Multiple Linear Regression

▼ Multiple Features (variables)

- The original linear regression model uses a single feature (e.g., size of a house) to predict an outcome (e.g., price).
- By adding more features (e.g., number of bedrooms, floors, and age of the house), the model can make more accurate predictions

Notation:

	Size in feet²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's	j=14
	X ₁	X ₂	Хз	Хų		n=4
	2104	5	1	45	460	-
i=2	1416	3	2	40	232	
	1534	3	2	30	315	
	852	2	1	36	178	

 $x_j = j^{th}$ feature

n = number of features

 $ec{x}^{(i)} =$ features of i^{th} training example

 $x_i^{(i)} = \text{value of feature } j \text{ in } i^{th} \text{ training example}$

Examples:

$$\overline{ec{x}^{(2)}} = [1416 \quad 3 \quad 2 \quad 40]$$

$$x_3^{(2)} = 2$$

Model

Previous single variable model

Updated multivariable model $f_{w,b}(x) = w_1x_1 + \ldots + w_nx_n + b$

$$f_{w,b}(x)=wx+b$$

example
$$f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + -2 x_4 + 80$$
size # bedrooms #floors years price

The model can be simplified using vectors of parameters and features:

$$ec{w} = [w_1 \quad w_2 \quad w_3 \quad \dots \quad w_n \ ec{x} = [x_1 \quad x_2 \quad x_3 \quad \dots \quad x_n]$$

b, however, is included in the complete model, which is described below.

Multiple Linear Regression

$$f_{\vec{w}.b}(\vec{x}) = \vec{w} \cdot \vec{x} + b = w_1 x_1 + w_2 x_2 + \ldots + w_n x_n + b$$

multiple linear regression (not multivariate function)

NOTE: "·" is dot product.

▼ Vectorization

- Vectorization simplifies code by allowing operations on entire arrays or vectors at once, rather than using loops.
- It enhances performance by leveraging modern numerical libraries like NumPy, which can utilize parallel processing capabilities of CPUs and GPUs.

Notice that the linear algebra is 1-based indexing, while the Python code is 0-based indexing.

Vector

Python code

Parameters and features

$$ec{w} = [w_1 \quad w_2 \quad w_3] \ ec{x} = [x_1 \quad x_2 \quad x_3] \ b = 4$$

with
$$w_1=1.0,\;w_2=2.5,\;w_3=-3.3$$
 and $x_1=10,\;x_2=20,\;x_3=30$ and b is a number.

Without vectorization

$$f_{ec{w},b}(ec{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

```
f = w[0] * x[0] +
w[1] * x[1] +
w[2] * x[2] + b
```

$$f_{ec{w},b}(ec{x}) = \left(\sum_{j=1}^n w_j x_j
ight) + b$$

Vectorization

$$f_{ec{w},b}(ec{x}) = ec{w} \cdot ec{x} + b$$

$$f = np.dot(w, x) + b$$

▼ Gradient Descent for Multiple Linear Regression

The cost function J is now a function of the vector w and the scalar b.

Pre-derived gradient descent algorithm

repeat until convergence:

$$w=w-lpharac{\partial}{\partial w}J(w,b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

Final gradient descent algorithm

$$w_{j} = w_{j} - lpha rac{1}{m} \sum_{i=1}^{m} (f_{ec{w},b}(ec{x}^{i}) - y^{i}) x_{j}{}^{(i)}$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^i) - y^i)$$

simultaneously update

$$w_j$$
 (for $j=1,\ldots,n$) and b

Normal Equation Method

An alternative to gradient descent

- Normal Equation:
 - o Only for Linear Regression.
 - \circ Solves for w and b without iterations.

 $\theta = \left(X^T X\right)^{-1} \cdot \left(X^T y\right)$

source: GeeksForGeeks 30/05/2025

- Disadvantage:
 - Doesn't generalize to other learning algorithms.
 - Slow when the number of features is large (> 10,000)
- An advanced linear algebra library is required, so engineers hardly utilize the normal equation directly.
- It is usually used on the backend of machine learning libraries that implement linear regression.
- · For most learning algorithms, gradient descent is often the better way to get the job done

Multiple Linear Regression 3

Multiple Linear Regression 4