E0 206: The Theorist's Toolkit

Naman Mishra

August 2025

Contents

I Probabilistic methods I.1 Derandomization										 3	
	2.1				· · · ·		· · ·	.		•	 . 1
\mathbf{L}	ect	tures									
1	Wed	August 6									2

The course

Instructor: Anand Louis

Lecture 1. Wednesday August 6

Evaluation:

(35%) Roughly one homework every two weeks

(25%) Study project

(40%) Final exam

Tools which are generally useful in theoretical computer science

Chapter I

Probabilistic methods

Proposition I.1. In any graph G = (V, E), there is a cut $S \subseteq V$ such that $|E(S, V \setminus S)| \ge \frac{1}{2}|E|$.

I will call such cuts half-cuts.

Proof. Pick a uniform random set $S \subseteq V$. Each vertex is in S with probability 1/2. Thus each edge is in $E(S, V \setminus S)$ with probability 1/2. The expected value of $E(S, V \setminus S)$ is thus $\frac{1}{2}|E|$. Therefore, there exists a subset of vertices for which this quantity is at least $\frac{1}{2}|E|$.

We've used the following.

Lemma I.2. For any random variable X,

$$\Pr(X > \mathbf{E} X) > 0.$$

Proof. Assume the contrary. Then $\mathbf{E}[X] - X > 0$ almost surely. By positivity, the equality in $\mathbf{E}[\mathbf{E}[X] - X] \ge 0$ holds iff $\mathbf{E}[X] - X = 0$ almost surely. Contradiction.

We can do slightly better than proposition I.1.

Proposition I.3. Let S be a random cut of G = (V, E) and $X = |E(S, V \setminus S)|$. Then $\Pr(X \ge (1 - \delta) \mathbf{E}[X]) \ge \frac{\delta}{1 + \delta}$.

Proof. Let $Y = |E| - X \ge 0$. Now $X \le (1 - \delta) \mathbf{E}[X]$ is equivalent to $Y \ge |E| - \frac{1-\delta}{2}|E| = \frac{1+\delta}{2}|E|$. Since $\mathbf{E}[Y] = \frac{1}{2}|E|$, Markov's inequality gives

$$\Pr\bigg\{Y \geq \frac{1+\delta}{2}|E|\bigg\} \leq \frac{1}{1+\delta}.$$

Thus $\Pr(X > (1 - \delta) \mathbf{E} X) \ge \frac{\delta}{1 + \delta}$.

Thus, for any $\delta > 0$ and $\varepsilon > 0$, we can sample a random cut $\log_{1+\delta} \varepsilon^{-1}$ times so that the largest of these cuts has size at least $(1-\delta)\frac{|E|}{2}$ with probability at least $1-\varepsilon$. If we choose δ such that $(1-\delta)\frac{|E|}{2} > \frac{|E|-1}{2}$, we get a half-cut.

I.1 Derandomization

We can derandomize the algorithm discussed previously. Label the vertices 1 through n.

$$\frac{|E|}{2} = \mathbf{E}[X] = \frac{1}{2}\mathbf{E}[X \mid 1 \in S] + \frac{1}{2}\mathbf{E}[X \mid 1 \notin S]$$

At least one of these has to be at least $\mathbf{E} X$. In this case, by symmetry, both are equal.

$$\begin{split} \mathbf{E}[X] &= \mathbf{E}[X \mid 1 \in S] \\ &= \frac{1}{2} \mathbf{E}[X \mid 1 \in S, 2 \in S] + \frac{1}{2} \mathbf{E}[X \mid 1 \in S, 2 \notin S]. \end{split}$$

Let X_i denote whether $i \in S$ or $i \notin S$. If we could compare $\mathbf{E}[X \mid X_1, \dots, X_k, k+1 \in S]$ and $\mathbf{E}[X \mid X_1, \dots, X_k, k+1 \notin S]$, we would get an algorithm. Writing X as $\sum_{u,v} \mathbf{1}_{u,v \text{ cross the cut}}$. Taking the difference of both conditional expectations shows that adding k+1 locally greedily to one of S and $V \setminus S$ has the greater expectation of X. This gives a linear time algorithm.

Exercise I.4 (Local search for half-cut). Start with an arbitrary cut $S_0 \subseteq V$. If there is a vertex $v \in V$ such that moving it to the other side increases the (edge-)size of the cut, do it. This process terminates and yields a half-cut.