INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA MESTRADO EM ENGENHARIA INFORMÁTICA E DE COMPUTADORES MESTRADO EM ENGENHARIA INFORMÁTICA E MULTIMÉDIA PROCESSAMENTO DE IMAGEM E BIOMETRIA

Semestre de inverno 2022/2023

Época Normal

23 de janeiro de 2023, 19:00

- R1 Repetição do 1.º teste parcial, duração de 1:30, grupos 1, 2, 3, 4 e 5.
- R2 Repetição do 2.º teste parcial, duração de 1:30, grupos 6, 7, 8, 9 e 10.
- TG Teste Global, duração de 2:30, grupos 1, 4, 5, 7, 8, 9 e 10.

Justifique todas as respostas. Consulta: R1/R2 - 1 folha A4; TG - 2 folhas A4.

1. $\{R1||TG\}$ A imagem monocromática I, tem 2048 pixels, n=8 bit/pixel, resolução espacial $M \times 2M$ e possui o histograma que se apresenta na tabela. Para os níveis de cinzento ausentes na tabela, não se registam ocorrências.

Nível de cinzento	211	220	230	240	251
Ocorrências	100	100	100	100	A

- (a) $\{1,25||1,0\}$ Indique os valores de M e A. Trata-se de uma imagem de elevado brilho e elevado contraste?
- (b) $\{1,25||1,0\}$ Calcule a entropia, a potência, a intensidade média e o número de bits ocupado por I.
- (c) $\{1,25||1,0\}$ Apresente os histogramas das imagens I_2 e I_3 , tais que $I_2 = I$ AND 1 e $I_3 = I 200$. Determine o valor da entropia de I_3 e compare com o valor da entropia de I.
- 2. {R1} As seguintes questões referem-se ao funcionamento de Sistemas Biométricos (SB).
 - (a) {1,25} Descreva o significado dos seguintes conceitos: (i) fase de registo (*enroll phase*); (ii) fase de autenticação (*authentication*). Na fase de autenticação, tipicamente realiza-se uma comparação 1:1 ou uma comparação 1:N?
 - (b) {1,5} No desenvolvimento de um SB, procura-se ajustar o número de Falsos Positivos (FP) e Falsos Negativos (FN). Indique como se procede para ajustar os valores de FP e FN, para valores aceitáveis numa determinada aplicação.
- 3. $\{R1\}$ A figura apresenta uma técnica de Processamento Digital de Imagem (PDI) constituída pela aplicação em sequência das transformações de intensidade T_1 e T_2 , sobre uma imagem monocromática de entrada.

- (a) $\{1,5\}$ Para cada função T_1 e T_2 : indique a funcionalidade; apresente um esboço da tabela de *lookup* que a implementa; o valor adequado da resolução em profundidade da imagem de entrada. Indique o objetivo geral da técnica de PDI apresentada na figura.
- (b) $\{1,5\}$ Apresente os esboços de transformações de intensidade T_3 e T_4 , tais que:
 - (i) T_3 , aumenta significativamente o brilho da imagem de entrada, com n=5 bit/pixel;
 - (ii) T_4 , obtém a versão negativa da imagem de entrada, com n=6 bit/pixel;
- (c) $\{1,5\}$ Sobre a imagem $I = \begin{bmatrix} 50 & 60 & 5 \\ 0 & 0 & 110 \\ 100 & 5 & 5 \end{bmatrix}$, aplicam-se as transformações de intensidade T_1 e T_2 . Apresente uma estimativa das imagens I_1 e I_2 , tais que resultam desta aplicação.

- 4. $\{R1||TG\}$ Sejam as janelas utilizadas na filtragem espacial, definidas por $w_1 = \frac{1}{A}\begin{bmatrix} 3^* & 2 \\ 2 & B \end{bmatrix}$ $ew_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.
 - (a) $\{1,5||1,0\}$ Determine os valores de A e B para que w_1 corresponda a uma janela de *smoothing* apropriada. Indique a funcionalidade da janela w_2 .
 - (b) $\{1,5|1,0\}$ Considere w_1 com A=1 e B=3. Realiza-se a filtragem de uma imagem monocromática I com resolução espacial 1024×512 usando w_1 . Indique o número máximo de somas e multiplicações realizadas nessa filtragem, no pior caso.
 - (c) $\{1,5||1,0\}$ Seja a imagem monocromática I com resolução espacial 256×256 e resolução em profundidade de n=8 bit/pixel, tal que as primeiras 128 colunas têm conteúdo constante igual a 10 e as restantes 128 colunas têm conteúdo constante igual a 100. Descreva o conteúdo das imagens I_1 e I_2 , as quais resultam da filtragem espacial de I com w_1 e w_2 , respetivamente. Considere w_1 com A=1 e B=2.
- 5. {R1||TG} Considere as seguintes questões sobre técnicas de PDI.
 - (a) {1,5||1,0} Qual o objetivo da aplicação da técnica de equalização de histograma? Tipicamente, em que situações é aplicada com sucesso?
 - (b) {1,5||1,0} Sobre determinada imagem ruidosa, contaminada com ruído *salt and pepper*, pretende-se efetuar uma operação de deteção de contornos (*edge detection*), produzindo uma imagem binária com o mapa de contornos (*edge map*). Indique os passos de um algoritmo de PDI tal que cumpra este objetivo.
 - (c) {1,5||1,0} Em que consiste o filtro *Laplacian of Gaussian* (LoG)? Em que situações deve ser aplicado?
- 6. $\{R2\}$ A figura apresenta dois <u>módulos de espetro centrado</u> com dimensões P=512 e Q=512, no âmbito do algoritmo de filtragem no domínio da frequência, tendo-se usado previamente *padding* sobre a imagem de entrada, no domínio do espaço. Do lado esquerdo, temos o módulo do espetro da imagem de entrada |F[u,v]| e do lado direito temos o módulo do espetro da imagem de saída, após filtragem, |G[u,v]|.

