Mathematics

Chapter#01

COMPLEX NUMBERS

If Z = -i, then \sqrt{Z} equals to:

a.
$$\pm \left(\frac{1-i}{\sqrt{2}}\right)$$
 b. ± 1

c.
$$\sqrt{2}$$

d.
$$\pm i^2$$
.

If $Z = \frac{3}{772} + \frac{5}{876}i$ then $|Z|^2 - Z.\overline{Z} =$ 2.

The multiplicative inverse of $\frac{\sqrt{3}}{2}i$ is 3.

$$a. - \frac{\sqrt{3}}{4}i$$

a.
$$-\frac{\sqrt{3}}{4}i$$
 b. $-\frac{\sqrt{3}}{2}i$ c. $\frac{\sqrt{3}}{2}i$

c.
$$\frac{\sqrt{3}}{2}i$$

d.
$$-\frac{2}{\sqrt{3}}i$$

Which is the real and imaginary part of this term $\left(\frac{1-\sqrt{3} i}{1+\sqrt{3} i}\right)^5$

$$\mathbf{a}\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) .$$

$$b.\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \qquad c.\left(-\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\right) \qquad d.\left(0,\frac{\sqrt{3}}{2}\right)$$

$$c.\left(-\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2}\right)$$

d.
$$\left(0, \frac{\sqrt{3}}{2}\right)$$

If $Z_1 = 100000+200000i$ and $Z_2 = 500000 + 600000i$ then $\mathbb{R} \ge \left(\frac{Z_1}{Z_1 + Z_2}\right) + \mathbb{R} \cdot \mathbb{R} \cdot \left(\frac{Z_2}{Z_1 + Z_2}\right) = ?$ 5.

a.1

If $n \in \mathbb{Z}$ than $(\sin \varphi + i \cos \varphi)^n =$ 6.

a)
$$\sin \varphi + i \cos n\varphi$$

a)
$$\sin \varphi + i \cos n\varphi$$
 b) $\cos n(\frac{\pi}{2} - \varphi) + i \sin \varphi$ c) $\cos \varphi + i \sin \varphi$ d) none

c)
$$\cos \varphi + i \sin \varphi$$

 $\frac{(\cos 2\varphi + i\sin 2\varphi)^5}{(\cos 3\varphi + i\sin 3\varphi)^2} =$ 7.

a)
$$\cos 4\varphi + i \sin 4\varphi$$
 b) $\cos \varphi + i \sin \varphi$ c) $\cos 2\varphi + i \sin 2\varphi$

$$(3) \cos \phi + i \sin \phi$$

c)
$$\cos 2\omega + i \sin 2\omega$$

The minimum value of |Z| + |Z| 1 is: a. 0 b.-1 c.1 8.

$$b.-1$$

$$d-2$$

If modulus is 2 and argumen is $\frac{2\pi}{3}$ then complex number is: 9.

a)
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 b. $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$ c. $-1 + \sqrt{3}i$ d. $-1 - \sqrt{3}i$

b.
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

c.
$$-1 + \sqrt{3}i$$

$$d. -1 - \sqrt{3}i$$

If Z = a + b then |Z| = a10.

a)
$$\sqrt{a^2 - b^2}$$

b.
$$-\sqrt{a^2-b^2}$$
 c. $\sqrt{a^2+b^2}$

c.
$$\sqrt{a^2 + b^2}$$

$$d.a + b$$

The positive square root of i is: 11.

a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$

b.
$$\frac{\sqrt{3}}{2} + \frac{1}{2}$$

b.
$$\frac{\sqrt{3}}{2} + \frac{1}{2}i$$
 c. $\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}i$ d. $-1 + i$

$$d. -1 + i$$

If $Z_1 = 1 - 3i$, $Z_2 = 3 - i$ Then $\left| \frac{Z_1}{Z_2} \right| =$ ____ 12.

a) 3 b) 2 $(1-i)^8 =$ 13.

c)
$$\sqrt{2} - \sqrt{2}i$$

Complex numbers 1 + i and $1 - \frac{1}{2}$ are 14.

a) Conjugate of each other

b) Multiplicative inverse of each other

c) Additive inverse of each other

d) None of these

In trigonometric form the complex number 2-2 $\sqrt{3}$ i is equivalent to 15. a) $2(\cos 60^{\circ} - i \sin 60^{\circ})$ b) $4(\cos 60^{\circ} - i \sin 60^{\circ})$ c) $2(\cos 30^{\circ} - i \sin 30^{\circ})$ d) $4(\cos 30^{\circ} - i \sin 30^{\circ})$ It x + 3iy + i (2x + iy) = 5 Then $x = ____, y =$ 16. a) 3, -2 b) -3, -2 c) -3, 2 d) 3, 3 $4i^3 + 6i^{15} =$ 17. $\frac{1}{6}$ b) 6-4i c) 10ia) -10i18. Polar form of -i is a) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$ b) $\cos \frac{\pi}{2} - i \sin \frac{\pi}{2}$ c) $\cos \pi + i \sin \pi$ d) None of these Real part of $\frac{i}{1+i}$ is _____ 19. b) 1 c) $\frac{1}{2}$ d) $-\frac{1}{2}$ a) *i* If p - 4 = q Then which of the following is value of |p - q| + |q - p|. 20. d) None of these c) 4 Real part of $(5-2i)^2$ is 21. d) None of these b) 2 22. Which of the following is correct? a) 9 + 2i > 6 + 7i b) 3 - i > 1 + 3i c) 6 + 2i > 4 + 3id) None of these The result $\sqrt{x}\sqrt{y} = \sqrt{xy}$ is not true when 23. b) x < 0, y > 0a) x > 0, y > 0d) x = 0, y = 0c) x < 0, y < 0If $Z_1 = 1 - 3i$, $Z_2 = 2 - i$, $Z_2 = 2 + 4i$, Then $|Z_1 Z_2 Z_3| =$ 24. a) $\sqrt{10} + \sqrt{20} + \sqrt{5}$ b) $10\sqrt{10}$ Polar form of -1 - i is _____ d) $\sqrt{35}$ 25. b) $\sqrt{2} \left[\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right]$ a) $\sqrt{2} \left[\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right]$ c) $\sqrt{2} \left[\cos 3\pi /_4 + i \sin 3\pi /_4 \right]$ d) $\sqrt{2} \left[\cos 3\pi /_4 + i \sin 3\pi /_4 \right]$ c) $\sqrt{2}$ [Cos /4] If $9x + 7yi = 3 + 2i^2$ Then y =______ 26. d) 1 Conjugate of -8i + 1 is $\frac{1}{1-8i}$ 27. c) 8i - 1 d) None of these If $a + bi = \frac{2+i}{2-3i}$ Then $a^2 + b^2 =$ _____ 28. b) $\frac{5}{13}$ c) $\frac{3}{19}$ On the Argand plane the complex number $\frac{1+2i}{1-i}$ lies in the _____ 29. c) 3rd quadrant d) 4th quadrant a) First Quadrant b) 2nd quadrant 30. The points 1 + i, 1 - i, -1 + i, -1 - i are a) With in a circle of radius 1 b) Collinear c) Concyclic d) Regular Polygone If p + q $i = \begin{vmatrix} 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix}$ Then 31. a) P = 3, q = 1 b) P = 1, q = 3 c) P = 0, q = 1d) P = 0, q = 0Which of the following is not applicable for complex numbers? 32. a) Addition b) Division c) Inequality d) Square root Reciprocal of 3 + 7i is _____ 33.

	a) 3 – 7 <i>i</i>	b)	c) $\frac{1}{3}$	16	d) $\frac{3-7i}{}$		
		$3-7i$ eger Then i^{n} is	J	-7i	58		
	a) $\pm i$	b) ± 1 , $\pm i$	c) ±	: 1	d) 1		
35.	If $Z = 1 + i $	Then the multip	licative inver	se of \mathbb{Z}^2 is	·		
	a) 8 <i>i</i>	b) 1 – <i>i</i>	c) $\frac{1}{2}$	-	d) $\frac{-\iota}{2}$		
36.	The amplitud	e of 0 is					
	a) 0	e of 0 is b) $\frac{\pi}{2}$	c) -	$-\pi/2$	d) None of th	ese	
37.	$If \left(\frac{1-i}{1+i}\right)^{100} =$ a) $a = 2$, $b = -$	a + i b Then 1 b) $a =$	1 , b = 0	c) a = () , b = 1	d) a =	-1. b = 2
		$\frac{110^{\circ}}{\text{s}10^{\circ}} = $, -	,	1	,
	a) 1	b)-1	c) <i>i</i>	d) - <i>i</i>		F.	
39.	There exist on a) R	ne-one correspo b)imaginary 1	ondence b/w	complex nu		of those	
40.	Components a) R	of complex nur b) C		nt the coor		points of	
41.		s of $x^2 + 4 = 0$ are	at distance d			ipicx pic	ine
	a)1	b) 4	c) 4		$d)\overline{2}$		
42.	0 is	,	,				
	, -	number b) an		nh er	() a negative	integer	d) a complex number
43.		$1 \times y \Rightarrow x^2 > y$		()			
	a) x>0	b) x<0 mber is a	c, y	<i>y</i> >0	d)y<0		
44.) D :	1	1) C 1 1
45.							d) Complex number
46.	a) (3a+8b) (3a The real part	a-8b) of $(x+iy)^n$ is	(22:01)	(9a-8b)	c) (3a+b) (3a-	-b)	d) (3a+2bi) (3a-2bi)
	_	b) r s	in iq	c) cos	$n\varphi$	d) sin	$n \phi$
47.	Number 2 (co	$\cos\frac{\pi}{3} + \sin\frac{\pi}{3}$) i	n Cartesian fo	orm is			
	a) $\sqrt{3} + i$	101/-	$\sqrt{3}$ i	c) $\sqrt{3}$ -	· i	d) 1- v	$\sqrt{3}$ i
48.	i(iota) can be		V 5 t	c) v 3	ı	u) i	V S i
	a) (1,0)		c) (1	1,1)	d) (0,-1)		
49.	The ordered p	pair $(0,1)$ is den					
			c)(0,1)	d) (0,-1	,		
50.		d n is positive : =1					
51.	Which one is	meaning less	•		ŕ		
		$\overline{Z_2}$ b) Z_1	$Z_1 > Z_2 Z_2$	c) $Z_1 Z$	$_{2}$ $<$ Z_{2} Z_{1}	d) all o	of these
52.	Which number		a) (1 0)	<i>4</i>) (4.0)	\		
Unit#0	a) (3,0)	b) (-2,0)	C) (1,0)	TS"	,		
		$=\left\{\overline{0},\overline{1},\overline{2},\overline{3}\right\}$			+" then invorce	e of 3:	c·
1.						01 3 1	ა.
2	,	b. <u>2</u>			d. $\overline{0}$		
2.		are any three se				() 1 Ma
	a. $(A - B) \cap$	(A-C)	$p(R \cap C)$	- A	$(A-B)\cup$	(A - C)) d. None

50. A-B =a) A′∩B b) A∩B c) A'∩B' d) $A \cap B'$ 51. If $A \cap B = A$ and $B \cap C = B$ then $A \cap C =$ c) C b) B d) BUC If $S = \{1, w, w^2\}$ where w is a cube root of unity form an abelian group with respect to 52. a) multiplication b) division c) addition d) subtraction If $S = \{1, -1, i, -i\}$ where $i = \sqrt{-1}$ form an abelian group with respect to 53. a) multiplication b) division c) addition d) subtraction The M of all square matrices of order 2 from an abelian group with respect to; 54. a) ordinary multiplication b) matrix division c) matrix addition d) none of these 55. The identity element in a group is c) matrix addition d) none of these a) unique b) infinite 56. Inverse of an element in a group is b) finite c) unique d) not possible a) infinite $(p \rightarrow q) \land (q \rightarrow p)$ is logically equivalent to 57. b) $q \rightarrow p$ c) $p \rightarrow q$ When $P \rightarrow q$ is true which related conditional is true. 58. b) $\sim p \rightarrow \sim q$ Which is always false? 59. a) $pv \sim p$ b) $q \wedge \sim q$ c) $pv \sim q$ 60. The over lapping sets are a) $A=\{1,2,3\}$, $B=\{1,2,3,4\}$ b) $A=\{1,2\}$, $B=\{3,4\}$ c) $A=\{1,2,3\}$, $B=\{1,2,5\}$ d) none of these **Unit#03** MATRICES AND DETERMINANTS If AB = I and AC = I then what about B and C: b. $C^{-1} = B$ d. None If AB = A and BA = B then $B^2 = ?$ 2. d. 0 (Null Matrix) 3. If A is symmetric matrix then A^t is: d. A-1 a. A If $X + 2I = \begin{bmatrix} 5 & 7 & 8 \\ 9 & 2 & 1 \\ 0 & 2 & 3 \end{bmatrix}$ then X = ?4. If $A = [a_{ij}]_{3\times 4}$ $B = [a_{ij}]_{4\times 3}$ then which of the following is true? 5. b. $(\lambda + 1)$ $A = \lambda A + A$ c. $\lambda A - \lambda B = \lambda (A - B)$ d. All of these $\mathbf{a.} \ \lambda \ A + \lambda \ B = \lambda \ (A + B)$ 1 2 4 | 16 | 32 | = ?6. 64 128 256 If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and $|A|^3 = 125$ then $\alpha = ?$ a) $\alpha = \pm 5$ b. $\alpha = \pm 4$ c. $\alpha = 3$ d. $\alpha = 0$ If system $\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \end{cases}$, be a non-homogenous system and $|A| \neq 0$, 7. 8. $|a_{31}x_1 + a_{32}x_2 + a_{33}x_3| = b_3$ **a.** $x_1 = \frac{b_1 A_{11} + b_2 A_{12} + b_3 A_{13}}{|A|}$ **b.** $x_2 = \frac{b_1 A_{12} + b_2 A_{22} + b_3 A_{32}}{|A|}$ **c.** $x_1 = \frac{b_1 A_{12} + b_2 A_{22} + b_3 A_{32}}{|A|}$ **d.** All of these

9.
$$\begin{vmatrix} 2003 & 2002 & 2001 \\ 2006 & 2005 & 2004 \\ 2009 & 2008 & 2007 \end{vmatrix} = ?$$

a) 2000 b.1 c. 0

10. If
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 3Then \begin{vmatrix} 2a & 2b & 2c \\ 2d & 2e & 2f \\ 2g & 2h & 2i \end{vmatrix}$$

a) 3 b) 6 c) 12

11.
$$\begin{bmatrix} p & o & o \\ o & p & o \end{bmatrix}$$
 is called _____ matrix

a) Scalar b) Diagonal c) Non - Singular d) None of these

12. The order of
$$\begin{bmatrix} p & q & r \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & t \\ g & h & i \end{bmatrix} \begin{bmatrix} l & o \\ m & p \\ n & q \end{bmatrix}$$
 is _______

a)
$$2 \times 2$$
 b) 1×2 c) 3×2 d) 2×7 .

