${\bf Table~1~Selected~Distances,~Angles,~and~Torsions~for~{\bf 2.1}}$

Bond	Distance (Å)		
Dong	Experimental	Calculated	
Re(1)-C(16)	1.89(1)	1.916	
Re(1)-C(17)	1.934(8)	1.936	
Re(1)-C(18)	1.90(1)	1.918	
Re(1)- $N(1)$	2.162(6)	2.197	
Re(1)- $N(2)$	2.236(9)	2.293	
Re(1)- $Cl(1)$	2.496(2)	2.525	
C(16)-O(1)	1.16(1)	1.15323	
C(17)-O(2)	1.12(1)	1.15039	
C(18)-O(3)	1.15(1)	1.15627	
Angle	Degree	s (°)	
Aligie	Experimental	Calculated	
C(16)-Re(1)-C(17)	87.6(4)	86.877	
C(16)-Re(1)- $C(18)$	88.3(4)	90.613	
C(17)-Re(1)-C(18)	87.3(4)	89.557	
C(16)-Re(1)-N(1)	96.4(3)	96.240	
C(17)-Re(1)-N(1)	174.9(3)	175.600	
C(18)-Re(1)-N(1)	95.9(3)	93.506	
C(16)-Re(1)-N(2)	169.3(3)	170.368	
C(17)-Re(1)-N(2)	101.1(3)	102.755	
C(18)-Re(1)-N(2)	98.3(3)	89.415	
N(2)-Re(1)-N(1)	74.5(3)	74.146	
C(16)-Re(1)-Cl(1)	91.7(3)	91.453	
C(17)-Re(1)-Cl(1)	91.7(3)	94.786	
C(18)-Re(1)-Cl(1)	179.9(3)	175.286	
N(1)-Re (1) -Cl (1)	84.0(2)	82.058	
N(2)-Re(1)-Cl(1)	81.6(2)	87.840	
O(1)- $C(16)$ - $Re(1)$	179.6(9)	178.224	
O(2)- $C(17)$ - $Re(1)$	176.0(8)	176.907	
O(3)-C(18)-Re(1)	177.3(9)	179.317	
Torsion	Degrees (°)		
10181011	Experimental	Calculated	
N(1)-C(5)-C(6)-N(2)	16(1)	15	
N(2)- $C(10)$ - $C(11)$ - $N(3)$	41(1)	139	

 ${\bf Table~2~Selected~Distances,~Angles,~and~Torsions~for~{\bf 2.2}}$

D 1	Distanc	e (Å)
Bond	Experimental	Calculated
Re(1)-C(16)	1.926(9)	1.92438
$\operatorname{Re}(1)$ - $\operatorname{C}(17)$	1.975(10)	1.90687
Re(1)-N(1)	2.119(7)	2.13186
Re(1)-N(2)	2.080(7)	2.08705
Re(1)-N(3)	2.126(7)	2.13185
Re(1)- $Cl(1)$	2.489(3)	2.53337
N(1)-N(3)	4.14(1)	4.14772
C(16)-O(1)	1.14(1)	1.16042
C(17)-O(2)	1.05(1)	1.16341
Angle	Degree	s (°)
Aligie	Experimental	Calculated
C(16)-Re(1)-C(17)	91.5(4)	89.188
C(16)-Re(1)-N(2)	173.7(4)	172.050
C(17)-Re(1)-N(2)	94.6(3)	98.762
C(16)-Re(1)-N(1)	103.9(3)	102.980
C(17)-Re(1)-N(1)	92.7(3)	93.429
N(2)-Re(1)-N(1)	77.3(3)	76.684
C(16)-Re(1)-N(3)	101.8(3)	102.986
C(17)-Re(1)-N(3)	91.7(3)	93.419
N(2)-Re(1)-N(3)	76.6(3)	76.684
N(1)-Re(1)-N(3)	153.7(3)	153.210
C(16)-Re(1)-Cl(1)	91.8(3)	89.136
C(17)-Re(1)-Cl(1)	176.5(2)	178.324
N(2)-Re(1)-Cl(1)	82.1(2)	82.913
N(1)-Re (1) -Cl (1)	85.4(2)	86.953
N(3)-Re(1)-Cl(1)	88.7(2)	86.953
O(1)- $C(16)$ - $Re(1)$	177.9(9)	179.079
O(2)- $C(17)$ - $Re(1)$	173.2(8)	179.182
Selected Torsion	s (deg)	
N(1)-C(5)-C(6)-N(2)	1(1)	2
N(2)-C(10)-C(11)-N(3)	-4(1)	-2

