Algebraic Groups

D. Zack Garza

Friday 18th September, 2020

Contents

1	Friday, August 21	3
	1.1 Intro and Definitions	3
	1.2 Jordan-Chevalley Decomposition	4
2	Monday, August 24	6
	2.1 Review and General Setup	6
	2.2 The Associated Lie Algebra	7
	2.3 Representations	8
	2.4 Classification	9
3	Wednesday, August 26	10
		10
	3.2 Root Systems and Weights	11
	·	13
4	Friday, August 28	14
	113, 1811	14
	4.1.1 Induction	
	4.1.2 Properties of Induction	
	4.2 Classification of Simple G -modules	
5	Monday, August 31	17
		17
6	Friday, September 04	22
	6.1 Review	23
	6.2 Characters of G-modules	24
7	Wednesday, September 09	24
	7.1 Group Schemes	25
	7.2 Hopf Algebras	
	7.2.1 Module Constructions	
	7.3 Frobenius Kernels	

List of Todos

What is	s α_1 ? Note that you can recover the Cartan something here?	9
What is	s the notation for fundamental weights? Definitely not Ω usually!	13
Equality	y as a composition of functors?	16
What is	$\stackrel{ au}{ ext{s}}V?$	18
List	of Definitions	
LIST	of Definitions	
1.0.1	1 Definition – Affine Variety	3
1.0.2		
1.0.3	G 1	
1.4.1		
1.5.1	·	
2.0.1		
3.0.1	•	
4.1.1	<u> </u>	
5.0.1		
7.0.1		
7.0.2	*	
7.0.3	*	
7.0.4	•	
1.0.3	Dominion Trobonius Remois	. 21
Lict	of Thomas	
LISL	of Theorems	
1.1	Proposition – ?	4
1.1 1.2	Proposition – ?	
1.3	Proposition –?	
1.3 1.4	Proposition – Existence and Uniqueness of Radical	
1.4 1.5	Proposition – JC Decomposition	
$\frac{1.5}{3.1}$	Theorem – ?	
3.1 4.1	Theorem – ?	
5.1	Proposition – ?	
5.1 5.2	Proposition – ?	
6.1	Theorem - ?	
6.2	Theorem – ?	
6.2	Theorem – ?	
0.0	1 HCO1CH	44

These are notes live-tex'd from a graduate course in Algebraic Geometry taught by Dan Nakano at the University of Georgia in Fall 2020. As such, any errors or inaccuracies are almost certainly my own.

> D. Zack Garza, Friday 18th September, 2020 12:47

1 Friday, August 21

Reference: Carter's "Finite Groups of Lie Type".

Reference: Humphrey's "Linear Algebraic Groups" (Springer)

1.1 Intro and Definitions

Definition 1.0.1 (Affine Variety).

Let $k = \overline{k}$ be algebraically closed (e.g. $k = \mathbb{C}, \overline{\mathbb{F}_p}$). A variety $V \subseteq k^n$ is an affine k-variety iff V is the zero set of a collection of polynomials in $k[x_1, \dots, x_n]$.

Here $\mathbb{A}^n := k^n$ with the Zariski topology, so the closed sets are varieties.

Definition 1.0.2 (Affine Algebraic Group).

An affine algebraic k-group is an affine variety with the structure of a group, where the multiplication and inversion maps

$$\mu:G\times G\to G$$
$$\iota:G\to G$$

are continuous.

Example 1.1.

 $G = \mathbb{G}_a \subseteq k$ the additive group of k is defined as $\mathbb{G}_a := (k, +)$. We then have a coordinate ring $k[\mathbb{G}_a] = k[x]/I = k[x]$.

Example 1.2.

G = GL(n, k), which has coordinate ring $k[x_{ij}, T] / \langle \det(x_{ij}) \cdot T = 1 \rangle$.

Example 1.3.

Setting n=1 above, we have $\mathbb{G}_m := \mathrm{GL}(1,k) = (k^{\times},\cdot)$. Here the coordinate ring is $k[x,T]/\langle xT=1\rangle$.

Example 1.4.

 $G = \operatorname{SL}(n, k) \leq \operatorname{GL}(n, k)$, which has coordinate ring $k[G] = k[x_{ij}] / \langle \det(x_{ij}) = 1 \rangle$.

Definition 1.0.3 (Irreducible).

A variety V is *irreducible* iff V can not be written as $V = \bigcup_{i=1}^{n} V_i$ with each $V_i \subseteq V$ a proper subvariety.

Proposition 1.1(?).

There exists a unique irreducible component of G containing the identity e. Notation: G^0 .

Proposition 1.2(?).

G is the union of translates of G^0 , i.e. there is a decomposition

$$G = \coprod_{g \in \Gamma} g \cdot G^0,$$

where we let G act on itself by left-translation and define Γ to be a set of representatives of distinct orbits.

Proposition 1.3(?).

One can define solvable and nilpotent algebraic groups in the same way as they are defined for finite groups, i.e. as having a terminating derived or lower central series respectively.

1.2 Jordan-Chevalley Decomposition

Proposition 1.4(Existence and Uniqueness of Radical).

There is a maximal connected normal solvable subgroup R(G), denoted the radical of G.

- $\{e\} \subseteq R(G)$, so the radical exists.
- If $A, B \leq G$ are solvable then AB is again a solvable subgroup.

Definition 1.4.1 (Unipotent).

An element u is unipotent $\iff u = 1 + n$ where n is nilpotent \iff its the only eigenvalue is $\lambda = 1$.

Proposition 1.5 (JC Decomposition).

For any G, there exists a closed embedding $G \hookrightarrow \operatorname{GL}(V) = \operatorname{GL}(n,k)$ and for each $x \in G$ a unique decomposition x = su where s is semisimple (diagonalizable) and u is unipotent.

Define $R_u(G)$ to be the subgroup of unipotent elements in R(G). :::{.definition title="Semisimple and Reductive"} Suppose G is connected, so $G = G^0$, and nontrivial, so $G \neq \{e\}$. Then

- G is semisimple iff $R(G) = \{e\}$.
- G is reductive iff $R_u(G) = \{e\}$. :::

Example 1.5.