13. If $= \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7$ Then $\begin{vmatrix} a+d & b+e & c+f \\ d & e & f \\ g & h & i \end{vmatrix} = \underline{\qquad}$

- $\begin{vmatrix} g & h & i \end{vmatrix} \qquad \begin{vmatrix} g & h & i \end{vmatrix}$ a) 7 b) 14 c) 21 d) Cannot be determined.
- 14. The matrix $\begin{vmatrix} 0 & 8 & 9 \\ -8 & 0 & 15 \\ -9 & -15 & 0 \end{vmatrix}$ is known '.s
 - a) Symmetric b) Die gonal c) Skew symmetric d) Upper Triangular

d. - 1

d) 24

- 15. The equations x + 4y 2z = 3, 3x + y + 5z = 7 and 2x + 3y + 2z = 5 have a) Unique or infinite solution b) No solution
 - c) x = 1, y = 2, z = 3 d) None of these

16.
$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 5 & 7 & 0 & 0 \\ 3 & 0 & 5 & 0 \\ 9 & 0 & 0 & 7 \\ a) 70 & b) 35 & c) 10 & d) 1$$

a) 70 b) 35 c) 10 d) None of these

17. If A is 3×4 matrix, B is a matrix such that AB and BA both are define Then order of matrix B is =

$$\overline{a) 3\times 4}$$
 b) 4×4 c) 3×3 d) 4×3

- 18. The equations x + 2y + 3Z = 0, x y + 4Z = 0 and 2x + y + 7Z = 0 have A)only one solution b) Only two solutions c) No solution d) Infinite Solutions
- The transpose operation on matrices satisfies the following properties except. a) $(A + B)^t = A^t + B^t$ b) $(A^t)^t = A$ c) $(KA)^t = KA^t$ d) $(AB)^t = A^t B^t$
- 20. If A and B are square matrices of same order such that $(A + B)^2 = A^2 + 2AB + B^2$ Then

a)
$$A = -B$$
 b) $AB = BA$ c) $A = B^C$ d) None of these 21. If $\begin{bmatrix} 1 & a \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix} = 0$ Then a is

a)
$$-\frac{1}{2}$$
 b) 1 c) -1 d) $-\frac{1}{2}$

If $A = \begin{bmatrix} 1 & 0 & -1 & 2 \\ 3 & 1 & 2 & 5 \\ 0 & -2 & 1 & 6 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 & 3 & 1 \\ 1 & 3 & -1 & 4 \\ 3 & 1 & 2 & -1 \end{bmatrix}$

Then(2,3)rd element of (A+B)^t is

c) 4 b) 1 d) 3 If $A=[a_{ij}]_{m\times n}$, $B=[b_{ij}]_{n\times r}$ then order of $(AB)^t$ is

37. b) $n \times m$ c) $m \times n$

d) $m \times m$ 38. Which one is not symmetric?

a)AA^t b) A^tA c) $A^t + A$

39. AB is symmetric if d) A^t

a)
$$A^t = A$$

b)
$$B^t = B$$

d) all of these

40. The co-factor of an element aij denoted by Aij is

$$a)(-1)^{ij}M_{ij}$$

b)
$$(-1)^{i+j} Mij$$

c)
$$(-1)^{i-j}Mij$$

d)
$$(1)^{i+j} Mij$$

41. If
$$B = \begin{bmatrix} 0 & -4 & 1 \\ 4 & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix}$$
 then

a)
$$|B| = 0$$

b)
$$B^t = B$$

c)
$$B^{t} + B = 0$$

d)
$$|B| = 1$$

42. If
$$\Delta = \begin{vmatrix} c & a & x \\ m & m & m \\ b & x & b \end{vmatrix}$$
 then the roots of $\Delta = 0$ are given by

a)
$$x = 1, x = m$$

b)
$$x = a, x = b$$

c)
$$x = a, x = m$$

43. If
$$x = -9$$
 is a root of $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$ then the other two roots are

44. If A
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 2 & -3 \end{pmatrix}$$
 Then matrix A is _____

a)
$$\begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$$

b)
$$\begin{pmatrix} 5 & 3 \\ -2 & 3 \end{pmatrix}$$

c)
$$\begin{pmatrix} 3 & -1 \\ -2 & 5 \end{pmatrix}$$

$$\mathbf{d}) \begin{pmatrix} 5 & 3 \\ 2 & -3 \end{pmatrix}$$

45. If
$$P = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 Then $P^4 =$

46. The system
$$3a + 5b = 6$$
, $9a + 15' = 12$ has ______ a) Unique b) One ______ c

b) One

d) None of these

47. If
$$A = \begin{pmatrix} 4 & 2 \\ 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} \frac{1}{4} & s \\ 0 & 1 \end{pmatrix}$ Ther value of s such that $AB = I$ is

d)
$$-\frac{1}{e}$$

48. If
$$a_1x + b_1y + c_1z = d_1$$
, $a_2x + b_2y + c_2z = d_2$, $a_3x + b_3y + c_3z = d_3$ Then $z =$

a)
$$\begin{vmatrix} b_1 & a_1 & d_1 \\ b_2 & a_2 & d_2 \\ b_3 & a_3 & d_3 \\ \hline a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

b)
$$\begin{vmatrix} a_2 & b_2 & a_2 \\ a_3 & b_3 & d_3 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$

$$\begin{pmatrix}
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3} \\
\hline
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{3} & c_{2}
\end{pmatrix}$$

49. If
$$\begin{vmatrix} l & m & n \\ o & p & q \\ r & s & t \end{vmatrix} = 30$$
 Then $\begin{vmatrix} l & o & r \\ m & p & s \\ n & q & t \end{vmatrix} = \underline{\qquad \qquad}$
a) 30 b) 15 c) 10

50. If a, b, c are positive real numbers other than one and
$$a = b = c$$
 Then

$$\begin{vmatrix} \log_a^b & \log_a^c & 1 \\ \log_b^c & \log_b^a & 1 \\ 1 & \log_c^a & \log_c^b \end{vmatrix} = \underline{\qquad \qquad}$$
a) 1 b) 0 c) -1 d) None of these

Unit#04

Solution of Equations

_		1 1	1.
1.	Let α , β be the roots of $ax^2 + bx + c = 0$ then the equation whose roots are	$\frac{1}{4\alpha}, \frac{1}{4}$	${R}$ 1S:
		Tu T	μ

a.
$$ax^2 + bx + c = 0$$

$$b.16cx^2 + 4bx + a^2 = 0$$

b.
$$16cx^2 + 4bx + a^2 = 0$$
 c. $4cx^2 + 16x + c = 0$ d. None of these

2. If
$$\frac{\alpha^2}{\beta}$$
 and $\frac{\beta^2}{\alpha}$ be the roots of $3x^2 - 5x + 15 = 0$ then $\alpha \beta = ?$

a.
$$5/3$$

$$b. - 5$$

c. 5 d.None of these

3. If
$$x + 1$$
 and $x - 2$ are the factors of $x^3 + px^2 + qx + 2$ the:

a.
$$p = 1$$
, $q = 2$

b.
$$q = -1, p = -2$$

$$c.p = 0, \ell = 1$$
 $d.p = 1, q = 0$

3. If
$$x + 1$$
 and $x - 2$ are the factors of $x^3 + px^2 + qx + 2$ then:

a. $p = 1, q = 2$

b. $q = -1, p = -2$

c. $p = 0, q = 1$

d. None of these

d. None of these

3. If $x + 1$ and $x - 2$ are the factors of $x^3 + px^2 + qx + 2$ then:

a. $p = 1, q = 2$

b. $q = -1, p = -2$

c. $p = 0, q = 1$

d. $p = 1, q = 0$

4.
$$\sum_{n=1}^{50} W^n = ?$$
 (where ω is cube root of unity)

a) 0

b. W

c. W^2

d. -1

$$c. W^2$$

$$d. - 1$$

a) 0 b. W c.
$$W^2$$

5. The degree of the equation $3x^2 - 4xy^2 + \frac{x}{y} + \frac{2y}{x} = 0$ is:

a. 3 b. 4

d. None

6. The difference b/w the roots of
$$x + \frac{1}{x} - 1$$
 is

a. 3 b. 4 6. The difference b/w the roots of
$$x + \frac{1}{x} = 1$$
 is:

a. 4 b. $1/8$ c. 8 d. Zero

7. If $25^{x} \cdot 5^{x} = 1$ and $\frac{3^{2y+1}}{3^{1+2x}} = \frac{1}{9}$, then $x = ?$, $y = ?$

a) $x = \frac{1}{3}$, $y = -\frac{2}{3}$

b. $x = 1$, $y = -2$

c. $x = 0$, $y = 0$

a)
$$x = \frac{1}{3}, y = -\frac{2}{3}$$

b.
$$x = 1, y = -2$$

c.
$$x = 0$$
, $y = 0$

d. None

8. If a number is multiplied by 3 and the result is added to 5 times the reciprocal of the number the result is
$$-8$$
, then the number is:

$$a. - 1$$

$$c. - 3/5$$

$$d. - 1/2$$

a. -1 5. 2 Find the equation whose two roots are 3, -4i9.

a.
$$x^2 + (4i - 3)x - 12i$$

b.
$$x^2 + ix - 12i$$
 c. $x^3 + 3x^2 + 16 - 48$ d. None

10. If the quadratic equation
$$ax^2 + bx + c = 0$$
 touches the x-axis, then there are:

- a) 2 different real roots
- b. 2 complex roots c. 2 real equal roots d. None

a)
$$x-y=2$$

b.
$$\frac{1}{y} - \frac{1}{x} = \frac{2}{xy}$$

c.
$$y - x = 2$$

- d) None of these

If $x^2 - 5x \le 0$ Then x is a member of 13.

- a) $(-\infty, 0] \cup [5, \infty)$
- b) $(\infty,5) \cup [6,\infty)$

d) None of these

14. If
$$\frac{3x}{x-4} > 0$$
 Then x is a member of a) $(-\infty, \infty)$ b) $(-\infty, 0) \cup (4, \infty)$ c) $[-2, 2]$ d) None of these

a)
$$(-\infty, \infty)$$

b)
$$(-\infty.0) \cup (4.\infty)$$

c)
$$[-2, 2]$$

15. If
$$\frac{x+3}{x} < 5$$
 Then

	a) $x > 3/4$	b) $x \neq \frac{3}{2}$	c) $x < 0$ or $x > 0$	> \frac{3}{}	d) None of the	hese
51.		$ \begin{array}{c} 4 \\ 6 > 0 \text{ Then } x \in, \end{array} $		4	,	
<i>J</i> 1.			c) (2,3	3)	d) None of the	hese
17.	3x + 7 = -	-5 Then x is equ	ual to			
10	a) -4		c) 3	d) No	ne of these	
18.	If $ x-3 > 7$		1) < 0			
	a) $x > 0$ c) $x > 10$ and	v < -4	b) x < 0 d) Cannot be	determ	ined	
19.			$en x = \underline{\qquad}$			
	•		c)3, 4			_
20.	If $\log_2 (\log_3$	$(x) = \log_5 5 $ then	x =			
	a) $\binom{2}{3}$	b) 7	c) 8	d) 9		1
21.	If $\log_5 125 =$	x and $\log_3 y =$	2 Then x + y =			
			c) 15			Y
22.			$\operatorname{Cosec} \theta) = \underline{\hspace{1cm}}$			>
	a) $\frac{1}{r}$	b) r ²	c) 1 – r	d) -r		
23.	The exact va	tlue of $\frac{\log_{10} 250}{\log_{10} 8}$	6 is	_/		
	<u>~</u>	b) $2\frac{1}{2}$	5	d) No	ne of these	
24.	$\log_{27}\sqrt{54}-1$	$\log_{27}\sqrt{6} = \underline{\hspace{1cm}}$				
	_	$\log_{27} \sqrt{6} = \underline{\qquad}$ b) $\frac{1}{3}$		d) $\frac{4}{3}$		
25.		roots of $12x^3 - $				
	a) $\frac{5}{12}$	b) $\frac{7}{12}$	c) 0	d) No	ne of these	
26.	$3x^2 + x + 5 =$	= 0 has				
	a) Two equal c) Two real i	roots	d) Two comp	lex roo	ts	
27.	If α, β are the		equation $3x^2 - 2$			ue of $\frac{1}{\alpha} + \frac{1}{\beta}$ is
	a) 2/3	· · · · · · · · · · · · · · · · · · ·	c) $-\frac{1}{2}$			
28.	If equation 3	$_{X}^{2} + K_{X} + \frac{1}{3} =$	0 has equal root	s Then	K =	
	a) ± 3	b) ± 4	c) ± 2	d) No	ne of these	
29.	If the roots o	of the equation	$4x^2 - 5x + 3 = 0$	are α	and eta Then val	$ue of \frac{1}{\alpha} + \frac{1}{\beta} = \underline{\hspace{1cm}}$
	a) $\frac{1}{3}$	b) $\frac{4}{3}$	c) $\frac{7}{3}$	d) $\frac{5}{3}$,	
30.		imes as old as h	nis son, 2years a	go the s	sum of their ag	ges was 48 years. Find their present
31.		b) 12, 36 s not reciprocal	c) 13, 39		d) 14, 42	
J1.	a) x=1	b) x+	$-\frac{1}{x}=1$			d) $x^2 + \frac{1}{x^2} + x + \frac{1}{x} = 1$
32.	Equation \sqrt{x}	$\overline{x+8} + \sqrt{x+3} =$	$\sqrt{12x+13}$ has t	he root		

	a) x=1 b) x=2	c) x = 0	d) x=-1
33.	Which one is not the square root of u	ınity.		4
24	a) 1 b) -1 1 + w + w ² + w ³ + w ⁴ +w ¹⁰⁰ =	c)		d) a & c
34.	$a) - w^2$ $b) w$	c'	<u> </u>	d) –w
35.	Solution set of the system $x+y=7$ and	,	, •	a) w
	a) {(1,2), (2,1)} b) {(3,4),(4,3)	c) {(1,1),		
36.	If product as well as quotient of two			S
27	a) 1 b)0 If $4c < b^2/a$ then roots of $ax^2-bx+c=0$) -1	
37.	a) rational b) irrational) egual	
38.	If $f(x) = \cos x$ is divided by $x - \pi / 2$ the	, <u>.</u>) equal	
	a) 1 b) 0	c) 2 d) f(0)	
39.	Which equation is not a quadratic eq	uation?		2
	a) $x(x+2)=2x-1$ b) $\frac{1}{x} + \frac{1}{x-1} =$	5 c) $\frac{x}{2} + \frac{x}{x}$	$\frac{1}{-1} = 5$	(d) $x^2+2x = 5(\frac{x^2}{5}+1)$
40.	An equation which remains unchang a) exponential equation	ed when x is replaced	ace by $\frac{1}{x}$ is	
	a) exponential equation	b) reciprocal equ	ration.	
	c) linear equation	d) none of these		
41.	The fourth roots of unity are			
42	a) 1, -1 b) 0, 1, w, w ²	c) 2, -2) ±1, _ ±i	
42.	The equations $x + y = 2$ and $2x + 2y$ a) A unique solution b) Find		c) No. s	solution d) None
43.	The sum of squares of the roots of the			solution u) None
	a) 22 b) -7 c) 1	4) -22		
44.	The square of a number is added to t		esult is 28. The	he number is
45.	a) -7 b) 7 c) 4 If $5x^2 - 2x + p = 0$ has complex rook	d_{i} -4	ia	
43.	* · · · · · · · · · · · · · · · · · · ·			
	a) $P > 5$ b) $P = 5$ c) $P < 1$	$\frac{1}{5}$ d) P > $\frac{1}{5}$		
46.	Two consecutive odd number suc. t			are.
	a) 11, -13 b) -11, 13			
47.	The sum of the roots of the quation			
	a) $2\sqrt{5}$ b) 0	c) 2 d) Can no	ot be determin	ned
48.	If $ x-2 = x^2$ where $x \in \mathbb{R}$ Then $x = -1$			
	If $ x-2 = x^2$ where $x \in R$ Then $x = _a$ a) -1, 2 b) 1, 2	c) -1, -2	d) 1, -2	
49.	a) -1, 2 b) 1, 2 If the equation $5x^2 + 13x + K = 0$ ha a) 1 b) 13 If any part of avadratic equation is 2	s roots α and $\frac{1}{\alpha}$	Then K =	
- 0	a) 1 b) 13	c) -5	d) 5	
50.	If one root of quadratic equation is 2	+i Then quadra	tic equation is	S
	a) $x^2 + 4x + 5 = 0$ b) $x^2 - 6$ c) $x^2 - 4x - 5 = 0$ d) Nor	4x + 3 = 0 ne of these		
Unit#	405	Partial Fracti	<u>ion</u>	
1.	A rational fraction $\frac{S(x)}{T(x)}$ is called	an improper fract	ion if:	
	a. Degree of $S(x) < Degree of T(x)$		$e ext{ of } S(x) > De$	egree of T(x)
2	c. Degree of $S(x)$ = Degree of $T(x)$	d. None		
2.	$(x-4)^2 = x^2 - 8x + 16$ is: a) A transcendental equation	b) Cubic equatio	'n	
	c) An identity	d) An equation	⁷ 11	

- If $\frac{x+p}{(x-1)(x-3)} = \frac{q}{x-1} + \frac{2}{x-3}$ then values of p and q are: 3.
- b) p =-2, q =1 c) p =1, q =1 d) p =1, q =-1
- $\frac{x+3}{x(x+1)} =$ a) $\frac{4}{3(x-4)} \frac{1}{3(x-1)}$ b) $\frac{3}{x} \frac{2}{x+1}$ c) $\frac{2}{3(x-2)} \frac{4}{3(x+2)}$ 4.

- d) None of these

- Partial fractions of $\frac{1}{r^3-1}$ will be of the form: 5.

 - a) $\frac{A}{r-1} + \frac{B}{r^2 + r + 1}$ b) $\frac{A}{r+1} + \frac{B}{r^2 + r + 1}$ c) $\frac{A}{r-1} + \frac{Bx+c}{r^2 + r + 1}$ d) $\frac{Ax+B}{r-1} + \frac{C}{r^2 + r + 1}$

- Partial fractions of $\frac{2x^2-3x+4}{(x-1)^3}$ will be of the form:
 - a) $\frac{Ax+B}{x-1} + \frac{C}{(x-1)^2} + \frac{D}{(x-1)^3}$ b) $\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^2}$

 - c) $\frac{A}{x-1} + \frac{Bx+C}{(x-1)^2} + \frac{D}{(x-1)^3}$ d) $\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{(x-1)^3}$
- Partial fraction of $\frac{x^3 + 2x + 2}{(x^2 + x + 1)^2}$ will be of the form:

 - a) $\frac{A}{x^2 + x + 1} + \frac{B}{(x^2 + x + 1)^2}$ b) $\frac{A}{x^2 + x + 1} \cdot \frac{Bx + C}{(x^2 + x + 1)^2}$
 - c) $\frac{Ax+B}{x^2+x+1} + \frac{C}{(x^2+x+1)^2}$ d) $\frac{Ax+B}{x^2+x-1} + \frac{Cx+D}{(x^2+x+1)^2}$
- Partial fractions of $\frac{x^2+1}{x^3+1}$ will be the form. 8.

- a) $\frac{A}{x+1} \frac{B}{x^2 x + 1}$ b) $\frac{A}{x+1} + \frac{B}{x^2 x + 1}$ c) $\frac{A}{x+1} + \frac{Bx + c}{x^2 x + 1}$ d) $\frac{Ax + B}{x+1} \frac{C}{x^2 x + 1}$
- $x + \frac{3}{2} = 4 is$
 - a) An identity
- b) A linear equation
- c) An equation
- d) None of thes

- The rational function $\frac{(x-1)(x-3)(x-5)}{(x-2)(x-4)(x-6)}$ is 10.
- a) Proper
- b) Improper

- 11. A rational function is of
 - a) One type b) Two types
- types.
 c) Three types d) None of these
- If $ax^2 +bx +c = 2x +3 +x^2$ then: 12.

