Al Expert 프로그램 실습

7/10 Basic of CNN, Image Classification, Style Transfer

Overview

This tutorial is three-fold as follows:

- 1. Basics of CNN
- 2. Image Classification
- 3. Style Transfer
- * 10 minutes break between each part.

Part 2. Image Classification

What is Image Classification?

Launch of ImageNet (2009)

ILSVRC: ImageNet Large Scale Visual Recognition Competition

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - o 100k test.

Top-1 one-crop accuracy versus amount of operations required for a single forward pass

LeNet (1998), LeNet5 (2010)

VGGNet (2014)

Inputs

Conv. & ReLU

Conv. & ReLU

Max-pooling

Conv. & ReLU

Conv. & ReLU

Max-pooling

;

Conv. & ReLU

Conv. & ReLU

Max-pooling

FC

FC

FC

		ConvNet C	onfiguration		
Α	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
		nput (224 × 2	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64 conv3-6	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
		max	pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool		
			4096		
			4096		
			1000		
		soft	-max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

GoogLeNet (2014)

ResNet (2015)

DenseNet (2016)

- 2015 ILSVRC 1st ranked / error 3.6%
- Human error 5 ~10 %
- Vanishing gradient problem
- Residual block

Batch Normalization

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

Batch Normalization

