Exercícios de Lógica 2

6 de abril de 2021

1 Prove o seguinte (sem tabela verdade): $\varphi \lor (\psi \land \chi) \equiv (\varphi \lor \psi) \land (\varphi \lor \chi)$, $\varphi \to \psi \to \chi \equiv \varphi \land \psi \to \chi$, $(\varphi \land \psi) \lor \psi \equiv \psi$, $(\varphi \lor \psi) \land \psi \equiv \psi$ (não use distributividade para provar as regras de absorção).

2 Prove que para qualquer conjunto A existe uma bijeção entre as relações de equivalência sobre A e as partições de A (veja Exercício 3.27 do script). Mostre que a relação \equiv da equivalênca lógica é uma relação de congruência sobre Fm, isto é, $\equiv \subseteq Fm \times Fm$ é uma relação de equivalência que satisfaz o seguinte: Se $\varphi_1 \equiv \psi_1$ e $\varphi_2 \equiv \psi_2$, então $\neg \varphi_1 \equiv \neg \psi_1$ e $(\varphi_1 \Box \varphi_2) \equiv (\psi_1 \Box \psi_2)$, onde $\Box \in \{\lor, \land, \to\}$. (A relação \equiv é 'compatível' com os conectivos.)

3 Resolva o Exercício 3.42 do script.

4 Seja Fm_{\wedge} o menor conjunto que contém todas as variáveis V e é fechado sob a condição seguinte: se $\varphi, \psi \in Fm_{\wedge}$, então $(\varphi \wedge \psi) \in Fm_{\wedge}$. Prove por indução que nenhuma fórmula de Fm_{\wedge} é válida. Por que isso implica que $\{\wedge\}$ não é base de conectivos?

5 Desenvolva uma FND e uma FNC de

$$\begin{split} \varphi &= p \to \neg (q \to r), \\ \psi &= x \lor y \to \neg x, \\ \xi &= x \land y \to \neg x, \text{ respectivamente.} \end{split}$$

6 Mostre que os axiomas (A2)–(A4) (mais precisamente: todas as instâncias dos esquemas (A2)–(A4)) do cálculo de Hilbert são tautologias (não use tabela verdade).

7 Teorema: Se $\Phi \vdash_H \varphi \to \psi$, então $\Phi \cup \{\varphi\} \vdash_H \psi$. Prove o Teorema justificando detalhadamente os 4 passos seguintes considerando o cálculo de Hilbert:

1.
$$\Phi \vdash_H \varphi \rightarrow \psi$$
, 2. $\Phi \cup \{\varphi\} \vdash_H \varphi \rightarrow \psi$, 3. $\Phi \cup \{\varphi\} \vdash_H \varphi$, 4. $\Phi \cup \{\varphi\} \vdash_H \psi$.