

电源专项篇: 线性电源常用器件和电路设计

主讲人: 吴必成

CONTENTS

01/线性电源简介

02/常用器件介绍

线性电源的主要指标

电路设计与注意事项

>>

一、线性电源简介

电源的基础知识

电源如人体的心脏,是所有电子设备的动力。一般电力(如市电)都要经过转换才能提供给用电设备使用,如交流转换为直流(AC-DC),高压转换为低压等等,根据转换的主要方式可分为线性电源和开关电源。这次主要讲一下线性电源的一些基础知识。

一、线性电源简介

什么是线性电源?

(1) 串联稳压与并联稳压

串联稳压(常用):

调整器件与负载串联,电源电流与负载相等,静态损耗小,电压差决定效率。

并联稳压 (不常用):

调压器件与负载并联,要按照最大负载电流考虑限流环节,静态损耗 大!但优点是负载瞬态特性不反应到 电源输入端。

(2) 串联稳压的原理

基于负反馈调节:

根据负反馈原理(虚短路),电阻R2的电压等于Uref基准源电压。同时,R2的电压又等于R1、R2对Uo的分压比。

所以可得:

Uref=Uo*R2/ (R1+R2)

即:

Uo=Uref* (1+R1/R2)

【1】基准源Uref: 提供稳定不变的电压

【2】采样电阻:对输出电压采样分压

【3】误差放大:根据采样值与实际值的差异,给出调节信号

【4】调整管调整:根据调节信号调节输出电压

(3) 线性电源的实际应用

【1】老式小功率电器电源

- 【1】工频变压器(50/60Hz): 将220V交流电网电压通过变压器降至合适的交流低压
- 【2】整流桥:对交流低压进行全波整流
- 【3】输入滤波:对全波整流后的电压进行预滤波
- 【4】三端稳压器:根据型号不同,可产生固定输出电压,与可调节输出电压
- 【5】输出滤波:对输出电压进行滤波,进一步减小纹波

线性电源实际应用

外表

内部

(3) 线性电源的实际应用

【2】音频功放用电源

在一些音频电路功放中(主要是甲类、甲乙类),为了减少电源带来的噪声干扰,最终输出最纯正的音质,其电源常采用线性电源。

(3) 线性电源的实际应用

【3】实验、仪器、测试用线性稳压电源 在对于一些对噪声敏感的场合中,比如在一些实验或者使用一些高精度仪器的过程中, 会使用线性电源而不是开关电源,这些场合不 会去追求效率,而主要是避免噪声带来的实验 与测量误差。

(4) 线性电源与开关电源的区别

线性电源:

线性直流稳压电源是通过工频(频率 为50Hz的交流电)变压器将电压变至所需 要的值,再经过整流、滤波、稳压等电路, 输出为稳定直流电。

这类电源有一个共同的特点就是它的 功率器件调整管工作在线性区,靠调整管 之间的电压降来稳定输出。由于调整管的 损耗根据压差决定,通常损耗会很大,所 以会需要安装一个很大的散热器给它散热。 而且由于变压器工作在工频(50Hz/60Hz), 所以重量较大。

开关电源:

开关型直流稳压电源是让交流电直接经过整流电路,经电容滤波后变为高压直流电,高压直流电经过开关后,加到开关变压器上。控制开关的"闭合"和"断开"的速度,就可在通过开关变压器形成不同频率的交流电,开关速度越快,频率就越高。这样在开关变压器的次级相应地感应出高频电压,最后经过整流、滤波、稳压等电路得到稳定的直流电。

开关电源工作频率在几十KHz到几MHz。 功率管不是工作在饱和就是截止区即开关状态;开关电源因此而得名。

(5) 线性电源的优缺点 (对比开关电源)

线性电源的主要优点:

- 1.电路简单可靠
- 2.电气噪声低
- 3.对电网污染小等

线性电源主要缺点:

- 1. 灵活度差
- 2.笨重、体积大
- 3.效率较低

开关电源的主要优点:

- 1.体积小、重量轻
- 2.效率高
- 3.应用灵活

开关电源的主要缺点:

