Digital Signal Analysis and Processing

Madhav P Pandey* DoEEE, KU

IIR Filter Design

Principles of IIR Filter Design Transformation Used Impulse Invariance Transformation Bilinear Transformation Butterworth and Chebyshev Filter Design **Spectral Transformation**

DIGITAL FILTER DESIGN

- Filter characteristics are specified in frequency domain in terms of the desired magnitude and phase response.
- Designing a specified filter is to determine the coefficients of a causal FIR or IIR filter that closely approximates the desired frequency response specifications.
- The issue of which filter to choose depends on the nature if the problem and on the specification of the desired frequency response.

IIR OR FIR?

- ≠ FIR filter is chosen when there is a requirement of linear phase characteristics within the pass band of the filter.
- → IIR filters have lower side lobes in the stop band than an FIR filter with same number of parameters.
- ♣ For similar specifications, implementation of IIR filter involves fewer parameters, requires less memory and has lower computational complexity than FIR filter.
- ♣ So, when there is no requirement of linear phase or a slight phase distortion is tolerable, IIR filters are chosen in practice.

DESIGN PRINCIPLE FOR IIR FILTERS

- 4 Design methods used for FIR filters are unique to digital domain and they are related to filter design methods used for analog filters.
- → Design of IIR filters however are based on analog filter design methods.
- ♣ So we first design a analog filter based on provided filter specifications and then convert it to the digital filter using some transformation.
- 4 Analog filter design is a matured and rich field. So, it is advantageous to use its knowledge and resources.

DESIGN PRINCIPLE FOR IIR FILTERS

4 A analog filter is described by its transfer function:

$$H_a(s) = \frac{B(s)}{A(s)} = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$

which is a function of complex variable s.

+ Converting such filter to a digital is to find the system function H(z) and hence the coefficients of corresponding digital filter that has similar frequency response.

♣ The transformations that perform the conversion must convert the stable analog filter to a stable digital filter.

DESIGN PRINCIPLE FOR IIR FILTERS

 \clubsuit So, left-half of s-plane must be mapped to inside of unit circle in z-plane. It is desirable that $j\omega$ axis be mapped to unit circle.

♣ A causal and stable IIR filter cannot have a linear phase. So, while designing a IIR filter, we consider only the magnitude response. Since magnitude and phase responses are related, we accept whatever phase response results.

IIR FILTER BY IMPULSE INVARIANCE

- \blacksquare Based on approximating a CT impulse response h(t) by its samples.
- \clubsuit So the transformation designs a digital IIR filter with impulse response h[n] that is the sampled version of the impulse response of the corresponding analog filter h(t).

$$h[n] \equiv h[nT]$$
 $n = 0, 1, 2,$

where T is sampling interval.

♣ Suitable only for low pass filters. Cannot be used for high pass filter design.

IMPULSE INVARIANCE TRANSFORMATION

 \bot Consider an analog filter with N poles at p_k and the transfer function as:

$$H_a(s) = \sum_{k=1}^{N} \frac{c_k}{s - p_k}$$

The impulse response of the filter is :

$$h_a(t) = \sum c_k e^{p_k t}, \qquad t \ge 0$$

 \blacksquare Samples of $h_a(t)$ are:

$$h(n) = \sum_{k=1}^{n} c_k e^{p_k T n}$$

4 The system function of DT system then is:

$$H(z) = \sum_{n=0}^{\infty} h(n)z^{-n}$$

IMPULSE INVARIANCE TRANSFORMATION

$$H(z) = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{N} c_k e^{p_k T n} \right) z^{-n}$$

$$= \sum_{k=1}^{N} c_k \sum_{n=0}^{\infty} (e^{p_k T} z^{-1})^n$$

$$4 \text{ Since,} \qquad \sum_{n=0}^{\infty} (e^{p_k T} z^{-1})^n = \frac{1}{1 - e^{p_k T} z^{-1}}$$

System function becomes:

$$H(z) = \sum_{k=1}^{\infty} \frac{c_k}{1 - e^{p_k T} z^{-1}}$$

Learly, the system has poles at

$$z_k = e^{p_k T}$$

IMPULSE INVARIANCE-MAPPING

- + The point $s=p_k$ in s-plane is mapped at $z=e^{p_kT}$
- **4** The mapping involved thus is:

$$z = e^{sT}$$

This corresponds to

$$r = e^{\sigma T}$$
 $\Omega = \omega T$

- Thus LH of s-plane is mapped inside unit circle
- RH of s-plane is mapped outside unit circle.
- Imaginary axis is mapped to unit circle.
- But mapping is not one to one but many to one

