Examen de Teoría de Percepción

ETSINF, Universitat Politècnica de València, Abril de 2014

Apellidos:	Nombre:	
Profesor: □Jorge Civera □Roberto Paredes		
Cuestiones (3 puntos, 30 minutos, sin apuntes)		
\fbox{C} ¿Cuándo podremos afirmar que la regla de clasificación estadística d	le mínimo error es	$s c(\mathbf{x}) = \arg \max_{c} p(\mathbf{x} \mid c)$?
A) Siempre que $P(c) = 1 \forall c \in \{1 \cdots C\}$ B) Siempre que $P(c) = 0 \forall c \in \{1 \cdots C\}$ C) Siempre que $P(c) = \frac{1}{C} \forall c \in \{1 \cdots C\}$ D) Siempre que $P(c) \geq 0 \forall c \in \{1 \cdots C\}$		
$\boxed{\mathbf{C}}$ Dado un conjunto de muestras etiquetadas $X = \{(\mathbf{x}_1, c_1), \cdots, (\mathbf{x}_n, c_n)\}$ de decisión entre dos clases es:	$\{\mathbf{x}_i\}$ donde $\mathbf{x}_i \in \mathbb{R}^3$, podremos decir que la fronter
A) Un puntoB) Una rectaC) Un planoD) Ninguna de las anteriores		
A Dada una representación local con un tamaño de ventana de 11x11 en 65536 niveles de gris, ¿cuál sería el espacio máximo que ocuparía		
 A) Aproximadamente 12 Mbytes B) Aproximadamente 6 Mbytes C) Aproximadamente 125 Kbytes D) Ninguna de las anteriores 		
B ¿Cuánto espacio como mínimo requiere el almacenamiento de una s 15 KHz y correctamente adquirida mediante un sistema de sonido es		
 A) Aproximadamente 1.7 Mbytes B) Aproximadamente 6.9 Mbytes C) Aproximadamente 3.4 Mbytes D) Ninguna de las anteriores 		
B ¿Cuál es el espacio requerido para almacenar una colección de 100 doc la presencia o ausencia de sus trigramas (tripletas de tokens) sabien		
 A) Aproximadamente 24 Kbytes B) Aproximadamente 93 Gbytes C) Aproximadamente 73 Kbytes D) Ninguna de las anteriores 		

- B Dado un espacio de representación de d dimensiones se desea reducir a k dimensiones mediante PCA. Para ello se dispone de una matriz A_{dxn} compuesta por los n vectores de entrenamiento menos la media de dichos vectores. Entonces:
 - A) Escogeremos los k mayores eigenvectores (mayor eigenvalor asociado) de la matriz: $\frac{1}{n} A^t A$
 - B) Escogeremos los k mayores eigenvectores (mayor eigenvalor asociado) de la matriz: $\frac{1}{n} AA^t$
 - C) Escogeremos los k mayores eigenvectores (mayor eigenvalor asociado) de la matriz: $\frac{1}{n}$ A
 - D) Escogeremos k mayores eigenvectores (mayor eigenvalor asociado) de la matriz: $\frac{1}{n}$ A^t
- B Dado un problema de clasificiación en C clases donde los objetos se representan en un espacio de representación de d dimensiones. Se desea obtener una representación en un espacio reducido de k < C 1 dimensiones. Mediante PCA se obtiene W como matriz de proyección a d' dimensiones y a partir de los datos una vez proyectados mediante PCA se obtiene V como la matriz de proyección mediante LDA, o sea: $\mathbf{x}' = VW\mathbf{x}$. Las dimensiones de dichas matrices son:
 - A) $W_{d' \times k} V_{d \times d'}$
 - B) $W_{d'\times d} V_{k\times d'}$
 - C) $W_{d\times d'}$ $V_{d'\times k}$
 - D) $W_{d\times d'}$ $V_{k\times d'}$
- A Cuál de las siguientes expresiones representa una solución al problema de optimización propuesto en LDA:
 - A) $W^* = \arg\max_{W} Tr(WS_bW^t)$ sujeto a $Tr(WS_wW^t) = 1$
 - B) $W^* = \arg \max_{W} Tr(WS_wW^t)$ sujeto a $Tr(WS_bW^t) = 1$
 - C) $W^* = \arg\max_{W} Tr(WS_w^-1W^t)$ sujeto a $Tr(WS_bW^t) = 1$
 - D) $W^* = \arg \max_{W} Tr(WS_bW^t)$ sujeto a $Tr(WS_w^-1W^t) = 1$
- C Cuál de las siguientes afirmaciones respecto a kernels es falsa:
 - A) Las funciones kernel modelan el producto escalar de dos vectores en un espacio de representación alternativo
 - B) No es necesario representar los vectores en el espacio de representación alternativo
 - C) El kernel polinomial es $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}\mathbf{y} + c)^d$ con c, d < 0
 - D) El algorimo Kernel Perceptron acaba cuando todas las muestras de aprendizaje están bien clasificadas
- Dado el conjunto de entrenamiento $X = \{(\mathbf{x}_1, c_1), (\mathbf{x}_2, c_2), \cdots, (\mathbf{x}_n, c_n)\}$. La función discriminante asociada al problema de clasificación binaria empleando kernels es:
 - A) $g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i c_i K(\mathbf{x}, \mathbf{x}_i) + \sum_{i=1}^{n} \alpha_i$
 - B) $g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i c_i K(\mathbf{x}, \mathbf{x}_i) + \sum_{i=1}^{n} c_i$
 - C) $g(\mathbf{x}) = \sum_{i=1}^{n} c_i K(\mathbf{x}, \mathbf{x}_i) + \sum_{i=1}^{n} \alpha_i c_i$
 - D) $g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i c_i K(\mathbf{x}, \mathbf{x}_i) + \sum_{i=1}^{n} \alpha_i c_i$