G = GL(n, k), then R(G) = Z(G) = kI the scalar matrices, and $R_u(G) = \{e\}$. So G is reductive and semisimple.

Example 1.6.

G = SL(n, k), then $R(G) = \{I\}$.

Exercise 1.1.

Is this semisimple? Reductive? What is $R_u(G)$?

Definition 1.5.1 (Torus).

A torus $T \subseteq G$ in G an algebraic group is a commutative algebraic subgroup consisting of semisimple elements.

Example 1.7.

Let

$$T := \left\langle \begin{bmatrix} a_1 & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & a_n \end{bmatrix} \subseteq \operatorname{GL}(n,k) \right\rangle.$$

Remark 1.

Why are torii useful? For g = Lie(G), we obtain a root space decomposition

$$g = \left(\bigoplus_{\alpha \in \Phi_{-}} g_{\alpha}\right) \oplus t \oplus \left(\bigoplus_{\alpha \in \Phi_{+}} g_{\alpha}\right).$$

When G is a simple algebraic group, there is a classification/correspondence:

$$(G,T) \iff (\Phi,W).$$

where Φ is an irreducible root system and W is a Weyl group.

2 Monday, August 24

2.1 Review and General Setup

- $k = \bar{k}$ is algebraically closed
- \bullet G is a reductive algebraic group
- $T \subseteq G$ is a maximal split torus

Split:
$$T \cong \bigoplus \mathbb{G}_m$$
.

We'll associate to this a root system, not necessarily irreducible, yielding a correspondence

$$(G,T) \iff (\Phi,W)$$

with W a Weyl group.

This will be accomplished by looking at $\mathfrak{g} = \text{Lie}(G)$. If G is simple, then \mathfrak{g} is "simple", and Φ irreducible will correspond to a Dynkin diagram.

There is this a 1-to-1 correspondence

$$G \text{ simple}/\sim \iff A_n, B_n, C_n, D_n, E_6, E_7, E_8, F_4, G_2$$

where \sim denotes isogeny.

Taking the Zariski tangent space at the identity "linearizes" an algebraic group, yielding a Lie algebra.

Figure 2: Image

We have the coordinate ring $k[G] = k[x_1, \dots, x_n]/\mathcal{I}(G)$ where $\mathcal{I}(G)$ is the zero set. This is equal to $\{f: G \to k\}$,

2.2 The Associated Lie Algebra

Definition 2.0.1 (The Lie Algebra of an Algebraic Group). Define *left translation* is

$$\lambda_x : k[G] \to k[G]$$

 $y \mapsto f(x^{-1}y).$

Define derivations as

$$\mathrm{Der}\ k[G] = \left\{D: k[G] \to k[G] \ \middle|\ D(fg) = D(f)g + fD(g)\right\}.$$

We can then realize the Lie algebra as

$$\mathfrak{g} = \operatorname{Lie}(G) = \{ D \in \operatorname{Der} k[G] \mid \lambda_x \circ D = D \circ \lambda_x \},$$

the left-invariant derivations.

Example 2.1.

- $G = GL(n,k) \implies \mathfrak{g} = \mathfrak{gl}(n,k)$
- $G = SL(n,k) \implies \mathfrak{g} = \mathfrak{sl}(n,k)$

Let G be reductive and T be a split torus. Then T acts on \mathfrak{g} via an adjoint action. (For GL_n , SL_n , this is conjugation.)

There is a decomposition into eigenspaces for the action of T,

$$\mathfrak{g} = \left(\bigoplus_{\alpha \in \Phi} g_{\alpha}\right) \oplus t$$

where t = Lie(T) and $g_{\alpha} := \{x \in \mathfrak{g} \mid t.x = \alpha(t)x \ \forall t \in T\}$ with $\alpha : T \to K^{\times}$ a rational function (a root).

In general, take $\alpha \in \text{hom}_{AlgGrp}(T, \mathbb{G}_m)$.

Example 2.2.

Let G = GL(n, k) and

$$T = \left\{ \begin{bmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_n \end{bmatrix} \mid a_j \in k^{\times} \right\}.$$

Then check the following action:

Figure 3: Action

which indeed acts by a rational function.

Then

$$g_{\alpha} = \operatorname{span} \left\{ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right\} = g_{(1,-1,0)}.$$

For $\mathfrak{g} = \mathfrak{gl}(3, k)$, we have

$$\mathfrak{g} = t \oplus g_{(1,-1,0)} \oplus g_{(-1,1,0)}$$
$$\oplus g_{(0,1,-1)} \oplus g_{(0,-1,1)}$$
$$\oplus g_{(1,0,-1)} \oplus g_{(-1,0,1)}.$$

2.3 Representations

Let $\rho: G \to GL(V)$ be a group homomorphisms, then equivalently V is a (rational) G-module.

For $T \subseteq G$, $T \curvearrowright G$ semisimply, so we can simultaneously diagonalize these operators to obtain a weight space decomposition $V = \bigoplus_{\lambda \in X(T)} V_{\lambda}$, where

$$V_{\lambda} \coloneqq \left\{ v \in V \mid t.v = \lambda(t)v \ \forall t \in T \right\}$$
$$X(T) \coloneqq \hom(T, \mathbb{G}_m).$$

Example 2.3.

Let G = GL(n, k) and V the n-dimensional natural representation as column vectors,

$$V = \{ [v_1, \cdots, v_n] \mid v_j \in k \}.$$

Then

$$T = \left\{ \begin{bmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_n \end{bmatrix} \mid a_j \in k^{\times} \right\}.$$

Consider the basis vectors \mathbf{e}_i , then

$$\begin{bmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_n \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = a_j \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = a_1^0 a_2^0 \cdots a_j^0 \cdots a_n^0 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Here the weights are of the form $\varepsilon_j := [0, 0, \cdots, 1, \cdots, 0]$ with a 1 in the jth spot, so we have

$$V = V_{\varepsilon_1} \oplus V_{\varepsilon_2} \oplus \cdots \oplus V_{\varepsilon_n}.$$

Example 2.4.

