We use cookies on kaggle to deliver our services, analyze web traffic, and improve your experience on the site. By using kaggle, you agree to our use of cookies.

Got it

Learn more

kaggle

Q Search

Competitions Datasets Notebooks Discussion Courses

Sign in

Register

データの読み込み

```
In [1]:
        # This Python 3 environment comes with many helpful analytics libraries
        # It is defined by the kaggle/python docker image: https://github.com/ka
        ggle/docker-python
        # For example, here's several helpful packages to load in
        import numpy as np # linear algebra
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
        # Input data files are available in the "../input/" directory.
        # For example, running this (by clicking run or pressing Shift+Enter) wi
        ll list the files in the input directory
        import os
        print(os.listdir("../input"))
        import seaborn as sns
        # Any results you write to the current directory are saved as output.
         \hbox{['DSS\_DMC\_Description.pdf', 'carInsurance\_train.csv', 'carInsurance\_te}\\
         st.csv']
In [2]:
        train = pd.read_csv('../input/carInsurance_train.csv')
        test = pd.read_csv('../input/carInsurance_test.csv')
In [3]:
        train.head()
Out[3]:
                                                                HHInsurance
           ld Age
                                       Education
                                                Default Balance
                                                                            CarLoan Comm
                           Job
                                Marital
                                                 0
                                                        1218
                                                                            0
           1
              32
                    management
                                single
                                       tertiary
                                                                                     telepho
        1
                    blue-collar
                                                        1156
                                                                                    NaN
           2
              32
                                                                            0
                                married
                                       primary
                                                 0
        2
           3
              29
                                       tertiary
                                                 0
                                                        637
                                                                            0
                                                                                     cellula
                    management
                                single
        3
           4
              25
                    student
                                single
                                       primary
                                                 0
                                                        373
                                                                            0
                                                                                     cellula
        4
           5
               30
                    management
                               married
                                       tertiary
                                                 0
                                                        2694
                                                                0
                                                                            0
                                                                                     cellula
```

In [4]:
 test.head()

Out[4]:

	ld	Age	Job	Marital	Education	Default	Balance	HHInsurance	CarLoan	Со
0	4001	25	admin.	single	secondary	0	1	1	1	Nal
1	4002	40	management	married	tertiary	0	0	1	1	cell
2	4003	44	management	single	tertiary	0	-1313	1	1	cell
3	4004	27	services	single	secondary	0	6279	1	0	cell
4	4005	53	technician	married	secondary	0	7984	1	0	cell
4										-

データの確認

```
4
   In [5]:
            train.isna().sum()
   Out[5]:
            Ιd
                                      0
                                      0
            Age
            Job
                                     19
            Marital
                                      0
                                    169
            Education
            Default
                                      0
            Balance
                                      0
            HHInsurance
                                      0
            CarLoan
                                      0
            {\tt Communication}
                                    902
            LastContactDay
                                      0
            {\tt LastContactMonth}
                                      0
            NoOfContacts
                                      0
            DaysPassed
                                      0
                                      0
            {\tt PrevAttempts}
            {\tt Outcome}
                                   3042
            CallStart
                                      0
            CallEnd
                                      0
            CarInsurance
                                      0
            dtype: int64
   In [6]:
            test.isna().sum()
   Out[6]:
            \operatorname{Id}
                                      0
            Age
                                      0
            Job
                                      5
            Marital
                                      0
            Education
                                     47
            Default
                                      0
                                      0
            Balance
            HHInsurance
                                      0
            CarLoan
                                      0
            Communication
                                    221
            LastContactDay
                                      0
            {\tt LastContactMonth}
                                      0
            {\tt NoOfContacts}
                                      0
            DaysPassed
                                      0
            {\tt PrevAttempts}
                                      0
            Outcome
                                    757
            CallStart
                                      0
            CallEnd
                                      0
                                   1000
            CarInsurance
            dtype: int64
   In [7]:
            train.shape
   Out[7]:
```

```
(4000, 19)
```

```
In [8]:
    test.shape

Out[8]:
    (1000, 19)
```

欠損値の対応

```
4
   In [9]:
             train.Job.unique()
   Out[9]:
             array(['management', 'blue-collar', 'student', 'technician', 'admin.',
                     'services', 'self-employed', 'retired', nan, 'housemaid',
                     'entrepreneur', 'unemployed'], dtype=object)
  In [10]:
            train[train.Job != train.Job].head()
  Out[10]:
                   ld
                      Age
                            Job
                                   Marital
                                           Education
                                                     Default
                                                             Balance
                                                                     HHInsurance
                                                                                  CarLoan
                                                                                           Commun
                                                                                           cellular
            27
                 28
                      45
                            NaN
                                           NaN
                                                     0
                                                             0
                                                                     0
                                                                                  0
                                  divorced
                                                                                  0
                                                     0
                                                             942
                                                                                           cellular
            239
                 240
                      41
                            NaN
                                  single
                                           NaN
                                                                     0
            486
                 487
                                                     0
                                                             981
                                                                     0
                                                                                           cellular
                      54
                            NaN
                                  married
                                           primary
                                                                                  1
                                                                                           cellular
            536
                 537
                      33
                            NaN
                                  single
                                           secondary
                                                     0
                                                             1522
                                                                     0
            605
                 606
                      53
                            NaN
                                                                                           cellular
                                  married
                                           primary
```

```
In [11]:
         train.Job.fillna('unknown', inplace=True)
         test.Job.fillna('unknown', inplace=True)
In [12]:
         train.Education.unique()
Out[12]:
         array(['tertiary', 'primary', 'secondary', nan], dtype=object)
In [13]:
         train.Education.fillna('other', inplace=True)
         test.Education.fillna('other', inplace=True)
In [14]:
         train.Communication.fillna('other', inplace=True)
         test. Communication. fillna('other', inplace=True)\\
In [15]:
         train.Outcome.fillna('unknwon', inplace=True)
         test.Outcome.fillna('unknwon', inplace=True)
```

In [16]:

```
Prediction binary cat insurance data | Kaggle
          ci aiii.acypco
Out[16]:
          \operatorname{Id}
                                 int64
          Age
                                 int64
          Job
                               object
         Marital
                               object
          Education
                               object
         Default
                                int64
          Balance
                                 int64
         HHInsurance
                                 int64
          CarLoan
                                 int64
         {\tt Communication}
                               object
         LastContactDay
                                 int64
         {\tt LastContactMonth}
                               object
          NoOfContacts
                                 int64
                                 int64
         DaysPassed
         PrevAttempts
                                int64
         Outcome
                               object
         CallStart
                               object
         CallEnd
                               object
          CarInsurance
                                 int64
          dtype: object
In [17]:
         cat_cols = ['Marital', 'Education', 'Job', 'Communication',
                       'LastContactMonth', 'Outcome', 'CallStart', 'CallEnd']
In [18]:
         from \ sklearn.preprocessing \ import \ Label Encoder
         le = LabelEncoder()
         for col in cat_cols:
              train[col] = le.fit_transform(train[col])
In [19]:
```

train.head()

Out[19]:

	I	ld	Age	Job	Marital	Education	Default	Balance	HHInsurance	CarLoan	Communication
() 1	1	32	4	2	3	0	1218	1	0	2
	1 2	2	32	1	1	1	0	1156	1	0	1
2	2 3	3	29	4	2	3	0	637	1	0	0
3	3 4	4	25	8	2	1	0	373	1	0	0
4	1 5	5	30	4	1	3	0	2694	0	0	0
4											•

```
In [20]:
         X = train.drop('CarInsurance', axis=1)
         y = train.CarInsurance
```

