# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# MC68HC811E2

# Technical Summary 8-Bit Microcontroller

#### Introduction

The MC68HC811E2 high-performance microcontroller (MCU) is based on the MC68HC11E9, but has one-half the RAM (256 bytes) and four times the EEPROM (2K bytes). The MC68HC811E2 is a high-speed, low-power chip that has a multiplexed bus, capable of operating at up to 2 MHz, and a fully static design that allows it to operate at frequencies down to dc.

For detailed information about subsystems, programming, and the instruction set, refer to the *M68HC11 Reference Manual*, document number M68HC11 RM/AD.

#### **Features**

- MC68HC11 CPU
- Power Saving STOP and WAIT Modes
- 2K Bytes of On-Chip EEPROM With Block Protect for Extra Security
- 256 Bytes of On-Chip RAM, All Saved During Standby
- 16-Bit Timer System
  - Four Output Compare Channels
  - Three Input Capture Channels
  - One Input Capture or Output Compare (Software Selectable)
- 8-Bit Pulse Accumulator
- Real-Time Interrupt Circuit
- Computer Operating Properly (COP) Watchdog System
- Synchronous Serial Peripheral Interface (SPI)
- Asynchronous Nonreturn to Zero (NRZ) Serial Communications Interface (SCI)
- 8-Channel 8-Bit Analog-to-Digital (A/D) Converter
- 38 General-Purpose I/O Pins
  - 16 Bidirectional Input/Output (I/O) Pins
  - 11 Input-Only Pins and 11 Output-Only Pins
- Available in a 52-Pin Plastic Leaded Chip Carrier (PLCC), or a 48-Pin Dual-In-Line Package (DIP)

#### Ordering information

| Package                 | Temperature      | CONFIG | MC Order Number |  |
|-------------------------|------------------|--------|-----------------|--|
| 52-Pin PLCC (FN suffix) | - 40° to + 85°C  | \$FF   | MC68HC811E2FN   |  |
|                         | - 40° to + 105°C | \$FF   | MC68HC811E2VFN  |  |
|                         | - 40° to + 125°C | \$FF   | MC68HC811E2MFN  |  |
| 48-Pin DIP (P suffix)   | -40° to +85°C    | \$FF   | MC68HC811E2P    |  |
|                         | - 40° to + 105°C | \$FF   | MC68HC811E2VP   |  |
|                         | -40° to + 125°C  | \$FF   | MC68HC811E2MP   |  |

This document contains information on a new product. Specifications and information herein are subject to change without notice.



# **Table of Contents**

| Introduction                                                 |    |
|--------------------------------------------------------------|----|
| Features                                                     |    |
| Ordering Information                                         |    |
| Block Diagram                                                |    |
| PLCC Pin Assignments                                         |    |
| DIP Pin Assignments                                          |    |
| Operating Modes and Memory Maps                              |    |
| Registers                                                    |    |
| Resets and Interrupts                                        |    |
| Electrically Erasable Programmable Read Only Memory (EEPROM) |    |
| Parallel Input/Output                                        |    |
| Serial Communications Interface (SCI)                        |    |
| Serial Peripheral Interface (SPI)                            |    |
| Main Timer                                                   |    |
| Pulse Accumulator                                            |    |
| A/D Converter                                                | 44 |

# Index of Registers

| Register  |                                                    | Address     | Page       |
|-----------|----------------------------------------------------|-------------|------------|
| ADCTL     | A/D Control/Status                                 | \$1030      | 46         |
| ADR1-ADR4 | A/D Results                                        | . \$1031-\$ | 3103447    |
| BAUD      | Baud Rate                                          | .\$102B .   | 26         |
| BPROT     | Block Protect                                      | . \$1035    | 16         |
| CFORC     | Timer Compare Force                                | \$100B      | 36         |
| CONFIG    | EEPROM Mapping and Enables, COP                    | . \$103F .  | 11         |
| COPRST    | Arm/Reset COP Timer Circuitry                      | . \$103A .  | 14         |
| DDRC      | Data Direction Register for Port C                 | . \$1007    | 22         |
| DDRD      | Data Direction Register for Port D                 | . \$1009 .  | 23, 31     |
| HPRIO     | Highest Priority I-Bit Interrupt and Miscellaneous | . \$103C    | 10         |
|           | RAM and I/O Mapping                                |             |            |
|           | Output Compare 1 Data                              |             |            |
| OC1M      | Output Compare 1 Mask                              | .\$100C     | 36         |
|           | System Configuration Options                       |             |            |
|           | Pulse Accumulator Counter                          |             |            |
| PACTL     | Pulse Accumulator Control                          | . \$1026    | 23, 40, 43 |
| PIOC      | Parallel I/O Control                               | . \$1002    | 20         |
| PORTA     | Port A Data                                        | . \$1000    | 19         |
| PORTB     | Port B Data                                        | . \$1004    | 22         |
| PORTC     | Port C Data                                        | . \$1003    | 21         |
| PORTCL    | Port C Latched                                     | . \$1005    | 22         |
| PORTD     | Port D Data                                        | . \$1008    | 22         |
| PORTE     | Port E Data                                        | .\$100A     | 23         |
| PPROG     | EEPROM Programming Control                         | .\$103B     | 17         |
|           | SCI Control 1                                      |             |            |
| SCCR2     | SCI Control 2                                      | . \$102D    | 28         |
| SCDR      | SCI Data                                           | .\$102F     | 29         |
| SCSR      | SCI Status                                         | \$102E      | 29         |
| SPCR      | Serial Peripheral Control                          | . \$1028    | 26, 31     |
|           | SPI Data                                           |             |            |
| SPSR      | Serial Peripheral Status                           | . \$1029    | 32         |
|           | Timer Count                                        |             |            |
|           | Timer Control 1                                    |             |            |
|           | Timer Control 2                                    |             |            |
| TEST1     | Factory Test                                       | .\$103E     |            |
|           | Timer Interrupt Flag 1                             |             |            |
|           | Timer Interrupt Flag 2                             |             |            |
|           | Timer Input Capture 4/Output Compare 5             |             |            |
|           | Timer Input Capture                                |             |            |
|           | Timer Interrupt Mask 1                             |             |            |
|           | Timer Interrupt Mask 2                             | •           |            |
|           | Timer Output Compare                               |             |            |



**Block Diagram** 



**PLCC Pin Assignments** 



**DIP Pin Assignments** 

#### Operating Modes and Memory Maps

In single-chip operating mode, the MC68HC811E2 is a monolithic microcontroller without external address or data buses.

In expanded multiplexed operating mode, the MCU can access a 64K-byte address space. The space includes the same on-chip memory addresses used for single chip mode, in addition to external peripheral and memory devices. The expansion bus is made up of ports B and C and control signals AS and R/W. The address, R/W, and AS signals are active and valid for all bus cycles including accesses to internal memory locations. The following figure illustrates a recommended method of demultiplexing low order addresses from data at port C.



Address/Data Demultiplexing

Special bootstrap mode allows quantities of special purpose programs to be entered into internal RAM. The boot loader program uses the SCI to read a 256-byte program into on-chip RAM at \$0000 through \$00FF. After receiving the character for address \$00FF, control passes to the loaded program at \$0000.

Special test mode is used primarily for factory testing.

#### **Memory Maps**

Memory locations are the same for both expanded multiplexed and single-chip modes. The 64-byte register block originates at \$1000 after reset and can be placed at any other 4K boundary (\$x000) after reset by writing an appropriate value to the INIT register. The 256-byte RAM originates at \$0000 after reset and can be placed at any 4K boundary by writing the appropriate value to the INIT register.

The 2K-byte EEPROM is initially located at \$F800 through \$FFFF in single chip mode after reset, if it is enabled. In all other modes its position depends on the EE3-EE0 bits in the CONFIG register and whether or not the EEON bit is set.

Hardware priority is built into the memory remapping. Registers have priority over RAM and boot ROM has priority over EEPROM. The higher priority resource covers the lower, making the underlying locations inaccessible.

In special bootstrap mode, a bootloader ROM is enabled at locations \$BF40 through \$BFFF.

In special test mode and special bootstrap mode, reset and interrupt vectors are located at \$BFC0 through \$BFFF.



**Memory Map** 

Registers (1 of 2)

(The register block can be remapped to any 4K boundary.)