For $V = \mathbb{C}$, we have $t.v = (a_1^0 \cdots a_n^0)v$ and $V = V_{(0,0,\cdots,0)}$.

2.4 Classification

Let G be a simple algebraic group (ano closed, connected, normal subgroups other than $\{e\}$, G) that is nonabelian that is nonabelian.

Example 2.5.

Let G = SL(3, k). Then

$$T = \left\{ t = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_1 a_2^{-1} & 0 \\ 0 & 0 & a_2^{-1} \end{bmatrix} \mid a_1, a_2 \in k^{\times} \right\}$$

and

$$t. \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = a_1^2 a_2^{-1} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

and $\alpha_1 = (2, -1)$.

What is α_1 ? Note that you can recover the Cartan something here?

Then

$$\mathfrak{g}=\mathfrak{g}_{(2,-1)}\oplus\mathfrak{g}_{(-2,1)}\oplus\mathfrak{g}_{(-1,2)}\oplus\mathfrak{g}_{(1,-2)}\oplus\mathfrak{g}_{(1,1)}\oplus\mathfrak{g}_{(-1,-1)}.$$

Then $\alpha_2 = (-1, 2)$ and $\alpha_1 + \alpha_2 = (1, 1)$.

This gives the root space decomposition for \mathfrak{sl}_3 :

Figure 4: Image

Then the Weyl group will be generated by reflections through these hyperplanes.

3 Wednesday, August 26

3.1 Review

- G a reductive algebraic group over k
- $T = \prod_{i=1}^{n} \mathbb{G}_{m}$ a maximal split torus
- $\mathfrak{g} = \overset{\widetilde{i=1}}{\operatorname{Lie}}(G)$
- There's an induced root space decomposition $\mathfrak{g} = t \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$
- When G is simple, Φ is an *irreducible* root system
 - There is a classification of these by Dynkin diagrams

Example 3.1.

 A_n corresponds to $\mathfrak{sl}(n+1,k)$ (mnemonic: A_1 corresponds to $\mathfrak{sl}(2)$)

- We have representations $\rho: G \to \mathrm{GL}(V)$, i.e. V is a G-module
- For $T \subseteq G$, we have a weight space decomposition: $V = \bigoplus_{\lambda \in X(T)} V_{\lambda}$ where $X(T) = \text{hom}(T, \mathbb{G}_m)$.

Note that $X(T) \cong \mathbb{Z}^n$, the number of copies of \mathbb{G}_m in T.

3.2 Root Systems and Weights

Example 3.2.

Let $\Phi = A_2$, then we have the following root system:

Figure 5: Image

In general, we'll have $\Delta = \{\alpha_1, \dots, \alpha_n\}$ a basis of *simple roots*.

Remark 2.

Every root $\alpha \in I$ can be expressed as either positive integer linear combination (or negative) of simple roots.

For any $\alpha \in \Phi$, let s_{α} be the reflection across H_{α} , the hyperplane orthogonal to α . Then define the Weyl group $W = \left\{ s_{\alpha} \mid \alpha \in \Phi \right\}$.

Example 3.3.

Here the Weyl group is S_3 :

Figure 6: Image

Remark 3.

W acts transitively on bases.

Remark 4.

 $X(T) \subseteq \mathbb{Z}\Phi$, recalling that $X(T) = \text{hom}(T, \mathbb{G}_m) = \mathbb{Z}^n$ for some n. Denote $\mathbb{Z}\Phi$ the root lattice and X(T) the weight lattice.

Example 3.4.

Let $G = \mathfrak{sl}(2,\mathbb{C})$ then $X(T) = \mathbb{Z}\omega$ where $\omega = 1$, $\mathbb{Z}\Phi = \mathbb{Z}\{\alpha\}$ Then there is one weight α , and the root lattice $\mathbb{Z}\Phi$ is just $2\mathbb{Z}$. However, the weight lattice is $\mathbb{Z}\omega = \mathbb{Z}$, and these are not equal in general.

Remark 5.

There is partial ordering on X(T) given by $\lambda \geq \mu \iff \lambda - \mu = \sum_{\alpha \in \Delta} n_{\alpha} \alpha$ where $n_{\alpha} \geq 0$. (We say λ dominates μ .)

Definition 3.0.1 (Fundamental Dominant Weights).

We extend scalars for the weight lattice to obtain $E := X(T) \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^n$, a Euclidean space with an inner product $\langle \cdot, \cdot \rangle$.

For $\alpha \in \Phi$, define its coroot $\alpha^{\vee} := \frac{2\alpha}{\langle \alpha, \alpha \rangle}$. Define the simple coroots as $\Delta^{\vee} := \{\alpha_i^{\vee}\}_{i=1}^n$, which

has a dual basis $\Omega := \{\omega_i\}_{i=1}^n$ the fundamental weights. These satisfy $\langle \omega_i, \alpha_j^{\vee} \rangle = \delta_{ij}$.

What is the notation for fundamental weights? Definitely not Ω usually

Important because we can index irreducible representations by fundamental weights.

A weight $\lambda \in X(T)$ is dominant iff $\lambda \in \mathbb{Z}^{\geq 0}\Omega$, i.e. $\lambda = \sum n_i \omega_i$ with $n_i \in \mathbb{Z}^{\geq 0}$.

If G is simply connected, then $X(T) = \bigoplus \mathbb{Z}\omega_i$.

See Jantzen for definition of simply-connected, SL(n+1) is simply connected but its adjoint PGL(n+1) is not simply connected.

3.3 Complex Semisimple Lie Algebras

When doing representation theory, we look at the Verma modules $Z(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b}^+)} \lambda \twoheadrightarrow L(\lambda)$.

Theorem 3.1(?). $L(\lambda)$ as a finite-dimensional $U(\mathfrak{g})$ -module $\iff \lambda$ is dominant, i.e. $\lambda \in X(T)_+$.

