CheatSheet d'Analyse et Géometrie

Yehor KOROTENKO

D'après le cours de Christian Gérard

Table des matières

1	Espaces Vectoriels Normés, Distances	2
	1.1 Produit Scalaire et Norme Euclidienne sur \mathbb{R}^d	. 2
	1.2 Distance	. 2
2	Espaces Métriques : Topologie	3
	2.1 Boules et Ensembles Bornés	. 3
	2.2 Ouverts et Fermés	
	2.3 Intérieur, Adhérence, Frontière	
	2.4 Suites dans un Espace Métrique	-
	2.5 Compacité	
	2.9 Compactoe	
3	Continuité dans les Espaces Métriques	4
4	Fonctions de Plusieurs Variables : Différentiation	4
	4.1 Dérivées Partielles, Différentiabilité	. 5
	4.2 Dérivées d'Ordre Supérieur	
	4.3 Extrema	
	4.4 Règle de Dérivation en Chaîne	
5	Espaces Vectoriels Normés : Compléments	6
	5.1 Suites et Séries de Fonctions	. 6
	5.2 Applications Linéaires Continues	
6	Systèmes d'Équations Différentielles Linéaires	7
,	6.1 Exponentielle de Matrice	. 7
	6.2 Résolution de Systèmes	. ,

1 Espaces Vectoriels Normés, Distances

1.1 Produit Scalaire et Norme Euclidienne sur \mathbb{R}^d

Définition 1.1 (Produit Scalaire sur \mathbb{R}^d). Pour $X = (x_1, ..., x_d)$ et $Y = (y_1, ..., y_d)$ dans \mathbb{R}^d , le **produit** scalaire est :

$$X \cdot Y = \sum_{i=1}^{d} x_i y_i = ||X|| ||Y|| \cos(\theta)$$

Propriétés : bilinéarité, symétrie, défini positif $(X \cdot X \ge 0, et \ X \cdot X = 0 \iff X = 0_d)$.

Proposition 1.1 (Inégalité de Cauchy-Schwarz). Pour $X, Y \in \mathbb{R}^d$:

$$|X \cdot Y| < (X \cdot X)^{1/2} (Y \cdot Y)^{1/2}$$
 i.e. $|X \cdot Y| < ||X|| ||Y||$

Définition 1.2 (Norme Euclidienne sur \mathbb{R}^d). La norme euclidienne d'un vecteur $X \in \mathbb{R}^d$ est :

$$||X|| = ||X||_2 = \left(\sum_{i=1}^d x_i^2\right)^{1/2} = (X \cdot X)^{1/2}$$

Définition 1.3 (Norme sur un \mathbb{K} -espace vectoriel E). Une **norme** sur E (où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) est une application $N: E \to \mathbb{R}_+$ (notée $\|\cdot\|$) telle que :

- 1. Séparation : $||X|| = 0 \iff X = 0_E$
- 2. Homogénéité : $\|\lambda X\| = |\lambda| \|X\|$ pour tout $\lambda \in \mathbb{K}, X \in E$
- 3. Inégalité triangulaire : $||X + Y|| \le ||X|| + ||Y||$ pour tout $X, Y \in E$

Un espace vectoriel muni d'une norme est un espace vectoriel normé (EVN).

Exemple 1.1 (Autres normes sur \mathbb{R}^d ou \mathbb{C}^d). Soit $X = (x_1, \dots, x_d)$

- 1. Norme $1: ||X||_1 = \sum_{i=1}^d |x_i|$
- 2. Norme infinie: $||X||_{\infty} = \max_{1 \le i \le d} |x_i|$
- 3. Norme $p \ (p \ge 1) : ||X||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}$

1.2 Distance

Définition 1.4 (Distance sur un ensemble E). Une distance sur E est une application $d: E \times E \to \mathbb{R}_+$ telle que pour tous $X, Y, Z \in E$:

- 1. **Séparation**: $d(X,Y) = 0 \iff X = Y$
- 2. Symétrie : d(X,Y) = d(Y,X)
- 3. Inégalité triangulaire : $d(X,Y) \le d(X,Z) + d(Z,Y)$

Un ensemble muni d'une distance est un espace métrique.

Propriété 1.1 (Distance induite par une norme). Si $(E, \|\cdot\|)$ est un EVN, alors $d(X, Y) = \|X - Y\|$ définit une distance sur E.

