ST 790, Homework 2 Solutions Spring 2015

1. (a) Let $U_{gh} = \sum_{i=1}^{N} I(Y_{i1} = g, Y_{i2} = h)$. The joint density of the U_{gh} , g = 1, ..., G, h = 1, ..., H, is the multinomial density

$$\frac{N!}{\prod_{g=1}^{G} \prod_{h=1}^{H} U_{gh}!} \prod_{g=1}^{G} \prod_{h=1}^{H} \theta_{gh}^{U_{gh}}.$$

Taking logarithms and ignoring the constant term, we thus want to maximize

$$\sum_{g=g}^{G} \sum_{h=1}^{H} U_{gh} \log(\theta_{gh}) \quad \text{subject to} \quad \sum_{g=g}^{G} \sum_{h=1}^{H} \theta_{gh} = 1.$$

Most of you imposed the constraint by using a Lagrange multiplier approach. Letting

$$L(\theta) = \sum_{g=g}^{G} \sum_{h=1}^{H} U_{gh} \log(\theta_{gh}) - \lambda \left(\sum_{g=g}^{G} \sum_{h=1}^{H} \theta_{gh} - 1 \right),$$

taking derivatives of $L(\theta)$ with respect to each θ_{gh} and λ and setting equal to zero yields

$$\theta_{gh} = \frac{U_{gh}}{\lambda}, \quad g = 1, \dots, G, h = 1, \dots, H,$$

and

$$\sum_{g=g}^{G} \sum_{h=1}^{H} \theta_{gh} = 1.$$

Using the fact that

$$\sum_{q=a}^{G} \sum_{h=1}^{H} U_{gh} = N,$$

we get

$$\lambda = N$$
,

from whence it follows that

$$\widehat{\theta}_{gh} = \frac{U_{gh}}{N}, \quad g = 1, \dots, G, h = 1, \dots, H.$$

(b) Clearly, from the full data loglikelihood, $U_{gh} = \sum_{i=1}^{N} I(Y_{i1} = g, Y_{i2} = h)$ is a sufficient statistic for θ_{gh} , g = 1, ..., G, h = 1, ..., H. Accordingly, from pages 68-69 of the notes, the E-step involves finding for each g = 1, ..., G, h = 1, ..., H

$$E\{I(Y_1 = g, Y_2 = h)|R, Z_{(R)}\}.$$

Here, R takes on values $r = (1,1)^T$, $(1,0)^T$, or $(0,1)^T$. Trivially, when $R = (1,1)^T$, $Z_{(R)} = (Y_1, Y_2)$, and

$$E\{I(Y_1=g,\,Y_2=h)|R,Z_{(R)}\}=I(Y_1=g,\,Y_2=h).$$

When $R = (1, 0)^T$, $Z_{(R)} = Y_1$, and

$$\begin{split} E\{I(Y_1=g,\,Y_2=h)|R,\,Z_{(R)}\} &= E\{I(Y_1=g)I(Y_2=h)|\,Y_1=g)\} \\ &= I(Y_1=g)E\{I(Y_2=h)|\,Y_1=g)\} = I(Y_1=g)\mathrm{pr}(Y_2=h|\,Y_1=g) \\ &= I(Y_1=g)\frac{\theta_{gh}}{\theta_{g.}}, \end{split}$$

using $\theta_{gh} = \text{pr}(Y_1 = g, Y_2 = h)$ and $\text{pr}(Y_1 = g) = \theta_{g.} = \sum_{h=1}^{H} \theta_{gh}$. Analogously, when $R = (0, 1)^T$,

$$E\{I(Y_1=g,Y_2=h)|R,Z_{(R)}\}=I(Y_2=h)E\{I(Y_1=g)|Y_2=h\}=I(Y_2=h)\frac{\theta_{gh}}{\theta_{hh}},$$

where $\theta_{\cdot h} = \sum_{g=1}^G \theta_{gh}$. Thus, given the tth iterate $\theta_{gh}^{(t)}$ for $g=1,\ldots,G,\ h=1,\ldots,H$, and defining $\theta_{g\cdot}^{(t)}$ and $\theta_{\cdot h}^{(t)}$ in the obvious way, the E-step involves calculating for each $i=1,\ldots,N$

$$\theta_{gh,i}^{(t+1)} = R_{i1}R_{i2}I(Y_{i1} = g, Y_{i2} = h) + R_{i1}(1 - R_{i2})I(Y_{i1} = g)\frac{\theta_{gh}^{(t)}}{\theta_{g}^{(t)}} + (1 - R_{i1})R_{i2}I(Y_{i2} = h)\frac{\theta_{gh}^{(t)}}{\theta_{h}^{(t)}}$$

