Dynamic Models with Latent Variables

Jean-Michel Zakoian

CREST-ENSAE

Bayesian and simulated methods

- 1 Simulation algorithms
- 2 Examples

Simulation-based method

- In recent years, inference methods based on simulations have developed tremendously.
- Such methods are particularly appropriate when the likelihood cannot be used directly.
- One popular method is the Monte Carlo Markov Chain (MCMC) technique.

Bayesian inference and MCMC

The *Bayesian* approachs combines information brought by the data with *a priori* ideas on the parameters.

Such ideas are represented by probability distributions, called *prior* distributions, where the parameters have the status of random variables.

The goal of the inference is to obtain *posterior distributions* of the parameters, which are deduced, thanks to the Bayes formula, from the *a priori* distribution and the law of the observations conditional on the parameters.

Notations

Parameter : $\theta \in \mathbb{R}^d$.

Observations: X.

A priori density of the parameter : π .

A posteriori density of the parameter : $\pi(\cdot | \mathbf{X})$

Likelihood (the density of the observations conditional to θ) : $f(\cdot | \theta)$.

By the Bayes formula we have :

$$\pi(\theta \mid \mathbf{X}) = \frac{f(\mathbf{X} \mid \theta)\pi(\theta)}{\int f(\mathbf{X} \mid \theta)\pi(\theta)d\theta} \propto f(\mathbf{X} \mid \theta)\pi(\theta).$$

Bayesian estimator of $g(\theta)$

Obtained by minimizing the a posteriori cost

$$\int L(\delta, \theta) \pi(\theta \mid \mathbf{X}) d\theta,$$

where L is a positive cost function.

For the quadratic cost, $L(\delta, \theta) = ||g(\theta) - \delta||^2$, the Bayesian estimator is (if the integral exists),

$$\hat{\delta} = E\{g(\theta) \mid \mathbf{X}\} = \int g(\theta) \pi(\theta \mid \mathbf{X}) d\theta.$$

This expression has little practical interest because in general,

- (i) the posterior distribution is not known explicitly,
- (ii) the integral is difficult to compute. This problem can be handled by *numerical methods*, or by **simulations based methods**.

Simulations based methods

Suppose that a sequence $\{\theta^{(i)}(\mathbf{X})\}_{i\geq 1}$ of variables with density $\pi(\cdot \mid \mathbf{X})$ is availbale.

Assuming that the ergodic theorem can be applied, conditionally to \mathbf{X} ,

$$\hat{\delta}_N = \frac{1}{N} \sum_{i=1}^N g\{\theta^{(i)}(\mathbf{X})\} \to E\{g(\theta) \mid \mathbf{X}\}, \quad p.s. \text{ as } N \to \infty.$$

MCMC

The MCMC approach is a set of techniques allowing to generate such sequences $\{\theta^{(i)}(\mathbf{X})\}_{i\geq 1}$.

The basic idea of the MCMC method is to approximate a probability law $\mathbb P$ using a Markov chain $(\theta^{(i)})$, which is irreducible, aperiodic, and admits $\mathbb P$ as invariant law.

The target law is simulated using an initial value $\theta^{(0)}$, and the transition probabilities of the chain to generate $\theta^{(1)}, \dots, \theta^{(N)}$.

For N sufficiently large, $\theta^{(N)}$ can be considered as a realization drawn from the law \mathbb{P} .

Two methods for constructing such chains are the Metropolis-Hastings algorithm and the Gibbs sampling.

- Simulation algorithms
 - Accept-reject method
 - Metropolis-Hastings algorithm
 - Gibbs sampling
- 2 Examples

Principle

We wish to simulate the density $\pi:\theta\to\pi(\theta)$ of some rv $\boldsymbol{\theta}$.

Finding an explicit formula for $F^{-1}(U)$, where F is the cdf (cumulative distribution function) of $\boldsymbol{\theta}$ and $U \sim \mathcal{U}[0,1]$ is not always possible.

Moreover, even if it is, there may be alternative methods for generating a rv distributed as F that are more efficient than the inverse transform method.

Basic idea: find an alternative probability distribution G, with density function $g(\theta)$, from which we already have an efficient simulation algorithm, but also such that the function $g(\theta)$ is "close" to $f(\theta)$.

Accept-reject algorithm

Suppose that for all heta

$$\pi(\theta) \le c g(\theta),$$

where c is a constant $(c \ge 1)$ and g is a density which can be easily simulated.

Algorithm:

- ① Generate $Z \sim g$ and generate $U \sim \mathcal{U}_{[0,cg(Z)]}$.
- 2 Accept Z if $U < \pi(Z)$, otherwise reject and go back to 1.

