Census Income Classification SVC

November 15, 2022

**

Classificaton Problem (SVC, Logistic, SVM Kernel

* Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset**

Import required libraries

Complete dataset is available on my GitHub * GitHub Link: https://github.com/subhashdixit/Support_Vector_Machines/tree/main/SVC/Census_Income_Classification

Read Data From GitHub

```
[2]: url_train = 'adult_data.csv'
url_test = 'adult_test.csv'
df_train = pd.read_csv(url_train, header = None)
df_test = pd.read_csv(url_test, header = None, skiprows = 1)
```

```
[3]: df_train
```

```
[3]:
            0
                                         2
                                                                  \
                                 1
                                                         3
                                                             4
     0
            39
                                      77516
                                                 Bachelors
                                                            13
                         State-gov
     1
                                                 Bachelors
            50
                 Self-emp-not-inc
                                      83311
                                                             13
     2
                           Private 215646
            38
                                                    HS-grad
```

3	53	Private	234721	11th	7
4	28	Private	338409	Bachelors	13
5	37	Private	284582	Masters	14
6	49	Private	160187	9th	5
7	52	Self-emp-not-inc	209642	HS-grad	9
8	31	Private	45781	Masters	14
				Bachelors	
9	42	Private	159449		13
10	37	Private	280464	Some-college	10
11	30	State-gov	141297	Bachelors	13
12	23	Private	122272	Bachelors	13
13	32	Private	205019	Assoc-acdm	12
14	40	Private	121772	Assoc-voc	11
15	34	Private	245487	7th-8th	4
16	25	Self-emp-not-inc	176756	HS-grad	9
17	32	Private	186824	HS-grad	9
18	38	Private	28887	11th	7
19	43	Self-emp-not-inc	292175	Masters	14
20	40	Private	193524	Doctorate	16
21	54	Private	302146	HS-grad	9
22	35	Federal-gov	76845	9th	5
		ŭ			7
23	43	Private	117037	11th	
24	59	Private	109015	HS-grad	9
25	56	Local-gov	216851	Bachelors	13
26	19	Private	168294	HS-grad	9
27	54	?	180211	Some-college	10
28	39	Private	367260	HS-grad	9
29	49	Private	193366	HS-grad	9
		•••	•••		
32531	30	?	33811	Bachelors	13
32532	34	Private	204461	Doctorate	16
32533	54	Private	337992	Bachelors	13
32534	37	Private	179137	Some-college	10
32535	22	Private	325033	12th	8
32536	34	Private	160216	Bachelors	13
32537	30	Private	345898	HS-grad	9
		Private		•	
32538	38		139180	Bachelors	13
32539	71	?	287372	Doctorate	16
32540	45	State-gov	252208	HS-grad	9
32541	41	?	202822	HS-grad	9
32542	72	?	129912	HS-grad	9
32543	45	Local-gov	119199	Assoc-acdm	12
32544	31	Private	199655	Masters	14
32545	39	Local-gov	111499	Assoc-acdm	12
32546	37	Private	198216	Assoc-acdm	12
32547	43	Private	260761	HS-grad	9
32548	65	Self-emp-not-inc	99359	Prof-school	15
32549	43	State-gov	255835	Some-college	10
22310	-0	23233 801		3011000	

32550	43 Self-emp-not-inc	27242 Some-college	10	
32551	32 Private	34066 10th	6	
32552	43 Private	84661 Assoc-voc	11	
32553	32 Private	116138 Masters	14	
32554	53 Private	321865 Masters	14	
32555	22 Private	310152 Some-college	10	
32556	27 Private	257302 Assoc-acdm	12	
32557	40 Private	154374 HS-grad	9	
32558	58 Private	151910 HS-grad	9	
32559	22 Private	201490 HS-grad	9	
32560	52 Self-emp-inc	287927 HS-grad	9	
	5	6	7	\
0	Never-married	l Adm-clerical	Not-in-family	
1	Married-civ-spouse	e Exec-managerial	Husband	
2	Divorced	•	Not-in-family	
3	Married-civ-spouse	Handlers-cleaners	Husband	
4	Married-civ-spouse		Wife	
5	Married-civ-spouse	-	Wife	
6	Married-spouse-absent		Not-in-family	
7	Married-civ-spouse		Husband	
8	Never-married	· ·	Not-in-family	
9	Married-civ-spouse	-	Husband	
10	Married-civ-spouse		Husband	
11	Married-civ-spouse	•	Husband	
12	Never-married	- •	Own-child	
13	Never-married	l Sales	Not-in-family	
14	Married-civ-spouse	craft-repair	Husband	
15	Married-civ-spouse		Husband	
16	Never-married	•	Own-child	
17	Never-married		Unmarried	
18	Married-civ-spouse		Husband	
19	Divorced		Unmarried	
20	Married-civ-spouse		Husband	
21	Separated	- •	Unmarried	
22	Married-civ-spouse		Husband	
23	Married-civ-spouse		Husband	
24	Divorced	•	Unmarried	
25	Married-civ-spouse		Husband	
26	Never-married		Own-child	
27	Married-civ-spouse	•	Husband	
28	Divorced		Not-in-family	
29	Married-civ-spouse		Husband	
 32531	Never-married	 l ?	 Not-in-family	
32532	Married-civ-spouse		Husband	
32533	Married-civ-spouse		Husband	
02000	narrica civ spouse	. Droc managerrar	iiusbaiiu	

32534	Divorced	i	Adm-cl	erical		Unmarried		
32535	Never-married	l Pr	Protective-serv			Own-child		
32536	Never-married	i Ex	Exec-managerial			Not-in-family		
32537	Never-married	i	Craft-	repair		Not-in-family		
32538	Divorced	i P	rof-spe	cialty	Unmarried			
32539	Married-civ-spouse		-	?		Husband		
32540	Separated		Adm-cl	erical		Own-child		
32541	Separated			?		Not-in-family		
32542	Married-civ-spouse			?		Husband		
32543	Divorced		rof-spe	cialty		Unmarried		
32544	Divorced		Other-s	•		Not-in-family		
32545	Married-civ-spouse	9	Adm-cl	erical		Wife		
32546	Divorced		Tech-s			Not-in-family		
32547	Married-civ-spouse	e Mach	ine-op-:			Husband		
32548	Never-married		rof-spe	_		Not-in-family		
32549	Divorced		Adm-cl	•	(ther-relative		
32550	Married-civ-spouse	9	Craft-			Husband		
32551	Married-civ-spouse		lers-cl	-		Husband		
32552	Married-civ-spouse			Sales		Husband		
32553	Never-married		Tech-s	upport		Not-in-family		
32554	Married-civ-spouse		ec-mana			Husband		
32555	Never-married		otective	_		Not-in-family		
32556	Married-civ-spouse		Tech-si			Wife		
32557	Married-civ-spouse		ine-op-		Husband			
32558	Widowed		Adm-cl			Unmarried		
32559	Never-married		Adm-cl			Own-child		
32560	Married-civ-spouse		ec-mana			Wife		
02000	nallou oli opouo			50				
	8	9	10	11	12	13	14	
0	White	Male	2174	0	40	United-States	<=50K	
1	White	Male	0	0	13	United-States	<=50K	
2	White	Male	0	0	40	United-States	<=50K	
3	Black	Male	0	0	40	United-States	<=50K	
4	Black	Female	0	0	40	Cuba	<=50K	
5	White	Female	0	0	40	United-States	<=50K	
6	Black	Female	0	0	16	Jamaica	<=50K	
7	White	Male	0	0	45	United-States	>50K	
8	White	Female	14084	0	50	United-States	>50K	
9	White	Male	5178	0	40	United-States	>50K	
10	Black	Male	0	0	80	United-States	>50K	
11	Asian-Pac-Islander	Male	0	0	40	India	>50K	
12	White	Female	0	0	30	United-States	<=50K	
13	Black	Male	0	0	50	United-States	<=50K	
14	Asian-Pac-Islander	Male	0	0	40	?	>50K	
15	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50K	
16	White	Male	0	0	35	United-States	<=50K	
17	White	Male	0	0	40	United-States	<=50K	

