(1) Consider the following subset of the real line:

$$S = \{0\} \cup (1,2) \cup (2,3) \cup (\mathbb{Q} \cap (4,5)).$$

Compute the following sets: (You may take for granted that $\overline{\mathbb{Q}} = \mathbb{R}$ and $\mathbb{Q}^{\circ} = \emptyset$.) (a) \overline{S}

(b)
$$(\overline{S})^{\circ}$$
 (1,3) \cup (4,5)

(c)
$$\overline{(\overline{s})^{\circ}}$$
 [1,3] \cup [4,5]

(e)
$$\overline{S}^{\circ}$$
 [1,2] \cup [2,3] = [1,3]

(f)
$$(\overline{S^{\circ}})^{\circ}$$

Remark 1. *S* is an example of a **Kuratowski 14 set**.

(2) Let *A* and *B* be two subsets of a topological space *X*. Prove the following statements or find a counterexample:

(a) If $A \subseteq B$, then Int $A \subseteq \text{Int } B$

Int A is the largest open subset of A, so it is also an open subset of B.

By definition of Int B, $TutA \leq Tut B$.

(b) $\operatorname{Int}(A \cap B) = \operatorname{Int} A \cap \operatorname{Int} B$

Int A CA, Int B CB, both are open

=> Int A / Int B C A / B and Int A / Int B is open

=> Int An Int BS Int (ANB).

AMBSA

Conversely, by (a), Int (ANB) C ANB => Int(ANB) C Fut(A)

and similarly Int (ANB) S Int (B)

=> Int (ANB) & Int (A)

1 Int(B)

Altogother, Int (ANB) = Int (A) 1 Int (B).

(c) Int $(A \cup B)$ = Int $A \cup$ Int B

False
$$A = [1,2]$$
 $B = [2,3]$
Int $(A \cup B) = Int ([1,3]) = (1,3)$
Int $[1,2]$ \cup $[1,2]$ \cup $[2,3]$

(d) $\overline{A \cap B} = \overline{A} \cap \overline{B}$.

False
$$A = (1,2)$$
, $B = (2,3)$
 $A \cap B = \emptyset \Rightarrow \overline{A \cap B} = \emptyset$
 $\overline{A} = [1,2]$, $\overline{B} = [2,3]$. $\Rightarrow \overline{A \cap B} = \{2\} \neq \emptyset$.

(3) Let X and Y be topological spaces. We've seen that a function $f: X \to Y$ is continuous if and only if it is locally continuous. That is f is continuous if and only if there exists an open cover $\{U_i\}_{i\in I}$ such that $f|_{U_i}: U_i \to Y$ is continuous for all $i \in I$.

More generally a property \mathcal{P} of functions is said to be **local** if for any open cover $\{U_i\}_{i\in I}$ of X, f has property \mathcal{P} if and only if $f|_{U_i}:U_i\to Y$ has property \mathcal{P} for all $i\in I$.

(a) Consider the property of being a constant function. Let $\{U_i\}_{i\in I}$ be an open cover of X and let $f: X \to Y$ be a function. Is it true that if $f: X \to Y$ is constant, then $f: X \to Y$ is constant for all $f: X \to Y$ is

yes, the restriction of a constant function is constant

(b) In the same situation, if $f|_{U_i}: U_i \to Y$ is constant for all $i \in I$, is it necessarily true that $f: X \to Y$ is constant? Prove or give a counterexample.

no: Let
$$X = (1,2) \cup (3,4)$$
.

Then $U_i = (1,2), \quad U_2 = (3,4)$ is open cover

 $f: x \longmapsto \begin{cases} 1 & \text{if } x \in (1,2) \\ 2 & \text{if } x \in (3,4) \end{cases}$

has $f|_{U_i} = 1$, $f|_{U_i} = 2$, but f is not constant.

(4) Let X and Y be topological spaces. Recall that a function $f: X \to Y$ is said to be **open** if for all open subsets $V \subseteq X$, the image $f(V) \subseteq Y$ is an open subset of Y. Let's show that being an open function is a local property of functions.

(a) Let $\{U_i\}_{i\in I}$ be an open cover of X. Let $f: X \to Y$ be an open function. Show that for each $i \in I$, $f|_{U_i}: U_i \to Y$ is also an open function.

if
$$V \subseteq U$$
; is open, then $V \subseteq X$ is open, so $f_{u_i}^{(V)} = f(V)$ is open by hypothesis. in $f_{u_i}: U_i \to Y$ is open

(b) Let $f: X \to Y$ be a function so that $f|_{U_i}: U_i \to Y$ is an open function for each $i \in I$. Show that f is also an open function.

Let
$$V \subseteq X$$
 be an open set.
We know $f(V \cap u_i) = f(u_i(V \cap u_i))$ is open for all $i \in I$ $f(V \cup U_i) = f(V \cup U_i)$ $i \in I$ $f(V \cup U_i) = f(V \cup U_i)$ $i \in I$ $f(V \cup U_i) = f(V)$ is open.
 $f(V \cup U_i) = f(V \cup U_i)$ is open.