In [21]: $from \ sklearn.model_selection \ import \ train_test_split$ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0. 3, random_state=0)

```
In [22]:
         import xgboost as xgb
         dtrain = xgb.DMatrix(X_train, y_train)
         dval = xgb.DMatrix(X_test, y_test)
```

```
eval_list = [(dval, 'eval'), (dtrain, 'train')]
```

```
In [23]:
         param = {'max_depth': 3,
                  'eta': 0.3,
                  'silent': 1,
                  'objective': 'binary:logistic',
                  'nthread' : 4,
                  'eval_metric' : 'auc'}
In [24]:
         num_round = 250
         bst = xgb.train(param, dtrain, num_round, eval_list, early_stopping_ro
         unds=2)
         [0]
                 eval-auc:0.695181
                                          train-auc:0.697895
         Multiple eval metrics have been passed: 'train-auc' will be used for e
         arly stopping.
         Will train until train-auc hasn't improved in 2 rounds.
                 eval-auc:0.716765
                                          train-auc:0.717916
         [1]
         [2]
                 eval-auc:0.719608
                                          train-auc:0.720543
         [3]
                 eval-auc:0.729629
                                          train-auc:0.733879
         [4]
                 eval-auc:0.736563
                                          train-auc:0.749381
         [5]
                 eval-auc:0.743144
                                          train-auc:0.754882
         [6]
                 eval-auc:0.749341
                                          train-auc:0.758067
         [7]
                 eval-auc:0.748643
                                          train-auc:0.768482
         [8]
                 eval-auc:0.744592
                                          train-auc:0.773661
         [9]
                 eval-auc:0.746565
                                          train-auc:0.78172
         [10]
                 eval-auc:0.752592
                                          train-auc:0.787233
         [11]
                 eval-auc:0.754994
                                          train-auc:0.788592
         [12]
                 eval-auc:0.756681
                                          train-auc:0.792386
         [13]
                 eval-auc:0.759272
                                          train-auc:0.804491
         [14]
                 eval-auc:0.760326
                                          train-auc:0.809091
         [15]
                 eval-auc:0.762587
                                          train-auc:0.813732
         [16]
                 eval-auc:0.762656
                                          train-auc:0.81744
         [17]
                 eval-auc:0.760549
                                          train-auc:0.820491
         [18]
                 eval-auc:0.760891
                                          train-auc:0.822419
         [19]
                 eval-auc:0.762532
                                          train-auc:0.825748
         [20]
                 eval-auc:0.763818
                                          train-auc:0.828178
         [21]
                 eval-auc:0.765721
                                          train-auc:0.835211
         [22]
                 eval-auc:0.768948
                                          train-auc:0.83791
         [23]
                 eval-auc:0.770859
                                          train-auc:0.841895
         [24]
                 eval-auc:0.771118
                                          train-auc:0.843803
         [25]
                 eval-auc:0.770528
                                          train-auc:0.84554
         [26]
                 eval-auc:0.774272
                                          train-auc:0.847045
         [27]
                 eval-auc:0.775409
                                          train-auc:0.847526
         [28]
                 eval-auc:0.774368
                                          train-auc:0.851024
         [29]
                 eval-auc:0.776482
                                          train-auc:0.854434
         [30]
                 eval-auc:0.777776
                                          train-auc:0.855469
         [31]
                 eval-auc:0.774903
                                          train-auc:0.857863
         [32]
                 eval-auc:0.777768
                                          train-auc:0.862475
         [33]
                 eval-auc:0.78054
                                          train-auc:0.868367
         [34]
                 eval-auc:0.779721
                                          train-auc:0.869234
         [35]
                 eval-auc:0.780736
                                          train-auc:0.870733
         [36]
                 eval-auc:0.780802
                                          train-auc:0.871111
         [37]
                 eval-auc:0.780696
                                          train-auc:0.871691
         [38]
                 eval-auc:0.781193
                                          train-auc:0.872157
         [39]
                 eval-auc:0.785282
                                          train-auc:0.878938
         [40]
                 eval-auc:0.785719
                                          train-auc:0.879086
         [41]
                 eval-auc:0.788003
                                          train-auc:0.8816
         [42]
                 eval-auc:0.789107
                                          train-auc:0.884406
```

---- ---- 700150

		Prediction binary cat ins
[43]	eva1-auc:0./92159	train-auc:0.886/32
[44]	eval-auc:0.793712	train-auc:0.887952
[45]	eval-auc:0.793683	train-auc:0.89024
[46]	eval-auc:0.793962	train-auc:0.890456
[47]	eval-auc:0.795044	train-auc:0.89139
[48]	eval-auc:0.795015	train-auc:0.892265
[49]	eval-auc:0.795886	train-auc:0.893102
[50]	eval-auc:0.795012	train-auc:0.894438
[51]	eval-auc:0.793657	train-auc:0.89577
[52]	eval-auc:0.792455	train-auc:0.896475
[53]	eval-auc:0.792009	train-auc:0.89688
[54]	eval-auc:0.794986	train-auc:0.898259
[55]	eval-auc:0.798415	train-auc:0.901852
[56]	eval-auc:0.799062	train-auc:0.902795
[57]	eval-auc:0.799223	train-auc:0.905375
[58]	eval-auc:0.798961	train-auc:0.906283
[59]	eval-auc:0.799082	train-auc:0.906397
[60]	eval-auc:0.799968	train-auc:0.908464
[61]	eval-auc:0.804492	train-auc:0.912678
[62]	eval-auc:0.805033	train-auc:0.913046
[63]	eval-auc:0.805246	train-auc:0.913231
1 1		
[64]	eval-auc:0.807371	train-auc:0.915818
[65]	eval-auc:0.80734	train-auc:0.917287
[66]	eval-auc:0.808812	train-auc:0.918779
[67]	eval-auc:0.807915	train-auc:0.91947
[68]	eval-auc:0.808027	train-auc:0.920107
[69]	eval-auc:0.808332	train-auc:0.921876
[70]	eval-auc:0.807072	train-auc:0.922467
[71]	eval-auc:0.806802	train-auc:0.922621
[72]	eval-auc:0.807222	train-auc:0.924367
[73]	eval-auc:0.806983	train-auc:0.924595
[74]	eval-auc:0.807112	train-auc:0.926076
[75]	eval-auc:0.809157	train-auc:0.926806
[76]	eval-auc:0.808559	train-auc:0.928867
[77]	eval-auc:0.808254	train-auc:0.929176
[78]	eval-auc:0.80748	train-auc:0.930279
[79]	eval-auc:0.808303	train-auc:0.930843
[80]	eval-auc:0.807938	train-auc:0.931084
[81]	eval-auc:0.813164	train-auc:0.933673
[82]	eval-auc:0.813592	train-auc:0.934851
[83]	eval-auc:0.814191	train-auc:0.934973
[84]	eval-auc:0.814944	train-auc:0.936082
[85]	eval-auc:0.815485	train-auc:0.937128
[86]	eval-auc:0.815414	train-auc:0.937518
[87]	eval-auc:0.815604	train-auc:0.937653
[88]	eval-auc:0.815128	train-auc:0.939501
[89]	eval-auc:0.814179	train-auc:0.941096
[90]	eval-auc:0.815094	train-auc:0.941662
[91]	eval-auc:0.815706	train-auc:0.94207
[92]	eval-auc:0.81715	train-auc:0.944309
[93]	eval-auc:0.822414	train-auc:0.947442
[94]	eval-auc:0.823559	train-auc:0.94873
[95]	eval-auc:0.822923	train-auc:0.949173
[96]	eval-auc:0.824591	train-auc:0.951035
[97]	eval-auc:0.824134	train-auc:0.951356
[98]	eval-auc:0.824418	train-auc:0.951512
[99]	eval-auc:0.824531	train-auc:0.951993
[100]	eval-auc:0.824367	train-auc:0.952391
[101]	eval-auc:0.822969	train-auc:0.953228
[102]	eval-auc:0.821715	train-auc:0.953477
[103]	eval-auc:0.822931	train-auc:0.954154
[104]	eval-auc:0.823182	train-auc:0.954344
[105]	eval-auc:0.822693	train-auc:0.955018
[106]	eval-auc:0.826035	train-auc:0.956926
[40=1	1 0 000000	