18	White	Male	0	0	50	United-States	<=50K
19	White	Female	0	0	45	United-States	>50K
20	White	Male	0	0	60	United-States	>50K
21	Black	Female	0	0	20	United-States	<=50K
22	Black	Male	0	0	40	United-States	<=50K
23	White	Male	0	2042	40	United-States	<=50K
24	White	Female	0	0	40	United-States	<=50K
25	White	Male	0	0	40	United-States	>50K
26	White	Male	0	0	40	United-States	<=50K
27	Asian-Pac-Islander	Male	0	0	60	South	>50K
28	White	Male	0	0	80	United-States	<=50K
29	White	Male	0	0	40	United-States	<=50K
•••	•••						
32531	Asian-Pac-Islander	Female	0	0	99	United-States	<=50K
32532	White	Male	0	0	60	United-States	>50K
32533	Asian-Pac-Islander	Male	0	0	50	Japan	>50K
32534	White	Female	0	0	39	United-States	<=50K
32535	Black	Male	0	0	35	United-States	<=50K
32536	White	Female	0	0	55	United-States	>50K
32537	Black	Male	0	0	46	United-States	<=50K
32538	Black	Female	15020	0	45	United-States	>50K
32539	White	Male	0	0	10	United-States	>50K
32540	White	Female	0	0	40	United-States	<=50K
32541	Black	Female	0	0	32	United-States	<=50K
32542	White	Male	0	0	25	United-States	<=50K
32543	White	Female	0	0	48	United-States	<=50K
32544	Other	Female	0	0	30	United-States	<=50K
32545	White	Female	0	0	20	United-States	>50K
32546	White	Female	0	0	40	United-States	<=50K
32547	White	Male	0	0	40	Mexico	<=50K
32548	White	Male	1086	0	60	United-States	<=50K
32549	White	Female	0	0	40	United-States	<=50K
32550	White	Male	0	0	50	United-States	<=50K
32551	Amer-Indian-Eskimo	Male	0	0	40	United-States	<=50K
32552	White	Male	0	0	45	United-States	<=50K
32553	Asian-Pac-Islander	Male	0	0	11	Taiwan	<=50K
32554	White	Male	0	0	40	United-States	>50K
32555	White	Male	0	0	40	United-States	<=50K
32556	White	Female	0	0	38	United-States	<=50K
32557	White	Male	0	0	40	United-States	>50K
32558	White	Female	0	0	40	United-States	<=50K
32559	White	Male	0	0	20	United-States	<=50K
32560	White	Female	15024	0	40	United-States	>50K

[32561 rows x 15 columns]

[4]: df_test

[4]:	0	1	2	3	4	5	\
0	25	Private	226802	11th	7	Never-married	`
1	38	Private	89814	HS-grad	9	Married-civ-spouse	
2	28	Local-gov	336951	Assoc-acdm	12	Married-civ-spouse	
3	44	Private	160323	Some-college	10	Married-civ-spouse	
4	18	?	103497	Some-college	10	Never-married	
5	34	Private	198693	10th	6	Never-married	
6	29	?	227026	HS-grad	9	Never-married	
7	63	Self-emp-not-inc	104626	Prof-school	15	Married-civ-spouse	
8	24	Private	369667	Some-college	10	Never-married	
9	55	Private	104996	7th-8th	4	Married-civ-spouse	
10	65	Private	184454	HS-grad	9	Married-civ-spouse	
11	36	Federal-gov	212465	Bachelors	13	Married-civ-spouse	
12	26	Private	82091	HS-grad	9	Never-married	
13	58	?	299831	HS-grad	9	Married-civ-spouse	
14	48	Private	279724	HS-grad	9	Married-civ-spouse	
15	43	Private	346189	Masters	14	Married-civ-spouse	
16	20	State-gov	444554	Some-college	10	Never-married	
17	43	Private	128354	HS-grad	9	Married-civ-spouse	
18	37	Private	60548	HS-grad	9	Widowed	
19	40	Private	85019	Doctorate	16	Married-civ-spouse	
20	34	Private	107914	Bachelors	13	Married-civ-spouse	
21	34	Private	238588	Some-college	10	Never-married	
22	72	?	132015	7th-8th	4	Divorced	
23	25	Private	220931	Bachelors	13	Never-married	
24	25	Private	205947	Bachelors	13	Married-civ-spouse	
25	45	Self-emp-not-inc	432824	HS-grad	9	Married-civ-spouse	
26	22	Private	236427	HS-grad	9	Never-married	
27	23	Private	134446	HS-grad	9	Separated	
28	54	Private	99516	HS-grad	9	Married-civ-spouse	
29	32	Self-emp-not-inc	109282	Some-college	10	Never-married	
	• •						
16251			26711	Assoc-voc	11	Married-civ-spouse	
16252		Private	117909	Assoc-voc	11	Married-civ-spouse	
16253 16254		Private	229647 149347	Bachelors	13 14	Never-married	
16254		Private Local-gov	23157	Masters Masters	14 14	Married-civ-spouse Married-civ-spouse	
16256		Private	93977	HS-grad	9	Never-married	
16257		Self-emp-inc	159691	Some-college	10	Divorced	
16257		Private	176967	Some-college	10	Married-civ-spouse	
16259		Private	344436	HS-grad	9	Widowed	
16260		Private	430340	Some-college	10	Never-married	
16261		Private	202168	Prof-school	15	Married-civ-spouse	
16262		Private	82720	HS-grad	9	Married-civ-spouse	
16263		Private	269623	Some-college	10	Never-married	
16264		Self-emp-not-inc	136405	HS-grad	9	Widowed	
16265		Local-gov	139347	Masters	14	Married-civ-spouse	
	- •	==30= 031	·				

