Probability and Statistics (PHM111s)-Lecture 3

Part I: Introduction to Statistical Methods.

Part II: Methods of Descriptive Statistics.

- 1-Collecting Data.
- 2-Organizing Data.
- 3-Presenting Data.
- **4-**Summarizing Data.

Part III: Introduction to Probability.

Part IV: Methods of Inferential Statistics.

4. Summarizing Data.

Parameter for Population & Statistic for Sample

1- Arithmetic Mean

Case 1: Ungrouped Data

a) The **mean** for sample with size n, is given as:

$$\overline{X} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n} = \frac{\sum_{i=1}^{n} X_i}{n}$$

b) For a population with size N, the mean is given as:

$$\mu = \frac{X_1 + X_2 + X_3 + \dots + X_n}{N} = \frac{\sum_{i=1}^{N} X_i}{N}$$

Example1: The data represent the number of days off per year for a sample of individuals selected from nine different countries. Find the mean.

Solution:

$$\overline{X} = \frac{\sum X}{n} = \frac{20 + 26 + 40 + 36 + 23 + 42 + 35 + 24 + 30}{9} = \frac{276}{9} = 30.7 \text{ days}$$

Case 2: Grouped Data

$$\overline{X} = \frac{\sum_{i=1}^{n} f_{i}.X_{i}}{\sum_{i=1}^{n} f_{i}} = \frac{1}{n} \sum_{i=1}^{n} f_{i}.X_{i}$$

Example 2: The following table gives the frequency distribution of the number of orders received each day during the past 50 days at the office of a mail-order company. Calculate the mean.

Solution

Number of orders	f
10 – 12	4
13 - 15	12
16 - 18	20
19 - 21	14

	1	n = 5	0
Number of	f	X	f. X
orders			
10 - 12	4	11	44
13 – 15	12	14	168
16 – 18	20	17	340
19 - 21	14	20	280
	n = 50		= 832

$$\overline{X} = \frac{\sum f.X}{n} = \frac{832}{50} = 16.64$$
 orders

2- The Median

Case 1: Ungrouped Data

Example 3: The number of rooms in the <u>seven</u> hotels in downtown Pittsburgh is 713, 300, 618, 595, 311, 401, and 292. Find the median.

Solution:

Step 1 Arrange the data in order.

Step 2 Select the middle value.

↑ Median

Hence, the median is 401 rooms.

Example 4: The number of cloudy days for the top <u>10</u> cloudiest cities is shown. Find the median. 209, 223, 211, 227, 213, 240, 240, 211, 229, 212

Solution:

Arrange the data in order.

209, 211, 211, 212, 213, 223, 227, 229, 240, 240

$$\uparrow$$

Median

 $MD = \frac{213 + 223}{2} = 218$

Hence, the median is 218 days.

Case 2: Grouped Data

Median =
$$MD = L + i \left(\frac{\frac{n}{2} - F_{m-1}}{f_m} \right)$$

Example 5: Based on the grouped data below, find the median. **Solution**

Seconds	f
51 – 55	2
56 - 60	7
61 - 65	8
66 - 70	4

Construct the cumulative frequency distribution

Seconds	f	cf
51 – 55	2	2
56 – 60	7	9
61 - 65	8	17
66 - 70	4	21

$$\frac{n}{2} = \frac{21}{2} = 10.5 \rightarrow \text{ class median is the } 3^{rd} \text{ class}$$

So,
$$F_{m-1} = 9$$
, $f_m = 8$, $i = 5$ and $L = 60.5$

Therefore,

$$MD = L + i \left(\frac{\frac{n}{2} - F_{m-1}}{f_m} \right)$$
$$= 60.5 + 5 \left(\frac{10.5 - 9}{8} \right)$$
$$= 60.5 + 0.9375 = 61.4375$$

Finding Median Graphically (from Ogive)

The following table shows the frequency distribution for the scores of 60 students in an exam.

Sets	2-	6-	10-	14-	18-	22-	26-	Total
Frequency	6	9	12	15	10	5	3	60

Find the median of the distribution using the ascending cumulative frequency table.

