#### K-MEANS CLUSTERING

- Unsupervised learning ml algorithm
- · here we will be working with unlabelled data

```
In [26]:
              import numpy as np
           2 import pandas as pd
           3 import matplotlib.pyplot as plt
           4 import seaborn as sns
           5 from sklearn.preprocessing import MinMaxScaler
             from sklearn.cluster import KMeans
           7
           8
           9
             import warnings
          10 warnings.filterwarnings('ignore')
 In [3]:
           1 c_data = pd.read_csv(r"C:\Users\Bhupendra\Desktop\DataCenter\Clustering\Coun
           2 c_data.head()
 Out[3]:
```

|   | country                   | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  |
|---|---------------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|
| 0 | Afghanistan               | 90.2       | 10.0    | 7.58   | 44.9    | 1610   | 9.44      | 56.2       | 5.82      | 553   |
| 1 | Albania                   | 16.6       | 28.0    | 6.55   | 48.6    | 9930   | 4.49      | 76.3       | 1.65      | 4090  |
| 2 | Algeria                   | 27.3       | 38.4    | 4.17   | 31.4    | 12900  | 16.10     | 76.5       | 2.89      | 4460  |
| 3 | Angola                    | 119.0      | 62.3    | 2.85   | 42.9    | 5900   | 22.40     | 60.1       | 6.16      | 3530  |
| 4 | Antigua<br>and<br>Barbuda | 10.3       | 45.5    | 6.03   | 58.9    | 19100  | 1.44      | 76.8       | 2.13      | 12200 |

```
In [4]: 1 c_data.shape
```

Out[4]: (167, 10)

```
In [5]:
              c data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 167 entries, 0 to 166
         Data columns (total 10 columns):
          #
              Column
                            Non-Null Count
                                             Dtype
          0
               country
                            167 non-null
                                             object
               child mort
                            167 non-null
                                              float64
          1
                                              float64
          2
              exports
                            167 non-null
          3
              health
                            167 non-null
                                              float64
              imports
          4
                            167 non-null
                                              float64
          5
                                              int64
              income
                            167 non-null
          6
              inflation
                                              float64
                            167 non-null
          7
              life expec
                            167 non-null
                                              float64
          8
              total_fer
                            167 non-null
                                              float64
          9
              gdpp
                            167 non-null
                                              int64
         dtypes: float64(7), int64(2), object(1)
         memory usage: 13.2+ KB
In [6]:
              c_data.describe()
Out[6]:
                 child_mort
                              exports
                                          health
                                                    imports
                                                                  income
                                                                             inflation
                                                                                      life_expec
                167.000000
                           167.000000
                                      167.000000
                                                 167.000000
                                                               167.000000
                                                                          167.000000
                                                                                     167.000000
          count
                 38.270060
                                                             17144.688623
                                                                                      70.555689
          mean
                            41.108976
                                        6.815689
                                                  46.890215
                                                                            7.781832
```

```
167
std
       40.328931
                   27.412010
                                 2.746837
                                            24.209589
                                                         19278.067698
                                                                         10.570704
                                                                                      8.893172
min
        2.600000
                    0.109000
                                 1.810000
                                             0.065900
                                                           609.000000
                                                                         -4.210000
                                                                                     32.100000
25%
        8.250000
                   23.800000
                                 4.920000
                                            30.200000
                                                          3355.000000
                                                                          1.810000
                                                                                     65.300000
50%
       19.300000
                   35.000000
                                 6.320000
                                            43.300000
                                                          9960.000000
                                                                          5.390000
                                                                                     73.100000
75%
       62.100000
                                 8.600000
                                                         22800.000000
                                                                                     76.800000
                   51.350000
                                            58.750000
                                                                         10.750000
                                                        125000.000000
                                                                        104.000000
                                                                                     82.800000
     208.000000
                  200.000000
                                17.900000 174.000000
```

```
In [8]: 1 c_data.duplicated().sum()
```

Out[8]: 0



# **Scaling**

#### **Elbow Curve**

· finding the optimal value of K

```
In [27]:
              # Elbow Curve for initialising the value of K
           2
           3
              wcss = []
              for k in range(2, 11):
           4
                  kmean = KMeans(n_clusters = k).fit(X_new)
           5
           6
                  wcss.append([k, kmean.inertia_])
           7
              df ec = pd.DataFrame(wcss)
           8
              plt.plot(df_ec[0], df_ec[1])
           9
              plt.show()
          10
```



```
In [28]: 1 wcss

Out[28]: [[2, 24.291592668614573],
        [3, 13.728241930514683],
        [4, 11.601847847563672],
        [5, 9.77643391749045],
        [6, 8.368497447598385],
        [7, 7.559151166085805],
        [8, 6.6679662690017185],
        [9, 6.0018565667804555],
        [10, 5.241773582243932]]
```

