

TRIGONOMETRY TOMO VII

Feedback

HELICO-MOTIVACIÓN

LA TRIGONOMETRIA EN LA VIDA DIARIA

La trigonometría aportó mucho en nuestra sociedad como por ejemplo la construcción de casas o edificaciones las diferentes medidas que se deben hacer. la trigonometría es de mucha utilidad en la ingeniería civil, para cálculo preciso de distancias, ángulos de inclinación, etc.

Del gráfico, complete los espacios en blanco:

Recuerda:

Resolución:

$$\cos(\alpha) = \frac{3}{5}$$

$$0 \quad \tan(\alpha) = \frac{4}{3}$$

$$x = 3$$
 $y = 4$ $r = 5$

¡Muy bien!

Del gráfico, efectúe

$$\mathbf{E} = \mathrm{sen}^2 \mathbf{\beta} + \cos^2 \mathbf{\beta}$$

Recuerda:

$$\operatorname{\mathsf{sen}}oldsymbol{eta} = rac{y}{r}$$
 , $\operatorname{\mathsf{cos}}oldsymbol{eta} = rac{x}{r}$

Resolución:

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

$$r = \sqrt{(-1)^2 + (-\sqrt{5})^2}$$

$$\mathbf{r} = \sqrt{1 + 5}$$

$$r = \sqrt{6}$$

$$x = -1$$
 $y = -\sqrt{5}$ $r = \sqrt{6}$

Reemplazamos en E:

$$\mathbf{E} = sen^2\beta + cos^2\beta$$

$$\mathbf{E} = \left(\frac{-\sqrt{5}}{\sqrt{6}}\right)^2 + \left(\frac{-1}{\sqrt{6}}\right)^2$$

$$E = \frac{5}{6} + \frac{1}{6}$$

$$\therefore E = 1$$

Ángel ha rendido su examen de trigonometría obteniendo una calificación P. Para averiguar dicha calificación tendrás que resolver lo siguiente:

¿Cuál es la nota de Ángel?

Resolución:

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

$$\mathbf{r} = \sqrt{(6)^2 + \left(-\sqrt{13}\right)^2}$$

$$r = \sqrt{36 + 13}$$

$$r = \sqrt{49}$$

$$r = 7$$

$$x = 6$$
 $y = -\sqrt{13}$ $r = 7$

Reemplazamos en P:

$$P = 49 sen^2 \alpha + 3$$

$$P = 49 \left(\frac{-\sqrt{13}}{7}\right)^2 + 3$$

$$P = 49 \left(\frac{13}{49}\right) + 3$$

Del gráfico, complete los espacios en blanco:

Recuerda:

$$\cot \Phi = \frac{x}{y}$$
, $\sec \Phi = \frac{r}{x}$, $\csc \Phi = \frac{r}{y}$

Resolución:

$$\cot(\Phi) = \frac{\sqrt{19}}{\sqrt{6}}$$

$$\sec(\Phi) = \frac{5}{\sqrt{19}}$$

$$\operatorname{csc}(\Phi) = \frac{5}{\sqrt{6}}$$

$$x = \sqrt{19} \quad y = \sqrt{6} \quad r = 5$$

Calculamos r:

$$r = \sqrt{x^2 + y^2}$$

$$\mathbf{r} = \sqrt{\left(\sqrt{19}\right)^2 + \left(\sqrt{6}\right)^2}$$

$$r = \sqrt{19+6}$$

$$\mathbf{r} = \sqrt{25}$$

$$r = 5$$

¡Muy bien!

Del gráfico, calcule cota

Resolución:

Calculamos la coordenada del punto M

$$M \begin{cases} x = \frac{-9 + (-3)}{2} = -6 \\ y = \frac{1 + 7}{2} = 4 \end{cases}$$

$$\therefore M(-6;4)$$

Reemplazamos:

$$x = -6 \quad y = 4$$

$$\cot\alpha = \frac{-\beta}{4} = -\frac{3}{2}$$

¡Muy bien!

 $\cot \alpha = -$

Milene ha comprado cierta cantidad de cubos Rubick para venderlos en su librería, dicha cantidad se expresa de la siguiente manera:

$$A = 7 + 25 Sec^2 \beta$$

¿Cuántas docenas de cubos Rubik compro Milene?

