

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (1) of (50)

TEST REPORT Part 15 Subpart C 15.247

Equipment under test Black Box

Model name VG-10Z

FCC ID 2ACU3VG-10Z

Applicant Carnavicom Co., Ltd.

Manufacturer Carnavicom Co., Ltd.

Date of test(s) 2014.08.18 ~2014.09.05

Date of issue 2014.09.11

Issued to

Carnavicom Co., Ltd.

1190, Gyeongwon-daero Bupyeong-gu Incheon, Korea

Tel: +82-32-517-4600 / Fax: +82-32-515-4605

Issued by

KES Co., Ltd.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do,431-716, Korea 473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by:	Report approval by:
	ally
Hyeon-Su Jang	Jeff Do
Test engineer	Technical manager

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (2) of (50)

Revision history

Revision	Date of issue	Test report No.	Description
-	2014.09.11	KES-RF-14T0044	Initial

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (3) of (50)

TABLE OF CONTENTS

1.	General i	information	4
	1.1.	EUT description	
	1.2.	Test frequency	
	1.3.	Information about derivative model	
	1.4.	Device modifications	4
	1.5	Device information	4
	1.6.	Test facility	
	1.7.	Laboratory accreditations and listings	5
2.	Summary	y of tests	
3.		ilts	
	3.1	Radiated spurious emissions & band edge	8
	3.2	Conducted spurious emissions & band edge	
	3.3.	6 dB bandwidth	
	3.4.	Peak Output power	39
	3.5.	Power spectral density	
Apı	endix A.	Measurement equipment	
	endix B	Test setup photo	50

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (4) of (50)

1. General information

1.1. EUT description

Equipment under test	Black Box
Model name	VG-10Z
Serial number	N/A
Frequency range	2412 MHz~ 2462 MHz (802.11 b/g/n_HT20), 2422 MHz~ 2452 MHz (802.11 n_HT40)
Modulation technique	DSSS, OFDM
Number of channels	11ch (802.11 b/g/n_HT20), 9ch (802.11 n_HT40)
Antenna type & gain	Chip antenna // 1.99 dBi
Power source	DC 12 V

1.2. Test frequency

- 802.11b/g/n HT20

	Low channel	Middle channel	High channel
Frequency (Mb)	2 412	2 437	2 462

- 802.11n_HT40

	Low channel	Middle channel	High channel		
Frequency (Mb)	2 422	2 437	2 452		

1.3. Information about derivative model

N/A

1.4. Device modifications

N/A

1.5 Device information

- The device duty cycles are as follows: $802.11b/g/n HT20, 40 \ge 98 percent.$

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (5) of (50)

1.6. Test facility

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do,431-716, Korea 473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

The open area test site is constructed in conformance with the requirements ANSI C63.4-2009.

1.7. Laboratory accreditations and listings

Country	Agency	Scope of accreditation	Certificate No.
USA	FCC	3 & 10 meter Open Area Test Sites and one conducted site to perform FCC Part 15/18 measurements.	343818
KOREA	KC	EMI (10 meter Open Area Test Site and two conducted sites) Radio (3 & 10 meter Open Area Test Sites and one conducted site)	KR0100
CANADA	IC	3 & 10 meter Open Area Test Sites and one conducted site	4769B-1

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (6) of (50)

2. Summary of tests

Reference	Parameter	Test results
15.205 15.209	Radiated spurious emission and band edge	Pass
15.247(d)	Conducted spurious emission and band edge	Pass
15.247(a)(2)	6 dB bandwidth	Pass
15.247(b)(3)	Peak output power	Pass
15.247(e)	Power spectral density	Pass

Test procedures;

The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2009), the guidance provided in KDB 558074_v03r02 and KDB 662911 D01 v02r01 were used in the measurement of the EUT.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (7) of (50)

Pre-scanned maximum output power

Preliminary tests were performed in different data rate as below table and the highest power data rates(802.11b, 802.11g, 802.11n_HT20, 802.11n_HT40) were chosen for full test in the following section to demonstrate compliance to the FCC limit line.