IMPULSE INVARIANCE TRANSFORMATION

Spectrum are related as:

$$H(f) = F_s \sum_{k=-\infty}^{\infty} H_a[(f-k)F_s]$$

$$H(\omega) = F_s \sum_{k=-\infty}^{\infty} H_a[(\omega - 2\pi k)F_s]$$

$$H(\Omega T) = \frac{1}{T} \sum_{k=-\infty}^{\infty} H_a \left(\Omega - \frac{2\pi k}{T} \right)$$

- **4** Thus there is overlapping.
- So to avoid or minimize, aliasing, sampling time T must be sufficiently small.

 $H_a(\Omega T)$

IMPULSE INVARIANCE-EXAMPLE

♣ Convert the analog filter system function to digital using impulse invariance transformation:

$$H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$$

The analog filter has poles at: $p_k = -0.1 \pm j3$

The partial fraction expansion is thus:

$$H(s) = \frac{\frac{1}{2}}{s + 0.1 - i3} + \frac{\frac{1}{2}}{s + 0.1 + i3}$$

The system function of the corresponding IIR filter based on impulse invariance transformation is:

$$H(z) = \frac{\frac{1}{2}}{1 - e^{-0.1T}e^{j3T}z^{-1}} + \frac{\frac{1}{2}}{1 - e^{-0.1T}e^{-j3T}z^{-1}}$$

$$H(z) = \frac{1 - (e^{-0.1T}\cos 3T)z^{-1}}{1 - (2e^{-0.1T}\cos 3T)z^{-1} + e^{-0.2T}z^{-1}}$$

♣ Conformal mapping that maps imaginary axis in s-plane to unit circle in z-plane only once. So, no aliasing.

♣ Based on approximation of integration by trapezoidal formula.

Consider a analog filter with transfer function

$$H(s) = \frac{b}{s+a}$$

The system is also described by differential equation as:

$$\frac{dy(t)}{dt} + ay(t) = bx(t)$$

Evaluating differential equation at t=nT,

$$y'[nT] = -ay[nT] + bx[nT]$$

Let us consider an integral

$$y(t) = \int_{t}^{t} y'(\tau)d\tau + y(t_0)$$

Approximating with trapezoidal formula at t=nT,

$$y[nT] = \frac{T}{2} (y'[nT] + y'[nT - T]) + y[nT - T]$$

 \blacksquare Substituting for y'[nT]

$$y[nT] = \frac{T}{2} \left(-ay[nT] + bx[nT] - ay[nT - T] + bx[nT - T] \right) + y[nT - T]$$

 \bot Using y[n] for y[nT]

$$y[n] = \frac{T}{2} \left(-ay[n] + bx[n] - ay[n-1] + bx[n-1] \right) + y[n-1]$$

$$\left(1 + a\frac{T}{2}\right)y[n] = \left(1 - a\frac{T}{2}\right)y[n-1] + b\frac{T}{2}x[n] + b\frac{T}{2}x[n-1]$$

Using Z-transform,

$$\left(1+a\frac{T}{2}\right)Y(z) = \left(1-a\frac{T}{2}\right)z^{-1}Y(z) + b\frac{T}{2}X(z) + b\frac{T}{2}z^{-1}X(z)$$

$$\left(1 + a\frac{T}{2} - \left(1 - a\frac{T}{2}\right)z^{-1}\right)Y(z) = b\frac{T}{2}\left(1 + z^{-1}\right)X(z)$$

4 The system function thus is:

$$H(z) = \frac{b\frac{T}{2}(1+z^{-1})}{\left(1+a\frac{T}{2}-z^{-1}+a\frac{T}{2}z^{-1}\right)} = \frac{b\frac{T}{2}(1+z^{-1})}{\left(1-z^{-1}+a\frac{T}{2}(1+z^{-1})\right)}$$

$$H(z) = \frac{b}{\frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) + a}$$

