# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Вятский государственный университет» (ФГБОУ ВО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра ЭВМ

Исследование многослойного персептрона с обучением по методу с обратным распространением ошибки

Отчёт Лабораторная работа № 2 по дисциплине «Системы обработки знаний»

| Выполнила студентка группы ИВТб-42_ | /Рзаев А. Э./     |
|-------------------------------------|-------------------|
| Проверил доцент кафедры ЭВМ         | /Ростовнев В. С./ |

#### Цель

Изучить алгоритм обратного распространения ошибки (OPO) в процессе обучения нейронной сети при вариативных параметрах обучения. Работа выполняется с помощью программы BackPropagate 3.0.0.exe.

#### 1 Задание

Обучающая выборка представлена в приложении А. Используется выходная функция  $y=x_1^{7*}\cos(x_2+2)$ . Переменная  $x_1$  изменяется в промежутке [-7,3] с шагом 0,05025, переменная  $x_2$  изменяется в промежутке [-7,4;4] с шагом 0,05729.

#### 2 Протокол выполнения

Во всех таблицах ниже цветом выделен наилучший результат. Значение минимальной ошибки не учитывалось при выборе.

### 2.1 Влияние нормализации на эффективность алгоритма ОРО

Число входов: 2. Число выходов: 1.

Циклов обучения: 1000

В таблице 1 показаны результаты исследования.

Таблица 1 – Влияние нормализации на эффективность алгоритма ОРО

| Тип нормализации | Результат                                       |
|------------------|-------------------------------------------------|
| Без нормализации | Максимальная ошибка: 1476181.92000000           |
| Вез пермативации | Минимальная ошибка: 10.00000000                 |
|                  | Средняя ошибка: 740349.03363636                 |
|                  | Среднеквадратичная ошибка: 52452033481360.53125 |
| [0;1]            | Максимальная ошибка: 700113.57821300            |
| [0,1]            | Минимальная ошибка: 10.00000000                 |
|                  | Средняя ошибка: 57770.30542342                  |
|                  | Среднеквадратичная ошибка: 1067691073785.042236 |
| [-0.5;0.5]       | Максимальная ошибка: 398234.04911600            |
|                  | Минимальная ошибка: 10.00000000                 |
|                  | Средняя ошибка: 315016.03019154                 |
|                  | Среднеквадратичная ошибка: 9580087043839.501953 |
| [-1;1]           | Максимальная ошибка: 398234.07575700            |
| [ -,-]           | Минимальная ошибка: 10.00000000                 |
|                  | Средняя ошибка: 315016.08984294                 |
|                  | Среднеквадратичная ошибка: 9580091715941.306641 |

Применение нормализации значительно сокращает величину ошибок. Результат лучше примерно в 13 раз для средних и, приблизительно в 49 раз для среднеквадратичных ошибок при нормализации [0;1] (наиболее близкой к лучшей).

#### 2.2 Влияние выбора примеров на эффективность алгоритма ОРО

Число входов: 2. Число выходов: 1.

Циклов обучения: 1000 Нормализация: [0;1].

В таблице 2 показаны результаты исследования.

Таблица 2 – Влияние выбора примеров на эффективность алгоритма ОРО

| Выбор примеров   | Результат                                                                                                                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Последовательный | Максимальная ошибка: 702378.66533800<br>Минимальная ошибка: 10.00000000<br>Средняя ошибка: 56471.55202544                                                                                             |
| Случайный        | Среднеквадратичная ошибка: 1068233726262.251831 Максимальная ошибка: 700115.89746300 Минимальная ошибка: 10.00000000 Средняя ошибка: 57769.00361650 Среднеквадратичная ошибка: 1067691350691.58691400 |

Случайный выбор примеров показывает слегка лучший результат по сравнению с последовательным выбором примеров обучения.

#### 2.3 Влияние крутизны функции на эффективность алгоритма ОРО

Число входов: 2. Число выходов: 1.

Циклов обучения: 1000 Нормализация: [0;1].

Выбор примеров: случайный.

В таблице 3 показаны результаты исследования.

Таблица 3 – Влияние крутизны функции на эффективность алгоритма ОРО

| Крутизна функции | Результат                                       |
|------------------|-------------------------------------------------|
| 0,1              | Максимальная ошибка: 699749.13455200            |
| 0,1              | Минимальная ошибка: 10.00000000                 |
|                  | Средняя ошибка: 57982.79375657                  |
|                  | Среднеквадратичная ошибка: 1067693548160.339844 |
| 0,5              | Максимальная ошибка: 700109.42432900            |
| 0,5              | Минимальная ошибка: 10.00000000                 |
|                  | Средняя ошибка: 57772.70591974                  |
|                  | Среднеквадратичная ошибка: 1067690775792.408691 |
| 1.0              | Максимальная ошибка: 701558.62151300            |
| 1,0              | Минимальная ошибка: 10.00000000                 |
|                  | Средняя ошибка: 56940.79985290                  |
|                  | Среднеквадратичная ошибка: 1067926311841.594971 |
| 3,0              | Максимальная ошибка: 716843.05366900            |
| 3,0              | Минимальная ошибка: 10.00000000                 |
|                  | Средняя ошибка: 48638.85855966                  |
|                  | Среднеквадратичная ошибка: 1094324154465.175293 |

Наилучшие результаты – при крутизне функции 0,5 и 0,1, при этом приоритет отдаем использованию крутизны функции 0,5, потому что у нее средняя и среднеквадратичная ошибки меньше, чем у 0,1.

#### 2.4 Влияние смещения на эффективность алгоритма ОРО

Число входов: 2. Число выходов: 1.

Циклов обучения: 1000 Нормализация: [0;1].

Выбор примеров: случайный.

Крутизна функции: 0,5.

В таблице 4 показаны результаты исследования.

