

On the genesis of trails in Nature

Modeling and monitoring visitor flow MMV 3 September 13-15, 2006

Introduction and context

Monitoring recreation...

	Origin oriented	Destination oriented
Baseline structures	Urban type Urban greening	Nature type Facilities
Activities and behavior	Yearly frequency of visits	Year number of visitors
Effects and consequences	Physical activity Health	Trampling Litters

Agenda of the presentation

- Location of sites
- Experimental design
- Selected questions to answer:
 - Soil compression vs. simple dept measurement
 - How do different recreational activities create trails
 - How do different environments respond to trampling
 - How do resistance and resilience mutually influence in the process of trail genesis
- Concluding remarks

Method and experimental design

Skov & Landska

At each location three sets of tracks were established:

- Walking
- Running
- · Mountain biking

Each set included 5 tracks:

- 7 crossings
 - 14 crossings
- 28 crossings
- 56 crossings105 crossings

Trampling were repeated:

- Every 2 weeks
- 19 times from April to December 2005

Registration of effects

After each trampling the following parameters were recorded at a fixed point:

- Track depth
- Track visibility (five classes)
- Track width

A snapshot were taken at each track.

Once a month the soil dry density were measure in 10 and 30 cm depth (in triplicate).

After the trampling has stopped after the first year, registration continues every month.

How do different recreational activities create trails (II)?

105 crossing per campaign as the maximum impact

How do different recreational activities create trails (III)?

105 crossing per campaign as the maximum impact

Conclusion: Different activities has the same trampling effect

A 'Real world case': Mountain biking I Rude Skov

Measures were taken 20 cm apart across a mountain bike track

Annual load equals 10,000 bikers

Concluding remarks

- Trampling has an effect, but...
- Don't bother to measure dry density, but...
- Different activities has the same trampling effect, but...
- There is no clear indication of different effects on different environments, but...
- Recovery is faster on grassland, followed by clay land. The slowest recovery rate is on sand, but...

That's all...

Thank you for your attention