Parallelization of Simpson's Rule

KAMALNATH M S - 21011101056

HARSH KUMAR - 21011101047

PROBLEM STATEMENT

Develop a parallel implementation of Simpson's rule to achieve significant speedup in computation time

Why Parallelization?

- 1. Reduce computation time for complex functions in large datasets.
- 2. Improved efficiency when dealing with large datasets.

APPROACH:-

Try to use the multiple cores available for computation and make the computation faster.

Performance Measure

Number of Processes	Time Taken for Sequential Computaton	Time Taken for GPU Computation	Speed Up
1	0.019216	0.055009	0.0349
100	0.0491	0.0581	0.845
1000	0.2125	0.0943	2.253
10000	1.8896	0.28119	6.72
100000	6.60008	2.19155	3.114
1000000	47.008	20.524	2.29

Average Speed Up:

2.542

Parallel Efficiency:

42.36%

SEQUENTIAL V/S GPU

SEQUENTIAL V/S GPU

References:-

AN EFFICIENT PARALLEL ALGORITHM FOR SIMPSON CUMULATIVE INTEGRATION ON GPU
I WAYAN ADITYA SWARDIANA*, TAUFIQ WIRAHMAN† AND RIFKI SADIKIN

Thank You