Metody Rozpoznawania Obrazów I Podstawy Uczenia Maszynowego

Condensed Nearest Neighbous

Autor: Ryszard Sikora

1 O danych testowych

Wygenerowane dane dla obu prób składały się z dwóch klas po 50 ezgemplarzy każda. Dane pochodziły z rozkładu normalnego o zadanej średniej i macierzy kowariancji.

2 Próba pierwsza

CNN, k=1

Euclidean, k=1

CNN, k=3

Pierwszym co rzuca się w oczy jest to, że CNN dla k=3 to jakaś porażka okrutna. Być może algorytm trzeba było sparametryzować (jak było napisane w treści zadania), ale nie udało mi się znaleźć żadnej parametryzacji poprawiającej ten beznadziejny wynik. Dokumentacja biblioteki również milczy na ten temat.

Wygląda na to, że dla k=1 CNN poradził sobie całkiem nieźle. Co prawda granica wygląda inaczej, ale, jak widać niżej, na testach różnica była niewielka:

CNN k=1	0.79
CNN reduction	0.089
Euclidean k=1	0.97
CNN k=3	0.34
CNN reduction	0.10
Euclidean k=3	0.94

Redukcja określa jaka część danych uczących pozostała w zbiorze uczącym po kompresji.

3 Próba druga

CNN, k=1

Euclidean, k=1

Euclidean, k=3

CNN z k=3 dalej pozostaje bez komentarza. Natomiast dla tego zestawu danych pogorszył się również wynik CNN z k=1. Algorytm najwyraźniej może dawać bardzo różną dokładność w zależności od zestawu danych.

Poniżej jeszcze dokładność klasyfikacji:

CNN k=1	0.64
CNN reduction	0.13
Euclidean k=1	0.94
CNN k=3	0.40
CNN reduction	0.18
Euclidean k=3	0.97

Co ciekawe klasyfikator z metryką euklidesową i k=3 miał większą dokładnośc od tego z k=1 i tą samą metryką. Być może wiele punktów ze zbioru testowego leżało na granicy i akurat ułożyły się na korzyść większego wygładzenia tej granicy.