Ćwiczenie nr 41: Busola stycznych

1 Wprowadzenie

1.1 Cel doświadczenia

Celem doświadczenia było wyznaczenie składowej poziomej ziemskiego pola magnetycznego przy użyciu busoli stycznych.

1.2 Opis stanowiska

W skład stanowiska weszły: busola stycznych, zasilacz napięcia stałego, amperomierz, opornica suwakowa, przełącznik kierunku prądu.

2 Sposób wykonania doświadczenia

Doświadczenie rozpoczęliśmy od zapoznania się ze sprzętem wchodzącym w skład stanowiska i odsunięcia od busoli urządzeń elektrycznych, które mogłyby wpłynąć na wyniki doświadczenia. Wypoziomowaliśmy busolę oraz ustawiliśmy płaszczyznę zwojów w płaszczyźnie ziemskiego południka magnetycznego (równolegle do kierunku igły). W tej samej płaszczyźnie znalazła się główna oś kątomierza. Zweryfikowaliśmy ustawienie sprawdzając, czy prąd o takiej samej wartości natężenia płynący w przeciwnych kierunkach powoduje wychylenie o taki sam kąt (z dokładnością do dwóch stopni). Kiedy ustawienie okazało się prawidłowe, ustawialiśmy konkretną liczbę zwojów cewki (12, 16, 24, 36, 40) i regulowaliśmy natężenie prądu, uzyskując wychylenie igły równe 45°, 50°, 35°. Mierzyliśmy również kąt wychylenia dla przeciwnego kierunku prądu w cewce. Na koniec zanotowaliśmy klasę amperomierza oraz średnicę cewki wraz z niepewnością potrzebne do wykonania odpowiednich obliczeń.

3 Wyniki pomiarów

Lp.	Liczba zwojów N	Prąd I [mA]	Kąt wychylenia w lewo α [°]	Kąt wychylenia w prawo α [°]	Średni kąt wychylenia α [°]	Β ₀ [μΤ]
1	36	144,0	45	46	45,5	24,62
2	36	164,0	50	50	50,0	23,94
3	36	98,0	35	35	35,0	24,35
4	24	220,0	45	46	45,5	25,08
5	24	252,0	50	50	50,0	24,53
6	24	150,0	35	35	35,0	24,85
7	12	410,0	45	46	45,5	23,37
8	12	490,0	50	50	50,0	23,85
9	12	287,5	35	36	35,5	23,38
10	16	300,0	45	45	45,0	23,20
11	16	380,0	50	50	50,0	24,66
12	16	212,5	35	35	35,0	23,47
13	40	125,0	45	45	45,0	24,17
14	40	145,0	50	50	50,0	23,52
15	40	85,0	35	35	35,0	23,47

Tabela 1: Wyniki pomiarów

Wartość indukcji wyliczaliśmy ze wzoru: $B_0 = \frac{\mu_0 NI}{2Rtg\alpha}$

Klasa amperomierza: 0,5

Średnica cewki: d = 260 mm, u(d) = 3 mm (niepewność typu B)

Brak istotnych różnic między wyliczonymi wartościami składowej poziomej ziemskiego pola B sugeruje, że pomiary nie zawierają błędów grubych.

4 Opracowanie wyników pomiarów

4.1 Wartość indukcji magnetycznej

Zgodnie z prawem Biota-Savarta:

$$\overrightarrow{dB} = \frac{\mu_0 I}{4\pi} \cdot \frac{\overrightarrow{dl} \times \overrightarrow{r}}{r^3}$$

Stosując je do obliczenia pola magnetycznego w środku przewodnika kołowego o promieniu R, otrzymujemy:

$$B = \int dB = \frac{\mu_0 I}{4\pi} \cdot \frac{1}{R^2} \cdot \int dl = \frac{\mu_0 I}{4\pi} \cdot \frac{2\pi R}{R^2} = \frac{\mu_0 I}{2R}$$

Dla środka cewki kołowej złożonej z N zwojów, wartość indukcji pola magnetycznego wynosi:

$$B = \frac{\mu_0 NI}{2R}$$

Składowa pozioma ziemskiego pola B₀ tworzy z powstałym przez włączenie prądu polem B wypadkowe pole B_w. Wektory B₀, B i B_w tworzą trójkąt prostokątny. Obliczając pole B powstałe w wyniku włączenia prądu oraz kąt wychylenia igły, jesteśmy w stanie wyznaczyć B₀:

$$B_0 = \frac{B}{tg\alpha} = \frac{\mu_0 NI}{2Rtg\alpha}$$

Ze wzoru tego korzystaliśmy wyznaczając wartość B w tabeli 1.

