где область V ограничена плоскостями x + y + z = 1. x = 0, y = 0, z = 0, полагая

$$x+y+z=\xi$$
, $y+z=\xi\eta$, $z=\xi\eta\xi$.

§ 7. Вычисление объемов с помощью тройных интегралов

Объем области V выражается формулой

$$V = \iiint_U dx \, dy \, dz.$$

Найти объемы тел, ограниченных следующими поверхностями:

4101.
$$z = x^2 + y^2$$
, $z = 2x^2 + 2y^2$, $y = x$, $y = x^2$.

4102.
$$z = x + y$$
, $z = xy$, $x + y = 1$, $x = 0$, $y = 0$.
4103. $x^2 + z^2 = a^2$, $x + y = \pm a$, $x - y = \pm a$.

4103.
$$x^2 + z^2 = a^2$$
, $x + y = \pm a$, $x - y = \pm a$.

4104.
$$az = x^2 + y^2$$
, $z = \sqrt{x^2 + y^2} (a > 0)$.

4104.
$$az = x^2 + y^2$$
, $z = \sqrt{x^2 + y^2}$ $(a > 0)$.
4105. $az = a^2 - x^2 - y^2$, $z = a - x - y$, $x = 0$, $y = 0$, $z = 0$ $(a > 0)$.

4106.
$$z = 6-x^2-y^2$$
, $z = \sqrt{x^2+y^2}$.

Переходя к сферическим или цилиндрическим координатам, вычислить объемы, ограниченные поверхностями:

4107.
$$x^2 + y^2 + z^2 = 2az$$
, $x^2 + y^2 \le z^2$.
4108. $(x^2 + y^2 + z^2)^2 = a^2(x^2 + y^2 - z^2)$.
4109. $(x^2 + y^2 + z^2)^3 = 3xyz$.
4110. $x^2 + y^2 + z^2 = a^2$, $x^2 + y^2 + z^2 = b^2$, $x^2 + y^2 = z^2$ ($z \ge 0$) $(0 < a < b)$.

В следующих примерах удобно пользоваться обобщенными сферическими координатами

r,
$$\varphi \neq \psi \left(r \geqslant 0; \ 0 \leqslant \varphi \leqslant 2\pi; \ -\frac{\pi}{2} \leqslant \psi \leqslant \frac{\pi}{2} \right)$$

вводя их по формулам

$$x = ar \cos^{\alpha} \varphi \cos^{\beta} \psi,$$

$$y = br \sin^{\alpha} \varphi \cos^{\beta} \psi,$$

$$z = cr \sin^{\beta} \psi$$

$$\frac{D(x, y, z)}{D(r, \varphi, \psi)} = \alpha \beta abcr^{2} \cos^{\alpha-1} \varphi \sin^{\alpha-1} \varphi \cos^{2\beta-1} \psi \sin^{\beta-1} \psi.$$