 ${\bf Table~3~Selected~Distances,~Angles,~and~Torsions~for~{\bf 2.3}}$

Bond	Distance (Å)		
Dong	Experimental	Calculated	
Re(1)-C(16)	1.911(3)	1.91740	
$\operatorname{Re}(1)$ - $\operatorname{C}(17)$	1.890(3)	1.91814	
Re(1)-C(18)	1.921(4)	1.93897	
Re(1)-N(1)	2.173(3)	2.19687	
Re(1)-N(2)	2.232(2)	2.28998	
Re(1)- $Br(1)$	2.6410(4)	2.67953	
C(16)-O(1)	1.150(4)	1.15290	
C(17)-O(2)	1.157(4)	1.15012	
C(18)-O(3)	1.155(5)	1.15591	
Angle	Degree		
Aligie	Experimental	Calculated	
C(16)-Re(1)- $C(17)$	89.1(1)	90.772	
C(16)-Re(1)-C(18)	85.9(1)	86.823	
C(16)-Re(1)-N(1)	97.9(1)	96.034	
C(17)-Re(1)-N(1)	92.5(1)	93.597	
C(18)-Re(1)-N(1)	175.4(1)	175.575	
C(16)-Re(1)-N(2)	171.2(1)	170.290	
C(17)-Re(1)-N(2)	96.0(1)	89.435	
C(18)-Re(1)-N(2)	101.3(1)	102.886	
N(1)-Re(1)-N(2)	74.7(1)	74.265	
C(16)-Re(1)-Br(1)	92.7(1)	90.399	
C(17)-Re(1)-Br(1)	177.6(1)	176.076	
C(18)-Re(1)-Br(1)	91.6(1)	94.069	
N(1)-Re (1) -Br (1)	85.74(7)	82.555	
N(2)-Re(1)-Br(1)	82.07(7)	88.780	
O(1)-C(16)-Re(1)	178.6(3)	178.270	
O(2)- $C(17)$ - $Re(1)$	179.5(3)	179.355	
O(3)-C(18)-Re(1)	179.9(3)	176.781	
Selected Torsion	ns (deg)		
N(1)-C(6)-C(1)-N(2)	-15.4(4)	-14.749	
N(2)-C(5)-C(11)-N(3)	141.1(3)	136.119	