16266	55 Private	224655	UC_crod	9		Sonara	+ 0 d
16267	38 Private		HS-grad Lssoc-voc	11	No	Separa ver-marr	
16268	58 Private		soc-acdm	12	Ne	Divor	
16269	32 Private			9	Marriad		
			HS-grad			l-civ-spo	
16270		285570	HS-grad	9		l-civ-spo	
16271	61 Private	89686	HS-grad	9		l-civ-spo	
16272	31 Private	440129	HS-grad	9		l-civ-spo	
16273	25 Private	350977	HS-grad	9	Ne	ver-marr	
16274	48 Local-gov	349230	Masters	14		Divor	
16275	33 Private		Bachelors	13	Ne	ver-marr	
16276	39 Private		Bachelors	13		Divor	
16277	64 ?	321403	HS-grad	9		Wido	
16278	38 Private		Bachelors	13	Married	l-civ-spo	
16279	44 Private		Bachelors	13		Divor	
16280	35 Self-emp-inc	182148 B	Bachelors	13	Married	l-civ-spo	use
	6	7			8	9	\
0	Machine-op-inspct	Own-child			Black	Male	
1	Farming-fishing	Husband			White	Male	
2	Protective-serv	Husband			White	Male	
3	Machine-op-inspct	Husband			Black	Male	
4	?	Own-child			White	Female	
5	Other-service	Not-in-family			White	Male	
6	?	Unmarried			Black	Male	
7	Prof-specialty	Husband			White	Male	
8	Other-service	Unmarried			White	Female	
9	Craft-repair	Husband			White	Male	
10	Machine-op-inspct	Husband			White	Male	
11	Adm-clerical	Husband			White	Male	
12	Adm-clerical	Not-in-family			White	Female	
13	?	Husband			White	Male	
14	Machine-op-inspct	Husband			White	Male	
15	Exec-managerial	Husband			White	Male	
16	Other-service	Own-child			White	Male	
17	Adm-clerical	Wife			White	Female	
18	Machine-op-inspct	Unmarried			White	Female	
19	Prof-specialty	Husband	Asian-P	ac-Is		Male	
20	Tech-support	Husband			White	Male	
21	Other-service	Own-child			Black	Female	
22	?	Not-in-family			White	Female	
23	Prof-specialty	Not-in-family			White	Male	
24	Prof-specialty	Husband			White	Male	
25	Craft-repair	Husband			White	Male	
26	Adm-clerical	Own-child			White	Male	
27	Machine-op-inspct	Unmarried			Black	Male	
28	Craft-repair	Husband			White	Male	
29	Prof-specialty				White	Male	
23	FIOI-specially	Not-in-family			MITTLE	нате	

•••			•••		•••			•••	•••	
16251				?	Hus	sband			White	Male
16252	Pro	f-spe	cialt	у	Hus	sband			White	Male
16253	Т	ech-s	uppor	`t	Not-in-fa	amily			White	Female
16254	Pro	f-spe	cialt	у	Hus	sband			White	Male
16255	Exec	-mana	geria	ıl	Hus	sband			White	Male
16256	Machin	e-op-	inspo	:t	Own-c	child			White	Male
16257	Exec	-mana	geria	ıl	Not-in-fa	amily			White	Female
16258	Prot	ectiv	e-ser	·v	Hus	sband			White	Male
16259			Sale	s O	ther-rela	ative			White	Female
16260			Sale	s	Not-in-fa	amily			White	Female
16261	Pro	f-spe	cialt	у	Hus	sband			White	Male
16262	C	raft-	repai	.r	Hus	sband			White	Male
16263	C	raft-	repai	.r	Own-c	child			White	Male
16264	Farm	ing-f	ishir	ıg	Not-in-fa	amily			White	Male
16265	Pro	f-spe	cialt	у		Wife			White	Female
16266	Priv	-hous	e-ser	·v	Not-in-fa	amily			White	Female
16267	A	dm-cl	erica	ıl	Unmar	ried			Black	Female
16268	Pro	f-spe	cialt	у	Not-in-fa	amily			White	Male
16269	Handle	rs-cl	eaner	`S	Hus	sband			White	Male
16270	A	dm-cl	erica	ıl	Hus	sband			White	Male
16271			Sale	s	Hus	sband			White	Male
16272	C	raft-	repai	.r	Hus	sband			White	Male
16273	Ot:	her-s	ervi	e	Own-c	child			White	Female
16274	0t	her-s	ervi	e	Not-in-fa	amily			White	Male
16275	Pro	f-spe	cialt	у	Own-c	child			White	Male
16276	Pro	f-spe	cialt	у	Not-in-fa	amily			White	Female
16277				? 0	ther-rela	ative			Black	Male
16278	Pro	f-spe	cialt	у	Hus	sband			White	Male
16279	A	dm-cl	erica	il	Own-c	child	Asi	an-Pac-I	slander	Male
16280	Exec	-mana	geria	ıl	Hus	sband			White	Male
	10	11	12		13	3	14			
0	0	0	40	Unit	ed-States	s <=!	50K.			
1	0	0	50	Unit	ed-States	s <=!	50K.			
2	0	0	40	Unit	ed-States	s >	50K.			
3	7688	0	40	Unit	ed-States	s >	50K.			
4	0	0	30	Unit	ed-States	s <=!	50K.			
5	0	0	30	Unit	ed-States	s <=!	50K.			
6	0	0	40	Unit	ed-States	s <=!	50K.			
7	3103	0	32	Unit	ed-States	s >	50K.			
8	0	0	40	Unit	ed-States	s <=!	50K.			
9	0	0	10	Unit	ed-States	s <=!	50K.			
10	6418	0	40	Unit	ed-States	s >	50K.			
11	0	0	40	Unit	ed-States	s <=	50K.			
12	0	0	39	Unit	ed-States	s <=!	50K.			
13	0	0	35	Unit	ed-States	s <=!	50K.			