|                |        | -     | -     |       |       | •    |      | = :   |                        |
|----------------|--------|-------|-------|-------|-------|------|------|-------|------------------------|
|                | Bit 7  | 6     | 5     | 4     | 3     | 2    | 11   | Bit 0 | 1                      |
| \$1000         | PA7    | PA6   | PA5   | PA4   | PA3   | PA2  | PA1  | PA0   | PORTA                  |
| \$1001         |        |       |       |       |       |      |      |       | Reserved               |
| \$1002         | STAF   | STAI  | смом  | HNDS  | OIN   | PLS  | EGA  | INVB  | PIOC                   |
| \$1003         | PC7    | PC6   | PC5   | PC4   | РСЗ   | PC2  | PC1  | PC0   | PORTC                  |
| \$1004         | PB7    | PB6   | PB5   | PB4   | РВЗ   | PB2  | PB1  | PB0   | PORTB                  |
| \$1005         | PCL7   | PCL6  | PCL5  | PCL4  | PCL3  | PCL2 | PCL1 | PCL0  | PORTCL                 |
| \$1006         |        |       |       |       |       |      |      |       | Reserved               |
| \$1007         | DDC7   | DDC6  | DDC5  | DDC4  | DDC3  | DDC2 | DDC1 | DDC0  | DDRC                   |
| \$1008         | 0      | 0     | PD5   | PD4   | PD3   | PD2  | PD1  | PD0   | PORTD                  |
| \$1009         | 0      | 0     | DDD5  | DDD4  | DDD3  | DDD2 | DDD1 | DDD0  | DDRD                   |
| \$100 <b>A</b> | PE7    | PE6   | PE5   | PE4   | PE3   | PE2  | PE1  | PE0   | PORTE                  |
| \$100B         | FOC1   | FOC2  | FOC3  | FOC4  | FOC5  | 0    | 0    | 0     | CFORC                  |
| \$100C         | OC1M7  | OC1M6 | OC1M5 | OC1M4 | OC1M3 | 0    | 0    | 0     | OC1M                   |
| \$100D         | OC1D7  | OC1D6 | OC1D5 | OC1D4 | OC1D3 | 0    | 0    | 0     | OC1D                   |
| \$100E         | Bit 15 | 14    | 13    | 12    | 11    | 10   | 9    | Bit 8 | TCNT (High)            |
| \$100F         | Bit 7  | _6    | 5     | 4     | 3     | 2    | 1    | Bit 0 | TCNT (Low)             |
| <b>\$1</b> 010 | Bit 15 | 14    | 13    | 12    | 11    | 10   | 9    | Bit 8 | TIC1 (High)            |
| \$1011         | Bit 7  | 6     | 5     | 4     | 3     | 2    | 1    | Bit 0 | TIC1 (Low)             |
| \$1012         | Bit 15 | 14    | 13    | 12    | 11    | 10   | 9    | Bit 8 | TIC2 (High)            |
| \$1013         | Bit 7  | 6     | 5     | 4     | 3     | 2    | 1    | Bit 0 | TIC2 (Low)             |
| \$1014         | Bit 15 | 14    | 13    | 12    | 11    | 10   | 9    | Bit 8 | TIC3 (High)            |
| <b>\$1</b> 015 | Bit 7  | 6     | 5     | 4     | 3     | 2    | 1    | Bit 0 | TIC3 (Low)             |
| \$1016         | Bit 15 | 14    | 13    | 12    | 11    | 10   | 9    | Bit 8 | TOC1(High)             |
| \$1017         | Bit 7  | 6     | 5     | 4     | 3     | 2    | 1    | Bit 0 | TOC1 (Low)             |
| \$1018         | Bit 15 | 14    | 13    | 12    | 11    | 10   | 9    | Bit 8 | TOC2 (High)            |
| \$1019         | Bit 7  | 6     | 5     | 4     | 3     | 2    | 1    | Bit 0 | TOC2 (Low)             |
| \$101A         | Bit 15 | 14    | 13    | 12    | 11    | 10   | 9    | Bit 8 | TOC3 (High)            |
| \$101B         | Bit 7  | 6     | 5     | 4     | 3     | 2    | 1    | Bit 0 | TOC3 (Low)             |
| \$101C         | Bit 15 | 14    | 13    | 12    | 11    | 10   | 9    | Bit 8 | 1                      |
| \$101D         | Bit 7  | 6     | 5     | 4     | 3     | 2    |      | Bit 0 | TOC4 (High) TOC4 (Low) |
|                |        |       |       |       |       |      |      |       | 1                      |
| \$101E         | Bit 15 | 14    | 13    | 12    | 11    | 10   | 9    | Bit 8 | TI4O5 (High)           |
| \$101F         | Bit 7  | 6     | 5     | 4     | 3     | 2    |      | Bit 0 | TI4O5 (Low)            |

## Registers (2 of 2)

| \$1020         | OM2   | OL2   | ОМЗ   | OL3   | OM4   | OL4      | OM5   | OL5   | TCTL1    |
|----------------|-------|-------|-------|-------|-------|----------|-------|-------|----------|
| \$1021         | EDG4B | EDG4A | EDG1B | EDG1A | EDG2B | EDG2A    | EDG3B | EDG3A | TCTL2    |
| \$1022         | OC1I  | OC2I  | OC3I  | OC4I  | 14051 | IC1I     | IC2I  | IC3I  | TMSK1    |
| \$1023         | OC1F  | OC2F  | OC3F  | OC4F  | 1405F | IC1F     | IC2F  | IC3F  | TFLG1    |
| \$1024         | TOI   | RTII  | PAOVI | PAII  | 0     | 0        | PR1   | PR0   | TMSK2    |
| \$1025         | TOF   | RTIF  | PAOVF | PAIF  | 0     | 0        | 0     | 0     | TFLG2    |
| \$1026         | DDRA7 | PAEN  | PAMOD | PEDGE | DDRA3 | I4/O5    | RTR1  | RTR0  | PACTL    |
| <b>\$1</b> 027 | Bit 7 | 6     | 5     | 4     | 3     | 2        | 1     | Bit 0 | PACNT    |
| \$1028         | SPIE  | SPE   | DWOM  | MSTR  | CPOL  | СРНА     | SPR1  | SPR0  | SPCR     |
| \$1029         | SPIF  | WCOL  | 0     | MODF  | 0     | 0        | 0     | 0     | SPSR     |
| \$102A         | Bit 7 | 6     | 5     | 4     | 3     | 2        | 1     | Bit 0 | SPDR     |
| \$102B         | TCLR  | 0     | SCP1  | SCP0  | RCKB  | SCR2     | SCR1  | SCR0  | BAUD     |
| \$102C         | R8    | T8    | 0     | М     | WAKE  | 0        | 0     | 0     | SCCR1    |
| \$102D         | TIE   | TCIE  | RIE   | ILIE  | TΕ    | RE       | RWU   | SBK   | SCCR2    |
| \$102E         | TDRE  | TC    | RDRF  | IDLE  | OR    | NF       | FE    | 0     | SCSR     |
| \$102F         | R7/T7 | R6/T6 | R5/T5 | R4/T4 | R3/T3 | R2/T2    | R1/T1 | Ro/To | SCDR     |
| \$1030         | CCF   | 0     | SCAN  | MULT  | COD   | $\infty$ | СВ    | CA    | ADCTL    |
| \$1031         | Bit 7 | 6     | 5     | 4     | 3     | 2        | 1     | Bit 0 | ADR1     |
| \$1032         | Bit 7 | 6     | 5     | 4     | 3     | 2        | 1     | Bit 0 | ADR2     |
| \$1033         | Bit 7 | 6     | 5     | 4     | 3     | 2        | 1     | Bit 0 | ADR3     |
| \$1034         | Bit 7 | 6     | 5     | 4     | 3     | 2        | 1     | Bit 0 | ADR4     |
| \$1035         | 0     | 0_    | 0     | PTCON | BPRT3 | BPRT2    | BPRT1 | BPRT0 | BPROT    |
| \$1036–8       |       |       |       |       |       |          |       |       | Reserved |
| \$1039         | ADPU  | CSEL  | IRQE  | DLY   | CME   | 0        | CR1   | CR0   | OPTION   |
| \$103A         | Bit 7 | 6     | 5     | 4     | 3     | 2        | 1     | Bit 0 | COPRST   |
| \$103B         | ODD   | EVEN  | 0     | BYTE  | ROW   | ERASE    | EELAT | EEPGM | PPROG    |
| \$103C         | RBOOT | SMOD  | MDA   | IRV   | PSEL3 | PSEL2    | PSEL1 | PSEL0 | HPRIO    |
| \$103D         | RAM3  | RAM2  | RAM1  | RAM0  | REG3  | REG2     | REG1  | REG0  | INIT     |
| \$103E         | TILOP | 0     | OCCR  | СВҮР  | DISR  | FCM      | FCOP  | TCON  | TEST1    |
| \$103F         | EE3   | EE2   | EE1   | EE0   | 1     | NOCOP    | 1     | EEON  | CONFIG   |

#### HPRIO — Highest Priority I-Bit Interrupt and Miscellaneous

\$103C

|        | Bit 7 | 6    | 5   | 4   | 3     | 2     | 1     | Bit 0 |
|--------|-------|------|-----|-----|-------|-------|-------|-------|
|        | RBOOT | SMOD | MDA | IRV | PSEL3 | PSEL2 | PSEL1 | PSEL0 |
| RESET: |       |      |     |     | 0     | 1     | 0     | 1     |

RBOOT, SMOD, and MDA reset depend on power-up initialization mode and can only be written in special modes.

RBOOT — Read Bootstrap ROM

Set to one out of reset in bootstrap mode only

- 0 = Boot loader ROM disabled and not in map
- 1 = Boot loader ROM enabled and in map at \$BF40-\$BFFF

SMOD — Special Mode Select

MDA - Mode Select A

| Inputs |      |                      | Latched at Reset |      |     |  |  |
|--------|------|----------------------|------------------|------|-----|--|--|
| MODB   | MODA | Mode                 | RBOOT            | SMOD | MDA |  |  |
| 1      | 0    | Single-Chip          | 0                | 0    | 0   |  |  |
| 1      | 1    | Expanded Multiplexed | 0                | 0    | 1   |  |  |
| 0      | 0    | Special Bootstrap    | 1                | 1    | 0   |  |  |
| 0      | 1    | Special Test         | 0                | 1    | 1   |  |  |

IRV — Internal Read Visibility

- 0 = No internal read visibility on external bus
- 1 = Internal read data driven out data bus

For bits 3-0, refer to Resets and Interrupts.

#### INIT - RAM and I/O Mapping

\$103D

|        | Bit 7 | 6    | 5    | 4    | 3    | 2    | 1    | Bit 0 |
|--------|-------|------|------|------|------|------|------|-------|
|        | RAM3  | RAM2 | RAM1 | RAM0 | REG3 | REG4 | REG1 | REG0  |
| RESET: | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 1     |

#### RAM3-RAM0 -- 512-Byte Internal RAM Map Position

RAM3-RAM0 determine the upper four bits of the RAM address, positioning RAM at the selected 4K boundary.

#### REG3-REG0 — 64-Byte Register Block Map Position

REG3-REG0 determine the upper four bits of the register address, positioning registers at the selected 4K boundary.

#### NOTE

Can be written only once in first 64 cycles out of reset in normal modes, or at any time in special modes. Refer to **Memory Maps** for more information.

TEST1 — Factory Test

\$103E

|        | Bit 7 | 6 | 5    | 4    | 3    | 2   | 1    | Bit 0 |
|--------|-------|---|------|------|------|-----|------|-------|
|        | TILOP | 0 | OCCR | CBYP | DISR | FCM | FCOP | TCON  |
| RESET: | 0     | 0 | 0    | 0    |      | 0   | 0    | 0     |

Test modes only

TILOP -- Test Illegal Opcode

OCCR — Output Condition Code Register to Timer Port

CBYP — Timer Divider Chain Bypass

DISR — Disable Resets from COP and Clock Monitor

DISR is forced to one out of reset in special test and bootstrap modes.