Thus the representations are indexed by lattice points in a particular region:

Figure 7: Image

Question 1:

Suppose G is a simple (simply connected) algebraic group. How do you parameterize irreducible representations?

For $\rho:G$

toGL(V), V is a simple module (an irreducible representation) iff the only proper G-submodules of V are trivial.

Answer 1: They are also parameterized by $X(T)_+$. We'll show this using the induction functor $\operatorname{Ind}_B^G \lambda = H^0(G/B, \mathcal{L}(\lambda))$ (sheaf cohomology of the flag variety with coefficients in some line bundle).

We'll define what B is later, essentially upper-triangular matrices.

Question 2: What are the dimensions of the irreducible representations for *G*?

Answer 2: Over $k = \mathbb{C}$ using Weyl's dimension formula.

For $k = \overline{\mathbb{F}_p}$: conjectured to be known for $p \ge h$ (the *Coxeter number*), but by Williamson (2013) there are counterexamples. Current work being done!

4 | Friday, August 28

4.1 Representation Theory

Review: let \mathfrak{g} be a semisimple lie algebra / \mathbb{C} . There is a decomposition $\mathfrak{g} = \mathfrak{b}^+ \oplus \mathfrak{n}^- = \mathfrak{n}^+ \oplus t \oplus \mathfrak{n}^-$, where t is a torus. We associate $U(\mathfrak{g})$ the universal enveloping algebra, and representations of \mathfrak{g} correspond with representations of $U(\mathfrak{g})$.

Let $\lambda \in X(T)$ be a weight, then λ is a $U(\mathfrak{b}^+)$ -module. We can write $Z(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b}^+)} \lambda$.

Remark 6.

There exists a unique maximal submodule of $Z(\lambda)$, say $RZ(\lambda)$ where $Z(\lambda)/RZ(\lambda) \cong L(\lambda)$ is an irreducible representation of \mathfrak{g} .

Theorem 4.1(?).

Let $L=L(\lambda)$ be a finite-dimensional irreducible representation for \mathfrak{g} . Then

- 1. $L \cong Z(\lambda)/RZ(\lambda)$ for some λ .
- 2. $\lambda \in X(T)_+$ is a dominant integral weight.

4.1.1 Induction

Let \mathfrak{g} be an algebraic group /k with $k = \bar{k}$, and let $H \leq G$. Let M be an H-module, we'll eventually want to produce a G-modules.

Step 1: Make M into a $G \times H$ where the first component (g,1) acts trivially on M.

Taking the coordinate algebra k[G], this is a (G-G)-bimodule, and thus becomes a $G \times H$ -module. Let $f \in k[G]$, so $f: G \to K$, and let $y \in G$. The explicit action is

$$[(g,h)f](y) := f(g^{-1}yh).$$

Note that we can identify $H \cong 1 \times H \leq G \times H$. We can form $(M \otimes_k k[G])^H$, the *H*-fixed points.

Exercise 4.1.

Let N be an A-module and $B \leq A$, then N^B is an A/B-module.

Hint: the action of B is trivial on N^B . Here $N^B := \{ n \in N \mid b.n = n \, \forall b \in B \}$

Definition 4.1.1 (Induction).

The induced module is defined as

$$\operatorname{Ind}_{H}^{G}(M) := (M \otimes k[G])^{H}.$$

4.1.2 Properties of Induction

1. $(\cdot \otimes_k k[G]) = \text{hom}_H(k, \cdot \otimes_k k[G])$ is only *left-exact*, i.e.

$$(0 \to A \to B \to C \to 0) \mapsto (0 \to FA \to FB \to FC \to \cdots).$$

2. By taking right-derived functors $R^{j}F$, you can take cohomology.

Note that in this category, we won't have enough projectives, but we will have enough injectives.

- 3. This functor commutes with direct sums and direct limits.
- 4. (Important) Frobenius Reciprocity: there is an adjoint, restriction, satisfying

$$\hom_G(N, \operatorname{Ind}_H^G M) = \hom_H(N \downarrow_H, M).$$

5. (Tensor Identity) If $M \in \text{Mod}(H)$ and additionally $M \in \text{Mod}(G)$, then $\text{Ind}_H^G = M \otimes_k \text{Ind}_H^G k$.

If $V_1, V_2 \in \text{Mod}(G)$ then $V_1 \otimes_k V_2 \in \text{Mod}(G)$ with the action given by $g(v_1 \otimes v_2) = gv_1 \otimes gv_2$.

6. Another interpretation: we can write

$$\operatorname{Ind}_H^G(M) = \left\{ f \in \operatorname{Hom}(G, M_a) \mid f(gh) = h^{-1} \cdot f(g) \, \forall g \in G, h \in H \right\} \qquad M_a = M \coloneqq \mathbb{A}^{\dim M}.$$

I.e., equivariant wrt the H-action.

Then G acts on $\operatorname{Ind}_H^G M$ by left-translation: $(gf)(y) = f(g^{-1}y)$.

7. There is an evaluation map:

$$\varepsilon: \operatorname{Ind}_H^G(M) \to M$$

$$f \mapsto f(1).$$

This is an H-module morphism. Why? We can check

$$\varepsilon(h.f) := (h.f)(a)$$

$$= f(h^{-1})$$

$$= hf(1)$$

$$= h(\varepsilon(f)).$$

We can write the isomorphism in Frobenius reciprocity explicitly:

$$\hom_G(N,\operatorname{Ind}_H^GM) \xrightarrow{\cong} \hom_H(N,M)$$
$$\varphi \mapsto \varepsilon \circ \varphi.$$

8. Transitivity of induction: for $H \leq H' \leq G$, there is a natural transformation (?) of functors:

$$\operatorname{Ind}_{H}^{G}(\,\cdot\,) = \operatorname{Ind}_{H'}^{G}\left(\operatorname{Ind}_{H}^{H'}(\,\cdot\,)\right).$$

Equality as a composition of functors?

4.2 Classification of Simple *G***-modules**

Suppose G is a connected reductive algebraic group /k with $k = \bar{k}$.