Таблица 4 – Влияние смещения на эффективность алгоритма ОРО

| Смещение | Результат                                                                                                                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0,1      | Максимальная ошибка: 700003.87156200<br>Минимальная ошибка: 10.00000000<br>Средняя ошибка: 57834.25588502                                                    |
|          | Среднеквадратичная ошибка: 1067688835558.367432                                                                                                              |
| 0,5      | Максимальная ошибка: 700034.52213600<br>Минимальная ошибка: 10.00000000<br>Средняя ошибка: 57816.50131751                                                    |
|          | Среднеквадратичная ошибка: 1067689925430.368286                                                                                                              |
| 1,0      | Максимальная ошибка: 700112.48484900<br>Минимальная ошибка: 10.00000000<br>Средняя ошибка: 57771.02499060<br>Среднеквадратичная ошибка: 1067691484056.507446 |
| 2,0      | Максимальная ошибка: 700466.54796100<br>Минимальная ошибка: 10.00000000<br>Средняя ошибка: 57565.73680297<br>Среднеквадратичная ошибка: 1067712819426.598511 |

Наилучшие результаты наблюдаются при смещениях 0,1 и 0,5, при этом приоритет отдаем использованию крутизны функции 0,1, потому что у нее максимальная и среднеквадратичная ошибки меньше, чем у 0,5.

## 2.5 Влияние скорости обучения на эффективность алгоритма ОРО

Число входов: 2. Число выходов: 1.

Циклов обучения: 1000 Нормализация: [0;1].

Выбор примеров: случайный.

Крутизна функции: 0,5.

Смещение: 0,1.

В таблице 5 показаны результаты исследования.

Таблица 5 – Влияние скорости обучения на эффективность алгоритма ОРО

| Скорость обучения | Результат                                       |
|-------------------|-------------------------------------------------|
| 0,01              | Максимальная ошибка: 699942.97928700            |
| 0,01              | Минимальная ошибка: 10.00000000                 |
|                   | Средняя ошибка: 57869.69968871                  |
|                   | Среднеквадратичная ошибка: 1067688658042.167725 |
| 0,1               | Максимальная ошибка: 700003.82645600            |
| 0,1               | Минимальная ошибка: 10.00000000                 |
|                   | Средняя ошибка: 57834.26798417                  |
|                   | Среднеквадратичная ошибка: 1067688715448.988647 |
| 0,5               | Максимальная ошибка: 700446.17469900            |
|                   | Минимальная ошибка: 10.00000000                 |
|                   | Средняя ошибка: 57577.27209238                  |
|                   | Среднеквадратичная ошибка: 1067710467908.768921 |
| 1,0               | Максимальная ошибка: 701229.61335800            |
| 1,0               | Минимальная ошибка: 10.00000000                 |
|                   | Средняя ошибка: 57129.06389978                  |
|                   | Среднеквадратичная ошибка: 1067838787249.046265 |

Наилучшие результаты наблюдаются при скоростях 0,01 и 0,1, при этом приоритет отдаем использованию скорости 0,01, потому что у нее максимальная и среднеквадратичная ошибки меньше, чем у 0,1.

# 2.6 Влияние количества нейронов в скрытом слое на эффективность алгоритма ОРО

Число входов: 2. Число выходов: 1.

Циклов обучения: 1000 Нормализация: [0;1].

Выбор примеров: случайный.

Крутизна функции: 0,5.

Смещение: 0,1.

Скорость обучения: 0,01.

В таблице 6 показаны результаты исследования.

Таблица 6 – Влияние количества нейронов в скрытом слое на эффективность алгоритма OPO

| Количество нейронов в скрытом слое | Результат                                    |
|------------------------------------|----------------------------------------------|
| 1                                  | Максимальная ошибка: 689051.41841200         |
| 1                                  | Минимальная ошибка: 10.00000000              |
|                                    | Средняя ошибка: 64355.31749626               |
|                                    | Среднеквадратичная ошибка: 1078823983305.869 |
| 5                                  | Максимальная ошибка: 699938.83880400         |
|                                    | Минимальная ошибка: 10.00000000              |
|                                    | Средняя ошибка: 57872.24419849               |
|                                    | Среднеквадратичная ошибка: 1067689635727.307 |
| 10                                 | Максимальная ошибка: 699980.91795900         |
|                                    | Минимальная ошибка: 10.00000000              |
|                                    | Средняя ошибка: 57847.71985383               |
|                                    | Среднеквадратичная ошибка: 1067688885521.584 |

Приоритет был отдан количеству нейронов в скрытом слое, равному 10.

#### 2.7 Влияние момента на эффективность алгоритма ОРО

Число входов: 2. Число выходов: 1.

Циклов обучения: 1000 Нормализация: [0;1].

Выбор примеров: случайный.

Крутизна функции: 0,5.

Смещение: 0,1.

Скорость обучения: 0,01.

Количество нейронов в скрытом слое: 10.

В таблице 7 показаны результаты исследования.

Таблица 7 – Влияние момента на эффективность алгоритма ОРО

| Момент         | Результат                                       |
|----------------|-------------------------------------------------|
| Без момента    | Максимальная ошибка: 699980.86595100            |
| 200 1101101111 | Минимальная ошибка: 10.00000000                 |
|                | Средняя ошибка: 57847.64893262                  |
|                | Среднеквадратичная ошибка: 1067688862914.463135 |
| 0,1            | Максимальная ошибка: 794034.88676800            |
|                | Минимальная ошибка: 10.00000000                 |
|                | Средняя ошибка: 699930.66559208                 |
|                | Среднеквадратичная ошибка: 46873565128671.57031 |
| 0,5            | Максимальная ошибка: 794063.21311300            |
| 0,5            | Минимальная ошибка: 6.44208400                  |
|                | Средняя ошибка: 699958.68838775                 |
|                | Среднеквадратичная ошибка: 46877272672727.28906 |
| 1,0            | Максимальная ошибка: 794066.52020900            |
| 1,0            | Минимальная ошибка: 3.13502600                  |
|                | Средняя ошибка: 699961.96005125                 |
|                | Среднеквадратичная ошибка: 46877705538501.19531 |

Наилучшие результаты наблюдаются при обучении без момента.

## 3 Ручной расчет

Для более подробного изучения алгоритма OPO в режиме трассировки был сделан один проход (включающий прямое и обратное распространение), а затем те же самые действия были произведены вручную.

На рисунке 1 показана трассировка первого прохода при обучении сети.

