

Department of Computer Science and Engineering The Chinese University of Hong Kong

CSCI2100B CSCI2100S

DATA STRUCTURES

Spring 2011

Binary Heap & Priority Queue

Last updated: 16/03/2011

Tang Wai Chung, Matthew

Binary Heap (or Just Heap)

- Heaps have two properties
 - Structure property & Heap-order property
- An operation on a heap can destroy one of the properties,
 - A heap operation must not terminate until all heap properties are restored.

Structure Property

A heap is a binary tree that is completely filled, with the possible **exception** of the bottom level, which is always filled from left to right.

Such a tree is known as a complete binary tree.

Structure Property: Illustration

A Complete binary tree

Height of Heaps

- A complete binary tree of height H at least 2^H and at most 2^{H+1} 1 nodes.
- This implies that the height of a complete binary tree is

$$\lfloor \lg N \rfloor = O(\lg N)$$

- Because a complete binary tree is so regular, it can be represented in an array.
 - This encourages a straight-forward pointer-free implementation.
 - We may heapify an ordinary array to turn it into a priority queue.

Array Implementation of Heap

		Е	F	В	D	А	С	G	Н	_	J			
()	1	2	3	4	5	6	7	8	9	10	11	12	13

Array Implementation of Heap

	Е	F	В	D	А	С	G	Н	I	J			
0	1	2	3	4	5	6	7	8	9	10	11	12	13

- For any element in array position i,
 - **left** child: position **2***i*
 - right child: position (2i + 1),
 - parent: position $\lfloor i/2 \rfloor$
- No pointers are required, and the operations required to traverse the tree are extremely simple.
 - Bit shifting can be used to replace multiplications of 2.
- The only problem is the estimation of the maximum heap size required in advance.

Heap Order Property

- The other trick that enables operations to be performed quickly is the **heap order** property.
- For a heap, the largest/smallest element is placed at the root so that we can find it in constant time.
- Thus, we get the extra operation, findmax/findmin, in constant time O(1).
- In addition, the heap order property is slightly less strict than the search order in binary search tree.

Heap Order Property

Heap Order Property

Each node is larger(smaller) than or equal to the keys in all of that node's children (if any).

Equivalently, the key in each node of a heap-ordered tree is smaller(larger) than or equal to the key in that node's parent (if any).

- If the parent is larger than its children, the heap is known as a max-heap.
- If the parent is smaller than its children, the heap is known as a min-heap.
- We will first begin our discussions with min-heaps.

Heap: Example

Can you give a max-heap with the same set of keys?

Heap: insert

- We create a hole in the next available location.
 - If x can be placed in the hole without violating the heap order, just do it.
 - Otherwise we slide the element that is in the holes parent node into the hole, thus bubbling the hole **up** toward the root.
- We continue this process until *x* can be placed in the hole.
- This strategy is known as a **percolate up/upward heapify/upward fixing/promotion**.

insert: Example

	13	21	16	24	31	19	68	65	26	32	14		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

insert: Example (2)

	13	21	16	24	14	19	68	65	26	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

insert: Example (3)

	13	14	16	24	21	19	68	65	26	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Observations

- The number of comparisons during insert is $O(\lg N)$ if the element is the new minimum and is percolated all the way up to the root.
- It has been shown that 2.6 comparisons are required on average to perform an *insert*.
 - The average *insert* moves an element up 1.6 levels.