Equivalently:

- ① Generate $Z \sim g$ and $U \sim \mathcal{U}_{[0,1]}$.
- ② Accept Z if $U < \frac{\pi(Z)}{cg(Z)}$, otherwise reject and go back to 1.

Proof that the algorithm works

 Z^* : the variable generated by the algorithm. For all z^* ,

$$P[Z^* < z^*] = P[Z < z^* \mid U < \pi(Z)] = \frac{P[Z < z^*, U < \pi(Z)]}{P[U < \pi(Z)]}.$$

Moreover,

$$P[Z < z^*, U < \pi(Z)] = \int_{z < z^*} g(z) \frac{1}{cg(z)} \int_{u < \pi(z)} du dz = \frac{1}{c} \int_{z < z^*} \pi(z) dz.$$

and, by taking $z^* = \infty$,

$$P[U < \pi(Z)] = \frac{1}{c} \int \pi(z) dz = \frac{1}{c}.$$

Finally,

$$P[Z^* < z^*] = \int_{z < z^*} \pi(z) dz.$$

Remarks

- By iterating the procedure we get an iid sample distributed as π .
- The probability of accepting a simulation of Z is 1/c: the constant c has to be chosen as small as possible to minimize the computation time.
- c depends on the tails of the laws π and g: in particular, the ratio π/g has to be bounded (it is not possible to simulate a Cauchy from a Gaussian, but the converse is possible).
- If c is chosen too small so that the condition $\pi(\theta) \le cg(\theta)$ is not satisfied for some values of θ , the simulated density is not π but rather

$$\pi^*(\theta) \propto \min\{\pi(\theta), cg(\theta)\}.$$

Simulation of an a posteriori distribution

We wish to simulate the a posterior distribution

$$\pi(\theta \mid \mathbf{X}) = h(\mathbf{X})\pi^*(\theta, \mathbf{X})$$

where π^* is a known function but h has a complicated non explicit form.

If there exits a density $g^*(\cdot | \mathbf{X})$ such that

$$\pi^*(\theta, \mathbf{X}) \le cg^*(\theta \mid \mathbf{X}),$$

the method can be adapted as follows :

- ① Generate θ distributed as $g^*(\cdot | \mathbf{X})$ and $U \sim \mathcal{U}_{[0,1]}$.
- ② Accept θ if $U < \frac{\pi^*(\theta, \mathbf{X})}{cg^*(\theta|\mathbf{X})}$, otherwise reject and go back to 1.

Metropolis-Hastings (MH) algorithm

Metropolis et al. (1953) [discrete state space], Hastings (1970) [statistical setting].

The MH algorithm allows to generate a density on which we have little information.

To simulate the *posterior* density $\pi(\cdot | \mathbf{X})$, the MH algorithm allows to generate a sequence of variables $\{\theta^{(i)}\}_{i\geq 1} = \{\theta^{(i)}(\mathbf{X})\}_{i\geq 1}$ which, conditionally to \mathbf{X} , is a **Markov chain** with stationary distribution $\pi(\cdot | \mathbf{X})$.

Markov chains

 (X_t) is an homogenous Markov chain on (E,\mathcal{E}) if : $\forall x \in E, \forall B \in \mathcal{E}, \forall s, t \in \mathbb{N}$,

$$P(X_{s+t} \in B \mid X_r, r < s; X_s = x) = P(X_{s+t} \in B \mid X_s = x) := P^t(x, B).$$

The mapping $P: E \times \mathscr{E} \to [0,1]$ is called *transition kernel* and it satisfies :

- (i) $\forall B \in \mathcal{E}$, the function $P(\cdot, B)$ is measurable;
- (ii) $\forall x \in E$, the function $P(x, \cdot)$ is a probability over (E, \mathcal{E}) .

The law of (X_t) is characterized by an initial probability μ and a transition kernel P.

Markov chains

Under certain conditions, there exists a probability π such that $\forall x \in E, \forall B \in \mathcal{E}$,

$$P^t(x,B) \to \pi(B)$$
, as $t \to \infty$.

 π is called **invariant probability** and it satisfies :

$$\forall B \in \mathscr{E}, \qquad \pi(B) = \int P(x, B) \pi(dx).$$

Under additional conditions, the chain is **ergodic** and we have, a.s.

$$\frac{1}{n}\sum_{t=1}^{n}g(X_{t})\to\int gd\pi,\quad\text{as }n\to\infty$$

for any function g which is with respect to π .