- 1.电路复杂
- 2.电磁干扰大

二、常用元器件介绍

线性电源常用器件一集成稳压器

常用线性稳压电路

型号	输出 电流	最大 输入电 压	输出电压规 格(V)	压差	静态电流	电压 调整率	负载 调整率	温度系数 mV/℃
78XX/79XX	1.5A	36V/- 36V	±5/6/9/12/ 15/18/24	2V	8mA	0.1%/V	1%	0.6~1.8
LM317/337	1.5A	40V/- 40V	可调	3V	5mA	0.02%/ V	1.5%	0.07U _o
LT1084	5A	30V	可调	1.3V	5mA	0.02%/ V	0.3%	0.025U _o
LM1117-XX	0.8A	15V	2.85/3.3/5.0 可调	1V	10mA	0.03%/ V	0.3%	0.08
HT71XX HT75XX	30mA 100mA	24V	3.0/3.3/3.6/ 4.4/5.0	0.1V	5uA 10uA	0.2%/V	1.8%	0.7
TPS764XX	150mA	10V	2.5/2.7/3.0/3.	0.3V	85uA	0.1%/V	2%	0.2

1.三端可调稳压器LM317的应用 (1) 可调稳压源

Uo=Uref (1+R2/R1) = 1.25* (1+R2/R1)

1.三端可调稳压器LM317的应用 (2) 可调恒流源

$$IL=Uref/R1=1.25/R1$$

2.低压差线性稳压源 (LDO) (1) LDO原理

采用PMOS作为调整管

- (1) 调整管由运放下拉驱动,输出电压不会受到运放输出摆幅限制
- (2) 压差仅受调整管的饱和压降/导通电阻限制

2.低压差线性稳压源 (LDO) (2) LDO器件——TL1963A介绍

Simplified Schematic

TL1963A是低压差 (LDO) 稳压器, 针 对快速瞬态响应进行了优化。该器件可 提供1.5 A的输出电流,压差为340 mV。 工作静态电流为1 mA,关断时降至1µA 以下。除快速瞬态响应外,TL1963A稳 压器还具有极低的输出噪声,因此非常 适合敏感的RF电源应用。 输出电压范围 为1.21 V至20 V。TL1963A的输出电容 低至10µF。可以使用小型陶瓷电容器, 而无需像其他调节器那样添加ESR。内 部保护电路包括反向输入保护。 热限制和反向电流保护。此器件可提供 1.5 V, 1.8 V, 2.5 V, 3.3 V的固定输出 电压,以及具有1.21 V基准电压的可调 器件。

三、线性电源的主要指标

1) 输入电压调整率 (电源调整率) RegLine: 稳压电源克服输入电压变化的能力,在其他参数不变的情况下,输入电压发生变化,引起输出稳态电压的变化。

$$Reg_{Line} = \frac{|\Delta U_{ou}|}{\Delta U_{i}U_{o}} \times 100\%$$

2) 负载调整率RegLoad: 稳压电源克服负载变化的能力

3) 温度系数TC: 稳压电源克服环境温度变化的能力

$$Reg_{Load} = \frac{|\Delta U_{oL}|}{U_o} \times 100\%$$

$$T_{\mathcal{C}} = \Delta U_0 / \Delta T (mV / C)$$

三、线性电源的主要指标

4) 静态电流IQ:

稳压电路自身的损耗电流。

5) 最大输出电流lo(max):

室温散热良好条件下,稳压器最大连续输出电流能力(过流保护)

6) 压差UDrop (Dropout Voltage):

保证稳压器正常工作,输入电压与输出电压差 Ui-Uo的最小值当稳压电源的输入电压 Ui<Uo+UDrop时,其稳压功能将会失效。因此在输 出电压相同的条件下,压差越小的稳压器,允许的输 入电压越低。

输出功率Po与输入功率PE的比值

电路设计与注意事项

1.电容的选择

(1) 高频滤波电容与低频滤波电容的搭配使用

大电容与小电容的频率特性不同,大电容容量大, 但高频特性差,对于一些高频噪声无法有效的抑制, 所以需要并联小电容改善电源的高频特性。

但是注意电容的非理想参数,在某些频率下,已 经大于大电容的自谐振点, 其将会成感性, 但小电容 还成容性, 两者可能会构成并联谐振回路, 当两个电 容差别3个数量级以上时,要特别小心。