 ${\bf Table~4~Selected~Distances,~Angles,~and~Torsions~for~2.5}$

Axial CN			Planar	Planar CN		
	Distan	nce (Å) Dista		Distan	ce (Å)	
Bond	Exp.	Calc.	Bond	Exp.	Calc.	
Re(2)-C(35)	2.148(7)	2.13963	Re(1)-C(19)	2.105(8)	1.98769	
Re(2)-C(36)	1.926(6)	1.94011	Re(1)-C(16)	1.928(5)	2.09197	
Re(2)-C(37)	1.954(7)	1.96758	Re(1)-C(18)	1.96(1)	2.00792	
Re(2)-C(38)	1.902(9)	1.91853	Re(1)-C(17)	1.918(7)	1.90499	
Re(2)-N(5)	2.242(7)	2.28998	Re(1)-N(1)	2.253(5)	2.32197	
Re(2)-N(6)	2.168(5)	2.20279	$\operatorname{Re}(1)$ - $\operatorname{N}(2)$	2.176(4)	2.18806	
C(35)-N(8)	1.138(9)	1.16104	C(19)-O(3)	1.17(1)	1.14703	
C(36)-O(4)	1.145(8)	1.15044	C(16)-N(4)	1.149(7)	1.16100	
C(37)-O(5)	1.151(9)	1.15134	C(18)-O(2)	1.14(1)	1.14276	
C(38)-O(6)	1.17(1)	1.15368	C(17)-O(1)	1.130(8)	1.15781	
Angle	Degre	es (°)	- Angle	Degre		
Aligie	Exp.	Calc.	Angle	Exp.	Calc.	
C(36)-Re(2)-C(38)	87.7(3)	87.273	C(16)-Re(1)- $C(17)$	87.8(3)	90.158	
C(36)-Re(2)- $C(37)$	88.0(3)	89.890	C(16)-Re(1)- $C(18)$	87.0(3)	84.822	
C(36)-Re(2)- $C(35)$	92.1(3)	93.356	C(16)-Re(1)- $C(19)$	92.5(3)	88.356	
C(38)-Re(2)-C(37)	88.5(3)	90.973	C(17)-Re(1)- $C(18)$	88.7(3)	88.453	
C(38)-Re(2)-C(35)	90.8(3)	91.628	C(17)-Re(1)- $C(19)$	90.5(3)	87.745	
C(37)-Re(2)- $C(35)$	179.2(3)	175.933	C(18)-Re(1)-C(19)	179.1(3)	172.179	
C(36)-Re(2)-N(5)	100.6(3)	102.576	C(16)-Re(1)-N(1)	102.2(2)	98.105	
C(36)-Re(2)-N(6)	174.2(3)	175.708	C(16)-Re(1)-N(2)	175.9(2)	172.047	
C(38)-Re(2)-N(5)	169.3(3)	170.146	C(17)-Re(1)-N(1)	168.3(3)	170.509	
C(38)-Re(2)-N(6)	96.6(3)	96.171	C(17)-Re(1)-N(2)	95.9(3)	97.544	
C(37)-Re(2)-N(5)	98.4(2)	89.360	C(18)-Re(1)-N(1)	97.7(3)	88.487	
C(37)-Re(2)-N(6)	96.0(2)	92.605	C(18)-Re(1)-N(2)	94.8(3)	93.374	
C(35)-Re(2)-N(5)	82.3(2)	87.543	C(19)-Re(1)-N(1)	83.2(2)	96.317	
C(35)-Re(2)-N(6)	83.9(2)	84.008	C(19)-Re(1)-N(2)	85.7(2)	93.899	
N(5)-Re(2)-N(6)	74.7(2)	73.977	N(1)-Re(1)-N(2)	73.9(2)	73.675	
O(6)-C(38)-Re(2)	179.4(7)	178.027	O(1)- $C(17)$ - $Re(1)$	178.2(7)	177.623	
O(5)-C(37)-Re(2)	175.5(6)	179.414	O(2)- $C(18)$ - $Re(1)$	172.0(7)	176.452	
N(8)-C(35)-Re(2)	178.0(6)	176.457	O(3)-C(19)-Re(1)	178.0(6)	176.552	
O(4)- $C(36)$ - $Re(2)$	179.0(7)	177.313	N(4)- $C(16)$ - $Re(1)$	178.7(6)	178.113	
Torsion	Degre	· /	Torsion	Degre	· /	
10151011	Exp.	Calc.	10151011	Exp.	Calc.	
N(5)-C(20)-C(25)-N(6)	14.5(9)	13.735	N(1)- $C(1)$ - $C(6)$ - $N(2)$	12.5(8)	14.777	
N(5)-C(24)-C(30)-N(7)	41(1)	135.774	N(1)-C(5)-C(11)-N(3)	43.7(9)	137.014	

 ${\bf Table~5~Selected~Distances,~Angles~and~Torsions~for~Acetonitrile~Adduct~of~{\bf 2.8}}$

