Σπυρος Φρονιμός - Μαθηματικός

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΟΡΙΣΜΟΙ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ${\bf 20~ Oκτωβρίου~ 2015}$

ΑΛΓΕΒΡΑ Α΄ ΛΥΚΕΙΟΥ

Ακολουθίες - Πρόοδοι

ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΛΟΣ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ

Γεωμετρική πρόοδος ονομάζεται κάθε ακολουθία (a_v) , $v \in \mathbb{N}^*$ πραγματικών αριθμών στην οποία κάθε όρος της προκύπτει πολλαπλασιάζοντας κάθε φορά τον προηγούμενο όρο με τον ίδιο σταθερό αριθμό. Θα ισχύει

$$a_{\nu+1} = \lambda \cdot a_{\nu}$$

Ο αριθμός $\lambda = \frac{a_{\nu+1}}{a_{\nu}}$ ονομάζεται **λόγος** της γεωμετρικής προόδου.

ΟΡΙΣΜΟΣ 2: ΓΕΩΜΕΤΡΙΚΟΣ ΜΕΣΟΣ

Γεωμετρικός μέσος τριών διαδοχικών όρων a, β, γ μιας γεωμετρικής προόδου (a_v) ονομάζεται ο μεσαίος όρος β για τον οποίο ισχύει

$$\beta^2 = a \cdot \gamma$$

Πιο γενικά, ο γεωμετρικός μέσος ν διαδοχικών όρων $a_1, a_2, \ldots, a_{\nu}$ γεωμετρικής προόδου ονομάζεται ο πραγματικός αριθμός μ για τον οποίο ισχύει

$$\mu^{\nu} = a_1 \cdot a_2 \cdot \ldots \cdot a_{\nu}$$

ΟΡΙΣΜΟΣ 3: ΠΑΡΕΜΒΟΛΗ ΓΕΩΜΕΤΡΙΚΩΝ ΕΝΔΙΑΜΕΣΩΝ

Γεωμετρικοί ενδιάμεσοι δύο αριθμών a και β ονομάζονται ν σε πλήθος πραγματικοί αριθμοί $x_1, x_2, \ldots, x_{\nu}$ όταν αυτοί μπορούν να παρεμβληθούν μεταξύ των a και β ώστε οι πραγματικοί αριθμοί

$$a, x_1, x_2, \ldots x_{\nu}, \beta$$

να αποτελούν, $\nu + 2$ σε πλήθος, διαδοχικούς όρους γεωμετρικής προόδου.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΓΕΝΙΚΟΣ ΟΡΟΣ ΓΕΩΜΕΤΡΙΚΗΣ ΠΡΟΟΔΟΥ

Εαν (a_{ν}) είναι μια γεωμετρική πρόοδος με λόγο λ τότε ο γενικός όρος της a_{ν} θα δίνεται από τον τύπο

$$a_{\nu} = a_1 \cdot \lambda^{\nu-1}$$

ΘΕΩΡΗΜΑ 2: ΑΘΡΟΙΣΜΑ ΟΡΩΝ ΓΕΩΜΕΤΡΙΚΗΣ ΠΡΟΟΔΟΥ

Εαν (a_{ν}) είναι μια γεωμετρική πρόοδος με λόγο $\lambda \neq 1$, τότε το άθροισμα των ν πρώτων όρων της δίνεται από τους τύπους

$$S_{\nu} = \frac{a_{\nu} \cdot \lambda - a_1}{\lambda - 1}$$
, $S_{\nu} = a_1 \frac{\lambda^{\nu} - 1}{\lambda - 1}$

Εαν ο λόγος είναι $\lambda=1$ τότε το άθροισμα θα δίνεται από τον τύπο $S_{\nu}=\nu a_1.$

ΘΕΩΡΗΜΑ 3: ΓΕΩΜΕΤΡΙΚΟΣ ΜΕΣΟΣ

Τρεις πραγματικοί αριθμοί a, β, γ αποτελούν διαδοχικούς όρους γεωμετρικής προόδου αν και μόνο αν ισχύει

$$\beta^2 = a \cdot \gamma$$

Εαν οι τρεις όροι a, β, γ είναι θετικοί έχουμε ισοδύναμα $\beta = \sqrt{a \cdot \gamma}$.

Γενικά έχουμε οτι μια ακολουθία πραγματικών αριθμών (a_v) αποτελεί γεωμετρική πρόοδο αν και μόνο αν γιια κάθε $v \in \mathbb{N}^*$ ισχύει

$$a_{\nu}^2 = a_{\nu+1} \cdot a_{\nu-1}$$

ΘΕΩΡΗΜΑ 4: ΛΟΓΟΣ ΓΕΩΜΕΤΡΙΚΗΣ ΠΑΡΕΜΒΟΛΗΣ

Εαν οι πραγματικοί αριθμοί x_1, x_2, \ldots, x_ν είναι γεωμετρικοί ενδιάμεσοι δύο αριθμών $a, \beta \in \mathbb{R}^*$ τότε για το λόγο της γεωμετρικής προόδου στην οποία ανήκουν ισχύει :

- 1. Αν ο εκθέτης $\nu+1$ είναι άρτιος και a, β ομόσημοι τότε $\lambda=\pm^{\nu+1}\sqrt{\frac{\beta}{a}}$.
- 2. Αν ο εκθέτης ν + 1 είναι περιττός έχουμε
 - i. Αν a, β ομόσημοι τότε $\lambda = \sqrt[\nu+1]{\frac{\beta}{a}}$
 - ii. Αν a, β ετερόσημοι τότε $\lambda = \sqrt[\nu+1]{\left|\frac{\beta}{a}\right|}$

Στην περίπτωση όπου ο εκθέτης $\nu+1$ είναι άρτιος και a,β ετερόσημοι τότε δεν ορίζεται λόγος λ και κατά συνέπεια δε σχηματίζεται γεωμετρική πρόοδος.

ΘΕΩΡΗΜΑ 5: ΠΑΡΑΣΤΑΣΗ ΟΡΩΝ ΑΡΙΘΜΗΤΙΚΗΣ ΠΡΟΟΔΟΥ

Εαν (a_{ν}) είναι μια αριθμητική πρόοδος με διαφορά ω τότε ισχύουν οι παρακάτω ιδιότητες για τους όρους της :

i. Εαν $a_1, a_2, \ldots, a_{\nu}$ είναι ν σε πλήθος διαδοχικοί όροι γεωμετρικής προόδου τότε ο μ -οστός όρος από το τέλος βρίσκεται στη θέση $\nu - \mu + 1$ και δίνεται από τον τύπο

$$a_{\nu-\mu+1} = a_{\nu} \cdot \lambda^{1-\mu}$$

ii. Το άθροισμα S των μ τελευταίων όρων μιας γεωμετρικής προόδου (a_{ν}) είναι

$$S = S_{\nu} - S_{\nu-\mu}$$