整流后的平滑滤波电容的经验计算

$$\Delta V = \frac{3}{4} \times \frac{I_{OUT}}{2f_{AC}C_c}$$

ΔV: 电压*波动峰峰值*

fac:整流前频率

C_c: 平滑滤波电容容量 I_{OUT}: 负载电流

表 1. 电容的谐振频率

电容值	通孔插装 (0.25 引线)	表面贴装 (0805)
1.0 μF	2.5 MHz	5 MHz
0.1 μF	8 MHz	16 MHz
0.01 μF	25 MHz	50 MHz
1000 pF	80 MHz	160 MHz
100 pF	250 MHz	500 MHz

四、电路设计与注意事项

2.关注Dropout Voltage电压与输出电流和温度的关系

Dropout Voltage vs Output Current

TL1963A的Dropout Voltage

PARAMETER		TEST CONDITIONS	TJ	MIN TYP ⁽²⁾	MAX	UNIT
		I _{LOAD} = 1 mA	25°C	0.02	0.06	
			Full range		0.1	
V_{DO} Dropout volta $V_{IN} = V_{OUT(N)}$		I _{LOAD} = 100 mA	25°C	0.1	0.17	
	Dropout voltage (4)(6)(7)		Full range		0.22	
	$V_{IN} = V_{OUT(NOMINAL)}$	I _{LOAD} = 500 mA	25°C	0.19	0.27	
			Full range		0.35	
		I _{LOAD} = 1.5 A	25°C	0.34	0.45	
			Full range		0.55	

LM1117的Dropout Voltage

	PARAMETER TEST CONDITIONS		MIN (1)	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT	
			T _J = 25°C		1.1		
	I _{OUT} = 100 mA	over the junction temperature range 0°C to 125°C			1.2	V	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			T _J = 25°C		1.15		
OUT	I _{OUT} = 500 mA	over the junction temperature range 0°C to 125°C			1.25	V	
		T _J = 25°C		1.2			
		I _{OUT} = 800 mA	over the junction temperature range 0°C to 125°C			1.3	V

LM78XX的Dropout Voltage

	Dropout voltage	$T_J = 25^{\circ}C$, $I_O = 1 A$	2	V
Ro	Output resistance	f = 1 kHz	8	mΩ
	Short-circuit current	T _J = 25°C	2.1	Α
	Peak output current	$T_J = 25^{\circ}C$	2.4	Α
	Average TC of V _{OUT}	Over temperature, I _O = 5 mA	-0.6	mV/°C

四、电路设计与注意事项

3.保护电路与散热处理

(1) 三端稳压器的反压保护

(2) 三端稳压器的热损耗及散热处理

四、电路设计与注意事项

4.电路与PCB设计

(1) PCB走线宽度与电流的关系

铜皮厚度35um 铜皮厚度50um 铜皮厚度70um ↔ 铜皮△=10℃ 铜皮△=10℃ 铜皮△=10℃ →

宽度mm	电流 A +	宽度mm	电流 A。	宽度 mm	电流 A
0.150	0.200	0.15=	0.500	0.150	0.70
0.20₽	0.55	0.20+	0.70	0.20	0.90+
0.304	0.80	0.304	1.100	0.30+	1.30
0.400	1.100	0.40#	1.350	0.400	1.70
0.50₽	1.350	0.50-	1.70₽	0.50+	2.00
0.600	1.60₽	0.60₽	1.900	0.600	2.30
0.80+3	2.00	0.80₽	2.400	0.80	2.80
1.00₽	2.30₽	1.00₽	2.600	1.00₽	3.20
1.200	2.70₽	1.200	3,004	1.204	3.60
1.50₽	3.200	1.50₽	3.500	1.50₽	4.20
2.00₽	4.000	2.000	4.300	2.00₽	5.10
2.500	4.50	2.50₽	5.10₽	2.50₽	6.00

(2) 独立电压采样走线

采样电路在最末端,直接从负载输出端取电压,采 样线上不走大电流,避免各种采样误差(可调线性电源和开关电源通用)

(3) 电容的位置与最小回流路径(通用)

多个电容并联时,小容量的电容应更靠近芯片电源引脚

CONTACT US

.com 网址: www.moore8.com

▶@ **邮箱:** moore8@eefocus.com

微信: 摩尔吧 (微信号: moore_8)

QQ群:摩尔吧电赛交流群:836323769

扫描微信二维码关注我们查看更多电赛资料

2019年全国大学生电子设计竞赛系列培训

THANKS

肇尔吧 (moore_8)

摩尔吧电赛交流群: 836323769

