```
1 import pandas as pd
 2 from functools import partial
 3 import numpy as np
 4 from multiprocessing import Pool
 5 import os
 6 import matplotlib.pyplot as plt
 7
 8
9 class miDataFrame():
10
11
       def __init__(self,url=[],n_cores=1,emisiones=pd.DataFrame):
12
           self.url = url
           self.n cores = n cores
13
14
           self.emisiones = emisiones
           self.contadorFiltro = 0
15
16
           self.contadorReestructurar = 0
17
           self.tryfechas = 0
           self.dropvalidador=0
18
19
           # Códigos de las magnitudes contaminantes medidas
20
           self.magnitudes = {
                '1': 'Dióxido de Azufre',
21
                '6': 'Monóxido de Carbono',
22
                '7': 'Monóxido de Nitrógeno',
23
24
               '8': 'Dióxido de Nitrógeno',
               '9':'Partículas < 2.5 μm',
25
               '10':'Partículas < 10 μm',
26
               '12':'Óxidos de Nitrógeno',
27
                '14':'Ozono',
28
29
               '20':'Tolueno',
                '30': 'Benceno',
30
                '35': 'Etilbenceno',
31
               '37': 'Metaxileno',
32
                '38':'Paraxileno'
33
34
               '39':'Ortoxileno',
                '42': 'Hidrocarburos totales(hexano)',
35
                '43':'Metano',
36
                '44': 'Hidrocarburosno metánicos (hexano)'
37
38
           }
39
40
           # Códigos de las estaciones de medición.
           self.estaciones = {
41
                '1': 'Pº. Recoletos',
42
43
                '2':'Glta. de Carlos V',
               '35': 'Pza. del Carmen',
44
45
                '4': 'Pza. de España',
               '39': 'Barrio del Pilar',
46
47
                '6': 'Pza. Dr. Marañón',
                '7': 'Pza. M. de Salamanca',
48
49
               '8': 'Escuelas Aguirre',
                '9': 'Pza. Luca de Tena',
50
51
               '38':'Cuatro Caminos',
                '11':'Av. Ramón y Cajal'
52
53
                '12':'Pza. Manuel Becerra',
54
                '40':'Vallecas',
55
                '14': 'Pza. Fdez. Ladreda',
                '15': 'Pza. Castilla',
```

```
57
                '16': 'Arturo Soria',
                '17':'Villaverde Alto',
 58
 59
                '18':'Calle Farolillo',
 60
                '19': 'Huerta Castañeda',
                '36': 'Moratalaz',
 61
 62
                '21': 'Pza. Cristo Rey',
                '22':'Pº. Pontones',
 63
                '23': 'Final C/ Alcalá',
 64
                '24':'Casa de Campo',
 65
 66
                '25': 'Santa Eugenia',
                '26':'Urb. Embajada (Barajas)',
 67
                '27': 'Barajas',
 68
                '47': 'Méndez Álvaro',
 69
 70
                '48':'Pº. Castellana',
 71
                '49':'Retiro',
                '50': 'Pza. Castilla',
 72
                '54':'Ensanche Vallecas',
 73
                '55':'Urb. Embajada (Barajas)',
 74
 75
                '56': 'Plaza Elíptica',
 76
                '57': 'Sanchinarro',
                '58':'El Pardo',
 77
                '59': 'Parque Juan Carlos I',
 78
                '60':'Tres Olivos'
 79
            }
 80
        def mapcontaminantes(self,x):
 81
 82
            if(isinstance(x,int)):
                return self.magnitudes.get(str(x), "Error de entrada")
 83
 84
            elif(isinstance(x,str)):
                return self.magnitudes.get(x,"Error de entrada")
 85
 86
 87
        def generarDF(self):
 88
            pool = Pool(self.n cores)
 89
            self.emisiones = pd.concat(pool.map(partial(pd.read csv, sep=';'),self.url))
 90
        def filtrarDataFrame(self):
 91
            if(self.contadorFiltro ==0):
 92
 93
                def genListaFilt():
 94
                    r=range(1,32)
                    return list(map(lambda x: f'V0{x}' if x<10 else f'V{x}',r))+['PUNTO MUESTREO']
 95
                self.emisiones = self.emisiones.iloc[:,2:]
 96
                self.emisiones.drop(genListaFilt(), axis='columns', inplace=True)
