Problem Set 1

D. Zack Garza

January 13, 2020

Contents

1	Problem	1	1
2	Problem	2	2
3	Problem	3	2
4			2 2
5		5	3
6	Problem	6	3
7	Problem	7	3
8	Problem	8	3
9	Problem	9	4
10		10	4 4
11	Problem	10	4

1 Problem 1

Describe geometrically the sets of points z in the complex plane defined by the following relations:

a.
$$|z - 1| = 1$$

b. $|z - 1| = 2|z - 2|$
c. $\frac{1}{z} = \overline{z}$

d. $\Re(z) = 3$

e. $\Im(z) = a$ with $a \in \mathbb{R}$

f. $\Re(z) > a$ with $a \in \mathbb{R}$

g. |z-1| < 2|z-2|

2 Problem 2

Prove that

$$|z_1 + z_2| \ge ||z_1| - |z_2||$$

and explain when equality holds.

3 Problem 3

Prove that the equation

$$z^3 + 2z + 4 = 0$$

has its roots outside the unit circle.

Hint: what is the maximum value of the modulus of the first two terms if $|z| \leq 1$.

4 Problem 4

4.1 a

Prove that if $|w_1| = c|w_2|$ where c > 0 then

$$|w_1 - c^2 w_2| = c|w_1 - w_2|.$$

4.2 b

Prove that if c > 0, $c \neq 1$, then $\left| \frac{z - z_1}{z - z_2} \right| = c$ defines a circle. Find its center and radius.

Hint: use part (a).

5 Problem 5

5.1 a

Let $z, w \in \mathbb{C}$ such that $\overline{z}w \neq 1$. Prove that

$$\left|\frac{w-z}{1-\overline{w}z}\right|<1 \text{ if } |z|<1, |w|<1 \text{ with equality when } |z|=1 \text{ or } |w|=1.$$

5.2 b

Prove that for a fixed w in the unit disc \mathbb{D} , the mapping

$$F: \mathbb{C} \to \mathbb{C}$$
$$z \mapsto \frac{w-z}{1-\overline{w}z}$$

satisfies the following conditions:

- 1. F is holomorphic and maps \mathbb{D} to itself.
- 2. F(0) = w and F(w) = 0.
- 3. If |z| = 1 then |F(z)| = 1.
- 4. F is a bijection.

Hint: compute F^2 .

6 Problem 6

Use nth roots of unity to show

$$2^{n-1}\sin\left(\frac{\pi}{n}\right)\sin\left(\frac{2\pi}{n}\right)\cdots\sin\left(\frac{(n-1)\pi}{n}\right)=n.$$

Hint: $1 - \cos(2\theta) = 2\sin^2(\theta)$ and $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$.

7 Problem 7

Prove that $f(z) = |z|^2$ has derivative only at z = 0 and nowhere else.

8 Problem 8

Let f(z) be analytic in its domain. Prove that f is constant if it satisfies any of the following conditions

- a. |f| is constant
- b. $\Re(f)$ is constant
- c. arg(f) is constant
- d. \overline{f} is constant

How can you generalize (a) and (b)?

9 Problem 9

Show that if f is analytic, \overline{f} is analytic.

10 Problem 10

10.1 a

Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$.

10.2 b

Use this to show that the logarithm function,

$$\log z = \log r + i\theta$$
 where $z = re^{i\theta}$ with $-\pi < \theta < \pi$.

is holomorphic in the region $S = \left\{z = re^{i\theta} \mid r > 0, -\pi < \theta < \pi\right\}$, but is not continuous for r > 0.

11 Problem 10

Prove that distinct complex numbers z_1, z_2, z_3 are the vertices of an equilateral triangle iff

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1.$$