Supplementary Document for "EARTH: Accelerating Spatiotemporal Network K-function-based Analytics"

Tsz Nam Chan¹, Leong Hou U², Yun Peng³, Dingming Wu¹, Jianliang Xu⁴, and Christian S. Jensen⁵

¹Shenzhen University
 ²University of Macau
 ³Guangzhou University
 ⁴Hong Kong Baptist University
 ⁵Aalborg University

Recently, Chan et al. [1] propose efficient algorithms for reducing the time complexity of computing a network K-function and generating a network K-function plot, which are closely related to this work. In this supplementary document, we will deeply discuss why these state-of-the-art methods are hard to be used for supporting a spatiotemporal network K-function (i.e., our work [2]).

To compute the network K-function for a location dataset $\mathbb{P}=\{p_1,p_2,...,p_n\}$ (with size n) in a road network G=(V,E), domain experts need to count all data points p_j that are within the spatial threshold s from each data point p_i (cf. Equation 1).

$$K_{\mathbb{P}}(s) = \sum_{p_i \in \mathbb{P}} \sum_{p_j \in \mathbb{P}} \mathcal{I}(d_G(p_i, p_j) \le s)$$
 (1)

where $d_G(p_i, p_j)$ and \mathcal{I} denote the shortest path distance between p_i and p_j and the indicator function (cf. Equation 2 in [2]), respectively.

In order to efficiently compute a network K-function, Chan et al. [1] first expand the network K-function into the following expression.

$$K_{\mathbb{P}}(s) = \sum_{\widehat{e} \in E} \sum_{p_i \in \mathbb{P}(\widehat{e})} \sum_{e \in E} \sum_{p_j \in \mathbb{P}(e)} \mathcal{I}(d_G(p_i, p_j) \leq s)$$

$$= \sum_{\widehat{e} \in E} \sum_{e \in E} C_{\mathbb{P}}^{(\widehat{e}, e)}(s)$$
(2)

where $\mathbb{P}(e)$ is the set of data points in the edge e and $C_{\mathbb{P}}^{(\widehat{e},e)}(s)$ denotes the (\widehat{e},e) -count function (cf. Equation 3).

$$C_{\mathbb{P}}^{(\widehat{e},e)}(s) = \sum_{\substack{p_i \in \mathbb{P}(\widehat{e}) \\ p_j \neq p_i}} \sum_{\substack{p_j \in \mathbb{P}(e) \\ p_i \neq p_i}} \mathcal{I}(d_G(p_i, p_j) \leq s)$$
(3)

Then, they propose two methods, namely count augmentation (CA) and neighbor sharing (NS), in order to reduce the time complexity for computing $C^{(\widehat{e},e)}_{\mathbb{P}}(s)$, and thus

 $K_{\mathbb{P}}(s)$. Here, we provide basic descriptions of these two methods and explain why they are hard to be extended for supporting spatiotemporal network K-function [2].

Count augmentation (CA): In this method, Chan et al. [1] aim to augment two aggregate terms, which are $|\mathbb{P}(p_j,u)|$ and $|\mathbb{P}(p_j,v)|$, for each data point p_j in each edge e=(u,v) (cf. Figure 1), where

$$\mathbb{P}(p_j, u) = \{ p \in \mathbb{P}(e) : d_G(u, p) \le d_G(u, p_j) \}$$

$$\tag{4}$$

$$\mathbb{P}(p_i, v) = \{ p \in \mathbb{P}(e) : d_G(v, p) \le d_G(v, p_i) \}$$

$$(5)$$

Figure 1: The core idea of the CA method (Modified from [1]).

With this augmentation, once they have obtained the shortest path distances from p_i to u and v, i.e., $d_G(p_i,u)$ (green dashed line) and $d_G(p_i,v)$ (orange dashed line), respectively, they can adopt the binary search method (with $O(\log |\mathbb{P}(e)|)$ time) to evaluate the inner summation term of $C_{\mathbb{P}}^{(\widehat{e},e)}(s)$ (cf. Equation 3). Based on this concept, they can efficiently evaluate $K_{\mathbb{P}}(s)$.

