Curso de Verão de Álgebra Linear Parte 2 - Aula 07

Cleber Barreto dos Santos

10 de fevereiro de 2020

Teorema 1. Seja V um espaço vetorial com produto interno. Seja f um funcional linear em V. Então existe um único vetor $v \in V$ tal que $f(w) = \langle w, v \rangle$ para cada $w \in V$.

Demonstração. Seja $\{v_1, v_2, \dots, v_n\}$ uma base ortonormal de V. Seja $v = \sum_{j=1}^n \overline{f(v_j)}v_j$. Se g o

funcional linear definido por $g(w) = \langle w, v \rangle$ temos que

$$g(v_k) = \langle v_k, v \rangle = \left\langle v_k, \sum_{j=1}^n \overline{f(v_j)} v_j \right\rangle = \sum_{j=1}^n f(v_j) \langle v_k, v_j \rangle = f(v_k).$$

Logo $g(v_k) = f(v_k)$ para qualquer elemento da base de V e segue que $f(w) = \langle w, v \rangle$.

Teorema 2. Seja T um operador linear em um espaço vetorial V de dimensão finita. Então existe um único operador linear T^* em V tal que

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle$$
 para quaisquer $u, v \in V$.

Demonstração. Seja $w \in V$. Então $v \longmapsto \langle T(v), w \rangle$ é um funcional linear em V. Então existe um único vetor $w^* \in V$, para o qual $\langle T(v), w \rangle = \langle v, w^* \rangle$. Seja $T^* : V \longrightarrow V$ a função definida por $T(w) = w^*$. Temos que T^* é linear uma vez que

$$\langle v, T^*(\alpha w_1 + w_2) \rangle = \langle T(v), \alpha w_1 + w_2 \rangle$$

$$= \langle T(v), \alpha w_1 \rangle + \langle T(v), w_2 \rangle$$

$$= \overline{\alpha} \langle T(v), w_1 \rangle + \langle T(v), w_2 \rangle$$

$$= \overline{\alpha} \langle v, T^*(w_1) \rangle + \langle v, T^*(w_2) \rangle$$

$$= \langle v, \alpha T^*(w_1) \rangle + \langle v, T^*(w_2) \rangle$$

$$= \langle v, \alpha T^*(w_1) + T^*(w_2) \rangle$$

para qualquer $v \in V$. Então $T^*(\alpha w_1 + w_2) = \alpha T^*(w_1) + T^*(w_2)$. Portanto T^* é linear. A unicidade de T^* é imediata.

Teorema 3. Seja V um espaço vetorial de dimensão finita com produto interno e seja $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada ortonormal de V. Seja T um operador linear em V e $A = [T]_{\mathcal{B}}$. Então $A_{jk} = \langle T(v_k), v_j \rangle$. Em particular a matriz de T^* é conjugada a transposta da matriz de T.

Demonstração. Como \mathcal{B} é uma base ortonormal temos que $v=\sum_{j=1}^n \langle v,v_j\rangle v_j$. Logo $T(v_k)=0$

$$\sum_{j=1}^{n} A_{jk} v_j \text{ e como } T(v_k) = \sum_{j=1}^{k} \langle T(v_k), v_j \rangle v_j, \text{ por unicidade temos que } A_{jk} = \langle T(v_k), v_j \rangle.$$

Sejam $A = [T]_{\mathcal{B}}$ e $B = [T^*]_{\mathcal{B}}$. Temos que $A_{jk} = \langle T(v_k), v_j \rangle$ e $B_{jk} = \langle T^*(v_k), v_j \rangle$. Pela definição de T^* temos que

 $B_{ik} = \langle T^* v_k, v_i \rangle = \overline{\langle v_i, T^* v_k \rangle} = \overline{\langle T(v_i), v_k \rangle} = \overline{A_{ki}}.$

Definição 4. Seja T um operador linear em um espaço com produto interno V. Então dizemos que T possui uma adjunto em V se existe um operador T^* em V tal que $\langle T(v), w \rangle =$ $\langle v, T^*(w) \rangle$ para quaisquer $v, w \in V$. Neste caso, o operador T^* é chamado de operador **adjunto** de T.

