Estadística I Grado en Matemáticas, UAM, 2018-2019

Hoja 1 (Estadística descriptiva)

		EJERCICIOS COMPUTACIONALES
1. En la hoja de cálculo datos-hoja-ej1-13 y unas cuantas cuestiones de Estadística des utilices excel para darles respuesta.		
	RESÚMENES Y R	EPRESENTACIONES DE MUESTRAS

- 2. Determina razonadamente si las siguientes afirmaciones son verdaderas o falsas:
- a) Si añadimos 7 a todos los datos de una muestra, el primer cuartil aumenta en 7 unidades y el rango intercuartílico no cambia.
- b) Al restar 1 a cada dato de una muestra, la desviación típica siempre disminuye.
- c) Si cambiamos el signo de todos los datos de una muestra, el coeficiente de asimetría también cambia de signo.
- d) Al multiplicar por 3 todos los datos de una muestra, el coeficiente de asimetría no varía.
- e) Si a una muestra de datos con media \bar{x} se le añade un nuevo dato que coincide con \bar{x} , la media no cambia y la desviación típica disminuye.
- 3. a) Disponemos de una serie de datos (x_1, \ldots, x_{100}) , ya ordenados de menor a mayor, cuya media muestral es \bar{x} . Ahora formamos una nueva serie añadiendo a la anterior los valores x_1 y x_{100} . ¿Qué condición se debe cumplir para que la media muestral de la nueva muestra coincida con \bar{x} , la media muestral de la muestra original?
- b) Disponemos de una serie de datos emparejados $((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n))$. Los datos x_i tienen media \bar{x} y los datos y_i tienen media \bar{y} . Añadimos a la serie anterior un dato más, la pareja (\bar{x}, \bar{y}) . Determina si la covarianza de la nueva serie es mayor, menor o igual que la covarianza de la serie original.
- c) Tenemos una serie de datos $(x_1, x_2, ..., x_n)$, cuya media es a y cuya varianza muestral es b. Duplicamos ahora el tamaño de la serie añadiendo los opuestos (en signo) de los datos originales:

$$(x_1, x_2, \ldots, x_n, -x_1, -x_2, \ldots, -x_n)$$
.

Llamemos b' a la varianza muestral de la nueva serie de datos. ¿Quién es mayor, b ó b'?

4. Tenemos una muestra x_1, \ldots, x_n . Denotemos su media por M_n . Añadimos un dato x_{n+1} , y la nueva media es M_{n+1} . Comprueba que

$$M_{n+1} = \frac{n}{n+1} M_n + \frac{1}{n+1} x_{n+1}.$$

Interpreta el resultado.

5. La media de las variaciones mensuales del PIB de la Comunidad de Murcia de los nueve primeros meses del año ha sido del 0.1%. ¿Cuál debe ser la media de los últimos tres meses para que la media anual cumpla el objetivo del 0.2%?

6. Dada una muestra (x_1, \ldots, x_n) , comprueba que

$$n^2 V_x = (n-1) \sum_i x_i^2 - \sum_{i \neq j} x_i x_j$$
.

Deduce que la forma cuadrática dada por la matriz simétrica A con

$$a_{ij} = \begin{cases} n-1 & \text{si } i=j\\ -1 & \text{si } i \neq j \end{cases}$$

es (semi-)definida positiva (¿por qué no es definida positiva?).

7. Sea (x_1, \ldots, x_n) una muestra. Prueba que si para un cierto $\varepsilon \geq 0$ se tiene que $|x_i| \leq \varepsilon$ para todo $i = 1, \ldots, n$, entonces se cumple que $V_x \leq \varepsilon^2$.

CORRELACIONES, COVARIANZAS Y RECTA DE REGRESIÓN

8. En cada una de las siguientes muestras, se ha sustituido un número por z. Si es posible, calcula z de forma que el coeficiente de correlación valga 1. Si no es posible, explica la razón.

Datos A:
$$(1,1)$$
, $(2,3)$, $(2,3)$, $(4,z)$. Datos B: $(1,1)$, $(2,3)$, $(3,4)$, $(4,z)$.