		Prediction binary cat in
[10/]	eval-auc:0.826302	train-auc:0.956933
[108]	eval-auc:0.827418	train-auc:0.958314
[109]	eval-auc:0.827473	train-auc:0.959437
[110]	eval-auc:0.828005	train-auc:0.960222
[111]	eval-auc:0.82856	train-auc:0.960485
[112]	eval-auc:0.828721	train-auc:0.960666
[113]	eval-auc:0.829561	train-auc:0.961082
[114]	eval-auc:0.830293	train-auc:0.962139
[115]	eval-auc:0.830438	train-auc:0.962489
[116]	eval-auc:0.831514	train-auc:0.96279
[117]	eval-auc:0.832305	train-auc:0.963713
[118]	eval-auc:0.833225	train-auc:0.964755
[119]	eval-auc:0.833858	train-auc:0.965132
[120]	eval-auc:0.834232	train-auc:0.965139
[121]	eval-auc:0.83456	train-auc:0.965365
[122]	eval-auc:0.833666	train-auc:0.965891
[123]	eval-auc:0.834244	train-auc:0.966339
[124]	eval-auc:0.835176	train-auc:0.966881
[124]	eval-auc:0.835026	train-auc:0.966951
[126]	eval-auc:0.835035	train-auc:0.967118
[127]	eval-auc:0.834813	train-auc:0.968371
[128]	eval-auc:0.832886	train-auc:0.969248
[129]	eval-auc:0.832774	train-auc:0.969466
[130]	eval-auc:0.836657	train-auc:0.971034
[131]	eval-auc:0.836763	train-auc:0.971208
[132]	eval-auc:0.835204	train-auc:0.97146
[133]	eval-auc:0.83527	train-auc:0.972203
[134]	eval-auc:0.836082	train-auc:0.972473
[135]	eval-auc:0.836211	train-auc:0.972891
[136]	eval-auc:0.837445	train-auc:0.973243
[137]	eval-auc:0.838256	train-auc:0.973903
[138]	eval-auc:0.838662	train-auc:0.974633
[139]	eval-auc:0.841313	train-auc:0.975875
[140]	eval-auc:0.83997	train-auc:0.9762
[141]	eval-auc:0.840819	train-auc:0.976585
[142]	eval-auc:0.842403	train-auc:0.977549
[143]	eval-auc:0.840781	train-auc:0.977851
[144]	eval-auc:0.841748	train-auc:0.978645
[145]	eval-auc:0.841437	train-auc:0.979061
[146]	eval-auc:0.842389	train-auc:0.979404
[147]	eval-auc:0.842752	train-auc:0.979594
[148]	eval-auc:0.842872	train-auc:0.980057
[149]	eval-auc:0.843169	train-auc:0.98027
[150]	eval-auc:0.843801	train-auc:0.980336
[151]	eval-auc:0.84379	train-auc:0.980378
[152]	eval-auc:0.843194	train-auc:0.980438
[153]	eval-auc:0.842775	train-auc:0.980534
[154]	eval-auc:0.842933	train-auc:0.980654
[155]	eval-auc:0.842596	train-auc:0.980933
[156]	eval-auc:0.842268	train-auc:0.980957
[157]	eval-auc:0.842383	train-auc:0.981218
[158]	eval-auc:0.843968	train-auc:0.981196
[159]	eval-auc:0.842987	train-auc:0.981407
[160]	eval-auc:0.843197	train-auc:0.981558
[161]	eval-auc:0.843171	train-auc:0.981657
[162]	eval-auc:0.842619	train-auc:0.981642
	eval-auc:0.842438	train-auc:0.981931
[163]	eval-auc:0.842438 eval-auc:0.841595	train-auc:0.981931
[164]		train-auc:0.982045
[165]	eval-auc:0.841736	
[166]	eval-auc:0.84182	train-auc:0.982449
[167]	eval-auc:0.841679	train-auc:0.982654
[168]	eval-auc:0.84295	train-auc:0.983102
[169]	eval-auc:0.842907	train-auc:0.983235
[170]	eval-auc:0.843876	train-auc:0.983465
urakawa/r	orediction-binary-cat-insura	ance-data

```
[171]
        eval-auc:0.844932
                                 train-auc:0.984307
[172]
        eval-auc:0.845432
                                 train-auc:0.98495
[173]
        eval-auc:0.845774
                                 train-auc:0.985269
[174]
        eval-auc:0.845283
                                 train-auc:0.98555
[175]
        eval-auc:0.845582
                                 train-auc:0.985811
[176]
        eval-auc:0.845271
                                 train-auc:0.985785
        eval-auc:0.846853
[177]
                                 train-auc:0.986212
[178]
        eval-auc:0.846347
                                 train-auc:0.986379
[179]
        eval-auc:0.846281
                                 train-auc:0.986476
[180]
        eval-auc:0.844365
                                 train-auc:0.986599
[181]
        eval-auc:0.845234
                                 train-auc:0.986931
[182]
        eval-auc:0.845055
                                 train-auc:0.98702
[183]
        eval-auc:0.845271
                                 train-auc:0.98712
[184]
        eval-auc:0.845613
                                 train-auc:0.987229
[185]
        eval-auc:0.845461
                                 train-auc:0.98731
[186]
        eval-auc:0.845866
                                 train-auc:0.987417
[187]
        eval-auc:0.846298
                                 train-auc:0.987602
[188]
        eval-auc:0.846928
                                 train-auc:0.987732
[189]
        eval-auc:0.846801
                                 train-auc:0.987731
        eval-auc:0.84666
[190]
                                 train-auc:0.987911
[191]
        eval-auc:0.84639
                                 train-auc:0.987988
[192]
        eval-auc:0.845947
                                 train-auc:0.988237
[193]
        eval-auc:0.845726
                                 train-auc:0.988308
[194]
        eval-auc:0.84559
                                 train-auc:0.988511
[195]
        eval-auc:0.845636
                                 train-auc:0.988753
[196]
        eval-auc:0.844779
                                 train-auc:0.988883
[197]
        eval-auc:0.844584
                                 train-auc:0.988891
[198]
        eval-auc:0.844425
                                 train-auc:0.989016
[199]
        eval-auc:0.844995
                                 train-auc:0.989119
[200]
        eval-auc:0.844811
                                 train-auc:0.989369
[201]
        eval-auc:0.845113
                                 train-auc:0.98974
[202]
        eval-auc:0.846203
                                 train-auc:0.990066
[203]
        eval-auc:0.84574
                                 train-auc:0.990109
[204]
        eval-auc:0.846902
                                 train-auc:0.990421
[205]
        eval-auc:0.847509
                                 train-auc:0.990742
[206]
        eval-auc:0.848173
                                 train-auc:0.990919
        eval-auc:0.84851
[207]
                                 train-auc:0.990924
[208]
        eval-auc:0.848976
                                 train-auc:0.991109
[209]
        eval-auc:0.849301
                                 train-auc:0.991292
[210]
        eval-auc:0.849818
                                 train-auc:0.991461
[211]
        eval-auc:0.84922
                                 train-auc:0.991518
[212]
        eval-auc:0.848861
                                 train-auc:0.991459
[213]
        eval-auc:0.84897
                                 train-auc:0.991507
Stopping. Best iteration:
[211]
        eval-auc:0.84922
                                 train-auc:0.991518
```

特徴エンジニアリング

```
In [25]:
    def read_and_fillna():
        train = pd.read_csv('../input/carInsurance_train.csv')
        test = pd.read_csv('../input/carInsurance_test.csv')
        train.Job.fillna('unknown', inplace=True)
        test.Job.fillna('unknown', inplace=True)
        train.Education.fillna('other', inplace=True)
        test.Education.fillna('other', inplace=True)
        train.Communication.fillna('other', inplace=True)
        test.Communication.fillna('other', inplace=True)
```

```
train.Outcome.fillna('unknwon', inplace=True)
test.Outcome.fillna('unknwon', inplace=True)
return train, test
```

```
In [26]:
        def make_model(train, cat_cols):
             from sklearn.preprocessing import LabelEncoder
             from sklearn.model_selection import train_test_split
             import xgboost as xgb
            le = LabelEncoder()
            for col in cat_cols:
                 train[col] = le.fit_transform(train[col])
            X = train.drop('CarInsurance', axis=1)
            y = train.CarInsurance
            X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                                  test_size=0.3,
         random_state=0)
             dtrain = xgb.DMatrix(X_train, y_train)
             dval = xgb.DMatrix(X_test, y_test)
             eval_list = [(dval, 'eval'), (dtrain, 'train')]
             param = {'max_depth': 3,
                      'eta': 0.3,
                      'silent': 1,
                      'objective': 'binary:logistic',
                      'nthread' : 4,
                      'eval_metric' : 'auc'}
            num_round = 250
             bst = xgb.train(param, dtrain, num_round, eval_list, early_stoppin
        g_rounds=2)
```

```
In [27]:
    train, test = read_and_fillna()
```