 97
                self.contadorFiltro +=1
 98
 99
            else:
100
                print("No puedes filtrar nuevamente.")
101
102
        def reestructurarDF(self):
            if(self.contadorReestructurar==0):
103
104
                self.emisiones = self.emisiones.melt(id vars=['ESTACION', 'MAGNITUD', 'ANO', 'MES'
                                                      var name='DIA', value name='VALOR')
105
106
                self.contadorReestructurar+=1
107
            else:
                 print("Ya esta en el formato correcto.")
108
109
        def agregarFecha(self):
110
            if(self.tryfechas==0):
111
                self.emisiones['DIA'] = self.emisiones.DIA.str.strip('D')
112
                self.emisiones['FECHA'] = self.emisiones.ANO.apply(str) + '/' + self.emisiones.MES
113
                self.emisiones['FECHA'] = pd.to_datetime(self.emisiones.FECHA, format='%Y//mm//d',
114
```

```
115
                self.tryfechas+=1
116
            else:
                 print("Ya tienes el formato de fechas creado.")
117
118
119
120
        def delNotValid(self):
            if(self.dropvalidador==0):
121
                print("Estoy Eliminando valores no validos.\n")
122
123
                self.emisiones = self.emisiones.drop(self.emisiones[np.isnat(self.emisiones.FECHA)
124
                self.emisiones.sort_values(['ESTACION', 'MAGNITUD', 'FECHA'])
125
                self.dropvalidador+=1
126
            else:
127
                print("Ya se eliminaron los valores no validos.")
128
129
130
        def mostrarEstMag(self):
            print('Estaciones:', self.emisiones.ESTACION.unique())
131
            print('Contaminantes:', self.emisiones.MAGNITUD.unique())
132
133
134
        def mostrarDescriptivoContaminante(self):
            print(self.emisiones.groupby('MAGNITUD').VALOR.describe())
135
136
137
        def mostrarDescritivoContaminanteDistrito(self):
            #df temp = self.emisiones.groupby(['ESTACION', 'MAGNITUD']).VALOR.describe()
138
            print(self.emisiones.groupby(['ESTACION', 'MAGNITUD']).VALOR.describe())
139
140
        def evolucion mensual(self,cont, año):
141
142
            print(self.emisiones[(self.emisiones.MAGNITUD == cont) &
                                  (self.emisiones.ANO == año)]
143
144
                  .groupby(['ESTACION', 'MES']).VALOR.mean().unstack('MES'))
145
        def evolucion diaria(self,estacion, mes):
146
147
            print(self.emisiones[(self.emisiones.ESTACION == estacion) &
                                  (self.emisiones.MES == mes)].groupby(['MAGNITUD', 'DIA'])
148
                                  .VALOR.mean().unstack('DIA'))
149
150
151
        #-----Crear una función que reciba un rango de fechas y una magnitud y genere un gráfico
        def evolucionMagnitudRange(self, magnitud, desde, hasta):
152
            #self.emisiones['NOMBRE ESTACION'] = self.emisiones['ESTACION'].apply(lambda x: self.e
153
            df1 = self.emisiones[(self.emisiones['MAGNITUD'] == magnitud) &
154
155
                                 (self.emisiones.FECHA >= desde) &
                                  (self.emisiones.FECHA <= hasta)]
156
157
            df1.reset index(inplace=True)
            df1.set_index('FECHA', inplace = True)
158
            fig, ax = plt.subplots(figsize=(22,6))
159
            df1.groupby('ESTACION')['VALOR'].plot(legend = True)
160
            plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))
161
162
            plt.show();
163
164
        #----
        def evolucionMagnitud(self,magnitud):
165
166
            if(isinstance(magnitud, str)):
                magnitud = int(magnitud)
167
            #cont = [ 1 6 7 8 12 9 10 14 20 30 35 42 43 44]
168
            #[i for i in cont if i ]
169
            df1 = self.emisiones[(self.emisiones['MAGNITUD'] == magnitud)]
170
171
            df1.set_index('FECHA', inplace = True)
172
```