Bond	Distance (Å)		
Bond	Experimental	Calculated	
Re(1)-C(16)	1.889(4)	1.93046	
Re(1)-C(17)	1.885(3)	1.92844	
Re(1)-N(1)	2.091(3)	2.10116	
Re(1)-N(2)	2.135(3)	2.15397	
$\operatorname{Re}(1)$ - $\operatorname{N}(3)$	2.131(3)	2.15392	
Re(1)-N(4)	2.160(3)	2.15202	
N(2)-N(3)	4.138(4)	4.18483	
C(16)-O(1)	1.170(4)	1.15749	
C(17)-O(2)	1.171(4)	1.15244	
Angle	Degree		
Angie	Experimental	Calculated	
C(16)-Re(1)-C(17)	87.69(16)	88.104	
C(16)-Re(1)-N(1)	175.95(12)	176.094	
C(17)-Re(1)-N(1)	96.35(12)	95.802	
C(16)-Re(1)-N(3)	103.81(13)	103.594	
C(17)-Re(1)-N(3)	94.03(12)	92.309	
N(1)-Re(1)-N(3)	76.20(10)	76.306	
C(16)-Re(1)-N(2)	103.58(13)	103.598	
C(17)-Re(1)-N(2)	93.73(12)	92.307	
N(1)-Re(1)-N(2)	75.99(10)	76.305	
N(3)-Re(1)-N(2)	151.77(11)	152.544	
C(16)-Re(1)-N(4)	90.50(14)	88.484	
C(17)-Re(1)-N(4)	178.10(12)	176.587	
N(1)-Re(1)-N(4)	85.46(10)	87.611	
N(3)-Re(1)-N(4)	86.94(10)	88.504	
N(2)-Re(1)-N(4)	86.15(10)	88.485	
O(1)-C(16)-Re(1)	179.1(3)	178.807	
O(2)-C(17)-Re(1)	178.0(3)	178.860	
Torsion	Degree		
10181011	Experimental	Calculated	
N(1)-C(1)-C(6)-N(2)	1.7(4)	1.105	
N(1)-C(5)-C(11)-N(3)	-1.8(4)	-1.110	

Table 6 Selected Distances, Angles, and Torsions for $\kappa^2(\text{terpy})\text{Mn(CO)}_3\text{Br}$ from Compain et. al.

	- R N			
Selected Distances	(A)			
Mn(1)-N(1)	2.045(1)			
Mn(1)-N(2)	2.105(2)			
N(1)-N(2)	2.636(2)			
Selected Angles (deg)				
N(1)-Mn(1)-N(2)	78.84(6)			
Selected Torsions (deg)				
N(1)-C(8)-C(9)-N(2)	-16.5(2)			
N(2)- $C(13)$ - $C(14)$ - $N(3)$	143.2(2)			

Table 7 Crystal data and structure refinement for compounds ${f 1,\,3,\,5,}$ and ${f 7}$

Compound	1	3	5	7
Empirical formula	$C_{19}H_{11}N_3O_3ReCl$	$C_{19}H_{11}N_3O_3ReBr$	$C_{20}H_{11}N_4O_3Re$	C ₂₂ H ₁₄ N ₄ O ₆ F ₃ SRe
Formula weight (g/mol)	538.96	583.41	530.04	693.63
Temperature (K)	200(2)	200	200	200
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal System	Triclinic	Monoclinic	Triclinic	
Space Group	P-1	C2/c	P-1	
a (Å)	9.8736(4)	31.1537(7)	9.9196(9)	
b (Å)	14.8202(4)	7.1176(2)	14.9902(14)	
c (Å)	16.3472(4)	16.8519(4)	16.5187(15)	
$\alpha \text{ (deg)}$	69.2890(10)	90.000	68.363(2)	
β (deg)	80.801(2)	111.0230(10)	80.929(2)	
γ (deg)	79.836(2)	90.000	79.975(2)	
Volume (Å ³)	2190.00(12)	3488.00	2236.6(4)	
Z, r (calc) (Mg/m ³)	2, 1.997	8, 2.222	2, 1.927	
Absorption coefficient (mm ⁻¹)	6.063	9.282	5.821	
Absorption correction		Semi-empirica	l from equivalents	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0397,	R1 = 0.0232,	R1 = 0.0390,	
	wR2 = 0.0839	wR2 = 0.0614	wR2 = 0.0921	
R indices (all data)	R1 = 0.0604,	R1 = 0.0285,	R1 = 0.0500,	
	wR2 = 0.0951	wR2 = 0.0642	wR2 = 0.0961	

