The German University in Cairo (GUC).

Discrete Mathematics, Fall 2022.

SAMPLE ANSWER: Q #1

<u>Date:</u> 22-Oct.-22 <u>Time:</u> 25 Minutes (max.) <u>Marks:</u> 10

Group / Name / ID:

- 1. Ashry says: "if money solves problems, then the quiz is easy", and: "if money solves problems, then the quiz is difficult". Is it valid to conclude: "money does not solve problems" based on both of Ashry's hypotheses? Prove your answer.
 - N.B. In this question, we simply use "the quiz is difficult" as the negation of "the quiz is easy", and "money does not solve problems" as the negation of "money solves problems".

[5 Marks]

- Ans. First, translate the given statements into a symbolic, propositional logic form. Say we use p: "money solves problems", and q: "the question is easy".
 - Therefore, we want to prove whether $(p \to q) \land (p \to \neg q) \to \neg p$ is a valid argument.
 - Since the last column in the following truth table is always true, therefore the given argument is valid.

p	q	$p \rightarrow q (1)$	$p \to \neg q \ (2)$	$1 \wedge 2 (3)$	$3 \to \neg p \ (4)$
F	F	T	T	${ m T}$	T✓
\mathbf{F}	Τ	${ m T}$	T	${ m T}$	T✓
\mathbf{T}	F	${f F}$	T	${f F}$	T√
\mathbf{T}	Т	${ m T}$	${f F}$	${f F}$	T√

- N.B.: As an alternative answer that uses a proof sequence, Negation Introduction (NI) can be directly applied to derive the conclusion (but after the translation step).
 - 1. $p \to q$ hyp.
 - 2. $p \rightarrow \neg q$ hyp. Therefore the given argument is valid.
 - $3. \therefore \neg p$ 1, 2, NI
- 2. Complete the following sequence of derivations to prove that the given argument is valid

$$\neg (R \to Q) \land (\neg S \to P) \land (S \to Q) \land (U \lor \neg P) \longrightarrow U$$

#:	expression:	Justification:
1.	$\neg (R \to Q)$ $\neg S \to P$	hypothesis
2.	$\neg S o P$	hypothesis
3.	E	:

 $\therefore U$

	#:	expression:	Justification:
Ans.	1.	$\neg (R \to Q)$	hypothesis
	2.	$\neg S o P$	hypothesis
	3.	S o Q	hypothesis
	4.	$U \lor \neg P$	hypothesis
	5.	P o U	4, IMP
	6.	$\neg \left(\neg R \lor Q \right)$	1, IMP
	7.	$R \wedge \neg Q$	6, De Morgan
	8.	$\neg Q$	7, SIMP (simplification)
	9.	$\neg S$	8, 3, MT (Modus Tollens)
	10.	P	9, 2, MP (Modus Ponens)
	11.	U	10, 5, MP (Modus Ponens)

Rules of inference: Other rules are missing (e.g., commutativity, associativity, double negation, De Morgan's, etc.)

Name (abbreviation)	of the rule:	The rule:	
Implication	(IMP)	$P \to Q \equiv \neg P \lor Q.$	
Contrapositive	(CONT)	$P \to Q \equiv \neg Q \to \neg P.$	
Modus Ponens	(MP)	from P and $P \to Q$, deduce Q .	
Modus Tollens	(MT)	from $P \to Q$ and $\neg Q$, deduce $\neg P$.	
Simplification	(SIMP)	from $P \wedge Q$, deduce P (or deduce Q).	
Conjunction	(CONJ)	from P and Q , deduce $P \wedge Q$.	
Hypothetical Syllogism	(HS)	from $P \to Q$ and $Q \to R$, deduce $P \to R$.	
Disjunctive Syllogism	(DS)	from $P \vee Q$ and $\neg P$, deduce Q .	
Addition	(ADD)	from P , deduce $P \vee Q$.	
Negation Introduction	(NI)	from $P \to Q$ and $P \to \neg Q$, deduce $\neg P$.	
Negation Elimination	(NE)	from P and $\neg P$, deduce Q .	