Devoir surveillé n°8 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Convergence d'une suite d'intégrales.

Dans ce problème, on considère pour chaque $n \in \mathbb{N}$ une fonction continue

$$f_n:[0,1]\to\mathbb{R}.$$

On suppose que pour chaque $x \in [0, 1]$ fixé, on a

$$f_n(x) \xrightarrow[n \to +\infty]{} 0.$$

On se pose alors la questions suivante : est-ce que $\int_0^1 f_n(x) dx \xrightarrow[n \to +\infty]{} 0$?

- 1) On considère, pour tout $n \in \mathbb{N}$, $f_n : x \mapsto n^2 x \exp(-nx)$.
 - a) Pour chaque $n \ge 1$, calculer $\int_0^1 f_n(x) dx$.
 - b) Quelle est la limite de la suite de terme général $\int_0^1 f_n(x) dx$? Que peut-on donc en déduire, vis-à-vis de la question posée?

Dans cette question uniquement, on suppose que pour tout $x \in [0,1]$, la suite $(f_n(x))_{n \in \mathbb{N}}$ est décroissante, *i.e.* que

$$\forall n \in \mathbb{N}, \ f_{n+1}(x) \leqslant f_n(x).$$

- 2) On commence par montrer le théorème de Dini.
 - a) Justifier que, pour chaque $n \in \mathbb{N}$, la fonction f_n admet un maximum sur [0,1], dont on note la valeur M_n .
 - **b)** Montrer que la suite (M_n) converge vers un réel $\ell \geqslant 0$.

On suppose que $\ell > 0,$ et l'on construit pour chaque $n \in \mathbb{N}$:

$$C_n = \left\{ x \in [0,1] \mid f_n(x) \geqslant \frac{\ell}{2} \right\}.$$

- c) Justifier que pour chaque $n \in \mathbb{N}$, $C_n \neq \emptyset$.
- d) Comparer, pour chaque $n \in \mathbb{N}$, C_{n+1} et C_n .
- e) Pour chaque $n \in \mathbb{N}$, soit $x_n \in C_n$. Montrer que l'on peut extraire une suite de $(x_n)_{n \in \mathbb{N}}$ convergeant vers un réel x. Montrer qu'alors $x \in \bigcap_{n \in \mathbb{N}} C_n$.
- f) Obtenir une contradiction, et conclure (c'est le théorème de Dini).
- 3) Justifier que la suite de terme général $\int_0^1 f_n(x) dx$ converge.
- 4) Comparer pour chaque $n \in \mathbb{N}$ les valeurs de $\int_0^1 f_n(x) dx$ et de M_n , et conclure quant à la question que l'on se pose ici.

II. Crochet de Lie et nilpotence.

Soit E un \mathbb{K} -espace vectoriel de dimension finie n fixé une fois pour toutes.

On rappelle que $\mathcal{L}(E)$ est un anneau pour ses lois usuelles d'addition et de composition, dans lequel on notera multiplicativement la composition (*i.e.* on note fg la composée $f \circ g$).

Pour deux endomorphismes $f,g\in \mathcal{L}(E)$, on définit le crochet de Lie de f et de g comme l'endomorphisme de E

$$[f,g] = fg - gf.$$

Pour un endomorphisme $f \in \mathcal{L}(E)$, on nomme polynôme en f toute combinaison linéaire des puissances de f, i.e. tout endomorphisme de E de la forme :

$$P(f) = a_0 \text{Id}_E + a_1 f + a_2 f^2 + \dots + a_p f^p$$

où
$$P = a_0 + a_1 X + a_2 X^2 + \dots + a_p X^p \in \mathbb{K}[X].$$

Enfin, on rappelle qu'un endomorphisme $f \in \mathcal{L}(E)$ est nilpotent s'il existe $p \in \mathbb{N}^*$ tel que

$$f^p = 0_{\mathscr{L}(E)}.$$

1) Questions préliminaires.

a) Montrer que l'application $f \mapsto [f, g]$ est un endomorphisme de $\mathcal{L}(E)$ pour tout $g \in \mathcal{L}(E)$.