The M-step is then

$$\theta_{gh}^{(t+1)} = N^{-1} \sum_{i=1}^{N} \theta_{gh,i}^{(t+1)}, \quad g = 1, ..., G, h = 1, ..., H.$$

2. All of you summarized the missingness patterns for (a). For (b) - (d), you needed to massage and reconfigure the data set to use SAS proc mixed or R gls to fit the model as parameterized in (4), namely

$$Y_{ii} = \mu_{0i} + \beta_i A_i + \epsilon_{ii}, \quad \epsilon_i = (\epsilon_{i1}, \dots, \epsilon_{i5})^T \sim \mathcal{N}(0, \Sigma).$$

Here, the model is parameterized in terms of the means for treatment 0 (placebo) at each of the 5 time points (μ_{0j} , $j=1,\ldots,5$) and the differences in means between treatments 1 and 0 (active and placebo) at each of the time points (β_j , $j=1,\ldots,5$). To fit this mean model with the common unstructured covariance matrix using SAS proc mixed, the basic specification is

```
proc mixed method=ml;
    class week pid;
    model visual = week week*treat / noint solution;
    repeated / subject=pid type=un; * or repeated week / subject=pid type=un;
Using R gls, it is of the form

# Need to give the corSymm structure an integer time sequence so it
```

Recall that corSymm specifies the unstructured *correlation* structure. gls assumes by default that all outcomes have the *same variance*, so to generalize this to have different variances at each week/time, we also need to use the weights = varIdent option as shown above.

Here are results for each case:

(b) Available case analysis: R gls yields

Coefficients:

	Value	Std.Error	t-value	p-value
week0	55.33613	1.367406	40.46795	0.0000
week4	54.05487	1.460954	36.99971	0.0000
week12	52.98447	1.588584	33.35327	0.0000
week24	49.31615	1.721048	28.65473	0.0000
week52	44.02513	1.766815	24.91780	0.0000
week0:treat	-0.75762	1.925797	-0.39341	0.6941
week4:treat	-2.96186	2.063044	-1.43567	0.1514
week12:treat	-4.26556	2.253360	-1.89298	0.0586
week24:treat	-3.82741	2.453133	-1.56021	0.1190
week52:treat	-5.62378	2.545241	-2.20953	0.0273

Marginal variance covariance matrix

```
[,1] [,2] [,3] [,4] [,5] [1,] 220.50 201.61 188.79 182.45 143.79 [2,] 201.61 250.77 228.67 219.40 175.34 [3,] 188.79 228.67 295.71 262.48 224.76 [4,] 182.45 219.40 262.48 342.44 290.86 [5,] 143.79 175.34 224.76 290.86 350.16
```

Standard Deviations: 14.849 15.836 17.196 18.505 18.713

SAS proc mixed yields

Solution for Fixed Effects

			Standard			
Effect	week	Estimate	Error	DF	t Value	Pr > t
week	0	55.3361	1.3612	240	40.65	<.0001
week	4	54.0549	1.4543	240	37.17	<.0001
week	12	52.9845	1.5814	240	33.50	<.0001
week	24	49.3162	1.7133	240	28.78	<.0001
week	52	44.0251	1.7588	240	25.03	<.0001
treat*week	0	-0.7576	1.9171	240	-0.40	0.6931
treat*week	4	-2.9619	2.0537	240	-1.44	0.1506
treat*week	12	-4.2656	2.2432	240	-1.90	0.0584
treat*week	24	-3.8274	2.4421	240	-1.57	0.1184
treat*week	52	-5.6238	2.5338	240	-2.22	0.0274

Estimated R Matrix for pid 2

Row	Col1	Col2	Col3	Col4	Col5
1	220.50	201.61	188.80	182.46	143.80
2	201.61	250.77	228.68	219.41	175.34
3	188.80	228.68	295.72	262.49	224.77
4	182.46	219.41	262.49	342.45	290.87
5	143.80	175.34	224.77	290.87	350.17

(c) Complete case analysis: R gls yields

Coefficients:

	Value	Std.Error	t-value	p-value
week0	55.39216	1.473343	37.59624	0.0000
week4	54.47059	1.551355	35.11163	0.0000
week12	53.07843	1.673451	31.71795	0.0000
week24	49.79412	1.808359	27.53553	0.0000
week52	44.43137	1.835730	24.20365	0.0000
week0:treat	-0.54332	2.178380	-0.24941	0.8031
week4:treat	-2.86594	2.293722	-1.24947	0.2118
week12:treat	-2.89238	2.474245	-1.16900	0.2427
week24:treat	-3.27086	2.673710	-1.22334	0.2215
week52:treat	-4.71044	2.714179	-1.73549	0.0830

Marginal variance covariance matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 219.06 205.22 194.81 191.84 151.26

[2,] 205.22 242.87 221.54 217.76 174.92

[3,] 194.81 221.54 282.61 254.05 218.11

[4,] 191.84 217.76 254.05 330.01 279.89

[5,] 151.26 174.92 218.11 279.89 340.07

Standard Deviations: 14.801 15.584 16.811 18.166 18.441

SAS proc mixed yields

Solution for Fixed Effects

			Standard			
Effect	week	Estimate	Error	DF	t Value	Pr > t
week	0	55.3922	1.4655	188	37.80	<.0001
week	4	54.4706	1.5431	188	35.30	<.0001
week	12	53.0784	1.6645	188	31.89	<.0001
week	24	49.7941	1.7987	188	27.68	<.0001
week	52	44.4314	1.8259	188	24.33	<.0001
treat*week	0	-0.5433	2.1668	188	-0.25	0.8023
treat*week	4	-2.8659	2.2815	188	-1.26	0.2106

treat*week	12	-2.8924	2.4611	188	-1.18	0.2414
treat*week	24	-3.2709	2.6595	188	-1.23	0.2203
treat*week	52	-4.7104	2.6997	188	-1.74	0.0827

Estimated R Matrix for pid 4

Row	Col1	Col2	Col3	Col4	Col5
1	219.06	205.22	194.81	191.84	151.27
2	205.22	242.87	221.54	217.76	174.92
3	194.81	221.54	282.61	254.05	218.12
4	191.84	217.76	254.05	330.01	279.89
5	151.27	174.92	218.12	279.89	340.08

(d) LOCF analysis: R gls yields

Coefficients:

	Value	Std.Error	t-value	p-value
week0	55.33613	1.366928	40.48211	0.0000
week4	54.05882	1.457555	37.08869	0.0000
week12	53.01681	1.579395	33.56780	0.0000
week24	49.46218	1.700184	29.09226	0.0000
week52	44.70588	1.729726	25.84564	0.0000
week0:treat	-0.75762	1.925124	-0.39354	0.6940
week4:treat	-2.78610	2.052759	-1.35724	0.1750
week12:treat	-3.91763	2.224353	-1.76125	0.0785
week24:treat	-2.87541	2.394467	-1.20086	0.2300
week52:treat	-3.69762	2.436073	-1.51786	0.1293

Marginal variance covariance matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 220.50 202.55 190.01 184.35 152.43

[2,] 202.55 250.70 230.54 224.94 186.46

[3,] 190.01 230.54 294.37 267.19 232.11

[4,] 184.35 224.94 267.19 341.12 296.17

[5,] 152.43 186.46 232.11 296.17 353.08

Standard Deviations: 14.849 15.834 17.157 18.469 18.79

SAS proc mixed yields

Solution for Fixed Effects

Effect	week	Estimate	Standard Error	DF	t Value	Pr > t
week	0	55.3361	1.3612	240	40.65	<.0001
week	4	54.0588	1.4515	240	37.24	<.0001
week	12	53.0168	1.5728	240	33.71	<.0001

week	24	49.4622	1.6931	240	29.21	<.0001
week	52	44.7059	1.7225	240	25.95	<.0001
treat*week	0	-0.7576	1.9171	240	-0.40	0.6931
treat*week	4	-2.7861	2.0442	240	-1.36	0.1742
treat*week	12	-3.9176	2.2151	240	-1.77	0.0782
treat*week	24	-2.8754	2.3845	240	-1.21	0.2291
treat*week	52	-3.6976	2.4259	240	-1.52	0.1288

Estimated R Matrix for pid 2

Row	Col1	Col2	Col3	Col4	Col5
1	220.50	202.55	190.01	184.36	152.43
2	202.55	250.71	230.54	224.94	186.47
3	190.01	230.54	294.38	267.20	232.11
4	184.36	224.94	267.20	341.13	296.18
5	152.43	186.47	232.11	296.18	353.08