Since these aggregate terms, $\mathbb{P}(p_j,u)$ and $\mathbb{P}(p_j,v)$, do not consider the temporal part of the spatiotemporal network K-function (i.e., $d(\tau_{p_i},\tau_{p_j})$ in Equation 1 of [2]), the CA method cannot be used for computing the spatiotemporal network K-function. Moreover, since the data point p_i in (a,b) (cf. Figure 1) may have any timestamp τ_{p_i} , $\mathbb{P}(p_j,u)$ and $\mathbb{P}(p_j,v)$ can possibly cover some data points with their timestamps τ_{p_j} that are far away from τ_{p_i} . Worse still, there can be multiple data points in the edge (a,b) (e.g., the purple data point p_k in Figure 1). It is impossible to simply add some time constraints in Equation 4 and Equation 5 so that it can support the spatiotemporal network K-function.

Neighbor sharing (NS): In the NS method, Chan et al. [1] propose to maintain four sets of data points (cf. Figure 2), which are $\ell_{au}(p_i)$, $\ell_{bu}(p_i)$, $\ell_{av}(p_i)$, and $\ell_{bv}(p_i)$ (cf. Equations 6 to 9).

$$\ell_{au}(p_i) = \{ p_j \in \mathbb{P}(e) : d_G(u, p_j) \le s_{au}(p_i) \}$$

$$\tag{6}$$

$$\ell_{bu}(p_i) = \{ p_j \in \mathbb{P}(e) : d_G(u, p_j) \le s_{bu}(p_i) \}$$

$$\tag{7}$$

$$\ell_{av}(p_i) = \{ p_j \in \mathbb{P}(e) : d_G(v, p_j) \le s_{av}(p_i) \}$$

$$\tag{8}$$

$$\ell_{bv}(p_i) = \{ p_j \in \mathbb{P}(e) : d_G(v, p_j) \le s_{bv}(p_i) \}$$

$$\tag{9}$$

where

$$s_{au}(p_i) = s - d_G(p_i, a) - d_G(a, u)$$
 (10)

$$s_{bu}(p_i) = s - d_G(p_i, b) - d_G(b, u)$$
 (11)

$$s_{av}(p_i) = s - d_G(p_i, a) - d_G(a, v)$$
 (12)

$$s_{bv}(p_i) = s - d_G(p_i, b) - d_G(b, v)$$
 (13)

Figure 2: The core idea of the NS method (Modified from [1]).

With these four sets of data points, they show that the inner summation term of Equation 3 can be computed in O(1) time. By iteratively shifting the data point from the data point p_i to the next data point p_{i+1} in the edge $\widehat{e}=(a,b)$, they show that these four sets can be efficiently maintained. As such, they can efficiently compute $C_{\mathbb{P}}^{(\widehat{e},e)}(s)$ (with $O(|\mathbb{P}(\widehat{e})|+|\mathbb{P}(e)|)$) time, instead of $O(|\mathbb{P}(\widehat{e})|\times|\mathbb{P}(e)|)$ time), and thus $K_{\mathbb{P}}(s)$.

Like the CA method, these four sets of data points (cf. Equations 6 to 9) do not consider the timestamps. Suppose that the data point p_i has the timestamp τ_{p_i} , these four sets may cover some data points p_j which have their timestamps τ_{p_j} that are far away from τ_{p_i} . As such, we cannot adopt these four sets of data points to compute the spatiotemporal network K-function (cf. Equation 1 in [2]). Furthermore, since different data points (e.g., p_i and p_{i+1} in the edge $\hat{e} = (a,b)$ in Figure 2) may have different timestamps, we cannot simply add time constraints in the four sets of data points in order to support the spatiotemporal network K-function.

References

- [1] T. N. Chan, L. H. U, Y. Peng, B. Choi, and J. Xu. Fast network k-function-based spatial analysis. *Proc. VLDB Endow.*, 15(11):2853–2866, 2022.
- [2] T. N. Chan, L. H. U, Y. Peng, D. Wu, J. Xu, and C. S. Jensen. EARTH: Accelerating spatiotemporal network k-function-based analytics. *TKDE (In submission)*.