- a) a =2, b =3, c = 1 b) a =2, b =1, c = 3 c) a =3, b =2, c = 1 d) a =1, b =2, c = 3
- Which one is not a conditional equation? 13.
 - a)2x = 3
- b) $x^2+x-6=0$ c) $x^3+\frac{1}{x^3}+x+\frac{1}{x}=0$ d) $x=\frac{1}{2}(2x)-\frac{x}{2}$

- For an identity $ax^3=2x^2+1$ 14.
- c) a=3
- d) none of these

- 15. Which one is not an identity
 - a) $x^2+7x+12=(x+3)(x+4)$ b) $x-\frac{1}{3}(2x+x)=0$ c) x=1 d) $\frac{x}{5}=(\frac{5}{3})^{-1}$

16. Which fraction is not improper rational fraction?

a)
$$\frac{x^3 + a}{x + 3}$$

Identity

b)
$$\frac{x^2+16}{x^4}$$

c)
$$\frac{x}{x+1}$$

d)
$$\frac{x^3+1}{x^4+1}$$

17.

b)
$$\frac{x^2+16}{x-4}$$
 c) $\frac{x}{x+1}$ $\frac{7x+a}{(x+3)(x+4)} = \frac{b}{x+3} + \frac{3}{x+4}$ implies that

implies that a,b=____

a) 1,1

is partial fraction of

18.

Equation
$$(x+2)^2-4x = x^2+4$$
 is an

- a) expression b) conditional equation
- c) algebraic equation
- d) identity

19.

$$\frac{x+1}{2(x^2+1)^2} - \frac{x+1}{4(x^2+1)} + \frac{1}{4(x-1)}$$

a)
$$\frac{x^2}{(x^2+1)^2(x-1)}$$
 b) $\frac{1}{(x^2+1)^2(x-1)}$ c) $\frac{x^2+1}{(x^2+1)^2(x-1)}$ d) none of these

c)
$$\frac{x^2+1}{(x^2+1)^2(x-1)}$$

20. When a rational fraction is separated into partial fractions, the result is;

a) Conditional equation b) an equation

c) identity

d) improper fraction

21.

a)
$$\frac{1}{x^2-4} - \frac{1}{x^2+5}$$

b)
$$\frac{1}{r^2+4} - \frac{1}{r^2+5}$$

$$\frac{1}{(x^{2}+5)(x^{2}+4)} = \frac{1}{x^{2}+5(x^{2}+4)} = \frac{1}{x^{2}+4} + \frac{1}{x^{2}+5} + \frac{1}{x^{2}+5} + \frac{1}{x^{2}+5} + \frac{1}{x^{2}-5} + \frac{1}{x^{2}+4} + \frac{1}{x^{2}+5} + \frac{1}{x^{$$

d)
$$\frac{1}{r+4} - \frac{1}{r+5}$$

Unit#06

1.
$$\sum_{k=1}^{5} \left[k^2 - (k-1)^2 \right] =$$

d. 625

2.

a.
$$\frac{2ac}{a+c}$$

b.
$$\frac{a-c}{2ac}$$

c.
$$\frac{a+\epsilon}{2}$$

d.Zero

2. $\begin{bmatrix} k & -(k-1) \end{bmatrix}$ = a. 5 b. 25 c. 125 If a, b, c are in H.P, then b = ? a. $\frac{2ac}{a+c}$ b. $\frac{a-c}{2ac}$ c. $\frac{a+c}{2}$ The sum of 1000 A.M's b/w 4 and 8 is: a. 2.000 b. 12,000 c 32,000 3.

If $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is H.M between a and Ther n =______ 4.

a)
$$\frac{1}{2}$$

a)
$$\frac{1}{2}$$
 b) $-\frac{1}{2}$ c)

d) 1

For what value of n, $\frac{a^n + \frac{1}{a^{n-1}}}{b^{n-1}}$ is the harmonic mean between two distinct numbers a & b:

a.
$$n = \frac{1}{2}$$

a.
$$n = \frac{1}{2}$$
 b. $n = -\frac{1}{2}$ c. $n = 0$ d. $n = -1$

$$c. n = 0$$

The nth term of $\frac{1^2}{1} + \frac{1^2 + 2^2}{2} + \frac{1^2 + 2^2 + 3^2}{3} + \dots is$ 6.

a.
$$\frac{n+1}{2}$$

b.
$$\frac{(n+1)(2n+1)}{6}$$

c.
$$\frac{n(n+1)^2}{4}$$

a. $\frac{n+1}{2}$ b. $\frac{(n+1)(2n+1)}{6}$ c. $\frac{n(n+1)^2}{4}$ d. $\frac{n(n+1)(2n+1)}{6}$

7.

a.159/99 b. 159/100 c. 159/999 d. 159/990 In $a + ar + ar^2 + ar^3 + \dots$ to n terms if r = -1 and n is odd then $S_n = ?$ 8.

c. $\frac{a^{n}(r+1)}{1}$

If n is positive integer, then $3 + 6 + 9 + \dots + 3n =$ 9.

a) $\frac{3n(n+1)}{2}$ b. $\frac{3n(3n+1)}{2}$ c. $\frac{3n(n-1)}{2}$ d. $\frac{3n+1}{2}$

The middle term in the following A.P 20, 16, 12,176 is: 10.

b - 76

d. None

a) 11. A student reading 342 page book, find that he read faster as he gets into the subject. He read 12 pages on first day and his rate of reading then goes up by 3 pages each day. How long does he take to finish the book?

12.	If x, y, z are in A.P As well as in G.P Then a) $x \neq y \neq Z$ b) $x = y \neq Z$	c) $y \neq y=7$	$d) \mathbf{v} = \mathbf{v} = 7$
13.	Which of the following is divergent series.	C) X + y L	u) x y Z
	b) 10Days b.12days $\frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \dots$ b) 18 -	c. 14days $-6+2-\frac{2}{3}+\dots$	d. Nonea) 6 + 3 +
	c) $12 + 4 + \frac{4}{3} + \frac{4}{9} + \dots$	d) 1 + 4 + 16 + 64 +.	
14.	The next term of the H.P $1, \frac{2}{3}, \frac{1}{2}, \dots$		
	a) $\frac{1}{3}$ b) $\frac{2}{5}$ c) $\frac{1}{4}$	d) $\frac{5}{2}$	
15.	The next term of the sequence 2, 6, 14, 30, 62, 126, is a) 251 b) 252 c) 253	d) 254	
16.	The next term of the sequence 8, 64, 216, 52 a) 1428 b) 1528 c) 1628	12, 1000,	7
17.	How many terms are there in the sequence 6	$54, 32, 16, \dots, \frac{1}{12.8}$	
18.	a) 12 b) 13 c) 14 If $a_{n-5} = 4 \text{ n} - 3$ Then the nth term of the se	equenc. is	
19.	a) 4 n b) $4 \text{n} + 3$ c) $4 \text{n} + 14$ The sum of 11 terms of an A.P whose midd	le term is ² J is	
20.	a) 320 b) 330 c) 340 The number of odd numbers between 60 are	d 50 s	
21.	a) 148 b) 150 c) 153 If Sn = 3n ² Then the sequence is a) A.P b) G. P c) H. I	d) None of these	
22.	If G. M is 4 and A.M is 5 Then r .M will be a) $\frac{16}{5}$ b) $\frac{5}{16}$ c) $\frac{7}{8}$	d) $\frac{25}{7}$	
23.	The product $(32) (32)^{\frac{1}{6}} (32)^{\frac{1}{32}} \dots $	o is equal to	
24.	a) 16 b) 37 c) 64 The 20 th term of the period $2 \times 4 + 4 \times 6 + 6 \times 420$ b) 840 c) 1680	d) None of these 8 + is d) 1600	
25.	Which of the following series has 35 as its s a) $\sum_{k=1}^{15} (K-1)$ b) $\sum_{K=3}^{7} (K+2)$ c) $\sum_{k=3}^{5} \left(\frac{K-2}{3}\right)^{2}$	sum	ese
26.	Which term of sequence $\{(-1)^{n-1}\}$ is zero a) 1^{st} b) 3^{rd}	c) n th	d) no term
27.	Sequence $\{\frac{1}{n-3}\}$ is decreasing in interval		
28.	a) $[1, \infty)$ b) $(1, \infty)$ General term of sequence -5,-3,1,9, is	c) [3, ∞)	d) $(3, \infty)$
29.	a) {2 ⁿ -7} b) {2 ⁿ -6} Which term of the sequence {3 ⁿ } is even?	c) $\{2^n - 5\}$	d) $\{2^n-1\}$
30.	a) 1^{st} b) 4^{th} If $4+8+12+$ $a_n=220$ Then $a_n=$	c) 11 th	d) no term
31.	a) 44 b) 48 If common ratio of G.P is negative then seq		d) 40
32	a) Positive b) Negative If common ratio of G P is greater than one to	c) Alternating here will be exponentia	d) None

	a) 0	b) 1	$c) + \infty$	d) - ∞
33.		c means between 1 and 8 are		1) 2 4
2.4	a) 2,3	b) 2,4	c) -2,4	d) 2,-4
34.	_	ssion can have zero as its ter		d) (a) and (b)
	a) A.P	b) G.P	c) H.P	d) (a) and (b)
35.	1.34 =			
	a) $\frac{134}{99}$	b) $\frac{133}{99}$	(132)	d) $\frac{130}{99}$
	99	99	99	99
36.		be positive integers	in A.P such tha	at $x_4 + x_6 = 14$ Then $x_5 = $
	/	b) 7 c) 14	_d) None of the	
37.		on terms of the series $\sqrt{2}$ +		
	a) $n (n + 1)$	b) $\frac{n(n+1)}{2}$ c) $\sqrt{n+2}$	n(n+1)	
	a) II (II + 1)	$\frac{0}{2} \qquad c) \sqrt{n+2}$	$\frac{\mathbf{d}}{\sqrt{2}}$	
20	C C.1	. 9 3 . 1 . 2		1
38.	Sum of the ser	ries $\frac{9}{4} + \frac{3}{2} + 1 + \frac{2}{3} \dots \infty$) 1S	4
	. 18	. 27 4	, 23	
	a) ${3}$	b) $\frac{27}{4}$ c) $\frac{4}{27}$	a) $\frac{-}{4}$	
		$x x^2$		
39.	The series y =	$x + 1 + \frac{x}{2} + \frac{x^2}{4} + \dots$ Is co	invergent in the	interval.
		b) $-3 < x < 3$ c) $-2 < x < 2$		
40.	The series 3 +	$33 + 333 + \dots is$		
	a) A.P	b) G.P c) H.P	d None of t	hese
41.		en the roots of a quadratic eq	quation is 11/ an	d their G.M is 8. Then the quadratic
	equation is	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 20	
40		$4 = 0$ b) $x^2 - 20x + 64 = 0$		
42.		terms of an A.P is n ² .nen i b) 3 c) 4	d) cannot be	
43.	a) 2 The first term	b) 3 c) 4 of the G.P whose (the tennoise		
43.	a) 6	b) 5	d) 3	11 1410 18 2 18
	<i>u)</i> 0	f the G.P 18 12, 8,	. 512	
44.	Which term of	f the G.P 18 12, 8,	is $\frac{1}{729}$	
	a) 7	b) 8	d) 10	
45.	/		,	tional to the term preceding it. If the first
		2 and 5 Then the fifths term		
	a) 18	b) 36 c) 54	$\frac{1}{2}$	
	<i>a)</i> 10	0) 30 🔻 0) 34	6	
T T 4				
Unit#		Permutation Combina		
1.	Factorial form	of $n(n-1)(n-2)$	$\dots (n-m)$	s:
	a) $\frac{n!}{(n+1)!}$	b. $\frac{n!}{(n-(m+1))!}$	c. $\frac{n!}{(n+1)!}$	d. None
		` ` '/	,	- 1)) !
2.		re two mutually exclusive ev		
	$P(E_1 \cup E$	$_{2}$) = $\frac{1}{2}$ and $P(E_{1})$ = 2	$(E_{p}(E_{p}), then$	$P(E_1) = ?$
	a) 2/3	b.1/3	c. 4/5	d. 3/5
3.	$^{n}c_{r-2} + ^{n}c_{r-1}$	1 =		
	a) $^{n+1}c_{r-1}$	b. ** c **	c. $^{n+1}c_{r-3}$	d. $^{n+1}c_{r-2}$

choose 8 from Part-A and 5 from Part-B, in how many ways can be choose the questions?

b. 2950

A question paper has two parts Part-A and Part-B each containing 10 questions. If a student has to

c. 3940

d. 11340

4.

a) 297

5.	A card is drawn at random from an ordinary pack of 52 cards. Find the probability that the card is neither a king nor a queen:
	a) 1/13 b. 2/13 c. 3/13 d. 11/13
6.	The probability that a three digit no. chosen at random is divisible by 5 is:
	a) ½ b. ¾ c. 1/5 d. None
7.	In how many ways a committee of 4men and 4women can be seated at a round table in such a way
	that no two women be seated together:
	a) $3! \times 3!$ b. $3! \times 4!$ c. $4! \times 4!$ d. None
8.	Number of quadrilaterals that can be drawn using vertices of the figure is
	a) 8_{p_4} b) 10 c) 70 d) 40
	C
	A B
	A B
	D
	F E
	H G
9.	If $n_{c_4} = n_{p_3}$ then $n =$
	a) 25 b) 27 c) 28 d) Note of these
10.	If $\binom{6}{x} = \binom{4}{x}$ then $x = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
1.1	a) 5 b) 4 c) 1' d) 0
11.	Three different people get on a bus that has vacant seats. How many ways they can be seated?
	a) 200 b) 210 c) 240 d) None of these
12.	A debating team consists of three girls and two boys. The number of ways they can be seated in a
	row such that all boys and girls s t together.
	a) 48 b) 24 c) 120 d) None of these
13.	How many ways can 5 people be stated at a round table.
	a) 120 ways b) 1(0 y/ays c) 24 ways d) None of these
14.	How many numbers of six a gits can be formed by the digits 2,3,4,2,3,3
1.5	a) 58 b) 65 c) 70 d) 60
15.	In how many ways a committee of four be selected from nine men so as to always include a
	particular man. a) 84 b) 70 c) 48 d) 56
16.	a) 84 b) 70 c) 48 d) 56 At the end of a meeting all participants shake hands with each other. Twenty-eight hands shakes
10.	were exchanged. How many people were at the meeting. (HINT: n(n-1)/2=28)
	a) 14 b) 7 c) 8 d) 28
17.	A fair coin is tossed three times. What is the probability that at the most one head appears.
	a) $\frac{1}{3}$ b) $\frac{1}{2}$ c) $\frac{1}{4}$ d) None of these
18.	A die is rolled what is the probability of getting a number which is even or greater than 4.
	a) $\frac{2}{3}$ b) $\frac{1}{2}$ c) $\frac{1}{4}$ d) None of these
19.	A die is thrown twice. What is the probability that the sum of the numbers of dots shown is 3 or 11.
	a) $\frac{1}{7}$ b) $\frac{1}{6}$ c) $\frac{1}{9}$ d) None of these
20	The probability that your friend was home in January Type on July is 1 What is the most of life at
20.	The probability that your friend was born in January, June or July is $\frac{1}{4}$. What is the probability that
	he was not born in a month which begins with the letter J.
	-

	a) $\frac{9}{26}$	b) $\frac{10}{26}$	c) $\frac{11}{26}$	d) None of the	ese	
22		_ 0	_ = 0			.4
22.			ive 13 years is	7 9 respe	ctively, Find the probability tha	11
	both will live 15 year		(5 5)			
	a) $1 - \left(\frac{5}{7} \times \frac{5}{9}\right)$	b) $\left(\frac{3}{7} \times \frac{3}{9}\right)$	c) $\left(\frac{3}{7} + \frac{3}{9}\right)$	d) None of the	ese	
23.				the remaining a	are blue The probability of draw	ving
	red ball is $\frac{1}{6}$, then the	e number of blu	ue balls is			
24	a) 5	b) 10	c) 20	d) 25		:6
24.	<u> </u>			-	tour are red and two are green or st on a green face both time	
	a) $\frac{2}{3}$	b) $\frac{1}{9}$		$\frac{1}{1}$	-	
25.	3	,	2	3	ng four different suits of 13 card	ds
	each, If the first card	is replaced before			what is the probability that both	
	cards will be of a sam		1			
	a) $\frac{3}{51}$	b) $\frac{12}{51}$	$\frac{c}{4}$	d)Non	ie	
26.	If $\frac{n!}{r!} = 60$ then		\\\\			
	a) $n = 4, r = 3$	b) n=5, r=2	c) n=	5, r=3	d) none	
27.	If $\frac{n!}{r!(n-r)!} = 10 \text{ an}$	d n=5 then $\cdot =$		·		
	a) 9	b) 1	c) 2		d) 4	
28.	$\frac{(2n+2)!}{(2n)!} =$					
		4.2				
	a) $\frac{(n+1)!}{n!}$ b) $\frac{2!}{2!}$	1	c) (2n+2)(2n	+1) d) (2n	+1)(n+1)	
29.	If $\frac{(n+1)!}{(n-1)!} = 12$ then n	ı=				
	(n-1)! a) 2	b) 4	c) 3		d) 5	
30.	For positive integer v	solution of (x.	-2)!=(x-1)! is	_	,	
31.	a) x=1 Equation n!-(n-1)! = 4 a) 2	b) x =2 4 holds for n=	c) x=	3	d) x=4	
31.	a) 2	b) 3	 c) 4		d) 5	
32.	If there are n_1, n_2, n_3 al	like things of or	ne kind, secon	d kind and third	kind respectively then the num	ıber
	of permutations of n $(n_1)!$ $(n_2)!$ $(n_3)!$	_		<i>n</i> !	1) 0.1	
	a) $\frac{1}{n!} + \frac{2}{n!} + \frac{3}{n!}$	(n_1)	$)!(n_2)!(n_3)!$	c) ${(n_1)!+(n_2)!}$	$\frac{1}{+(n_3)!}$ d) none of these	
33.	Probability of drawin	ng one red and	one white ball	from a bag con	taining 6 red and 4 white balls i	is
	a) $\frac{8}{15}$	b) $\frac{2}{15}$	c) $\frac{7}{15}$		d) $\frac{4}{15}$	
34.	For two mutually exc a) φ	lusive events p				
35.	a) φ P(A\cap B)= P(A).P(B)	b) 1 if A and R are:	c) 0		d) P(A).P(B)	
55.						120
	<u>FOR I</u>	MORE ENTRY	Y TEST CON	<u>ITENT VISIT F</u>	PAKGET.PK	140

b) $\frac{1}{4}$ c) $\frac{2}{4}$

21.

