ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

SUMMER SEMESTER, 2018-2019

DURATION: 1 Hour 30 Minutes

FULL MARKS: 50

CSE 4809: Algorithm Engineering

Programmable calculators are not allowed. Do not write anything on the question paper. There are <u>4 (four)</u> questions. Answer any <u>3 (three)</u> of them including <u>Question 1 (mandatory)</u>. Figures in the right margin indicate marks.

	Ma	ndatory	
1.	a) b)	What is reducibility of a problem? Explain its usage in deciding tractability of a problem. Prove that circuit satisfyability problem is NP-hard.	4
	c)	Given the recursion $T(n) = aT(n/b) + f(n), \ a \ge 1, \ b > 1$	8
		Prove that if $f(n) = O(n \ power \ (\log_b^a - \varepsilon))$ for some constant $\varepsilon > 0$ then $T(n) = \Theta(n \ power \ \log_b^a)$	
2.	a)	Show the results of inserting the keys	8
		F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E	
	b)	with minimum degree 3. Prove the correctness of Dijkstra's algorithm for finding single source shortest paths.	7
3.	a)	Write down the recursive equations for all-pair shortest path problems including the formulation given by Floyd-Warshall.	5
	b)		5
	c)	Why does Bellman-Ford algorithm for negative weight cycle relax all the edges several times? How many times does the algorithm relax the edges?	5
4.	-	Comment on the hardness of the problem of 'data mining'.	5
	b) c)	What is Apriori property? Why does every data mining algorithm uses Apriori property? How does FP-Tree/ FP-Growth algorithm improve over Apriori algorithm for association pattern mining?	5