FCM - Force Clock Monitor Failure

FCOP — Force COP Watchdog Failure

TCON — Test Configuration Register

#### **CONFIG** — EEPROM Mapping and Enables, COP

\$103F

|                     | Bit 7 | 6   | 5   | 4   | 3 | 2     | _ 1 | Bit 0 |
|---------------------|-------|-----|-----|-----|---|-------|-----|-------|
|                     | EE3   | EE2 | EE1 | EE0 | 1 | NOCOP | 1   | EEON  |
| S. Chip<br>or Boot: | 1     | 1   | 1   | 1   | 1 | Р     | 1   | 1     |
| RESET:              |       |     |     |     | 1 |       | 1   |       |
| Expan.<br>or Test:  | Р     | Р   | Р   | Р   | 1 | Р     | 1   | Р     |

#### NOTE

CONFIG is non-volatile and retains its previous programming even when the MCU has no power.

EE3-EE0 - EEPROM Map Position

EE3-EE0 determine the upper four bits of the EEPROM address, positioning EEPROM at the selected 4K boundary.

NOCOP — COP System Disable (Refer to Resets and Interrupts.)

EEON — EEPROM Enable

- 0 = 2K byte EEPROM is removed from the memory map
- 1 = 2K byte EEPROM is present in the memory map

#### Resets and Interrupts

The MC68HC811E2 has 3 reset vectors and 18 interrupt vectors. The reset vectors are:

- RESET, or Power-On
- COP Clock Monitor Fail
- COP Failure

The 18 interrupt vectors service 23 interrupt sources (3 non-maskable, 20 maskable). The 3 non-maskable interrupt vectors are:

- Illegal Opcode Trap
- Software Interrupt
- XIRQ Pin (Pseudo Non-Maskable Interrupt)

The 20 interrupt sources are subject to masking by a global interrupt mask, the I bit in the CCR. In addition to the global I bit, all of these sources, except the external interrupt (IRQ pin), are controlled by local enable bits in control registers. Most interrupt sources in the M68HC11 have separate interrupt vectors, therefore there is usually no need for software to poll control registers to determine the cause of an interrupt. The maskable interrupt sources respond to a fixed-priority relationship, except that any one source can be dynamically elevated to the highest priority position of any maskable source. Refer to the table of interrupt and reset vector assignments.

On-chip peripheral systems generate maskable interrupts, which are recognized only if the global interrupt mask bit (I) in the condition code register (CCR) is clear. Maskable interrupts are prioritized according to a default arrangement, but any one source can be elevated to the highest maskable priority position by the HPRIO register. The HPRIO register can be written at any time, provided the I bit in the CCR is set.

#### Interrupt and Reset Vector Assignments

| Vector Address      | Interrupt Source                        | CC Register<br>Mask | Local<br>Mask |
|---------------------|-----------------------------------------|---------------------|---------------|
| FFC0, C1 — FFD4, D5 | Reserved                                |                     |               |
| FFD6, D7            | SCI Serial System                       | l Bit               |               |
|                     | SCI Transmit Complete                   |                     | TCIE          |
|                     | SCI Transmit Data Register Empty        |                     | TIE           |
|                     | SCI Idle Line Detect                    |                     | ILIE          |
|                     | SCI Receiver Overrun                    |                     | RIE           |
|                     | SCI Receive Data Register Full          |                     | RIE           |
| FFD8, D9            | SPI Serial Transfer Complete            | I Bit               | SPIE          |
| FFDA, DB            | Pulse Accumulator Input Edge            | I Bit               | PAII          |
| FFDC, DD            | Pulse Accumulator Overflow              | I Bit               | PAOVI         |
| FFDE, DF            | Timer Overflow                          | I Bit               | TOI           |
| FFE0, E1            | Timer Input Capture 4/ Output Compare 5 | I Bit               | I4O5I         |
| FFE3, E2            | Timer Output Compare 4                  | I Bit               | OC4I          |
| FFE4, E5            | Timer Output Compare 3                  | I Bit               | OC3I          |
| FFE6, E7            | Timer Output Compare 2                  | I Bit               | OC2I          |
| FFE8, E9            | Timer Output Compare 1                  | I Bit               | OC1I          |
| FFEA, EB            | Timer Input Capture 3                   | I Bit               | IC3           |
| FFEC, ED            | Timer Input Capture 2                   | I Bit               | IC2I          |
| FFEE, EF            | Timer Input Capture 1                   | I Bit               | IC11          |
| FFF0, F1            | Real-Time Interrupt                     | I Bit               | RTII          |
| FFF2, F3            | Parallel I/O Handshake                  | I Bit               | STAI          |
|                     | IRQ (External Pin)                      |                     | None          |
| FFF4, F5            | XIRQ Pin                                | I Bit               | None          |
| FFF6, F7            | Software Interrupt                      | None                | None          |
| FFF8, F9            | Illegal Opcode Trap                     | None                | None          |
| FFFA, FB            | COP Failure                             | None                | NOCOP         |
| FFFC, FD            | Clock Monitor Fail                      | None                | CME           |
| FFFE, FF            | RESET                                   | None                | None          |

For some interrupt sources, such as the parallel I/O and SCI interrupts, the flags are automatically cleared during the normal course of responding to the interrupt requests. For example, the RDRF flag in the SCI system is cleared by the automatic clearing mechanism consisting of a read of the SCI status register while RDRF is set, followed by a read of the SCI data register. The normal response to an RDRF interrupt request is to read the SCI status register to check for receive errors, then to read the received data from the SCI data register. These two steps satisfy the automatic clearing mechanism without requiring any special instructions.

#### **OPTION** — System Configuration Options

\$1039

|        | Bit 7 | 6    | 5     | 4    | 3   | 2 | _ 1 _ | Bit 0 |  |
|--------|-------|------|-------|------|-----|---|-------|-------|--|
|        | ADPU  | CSEL | IRQE* | DLY* | CME | 0 | CR1*  | CR0*  |  |
| RESET: | 0     | 0    | 0     | 1    | 0   | 0 | 0     | 0     |  |

<sup>\*</sup>Can be written only once in first 64 cycles out of reset in normal modes, or at any time in special modes.

ADPU — A/D Power-Up (Refer to Analog-to-Digital Converter.)

CSEL — Clock Select (Refer to Analog-to-Digital Converter.)

IRQE — IRQ Select Edge Sensitive Only

0 = Low level recognition

1 = Falling edge recognition

DLY — Enable Oscillator Start-Up Delay on Exit from STOP

0 = No stabilization delay on exit from STOP

1 = Stabilization delay enabled on exit from STOP

CME - Clock Monitor Enable

0 = Clock monitor disabled; slow clocks can be used

1 = Slow or stopped clocks cause clock failure reset

CR1, CR0 — COP Timer Rate Select

| CR [1:0] | Divide<br>E/2 <sup>15</sup><br>By | XTAL = 4.0 Mhz<br>Timeout<br>- 0/+32.8 ms | XTAL = 8.0 MHz<br>Timeout<br>- 0/+ 16.4 ms |
|----------|-----------------------------------|-------------------------------------------|--------------------------------------------|
| 0 0      | 1                                 | 32.768 ms                                 | 16.384 ms                                  |
| 01       | 4                                 | 131,072 ms                                | 65.536 ms                                  |
| 10       | 16                                | 524.288 ms                                | 262.140 ms                                 |
| 11       | 64                                | 2.097 sec                                 | 1.049 sec                                  |
|          | E =                               | 1.0 MHz                                   | 2.0 MHz                                    |

#### **COPRST** — Arm/Reset COP Timer Circuitry

\$103A

|        | Bit 7 | 6 | 5 | 4 | 3_ | 2 | 1 | Bit 0 |
|--------|-------|---|---|---|----|---|---|-------|
|        | 7     | 6 | 5 | 4 | 3  | 2 | 1 | 0     |
| RESET: | 0     | 0 | 0 | 0 | 0  | 0 |   | 0     |

Write \$55 to COPRST to arm COP watchdog clearing mechanism. Write \$AA to COPRST to reset COP watchdog.

HPRIO -- Highest Priority I-Bit Interrupt and Miscellaneous

\$103C

For bits 7-4, refer to Operating Modes.

PSEL3-PSEL0 -- Priority Select Bits 3-0

Writable only while the I bit in the CCR is set (interrupts disabled). These bits select one interrupt source to be elevated above all other I-bit related sources.

| PSEL[3:0] | Interrupt Source Promoted              |  |  |  |  |
|-----------|----------------------------------------|--|--|--|--|
| 0000      | Timer Overflow                         |  |  |  |  |
| 0001      | Pulse Accumulator Overflow             |  |  |  |  |
| 0010      | Pulse Accumulator Input Edge           |  |  |  |  |
| 0011      | SPI Serial Transfer Complete           |  |  |  |  |
| 0100      | SCI Serial System                      |  |  |  |  |
| 0101      | Reserved (Default to IRQ)              |  |  |  |  |
| 0110      | IRQ (External Pin or Parallel I/O)     |  |  |  |  |
| 0111      | Real-Time Interrupt                    |  |  |  |  |
| 1000      | Timer Input Capture 1                  |  |  |  |  |
| 1001      | Timer Input Capture 2                  |  |  |  |  |
| 1010      | Timer Input Capture 3                  |  |  |  |  |
| 1011      | Timer Output Compare 1                 |  |  |  |  |
| 1100      | Timer Output Compare 2                 |  |  |  |  |
| 1101      | Timer Output Compare 3                 |  |  |  |  |
| 1110      | Timer Output Compare 4                 |  |  |  |  |
| 1111      | Timer Output Compare 5/Input Capture 4 |  |  |  |  |

# Electrically Erasable Programmable Read-Only Memory (EEPROM)

The EE3-EE0 bits in CONFIG control the position of the the 2K bytes of EEPROM in the memory map. In single chip and bootstrap modes, EE3-EE0 are forced to ones, positioning the EEPROM at \$F800-\$FFFF. In test mode, EEON is forced to zero to prevent interference between EEPROM and test accesses to memory.

An on-chip charge pump develops the high voltage required for programming and erasing. When the E clock is less than 1 MHz, select an internal clock to drive the EEPROM charge pump (write one to the CSEL bit in the OPTION register).

Programming and erasing the EEPROM is controlled by the PPROG register, depending on the block protect (BPROT) register value.

