Federated Learning & Data Privacy, 2024-2025 Nguyen Dinh Huy

Third Lab - 11 February 2025

Welcome to the third lab session of the Federated Learning & Data Privacy course! Today we will see how to implement Federated Learning in real network systems.

I. EXERCISE 5 - Federated Learning with Flower

Objective: Gain practical experience with the <u>Flower federated learning framework</u> by deploying a real, distributed federated learning experiment. Explore personalized federated learning algorithms and compare their performance against the standard FedAvg.

II.EXERCISE 5.1 - Federated Learning on Real Networks

Goal: Deploy a federated learning system using PyTorch and Flower to understand the setup and execution of federated learning in a networked environment.

Setup

1. Clone the Flower repository and set up the PyTorch quickstart example:

```
git clone --depth=1 https://github.com/adap/flower.git && mv
flower/examples/quickstart-pytorch . && rm -rf flower && cd quickstart-
pytorch
```

2. Install the dependencies:

```
pip install -e .
```

Run Federated Learning

• Launch the simulation

```
flwr run .
```

• Observe the federated training process initiated by PyTorch through Flower.

You can find complete instructions here.

III. EXERCISE 5.2 - Tackling Data Heterogeneity with FedProx

Objective: Understand how the FedProx algorithm addresses the challenges posed by data heterogeneity in federated learning and compare its performance with the FedAvg algorithm.

- **FedProx Overview**: FedProx modifies the local training objective by introducing a proximal term, which aims to reduce local model drift by penalizing significant deviations from the global model. Review the FedProx algorithm <u>Federated Optimization in Heterogeneous Networks (Algorithm 2).</u>
- **Instructions**: Follow the tutorial on FedProx available at <u>Flower's documentation</u>. Run experiments trying different number of rounds and different mu values.

• **Analysis**: Discuss the observed differences in performance between FedAvg and FedProx. Are there specific configurations (e.g., number of local epochs) where FedProx particularly outperforms FedAvg?

RESULT:

Code Link : https://github.com/DinhHuy1405/Federated-Learning-2024---2025/tree/main/TP3

Observations from the Experiment

The graph shows validation accuracy over 100 rounds for three federated learning approaches:

- 1. FedAvg ($\mu = 0$) \rightarrow Traditional federated averaging.
- 2. FedProx ($\mu = 2$) \rightarrow FedProx with a strong regularization term.
- 3. **FedProx** ($\mu = 0$) \rightarrow Equivalent to FedAvg.

Key Insights:

- 1. FedAvg ($\mu = 0$) vs. FedProx ($\mu = 0$):
 - As expected, FedAvg ($\mu = 0$) and FedProx ($\mu = 0$) behave similarly because FedProx with $\mu = 0$ is equivalent to FedAvg.
 - There are slight performance variations, but both approaches show almost identical trends in accuracy improvement over time.
 - Any small differences could be attributed to implementation details or stochastic effects.

2. FedAvg ($\mu = 0$) vs. FedProx ($\mu = 2$):

- FedAvg ($\mu = 0$) achieves significantly higher accuracy over time compared to FedProx ($\mu = 2$).
- FedProx ($\mu = 2$) starts with a similar accuracy but converges much more slowly.
- This suggests that a strong proximal term ($\mu = 2$) effectively **reduces client drift** but also **restricts adaptation**, leading to **lower overall accuracy**.
- 3. FedProx ($\mu = 2$) vs. FedProx ($\mu = 0$):
 - FedProx ($\mu = 0$) consistently outperforms FedProx ($\mu = 2$).
 - This indicates that for this dataset and training setup, a strong proximal constraint (μ = 2) overly restricts local model updates, preventing optimal learning.

Analysis of Data Heterogeneity

- FedProx is designed to mitigate data heterogeneity by limiting client model divergence.
- However, selecting an appropriate μ value is critical:
 - \circ Small μ (close to 0): Allows more flexibility but may suffer from client drift.
 - \circ Large μ : Reduces drift but slows down convergence, leading to suboptimal performance.

Impact of Local Epochs

- The impact of FedProx may vary depending on the number of local epochs:
 - o **If local training lasts multiple epochs**, FedAvg may diverge more due to heterogeneous data distributions.
 - o **FedProx can help by constraining local updates**, keeping them closer to the global model.
 - In scenarios with higher local epochs, FedProx might perform better than FedAvg.

IV. BONUS EXERCISE - Personalized Federated Learning

Goal: Evaluate a personalized federated learning algorithm using Flower, showing its possible advantages over the FedAvg algorithm.

Choose one of the two proposed personalization algorithms:

- 1. Federated Learning with Personalization Layers (FedPer)
 - Overview: FedPer implements personalization by allowing some neural network layers to be client-specific, making the model closer to individual data distributions.
 - Instructions: Follow the tutorial on FedPer available at Flower's documentation.

Evaluation

• Reproduce the tutorial and compare the results with FedAvg to highlight the benefits of personalization.

RESULT:

Code Link: https://github.com/DinhHuy1405/Federated-Learning-2024----2025/tree/main/TP3

Observations from the Experiment

The graph displays the validation accuracy over **100 rounds** for three federated learning strategies:

- 1. FedAvg ($\mu = 0$) \rightarrow Traditional federated averaging.
- 2. **FedProx** ($\mu = 2$) \rightarrow FedProx with a strong regularization term.
- 3. **FedPer** \rightarrow An approach focusing on personalized federated learning.

Key Insights:

1. FedAvg ($\mu = 0$):

- FedAvg ($\mu = 0$) shows the highest and most stable performance, achieving over 60% accuracy.
- It is the most effective strategy among the three, displaying rapid and consistent improvements in accuracy.

2. FedProx ($\mu = 2$):

- FedProx ($\mu = 2$) starts with lower accuracy but gradually improves, stabilizing around 40% accuracy.
- The strong regularization parameter ($\mu = 2$) seems to limit performance initially but ensures moderate improvements over time.

3. FedPer:

- FedPer, aiming at personalized models, shows much lower and fluctuating performance, with accuracy hovering around 10%.
- This suggests potential issues in personalization effectiveness or instability in the learning process under this specific setup.

Comparison and Analysis:

- FedAvg ($\mu = 0$) vs. FedProx ($\mu = 2$):
 - o As seen before, **FedAvg** consistently outperforms **FedProx** with a strong μ . The lack of a regularization constraint allows for more adaptable but possibly more varied client updates.
 - o **FedProx** reduces client drift but at a significant cost to convergence speed and ultimate performance.
- FedAvg ($\mu = 0$) vs. FedPer:
 - o **FedAvg** significantly outperforms **FedPer**, indicating that the non-personalized model is more effective in this scenario.
 - FedPer's performance suggests that its approach to personalization might not be
 effectively capturing useful patterns or it might be too sensitive to client-specific
 noise.
- FedProx ($\mu = 2$) vs. FedPer:
 - Even with its conservative updates, **FedProx** performs better than **FedPer**, further highlighting the challenges in the personalization strategy employed by **FedPer**.