На рисунке 2 показана структура сети.

```
Условия останова обучения нейронной сети:
                                                                       Нейрон[1][9]
Циклов обучения: 1000
                                                                       Взвешенная сумма = 0,1272667
                                                                       A\kappa coh = 0,5159029717
Инициализация весов синапсов случайным образом...
                                                                       Нейрон[1][10]
                                                                      Взвешенная сумма = 0,146030974
Нейрон[1][1]
w[1, 1, 1] = -0,866

w[1, 1, 2] = 0,972
                                                                       Akcoh = 0,5182457664
Вес смещения:
                                                                       Нейрон[2][1]
w[1, 1, 3] = 1
                                                                       Взвешенная сумма = -0,7228196788
                                                                       Аксон = 0,4106183265
Нейрон[1][2]
w[1, 2, 1] = -0,276

w[1, 2, 2] = -0,968
                                                                       Обратная волна - подсчет локальной ошибки нейронов...
Вес смещения:
                                                                       Подсчет локальной ошибки нейронов на выходе нейронной
                                                                       сети...
w[1, 2, 3] = 1
                                                                       Желаемый сигнал на выходе:
                                                                       0,073905
Нейрон[1][3]
w[1, 3, 1] = 0,896

w[1, 3, 2] = -0,53
                                                                       Прогнозируемый сигнал на выходе нейронной сети:
                                                                       0,4106183265
Вес смешения:
w[1, 3, 3] = 1
                                                                       Нейрон[2][1]
                                                                       Локальная ошибка = 0,04074415036
Нейрон[1][4]
w[1, 4, 1] = 0,314

w[1, 4, 2] = 0,966
                                                                       Подсчет локальной ошибки нейронов в скрытых слоях нейронной
Вес смещения:
w[1, 4, 3] = 1
                                                                       Нейрон[1][1]
                                                                      Локальная ошибка = 0,001821977824
Нейрон[1][5]
w[1, 5, 1] = -0.94

w[1, 5, 2] = -0.736
                                                                       Нейрон[1][2]
                                                                      Локальная ошибка = 0,003524351885
Вес смещения:
w[1, 5, 3] = 1
                                                                       Нейрон[1][3]
                                                                       Локальная ошибка = -0,00334783962
Нейрон[1][6]
w[1, 6, 1] = -0.132

w[1, 6, 2] = -0.954
                                                                       Нейрон[1][4]
                                                                       Локальная ошибка = 0,0001219459046
Вес смещения:
w[1, 6, 3] = 1
                                                                       Нейрон[1][5]
                                                                       Локальная ошибка = -0,004980809868
Нейрон[1][7]
w[1, 7, 1] = 0,296

w[1, 7, 2] = 0,634
                                                                       Нейрон[1][6]
                                                                      Локальная ошибка = 0,0009982057268
Вес смещения:
w[1, 7, 3] = 1
                                                                       Нейрон[1][7]
                                                                       Локальная ошибка = -0,003701171913
Нейрон[1][8]
w[1, 8, 1] = 0,462

w[1, 8, 2] = -0,724
                                                                       Нейрон[1][8]
                                                                       Локальная ошибка = -0,001374554192
Вес смещения:
w[1, 8, 3] = 1
                                                                       Нейрон[1][9]
                                                                       Локальная ошибка = -0,003286761827
Нейрон[1][9]
w[1, 9, 1] = 0,528
                                                                       Нейрон[1][10]
w[1, 9, 2] = -0,156
                                                                       Локальная ошибка = 0,002075184601
Вес смещения:
w[1, 9, 3] = 1
                                                                       Коррекция весов синапсов...
Нейрон[1][10]
                                                                       w[1, 1, 1] = -0.8641780222
w[1, 10, 1] = 0,798

w[1, 10, 2] = -0,17
                                                                       w[1, 1, 2] = 0,9738219778
                                                                       Вес смещения:
Вес смещения:
                                                                       w[1, 1, 3] = 1,001821978
w[1, 10, 3] = 1
                                                                       w[1, 2, 1] = -0,2724756481
                                                                       w[1, 2, 2] = -0.9644756481
Нейрон[2][1]
w[2, 1, 1] = 0,358

w[2, 1, 2] = 0,692
                                                                       Вес смещения:
                                                                      w[1, 2, 3] = 1,003524352
w[2, 1, 3] = -0,658
w[2, 1, 4] = 0,024
w[2, 1, 5] = -0,978
w[2, 1, 6] = 0,196
w[2, 1, 7] = -0,728
                                                                      w[1, 3, 1] = 0.8926521604
w[1, 3, 2] = -0.5333478396
                                                                       Вес смещения:
                                                                       w[1, 3, 3] = 0,9966521604
w[2, 1, 8] = -0,27
w[2, 1, 9] = -0,646
                                                                       w[1, 4, 1] = 0,3141219459
w[2, 1, 10] = 0,408
                                                                       w[1, 4, 2] = 0,9661219459
Вес смещения:
                                                                       Вес смещения:
w[2, 1, 11] = 1
                                                                       w[1, 4, 3] = 1,000121946
                                                                       w[1, 5, 1] = -0,9449808099
w[1, 5, 2] = -0,7409808099
Выбираем допустимый образ из обучающего множества...
0.073298
0,073299
                                                                       Вес смещения:
                                                                      w[1, 5, 3] = 0,9950191901
0.073905
Подаем сигнал на вход нейронной сети...
                                                                      w[1, 6, 1] = -0,1310017943
w[1, 6, 2] = -0,9530017943
Нейрон[0][1]
A\kappa coh = 0,073298
                                                                       Вес смещения:
                                                                       w[1, 6, 3] = 1,000998206
Нейрон[0][2]
A\kappa coh = 0,073299
                                                                       w[1, 7, 1] = 0,2922988281
Прямая волна...
                                                                       w[1, 7, 2] = 0,6302988281
                                                                       Вес смещения:
```

```
Нейрон[1][1]
                                                                                    w[1, 7, 3] = 0,9962988281
Взвешенная сумма = 0,10777056
Аксон = 0,5134680613
                                                                                    w[1, 8, 1] = 0,4606254458
                                                                                    w[1, 8, 2] = -0,7253745542
Нейрон[1][2]
                                                                                    Вес смещения:
Взвешенная сумма = 0,00881632
Аксон = 0,5011020382
                                                                                    w[1, 8, 3] = 0,9986254458
                                                                                    w[1, 9, 1] = 0,5247132382
w[1, 9, 2] = -0,1592867618
Нейрон[1][3]
Взвешенная сумма = 0,126826538
Аксон = 0,5158480069
                                                                                    Вес смещения:
                                                                                    w[1, 9, 3] = 0,9967132382
                                                                                    w[1, 10, 1] = 0,8000751846
w[1, 10, 2] = -0,1679248154
Взвешенная сумма = 0,193822406
AKCOH = 0,5242088567
                                                                                    Вес смещения:
                                                                                    w[1, 10, 3] = 1,002075185
Нейрон[1][5]
Взвешенная сумма = -0,022848184
Аксон = 0,4971440081
                                                                                    w[2, 1, 1] = 0.3987441504

w[2, 1, 2] = 0.7327441504

w[2, 1, 3] = -0.6172558496

w[2, 1, 4] = 0.06474415036

w[2, 1, 5] = -0.9372558496
Нейрон[1][6]
Взвешенная сумма = 0,020397418
A\kappa coh = 0,5025496552
                                                                                    w[2, 1, 6] = 0,2367441504
                                                                                    w[2, 1, 7] = -0,6872558496

w[2, 1, 8] = -0,2292558496
Нейрон[1][7]
                                                                                    w[2, 1, 9] = -0,6052558496
w[2, 1, 10] = 0,4487441504
Взвешенная сумма = 0,168167774
Аксон = 0,5210085955
                                                                                    Вес смещения:
                                                                                    w[2, 1, 11] = 1,04074415
Нейрон[1][8]
Взвешенная сумма = 0,0807952
Аксон = 0,5100980267
```

