

Klasifikácia vrstiev polovodičových čipov v mikroskopu FIB-SEM

Bc. Matej Horniak

Obsah

- Doména
- Popis dát
- Dátové sady
- Motivácia
- Zadanie práce
- Implementované metódy z podobných prác
- Nami navrhnutá metóda
- Výsledky pre prvý dataset
- Výsledky pre druhý dataset
- Výsledky klasifikácie všetkých metód

Doména

- Dáta získané rovinným odvrstvovaním (Planar delayering)
- Odstraňovanie vrstvy pomocou FIB (Focused Ion Beam)
- Vizualizácia vrstvy pomocou SEM (Scanning Electron Microscope)

Popis dát

2 typy vrstiev:

 Vrstva kovových obvodoch: vodiče sú svetlé linky a strieda sa ich horizontálna a vertikálna orientácia

Prechodová vrstva: via,
malé kovové body, tvoria elektrické spojenie medzi kovovými vrstvami

Dátové sady

- 1. dátová sada 100 obrázkov jedného čipu:
 - Trieda kovových obvodov 21 (Metal)
 - Trieda prechodovej vrstvy 21 (Via)
 - Trieda medzivrstvy 58 (Other)
- 2. dátová sada 147 obrázkov jedného čipu:
 - Trieda kovových obvodov 31 (Metal)
 - Trieda prechodovej vrstvy 48 (Via)
 - Trieda medzivrstvy 68 (Other)

Motivácia

Aktuálna metóda

- Postupné meranie priemernej intenzity vrstvy
- Po zozbieraní dostatočného množstva dát sa začne vykresľovať graf
- Pre klasifikáciu potrebuje informáciu z predošlých pozorovaní
- Nedokáže predikovať v reálnom čase

Zadanie práce

Metóda binárne klasifikujem v reálnom čase len pomocou obrázku aktuálnej vrstvy

Podúlohy práce:

- Preskúmať a implementovať metódy použité v praxi
- Navrhnúť a implementovať metódu
- Porovnať výsledky jednotlivých metód
 - Pri porovnaní sa sústrediť či metóda dokáže najlepšie dodržať striedanie vrstiev

Implementované metódy z podobných prác

- Projekcia a porovnávanie globálnych šablón (GTPM)
- Zhlukovanie pomocou k-means
 - k-means zhlukovanie obrázkov pomocou euklidovskej vzdialenosti
 - k-means zhlukovanie intenzity pixelov pre segmentovanie
 - adaptívne k-means zhlukovanie pre segmentovanie

Adaptívne metódy prahovania

- Trojtriedne iteratívne prahovanie s Otsu prahovaním
- Trojtriedne iteratívne prahovanie s Trojuholníkovým prahovaním
- Niblack prahovanie
- Sauvola prahovanie

– Konvolučné neurónové siete

- Model trénovaný na 1. datasete
- Model trénovaný na 2. datasete

Nami navrhnutá metóda

- 1. Predspracovanie pomocou bielej top-hat transformácie
- 2. Detekcia kovových obvodov a via pomocou štruktúrneho tenzoru
- 3. Výpočet koherencie

1. biela top-hat transformácia

Nami navrhnutá metóda príklad nežiadúcich tmavých liniek

Nami navrhnutá metóda

- 1. Predspracovanie pomocou bielej top-hat transformácie
- 2. Detekcia kovovej a prechodovej vrstvy pomocou štruktúrneho tenzoru
- 3. Výpočet koherencie

