Aim: Implement intermediate wile generation

theory:

Lexical Analysis

Byntan Analysis

Semantic Analysis

Front end (Machine Independent)

Y Back en (Machine depender)

L' Machine code is generated directly from source vode then for ntarget machine we will have optimizers and n wele. generator but if we'll have a machine independent intermediate code; we will have only one optimizes

Intermediate code, we will have only one optimizer Intermedia le code can be eithes language specific (ag: bytevode for Jova) a Language independent (3 Address code). The following are intermediate code supresent's

1) Postfix Notation/ Reverse Polish Notation Suffix Notation ag: infix=a+b 3 Address code: A statement involving no more than 3 references (2 for operand code There Address statement is of prom n=40123 where n, y, 3 will have add (memory location) sometimes a might wortain less than 3 references but its still called 3 Address Statement There are 3 ways to supresent 3 Address corle Indirect Tuple Syntax Terre Condensed form of a passe The operator & Reyword nucles of the parse tree tree moves to their parents and a chain of single. Production is suplaced by single link in syntax tree the internal nucles are operators and child nodes are operancle

Trimle -	aa	arg1	a~q2 b	Indirect triple	
Pe	+1			10	(0)
	-	(0)	-	(((1)
	+	C	d	12	(2)
	*	(1)	(2)	13	((3)
	4	(0)	c	14	(4)
	-	(3)	(4)	15	(2)