Operaciones con Conjuntos y Diagramas de Venn

A partir del universo y subconjuntos, encontrar por extensión y graficar los diagramas de Venn los siguientes incisos

Sea:

- U = {X \in letras del abecedario } Nota: No se incluye "ñ" ni "LL"
- $I = \{X \in vocales \}$
- $II = \{X = h; X = j; o < X \le s \}$
- III = $\{a \le X < k; X = o; X = u \}$
- IV = $\{f \le X < i; \quad j \le X < o \quad p \le X \le s \}$

Hallar por extensión y generar el diagrama de Venn para cada caso:

- a) $(I II') \cup (III' \cap II)'$
- b) $(II \cap III) (IV' \cup I')$
- c) $(III \cup II) \cap (II' \cap IV)'$
- d) $(II \cap III)' \cap (I \cup II')'$
- e) $(III \cup II)' \cap (II' \cap I)'$
- f) $(III' \cup II') \cap (II' \cap I)' (IV' III)$

Solución:

Como primer paso se debe de encontrar todos los subconjuntos y sus complementos, por lo tanto quedan como:

- $U = \{ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \}$
- $I = \{a, e, i, o, u\}$
- $I' = \{ b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z \}$
- $II = \{ h, j, p, q, r, s \}$
- II' = $\{a, b, c, d, e, f, g, i, k, l, m, n, o, t, u, v, w, x, y, z\}$
- III = $\{a, b, c, d, e, f, g, h, i, j, o, u\}$
- $\bullet \ III' = \{ \ k, \, l, \, m, \, n, \, p, \, q, \, r, \, s, \, t, \, v, \, w, \, x, \, y, \, z \ \}$
- $IV = \{ f, g, h, j, k, l, m, n, p, q, r, s \}$
- IV' = $\{a, b, c, d, e, i, o, t, u, v, w, x, y, z\}$

a) Analizando paso por paso el primer inciso a), se puede resolver en dos partes (I - II') y $(III' \cap II)'$ para así unir ambos subconjuntos

Resolviendo (I - II')

$$(I - I') = \{a, e, i, o, u\} - \{a, b, c, d, e, f, g, i, k, l, m, n, o, t, u, v, w, x, y, z\}$$

= \{\}

Resolviendo (III' \cap II)'

$$(III' \cap II)' = \{k, l, m, n, p, q, r, s, t, v, w, x, y, z\} \cap (\{h, j, p, q, r, s\})'$$
$$= (\{p, q, r, s\})'$$

Juntando ambos lados para armar (I - II') \cup (III' \cap II)':

$$(I - II') \cup (III' \cap II)' = (\{\} \cup \{p, q, r, s\})'$$

$$= \{p, q, r, s\}'$$

$$= \{a, b, c, d, e, f, q, h, i, j, k, l, m, n, o, t, u, v, w, x, y, z\}$$

Por lo tanto el resultado es

$$\boxed{(I - II') \cup (III' \cap II)' = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, t, u, v, w, x, y, z\}}$$

Para obtener el diagrama de Venn, se puede hacer por partes, el lado derecho y lado izquierdo, quedando:

(I - II'):

Figure 1: Diagrama de Venn de (I - II')

(III' ∩ II)':

Figure 2: Diagrama de Venn de $(III' \cap II)'$

Sacando el complemento, queda el diagrama

Figure 3: Diagrama de Venn de $(III' \cap II)'$

Haciendo la unión de ambos lados para armar (I - II') \cup (III' \cap II)', quedando así el diagrama de Venn:

Figure 4: Diagrama de Venn de $(I - II') \cup (III' \cap II)'$

b) Analizando paso por paso el segundo inciso b), se puede resolver en dos partes (II \cap III) y (IV' \cup I') para así unir ambos subconjuntos

Resolviendo (II \cap III)

$$(II \cap III) = \{h, j, p, q, r, s\} \cap \{a, b, c, d, e, f, g, h, i, j, o, u\}$$
$$= \{h, j\}$$

Resolviendo (IV' \cup I')

$$(IV' \cup I') = \{a, b, c, d, e, i, o, t, u, v, w, x, y, z\} \cup \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}$$
$$= \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$$

Juntando ambos lados para armar (II \cap III) - (IV' \cup I'):

$$\begin{split} (II \cap III) - (IV' \cup I') &= \{h,j\} - \{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z\} \\ &= \{\} \end{split}$$

Por lo tanto el resultado es un subconjunto vacío:

$$(I - I') \cup (III' \cap II)' = \{\}$$

Para obtener el diagrama de Venn, se puede hacer por partes, el lado derecho y lado izquierdo, quedando:

