Dynamic Safety Assurance of Autonomous Cyber-Physical Systems

Shreyas Ramakrishna
PHD Defense Presentation
Vanderbilt University
July 5, 2022

Outline

- Introduction
 - Cyber-Physical Systems and the Safety Problem
 - Safety Assurance Approaches and Limitations
- Our Approach: Dynamic Safety Assurance
 - Assurance Argument Development
 - Mitigation
 - Data Generation
- Summary & Questions

Introduction and Motivation

Cyber-Physical Systems

- Cyber-Physical Systems are "physical and engineered systems whose operations are monitored, controlled, and integrated by a computing device with communication capability"¹
- Increased complexity and requirement to operate in dynamic and non-stationary environment have raised safety concerns

Toyota car crash (2007)

Columbia space shuttle disaster (2003)

Turkish airlines accident (2020)

1. Lee, Edward A. "Cyber physical systems: Design challenges." 2008 11th IEEE international symposium on object and component-oriented real-time distributed computing (ISORC). IEEE, 2008.

Safety Assurance Approaches

Design-Time
Assurance

Conclusion with the assurance approaches

Design-time approaches have created "a culture of paper safety at expense of actual safety"
Nimrod RAF accident²

Despite runtime approaches, there is insufficient clarity on how to **evolve** the system's "safety reasoning" at runtime

Unprincipled evidence generation activities (e.g., invalid risk assessment)

 Testing principle violated "use what you test and test what you use"

Verification is prohibitively expensive and

tection Mitigation

System Health Management

1. Leveson, Nancy G. "The role of software in recent aerospace accidents." *Proceedings of the 19th International System Safety Conference, System Safety Society: Unionville, VA.* 2001.

2. RAF Nimrod http://aerossurance.com/safety-management/nimrod-xv230-haddon-cave/

Safety Problems Exacerbated by LECs

- Learning Enabled Components* have revolutionized the field of CPS
 - Simplified the design of complex components
 - Increased the level of autonomy
- However, these increased CPS
 - Safety has k
- Reasons for th
 - Non-transp
 - Implicit assProblem)
 - Implicit bias data

Effects on Assurance Approaches

- LECs bring in new **implicit assumptions** in designing the assurance arguments (e.g., out-of-distribution problem)
- LECs further complicate the verification and testing procedures
 - Black-box nature and non-linearity have limited the number of tools and techniques that are available

vehicle crashes were ted States between 2022" - NHTSA

BLACK BOX

THE BLACK BOX IS AN ALGORITHIM
THAT TAKES DATA AND TURNS IT INTO
SOMETHING. THE ISSUE IS THAT
BLACK BOXES OFTEN FIND PATTERNS
WITHOUT BEING ABLE TO EXPAIN
THEIR METHODOLOGY

→ OUTPUT

What Do We Need for Assurance of Autonomous CPS?

A dynamic approach that combines both design-time and runtime assurance approaches to perform "through life safety assurance" of autonomous CPS

Overall Goal: should be to reduce risk of hazardous and catastrophic failures, while ensuring that the performance objectives are met

This requires: monitoring "how" and "when" the design-time assumptions get invalidated and assess its impact on the "system-level safety"

What's needed: a design-time assurance model with runtime detection, assessment, and mitigation strategies

Dynamic Safety Assurance

Dynamic Safety Assurance Framework

Research Questions with Dynamic Safety Assurance Components

Assurance Case Development and Evaluation

How do we automate the development and evaluation of an assurance case?

Out-of-Distribution Detection

How do we efficiently detect out-of-distribution data and identify the factor(s) responsible for the problem?

Mitigation

How do we mitigate the risk posed to the system, while still maintaining the performance objectives?

Risk Assessment

How do we quantify the risk posed to the system by the hazards and faults under varying operating conditions at runtime?

Data Generation

How do we automatically generate data for the dynamic assurance component, especially data from high-risk scenarios involving the system (e.g., faults and adverse weather conditions)?

