MA427 – Exercise set 2 Academic year 2018-19

Exercise 2.1

- (a) Show that, if a linear programming problem $\max\{c^Tx:x\in P\}$ (where P denotes the feasible region) has two distinct optimal solutions x',x'', then all solutions in the line segment joining x' and x'' are optimal.
- (b) Show that in any LP, the number of distinct optimal solutions can be $0, 1, \text{ or } \infty$.

Exercise 2.2 Let $x^0, x^1, \ldots, x^q \in \mathbb{R}^n$. Show that the following statements are equivalent:

- (i) x^0, x^1, \ldots, x^q are affinely independent;
- (ii) $x^1 x^0, \dots, x^q x^0$ are linearly independent;
- (iii) The vectors $\binom{x^0}{1}$, $\binom{x^1}{1}$, ..., $\binom{x^q}{1}$ are linearly independent.

Exercise 2.3 Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a polytope, and $z \in P$ a feasible solution. Assume that for some $r \in \mathbb{R}^n$, P contains the infinite ray starting from z in the direction r, that is

$$\{z + \lambda r : \lambda \ge 0\}.$$

Show that for every $x \in P$, P also contains the infinite ray

$$\{x + \lambda r : \lambda \ge 0\}.$$

Exercise 2.4 Let $S \subseteq \{0,1\}^n$, that is, S is a set of n dimensional vectors with all coordinates 0 or 1. Let P = conv(S). Show that S is the set of vertices of P.

Exercise 2.5 The *n*-dimensional hypercube is defined as

$$\{x \in \mathbb{R}^n : 0 < x_i < 1, i = 1, 2, \dots, n\}.$$

What is the number of facets and the number of vertices? What is the total number of proper faces?

Exercise 2.6 Consider the polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Assume that for any $i = 1, \ldots, m$, there exists a point $x \in P$ such that the *i*th inequality is strict: $a_i^\top x < b_i$. Show that there exists a point $\bar{x} \in P$ such that all inequalities are strict for \bar{x} .