Heap: delmin

- Finding the minimum is easy; the hard part is removing it.
- When the root is removed, a **hole** is created.
- To maintain **structure** property, we need to slide **down** the hole until we can put the **last element** (x) in, maintaining the **heap-order** property.
 - Or we may swap the root with the last element, then begin the sliding down.
- We then need to slide the smaller children of the node up into the hole, then push the hole down one level.
- We repeat this step until x can be placed in the hole.

delmin: Example

	13	14	16	19	21	24	68	65	40	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

delmin: Example (2)

	14	31	16	19	21	24	68	65	40	32	13		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

delmin: Example (3)

	14	19	16	31	21	24	68	65	40	32	13		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

delmin: Example (4)

	14	19	16	31	21	24	68	65	40	32	13		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Fixing Up/down: Code (min-heap)

Travel along the ancestors and swap if out of order.

```
void fix_up(int a[], int i){
   for (; a[i / 2] >= a[i]; i /= 2)
     swap(&a[i / 2], &a[i]);
}
```

Travel along the decentants and swap if out of order.

```
void fix_down(int a[], int n, int i){
   int j; /* child */

   for ( ; i * 2 <= n; i = j){
      j = i * 2; /* find smaller child */
      if (j < n && a[j + 1] < a[j]) j++;
      if (a[i] <= a[j])
           break;
      /* swap the values */
      swap(&a[i], &a[j]);
   }
}</pre>
```

Other Heap Operations (min-heap)

- findmin: Finding the minimum can be performed in constant time.
- findmax: No help in finding the maximum
- sort: There is no strict ordering information
 - But can be used for sorting. (see heapsort)
- \blacksquare decrease_key(P, \triangle): update key and then fix_up
- increase_key(P, Δ): update key and then fix_down
- delete: fixed by fixing up then down
- build_heap

Building a Heap

- Takes N keys and places them into an empty heap.
- Perform N successive inserts.
 - This will take O(N) average but $O(N \lg N)$ worst-case.
- Another smarter way is to place the *N* keys into the tree in any order (or just take the initial order) ...
- then perform fix_down on half of the nodes.
 - since there is no need to fix leaves.
- We call this procedure: heapify

```
for (i = n / 2; i > 0; i--)
  fix_down(a, n, i);
```

What is the worse-case complexity of this algorithm?

heapify: Initial

	15	8	4	3	1	7	11	10	2	9	6	5	12	14	13
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

heapify: fix_down(7)

	15	8	4	3	1	7	11	10	2	9	6	5	12	14	13
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

heapify: fix_down(6,5,4)

	15	8	4	3	1	7	11	10	2	9	6	5	12	14	13
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

heapify: fix_down(3,2)

	15	8	4	2	1	5	11	10	3	9	6	7	12	14	13
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

heapify: fix_down(1)

	15	1	4	2	6	5	11	10	3	9	8	7	12	14	13
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

heapify: Final

	1	2	4	3	6	5	11	10	15	9	8	7	12	14	13
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Complexity of *heapify*

- To bound the running time of *heapify*, we must bound the number of swaps during the construction.
 - Every node at height i percolates down at most (H i) times.
 - Consider the worse case: the heap is a complete binary tree with $(2^{H+1} 1)$ nodes.
- We can show the sum is O(N).
 - heapify is more efficient than our intuitive idea by a factor of Ig N.

Complexity of heapify (Cont')

There are 2ⁱ nodes at level *i* Suppose all node **percolates** down to the leaves, then

$$S = \sum_{i=0}^{H} 2^{i}(H-i) \qquad 2S = \sum_{i=0}^{H} 2^{i+1}(H-i) = \sum_{i=1}^{H} 2^{i}(H-i+1)$$

$$S = 2S - S = \sum_{i=1}^{H} 2^{i} - H = (2^{H+1} - 1) - 1 - H$$

$$S = (2^{H+1} - 1) - H - 1$$
$$= N - \lfloor \lg N \rfloor - 1$$
$$= O(N)$$

Priority Queue

- In some applications, a simple queue may not be the best strategy to complete jobs.
 - Printer queue
 - Multiprocessing queue
- Sometimes it seems that small jobs take longer
- Important jobs can't be done first

Priority Queue

is a data structure of items with keys(priorities) that supports two basic operations: **insert** a new item, and **delete** the item with the **largest(smallest)** key.

