

CLAIMS

1. A method of keying, in a space presenting two spatial dimensions and one temporal dimension, a signal S measured in positions U subject to an uncertainty, from a set of N signals measured in determined positions, the N + 1 signals having their temporal origin in a same plane, said method comprising the steps of

- re-sampling the N + 1 signals in order to place them all in an identical sampling range;

- filtering the signal S in order to place it in a range of frequencies that is identical to that of the N signals;

- defining for each position U associated with the measurements of the signal S a same neighbourhood of places V in the spatio-temporal space centred on the position U;

- producing a layered neural network RN^V for each location V in the neighbourhood of U, each network having an entry vector of dimension N associated with the measurements of the N signals and a scalar exit associated with a measurement of the signal S;

- for each neural network RN^V , defining a learning set such that the entries are the collection of all the vectors of measurements of the N signals situated at the locations V and the exits are the collection of the values of the signal S at the positions U for all the positions U;

- fixing a predetermined number of iterations N_{it} for all the neural networks and launching the learning phases of all the networks;

- for each neural network RN^V , calculating the value of the integral \sum^V of the function giving the error committed by the network at each iteration, from iteration 1 to iteration N_{it} ;

- for each surface spatial position V_k of the neighbourhood with coordinates (x_k, y_k, t_0) , selecting in the time dimension the pair of locations $V1_k(x_k, y_k, t_1), V2_k(x_k, y_k, t_2)$, of the neighbourhood which correspond to the two smallest local minima of the two integrals $(\sum^{v^1}_k, \sum^{v^2}_k)$;
- for each surface spatial position V_k of the neighbourhood, retaining from among the two positions $V1_k(x_k, y_k, t_1), V2_k(x_k, y_k, t_2)$ the position V_m , for which the signal estimated by the respective neural networks $RN^{v^1}_k$ and $RN^{v^2}_k$ presents a maximum variance; and
- choosing from among the positions V_m the position V_{cal} for which the integral \sum^v_m is minimum.

2. The method according to claim 1, wherein the use of the neural networks comprises:

- defining for each position U associated with the measurements of the signal S a same neighbourhood of places V in the spatio-temporal space centred on the position U ;
- producing a layered neural network RN^v for each location V in the neighbourhood of U . each network having an entry vector of dimension $N \times M$ associated with the measurements on a time window of size M centred on V of the N signals and a scalar exit associated with a value of the signal S ;
- for each neural network, defining a learning set such that the entries are the collection of all the vectors of measurements taken in a time window of size M centred on V for the N signals and the exits are the collection of the values of the signal S at the positions U for all the positions U ;
- fixing a predetermined number of iterations N_{it} for all the neural networks and launching the learning phases of all the networks;

- for each neural network RN^v , calculating the value of the integral \sum^v of the function giving the error committed by the network at each iteration, from iteration 1 to iteration Nit;

- for each surface spatial position V_k of the neighbourhood with coordinates (x_k, y_k, t_0) , selecting in the time dimension the pair of locations $V1_k(x_k, y_k, t_1), V2_k(x_k, y_k, t_2)$, of the neighbourhood which correspond to the two smallest local minima of the two integrals $(\sum^{v1}_k, \sum^{v2}_k)$;

- for each surface spatial position V_k of the neighbourhood, retaining from among the two positions $V1_k(x_k, y_k, t_1), V2_k(x_k, y_k, t_2)$ the position V_m , for which the signal estimated by the respective neural networks RN^{v1}_k and RN^{v2}_k presents a maximum variance; and

- choosing from among the V_m positions the position V_{eal} for which the integral \sum^v_m is minimum.