4. Conditioning and Independent - Conditional Probability

Lai Hui Shan m5281022

1. Proof: Conditional Probability is a Probability Measure

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and consider a fixed event $A \in \mathcal{F}$ with $\mathbb{P}(A) > 0$. Define the conditional probability $\mathbb{P}(B \mid A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}$ for $B \in \mathcal{F}$.

We prove that $B \mapsto \mathbb{P}(B \mid A)$ satisfies the axioms of a probability measure:

Step 1: Non-negativity

For any $B \in \mathcal{F}$,

$$\mathbb{P}(B \mid A) = rac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} \geq 0$$

since $\mathbb{P}(B \cap A) \geq 0$ and $\mathbb{P}(A) > 0$.

Step 2: Additivity for Disjoint Events

If $B_1, B_2 \in \mathcal{F}$ are disjoint $(B_1 \cap B_2 = \emptyset)$,

$$\mathbb{P}((B_1 \cup B_2) \mid A) = rac{\mathbb{P}((B_1 \cup B_2) \cap A)}{\mathbb{P}(A)}.$$

Using the fact that $B_1 \cap B_2 = \emptyset$,

$$(B_1\cup B_2)\cap A=(B_1\cap A)\cup (B_2\cap A),$$

and since $B_1 \cap A$ and $B_2 \cap A$ are disjoint, we have

$$\mathbb{P}((B_1 \cup B_2) \mid A) = rac{\mathbb{P}(B_1 \cap A) + \mathbb{P}(B_2 \cap A)}{\mathbb{P}(A)} = \mathbb{P}(B_1 \mid A) + \mathbb{P}(B_2 \mid A).$$

Step 3: Total Probability

For the whole space Ω ,

$$\mathbb{P}(\Omega \mid A) = rac{\mathbb{P}(\Omega \cap A)}{\mathbb{P}(A)} = rac{\mathbb{P}(A)}{\mathbb{P}(A)} = 1.$$

Thus, $\mathbb{P}(\cdot \mid A)$ is a probability measure on (Ω, \mathcal{F}) .

2. Proof:
$$\mathbb{P}(B \cup C \mid A) = \mathbb{P}(B \mid A) + \mathbb{P}(C \mid A)$$

Given B and C are disjoint $(B \cap C = \emptyset)$ and $\mathbb{P}(A) > 0$, we compute:

$$\mathbb{P}(B \cup C \mid A) = rac{\mathbb{P}((B \cup C) \cap A)}{\mathbb{P}(A)}.$$

Since $B \cap C = \emptyset$,

$$(B \cup C) \cap A = (B \cap A) \cup (C \cap A),$$

and because $(B \cap A)$ and $(C \cap A)$ are disjoint, we have

$$\mathbb{P}((B \cup C) \cap A) = \mathbb{P}(B \cap A) + \mathbb{P}(C \cap A).$$

Therefore,

$$\mathbb{P}(B \cup C \mid A) = rac{\mathbb{P}(B \cap A) + \mathbb{P}(C \cap A)}{\mathbb{P}(A)} = \mathbb{P}(B \mid A) + \mathbb{P}(C \mid A).$$

3. Example: Conditional Probabilities with Balls

Scenario: A bag contains red (r) and white (w) balls. Suppose X represents the outcome of interest (e.g., a specific ball being chosen), and Y_1, Y_2, Y_3 represent sequential draws with results r, r, w respectively. We compute:

$$\mathbb{P}(X = b \mid Y_1 = r, Y_2 = r, Y_3 = w).$$

Let us define:

- Total number of balls = $n_r + n_w$,
- Total ways to draw r, r, w.

Step 1: Define Sample Space

Each sequence corresponds to one outcome. Compute probabilities for r, r, w given prior probabilities and update.

Step 2: Compute Conditional Probabilities

By the definition of conditional probability:

$$\mathbb{P}(X=b \mid Y_1=r, Y_2=r, Y_3=w) = rac{\mathbb{P}(X=b \cap Y_1=r, Y_2=r, Y_3=w)}{\mathbb{P}(Y_1=r, Y_2=r, Y_3=w)}.$$

Explicit calculations depend on specific numbers of r and w.

4. Proof: Independence of A^c and B^c

Given A and B are independent, $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

To prove A^c and B^c are independent, we compute:

$$\mathbb{P}(A^c \cap B^c) = \mathbb{P}((A \cup B)^c) = 1 - \mathbb{P}(A \cup B).$$

By inclusion-exclusion,

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

Substituting independence,

$$\mathbb{P}(A^c \cap B^c) = 1 - (\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A)\mathbb{P}(B)).$$

Simplify:

$$\mathbb{P}(A^c \cap B^c) = (1 - \mathbb{P}(A))(1 - \mathbb{P}(B)) = \mathbb{P}(A^c)\mathbb{P}(B^c).$$

Thus, A^c and B^c are independent.