Obliczenia dla pierwszego pomiaru:

$$B_{01} = \frac{4 \cdot \pi \cdot 10^{-7} \frac{Vs}{Am} \cdot 36 \cdot 0,144 A}{0,26 m \cdot tg(45,5^{\circ})} \approx 2,462 \cdot 10^{-5} T = 24,62 \mu T$$

Analogicznie liczyliśmy dla kolejnych pomiarów.

Rachunek jednostek:

$$[B] = \frac{\frac{Vs}{Am} \cdot A}{m} = \frac{Vs}{m^2} = \frac{\frac{J}{C} \cdot s}{m^2} = \frac{J \cdot s}{C m^2} = \frac{N \cdot m \cdot s}{C m^2} = \frac{N \cdot s}{Cm} = \frac{N}{C \cdot \frac{m}{s}} = T$$

Wartość jednej tesli jest równa sile (Lorentza) jaka działa na ładunek 1C poruszający się z prędkością 1 metra na sekundę. [2]

Średnia z wyliczonych wartości indukcji wynosi:

$$B_0 = \overline{B_i} = 24,03 \,\mu T$$

4.2 Niepewności pomiarowe

Pomiar indukcji pola Ziemi jest pomiarem pośrednim, określonym wzorem $B_0 = \frac{\mu_0 NI}{2Rtg\alpha}$. Względną niepewność złożoną obliczymy jako sumę geometryczną trzech przyczynków:

$$\frac{u(B_0)}{B_0} = \sqrt{\left(\frac{u_A(B_0)}{B_0}\right)^2 + \left(\frac{u_B(I)}{I}\right)^2 + \left(\frac{u_B(R)}{R}\right)^2}$$

 $\mu_0=4\pi\cdot 10^{-7} Vs/Am$ – stałą magnetyczną oraz N – liczbę zwojów traktujemy jako wartości stałe, więc nie uwzględniamy ich przy wyznaczaniu niepewności

4.2.1 Niepewność typu A wyznaczania wartości składowej poziomej indukcji pola ziemskiego (związana z błędem przypadkowym przy pomiarze kąta):

$$u_A(B_0) = \sqrt{\frac{\sum (B_i - B_0)^2}{n(n-1)}} \approx 0.16 \,\mu T$$

4.2.2 Niepewność typu B amperomierza (związana z klasą dokładności amperomierza):

Ponieważ pomiary wykonywaliśmy na różnych zakresach amperomierza i otrzymywaliśmy różną wartość prądu, to niepewność pomiaru natężenia przyjmujemy jako średnia arytmetyczna niepewności typu B dla kolejnych pomiarów.

$$u_B(I) = \frac{\Delta I}{\sqrt{3}} = \frac{zakres \times klasa}{\frac{100}{\sqrt{3}}}$$

		γο γο	
Numer pomiaru	Prąd I [mA]	Używany zakres [mA]	$u_B(I)[mA]$
1	144,0	300	0,87
2	164,0	300	0,87
3	98,0	150	0,44
4	220,0	300	0,87
5	252,0	300	0,87
6	150,0	300	0,87
7	410,0	750	2,2
8	490,0	750	2,2
9	287,5	750	2,2
10	300,0	750	2,2
11	380,0	750	2,2
12	212,5	750	2,2
13	125,0	150	0,44
14	145,0	300	0,87
15	85,0	150	0,44

Dla pierwszego pomiaru:

$$u_{B1}(I) = \frac{\frac{zakres \times klasa}{100}}{\sqrt{3}} = \frac{300 \text{ mA} \cdot 0.5}{100\sqrt{3}} \approx 0.87 \text{ mA}$$

Analogiczne obliczenia dla kolejnych pomiarów.