To erase the EEPROM, ensure that the proper bits of the BPROT register are cleared, then complete the following steps using the PPROG register:

- 1. Write to PPROG with the ERASE, EELAT, and appropriate BYTE and ROW bits set.
- 2. Write to the appropriate EEPROM address with any data (\$x800-\$x80F, \$x810-\$x81F through \$xFF0-\$xFFF). Row erase only requires a write to any location in the row. Bulk erase is accomplished by writing to any location in the array.
- 3. Write to PPROG with ERASE, EELAT, EEPGM, and the appropriate BYTE and ROW bits set.
- 4. Delay for 10 ms or more, as appropriate.
- 5. Clear the EEPGM bit in PPROG to turn off the high voltage.
- 6. Clear the PPROG register to reconfigure the EEPROM address and data buses for normal operation.

To program the EEPROM, ensure the proper bits of the BPROT register are cleared, then complete the following steps using the PPROG register:

- 1. Write to PPROG with the EELAT bit set.
- 2. Write data to the desired address.
- 3. Write to PPROG with the EELAT and EEPGM bits set.
- 4. Delay for 10 ms or more, as appropriate.
- 5. Clear the EEPGM bit in PPROG to turn off the high voltage.
- 6. Clear the PPROG register to reconfigure the EEPROM address and data buses for normal operation.

#### **BPROT** — Block Protect

\$1035

|        | Bit 7 | 6 | 5 | 4     | 3     | 2     | 1     | Bit 0 |
|--------|-------|---|---|-------|-------|-------|-------|-------|
|        | 0     | 0 | 0 | PTCON | BPRT3 | BPRT2 | BPRT1 | BPRT0 |
| RESET: | 0     | 0 | 0 | 1     | 1     | 1     | 1     | 1     |

#### NOTE

Block protect register bits can be written to zero, protection disabled within 64 cycles of a reset in normal modes, or at any time in special modes. Block protect register bits can be written to one, protection enabled, at any time.

#### PTCON — Protect for CONFIG

- 0 = CONFIG register can be programmed or erased normally.
- 1 = CONFIG register cannot be programmed or erased.

#### BPRT3-BPRT0 — Block Protect Bits for EEPROM

- 0 = Protection disabled for associated block
- 1 = Protection enabled for associated block

| Bit Name | Block Protected | Block Size |
|----------|-----------------|------------|
| BPRT0    | \$x800-\$x9FF   | 512 Bytes  |
| BPRT1    | \$xA00-\$xBFF   | 512 Bytes  |
| BPRT2    | \$xC00-\$xDFF   | 512 Bytes  |
| BPRT3    | \$xE00-\$xFFF   | 512 Bytes  |

#### PPROG — EEPROM Programming Control

\$103B

|        | Bit 7 | 6    | 5 | 4    | 3   | 2     | 1     | Bit 0 |
|--------|-------|------|---|------|-----|-------|-------|-------|
| ,      | ODD   | EVEN | 0 | BYTE | ROW | ERASE | EELAT | EEPGM |
| RESET: | 0     | 0    | 0 | 0    | 0   | 0     | 0     | 0     |

ODD — Program Odd Rows in Half of EEPROM (TEST)

EVEN — Program Even Rows in Half of EEPROM (TEST)

BYTE — Byte/Other EEPROM Erase Mode

ROW -- Row/All EEPROM Erase Mode

| BYTE | ROW | Action                    |
|------|-----|---------------------------|
| 0    | 0   | Bulk Erase (All 2K Bytes) |
| 0    | 1   | Row Erase (16 Bytes)      |
| 1    | 0   | Byte Erase                |
| 1    | 1   | Byte Erase                |

ERASE — Erase/Normal Control for EEPROM

0 = Normal read or program mode

1 = Erase mode

**EELAT** — **EEPROM Latch Control** 

0 = EEPROM address and data bus configured for normal reads

1 = EEPROM address and data bus configured for programming or erasing

**EEPGM** — **EEPROM** Program Command

0 = Programming or erase voltage switched off to EEPROM array

1 = Programming or erase voltage switched on to EEPROM array

#### **CONFIG** — EEPROM Mapping and Enables, COP

\$103F

|                     | Bit 7 | 6   | 5   | 4   | 3 | 2     | _1 | Bit 0 |
|---------------------|-------|-----|-----|-----|---|-------|----|-------|
|                     | EE3   | EE2 | EE1 | EE0 | 1 | NOCOP | 1  | EEON  |
| S. Chip<br>or Boot: | 1     | 1   | 1   | 1   | 1 | Р     | 1  | 1     |
| RESET:              | -     |     |     |     | 1 |       | 1  |       |
| Expan.<br>or Test:  | Р     | Р   | Р   | Р   | 1 | Р     | 1  | Р     |

#### NOTE

CONFIG is non-volatile and retains its previous programming, even when the MCU has no power.

#### EE3-EE0 — EEPROM Map Position

EE3-EE0 determine the upper four bits of the EEPROM address, positioning EEPROM at the selected 4K boundary.

NOCOP — COP System Disable (Refer to Resets and Interrupts.)

#### EEON --- EEPROM Enable

0 = 2K-byte EEPROM is removed from the memory map

1 = 2K-byte EEPROM is present in the memory map

## Parallel Input/Output

The MC68HC811E2 has 5 I/O ports, configurable with up to 38 input/output lines, depending on the operating mode. The following table summarizes the ports and their shared functions:

| Port   | Input<br>Pins | Output<br>Pins | Bidirectional<br>Pins | Shared Functions             |
|--------|---------------|----------------|-----------------------|------------------------------|
| Port A | 3             | 4              | 1                     | Timer                        |
| Port B | _             | 8              | _                     | High Order Address           |
| Port C | _             | _              | 8                     | Low Order Address & Data bus |
| Port D | _             |                | 6                     | SCI & SPI                    |
| Port E | 8             |                | <u> </u>              | A/D Converter                |

#### Parallel I/O Handshake

Simple and full handshake input and output functions are available on ports B and C lines in single-chip mode. The following is a description of the handshake functions.

In simple strobed mode, port B is a strobed output port, and port C is a latching input port. The two activities are available simultaneously.

The STRB output is pulsed for two E-clock periods each time there is a write to the PORTB register. The INVB bit in the PIOC register controls the polarity of STRB pulses. Port C levels are latched into the alternate port C latch (PORTCL) register on each assertion of the STRA input. STRA edge select, flag, and interrupt enable bits are located in the PIOC register. Any or all of the port C lines can be used as general-purpose I/O while in strobed input mode.

Full handshake modes involve port C pins and the STRA and STRB lines. Input and output handshake modes are supported, and output handshake mode has a three-stated variation. STRA is an edge detecting input and STRB is a handshake output. Control and enable bits are located in the PIOC register.

In full input handshake mode, the MCU uses STRB as a **ready** line to an external system. Port C logic levels are latched into PORTCL when the STRA line is asserted by the external system. The MCU then deasserts STRB. The MCU reasserts STRB after the PORTCL register is read. A mix of latched inputs, static inputs, and static outputs is allowed on port C, differentiated by the data direction bits and use of the PORTC and PORTCL registers.

In full output handshake mode, the MCU writes data to PORTCL, which, in turn, asserts the STRB output to indicate that data is ready. The external system reads port C and asserts the STRA input to acknowledge that data has been received.

In the three-state variation of output handshake mode, lines intended as three-state handshake outputs are configured as inputs by clearing the corresponding DDRC bits. The MCU writes data to PORTCL and asserts STRB. The external system responds by activating the STRA input, which forces the MCU to drive the data in PORTCL out on all of the port C lines. The mode variation does not allow part of port C to be used for static inputs while other port C pins are being used for handshake outputs. Refer to the PIOC register description.

#### PORTA -- Port A Data

\$1000

| _                  | Bit 7 | 6   | 5   | 4   | 3       | 2_  | _ 1 | Bit 0 |
|--------------------|-------|-----|-----|-----|---------|-----|-----|-------|
|                    | PA7   | PA6 | PA5 | PA4 | PA3     | PA2 | PA1 | PA0   |
| RESET:             | HIZ   | 0   | 0   | 0   | HZ      | HZ  | HiZ | HIZ   |
| Alt. Pin<br>Func.: | PAI   | OC2 | ОСЗ | OC4 | OC5/IC4 | IC1 | IC2 | IC3   |
| And/or:            | OC1   | OC1 | OC1 | OC1 | OC1     | _   | -   | -     |

#### PIOC — Parallel I/O Control

\$1002

|        | Bit 7 | _ 6 _ | 5    | 4    | 3_  | 2   | 1   | Bit 0 |
|--------|-------|-------|------|------|-----|-----|-----|-------|
|        | STAF  | STAI  | CWOM | HNDS | OIN | PLS | EGA | INVB  |
| RESET: | 0     | 0     | 0    | 0    | 0   | U   | 1   | 1     |

#### STAF — Strobe A Interrupt Status Flag

Set when selected edge occurs on Strobe A

Cleared by PIOC read with STAF set followed by PORTCL read (simple strobed or full input handshake mode) or PORTCL write (output handshake mode)

#### STAI - Strobe A Interrupt Enable Mask

- 0 = STAF interrupts disabled
- 1 = STAF interrupts enabled

#### CWOM — Port C Wire-OR Mode (affects all eight port C pins)

- 0 = Port C outputs are normal CMOS outputs
- 1 = Port C outputs are open-drain outputs

#### HNDS - Handshake Mode

- 0 = Simple strobe mode
- 1 = Full input or output handshake mode

#### OIN — Output or Input Handshake Select

HNDS must be set to one for this bit to have meaning.

- 0 = Input handshake
- 1 = Output handshake

#### PLS — Pulse/Interlocked Handshake Operation

HNDS must be set to one for this bit to have meaning. Once activated, strobe B stays active until the selected edge of strobe A is detected.

