From Experience to Insight: Advancing Forest Management with Decision Science

DecisionES, Porto Seguro, Brazil – Pri Marc McDit Penn State Department of Ecosystem Science and Management

Outline

- Decision Science is more than just finding good solutions
- Example: the airline industry
- Optimizing forest management for an integrated forest products company
- Integer programming: exact solution methods vs. heuristic solution methods
- Managing forests for carbon sequestration
- Uncertainty: Forest management in a burning world
- Conclusion

Decision Science – Defining your Phyloghabout your management problem

- Clear, measurable objectives
 - What does "sustainability" mean for you?
- Identifying and quantifying constraints
 - Constraints vs. objectives
- Organizing your information
 - What's important, what's not
 - What's missing?

Decision Science and Modeling

- How you model your problem matters
 - Computational efficiency
 - Does your model accurately represent the key aspects of your real-world problem
 - •Time consistency (McQuillan (1986)¹)
 - Planning horizon
 - Ending conditions (da Silva et al. (2024)²)

- 1. McQuillan, A.G. 1986. The Declining Even Flow Effect—Non Sequitur of National Forest Planning. *For. Sci.* doi.org/10.1093/forestscience/32.4.960
- 2. da Silva B.K., F. Rezaei, S. Tanger, J. Henderson, E. McConnel, C. Sun. 2024. Terminal value: A crucial and yet often forgotten element in timber harvest scheduling and timberland valuation. *For. Poly. Econ.* doi.org/10.1016/j.forpol.2024.103188

Exponentially Increasing Increasing

- In many cases, we are now working with a complete census for our forest inventory
 - Especially in plantations
 - This is still a challenge in mixed-hardwood natural forests (but it's just a matter of time)
- Capture data in real-time
 - Smartphones, QR-Codes
 - GPS trackers, Barcodes and RFID

Example: Airline Industry

- Think about what they do...
 - Track aircraft, passengers, their bags, aircrews, ground crews, gates, fuel supplies, food suppliers, and a host of other things
 - Many legal rules to follow
 - Dealing with people (never predictable)
 - Not kill anyone

Example: Airline Industry

- The situation they face is constantly changing
 - Weather, maintenance issues, crew members who are sick, passengers who have to be re-routed
 - Having planes, crews, and other resources in the right place at the right time
 - They have to constantly adapt and respond as competently and effectively as possible
- •We are upset when they fail, but when you think about it, they are incredibly organized and efficient
- •And they have to be. They have people's lives literally in their hands.

Integrated Forest Products

GEOFFESTI and yparcels

- Area, location, inventory, site, management history, management restrictions
- Mills (demand centers)
 - Material requirements
- Harvesting and transportation
 - Road network, logging equipment and crews, logging trucks
- Nurseries
 - Quantity and type of planting stock (clones, seedlings) available when needed

Integrated Forest Products Geomyonment

- Legal & environmental constraints
- Changing markets
- New technologies
 - Remote sensing, new clones
- Managing people
 - Employees, contractors

Basic Forest Management Prophing what/where to harvest

- Satisfy mill requirements
- Plan harvesting and transportation logistics
- Satisfy environmental and legal constraints
- •Plan nursery operations to have the right seedlings available for the sites that will be harvested when they are harvested
- •For eucalyptus, choosing whether to coppice or replant (to take advantage of potentially faster growth with new clones)

Basic Forest Management PARAMEMAI issues

- •How to manage for carbon?
- How to adapt to and plan for a changing climate?
- •This is a large, complex problem, but arguably simpler than the airlines' management problems.

Basic Forest Management

Problembe formulated as a large mixed-integer linear programming model

- Many variables are 0-1, indicating you either do something at a given time, or you don't
- Potentially hundreds of thousands of variables

- Of course, these are hard to solve
- A lot of research has been done on this problem
 - Usually employing heuristic solution methods

Integer Programming: Exact Solution Methods vs. Heuristic Solution

Very large MIP models cannot, in general,
 be solved with exact methods

- •So, we *have* to use heuristics, right?
- •But are they mutually exclusive? Do we have to choose one or the other?

•Not at all!

How Exact Methods Work: Branch and Bound

- You solve a "relaxed" version of model
 - Ignore integer constraints > Gives you a linear programming problem that is "easy" to solve
 - This gives you a "dual bound" on the solution
- You start branching by "fixing" some non-integer variables as integers
 - When you "fix" a variable, the objective function value goes down
 - Eventually you get a feasible solution (all integer constraints satisfied), so you have a "primal bound"
- The difference between the primal bound and the dual bound is called the "optimality gap"

Integer Programming: Exact Solution Methods vs. Heuristic Solution

Month books with heuristic solutions is you don't know how good your solution is.

- •Embedding heuristics within a branch and bound algorithm gives you a metric for how good your best feasible solution is.
- Another advantage of exact methods is that you (sometimes) get shadow prices from the relaxed LP solutions.
- Again, the point of modeling is not just to obtain a good solution. It's about gaining insight.