Age

```
In [28]:
         train.Age.describe()
Out[28]:
          count
                   4000.000000
                     41.214750
          mean
                     11.550194
          std
          min
                     18.000000
         25%
                     32.000000
                     39.000000
          50%
          75%
                     49.000000
         max
                     95.000000
         Name: Age, dtype: float64
In [29]:
         def make_AgeGroup(df):
              df["AgeGroup"] = df.Age.apply(lambda x : 0 if x >= 10 and x <= 19
         else
                                                 (1 if x >= 20 and x <= 29 else
                                                  (2 if x >= 30 and x <= 39 else
                                                   (3 if x >= 40 and x <= 49 else
                                                    (4 \text{ if } x >= 50 \text{ and } x <= 59 \text{ else}
```

(5 if x >= 60 and x <= 69 else

```
(6 \text{ if } x >= 70 \text{ and } x <= 79 \text{ els}
e
(7 \text{ if } x >= 80 \text{ and } x <= 80 \text{ el}
se 8))))))))
```

```
In [30]:
    make_AgeGroup(train)
    make_AgeGroup(test)
```

```
In [31]:
    pd.pivot_table(train[['AgeGroup', 'CarInsurance', 'Age']], columns=['C
    arInsurance'], index=['AgeGroup'], aggfunc=['count'])
```

Out[31]:

	count		
	Age		
Carlnsurance	0	1	
AgeGroup			
0	4	11	
1	257	261	
2	980	558	
3	635	353	
4	454	247	
5	44	114	
6	17	43	
7	2	7	
8	3	10	

Job

Out[33]:

	count		
	Age		
Carlnsurance	0	1	
Job			
admin.	274	185	
blue-collar	540	219	
entrepreneur	86	35	
housemaid	72	37	
management	501	392	

retired	103	146
self-employed	86	54
services	218	112
student	44	87
technician	406	254

Prediction binary cat insurance data

Python notebook using data from Car Insurance Cold Calls · 224 views · 1y ago

```
def make_isWork(df):
    def make_isWork(df):
    df['isWork'] = df.Job.apply(lambda x : 0 if x == "retired"
    or x == "student"
    or x == "unemployed"
    else 1)
```

```
In [35]:
    make_isWork(train)
    make_isWork(test)
```

```
In [36]:
    train.drop('Job', axis=1, inplace=True)
    test.drop('Job', axis=1, inplace=True)
```

Martial

```
In [37]:
    pd.pivot_table(train[['Marital', 'CarInsurance', 'Age']], columns=['Ca
    rInsurance'], index=['Marital'], aggfunc=['count'])
```

Out[37]:

	count	
	Age	
Carlnsurance	0	1
Marital		
divorced	273	210
married	1471	833
single	652	561

Education

```
In [38]:
    pd.pivot_table(train[['Education', 'CarInsurance', 'Age']], columns=[
    'CarInsurance'], index=['Education'], aggfunc=['count'])
```

Out[38]:

	count	
	Age	
Carlnsurance	0	1

Education		
other	90	79
primary	366	195
secondary	1258	730
tertiary	682	600

Balance

```
In [39]:
    train.Balance = train.Balance.astype('float')
    test.Balance = test.Balance.astype('float')
```

In [40]:
 sns.distplot(train.Balance.values, kde=False, rug=False, bins=25)

In [41]:
 sns.jointplot('Balance', 'CarInsurance', data=train)

/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: Futu reWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval


```
In [42]:
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    train.Balance = sc.fit_transform(train.Balance.values.reshape(-1, 1))
    test.Balance = sc.fit_transform(test.Balance.values.reshape(-1, 1))
```

```
In [43]:
    sns.distplot(train.Balance.values, kde=False, rug=False, bins=25)
```



```
In [44]:
         train.Balance.describe()
Out[44]:
         count
                  4.000000e+03
                  4.639344e-17
         mean
         std
                  1.000125e+00
         min
                  -1.307582e+00
         25%
                  -4.049934e-01
         50%
                  -2.795310e-01
         75%
                  2.451222e-02
                  2.759433e+01
         Name: Balance, dtype: float64
```

Communication

	Age	
Carlnsurance	0	1
Communication		
cellular	1518	1313
other	734	168
telephone	144	123

```
In [47]:
    train["isMobile"] = train.Communication.apply(lambda x : 1 if x == "Ce
    llular" or x == "telephone" else 0)
    test["isMobile"] = test.Communication.apply(lambda x : 1 if x == "Cell
    ular" or x == "telephone" else 0)
```

LastContactDay & Month

```
In [48]:
    pd.pivot_table(train[['LastContactMonth', 'CarInsurance', 'Age']], col
    umns=['CarInsurance'], index=['LastContactMonth'], aggfunc=['count'])
```

Out[48]:

	count		
	Age		
Carlnsurance	0	1	
LastContactMonth			
apr	150	156	
aug	342	194	
dec	7	34	
feb	129	133	
jan	86	48	
jul	364	209	
jun	283	171	
mar	15	64	
may	760	289	
nov	215	132	
oct	27	91	
sep	18	83	

NoOfContacts

Out[49]:

	count		
	Age		
Carlnsurance	0	1	
NoOfContacts			

NOOTOOTIGOG		
1	912.0	773.0
2	671.0	414.0
3	311.0	205.0
4	156.0	81.0
5	114.0	52.0
6	62.0	26.0
7	34.0	15.0
8	27.0	14.0
9	18.0	2.0
10	13.0	5.0
11	7.0	8.0
12	11.0	NaN
13	6.0	2.0
14	6.0	1.0
15	2.0	1.0
16	3.0	NaN
17	9.0	2.0
18	3.0	NaN
19	3.0	NaN
20	4.0	NaN
21	3.0	1.0
22	3.0	NaN
23	3.0	NaN
24	2.0	1.0
25	4.0	NaN
26	1.0	NaN
27	1.0	NaN
28	1.0	NaN
29	NaN	1.0
30	1.0	NaN
32	1.0	NaN
34	1.0	NaN
38	1.0	NaN
41	1.0	NaN
43	1.0	NaN

DaysPassed

```
In [50]:
         train.DaysPassed.value_counts()
Out[50]:
                 3042
          92
                   38
          182
                   33
          91
                   24
          183
          93
                   16
          95
                   16
                   14
```

```
97
         13
181
         13
189
         12
184
         12
90
         11
178
         10
370
         10
          9
105
196
          9
104
          8
350
          8
185
188
          8
98
          8
169
          7
195
187
          7
176
          6
175
          6
88
          6
168
           6
343
310
          1
308
474
532
          1
127
          1
544
121
          1
115
          1
73
          1
71
          1
67
65
          1
61
          1
57
53
          1
49
43
37
          1
35
          1
27
          1
21
          1
15
13
          1
854
775
828
          1
728
690
558
          1
842
```

Name: DaysPassed, Length: 330, dtype: int64

```
In [51]:
    sns.jointplot('DaysPassed', 'CarInsurance', data=train)
```

/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: Futu reWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

```
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
```


PrevAttempts

```
In [52]:
         train.PrevAttempts.value_counts()
Out[52]:
               3042
         1
                 335
         2
                 251
         3
                 125
         4
                  79
         5
                  60
         6
                  25
         7
                  21
         8
                  18
                  10
         14
         12
         13
         19
         11
         23
         18
         58
         30
         Name: PrevAttempts, dtype: int64
In [53]:
         pd.pivot_table(train[['PrevAttempts', 'CarInsurance', 'Age']], columns
         =['CarInsurance'], index=['PrevAttempts'], aggfunc=['count'])
Out[53]:
                    count
                    Age
```

Carlnsurance	0	1
PrevAttempts		
0	1997.0	1045.0
1	149.0	186.0
2	109.0	142.0
3	47.0	78.0
4	33.0	46.0
5	26.0	34.0
6	9.0	16.0
7	6.0	15.0
8	4.0	14.0
9	5.0	4.0
10	NaN	10.0
11	1.0	2.0
12	1.0	4.0
13	2.0	2.0
14	3.0	2.0
18	1.0	NaN
19	2.0	2.0
23	1.0	NaN
30	NaN	1.0
58	NaN	1.0