Рисунок 1 – Трассировка первого прохода



Рисунок 2 – Структура сети

В качестве активационной функции взята

$$F(S_i) = \frac{1}{1 + e^{-\alpha S_i}},\tag{1}$$

где  $S_i$  — взвешенная сумма входов і-го нейрона (с учетом смещения);  $\alpha$  — коэффициент крутизны. Для всех слоев  $\alpha=0,5$ .

В таблице 8 показан расчет прямой волны.

Таблица 8 – Расчет прямой волны

| №<br>слоя | №<br>нейрон<br>а | №<br>выход<br>а | Входной<br>сигнал хј | Весовой<br>коэффициен<br>т wij | Смещени<br>e wi0 | Вес<br>смещени<br>я | wij*xj       | Взвешенная<br>сумма Si | Выход<br>нейрона yi =<br>F(Si) |
|-----------|------------------|-----------------|----------------------|--------------------------------|------------------|---------------------|--------------|------------------------|--------------------------------|
|           | 1                | 1               | 0,177033             | -                              | -                | -                   | -            | -                      | 0,177033                       |
| Вход      | 2                | 1               | 0,172249             | -                              | -                | -                   | -            | -                      | 0,172249                       |
|           | 3                | 1               | 0,129187             | -                              | -                | -                   | -            | -                      | 0,129187                       |
|           | 1                | 1               | 0,073298             | -0,866                         | 0,1              | 1                   | -0,063476068 | 0,10777056             | 0,513468061                    |
|           |                  | 2               | 0,073299             | 0,972                          |                  |                     | 0,071246628  |                        |                                |
|           | 2                | 1               | 0,073298             | -0,276                         | 0,1              | 1                   | -0,020230248 | 0,00881632             | 0,501102038                    |
|           |                  | 2               | 0,073299             | -0,968                         |                  |                     | -0,070953432 |                        |                                |
|           | 3                | 1               | 0,073298             | 0,896                          | 0,1              | 1                   | 0,065675008  | 0,126826538            | 0,515848007                    |
|           |                  | 2               | 0,073299             | -0,53                          |                  |                     | -0,03884847  |                        |                                |
|           | 4                | 1               | 0,073298             | 0,314                          | 0,1              | 1                   | 0,023015572  | 0,193822406            | 0,524208857                    |
|           |                  | 2               | 0,073299             | 0,966                          |                  |                     | 0,070806834  |                        |                                |
|           | 5                | 1               | 0,073298             | -0,94                          | 0,1              | 1                   | -0,06890012  | -0,022848184           | 0,497144008                    |
|           |                  | 2               | 0,073299             | -0,736                         |                  |                     | -0,053948064 |                        |                                |
| 1         | 6                | 1               | 0,073298             | -0,132                         | 0,1              | 1                   | -0,009675336 | 0,020397418            | 0,502549655                    |
|           |                  | 2               | 0,073299             | -0,954                         |                  |                     | -0,069927246 |                        |                                |
|           | 7                | 1               | 0,073298             | 0,296                          | 0,1              | 1                   | 0,021696208  | 0,168167774            | 0,521008595                    |
|           |                  | 2               | 0,073299             | 0,634                          |                  |                     | 0,046471566  |                        |                                |
|           | 8                | 1               | 0,073298             | 0,462                          | 0,1              | 1                   | 0,033863676  | 0,0807952              | 0,510098027                    |
|           |                  | 2               | 0,073299             | -0,724                         |                  |                     | -0,053068476 |                        |                                |
|           | 9                | 1               | 0,073298             | 0,528                          | 0,1              | 1                   | 0,038701344  | 0,1272667              | 0,515902972                    |
|           |                  | 2               | 0,073299             | -0,156                         |                  |                     | -0,011434644 |                        |                                |
|           | 10               | 1               | 0,073298             | 0,798                          | 0,1              | 1                   | 0,058491804  | 0,146030974            | 0,518245766                    |
|           |                  | 2               | 0,073299             | -0,17                          |                  |                     | -0,01246083  |                        |                                |
|           | 1                | 1               | 0,513468061          | 0,358                          | 0,1              | 1                   | 0,183821566  | -0,722819679           | 0,410618326                    |
|           |                  | 2               | 0,501102038          | 0,692                          |                  |                     | 0,34676261   |                        |                                |
|           |                  | 3               | 0,515848007          | -0,658                         |                  |                     | -0,339427989 |                        |                                |
|           |                  | 4               | 0,524208857          | 0,024                          |                  |                     | 0,012581013  |                        |                                |
| Выхо      |                  | 5               | 0,497144008          | -0,978                         |                  |                     | -0,48620684  |                        |                                |
| д         |                  | 6               | 0,502549655          | 0,196                          |                  |                     | 0,098499732  |                        |                                |
|           |                  | 7               | 0,521008595          | -0,728                         |                  |                     | -0,379294258 |                        |                                |
|           |                  | 8               | 0,510098027          | -0,27                          |                  |                     | -0,137726467 |                        |                                |
|           |                  | 9               | 0,515902972          | -0,646                         |                  |                     | -0,33327332  |                        |                                |
|           |                  | 10              | 0,518245766          | 0,408                          | -                |                     | 0,211444273  |                        |                                |
|           |                  |                 |                      |                                |                  |                     |              |                        |                                |

Для расчета ошибок необходимо найти производную функции (1) по  $S_i$ :

$$F'(S_i) = \frac{\alpha e^{-aS_i}}{(e^{-aS_i} + 1)^2}. (2)$$

Тогда ошибка единственного нейрона выходного слоя буден найдена как

$$\gamma = (y - t) * F'(S),$$

где у – фактическое значение его выхода;

t – желаемый сигнал на выходе.