Crear Objeto

Generar un DataFrame con los datos de los cuatro ficheros.

```
1 miClase.generarDF()
2 miClase.emisiones.head()
```

	PROVINCIA	MUNICIPIO	ESTACION	MAGNITUD	PUNTO_MUESTREO	ANO	MES	D01	V01	DI
0	28	79	4	1	28079004_1_38	2016	1	8.0	V	7
1	28	79	4	1	28079004_1_38	2016	2	12.0	V	13
2	28	79	4	1	28079004_1_38	2016	3	11.0	V	10
3	28	79	4	1	28079004_1_38	2016	4	8.0	V	S
4	28	79	4	1	28079004_1_38	2016	5	7.0	V	8

5 rows × 69 columns

Filtrar las columnas del DataFrame para quedarse con las columnas ESTACION, MAGNITUD, AÑO, MES y las correspondientes a los días D01, D02, etc.

```
1 miClase.filtrarDataFrame()
2 miClase.emisiones.head()
```

	ESTACION	MAGNITUD	ANO	MES	D01	D02	D03	D04	D05	D06	 D22	D23	D24
0	4	1	2016	1	8.0	7.0	6.0	6.0	7.0	6.0	 10.0	11.0	11.0
1	4	1	2016	2	12.0	13.0	9.0	9.0	11.0	9.0	 11.0	10.0	9.(
2	4	1	2016	3	11.0	10.0	9.0	9.0	7.0	8.0	 8.0	8.0	9.(
3	4	1	2016	4	8.0	9.0	9.0	8.0	8.0	9.0	 8.0	8.0	8.(

Reestructurar el DataFrame para que los valores de los contaminantes de las columnas de los días aparezcan en una única columna.

Añadir una columna con la fecha a partir de la concatenación del año, el mes y el día (usar el módulo datetime).

² miClase.emisiones

	ESTACION	MAGNITUD	ANO	MES	DIA	VALOR	FECHA	17.
0	4	1	2016	1	01	8.0	2016-01-01	
1	4	1	2016	2	01	12.0	2016-02-01	
2	4	1	2016	3	01	11.0	2016-03-01	
3	4	1	2016	4	01	8.0	2016-04-01	
4	4	1	2016	5	01	7.0	2016-05-01	
•••								
225241	60	14	2019	8	31	98.0	2019-08-31	
225242	60	14	2019	9	31	0.0	NaT	
225243	60	14	2019	10	31	47.0	2019-10-31	
225244	60	14	2019	11	31	0.0	NaT	
225245	60	14	2019	12	31	4.0	2019-12-31	

225246 rows × 7 columns

¹ miClase.reestructurarDF()

^{2 #}miClase.emisiones

¹ miClase.agregarFecha()

Eliminar las filas con fechas no válidas (utilizar la función isnat del módulo numpy) y ordenar el DataFrame por estaciones, contaminantes y fecha.

- 1 miClase.delNotValid()
- 2 miClase.emisiones

Estoy Eliminando valores no validos.

	ESTACION	MAGNITUD	ANO	MES	DIA	VALOR	FECHA	7
0	4	1	2016	1	01	8.0	2016-01-01	
1	4	1	2016	2	01	12.0	2016-02-01	
2	4	1	2016	3	01	11.0	2016-03-01	
3	4	1	2016	4	01	8.0	2016-04-01	
4	4	1	2016	5	01	7.0	2016-05-01	
225238	60	14	2019	5	31	85.0	2019-05-31	
225240	60	14	2019	7	31	92.0	2019-07-31	
225241	60	14	2019	8	31	98.0	2019-08-31	
225243	60	14	2019	10	31	47.0	2019-10-31	
225245	60	14	2019	12	31	4.0	2019-12-31	

221158 rows × 7 columns

Mostrar por pantalla las estaciones y los contaminantes disponibles en el DataFrame

```
1 miClase.mostrarEstMag()
    Estaciones: [ 4  8 11 16 17 18 24 27 35 36 38 39 40 47 48 49 50 54 55 56 57 58 59 60]
    Contaminantes: [ 1  6  7  8 12  9 10 14 20 30 35 42 43 44]
```

Mostrar un resumen descriptivo (mímino, máximo, media, etc) para cada contaminante.