Exemple 1.2 (Distance Euclidienne sur
$$\mathbb{R}^d$$
). $d(X,Y) = ||X - Y||_2 = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$

Définition 1.5 (Distances équivalentes). Deux distances d_1, d_2 sur E sont **équivalentes** s'il existe a, b > 0 tels que $\forall x, y \in E$,

$$a \cdot d_1(x, y) \le d_2(x, y) \le b \cdot d_1(x, y)$$

Elles définissent alors les mêmes ouverts (la même topologie).

Définition 1.6 (Normes équivalentes). Deux normes N_1, N_2 sur un EVN E sont équivalentes s'il existe a, b > 0 tels que $\forall X \in E$,

$$a \cdot N_1(X) \le N_2(X) \le b \cdot N_1(X)$$

Théorème 1.1 (Normes équivalentes en dimension finie). Sur un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

2 Espaces Métriques : Topologie

2.1 Boules et Ensembles Bornés

Définition 2.1 (Boules). Soit (E, d) un espace métrique, $x_0 \in E$ et r > 0.

- 1. **Boule ouverte**: $B(x_0, r) = \{x \in E : d(x_0, x) < r\}$
- 2. **Boule fermée** : $B_f(x_0, r) = \{x \in E : d(x_0, x) \le r\}$
- 3. **Sphère**: $S(x_0, r) = \{x \in E : d(x_0, x) = r\}$

Définition 2.2 (Ensemble borné). Une partie $A \subset E$ est **bornée** si elle est contenue dans une boule, i.e., $\exists x_0 \in E, \exists R > 0$ tel que $A \subset B(x_0, R)$. Cela est équivalent à : $\forall x_0 \in E, \exists r > 0$ tel que $A \subset B(x_0, r)$. Ou encore : $\operatorname{diam}(A) = \sup_{x,y \in A} d(x,y) < \infty$.

Propriété 2.1. — Toute partie finie est bornée.

- Toute sous-partie d'un borné est bornée.
- Une union finie de bornés est bornée.

2.2 Ouverts et Fermés

Définition 2.3 (Ouvert, Fermé). Soit (E, d) un espace métrique.

- 1. $U \subset E$ est **ouvert** $si \ \forall x_0 \in U, \exists r > 0 \ tel \ que \ B(x_0, r) \subset U$.
- 2. $F \subset E$ est **fermé** si son complémentaire $E \setminus F$ est ouvert.

Ø et E sont à la fois ouverts et fermés.

Propriété 2.2. — Une boule ouverte est un ouvert.

— Une boule fermée est un fermé.

Théorème 2.1 (Propriétés des ouverts et fermés). 1. Une union quelconque d'ouverts est un ouvert.

- 2. Une intersection finie d'ouverts est un ouvert.
- 3. Une intersection quelconque de fermés est un fermé.
- 4. Une union finie de fermés est un fermé.

2.3 Intérieur, Adhérence, Frontière

Définition 2.4 (Point intérieur, Intérieur). Soit $A \subset E$. Un point $x_0 \in E$ est intérieur à A s'il existe r > 0 tel que $B(x_0, r) \subset A$. L'intérieur de A, noté Int(A) ou A, est l'ensemble des points intérieurs à A.

Propriété 2.3. Int(A) est le plus grand ouvert inclus dans A. A est ouvert \iff A = Int(A).

Définition 2.5 (Point adhérent, Adhérence). Soit $A \subset E$. Un point $x_0 \in E$ est **adhérent** à A si toute boule ouverte centrée en x_0 rencontre A, i.e., $\forall r > 0$, $B(x_0, r) \cap A \neq \emptyset$. (Équivalent à $d(x_0, A) = \inf_{y \in A} d(x_0, y) = 0$). L'adhérence de A, notée Adh(A) ou \bar{A} , est l'ensemble des points adhérents à A.

Propriété 2.4. Adh(A) est le plus petit fermé contenant A. A est fermé \iff A = Adh(A).

Définition 2.6 (Frontière). La **frontière** de A, notée Fr(A) ou ∂A , est $Adh(A) \setminus Int(A)$. C'est aussi $Adh(A) \cap Adh(E \setminus A)$.

Définition 2.7 (Ensemble dense). Soit $A \subset B \subset E$. On dit que A est **dense** dans B si $B \subset Adh(A)$. A est dense dans E si Adh(A) = E. Exemple : \mathbb{Q} est dense dans \mathbb{R} . \mathbb{Q}^d est dense dans \mathbb{R}^d .

