

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

CLAIM TO CONVENTION PRIORITY UNDER 35 U.S.C. § 119		Docket Number: 10191/2155	Confirmation No.: 2690
Application Number 10/081,769	Filing Date February 20, 2002	Examiner Michael A. LYONS	Art Unit 2877
Invention Title METHOD FOR THREE-DIMENSIONALLY, OPTICALLY MEASURING MEASURING OBJECTS		Inventor Jochen STRAEHLE	

Address to: Mail Stop Issue Fee Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

A claim to the Convention Priority Date pursuant to 35 U.S.C. § 119 of Application No. 101 08 204.5 filed in Federal Republic of Germany on 21 February 2001 was previously made. To complete the claim to the Convention Priority Date, a certified copy of the priority application is attached.

Dated: January 21, 2004_{By:}

I hemby certify that this correspondence is being deposited with the

United States Postal Service with sufficient postage as first class mail

Richard L. Mayer, Reg. N

KENYON & KENYON

One Broadway

New York, N.Y. 10004

(212) 425-7200 (telephone)

Commissioner for Patonts, P.O. Box 1450, Alexandria, VA 22313-1450 (212) 425-5288 (facsimile)

Oth enyon & Kenyon 2004

Signatur

656969v1

in an envelope addressed to:

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 08 204.5

Anmeldetag:

21. Februar 2001

Anmelder/Inhaber:

ROBERT BOSCH GMBH, Stuttgart/DE

Bezeichnung:

Verfahren zum dreidimensionalen optischen Ver-

messen von Messobjekten

IPC:

G 01 B, G 01 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 3. Dezember 2001 **Deutsches Patent- und Markenamt** Der Präsident

> > Im Auftrag

Jerofsky

24. Jan. 2001 - fle/wey

Robert Bosch GmbH, 70442 Stuttgart

Verfahren zum dreidimensionalen optischen Vermessen von Messobjekten

Die Erfindung bezieht sich auf ein Verfahren zum dreidimensionalen optischen Vermessen von Messobjekten durch Vergleich mit einem Referenzobjekt, bei dem Bilddaten des Messobjekts erfasst und Bilddaten des Referenzobjekts gegenüber gestellt werden und das Messobjekt hinsichtlich Abweichungen vom Referenzobjekt unmittelbar oder mittelbar beurteilt wird.

Stand der Technik

5

15

Bei einem derartigen (ohne druckschriftlichen Beleg) als bekannt angenommenen Verfahren wird beispielsweise am Ende eines Fertigungsgangs ein Messobjekt einer Gut-Schlecht-Beurteilung durch Vergleich mit einem Referenzobjekt unterzogen, wobei die Beurteilung zum Beispiel visuell vorgenommen wird. Dabei können zum Beispiel dreidimensionale Bilddaten des Referenzobjekts gewonnen werden, denen Bilddaten des Messobjekts gegenübergestellt werden. Hierbei

müssen für eine zuverlässige Beurteilung das Referenzobjekt und das Messobjekt in gleicher Lage betrachtet werden. Für den Lageabgleich wird eine relativ aufwendige Justage vorgenommen.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art bereitzustellen, mit dem eine zuverlässige Vermessung und Beurteilung des Messobjekts mit relativ wenig Aufwand ermöglicht werden.

Vorteile der Erfindung

5

10

15

20

25

30

Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Hiernach ist vorgesehen, dass das Messobjekt und/oder das Referenzobjekt oder eine holografische Aufnahme des Messobjekts und/oder des Referenzobjekts relativ zueinander um mindestens eine Achse gedreht wird/werden, wobei die Bilddaten des Messobjekts erfasst werden und die Gegenüberstellung in verschiedenen relativen Drehstellungen erfolgt, dass bei den verschiedenen Gegenüberstellungen eine Auswertung hinsichtlich einer maximalen Übereinstimmung des Messobjekts mit dem Referenzobjekt vorgenommen wird und dass die Beurteilung der Abweichung bei der durch die maximale Übereinstimmung bestimmten Drehstellung erfolgt.