Teorema 5. Seja V um espaço vetorial de dimensão finita com produto interno. Se T e U são operadores lineares em V e c um escalar então:

- (1) $(T+U)^* = T^* + U^*$:
- (2) $(cT)^* = \overline{c}T^*$;
- (3) $(TU)^* = U^*T^*$;
- (4) $(T^*)^* = T$.

Demonstração. Mostraremos apenas o item (1). Temos para quaisquer vetores $v, w \in V$ que:

$$\begin{split} \langle (T+U)v,w\rangle &= \langle T(v)+U(v),w\rangle \\ &= \langle T(v),w\rangle + \langle U(v),w\rangle \\ &= \langle v,T^*(w)\rangle + \langle v,U^*(w)\rangle \\ &= \langle v,T^*(w)+U^*(w)\rangle \\ &= \langle v,(T^*+U^*)(w)\rangle. \end{split}$$

Por unicidade, segue que $(T+U)^* = T^* + U^*$. Os demais itens serão deixados como exercício.

Definição 6. Um operador linear T tal que $T = T^*$ é chamado **auto-adjunto** se $T = T^*$.

Definição 7. Sejam V e W são espaços com produto interno sobre o mesmo corpo e seja T uma transformação linear de V para W. Dizemos que T preserva produtos internos se $\langle T(v), T(w) \rangle = \langle v, w \rangle$ para quaisquer $v, w \in V$. Um **isomorfismo** de V para W é um isomorfismo de espaços vetoriais de V para W que preserva produtos internos.

Observação 8. Sejam $v,w\in V$ vetores quaisquer. No caso real temos que $\langle v,w\rangle=\frac{1}{4}\|v+w\|^2-\frac{1}{4}\|v-w\|^2.$

$$\langle v, w \rangle = \frac{1}{4} \|v + w\|^2 - \frac{1}{4} \|v - w\|^2.$$

No caso complexo temos que

$$\langle v,w\rangle = \frac{1}{4}\|v+w\|^2 - \frac{1}{4}\|v-w\|^2 + \frac{i}{4}\|v+iw\|^2 - \frac{i}{4}\|v-iw\|^2.$$

Teorema 9. Sejam V e W espaços com produto interno sobre o mesmo corpo, e seja T uma transformação linear de V para W. Então T preserva produtos internos se, e somente se, ||T(v)|| = ||v|| para cada $v \in V$.

Demonstração. Se T preserva produtos internos então T preserva normas. Se ||T(v)|| = ||v||as identidades de polarização mostram que $\langle T(v), T(w) \rangle = \langle v, w \rangle$ para quaisquer $v, w \in V$. A recíproca é evidente.

Definição 10. Um operador unitário em um espaço com produto interno é um isomorfismo de um espaço nele mesmo.

Teorema 11. Seja U um operador linear em um espaço com produto interno V. Então U é unitário se, e somente se, então a adjunta U^* de U existe e $UU^* = U^*U = 1$

Demonstração. Suponha que U seja um operador unitário. Então existe U^{-1} e logo para quaisquer $v,w\in V$ temos que

$$\langle U(v), w \rangle = \langle U(v), UU^{-1}(w) \rangle = \langle v, U^{-1}(w) \rangle.$$

Por unicidade temos que $U^{-1} = U^*$.

Suponha agora que $UU^* = U^*U = I$. Então U é invertível e $U^{-1} = U^*$. Logo

$$\langle U(v), U(w) \rangle = \langle v, U^*U(w) \rangle = \langle u, w \rangle$$

para quaisquer $v, w \in V$.

Definição 12. Uma matriz complexa A é chamada **unitária** se A*A = I.

Teorema 13. Sejam V um espaço vetorial com produto interno e U um operador linear em V. Então U é unitário se, e somente se, a matriz de U em alguma (ou em toda) base ordenada ortonormal é uma matriz unitária.

Demonstração. Imediato.

Definição 14. Uma matriz real ou complexa A é dita **ortogonal** se $A^tA = I$.

Definição 15. Seja V um espaço vetorial de dimensão finita com produto interno e seja T um operador linear em V. Dizemos que T é **normal** se comuta com a sua adjunta e $TT^* = T^*T$.

Teorema 16. Seja V um espaço vetorial com produto interno e seja T um operador linear auto-adjunto em V. Então cada autovalor de T é real, e os autovetores de T a autovalores distintos são ortogonais.