vstupný obrázok

1. biela top-hat transformácia

2. štruktúrny tenzor

3. výpočet koherencie

Nami navrhnutá metóda

- 4. Klasifikovanie pomocou jednej z variant:
 - 1. Prahovanie koherencie

Vrstva kovových obvodov 73% pixelov je popredie

47% pixelov je popredie

2. Počtu inflexných bodov na histograme koherencie

3. Monotónnosť krivky histogramu koherencie

Výsledky pre prvý dataset

Zelená prechodová vrstva, sivá medzivrstva modrá vrstva kovových vodičov,

14 Klasifikácia vrstiev polovodičových čipov v mikroskopu FIB-SEM

- Označenie
- Naša metóda (ST)
 - A: Inflexné body
 - B: Prahovanie
 - C: Monotónnosť
 - D: Monotónnosť 128x128 obr.
- Zhľukovanie
 - A: Adaptívne k-means
 - B: K-means segmentovanie
 - C: K-means obrázkov Euklid.
- Prahovanie
 - A: Trojuholníkové Iter. prah.
 - B: Otsu Iter. prahovanie
 - C: Niblack prahovanie
 - D: Sauvola prahovanie
- GTPM
- CNN
 - A: Model 1. dataset ^M U N I
 - B: Model 2. dataset

Výsledky pre druhý dataset

Zelená prechodová vrstva, sivá medzivrstva, modrá vrstva kovových vodičov

Ďakujem za pozornosť

Zhrnutie:

- Implementované 4 prístupy pre porovnanie
- Navrhnutá a implementovaná metóda
 - 1. predspracovanie pomocou bielej top-hat transformácie
 - 2. identifikovanie kovových vodičov a spojení (via) pomocou štruktúrneho tenzoru
 - 3. výpočet koherencie
 - 4. prevedenie na binárnu klasifikačnú odpoveď
- Nami navrhnutá metóda dosiahla najlepšie výsledky
- Pre reálnu aplikáciu odporúčame použiť našu metódu
 - Nepotrebuje tréning a rýchlejšia ako ostatné implementované metódy

Otázky oponenta

Byl bych rád, aby student během prezentace vzájemně srovnal jednotlivé metody, které v práci představil, a to s důrazem na vlastní metodu a vybranou metodu strojového učení.

Porovnanie našej metódy a CNN

Žltá – ST prahovanie koherencie Modrá – ST monotónnosť Šedá – označenie od analytika

Červená – Model 1. trénovací dataset. Zelená – Model 2. trénovací dataset.

Otázky oponenta

– U obrázku 4.4(a) je zjevný jakýsi opakující se vzor. Prosím o jeho identifikaci a vysvětlení, proč tam byl ponechán, což mohlo potenciálně vést ke zkreslení výsledků měření.

Obr. 4.4: Na obrázkoch môžeme vidieť a) odvrstvovaní čip s kovovou vrstvou, b) aplikovanie štruktúrneho tenzoru na vstupný obrázok a výpočet koherencie z vlastných vektorov z ST.

Otázky oponenta

- Kolik bylo k dispozici obrázku pro analýzu?
 - 14 obrázkov rôznych rozmerov a priblíženia bez definovaných označení.
 - 50 obrázkov rovnakých rozmerov a priblíženia bez definovaných označení.

Dôvod klasifikácie do 2 tried

Výsledky klasifikácie všetkých metód

Methods		Accuracy	F1 score	Pocet vrstiev	Accuracy	F1 score	Pocet vrstiev
		Prvý dataset		15	Druhy datase	t	21
ST	Inflexné_body	0.61904	0.38461	17	0.68354	0.39024	1
	Prahovanie	1.0	1.0	15	0.91139	0.88135	21
	Monotónnosť	0.97619	0.97560	19	0.91139	0.87719	17
	Monotónnosť_rozdelene	0.97619	0.97560	15	0.91139	0.87719	21
Zhluk.	Adaptívne_k-means	0.76190	0.75	42	0.87341	0.81481	23
	K-means_segmentovanie	0.76190	0.80769	16	0.89873	0.87096	19
	K-means_obrázkov_euklid	0.76190	0.75	11	0.89873	0.87096	21
Prahovanie	Trojuholnikove	0.92857	0.93333	16	0.81012	0.69387	19
	Otsu	0.76190	0.80769	16	0.91139	0.88524	19
	Niblack	0.88095	0.89361	16	0.62025	0.16666	7
	Sauvola	0.85714	0.875	15	0.86075	0.79999	13
GTPM		0.85714	0.83333	11	0.60759	0.0	1
CNN	1_uciaci_dataset	0.5	0.66	1	0.62585	0.62068	17
	2_uciaci_dataset	0.9	0.93243	16	0.73469	0.83404	13