Example 4.1.

Let G = GL(n, k). There is a decomposition:

Figure 8: Image

Step 1: Getting modules for U.

Then there's a general fact: $U^+TU \hookrightarrow G$ is dense in the Zariski topology for any reductive algebraic group. We can form

- $B^+ := T \times U^+$, the positive borel,
- $B^- := T \rtimes U$, the negative borel,

Suppose we have a U-module, i.e. a representation $\rho: U \to \operatorname{GL}(V)$. We can find a basis such that $\rho(u)$ is upper triangular with ones on the diagonal. In this case, there is a composition series with 1-dimensional quotients, and the composition factors are all isomorphic to k.

Moral: for unipotent groups, there are only trivial representations, i.e. the only simple U-modules are isomorphic to k.

Step 2: Getting modules for B.

Modules for B are solvable, in which case we can find a flag. In this case, $\rho(b)$ embeds into upper triangular matrices, where the diagonal action may now not be trivial (i.e. diagonal is now arbitrary).

Thus simple B-modules arise by taking $\lambda \in X(T) = \text{hom}(T, \mathbb{G}_m) = \text{hom}(T, \text{GL}(1, k))$, then letting u act trivially on λ , i.e. u.v = v. Here we have $B \to B/U = T$, so any T-module can be pulled back to a B-module.

Step 3: Getting modules for G.

Let $\lambda \in X(T)$, then $H^0(\lambda) = \operatorname{Ind}_B^G \lambda = \nabla(\lambda)$.

5 Monday, August 31

5.1 Review of Representation Theory of Modules

Take R a ring, then consider M an R-module to be a "vector space" over M. Note that M is an R-module \iff there exists a ring morphism $\rho: R \to \hom_{AbGrp}(M, M)$.

Now let G be a group and consider G-modules M. Then a G-module will be defined by taking M/k a vector space and a G-action on M. This is equivalent to having a group morphism $\rho: G \to \mathrm{GL}(M)$.

For M a G-module, given a group action, define

$$\rho: G \to \mathrm{GL}(M)$$
$$\rho(g)(m) = g.m$$

where $\rho(h): M \to M$.

Similarly, for $\rho: G \to \mathrm{GL}(M)$ a group morphism, define the group action $g.m := \rho(g)m$. Thus representations of G and G-modules are equivalent.

Definition 5.0.1 (?).

Let M be a G-module.

- 1. M is a *simple G*-module (equivalently an *irreducible representation*) \iff the only G-submodules (equiv. G-invariant subspaces) are 0, M.
- 2. M is indecomposable \iff M can not be written as $M = M_1 \oplus M_2$ with $M_i < M$ proper

submodules.

Example 5.1.

For $G = \mathrm{SL}(n,\mathbb{C})$, there is a natural n-dimensional representation M = V, and this is irreducible.

What is V?

Example 5.2.

Let $R = \mathbb{Z}$, so we're considering \mathbb{Z} -modules. For $M = \mathbb{Z}$, M is not simple since $2\mathbb{Z} < \mathbb{Z}$ is a proper submodule. However M is indecomposable.

Recall from last time: we defined a functor $\operatorname{Ind}_H^G(\,\cdot\,): H\operatorname{-mod} \to G\operatorname{-mod}$, where $\operatorname{Ind}_H^G=(k[G]\otimes M)^H$, the $H\operatorname{-invariants}$. This functor is left-exact but not right-exact, so we have cohomology $R^j\operatorname{Ind}_H^G$ by taking right-derived functors.

Goal: classify simple G-modules for G a reductive connected algebraic group.

Example 5.3.

For G = GL(n, k), we have a decomposition

Figure 9: Image

We have

- $B = T \rtimes U$ the negative Borel,
- $B = T \rtimes U^+$ the Borel

For U-modules: k is the only simple U-module. Importantly, if V is a U-module, then the fixed points are never zero, i.e. $V^U = \hom_{U\text{-}\mathrm{Mod}}(k,V) \neq 0$.

For B-modules: let $X(T) := \hom(T, \mathbb{G}_m) = \hom(T, \operatorname{GL}(1, k))$. These are the simple representations for the torus T. Thus $\lambda \in X(T)$ represents a simple T-module.

We have a map $B \to B/U = T$, so we can pullback T-representations to B-representations ("inflation"), since we have a map $T \to \operatorname{GL}(1,k)$ and we can just compose. So λ is a 1-dimensional (simple) B-module where U acts trivially.

Lee's theorem: all irreducible representations for B are one-dimensional. Thus these are the simple B-modules.

For G-modules: define $\nabla(\lambda) := \operatorname{Ind}_B^G(\lambda) = H^0(\lambda)$.

Questions:

- 1. When does $H^0(\lambda) = 0$?
- 2. What is $\dim_{k\text{-Vect}} H^0(\lambda)$?
- 3. What are the composition factors of $H^0(\lambda)$?

Known in characteristic zero, wildly open in positive characteristic.

Remark 7.

Another interpretation: look at the flag variety G/B and take global sections, then $H^0(\lambda)$ $H^0(G/B,\mathcal{L}(\lambda))$ where \mathcal{L} is given by projecting the fiber product $G \times_B \lambda \twoheadrightarrow G/B$ onto the first factor.

Remark 8.

- 1. $H^0(k) = H^0([0, \dots, 0]) = k[G/B] = k$.
- 2. $H^0(M) = M$ if M is a G-module.
- 3. A G-module M is semisimple iff $M = \bigoplus M_i$ with each M_i are simple.
- 4. Can consider the largest semisimple submodule, the $socle Soc_G(M)$.

Goal: classify simple G-modules. Strategy: used dominant highest weights.

As opposed to Verma modules, the irreducibles will be a dual situation where they sit at the bottom of the module. Indicated by the notation ∇ pointing down!

Proposition 5.1(?).

Let $\lambda \in X(T)$ with $H^0(\lambda) \neq 0$.

