Ejemplo comparación de resultados predictores in sillico

Cambio de estudio CFTR c.3718-2477C>T (chr7:117280016 G/A, rs949635279 o NM_000492G>A)

Exón 23 e intrones adyacentes:

attaaaatgg<mark>cgagt</mark>aagacaccctga gcaataatcaagaaaaaataaaaaaagtag agaacacagagttggggctctctgtgggtcacctctagcacttgatctcctcatgcagtg

Se ha descrito que este cambio causa la inclusión de un exón críptico (84 pb). La mutacion crea un sitio donor nuevo y resulta en la incrusión de un exón críptivo que contiene un PTC¹.

El cambio se encuentra en la primera línea del intrón (la primera ${\bf g}$ en color azul).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

^{1.} Sanz DJ, Hollywood JA, Scallan MF, Harrison PT (2017) Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA. PLoS One 12(9):e0184009

catqqtqctctcacqtctatqctatqttcttatqqtctttaqqtaacaaqaataattttc tttcttttccttactatacatttttgctttctgaaattcccttctcgccaatccaggtgaa tgtcagaatgtgatttgacaactgtccaaagtactcattcactgaggagtggtaaggcct <mark>.cgc</mark>o<mark>caa</mark>cctg<mark>co</mark>ttctctg<mark>g</mark>ga<mark>a</mark>tatactgctg<mark>o</mark>ctga<mark>aca</mark>tatc<mark>at</mark>tgttt<mark>a</mark>ttgcc aggcttgaacttcaccaaattaatttattagggtcaacatctaaatattagaactatttc agattaatttttaagtcgtatccactttgggtactagatcaaattgcaggtctctgcttc tggcttgagcctatgtttagagatgatgtgcatgaagacactctttgcttttcctttatg caaaatqqqcattttcaatcttttqtcattaqtaaaqqtcaqtqataaaqqaaqtctqc a<mark>t</mark>at<mark>at</mark>ca<mark>a</mark>catt<mark>g</mark>gtcagga<mark>t</mark>tgaaa<mark>gt</mark>gtgcaac<mark>a</mark>ag<mark>g</mark>tttgaatgaataagtgaaa<mark>a</mark> tcttccactggtgacaggataaaaatattccaatggtttttattgaagtacaatactgaat tatqtttatqqcatqqtacctatatgtcacaqaaqtgatcccatcacttttaccttatag GTGGGCCTCTTGGGAAGACTGGATCAGGGAAGAGTACTTTGTTATCAGCTTTTTTGAGA CTACTGAACACTGAAGCAGAAATCCAGATCGATGGTGTCTCTTGGGATTCAATAACTTTG CAA<mark>C</mark>AGTGGAGGAA<mark>AGCC</mark>TTT<mark>C</mark>GAGTGATACC<mark>A</mark>CAG gtgagcaaaaggacttagccagaaaaaaggcaactaaattatatttttactgctatttg atact<mark>tqtac</mark>tcaaqaaat<mark>t</mark>cat<mark>attactctqcaaaat</mark>atatttqttat<mark>qcattqctqt</mark>c ttt<mark>t</mark>ttctccagtgcagttttct<mark>c</mark>a<mark>t</mark>aggcagaaa<mark>aga</mark>tgtctctaaaagtttggaattc

