

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation

914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313
33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372
3162 BELICK STREET • SANTA CLARA, CA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372
13301 MCCALLEN PASS • AUSTIN, TEXAS 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

March 13, 2015

ARRIS Group 3871 Lakefield Drive Suite 300 Suwanee, GA 30024

Dear Tony Figueiredo,

Enclosed is the EMC Wireless test report for compliance testing of the ARRIS Group, DG2470A as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Part 15 Subpart C for Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,

MET LABORATORIES, INC.

Jennifer Warnell

Documentation Department

Reference: (\ARRIS Group\EMC84582-FCC247 Rev. 2)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

Electromagnetic Compatibility Criteria Test Report

for the

ARRIS Group DG2470A

Tested under

the FCC Certification Rules contained in Title 47 of the CFR, Part 15.247 Subpart C for Intentional Radiators

MET Report: EMC84582-FCC247 Rev. 2

March 13, 2015

Prepared For:

ARRIS Group 3871 Lakefield Drive Suite 300 Suwanee, GA 30024

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave. Baltimore, MD 21230

Electromagnetic Compatibility Criteria Test Report

for the

ARRIS Group DG2470A

Tested under

the FCC Certification Rules contained in Title 47 of the CFR, Part 15.247 Subpart C for Intentional Radiators

Surinder Singh, Project Engineer Electromagnetic Compatibility Lab

Lunder Lingh

Jennifer Warnell
Documentation Department

Juife Wand

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Parts 15B, 15.247 under normal use and maintenance.

Asad Bajwa

Director, Electromagnetic Compatibility Lab

a Bajara.

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	March 9, 2015	Initial Issue.
1	March 11, 2015	Revised to add models to "Models Covered" section.
2	March 13, 2015	Revised to reflect engineer corrections.

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	
	B. Executive Summary	2
II.	Equipment Configuration	3
	A. Overview	
	B. References	5
	C. Test Site	
	D. Description of Test Sample	
	E. Equipment Configuration	
	F. Support Equipment	
	G. Ports and Cabling Information	
	H. Mode of Operation	
	I. Method of Monitoring EUT Operation	
	J. Modifications	
	a) Modifications to EUT	
	b) Modifications to Test Standard	
	K. Disposition of EUT	
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	
	§ 15.203 Antenna Requirement	
	§ 15.207(a) Conducted Emissions Limits.	
	§ 15.247(a)(a) 6 dB Bandwidth	
	§ 15.247(b) Peak Power Output	
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	
	§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge	
	§ 15.247(e) Peak Power Spectral Density	
	§ 15.247(i) Maximum Permissible Exposure	
IV.	Test Equipment	113
V.	Certification & User's Manual Information	115
••	A. Certification Information	
	B. Label and User's Manual Information	
37T	ICES 003 Procedured & Labeling Deguirements	

List of Tables

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting	
Table 2. EUT Summary Table	4
Table 3. References	
Table 4. Equipment Configuration	8
Table 5. Support Equipment	8
Table 6. Ports and Cabling Information	8
Table 7. Antenna List	
Table 8. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	
Table 9. Conducted Emissions, 15.207(a), Phase Line, Test Results	
Table 10. Conducted Emissions, 15.207(a), Neutral Line, Test Results	
Table 11. 6 dB Occupied Bandwidth, Test Results, MIMO	
Table 12. 6 dB Occupied Bandwidth, Test Results, SISO	
Table 15. Output Power Requirements from §15.247(b)	
Table 16. Peak Power Output, Test Results, 802.11b/g/n 20 MHz, SISO	
Table 17. Peak Power Output, Test Results, 802.11b/g/n 20 MHz, MIMO	
Table 18. Peak Power Output, Test Results, 802.11n 40 MHz, SISO	
Table 19. Peak Power Output, Test Results, 802.11n 40 MHz, MIMO	
Table 20. Restricted Bands of Operation.	
Table 21. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	
Table 22. Peak Power Spectral Density, Test Results, 802.11b/g/n 20 MHz, SISO	
Table 23. Peak Power Spectral Density, Test Results, 802.11b/g/n 20 MHz, MIMO	
Table 24. Peak Power Spectral Density, Test Results, 802.11n 40 MHz, SISO	
Table 25. Peak Power Spectral Density, Test Results, 802.11n 40 MHz, MIMO	
Table 26. Test Equipment List	114
List of Plots	10
Plot 1. Conducted Emissions, 15.207(a), Phase Line	
Plot 2. Conducted Emissions, 15.207(a), Neutral Line	
Plot 3. 6 dB Occupied Bandwidth, Low Channel, 802.11b, MIMO	
Plot 5. 6 dB Occupied Bandwidth, High Channel, 802.11b, MIMO	
Plot 6. 6 dB Occupied Bandwidth, Low Channel, 802.11g, MIMO	
Plot 7. 6 dB Occupied Bandwidth, Mid Channel, 802.11g, MIMO	
Plot 8. 6 dB Occupied Bandwidth, High Channel, 802.11g, MIMO	
Plot 9. 6 dB Occupied Bandwidth, Low Channel, 802.11n 20 MHz, MIMO	
Plot 10. 6 dB Occupied Bandwidth, Mid Channel, 802.11n 20 MHz, MIMO	
Plot 11. 6 dB Occupied Bandwidth, High Channel, 802.11n 20 MHz, MIMO	
Plot 12. 6 dB Occupied Bandwidth, Low Channel, 802.11n 40 MHz, MIMO	
Plot 13. 6 dB Occupied Bandwidth, High Channel, 802.11n 40 MHz, MIMO	
Plot 14. 6 dB Occupied Bandwidth, Low Channel, 802.11b, SISO	
Plot 15. 6 dB Occupied Bandwidth, Mid Channel, 802.11b, SISO	
Plot 16. 6 dB Occupied Bandwidth, High Channel, 802.11b, SISO	
Plot 17. 6 dB Occupied Bandwidth, Low Channel, 802.11g, SISO	
Plot 18. 6 dB Occupied Bandwidth, Mid Channel, 802.11g, SISO	
Plot 19. 6 dB Occupied Bandwidth, High Channel, 802.11g, SISO	
Plot 20. 6 dB Occupied Bandwidth, Low Channel, 802.11n 20 MHz, SISO	
Plot 21. 6 dB Occupied Bandwidth, Mid Channel, 802.11n 20 MHz, SISO	
Plot 22. 6 dB Occupied Bandwidth, High Channel, 802.11n 20 MHz, SISO	23
Plot 23. 6 dB Occupied Bandwidth, Low Channel, 802.11n 40 MHz, SISO	

Plot 24.	6 dB Occupied Bandwidth, High Channel, 802.11n 40 MHz, SISO	24
	Peak Power Output, Low Channel, 802.11b, MIMO	
	Peak Power Output, Mid Channel, 802.11b, MIMO	
	Peak Power Output, High Channel, 802.11b, MIMO	
	Peak Power Output, Low Channel, 802.11g, MIMO	
	Peak Power Output, Mid Channel, 802.11g, MIMO	
	Peak Power Output, High Channel, 802.11g, MIMO	
	Peak Power Output, Low Channel, 802.11n 20 MHz, MIMO	
	Peak Power Output, Mid Channel, 802.11n 20 MHz, MIMO	
	Peak Power Output, High Channel, 802.11n 20 MHz, MIMO	
	Peak Power Output, Low Channel, 802.11n 40 MHz, MIMO	
	Peak Power Output, High Channel, 802.11n 40 MHz, MIMO	
	Peak Power Output, Low Channel, 802.11b, SISO	
	Peak Power Output, Mid Channel, 802.11b, SISO	
	Peak Power Output, High Channel, 802.11b, SISO	
	Peak Power Output, Low Channel, 802.11g, SISO	
	Peak Power Output, Mid Channel, 802.11g, SISO	
	Peak Power Output, High Channel, 802.11g, SISO	
	Peak Power Output, Low Channel, 802.11r 20 MHz, SISO	
	Peak Power Output, Mid Channel, 802.11n 20 MHz, SISO	
	Peak Power Output, High Channel, 802.11n 20 MHz, SISO	
	Peak Power Output, Low Channel, 802.11n 40 MHz, SISO	
	Peak Power Output, High Channel, 802.11n 40 MHz, SISO	
	Radiated Spurious Emissions, Low Channel, 802.11b, MIMO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Low Channel, 802.11b, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Low Channel, 802.11b, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Low Channel, 802.116, MIMO, 7 GHz – 7 GHz, 1 cak	
	Radiated Spurious Emissions, Mid Channel, 802.11b, MIMO, 30 MHz – 1 GHz.	
	Radiated Spurious Emissions, Mid Channel, 802.11b, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Mid Channel, 802.11b, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Mid Channel, 802.11b, MIMO, 7 GHz – 7 GHz, Feak	
	Radiated Spurious Emissions, Mid Channel, 802.11b, MIMO, 7 GHz = 18 GHz, Feak	
	Radiated Spurious Emissions, High Channel, 802.11b, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, High Channel, 802.11b, MIMO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, High Channel, 802.11b, MIMO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, Low Channel, 802.11g, MIMO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Low Channel, 802.11g, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Low Channel, 802.11g, MIMO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, Low Channel, 802.11g, MIMO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, Mid Channel, 802.11g, MIMO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Mid Channel, 802.11g, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Mid Channel, 802.11g, MIMO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, Mid Channel, 802.11g, MIMO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, High Channel, 802.11g, MIMO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, High Channel, 802.11g, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, High Channel, 802.11g, MIMO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, High Channel, 802.11g, MIMO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 30 MHz – 1 GHz	
Plot 98.	Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 1 GHz – 7 GHz, Average	47