MH algorithm

The algorithm is based on a transition kernel of the form

$$Q(\theta, d\theta') = q(\theta, \theta')\lambda(d\theta'), \quad \theta \in \mathbb{R}^d.$$

The transition densities, $q(\theta, \cdot)$, also called *jump densities*, have to be chosen in order to explore the parameter space. They may depend on \mathbf{X} and are used at each step of the algorithm to simulate a new possible value and to decide whether this value will be kept or rejected.

MH algorithm

- ① Choose an initial value $\theta^{(0)}$ such that $\pi(\theta^{(0)} \mid \mathbf{X}) > 0$.
- ② For i = 1, 2, ...
 - ① Generate θ^* distributed as $Q(\theta^{(i-1)}, \cdot)$.
 - ② Compute the ratio

$$r = \frac{\pi(\theta^* \mid \mathbf{X})}{\pi(\theta^{(i-1)} \mid \mathbf{X})} \frac{q(\theta^*, \theta^{(i-1)})}{q(\theta^{(i-1)}, \theta^*)}.$$

3 Take

$$\theta^{(i)} = \left\{ \begin{array}{ll} \theta^* & \text{with probability } \min(r,1) \\ \theta^{(i-1)} & \text{with probability } 1 - \min(r,1). \end{array} \right.$$

Remark : the condition $\pi(\theta^{(0)} \mid \mathbf{X}) > 0$ ensures that the ratio is well defined for all i.

Remarks

• If q(x, y) = q(y, x) for all (x, y), the acceptance rule does not depend on q. The probability of acceptance of θ^* reduces to

$$\min\left(\frac{\pi(\theta^* \mid \mathbf{X})}{\pi(\theta^{(i-1)} \mid \mathbf{X})}, 1\right)$$

and θ^* will be always accepted if jumping from $\theta^{(i-1)}$ to θ^* increases the *a posteriori* density; otherwise, θ^* is accepted with a probability equal to the ratio r of the *posterior* densities.

- In the general case, θ^* is accepted with probability 1 only if the ratio of *posterior* densities is greater than the ration of densities of jump, from $\theta^{(i-1)}$ to θ^* and from θ^* to $\theta^{(i-1)}$.
- r does not depend on normalizing constants involved in the conditional densities. In particular, it is sufficient to know $\pi(\theta^* \mid \mathbf{X})$ up to a multiplicative constant to use this algorithm. Thus, il suffices to evaluate $f(\mathbf{X} \mid \cdot)\pi(\cdot)$ in θ^* and $\theta^{(i-1)}$.

(i) Kernel associated with the random walk : at step i, the value θ^* is generated using the model

$$\theta^* = \theta^{(i-1)} + \epsilon$$

where ϵ is a centered variable with density f, independent of $\theta^{(i-1)}$. Thus

$$q(\theta, \theta') = f(\theta' - \theta).$$

If f is symmetric around 0, the kernel is symmetric.

Note that the sequence $(\theta^{(i)})$ is not a random walk, due to repetitions $(\theta^{(i)} = \theta^{(i-1)})$ which are non independent from $\theta^{(i-1)}$.

(ii) Independent Kernel : the values θ^* are drawn, independently of $\theta^{(i-1)}$, from a density f :

$$q(\theta, \theta') = f(\theta')$$

and the probability of acceptance of the value $heta^*$ is

$$\min\left(\frac{\omega(\theta^*)}{\omega(\theta^{(i-1)})},1\right)$$

where $\omega(\theta) = \pi(\theta \mid \mathbf{X})/f(\theta)$.

The function ω can be interpreted as an importance function used to simulate π from simulations of the law f.

Low-weight candidates will be seldom accepted; conversely, large-weight candidates will generally be chosen repeatedly.

(iii) Kernel associated with an accept-reject algorithm: particular case of independent kernel where $f = \pi(\cdot | \mathbf{X})$ is simulated by the accept-reject method.

If the condition $\pi(\theta \mid \mathbf{X}) \leq cg(\theta)$ is in failure, the density generated for the θ^* will be

$$\pi^*(\theta^* \mid \mathbf{X}) \propto \min\{\pi(\theta^* \mid \mathbf{X}), cg(\theta^*)\}.$$

Letting $C = \{\theta \mid \pi(\theta \mid \mathbf{X}) \le cg(\theta)\}$, the acceptance probability of the value θ^* is

$$\left\{ \begin{array}{ll} 1, & \text{if } \theta^{(i-1)} \in C \\ \frac{cg(\theta^{(i-1)})}{\pi(\theta^{(i-1)}|\mathbf{X})}, & \text{if } \theta^{(i-1)} \notin C, \theta^* \in C, \\ \min\left(\frac{\pi(\theta^*|\mathbf{X})g(\theta^{(i-1)})}{\pi(\theta^{(i-1)}|\mathbf{X})g(\theta^*)}, 1\right), & \text{if } \theta^{(i-1)} \notin C, \theta^* \notin C. \end{array} \right.$$

- Some proposals are rejected when $\theta^{(i-1)} \notin C$. This value is thus repeated, which compensates the deficiency, due to the failure of the bound cg, in this region.
 - Dependance is thus introduced to alleviate this problem.
- If the deficiency never holds, the values accepted by the accept-reject algorithm are also accepted by the global algorithm and the resulting sample is iid.