(e) The estimates of β_5 from the three analyses are

	Est	SE	P-value
Available	-5.624	2.534	0.03
Complete Case	-4.710	2.700	0.08
LOCF	-3.698	2.426	0.13

The available case analysis based on all observed data, which is the appropriate observed data likelihood analysis under the assumptions of MAR and multivariate normality, shows evidence supporting a mean difference at 52 weeks (level 0.05 test) and yields a point estimate of the difference of -5.6. The inappropriate complete case and LOCF analyses do not suggest (at level 0.05) evidence supporting a difference, and the point estimate of the difference is smaller in each case.

(f) The code to fit the model (5) for each treatment a = 0, 1 using SAS proc mixed is

```
proc mixed method=ml; by treat;
   class week pid;
   model visual = week /noint solution;
   repeated / subject=pid type=un r=2 rcorr=2;
run;
```

This yields

----- treat=0 ------

Solution for Fixed Effects

			Standard			
Effect	week	Estimate	Error	DF	t Value	Pr > t
week	0	55.3361	1.3694	119	40.41	<.0001

week	4	54.0529	1.4463	119	37.37	<.0001
week	12	52.9808	1.5695	119	33.76	<.0001
week	24	49.3409	1.7409	119	28.34	<.0001
week	52	44.0346	1.7566	119	25.07	<.0001

Estimated R Matrix for pid 4

Row	Col1	Col2	Col3	Col4	Col5
1	223.15	206.17	188.80	188.82	148.25
2	206.17	248.10	223.43	219.37	176.35
3	188.80	223.43	291.25	251.31	217.76
4	188.82	219.37	251.31	353.02	296.47
5	148.25	176.35	217.76	296.47	349.42

----- treat=1 ------

Solution for Fixed Effects

			Standard			
Effect	week	Estimate	Error	DF	t Value	Pr > t
week	0	54.5785	1.3419	121	40.67	<.0001
week	4	51.0966	1.4587	121	35.03	<.0001
week	12	48.7181	1.6020	121	30.41	<.0001
week	24	45.5213	1.6941	121	26.87	<.0001
week	52	38.4559	1.8278	121	21.04	<.0001d

Estimated R Matrix for pid 2

Row	Col1	Col2	Col3	Col4	Col5
1	217.90	196.94	189.02	174.60	139.30
2	196.94	253.38	233.98	217.41	173.77
3	189.02	233.98	300.15	272.20	230.93
4	174.60	217.41	272.20	326.03	282.20
5	139.30	173.77	230.93	282.20	351.13

Using R gls, code is, for treatment 0 for example,

This yields

```
Coefficients:
          Value Std.Error t-value p-value
week00 55.33613 1.375417 40.23226
week04 54.05293 1.452678 37.20918
week012 52.98078 1.576440 33.60786
week024 49.34091 1.748577 28.21775
                                       0
week052 44.03456 1.764363 24.95777
Marginal variance covariance matrix
      [,1]
            [,2] [,3] [,4]
[1,] 223.15 206.17 188.80 188.81 148.25
[2,] 206.17 248.10 223.43 219.36 176.35
[3,] 188.80 223.43 291.25 251.30 217.76
[4,] 188.81 219.36 251.30 353.02 296.47
[5,] 148.25 176.35 217.76 296.47 349.42
  Standard Deviations: 14.938 15.751 17.066 18.789 18.693
Coefficients:
          Value Std.Error t-value p-value
week10 54.57851 1.348227 40.48171
week14 51.09662 1.465549 34.86517
week112 48.71815 1.609522 30.26870
week124 45.52128 1.702002 26.74573
week152 38.45591 1.836415 20.94076
Marginal variance covariance matrix
           [,2] [,3] [,4]
      [,1]
[1,] 217.90 196.93 189.01 174.60 139.30
[2,] 196.93 253.38 233.97 217.40 173.76
[3,] 189.01 233.97 300.14 272.19 230.92
[4,] 174.60 217.40 272.19 326.02 282.19
[5,] 139.30 173.76 230.92 282.19 351.13
 Standard Deviations: 14.761 15.918 17.324 18.056 18.738
(g) The code to implement the EM algorithm to fit (5) for each treatment using SAS proc mi
is
proc mi data=armd seed=370252 simple nimpute=0; by treat;
   em initial=ac maxiter=200 converge=1e-4 itprint;
   var visual0 visual4 visual12 visual24 visual52;
run;
and yields
```

