Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3214 К работе допущен

Студент Силинцев Владислав Работа выполнена

Преподаватель Хвастунов Н.Н. Отчет принят

Рабочий протокол и отчет по лабораторной работе №03.10

Изучение свободных затухающих электромагнитных колебаний

1. Цель работы.

Изучение основных характеристик свободных затухающих колебаний.

- 2. Задачи, решаемые при выполнении работы.
 - Изучить зависимость логарифмического декремента от сопротивления.
 - Найти собственное сопротивление контура R_0 и полного сопротивления R.
 - Сравнить полученное значение L_{cp} с исходным значением L.
 - Сравнить периоды колебаний, полученные экспериментальным путем, с периодами, полученными теоретическим путем.
 - Сравнить добротности контура, полученные разными путями.
 - Сравнить критическое сопротивление, полученное экспериментальным путем, с критическим сопротивлением, полученным теоретическим путем.
 - Измерить период колебаний при разных емкостях конденсатора и сравнить значения с формулой Томсона.
- 3. Объект исследования.

C3-9M01.

4. Метод экспериментального исследования.

Изучение свободных затухающих электромагнитных колебаний на примере С3-ЭМ01.

5. Рабочие формулы и исходные данные.

- $C_1 = 0.022 \, \text{мк} \Phi \pm 10 \,\%$ емкость первого конденсатора.
- $C_2 = 0.033 \,\text{мк} \Phi \pm 10 \,\%$ емкость второго конденсатора.
- $C_3 = 0.047 \,\text{мк} \Phi \pm 10\%$ емкость третьего конденсатора.
- $C_4 = 0,47 \, \text{мк} \Phi \pm 10\%$ емкость четвертого конденсатора.
- $L = 10 \, \text{м} \Gamma \text{н} \pm 10 \, \%$ индуктивность катушки.
- $\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+n}}$ логарифмический декремент затухания.
- ullet $R_0 = -R_M|_{\lambda=0}$ собственное сопротивление контура.
- $R = R_M + R_0$ полное сопротивление.
- $\lambda pprox \pi\,R\,\cdot \sqrt{\frac{C}{L}}$ зависимость логарифмического декремента от сопротивления.
- $L_{cp} = \frac{\sum\limits_{i=1}^{n}L_{i}}{n}$ среднее значение индуктивности.
- $\Delta_{L_{cp}} = t_{\alpha,n} \sqrt{\frac{\sum\limits_{i=1}^{n} \left(L_{i} L_{cp}\right)^{2}}{n(n-1)}}$ абсолютная погрешность среднего значения индуктивности.
- $t_{\alpha,n}$ =2,26 коэффициент Стьюдента, при α =0,95 и n=10.
- $T = \frac{2\pi}{\sqrt{rac{1}{LC} rac{R^2}{4L^2}}}$ период затухающих колебаний.
- $Q = \frac{2\pi}{1 e^{-2\lambda}}$ добротность контура через логарифмический декремент.
- $Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}}$ добротность контура.

- $R_{\kappa p} = 2 \cdot \sqrt{\frac{L}{C}}$ критическое сопротивление контура.
- $T = 2\pi\sqrt{LC}$ формула Томсона.
- $\beta = \frac{R}{2L}$ коэффициент затухания.
- $\omega_0 = \frac{1}{\sqrt{LC}}$ собственная циклическая частота незатухающих колебаний контура.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осциллограф ОЦЛ2	Электронный	Настраиваемый	Настраиваемая

7. Схема установки (перечень схем, которые составляют Приложение 1).

Схема 1: рабочая схема для изучения затухающих колебаний напряжения на конденсаторе.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

R_{M} , O_{M}	Т, мс	2 <i>U_i</i> ,дел	2 <i>U</i> _{i+n} ,дел	n	λ	Q	R,Ом	L , м Γ н
0	0,1	3,6	1,3	3	0,340	12,747	64,3	7,798
10	0,1	3,6	1,1	3	0,395	11,500	74,3	7,683
20	0,1	3,6	1	3	0,427	10,941	84,3	8,472
30	0,1	3,5	1	3	0,418	11,097	94,3	11,083
40	0,1	3,5	0,8	3	0,492	10,034	104,3	9,767
50	0,1	3,5	0,7	3	0,536	9,549	114,3	9,864
60	0,1	3,5	0,6	3	0,588	9,088	124,3	9,714
70	0,1	3,5	0,5	3	0,649	8,646	134,3	9,314
80	0,1	3,5	0,4	3	0,723	8,219	144,3	8,654
90	0,1	3,4	0,3	3	0,809	7,836	154,3	7,898
100	0,1	3,3	0,3	3	0,799	7,875	164,3	9,179
200	0,1	3	0,8	1	1,322	6,764	264,3	8,685
300	0,1	3	0,5	1	1,792	6,463	364,3	8,978
400	0,1	2,8	0,2	1	2,639	6,315	464,3	6,722

Пример вычислений: $\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+n}} = \frac{1}{3} \cdot \ln \frac{3.6}{1.3} \approx 0.340$.