2.4 Suites dans un Espace Métrique

Définition 2.8 (Convergence d'une suite). Une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E converge vers $x\in E$ si $\lim_{n\to\infty} d(x_n,x)=0$. On note $\lim_{n\to\infty} x_n=x$ ou $x_n\to x$. La limite, si elle existe, est unique.

Proposition 2.1 (Caractérisations séquentielles). 1. Adhérence : $x \in Adh(A) \iff il$ existe une suite (a_n) d'éléments de A telle que $a_n \to x$.

2. Fermé: A est fermé \iff pour toute suite (a_n) d'éléments de A qui converge vers $x \in E$, on a $x \in A$.

Définition 2.9 (Suite de Cauchy). Une suite (x_n) dans E est de Cauchy si $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ tel que $\forall n, p \geq N, d(x_n, x_p) \leq \varepsilon$.

Propriété 2.5. — Toute suite convergente est de Cauchy.

— Toute suite de Cauchy est bornée.

Définition 2.10 (Espace complet). Un espace métrique (E, d) est complet si toute suite de Cauchy dans E converge dans E. Un EVN complet est appelé espace de Banach.

Exemple 2.1. \mathbb{R}^d muni de la distance usuelle est complet. \mathbb{Q} n'est pas complet.]0,1] avec la distance usuelle de \mathbb{R} n'est pas complet.

2.5 Compacité

Définition 2.11 (Recouvrement ouvert, Sous-recouvrement). Soit $K \subset E$. Une famille $(U_i)_{i \in I}$ d'ouverts de E est un recouvrement ouvert de K si $K \subset \bigcup_{i \in I} U_i$. Une sous-famille $(U_j)_{j \in J}$ (où $J \subset I$) est un sous-recouvrement si $K \subset \bigcup_{i \in J} U_i$.

Définition 2.12 (Ensemble compact - Définition de Borel-Lebesgue). Une partie $K \subset E$ est compacte si de tout recouvrement ouvert de K, on peut extraire un sous-recouvrement fini.

Théorème 2.2 (Caractérisation séquentielle de la compacité - Bolzano-Weierstrass). Dans un espace métrique (E,d), une partie $K \subset E$ est compacte \iff de toute suite d'éléments de K, on peut extraire une sous-suite qui converge dans K.

Propriété 2.6 (Propriétés des compacts dans un espace métrique). 1. Un compact est fermé et borné. (La réciproque est fausse en général, mais vraie dans \mathbb{R}^d).

- 2. Une partie fermée d'un compact est compacte.
- 3. Une intersection quelconque de compacts est compacte.
- 4. Une union finie de compacts est compacte.
- 5. Un compact est complet.

Théorème 2.3 (Compacité dans \mathbb{R}^d). Une partie $K \subset \mathbb{R}^d$ (ou \mathbb{C}^d) est compacte $\iff K$ est fermée et bornée. (Théorème de Borel-Lebesgue).

Exemple 2.2. Les intervalles [a,b] sont compacts dans \mathbb{R} . Les boules fermées $B_f(x_0,r)$ sont compactes dans \mathbb{R}^d .

3 Continuité dans les Espaces Métriques

Définition 3.1 (Continuité en un point). Soient (E_1, d_1) et (E_2, d_2) deux espaces métriques, $f: E_1 \to E_2$ une application, et $x_0 \in E_1$. f est continue en x_0 si

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ tel que } \forall x \in E_1, (d_1(x, x_0) < \delta \implies d_2(f(x), f(x_0)) < \varepsilon)$$

f est continue sur E_1 si elle est continue en tout point de E_1 .

Proposition 3.1 (Caractérisations de la continuité). Soit $f:(E_1,d_1)\to (E_2,d_2)$. Les assertions suivantes sont équivalentes :

- 1. f est continue sur E_1 .
- 2. Pour tout ouvert $U_2 \subset E_2$, l'image réciproque $f^{-1}(U_2)$ est un ouvert de E_1 .
- 3. Pour tout fermé $F_2 \subset E_2$, l'image réciproque $f^{-1}(F_2)$ est un fermé de E_1 .
- 4. Pour toute suite (x_n) de E_1 convergeant vers $x \in E_1$, la suite $(f(x_n))$ converge vers f(x) dans E_2 .