Resolución:

Calculamos la coordenada del punto M.

$$M \begin{cases} x = \frac{-6 + (-4)}{2} = -5 \\ y = \frac{-2 + (-6)}{2} = -4 \\ \vdots M(-5; -4) \end{cases}$$

Calculamos r:

$$r = \sqrt{(-5)^2 + (-4)^2}$$
 $r = \sqrt{25 + 16}$
 $r = \sqrt{41}$

En A

$$x = -5$$
 $y = -4$ $r = \sqrt{41}$

$$A = 7 + 25sec^2\beta$$

$$A = 7 + 25 \left(\frac{\sqrt{41}}{-5}\right)^2$$

$$A = 7 + 25 \left(\frac{41}{25}\right)$$

$$A = 48$$

Milene compro 4 docenas de cubos Rubick

Según la figura, complete la tabla de razones trigonométricas.

Recuerda:

Resolución:

15sen(
$$\theta$$
) = 15/ $\left(\frac{12}{1/5}\right)$ = 12

$$18\sec(\theta) = 18\left(\frac{15}{9}\right) = 30$$

$$12\cot(\theta) = 12\left(\frac{9}{12}\right) = 9$$

Calculamos r:

$$r = \sqrt{(9)^2 + (12)^2}$$
 $r = \sqrt{81 + 144}$
 $r = \sqrt{225}$
 $r = 15$

$$x = 9$$
 $y = 12$ $r = 15$

Del gráfico, efectúe

$$\mathbf{E} = 2\mathbf{1}(sen^2\mathbf{\phi} + cos^2\mathbf{\phi})$$

Recuerda:

$$sen \varphi = \frac{y}{r}, \cos \varphi = \frac{x}{r}$$

Resolución:

Calculamos la coordenada del punto M $= 21(sen^2\varphi + cos^2\varphi)$

$$\mathbf{M} \begin{cases} x = \frac{2 + 6}{2} = 4 \\ y = \frac{-11 + (-3)}{2} = -7 \end{cases}$$

Calculamos el radio:

$$r = \sqrt{(4)^2 + (-7)^2}$$

$$r = \sqrt{16 + 49}$$

$$r = \sqrt{65}$$

Reemplazamos en E:

$$\mathbf{E} = 21(sen^2\varphi + cos^2\varphi)$$

$$x = 4$$
 $y = -7$ $r = \sqrt{65}$

$$\mathbf{E} = 21 \left[\left(\frac{-7}{\sqrt{65}} \right)^2 + \left(\frac{4}{\sqrt{65}} \right)^2 \right]$$

$$E = 21 \left(\frac{49}{65} + \frac{16}{65} \right)$$

$$\mathsf{E} = 21 \left(\frac{68}{65} \right)$$

$$\therefore E = 21$$

Sebastián ha rendido su examen de trigonometría obteniendo una calificación A. Para obtener dicha calificación tendrás que resolver lo siguiente: $A = \sqrt{58} sen \alpha - 6cot \alpha$

calificación de

Sebastián?

Recuerda:

$$sen \phi = \frac{y}{r}$$

$$cot \phi = \frac{x}{y}$$

Resolución:

$$r = \sqrt{(-7)^2 + (3)^2}$$

$$r = \sqrt{49 + 9}$$

$$r = \sqrt{58}$$

$$x = -7$$
 $y = 3$ $r = \sqrt{58}$

En A

$$A = \sqrt{58}$$
sena – 6cota

$$A = \sqrt{58} \left(\frac{3}{\sqrt{58}} \right) - \beta \left(\frac{-7}{3} \right)$$

$$A = 3 + 14 = 17$$

La calificación de Sebastián es 17.

Efectúe $E = sen\theta - cos\alpha + sec\phi$, a partir del gráfico mostrado.

Recuerda:

$$sen \theta = \frac{y}{r} \quad \cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

Resolución:

Calculamos rl:

$$r_1 = \sqrt{(4)^2 + (3)^2}$$
 $r_1 = \sqrt{16 + 9}$
 $r_1 = \sqrt{25}$
 $r_1 = 5$

Calculamos r2:

$$r_2 = \sqrt{(-8)^2 + (6)^2}$$
 $r_2 = \sqrt{64 + 36}$
 $r_2 = \sqrt{100}$
 $r_2 = 10$

En E:

$$\mathbf{E} = \mathbf{sen}\theta - \mathbf{cos}\alpha + \mathbf{sec}\phi$$

$$\mathbf{E} = \left(\frac{3}{5}\right) - \left(\frac{4}{5}\right) + \left(\frac{-5}{4}\right)$$

$$\mathbf{E} = \left(\frac{-1}{5}\right) + \left(\frac{-5}{4}\right)$$

$$\mathbf{E} = \frac{-4 + (-25)}{20}$$

$$\therefore \mathbf{E} = -\frac{29}{20}$$

¡Great!