(II \cap III):

Figure 5: Diagrama de Venn de (II \cap III)

(**IV**′ ∪ **I**′):

Figure 6: Diagrama de Venn de (IV' \cup I')

Sacando la diferencia, (II \cap III) - (IV' \cup I'), queda que no existe ningún diagrama representativo, ya que es un subconjunto vacío

c) Analizando paso por paso el segundo inciso c), se puede resolver en dos partes (III \cup II) y ((II' \cap IV)') para así unir ambos subconjuntos

Resolviendo (III \cup II)

$$(III \cup II) = \{a, b, c, d, e, f, g, h, i, j, o, u\} \cup \{h, j, p, q, r, s\}$$
$$= \{a, b, c, d, e, f, g, h, i, j, o, p, q, r, s, u\}$$

Resolviendo (II' \cap IV)'

$$(II' \cap IV)' = (\{a, b, c, d, e, f, g, i, k, l, m, n, o, t, u, v, w, x, y, z\} \cap \{f, g, h, j, k, l, m, n, p, q, r, s\})'$$

$$= (\{f, g, k, l, m, n, \})'$$

$$= \{a, b, c, d, e, h, i, j, o, p, q, r, s, t, u, v, w, x, y, z\}$$

Juntando ambos lados para armar (III \cup II) \cap (II' \cap IV)':

$$(III \cup II) \cap (II' \cap IV)' = \{a, b, c, d, e, f, g, h, i, j, o, p, q, r, s, u\} \cap \{a, b, c, d, e, h, i, j, o, p, q, r, s, t, u, v, w, x, y, z\}$$
$$= \{a, b, c, d, e, h, i, j, o, p, q, r, s, u\}$$

Por lo tanto el resultado es:

$$(III \cup II) \cap (II' \cap IV)' = \{a, b, c, d, e, h, i, j, o, p, q, r, s, u\}$$

Para obtener el diagrama de Venn, se puede hacer por partes, el lado derecho y lado izquierdo, quedando:

(III \cup II):

Figure 7: Diagrama de Venn de (III \cup II)

(II' \cap IV)':

Figure 8: Diagrama de Venn de (II' \cap IV)'

Sacando el complemento, queda el diagrama

Figure 9: Diagrama de Venn de (II' \cap IV)'

Haciendo la intersección de ambos lados para armar (III \cup II) \cap (II' \cap IV)', quedando así el diagrama de Venn:

Figure 10: Diagrama de Venn de (III \cup II) \cap (II' \cap IV)'

d) Analizando paso por paso el segundo inciso d), se puede resolver en dos partes (II \cap III)' y (I \cup II')' para así unir ambos subconjuntos

Resolviendo (II \cap III)'

$$(II \cap III)' = (\{h, j, p, q, r, s\} \cap \{a, b, c, d, e, f, g, h, i, j, o, u\})'$$

= $(\{h, j\})'$
= $\{a, b, c, d, e, f, g, i, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$

Resolviendo ($\mathbf{I} \cup \mathbf{II'}$)'

$$(I \cup II')' = (\{a, e, i, o, u\} \cup \{a, b, c, d, e, f, g, i, k, l, m, n, o, t, u, v, w, x, y, z\})'$$

$$= (\{a, b, c, d, e, f, g, i, k, l, m, n, o, t, u, v, w, x, y, z\})'$$

$$= \{h, j, p, q, r, s\}$$

Juntando ambos lados para armar (II \cap III)' \cap (I \cup II')':

$$(II \cap III)' \cap (I \cup II')' = \{a, b, c, d, e, f, g, i, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \cap \{h, j, p, q, r, s\}$$
$$= \{p, q, r, s\}$$

Por lo tanto el resultado es:

$$(II \cap III)' \cap (I \cup II')' = \{p, q, r, s\}$$

Para obtener el diagrama de Venn, se puede hacer por partes, el lado derecho y lado izquierdo, quedando:

(II \cap III)':

Figure 11: Diagrama de Venn de (II \cap III)'

Sacando el complemento, queda el diagrama

Figure 12: Diagrama de Venn de (II \cap III)'

(I ∪ II')':

Figure 13: Diagrama de Venn de (I \cup II')'

Sacando el complemento, queda el diagrama

Figure 14: Diagrama de Venn de (I \cup II')'

Haciendo la intersección de ambos lados para armar (II \cap III)' \cap (I \cup II')', quedando así el diagrama de Venn:

Figure 15: Diagrama de Venn de (II \cap III)' \cap (I \cup II')'

e) Analizando paso por paso el segundo inciso e), se puede resolver en dos partes (III \cup II)' y (II' \cap I)' para así unir ambos subconjuntos