Ошибка і-го нейрона скрытого слоя будет найдена как

$$\gamma_i = \gamma_j * F'(S_i) * \omega_{ij}.$$

где  $\gamma_i$  — ошибка выходного слоя;

 $\omega_{ij}$  — синаптическая связь между і-м нейроном скрытого слоя и j-м нейроном выходного слоя.

В таблице 9 показан расчет ошибок.

Таблица 9 – Расчет ошибок

| № слоя | № нейрона | Si           | F'(Si)      | Ошибка       |
|--------|-----------|--------------|-------------|--------------|
| Выход  | 1         | -0,722819679 | 0,121005458 | 0,04074415   |
|        | 1         | 0,10777056   | 0,124909306 | 0,001821978  |
|        | 2         | 0,00881632   | 0,124999393 | 0,003524352  |
|        | 3         | 0,126826538  | 0,12487442  | -0,00334784  |
|        | 4         | 0,193822406  | 0,124706966 | 0,000121946  |
| 1      | 5         | -0,022848184 | 0,124995922 | -0,00498081  |
| 1      | 6         | 0,020397418  | 0,12499675  | 0,000998206  |
|        | 7         | 0,168167774  | 0,124779319 | -0,003701172 |
|        | 8         | 0,0807952    | 0,124949015 | -0,001374554 |
|        | 9         | 0,1272667    | 0,124873548 | -0,003286762 |
|        | 10        | 0,146030974  | 0,124833546 | 0,002075185  |

Коррекция веса синапса производится по следующей формуле:

$$\omega_{ij}(t+1) = \omega_{ij}(t) - \gamma_j.$$

Коррекция веса смещения производится по следующей формуле:

$$T_i(t+1) = T_i(t) - \gamma_i.$$

В таблице 10 показан расчет новых весов.

Значения в таблицах 8, 9 полностью совпадают со значениями на рис. 1. Скорректированные веса в таблице 10 совпадают с искомыми с точностью не менее трех знаков после запятой; погрешность можно объяснить ошибками округления и расчетов с плавающей запятой в разных средах.

Таким образом, ручной расчет выполнен верно.

Таблица 10 – Расчет новых весов

| № слоя | №<br>нейрона | <b>№</b><br>выхода | Предыдущий<br>весовой<br>коэффициент<br>wij(t) | Предыдущий вес смещения Tj(t) | Новый весовой коэффициен т wij(t+1) | Новый вес<br>смещения<br>Тj(t+1) |  |
|--------|--------------|--------------------|------------------------------------------------|-------------------------------|-------------------------------------|----------------------------------|--|
|        | 1            | 1                  | -0,866                                         | 1                             | -0,86417802                         | 1,001821978                      |  |
|        | 1            | 2                  | 0,972                                          | 1                             | 0,97382198                          |                                  |  |
|        | 2            | 1                  | -0,276                                         | 1                             | -0,27247565                         | 1,003524352                      |  |
|        | 2            | 2                  | -0,968                                         | 1                             | -0,96447565                         | 1,005524552                      |  |
|        | 3            | 1                  | 0,896                                          | 1                             | 0,89265216                          | 0,99665216                       |  |
|        | 3            | 2                  | -0,53                                          | 1                             | -0,53334784                         | 0,99003210                       |  |
|        | 4            | 1                  | 0,314                                          | 1                             | 0,31412195                          | 1 000121046                      |  |
|        | 4            | 2                  | 0,966                                          | 1                             | 0,96612195                          | 1,000121946                      |  |
|        | 5            | 1                  | -0,94                                          | 1                             | -0,94498081                         | 0,99501919                       |  |
| 1      | 3            | 2                  | -0,736                                         | 1                             | -0,74098081                         | 0,99301919                       |  |
| 1      | 6            | 1                  | -0,132                                         | 1                             | -0,13100179                         | 1,000998206                      |  |
|        | Ü            | 2                  | -0,954                                         | 1                             | -0,95300179                         | 1,000998200                      |  |
|        | 7            | 1                  | 0,296                                          | 1                             | -0,57000000                         | 0,996298828                      |  |
|        | /            | 2                  | 0,634                                          | 1                             | 0,63029883                          | 0,770278828                      |  |
|        | 8            | 1                  | 0,462                                          | 1                             | 0,46062545                          | 0,998625446                      |  |
|        | 0            | 2                  | -0,724                                         | 1                             | -0,72537455                         | 0,998023440                      |  |
|        | 9            | 1                  | 0,528                                          | 1                             | 0,52471324                          | 0.006712220                      |  |
|        | 9            | 2                  | -0,156                                         | 1                             | -0,15928676                         | 0,996713238                      |  |
|        | 10           | 1                  | 0,798                                          | 1                             | 0,80007518                          | 1 002075195                      |  |
|        | 10           | 2                  | -0,17                                          | 1                             | -0,16792482                         | 1,002075185                      |  |
|        |              | 1                  | 0,358                                          |                               | 0,39874415                          |                                  |  |
|        |              | 2                  | 0,692                                          |                               | 0,73274415                          |                                  |  |
|        |              | 3                  | -0,658                                         | 1                             | -0,61725585                         |                                  |  |
|        |              | 4                  | 0,024                                          |                               | 0,06474415                          |                                  |  |
| D      |              | 5                  | -0,978                                         | 1                             | -0,93725585                         | 1.040744150                      |  |
| Выход  | рд 1         | 6                  | 0,196                                          |                               | 0,23674415                          | 1,040744150                      |  |
|        |              | 7                  | -0,728                                         |                               | -0,68725585                         |                                  |  |
|        |              | 8                  | -0,27                                          |                               | -0,22925585                         |                                  |  |
|        |              | 9                  | -0,646                                         |                               | -0,60525585                         |                                  |  |
|        | 10           |                    | 0,408                                          |                               | 0,44874415                          |                                  |  |

#### 4 Выводы

В ходе выполнения лабораторной работы был исследован алгоритм ОРО при обучении многослойной НС, а также влияние различных параметров на качество обучения.