- 0 = Interlocked handshake
- 1 = Pulsed handshake (Strobe B pulses high for 2 E-clock cycles)

#### EGA — Active Edge for Strobe A

- 0 = STRA falling edge selected
- 1 = STRA rising edge selected

#### INVB - Invert Strobe B

- 0 = Active level is logic zero
- 1 = Active level is logic one

Parallel I/O Control

|                           | STAF<br>Clearing<br>Sequence                        | HNDS | OIN | PLS                                                  | EGA                                          | Port C                                                                              | Port B                                                              |
|---------------------------|-----------------------------------------------------|------|-----|------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Simple<br>strobed<br>mode | Read PIOC<br>with STAF=1<br>then read<br>PORTCL     | 0    | X   | X                                                    | 1                                            | Inputs latched into PORTCL on any active edge on STRA                               | STRB<br>pulses on<br>writes to<br>port B                            |
| Full input<br>handshake   | Read PIOC<br>with STAF=1<br>then read<br>PORTCL     | 1    | 0   | 0 = STRB<br>active level<br>1 = STRB<br>active pulse | 1                                            | Inputs latched into PORTCL on any active edge on STRA                               | Normal output port, unaffected in handshake modes                   |
| Full output<br>handshake  | Read PIOC<br>with STAF=1<br>then write to<br>PORTCL | 1    | 1   | 0 = STRB<br>active level<br>1 = STRB<br>active pulse | Port C Driven  STRA Follow DDRC  Follow DDRC | Driven as outputs if STRA at active level, follows DDRC if STRA not at active level | Normal<br>output<br>port,<br>unaffected<br>in<br>handshake<br>modes |

#### PORTC -- Port C Data

\$1003

|                     | Bit 7 | 6     | 5     | 4     | 3     | 2     | 1             | Bit 0         |
|---------------------|-------|-------|-------|-------|-------|-------|---------------|---------------|
|                     | PC7   | PC6   | PC5   | PC4   | РСЗ   | PC2   | PC1           | PC0           |
| S. Chip<br>or Boot: | PC7   | PC6   | PC5   | PC4   | PC3   | PC2   | PC1           | PC0           |
| RESET:              | 0     | 0     | 0     | 0     | 0     | 0     | 0             | _0            |
| Expan. or Test:     | A7/D7 | A6/D6 | A5/D5 | A4/D4 | A3/D3 | A2/D2 | <b>A</b> 1/D1 | <b>A</b> 0/D0 |

#### NOTE

In single chip and boot modes, port C pins reset to high-impedance inputs (DDRC registers are set to zero). In expanded and special test modes, port C pins are multiplexed address/data bus and the port C register address is treated as an external memory location.

#### PORTB — Port B Data

\$1004

|                     | Bit 7 | 6   | 5   | _4  | 3   | 2           | 1   | Bit 0 |
|---------------------|-------|-----|-----|-----|-----|-------------|-----|-------|
|                     | PB7   | PB6 | PB5 | PB4 | PB3 | PB2         | PB1 | PB0   |
| S. Chip<br>or Boot: | PB7   | PB6 | PB5 | PB4 | PB3 | PB2         | PB1 | PB0   |
| RESET:              | 0_    | 0   | _ 0 | 0   | 0   | 0           | 0   | 0     |
| Expan.<br>or Test:  | A15   | A14 | A13 | A12 | A11 | <b>A</b> 10 | A9  | A8    |

PORTCL — Port C Latched

\$1005

|        | Bit 7 | 6    | 5    | 4    | 3    | 2    | 1    | Bit 0 |
|--------|-------|------|------|------|------|------|------|-------|
|        | PCL7  | PCL6 | PCL5 | PCL4 | PCL3 | PCL2 | PCL1 | PCL0  |
| RESET: | U     | U    | U    | U    | U    | U    | U    | U     |

Writes affect port C pins. PORTCL is used in the handshake cleaning mechanism. When an active edge occurs on the STRA pin, port C data is latched into the PORTCL register.

DDRC — Data Direction Register for Port C

\$1007

|        | Bit 7 | 6    | 5    | 4    | 3    | 2    | 1    | Bit 0 |
|--------|-------|------|------|------|------|------|------|-------|
|        | DDC7  | DDC6 | DDC5 | DDC4 | DDC3 | DDC2 | DDC1 | DDC0  |
| RESET: | 0     | 0    | 0    | 0    | 0    | 0    |      | 0     |

DDC7-DDC0 — Data Direction for Port C

0 = Input

1 = Output

PORTD — Port D Data

\$1008

|                    | Bit 7 | 6 | 5   | 4   | 3    | 2    | 1   | Bit 0 |
|--------------------|-------|---|-----|-----|------|------|-----|-------|
|                    | 0     | 0 | PD5 | PD4 | PD3  | PD2  | PD1 | PD0   |
| RESET:             | 0     | 0 | 0   | 0   | 0    | 0    | 0   | 0     |
| Alt, Pin<br>Func.: | _     | _ | ss  | SCK | MOSI | MISO | TxD | RxD   |

#### **DDRD** — Data Direction Register for Port D

\$1009

|                    | Bit 7 | 6 | 5                   | 4           | 3            | 2            | 1           | Bit 0       |
|--------------------|-------|---|---------------------|-------------|--------------|--------------|-------------|-------------|
|                    | 0     | 0 | DDD5                | DDD4        | DDD3         | DDD2         | DDD1        | DDD0        |
| RESET:             | 0     | 0 | 0                   | 0           | 0            | 0            | 0           | 0           |
| Alt. Pin<br>Func.: |       |   | P <u>D5</u> /<br>SS | PD4/<br>SCK | PD3/<br>MOSI | PD2/<br>MISO | PD1/<br>TxD | PD0/<br>RxD |

#### DDD5-DDD0 - Data Direction for Port D

When DDRD bit 5 is zero and MSTR = 1 in SPCR, PD5/SS is a general-purpose output and mode fault logic is disabled.

0 = Input

1 = Output

#### PORTE - Port E Data

\$100A

|                    | Bit 7 | 6   | 5   | 4   | 3   | 2   | 1   | Bit 0 |
|--------------------|-------|-----|-----|-----|-----|-----|-----|-------|
|                    | PE7   | PE6 | PE5 | PE4 | PE3 | PE2 | PE1 | PE0   |
| RESET:             | U     | U   | U   | U   | U   | U   | U   | U     |
| Alt. Pin<br>Func.: | AN7   | AN6 | AN5 | AN4 | AN3 | AN2 | AN1 | AN0   |

#### PACTL — Pulse Accumulator Control

\$1026

|        | Bit 7 | 6    | 5     | 4     | 3     | 2     | 1    | Bit 0 |
|--------|-------|------|-------|-------|-------|-------|------|-------|
|        | DDRA7 | PAEN | PAMOD | PEDGE | DDRA3 | 14/05 | RTR1 | RTR0  |
| RESET: |       | 0    | 0     |       | 0     |       | 0    |       |

For bits 6-4, refer to Pulse Accumulator. For bits 1 and 0, refer to Main Timer.

DDRA7 — Data Direction for Port A Bit 7

0 = Input only

1 = Output

DDRA3 — Data Direction for Port A Bit 3

Overridden if an output compare function is configured to control the PA3 pin.

0 = Input

1 = Output

### Serial Communications Interface (SCI)

The SCI is a universal asynchronous receiver transmitter (UART) serial communications interface, one of two independent serial I/O subsystems in the MC68HC811E2. It has a standard NRZ format (one start, eight or nine data and one stop bit), and several baud rates available. The SCI transmitter and receiver are independent, but use the same data format and bit rate.



**SCI Transmitter Block Diagram** 



SCI Receiver Block Diagram

#### **SPCR** — Serial Peripheral Control

\$1028

|        | Bit 7 | 6   | 5    | 4    | 3    | 2    | 1    | Bit 0 |
|--------|-------|-----|------|------|------|------|------|-------|
|        | SPIE  | SPE | DWOM | MSTR | CPOL | CPHA | SPR1 | SPR0  |
| RESET: | 0     | 0   | 0    | 0    | 0    | 1    | U    | U     |

For bits 7 and 6 and bits 4-0, refer to SPI section.

DWOM -- Port D Wired-OR Mode

DWOM affects all six port D pins

0 = Normal CMOS outputs

1 = Open-drain outputs

#### **BAUD** — Baud Rate

\$102B

|        | Bit 7 | 6 | _ 5  | 4    | 3    | 2    | _1   | Bit 0 |
|--------|-------|---|------|------|------|------|------|-------|
|        | TCLR  | 0 | SCP1 | SCP0 | RCKB | SCR2 | SCR1 | SCR0  |
| RESET: | 0     | 0 | 0    | 0    | 0    | U    | U    | U     |

TCLR — Clear Baud Rate Counters (TEST)

RCKB — SCI Baud Rate Clock Check (TEST)

SCP1, SCP0 — SCI Baud Rate Prescaler Selects

|           | Divide               | Crystal Frequency in MHz |                   |  |  |
|-----------|----------------------|--------------------------|-------------------|--|--|
| SCP [1:0] | Internal Clock<br>By | 4.0 MHz<br>(Baud)        | 8.0 MHz<br>(Baud) |  |  |
| 00        | 1                    | 62.50K                   | 125.0K            |  |  |
| 0 1       | 3                    | 20.83K                   | 41.67K            |  |  |
| 10        | 4                    | 15.625K                  | 31.25K            |  |  |
| 11        | 13                   | 4800                     | 9600              |  |  |

#### SCR2, SCR1, and SCR0 -- SCI Baud Rate Selects

Selects receiver and transmitter bit rate based on output from baud rate prescaler stage.

|           | Divide<br>Prescaler |      | Baud Rate<br>rom Previous Table) |
|-----------|---------------------|------|----------------------------------|
| SCR [2:0] | Ву                  | 4800 | 9600                             |
| 000       | 1                   | 4800 | 9600                             |
| 001       | 2                   | 2400 | 4800                             |
| 010       | 4                   | 1200 | 2400                             |
| 011       | 8                   | 600  | 1200                             |
| 100       | 16                  | 300  | 600                              |
| 101       | 32                  | 150  | 300                              |
| 110       | 64                  |      | 150                              |
| 111       | 128                 |      | _                                |



SCI Baud Rate Diagram

SCCR1 - SCI Control 1

\$002C

|        | Bit 7 | 6  | 5 | 4 | 3    | 2 | 1 | Bit 0 |
|--------|-------|----|---|---|------|---|---|-------|
|        | R8    | T8 | 0 | М | WAKE | 0 | 0 | 0     |
| RESET: | U     | U  |   | 0 | 0    | 0 |   | 0     |

R8 — Receive Data Bit 8

If M bit is set, R8 stores ninth bit in receive data character.

T8 — Transmit Data Bit 8

If M bit is set, T8 stores ninth bit in transmit data character.