Durch die Drehung von Referenzobjekt und Messobjekt bzw. deren holografischer Aufnahmen relativ zueinander und die Gegenüberstellung der Bilddaten während der Drehung und der Auswertung hinsichtlich der besten Übereinstimmung wird automatisch diejenige relative Drehstellung festgestellt, in der das Referenzobjekt und das Messobjekt bzw. deren holografische Aufnahmen (Hologramme) die gleiche Orientierung haben. Bei dieser bestimmten Drehstellung kann nun die Vermessung des Messobjekts bzw. die Beurteilung, ob Abweichungen gegenüber dem Referenzobjekt vorliegen, zuverlässig durchgeführt werden, da Fehler durch eine Lageabweichung beider Objekte ausgeschlossen sind. Dabei erfolgt die Auswertung der Gegenüberstellungen und der Beurteilung vorzugsweise mittels der selben Auswerteeinrichtung.

5

10

15

20

25

Zu einer schnellen Durchführung des Verfahrens trägt die Maßnahme bei, dass die holografische Aufnahme des Messobjekts während eines Fertigungsprozesses erfolgt, in den es einbezogen ist.

Eine vorteilhafte Integration des Verfahrens bei der Fertigung wird dadurch erreicht, dass die Vermessung mit der Beurteilung der Abweichung des Messobjekts von dem Referenzobjekt während eines Fertigungsprozesses erfolgt, wobei eine automatische Beurteilung vorteilhaft ist, aber auch eine visuelle Beurteilung vorgenommen werden kann.

Eine Möglichkeit zur einfachen Durchführung des Verfahrens besteht weiterhin darin, dass die das Referenzobjekt dreidimensional darstellenden Bilddaten in einer Auswerteeinrichtung von vornherein gespeichert sind, in dem auch die Gegenüberstellung der erfassten Bilddaten des Messobjekts hinsichtlich der maximalen Übereinstimmung und die Beurteilung der Abweichung vorgenommen werden.

Zu einer schnellen und zuverlässigen Durchführung des Verfahrens trägt die Maßnahme bei, dass die Bilddaten des Messobjekts und/oder des Referenzobjekts mittels einer Kamera erfasst werden.

5

10

15

20

25

30

Eine für eine einfache automatische oder visuelle Beurteilung des Verfahrens günstige Ausgestaltung besteht darin, dass die mittelbare Beurteilung der Abweichungen des Messobjekts von dem Referenzobjekt nach interferometrischer Überlagerung zwischen beiden durch Vergleich des erhaltenen Interferenzmusters mit einem Bezugs-Interferenzmuster erfolgt. Das Interferenzmuster lässt sich hinsichtlich charakteristischer Unterschiede bei einer Abweichung des Messobjekts von dem Referenzobjekt besonders einfach beurteilen.

Eine für eine einfache Durchführung des Verfahrens vorteilhafte Ausgestaltung besteht dabei darin, dass in einem Referenzarm eines Interferometers das Referenzobjekt oder dessen holografische Aufnahme und in einem Objektarm des Interferometers das Messobjekt oder dessen holografische Aufnahme angeordnet ist und dass eine von dem Referenzobjekt oder dessen holografischer Aufnahme kommende Referenzlichtwelle und eine von dem Messobjekt oder dessen holografischer Aufnahme kommende Objektlichtwelle an einem Strahlteiler überlagert werden und das dadurch erhaltene Interferenzmuster mittels der Kamera erfasst wird.

Eine weitere vorteilhafte, interferometrische Methode besteht darin, dass das Messobjekt und ein Lichtablenkelement, insbesondere ein Spiegel, beleuchtet werden und von dem Messobjekt und dem Spiegel reflektierte Lichtwellen auf ein Hologramm des Referenzobjektes gerichtet werden, während dieses gedreht

wird, und dass das an dem Hologramm überlagerte Licht mittels der Kamera erfasst wird.

Für die zuverlässige Durchführung des Verfahrens ist vorgesehen, dass die holografische Aufnahmen des Referenzobjekts und/oder des Messobjekts mittels einer den Strahlengang des Interferometers erzeugenden entsprechenden Einrichtung gewonnen werden.

Weitere vorteilhafte Ausgestaltungen des Verfahrens bestehen darin, dass die Beurteilung aufgrund einer mit einer Auswerteeinrichtung erzeugten Darstellung aufbereiteter Bilddaten an einem Sichtgerät visuell oder in der Auswerteeinrichtung automatisch anhand vorgegebener oder vorgebbarer Kriterien erfolgt.