Plot 99.	Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 1 GHz – 7 GHz, Peak	48
Plot 100.	Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 7 GHz – 18 GHz, Peak	48
Plot 101.	Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 30 MHz – 1 GHz	48
	Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 7 GHz – 7 GHz, Feak	
	Radiated Spurious Emissions, Low Channel, 802.11b, SISO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Low Channel, 802.11b, SISO, 30 MHz – 1 GHz. Radiated Spurious Emissions, Low Channel, 802.11b, SISO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Low Channel, 802.11b, SISO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Low Channel, 802.11b, SISO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, Mid Channel, 802.11b, SISO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Mid Channel, 802.11b, SISO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Mid Channel, 802.11b, SISO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, Mid Channel, 802.11b, SISO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, High Channel, 802.11b, SISO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, High Channel, 802.11b, SISO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, High Channel, 802.11b, SISO, 1 GHz – 7 GHz, Peak	
Plot 124.	Radiated Spurious Emissions, High Channel, 802.11b, SISO, 7 GHz – 18 GHz, Peak	56
	Radiated Spurious Emissions, Low Channel, 802.11g, SISO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Low Channel, 802.11g, SISO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Low Channel, 802.11g, SISO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, Low Channel, 802.11g, SISO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, Mid Channel, 802.11g, SISO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Mid Channel, 802.11g, SISO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Mid Channel, 802.11g, SISO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, Mid Channel, 802.11g, SISO, 7 GHz – 18 GHz, Peak	
Plot 133.	Radiated Spurious Emissions, High Channel, 802.11g, SISO, 30 MHz – 1 GHz	59
Plot 134.	Radiated Spurious Emissions, High Channel, 802.11g, SISO, 1 GHz – 7 GHz, Average	60
	Radiated Spurious Emissions, High Channel, 802.11g, SISO, 1 GHz – 7 GHz, Peak	
Plot 136.	Radiated Spurious Emissions, High Channel, 802.11g, SISO, 7 GHz – 18 GHz, Peak	60
Plot 137.	Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 30 MHz – 1 GHz	61
Plot 138.	Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 1 GHz – 7 GHz, Average	61
Plot 139.	Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 1 GHz – 7 GHz, Peak	61
	Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 1 GHz – 7 GHz, Average	
	Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 1 GHz – 7 GHz, Average	
1101131.	radiated Sparrous Emissions, Low Chamer, 002.1111 TO MILE, 5150, 1 Offic - / Offic, I can	

Plot 152.	Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 7 GHz – 18 GHz, Peak	66
Plot 153.	Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 30 MHz – 1 GHz	66
Plot 154.	Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 1 GHz – 7 GHz, Average	66
	Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 1 GHz – 7 GHz, Peak	
	Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 7 GHz – 18 GHz, Peak	
	Radiated Restricted Band Edge, Low Channel, 802.11b, MIMO, Average	
	Radiated Restricted Band Edge, Low Channel, 802.11b, MIMO, Peak	
	Radiated Restricted Band Edge, High Channel, 802.11b, MIMO, Average	
	Radiated Restricted Band Edge, High Channel, 802.11b, MIMO, Peak	
	Radiated Restricted Band Edge, Low Channel, 802.11g, MIMO, Average	
	Radiated Restricted Band Edge, Low Channel, 802.11g, MIMO, Peak	
	Radiated Restricted Band Edge, High Channel, 802.11g, MIMO, Average	
	Radiated Restricted Band Edge, High Channel, 802.11g, MIMO, Peak	
	Radiated Restricted Band Edge, 1ngii Channel, 802.11g, Wilvio, 1 cak Radiated Restricted Band Edge, Low Channel, 802.11n 20 MHz, MIMO, Average	
	Radiated Restricted Band Edge, Low Channel, 802.11n 20 MHz, MIMO, Average	
	Radiated Restricted Band Edge, Low Channel, 802.11n 20 MHz, MIMO, Feak	
	Radiated Restricted Band Edge, High Channel, 802.11n 20 MHz, MIMO, Peak	
	Radiated Restricted Band Edge, Low Channel, 802.11n 40 MHz, MIMO, Average	
	Radiated Restricted Band Edge, Low Channel, 802.11n 40 MHz, MIMO, Peak	
	Radiated Restricted Band Edge, High Channel, 802.11n 40 MHz, MIMO, Average	
	Radiated Restricted Band Edge, High Channel, 802.11n 40 MHz, MIMO, Peak	
	Radiated Restricted Band Edge, Low Channel, 802.11b, SISO, Average	
	Radiated Restricted Band Edge, Low Channel, 802.11b, SISO, Peak	
	Radiated Restricted Band Edge, High Channel, 802.11b, SISO, Average	
	Radiated Restricted Band Edge, High Channel, 802.11b, SISO, Peak	
	Radiated Restricted Band Edge, Low Channel, 802.11g, SISO, Average	
	Radiated Restricted Band Edge, Low Channel, 802.11g, SISO, Peak	
	Radiated Restricted Band Edge, High Channel, 802.11g, SISO, Average	
	Radiated Restricted Band Edge, High Channel, 802.11g, SISO, Peak	
	Radiated Restricted Band Edge, Low Channel, 802.11n 20 MHz, SISO, Average	
	Radiated Restricted Band Edge, Low Channel, 802.11n 20 MHz, SISO, Peak	
	Radiated Restricted Band Edge, High Channel, 802.11n 20 MHz, SISO, Average	
	Radiated Restricted Band Edge, High Channel, 802.11n 20 MHz, SISO, Peak	
	Radiated Restricted Band Edge, Low Channel, 802.11n 40 MHz, SISO, Average	
	Radiated Restricted Band Edge, Low Channel, 802.11n 40 MHz, SISO, Peak	
	Radiated Restricted Band Edge, High Channel, 802.11n 40 MHz, SISO, Average	
Plot 188.	Radiated Restricted Band Edge, High Channel, 802.11n 40 MHz, SISO, Peak	83
	Conducted Spurious Emissions, Low Channel, 802.11b, MIMO, 30 MHz – 1 GHz	
Plot 190.	Conducted Spurious Emissions, Low Channel, 802.11b, MIMO, 1 GHz – 24 GHz	85
Plot 191.	Conducted Spurious Emissions, Mid Channel, 802.11b, MIMO, 30 MHz – 1 GHz	85
Plot 192.	Conducted Spurious Emissions, Mid Channel, 802.11b, MIMO, 1 GHz – 24 GHz	86
Plot 193.	Conducted Spurious Emissions, High Channel, 802.11b, MIMO, 30 MHz – 1 GHz	86
Plot 194.	Conducted Spurious Emissions, High Channel, 802.11b, MIMO, 1 GHz – 24 GHz	86
	Conducted Spurious Emissions, Low Channel, 802.11g, MIMO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, Low Channel, 802.11g, MIMO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, Mid Channel, 802.11g, MIMO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, Mid Channel, 802.11g, MIMO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, High Channel, 802.11g, MIMO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, High Channel, 802.11g, MIMO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 1 GHz – 24 GHz	