NetGene2

Donor splice	Oonor splice sites, direct strand						Donor splice sites, direct strand						
	pos 5'->3'	phase	strand	confidence	5'	exon intron	3'		pos 5'->3'	phase	strand	confidence	5' exon intron 3'
	195	. 2	+	0.34	TAGA	TTTAGG^GTATGTCT	TA		. 27	· -	+	0.00	AAAATGGCAA^GTAAGACACC
	978	1	+	0.47	GGCA	CTTTGG^GTAAGCCA	GG		195	2	+	0.34	TAGATTTAGG^GTATGTCTTA
	1952	2	+	0.83	CTGA	CTGAGGAGTG^GTAAGGCCTT			978	1	+	0.47	GGCACTTTGG^GTAAGCCAGG
	2239	1	+	0.44	ATTA	GTAAAG^GTCAGTGA	TA		1952	2	+	0.83	CTGAGGAGTG^GTAAGGCCTT
	2657	1	+	0.83	GATA	CCACAG^GTGAGCAA	AA		2239	1	+	0.44	ATTAGTAAAG^GTCAGTGATA
									2657	1	+	0.83	GATACCACAG^GTGAGCAAAA
Donor splice	sites, comple	ement s	trand					Danas14					
					Donor splice	sites, compie	ement s	trand					
pos 3'->5'			strand	confidence		exon intron	3'	pos 3'->5'	pos 5'->3'	nhaco	strand	confidence	5' exon intron 3'
2493	344	0	-	0.47		TATAAG^GTAAAAGT		2493	344	pilase 0	Stranu	0.47	CACCTATAAG^GTAAAAGTGA
1794	1043	1	-	0.45		ATAGAC^GTGAGAGC		1794	1043	1		0.45	TAGCATAGAC^GTGAGAGCAC
1377	1460	2	-	0.47		AGAAAA^GTAAGTTT		1377	1460	2	_	0.47	TCATAGAAAA^GTAAGTTTGT
680	2157	1	-	0.53		GTGCAG^GTGAGGTA		680	2157	1		0.53	CCCAGTGCAG^GTGAGGTACA
602	2235	1	-	0.49	AAGA	ATTTTG^GTAAGAAG	TG	602	2235	1	_	0.49	AAGAATTTTG^GTAAGAAGTG
Acceptor spli								Acceptor splic	ce sites, dir	ect st	rand		
	pos 5'->3'		strand	confidence		intron exon	3'		pos 5'->3'	phase	strand	confidence	5' intron exon 3'
	244	1	+	0.43		CAACAG^ATCACTGA			244	. 1	+	0.43	TATTCAACAG^ATCACTGAGA
	1895	0	+	0.49		ATCCAG^GTGAATGT			1895	0	+	0.49	GCCAATCCAG^GTGAATGTCA
	2022	2	+	0.16		TGCCAG^GCTTGAAC			2022	2	+	0.16	TTATTGCCAG^GCTTGAACTT
	2500	1	+	0.83		TTATAG^GTGGGCCT			2500	1	+	0.83	TACCTTATAG^GTGGGCCTCT
	2788	0	+	0.00		CTCCAG^TGCAGTTT			2788	0	+	0.00	TTTTCTCCAG^TGCAGTTTTC
	2793	2	+	0.00		GTGCAG^TTTTCTCA			2793	2	+	0.00	TCCAGTGCAG^TTTTCTCATA
	2804	1	+	0.00	TTTC	TCATAG^GCAGAAAA	GΑ		2804	1	+	0.00	TTTCTCATAG^GCAGAAAAGA
Acceptor spli	Acceptor splice sites, complement strand					Acceptor splice sites, complement strand							
pos 3'->5'	pos 5'->3'	phase	strand	confidence	5'	intron exon	3'	pos 3'->5'	pos 5'->3'	phase	strand	confidence	5' intron exon 3'
2571	266	1	-	0.25	TCTC	CTTCAG^TGTTCAGT	AG	2571	266	່ 1	-	0.25	TCTCCTTCAG^TGTTCAGTAG
2151	686	2	_	0.28	CTAA	ACATAG^GCTCAAGC	CA	2151	686	2	-	0.28	CTAAACATAG^GCTCAAGCCA
1168	1669	0	_	0.23		TCTCAG^ACAACTGA		1168	1669	0	-	0.23	TTGTTCTCAG^ACAACTGAGA
258	2579	2	_	0.43		TTCCAG^GCTTCTCA		258	2579	2	-	0.43	GTTTTTCCAG^GCTTCTCAGT

Aparece un sitio *donor* nuevo en la secuencia mutada (derecha). Si existiera un sitio *donor* anterior a esta posición que no se había utilizado, puede emplearse para incluirse un exón críptico a la secuencia del mRNA.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 85.53.15.54.9590.0:

Start	End	Score	Exon	Intron
188	202	0.99	atttag	gg gt atgtct
971	985	0.98	actttg	ggtaagcca
980	994	0.41	aagcca	ag gt gctaag
1578	1592	0.94	aaatta	at gt aaggag
1816	1830	0.89	tcttta	ag gt aacaag
1889	1903	0.81	aatcca	ag gt gaatgt
1945	1959	0.99	aggagt	tg gt aaggcc
2232	2246	0.96	agtaaa	ag gt cagtga
2353	2367	0.71	caacaa	g gt ttgaat
2588	2602	0.50	atcgat	tg gt gtgtct
2650	2664	1.00	accaca	ag gt gagcaa

Donor site predictions for 85.53.15.54.9601.0:

Start	End	Score	Exon Intron
20	34	0.84	atggcaa gt aagaca
188	202	0.99	atttagg gt atgtct
971	985	0.98	actttgg gt aagcca
980	994	0.41	aagccag gt gctaag
1578	1592	0.94	aaattat gt aaggag
1816	1830	0.89	tctttag gt aacaag
1889	1903	0.81	aatccag gt gaatgt
1945	1959	0.99	aggagtg gt aaggcc
2232	2246	0.96	agtaaag gt cagtga
2353	2367	0.71	caacaag gt ttgaat
2588	2602	0.50	atcgatg gt gtgtct
2650	2664	1.00	accacag gt gagcaa

Aparece un sitio *donor* nuevo en la secuencia mutada (derecha). Si existiera un sitio *donor* anterior a esta posición que no se había utilizado, puede emplearse para incluirse un exón críptico a la secuencia del mRNA.