Table 8 Crystal data and structure refinement for compounds ${\bf 2,\,4,\,6},$ and ${\bf 8}$

Compound	2	4	6	8
Empirical formula	$C_{18}H_{11}N_3O_2ReCl$	$C_{18}H_{11}N_3O_2ReBr$	$C_{19}H_{11}N_4O_2Re$	$C_{21}H_{14}N_4O_5F_3SRe$
Formula weight (g/mol)	510.95	530.04	502.04	665.61
Temperature (K)	200(2)	200	200	200
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal System	Triclinic			Triclinic
Space Group	P-1			P-1
a (Å)	8.5275(3)			8.5745(4)
b (Å)	14.2421(5)			11.9805(5)
c (Å)	17.4637(6)			13.0970(5)
$\alpha \text{ (deg)}$	77.948(2)			79.748(2)
β (deg)	85.684(2)			81.106(2)
γ (deg)	79.890			88.091(2)
Volume (Å ³)	2041.79(12)			1307.99(10)
$Z, r (calc) (Mg/m^3)$	4, 2.050			2, 1.993
Absorption coefficient (mm ⁻¹)	6.494			5.094
Absorption correction		Semi-empirical	from equivalents	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0636,			R1 = 0.0294,
	wR2 = 0.1018			wR2 = 0.0673
R indices (all data)	R1 = 0.0985,			R1 = 0.0366,
	wR2=0.1110			wR2 = 0.0700

Table 9 Solvated and Gas Phase Energies of Axial & Trans $\kappa^x-(\text{terpy})-\text{Re(CO)}_{5\text{-x}}\text{CN (x=2,3)}$

	Bidentate		Terde	entate
Geometry	E(gas) ^a	E(solution) ^b	$E(gas)^a$	E(solution) ^b
Axial	-1254.96132	-1254.99059	-1141.57255	-1141.60827
Trans	-1254.93788	-1254.97168	-1141.54660	-1141.58209
Difference	0.02343	0.01891	0.02595	0.02612
Difference (kcal/mol)	14.70	11.87	16.28	16.43

 $^{^{\}rm a}$ B3LYP SCF energy in hartrees. $^{\rm b}$ B3LYP SCF energy in hartrees with PCM solvation in acetonitrile.

 ${\bf Table~10~{\rm Gas~phase~and~solvated~energies~of~compounds,~transition~states~and~intermediates~in~the~`carbonate'~mechanism}$

Molecule	Label	E (gas) ^a	E (solution) ^b	E (solvation) ^c
Catalyst - CO ₂	4.11	-1103.009	-1103.016	4.47
CO_2 Linked Dimer	4.12	-2017.373	-2017.412	24.59
CO_2 Addition TS	4.13	-2206.121	-2206.165	27.80
C_2O_4 Linked Dimer	4.14	-2206.048	-2206.097	31.23
5 Member Ringed Dimer TS	4.15	-2206.014	-2206.062	29.87
CO_3 Linked Dimer	4.16	-2092.678	-2092.726	29.75
Bicarbonate Catalyst Cation	4.17	-1178.065	-1178.120	34.24
Bicarbonate Anion	4.18	-264.485	-264.497	7.20
Open Site Cation	4.19	-914.106	-914.187	50.75

^a TPSS SCF energy in hartrees. ^b TPSS SCF energy in hartrees with COSMO solvation in DMF. ^c TPSS solvation energy in kcal/mol (E(gas) - E(solution)).