Théorème 3.1 (Continuité et compacité). 1. L'image d'un compact par une application continue est compacte. Si $f: E_1 \to E_2$ est continue et $K \subset E_1$ est compact, alors f(K) est compact dans E_2 .

2. (Théorème des bornes atteintes) Si $f: K \to \mathbb{R}$ est continue et $K \subset E_1$ est un compact non vide, alors f est bornée sur K et atteint ses bornes. (i.e., $\exists x_m, x_M \in K$ tels que $f(x_m) = \inf_{x \in K} f(x)$ et $f(x_M) = \sup_{x \in K} f(x)$).

4 Fonctions de Plusieurs Variables : Différentiation

Soit $D \subset \mathbb{R}^n$ un ouvert, $f: D \to \mathbb{R}^m$.

4.1 Dérivées Partielles, Différentiabilité

Définition 4.1 (Dérivée selon un vecteur (directionnelle)). Soit $u \in \mathbb{R}^n$, $u \neq 0$. f est dérivable en $X_0 \in D$ dans la direction u si la fonction $\varphi(t) = f(X_0 + tu)$ (définie pour t dans un voisinage de 0) est dérivable en t = 0. La dérivée est notée $D_u f(X_0) = \varphi'(0)$.

$$D_u f(X_0) = \lim_{t \to 0} \frac{f(X_0 + tu) - f(X_0)}{t}$$

Définition 4.2 (Dérivées partielles (cas m=1)). La i-ème dérivée partielle de $f:D\to\mathbb{R}$ en X_0 est $D_{e_i}f(X_0)$, où (e_i) est la base canonique de \mathbb{R}^n . Notation : $\frac{\partial f}{\partial x_i}(X_0)$ ou $\partial_i f(X_0)$.

Définition 4.3 (Différentiabilité (cas m=1)). $f:D\to\mathbb{R}$ est différentiable en $X_0\in D$ s'il existe une application linéaire $L:\mathbb{R}^n\to\mathbb{R}$ telle que pour $H\in\mathbb{R}^n$ avec $X_0+H\in D$:

$$f(X_0 + H) = f(X_0) + L(H) + o(\|H\|)$$
 i.e. $f(X_0 + H) = f(X_0) + L(H) + \|H\|\varepsilon(H)$, où $\lim_{H \to 0} \varepsilon(H) = 0$

Si f est différentiable en X_0 , alors $L(H) = \nabla f(X_0) \cdot H$, où $\nabla f(X_0) = \left(\frac{\partial f}{\partial x_1}(X_0), \dots, \frac{\partial f}{\partial x_n}(X_0)\right)$ est le **gradient** de f en X_0 . L'application linéaire L est la **différentielle** de f en X_0 , notée df_{X_0} .

Propriété 4.1. Si f est différentiable en X_0 , alors f est continue en X_0 et toutes ses dérivées directionnelles (donc partielles) existent en X_0 , et $D_u f(X_0) = df_{X_0}(u) = \nabla f(X_0) \cdot u$.

Théorème 4.1 (Condition suffisante de différentiabilité). Si toutes les dérivées partielles $\frac{\partial f}{\partial x_i}$ existent sur un voisinage ouvert de X_0 et sont continues en X_0 , alors f est différentiable en X_0 . Si elles sont continues sur D, f est dite de classe C^1 sur D.

Définition 4.4 (Différentiabilité (cas général $f: D \to \mathbb{R}^m$)). $f = (f_1, \ldots, f_m)$. f est différentiable en X_0 si chaque composante $f_j: D \to \mathbb{R}$ l'est. La différentielle df_{X_0} est une application linéaire de \mathbb{R}^n dans \mathbb{R}^m , dont la matrice dans les bases canoniques est la **matrice Jacobienne** $J_f(X_0)$:

$$(J_f(X_0))_{ji} = \frac{\partial f_j}{\partial x_i}(X_0)$$

Donc $df_{X_0}(H) = J_f(X_0)H$ (où H est un vecteur colonne).

4.2 Dérivées d'Ordre Supérieur

Définition 4.5 (Dérivées partielles d'ordre k). Les dérivées partielles d'ordre k sont obtenues en dérivant successivement k fois par rapport aux variables. Exemple : $\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$. f est de classe C^k sur D si toutes ses dérivées partielles jusqu'à l'ordre k existent et sont continues sur D.

