- $L(\infty) = +\infty$
- \exists ! punto di minimo (\hat{a}, \hat{b})

Senza quadrato: L(a,b) i residui si compensano minimo

 $y = \hat{a} + \hat{b}x$ è la retta dei minimi quadrati (LSL = least square line)

$$\frac{\partial L}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$\frac{\partial L}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
$$= -2 \sum_{i=1}^{n} (y_i - a - bx_i)$$

Cerchiamo (\hat{a}, \hat{b}) ponendo $\nabla L(\hat{a}, \hat{b}) \equiv 0$:

$$\frac{\partial L}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
$$= -2 \sum_{i=1}^{n} (y_i - a - bx_i)$$
$$= -2(n\bar{y} - na - nb\bar{x})$$

dove

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i.$$

Cerchiamo (\hat{a}, \hat{b}) ponendo $\nabla L(\hat{a}, \hat{b}) \equiv 0$:

$$\frac{\partial L}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
$$= -2 \sum_{i=1}^{n} (y_i - a - bx_i)$$
$$= -2(n\bar{y} - na - nb\bar{x})$$
$$\equiv 0$$

dove

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i.$$

dove

Cerchiamo (\hat{a}, \hat{b}) ponendo $\nabla L(\hat{a}, \hat{b}) \equiv 0$:

$$\frac{\partial L}{\partial a} = \frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} (y_i - a - bx_i)$$

$$= -2(n\bar{y} - na - nb\bar{x})$$

$$\equiv 0$$

$$\Rightarrow a = \bar{y} - b\bar{x}$$

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i.$$

6/12

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - na\bar{x} - b \sum_{i=1}^{n} x_i^2 \right)$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - na\bar{x} - b \sum_{i=1}^{n} x_i^2 \right)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - n\bar{x} (\bar{y} - b\bar{x}) - b \sum_{i=1}^{n} x_i^2 \right) \quad \text{con } a = \bar{y} - b\bar{x}$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - na\bar{x} - b \sum_{i=1}^{n} x_i^2 \right)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - n\bar{x} (\bar{y} - b\bar{x}) - b \sum_{i=1}^{n} x_i^2 \right) \quad \text{con } a = \bar{y} - b\bar{x}$$

$$\equiv 0$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - na\bar{x} - b \sum_{i=1}^{n} x_i^2 \right)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - n\bar{x} (\bar{y} - b\bar{x}) - b \sum_{i=1}^{n} x_i^2 \right) \quad \text{con } a = \bar{y} - b\bar{x}$$

$$\equiv 0$$

$$\Rightarrow \quad b = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_j^2 - n\bar{x}^2}$$

$$\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - na\bar{x} - b \sum_{i=1}^{n} x_i^2 \right)$$

$$= -2 \left(\sum_{i=1}^{n} x_i y_i - n\bar{x} (\bar{y} - b\bar{x}) - b \sum_{i=1}^{n} x_i^2 \right) \quad \text{con } a = \bar{y} - b\bar{x}$$

$$\equiv 0$$

$$\Rightarrow b = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_j - \bar{x})^2}$$

Dai punti $(x_1, y_1), \dots, (x_n, y_n)$ distilliamo le 5 quantità

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$s_{xx} := \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad s_{xy} := \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \qquad s_{yy} := \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Dai punti $(x_1, y_1), \ldots, (x_n, y_n)$ distilliamo le 5 quantità

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$s_{xx} := \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad s_{xy} := \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \qquad s_{yy} := \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Tutte le altre quantità della LSL sono funzioni di gueste. P. es.:

$$\hat{a} = \bar{y} - \frac{s_{xy}}{s_{yy}}\bar{x}$$
 $\hat{b} = \frac{s_{xy}}{s_{yy}}$

$$\hat{b} = \frac{s_{xy}}{s_{xx}}$$

parametri della LSL

Dai punti $(x_1, y_1), \dots, (x_n, y_n)$ distilliamo le 5 quantità

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$s_{xx} := \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad s_{xy} := \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \qquad s_{yy} := \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Tutte le altre quantità della LSL sono funzioni di queste. P. es.:

$$\hat{a} = \bar{y} - \frac{s_{xy}}{s_{xx}} \bar{x}$$
 $\hat{b} = \frac{s_{xy}}{s_{xx}}$ parametri della LSL $\hat{y}_i := \hat{a} + \hat{b}x_i = \bar{y} + \frac{s_{xy}}{s_{xx}}(x_i - \bar{x})$ output della LSL

