Does non-stationary spatial data always require non-stationary random fields?

Adrien Allorant and Austin Carter

3/10/2020

Summary

Real world processes have spatially varying second-order structure, but is modeling this non-stationarity worth it?

The authors develop a novel model for non-stationary covariance structure and illustrate methods for parameterizing the model. They then apply their model to US precipitation data and compare predictions from their stationary and non-stationary models. They conclude by recommending careful consideration of the sources of non-stationarity and encourage balance between fitting complicated/flexible models and fitting simple/smarter models.

Classical Approaches to Non-stationarity and Anisotropy

Anisotropy = Not Isotropic

 $\rho(h)=\rho(\tilde{h})$ implies that $h=\tilde{h}.$ This is not true in the case of anisotropy.

Non-stationarity in the covariance structure

- Global Deformation
 - Pre-compute a transformation of distance and then use a stationary model

$$\rho(\tilde{h}) = \rho(L_1||\vec{s}_2 - \vec{s}_1||)$$

Local Deformation via SPDE

Stationary SPDE

The following equation defines a stochastic partial differential equation (SPDE), $u(\vec{s})$, whose solution is the Matérn covariance function

$$(\kappa^2 - \nabla \cdot \nabla) u(\vec{s}) = \sigma \mathcal{W}(\vec{s}), \qquad \vec{s} \in \mathbb{R}^2$$

Where κ and $\sigma>0$ are constants, $\nabla=\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y}\right)^T$ and $\mathcal W$ is a standard Gaussian white noise process. This correlation structure is isotropic because the Laplacian, $\Delta=\nabla\cdot\nabla$ is equal to the sum of the diagonal elements of the Hessian, is invariant to a change of coordinates that involves rotation and translation. The solution to this SPDE is a class of equations that have covariance described by the Matérn covariance function.

Introducing Anisotropy

The authors introduce a 2×2 matrix \mathbf{H} into the SPDE which acts as a transformation of the grid on top of which we are measuring distance

$$(\kappa^2 - \nabla \cdot \mathbf{H} \nabla) u(\vec{s}) = \sigma \mathcal{W}(\vec{s}), \qquad \vec{s} \in \mathbb{R}^2$$

This results in an updated covariance function

$$r(\vec{s}_1, \vec{s}_2) = \frac{\sigma^2}{4\pi\kappa^2 \sqrt{\det(\mathbf{H})}} \left(\kappa ||\mathbf{H}^{-1/2}(\vec{s}_2 - \vec{s}_1)|| \right) K_1 \left(\kappa ||\mathbf{H}^{-1/2}(\vec{s}_2 - \vec{s}_1)|| \right)$$

Parameters κ and **H** control the marginal variance and directionality of correlation, allowing σ to fall out of the SPDE formula. The $\sqrt{\det(\mathbf{H})}$ that appears in the denominator of the covariance function is a consequence of the change of variable.

Non-stationary SPDE

Finally, to construct a non-stationary SPDE, the authors allow κ^2 and ${\bf H}$ to vary over the domain. This results in global non-stationarity via the chaining together of processes with local covariance structures.

$$(\kappa^2(\vec{s}) - \nabla \cdot \mathbf{H}(\vec{s}) \nabla) u(\vec{s}) = \mathcal{W}(\vec{s})$$

Now, the range, anisotropy and marginal variance can vary spatially.

2D-Random Walk Penalty

To enforce smoothness of parameters across space, the authors introduce a second-order penalty into their model for the spatially-specific covariance parameters:

$$-\Delta eta(ec{s}) = \mathcal{W}_eta(ec{s})/\sqrt{ au_eta}$$

where $\beta(\vec{s})$ is the location-specific value for parameter β and

$$\beta(\vec{s}) = \sum_{i=1}^{k} \sum_{j=1}^{l} \alpha_{ij} f_{ij}(\vec{s})$$

where $\{\alpha_{ij}\}$ are the parameters for real-valued basis functions $\{f_{ij}\}$ and i and j are indices of the $k \times l$ mesh.

$$ec{lpha} \sim \mathcal{N}_{kl} \left(ec{\mathsf{0}}, \mathbf{Q}_{\mathrm{RW2}}^{-1} / au_{eta}
ight)$$

Full Hierachical Model

This

Stage 1:
$$\vec{y}|\vec{\beta}, \vec{u}, \log(\tau_{\text{noise}}) \sim \mathcal{N}_N(\mathbf{X}\vec{\beta} + \mathbf{E}\vec{u}, \mathbf{I}_N/\tau_{\text{noise}})$$

Stage 2: $\vec{u}|\vec{\alpha}_1, \vec{\alpha}_2, \vec{\alpha}_3, \vec{\alpha}_4 \sim \mathcal{N}_{nm}(\vec{0}, \mathbf{Q}^{-1}), \qquad \vec{\beta} \sim \mathcal{N}_p(\vec{0}, \mathbf{I}_p/\tau_\beta)$
Stage 3: $\vec{\alpha}_i|\tau_i \sim \mathcal{N}_{kl}(\vec{0}, \mathbf{Q}_{\text{PW}2}^{-1}/\tau_i)$ for $i = 1, 2, 3, 4$

Stationary vs. Non-stationary Model Predictions (Authors)

Insert plots

Stationary vs. Non-stationary Model Predictions (Re-implementation)