14	3103	0	48	United-States	>50K.
15	0	0	50	United-States	>50K.
16	0	0	25	United-States	<=50K.
17	0	0	30	United-States	<=50K.
18	0	0	20	United-States	<=50K.
19	0	0	45	?	>50K.
20	0	0	47	United-States	>50K.
21	0	0	35	United-States	<=50K.
22	0	0	6	United-States	<=50K.
23	0	0	43	Peru	<=50K.
24	0	0	40	United-States	<=50K.
25	7298	0	90	United-States	>50K.
26	0	0	20	United-States	<=50K.
27	0	0	54	United-States	<=50K.
28	0	0	35	United-States	<=50K.
29	0	0	60	United-States	<=50K.
16251	2936	0	20	United-States	<=50K.
16252	7688	0	40	United-States	>50K.
16253	0	1669	40	United-States	<=50K.
16254	0	0	50	United-States	>50K.
16255	0	1902	50	United-States	>50K.
16256	0	0	40	United-States	<=50K.
16257	0	0	40	United-States	<=50K.
16258	0	0	40	United-States	<=50K.
16259	0	0	8	United-States	<=50K.
16260	0	0	45	United-States	<=50K.
16261	15024	0	55	United-States	>50K.
16262	0	0	40	United-States	<=50K.
16263	0	0	40	United-States	<=50K.
16264	0	0	32	United-States	<=50K.
16265	0	0	40	?	>50K.
16266	0	0	32	United-States	<=50K.
16267	0	0	40	United-States	<=50K.
16268	0	0	36	United-States	<=50K.
16269	0	0	40	United-States	<=50K.
16270	0	0	40	United-States	<=50K.
16271	0	0	48	United-States	<=50K.
16272	0	0	40	United-States	<=50K.
16273	0	0	40	United-States	<=50K.
16274	0	0	40	United-States	<=50K.
16275	0	0	40	United-States	<=50K.
16276	0	0	36	United-States	<=50K.
16277	0	0	40	United-States	<=50K.
16278	0	0	50	United-States	<=50K.
16279	5455	0	40	United-States	<=50K.
16280	0	0	60	United-States	>50K.

[16281 rows x 15 columns]

Data Set Information:

Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))

Prediction task is to determine whether a person makes over 50K a year.

Attribute Information:

Listing of attributes:

50K, <=50K.

- 1. age: continuous
- 2. workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, 3. State-gov, Without-pay, Never-worked.
- 3. fnlwgt: continuous.
- 4. education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, 6. Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- 5. education-num: continuous.
- 6. marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- 7. occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspect, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- 8. relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- 9. race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- 10. sex: Female, Male.
- 11. capital-gain: continuous.
- 12. capital-loss: continuous.
- 13. hours-per-week: continuous.
- 14. native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

Merge test and train data set to perform EDA

```
[5]: df = pd.concat([df_train,df_test])
[6]: df1 = df.copy()
    df = df.sample(n=10000)
[7]: df.head()
```

```
[7]:
                                         2
                                                                                    5
            0
                                                         3
     10837
            49
                                     202874
                                                    HS-grad
                                                              9
                                                                             Separated
     8294
                       Federal-gov
                                    183611
            50
                                              Some-college
                                                             10
                                                                        Never-married
     23745
                           Private 431513
                                                                   Married-civ-spouse
            48
                                                       10th
                                                              6
                  Self-emp-not-inc 175943
     12888
            43
                                               Some-college
                                                             10
                                                                        Never-married
     24512
                           Private
                                                                   Married-civ-spouse
            28
                                    177955
                                                       11th
                                         7
                        6
                                                  8
                                                           9
                                                                10
                                                                    11
                                                                        12
     10837
                                                                 0
                                  Unmarried
                                              White
                                                       Female
                                                                     0
                                                                        40
     8294
             Adm-clerical
                             Not-in-family
                                              White
                                                         Male
                                                                 0
                                                                     0
                                                                        40
     23745
             Craft-repair
                                    Husband
                                              White
                                                         Male
                                                                 0
                                                                     0
                                                                        65
             Craft-repair
                                                                     0
                                                                        14
     12888
                             Not-in-family
                                              White
                                                       Female
                                                                 0
                                                                        40
     24512
             Adm-clerical
                                       Wife
                                                       Female
                                                                 0
                                                                     0
                                              White
                         13
                                   14
     10837
                   Columbia
                                <=50K
     8294
             United-States
                               <=50K
     23745
             United-States
                                >50K
     12888
             United-States
                              <=50K.
     24512
                     Mexico
                               <=50K
```

0.1 EDA

Rename the columns as per given description

```
[8]: rename_columns = {0 : 'age', 1 : 'workclass', 2 : 'fnlwgt', 3 : 'education', 4 :

→ 'education-num', 5 : 'marital-status', 6 : 'occupation',

7 : 'relationship', 8 : 'race', 9 : 'sex', 10 :

→ 'capital-gain', 11 : 'capital-loss', 12 : 'hours-per-week',

13 : 'native-country', 14 : 'class'}

df.rename(columns = rename_columns, inplace = True)
```

Information about the dataset

```
[9]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10000 entries, 10837 to 28389
Data columns (total 15 columns):
                  10000 non-null int64
age
workclass
                  10000 non-null object
                  10000 non-null int64
fnlwgt
                  10000 non-null object
education
                  10000 non-null int64
education-num
marital-status
                  10000 non-null object
occupation
                  10000 non-null object
relationship
                  10000 non-null object
```

```
10000 non-null object
                    10000 non-null int64
    capital-gain
    capital-loss
                    10000 non-null int64
                    10000 non-null int64
    hours-per-week
    native-country
                    10000 non-null object
                    10000 non-null object
    dtypes: int64(6), object(9)
    memory usage: 1.2+ MB
    All the columns in the dataset
[10]: df.columns
[10]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num',
           'marital-status', 'occupation', 'relationship', 'race', 'sex',
           'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
           'class'],
          dtype='object')
    Check unique values in each column
[11]: for i in df.columns:
      print(f"{i} : {df[i].unique()}")
      age: [49 50 48 43 28 25 47 41 39 42 26 32 20 34 21 57 40 46 23 38 29 36 22 37
     45 30 62 27 33 18 64 44 54 19 61 55 17 31 24 35 56 59 60 67 52 53 65 51
     73 63 58 68 83 69 66 80 74 72 70 77 90 75 87 78 71 79 76 84 81 88 85 82]
    workclass : [' ?' ' Federal-gov' ' Private' ' Self-emp-not-inc' ' State-gov'
     'Local-gov' 'Self-emp-inc' 'Never-worked' 'Without-pay']
    fnlwgt : [202874 183611 431513 ... 353358 213385 206297]
    ______
    education : [' HS-grad' ' Some-college' ' 10th' ' 11th' ' Masters' ' 12th'
     ' Bachelors' ' Assoc-voc' ' Doctorate' ' Prof-school' ' Assoc-acdm'
     ' 7th-8th' ' 9th' ' 1st-4th' ' 5th-6th' ' Preschool']
    education-num : [ 9 10 6 7 14 8 13 11 16 15 12 4 5 2 3 1]
```