(iv) Kernel associated with an AR:

$$\theta^* = a + b(\theta^{(i-1)} - a) + \epsilon$$

where ϵ is a variable with density f, independent from $\theta^{(i-1)}$. Thus

$$q(\theta, \theta') = f(\theta' - a - b(\theta - a)).$$

The choice of b < 0 allows to introduce negative correlations between the successive value of the algorithm and to explore faster the support of π .

Markov chain property

Conditionally to \mathbf{X} , the sequence $(\theta^{(i)}(\mathbf{X}))_{i\geq 0}$ is a Markov chain on \mathbb{R}^d .

It can be shown that, under certain conditions on the transition kernel, this MC admits $\pi(\cdot|\mathbf{X})$ as an invariant probability measure and is ergodic :

$$\hat{\delta}_N = \frac{1}{N} \sum_{i=1}^N g\{\theta^{(i)}(\mathbf{X})\} \to E_{\pi}\{g(\theta) \mid \mathbf{X}\}, \quad p.s. \text{ as } N \to \infty.$$

$$Y_t = a_0 + a_1 Y_{t-1} + \frac{(b_0 - a_0) + (b_1 - a_1) Y_{t-1}}{1 + \exp\{-\gamma (Y_{t-1} - c)\}} + \epsilon_t, \quad \epsilon_t \sim IID(0, \sigma^2), \quad \gamma > 0.$$

Gibbs estimation

 $E(Y_t|Y_{t-1}=y)$ varies continuously from a_0+a_1y (when $y\to -\infty$) to b_0+b_1y (when $y\to +\infty$).

Simulation of

$$Y_t = -0.95 Y_{t-1} + \frac{1.85 Y_{t-1}}{1 + e^{-5 Y_{t-1}}} + \epsilon_t$$

where $\epsilon_t \sim 0.9 \mathcal{N}(0, 0.5^2) + 0.05 \mathcal{N}(3, 1) + 0.05 \mathcal{N}(-3, 1)$.

Independent prior laws : c fixed to 0, a_0 , a_1 , b_0 , and b_1 follow a $\mathcal{N}(0,1)$, $\gamma \sim \mathcal{E}(1)$, and $\sigma^2 \sim IG(1,1)^*$.

We thus have, for $\theta = (a_0, a_1, b_0, b_1, \gamma, \sigma^2)$,

$$\pi(\theta \mid \mathbf{X}) \propto f(\mathbf{X} \mid \theta) \pi(\theta)$$

$$= \prod_{t=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^{2}} (Y_{t} - m_{t-1})^{2}\right\}$$

$$\times \frac{1}{(2\pi)^{2}} e^{-(a_{0}^{2} + a_{1}^{2} + b_{0}^{2} + b_{1}^{2})/2} e^{-\gamma} \frac{e^{-1/\sigma^{2}}}{(\sigma^{2})^{2}}$$

* the inverse gamma distribution IG(a, b) has density

$$f(x) = \frac{b^a}{\Gamma(a)} \frac{e^{-b/x}}{x^{a+1}} 1_{[0,+\infty[}(x).$$

The MH algorithm is used with transition kernel derived from the random walk,

$$Q(x, y) \sim \mathcal{N}(x, \tau I_6)$$
.

The probability of acceptance of θ^* is thus $\min\left(\frac{\pi(\theta^*|\mathbf{X})}{\pi(\theta^{(i-1)}|\mathbf{X})},1\right)$.

In practice the parameter τ is very important for the performance of the algorithm :

- large values of τ entail small rates of acceptance (θ^* is likely to fall in a region with low density $\pi(B|\mathbf{X})$, and thus is likely to be rejected).
- Small values of τ have high rates of acceptance and correspond to small moves of the MC.

For $\tau = 0.02$ and n = 3000 the acceptance rate for θ^* is 0.37 but the MC has not converged.

Markov chain simulated by Metropolis

Markov chain simulated by Metropolis

True parameter values :

$$a_0 = b_0 = c = 0$$
, $a_1 = -0.95$, $b_1 = 0.9$, $\gamma = 5$, $\sigma^2 = 1.225$.

Posterior distribution of σ²

Gibbs sampling (Geman and Geman (1984), Gelfand and Smith (1990)

An alternative method for generating a MC having a specified invariant distribution.