+ Comparing H(z) with H(s), we can conclude that

$$H(z) = H(s)|_{s=\frac{2}{T}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)}$$

The mapping involved with bilinear transformation thus is

$$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$$

- \blacksquare If we express s and z as, $z = re^{j\Omega}$ and $s = \sigma + j\omega$
- **4** The mapping equation results:

$$\sigma = \frac{2}{T} \frac{r^2 - 1}{1 + r^2 + 2r\cos\Omega}$$

$$\omega = \frac{2}{T} \frac{2r \sin \Omega}{1 + r^2 + 2r \cos \Omega}$$

- LH of s-plane maps to inside of unit circle and RH of s-plane maps to outside of unit circle.
- 4 In addition, imaginary axis of s-plane maps to the unit circle.
- ♣ Mapping to the unit circle is one to one. Hence the is a compression.
- **4** This frequency compression is called frequency warping.

+ For imaginary axis, σ =0 and hence, r=1. The mapping equation reduces to:

$$\omega = \frac{2}{T} \frac{\sin \Omega}{1 + \cos \Omega} = \frac{2}{T} \tan \left(\frac{\Omega}{2}\right)$$

$$\Omega = 2 \tan^{-1} \frac{\omega T}{2}$$

BILINEAR TRANSFORMATION-EXAMPLE

♣ Convert the following analog transfer function to digital IIR filter using bilinear transformation.

$$H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 16}$$

The resonant frequency of the digital filter is to be $\Omega_r = \frac{\pi}{2}$

Here,
$$\omega_r = 4$$
. So using the mapping equation, $\Omega = 2 \tan^{-1} \frac{\omega T}{2}$ we get, $T = \frac{1}{2}$. Thus,

$$s = 4 \frac{1 - z^{-1}}{1 + z^{-1}}$$

Finally, system function is:

$$H(z) = \frac{0.128 + 0.006z^{-1} - 0.122z^{-1}}{1 + 0.0006z^{-1} + 0.975z^{-2}} \qquad H(z) = \frac{0.128 + 0.006z^{-1} - 0.122z^{-2}}{1 + 0.975z^{-2}}$$

BILINEAR TRANSFORMATION-EXAMPLE

Lesign a single pole lowpass digital filter with 3-dB bandwidth of 0.2π , using bilinear transformation for following analog filter. $H_a(s) = \frac{\omega_c}{s + \omega_c}$

$$\blacktriangleright$$
 Using the mapping equation, $\omega_c = \frac{2}{T} \tan \left(\frac{0.2\pi}{2} \right) = \frac{0.65}{T}$

Using this the analog transfer function becomes:

$$H_a(s) = \frac{0.65/T}{s + 0.65/T}$$

Finally the system function of digital filter is:

$$H(z) = \frac{0.65/T}{\frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} + 0.65/T} = \frac{0.245(1 + z^{-1})}{1 - 0.509z^{-1}}$$

BUTTERWORTH FILTERS

♣ A low pass Butterworth analog filter is an all pole filter with magnitude squared frequency response given as:

$$|H(\omega)|^2 = \frac{1}{1 + (\omega/\omega_c)^{2N}}$$

where, ω_c is 3 dB cutoff frequency and N is the order.

- **♣** Simple maximally flat response.
- ♣ Monotonic decay in both pass band and stop band.
- \clubsuit All poles lie on the circle of radius ω_c and different angles.
- + Angles given by: $\theta_k = \frac{\pi}{2} + (2k+1)\frac{\pi}{2N}$ k = 0,1,2,....N-1

BUTTERWORTH FILTERS

As the order increases, transition width decreases.

$$|H(\omega)|_{\omega=0} = 1$$
 for all N

$$\left|H(\omega)\right|_{\omega=\omega_c}=rac{1}{\sqrt{2}}$$

BUTTERWORTH FILTERS-ORDER

Let ω_p , ω_s , α_p , α_s be pass band edge frequency, stop band edge frequency, maximum pass band attenuation and minimum stop band attenuation.

