Tema 3

Los contenidos de esta presentación han sido adaptados a partir del material creado por los profesores Javier Junquera Sánchez y Francisco Manuel Sáez de Adana Herrero.

Índice

Introducción

- Divide y vencerás
- Búsqueda binaria

Ordenación eficiente

- Mergesort
- Quicksort

Ejemplos

- Exponenciación binaria
- Multiplicación de matrices

Ejemplo

¿Cómo buscar un portal en una calle?

Ejemplo

¿Cómo buscar una palabra en el diccionario?

Es una técnica de diseño de algoritmos:

La técnica divide y vencerás consiste en descomponer el caso a resolver en subcasos más pequeños del mismo problema.

Posteriormente, se resuelve independientemente cada subcaso y se combinan los resultados para construir la solución el caso original.

Este proceso se suele aplicar recursivamente y la eficiencia de esta técnica depende de cómo se resuelvan los subcasos.

Se trata, por tanto, de un esquema en 3 etapas.

1. Dividir

Descomponer el problema en subproblemas, hasta encontrar el caso base.

2. Conquistar

Resolver los subproblemas, y obtener soluciones parciales.

3. Vencer

Combinar las soluciones parciales para obtener la solución.

Para aplicar la estrategia divide y vencerás, debemos asegurarnos de que:

- Un subcaso concreto, sólo debe evaluarse una vez.
- Los subcasos deben ser de tamaño similar.
- Recomponer los subcasos debe permitir obtener la solución.

Hay casos que podremos resolver iterativamente (i.e., dividiendo el problema, y obteniendo la solución mezclando soluciones parciales), o recursivamente (i.e., profundizando en las particiones hasta encontrar la solución)

Implementación en Python:

```
def divide y venceras(problema):
    if es solucion simple(problema):
        return solucion directa(problema)
    subproblemas = dividir(problema)
    # Resolver cada subproblema recursivamente
    soluciones parciales = []
    for p in subproblemas:
        soluciones parciales += [divide y venceras(p)]
    # Combinar las soluciones de los subproblemas para obtener la solución
    solucion = combinar(soluciones parciales)
    return solucion
```


Determinación del umbral (caso base):

Cuando el problema sea lo suficientemente pequeño no se realizan más divisiones.

Este límite lo marca el umbral. El umbral será un n_0 tal que, cuando el tamaño del caso sea menor o igual que este, el problema se resolverá de forma directa, es decir, no se generarán más llamadas recursivas.

La determinación del umbral óptimo es un problema complejo.

Determinación del umbral (caso base):

Dada una implementación particular, el umbral puede calcularse empíricamente mediante pruebas de rendimiento.

También puede calcularse usando la siguiente técnica:

- Obtener las ecuaciones de recurrencia del algoritmo.
- Determinar los valores de las constantes para una implementación concreta del algoritmo.
- El umbral óptimo se estima hallando el tamaño n del caso para el cual no hay diferencia entre aplicar directamente el algoritmo clásico o pasar a un nivel más de recursión.

Determinación del umbral (caso base):

En todo caso, se utilizará el algoritmo directo cuando el tamaño del problema sea menor que el umbral elegido.

Coste computacional (teorema maestro):

$$T_2(n) = \begin{cases} g(n) & \text{si } 0 \le n < c \\ a \cdot T_2(n/c) + b \cdot n^k & \text{si } c \le n \end{cases} \Rightarrow T_2(n) \in \begin{cases} \Theta(n^k) & \text{si } a < c^k \\ \Theta(n^k \cdot \log n) & \text{si } a = c^k \\ \Theta(n^{\log_c a}) & \text{si } a > c^k \end{cases}$$

Sea n el tamaño de nuestro caso original y sea a el número de subcasos; existe una constante c tal que el tamaño de los subcasos es aproximadamente n/c.

La función g(n) representa el tiempo de resolver el problema de forma directa (caso base).

Los valores más frecuentes para k son k=0 y k=1, dependen de las operaciones adicionales.

Dado un número base x y un exponente n, se quiere calcular x^n de forma eficiente.