Outcom

```
In [54]:
         train.Outcome.unique()
Out[54]:
          array(['unknwon', 'failure', 'other', 'success'], dtype=object)
In [55]:
         pd.pivot_table(train[['Outcome', 'CarInsurance', 'Age']], columns=['Ca
         rInsurance'], index=['Outcome'], aggfunc=['count'])
Out[55]:
                    count
                    Age
        Carlnsurance
                          1
            Outcome
        failure
                    261
                          176
                          92
        other
                    103
                    35
                          291
        success
                    1997 1045
        unknwon
```

Time

```
In [56]:
        train['isCallStart'] = 0
        train['isCallEnd'] = 0
         test['isCallStart'] = 0
        test['isCallEnd'] = 0
        for idx, time in enumerate(train.CallStart):
             (h, m, s) = time.split(':')
             result = int(h) * 3600 + int(m) * 60 + int(s)
             train.loc[idx, 'isCallStart'] = result
        for idx, time in enumerate(train.CallEnd):
            (h, m, s) = time.split(':')
            result = int(h) * 3600 + int(m) * 60 + int(s)
             train.loc[idx, 'isCallEnd'] = result
In [57]:
        def make_time_column(df):
            df["diffTime"] = df.isCallStart - df.isCallEnd
             df[['isCallStart', 'isCallEnd', 'diffTime']] = df[['isCallStart',
         'isCallEnd', 'diffTime']].astype("float")
             df.drop(['CallStart', 'CallEnd'], axis=1, inplace=True)
In [58]:
        make_time_column(train)
        make_time_column(test)
In [59]:
        from sklearn.preprocessing import StandardScaler
        sc = StandardScaler()
        train[['isCallStart', 'isCallEnd', 'diffTime']] = sc.fit_transform(tra
        in[['isCallStart', 'isCallEnd', 'diffTime']])
        test[['isCallStart', 'isCallEnd', 'diffTime']] = sc.fit_transform(test
         [['isCallStart', 'isCallEnd', 'diffTime']])
In [60]:
        cat_cols = ['Marital', 'Education', 'Communication',
                     'LastContactMonth', 'Outcome']
        make_model(train, cat_cols)
                 eval-auc:0.805461
                                         train-auc:0.843845
         Multiple eval metrics have been passed: 'train-auc' will be used for e
         arly stopping.
         Will train until train-auc hasn't improved in 2 rounds.
         [1]
                 eval-auc:0.854935
                                         train-auc:0.878551
         [2]
                 eval-auc:0.861044
                                         train-auc:0.887408
         [3]
                eval-auc:0.862193
                                         train-auc:0.88986
         [4]
                eval-auc:0.86773
                                         train-auc:0.898391
         [5]
                eval-auc:0.873595
                                         train-auc:0.903397
         [6]
                eval-auc:0.875166
                                         train-auc:0.905741
         [7]
                 eval-auc:0.879566
                                         train-auc:0.909439
         [8]
                 eval-auc:0.885511
                                         train-auc:0.914387
         [9]
                 eval-auc:0.886972
                                         train-auc:0.917139
         [10]
                 eval-auc:0.88952
                                         train-auc:0.918847
         [11]
                 eval-auc:0.890745
                                         train-auc:0.921649
         [12]
                 eval-auc:0.892542
                                         train-auc:0.923362
         [13]
                 eval-auc:0.893384
                                         train-auc:0.924535
         [14]
                 eval-auc:0.895435
                                         train-auc:0.927988
         [15]
                 eval-auc:0.897425
                                         train-auc:0.929414
```

		Prediction binary cat ii
[16]	eval-auc:0.897631	train-auc:0.930781
[17]	eval-auc:0.897595	train-auc:0.932208
[18]	eval-auc:0.89748	train-auc:0.93341
[19]	eval-auc:0.898585	train-auc:0.934499
[20]	eval-auc:0.901816	train-auc:0.937007
[21]	eval-auc:0.902859	train-auc:0.938091
[22]	eval-auc:0.90287	train-auc:0.939094
[23]	eval-auc:0.904182	train-auc:0.941049
[24]	eval-auc:0.904511	train-auc:0.942365
[25]	eval-auc:0.905828	train-auc:0.943278
[26]	eval-auc:0.905926	train-auc:0.94393
[27]	eval-auc:0.905302	train-auc:0.945311
[28]	eval-auc:0.905516	train-auc:0.945758
[29]	eval-auc:0.905237	train-auc:0.946369
[30]	eval-auc:0.905542	train-auc:0.946539
[31]	eval-auc:0.905686	train-auc:0.947442
[32]	eval-auc:0.905301	train-auc:0.948264
[33]	eval-auc:0.905076	train-auc:0.949809
[34]	eval-auc:0.906362	train-auc:0.950933
[35]	eval-auc:0.906819	train-auc:0.951552
[36]	eval-auc:0.906471	train-auc:0.952219
[37]	eval-auc:0.906581	train-auc:0.953686
[38]	eval-auc:0.906885	train-auc:0.954887
[39]	eval-auc:0.90738	train-auc:0.955329
[40]	eval-auc:0.907521	train-auc:0.955581
[41]	eval-auc:0.909183	train-auc:0.95686
[42]	eval-auc:0.909503	train-auc:0.957208
[43]	eval-auc:0.909126	train-auc:0.958158
[44]	eval-auc:0.909629	train-auc:0.959115
[45]	eval-auc:0.90977	train-auc:0.959549
[46]	eval-auc:0.910553	train-auc:0.960308
[47]	eval-auc:0.911131	train-auc:0.961035
[48]	eval-auc:0.911602	train-auc:0.961608
[49]	eval-auc:0.911832	train-auc:0.962787
[50]	eval-auc:0.911404	train-auc:0.963231
[51]	eval-auc:0.9108 train-au	ıc:0.96373
[52]	eval-auc:0.910699	train-auc:0.964128
[53]	eval-auc:0.910403	train-auc:0.965209
[54]	eval-auc:0.910676	train-auc:0.965479
[55]	eval-auc:0.910578	train-auc:0.966197
[56]	eval-auc:0.910351	train-auc:0.966588
[57]	eval-auc:0.910794	train-auc:0.966703
[58]	eval-auc:0.911059	train-auc:0.966934
[59]	eval-auc:0.911076	train-auc:0.96708
[60]	eval-auc:0.910823	train-auc:0.967371
[61]	eval-auc:0.911047	train-auc:0.96787
[62]	eval-auc:0.911502	train-auc:0.96834
[63]	eval-auc:0.912839	train-auc:0.968949
[64]	eval-auc:0.913187	train-auc:0.969706
[65]	eval-auc:0.913662	train-auc:0.970076
[66]	eval-auc:0.913552	train-auc:0.970497
[67]	eval-auc:0.913271	train-auc:0.970919
[68]	eval-auc:0.913458	train-auc:0.971182
[69]	eval-auc:0.913458	train-auc:0.971419
[70]	eval-auc:0.913291	train-auc:0.971667
[71]	eval-auc:0.913656	train-auc:0.971884
[72]	eval-auc:0.91411	train-auc:0.972523
[73]	eval-auc:0.914024	train-auc:0.973027
[74]	eval-auc:0.91399	train-auc:0.973126
[75]	eval-auc:0.914059	train-auc:0.973415
[76]	eval-auc:0.914953	train-auc:0.973651
[77]	eval-auc:0.914976	train-auc:0.973998
[78]	eval-auc:0.915123	train-auc:0.974454
[79]	eval-auc:0.914712	train-auc:0.975192
-l		