The Value of Shadow Prices

- They provide insight about the problem
- Shadow prices can also be used in solving the problem
 - Solution methods based on estimating shadow prices have not been adequately explored in the forest management literature
 - Hoganson and Rose (1984)¹
 - Lagrangean decomposition
 - Column (variable) generation (and reduction)
 - 1. Hoganson, HM, and DW Rose. 1984. A simulation approach for optimal timber management scheduling. For. Sci. doi.org/10.1093/forestscience/30.1.220

Carbon

Modeling Carbon

- Carbon stocks (how much you have)
 - Use accounting constraints to calculate the carbon content of your forest at the beginning and/or end of each planning period
 - C_t = the carbon stock in period $t \in \{0, 1, ..., T\}$
- Carbon accumulation (net accumulation)
 - CA_t = the C accumulation in period $t \in \{1, ..., T\}$
 - $C_{HWP,t}$ = C in harvested wood products
 - $CA_t = C_t C_{t-1} + C_{HWP,t}$

Potential of Forests to Offset

Em

Tradeoff between CO2 Sequetration and Total Harvest

Modeling Carbon vs Carbon Credits

- Carbon stocks vs Carbon accumulation
 - Accounting for <u>carbon stocks</u> assumes that you get paid a "rental fee" for the carbon you store
 - Accounting for <u>carbon accumulation</u> assumes that you get paid for your net sequestration
- Neither approach actually works the way carbon offset markets work

Carbon - Additionality

- Additionality is the Achilles heel of carbon offset markets
 - And leakage, but let's focus on additionality
- "Additionality" means compared to what you would have done in the absence of the carbon contract
 - Additionality is impossible to measure
 - Very hard to prove the counterfactual

While counterfactuals can be useful for analysis and discussion, proving them in a definitive sense is not possible due to their speculative nature. (Al summary: proving the counterfactual.)

"Legitimate" credits here means they are truly permanent, additional, and not cancelled out by leakage.

Uncertainty

 Uncertainty is the truly big challenge in operations research

Four Fire Management Problems

- Pre-suppression
 - Designing landscapes to minimize expected loss from fire
 - Staging equipment and crews
- Suppression
 - Allocating resources to multiple fires
 - Optimizing the suppression of an existing fire

Designing Landscapes to Minimize Expected Net Loss from

Fifs understand and model how fire starts and spreads on the landscape

- Generate a map of the probability of burning
 - Boundary issues
 - The probability of a given cell burning depends on the probability of adjacent cells burning
 - This is what makes this a particularly intractable problem
- Multiply the probability of burning map with the cell value map to get the expected loss from fire
- Apply treatments to the landscape and re-compute the probability of burning map and the expected loss from fire

Designing Landscapes to Minimize Expected Net Loss from

depends on what happens in period 1.

- You can assume nothing burns, but if anything burns, then that changes everything.
- Keys to finding better solutions:
 - Find more computationally tractable ways to estimate the burn probability map.
 - Find better ways to select treatment scenarios to evaluate.

Conclusions

- Decision science is about more than obtaining good solutions – it's about insight
- There is still a lot of room for improvement in forest management modeling
 - What can we learn from other industries?
 - Don't forget about exact solution methods
 - Probably not possible for landscape design with fire
- Carbon is important, and forests can contribute
 - But make sure you make a net positive contribution
- Uncertainty is a major challenge
 - No analog to fire management (?)

Dr. Marc McDill
Penn State Department of
Ecosystem Science and
Management
mmcdill@psu.edu

Muito Obrigado!

Basic Forest Management Problem?

- Learn from other industries
- Work with universities
- Multi-dimensional, interdisciplinary problem
 - Data management specialists
 - Biometricians/remote sensing/forest inventory specialists
 - Management science/decision science/operations research specialists
 - Forest economists

How Exact Methods Work: Branch and Bound

- The rest of the algorithm works on narrowing the optimality gap by either lowering the dual bound or increasing the primal bound
 - You have completely solved the problem when the gap = 0
- Good heuristic methods increase the primal bound by finding better feasible solutions
- Smart "branching" strategies lower the dual bound by fixing mutually-exclusive sets of variables, with one option on one branch and the alternative on the other
- "Cuts" are constraints that can be added to the model to tighten the "relaxed" model

Potential of Forests to Offset

Evilability for earbon could offset up to 12% of annual 2020 US GHG emissions. 1,2

- Mostly reforestation (5.9%) and improved natural forest management (5.1%)
- Also avoided conversion (0.7%) and improved plantations (0.2%)
- •Falls to 10% at \$100/ton CO₂e and 2% at \$10/ton CO₂e
- 1. Fargione et al. 2018. Natural climate solutions for the United States. Sci. Adv. 2018; 4:eaat1869
- 2. US EPA. 2022. Inventory of U.S. Greenhouse Gas Emissions and Sinks (5,222 /ton CO₂e)

Carbon Offsets in Regulatory Markets

CA, RGGI(CT, DE, ME, ME, MD, MA, NH, NJ, NY, RI, VT, VA),

Key point is that offsets purchased by Entity 1 allow the entity to emit more GHG than their regulatory limit.

Exponentially Increasing Increasing

- •In many cases, we are now working with a complete census for our forest inventory
 - Especially in plantations
 - This is still a challenge in mixed-hardwood natural forests (but it's just a matter of time)

Example: Airline Industry

- Modern airlines must have sophisticated data management systems and use sophisticated models to keep everything running as smoothly as possible.
- Is the forest products industry as efficient as the airline industry?
- •If not, what can we learn from them?