Dai punti $(x_1, y_1), \dots, (x_n, y_n)$ distilliamo le 5 quantità

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$s_{xx} := \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad s_{xy} := \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \qquad s_{yy} := \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Tutte le altre quantità della LSL sono funzioni di queste. P. es.:

$$\hat{a} = \bar{y} - \frac{s_{xy}}{s_{xx}}\bar{x}$$
 $\hat{b} = \frac{s_{xy}}{s_{xx}}$ parametri della LSL $\hat{y}_i := \hat{a} + \hat{b}x_i = \bar{y} + \frac{s_{xy}}{s_{xx}}(x_i - \bar{x})$ output della LSL $\hat{e}_i := y_i - \hat{y}_i = (y_i - \bar{y}) - \frac{s_{xy}}{s_{xx}}(x_i - \bar{x})$ residui della LSL

$$ss_t := s_{yy} = \sum_i (y_i - \bar{y})^2$$
 total sum of squares

$$ss_t := s_{yy} = \sum_i (y_i - \bar{y})^2$$
 total sum of squares

• $ss_t \ge 0$

$$ss_t := s_{yy} = \sum_i (y_i - \bar{y})^2$$
 total sum of squares

- $ss_t \geq 0$
- ullet ss_t non dipende dall'aver scelto il modello lineare

$$ss_t := s_{yy} = \sum_i (y_i - \bar{y})^2$$
 total sum of squares

- $ss_t \geq 0$
- ss_t non dipende dall'aver scelto il modello lineare
- $ss_t \neq 0$ anche se tutti i punti stanno esattamente su una retta:

$$ss_t := s_{yy} = \sum_i (y_i - \bar{y})^2$$
 total sum of squares

- $ss_t \geq 0$
- ss_t non dipende dall'aver scelto il modello lineare
- $ss_t \neq 0$ anche se tutti i punti stanno esattamente su una retta:

Varianza totale

$$ss_t := s_{yy} = \sum_i (y_i - \bar{y})^2$$
 total sum of squares

- $ss_t \geq 0$
- sst non dipende dall'aver scelto il modello lineare
- $ss_t \neq 0$ anche se tutti i punti stanno esattamente su una retta
- $ss_t = ss_r + ss_e$, dove:
 - ss_r è intrinseca al modello lineare (varianza spiegata)
 - ss_e dipende dalla dispersione intorno alla LSL (varianza *residua*)

Varianza totale

$$ss_t := s_{yy} = \sum_i (y_i - \bar{y})^2$$
 total sum of squares

- $ss_t \geq 0$
- sst non dipende dall'aver scelto il modello lineare
- $ss_t \neq 0$ anche se tutti i punti stanno esattamente su una retta
- $ss_t = ss_r + ss_e$, dove:
 - ss_r è intrinseca al modello lineare (varianza spiegata)
 - ss_e dipende dalla dispersione intorno alla LSL (varianza *residua*)

Varianza totale

$$ss_t := s_{yy} = \sum_i (y_i - \bar{y})^2$$
 total sum of squares

- $ss_t \geq 0$
- sst non dipende dall'aver scelto il modello lineare
- $ss_t \neq 0$ anche se tutti i punti stanno esattamente su una retta
- $ss_t = ss_r + ss_e$, dove:
 - ss_r è intrinseca al modello lineare (varianza spiegata)
 - ss_e dipende dalla dispersione intorno alla LSL (varianza *residua*)

$$ss_e := \min_{(a,b)} L(a,b)$$

$$ss_e := \min_{(a,b)} L(a,b) = L(\hat{a},\hat{b})$$

$$ss_e := \min_{(a,b)} L(a,b) = L(\hat{a},\hat{b}) = \sum_i (y_i - \hat{a} - \hat{b}x_i)^2$$

$$ss_e := \min_{(a,b)} L(a,b) = L(\hat{a},\hat{b}) = \sum_i (y_i - \hat{a} - \hat{b}x_i)^2$$