Наибольшее влияние на качество обучения показали нормализация, крутизна функции и величина момента. Влияние других параметров, таких как смещение, скорость обучения и количество нейронов в скрытом слое были значительно меньше. При этом случайный выбор примеров улучшил результаты работы, его использование предпочтительно для избегания привыкания сети.

Оптимальные параметры, выбранные для решения данной задачи:

Число входов: 2; Число выходов: 1; Циклов обучения: 1000; Нормализация: [0;1]; Выбор примеров: случайный; Крутизна функции: 0,5; Смещение: 0,1; Скорость обучения: 0,01; Количество нейронов в скрытом слое: 10.

Работе алгоритма ОРО была проверена ручным расчетом одного прохода. Вычисленные вручную значения совпали практически точно, разница с рассчитанными автоматически возникла из-за округлений и погрешностей в вычислениях.

# Приложение А (обязательное) Обучающая выборка

| X1                   | X2                  | OUT          |
|----------------------|---------------------|--------------|
| -7                   | -7,4                | -522696,8751 |
| -6,94975             | 3,94271             | -738090,9682 |
| -6,8995              | -7,28543            | -403528,9204 |
| -6,84925             | 3,82814             | -635175,9701 |
| -6,79899             | -7,17085            | -297229,1432 |
| -6,74874             | 3,71357             | -536941,4516 |
| -6,69849             |                     |              |
|                      | -7,05628            | -204016,461  |
| -6,64824             | 3,59899<br>-6,94171 | -444844,3944 |
| -6,59799<br>-6,54774 |                     | -123740,6191 |
|                      | 3,48442             | -359949,3605 |
| -6,49749             | -6,82714            | -55978,64166 |
| -6,44724             | 3,36985             | -282966,8848 |
| -6,39698             | -6,71256            | -74,96713    |
| -6,34673             | 3,25528             | -214296,9087 |
| -6,29648             | -6,59799            | 44787,75149  |
| -6,24623             | 3,1407              | -154072,2114 |
| -6,19598             | -6,48342            | 79569,25085  |
| -6,14573             | 3,02613             | -102196,7925 |
| -6,09548             | -6,36884            | 105309,4088  |
| -6,04523             | 2,91156             | -58376,86894 |
| -5,99497             | -6,25427            | 123080,3033  |
| -5,94472             | 2,79698             | -22167,97489 |
| -5,89447             | -6,1397             | 133976,1935  |
| -5,84422             | 2,68241             | 6979,71511   |
| -5,79397             | -6,02513            | 139062,843   |
| -5,74372             | 2,56784             | 29706,70016  |
| -5,69347             | -5,91055            | 139363,2579  |
| -5,64322             | 2,45327             | 46700,03717  |
| -5,59296             | -5,79598            | 135829,992   |
| -5,54271             | 2,33869             | 58670,69882  |
| -5,49246             | -5,68141            | 129346,793   |
| -5,44221             | 2,22412             | 66327,02421  |
| -5,39196             | -5,56683            | 120702,6507  |
| -5,34171             | 2,10955             | 70361,06727  |
| -5,29146             | -5,45226            | 110592,2695  |
| -5,24121             | 1,99497             | 71429,63099  |
| -5,19095             | -5,33769            | 99614,74583  |
| -5,1407              | 1,8804              | 70139,10354  |
| -5,09045             | -5,22312            | 88277,15253  |
| -5,0402              | 1,76583             | 67046,21564  |
| -4,98995             | -5,10854            | 76990,31312  |
| -4,9397              | 1,65126             | 62642,90954  |
| -4,88945             | -4,99397            | 66080,08719  |
| -4,8392              | 1,53668             | 57358,69579  |
| -4,78894             | -4,8794             | 55792,2337   |
| -4,73869             | 1,42211             | 51557,50109  |
| -4,68844             | -4,76482            | 46303,58843  |
| -4,63819             | 1,30754             | 45544,10614  |
| -4,58794             | -4,65025            | 37726,37133  |
| -4,53769             | 1,19296             | 39561,29899  |
| -4,48744             | -4,53568            | 30119,88063  |
| -4,43719             | 1,07839             | 33797,78117  |
| -4,38693             | -4,42111            | 23498,85105  |
| -4,33668             | 0,96382             | 28392,43606  |
| -4,28643             | -4,30653            | 17843,39968  |
| -4,23618             | 0,84925             | 23441,85561  |
| -4,23010             | 0,04743             | 25441,05501  |

