Porównanie klasycznej ewolucji różnicowej DE/rand z odmianą przesuwającą punkt środkowy DE/mid

Adam Stelmaszczyk

1 listopada 2013

Streszczenie

W pracy porównano klasyczny algorytm ewolucji różnicowej DE/rand z jego odmianą DE/mid. W części teoretycznej wyprowadzono parametry skalujące dla obydwu algorytmów. W części praktycznej przeprowadzono szereg eksperymentów na 7 wybranych funkcjach z BBOB 2013 [2]. DE/mid okazał się lepszy na większości z nich.

1 Część teoretyczna

Klasyczna ewolucja różnicowa DE/rand oraz jej odmiana DE/mid różnią się jedynie operatorem mutacji. W DE/rand/k, mutant i-tego osobnika w populacji P o n osobnikach powstaje w następujący sposób [1]:

$$u_i = P_{i_1} + \frac{F}{\sqrt{k}} \sum_{i=1}^k (P_{i_{2j}} - P_{i_{2j+1}}), i \neq i_1 \neq i_2 \neq \dots \neq i_{2k+1}$$
 (1)

 $k \in \mathbb{N}$ to liczba wektorów różnic. $F \in \mathbb{R}$ to parametr skalujący dla DE/rand/1.

W DE/mid/k mutant powstaje w podobny sposób:

$$u_i' = m + F_m \sum_{j=1}^k (P_{i_{2j}} - P_{i_{2j+1}}), i \neq i_1 \neq i_2 \neq \dots \neq i_{2k+1}, k \in \mathbb{N}$$
 (2)

Jedyną różnicą jest m, czyli punkt środkowy populacji:

$$m = \frac{1}{n} \sum_{j=1}^{n} P_j \tag{3}$$

 $F_m \in \mathbb{R}$ jest parametrem skalującym dla DE/mid, analogicznym do F dla DE/rand. Żeby macierz kowariancji populacji w DE/mid/k była taka sama jak w DE/rand/k, macierz kowariancji mutanta C $[u_i]$ musi być taka sama jak macierz kowariancji mutanta C $[u_i']$. Można to osiągnąć tak dobierając F_m , żeby było spełnione równanie:

$$C[u_i] = C[u'_i] \tag{4}$$

Osobniki są liniowo niezależne od siebie, dlatego:

$$C[u_{i}] \stackrel{(1)}{=} C[P_{i_{1}} + \frac{F}{\sqrt{k}} \sum_{j=1}^{k} (P_{i_{2j}} - P_{i_{2j+1}})] = C[P_{i_{1}}] + C[\frac{F}{\sqrt{k}} \sum_{j=1}^{k} (P_{i_{2j}} - P_{i_{2j+1}})]$$

$$= C[P_{i_{1}}] + \frac{F^{2}}{k} C[\sum_{j=1}^{k} (P_{i_{2j}} - P_{i_{2j+1}})] = C[P_{i_{1}}] + \frac{F^{2}}{k} C[\sum_{j=2}^{2k+1} P_{i_{j}}]$$

 $\forall i \in [P_i] = \in [P]$, ponieważ każdy osobnik ma taki sam rozkład prawdopodobieństwa. Zatem:

$$C[u_i] = C[P_{i_1}] + \frac{F^2}{k} C[\sum_{j=2}^{2k+1} P_{i_j}] = C[P] + \frac{F^2}{k} C[\sum_{j=2}^{2k+1} P]$$

$$= C[P] + \frac{F^2}{k} 2kC[P] = C[P] + 2F^2 C[P] = (1 + 2F^2)C[P]$$

Rozwijając prawą stronę równania (4):

$$C[u'_{i}] \stackrel{(2)}{=} C[m + F_{m} \sum_{j=1}^{k} (P_{i_{2j}} - P_{i_{2j+1}})]$$

$$\stackrel{(3)}{=} C\left[\frac{1}{n} \sum_{i=1}^{n} P_{j}\right] + F_{m}^{2} C\left[\sum_{i=1}^{k} (P_{i_{2j}} - P_{i_{2j+1}})\right] = \frac{1}{n} C[P] + F_{m}^{2} C\left[\sum_{i=2}^{2k+1} P\right] = (\frac{1}{n} + 2kF_{m}^{2})C[P]$$