El método más simple es multiplicar x x por sí mismo n veces:

$$x^n = x \times x \times x \times \dots \times x$$
 (n veces)

- Este enfoque tiene un costo de O(n)
- Es ineficiente para exponentes grandes.

Solución: Exponentiación rápida.

Se usa recursión y dividir el problema en partes más pequeñas.

División del problema:

Sabiendo que:

• Sin es par:

$$x^n=(x^{n/2})\times (x^{n/2})$$

• Sin es impar:

$$x^n = x \times (x^{(n-1)/2}) \times (x^{(n-1)/2})$$

- Este método reduce la cantidad de multiplicaciones
- Se pasa de O(n) a $O(\log n)$

Código en Python:

```
def exp rapida(x, n):
   if n == 0:
       return 1 # Caso base: x^0 = 1
   mitad = exp rapida(x, n // 2) # Resuelve x^{(n/2)}
   resultado = mitad * mitad # Solo una multiplicación
   if n % 2 != 0: # Si n es impar, multiplicamos por x extra
       resultado *= x
   return resultado
```

Un ejemplo práctico: Calcular 2¹⁰

Con el enfoque se tiene:

Nivel	Operaciones en cada nivel
$2^{10}=2^5 imes 2^5$	1 multiplicación
$2^5=2 imes(2^2 imes2^2)$	1 multiplicación por lado (2 en total)
$2^2=2^1 imes 2^1$	1 multiplicación por lado (4 en total)
$2^1=2$ (Caso base)	0 multiplicaciones

✓ Total: 1 + 2 + 1 = 4 multiplicaciones

Con el método más simple se realizan 10 multiplicaciones

Analizando la Recursión:

```
exp_rapida(2, 10)
 - exp_rapida(2, 5)
 - exp rapida(2, 2)
   — exp rapida(2, 1)
  -- exp rapida(2, 0) → Devuelve 1
       — Combina: 1 × 1 → Devuelve 2
        — Combina: 2 × 2 → Devuelve 4
     \rightarrow exp_rapida(2, 5) \rightarrow Toma 4 y lo usa: 4 × 4 = 16
     - Como 5 es impar, multiplica por 2: 16 × 2 = 32
 — Combina: 32 × 32 → Devuelve 1024 ✓
```


Se trata de una de las aplicaciones más sencillas de divide y vencerás. Realmente no se va dividiendo el problema, sino que se va reduciendo su tamaño en cada paso. Es un algoritmo divide y vencerás de reducción o simplificación.

- Dividir: El problema se descompone en subproblemas de menor tamaño (n / 2).
- 2. Conquistar: No hay soluciones parciales, la solución es única.
- 3. Vencer: No es necesario combinar las soluciones.

		10	13	35	59	77	85	95	96
--	--	----	----	----	----	----	----	----	----

10 13 35 <u>59</u> 77 85 95 96		10	13	35	59	77	85	95	96
--------------------------------	--	----	----	----	----	----	----	----	----

10	13	35	59	77	85	95	96

10	13	35	59	77	85	95	96

Implementación en Python:

```
def busqueda binaria(array :list, item :int) -> bool:
    if len(array) == 0:
        return False
    mid = len(array) // 2
    if array[mid] == item:
        return True
    if item < array[mid]:</pre>
        return busqueda binaria(array[:mid], item)
    else:
        return busqueda binaria(array[mid + 1:], item)
```


Complejidad:

En cada paso, el tamaño del problema se reduce a la mitad.

