EECS 388

Introduction to Computer Security

Lecture 2:

Message Integrity

August 29, 2024 Prof. Halderman

Cryptography

Cryptography

(From Greek: *kryptós+graphein*, "secret writing")
The study of techniques for communicating
securely in the presence of an adversary

Related: Cryptanalysis

the study of techniques for *breaking* cryptosystems

Goals for 388: Learn how to safely use crypto primitives as building blocks for security

Security properties we'll try to achieve:

<u>C</u>onfidentiality Message <u>I</u>ntegrity Sender <u>A</u>uthenticity

Cryptographic Theory

Beautiful, highly rigorous

Proofs based on
computational complexity

An Unsettling Chasm

Cryptographic Practice

Assumptions based on empirical experience

Goal: Message Integrity

Message integrity ensures that attackers cannot modify messages

without being detected (they can still do plenty of other bad stuff!)

Message integrity is often even more important than confidentiality [Why?]

Alice wants to send message m to Bob

- They don't fully trust the messenger (or network) carrying the message
- They want to be sure what Bob receives is what Alice actually sent (m' = m)

Threat model:

- Mallory can see/modify/forge messages
- Mallory wants to trick Bob into accepting a message Alice didn't send

^{*} Now sometimes called a "meddler", "manipulator", "machine", "person", or "adversary"-in-the-middle, but the original term remains the most common.

Approach: Message Verifier

1. Alice computes verifier $\mathbf{v} := \mathbf{f}(\mathbf{m})$

3. Bob verifies that $\mathbf{v'} = f(\mathbf{m'})$, accepts message if and only if this is true

Properties we want for f()?

Easily computable by Alice and Bob, but *not* easily computable by Mallory

We lose the game if Mallory can deduce f(x) for any $x \neq m$

Idea: Secret **f**() only Alice and Bob know

Candidate f(): Random function (RF)

Input: Fixed size (length of longest **m**)

Output: Fixed size (say, 256 bits)

Construct a giant lookup table by flipping coins for every possible input

 $0 \rightarrow 0011111001010...$ $1 \rightarrow 1110011010001...$ $2 \rightarrow 0101010001010...$...

Pro: Provably secure

[Show Mallory can't do better than guessing]

Con: Completely impractical!

[Estimate how much storage it would require]

Pseudorandom Functions

Want a function that's practical but "looks random"...

Pseudorandom function (PRF)

Let's build a PRF:

Start with a family of 2^n functions $f_0(), f_1(), f_2(), \ldots, f_{(2^n)-1}()$ all *known to Mallory*.

Let our verification function $\mathbf{v}() := \mathbf{f_k}()$ where \mathbf{k} is a secret \mathbf{n} -bit index (" \mathbf{key} ") \mathbf{known} only to Alice and Bob.

What makes for a suitable function family f()?

Security definition: A game against Mallory—

- 1. Choose a secret \mathbf{k} and a random function $\mathbf{g}()$
- 2. We flip a coin secretly to get bit **b**
- 3. If **b**=0, let h() := g()If **b**=1, let $h() := f_k()$
- 4. Mallory chooses \mathbf{x} ; we announce $\mathbf{h}(\mathbf{x})$. Repeat step 4 as often as Mallory likes
- 5. Mallory guesses **b** in polynomial time*

We say f() is a secure PRF if Mallory can't do meaningfully better than random guessing.

* Note the reliance on computational complexity.

Mallory can always win slowly!

With RF, Mallory can't possibly learn unseen outputs.

With PRF, M. can, but at *impractical* (exponential) cost by mounting a "brute force attack" on k. [Explain?]

Using a PRF for Message Integrity

- 1. Let f() by a secure PRF (known to everyone)
- In advance, choose a random key k known to Alice and Bob but <u>not</u> Mallory
- 3. Alice computes $\mathbf{v} := f_{\mathbf{k}}(\mathbf{m})$

5. Bob verifies that $\mathbf{v'} = f_k(\mathbf{m'})$, accepts message if and only if this is true

If Bob accepts **m'**, then, with very high confidence, **m'** is identical to **m**. (How high? 1–1/2ⁿ) [Important assumptions?]

What if Alice and Bob want to send more than one message? [Attacks?] [Solutions?]

This approach follows **Kerckhoffs's Principle**:

"A cryptosystem should remain secure even if attackers know *everything but the key.*" [Why?]

Annoying question:

Do PRFs actually exist?

Annoying answer:

We don't know. (Would imply P≠NP!)

Best we can do:

Use well studied functions where we haven't spotted a problem yet

Cryptographic Hashes

First step towards a practical solution...

Cryptographic Hash Function

Fixed function *H*(). *No key*!

