## In [1]:

```
%pylab inline
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import timeit
from scipy import stats
import seaborn
from IPython.display import Image
```

Populating the interactive namespace from numpy and matplotlib

#### данные такси

www.nyc.gov/html/tlc/html/about/trip\_record\_data.shtml

## In [2]:

```
taxi_may_16 = pd.read_csv("./data/yellow_tripdata_2016-05.csv")
```

#### In [3]:

```
print(taxi_may_16.shape)
```

(11836853, 19)

#### In [4]:

```
taxi_may_16.head()
```

#### Out[4]:

|   | VendorID | tpep_pickup_datetime | tpep_dropoff_datetime | passenger_count | trip_ |
|---|----------|----------------------|-----------------------|-----------------|-------|
| 0 | 1        | 2016-05-01 00:00:00  | 2016-05-01 00:17:31   | 1               | 3.60  |
| 1 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:31   | 1               | 1.68  |
| 2 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:01   | 6               | 1.09  |
| 3 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:19:47   | 1               | 4.21  |
| 4 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:06:39   | 1               | 0.56  |

#### In [5]:

```
taxi_may_16.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11836853 entries, 0 to 11836852
Data columns (total 19 columns):
VendorID
                          int64
tpep_pickup_datetime
                         object
tpep_dropoff_datetime
                         object
passenger_count
                          int64
                         float64
trip_distance
pickup_longitude
                         float64
                         float64
pickup_latitude
RatecodeID
                         int64
store_and_fwd_flag
                         object
dropoff_longitude
                         float64
dropoff_latitude
                         float64
payment_type
                         int64
                         float64
fare amount
extra
                         float64
                         float64
mta tax
tip_amount
                         float64
tolls_amount
                         float64
improvement_surcharge
                         float64
total_amount
                         float64
```

dtypes: float64(12), int64(4), object(3)

memory usage: 1.7+ GB

#### In [6]:

```
taxi_may_16.isnull().values.any()
```

Out[6]:

False

In [7]:

taxi\_may\_16.describe()

Out[7]:

|       | VendorID     | passenger_count | trip_distance | pickup_longitude | pickup_la |
|-------|--------------|-----------------|---------------|------------------|-----------|
| count | 1.183685e+07 | 1.183685e+07    | 1.183685e+07  | 1.183685e+07     | 1.183685€ |
| mean  | 1.529075e+00 | 1.662265e+00    | 6.110069e+00  | -7.304978e+01    | 4.024234€ |
| std   | 4.991539e-01 | 1.304418e+00    | 5.155162e+03  | 8.212003e+00     | 4.523904€ |
| min   | 1.000000e+00 | 0.000000e+00    | 0.000000e+00  | -1.650819e+02    | -4.456935 |
| 25%   | 1.000000e+00 | 1.000000e+00    | 1.000000e+00  | -7.399179e+01    | 4.073611e |
| 50%   | 2.000000e+00 | 1.000000e+00    | 1.720000e+00  | -7.398136e+01    | 4.075375€ |
| 75%   | 2.000000e+00 | 2.000000e+00    | 3.270000e+00  | -7.396588e+01    | 4.076862€ |
| max   | 2.000000e+00 | 9.000000e+00    | 1.200000e+07  | 1.184089e+02     | 5.366724€ |

```
In [6]:
```

```
print(type(taxi_may_16.iloc[0].tpep_dropoff_datetime))
<type 'str'>
```

## записи в которых пассажира нет, длительность и расстояние поездки == 0 будут выброшены

#### In [9]:

```
print(taxi_may_16[taxi_may_16.passenger_count == 0].shape)
print(taxi_may_16[taxi_may_16.trip_distance == 0].shape)
print(taxi_may_16[taxi_may_16.tpep_pickup_datetime == taxi_may_16.tpep_dropoff_datetime
].shape)
```

(604, 19)

# 3. Нью-Йорк вписан в прямоугольник от -74.25559 до -73.70001 градусов долготы и от 40.49612 до 40.91553 широты. Оставим лишь те поездки, которые были предприняты из этого пространства

#### In [4]:

(11686529, 19)