Examen de Teoría de Percepción

ETSINF, Universitat Politècnica de València, Abril de 2014

Profesor: \Box Jorge Civera \Box Roberto Paredes

Problemas (4 puntos, 90 minutos, con apuntes)

1. (2 puntos) Sean las siguientes 6 muestras en un espacio \mathcal{R}^4 :

$$\mathbf{x}_{1} = \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix} \ \mathbf{x}_{2} = \begin{bmatrix} -1\\0\\1\\2 \end{bmatrix} \ \mathbf{x}_{3} = \begin{bmatrix} 2\\0\\-2\\1 \end{bmatrix} \ \mathbf{x}_{4} = \begin{bmatrix} 2\\1\\-1\\2 \end{bmatrix} \ \mathbf{x}_{5} = \begin{bmatrix} -1\\2\\0\\1 \end{bmatrix} \ \mathbf{x}_{6} = \begin{bmatrix} -1\\-2\\0\\-1 \end{bmatrix}$$

asumiendo que los valores y vectores propios de la matrix de covarianza de los datos son:

$$\Lambda = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Nota: Los vectores propios en la matriz B son vectores columna.

- a) Calcula la proyección PCA para todas las muestras de \mathbb{R}^4 a \mathbb{R}^2 .
- b) Dado que conocemos las etiquetas de clase de las muestras $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} \in A$ y $\{\mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6\} \in B$, calcula el error de clasificación del siguiente clasificador lineal para las muestras proyectadas en \mathbb{R}^2 :

$$g_A(\mathbf{x}) = x - y + 1$$

$$g_B(\mathbf{x}) = -x + y - 1$$

Solución: En la solución original de este examen se obviaba, de forma errónea, la sustracción de la media a los vectores a proyectar

a) Las muestras dan un vector media $\mu = (\frac{1}{3}, \frac{1}{6}, -\frac{1}{3}, \frac{2}{3})^t$, de forma que los vectores a proyectar serán $\mathbf{x}_i - \mu$, es decir:

$$\mathbf{x}_{1} - \mu = \begin{bmatrix} \frac{2}{3} \\ -\frac{1}{6} \\ \frac{1}{3} \\ -\frac{5}{3} \end{bmatrix} \quad \mathbf{x}_{2} - \mu = \begin{bmatrix} -\frac{4}{3} \\ -\frac{1}{6} \\ \frac{4}{3} \\ \frac{3}{4} \end{bmatrix} \quad \mathbf{x}_{3} - \mu = \begin{bmatrix} \frac{5}{3} \\ -\frac{1}{6} \\ -\frac{5}{3} \\ \frac{1}{3} \end{bmatrix} \quad \mathbf{x}_{4} - \mu = \begin{bmatrix} \frac{5}{3} \\ \frac{5}{6} \\ -\frac{2}{3} \\ \frac{4}{3} \end{bmatrix} \quad \mathbf{x}_{5} - \mu = \begin{bmatrix} -\frac{4}{3} \\ \frac{11}{6} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \quad \mathbf{x}_{6} - \mu = \begin{bmatrix} -\frac{4}{3} \\ -\frac{13}{6} \\ \frac{1}{3} \\ -\frac{5}{3} \end{bmatrix}$$

