Allele frequencies in polyploids

Botany 201!

Tests for introgression

f estimators

Penstemon

Population

Population genetics models

Estimating allele frequencies in non-model polyploids using high throughput sequencing data

Paul Blischak¹, Laura Kubatko^{1,2}, Andrea Wolfe¹

¹Dept. of EEOB ²Dept. of Statistics The Ohio State University

June 2, 2015

Outline

Allele frequencies in polyploids

Botany 2019

introgression
Patterson's
D-statistic

Penstemon attenuatus

attenuatus

Population genetics models

- 1 Tests for introgression
 - Patterson's D-statistic
 - $\blacksquare f$ estimators

2 Penstemon attenuatus

3 Population genetics models

ABBA-BABA statistics

Allele frequencies in polyploids

Botany 201!

Tests for introgression

Patterson's D-statistic

f estimator

Penstemon attenuatus

genetics models

$$\mathbf{D} = \frac{\sum \mathcal{C}_{ABBA} - \mathcal{C}_{BABA}}{\sum \mathcal{C}_{ABBA} + \mathcal{C}_{BABA}}$$

Tests for introgression

Patterson's

f estimators

Penstemon attenuatus

genetics models

$$f = \frac{\sum \mathcal{C}_{ABBA} - \mathcal{C}_{BABA}}{\sum \mathcal{C}_{ABBA} + \mathcal{C}_{BABA}}$$

Penstemon attenuatus

Allele frequencies in polyploids

Botany 2019

Tests for introgression Patterson's D-statistic f estimator.

Penstemon attenuatus

Population

The Penstemon attenuatus Doug. ex Lindl. species complex . . .

Posterior distribution of allele frequencies

Allele frequencies in polyploids

Botany 2015

Tests for introgression Patterson's D-statistic f estimators

attenuatus

Population genetics models

$$P(p_l, g_{li}|R_{li}^b, \epsilon) \propto \prod_{l} \prod_{i} P(R_{li}^b|g_{li}, \epsilon) P(g_{li}|p_l) P(p_l). \tag{1}$$

Notation

Allele frequencies in polyploids

Botany 201!

ntrogression
Patterson's
D-statistic
f estimators

attenuatus

Population genetics models

Symbol	Description
L	The number of loci.
l	Index for loci $(l \in \{1, \dots, L\})$.
N_k	The number of individuals sampled from population k.
k	Index for populations $(k \in \{P_1, P_{poly}, P_2, O\}).$
i	Index for individuals in a population k ($i \in \{1, \dots, N_k\}$).
N_{lk}	The number of individuals sampled at locus \boldsymbol{l} in population $\boldsymbol{k}.$
N_{lk}^a	The number of individuals homozygous for A at locus \boldsymbol{l} in population $\boldsymbol{k}.$
N_{lk}^b	The number of individuals homozygous for B at locus \boldsymbol{l} in population $k.$
N_{lk}^{ab}	The number of heterozygous individuals at locus \boldsymbol{l} in population $\boldsymbol{k}.$
\hat{p}_{lk}	Frequency of the derived allele (B) at locus l in population k .
P_k	The ploidy of individuals in population k .
R_{li}	The number of reads for individual i at locus l .
R_{li}^a	The number of reads with allele A for individual i at locus l .
R_{li}^b	The number of reads with allele B for individual i at locus l .
r_{li}^a	Proportion of reads with allele A (R_{li}^a/R_{li}) .
r_{li}^b	Proportion of reads with allele A (R_{li}^b/R_{li}) .