#### K = 3

```
In [29]: 1 kmean = KMeans(n_clusters = 3).fit(X_new)
```

```
In [34]:
              labels = kmean.predict(X new)
              labels
Out[34]: array([0, 1, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1,
                  1, 2, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 2, 1,
                  2, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 2, 0, 2, 1, 1, 0,
                  0, 1, 2, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 1, 0, 0, 2, 1,
                 0, 1, 1, 2, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1,
                  2, 2, 0, 0, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1,
                  0, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 0, 0, 1, 1, 1,
                  1, 0, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0
In [41]:
              new df = pd.concat([c data, pd.DataFrame(labels, columns = ["class"])], axis
In [42]:
               new df.head()
Out[42]:
                country child_mort exports
                                             health
                                                    imports
                                                            income inflation life_expec total_fer
                                                                                                gd
             Afghanistan
                                     55.30
                                                                                                 Ę
           0
                              90.2
                                            41.9174
                                                    248.297
                                                               1610
                                                                       9.44
                                                                                  56.2
                                                                                          5.82
                 Albania
                              16.6
                                  1145.20
                                           267.8950
                                                    1987.740
                                                               9930
                                                                       4.49
                                                                                  76.3
                                                                                          1.65
                                                                                                4(
           2
                 Algeria
                              27.3
                                  1712.64
                                           185.9820
                                                   1400.440
                                                              12900
                                                                       16.10
                                                                                 76.5
                                                                                          2.89
                                                                                                44
           3
                 Angola
                             119.0 2199.19
                                          100.6050
                                                   1514.370
                                                               5900
                                                                       22.40
                                                                                 60.1
                                                                                          6.16
                                                                                                35
                 Antigua
                              10.3 5551.00 735.6600 7185.800
                                                              19100
                                                                       1.44
                                                                                  76.8
                                                                                          2.13 122
                    and
                Barbuda
In [43]:
              new_df['class'].value_counts()
Out[43]: 1
               92
               46
               29
          2
          Name: class, dtype: int64
In [45]:
            1 class 0 = new df[new df['class']==0]
            2 class 1 = new df[new df['class']==1]
            3 class 2 = new df[new df['class']==2]
```

#### EDA on the above classes

### Class 0

```
In [46]:
            1 class_0.mean()
Out[46]: child_mort
                            93.284783
          exports
                           811.834109
          health
                            94.207885
          imports
                           748.806761
          income
                          3516.804348
          inflation
                            12.097065
          life_expec
                            59.393478
          total_fer
                              5.090217
          gdpp
                          1695.913043
          class
                             0.000000
          dtype: float64
In [50]:
               sns.barplot(class_0.mean().index,class_0.mean().values)
            2
               plt.xticks(rotation = 45)
               plt.show()
           3500
           3000
           2500
           2000
           1500
           1000
            500
                trild hort stocks health indones heathe little and like stock for day
```

# Class\_1



## Class\_2





```
In [65]:

1  plt.figure(figsize = (10,10))
2  plt.bar(class_0.mean().index,class_0.mean().values, label = 'class 0')
3  plt.bar(class_1.mean().index,class_1.mean().values, bottom = class_0.mean().
4  plt.bar(class_2.mean().index,class_2.mean().values, bottom = np.array(class_5 plt.legend())
6  plt.xticks(rotation = 45)
7  plt.show()
```



# Here countries belonging to class\_0 are the poor countries in comparison to class\_1 & class\_2

# Finding the top 5 countries who are in direst need of funding

| In [70]: | 1   | <pre>1 class_0.sort_values(by = ['gdpp','income','exports','imports']).head()</pre> |            |          |         |         |        |           |            |           |      |  |
|----------|-----|-------------------------------------------------------------------------------------|------------|----------|---------|---------|--------|-----------|------------|-----------|------|--|
| Out[70]: |     | country                                                                             | child_mort | exports  | health  | imports | income | inflation | life_expec | total_fer | gdpp |  |
|          | 26  | Burundi                                                                             | 93.6       | 20.6052  | 26.7960 | 90.552  | 764    | 12.30     | 57.7       | 6.26      | 231  |  |
|          | 88  | Liberia                                                                             | 89.3       | 62.4570  | 38.5860 | 302.802 | 700    | 5.47      | 60.8       | 5.02      | 327  |  |
|          | 37  | Congo,<br>Dem.<br>Rep.                                                              | 116.0      | 137.2740 | 26.4194 | 165.664 | 609    | 20.80     | 57.5       | 6.54      | 334  |  |
|          | 112 | Niger                                                                               | 123.0      | 77.2560  | 17.9568 | 170.868 | 814    | 2.55      | 58.8       | 7.49      | 348  |  |
|          | 132 | Sierra<br>Leone                                                                     | 160.0      | 67.0320  | 52.2690 | 137.655 | 1220   | 17.20     | 55.0       | 5.20      | 399  |  |
|          | 4   |                                                                                     |            |          |         |         |        |           |            |           | •    |  |

**Burundi, Liberia, Congo, Niger and Sierra Leone** are the most poor conuntries who are in direst need of funding.

In [ ]: 1