- 1. dim $H^0(\lambda)^{U^+} = 1$ and $H^0(\lambda)^{U^+} = H^0(\lambda)_{\lambda}$. 2. Every weight of $H^0(\lambda)$ satisfies $w_u \lambda \leq \mu \leq \lambda$, where w_0 is the longest Weyl group element and $\alpha \leq \beta \iff \alpha - \beta \in \mathbb{Z}^+ \Phi$.

Note that in fact $\ell(w_0) = |\Phi^+|$.

Example 5.4.

Take A_2 with simple reflections $s_{\alpha_1}, s_{\alpha_2}$ and $\Delta = \{\alpha_1, \alpha_2\}$.

Proof ((Sketch)).

We can write

$$H^{0}(\lambda) = \left\{ f \in k[G] \mid f(gb) = \lambda(b)^{-1} f(g) \, b \in B, g \in G \right\}.$$

Suppose $f \in H^0(\lambda)^{U^+}$ and $u_+ \in U^+, t \in T, u \in U$. Then

$$(u_+^{-1}f)(tu) = f(tu)$$
$$= \lambda(t)^{-1}f(1).$$

On the other hand,

$$\left(u_{+}^{-1}f\right)(tu) = f(u_{+}tu).$$

So by density, f(1) is determined by $f(u_+tu)$ and dim $H^0(\lambda)^{U^+} \leq 1$. But since this can't be zero, the dimension must be equal to 1.

Proposition 5.2(?).

Let

$$\varepsilon: H^0(\lambda) \to \lambda$$

be the evaluation morphism.

This is a morphism of B-modules, and in particular is a morphism of T-modules. Thus the image of a weight $\mu \neq \lambda$ is zero, so ε is injective.

Proof.

We have

$$f(u_+tu) = \lambda(t)^{-1}f(1) = \lambda(t)^{-1}\varepsilon(f).$$

Suppose $f \in H^0(\lambda)^{U^+}$ and $\varepsilon(f) = 0$. Then $f(u_+tu) = 0$, and by density $f \equiv 0$, showing injectivity.

Therefore $H^0(\lambda)^{U^+} \subset H^0(\lambda)_{\lambda}$. Suppose μ is maximal among weights in $H^0(\lambda)$. Then

$$H^0(\lambda)_{\mu} \subseteq H^0(\lambda)^{U^+}$$

because U^+ raises weights.

But $H^0(\lambda)^{U^+} \subseteq H^0(\lambda)_{\lambda}$ implies $\mu = \lambda$. Thus the maximal weight in $H^0(\lambda)$ is λ .

Recall the situation in lie algebras: $g_{\alpha}v \in V_{\lambda+\alpha}$ when v inV_{λ} .

Since λ is maximal, any other weight μ satisfies $\mu \leq \lambda$. Thus

$$H^0(\lambda)_{\lambda} \subseteq H^0(\lambda)^{U^+} \subseteq H^0(\lambda)_{\lambda},$$

forcing these to be equal and finishing part 1.

6 | Friday, September 04

Some concepts used in the proof of other theorems: Let G be a reductive algebraic group and \mathfrak{g} its lie algebra. There is an associative algebra $U(\mathfrak{g})$ which reflects the representation theory of G.

Fact: $\mathfrak{g}\text{-mod} \equiv U(\mathfrak{g})\text{-modules}$ which are unitary, i.e. 1.m = m.

We can write a basis

$$\mathfrak{g} = \langle e_{\alpha}, h_i, f_{\beta} \mid \alpha \in \Phi^+, \beta \in \Phi^-, i = 1, 2, \cdots, n \rangle,$$

the Chevalley basis. It turns out that the structure constants are all in \mathbb{Z} .

Example 6.1.

Take $\mathfrak{g} = \mathfrak{sl}(2,k)$, then

$$e = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 $f = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ $h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

We want to form a \mathbb{Z} -lattice in $U(\mathfrak{g})$, denoted

$$U(\mathfrak{g})_{\mathbb{Z}} = \left\langle e_{\alpha}^{[n]} = \frac{e_{\alpha}^{n}}{n!}, f_{\beta}^{[n]} = \frac{f_{\beta}^{n}}{n!}, \begin{pmatrix} h_{i} \\ m \end{pmatrix} \right\rangle.$$

We then form the distribution algebra (or hyperalgebra in earlier literature) as $\mathrm{Dist}(G) := U(\mathfrak{g})_{\mathbb{Z}} \otimes_{\mathbb{Z}} k$ for k any field (e.g. char (k) = p).

Theorem 6.1(?).

G-modules $\equiv \mathrm{Dist}(G)$ -modules which are

- Weight modules
- Locally finite: $\dim \operatorname{Dist}(G).m < \infty$ for all $m \in M$.

Remark 9.

In characteristic zero, $Dist(G) = U(\mathfrak{g})$. Thus there is a correspondence

$$\{G\text{-modules}\} \iff \{U(\mathfrak{g})\text{-modules}\}.$$

If char (k) = p, e.g. $k = \overline{\mathbb{F}}_p$, and if the Frobenius map $F : G \to G$ satisfies $G_1 := \ker F$ (thinking of G_1 as a group scheme), then $\mathrm{Dist}(G_1) < \mathrm{Dist}(G)$ is a proper submodule. In this case, $\mathfrak{g} \subseteq \mathrm{Dist}(G_1)$ is a finite dimensional Hopf algebra, and $k[G_1] = \mathrm{Dist}(G_1)^{\vee}$. Importantly, the lie algebra does *not* generate $\mathrm{Dist}(G)$ if $k = \overline{\mathbb{F}}_p$.

Example 6.2.

Take $G = \mathbb{G}_a$, then $\mathrm{Dist}(\mathbb{G}_a) = \left\langle T^k \mid k = 0, 1, \cdots \right\rangle$ is an infinite dimensional algebra. In this case, $T^k T^\ell = \binom{k+\ell}{\ell} T^{k+\ell}$. For $k = \mathbb{C}$, $\mathrm{Dist}(\mathbb{G}_a) = \left\langle T^1 \right\rangle$ has one generator.