		Prediction binary cat i
[80]	eval-auc:0.914729	train-auc:0.975625
[81]	eval-auc:0.914568	train-auc:0.976236
[82]	eval-auc:0.914576	train-auc:0.976249
[83]	eval-auc:0.914576	train-auc:0.976395
[84]	eval-auc:0.914131	train-auc:0.976689
[85]	eval-auc:0.914309	train-auc:0.97674
[86]	eval-auc:0.914407	train-auc:0.977268
[87]	eval-auc:0.91443	train-auc:0.977814
[88]	eval-auc:0.915039	train-auc:0.978037
[89]	eval-auc:0.915034	train-auc:0.978582
[90]	eval-auc:0.915014	train-auc:0.978975
[91]	eval-auc:0.914438	train-auc:0.979451
[92]	eval-auc:0.914548	train-auc:0.979831
[93]	eval-auc:0.915062	train-auc:0.98008
[94]	eval-auc:0.914804	train-auc:0.980339
[95]	eval-auc:0.914864	train-auc:0.980585
[96] [97]	eval-auc:0.914976	train-auc:0.98073
[97] [98]	eval-auc:0.914973 eval-auc:0.914674	train-auc:0.980925 train-auc:0.981273
[99]	eval-auc:0.914326	train-auc:0.981273
[100]	eval-auc:0.913961	train-auc:0.981714
[100]	eval-auc:0.913952	train-auc:0.982042
[102]	eval-auc:0.913877	train-auc:0.982463
[103]	eval-auc:0.91401	train-auc:0.982884
[104]	eval-auc:0.913564	train-auc:0.983217
[105]	eval-auc:0.913411	train-auc:0.983539
[106]	eval-auc:0.913245	train-auc:0.984032
[107]	eval-auc:0.913161	train-auc:0.984507
[108]	eval-auc:0.912879	train-auc:0.98477
[109]	eval-auc:0.912623	train-auc:0.98514
[110]	eval-auc:0.912796	train-auc:0.985322
[111]	eval-auc:0.913325	train-auc:0.985503
[112]	eval-auc:0.913294	train-auc:0.985796
[113]	eval-auc:0.913601	train-auc:0.986048
[114]	eval-auc:0.914041	train-auc:0.986233
[115]	eval-auc:0.913734	train-auc:0.986426
[116]	eval-auc:0.913472	train-auc:0.986495
[117]	eval-auc:0.913565	train-auc:0.986901
[118]	eval-auc:0.913514	train-auc:0.987268
[119]	eval-auc:0.913404	train-auc:0.987481
[120]	eval-auc:0.913163	train-auc:0.98764
[121]	eval-auc:0.912674	train-auc:0.98779
[122]	eval-auc:0.912818	train-auc:0.987881
[123]	eval-auc:0.912772	train-auc:0.988072
[124] [125]	eval-auc:0.912774 eval-auc:0.913432	train-auc:0.988223 train-auc:0.98833
[126]	eval-auc:0.913504	train-auc:0.988357
[127]	eval-auc:0.91365	train-auc:0.9887
[128]	eval-auc:0.913285	train-auc:0.988878
[129]	eval-auc:0.912917	train-auc:0.989188
[130]	eval-auc:0.91275	train-auc:0.989312
[131]	eval-auc:0.912434	train-auc:0.989549
[132]	eval-auc:0.912739	train-auc:0.98971
[133]	eval-auc:0.912816	train-auc:0.989802
[134]	eval-auc:0.912552	train-auc:0.989806
[135]	eval-auc:0.91298	train-auc:0.98998
[136]	eval-auc:0.913144	train-auc:0.990115
[137]	eval-auc:0.913213	train-auc:0.990296
[138]	eval-auc:0.913322	train-auc:0.990307
[139]	eval-auc:0.913202	train-auc:0.990428
[140]	eval-auc:0.91342	train-auc:0.990678
[141]	eval-auc:0.913371	train-auc:0.990774
[142]	eval-auc:0.91397	train-auc:0.990966
[143]	eval-auc:0.914171	train-auc:0.991238

		1 realetion binary eat i
[144]	eval-auc:0.91397	train-auc:0.991414
[145]	eval-auc:0.91401	train-auc:0.99149
[146]	eval-auc:0.9139 train-au	uc:0.991781
[147]	eval-auc:0.913967	train-auc:0.991849
[148]	eval-auc:0.914228	train-auc:0.99188
[149]	eval-auc:0.914294	train-auc:0.992087
[150]	eval-auc:0.914067	train-auc:0.992253
[151]	eval-auc:0.914565	train-auc:0.992425
[152]	eval-auc:0.914332	train-auc:0.992583
[153]	eval-auc:0.914596	train-auc:0.992739
[154]	eval-auc:0.914645	train-auc:0.992979
[155]	eval-auc:0.91472	train-auc:0.993045
[156]	eval-auc:0.914766	train-auc:0.993114
[157]	eval-auc:0.914389	train-auc:0.993178
[158]	eval-auc:0.914231	train-auc:0.99341
[159]	eval-auc:0.914631	train-auc:0.993534
[160]	eval-auc:0.91453	train-auc:0.993744
[161]	eval-auc:0.913955	train-auc:0.993844
[162]	eval-auc:0.91384	train-auc:0.993891
[163]	eval-auc:0.91334	train-auc:0.993993
[164]	eval-auc:0.913207	train-auc:0.994064
[165]	eval-auc:0.912971	train-auc:0.994087
[166]	eval-auc:0.91279	train-auc:0.994177
[167]	eval-auc:0.912641	train-auc:0.994285
[168]	eval-auc:0.91229	train-auc:0.994369
[169]	eval-auc:0.912413	train-auc:0.994427
[170]	eval-auc:0.91208	train-auc:0.99451
[171]	eval-auc:0.911873	train-auc:0.99461
[172]	eval-auc:0.911758	train-auc:0.994659
[173]	eval-auc:0.912005	train-auc:0.994814
[174]	eval-auc:0.911973	train-auc:0.994932
[175]	eval-auc:0.911706	train-auc:0.995033
[176]	eval-auc:0.911677	train-auc:0.995099
[177]	eval-auc:0.911542	train-auc:0.995217
[178]	eval-auc:0.911257	train-auc:0.995333
[179]	eval-auc:0.911251	train-auc:0.995369
[180]	eval-auc:0.911372	train-auc:0.995495
[181]	eval-auc:0.911424	train-auc:0.995529
[182]	eval-auc:0.911323	train-auc:0.995625
[183]	eval-auc:0.911338	train-auc:0.995676
[184]	eval-auc:0.911162	train-auc:0.995733
[185]	eval-auc:0.911323	train-auc:0.99574
[186]	eval-auc:0.911217	train-auc:0.995766
[187]	eval-auc:0.911349	train-auc:0.995791
[188]	eval-auc:0.911838	train-auc:0.995835
[189]	eval-auc:0.911821	train-auc:0.995996
[190]	eval-auc:0.911392	train-auc:0.996046
[191]	eval-auc:0.911657	train-auc:0.996067
[192]	eval-auc:0.911666	train-auc:0.996119
[193]	eval-auc:0.9117 train-au	
[194]	eval-auc:0.911706	train-auc:0.996237
[195]	eval-auc:0.91162	train-auc:0.996395
[196]	eval-auc:0.911519	train-auc:0.996499
[197]	eval-auc:0.911364	train-auc:0.996578
[198]	eval-auc:0.91103	train-auc:0.996764
[199]	eval-auc:0.911493	train-auc:0.996839
[200]	eval-auc:0.911387	train-auc:0.996847
[201]	eval-auc:0.91128	train-auc:0.99688
[202]	eval-auc:0.911116	train-auc:0.996968
[203]	eval-auc:0.911375	train-auc:0.997098
[204]	eval-auc:0.911413 eval-auc:0.911404	train-auc:0.997213
[205] [206]	eval-auc:0.911404 eval-auc:0.911758	train-auc:0.997273 train-auc:0.997307
[200]	eval-auc:0.911758 eval-auc:0.911755	train-auc:0.997307
[20/]	Eval-anc.0.311/33	CI a111-auc.0.99/325

```
[208]
        eval-auc:0.911775
                                 train-auc:0.997392
[209]
        eval-auc:0.911283
                                 train-auc:0.997469
[210]
        eval-auc:0.911323
                                 train-auc:0.997464
[211]
        eval-auc:0.91097
                                 train-auc:0.997533
[212]
        eval-auc:0.910869
                                 train-auc:0.997584
        eval-auc:0.91086
[213]
                                 train-auc:0.997643
[214]
        eval-auc:0.910509
                                 train-auc:0.997707
[215]
        eval-auc:0.910734
                                 train-auc:0.997765
                                 train-auc:0.997818
[216]
        eval-auc:0.910662
[217]
        eval-auc:0.910765
                                 train-auc:0.997831
[218]
        eval-auc:0.910852
                                 train-auc:0.997916
[219]
        eval-auc:0.910929
                                 train-auc:0.997948
[220]
        eval-auc:0.910826
                                 train-auc:0.997963
[221]
        eval-auc:0.910906
                                 train-auc:0.997982
[222]
        eval-auc:0.910714
                                 train-auc:0.997974
[223]
        eval-auc:0.910811
                                 train-auc:0.998037
[224]
        eval-auc:0.910734
                                 train-auc:0.99805
[225]
        eval-auc:0.910734
                                 train-auc:0.998053
[226]
        eval-auc:0.910659
                                 train-auc:0.998092
[227]
        eval-auc:0.910512
                                 train-auc:0.998103
[228]
        eval-auc:0.910386
                                 train-auc:0.99811
[229]
        eval-auc:0.910478
                                 train-auc:0.99815
[230]
        eval-auc:0.910415
                                 train-auc:0.998232
[231]
        eval-auc:0.91032
                                 train-auc:0.998274
[232]
        eval-auc:0.910242
                                 train-auc:0.99828
[233]
        eval-auc:0.910627
                                 train-auc:0.99834
[234]
        eval-auc:0.910553
                                 train-auc:0.998371
        eval-auc:0.910003
[235]
                                 train-auc:0.99841
[236]
        eval-auc:0.910058
                                 train-auc:0.998438
[237]
        eval-auc:0.910256
                                 train-auc:0.998543
[238]
        eval-auc:0.910187
                                 train-auc:0.99856
[239]
        eval-auc:0.910276
                                 train-auc:0.998609
[240]
        eval-auc:0.910285
                                 train-auc:0.998617
[241]
        eval-auc:0.910075
                                 train-auc:0.998671
[242]
        eval-auc:0.909747
                                 train-auc:0.998732
[243]
        eval-auc:0.909773
                                 train-auc:0.99878
[244]
        eval-auc:0.909629
                                 train-auc:0.998835
[245]
        eval-auc:0.909678
                                 train-auc:0.998866
[246]
        eval-auc:0.909822
                                 train-auc:0.998892
[247]
        eval-auc:0.909923
                                 train-auc:0.998888
[248]
        eval-auc:0.909908
                                 train-auc:0.998873
Stopping. Best iteration:
        eval-auc:0.909822
                                 train-auc:0.998892
[246]
```