picture card.

d) None of these

A card is drawn from a deck of 52 playing card. What is the probability that it is a spade card or

	a) dependent eventsc) mutually exclusive			ependent events austive events	
36.	Six men and five won		,		tennis match. How many
	pairs are possible? a) 5! x 6!	b) 30!	c) 30	d) None of these	
37.	A quiz consists of 5 n	nultiple –choice	questions. Ea	ch question has four ch	
		w many ways ca	an Ahmed who	o is totally unfamiliar v	with the topic answer all
	questions? a) 5 ⁴	b) 4 ⁵	c) 4 x 5	d) None of these	
38.		mbers can be m	ade from digit	s 4,5 when digits can b	e repeated.
• •	a) 8	b) 18	c) 6	d) None of these	
39.					letter, go to the bank, buy
	the afternoon paper. I a) 3!	-	c) 5!	d) None of these	
40.			,		an the interviewer see them
	one after another?	1) 40000	\ 2022		
41.	a) 40000 If 4 boys and 5 girl ar			d) None of the co	ther. Then no. of possible
71.	wave is		_		iner. Then no. or possible
	a) $9_{c_4} \times 9_{c_5}$	b) $9_{c_4,5}$	c) $9_{p_4} \times 9_{p_5}$	d) 5! X 4"	
42.	In an 'n' sided figure,				
4.0	a) 6	b) 7		d) 9	
43.	How many members digit may be repeated			formed by using the d	ligits 2, 3, 5, 6, 7. If each
	a) 125	b. 625	c. 312	d. None	
Unit#	08		Bir əmial Tl	<u>heorem</u>	
1.	If $n < 0$ in binomial se	eries $(1 + x)^n$, th	$\operatorname{len} T_{r+1} =$		
	a) $\binom{n}{r} x^r$	b. $\frac{n(n-1)(n-1)}{r(r-1)(r-1)}$	$\frac{2)}{(n-r+1)}$ $\frac{(n-r+1)}{(n-r+1)}$	$\frac{1}{1}x^r$ c. $\frac{n!}{r!(n-r)!}x$	d. All of these
2.	The general term of				
	a) $\binom{7}{r} \left(\frac{2}{x}\right)^{7-2r}$	b. $\left(\begin{array}{c} 1 \\ \end{array}\right)^r \left(\begin{array}{c} 7 \\ \end{array}\right)$	$\left(\frac{2}{x}\right)^{7-r}$	c. $2r {7 \choose r} \left(\frac{2}{x}\right)^{7-r}$	d. None
3.	The coefficient of a ¹⁷ a) 12376	in the xpansio b) -123 /6		² is d)924	
4.	The term independent	_	$(1+\frac{1}{x^2})$,	. 7
	a) 4c_3	b. ${}^{3}c_{2}$	7	c. ⁷ c ₄	$d.^7 c_3$
5.	The sum of binomial	coefficients in	(x + y)' is:		
	a) 64	b. 32	c. 6 c 6		d.128
6.	Last term of the expre	ession $(a + \sqrt{b})$	$\left(\frac{1}{b}\right)^{12}$ is:		
	a) a^{12}	b. a^{13}	c. <i>b</i> ⁶		d. <i>b</i> ¹²
7.	In the expansion of ($3x-\frac{1}{x^2}\bigg)^{10},$	then from end	15 th term is:	
	a) $\frac{14681}{x^5}$	b. $\frac{17010}{x^8}$	c. $\frac{134}{x}$	<u>486</u>	d. $\frac{14851}{x^6}$
8.	The sum of all coeffic	cients in the exp	eansion of (3 -	$+ 2x)^4$ is:	
	a) 16	b. 625	c. 30		d. 32
9.	If n is even the expans	sion of $(a + b)^n$	then $\left(\frac{n}{2}+1\right)$ th	n term will be	term.
			` /		

		c) Middle	d) None of the	ese
10.	${}^{n}C_{0}$ ${}^{n}C_{1}$ ${}^{n}C_{2}$ etc. does not exist wh	nen n is		
	a) Whole number b) Eve			
	c) Prime number d) Neg		on	
11.	$(a+x)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} x^r$ where a a	nd x are		
	a) Only Natural number	b) Only Whole	e numbers	
	c) Complex numbers	d) Only Real r	numbers	
12.	ⁿ c ₄ exists when n is			
		$c)$ n ≥ 4	d) None of the	ese
13.	If n is any positive integer then n! >			
	a) $n > 5$ b) $n \ge 5$,	d) $n > 3$	
14.	The sum of the odd coefficients in the			
	a) 4 b) 8	c) 12	d) 16	\
15.	If n is any positive integer then $\begin{pmatrix} 5 \\ 5 \end{pmatrix}$			
	a) $\binom{n+5}{6}$ b) $\binom{n+5}{5}$	(n +	-4)	(n+6)
	a) b) 5	6) (4		a) (6)
1.6	$C_{2} = 1$	· 		
16.	General term of $(x^2 - \frac{1}{x})^{2n}$ involv	/es		
	a) $\binom{2n}{r}$ b) x^{4n}	-3r c' (-1)r		d) all (a), (b)&(c)
17.	If x is so small that its square and h	igher Lower can	he neglected t	hen
17.	4	igner jower sun	i de neglecteu t	
	$\frac{1-x}{\sqrt{1-x}} \approx $	λ		
	$\sqrt{1-x}$ a) $1+\frac{3}{2}x$ b) $1-\frac{1}{2}x$	c) 1 + 2		
	a) $1 + \frac{3}{2}x$ b) $1 - \frac{1}{2}x$	c) 1 + 2	X	d) 1-x
		42		
18.	Middle term in the expansion of $\frac{1}{\lambda}$	$-\frac{\pi}{2}$) ¹² is		
	231	1 -	231	_
	a) $\frac{231}{16}x^6$ b) $\frac{1}{64}$	c) $\frac{1}{216}x^8$	d) $\frac{231}{16}$	$-x^7$
		34	10	
19.	Term independent of x in the expans	sion of $(3a - \frac{x}{3a})$	4 is	
	a) 27a ⁴ b) 81a	Su	c) -36a ²	d) 6a ²
20.	Sixth term in the expansion of $(\frac{x}{2} -$	$(\frac{2}{3})^6$ is		
	L	λ		1) 20/3
2.1	a)- $96/x^9$ b) $-3x^3/8$	c) 15/4		d) $-20/x^3$
21.	$x^{2n-1} + y^{2n-1}(x \neq -y) \text{ has a factor}$			1 4 1 4 1
22	a) x+y b) x-y	c) y-x		d) (b) and (c)
22.	Inequality $n^2 > n+3$ holds for integra		•	d) = <2
•	a) $n \ge 0$ b) $n \ge 1$	c) $n \ge 3$		d) $n \le 2$
23.	Statement $x+1$ is a factor of $x^{2n}+a$ is		f a=	1) 0
24	a) 1 b) -1	c) 0		d) 2
24.	The coefficient of the third term of (a) 4 b) 5	$(x + y)^{-}$ is c) 6	d) 7	
25.			<i>a)</i> /	
	The third term of $(a + b)^{10}$ is a) $15a^8b^2$ b) $45a^8b^2$	c) $45a^2h^8$	d) $15a^6b^8$	
26.	In the expansion of $(a + b)^n$, The mid			

a)
$$\left(\frac{n}{2} + n\right)$$
 th

a)
$$\left(\frac{n}{2} + n\right)$$
 th b) $\left(\frac{n+1}{2}\right)$ th and $\left(\frac{n+3}{2}\right)$ th

c)
$$\left(\frac{n+1}{2}\right)$$
 th

d)
$$\left(\frac{n+3}{2}\right)$$
 th

The expansion of $(8-5x)^{-2/3}$ is valid when 27.

a)
$$-5 < x < 5$$

b)
$$\frac{-5}{8} < x < \frac{5}{8}$$
 c) $-\frac{8}{5} < x < \frac{8}{5}$

c)
$$-\frac{8}{5} < x < \frac{8}{5}$$

d)
$$1 < x < \frac{5}{4}$$

No of terms in the expansion of $(2x^2 - 3y^3)^7$ is 28.

The fourth term of $(a-2b)^{12}$ is 29.

a)
$$-1760 a^9 b^3$$

b)
$$-1760 a^3 b^9$$

c)
$$-1760 a^9 b^9$$

d)
$$-1760 a^3 b^3$$

The middle term of $(a - b)^8$ is 30.

a)
$$70 \text{ a}^5 \text{ b}^5$$
 b) $70 \text{ a}^4 \text{ b}^4$ c) $70 \text{ a}^3 \text{ b}^5$ d) $70 \text{ a}^5 \text{ b}^3$

b)
$$70 a^4 b$$

c)
$$70 \text{ a}^3 \text{ b}^3$$

Unit#09

TRIGONOMETRY(Part-1)

If $\tan \theta = \frac{7}{13}$ then value of $\frac{3 \sin \theta + 2 \cos \theta}{\cos \theta + \sin \theta} = ?$ 1.

d. None

2. $\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \dots \cos 180^{\circ} = is$:

d. None

If $90^{\circ} < \alpha < 180^{\circ}$ and $270^{\circ} < \beta < 360^{\circ}$ then which cannot be true: 3.

a)
$$\sin \alpha = \sin \beta$$
 b. $\tan \alpha = \sin \beta$. $\tan \alpha = \tan \beta$

b.
$$\tan \alpha = \sin \beta$$

$$\alpha$$
 tan α = tan β

d.
$$\sin \alpha = \cos \beta$$

3 radians = _____ degrees: 4.

 190°

If $\cos \theta = \frac{1}{2}$ and θ lies in the 1th quant then $\cos \frac{\theta}{2} =$ ______ 5.

a.
$$\sqrt{\frac{3}{2}}$$

b.
$$\frac{\sqrt{3}}{2}$$

d.
$$-\frac{\sqrt{3}}{2}$$

A sector AoB of a circula region having radius 8m and angle 45° at the centre of the sector has area: 6.

a)
$$2\pi$$

b.
$$2 \pi^{2}$$

d.
$$8\pi^{2}$$

cos 255° + sin 165 = a) 1 b. 6 c. $\frac{\sqrt{2}+1}{\sqrt{2}}$ 7.

c.
$$\frac{\sqrt{2}+1}{\sqrt{2}}$$

d.
$$\frac{\sqrt{3}-1}{\sqrt{2}}$$

Range of $y = 3 \sin (3x + 1)$ is: 8.

a)
$$-1 \le y \le 1$$
 b. $-3 \le y \le 3$

b.
$$-3 \le y \le 3$$

c.
$$-\frac{1}{3} \le y \le \frac{1}{3}$$

d. None

 $\cos(x + y) = \frac{1}{2}$ and $\sin(x - y) = \frac{1}{2}$ then: 9.

a)
$$x = 30^{\circ}, y = 30^{\circ}$$
 b. $x = 45^{\circ}, y = 15^{\circ}$

$$0. x = 45, y$$

c.
$$x = 15^{\circ}$$
, $y = 45^{\circ}$ d. $x = 60^{\circ}$, $y = 30$

d.
$$x = 60^{\circ}, y = 30^{\circ}$$

 $\sin^2 \frac{\pi}{3} + \cos^2 \frac{\pi}{3} + \cot^3 \frac{\pi}{4} =$ 10.

$$c_{1}-2$$

a. 3/2 b.1 c. -2 d.2 $\sec^2 A + \cos ec^2 A = \sec^2 A \cos ec^2 A$ is valid for: 11.

a.
$$A \neq \frac{n\pi}{2}$$
, $n \in Z$ **b.** $A \neq \left(\frac{2n+1}{2}\right)\pi$, $n \in Z$

$$= \sec^2 A \cos \theta$$

$$c. A \neq n\pi, n \in Z$$

c.
$$A \neq n\pi$$
, $n \in Z$ d. $A \neq (2n+1)\pi$, $n \in Z$

If $\sqrt{2 + \sqrt{2 + 2\cos 4\theta}} = k \cos \theta$, then k = ?12.

a)
$$-2$$

c.
$$\cos \theta$$

 $\sin 19^{\circ} \cos 11^{\circ} + \sin 71^{\circ} \sin 11^{\circ} = ?$ 13.

a)
$$-\frac{1}{2}$$

b.
$$\frac{\sqrt{3}}{2}$$

c.
$$\frac{1}{2}$$

b.
$$\frac{\sqrt{3}}{2}$$
 c. $\frac{1}{2}$ d. $-\frac{\sqrt{3}}{2}$

14.	If $x \to \frac{\pi}{2} + \theta^{\circ}$, then graph of	tanx increases	infinitely in:				
15.	a) I-quadrant The vertical as		uadrant as $f(x)$	c. III-quadr c) = $\tan 2x$ and		. IV-quad	rant	
	a) $x = \frac{\pi}{6} \pm nx$	$\pi, n \in Z$ b):	$x = \frac{\pi}{4} \pm \frac{n\pi}{2},$	$n \in Z$ c) _x	$=\frac{\pi}{6}\pm\frac{n\pi}{2}$, n	$a \in Z$	$1)_{x=\frac{\pi}{2}\pm\frac{n\pi}{4}},$	$n \in Z$
16.	Which of the sa) Tan 1 = Tan	following is conn2	rrect b) Tan 1 < Tax	n 2	0 3		0 4	
	c) Tan 1 > Tan	n2	d) Tan 1 = $\frac{2}{3}$	Гап2				
17.	Function havi	ng amplitude 2	and period π					
	a) $\frac{1}{2} Cos \frac{x}{2}$	b) 2Cc	os2x	c) $\frac{1}{2} Sin \frac{x}{2}$	d) $2\cos\frac{x}{2}$	<u>c</u>		
18.	Sin 187° + Co a) Zero		c) Neg	entive d) 7	ero or Ne sat			
10	*	,	c) Neg	ative d) z	icro or in gar	.TVC		
19.	$\frac{Tan180^{\circ} + Tan180^{\circ}}{1 - Tan180^{\circ}}$	$\frac{1}{an60^{\circ}} = $		_				
	VS	V S	c) $\sqrt{3}$	d) - $\sqrt{3}$	V			
20.	$Cos_{40^{\circ}}^{4} - Sin_{40^{\circ}}^{4}$							
		b) Tan80°		80°	(d) Cos80	0		
21.	If $\sin \theta = \frac{2}{3}$ an	d $\cos \theta < 0$ The	en Tan2 $\theta =$					
	a) $-4\sqrt{5}$	b) $\frac{4\sqrt{5}}{5}$	c) r (5		$d) \frac{4\sqrt{5}}{9}$			
22.		· · ·	$x + \sin x$ has $\frac{1}{x}$	amplitude o	of			
22	a) $\sqrt{3}$	b) $2\sqrt{3}$	c) $\sqrt{2}$		d) 2			
23.	a) Sin120°	b) Cos240°	$c_j \sin 2$	240°	d) Cos60	o		
24.			aiod of the func		os px equals	to $\frac{2\pi}{3}$		
	a) 3	b) $\frac{1}{3}$	c) 2		d) 6			
25.	If $0 \le x \le \frac{\pi}{2}$	Then the raxi	mum value of S	$\sin\frac{1}{3}x$ is				
	a) 1	b) $\frac{1}{2}$	c) 0		d) $\frac{1}{3}$			
26.	Period of the t	function $f(x) =$	$\frac{Sinx}{1 + Cosx}$ is c) $\frac{\pi}{2}$		J			
	a) 2π	b) π	c) $\frac{\pi}{2}$	d) 4π				
27.	$\frac{Cot38^{\circ}}{Tan52^{\circ}} = \underline{\hspace{1cm}}$	·						
	a) 0	b) $\sqrt{3}$	c) ∞	d) 1				
28.		osses the $x - ax$						
	1 – Cos A	a) One Time $\sqrt{3}$	b) Two Times	c) 1	Three Times	u) S1X 11	mes	
29.	If $\frac{1}{Sin\theta} =$	$\frac{\sqrt{3}}{3}$ Then $\theta =$		-				
	a) 15°	b) 30°	c) 45°	d) 60°				