In the case $k = \overline{\mathbb{F}}_p$, we have $\operatorname{Dist}((\mathbb{G}_a)_1) = \langle T^k \mid 0 \le k \le p-1 \rangle$.

Note that taking duals yields a truncated polynomial algebra: $k[(\mathbb{G}_a)_1] = k[x]/\langle x^p \rangle$.

6.1 Review

Recall that $H^0(\lambda) := \operatorname{Ind}_B^G \lambda$. Proved in last (missed) class: :::{.remark} Let $H^0(\lambda) \neq 0$. Then

- a. dim $H^0(\lambda)_{\lambda} = 1$ where $H^0(\lambda) = H^0(\lambda)^{U^+}$.
- b. Each weight μ of $H^0(\lambda)$ satisfies $w_0\lambda \leq \mu \leq \lambda$, where w_0 is the longest Weyl group element. :::

Remark 10.

Let $H^0(\lambda)_{\lambda} \neq 0$, then $L(\lambda) = \operatorname{Soc}_G H^0(\lambda)$ is simple.

Remark 11.

If μ is a weight of $L(\lambda)$, then $w_0\lambda \leq \mu \leq \lambda$, dim $L(\lambda)_{\lambda} = 1$, and $L(\lambda)_{\lambda} = L(\lambda)^{U+}$.

Remark 12.

Any simple G-module is isomorphic to $L(\lambda)$ where $H^0(\lambda) \neq 0$.

Goal: We now want to classify simple G-modules. So we need an iff criterion for when $H^0(\lambda) \neq 0$. We look at the set of dominant weights

$$X(T)_{+} = \left\{ \lambda \in X(T) \mid \langle \lambda, \alpha^{\vee} \rangle \ge 0 \forall \alpha \in \Delta \right\} \qquad = \left\{ \lambda \in X(T) \mid \lambda = \sum_{i=1}^{\ell} n_{i} w_{i}, n_{i} \ge 0 \right\}.$$

Theorem 6.2(?).

TFAE:

- 1. $H^0(\lambda) \neq 0$
- 2. $\lambda \in X(T)_+$, i.e. λ is a dominant weight.

Proof.

 $1 \implies 2$: Suppose (1), then consider a simple reflection s_{α} for some $\alpha \in \Delta$. We know $H^{0}(\lambda)_{\lambda} \neq 0$, thus $H^{0}(\lambda)_{s_{\alpha}\lambda} \neq 0$. Therefore

$$s_{\alpha}\lambda = \lambda - \langle \lambda, \ \alpha^{\vee} \rangle \alpha \le \lambda$$

$$\implies 0 \le \langle \lambda, \ \alpha^{\vee} \rangle \alpha$$

$$\implies \langle \lambda, \ \alpha^{\vee} \rangle \ge 0 \qquad \forall \alpha \in \Delta.$$

 $2 \implies 1$: For a detailed proof, see Jantzen 2.6 in Part II.

- Let $\lambda \in X(T)_+$, then (by the intro lie algebras course) there exists an $L(\lambda)$: a simple finite dimensional $U(\mathfrak{g})$ -module over \mathbb{C} .
- $L(\lambda)$ has an integral basis which is compatible with $U(\mathfrak{g})_{\mathbb{Z}}$ (Kostant's \mathbb{Z} -form).
- Thus we can base change to get $\tilde{L}(\lambda) := L(\lambda) \otimes_{\mathbb{Z}} k$, which is a Dist(G)-module. Note that $\tilde{L}(\lambda)$ still has highest weight λ , so consider $\hom_B(\tilde{L}(\lambda), \lambda) \neq 0$.
- Apply frobenius reciprocity: $\hom_B(\tilde{L}(\lambda), \lambda) = \hom_G(\tilde{L}(\lambda), \operatorname{Ind}_B^G \lambda) = \hom_G(\tilde{L}(\lambda), H^0(\lambda))$. But then $H^0(\lambda) \neq 0$ (since otherwise this would imply the original hom was zero).

Theorem 6.3(?).

Let G be a reductive connected algebraic group over k. Then there exists a 1-to-1 correspondence between dominant weights and irreducible G-representations:

$$\left\{ \text{Dominant weights: } X(T)_+ \right\} \iff \left\{ \text{Irreducible representations: } \left\{ L(\lambda) \ \middle| \ \lambda {\in} X(T)_+ \right\} \right\}.$$

6.2 Characters of *G*-modules

Let G be reductive, so (importantly) it has a maximal torus T. Let $M \in G$ -mod, so (importantly) $M \in T$ -mod.

Then there is a weight space decomposition $M = \bigoplus_{\lambda \in X(T)} M_{\lambda}$. We then write the character of M as

char
$$M := \sum_{\lambda \in X(T)} (\dim M_{\lambda}) e^{\lambda} \in \mathbb{Z}[X(T)].$$

Next time: more characters, and Weyl's dimension formula.

7 Wednesday, September 09

Todo # Wednesday, September 16

7.1 Group Schemes

Definition 7.0.1 (Representable Functors).

Let F :: k-alg \to Set be a functor, then F is **representable** iff F(R) corresponds to "solutions to equations in R".

Example 7.1.

Let $F(\cdot) = \mathrm{SL}(2, \cdot)$, then the corresponding equations are $\det(x_{ij}) = 1$.

If F is representable, there is a correspondence $F(R) \cong \text{hom}_R(A,R)$. In the above example,

$$A = k[x_{11}, x_{12}, x_{21}, x_{22}] / \langle x_{11}x_{22} - x_{12}x_{21} \rangle,$$

which is exactly the coordinate algebra.

Definition 7.0.2 (Affine Group Scheme).

An affine group scheme is a representable functor F: k-alg \to Groups.

Suppose G is an affine group scheme, and let A = k[G] be the representing object. Then there is a correspondence

$$G$$
-modules $\iff k[G]^{\vee}$ -modules.

For G reductive, the RHS is equivalent to Dist(G)-modules.

Definition 7.0.3 (Finite Group Schemes).

G is a **finite** group scheme iff k[G] is finite dimensional.