1 miClase.mostrarDescriptivoContaminante()

	count	mean	std	min	25%	50%	75%	max
MAGNITUD								
1	14610.0	7.428953	7.012504	0.00	4.00	7.00	10.00	610.00
6	14610.0	0.350233	0.215935	0.00	0.20	0.30	0.40	14.90
7	35064.0	20.446412	135.123509	0.00	4.00	9.00	23.00	24742.00
8	35064.0	37.677618	20.118050	0.00	22.00	35.00	50.00	148.00
9	8948.0	10.087729	10.643591	0.00	6.00	9.00	13.00	850.00
10	17897.0	18.772923	35.723619	0.00	10.00	16.00	24.00	4481.00
12	35064.0	67.959417	61.443940	0.00	29.00	48.00	84.00	1005.00
14	20454.0	49.941772	24.753120	0.00	31.00	52.00	69.00	336.00
20	8766.0	2.364944	4.236706	0.00	0.80	1.60	2.80	195.00
30	8766.0	0.531371	0.538180	0.00	0.20	0.40	0.70	15.10
35	8766.0	0.479751	1.183618	0.00	0.10	0.20	0.50	35.70
42	4383.0	1.400897	0.251836	-0.01	1.25	1.38	1.54	3.09
43	4383.0	1.292923	0.230898	-0.14	1.17	1.28	1.43	2.77
44	4383.0	0.108941	0.068776	0.00	0.06	0.10	0.14	1.31

Mostrar un resumen descriptivo para cada contaminente por distritos.

1 miClase.mostrarDescritivoContaminanteDistrito()

		count	mean	std	min	25%	50%	75%	max
ESTACION	MAGNITUD								
4	1	1461.0	7.329911	16.379050	1.0	4.0	7.0	9.0	610.0
	6	1461.0	0.411499	0.172902	0.1	0.3	0.4	0.5	1.3
	7	1461.0	31.939767	37.667968	0.0	8.0	16.0	42.0	239.0
	8	1461.0	44.398357	17.766063	0.0	31.0	43.0	55.0	105.0
	12	1461.0	93.341547	72.436531	0.0	44.0	69.0	119.0	467.0
60	7	1461.0	12.326489	19.593109	1.0	2.0	4.0	12.0	151.0
	8	1461.0	31.125941	18.101896	3.0	18.0	27.0	41.0	101.0
	10	1461.0	17.033539	12.205022	1.0	9.0	14.0	21.0	215.0
	12	1461.0	50.023956	45.933843	6.0	22.0	33.0	60.0	328.0
	14	1461.0	60.718001	26.309952	4.0	42.0	65.0	81.0	119.0

[153 rows x 8 columns]

Crear una función que devuelva las emisiones medias
 mensuales de un contaminante y un año dados para todas las estaciones.

1 miClase.evolucion_mensual(1, 2016)