Plot 205.	Conducted Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 30 MHz – 1 GHz	90
Plot 206.	Conducted Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 1 GHz – 24 GHz	90
Plot 207.	Conducted Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 30 MHz – 1 GHz	91
Plot 208.	Conducted Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 1 GHz – 24 GHz	91
Plot 209.	Conducted Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 30 MHz – 1 GHz	91
	Conducted Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, Low Channel, 802.11b, SISO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, Low Channel, 802.11b, SISO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, Mid Channel, 802.11b, SISO, 30 MHz – 1 GHz	
Plot 214.	Conducted Spurious Emissions, Mid Channel, 802.11b, SISO, 1 GHz – 24 GHz	94
	Conducted Spurious Emissions, High Channel, 802.11b, SISO, 30 MHz – 1 GHz	
Plot 216.	Conducted Spurious Emissions, High Channel, 802.11b, SISO, 1 GHz – 24 GHz	94
	Conducted Spurious Emissions, Low Channel, 802.11g, SISO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, Low Channel, 802.11g, SISO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, Mid Channel, 802.11g, SISO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, Mid Channel, 802.11g, SISO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, High Channel, 802.11g, SISO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, High Channel, 802.11g, SISO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, 111gh Channel, 802.11g, 5150, 1 GHz = 24 GHz	
	Conducted Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, Low Chainlet, 802.111 20 MHz, SISO, 1 GHz = 24 GHz	
	Conducted Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 1 GHz = 24 GHz	
	Conducted Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 1 GHz – 24 GHz	
	Conducted Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 1 GHz – 24 GHz	
	Peak Power Spectral Density, Low Channel, 802.11b, MIMO	
Plot 234.	Peak Power Spectral Density, Mid Channel, 802.11b, MIMO	104
	Peak Power Spectral Density, High Channel, 802.11b, MIMO	
	Peak Power Spectral Density, Low Channel, 802.11g, MIMO	
	Peak Power Spectral Density, Mid Channel, 802.11g, MIMO	
Plot 238.	Peak Power Spectral Density, High Channel, 802.g MIMO	105
Plot 239.	Peak Power Spectral Density, Low Channel, 802.11n 20 MHz, MIMO	106
	Peak Power Spectral Density, Mid Channel, 802.11n 20 MHz, MIMO	
Plot 241.	Peak Power Spectral Density, High Channel, 802.11n 20 MHz, MIMO	106
Plot 242.	Peak Power Spectral Density, Low Channel, 802.11n 40 MHz, MIMO	107
Plot 243.	Peak Power Spectral Density, High Channel, 802.11n 40 MHz, MIMO	107
	Peak Power Spectral Density, Low Channel, 802.11b, SISO	
Plot 245.	Peak Power Spectral Density, Mid Channel, 802.11b, SISO	108
Plot 246.	Peak Power Spectral Density, High Channel, 802.11b, SISO	108
Plot 247.	Peak Power Spectral Density, Low Channel, 802.11g, SISO	109
Plot 248.	Peak Power Spectral Density, Mid Channel, 802.11g, SISO	109
Plot 249.	Peak Power Spectral Density, High Channel, 802.g SISO	109
Plot 250.	Peak Power Spectral Density, Low Channel, 802.11n 20 MHz, SISO	110
	Peak Power Spectral Density, Mid Channel, 802.11n 20 MHz, SISO	
	Peak Power Spectral Density, High Channel, 802.11n 20 MHz, SISO	
	Peak Power Spectral Density, Low Channel, 802.11n 40 MHz, SISO	
	Peak Power Spectral Density, High Channel, 802.11n 40 MHz, SISO	

List of Figures

Figure 1. Block Diagram of Test Configuration	7
Figure 2. Block Diagram, Occupied Bandwidth Test Setup	
Figure 3. Peak Power Output Test Setup	
Figure 4. Block Diagram, Conducted Spurious Emissions Test Set	
Figure 5. Block Diagram, Peak Power Spectral Density Test Setup	101
List of Photo	graphs
Photograph 1. ARRIS Group DG2470A	6
Photograph 2. Conducted Emissions, 15,207(a), Test Setup	

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
$dB\mu V/m$	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
H	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	H ert z
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μΗ	microhenry
μ	microfarad
μs	microseconds
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the ARRIS Group DG2470A, with the requirements of Part 15, §15.247. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the DG2470A. ARRIS Group should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the DG2470A, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.247, in accordance with ARRIS Group, purchase order number 0008078781. All tests were conducted using measurement procedure ANSI C63.4-2003.

FCC Reference 47 CFR Part 15.247:2005	Description	Compliance
Title 47 of the CFR, Part 15 §15.203	Antenna Requirement	EUT has internal antenna
Title 47 of the CFR, Part 15 §15.207(a)	Conducted Emission Limits	Compliant
Title 47 of the CFR, Part 15 §15.247(a)(2)	6dB Occupied Bandwidth	Compliant
Title 47 of the CFR, Part 15 §15.247(b)	Peak Power Output	Compliant
Title 47 of the CFR, Part 15 §15.247(d); §15.209; §15.205	Radiated Spurious Emissions Requirements	Compliant
Title 47 of the CFR, Part 15 §15.247(d)	RF Conducted Spurious Emissions Requirements	Compliant
Title 47 of the CFR, Part 15 §15.247(d)	RF Conducted Band Edge	Compliant
Title 47 of the CFR, Part 15; §15.247(e)	Peak Power Spectral Density	Compliant
Title 47 of the CFR, Part 15 §15.247(i)	Maximum Permissible Exposure (MPE)	Compliant

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by ARRIS Group to perform testing on the DG2470A, under ARRIS Group's purchase order number 0008078781.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the ARRIS Group, DG2470A.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	DG2470A	
Model(s) Covered:	DG2470,DG2460 and DG1680	
	Primary Power: 120 VAC, 60 Hz	
	FCC ID: UIDDG2470	
EUT	Type of Modulations:	CCK, OFDM, MCS
Specifications:	Equipment Code:	DTS
	Peak RF Output Power:	28.99dBm
	EUT Frequency Ranges:	2412-2462MHz
Analysis:	The results obtained relate only to the item(s) tested.	
	Temperature: 15-35° C	
Environmental Test Conditions:	Relative Humidity: 30-60%	
Barometric Pressure: 860-1060 mbar		1060 mbar
Evaluated by:	Surinder Singh	
Report Date(s):	March 13, 2015	

Table 2. EUT Summary Table

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies	
ANSI C63.4:2003	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz	
ISO/IEC 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories	
ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices	

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 914 W. Patapsco Ave., Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Description of Test Sample

The ARRIS Group DG2470A, Equipment Under Test (EUT), is an indoor2.4 & 5G indoor data gateway. Model DG2460A is similar to DG2470A except it does not have MOCA capability. Model DG1680A is identical to DG2470A, simply a different model number per customer request.

Photograph 1. ARRIS Group DG2470A

Figure 1. Block Diagram of Test Configuration

E. Equipment Configuration

The EUT was set up as outlined in Figure 1, Block Diagram of Test Setup. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

Name / Description	Model Number
DG2470	DG2470/DG2460/DG1680

Table 4. Equipment Configuration

F. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number	
2s	Laptop	Assorted	N/A	

Table 5. Support Equipment

G. Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Shielded (Y/N)	Termination Point
2C	Ethernet	5e Modular 8 pin	1	1	No	NA
3C	AC Input	2 conductor, 18 AWG	1	2	No	(115v/60hz)

Table 6. Ports and Cabling Information

H. Mode of Operation

The provided instructions and software will configure the DG2470A for operation at each required test mode.

I. Method of Monitoring EUT Operation

The measured emission value is over the specified FCC/IC limits.

J. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to ARRIS Group upon completion of testing.

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement:

§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT as tested is Compliant to the criteria of §15.203. EUT has multiple internal Antenna.

Test Engineer(s): Surinder Singh

Test Date(s): 01/18/2015

DG2470 SR2 2.44GHz Peak Gain				
Antenna	2400 – 2485 MHz			
2.4G1	3.31 dBi			
2.4G2	2.44 dBi			
2.4G3	3.06 dBi			
3Tx Composite	7.72 dBi			

Table 7. Antenna List

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.207(a) Conducted Emissions Limits

Test Requirement(s):

§ 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Σ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Conducted Limit (dBμV)				
(MHz)	Quasi-Peak	Average			
* 0.15- 0.45	66 - 56	56 - 46			
0.45 - 0.5	56	46			
0.5 - 30	60	50			

Table 8. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)

Test Procedure:

The EUT was placed on a 0.8 m-high wooden table inside a screen room. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-2003 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to an EMC/field intensity meter. For the purpose of this testing, the transmitter was turned on. Scans were performed with the transmitter on.

Test Results: The EUT was compliant with this requirement.

Test Engineer(s): Surinder Singh

Test Date(s): 01/20/15

15.207(a) Conducted Emissions Test Results

Frequency (MHz)	Uncorrected Meter Reading (dBµV) QP	Cable Loss (dB)	Corrected Measurement (dBµV) QP	Limit (dBµV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBµV) Avg.	Cable Loss (dB)	Corrected Measurement (dBµV) AVG	Limit (dBµV) AVG	Margin (dB) AVG
0.15	53.45	0	53.45	66	-12.55	49.28	0	49.28	56	-6.72
0.32	44.09	0	44.09	59.71	-15.62	38.46	0	38.46	49.71	-11.25
1.44	35.77	0	35.77	56	-20.23	30.89	0	30.89	46	-15.11
6.78	27.56	0	27.56	60	-32.44	19.22	0	19.22	50	-30.78
13.75	26.48	0	26.48	60	-33.52	15.89	0	15.89	50	-34.11
24.73	25.38	0	25.38	60	-34.62	14.67	0	14.67	50	-35.33

Table 9. Conducted Emissions, 15.207(a), Phase Line, Test Results

Plot 1. Conducted Emissions, 15.207(a), Phase Line

15.207(a) Conducted Emissions Test Results

Frequency (MHz)	Uncorrected Meter Reading (dBµV) QP	Cable Loss (dB)	Corrected Measurement (dBµV) QP	Limit (dBµV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBµV) Avg.	Cable Loss (dB)	Corrected Measurement (dBµV) AVG	Limit (dBµV) AVG	Margin (dB) AVG
0.15	54.69	0	54.69	66	-11.31	50.38	0	50.38	56	-5.62
0.43	45.32	0	45.32	57.25	-11.93	32.43	0	32.43	47.25	-14.82
2.49	33.21	0	33.21	56	-22.79	20.06	0	20.06	46	-25.94
7.79	29.34	0	29.34	60	-30.66	22.43	0	22.43	50	-27.57
16.39	24.96	0	24.96	60	-35.04	14.52	0	14.52	50	-35.48
26.95	20.02	0	20.02	60	-39.98	11.74	0	11.74	50	-38.26

Table 10. Conducted Emissions, 15.207(a), Neutral Line, Test Results

Plot 2. Conducted Emissions, 15.207(a), Neutral Line

15.207(a) Conducted Emissions Test Setup Photo

Photograph 2. Conducted Emissions, 15.207(a), Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(2) 6 dB Bandwidth

Test Requirements: § 15.247(a)(2): Operation under the provisions of this section is limited to frequency hopping

and digitally modulated intentional radiators that comply with the following provisions:

For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6dB bandwidth shall be at least

500 kHz.

