Øving 7 IFY KJ T Fysikk/Kjemi

Oppgave 1

a) Bestem den ekvivalente kapasitansen mellom de to markerte punktene a og b i kretsen under.

Anta at spenningen over ytterpunktene a og b er $V_{ab} = 12$ V.

- b) Bestem mengden ladning lagret på hver av kondensatorene.
- c) Bestem spenningen over hver av kondensatorene.

Oppgave 2

Figuren under viser en luftfylt platekondensator med plateareal A og plateavstand d. En isolator med dielektrisk konstant κ fyller 1/3 av plategapet:

Bestem kondensatorens effektive kapasitans C uttrykt ved A, d og κ . [Hint: kondensatoren kan modelleres som to seriekoblede kondensatorer med plategap hhv. lik d/3 og 2d/3]

Oppgave 3

En elektrisk strøm på 50~mA som går gjennom menneskekroppen er tilstrekkelig til å gi dødelige hjerterytmeforstyrrelser. Resistansen R for en strøm som går gjennom en menneskekropp er ca. $200~\text{k}\Omega$ dersom huden er tørr. R er derimot kun $2,0~\text{k}\Omega$ dersom huden er fuktig.

Bestem størrelsen på den elektriske spenningen som skal til får å produsere denne elektriske strømmen når

- a) Huden er tørr.
- b) Huden er fuktig.

Oppgave 4

Kobber (figuren til høyre) og aluminium (figuren til venstre) har en resistivitet på henholdsvis $1,68\cdot 10^{-8}~\Omega m$ og $2,65\cdot 10^{-8}~\Omega m$. Vi skal konstruere to kabler, én med kobberleder og én med aluminiumsleder.

Hva må forholdet mellom kablenes diameter være for at kablene skal ha samme resistans R pr. lengdeenhet?

Oppgave 5

Du har tre ulike motstandere foran deg på labben. Resistansen til hver av de tre motstandene er henholdsvis $10.0~\Omega$, $20.0~\Omega$ og $30.0~\Omega$. Du skal benytte kun disse tre motstandene i en krets som du skal koble opp. Hvordan går du fram for å oppnå

- a) Størst mulig resistans R? Bestem verdien for R i dette tilfellet.
- b) Minst mulig resistans *R*? Bestem verdien for *R* i dette tilfellet.

Oppgave 6

Bestem den ekvivalente resistansen R_{ekv} mellom punktene a og b i denne kretsen.

Oppgave 7

Bestem de to ukjente strømmene I_2 og I_3 , samt spenningen V_1 i kretsen over.

Oppgave 8

En krets består av en motstand med resistans $1,00~\mathrm{M}\Omega$, en kondensator med kapasitans $C=5,00~\mu\mathrm{F}$, et batteri med ems $\epsilon=30,0~\mathrm{V}$ og en bryter som i utgangspunktet er åpen. Alle disse fire komponentene inngår i en seriekopling. Anta at bryteren lukkes ved tiden t=0.

- a) Bestem tidskonstanten for kretsen.
- b) Bestem strømmen gjennom motstanden 10,0 s etter at bryteren er lukket.
- c) Hvor lang tid tar det før kondensatoren er oppladet til 80% av den maksimale ladningen den er i stand til å lagre?

Oppgave 9

I partikkelakseleratoren LHC (Large Hadron Collider) ved den internasjonale partikkelfysikk-forskningsorganisasjonen CERN I Sveits brukes superledende magneter til å føre protoner i en sirkelbane med radius $4.3~\rm km$. Protonene har en hastighet på $3.0\cdot 10^7~\rm m/s$, og magnetfeltet står vinkelrett på protonenes hastighetsretning. Se figuren under.

Hvor stor må den magnetiske feltstyrken væe for å holde protonene i sirkelbanen?