10000 non-null object

race

sex

```
marital-status : [' Separated' ' Never-married' ' Married-civ-spouse'
 ' Married-spouse-absent' ' Divorced' ' Widowed' ' Married-AF-spouse']
occupation : [' ?' ' Adm-clerical' ' Craft-repair' ' Prof-specialty' ' Other-
 'Exec-managerial' 'Handlers-cleaners' 'Tech-support'
 'Transport-moving' 'Machine-op-inspct' 'Sales' 'Farming-fishing'
 ' Protective-serv' ' Priv-house-serv' ' Armed-Forces']
______
relationship : [' Unmarried' ' Not-in-family' ' Husband' ' Wife' ' Own-child'
 ' Other-relative']
race : [' White' ' Black' ' Other' ' Asian-Pac-Islander' ' Amer-Indian-Eskimo']
sex : [' Female' ' Male']
______
capital-gain : [
                 0 15024 7688 4650 1055 5178
                                                594 4787 6849 14344
3456 4386
 4064 10520 14084 2977 2597 7298 3942 99999 3325 3137 3103 8614
15020 3908 1455 4865 2829 2346 2580 6418 10605
                                                 1151 27828 6497
 2885 3411 25124 2176 7978 3674 5013
                                       2993
                                            2174
                                                 4508 3781 2961
25236 13550 20051 4687 2414 4416 6097
                                       1506
                                            2635
                                                 1409 2228 2407
            401 2653 9386 3418 1639
 3464
      1848
                                        114
                                            5556
                                                  2105 5060 4101
 7443
      2907 2202 2290 1831 2964 3432 4931
                                            1424
                                                  2354 10566 3887
41310
      3818 5455 2062 2036 6360 15831
                                       3471
                                            2329
                                                 6723
capital-loss : [ 0 1902 1974 1669 1564 1848 1977 1887 1340 2002 1590 880 1668
1380
1617 1602 2051 2339 1740 2267 2042 625 1408 1485 1876 3900 1721 1672
2057 1741 213 2377 2415 2179 2559 2258 1651 1719 2001 1573 1510 2603
2174 1980 1579 1870 2392 2444 2754 1628 2824 1762 1411 2547 1504 3770
2149 2246 2467 1258 1092 2129 1429 2163 1138 2206 419 653 4356 1726
2457 2205 1825]
hours-per-week: [40 65 14 50 24 44 48 15 70 45 75 60 35 30 36 10 55 20 32 25 8
37 12 16
43 38 46 63 96 56 17 31 72 3 52 85 47 18 42 66 39 80 33 4 34 53 99 7
28 21 64 5 6 11 2 22 27 51 90 84 54 9 49 41 68 78 98 59 61 58 19 23
13 1 81 26 67 57 62 94 74 73 77 76 88 29 89 86 92]
```

```
native-country: ['Columbia' 'United-States' 'Mexico' '?' 'China' '
     Nicaragua'
      ' Philippines' ' Dominican-Republic' ' Germany' ' Japan' ' Cuba'
      ' Poland' ' Canada' ' Vietnam' ' Puerto-Rico' ' Ireland' ' France'
      ' Italy' ' Taiwan' ' El-Salvador' ' India' ' Peru' ' England' ' Jamaica'
      'Guatemala' 'Portugal' 'South' 'Haiti' 'Iran' 'Thailand'
      'Trinadad&Tobago' 'Hong' 'Yugoslavia' 'Greece' 'Honduras'
      'Cambodia' 'Ecuador' 'Hungary' 'Scotland' 'Laos'
      ' Outlying-US(Guam-USVI-etc)']
     class : [' <=50K' ' >50K' ' <=50K.' ' >50K.']
        • There is extra space in column name as well as in data
        • There is '?' as impurity present in the data
     Replace '?' with blank in the class feature
[12]: df['class'] = df['class'].apply(lambda x: x.replace('.',''))
     Remove extra space from the column name
[13]: df.columns = df.columns.str.strip()
      df.columns
[13]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num',
             'marital-status', 'occupation', 'relationship', 'race', 'sex',
             'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
             'class'],
            dtype='object')
     Remove extra space from the data
[14]: df = df.applymap(lambda x: " ".join(x.split()) if isinstance(x, str) else x)
     Replace '?' with most mode value
[15]: for impure_col in ["workclass", "native-country", "occupation"]:
       frequent_value = df[impure_col].mode()[0]
       df[impure_col] = df[impure_col].replace(['?'], frequent_value)
     Check whether '?' is present or not in the dataset
```

[16]: df[(df['workclass'] == '?') | (df['native-country'] == '?') | (df['occupation']

→== '?')].sum()

```
[16]: age
                         0.0
      workclass
                         0.0
      fnlwgt
                         0.0
      education
                         0.0
      education-num
                         0.0
      marital-status
                         0.0
      occupation
                         0.0
      relationship
                         0.0
                         0.0
      race
      sex
                         0.0
      capital-gain
                         0.0
      capital-loss
                         0.0
      hours-per-week
                         0.0
      native-country
                         0.0
                         0.0
      class
      dtype: float64
```

Check null values in the dataset

```
[17]: df.isnull().sum()
[17]: age
                         0
      workclass
                         0
      fnlwgt
                         0
      education
                         0
      education-num
                         0
      marital-status
                         0
      occupation
                         0
      relationship
                         0
                         0
      race
                         0
      sex
      capital-gain
                         0
                         0
      capital-loss
                         0
      hours-per-week
      native-country
                         0
                         0
      class
      dtype: int64
```

Check duplicate values in the dataset

```
[18]: df.duplicated().sum()
```

[18]: 2

Drop duplicates values from the dataset

```
[19]: df.drop_duplicates(inplace=True)
```

Check duplicates after the deletion

```
[20]: df.duplicated().sum()
[20]: 0
     Categorical Features
[21]: categorical_features = [feature for feature in df.columns if df[feature].dtypes__
       →== '0']
      categorical_features
[21]: ['workclass',
       'education',
       'marital-status',
       'occupation',
       'relationship',
       'race',
       'sex',
       'native-country',
       'class']
     Numerical Features
[22]: numerical_features = [feature for feature in df.columns if df[feature].dtypes !
       = '0']
      numerical_features
[22]: ['age',
       'fnlwgt',
       'education-num',
       'capital-gain',
       'capital-loss',
       'hours-per-week']
     0.2 Handling of Categorical Features
[23]: df[categorical_features].nunique()
[23]: workclass
                         8
      education
                        16
                         7
     marital-status
      occupation
                        14
      relationship
                         6
     race
                         5
      sex
                         2
                        40
     native-country
      class
                         2
```