Test Procedure: The transmitter was on and transmitting at the highest output power. The bandwidth of the

fundamental frequency was measured with the spectrum analyzer using a RBW approximately 1% of the total emission bandwidth, VBW > RBW. The 6 dB Bandwidth was measured and

recorded. The measurements were performed on the low, mid and high channels.

Test Results The EUT was compliant with § 15.247 (a)(2).

The 6 dB Bandwidth was determined from the plots on the following pages.

Test Engineer(s): Surinder Singh

Test Date(s): 01/19/15

Figure 2. Block Diagram, Occupied Bandwidth Test Setup

Occupied Bandwidth Test Results

Occupied Bandwidth						
	Carrier Channel	Frequency (MHz)	Measured 6 dB Bandwidth (MHz)			
	Low	2412	8.114			
802.11b	Mid	2437	10.135			
	High	2462	10.090			
	Low	2412	16.369			
802.11g	Mid	2437	16.368			
	High	2462	16.374			
	Low	2412	16.249			
802.11n 20 MHz	Mid	2437	16.369			
	High	2462	16.329			
802.11n 40 MHz	Low	2422	34.584			
802.111140 MHZ	High	2452	33.944			

Table 11. 6 dB Occupied Bandwidth, Test Results, MIMO

Occupied Bandwidth						
	Carrier Channel	Frequency	Measured 6 dB Bandwidth			
	Carrer Chamier	(MHz)	(MHz)			
	Low	2412	10.111			
802.11b	Mid	2437	10.135			
	High	2462	9.640			
	Low	2412	16.356			
802.11g	Mid	2437	16.381			
	High	2462	16.379			
	Low	2412	15.801			
802.11n 20 MHz	Mid	2437	17.345			
	High	2462	17.603			
802.11n 40 MHz	Low	2422	36.207			
ου2.11II 40 ΜΠΖ	High	2452	36.484			

Table 12. 6 dB Occupied Bandwidth, Test Results, SISO

6 dB Occupied Bandwidth Test Results, 802.11b, MIMO

Plot 3. 6 dB Occupied Bandwidth, Low Channel, 802.11b, MIMO

Plot 4. 6 dB Occupied Bandwidth, Mid Channel, 802.11b, MIMO

Plot 5. 6 dB Occupied Bandwidth, High Channel, 802.11b, MIMO

6 dB Occupied Bandwidth Test Results, 802.11g, MIMO

Plot 6. 6 dB Occupied Bandwidth, Low Channel, 802.11g, MIMO

Plot 7. 6 dB Occupied Bandwidth, Mid Channel, 802.11g, MIMO

Plot 8. 6 dB Occupied Bandwidth, High Channel, 802.11g, MIMO

6 dB Occupied Bandwidth Test Results, 802.11n 20 MHz, MIMO

Plot 9. 6 dB Occupied Bandwidth, Low Channel, 802.11n 20 MHz, MIMO

Plot 10. 6 dB Occupied Bandwidth, Mid Channel, 802.11n 20 MHz, MIMO

Plot 11. 6 dB Occupied Bandwidth, High Channel, 802.11n 20 MHz, MIMO

6 dB Occupied Bandwidth Test Results, 802.11n 40 MHz, MIMO

Plot 12. 6 dB Occupied Bandwidth, Low Channel, 802.11n 40 MHz, MIMO

Plot 13. 6 dB Occupied Bandwidth, High Channel, 802.11n 40 MHz, MIMO

6 dB Occupied Bandwidth Test Results, 802.11b, SISO

Plot 14. 6 dB Occupied Bandwidth, Low Channel, 802.11b, SISO

Plot 15. 6 dB Occupied Bandwidth, Mid Channel, 802.11b, SISO

Plot 16. 6 dB Occupied Bandwidth, High Channel, 802.11b, SISO

6 dB Occupied Bandwidth Test Results, 802.11g, SISO

Plot 17. 6 dB Occupied Bandwidth, Low Channel, 802.11g, SISO

Plot 18. 6 dB Occupied Bandwidth, Mid Channel, 802.11g, SISO

Plot 19. 6 dB Occupied Bandwidth, High Channel, 802.11g, SISO

6 dB Occupied Bandwidth Test Results, 802.11n 20 MHz, SISO

Plot 20. 6 dB Occupied Bandwidth, Low Channel, 802.11n 20 MHz, SISO

Plot 21. 6 dB Occupied Bandwidth, Mid Channel, 802.11n 20 MHz, SISO

Plot 22. 6 dB Occupied Bandwidth, High Channel, 802.11n 20 MHz, SISO

6 dB Occupied Bandwidth Test Results, 802.11n 40 MHz, SISO

Plot 23. 6 dB Occupied Bandwidth, Low Channel, 802.11n 40 MHz, SISO

Plot 24. 6 dB Occupied Bandwidth, High Channel, 802.11n 40 MHz, SISO

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) Peak Power Output

Test Requirements: §15.247(b): The maximum peak output power of the intentional radiator shall not exceed the following:

Digital Transmission Systems (MHz)	Output Limit (Watts)
902-928	1.000
2400–2483.5	1.000
5725– 5850	1.000

Table 13. Output Power Requirements from §15.247(b)

§15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Procedure: The transmitter was connected to a calibrated spectrum analyzer. The EUT was measured at the

low, mid and high channels of each band at the maximum power level.

Test Results: The EUT was compliant with the Peak Power Output limits of §15.247(b).

Test Engineer(s): Surinder Singh

Test Date(s): 01/19/15

Figure 3. Peak Power Output Test Setup

Peak Power Output Test Results

	Peak Conducted Output Power 20MHz Band 802.11b/g/n Mode SISO						
Channel	Frequency MHz	Measured Peak Output Power (dBm)/20MHz	Mode	Power Limit dBm	Antenna Gain dBi	Margin dB	
1	2412	23.67	b	30	3.31	-6.33	
1	2412	21.85	g	30	3.31	-8.15	
1	2412	22.38	n	30	3.31	-7.62	
6	2437	22.97	b	30	3.31	-7.03	
6	2437	24.65	g	30	3.31	-5.35	
6	2437	24.32	n	30	3.31	-5.68	
11	2462	23.04	b	30	3.31	-6.96	
11	2462	21.59	g	30	3.31	-8.41	
11	2462	21.32	n	30	3.31	-8.68	

Table 14. Peak Power Output, Test Results, 802.11b/g/n 20 MHz, SISO

	Peak Conducted Output Power 20MHz Band 802.11b/g/n Mode MIMO								
Channel	Frequency MHz	Measured Peak Output Power (dBm)/20MHz Ant 0	Measured Peak Output Power (dBm)/20MHz Ant 1	Measured Peak Output Power (dBm)/20MHz Ant 2	Mode	Total power dBm	Power Limit dBm	Antenna Gain dBi	Margin dB
1	2412	22.85	22.59	22.98	b	27.58	28.28	7.72	-0.69
1	2412	20.77	20.45	19.98	g	25.18	28.28	7.72	-3.09
1	2412	22.06	21.84	22.08	n	26.76	30	3.31	-3.23
6	2437	22.53	22.48	22.19	b	27.17	28.28	7.72	-1.10
6	2437	24.41	23.11	22.49	g	28.18	28.28	7.72	-0.09
6	2437	24.64	24.31	23.67	n	28.99	30	3.31	-1.00
11	2462	23.4	22.88	22.49	b	27.71	28.28	7.72	-0.56
11	2462	22.06	21.44	21.68	g	26.50	28.28	7.72	-1.77
11	2462	22.03	22.36	21.79	n	26.83	30	3.31	-3.16

Table 15. Peak Power Output, Test Results, 802.11b/g/n 20 MHz, MIMO

^{*}Note: In 802.11n mode- radio was transmitting uncorrelated data across MIMO system and therefore does not account for array gain in overall antenna assembly gain calculation.