Then,
$$|H(\omega)| = (1 + (\omega/\omega_c)^{2N})^{-\frac{1}{2}}$$

In dB,
$$A = 20 \log_{10} |H(\omega)| = -10 \log_{10} (1 + (\omega/\omega_c)^{2N})$$

Attenuation in dB $\alpha = -A = 10\log_{10}(1 + (\omega/\omega_c)^{2N})$ At pass band edge,

$$\alpha_p = 10\log_{10}\left(1 + \left(\omega_p/\omega_c\right)^{2N}\right) \Longrightarrow \left(\frac{\omega_p}{\omega_c}\right)^{2N} = 10^{\frac{\alpha_p}{10}} - 1$$

At stop band edge,

$$\alpha_s = 10\log_{10}\left(1 + (\omega_s/\omega_c)^{2N}\right) \Longrightarrow \left(\frac{\omega_s}{\omega_c}\right)^{2N} = 10^{\frac{\alpha_s}{10}} - 1$$

BUTTERWORTH FILTERS-ORDER

$$\left(\frac{\omega_s}{\omega_p}\right)^{2N} = \frac{10^{\alpha_s/10} - 1}{10^{\alpha_p/10} - 1}$$

Taking logarithm and solving for *N*,

$$N = \frac{\log_{10} \left(\frac{10^{\alpha_s/10} - 1}{10^{\alpha_p/10} - 1} \right)}{2\log_{10} \left(\frac{\omega_s}{\omega_p} \right)}$$

3-dB cutoff frequency is:

$$\omega_c = \frac{\omega_s}{\left[10^{\alpha_s/10} - 1\right]^{1/2N}}$$

BUTTERWORTH FILTERS-ORDER

Use impulse invariance method to design a Butterworth LPF with, $\Omega_p = 0.3\pi$, $\Omega_s = 0.5\pi$, $\alpha_p = 1.41 dB$, $\alpha_s = 12 dB$, T = 1

$$\triangleright \omega_p = \frac{\Omega_p}{T} = 0.3\pi, \omega_s = \frac{\Omega_s}{T} = 0.5\pi$$

Computing order:
$$N = \frac{\log_{10} \left(\frac{10^{12/10} - 1}{10^{1.41/10} - 1} \right)}{2\log_{10} \left(\frac{0.5\pi}{0.3\pi} \right)} = 3.58 \approx 4$$

3-dB cutoff frequency is: $\omega_c = \frac{0.3\pi}{10^{1.41/10} - 1^{1/8}} = 0.34\pi$

Poles are at: $s_{\nu} = \omega_{c} e^{j\theta_{k}} = 0.34 \pi e^{j\theta_{k}} =$

Now the BW transfer function is: $H_a(s) = \frac{\omega_c}{(s-s_1)(s-s_2).....(s-s_N)}$

CHEBYSHEV FILTERS

- ♣ Chebyshev filters are characterized by ripples either in pass band or stop band.
- **4** Two types of Chebyshev filters:
 - Type I: Equiripple behavior in pass band and monotonic in stop band.
 - Type II: Equiripple behavior in stop band and monotonic in pass band.
- ♣ Type I filter is an all pole system while Type II filter is a polezero system

CHEBYSHEV FILTERS

Chebyshev Type II response

CHEBYSHEV - TYPE I

♣ A low pass Chebyshev Type I analog filter is an all pole filter with magnitude squared frequency response given as:

$$|H(\omega)|^2 = \frac{1}{1 + \varepsilon^2 T_N^2 (\omega/\omega_n)}$$

where, $T_N(x)$ is N^{th} order Chebyshev polynomial defined as:

$$T_{N}(x) = \begin{cases} \cos(N\cos^{-1}x) &, |x| \le 1\\ \cosh(N\cosh^{-1}x) &, |x| > 1 \end{cases}$$

and ε is scaling factor controlling the ripple in pass band.

$$|T_N(x)| \le 1$$
 for all N and $|x| \le 1$
 $|T_N(1)| = 1$ for all N

CHEBYSHEV - TYPE I

The order is given as: $N = \frac{10^{-10}}{\cosh^{-1}\left(\frac{\omega_s}{\omega_p}\right)}$

CHEBYSHEV - TYPE I

♣ Determine the prder of a type I LPF Chebyshev filter that has 1-dB ripple in the passband, a cutoff frequency 1000π , a stop band frequency of 2000 π , and an attenuation of 40 dB or more in stop band.