Zeichnung

Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen:

- Fig. 1 eine interferometrische Anordnung zur Durchführung des Verfahrens in schematischer Darstellung und
- Fig. 2 eine weitere interferometrische Anordnung zur Durchführung des Verfahrens in schematischer Darstellung.

25

5

10

15

Ausführungsbeispiel

5

10

15

20

25

30

Fig. 1 zeigt eine für die Durchführung des Verfahrens vorteilhaft geeignete Messanordnung 1 in Form eines Interferometers. Ein von einer Lichtquelle 2 ausgehender Beleuchtungsstrahl 3 wird an einem Strahlteiler 4 in einen Objektstrahl 6 zum Beleuchten eines Messobjekts 5 und einen Refenzstrahl 8 zum Beleuchten eines Referenzobjekts 7 aufgeteilt. Die von dem Messobjekt 5 und dem Referenzobjekt 7 zurückkommenden, in ihren Wellenfronten entsprechend verformten Lichtwellen in Form einer Messwelle und einer Referenzwelle werden an dem Strahlteiler 4 überlagert, so dass ein charakteristisches Interferenzmuster entsteht, das über einen Aufnahmestrahlengang 10 von einem Bildaufnehmer bzw. einer Kamera 9, z. B. CCD-Kamera, aufgenommen und in einer darin vorgesehenen oder daran angeschlossenen Auswerteeinrichtung 11 weiter verarbeitet wird.

Liegen Abweichungen zwischen dem Referenzobjekt 7 und dem Messobjekt 5 vor, so sind diese in dem Interferenzmuster klar erkennbar, wobei sich die dreidimensionale Struktur abzeichnet und eine Beurteilung vorgenommen werden kann, ob das Messobjekt 5 einem Gutkriterium entspricht oder als schlecht ausgesondert werden soll. Die Beurteilung kann in der Auswerteeinrichtung 11 automatisch anhand eines dort gespeicherten Bezugs-Interferenzmusters erfolgen oder auch visuell mit einem daran angeschlossenen Sichtgerät.

Während der Aufnahme des Interferenzmusters wird das Referenzobjekt 7 und/ oder relativ dazu das Messobjekt 5 um eine Achse, z.B. die optische Achse gedreht, wie durch Pfeile in Fig. 1 dargestellt, um das Messobjekt 5 mit dem Referenzobjekt 7 in einer entsprechenden Orientierung zu beurteilen. Während der Drehung werden mittels der Kamera 9 Bilder in verschiedenen Drehstellungen aufgenommen und die zugehörigen Interferenzmuster in der Auswerteeinrichtung 11 hinsichtlich einer maximalen Übereinstimmung des Messobjekts 5 mit dem Referenzobjekt 7 bewertet. Bei maximaler Übereinstimmung sind die Orientierung des Messobjekts 5 und des Referenzobjekts 7 gleich. Bei dieser Drehstellung wird die Beurteilung des Messobjekts 5 hinsichtlich Abweichungen gegenüber dem Referenzobjekt 7 in der Auswerteeinrichtung 11 automatisch oder vermittels der Auswerteeinrichtung 11 an einem daran angeschlossenen Sichtgerät von einer Bedienperson vorgenommen.

Anstelle des Referenzobjekts 7 kann auch dessen Hologramm in dem Referenzraum angeordnet und relativ zu dem Messobjekt 5 gedreht werden. Auch ist es denkbar, z.B. während eines Fertigungsprozesses eine holografische Aufnahme des Messobjekts 5 anzufertigen und dieses anstelle des Messobjekts 5 selbst in der Messanordnung zu verwenden.

Bei dem Ausführungsbeispiel nach Fig 2 ist in dem Strahlengang eines Interferometers eine holographische Aufnahme (Referenzhologramm) 7.1 des Referenzobjektes 7 angeordnet. Von der Lichtquelle 2 ausgehendes Beleuchtungslicht 3 wird auf einen Spiegel 7.2 und das Messobjekt 5 geführt. Die von dem Spiegel 7.2 und dem Messobjekt 5 reflektierten Lichtwellen 8', 6' werden auf das Referenzhologramm 7.1 gelenkt, während dieses um eine geeignete Achse gedreht wird, wie durch den Pfeil dargestellt. Auch das Messobjekt 5 könnte gedreht werden. Die an dem Referenzhologramm 7.1 während der Drehung entstehenden Interferenzmuster werden über einen Aufnahmestrahlengang 10 mit

einem weiteren Spiegel 12 von der Kamera 9 erfasst und wie vorstehend beschrieben weiter verarbeitet, um zunächst die gleiche Drehstellung des durch das Referenzhologramm 7.1 dargestellten Referenzobjektes 7 und des Messobjektes 5 zu finden und für diese übereinstimmende Ausrichtung die Beurteilung hinsichtlich einer Formabweichung des Messobjektes 5 gegenüber dem Referenzobjekt vorzunehmen.