Solution

Oraw an ascending cumulative frequency table.

Find the order of the median =
$$\frac{60}{2}$$
 = 30

Oraw the ascending cumulative frequency curve, and get the median form the graph.

The upper limits of the sets	The ascending cumulative frequency
Less than 2	0
Less than 6	6
Less than 10	15
Less than 14	27
Less than 18	42
Less than 22	52
Less than 26	57
Less than 30	60

From the graph, the median = 14.8 mark

Marks	Conversion into exclusive series	No. of students	Cumulative Frequency
(X)		(f)	(C.M)
410-419	409.5-419.5	14	14
420-429	419.5-429.5	20	34
430-439	429.5-439.5	42	76
440-449	439.5-449.5	54	130
450-459	449.5-459.5	45	175
460-469	459.5-469.5	18	193
470-479	469.5-479.5	7	200

$$\frac{n}{2} = \frac{200}{2} = 100$$

3- The Mode

Case 1: Ungrouped Data

Example 6: The data show the number of licensed nuclear reactors in the United States for a recent 15-year period. Find the mode.

Solution

Since the values 104 and 109 both occur 5 times, the modes are 104 and 109. The data set is said to be bimodal.

Case 2: Grouped Data

$$Mode = L + i \left(\frac{f_m - f_{m-1}}{(f_m - f_{m-1}) + (f_m - f_{m+1})} \right)$$

Example 7: Based on the grouped data below, find the mode. **Solution**

Seconds	f
51 – 55	2
56 - 60	7
61 - 65	8
66 - 70	4

$$L = 60.5, f_{m-1} = 7, f_m = 8, f_{m+1} = 4, i = 5$$

$$Mode = 60.5 + 5 \left(\frac{8 - 7}{(8 - 7) + (8 - 4)} \right)$$

$$= 60.5 + 5 \left(\frac{1}{5} \right) = 61.5$$

Finding Mode Graphically (from Histogram)

The following table shows the frequency distribution for the scores of 60 students in an exam.

Sets	2-	6-	10-	14-	18-	22-	26-	Total
Frequency	6	9	12	15	10	5	3	60

4- The Midrange

$$MR = \frac{\text{lowest value} + \text{highest value}}{2}$$

Example 8: Find the midrange of data:

Solution

The smallest bonus is \$10 million and the largest bonus is \$34.5 million.

$$MR = \frac{10 + 34.5}{2} = \frac{44.5}{2} = $22.25$$
 million

Notice that this amount is larger than seven of the eight amounts and is not typical of the average of the bonuses. The reason is that there is one very high bonus, namely, \$34.5 million.

5- The Weighted Mean

$$\overline{X} = \frac{w_1 X_1 + w_2 X_2 + \dots + w_n X_n}{w_1 + w_2 + \dots + w_n} = \frac{\sum_{i=1}^{n} w_i X_i}{\sum_{i=1}^{n} w_i}$$

Example 9: A student received an A in English Composition I (3 credits), a C in Introduction to Psychology (3credits), a B in Biology I (4credits), and a D in Physical Education (2credits). Assuming A =4 grade points, B =3 grade points, C =2 grade points, D =1 grade point, and F =0 grade points, find the student's grade point average.

Solution

Course	Credits (w)	Grade (X)_
English Composition I	3	A (4 points)
Introduction to Psychology	3	C (2 points)
Biology I	4	B (3 points)
Physical Education	2	D (1 point)
The grade point average ($\mathbf{GPA}) = \overline{X} = \frac{\sum_{i=1}^{n} w_i X}{\sum_{i=1}^{n} w_i}$	$\frac{1}{3} = \frac{(3)(4) + (3)(2) + (4)(3) + (2)(1)}{3 + 3 + 4 + 2} = \frac{32}{12} = 2.7$

Distribution Shapes

positively skewed or right-skewed distribution,

symmetric distribution,

negatively skewed or left-skewed.

(b) Symmetric

(c) Negatively skewed or left-skewed