Recommender Systems:

Latent-Factors Based

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- Data Mining, The Textbook (2015) by Charu
 Aggarwal (Section 18.5) slides by Lijun Zhang
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 9) - slides A, B

Key idea

- Summarize the correlations across rows and columns in the form of lower dimensional vectors, or latent factors
- These latent factors become hidden variables that encode the correlations in the data matrix in a concise way and can be used to make predictions
- Estimation of the k-dimensional dominant latent factors is often possible even from **incompletely** specified data

Modeling

- n users: $\overline{U_1},\ldots,U_n\in\mathbb{R}^k$
- d items: $\overline{I_1}, \dots, I_d \in \mathbb{R}^k$
- Approximate rating r_{ii} by $r_{ij} pprox \langle \overline{U_i}, \overline{I_j} \rangle = \overline{U_i}^T \overline{I_j} = \overline{I_j}^T \overline{U_i}$
- Approximate rating matrix $D = [r_{ij}]_{n \times d}$ $D \approx F_{\text{user}} F_{\text{item}}^T \qquad F_{\text{user}} \in \mathbb{R}^{n \times k}$ $F_{\text{item}} \in \mathbb{R}^{d \times k}$

Matrix factorization

Factorizing D into U and V

$$D \approx UV^T$$

Objective when D is fully observed

$$\min \|D - UV^T\|_F^2$$

Objective when D is partially observed

$$\min \sum_{(i,j)\in\Omega} \left(D_{ij} - \overline{U_i}^T \overline{V_j} \right)^2$$

 Ω is the set of observed cells

 $||A||_F = \sqrt{\sum_{i,j} a_{ij}^2}$

Non-negative, regularized matrix factorization

• Matrix factorization $D \approx UV^T$

Objective:
$$\min \sum_{(i,j)\in\Omega} \left(D_{ij} - \overline{U_i}^T \overline{V_j}\right)^2 + \lambda \left(\|U\|_F^2 + \|V\|_F^2\right)$$

 Ω is the set of observed cells in the matrix

$$U \ge 0, V \ge 0$$

Example 1: grocery shopping

Example: grocery shopping

	John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2
Fruits	2	3	1	1	2	2
Sweets	1	1	1	0	1	1
Bread	0	2	3	4	1	1
Coffee	0	0	0	0	1	0

- This purchase history indicates the number of time each person has purchased an item
- For clarity we're dealing with categories of items, but they can be the items themselves

In Python

Python code

	John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2
Fruits	2	3	1	1	2	2
Sweets	1	1	1	0	1	1
Bread	0	2	3	4	1	1
Coffee	0	0	0	0	1	0

```
V = np.array(
          [[0,1,0,1,2,2],
          [2.3.1.1.2.2].
          [1.1.1.0.1.1]
          [0.2.3.4.1.1].
          [0.0.0.0.1.01]
V = pd.DataFrame(V, columns=['John',
'Alice', 'Mary', 'Greg', 'Peter',
'Jennifer'l)
V.index = ['Vegetables', 'Fruits',
'Sweets', 'Bread', 'Coffee']
```

This example (2018) by Piotr Gabrys

Matrix factorization ($V \simeq WH$)

Matrix W (items x factors) with possible names for each factor added for legibility

	Fruits pickers	Bread eaters	Veggies
Vegetables	0.00	0.04	2.74
Fruits	1.93	0.15	0.47
Sweets	0.97	0.00	0.00
Bread	0.00	2.66	1.18
Coffee	0.00	0.00	0.59

This example (2018) by Piotr Gabrys

Python code

```
from sklearn.decomposition
import NMF
nmf = NMF(3)
nmf.fit(V)
H =
pd.DataFrame(np.round(nmf.com
ponents_,2),
columns=V.columns)
H.index = ['Fruits pickers',
'Bread eaters', 'Veggies']
```

w =
pd.DataFrame(np.round(nmf.tra
nsform(V),2),
columns=H.index)

Matrix W (items x factors)

	Fruits pickers	Bread eaters	Veggies
Vegetables	0.00	0.04	2.74
Fruits	1.93	0.15	0.47
Sweets	0.97	0.00	0.00
Bread	0.00	2.66	1.18
Coffee	0.00	0.00	0.59

Possible names for each factor added for legibility: these names are **not** needed for the method to work

