Course Code: MAT 202

ITSJ/RW – 17 / 1021

Third Semester B. E. (Computer Science and Engineering / Information Technology) Examination

ENGINEERING MATHEMATICS – III

Time: 3 Hours [Max. Marks: 60

Instructions to Candidates :—

- (1) All questions carry equal marks.
- (2) Use of Non programmable calculator is permitted.
- (3) Use of normal distribution table is permitted.
- 1. Solve any Two :—
 - (a) Find the values of λ for which the following system of equations is consistent and has non-trivial solutions. Solve equations for all such values of λ .

$$(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0$$
, $(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0$, $2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0$ 5(CO 1)

- (b) Prove that $3 \tan A = A \tan(3)$ where $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$ 5(CO 1)
- (c) Determine the largest eigen value and the corresponding eigen vector of the following matrix by iteration method.

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 5(CO1)

- 2. Solve :—
 - (a) Find by Regula-falsi method the root of the equation : $xe^x = \cos x$. 5(CO 1)
 - (b) Sovle by Euler's modified method : $\frac{dy}{dx} = \log(x+y)$, y(0) = 2, at x = 0.4 and x = 0.8 with h = 0.4.

ITSJ/RW - 17 / 1021 Contd.

- 3. Solve :—
 - (a) Using the Z-transform, solve:

$$y_{n+2} - 2y_{n+1} + y_n = 3n + 5, y_0 = y_1 = 2.$$
 5(CO 2)

- (b) Determine the Z-transform of following:
 - (i) $(n+1)^2$

(ii) $n \cos(n\theta)$

5(CO 2)

- 4. Solve any Two :—
 - (a) The probability function of a random variable X is zero except at the point x = 0, 1, 2. At these points it has the values $P(0) = 3c^3$, $P(1) = 4c 10c^2$ and P(2) = 5c 1 for some c > 0.
 - (i) Determine the value of c.
 - (ii) Describe the distribution function and draw its graph.
 - (iii) Find P(X < 2).

5(CO 3)

- (b) The diameter of an electric cable, say X, is assumed to be a continuous random variable with f(x) = 6x(1-x), $0 \le x \le 1$.
 - (i) Check that above f(x) is probability density function.
 - (ii) Determine a number 'b' such that P(X < b) = P(X > b)5(CO 3)
- (c) Two random variables have joint density function:

$$f(x,\ y) = \ \left\{ \begin{array}{cc} C(xy + e^x), & 0 < x < 1, & 0 < y < 1 \\ \\ 0 & , & otherwise \end{array} \right.$$

- (i) Determine C.
- (ii) Examine whether X and Y are independent random variables. $5(CO\ 3)$
- 5. Solve any **Two** :—
 - (a) If X is a random variable, then prove that $Var(aX + b) = a^2Var(X)$, where a and b are constant. 5(CO 3)

(b) Let the joint density function of the random variables X and Y be

$$f(x,\ y) \ = \left\{ \begin{array}{ll} 2(x+y-3xy^2) & , \ 0 < x < 1, \ 0 < y < 1 \\ \\ 0 & , \ otherwise \end{array} \right.$$

- (i) Find the E(X) and E(Y).
- (ii) Is E(XY) = E(X)E(Y) ?

(iii) Find
$$E(X+Y)$$
 and $E(X-Y)$. 5(CO 3)

(c) A discrete random variable X has probability function:

$$f(x) = \frac{2}{3^x}$$
, $x = 1, 2, 3,...$

Find:

- (i) The mode.
- (ii) The median.
- (iii) Compare them with mean. 5(CO 3)

6. Solve :-

- (a) The mean and variance of binomial distribution are 4 and 4/3 respectively. Find $P(X \ge 1)$.
- (b) In a book of 520 pages, 390 typo-graphical errors occur. Assuming Poisson law for the number of errors per page, find the probability that a random sample of 5 pages will contain no error.

 3(CO 3)
- (c) In a distribution exactly normal, 7% of the items are under 35 and 89% are under 63. What are the mean and standard deviation of the distribution?

 4(CO 3)

3