Assignment Project Exam Help

Communication (Thttps://eduassistpro.github.io/

Add WeChat edu_assist_pro

Dr Nguyen Tran
School of Computer Science

Previously...

- Previous lecture:
 - Message-based communication is complex (e.g., routing towards destination, subject to message losses)
 - Assignment Project Exam Help
- Today's lecture:
 - How to avoid mhttps://eduassistpro.github.io/
 - How to give the pens locally (not remotely)? Add WeChat edu_assist_pro
 - One to many communication

Outline

- The Problem of Message Loss
- The TCP/IP Solution
 Assignment Project Exam Help
- Multicast commu https://eduassistpro.github.io/
 Add WeChat edu_assist_pro

The Problem of Message Loss

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Cause

- Networks are in general unreliable
- Messages can be lost (never been delivered even if sent)
 Assignment Project Exam Help
- Examples: https://eduassistpro.github.io/
 - A server receive A common eduated u_assist soft cannot treat all
 - A router drops the message because its queue is full

Message losses may impact the computation of a distributed system

Coordinated Attack Problem

- Constraints of the problem Assignment Project Exam Help
 - Two armies, ea e mountains surrounding a battlefield (dist https://eduassistpro.github.io/
 - Can only communicate via messeng assing)
 - Add WeChat edu_assist_pro

 Messengers can be killed before r tion (message losses)

- Goal: they want to coordinate an attack
 - If they attack at different times, they both die
 - If they attack at the same time, they win

Coordinated Attack Problem (con't)

- There is no protocols to make sure they will win!

Assignment Project Exam Help

https://eduassistpro.github/io/
Add WeChat edu_assist_pro

Coordinated Attack Problem (con't)

- There is no protocols to make sure they will win!

Analogy in networking

- Constraints of the problem
 - Two remote entities of a distributed system
 Assignment Project Exam Help
 Can only communicate through messages

 - The network is uhttps://eduassistpro.githeub.io/
- Goal: they want to make sure to Add WeChat edu_assist_pro

This is impossible, even if all messages go through

TCP/IP

Communication 2/2 Assignment Project Exam Help
Week 4, COMP3221

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- Point-to-point:
 - one sender, one receiver
- Connection Assigned to the jet of the property of the proper
- Full duplex dat
 - bi-direction https://eduassistpro.github.io/
- Flow controlled: Add WeChat edu_assist_pro
 - sender will not overwhelm receiver
- Congestion controlled:
 - TCP congestion and flow control set window size

TCP seq. numbers, ACKs

sequence numbers:

-byte stream "number" of first byte in segment's data Assignment Project Examillela

outgoing segment from sender

acknowledgement

-seq # of next b https://eduass expected from other_side

-cumulative ACK

Q: how receiver handles outof-order segments

-A: TCP spec doesn't say, up to implementor

sent **ACKed** sent, notusable not yet ACKed usable but not vet sent ("inflight")

incoming segment to sender

uence number space

so	urce por	t #	dest port #	
sequence number				
acknowledgement number				
	Δ	\	rwnd	
checksum			urg pointer	

TCP seq. numbers, ACKs

simple telnet scenario

TCP sender events:

data rcvd from app:

- create segment with seq #
- seq # is byte-stream
 number of first data byte number of first data byte restart timer in segment

 Assignment Project Exam Help ack rcvd:
- start timer if nothttps://eduassistpro.gittpwlbdofs
 - think of timer And to We Chat edu_assist_pro oldest unacked
 update what is
 - segment
 - expiration interval:
 TimeOutInterval

timeout:

retransmit segment that caused timeout

- update what is known to be ACKed
- start timer if there are still unacked segments

TCP round trip time, timeout

Q: how to set TCP timeout value?

- Q: how to estimate RTT?
- SampleRTT: measured
- longer than ARTSignment Project time from segment transmission until ACK receipt
 - but RTT vari
- too short: prem https://eduassistpro.githrebraios/missions
 timeout, unnecessary WeChat edu_assist_pro retransmissions
- too long: slow reaction to segment loss

 average several recent measurements, not just current SampleRTT

TCP round trip time, timeout

EstimatedRTT = $(1-\alpha)$ *EstimatedRTT + α *SampleRTT

- exponential weighted moving average
- influence of past sample decreases exponentially fast
- typical Askienoment. Project Exam Help

TCP round trip time, timeout

```
timeout interval: EstimatedRTT plus "safety margin"
   — large variation in EstimatedRTT —> larger safety margin
  estimate SampleRIIndevion from Estimated RIT:
    DevRTT =
                https://edwassistpro.github.io/
                Add WeChat edu_assist_pro
TimeoutInterval = EstimatedRTT
                                           4*DevRTT
                        estimated RTT
```

TCP: retransmission scenarios

TCP: retransmission scenarios

cumulative ACK

TCP fast retransmit

- time-out period often relatively long:
 - long delay before resending soit project Ekanfoldshme data
- duplicate ACKs. https://eduassistpro.github.io/ detect lost segm
 - sender often sends many segments backto-back
 - if segment is lost, there will likely be many duplicate ACKs.

