Cassandra

Trelligenter

Adversarial Attacks in Artificial Intelligence And Solutions

Slides Preparation: Mohammad Amin Dadgar

Table Of Contents

Adversarial Attacks & Defense

- Adversarial Attacks
 - Using adversarial examples fool the model
 - Adversarial examples
 - Add imperceptible noise to the original data
 - In order to change the model output
 - First introduced for Computer Vision applications
 - Then extended for video and speech applications
- Adversarial Defense
 - Propose a strategy to Defend the attacks

Adversarial Attacks

Adversarial Attacks - Categorization

- Adversarial examples are assumed to be produced by
 - $\circ \quad x_{adversarial} = x_{original} + \delta$
 - With a distance constraint to enforce imperceptibility
 - $D(x_{original}, x_{adversarial}) < \epsilon$
- Categorization based on the information of the model
 - White-box attacks
 - Black-box attacks
 - Gray-box attacks

Dataset And boundaries

Task decision boundary

Training points for class 1

Training points for class 2

Training phase

Task decision boundary

Training points for class 2

Ref: https://github.com/osm3000/adversarial_attack_experimModel decision boundary

7/22

- Testing phase
 - Test Accuracy is 100%

Task decision boundary

– – Model decision boundary
 Testing points for class 1

Training points for class 1

Training points for class 2

Adversarial examples

Task decision boundary

Model decision boundary

Carry Training points for class 1

Training points for class 2

* Adversarial examples for class 1

Adversarial Attacks - Methods

- Based on input gradients
 - Fast Gradient Sign Method (FGSM)
 - Adds ϵ or $-\epsilon$ to the data points based on sign of the input gradient
 - Specifically $x_{adversarial} = x_{original} + \epsilon sign(\nabla_x L(g(x), y_{original}))$
 - Basic Iterative Method (BIM a.k.a. Iterative FGSM)
 - Generate Iteratively with smaller steps than FGSM
 - o Projected Gradient Descent (PGD)
 - Iterative as BIM
 - Considers all norm distances (1, 2, ..., ∞ norms)
 - lacksquare Randomly starts from an adversarial point in ϵ ball
 - Instead of starting from the original x

Adversarial Attacks - Methods

- Universal attacks ¹
 - Find One universal perturbation in which it can change the most data predictions

Adversarial Defense

Adversarial Defenses - Categorization

- There are two strategy ¹
 - o Proactive defenses
 - Re-train the model with adversarial examples
 - Reactive defenses
 - Adds a block to the network
 - Reject the adversarial samples
 - Reconstruct the adversarial samples

Output feedback Adversarial attack Operation Input query Ostrich

Reactive Defense 2

² How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective, Yimeng Zhang, 2022 ICLR Spotlight

13/22

¹ Study of Pre-Processing Defenses Against Adversarial Attacks on State-of-the-Art Speaker Recognition Systems, Sonal Joshi, 2021 IEEE transactions on information forensics and security

Adversarial Defenses – Methods

- Adversarial Training
 - Proactive Defense
- GAN networks
 - Proactive
 - Re-train the model using the produced sample
 - Reactive
 - Gives the nearest produced sample to the original input
- VAE Defense
 - Both Proactive and Reactive

Experiments

Experiments

- VoxCeleb2 dataset
 - o 6114 speakers
 - Training data was augmented 6 times
 - With MUSAN corpus noise dataset
 - Impulse responses from the RIR dataset
- Networks
 - ResNet34
 - EfficientNet-b0/b4
 - Transformer-Encoder
 - ThinResNet34
 - The fusion of above

Experiments – Undefended Baselines

TABLE I

IDENTIFICATION ACCURACY (%) FOR SEVERAL UNDEFENDED X-VECTOR ARCHITECTURES UNDER ADVERSARIAL ATTACKS

Architecture	Clean	FGSM Attack						BIM	Universal	CW			
L_{∞}		0.0001	0.001	0.01	0.1	0.2	0.0001	0.001	0.01	0.1	0.2	0.3	-
1. ResNet34	100.0	99.1	95.8	95.6	93.3	87.2	92.2	14.8	0.0	0.0	0.0	100.0	1.3
EfficientNet-b0	100.0	99.2	95.6	93.0	93.6	88.1	96.9	27.7	0.0	0.0	0.0	100.0	0.8
EfficientNet-b4	100.0	99.5	95.8	92.3	93.1	88.8	98.1	30.5	0.0	0.0	0.0	100.0	0.0
Transformer	99.5	96.3	80.6	76.4	49.5	32.1	81.9	20.3	0.2	0.0	0.0	99.9	1.9
ThinResNet34	100.0	98.0	91.1	89.2	85.6	74.5	88.0	2.2	0.0	0.0	0.0	100.0	1.1
Fusion 2+4+5	100.0	99.8	97.5	97.0	88.4	78.0	98.9	66.4	16.1	0.0	0.2	100.0	49.1