30.	The angle between 0° and 360° and co terms a) 60° b) 100°	inal with -620° is c) 130° d) Nor	as of these
31.	If $Tan^2 \theta + 1 = Sec^2 \theta$, Then $\theta \in R$ but	c) 130 d) Noi	ne of these
	a) $\theta \neq n\pi, n \in \mathbb{Z}$ b) $\theta \neq (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$	Z c) $\theta \neq 2n\left(\frac{\pi}{2}\right)\frac{\pi}{2}$	$n \in \mathbb{Z}$ d) None of these
32.	If $\sin \theta + \operatorname{Cosec} \theta = 2$ Then $\sin^2 \theta + \operatorname{Cosec}^2$	$^{2}\theta = $	
33.	a) 2 b) 4 c) 0 If horizontal line between y = -1 and y = 1 i a) One b) Two c) Infinite	ntersects the graph of y d) None of the	· · · · · · · · · · · · · · · · · · ·
34.	$Tan\frac{A}{2} + Cot\frac{A}{2} =$		
35.	a) 2Cosec2A b) 2CoseA c) 2CosecA $\frac{Tan2\theta}{1 + Sec2\theta} = \frac{1}{1 + Sec2\theta}$	d) 2SinA	
26	a) $\cot \theta$ b) $\cos \theta$ c) $\sin \theta$		
36.	A co-terminal angle of $-\frac{17\pi}{3}$ such that $0 \le 6$		
	a) $\frac{2\pi}{3}$ b) $\frac{\pi}{3}$	c) $-\frac{\pi}{3}$	d) $\frac{\pi}{2}$
37.	Negative co-terminal angle of -200 is	*	2
38.	a) -560 ⁰ b) -500 ⁰ Which point do not lies on terminal side of		d) -400 ⁰
	a) (1,0) b) (0,1)	c'(-1,0)	d) none of these
39. ne of t	Which trigonometric function can be undefined the	red for some quadrant	al.
	a) secx b) cosecx	c) te ix	d) all of these
40.	$1+\cot\theta = \csc 2\theta$, where θ is not 2.1 integration.	*	1) 6.4
		c) $\frac{3\pi}{2}$	d) none of these
41.	Which is undefined. a) $\csc 5 \pi$ b) $\cot 5 \pi$	c) cot360 ⁰	d) $\tan 360^{\circ}$
42.	Which one is not the trigonometric identity.		,
	a) $\tan \theta = \frac{\sin \theta}{\cos \theta}$ b) $\sin^2 + \cos \theta = 0$	c) $\sin\theta^2 + \cos\theta^2 = 1$	d) none
43.	$\frac{3}{4}$ rotation in anti-clockwise direction is		
	4 a) 270 b) -270 ⁰	c) 90 ⁰	d) none
44.	If $\sin \theta + \csc \theta = 2$ then $\sin^2 \theta + \csc^2 \theta = $		
	a) 1 b) 2	c) 4	d) none of these
45.	$\sin \frac{235}{2}\pi + \cos \frac{235}{2}\pi =$	·	
	a) 0 b) -1	c) $\frac{\sqrt{3}}{2}$	d) $\sqrt{3}$
16		$c){2}$	d) \(\sqrt{3} \)
46.	Cot 315° =		
47.	$Sin(-780^{\circ}) = $	<i>[</i> 2	
	a) $\frac{1}{2}$ b) $-\frac{1}{2}$ c) $\frac{\sqrt{3}}{2}$	d) $-\frac{\sqrt{3}}{2}$	
48.	$\cos 15^{\circ} - \sin 15^{\circ} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
	a) $\frac{1}{\sqrt{2}}$ $b) - \frac{1}{\sqrt{2}}$ $c)\sqrt{2}$	d) – $\sqrt{2}$	

A reference angle θ is always 49.

$$a)\pi/2 < \theta < \pi$$

$$b)\pi < \theta < 3\pi/2$$

$$c)$$
 0 < θ < $\pi/2$

$$c) 0 < \theta < \frac{\pi}{2}$$
 $d) \frac{3\pi}{2} < \theta < 2\pi$

If $\theta = 210$ ° then reference angle is 50.

The period of 15 sec $2\pi/3$ is _____ 51.

$$a)3\pi$$

$$b)2\pi$$

$$c)\pi$$

$$d)\pi/3$$

Domain of the function $Tan \frac{4}{3}x$ is 52.

b)
$$R - \left\{ x / x = \frac{3K\pi}{8} \right\}$$

c)
$$R - \left\{ x/x = (k+1)\frac{3\pi}{8} \right\}$$

c)
$$R - \left\{ x/x = (k+1)\frac{3\pi}{8} \right\}$$
 $d) R - \left\{ x/x = (2k+1)\frac{3\pi}{8} \right\}$ Where $K \in \mathbb{Z}$ Range of Cosec $\left(\frac{\pi}{5} x + \frac{3}{4} \right)$ is _____

Range of Cosec $\left(\frac{\pi}{5}x + \frac{3}{4}\right)$ is _____ 53.

b)
$$R - \left\{ y / y \in R^{\wedge} - \frac{4}{3} \le y \le \frac{4}{3} \right\}$$

c)
$$R - \{y \mid y \in R^{-1} \le y \le 1\}$$
 d) $R - \{y \mid y \in R^{-1} \le y \le \frac{1}{5}\}$

54. Range of function 3Tan5x is

a)
$$R - [-5, 5]$$

b)
$$R - [-1, 1]$$

If $\operatorname{Sec} \theta = -\frac{5}{4}$ and $\operatorname{Sin} \theta > 0$ Then $\operatorname{Tar} \theta = \frac{1}{4}$ a) $\frac{4}{3}$ b) $\frac{3}{4}$ c) $-\frac{4}{3}$ 55.

a)
$$\frac{4}{3}$$

b)
$$\frac{3}{4}$$

c)
$$-\frac{4}{3}$$

If a sector of circle has an arc length of 2π inches and an area of 6π square inches what is the radius 56. of the circle.

- a) 1
- b) 6
- d) 3

If a circle has circum terence 1.16 inches. Then the area of a sector with a central angle $\frac{3\pi}{2}$ radians is 57.

- a) 24π
- c) 48π c) $\frac{96}{\pi^2}$ d) $\frac{48}{\pi}$

Tan (- 135°) equals to 58.

- c) 1
- d) -1

Sec $\frac{11\pi}{\epsilon}$ equals to 59.

- b) $2/\sqrt{3}$ c) $\frac{\sqrt{6}}{3}$ d) $-\sqrt{2}$

60. If Sin $37^{\circ} = 0.6$ Then Sin $74^{\circ} =$

- a) 0.12
- b) 0.84
- c) 0.96
- d) 0.76

Unit#10

Trigonometric (Part-II)

Inverse Trigonometric functions, solution of triangle and Trigonometric Equations.

 $\tan^{-1}\left(\frac{2x}{1-x^2}\right) =$

	a) $\tan^{-1} x$	b . 2 ta	$n^{-1} x$	c. tan	$-1 \frac{2}{r}$	d. 2 tan x
2.	If $\sin x = 0$,				λ	
	a) $0, \pi/2$	b. 0, –	$\pi/2$	$\mathbf{c}.n\pi$	$d\pi$	$\frac{\pi}{2}$
3.	The value of a	angle α in ΔAI	BC, if angle	$\beta = \tan^{-1}$	(2) and angle	$\gamma = \tan^{-1}(3)$
	a) $\frac{\pi}{4}$	b. $\frac{\pi}{3}$		c. $\frac{3\pi}{4}$		d . π
4.	The value of x	$x ext{ if } cos^{-1} \frac{\sqrt{3}}{2} =$	$=\frac{\pi}{2}-\sin^{-1}$	x		
	a) $\frac{1}{2}$	b. $\frac{1}{\sqrt{2}}$		c. $\frac{\sqrt{3}}{2}$		d.1
5.	The general so	olutions of sin	$x \cos x = \frac{1}{2}$	are:		
	a) $\{x / x = \frac{\pi}{6} - \frac{\pi}{6} \}$	$+2k\pi, k \in Z$	b. $\begin{cases} x / x = \frac{3\pi}{4} \end{cases}$	$\frac{\tau}{k} + k\pi, k \in \mathcal{L}$	z c. $\{x / (x - x)\}$	$x = \frac{\pi}{1.2} + k\pi, k \in \mathbb{Z}$ d. None
6.	(, if $a = 10$, $b = 3$	(-		,	12
7	a) 90° Cosec ⁻¹ x =	b. 60°		c. 45°		u. 3 J°
7.	a) $Sin^{-1} \frac{1}{x}$	b) Sec ⁻¹ 1/2	/ x	$c) Sec^{-1}(-x)$	$(c) d \in \mathbb{S}^{in^{-1}} \left(-\frac{1}{2} \right)$	$\frac{1}{x}$
8.	$\sin^{-1} x + \sin^{-1} x $	$\ln^{-1} y = \frac{2\pi}{3}$, then cos	$s^{-1}x + cc$	$os^{-1} y = ?$	
		b. $\frac{\pi}{2}$				
9.	$Sin \left[ArcCos \right]^{3}$	3/ ₅]=			Y	
	a) $\frac{3}{5}$	b) $\frac{4}{5}$	c) $\frac{1}{5}$	a, 2/5	•	
10.		following is no		A		
	a) Arc $\sin \frac{1}{9}$	b) Arc Cos (-	$\left(\frac{4}{3}\right)$	Tan $\frac{11}{2}$	d) None of the	ese
11.		Γan ⁻¹ x is along b) y - axis		$r = \mathbf{x}$	d) None of the	ese
12.	If $x = Tain^{-1} \frac{1}{2}$	and $y = Tan^{-1}$	Then $x + y$	y =		
	a) $\frac{\pi}{\epsilon}$	b) $\frac{2}{3}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{4}$		
13.	U	following is (a	3	4		
	I) Arc Sin (1)	+ Arc Sin (-1)	= 0 II) A	Arc Cos (1) + Arc Cos (-1	1) = 0
		= Arc Cos (-x) b) II Only	•	II only	d) I and II On	lv
14.	Arc Sin (0.8)	+ Arc Cos (0.8) b) 16°) =		1) 00	J
15.		Then Tan 2 x				
	a) $\frac{3}{5}$	b) $\frac{2}{3}$	c) $\frac{3}{2}$	<u>3</u> 4	d) None of the	ese
16.	To make a trig	gonometric fun b) Period	ction one to	one its	4) NI C.1	_ is restricted.
17.	a) Domain If Tan ⁻¹ 3 + Ta	o) Period $an^{-1} x = Tan^{-1} 8$	c) R Then x =	tange	a) None of the	ese
	a) $\frac{1}{5}$	$an^{-1} x = Tan^{-1} 8$	c) $\frac{5}{14}$	d) $\frac{14}{5}$	_	
18.	9			and area o		m ² Then the included angle is

19.	In \triangle ABC if c a) π	= 2 and \hat{C} = 3 b) 2π	30° Then the a c) 4π		cumcircle of ΔA	ABC is
20.	/	,	,	,	is 2m, then area	of Δis
			c) 2 m ²		$\frac{3}{2}$ m ²	
21.	If the length o a) 3.5	f the sides of b) 3.2	triangle are 3,4 c) 2		n radius of circu 2.5	imcircle is
22.	If the lengths triangle is	of the sides of	f triangle are 3.	5,7 Then the	largest angle of	f the
	a) $\frac{\pi}{2}$	b) $\frac{3\pi}{6}$	c) $2\pi/3$	d)	$\frac{3\pi}{4}$	
23.	In \triangle ABC if a a) 60	= 13cm, b = b) 50	12cm, c = 5cm c) 40		f triangle is 30	
24.	$\mathbf{rr}_1\mathbf{r}_2\mathbf{r}_3 = \underline{\hspace{1cm}}$,		
	a) $\frac{abc}{\Delta}$	b) abc	$c)\Delta$	$d)\Delta^2$	1	
25.	Solution set o	f the equation	$2\cos\theta + \sqrt{3} =$	= 0 is		
	a) <i>\phi</i>	b) Finite		d) None	(
26.	, ,	,	then $Cos\theta_1$	· · · · · · · · · · · · · · · · · · ·	$s\theta_3 =$	
	a) 3		ny real number			
27.	_	-	on has seconda			
			c) Sec $\theta = 0$			
28.	If n is the nun a) 0	nber of solution b) 2	ons of $\sin \theta$ Coc) 4	$\mathbf{s} \theta = 0$ where \mathbf{d}) 5	$e 0 \le \theta \le 2\pi \text{ Th}$	en n is
29.	Solution of Si	n2x + Cos2x =	$=\sqrt{2}$ is			
	a) $\left\{ \frac{\pi}{8} + \frac{n\pi}{2} \right\}$ c) $\left\{ \frac{\pi}{4} + n\pi \right\}$:	$\}: n \in \mathbb{Z}$	b) $\left\{\frac{\pi}{8} : n\pi\right\}$	$\begin{cases} : n \cdot Z \\ \end{bmatrix}$		
30.	Solution of 3		d) 74 + 2	$\left\{\begin{array}{c} -1 \\ 2 \end{array}\right\}$ $n \in \mathbb{Z}$		
	a) $\left\{\frac{5\pi}{6} + n\pi\right\}$	$: n \in \mathbb{Z}$	$\left(\frac{1}{6} + n\pi\right)$: $n \in Z$		
	c) $\{\pi/3 + n\pi\}$:	$n \in \mathbb{Z}$	d) None of t	hese		
31.	$\sin x + \cos x = 2$					
	a) no solution			b) exactly	one solution	
	c) at least one	solution		d) infinite	ly many solutio	n
32.	$Sec^{-1}x = \underline{\hspace{1cm}}$		_•			
	a) cosx	b) (se		c)	$\cos^{-1}(\frac{1}{x})$	d) none
33.	$\cos^{-1}(-x) = $ a) $\cos^{-1}x$		·			
					-cos ⁻¹ x	d) none
34.		_	3,14 and 15 th	en r=		_·
	a) $\frac{67}{8}$	b) $\frac{65}{4}$	5	c)	4	d) 24
	G	4		,		,
35.			\approx 7 then m \angle	C =	•	0
26	a) 40^0	b) 45		,	500	d) 55^0
36.			d m $<$ c $=30^0$ the		•	1) 1/2
37.	a) 2 If sinx=x then	b) ½ v in radians i	C	c)	3	d) 1/3
31.	a) $\pi/4$	b) $\pi/2$		c)	0	d) π/3
38.	Maximum val	,		C)	V	a) 1013

- a) 1

- c) $\sqrt{2}$
- d) 2

- Sin $[2 \sin^{-1}(0.8)] =$ ___ 39.

- c) 0.48
- d) 0.96

a) 1

40.

- If $4\sin^{-1}x + \cos^{-1}x = \pi$ then x =_

- c) $\frac{1}{\sqrt{2}}$

- 41.
 - The range of $y = Sin^{-1}x$ is
 - a) $\left(-\frac{\pi}{2}, 0\right)$ b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- c)R
- d) $\left(-\pi/2,\pi/2\right)$
- The domain of the function $y = \cos^{-1}x$ is 42.
 - a) |0,1|
- b)[1,0] c)[-1,1]
- d)R

- 43.
 - The principal value of $\operatorname{Sin}^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is
 - a) $-\frac{2\pi}{3}$ b) $-\frac{\pi}{3}$ c) $\frac{4\pi}{3}$ d) $\frac{5\pi}{3}$

- 44.
- Tan (are Sin x) = _____ when -1 < x < 1 a) $\frac{x}{\sqrt{1-x^2}}$ b) $\frac{x}{\sqrt{1-x^2}}$ c) $\sqrt{1-x^2}$ d) $-\frac{x}{\sqrt{1-x^2}}$

a)
$$\frac{x}{\sqrt{1-x^2}}$$

- If Sin⁻¹ $x = \frac{\pi}{5}$ for some $x \in (-1, 1)$ Then $Cos^{-1}x =$ 45.
 - a) $\frac{3\pi}{10}$ b) $\frac{5\pi}{10}$ c) $\frac{7\pi}{10}$

- $Tan^{-1}x > Cot^{-1}x$ holds for 46.

 - a) x > 1 b) x < 1
- c) x = 1
- 1) All values of x
- The principal value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ is 47.
 - a) $-\frac{2\pi}{3}$ b) $\frac{2\pi}{3}$ c) $\frac{4\pi}{3}$
- d) None of these

Unit#11

Function and Limit

- The graph of which furction is 1.
 - **a)** y = |x + 3|
- b. y = x 3
- **b)** y = |x 3|
- The function f|x| = |x| + x is (if x > 0) 2.
 - a) Even function

- b. Odd function
- b) Neither even nor odd
- d. Both even & odd function
- If $f(x) = \frac{e^x + 1}{e^x 1}$ then f(x) is 3.
 - a) Odd function
- b. Even function
- c. Both
- d. Not a function

- The graph 4.
 - a) Odd

- b. Even
- c. Neither even nor odd
- d. Both even & odd
- 5. The domain of $y^2 = -4x$ is
- b. $[0,\infty)$
- c. $x \leq 0$
- d. None

- Range of $y = 2x^3 4$ is 6.