EM (MLE) Parameter Estimates

TYPE	_NAME_	visual0	visual4	visual12	visual24
MEAN COV COV COV COV	visual0 visual4 visual12 visual24 visual52	55.336134 223.147518 206.169154 188.798637 188.815488 148.249535	54.052925 206.169154 248.105146 223.429001 219.361610 176.348266 visual52	52.980780 188.798637 223.429001 291.253074 251.299053 217.761896	49.340990 188.815488 219.361610 251.299053 353.015463 296.465010
			44.034562 148.249535 176.348266 217.761896 296.465010 349.424750		

------ treat=1 -------

EM (MLE) Parameter Estimates

TYPE	_NAME_	visual0	visual4	visual12	visual24
MEAN		54.578512	51.096624	48.718150	45.521305
COV	visual0	217.896728	196.936457	189.016355	174.599657
COV	visual4	196.936457	253.382251	233.979421	217.406702
COV	visual12	189.016355	233.979421	300.146006	272.195593
COV	visual24	174.599657	217.406702	272.195593	326.030258
COV	visual52	139.305009	173.764660	230.928394	282.195016

visual52

38.455976 139.305009 173.764660 230.928394 282.195016 351.124415

For R gls the code is

prelim.em0 <- prelim.norm(visual0)</pre>

theta.init0 <- em.norm(prelim.em0,showits=FALSE)</pre>

theta.init0 <- getparam.norm(prelim.em0,theta.init0,corr=TRUE)</pre>

theta.init0 <- makeparam.norm(prelim.em0,theta.init0)</pre>

trt0.em <- em.norm(prelim.em0,start=theta.init0,showits=TRUE,maxits=200,criterion=1e-5)
theta.em.trt0 <- getparam.norm(prelim.em0,trt0.em,corr=TRUE)</pre>

```
theta.em.trt0$mu
                        # means
[1] 55.33613 54.05293 52.98078 49.34093 44.03457
# covariance matrix
theta.em.trt0.cov <-diag(theta.em.trt0$sdv)%*%theta.em.trt0$r%*%diag(theta.em.trt0$sdv)
theta.em.trt0.cov
         [,1]
                   [,2]
                            [,3]
                                     [,4]
                                               [,5]
[1,] 223.1475 206.1692 188.7986 188.8160 148.2489
[2,] 206.1692 248.1052 223.4291 219.3650 176.3470
[3,] 188.7986 223.4291 291.2531 251.3030 217.7606
[4,] 188.8160 219.3650 251.3030 353.0215 296.4667
[5,] 148.2489 176.3470 217.7606 296.4667 349.4235
prelim.em1 <- prelim.norm(visual1)</pre>
theta.init1 <- em.norm(prelim.em1,showits=FALSE)</pre>
theta.init1 <- getparam.norm(prelim.em1,theta.init1,corr=TRUE)</pre>
theta.init1 <- makeparam.norm(prelim.em1,theta.init1)</pre>
trt1.em <- em.norm(prelim.em1,start=theta.init1,showits=TRUE,maxits=200,criterion=1e-5)</pre>
theta.em.trt1 <- getparam.norm(prelim.em1,trt1.em,corr=TRUE)</pre>
theta.em.trt1$mu
                        # means
[1] 54.57851 51.09662 48.71815 45.52130 38.45595
# covariance matrix
theta.em.trt1.cov <- diag(theta.em.trt1$sdv)%*%theta.em.trt1$r%*%diag(theta.em.trt1$sdv)
 theta.em.trt1.cov
         [,1]
                   [,2]
                            [,3]
                                     [,4]
                                               [,5]
[1,] 217.8967 196.9365 189.0164 174.5998 139.3036
[2,] 196.9365 253.3823 233.9794 217.4068 173.7648
[3,] 189.0164 233.9794 300.1460 272.1957 230.9290
[4,] 174.5998 217.4068 272.1957 326.0305 282.1967
[5,] 139.3036 173.7648 230.9290 282.1967 351.1272
```

(h) The estimates from the available observed data likelihood analyses for each treatment group obtained from gls or proc mixed are virtually identical. This is entirely expected. Both analyses are doing the same thing — maximizing the observed data likelihood. gls and proc mixed are carrying out the maximization using standard optimization techniques. The EM algorithm is just another numerical technique to maximize the same likelihood.