Numerical Solution Of Ordinary Differential Equations

Computer Oriented Numerical and Statistical Methods

Minal Shah

Outline

- Introduction
- Euler method
- Runge Kutta (RK) method

Introduction

- The subject of ordinary differential equations is not only fascinating part of mathematics but also an essential tool for modeling many physical processes.
- Most scientific laws are expressed in terms of differential equations.
 - Thermodynamics $dT/dt = -0.27(u-60)^{5/4}$
 - Probability $dPr/dt = (r+1)(n-r)P_{r+1} r(n-r+1)Pr$
 - Mechanics $mdv/dt = mf kv^2$
 - Economics dx/dt = Sf(x) g(x).

Minal Shah

Solving A Differential Equations

- Formulation of differential equation is simple but difficult to solve it.
- Use numerical solution i.e. instead of finding an algebraic (analytical) solution we compute (approximately) the numerical values taken by solution.
- Therefore, as a solution of differential equations, instead of finishing up with an expression.
- This is known as the numerical solution of a differential equations.

Basic Terminology Of Differential Equations

• Differential Equation : A differential equation is an equation containing an unknown function and its derivatives. $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + ay = 0$

y is dependent variable and **x** is independent variable, and this is an ordinary differential equations [i.e. involves only one independent]

 Ordinary Derivative: If y is a function of x i.e. y = f(x), then dy/dx is called the ordinary derivative. Physically it means the rate of change of the dependent variable with respect to the independent variable.

Minal Shah 5

Basic Terminology Of Differential Equations

• Partial Derivative : If u is a function of x and y i.e. u = f(x,y) then $\frac{\partial u}{\partial x}\Big|_{y}$ is called the partial derivative with

respect to x keeping y constant, and $\frac{\partial u}{\partial y}\Big|_x$ is called

the partial derivative with respect to y keeping x constant. Physically it means the rates of change of dependent variable with respect to one of the independent variable keeping others fixed.

Basic Terminology Of Differential Equations

 Ordinary Differential Equations: An ordinary differential equation is an equation involving only ordinary derivative of one or more function with respect to a single independent variables.

Examples:. 1.
$$\frac{dy}{dx} = 2x + 3$$

2. $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + ay = 0$
3. $\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^4 + 6y = 3$

Minal Shah 7

Basic Terminology Of Differential Equations

- Partial Differential Equations: A partial differential equation is an equation involving a single independent variables.
- Examples:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \qquad \qquad \frac{\partial^4 u}{\partial x^4} + \frac{\partial^4 u}{\partial t^4} = 0 \qquad \qquad \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2} - \frac{\partial u}{\partial t}$$

Order of Differential Equation

The order of the differential equation is order of the highest derivative in the differential equation.

Differential Equation

$$\frac{dy}{dx} = 2x + 3$$

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 9y = 0$$

$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^4 + 6y = 3$$

ORDER

1

Minal Shah

Degree of Differential Equation

The degree of a differential equation is power of the highest order derivative term in the differential equation.

Differential Equation

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + ay = 0$$

$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^4 + 6y = 3$$

$$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^5 + 3 = 0$$

Degree

1

1

3

Basic Terminology Of Differential Equations

- Solution of A Differential Equations : Consider the first order ordinary differential equation of type $\frac{dy}{dx} = f(x,y)$
 - which can also be written as y'=f(x,y) where the function f(x,y) may be a general non-linear function of x and y or in the form of a table of values.
- The solution of such an ordinary differential equation is a 2-D curve of (x,y) in the xy plane whose slope at every point (x,y) is the specified region is given by the equation \$\frac{dy}{dx} = f(x,y)\$

Minal Shah 11

Basic Terminology Of Differential Equations

 Initial value problem: if the parameters of ordinary differential equation is determined based on some given initial values, i.e. initial condition then this system is known as an initial value problem.

Linear Differential Equation

A differential equation is linear, if

- 1. dependent variable and its derivatives are of degree one,
- 2. coefficients of a term does not depend upon dependent variable.

Example: 1. $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 9y = 0.$

is linear.

Example: 2.

$$\frac{d^3y}{dx^3} \left(\left(\frac{dy}{dx} \right)^4 \right) = 3$$

is non - linear because in 2nd term is not of degree one.

Minal Shah

Linear Differential Equation

Example: 3.

$$x^2 \frac{d^2 y}{dx^2} \left(y \frac{dy}{dx} \right) = x^3$$

is non - linear because in 2nd term coefficient depends on y.

Example: 4.

$$\frac{dy}{dx} = \sin y$$

is non - linear because $\sin y = y - \frac{y^3}{3!} + - \sin n - \sin n$

Numerical Solution Of Differential Equations

- To describe various numerical methods for the solution of ordinary differential equation we consider the general first order differential equations $\frac{dy}{dx} = f(x, y)$
 - with the initial condition $y(x_0) = y_0$
- Numerical solution of differential are classified into two types.
 - A series of y in terms of power of x, from which the value of y can be obtained by direct substitution. These methods are: Taylor series, Picard's Method.
 - A set of tabulated values of x and y. the method are: Euler's method, Runge – Kutta method, Adam- Bashforth method.