|          | T        | 1                                     |
|----------|----------|---------------------------------------|
| -4,18593 | -4,19196 | 13105,48734                           |
| -4,13568 | 0,73467  | 19003,4949                            |
| -4,08543 | -4,07739 | 9216,93683                            |
| -4,03518 | 0,6201   | 15104,20335                           |
| -3,98492 | -3,96281 | 6096,17711                            |
| -3,93467 | 0,50553  | 11744,98162                           |
| -3,88442 | -3,84824 | 3654,87135                            |
| -3,83417 | 0,39095  | 8907,70497                            |
| -3,78392 | -3,73367 | 1801,03712                            |
| -3,73367 | 0,27638  | 6559,1404                             |
|          |          | · · · · · · · · · · · · · · · · · · · |
| -3,68342 | -3,6191  | 444,1912                              |
| -3,63317 | 0,16181  | 4656,0058                             |
| -3,58291 | -3,50452 | -501,98615                            |
| -3,53266 | 0,04724  | 3148,96329                            |
| -3,48241 | -3,38995 | -1117,11818                           |
| -3,43216 | -0,06734 | 1986,0849                             |
| -3,38191 | -3,27538 | -1473,10419                           |
| -3,33166 | -0,18191 | 1115,32692                            |
| -3,28141 | -3,1608  | -1632,92887                           |
| -3,23116 | -0,29648 | 486,6109                              |
| -3,1809  | -3,04623 | -1650,24003                           |
| -3,13065 | -0,41106 | 53,47404                              |
| -3,0804  | -2,93166 | -1569,86407                           |
| -3,03015 | -0,52563 | -225,82462                            |
| -2,9799  | -0,32303 | -1427,86626                           |
| -2,92965 |          | -387,934                              |
|          | -0,6402  |                                       |
| -2,8794  | -2,70251 | -1252,46424                           |
| -2,82915 | -0,75477 | -464,01492                            |
| -2,77889 | -2,58794 | -1064,79792                           |
| -2,72864 | -0,86935 | -479,85114                            |
| -2,67839 | -2,47337 | -880,0853                             |
| -2,62814 | -0,98392 | -456,14676                            |
| -2,57789 | -2,35879 | -708,39597                            |
| -2,52764 | -1,09849 | -408,97507                            |
| -2,47739 | -2,24422 | -555,74867                            |
| -2,42714 | -1,21307 | -350,33418                            |
| -2,37688 | -2,12965 | -425,00151                            |
| -2,32663 | -1,32764 | -288,73175                            |
| -2,27638 | -2,01508 | -316,71158                            |
| -2,22613 | -1,44221 | -229,8625                             |
| -2,17588 | -1,9005  | -229,76888                            |
| -2,12563 | -1,55678 | -177,12586                            |
| -2,07538 | -1,78593 | -162,0524                             |
| -2,02513 | -1,67136 | -132,21563                            |
| -1,97487 | -1,67136 | -110,88735                            |
| -1,92462 | -1,78593 | -95,5844                              |
| -1,87437 | -1,55678 | -73,42696                             |
| -1,82412 | -1,9005  | -66,86833                             |
| -1,77387 | -1,44221 | -46,88857                             |
|          |          |                                       |
| -1,72362 | -2,01508 | -45,18989                             |
| -1,67337 | -1,32764 | -28,744                               |
| -1,62312 | -2,12965 | -29,43026                             |
| -1,57286 | -1,21307 | -16,81315                             |
| -1,52261 | -2,24422 | -18,40935                             |
| -1,47236 | -1,09849 | -9,30654                              |
| -1,42211 | -2,35879 | -11,01432                             |
| -1,37186 | -0,98392 | -4,81652                              |
| -1,32161 | -2,47337 | -6,26803                              |
| -1,27136 | -0,86935 | -2,28751                              |
| -1,22111 | -2,58794 | -3,36861                              |
| -1,17085 | -0,75477 | -0,96483                              |
| -1,1206  | -2,70251 | -1,69358                              |
| -1,07035 | -0,6402  | -0,33708                              |
|          |          |                                       |

| <u></u>  | T        | T         |
|----------|----------|-----------|
| -1,0201  | -2,81709 | -0,78664  |
| -0,96985 | -0,52563 | -0,07771  |
| -0,9196  | -2,93166 | -0,33175  |
| -0,86935 | -0,41106 | 0,00681   |
| -0,8191  | -3,04623 | -0,1239   |
| -0,76884 | -0,29648 | 0,02101   |
| -0,71859 | -3,1608  | -0,03944  |
| -0,66834 | -0,18191 | 0,01458   |
| -0,61809 | -3,27538 | -0,01003  |
| -0,56784 | -0,06734 | 0,00674   |
| -0,51759 | -3,38995 | -0,00179  |
| -0,46734 | 0,04724  | 0,00223   |
| -0,41709 | -3,50452 | -0,00015  |
| -0,36683 | 0,16181  | 0,0005    |
| -0,31658 | -3,6191  | 0,00002   |
| -0,26633 | 0,27638  | 0,00006   |
| -0,21608 | -3,73367 | 0         |
| -0,16583 | 0,39095  | 0         |
|          | -3,84824 |           |
| -0,11558 |          | 0         |
| -0,06533 | 0,50553  | 0         |
| -0,01508 | -3,96281 | 0         |
| 0,03518  | 0,6201   | 0         |
| 0,08543  | -4,07739 | 0         |
| 0,13568  | 0,73467  | 0         |
| 0,18593  | -4,19196 | 0         |
| 0,23618  | 0,84925  | -0,00004  |
| 0,28643  | -4,30653 | -0,00011  |
| 0,33668  | 0,96382  | -0,00048  |
| 0,38693  | -4,42111 | -0,00098  |
| 0,43719  | 1,07839  | -0,00305  |
| 0,48744  | -4,53568 | -0,00537  |
| 0,53769  | 1,19296  | -0,01298  |
| 0,58794  | -4,65025 | -0,02141  |
| 0,63819  | 1,30754  | -0,04252  |
| 0,68844  | -4,76482 | -0,06815  |
| 0,73869  | 1,42211  | -0,11532  |
| 0,78894  | -4,8794  | -0,18374  |
| 0,8392   | 1,53668  | -0,27055  |
|          | -4,99397 |           |
| 0,88945  | · ·      | -0,43561  |
| 0,9397   | 1,65126  | -0,5648   |
| 0,98995  | -5,10854 | -0,93123  |
| 1,0402   | 1,76583  | -1,0692   |
| 1,09045  | -5,22312 | -1,82724  |
| 1,1407   | 1,8804   | -1,85782  |
| 1,19095  | -5,33769 | -3,33312  |
| 1,24121  | 1,99497  | -2,98383  |
| 1,29146  | -5,45226 | -5,70509  |
| 1,34171  | 2,10955  | -4,43793  |
| 1,39196  | -5,56683 | -9,22311  |
| 1,44221  | 2,22412  | -6,08784  |
| 1,49246  | -5,68141 | -14,14836 |
| 1,54271  | 2,33869  | -7,592    |
| 1,59296  | -5,79598 | -20,65084 |
| 1,64322  | 2,45327  | -8,28893  |
| 1,69347  | -5,91055 | -28,70461 |
| 1,74372  | 2,56784  | -7,06055  |
| 1,79397  | -6,02513 | -37,9388  |
|          |          |           |
| 1,84422  | 2,68241  | -2,17491  |
| 1,89447  | -6,1397  | -47,46008 |
| 1,94472  | 2,79698  | 8,88804   |
| 1,99497  | -6,25427 | -55,62039 |
| 2,04523  | 2,91156  | 29,61734  |
| 2,09548  | -6,36884 | -59,75805 |

