Electronic supplementary information

SYNTHESIS AND CRYSTAL STRUCTURE OF A NEW RHOMBOID $\{Mn^{II}_2Mn^{III}_2\}$ CLUSTER BASED ON CALIX[4]ARENE AND BATHOPHENANTHROLINE LIGANDS

A. S. Ovsyannikov,** I. V. Strelnikova,** A. A. Iova,* D. R. Islamov,* P. V. Dorovatovskii,* S. E. Solovieva,* and I. S. Antipin*

^a Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, ul. Arbuzova 8, Kazan, Tatarstan, 420088 Russia
 ^b Kazan Federal University, ul. Kremlevskaya 18, Kazan, Tatarstan, 420008 Russia
 ^c Laboratory for Structural Analysis of Biomacromolecules, FRC Kazan Scientific Center, Russian Academy of Sciences, ul. Lobachevskogo 2/3, Kazan, Tatarstan, 420111 Russia
 ^d National Research Centre "Kurchatov Institute", pl. Akademika Kurchatova 1, Moscow, 123182 Russia

Single crystal X-ray diffraction study

Diffraction data for single-crystals of 3_2 -Mn₄(bathophen)₂ were collected at 100 K on a Belok/XSA beamline ($\lambda = 0.745$ Å, φ -scans) of the Kurchatov Synchrotron Radiation Source (Moscow, Russian Federation) [S1, S2]. Diffraction patterns were collected using Mardtb goniometer equipped with Rayonix SX165 2D positional sensitive CCD detector at 100 K. In total, 450 frames were collected with oscillation range of 1°. The data were indexed, integrated and scaled; absorption correction was applied using the XDS program package [S3]. The structures were solved by direct methods with software SHELXT [S4]. The structural model was investigated and refined by using Olex2 software [S5] by a full-matrix least-squares method on F² with anisotropic displacement. Non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions and included in the refinement within the riding model with fixed isotropic displacement parameters Uiso(H) = 1.5Ueq(O), 1.2Ueq(N), and 1.2Ueq(C).

The crystallographic data and experimental details for 3₂-Mn₄(bathophen)₂ are presented in Table S1. CCDC 2383835 contains the supplementary crystallographic information for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* https://www.ccdc.cam.ac.uk.

Table S1. Crystallographic data and structure refinement parameters for the coordination compound obtained

Compound name	3 ₂ -Mn ₄ (batophen) ₂
	$C_{110}H_{86}Mn_4N_6O_{12},$
Empirical formula	$2(CH_4O)$
Formula weight, g·mol ⁻¹	1967.69
Wavelength, Å	0.745
Temperature	100(1)
Crystal system	triclinic
Space group	P-1
a, \mathring{A}	11.700(2)
b , \mathring{A}	15.170(3)
c , \mathring{A}	15.380(3)
α , $^{\circ}$	108.65(3)
eta , $^{\circ}$	107.11(3)
γ,°	103.43(3)
V, A^3	2305.8(10)
Z/Z'	1/0.5
$\rho_{\rm calc} { m g,cm}^3$	1.417

μ , cm ⁻¹	0.684
F(000)	1020.0
Crystal size, mm ³	$0.3 \times 0.2 \times 0.2$
2θ range for data collection, °	$5.076 \le 2\theta \le 62.1$
	$-16 \le h \le 16$,
Index ranges	$-20 \le k \le 21,$
•	$-21 \le 1 \le 21$
Reflections collected/independ.	57179/12278
R _{int}	0.0385
Completeness to $\theta_{\rm max}$ /%	95.7
Data/restraints/parameters	12278/0/617
Goodness-of-fit on F ²	1.031
Final R indexes [I > 2σ (I)] R_1/wR_2	0.0415/0.1056
Final R indexes [all data]	0.0470/0.1090
R_1/wR_2	
$\rho_{\rm max}/\rho_{\rm min},~{ m e\AA}^{-3}$	0.71/-0.54

Table S2. Coordination bond angles for Mn ions of 3_2 -Mn₄(bathophen)₂ (°)

	81.71(6)
$\mathbf{O}_{\mathbf{X}}$ -Mn(1)- $\mathbf{O}_{\mathbf{Y}}$	98.71(6)
	178.89(5)
	89.14(6)
	99.40(6)
	81.38(6)
	85.78(6)
	92.42(6)
	166.60(6)
$O = M_{\rm P}(1) N$	96.69(6)
$\mathbf{O}_{\mathbf{X}}$ -Mn(1)- $\mathbf{N}_{\mathbf{x}}$	97.53(6)
	168.09(6)
	93.11(6)
	87.41(6)
$\mathbf{N}_{\mathbf{X}}$ - $\mathbf{M}\mathbf{n}(1)$ - $\mathbf{N}_{\mathbf{Y}}$	78.99(6)
	92.09(5)
	97.18(5)
	91.67(5)
	87.22(5)
	162.64(5)
	92.46(6)
	175.27(6)
$\mathbf{O}_{\mathbf{X}}$ -Mn(2)- $\mathbf{O}_{\mathbf{Y}}$	89.50(6)
, .	97.93(5)
	89.92(6)
	175.11(6)
	96.52(5)
	87.82(6)
	77.73(5)
	78.77(5)

Table S3. CShM deviation values calculated by SHAPE program for Mn atoms in 3₂-Mn₄(bathophen)₂

Complex name	Mn	HP-6	PPY-6	OC-6	TPR-6	JPPY-6
2 Mrs (dessf)	Mn(1)	29.386	24.558	1.319	13.669	27.791
3_2 -Mn ₄ (dmf) ₄	Mn(2)	31.288	26.303	1.329	14.137	29.970

Label	Symmetry	Shape
HP-6	$\mathrm{D}_{6\mathrm{h}}$	Hexagon
PPY-6	C_{5v}	Pentagonal pyramid
OC-6	$\mathrm{O_{h}}$	Octahedron
TPR-6	D_{3h}	Trigonal prism
JPPY-6	C_{5v}	Johnson pentagonal
		pyramid (J2)

Figure S1. H-bonding between the solvate MeOH molecules with 3₂-Mn₄(bathophen)₂ cluster molecule within the crystal packing.

References

- S1. V. A. Lazarenko, P. V. Dorovatovskii, Y. V. Zubavichus, A. S. Burlov, Y. V. Koshchienko, V. G. Vlasenko, V. N. Khrustalev, *Crystals*, **2017**, *7*, 325. DOI: 10.3390/cryst7110325
- S2. R. D. Svetogorov, P. V. Dorovatovskii, V. A. Lazarenko, *Cryst. Res. Technol.*, **2020**, *55*, 1900184. DOI: 10.1002/crat.201900184
- S3. W. Kabsch, *Acta Crystallogr.*, *Sect. D: Biol. Crystallogr.*, **2010**, *D66*, 125–132. DOI: 10.1107/S0907444909047337
- S4. G. M. Sheldrick, *Acta Crystallogr. A: Found. Adv.*, **2015**, *71*, 3–8. DOI: 10.1107/S2053273314026370
- S5. O. V. Dolomanov, L. J. Bourhis, R.J. Gildea, J. A. K. Howard, H. J. Puschmann, *J. Appl. Crystallogr.*, **2009**, *42*, 339–341. DOI: 10.1107/S0021889808042726