			,		··· · · · · · · · · · · · · · · · ·		
MES	1	2	3	4	5	6	\
ESTACION							
4	8.354839	8.551724	8.612903	8.066667	7.354839	7.266667	
8	16.387097	17.827586	16.838710	15.400000	14.967742	17.333333	
17	8.387097	8.551724	9.290323	16.800000	15.225806	15.333333	
18	3.516129	3.793103	3.838710	3.266667	3.580645	4.033333	
24	2.387097	2.172414	2.129032	2.066667	2.000000	2.100000	
35	8.161290	10.517241	10.677419	12.433333	13.000000	16.466667	
36	10.161290	7.310345	7.322581	6.133333	5.032258	5.933333	
38	8.677419	4.068966	3.838710	2.766667	2.193548	2.133333	
40	6.096774	5.793103	6.645161	5.633333	4.806452	5.300000	
57	15.935484	16.137931	16.290323	4.766667	4.387097	4.533333	
MES	7	8	9	10	11	12	
	/	0		10		12	
ESTACION	,	Ö		10		12	
ESTACION 4	7.032258	7.000000	8.100000	7.387097	4.033333	8.129032	
	•						
4	7.032258	7.000000	8.100000	7.387097	4.033333	8.129032	
4 8	7.032258 8.548387	7.000000 5.806452	8.100000 8.866667	7.387097 11.064516	4.033333 8.966667	8.129032 10.032258	
4 8 17	7.032258 8.548387 8.354839	7.000000 5.806452 7.870968	8.100000 8.866667 9.066667	7.387097 11.064516 19.064516	4.033333 8.966667 11.900000	8.129032 10.032258 14.548387	
4 8 17 18	7.032258 8.548387 8.354839 3.548387	7.000000 5.806452 7.870968 9.129032	8.100000 8.866667 9.066667 7.333333	7.387097 11.064516 19.064516 6.741935	4.033333 8.966667 11.900000 5.166667	8.129032 10.032258 14.548387 6.806452	
4 8 17 18 24	7.032258 8.548387 8.354839 3.548387 2.516129	7.000000 5.806452 7.870968 9.129032 2.580645	8.100000 8.866667 9.066667 7.333333 2.500000	7.387097 11.064516 19.064516 6.741935 2.774194	4.033333 8.966667 11.900000 5.166667 2.966667	8.129032 10.032258 14.548387 6.806452 3.709677	
4 8 17 18 24 35	7.032258 8.548387 8.354839 3.548387 2.516129 12.741935	7.000000 5.806452 7.870968 9.129032 2.580645 11.612903	8.100000 8.866667 9.066667 7.333333 2.500000 13.733333	7.387097 11.064516 19.064516 6.741935 2.774194 10.709677	4.033333 8.966667 11.900000 5.166667 2.966667 8.566667	8.129032 10.032258 14.548387 6.806452 3.709677 4.032258	
4 8 17 18 24 35	7.032258 8.548387 8.354839 3.548387 2.516129 12.741935 6.193548	7.000000 5.806452 7.870968 9.129032 2.580645 11.612903 7.096774	8.100000 8.866667 9.066667 7.333333 2.500000 13.733333 7.966667	7.387097 11.064516 19.064516 6.741935 2.774194 10.709677 7.322581	4.033333 8.966667 11.900000 5.166667 2.966667 8.566667	8.129032 10.032258 14.548387 6.806452 3.709677 4.032258 4.548387	
4 8 17 18 24 35 36 38	7.032258 8.548387 8.354839 3.548387 2.516129 12.741935 6.193548 1.774194	7.000000 5.806452 7.870968 9.129032 2.580645 11.612903 7.096774 1.709677	8.100000 8.866667 9.066667 7.333333 2.500000 13.733333 7.966667 2.166667	7.387097 11.064516 19.064516 6.741935 2.774194 10.709677 7.322581 3.032258	4.033333 8.966667 11.900000 5.166667 2.966667 8.566667 12.066667 4.766667	8.129032 10.032258 14.548387 6.806452 3.709677 4.032258 4.548387 7.516129	

Crear una función que reciba un mes y una estación de medición y devuelva un diccionario con las medias de las magnitudes medidas por la estación durante ese mes

1 miClase.evolucion diaria(4, 2)

DIA MAGNITUD	01	02	03	04		05	06	07	08	\
1	9.500	8.250	7.00	7.750	8.	50 8	.50 8	.50	7.75	
6	0.575	0.475	0.35	0.425	0.	50 0	.45 0	.45	0.40	
7	71.500	44.000	21.00	31.000	54.	25 40	.00 40	.75	31.50	
8	58.250	46.000	36.25	42.000	49.	.00 43	.75 46	.75	46.75	
12	167.250	113.500	68.75	89.000	131.	75 105	.25 108	.75	95.00	
DIA	09	10 .	• •	20	21	22	23		24	\
MAGNITUD		•	• •							
1	8.25	8.00 .	10	.000	9.50	11.75	11.000		9.250	
6	0.45	0.35 .	0	.525	0.55	0.65	0.625		0.525	
7	40.25	20.75 .	. 54	.250 5	7.75	83.75	79.250	5	7.000	
8	53.00	43.25 .	57	.500 5	7.75	67.50	68.750	5	5.500	
12	114.75	75.25 .	140	.750 14	6.25	196.25	190.000	14	12.500	
DIA	25	26	27	28	29					
MAGNITUD										
1	9.50	9.000	8.250	8.50	9.0					
6	0.55	0.525	0.425	0.45	0.4					
7	49.25	52.250	29.500	33.00	18.0					

```
8 59.00 54.500 42.500 47.00 42.0
12 134.50 134.250 88.250 97.25 70.0
[5 rows x 29 columns]
```

Crear una función que reciba un rango de fechas y una magnitud y genere un gráfico con la evolución diaria de la magnitud para cada estación de medición en las fechas indicadas.

```
1 #magnitudes : 1 6 7 8 12 9 10 14 20 30 35 42 43 44
2 miClase.evolucionMagnitudRange(20, '2019-05-15', '2019-06-30')
```


Crear una función que reciba una magnitud y genere un gráfico con las medias mensuales dentro de Madrid Central y fuera de ella.

```
1 miClase.evolucionMagnitud(6)
```


1

1

✓ 0 s se ejecutó 09:27