Priority Queue (PQ) ADT

- In practice, priority queues are more complex than the simple definition.
- There are several other operations to maintain the queues under all the conditions.
- A more complete set of operations:
 - Construct a priority queue from n given items.
 - Insert a new item
 - Delete the <u>maximum/minimum</u> item
 - Change the priority of an arbitrary specified item
 - Delete an arbitrary specified item
 - Join two priority queues into one large one.

PQ ADT: Implementations

- Several possible implementations are possible:
 - Simple linked list
 - A sorted contiguous list
 - An unsorted array/list
 - Binary search tree
 - Binary heap
- What will be the complexity of insert and delmax if the above data structures are used?

Priority Queue Implementations

Implementations of PQ ADT have widely varying performance:

	insert	delmax	delete	findmax	change	join
ordered array	N	1	N	1	N	N
ordered list	N	1	1	1	Ν	N
unordered array	1	N	1	N	1	N
unordered list	1	N	1	N	1	1
(binary) heap	lg N	lg N	lg N	1	lg N	N
binomial queue	lg N	lg N	lg N	lg N	lg N	lg N
best in theory	1	lg N	lg N	1	1	1

Let's see how to implement **max-heap** using unordered array and binary heap.

PQ ADT: Unsorted List Implm.

typedef struct {

int k;

The implementation is straight-forward.

```
char *s:
void pq insert(pq t *pq, e t e){
                                                           } e t;
    pq->a[pq->n++] = e;
                                                           typedef struct {
                                                               int n;
e t pq delmax(pq t *pq){
                                                               e t *a;
    int i, m = 0;
                                                           } pq_t;
    e t max e = {INT MAX, NULL};
    if (pq->n == 0) return max e;
    for (i = 1; i < pq->n; i++)
        if (pq->a[m].k < pq->a[i].k) find the max.
             m = i;
    \max e = pq - a[m];
    pq->n--;
    for (i = m; i < pq->n; i++)
                                          remove and shift down
        pq \rightarrow a[i] = pq \rightarrow a[i + 1];
    return max e;
```

PQ ADT: Binary Heap Implm.

Note the extra work to maintain the heap structure.

```
void pq_insert(pq_t *pq, e_t e){
    pq->a[++pq->n] = e;
    fix_up(pq->a, pq->n);

e_t pq_delmax(pq_t *pq){
    swap(&pq->a[1], &pq->a[pq->n]);
    fix_down(pq->a, pq->n - 1, 1);
    return pq->a[pq->n--];
}

insert: extra fix_up in O(lg N) time.

delmax: reduced workload.
fix_down in O(lg N) time.
```

Be careful with the extra initialization that makes your life easier.

```
pq_t *pq_create(){
    pq_t *pq = malloc(sizeof *pq);
    pq->a = malloc((MAX_SIZE + 1) * sizeof(pq_t));
    pq->a[0].k = INT_MAX;
    pq->n = 0;
    return pq;
}
```

Heapsort

- Heaps can be used to sort in $O(N \lg N)$ time.
- The basic strategy is to
 - build a binary heap of N elements in O(N) time
 - perform N delmin / delmax.
- We record the minimum elements that leaves in a second array and copy the array back to complete the sorting.
- Total running time is $O(N) + N \times O(\lg N) = O(N \lg N)$.

```
void heapsort(int n, int a[]){
    pq_t *pq = pq_create();
    for (i = 0; i < n; i++)
        pq_insert(pq, a[i]);
    for (i = 0; i < n; i++)
        a[i] = pq_delmin(pq);
}</pre>
```

Tricks in Implementing Heapsort

- The memory requirement is doubled since we need an extra array stored inside the priority queue.
 - Overhead: O(N) time to copy data back to the original array
 - The trick to avoid the second array is to make use of the last cell in the array to store the value returned by delmin.
 - Using this strategy the array will contain the elements in decreasing sorted order after the last *delmin*.
- Suppose we want to sort in increasing order, we can use a maxheap with a delmax operation.
 - The maximum element will move towards the end of the array.

