Analysing the Effects of National Income on Health Expenditures and Infant Mortality in Developed, Developing and In Transition Nations, 2005-2015

Group 5

Shannon Dow Illiyuna Islam Julia Jaynes

Outline

- 1. Introduction & Background
- 2. Literature Review
- 3. Data
- 4. Results
- 5. Further Research
- 6. Conclusion

Introduction

- People with higher levels of income tend to have overall better levels of health.
- Access to quality health increases the chances of survival for newborns
- We wanted to see how the level of a nation's wealth affect their health expenditures, especially in regards to the infant mortality rate

Literature Review

- Gbesemete and Jonsson (1993):
 - A comparison of empirical models on determinants of infant mortality: a cross-national study on Africa
 - Inverse relationship between GNI & Infant mortality
 - o Inverse relationship between Health care spending and Infant mortality
- Selma Mushkin (1962); Bloom and Canning (2000)
 - Health As An Investment
 - Spillover effects of a healthy labour force

1. Introduction 2. Literature Review

More Background

- Dorling, Mitchell and Pearce (2007); Ward and Viner (2017)
 - The global impact of income inequality on health by age: an observational study
 - The impact of income inequality and national wealth on child and adolescent mortality in low and middle-income countries
- Newhouse (1992) and Fuchs (1996):
 - Accounts for technological advancement in rapid growth of health care expenditure

Data

What data are we analyzing from these countries? 2005 - 2015

- GNI per capita (US dollar)
- Health Expenditure per Capita (US dollar)
- Infant Mortality
 - probability of infant death per 1000 deaths

Where was the data found?

- World Health Organization
- World Bank

More Data:

- We chose data from 30 different countries with an attempt to have an even spread between regions of the world and development levels
- We used <u>dummy variables</u> to represent each of the types of economies.
 - Developing was our reference case.
 - The two dummy variables were: trans (in transition) and developed (developed)

Countries Chosen

GNI on HEPC

Regression Models and Results (HEPC GNI)

	if developed		CIC	ans ——				
Source	SS		df	MS	N	umber of ol	os =	
				100 - 2	- F	(1, 108)	=	426
Model	521198365		1	521198365	5 P	rob > F	=	0.0
Residual	131968722	1	.08	1221932.61	l R	-squared	=	0.7
	1111 1111 1111		MITTER I		- A	dj R-square	ed =	0.7
Total	653167087	1	.09	5992358.6	5 R	oot MSE	=	
hepc	Coef.	Std. E	rr.	t	P> t	[95%	Conf.	Interv
gni	.0984831	.00476	85	20.65	0.00	0 .0890	0311	.1079
cons	111111200	218.68	91	0.05	0.95	7 -421.	7073	445.2

1. Introduction 2. Literature Review

3. Data

4. Results

5. Further Research

6. Conclusion

Interpretation (HEPC GNI)

Per dollar increase in GNI, HEPC increases by 0.050 (In Transition)

Per dollar increase in GNI, HEPC increases by 0.076 (Developing)

Per dollar increase in GNI, HEPC increases by 0.099 (Developed)

Interpretation Continued:

Why is this stronger in developing economies than in transition?

- Developing are focusing on building infrastructure.
- Developing nations are really focusing on lowering infant mortality (ex-spending money on immunization)
- Developed nations treat more expensive/advanced illness

HEPC on INFMOR

Regression Models and Results (INFMOR HEPC)

reg infmor	hepc if develop	ed == 0 &	trans ==0		
Source	SS	df	MS	Number of obs	= 110 = 71.56
Model Residual	19619.3444 29611.6748	1 108	19619.3444 274.182174	Prob > F	= 0.0000
Total	49231.0192	109	451.660727	Adj R-squared Root MSE	= 0.3929
infmor	Coef.	Std. Err.	t	P> t [95% Co	nf. Interval]
hepc		.0044688	A STATE OF THE STA	0.000046659 0.000 43.6816	

reg infmor h	nepc if develo	ped == 1 &	trans ==0		
Source	SS	df	MS	Number of obs F(1, 108)	= 110 = 22.41
Model Residual	70.0190441 337.439956	1 108	70.0190441 3.12444404	Prob > F R-squared	= 0.0000
Total	407.459001	109	3.73815597	Adj R-squared Root MSE	= 0.1642
infmor	Coef.	Std. Err.	t	P> t [95% Co	onf. Interval]
hepc _cons	0003274	.0000692		0.000000464 0.000 5.25104	

reg infmor h	mepc if develo	ped == 0 &	trans ==1			
Source	SS	df	MS	Number of o - F(1, 108)	bs =	110 30.75
Model	5615.32042	1	5615.32042		=	0.0000
Residual	19719.6623	108	182.58946	R-squared Adj R-squar	= ed =	0.2144
Total	25334.9827	109	232.431034	CONTRACTOR CONTRACTOR	=	10:010
infmor	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
hepc _cons	0457308	.0082463 2.536891	-5.55 12.41	0.000062 0.000 26.4	0764 6256	0293852 36.51968

1. Introduction 2. Literature Review

3. Data

4. Results

5. Further Research

6. Conclusion

Interpretation (INFMOR HEPC)

Per dollar increase in HEPC, INFMOR decreases by .046 (InTransition)

Per dollar increase in HEPC, INFMOR decreases by .037 (Developing)

Per dollar increase in HEPC, INFMOR decreases by .0003 (Developed)

1. Introduction 2. Literature Review

3. Data

4. Results

5. Further Research

6. Conclusion

Interpretation Continued

Why is this stronger in transition economies than developing?

- Nations in transition may have developed more infrastructure, so the money spent can go to people more directly.
- Less corruption that would inhibit efficient use of money
- Technology

Further Research

- Effect of amount spent on healthcare has a greater effect in developing and transition economies than developed economies
 - Where is the expenditure going?
 - Where is the increase in expenditure most impactful?
- Reasons for why transition nations have greatest effect in decrease in infant mortality as healthcare spending increases
 - o increases in spending going towards more medical care rather than building medical infrastructure
 - corruption in government
- Technology

Conclusion

- Help guide aid fund and development projects
 - Predict effects of the increase in health care spending
 - Efficiency of spending in each country
- GNI may also increase where there are more healthy citizens who can participate in the economy which is affected by infant mortality (paradox)
- Outside aid is important for developing economies