Вычислим $R_0 = -R_M|_{\lambda=0} \approx -(-64,3) = 64,3 \, O_M.$

Пример вычислений: $R = R_M + R_0 = 0 + 64$, 3 = 64, $3 O_M$.

Из формулы $\lambda \approx \pi \ R \cdot \sqrt{\frac{C}{L}}$ выразим $L \colon L = C \cdot \left(\frac{\pi \ R}{\lambda}\right)^2$.

Пример вычислений: $L = C_1 \cdot \left(\frac{\pi R}{\lambda}\right)^2 \approx 0,022 \cdot 10^{-6} \cdot \left(\frac{3,14 \cdot 64,3}{0,340}\right) \approx 7,798 \, \text{м} \Gamma \text{H}.$

Пример вычислений: $Q = \frac{2\pi}{1 - e^{-2\lambda}} \approx \frac{2 \cdot 3,14}{1 - e^{-2 \cdot 0,340}} \approx 12,747.$

С,мкФ	$T_{_{\mathfrak{K}Cn}}$, MC	$T_{\it meop}$, MC	$\delta T = \frac{T_{\text{\tiny 3KCN}} - T_{\text{\tiny meop}}}{T_{\text{\tiny meop}}}, \%$
0,022	0,1	0,0887	12,72
0,033	0,12	0,1087	10,37
0,047	0,13	0,1299	0,11
0,47	0,44	0,4210	4,51

Пример вычислений:

$$T_{\text{meop}} = \frac{2\,\pi}{\sqrt{\frac{1}{L_{cp}C} - \frac{{R_0}^2}{4\,{L_{cp}}^2}}} \approx \frac{3,14\cdot 2}{\sqrt{\frac{1}{9,039\cdot 10^{-3}\cdot 0,022\cdot 10^{-6}} - \frac{64,3^2}{\left(2\cdot 9,039\cdot 10^{-3}\right)^2}}} \approx 0,0887\,\text{MC}.$$

Пример вычислений: $\delta T = \frac{T_{\text{эксn}} - T_{\text{meop}}}{T_{\text{meop}}} = \frac{0.1 - 0.0887}{0.0887} \cdot 100\% \approx 12,72\%.$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Найдем
$$L_{cp} = \frac{\sum\limits_{i=1}^{n}L_{i}}{n} = \frac{\sum\limits_{i=1}^{10}L_{i}}{10} = 9,039\,\mathrm{M}\mathrm{\Gamma}\mathrm{H}$$

Найдем T при $R_{\scriptscriptstyle M}$ =0Oм:

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} = \frac{2 \cdot 3,14}{\sqrt{\frac{1}{7,798 \cdot 0,022 \cdot 10^{-9}}} - \frac{64,3^2}{4 \cdot 7,798^2 \cdot 10^{-6}}} \approx 0,0824 \,\mathrm{MC}.$$

Найдем T при $R_M = 200 \, O_M$:

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} = \frac{2 \cdot 3,14}{\sqrt{\frac{1}{8,685 \cdot 0,022 \cdot 10^{-9}}} - \frac{264,3^2}{4 \cdot 8,685^2 \cdot 10^{-6}}} \approx 0,0888 \,\text{MC}.$$

Найдем T при $R_M = 400 \, O_M$:

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} = \frac{2 \cdot 3,14}{\sqrt{\frac{1}{6,722 \cdot 0,022 \cdot 10^{-9}} - \frac{464,3^2}{4 \cdot 6,722^2 \cdot 10^{-6}}}} \approx 0,0842 \,\text{MC}.$$

Вычислим добротность контура Q при R=64,3OM: $Q=\frac{1}{R}\cdot\sqrt{\frac{L}{C_1}}=\frac{1}{64,3}\cdot\sqrt{\frac{7,798\cdot10^{-3}}{0,022\cdot10^{-6}}}\approx9,253$.

При R_{M} = $1000\,OM$ исчезает периодичность процесса. Тогда критическое сопротивление контура R= R_{M} + R_{0} =1000+64,3=1064, $3\,OM$.

