Universität Augsburg Lehrstuhl für Algebra und Zahlentheorie Prof. Marc Nieper-Wißkirchen Ingo Blechschmidt

Übungsblatt 12 zur Homologischen Algebra I

Aufgabe 1. Freie Konstruktionen

Sei \mathcal{C} eine Kategorie algebraischer Strukturen (etwa $\mathcal{C} = \text{Ring oder } \mathcal{C} = \text{Mod}(R)$). Anschaulich stellt man sich das von den Elementen einer gewissen Menge M frei erzeugte Objekt L(M) in \mathcal{C} wie folgt vor: Man beginnt mit den Elementen aus M und fügt all solche Ausdrücke hinzu, dass L(M) zu einem Objekt von \mathcal{C} wird (etwa Summen und Produkte im Fall $\mathcal{C} = \text{Ring}$). Dabei nimmt man nur solche Identifikationen vor, die von den Axiomen gefordert werden (etwa das Assoziativgesetz). Die Zuordnung $M \mapsto L(M)$ definiert dann einen Funktor Set $\to \mathcal{C}$, welcher linksadjungiert zum Vergissfunktor $V : \mathcal{C} \to \text{Set}$ ist.

- a) Erkläre, inwieweit die Adjunktionsbeziehung $L\dashv V$ die anschauliche Vorstellung kodiert. (Diese Frage hat eine präzise Antwort.)
- b) Bestimme für die folgenden Vergissfunktoren Linksadjungierte.

1)	Mod(R)	\rightarrow	Set
----	--------	---------------	-----

2) Mon
$$\rightarrow$$
 Set

3)
$$Grp \rightarrow Set$$

4) Ring
$$\rightarrow$$
 Set

5) Top
$$\rightarrow$$
 Set

6)
$$sSet \rightarrow Set$$

7)
$$Ab \rightarrow Grp$$

8)
$$\operatorname{Mod}(R) \to \operatorname{Ab}$$

9)
$$Alg(R) \to Mod(R)$$

10)
$$Met_{complete} \rightarrow Met$$

11)
$$Alg(k) \rightarrow LieAlg(k)$$

12)
$$sSet \rightarrow semi-sSet$$

Dabei ist Mon die Kategorie der Monoide, Alg(R) die Kategorie der R-Algebren, $Met_{complete}$ die Kategorie der vollständigen metrischen Räume und gleichmäßig stetigen Abbildungen und semi-sSet die Kategorie der Verklebedaten. Findest du zum Vergissfunktor $Top \rightarrow Set$ auch einen Rechtsadjungierten?

Noch zu TFXen:

Berechnung vom Cartier-Dual der affinen Gruppe über k der n-ten Einheitswurzeln: $\scalebox{Spec } k[x]/(x^n - 1)$, wobei k ein beliebiger (kommutativer) Grundring ist.

II.3.20: Beweise die universelle Eigenschaft des im Beweis konstruierten Objektes X.

II.3.24: Zeige (II.16), nämlich, daß F -> FGF -> F und G -> GFG -> G Identitäten sind.

Adjunktionsverhältnisse zwischen Aufrundung und Abrundung

Ansonsten noch Aufgabe 2., 3. und 8. Aufgabe 10. ist außerdem ein nettes konkretes Beispiel.