Could Bid Cap Control Bankruptcy Rate?

Yu Zhou econyz1216@gmail.com

Wuhan University

Outline

Topic

Examples of Topic

Main Questions

The Model

Model and Notation

Timeline

Organizer Problem

main result

Characterization of Equilibria

Could Bid Cap Control Bankruptcy Rate?

Bibliography

Topic

First-Price Auction with Shallow Pocket and Cap

First-price sealed-bid auction

A first-price sealed-bid auction is an auction where the highest bidder gets the object and pays the amount he bid.

Shallow pocket

Budget-constrained bidders can make their own financial decisions like borrowing, and default on their bids.

Cap

A cap is an upper bound on bids.

Examples of Topic

Examples of Topic

Examples of auction cap

- Salary caps
 - NBA, NFL
 - In this sports league, individual teams face annual caps on the sum of money they are allowed to spend on salaries.
- Technological caps
 - F1
 - Formula 1 racing cars must be constructed such that they cannot run faster than an absolute limit of 360 kilometers per hour.

Examples of Topic

Examples of auction with shallow pocket

- Spectrum auctions
- The FCC auctioned off the licenses for using the radio frequencies within a C-block spectrum.

Main Questions

Main Questions

- 1. Does there exist a symmetric equilibrium with and without cap?
- 2. What are bidders' financial and default decisons?
- 3. Will setting a bid cap benefit an organizer who wishes to control bankruptcy rate?

The Model

Model and Notation

- n bidders compete for 1 indivisible risky prize by submitting bids x.
- Prize value v follows a binomial distribution, where \overline{v} with probability $1-\theta$ and 0 with probability θ .
- Bidder i bears budget constraint e_i which is his private information.
- All bidders other than i perceive e_i as a random selection out of a support $[\underline{e}, \overline{e}] \in (0, \infty)$.
 - I.I.D
 - CDF: F, continuous differentiable
 - PDF: f, f(e) > 0 for all $e \in [\underline{e}, \overline{e}]$
- Exogenous borrowing rate is r while lending rate is 0.
- Organizer announces a bid cap d, where $d \in (0, +\infty)$.

Model and Notation

- Cost of bid is $c(x_i, e_i) = \begin{cases} x_i & \text{if } x_i \leq e_i \\ x_i + r(x_i e_i) & \text{if } x_i > e_i \end{cases}$
- Prize is given to only one bidder with the highest bid.
- Ties are broken randomly.
- After winning the object, the winning bidder gets to know its true value.
- Default is allowed whose penalty is the lose of his entire budget.
- $\widetilde{\beta}(e)$ is a symmetric bidding strategy without cap.
- $\beta(e,d)$ is a symmetric bidding strategy with cap.
- Bankruptcy rate is denoted by BR.

Timeline

Organizer Problem

Organizer Problem

The organizer selects the optimal bid cap to control/minimize the bankruptcy rate.

$$\min_{d \in (0,+\infty)} BR(d)$$

main result

Default decision

Proposition

Default only occurs at the winner who claims a debt (i.e. $x_i > e_i$) when 0 value happens.

Proof.

- If revelation of v is \overline{v} , then the winner will never default.
- If revelation of v is 0, then the winner will default only if he has claimed a debt.

11

Equilibria without a Bid Cap

Proposition

(Charles Z.Zheng, 2001). In the case of $r \in [0, \frac{\theta}{1-\theta})$, there exists an unique continuous symmetric equilibrium of the auction game given by

$$\widetilde{eta}(\mathsf{e}) = egin{cases} E_{e^L_{-i}}[rac{\overline{v} + r' \min(e^L_{-i}, (1- heta)\overline{v})}{1+r} \mid e^L_{-i} > \mathsf{e}] & ext{if } \overline{\mathsf{e}} \leq \mathsf{e} < (1- heta)\overline{v} \\ (1- heta)\overline{v} & ext{otherwise} \end{cases}$$

where $r'=r-\frac{\theta}{1-\theta}$ and e_{-i}^L denotes the lowest budget among a bidders' rivals.

Proposition

In the case of $r \in [0, \frac{\theta}{1-\theta})$, bankruptcy rate is $\theta[1-(1-F((1-\theta)\overline{\nu}))^n]$.