Peak Conducted Output Power 40MHz Band n Mode SISO							
Channel	Frequency MHz	Measured Peak Output Power (dBm)/20MHz	Power Limit dBm	Antenna Gain dBi	Margin dB		
1	2422	17.7	30	3.31	-12.3		
7	2452	17.1	30	3.31	-12.9		

Table 16. Peak Power Output, Test Results, 802.11n 40 MHz, SISO

	Peak Conducted Output Power 40MHz Band n Mode MIMO (3*3)							
Chanel Carrier	Frequency MHz	Measured Peak Output Power (dBm)/20MHz Ant 0	Measured Peak Output Power (dBm)/20MHz Ant 1	Measured Peak Output Power (dBm)/20MHz Ant 2	Total Output Power	Power Limit dBm	Antenna Gain dBi	Margin dB
1	2422	17.35	17.48	17.19	22.1	3.31	30	-7.8
7	2452	16.79	16.94	17.06	19.87	3.31	30	-10.1

Table 17. Peak Power Output, Test Results, 802.11n 40 MHz, MIMO

^{*}Note: In 802.11n mode- radio was transmitting uncorrelated data across MIMO system and therefore does not account for array gain in overall antenna assembly gain calculation.

Peak Power Output Test Results, 802.11b, MIMO

Plot 25. Peak Power Output, Low Channel, 802.11b, MIMO

Plot 26. Peak Power Output, Mid Channel, 802.11b, MIMO

Plot 27. Peak Power Output, High Channel, 802.11b, MIMO

Peak Power Output Test Results, 802.11g, MIMO

Plot 28. Peak Power Output, Low Channel, 802.11g, MIMO

Plot 29. Peak Power Output, Mid Channel, 802.11g, MIMO

Plot 30. Peak Power Output, High Channel, 802.11g, MIMO

Peak Power Output Test Results, 802.11n 20 MHz, MIMO

Plot 31. Peak Power Output, Low Channel, 802.11n 20 MHz, MIMO

Plot 32. Peak Power Output, Mid Channel, 802.11n 20 MHz, MIMO

Plot 33. Peak Power Output, High Channel, 802.11n 20 MHz, MIMO

Peak Power Output Test Results, 802.11n 40 MHz, MIMO

Plot 34. Peak Power Output, Low Channel, 802.11n 40 MHz, MIMO

Plot 35. Peak Power Output, High Channel, 802.11n 40 MHz, MIMO

Peak Power Output Test Results, 802.11b, SISO

Plot 36. Peak Power Output, Low Channel, 802.11b, SISO

Plot 37. Peak Power Output, Mid Channel, 802.11b, SISO

Plot 38. Peak Power Output, High Channel, 802.11b, SISO

Peak Power Output Test Results, 802.11g, SISO

Plot 39. Peak Power Output, Low Channel, 802.11g, SISO

Plot 40. Peak Power Output, Mid Channel, 802.11g, SISO

Plot 41. Peak Power Output, High Channel, 802.11g, SISO

Peak Power Output Test Results, 802.11n 20 MHz, SISO

Plot 42. Peak Power Output, Low Channel, 802.11n 20 MHz, SISO

Plot 43. Peak Power Output, Mid Channel, 802.11n 20 MHz, SISO

Plot 44. Peak Power Output, High Channel, 802.11n 20 MHz, SISO

Peak Power Output Test Results, 802.11n 40 MHz, SISO

Plot 45. Peak Power Output, Low Channel, 802.11n 40 MHz, SISO

Plot 46. Peak Power Output, High Channel, 802.11n 40 MHz, SISO

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600–4400	(²)

Table 18. Restricted Bands of Operation

 $^{^{\}rm 1}\,$ Until February 1, 1999, this restricted band shall be $0.490-0.510\,\mathrm{MHz}.$

² Above 38.6

Test Requirement(s):

§ 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in Table 19.

Frequency (MHz)	§ 15.209(a),Radiated Emission Limits		
	(dBµV) @ 3m		
30 - 88	40.00		
88 - 216	43.50		
216 - 960	46.00		
Above 960	54.00		

Table 19. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

Test Procedures: The transmitter was turned on. Measurements were performed of the low, mid and high

Channels. The EUT was rotated orthogonally through all three axes. Plots shown are corrected for both antenna correction factor and distance and compared to a 3 m limit line. Only noise

floor was measured above 18 GHz.

Test Results: The EUT was compliant with the Radiated Spurious Emission limits of § 15.247(d).

Test Engineer(s): Surinder Singh

Test Date(s): 01/20/15

Radiated Spurious Emissions Test Results, 802.11b, MIMO

Plot 47. Radiated Spurious Emissions, Low Channel, 802.11b, MIMO, 30 MHz - 1 GHz

Plot 48. Radiated Spurious Emissions, Low Channel, 802.11b, MIMO, 1 GHz - 7 GHz, Average

Plot 49. Radiated Spurious Emissions, Low Channel, 802.11b, MIMO, 1 GHz - 7 GHz, Peak

Plot 50. Radiated Spurious Emissions, Low Channel, 802.11b, MIMO, 7 GHz - 18 GHz, Peak

Plot 51. Radiated Spurious Emissions, Mid Channel, 802.11b, MIMO, 30 MHz - 1 GHz

Plot 52. Radiated Spurious Emissions, Mid Channel, 802.11b, MIMO, 1 GHz - 7 GHz, Average

Plot 53. Radiated Spurious Emissions, Mid Channel, 802.11b, MIMO, 1 GHz - 7 GHz, Peak

Plot 54. Radiated Spurious Emissions, Mid Channel, 802.11b, MIMO, 7 GHz - 18 GHz, Peak

Plot 55. Radiated Spurious Emissions, High Channel, 802.11b, MIMO, 30 MHz - 1 GHz

Plot 56. Radiated Spurious Emissions, High Channel, 802.11b, MIMO, 1 GHz - 7 GHz, Average

Plot 57. Radiated Spurious Emissions, High Channel, 802.11b, MIMO, 1 GHz - 7 GHz, Peak

Plot 58. Radiated Spurious Emissions, High Channel, 802.11b, MIMO, 7 GHz - 18 GHz, Peak

Radiated Spurious Emissions Test Results, 802.11g, MIMO

Plot 59. Radiated Spurious Emissions, Low Channel, 802.11g, MIMO, 30 MHz - 1 GHz

Plot 60. Radiated Spurious Emissions, Low Channel, 802.11g, MIMO, 1 GHz - 7 GHz, Average

Plot 61. Radiated Spurious Emissions, Low Channel, 802.11g, MIMO, 1 GHz - 7 GHz, Peak

Plot 62. Radiated Spurious Emissions, Low Channel, 802.11g, MIMO, 7 GHz - 18 GHz, Peak

Plot 63. Radiated Spurious Emissions, Mid Channel, 802.11g, MIMO, 30 MHz - 1 GHz

Plot 64. Radiated Spurious Emissions, Mid Channel, 802.11g, MIMO, 1 GHz – 7 GHz, Average

Plot 65. Radiated Spurious Emissions, Mid Channel, 802.11g, MIMO, 1 GHz - 7 GHz, Peak

Plot 66. Radiated Spurious Emissions, Mid Channel, 802.11g, MIMO, 7 GHz - 18 GHz, Peak

Plot 67. Radiated Spurious Emissions, High Channel, 802.11g, MIMO, 30 MHz - 1 GHz

Plot 68. Radiated Spurious Emissions, High Channel, 802.11g, MIMO, 1 GHz - 7 GHz, Average

Plot 69. Radiated Spurious Emissions, High Channel, 802.11g, MIMO, 1 GHz - 7 GHz, Peak

Plot 70. Radiated Spurious Emissions, High Channel, 802.11g, MIMO, 7 GHz - 18 GHz, Peak

Radiated Spurious Emissions Test Results, 802.11n 20 MHz, MIMO

Plot 71. Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 30 MHz – 1 GHz

Plot 72. Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 1 GHz - 7 GHz, Average

Plot 73. Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 1 GHz - 7 GHz, Peak

Plot 74. Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 7 GHz – 18 GHz, Peak

Plot 75. Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 30 MHz - 1 GHz

Plot 76. Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 1 GHz - 7 GHz, Average

Plot 77. Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 1 GHz - 7 GHz, Peak

Plot 78. Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 7 GHz - 18 GHz, Peak

Plot 79. Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 30 MHz - 1 GHz

Plot 80. Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 1 GHz - 7 GHz, Average

Plot 81. Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 1 GHz - 7 GHz, Peak

Plot 82. Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 7 GHz - 18 GHz, Peak

Radiated Spurious Emissions Test Results, 802.11n 40 MHz, MIMO

Plot 83. Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 30 MHz – 1 GHz

Plot 84. Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 1 GHz - 7 GHz, Average

Plot 85. Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 1 GHz - 7 GHz, Peak

