第四章

表面粗糙度轮廓及其检测

第四章 表面粗糙度与检测

第二节 表面粗糙度轮廓的评定

第三节 表面粗糙度轮廓的标注

第四节 表面粗糙度轮廓的选择

第五节 表面粗糙度轮廓的检测

第四章 表面粗糙度与检测

第一节 表面粗糙度轮廓的基本概念

一、表面粗糙度surface roughness的界定

- a) 截面轮廓误差放大曲线
- b) 表面粗糙度轮廓
- c) 波纹度轮廓
- d) 宏观形状轮廓

$$\lambda < 1 \text{ mm}$$

 $1mm\,\leqslant\,\lambda\,\leqslant\,10~mm$

$$\lambda > 10 \text{ mm}$$

表面粗糙度轮廓

表面波纹度

形状误差

第一节 表面粗糙度轮廓的基本概念

二、表面粗糙度轮廓对零件工作性能的影响

- 1. 影响零件的耐磨性。
- 2. 影响配合性质的稳定性。
- 3. 影响零件的耐疲劳性。
- 4. 影响零件的抗腐蚀性。
- 5. 影响零件的测量精度。

一、传输带、取样长度和评定长度 sampling length and evaluation length

1、传输带——从短波截止波长至长波截止波长这两 个极限值之间的波长范围。

长波轮廓滤波器的截止波长 $\lambda c = Ir$

短波轮廓滤波器的截止波长 \(\lambda s \)

一、传输带、取样长度和评定长度 sampling length and evaluation length

- 2、取样长度 /r ——在X轴方向(与轮廓总的走向一 致)用于判别被评定轮廓不规则特征的长度。
 - 3、评定长度 /n ——在X轴方向用于评定被测轮廓的长度。

一、传输带、取样长度和评定长度

截止波长As和Ac、取样长度/r及评定长度/n的标准化值

ė.	Rz (μm)	RSm (mm)	标准取样长度 lr		*
<i>Ra</i> (μm).			λs (mm) .	$lr = \lambda c$ (mm)	标准评定长度。 <i>l n</i> =5× <i>lr</i> (mm)。
ų.	¥.	ų.	÷	41	**
≥0.008~0.02	≥0.025~0.1	≥0.013~0.04	0.0025	0.08	0.4.
>0.02~0.1	>0.1~0.5	>0.04~0.13	0.0025	0.25	1.25.
>0.1~2	>0.5~10	>0.13~0.4	0.0025	0.8	4.
>2~10-	>10~50	>0.4~1.3	0.008	2.5₽	12.5.
>10~80	>50~320	>1.3~4.	0.025	8.0	40 0
			ęs.		

二、表面粗糙度轮廓中线

1、轮廓的最小二乘中线

least squares mean line of the profile

在一个取样长度 /r 内,最小二乘中线使轮廓上各 点至该线的距离的平方之和为最小,即

二、表面粗糙度轮廓中线

2、轮廓的算术平均中线

center arithmetical mean line of the profile

三、评定参数

1、轮廓算术平均偏差──Ra arithmetical mean deviation of the profile

在一个取样长度内,被评定轮廓上各点至中线的纵坐标 Z(x)绝对值的算术平均值,如图所示。

$$Ra = \frac{1}{lr} \int_{0}^{l_{r}} |Z(x)| dx$$
 或近似为 $Ra = \frac{1}{n} \sum_{i=1}^{n} |Z_{i}|$

三、评定参数

2、轮廓的最大高度 Rz = Rp + Rv

maximum height of the profile

指在一个取样长度 I_r 范围内,被评定轮廓的最大轮廓峰高 R_p 与最大轮廓谷深 R_v 之和的高度,如图所示,即

三、评定参数

3、轮廓单元的平均宽度 $Rsm = \frac{1}{m} \sum_{i=1}^{m} |X_{si}|$

轮廓单元的平均宽度 R_{sm} 是指在一个取样长度内轮廓单元宽度 X_{s_i} 的平均值。

- 二、表面粗糙度轮廓技术要求在完整图形符号上的标注
 - 1. 表面粗糙度轮廓各项技术要求在完整图形符号上的标注位置

位置a: 下列符号和数值排成一行

0.008-0.8/Ra 3.2

上、下限值符号 传输带数值/幅度参数符号 评定长度值

极限值判断规则(空格) 幅度参数极限值(µm)

位置b: 附加评定参数(如RSm, mm)

位置c: 加工方法

位置e: 加工余量 (mm)

