# Changes in U.S. Residential Monthly Energy Use per Capita: 1990-2017

Xiaoxuan Yang



# Degree Day Variables

Degree days are the differences between the daily temperature mean  $\overline{T}$  and base temperature  $T_b$  (conventionally at 65°F).

$$CDD = \sum_{d=1}^{N_d} \gamma_d (T - T_b)$$

$$HDD = \sum_{d=1}^{N_d} (1 - \gamma_d)(T_b - \bar{T})$$

$$DD = CDD - HDD$$





# Background

Degree day methodology – examine the impact of climate change on residential energy use

End-uses by Fuel – Space heating: natural gas, electricity, fuel oil, etc.

Space cooling: electricity

Climate Change Impact – expect higher cooling demand, which would lead to increased electricity consumption; Fewer cold winter days result in decreased heating demand



## Research Question

How has the relationship between degree days and residential energy use been changing temporally and spatially?



# Degree Day Literature

Linear symmetric models: energy demand responds the same to a marginal change in temperature (Eskeland et al., 2010)

Non-linear models\*: allow more variation in the slope, reflecting constraints associated with capacity of space conditioning equipment.

Other variables: two major categories:

- socio-economic (GDP, fuel prices, household income)
- climatological (humidity, precipitation)



# Non-linear OLS Regression Models

Combination of independent variables (including their first and second order if appropriate):

1. Spatial and Temporal Fixed Effects:

$$C_e = \beta_1 \cdot DD + \beta_2 \cdot DD^2 + \beta_3 \cdot GDP + \alpha_t + \alpha_s + \varepsilon_{st}$$
  

$$C_g = \beta_1 \cdot DD + \beta_2 \cdot DD^2 + \beta_3 \cdot GDP + \alpha_t + \alpha_s + \varepsilon_{st}$$

2. State-by-state, Year-by-year:

$$C_e = \beta_1 \cdot DD + \beta_2 \cdot DD^2 + \varepsilon_{st}$$
  

$$C_g = \beta_1 \cdot DD + \beta_2 \cdot DD^2 + \varepsilon_{st}$$





### Variables

#### Dependent variables:

- Monthly electricity use (EIA-861M)
- Monthly natural gas use (<u>EIA</u>)

#### Independent variables:

- Population-weighted monthly CDD, HDD (NOAA)
- Real GDP (applying quadratic-match average to <u>annual GDP</u>)
- Residential population (interpolating annual state population from <u>Census Bureau</u>)



# Identify Seven Unique Curve Dimensions





## Curve Movements







Negative trend in DD@ $E_{min}$ : -1



Insignificant change in climate: 0



# Trends in Degree Day



4%

0%

Significant (+)

Significant (-)

8%

0%



# Trends in Curvature



0.00000000 0.00007686

|                 | Curvature (electricity) | Curvature<br>(natural gas) |  |  |  |
|-----------------|-------------------------|----------------------------|--|--|--|
| Insignificant   | 15%                     | 52%                        |  |  |  |
| Significant (+) | 81%                     | 42%                        |  |  |  |
| Significant (-) | 0%                      | 6%                         |  |  |  |

-0.0000396

0.0000985



# DD at Lowest Electricity Use

DD at lowest Electricity

 ${\small Insignificant} \qquad 29\%$ 

Significant (+) 21%

Significant (-) 50%





## Trends in Curve Dimensions

**Electricity** 

|                 | Curvature |  | DD at<br>lowest<br>Electricity |  | Electricity<br>use at<br>DD <sub>max</sub> | Electricity<br>use at<br>DD <sub>min</sub> | Lowest<br>Electricity<br>Use |  |
|-----------------|-----------|--|--------------------------------|--|--------------------------------------------|--------------------------------------------|------------------------------|--|
| Insignificant   | 15%       |  | 29%                            |  | 6%                                         | 13%                                        | 17%                          |  |
| Significant (+) | 81%       |  | 21%                            |  | 94%                                        | 79%                                        | 81%                          |  |
| Significant (-) | 0%        |  | 50%                            |  | 0%                                         | 8%                                         | 2%                           |  |

Natural gas

|                 | Curvatu | ire | DD at<br>lowest NG |  | NG use at DD <sub>max</sub> | NG use at<br>DD <sub>min</sub> | Lowest<br>NG Use |
|-----------------|---------|-----|--------------------|--|-----------------------------|--------------------------------|------------------|
| Insignificant   | 52%     |     | 73%                |  | 21%                         | 40%                            | 15%              |
| Significant (+) | 42%     |     | 6%                 |  | 8%                          | 23%                            | 6%               |
| Significant (-) | 6%      |     | 21%                |  | 71%                         | 38%                            | 79%              |

- Sensitivity of energy use to temperature
- National trends of increasing or decreasing
- Change in cooling and heating

|                 | $DD_{min}$ | DD <sub>max</sub> |
|-----------------|------------|-------------------|
| Insignificant   | 96%        | 92%               |
| Significant (+) | 4%         | 8%                |
| Significant (-) | 0%         | 0%                |



# Identify Trends in Curve Dimensions



|          | Curvature | DD at<br>E <sub>min</sub> | $DD_max$ | $DD_{min}$ | E at<br>DD <sub>max</sub> | E at<br>DD <sub>min</sub> | E <sub>min</sub> | Combination |
|----------|-----------|---------------------------|----------|------------|---------------------------|---------------------------|------------------|-------------|
| Colorado | 1         | -1                        | 1        | 0          | 1                         | 1                         | 1                | 1-110111    |

# Classification of States

#### **Electricity**



Blue – top 3 common class: upward movement of electricity use and increased sensitivity to changing temperatures

Pink – Mostly increased electricity use except at low temperature

#### Natural gas



Orange – decreased natural gas use at all temperatures

Purple – increased sensitivity to temperature

Grey – decrease sensitivity to temperature

Red – other



#### **Electricity**



#### Natural gas







# Comparison with RECS data



Households using natural gas and electricity as main heating sources.

- Slowdown of natural gas installation in new constructions
- Increased electricity use in the current housing stock



# More Comparison



#### **HEATING TREND**



#### **COOLING TREND**

Figure 1. Steady rise in air conditioned homes in all regions of the U.S. percent of homes with AC



Source: U.S. Energy Information Administration, 2009 Residential Energy Consumption Survey



# Major Conclusion

- 1. No evident annual warming or cooling trend for state-level DD for the period analyzed;
- 2. Increased sensitivity of electricity use per capita and overall electricity use with respect to seasonal fluctuations in temperatures;
- Decreased NG use per capita with respect to seasonal fluctuations in temperatures;
- 4. DD@Electricity<sub>min</sub> trends:
  - a) Positive: increasing electricity use for heating in the South
  - b) Negative: cooling in Northwest and Northeast

#### Questions?

I would like to thank my advisor, Prof. LincolnPratson for his guidance during my research and study at Duke University. I also want to thank my committee members Prof. Timothy Johnson and Prof. Wenhong Li for contributing invaluable ideas to my research and sharing relevant literature. Lastly, I want to thank my labmates Jun Shepard and Candise Henry for their endless support throughout my two years at Duke.



# Implications (Energy Use)



- Purchase and installation of space conditioning equipment
- Change in local generation mix(Northwest)

- Improved energy efficiency through updated building codes and energy efficiency programs
- Economic recession