Erinnerung: In der ersken Vorlesung haben wir die statistische Grundgesauchheit

\[\D \] definiert.

Ein Merlimal ist eine Abbildung \(\times \) \(\D -> \O \), wobei \(\O \) der

Ein Merkmal ist eine Abbildung X: II -> W, wober W der Wertebereich ist.

Heaks Wir neumen I den Ereignisraum. Teilmengen ASI nennen wir Ereignisse.

<u>Definition</u> (Wahrscheinlichkeitsraum)

Sci I eln Érignisraum und si A eine Menge von Erignisseu.

Ein Wahrschernkichleitsmaß ist eine Abbildung

P: A -> [0,1], A -> P(A).

mit folgenden Eigenschaften:

(a) $P(\emptyset) = 0$ and $P(\Omega) = 1$.

(b) P(AUB) = P(A) + P(B), falls A und B disjuntet.

(c) $P(\bigcup_{i=1}^{\infty} A_i) = \int_{i=1}^{\infty} P(A_i)$, falls $A_A, A_{Z,...}$ paarweise dijjuaht.

P(A) heißt die Wahrscheinlichleit von A.

Das Tripel (D. A, P) heizet Wahrscheinlichheitsraum.

Bennerlung: Nicht jede Menge A von Ereignissen hann in der Definition gewählt werden. A nuss ein sogenannte o-Algebra sein.

Wenn A luine o-Algebra ist, hönnen Paradoxe entstehen (-> Banach-Tarshi-Paradox).

<u>Wie</u> modelliert die Definition eines Wakrscheinlich beitsraumes die Verbeilung reeller Daten?

P(A) \(\alpha\) relative Haufiglait des Erignisses A sein, wobei wir die relative Haufigluit aus n Zufalls expenimenten berchnen.

und \approx soll zu = werden, wenn $n-2 \infty$. Dieser Ansatz wird frequentistischer Wahrscheinlichleitsdegriff genannt.

Der Bayes seh Wahrscheinlichheitsbegriff definiert PCA) als Erfahrungswert. Insbesondere ist es möglich unvollständiga Information über deterministische Prozesse mit Wohrscheinlichheitsmaßen zu modellieren.

Eigenschaften von Wahrschein lichteitsräumen

Sei (Q, A,P) ein Wahrscheinlichteitsraum und A,B,CEA Ereignisse.

(A)
$$P(\Omega \setminus A) = A - P(A)$$

(2)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(3)
$$A \subseteq B$$
 => $P(A) \leq P(B)$

Venn - Dragramue

Für A. B. C et zeichnen wir jeusils einen Krais:

2.B: Fin (2)

P(AUB) = P(A) + P(B) - P(A)B)

Für (5):

P(Au Buc)

= P(A) + P(B) + P(C)

- P(AnB) - P(Anc) - P(Bnc)

+ P(An BnC)

P(A) = Flache des Kraises von A, etc.

Lin Beispiel (Wahrscheinlichheitsmaß beim Münzwurf)

(1) \(\Omega = \) \text{Munge aller Münzwürft} \\

\(\times \) \(\

(2) \$\sigma = \frac{1}{1} \text{Kepf1, } \frac{2}{2} \text{All]. } \mathcal{A} = \frac{1}{1} \text{P, } \text{Kepf1, } \frac{2}{2} \text{All]. } \mathcal{A} = \frac{1}{1} \text{P, } \text{Kepf1, } \frac{2}{2} \text{All]. } \mathcal{A} = \frac{1}{2}. \mathcal{A} = \frac{1}{2} \text{P. } \mathcal{A} = \frac{1}{2} \

Definition (Endlicher/dishreter Wahrscheinlichleitsraum)
Sei (Ω, A, P) ein W-Raum. Falls Ω enclich/dishret ist,
nennen wir (Ω, A, P) endlichen/dishreten W-Raum.

Satz

Falls Ω endlich/dishrat ist, ist A = f alle Teilmengen non Ω ?

elne zulässige Menge von Erzignissen.

Anjerdem: P ist durch $P(2\omega 3)$ für $\omega \in \Omega$ eindeutz bestimmt;

denn $P(A) = \sum_{\omega \in A} P(4\omega 3)$.

Definition (Gleschverteilung)

Sei Ω endlich. Dann heißt das W-Maj3 $P(A) = \frac{\#A}{\# S 2}$ für $A \subseteq \Omega$. (#A = Auzahl Element in A)

das Maß der Gleichverteilung auf Ω .

Insbesonder gilte P(1ws) = 1/452.