Curve e Superfici per il Design Laboratorio 5 - Superfici parametriche

Prof.ssa Anna Scotti

21 Maggio 2019

Materiali

Nella con il materiale di oggi troverete:

Questa presentazione (lab5.pdf)

Troverete nella cartella Beep 'FranzPlot-DCS':

► L'eseguibile franzplot_launcher

Nella cartella comune:

II file trasformazioni_ref.pdf.

Esercizi 1–6:

Per un certo numero di esercizi che seguiranno la procedura richiesta per la risoluzione è sempre la stessa. Data l'espressione di una curva ed una trasformazione:

- Scrivere l'espressione della superficie trasformando la curva come indicato;
- Rappresentare con FranzPlot la superficie e controllare che riproduca la corretta trasformazione utilizzando le trasformazioni temporali della curva.

Esercizio 1: Retta \rightarrow Cono

▶ Data retta *r*, di equazione:

$$r: \begin{cases} x = 0 \\ y = 0.5 \ u \\ z = u \end{cases}$$

dove u è il parametro.

Dedurre e rappresentare la curva ottenuta applicando una rotazione di 2π attorno all'asse z di r.

Esercizio 1 - i

$$\begin{bmatrix} \cos(v) & -\sin(v) & 0 & 0 \\ \sin(v) & \cos(v) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0.5 & u \\ u \\ 1 \end{bmatrix} = \begin{bmatrix} -0.5 & u & \sin(v) \\ 0.5 & u & \cos(v) \\ u \\ 1 \end{bmatrix}$$

Esercizio 1 - ii

Esercizio 2: Circonferenza → Cono

 Con le stesse modalità dell'esercizio precedente, rappresentare lo stesso cono come traslazione e scalatura di una circonferenza

Esercizion 2 -i

$$C: \begin{cases} x = R \cos(u) \\ y = R \sin(u), & 0 \le u \le 2\pi \\ z = 0 \end{cases}$$

$$\begin{bmatrix} v/R & 0 & 0 & 0 \\ 0 & v/R & 0 & 0 \\ 0 & 0 & 1 & v \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} R\cos(u) \\ R\sin(u) \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} v\cos(u) \\ v\sin(u) \\ v \\ 1 \end{bmatrix}$$

Esercizio 3: Retta → Cilindro

$$C: \begin{cases} x = 0 \\ y = 2 \\ z = u \end{cases}$$

$$\begin{bmatrix} \cos(v) & -\sin(v) & 0 & 0 \\ \sin(v) & \cos(v) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \\ u \\ 1 \end{bmatrix} = \begin{bmatrix} -2\sin(v) \\ 2\cos(v) \\ u \\ 1 \end{bmatrix}$$

Esercizio 4: Circonferenza → Sfera

$$C: \begin{cases} x = R \cos(u) \\ y = R \sin(u), & 0 \le u \le 2\pi \\ z = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(v) & -\sin(v) & 0 \\ 0 & \sin(v) & \cos(v) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} R\cos(u) \\ R\sin(u) \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} R\cos(u) \\ R\sin(u)\cos(v) \\ R\sin(u)\sin(v) \\ 1 \end{bmatrix}$$

Esercizio 5: Circonferenza → Cilindro

$$C: \begin{cases} x = R \cos(u) + x_0 \\ y = R \sin(u) + y_0, & 0 \le u \le 2\pi \\ z = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & v \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} R \cos(u) \\ R \sin(u) \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} R \cos(u) \\ R \sin(u) \\ v \\ 1 \end{bmatrix}$$

Esercizio 5a: Cilindri deformati con tagli

Applicare alla circonferenza dell'esercizio precedente un taglio proporzionale al parametro v in direzione x sul piano con normale in direzione y.

Esercizio 5b:

Applicare alla stessa circonferenza un taglio proporzionale al parametro v^2 in direzione x sul piano con normale in direzione y.

Esercizion 5c:

Applicare alla stessa circonferenza un taglio proporzionale al parametro v² in direzione x sul piano con normale in direzione y.

Esercizio 6: Toro

Nel caso sia ottenuto dalla rotazione di una circonferenza posta sul piano yz e ruotata attorno all'asse z:

$$\begin{bmatrix} \cos(v) & -\sin(v) & 0 & 0 \\ \sin(v) & \cos(v) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ h_1 + R \sin(u) \\ h_2 + R \cos(u) \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -h_1 \sin(v) - R \sin(v) \sin(u) \\ h_1 \cos(v) + R \cos(v) \sin(u) \\ h_2 + R \cos(u) \\ 1 \end{bmatrix}$$

Esercizio 6 - i

Esercizio 7: Ellissoide

Ricavare l'equazione di un ellissoide con semiassi
 a = 2 (asse x), b = c = 1 (assi y e z);

 Rappresentare la superficie con PovRay

Esercizio 8

Rappresentare con Povray la seguente superficie:

$$\Sigma : \begin{cases} x = u \cos(v) \\ y = u^2 \\ z = u \sin(v) \end{cases}$$
$$0 \le u \le 2, \quad 0 \le v \le 2\pi$$