 - $_{a}$, $R \{4\}$ $_{h}$ $[4, \infty)$
- c. R

d.(2,4)

a)
$$\frac{3}{2}$$

b)
$$\frac{1}{2}$$

d)
$$\frac{2}{3}$$

22.
$$L_{x}$$

$$\lim_{x \to 0} \frac{\log(Cosx)}{x} = \underline{\qquad}$$

If
$$f(x) = \begin{cases} xSin\frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$
 Then $\underset{x \to 0}{Lim} f(x) = \underbrace{\begin{cases} xSin\frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}}$

$$\lim_{x \to \infty} \frac{x^2 + x}{x^3 + x^2 + 1} = \underline{\hspace{1cm}}$$

25.

$$\lim_{x \to -\infty} \frac{x+2}{\sqrt{3x^2 - 4}} = \frac{1}{1}$$
a) $\frac{1}{2}$
b) $-\frac{1}{\sqrt{3}}$
c) $\frac{1}{\sqrt{3}}$
d) $-\frac{1}{4}$

a)
$$\frac{1}{2}$$

b)
$$-\frac{1}{\sqrt{3}}$$

c)
$$\frac{1}{\sqrt{3}}$$

d)
$$-\frac{1}{2}$$

26.

28.

$$f(x) = \frac{x^n + a^n}{x + a}$$
 is polynomial if n >0 and:

a) n is prime b) n is odd c) $x \ne -a$ If $x = a^y$, they $y = log_a x$, provided:

d) b and c

27.

b)
$$a \ge 0$$

If y is a function 'f' of x such that $\frac{f(-x)}{y} - 1 = 0$, then f is a) even

c) nend er even nor odd

d) does not exists

Domain of $f(x) = \begin{cases} x^2 + 1 & x \ge 0 \\ -x + 1 & x < 0 \end{cases}$ s; 29.

b)
$$[-\infty, \Omega]$$

Range of $y = \sqrt{7x + 6}$ is ; 30.

a)
$$[6, \infty)$$

$$(-6)$$

c)
$$[0, \infty)$$
 d) $(6, \infty)$

Range of $y = \sqrt{x} + 0$ is, a) $[6, \infty)$ b) (-2, 6]Range of $\frac{x^2 - 9}{x - 3}$, $x \ne 3$ is; a) R-{3} b) R-{9} 31.

a)
$$R-\{3\}$$

a) $R - \{-1\}$

c)
$$R-\{0\}$$
 d) $R-\{6\}$

32.

Range of y =
$$\frac{x^3 + 2x^2 + 2x + 1}{x + 1}$$
, $x \ne 1$ is;

$$R-\{0\}$$

33.

Function $f(x) = \frac{x}{|x|}$ is continuous at;

a) -
$$\infty < x < \infty$$

b)
$$x=0$$

c)
$$0 \le x < \infty$$
 d) R-{0}

34. Identity function is symmetrical with respect to

- a) x-axis
- b) y-axis
- c) origin
- d) all of these

35.

- Inverse function of $y = e^x$ is;

- a) natural logarithmic function of x
- b) Common logarithmic function of x
- c) natural logarithmic function of y
- b) common logarithmic function of y

Which of the following functions has an inverse which is also a function? 36.

- (I) $y = x^2 24$ (II) $y = \sqrt{4 9x^2}$ (III) |x + 1|

- a) III only

- b) II only c) I only d) None of these

37.

If
$$f(x) = \frac{1}{3}x + 2$$
 and $g(f(x)) = x$ Then $g(x) =$ _____

a)
$$-\frac{1}{2}x - 2$$

c)
$$\frac{3}{x+6}$$

b)
$$3x - 6$$
 c) $\frac{3}{x+6}$ d) $\frac{1}{3}x - 2$

38.

a)
$$x^2 - 3x + 2$$

If
$$f(x-1) = x^2 + 2$$
 Then $f(x) =$
a) $x^2 - 3x + 2$
b) $x^2 - 2x + 3$ c) $x^2 + 2x + 3$ d) $x^2 + 2$

For all real numbers x, a function f(x) is defined as $f(x) = \begin{cases} 9, x \neq 7 \\ 8, x = 7 \end{cases}$ Then $f(2) - f(3) = \begin{cases} 6, x \neq 7 \\ 8, x = 7 \end{cases}$ 39.

a) 1

Which of the following is the inverse of the function $f(x) = \sqrt{x} - 1$ for all x > 040.

a)
$$(x + 1)^2$$

b)
$$(x-1)^2$$
 c) $x^2 + 1$ d) $x^2 + 1$

c)
$$x^2 + 1$$

1)
$$\mathbf{v}^2 + 1$$

If f(x) is a function which of the following must be false 41.

(I)
$$f(5) = 3$$
, $f(6) = 3$ (II) $f(8) = 4$, $f(9) = 6$

(III) The graph of f(x) is same as that for the line x = 7

a) II Only

If x and yare real numbers and $y = \sqrt{4 - x^2}$ Then Minimum value of y is 42.

$$b) - 4$$

The domain of $f(x) = \frac{x^2 - 1}{x^2 - x}$ is $x^{2}-x$ a) R
b) R - {1}

The domain of f (x) = $\frac{x^{2}}{x^{2}-4}$ is
a) All Real numbers
c) All D 43.

c)
$$R - \{-1\}$$

$$C^{r}R = \{0, 1\}$$

44.

c) All Real numbers except ± 2

c) All Real numbers greater than 1 or less than or equal to 0

d) None of these

Unit#12

 $\frac{d}{dx}\sqrt{\sin\sqrt{x}} =$ 1.

a)
$$\frac{1}{4x \tan \sqrt{x}}$$

b.
$$\sqrt{x}$$

c.
$$\frac{\cos\sqrt{x}}{4\sqrt{x}\sin\sqrt{x}}$$

$$d \frac{\cos\sqrt{x}}{4\sqrt{\sin\sqrt{x}}}$$

The graph of the derivative of $= x^2$ and function itself intersect at a point 2.

$$c(-2-4)$$

d. None

Equation of tangent at (2,4) to 1' is curve $y = x^5$ is 3.

a) x - y - 4 = 0 b, x - y - 4 = 0

b,
$$x - y - 4 = 0$$

c)
$$x - 4y + 4 = 0$$
 d) None

If $x + y = \sin(x + y)$ then $\frac{dy}{dx} = ?$ 4.

a)
$$\cos(x+y)$$

a)
$$\cos(x+y)$$
 b. $\frac{-\sin(x+y)}{x+y}$

d. 0

 $\frac{d}{dx}\left(3^{\sqrt{2}x}\right) =$ 5.

a)
$$3^{\sqrt{2}x-1}\sqrt{2}x$$
 b. $3^{\sqrt{2}x} \ln 3$

b.
$$3^{\sqrt{2}x} \ln 3$$

c.
$$\ln 3 \frac{3^{\sqrt{2}x}}{\sqrt{2}x}$$

c.
$$\ln 3 \frac{3^{\sqrt{2x}}}{\sqrt{2x}}$$
 d. $\sqrt{2x} 3^{\sqrt{2x-1}}$

If $y = x^6 + 5x^5 - 7x^4 + 6x - 20$, then $y_6 = ?$ 6.

c. 7!

d. None of these

 $3^{x} + 3^{y} = 3^{x+y}$, then $\frac{dy}{dx} = ?$ 7.

The value of x at the point on the curve $y = x^2 - 8x + 3$ where the gradient is 2 8.

a) -5

c) 1

The function $f(x) = 1 + x^3$ has 9.

a) a minimum value at (0,0)

b) a maximum value at (0,0)

	c) Point of Infection a	t (0,1)	d) None of th	ese
10.	The two positive real a) 25,5	integers whose b)10,20	sum is 30 and their pr c) 40,-10	oduct is maximum are d) 15,15
11.	When $x = 0$, the function		•	
			c) Maximum	d) Minimum
12.	If $f(x) = \left(\frac{x^a}{x^b}\right)^{a+b} \left(\frac{x^b}{x^c}\right)^{a+b}$	$\int_{0}^{a} \left(\frac{x^{c}}{x^{a}}\right)^{c+a} the$	en $f'(x)$ is	
	a) x^{a+b+c} The point (1,1) on the	b)0	c) 1	d) None
13.		curve $y = x^3 -$		
	a) a maximum pointc) a minimum point	·	b) a point of inflexiond) None of these	l
14.			,	. what is the rate of increase of its
	circumference.	12.4.4	\ 2 .4	0.37
15	a) 2π	b) 1.4π	c) 2.4π	d) None of these
13.	i ne absolute maximu	m and minimui	m values of the function	on $f(x) = Sinx + Cosx \ x \in [0, \pi]$ are
	a) $\frac{1}{\sqrt{2}}$,-1	b) 1,-1	c) $\sqrt{2},-1$	d) No. e of these
	V 2	.1		()
16.	a) 2π The absolute maximum a) $\frac{1}{\sqrt{2}}$, -1 If $f(x) = \begin{vmatrix} x^3 & Cosx \\ 7 & 4 \end{vmatrix}$ a) $\begin{vmatrix} 3x^2 & -Sinx \\ 0 & 0 \end{vmatrix}$ If $f(x) = x + 3$, $g(x) = x + 3$, g	then $f'(x) = $		Y
	$3x^2$ -Sinx	$ 3x^2$ -Si	$ 3x^2 - S $	
	$\begin{vmatrix} a \\ 0 \end{vmatrix} = 0$	7 4	c) 4	d) None
17.	If $f(x) = x + 3$, $g(x) = x$	x^3 then $(g of)^{\prime}(x)$	x)=	_
	0	b)2x	c)2(y+3)	$-d) 3(x+3)^2$
18.	$\frac{d}{dx}Cot^{-1}\sqrt{\frac{1+Cosx}{1-Cosx}}$		~~/	
	11 2000			
	a) 1	b) $\frac{1}{2}$	c) 0	d) None
19	If $x = at^2$, $y = 2at$ then	$\frac{2}{dv/dx}$		
	a) 2a b) $\frac{1}{-}$	2	$\frac{\partial a}{\partial x}$ y	
	a) $2a$ $0) - t$		$\frac{\partial a}{\partial y}$ $d)\frac{y}{2a}$	
20.	Derivate of Sinx w.r.t		\ ~ !	1) 6
21	a) $-\cot x$ If $y = \sin^{-1} y^2$ then dy	b) -Tanx	c) Sinx	d) Cosx
21	a) -Cotx If $y = \sin^{-1}x^2$ then dy/ a) $\frac{2x}{\sqrt{x^4 - 1}}$	$\frac{1}{1}$ $-2x$	2x	-2x
	a) $\frac{1}{\sqrt{x^4 - 1}}$	$\sqrt{x^4-1}$	$(c)\frac{1-x^4}{\sqrt{1-x^4}}$	$(d) \frac{1-x^4}{\sqrt{1-x^4}}$
22.	Which of the following	ng can't be expa	anded as a Maclaurin's	s series?
	a) Sinx b) Cos			
23.			Then $-\pi \le x \le +\pi$ & x	x- axis is
24.	a) 0 b) 2 If $f(x) = 1$ 2x x < 0	c) 4	d) None	
Z 4.	If $f(x) = \ln 2x , x \neq 0$	then j (x)	1	
	a) $\frac{1}{ x }$	b) $-\frac{1}{x}$	c) $\frac{1}{x}$	d) None of these
25.	If $y = x^x$ then $dy/dx =$		c) x ^x (1-lnx)	
	4			d) None of these
26.	The function $f(x) = \frac{1}{x}$	has a stationar	y value when.	
	a) $x = 1$	b) $x = 0$	c) $x = -1$	d) undefined value
27.	$\frac{1}{\sqrt{x^2+1}}$ is the different	ntial coefficient	t of:	

b)
$$\ln(x + \sqrt{x^2 + 1})$$

a)
$$sinh^{-1}x$$
 b) $ln(x + \sqrt{x^2 + 1})$ c) $2 ln \sqrt{x + \sqrt{x^2 + 1}}$ all of d) these

28.
$$\frac{d}{dx} |3-x| =$$

a)
$$\pm 1$$
 b)
$$\begin{cases} 1 & \text{if } x > 3 \\ 0 & \text{if } x = 3 \\ -1 & \text{if } x < 3 \end{cases}$$

a)
$$\pm 1$$
 b)
$$\begin{cases} 1 & \text{if } x > 3 \\ 0 & \text{if } x = 3 \\ -1 & \text{if } x < 3 \end{cases}$$
 c)
$$\begin{cases} +1 & \text{if } x > 3 \\ \text{undefine if } x = 3 \\ -1 & \text{if } x < 3 \end{cases}$$

29. Derivative of
$$\begin{vmatrix} 3x^2 + 1 & \cos x \\ 2 & 3 \end{vmatrix}$$
 w.r.t x is

a) $\begin{vmatrix} 6x & -\sin x \\ 0 & 0 \end{vmatrix}$ b) $\begin{vmatrix} 6x & -\sin x \\ 2 & 3 \end{vmatrix}$

30. $f(x)=\sin^{-1} x$ is not differentiable at $x = -\infty$

a)
$$\begin{vmatrix} 6x & -\sin x \\ 0 & 0 \end{vmatrix}$$

b)
$$\begin{vmatrix} 6x & -\sin x \\ 2 & 3 \end{vmatrix}$$

c)
$$\begin{vmatrix} 6x & \sin x \\ 2 & 3 \end{vmatrix}$$
 d) 0

30.
$$f(x)=\sin^{-1} x$$
 is not differentiable at $x=$

31. Derivative of
$$f(x) = \cos^{-1}(\frac{x}{2})$$
 does not exists at:

a)
$$x = 2$$

$$b) = -2$$

a)
$$x = 2$$
 b) = -2 x
32. $f(x) = \ln\left(\frac{1}{x}\right)$ is differentiable in the interval:

a)
$$(-\infty, 0)$$

b)
$$(0, \infty)$$

c)
$$(-\infty,\infty)$$

d)
$$R-\{0\}$$

33. Exponential function of x,
$$f(x) = e^x$$
 increases in ir e-val:

a)
$$(0, \infty)$$

b)
$$(-\infty,0)$$

$$c$$
) $(-\infty,\infty)$

d)
$$R-\{0\}$$

34. Derivative of a function of a function whose graph is ' horizontal line is;

b)
$$y=1$$

Identity function do not have; 35.

36. If
$$y = e^{\ln(Sinx)}$$
 then $\frac{dy}{dx} =$

a) $\frac{1}{Sinx}e^{\ln(Sinx)}$ b) $Cot e^{\ln(Sinx)}$ c) Cosx d) Sinx

a)
$$\frac{1}{Sinx}e^{\ln(Sinx)}$$

b) Cot
$$2^{\ln(\tilde{y}inx)}$$

37. A turning point of the graph of y
$$\frac{Sinx}{x}$$
 occurs when.

a) Tan
$$x = -x$$

b)
$$\operatorname{Tan} x = \frac{1}{x}$$

c) Tan
$$x = x$$

c) Tan x = x d) Tan x =
$$\frac{-1}{x}$$

38. If
$$(x) = x - e^x$$
 then the graph of $f(x)$ has

- a) a minimum value at x = 0
- b) a maximum value at x = 0
- c) a minimum value at x = 0
- d) a maximum value at x = 1