Complejidad:

$$n = 100 \rightarrow 50, 25, 13, 7, 4, 2, 1 \rightarrow 7 pasos$$

$$n = 50 \rightarrow 25, 13, 7, 4, 2, 1 \rightarrow 6 pasos$$

$$n = 20 \rightarrow 10, 5, 3, 2, 1 \rightarrow 5 pasos$$

$$n = 10 \rightarrow 5, 3, 2, 1 \rightarrow 4 pasos$$

$$n = 8 \rightarrow 4, 2, 1 \rightarrow 3 \text{ pasos}$$

Complejidad:

$$n = 100 \rightarrow 50, 25, 13, 7, 4, 2, 1 \rightarrow 7 \text{ pasos } \rightarrow 2^7 = 128 \rightarrow \log(128)$$

$$n = 50 \rightarrow 25, 13, 7, 4, 2, 1 \rightarrow 6 \text{ pasos } \rightarrow 2^6 = 64 \rightarrow \log(64)$$

$$n = 20 \rightarrow 10, 5, 3, 2, 1 \rightarrow 5 \text{ pasos } \Rightarrow 2^5 = 32 \rightarrow \log(32)$$

$$n = 10 \rightarrow 5, 3, 2, 1 \rightarrow 4 \text{ pasos } \rightarrow 2^4 = 16 \rightarrow \log(16)$$

$$n = 8 \rightarrow 4, 2, 1 \rightarrow 3 \text{ pasos } \Rightarrow 2^3 = 8 \rightarrow \log(8)$$

$$T(n) \in O(\log(n))$$

Complejidad (teorema maestro):

$$T_2(n) = \begin{cases} g(n) & \text{si } 0 \le n < c \\ a \cdot T_2(n/c) + b \cdot n^k & \text{si } c \le n \end{cases} \Rightarrow T_2(n) \in \begin{cases} \Theta(n^k) & \text{si } a < c^k \\ \Theta(n^k \cdot \log n) & \text{si } a = c^k \\ \Theta(n^{\log_c a}) & \text{si } a > c^k \end{cases}$$

- $a = 1 \rightarrow Porque$ al dividir, solo nos quedamos con un caso.
- $c = 2 \rightarrow \text{Porque dividimos el tamaño del problema entre 2}$.
- $k = 0 \rightarrow \text{Porque las operaciones adicionales son constantes.}$

$$T(n) \in O(n^0 \log(n)) \in O(\log(n))$$

Ordenación eficiente

Dado un vector T[1..n], inicialmente desordenado, se ordenará aplicando la técnica de divide y vencerás, partiendo el vector inicial en dos subvectores más pequeños.

Se utilizarán dos técnicas:

- Ordenación por mezcla (Mergesort)
- Ordenación rápida (Quicksort)

$$T(n) \in O(n \log(n))$$

MergeSort

Pasos:

- 1. Se divide el vector en dos mitades de forma recursiva.
- 2. Cada subconjunto pertenece a la mitad izquierda o a la mitad derecha de un subconjunto más grande.
- 3. Se combinan los subconjuntos de forma ordenada para obtener la solución.

4 1 7 3 2 9 5

MergeSort

4 1 7 3 2 9 5

4	1	7	3

2	9	5
	9	5

	4		1	7	7	3	2	9		5		
4	1		7		3			2	!	9	5	
4	1 7			3			2	9		5		

	4	1	7	3	2	9	5		
4	1	7	3			2	9	5	
4	1	7	3			2	9	5	
4	1	7		3	2		9	5	

Para combinar:

- Se compara el primer elemento de la izquierda con el primero de la derecha y se escoge el menor hasta que una de las partes se quede sin elementos.
- Se añaden los elementos restantes de la otra parte.

 4
 7
 3
 2
 9
 5

4

7 3 2 9 5

 7
 2
 9
 5

 1
 4
 3

Combinamos los siguientes subconjuntos de la misma forma.

Recuerda, para combinar:

- Se compara el primer elemento de la izquierda con el primero de la derecha y se escoge el menor hasta que una de las partes se quede sin elementos.
- Se añaden los elementos restantes de la otra parte.

4 3 7 2 9 5

4 3 7 2 9 5

 4
 7
 2
 9
 5

7 2 9 5

7 2 9 5

1 3 4

7 2 9 5

1 3 4

2 9 5

1 3 4 7

1 3 4 7

 9
 5

 1
 3
 4
 7

Combinamos el último conjunto de la misma forma.