Plot 86. Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 7 GHz – 18 GHz, Peak

Plot 87. Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 30 MHz - 1 GHz

Plot 88. Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 1 GHz – 7 GHz, Average

Plot 89. Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 1 GHz - 7 GHz, Peak

Plot 90. Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 7 GHz - 18 GHz, Peak

Radiated Spurious Emissions Test Results, 802.11b, SISO

Plot 91. Radiated Spurious Emissions, Low Channel, 802.11b, SISO, 30 MHz - 1 GHz

Plot 92. Radiated Spurious Emissions, Low Channel, 802.11b, SISO, 1 GHz - 7 GHz, Average

Plot 93. Radiated Spurious Emissions, Low Channel, 802.11b, SISO, 1 GHz - 7 GHz, Peak

Plot 94. Radiated Spurious Emissions, Low Channel, 802.11b, SISO, 7 GHz - 18 GHz, Peak

Plot 95. Radiated Spurious Emissions, Mid Channel, 802.11b, SISO, 30 MHz - 1 GHz

Plot 96. Radiated Spurious Emissions, Mid Channel, 802.11b, SISO, 1 GHz - 7 GHz, Average

Plot 97. Radiated Spurious Emissions, Mid Channel, 802.11b, SISO, 1 GHz - 7 GHz, Peak

Plot 98. Radiated Spurious Emissions, Mid Channel, 802.11b, SISO, 7 GHz - 18 GHz, Peak

Plot 99. Radiated Spurious Emissions, High Channel, 802.11b, SISO, 30 MHz - 1 GHz

Plot 100. Radiated Spurious Emissions, High Channel, 802.11b, SISO, 1 GHz - 7 GHz, Average

Plot 101. Radiated Spurious Emissions, High Channel, 802.11b, SISO, 1 GHz - 7 GHz, Peak

Plot 102. Radiated Spurious Emissions, High Channel, 802.11b, SISO, 7 GHz - 18 GHz, Peak

Radiated Spurious Emissions Test Results, 802.11g, SISO

Plot 103. Radiated Spurious Emissions, Low Channel, 802.11g, SISO, 30 MHz - 1 GHz

Plot 104. Radiated Spurious Emissions, Low Channel, 802.11g, SISO, 1 GHz - 7 GHz, Average

Plot 105. Radiated Spurious Emissions, Low Channel, 802.11g, SISO, 1 GHz - 7 GHz, Peak

Plot 106. Radiated Spurious Emissions, Low Channel, 802.11g, SISO, 7 GHz - 18 GHz, Peak

Plot 107. Radiated Spurious Emissions, Mid Channel, 802.11g, SISO, 30 MHz - 1 GHz

Plot 108. Radiated Spurious Emissions, Mid Channel, 802.11g, SISO, 1 GHz - 7 GHz, Average

Plot 109. Radiated Spurious Emissions, Mid Channel, 802.11g, SISO, 1 GHz - 7 GHz, Peak

Plot 110. Radiated Spurious Emissions, Mid Channel, 802.11g, SISO, 7 GHz – 18 GHz, Peak

Plot 111. Radiated Spurious Emissions, High Channel, 802.11g, SISO, 30 MHz - 1 GHz

Plot 112. Radiated Spurious Emissions, High Channel, 802.11g, SISO, 1 GHz - 7 GHz, Average

Plot 113. Radiated Spurious Emissions, High Channel, 802.11g, SISO, 1 GHz - 7 GHz, Peak

Plot 114. Radiated Spurious Emissions, High Channel, 802.11g, SISO, 7 GHz – 18 GHz, Peak

Radiated Spurious Emissions Test Results, 802.11n 20 MHz, SISO

Plot 115. Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 30 MHz - 1 GHz

Plot 116. Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 1 GHz – 7 GHz, Average

Plot 117. Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 1 GHz - 7 GHz, Peak

Plot 118. Radiated Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 7 GHz - 18 GHz, Peak

Plot 119. Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 30 MHz - 1 GHz

Plot 120. Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 1 GHz - 7 GHz, Average

Plot 121. Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 1 GHz - 7 GHz, Peak

Plot 122. Radiated Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 7 GHz - 18 GHz, Peak

Plot 123. Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 30 MHz – 1 GHz

Plot 124. Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 1 GHz - 7 GHz, Average

Plot 125. Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 1 GHz - 7 GHz, Peak

Plot 126. Radiated Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 7 GHz – 18 GHz, Peak

Radiated Spurious Emissions Test Results, 802.11n 40 MHz, SISO

Plot 127. Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 30 MHz - 1 GHz

Plot 128. Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 1 GHz – 7 GHz, Average

Plot 129. Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 1 GHz - 7 GHz, Peak

Plot 130. Radiated Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 7 GHz - 18 GHz, Peak

Plot 131. Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 30 MHz - 1 GHz

Plot 132. Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 1 GHz - 7 GHz, Average

Plot 133. Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 1 GHz - 7 GHz, Peak

Plot 134. Radiated Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 7 GHz – 18 GHz, Peak

Radiated Band Edge Measurements

Test Procedures:

The transmitter was turned on. Measurements were performed of the low, mid and high Channels. The EUT was rotated orthogonally through all three axes. Plots shown are corrected for both antenna correction factor and distance and compared to a 3 m limit line.

Radiated Band Edge Measurements, 802.11b, MIMO

Plot 135. Radiated Restricted Band Edge, Low Channel, 802.11b, MIMO, Average

Plot 136. Radiated Restricted Band Edge, Low Channel, 802.11b, MIMO, Peak

Plot 137. Radiated Restricted Band Edge, High Channel, 802.11b, MIMO, Average

Plot 138. Radiated Restricted Band Edge, High Channel, 802.11b, MIMO, Peak

Radiated Band Edge Measurements, 802.11g, MIMO

Plot 139. Radiated Restricted Band Edge, Low Channel, 802.11g, MIMO, Average

Plot 140. Radiated Restricted Band Edge, Low Channel, 802.11g, MIMO, Peak

Plot 141. Radiated Restricted Band Edge, High Channel, 802.11g, MIMO, Average

Plot 142. Radiated Restricted Band Edge, High Channel, 802.11g, MIMO, Peak

Radiated Band Edge Measurements, 802.11n 20 MHz, MIMO

Plot 143. Radiated Restricted Band Edge, Low Channel, 802.11n 20 MHz, MIMO, Average

Plot 144. Radiated Restricted Band Edge, Low Channel, 802.11n 20 MHz, MIMO, Peak

Plot 145. Radiated Restricted Band Edge, High Channel, 802.11n 20 MHz, MIMO, Average

Plot 146. Radiated Restricted Band Edge, High Channel, 802.11n 20 MHz, MIMO, Peak

Radiated Band Edge Measurements, 802.11n 40 MHz, MIMO

Plot 147. Radiated Restricted Band Edge, Low Channel, 802.11n 40 MHz, MIMO, Average

Plot 148. Radiated Restricted Band Edge, Low Channel, 802.11n 40 MHz, MIMO, Peak

Plot 149. Radiated Restricted Band Edge, High Channel, 802.11n 40 MHz, MIMO, Average

Plot 150. Radiated Restricted Band Edge, High Channel, 802.11n 40 MHz, MIMO, Peak

Radiated Band Edge Measurements, 802.11b, SISO

Plot 151. Radiated Restricted Band Edge, Low Channel, 802.11b, SISO, Average

Plot 152. Radiated Restricted Band Edge, Low Channel, 802.11b, SISO, Peak

Plot 153. Radiated Restricted Band Edge, High Channel, 802.11b, SISO, Average

Plot 154. Radiated Restricted Band Edge, High Channel, 802.11b, SISO, Peak

Radiated Band Edge Measurements, 802.11g, SISO

Plot 155. Radiated Restricted Band Edge, Low Channel, 802.11g, SISO, Average

Plot 156. Radiated Restricted Band Edge, Low Channel, 802.11g, SISO, Peak

Plot 157. Radiated Restricted Band Edge, High Channel, 802.11g, SISO, Average

Plot 158. Radiated Restricted Band Edge, High Channel, 802.11g, SISO, Peak

Radiated Band Edge Measurements, 802.11n 20 MHz, SISO

Plot 159. Radiated Restricted Band Edge, Low Channel, 802.11n 20 MHz, SISO, Average

Plot 160. Radiated Restricted Band Edge, Low Channel, 802.11n 20 MHz, SISO, Peak

Plot 161. Radiated Restricted Band Edge, High Channel, 802.11n 20 MHz, SISO, Average

Plot 162. Radiated Restricted Band Edge, High Channel, 802.11n 20 MHz, SISO, Peak

Radiated Band Edge Measurements, 802.11n 40 MHz, SISO

Plot 163. Radiated Restricted Band Edge, Low Channel, 802.11n 40 MHz, SISO, Average

Plot 164. Radiated Restricted Band Edge, Low Channel, 802.11n 40 MHz, SISO, Peak

Plot 165. Radiated Restricted Band Edge, High Channel, 802.11n 40 MHz, SISO, Average

Plot 166. Radiated Restricted Band Edge, High Channel, 802.11n 40 MHz, SISO, Peak

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge

Test Requirement:

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure:

For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Measurement was taken at low, mid and high channel. The green display line on each plot is at least 20dB below the fundamental frequency emission in 100KHz band.