#### M — Mode (Select Character Format)

- 0 = Start, 8 data bits, 1 stop bit
- 1 = Start, 9 data bits, 1 stop bit

#### WAKE — Wake Up by Address Mark/Idle

- 0 = Wake up by IDLE line recognition
- 1 = Wake up by address mark (most significant bit set)

#### SCCR2 - SCI Control 2

\$102D

|        | Bit 7 | 6    | 5   | 4    | 3  | 2  | 1   | Bit 0 |
|--------|-------|------|-----|------|----|----|-----|-------|
|        | TIE   | TCIE | RIE | ILIE | TE | RE | RWU | SBK   |
| RESET: | 0     | 0    | 0   | 0    | 0  | 0  | 0   | 0     |

#### TIE — Transmit Interrupt Enable

- 0 = TDRE interrupts disabled
- 1 = SCI interrupt requested when TRE status flag is set

#### TCIE — Transmit Complete Interrupt Enable

- 0 = TC interrupts disabled
- 1 = SCI interrupt requested when TC status flag is set

#### RIE — Receiver Interrupt Enable

- 0 = RDRF and OR interrupts disabled
- 1 = SCI interrupt requested when RDRF flag or the OR status flag is set

#### ILIE - Idle Line Interrupt Enable

- 0 = IDLE interrupts disabled
- 1 = SCI interrupt requested when IDLE status flag is set

#### TE — Transmitter Enable

- 0 = Transmitter disabled
- 1 = Transmitter enabled

#### RE — Receiver Enable

- 0 = Receiver disabled
- 1 = Receiver enabled

#### RWU — Receiver Wake-Up Control

- 0 = Normal SCI receiver
- 1 = Wake-up enabled and receiver interrupts inhibited

#### SBK — Send Break

- 0 = Break generator off
- 1 = Break codes generate as long as SBK = 1

SCSR — SCI Status \$102E

|        | Bit 7 | 6  | 5    | 4   | 3  | 2  | 1  | Bit 0 |
|--------|-------|----|------|-----|----|----|----|-------|
|        | TDRE  | TC | RDRF | ILE | OR | NF | FE | 0     |
| RESET: | 1     | 1  | 0    | 0   | 0  | 0  | 0  |       |

#### TDRE — Transmit Data Register Empty Flag

Set if transmit data can be written to SCDR; if TDRE = 0, transmit data register is busy Cleared by SCSR read with TDRE set, followed by SCDR write

#### TC — Transmit Complete Flag

Set if transmitter is idle (no data, preamble, or break transmission in progress) Cleared by SCSR read with TC set, followed by SCDR write

#### RDRF -- Receive Data Register Full Flag

Set if a received character is ready to be read from SCDR Cleared by SCSR read with RDRF set, followed by SCDR read

#### IDLE - Idle Line Detected Flag

Set if the RxD line is idle. When RWU = 1, IDLE flag is inhibited
Cleared by SCSR read with IDLE set, followed by SCDR read
Once cleared, IDLE is not set again until the RxD line has been active and becomes idle again

#### OR — Overrun Error Flag

Set if a new character is received before a previously received character is read from SCDR Cleared by SCSR read with OR set, followed by SCDR read

#### NF - Noise Error Flag

Set if majority sample logic detects anything other than a unanimous decision Cleared by SCSR read with NF set, followed by SCDR read

#### FE — Framing Error

Set if a 0 is detected where a stop bit was expected Cleared by SCSR read with FE set, followed by SCDR read

SCDR — SCI Data \$102 F



Receive and transmit are double buffered. Reads access the receive data buffer, and writes access the transmit data buffer.

#### Serial Peripheral Interface (SPI)

The SPI is one of two independent serial communications subsystems that allows the MCU to communicate synchronously with peripheral devices and other microprocessors. Data rates can be as high as one half of the E clock rate when configured as master and as fast as the E clock when configured as slave.



SPI Block Diagram

#### DDRD - Data Direction Register for Port D

\$1009

|                    | Bit 7 | _6 | 5                   | 4           | 3            | _2           | 1           | Bit 0       |
|--------------------|-------|----|---------------------|-------------|--------------|--------------|-------------|-------------|
|                    | 0     | 0  | DDD5                | DDD4        | DDD3         | DDD2         | DDD1        | DDD0        |
| RESET:             | 0     | 0  | 0                   | 0           | 0            | 0            | 0           | 0           |
| Alt. Pin<br>Func.: | -     |    | P <u>D5</u> /<br>SS | PD4/<br>SCK | PD3/<br>MOSI | PD2/<br>MISO | PD1/<br>TxD | PD0/<br>RxD |

DDD5-DDD0 - Data Direction for Port D

When DDRD bit 5 is zero and MSTR = 1 in SPCR, PD5/SS is a general-purpose output and mode fault logic is disabled.

0 = Input

1 = Output

#### SPCR — Serial Peripheral Control

\$1028

|        | Bit 7 | 6   | 5    | 4    | 3    | 2    | 1    | Bit 0 |
|--------|-------|-----|------|------|------|------|------|-------|
|        | SPIE  | SPE | DWOM | MSTR | CPOL | CPHA | SPR1 | SPR0  |
| RESET: | 0     | 0   | 0    | 0    | 0    | 1    | U    | U     |

SPIE — Serial Peripheral Interrupt Enable

0 = SPI interrupts disabled

1 = SPI interrupts enabled

SPE — Serial Peripheral System Enable

0 = SPI off

1 = SPI on

DWOM -- Port D Wire-OR Mode

DWOM effects all six port D pins

0 = Normal CMOS outputs

1 = Open-drain outputs

MSTR - Master Mode Select

0 = Slave mode

1 = Master mode

#### CPOL, CPHA — Clock Polarity, Clock Phase (Refer to SPI Transfer Format figure.)



NOTE: This figure shows the LSBF = 0 default case. If LSBF = 1, data is transferred in reverse order (LSB first).

#### **SPI Transfer Format**

SPR1 and SPR0 - SPI Clock Rate Selects

SPI Clock Rate Selects

| SPR [1:0] | E Clock<br>Divide<br>By | Frequency at E = 1 MHz (Baud) | Frequency at<br>E = 2 MHz<br>(Baud) |
|-----------|-------------------------|-------------------------------|-------------------------------------|
| 00        | 2                       | 500 kHz                       | 1.0 MHz                             |
| 01        | 4                       | 250 kHz                       | 500 kHz                             |
| 10        | 16                      | 62.5 kHz                      | 125 kHz                             |
| 11        | 32                      | 31.25 kHz                     | 62.5 kHz                            |

#### **SPSR** — Serial Peripheral Status

\$1029

|        | Bit 7 | 6    | 5 | 4    | 3 | 2 | 1 | Bit 0 |
|--------|-------|------|---|------|---|---|---|-------|
|        | SPIF  | WCOL | 0 | MODF | 0 | 0 | 0 | 0     |
| RESET: | 0     | 0    | 0 | 0    | 0 | 0 | 0 | 0     |

SPIF — SPI Transfer Complete Flag

Set when and SPI transfer is complete.

Cleared by reading SPSR with SPIF set, followed by SPR access.

WCOL — Write Collision

Set when SPDR is written while transfer is in progress.

Cleared by SPSR with WCOL set, followed by SPR access.

# MODF — Mode Fault (A Mode Fault Terminates SPI Operation) Set when SS is pulled low while MSTR = 1. Cleared by SPSR read with MODF set, followed by SPCR write.

SPDR — SPI Data \$102A

| Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 |
|-------|---|---|---|---|---|---|-------|
| Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 |

SPI is double buffered in, single buffered out.

#### Main Timer

The main timer is based on a free-running 16-bit counter with a four-stage programmable prescaler. A timer overflow function allows software to extend the system's timing capability beyond the counter's16-bit range.

The timer has three channels of input capture, four channels of output compare, and one channel that can be configured as a fourth input capture or a fifth output compare.

The following table summarizes crystal-related frequencies and periods.

**Timer Summary** 

|                          |                                                 | XTAL Frequencies                               |                                                                                              |
|--------------------------|-------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------|
|                          | 4.0 MHz                                         | 8.0 MHz                                        | Other Rates                                                                                  |
| Control                  | 1.0 MHz                                         | 2.0 MHz                                        | (E)                                                                                          |
| Bits                     | 1000 ns                                         | 500 ns                                         | (1/E)                                                                                        |
| PR [1:0]                 | Ma                                              | n Timer Count Rat                              | 98                                                                                           |
| 0 0                      |                                                 |                                                |                                                                                              |
| 1 count — overflow —     | 1.0 μs<br>65.536 ms                             | 500 ns<br>32.768 ms                            | (E/1)<br>(E/2 <sup>16</sup> )                                                                |
| 0 1                      |                                                 |                                                |                                                                                              |
| 1 count —<br>overflow —  | 4.0 μs<br>262.14 ms                             | 2.0 μs<br>131.07 ms                            | (E/4)<br>(E/2 <sup>18</sup> )                                                                |
| 1 0                      |                                                 |                                                |                                                                                              |
| 1 count —<br>overflow —  | 8.0 μs<br>524.29 ms                             | 4.0 μs<br>262.14 ms                            | (E/8)<br>(E/2 <sup>19</sup> )                                                                |
| 1 1                      |                                                 |                                                |                                                                                              |
| 1 count — overflow —     | 16.0 μs<br>1.049 s                              | 8.0 μs<br>524.29 ms                            | (E/16)<br>(E/2 <sup>20</sup> )                                                               |
| RTR [1:0]                | Period                                          | ic (RTI) Interrupt                             | Rates                                                                                        |
| 0 0<br>0 1<br>1 0<br>1 1 | 8.192 ms<br>16.384 ms<br>32.768 ms<br>65.536 ms | 4.096 ms<br>8.192 ms<br>16.384 ms<br>32.768 ms | (E/2 <sup>13</sup> )<br>(E/2 <sup>14</sup> )<br>(E/2 <sup>15</sup> )<br>(E/2 <sup>16</sup> ) |



**Main Timer** 

Note: Port A pin actions are controlled by OC1M, OC1D, PACTL, TCTL1, and TCTL2 registers.