dtype: int64

Check unique values in each category

```
[24]: for i in categorical_features:
        print(f"{i} : {df[i].unique()}")
     workclass: ['Private' 'Federal-gov' 'Self-emp-not-inc' 'State-gov' 'Local-gov'
      'Self-emp-inc' 'Never-worked' 'Without-pay']
     education : ['HS-grad' 'Some-college' '10th' '11th' 'Masters' '12th' 'Bachelors'
      'Assoc-voc' 'Doctorate' 'Prof-school' 'Assoc-acdm' '7th-8th' '9th'
      '1st-4th' '5th-6th' 'Preschool']
     marital-status : ['Separated' 'Never-married' 'Married-civ-spouse' 'Married-
     spouse-absent'
      'Divorced' 'Widowed' 'Married-AF-spouse']
     occupation : ['Craft-repair' 'Adm-clerical' 'Prof-specialty' 'Other-service'
      'Exec-managerial' 'Handlers-cleaners' 'Tech-support' 'Transport-moving'
      'Machine-op-inspct' 'Sales' 'Farming-fishing' 'Protective-serv'
      'Priv-house-serv' 'Armed-Forces']
     relationship : ['Unmarried' 'Not-in-family' 'Husband' 'Wife' 'Own-child' 'Other-
     relative'l
     race : ['White' 'Black' 'Other' 'Asian-Pac-Islander' 'Amer-Indian-Eskimo']
     sex : ['Female' 'Male']
     native-country : ['Columbia' 'United-States' 'Mexico' 'China' 'Nicaragua'
     'Philippines'
      'Dominican-Republic' 'Germany' 'Japan' 'Cuba' 'Poland' 'Canada' 'Vietnam'
      'Puerto-Rico' 'Ireland' 'France' 'Italy' 'Taiwan' 'El-Salvador' 'India'
      'Peru' 'England' 'Jamaica' 'Guatemala' 'Portugal' 'South' 'Haiti' 'Iran'
      'Thailand' 'Trinadad&Tobago' 'Hong' 'Yugoslavia' 'Greece' 'Honduras'
      'Cambodia' 'Ecuador' 'Hungary' 'Scotland' 'Laos'
      'Outlying-US(Guam-USVI-etc)']
     class : ['<=50K' '>50K']
```

Reduce number of catgeory in marital-status

```
[25]: df['marital-status'] = df['marital-status'].map({'Never-married' : 'Single', □

→'Married-civ-spouse' : 'Married',

'Married-spouse-absent' : 'Married','Married-AF-spouse' : □

→'Married', 'Divorced' : 'Divorced',

'Separated' : 'Separated', 'Widowed' : 'Widowed'})
```

Reduce number of catgeory in workclass

[27]: array(['Female', 'Male'], dtype=object)

Map Male to 1 and Female to 0

```
[28]: df['sex'] = df['sex'].map({'Male' : 1, 'Female' : 0})
```

Map ">50K" to 1 and "<=50K" to 0

```
[29]: df['class'] = df['class'].map({'>50K' : 1, '<=50K' : 0})
```

Check Correlation of numerical features

0.3 Graphical Analysis

```
[30]: df_numerical_features = df[numerical_features]
```

0.3.1 Numerical Features Analysis

Distplot

```
[31]: fig, ax = plt.subplots(ncols=3, nrows=2, figsize=(20,10))
index = 0
ax = ax.flatten()
for col, value in df_numerical_features.items():
    sns.distplot(value, ax=ax[index])
    index += 1
plt.tight_layout(pad=0.5, w_pad=0.7, h_pad=5.0)
```

C:\Users\subhash\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713:
FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval C:\Users\subhash\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "C:\Users\subhash\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "C:\Users\subhash\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

C:\Users\subhash\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

C:\Users\subhash\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "C:\Users\subhash\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

0.3.2 Categorical Features Analysis

Barplot

```
[33]: fig, ax = plt.subplots(ncols=3, nrows=3, figsize=(20,10))
index = 0
ax = ax.flatten()
for col, value in df_categorical_features.items():
```

```
sns.barplot(y = df['age'], x = df[col], data = df, ax=ax[index])
index += 1
plt.tight_layout(pad=0.5, w_pad=0.7, h_pad=5.0)
```

C:\Users\subhash\Anaconda3\lib\site-packages\scipy\stats\py:1713:
FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

[34]: sns.pairplot(df)

[34]: <seaborn.axisgrid.PairGrid at 0x205edf107f0>

0.4 Statistical Analysis

[35]:	df.describe().T						
[35]:		count	mean	std	min	25%	\
	age	9998.0	38.543609	13.611437	17.0	28.0	
	fnlwgt	9998.0	188353.235347	105032.757977	12285.0	116792.5	
	education-num	9998.0	10.099120	2.560048	1.0	9.0	
	sex	9998.0	0.670534	0.470043	0.0	0.0	
	capital-gain	9998.0	970.772254	6752.734625	0.0	0.0	
	capital-loss	9998.0	90.629226	411.279024	0.0	0.0	
	hours-per-week	9998.0	40.414483	12.473665	1.0	40.0	

class	9998.0	0.23534	7 0.42	24237	0.0	0.0
	50%	75%	max			
age	37.0	47.00	90.0			
fnlwgt	177933.0	236805.75	1366120.0			
education-num	10.0	12.00	16.0			
sex	1.0	1.00	1.0			
capital-gain	0.0	0.00	99999.0			
capital-loss	0.0	0.00	4356.0			
hours-per-week	40.0	45.00	99.0			
class	0.0	0.00	1.0			

[36]: sns.heatmap(data = df.corr(), annot = True)

[36]: <matplotlib.axes._subplots.AxesSubplot at 0x205f2bc5f98>

0.5 Encoding

Frequency Encoding

```
[37]: df.nunique()
[37]: age
                          72
      workclass
                          4
      fnlwgt
                       8548
      education
                          16
      education-num
                          16
     marital-status
                          5
                          14
     occupation
     relationship
                          6
                          5
     race
                          2
      sex
      capital-gain
                         97
      capital-loss
                          73
     hours-per-week
                          89
     native-country
                          40
      class
                          2
      dtype: int64
[38]: for col in ['workclass', 'marital-status', 'occupation', 'relationship', |
      # df['workclass'] = df['workclass'].map(df.groupby("workclass").size()/
       \rightarrow len(df)).round(2)
       df[col] = df[col].map(df.groupby(col).size()/len(df)).round(2)
     Drop "education" column because we have one more columns as "eduction-num" which
     is encoded to "eductaion" column
[39]: df.drop('education', axis = 1, inplace = True)
[40]: \# X = df.iloc[:,:-1]
      # y = df.iloc[:, -1]
[41]: # X.shape
[42]: # y.shape
          Save Preprocess Model Data Using Pickle
[43]: # preprocess_model = [X_train, y_train, X_test, y_test]
      preprocess_model = [df]
[44]: import pickle
[45]: pickle.dump(preprocess_model,__
       →open('Census_Income_Classification_Preprocess_Model.pkl','wb'))
```

```
[46]: preprocess_model = pickle.

→load(open('Census_Income_Classification_Preprocess_Model.pkl','rb'))
```

Note * We have successfully stored our scaled data into pickel file so we can use it further in other file by just importing it

0.7 Save Data into MongoDb

```
[47]: # !pip install pymongo

[48]: # import pymongo
# from pymongo import MongoClient

[49]: # client = pymongo.MongoClient("mongodb+srv://subhashdixit17:Anushka27@cluster0.
→elq8eyt.mongodb.net/?retryWrites=true&w=majority")

[50]: # db=client['Census_Income_Preprocessed_Data']
# collections = db['Training__Independent_and_Dependent_Dataset']

[51]: # data_json = df.to_dict('records')
# collections.insert_many(data_json)
```

0.8 Load Preprocessed data using MongoDb

```
[52]: # Getting all records from mongodb
# imported_data = collections.find()
# imported_data = pd.DataFrame(imported_data)
```

