Combinatorial path planning

2. Polygonal robot among obstacles in 2D

csci3250: Computational Geometry
Laura Toma
Bowdoin College

Path planning in 2D

point robot moving among arbitrary polygons in 2D

today

polygonal robot moving among arbitrary polygons in 2D

translation only

translation+rotation

3 dof

screenshot from internet

Physical space vs Degrees of freedom

- Physical space: Space where robot moves around
 - e.g. we are in 2D
- Degrees of freedom: How many independent ways can the robot move?
 - translation X and Y => 2 dof
 - translation+ rotation => 3 dof

Placement

- A placement of a robot is a set of coordinates that specify where the robot is in space. One coordinate per degree of freedom (dof)
 - translation only: a placement of the robot is specified by (x, y)
 - translation+ rotation: a placement of the robot is specified by (x, y, θ)

Configuration space (C-space)

- The parametric space of the robot = space of all possible placements of the robot
- A point in C-space corresponds to placement of the robot in physical space

translation only

R(6,4,45)

4

R(0,0,0)

reference point

translation + rotation

C-space = all placements (x, y)

C-space = all placements (x, y, θ)

Physical Space and C-space

physical space	robot	C-space
2D	polygon, translation only $R(x, y)$	2D
2D	polygon, translation + rotation $R(x, y, \theta)$	3D
3D	polygon, translation + rotation $R(x,y,z,\theta_{x},\theta_{y},\theta_{z})$	6D
3D	robot with arms and joints	many dof

Path planning in C-space

- The robot moves in physical space. Any path for robot in physical space corresponds to a set of placements in C-space ==> a path in C-space
- Path in physical space <==> path in C-space

Path planning is done in C-space because it captures the dof of the robot

Free and forbidden points in C-space

A configuration (x,y, ...) in C-space is free
if placing R(x,y, ...) does not intersect any
obstacle, and forbidden otherwise

• In general if we have a k-dimensional C-space: a configuration $(x_1, x_2, \dots x_k)$ is **free** if placing $R(x_1, x_2, \dots, x_k)$ does not intersect any obstacle, and **forbidden** otherwise

Physical Obstacles ==> "Extended" C-obstacles

Not every placement R(x, y) "outside" the obstacle is free of collisions.

Extended obstacle in C-space:

the set of placements (x,y) so that R(x,y) intersects that obstacle

- Given obstacle O and robot R
 - C-obstacle = the placements of R that cause intersection with O

- Given obstacle O and robot R
 - C-obstacle = the placements of R that cause intersection with O

- Given obstacle O and robot R
 - C-obstacle = the placements of R that cause intersection with O

- Given obstacle O and robot R
 - C-obstacle = the placements of R that cause intersection with O

Class work

- Draw a small set of obstacles such that their C-obstacles overlap.
- Draw a scene of obstacles such that free physical space is not disconnected, but the free C-space is disconnected.

Class work

Find the corresponding C-obstacles

Class work

Find the corresponding C-obstacles

Polygonal robot translating in 2D

We want a collision free path for the robot from start to end

Any placement R(x, y) along the path is in free C-space and thus outside the C-obstacles

Polygonal robot translating in 2D

polygonal robot R among obstacles point robot among C-obstacles

Polygonal robot translating in 2D

Algorithm (list of obstacles, robot R)

- For each obstacle O, compute the corresponding Cobstacle
- Compute the union of C-obstacles, then compute its complement. That's the free C-space

//planning for R reduces to planning for point-robot moving in free C-space

- Compute a roadmap of free C-space
 - a trapezoidal decomposition graph + BFS
 - or, a visibility graph + Dijkstra

How to compute C-obstacles?

Minkowski sum

• Let A, B two sets of points in the plane

• Interpretation: consider set A to be centered at the origin. Then $B \oplus A$ represents many copies of A, translated by y, for all $y \in B$; i.e. place a copy of A centered at each point of B.

