

Excel

9. cvičení

Jiří Zacpal

KMI/ZVT – Základy výpočetní techniky

Adresace buněk a oblastí

- Adresace buněk a oblastí se používá při vytváření vzorce
- Pomocí adresy buňky nebo celé oblasti buněk vytvoříte vazbu mezi buňkami
- Výsledkem je pak to, že změna obsahu buňky, jejíž adresa je uvedena ve vzorci jiné buňky se projeví i v této buňce.
- V Excelu jsou dva základní způsoby, jak adresovat:
 - adresace pomocí souřadnic,
 - adresace pomocí názvů buněk či oblastí.

Adresace pomocí souřadnic 1

- Každá buňka má v rámci sešitu svou unikátní adresu.
- Adresa buňky je dána její pozicí neboli souřadnicí, která je určena řádkem a sloupcem v rámci listu, kde se buňka nachází.
- Způsoby adresace:
 - řádky jsou číslované od 1 a sloupce mají označení písmeny od A
 - styl R1C1. V tomto případě jsou řádky i sloupce značeny čísly. Před čísla řádků se doplní písmeno R a před číslo sloupce C

Adresace pomocí souřadnic 2

 Pro adresování mimo aktuální list je určen předpis

NázevListu!SloupecŘádek

- Pokud se odkazujeme na oblast mimo aktuální sešit
 - [NázevSešitu.xls]NázevListu!SloupecŘádek
- Jestliže obsahuje název sešitu nebo listu mezeru, pak je předpis doplněn o apostrofy. '[Účty.xls]Bankovní účeť!J12

Druhy adres

- Absolutní adresa
 - uvádí se ve tvaru:

\$sloupec\$řádek např. \$A\$1

- Relativní adresa
 - uvádí se ve tvaru:

sloupecřádek např. A1

- Smíšená adresa
 - může být ve tvaru:

\$sloupecřádek např. \$A1

druhý tvar smíšené adresy je:

sloupec\$řádek např. A\$1

Příklad

- Otevřete soubor priklad_1.xls na kartě Adresace.
- 2. Do buněk E6 doplňte relativní vzorec "=D6*J5" a tento vzorec zkopírujte do buněk E7:E18.
- 3. Do buněk G6 doplňte absolutnívzorec "= = D6*\$J\$5 " a tento vzorec zkopírujte do buněk G7:G18.

Adresace oblastí

- Chcete-li adresovat ve vzorcích nebo funkcích více buněk současně, provedete to takto:
 - Pro souvislou oblast buněk napište adresu levé horní buňky oblasti, potom napište znak ":" a na závěr adresu pravé dolní buňky.

A3:C4

(oblast, zahrnující těchto 6 buněk: A3, A4, B3, B4, C3 a C4).

 Pro nesouvislou oblast napište seznam adres souvislých oblastí oddělených čárkou.

A1, B2:B4, D21

(oblast, která obsahuje 5 buněk: A1, B2, B3, B4 a D21).

Adresace pomocí názvů buněk

- Místo zadávání adres buněk nebo oblastí můžeme alternativně použít jejich pojmenování jednoznačným názvem.
- Hlavním přínosem je především zpřehlednění vzorců.
- "=Základ*Úrok" x "=A3*D4".
- Název může být v Excelu přiřazen:
 - buňce,
 - oblasti buněk (může být i nesouvislá)
 - konstantě.
- Adresa definovaná jako název má vždy absolutní adresu.
- Pomocí názvů nelze adresovat buňky relativně.

Příklad

- Otevřete soubor priklad_1.xls na kartě Názvy buněk.
- 2. Doplňte tyto názvy buněk:
 - pper pro buňku C5
 - sazba pro buňku C4
 - souč_hod pro buňku C7
 - splátka pro buňku C6
 - typ pro buňkuC8
- Do buňky B16 doplňte vzorec "=BUDHODNOTA(sazba;pper;splátka;souč_h od;typ)"

Vzorce

- Obecný tvar vzorce vypadá takto:
- Operand₁Operátor₁Operand₂Operátor₂...Operátor_nO perand_{n+1}
- Operandem může být:
 - konstantní hodnota (číslo, text, ...),
 - funkce.
- Operátory jsou:
 - aritmetické + , -, * nebo /,
 - relační -=, <, >, <=, >=,<>,
 - textové pro spojení dvou textů se používá operátor &, který se vloží mezi spojované texty.

Chybová hlášení

- Jestliže při vkládání vzorce uděláte chybu, objeví se v buňce hlášení této chyby.
- Uveďme si ty nejčastější:
 - #DIV/0! Toto hlášení se objeví, pokud ve vzorci dojde k dělení 0.
 - #NAZEV! Toto hlášení se objeví, pokud ve vzorci použijte špatný název funkce.
 - #REF! Toto hlášení se objeví, pokud ve vzorci použijte špatný odkaz. Například odkaz na neexistující buňku nebo odkaz na tu samu buňku (tzv. cyklický odkaz).

Funkce

- Funkce mohou být součástí vzorce
- Každá funkce je jednoznačně identifikována svým názvem, počtem a typem svých argumentů – parametrů a typem výsledné hodnoty
- Obecný zápis funkce je tento:
 - = NÁZEV_FUNKCE(Argument₁; ...; Argument_n)
- Funkce do sebe lze vnořovat

Grafy

- Grafy umožňují udělat si názornou představu o datech v tabulce.
- Poskytují grafické znázornění nějakého jevu.
- Při vytvoření grafu si nejdříve musíte uvědomit, k jakému účelu jej chcete použít.
- Dle toho potom zvolíte typ grafu.
- Grafy v Excelu se vytvářejí jen na základě zdrojových dat umístěných do tabulky. Se změnou těchto dat se samozřejmě i změní graf.

Spojnice trendů

- Pro grafickou analýzu dat je vhodné do grafu doplnit spojnici trendů.
- Ta graficky znázorňuje průběh zvolených tvarů křivek, jejichž parametry byly získány na základě výpočtů rovnic regresní analýzy.
- Druhy regresní analýzy:
 - exponenciální,
 - lineární,
 - logaritmické,
 - polynomické,
 - mocninný
- Klouzavý průměr, kde dochází k vyhlazení lokálních výkyvů původní křivky a výsledek pak může snáze určit základní vývojové trendy.

Chybové úsečky

- Chybové úsečky se zakreslují k datovým bodům a vyjadřují graficky toleranční pole.
- Napomáhají rozboru dat názorně vidíme, která data jsou v tolerančním pásmu a která určenou hranici překročila.
- Použijeme ji v situacích, kdy jde o zjištění, jak se jeden průběh datových bodů liší od jiného průběhu.

Příklad

- 1. Otevřete soubor priklad_03.xls.
- Na základě celkového prodeje za posledních 9 měsíců máme předpovědět vývoj prodeje na další dva měsíce.
- 3. Pro předpověď použijeme lineární a logaritmickou regresi, do grafu doplníme příslušné trendy.
- 4. Zformátujte graf dle obrázku.