Модель Кохонена

Евгений Борисов

Задача кластеризации

Дано:

 $X^\ell=\{x_i\}_{i=1}^\ell$ — обучающая выборка объектов, $x_i\in\mathbb{R}^n$ $ho^2(x,w)=\|x-w\|^2$ — евклидова метрика в \mathbb{R}^n

Найти:

центры кластеров $w_y \in \mathbb{R}^n$, $y \in Y$; алгоритм кластеризации «правило жёсткой конкуренции» (WTA, Winner Takes All):

$$a(x) = \arg\min_{y \in Y} \rho(x, w_y)$$

Критерий: среднее внутрикластерное расстояние

$$Q(w; X^{\ell}) = \sum_{i=1}^{\ell} \rho^{2}(x_{i}, w_{a(x_{i})}) \to \min_{w_{y}: y \in Y}$$

Модель Кохонена. Конкурентное обучение.

T.Kohonen. Self-organized formation of topologially orret feature maps. 1982.

Структура алгоритма — двухслойная нейронная сеть:

Градиентный шаг в методе SG: для выбранного $x_i \in X^\ell$

$$w_{y} := w_{y} + \eta(x_{i} - w_{y})[a(x_{i}) = y]$$

Если x_i относится к кластеру y, то w_y сдвигается в сторону x_i

Модель Кохонена. Конкурентное обучение.

T.Kohonen. Self-organized formation of topologially orret feature maps. 1982.

Алгоритм обучения (SGD)

Вход: выборка X^{ℓ} ; темп обучения η ; параметр λ ; Выход: центры кластеров $w_1, \ldots, w_K \in \mathbb{R}^n$; инициализировать центры $w_y, y \in Y$; инициализировать текущую оценку функционала: $Q := \sum_{i=1}^{\ell} \rho^2(x_i, w_{a(x_i)})$;

повторять

выбрать объект x_i из X^ℓ (например, случайно); вычислить кластеризацию: $y:=\arg\min_{y\in Y}\rho(x_i,w_y);$ градиентный шаг: $w_y:=w_y+\eta(x_i-w_y);$ оценить значение функционала: $Q:=(1-\lambda)Q+\lambda\rho^2(x_i,w_y);$ пока значение Q и/или веса w не стабилизируются;

Структура алгоритма — двухслойная нейронная сеть:

Градиентный шаг в методе SG: для выбранного $x_i \in X^\ell$

$$w_{v} := w_{v} + \eta(x_{i} - w_{v}) \lceil a(x_{i}) = y \rceil$$

Если x_i относится к кластеру y, то w_y сдвигается в сторону x_i

Модель Кохонена. Конкурентное обучение.

T.Kohonen. Self-organized formation of topologially orret feature maps. 1982.

Правило жёсткой конкуренции WTA (winner takes all):

$$w_y := w_y + \eta(x_i - w_y)[a(x_i) = y], \quad y \in Y$$

Недостатки правила WTM:

- медленная скорость сходимости
- некоторые w_y могут никогда не выбираться

Правило мягкой конкуренции WTM (winner takes most):

$$w_y := w_y + \eta(x_i - w_y) K(\rho(x_i, w_y)), \quad y \in Y$$

где ядро $K(\rho)$ — неотрицательная невозрастающая функция

Теперь центры всех кластеров смещаются в сторону x_i , но чем дальше от x_i , тем меньше величина смещения

Карты Кохонена. Self-Organizing Maps.

Teuvo Kohonen. Self-Organizing Maps. 2001.

Правило мягкой конкуренции WTM (winner takes most):

$$w_y := w_y + \eta(x_i - w_y) K(\rho(x_i, w_y)), \quad y \in Y$$

где ядро K(
ho) — неотрицательная невозрастающая функция

Теперь центры всех кластеров смещаются в сторону x_i , но чем дальше от x_i , тем меньше величина смещения

Структура алгоритма — двухслойная нейронная сеть:

 $Y=\{1,\ldots,M\} imes\{1,\ldots,H\}$ — прямоугольная сетка кластеров Каждому узлу (m,h) приписан нейрон Кохонена $w_{mh}\in\mathbb{R}^n$ Наряду с метрикой $\rho(x_i,x)$ на X вводится метрика на сетке Y:

$$r((m_i, h_i), (m, h)) = \sqrt{(m - m_i)^2 + (h - h_i)^2}$$

Окрестность (m_i, h_i) :

Карты Кохонена. Self-Organizing Maps.

Teuvo Kohonen. Self-Organizing Maps. 2001.

Правило мягкой конкуренции WTM (winner takes most):

$$w_y := w_y + \eta(x_i - w_y) K(\rho(x_i, w_y)), \quad y \in Y$$

где ядро $K(\rho)$ — неотрицательная невозрастающая функция

Теперь центры всех кластеров смещаются в сторону x_i ,

но чем дальше от x_i , тем меньше величина смещения Обучение Карты Кохонена.

Вход: X^{ℓ} — обучающая выборка; η — темп обучения; Выход: $w_{mh} \in \mathbb{R}^n$ — векторы весов, m = 1..M, h = 1..H; $w_{mh}:=\mathsf{random}\left(-\frac{1}{2MH},\frac{1}{2MH}\right)$ — инициализация весов; повторять

выбрать объект x_i из X^ℓ случайным образом; WTA: вычислить координаты кластера:

$$(m_i, h_i) := a(x_i) \equiv \arg\min_{(m,h)\in Y} \rho(x_i, w_{mh});$$

для всех $(m,h) \in \mathsf{O}$ крестность (m_i,h_i)

WTM: сделать шаг градиентного спуска:

$$w_{mh} := w_{mh} + \eta(x_i - w_{mh}) K(r((m_i, h_i), (m, h)));$$

пока кластеризация не стабилизируется;

Различные топологии выходного слоя **SOM**

Обучение модели и функция окрестности

competitive hebbian learning

изменение весов

$$\Delta w = \eta \cdot \theta(k) \cdot (x - w)$$

 $\eta \in (0,1)$ - шаг обучения

k - номер нейрона-победителя

 $\theta(k)_j \in [0,1]$ - значение ф-ции окрестности нейрона-победителя k для нейрона j;

Карты Кохонена. Self-Organizing Maps.

Teuvo Kohonen. Self-Organizing Maps. 2001.

Интерпретация результатов

Два типа графиков — цветных карт $M \times H$:

- Цвет узла (m,h) локальная плотность в точке (m,h) среднее расстояние до k ближайших точек выборки
- По одной карте на каждый признак: цвет узла (m,h) — значение j-й компоненты вектора $w_{m,h}$

Пример: задача UCI house-votes (US Congress voting patterns) Объекты — конгрессмены

Признаки — результаты голосования по различным вопросам Есть целевой признак «партия» ∈ {демократ, республиканец}

Топология выходного слоя SOM - двумерная решетка (накрываем данные сеткой)

SOM: литература

git clone https://github.com/mechanoid5/ml_lectorium.git

Kohonen, T. Learning Vector Quantization, Neural Networks, 1988, 1 (suppl 1), 303.

T.Kohonen. Self-organized formation of topologially orret feature maps. 1982.

Teuvo Kohonen. Self-Organizing Maps. 2001.

Воронцов К. В.

Прикладные модели машинного обучения. 2021.

Лекция 2: Обучение без учителя.

https://www.youtube.com/watch?v=wfbe2yaXAkI

Борисов E.C. Кластеризатор на основе нейронной сети Кохонена. http://mechanoid.su/neural-net-kohonen-clusterization.html