= $\sum_i (y_i - \hat{y}_i)^2$

$$ss_e := \min_{(a,b)} L(a,b) = L(\hat{a},\hat{b}) = \sum_i (y_i - \hat{a} - \hat{b}x_i)^2$$

= $\sum_i (y_i - \hat{y}_i)^2 = \sum_i \hat{e}_i^2$

$$ss_e := \min_{(a,b)} L(a,b) = L(\hat{a},\hat{b}) = \sum_i (y_i - \hat{a} - \hat{b}x_i)^2$$
$$= \sum_i (y_i - \hat{y}_i)^2 = \sum_i \hat{e}_i^2 \qquad \text{error sum of squares}$$

$$ss_e := \min_{(a,b)} L(a,b) = L(\hat{a},\hat{b}) = \sum_i (y_i - \hat{a} - \hat{b}x_i)^2$$

= $\sum_i (y_i - \hat{y}_i)^2 = \sum_i \hat{e}_i^2$ error sum of squares

• $ss_e \ge 0$

$$ss_e := \min_{(a,b)} L(a,b) = L(\hat{a},\hat{b}) = \sum_i (y_i - \hat{a} - \hat{b}x_i)^2$$

= $\sum_i (y_i - \hat{y}_i)^2 = \sum_i \hat{e}_i^2$ error sum of squares

- $ss_e \geq 0$
- $ss_e = 0$ se e solo se tutti i punti stanno esattamente su una retta

$$SS_e := \min_{(a,b)} L(a,b) = L(\hat{a},\hat{b}) = \sum_{i} (y_i - \hat{a} - \hat{b}x_i)^2$$
$$= \sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} \hat{e}_i^2 \quad error sum \ of \ squares$$

- $ss_e \geq 0$
- ullet $ss_e=0$ se e solo se tutti i punti stanno esattamente su una retta:

$$\Rightarrow$$
: $ss_e = 0$ \Rightarrow $(y_i - \hat{a} - \hat{b}x_i)^2 = 0$ per ogni i \Rightarrow $y_i = \hat{a} + \hat{b}x_i$ per ogni i

$$ss_e := \min_{(a,b)} L(a,b) = L(\hat{a},\hat{b}) = \sum_i (y_i - \hat{a} - \hat{b}x_i)^2$$
$$= \sum_i (y_i - \hat{y}_i)^2 = \sum_i \hat{e}_i^2 \quad error sum \ of \ squares$$

- $ss_e \geq 0$

$$\Rightarrow: \quad ss_e = 0 \quad \Rightarrow \quad (y_i - \hat{a} - \hat{b}x_i)^2 = 0 \text{ per ogni } i$$

$$\Rightarrow \quad y_i = \hat{a} + \hat{b}x_i \text{ per ogni } i$$

$$\Leftarrow: \quad y_i = a + bx_i \text{ per ogni } i \quad \Rightarrow \quad L(a, b) = 0$$

$$\Rightarrow \quad ss_e = \min_{(a, b)} L(a, b) = 0$$

$$ss_e := \min_{(a,b)} L(a,b) = L(\hat{a},\hat{b}) = \sum_i (y_i - \hat{a} - \hat{b}x_i)^2$$

= $\sum_i (y_i - \hat{y}_i)^2 = \sum_i \hat{e}_i^2$ error sum of squares

- $ss_e \geq 0$
- ullet $ss_e=0$ se e solo se tutti i punti stanno esattamente su una retta:

$$\Rightarrow: \quad ss_e = 0 \quad \Rightarrow \quad (y_i - \hat{a} - \hat{b}x_i)^2 = 0 \text{ per ogni } i$$

$$\Rightarrow \quad y_i = \hat{a} + \hat{b}x_i \text{ per ogni } i$$

$$\Leftarrow: \quad y_i = a + bx_i \text{ per ogni } i \quad \Rightarrow \quad L(a, b) = 0$$

$$\Rightarrow \quad ss_e = \min_{(a,b)} L(a, b) = 0$$

• Se $ss_e = 0$, tutti i punti stanno sulla LSL.

