week 7 day 1

"Exact testing for model/data fit for log-linear models"

"Part Two"

"Algebraic & Geometric Methods in Statistics"

Sonja Petrović Created for Math/Stat 561

Feb 20, 2023.

Agenda

- Chapter 9 from our textbook: Fisher's exact test
- Part of chapter 8, as we may need the cone of sufficient statistics.

Goals

- LAST LECTURE:
 - Understand hypotheses testing for model/data fit
- THIS LECTURE: we will work towards
 - What is a p-value for a goodness-of-fit test?
 - Asymptotic vs. exact tests
 - Fisher's test and example
 - General goodness of fit test for log-linear models
 - Open problems and relation to projects!

Recap

Exact test (Fisher)

In an **exact** goodness-of-fit test, one uses the exact distribution of the statistic. . .

Recap

Exact test (Fisher)

In an **exact** goodness-of-fit test, one uses the exact distribution of the statistic... which is **what**?

	der	geno	g		der	gend	g
Nb	F	М	range	Nb	F	M	range
4	0	9	<=135K	4	1	8	<=135K
2	10	1	> 135K	2	9	2	> 135K
	der	enc	g				
Nb	F	М	range				
3	1	9	<=135K				
3	9	1	> 135K				

Conclusion? Evidence in the data? Significance?

Definition [p-value]

Refer to Chapter 5. Discuss in lecture / board.

- Read the beginning of Chapter 9. Section 9.1: Conditional inference.
 - We are conditioning on the row and column sums of the table.
 - These are sufficient statistics for the independence model.
 - This is a general strategy. . .

Models with a design matrix

- X_1, \ldots, X_k discrete random variables, $X_i \in \{1, \ldots, d_i\}$
- $u=\mathsf{a}$ k-way contingency table $u\in\mathbb{Z}_{>0}^{d_1 imes\cdots imes d_k}$ [Draw a table!] Flatten u to vector.

Log-linear model

Sufficient statistics = marginals of
$$u$$
: $P_{\theta}(U = u) = \exp{\langle Au, \theta \rangle - \psi(\theta)}$.

Example $X_1 \perp \!\!\! \perp X_2$

$$\begin{bmatrix} u_{11} \\ \vdots \\ u_{d-1} \end{bmatrix} = \begin{bmatrix} u_{1+} & \dots & u_{+d_2} \end{bmatrix}.$$

$$\int_{(d_1+d_2)\times d_1}$$

The general exact test for contingency tables [board lecture]

- Proposition 9.1.1. [stated without proof]
- p.192 "A similar strategy is based on the likelihood ratio test, where we use the G statistic, instead of the X2 statistic."
- Definition 9.1.3. fiber
- p194: Problem 9.1.6. understand the problem definition
 - Look back to the example from Lecture 10:

Interpret: what are all the possible tables? What is the probability of any given table?

	М	F	T/Nb	totals
≤ 135K	?	?	?	13
> 135 K	?	?	?	13
totals	10	10	6	26

Here's a cheat sheet:

Before we proceed with the Fisher test, we first introduce some notations. We represent the cells by the letters a, b, c and d, call the totals across rows and columns marginal totals, and represent the grand total by n. So the table now looks like this:

	Men	Women	Row Total
Studying	а	b	a + b
Non-studying	с	d	c + d
Column Total	a + c	b + d	a+b+c+d (=n)

Fisher showed that conditional on the margins of the table, *a* is distributed as a hypergeometric distribution with *a+c* draws from a population with *a+b* successes and *c+d* failures. The probability of obtaining such set of values is given by:

$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}} = \frac{\binom{a+b}{b}\binom{c+d}{d}}{\binom{n}{b+d}} = \frac{(a+b)! \ (c+d)! \ (a+c)! \ (b+d)!}{a! \ b! \ c! \ d! \ n!}$$

where $\binom{n}{k}$ is the binomial coefficient and the symbol ! indicates the factorial operator. This can be seen as follows. If the marginal totals (i.e. a+b,c+d,a+c, and b+d) are known, only a single degree of freedom is left: the value e.g. of a suffices to deduce the other values. Now, p=p(a) is the probability that a elements are positive in a random selection (without replacement) of a+c elements from a larger set containing a elements in total out of which a+b are positive, which is precisely the definition of the hypergeometric distribution.

Figure 1: From Wikipedia:)

The following may be covered in Lecture 11 or 12, depending on timing:

- Markov bases and Metropolis-Hastings that is the start of Section 9.2.
 - include example 201-202 culminating with Proposition 9.2.10.
 - look out for felix's talk in april!

A warning sign

include example. 8.2.2. nonexistent MLE!

Resources & License

- Quick summary notes about p-values that I wrote for Stat 514.
- Read about hypothesis tests for context of the model fitting tests in these lecture notes.
- ullet This lesson from Penn State online offers a one-page summary of Fisher's exact test for 2 \times 2 tables, as it was developed by Sir Fisher!
- Believe it or not, there is a great 2×2 example on Wikipedia, a page which actually contains a really good explanation for this one example.

This document is created for Math/Stat 561, Spring 2023.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.