Pure Diffusion | Formulation

$$\begin{cases} -\psi'' = s & \text{in} \quad \Omega =]x_{\text{lf}}, x_{\text{rg}} + \epsilon[\\ \psi = \psi_{\text{lf},0} & \text{on} \quad x = x_{\text{lf}} \\ -\psi' = \psi_{\text{rg},1} & \text{on} \quad x = x_{\text{rg}} + \epsilon \end{cases}$$

Mesh

- C_i cell i
- I number of cells
- $x_{i-\frac{1}{2}}$, $x_{i+\frac{1}{2}}$ boundary points of cell i
- h_i length of cell i
- m_i centroid of cell i

2/10

Polynomial Reconstructions | Inner Vertices

$$\psi_{i+\frac{1}{2},d}(x) = \sum_{\alpha=0}^{d} \mathcal{R}_{i+\frac{1}{2},\alpha}(x - x_{i+\frac{1}{2}})^{\alpha}$$

$$\min_{\mathcal{R}_{i+\frac{1}{2},0},...,\mathcal{R}_{i+\frac{1}{2},d}} \sum_{j \in \widehat{\mathcal{S}}_{i+\frac{1}{2}}} \omega_{j} \left[\frac{1}{h_{j}} \int_{c_{j}} \psi_{i+\frac{1}{2},d}(x) dx - \psi_{j} \right]^{2}$$

This will be needed to approximate $\mathbf{F}_{i+\frac{1}{2}} pprox \mathcal{F}_{i+\frac{1}{2}} = \widetilde{\psi}'_{i+\frac{1}{2}}(x_{i+\frac{1}{2}})$

Polynomial Reconstructions | Left Boundary

$$\psi_{\frac{1}{2},d}(x) = \sum_{\alpha=0}^d \mathcal{R}_{\frac{1}{2},\alpha}(x-x_{\mathsf{lf}})^{\alpha}$$

$$\begin{aligned} \min_{\mathcal{R}_{\frac{1}{2},0},\dots,\mathcal{R}_{\frac{1}{2},d}} \quad & \sum_{j \in \widehat{S}_{\frac{1}{2}}} \omega_j \left[\frac{1}{h_j} \int_{c_j} \psi_{\frac{1}{2},d}(x) \mathrm{d}x - \psi_j \right]^2 \\ \text{s.t.} \quad & \psi_{\frac{1}{2},d}(x_{\mathsf{lf}}) = \psi_{\mathsf{lf},0} \end{aligned}$$

This will be needed to approximate $\mathbf{F}_{rac{1}{2}} pprox \mathcal{F}_{rac{1}{2}} = \psi'_{rac{1}{2}}(x_{ ext{lf}})$

Polynomial Reconstructions | Right Boundary

$$\psi_{I+rac{1}{2},\mathsf{d}}(x) = \sum_{lpha=0}^{\mathsf{d}} \mathcal{R}_{I+rac{1}{2},lpha}(x-x_{\mathsf{fg}})^{lpha}$$

$$\begin{aligned} \min_{\mathcal{R}_{I+\frac{1}{2},0},\dots,\mathcal{R}_{I+\frac{1}{2},\mathsf{d}}} \quad & \sum_{j \in \widehat{\mathcal{S}}_{I+\frac{1}{2}}} \omega_{j} \left[\frac{1}{h_{j}} \int_{c_{j}} \psi_{I+\frac{1}{2},\mathsf{d}}(x) \mathrm{d}x - \psi_{j} \right]^{2} \\ \mathrm{s.t.} \quad & -\psi'_{I+\frac{1}{2},\mathsf{d}}(x_{\mathsf{rg}} + \epsilon) = \psi_{\mathsf{rg},1} \end{aligned}$$

This will be needed to approximate $\mathbf{F}_{I+\frac{1}{2}} pprox \mathcal{F}_{I+\frac{1}{2}} = \widehat{\psi}'_{I+\frac{1}{2}}(x_{rg})$

Tests

In this test we will consider:

- unstructured mesh
- $\overline{\Omega} = [0, 1 + \epsilon]$
- $\psi(x) = \exp(x)$
- $\psi(0) = 1$
- $\bullet \ \varphi_{\rm n2} = -\exp(1+\epsilon)$

Tests | $\epsilon = 0$ | d and d + 1

					_			
		I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$		I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
1	TTD	10	2.18E-02	_		10	2.18E-02	_
		20	5.50E-03	1.99	ID	20	5.50E-03	1.99
	\mathbb{P}_1	30	2.56E-03	1.88	\mathbb{P}_1	30	2.56E-03	1.88
		40	1.60E-03	1.64		40	1.60E-03	1.64
		10	4.28E-03	_	_	10	4.28E-03	_
	TTD	20	2.05E-03	1.06	ID	20	2.05E-03	1.06
	\mathbb{P}_2	30	1.70E-03	0.45	\mathbb{P}_2	30	1.70E-03	0.45
		40	4.96E-04	4.29		40	4.96E-04	4.29
		10	4.11E-05	_	_	10	4.11E-05	_
	TTD	20	2.29E-06	4.16	\mathbb{P}_3	20	2.29E-06	4.16
	\mathbb{P}_3	30	7.21E-07	2.85		30	7.21E-07	2.85
		40	1.76E-07	4.91		40	1.76E-07	4.91
		10	1.07E-05	_	\mathbb{P}_4	10	1.07E-05	_
	\mathbb{P}_4	20	8.77E-07	3.61		20	8.77E-07	3.61
	IF 4	30	2.26E-07	3.34		30	2.26E-07	3.34
		40	6.37E-08	4.40		40	6.37E-08	4.40
		10	7.38E-07	_		10	7.38E-07	_
	\mathbb{P}_5	20	1.01E-08	6.20	\mathbb{P}_5	20	1.01E-08	6.20
	₽ 5	30	1.05E-09	5.58		30	1.05E-09	5.58
		40	2.04E-10	5.69		40	2.04E-10	5.69