However, the algorithm

- is not based on an acceptatance/rejection mechanism : all simulated values are accepted;
- only applies to multivariate distributions;
- requires more information than MH on the target law.

 $\theta_{[-j]} \in \mathbb{R}^{d-1}$: parameter vector without θ_j . We assume that the conditional densities

$$\pi^{j}(\theta_{j} \mid \mathbf{X}, \theta_{[-j]}), \quad j = 1, \dots, d$$

are available and can be simulated.

Gibbs sampler

- ① Choose initial values $\theta_j^{(0)}$, j=2,..d.
- ② For i = 1, 2, ...
 - ① Generate $\theta_1^{(i)}$ in the law $\pi^1(\cdot \,|\, \mathbf{X}, \theta_{[-1]}^{(i-1)})$
 - ② For $\ell = 2,...,d$, generate $\theta_{\ell}^{(i)}$ in the law

$$\pi^{\ell}(\cdot | \mathbf{X}, \theta_1^{(i)}, \dots, \theta_{\ell-1}^{(i)}, \theta_{\ell+1}^{(i-1)}, \dots, \theta_d^{(i-1)})$$

3 Take
$$\theta^{(i)} = (\theta_1^{(i)}, \dots, \theta_d^{(i)}).$$

Remarks

- The simulated laws are those of the coordinates of θ , conditional on the other coordinates.
 - The components can be multivariate: an extension consists in simulating blocks of θ , provided that their conditional distributions given the other blocks be available.
- It can be interesting to interpret the target law $\pi(\theta \mid \mathbf{X})$, as the marginal law of a higher-dimensional vector whose conditional distributions are easier to simulate than those of θ (data augmentation technique).

Why does it work?

Let π_i the marginal densities (given **X**) of the θ_i 's. We introduice the *positivity* assumption :

$$\mathbf{H}: \quad \forall \theta, \qquad \prod_{i=1}^{d} \pi_i(\theta_i \mid \mathbf{X}) > 0 \quad \Longrightarrow \quad \pi(\theta \mid \mathbf{X}) > 0,$$

Theorem (Hammersley and Clifford (1970))

Under Assumption **H**, for all θ, θ' such that $\pi(\theta \mid \mathbf{X}) > 0$ and $\pi(\theta' \mid \mathbf{X}) > 0$,

$$\frac{\pi(\boldsymbol{\theta} \mid \mathbf{X})}{\pi(\boldsymbol{\theta}' \mid \mathbf{X})} = \prod_{i=1}^d \frac{\pi^i(\boldsymbol{\theta}_i \mid \mathbf{X}, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_{i-1} \boldsymbol{\theta}'_{i+1} \dots \boldsymbol{\theta}'_d)}{\pi^i(\boldsymbol{\theta}'_i \mid \mathbf{X}, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_{i-1} \boldsymbol{\theta}'_{i+1} \dots \boldsymbol{\theta}'_d)}.$$

Proof:

For any θ such that $\pi(\theta \mid \mathbf{X}) > 0$,

$$\pi(\theta \mid \mathbf{X}) = \pi^d(\theta_d \mid \mathbf{X}, \theta_1, \dots, \theta_{d-1}) \pi_{[-d]}(\theta_1, \dots, \theta_{d-1} \mid \mathbf{X})$$

where $\pi_{[-i]}(\cdot \mid \mathbf{X})$ is the density of the vector θ without θ_i . Moreover, for all θ'

$$\pi(\theta_1,\ldots,\theta_{d-1},\theta'_d\mid \mathbf{X}) = \pi^d(\theta'_d\mid \mathbf{X},\theta_1,\ldots,\theta_{d-1})\pi_{[-d]}(\theta_1,\ldots,\theta_{d-1}\mid \mathbf{X}).$$

It follows that

$$\pi(\theta \mid \mathbf{X}) = \frac{\pi^d(\theta_d \mid \mathbf{X}, \theta_1, \dots, \theta_{d-1})}{\pi^d(\theta'_d \mid \mathbf{X}, \theta_1, \dots, \theta_{d-1})} \pi(\theta_1, \dots, \theta_{d-1}, \theta'_d \mid \mathbf{X}).$$

Proof (continued)

