## ANALISE MÉTODO DA BISSEÇÃO E ITERAÇÃO DE PONTO FIXO

## RAFAEL MARTINS CHIMENES

Para  $f(x)=x^3-x-1$ , com  $\epsilon=10^{-4}$ , encontrar a aproximação p para o problema f(p)=0.

## 1 METODO DA BISSEÇAO

Conhecendo o gráfico da função podemos observar que existe uma raiz no intervalo [a, b] = [1,2], de fato se analisarmos  $f(a) \cdot f(b) < 0$ .



Considerando o arredondamento de  $\epsilon=10^{-4}$ , calculamos o número mínimo de iterações necessária para p convergir para a raiz:

$$k > \frac{\log(b_0 - a_0) - \log \epsilon}{\log 2} = \frac{\log(2 - 1) - \log(10^{-4})}{\log 2} = \frac{\log 1 + 4 \log 10}{\log 2} \approx \frac{4}{0,3010} \approx 13,28$$

Portanto, devemos efetuar no mínimo 14 interações no algoritmo. Confira os resultados na tabela abaixo:

| n  | $a_n$    | $b_n$    | $p_n$    | $f(a_n)$  |
|----|----------|----------|----------|-----------|
| 1  | 1.0      | 2.0      | 1.5      | 0.875     |
| 2  | 1.0      | 1.5      | 1.25     | -0.296875 |
| 3  | 1.25     | 1.5      | 1.375    | 0.224609  |
| 4  | 1.25     | 1.375    | 1.3125   | -0.051514 |
| 5  | 1.3125   | 1.375    | 1.34375  | 0.082611  |
| 6  | 1.3125   | 1.34375  | 1.328125 | 0.014576  |
| 7  | 1.3125   | 1.328125 | 1.320313 | -0.018711 |
| 8  | 1.320313 | 1.328125 | 1.324219 | -0.002128 |
| 9  | 1.324219 | 1.328125 | 1.326172 | 0.006209  |
| 10 | 1.324219 | 1.326172 | 1.325195 | 0.002037  |
| 11 | 1.324219 | 1.325195 | 1.324707 | -0.000047 |
| 12 | 1.324707 | 1.325195 | 1.324951 | 0.000995  |
| 13 | 1.324707 | 1.324951 | 1.324829 | 0.000474  |
| 14 | 1.324707 | 1.324829 | 1.324768 | 0.000214  |

## 2 ITERAÇÃO DE PONTP FIXO

Para determinar a raiz f(p) = 0, podemos definir as três seguintes funções g para x = g(x):

$$x^{3} - x - 1 = 0$$

$$-x = -x^{3} + 1$$

$$x = x^{3} - 1$$

$$x = g_{1}(x) = x^{3} - 1$$



$$\begin{vmatrix} x^3 - x - 1 = 0 \\ x^3 = 1 + x \\ x = \pm (1 + x)^{1/3} \\ x = g_2(x) = (1 + x)^{1/3} \end{vmatrix}$$



$$x^{3} - x - 1 = 0$$

$$(x^{3} - x - 1) + x = x$$

$$x = x - x^{3} + x + 1$$

$$x = -x^{3} + 2x + 1$$

$$x = g_{3}(x) = -x^{3} + 2x$$

$$+ 1$$



$$x^{3} - x - 1 = 0$$

$$x^{3} = 1 + x$$

$$x^{2} = \frac{1}{x} + 1$$

$$x = \pm \sqrt{\frac{1}{x} + 1}$$

$$x = g_{4}(x) = \sqrt{\frac{1}{x} + 1}$$

 $Com\ p0=1.5,\ a\ tabela\ a\ seguir\ mostra\ os\ resultados\ da\ aplicação\ do\ Método\ do$  Ponto Fixo para as 3 operações de g.

| n  | $g_1(x) = x^3 - 1$      | $g_2(x) = (1+x)^{1/3}$ | $g_3(x) = -x^3 + 2x + 1$    | $g_4(x) = \sqrt{\frac{1}{x} + 1}$ |
|----|-------------------------|------------------------|-----------------------------|-----------------------------------|
| 1  | 1.5                     | 1.5                    | 1.5                         | 1.5                               |
| 2  | 2.375                   | 1.357209               | 0.625000                    | 1.290994                          |
| 3  | 12.396484               | 1.330861               | 2.005859                    | 1.33214                           |
| 4  | 1904.002772             | 1.325884               | -3.058800                   | 1.32313                           |
| 5  | $69024.414 \times 10^5$ | 1.324939               | 23.501319                   | 1.32506                           |
| 6  |                         | 1.324760               | -12932.057438               | 1.324644                          |
| 7  |                         | 1.324726               | $216273.281318 \times 10^7$ | 1.324734                          |
| 8  |                         |                        |                             |                                   |
| 9  |                         |                        |                             |                                   |
| 10 |                         |                        |                             |                                   |