Contributions of this Dissertation

Assurance Case Development

Contributions:

- A workflow for automatic synthesis of an assurance case
- Coverage metrics and an analysis report for evaluating the assurance case

Out-of-Distribution Detection

Contributions:

- Workflow for designing an efficient detector that performs detection on lowdimensional space
- Bayesian Optimization heuristic to design and train the detector
- OOD responsible feature identification

Mitigation

Contributions:

- A blended-simplex strategy called "Weighted Simplex
 Strategy" to overcome (a) conservatism of the decision logic,
 and (b) avoid instantaneous controller transition RL
 algorithm
- The "Dynamic Simplex Strategy" with a non-myopic planner for reverse switching aimed to improve the system's performance without compromising on safety – MCTS online heuristic

Risk Assessment

Contributions:

- Proactive risk assessment framework called "ReSonAte"
- Combine design-time hazard rate with runtime system monitors to compute the system's operational risk

Data Generation

Contributions:

- Adversarial data generation framework "ANTI-CARLA"
- A scenario description language
- Two adversarial samplers

Today's Focus

Assurance Case Development

Contributions:

- Automated pattern selection
- Automated AC evaluation
- Integration with ACCELERATE assurance case generation tool

Out-of-Distribution Detection

Contributions:

- Workflow for designing an **efficient latent-space detector**
- Bayesian Optimization heuristic to train detector to generate a disentangled latent space
- OOD responsible **feature identification** in the latent space

Mitigation

Contributions:

- A blended-simplex strategy called "Weighted Simplex
 Strategy" to overcome (a) conservatism of the decision logic,
 and (b) avoid instantaneous controller transition RL
 algorithm
- The "Dynamic Simplex Strategy" with a non-myopic planner for reverse switching aimed to improve the system's performance without compromising on safety – MCTS online heuristic

Risk Assessment

Contributions:

- Proactive risk assessment framework called "ReSonAte"
- Combine design-time hazard rate with runtime system monitors to compute the system's operational risk

Data Generation

Contributions:

- Adversarial data generation framework "ANTI-CARLA"
- A scenario description language
- Two adversarial samplers

Publications

S. Ramakrishna, H. Jin, A. Dubey, and A.
 Ramamurthy. "Automating Pattern Selection for
 Assurance Case Development of Cyber Physical Systems". 2022, Accepted, Pending
 Publication

Assurance Case Development and Evaluation

Assurance Case Patterns

- Divide and Conquer strategy used to handle the growing complexity of assurance cases
 - Assurance fragments called patterns provide a partial argument for one aspect of the system
 - Patterns are instantiated & assembled into an assurance case
- Existing work aim at automating the instantiation and assembly algorithm

Problems with using patterns

- Selection has been shown to consume significant development time (14%)³
- Automating pattern selection could reduce the construction time

Automated Assurance Case Development Workflow

Step1: Data Processing and Mapping

Step2: Pattern Selection

Step3: Assurance Case Development and Evaluation

Demonstration Platform

An autonomous vehicle operating in CARLA¹ simulation under varying weather and sensor faults.

Key Results

- Manual construction of a small assurance case (500 GSN nodes) took one engineer 8 hours
- Automated pattern instantiation and assurance construction took less than 5 minutes
- We observed slight increase in construction times (~10 minutes) for larger assurance cases (1500-3000 GSN nodes)

Publications

- S. Ramakrishna, B. Luo, C. Kuhn, A. Mukhopadhyay, G. Karsai, and A. Dubey. "Dynamic Simplex Strategy for Autonomous Cyber-Physical Systems". 2022, Awaiting submission
- S. Ramakrishna, C. Hartsell, M. Burruss, G. Karsai, and A. Dubey. "Dynamic-weighted simplex strategy for learning enabled cyber physical systems." 2019, Journal of systems architecture

Mitigation

Simplex Architecture for Mitigation

Simplex Architecture¹

- The framework augments a safety controller and a decision logic to CPS with unverified high-performance controller
- On sensing that the system is entering into a bad state, the logic performs a forward switch
 - Performant controller

 Safety controller

1.Lui Sha, et al. "A Software Architecture for Dependable and Evolvable Industrial Computing Systems". Carnegie-Mellon University Pittsburgh Software Engineering Inst, 1995.

