

Q1: Show that the PRODUCT of Kernels is a Kernel.

SOLUTION:

Let $K(x,z) = K_1(x,z) * K_2(x,z)$ where K_1 and K_2 are valid Kernels.

To show K is a valid Kernel as well

As per Shawe-Taylor & Char Chistianini, 2004, a valid & sufficient condition for a function (x, x) to be a valid Kernel is that the Gram (x, x) to be a valid Kernel is that the Gram matrix K, whose elements are given by (x, x) matrix K, whose elements are given by (x, x)

of brievity, in this assignment) (21 symmetric)
for all possible choices of the set {2n}

(i) SYMMETRIC: Since k, & k2 are valid

Cooresponding

Kennels, hence K, and K2 corresponding Goram matrices one symmetrical.

: $k_1(x, z) = k_1(z, x); k_2(x, z) = k_2(z, x)$

Let us denote the ith now & jth column element of a matoux by m; .

i kij = K1 * K2; (elementwise product) (as per definition)

= K1; * K2 ji (: K1, K2 Symmetric)

: K is symmetric. CONDITION 1 satisfied /

POSITIVE SEMI DEFINITE:

PART1: We show that K1, K2 can be expressed as pot form

PROOF: As per CHOLESKY DECOMPOSITION, A symmetric PSD matrix M can be factorized into a peroduct $M = LL^T$ where L is a lower triangular materix with positive diagonal elements. & L'is unique

Hence for KI, K2 there exist unique PoQ such that KI = PPT & K2 = QQT

in K1 ij = Pi Pj = \(\int \text{Pik} \)

(for ith row, jth column element of K1)

K2ig = qt q, = Equil qlg.

Now ut Ku Needs to be ≥ 0 (FOR OUR PROOF)

ut Ku = ∑ ∑ u, u, Kij

= \(\int \) \(\int \

 $= \sum_{i} \sum_{j} u_{i} u_{j} \left(\sum_{k} P_{ik} P_{kj} \right) \left(\sum_{k} q_{il} q_{j} \right)$

 $= \sum_{k} \sum_{\ell} \left(\sum_{i} u_{i} P_{ki} q_{i\ell} \right) \left(\sum_{j} u_{j} P_{kj} q_{j\ell} \right)$

(REARRANGING the terms)

 $k(x,y) \stackrel{\text{def}}{=} \exp(\langle x,y \rangle), x,y \in \mathbb{R}^d, d \geq 1$ is a valid kernel.

De have been given in the question provided a Taylor series $f(x) = \sum_{n=1}^{\infty} a_n x^n, |x| < \sqrt{x}$ $x \in \mathbb{R}$ for $r \in (0, \infty]$ with $a_n \geq 0$ for all n > 0.

Then for X be a Tr-ball in 1Rd,

x,x' e Rd such that IIxII < No.

$$\chi(x,x^r) = f(\langle x,x^r \rangle)$$

$$= \sum_{n=0}^{\infty} \alpha_n (\langle x, x \rangle)^n \text{ is a keund.}$$

Now we know the Taylor series expansion

fer so $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \dots$

$$= \sum_{n=0}^{\infty} \frac{2^n}{n!}$$
ie. Compassing with eq. (1)
above

 $a_n = \frac{1}{m0}$

Combining eq (1) & (3), we see : $\chi(\chi_1 y) = \sum_{n=1}^{\infty} \frac{\langle \chi_n y \rangle^n}{n!}$ is a valid Kennel. :. e(x,y) is a Kound [PROVED] eq(2) => ex is a sum of polynomials of various degrees from 0 to ∞ since both sums & products of valid kernels are valid Kernel as well : from Taylor Servies expansion of ez $K(x,y) = \sum_{n=1}^{\infty} \frac{\langle x, y \rangle^n}{n!} = e(\langle x, y \rangle)$

is a valid kernel.

PROVED