Wstęp do bioinformatyki

Laboratorium 2

Dopasowanie globalne par sekwencji

Magdalena Trędak

236712

1. Schemat blokowy algorytmu dopasowania globalnego

Schematy blokowe algorytmów tworzenia macierzy punktowej oraz optymalnej ścieżki dopasowania ze względów dużych rozmiarów i umożliwienia poprawy ich czytelności zamieszczono w repozytorium jako pliki graficzne o nazwach: SchematBlokowyGenerowaniaMacierzyPunktów.jpg, SchematBlokowyGenerowaniaŚcieżkiDopasowania.jpg.

Do wygenerowania schematów użyto programu online znajdującego się na stronie: http://www.algorytm.org/narzedzia/edytor-schematow-blokowych.html (data dostępu 04.04.19)

- 2. Analiza złożoności obliczeniowej czasowej i pamięciowej
 - Oszacowanie złożoności czasowej dla poszczególnych funkcji f

scorringMatrix = m*n

tracBackMatrix = m*n

createInfo = m*n + m

isSeqenceCorrect = m + n

$$\sum f = 3 * m * n + 2 * m + n \le 3 * m * n$$

O(mn) – złożoność czasowa co najwyżej rzędu mn

Oszacowanie złożoności pamięciowej dla poszczególnych funkcji f

scorringMatrix =
$$2*m*n + m + n$$

tracBackMatrix = $2*m*n + m + n$
createInfo = $m*n + m + n + m + n + m*n + 5*(m+n) + m$
makeFastaContent = $5*(m+n)$
readFasta = $m + n$

$$\sum f = 6 * m * n + 15 * (m + n) + m \le 6 * m * n$$

O(mn) – złożoność pamięciowa co najwyżej rzędu mn

3. Porównanie przykładowych par sekwencji ewolucyjnie

Powiązanych

Porównanie cytochromu c konia (Equus caballus) - NM_001164014.1 i szympansa zwyczajnego (Pan troglodytes) - NM_001071821.1 – porównanie nr 1

#Sequence1: NM_001071821.1 #Sequence2: NM_001164014.1

#Match: 1
#Mismatch: -1
#Gap: -2

#Mode: similarity

#Score: 267 #Length: 318 #Gaps: 0/318 (0 %)

#Identity: 289/318 (90.8805 %)

niepowiązanych

Porównanie cytochromu c szczura wędrownego (Rattus norvegicus) – K00750.1 i konia

(Equus caballus) - NM_001164014.1 - porównanie nr 2

Porównanie cytochromu c pszczoły miodnej (Apis mellifera) - NM_001177490.1 i konia (Equus caballus) - NM_001164014.1 – porównanie nr 3

Porównanie cytochromu c muszki owocowej (Drosophila melanogaster) variant B - NM_001273580.1 i konia (Equus caballus) - NM_001164014.1 – porównanie nr 4

Wnioski:

Porównano ten sam gen dla organizmów powiązanych i niepowiązanych ewolucyjnie. Wszystkie wyniki otrzymano poprzez wykorzystanie algorytmu dopasowania globalnego podobieństwa o parametrach: match = 1, mismatch = -1, gap = -2.

Tabela 1. Porównanie otrzymanych wyników dopasowań globalnych dla różnych par organizmów

Powiązanie ewolucyjne organizmów	Nr porównania	Score [-]	Gap [%]	Identity [%]
Tak	1	267	0	90,88
	2	-4159	88,77	3,32
Nie	3	-1267	72,56	9,39
	4	-643	60,59	12,40

Na podstawie wyników zawartych w Tabeli [1] można zauważyć następujące zależności:

- Dla organizmów powiązanych ewolucyjnie score jest dodatni (największy wśród wyników). W sekwencjach nie ma przerw, co oznacza, że na drodze ewolucji występowały delecje i insercje pojedynczych nukleotydów lub ich krótkich fragmentów. Podobieństwo sekwencji jest wysokie (ponad 90 %), co potwierdza powiązanie ewolucyjne badanych organizmów.
- Dla organizmów niepowiązanych ewolucyjnie score jest ujemny, wprost proporcjonalny do podobieństwa procentowego (Identity). Procent przerw (gap) jest związany z podobieństwem zależnością odwrotnie proporcjonalną. W analizowanych przypadkach

podobieństwo jest maksymalnie rzędu 10 %, z czego można wnioskować o braku wspólnego drogi ewolucji.