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2$$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2$$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}}$$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}} \qquad regression sum of squares$$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}} \quad regression sum of squares$$

• $ss_r \geq 0$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}} \quad regression sum of squares$$

- $ss_r \geq 0$
- $ss_t = ss_r + ss_e$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}} \quad regression sum of squares$$

- $ss_r \geq 0$
- $ss_t = ss_r + ss_e$, perché

$$ss_e \ := \ \sum (y_i - \hat{y}_i)^2$$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}} \quad regression sum of squares$$

- $ss_r \geq 0$
- $ss_t = ss_r + ss_e$, perché

$$ss_e := \sum (y_i - \hat{y}_i)^2 = \sum \left[y_i - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}} \quad regression \ sum \ of \ squares$$

- $ss_r \geq 0$
- $ss_t = ss_r + ss_e$, perché

$$ss_e := \sum (y_i - \hat{y}_i)^2 = \sum \left[y_i - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \sum \left[(y_i - \bar{y}) - \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right]^2$$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}} \quad regression sum of squares$$

- $ss_r > 0$
- $ss_t = ss_r + ss_e$, perché

$$egin{aligned} ss_{e} &:= \sum (y_{i} - \hat{y}_{i})^{2} = \sum \left[y_{i} - \left(ar{y} + rac{s_{xy}}{s_{xx}} \left(x_{i} - ar{x}
ight)
ight) \right]^{2} \ &= \sum \left[\left(y_{i} - ar{y}
ight) - rac{s_{xy}}{s_{xx}} \left(x_{i} - ar{x}
ight)
ight]^{2} = s_{yy} - 2 rac{s_{xy}}{s_{xx}} s_{xy} + \left(rac{s_{xy}}{s_{xx}}
ight)^{2} s_{xx} \end{aligned}$$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}} \quad regression \ sum \ of \ squares$$

- $ss_r > 0$

•
$$ss_t = ss_r + ss_e$$
, perché $ss_e := \sum (y_i - \hat{y}_i)^2 = \sum \left[y_i - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$ $= \sum \left[(y_i - \bar{y}) - \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right]^2 = s_{yy} - 2 \frac{s_{xy}}{s_{xx}} s_{xy} + \left(\frac{s_{xy}}{s_{xx}} \right)^2 s_{xx}$ $= s_{yy} - \frac{s_{xy}^2}{s_{xx}}$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}} \quad regression sum of squares$$

- $ss_r > 0$

•
$$ss_t = ss_r + ss_e$$
, perché
$$ss_e := \sum (y_i - \hat{y}_i)^2 = \sum \left[y_i - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \sum \left[(y_i - \bar{y}) - \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right]^2 = s_{yy} - 2 \frac{s_{xy}}{s_{xx}} s_{xy} + \left(\frac{s_{xy}}{s_{xx}} \right)^2 s_{xx}$$
$$= s_{yy} - \frac{s_{xy}^2}{s_{xy}} = ss_t - ss_r$$

$$ss_r := \sum_i (\bar{y} - \hat{y}_i)^2 = \sum_i \left[\bar{y} - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2$$
$$= \left(\frac{s_{xy}}{s_{xx}} \right)^2 \sum_i (x_i - \bar{x})^2 = \frac{s_{xy}^2}{s_{xx}} \quad regression sum of squares$$