802.11b

channel	Dotooton	Conducted power(dB m)						
	Detector	Data rate(Mbps)						
	mode	1	2	5.5	11			
Low		<u>13.38</u>	13.23	13.21	13.17			
Middle	Peak	<u>13.88</u>	13.73	13.71	13.64			
High		<u>14.12</u>	14.06	14.01	13.97			

802.11g

channel	Datastan	Conducted power(dB m)							
	Detector mode	Data rate(Mbps)							
	mode	6	9	12	18	24	36	48	54
Low		<u>16.11</u>	16.06	16.02	16.04	15.92	15.88	15.82	15.76
Middle	Peak	16.75	16.66	16.62	16.57	16.55	16.57	16.52	16.46
High		17.03	16.99	16.94	16.92	16.93	16.89	16.82	16.79

802.11n(HT20)

Test mode	Detector			Co	onducted p	power(dB 1	m)		
		Data rate(Mbps)							
	mode	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Low	Peak	<u>15.15</u>	15.11	15.08	15.06	15.02	15.04	14.97	14.91
Middle		<u>16.01</u>	15.92	15.86	15.87	15.82	15.78	15.74	15.70
High		<u>16.45</u>	16.41	16.37	16.32	16.30	16.34	16.27	16.22

802.11n(HT40)

channel	Detector			Co	onducted p	power(dB i	m)		
	Detector		Data rate(Mbps)						
	mode	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Low	Peak	<u>15.42</u>	15.35	15.22	15.15	15.18	14.27	13.89	13.51
Middle		<u>15.87</u>	15.80	15.84	15.77	15.79	14.99	14.83	14.76
High		<u>16.32</u>	16.27	16.13	16.02	15.58	14.98	14.80	14.67

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (8) of (50)

3. Test results

3.1 Radiated spurious emissions & band edge

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (9) of (50)

Test procedure

Radiated emissions from the EUT were measured according to the dictates in section 11.0 & 12.0 of KDB 558074 v03r02 and ANSI C63.4-2009

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site or open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 10½, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. During performing radiated emission above 1 0½, the EUT was set 3 meter away from the interference receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from 1 meter to 4 meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- 6. If the emission level of the EUT in peak mode was 10 dBlower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have10 dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (10) of (50)

Note.

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

1. Average Field Strength Measurements per Section 12.2.5.1

Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.

Set RBW = 1 M/z.

Set VBW = 3 MHz (\geq 3 x RBW).

Set detector = power average(RMS).

Set sweep time = auto.

Trace (RMS) averaging was performed over at least 100 traces.

2. Peak Field Strength Measurements per Section 12.2.4

Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.

Set RBW = 1 Mz.

Set VBW = 3 MHz (\geq 3 x RBW).

Set detector = Peak.

Set sweep time = auto.

Trace mode = max hold.

Allow sweeps to continue until the trace stabilizes.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (Mb)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2 400 / F(kHz)
0.490 ~ 1.705	30	24 000 / F(kllz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72~\text{MHz}$, $76 \sim 88~\text{MHz}$, $174 \sim 216~\text{MHz}$ or $470 \sim 806~\text{MHz}$. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (11) of (50)

Test results (Below 30 Mz) – Worst case configuration: 802.11g

The frequency spectrum from 9 kHz to 30 MHz was investigated. Emission levels are not reported much lower than the limits by over 20 dB.

Radiated	emissions	Ant.	Correction factors		Total	Lin	nit
Frequency (MHz)	Reading (dBµV)	Pol.	Ant. factor (dB/m)	Cable loss (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
			Not detected for	or above 30 Mz			

Note.

- 1. All spurious emission at channels are almost the same below 30 Mb, so that <u>high channel</u> was chosen at representative in final test.
- 2. Actual = Reading + Ant. factor + Cable loss + F_d
- 3. $F_d = 40 \log(D_m / D_s)$

Where:

 F_d = Distance factor in dB

 D_m = Measurement distance in meters

 D_s = Specification distance in meters

Test results (Below 1 000 №) – Worst case configuration: 802.11g

The frequency spectrum from 30 Mz to 1 000 Mz was investigated. Emission levels are not reported much lower than the limits by over 20 $\,\mathrm{dB}$.