Zatem C $[u_i] = (1+2F^2)$ C[P] oraz C $[u_i'] = (\frac{1}{n} + 2kF_m^2)$ C[P]. Podstawiając do (4):

$$(1 + 2F^2)C[P] = (\frac{1}{n} + 2kF_m^2)C[P]$$

Przy założeniu, że $C[P] \neq 0$:

$$1 + 2F^{2} = \frac{1}{n} + 2kF_{m}^{2}$$
$$\frac{1 + 2F^{2} - \frac{1}{n}}{2k} = F_{m}^{2}$$

Obie strony są nieujemne, więc:

$$F_m = \sqrt{\frac{1 + 2F^2 - \frac{1}{n}}{2k}} \tag{5}$$

Przyjmijmy F=0.9. Wówczas z (5) wynika, że: $F_m\approx 1.14$ dla k=1 i $n\to\infty$.

W DE/mid/1, zamiast przesuwać losowo wybranego osobnika P_i , przesuwamy punkt środkowy. Punkt środkowy jest mniej zmienny, tzn. norma macierzy kowariancji punktu środkowego jest mniejsza niż norma macierzy kowariancji dowolnego osobnika. $\lim_{n\to\infty} \mathbb{C}[m] = 0$, natomiast $\mathbb{C}[P_i] = \mathbb{C}[P]$. Dlatego DE/mid/1 potrzebuje większego współczynnika skalującego niż DE/rand/1.

W przypadku $k \to \infty$, zgodnie z centralnym twierdzeniem granicznym, wyrażenie $\sum_{j=1}^{k} (P_{i_{2j}} - P_{i_{2j+1}})$ można traktować jak zmienną losową v_{∞} o rozkładzie $\mathcal{N}(0, \mathbb{C}[P])$. Wówczas równanie mutanta DE/rand/ ∞ można zapisać jako:

$$u_i = P_{i_1} + F_{\infty} \cdot v_{\infty}$$

Wyznaczmy F_{∞} .

$$C[u_i] = C[P_{i_1} + F_{\infty} \cdot v_{\infty}] = C[P] + 2F^2C[P]$$

$$C[P] + C[F_{\infty} \cdot v_{\infty}] = C[P] + 2F^2C[P]$$

$$C[F_{\infty} \cdot v_{\infty}] = 2F^2C[P]$$

$$F_{\infty}^2C[P] = 2F^2C[P]$$

$$F_{\infty}^2 = 2F^2$$

$$F_{\infty} = \sqrt{2}F$$

Równanie mutanta DE/mid/∞ można zapisać podobnie:

$$u_i' = m + F_{\infty_m} \cdot v_{\infty}$$

Wyznaczmy F_{∞_m} .

$$\begin{split} \mathbf{C}\left[u_i'\right] &= \mathbf{C}\left[m + F_{\infty_m} \cdot v_{\infty}\right] = \mathbf{C}\left[P\right] + 2F^2\mathbf{C}\left[P\right] \\ \mathbf{C}\left[m\right] + C[F_{\infty_m} \cdot v_{\infty}] &= \mathbf{C}\left[P\right] + 2F^2\mathbf{C}\left[P\right] \\ \frac{C[P]}{n} + F_{\infty_m}^2C[P] &= \mathbf{C}\left[P\right] + 2F^2\mathbf{C}\left[P\right] \\ F_{\infty_m} &= \sqrt{1 + 2F^2 - \frac{1}{n}} \end{split}$$

Tabela 1 podsumowuje znalezione parametry skalujące.

	parametr				
DE/rand/1	F				
DE/rand/k	$\sqrt{\frac{2F^2}{2k}} = \frac{F}{\sqrt{k}}$				
$\mathrm{DE}/\mathrm{mid}/\mathrm{k}$	$\sqrt{\frac{1+2F^2-\frac{1}{n}}{2k}}$				
$\mathrm{DE/rand/}\infty$	$\sqrt{2F^2} = \sqrt{2}F$				
$\mathrm{DE}/\mathrm{mid}/\infty$	$\sqrt{1+2F^2-\frac{1}{n}}$				