Niepewność u(I), którą uwzględnimy do wyliczenia niepewności złożonej wynosi:

$$u_B(I) = \overline{u_{Bi}(I)} \approx 1.4 \, mA$$

średnie natężenie $I \approx 230,9 \text{ mA}$

4.2.3 Niepewność typu B pomiaru promienia (związana z dokładnością miarki):

$$u_R(d) = 3mm => u_R(R) = 1.5mm$$

4.2.4 Niepewność złożona $u(B_0)$:

$$u(B_0) = B_0 \sqrt{\left(\frac{u_A(B_0)}{B_0}\right)^2 + \left(\frac{u_B(I)}{I}\right)^2 + \left(\frac{u_B(R)}{R}\right)^2} =$$

$$= 24,03\mu T \sqrt{\left(\frac{0,16\mu T}{24,03\mu T}\right)^2 + \left(\frac{1,4 \text{ mA}}{230,9 \text{ mA}}\right)^2 + \left(\frac{1,5 \text{mm}}{130 \text{mm}}\right)^2} \approx 0,36 \mu T$$

4.3 Niepewność rozszerzona $U(B_0)$ i porównanie z wartością tabelaryczną

Niepewność rozszerzona dla k = 3:

$$U(B_0) = 1.1 \ \mu T$$

Wartość tabelaryczna składowej poziomej pola magnetycznego dla Krakowa wynosi 21 μT [1]

$$|B_0 - B_{0t}| = |24,03\mu T - 21\mu T| = 3,03 \mu T > U(B_0)$$

zatem otrzymana wartość poziomej składowej pola magnetycznego Ziemi dla Krakowa nie jest zgodna z wartością tabelaryczną w zakresie rozszerzonej niepewności pomiarowej.

5 Wnioski

Otrzymana wartość poziomej składowej pola magnetycznego Ziemi dla Krakowa różni się od wartości tabelarycznej i nie jest zgodna z wartością tabelaryczną mimo uwzględnienia rozszerzonej niepewności pomiarowej. Powodem takiego wyniku doświadczenia było najprawdopodobniej namagnesowanie stołu, na którym umieszczony był zestaw pomiarowy oraz stołów znajdujących się w pobliżu zestawu, niedokładność wykonanych pomiarów, związana z trudnością z odczytem kąta i natężenia oraz możliwy błąd systematyczny. Dodatkowym czynnikiem, który wpłynął na uzyskanie różniącej się wartości mogło być oddziaływanie przedmiotów elektrycznych oraz przewodników z prądem mieszczących się w sali laboratoryjnej.

6 Źródła

- [1] https://pf.agh.edu.pl/home/wfiis/pracfiz/Opisy_cwiczen/41_opis.pdf, data dostępu: 05.11.2024
- [2] https://www.naukowiec.org/wiedza/fizyka/indukcja-magnetyczna_1044.html, data dostępu: 07.11.2024

Załączniki

Wyniki pomiarów przesłane po zajęciach 05.11.2024

lp		Liczba zwojów N	Prąd I [mA]	Kąt wychylenia w lewo α [°]	Kąt wychyleni a w prawo α [°]	Średni kąt wychylenia α[°]	B ₀ [μΤ]
	1	36	144	45	46	45,5	24,6218826
	2	36	164	50	50	50	23,943983
	3	36	98	35	35	35	24,3522063
	4	24	220	45	46	45,5	25,0778433
	5	24	252	50	50	50	24,5279826
	6	24	150	35	35	35	24,8491899
	7	12	410	45	46	45,5	23,3679904
	8	12	490	50	50	50	23,8466497
	9	12	287,5	35	36	35,5	23,376937
	10	16	300	45	45	45	23,1994534
	11	16	380	50	50	50	24,6577602
	12	16	212,5	35	35	35	23,4686793
	13	40	125	45	45	45	24,1660973
	14	40	145	50	50	50	23,522205
	15	40	85	35	35	35	23,4686793

Klasa amperomierza	0,5	
średnica cewki	260	mm
niepewność pomiaru		
średnicy cewki	3	mm