Exam Assistance Note

 X_0 = Value in the Base Year, X_n = Value in the Recent Year

 \hat{X}_{n+k} = Predicted Value in the Year n+k

CBR= Crude Brith Rate (out of 1000 population), CDR= Crude Death Rate (out of 1000 population)

Percentage of Change	$\frac{X_n - X_0}{X_0} \times 100\%$
Average Annual Growth Rate	$AAGR\% = \left(\frac{X_n}{X_0}\right)^{\left(\frac{1}{n}\right)} \times 100 - 100\%$
Prediction in the year $n + k$ based on AAGR% and X_n	$\widehat{X}_{n+ k } = X_n \times \left(\frac{100 + AAGR}{100}\right)^{ k }$
Average Growth Rate Percentage (AGR%) based on CBR and CDR	$AGR\% = \frac{CBR - CDR}{10}\%$
Doubling Time (DT)	$\mathrm{DT} pprox rac{70}{AAGR\%}$

Related to Human Development Index (HDI)

PcGNI = Percapita Gross National Product

$$General\ Dimension\ Index := \frac{Actual\ Value - Min}{Max - Min}$$

$$Income\ Index: I_{Income} = \frac{log(PcGNI) - log\left(Minimun\ PcGNI\right)}{log\left(Maximum\ PcGni\right) - log\left(Minimun\ PcGNI\right)}$$

Education Index :
$$I_{Education} = \frac{\sqrt{I_1 \times I_2}}{0.951}$$
, where

 I_1 = Dimension Index for the Variable 'Mean Years of Adult Education'

 I_2 = Dimension Index for the Variable 'Expected Years of Schooling'

$$Human\ Development\ Index: HDI = \left(I_{Life} \times I_{Education} \times I_{Income}\right)^{\left(\frac{1}{3}\right)}$$

Name of Attribute	Minimum Value	Maximum Value	
Life Expetancy	20	83.2	
Mean Years of Adult Education	0	13.2	
Expected Years of Schooling	0	20.6	
Combined Education Index	0	0.951	
Percapita GNI (PcGNI)	163	108211	

Related to Regression

Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ are sijmple random sample of size n of the variables X, Y, X is the covariate and Y is the response variable.

Attribute	Notation	Formula
Sample Mean of X	\overline{X}	$\frac{1}{n}\sum_{i=1}^{n}X_{i}$
Sample Mean of Y	\overline{Y}	$\frac{1}{n}\sum_{i=1}^{n}Y_{i}$
Sample Standard Deviation of X	S_{X}	$\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$
Sample Standard Deviation of Y	$S_{\scriptscriptstyle Y}$	$\frac{1}{n-1}\sum_{i=1}^{n}(Y_i-\overline{Y})^2$
Covariance between X and Y	S_{XY}	$\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})(Y_{i}-\overline{Y})$
Correlation between X and Y	r_{XY}	$\frac{S_{XY}}{S_X S_Y}$

Let us consider a linear regression line $\hat{Y} = a + bX$, where Y is the response variable, X is the independent variable or Covariate. a is called the **'intercept'** and b is called the **'slope'** of the fitted line. The formula for the estimated value of a and b is given as below:

$$\hat{b} = r_{X,Y} \frac{S_Y}{S_X}$$
 and $\hat{a} = \overline{Y} - \hat{b}\overline{X}$

Note that S_Y and S_X are always a positive number. Where as, the correlation coefficient between X and Y, r_{XY} is a number between -1 to 1.

Gini's Formula

There are several ways to compute Gini coefficient however it is often calculated with Brown Formula given by:

$$G = 100\% - \left(\frac{\sum [f_i \times (y_i + y_{i+1})]}{10,000} \times 100\right)\%$$

where f_i = percentage decile shares of world population. y_i = cumulative percentage shares of world product for percentile groupings. An Example of Gini's Table from Slide

Decile	f_i	x_i	y_i	$y_i + y_{i-1}$	$f_i(y_i + y_{i-1})$
10	10	2.1	2.1	2.21	21
20	10	3.5	5.6	7.7	77
40	20	9.9	15.50	21.1	422
60	20	14.2	29.7	45.2	904
80	20	21.1	50.8	80.5	1610
90	10	15.7	66.5	117.3	1173
100	10	33.5	100	166.52	1665
				Total=	5872
$G = 100\% - \left(\frac{5872}{10,000} \times 100\right) = 41.28\%$					

Confidence Interval

Let $X_1, X_2, ..., X_n$ be observed random **sample of size** n. Let \overline{X} denotes the sample Mean while S_X refers to the sample Standard deviation. Then, assuming the population has a fine variance and the sample size n to be a large number, a formula for confidence interval for the population mean is given as:

$$\left[\overline{X} - z_{\text{Cutoff}} \times \frac{S_X}{\sqrt{n}}, \qquad \overline{X} + z_{\text{Cutoff}} \times \frac{S_X}{\sqrt{n}} \right]$$

 $z_{
m Cutoff}$ is determined based on the confidence-level of the interval. The values of $z_{
m Cutoff}$ can be obtained from the following table:

Confidence Level	90%	95%	99%
Z_{Cutoff}	1.645	1.96	2.576

An Example of Remaining Life Expectancy Table

Complete the following table.			Reversative		
X	l_x	d_{x}	$L_{x} = \frac{L_{x+L_{x+1}}}{2}$	T_{χ}	$e_x = \frac{T_x}{l_x}$
0	100	30	100+ 7 0 = 85	0+26+50+65+85=220	100 - 2.~
1	100 <mark>-30</mark> = 70	10	70+60 = 65	0+20+50+65=135	$\frac{135}{70} = 2.0$
2	70-10 = 60	20	60+40 = 50	0+26+50 = 70	70 = 1·167
3	60- <mark>20 = 40</mark>	40	40+0 = 20	0+20 = 20	$\frac{20}{40} = 0.5$
4	40-40 = 0	0	0	o = O	0 = 0