Tabela 1: Parametry skalujące

2 Część praktyczna

Zbadano 4 algorytmy:

- 1. DE/rand/1
- 2. DE/mid/1
- 3. $DE/rand/\infty$
- 4. $DE/mid/\infty$

Ekperymenty przeprowadzono na 7 funkcjach testowych o numerach 24, 110, 113, 116, 119, 122, 126 z BBOB 2013 [2], zaimplementowanych w języku C. Funkcje testowe są wywoływane z Javy, w której napisano algorytmy oraz procedurę testującą. Liczba wymiarów D=10. Maksymalna liczba wywołań funkcji oceny $FEs=10^6$. Rozmiar populacji n=100. Jeśli algorytm nie znajdował minimum, wówczas w jednym uruchomieniu, na jednej funkcji, generował 10^4 pokoleń. Na każdej funkcji algorytm był niezależnie uruchamiany 100 razy, z każdego uruchomienia zapisywany był najlepszy wynik. Parametry skalujące zgodne z tabelą 2, F=0.9. Prawdopodobieństwo krzyżowania Cr=0.9.

	wartość
$\overline{\mathrm{DE/rand/1}}$	0.9
DE/mid/1	1.14
$\mathrm{DE/rand/}\infty$	1.27
$\mathrm{DE}/\mathrm{mid}/\infty$	1.62

Tabela 2: Wartości parametrów skalujących użyte w eksperymentach

	24	110	113	116	119	122	126	suma
DE/rand/1	3	1	0	0	1	3	0	8
DE+/rand/1	3	1	1	1	1	3	3	13
DE/mid/1	3	3	3	3	3	3	1	19
DE+/mid/1	3	3	2	3	3	3	3	20

Tabela 3: Porównanie algorytmów

W celu porównania, wykreślano dystrybuanty empiryczne najlepszych wyników z każdego uruchomienia dla obu algorytmów na jednej funkcji. Wykresy przedstawiono poniżej. Najlepszym wynikiem była najmniejsza odległość funkcji oceny osobnika od minimum. Algorytm, którego dystrybuanta na wykresie przebiegała powyżej pozostałych, otrzymywał 3 punkty. Za drugie miejsce algorytm dostawał 2 punkty, za trzecie 1, za ostatnie 0. Jeśli dystrybuanty się przecinały, algorytmy zajmowały i-te miejsce ex aequo i dostawały punkty za i-te miejsce. Przykładowo, na 110 funkcji DE/mid/1 i DE+/mid/1 wygrały, a DE/rand/1 i DE+/rand/1 za-jęły trzecie miejsce. Dostały następującą liczbę punktów, odpowiednio: 3, 3, 1, 1. Wyniki przedstawia tabela 3.

Para DE/mid/1 okazała się zdecydowanie lepsza niż DE/rand/1. Na 113, 116, 119, 122 i 126 funkcji DE/mid/1 znalazł minimum, podczas gdy DE/rand/1 nigdy się to nie udało. Ocenianie punktu środkowego zazwyczaj pomagało, ale nie zawsze. DE+/rand/1 nigdy nie był gorszy niż DE/rand/1. Natomiast DE+/mid/1 przegrał na 113 funkcji z DE/mid/1. Na pozostałych zazwyczaj sprawował się podobnie, raz wygrywając na funkcji 126. Funkcje 24 oraz 122 okazały się nieprzydatne, ponieważ nie wykazały jednoznacznie przewagi żadnego z algorytmów.

Referencje

- [1] Jarosław Arabas and Karol Opara. Decomposition and metaoptimization of mutation operator in differential evolution. Swarm and Evolutionary Computation, (LNCS 7269), 2012.
- [2] Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-box optimization benchmarking: Experimental setup. 2013. http://coco.lri.fr/downloads/download13.09/bbobdocexperiment.pdf.

../pngs/126.png