Die Messanordnung kann auch auf einem anderen dreidimensionalen Messverfahren basieren, bei dem das Referenzobjekt und das Messobjekt dreidimensional dargestellt und vermessen werden. Beispielsweise ist denkbar, ein Triangulationsverfahren zur dreidimensionalen Darstellung des Referenzobjekts und des Messobjekts anzuwenden. Auch hierbei werden zum Abgleich der Orientierung von Referenzobjekt und Messobjekt für die Beurteilung das Referenzobjekt und Messobjekt für die Beurteilung das Referenzobjekt und das Messobjekt relativ zueinander gedreht und die der maximalen Übereinstimmung der Bilddaten des Messobjekts und des Referenzobjekts entsprechende Drehstellung ermittelt.

Die Erfassung der Bilddaten des Messobjekts bzw. des Referenzobjekts während der Drehung ist hinsichtlich ihrer Geschwindigkeit auf die Drehgeschwindigkeit abgestimmt. Die Drehung kann gleichförmig, beschleunigt oder intervallartig durchgeführt werden.

Für die Aufnahme des Referenzhologramms 7.1 bzw. des Hologramms des Messobjekts ist es erforderlich, dass dieses so geschaffen ist, dass es sich mit dem Hologramm in dem Strahlengang des Interferometers, in dem es angewandt werden soll, deckt. Hierzu wird das Hologramm günstigerweise mit einem dem

Strahlengang des Interferometers entsprechenden Strahlengang bzw. mit diesem selbst erzeugt. Das Hologramm liegt typischerweise in Form eines einfach zu handhabenden Dias vor, das mit einer einfachen Halterung in dem Strahlengang angeordnet werden kann.

.

10

15

5

Mit den beschriebenen Maßnahmen wird die für die Beurteilung wichtige entsprechende Orientierung von Referenzobjekt 7 und Messobjekt 5 während der Messung automatisch festgestellt, wobei dieselbe Auswertevorrichtung zum Feststellen der richtigen Ausrichtung und die Beurteilung praktisch im selben Arbeitsgang genutzt wird. Dadurch ist eine schnelle Vermessung und Beurteilung der Messobjekte 5 z.B. während eines Fertigungsprozesses erreicht. Die Handhabung ist einfach. Abweichungen können visuell oder mittels einfacher Software erkannt und beurteilt werden, insbesondere wenn nur eine Gut-Schlecht-Aussage erforderlich ist. Das Kriterium hierfür kann in der Auswerteeinrichtung vorgegeben werden. Der Einsatz des Verfahrens eignet sich insbesondere auch bei ungünstigen Umgebungsbedingungen.

24. Jan. 2001 - fle /wey

ROBERT BOSCH GmbH, 70442 Stuttgart

Ansprüche

15

1. Verfahren zum dreidimensionalen optischen Vermessen von Messobjekten (5) durch Vergleich mit einem Referenzobjekt, bei dem Bilddaten des Messobjekts (5) erfasst und Bilddaten des Referenzobjekts (7) gegenübergestellt werden und das Messobjekt (5) hinsichtlich Abweichungen vom Referenzobjekt (7) unmittelbar oder mittelbar beurteilt wird, dadurch gekennzeichnet,

dass das Messobjekt (5) und/oder das Referenzobjekt (7) oder eine holografische Aufnahme (7.1) des Messobjekts (5) und/oder des Referenzobjekts relativ zueinander um mindestens eine Achse gedreht wird/werden, wobei die Bilddaten des Messobjekts (5) erfasst werden und die Gegenüberstellung in verschiedenen relativen Drehstellungen erfolgt, dass bei den verschiedenen Gegenüberstellungen eine Auswertung hinsichtlich einer maximalen Übereinstimmung des Messobjekts (5) mit dem Referenzobjekt (7) vorgenommen wird und