Problems with the Conventional Simplex Strategy

Problems with the architecture

- Designed and trained offline
- **Too conservative** (instantly switches to the safety controller)
- Do not perform a reverse switch
- Instantaneous switching hurts the system

Dynamic Simplex Strategy

- Goal is to not compromise on safety but increase performance of the system
- Non-myopic optimal reverse switch to improve performance
- Switching routine to avoid instantaneous switch

System Model – Semi-Markov Decision Process

A natural modeling framework for control problems in which a decision agent interacts with an uncertain environment and actions have future consequences is the *(Semi)-Markov Decision Process* (SMDP)*

<u>State</u>: System location, weather condition and the current controller, sensor failure

Action: Switch/ not switch

<u>Transitions</u>: Environment evolution depends on travel times of the system, weather conditions, and sensor failures

Reward: Performance and safety scores

Decision-maker triggered by three events: (1) when location changes, (2) when the weather changes, and (3) when a sensor on the system fails

^{*} Semi-Markov because process evolves in <u>continuous time</u> and transitions are <u>not memoryless</u>

Dynamic Simplex Strategy: Overall Architecture

Dynamic Simplex Strategy: Switcher

Switcher: Decides if and when the switching needs to be performed

Constantly **monitor for decision events** using the runtime monitors

Forward switch: performed by the **selector**

Reverse switch: performed by the **planner**

Controller transition: performed by a **switching routine** to avoid instantaneous transitions

- System state (e.g., reduce speed)
- **Domain rules:** location and system state under which switching can be performed

Switching	Domain rules
Acceptable	Main road, freeway, overpass
Restricted	Intersection, roundabout
	Pedestrian crossing the road
	Turns
	Lane changes

Dynamic Simplex Strategy: Forward Switch

At each decision event, select an optimal action based on the current state

Selector: Decision-maker for forward switching

- Uses historical data to decide if a forward switch is required
- Decision made only on the current state **safety concerns**

K-NN based Search

A K nearest neighbor algorithmbased search heuristic that finds which controller performed better in the given state

Dynamic Simplex Strategy: Reverse Switch

At each decision event, evaluate potential actions by estimating their future trajectories using generative models

Find a *policy:* a general mapping from states to actions

Methods: Reinforcement Learning

Barriers:

- Long time to learn a policy for large state-action space
- Must re-learn models to account for non-stationary environment
- Not resilient to failures and unexpected environmental shifts such as weather, sensor failures.

Planner – Decision Maker for reverse switching

- Focuses computation on one relevant state
- Adaptability if environment changes or there is a failure, simply update the underlying models

Monte Carlo Tree Search

Heuristic planning algorithm which balances exploration and exploitation to efficiently navigate a decision tree, focusing computation on promising action trajectories

- 1. Lenz, David, et al. "Tactical cooperative planning for autonomous highway driving using Monte-Carlo Tree Search." 2016 IEEE Intelligent Vehicles Symposium (IV).

 2. Hoel. Carl-Johan, et al. "Combining planning and deep reinforcement learning in tactical decision making for autonomous driving." *IEEE transactions on intelligent*
- 2. Hoel, Carl-Johan, et al. "Combining planning and deep reinforcement learning in tactical decision making for autonomous driving." *IEEE transactions on intelligent vehicles* 5.2 (2019): 294-305.