Вычислим критическое сопротивление по формуле:

$$R_{\kappa p} = 2 \cdot \sqrt{\frac{L}{C}} = 2 \cdot \sqrt{\frac{9,039 \cdot 10^{-3}}{0,022 \cdot 10^{-6}}} \approx 1281,96 \, Om.$$

Вычислим
$$\beta = \frac{R}{2L_{cp}} = \frac{64,3}{2 \cdot 9,039 \cdot 10^{-3}} \approx 3559,25 \, \Gamma \eta$$
.

Вычислим
$$\omega_0 = \frac{1}{\sqrt{L_{cp}\,C_1}} = \frac{1}{\sqrt{9,039\,\cdot 10^{-3}\,\cdot 0,022\,\cdot 10^{-6}}} \approx 70914\,,32\,\Gamma y$$
.

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Вычислим абсолютную погрешность среднего значения индуктивности:

$$\Delta_{L_{cp}} = t_{\alpha,n} \sqrt{\frac{\sum_{i=1}^{n} (L_i - L_{cp})^2}{n(n-1)}} = 2,26 \cdot \sqrt{\frac{\sum_{i=1}^{10} (L_i - L_{cp})^2}{10 \cdot 9}} = 0,79321 \, \text{MFH}.$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1: зависимость логарифмического декремента λ от сопротивления магазина $R_{\scriptscriptstyle M}$.

График 2: зависимость добротности от сопротивления контура.

График 3: зависимость периода $T_{_{\mathit{эксn}}}$ от ёмкости конденсатора.

График 4: зависимость периода T_{meop} от ёмкости конденсатора.

12. Окончательные результаты.

$$L_{cp} = 9,0 \pm 0,8 \, M\Gamma H.$$

$$R_0 = 64,3 \, O_M$$
.

13. Выводы и анализ результатов работы.

Среднее значение L_{cp} = 9,0 м Γ н достаточно близко к значению, указанному на стенде

$$L = 10 \ {\it м\Gamma}{\it H} \pm 10 \%$$
. Значения T , вычисленные по формуле $T = \frac{2 \, \pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4 \, L^2}}}$ при сопротивлениях

 $R_{_M}=0$ Ом, $R_{_M}=200$ Ом и $R_{_M}=400$ Ом равны соответственно 0,0824 мс, 0,0888 мс и 0,0842 мс, что довольно близко к значению, указанному в таблице T=0,1 мс. Добротность контура, вычисленная по формуле $Q=\frac{1}{R}\cdot\sqrt{\frac{L}{C}}$ при R=64,3 Ом равно 9,253, а табличное значение, вычисленное по формуле $Q=\frac{2\pi}{1-e^{-2\lambda}}$ равно 12,747. Значения добротности контура, вычисленные разными путями, достаточно сильно отличаются друг от друга. Критическое сопротивление, полученное экспериментальным путем, равно 1064,3 Ом, а критическое сопротивление, полученное по формуле $R_{\kappa\rho}=2\cdot\sqrt{\frac{L}{C}}$ равно 1281,96 Ом, что достаточно близко к экспериментальному значению, но при этом имеет ощутимую разницу. Из графиков 3 и 4 можно увидеть, что периоды, полученные экспериментальным и теоретическим путями, лежат близко к кривой, которая соответствует формуле Томсона, что означает, что период можно вычислять по этой формуле. После вычисления значений β и ω_0 можно сделать вывод, что выполняется условие $\beta \ll \omega_0$. Таким образом, можно сделать вывод, что значения, вычисленные экспериментальным путем совпадают с теми, что описываются в теоретической части.

14. Дополнительн	ые задания.
15. Выполнение д	ополнительных заданий.
16. Замечания пре также помещают	еподавателя (исправления, вызванные замечаниями преподавателя, n в этот пункт).
Примечание:	 Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения. Необходимые исправления выполняют непосредственно в протоколе-отчете. При ручном построении графиков рекомендуется использовать миллиметровую бумагу. Приложения 1 и 2 вкладывают в бланк протокола-отчета.

Приложение 1

Рисунок 1: рабочая схема для изучения затухающих колебаний напряжения на конденсаторе.

Приложение 2

График 1: зависимость логарифмического декремента λ от сопротивления магазина $R_{\scriptscriptstyle M}$.

График 2: зависимость добротности от сопротивления контура.

График 3: зависимость периода $T_{_{\mathfrak{9}\mathsf{KCN}}}$ от ёмкости конденсатора.

График 4: зависимость периода $T_{\it meop}$ от ёмкости конденсатора.