#### In [4]:

```
taxi_may_16.drop(taxi_may_16[taxi_may_16.passenger_count == 0].index, inplace=True)
taxi_may_16.drop(taxi_may_16[taxi_may_16.trip_distance == 0].index, inplace=True)
taxi_may_16.drop(taxi_may_16[taxi_may_16.tpep_pickup_datetime == taxi_may_16.tpep_dropo
ff_datetime].index, inplace=True)
```

#### In [7]:

```
taxi_may_16.shape
```

#### Out[7]:

(11763422, 19)

#### In [8]:

```
taxi_may_16.drop(taxi_may_16[taxi_may_16.pickup_longitude < -74.25559].index, inplace=T
rue)
taxi_may_16.drop(taxi_may_16[taxi_may_16.pickup_longitude > -73.70001].index, inplace=T
rue)
taxi_may_16.drop(taxi_may_16[taxi_may_16.pickup_latitude < 40.49612].index, inplace=Tru
e)
taxi_may_16.drop(taxi_may_16[taxi_may_16.pickup_latitude > 40.91553].index, inplace=Tru
e)
```

```
In [12]:
```

```
taxi_may_16.shape
```

Out[12]:

(11626521, 19)

In [ ]:

```
In [77]:
```

```
regions = pd.read_csv("./data/regions.csv", delimiter=";")
```

In [14]:

```
regions.head()
```

Out[14]:

|   | region | west      | east       | south     | north     |
|---|--------|-----------|------------|-----------|-----------|
| 0 | 1      | -74.25559 | -74.244478 | 40.496120 | 40.504508 |
| 1 | 2      | -74.25559 | -74.244478 | 40.504508 | 40.512896 |
| 2 | 3      | -74.25559 | -74.244478 | 40.512896 | 40.521285 |
| 3 | 4      | -74.25559 | -74.244478 | 40.521285 | 40.529673 |
| 4 | 5      | -74.25559 | -74.244478 | 40.529673 | 40.538061 |

## In [15]:

```
regions.shape
```

Out[15]:

(2500, 5)

In [18]:

```
print(type(regions.iloc[0].west), type(taxi_may_16.iloc[0].pickup_latitude))
```

(<type 'numpy.float64'>, <type 'numpy.float64'>)

#### too long

In [42]:

```
latt = taxi_may_16.iloc[0].pickup_latitude
longi = taxi_may_16.iloc[0].pickup_longitude
reg = regions[(regions.west <= longi) & (longi < regions.east) & (regions.south <= latt
) & (latt < regions.north)].region.values
print reg</pre>
```

[1233]

```
In [70]:
```

#### In [55]:

```
#result = [check_region(taxi_may_16.iloc[i], regions) for i in range(2000)]
```

#### In [15]:

```
taxi_may_16[0:5]
```

#### Out[15]:

|   | VendorID | tpep_pickup_datetime | tpep_dropoff_datetime | passenger_count | trip_ |
|---|----------|----------------------|-----------------------|-----------------|-------|
| 0 | 1        | 2016-05-01 00:00:00  | 2016-05-01 00:17:31   | 1               | 3.60  |
| 1 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:31   | 1               | 1.68  |
| 2 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:01   | 6               | 1.09  |
| 3 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:19:47   | 1               | 4.21  |
| 4 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:06:39   | 1               | 0.56  |

## In [ ]:

#### In [15]:

#### In [16]:

```
#taxi_may_16["region"] = region
```

#### In [ ]:

#### much faster

```
In [20]:
```

```
NY_long_west = -74.25559
NY_long_east = -73.70001
NY_latt_south = 40.49612
NY_latt_north = 40.91553
```

## In [18]:

```
def region_counter(longitude, latitude):
    long_num = np.ceil((longitude - NY_long_west)*50.0/(NY_long_east - NY_long_west))
    lat_num = np.ceil((latitude - NY_latt_south)*50.0/(NY_latt_north - NY_latt_south))
    return (long_num - 1) * 50.0 + lat_num
```

#### In [98]:

```
print(region_counter(-74.255585, 40.496125))
```

1.0

## In [29]:

```
%%time
s = region_counter(taxi_may_16.pickup_longitude, taxi_may_16.pickup_latitude)
```

Wall time: 560 ms

#### In [30]:

```
taxi_may_16["region"] = s
```

#### In [31]:

```
taxi_may_16.head()
```

Out[31]:

|   | VendorID | tpep_pickup_datetime | tpep_dropoff_datetime | passenger_count | trip_ |
|---|----------|----------------------|-----------------------|-----------------|-------|
| 0 | 1        | 2016-05-01 00:00:00  | 2016-05-01 00:17:31   | 1               | 3.60  |
| 1 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:31   | 1               | 1.68  |
| 2 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:01   | 6               | 1.09  |
| 3 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:19:47   | 1               | 4.21  |
| 4 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:06:39   | 1               | 0.56  |