If G is finite, then $A^{\vee} \cong k[G]^{\vee}$ is a cocommutative Hopf algebras. Thus representations for *finite* group schemes are equivalent to representations for finite-dimensional cocommutative Hopf algebras.

On group scheme side: see reduction, spectral sequences, conceptual arguments. On the algebra side: have bases, underlying vector space, can do concrete computations. Can take $\operatorname{Spec}(k[G])^{\vee}$ to recover a group scheme.

7.2 Hopf Algebras

For A a k-alg, we have a multiplication and a unit, which can be defined in terms of diagrams. To categorically reverse arrows, we can ask for a comultiplication and a counit.

$$\Delta: A \to A^{\otimes 2}$$

$$\epsilon: A \to k$$
.

We'll want another map, an antipode

$$s:A\to A.$$

The comultiplication should satisfy

$$A^{\otimes 3} \xleftarrow{1 \otimes A} A^{\otimes 2}$$

$$\Delta \otimes 1 \uparrow \qquad \Delta \uparrow$$

$$A^{\otimes 2} \xleftarrow{\Delta} A$$

The counit should satisfy

$$k \otimes A \xleftarrow{\varepsilon \otimes 1} A^{\otimes 2}$$

$$\downarrow \cong \qquad \Delta \uparrow$$

$$A \xrightarrow{\cong} A$$

And the antipode should satisfy

$$\begin{array}{c} A \xleftarrow[m(s\otimes 1)]{} A \\ \uparrow \qquad \qquad \Delta \uparrow \\ A \xleftarrow[\varepsilon]{} A \end{array}$$

7.2.1 Module Constructions

Let A be a Hopf algebra.

1. For A-modules M, N, we can form the A-module $M \otimes_k N$ with

$$\Delta(a) = \sum a_i \otimes a_j$$

$$a(m\otimes n)=\sum a_1m\otimes a_2n.$$

2. If M is finite-dimensional over A, then $M^{\vee} = \hom_k(M, k) \ni f$ is an A-module, and we can define (af)(x) := f(s(a)x) for $a \in A, x \in M$.

Example 7.2.

A = kG the group algebra on a group is a Hopf algebra:

$$\Delta: A \to A^{\otimes 2}$$
$$q \mapsto q \otimes q.$$

The module action is diagonal, namely $g(m \otimes n) = gm \otimes gn$. The antipode is given by $s(g) = g^{-1}$, and the unit is $\varepsilon(g) = 1$ for all $g \in G$.

Example 7.3.

Let $A=U(\mathfrak{g})$, the universal enveloping algebra for \mathfrak{g} a Lie algebra. Recall that \mathfrak{g} -modules are equivalent to $U(\mathfrak{g})$ -modules (unitary representations, some big associative algebra). Then A is a Hopf algebra, with $\Delta(\ell)=\ell\otimes 1+1\otimes \ell$ for $\ell\in\mathfrak{g}$. The unit is $\varepsilon(\ell)=0$, and the antipode is $s(\ell)=-\ell$.

Example 7.4.

Take the additive group \mathbb{G}_a , then $A = k[\mathbb{G}_a] \cong k[x]$ is a commutative Hopf algebra with $\Delta(x) = x \otimes 1 + 1 \otimes x$, $\varepsilon(x) = 0$, s(x) = -x.

Example 7.5.

For \mathbb{G}_m , we have $A = k[\mathbb{G}_m] \cong k[x, x^{-1}], \varepsilon(x) = 1, s(x) = x^{-1}$.

7.3 Frobenius Kernels

Let G be an algebraic group (scheme) over k, where char (k) = p. Let $F : G \to G$ be the Frobenius, where e.g.

$$F: \mathrm{GL}(n,\,\cdot\,) \to \mathrm{GL}(n,\,\cdot\,)$$

 $(x_{ij}) \mapsto (x_{ij}^p).$

Then F is a map of group schemes.

Definition 7.0.4 (Frobenius Kernels).

 $G_r := \ker F^r$, where $F^r := F \circ F \circ \cdots \circ F$ is the r-fold composition of the Frobenius. This yields a nesting $G_1 \subseteq G_2 \subseteq G_3 \cdots \subseteq G$.

Recall that

$$Dist(G) = \left\langle \frac{x_{\alpha}^n}{n!}, \frac{y_{\beta}^m}{m!}, \begin{pmatrix} H_i \\ k \end{pmatrix} \right\rangle.$$

We get a chain of finite dimensional algebras

$$Dist(G_1) < Dist(G_2) < \cdots < Dist(G)$$

where

$$Dist(G_1) = \left\langle \frac{x_{\alpha}^n}{n!}, \frac{y_{\beta}^m}{m!}, \begin{pmatrix} H_i \\ k \end{pmatrix} \mid 0 \le n, m, k \le p - 1 \right\rangle,$$

where in general $\mathrm{Dist}(G_\ell)$ goes up to $p^\ell - 1$. Recall that G_r representations were equivalent to $\mathrm{Dist}(G_r)$ representations.

Some basic questions (Curtis, Steinberg, 1960s):

- 1. What are the simple modules for Frobenius kernels? I.e., what are the irreducible representations for G_r ?
- 2. How are the representations for G_r related to those for G?

It turns out the representations for G_r will lift to representations to G. Use "twisted tensor product" (Steinberg).

Remark 13.

It turns out that G_1 is special.

$$\operatorname{Dist}(G_1) \cong u(\mathfrak{g}) := U(\mathfrak{g}) / \langle x^p - x^{[p]} \rangle,$$

where $\mathfrak{g} = \text{Lie}(G)$ is a restricted lie algebra (N. Jacobson). Note that for $D \in \mathfrak{g}$ a derivation, we define $D^{[p]} := D \circ \cdots \circ D$ is the p-fold composition.

 G_1 -modules are equivalent to \mathfrak{g} -modules which are restricted in the sense that

$$\rho: g \to \mathfrak{gl}(V)$$
$$x^{[p]} \mapsto \rho(x)^p.$$