DARIO SHARIATIAN

dario.shariatian@inria.fr \diamond www.github.com/darioShar Paris, France

I am interested in designing efficient ml algorithms, and building innovative, ambitious systems as a result. Currently, I focus on modern generative methods using stochastic processes, like diffusion models.

EDUCATION

PhD, Inria, Sierra lab, Paris, France

October 2023 - now

Supervised by Umut Simsekli, Alain Durmus

• Deep generative models, developing novel approaches similar to diffusion

MSc in Mathematics - Part C, University of Oxford (Distinction), UK

2022 - 2023

- Main focus on ML, Deep Learning, Statistics
- Various broadening courses, e.g., networks, differential geometry, algebraic topology...

BSc/MSc in Applied Mathematics, École Polytechnique, (Top 20%), France

2019 - 2022

• Minor in CS, pure mathematics, theoretical physics, and humanities

Preparatory Program MPSI/MP*, Lycée Saint-Louis, (Top 5%), Paris, France

2019 - 2022

Classical french 2 years preparation for Grandes Écoles

• Advanced maths, physics, CS, humanities

WORK EXPERIENCE

Quantitative Research Intern, Squarepoint Capital, London, UK

March-August 2022

Supervised by Dr. Asgeir Birkisson

Quantitative hedge fund focused on a collaborative approach

- Developed predictive mathematical models for equities, mid-frequency
- Developed and presented a novel spectral graph approach to various teams and management

Firmware Engineer Intern, Ledger, Paris, France

June-September 2021

Supervised by Mr. Raphael Geslain

World leader in cryptocurrency hardware wallets

- Wrote emulator for flagship Ledger Nano X, to streamline debugging and accelerate development
- Gained expertise in ARM SE architecture, QEMU emulation and secure OS principles

R&D Intern, Gendarmerie Elite Unit (GIGN), Versailles, France

November-April 2020

- Selected to lead a team in developing innovative projects to support elite military unit
- Developed and implemented projects like audio noise reduction and object detection
- Collaborated with field agents, technical teams, and French institutions to optimize projects outcomes

SKILLS

Programming

Python, C/C++, q/KDB, Java, Ocaml, SQL

API, Tools, Softwares

PyTorch, Anaconda/Jupyter, Qt, git, gdb, OpenGL, gemu

Languages

English (fluent), French (native), Spanish (notions), Persian (notions)

VARIOUS

- Music Guitar, bass, drums. I enjoy playing funk/rock, with my band or during jam sessions
- Sports Volley-ball, ski, kung-fu, surf, sky-diving
- Community Involvement Rehabilitation of Chateau de Guédelon, in France

Piecewise Deterministic Generative Models

Neurips 2024

Bertazzi, A., Durmus, A.O., Shariatian, D., Simsekli, U., & Moulines, É

We introduce a novel class of generative models based on piecewise deterministic Markov processes (PDMPs), which combine deterministic motion with random jumps at random times

Denoising Lévy Probabilistic Models (DLPM)

preprint, 2024

Shariatian, D., Simsekli, U., & Durmus, A.O.

We introduce a novel framework to use heavy-tailed noise in the denoising diffusion paradigm

VARIOUS ACADEMIC EXPERIENCE

Reviewer: ICML24, NEURIPS24, AAAI25, TMLR, ICLR25

Teaching Assistant: MAA106 Numerical Analysis, École Polytechnique March-June 2024 Oral Examiner: MSc Data Science for Business/Finance, X-HEC 2024, 2025

Oral Presentations:

Denoising Lévy Probabilistic Models, Inria, Sierra, Paris, February 2024 July 2024

Denoising Lévy Probabilistic Models, Alan Turing Institute, London,

PRE-PHD RESEARCH / SELECTED PROJECT WORK

An Alternative to the Log-Likelihood

December-April 2023

Department of Statistics, University of Oxford (Master thesis), supervised by Dr. Gonzalo Mena

• Studied an alternative to log-likelihood for parameter estimation inspired by entropic optimal transport (Sinkhorn EM), in the non-asymptotic regime

Discrete Morse Theory for Relative/Persistent Cosheaf Homology

March 2023

Department of Mathematics, University of Oxford, Supervised by Dr. Vidit Nanda

• Explored discrete Morse theory to accelerate homology computations in various contexts

Can Neural ODEs Offer Free Robustness?

November-December 2022

Department of Mathematics, University of Oxford, Supervised by Dr. Jared Tanner

• Studied robustness and expressivity of neural ODEs vs neural SDEs, examined as regularization

Spectral graph theory for stock market graphs

May - August 2022

Squarepoint Capital, London, Supervised by Dr. Asgeir Birkisson

• Used tools from spectral graph theory to determine behaviors and best practices for quant strategies

Risk Analysis and Portfolio Management on Financial Markets

2021

Center for Applied Mathematics, École Polytechnique, Supervised by Prof. Grégoire Loeper

• Applied Derman & Kani's "Volatility Smile and Implied Tree" for risk analysis; focused on stochastic calculus, approximation schemes like binomial/trinomial trees, and Black-Scholes formulas

Monte-Carlo Methods for Simulation Challenge

2021

Center for Applied Mathematics, École Polytechnique, Supervised by Prof. Emmanuel Gobet

• Provided efficient benchmarks on control functions for systems under random perturbations

On-Board Computer (OBC) for Nano-Satellite, IONSAT project

2020 - 2021

Space Center of École Polytechnique

- Led team designing OBC architecture with FPGA. Collaborated with CNES on multi-core systems
- Project presented at Dubai IAC 2021

Elliptic Curves on Finite Fields and Algorithms

2018 - 2019

Lycée Saint-Louis

- Studied elliptic curves over finite fields for cryptography (e.g., Schoof's algorithm)
- Developed fast C++ library with GMP implementing these results