Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans.

The optimal value of alpha for Ridge is 2 and for Lasso it is 0.001. With these alphas the R2 of the model was approximately 0.83. After doubling the alpha values in the Ridge and Lasso, the prediction accuracy remains around 0.82 but there is a small change in the co-efficient values. The new model is created and demonstrated in the Jupiter notebook. Below are the changes in the co-efficient

Ridge Regression Model:

Ric	ige Co-Efficient	Ridge Doul	bled Alpha Co-Efficien
Total_sqr_footage	0.169122	Total_sqr_footage	0.149028
GarageArea	0.101585	GarageArea	0.091803
TotRmsAbvGrd	0.067348	TotRmsAbvGrd	0.068283
OverallCond	0.047652	OverallCond	0.043303
LotArea	0.043941	LotArea	0.038824
CentralAir_Y	0.032034	Total_porch_sf	0.033870
LotFrontage	0.031772	CentralAir_Y	0.031832
Total_porch_sf	0.031639	LotFrontage	0.027526
Neighborhood_StoneBr	0.029093	Neighborhood_StoneBr	0.02658
Alley_Pave	0.024270	OpenPorchSF	0.022713
OpenPorchSF	0.023148	MSSubClass_70	0.022189
MSSubClass_70	0.022995	Alley_Pave	0.021672
RoofMatl_WdShngl	0.022586	Neighborhood_Veenker	0.020098
Neighborhood_Veenker	0.022410	BsmtQual_Ex	0.019949
SaleType_Con	0.022293	KitchenQual_Ex	0.01978
HouseStyle_2.5Unf	0.021873	HouseStyle_2.5Unf	0.018952
PavedDrive_P	0.020160	MasVnrType_Stone	0.018388
KitchenQual_Ex	0.019378	PavedDrive_P	0.01797
LandContour_HLS	0.018595	RoofMatl_WdShngl	0.01785
SaleType_Oth	0.018123	PavedDrive_Y	0.01684

Lasso Regression Model:

	Lasso Co-Efficient		Lasso Doubled Alpha Co-Efficient
Total_sqr_footage	0.202244	Total_sqr_footage	0.204642
GarageArea	0.110863	GarageArea	0.103822
TotRmsAbvGrd	0.063161	TotRmsAbvGrd	0.064902
OverallCond	0.046686	OverallCond	0.042168
LotArea	0.044597	CentralAir_Y	0.033113
CentralAir_Y	0.033294	Total_porch_sf	0.030659
Total_porch_sf	0.028923	LotArea	0.025909
Neighborhood_StoneBr	0.023370	BsmtQual_Ex	0.018128
Alley_Pave	0.020848	Neighborhood_StoneBr	0.017152
OpenPorchSF	0.020776	Alley_Pave	0.016628
MSSubClass_70	0.018898	OpenPorchSF	0.016490
LandContour_HLS	0.017279	KitchenQual_Ex	0.016359
KitchenQual_Ex	0.016795	LandContour_HLS	0.014793
BsmtQual_Ex	0.016710	MSSubClass_70	0.014495
Condition1_Norm	0.015551	MasVnrType_Stone	0.013292
Neighborhood_Veenker	0.014707	Condition1_Norm	0.012674
MasVnrType_Stone	0.014389	BsmtCond_TA	0.011677
PavedDrive_P	0.013578	SaleCondition_Partial	0.011236
LotFrontage	0.013377	LotConfig_CulDSac	0.008776
PavedDrive_Y	0.012363	PavedDrive_Y	0.008685

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Ans.

The optimum lambda value in case of Ridge and Lasso is as below.

Ridge - 2

Lasso - 0.0001

The Mean Squared Error in case of Ridge and Lasso are.

Ridge - 0.0018396090787924262

Lasso - 0.0018634152629407766

The Mean Squared Error of both the models are almost same.

Since Lasso helps in feature reduction (as the coefficient value of some of the features become zero), Lasso has a better edge over Ridge and should be used as the final model

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Ans.

The five most important predictor variables in the current lasso model are as below.

- Total_sqr_footage
- II. GarageArea
- III. TotRmsAbvGrd
- IV. OverallCond
- V. LotArea

We build a Lasso model after removing these attributes from the dataset.

The R2 of the new model without the top 5 predictors drops to .73

The Mean Squared Error increases to 0.0028575670906482538

The new Top 5 predictors are as below.

1 2000	Co-Fff	iciant

LotFrontage	0.146535
Total_porch_sf	0.072445
HouseStyle_2.5Unf	0.062900
HouseStyle_2.5Fin	0.050487
Neighborhood_Veenker	0.042532

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Ans.

The model should be as simple as possible, though its accuracy will decrease but it will be more robust and generalisable. It can be also understood using the Bias-Variance trade-off. The simpler the model the more the bias but less variance and more generalizable. Its implication in terms of accuracy is that a robust and generalisable model will perform equally well on both training and test data i.e. the accuracy does not change much for training and test data.

Bias: Bias is error in model, when the model is weak to learn from the data. High bias means model is unable to learn details in the data. Model performs poor on training and testing data.

Variance: Variance is error in model, when model tries to over learn from the data. High variance means model performs exceptionally well on training data as it has very well trained on this of data but performs very poor on testing data as it was unseen data for the model. It is important to have balance in Bias and Variance to avoid overfitting and under-fitting of data.