Acceptor site predictions for 85.53.15.54.9590.0:

Acceptor site predictions for 85.53.15.54.9601.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
224	264	0.46	tactctagcct	ttattcaac ag atcactgagaagcctggaaa		264	0.46		aac ag atcactgagaagcctggaaa
444	484	0.58	acaaattgcc	tcttcatcc ag tctttcccaacctaaaaact		484	0.58	•	tcc ag tctttcccaacctaaaaact
499	539	0.82	ttttagtatt	tttttctga ag aaaagggaacatggacattt		539	0.82	_	tga ag aaaagggaacatggacattt
535	575	0.47	catttatcta	atcctcatt ag aaatctgactaatgataaca		575	0.47	_	att ag aaatctgactaatgataaca
853	893	0.40	attaaatcca	ttatttgtt ag atcagctaaattacataagt		893	0.40		gtt ag atcagctaaattacataagt
1143	1183	0.61		gattttctc ag ttgtctgagaacaaacattt		1183	0.61		ctc ag ttgtctgagaacaaacattt
1229	1269	0.72	tgtgtcatta	ttgcttatc ag cttatcccaaagacctagtt		1269	0.72		atc ag cttatcccaaagacctagtt
1488	1528	0.98		cttcactac ag attgaaaagcattatactaa		1528	0.98		tac ag attgaaaagcattatactaa
1623	1663	0.59	_	agttttttc ag tggtcagttaatgactgcag		1663	0.59	_	ttc ag tggtcagttaatgactgcag
1802	1842	0.95		atggtcttt ag gtaacaagaataattttctt		1842	0.95		ttt ag taacaagaataatttctt
1002	1042	0.95	_			1042			-
2002	2042	0.81	catatcattg	tttattgcc ag gcttgaacttcaccaaatta	2002	2042	0.81	catatcattgtttatt	gcc ag gcttgaacttcaccaaatta
2213	2253	0.94	tttcaatctt	tttgtcatt ag taaaggtcagtgataaagga	2213	2253	0.94	tttcaatctttttgtc	att ag taaaggtcagtgataaagga
2287	2327	0.40	gtttctctatt	tctgttcca ag gttgtttgtctccatatatc	2287	2327	0.40	gtttctctattctgtt	cca ag gttgtttgtctccatatatc
2480	2520	1.00	cccatcactt	ttaccttat ag gtgggcctcttgggaagaac	2480	2520	1.00	cccatcacttttacct	tat ag gtgggcctcttgggaagaac
2768	2808	0.94	attgctgtct	tttttctcc ag tgcagttttctcataggcag	2768	2808	0.94	attgctgtctttttc	tcc ag tgcagttttctcataggcag
2784	2824	0.86		ttttctcat ag gcagaaaagatgtctctaaa	0704	2824	0.86	tccagtgcagttttct	cat ag gcagaaaagatgtctctaaa

GENSCAN → no da resultados para este cambio

MaxEntScan

MAXENT: -17.30 MDD: -12.10 MM: -8.96 WMM: -8.48 MAXENT: -12.27 MM: -11.90 WMM: -8.76

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
atggc(g/a)agtaa	atggcg	atggca	28566	65%

En el análisis del efecto del cambio, se obtiene una puntuación elevada (65%) para el cambio, por lo que puede estar afectando al splicing.

CRYP-SKIP

Se emplea para el exón y las regiones flanqueantes a este, por lo que este predictor no va a ser útil para una variante intrónica profunda.

