

Consumer IoT Device Security

IoT Consumer Market

Number of Industrial and Consumer IoT Connected Objects, In billions, Global in 2016, 2017, and 2021*

IoT Consumer Devices

Consumer IoT Protocols

- one
- two
- three

https://www.ubuntupit.com/top-15-standard-iot-protocols-that-you-must-know-about/

Consumer IoT Data

https://towardsdatascience.com/tagged/smart-home

Consumer IoT Data

Linkous, Zohrabi, Abdelwahed (2019, p.30)

IoT Physical Attacks

Figure 1. Eight common security attacks on the physical IoT layer with their relevant case studies.

Device Failure

Table 1. Vulnerabilities and security recommendations for *ChargePoint* EV charger: An overview.

Vulnerability (ies) identified	Related firmware process	Security patch recommended
Bluetooth stack buffer overflow	bt classic	Using strncpy() instead of strcpy ()
Arbitrary file modification	uploadsm	Additional parameter validation
OS command injection	uploadsm	String validation
Stack buffer overflow	cpsrelay	Length specifier in sscanf()
Log file stack buffer overflow	dwnldlogsm	Length specifier in sscanf()

Node Tempering

Figure 2. (a) Itron Smart Meter (credit: Itron). (b) Compromised meter readings.

Malicious Code Injection

Figure 4. (a) Nest thermostat front (upper image) and back (lower image) plates (credit: Nest). (b) Attack flow.

Unauthorized Access

Figure 5. (a) Attack on the network (by eavesdropping the traffic) or on the drone (via insecure network services like FTP). (b) Attacker gains root access to the device via telnet using anonymous FTP login as a backdoor.

Other Countermeasures and Challenges

 $Table\ 2.\ Consumer\ IoT\ security\ attacks,\ device\ vulnerabilities\ and\ potential\ countermeasures.$

Attack type	Device vulnerabilities	Potential countermeasures
Device software failure	Integer/buffer overflows	Static/dynamic verification techniques
Node tampering attack	Manual hardware tampering/replacement	Tamper proofing techniques (e.g., usage of PUFs)
Eavesdropping attack	Unencrypted communication channels	Lightweight cryptographic encryption techniques
Malicious code injection	Lack of software integrity checks, unsecure software APIs	Chain of trust, API endpoint security (e.g., input validation)
Unauthorized access	Hardware/software vulnerabilities	Timely OTA updates, secure session key generation
Social engineering attack	Weak password protection	Strong password protection, two-factor authentication
Device hardware exploitation	Open, unsecure hardware interfaces (e.g., JTAG, USB ports)	Secure-by-design (e.g., access restrictions, adhering to industry standards)
Malicious node insertion	Weak encryption schemes	Device identity management system, symmetric key encryption