Redes de Computadores

Introduction

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

Introduction to the Course

RCOM – Professors, Information, Language

Prof. Manuel Ricardo

- mricardo@fe.up.pt
- http://www.fe.up.pt/~mricardo
- Tel.: 22 209 4000
- Room at INESC Porto (4th floor)

Information about RCOM available at moodle

Language

- » Slides and books in English
- » Lectures in Portuguese
- » Suitable for English-speaking students

Bibliografia

Main book

Andrew Tanenbaum, David Wetherall, Computer Networks, 5/E Prentice Hall 2011

- Slides presented in classes
 - » Follow the main book
 - » Complemented with information from other sources
 - » Oriented to the fundamentals; the details are in the book

Bibliografia – Other books

- Dimitri Bertsekas, Robert Gallager, Data Networks, 2nd Edition, 1992, Prentice Hall
 - » Oriented to the fundamental aspects of data networks with formal (math) descriptions
 - » Available also in http://web.mit.edu/dimitrib/www/datanets.html
 - » Examples on outdated networks
- Alberto Leon-Garcia, Indra Widjaja, Communications Networks Fudamental Concepts and Key Architectures, 2nd Edition, 2004, McGRAW-HILL
 - » Excellent book
 - » Could be the main book of RCOM ...
- Larry L. Peterson, Bruce S. Davie, Computer Networks A Systems Approach, 4th Edition, 2007, Morgan Kaufmann
 - » Less generic than Tanenbaum and Leon-Garcia; oriented to TCP/IP and implementation aspects
 - » 3^a edition can be used
- ◆ James F. Kurose, Keith W. Ross, Computer Networking a Top-Down Approach, 2010, 5th Edition, Pearson Similar to Tanenbaum; uses top-down approach; more focused on applications than in physical layer
- W. Richard Stevens, TCP/IP Illustrated: The Protocols (Vol. 1), 1994, Addison-Wesley.
 - » The book of TCP/IP stack
- William Stallings, Data & Computer Communications, 8th Edition, 2007, Prentice Hall
 - » Generic and good book; addresses also telecom networks

Types of Classes

Aulas teóricas

- » Oriented to the fundamental aspects of Computer Networks
- » Additional reading required at home
- » Weekly homeworks questions to be answered before next lecture through moodle

• Aulas laboratoriais

- 2 laboratory projects
- » 1st lab: protocol development, Linux, C programming, file transfer
- » 2nd lab: configuration computer network (switches, routers, computers)

Avaliação de RCOM

Notas de 0 a 20 valores

- E nota do exame escrito
- L1 nota do 1º trabalho laboratorial
- L2 nota do 2º trabalho laboratorial
- H nota dos trabalhos de casa
- FQ NOTA DE FREQUÊNCIA
- CF CLASSIFICAÇÃO FINAL

$$FQ = 0.4*L1 + 0.4*L2 + 0.2*H$$

$$CF = 0.4*FQ + 0.6*E$$

se (FQ < 8,0) FQ = "Reprovado por Falta de Frequência" se (E < 8,0)
$$\,$$
 CF = E

Learning objectives

- Fundaments of network design and analysis
 - » Communication channels and data link control
 - » Delay and loss models in data networks
 - » Multi-access communications
 - » Routing in computer networks
 - » Flow and congestion control
- Technologies in use
 - » Ethernet, WLAN, Internet, TCP/IP communications stack
- Implementation
 - » Protocol development in UNIX
 - » Computer network configuration

Introduction to Computer Networks

- » What are the main uses of computer networks?
- » What are the main types of networks?
- » What is a protocol? What is a service?
- » What is a protocol stack?
- » What are the communication layers of the Internet reference model?
- » What are the differences between circuit switching and packet switching?
- » What is the **propagation delay**, T_{prop} ?
- » What is the packet transmission delay, T_{pac} ?

Uses of Computer Networks

Some Applications Using the Networks

- E-mail
- Web
- Remote login
- P2P file sharing
- Multi-user network games
- Video retrieval
- Voice over IP
- Video streaming
- Real-time video conferencing
- **♦** ...