39. Maclaurin's expansion of
$$e^x =$$

a)
$$1+x+\frac{x^2}{2}+\frac{x^3}{3}+\dots$$

Maclaurin's expansion of
$$e^{x} =$$
a) $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\dots$
b) $1+x-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\dots$

c)
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$$

None of these

40.
$$f(x) = x^2 + 2x - 3$$
 then $f(x)$ is increasing in the interval.
a) $(-\infty, -1)$ b) $(-1, \infty)$ c) $(-\infty, +\infty)$ d) None of these

a)
$$(-\infty,-1)$$

$$(-1,\infty)$$

c)
$$(-\infty,+\infty)$$

Unit#13

Integration

1.
$$\int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} dx =$$

a)
$$\ln(\sin 2x)$$

b.
$$-2 \ln (\sin 2x)$$

a)
$$\ln(\sin 2x)$$
 b. $-2\ln(\sin 2x)$ c. $-\frac{1}{8}\ln(\sin^2 x \cos^2 x) + c$ d. $\cot x + \tan x + c$

$$\cot x + \tan x + a$$

$$2. \qquad \int e^{\sqrt{x}} dx =$$

$$a) \quad 2\sqrt{x} \ e^{\sqrt{x}} + c$$

$$\frac{1}{2}e^{\sqrt{x}} + \sqrt{x} + c$$

b.
$$\frac{1}{2}e^{\sqrt{x}} + \sqrt{x} + c$$
 c. $2(\sqrt{x} + 1)e^{\sqrt{x}} + c$ d. $2(\sqrt{x} - 1)e^{\sqrt{x}} + c$

d.
$$2(\sqrt{x}-1)e^{\sqrt{x}}$$
 +

3.
$$\int \left[\sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right] e^x dx = ?$$

a)
$$e^{x} \cos^{-1} x + c$$

b.
$$e^{x} \sin^{-1} x + a$$

a)
$$e^x \cos^{-1} x + c$$
 b. $e^x \sin^{-1} x + c$ c. $e^x \cos ec^{-1} x + c$

4.
$$\int_{2}^{3} \frac{|x|}{x} dx = ? \text{ is}$$

$$\int_{0}^{k} \frac{1}{1+x^{2}} dx = \frac{\pi}{4}, \text{ then } k = ?$$

$$6. \qquad \int \frac{x}{x+1} dx = \underline{\qquad}.$$

a)
$$x - \ln|x + 1| + c$$

$$b) x + \ln|x+1| + c \qquad c) \ln|x-1| + c$$

$$c)\ln |z-1|+c$$

$$7. \qquad \int \left(e^{a \ln x} + e^{x \ln a}\right) dx = \underline{\hspace{1cm}}$$

a)
$$\frac{1}{x}e^{a\ln x} + e^{x\ln a} + c$$
 b) $\frac{e^{a\ln x}}{\ln x} + \frac{e^{x\ln a}}{\ln a + c}$ c) $\frac{x^{a+1}}{x} + \frac{a^x}{\ln a} + c$ d) None of these

$$b)\frac{e^{a\ln x}}{\ln x} + \frac{e^{x\ln a}}{\ln a + c}$$

$$(c)\frac{x^{a+1}}{c+1} + \frac{a^x}{\ln a} + c$$

8. If
$$f'(x) = \frac{1}{x} + \frac{1}{x^2 + 1} then f(x) =$$
a) $\ln|x| + Co \sec^{-1} x + c$
b) $\ln|x| + Co t^{-1} x + c$
c) $\ln|x| + Tanc^{-1} x + c$
d) $\ln|x| + Cos^{-1} x + c$

a)
$$\ln |x| + Co \sec^{-1} x + c$$

$$b) \ln |x| + Coi^{-1}x + c$$

$$c) \ln |x| + Tanc^{-1}x + c$$

$$d)\ln|x| + Cos^{-1}x + d$$

9. The general solution of the differential equation
$$\frac{y}{dx} = \frac{x}{x^2 + 1}$$
 is

a)
$$y = 2\ln(x^2+1)+c$$

$$\int (\cos^{-1}x + \sin^{-1}x)dx =$$

b)
$$y = \ln(x^2 + 1) + c$$

b)
$$y = \ln(x^2+1) + c$$
 c) $y = \frac{1}{2} \ln(x^2+1) + c$ d) $y = \frac{1}{2} \ln(x+1) + c$

d)
$$v = \frac{1}{2} \ln(x+1) + c$$

a)
$$\frac{\pi}{2} + x + c$$

$$(b)\frac{1}{2}\pi x + c$$

$$Sin^{-1}x - Cos^{-1}x + c$$

$$d$$
) $Cosx - Sinx + c$

11.
$$e^{x^2}$$
 Could be integral w.r.t $x f$
a) e^{2x} b) $\frac{e^{x^2}}{2x}$ c) $2xe^{x^2}$ d) $x^{2e^{x^2-1}}$

b)
$$\frac{e^{x^2}}{2x}$$

$$c)2xe^{x^2}$$

$$d(x^{2e^{x^{2-}}})$$

$$12. \qquad \int Sec^2(ax+b)dx = \underline{\hspace{1cm}}$$

a)
$$Tan^2(ax + b) + c$$

a)
$$Tan^2(ax + b) + c$$
 b) $\frac{Tan^2(ax + b)}{a} + c$ c) $\frac{Tan(ax + b)}{a} + c$ d) $Tan(ax + b) + c$

$$(c)\frac{Tan(ax+b)}{a}+c$$

$$d$$
) $Tan(ax + b) + a$

13.
$$\int \frac{Sec^2(\ln x)l}{x} dx = \underline{\qquad}$$
a) Tanx + c b) Sec(lnx) + c c) Tan(lnx) + c d) None of these

a)
$$Tanx + c$$

b)
$$Sec(lnx) + c$$

c)
$$Tan(lnx) + c$$

a)
$$x^3 - 4x$$

b)
$$x^2 + 4x + 3$$

c)
$$(x+1)(x^2-x+3)$$

d)
$$(x-1)(x^2+x-3)$$

15.
$$\int_{0}^{\frac{\pi}{4}} \frac{\sin^{4} x}{\cos^{6} x} dx = \underline{\hspace{1cm}}$$

a)
$$\frac{1}{4}$$

- a) ½ square units b) ½ square units
- c) 5/4 square units
- d) 2 square units

Y=Cos4x

- 17.

- a) $\frac{1}{r} + c$ b) x + c c) $\frac{1}{r^2} + c$ d) $x \ln x x + c$
- If the differential equation of the curve is $\frac{x}{v} \frac{dy}{dx} = 1$, then curve is 18.

- If $\frac{dy}{dx} = 2e^{-x}$ then y in terms of x when y = -1, x = 0 19.
 - a) $y = 5 + \frac{1}{e^x}$ b) $y = -1 \frac{2}{e^x}$ c) $y = -1 + \frac{3}{e^x}$ d) None of these

- x-lnx2 + k is the result of integrating w.r.t. x20.
 - a) $\frac{1}{1-x^5}$ b) $\frac{1-2x}{x^2}$

- $(c)^{\frac{x-2}{x}}$ $(d)^{1-\frac{2}{x}}$
- The order of the differential equation 21.

$$4\frac{d^3y}{dx^3} - 7\frac{dy}{dx} \quad y = 0 \text{ is}$$

$$d^3x = 0$$

- a) 1
- b) 2
- c) 3
- 22.

$$he^{\eta} \int_{0}^{2} f(\tau) dx = \underline{\hspace{1cm}}$$

- If $\int_{-1}^{0} f(x)dx = 6 & \int_{-1}^{2} f(x)dx = 25$ a) 19
 b) 31
 c) -19 $\int e^{x} \left(\frac{1+x \ln x}{x}\right) dx = \underline{\qquad}$ 23.
- c) $\frac{e^x}{\ln x} + c$ d) None
- a) $-e^{x}\ln x + c$ b) $e^{x}\ln x + c$ $\int Cos(\pi/2 x)dx = \underline{\qquad \qquad }$ a) Sinx + c b) Cosx + c24.
- c) $-\sin x + c$ d) $-\cos x + c$

- $\int \frac{Sinx Cosx}{\sqrt{1 Sin2x}} dx$ 25.
 - a) Sinx + c
- b) Cosx + c
- c) Sinx Cosx + c d) x + c

- $dy \approx \delta y$ if 26.
 - a) $\delta x = 0$
- b) $\delta x \rightarrow 0$
- c) $\delta x = dx$ d) $\delta y = 0$

- $\frac{d}{dx}\int_{0}^{x^{2}}dy=\underline{\qquad},$ 27.
 - a) 2x -1
- c) $x^2y + 2x$
- d) x^2-1

- a) 2x 1 b) 2x $\frac{d}{dx} \int f(x) dx = \underline{\qquad}.$ 28.
 - a) f'(x)+c
- c) f(x)
- d) f'(x)

- Integral $\int_{a}^{b} f(t)dt$ is a function of; 29.

- b) x
- c) constant
- d) does f' exist.

38.

38.
$$\int \frac{e^{\tan^{-1}x}}{1+x^{2}} dx = \underline{\qquad \qquad }$$
a) $e^{\tan^{-1}x}$ b) $\frac{1}{2}$ $e^{\tan^{-1}x}$ c) $\sum e^{\tan^{-1}x}$ d) None of these

39.
$$\int (x+a^{x}-x^{a}) dx = \underline{\qquad \qquad }$$
a) $\frac{x^{2}}{a}+a^{x}-\frac{x^{a+1}}{a+1}+c$ b) $\frac{x^{2}}{2}+\frac{a^{x}}{Ina}-\frac{x^{a-1}}{a+1}+c$ c) $\frac{x^{2}}{2}+\frac{a^{x}}{Ina}-\frac{x^{a+1}}{a+1}+c$ d) None

40.
$$\int Cosxe^{\sin x} dx = \underline{\qquad \qquad }$$

c) $Sinxe^{cosx} + c$ d) None of these

Unit#14 Analytic Geometry

The graph of |x| + |y| = 4 consists of 1.

a) One straight line b. A pair of straight line c. The sides of a square d. A point

The length of perpendicular from origin to the line 4x - 3y = 10 is 2.

a) 11/5 b. 5/12 c. 12/5 d. 2 A (a,0), B $(at_1^2, 2at_1)$, C $(at_2^2, 2at_2)$ are collinear then which of the following is also true, $t_1 \neq t_2$? 3.

In the line $\sqrt{3}x + y + 6 = 0$ is reduced to the form $x\cos\theta + y\sin\theta = P$, then the value of P is 4.

a) $\sqrt{3}$ c. 3

The ratio in which point $(\frac{1}{2}, 6)$ divide the line segment joining the points (3,5) and (-7,9) is 5.

The point P(x, y) is on x-axis and it's distance 6 units from (5, 2), then coordinates of P are 6.

	a) $(2, \sqrt{5})$	h (~	$\sqrt{3}$, 4)	c. (2,10)	d. None of these	
7.	The intercept	form of a stra	ight line $y = x$ is	••		
	_		-		None of these d.	
8.	The point (11 a) Below	b) Above	$\frac{y}{1} - \frac{x}{1} = 0$ the line 2x c) Pm	+3y-5=0 d) None of thes	e	
9.					ph of $ax + 3y + 2 = 0$ then $a = 0$:
	a) $\frac{3}{\pi}$	b) $\frac{3\sqrt{2}}{\pi}$	c) $-\frac{3\sqrt{2}}{\pi}$	d) None of the	se	
10.	Distance bety			= 0 and $6x + 8y$	+9 = 0 is	
	a) 0	b) 5	c) $\frac{5}{2}$	d) $-\frac{5}{2}$		
11.					the x – axis, then angle θ is	
	a) 56 °	b) 72°	c) 45 °	d) $\tan^{-1}\left(\frac{3}{2}\right)$	1	
12.	coordinate ax	xes whose sum	is -1 is		(2) and making intercepts on	the
	a) $\frac{x}{2} + \frac{y}{3} = 1$	b) $\frac{x}{2} - \frac{y}{1} = 1$	c) $\frac{x}{2} - \frac{y}{3} = 1$	d) None of the	se	
13.	the point (-a) (1.0)	2,1) then the co	oordinates of the	e four in vertex ar $d'(0, 1)$		ird vertex is
14.	In translation	of axes	is sh	i ed to an ther p d) Point	oint in the plane.	
1.5	a) x-axis	b) y-axis	c) Origin	d) Point	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
15.	a) $h^2 = ab$	b) $h^2 < ab$	c) $h^2 > a0$	$a n^2 = 0$	real and coincident if	
16.	+7 = 0 is	_			,-4) and perpendicular to the	line 8x -4y
17.	•				0 d) $2x - y + 6 = 0$ and y-axis are respectively tw	rice and
17.	thrice of thos	e by the line 3	x + 4y = 12 is		d) None of these	ice and
18.	The joint equ	ation of the str	raight lines x + y	y = 1 and $x - y =$	4 is	
19.	a) $x^2 - y^2 = 4$ The angle be	b) x^2 tween par of 1	$+ y^2 - 2xy = 4$ ines represented	c) $x^2 + y^2 + 2xy$ 1 by $2x^2 - 7xy + 3$	$x-4 = 0$ d) $(x + y - 1)(x - y^2 = 0)$	-y-4)=0
	a) 30°	b) 45	0	c) 75°	d) 90°	
20.	If one diagon is	al of square is	7x - y + 8 = 0 th	nen equation of o	her diagonal whose one verte	ex is (-4,5)
				c) $x - 7y = 31$		
21.					$y^2 = 0$ are perpendicular if d) $a - b = 0$	
22.	Equation of 1	ine through (-8	3, 5) having slop	e undefined is	,	
23.	/ •	, •	= 8		d) $x + 8 = 0$ of a rhombus ABCD then the	e equation
	of the diagon	al BD is:		_		1
24.	If $P(2,5)$, $Q($	12,5) and R(8,		d) x+y=1 gle then the point	of intersection of three medi	ans is:
	a) (22,3)	b) (11,1)	c) $\left(\frac{22}{3},3\right)$	d) None	of these	
25.	The vertices	of a triangle ar	e A(0,0), B(2,0)	and $C(0,3)$. Its o	rthocenter is	
26	a) $(0,0)$	b) (1, 3/2)	c) (2,3			
26.	a) 1:2	triangle divide b) 2:	es each median	in ratio. c) 1:3	d) 3:1	
	<i>,</i>	<i>5) 2.</i>		5, 1.5	-, -, -,	139

- If inclination α of a line satisfies the inequality $90^{\circ} < \alpha < 180^{\circ}$, then its 27.
- b) –ve

- ∞ (b

- 28. A line that cuts the x-axis at (2,0) and y-axis at (0,-4) is:
 - a) 2x+y=4
- b) 2x-y-4=0
- c) 2x + y + 4 = 0
- d) none
- Condition for lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ to be parallel 29.
 - a) $a_1a_2+b_1b_2=0$
- b) $a_1b_2-b_1a_2=0$
- c) $a_1b_2+b_1a_2=0$
- d) $a_1a_2-b_1b_2=0$

- Which equation does not represent coordinate axis; 30.
 - a) x=0
- b) x=1

- c) y=0
- d) y + 2 = 2

- 31. Which point does not lie in the location $x \ge 2$, $y \ge 2$;
 - a) (3,4)
- b)(3,2)

- c)(1,5)
- d) (2,5)

- A line passing through (x_1,y_1) and (x_1,y_2) is; 32.
 - a) Horizontal
- b) vertical

- c) inclined
- d) all of these
- Perpendicular distance of line 3x + 4y + 5 = 0 from origin is; 33.
- b) 1

- d) none
- If point (0,3) lies on a non-vertical line L, then y-intercept = 34.

- d) none

- Inclination of a line having slope $\sqrt{3}$ is, 35.

- d) 0^{0}

- The distance of the point (-1,2) from y-axis is 36.
- b) 1

- d) 2
- The point which divides segment joining points (4-2) and (3,6) in the ratio: 7:5 externally is 37.
 - a) $\left(\frac{19}{3}, \frac{8}{3}\right)$ b) $\left(\frac{8}{3}, \frac{19}{3}\right)$
- c) $\left(\frac{-8}{3}, \frac{-9}{3}\right)$
- d) (18,26)
- If the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are perpendicular then 38.
 - a) $a_1a_2 b_1b_2 = 0$
- b) $a_1a_2 \div b_1b_2 9$
- c) $a_1b_2 a_2b_1 = 0$
- d) $a_1a_2 + \lambda_1b_2 = 0$
- The Cartesian system of coordinates was in roduced by 39.
- b) Euclid
- c) De cartes
- d) Maclaurin
- If the lines 3x y = 2, 5x + ay = 1 and 2x + y = 3 are concurrent then a =40. b) -2 d) -4
 - a) -1

- Two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ will be identical (coincident) if 41. $(a_1) \cdot (a_2 + b_1b_2 + c_1c_2 = 0)$ a) $a_1a_2 = b_1b_2 = c_1c_2$
 - c) $a_1a_2 + b_1b_2 + c_1c_2 = \mathcal{J}$
- $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$
- The curves $y = x^2$, y = (?-x) intersect at 42.
- a) (0,0),(1,1)
- b) (0,0),(2,4)
- c) (0,0),(-1,1) d) None

Test#15

2.