Heapsort: Example

■ Maxheap with its array representation. Execute *delmax*.

Heapsort: Example (Cont')

Heapsort: Code

- Remember that we start the first element at index 1 in the binary heap.
 - Sometimes you might want to avoid this by adding index checking in fix_down()

```
void heapsort(int n, e_t *a){
   int i;
   for (i = n / 2; i >= 1; i--)
       fix_down(a, n, i);
   while (n > 1){
       swap(&a[1], &a[n]);
       fix_down(a, --n, 1);
   }
}
```

Heapsort: Analysis

- heapify: at most 2N comparisons.
- **delmax**: the *i*-th operation uses at most $2\lfloor \lg i \rfloor$ comparisons.

Total no. of comparisons

$$= 2N + \sum_{i=1}^{N-1} 2\lfloor \lg i \rfloor$$

$$< 2N - 2\lg N + 2\sum_{i=1}^{N} \lg i$$

$$= 2N - 2\lg N + 2\lg(N!)$$

$$\approx 2N - 2\lg N + 2(N\lg N - 1.44N)$$

$$= O(N\lg N)$$

The K-selection Problem

- Problem: Suppose you have a group of N numbers and would like to determine the K-th largest.
- First Algorithm
 - Build a max-heap for all numbers and it takes O(N).
 - Keep delmax until we get the K-th value returned.
 K x O(lg N).
 - The total running time is $O(N + K \lg N)$.
- For small K then the running time dominated by the heap building operation and is O(N).
- For larger values of K, the running time is $O(K \lg N)$ time.

The K-selection Problem (2)

Second Algorithm

- 1. Build a smaller min-heap of K elements: O(K)
- 2. Then compare the remaining (N K) numbers against the heap.
 - O(1): to test if the element goes into the heap
 - + O(lg K): to delete the root and insert the new element if this is necessary
- If the new element is larger, it replaces the root, otherwise it is discarded.
- 4. When the algorithm terminates, the heap contains the *K* largest numbers from the set.
- The total time is $O(K + (N K) \lg K) = O(N \lg K)$.

Priority Queue for Index Items

- Suppose that the records to be processed in a PQ are in an existing array.
 - Then the PQ can refer to the items through array index.
- The array index can also be used to control PQ routines like *change* & *delete*.
- Technically, the PQ ADT cannot move the **external** actual data, but have to keep track of the positions of the indices(keys) internally.
- Another array is allocated to allow fast lookup of the positions of the keys in the PQ array.

Index Heap Data Structures

-	3	2	4	9	1	

Such implementation is sometimes called the index heap, which is usually in many graph algorithms.

k	qp[k]	pq[k]	data[k]
0			Wilson / 63
1	5	3	Johnson / 86
2	2	2	Jones / 87
3	1	4	Smith / 90
4	3	9	Washington / 84
5		1	Thompson / 65
6			Brown / 82
7			Jackson / 61
8			White / 76
9	4		Adams / 86
10			Black / 71

Index Heap: Implm.

```
static int n, pq[MAX + 1], qp[MAX + 1];
void exch(int i, int j){
    int t;
   t = qp[i]; qp[i] = qp[j]; qp[j] = t;
    pq[qp[i]] = i; pq[qp[j]] = j;
void pq insert(int k){
   qp[k] = ++N;
   pq[N] = k;
    fix up(pq, n);
}
int pq delmax(){
    exch(pq[1], pq[n]);
   fix down(pq, --n, 1);
    return pq[n + 1];
}
void pq_change(int k){
   fix_up(pq, qp[k]);
   fix_down(pq, n, qp[k]);
```

Summary

- Binary heap: structure & order properties
 - Efficient array implementation
 - findmax/findmin in constant time
 - fixing heap properties in O(lg N) time.
 - O(N) heapify construction
- Priority Queue ADT various implementations
- Heapsort
- Application: *K*-selection problem
 - reveal theory bound of O(N lg N) in finding the median of a set of N numbers.