Here,
$$\omega_p = 1000\pi$$
, $\omega_s = 2000\pi$, $\alpha_s = 40$, $\alpha_p = 1 dB$

The order is given as:

$$N = \frac{\cosh^{-1} \left(\frac{10^{40/10} - 1}{10^{1/10} - 1}\right)^{\frac{1}{2}}}{\cosh^{-1}(2)} = 3.9 \approx 4$$

Also,

$$\frac{1}{\sqrt{1+\epsilon^2}} = 1 - \delta_1$$
 $10\log_{10}(1+\epsilon^2) = 1$ $\epsilon = 0.5088$

$$\epsilon = 0.5088$$

CHEBYSHEV - TYPE II

 δ_2 is pass band ripple.

COMPARISON OF FREQUENCY RESPONSE

SPECTRAL TRANSFORMATION

- ♣ In course of signal processing we may need other type of filters than low pass also. That includes high pass and band pass filters.
- ♣ When filters other than low pass are needed, we design a low pass filter and then convert it to the one required. It is called spectral transformation.
- 4 This is done to simplify the design process.
- ♣ While designing digital IIR filters, we have two options, either to perform the spectral transformation in analog domain or to perform it in digital domain.

TRANSFORMATION IN ANALOG DOMAIN

Low pass to low pass:

To convert a low pass filter with pass band edge frequency ω_p to a low pass filter with pass band edge frequency ω_p , the transformation is:

$$s \to \frac{\omega_p}{\omega_p}$$
's

Low pass to high pass:

To convert a low pass filter with pass band edge frequency ω_p to a high pass filter with pass band edge frequency ω_p , the transformation is:

$$s \to \frac{\omega_p \omega_p}{s}$$

TRANSFORMATION IN ANALOG DOMAIN

Low pass to band pass:

To convert a low pass filter with pass band edge frequency ω_p to a low pass filter with pass band edge frequencies ω_{p1} , and ω_{p2} the transformation is:

$$s \to \omega_p \frac{s^2 + \omega_{p1} \omega_{p2}}{s(\omega_{p2} - \omega_{p1})}$$

Low pass to band stop:

$$s \to \omega_p \frac{s(\omega_{p2} - \omega_{p1})}{s^2 + \omega_{p1}\omega_{p2}}$$

TRANSFORMATION IN DIGITAL DOMAIN

Type of transformation	Transformation	Parameters
Lowpass	$z^{-1} \frac{z^{-1} - a}{1 - az^{-1}}$	$\omega_p' = \text{band edge frequency new filter}$ $a = \frac{\sin[(\omega_p - \omega_p')/2]}{\sin[(\omega_p + \omega_p')/2]}$
Highpass	$z^{-1} \longrightarrow -\frac{z^{-1} + a}{1 + az^{-1}}$	$\omega_p' = \text{band edge frequency new filter}$ $a = -\frac{\cos[(\omega_p + \omega_p')/2]}{\cos[(\omega_p - \omega_p')/2]}$

TRANSFORMATION IN DIGITAL DOMAIN

Bandpass

$$z^{-1} \longrightarrow -\frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$$
 $a_1 = 2\alpha K/(K+1)$
 $a_2 = (K-1)/(K+1)$
 $\cos[(\omega_x + \omega_y)/2]$

$$\omega_l = \text{lower band edge frequency}$$
 $\omega_u = \text{upper band edge frequency}$

$$a_1 = 2\alpha K/(K+1)$$

$$a_2 = (K-1)/(K+1)$$

$$\alpha = \frac{\cos[(\omega_u + \omega_l)/2]}{\cos[(\omega_u - \omega_l)/2]}$$

$$K = \cot \frac{\omega_u - \omega_l}{2} \tan \frac{\omega_p}{2}$$

Bandstop
$$z^{-1} \longrightarrow \frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-1} - a_1 z^{-1} + 1}$$

$$\omega_l$$
 = lower band edge frequency

$$\omega_u$$
 = upper band edge frequency

$$a_1 = 2\alpha/(K+1)$$

$$a_2 = (1 - K)/(1 + K)$$

$$\alpha = \frac{\cos[(\omega_u + \omega_l)/2]}{\cos[(\omega_u - \omega_l)/2]}$$

$$K = \tan \frac{\omega_{\mu} - \omega_{l}}{2} \tan \frac{\omega_{p}}{2}$$