Preordering and Word Order Freedom in Machine Translation

Joachim Daiber, Miloš Stanojević, Wilker Aziz and Khalil Sima'an

Institute for Logic, Language and Computation University of Amsterdam

Preordering

+ Works well for English-Japanese, English-Korean, ...

Preordering

- + Works well for English–Japanese, English–Korean, ...
- Not that well for English–German, English–Czech, ...

Motivation Outline

Reordering in PBMT

Why the partial success?

► Free word order languages are difficult: many potential target word orders

Why the partial success?

- ► Free word order languages are difficult: many potential target word orders
- ► Source side often not enough to predict a unique target word order

Why the partial success?

- Free word order languages are difficult: many potential target word orders
- ► Source side often not enough to predict a unique target word order

Potential solution:

► Narrow down space of target word orders and let decoder decide

Why the partial success?

- Free word order languages are difficult: many potential target word orders
- ► Source side often not enough to predict a unique target word order

Potential solution:

- ► Narrow down space of target word orders and let decoder decide
- Prepare MT system for this kind of input

Outline

- 1. Word Order Freedom
 - What exactly do we mean by free word order?
 - Can we measure it?

Outline

- 1. Word Order Freedom
 - What exactly do we mean by free word order?
 - Can we measure it?
- 2. Translation with Permutation Lattices
 - Permutation Lattices
 - Lattice Silver Training

Outline

- 1. Word Order Freedom
 - What exactly do we mean by free word order?
 - Can we measure it?
- 2. Translation with Permutation Lattices
 - Permutation Lattices
 - Lattice Silver Training
- 3. Experiments with two language pairs
 - English–Japanese
 Strict word order language
 - English–GermanFree word order language

What Does Free Word Order Mean?

► Multiple word orders expressing the same meaning

What Does Free Word Order Mean?

- ► Multiple word orders expressing the same meaning
 - \rightarrow Fuzzy definition!
- ► Can we quantify and compare languages' word order freedom?

Estimating Word Order Freedom: Futrell et al. (2015)

Estimating Word Order Freedom: Our Bilingual Approach

Word Order Freedom

Free Word Order

What to do about Free Word Order?

▶ Instead of choosing 1-best word order, work with *n*-best

Free Word Order

What to do about Free Word Order?

▶ Instead of choosing 1-best word order, work with *n*-best

- ▶ Decoding with *n*-best permutations:
 - 1) Inference: Compactly encode *n*-best WOs into lattice
 - 2) Training: Estimate parameters for translating lattices

Permutation Lattices

Lattice Training

Q: How to extract the phrase table?

Gold Training

(target-order s', t)

- + compact
- + less noisy
- may not cover preordered input

Lattice Training

Q: How to extract the phrase table?

Gold Training	Predicted Training		
(target-order \mathbf{s}' , \mathbf{t})	(predicted \mathbf{s}', \mathbf{t})		
+ compact	? less compact		
+ less noisy	– more noisy		
– may not cover	+ covers preordered		
preordered input	input		

Lattice Training

Q: How to extract the phrase table?

Gold Training	Predicted Training	Lattice Silver Training
(target-order s' , t)	(predicted s' , t)	$(s' \text{ from } n\text{-best most } similar \text{ to gold, } \mathbf{t})$
+ compact + less noisy - may not cover preordered input	? less compact - more noisy + covers preordered input	+ compact + less noisy + covers preordered input

Preordering Models

Reordering Grammar

Stanojević and Sima'an (2015)

- ► Hierarchical, probabilistic model
- Unsupervised (no syntax)
- Beyond ITG (based on PETs)

Neural Preordering

de Gispert et al. (2015); Jehl et al. (2014)

- Preorders dep. tree recursively
- NN to decide pairwise ordering of subtrees
- ► We extend search to *n*-best branch-and-bound

Translation Experiment: English→German

WMT newstest 2015.

- ► Big oracle WO gain: +4.92 over baseline (21.76 BLEU)
- ▶ 1-best with DL 6 performs poorly
- ► Lattices with Silver Training and DL 0 on par with baseline +0.12

Software: Moses (with extended lattice support). Optimizer: Batch MIRA (15 iterations, BLEU averaged over 3 runs).