On montrerait de même que l'application $g \longmapsto [f,g]$ est un endomorphisme de $\mathscr{L}(E)$ pour tout $f \in \mathscr{L}(E)$.

- **b)** Montrer que pour tout $f, g, h \in \mathcal{L}(E)$: [fg, h] = [f, h]g + f[g, h].
- c) Soit $f \in \mathcal{L}(E)$. Quelle est la dimension de $\mathcal{L}(E)$? En déduire que f possède un polynôme annulateur non nul, *i.e.* que pour un certain $P \in \mathbb{K}[X]$ non nul : $P(f) = 0_{\mathcal{L}(E)}$.

2) Une condition suffisante de nilpotence.

Soit $f, g \in \mathcal{L}(E)$, on pose h = [f, g] et l'on suppose que $[f, h] = 0_{\mathcal{L}(E)}$. En d'autres termes, f et h commutent.

a) On utilise la convention $0f^{-1} = 0_{\mathcal{L}(E)}$, quand bien même f ne serait pas inversible. Montrer que pour tout $k \in \mathbb{N}$:

$$\left[f^k, g\right] = kf^{k-1}h.$$

- **b)** En déduire que pour tout $P \in \mathbb{K}[X]$: [P(f), g] = P'(f)h.
- c) Montrer que pour tout $P \in \mathbb{K}[X]$ et pour tout $k, r \in \mathbb{N}$:

$$P^{(k)}(f)h^r = 0_{\mathscr{L}(E)} \implies P^{(k+1)}(f)h^{2r+1} = 0_{\mathscr{L}(E)}.$$

Indication : on pourra s'intéresser au crochet de Lie $[P^{(k)}(f)h^r, g]$.

- d) En déduire, en utilisant aussi le résultat de la question 1)c), que h est nilpotent.
- 3) Une autre condition suffisante de nilpotence.

Soit $f, g \in \mathcal{L}(E)$. On suppose qu'il existe $\alpha, \beta \in \mathbb{K}$ tels que $[f, g] = \alpha f + \beta g$.

a) Montrer que pour tout $\lambda \in \mathbb{K}$:

$$[f + \lambda g, [f + \lambda g, g]] = (\beta - \lambda \alpha)[f, g].$$

- **b)** En déduire que [f, g] est nilpotent.
- 4) Résultat intermédiaire.

Soit $f, g \in \mathcal{L}(E)$. Que dire de l'endomorphisme gf si $\operatorname{Im} f \subset \operatorname{Ker} (g - \operatorname{Id}_E)$?

5) Avec des projecteurs.

Soit p et q deux projecteurs de E.

a) Montrer que si p et q ont la même image, alors [p,q]=q-p. Montrer aussi que si p et q ont le même noyau, alors [p,q]=p-q.

On suppose à présent que $[p,q]=\alpha p+\beta q$ pour certains $\alpha,\beta\in\mathbb{K}$ et que $[p,q]\neq 0_{\mathscr{L}(E)}$.

- **b)** Montrer que α et β sont non nuls.
- c) On suppose que $\alpha \neq 1$.
 - i) Montrer que $\operatorname{Im}(pq) \subset \operatorname{Im} q$, puis que $\operatorname{Im} p \subset \operatorname{Im} q$.
 - ii) En déduire que qp = p, puis que $\alpha + \beta = 0$.
 - iii) En déduire que p et q ont la même image, puis que pq=q, et enfin que $\alpha=-1$.
- d) On suppose que $\alpha = 1$.
 - i) Montrer que $\beta = -1$. On pourra s'intéresser à [q, p].
 - ii) Montrer que p et q ont le même noyau. On pourra s'intéresser à $[\mathrm{Id}_E-p,\mathrm{Id}_E-q]$.