Input: arbitrary length data

Output: fixed size *digest* (**n** bits)

Properties of strong hash functions:

Preimage resistance

Given output \mathbf{h} , hard to find any input \mathbf{m} s.t. $\mathbf{h} = \mathbf{H}(\mathbf{m})$

Collision resistance

Hard to find any pair of inputs \mathbf{m}_{1} , \mathbf{m}_{2} s.t. $\mathbf{H}(\mathbf{m}_{1}) = \mathbf{H}(\mathbf{m}_{2})$

Note: Collisions exist [why?], but should be hard to find

Second-preimage resistance

Given $\mathbf{m_1}$, hard to find different $\mathbf{m_2}$ s.t. $H(\mathbf{m_1}) = H(\mathbf{m_2})$

Computing hashes with **OpenSSL**:

```
$ echo "hello world 0" | openssl dgst -sha256
8bfa9a398e97152beaaf385847808ad2d828c1c7251f1a45
bc7697723827e7e7
$ echo "hello world 1" | openssl dgst -sha256
07bafbe63a0e7c57c572aedf1c228022b537e28785013d7b
e017fc78731a8cc5
```

Observe how changing even a single bit of the input produces output that appears completely unrelated.

Annoying question:

Are existing hashes *actually strong*?

Annoying answer:

We don't know.

Candidates: MD5, SHA-1, SHA-256, SHA-512, SHA-3

Hash Function Failures

MD5

Once ubiquitous ... broken in 2004

Now it's easy to find collisions

(pairs of messages with the same MD5 hash)

Exploited to attack real systems

You'll do this in Project 1!

SHA-1

Once ubiquitous ... broken in 2017
Rapidly being phased out
Computing first collision cost >\$100,000
Today, with improvements <\$10,000

Expect attacks will keep getting better!

Constructing SHA-256

SHA-256 is a widely used hash function that is currently thought to be strong

Input: arbitrary length data

Output: 256-bit digest

Built from a **compression function** *h*:

Inputs: (256 bits, 512 bits), **Output:** 256 bits reduces 768 bits to 256 bits using a complicated internal function (details out of scope for 388)

Uses the Merkle–Damgård (MD) construction (illustrated below) to accept arbitrary-length input by repeatedly applying h():

- Pad input m to the next multiple of 512 bits (adds <u>at least</u> 1 bit, uses fixed algorithm [why?]) and split into 512-bit blocks: b₀, b₁, ... b_{n-1}
- 2. $\mathbf{y}_0 := \langle 256\text{-bit constant} \rangle$ $\mathbf{y}_1 := \mathbf{h}(\mathbf{y}_0, \mathbf{b}_0) \quad \dots \quad \mathbf{y}_i := \mathbf{h}(\mathbf{y}_{i-1}, \mathbf{b}_{i-1})$
- 3. Return y_n which is defined to be SHA-256(m)

MD Hash Pitfall: Length Extension Attacks

Merkle–Damgård hash functions are susceptible to length extension attacks:

Given
$$y = H(x)$$
 for some unknown x ,
attackers can calculate
 $z = H(x \parallel padding \parallel s)$
for arbitrary s .

That is, given:

An attacker can produce:

concatenation

Note that this doesn't violate preimage, second-preimage, or collision resistance.

[But why is it a problem?]

Suppose Alice and Bob use this as a verifier:

$$v := SHA-256(k \ /\!/ m)$$

Mallory

Mallory

Bob k

- 1. Alice sends **m** = "Please go to the bank."
- Mallory doesn't know k, but can apply length extension to (m, v) to calculate v' for: m' = "Please go to the bank.[original_pad]
 Then transfer \$10,000 to Mallory."
 (original_pad is some bytes beyond Mallory's control, but which the recipient might ignore)
- Since v' is the correct verifier for m',
 Bob will accept the modified message as valid

You'll explore how this is done in Project 1!

Practical Solution: HMAC

Message Authentication Code (MAC)

Designed to be used as a secure verifier:

Inputs: key, arbitrary length dataOutput: fixed size digest (n bits)

HMAC construction turns any secure hash function *H*() into a MAC:

$$\operatorname{HMAC}_k(m) = H(k \oplus c_1 \parallel H(k \oplus c_2 \parallel m))$$
 $\operatorname{constant} \quad \operatorname{constant} \quad \operatorname{concatenation} \quad \operatorname{363636...} \quad \operatorname{5c5c5c...}$

Design protects against length extension!

Example: HMAC-SHA-256 is an HMAC constructed using SHA-256 for *H*()

For practical purposes, we (think/hope) we can treat **HMAC-SHA-256** as a PRF

Can *reduce* PRF security of HMAC-SHA-256 to a (weaker) security property of SHA-256's compression function

\$ echo "hi" | openssl dgst -sha256 -hmac Secr3t
8074cdfd007e5cfdc71c2c1cd393a5fefa890d7702956a13
66a155d79d1cbe77

At last, this gives Alice and Bob a suitable approach for protecting message integrity:

$$v := HMAC-SHA-256_k(m)$$

$$k_{Alice} \xrightarrow{m, v} Mallory \xrightarrow{m', v'} Bob k$$

$$Computes and sends Rejects message if
$$v := HMAC-SHA-256_k(m) \quad v' \neq HMAC-SHA-256_k(m')$$$$

Coming Up

Reminders:

Selfies were due today **Quiz** on Canvas after every lecture

Lab Assignment 1 available today, due next Thursday at 6pm

Project 1 available today; Part 1 due Sept. 12 at 6pm

Tuesday

Randomness and Pseudorandomness

Generating randomness, PRGs, one-time pads

Thursday

Confidentiality

Simple ciphers,
AES,
block cipher modes