#### In [68]:

```
taxi_may_16.shape
```

Out[68]:

(11626521, 20)

In [ ]:

#### round hours

## In [69]:

taxi\_may\_16["hour\_statistic"] = pd.DatetimeIndex(taxi\_may\_16.tpep\_pickup\_datetime).map(
lambda x: x.replace(minute=0, second=0))

In [70]:

taxi\_may\_16.shape

Out[70]:

(11626521, 21)

In [71]:

taxi\_may\_16.head()

Out[71]:

|   | VendorID | tpep_pickup_datetime | tpep_dropoff_datetime | passenger_count | trip_ |
|---|----------|----------------------|-----------------------|-----------------|-------|
| 0 | 1        | 2016-05-01 00:00:00  | 2016-05-01 00:17:31   | 1               | 3.60  |
| 1 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:31   | 1               | 1.68  |
| 2 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:01   | 6               | 1.09  |
| 3 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:19:47   | 1               | 4.21  |
| 4 | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:06:39   | 1               | 0.56  |

5 rows × 21 columns

In [73]:

taxi\_may\_16.loc[1000].hour\_statistic

Out[73]:

Timestamp('2016-05-04 22:00:00')

file:///H:/Yandex%20machine%20learning/finall%20course%20coursera/csv\_yellow\_cab\_2014/yellow\_cab\_week\_1\_FINAL.html

(11626521, 8)

In [4]:

```
In [108]:
taxi may 16.columns
Out[108]:
Index([u'VendorID', u'tpep_pickup_datetime', u'tpep_dropoff_datetime',
       u'passenger_count', u'trip_distance', u'pickup_longitude',
       u'pickup_latitude', u'RatecodeID', u'store_and_fwd_flag',
       u'dropoff_longitude', u'dropoff_latitude', u'payment_type',
       u'fare amount', u'extra', u'mta tax', u'tip amount', u'tolls amoun
t',
       u'improvement_surcharge', u'total_amount', u'region',
       u'hour statistic'],
      dtype='object')
In [114]:
taxi_may_16.to_csv("./data/edit_yellow_taxi_may_2016.csv", sep='\t', columns=["VendorI
D", "tpep_pickup_datetime", "tpep_dropoff_datetime", "passenger_count",
                                                  "trip_distance", "pickup_longitude",
"pickup_latitude", "RatecodeID" ,
                                                  "store_and_fwd_flag", "dropoff_longitu
de", 'dropoff_latitude', 'payment_type',
                                                  'fare_amount', 'extra', 'mta_tax', 'ti
p_amount', 'tolls_amount',
                                                  'improvement surcharge', 'total amoun
t', 'region', 'hour_statistic'])
In [ ]:
make 2d statistics
In [2]:
#taxi_may_16_edit = pd.read_csv("./data/edit_yellow_taxi_may_2016.csv", sep='\t')
taxi_may_16_edit = pd.read_csv("./data/edit_yellow_taxi_may_2016.csv", sep='\t', usecol
s=["VendorID", "tpep_pickup_datetime",
                             "tpep dropoff datetime", "passenger count", "pickup longitu
de", "pickup latitude", "region",
                                                                                     "hou
r_statistic"])
In [3]:
taxi_may_16_edit.shape
Out[3]:
```

taxi\_may\_16\_edit.hour\_statistic = pd.DatetimeIndex(taxi\_may\_16\_edit.hour\_statistic)

## In [5]:

taxi\_may\_16\_edit.head()

Out[5]:

|   | Unnamed: | VendorID | tpep_pickup_datetime | tpep_dropoff_datetime | passenger_co |
|---|----------|----------|----------------------|-----------------------|--------------|
| 0 | 0        | 1        | 2016-05-01 00:00:00  | 2016-05-01 00:17:31   | 1            |
| 1 | 1        | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:31   | 1            |
| 2 | 2        | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:01   | 6            |
| 3 | 3        | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:19:47   | 1            |
| 4 | 4        | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:06:39   | 1            |