Radiated	emissions	Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Pol.	Ant. factor (dB/m)	Cable loss (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
124.63	28.13	V	11.68	2.22	42.03	43.50	1.47
134.37	26.82	V	12.34	2.34	41.50	43.50	2.00
141.65	24.87	V	12.78	2.43	40.08	43.50	3.42
241.01	30.08	Н	11.41	3.41	44.90	46.00	1.10
265.22	29.10	Н	12.25	3.64	44.99	46.00	1.01
313.70	27.02	Н	13.70	4.11	44.83	46.00	1.17
465.88	17.88	V	17.01	5.36	40.25	46.00	5.75
481.10	18.12	V	17.34	5.47	40.93	46.00	5.07
505.35	19.79	Н	17.85	5.63	43.27	46.00	2.73
599.92	18.08	Н	19.61	6.10	43.79	46.00	2.21
624.14	17.01	V	19.90	6.29	43.20	46.00	2.80
648.46	17.02	Н	20.20	6.48	43.70	46.00	2.30

- 1. All spurious emission at channels are almost the same below 1 ©±z, so that <u>high channel</u> was chosen at representative in final test.
- 2. Actual = Reading + Ant. factor + Cable loss
- 3. Detector mode: Quasi peak
- 4. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (12) of (50)

Test results (Above 1 000 Mb)

802.11b // Low channel

Ra	Radiated emissions		Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 351.79	49.26	Perak	Н	28.94	-29.43	48.77	74.00	25.23
2 359.61	50.34	Perak	V	28.96	-29.43	49.87	74.00	24.13
4 824.27	39.24	Perak	Н	33.14	-23.48	48.90	74.00	25.10
4 824.17	40.04	Perak	V	33.14	-23.48	49.70	74.00	24.30

802.11b // Middle channel

Ra	diated emissio	ons	Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4 873.90	37.53	Perak	Н	33.31	-23.34	47.50	74.00	26.50
4 873.80	38.14	Perak	V	33.31	-23.34	48.11	74.00	25.89

802.11b // High channel

Ra	Radiated emissions		Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 491.19	48.67	Perak	Н	29.24	-29.14	48.77	74.00	25.23
2 487.92	49.93	Perak	V	29.23	-29.15	50.01	74.00	23.99
4 924.14	35.97	Perak	Н	33.48	-23.19	46.26	74.00	27.74
4 924.05	37.52	Perak	V	33.48	-23.19	47.81	74.00	26.19

- 2. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (13) of (50)

802.11g // Low channel

Ra	diated emissio	ons	Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
2 373.36	50.02	Perak	Н	28.99	-29.42	49.58	74.00	24.42
2 389.28	49.95	Perak	V	29.02	-29.42	49.55	74.00	24.45
4 824.67	35.52	Perak	Н	33.14	-23.48	45.18	74.00	28.82
4 824.09	36.13	Perak	V	33.14	-23.48	45.79	74.00	28.21

802.11g // Middle channel

Ra	diated emissio	ons	Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4 874.29	36.21	Perak	Н	33.31	-23.34	46.18	74.00	27.82
4 873.86	36.02	Perak	V	33.31	-23.34	45.99	74.00	28.01

802.11g // High channel

002118// 118/1								
Ra	Radiated emissions		Ant.	Correction factors		Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 486.48	49.56	Perak	Н	29.23	-29.16	49.64	74.00	24.36
2 487.06	49.64	Perak	V	29.23	-29.15	49.72	74.00	24.28
4 923.97	35.86	Perak	Н	33.48	-23.20	46.14	74.00	27.86
4 924.87	36.06	Perak	V	33.48	-23.19	46.35	74.00	27.65

- 2. Radiated emissions measured in frequency above 1 000 Mbz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (14) of (50)

802.11n(HT20) // Low channel

Ra	diated emissio	ons	Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 389.86	52.13	Perak	Н	29.02	-29.42	51.74	74.00	22.26
2 389.86	53.53	Perak	V	29.02	-29.42	53.14	74.00	20.86
4 824.23	34.14	Perak	Н	33.14	-23.48	43.80	74.00	30.20
4 824.55	35.85	Perak	V	33.14	-23.48	45.51	74.00	28.49

802.11n(HT20) // Middle channel

Ra	diated emissio	ons	Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4 878.31	36.02	Perak	Н	33.32	-23.32	46.02	74.00	27.98
4 863.75	35.98	Perak	V	33.27	-23.37	45.89	74.00	28.11

802.11n(HT20) // High channel

ovalin(iii av) // ingii enumei								
Ra	Radiated emissions			Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 486.86	49.68	Perak	Н	29.23	-29.15	49.76	74.00	24.24
2 491.10	49.42	Perak	V	29.24	-29.14	49.52	74.00	24.48
4 883.61	35.63	Perak	Н	33.34	-23.31	45.66	74.00	28.34
4 916.52	35.87	Perak	V	33.45	-23.22	46.11	74.00	27.89

- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (15) of (50)

802.11n(HT40) // Low channel

Radiated emissions		Ant.	Correction factors		Total	Limit		
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
2 362.50	49.74	Perak	Н	28.97	-29.43	49.28	74.00	24.72
2 375.53	49.35	Perak	V	28.99	-29.42	48.92	74.00	25.08
4 827.29	35.15	Perak	Н	33.15	-23.47	44.83	74.00	29.17
4 825.28	36.05	Perak	V	33.14	-23.47	45.72	74.00	28.28

802.11n(HT40) // Middle channel

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4 863.59	35.83	Perak	Н	33.27	-23.37	45.74	74.00	28.26
4 871.02	35.77	Perak	V	33.30	-23.35	45.72	74.00	28.28

802.11n(HT40) // High channel

OUZIIII(III IO) // IIIGII CHAINICI								
Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 494.76	48.39	Perak	Н	29.25	-29.13	48.51	74.00	25.49
2 491.96	48.52	Perak	V	29.24	-29.14	48.62	74.00	25.38
4 901.49	35.83	Perak	Н	33.40	-23.26	45.97	74.00	28.03
4 903.61	36.49	Perak	V	33.41	-23.25	46.65	74.00	27.35

- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (16) of (50)

Test results band edge emissions

802.11g
6 Mbps
3 meter
2 412 Mbz
1

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (17) of (50)

Worst Case Mode:

Transfer rate:

6 Mbps

Distance of measurement:
3 meter

Operating frequency:
2 462 Mbz

Channel:

11

Peak Spectrum Ref Level 107.00 dBµV ■ RBW 1 MHz SWT 1 ms = VBW 3 MHz M1[1] 49.41 dBµ¹ 2.4879860 GH 90 dBµV 80 dBuV 70 dBµV 60 dBuV In Make of Book how by his her way and when the steer of 40 dBuV 30 dBuV 20 dBµV 10 dBilV-Span 50.0 MHz CF 2.4835 GHz 691 pts Date: 18.SEP.2014 22:24:43

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (18) of (50)

3.2 Conducted spurious emissions & band edge

Test setup		
EUT	Attenuator	Spectrum analyzer

Test procedure

All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

Per the guidance of KDB 558074_v03r02, section 11.2&11.3,

1. Use the following spectrum analyzer setting

Center frequency: Low and high channel.

Set the span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW = 300 kHz (\geq 3x RBW).

Detector = peak.

Sweep time = auto couple.

Trace mode= max hold.

Allow trace to fully stabilize.

Use the peak market function to determine the maximum PSD level.

2. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (19) of (50)

Test results for conducted spurious emission

802.11b // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (20) of (50)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (21) of (50)

802.11b // **High channel**

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (22) of (50)

802.11g // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (23) of (50)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (24) of (50)

802.11g // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (25) of (50)

802.11n(HT20) // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (26) of (50)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (27) of (50)

802.11n(HT20) // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (28) of (50)

802.11n(HT40) // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (29) of (50)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (30) of (50)

802.11n(HT40) // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (31) of (50)

3.3. 6 dB bandwidth

Test setup	_		_	
EUT		Attenuator		Spectrum analyzer

Test procedure

KDB 558074 v03r02 – section 8.1 option 1 or section 8.2 option 2.

Option 1:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth(VBW) $\geq 3 \times RBW$.
- c) Detector = peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2:

The automatic bandwidth measurement capability of an instrument may be employed using the X bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Limit

According to \$15.247(a)(2), systems using digital modulation techniques may operate $902 \sim 928$ MHz, $2400 \sim 2483.5$ MHz, and $5725 \sim 5850$ MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (32) of (50)

Test results

Operation mode	Frequency(Mb)	6 dB bandwidth(Mb)	Limit(tb)
	2 412	10.072	
802.11b	2 437	10.072	
	2 462	10.072	
	2 412	16.628	
802.11g	2 437	16.628	
	2 462	16.628	0.5
	2 412	17.844	0.3
802.11n (HT20)	2 437	17.844	
(11120)	2 462	17.844	
	2 422	36.470	
802.11n (HT40)	2 437	36.470	
(11110)	2 452	36.470	