Similarly

$$\begin{split} & \pi(\theta_1, \dots, \theta_{d-1}, \theta_d' \mid \mathbf{X}) \\ &= & \pi^{d-1}(\theta_{d-1} \mid \mathbf{X}, \theta_1, \dots, \theta_{d-2}, \theta_d') \pi_{[-(d-1)]}(\theta_1, \dots, \theta_{d-2}, \theta_d' \mid \mathbf{X}), \\ & \pi(\theta_1, \dots, \theta_{d-1}', \theta_d' \mid \mathbf{X}) \\ &= & \pi^{d-1}(\theta_{d-1}' \mid \mathbf{X}, \theta_1, \dots, \theta_{d-2}, \theta_d') \pi_{[-(d-1)]}(\theta_1, \dots, \theta_{d-2}, \theta_d' \mid \mathbf{X}), \end{split}$$

hence

$$\pi(\theta \mid \mathbf{X}) = \frac{\pi^{d}(\theta_{d} \mid \mathbf{X}, \theta_{1}, \dots, \theta_{d-1})}{\pi^{d}(\theta'_{d} \mid \mathbf{X}, \theta_{1}, \dots, \theta_{d-1})} \frac{\pi^{d-1}(\theta_{d-1} \mid \mathbf{X}, \theta_{1}, \dots, \theta_{d-2}, \theta'_{d})}{\pi^{d-1}(\theta'_{d-1} \mid \mathbf{X}, \theta_{1}, \dots, \theta_{d-2}, \theta'_{d})} \times \pi(\theta_{1}, \dots, \theta_{d-2}, \theta'_{d-1}, \theta'_{d} \mid \mathbf{X}).$$

Continuing this way the replacement of the coordinates of θ by those of θ' , we get the announced formula.

Proof (continued)

Finally, we check the positivity of the denominator in this formula. We have

$$\begin{split} \pi(\theta \mid \mathbf{X}) &> 0, \quad \pi(\theta' \mid \mathbf{X}) > 0 \\ \Longrightarrow \quad \pi_i(\theta_i \mid \mathbf{X}) &> 0, \quad i = 1, \dots, d-1 \text{ and } \quad \pi_d(\theta'_d \mid \mathbf{X}) > 0 \\ \Longrightarrow \quad \pi(\theta_1, \dots, \theta_{d-1}, \theta'_d \mid \mathbf{X}) &> 0, \quad \text{by assumption } \mathbf{H} \\ \Longrightarrow \quad \pi^d(\theta'_d \mid \mathbf{X}, \theta_1, \dots, \theta_{d-1}) &> 0. \end{split}$$

The other terms of the product are treated similarly.

Remarks

① This relation allows to get, theoretically, the joint density from the conditional densities (by integrating the inverses of each side of the equality w.r.t. θ'):

$$\pi(\theta \mid \mathbf{X}) = \left(\int \prod_{i=1}^{d} \frac{\pi^{i}(\theta'_{i} \mid \mathbf{X}, \theta_{1}, \dots, \theta_{i-1} \theta'_{i+1} \dots \theta'_{d})}{\pi^{i}(\theta_{i} \mid \mathbf{X}, \theta_{1}, \dots, \theta_{i-1} \theta'_{i+1} \dots \theta'_{d})} d\theta' \right)^{-1}.$$

② It can be shown that under Assumption \mathbf{H} , $(\theta^{(i)})$ is an ergodic Markov chain admitting $\pi(\cdot|\mathbf{X})$ as invariant probability measure.

Hybrid algorithms

It can be worth combining the Gibbs and MH algorithms :

- the MH algorithm does not take into account possible available information on the conditional laws. Moreover, it is not well suited for hierarchical structures (such as the SV model).
- the Gibbs algorithm cannot be used alone if certain conditional densities are not available in closed form or cannot be easily simulated.
- Even if the Gibbs algorithm can be implemented, the convergence to the stationary distribution of the MC can be very slow because the components are modified one by one.

- Simulation algorithms
- 2 Examples
 - AR(1) model estimation by the Gibbs algorithm
 - STAR(1) model estimation by an hybrid algorithm

AR(1) model

$$X_t = \omega + \beta X_{t-1} + \sigma v_t$$
, $(v_t) iid \mathcal{N}(0, 1)$, $\sigma > 0$.

Aim: generate a MC with stationary *a posteriori* distribution, $\pi(\theta \mid \mathbf{X})$, where $\theta = (\omega, \beta, \sigma)'$.

Prior laws: (ω, β) and σ^2 are a priori independent with

$$(\omega, \beta) \sim \mathcal{N}((\omega^0, \beta^0), \Sigma^0), \qquad \sigma^2 \sim IG(a, b)$$

 $a > 0, b > 0, \omega^0 \in \mathbb{R}, \beta^0 \in \mathbb{R}, \Sigma^0$ positive definite.

The posterior conditional laws of (ω, β) and σ are denoted

$$\pi^1((\omega, \beta) | \mathbf{X}, \sigma)$$
 and $\pi^2(\sigma^2 | \mathbf{X}, \omega, \beta)$.