Human Splicing Finder

Alteration of auxiliary sequences	Significant alteration of ESE / ESS motifs ratio (4)						
Algorithm/Matix	position	sequence					
EIE (ESE Site Broken)	chr7:117639962	CGCCAT					
EIE (New ESE Site)	chr7:117639964	CTCACC					
ESE_ASF (New ESE Site)	chr7:117639964	CTCACCA					
ESE_ASFB (New ESE Site)	chr7:117639964	CTCACCA					
EIE (New ESE Site)	chr7:117639965	ACTCAC					
ESE_SRp40 (New ESE Site)	chr7:117639965	ACTCACC					

SVM-BPfinder

seq_id	agez	ss_dist	bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_sc	r svm_scr			
wt	13	74	gtattaaaa	-3.8497059368	0.420289855072	31	12	19	-2.7550696
wt	13	73	tattaaaat	-0.837525156699	0.426470588235	30	12	19	-1.5103639
wt	13	61	gagtaagac	-0.537185481398	0.464285714286	18	12	19	-0.62097369
wt	13	51	ccctgaaag	1.16447246111	0.45652173913	8	12	19	0.67578151
wt	13	33	tattcatgg	0.0547516643368	0.464285714286	28	0	0	-1.1991866
wt	13	17	caattacag	-0.324115538156	0.5 12	0	0	-0.3232	2319
mut	13	74	gtattaaaa	-3.8497059368	0.420289855072	31	12	19	-2.7550696
mut	13	73	tattaaaat	-0.837525156699	0.426470588235	30	12	19	-1.5103639
mut	13	61	aagtaagac	-0.972380575823	0.464285714286	18	12	19	-0.79137314
mut	13	51	ccctgaaag	1.16447246111	0.45652173913	8	12	19	0.67578151
mut	13	33	tattcatgg	0.0547516643368	0.464285714286	28	0	0	-1.1991866
mut	13	17	caattacag	-0.324115538156	0.5 12	0	0	-0.3232	2319

La diferencia entre ambas es la el cabio en una de los resultados de **g** a **a**. Sin embargo, como sigue teniendo una puntuación baja, no se considera. Por lo tanto, no tendrá efecto en el *splicing*.

IntSplice

SNV at chr7:117280016 can't be predicted by IntSplice.

Prediction shows either Abnormal or Normal.

Prediction Genomic Mutation

Ensembl 64 Transcript ID and Exon No.

Variant Effect Predictor tool

Category	Count
Variants processed	1
Variants filtered out	0
Novel / existing variants	0 (0.0) / 1 (100.0)
Overlapped genes	2
Overlapped transcripts	5
Overlapped regulatory features	0

Se trata de una variante intrónica que está afectando al sitio de *splicing*, por lo que va a provocar que se altere el *splicing* normal.

Esto se observa en que en los resultados se obtiene que es una *non-coding transcript variant*, es decir, una variante que se encuentra en un transcrito que no se suele transcribir porque no es el mayoritario. El método de NMD (14% de los resultados) se encarga de degradar estos transcritos², dado que aparece un codón de parada

Uploaded variant	Location	Allele	Consequence	Symbol	Gene	Feature type	Feature	Biotype
ENST00000003084.6:c.3719- 2477G>A	7:117639962- 117639962	Α	intron_variant	CFTR	ENSG00000001626	Transcript	ENST00000003084.11	protein_coding
ENST00000003084.6:c.3719- 2477G>A	7:117639962- 117639962	Α	intron_variant	CFTR	ENSG00000001626	Transcript	ENST00000426809.5	protein_coding
ENST00000003084.6:c.3719- 2477G>A	7:117639962- 117639962	Α	intron_variant, non_coding_transcript_variant	AC000061.1	ENSG00000083622	Transcript	ENST00000456270.1	IncRNA
ENST00000003084.6:c.3719- 2477G>A	7:117639962- 117639962	Α	intron_variant, NMD_transcript_variant	CFTR	ENSG00000001626	Transcript	ENST00000647720.1	nonsense_mediated_decay
ENST00000003084.6:c.3719- 2477G>A	7:117639962- 117639962	Α	intron_variant	CFTR	ENSG00000001626	Transcript	ENST00000649781.1	protein_coding

ESEfinder

Cuando se buscan los posibles sitios de *splicing*, solo se obtienen dos resultados con la posición de interés con puntuación positiva en las matrices de 5'SS: tgcagtattaaaatggcgagtaagacaccc (2.23320 y 2.24520) y gtattaaaatggcgagtaagacaccctgaa (4.72270 y 4.64940). Si buscamos los resultados equivalentes en las predicciones para la secuencia mutada, vemos que, para la primera las puntuaciones suben un poco (2.92170 y 2.92060), mientras que para la segunda suben considerablemente (7.02820 y 7.01200). Por lo tanto, se está generando un sitio 5'SS mucho más fuerte que el original, lo que hará que sea más probable la alteración del *splicing*.

EX-SKIP

Predictor para secuencias exónicas.

HOT-SKIP

Predictor para secuencias exónicas.