Table 11 Energies for the reaction steps in the 'carbonate' pathway

Steps	Energy(gas) ^a	$\rm Energy(dmf)^b$
$4.03+4.09\rightarrow 4.11$	-0.25	6.37
$\textbf{4.11} + \textbf{4.03} \rightarrow \textbf{4.12}$	-31.56	-42.39
$\textbf{4.12} + \textbf{4.09} \rightarrow \textbf{4.13}$	-33.27	-34.66
$\textbf{4.13} \rightarrow \textbf{4.14}$	45.91	42.47
$\textbf{4.14} \rightarrow \textbf{4.15}$	21.10	22.46
$\textbf{4.15} \rightarrow \textbf{4.16} + \textbf{4.10}$	-24.36	-24.84
${\bf 4.16} \rightarrow {\bf 4.17} + {\bf 4.19}$	317.95	262.71
$4.17 + 4.19 + 4.04(x 2) \rightarrow 4.01(x 2) + 4.18$	-180.55	-239.63

 $^{^{\}rm a}$ TPSS SCF energy in kcal/mol. $^{\rm b}$ TPSS SCF energy in kcal/mol with COSMO solvation in DMF.

 ${\bf Table~12~Gas~phase~and~solvated~energies~of~compounds,~transition~states~and~intermediates~in~the~'formate'~mechanism}$

Molecule	Label	$E (gas)^a$	E (solution) ^b	E (solvation) ^c
Proton Transfer TS	4.21	-1206.302	-1206.327	15.10
Catalyst Hydride	$\bf 4.22$	-914.920	-914.945	15.29
CO_2 Insertion TS	4.23	-1103.581	-1103.620	24.32
Catalyst Formate	4.24	-1103.635	-1103.665	19.04
Formate Anion	4.25	-189.305	-189.415	69.01
Open Site Cation	4.27	-914.106	-914.187	50.75

^a TPSS SCF energy in hartrees.

^b TPSS SCF energy in hartrees with COSMO solvation in DMF.

^c TPSS solvation energy in kcal/mol (E(gas) - E(solution)).

 ${\bf Table~13~Energies~for~the~reaction~steps~in~the~'formate'~pathway }$

Steps	Energy(gas) ^a	$\rm Energy(dmf)^b$
$\textbf{4.03} + \textbf{4.07} \rightarrow \textbf{4.21}$	-44.98	-48.46
$\textbf{4.21} \rightarrow \textbf{4.22} + \textbf{4.26}$	22.43	18.60
$\textbf{4.22} + \textbf{4.09} \rightarrow \textbf{4.23}$	21.24	14.02
$\textbf{4.23} \rightarrow \textbf{4.24}$	-33.94	-28.66
$\textbf{4.24} \rightarrow \textbf{4.25} + \textbf{4.27}$	140.39	39.67
$\textbf{4.27} + \textbf{4.04} \rightarrow \textbf{4.01}$	-141.77	-36.37

^a TPSS SCF energy in kcal/mol.

^b TPSS SCF energy in kcal/mol with COSMO solvation in DMF.

 ${\bf Table~14~Energies~for~the~reaction~steps~in~the~\'equatorial'} \\$

Energy(gas) ^a	$\rm Energy(dmf)^b$
23.37	19.77
4.79	1.56
-36.36	-49.13
-3.39	8.34
-14.52	-0.35
40.89	35.57
-141.77	-36.37
	23.37 4.79 -36.36 -3.39 -14.52 40.89

^a TPSS SCF energy in kcal/mol.

^b TPSS SCF energy in kcal/mol with COSMO solvation in DMF.

 ${\bf Table~15~Gas~phase~and~solvated~energies~of~mechanism~reactants~and~products.}$

