PRÁCTICA 1: Cardinalidad

- 1. Mediante el uso de biyecciones apropiadas, demuestre cada uno de los siguientes ítems:
 - (a) $P = \{x \in \mathbb{N} \mid x \mod 2 = 0\}$ es equipotente a \mathbb{N} .
 - (b) \mathbb{Z} es equipotente a \mathbb{N} .
 - (c) $A = \{1, 2, 3\}$ no es equipotente a $B = \{7\}$.
 - (d) todos los intervalos reales cerrados y acotados son equipotentes entre sí.
 - (e) $(-\infty, \infty)$ es equipotente a (0, 1) y a $(0, \infty)$.
- 2. Sean A, B, C conjuntos cualesquiera. Mostrar que:
 - (a) si $A \subseteq B$ entonces $card(A) \le card(B)$.
 - (b) $card(A B) \leq card(A)$.
 - (c) Si $A \subseteq B$, y A es infinito, entonces B es infinito.
 - (d) Si $A \subseteq B$ y B es numerable, entonces A es numerable.
 - (e) $card(A) = card(A \times \{b\})$ para cualquier b.
 - (f) $card(A \times B \times C) = card(A \times (B \times C))$.
 - (g) $card(A \times B) = card(B \times A)$.
 - (h) si $card(B) \le card(C)$ entonces $card(A \times B) \le card(A \times C)$.
 - (i) si card(A) = n entonces $card(\mathcal{P}(A)) = 2^n$.
- 3. Demuestre las siguientes propiedades:
 - (a) la relación \sim es una relación de equivalencia.
 - (b) la relación \leq es una relación de orden.
- 4. Mostrar que si $A \sim B$ y $C \sim D$ entonces $A \times C \sim B \times D$. ¿Vale la afirmación recíproca?
- 5. Demuestre que si $A \preceq B$ y $C \preceq D$, y además $B \cap D = \emptyset$, entonces $A \cup C \preceq B \cup D$.
- 6. Demuestre que [0,1] es equipotente a [0,1).

- 7. Mostrar que los siguientes conjuntos son infinito numerables:
 - (a) $A = \left\{ \frac{\sqrt[m]{m}}{n^n} \mid m, n \in \mathbb{N} \right\}.$
 - (b) $B = \{\text{sucesiones de la forma } \langle s_0, s_0 + r, s_0 + 2r, \dots, s_0 + nr, \dots \rangle \mid s_0, r \in \mathbb{Z} \}.$
 - (c) $C = \{[a, b] \mid a, b \in \mathbb{Z}, b > a\}.$
- 8. Sea P_i el conjunto de todos los polinomios a coeficientes enteros de grado $i \in \mathbb{N}_0$. (Considere al polinomio nulo como un polinomio de grado 0).
 - (a) Describa por comprensión los conjuntos P_0 , P_3 y P_n .
 - (b) Describa al conjunto P de todos los polinomios a coeficientes enteros de grado natural en términos de los conjuntos P_i .
 - (c) Defina una función $f: P_i \to \mathbb{Z}^{i+1}$ inyectiva (demuéstrelo).
 - (d) Valiéndose de todo lo anterior y de las propiedades de las relaciones \preceq y \sim , demuestre que P es numerable.
- 9. Un número $r \in \mathbb{C}$ se dice algebraico sii es la solución de una ecuación polinómica a coeficientes enteros, es decir sii $a_0 + a_1 r + a_2 r^2 + \ldots + a_n r^n = 0$ para algún $n \in \mathbb{N}$, $a_i \in \mathbb{Z}$ para $i = 0, 1, \ldots, n$ y $a_n \neq 0$. Probar que:
 - (a) todo número racional es algebraico.
 - (b) ¿Qué se puede concluir del ítem anterior con respecto a la cardinalidad del conjunto de los números algebraicos?
 - (c) $\sqrt{2}$ es algebraico
 - (d) i es algebraico.
 - (e) el conjunto de los números algebraicos es numerable.
- 10. Los números que no son algebraicos se denominan trascendentes.
 - (a) Teniendo como hipótesis que $\mathbb C$ no es numerable, probar que existen números trascendentes.
 - (b) Probar que los números trascendentes no son numerables.

Sugerencia: en ambos casos razonar por el absurdo y considerar a los números complejos como la unión de algebraicos y trascendentes.

11. Se sabe que $\aleph_0 < c$, donde $\aleph_0 = card(\mathbb{N})$ y $c = card(\mathbb{R})$. Pero... ¿existe un cardinal α tal que $\aleph_0 < \alpha < c$? Cantor, al no poder dar una respuesta a esta pregunta, conjetura la validez de la llamada hipótesis del continuo. Esta expresa que:

no existe un cardinal α tal que $\aleph_0 < \alpha < c$.

A partir de esto, al cardinal c se lo suele llamar también \aleph_1 . Utilizando esta hipótesis, se pide demostrar el siguiente teorema:

$$card(A) = \aleph_0, \ card(B \cup A) = \aleph_1 \implies card(B) = \aleph_1$$

- 12. Sea Σ un conjunto finito de símbolos. Σ^* denota el conjunto de todas las cadenas (secuencias finitas y ordenadas de símbolos) sobre el alfabeto Σ .
 - (a) ¿Cuántas cadenas se pueden construir sobre el alfabeto Σ ?
 - (b) Teniendo en cuenta que un lenguaje sobre Σ es un subconjunto de Σ^* , ¿cuántos lenguajes existen sobre el alfabeto Σ ?
- 13. (a) Muestre que la cardinalidad de $\mathcal{P}(X)$ es igual a la cardinalidad del conjunto de todas las funciones de X en $\{0,1\}$.
 - (b) Pruebe que $card(\{f \mid f : \mathbb{N} \to \{0,1\}\}) \leq card(\{f \mid f : \mathbb{N} \to \mathbb{N}\}).$
 - (c) Concluya que $\aleph_0 < \mathcal{P}(\mathbb{N}) \leq card(\{f \mid f : \mathbb{N} \to \mathbb{N}\}).$
 - (d) Todo programa de computadora puede ser considerado como una cadena sobre el alfabeto presente en el sistema. Por lo tanto, ¿cuántos programas se pueden escribir en una máquina?
 - (e) ¿Qué conclusiones se pueden sacar a partir de los últimos dos ítems?