dass die Beurteilung der Abweichung bei der durch die maximale Übereinstimmung bestimmten Drehstellung erfolgt.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die holografische Aufnahme des Messobjekts (5) während eines Fertigungsprozesses erfolgt, in den es einbezogen ist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vermessung mit der Beurteilung der Abweichung des Messobjekts (5) von dem Referenzobjekt (7) während eines Fertigungsprozesses erfolgt.
- 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die das Referenzobjekt dreidimensional darstellenden Bilddaten in einer Auswerteeinrichtung (11) von vornherein gespeichert sind, in dem auch die Gegenüberstellung der erfassten Bilddaten des Messobjekts (5) hinsichtlich der maximalen Übereinstimmung und die Beurteilung der Abweichung vorgenommen werden.
 - Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bilddaten des Messobjekts (5) und/oder des Referenzobjekts (7) mittels einer Kamera (9) erfasst werden.
 - Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

. 30

15

20

dass die mittelbare Beurteilung der Abweichungen des Messobjekts (5) von dem Referenzobjekt (7) nach interferometrischer Überlagerung zwischen beiden durch Vergleich des erhaltenen Interferenzmusters mit einem Bezugs-Interferenzmuster erfolgt.

 Verfahren nach Anspruch 6, dadurch gekennzeichnet,

dass in einem Referenzarm eines Interferometers das Referenzobjekt oder dessen holografische Aufnahme (7.1) und in einem Objektarm des Interferometers das Messobjekt (5) oder dessen holografische Aufnahme angeordnet ist und

dass eine von dem Referenzobjekt oder dessen holografischer Aufnahme (7.1) kommende Referenzlichtwelle und eine von dem Messobjekt (5) oder dessen holografischer Aufnahme kommende Objektlichtwelle an einem Strahlteiler überlagert werden und das dadurch erhaltene Interferenzmuster mittels der Kamera (9) erfasst wird.

 Verfahren nach Anspruch 6, dadurch gekennzeichnet,

dass das Messobjekt (5) und ein Lichtablenkelement (7.2) beleuchtet werden und von dem Messobjekt (5) und dem Lichtablenkelement (7.2) kommende Lichtwellen auf ein Hologramm (7.1) des Referenzobjektes gerichtet werden, während dieses gedreht wird, und dass das an dem Hologramm (7.1) überlagerte Licht mittels der Kamera (9) erfasst wird.

30

 Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die holografische Aufnahmen des Referenzobjekts und/oder des Messobjekts (5) mittels einer den Strahlengang des Interferometers erzeugenden entsprechenden Einrichtung gewonnen werden.

10

15

10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beurteilung aufgrund einer mit einer Auswerteeinrichtung (11) erzeugten Darstellung aufbereiteter Bilddaten an einem Sichtgerät visuell oder in der Auswerteeinrichtung automatisch anhand vorgegebener oder vorgebbarer Kriterien erfolgt. 24. Jan. 2001 - fle/wey

5

Robert Bosch GmbH, 70442 Stuttgart

Verfahren zum dreidimensionalen optischen Verfahren von Messobje kten

10

15

Zusammenfassung

20

25

30

Die Erfindung bezieht sich auf ein Verfahren zum dreidimensionalen optischen Vermessen von Messobjekten (5) durch Vergleich mit einem Referenzobjekt, bei dem Bilddaten des Messobjekts (5) erfasst und Bilddaten des Referenzobjekts (7) gegenübergestellt und das Messobjekt (5) hinsichtlich Abweichungen vom Referenzobjekt unmittelbar oder mittelbar beurteilt wird. Eine schnelle und dabei zuverlässige Beurteilung des Messobjekts wird dadurch erreicht, dass das Messobjekt (5) und/oder das Referenzobjekt (7) oder eine holografische Aufnahme (7.1) des Messobjekts (5) und/oder des Referenzobjekts relativ zueinander um mindestens eine Achse gedreht wird, wobei die Bilddaten des Messobjekts (5) erfasst werden und die Gegenüberstellung in verschiedenen relativen Drehstellungen erfolgt, dass bei den verschiedenen Gegenüberstellungen eine Auswertung hinsichtlich einer maximalen Übereinstimmung des Messobjekts (5) mit dem Referenzobjekt vorgenommen wird und dass die Beurteilung der Abweichung bei der durch die maximale Übereinstimmung bestimmten Drehstellung erfolgt (Fig. 1).