Minal Shah 15

Euler's Method

- The Euler's method is one of the oldest and the simplest method.
- It can be described as a techniques of developing a piecewise linear approximation to the solution
- In the initial value problem, the starting point of the solution curve and the slope of the curve at the starting point are given.

Euler's Method

Minal Shah

Euler's Method

- Consider again the following first order ordinary differential equation $\frac{dy}{dx} = f(x,y)$ with initial conditions $y = \frac{dy}{dx} = f(x,y)$
 - y_0 for $x = x_0$ and h is a positive increment of x. $x_1 = x_0 + h$
- Divide I x₀ into n equal parts. Length of each part is equal to h. So x₁=x₀+h, x₂=x₁+h,
- The mean value theorem

$$y'(c) = \frac{y(x_1) - y(x_0)}{x_1 - x_0}$$

• If we substitute $c = x_0$ and $h = x_1 - x_0$ in the above equation can be written as $y(x_1) - y(x_0) = hy'(x_0)$

Euler's Method

- Now $\frac{dy}{dx} = f(x, y)$
- \therefore $y'(x_0) = f(x_0, y_0)$ $y(x_1) - y(x_0) = h f(x_0, y_0)$ $y(x_1) = y(x_0) + h f(x_0, y_0)$ $y_1 = y_0 + h f(x_0, y_0)$ [because $y(x_0) = y_0$]
- Using this equation, we can find the second point on the solution curve as (x₁,y₁)
- Similarly, taking (x_1,y_1) as the starting point, we get $y_2 = y_1 + h f(x_1,y_1)$

Minal Shah

Euler's Method

- In general, the (i+1)th point of the solution curve is obtained from the ith point using the following formula.
 y_{i+1} = y_i + h f(x_i,y_i) which is Euler's method
- [The process to find the solution using this method is too slow, and to obtain the reasonable accuracy we must take a very small value of the h.]

Runge - Kutta (RK) Method

- The basic objectives of R-K methods are as follows:
- The method propagate a solution over an interval by combining the information from several Euler-style steps. Here each step is evaluating the function f with different parameters.
- 2. Using this information obtained to match a Taylor series expansion up to some higher orders.
- Euler's method is less efficient in practical problems since it requires h to be small for obtaining reasonably accuracy.

Minal Shah 21

Runge - Kutta (RK) Method

- The R-K methods are designed to give greater accuracy and they possess the advantage of requiring only the function values at some selected points on the subintervals.
- There are different Runge Kutta formulae of various orders and methods:
 - R- K second order method
 - R-K fourth order method

Runge – Kutta Second Method (R-K 2nd order method)

- The R-K second order methods are actually a family of methods, each of that matches the Taylor series method up to the second terms in h, where h is the step size.
- In these methods the interval [x₁, x_f] is divided into subintervals and a weighted average of derivatives (slopes) at these intervals is used to determine the value of the dependent variable.
- One advantage of these methods is that they, like to evaluate y_{i+1} we need information only at the preceding point (x_i, y_i)

Minal Shah 23

Runge – Kutta Second Method (R-K 2nd order method)

- The second order method can be expressed as follows
- $y_1 = y_0 + h/2(f(x_0, y_0) + f(x_1, y_1))$
- Substitute $y_1 = y_0 + hf(x_0, y_0)$ in the above equation
- $y_1 = y_0 + h/2[f(x_0, y_0) + f(x_1, y_0 + hf(x_0, y_0))]$
- $y_1 = y_0 + h/2[f_0 + f(x_0 + h, y_0 + hf_0)]$ where $f_0 = f(x_0, y_0)$
- We can write k₁ = hf₀ and

$$k_2 = hf(x_0 + h, y_0 + k_1)$$

 $y_1 = y_0 + \frac{1}{2}(k_1 + k_2)$

Runge – Kutta Second Method (R-K 2nd order method)

- In similar we can find y₂, y₃, ...y_{n+1}
- $y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2)$ where $k_1 = hf(x_n, y_n)$ and $k_2 = hf(x_n + h, y_n + k_1)$
- Which is R-K 2nd order formula

Minal Shah 25

Runge – Kutta Fourth Method (R-K 4th Order Method)

- The fourth order method can be expressed as follows
- $y_1 = y_0 + 1/6(k_1 + 2k_2 + 2k_3 + k_4)$
- Where $k_1 = hf(x_0, y_0)$ $k_2 = hf(x_0 + h/2, y_0 + k_1/2)$ $k_3 = hf(x_0 + h/2, y_0 + k_2/2)$ $k_4 = hf(x_0 + h, y_0 + k_3)$
- In similar we can find y₂, y₃, ...y_{n+1}

Runge – Kutta Fourth Method (R-K 4th Order Method)

- $y_{n+1} = y_n + 1/6(k_1 + 2k_2 + 2k_3 + k_4)$
- Where $k_1 = hf(x_n, y_n)$

$$k_2 = hf(x_n + h/2, y_n + k_1/2)$$

$$k_3 = hf(x_n + h/2, y_n + k_2/2)$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

Which is R-K 4th order formula

Minal Shah 27