train.head()

Out[61]:

In [61]:

	ld	Age	Marital	Education	Default	Balance	HHInsurance	CarLoan	Communication	La
0	1	32	2	3	0	-0.089700	1	0	2	28
1	2	32	1	1	0	-0.107359	1	0	1	26
2	3	29	2	3	0	-0.255179	1	0	0	3
3	4	25	2	1	0	-0.330371	1	0	0	11
4	5	30	1	3	0	0.330692	0	0	0	3
4										-

```
In [62]:
        def make_model(train, cat_cols, dtrain, dval):
             eval_list = [(dval, 'eval'), (dtrain, 'train')]
             param = {'max_depth': 4,
                      'min_child_weight' : 1,
                      'gamma' : 1,
                      'subsample' : 1,
                      'colsample_bytree' : 1,
                      'alpha' : 0.5,
                      'labmda' : 0.5,
                      'nthread' : 5,
                      'eta': 0.15,
                      'silent': 1,
                      'objective': 'binary:logistic',
                      'eval_metric' : 'auc'}
             num_round = 300
             bst = xgb.train(param, dtrain, num_round, eval_list, early_stoppin
        g_rounds=2)
             return bst
In [63]:
         from sklearn.preprocessing import LabelEncoder
        from sklearn.model_selection import train_test_split
        le = LabelEncoder()
        for col in cat_cols:
             train[col] = le.fit_transform(train[col])
             test[col] = le.fit_transform(test[col])
In [64]:
        from sklearn.preprocessing import LabelEncoder
        from sklearn.model_selection import train_test_split
        X = train
        y = train.CarInsurance
        X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                             test_size=0.3, ran
        dom_state=0)
In [65]:
        test_id = X_test.Id.values
        test_carInsurance = X_test.CarInsurance.values
        X_train.drop(['Id', 'CarInsurance'], axis=1, inplace=True)
        X_test.drop(['Id', 'CarInsurance'], axis=1, inplace=True)
         /opt/conda/lib/python3.6/site-packages/pandas/core/frame.py:3697: Sett
         ingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: http://pandas.pydata.org/pandas-
         docs/stable/indexing.html#indexing-view-versus-copy
           errors=errors)
In [66]:
        import xgboost as xgb
        dtrain = xgb.DMatrix(X_train, y_train)
        dval = xgb.DMatrix(X_test, y_test)
```

[0] eval-auc:0.843711 train-auc:0.873992
Multiple eval metrics have been passed: 'train-auc' will be used for e
arly stopping.

```
arly stopping.
Will train until train-auc hasn't improved in 2 rounds.
        eval-auc:0.857401
                                 train-auc:0.888068
[1]
[2]
        eval-auc:0.858789
                                 train-auc:0.889743
[3]
        eval-auc:0.868222
                                 train-auc:0.898518
[4]
        eval-auc:0.86839
                                 train-auc:0.900772
[5]
        eval-auc:0.868581
                                 train-auc:0.902292
[6]
        eval-auc:0.869914
                                 train-auc:0.90469
[7]
        eval-auc:0.87459
                                 train-auc:0.908159
[8]
        eval-auc:0.880214
                                 train-auc:0.911055
[9]
        eval-auc:0.882404
                                 train-auc:0.914217
[10]
        eval-auc:0.882466
                                 train-auc:0.914551
[11]
        eval-auc:0.883489
                                 train-auc:0.915835
[12]
        eval-auc:0.885043
                                 train-auc:0.918721
[13]
        eval-auc:0.885757
                                 train-auc:0.919617
[14]
        eval-auc:0.887242
                                 train-auc:0.920942
[15]
        eval-auc:0.888807
                                 train-auc:0.922525
[16]
        eval-auc:0.890478
                                 train-auc:0.924871
        eval-auc:0.891534
[17]
                                 train-auc:0.926951
[18]
        eval-auc:0.892957
                                 train-auc:0.928164
[19]
        eval-auc:0.895962
                                 train-auc:0.930997
[20]
        eval-auc:0.897326
                                 train-auc:0.932759
[21]
        eval-auc:0.897847
                                 train-auc:0.93358
[22]
        eval-auc:0.898956
                                 train-auc:0.934713
[23]
        eval-auc:0.901668
                                 train-auc:0.937263
[24]
        eval-auc:0.901987
                                 train-auc:0.938511
[25]
        eval-auc:0.902735
                                 train-auc:0.939382
[26]
        eval-auc:0.903814
                                 train-auc:0.940139
[27]
        eval-auc:0.904308
                                 train-auc:0.941018
[28]
        eval-auc:0.904941
                                 train-auc:0.943245
[29]
        eval-auc:0.90524
                                 train-auc:0.943767
[30]
        eval-auc:0.906739
                                 train-auc:0.9445
[31]
        eval-auc:0.90758
                                 train-auc:0.945211
[32]
        eval-auc:0.907701
                                 train-auc:0.945981
[33]
        eval-auc:0.907763
                                 train-auc:0.946823
[34]
        eval-auc:0.908723
                                 train-auc:0.948778
[35]
                                 train-auc:0.949077
        eval-auc:0.909281
[36]
        eval-auc:0.909593
                                 train-auc:0.949645
[37]
        eval-auc:0.909997
                                 train-auc:0.950733
[38]
        eval-auc:0.909675
                                 train-auc:0.951515
[39]
        eval-auc:0.910371
                                 train-auc:0.952047
[40]
        eval-auc:0.910199
                                 train-auc:0.953082
[41]
        eval-auc:0.909999
                                 train-auc:0.953735
[42]
        eval-auc:0.910571
                                 train-auc:0.954585
[43]
        eval-auc:0.910761
                                 train-auc:0.954991
[44]
        eval-auc:0.910699
                                 train-auc:0.95594
[45]
        eval-auc:0.910288
                                 train-auc:0.956393
[46]
        eval-auc:0.910279
                                 train-auc:0.956551
[47]
        eval-auc:0.910285
                                 train-auc:0.956867
[48]
        eval-auc:0.910929
                                 train-auc:0.957337
[49]
        eval-auc:0.911182
                                 train-auc:0.958014
[50]
        eval-auc:0.911919
                                 train-auc:0.958921
[51]
        eval-auc:0.911936
                                 train-auc:0.9594
[52]
        eval-auc:0.912264
                                 train-auc:0.960366
```

