LECTURE 3 - HARMONIC FORCING CE 225

Prof DeJong

UC Berkeley

September 4, 2024

EQUATION OF MOTION & SOLUTION

EOM : $m\ddot{u} + ku = p_0 \sin \omega t$ where $\omega =$ driving frequency

<u>Particular Solution</u>: $u_p(t) = C \sin \omega t \rightarrow \ddot{u}_p(t) =$

Plug into EOM: $\longrightarrow m[-C\omega^2 \sin \omega t] + k[C \sin \omega t] = p_0 \sin \omega t$

Solve for $C: \longrightarrow C(k-\omega^2 m) = p_0 \longrightarrow C =$

$$u_p(t) = \frac{p_0}{k} \frac{1}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \sin(\omega t)$$
(1)

Complementary Solution: $u_c(t) = A\cos(\omega_n t) + B\sin(\omega_n t)$ (2)

EQUATION OF MOTION & SOLUTION

Total response: $u_c(t) + u_p(t) = (2) + (1)$ \longrightarrow Solve A,B using initial conditions: u_0, \dot{u}_0

$$u(t) = u_0 \cos \omega_n t + \left[\frac{\dot{u}_0}{\omega_n} - \frac{p_0}{k} \frac{\omega/\omega_n}{1 - (\omega/\omega_n)^2} \right] \sin \omega_n t + \frac{p_0}{k} \frac{1}{1 - (\omega/\omega_n)^2} \sin \omega t$$
 (3)

Assume:
$$u=\dot{u}_0=0; \quad \frac{\omega}{\omega_n}=\frac{T_n}{T}=0.25; \quad (u_{st})_0=\frac{p_0}{k}$$

RESPONSE PLOT

Figure 3.1.1 (a) Harmonic force; (b) response of undamped system to harmonic force; $\omega/\omega_n=0.2$, $u(0)=0.5\,p_o/k$, and $\dot{u}(0)=\omega_n\,p_o/k$.

KEY POINTS

- ▶ Transient response is at ω_n
- ▶ Steady State (S.S.) response is at ω
- ▶ If $\omega_n \approx \infty \to \frac{\omega}{\omega_n} \approx 0$ (i.e. structure is essentially rigid), structure responds instantly!

$$\rightarrow u(t) = u_{st}(t) = \frac{p_0}{k} \sin(\omega t) = (u_{st})_o \sin(\omega t)$$

DYNAMIC AMPLIFICATION

Define 'Dynamic Amplification':

$$DA = \frac{u_{p,max}}{u_{st,max}} = \frac{1}{1 - \left(\frac{\omega}{\omega_n}\right)^2}$$

Alternative Steady State solution: $u_p(t) = \frac{p_0}{k} R_d \sin(\omega t - \phi)$ where: $R_d = |DA|$

PHASE ANGLE & RESONANCE

* What does $\phi = \pi$ mean?

$$\rightarrow$$
 for $\frac{\omega}{\omega_n} = 1.3 \rightarrow$

@ resonance:
$$\frac{\omega}{\omega_n}=1.0 \quad \rightarrow \quad u_p(t)=\frac{-p_0}{2k}\omega_n t\cos(\omega_n t)$$

EQUATION OF MOTION & SOLUTION

EOM: $m\ddot{u} + c\dot{u} + ku = p_0 \sin \omega t$

Particular Solution:
$$u_p(t) = C \sin \omega t + D \cos \omega t$$

 $\rightarrow \dot{u}_p(t) = C \omega \cos \omega t - D \omega \sin \omega t$
 $\rightarrow \ddot{u}_p(t) = -C \omega^2 \sin \omega t - D \omega^2 \cos \omega t$

Solve for C & D:

$$C = \frac{p_0}{k} \frac{1 - \left(\frac{\omega}{\omega_n}\right)^2}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\left(\frac{\omega}{\omega_n}\right)\right]^2} \qquad D = \frac{p_0}{k} \frac{-2\zeta\left(\frac{\omega}{\omega_n}\right)^2}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\left(\frac{\omega}{\omega_n}\right)\right]^2}$$

Total solution: $\longrightarrow u(t) = u_c(t) + u_p(t) = e^{-\zeta \omega_n t} (A \cos \omega_D t + B \sin \omega_D t) + C \sin \omega t + D \cos \omega t$

EXAMPLE RESPONSE

Figure 3.2.1 Response of damped system to harmonic force; $\omega/\omega_n=0.2$, $\zeta=0.05$, $u(0)=0.5\,p_o/k$, and $\dot{u}(0)=\omega_n\,p_o/k$.

RESONANCE

At resonance: $\frac{\omega}{\omega_n} = 1.0$

$$ightarrow$$
 Total solution: $u(t) = \frac{p_0}{k} \frac{1}{2\zeta} \left[e^{-\zeta \omega_n t} \left(\cos \omega_D t + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin \omega_D t \right) - \cos \omega_n t \right]$

$$\rightarrow$$
 Max amplification $=DA=\frac{1}{2\zeta}$

Figure 3.2.2 Response of damped system with $\zeta=0.05$ to sinusoidal force of frequency $\omega=\omega_n$; $u(0)=\dot{u}(0)=0$.

STEADY STATE - DYNAMIC AMPLIFICATION & PHASE

Alternative form of steady state solution (i.e. $u_p(t)$):

$$u_p(t) = (u_{st})_0 R_d \sin(\omega t - \phi) \qquad \text{where:} \qquad \begin{cases} R_d = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\left(\frac{\omega}{\omega_n}\right)\right]^2}} \\ \phi = \tan^{-1}\left[\frac{2\zeta\frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right] \end{cases}$$

Plot:

STEADY STATE - EXAMPLE RESPONSES

Figure 3.2.5 Steady-state response of damped systems ($\zeta=0.2$) to sinusoidal force for three values of the frequency ratio: (a) $\omega/\omega_n=0.5$, (b) $\omega/\omega_n=1$, (c) $\omega/\omega_n=2$.

Comments on R_d Plot

▶ For
$$\frac{\omega}{\omega_n} \approx 1$$
 →

DYNAMIC RESPONSE FACTORS (NORMALIZED)

$$\boxed{u(t)} = \frac{p_0}{k} R_d \sin(\omega t - \phi) \longrightarrow$$

$$\begin{split} \boxed{\dot{u}(t)} &= \frac{p_0}{k} R_d \omega \cos(\omega t - \phi) & \xrightarrow{\text{multiply by } \frac{1}{\omega_n} \sqrt{\frac{k}{m}} = 1} \\ & \longrightarrow \frac{\dot{u}(t)}{p_0/\sqrt{km}} = R_d \frac{\omega}{\omega_n} [\cos(\omega t - \phi)] & \longrightarrow & \text{Define: } \boxed{R_v = \frac{\omega}{\omega_n} R_d} \end{split}$$

$$\begin{split} \boxed{\ddot{u}(t)} &= \frac{-p_0}{k} R_d \omega^2 \sin(\omega t - \phi) & \xrightarrow{\text{multiply} \frac{1}{\omega_n^2} \frac{k}{m} = 1} \\ & \longrightarrow \frac{\ddot{u}(t)}{p_0/m} = -R_d \left(\frac{\omega}{\omega_n}\right)^2 \left[\sin(\omega t - \phi)\right] \longrightarrow & \text{Define:} \quad \boxed{R_a = \left(\frac{\omega}{\omega_n}\right)^2 R_d} \end{aligned}$$

DYNAMIC RESPONSE FACTORS (NORMALIZED)

 $\textbf{Figure 3.2.7} \quad \text{Deformation, velocity, and acceleration response factors for a damped system excited by harmonic force.}$