Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome, nome e matricola:	
----------------------------	--

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

	(F = -8 ar).		
(a)	Sia $L = \{k\}$ un linguaggio del prim'ordine con k simbolo di funzione	2 punti	
	binario. Quali delle seguenti affermazioni sono formalizzate dalla formula		
	$\neg \forall w (k(w, w) = w)$ relativamente alla struttura $\langle \mathbb{R}, \cdot \rangle$?		
	"Tutti i numeri reali coincidono con il proprio quadrato."		
	□ "Nessun numero reale coincide con il proprio quadrato."		
	"Non tutti i numeri reali coincidono con il proprio quadrato."		
	"Esiste un numero reale w tale che $w \cdot w \neq w$."		
(b)	Siano Q , R relazioni binarie su un insieme D . Stabilire quali delle seguenti	2 punti	
	affermazioni sono corrette.		
	\square Se per ogni $d, e \in D$ vale che $Q(d, e)$ se e solo se $R(e, d)$, allora $R = Q^{-1}$.		
	\square Se Q è riflessiva e $Q \supseteq R$, anche R è riflessiva.		
	\square Se Q è riflessiva e $Q \subseteq R$, anche R è riflessiva.		
	\square Se per ogni $d \in D$ esiste un solo $e \in D$ tale che $Q(d, e)$, allora Q è una funzione.		
(c)	Siano $k: \mathbb{Q}_{\geq 1} \to \mathbb{R}$, dove $\mathbb{Q}_{\geq 1}$ è l'insieme dei numeri reali maggiori o uguali	2 punti	
	a 1, e $f: \mathbb{Q} \to \mathbb{Q}_{\geq 1}$ definite da $k(w) = \sqrt{w-1}$ e $f(x) = x^2 + 1$. Stabilire quali delle seguenti affermazioni sono corrette.		
	\Box f è una funzione iniettiva.		
	\square $k \circ f \colon \mathbb{Q} \to \mathbb{R}$.		
	$\square \ k \circ f(d) = d \text{ per ogni } d \in \mathbb{Q} \text{ con } d \ge 0.$		
	\square k è una funzione suriettiva.		

- (d) Siano S e P formule proposizionali. Quali delle seguenti affermazioni 2 punti sono corrette? \square S è una tautologia se e solo se \neg S è insoddisfacibile. \square S \models P \rightarrow S $\square S \vee P \equiv \neg S \to P$ □ Se S è soddisfacibile allora ¬S è certamente insoddisfacibile. (e) Sia D un insieme non vuoto di cardinalità finita e A un insieme di cardinalità 2 punti infinita. Stabilire quali delle seguenti affermazioni sono corrette. \square $A \setminus D$ ha cardinalità finita. \square $D \times A$ ha cardinalità finita. \square $D \setminus A$ ha cardinalità finita. \square $D \triangle A$ ha cardinalità finita. (f) Sia D un insieme non vuoto e sia $L = \{k\}$ un linguaggio del prim'ordine con 2 punti k simbolo di funzione unaria. Quali delle seguenti sono formule che formalizzano correttamente, relativamente alla struttura $\langle D, k \rangle$, l'affermazione: "k è biettiva"?
- (g) Siano D, A, B lettere proposizionali e S una formula proposizionale 2 punti scritta a partire da esse che abbia la seguente tavola di verità:

 $\square \exists x \forall y (k(x) = y) \land \forall x \forall y (x = y \rightarrow k(x) = k(y))$

D	A	В	S
$\overline{\mathbf{V}}$	\mathbf{V}	\mathbf{V}	\mathbf{F}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{F}
\mathbf{V}	${f F}$	\mathbf{V}	${f F}$
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
${f F}$	\mathbf{V}	\mathbf{V}	${f F}$
${f F}$	\mathbf{V}	${f F}$	\mathbf{V}
${f F}$	${f F}$	\mathbf{V}	${f V}$
${f F}$	\mathbf{F}	\mathbf{F}	\mathbf{F}

- \square ¬S è soddisfacibile.
- □ S non è soddisfacibile.
- \square D \leftrightarrow A \models S
- \square S $\models \neg(A \land B)$

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{Q, k, a\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario Q, un simbolo di funzione binario k e un simbolo di costante a.

Consideriamo la struttura $Q = \langle \mathbb{Q}, <, +, 1 \rangle$. Stabilire se:

- $\mathcal{Q} \models \neg(y=w) \land \neg(y=k(w,a))[w/4,y/4.5]$
- $\mathcal{Q} \models Q(y, w) \lor Q(k(w, a), y)[w/4, y/4.5]$
- $Q \models (\neg (y = w) \land \neg (y = k(w, a))) \rightarrow (Q(y, w) \lor Q(k(w, a), y))[w/4, y/4.5]$
- $Q \models \forall w \forall y [(\neg (y=w) \land \neg (y=k(w,a))) \rightarrow (Q(y,w) \lor Q(k(w,a),y))][w/4,y/3.5]$

Consideriamo ora la struttura $\mathcal{N} = \langle \mathbb{N}, <, +, 1 \rangle$.

Verificare se

$$\mathcal{N} \models \forall w \forall y [(\neg (y = w) \land \neg (y = k(w, a))) \rightarrow (Q(y, w) \lor Q(k(w, a), y))][w/4, y/5]$$

L'enunciato $\forall w \forall y [(\neg(y=w) \land \neg(y=k(w,a))) \rightarrow (Q(y,w) \lor Q(k(w,a),y))]$ è una tautologia?

Giustificare le proprie risposte.

Esercizio 3 9 punti

Sia D un insieme non vuoto e $Q\subseteq D\times D$ una relazione binaria. Formalizzare relativamente alla struttura $\langle D,Q\rangle$ mediante il linguaggio $L=\{Q\}$ con un simbolo di relazione binaria le seguenti affermazioni:

- 1. Q è transitiva
- 2. Q è un pre-ordine
- 3. Q^{-1} è irriflessiva
- 4. $ran(Q) \neq D$.