Notations

Likelihood conditional to a fixed initial value X_0 :

$$f(\mathbf{X} \mid \theta) \propto \exp \left\{ \frac{-1}{2\sigma^2} \sum_{t=1}^n (X_t - \omega - \beta X_{t-1})^2 \right\}.$$

 $(\hat{\omega},\hat{eta})$: LS estimator of de (ω,eta) .

$$\Sigma_n = \Sigma_n(\sigma) = \sigma^2(\underline{\mathbf{X}}'\underline{\mathbf{X}})^{-1}, \qquad \underline{\mathbf{X}}' = \begin{pmatrix} 1 & \dots & 1 \\ X_0 & \dots & X_{n-1} \end{pmatrix},$$
$$\Sigma^* = \{(\Sigma^0)^{-1} + \Sigma_n^{-1}\}^{-1},$$
$$(\omega^*, \beta^*)' = \Sigma^* \{\Sigma_n^{-1}(\hat{\omega}, \hat{\beta})' + (\Sigma^0)^{-1}(\omega^0, \beta^0)'\}.$$

LS estimator

We have

$$\begin{split} \sum_{t=1}^{n} (X_{t} - \omega - \beta X_{t-1})^{2} &= \sum_{t=1}^{n} [X_{t} - \hat{\omega} - \hat{\beta} X_{t-1} - \{\omega - \hat{\omega} + (\beta - \hat{\beta}) X_{t-1}\}]^{2} \\ &= \sum_{t=1}^{n} (X_{t} - \hat{\omega} - \hat{\beta} X_{t-1})^{2} + \sum_{t=1}^{n} \{\omega - \hat{\omega} + (\beta - \hat{\beta}) X_{t-1}\}^{2}, \end{split}$$

A posteriori distribution of (ω, β)

$$\pi^{1}((\omega,\beta) \mid \mathbf{X},\sigma) \propto \exp\left\{\frac{-1}{2\sigma^{2}} \sum_{t=1}^{n} (X_{t} - \omega - \beta X_{t-1})^{2}\right\} \\ \times \exp\left\{\frac{-1}{2} (\omega - \omega^{0}, \beta - \beta^{0}) (\Sigma^{0})^{-1} (\omega - \omega^{0}, \beta - \beta^{0})'\right\} \\ \propto \exp\left\{\frac{-1}{2\sigma^{2}} \sum_{t=1}^{n} \{(\omega - \hat{\omega}) + (\beta - \hat{\beta}) X_{t-1}\}^{2}\right\} \\ \times \exp\left\{\frac{-1}{2} (\omega - \omega^{0}, \beta - \beta^{0}) (\Sigma^{0})^{-1} (\omega - \omega^{0}, \beta - \beta^{0})'\right\} \\ \propto \exp\left\{\frac{-1}{2} (\omega - \hat{\omega}, \beta - \hat{\beta}) \Sigma_{n}^{-1} (\omega - \hat{\omega}, \beta - \hat{\beta})'\right\} \\ \times \exp\left\{\frac{-1}{2} (\omega - \omega^{0}, \beta - \beta^{0}) (\Sigma^{0})^{-1} (\omega - \omega^{0}, \beta - \beta^{0})'\right\} \\ \propto \exp\left\{\frac{-1}{2} (\omega - \omega^{0}, \beta - \beta^{0}) (\Sigma^{0})^{-1} (\omega - \omega^{0}, \beta - \beta^{0})'\right\}.$$

A property of quadratic forms

For the last equality, we used a useful result on quadratic forms :

Let x, a, b some $k \times 1$ vectors, A and B some symmetric $k \times k$ matrices such that $(A + B)^{-1}$ exists. Then

$$(x-a)'A(x-a) + (x-b)'B(x-b) = (x-c)'(A+B)(x-c) + (a-b)'A(A+B)^{-1}B(a-b)$$

where $c = (A + B)^{-1}(Aa + Bb)$.

See Box and Tiao (1973) p. 418.

A posteriori distributions

A posteriori distribution of (ω, β) : $\mathcal{N}((\omega^*, \beta^*), \Sigma^*)$.

A posteriori distribution of σ^2 :

$$\pi^2(\sigma^2 \,|\, \mathbf{X}, \omega, \beta) \quad \propto \quad \frac{e^{\frac{-n\overline{Y}}{2\sigma^2}}}{\sigma^n} \frac{e^{-b/\sigma^2}}{\sigma^{2(a+1)}} = \frac{e^{\frac{-1}{2\sigma^2}(n\overline{Y}+2b)}}{\sigma^{2(a+1+\frac{n}{2})}}.$$

where
$$\overline{Y} = \frac{1}{n} \sum_{t=1}^{n} Y_t$$
 and $Y_t = (X_t - \omega - \beta X_{t-1})^2$, $t = 1, \dots, n$.