Demonstração. Suponha que λ seja um autovalor de T Logo

$$\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle T(v), v \rangle = \langle v, T(v) \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \langle v, v \rangle.$$

Suponha agora que $T(v) = \lambda v$ e $T(w) = \mu w$ com $\lambda \neq \mu$. Logo

$$\lambda \langle v, w \rangle = \langle \lambda v, w \rangle = \langle T(v), w \rangle = \langle v, T(w) \rangle = \langle v, \mu w \rangle = \overline{\mu} \langle v, w \rangle = \mu \langle v, w \rangle.$$
 Logo $\langle v, w \rangle = 0$.

Teorema 17. Seja um espaço vetorial de dimensão positiva com produto interno, então cada operador auto-adjunto possui autovetor não-nulo.

Teorema 18. Seja V um espaço vetorial com produto interno de dimensão finita e seja T um operador linear em V. Suponha que W é um subespaço de V que é invariante por T. Então o complemento ortogonal de W é invariante por T^* .

Teorema 19. Seja V um espaço vetorial de dimensão finita com produto interno, e seja T um operador linear auto-adjunto em V. Então exoste uma base ortonormal para V em que cada vetor é autovetor de T.

Teorema 20. Seja V um espaço vetorial com produto interno de dimensão finita. Sejam T um operador linear em V e $v \in V$. Então $T(v) = \lambda v$ se, e somente se, $T^*(v) = \overline{\lambda}v$.

Exercícios - 10 de fevereiro de 2020

Exercício 1. Sejam V um espaço vetorial de dimensão finita, $T,U:V\longrightarrow V$ operadores lineares em V e c um escalar. Mostre que:

- (1) $(cT)^* = \overline{c}T^*;$
- (2) $(TU)^* = U^*T^*$;
- (3) $(T^*)^* = T$.

Exercício 2. Seja $V = \mathbb{C}^2$ com o produto interno canônico. Seja T o operador linear definido por $Te_1 = (1, -2)$ e $Te_2 = (i, -1)$. Se $v = (x_1, x_2)$ encontre $T^*(v)$.

Exercício 3. Sejam V um espaço com produto interno de dimensão finita e $T:V\longrightarrow V$ um operador linear invertível. Mostre que $(T^*)^{-1}=(T^{-1})^*$.

Exercício 4. Seja V um espaço vetorial de dimensão finita com produto interno e seja $T:V\longrightarrow V$ um operador linear. Mostre que $\operatorname{Im}(T^*)=Ker(T)^{\perp}$.

Exercício 5. Seja V um espaço vetorial de dimensão finita com produto interno. Se E é um operador linear em V que é uma projeção, mostre que $E^2 = E$. Mostre que E é auto-adjunto se, e somente se, $EE^* = E^*E$.

Exercício 6. Considere a rotação R_{θ} em \mathbb{R}^2 por ângulo θ em torno da origem no sentido anti-horário. Calcule $R_{\theta}R_{\gamma}$. Mostre que $R_{\theta}^*=R_{-\theta}$ e conclua que R_{θ} é um operador unitário.

Exercício 7. Seja V um espaço vetorial complexo com produto interno e T um operador linear auto-adjunto. Mostre que

- (1) ||v + iT(v)|| = ||v iT(v)|| para cada $v \in V$;
- (2) v + iT(v) = w + iT(v) se, e somente se, v = w;
- (3) I + iT é não-singular;
- (4) I iI é não-singular;
- (5) Suponha que V possui dimensão finita. Mostre que $U = (I iT)(I + iT)^{-1}$.

Exercício 8. Mostre que um operador normal e nilpotente é nulo.

Exercício 9. Se T é um operador normal, mostre que todos os autovetores de T associados a autovalores distintos são ortogonais.

Exercício 10. Seja $V=\mathbb{C}^2$ o espaço vetorial com o produto interno canônico. Seja T um operador linear em V cuja matriz na base canônica é

$$\left[\begin{array}{cc} 1 & i \\ i & 1 \end{array}\right].$$

Mostre que T é normal e encontre uma base de V consistinto de autovetores de T.

Exercício 11. Mostre que o produto de dois operadores lineares auto-adjuntos é auto-adjunto se, e somente se, esses dois operadores comutam.