Lab 6 Manual

Lab 6 Outline

Part 1: Experimenting with Python [35 mins]

- Play with tuples
- Unpack tuples and Nested for loops

Part 2: Quiz [15 mins, Policy Changed!!!]

From this lab on, you can take the quiz any time through the day before 11:59pm to make your life easier. This will still be a **timed (15 mins)**, multiple choice quiz on the lab material. If you completed the lab, you will be able to answer all of the questions on the quiz. We strongly recommend you finish the quiz during the lab section in case you forget to do it.

Play with tuples

1. Create a new file create_tuple.py. Copy the following code and paste it to the file:

```
list_example = ["Welcome ", "to ", "CSE", " 8A"]
```

- Define a tuple named tuple_example which contains the same elements as list_example.
- Print out the length of tuple_example, what built-in function will you use to get its length?
- Concatenate all the elements in tuple_example into one string sentence and print it out.
- We can change the elements in list_example by list_example[3]=" 285". Can we do the same thing to tuple_example? Try it out by yourself.
- 2. Create a new file singleton_tuple.py. Copy the following code and paste it to the file. Print out the type of singleton_tuple and singleton. What difference did you notice?

```
singleton_tuple = ("apple",)
singleton = ("apple")
```

3. Copy the following function definition and paste it to a new file extract_tuple.py:

```
def extract_tuple(input_tuple, start_index, end_index):
    return input_tuple[start_index : end_index+1]
```

In the terminal, run function call of extract_tuple with different arguments. For example, try extract_tuple((100,200,300,400,500,600), 1, 4).

Unpack tuples and Nested for loops

1. Create a new file unpack_tuple.py. Copy the following code and paste it to the file:

```
fruit_tuple = ("apple", "orange")
fruit_x, fruit_y = fruit_tuple
```

What are fruit_x and fruit_y?

Appending the following line to your code. Run your code, what are fruit_x and fruit_y then?

```
(fruit_x, fruit_y) = (fruit_y, fruit_x)
```

2. Create a new file number_pairs.py. Write a function pair_numbers that takes in two lists of numbers with the same length and returns a list of tuples.

Example:

```
pair_numbers([1],[1]) = [(1,1)]
pair_numbers([1,2],[3,4]) = [(1,3),(1,4),(2,3),(2,4)]
pair_numbers([],[]) = []
```

3. In the same file, write a function <code>sum_of_product</code> that takes in a list of tuples and returns the sum of the product of the elements in each tuple. Each tuple always contains two elements.

Example:

```
sum_of_product([(1,2),(3,4)]) = 14
sum_of_product([]) = 0
```