5 rows × 22 columns

**→** 

## In [6]:

taxi\_may\_16\_edit[-5:]

## Out[6]:

|          | Unnamed: | VendorID | tpep_pickup_datetime | tpep_dropoff_datetime | pas |
|----------|----------|----------|----------------------|-----------------------|-----|
| 11626516 | 11836837 | 2        | 2016-05-31 23:53:01  | 2016-06-01 00:00:24   | 2   |
| 11626517 | 11836838 | 2        | 2016-05-31 23:53:02  | 2016-06-01 00:19:36   | 1   |
| 11626518 | 11836839 | 2        | 2016-05-31 23:53:02  | 2016-05-31 23:59:07   | 1   |
| 11626519 | 11836840 | 2        | 2016-05-31 23:53:03  | 2016-06-01 00:05:47   | 1   |
| 11626520 | 11836841 | 1        | 2016-05-19 03:29:16  | 2016-05-19 03:31:24   | 1   |

5 rows × 22 columns

 $file: ///H:/Y and ex \% 20 machine \% 20 learning/finall \% 20 course \% 20 course ra/csv\_yellow\_cab\_2014/yellow\_cab\_week\_1\_FINAL.html$ 

```
In [7]:
```

```
taxi_may_16_edit.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11626521 entries, 0 to 11626520
Data columns (total 22 columns):
Unnamed: 0
VendorID
                          int64
tpep_pickup_datetime
                         object
tpep_dropoff_datetime
                         object
                          int64
passenger_count
trip_distance
                          float64
                         float64
pickup_longitude
pickup latitude
                         float64
RatecodeID
                          int64
store_and_fwd_flag
                         object
dropoff_longitude
                         float64
dropoff_latitude
                         float64
payment type
                          int64
fare_amount
                          float64
                         float64
extra
mta_tax
                         float64
tip_amount
                          float64
tolls_amount
                         float64
improvement_surcharge
                         float64
total_amount
                          float64
region
                          float64
hour_statistic
                         datetime64[ns]
dtypes: datetime64[ns](1), float64(13), int64(5), object(3)
memory usage: 1.9+ GB
In [8]:
taxi_may_16_edit.hour_statistic[0].value
Out[8]:
14620608000000000000L
In [12]:
print("amount of unique regions in May month: ", np.unique(taxi_may_16_edit.region).sha
pe[0])
('amount of unique regions in May month: ', 1217L)
In [5]:
time bins = np.sort(np.unique(taxi may 16 edit.hour statistic)).astype(np.int64)
In [7]:
time_bins.shape # 31 day * 24 hour
Out[7]:
(744,)
```

## добавим 12-тый час последнего дня, что бы статистика получилась размером ровно в месяц 744

```
In [6]:
time_bins = np.hstack((time_bins, time_bins[-1] + 360000000000))
```

#### посчитаем статистику по выездам и по количеству пассажиров

Out[8]: (2500, 744)

In [9]:

## а еще можно построить статистику по часам суток - почасовая сумма выездов за весь месяц

```
In [ ]:
```

In [10]:

taxi\_may\_16\_edit["day\_hours"] = taxi\_may\_16\_edit["hour\_statistic"].apply(lambda x: x.ho
ur)

```
In [26]:
```

```
taxi_may_16_edit.head()
```

Out[26]:

|   | Unnamed: | VendorID | tpep_pickup_datetime | tpep_dropoff_datetime | passenger_co |
|---|----------|----------|----------------------|-----------------------|--------------|
| 0 | 0        | 1        | 2016-05-01 00:00:00  | 2016-05-01 00:17:31   | 1            |
| 1 | 1        | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:31   | 1            |
| 2 | 2        | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:07:01   | 6            |
| 3 | 3        | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:19:47   | 1            |
| 4 | 4        | 2        | 2016-05-01 00:00:00  | 2016-05-01 00:06:39   | 1            |

5 rows × 24 columns

**→** 

#### In [11]:

```
hour_bins = np.hstack((np.sort(np.unique(taxi_may_16_edit.day_hours)), 24))
```

## In [14]:

```
print(hour_bins)
```

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]