#### **CFORC** — Timer Compare Force

\$100B

|        | Bit 7 | 6    | 5 .  | 4    | 3    | 2 | 1 | Bit 0 |
|--------|-------|------|------|------|------|---|---|-------|
|        | FOC1  | FOC2 | FOC3 | FOC4 | FOC5 | 0 | 0 | 0     |
| RESET: | 0     | 0    | 0    | 0    | 0    | 0 |   |       |

FOC5-FOC1 — Write ones to Force Compare(s)

0 = Not affected

1 = Output compare x action occurs

#### **OC1M** — Output Compare 1 Mask

\$100C

|        | Bit 7 | 6     | 5     | 4     | 3     | 2 | 1 | Bit 0 |
|--------|-------|-------|-------|-------|-------|---|---|-------|
|        | OC1M7 | OC1M6 | OC1M5 | OC1M4 | OC1M3 | 0 | 0 | 0     |
| RESET: | 0     | 0     | 0     | 0     | 0     | 0 |   | 0     |

Set bit(s) to enable OC1 to control corresponding pin(s) of port A.

#### OC1D — Output Compare 1 Data

\$100D

|        | Bit 7 | 6     | 5     | 4     | 3     | 2 | 1 | Bit 0 |
|--------|-------|-------|-------|-------|-------|---|---|-------|
|        | OC1D7 | OC1D6 | OC1D5 | OC1D4 | OC1D3 | 0 | 0 | 0     |
| RESET: | 0     | 0     | 0     |       | 0     | 0 | 0 | 0     |

If OC1Mx is set, data in OC1Dx is output to port A bit x on successful OC1 compares.

#### TCNT — Timer Count

\$100E, \$100F

| \$100E | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | High | TCNT |
|--------|--------|----|----|----|----|----|---|-------|------|------|
| \$100F | Bit 7  | 6  | 5  | 4  | 3  | 2  | 1 | Bit 0 | Low  |      |

TCNT resets to \$0000. In normal modes, TCNT is read-only.

## TIC1-TIC3 — Timer Input Capture

\$1010-\$1015

| \$1010 | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | High | TIC1 |
|--------|--------|----|----|----|----|----|---|-------|------|------|
| \$1011 | Bit 7  | 6  | 5  | 4  | 3  | 2  | 1 | Bit 0 | Low  |      |
| \$1012 | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | High | TIC2 |
| \$1013 | Bit 7  | 6  | 5  | 4  | 3  | 2  | 1 | Bit 0 | Low  |      |
| \$1014 | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | High | TIC3 |
| \$1015 | Bit 7  | 6  | 5  | 4  | 3  | 2  | 1 | Bit 0 | Low  |      |

TICx not affected by reset

## TOC1-TOC4 — Timer Output Compare

\$1016-\$101D

| \$1016  | Bit 15     | 14  | 13 | 12 | 11 | 10 | 9 | Bit 8 | High     | TOC1 |
|---------|------------|-----|----|----|----|----|---|-------|----------|------|
| \$1017  | Bit 7      | 6   | 5  | 4  | 3  | 2  | 1 | Bit 0 | Low      |      |
| \$1018  | Bit 15     | 14  | 13 | 12 | 11 | 10 | 9 | Bit 8 | High     | TOC2 |
| \$1019  | Bit 7      | 6   | 5  | 4  | 3  | 2  | 1 | Bi -0 | Low      |      |
| \$101A  | Bit 15     | 14  | 13 | 12 | 11 | 10 | 9 | Bi -8 | High     | тосз |
| \$101B  | Bit 7      | 6   | 5  | 4  | 3  | 2  | 1 | Bit 0 | Low      |      |
| ا ماداه | <b>5</b> 1 | 4.4 | 40 | 10 | 44 | 10 |   |       | _<br>¬   |      |
| \$101C  | Bit 15     | 14  | 13 | 12 | 11 | 10 | 9 | Bit 8 | High     | TOC4 |
| \$101D  | Bit 7      | 6   | 5  | 4  | 3  | 2  | 1 | Bit 0 | Low      |      |
| \$101E  | Bit 15     | 14  | 13 | 12 | 11 | 10 | 9 | Bit 8 | <br>High | TOC5 |
| \$101L  | טונ וט     | 17  | 10 | 12 | '' |    |   | Dit o | Tilgii   | 1003 |
| \$101F  | Bit 7      | 6   | 5  | 4  | 3  | 2  | 1 | Bit 0 | Low      |      |
|         |            |     |    |    |    |    |   |       |          |      |

All TOCx register pairs reset to ones (\$FFFF)

## TI405 — Timer Input Capture 4/Output Compare 5

\$101E, \$101F

| \$101E | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | High | T1405 |
|--------|--------|----|----|----|----|----|---|-------|------|-------|
| \$101F | Bit 7  | 6  | 5  | 4  | 3  | 2  | 1 | Bit 0 | Low  |       |

All TI4O5 register pairs reset to ones (\$FFFF).

## TCTL1 — Timer Control 1

\$1020

| _      | Bit 7 | 6   | 5   | 4   | 3   | 2   | 1   | Bit 0 |
|--------|-------|-----|-----|-----|-----|-----|-----|-------|
|        | OM2   | OL2 | ОМЗ | OL3 | OM4 | OL4 | OM5 | OL5   |
| RESET: | 0     | 0   | 0   | 0   | 0   | 0   | 0   | 0     |

OM2-OM5 — Output Mode

## OL2-OL5 --- Output Level

| OMx | OLx | Action Taken on Successful Compare        |
|-----|-----|-------------------------------------------|
| 0   | 0   | Timer disconnected from output pin logic. |
| 0   | 1   | Toggle OCx output line.                   |
| 1   | 0   | Clear OCx output line to 0.               |
| 1   | 1   | Set OCx output line to 1.                 |

## TCTL2 — Timer Control 2

\$1021

|        | Bit 7 | 6     | 5     | 4     | 3     | 2     | 1     | Bit 0 |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | EDG4B | EDG4A | EDG1B | EDG1A | EDG2B | EDG2A | EDG3B | EDG3A |
| RESET: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

## **Timer Control Configuration**

| EDGxB | EDGxA | Configuration                 |
|-------|-------|-------------------------------|
| 0     | 0     | Capture disabled              |
| 0     | 1     | Capture on rising edges only  |
| 1     | 0     | Capture on falling edges only |
| 1     | 1     | Capture on any edge           |

## TMSK1 — Timer Interrupt Mask 1

\$1022

|        | Bit 7 | 6    | 5    | 4    | 3     | 2    | 1    | Bit 0 |
|--------|-------|------|------|------|-------|------|------|-------|
|        | OC1I  | OC2I | OC3I | OC4I | 14051 | IC1I | IC2I | IC3I  |
| RESET: | 0     | 0    | 0    | 0    | 0     | 0    | 0    | 0     |

# OC1I-OC4I — Output Compare x Interrupt Enable

If the OCxI enable bit is set when the OCxF flag bit is set, a hardware interrupt sequence is requested.

14O5I — Input Capture 4 or Output Compare 5 Interrupt Enable

When I4/O5 in PACTL is one, I4O5I is the input capture 4 interrupt bit.

When I4/O5 in PACTL is zero, I4O5I is the output compare 5 interrupt control bit.

### IC1I-IC3I — Input Capture x Interrupt Enable

If the ICxI enable bit is set when the ICxF flag bit is set, a hardware interrupt sequence is requested.

### NOTE

Bits in TMSK1 correspond bit for bit with flag bits in TFLG1. Ones in TMSK1 enable the corresponding interrupt sources.

## TFLG1 — Timer Interrupt Flag 1

\$1023

|        | Bit 7 | 6    | 5    | 4    | 3     | 2    | 1    | Bit 0 |
|--------|-------|------|------|------|-------|------|------|-------|
|        | OC1F  | OC2F | OC3F | OC4F | 1405F | IC1F | IC2F | IC3F  |
| RESET: | 0     | 0    | 0    | 0    | 0     | 0    | 0    | 0     |

Clear flags by writing a one to the corresponding bit position(s).

### OC1F-OC4F — Output Compare x Flag

Set each time the counter matches output compare x value.

## 14O5F — Input Capture 4/Output Compare 5 Flag

Set by IC4 or OC5, depending on which function was enabled by I4O5 bit in PACTL.

### IC1F-IC3F — Input Capture x Flag

Set each time a selected active edge is detected on the ICx input line.

### TMSK2 — Timer Interrupt Mask 2

\$1024

| _      | Bit 7 | 6    | 5     | 4    | 3 | 2 | 1   | Bit 0 |
|--------|-------|------|-------|------|---|---|-----|-------|
|        | TOI   | RTII | PAOVI | PAII | 0 | 0 | PR1 | PR0   |
| RESET: | 0     | 0    | 0     | 0    | 0 | 0 |     | 0     |

### TOI — Timer Overflow Interrupt Enable

0 = TOF interrupts disabled

1 = Interrupt requested when TOF is set to one

### RTII — Real-Time Interrupt Enable

0 = RTIF interrupts disabled

1 = Interrupt requested when RTIF is set to one

For bits 5 and 4, refer to Pulse Accumulator.

#### NOTE

Bits in TMSK2 correspond bit for bit with flag bits in TFLG2. Ones in TMSK2 enable the corresponding interrupt sources.

PR1 and PR0 — Timer Prescaler Select

In normal modes, PR1 and PR0 may only be written once, and the write must be within 64 cycles after reset. (Refer to **Timer Summary** table for specific timing values.)

| PR [1:0] | Prescaler |
|----------|-----------|
| 00       | 1         |
| 01       | 4         |
| 10       | 8         |
| 11       | 16        |

TFLG2 — Timer Interrupt Flag 2

\$1025

|        | Bit 7 | 6    | 5     | 4    | 3 | 2 | 1 | Bit 0 |
|--------|-------|------|-------|------|---|---|---|-------|
|        | TOF   | RTIF | PAOVF | PAIF | 0 | 0 | 0 | 0     |
| RESET: | 0     | 0    | 0     | 0    | 0 | 0 | 0 | 0     |

Clear flags by writing a one to the corresponding bit position(s).

TOF — Timer Overflow Flag

Set when TCNT changes from \$FFFF to \$0000.

RTIF — Real Time (Periodic) Interrupt Flag

Set periodically (Refer to Main Timer.)

For bits 6 and 5, refer to Pulse Accumulator.

### PACTL — Pulse Accumulator Control

\$1026

|        | Bit 7 | 6    | 5     | 4     | 3     | 2     | 1    | Bit 0 |
|--------|-------|------|-------|-------|-------|-------|------|-------|
|        | DDRA7 | PAEN | PAMOD | PEDGE | DDRA3 | 14/05 | RTR1 | RTR0  |
| RESET: | 0     | 0    | 0     | 0     | 0     | 0     | 0    | 0     |

For bits 7 and 3, refer to Parallel I/O.

