Design of a supersonic business jet

A supersonic business jet (SBJ) design problem is used to demonstrate different analytical target cascading (ATC) formulations used for solving design problems involving multiple disciplines. The supersonic business jet design problem involves four subproblems; An overall aircraft, propulsion, aerodynamics, and structural design subproblems.

The MATLAB code that describes the inputs, outputs and underlying analyses for each subproblem is provided in the NoHiMDO code repository on myCourses inside the folder SBJ.

The individual MATLAB files for each subanalysis and their inputs and outputs are given in Table 1. The definition for each input and output is given in Table 2.

Based on these definitions, two possible formulations for a multidisciplinary design optimization (MDO) problem are provided. The objective is to minimize the total weight of the aircraft W_t given by subproblem 1.

Figure 1a describes an ATC formulation where subproblem 1 coordinates the solutions to the other 3 subproblems. There is no direct coupling between the individual subproblems. This is an example of a hierarchal ATC formulation.

Figure 1b describes an ATC formulation where the relevant inputs and outputs of each subproblem are directly coupled. This is an example of a non-hierarchal ATC formulation.

Subproblem number Inputs Output MATLAB file Aircraft 1 $W_e, W_f, W_s, h, M, L/D,$ W_t , range SFC SBJ_analysis_range.m 2 h, M, T, DSFC, W_e , ESF, T_E , Propulsion Throttle SBJ_analysis_power.m t/c, h, M, AR_w , Λ_w , S_{ref} , $L, D, L/D, P_g, CLo_1,$ Aerodynamics $S_{\rm ht}$, $AR_{\rm ht}$, $\Lambda_{\rm ht}$, L_w , $L_{\rm ht}$, CLo_2 SBJ_analysis_dragpolar.m W_t , θ , ESF $W_s, W_f, \theta, \mathbf{g}_1$ Structures t/c, h, M, AR_w , Λ_w , S_{ref} , 4 $S_{\rm ht},\,AR_{\rm ht},\,{f t},\,{f t}_s,\,\lambda,\,L$

Table 1: Supersonic business jet subproblem definitions

(a) ATC Formulation 1 (Hierarchical)

(b) ATC Formulation 2 (Non-hierarchical)

SBJ_analysis_structural.m

Figure 1: ATC formulation of SBJ problem

Pressure gradient

Lift coefficient 1 Lift coefficient 2

Cruising altitude

Structural constraints

Aircraft mach number

1able 2: Supersonic business jet design variables					
Variable	code designation	lower bound	upper bound	$\operatorname{description}$	
t/c	tc	0.01	0.1	Thickness/chord	
$AR_{ m w}$	ARw	2.5	8	Wing aspect ratio	
$\Lambda_{ m w}$	LAMBDAw	40	70	Wing sweep angle	
$S_{ m ref}$	Sref	200	800	Wing surface area	
$S_{ m ht}$	Sht	50	148.9	Tail surface area	
$AR_{ m ht}$	ARht	2.5	8.5	Tail aspect ratio	
T	T	0.1	1.0	Thrust	
$\Lambda_{ m ht}$	LAMBDAht	40	70	Tail sweep	
$L_{ m w}$	Lw	0.01	0.2	Wing distance	
$L_{ m ht}$	Lht	1	3.5	Tail distance	
\mathbf{t}	t	0.1	4.0	Nine thicknesses	
$\mathbf{t_s}$	ts	0.1	9.0	Nine thicknesses	
λ	lambda	0.1	0.4	Taper ratio	
L	L	5000	100000	Total lift	
$W_{ m e}$	We	100	30000	Engine weight	
$W_{ m t}$	Wt	5000	100000	Total weight	
θ	theta	0.2	50	Wing twist	
ESF	ESF	0.5	1.5	Engine scaling factor	
D	D	1000	70000	Total drag	
$W_{ m f}$	Wf	5000	100000	Fuel weight	
L/D	LD	0.1	10	Lift/drag ratio	
SFC	SFC	1	4	Specific fuel consumption	
$W_{ m s}$	Ws	5000	100000	Structural weight	
Used for defining constraints					
range	range			Aircraft range	
$T_{ m E}$	Temp_E			Engine temperature	
Throttle	Throttle_uA			Engine throttle setting	

Table 2: Supersonic business iet design variables

Project deliverables

 CLo_1

 CLo_2

 \mathbf{g}_1

M

h

1. Execute the hierarchal ATC formulation of the supersonic business jet problem by executing the matlab file $\mathtt{SBJ_main.m}$

Constants

1.4

55000

(a) Record the objective value f, and maximum inconsistency ϵ_q .