#### In [12]:

#### In [84]:

#http://www.mapdevelopers.com/geocode\_bounding\_box.php

## Статистика по вызовам такси в обычном масштабе и масштабе кубического корня

## In [36]:

```
plt.figure(figsize=(20, 20))
seaborn.heatmap(region_bined_stat.statistic, cmap='coolwarm')
plt.legend("hour-NY region taxi counter")
plt.xlabel('hours in May 2016', fontsize=24)
plt.ylabel('NY regions', fontsize=24)
```

## Out[36]:

Text(159,0.5,'NY regions')



## In [89]:

```
plt.figure(figsize=(20, 20))
seaborn.heatmap(np.cbrt(region_bined_stat.statistic), cmap='coolwarm')
plt.legend("hour-NY region taxi counter")
plt.xlabel('hours in May 2016', fontsize=24)
plt.ylabel('NY regions', fontsize=24)
```

## Out[89]:

Text(159,0.5,'NY regions')



## Статистика по пассажирам

## In [12]:

```
plt.figure(figsize=(20, 20))
seaborn.heatmap(passanger_bined_stat.statistic, cmap='coolwarm')
plt.legend("hour-NY region taxi counter")
plt.xlabel('hours in May 2016', fontsize=24)
plt.ylabel('NY regions', fontsize=24)
```

Out[12]:

Text(159,0.5,'NY regions')



In [ ]:

Аккумулятивная суточная статистика за май 2016 по вызовам такси в обычном и логарифмическом масштабе

## In [14]:

```
plt.figure(figsize=(20, 20))
seaborn.heatmap(reg_hour_stat.statistic, cmap='coolwarm')
plt.legend("24 hour region taxi counter", prop={'size': 6})
plt.xlabel('hours in May 2016', fontsize=24)
plt.ylabel('NY regions', fontsize=24)
```

## Out[14]:

Text(159,0.5,'NY regions')



## In [88]:

```
plt.figure(figsize=(20, 20))
seaborn.heatmap(np.cbrt(reg_hour_stat.statistic), cmap='coolwarm')
plt.legend("24 hour region taxi counter", prop={'size': 6})
plt.xlabel('hours in May 2016', fontsize=24)
plt.ylabel('NY regions', fontsize=24)
```

## Out[88]:

Text(159,0.5,'NY regions')



## Куммулятивная карта поездок за май 2016

для сглаживания результата был взят кубический корень

## In [74]:

```
plt.figure(figsize=(20, 20))
seaborn.heatmap(np.cbrt(np.rot90(np.reshape(reg_hour_stat.statistic.sum(axis=1), (-1, 5
0)))), cmap='coolwarm')
```

## Out[74]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x495d2550>



#### In [42]:

Image("./data/new york.png")

#### Out[42]:



| Tn    |  |
|-------|--|
| TII I |  |
|       |  |

"heatmap" для нескольких центральных регионов для первого дня мая 2016

#### In [65]:

```
plt.figure(figsize=(24,10))
seaborn.heatmap(region_bined_stat.statistic[1225:1235, :24], annot=True, cmap='coolwar
m')
plt.legend("hour-NY region taxi counter")
plt.xlabel('hours in May 2016', fontsize=24)
plt.ylabel('NY regions', fontsize=24)
```

#### Out[65]:

Text(195,0.5,'NY regions')



## Empire State Building 40.748441° N, -73.985664° W

```
In [78]:
```

Empire State building region: [1231]

#### In [79]:

```
ESB_reg = 1231
```

## почасовые графики поездок из квадрата в котором находится Empire State Building

#### In [82]:

```
plt.figure(figsize=(15,6))
plt.plot(np.arange(744), region_bined_stat.statistic[ESB_reg-1,:])
plt.plot(np.arange(744), region_bined_stat.statistic[ESB_reg-1,:])
plt.xlim([0,745])
plt.ylabel("amount of trips")
plt.xlabel("hour")
plt.xlabel("Empire State Building region");
```



## 1 мая 2016 года - воскресенье

## подсчитаем количество ячеек из которых было 0 поездок

#### In [87]:

```
print("all regions: ", np.prod(region_bined_stat.statistic.shape))
print("zero regions: ", np.prod(region_bined_stat.statistic.shape) - np.count_nonzero(r
egion_bined_stat.statistic))
```

all regions: 1860000 zero regions: 1718238

#### In [13]:

```
#del bined_statistic
del taxi_may_16_edit
```