Théorème 4.2 (Schwarz/Clairaut). Si $f: D \to \mathbb{R}$ est de classe C^2 sur D (i.e., toutes les dérivées partielles secondes existent et sont continues), alors l'ordre de dérivation ne compte pas :

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(X) = \frac{\partial^2 f}{\partial x_i \partial x_j}(X) \quad \forall X \in D, \forall i,j$$

Définition 4.6 (Matrice Hessienne (cas m=1)). Si $f:D\to\mathbb{R}$ est de classe C^2 , la matrice Hessienne de f en $X_0\in D$ est la matrice symétrique (par Schwarz) :

$$H_f(X_0) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(X_0)\right)_{1 \le i, j \le n}$$

Théorème 4.3 (Formule de Taylor-Young à l'ordre 2 (cas m=1)). Si $f:D\to\mathbb{R}$ est de classe C^2 sur D, alors pour $X_0\in D$ et $H\in\mathbb{R}^n$ tel que $X_0+H\in D$:

$$f(X_0 + H) = f(X_0) + \nabla f(X_0) \cdot H + \frac{1}{2} H^T H_f(X_0) H + o(\|H\|^2)$$

où $H^TH_f(X_0)H = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(X_0)H_iH_j$ est la forme quadratique associée à la Hessienne.

4.3 Extrema

Définition 4.7 (Extremum local). Soit $f: D \to \mathbb{R}$. $X_0 \in D$ est un minimum local (resp. maximum local) s'il existe un voisinage V de X_0 tel que $f(X_0) \leq f(X)$ (resp. $f(X_0) \geq f(X)$) pour tout $X \in V \cap D$. Un extremum est dit **strict** si l'inégalité est stricte pour $X \neq X_0$.

Définition 4.8 (Point critique). Si f est différentiable sur D, $X_0 \in D$ est un **point critique** (ou stationnaire) si $\nabla f(X_0) = 0$.

Théorème 4.4 (Condition nécessaire d'extremum local (Ordre 1)). Si f admet un extremum local en $X_0 \in Int(D)$ et si f est différentiable en X_0 , alors X_0 est un point critique $(\nabla f(X_0) = 0)$.

Théorème 4.5 (Condition suffisante d'extremum local (Ordre 2)). Soit $f: D \to \mathbb{R}$ de classe C^2 sur D et $X_0 \in \text{Int}(D)$ un point critique. Soit $q(H) = H^T H_f(X_0) H$ la forme quadratique hessienne.

- 1. Si $H_f(X_0)$ est définie positive (i.e., q(H) > 0 pour $H \neq 0$, ou toutes ses valeurs propres sont > 0), X_0 est un minimum local strict.
- 2. Si $H_f(X_0)$ est définie négative (i.e., q(H) < 0 pour $H \neq 0$, ou toutes ses valeurs propres sont < 0), X_0 est un maximum local strict.
- 3. Si $H_f(X_0)$ est indéfinie (i.e., q(H) prend des valeurs > 0 et < 0, ou elle a des valeurs propres de signes opposés non nulles), X_0 est un point selle (ou col), pas un extremum.
- 4. Si $H_f(X_0)$ est semi-définie (positive ou négative) mais pas définie (i.e., $q(H) \ge 0$ (ou ≤ 0) et q(H) = 0 pour certains $H \ne 0$, ou au moins une valeur propre est nulle et les autres de même signe ou nulles), on ne peut pas conclure avec ce critère seul (cas douteux).

4.4 Règle de Dérivation en Chaîne

Théorème 4.6 (Théorème de composition). Soient $U \subset \mathbb{R}^n$ et $V \subset \mathbb{R}^m$ des ouverts. Si $g: U \to V$ est différentiable en $X_0 \in U$, et $f: V \to \mathbb{R}^p$ est différentiable en $Y_0 = g(X_0) \in V$. Alors $h = f \circ g: U \to \mathbb{R}^p$ est différentiable en X_0 , et sa différentiable est :

$$dh_{X_0} = df_{g(X_0)} \circ dg_{X_0}$$

En termes de matrices Jacobiennes :

$$J_h(X_0) = J_f(g(X_0)) \cdot J_g(X_0)$$

Cas particulier: n = 1, $g(t) = (g_1(t), \dots, g_m(t))$, $f: \mathbb{R}^m \to \mathbb{R}$. h(t) = f(g(t)).

$$h'(t) = \sum_{j=1}^{m} \frac{\partial f}{\partial y_j}(g(t)) \cdot g'_j(t) = \nabla f(g(t)) \cdot g'(t)$$

5 Espaces Vectoriels Normés : Compléments

5.1 Suites et Séries de Fonctions

Soit X un ensemble, E un EVN (souvent \mathbb{R} ou \mathbb{C}). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions $f_n:X\to E$.