TCP fast retransmit

if sender receives 3

VeChat edu_assistitoremallest

likely that unacked segment lost, so don't wait for timeout

TCP fast retransmit

TCP flow control

TCP flow control

to application process

- receiver "advertises" free

buffer space by including

rwnd value in TCP header of
receiver-to-senders egments Project Exam

RcvBuffer buffered data

rwnd

ject Exam Help

- RcvBuffer si socket options († https://eduassistpro.github.io/ 4096 bytes)

- many operating systems auto Chat edu_assistiverside buffering adjust RcvBuffer

- sender limits amount of unacked ("in-flight") data to receiver's rwnd value
- guarantees receive buffer will not overflow

source port #		dest port #		
sequence number				
acknowledgement number				
		rwnd		
checksum		urg pointer		

Principles of congestion control

congestion:

- informally: "too many sources sending too much data too fast for networkignmente Project Exam Help
- different from f https://eduassistpro.github.io/
- manifestations:
 - lost packets (buffer over ters)
 - long delays (queueing in router buffers)
- a top-10 problem!

TCP congestion control

- approach: sender increases transmission rate (window size), probing for usable bandwidth, until loss occurs
 - additive increase: increase cwnd by 1 MSS (Maximum Segment Size) was present From the Board Better and Board Better and Board Better Better and Board Better Better Board Board Better Better Board Board
 - multiplicativ https://eduassistpro.github.io/https://eduassistpro.github.io/

AIMD saw tooth behavior: probing for bandwidth

TCP Congestion Control: details

 Congestion window (cwnd) is dynamic function of perceived network congestion

TCP Slow Start

when connection begins, increase rate exponentially until first loss event:

initially Acting Intermed Sproject Exam Help (Maximum S

double cwnhttps://eduassistpro.github.ie

 done by incrementing Chat edu_assist_ cwnd for every ACK
 received

summary: initial rate is slow but ramps up exponentially fast one segment two segments four segments time

Host B

Host A

TCP: detecting, reacting to loss

- Loss indicated by timeout:
 - cwnd set to 1 MSS;
 - window then grows exponentially (as in slow start) to threshold, then grows linearly grows linearly exponentially (as in slow start) to threshold, then
- Loss indicated bhttps://eduassistpro.github.io/ NO
 - dup ACKs indicqhet Worl Chareedu_assistnepsome segments
 - cwnd is cut in half window then

TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

TCP: switching from slow start to Congestion Avoidance

Q: when should the exponential increase switch to linear?

A: when cwnd gets to

1/2 of its value ssignment Project Exam Help
before timeout.

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Implementation:

- variable ssthresh
- on loss event, ssthresh
 is set to 1/2 of cwnd just
 before loss event

Connection Management

before exchanging data, sender/receiver "handshake":

- agree to establish connection (each knowing the other willing to establish connection)
- agree on connection parameters, e.g. MSS, rwnd, etc.
- connection Assignment Project Exam Help


```
Socket clientSocket =
  newSocket("hostname", "port
  number");
```

Socket connectionSocket =
 welcomeSocket.accept();

TCP 3-way handshake

TCP: closing a connection

HTTP Overview

HTTP: hypertext transfer protocol

Web's application layer protocol

- client: browser t receives, (using and "displays" https://eduassistpro.github.io/

Add WeChat edu_assist_pro- server: Web server sends (using

 server: Web server sends (using HTTP protocol) objects in response to requests HITTP response

server running Apache Web server

iPhone running Safari browser

HTTP overview

Uses TCP:

■ client initiates TCP connection — server maintains no (creates socket) to server, information about port 80 Assignment Project Exam Helprequests

HTTP is "stateless"

- server accepts T
 connection from https://eduassistpro.github.io/
- HTTP messages (chodic We Chat edu_assister prossing layer protocol messages) ort Layer exchanged between browser (HTTP client) and Web server (HTTP server)
- TCP connection closed

Related terminology

- Broadcast: one-to-all communication
 - Action of sending a message to all nodes of the system
 - Typically used for relatively small systems, like IP broadcast as part of Ethernet in LANs
- Unicast: one- Assignmenti Prioject Exam Help
 - In contrast with b of distribution to a single receiver
 - Used generally i https://eduassistpro.github.io/
- Anycast: one-to-randam-one communication
 Send a message to an IP address ran
 - Send a message to an IP address ran
 ain a response from any potential receiver, whose IP address belongs to this range
 - Used with UDP and TCP
- Multicast: one-to-many communication
 - Action of sending a message to multiple nodes of the system (not necessarily all nodes)
 - This term is used in many contexts (network, algorithm)

Conclusion (Transportation layer)

- Message losses can have dramatic consequences
- TCP/IP protocol suite hides these losses from the application level Assignment Project Exam Help
- Socket, RPC, use https://eduassistpro.github.io/
 - Sockets are completed WeChat edu_assist_pro
 - RPC is more transparent for the client

Multicast communication scales well for large distributed systems