¹ Study of Pre-Processing Defenses Against Adversarial Attacks on State-of-the-Art Speaker Recognition Systems, Sonal Joshi, 2021 IEEE transactions on information forensics and security

Experiments - Attacks

- Adversarial Robustness Toolkit From IBM
 - o Trusted-Al GitHub account
- FGSM, BIM (I-FGSM)
 - \circ L_{∞}
 - o norms ϵ between 0.0001 and 0.2
- BIM (I-FGSM)
 - $\alpha = \epsilon/5$, with iterations 7, 50, 100
- PGD
 - Learning rate $\alpha = \epsilon/5$, 10 random restarts, with iterations 50 and 100
- CW-L2
 - Confidence $\kappa = 0$ and learning rate 0.001,
 - o 10 iterations inner loop and maximum 10 iterations outer loop
- Universal Perturbation
 - Transfer black-box attacks from a SincNet Model

Experiments – Defense Strategies

TABLE VII

Summary of Identification Accuracy (%) of All Defenses With Their Best Setting. Note: Smoothing $\sigma=0.2$, PGD/FGSM AdvTr $\varepsilon=\mathcal{U}(0,0.01)$, PWG Models Is Trained on Voxceleb. For Adaptive Attacks, PWG/VAE Defenses Are Either Approximated (BPDA) or End-to-End Differentiable (E2ED)

Defense	Clean	FGSM Attack						BIN	Universal	CW			
L_{∞}	-	0.0001	0.001	0.01	0.1	0.2	0.0001	0.001	0.01	0.1	0.2	0.3	-
No defense	100.0	96.9	90.0	92.3	93.4	91.1	83.4	2.3	0.0	0.0	0.0	100.0	1.4
PGD AdvTr	75.5	76.4	75.3	59.8	25.0	18.1	75.8	72.7	39.4	8.9	8.4	87.9	30.3
FGSM AdvTr	89.1	89.2	88.3	89.5	63.6	49.8	89.1	77.0	24.5	7.2	7.0	95.9	32.3
Smoothing	98.0	98.3	98.4	97.0	64.4	44.1	97.2	97.8	97.7	18.9	2.0	98.7	96.9
DefenseGAN	96.3	91.6	84.2	81.9	49.4	23.3	85.0	23.6	2.8	1.4	1.6	96.9	60.9
VAE BPDA	98.9	98.4	98.1	94.2	91.4	84.8	94.7	67.2	12.7	0.9	1.1	99.9	56.1
VAE E2ED	99.4	96.9	94.1	94.2	91.4	84.8	92.3	35.3	1.3	0.9	0.5	99.8	50.2
Smoothing before VAE BPDA	95.2	95.8	95.5	94.7	79.5	51.4	96.6	95.2	94.5	63.1	9.8	97.5	95.5
Smoothing before VAE E2ED	95.2	95.8	96.1	95.2	65.6	50.0	96.1	95.8	94.2	19.1	2.7	97.4	95.8
PWG BPDA	99.5	99.5	99.7	99.1	86.6	77.2	99.4	99.7	99.5	97.2	92.3	99.9	98.8
PWG E2ED	97.0	98.8	95.8	93.6	83.0	62.3	94.7	36.4	0.8	0.8	0.8	99.8	37.5
Smoothing before PWG BPDA	95.6	95.2	96.3	95.8	93.0	74.2	94.8	94.8	96.9	95.5	93.4	97.5	95.2
Smoothing before PWG E2ED	95.8	94.7	95.6	94.4	88.9	60.6	95.2	93.3	86.7	14.4	3.1	97.4	92.8

19/22

Experiments – Defense Strategies

Fig. 5. Summary of all defense systems with their best settings for all attack settings as in Table VII using boxplot.

¹ Study of Pre-Processing Defenses Against Adversarial Attacks on State-of-the-Art Speaker Recognition Systems, Sonal Joshi, 2021 IEEE transactions on information forensics and security

Some Adversarial Attacks Repositories available at

https://github.com/stars/amindadgar/lists/adversarial-toolboxes

References

- Study of Pre-Processing Defenses Against Adversarial Attacks on State-of-the-Art Speaker Recognition Systems, Sonal Joshi, 2021 IEEE transactions on information forensics and security
- Ref: https://github.com/osm3000/adversarial_attack_experiment
- Universal adversarial perturbations, Seyed-Mohsen Moosavi-Dezfooli, CVPR 2017
- How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective, Yimeng Zhang,
 2022 ICLR Spotlight

Any Questions?