Tests | $\epsilon = \frac{h}{2}$ | d and d+1

-	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	1.22E-01	_
TTD	20	6.44E-02	0.92
\mathbb{P}_1	30	4.37E-02	0.95
	40	3.30E-02	0.98
	10	4.58E-03	_
TID	20	2.19E-03	1.07
\mathbb{P}_2	30	1.83E-03	0.44
	40	1.46E-04	8.79
	10	6.19E-05	_
\mathbb{P}_3	20	5.52E-06	3.49
п.3	30	7.02E-07	5.09
	40	2.41E-07	3.72
	10	6.79E-06	_
$\mathbb{P}_{\mathbf{A}}$	20	3.29E-07	4.37
# 4	30	5.89E-08	4.25
	40	1.03E-08	6.07
	10	5.66E-07	_
\mathbb{P}_5	20	8.38E-09	6.08
ш 5	30	9.61E-10	5.34
	40	1.87E-10	5.68

	Ι	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	2.02E-02	_
TD	20	5.28E-03	1.94
\mathbb{P}_1	30	2.45E-03	1.89
	40	1.46E-03	1.80
	10	3.29E-03	_
\mathbb{P}_2	20	2.15E-03	0.61
IF2	30	1.82E-03	0.40
	40	1.30E-04	9.19
	10	4.21E-05	_
TD	20	2.34E-06	4.17
\mathbb{P}_3	30	7.18E-07	2.92
	40	1.77E-07	4.87
	10	5.24E-06	_
\mathbb{P}_{4}	20	2.05E-07	4.68
IF 4	30	6.60E-08	2.79
	40	1.22E-08	5.86
	10	5.45E-07	_
\mathbb{P}_{5}	20	8.16E-09	6.06
п.2	30	9.52E-10	5.30
	40	1.86E-10	5.68

Tests $| \epsilon = h | d$ and d+1

		I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$		I	$E_{0,I}(E_\infty)$	$E_{0,I}(C$
		10	2.66E-01	_		10	2.02E-02	_
	TID	20	1.34E-01	0.98	ID	20	5.27E-03	1.9
	\mathbb{P}_1	30	9.01E-02	0.99	\mathbb{P}_1	30	2.45E-03	1.8
		40	6.75E-02	1.00		40	1.46E-03	1.8
		10	5.97E-03	_		10	3.33E-03	_
	TTD	20	2.26E-03	1.40	ID	20	2.15E-03	0.6
	\mathbb{P}_2	30	1.84E-03	0.51	\mathbb{P}_2	30	1.83E-03	0.4
		40	1.90E-04	7.89		40	1.31E-04	9.1
		10	8.01E-05	_		10	4.22E-05	_
	TID	20	6.90E-06	3.54	\mathbb{P}_3	20	2.35E-06	4.1
	\mathbb{P}_3	30	7.87E-07	5.35		30	7.18E-07	2.9
		40	2.99E-07	3.37		40	1.77E-07	4.8
		10	8.09E-06	_		10	5.23E-06	_
	TTD	20	3.70E-07 4.45	ID	20	2.07E-07	4.6	
li	\mathbb{P}_4	30	5.78E-08	4.58	\mathbb{P}_4	30	6.60E-08	2.8
		40	1.09E-08	5.80		40	1.24E-08	5.8
I	9	10	5.69E-07	_		10	5.45E-07	_
		20	8.42E-09	6.08	ш	20	8.16E-09	6.0
	\mathbb{P}_5	30	9.63E-10	5.35	\mathbb{P}_5	30	9.52E-10	5.3
		40	1.88E-10	E-10 5.69		40	1.86E-10	5.6

Tests | $\epsilon = h^2$ | d and d+1

-	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	1.94E-02	_
TTD	20	5.19E-03	1.90
\mathbb{P}_1	30	2.43E-03	1.87
	40	1.45E-03	1.78
	10	3.10E-03	_
ID	20	1.95E-03	0.67
\mathbb{P}_2	30	1.74E-03	0.27
	40	3.56E-04	5.53
	10	4.11E-05	_
\mathbb{P}_3	20	3.47E-06	3.56
п.3	30	7.10E-07	3.91
	40	1.74E-07	4.90
	10	7.07E-06	_
$\mathbb{P}_{\mathbf{A}}$	20	4.68E-07	3.92
I 4	30	9.43E-08	3.95
	40	2.54E-08	4.55
	10	5.80E-07	_
\mathbb{P}_5	20	8.49E-09	6.09
ш 5	30	9.69E-10	5.35
	40	1.89E-10	5.69

_			
	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	2.06E-02	_
\mathbb{P}_1	20	5.34E-03	1.95
Г1	30	2.46E-03	1.91
	40	1.47E-03	1.79
	10	3.09E-03	_
\mathbb{P}_2	20	2.05E-03	0.60
IF 2	30	1.79E-03	0.33
	40	1.81E-04	7.97
	10	4.20E-05	_
\mathbb{P}_3	20	2.34E-06	4.17
п.3	30	7.18E-07	2.91
	40	1.77E-07	4.88
	10	5.34E-06	_
$\mathbb{P}_{\mathbf{A}}$	20	2.27E-07	4.55
ш 4	30	5.74E-08	3.39
	40	1.42E-08	4.85
	10	5.53E-07	_
\mathbb{P}_{5}	20	8.23E-09	6.07
ш 5	30	9.56E-10	5.31
	40	1.87E-10	5.68