For bits 6-4, refer to Pulse Accumulator.

14/O5 — Input Capture 4/Output Compare 5

0 = OC5 enabled

1 = IC4 enabled

| Real-Time | Interrupt | Rates |
|-----------|-----------|-------|
|-----------|-----------|-------|

| RTR [1:0] | Divide E By | XTAL = 4.0 MHz | XTAL = 8.0 MHz |
|-----------|-------------|----------------|----------------|
| 00        | 213         | 8.19 ms        | 4.096 ms       |
| 01        | 214         | 16.38 ms       | 8.192 ms       |
| 10        | 215         | 32.77 ms       | 16.384 ms      |
| 11        | 216         | 65.54 ms       | 32.768 ms      |
|           | E=          | 1.0 MHz        | 2.0 MHz        |

## **Pulse Accumulator**

The MC68HC811E2 has an 8-bit counter that can be configured to operate as a simple event counter or for gated time accumulation, depending on the PAMOD bit in the PACTL register. The pulse accumulator counter can be read or written at any time.

The port A bit 7 I/O pin can be configured as a clock, in event counting mode, or as a gate signal to enable a free-running clock (E divided by 64) in gated accumulation mode.

**Pulse Accumulator Timing** 

|                       |                     | Common XTAL Frequencies |                 |  |  |  |
|-----------------------|---------------------|-------------------------|-----------------|--|--|--|
|                       | Selected<br>Crystal | 4.0 <b>M</b> Hz         | 8.0 <b>M</b> Hz |  |  |  |
| CPU Clock             | (E)                 | 1.0 MHz                 | 2.0 MHz         |  |  |  |
| Cycle Time            | (1/E)               | 1000 ns                 | 500 ns          |  |  |  |
| Pulse Accumulator (in | Gated Mode)         |                         |                 |  |  |  |
| (E/2 <sup>6</sup> )   | 1 count -           | 64.0 μs                 | 32.0 μs         |  |  |  |
| (E/2 <sup>14</sup> )  | overflow -          | 16.384 ms               | 8.192 ms        |  |  |  |



Pulse Accumulator Block Diagram

## TMSK2 — Timer Interrupt Mask 2

\$1024

|        | Bit 7 | 6    | 5     | 4    | 3 | 2 | 1   | Bit 0 |
|--------|-------|------|-------|------|---|---|-----|-------|
|        | TOI   | RTII | PAOVI | PAII | 0 | 0 | PR1 | PR0   |
| RESET: | 0     | 0    | 0     | 0    | 0 | 0 | 0   | 0     |

For bits 7, 6, 1, and 0, refer to Main Timer.

PAOVi — Pulse Accumulator Overflow Interrupt Enable

- 0 = PAOVF interrupts disabled
- 1 = Interrupt requested when PAOVF is set to one

PAII — Pulse Accumulator Input Edge Interrupt Enable

- 0 = PAIF interrupts disabled
- 1 = Interrupt requested when PAIF is set to one

Bits in TMSK2 correspond bit for bit with flag bits in TFLG2. Ones in TMSK2 enable the corresponding interrupt sources.

### TFLG2 — Timer Interrupt Flag 2

\$1025

|        | Bit 7 | _ 6  | _ 5   | 4    | _3 | 2 | 1 | Bit 0 |
|--------|-------|------|-------|------|----|---|---|-------|
| ĺ      | TOF   | RTIF | PAOVF | PAIF | 0  | 0 | 0 | 0     |
| RESET: | 0     | 0    | 0     | 0    | 0  | 0 | 0 | 0     |

Clear flags by writing a one to the corresponding bit position(s). For bits 7 and 6, refer to **Main Timer.** 

PAOVF — Pulse Accumulator Overflow Flag
Set when PACNT changes from \$FF to \$00

PAIF — Pulse Accumulator Input Edge Flag

Set each time a selected active edge is detected on the PAI input line

### PACTL — Pulse Accumulator Control

\$1026

|        | Bit 7 | 6    | 5     | 4     | 3     | _ 2   | 1    | Bit 0 |
|--------|-------|------|-------|-------|-------|-------|------|-------|
|        | DDRA7 | PAEN | PAMOD | PEDGE | DDRA3 | 14/05 | RTR1 | RTR0  |
| RESET: | 0     | 0    | 0     | 0     | 0     | 0     | 0    | 0     |

For bits 7 and 3, refer to Parallel I/O. For bits 2,1, and 0, refer to Main Timer.

PAEN — Pulse Accumulator System Enable

0 = Pulse Accumulator disabled

1 = Pulse Accumulator enabled

PAMOD — Pulse Accumulator Mode

0 = Event counter

1 = Gate time accumulation

PEDGE — Pulse Accumulator Edge Control

| PAMOD | PEDGE | Action on Clock                         |
|-------|-------|-----------------------------------------|
| 0     | 0     | PAI Falling Edge Increments the Counter |
| 0     | 1     | PAI Rising Edge Increments the Counter  |
| 1     | 0     | A Zero on PAI Inhibits Counting         |
| 1     | 1     | A One on PAI Inhibits Counting          |

#### PACNT — Pulse Accumulator Counter

\$1027

| Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 |
|-------|---|---|---|---|---|---|-------|
| Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 |

Readable and writable

## A/D Converter

The A/D converter system uses an all-capacitive charge-redistribution technique to convert analog signals to digital values. MC68HC811E2 has an 8-channel, 8-bit, multiplexed-input, successive-approximation converter, accurate to  $\pm 1$  least significant bit (LSB). It does not require external sample and hold circuits because of the type of charge-redistribution technique used.

Dedicated lines V<sub>RH</sub> and V<sub>RL</sub> provide the reference supply voltage inputs.

A multiplexer allows the single A/D converter to select one of 16 analog signals (eight pins plus internal signals), as shown in the table in the ADCTL register description.



A/D Converter Block Diagram



A/D Conversion Sequence



<sup>\*</sup>This analog switch is closed only during the 12-cycle sample time.

Electrical Model of an Analog Input Pin (Sample Mode)

### ADCTL - A/D Control/Status

\$1030

|        | Bit 7 | 6 | 5    | 4    | _3 | 2 | _1 | Bit 0 |
|--------|-------|---|------|------|----|---|----|-------|
|        | CCF   | 0 | SCAN | MULT | CD | 8 | СВ | CA    |
| RESET: | U     |   | U    | U    | U  | U | U  | U     |

CCF — Conversions Complete Flag

Set after the fourth conversion in an A/D conversion cycle.

Cleared when ADCTL is written.

SCAN — Continuous Scan Control

0 = Do four conversions and stop

1 = Convert four channels in selected group continuously

MULT — Multiple Channel/Single Channel Control

0 = Convert single channel selected

1 = Convert four channels in selected group

CD-CA -- Channel Select D through A

A/D Converter Channel Assignments

| Ch | annel Selec | t Control | Bits | Channel                | Result in ADRx if |
|----|-------------|-----------|------|------------------------|-------------------|
| CD | cc          | СВ        | CA   | Signal                 | MULT = 1          |
| 0  | 0           | 0         | 0    | AN0                    | ADR1              |
| 0  | 0           | 0         | 1 1  | AN1                    | ADR2              |
| 0  | 0           | 1         | 0    | AN2                    | ADR3              |
| 0  | _ 0         | _1        | 1 1  | AN3                    | ADR4              |
| 0  | 1           | 0         | 0    | AN4*                   | ADR1              |
| 0  | 1           | 0         | 1 [  | AN5*                   | ADR2              |
| 0  | 1           | 1         | 0    | AN6*                   | ADR3              |
| 0  | 1           | 1         | 1 1  | AN7*                   | ADR4              |
| 1  | 0           | X         | X    | Reserved               | _                 |
| 1  | 1           | 0         | 0    | V <sub>RH**</sub>      | ADR1              |
| 1  | 1           | o         | 1 1  | V <sub>RL**</sub>      | ADR2              |
| 1  | 1           | 1         | 0    | (V <sub>RH</sub> )/2** | ADR3              |
| 1  | 1           | 1         | 1 1  | Reserved**             | ADR4              |

<sup>\*</sup> Not bonded in 48-pin model

<sup>\*\*</sup> Used for factory testing

## ADR1-ADR4 - A/D Results

\$1031-\$1034

| \$1031         | Bit 7 | 6 | 5  | 4 | 3 | 2 | 1 | Bit 0 | ADR1 |
|----------------|-------|---|----|---|---|---|---|-------|------|
| <b>\$1</b> 031 | Bit 7 | 6 | 5  | 4 | 3 | 2 | 1 | Bit 0 | ADR2 |
| <b>\$1</b> 031 | Bit 7 | 6 | 5_ | 4 | 3 | 2 | 1 | Bit 0 | ADR3 |
| <b>\$1</b> 031 | Bit 7 | 6 | 5  | 4 | 3 | 2 | 1 | Bit 0 | ADR4 |

# Analog input to 8-Bit Result Translation Table

|           | Bit 7 | _6    | 5     | 4      | 3      | 2      | 1      | Bit 0  |
|-----------|-------|-------|-------|--------|--------|--------|--------|--------|
| % (1)     | 50%   | 25%   | 12.5% | 6.25%  | 3.12%  | 1.56%  | 0.78%  | 0.39%  |
| Voits (2) | 2.500 | 1.250 | 0.625 | 0.3125 | 0.1562 | 0.0781 | 0.0391 | 0.0195 |

(1) % of VRH-VRL

(2) Volts for  $V_{RL} = 0$ ;  $V_{RH} = 5.0 V$ 

## **OPTION** — System Configuration Options

\$1039

Bit 7 6 4 3 2 Bit 0 1 **ADPU CSEL** CME IRQE\* DLY\* 0 CR1\* CR0\* RESET: 0 0 1 0 0 0

ADPU --- A/D Power Up

0 = A/D powered down

1 = A/D powered up

CSEL - Clock Select

0 = A/D and EEPROM use system E clock

1 = A/D and EEPROM use internal RC clock

For bits 5-0, refer to Resets and Interrupts.

<sup>\*</sup>Can be written only once in first 64 cycles out of reset in normal modes, or at any time in special modes.

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patient rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

#### Literature Distribution Centers:

USA: Motorola Literature Distribution: P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.: European Literature Center; 88 Tanners Drive, Blakelands. Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.



MC68HC811E2 BR780/D