How the approach works

Controller transition with the proposed solution approach

- The switcher picks one decision-maker based on the controller driving the system
- The selector requires $\mathbf{t_s}$ seconds and planner requires $\mathbf{t_p}$ seconds to decide an action
- ullet The switching routine will take t_r seconds to perform the controller transition

Evaluation with CARLA Simulator

Experimental Setup

Experimental Setup

- Safety controller: Autopilot controller
- Performant Controller: Learning By Cheating LEC¹
- 10 training tracks and 4 testing tracks
- A lookup table of **12500** for designing the logic
- System monitors: Collision likelihood estimator, Novelty detector, and Camera failure detectors

<u>Baselines</u>

 Performant controller (LBC), Safety controller (AP), Simplex strategy (SA), and Simplex strategy with reverse switch (SA^R)

System model of the AV

Track 1 - Downtown Track 2 - Suburb

Track 3 - Freeway

Track 4 - Tunnel

Experimental Results

- The proposed strategy overcomes the safety problem of the LEC
- It has shorter travel times and a high safety score compared to baselines
- Performance gains primarily because of the planner-based reverse switching

Performance measured using travel times around the track
Safety measured using a combined infraction score (ideal safety score is 1.0)

Experiment Results

Key Results

- The planner does not reverse switch anticipating the future consequence
- The planner has an average execution time of **2.5 seconds**, compared to **0.13 seconds** of the **selector**
- Our approach consumes **similar resources** as the other simplex configurations

Execution times of the decision-makers

Controller Configuration	CPU (%)		GPU (%)		Inference
	Util	Mem	Util	Mem	Times (s)
LBC	27.7	21.8	5.21	7.98	0.031
AP	28.4	23.4	0	0	0.215
SA	24.1	19.9	5.44	8.15	0.075
SA ^R	22.1	18.8	5.35	8.15	0.088
DSS	32.2	24.6	5.21	8.14	0.090

Resource and execution time comparison

Publications

- S. Ramakrishna, B. Luo, Y. Barve, G. Karsai, and, A. Dubey. "Risk-Aware Scene Sampling for Dynamic Assurance of Autonomous Systems". 2022, ICAA
- S. Ramakrishna, B. Luo, C. Kuhn, G. Karsai, and, A. Dubey. "ANTI-CARLA: An Adversarial Testing Framework for Autonomous Vehicles in CARLA". 2022, Accepted at ITSC, Pending Publication

Data Generation

Scene Generation

Track 2 - Suburb

Track 3 - Freeway

Track 4 - Tunnel

Scene Generation for Autonomous CPS

- Scenario Description languages like Scenic¹ and MSDL² are available for automotive domain
- They sample scenes using passive samplers (no**feedback)** like random and grid search

Problems with the scene generation approach and samplers

- These languages have a steep learning curve and difficult to transfer to other domains
- The passive samplers have problems:
 - Do not perform directed search (no-feedback)
 - Do not consider parameter constraints and correlations in sampling
 - Do not **optimally balance** the exploration vs. exploitation tradeoff
- 1. Fremont, Daniel, et al. "Scenic: Language-based scene generation." arXiv preprint arXiv:1809.09310 (2018).
- 2. Measurable Scenario Description Language https://www.foretellix.com/wp-content/uploads/2020/07/M-SDL_LRM_OS.pdf

A data generation framework for Autonomous CPS

Specification Files and Scenario Description Language

Meta-model of our SDL*

```
Scenario Description{
   town: 5 //Available towns 3 and 5
   track: 1 // 1 track available for each town
      regions: 5 //Each town has 5 regions
   weather: //Weather parameters and distribution range
      cloudiness: [0,100]
     precipitation: [0,100]
     time-of-day: [-90,90]
   pedestrian_density: [0,3]
   traffic_density: [0,10]
   Constraints: //A constraint on the rate of change in
        parameter values
        weather_delta: 2
        traffic_delta: 2
        pedestrian_delta: 1
   Infraction Metrics: //Infraction metrics to be
        recorded
        Infraction Penalty: true
        Off-road Driving: true
        Route Deviation: false
   Record Frequency: 5Hz } //Frequency of data recording
```

Excerpt of scene specification file

- Scenario description language models an operational scene and its contents
 - Includes grammar and a meta-model
- Specification files allow users set the parameters for:
 - Operating conditions (e.g., weather) and Agent configurations (e.g., sensors, inference rate)
- An interpreter connects the specification file, SDL, and the samplers

Dejanović, Igor, et al. "TextX: a Python tool for domain-specific languages implementation." Knowledge-Based Systems 115 (2017): 1-4.