See following pages for detailed test results with RF Conducted Spurious Emissions.

Test Results:

The EUT was compliant with the Conducted Spurious Emission limits of §15.247(d).

Test Engineer(s):

Surinder Singh

Test Date(s):

01/19/15

Figure 4. Block Diagram, Conducted Spurious Emissions Test Setup

Conducted Spurious Emissions Test Results, 802.11b, MIMO

Plot 167. Conducted Spurious Emissions, Low Channel, 802.11b, MIMO, 30 MHz - 1 GHz

Plot 168. Conducted Spurious Emissions, Low Channel, 802.11b, MIMO, 1 GHz - 24 GHz

Plot 169. Conducted Spurious Emissions, Mid Channel, 802.11b, MIMO, 30 MHz - 1 GHz

Plot 170. Conducted Spurious Emissions, Mid Channel, 802.11b, MIMO, 1 GHz - 24 GHz

Plot 171. Conducted Spurious Emissions, High Channel, 802.11b, MIMO, 30 MHz - 1 GHz

Plot 172. Conducted Spurious Emissions, High Channel, 802.11b, MIMO, 1 GHz - 24 GHz

Conducted Spurious Emissions Test Results, 802.11g, MIMO

Plot 173. Conducted Spurious Emissions, Low Channel, 802.11g, MIMO, 30 MHz - 1 GHz

Plot 174. Conducted Spurious Emissions, Low Channel, 802.11g, MIMO, 1 GHz - 24 GHz

Plot 175. Conducted Spurious Emissions, Mid Channel, 802.11g, MIMO, 30 MHz - 1 GHz

Plot 176. Conducted Spurious Emissions, Mid Channel, 802.11g, MIMO, 1 GHz – 24 GHz

Plot 177. Conducted Spurious Emissions, High Channel, 802.11g, MIMO, 30 MHz - 1 GHz

Plot 178. Conducted Spurious Emissions, High Channel, 802.11g, MIMO, 1 GHz - 24 GHz

Conducted Spurious Emissions Test Results, 802.11n 20 MHz, MIMO

Plot 179. Conducted Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 30 MHz - 1 GHz

Plot 180. Conducted Spurious Emissions, Low Channel, 802.11n 20 MHz, MIMO, 1 GHz – 24 GHz

Plot 181. Conducted Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 30 MHz - 1 GHz

Plot 182. Conducted Spurious Emissions, Mid Channel, 802.11n 20 MHz, MIMO, 1 GHz – 24 GHz

Plot 183. Conducted Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 30 MHz - 1 GHz

Plot 184. Conducted Spurious Emissions, High Channel, 802.11n 20 MHz, MIMO, 1 GHz - 24 GHz

Conducted Spurious Emissions Test Results, 802.11n 40 MHz, MIMO

Plot 185. Conducted Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 30 MHz - 1 GHz

Plot 186. Conducted Spurious Emissions, Low Channel, 802.11n 40 MHz, MIMO, 1 GHz – 24 GHz

Plot 187. Conducted Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 30 MHz - 1 GHz

Plot 188. Conducted Spurious Emissions, High Channel, 802.11n 40 MHz, MIMO, 1 GHz – 24 GHz

Conducted Spurious Emissions Test Results, 802.11b, SISO

Plot 189. Conducted Spurious Emissions, Low Channel, 802.11b, SISO, 30 MHz - 1 GHz

Plot 190. Conducted Spurious Emissions, Low Channel, 802.11b, SISO, 1 GHz - 24 GHz

Plot 191. Conducted Spurious Emissions, Mid Channel, 802.11b, SISO, 30 MHz - 1 GHz

Plot 192. Conducted Spurious Emissions, Mid Channel, 802.11b, SISO, 1 GHz – 24 GHz

Plot 193. Conducted Spurious Emissions, High Channel, 802.11b, SISO, 30 MHz - 1 GHz

Plot 194. Conducted Spurious Emissions, High Channel, 802.11b, SISO, 1 GHz - 24 GHz

Conducted Spurious Emissions Test Results, 802.11g, SISO

Plot 195. Conducted Spurious Emissions, Low Channel, 802.11g, SISO, 30 MHz - 1 GHz

Plot 196. Conducted Spurious Emissions, Low Channel, 802.11g, SISO, 1 GHz - 24 GHz

Plot 197. Conducted Spurious Emissions, Mid Channel, 802.11g, SISO, 30 MHz - 1 GHz

Plot 198. Conducted Spurious Emissions, Mid Channel, 802.11g, SISO, 1 GHz – 24 GHz

Plot 199. Conducted Spurious Emissions, High Channel, 802.11g, SISO, 30 MHz – 1 GHz

Plot 200. Conducted Spurious Emissions, High Channel, 802.11g, SISO, 1 GHz - 24 GHz

Conducted Spurious Emissions Test Results, 802.11n 20 MHz, SISO

Plot 201. Conducted Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 30 MHz - 1 GHz

Plot 202. Conducted Spurious Emissions, Low Channel, 802.11n 20 MHz, SISO, 1 GHz – 24 GHz

Plot 203. Conducted Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 30 MHz - 1 GHz

Plot 204. Conducted Spurious Emissions, Mid Channel, 802.11n 20 MHz, SISO, 1 GHz - 24 GHz

Plot 205. Conducted Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 30 MHz – 1 GHz

Plot 206. Conducted Spurious Emissions, High Channel, 802.11n 20 MHz, SISO, 1 GHz - 24 GHz

Conducted Spurious Emissions Test Results, 802.11n 40 MHz, SISO

Plot 207. Conducted Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 30 MHz - 1 GHz

Plot 208. Conducted Spurious Emissions, Low Channel, 802.11n 40 MHz, SISO, 1 GHz - 24 GHz

Plot 209. Conducted Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 30 MHz - 1 GHz

Plot 210. Conducted Spurious Emissions, High Channel, 802.11n 40 MHz, SISO, 1 GHz – 24 GHz

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(e) Peak Power Spectral Density

Test Requirements: §15.247(e): For digitally modulated systems, the peak power spectral density conducted from

the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during

any time interval of continuous transmission.

Test Procedure: The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The

RBW was set to 3 kHz and a VBW set to 9 kHz or greater. The spectrum analyzer was set to an auto sweep time and a peak detector was used. Measurements were carried out at the low, mid

and high channels.

Test Results: The EUT was compliant with the peak power spectral density limits of § 15.247 (e).

The peak power spectral density was determined from plots on the following page(s).

Test Engineer: Surinder Singh

Test Date: 01/19/15

Figure 5. Block Diagram, Peak Power Spectral Density Test Setup

Peak Power Spectral Density Test Results

Peak Conducted PSD 20MHz Band 802.11b/g/n Mode SISO									
Channel	Frequency MHz	Measured PSD (dBm)	Mode	PSD Limit dBm	Antenna Gain dBi	Margin			
1	2412	3.56	b	8	3.31	-4.44			
1	2412	-7.38	g	8	3.31	-15.38			
1	2412	-7.1	n	8	3.31	-15.1			
6	2437	-3.92	b	8	3.31	-11.92			
6	2437	-6.43	g	8	3.31	-14.43			
6	2437	-6.21	n	8	3.31	-14.21			
11	2462	-4.18	b	8	3.31	-12.18			
11	2462	-3.6	g	8	3.31	-11.6			
11	2462	-3.72	n	8	3.31	-11.72			

Table 20. Peak Power Spectral Density, Test Results, 802.11b/g/n 20 MHz, SISO

Peak Conducted PSD 20MHz Band 802.11b/g/n Mode SISO									
Channel	Frequency MHz	Measured PSD (dBm) Ant 0	Measured PSD (dBm) Ant 1	Measured PSD (dBm) Ant 2	Mode	Total power dBm	PSD Limit dBm	Antenna Gain dBi	Margin
1	2412	-3.03	-3.56	-3.89	3	1.2924227	6.28	7.72	-4.9875773
1	2412	-8.35	-8.77	-7.52	g	-3.4106558	6.28	7.72	-9.6906558
1	2412	-6.09	-6.89	-5.49	n	-1.3479577	8	3.31	-9.3479577
6	2437	-1.85	-2.57	-2.11	b	2.6046673	6.28	7.72	-3.6753327
6	2437	-3.91	-3.87	-4.37	g	0.7270647	6.28	7.72	-5.5529353
6	2437	-6.3	-6.1	-7.88	n	-1.9190834	8	7.72	-9.9190834
11	2462	-1.82	-1.23	-1.84	b	3.1505665	6.28	7.72	-3.1294335
11	2462	-3.72	-4.53	-5.46	g	0.2589404	6.28	7.72	-6.0210596
11	2462	-4.56	-3.68	-3.99	n	0.7096777	8	7.72	-7.2903223

