								İ
Pog No								
Reg. No.								
								1

B.Tech. DEGREE EXAMINATION, DECEMBER 2022

Third Semester

18ECC105T – ELECTROMAGNETIC AND TRANSMISSION LINES

(For the candidates admitted from the academic year 2018-2019 to 2021-2022) (Smith chart should be distributed to all the students)

Note:

- (i) **Part A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) **Part B** should be answered in answer booklet.

Time: 2½ Hours

Max. Marks: 75

$PART - B (5 \times 10 = 50 Marks)$

Answer **ALL** Questions

Marks BL CO PO

1

26. a. Examine the electric field intensity due to infinite sheet of charge having uniform density of $\rho_c c / m^2$.

(OR)

- b. A charge Q_2 of $8.854 \times 10^{-9} C$ is located in vacuum at $P_2(2,3,1)$ The force on Q_2 due to a charge Q_1 of $4\pi \times 10^{-3} C$ at $P_1(2,2,1)$ (all the coordinates are measured in meters).
- 27. a. Investigate the magnetic field intensity at various regions of infinitely long 10 3 2 2 coaxial cable.

(OR)

- b. Illustrate the Maxwell's equations for time varying fields in point and 10 4 2 1 integral form.
- 28. a. An electric field in free space is given by $E = 50\cos\left(10^8t + \beta_x\right)ayV/m.$
 - (i) Find the direction of wave propagation.
 - (ii) Determine β and the time it takes to travel a distance of $\frac{\lambda}{2}$.
 - (iii) Sketch the wave at $t = 0, \frac{T}{4}$ and $\frac{T}{2}$.

(OR)

b.i. Mention the field equations rectangular waveguide in TE mode.

5 4 3 1

Page **1** of **2**

ii. In a rectangular waveguide for which a =1.5 cm, b =0.8 cm, σ = 0, μ = μ_0 and ϵ = 4 ϵ_0 . Determine the mode of operation, cut off frequency and phase constant for the field

 $H_x = 2\sin\left(\frac{\pi x}{a}\right)\cos\left(\frac{3\pi y}{6}\right)\sin\left(\pi \times 10^{11}t - \beta z\right)A/m.$

29. a. Construct the input and transfer impedance of a transmission line and 10 4 4 1 illustrate.

(OR)

- b. Examine the input impedance of eighth wave line, quarter wave line and 10 3 4 2 half wave line and elucidate.
- 30. a. A load of $100 + j150\Omega$ is connected to a 75 Ω lossless line. Calculate
 - (i) Refraction coefficient (Γ)
 - (ii) VSWR(S)
 - (iii) Load admittance (Y_L)
 - (iv) Z_{in} at 0.4 λ from load
 - (v) The location of $V_{\rm max}$ and $V_{\rm min}$ with respect to the load if the line is 0.6λ long
 - (vi) Z_{in} at the generator using smith chart

(OR)

b. Describe any two applications of transmission lines.

* * * * *

3

3

10

4 5 1