Définition 5.1 (Convergence simple). (f_n) converge **simplement** vers $f: X \to E$ si $\forall x \in X, \lim_{n \to \infty} ||f_n(x) - f(x)||_E = 0$.

Définition 5.2 (Convergence uniforme). (f_n) converge uniformément vers $f: X \to E$ si

$$\lim_{n \to \infty} \sup_{x \in X} ||f_n(x) - f(x)||_E = 0$$

Ceci est la convergence dans l'espace B(X,E) des fonctions bornées de X dans E, muni de la norme sup $\|g\|_{\infty} = \sup_{x \in X} \|g(x)\|_{E}$.

Théorème 5.1 (Continuité et convergence uniforme). Soit M un espace métrique. Si les $f_n: M \to E$ sont continues pour tout n et (f_n) converge uniformément vers $f: M \to E$, alors f est continue. L'espace $C_b(M, E)$ des fonctions continues bornées de M dans E, muni de $\|\cdot\|_{\infty}$, est un espace de Banach si E est un espace de Banach.

Définition 5.3 (Série de fonctions, Convergence normale). Une série de fonctions $\sum u_n$ (où $u_n: X \to E$) converge **normalement** si la série numérique $\sum \|u_n\|_{\infty}$ converge. (i.e. $\sum_{n=0}^{\infty} \sup_{x \in X} \|u_n(x)\|_{E} < \infty$).

Propriété 5.1. Si E est un espace de Banach : Convergence normale \implies Convergence uniforme (et absolue) \implies Convergence simple.

5.2 Applications Linéaires Continues

Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux EVN sur \mathbb{K} . Soit $A: E \to F$ une application linéaire.

Théorème 5.2 (Continuité des applications linéaires). Pour une application linéaire $A: E \to F$, les propriétés suivantes sont équivalentes :

- 1. A est continue (en tout point de E).
- 2. A est continue en 0_E .
- 3. A est bornée : $\exists C \geq 0$ tel que $\forall x \in E, ||Ax||_F \leq C||x||_E$.

Définition 5.4 (Norme d'opérateur). $Si\ A: E \to F$ est une application linéaire continue, sa **norme d'opérateur** (ou norme subordonnée) est :

$$||A||_{\mathcal{L}(E,F)} = \sup_{x \in E, ||x||_E \le 1} ||Ax||_F = \sup_{x \in E, x \ne 0_E} \frac{||Ax||_F}{||x||_E}$$

C'est la plus petite constante $C \ge 0$ telle que $||Ax||_F \le C||x||_E$ pour tout $x \in E$. L'espace $\mathcal{L}(E,F)$ (ou B(E,F)) des applications linéaires continues de E dans F est un EVN. Si F est un espace de Banach, alors $\mathcal{L}(E,F)$ est un espace de Banach.

Propriété 5.2. Si $A \in \mathcal{L}(E, F)$ et $B \in \mathcal{L}(F, G)$, alors $BA \in \mathcal{L}(E, G)$ et $||BA|| \leq ||B|| ||A||$.

Lemme 5.1 (Dimension finie). Si E est de dimension finie, toute application linéaire $A: E \to F$ est continue.

Théorème 5.3 (Norme matricielle pour $A \in M_n(\mathbb{C})$ ou $L(\mathbb{C}^n)$). Si la norme sur \mathbb{C}^n est la norme euclidienne $\|\cdot\|_2$, alors la norme d'opérateur associée est :

$$||A|| = \sup_{\|x\|_2=1} ||Ax||_2 = \sqrt{\lambda_{\max}(A^*A)}$$

où A^* est l'adjointe de A (transposée conjuguée) et $\lambda_{\max}(A^*A)$ est la plus grande valeur propre de la matrice hermitienne semi-définie positive A^*A . (C'est aussi la plus grande valeur singulière de A). On a aussi $||A|| = ||A^*||$ et $||A||^2 = ||A^*A||$ (si la norme est induite par le produit scalaire).