^{*} SDL written in textX modeling language

Adversarial Samplers

- Extends the conventional random search to perform exploitation using the K-NN algorithm
- Overall idea is to randomly generate a scene and in case it is of high risk, then exploit the nearby scenes

Guided Bayesian optimization Search

- Extends the conventional Bayesian optimization algorithm with sampling constraints
- GP model is fit across the previously explored points
- Then, the constraints bound the acquisition function to look into smaller search space for future sampling
- Exploration vs. exploitation controlled by Upper
 Confidence Bound function

Demonstration Platform – CARLA Simulator

Our samplers better balance the exploration vs. exploitation

1. Chen, Dian, et al. "Learning by cheating." *Conference on Robot Learning*. PMLR, 2020. Github - https://github.com/scope-lab-vu/ANTI-CARLA

Quantitative Comparison of Samplers

Quantitative comparison of samplers across 250 simulations

Tot	Total risk	Dive	Search	
Sampler	Sampler scenes (%)	# of clusters	Silhouette score	Time (min)
Random	66	3	0.34	323
Halton	71	2	0.27	315
Grid	56	2	0.71	309
RNS	83	6	0.56	332
GBO	92	4	0.62	897

Comparing infractions of different LECs^{1,2}

Key Results

- Our Samplers generated higher total high-risk scene percentage compared to the baselines, across different starting conditions
- We also tested different controllers across different towns in the simulator
- 1. Chen, Dian, et al. "Learning by cheating." *Conference on Robot Learning*. PMLR, 2020.
- 2. Prakash, Aditya, et al. "Multi-modal fusion transformer for end-to-end autonomous driving." Conference on Computer Vision and Pattern Recognition. 2021.

Conclusion

Safety Assurance of Autonomous CPS

- Safety Assurance has always been a known problem of CPS
- This problem has been further exacerbated with the use of LECs
- New assurance approach is needed to incorporate:
 - Changing operational nature of CPSs
 - New components (e.g., LECs)

Contributions of this Dissertation

Assurance Case Development

Contributions:

- A workflow for automatic synthesis of an assurance case
- Coverage metrics and an analysis report for evaluating the assurance case

Out-of-Distribution Detection

Contributions:

- Workflow for designing an efficient detector that performs detection on lowdimensional space
- Bayesian Optimization heuristic to design and train the detector
- OOD responsible feature identification

Mitigation

Contributions:

- A blended-simplex strategy called "Weighted Simplex
 Strategy" to overcome (a) conservatism of the decision logic,
 and (b) avoid instantaneous controller transition RL
 algorithm
- The "Dynamic Simplex Strategy" with a non-myopic planner for reverse switching aimed to improve the system's performance without compromising on safety – MCTS online heuristic

Risk Assessment

Contributions:

- Proactive risk assessment framework called "ReSonAte"
- Combine design-time hazard rate with runtime system monitors to compute the system's operational risk

Data Generation

Contributions:

- Adversarial data generation framework "ANTI-CARLA"
- A scenario description language
- Two adversarial samplers

Major Publications

Assurance Case Development

Ramakrishna, S., Jin, H., Dubey, A. & Ramamurthy, A. "Automating Pattern Selection for Assurance Case Development of Cyber-Physical Systems". Accepted at SafeComp 2022, Pending Publication.

