UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autor: Adrián Aguilera Moreno

Autómatas y Lenguajes Formales

La propuesta de estos boletines fue hecha por:

- Dr. Favio E. Miranda Parea.
- Dra. Lourdes González Huesca.
- Mtra. A. Liliana Reyes Cabello.

Boletín 1

1. Sea w = babbab una cadena sobre el alfabeto $\Sigma = \{a, b\}$. Describa los conjuntos de todos los prefijos y sufijos de w. ¿Cuáles son propios?

∇ Solución:

Prefijos: $\{babbab, babba, babb, bab, ba, b, \lambda\}$. Sufijos: $\{babbab, abbab, bab, bab, ab, b, \lambda\}$. Prefijos propios: $\{babba, babb, bab, bab, ba, b\}$. Sufijos propios: $\{abbab, bab, bab, bab, ab, b\}$.

 \triangleleft

- 2. Demostrar las propiedades de concatenación de cadenas usando inducción:
 - Asociatividad: (uv)w = u(vw).
 - Identidad: $v\lambda = \lambda v = v$.
 - Longitud: |vw| = |v| + |w|.

Demostración: Consideremos las definiciones recursivas de cadena concatenada por la izquierda. Así, analicemos 3 posibles casos:

- (a) Asociatividad.
- (b) Identidad.
- (c) Longitud. Sea Σ un alfabeto, $\forall_{w_1,w_2} \in \Sigma^*$; y $a \in \Sigma$:

$$|w_1 \cdot w_2| = |w_1| + |w_2|$$

Para este inciso haremos inducción sobre la estructura de la cadena w_1 . Nótese que si $w_1 = \lambda$, entonces

$$\begin{array}{lll} |w_2 \cdot w_2| &=& |\lambda \cdot w_2| & \text{Recordemos que } w_1 = \lambda. \\ &=& |w_2| & \text{Concatenación con la cadena vacía.} \\ &=& 0 + |w_2| & \text{El cero es el neutro aditivo.} \\ &=& |\lambda| + |w_2| & \text{Por definición: } |\lambda| = 0. \\ &=& |w_1| + |w_2| & \text{Nuevamente: } w_1 = \lambda. \end{array}$$

Ahora, supongamos que para alguna cadena $w \in \Sigma^*$ se cumple que $|w \cdot w_2| = |w| + |w_2|$, en partícular podemos suponer $w = w_1$, luego

$$\begin{aligned} |(a \cdot w_1) \cdot w_2| &= |a \cdot (w_1 \cdot w_2)| & \text{Asociatividad en la concatenación.} \\ &= 1 + |w_1 \cdot w_2| & \text{Para } x \text{ cadena y } b \text{ símbolo, se tiene que } |b \cdot x| = 1 + |x|. \\ &= 1 + |w_1| + |w_2| & \text{Uso de la hipótesis de inducción.} \\ &= |a \cdot w_1| + |w_2| & \text{Para } x \text{ cadena y } b \text{ símbolo, se tiene que } |b \cdot x| = 1 + |x|. \end{aligned}$$

$$|vw| = |v| + |w|$$

QED