Propriété 5.3 (Majoration de la norme matricielle). Norme de Frobenius (Hilbert-Schmidt) : $||A||_{HS} = \left(\sum_{i,j=1}^{n} |a_{i,j}|^2\right)^{1/2} = \sqrt{\text{Tr}(A^*A)}$. On a $||A|| \leq ||A||_{HS}$ pour la norme d'opérateur induite par $||\cdot||_2$.

6 Systèmes d'Équations Différentielles Linéaires

Considérons le système X'(t) = AX(t) + F(t), où $X(t) \in \mathbb{R}^n$ (ou \mathbb{C}^n), $A \in M_n(\mathbb{K})$, $F: I \to \mathbb{K}^n$.

6.1 Exponentielle de Matrice

Définition 6.1 (Exponentielle de matrice). Pour $A \in M_n(\mathbb{K})$, l'exponentielle de A est définie par la série :

$$e^A = \exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \dots$$

Cette série converge toujours (normalement dans $M_n(\mathbb{K})$ muni de n'importe quelle norme matricielle, car $M_n(\mathbb{K})$ est complet).

Propriété 6.1 (Propriétés de l'exponentielle). 1. $||e^A|| \le e^{||A||}$ (pour toute norme matricielle subordonnée ou de Frobenius).

- 2. Si AB = BA, alors $e^{A+B} = e^A e^B$.
- 3. $e^0 = I$. $(e^A)^{-1} = e^{-A}$.
- 4. $\frac{d}{dt}(e^{tA}) = Ae^{tA} = e^{tA}A$.

6.2 Résolution de Systèmes

Théorème 6.1 (Solution du système homogène). Le problème de Cauchy $\begin{cases} X'(t) = AX(t) \\ X(t_0) = X_0 \end{cases}$ admet pour unique solution $X(t) = e^{(t-t_0)A}X_0$. L'ensemble des solutions de X'(t) = AX(t) est un espace vectoriel de dimension n.

Théorème 6.2 (Solution du système non homogène - Formule de Duhamel / Variation de la constante). Le problème de Cauchy $\begin{cases} X'(t) = AX(t) + F(t) \\ X(t_0) = X_0 \end{cases}$, où F est continue, admet pour unique solution :

$$X(t) = e^{(t-t_0)A} X_0 + \int_{t_0}^t e^{(t-s)A} F(s) ds$$

Annexe: Comment montrer qu'un ensemble est ouvert/fermé

Pour montrer qu'un ensemble $\mathcal{U} \subset E$ est ouvert

— Utiliser la définition :

$$\forall x \in \mathcal{U}, \exists r > 0 \text{ tel que } B(x, r) \subset \mathcal{U}$$

- Montrer que $E \setminus \mathcal{U}$ est fermé.
- Montrer que \mathcal{U} est l'image réciproque d'un ouvert par une application continue $f: E \to E'$ (i.e. $\mathcal{U} = f^{-1}(O)$ avec O ouvert de E').
- Exprimer \mathcal{U} comme une boule ouverte (qui est toujours un ouvert).
- Écrire \mathcal{U} comme :
 - une réunion (quelconque) d'ouverts;
 - une intersection finie d'ouverts.
- Montrer que $\mathcal{U} = \operatorname{Int}(\mathcal{U})$.
- Si $\mathcal{U} \subset \mathbb{R}^N$, écrire $\mathcal{U} = I_1 \times \cdots \times I_N$ où chaque $I_i \subset \mathbb{R}$ est un intervalle ouvert.

Pour montrer qu'un ensemble $V \subset E$ est fermé

- Utiliser la définition : $E \setminus V$ est ouvert.
- Caractérisation séquentielle : Toute suite (x_n) d'éléments de V qui converge vers $x \in E$, a sa limite x dans V $(x \in V)$.
- Montrer que V est l'image réciproque d'un fermé par une application continue $f: E \to E'$ (i.e. $V = f^{-1}(F)$ avec F fermé de E').
- Montrer que V = Adh(V).
- Écrire V comme :
 - une intersection (quelconque) de fermés;
 - une union finie de fermés.
- Si l'espace ambiant est \mathbb{R}^d , montrer que V est compact (car un compact dans \mathbb{R}^d est fermé et borné). Attention, cela prouve aussi qu'il est borné.
- Si $V \subset \mathbb{R}^N$, écrire $V = I_1 \times \cdots \times I_N$ où chaque $I_i \subset \mathbb{R}$ est un intervalle fermé.