Tema 8: El nivel físico

Bibliografía:

[Kurose, 5^a de. Apdos 1.2.2 y 1.2.3]

[Stallings 8^a ed. Apdos. 3.2, 3.3 y 5.1 y 5.2]

Redes: Tema 8

Objetivos

- Comprender cómo se transforma una señal cuando se transmite por un medio de transmisión
- Conocer los diferentes dominios de representación de la señal
- Comprender por qué es necesario codificar y/o modular los datos para transmitirlos.
- Conocer diferentes técnicas de codificación y modulación
- Conocer los diferentes tipos de transmisión

Índice

- 1. Señales para la transmisión de datos
- 2. Perturbaciones en la transmisión
- 3. Modulación y codificación
- 4. Medios de transmisión (Kurose 1.2.3)

1. Señales para la transmisión de datos

- Señal: cualquier función que refleje el cambio de una magnitud en el tiempo
- Tipos:
 - Analógicas vs. Discretas (digitales)
 - Periódicas: s(t+T) = s(t), periodo T=1/f
- Ejemplos:
 - Cuadrada:
 - Sinusoidal: $s(t) = A sen(2\pi ft + \Phi)$
 - Amplitud (A)
 - Frecuencia (f)
 - Fase (Φ)

$$s(t) = A \operatorname{sen}(2 \pi f t + \Phi) + C$$

Señales sinusoidales

Representación de las señales

a) Dominio del tiempo

b) Dominio de la frecuencia

Espectro de una señal

- Conjunto de frecuencias que constituyen la señal
- Si todas las frecuencias son múltiplos de una dada: cada componente de frecuencia recibe el nombre de armónico

Representación de las señales

- Las señales periódicas se pueden representar como suma de señales sinusoidales (Fourier)
 - Todas las señales con frecuencias múltiples de la fundamental
 - Cada componente de frecuencia se denomina armónico

 $v(t) = s(t) + u(t) = b sen(2\pi(1/a) t + \Phi) + b sen(2\pi(2/a)t + \Phi)$

Representación de las señales

 Una señal digital periódica se puede crear mediante la suma de infinitas señales sinusoidales

Ancho de banda

- La diferencia entre la componente espectral de mayor frecuencia y la de menor frecuencia es el ancho de banda de la señal
- Las señales digitales tienen espectro infinito
 - La energía de la señal disminuye rápidamente al alejarnos de la frecuencia fundamental
 - Podemos aproximar razonablemente la señal a una con ancho de banda finito

2. Perturbaciones en la transmisión

- En su recorrido a lo largo del medio de transmisión, la señal sufre una serie de perturbaciones que degradan su calidad:
 - Ancho de banda limitado
 - Atenuación
 - Distorsión por atenuación y por retardo
 - Ruido

 Dispositivo que deja pasar un rango de componentes de frecuencia y anula el resto

Ancho de banda limitado

- Los medios de transmisión se comportan como un filtro pasa bajo
- Este efecto limita la máxima frecuencia que puede atravesar el medio (f2)
- El rango de frecuencias a las que permite el paso [o...f2] es el ancho de banda del medio
- Existe una relación entre la velocidad de transmisión y el ancho de banda del medio

Efecto sobre señales digitales

Velocidad vs ancho de banda

Transmitimos 8 bits periódicamente 01000011 (67) a distintas velocidades....

frecuencia señal = f. fundamental armónicos en frecuencias múltiples de la fundamental

Atenuación

- Pérdida de potencia de la señal con la distancia
- Proporcional a la distancia y depende del medio
- Se puede compensar mediante:
 - Amplificadores (señal analógica)
 - También amplifican el ruido
 - Repetidores (señal digital o analógica que transporta datos digitales)

reconstruida

Distorsión por atenuación

- La atenuación es creciente con la frecuencia
- Las señales cambian su forma al atenuarse desigualmente sus armónicos
 - No es crítico en señales digitales
- Se resuelve ecualizando la señal

Distorsión por retardo

- Solo en medios guiados
 - La velocidad de propagación depende de la frecuencia
- Las distintas componentes de la señal no llegan a la vez: se produce la distorsión por retardo
 - En señales digitales → interferencia entre símbolos
 - Limita la velocidad de transmisión máxima del canal

- El ruido corresponde a señales no deseadas que se inducen en la transmisión entre el emisor y el receptor
- Es el factor de mayor importancia a la hora de limitar las prestaciones en un sistema de comunicación
- Dependiendo del origen del ruido, se puede clasificar en:
 - Ruido térmico
 - Diafonía
 - Ruido impulsivo

Ruido térmico

- Es debido a la agitación térmica de los electrones dentro del conductor
- Es función de la temperatura e independiente de la frecuencia (ruido blanco)
- No se puede eliminar: impone un límite superior a las prestaciones

Diafonía (Crosstalk)

- Es causada por el acoplamiento no deseado de dos líneas adyacentes:
 - Aparece en la señal transmitida una porción de la señal transmitida en el otro canal

Ruido impulsivo

- Son picos irregulares de corta duración y de amplitud relativamente grande
- No es predecible, ni continuo
- Causas:
 - Encendido/apagado de equipos eléctricos en las proximidades de la línea de datos (cebadores de luz, interruptores, motores)
 - Perturbaciones electromagnéticas (debido, p.ej., a tormentas)
- Es una de las principales fuentes de error en la comunicación digital de datos