- $ss_r > 0$
- $ss_t = ss_r + ss_e$, perché

$$\begin{aligned} \mathbf{SS_e} &:= \sum (y_i - \hat{y}_i)^2 = \sum \left[y_i - \left(\bar{y} + \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right) \right]^2 \\ &= \sum \left[(y_i - \bar{y}) - \frac{s_{xy}}{s_{xx}} (x_i - \bar{x}) \right]^2 = s_{yy} - 2 \frac{s_{xy}}{s_{xx}} s_{xy} + \left(\frac{s_{xy}}{s_{xx}} \right)^2 s_{xx} \\ &= s_{yy} - \frac{s_{xy}^2}{s_{xy}} = s_{yy} - s_{yy} \end{aligned}$$

$$r^2 := \frac{ss_r}{ss_t}$$

$$r^2 := \frac{ss_r}{ss_t} = \frac{ss_t - ss_e}{ss_t}$$

$$r^{2} := \frac{ss_{r}}{ss_{t}} = \frac{ss_{t} - ss_{e}}{ss_{t}}$$
$$= 1 - \frac{ss_{e}}{ss_{t}}$$

$$r^2 := \frac{ss_r}{ss_t} = \frac{ss_t - ss_e}{ss_t}$$

$$= 1 - \frac{ss_e}{ss_t} \quad coefficiente di determinazione$$

$$r^2 := \frac{ss_r}{ss_t} = \frac{ss_t - ss_e}{ss_t}$$
 $= 1 - \frac{ss_e}{ss_t}$ coefficiente di determinazione

•
$$0 \le r^2 \le 1$$

$$r^2 := \frac{ss_r}{ss_t} = \frac{ss_t - ss_e}{ss_t}$$
 $= 1 - \frac{ss_e}{ss_t}$ coefficiente di determinazione

- $0 \le r^2 \le 1$
- $r^2 \simeq 1 \quad \Rightarrow \quad \text{i punti si dispongono bene su una retta}$

$$r^2 := \frac{ss_r}{ss_t} = \frac{ss_t - ss_e}{ss_t}$$

$$= 1 - \frac{ss_e}{ss_t} \quad coefficiente di determinazione$$

- $0 \le r^2 \le 1$
- $r^2 \simeq 1 \quad \Rightarrow \quad \text{i punti si dispongono bene su una retta}$
- r² è la "percentuale di variabilità spiegata dal modello lineare"

$$r^2 := \frac{ss_r}{ss_t} = \frac{ss_t - ss_e}{ss_t}$$

$$= 1 - \frac{ss_e}{ss_t} \quad coefficiente di determinazione$$

- $0 \le r^2 \le 1$
- $r^2 \simeq 1 \quad \Rightarrow \quad \text{i punti si dispongono bene su una retta}$
- r² è la "percentuale di variabilità spiegata dal modello lineare"

$$\bullet r^2 = \frac{s_{xy}^2/s_{xx}}{s_{yy}}$$

$$r^2 := \frac{ss_r}{ss_t} = \frac{ss_t - ss_e}{ss_t}$$

$$= 1 - \frac{ss_e}{ss_t} \quad coefficiente di determinazione$$

- $0 \le r^2 \le 1$
- $r^2 \simeq 1 \quad \Rightarrow \quad \text{i punti si dispongono bene su una retta}$
- r² è la "percentuale di variabilità spiegata dal modello lineare"

$$\bullet r^2 = \frac{s_{xy}^2/s_{xx}}{s_{yy}} = \frac{s_{xy}^2}{s_{xx}s_{yy}}$$

$$r := \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}}$$
 coefficiente di correlazione

$$r := \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}}$$
 coefficiente di correlazione

•
$$-1 \le r \le 1$$

$$r := \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}}$$
 coefficiente di correlazione

- −1 ≤ *r* ≤ 1
- r² è il coefficiente di determinazione

$$r := \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}}$$
 coefficiente di correlazione

- −1 ≤ *r* ≤ 1
- r² è il coefficiente di determinazione
- r > 0.9 ⇒ i dati approssimano una retta di pendenza positiva

$$r := \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}}$$
 coefficiente di correlazione

- $-1 \le r \le 1$
- r² è il coefficiente di determinazione
- ullet r > 0.9 \Rightarrow i dati approssimano una retta di pendenza positiva
- ullet $r < -0.9 \Rightarrow i$ dati approssimano una retta di pendenza negativa