Pg

CLo1

CLo2 G1

М

h

- (b) Take a screenshot of the figure showing the progress of optimization.
- (c) Check SBJ_subsystem_analysis_1.m and SBJ_problem_definition_1.m located in the main directory. The comments and annotations here will help you understand how to define objectives, constraints, shared variables, and coupling variables for the NoHiMOD algorithm.
- 2. Execute the non-hierarchal ATC formulation of the supersonic business jet problem by uncommenting line 47 and commenting line 46 in SBJ_main.m.
 - (a) Record the objective value f, and maximum inconsistency ϵ_q .
 - (b) Take a screenshot of the figure showing the progress of optimization.

Parameter	Default	Possible values	Description
display	true	true,false	verbosity
w_scheme	'median'	'median','max','normal','rank'	Update scheme
${\tt constraints_cv}$	true	true,false	Penalty if coupling variables out of bounds
${\tt realistic_obj}$	false	${\it true,false}$	Realistic objective
inc_stop	1e-12	${\rm real\ number}>0$	Algo stops if this inconsistency is reached
tol	1e-12	real number > 0	Stop criteria on psize
$noprogress_stop$	100	integer > 1	Algo stops if the inconsistency has not decreased this number of iterations
NI	100	integer > 1	Number of inner loop iterations
NO	100	integer > 1	Number of outer loop iterations
beta	2	${\rm real\ number}>0$	Hyper-parameter of the penalty update scheme
gamma	0.5	real number > 0	Hyper-parameter of the penalty update scheme
WО	1	real number $> 0, < 1$	Initial value for the w vector
x0	[]	vector of real numbers $> 0, < 1$	Initial design
${\tt nb_proc}$	1	integer > 0	Number of processors (requires MATLAB parallel computing toolbox)
${\tt save_subproblems}$	false	${ m true,false}$	Save detail of each subproblem
solver	'mads'	'mads', 'sqp', 'interior-point', 'active- set', 'trust-region-reflective'	Solver
solver_display	false	true,false	Solver display

Table 3: NoHiMDO algorithmic parameters

- 3. Comment on the difference in performance between the two formulations. Note and compare the number of iterations it took for the maximum inconsistency and objective values to stabilize.
- 4. Based on your observations from solving the hierarchal and non-hierarchal problems, provide an analogy in terms of management style that you may have observed in the industry (during an internship) and describe which one is potentially more efficient for reducing lead times of complex engineering products.
- 5. Formulate at least one more problem based on the supersonic business jet analyses.
 - (a) Create a diagram showing the flow of the analysis variables between the different disciplines (similar to Figures 1a and 1b).
 - (b) Mathematically express your formulation of the problem by writing down the optimization problems to be solved by each discipline (hint check the appendix of [1, 2] for example formulations). Be sure to describe
 - the objectives,
 - constraints,
 - variables to be optimized,
 - and inconsistencies to be coordinated by the problem.
 - (c) Define new SBJ_subsystem_analysis_x.m and SBJ_problem_definition_x.m files.
 - (d) Solve your problem using NoHiMDO by executing SBJ_main.m
 - (e) Record the objective value f, and maximum inconsistency ϵ_q .

- (f) Take a screenshot of the figure showing the progress of optimization.
- 6. Comment on the performance of your formulation of the problem relative to the hierarchal and non-hierarchal formulations.
- 7. Adjust the algorithmic parameters of NoHiMDO given by Table 3 and solve all three (or more) formulations of the problem and comment on how the performance of the algorithm was affected by these changes. Select at least three parameters that you think are the most significant ones for improving the algorithm's performance.

References

- [1] S. Tosserams, M. Kokkolaras, L. F. Etman, and J. E. Rooda, "A nonhierarchical formulation of analytical target cascading," *Journal of Mechanical Design, Transactions of the ASME*, vol. 132, no. 5, pp. 0510021–05100213, may 2010. doi: 10.1115/1.4001346. [Online]. Available: http://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/132/5/051002/5592908/051002{_}l.pdf
- [2] B. Talgorn, M. Kokkolaras, A. DeBlois, and P. Piperni, "Numerical investigation of non-hierarchical coordination for distributed multidisciplinary design optimization with fixed computational budget," Structural and Multidisciplinary Optimization, vol. 55, no. 1, pp. 205–220, 2017. doi: 10.1007/s00158-016-1489-z