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (33) of (50)

802.11b // Low channel

802.11b // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (34) of (50)

802.11g // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (35) of (50)

802.11g // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (36) of (50)

802.11n(HT20) // Low channel

802.11n(HT20) // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (37) of (50)

802.11n(HT20) // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (38) of (50)

802.11n(HT40) // Middle channel

802.11n(HT40) // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (39) of (50)

3.4. Peak Output power Test setup EUT Attenuator Wideband Power Sensor(with PC)

Test procedure

All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

KDB 558074 v03r02 – section 9.1.2

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Limit

According to §15.247(b)(3), For systems using digital modulation in the 902~928 Mb, 2 400~2 483.5 Mb, and 5 725~5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmit-ting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test report No.: KES-RF-14T0044 Page (40) of (50)

Test results

Test mode	Frequency(Mb)	Results (dBm)	Limit(dBm)
802.11b	2 412	13.38	
	2 437	13.88	
	2 462	14.12	
802.11g	2 412	16.11	
	2 437	16.75	30
	2 462	17.03	
802.11n(HT20)	2 412	15.15	
	2 437	16.01	
	2 462	16.45	
802.11n(HT40)	2 422	15.42	
	2 437	15.87	
	2 452	16.32	

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-14T0044 Page (41) of (50)

3.5. Power spectral density

Test procedure

KDB 558074_v03r02- section 10.2

Measurement procedure

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS channel bandwidth.
- c) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz
- d) Set the VBW \geq 3 \times RBW.
- e) Detector = power averaging (RMS) or sample detector(when RMS not available).
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If measured value exceeds limit, reduce RBW(no less than 3 klz) and repeat.

Limit

According to §15.247€, For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test report No.: KES-RF-14T0044 Page (42) of (50)

Test results

Operation mode	Frequency(th)	Measured PSD(dBm)	Limit(dBm)
	2 412	-18.66	
802.11b	2 437	-18.06	
	2 462	-17.84	
	2 412	-21.46	
802.11g	2 437	-20.70	
	2 462	-20.22	O
	2 412	-21.43	8
802.11n (HT20)	2 437	-20.65	
(11120)	2 462	-20.27	
000 11	2 422	-21.20	
802.11n (HT40)	2 437	-20.82	
(111 70)	2 452	-20.49	

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (43) of (50)

802.11b // Low channel

802.11b // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (44) of (50)

802.11b // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (45) of (50)

802.11g // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (46) of (50)

802.11n(HT20) // Low channel

802.11n(HT20) // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (47) of (50)

802.11n(HT20) // High channel

802.11n(HT40) // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-14T0044 Page (48) of (50)

802.11n(HT40) // Middle channel

802.11n(HT40) // High channel

Test report No.: KES-RF-14T0044 Page (49) of (50)

Appendix A. **Measurement equipment**

Appendix A. Measurement equipment						
Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.	
Spectrum Analyzer	R&S	FSV30	100736	1 year	2015.05.06	
8360B Series Swept Signal Generator	НР	83630B	3844A00786	1 year	2015.05.06	
Attenuator	HP	8494B	2630A12857	1 year	2015.05.06	
Power Sensor	Anritsu	ML2495A	1223004	1 year	2015.06.10	
Power Meter	Anritsu	MA2411B	1207272	1 year	2015.06.10	
Loop Antenna	R&S	HFH2-Z2.335.4711.52	826532	2 years	2015.04.25	
Trilog-Broadband Antenna	SCHWARZBECK	VULB 9168	9168-385	2 years	2015.05.09	
;Horn Antenna	A.H. System	SAS-571	414	2 years	2015.02.28	
High Pass Filter	Wainwright Instrument	WHJS3000-10TT	1	1 year	2015.07.23	
Preamplifier	Schwarzbeck Mess-Elektronik	BBV-9718	9718-245	1 year	2014.09.23	
EMI Test Receiver	LIG NEX1	ISA-80	L0912K014	1 year	2014.11.15	
EMI Test Receiver	R & S	ESVS10	826008/014	1 year	2015.04.04	

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Notebook(Laptop)	Samsung Electronics	RV518	HTK991NC600207R

Test report No.: KES-RF-14T0044 Page (50) of (50)

Appendix B. **Test setup photo**

Radiated Emission (Above 1GHz)