- 二、表面粗糙度轮廓技术要求在完整图形符号上的标注
 - 1. 表面粗糙度轮廓各项技术要求在完整图形符号上的标注位置

位置a: 下列符号和数值排成一行

0.008-0.8/Ra 3.2

上、下限值符号 传输带数值/幅度参数符号 评定长度值

极限值判断规则(空格) 幅度参数极限值(µm)

位置b: 附加评定参数(如RSm, mm)

位置c: 加工方法

位置e: 加工余量 (mm)

2. 表面粗糙度轮廓幅度参数极限值的标注

(1) 标注极限值中的一个数值且默认为上限值

(2) 同时标注上、下限值

- 3. 极限值判断规则的标注
- (1) 16%规则——在同一评定长度下表面粗糙度参数的全部实测值中, 最多允许有16%超过允许值。

(2) 最大规则 要求表面粗糙度参数的全部实测值不得超过规定值。

传输带和取样长度、评定长度的标注

需要指定传输带时,传输带(mm)标注在幅度参数符号的前面, 并用斜线"/"隔开。

需要指定评定长度时,则应在幅度参数符号的后面注写取样长度的个数。

5. 表面纹理的标注

6. 附加评定参数 和加工方法的标注

三、表面粗糙度轮廓代号在零件图标注的规定和方法

- ★ 表面结构的注写和读取方向与尺寸的注写和读取方向一致。
- ★ 表面结构要求可注在轮廓线或其延长线上,其符号应从材料外指向并接触表面。
- ★ 表面结构要求对每一表面只标注一次,尽可能注在相应尺寸及其公差的同一视图上。

三、表面粗糙度轮廓代号在零件图标注的规定和方法

- ★ 表面结构的注写和读取方向与尺寸的注写和读取方向一致。
- ★ 表面结构要求可注在轮廓线或其延长线上,其符号应从材料外指向并接触表面。
- ★ 表面结构要求对每一表面只标注一次,尽可能注在相应尺寸及其公差的同一视图上。

粗糙度代号标注在特征尺寸的尺寸线上

粗糙度代号标注在特征尺寸的尺寸线上

2. 简化标注的规定方法

当零件的某些表面 (或多数表面)具有相同 的技术要求时,对这些表 面的技术要求可以用特定 符号,统一标注在零件图 的标题栏附近,省略对这 些表面分别标注。

第四节 表面粗糙度轮廓的选择

一、评定参数的选择

- 1) 幅度参数是必选参数,且在常用值范围内,优先选用Ra;
- 2) 对于很粗糙或很光滑的表面或测量部位小的表面及零件材料 较软的表面可选Rz;
- 3)需要涂镀或其他有细密要求的表面可加选间距参数RSm;
- 4) RSm是附加参数,不能单独使用,需与幅度参数联合使用。

第四节 表面粗糙度轮廓的选择

二、参数值的选择

◆表面粗糙度参数值的选择原则是:

在满足零件表面功能要求的前提下,尽量选取较大的参数值。

▶一般原则:

- ☆同一零件上,工作表面比非工作表面粗糙度值小;
- ☆摩擦表面比非摩擦表面要小;
- ☆受循环载荷的表面要小;
- ☆配合要求高、联接要求可靠、受重载的表面粗糙度值都应小;
- ☆ 同一精度,小尺寸比大尺寸、軸比孔的表面粗糙度值要小。
- ☆ 要求防腐性、密封性的表面及要求外表美观的表面,其表面粗糙度值要小。
- ●常用表面粗糙度值与所适应的零件表面见表中推荐值。

1. 比较法:

将被测零件表面与表面 粗糙度样块直接进行比较, 以确定实际被测表面的表面 粗糙度合格与否。多用于车 间,评定表面粗糙度值较大 的工件。

2. 触针法:

又称感触法或针描法,它利用金刚石触针在被测零件表面上 移动,垂直于被测轮廓的方向上下移动。常用于Ra值

0.025 \sim 6.3 μ m)

2. 触针法:

1-被测工件 2-触针 3-传感器 4-驱动箱 5-指示表 6-工作台 7-定位块

3. 光切法:

利用光切原理,用<mark>双管显微镜</mark>测量。常用于测量Rz为2.0~63μm (相当于*Ra*值为0.32~10μm)。

4. 干涉法:

利用光波干涉原理,用干涉显微镜测量。

为0.01~0.16µm)的平面、外圆柱面和球形表面

光切法

光切显微镜的实物照片

光切显微镜的主要结构

1—底座 2—立柱 3—升降螺母 4—微调手轮 5—支臂 6—支臂锁紧螺钉 7—工作台 8—物镜组 9—物镜锁紧机构 10—遮光板手轮 11—壳体 12—目镜测微器 13—目镜

The End