Minkowski sum

- What is the boundary of $B \oplus A$?
 - Slide A so that the center of A traces the boundary of B

C-obstacles as Minkowski sums

Consider a robot R with the reference in the lower left corner

R translated by x

 $B \oplus R$ is not quite the C-obstacle of B

C-obstacles as Minkowski sums

-R: R reflected by origin

The C-obstacle of B is $B \oplus -R(0,0)$

extended obstacle

$$O \oplus -R(0,0)$$

extended obstacle

 $O \oplus -R(0,0)$

 $O \oplus -R(0,0)$

Slide so that R touches the obstacle

C-obstacle corresponding to O

Slide so that R touches the obstacle

Slide so that centerpoint of -R traces the edges of obstacle

C-obstacle corresponding to O

Slide so that R touches the obstacle

Slide so that centerpoint of -R traces the edges of obstacle

Find $O \oplus -R$

C-obstacle corresponding to O

C-obstacle corresponding to O

Same!

Recap

- We want to compute extended obstacles
- We expressed extended obstacles as Minkowski sum
- How do we compute Minkowski sums?

Convex robot with convex polygon

To compute: Place -R at all vertices of O and compute convex hull

Convex robot with convex polygon

• Even better, it is possible to compute in O(m+n) time by walking along the boundaries of R and O

- Each edge in R, O will cause an edge in $O \oplus -R$
- · $O \oplus -R$ has O(m+n) edges

parallel edges will cause same edge

Computing extended obstacles: What's known

2D

- convex + convex polygons
 - The Minkowski sum of two convex polygons with n, and m edges respectively, is a convex polygon with n+m edges and can be computed in O(m+n) time.
- convex + non-convex polygons
 - Triangulate and compute Minkowski sums for each pair [convex polygon, triangle], and take their union
 - Size of Minkowski sum: O(m+3) for each triangle => $O(m \cdot n)$
- non-convex + non-convex polygons
 - Size of Minkowski sum: $O(n^2 \cdot m^2)$

3D

• it gets worse . . .

So far we've considered only translation

Next: Translation + Rotation

Polygonal robot in 2D with rotations

- Physical space is 2D
- A placement is specifies by 3 parameters: $R(x, y, \theta) = > C$ -space is 3D.

What about Rotating Robots?

 Rotation may be necessary to complete the task

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 13

Polygonal robot in 2D with rotations

A C-obstacle is a 3D shape, with curved boundaries

• Imagine moving a vertical plane through C-space. Each position of the plane will correspond to a fixed θ .

• Each cross-section of a C-obstacle is a Minkowski sum $O \oplus -R(0,0,\theta)$

=> twisted pillar

configuration space

Polygonal robot in 2D with rotations

What's known:

- · C-space is 3D
- Boundary of free space is curved, not polygonal.
- Combinatorial complexity of free space is $O(n^2)$ for convex, $O(n^3)$ for non-convex robot

• Planner:

- 2. Compute a decomposition of free space into simple cells
- 3. Construct a roadmap
- 4. BFS on roadmap

Difficult to construct a good cell decomposition for curved 3D space

An idea to approximate this

One possible approximate 3d roadmap

- · Discretize rotation angle and compute a finite number of slices, one for each angle
- For a fixed angle: you got translational motion planning
 - Construct a trapezoidal decomposition for each slice and its roadmap
- Link them into a 3D roadmap: Add "vertical" edges between slices to allow robot to move up/down between slices; these correspond to rotational moves.
- Example: Consider two consecutive angles a and b. If placement (x,y) is in free space in slice a, and (x,y) is in free space in slice b, then the 3D roadmap should contain a vertical edge between slice a and b at that position
- Is this complete?
 - No, it's an approximation.

Combinatorial/geometric path planning: Summary

- Compute the free C-space geometrically (= exactly)
- A geometric planner
 - Compute extended obstacles and free C-space
 - Compute roadmap of free C-space: trapezoidal decomposition or visibility graph
- · Comments
 - Complete
 - Works beautifully in 2D and for some cases in 3D
 - Worst-case bound for combinatorial complexity of C-objects in 3D is high
 - Unfeasible/intractable for high #dif
 - A complete planner in 3D runs in $O(2^{n^{\#dof}})$