ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN **BỘ MÔN TOÁN – LÝ**

ĐỀ ÔN TẬP CK MÔN ĐẠI SỐ TUYẾN TÍNH

Học kỳ I, năm học 2020-2021

Thời gian làm bài: **90** phút Không được sử dụng tài liệu

Câu 1. (2,5 điểm)

Trên
$$\mathbb{R}^6$$
 cho tập hợp $W = \left\{ (x_1, x_2, x_3, x_4, x_5, x_6) \middle| \begin{array}{l} x_5 + 4x_6 - 10x_3 + x_2 - 2x_1 = 0 \\ 11x_3 - x_4 + 3x_1 = 0 \\ x_4 - 3x_6 - 2x_2 + 2x_1 = 0 \end{array} \right\}$

a/ Hãy chứng minh rằng W là không gian véc tơ con của \mathbb{R}^6 .

b/ Hãy tìm hệ sinh, cơ sở và xác định số chiều cho W.

Câu 2. (2,5 điểm)

Trên
$$\mathbb{R}^3$$
 cho tập hợp $a = \{\alpha_1 = (1, 0, 0), \alpha_2 = (-1, 1, 0), \alpha_3 = (2, 2, 1)\}$ và tập hợp $\beta = \{\beta_1 = (-1, 1, -2), \beta_2 = (0, -1, 1), \beta_3 = (1, 0, 2)\}$.

a/ Chứng tỏ rằng a và β là cơ sở của \mathbb{R}^3 .

b/ Cho vector $\alpha = (12, 1, 2) \in \mathbb{R}^3$. Hãy tìm tọa độ của α theo cơ sở a.

c/ Gọi $\beta_0 = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ là cơ sở chính tắc của \mathbb{R}^3 . Hãy tìm các ma trận chuyển cơ sở:

$$P = P_{\beta_0 \to a}$$
; $Q = P_{\beta_0 \to \beta}$; và $S = P_{a \to \beta}$.

Câu 3. (2,0 điểm)

Cho ma trận thực
$$A = \begin{pmatrix} 7 & 9 \\ -2 & -4 \end{pmatrix}$$
.

Hãy chéo hóa A, rồi sau đó tìm A^m , $\forall m$ nguyên, $m \ge 0$.

Câu 4: (1,5 điểm)

Trên
$$\mathbb{R}^3$$
 cho tập hợp $S = \{u_1 = (1,2,2), u_2 = (-2,2,-1), u_3 = (3,-5,8)\}.$

Hãy trực chuẩn hóa S , với tích vô hướng $<\alpha\mid\beta>=\left\langle \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} \middle| \begin{pmatrix} y_1\\y_2\\y_3 \end{pmatrix} \right\rangle =x_1y_1+x_2y_2+x_3y_3$.

Câu 5. (1,5 điểm)

Cho dạng toàn phương $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$,

và $\beta_0 = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ là cơ sở chính tắc của \mathbb{R}^3

sao cho:
$$\forall X \in \mathbb{R}^3$$
, ta có $[X]_{\beta_0} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, và $f(X, X) = 4x_1x_2 - 2x_1x_3 + 18x_2x_3$.

a/ Hãy chính tắc hóa dạng toàn phương f.

b/ Hãy chỉ ra một cơ sở β ứng với dạng chính tắc tìm được ở câu a/.