0.9 Dropping Unnecessary features

```
[53]: # data = imported_data.drop(['_id'], axis=1)
```

0.10 Spliting Independent and Dependent Features

```
[54]: # X = data.iloc[:, 0:13]
# y= data.iloc[:, -1]
X = df.iloc[:, 0:13]
y= df.iloc[:, -1]
```

0.11 Train Test Split

```
[55]: X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=7,test_size=0.

→33)
```

0.12 Scaling

```
[56]: from sklearn.preprocessing import StandardScaler
[57]: scaler=StandardScaler()
[58]: X_train = scaler.fit_transform(X_train)
[59]: X_test = scaler.transform(X_test)
```

0.13 VIF Check

• To check multicollinearity

```
[60]: \# X_train = pd.DataFrame(X_train)
[61]: # from statsmodels.stats.outliers_influence import variance_inflation_factor
      \# \ vif = [variance\_inflation\_factor(X\_train.values, i) \ for i \ in \ range(X\_train.values, i)]
       \hookrightarrow shape[1])]
      # print(X_train.columns)
      # print(vif)
[62]: \# while (max(vif) > 5):
             indx = vif.index(max(vif)) #Get the index of variable with highest VIF
             print(indx)
             X_train.drop(X_train.columns[indx],axis = 1, inplace = True)
             vif = [variance_inflation_factor(X_train.values, i) for i in_
       \rightarrow range(X_train.shape[1])]
      # vif = [variance inflation factor(X train.values, i) for i in range(X train.
       \hookrightarrow shape[1])]
      # print(X_train.columns)
      # print(vif)
[63]: # X_train.head()
[64]: \# X\_test = X\_test[X\_train.columns]
[65]: # X_test.head()
```

1 Model Creation

1.1 GridSearchCV For SVC

```
[66]: from sklearn.model_selection import GridSearchCV

[67]: # param_grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001], 'kernel': \( \to \) \( \to \) ['linear', 'rbf', 'poly', 'sigmoid']}

[68]: # model_GRID_SVR = GridSearchCV(SVC(), param_grid, refit=True, verbose=3)  \( # model_GRID_SVR.fit(X_train, y_train) \)

[69]: # print(model_GRID_SVR.best_estimator_)

[70]: # GRID_SVR_train_score = model_GRID_SVR.score(X_train, y_train)  \( # GRID_SVR_train_score \)
```

2 All Model Creation

```
[71]: # Model Mapping
      kernels = ['linear', 'poly', 'rbf', 'sigmoid']
      param_grid = {'kernel':kernels}
      ## We will train that models
      models = {
      1: LogisticRegression(),
      # 2: LinearSVC()
      2: SVC(kernel=kernels[0]),
      3: SVC(kernel=kernels[1]),
      4: SVC(kernel=kernels[2]),
      5: SVC(kernel=kernels[3]),
       6: GridSearchCV(estimator=SVC(), param grid=param grid, n_jobs=-1) # HyperParam
      }
[72]: map_keys = list(models.keys())
[73]: # Get model name using id from linear_model_collection
      def get model building technique name(num):
       if num == 1:
       return 'Logistic Regression()'
       if num == 2:
        # return 'LinearSVC()'
       return "SVC(kernel='linear')"
       if num == 3:
       return "SVC(kernel='poly', cache_size=7000)"
       if num == 4:
```

```
return "SVC(kernel='rbf', cache_size=7000)"
if num == 5:
  return "SVC(kernel='sigmoid', cache_size=7000)"
if num == 6:
  return 'GridSearchCV Estimator SVC'
  return ''
```

```
[74]: results = [];
      for key_index in range(len(map_keys)):
        key = map_keys[key_index]
       model = models[key]
       print(key_index)
        model.fit(X_train, y_train)
        '''Test Accuracy'''
        y_pred = model.predict(X_test)
        Accuracy_Test = accuracy_score(y_test, y_pred)
        conf_mat_Test = confusion_matrix(y_test, y_pred)
        true_positive_Test = conf_mat_Test[0][0]
       false_positive_Test = conf_mat_Test[0][1]
       false_negative_Test = conf_mat_Test[1][0]
        true_negative__Test = conf_mat_Test[1][1]
        Precision_Test = true_positive_Test /(true_positive_Test +_
       →false_positive_Test)
       Recall_Test = true_positive_Test/(true_positive_Test + false_negative_Test)
       F1_Score_Test = 2*(Recall_Test * Precision_Test) / (Recall_Test +
       →Precision Test)
        AUC_Test = roc_auc_score(y_test, y_pred)
        '''Train Accuracy'''
        y_pred_train = model.predict(X_train)
        Accuracy_Train = accuracy_score(y_train, y_pred_train)
        conf mat_Train = confusion_matrix(y_train, y_pred_train)
        true_positive_Train = conf_mat_Train[0][0]
        false_positive_Train = conf_mat_Train[0][1]
       false negative Train = conf mat Train[1][0]
       true_negative__Train = conf_mat_Train[1][1]
       Precision_Train = true_positive_Train /(true_positive_Train +__
       →false_positive_Train)
       Recall_Train = true_positive_Train/(true_positive_Train +__
       →false_negative_Train)
       F1_Score_Train = 2*(Recall_Train * Precision_Train) / (Recall_Train +
       →Precision_Train)
        AUC_Train = roc_auc_score(y_train, y_pred_train)
```

```
'Model Name' : get_model_building_technique_name(key),
            'Trained Model' : model,
            'Accuracy_Test' : Accuracy_Test,
            'Precision_Test' : Precision_Test,
            'Recall_Test' : Recall_Test,
            'F1_Score_Test' : F1_Score_Test,
            'AUC_Test' : AUC_Test,
            'Accuracy_Train' : Accuracy_Train,
            'Precision Train' : Precision Train,
            'Recall_Train' : Recall_Train,
            'F1_Score_Train' : F1_Score_Train,
            'AUC_Train' : AUC_Train
            })
     0
     1
     2
     3
     4
     5
[75]: result_df = pd.DataFrame(results)
      result_df
[75]:
         AUC_Test AUC_Train Accuracy_Test Accuracy_Train F1_Score_Test \
      0 0.736090
                   0.728649
                                   0.844848
                                                   0.838161
                                                                   0.903030
      1 0.716071
                   0.710988
                                   0.840606
                                                   0.837414
                                                                   0.901498
      2 0.723047
                  0.741667
                                   0.842727
                                                   0.856674
                                                                   0.902499
      3 0.739576
                    0.756058
                                   0.848788
                                                   0.859958
                                                                   0.905653
      4 0.694186
                    0.682265
                                   0.780909
                                                   0.772768
                                                                   0.857425
      5 0.739576
                    0.756058
                                   0.848788
                                                   0.859958
                                                                   0.905653
         F1_Score_Train
                                                     Model Name Precision_Test \
      0
               0.898235
                                          Logistic Regression()
                                                                        0.936371
      1
               0.899232
                                           SVC(kernel='linear')
                                                                        0.945405
      2
               0.910847
                            SVC(kernel='poly', cache_size=7000)
                                                                        0.943441
                             SVC(kernel='rbf', cache_size=7000)
      3
               0.912139
                                                                        0.940691
      4
               0.851454 SVC(kernel='sigmoid', cache_size=7000)
                                                                        0.853888
      5
                                     GridSearchCV Estimator SVC
               0.912139
                                                                        0.940691
         Precision_Train Recall_Test Recall_Train \
      0
                0.938223
                             0.871982
                                           0.861516
      1
                0.952932
                             0.861489
                                           0.851261
      2
                0.961757
                             0.864962
                                           0.865056
      3
                0.954893
                             0.873132
                                           0.873050
      4
                0.855462
                             0.860990
                                           0.847484
```