Proyectamos las muestras utilizando los dos vectores propios asociados a los dos valores propios de mayor magnitud

$$W = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Esto se reduce a quedarnos con la tercera y segunda componentes de cada una de las muestras:

$$\mathbf{x}_{1}' = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{6} \end{bmatrix} \quad \mathbf{x}_{2}' = \begin{bmatrix} \frac{4}{3} \\ -\frac{1}{6} \end{bmatrix} \quad \mathbf{x}_{3}' = \begin{bmatrix} -\frac{5}{3} \\ -\frac{1}{6} \end{bmatrix} \quad \mathbf{x}_{4}' = \begin{bmatrix} -\frac{2}{3} \\ \frac{5}{6} \end{bmatrix} \quad \mathbf{x}_{5}' = \begin{bmatrix} \frac{1}{3} \\ \frac{11}{6} \end{bmatrix} \quad \mathbf{x}_{6}' = \begin{bmatrix} \frac{1}{3} \\ -\frac{13}{6} \end{bmatrix}$$

b) Calculamos para cada muestra la función discriminante de cada clase, etiqueta de clase estimada y comparamos con la etiqueta real para ver si se ha producido un error de clasificación:

Muestra	$g_A(\mathbf{x})$	$g_B(\mathbf{x})$	Estimada	Real	Error
$\overline{\mathbf{x}'_1}$	$\frac{3}{2}$	$-\frac{3}{2}$	A	A	No
\mathbf{x}_2'	$\frac{5}{2}$	$-\frac{5}{2}$	\mathbf{A}	\mathbf{A}	No
$\mathbf{x}_3^{\bar{\prime}}$	<u>- 1</u>	$\frac{1}{2}$	В	\mathbf{A}	Sí
\mathbf{x}_4^{\prime}	$-\frac{1}{2}$	$\frac{1}{2}$	В	В	No
\mathbf{x}_{5}^{\prime}	$-\frac{1}{2}$	$\frac{1}{2}$	В	В	No
$\mathbf{x}_6^{'}$	$\frac{7}{2}$	$-\frac{7}{2}$	\mathbf{A}	В	Sí

En total se producen 2 errores de clasificación.

2. (2 puntos) Sea la siguiente función kernel, $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + 1)^2$ y sea el siguiente conjunto de aprendizaje $X = \{(\mathbf{x}_1, +1), (\mathbf{x}_2, +1), (\mathbf{x}_3, +1), (\mathbf{x}_4, -1), (\mathbf{x}_5, -1), (\mathbf{x}_6, -1)\}$ con:

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{x}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \mathbf{x}_4 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \mathbf{x}_5 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \mathbf{x}_6 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Se pide:

- a) Obtén la matriz kernel K de las muestras de entrenamiento
- b) Realiza una iteración (desde \mathbf{x}_1 hasta \mathbf{x}_6) del algoritmo Kernel Perceptron
- c) Clasifica la muestra de test $\mathbf{x} = (0 \quad 2)$ con el valor de los pesos α obtenido en el apartado anterior

Solución:

a)
$$K = \begin{bmatrix} 9 & 4 & 4 & 16 & 16 & 1 \\ 4 & 4 & 1 & 9 & 4 & 1 \\ 4 & 1 & 4 & 4 & 9 & 1 \\ 16 & 9 & 4 & 36 & 25 & 1 \\ 16 & 4 & 9 & 25 & 36 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Final:
$$\alpha = (1 \ 0 \ 0 \ 1 \ 0 \ 1)$$

c)
$$g(\mathbf{x}) = 9 + 1 - 9 - 1 - 1 - 1 = -2 \Rightarrow c(\mathbf{x}) = -1$$