Equilibria without a Bid Cap

Graph

Proposition

Let $r\in[0,\frac{\theta}{1-\theta})$ and $d>E_{\mathbf{e}_{-i}^L}[\frac{\overline{\mathbf{v}}+r'\min(\mathbf{e}_{-i}^L,(1-\theta)\overline{\mathbf{v}})}{1+r}]$, there exists an unique continuous symmetric equilibrium of the auction game given by

$$\begin{array}{ll} \beta(e,d) = \widetilde{\beta}(e) = \\ \begin{cases} E_{e_{-i}^L}[\frac{\overline{v} + r' \min(e_{-i}^L, (1-\theta)\overline{v})}{1+r} \mid e_{-i}^L > e] & \text{if } \overline{e} \leq e < (1-\theta)\overline{v} \\ (1-\theta)\overline{v} & \text{otherwise} \end{cases}$$

where $r'=r-\frac{\theta}{1-\theta}$ and e_{-i}^L denotes the lowest budget among a bidders' rivals. And the bankruptcy rate is $\theta[1-(1-F((1-\theta)\overline{\nu}))^n]$.

Proposition

Let $r \in [0, \frac{\theta}{1-\theta})$ and $(1-\theta)\overline{v} < d \leq E_{e_{-i}^L}[\frac{\overline{v}+r'\min(e_{-i}^L,(1-\theta)\overline{v})}{1+r}]$. Then the bid cap is effective, and there exists a symmetric monotone equilibrium where bidding strategy is given by

$$eta(e_i,d) = egin{cases} d & ext{if } \underline{e} \leq e_i < \widetilde{e} \ \widetilde{eta}(e_i) & ext{if } \widetilde{e} \leq e_i < (1- heta)\overline{v} \ (1- heta)\overline{v} & ext{if } (1- heta)\overline{v} \leq e_i \leq \overline{e} \end{cases}$$

and the bankruptcy rate is given by

$$BR(d) = \theta[1 - (1 - F((1 - \theta)\overline{v}))^n]$$

where the critical value $\widetilde{e}=\widetilde{e}(d)$ is strictly monotonic decreasing, and defined by

$$d = \frac{nF(\widetilde{e})(1 - F(\widetilde{e}))^{n-1}}{1 - (1 - F(\widetilde{e}))^n} \left[\beta \widetilde{e} - \frac{\overline{v} + r'\widetilde{e}}{1 + r}\right] + \frac{\overline{v} + r'\widetilde{e}}{1 + r}$$

where
$$r' = r - \frac{\theta}{1-\theta}$$

Proposition

Let $r \in [0, \frac{\theta}{1-\theta})$ and $0 < d \le (1-\theta)\overline{v}$. Then the bid cap is effective, and there exists a symmetric monotone equilibrium where bidding strategy is given by

$$\beta(e_i,d)=d \ \forall e_i \in [\underline{e},\overline{e}]$$

and the bankruptcy rate is given by

$$BR(d) = \theta F(d)$$

which is strictly increasing with respect to bid cap d.

Could Bid Cap Control Bankruptcy Rate?

According to propositions, we could obtain

$$BR(d) = egin{cases} heta[1-(1-F((1- heta)\overline{
u}))^n] & ext{if } d > (1- heta)\overline{
u} \ heta F(d) & ext{if } 0 < d \leq (1- heta)\overline{
u} \end{cases}$$

- There is a jump at $\overline{d} = (1 \overline{\theta})\overline{v}$.
- BR(d) is a weakly increasing function w.r.t d.

Could Bid Cap Control Bankruptcy Rate?

Graph

Bibliography

Charles Z. Zheng.

High Bids and Broke Winners [J].

Journal of Economic Theory, 2001, 100: 129-171.

🔋 Chen B, Jiang X, Knyazev D.

On Disclosure Policies in All-pay Auctions with Stochastic Entry [J].

Journal of Mathematical Economics, 2017, 70: 66-73.

Gavious A, Moldovanu B, Sela A.

Bid Costs and Endogenous Bid Caps [J].

The RAND Journal of Economics, 2002, 33: 709-722.