Table 21. Peak Power Spectral Density, Test Results, 802.11b/g/n 20 MHz, MIMO

	Peak Conducted PSD 40MHz Band n Mode SISO								
Channel	Frequency MHz	Measured Peak Output Power (dBm)/20MHz	PSD Limit dBm	Antenna Gain dBi	Margin				
1	2422	-14.44	8	3.31	-22.44				
7	2452	-14.12	8	3.31	-22.12				

Table 22. Peak Power Spectral Density, Test Results, 802.11n 40 MHz, SISO

Peak Conducted PSD 40MHz Band n Mode MIMO (3*3)									
Chanel Carrier	Frequency MHz		Peak Output	Measured Peak Output Power (dBm)/20MHz Ant 2	OutPut	PSD Limit dBm	Antenna Gain dBi	Margin	
1	2422	-12.68	-12.95	-12.11	-7.7945308	3.31	8	-15.794531	
7	2452	-14.16	-13.91	-13.56	-11.022901	3.31	8	-19.022901	

Table 23. Peak Power Spectral Density, Test Results, 802.11n 40 MHz, MIMO

Peak Power Spectral Density, 802.11b, MIMO

Plot 211. Peak Power Spectral Density, Low Channel, 802.11b, MIMO

Plot 212. Peak Power Spectral Density, Mid Channel, 802.11b, MIMO

Plot 213. Peak Power Spectral Density, High Channel, 802.11b, MIMO

Peak Power Spectral Density, 802.11g, MIMO

Plot 214. Peak Power Spectral Density, Low Channel, 802.11g, MIMO

Plot 215. Peak Power Spectral Density, Mid Channel, 802.11g, MIMO

Plot 216. Peak Power Spectral Density, High Channel, 802.g MIMO

Peak Power Spectral Density, 802.11n 20 MHz, MIMO

Plot 217. Peak Power Spectral Density, Low Channel, 802.11n 20 MHz, MIMO

Plot 218. Peak Power Spectral Density, Mid Channel, 802.11n 20 MHz, MIMO

Plot 219. Peak Power Spectral Density, High Channel, 802.11n 20 MHz, MIMO

Peak Power Spectral Density, 802.11n 40 MHz, MIMO

Plot 220. Peak Power Spectral Density, Low Channel, 802.11n 40 MHz, MIMO

Plot 221. Peak Power Spectral Density, High Channel, 802.11n 40 MHz, MIMO

Peak Power Spectral Density, 802.11b, SISO

Plot 222. Peak Power Spectral Density, Low Channel, 802.11b, SISO

Plot 223. Peak Power Spectral Density, Mid Channel, 802.11b, SISO

Plot 224. Peak Power Spectral Density, High Channel, 802.11b, SISO

Peak Power Spectral Density, 802.11g, SISO

Plot 225. Peak Power Spectral Density, Low Channel, 802.11g, SISO

Plot 226. Peak Power Spectral Density, Mid Channel, 802.11g, SISO

Plot 227. Peak Power Spectral Density, High Channel, 802.g SISO

Peak Power Spectral Density, 802.11n 20 MHz, SISO

Plot 228. Peak Power Spectral Density, Low Channel, 802.11n 20 MHz, SISO

Plot 229. Peak Power Spectral Density, Mid Channel, 802.11n 20 MHz, SISO

Plot 230. Peak Power Spectral Density, High Channel, 802.11n 20 MHz, SISO

Peak Power Spectral Density, 802.11n 40 MHz, SISO

Plot 231. Peak Power Spectral Density, Low Channel, 802.11n 40 MHz, SISO

Plot 232. Peak Power Spectral Density, High Channel, 802.11n 40 MHz, SISO

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(i) Maximum Permissible Exposure

RF Exposure Requirements: §1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this

section shall be operated in a manner that ensures that the public is not exposed to

radio frequency energy levels in excess of the Commission's guidelines.

RF Radiation Exposure Limit: §1.1310: As specified in this section, the Maximum Permissible Exposure (MPE)

Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of

this chapter.

MPE Limit Calculation: EUT's operating frequencies @ $\underline{2400-2483.5 \text{ MHz}}$; highest conducted power = 28.18dBm (peak) therefore, **Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²**

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2$

where, $S = Power Density (1 mW/cm^2)$

P = Power Input to antenna mW

G = Antenna Gain

R = 20cm

Output Power = 28.18 dBm

Antenna Gain = 7.72 dBi

Power density is equal to 0.77 mW/cm^2.

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

MET#	Equipment	Manufacturer	Model#	Cal Date	Cal Due
1T4681	SPECTRUM ANALYZER	AGILENT TECHNOLOGIES	E4448A	2/26/2014	2/26/2015
1T4829	SPECTRUM ANALYZER	AGILENT	E4407B	9/30/2014	9/30/2015
1T4483	ANTENNA; HORN	ETS-LINDGREN	7/13/1908	2/28/2014	8/28/2015
1T4564	LISN (24 AMP)	SOLAR ELECTRONICS	9252-50-R-24-BNC	6/3/2014	6/3/2015
1T4818	COMB GENERATOR	COM-POWER	CGO-520	SEE 1	NOTE
1T4870	THERM./CLOCK/HUMIDITY MONITOR	CONTROL COMPANY	06-662-4, FB70258	03/14/2014	03/14/2016
1T4751	ANTENNA - BILOG	SUNOL SCIENCES	JB6	07/20/2014	01/20/2016
1T4300C	SEMI-ANECHOIC 3M CHAMBER # 1 (VCCI)	EMC TEST SYSTEMS	NONE	01/31/2012	01/31/2015
1T4409	EMI RECEIVER	ROHDE & SCHWARZ	ESIB7	07/18/2014 07/18/201	
1T4442	PRE-AMPLIFIER, MICROWAVE	MITEQ	AFS42-01001800- 30-10P	SEE NOTE	
1T4149	HIGH-FREQUENCY ANECHOIC CHAMBER	RAY-PROOF	3/21/1900	NOT REQUIRED	
1T2665	ANTENNA; HORN	EMCO	7/11/1908	4/3/2014	10/3/2015
1T4871	VECTOR SIGNAL GENERATOR	AGILENT	N5172B	6/16/2014	12/16/2015
1T4829	SPECTRUM ANALYZER	AGILENT	E4407B	9/30/2014	3/30/2016
1T4817	PREAMPLIFIER	A.H. SYSTEMS, INC.	PAM-0118P	SEE I	NOTE

Table 24. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

Certification Information A.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio-frequency devices include, but are not limited to:

- The various types of radio communication transmitting devices described throughout this chapter. (a)
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other (d) means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including (a) advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements provided that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

MET Report: EMC84582-FCC247 Rev. 2 © 2015, MET Laboratories, Inc. Page 116 of 123

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device:
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment **Authorization Procedures:**

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated. In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the (b) procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

Certification is an equipment authorization issued by the Commission, based on representation and test data (a) submitted by the applicant.

Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to (b) the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

- (a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.
 - (1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.
 - (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
 - (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
 - (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

MET Report: EMC84582-FCC247 Rev. 2 © 2015, MET Laboratories, Inc. Page 119 of 123

1. Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1)Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

MET Report: EMC84582-FCC247 Rev. 2 © 2015, MET Laboratories, Inc. Page 120 of 123

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

ICES-003 Procedural & Labeling Requirements

From the Industry Canada Electromagnetic Compatibility Advisory Bulletin entitled, "Implementation and Interpretation of the Interference-Causing Equipment Standard for Digital Apparatus, ICES-003" (EMCAB-3, Issue 2, July 1995):

"At present, CISPR 22: 2002 and ICES technical requirements are essentially equivalent. Therefore, if you have CISPR 22: 2002 approval by meeting CISPR Publication 22, the only additional requirements are: to attach a note to the report of the test results for compliance, indicating that these results are deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations; to maintain these records on file for the requisite five year period; and to provide the device with a notice of compliance in accordance with ICES-003."

Procedural Requirements:

According to Industry Canada's Interference Causing Equipment Standard for Digital Apparatus ICES-003 Issue 5 August 2012:

Section 6.1: A record of the measurements and results, showing the date that the measurements

were completed, shall be retained by the manufacturer or importer for a period of at least five years from the date shown in the record and made available for examination

on the request of the Minister.

Section 6.2: A written notice indicating compliance must accompany each unit of digital apparatus

to the end user. The notice shall be in the form of a label that is affixed to the apparatus. Where because of insufficient space or other constraints it is not feasible to affix a label to the apparatus, the notice may be in the form of a statement in the users'

manual.

Labeling Requirements:

The suggested text for the notice, in English and in French, is provided below, from the Annex of ICES-003:

This Class [²] digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe [¹] est conforme à la norme NMB-003 du Canada.

MET Report: EMC84582-FCC247 Rev. 2

² Insert either A or B but not both as appropriate for the equipment requirements.

End of Report