- (a) $\{1,25\}$ Indique o tipo de filtragem realizado e a resolução espacial da imagem de entrada f[m,n]. Esboce a resposta em frequência do filtro utilizado e estime a largura de banda do mesmo.
- (b) {1,25} Considere agora que sobre a mesma imagem de entrada se aplicam os filtros definidos por

$$H_A[u,v] = \left\{ \begin{array}{ll} 1, & \text{se} \quad D[u,v] \leq 50 \\ 0, & \text{caso contrário} \end{array} \right. \quad \text{e} \quad H_B[u,v] = \left\{ \begin{array}{ll} 0, & \text{se} \quad D[u,v] < 50 \\ 1, & \text{se} \quad 50 \leq D[u,v] \leq 150 \\ 0, & \text{se} \quad D[u,v] > 150 \end{array} \right.$$

Indique o tipo de filtragem efetuado pelos dois filtros. Sejam as imagens $G_A[u,v]$ e $G_B[u,v]$, resultantes da filtragem da imagem F[u,v], por $H_A[u,v]$ e $H_B[u,v]$, respetivamente. As imagens após filtragem terão maior ou menor energia comparativamente com a imagem de entrada?

(c) {1,25} Considere que se pretende aplicar a técnica de *homomorphic filtering* sobre a imagem de entrada. Qual o objetivo desta técnica? Qual o tipo de filtragem aplicado no âmbito desta técnica?

7. $\{R2||TG\}$ Sobre a imagem f[m,n], com valor médio $m_f=1,7778$ e energia $E_f=30$ J, calculou-se a DFT e a DCT, tendo-se obtido, respetivamente

$$F[u,v] = \begin{bmatrix} 16 & -2 & -2 \\ -0.5 + j\frac{\sqrt{3}}{2} & -0.5 + j\frac{\sqrt{3}}{2} & -0.5 + j\frac{\sqrt{3}}{2} \\ -0.5 - j\frac{\sqrt{3}}{2} & -0.5 - j\frac{\sqrt{3}}{2} & -0.5 - j\frac{\sqrt{3}}{2} \end{bmatrix} \qquad \text{e} \qquad G[u,v] = \begin{bmatrix} A & -0.8165 & -0.4714 \\ -0.4082 & -0.5000 & -0.2887 \\ 0.2357 & 0.2887 & B \end{bmatrix}.$$

- (a) {1,25||1,0} Apresente o respetivo módulo de espetro.
- (b) $\{1,5||1,0\}$ Determine os valores das constantes $A \in B$.
- 8. {R2||TG} As seguintes questões referem-se ao processamento digital de imagem a cores.
 - (a) {1,5||1,0} Considere que possui uma imagem colorida com excesso de luminosidade e contaminada com ruído *salt and pepper* no canal de cor G. Pretende-se realizar correção da luminosidade da imagem. Indique, de forma detalhada, os procedimentos a efetuar para realizar esta operação.
 - (b) $\{1,5|1,0\}$ Sobre o espaço de cor RGB com n=7 bit/pixel por componente, indique: o número de cores distintas neste espaço; o número de níveis de cinzento distintos; os códigos das cores branco, preto, verde puro e amarelo.
 - (c) {1,5||1,0} Sobre uma imagem representada no espaço RGB pretende-se aplicar a técnica *segmentação* sobre o código de cor [100, 230, 240], até uma distância de 10. Apresente um esboço do algoritmo que efetua esta operação, explicitando os parâmetros de entrada e de saída.
- 9. {R2||TG} Tenha em conta as técnicas de processamento morfológico de imagem.
 - (a) {1,5||1,0} Nas operações de processamento morfológico de imagem, qual o papel do elemento estruturante? Quais os principais critérios a seguir na escolha das dimensões do mesmo.
 - (b) $\{1,5||1,0\}$ A figura apresenta duas operações morfológicas aplicadas sobre a imagem I. Descreva as operações e o elemento estruturante tais que a partir de I conduzem às imagens I_1 e I_2 .

- (c) $\{1,5|1,0\}$ Considere que sobre a imagem I se pretende transformar os círculos em quadrados aproximadamente com a mesma área dos círculos. Indique como procederia para conseguir este objetivo através de operações morfológicas.
- 10. {R2||TG} Considere as seguintes questões sobre o funcionamento de sistemas biométricos.
 - (a) {1,5||1,0} O reconhecimento biométrico de indivíduos através de face tem vasta aplicação, comparativamente com outras modalidades biométricas. Explique as principais razões que levam a esta vasta aplicação.
 - (b) {1,5||1,0} Considere que se utiliza um sistema biométrico baseado em íris, para ser usado por dois gémeos idênticos. A presença de gémeos idênticos aumenta a probabilidade de falha do sistema?
 - (c) {1,5||1,0} No reconhecimento de indivíduos através de impressão digital, recorre-se à abordagem por deteção do ponto de referência seguida de deteção de minúcias. Indique: em que consiste o ponto de referência e como se deteta; o que são minúcias e como se detetam.