1 3 4 7

3 4 7

3 4 7

3 4 7

3 4 7

4 7 5

1 2 3

1 2 3 4

 7
 5

 1
 2
 3
 4

1 2 3 4 5

MergeSort


```
def merge sort(array :list) -> list:
    n = len(array)
    if n <= 1:
        return array
    mid = n // 2
    left = merge sort(array[:mid])
    right = merge sort(array[mid:])
    sorted array = []
    while len(left) > 0 and len(right) > 0:
        if left[0] <= right[0]:</pre>
            sorted_array.append(left[0])
            left = left[1:]
        else:
            sorted_array.append(right[0])
            right = right[1:]
    sorted array += left + right
    return sorted array
```

MergeSort

Complejidad (teorema maestro):

$$T_2(n) = \begin{cases} g(n) & \text{si } 0 \le n < c \\ a \cdot T_2(n/c) + b \cdot n^k & \text{si } c \le n \end{cases} \Rightarrow T_2(n) \in \begin{cases} \Theta(n^k) & \text{si } a < c^k \\ \Theta(n^k \cdot \log n) & \text{si } a = c^k \\ \Theta(n^{\log_c a}) & \text{si } a > c^k \end{cases}$$

- $a = 2 \rightarrow Porque siempre se hacen dos llamadas recursivas.$
- $c = 2 \rightarrow \text{Porque dividimos el tamaño del problema entre 2}$.
- $k = 1 \rightarrow Porque combinar tiene un coste lineal.$

$$T(n) \in \mathcal{O}(n^1 \log(n))$$

Pasos:

- 1. Se escoge un elemento del array como pivote.
- 2. Los elementos mayores que el pivote se almacenan a la derecha y los menores a la izquierda.
- 3. Se combina la solución de ordenar la parte izquierda (usando el mismo algoritmo de forma recursiva), añadir el pivote y ordenar la parte derecha (de la misma forma).

4	1	7	3	2	9	5

Pasos:

- 1. Se escoge un elemento del array como pivote.
- 2. Los elementos mayores que el pivote se almacenan a la derecha y los menores a la izquierda.
- 3. Se combina la solución de ordenar la parte izquierda (usando el mismo algoritmo de forma recursiva), añadir el pivote y ordenar la parte derecha (de la misma forma).

4	1	7	3	2	9	5

4	1	7	3	2	9	5

Se escoge un elemento del array como pivote.

1 3 2 7 9 5

Se colocan los menores a la izquierda y los mayores a la derecha.

 1
 3
 2

 7
 9
 5

Se repite el proceso con cada parte.

Se repite el proceso con cada parte.

- a) Conjunto vacío →[]
- b) Conjunto con un elemento → [a]
- c) Conjunto con dos elementos → [a, b] (en orden)

Se combinan a la vuelta de la recursión.

Se combinan a la vuelta de la recursión.

1	2	3	4	5	7	9


```
def quicksort(array :list) -> list:
    if len(array) <= 1:</pre>
        return array
    pos = random.randint(0, len(array) - 1)
    pivote = array[pos]
    left = []
    right = []
    for num in array[:pos] + array[pos + 1:]:
        if num <= pivote:</pre>
            left.append(num)
        else:
            right.append(num)
    return quicksort(left) + [pivote] + quicksort(right)
```


Complejidad (teorema maestro):

$$T_2(n) = \begin{cases} g(n) & \text{si } 0 \le n < c \\ a \cdot T_2(n/c) + b \cdot n^k & \text{si } c \le n \end{cases} \Rightarrow T_2(n) \in \begin{cases} \Theta(n^k) & \text{si } a < c^k \\ \Theta(n^k \cdot \log n) & \text{si } a = c^k \\ \Theta(n^{\log_c a}) & \text{si } a > c^k \end{cases}$$

- $a = 2 \rightarrow Porque siempre se hacen dos llamadas recursivas.$
- $c = 2 \rightarrow \text{Porque dividimos el tamaño del problema entre 2}$.
- $k = 1 \rightarrow \text{Porque dividir el array en dos partes tiene coste lineal.}$

$$T(n) \in O(n^1 \log(n))$$