Resolviendo (III \cup II)'

$$(III \cup II)' = (\{a, b, c, d, e, f, g, h, i, j, o, u\} \cup \{h, j, p, q, r, s\})'$$
$$= (\{a, b, c, d, e, f, g, h, i, j, o, p, q, r, s, u, \})'$$
$$= \{k, l, m, n, t, v, w, x, y, z\}$$

Resolviendo (II' \cap I)'

$$(II' \cap I)' = (\{a, b, c, d, e, f, g, i, k, l, m, n, o, t, u, v, w, x, y, z\} \cap \{a, e, i, o, u\})'$$

$$= (\{a, e, i, o, u\})'$$

$$= \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}$$

Juntando ambos lados para armar (III \cup II)' \cap (II' \cap I)':

$$(III \cup II)' \cap (II' \cap I)' = \{k, l, m, n, t, v, w, x, y, z\} \cap \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}$$
$$= \{k, l, m, n, t, v, w, x, y, z\}$$

Por lo tanto el resultado es:

$$(III \cup II)' \cap (II' \cap I)' = \{k, l, m, n, t, v, w, x, y, z\}$$

Para obtener el diagrama de Venn, se puede hacer por partes, el lado derecho y lado izquierdo, quedando:

(III \cup II)':

Figure 16: Diagrama de Venn de (III \cup II)'

Sacando el complemento, queda el diagrama

Figure 17: Diagrama de Venn de (III \cup II)'

(II' \cap I)':

Figure 18: Diagrama de Venn de (II' \cap I)'

Sacando el complemento, queda el diagrama

Figure 19: Diagrama de Venn de (II' \cap I)'

Haciendo la intersección de ambos lados para armar (III \cup II)' \cap (II' \cap I)' , quedando así el diagrama de Venn:

Figure 20: Diagrama de Venn de (III \cup II)' \cap (II' \cap I)'

f) Analizando paso por paso el segundo inciso f), se puede resolver en tres partes , y para así unir los tres subconjuntos

Resolviendo (III' ∪ II')

$$(III' \cup II') = \{k, l, m, n, p, q, r, s, t, v, w, x, y, z\} \cup \{a, b, c, d, e, f, g, i, k, l, m, n, o, t, u, v, w, x, y, z\}$$
$$= \{a, b, c, d, e, f, g, i, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$$

Resolviendo (II' \cap I)'

$$\begin{split} (II'\cap I)' &= (\{a,b,c,d,e,f,g,i,k,l,m,n,o,t,u,v,w,x,y,z\} \cap \{a,e,i,o,u\})' \\ &= (\{a,e,i,o,u\})' \\ &= \{b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,y,z\} \end{split}$$

Resolviendo (IV' - III)

$$(IV'-III) = \{a,b,c,d,e,i,o,t,u,v,w,x,y,z\} - \{a,b,c,d,e,f,g,h,i,j,o,u\}$$
$$= \{t,v,w,x,y,z\}$$

Juntando los tres lados para armar (III' \cup II') \cap (II' \cap I)' - (IV' - III):

$$\begin{split} (III' \cup II') \cap (II' \cap I)' - (IV' - III) &= \{a, b, c, d, e, f, g, i, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \\ &\quad \cap \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\} - \{t, v, w, x, y, z\} \\ &= \{b, c, d, f, g, k, l, m, n, p, q, r, s, t, v, w, x, y, z\} - \{t, v, w, x, y, z\} \\ &= \{b, c, d, f, g, k, l, m, n, p, q, r, s\} \end{split}$$

Por lo tanto el resultado es:

$$(III'\cup II')\cap (II'\cap I)'-(IV'-III)=\{b,c,d,f,g,k,l,m,n,p,q,r,s\}$$

Para obtener el diagrama de Venn, se puede hacer por partes, el lado derecho y lado izquierdo, quedando:

(III' \cup II'):

Figure 21: Diagrama de Venn de (III' \cup II')

(II' ∩ I)':

Figure 22: Diagrama de Venn de (II' \cap I)'

Sacando el complemento, queda el diagrama

Figure 23: Diagrama de Venn de (II' \cap I)'

(IV' - III):

Figure 24: Diagrama de Venn de (IV' - III)

Haciendo la intersección de (III' \cup II') \cap (II' \cap I)', quedando así:

Figure 25: Diagrama de Venn de (III' \cup II') \cap (II' \cap I)'

Haciendo la diferencia de (III' \cup II') \cap (II' \cap I)' - (IV' - III), quedando así:

Figure 26: Diagrama de Venn de (III' \cup II') \cap (II' \cap I)' - (IV' - III)