Molecule	Label	$E (gas)^a$	E (solution) ^b	E (solvation) ^c
Ground State	4.01	-1374.621419	-1374.651099	18.62
3MLCT Complex	$4.01^{ m 3MLCT}$	-1374.553193	-1374.565998	8.04
Radical Anion	4.02	-1374.684002	-1374.759190	47.18
Open Site Excimer	4.03	-914.3139376	-914.3287245	9.28
Chlorine Anion	4.04	-460.2890817	-460.4058583	73.28
Triethylamine (TEA)	4.05	-292.3051496	-292.3854033	50.36
Radical Cation TEA	4.06	-292.3051496	-292.3854033	50.36
Deprotonated TEA Radical	4.07	-291.9173706	-291.9211226	2.35
Triethylammonia	4.08	-292.9552538	-293.0382729	52.09
Carbon Dioxide	4.09	-188.6945676	-188.6974631	1.82
Carbon Monoxide	4.10	-113.3744946	-113.3754466	0.60
Diethylaminoethene	4.26	-291.3467768	-291.3525868	3.64

^a TPSS SCF energy in hartrees. ^b TPSS SCF energy in hartrees with COSMO solvation in DMF. ^c TPSS solvation energy in kcal/mol (E(gas) - E(solution)).

 ${\bf Table~16~Energies~for~the~reaction~steps~in~the~excimer~formation}$ pathway

Steps	Energy(gas) ^a	$\overline{\rm Energy(dmf)^b}$
$\textbf{4.01} \rightarrow \textbf{4.01}^{\textbf{3MLCT}}$	42.81	53.40
$4.01^{ m 3MLCT} + 4.05 ightarrow 4.02 + 4.06$	81.45	-5.80
$\textbf{4.02} \rightarrow \textbf{4.03} + \textbf{4.04}$	50.82	15.44
$\bf 4.06 + 4.05 \rightarrow 4.07 + 4.08$	-1.08	-2.92

^a TPSS SCF energy in kcal/mol. ^b TPSS SCF energy in kcal/mol with COSMO solvation in DMF.

 ${\bf Table~17~Gas~phase~and~solvated~energies~of~compounds,~transition~states~and~intermediates~in~the~`water-gas~shift'~mechanism}$

Molecule	Label	E (gas) ^a	E (solution) ^b	E (solvation) ^c
Catalyst-CO ₂ (Axial)	4.31	-1103.009	-1103.016	4.47
H Transfer to Axial CO ₂ TS	4.32	-1394.981	-1395.011	18.86
Catalyst-CO ₂ H (Axial)	4.33	-1103.610	-1103.640	18.90
Catalyst with Migrated Open Site	4.34	-914.277	-914.297	12.88
$Catalyst-CO_2$ (Equatorial)	4.35	-1102.964	-1102.992	17.92
H Transfer to Equatorial CO_2 TS	4.36	-1394.939	-1394.992	33.05
Catalyst-CO ₂ H (Equatorial)	4.37	-1103.597	-1103.626	17.68
Tetracarbonyl Catalyst Cation	4.38	-1027.546	-1027.619	46.02
Water	4.39	-76.464	-76.476	7.33

 $^{^{\}rm a}\,{\rm TPSS}$ SCF energy in hartrees.

^b TPSS SCF energy in hartrees with COSMO solvation in DMF. ^c TPSS solvation energy in kcal/mol (E(gas) - E(solution)).

 ${\bf Table\ 18}\ {\bf Energies}\ {\bf for}\ {\bf the}\ {\bf reaction}\ {\bf steps}\ {\bf in}\ {\bf the}\ {\bf `water-gas}\ {\bf shift'}$ mechanism

Steps	Energy(gas) ^a	$\rm Energy(dmf)^b$
4.03 + 4.09 ightarrow 4.31	-0.25	6.37
$\textbf{4.31} + \textbf{4.07} \rightarrow \textbf{4.32}$	-34.68	-46.72
$\textbf{4.32} \rightarrow \textbf{4.33} + \textbf{4.26}$	15.33	11.64
$\textbf{4.33} \rightarrow \textbf{4.38} + \textbf{4.39}$	-6.51	8.88
$\textbf{4.38} \rightarrow \textbf{4.27} + \textbf{4.10}$	40.89	35.57
$\textbf{4.27} + \textbf{4.04} \rightarrow \textbf{4.01}$	-141.77	-36.37

^a TPSS SCF energy in kcal/mol.

^b TPSS SCF energy in kcal/mol with COSMO solvation in DMF