----1 ----- 01007/

		Prediction binary cat insu
[53]	eva1-anc:0.3153/p	train-auc:0.960858
[54]	eval-auc:0.913394	train-auc:0.961732
[55]	eval-auc:0.913947	train-auc:0.962622
[56]	eval-auc:0.914018	train-auc:0.963339
[57]	eval-auc:0.914254	train-auc:0.963866
[58]	eval-auc:0.914999	train-auc:0.964656
[59]	eval-auc:0.914545	train-auc:0.965208
[60]	eval-auc:0.914818	train-auc:0.966004
[61]	eval-auc:0.91485	train-auc:0.966996
[62]	eval-auc:0.915008	train-auc:0.967428
[63]	eval-auc:0.915643	train-auc:0.967847
[64]	eval-auc:0.915402	train-auc:0.968195
[65]	eval-auc:0.915764	train-auc:0.968901
[66]	eval-auc:0.915917	train-auc:0.969333
[67]	eval-auc:0.916017	train-auc:0.970077
[68]	eval-auc:0.916072	train-auc:0.970568
[69]	eval-auc:0.916069	train-auc:0.971027
1 1	eval-auc:0.915563	
[70]		train-auc:0.971239
[71]	eval-auc:0.915802	train-auc:0.971581
[72]	eval-auc:0.915678	train-auc:0.971815
[73]	eval-auc:0.915707	train-auc:0.972114
[74]	eval-auc:0.916662	train-auc:0.972333
[75]	eval-auc:0.91776	train-auc:0.972977
[76]	eval-auc:0.918137	train-auc:0.973599
[77]	eval-auc:0.918894	train-auc:0.974045
[78]	eval-auc:0.918994	train-auc:0.974389
[79]	eval-auc:0.918779	train-auc:0.974714
[80]	eval-auc:0.918813	train-auc:0.974739
[81]	eval-auc:0.919342	train-auc:0.975209
[82]	eval-auc:0.919368	train-auc:0.975879
[83]	eval-auc:0.918925	train-auc:0.976141
[84]	eval-auc:0.918868	train-auc:0.976303
[85]	eval-auc:0.918738	train-auc:0.976604
[86]	eval-auc:0.918839	train-auc:0.976744
[87]	eval-auc:0.918764	train-auc:0.97708
[88]	eval-auc:0.918865	train-auc:0.977625
[89]	eval-auc:0.919029	train-auc:0.97817
[90]	eval-auc:0.918954	train-auc:0.978305
[91]	eval-auc:0.918856	train-auc:0.978581
[92]	eval-auc:0.918894	train-auc:0.978676
[93]	eval-auc:0.918684	train-auc:0.978837
[94]	eval-auc:0.918525	train-auc:0.978995
[95]	eval-auc:0.918468	train-auc:0.979489
[96]	eval-auc:0.918707	train-auc:0.979805
[97]	eval-auc:0.919011	train-auc:0.980142
[98]	eval-auc:0.919109	train-auc:0.980201
[99]	eval-auc:0.919104	train-auc:0.980199
[100]	eval-auc:0.919457	train-auc:0.980567
[101]	eval-auc:0.919472	train-auc:0.981132
[102]	eval-auc:0.919627	train-auc:0.981391
[103]	eval-auc:0.919673	train-auc:0.981657
[104]	eval-auc:0.919748	train-auc:0.981915
[105]	eval-auc:0.91965	train-auc:0.982071
[106]	eval-auc:0.920076	train-auc:0.982203
[107]	eval-auc:0.920622	train-auc:0.982273
[108]	eval-auc:0.920507	train-auc:0.982462
[109]	eval-auc:0.920455	train-auc:0.982735
[110]	eval-auc:0.920455	train-auc:0.982735
[111]	eval-auc:0.920455	train-auc:0.982735
	g. Best iteration:	
[109]	eval-auc:0.920455	train-auc:0.982735
-		

TH [DO]:

```
dtest = xgb.DMatrix(X_test)
        predict = bst.predict(dtest)
In [69]:
         submissions = pd.DataFrame({"Id" : test_id, "PredValue" : predict, 'Ca
         rInsurance' : test_carInsurance})
In [70]:
         submissions.to_csv("./submissions.csv", index=False)
In [71]:
        def make_model_optuna(trial):
             from sklearn.preprocessing import LabelEncoder
             from sklearn.model_selection import train_test_split
             import xgboost as xgb
             import sklearn.datasets
             import sklearn.metrics
            le = LabelEncoder()
             for col in cat_cols:
                 train[col] = le.fit_transform(train[col])
                 test[col] = le.fit_transform(test[col])
            X = train.drop(['Id', 'CarInsurance'], axis=1)
             y = train.CarInsurance
             X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                                  test_size=0.3,
         random_state=0)
             dtrain = xgb.DMatrix(X_train, y_train)
             dval = xgb.DMatrix(X_test, y_test)
             # eval_list = [(dval, 'eval'), (dtrain, 'train')]
             n_round = trial.suggest_int('n_round', 1, 9)
             param = {'silent': 1,
                      'objective': 'binary:logistic',
                      'booster': trial.suggest_categorical('booster', ['gbtree'
         , 'gblinear', 'dart']),
                      'lambda': trial.suggest_loguniform('lambda', 1e-8, 1.0),
                      'alpha': trial.suggest_loguniform('alpha', 1e-8, 1.0),
                      'eval_metric' : 'auc'
                      }
             if param['booster'] == 'gbtree' or param['booster'] == 'dart':
                 param['max_depth'] = trial.suggest_int('max_depth', 1, 9)
                 param['ets'] = trial.suggest_loguniform('eta', 1e-8, 1.0)
                 param['gamma'] = trial.suggest_loguniform('gamma', 1e-8, 1.0)
                 param['grow_policy'] = trial.suggest_categorical('grow_policy'
         , ['depthwise', 'lossguide'])
             if param['booster'] == 'dart':
                 param['sample_type'] = trial.suggest_categorical('sample_type'
           ['uniform' 'weighted'l)
```

This kernel has been released under the Apache 2.0 open source license.

Did you find this Kernel useful?
Show your appreciation with an upvote

Data

Data Sources

▼ © Car Insurance Cold Calls

DSS_DMC_Description.pdf

19 columns

19 columns

Car Insurance Cold Calls

We help the guys and girls at the front to get out of Cold Call Hell

Last Updated: 2 years ago (Version 1)

About this Dataset

Introduction

Here you find a very simple, beginner-friendly data set. No sparse matrices, no fancy tools needed to understand what's going on. Just a couple of rows and columns. Super simple stuff. As explained below, this data set is used for a competition. As it turns out, this competition tends to reveal a common truth in data science: KISS - Keep It Simple Stupid

What is so special about this data set is, given it's simplicity, it pays off to use "simple" classifiers as well. This year's competition was won by a C5.0 . Can you do better?

Description

We are looking at cold call results. Turns out, same salespeople called existing insurance customers up and tried to sell car insurance. What you have are details about the called customers. Their age, job, marital status, whether the have home insurance, a car loan, etc. As I said, super simple.

What I would love to see is some of you applying some crazy XGBoost classifiers, which we can square off against some logistic regressions. It would be curious to see what comes out on top. Thank you for your time, I hope you enjoy using the data set.

Acknowledgements

Thanks goes to the Decision Science and Systems Chair of Technical University of Munich (TUM) for getting the data set

Output Files

Output Files

About this file

submissions.csv

This file was created from a Kernel, it does not have a description.

■ submissions.csv

± ×

Prediction binary cat insurance data | Kaggle

7	539	0.61982554	1
8	1792	0.8545701	0
9	411	0.57173336	0
10	1151	0.02750595 7	0
11	1033	0.9008635	1
12	2179	0.01949213	0
13	225	0.00515167 46	0
14	2801	0.00543821 23	0
15	2282	0.24459662	0
16	3311	0.22591984	0
17	1747	0.35132027	1
18	2859	0.6926998	1
19	2407	0.79104865	0
20	3660	0.74910945	1
21	3028	0.00572839 4	0
22	3464	0.9128454	1
23	1372	0.83979803	1
24	966	0.7271425	1
25	1016	0.00573337 7	0
26	911	0.00232833	0

Comments (0)

Please sign in to leave a comment.

© 2019 Kaggle Inc

Our Team Terms Privacy Contact/Support