Pico de ruido de una centésima de segundo en una transmisión a 10 Mbits/s afectaría a 100.000 bits

Ejemplo

3. Modulación y codificación

- En ocasiones es necesaria una transformación de la señal, que transporta la información, para enviarla por el medio de transmisión:
 - Modulación: Genera una señal analógica a partir de una señal digital (o analógica)
 - Codificación: Genera una señal digital a partir de otra digital

Modulación

• En el receptor se hace el proceso inverso (demodulación)

Tipos de modulación

Modulación de múltiples niveles

- Para conseguir mayores velocidades de transmisión podemos utilizar combinaciones de diferentes amplitudes y fases
- Ejemplos:

Aplicaciones de la modulación (I)

- Adaptar la señal al medio de transmisión
 - Conversión de señales digitales a analógicas para adaptarlas a las características de la transmisión
 - Fibra óptica
 - Transmisiones inalámbricas
 - Red telefónica conmutada

Aplicaciones de la modulación (II)

- Compartir el medio de transmisión (multiplexación en frecuencia)
 - Por desplazamiento del espectro de una señal (limitada en banda) hacia otra zona del espectro
 - Ejemplo: en ADSL y cable-módem se aprovecha para transmitir por varios canales en paralelo (QAM)

Codificación

Velocidades de transmisión y modulación

- Velocidad de Transmisión: número de bits transmitidos por unidad de tiempo (bits por segundo, bps)
- Velocidad de Modulación: número de cambios que se generan en la señal por unidad de tiempo (baudios)

$$V_{mod} = V_{tx} / bpe$$

bpe (bits por estado): bits que representa cada elemento de la señal

$$V_{tx}$$
= 2000 bps
bpe = 2
 V_{mod} = V_{tx} / 2 = 1000 baud

Ejemplo

4-Medios de transmisión

- Llevan la información de emisor a receptor
- Se clasifican en:
 - Guiados:
 - Existe un cableado físico entre origen y destino
 - Las prestaciones dependen del medio
 - Par trenzado, cable coaxial, fibra óptica, etc
 - No guiados:
 - Las ondas viajan directamente en la atmósfera o el espacio exterior
 - Las prestaciones dependen de la frecuencia de la señal
 - Ondas de radio, microondas (satélites), infrarrojos, etc

Medios guiados: Par trenzado

- Medio guiado más económico y usado
- Consta de dos conductores aislados trenzados entre sí
 - El trenzado disminuye las interferencias
- Cada par actúa como un enlace de comunicación
- Se suele utilizar en:
 - Telefonía
 - Redes de área local
 - Velocidades hasta 10 Gpbs

Medios guiados: Cable coaxial

- Consiste en dos conectores concéntricos separados por un aislante
- Permite velocidades de hasta 500 Mbps
- Se emplea en:
 - TV analógica
 - TV por cable (redes mixtas)
 - Primeras LANs

Medios guiados: Fibra óptica

- Transmite señales luminosas (láser, luz), no eléctricas
 - Inmune al ruido electromagnético
 - Baja atenuación
 - Mayor tamaño y peso
- Permite velocidades de gigabits
- Aplicaciones: comunicaciones a larga distancia y LANs

Medios guiados: Fibra óptica

- Ventajas de las fibras ópticas
 - Mayor capacidad
 - Velocidades de cientos de Gbps sobre decenas de Km
 - Menor atenuación
 - Mayor distancia entre repetidores
 - Menor coste y fuentes de error
 - Aislamiento electromagnético
 - No sufre ruido impulsivo o diafonía
 - Mayor seguridad frente a escuchas
 - Menor tamaño y peso
 - Mucho más fina que el coaxial o el par trenzado

Medios de transmisión no guiados

- Transmisión inalámbrica
 - Medio de transmisión: aire
- Tasa de error mayor que en medios guiados
- Menor seguridad en la transmisión
- Velocidades desde 300 bps hasta 54 Mbps
- La frecuencia de la onda determina las características (y uso) de la transmisión:
 - Ondas de radio
 - Infrarrojos

Medios de transmisión no guiados

Espectro electromagnético en Telecomunicaciones

Medios no guiados: Radio

- Enlace entre un terminal fijo (estación base) y otro móvil o entre terminales móviles (ad hoc)
- Velocidades muy variables en función de la frecuencia: de pocos Kb a 50 Gb
- Aplicaciones típicas:
 - Transmisión de radio y TV
 - Telefonía móvil
 - Redes locales (WiFi, WiMax, MobileFI, etc)
 - Enlaces de microondas
 - Satélites

Medios no guiados: Infrarrojos

- Se emplea esa porción del espectro para transmisiones ópticas no guiadas
 - Aplicación ejemplo: mandos a distancia
- Se propagan en línea recta y también mediante reflexión en una superficie no absorbente (una pared, por ejemplo)
- Aplicaciones típicas funcionan a 4 Mbps y unos pocos metros
 - Usando elementos ópticos apropiados se puede llegar a a Gbps y distancias de miles de metros