Dynamic Pricing on Online Marketplaces: Strategies and Applications

Introduction

Dr. Rainer Schlosser

Hasso Plattner Institute (EPIC)

April 12, 2016

HPI

Outline

- Motivation: What is Dynamic Pricing?
- Goals of the Course & Grading
- Introduction: Lecturer & Students
- Structure of the Course
- Preview
- Potential Projects
- What will be expected from you?

Motivation

- Markets are more transparent, customers compare prices.
 Competitors' prices can be observed, prices can be easily adjusted.
 Market data (offer prices, sales) can be stored and analyzed.
- There are new opportunities to gain profit
 or: firms are force to keep track with new developments
- But: even with tons of data and the ability to adjust prices frequently, it is not clear how to set prices!

Motivation: Selling Books on Amazon

Motivation: Price Responses in a Duopoly

	profnath	bordeebook	profnath over previous bordeebook	bordeebook over profnath
8-Apr	\$1,730,045.91	\$2,198,177.95		1.27059
9-Apr	\$2,194,443.04	\$2,788,233.00	0.99830	1.27059
10-Apr	\$2,783,493.00	\$3,536,675.57	0.99830	1.27059
11-Apr	\$3,530,663.65	\$4,486,021.69	0.99830	1.27059
12-Apr	\$4,478,395.76	\$5,690,199.43	0.99830	1.27059
13-Apr	\$5,680,526.66	\$7,217,612.38	0.99830	1.27059

Motivation: Price Responses in a Duopoly

Technical Information

• Credits: 2 SWS, 3 ECTS (graded)

• When? Tuesday 13.30 - 15.00, weekly

Start: 12.04.2016, End: 12.07.2016

• Where? D-E 9/10

• Who? Rainer Schlosser, <u>rainer.schlosser@hpi.de</u>

• Office hours? By arrangement, Room V-2.05

• Slides? HPI, Teaching, Summer 2016 (no key)

Goals of the Course & Grading

• Goal: Build Dynamic Pricing Prototypes

for Competitive Online Markets

• Learn: Demand Estimation + Optimization + Simulation

• Do: Apply Approaches, Visualize Results

• Grading: 10% Regular Attendance / Personal Engagement

30% Presentations (Midterm + Final)

30% Project Results (Demo)

30% Project Documentation (End of Semester)

Example: Dynamic Pricing Strategies under Competition

Prerequisites

Basic Mathematical Background

Sets, Vectors Probabilities, Random Variables, Expected Values

More does not harm

Regression Analysis Nonlinear Systems of Equations Game Theory

Programming Ideas

Parameters, Tables Loops, Recursions

Introduction: Lecturer & Students

Lecturer: Background / Education

Interests / Field of Research

Expectations

• Students: Background / Education?

Interests / Field of Research?

Expectations?

Content of the Course

- Use market data to estimate Demand, i.e.,
 we will use Regression Analyses to forecast Sales Probabilities.
- We learn how to compute optimized prices in dynamic settings.
 We will apply dynamic optimization techniques.
- We will evaluate the outcome of our Dynamic Pricing Strategies, i.e., we will use Simulation Studies to Measure the Performance of Strategies.
- We want to build a Dynamic Pricing Demo, i.e., we visualize the application of our Strategies.

Structure of the Course

• 3 Meetings: Lectures on "Dynamic Pricing":

(i) Demand Estimation

(ii) Price Optimization Techniques

(iii) Approaches for Specific Scenarios (Projects)

May: Assignment of Projects and Teams (ca. 4 Students)

• May/June: Weekly Meetings, Input, Questions/Answers

• June/July: Presentations (Midterm + Final)

• Aug/Sep: Documentation of Projects Results

Preview I: Demand Estimation

- Study the dependence of competitors' prices, our offer prices and number of observed sales
- Analyze the likelihood of sales for different market conditions (competitor's prices)
- Use, e.g., Least Squares, Logistic Regression
- Define suitable explanatory variables
- Estimate sales probabilities for various offer prices and market conditions
- Use real-life data from the Amazon Market Place

Example: Market Data

period	sale	price	rank	competitors' prices for a product i				
t	$\mathcal{Y}_t^{(i)}$	$a_t^{(i)}$	$r_t^{(i)}$	$p_{t,1}^{(i)}$	$p_{t,2}^{(i)}$	$p_{t,3}^{(i)}$	$p_{t,4}^{(i)}$	
1	0	19	3	13	17	20	25	
2	0	15	2	13	17	20	25	
3	1	10	1	13	15	20	/	
4	0	10	1	13	15	20	22	
5	1	12	2	11	15	20	24	
6	0	14	2	11	15	20	24	

Example: Estimation of Sales Probabilities

Preview II: Optimization Techniques

- What do we want to maximize?
- What is the set of possible price actions?
- Use estimated sales probabilities
- Compute optimized prices that maximize long-term profits
- Learn about Dynamic Programming Techniques
- Understand the Bellman Equation
- Apply backward induction

Preview III: Simulations

- Assume probabilities for sales under competition
- Use random numbers to simulate sales events
- Adjust competitors' prices
- Adjust offer prices according to different dynamic pricing strategies
- Simulate revenues over time, approximate expected revenues
- Compare different strategies
- Visualize (controlled) sales processes over time

Example: Simulation of Sales Revenue over Time

accumulated revenue

Potential Projects

Projects may study the following scenarios in detail

A Response Strategies (Price Anticipation, Duopoly)

B Multiple Features (Price, Customer Ratings, Product Condition)

C Multiple Products (Substitution Effects, 2 Products)

D Finite Horizon (Perishable Products, Time Dependence)

• Common Elements for all Teams:

Demand Estimation + Optimization + Simulation + Visualization

What will be expected from you?

- Use Regression Analyses to Estimate Demand / Sales Probabilities
- Implement Optimization Algorithms to Compute Optimized Prices
- Simulate the Outcome of Dynamic Pricing Strategies
 Measure the Performance of Strategies
- Document your Results (Documentation)
 Visualize the Application of your Prototype (Demo)

Overview

HPI

- 2 April 19 Demand Estimation
- 3 April 26 Optimization Techniques
- 4 May 3 Extensions / Projects A-D
- 5 May 10 Assign Projects to Teams
- 6 May 17 no Seminar
- 7 May 24 Workshop / Group Meetings
- 8 May 31 Workshop / Group Meetings
- 9 June 7 Presentations (First Results)
- 10 June 14 Workshop / Group Meetings
- 11 June 21 Workshop / Group Meetings
- 12 June 28 Workshop / Group Meetings
- 13 July 5 no Seminar
- 14 July 12 Presentations (Final Results), Discussions, Feedback, Extensions