

Experimental Analysis of Attacks on Next Generation Air Traffic Communication

Matthias Schäfer, Vincent Lenders and Ivan Martinovic

June 27th, 2013

Introduction

- 1 Introduction
- 2 Attacks
- 3 Limitations
- 4 Discussion

Current Air Traffic Surveillance

- ATM crucial for avoiding collisions
- Technologies used since World War II:
 - Primary Surveillance Radar
 - \blacksquare Secondary Surveillance Radar (Mode A/C/S)
- But there are some major problems:

- Insufficient accuracy
- Expensive
- Expected doubling of traffic until 2025
- NextGen (US) and CASCADE (Europe)

2020: NextGen Air Traffic Surveillance

- Automatic: no explicit interrogation necessary
- Dependant: aircraft determines its precise location in space on-board
- Surveillance: precise and up-to-date position, velocity, identification, . . .

Automatic Dependent Surveillance – Broadcast

- Aircraft continuously determine their position and velocity using GNSS
- Position, ID, velocity and status are broadcasted periodically

Security in ADS-B...

... does not exist!

ADS-B

- Designed for cost efficiency and accuracy
- Legacy compatibility for a smooth transition
- 20 years from development to final deployment
- worldwide coordination and deployment

Attacker

- Rapid technological progress
- Easily accessible knowledge
- Cheap equipment available off-the-shelf
- Attacks usually local, e.g. one ground station

Attacks

- 1 Introduction
- 2 Attacks
- 3 Limitations
- 4 Discussion

Attacks

- Passive attacks are trivial due to the lack of encryption
- But: passive attacks may support active attacks
- Active attacks:
 - Injection of ghost aircraft
 - Modification of the position of existing aircraft
 - Jamming attacks
 - Deletion of existing aircraft from the screen
 - **.** . . .

Example 1: Ghost aircraft injection

Example 2: Ghost aircraft flooding

Limitations

- 1 Introduction
- 2 Attacks
- 3 Limitations
- 4 Discussion

Passive Attacks

■ Line-of-sight link

Active Attacks

- Message injection: $P/N > \delta$
- (Selective) Message deletion:

 - $lue{}$ Position: distance to attacked ground station $\leq 10\,\mathrm{km}$
- Message modification:
 - \blacksquare Timing: stricter than that of message deletion (few μ s)
 - ${\color{gray} {\rm \square}}$ Synchronization with the signal with a precision $<1\,\mu{\rm s}$
 - But: deletion + injection = modification

Discussion

- 1 Introduction
- 2 Attacks
- 3 Limitations
- 4 Discussion

Lessons learned?

- Technological progress must be considered when designing new critical systems (especially cyber-physical systems)
- 2 Patches to secure the existing system needed until appropriate security measures are integrated
- Manufacturers and authorities in the aviation sector should provide more information about infrastructure to support research
- 4 ATC should not rely on ADS-B exclusively

The End

Thank you very much.