9. Tenemos una muestra de datos emparejados $(x_1, y_1), \ldots, (x_n, y_n)$. Prueba que, si para un cierto $\varepsilon > 0$ (y para unos números reales a, b) se cumple que

$$|y_i - (ax_i + b)| \le \varepsilon$$
 para $1 \le i \le n$,

entonces

$$|\text{cov}_{x,y} - aV_x| \le \sqrt{V_x} \ \varepsilon.$$

10. Los datos de mortalidad infantil (muertes por mil partos) en un país durante los años 2008-2012 fueron (tomando 2010 como año 0):

X: año	-2	-1	0	1	2
Y: mortandad	14.5	13.8	12.7	11.9	11.4

- a) Ajusta a estos datos una ecuación de la forma $Y=ae^{bX}$, transformando primero a una regresión lineal.
 - b) Calcula el coeficiente de correlación de la regresión lineal y comenta la bondad del ajuste.
 - c) ¿Qué mortalidad infantil se espera para 2020 (año 10) si se da por bueno el ajuste anterior?
- 11. En la tabla se recogen medidas (bajo ciertas condiciones) del volumen de un determinado gas al someterlo a distintas presiones:

P presión	1	1.5	2	2.5	3
V volumen	1	0.76	0.62	0.52	0.46

- a) Ajusta a estos datos una ecuación de la forma $V=aP^b$, transformando primero a una regresión lineal.
- b) Calcula el coeficiente de correlación en el problema transformado y cuantifica la bondad del ajuste.
 - c) ¿Qué volumen corresponde a P = 3.5 si se da por bueno el ajuste anterior?

- 12. Como en el ejercicio 4, añadimos a una muestra x_1, \ldots, x_n un dato x_{n+1} . Escribe una expresión para la varianza V_{n+1} de la muestra ampliada en términos de las características de la muestra original.
- 13. Dada una muestra $(x_1, y_1), \ldots, (x_n, y_n)$ con $n \ge 2$, se pide obtener la recta $y = \hat{b}x$, que pasa por el origen (0,0), que da el menor error cuadrático medio de entre todas las rectas de ecuación y = bx. Da la fórmula de \hat{b} y la expresión del error cuadrático mínimo en términos de la muestra.
- **14.** Disponemos de una muestra $(x_1, y_1), \ldots, (x_n, y_n)$ con $n \ge 2$. Para el ajuste, vamos a considerar que los distintos puntos tienen importancia relativas distintas dadas por unos pesos π_1, \ldots, π_n , tales que $\pi_i > 0, 1 \le i \le n$ y $\sum_{i=1}^n \pi_i = 1$. Para una recta genérica de ecuación y = a + bx, se considera el error cuadrático ponderado:

$$\breve{E}(a,b) = \sum_{i=1}^{n} \pi_i (y_i - (a + bx_i))^2.$$

Halla la recta de ecuación $y = \breve{a} + \breve{b}x$ que da el menor error cuadrático ponderado.

15. Dada una muestra $(x_1, y_1), \ldots, (x_n, y_n)$ con $n \ge 3$, se pide obtener la parábola $y = \hat{a} + \hat{b}x + \hat{c}x^2$ que da el menor error cuadrático medio de entre todas las parábolas $y = a + bx + cx^2$. Esto es, obtener las fórmulas de \hat{a}, \hat{b} y \hat{c} y la expresión del menor error cuadrático en términos de la muestra. Generaliza al ajuste con polinomios de grado d, con $2 \le d \le n$.

(SUGERENCIA: escribe matricialmente el sistema lineal resultante y expresa la solución en términos de las matrices involucradas.)

16. Dada una muestra $(x_1, y_1), \ldots, (x_n, y_n)$ con $n \ge 2$, donde las x_i y las y_i ya están tipificadas, se trata de obtener la recta $y = \hat{a} + \hat{b}x$ que da el menor error cuadrático medio medido en la forma:

$$\widetilde{E}(a,b) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{dist}((x_i, y_i); y = a + bx)^2.$$

Aquí dist $((x_0, y_0); y = a + bx)$ denota la distancia euclídea del punto (x, y) a la recta de ecuación y = a + bx.

Verifica primero que $\hat{a} = 0$ y da una expresión de \hat{b} en términos de $\rho(x,y)$.