| 2,14573         3,02613         64,63213           2,19598         -6,48342         -55,89512           2,24623         3,1407         119,83345           2,29648         -6,59799         -38,45149           2,34673         3,25528         202,49188           2,39698         -6,71256         0,07775           2,44724         3,36985         321,25855           2,49749         -6,82714         69,39518           2,54774         3,48442         486,05696           2,59799         -6,94171         181,59046           2,64824         3,59899         707,88496           2,69849         -7,05628         351,29544           2,74874         3,71357         998,39797           2,79899         -7,17085         595,64843           2,84925         3,82814         1369,32592           2,8995         -7,28543         934,14248           2,94975         3,94271         1831,56394           3         -7,4         1388,07332 |         |          |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------|
| 2,24623         3,1407         119,83345           2,29648         -6,59799         -38,45149           2,34673         3,25528         202,49188           2,39698         -6,71256         0,07775           2,44724         3,36985         321,25855           2,49749         -6,82714         69,39518           2,54774         3,48442         486,05696           2,59799         -6,94171         181,59046           2,64824         3,59899         707,88496           2,69849         -7,05628         351,29544           2,74874         3,71357         998,39797           2,79899         -7,17085         595,64843           2,84925         3,82814         1369,32592           2,8995         -7,28543         934,14248           2,94975         3,94271         1831,56394                                                                                                                                                     | 2,14573 | 3,02613  | 64,63213   |
| 2,29648         -6,59799         -38,45149           2,34673         3,25528         202,49188           2,39698         -6,71256         0,07775           2,44724         3,36985         321,25855           2,49749         -6,82714         69,39518           2,54774         3,48442         486,05696           2,59799         -6,94171         181,59046           2,64824         3,59899         707,88496           2,69849         -7,05628         351,29544           2,74874         3,71357         998,39797           2,79899         -7,17085         595,64843           2,84925         3,82814         1369,32592           2,8995         -7,28543         934,14248           2,94975         3,94271         1831,56394                                                                                                                                                                                                        | 2,19598 | -6,48342 | -55,89512  |
| 2,34673         3,25528         202,49188           2,39698         -6,71256         0,07775           2,44724         3,36985         321,25855           2,49749         -6,82714         69,39518           2,54774         3,48442         486,05696           2,59799         -6,94171         181,59046           2,64824         3,59899         707,88496           2,69849         -7,05628         351,29544           2,74874         3,71357         998,39797           2,79899         -7,17085         595,64843           2,84925         3,82814         1369,32592           2,8995         -7,28543         934,14248           2,94975         3,94271         1831,56394                                                                                                                                                                                                                                                             | 2,24623 | 3,1407   | 119,83345  |
| 2,39698         -6,71256         0,07775           2,44724         3,36985         321,25855           2,49749         -6,82714         69,39518           2,54774         3,48442         486,05696           2,59799         -6,94171         181,59046           2,64824         3,59899         707,88496           2,69849         -7,05628         351,29544           2,74874         3,71357         998,39797           2,79899         -7,17085         595,64843           2,84925         3,82814         1369,32592           2,8995         -7,28543         934,14248           2,94975         3,94271         1831,56394                                                                                                                                                                                                                                                                                                                 | 2,29648 | -6,59799 | -38,45149  |
| 2,44724         3,36985         321,25855           2,49749         -6,82714         69,39518           2,54774         3,48442         486,05696           2,59799         -6,94171         181,59046           2,64824         3,59899         707,88496           2,69849         -7,05628         351,29544           2,74874         3,71357         998,39797           2,79899         -7,17085         595,64843           2,84925         3,82814         1369,32592           2,8995         -7,28543         934,14248           2,94975         3,94271         1831,56394                                                                                                                                                                                                                                                                                                                                                                    | 2,34673 | 3,25528  | 202,49188  |
| 2,49749     -6,82714     69,39518       2,54774     3,48442     486,05696       2,59799     -6,94171     181,59046       2,64824     3,59899     707,88496       2,69849     -7,05628     351,29544       2,74874     3,71357     998,39797       2,79899     -7,17085     595,64843       2,84925     3,82814     1369,32592       2,8995     -7,28543     934,14248       2,94975     3,94271     1831,56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,39698 | -6,71256 | 0,07775    |
| 2,54774         3,48442         486,05696           2,59799         -6,94171         181,59046           2,64824         3,59899         707,88496           2,69849         -7,05628         351,29544           2,74874         3,71357         998,39797           2,79899         -7,17085         595,64843           2,84925         3,82814         1369,32592           2,8995         -7,28543         934,14248           2,94975         3,94271         1831,56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,44724 | 3,36985  | 321,25855  |
| 2,59799         -6,94171         181,59046           2,64824         3,59899         707,88496           2,69849         -7,05628         351,29544           2,74874         3,71357         998,39797           2,79899         -7,17085         595,64843           2,84925         3,82814         1369,32592           2,8995         -7,28543         934,14248           2,94975         3,94271         1831,56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,49749 | -6,82714 | 69,39518   |
| 2,64824     3,59899     707,88496       2,69849     -7,05628     351,29544       2,74874     3,71357     998,39797       2,79899     -7,17085     595,64843       2,84925     3,82814     1369,32592       2,8995     -7,28543     934,14248       2,94975     3,94271     1831,56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,54774 | 3,48442  | 486,05696  |
| 2,69849     -7,05628     351,29544       2,74874     3,71357     998,39797       2,79899     -7,17085     595,64843       2,84925     3,82814     1369,32592       2,8995     -7,28543     934,14248       2,94975     3,94271     1831,56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,59799 | -6,94171 | 181,59046  |
| 2,74874     3,71357     998,39797       2,79899     -7,17085     595,64843       2,84925     3,82814     1369,32592       2,8995     -7,28543     934,14248       2,94975     3,94271     1831,56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,64824 | 3,59899  | 707,88496  |
| 2,79899       -7,17085       595,64843         2,84925       3,82814       1369,32592         2,8995       -7,28543       934,14248         2,94975       3,94271       1831,56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,69849 | -7,05628 | 351,29544  |
| 2,84925     3,82814     1369,32592       2,8995     -7,28543     934,14248       2,94975     3,94271     1831,56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,74874 | 3,71357  | 998,39797  |
| 2,8995     -7,28543     934,14248       2,94975     3,94271     1831,56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,79899 | -7,17085 | 595,64843  |
| 2,94975 3,94271 1831,56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,84925 | 3,82814  | 1369,32592 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,8995  | -7,28543 | 934,14248  |
| 3 -7,4 1388,07332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,94975 | 3,94271  | 1831,56394 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3       | -7,4     | 1388,07332 |