Application Architectures

Client-server

• Peer-to-peer (P2P)

Client-server Architecture

Server

- » always-on computer
- » permanent IP address, well-known name

Clients

- » communicate with server
- » may be intermittently connected
- » do not communicate directly with other clients

Client-server Example – The Web

Client/server model

- Client: browser
 - » requests, receives, displays Web objects

- Server: web server
 - » sends objects in response to requests

P2P Architecture

- No always-on server
- Arbitrary end systems communicate directly
- Peers are intermittently connected and may change IP addresses

P2P Example - BitTorrent

P2P file distribution

Types of Networks

Classification of Communications Networks

- By scale
 - » distance between processors

- PAN Personal Area Network
- LAN Local Area Network
- MAN Metropolitan Area Network
- WAN Wide Area Network
- Internet

Personal Area Networks

Bluetooth network

Local Area Networks

Local Area Networks

Metropolitan Area Networks

A metropolitan area network based on cable TV

Internet – Interconnecting networks

- Network edge
 - » Hosts
 - » Applications
- Access networks
 - » LANs, MANs
 - » Home, Institutional
 - » Mobile
 - » Wired and wireless links
- Network core
 - » Interconnected routers
 - » Network of networks
 - » Internet Service Providers

PC

server

wireless laptop

′cellular handheld

access points

wired links

ISP - Internet Service Provider

Network Software

Communications Software Organized in Black Boxes

Figure 1.7 Peer processes within a black box communication system. The peer processes communicate through a lower-layer black box communication system that itself contains lower-layer peer processes.

Protocol Hierarchies

Layers, protocols, and interfaces

Services to Protocols Relationship

The relationship between a service and a protocol

Transference of Information

Information flow supporting virtual communication in layer 5

Internet (TCP/IP) Reference Model

- Application layer
 - » supporting network applications
 - » FTP, SMTP, HTTP, ...
- Transport layer
 - » process-process (end-to-end) data transfer
 - » TCP, UDP
- Network layer
 - » routing of data packets from source to destination
 - » IP, routing protocols
- Data Link layer
 - » data transfer between neighboring network elements
 - » PPP, Ethernet, WLAN
- Physical layer
 - » bits sent "on the wire"

Application

Transport

Network

Data Link

Physical

Transferring Data Through a Network

Information and Data

Data

- » term used to represent *information*
- » e.g. text, voice, video, image, graphics
- Information represented as a sequence of bits
 - » 0110110001010....
 - \rightarrow 1 Byte = 1 octet = 8 bits
 - 1 kbit = 10^3 bit; 1 Mbit = 10^6 bit; 1 Gbit= 10^9 bit
- Computer Networks
 - » transport information, from source to destination
 - » Information flow, capacity of a link → Byte/s; bit/s

Circuit Switching, Packet Switching

Circuit Switching, Packet Switching

Circuit Switching

Packet Switching

Circuit Switching – Numerical Example

A file of length L=640 kbit is transferred from Host A to Host B through a circuit offering a bitrate of R=64 kbit/s. Assuming a circuit establishing delay T_{est} =500 ms, and a propagation delay T_{prop} ~0, what is the total file transfer delay?

* Answer:

- $T_{msg} = L/R = 640 \text{ kbit } / 64 \text{ kbit/s} = 10s$
- $T_{tot} = T_{est} + T_{prop} + T_{msq} = 0.5 + 0 + 10 = 10.5 s$

Packet Switching – Numerical Example

Host A sends a packet of length **L=10 kbit** to Host B through routers R1 and R2. Assuming propagation delay through the 3 links is $T_{prop}\sim0$ and that there are no queuing delays at the network elements (A, R1 and R2), what is the packet end-to-end delay?

Packet Switching – Numerical Example

Answer:

- » $T_{pac1} = T_{pac3} = L/C1 = 10$ kbit / 100 Mbit/s = 0.1 ms
- $> T_{pac2} = L/C2 = 10 kbit/ 10 Mbit/s = 1 ms$
- \rightarrow $T_{\text{end-to-end}} = T_{\text{pac1}} + T_{\text{prop1}} + T_{\text{pac2}} + T_{\text{prop2}} + T_{\text{pac3}} + T_{\text{prop3}} = 1.2 \text{ ms}$

To Play

• How many routers are there from my computer to www.up.pt?

```
traceroute www.up.pt (Unix) or tracert www.up.pt (Windows)
```

• How long does it take for a packet to go and come back (Round Trip Time) from my computer to www.up.pt?

```
ping www.up.pt
```

• Do it at home and at FEUP (use VPN)

Homework

1. Review slides

- 2. Read from Tanenbaum
 - » Chapter 1 Introduction
 - » Section 2.6.5 Switching
- 3. Answer questions at moodle