results.append({

```
5
                0.954893
                             0.873132
                                           0.873050
                                             Trained Model
      O LogisticRegression(C=1.0, class_weight=None, d...
      1 SVC(C=1.0, cache_size=200, class_weight=None, ...
      2 SVC(C=1.0, cache_size=200, class_weight=None, ...
      3 SVC(C=1.0, cache size=200, class weight=None, ...
      4 SVC(C=1.0, cache_size=200, class_weight=None, ...
      5 GridSearchCV(cv=None, error score='raise',\n ...
     2.1 Test Accuracy
[76]: result_df_test = result_df.iloc[: , [6,11,2,4,7,9,0]]
      result df test
[76]:
                                     Model Name \
      0
                          Logistic Regression()
      1
                           SVC(kernel='linear')
      2
            SVC(kernel='poly', cache_size=7000)
             SVC(kernel='rbf', cache_size=7000)
      3
      4 SVC(kernel='sigmoid', cache_size=7000)
      5
                     GridSearchCV Estimator SVC
                                             Trained Model Accuracy_Test \
      O LogisticRegression(C=1.0, class weight=None, d...
                                                                0.844848
      1 SVC(C=1.0, cache_size=200, class_weight=None, ...
                                                                0.840606
      2 SVC(C=1.0, cache_size=200, class_weight=None, ...
                                                                0.842727
      3 SVC(C=1.0, cache_size=200, class_weight=None, ...
                                                                0.848788
      4 SVC(C=1.0, cache_size=200, class_weight=None, ...
                                                                0.780909
      5 GridSearchCV(cv=None, error_score='raise',\n ...
                                                                0.848788
         F1_Score_Test Precision_Test Recall_Test AUC_Test
      0
              0.903030
                              0.936371
                                           0.871982 0.736090
      1
              0.901498
                              0.945405
                                           0.861489 0.716071
      2
              0.902499
                              0.943441
                                           0.864962 0.723047
      3
                                           0.873132 0.739576
              0.905653
                              0.940691
      4
                              0.853888
                                           0.860990 0.694186
              0.857425
              0.905653
                              0.940691
                                           0.873132 0.739576
          Train Accuracy
```

```
[77]:
                                     Model Name \
      0
                          Logistic Regression()
      1
                           SVC(kernel='linear')
      2
            SVC(kernel='poly', cache_size=7000)
             SVC(kernel='rbf', cache size=7000)
      3
      4 SVC(kernel='sigmoid', cache size=7000)
                     GridSearchCV Estimator SVC
      5
                                             Trained Model Accuracy_Train \
      O LogisticRegression(C=1.0, class_weight=None, d...
                                                                 0.838161
      1 SVC(C=1.0, cache_size=200, class_weight=None, ...
                                                                 0.837414
      2 SVC(C=1.0, cache_size=200, class_weight=None, ...
                                                                 0.856674
      3 SVC(C=1.0, cache_size=200, class_weight=None, ...
                                                                 0.859958
      4 SVC(C=1.0, cache_size=200, class_weight=None, ...
                                                                 0.772768
      5 GridSearchCV(cv=None, error_score='raise',\n ...
                                                                 0.859958
         F1_Score_Train Recall_Test Recall_Train AUC_Train
      0
               0.898235
                                                     0.728649
                            0.871982
                                          0.861516
      1
               0.899232
                                          0.851261
                                                      0.710988
                            0.861489
      2
               0.910847
                            0.864962
                                          0.865056
                                                     0.741667
      3
               0.912139
                            0.873132
                                          0.873050
                                                     0.756058
      4
               0.851454
                            0.860990
                                          0.847484
                                                      0.682265
               0.912139
                            0.873132
                                          0.873050
                                                     0.756058
```

2.3 ROC Curve for all the Model

```
[78]: fpr_dict = {}
      tpr_dict = {}
      for i in range(6):
          model_pred = result_df['Trained Model'][i].predict(X_test)
          fpr, tpr, thresholds = roc_curve(y_test, model_pred)
          fpr_dict[i] = fpr
          tpr_dict[i] = tpr
      plt.figure(figsize=(12,8))
      plt.suptitle('\nReceiver Operating Characteristic (ROC) Curve', fontsize=20)
      plt.plot(fpr_dict[0], tpr_dict[0], color='orange', label=f"ROC -__
      →{result_df['Model Name'][0]}")
      plt.plot(fpr_dict[1], tpr_dict[1], color='green', label=f"ROC -__
       →{result df['Model Name'][1]}")
      plt.plot(fpr_dict[2], tpr_dict[2], color='yellow', label=f"ROC -_
       →{result_df['Model Name'][2]}")
      plt.plot(fpr_dict[3], tpr_dict[3], color='red', label=f"ROC - {result_df['Model_u
       →Name'][3]}")
      plt.plot(fpr_dict[4], tpr_dict[4], color='black', label=f"ROC -__
       →{result_df['Model Name'][4]}")
```

```
plt.plot(fpr_dict[5], tpr_dict[5], color='blue', label=f"ROC -__
→{result_df['Model Name'][5]}")

plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--', label='ROC curve')

plt.xlabel('False Positive Rate', fontdict={'fontsize': 20})

plt.ylabel('True Positive Rate', fontdict={'fontsize': 20})

plt.legend()

plt.show()
```

Receiver Operating Characteristic (ROC) Curve

2.4 Checking Best Model

```
[79]: plt.figure(figsize=(15,10))
    plt.suptitle('\nRoc-Auc-Score Distribution\n\n', fontsize=4, fontweight='bold')
    sns.barplot(data=result_df, x='Model Name', y='AUC_Test')
    plt.xlabel('Model Name',fontdict={'fontsize': 20})
    plt.ylabel('Roc-Auc-Score',fontdict={'fontsize': 20})
    plt.xticks(rotation=45)
    plt.show()
```

Now door Source Distribution

2.5 Save Best Model

```
[82]: import pickle
Best_Trained_model = Best_Model_Name
with open('Census_Income_Classification.sav', 'wb') as best_model_pickle:
    pickle.dump(Best_Trained_model, best_model_pickle)

# **
The End
**
```