	Conce	0.00	0.00	0.00	N	/latrix	H (fact	ors x	people	!)
					John	Alice	Mary	Greg	Peter	Jennifer
			Fru	its pickers	1.04	1.34	0.55	0.26	0.89	0.90
			Br	ead eaters	0.00	0.60	1.12	1.36	0.03	0.07
т	his ovemple (201)	0) by Diotr Cobry		Veggies	0.00	0.35	0.00	0.34	0.77	0.69
I	his example (2018	b) by Pioli Gabiy	5							11/2

Reconstruction

	Reconstructed matrix (W H)						W H)							
	John	Alice	Mary	Greg	Peter	Jennifer			John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2		Vegetables	0.00	0.98	0.04	0.99	2.11	1.89
Fruits	2	3	1	1	2	2		Fruits	2.01	2.84	1.23	0.87	2.08	2.07
Sweets	1	1	1	0	1	1		Sweets	1.01	1.30	0.53	0.25	0.86	0.87
Bread	0	2	3	4	1	1		Bread	0.00	2.01	2.98	4.02	0.99	1.00
Coffee	0	0	0	0	1	0		Coffee	0.00	0.21	0.00	0.20	0.45	0.41

Recommendation

Original matrix (V)								Reconstructed matrix (W H)					W H)	
	John	Alice	Mary	Greg	Peter	Jennifer			John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2		Vegetables	0.00	0.98	0.04	0.99	2.11	1.89
Fruits	2	3	1	1	2	2		Fruits	2.01	2.84	1.23	0.87	2.08	2.07
Sweets	1	1	1	0	1	1		Sweets	1.01	1.30	0.53	0.25	0.86	0.87
Bread	0	2	3	4	1	1		Bread	0.00	2.01	2.98	4.02	0.99	1.00
Coffee	0	0	0	0	1	0		Coffee	0.00	0.21	0.00	0.20	0.45	0.41

If you were to recommend one product to someone, what would you recommend and to whom?

Evaluation

Direct evaluation

- Randomized controlled experiment
 - Renamed A/B testing for ... reasons
 - People are split randomly in control/experimental
 - Control group: receives one type of recommendation
 - Experimental group: receives another type
- Metrics such as CTR, retention, etc.
- Requires infrastructure, users, policies

Evaluating with existing data

	•	m	iovie	5		
1	1	3	4			
		3	5			5
			4	5		5
users			3			
users			3			
	2			2		2
					5	
		2	1			1
		3			3	
	1					

Evaluating with existing data

Evaluation metrics

RMSE (root of mean of squared errors)

$$\sqrt{E[(x-\hat{x})^2]}$$

- Precision @ k
 - % of recommendations that are correct among those in the top k positions
- Rank correlation
 - Spearman's correlation between system and user

Evaluating is hard

- Accuracy is not all
- We also want diversity
- We want to be contextually sensitive
- The order of predictions matters
- RMSE might penalize a method that does well for high ratings but bad for others

Example 2: Netflix prize

Example 2: Netflix prize (2009)

- Netflix offered \$1,000,000 to anyone beating their algorithm by 10% in RMSE
- Provided 100M (user, movie) ratings for training
- Held a testing set and allowed one guess/day on the testing set to create a leader board

Latent factors

In latent factor space, similar movies are mapped to similar points

Shortly before deadline ...

The big picture Solution of BellKor's Pragmatic Chaos

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 \$ leaders.

Rank **Team Name** Best Test Score % Improvement Best Submit Time Grand Prize - RMSE = 0.8567 - Winning Team Pell Yor's Pro-BellKor's Pragmatic Chaos 0.8567 10.06 0.8567 10.06 The Ensemble 2009-07-26 18:38:22 Grand Prize Team Opera Solutions and Vandelay United 0.8588 9.84 2009-07-10 01:12:31 9.81 Vandelay Industries! 0.8591 9.77 PragmaticTheory 0.8594

26 July 2009.- Bellkor team submits 40 minutes before the deadline, "The Ensemble" team made of a mix of other teams submitted 20 minutes before the deadline.

Bellkor team wins one million dollars

Summary

Things to remember

- Interaction-based recommendations
 - Latent factors based
- Evaluation methods

Exercises for TT16-TT18

- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. Note that some exercises cover advanced concepts:
 - Exercises 9.2.8
 - Exercises 9.3.4
 - Exercises 9.4.6