Training data: 4.5m sentence pairs (WMT16). LM (5-gram): 189m sentences (WMT16). Dev/Test: newstest2014/newstest2015.

Translation Experiment: English→Japanese

NTCIR Patent translation task.

- ► Big oracle WO gain: +4.57 over baseline (29.65 BLEU)
- ▶ 1-best with DL 6 performs well: +2.49
- ► Lattices with DL 0 enables additional improvement: +2.85

Software: Moses (with extended lattice support). Optimizer: Batch MIRA (15 iterations, BLEU averaged over 3 runs).
Training data: NTCIR-8 Patent Translation Task. Target tokenization: KyTea 5 Neubig et al. (2011). LM (5-gram): NTCIR-8. Dev/Test: NTCIR-7/NTCIR-9.

Summary of our Contributions

Bilingual Head Direction Entropy

► Measure of word order freedom for various languages

Permutation Lattices produced from preordering models:

- ► Valuable tool to address WO uncertainty
- Additional improvements over 1-best for strict WO languages
- ► Enable translation of freer WO languages with auto. preordering
 - \rightarrow Lattice Silver Training for model estimation

Thank You!

Any questions?

- de Gispert, A., Iglesias, G., and Byrne, W. (2015). Fast and accurate preordering for smt using neural networks. In *Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (NAACL HLT 2015).*
- Futrell, R., Mahowald, K., and Gibson, E. (2015). Quantifying word order freedom in dependency corpora. In *Proceedings of the Third International Conference on Dependency Linguistics (Depling 2015)*, pages 91–100, Uppsala, Sweden. Uppsala University, Uppsala, Sweden.
- Jehl, L., de Gispert, A., Hopkins, M., and Byrne, B. (2014). Source-side preordering for translation using logistic regression and depth-first branch-and-bound search. In *Proceedings of the 14th Conference of* the European Chapter of the Association for Computational Linguistics, pages 239–248 (12 pages), Gothenburg, Sweden. Association for Computational Linguistics.
- Neubig, G., Nakata, Y., and Mori, S. (2011). Pointwise prediction for robust, adaptable japanese morphological analysis. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pages 529–533, Portland, Oregon, USA.
- Stanojević, M. and Sima'an, K. (2015). Reordering Grammar Induction. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pages 44–54, Lisbon, Portugal. Association for Computational Linguistics.

Word Order Freedom: Micro Level

(a) English-Japanese

(b) English-German

Number of Permutations vs. Lattice Size

		Lattice		
Permutations	Kendall $ au$	States	Transitions	
Monotone	83.78	23	22	
5	84.69	24	52	
10	85.23	33	69	
100	86.20	72	138	
1000	86.75	123	233	

Table: Permutations and lattice size (En–De).

Experiments: Neural Reordering on English-German

		Translation	Word order
	DL	BLEU	Kendall $ au$
Baseline	6	21.76	54.75
Oracle order	6 0	26.68 26.41	58.05 57.92
First-best Lattice (silver)	6 0	21.21 ^A 21.88 ^B	53.44 54.51

Software: Moses (with extended lattice support).

Optimizer: Batch MIRA (15 iterations, BLEU averaged over 3 runs).

Training data: 4.5m sentence pairs (WMT16). LM (5-gram): 189m sentences (WMT16).

Dev/Test: newstest2014/newstest2015.

^AStat. significant against baseline. ^BStat. significant against first-best.

Experiments: Reordering Grammar on English-Japanese

		Translation	Word order
	DL	BLEU	Kendall $ au$
Baseline	6	29.65	44.87
Oracle order	6	34.22	56.23
Oracic Oraci	0	30.55	53.98
First-best	6	32.14 ^A	49.68
Lattice	0	32.50 ^{AB}	50.79

Software: Moses (with extended lattice support). Optimiser: Batch MIRA (15 iterations). Training data: NTCIR-8 Patent Translation Task. Target tokenization: KyTea 5 Neubig et al. (2011). LM (5-gram): NTCIR-8. Dev/Test: NTCIR-7/NTCIR-9.

 $^{^{\}rm A}{\rm Stat.\,significant\,against\,baseline.}\ ^{\rm B}{\rm Stat.\,significant\,against\,first-best.}$