Out-of-Distribution detection

- Ramakrishna, S., Rahiminasab, Z., Karsai, G., Easwaran, A., & Dubey, A. (2021). "Efficient Out-of-Distribution Detection Using Latent Space of β-VAE for Cyber-Physical Systems." in TCPS 2020
- Ramakrishna, S., Rahiminasab, Z., Easwaran, A., & Dubey, A. (2020, September). "Efficient Multi-Class Out-of-Distribution Reasoning for Perception Based Networks: Work-in-Progress." In 2020 International Conference on Embedded Software (EMSOFT)

Risk Assessment

Hartsell, C.*, Ramakrishna, S.*, Dubey, A., Stojcsics, D., Mahadevan, N., & Karsai, G. (2021). "ReSonAte: A Runtime Risk Assessment Framework for Autonomous Systems". In SEAMS 2021

Adaptive Mitigation

- Ramakrishna, S., Harstell, C., Burruss, M. P., Karsai, G., & Dubey, A. (2020). "Dynamic-weighted simplex strategy for learning enabled cyber physical systems." *Journal of systems architecture*
- Ramakrishna, S., Luo B., Kuhn, C., Mukhopadhyay, A., Karsai, G., and Dubey, A. "Dynamic Simplex Strategy for autonomous CPS." pending submission

Data Generation

- Ramakrishna, S., Luo, B., Barve, Y., Karsai, G., & Dubey, A. (2021). "Risk-Aware Scene Sampling for Dynamic Assurance of Autonomous Systems". In ICAA 2021
- Ramakrishna, S.*, Luo, B.*, Kuhn, C., Karsai, G., & Dubey, A. "ANTI-CARLA: An Adversarial Testing Framework for Autonomous Vehicles in CARLA". Accepted at ITSC 2022, Pending Publication

Other Publications

- Sundar, V. K., **Ramakrishna, S.**, Rahiminasab, Z., Easwaran, A., & Dubey, A. (2020, May). "Out-of-distribution detection in multilabel datasets using latent space of β-VAE". In *2020 IEEE Security and Privacy Workshops (SPW)*
- Ramakrishna, S., Hartsell, C., Dubey, A., Pal, P., & Karsai, G. (2020). "A Methodology for Automating Assurance Case Generation". In TMCE 2020
- Ramakrishna, S., Dubey, A., Burruss, M. P., Hartsell, C., Mahadevan, N., Nannapaneni, S., & Karsai, G. (2019, May). "Augmenting learning components for safety in resource constrained autonomous robots." In 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)
- Burruss, M. P., Ramakrishna, S., Karsai, G., & Dubey, A. (2019, May). "Deepnncar: A testbed for deploying and testing middleware frameworks for autonomous robots." In 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)
- Hartsell, C., Mahadevan, N., **Ramakrishna, S.**, Dubey, A., Bapty, T., Johnson, T., Koutsoukos, X., Sztipanovits, J. and Karsai, G., 2019, October. Cps design with learning-enabled components: A case study. In *Proceedings of the 30th International Workshop on Rapid System Prototyping (RSP'19)* (pp. 57-63).
- Hartsell, C., Mahadevan, N., Ramakrishna, S., Dubey, A., Bapty, T., Johnson, T., Koutsoukos, X., Sztipanovits, J. and Karsai, G., 2019, April. Model-based design for CPS with learning-enabled components. In *Proceedings of the Workshop on Design Automation for CPS and IoT* (pp. 1-9).
- Burruss, M., Ramakrishna, S. and Dubey, A., 2021, August. Deep-rbf networks for anomaly detection in automotive cyber-physical systems. In 2021 IEEE International Conference on Smart Computing (SMARTCOMP) (pp. 55-60). IEEE.
- Hartsell, C., Mahadevan, N., Ramakrishna, S., Dubey, A., Bapty, T. and Karsai, G., 2019. Demo Abstract: A CPS Toolchain for Learning-based Systems.

Thank you!

Committee

- Abhishek Dubey
- Janos Sztipanovits
- Gabor Karsai
- Xenofon Koutsoukos
- Arun Ramamurthy
- Ayan Mukhopadhyay

Collaborators and mentors

- Ted Bapty
- Arvind Easwaran
- Nagabhushan Mahadevan
- Daniel Stojcsics
- Baiting Luo
- Christopher Kuhn
- Charles Hartsell
- Patrick Masau
- Zahra Rahiminasab
- Vijaya Kumar Sundar

Institute for Software Integrated Systems