Thus $\pi^2(\sigma^2 \mid \mathbf{X}, \omega, \beta)$ is the density of the law $IG(a + \frac{n}{2}, b + \frac{n\overline{Y}}{2})$.

Gibbs sampler for the AR(1)

- ① Specify the hyperparameters $a,b,\omega^0,\beta^0,\Sigma^0$.
- ② Choose an initial value $\sigma^{(0)}$.
- 3 For i = 1, 2, ...
 - ① Generate $(\omega^{(i)}, \beta^{(i)})$ in the law $\mathcal{N}((\omega^*, \beta^*), \Sigma^*)$ obtained for $\Sigma_n = \Sigma_n(\sigma^{(i-1)})$.
 - ② Generate $\sigma^{(i)}$ in the law $IG(a+\frac{n}{2},b+\frac{n\overline{Y}^{(i)}}{2})$ where

$$\overline{Y}^{(i)} = \frac{1}{n} \sum_{t=1}^{n} (X_t - \omega^{(i)} - \beta^{(i)} X_{t-1})^2.$$

3 Take $\theta^{(i)} = (\omega^{(i)}, \beta^{(i)}, \sigma^{(i)})'$.

Comments

- ① The standard laws used in the algorithm, can be simulated efficiently using numerous statistical softwares such as Gauss, Mathematica, Matlab, R.
- 2 This choice of prior distributions leads to standard posterior laws. It is possible to choose other laws, and to use the MH for the simulation of non standard posterior laws.
- 3 The stationarity condition $|\beta| < 1$ can be taken into account by using, for the *prior* of (ω, β) , a troncated bivariate Gaussian law on $\mathbb{R} \times]-1,1[$. The same troncature follows on the *a posteriori* law. Alternatively, one can choose for β a *prior* density with support [-1,1], for instance the law obtained for $\beta = 2X-1$ when $X \sim \mathcal{B}(\beta_1, \beta_2)$. We get the *a priori* density

$$\pi(\beta) = 0.5 \frac{\Gamma(\beta_1 + \beta_2)}{\Gamma(\beta_1)\Gamma(\beta_2)} \{0.5(1 + \beta)\}^{\beta_1 - 1} \{0.5(1 - \beta)\}^{\beta_2 - 1} \mathbf{1}_{[-1, 1]}$$

where $\beta_1, \beta_2 > 0.5$ are hyperparameters.

STAR(1) model

For the \checkmark STAR model with c=0, we have for a given γ ,

$$Y_t = Z'_{t-1}\beta + \epsilon_t,$$

where ϵ_t is iid $\mathcal{N}(0, \sigma^2)$, and

$$Z_t = \begin{pmatrix} 1 - G_t(\gamma) \\ Y_t \left\{ 1 - G_t(\gamma) \right\} \\ G_t(\gamma) \\ Y_t G_t(\gamma) \end{pmatrix}, \quad \beta = \begin{pmatrix} a_0 \\ a_1 \\ b_0 \\ b_1 \end{pmatrix}, \quad G_t(\gamma) = \frac{1}{1 + \exp(-\gamma Y_t)}.$$

STAR(1) model

Calculations similar to those done for the AR(1) show that the conditional laws of β and σ^2 are explicit :

$$P_{1}(\beta \mid Y, \gamma, \sigma^{2}) \sim \mathcal{N}\left\{ \left(I_{4} + \Sigma_{n}^{-1} \right)^{-1} \Sigma_{n}^{-1} \hat{\beta}, \left(I_{4} + \Sigma_{n}^{-1} \right)^{-1} \right\},$$

$$P_{2}(\sigma^{2} \mid Y, \beta, \sigma^{2}) \sim IG\left(1 + (n-1)/2, 1 + \sum_{t=2}^{n} \epsilon_{t}^{2}/2 \right),$$

The conditional law of γ is not explicit but satisfies

$$P_{3}(\gamma \mid Y, \beta, \sigma^{2}) \propto \exp\left\{-\sum_{t=2}^{n} \epsilon_{t}^{2}(\gamma)/(2\sigma^{2}) - \gamma\right\} \mathbf{1}_{\{\gamma > 0\}},$$

$$\epsilon_{t}(\gamma) = Y_{t} - \beta' Z_{t-1}.$$

By using the MH algorithm to simulate the conditional law P_3 , one gets an **hybrid method** combining the MH and Gibbs algorithms.

STAR(1) model : Sample paths and a posteriori laws of γ and σ^2 , obtained for 1000 iterations of the hybrid algorithm