Linear Programming

- Shaded region is represented by 1.
 - a) $2x + 5y \ge 80$,
- $x + y \le 20$
- $x \ge 0$, $y \ge 0$
- b) $2x + 5y \ge 80$,
- $x + y \ge 20$
- $x \ge 0$, $y \ge 0$
- c) $2x + 5y \le 80$,
- $x + y \le 20$
- $x \ge 0$, $y \ge 0$
- d) $2x + 5y \le 80$, $x + y \le 20$
- $x \le 0$, $y \le 0$
- Which of the following is not a convex set.
- a) $\{(x,y)/2x+5y<7\}$ b) $\{(x,y)/x^2+y^2\le 4\}$ c) $\{x/|x|\ge 5\}$ d) $\{(x,y)/3x^2+2y^2\le 6\}$

3.	The set of the constraints
	$x+2y \ge 11$, $3x+4y \ge 30$, $2x+5y \ge 30$, $x \ge 0, y \ge 0$ Includes the points.
4	a) (2, 3) b) (3, 2) c) (7, 4) d) (4, 3)
4.	The equations $3x - y \ge 3$ and $4x + y \ge 4$
	a) Have solution for positive values of x and y.
	b) Have solution for positive x and any value of y.
	c) Have solution for any values of x and y.
5.	d) Have solution for only positive y. Maximum value of $P = 6x + 8y$ subject to the constraints $2x + y \le 30, x + 2y \le 24$,
3.	
	$x \ge 0, y \ge 0$ Is
	a) 90 b) 120 c) 96 d) 240
6.	Number of feasible solutions in the feasible region is
7	a) Exactly one b) Three c) Infinite d) Five
7.	Graph of $ax + by + c \le 0; (a \ne 0, b \ne 0, c \ne 0)$ is
	a) Complete plane. b) Closed half plane.
0	c) Straight line. d) A pair of straight lines.
8.	The function which is to be maximized or minimized is known as function.
9.	a) Objective b) Maximum c) Minimum c) None The feasible solution which maximizes or minimizes the objective function is called
9.	solution.
	a) Linear b) Maximum c) Minimum d) Optimal
10.	For convex polygonal region the extreme points ε . points.
10.	a) Boundary b) Inside the region c) Sutside the region d) None
11.	A line divides the plane into upper and lowers half planes.
	a) Vertical b) Horizontal c) Non-vertical d) Vertical & horizontal
12.	In linear programming equations or in-equations, hould not contain the terms like
	a) x, y b) ax, by c) 1 x, ay d) x^{2} , y^{2} , xy
13.	The region of the graph $ax + by = c$ is called the of half planes $ax + by > c$ and $ax + by < c$
	a) Boundary b) Mid c) Half d) None
14.	The ordered pair which doesn't satisfy me inequality $2x - 3y \ge 6$ is
	a) (5, 1) b) (0, 5) c) (3, 1) d) (3, 0)
15.	A solution of $x + 2y \le 7$ is
1.6	a) $(1, 3)$ b) $(2, 5)$ c) $(1, 5)$ d) None
16.	Solution of inequality $2x + 1 < 0$ is
	a) $-\infty < x < \frac{1}{2}$ b) $-\infty < x \le \frac{1}{2}$ c) $-\infty < x < -\frac{1}{2}$ d) $-\infty < x \le -\frac{1}{2}$
17.	The solution of $ax + by > c$ is
	a) A straight line b) A triangle
	c) Open half plane d) Closed half plane.
18.	The corner point for the inequations $x + y \le 7$ and $2x - 3y \ge -11$ is
	a) (0, 0) b) (3, 4) c) (2, 5) d) (5, 2)
19.	The variables present in the non-negative constraints are called
	a) Dependent variables. b) Independent variables
	c) Decision variables d) None
20.	If $f(x, y) = 2x - 3y$ Then $f(1, 2) = $
0.1	a) -5 b) -4 c) 4 d) None
21.	Feasible solution is the set of values of variables satisfying constraints. a) Two b) Three c) Four d) All the given.
22	
22.	Inequations have a) Two symbols b) Three symbols c) Four symbols d) Many symbols.
22	
23.	The region all of whose points satisfy the in equations in the problem concerned is called a) First Quadrant b) Feasible solution c) Feasible region d) None.
24.	Corner points of the feasible region are also called
	a) Points of the feasible region are also called a) Points of intersection b) Constraints c) Vertices d) Decision variables.
25.	(1, 1) is the solution of the in equality

•	· ·	b) $x + y \le 0$	c) $x + 2y < 3$	$d) x - 2y \le 3$
26.	ax + b < c is linear ine	· •	-) F	1 1) 0 :-1.1.
27.				les d) One variable. ntirely with in the region then such
21.		regio		innery with in the region then such
	a) Convex	b) Concave	c) Feasible	d) Objective
28.		,		ninimum values of the objective
20.		points		
	a) Boundary		c) Mid	d) None
29.	2x + 3y < 5 is inequat		,	,
		b) One variables	c) Three variables	d) Four variables.
30.	The variables used in	the system of linear in	equations are	<u> </u>
	a) Integers	b) Real numbers		d) None.
31.	The graph of linear in	equation $2x + 3y < 10$	is	
	a) Straight line	b) Parabola	c) A plane	
32.		$-x+y \le 1, \qquad -x+3$		
	a) Bounded feasible s	-	b) An unbounded in	iolo space.
	c) Both bounded and	unbounded.	d) None of these.	Y
				*
Unit#	[‡] 16	<u>Co</u> 1	nic Section	
	TTI 1 2 . 2 . 0		, and the second	
1.		x + 4y + 4 = 0 touches		
	a) x - axis	b) y - axis	avia na v avia	
2.	Radius of circle $x^2 + y$	d) neither $x - a^2 + 12x - 10x = 0$	ax s nor v - axis	
۷.	a) $\sqrt{61}$		d) 64	
2		b) 61		
3.	a) Parabola	nt are the paramenic ed b) Circle	_	perbola
4.	Area of circle $x^2 + y^2$		c) Empse u) my	octooia
т.			c) 4π d) 8π	
5.	$x = at^2$, $v = 2at$ are the	e paracraetri - cucations	s of	
	a) Circle	b) 2π e paracractric equations b) Ellipse	c) Parabola	d) Hyperbola
6.	$\stackrel{\frown}{\text{Line}}$ x+2=0 meets the	$e^{-ci} = c^{2} = 4$ at	,	, 31
		b) two points	c) at most two points	d) none of these
7.				8cm and 6cm on the opposite side
		ar le between the chord		
	a) 10 cm	b, cm	c) 8 cm d) 7 cr	
8.		parallel to the generate	or of the cone but inter	sects its both of the nappes then
	the section is	1.) E11:	-\ D11-	1) II
9.	a) Circle	b) Ellipse	c) Parabola	d) Hyperbola
9.	a)Circle	te perpendicular to the b) Ellipse	c) Parabola	d) Hyperbola
10.		foci of an ellipse is call		d) Hyperbola
10.	a) Focus		c) Covertices	d) Centre
11.	Foci of ellipse lie alor	,	c) coveries	a) centre
	a) x-axis		c) Major axis	d) Minor axis
	x^2 y^2		, <u>, , , , , , , , , , , , , , , , , , </u>	,
12.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is symm	etric to		
	a) Both the axis		c) Only x-axis	d) line $y = x$
13.	The parabola $y^2 = 2x$		o, omy x-axis	a, mic y
			(1 1)	(1 1)
	a) $\left(\frac{1}{4}, \frac{1}{4}\right)$	b) (2, 2)	c) $\left(\frac{1}{2}, \frac{1}{4}\right)$	d) $\left[\frac{1}{4}, \frac{1}{2}\right]$
	()		/	(7 4)
14.	The vertex of the para	abola $(x + 1)^2 = 8(y - 2)$) 18	

	a) (1, -2)	b) (0, 0)	c) $(2, 0)$	d) (-1, 2)			
15.	The centre of the ellip	$\cos \frac{(2x-1)^2}{16} + \frac{(y-2)^2}{4}$	= = 1 is				
	a) (1, 2)	b) (0, 2)	c) $(\frac{1}{2}, 2)$	d) None of these			
16.	The eccentricity of the ellipse $x^2 + 4y^2 = 16$ is						
	a) $\frac{2}{\sqrt{3}}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{1}{\sqrt{3}}$	d) $\sqrt{3}$			
17.	The centre of the ellip $a) (0, 0)$	b) $(8, -2)$	6y + 76 = 0 is c) $(-8, 2)$	d) (4, 0)			
18.	The Co-vertices of hy	b) (8, -2) experbola $\frac{x^2}{16} - \frac{y^2}{4} = 1$ a	are				
19.	If the determinant h ² a) Ellipse (or Circle)	ab > o then the conicb) Parabola	c) (±4,0) will be c) Hyperbola				
20.	Axis of parabola $y^2 = a$) $y = 1$		c) v = 0	d) I one of these			
21.		, -	· · ·	Let $(2, 3)$ to the parabola $y^2 = 8x$ is d) ?			
22.		(II) A closed figure					
23.		b) II only $y^2 + 2gh + 2fy + 2hxy$ b) $h = 0$ c) $h = 0$	+ z = 0 represen	nts a circle if			
24.	The distance between	two vertices of an elli	the lengtl ا	h of			
25.	a) Transverse axis The given conic 8x ² - a) Circle	b) Conjugate x is $-5y^2 - 6x - 20$ $y - 3 = 0$ b) Hypertola	is				
26.	/	f the follow no is a por		· · · · · · · · · · · · · · · · · · ·			
	a) $ y = x^2$	b) $y = 4x^2$ c) $y =$	$\sqrt{4-x^2}$	$d) y = \sqrt{-4x^2}$			
27.		ng is an asymptote of 3					
	3	b) $y = \frac{1}{3}x$ c) $y =$	$\frac{\sqrt{3}}{2}x$	$d) y = -\frac{2}{\sqrt{3}} x$			
28.	The graph of $x^2 = (2y^2)^2$ a) A Circle	y+?') ² is b) An Ellipse c) A Po	oint d) Two	o intersecting lines			
29.	The parabola $y^2 = -12$		omi uj i we	microceting lines			
30.	The length of the latu		ola whose equa	d) Upwards tion is $x^2 - 4y^2 = 16$ is			
31.	a) 2 Circle can contains no		d) 5	1)			
32.	a) (0,1)		c) xy set to the focus c) (0,0)	d) x is; d) 0			
33.	Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ n}$	neets y-axis at					
2.4	/ \ / /		c) (0,±b)	d) all of these			
34.		b) conjugate axis		d) all of these			
35.	Equation $x^2+y^2-2x-4y$ a) 0	y+a=0 represents a poir b) -5	of circle if $a = c$) 5	d) none			
36.	Centre of a point circ	,	,	,			

37.	a) inside Directrix of par	b) on abola with verte	x at origin f	c) outside		d) none		
	a) $x+8=0$	b) x-8=0		c) $x+4=0$	0) 10.	d) x+2=0		
38.	a) $(x-1)^2=4(y+1)$	es not lie on para b) $x^2+y=0$	0	c) $y^2-x=0$		d) $y^2+x=0$)	
39.	a) parabola	= 2:4, then it rep b) ellipse		c) hyperb		d) circle		
40.		bola with asympto $(0, 0)$	notes 2x-y-:	c) $(-1, 1)$	15,	d) none		
Unit	#17		Vect	<u>ors</u>				
1.	If $\overline{V} = [-1,4]$ ar	nd the resultant o	of \overline{U} is $[4,5]t$	$hen\overline{U} = _$				
2	a) $[1, 5]$	/ - / -	c) [4, 5	-		ne of these		
2.							$8] and \overline{W} = [9,-13]$	18
2	,	$b)\overline{V} =$,		_ ′	ie of these	
3.	If $\overline{V} = [3,-1], \overline{U}$ a) 5	= [5,-5] then the b) 7	e magnitude	c) 10	Itani oi i a	<i>inç ∪</i> 1s d) None o	of these	
4.	*	erpendicular to \bar{l}	$\sqrt{2} = [3, -4]$ is	c) 10	Y	u) None o	or these	
	-	=		3 4]		3 4]		
	a) [4, 3]	$b)\left[\frac{4}{5},\frac{3}{5}\right]$	$c)$ $\begin{bmatrix} -\frac{1}{2} \end{bmatrix}$	5, 5	a) $\begin{bmatrix} - \end{bmatrix}$	$\left[\frac{7}{5}, -\frac{7}{5}\right]$		
5.	The vector who	se magnitude is	5 and has th	e some dire	etion as the	e vector $4\hat{i}$	$-3\hat{j}+\hat{k}$ is	
	a) $5(4\hat{i} - 3\hat{j} + \hat{k})$	$b) \frac{5}{\sqrt{26}}$	$= \left(4\hat{i} - 3\hat{j} - \hat{k}\right)$		$c)\frac{1}{\sqrt{26}}\Big(4\hat{i}$	$-3\hat{j}+\hat{k}$	d) None of these	
6.	If $2\hat{i} - \hat{j} + 2\hat{k}$	and $3\hat{i} + x\hat{j} + \hat{k}$	are serpe	licular thei	n x =			
	a) 8	b) 2		c) 0		d)	3	
7.	Unit vector perp	pendicular to \vec{a} =	$=\hat{i}+\hat{j}+2k$	and $b=2\hat{i}$	$+3\hat{j}+k$ is			
	a) $\frac{4\hat{i} - 3\hat{j} + \hat{k}}{\sqrt{26}}$ $\bar{a} \times \bar{b} = \bar{\mathbf{b}} \times \bar{c} = \bar{c}$	$b)$ $\frac{-4b}{}$	$\frac{\hat{k}-3j-\hat{k}}{\sqrt{26}}$	$(c)\frac{4\hat{i}+c}{2}$	$\frac{3\hat{j} + \hat{k}}{\sqrt{26}}$	d) Non	ne of these	
8.	$\overline{a} \times \overline{b} = \overline{\mathbf{b}} \times \overline{c} = \overline{c}$	$c \times \overline{a}$ If						
	*	$\vec{b} \cdot (\vec{a} + \vec{l}) + \vec{c} =$				d) Both b	and c	
9.		llowing vectors	-		1: + 2: - 21-			
	a) $i - j + 3k$ and c) $i - j + 3k$ and .	3i – 3j + 9k -2i + 4j - 6k	d) Bot	+ к and -4 h a and b	+1 + 2j - 2K			
10.	· -	lies in the plane			then $\vec{a} \cdot \vec{b} \times$	$\begin{pmatrix} \overrightarrow{c} \\ \overrightarrow{c} \end{pmatrix} = \underline{\qquad}$		
	a) 1	o) -1 c)	0	d) 2		/		
11.	If \overrightarrow{a} and \overrightarrow{b} are	mutually perpen	dicular then	$\left(\overrightarrow{a} + \overrightarrow{b}\right)^2 =$	=			
	a) $\overrightarrow{a} - \overrightarrow{b}$	$b)\overrightarrow{a} + \overrightarrow{b}$	$c) \left(\stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{b} \right)^2$		<i>d</i>)0			
12.		llowing can be t		-		?		
12		b) 45°, 45			°, 60°	d) None		
13.	Measure of ang a) $0 < \theta < \pi$	le θ between two		•	J) (L)<0<2~		
1 /		/ =		$\leq \theta \leq \pi$	<i>d</i>)0	$0 \ge U \ge 2\pi$		
14.		osines of z-axis a b) $0, 1, 0$	are $(c) 0, 0$, 1	d) 1, 0	0, 0		

15.	If \overrightarrow{a} and \overrightarrow{b} are two	vectors then $\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{b} - \overrightarrow{a}$	if
	a) $\begin{vmatrix} \overrightarrow{a} \\ a \end{vmatrix} = \begin{vmatrix} \overrightarrow{b} \end{vmatrix}$	$b)\stackrel{ ightarrow}{a}=\stackrel{ ightarrow}{b}$	$c)\stackrel{ ightarrow}{a}\perp\stackrel{ ightarrow}{b}$

If \vec{a} and \vec{b} are two perpendicular vectors then 16.

a)
$$(\overline{a} + \overline{b})^2 = a^{-2} + b^{-2} b) (\overline{a} - \overline{b})^2 = a^{-2} + b^{-2} c) (\overline{a} + \overline{b})^2 = (\overline{a} - \overline{b})^2 d$$
) All three

 $d) \overrightarrow{a} / / \overrightarrow{b}$

If $\vec{a} = 3\hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = -2\hat{i} - \hat{j} + \hat{k}$ then projection of \vec{a} along \vec{b} is 17.

$$a)\frac{-8}{\sqrt{11}} \qquad b)\frac{-8}{\sqrt{6}} \qquad c)-8 \qquad d)\sqrt{11}$$

The angle between the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $-\hat{i} + \hat{j}$ is 18. a) $3\pi/2$ b) $2\pi/3$ c) $5\pi/6$ d) $\pi/3$

19. If
$$\vec{a} = 2\hat{i} + 5\hat{j}$$
 and $\vec{b} = 2\hat{i} - \hat{j}$ the unit vector along $\vec{a} + \vec{b}$ is

If $\vec{a} = 2\hat{i} + 5\hat{j}$ and $\vec{b} = 2\hat{i} - \hat{j}$ the unit vector along $\vec{a} + \vec{b}$ is

a) $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$ b) $\sqrt{2}(\hat{i} + \hat{j})$ c) $\hat{i} + \hat{j}$ d) None

a) $\frac{i+j}{\sqrt{2}}$ b) $\sqrt{2}(\hat{i}+\hat{j})$ c) $\hat{i}+\hat{j}$ d) None

If $\vec{a}=\hat{i}+2\hat{j}+3\hat{k}$, $\vec{b}=\hat{-i}+2\hat{j}+\hat{k}$ and $\vec{c}=3\hat{i}+t\hat{j}-\hat{k}$ and $\vec{a}+\hat{b}$ is at right angle to \vec{c} then t 20.

- a) 5 b) 4 a) 5 b) 4 c) 6 d)1

 If $\vec{a} \& \vec{b}$ are two non zero vectors the componer of \vec{b} along \vec{a} is c) 6 21.
- $c)\vec{a}.\hat{b}$ a) $\vec{a} - \vec{b}$ b) $\hat{a} \cdot \hat{b}$

If the position vectors of A and B be $6\hat{i} + \hat{j} + \hat{k}$ and $4\hat{i} + 3\hat{j} + 2\hat{k}$ then the work done by the force $\vec{F} = \hat{k}$ 22. $\hat{i} - 3\hat{j} + 5\hat{k}$ in displacing a particle from A to B is

- a) 15 units b) 17 units c) -15 units d) None of these

 If the vectors $2\hat{i}-3\hat{j}+4\hat{k}$, $\hat{i}-2\hat{j}-\hat{k}$ and $x\hat{i}-\hat{j}+2\hat{k}$ are coplanar then x=23.
- a) $\frac{5}{8}$ b) 1 c) 0 d) $\frac{8}{11}$ If \vec{a} and \vec{b} are two vectors such that and $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$, then the angle between vectors \vec{a} and \vec{b} is

24. b) $\frac{7\pi}{4}$ c) $\frac{\pi}{4}$ d) $\frac{3\pi}{4}$

The perimeter of the triangle whose sides are $\hat{i} + \hat{j} + \hat{k}$, $5\hat{i} + 3\hat{j} - 3\hat{k}$ and $2\hat{i} + 5\hat{j} + 9\hat{k}$ is 25. a) $\sqrt{15} - \sqrt{157}$ b) $15 - \sqrt{157}$ c) $15 + \sqrt{157}$ d) None of these